- 1. BINARY PSO (BPSO)
- Core Concept: Inspired by bird flocking/fish schooling
- Key Parameters:
- * w (inertia weight): Controls velocity inheritance (0.7-0.9)
- * c1 (cognitive): Individual learning rate (typically 2.0)
- * c2 (social): Social/group learning rate (typically 2.0)
- * Population size: 30
- * Max iterations: 1000
- Key Functions:
 - * sigmoid(): Converts continuous values to binary (0/1)
- * velocity update: v = w*v + c1*r1*(pbest-x) + c2*r2*(gbest-x)
- * position update: x = 1 if rand < sigmoid(v) else 0
- 2. BINARY GSA (BGSA)
- Core Concept: Based on gravitational forces between masses
- Key Parameters:
- * G0: Initial gravitational constant (100)
- * alpha: Decay rate for G (20)
- * force_limit: Maximum allowed force (100)
- * Population size: 30

- * Max iterations: 1000
- Key Functions:
- * calculate_forces(): Computes gravitational forces between solutions
- * mass calculation: Based on fitness normalization
- * force update: F = G * (m1*m2/R) * direction
- 3. HYBRID PSO-GSA
- Core Concept: Combines exploration of GSA with exploitation of PSO
- Key Parameters:
- * PSO parameters (w, c1, c2)
- * GSA parameters (G0, alpha)
- * gsa_weight_start: 0.2 (initial GSA influence)
- * gsa_weight_end: 0.4 (final GSA influence)
- Key Functions:
 - * Combined velocity update with weighting:

forces = calculate_forces(positions, fitness, G, t)

```
"python

gsa_weight = gsa_weight_start + (gsa_weight_end - gsa_weight_start) * progress

cognitive = c1 * r1 * (personal_best - positions)

social = c2 * r2 * (global_best - positions)
```

velocities = w*velocities + (1-gsa_weight)*(cognitive + social) + gsa_weight*forces

- * This weighting scheme:
- Initially favors PSO (exploration)
- Gradually increases GSA influence (exploitation)
- Provides dynamic balance between algorithms
- Adapts search behavior over iterations
- 4. BINARY WHALE OPTIMIZATION (BWOA)
- Core Concept: Inspired by humpback whale hunting behavior
- Key Parameters:
- * a: Decreases linearly from 2 to 0 (controls search range)
- * b: Spiral shape constant (usually 1)
- * p: Probability for hunting choice (0.5)
- Key Functions:
- * Encircling prey: X = X* A|CX* X| where:
- X* is best solution position (prey location)
- X is current whale position
- A = 2a*r1 a (r1 is random [0,1])
- -C = 2*r2 (r2 is random [0,1])
- |A| < 1: move towards prey (exploitation)

- |A| > 1: search for better prey (exploration)

* Spiral update: X = D'ebl cos(2πl) + X*

* Search for prey: X = Xrand - A|CXrand - X|

Common Functions Across All Algorithms:

- 1. repair_solution():
- Purpose: Ensures solutions satisfy knapsack constraints
- Method:
- * Checks if solution is feasible
- * If infeasible, randomly removes items until constraints are met
- * Returns feasible solution
- 2. evaluate_fitness():
- Purpose: Calculates solution quality
- Method:
- * Computes total profit
- * Applies penalty for constraint violations
- * Returns final fitness value
- 3. sigmoid():
- Purpose: Converts continuous values to binary

- Method: $1/(1 + e^{-(x)})$
- Used in position updates for all binary variants
- 4. optimize():
- Purpose: Main optimization loop
- Common steps:
- * Initialize population
- * Update positions/velocities
- * Apply repair mechanism
- * Track best solutions
- * Return best found solution

Key MKP Adaptations:

- 1. Binary representation for item selection
- 2. Constraint handling through repair mechanism
- 3. Fitness calculation incorporating penalties
- 4. Modified position updates for binary space
- 5. Parameter tuning for knapsack problem structure

The key innovations in each algorithm are:

- BPSO: Balance between individual and group knowledge
- BGSA: Mass-based search with gravitational forces

- Hybrid: Dynamic weighting between PSO and GSA behaviors using gsa_weight
- BWOA: Whale hunting behavior with adaptive search radius

These algorithms complement each other:

- PSO excels at fine-tuning solutions
- GSA provides good exploration
- Hybrid combines their strengths with adaptive weights
- BWOA offers unique search patterns based on prey hunting