Lecture 15: MOS Logic Families 1

MOSFET	BJT
Gode Drain (nput) Source	Base Collector
N-type Mosfet	NPN- 1y pe BJT

Enhancement type MOSFET (NMOS):

B A polysilican gate was constructed on top of sice to ensure no current flow between gate and

•In a P-type body, two n+ diffusion (n-type) are constructed. Hence 2 P-n junctions get created

• These nt diffusions are called source and Drain terminal. Since MOSPET is symmetrical, these two terminals can be interchanged.

over the nt diffusion, there was a thin layer of di-electric or insulator (sioz). with thickness tox.

- 4. Body and source is connected to the same Potential to ensure o current flow.
- 5. In an enhancement type MOSFET, initially no channel exists.
- 6. Need to create a channel to ensure current flow or conduction, an external electric field/voltage is applied between gate and Source, vgs.
 - 7. This Vgs is quite weak to altract the minority career or e- in a p-type body: When Vgs=Vth, (here, Vth or Vth threshold voltage) is actually the applied Vgs) the applied voltage is strong enough to altract e- towards gate. Due to Sio2, these free e-cannot recombine with the charge in gate and stored underneath the Sio2. The stored e- creates a bridge between both not diffusion (sources) prain) and equal to the gate (the) charge. So, at vgs=Vth mosfet turns on.
- 8. To create current flow between Drain & source, another electric field/voltage is applied between Drain and source. Vds.

Space- charge regions

CMOS Transfer Characteristics

Summary:

	NMOS	PMOS			
High Voltage at Gate	ON	OFF			
Low Voltage at Gate	OFF	ON			
Symbol	Outward arrow	Inward arrow			

Logic circuits using CMOS

Rule 1: If the gate voltage is high/low then NMOS will turn ON/OFF and PMOS will turn ON/OFF and PMOS will turn OFF/ON. If any MOSFET turns on then drain and source terminal would be short circuited.

Rule 2: Conduction complement: We will design "pull-up network" using PMOS as the conduction complement of "pull-down network" using CMOS.

in series/parallel connection then PMOS are are going be in parallel /series.

To the logical high voltage.

It Pull down networks declines the output level to the logical low voltage.

E	00	TA 1									
Example: CMOS NOR GATE:											
Y=A+B											
					_						
MPA	A	0	MPA	MpB	MNA	MNB	\sim_{\circ}				
B MpB	0	0	ON	ON	OFF	off	VDD				
M _{NB}	0	V _{DD}	011	off	off	07	0				
A MNA B	VDD	0	OFF	ON	off	ON	0				
1	Vpp	VDD	OFF	OFF	010	ON	0				

Example: 16.11

