

⑧ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

⑫ Patentschrift
⑩ DE 100 33 112 C 2

⑧ Int. Cl. 7:
H 01 L 51/40
H 01 L 51/20
G 06 K 19/08

⑪ Aktenzeichen: 100 33 112.2-33
⑫ Anmeldetag: 7. 7. 2000
⑬ Offenlegungstag: 24. 1. 2002
⑭ Veröffentlichungstag
der Patenterteilung: 14. 11. 2002

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

⑮ Patentinhaber:
Siemens AG, 80333 München, DE

⑯ Erfinder:
Bernds, Adolf, 91083 Baiersdorf, DE; Clemens,
Wolfgang Dr., 90617 Puschendorf, DE; Fix, Walter
Dr., 90762 Fürth, DE; Rost, Henning Dr., 91056
Erlangen, DE

⑮ Für die Beurteilung der Patentfähigkeit in Betracht
gezogene Druckschriften:

DE 198 51 703 A1
DE 37 27 214 A1
US 57 05 826
EP 7 86 820 A2

BAO, Z. et al.: "High-Performance Plastic Transistors Fabricated by Printing Techniques" in
"Chem. Mater.", 9 (1997) 6, pp. 1299-1301;
GARNIER, F. et al.: "All-Polymer Field-Effect
Transistor Realized by Printing Techniques" in
"Science" 256 (1994), pp. 1684-1686;
C.J. Drury et al.: "Low-cost all-polymer
integrated circuits" in: "Applied Physics
Letters", 73 (1998) 1, pp. 108-110;
M. Angelopoulos and J.M. Shaw: "In-Situ Radiation
Induced Doping", in: "Mol. Cryst. Liq. Cryst.",
189 (1990), pp. 221-225;

⑰ Verfahren zur Herstellung und Strukturierung organischer Feldeffekt-Transistoren (OFET), hiernach gefertigter
OFET und seine Verwendung

⑱ Verfahren zur Herstellung eines organischen Feldeffekt-Transistors (OFET) durch Drucken von zumindest einem Funktionspolymer auf ein Substrat in einem Tampondruckverfahren, wobei das Funktionspolymer zunächst in eine mit herkömmlichen Druckfarben vergleichbare Konsistenz gebracht und dann auf das Substrat aufgedrückt wird.

Best Available Copy

DE 100 33 112 C 2