The marginal efficiency of active search

Christopher Huckfeldt¹

¹Cornell

Philly Fed

May 19, 2022

Background

- Two types of non-employed workers willing to accept a job (BLS)
 - Passive searchers: e.g., waits for an employer to contact them
 - ► Active searchers: e.g., contacts an employer about a position

Active searchers find jobs at higher rate, but expend effort

Background

- Two types of non-employed workers willing to accept a job (BLS)
 - Passive searchers: e.g., waits for an employer to contact them
 - ► Active searchers: e.g., contacts an employer about a position Active searchers find jobs at higher rate, but expend effort
- Existing literature treats active and passive search as perfect substitutes, e.g. Blanchard and Diamond (1990)
 - Marginal efficiency of active and passive search are fixed
 - Offers justification for abstracting from passive searchers

Background

- Two types of non-employed workers willing to accept a job (BLS)
 - Passive searchers: e.g., waits for an employer to contact them
 - Active searchers: e.g., contacts an employer about a position

Active searchers find jobs at higher rate, but expend effort

- Existing literature treats active and passive search as perfect substitutes, e.g. Blanchard and Diamond (1990)
 - Marginal efficiency of active and passive search are fixed
 - Offers justification for abstracting from passive searchers
- This paper:
 - Study standard DMP model with active and passive search
 - Identify restriction implied by perfect substitutability (and reject)
 - ► Estimate elasticity of substitution < 1, explore implications

What I do, 1/2

(constant marginal efficiency of active search?)

- ► Formulate standard DMP model w/ active & passive search
 - ► Active searcher expends effort to find job, passive does not
 - Returns to active and passive search given by fixed parameters
- Derive restriction: active-passive ratio of job-finding probabilities has unit elasticity in average search effort
- ► Time-series data: elasticity is negative & statistically significant
- Qualitative rejection of standard DMP w/ perfect substitutability
- ▶ Show from individual-level data: when aggregate active search is high,
 - Active search effort is less effective
 - Penalty from purely passive search is lower

Suggests crowding-out or diminishing returns

What I do, 2/2

(diminishing marginal efficiency of active search.)

- Back to theory: allow crowding-out of active search via CES aggregator
 - Relax restriction that elas. of subst. btwn active/passive = ∞
 - Marginal efficiency of active search no longer constant
- Establish that CES search aggregator is equivalent to linear aggregator with separate matching functions for active and passive search
- Estimate "new" equation for active-passive ratio from the data
 - Recover parameters of aggregator w/ finite elasticity
 - Elasticity of substitution less than one
- Implications:
 - Diminishing marginal efficiency of active search
 - Vacancy share for active search declining in active search

Application: Unemployment Insurance during a recession

- Active search higher during recessions (among non-employed)
 - ► Along both extensive and intensive margins
 - ► See also Shimer (2004), Mukoyama et al. (2018), etc.
- ► Elast'y of subst. $< 1 \Rightarrow$ active search "less important" during recessions
 - Marginal efficiency of active search falls
 - Larger share of vacancies for passive searchers
- Implies less distortion from UI disincentive
 - Operates through "microelasticity"
 - Independent of surplus sharing mechanism
- Rationalizes estimates from studies of recessionary expansions of UI

Existing literature

- 1. Endogenous search intensity: Shimer (2004), Faberman and Kudlyak (2016), Mukoyama, Patterson, and Sahin (2018)
- 2. Active & passive search: Krusell et al. (2017), Faberman et al. (2022)
- 3. UI expansions (theory): Nakajima (2012), Mitman and Rabinovich (2015, 2020), Landais et al (2018, 2018a)
- UI expansions (empirics): Krueger and Meyer (2002) Farber and Valletta (2015), Kroft and Notowidigdo (2016), Johnston and Mas (2018), Chodorow-Reich et al (2019)

Theory

Goal

- Write down DMP model incorporating
 - Extensive and intensive margins of active search
 - Curvature in marginal utility of consumption
- Show how job-finding probabilities depend on active search
- Derive theoretical restriction relating
 - Active-passive ratio of job-finding probabilities
 - Average quantity of active search
- Note: focus on equations describing labor supply

Setting

- All jobs generate y_t units of output
- Large measure of firms post v_t vacancies
- Representative family à la Andolfatto (1995) and Merz (1996)
- Unit measure of workers indexed by i within each family
- $ightharpoonup u_t$ workers are unemployed, $1 u_t$ are employed
- Unemployed search for jobs
- Two forms of search: passive and active

(Next: from active and passive search effort to search efficiency

Active and passive search

- Unemployed inelastically provide one unit of passive search
- ▶ Unemployed workers choose $s_{i,t}^A$ units of active search
 - ► Fixed costs, $\varsigma_{i,t} \sim \Gamma$ drawn *iid* at rate λ
 - ightharpoonup Convex costs, $c\left(s_{i,t}^A\right)$
- Flexible to different notions of active search
 - e.g., $s_{i,t}^A \in \{0,1\}$, $s_{i,t}^A \in \mathbb{N}_0$, or $s_{i,t}^A \in \mathbb{R}_+$
- ▶ Can show that only workers with $\varsigma_{i,t} < \check{\varsigma}_t$ actively search, for some $\check{\varsigma}_t$
- $ightharpoonup \Gamma_t^u(\zeta_t)u_t$ workers supply active search

(Next: search efficiency & job finding prob's)

Job-finding probabilities

▶ Job-finding rate, $f_{i,t}$

$$f_{i,t} = \mathbf{s}_{i,t} \cdot \left(\frac{m_t(\mathbf{s}_t, \mathbf{v}_t)}{\mathbf{s}_t}\right) \tag{*}$$

with CRS matching function, $m_t(s_t, v_t)$

ightharpoonup Search efficiency, $s_{i,t}$

$$\mathbf{S}_{i,t} = \alpha_1 \cdot \mathbf{S}_{i,t}^{\mathbf{A}} + \alpha_0 \tag{**}$$

where α_1 is the marginal efficiency of active search

ightharpoonup Aggregate search efficiency, s_t

$$s_t = \int_i \mathbf{s}_{i,t} d\Gamma_t^u$$

(Next: optimal active search)

Problem of the unemployed

Annuity value of unemployment:

$$rU_{i,t} = \max_{\boldsymbol{s}_{i,t}^{A}} \left\{ \frac{b_{t} - \varsigma_{i} \cdot \mathbb{I}\left\{\boldsymbol{s}_{i,t}^{A} > 0\right\} - c\left(\boldsymbol{s}_{i,t}^{A}\right)}{\mu_{t}} + (\alpha_{0} + \alpha_{1} \cdot \boldsymbol{s}_{i,t}^{A}) \cdot \left(\frac{m_{t}\left(\boldsymbol{s}_{t}, \boldsymbol{v}_{t}\right)}{\boldsymbol{s}_{t}}\right) \cdot (\boldsymbol{V}_{i,t} - \boldsymbol{U}_{i,t}) - \dot{\boldsymbol{U}}_{i,t} \right\}$$

- Marginal utility of consumption, μ_t
- Flow value of leisure, b_t
- ▶ Values of employment and unemployment, $V_{i,t}$ and $U_{i,t}$
- $\dot{U}_t \neq 0$ given jump process for $\varsigma_{i,t}$, etc

(Next: derive $s_{i,t}^{A,*}$ and ζ_t)

Optimal active search

Optimal quantity of active search (intensive margin):

$$\mathbf{s}_{i,t}^{A,*} = (\mathbf{c}')^{-1} \left(\mu_t \cdot \alpha_1 \cdot \left(\frac{m_t(\mathbf{s}_t, \mathbf{v}_t)}{\mathbf{s}_t} \right) (V_{i,t} - U_{i,t}) \right) \quad \text{when } \varsigma_{i,t} < \zeta_t$$

Optimal participation in active search (extensive margin):

$$\varsigma_{i,t} \leq -c(s_{i,t}^{A,*}) + \alpha_1 \cdot s_{i,t}^{A,*} \cdot \left(\frac{m_t(s_t, v_t)}{s_t}\right) \cdot \mu_t \cdot (V_{i,t} - U_{i,t})$$
(†)

where ζ_t defined by $\varsigma_{i,t}$ s.t. (†) holds with equality

(Next: active-passive ratio)

Restriction: active-passive ratio and average active search

ightharpoonup Restriction in active-passive ratio $ar{t}_t^{\rm A}/ar{t}_t^{\rm P}$ and $ar{s}_A^*$

$$\frac{\overline{f}_{t}^{A}}{\overline{f}_{t}^{P}} = \frac{\left(\alpha_{1} \cdot \overline{\mathbf{s}}_{t}^{A,*} + \alpha_{0}\right) \left(\frac{m_{t}(\mathbf{s}_{t}, v_{t})}{\mathbf{s}_{t}}\right)}{\alpha_{0} \left(\frac{m_{t}(\mathbf{s}_{t}, v_{t})}{\mathbf{s}_{t}}\right)} = \left(\frac{\alpha_{1}}{\alpha_{0}}\right) \cdot \overline{\mathbf{s}}_{t}^{A,*} + 1$$

(from eqn's * and **)

- ► Unit elasticity in $\bar{\mathbf{s}}_t^{A,*}$
- All other aggregate quantities drop out!
 - Note: match efficiency differenced out
- Take equation to the data

Empirics

CPS, 1996-2019

- Starting in 1996, CPS records following for jobless respondents:
 - Whether the respondent would be willing to accept a job
 - ▶ Whether the worker is engaged in nine methods of active search
 - ▶ If # search methods = 0, why no active search?
- Non-employed worker willing to accept a job is
 - Active searcher if # search methods > 0
 - Passive searcher: if # search methods = 0
- # of search methods highly correlated with time spent searching (Mukoyama, Patterson, and Sahin 2018) ⇒ measure of search effort
- Note: excluding temporary-layoff for practical and conceptual reasons

Active and passive searchers: empirical properties (1/2)

Active and passive searchers in non-employment

	Active <i>U</i>	Passive <i>U</i>	AU AU+PU
mean(x)	4.9	1.3	78.6
std(x)/std(Y)	11.0	5.8	1.5
corr(x, Y)	-0.89	-0.69	-0.74

- Note: extensive margin of active search is countercyclical!
- Robust to controls for composition (Mukoyama et al 2018)

Active and passive searchers: empirical properties (2/2)

Gross worker flows, 1996:I-2019:IV

					То	From
	1	TL	PU	AU	E	
025	0	0.005	0.003	0.008	0.958	Ε
258	0	0.024	0.063	0.345	0.310	AU
543	0	0.020	0.105	0.142	0.190	PU
114	0	0.243	0.041	0.024	0.497	TL
932	0	0.001	0.013	0.258	0.040	1
5	0	0.020 0.243	0.105 0.041	0.1420.024	0.1900.497	PU

$$AU =$$
Active U , $PU =$ Passive U , $TL =$ Temporary Layoff, $I =$ Inactive

- ► Evidence of mixing btwn. active & passive
- Higher job-finding prob's from active

Search and job-finding probabilities

The active-passive ratio of job-finding prob's and aggregate search

	A-P ratio Frac.		# search	
	(minus one)	searching	methods	
mean(x)	0.6	0.8	1.9	
std(x)/std(Y)	21.3	1.5	2.6	
corr(x, Y)	0.43	-0.74	-0.64	

- ▶ Both frac. searching & # of search methods is countercyclical
 - ➤ See also Shimer (2004), Faberman and Kudlyak (2016), Mukoyama, Patterson, and Sahin (2018)
- Active-passive ratio is procyclical

Search and job-finding probabilities

Testing the restriction

Recall restriction:

$$\log\left(\frac{\overline{f}_t^A}{\overline{f}_t^P} - 1\right) = \log\left(\frac{\alpha_1}{\alpha_0}\right) + \log\overline{\mathbf{S}}_t^{A,*}$$

Theory predicts unit elasticity

- ▶ Estimated elasticity from data: -2.50 (SE= 0.334)
- Robust to:
 - Restricting active-searchers to low duration of unemployment
 - Disaggregating by gender, age, education, region, marital status ...

Testing the restriction

When is active search most effective?

- Given countercyclicality of search, would not be surprising if raw job-finding prob's negatively correlated with aggregate search
- But active-passive ratio controls for time variation in
 - (i) market tightness
 - (ii) aggregate match efficiency
- Still highly procyclical
- ► Next: look at individual-level data and introduce
 - Time fixed effects
 - Rich individual controls
- Ask: when does greater search effort improve search outcomes?

When is active search most effective?

Indicator variable for moving to employment in subsequent period					
	(1)	(2)	(3)	(4)	
# of search methods	-0.002	0.113	0.057		
	(0.0004)	(0.0058)	(0.0079)		
# of search methods \times		-0.060	-0.031		
aggr. active search	_	(0.0030)	(0.0041)	_	
$\mathbb{I}\{\text{\# search methods} = 0\}$	-0.040	-0.036	-0.261	-0.414	
	(0.0013)	(0.0013)	(0.0192)	(0.0215)	
$\mathbb{I}\{\text{\# search methods} = 0\} \times\\$			0.120	0.479	
aggr. active search	_	_	(0.0101)	(0.0270)	
N	865079	865079	865079	865079	
Time fixed effects?	Yes	Yes	Yes	Yes	
Region fixed effects?	Yes	Yes	Yes	Yes	

Sample of active and passive searchers, 1996-2019

Incl. controls for education, quartic for age, gender, race, and marital status

- Search is less effective when aggregate search is higher
- ▶ Penalty to to purely passive search lower when aggregate search is higher

Reevaluating the theory

What went wrong

- Reject restriction from perfect substitution of active/passive
 - \triangleright Perfect substitutes \iff CES with elasticity of subst. $= \infty$
- ► Show that efficiency of active search diminishing in aggr. active search
 - ► For CES, requires elasticity of subst. < ∞</p>
- Next: estimate parameters of CES over active/passive ratio with unrestricted elasticity

What went wrong

- Reject restriction from perfect substitution of active/passive
 - \triangleright Perfect substitutes \iff CES with elasticity of subst. $= \infty$
- ► Show that efficiency of active search diminishing in aggr. active search
 - ► For CES, requires elasticity of subst. < ∞</p>
- Next: estimate parameters of CES over active/passive ratio with unrestricted elasticity
- Microfoundations?

CES aggregator for search effort

▶ Aggregate search effort s_t given by CES aggregator over $s_{A,t}$ and $s_{P,t}$

$$\mathbf{s}_t = \left(\omega \ \mathbf{s}_{A,t}^{\rho} + (\mathbf{1} - \omega) \mathbf{s}_{P,t}^{\rho}\right)^{\frac{1}{\rho}}$$

Aggregate active & passive search satisfy

$$s_{A,t} = \int^{\zeta_t} s_{i,t}^A d\Gamma_t^u = (\Gamma_t^u(\zeta_t)u_t) \cdot \overline{s}_{A,t}^*, \quad s_{P,t} = \int d\Gamma_t^u = u_t$$

 \blacktriangleright $ME_{A,t}$ and $ME_{P,t}$ are marginal efficiencies of active and passive search

$$extit{ME}_{ extit{A},t} = rac{\partial extit{s}_t}{\partial extit{s}_{ extit{A},t}} = \omega \cdot \left(rac{ extit{s}_t}{ extit{s}_{ extit{A},t}}
ight)^{1-
ho}, \quad extit{ME}_{ extit{P},t} = rac{\partial extit{s}_t}{\partial extit{s}_{ extit{P},t}} = (1-\omega) \cdot \left(rac{ extit{s}_t}{ extit{s}_{ extit{P},t}}
ight)^{1-
ho}$$

What is a CES search aggregator?

► Equivalence: separate submarkets for active and passive search

$$m_t(s_t, v_t) = m_t(ME_{A,t} \cdot s_{A,t}, \alpha_t \cdot v_t) + m_t(ME_{P,t} \cdot s_{P,t}, (1 - \alpha_t) \cdot v_t)$$

with
$$\alpha_t = \alpha(s_{A,t}/s_{P,t}) = \frac{\textit{ME}_{A,t} \cdot s_{A,t}}{s_t} = \frac{s_{A,t}^\rho}{s_{A,t}^\rho + s_{P,t}^\rho}, \quad \rho \leq 1$$

Vacancies distributed across matching functions to equalize tightness

$$\theta_{A,t} = \frac{\alpha \left(s_{A,t}/s_{P,t} \right) \cdot v_t}{ME_{A,t} \cdot s_{A,t}} = \frac{v_t}{s_t} = \theta_t$$

▶ Vacancy share of active search α_t analogous to factor share

Returns to search

▶ The job-finding probability $f_{i,t}$ of a worker with search efficiency $s_{i,t}$ is

$$f_{i,t} = s_{i,t} \cdot \left(\frac{m_t(s_t, v_t)}{s_t} \right)$$

▶ The search efficiency s_i of a worker supplying $s_{i,t}^A$

$$s_{i,t} = ME_{A,t} \cdot s_{i,t}^A + ME_{P,t} \cdot 1$$

by linear homogeneity of the CES search aggregator

Nests prior case when $\rho = 1$:

$$\mathbf{s}_{i,t} = \left(\underbrace{\omega}_{\equiv \alpha_1} \mathbf{s}_{i,t}^{\mathbf{A}} + \underbrace{(1-\omega)}_{\equiv \alpha_0}\right).$$

Restriction from theory, redux

▶ Relative job-finding probabilities, active vs. passive search

$$\begin{split} \frac{\overline{f}_{t}^{A}}{\overline{f}_{t}^{P}} &= \frac{\left(ME_{A,t} \cdot \overline{s}_{t}^{A,*} + ME_{P,t}\right) \left(\frac{m_{t}(s_{t},v_{t})}{s_{t}}\right)}{ME_{P,t} \left(\frac{m_{t}(s_{t},v_{t})}{s}\right)} \\ &= \left(\frac{\omega}{1-\omega}\right) \left(\frac{1}{\Gamma_{t}^{U}(\zeta_{t})\overline{s}_{t}^{A,*}}\right)^{1-\rho} \cdot \overline{s}_{t}^{A,*} + 1 \end{split}$$

Thus,

$$\log\left(\frac{\overline{f}_t^A}{\overline{f}_t^P} - 1\right) = \log\left(\frac{\omega}{1 - \omega}\right) + (\rho - 1) \cdot \log\Gamma_t^u(\zeta_t) + \rho \cdot \log\overline{S}_t^{A,*}$$

Proof. Return to data, estimate ω and ρ , test restriction in ρ

Regression estimates

	(1)	(2)	(3)	(4)	(5)	(6)
Fraction searching	-3.331	-1.119	-2.177	-3.899	-1.555	-2.500
	(0.7571)	(1.0283)	(0.2978)	(1.3595)	(1.5344)	(0.4102)
# of search methods		-1.842	-1.177		-1.830	-1.500
	_	(0.5742)	(0.2978)	_	(0.5757)	(0.4102)
cons	-0.555	0.624	0.145	-0.738	0.481	0.107
	(0.2508)	(0.4292)	(0.1547)	(0.4851)	(0.6072)	(0.1725)
Additional controls	Time trend			Tin	ne trend + unempl.	rate
Constrain $\beta_{Frac} - 1 = \beta_{\#}$?	N/A	No	Yes	N/A	No	Yes
F-test	p(ho=1)	$p(\beta_{Frac} + 1 = \beta_{\#})$	p(ho=1)	p(ho=1)	$p(\beta_{Frac} + 1 = \beta_{\#})$	p(ho=1)
	=0.0000	=0.2465	=0.0000	=0.0004	=0.5004	=0.0000
N	286	286	286	286	286	286
Implied ρ	-3.3310	_	-2.1767	-3.8987	_	-2.4995
Implied ω	0.3646		0.5362	0.3646		0.5268

CPS, 1996-20019

Takeaway

$$\log\left(\frac{\overline{f}_t^A}{\overline{f}_t^P} - 1\right) = \log\left(\frac{\omega}{1 - \omega}\right) + (\rho - 1) \cdot \log\Gamma_t^u(\xi_t) + \rho \cdot \log\overline{S}_t^{A,*}$$

- ► Fail to reject restriction $\beta_{\Gamma(\xi)} + 1 = \beta_{\overline{s}^{A,*}}$ (i.e., new framework)
- **Reject** restriction $\rho = 1$ (i.e., existing framework)
- ► Elasticity of substitution $\frac{1}{1-\rho}$ falls in range $(\frac{1}{5}, \frac{1}{3})$
 - Indicates that active and passive search are complements
 - Substantial scope for diminishing returns

Applications

Applications

- 1. Cyclicality of active-search vacancy share
 - Active search is countercyclical & elasticity of substitution < 1</p>
 - Thus, marginal efficiency of active search is procyclical, and
 - Vacancy share for active search procyclical

2. Unexplored externality

- Congestion externality: agents don't internalize impact of active search on job-finding prob.
- ► Here: agents don't internalize impact of active search on marginal efficiencies of active and passive search
 - Hosios condition not enough

Appl. 1) Cyclicality of vacancy share

- ▶ Diminishing marginal efficiency of active search by $\rho \neq 1$
- ▶ But ρ < 1 implies "highly" diminishing marginal efficiency
- ► Recall:

$$m_t(s_t, v_t) = m_t (ME_{A,t} \cdot s_{A,t}, \alpha_t \cdot v_t) + m_t (ME_{P,t} \cdot s_{P,t}, (1 - \alpha_t) \cdot v_t)$$
with
$$\alpha_t = \frac{ME_{A,t} \cdot s_{A,t}}{s_t} = \frac{(\Gamma_t^u(\check{\varsigma}_t) \cdot \bar{s}_t)^\rho}{1 + (\Gamma_t^u(\check{\varsigma}_t) \cdot \bar{s}_t)^\rho}$$

- ▶ Thus, α_t decreasing in $s_{A,t}$ when $\rho < 1$
 - (We estimated $\rho = -2.5$)
- Countercyclical active search ⇒ "less important" during recessions

Appl. 1) Cyclicality of vacancy share, cont.

Appl. 2) Unexplored externality

$$rU_{i} = \max_{\boldsymbol{s}_{i}^{A}} \left\{ \frac{b - \varsigma_{i} \cdot \mathbb{I}\left\{\boldsymbol{s}_{i}^{A} > 0\right\} - c\left(\boldsymbol{s}_{i}^{A}\right)}{\mu} + \left(\boldsymbol{ME}_{A} \cdot \boldsymbol{s}_{i}^{A} + \boldsymbol{ME}_{P}\right) \cdot \left(\frac{m(\boldsymbol{s}, \upsilon)}{\boldsymbol{s}}\right) \cdot \left(\boldsymbol{V}_{i} - \boldsymbol{U}_{i}\right) - \dot{\boldsymbol{U}}_{i} \right\}$$

- \triangleright Congestion externality: searchers fail to internalize how $s_{A,i}$ affects s
- ► Here: searchers also fail to internalize how $S_{A,i}$ affects ME_A and ME_P
- $ightharpoonup s_{A,i}^* \uparrow \Rightarrow ME_A \downarrow \text{ and } ME_P \uparrow$

Appl. 2) Unexplored externality, con't

Optimal search, worker's problem:

$$s_{A,i}^* = \left(c'\right)^{-1} \left(ME_A \cdot f(\theta) \cdot \lambda_i\right)$$

where λ_i is the marginal value to the HH of having agent i employed

▶ Optimal search, Planner's problem:

$$\boldsymbol{s_{A,i}^{SP}} = (c')^{-1} \left(\boldsymbol{ME_A^{SP}} \cdot \boldsymbol{f}(\boldsymbol{\theta^{SP}}) \cdot \lambda_i^{SP} + \underbrace{\frac{\partial \boldsymbol{ME_A^{SP}}}{\partial \boldsymbol{s_A}} \cdot \boldsymbol{cov}(\boldsymbol{s_{A,i}^{SP}}, \lambda_i^{SP})}_{<0} \right)$$

where λ_i^{SP} is the marginal social value of having agent *i* employed

Conclusion

- Identify restriction from DMP model under perfect substitutability of active and passive search (and reject)
- Evidence of "crowding-out" of active search
 - Active search more effective when aggr. active search lower
 - Formalize with finite elasticity of subst.
- ▶ Take model to the data:
 - Formally reject infinite elasticity from data
 - Estimate elasticity < 1</p>
 - Unable to reject unrestricted CES
- Noteworthy implications of diminishing marginal efficiency:
 - Efficiency of active search lower during recessions
 - Unexplored search externality that holds under Hosios condition