Universidade Católica de Pelotas Escola de informática 058814 Linguagens Formais e Autômatos

TEXTO 1

Linguagens Regulares e Autômatos Finitos

Prof. Luiz A M Palazzo Março de 2008

Hierarquia de Chomsky

Ling. Recursivamente Enumeráveis ou do Tipo 0

Fig 1: Hierarquia de Chomsky (Lingüística)

O estudo das linguagens regulares (ou linguagens do tipo 3 na Hierarquia de Chomsky, as mais simples, permitindo abordagens de pequena complexidade, grande eficiência e fácil implementação) pode ser abordado através de 3 diferentes formalismos:

- *operacional ou reconhecedor*: Autômato Finito, que pode ser determinístico, não determinístico ou com movimento vazio.
- axiomático ou gerador: Gramática Regular
- *denotacional*: Expressão Regular (também pode ser considerado gerador).

Sistemas de Estados Finitos

	as ac Estados i initos
•	Um sistema de estados finitos é um modelo matemático de um sistema com entradas e saídas discretas.
•	Pode assumir um número <i>finito</i> e <i>pré-definido</i> de estados.
•	Cada estado resume somente as informações do passado necessárias para determinar as ações para a próxima entrada.
•	Podem ser associados a diversos tipos de sistemas naturais e construídos.
•	Exemplo: Elevador (1) Não memoriza instruções anteriores. (2) Cada estado sumariza as informações: <i>andar corrente</i> e <i>direção do movimento</i> . (3) As entradas para o sistema são requisições pendentes.
•	Outros exemplos de sistemas de estados finitos: analisadores léxicos e processadores de texto
•	SEF de difícil manipulação: (1) O cérebro humano, com 2 ³⁵ células e tamanha complexidade que esta abordagem se torna ineficiente. (2) O computador onde o estudo adequado da computabilidade exige uma memória sem limite pré-definido.

Autômatos Finitos

Um autômato finito determinístico, ou simplesmente autômato finito, pode ser vista como uma máquina composta basicamente por três partes:

Figura 2: Autômato Finito como uma máquina com controle finito.

- a. Fita: Dispositivo de entrada que contém a informação a ser processada. A fita é finita à esquerda e à direita. É dividida em células onde cada uma armazena um símbolo. Os símbolos pertencem a um alfabeto de entrada. Não é possível gravar sobre a fita. Não existe memória auxiliar. Inicialmente a palavra a ser processada, isto é, a informação de entrada ocupa toda a fita.
- b. *Unidade de Controle*: Reflete o estado corrente da máquina. Possui uma unidade de leitura (cabeça de leitura, que acessa uma unidade da fita de cada vez. Pode assumir um número finito e pré-definido de estados. Após cada leitura a cabeca move-se uma célula para a direita.
- c. Programa ou Função de Transição: Função que comanda as leituras e define o estado da máquina. Dependendo do estado corrente e do símbolo lido determina o novo estado do autômato. Usa-se o conceito de estado para armazenar as informações necessárias à determinação do próximo estado, uma vez que não há memória auxiliar.

Definição: Autômato Finito Determinístico (AFD)

Um *autômato finito determinístico* (AFD), ou simplesmente *autômato finito* M é uma quíntupla:

$$M = (\Sigma, Q, \delta, q0, F),$$

onde:

- Σ Alfabeto de símbolos de entrada
- Q Conjunto finito de estados possíveis do autômato
- δ Função programa ou função de transição δ : Q x $\Sigma \to Q$
- q_0 Estado inicial tal que $q_0 \in Q$
- F Conjunto de estados finais, tais que $F \subseteq Q$.

A função programa pode ser representada como um grafo orientado finito conforme representado abaixo:

Figura 3: Representação da Função programa como um grafo

Figura 4: Representação dos estados inicial e final como nodos de um grafo

O processamento de um autômato finito M para uma palavra de entrada w consiste na sucessiva aplicação da função programa para cada símbolo de w, da esquerda para direita, até ocorrer uma condição de parada.

Exemplo: Autômato Finito

O autômato finito $M_1=(\{a, b\}, \{q_0, q_1, q_2, q_f\}, \delta_1, q_0, \{q_f\})$, onde δ_1 é representada pela tabela abaixo, reconhece a linguagem

11 = 1 W	w possui aa ou	nn como	subnalavra k
	i vv possai aa oa		Jubpulavia

δ_1	a	b
q0	q1	q2
q1	qf	q2 qf
q2	q1	qf
qf	qf	qf

Figura 5: Grafo do autômato finito determinístico

O algoritmo apresentado usa os estados q1 e q2 para "memorizar" o símbolo anterior. Assim q1 representa "o símbolo anterior é a" e q2 representa "o símbolo anterior é b". Após identificar dois aa ou dois bb consecutivos o autômato assume o estado qf (final) e varre o sufixo da palavra de entrada sem

qualquer controle lógico, somente para terminar o processamento. A figura 2.5 ilustra o processamento do autômato finito M1 para a palavra de entrada w = abba, a qual é aceita.

Figura 6: Seqüência de processamento

Note-se que um autômato finito sempre pára ao processar qualquer entrada, pois como toda palavra é finita e como um novo símbolo de entrada é lido a cada aplicação da função programa, não existe a possibilidade de ciclo (loop) infinito. A parada do processamento pode ocorrer de duas maneiras: aceitando ou rejeitando uma entrada w. As condições de parada são as seguintes:

- a. Após processar o último símbolo da fita o autômato finito assume um estado final. O autômato para e a entrada w é aceita.
- Após processar o último símbolo da fita, o autômato finito assume um estado não-final. O autômato para e a entrada w é rejeitada
- c. A função programa é indefinida para o argumento (estado corrente e símbolo lido). O autômato para e a entrada w é rejeitada.

Para definir formalmente o comportamento de um autômato finito (ou seja, dar semântica à sintaxe de um autômato finito) é necessário estender a definição da função programa, usando como argumento um estado e uma palavra.

Exercício

Desenvolver AFDs que reconheçam as seguintes linguagens sobre $\Sigma = \{a, b\}$:

a) {w | w possui aaa como subpalavra}

- b) {w | o sufixo de w é aa}
- c) {w | w possui um número ímpar de a e b}
- d) {w | w possui número par de a e ímpar de b ou vice-versa}
- e) {w | o quinto símbolo da esquerda para a direita de w é a}

Definição: Função Programa Estendida

Seja $M = (\Sigma, Q, \delta, q0, F)$ um AFD. A *função programa estendida*, denotada por:

$$δ$$
: Q x $Σ$ * → Q

é a função programa $\delta: Q \times \Sigma \to Q$, estendida para palavras, e é indutivamente definida como se segue:

$$\delta (q, \varepsilon) = q$$

 $\underline{\delta} (q, aw) = \underline{\delta} (\delta (q, a), w)$

Exemplo: Função Programa Estendida

Seja o AFD M1 = ({a, b}, {q0,q1,q2,qf}, δ 1, q0, {qf}), definida no exemplo anterior. Então a função programa estendida aplicada à palavra abaa a partir do estado inicial q0 é como se segue:

 δ (q0, abaa) = função estendida sobre abaa

 $\underline{\delta}$ (δ (q0, a), baa) = processa \underline{a} baa

 $\underline{\delta}$ (q1, baa) = função estendida sobre baa

 $\underline{\delta}$ (δ (q1, b), aa) = processa \underline{b} aa

 $\underline{\delta}$ (q2, aa) = função estendida sobre aa

 $\underline{\delta}$ (δ (q2, a), a) = processa \underline{a} a

 $\underline{\delta}$ (q1, a) = função estendida sobre a

 $\underline{\delta}$ (δ (q1, a), ϵ) = processa aba \underline{a}

 $\underline{\delta}$ (qf, ε) = qf função estendida sobre ε. Fim da indução. A palavra é aceita.

Comentários

• Por simplicidade tanto δ quanto δ serão denotadas simplesmente por δ .

- A linguagem aceita por um autômato finito M = (Σ, Q, δ, q0, F) denotada por ACEITA(M), ou L(M), é o conjunto de todas as palavras pertencentes a Σ* que são aceitas por M, ou seja: ACEITA(M) {w | δ(q0, w) ∈ F}.
- Analogamente, REJEITA(M) é o conjunto de todas as palavras pertencentes a Σ* que são rejeitadas por M.
- As seguintes afirmações são verdadeiras
 - a. A intersecção dos conjuntos ACEITA(M) e REJEITA(M) é vazio.
 - b. A união dos conjuntos ACEITA(M) e REJEITA(M) é Σ^* .
 - c. REJEITA(M) é o complemento de ACEITA(M) em Σ^*
 - d. ACEITA(M) é o complemento de REJEITA(M) em Σ^*

Definição: Equivalência de Autômatos Finitos

Dois autômatos M1 e M2 são equivalentes se e somente se:

$$ACEITA(M1) = ACEITA(M2)$$

Definição: Linguagens Regulares ou do Tipo 3

Uma linguagem aceita por um autômato finito é uma *Linguagem Regular* ou do *Tipo 3*.

Exemplo: Autômato Finito

Os autômatos M2 = ({a,b}, {q0}, δ 2, q0, \varnothing) e M3 = ({a, b}, {q0}, δ 3, q0, {q0}) reconhecem respectivamente as linguagens L1 = \varnothing e L2 = Σ *, onde δ 2 e δ 3 são representadas abaixo em forma de tabela.

M2

δ2	а	b
q0	q0	q0

M3

δ3	a	b
q0	q0	q0

Exemplo: Autômato Finito

O autômato M4 = ({a, b}, {q0, q1, qa2, q3}, δ , q0, {q0}), reconhece a linguagem:

 $L4 = \{w \mid w \text{ possui um número par de a e b}\}$

Autômato Finito Não-Determinístico (AFN)

- Não-determinismo é uma importante generalização dos AF's, essencial para a teoria da computação e para a teoria das linguagens formais.
- Qualquer AFN pode ser simulado por um autômato finito determinístico

- Em AFNs, a função programa leva de um par estado-símbolo a um conjunto de estados possíveis.
- Pode-se entender que o AFN assume simultaneamente todas as alternativas.de estados possíveis {p0, p1, ..., pn} a partir do estado atual (q \in Q) e do símbolo recebido (a \in Σ), como se houvesse uma unidade de controle para processar cada alternativa independentemente, sem compartilhar recursos com as demais.
- Assim o processamento de um caminho não influi no estado, símbolo lido e posição da cabeça dos demais caminhos alternativos.

Definição: Autômato Finito Não-Determinístico (AFN)

Um AFN é uma quíntupla

$$M = (\Sigma, Q, \delta, q0, F),$$

onde:

 Σ - Alfabeto de símbolos de entrada

Q - Conjunto finito de estados possíveis do autômato

 δ - Função programa ou função de transição $\delta \colon Q \times \Sigma \to 2^Q$, parcial.

 q_0 - Estado inicial tal que $q_0 \in Q$

F - Conjunto de estados finais, tais que $F \subseteq Q$.

- Portanto os componentes do AFN são os mesmos do AFD, com exceção da função programa (ver figura anterior).
- O processamento de um AFN M para um conjunto de estados ao ler um símbolo, é a união dos resultados da função programa aplicada a cada estado alternativo.

Definição: Função Programa Estendida

Seja M = $(\Sigma, Q, \delta, q0, F)$ um AFN.

A função programa estendida, denotada por:

$$\underline{\delta} \colon 2^Q \times \Sigma^* \to 2^Q$$

é a função programa $\delta \colon Qx\Sigma \to 2^Q$, estendida para palavras, e é indutivamente definida como se segue:

$$\delta(P, \varepsilon) = P$$

$$\underline{\delta}$$
 (P, aw) = $\underline{\delta}$ ($\bigcup_{q \in P} \delta$ (q, a), w)

Assim, tem-se que, para um conjunto de estados {q1, q2, ..., qn} e para um símbolo a:

$$\underline{\delta}(\{q1,\,q2,\,...,\,qn\},\,a)=\delta(q1,\,a)\cup\delta(q2,\,a)\cup...\cup\delta(qn,\,a)$$

- Por simplicidade tanto δ quanto $\underline{\delta}$ serão denotadas simplesmente por δ .
- A linguagem aceita por um AFN M = $(\Sigma, Q, \delta, q0, F)$ denotada por ACEITA(M), ou L(M), é o conjunto de todas as palavras pertencentes a Σ^* tais que existe pelo menos um caminho alternativo que aceita a palavra, ou seja:

ACEITA(M) = {w | existe
$$q \in \delta(q0, w)$$
 tal que $q \in F$ }.

• Analogamente, REJEITA(M) é o conjunto de todas as palavras de Σ^* que são rejeitadas por todos os caminhos alternativos de M a partir de q0.

Exemplo: Autômato Finito Não-Determinístico

O AFN M5 = ({a, b}, {q0, q1, q2, qf}, δ 5, q0, {qf}), reconhece a linguagem L5 = {w | w possui aa ou bb como sub-palavra}, onde δ 5 é dada abaixo, na forma de tabela:

δ_5	а	b
q0	{q0, q1}	{q0, q2}
q1	{qf}	-
q2	-	{qf}
qf	{qf}	{qf}

Exemplo: Autômato Finito Não-Determinístico:

O AFN M6 = $({a,b}, {q0, q1, q2, qf}, \delta6, q0, {qf})$, representado na figura abaixo reconhece a linguagem L6 = $\{w \mid w \text{ possui aaa como sufixo }\}$

Teorema: Equivalência entre AFD e AFN

A classe dos AFD é equivalente à classe dos AFN.

- A prova consiste em mostrar que para todo AFN M é possível construir um AFD M' que realiza o mesmo processamento, ou seja, M' simula M.
- A demonstração apresenta um algoritmo para converter um AFN qualquer em um AFD equivalente.
- A idéia central do algoritmo é a construção de estados de M' que simulem as diversas combinações de estados de M.
- A transformação contrária construir um AFN a partir de um AFD não necessita ser demonstrada, uma vez que decorre trivialmente das definições (Por quê? Porque a função programa δ do AFN contém a função programa δ' do AFD).

Seja M = $(\Sigma, Q, \delta, q0, F)$ um AFN qualquer e seja M' = $(\Sigma', Q', \delta', <q0>, F')$ um AFD construído a partir de M como se segue:

Q': Conjunto de todas as combinações, sem repetições, de estados de Q, as quais são denotadas por <q1q2...qn> onde qi ∈ Q para i em {1, 2, ..., n}. Note-se que a ordem dos elementos não identifica mais combinações. Por exemplo: <quqv> = <qvqu>.

 δ' : Tal que $\delta'(\langle q1...qn \rangle, a) = \langle p1...pm \rangle$ sss δ ($\{q1, ..., qn\}, a) = \{p1, ..., pm\}$, ou seja, um estado de M' representa uma imagem de todos os estados alternativos de M.

<q0>: Estado inicial.

F': Conjunto de todos os estados $<q1q2...qn> \in Q'$ tal que alguma componente $qi \in F$, para $i \in \{1, 2, ..., n\}$.

PROVA:

A demonstração de que o AFD M' simula o processamento do AFN M é dada por indução sobre o tamanho da palavra. Deve-se provar que, para uma palavra qualquer w de Σ :

$$\delta'(, w) = sse $\delta(\{q0\}, w) = \{q1, ..., qu\}$$$

(A prova está no livro, na página 50).

Exemplo: Construção de um AFD a partir de um AFN.

Seja o AFN M6 = ($\{a,b\}$, $\{q0, q1, q2, qf\}$, $\delta6$, q0, $\{qf\}$), dado no exemplo anterior e representado abaixo:

O AFD M6' = ($\{a, b\}, Q', \delta', <q0>, F'$), construído conforme o algoritmo dado é:

onde:

$$Q' = \{ , , , , , , ..., \}$$

$$F' = \{ , , , ..., \}$$

$$\delta 6' = \acute{E}$$
 tal conforme os valores dados na tabela abaixo:

δ6′	a	b
<0p>	<q0q1></q0q1>	<0p>
<q0q1></q0q1>	<q0q1q2></q0q1q2>	<0p>
<q0q1q2></q0q1q2>	<q0q1q2qf></q0q1q2qf>	<0p>
<q0q1q2qf></q0q1q2qf>	<q0q1q2qf></q0q1q2qf>	<0p>

No grafo que representa M6', acima, p0, p1, p2 e pf denotam respectivaente <q0>, <q0q1>, <q0q1q2>, <q0q1q2qf>.

Autômato Finito com Movimento Vazio

- *Movimentos vazios* constituem uma generalização dos AFN e são transições que ocorrem sem que haja a leitura de símbolo algum
- Os movimentos vazios podem ser interpretados como um não-determinismo interno do autômato, que é encapsulado.
- A não ser por uma eventual mudança de estados, nada mais pode ser observado sobre um movimento vazio..
- Qualquer AFε pode ser simulado por um autômato finito não-determinístico

Definição: Autômato Finito com Movimento Vazio (AFε)

Um autômato finito não-determinístico e com movimento vazio (AFN ϵ), ou simplesmente autômato finito com movimento vazio (AF ϵ), é uma quíntupla:

$$M = (\Sigma, Q, \delta, q0, F),$$

onde:

- Σ Alfabeto de símbolos de entrada
- Q Conjunto finito de estados possíveis do autômato
- δ Função programa ou função de transição δ : Q x (Σ \cup {ε}) \to 2^Q, parcial.
- q_0 Estado inicial tal que $q_0 \in Q$
- F Conjunto de estados finais, tais que $F \subseteq Q$.
- Portanto os componentes do AFε são os mesmos do AFN, com exceção da função programa (ver figura abaixo).

O processamento dos AF ϵ é similar ao dos AFN. Por analogia o processamento de uma transição para uma entrada vazia também é não-determinística. Assim um AF ϵ ao processar uma entrada vazia assume simultaneamente os estados de origem e destino da transição.

Exemplo: Autômato Finito com Movimento Vazio

O AF ϵ M7 = ({a,b}, {q0, qf}, δ 7, q0, {qf}), representado na figura abaixo reconhece a linguagem L7 = { w | qualquer símbolo a antecede qualquer símbolo b }, onde δ 7 é representada na forma da tabela:

δ7	а	b	3
q0	{q0}	-	{qf}
qf	-	{qf}	-

