Wie ein seltsamer Trick der Chaostheorie die Raumfahrt revolutioniert

Ingo Blechschmidt mit Dank an Sven Prüfer und Matth<u>ias Hutzler</u>

> Institut für Mathematik Universität Augsburg 4. Januar 2017

- **1** Ein Crashkurs in Orbitalmechanik
 - Grundlagen
 - Orbitwechsel
 - Die Tyrannei der Raketengleichung

- **2** Ein seltsamer Trick der Chaostheorie
 - Lagrange-Punkte
 - Weak stability boundaries
 - Die Rettung der Hiten
 - In der Natur

Teil I

Ein Crashkurs in Orbitalmechanik

- Es ist leicht, ins Weltall zu kommen. Schwer ist es, dort zu bleiben.
- Die Erdbeschleunigung auf Höhe der ISS ist immer noch $\approx 8.7 \,\mathrm{m/s^2}$.

SPACE

AIR

Es ist leicht, ins Weltall zu kommen. Schwer ist es, dort zu bleiben.

$$F_{
m centripetal} = F_{
m gravitation} \leadsto
u_1 = \sqrt{GM/r}$$
 $E_{
m kinetic} = E_{
m gravitation} \leadsto
u_2 = \sqrt{2}
u_1$

Es ist leicht, ins Weltall zu kommen. Schwer ist es, dort zu bleiben.

Himmelskörper	zweite Fluchtgeschwindigkeit
Erde	$11.2\mathrm{km/s}\approx40000\mathrm{km/h}$
Mond	$2,4\mathrm{km/s}$
Sonne	618 km/s
Milchstraße	$\approx 550 \mathrm{km/s}$

- Es ist leicht, ins Weltall zu kommen. Schwer ist es, dort zu bleiben.
- Geschwindigkeit ist wichtig.

- Es ist leicht, ins Weltall zu kommen. Schwer ist es, dort zu bleiben.
- Geschwindigkeit ist wichtig.
- Im Einkörperproblem gibt es nur drei Arten von Orbiten: elliptische, parabolische und hyperbolische.

- Es ist leicht, ins Weltall zu kommen. Schwer ist es, dort zu bleiben.
- Geschwindigkeit ist wichtig.
- Im Einkörperproblem gibt es nur drei Arten von Orbiten: elliptische, parabolische und hyperbolische.
- Sei dir deiner Annahmen bewusst:
 - Ist die Erde eine perfekte Kugel?
 - 2 Hat sie Atmosphäre?
 - 3 Dreht sie sich um sich selbst?

Orbitwechsel

"Live-Demo"

- Änderung der Phase
- Änderung der Exzentrizität
- Änderung des Radius
- Änderung der Ebene

Die Tyrannei der Raketengleichung

Konstantin Tsiolkovsky (* 1857, † 1935)

$$m_{
m total} = m_{
m payload} \cdot e^{\Delta v/v_{
m eff.~exhaust}}$$

Lagrange-Punkte

Lagrange-Punkte

Weak stability boundaries

Weak stability boundaries

Die Rettung der Hiten

In der Natur

Figure 10. Stars stream outward from the Tadpole Galavy (Arp 188) along a tubelike channel that stretches for some 280,000 light-years. This conduit (the galactic equivalent of the tubes making up the interplanetary transport network) arose through gravitational interaction with a compact galaxy that can now be seen lurking behind one of the Tadpole's spiral arms. (Courtesy of ACS Science & Engineering Team and NASA.)