

Microprogramación

Agustín Fernández, Josep Llosa, Fermín Sánchez

Estructura de Computadors II

Departament d'Arquitectura de Computadors Facultat d'Informàtica de Barcelona

Índice

- Introducción
- Segmentación
- Procesadores RISC
- Pentium 4

Microprogramación

Introducción

- Visión vertical en niveles de un computador: Ubicación de la microprogramación
- Diseño cableado de un procesador
 - Unidad de proceso: elementos básicos
 - Unidad de control: sistema secuencial
- Diseño de un procesador
 - Instrucciones de LM
 - Modos de direccionamiento
 - Registros visibles desde el LM
 - Formato de las instrucciones
- Unidad de Control cableada versus microprogramada

Microprogramación

Introducción

¿Cómo ejecutar addl %eax, (%esi)?

Bus C	WBR	Bus A	Bus B	мх	ALU	MAR	RD	WR	MBR	
Х	0	Х	%esi	Х	X	1	0	0	0	MAR ← %esi
										RD
										MBR ← MBR+%eax
										WR

Microprogramación

Introducción

- Unidad de control microprogramada
 - Cada instrucción "compleja" se divide en varios "pasos sencillos" que se ejecutan secuencialmente
 - Fetch
 - Decodificación
 - Ejecución detallada
 - La ejecución de cada "paso" se describe en una palabra de la micromemoria
 - control: bits que controlan directamente los circuitos de la UP
 - dir: dirección de la próxima microinstrucción en caso de que se tenga que romper el secuenciamiento implícito en la micromemoria
 - cond: forma de evaluar los flags y bits del IR para decidir si se produce o no salto

Microprogramación

...

Segmentación

- La ejecución de instrucciones se divide en fases:
 - Fetch (F)
 - Decodificación (D)
 - Ejecución y cálculo de direcciones efectivas (E)
 - Acceso a memoria (M)
 - Escritura (W)
- Cada fase se realiza en uno o varios ciclos (o etapas)
- Cada fase se realiza en una parte específica del procesador
- Varias instrucciones pueden ejecutarse simultáneamente, cada una de ellas en una fase diferente de su ejecución

Microprogramación

Segmentación

- Para que la segmentación sea posible, las instrucciones deben ser sencillas
- Riesgos: No siempre puede ejecutarse una instrucción sin que la anterior haya finalizado
 - Riesgos estructurales: conflictos de recursos
 - Riesgos por dependencias de datos: la ejecución de una instrucción depende de los resultados de una instrucción anterior
 - Riesgos de control: provocados por los saltos

Microprogramación

, (

Procesadores RISC

- RISC (Reduced Instruction Set Computer)
- Pocas instrucciones, sencillas y fácilmente segmentables
- Tipos de instrucciones
 - Acceso a memoria (load, store)
 - Aritmético-lógicas (operan con registros de la CPU)
 - Saltos (condicionales e incondicionales)
- Las instrucciones IA32 son complejas y difíciles de segmentar. Ej: addl \$17, 35(%ebx, %edx, 4)

Microprogramación

-

Procesadores RISC

- Ejemplo: un procesador RISC sencillo
 - Ri ← M[Rj]
 - M[Rj] ← Ri
 - Ri ← Ri op Rj
 - Beq Ri, etiqueta
 - Bneq Ri, etiqueta
- Instrucciones sencillas, fáciles de segmentar y rápidas de ejecutar
- ¿Se pueden ejecutar instrucciones IA32 con este juego de instrucciones?

Microprogramación

. (

Procesadores RISC

• Ejemplo: addl \$17, 35(%ebx, %edx, 4)

```
tmp6 ← GetFactorEscala(IR)
tmp1 ← %edx << tmp6
tmp2 ← tmp1 + %ebx
tmp7 ← GetDesplazamiento(IR)
tmp3 ← tmp2 + tmp7
tmp4 ← M[tmp3]
tmp8 ← GetInmediato(IR)
tmp5 ← tmp8 + tmp4 (activar flags)
M[tmp3] ← tmp5</pre>
```

Microprogramación

Procesadores RISC

• Ejemplo: call etiq

```
%esp ← %esp - 4
M[%esp] ← %eip
tmp1 ← GetDesplazamiento(IR)
%eip ← %eip + tmp1
```

Microprogramación

-

Procesadores RISC

• Ejemplo: ret

• Ejemplo: pushl 100(,%ebx,8)

Hacedlo vosotros

Microprogramación

Procesadores RISC

- Ejecución de instrucciones IA32
 - Fetch

```
IR <= M[\%eip]
```

%eip <= %eip + constante (tamaño instrucción)

- Decodificación
 - Traducción de instrucciones IA32 a microinstrucciones RISC
- Ejecución
 - Ejecución de las instrucciones RISC de forma segmentada

Microprogramación

. (

Pentium 4

- Compatible IA32
- Traduce de IA32 a lenguaje interno pseudo-RISC (micro_operaciones) en tiempo de ejecución
- Segmentado en 20 etapas
- Cada fase dura varios ciclos
- Fase Fetch+decodificación (traducción a micro_operaciones): 4 ciclos
- Varias decenas de micro_operaciones en ejecución simultánea

Microprogramación

