

Domain Adaptation with Structural Correspondence Learning

John Blitzer

Joint work with

Shai Ben-David, Koby Crammer, Mark Dredze, Ryan McDonald, Fernando Pereira

Statistical models, multiple domains

Different Domains of Text

Huge variation in vocabulary & style

"Ok, I'll just buildomes dels for each domain beencounter" blogs

Sentiment Classification for Product Reviews

Multiple Domains

books

??

??

books & kitchen appliances

Running with Scissors: A Memoir

Title: Homibblebookhhmibible.

This book was horrible. I read!hadfoffit,

suffering from a had alzhehthent intertime,

Avante Deep Fryer, Chrome & Black

Title: lid does mot workkwell...

I love the way the Tefal deep fryer

cooks, however, I am returning nov

Error increase: 13% → 26%

begsycipthen/docld/orldn/tdwa/stevasteryour money. I wish i had the time spent reading this book back so i could use it for better purposes. This book wasted my life

closure. The lid may close initially, but after a few uses it no longer stays closed. I will not be purchasing his one ogaingain.

Part of Speech Tagging

Wall Street Journal (WSJ)

DT NN VBZ DT NN IN DT JJ NN CC
The class is a sign of a new towg/messs and NN IN INNNNNPOBOS JJ JJ JJ NNSNNS .
divisiveness in tapalapás (snce-roeycofinyarfinialnciatircleiscles .

Error increase: 3% → 12%

MEDLINE Abstracts (biomed)

VBN JJ NNS IN DT NN NNS **VBP** The **oncognetic** mutated forms of the **ras** proteins are RB JJ CC VBP IN JJ NN constitutively active and interfere with normal signal NN transduction

Features & Linear Models

Problem: If we've only trained on book reviews, then w(defective) = 0

Structural Correspondence Learning (SCL)

- Cut adaptation error by more than 40%
- Use unlabeled data from the target domain
- Induce correspondences among different features
- read-half, headache ← → defective, returned
- Labeled data for source domain will help us build a good classifier for target domain

Maximum likelihood linear regression (MLLR) for speaker adaptation (Leggetter & Woodland, 1995)

SCL: 2-Step Learning Process

Step 1: Unlabeled – Learn correspondence mapping

Step 2: Labeled – Learn weight vector

- ullet Φ should make the domains look as similar as possible
- ullet But Φ should also allow us to classify well

SCL: Making Domains Look Similar

Incorrect classification of kitchen review

defective lid

Unlabeled kitchen contexts

- Do not buy the Shark portable steamer Trigger mechanism is defective.
- the very nice lady assured me that I must have a defective set What a disappointment!
- Maybe mine was defective
 The directions were unclear

Unlabeled **books** contexts

- The book is so repetitive that I found myself yelling I will definitely not buy another.
- A disappointment Ender was talked about for <#>
 pages altogether.
- it's unclear It's repetitive and boring

SCL: Pivot Features

Pivot Features

- Occur frequently in both domains
- Characterize the task we want to do
- Number in the hundreds or thousands
- Choose using labeled source, unlabeled source & target data

SCL: words & bigrams that occur frequently in both domains

SCL-MI: SCL but also based on mutual information with labels

book one <num> so all very about they like good when

a_must a_wonderful loved_it weak don't_waste awful highly_recommended and_easy

SCL Unlabeled Step: Pivot Predictors

Use pivot features to align other features

(1) The book is so **repetitive** that I found myself yelling I will definitely another.

(2) Do the Shark portable steamer Trigger mechanism is **defective**.

Binary problem: Does "not buy" appear here?

- Mask and predict pivot features using other features
- Train N linear predictors, one for each binary problem
- Each pivot predictor implicitly aligns non-pivot features from source & target domains

SCL: Dimensionality Reduction

- We still want fewer new features (1000 is too many)
- Many pivot predictors give similar information
 - "horrible", "terrible", "awful"
- Compute SVD & use top left singular vectors

Latent Semantic Indexing (LSI), (Deerwester et al. 1990)

Latent Dirichlet Allocation (LDA), (Blei et al. 2003)

Back to Linear Classifiers

Classifier
$$\operatorname{sgn}\left[\mathbf{w}\cdot\mathbf{x}+\mathbf{v}\cdot\mathbf{\Phi}^T\mathbf{x}\right]$$

Source training: Learn W & V together

 $\mathbf{\Phi}^T \mathbf{x}$ $\begin{array}{c}
0.3 \\
-1.0 \\
\vdots \\
0.7 \\
-2.1
\end{array}$

• Target testing: First apply Φ , then apply ${\bf w}$ and ${\bf v}$

Inspirations for SCL

1. Alternating Structural Optimization (ASO)

- Ando & Zhang (JMLR 2005)
- Inducing structures for semi-supervised learning

2. Correspondence Dimensionality Reduction

- Verbeek, Roweis, & Vlassis (NIPS 2003).
 Ham, Lee, & Saul (AISTATS 2003).
- Learn a low-dimensional representation from highdimensional correspondences

Sentiment Classification Data

Product reviews from Amazon.com

- Books, DVDs, Kitchen Appliances, Electronics
- 2000 labeled reviews from each domain
- 3000 6000 unlabeled reviews
- Binary classification problem
 - Positive if 4 stars or more, negative if 2 or less
- Features: unigrams & bigrams
- Pivots: SCL & SCL-MI
- At train time: minimize Huberized hinge loss (Zhang, 2004)

Visualizing Φ (books & kitchen)

positive negative VS. books engaging must_read fascinating predictable grisham plot <#>_pages awkward_to poorly_designed espresso years_now are_perfect a_breeze the_plastic leaking kitchen

Empirical Results: books & DVDs

baseline loss due to adaptation: 7.6%

SCL-MI loss due to adaptation: 0.7%

Empirical Results: electronics & kitchen

Empirical Results: books & DVDs

- Sometimes SCL can cause increases in error
- With only unlabeled data, we misalign features

Using Labeled Data

50 instances of labeled target domain data

Source data, save weight vector for SCL features V_S

Target data, regularize weight vector to be close to V_S

Chelba & Acero, EMNLP 2004

Huberized hinge loss Keep SCL weights close to source weights

Avoid using high-dimensional features

Empirical Results: labeled data

• With 50 labeled target instances, SCL-MI always improves over baseline

Average Improvements

- scl-mi reduces error due to transfer by 36%
- adding 50 instances [Chelba & Acero 2004] without SCL does not help
- scl-mi + targ reduces error due to transfer by 46%

PoS Tagging: Data & Model

Data

- 40k Wall Street Journal (WSJ) training sentences
- 100k unlabeled biomedical sentences
- 100k unlabeled WSJ sentences

Supervised Learner

- MIRA CRF: Online max-margin learner
- Separate correct label from top k=5 incorrect labels
- Crammer et al. JMLR 2006
- Pivots: Common left/middle/right words

Visualizing Φ PoS Tagging

nouns vs. adjs & dets

Empirical Results

	All	Unk
Model	Words	words
MXPOST	87.2	65.2
super	87.9	68.4
semi-ASO	88.4	70.9
SCL	88.9	72.0

McNemar's test

Null Hyp	p-value	
semi vs. super	<0.0015	
SCL vs. super	<10 ⁻¹²	
SCL vs. semi	<0.0003	

Results: Some labeled target domain data

Adaptation & Machine Translation

- Source: Domain specific parallel corpora (news, legal text)
- Target: Similar corpora from the web (i.e. blogs)
- Learn translation rules / language model parameters for the new domain
- Pivots: common contexts

Adaptation & Ranking

- Input: query & list of top-ranked documents
- Output: Ranking
- Score documents based on editorial or click-through data
- Adaptation: Different markets or query types
- Pivots: common relevant features

Learning Theory & Adaptation

Bounds on the error of models in new domains

Analysis of Representations for Domain Adaptation.

Shai Ben-David, John Blitzer, Koby Crammer, Fernando Pereira. NIPS 2006.

Learning Bounds for Domain Adaptation.

John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, Jenn Wortman.

NIPS 2007 (To Appear).

Pipeline Adaptation: Tagging & Parsing

Dependency Parsing

- McDonald et al. 2005
- Uses part of speech tags as features
- Train on WSJ, test on MEDLINE
- Use different taggers for MEDLINE input features

Accuracy for different tagger inputs

of WSJ training sentences

Measuring Adaptability

- Given limited resources, which domains should we label?
- Idea: Train a classifier to distinguish instances from different domains
- Error of this classifier is an estimate of loss due to adaptation

A-distance vs Adaptation loss

Suppose we can afford to label 2 domains

Then we should label 1 of electronics/kitchen and 1 of books/DVDs

Features & Linear Models

Problem: If we've only trained on financial news, then w(RW=transduction) = 0

Future Work

- SCL for other problems & modalities
 - named entity recognition
 - vision (aligning SIFT features)
 - speaker / acoustic environment adaptation
- Learning low-dimensional representations for multi-part prediction problems
 - natural language parsing, machine translation, sentence compression

