Aggregations: min, max, and Everything in Between

A **first step** in **exploring any dataset** is often to compute various **summary statistics.**

Perhaps the **most common summary statistics** are the **mean** and standard **deviation**.

Which allow you to **summarize** the **"typical" values** in a dataset, but other aggregations are useful as well (the sum, product, median, minimum and maximum, quantiles, etc.).

NumPy has **fast** built-in **aggregation** functions for working on arrays.

Summing the Values in an Array

As a **quick example**, consider computing **the sum of all values** in an array.

Python itself can do this using the **built-in sum function**:

```
In [7]: import numpy as np
    rng = np.random.default_rng()

In [ ]: L = rng.random(100)
    sum(L)

Out[ ]: 52.76825337322368
```

The **syntax** is quite **similar** to that of **NumPy's sum function**, and the result is the same in the simplest case:

```
In [ ]: np.sum(L)
```

Out[]: 52.76825337322366

However, because it executes the operation in **compiled** code, **NumPy's version** of the operation is computed **much more quickly:**

```
In [ ]: big_array = rng.random(1000000)
    %timeit sum(big_array)
    %timeit np.sum(big_array)

89.9 ms ± 233 μs per loop (mean ± std. dev. of 7 runs, 10 loops each)
    521 μs ± 8.37 μs per loop (mean ± std. dev. of 7 runs, 1000 loo ps each)
```

Be careful, though:

- The **sum** function and the **np.sum** function are **not identical**, which can sometimes lead to confusion!
- In particular, their optional arguments have different meanings (sum(x, 1) initializes the sum at 1, while np.sum(x, 1) sums along axis 1), and np.sum is aware of multiple array dimensions.

Minimum and Maximum

Similarly, **Python** has **built-in min and max** functions, used to find the minimum value and maximum value of any given array:

```
In [ ]: min(big_array), max(big_array)
Out[ ]: (2.0114398036064074e-07, 0.9999997912802653)
```

NumPy's corresponding functions have similar syntax, and again operate much more quickly:

```
In [ ]: |np.min(big_array), np.max(big_array)
Out[]: (2.0114398036064074e-07, 0.9999997912802653)
In [ ]: %timeit min(big array)
        %timeit np.min(big array)
       72 ms ± 177 μs per loop (mean ± std. dev. of 7 runs, 10 loops e
       ach)
       564 \mus \pm 3.11 \mus per loop (mean \pm std. dev. of 7 runs, 1000 loo
       ps each)
         For min, max, sum, and several other NumPy aggregates, a
         shorter syntax is to use methods of the array object itself:
In [ ]: |print(big_array.min(), big_array.max(), big_array.sum())
```

2.0114398036064074e-07 0.9999997912802653 499854.0273321711

Whenever possible, make sure that you are using the NumPy version of these aggregates when operating on NumPy arrays!

Multidimensional Aggregates

One common **type** of aggregation operation is an **aggregate** along a **row** or **column**.

Example:

```
In [9]: M = rng.integers(0, 10, (3, 4))
print(M)

[[5 1 0 7]
      [3 3 2 9]
      [1 5 2 0]]
```

NumPy **aggregations** will apply across **all elements** of a multidimensional array:

```
In [ ]: M.sum()
Out[ ]: 45
```

Aggregation functions take an **additional argument** specifying the **axis** along which the aggregate is computed.

For example, we can find the minimum value within each column by specifying axis=0:

```
In [11]: M.min(axis=0)
Out[11]: array([1, 1, 0, 0], dtype=int64)
```

The function returns **four values**, corresponding to the **four columns of numbers**.

Similarly, we can find the **maximum value** within each row:

```
In [13]: M.max(axis=1)
Out[13]: array([7, 9, 5], dtype=int64)
```

The way the **axis is specified** here can be **confusing** to users coming from other languages.

The **axis keyword** specifies the **dimension** of the array that will be **collapsed**, rather than the dimension that will be returned.

So, specifying axis=0 means that axis 0 will be collapsed: for two-dimensional arrays, values within each column will be aggregated.

Other Aggregation Functions

NumPy provides several **other aggregation functions** with a **similar API**.

Additionally **most of them** have a **NaN** -safe counterpart that computes the result while ignoring missing values, which are

marked by the special IEEE floating-point NaN value (see **Handling Missing Data**).

The following table provides a **list of useful aggregation functions** available in **NumPy:**

Function name	NaN-safe version	Description
np.sum	np.nansum	Compute sum of elements
np.prod	np.nanprod	Compute product of elements
np.mean	np.nanmean	Compute mean of elements
np.std	np.nanstd	Compute standard deviation
np.var	np.nanvar	Compute variance

		•
np.min	np.nanmin	Find minimum value
np.max	np.nanmax	Find maximum value
np.argmin	np.nanargmin	Find index of minimum value
np.argmax	np.nanargmax	Find index of maximum value
np.median	np.nanmedian	Compute median of elements
np.percentile	np.nanpercentile	Compute rank-based statistics of elements
nn anv	N/Δ	Evaluate whether any

NaN-safe version

Description

elements are true

Function name

np.any

N/A

Function name	NaN-safe version	Description
np.all	N/A	Evaluate whether all elements are true

You will see these aggregates often throughout the rest of the book.

Example: What Is the Average Height of US Presidents?

Aggregates available in NumPy can act as **summary statistics** for a set of values.

As a small example, let's consider the heights of all US presidents.

This data is available in the file **president_heights.csv**, which is a **comma-separated list** of labels and values:

```
In [ ]: !head -4 data/president_heights.csv

    order,name,height(cm)
    1,George Washington,189
    2,John Adams,170
    3,Thomas Jefferson,189
```

We'll use the **Pandas package**, which we'll explore more fully in **Part 3**, to **read** the file and **extract this information** (note that the heights are measured in centimeters):

```
import pandas as pd
  data = pd.read_csv('data/president_heights.csv')
  heights = np.array(data['height(cm)'])
  print(heights)
```

Now that we have this data array, we can **compute a variety of summary statistics:**

Mean height: 180.04545454545453 Standard deviation: 6.983599441335736

Minimum height: 163 Maximum height: 193

Note that in each case, the **aggregation** operation **reduced the entire array to a single summarizing value,** which gives us

information about the **distribution** of values.

We may also wish to compute **quantiles:**

25th percentile: 174.75 Median: 182.0 75th percentile: 183.5

We see that the **median height of US presidents is 182 cm,** or just shy of six feet.

Of course, sometimes it's **more useful** to see a **visual representation** of this data.

Which we can accomplish using tools in **Matplotlib** (we'll discuss Matplotlib more fully in **Part 4**.

For example, this code generates the following chart:

```
In []: %matplotlib inline
    import matplotlib.pyplot as plt
    plt.style.use('seaborn-whitegrid')

In []: plt.hist(heights)
    plt.title('Height Distribution of US Presidents')
    plt.xlabel('height (cm)')
    plt.ylabel('number');
```

Height Distribution of US Presidents

