

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Modelos Matemáticos I

Los Del DGIIM, losdeldgiim.github.io

José Juan Urrutia Milán Arturo Olivares Martos

Índice general

Intr	oducción	5
0.1.	Modelo de Malthus	6
	0.1.1. Bondad del Modelo de Malthus	7
	0.1.2. Solución del Modelo de Malthus	7
	0.1.3. Vida Media	8
0.2.	Modelo Logístico	9
	0.2.1. Solución del Modelo Logístico	10
0.3.	Soluciones de un modelo	11
0.4.	Estabilidad	14
0.5.	Linealización	14
Ecu	aciones en diferencias de orden 1	17
1.1.	Ecuación lineal de orden 1	17
	1.1.1. Ecuación lineal de orden 1 autónoma	18
	1.1.2. Ecuación lineal de orden 1 no autónoma	21
1.2.	Modelo de la oferta y la demanda (o Modelo de la Telaraña)	22
	1.2.1. Sistema estático	22
	1.2.2. Sistema dinámico	23
Rela	aciones de Problemas	25
	0.1. 0.2. 0.3. 0.4. 0.5. Ecu 1.1.	0.1.2. Solución del Modelo de Malthus 0.1.3. Vida Media 0.2. Modelo Logístico 0.2.1. Solución del Modelo Logístico 0.3. Soluciones de un modelo. 0.4. Estabilidad 0.5. Linealización Ecuaciones en diferencias de orden 1 1.1. Ecuación lineal de orden 1 1.1.1. Ecuación lineal de orden 1 autónoma 1.1.2. Ecuación lineal de orden 1 no autónoma 1.2. Modelo de la oferta y la demanda (o Modelo de la Telaraña) 1.2.1. Sistema estático 1.2.2. Sistema dinámico

0. Introducción

- 1. ¿Qué modelos vamos a estudiar?
 - ¿Cómo se "usan" los modelos?
 - ¿Modelos discretos o continuos?
- 2. Ejemplos de modelos que vamos a estudiar
 - a) Dinámica de poblaciones:
 - Modelo de Malthus.
 - Modelo logístico.
 - Modelo de Leslie.
 - b) Modelos aplicados a la economía.
 - Interés compuesto.
 - Ley de la oferta y la demanda (Modelo de la telaraña).
 - Modelo de la renta de Samelson.
 - c) Modelo de Malthus (discreto y continuo). Ejemplo motivador de la asignatura.
 - ¿Es el modelo "bueno"?
 - Mejoras del modelo → Modelo logístico.

Ejemplo. Veamos un ejemplo de interés compuesto. Supongamos que el capital inicial es de 1000€, y el interés anual del 3 %. ¿Cuánto dinero tenemos pasados 5 años?

$$1000 \cdot 1.03^5 = 1159.27$$
€

Suponiendo que el capital inicial es c_0 , el número de años viene dado por n, y el interés viene dado por I, tenemos que:

$$c_n = c_0 \left(1 + \frac{I}{100} \right)^n$$

También se puede plantear como una Ley de Recurrencia (también llamada ecuación en diferencias). Es decir:

$$c_{n+1} = c_n \left(1 + \frac{I}{100} \right)$$

Ejemplo. Supongamos que estamos estudiando una población de bacterias. Supongamos que la tasa de bacterias que han muerto cada vez que se ve la muestra es de m=75%. Además, supongamos que la tasa de nacimiento es del f=150%. Notando la población de las bacterias por p_n , tenemos que:

$$p_{n+1} = p_n + 1.5p_n - 0.75p_n = 1.75p_n$$

Esto es una ecuación en diferencias, y es un ejemplo del *Modelo de Malthus*. De forma análoga al ejemplo anterior, tenemos que:

$$p_n = 1.75^n \cdot p_0$$

Como 1,75 > 1, tenemos que la población crece de forma ilimitada, diverge.

En estos ejemplos hemos introducido lo que era una ecuación en diferencias. Definámoslo:

Definición 0.1 (Ecuación en diferencias). Una ecuación en diferencias (también llamada Ley de Recurrencia) es una función $f: \mathbb{R} \to \mathbb{R}$ tal que:

$$x_{n+1} = f(x_n)$$

0.1. Modelo de Malthus

Sea t el tiempo, y sea P(t) el tamaño de la población en el tiempo t. Sea f la tasa de fertilidad y m la tasa de mortalidad ($0 \le m \le 1$). Tras contar la población pasado un tiempo Δt , tenemos que:

$$\begin{split} P(t + \Delta t) &= \text{La que había} + \text{Nace} - \text{Muere} = \\ &= P(t) + \Delta t \cdot f \cdot P(t) - \Delta t \cdot m \cdot P(t) = \\ &= P(t) \left(\Delta t \cdot (f - m) + 1 \right) \end{split}$$

Modelo discreto. Denominando $p_{n+1} = P(t + \Delta t), p_n = P(t),$ tenemos que:

$$p_{n+1} = p_n \cdot (\Delta t \cdot (f - m) + 1)$$

Esta es la ecuación en diferencias. Su solución es una sucesión.

También se puede expresar como:

$$p_n = p_0 \left(1 + \Delta t (f - m) \right)^n$$

Notemos que, debido a que los parámetros se mantienen constantes, será muy común también expresar este modelo como:

$$x_{n+1} = rx_n \qquad r \in \mathbb{R}^+$$

- Si f > m, tenemos que la población crece.
- Si f < m, la base de la potencia es menor que 1 y decrece.

El modelo obliga a la población a reproducirse indefinidamente o a extinguirse, por lo que no es un buen modelo.

Si nos preguntamos por una solución constante (si nos preguntamos qué pasa si p_n es constante), tendríamos que o bien, f = m, o bien $p_n = 0$.

Modelo continuo. La tasa de crecimiento es:

$$\lim_{\Delta t \to 0} \frac{P(t + \Delta t) - P(t)}{\Delta t} = P'(t)$$

$$= \lim_{\Delta t \to 0} (f - m)P(t) = (f - m)P(t)$$

Por tanto, tenemos que:

$$P'(t) = (f - m)P(t)$$

Esta es la ecuación diferencial. Su solución es una función.

Suponiendo que P(t) es siempre positiva o igual a 0^1 :

- Si f > m, el producto es positivo y la derivada también \Rightarrow la función crece.
- Si f < m, el producto es negativo y la derivada también \Rightarrow la función decrece.

De ahora en adelante, apenas consideraremos modelos continuos, y nos centraremos en modelos discretos. Los modelos continuos serán objeto de estudio en la asignatura de Modelos Matemáticos II.

0.1.1. Bondad del Modelo de Malthus

Estudiamos ahora si el Modelo de Malthus es "bueno". Algunas desventajas son:

- Las tasas de fertilidad y mortalidad constantes no son realistas (al menos para tiempos largos ni para poblaciones grandes de seres vivos).
- En el modelo discreto, como hemos visto, la población o crece ilimitadamente o se extingue. No admite comportamientos intermedios.

Una ventaja de este es lo sencillo que es de calcular en el caso discreto. En otros modelos, podemos encontrar ecuaciones en diferencias que no seamos capaces de resolver.

0.1.2. Solución del Modelo de Malthus

Veamos en qué consiste resolver una ecuación en diferencias:

Definición 0.2. Una sucesión $\{x_n\}$ es una solución de la ecuación $x_{n+1} = f(x_n)$ si satisface la ecuación. Es decir, si cada término se obtiene del anterior haciendo su imagen por f.

La solución del Modelo de Malthus es:

$$p_n = p_0 \cdot (\Delta t \cdot (f - m) + 1)^n$$

¹No tiene sentido considerar poblaciones con un número negativo de individuos.

0.1.3. Vida Media

Para el Modelo de Malthus para $r \in]0, 1[$, como sabemos que la población decrece, se define la vida media.

Definición 0.3 (Vida media en ley de desintegración). El tiempo de vida media es el tiempo medio estimado que debe pasar para que una sustancia se desintegre.

La vida media se define formalmente de la siguiente forma:

$$VM := \frac{1}{x_0} \sum_{n=1}^{\infty} n(x_{n-1} - x_n)$$

Veamos cómo calcularla de forma en concreto en el caso del Modelo de Malthus:

$$x_{n+1} = rx_n$$
 $0 < r < 1$

Demostremos que se calcula de la siguiente forma:

$$VM := \frac{1}{x_0} \sum_{n=1}^{\infty} n(x_{n-1} - x_n) = \frac{1}{1 - r}$$

Demostración. Partimos de la definición de la vida media:

$$VM = \frac{1}{x_0} \sum_{n=1}^{\infty} n(x_{n-1} - x_n) =$$

$$= \frac{1}{x_0} \sum_{n=1}^{\infty} n(r^{n-1}x_0 - r^n x_0) =$$

$$= \sum_{n=1}^{\infty} n(r^{n-1} - r^n) = \sum_{n=1}^{\infty} nr^{n-1}(1 - r) =$$

$$= (1 - r) \sum_{n=1}^{\infty} nr^{n-1} \stackrel{(*)}{=} \frac{1 - r}{(1 - r)^2} = \frac{1}{1 - r}$$

En (*), hemos usado la siguiente proposición:

Proposición 0.1.

$$\sum_{n=1}^{\infty} nr^{n-1} = \frac{1}{(1-r)^2}$$

Demostración.

1.

$$s_{n_0} = 1 + r + r^2 + \ldots + r^n$$

Demostramos que

$$S_n = \frac{1 - r^{n+1}}{1 - r}$$
$$S_{n+1} = S_n + r^{n+1}$$

_

$$S_{n+1} = 1 + r + \ldots + r^{n+1} = 1 + rS_n$$

2.

$$S_n(r) = \frac{1 - r^{n+1}}{1 - r}$$

$$S'_n(r) = 1 + 2r + \ldots + nr^{n-1} = \left(\frac{1 - r^{n+1}}{1 - r}\right)'$$

3.

$$\sum_{n=1}^{\infty} nr^{n-1} = \lim_{n \to \infty} S'_n(r)$$

Con 0 < r < 1.

0.2. Modelo Logístico

El presente modelo mejorará el modelo de Malthus. Para concretar los fallos de este último modelo, hemos de incluir las siguientes definiciones:

Definición 0.4 (Tasa de crecimiento). Se define la tasa de crecimiento de una población cono:

$$TC := \frac{p_{n+1}}{p_n}$$

Nos informa de si la población crece o decrece (mayor o menor que 1).

Definición 0.5 (Tasa neta de crecimiento). Se define la tasa neta de crecimiento de una población como:

$$TNC := \frac{p_{n+1} - p_n}{p_n} = \frac{p_{n+1}}{p_n} - 1 = TC - 1$$

Nos informa de cuánto crece la población.

En el caso del Modelo de Malthus notado de la forma,

$$p_{n+1} = r \cdot p_n$$
 con $r = 1 + \Delta t(f - m)$

se tendría que:

$$TC = r$$
 $TCN = r - 1$

Ejemplo. Supongamos un modelo de Malthus dado por:

$$p_{n+1} = 1,25p_n$$

Tenemos que:

$$TC = 1.25$$
 $TCN = 1.25 - 1 = 0.25$

La tasa de crecimiento neto nos dice que la población aumenta en el 25 %.

El fallo del modelo de Malthus es tener una tasa de crecimiento constante. El modelo logístico resuelve esto. Cambiamos la tasa de crecimiento por una recta de la forma:

$$\frac{p_{n+1}}{p_n} = a - b \cdot p_n, \qquad a, b \in \mathbb{R}^+$$

Esto se acerca más a un comportamiento real, ya que conforme la población aumenta, se tiene que:

- La tasa de mortalidad *m* tiende a crecer.
- La tasa de fertilidad f tiende a decrecer.

Y, conforme la población decrece, se tiene lo contrario, es decir:

- \blacksquare La tasa de mortalidad m tiende a decrecer.
- La tasa de fertilidad f tiende a crecer.

Por tanto, sabiendo la TC, el modelo logístico viene dado por:

$$p_{n+1} = p_n(a - b \cdot p_n)$$
 $a, b \in \mathbb{R}^+$

Observación. ¿Pueden a, b tomar cualquier valor no negativo garantizando que $p_n \ge 0 \ \forall n \in \mathbb{N}$, suponiendo que $p_0 \ge 0$?

No, necesitamos a y b entre 0 y 4. Para que $p_n \ge 0$, necesitamos que:

$$a - b \cdot p_n \geqslant 0 \iff a \geqslant b \cdot p_n \iff p_n \leqslant \frac{a}{b} \qquad \forall n \in \mathbb{N}$$

La función asociada a la ecuación logística es la parábola:

$$f(x) = x(a - bx)$$

Y, por lo visto anteriormente, necesitamos que la función sea de la siguiente forma:

$$f: \left[0, \frac{a}{h}\right] \to \left[0, \frac{a}{h}\right]$$

Esto solo se dará si $a, b \in [0, 4]$.

Este modelo no es lineal, como bien podemos ver, ya que su función asociada es una parábola.

0.2.1. Solución del Modelo Logístico

Al contrario de lo que ocurría con Malthus, no podemos buscar una solución a este modelo de forma tan fácil. Veámoslo:

$$x_0 \Rightarrow x_1 = x_0(a - bx_0) \Rightarrow x_2 = x_1(a - bx_1) = x_0(a - bx_0)(a - bx_0(a - bx_0)) \Rightarrow x_3 = \dots$$

Como vemos, no es fácil encontrar la sucesión de las soluciones. Esto es un caso concreto de un problema de valores iniciales, que trataremos en la próxima sección.

0.3. Soluciones de un modelo.

Como hemos visto, solucionar una ecuación en diferencias no tiene por qué ser fácil. Se trata de un problema de valores iniciales (PVI).

Definición 0.6 (PVI). Un problema de valores iniciales es buscar las soluciones de una ley de recurrencia dado x_0 fijado.

$$x_1 = f(x_0)$$
 ... $x_{n+1} = f^n(x_0)$

Por norma general, resolverlo no es fácil sin el uso de ordenadores, ya que para valores altos de n requiere gran cantidad de cómputos.

Ejemplo. Veamos un ejemplo de PVI particular. Sea la siguiente ecuación en diferencias:

$$x_0 = 1 \qquad x_{n+1} = \log(x_n)$$

En este caso, se resuelve de forma sencilla, ya que $x_1 = 0$ y ya no se puede continuar, ya que no pertenece al dominio de definición del logaritmo.

Observación. Veamos si podemos encontrar $I \subset \mathbb{R}$ tal que si tomamos $x_0 \in I$ la sucesión dada por la Ley de Recurrencia $x_{n+1} = \log(x_n)$ tenga infinitos términos.

La ecuación en diferencias siempre viene asociada a una función f dada por:

$$f: I \to \mathbb{R}$$
 $x_{n+1} = f(x_n)$

Basta que $f(I) \subseteq I$ para poder sacar una sucesión que resuelva el PVI.

Definición 0.7 (Órbita o trayectoria). Se define la órbita o trayectoria de la solución que empieza en x_0 como:

$$\{x_0, f(x_0), (f \circ f)(x_0), \dots, f^n(x_0), \dots\}$$

Esta es la sucesión de todos los términos de la solución de un modelo.

Definición 0.8 (Retrato de fases). El retrato de fases es la representación gráfica de la órbita.

Ejemplo. Resolver el modelo de Malthus dado por:

$$x_{n+1} = 2x_n$$

Dado x_0 , la solución tiene término general $x_n = 2^n x_0$.

Su retrato de fases sería el siguiente:

Figura 1: Retrato de fases del modelo de Malthus dado por $x_{n+1} = 2x_n$.

La función f asociada sería:

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto 2x$$

La ecuación tiene sentido para cualquier dato de \mathbb{R} . Sin embargo, si tratamos el modelo de Malthus en poblaciones (por ejemplo), no tiene sentido considerar todo \mathbb{R} .

Definición 0.9 (Soluciones constantes). Se trata de órbitas que tratan en una sucesión constante $x_c = \{x_n\}_{n\geq 0}$ que cumplen la ecuación $x_{n+1} = f(x_n)$ y que tienen todos sus términos iguales:

$$x_c = \{c, c, \dots, c, \dots\}$$

Es decir; se trata de encontrar $c \in I$ tal que c = f(c). Determinamos entonces las soluciones constantes encontrando los puntos fijos de f.

Ejemplo. Si el modelo fuera $x_{n+1} = 0 \cdot x_n$, la órbita sería:

$$\{0, 0, \dots, 0, \dots\}$$

Se trata de una solución constante, con retrato de fases:

Figura 2: Retrato de fases del modelo de Malthus dado por $x_{n+1} = 0 \cdot x_n$.

Centrémonos ahora en hallar las soluciones constantes de los modelos vistos hasta el momento. Trabajemos con el modelo de **Malthus** dado por:

$$x_{n+1} = r \cdot x_n$$

Las soluciones constantes son:

- Si $r \neq 1$: Entonces $x_c = 0$, c = 0.
- Si r = 1: $x_{x_0} = \{x_0, x_0, \dots, x_0, \dots\}, \text{ con } x_0 \in \mathbb{R}.$

Para el modelo **logístico** dado por:

$$p_{n+1} = p_n(a - b \cdot p_n)$$
 $0 \leqslant p_0 \leqslant \frac{a}{b}$

Las soluciones constantes son:

$$x_0 = \{0, 0, \dots, \}$$

$$x_{\frac{a-1}{b}} = \left\{ \frac{a-1}{b}, \frac{a-1}{b}, \dots \right\}$$

Veamos cómo las hemos obtenido. La f asociada es: f(x) = x(a - bx), por lo que los puntos fijos son las soluciones de la ecuación c = c(a - bc).

- c = 0
- $c = \frac{a-1}{b}$

Necesitamos que el dominio de f sea:

$$f: \left[0, \frac{a}{b}\right] \to \left[0, \frac{a}{b}\right]$$

Para que esto se cumpla, veremos más adelante que es suficiente con limitar el rango de valores de a.

Definición 0.10 (Ciclos). Un *n*-ciclo es una solución de la ecuación que cumple que $x_n = x_0$, es decir:

$$f^n(x_0) = x_0$$

Y por tanto, x_0 es un punto fijo de f^n . La órbita de un n-ciclo es de la forma:

$$\{x_0, x_1, x_2, \dots, x_{n-1}, x_0, x_1, x_2, \dots, x_{n-1}, x_0, x_1, x_2, \dots\}$$

Decimos que una solución constante es un ciclo trivial, ya que es un ciclo para cualquier n natural.

Ejemplo. Sea el modelo dado por:

$$x_{n+1} = -x_n$$

La f asociada es $f: \mathbb{R} \to \mathbb{R}$ dada por: f(x) = -x. Su órbita es:

Se trata de un 2-ciclo. El retrato de fases sería el siguiente:

Figura 3: Retrato de fases del modelo de Malthus dado por $x_{n+1} = -x_n$.

Veamos ahora qué ocurre en el caso de que no se pueda calcular de forma explícita la solución constante del modelo.

Como bien podemos observar, las solucuiones constantes serán los puntos de corte entre las gráficas y = x y la función asociada al modelo f.

Ejercicio. Estudiar el modelo dado por:

$$x_{n+1} = i \cdot x_n$$

donde i es la unidad imaginaria.

Ejercicio. Estudiar el modelo dado por:

$$x_{n+1} = r \cdot x_n$$
 $r \in \mathbb{C} |r| = 1$

0.4. Estabilidad

En esta sección, veremos cómo sabemos qué hace el modelo si no conocemos el término general (es decir, una fórmula explícita).

Definición 0.11 (Estabilidad). Decimos que x = c es estable si las soluciones que empiezan cerca de x = c, se quedan cerca de x = c. Es decir:

$$\forall \varepsilon > 0 \qquad \exists \delta > 0, \text{ Si } x_0 \in \mathbb{R}, \ |x_0 - c| < \delta \Longrightarrow |x_n - c| < \varepsilon \qquad \forall n \in \mathbb{N}$$

De forma evidente, se tiene que las soluciones constantes son estables.

Definición 0.12 (Estabilidad asintótica). Decimos que x=c es asintóticamente estable si, además de ser estable, se tiene que $\lim_{n\to\infty} x_n = c$ si x_0 está cerca de c.

Ejemplo. Por ejemplo, consideramos los modelos de Malthus dados por:

$$x_{n+1} = 0.9 \cdot x_n$$
 $x_{n+1} = 1.2 \cdot x_n$ $x_{n+1} = -x_n$

Las soluciones constantes de todas son c = 0.

En la última, cabe destacar que $x_0 = 0$ es estable (es una solución cosntante) pero no asintóticamente estable, ya que si $x_0 \neq 0$ entonces $\lim_{n \to \infty} x_n \neq 0$.

0.5. Linealización

En el caso no modelos no lineales, ¿cómo miramos la estabilidad de las soluciones constantes? La idea es linealizar el modelo mediante la serie de Taylor. Dada nuestra ecuación:

$$x_{n+1} = f(x_n)$$

Y supongamos que $f(c) = c \Rightarrow x_c = \{c, c, \ldots\}$ es una solución constante.

El desarrollo de Taylor de orden 1 centrado en c es:

$$f(x) = f(c) + f'(\gamma)(x - c)$$
 γ entre $c y x$.

Tenemos entonces que:

$$f(x) = f(c) + f'(\gamma)(x - c) \Longrightarrow f(x) = c + f'(\gamma)(x - c)$$

Suponemos que x_0 está "cerca" de c.

$$x_0 \Longrightarrow x_1 = f(x_0) = c + f'(\gamma)(x_0 - c) \iff |x_1 - c| = |f'(\gamma)||x_0 - c|$$

con γ entre c y x. Por esa última igualdad, tenemos el siguiente resultado:

- \blacksquare Si |f'(c)|<1: Tenemos que $\alpha_c=\{c,c,\ldots\}$ es as intóticamente estable.
- Si |f'(c)| > 1: Tenemos que: $\alpha_c = \{c, c, ...\}$ es inestable.
- Si |f'(c)| = 1: No aporta información.

Este resultado lo veremos próximamente en teoría de forma más profunda.

1. Ecuaciones en diferencias de orden 1

En este tema, vamos a estudiar funciones de un intervalo $I \subseteq \mathbb{R}$ en \mathbb{R} .

- Si f es una recta, f(x) = ax + b, la ecuación se dice que es lineal.
- Si f no es una recta, $x_{n+1} = f(x_n)$. No es una ecuación lineal. Se dice que no es lineal

Algunos ejemplos de modelos que veremos son:

- Modelo de la oferta y demanda (o Modelo de la Telaraña).
- Modelo logístico.

1.1. Ecuación lineal de orden 1

Una ecuación lineal general de orden 1 es una ecuación con forma:

$$x_{n+1} = ax_n + b_n$$

Con $a, b \in \mathbb{R}$ y $n \in \mathbb{N}$ (Aunque se podrían considerar $a, b \in \mathbb{C}$, en esta asignatura por norma general no lo consideraremos). Esta se denomina ecuación lineal completa.

A $x_{n+1} = ax_n$ se le llama la parte **homogénea** de la ecuación. Por tanto, una ecuación lineal homogénea será de la forma:

$$x_{n+1} = ax_n$$

Definición 1.1 (Ecuación autónoma). Una ecuación autónoma es una ecuación donde la dependencia del tiempo está vista a lo largo de la solución. Son del tipo:

$$x_{n+1} = f(x_n)$$

Notemos que no todas las ecuaciones han de ser autónomas. Una ecuación no autónoma sería de la siguiente forma:

$$x_{n+1} = f(x_n, n)$$

Por tanto, la ecuación lineal general de orden 1 es una ecuación no autónoma, ya que el término independiente b_n es una sucesión que depende del valor de n.

1.1.1. Ecuación lineal de orden 1 autónoma

En esta sección estudiaremos las ecuaciones lineales de orden 1 autónomas; es decir, el caso en el que $b_n = b \ \forall n \in \mathbb{N}$. Su ecuación por tanto toma la siguiente forma:

$$x_{n+1} = ax_n + b$$

Vamos a estudiar dos formas de resolverla.

Primera forma

Iterando y buscando una expresión general para x_n . Dado x_0 , tenemos que:

$$x_{1} = ax_{0} + b$$

$$x_{2} = ax_{1} + b = a(ax_{0} + b) + b = a^{2}x_{0} + ab + b$$

$$x_{3} = ax_{2} + b = a(a^{2}x_{0} + ab + b) + b = a^{3}x_{0} + a^{2}b + ab + b$$

$$\vdots$$

$$x_{n} = a^{n}x_{0} + a^{n-1}b + \dots + b$$

donde el valor de x_n lo hemos obtenido de forma intuitiva. Demostrémoslo mediante inducción:

Demostración. Vamos a probar que la expresión general para la ecuación anterior es:

$$x_n = a^n x_0 + a^{n-1}b + \ldots + b$$

Por inducción:

- Caso base n = 1: Para n = 1, tenemos efectivamente $x_1 = ax_0 + b$.
- Supuesto para n, demostramos para n + 1: Tenemos que:

$$x_{n+1} = ax_n + b \stackrel{(*)}{=}$$

$$\stackrel{(*)}{=} a (a^n x_0 + a^{n-1}b + \dots + b) + b =$$

$$= a^{n+1}x_0 + a^n b + \dots + ab + b$$

donde en (*) hemos aplicado la hipótesis de inducción.

Por tanto, hemos demostrado que en el PVI $x_{n+1} = ax_n + b$ se tiene que:

$$x_n = a^n x_0 + a^{n-1}b + \dots + b =$$

$$= a^n x_0 + b(a^{n-1} + a^{n-1} + \dots + a + 1) =$$

$$= a^n x_0 + b \sum_{k=0}^{n-1} a^k \stackrel{(*)}{=} a^n x_0 + b \cdot \frac{1 - a^n}{1 - a}$$

donde en (*) hemos usado el resultado de dicha suma, que se calcula fácilmente mediante inducción. Por tanto, la solución del problema de valores iniciales (PVI) descrito es:

$$x_n = a^n x_0 + b \cdot \frac{1 - a^n}{1 - a}$$

Segunda forma

Si b = 0, sabríamos resolver la ecución, ya que sería:

$$x_{n+1} = ax_n$$

y sus soluciones sabemos que son de la forma:

$$x_n = a^n x_0$$

Por tanto, en este caso tratamos de buscar un cambio de variable para obtener una ecuación de ese tipo, que sí sabemos resolver. Buscamos un cambio de variable de la forma $y_n = x_n - k$ $(k \in \mathbb{C})$ tal que y_n sea solución de la ecuación $y_{n+1} = ay_n$. Calculemos el valor de k:

$$y_{n+1} = x_{n+1} - k = ax_n + b - k \stackrel{(*)}{=} ay_n + ak + b - k$$

donde en (*) he usado que $x_n = y_n + k$. Como buscamos que $y_{n+1} = ay_n$, el valor de k viene dado por la ecuación:

$$ak + b - k = 0 \iff k = \frac{b}{1 - a}$$

Por tanto, consideramos el cambio $y_n = x_n - \frac{b}{1-a}$, y tenemos que $y_{n+1} = ay_n$. La solución a dicha ecuación es conocida:

$$y_n = y_0 \cdot a^n$$

Sabiendo esto, encontramos la solución del PVI:

$$x_n = y_n + k = y_n + \frac{b}{1 - a} = y_0 \cdot a^n + \frac{b}{1 - a} =$$

$$= \left(x_0 - \frac{b}{1 - a}\right) \cdot a^n + \frac{b}{1 - a} =$$

$$= a^n x_0 + b \cdot \frac{1 - a^n}{1 - a}$$

Como no podía ser de otra forma, hemos llegado a la misma solución que en el caso anterior.

Observación. Notamos ahora que el k encontrado es precisamente la solución constante de la ecuación $x_{n+1} = ax_n + b$.

$$c = ac + b \iff c = \frac{b}{1 - a} = x_c$$

Observación. Notemos que, siguiendo ambos métodos para resolver, llegamos a un problema para a=1, ya que estaríamos dividiendo entre 0. Pensamos ahora cómo solventar este problema.

En este caso, simplemente, se nos queda una ecuación del estilo:

$$x_{n+1} = x_n + b$$

Su solución podemos pensar fácilmente que es la siguiente:

$$x_n = x_0 + n \cdot b$$

Notemos que la ecuación no tiene soluciones constantes, salvo que b = 0.

Por tanto, a modo de resumen, las soluciones de una ecuación lineal de primer orden autónoma son:

$$\begin{cases}
\operatorname{Si} a \neq 1 : & x_n = \left(x_0 - \frac{b}{1-a}\right)a^n + \frac{b}{1-a} \\
\operatorname{Si} a = 1 : & x_n = x_0 + n \cdot b
\end{cases}$$

Comportamiento de las soluciones a largo plazo

En esta sección estudiaremos el comportamiento de las soluciones a largo plazo, también llamado comportamiento asintótico del modelo. Esto es cuando $n \to \infty$. Distinguimos en función del valor de a:

- $|a| \neq 1$:
 - |a| < 1:

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \left(x_0 - \frac{b}{1 - a} \right) a^n + \frac{b}{1 - a} = \frac{b}{1 - a}$$

• |a| > 1:

$$\circ \ x_0 \neq \frac{b}{1-a}:$$

$$x_n = \left(x_0 - \frac{b}{1-a}\right)a^n + \frac{b}{1-a}$$

En este caso, como |a| > 1, tenemos que no converge.

$$\circ \ x_0 = \frac{b}{1-a}:$$

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \left(x_0 - \frac{b}{1 - a} \right) a^n + \frac{b}{1 - a} = \lim_{n \to \infty} 0 + \frac{b}{1 - a} = \frac{b}{1 - a}$$

- |a| = 1:
 - a = 1:

 \circ Si $b \neq 0$:

Entonces, $x_n = x_0 + b \cdot n$

$$\lim_{n \to \infty} |x_n| = \lim_{n \to \infty} |x_0 + b \cot n| = \infty$$

- \circ Si b = 0: Todas las soluciones son constantes.
- $\bullet \ \underline{a = -1}$

$$x_n = \left(x_0 - \frac{b}{2}\right)(-1)^n + \frac{b}{2}$$

$$\circ \ x_0 = \frac{b}{2}:$$

Tenemos que $x_n = \frac{b}{2} \ \forall n \in \mathbb{N}$. Es una solución constante.

 $\circ \ x_0 \neq \frac{b}{2}:$

Distinguimos el caso de los n pares o impares:

$$x_{2n} = \left(x_0 - \frac{b}{2}\right)(-1)^{2n} + \frac{b}{2} = \left(x_0 - \frac{b}{2}\right) + \frac{b}{2} = x_0$$
$$x_{2n+1} = \left(x_0 - \frac{b}{2}\right)(-1)^{2n+1} + \frac{b}{2} = -\left(x_0 - \frac{b}{2}\right) + \frac{b}{2} = b - x_0$$

En este caso, tenemos que no converge en el infinito, y se trata de un 2-ciclo.

• $a \in \mathbb{C} \setminus \{-1, 1\}, |a| = 1$:

Como bien mencionamos, en esta asignatura solo consideraremos $a, b \in \mathbb{R}$. Se deja al lector el ejercicio de pensar qué ocurriría en este caso.

Ejercicio. Estudia el comportamiento asintótico de:

1. $x_{n+1} = 2x_n + 5$

En este caso, las soluciones son:

$$x_n = (x_0 + 5) a^n - 5$$

Como |a| > 1, tenemos que no converge asintóticamente.

 $2. 2x_{n+1} = x_n + 6$

Tenemos que $x_{n+1} = 1/2x_n + 3$. Por tanto, como |a| < 1, converge a $\frac{3}{1/2} = 6$

3. $x_{n+1} = ix_n + 2$.

1.1.2. Ecuación lineal de orden 1 no autónoma

$$x_{n+1} = ax_n + b_n$$

Es la ecuación lineal no autónoma, donde b_n es una sucesión. La función asociada es $f(x,n) = ax + b_n$, de forma que:

$$x_{n+1} = f(x_n, n)$$

Vamos a estudiar las formas de resolver la ecuación.

Conociendo una solución particular

Si conocemos $\overline{x_n}$ una solución particular de la ecuación, entonces aplicamos el cambio de variable

$$y_n = x_n - \overline{x_n}$$

De esta forma, nos queda que:

$$y_{n+1} = x_{n+1} - \overline{x_{n+1}} = ax_n + b_n - \overline{x_{n+1}} = ax_n - a\overline{x_n} = ay_n$$

Por tanto, como dicha ecuación sí sabemos resolverla, tenemos que:

$$x_n = y_n + \overline{x_n} = y_0 a^n + \overline{x_n} = (x_0 - \overline{x_n}) a^n - \overline{x_n}$$

1.2. Modelo de la oferta y la demanda (o Modelo de la Telaraña)

Suponemos que la oferta y la demanda son funciones que dependen del precio. Las notamos por:

- Sea D(p) la demanda en función del precio p.
- Sea O(p) la oferta en función del precio p.

En función delprecio p, es lógico pensar que la demanda debe ser decreciente y la oferta creciente. Para simplificar, supondremos que son rectas:

$$D(p) = a - bp$$
 $a, b \in \mathbb{R}^+$

$$O(p) = c + dp$$
 $c, d \in \mathbb{R}^+$

A b y a d se les llama **marginal de demanda** y **marginal de la oferta**, respectivamente.

En los siguientes casos, tratamos de buscar un precio de equilibrio:

1.2.1. Sistema estático

En este caso, suponemos que D(p) = O(p). Este es un caso ideal, ya que toda la demanda es cubierta por la oferta. Se busca el precio de equilibrio, que es el que permite que se dé este caso, y es el que se mantendrá constante para que la demanda se siga cubriendo.

$$D(p) = O(p) \iff a - bp = c + dp \iff p_{equilibrio} = \frac{a - c}{b + d}$$

Para que esto tenga sentido (obtengamos un precio de equilibrio positivo), necesitamos que a > c.

1.2.2. Sistema dinámico

En este caso el precio va cambiando, por lo que se considera una sucesión p_n , que representa el precio en el periodo n.

Se supone que la oferta se considera con el precio del periodo p_{n-1} y la demanda con p. Es decir, se intenta prever la demanda que va a haber en función de la oferta que había en el periodo anterior.

$$O(p_{n-1}) = D(p_n) \iff c + dp_{n-1} = a - bp_n \iff p_n = \frac{a - c}{b} - \frac{d}{b} \cdot p_{n-1}$$

Esta es una ecuación lineal de orden 1 autónoma, por ser el término independiente una constante. La solución constante del modelo, denominada precio de equilibro y notada por p_e es $p_e = \frac{a-c}{b+d}$. Por tanto, la solución de dicha ecuación es:

$$p_n = (p_0 - p_e) \left(\frac{-d}{b}\right)^n + p_e$$

Precio a largo plazo

• $0 < \frac{d}{b} < 1$:

$$\lim_{n \to \infty} p_n = \lim_{n \to \infty} \left[(p_0 - p_e) \left(\frac{-d}{b} \right)^n + p_e \right] = p_e$$

Entonces, el precio tiende al precio de equilibrio, y lo hace oscilando (ya que tenemos un negativo elevado a n, a veces se le suma un precio o se le resta, aunque finalmente tiende a 0). Esto ocurre cuando la marginal de la oferta, d es menor que la marginal de la demanda, b. Esto es, cuando la oferta crece más lenta que la demanda.

■ $1 < \frac{d}{b}$:

Entonces, la ecuación deja de tener sentido, porque toma valores negativos.

$$\lim_{n \to \infty} |p_n| = \infty$$

b = d:

Entonces, $p_n = (p_0 - p_e)(-1)^n + p_e$. Como hemos visto anteriormente, se trata de un 2-ciclo.

2. Relaciones de Problemas

2.1. Tema 1

Ejercicio 2.1.1 (Depósito de capital). Un banco ofrece un interés compuesto del 7 % anual para depósitos de capital a medio plazo.

1. Si disponemos de un capital inicial de 10000 euros, ¿de qué capital dispondremos al cabo de 4 años?

En este caso, si C_n denota el capital en el n-ésimo año, y el interés es e I=0.07, tenemos que:

$$C_n = (1+I)^n C_0$$

Por tanto, tenemos $C_4 = 1{,}07^4 \cdot 10^4 = 13107{,}96$ euros.

2. Si se pretende disponer de 25000 euros dentro de 4 años, ¿cuál debe ser el capital inicial?

En este caso, la incógnita es C_0 . Tenemos:

$$25 \cdot 10^3 = 1,07^4 \cdot C_0 \Longrightarrow C_0 = 19072,38 \text{ euros.}$$

3. Supongamos ahora que no conocemos el interés que proporciona el banco. Si inicialmente disponemos de 10000 euros y pasados 5 años tenemos 12000, ¿cuál es el interés anual aplicado?

En este caso, tenemos que la incógnita es I. Tenemos:

$$12 \cdot 10^3 = (1+I)^5 \cdot 10 \cdot 10^3 \Longrightarrow I = \sqrt[5]{\frac{12}{10}} - 1 \approx 0.0371$$

Por tanto, tenemos que $I \approx 3.71 \%$.

Ejercicio 2.1.2 (Explosión demográfica). Una población sigue un modelo de crecimiento malthusiano con tasa de crecimiento neta $\alpha = 0.16$, es decir: si x_n es el número de individuos en el periodo n, entonces

$$x_{n+1} = 1.16x_n$$
.

1. Calcula el número de periodos necesarios para que la población se duplique y cuadruplique.

Tenemos que:

$$x_n = 1.16^n x_0$$

Calculemos el menor $n \in \mathbb{N}$ de forma que $1,16^n \ge 2$, que nos indicará el número de periodos necesarios para que la población se duplique. Aplicando el logaritmo en base 1,16, tenemos que:

$$n \ge \log_{1.16} 2 \approx 4.67$$

Por tanto, tenemos que el número de periodos necesarios para que la población se duplique es n=5 periodos.

Para el caso de que la población se cuadruplique, necesitamos que $1,16^n \geqslant 4$. Por tanto,

$$n \ge \log_{1.16} 4 \approx 9.34$$

El número de periodos necesarios para que la población se cuadruplique es n=10 periodos.

2. Calcula el tiempo promedio de duplicación.

En este caso, no se pide un número de periodos, sino el tiempo promedio. En este caso, tenemos que el tiempo medio de duplicación es:

$$\log_{1.16} 2 \approx 4.67$$

3. Calcula el tiempo promedio de quintuplicación.

De forma análoga, tenemos que el tiempo medio de quintuplicación es:

$$\log_{1,16} 5 \approx 10.84$$

Ejercicio 2.1.3 (Eliminación de un fármaco en sangre). Un fármaco se elimina en sangre siguiendo un modelo malthusiano. Según dicho modelo, su vida media es de 2 semanas.

1. Calcula la concentración inicial de fármaco si a los 5 días encontramos una concentración en sangre de 3 $^{mg}/_{cm^3}$.

Como la vida media es de 2 semanas, tenemos que:

$$VM = 14 \text{ días} = \frac{1}{1-r} \Longrightarrow r = -\left(\frac{1}{14} - 1\right) = \frac{13}{14} \approx 0.9286$$

Sabiendo que $x_5 = 3$, tenemos que:

$$x_5 = 3 = r^5 x_0 \Longrightarrow x_0 = \frac{3}{r^5} \approx 4,2455 \text{ mg/cm}^3$$

Por tanto, la concentración inicial es de $4{,}2455 \, \frac{mg}{cm^3}$.

2. ¿Cada cuánto tiempo se diezma en promedio la concentración de fármaco? En este caso, se pide el tiempo promedio para que la concentración sea la décima parte. Tenemos que:

$$x_n = \cancel{x_0} \cdot r^n \geqslant \frac{\cancel{x_0}}{10}$$

Por tanto, de promedio han de pasar $\log_r \frac{1}{10} \approx 31,07$ días para que la concentración se diezme.

3. Calcula el tiempo necesario para que la concentración de fármaco sea menor que $0.1 \, \frac{mg}{cm^3}$.

Tenemos que:

$$x_n = x_0 \cdot r^n < 0.1 \Longrightarrow r^n < \frac{0.1}{x_0}$$

Por tanto, se pide el primer $n \in \mathbb{N}$ tal que se cumple eso. Como se tiene que $\log_r \frac{0.1}{x_0} \approx 50.89$, han de pasar 51 días.

Ejercicio 2.1.4 (Desintegración del carbono—14). Para la datación de los restos arqueológicos se utiliza el isótopo carbono—14, porque está presente en los organismos vivos y va desapareciendo de ellos cuando mueren. Esta desintegración se modela mediante la ley malthusiana:

$$x_{n+1} = rx_n$$
 $0 < r < 1$

donde cada periodo representa un milenio, x_n es el número de átomos de carbono—14 en el periodo n y r es la constante de desintegración radiactiva. Sabemos que la vida media del carbono—14 se estima en 5730 años.

1. En un monte se han encontrado restos arqueológicos de una determinada especie. Sabiendo que la cantidad de carbono—14 de los restos, en el momento del hallazgo, corresponde al 15,27 % de la cantidad que tiene un cuerpo vivo, determina la antigüedad de los restos hallados.

Como la vida media del carbono—14 se estima en 5730 años (5,73 milenos), tenemos que:

$$VM = 5.73 \text{ milenios } = \frac{1}{1-r} \Longrightarrow r = -\left(\frac{1}{5.73} - 1\right) \approx 0.825$$

donde hemos usado milenios ya que es la unidad del periodo.

Sabemos que $x_n = r^n x_0$, y se pide el valor de n tal que $x_n = 0.1527x_0$. Por tanto,

$$0.1527x_0 = r^n x_0$$

Como $\log_r 0,1527\approx 9,7986$ milenios, tenemos que la antigüedad es de 9798 años.

2. ¿Qué tanto por ciento de la cantidad de carbono—14 que tiene un cuerpo vivo debe tener un resto arqueológico de aproximadamente 1000 años de antigüedad?

Como 1000 años equivale a un milenio, nos piden calcular $\frac{x_1}{x_0}$. Tenemos que:

$$x_1 = rx_0 \Longrightarrow \frac{x_1}{x_0} = r \approx 0.825 \approx 82.5 \%$$

Ejercicio 2.1.5. En un hospital está llevándose a cabo un estudio sobre una enfermedad rara. Para ello se supone que la enfermedad desaparece siguiendo un modelo malthusiano al aplicarle un determinado fármaco. Los datos de que se disponen son los siguientes:

- Fueron puestos en observación 20 pacientes afectados por dicha enfermedad.
- Transcurridos 7 días, la mitad de personas ingresadas con motivo de la enfermedad fueron dadas de alta.

¿Qué puede decirse del modelo propuesto si tras 25 días (desde que se inició la observación de las 20 personas) hay 3 personas que aún no han superado la enfermedad?

Ejercicio 2.1.6. Una apicultora de la Alpujarra está estudiando el comportamiento de sus abejas. Ha observado que se distribuyen entre el romero y el tomillo en primavera. Empíricamente ha observado que cada día cambian de unas flores a otras de la siguiente forma:

- El 75 % de las abejas que están en las flores de romero en un determinado día permanecen en ellas al día siguiente, mientras que el resto cambia a las flores de tomillo.
- El 50 % de las abejas que están en las flores de tomillo en un determinado día permanecen en ellas al día siguiente, mientras que el resto cambia a las flores de romero.

Al comienzo de su estudio había 3400 abejas en las flores de romero y 2600 en las de tomillo. La apicultora pretende estudiar cómo evoluciona la población de abejas en relación con las dos clases de flores, para lo cual llama x_n al número de abejas que hay en el romero en el n-ésimo día e y_n al número de abejas que hay en el tomillo en el n-ésimo día.

1. Escribe las leyes de recurrencia que modelan la cantidad de abejas en cada tipo de flor según las observaciones de la apicultora.

Tenemos la siguiente situación:

- Sea x_n el número de abejas en romero en el *n*-ésimo día.
- lacksquare Sea y_n el número de abejas en tomillo en el n-ésimo día.

La ley de recurrencia que modela la cantidad de abejas en el romero es:

$$\begin{cases} x_{n+1} = x_n - 0.25x_n + 0.5y_n \\ x_0 = 3400 \end{cases}$$

La ley de recurrencia que modela la cantidad de abejas en el tomillo es:

$$\begin{cases} y_{n+1} = y_n - 0.5y_n + 0.25x_n \\ y_0 = 2600 \end{cases}$$

2. Demuestra que $x_n + y_n = 6000$.

Demostramos por inducción sobre n:

• Caso base n = 1:

Tenemos que:

$$x_1 = x_0 - 0.25x_0 + 0.5y_0$$
$$y_1 = y_0 - 0.5y_0 + 0.25x_0$$

Por tanto, se tiene:

$$x_1 + y_1 = x_0 - 0.25x_0 + 0.5y_0 + y_0 - 0.5y_0 + 0.25x_0$$

= $x_0 + y_0 = 3400 + 2600 = 6000$

• Supuesto cierto para n, lo demostramos para n + 1:

$$x_{n+1} + y_{n+1} = x_n - 0.25x_n + 0.5y_n + y_n - 0.5y_n + 0.25x_n = x_n + y_n \stackrel{(*)}{=} 6000$$
 donde en (*) hemos empleado la hipótesis de inducción.

3. Escribe una ecuación en diferencias para x_n y resuélvela.

Como $x_n + y_n = 6000$, tenemos que $y_n = 6000 - x_n$. Por tanto, de la Ley de Recurrencia calculada antes, deducimos que:

$$x_{n+1} = 0.75x_n + 0.5y_n = 0.75x_n + 0.5(6000 - x_n) =$$

$$= 0.75x_n + 3000 - 0.5x_n =$$

$$= 0.25x_n + 3000$$

Para resolverla, por lo visto en teoría sabemos que:

$$x_n = 0.25^n x_0 + 3000 \cdot \frac{1 - 0.25^n}{1 - 0.25} = 0.25^n x_0 + 4000 \cdot (1 - 0.25^n) =$$

= $0.25^n x_0 + 4000 - 4000 \cdot 0.25^n = 0.25^n (x_0 - 4000) + 4000$

4. Determina el comportamiento asintótico de la población de abejas en ambas flores.

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} 0.25^n (x_0 - 4000) + 4000 = 4000$$

Por tanto, se quedarán 4000 en el romero y 2000 en el tomillo.

Ejercicio 2.1.7. Dos países, A y B, compiten por el abastecimiento del crudo mundial. Se sabe que el país A cuida más a su clientes y, por tanto, el 90 % de quienes un año contratan el abastecimiento con dicho país vuelven a hacerlo el año siguiente. Sin embargo, solo el 70 % de los clientes de B vuelven a concertar de nuevo su abastecimiento con este país. Se supone que todos los países tienen que contratar su abastecimiento con A o con B. Este año la situación política del país A impide que pueda abastecer a ningún otro país. ¿Cómo evolucionarán a patir de ahí las cuotas de mercado, es decir, el número de países que contratan el abastecimiento con A y con B medido en tanto por uno?

Ejercicio 2.1.8. Las compañías Paga+ y Paga- se han repartido el mercado de la telefonía. A pesar de la agresiva campaña desarrollada por Paga+, Paga- viene consiguiendo una mayor fidelización. Se ha observado que cada año el 25 % de los clientes de Paga- se pasan a Paga+, mientras que el 50 % de los de Paga+ cambian a Paga-. ¿Qué se puede decir sobre el mercado de la telefonía a largo plazo?

Tenemos la siguiente situación:

- Sea x_n el número de clientes de Paga+ en el año n-ésimo.
- Sea y_n el número de clientes de Paga— en el año n-ésimo.

Las leyes de recurrencia que modelan ambos datos son:

$$x_{n+1} = 0.5x_n + 0.25y_n$$
$$y_{n+1} = 0.5x_n + 0.75y_n$$

Como se han repartido la totalidad del mercado, tenemos que $x_n + y_n = 1$ para todo $n \in \mathbb{N}$ (ver observación debajo). Por tanto:

$$x_{n+1} = 0.5x_n + 0.25y_n = 0.5x_n + 0.25(1 - x_n) = 0.25x_n + 0.25$$

Por tanto, la solución de este modelo es:

$$x_n = 0.25^n x_0 + 0.25 \cdot \frac{1 - 0.25^n}{0.75} = 0.25^n x_0 + \frac{1 - 0.25^n}{3}$$

Tomamos límite para ver el comportamiento del mercado a largo plazo:

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} 0.25^n x_0 + \frac{1 - 0.25^n}{3} = \frac{1}{3}$$

Por tanto, se tiene que:

$$\lim_{n \to \infty} y_n = \frac{2}{3}$$

En conclusión, el número de empleados de Paga+ se establecerá en el $33\,\%$ del total del mercado, mientras que Paga− en el $66\,\%$ del total del mercado.

Observación. Notemos que la elección de $x_n + y_n = 1$ es insignificante: ante cualquier constante obtendríamos el mismo resultado. Esto se debe a que se trata de un sistema "cerrado", ningún cliente sale de las dos compañías al mismo tiempo y tampoco tenemos clientes nuevos que se apunten a alguna y no estuvieran apuntados antes.

Esto nos permite fijar un valor cualesquiera para $x_n + y_n$ constante.

Ejercicio 2.1.9. Una jugadora de ajedrez es contratada por la compañía Galactic Chess. Su trabajo consiste en jugar 40 partidas simultáneas cada semana. La jugadora dispone de dos estrategias, A y B. Gana en el 80 % de los casos con la estrategia A y en el 60 % de los casos con la B. Para diversificar su juego decide que cada semana empleará la estrategia B tantas veces como derrotas o tablas haya cosechado la semana anterior. Después de algunas semanas de practicar este sistema observa que siempre acaba jugando el mismo número de partidas con la estrategia B. ¿Cómo se explica este hecho?

Ejercicio 2.1.10. Una compañía maderera tala el 10 % de un bosque anualmente. Para compensar el perjuicio causado, cada año se planta un número fijo de árboles K. Si no se tienen en cuenta otros condicionantes:

- 1. Escribe la ley de recurrencia que modela el tamaño del bosque.
- 2. Si el tamaño inicial del bosque es de 10000 árboles, calcula la solución de la ecuación del modelo.
- 3. Si plantar un árbol tiene un coste de 1 euro, calcula el precio mínimo al que deben venderse los árboles talados para que la explotación sea rentable a largo plazo.

Ejercicio 2.1.11. Los precios de cierto producto siguen una dinámica basada en los postulados del modelo de la telaraña con funciones de oferta y demanda dadas por

$$O(p) = 1 + p,$$
 $D(p) = 2 - 2p.$

Suponemos que el equilibrio de mercado se alcanza cuando la oferta iguala a la demanda y que la oferta en el periodo (n+1)—ésimo depende del precio de equilibrio n—ésimo.

- 1. Deduce la ecuación en diferencias que describe la dinámica planteada y calcula el precio de mercado p^* (punto de equilibrio económicamente factible).
- 2. ¿Cuál es la tendencia del precio del producto a largo plazo?
- 3. Analiza gráficamente la evolución de los precios.

Ejercicio 2.1.12. Resuelve el Ejercicio 2.1.11 para el caso en que las funciones de oferta y demanda vienen dadas por

$$O(p) = 1 + p,$$
 $D(p) = 2 - 0.5p.$

Ejercicio 2.1.13. Resuelve el Ejercicio 2.1.11 para el caso en que las funciones de oferta y demanda vienen dadas por

$$O(p) = 1 + p,$$
 $D(p) = 2 - p.$

Ejercicio 2.1.14 (Modelo de von Bertalanffy). El modelo de von Bertalanffy se emplea para describir la longitud de ciertos seres vivos o de partes de ellos. En su versión discreta se puede formular como una ecuación lineal de orden 1:

$$L_{n+1} = a + bL_n,$$

donde L_n representa la longitud esperada en el periodo n, a > 0 es una constante relativa a la capacidad de absorción celular y 0 < b < 1 es una constante relacionada con la degradación celular.

- 1. Supongamos que la altura en metros de un árbol se ajusta a la expresión $L_n = 3.8(1 (0.9)^n)$, donde n es el número de años. Haz una tabla con las alturas del árbol en los 5 primeros años. Calcula $\lim_{n\to\infty} L_n$ e interpreta el resultado.
- 2. La longitud en centímetros de las hojas de los árboles de una determinada especie se aproxima por el modelo $L_{n+1} = 3, 9+0, 7L_n$. Una hoja que tiene una longitud de 3 cm, ¿llegará a medir 10 cm? ¿Y 15 cm? Determina la longitud que se estima que pueden llegar a alcanzar las hojas de cualquier árbol de dicha especie.