Déformations de catégories abéliennes Mémoire de Master Mathématiques Fondamentales

Quentin EHRET

Sous la direction du Pr. Abdenacer MAKHLOUF

- [LVB1] Deformation Theory of Abelian Categories, Van Den Bergh, Loewen, Transactions of the American Mathematical Society, 2006;
- [LVB2] Hochschild cohomology of abelian categories and ringed spaces, Van Den Bergh, Loewen, Advances in Mathematics, 2005;
 - [L3] Obstruction Theory of objects in abelian and derived Categories, Lowen, Communications in Algebra, 2004.

- Rappels sur les déformations
- 2 Rappels de théorie des catégories
- 3 Définition de déformation de catégories abéliennes
 - Vers la définition : platitude, constructions fonctorielles
 - Définition et déformations nilpotentes
 - Équivalence de déformations
- Contrôle des déformations
 - Relèvements et obstructions

Déformations d'algèbres associatives : définition

Soient \mathbb{K} un corps de caractéristique 0 et (A, μ_0) une algèbre associative sur \mathbb{K} . Alors, déformer (A, μ_0) revient à munir A[[t]] d'une application $\mathbb{K}[[t]]$ -bilinéaire μ_t qui s'écrit sous la forme

$$\mu_t = \sum_{i \geq 0} \mu_i t^i,$$

où les μ_i sont des applications $\mathbb{K}[[t]]$ -bilinéaires $A \times A \longrightarrow A$, telle que :

$$\mu_t(\mu_t(x,y),z) = \mu_t(x,\mu_t(y,z)) \qquad \forall x,y,z \in A.$$

Déformations d'algèbres associatives : cohomologie de Hochschild

Soit M un A-bimodule. On définit alors les **espaces de cochaines** par :

$$\begin{cases} C^n(A, M) &= \operatorname{Hom}(A^{\otimes n}, M), \quad n > 0 \\ C^0(A, M) &= M, \\ C^n(A, M) &= 0, \quad n < 0 \end{cases}$$

Déformations d'algèbres associatives : cohomologie de Hochschild

On définit un **opérateur cobord** d^n défini pour tout $(a_1, a_2, ..., a_{n+1}) \in A^{\otimes (n+1)}$ par :

$$(d^{n}\varphi)(a_{1}, a_{2}, ..., a_{n+1}) = a_{1}\varphi(a_{2}, ..., a_{n+1})$$

$$+ \sum_{i=1}^{n} (-1)^{i}\varphi(a_{1}, ..., a_{i}a_{i+1}, ..., a_{n+1})$$

$$+ (-1)^{n+1}\varphi(a_{1}, ..., a_{n})a_{n+1}$$

et pour n=0,

$$(d^0\varphi)(a) = a\varphi - \varphi a, \quad \varphi \in C^0(A, M) = M, \quad a, a_i \in A.$$

Déformations d'algèbres associatives : contrôle par la cohomologie

Théorème (39)

- Si (A, μ_0) est une algèbre associative, et $\mu_t = \sum_i \mu_i t^i$ une déformation formelle de A telle que $\mu_1 = \mu_2 = ... = \mu_{p-1} = 0$ pour un indice p quelconque, alors μ_p est un 2-cocycle de Hochschild.
- Si $H^3(A, A) = 0$, alors tout 2-cocyle donne une déformation de μ_0 .

Déformations d'algèbres associatives : équivalence

On considère μ_t et μ_t' deux déformations formelles de (A, μ_0) algèbre associative. Les deux déformations sont alors dites équivalentes s'il existe un isomorphisme formel :

$$\varphi_t: A[[t]] \longrightarrow A[[t]],$$

 $\mathbb{K}[[t]]$ -linéaire, tel que

$$\varphi_t(x) = x + \varphi_1(x)t + \varphi_2(x)t^2 + \dots$$
 pour $x \in A$

et vérifiant

$$\varphi_t(\mu_t(x,y)) = \mu'_t(\varphi_t(x), \varphi_t(y)), \quad \forall x, y \in A.$$

Rappels de théorie des catégories : catégories linéaires

Soit R un anneau commutatif.

Définition (Catégorie R-linéaire)

Une catégorie C est dite R-linéaire si :

- C est pré-additive ;
- il existe un homomorphisme d'anneaux $\rho: R \longrightarrow Nat(1_{\mathcal{C}}, 1_{\mathcal{C}})$.

Rappels de théorie des catégories : catégories linéaires

Soit R un anneau commutatif.

Définition (Catégorie R-linéaire)

Une catégorie C est dite R-linéaire si :

- C est pré-additive;
- il existe un homomorphisme d'anneaux $\rho: R \longrightarrow Nat(1_{\mathcal{C}}, 1_{\mathcal{C}})$.

Rappels de théorie des catégories : catégories abéliennes

Définition (Catégorie abélienne)

Une catégorie C est dite **abélienne** lorsqu'elle satisfait :

- (1) Pour tout objet $C \in C$, il existe une loi + additive;
- (2) C a un objet nul;
- (3) Toute paire d'objets a un produit et un coproduit;
- (4) Toute flèche a un noyau et un conoyau;
- (5) Tout monomorphisme de $\mathcal C$ est un noyau et tout épimorphisme de $\mathcal C$ est un conoyau.

Rappels de théorie des catégories : objet (co)plat

Définition

Soit C une catégorie R-linéaire abélienne.

- $X \in \mathcal{C}$ est **plat** (sur R) si le foncteur $\otimes X$: $mod(R) \longrightarrow \mathcal{C}$ est exact.
- $X \in \mathcal{C}$ est **coplat** (sur R) si le foncteur Hom(-,X): $mod(R) \longrightarrow \mathcal{C}$ est exact.

Rappels de théorie des catégories : objet (co)plat

Proposition

Soit $c \in \mathcal{C}$ abélienne R-linéaire. Les conditions suivantes sont équivalentes :

- (1) c est plat.
- (2) $Tor_n^R(-,c) = 0 \ \forall n \geq 1.$
- (3) $Tor_1^R(-,c) = 0.$

Rappels de théorie des catégories : objet (co)plat

Proposition

Soit $c \in \mathcal{C}$ abélienne R-linéaire. Les conditions suivantes sont équivalentes :

- (1) c est plat.
- (2) $Tor_n^R(-,c) = 0 \ \forall n \geq 1.$
- (3) $Tor_1^R(-,c) = 0.$

Proposition

Soit $c \in \mathcal{C}$ abélienne R-linéaire. Les conditions suivantes sont équivalentes :

- (1) c est coplat.
- (2) $Ext_R^n(-,c) = 0 \ \forall n \ge 1.$
- (3) $Ext_{P}^{1}(-,c)=0$.

Définition

- (1) Un foncteur $F: A \longrightarrow B$, avec B pré-additive est dit **effaçable** si pour tout objet a de A, il existe un monomorphisme $u: a \longrightarrow a'$ tel que F(u) = 0.
- (1') Il est dit **co-effaçable** si pour tout objet a de A, il existe un épimorphisme $u: a \longrightarrow a'$ tel que F(u) = 0.
- (2) Un foncteur $F: A \longrightarrow Ab$ est dit **faiblement effaçable** si pour tout objet a de A, pour tout élément $x \in F(a)$, il existe un monomorphisme $u: a \longrightarrow a'$ tel que F(u)(x) = 0.

Proposition (42)

Soit $F: A \longrightarrow \mathcal{B}$ un foncteur additif entre catégories abéliennes. Supposons que A ait suffisamment d'injectifs. Alors :

F est effaçable \iff F(I) = 0 pour tous les injectifs I deA.

Proposition (42)

Soit $F: A \longrightarrow \mathcal{B}$ un foncteur additif entre catégories abéliennes. Supposons que A ait suffisamment d'injectifs. Alors :

F est effaçable \iff F(I) = 0 pour tous les injectifs IdeA.

 (\Longrightarrow)

$$0 \longrightarrow I \xrightarrow{u} u(I)$$

$$id \downarrow \qquad \exists \beta$$

Proposition (42)

Soit $F: \mathcal{A} \longrightarrow \mathcal{B}$ un foncteur additif entre catégories abéliennes. Supposons que \mathcal{A} ait suffisamment d'injectifs. Alors :

F est effaçable \iff F(I) = 0 pour tous les injectifs I deA.

 (\Longrightarrow)

$$0 \longrightarrow F(I) \xrightarrow{F(u)} F(u(I))$$

$$id \downarrow \qquad \qquad F(I)$$

$$F(I)$$

Proposition (42)

Soit $F: \mathcal{A} \longrightarrow \mathcal{B}$ un foncteur additif entre catégories abéliennes. Supposons que \mathcal{A} ait suffisamment d'injectifs. Alors :

F est effaçable \iff F(I) = 0 pour tous les injectifs IdeA.

Soit $a \in \mathcal{A}$. Il existe $u : a \longrightarrow I$ monomorphisme et I injectif. En appliquant F, on a $F(u) : F(a) \longrightarrow F(I) = 0$, donc F(u) = 0.

Vers la définition : platitude

Définition (Platitude pour une catégorie R-linéaire)

Soit C une catégorie R-linéaire. C est dite **plate** (sur R) si pour tous objets $c, c' \in C$, $Hom_C(c, c')$ est un objet plat de Mod(R).

Définition (Platitude pour une catégorie R-linéaire abélienne)

Une catégorie R-linéaire abélienne \mathcal{C} est dite **plate** (sur R) si pour tout $X \in mod(R)$, $Ext^1_R(X, -) : \mathcal{C} \longrightarrow \mathcal{C}$ est effaçable.

Vers la définition : platitude

Proposition (48)

Soit C R-linéaire abélienne. Supposons que C ait suffisamment d'injectifs. Alors C est plate sur R si et seulement si les injectifs de C sont coplats.

Vers la définition : platitude

Proposition (48)

Soit C R-linéaire abélienne. Supposons que C ait suffisamment d'injectifs. Alors C est plate sur R si et seulement si les injectifs de C sont coplats.

$$\mathcal C$$
 est plate sur $\mathsf R \iff \operatorname{Ext}^1_R(X,-):\mathcal C \longrightarrow \mathcal C$ est effaçable $\forall X \in \operatorname{\mathsf{mod}}(R)$ $\iff \operatorname{\mathsf{Ext}}^1_R(X,I) = 0 \ \forall X \in \operatorname{\mathsf{mod}}(R), \ \forall I \text{ injectif de } \mathcal C$ $\iff I \text{ est coplat.}$

Vers la définition : constructions fonctorielles

Soient R et S deux anneaux commutatifs, et $\theta: R \longrightarrow S$ un homomorphisme d'anneaux.

Définition (Construction (-))

- Soit $M \in Mod(S)$. On désigne par \overline{M} le module M vu comme R-module via $\theta : R \longrightarrow S$. L'action est donnée par $(r,m) \longmapsto \theta(r) \cdot m$, pour $r \in R$ et $m \in M$.
- Soit \mathcal{B} une catégorie S-linéaire. On désigne par $\overline{\mathcal{B}}$ la catégorie R-linéaire définie par $Ob(\overline{\mathcal{B}}) = Ob(\mathcal{B})$ et $\overline{\mathcal{B}}(B, B') = \overline{\mathcal{B}(B, B')}$;

Vers la définition : constructions fonctorielles

Définition (Construction $S \otimes_R (-)$)

Soit A une catégorie R-linéaire.

On désigne par $S \otimes_R A$ la catégorie S-linéaire définie par

$$Ob(S \otimes_R A) = Ob(A)$$
 et $(S \otimes_R A)(A, A') = S \otimes_R A(A, A')$.

Vers la définition : constructions fonctorielles

Définition (Catégorie S-linéaire des S-objets)

Soit (C, ρ) une catégorie R-linéaire. On définit la catégorie S-linéaire des S-objets, notée C_S par :

- $Ob(C_S) = \{(c, \varphi_c)\}$, où c est un objet de C et $\varphi_c : S \longrightarrow Hom_C(c, c)$ morphisme d'anneaux vérifiant $\varphi_c \circ \theta = \rho_c$.
- Pour les morphismes, on garde les morphismes de C qui font commuter le diagramme suivant, pour tout $s \in S$:

Définition : déformation linéaire

On considère R et S deux anneaux commutatifs, et $\theta: R \longrightarrow S$ un homomorphisme d'anneaux.

Définition (Déformation pour catégories pré-additives)

- Soit \mathcal{B} une catégorie S-linéaire. Une R-déformation de \mathcal{B} est une catégorie R-linéaire \mathcal{A} munie d'un foncteur R-linéaire $\mathcal{A} \longrightarrow \overline{\mathcal{B}}$, qui induit une équivalence de catégories $S \otimes_R \mathcal{A} \longrightarrow \mathcal{B}$.
- Si $S \otimes_R A \longrightarrow B$ est un isomorphisme, la déformation est dite stricte.
- Si A est plate sur R, la déformation est dite plate.

Définition : déformation abélienne

On considère R et S deux anneaux commutatifs, et $\theta: R \longrightarrow S$ un homomorphisme d'anneaux.

Définition (Déformation pour catégories abéliennes)

- Soit $\mathcal D$ une catégorie S-linéaire abélienne. Une R-déformation de $\mathcal D$ est une catégorie R-linéaire $\mathcal C$ munie d'un foncteur R-linéaire $\overline{\mathcal D} \longrightarrow \mathcal C$, qui induit une équivalence de catégories $\mathcal D \longrightarrow \mathcal C_S$.
- Si $\mathcal{D} \longrightarrow \mathcal{C}_S$ est un isomorphisme, la déformation est dite stricte.
- Si C est plate sur R, la déformation est dite plate.

Un exemple

Exemple: Soient $\theta: R \longrightarrow S$ un morphisme surjectif entre deux anneaux commutatifs. On définit alors le foncteur :

$$\mathsf{Mod}(S) \longrightarrow \mathsf{Mod}(R)_S$$

$$M \longmapsto (\overline{M}, \varphi_M)$$

Il définit une équivalence de catégories $\operatorname{\mathsf{Mod}}(S) \simeq \operatorname{\mathsf{Mod}}(R)_S$. On a donc une déformation $\operatorname{\mathsf{Mod}}(S) \longrightarrow \operatorname{\mathsf{Mod}}(R)$.

Déformations nilpotentes

Définition

- On dit qu'une R-déformation (linéaire comme abélienne) est **nilpotente** si l'idéal $I = Ker(\theta)$ est nilpotent, c'est à dire qu'il existe un entier naturel n tel que $I^n = 0$.
- Si $I^n = 0$, on dit que la déformation est **nilpotente d'ordre n**.

Exemple:

Soit
$$\mathbb{K}$$
 un corps, et $R = \mathbb{K}[x]/x^2$.

$$\theta: \mathbb{K}[x]/x^2 \longrightarrow \mathbb{K}$$
$$\overline{1} \longmapsto \lambda$$
$$\overline{x} \longmapsto \mu$$

Exemple:

Soit \mathbb{K} un corps, et $R = \mathbb{K}[x]/x^2$.

$$\theta: \mathbb{K}[x]/x^2 \longrightarrow \mathbb{K}$$
$$\overline{1} \longmapsto \lambda$$
$$\overline{x} \longmapsto \mu$$

$$\operatorname{Ker}(\theta)^2 = \overline{0} \operatorname{dans} \mathbb{K}[x]/x^2$$
.

Exemple:

Soit \mathbb{K} un corps, et $R = \mathbb{K}[x]/x^2$.

$$\theta: \mathbb{K}[x]/x^2 \longrightarrow \mathbb{K}$$

$$\overline{1} \longmapsto \lambda$$

$$\overline{x} \longmapsto \mu$$

 $\operatorname{Ker}(\theta)^2 = \overline{0} \operatorname{dans} \mathbb{K}[x]/x^2$. $\operatorname{Mod}(R)_{\mathbb{K}} \cong \operatorname{Mod}(\mathbb{K})(=\operatorname{Vect}(\mathbb{K}))$, donc $\operatorname{Mod}(R)$ est une déformation nilpotente d'ordre 2 de $\operatorname{Vect}(\mathbb{K})$.

Équivalence de déformations abéliennes

Définition

Soit \mathcal{D} une catégorie S-linéaire et $F_1: \mathcal{D} \longrightarrow \mathcal{C}_1$, $F_2: \mathcal{D} \longrightarrow \mathcal{C}_2$ deux déformations abéliennes de \mathcal{D} . Alors F_1 et F_2 sont dites **équivalentes** s'il existe une équivalence de catégories R-linéaires $\phi: \mathcal{C}_1 \longrightarrow \mathcal{C}_2$ telle qu'il existe un isomorphisme naturel $\phi \circ F_1 \cong F_2$.

Soient $\overline{\mathcal{C}}$ et \mathcal{C} deux catégories et $F:\overline{\mathcal{C}}\longrightarrow \mathcal{C}$ un foncteur.

Définition

Soit $C \in \mathcal{C}$. Un **relèvement de** C **le long de** F est un couple (\overline{C}, γ_C) , où $\overline{C} \in \overline{\mathcal{C}}$ et $\gamma_C : C \cong F(\overline{C})$ est un isomorphisme de \mathcal{C} .

Définition

Soit $f: C \longrightarrow D$ un morphisme de C et des relèvements $\gamma_C: C \cong F(\overline{C})$ et $\gamma_D: D \cong F(\overline{D})$. Un **relèvement de** f **le long de** F (relativement à γ_C et γ_D) est une flèche $\overline{f}: \overline{C} \longrightarrow \overline{D}$ telle que $F(\overline{f}) \circ \gamma_C = \gamma_D \circ f$.

L'ensemble des relèvements de f le long de F relativement à γ_C et γ_D est noté $L_F(f|\gamma_C,\gamma_D)$.

Soient $(C, d_C), (D, d_D)$ deux pré-complexes, $f, g \in \operatorname{Hom}^n(C, D)$ deux flèches graduées et $H: f \longrightarrow g$ une homotopie. Un **relèvement gradué de** H **le long de** F relativement à $\overline{d_C}, \overline{d_D}, \overline{f}, \overline{g}$ est un relèvement gradué \overline{H} de H qui est une homotopie $\overline{H}: \overline{f} \longrightarrow \overline{g}$.

Soient $(C, d_C), (D, d_D)$ deux pré-complexes, $f, g \in \operatorname{Hom}^n(C, D)$ deux flèches graduées et $H: f \longrightarrow g$ une homotopie. Un **relèvement gradué de** H **le long de** F relativement à $\overline{d_C}, \overline{d_D}, \overline{f}, \overline{g}$ est un relèvement gradué \overline{H} de H qui est une homotopie $\overline{H}: \overline{f} \longrightarrow \overline{g}$.

Définition

On a alors le groupoïde $L_F(H|d_C, d_D, f, \overline{g})(=: L_F(H))$:

- Objets : relèvements gradués de H relativement à $\overline{d_C}, \overline{d_D}, \overline{f}, \overline{g}$;
- Morphismes $\overline{H} \longrightarrow \overline{H}'$: relèvements gradués de $0: H \longrightarrow H$ relativement à $\overline{d_C}, \overline{d_D}, \overline{H}, \overline{H}'$.

- $F: \overline{\mathcal{C}} \longrightarrow \mathcal{C}$ un foncteur additif.
- Ker(F) la catégorie (sans identités) ayant mêmes objets que $\overline{\mathcal{C}}$ et pour morphismes $\{f \in \overline{\mathcal{C}}, \ F(f) = 0\}$
- $\operatorname{Ker}(F)^2$ la catégorie avec mêmes objets et pour morphismes $\{h \in \overline{\mathcal{C}}, h = f \circ g, f, g \in \operatorname{Ker}(F)\}$.

On suppose F plein et $Ker(F)^2 = 0$.

Soient (C, d_C) et (D, d_D) deux pré-complexes de C et des relèvements gradués \overline{C} et \overline{D} .

$$\left(\operatorname{Hom}(\overline{C},\overline{D}),\overline{\delta}\right)\longrightarrow \left(\operatorname{Hom}(C,D),\delta\right) \text{ est surjective}.$$

$$\mathsf{Rappel} : \delta^n(f) := d_D \circ f - (-1)^n f \circ d_C.$$

Soient (C, d_C) et (D, d_D) deux pré-complexes de C et des relèvements gradués \overline{C} et \overline{D} .

$$(\operatorname{Hom}(\overline{C},\overline{D}),\overline{\delta}) \longrightarrow (\operatorname{Hom}(C,D),\delta)$$
 est surjective.

Rappel :
$$\delta^n(f) := d_D \circ f - (-1)^n f \circ d_C$$
.

$$0 \longrightarrow (\mathfrak{C}, \overline{\delta}) \longrightarrow \left(\mathsf{Hom}(\overline{C}, \overline{D}), \overline{\delta}\right) \longrightarrow \left(\mathsf{Hom}(C, D), \delta\right) \longrightarrow 0.$$

Soient (C, d_C) et (D, d_D) deux pré-complexes de C et des relèvements gradués \overline{C} et \overline{D} .

$$(\operatorname{Hom}(\overline{C},\overline{D}),\overline{\delta}) \longrightarrow (\operatorname{Hom}(C,D),\delta)$$
 est surjective.

 $\mathsf{Rappel} : \delta^n(f) := d_D \circ f - (-1)^n f \circ d_C.$

$$0 \longrightarrow (\mathfrak{C}, \overline{\delta}) \longrightarrow \left(\mathsf{Hom}(\overline{C}, \overline{D}), \overline{\delta}\right) \longrightarrow \left(\mathsf{Hom}(C, D), \delta\right) \longrightarrow 0.$$

Proposition (84)

 $(\mathfrak{C}, \overline{\delta})$ est un complexe de cochaînes indépendant du choix des relèvements $\overline{d_C}$ et $\overline{d_D}$.

Un théorème d'obstruction (86)

Soient $f,g \in \operatorname{Hom}^n(C,D)$; $h:f \longrightarrow g$ une homotopie. Supposons qu'il existe $\overline{f},\overline{g},\overline{h}$ des relèvements gradués de f,g,h tels que $\overline{\delta}(\overline{f})=\overline{\delta}(\overline{g})$. Alors :

Un théorème d'obstruction (86)

Soient $f,g \in \operatorname{Hom}^n(C,D)$; $h:f \longrightarrow g$ une homotopie. Supposons qu'il existe $\overline{f},\overline{g},\overline{h}$ des relèvements gradués de f,g,h tels que $\overline{\delta}(\overline{f})=\overline{\delta}(\overline{g})$. Alors :

(1) Il existe une obstruction $o_n(h) = o_n(h|\overline{d_C}, \overline{d_D}, \overline{f}, \overline{g}) := [\overline{g} - \overline{f} - \overline{\delta}(\overline{h})] \in H^n(\mathfrak{C}) \text{ telle que}$ $o_n(h) = 0 \iff L(h) \neq \emptyset.$

Un théorème d'obstruction (86)

Soient $f, g \in \operatorname{Hom}^n(C, D)$; $h: f \longrightarrow g$ une homotopie. Supposons qu'il existe $\overline{f}, \overline{g}, \overline{h}$ des relèvements gradués de f, g, h tels que $\overline{\delta}(\overline{f}) = \overline{\delta}(\overline{g})$. Alors :

(1) Il existe une obstruction $o_n(h) = o_n(h|\overline{d_C}, \overline{d_D}, \overline{f}, \overline{g}) := [\overline{g} - \overline{f} - \overline{\delta}(\overline{h})] \in H^n(\mathfrak{C}) \text{ telle que}$ $o_n(h) = 0 \iff L(h) \neq \emptyset.$

(2) Si
$$o_n(h)=0$$
, la flèche $v_{n-1}:L(h)^2\longrightarrow H^{n-1}(\mathfrak{C})$ $(\overline{h},\overline{h}')\longmapsto [\overline{h}'-\overline{h}]$

vérifie
$$v_{n-1}(\overline{h}, \overline{h}') = 0 \iff [\overline{h}] = [\overline{h}'] \in \operatorname{Sk}(L(h))$$
 et induit une structure $H^{n-1}(\mathfrak{C})$ -affine sur $\operatorname{Sk}(L(h))$.

Perspectives

• Méthodes efficaces de calcul de cohomologie;

Perspectives

- Méthodes efficaces de calcul de cohomologie;
- Déformations de catégories de Grothendieck;

Perspectives

- Méthodes efficaces de calcul de cohomologie;
- Déformations de catégories de Grothendieck;
- Déformations de foncteurs, transformations naturelles.