AKSHAY BADAGABETTU

\(\beta\) abadagab@andrew.cmu.edu | \(\simega\) (412) 209-9884 | \(\beta\) linkedin.com/in/akshay-badagabettu/ | \(\Omega\) github.com/akshay140601

EDUCATION

Carnegie Mellon University, Pittsburgh, PA

Dec 2024

Master of Science in Artificial Intelligence Engineering – Mechanical Engineering (conc. In Robotics) CGPA: 4.0/4.0 Courses: Advanced NLP, Intro to Deep Learning, Trustworthy AI, Intro to Machine Learning, Robot Localization and Mapping, Computer Vision, Systems and Tool Chains for AI Engineers

Vellore Institute of Technology, Vellore, India

Jul 2023

Bachelor of Technology in Mechanical Engineering

CGPA: 9.64/10.0 (3.975/4.0)

PROFESSIONAL EXPERIENCE

Mechanical and Artificial Intelligence Lab

Machine Learning Graduate Research Assistant

Mar 2024 - Present

- Designed a novel architecture that uses natural language prompts to generate Python code to create a 3D model.
- Providing feedback to the LLM (GPT-4) by generating captions from the isometric CAD image using the BLIP-2 model, facilitating self-refining iterative learning. Finetuned BLIP-2 on a custom CAD image-description pair dataset.
- Establishing the state-of-the-art performance for this task and creating a benchmark dataset to propel further research.

Sandvik Mining and Rock Technology, Bengaluru, India

Mechanical and Machine Learning Intern

Oct 2022 - Apr 2023

- Engineered an ML pipeline to predict stress and deflection in blasthole drill rig masts, reducing design time from 12 months to 7 months (40% reduction). Gathered data by performing FEA of 6 different mast configurations on critical load cases.
- Employed upsampling techniques (CTGAN and SMOTE) to augment dataset size and developed a combination of strong
 models such as XGB and Random Forest for developing the prediction model with an error rate of less than 7%.
- Created a responsive website with Streamlit for user-friendly input of mast and load parameters, displaying stress and deflection predictions for all critical load cases. Deployed it to production on Azure.

Data Science Intern May 2022 - Jul 2022

- Developed a DCNN model with 84% accuracy using Keras to perform multiclass classification of drill bit failures.
- Devised an algorithm employing feature extraction to detect and eliminate flawed images in real time swiftly.
- Formulated Python code capable of extracting tables with non-static structures from images using OCR.

SKILLS

Technical: Python, C++, PostgreSQL, Kafka, NoSQL, Google Cloud Platform, Amazon AWS, Docker, Linux, ROS2 **Libraries:** PyTorch, TensorFlow, Langchain, Hugging face, SkLearn, NumPy, Open-CV, PySpark, OCR, Pandas

PROJECTS

Retrieval Augmented Generation system capable of answering questions related to CMU Feb 2024 - Mar 2024

- Spearheaded a team of 3 to develop an end-to-end NLP system to answer CMU and LTI-related questions.
- Performed system-based annotations (using Flan-T5) and manual annotations to generate a test set that can
 effectively assess the performance of our system.
- Developed a retriever method that is a combination of dense retriever, reranker, and multi-guery retriever.
- Used Llama2 as the reader model and got an F1 score of 0.41, which was 3x better than the closed-book use of LLM.

Implementation of core components of Llama2 from scratch

Feb 2024

- Implemented the transformer block (attention modules and feed-forward), RoPE, a modified version of AdamW optimizer, and inference with temperature sampling. Finetuned the model on a '42M stories' dataset.
- Evaluated the model on SST and CFIMDB datasets and improved the test accuracy from .224 to .418 after finetuning.

End-to-End Data Engineering and Model Building Process on FIFA Dataset

Sep 2023 - Nov 2023

- Performed extensive data cleaning and engineering processes such as imputation, string indexing, and vector
 assembling on a very large FIFA dataset of 150k rows and 110 columns by leveraging tools such as Spark and
 reading and writing data using Postgres.
- Trained multiple ML models using the Google Cloud Platform to predict the overall potential of each player.

Building a stereo visual odometry SLAM system from scratch

Oct 2023 - Dec 2023

- Led a team of 3 people to build our own SLAM pipeline from scratch and evaluated it on the KITTI odometry dataset.
- Developed the frontend, backend using GTSAM, and loop closure using visual bag of words and integrated all of them.