Thème: arithmétique

L'exercice

Soit *n* un entier naturel.

Démontrer que, dans l'écriture en base dix, les entiers n et n^5 ont le même chiffre des unités.

Les réponses de trois élèves de terminale scientifique spécialité mathématiques

Élève 1

Je regarde tous les cas possibles pour le chiffre des unités, entre 1 et 9.

$$1 \times 1 \times 1 \times 1 \times 1 = 1$$
, $2 \times 2 \times 2 \times 2 \times 2 = 32$, $3 \times 3 \times 3 \times 3 \times 3 \times 3 = 243$

et ainsi de suite. Je calcule les autres avec un tableur, ça marche chaque fois, c'est le même chiffre.

Élève 2

J'ai comparé les restes de n^5 et n dans la division euclidienne par 10 à l'aide d'un programme écrit en langage Python, j'obtiens les mêmes restes. Donc le chiffre des unités de n^5 et n est le même.

```
1 from math import*
2 for n in range(10):
3     a = (n**5)%10
4     b = n%10
5     if a == b:
6     print(n)
```

Élève 3

J'ai calculé $n^5 - n$ pour les premières valeurs de n, le dernier chiffre est 0. Je vais le prouver par récurrence : je suppose que $n^5 - n$ est multiple de 10 et alors je dois montrer que $(n+1)^5 - (n+1)$ est aussi multiple de 10.

$$(n+1)^5 - (n+1) = n^5 + 5n^4 + 10n^3 + 10n^2 + 5n + 1 - n - 1$$
$$= (n^5 - n) + 10(n^3 + n^2) + 5(n^4 + n)$$
$$= 5(n^4 + n)$$

 $car n^5 - n$ et $10(n^3 + n^2)$ sont des multiples de 10. Ensuite, je ne sais pas quoi faire pour $n^4 + n$.

Les questions à traiter devant le jury

- 1 Analyser la réponse des trois élèves en mettant en évidence leurs réussites ainsi que leurs erreurs.
 Vous préciserez l'accompagnement que vous pouvez leur proposer.
- 2 Proposer une correction de l'exercice telle que vous l'exposeriez devant une classe de terminale scientifique spécialité mathématiques.
- 3 Présenter deux exercices sur le thème *arithmétique*, l'un au niveau collège, l'autre au niveau lycée. L'un des exercices devra notamment permettre de travailler la compétence « communiquer ».