Operační, denotační, a axiomatická sémantika programovacích jazyků. CPO, věta o pevném bodě a její použití. Hoareova logika, její korektnost a úplnost. Temporální logiky lineárního a větvícího se času a jejich fragmenty, sémantika neukončených a paralelních programů.

1 OPERAČNÁ, DENOTAČNÁ A AXIOMATICKÁ SÉMANTIKA

- Program: Syntaktický strom atomy (sú z nejakej domény, potenciálne s vlastným syntaktickým stromom), operácie (nulárne operácie = pomenované konštanty)
- Sémantika: Pre každý program definuje prechodový systém zodpovedajúci výpočtu programu.
- Uvažujeme tento jazyk:
 - Základné domény: $Var = \{A, B, ...\}$, $Bool = \{tt, ff\}$, $Num = \{0, 1, -1, 2, -2, ...\}$.
 - Aritmetické výrazy: $a := n \in Num \mid X \in Var \mid a_0 + a_1 \mid a_0 \cdot a_1 \mid a_0 a_1$
 - Pravdivostné výrazy: $b := t \in Bool \mid a_0 = a_1 \mid a_0 \le a_1 \mid \text{not } b_0 \mid b_0 \text{ and } b_1 \mid b_0 \text{ or } b_1$
 - Príklazy: $c ::= \text{skip} \mid c_0; c_1 \mid X \in Var := a \mid \text{if } b \text{ then } c_0 \text{ else } c_1 \mid \text{while } b \text{ do } c$
- "Big-step" štrukturálna operačná sémantika:
 - Stav/konfigurácia $\sigma: Var \to \mathbb{Z}$, množina všetkých konfigurácií je Σ .
 - Množina akcií sú príkazy, prechod zodpovedá vykonaniu príkazu.
 - Tri prechodové relácie: $\rightarrow_A, \rightarrow_B, \rightarrow_C$ C sa definuje pomocou A a B.
 - Idea: Aritmetické výrazy sa vyhodnocujú na čísla, pravdivostné výrazy na tt/ff, príkazy sa vyhodnocujú na nový stav. Relácie sú definované ako odvodzovacie systémy.
 - Príklad: a+b v stave σ sa vyhodnotí na n ak a sa vyhodnotí na n_1 , b sa vyhodnotí na n_2 a $n_1+n_2=n$; while b do c v stave σ sa vyhodnotí na σ ak b sa vyhodnotí na ff a na σ' ak b sa vyhodnotí na tt, c sa vyhodnotí na σ'' a while b do c sa v σ'' vyhodnotí na σ' .
 - Pozor: Dôkazový strom môže byť nekonečný vtedy prechod neexistuje.
- "Small-step" štrukturálna operačná sémantika:
 - Stav/konfigurácia je $\sigma: Comm \times \Sigma$ (program a valuácia).
 - Množina akcií je prázdna (res. mám len jedno akciu τ), prechod zodpovedá vykonaniu jednej inštrukcie v príkaze.
 - Idea: Výrazy sa vyhodnocujú postupne "z l'ava do prava"— ak mám výraz plne došpecifikovaný, môžem ho vykonať, inak vykonávam vnorené výrazy. While sa rozbalí na if.

- Príklad: Stav $(a+b,\sigma)$ sa vyhodnotí buď na číslo, ak a a b sú čísla, alebo na $(a'+b,\sigma)$ ak (a,σ) sa vyhodnotí na (a',σ) alebo na $(a+b',\sigma)$ (obdobne, len v prípade že a už nejde viac vyhodnotiť). (while b do c,σ) sa vyhodnotí tak, že sa rozbalí na jeden if a tento if už sa potom rieši štandardne (b sa dovyhodnotí a podľa hodnoty sa nahradí za jednu z vetiev).
- Pozn.: skip je konečná (deadlock) konfigurácia. Vykonaním inštrukcie sa inštrukcia v programe "zamení" za skip. Zreťazenie skip-c viem zameniť za c a tak pokračovať vo výpočte.

• Denotačná sémantika:

- Nieč "ako" ale "čo" program počíta.
- Pre jednotlivé typy výrazov definujem funkciu ktorá vracia funkciu ktorá počíta daný výraz: $\mathcal{C}: Com \to (\Sigma \to \Sigma)$ (obdobne pre \mathcal{A} a \mathcal{B}) zapisujem $\mathcal{C}[c](\sigma)$.
- Všetko je triviálne (proste počítam to čo počíta inštrukcia) až na while. $\mathcal{C}[while]$ je least fixed point od funkcie $\Gamma(\varphi) = \{(\sigma, \sigma) \mid \mathcal{B}[b](\sigma) = ff\} \cup \{(\sigma, \sigma') \mid \mathcal{B}[b](\sigma) = tt \wedge \sigma' = (\varphi \circ \mathcal{C}[c])(\sigma)\}.$
- Complete Partial Order (CPO) partial order v ktorom l'ubovol'ná dvojica prvkov má supremum. (každá nekonečná neklesajúca postupnosť má supremum).
- -f je spojitá, ak je monotónna a zachováva supréma.
- Pre monotónnu f platí že množina jej fixed pointov je tiež CPO a že fixpoint $f(\emptyset)$ je least fixed point.

• Axiomatická sémantika:

- Odvodzovací systém v ktorom $\{A\}c\{B\}$ práve vtedy keď pre všetky $\sigma \models A$ po vykonaní c platí $\sigma' \models B$. (čiastočná korektnosť pokiaľ program neskončí, B môže byť ľubovoľné)
- Na výpočet "efektu" c použijeme funkciu \mathcal{C} z denotačnej sémantiky, ale dodefinujeme ju pre nekončiace programy na \perp .
- Tvrdenia o programoch (assertions) artimetické výrazy rozšírené o špeciálne premenné $IntVar = \{i, j, ...\}$, logika prvého rádu s kvantifikáciou cez IntVar: $T, F, =, \leq, \wedge, \vee, \neg, \exists i :, \forall i :.$
- Interpretácia $I: IntVar \to \mathbb{Z}$. Všetky interpretácie \mathcal{I} . Sémantická funkcia rozšírených aritmetických výrazov $E: Aexp+ \to (\mathcal{I} \to (\Sigma \to \mathbb{Z}))$, s ňou už potom definujem sémantiku assertions prirodzene (v závislosti na I).
- $\begin{array}{l} -\sigma \models^I AcB \iff (\sigma \models^I A \implies \mathcal{C}[c](\sigma) \models B), \models^I AcB \iff \forall \sigma : \sigma \models AcB, \\ \models AcB \iff \forall I : \models^I AcB \; (AcB \; \text{je platn\'e tvrdenie}). \end{array}$
- Pozn.: Z praktického hľadiska sú Σ a Σ_{\perp} skoro ekvivaletné, keďže \perp spĺňa všetko.

- Hoareho odvodzovacý systém:
 - * Axiom: A|skip|A
 - * Axiom: A[X/a]|X := a|A
 - * Rule: Ak $A|c_0|C$ a $C|c_1|B$, tak $A|c_0;c_1|B$.
 - * Rule: Ak $A \wedge b|c_0|B$ a $A \wedge \neg b|c_1|B$, tak A|if b then c_0 else $c_1|B$
 - * Rule: Ak $A \wedge b|c|A$, tak A|while b do $c|A \wedge \neg b|$
 - * Rule (dôsledok): Ak |= (A \implies A'), |= (B \implies B') a A'|c|B', tak aj A|c|B.
- Korektnosť: Ak $\vdash A|c|B$, tak aj $\models A|c|B$
- Úplnosť: Ak $\models A|c|B$, tak $\vdash A|c|B$ (vyplýva z existencie weakest precondition)
- Weakest precondition $wp^I[c, B]$: Množina stavov z ktorých keď vykonám c, bude platiť B. Existuje assertion výraz taký že $A[c, B] = wp^I[c, B]$ pre všetky I.
- Paralelné programy: Pridám operátor || a rozšírim sémantiku vzniká nedeterminizmus. No biggie.
- Neukončené programy: Nekonečná postupnosť konfigurácií, nekonečný odvodzovacý strom, etc.

2 Temporálne logiky

• CTL, LTL