ALGEBRA 2. VECTOR SPACES

Grau de Matemàtiques. FME 2018-2019

Marta Casanellas Departament de Matemàtiques

OUTLINE

- \bigcirc \mathbb{R}^n AND OTHER VECTOR SPACES
- **2** VECTOR SUBSPACES
- 3 LINEAR DEPENDENCY, BASIS AND DIMENSION
- COORDINATES AND CHANGE OF BASIS
- **S** INTERSECTION AND SUM
- **6** QUOTIENT SPACE
- BIBLIOGRAPHY

OUTLINE

- \bigcirc \mathbb{R}^n AND OTHER VECTOR SPACES
- VECTOR SUBSPACES
- 3 LINEAR DEPENDENCY, BASIS AND DIMENSION
- COORDINATES AND CHANGE OF BASIS
- INTERSECTION AND SUM
- **6** QUOTIENT SPACE
- BIBLIOGRAPHY

THE VECTOR SPACE \mathbb{R}^n

We consider the set of *n*-tuples of real numbers:

$$\mathbb{R}^n = \{(x_1, x_2, \dots, x_n) \mid x_i \in \mathbb{R}\}\$$

and we call its elements vectors.

Notation: When we talk about $v \in \mathbb{R}^n$ we usually think of v as a column vector,

$$v = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

\mathbb{R}^2 : Physical interpretation

- $(x,y) \in \mathbb{R}^2$ can be thought either as a point or as a directed line segment between two points A and B, $(x,y) = \overrightarrow{AB}$. We think of them in this last sense (*vectors*).
- The vector \overrightarrow{AB} represents the displacement needed to get from A to B: x units along the x-axis and y-along the y-axis.
- Two vectors are equal if they represent the same displacement (equivalently, if they have the same length direction and sense).
- We can always think (x, y) as a vector of initial point (0, 0) and end point (x, y).

OPERATIONS IN \mathbb{R}^2

We can sum or substract vectors

and we can multiply a vector by a constant (scalar)

- Vectors in \mathbb{R}^3 have a similar physical interpretation
- We can also sum two vectors and multiply a vector by a scalar. These operations can be done in coordinates: if $u = (x_1, x_2, x_3)$ and $v = (y_1, y_2, y_3)$, then

$$u + v = (x_1 + y_1, x_2 + y_2, x_3 + y_3),$$

 $c \cdot u = (cx_1, cx_2, cx_3)$ for any $c \in \mathbb{R}$.

OPERATIONS IN \mathbb{R}^n

In \mathbb{R}^n we define the following operations:

sum: if
$$u = (x_1, x_2, ..., x_n), v = (y_1, y_2, ..., y_n)$$
, then $u + v = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n) \in \mathbb{R}^n$. scalar multiplication: if $u = (x_1, x_2, ..., x_n), c \in \mathbb{R}$, then $c \cdot u = (c x_1, c x_2, ..., c x_n) \in \mathbb{R}^n$.

PROPOSITION

These operations in \mathbb{R}^n satisfy the following properties:

- u + v = v + u. Commutativity
- $(u+v)+w=u+(v+w). \ \textit{Associativity}$
- **③** ∃ an element $\mathbf{0} \in \mathbb{R}^n$, called the zero vector, such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
- **○** For each $u \in \mathbb{R}^n$, \exists an element $-u \in \mathbb{R}^n$ such that $u + (-u) = \mathbf{0}$.
- \circ $c \cdot (u + v) = c \cdot u + c \cdot v$. Distributivity
- $(c+d) \cdot u = c \cdot u + d \cdot u.$ Distributivity
- $1 \cdot u = u.$

VECTOR SPACE OVER \mathbb{K}

Let \mathbb{K} be \mathbb{Q} , \mathbb{R} , \mathbb{C} or any other (commutative) field ("cos").

A vector space over \mathbb{K} (\mathbb{K} -e.v.) is a set E with two operations + and \cdot ,

- + given $u, v \in E$, it assigns another element u + v of E.
- given $u \in E$ and a scalar $c \in \mathbb{K}$, it assigns an element $c \cdot u \in E$ that satisfy the previous properties, i.e,
 - + is commutative, associative, has a neutral element (denoted $\mathbf{0}$ or $\vec{0}$) and every $u \in E$ has an inverse with respect to + (denoted -u),
 - and + satisfy:

$$c \cdot (u+v) = c \cdot u + c \cdot v$$
, $(c+d) \cdot u = c \cdot u + d \cdot u$, $c \cdot (d \cdot u) = (cd) \cdot u$, $1 \cdot u = u$ for any $u, v \in E$ and $c, d \in \mathbb{K}$.

The elements of a \mathbb{K} -e.v. are called vectors.

EXAMPLES OF VECTOR SPACES

- $\mathbb{K}^n = \{(x_1, \dots, x_n) \mid x_i \in \mathbb{K}\}$ is a \mathbb{K} -e.v. with the natural sum and product inherited by \mathbb{K} .
- $\mathcal{M}_{m \times n}(\mathbb{K}) = m \times n$ matrices with entries in \mathbb{K} and the natural operations of sum of matrices and multiplication by scalars is a \mathbb{K} -e.v.
- The set of polynomials of degree $\leq d$, $\mathbb{R}_d[x] = \{p(x) = a_0 + a_1x + \ldots + a_dx^d \mid a_i \in \mathbb{R}\}$, is a vector space with the usual sum of polynomials and multplication by a scalar.
- $\mathbb{R}[x] = \{\text{polynomials in one variable } x \text{ and coefficients in } \mathbb{R}\} \text{ is a } \mathbb{R}\text{-e.v.}$
- The set $\mathcal{F}(\mathbb{R},\mathbb{R})$ of functions $f:\mathbb{R}\longrightarrow\mathbb{R}$ is a \mathbb{R} -e.v. with the usual sum of functions (f+g) is the function (f+g)(x)=f(x)+g(x)) and product by a scalar $(c\cdot f)$ is the function $(c\cdot f)(x)=cf(x)$).

PROPERTIES

If E is a \mathbb{K} -e.v., then

- (A) $0 \cdot u = 0 = c \cdot 0$,
- (B) $(-1) \cdot u = -u$,
- (C) $(-c) \cdot u = c \cdot (-u) = -(c \cdot u)$ (so we denote it by -cu),
- (D) $c \cdot u = \mathbf{0} \Leftrightarrow c = 0 \text{ or } u = \mathbf{0}$.

Note: Usually we avoid the notation ·

LINEAR COMBINATIONS

DEFINITION

A vector u is a linear combination of vectors u_1, \ldots, u_k if there are scalars c_1, \ldots, c_k such that $u = c_1 u_1 + \ldots + c_k u_k$ (the scalars c_i are the coefficients of the linear combination).

Finding out whether a vector in \mathbb{K}^n is a linear combination of a collection of given vectors is equivalent to solving a linear system of equations:

PROPOSITION

A system Ax = b is consistent if and only if b is a linear combination of the columns of A.

OUTLINE

- \bigcirc \mathbb{R}^n AND OTHER VECTOR SPACES
- **2** VECTOR SUBSPACES
- 3 LINEAR DEPENDENCY, BASIS AND DIMENSION
- COORDINATES AND CHANGE OF BASIS
- INTERSECTION AND SUM
- **6** QUOTIENT SPACE
- BIBLIOGRAPHY

VECTOR SUBSPACES

DEFINITION

Let *E* be a \mathbb{K} -e.v. Then a subset $V \neq \emptyset$ of *E* is a vector subspace if *V* is itself a vector space (with + and \cdot of *E*). This is equivalent to:

- If u and v are in V, then u + v is in V.
- ① If u is in V and c is a scalar, then $c \cdot u$ is in V.

Ex:

- $V = \mathbb{K}^n$ is a vector subspace of \mathbb{K}^n .
- $V = {\mathbf{0}}$ is a vector subspace (of any E).
- $V = \{(x, y, z) \in \mathbb{R}^3 \mid x y = 0, 3z = 0\}$ is a vector subspace of \mathbb{R}^3 .
- $F = \{(a+2b,0,b) \in \mathbb{R}^3 \mid a,b \in \mathbb{R}\}$ is a vector subspace of \mathbb{R}^3 .

REMARKS

- Every subspace contains the zero vector.
- Properties 1 and 2 can be combined: $V \neq \emptyset$ is a subspace \Leftrightarrow for any u_1, \ldots, u_k in V and c_1, \ldots, c_k in \mathbb{K} , the linear combination

$$c_1u_1+\ldots+c_ku_k$$

is also in V.

That is, vector subspaces are closed under linear combinations.

PROPOSITION

Let Ax = 0 be a linear system, where $A \in \mathcal{M}_{m,n}(\mathbb{K})$. Then, the set of solutions $V = \{v \in \mathbb{K}^n \mid Av = 0\}$ is a vector subspace of \mathbb{K}^n .

Let v_1, v_2, \ldots, v_k be vectors in E.

DEFINITION

The set of all linear combinations of v_1, v_2, \ldots, v_k ,

$$\{c_1v_1+\ldots+c_kv_k\mid c_1,\ldots,c_n\in\mathbb{K}\}$$

is the called the span of v_1, v_2, \ldots, v_k and is denoted as $[v_1, v_2, \ldots, v_k]$.

PROPOSITION

 $V = [v_1, v_2, \dots, v_k]$ is a vector subspace and is the smallest subspace containing $\{v_1, \dots, v_k\}$.

We say that $\{v_1, v_2, \dots, v_k\}$ is a system of generators of V, and also that V is spanned by v_1, v_2, \dots, v_k .

Examples:

- $\mathbb{R}^n = [(1,0,\ldots,0),\ldots,(0,\ldots,0,1)].$
- $V = \{(x, y, z) \in \mathbb{R}^3 \mid x y = 0, 3z = 0\} \Rightarrow V = [(1, 1, 0)].$
- $V = \{(x, y, z) \in \mathbb{R}^3 \mid x y = 0\} \Rightarrow V = [(1, 1, 0), (0, 0, 1)].$
- $F = \{(a+2b,0,b) \in \mathbb{R}^3 \mid a,b \in \mathbb{R}\} = [(1,0,0),(2,0,1)].$

A vector space *E* is finitely generated (f.g.) if it can be spanned by a finite collection of vectors.

- \mathbb{K}^n is f.g.
- K[x] is not f.g.

OUTLINE

- \bigcirc \mathbb{R}^n AND OTHER VECTOR SPACES
- VECTOR SUBSPACES
- **SOLUTION**LINEAR DEPENDENCY, BASIS AND DIMENSION
- COORDINATES AND CHANGE OF BASIS
- INTERSECTION AND SUM
- **6** QUOTIENT SPACE
- **BIBLIOGRAPHY**

LINEAR DEPENDENCY

DEFINITION

The vectors $v_1, v_2, \ldots, v_k \in E$ are linearly dependent (l.d.) if there are scalars c_1, c_2, \ldots, c_k , at least one $\neq 0$, such that $c_1 v_1 + \ldots + c_k v_k = \mathbf{0}$. Otherwise, we say that v_1, v_2, \ldots, v_k are linearly independent, l.i..

 v_1, v_2, \ldots, v_k are linearly independent if any linear combination of them that equals $\mathbf{0}, c_1 v_1 + \ldots + c_k v_k = \mathbf{0}$, implies $c_1 = c_2 = \ldots = c_k = 0$.

Remarks:

- Any set of vectors containing 0 is linearly dependent.
- ② Two vectors v_1 , v_2 are linearly dependent \Leftrightarrow one is multiple of the other.
- v_1, v_2, \dots, v_k in E are l.d. \Leftrightarrow at least one of the vectors can be expressed as a linear combination of the others.
- \bullet If v_1, \ldots, v_k are l.i. and $u \notin [v_1, \ldots, v_k] \Rightarrow v_1, \ldots, v_k, u$ are l.i.

BASIS OF A VECTOR SUBSPACE

DEFINITION

Let $V \subset E$ be a vector subspace. A collection of vectors $\{v_1, \dots, v_k\}$ is a basis of V if

- $V = [v_1, ..., v_k]$ and
- $\{v_1, \ldots, v_k\}$ is linearly independent.

Ex: (1,1,0), (0,0,1) is a basis of $V = \{(x,y,z) \in \mathbb{R}^3 \mid x-y=0\}$.

STANDARD BASIS

There are some standard (or *natural*, *canonical*) bases of certain vector spaces:

- \mathbb{K}^n : $\{e_1, e_2, \dots, e_n\}$ where $e_i = (0, \dots, \overset{i}{1}, \dots, 0)$ for $i = 1, 2, \dots, n$.
- $\mathcal{M}_{m \times n}$: $\{E_{i,j}\}_{\substack{i=1,\ldots,m\\j=1,\ldots,n}}$ where $E_{i,j} \in \mathcal{M}_{m \times n}$ has 1 at entry (i,j) and 0's elsewhere.
- $\mathbb{R}_d[x]$: $\{1, x, \dots, x^d\}$

STANDARD BASIS

There are some standard (or *natural*, *canonical*) bases of certain vector spaces:

- \mathbb{K}^n : $\{e_1, e_2, \dots, e_n\}$ where $e_i = (0, \dots, 1, \dots, 0)$ for $i = 1, 2, \dots, n$.
- $\mathcal{M}_{m \times n}$: $\{E_{i,j}\}_{\substack{i=1,\ldots,m\\j=1,\ldots,n}}$ where $E_{i,j} \in \mathcal{M}_{m \times n}$ has 1 at entry (i,j) and 0's elsewhere.
- $\mathbb{R}_d[x]$: $\{1, x, \dots, x^d\}$

STANDARD BASIS

There are some standard (or *natural*, *canonical*) bases of certain vector spaces:

- \mathbb{K}^n : $\{e_1, e_2, \dots, e_n\}$ where $e_i = (0, \dots, 1, \dots, 0)$ for $i = 1, 2, \dots, n$.
- $\mathcal{M}_{m \times n}$: $\{E_{i,j}\}_{\substack{i=1,\ldots,m\\j=1,\ldots,n}}$ where $E_{i,j} \in \mathcal{M}_{m \times n}$ has 1 at entry (i,j) and 0's elsewhere.
- $\mathbb{R}_d[x]$: $\{1, x, \dots, x^d\}$

BASIS AND DIMENSION

THEOREM (STEINITZ SUBSTITUTION LEMMA)

Let E be an $f.g \mathbb{K}$ -e.v. Let v_1, \ldots, v_m be generators of E and $u_1, \ldots, u_n \in E$ be l.i. Then, $n \leq m$ and one can substitute n vectors of $\{v_1, \ldots, v_m\}$ by u_1, \ldots, u_n such that the new collection of vectors is still a system of generators for E.

COROLLARY (THE BASIS THEOREM)

Any two bases of a f.g. vector space have the same number of elements .

This number is called the dimension of the vector space and noted as dim(E). By convention, $dim(\{\vec{0}\}) = 0$.

PROPOSITION

Let E be a vector space of dimension n. Then:

- Any system of generators for E contains ≥ n vectors. Moreover, it contains a basis of E.
- ② Any linearly independent set in E contains ≤ n vectors. Moreover, it can be extended to a basis of E (by choosing vectors of a given basis of E conveniently).
- Any linearly independent set of n vectors in E is a basis for E.
- Any system of generators for E consisting of n vectors is a basis for E.

Hence,

n = minimum number of elements in a system of generators of E = maximum number of l.i. vectors in E.

THEOREM

Let $V_1 \subset V_2$ be subspaces of E and dim(E) = n. Then:

- \bigcirc dim $V_1 \leq$ dim $V_2 \leq n$.
- o $dimV_1 = dimV_2$ if and only if $V_1 = V_2$.

RANK (REVISITED)

THEOREM

Given $v_1, v_2, \ldots, v_k \in \mathbb{K}^n$, write $A = (v_1, \ldots, v_k) \in \mathcal{M}_{n,k}(\mathbb{K})$. Then,

- A) $v_1, v_2, ..., v_k$ are l.d. \Leftrightarrow the homogeneous system Ax = 0 has a nontrivial solution (indeterminate system).
- B) v_1, v_2, \ldots, v_k are l.i. $\Leftrightarrow rank(A) = k$.
- c) v_1, v_2, \ldots, v_k are a system of generators of $\mathbb{K}^n \Leftrightarrow rank(A) = n$.
- D) v_1, v_2, \ldots, v_k is a basis of $\mathbb{K}^n \Leftrightarrow k = n$ and rank(A) = n.

PROPOSITION

The rank of a matrix A equals:

- the dimension of the row span of A (number of linearly independent rows) and
- the dimension of the column span of A (number of linearly independent columns).

FINDING A BASIS FROM GENERATORS

If $V = [v_1, v_2, \dots, v_k] \subset \mathbb{K}^n$, then a basis of V can be obtained by applying one the following methods:

- 1 Write the vectors v_1, \ldots, v_k as the rows of a matrix A, and reduce A to row echelon form \bar{A} (Gaussian elimination). The nonzero rows of \bar{A} are a basis of V.
- 2 Write the vectors v_1, \ldots, v_k as the columns of a matrix B. Then, reduce B to row echelon form \bar{B} (Gaussian elimination). The columns of \bar{B} with pivots indicate which vectors v_1, \ldots, v_k to choose to obtain a basis of V.

EXTENDING TO A BASIS OF \mathbb{K}^n

If u_1, \ldots, u_k are linearly independent vectors of \mathbb{K}^n , then they can be extended to a basis of \mathbb{K}^n :

- Write the vectors u_1, \ldots, u_k as the columns of a matrix B, and take $M = (B \mid Id)$.
- Then, reduce M to row echelon form $\bar{M} = (\bar{B} \mid \bar{Id})$ (Gaussian elimination).
- Collect the columns of \overline{Id} with a pivot and choose the corresponding vectors of the standard basis (columns of Id) of \mathbb{K}^n .
- u_1, \ldots, u_k together with these last vectors form a basis of \mathbb{K}^n .

The same can be done if u_1, \ldots, u_k are linearly independent vectors of a vector subspace V:

instead of Id, take a matrix formed by a basis v_1, \ldots, v_d of V and do the same process as above for $M = (u_1, \ldots, u_k | v_1, \ldots, v_d)$.

Subspaces of \mathbb{K}^n : Generators \leftrightarrow Equations

From "generators" to "equations":

```
If V = [v_1, \dots, v_k] \subset \mathbb{K}^n:
```

Write $M = (v_1, ..., v_k)$, and form an augmented matrix (M|x) with x = column with entries $x_1, x_2, ..., x_n$.

Then $x \in [v_1, \dots, v_k]$ if and only if rank(M|x) = rank(M). There are 2 options:

- Reduce M to echelon form $(\bar{M}|\bar{x})$ by Gaussian elimination \Rightarrow a linear system of equations for V is obtained by writing the equations that correspond to zero rows of \bar{M} .
- If rank(M) = k, the equations are formed by the vanishing of the $(k+1) \times (k+1)$ minors of (M|x) that contain a chosen non-zero $k \times k$ minor of M.

Subspaces: Generators \leftrightarrow Equations

From "equations" to "generators":

If $V = \{u \in \mathbb{K}^n \mid Au = 0\}$ (solutions to a homogeneous system):

- It is enough to solve the system to obtain a system of generators of V.
- Moreover, if we give values 0's and 1's to the free variables, these generators form a basis and dim(V) = n rank(A).

We have proved:

COROLLARY

A subset V of \mathbb{K}^n is a subspace \Leftrightarrow it is the set of solutions to a homogeneous system.

VECTOR SPACES NOT FINITELY GENERATED

If we consider any collection of vectors $\{v_i\}_{i\in I}$ of a \mathbb{K} -e.v E (where I is any set of indices), then one has to redefine linear combinations:

• $v \in E$ is a linear combination of $\{v_i\}_{i \in I}$ if v is a linear combination of a finite collection of them,

$$V = X_1 V_{i_1} + X_2 V_{i_2} + \ldots + X_k V_{i_k}$$

for certain $x_1, \ldots, x_k \in \mathbb{K}$ and $i_1, \ldots, i_k \in I$. Therefore,

- $\{v_i\}_{i\in I}$ are linearly dependent if **0** is a linear combination of (a finite number of) them.
- $\{v_i\}_{i\in I}$ are linearly independent if any finite subfamily is linearly independent.

OUTLINE

- \bigcirc \mathbb{R}^n AND OTHER VECTOR SPACES
- VECTOR SUBSPACES
- 3 LINEAR DEPENDENCY, BASIS AND DIMENSION
- COORDINATES AND CHANGE OF BASIS
- **S** INTERSECTION AND SUM
- **6** QUOTIENT SPACE
- BIBLIOGRAPHY

COORDINATES

THEOREM

Let $B = \{v_1, \dots, v_n\}$ be a basis of a \mathbb{K} -e.v. E. Then, for every vector $v \in E$, there is exactly one way to write v as a linear combination of the vectors in B, that is, there exist $c_1, \dots, c_n \in \mathbb{K}$ such that $v = c_1 v_1 + c_2 v_2 + \dots + c_n v_n$ and moreover, these c_1, \dots, c_n are unique.

DEFINITION

The c_1, c_2, \ldots, c_n are called the coordinates of v with respect to B.

We will use the notation

$$v_B = \left(egin{array}{c} c_1 \ dots \ c_n \end{array}
ight).$$

COORDINATES: FROM E TO \mathbb{K}^n

Coordinates preserve linear combinations:

If v_1, \ldots, v_k are in E and $B = \{v_1, \ldots, v_n\}$ is a basis of E then

$$(x_1u_1 + \ldots + x_ku_k)_B = x_1(u_1)_B + \ldots + x_k(u_k)_B.$$

In particular,

• u_1, \ldots, u_k are l.i. $\Leftrightarrow (u_1)_B, \ldots, (u_k)_B$ are l.i. in \mathbb{K}^n .

CHANGE OF BASIS

Let $B = \{u_1, \dots, u_n\}$ and $C = \{v_1, \dots, v_n\}$ be bases of E. Denote by $A_{B \to C}$ the $n \times n$ matrix whose columns are the coordinate vectors $((u_1)_C, \dots, (u_n)_C)$ of B with respect to C. This is the change-of-basis matrix from B to C:

$$A_{B\to C}=\left((u_1)_C \ldots (u_n)_C\right).$$

PROPOSITION

- ullet $A_{B o C}$ is invertible, and $(A_{B o C})^{-1} = A_{C o B}$.
- If D is another basis of E, then $A_{C \to D}A_{B \to C} = A_{B \to D}$.

OUTLINE

- \bigcirc \mathbb{R}^n AND OTHER VECTOR SPACES
- VECTOR SUBSPACES
- 3 LINEAR DEPENDENCY, BASIS AND DIMENSION
- COORDINATES AND CHANGE OF BASIS
- **S** INTERSECTION AND SUM
- **6** QUOTIENT SPACE
- BIBLIOGRAPHY

INTERSECTION & SUM OF SUBSPACES

Given V_1 , V_2 vector subspaces of E, define

- **●** Intersection of V_1 and V_2 is $V_1 \cap V_2 = \{v \in E \mid v \in V_1, v \in V_2\}$.
- **Sum of** V_1 and V_2 is $V_1 + V_2 = \{v_1 + v_2 \in E \mid v_1 \in V_1, v_2 \in V_2\}$. *Computation*: If $V_1 = [u_1, \dots, u_r]$ and $V_2 = [v_1, \dots, v_s]$, then $V_1 + V_2 = [u_1, \dots, u_r, v_1, \dots, v_s]$.

THEOREM

- $V_1 \cap V_2$ and $V_1 + V_2$ are vector subspaces of E.
- Grassmann formula $dim(V_1 \cap V_2) + dim(V_1 + V_2) = dim(V_1) + dim(V_2)$.

THEOREM

- $V_1 \cap V_2$ and $V_1 + V_2$ are vector subspaces of E.
- **②** *Grassmann formula: if* $dim(E) < \infty \Rightarrow$

$$dim(V_1 \cap V_2) + dim(V_1 + V_2) = dim(V_1) + dim(V_2)$$

.

$$V_1 = [(1,0,1),(0,2,3)] V_1 \cap V_2 = [(1,0,1)] V_2 = [(0,1,0),(1,1,1)] V_1 + V_2 = \mathbb{R}^3$$

DIRECT SUM

DEFINITION

E is a direct sum of subspaces $F_1, F_2, ..., F_m$ if any $w \in E$ can be written in a **unique way** as $w = v_1 + v_2 + \cdots + v_m$ with $v_i \in F_i$, i = 1, ..., m.

In this case we use the notation $E = F_1 \oplus F_2 \oplus \cdots \oplus F_m$.

PROPOSITION

Let F_1 , F_2 be two subspaces of E. Then $E=F_1\oplus F_2$ if and only if the following two conditions hold:

$$E=F_1+F_2,$$

$$F_1 \cap F_2 = \{0\}.$$

If $E = F_1 \oplus F_2$, we say that F_2 is a complementary subspace to F_1 (and vice-versa).

OUTLINE

- \bigcirc \mathbb{R}^n AND OTHER VECTOR SPACES
- VECTOR SUBSPACES
- 3 LINEAR DEPENDENCY, BASIS AND DIMENSION
- COORDINATES AND CHANGE OF BASIS
- INTERSECTION AND SUM
- **6** QUOTIENT SPACE
- BIBLIOGRAPHY

QUOTIENT SPACE

Let *E* be a \mathbb{K} -e.v. and $F \subset E$ be a subspace.

DEFINITION

If $v \in E$, we define the class of v modulo F as

$$\overline{v} = \{u \in E \mid u - v \in F\};$$

it can be also denoted as v + F.

The set $E/F := {\overline{v} | v \in E}$ is called the quotient of E by F.

E/F is the quotient set of E by the equivalence relation

$$u \sim v \Leftrightarrow u - v \in F$$

and hence, $\overline{u} = \overline{v} \Leftrightarrow u - v \in F$.

Any element of \overline{v} is called a representative of the class.

AS A VECTOR SPACE

In E/F we can define two operations:

- + \overline{u} + \overline{v} := $\overline{u+v}$, $u,v\in E$
 - $c \cdot \overline{v} := \overline{c \cdot v}, v \in E, c \in \mathbb{K}.$

With these operations E/F is a **vector space**.

THEOREM

Let *E* be a \mathbb{K} -e.v. and $F \subset E$ be a subspace. Given $u_1, \ldots, u_k \in E$ the following are equivalent:

- $\overline{u_1}, \ldots, \overline{u_k}$ is a basis of E/F
- u_1, \ldots, u_k is a basis of a complementary subspace of F in E.

In particular, if E has finite dimension, then

$$\dim(E/F) = \dim(E) - \dim(F)$$

OUTLINE

- \bigcirc \mathbb{R}^n AND OTHER VECTOR SPACES
- VECTOR SUBSPACES
- 3 LINEAR DEPENDENCY, BASIS AND DIMENSION
- COORDINATES AND CHANGE OF BASIS
- INTERSECTION AND SUM
- **6** QUOTIENT SPACE
- BIBLIOGRAPHY

BIBLIOGRAPHY

Basic:

 D. Poole, Linear Algebra, A modern introduction (3rd edition), Brooks/Cole, 2011. Chapter 6.

Additional

• Friedberg, S., Insel, A., Spence, L. Linear Algebra (2nd edition). Prentice Hall, 1989.