Estimating Power Generation from Wind Forecasts

Project OverviewObjectives and Road Map

 Key Objective: Estimate statistical model to predict the power output (kW) of wind turbine based on weather forecasts at fixed zeroth hour lead times.

Road Map

- Background & Context
- Data Compilation
- Exploratory Data Analysis
- Statistical Modeling

Background & Context

- Utilities and renewable energy market entrepreneurs require weather dependent electrical power forecasts.
- Historic electrical forecasts are based on ideal weather and machinery conditions, such as constant periodic wind patterns.
- A precise energy forecast can overcome problems of variable energy production caused by fluctuating weather and wind conditions.

Data Source Review

Data	Source	Features
Weather	National Weather Forecast	Wind Speed, Direction, Precipitation, Temperature eat
Electrical Power	SCADA (supervisory control and data acquisition)	Kilowatt readings in ten second intervals

Data Compilation

Data table example

Date/ Time	Grid	Active Power (kWh)	Wind Speed (m/s)	Wind Direction (Degrees)	Theoretical Power Curve (KWh)
01/01/20 18 00:00	1	380.04	5.31	259.99	416.32
01/01/20 18 00:10	1	453.76	5.67	268.64	519.91
•••		•••	•••	•••	•••
31/12/20 18 23:50	99	2820.46	9.97	271.25	2779.18

^{*} Dataset defined at the grid/minute resolution

^{* 12} Month period captured in data set across 99 grids breaking up service territory

^{*} Theoretical Power Curve represents "null" historic model

Exploratory Data Analysis

Power Generation and Weather

- · Power generation was aggregated to wind speed windows across all aspects
- Across all cardinal directions (N NW), a nonlinear positive trend is observed between wind speed and power generated.
- Below 4 m/s, nearly no power is generated
- · Above 12 m/s, power generation is maximized
- Theoretic Power tends to overestimate (ideal conditions)

Statistical Modeling

- A random forest regressor was trained on a 70-30 train-test split
- Wind speed produced highest levels of contributions on nodal splits
- Max Depth of 9 nodes
- Validation R2 = 0.96

Rank	Feature	Relative Importance		
1	Avg. Wind Spd	0.92		
2	Day	0.03		
3	Wind Dir	0.02		
4	Month	0.01		
5	Hour	0.01		

Model Evaluation & Diagnosis

- Nonlinear model captures variability of power generated within bounds of ground truth.
- R2 of daily power estimates : 0.98

- Highest degree of error present at low wind speeds wind speeds
 - Model overestimates power generation

Next Steps & Future Work

- Discuss results and incorporate feedback into future analysis
- Evaluate efficacy of model across territory (per grid)
- Incorporate forecast data with greater lead times (1 72 hour)
- Incorporate full weather forecast into model training
- Investigate nodal variability regime.

Thanks for collaborating with us!