Functional Encryption

- ullet encryption is a method to send a message or data to a single entity holding sk
- access to the encrypted data is all or nothing
 - one can decrypt and read the entire message
 - one can learn nothing at all almost message

Goal want to *only* give access to a function of the message

• e.g., decrypt the target face from the encrypted images

Def. A functional encryption (FE) for a functionality F defined over $(\mathcal{K}, \mathcal{X})$:

- Setup $(1^{\lambda}) \rightarrow (pp, msk)$
- ullet KeyGen(msk,k) o sk for $k\in\mathcal{K}$
- $\mathsf{Enc}(pp,x) o c \, \mathsf{for} \, x \in \mathcal{X}$
- $\mathsf{Dec}(sk,c) \to y$ where y = F(k,x) with probability 1

Note that one functional encryption only supports the specific function

Example.

- Searchable Encryption (SE)
 - o allows encryption while still enabling search for keywords
- Order-Preserving Encryption (OPR)
 - o ciphertexts that preserve the order of plaintexts

$$m_1 < m_2$$
 if and only if $c_1 < c_2$

- Order-Revealing Encryption (ORE)
 - the cipher texts are no longer numerical
 - o provides another public (keyless) algorithm that compoares the ciphertexts
- Inner-Product Encryption (IPE), etc.

Order-Revealing Encryption

introduced by Boneh et al. [BLR+15] @ Eurocrypt'15

Goal given the ciphertexts, determine the order of messages being encrypted

allows for efficient range queries, sorting, threshold filtering

Def. An order-revealing encryption (ORE) is defined by:

- ullet Key $\mathsf{Gen}(1^\lambda) o sk$
- ullet $\operatorname{Enc}(sk,m) o c$
- $\mathsf{CMP}(c_1, c_2) \to b \in \{0, 1\}$
 - b = 1 if $c_1 < c_2$
 - $\bullet \ b = 0 \text{ if } c_1 \geq c_2$

Security of ORE

- Provable Secure
 - should reveal no more than ordering of plaintexts
- Short Ciphertext Size
 - o should be about the same as the size of the plaintexts
- Stateless and Non-Interactive
 - o encryption should be able to compute in parallel and independently of one another
- Practical
 - o should rely on simple, reliable and efficient cryptographic primitives

Recent Works

- [BLR+15] @ Eurocrypt'15
 - based on multilinear maps which is a impractical cryptographic primitive
- [CLWW16] @ FSE'16
 - the first different bit is revealed
- [LW16] @ CCS'16
 - the first different *block* is revealed

Construction of [CLWW16]

Let $\mathcal K$ be the key space and $[n]=\{1,2,\ldots,n\}$.

Define a secure PRF $F:\mathcal{K} imes ([n] imes\{0,1\}^{n-1}) o \mathbb{Z}_M$ with $M\geq 3.$

- KeyGen (1^{λ}) ;
 - \circ Output $sk \leftarrow \mathcal{K}$
- $\operatorname{Enc}(sk, m)$;
 - \circ Let $b_1b_2\cdots b_n$ be the binary representation of m
 - For each 1 < i < n,

$$u_i = F(sk, (i, b_1 \cdots b_{i-1} || 10^{n-i})) + b_i \mod M$$

• Output the tuple $c = (u_1, u_2, \dots, u_n)$

- $CMP(c_1, c_2)$;
 - \circ Let $c_1=(u_1,\ldots,u_n)$ and $c_2=(u_1',\ldots,u_n')$
 - $\circ~$ Find the smallest index i such that $u_i
 eq u_i'$
 - If no such index exists, output 0
 - o If exists,
 - lacksquare output 1 if $u_i'=u_1+1 mod M$
 - output 0 otherwise

Remark.

[DCC16] "What Else is Revealed by Order-Revealing Encryption?" @ CCS'16

- almost half bits of a plaintext are revealed
- leakage of concrete ORE schemes on *non-uniform* data leads to more accurate plaintext recovery than suggested