Simulation de systèmes biologiques – examen mai 2012

Certaines populations (algues, bactéries...) produisent les déchets qui, en fonction de leur concentration, peuvent devenir toxiques pour la population elle-même. Voici un modèle typique d'un système d'une population \mathbf{x} et d'un produit toxique \mathbf{y} :

$$\frac{dx}{dt} = A \cdot x - K \cdot x \cdot y$$
$$\frac{dy}{dt} = \gamma \cdot x - \delta \cdot y$$

où les coefficients A, K, γ et δ sont tous > 0.

- 1. Expliquez la signification de chaque terme dans les équations.
- 2. Trouvez les points stationnaires et déterminez la stabilité de chacun d'eux.
- 3. Créez un portrait de phase complet du système et dessinez plusieurs trajectoires dans le cas où $\delta < 4A$. Qu'est-ce qui change si $\delta > 4A$?

Simulation de systèmes biologiques – examen mai 2012

Solution:

Il y a deux points stationnaires : (0,0) et $\left(\frac{\delta}{\gamma}\cdot\frac{A}{K},\frac{A}{K}\right)$. Pour le premier, la stabilité est obtenu de : $\det |A-\lambda I| = 0$, où $A = \begin{pmatrix} A & 0 \\ \gamma & -\delta \end{pmatrix}$. On obtient $\lambda = \begin{Bmatrix} A \\ -\delta \end{Bmatrix}$, ce point est une selle. Pour le deuxième, $A = \begin{pmatrix} 0 & -\frac{\delta}{\gamma}A \\ \gamma & -\delta \end{pmatrix}$, d'où l'équation : $\lambda^2 + \delta\lambda + \delta A = 0$. Les deux racines sont données par : $\lambda_{1,2} = \frac{1}{2} \begin{Bmatrix} -\delta \mp \delta \sqrt{1 - \frac{4A}{\delta}} \end{Bmatrix}$. Si $\delta < 4A$, les deux racines sont complexes et indiquent une spirale convergeant vers le point stationnaire, qui est stable. Si $\delta > 4A$, les deux racines sont négatives et indiquent aussi un point stable, mais le retour au point stationnaire est exponentiel.

L'isocline horizontale est donnée par $y=\frac{\gamma}{\delta}x$, verticale par $y=\frac{A}{K}$. La dérivée $\frac{dy}{dx}$ est positive dans les régions délimitées par les équations : $(y<\frac{\gamma}{\delta}x$ et $y<\frac{A}{K})$ ou $(y>\frac{\gamma}{\delta}x$ et $y>\frac{A}{K})$. La dérivée est négative pour $(y>\frac{\gamma}{\delta}x$ et $y<\frac{A}{K})$ ou $(y<\frac{\gamma}{\delta}x$ et $y>\frac{A}{K})$.

Le portrait de phase peut être construit comme suit :

