

Nonautonomous systems
Nonautonomous systems and equilibrium points

Nonautonomous systems

0

Nonautonomous systems

$$\dot{x} = f(t,x) \quad f: [0,\infty) \times \mathbb{D} \to \mathbb{R}^n$$

- f(t,x) Piecewise continuous in tlocally Lipschitz in x on $[0,\infty) \times \mathbb{D}$
- $x = 0 \in \mathbb{D}$

Definition: Equilibrium point

 x^* is an equilibrium point for $\dot{x} = f(t, x)$ at t = 0 iff

$$f(t, x^*) = 0 \quad \forall t \ge 0$$

Nonautonomous systems
Nonautonomous systems and equilibrium points

Examples

0

Example

Find the equilibrium points x^* of the following systems

a)
$$\dot{x} = -\frac{a(t)x}{1+x^2}$$
 $a(t) > 0$

b)
$$\dot{x} = -\frac{a(t)x}{1+x^2} + b(t)$$
 $a(t) > 0$ $b(t) \neq 0$ $\forall t > 0$, $b(0) = 0$

0

We will analyse the stability properties of $x^* = 0$

Translate the equilibrium point of interest to the origin

We can always translate a nonzero equilibrium point to the origin.

$$\dot{x} = f(t, x)$$
 $f(t, x^*) = 0$ $\forall t \ge 0$

Define the error variable

$$e = x - x^*$$

 $\dot{e} = \dot{x} - \dot{x}^* = f(t, e + x^*) = \bar{f}(t, e)$

We can now analyse

$$\dot{e} = \bar{f}(t,e) \quad e^* = 0$$
 is an equilibrium point

Lecture 6: Stability analysis of nonautonomous system

AUV

Translate a nonzero solution of interest to the origin •

Tracking control systems Waypoint tracking

$$e = x - x_d(t) \quad \dot{x} = f(x)$$

$$\dot{e} = \dot{x} - \dot{x}_d(t) = f(e + \left(x_d(t)\right)) - \left(\dot{x}_d(t)\right) = \bar{f}(t, e)$$

Translate a nonzero solution of interest to the origin

Tracking control systems Waypoint

$$\dot{e} = \dot{x} - \dot{x}_d(t) = f(e + (x_d(t))) - (\dot{x}_d(t)) = \bar{f}(t), e$$

0

Class ${\mathscr K}$ function

A continuous function $\alpha:[0,a)\to[0,\infty)$

- ullet is a class ${\mathscr K}$ function
- belongs to class \mathcal{K}

 $\inf \left\{ \alpha(0) = 0 \right.$ $\left\{ \alpha(r) \text{ it is strictly increasing, i.e. } \frac{\partial \alpha}{\partial r} > 0, \ r > 0 \right\}$

Figure: Example: $\alpha(r) = \arctan(r)$

Comparison functions class \mathcal{K}_{∞} function

Comparison functions

0

0

Class \mathscr{K}_{∞} function

If in addition

- \bullet $a \rightarrow \infty$
- \bullet $\alpha(r) \to \infty$ as $r \to \infty$

then

• α is a class \mathscr{K}_{∞} function / α belongs to class \mathscr{K}_{∞}

Figure: Example: $\alpha(r) = \min(r, r^2)$

Comparison functions class \mathcal{K}_{∞} function

Comparison functions

Class \mathscr{K}_{∞} function

If in addition

- \bullet $a \rightarrow \infty$
- ullet $\alpha(r) o \infty$ as $r o \infty$

• α is a class \mathscr{K}_{∞} function / α belongs to class \mathscr{K}_{∞}

Figure: Example: $\alpha(r) = \min(r, r^2)$

Lecture 6: Stability analysis of nonautonomous systems

Class \mathscr{KL} function

A continuous function $\beta : [0,a) \times [0,\infty) \to [0,\infty)$

- ullet is a class $\mathscr{K}\mathscr{L}$ function
- ullet belongs to class $\mathscr{K}\mathscr{L}$

if, for each fixed s

 $\beta(r,s)$ is a class \mathscr{K} function with respect to r

and, for each fixed r

- $\beta(r,s)$ is decreasing with respect to s
- $\beta(r,s) \to 0$ as $s \to \infty$

Properties

Read Lemma 4.2

System behavior depends on t_0

0

0

Initial value problem (IVP)

$$\dot{x} = f(x)$$
 $x(t_0) = x_0$ } Aut. IVP $x(t) = \varphi(t - t_0, x_0)$
 $\dot{x} = f(t, x)$ $x(t_0) = x_0$ } Nonaut. IVP $x(t) = \varphi(t - t_0, x_0, t_0)$

NB

The solutions of nonautonomous systems in general depend on t_0

The stability properties of nonautonomous systems in general depend on t_0

Lecture 6: Stability analysis of nonautonomous systems

Stability, uniform stability and instability

0

Stability definitions

The equilibrium point $x^* = 0$ is

Stable, iff

$$\forall \ \varepsilon > 0, \quad \exists \delta(\varepsilon, t_0) > 0 \text{ such that }$$

$$||x(t_0)|| < \delta \Rightarrow ||x(t)|| < \varepsilon \quad \forall \ t \ge t_0 \ge 0$$

Uniformly stable, iff

$$\forall \ \varepsilon > 0, \quad \exists \delta(\varepsilon) > 0 \ \text{such that}$$

$$||x(t_0)|| < \delta \Rightarrow ||x(t)|| < \varepsilon \quad \forall \ t \ge t_0 \ge 0$$

Unstable, iff it is not stable

Asymptotic stability

0

Stability definitions cont.

The equilibrium point $x^* = 0$ is

- Asymptotically stable, iff
 - it is stable
 - $\exists c(t_0) > 0$ such that $||x(t_0)|| < c \Rightarrow x(t) \stackrel{t \to \infty}{\longrightarrow} 0$
- Uniformly asymptotically stable, iff
 - it is uniformly stable
 - $\exists c > 0$ such that $||x(t_0)|| < c \Rightarrow x(t) \stackrel{t \to \infty}{\longrightarrow} 0$ uniformly in t_0

Convergence vs Uniform convergence

0

Convergence

$$x(t) \stackrel{t \to \infty}{\longrightarrow} 0$$

 $orall \; arepsilon > 0 \; \; \exists \; T(arepsilon,t_0) > 0 \; \; \; \; \text{such that} \; \; \; \|x(t)\| < arepsilon \; \; \; \; \forall t \geq t_0 + T$

Uniform convergence (in t_0)

 $x(t) \stackrel{t \to \infty}{\longrightarrow} 0$ uniformly in t_0

1

$$\forall \ \varepsilon > 0 \ \exists \bigg(T(\varepsilon) \bigg) > 0 \ \ \text{such that} \ \ \|x(t)\| < \varepsilon \quad \forall t \geq t_0 + T$$

Stability definitions Stability definitions: $arepsilon - \delta$ -definitions

Convergence vs Uniform convergence cont.

0

Example

Given

$$\dot{x} = -\frac{x}{1+t} \quad x(t_0) = x_0$$

Equilibrium point $x^* = 0$

Stability properties? Convergence properties?

Stability definitions

Stability definitions: $arepsilon - \delta$ -definitions

Global uniform asymptotic stability

0

Stability definitions cont.

The equilibrium point $x^* = 0$ is

- Globally uniformly asymptotically stable, iff
 - ullet it is uniformly stable, with $\delta(arepsilon) \overset{arepsilon o \infty}{\longrightarrow} \infty$
 - $\forall c > 0$ $||x(t_0)|| < c \Rightarrow x(t) \xrightarrow{t \to \infty} 0$ uniformly in t_0

 $\forall \; c>0, \varepsilon>0 \quad \exists \; T(\varepsilon,c)>0 \quad \text{such that}$

 $||x(t)|| < \varepsilon \quad \forall \ t \ge t_0 + T \quad \forall \ ||x(t_0)|| < c$

27

Lecture 6: Stability analysis of nonautonomous system

Stability definition

Stability definitions: $\varepsilon - \delta$ -definition

Global uniform asymptotic stability

0

Stability definitions cont.

The equilibrium point $x^* = 0$ is

- Globally uniformly asymptotically stable, iff
 - $\bullet \ \ \text{it is uniformly stable, with} \ \delta(\varepsilon) \overset{\varepsilon \to \infty}{\longrightarrow} \! \infty \\$
 - $\forall c > 0 \quad ||x(t_0)|| < c \Rightarrow x(t) \xrightarrow{t \to \infty} 0 \text{ uniformly in } t_0$

i.e.

 $\forall c > 0, \varepsilon > 0 \quad \exists T(\varepsilon, c) > 0 \quad \text{such that}$

 $||x(t)|| < \varepsilon \quad \forall \ t \ge t_0 + T \quad \forall \ ||x(t_0)|| < c$

Exponential stability

Stability definitions Stability definitions: Using class ${\mathscr K}$ and ${\mathscr K}{\mathscr L}$ functions

0

0

Definition (Exponential stability)

The equilibrium point $x^* = 0$ is exponentially stable, iff

$$\exists c, k, \lambda > 0$$
 s.t. $||x(t)|| \le k ||x(t_0)|| e^{-\lambda(t-t_0)}$ $t \ge t_0 \ge 0$ $||x(t_0)|| \le c$

Exponential stability \Rightarrow Uniform asymptotic stability

Special case of uniform asymptotic stability when

$$\beta(r,s) = kre^{-\lambda s}$$

Global exponential stability

If satisfied $\forall c$, then globally exponentially stable

 $GES \Rightarrow GUAS$

Lyapunov's direct method for nonautonomous systems

Time-varying Lyapunov function candidates - Properties

Time-varying generalized energy function V(t,x)

Time-varying Lyapunov function candidates

Definition: Positive definite

• V(t,x) is positive definite iff

- V(t,x) is positive semidefinite if $W_1(x)$ positive semidefinite
- V(t,x) is radially unbounded if $W_1(x)$ is radially unbounded

Definition: Negative definite

• V(t,x) is negative (semi-)definite iff -V(t,x) is positive (semi-)definite

Definition: Decrescent

• V(t,x) is decrescent iff

Lyapunov's direct method for nonautonomous systems

Time-varying Lyapunov function candidates - Properties

Examples

0

Example

a)
$$V_A(t,x) = (t+1)(x_1^2 + x_2^2)$$

b)
$$V_B(t,x) = e^{-t}(x_1^2 + x_2^2)$$

c)
$$V_C(t,x) = \frac{1}{1+\cos^2 t}(x_1^2 + x_2^2)$$

Q: Positive definite? Positive semidefinite? Radially unbounded? Decrescent?

Lyapunov's direct method for nonautonomous systems Stability theorems Stability theorems

0

$$\dot{x} = f(t, x)$$
 $f: [0, \infty) \times \mathbb{D} \to \mathbb{R}^n$

piecewise continuous in tlocally Lipschitz

Stability theorem (Theorem 4.8 - 4.9)

Let $V:[0,\infty)\times\mathbb{D}\to\mathbb{R}$ C^1

The equilibrium point $x^* = 0$ is

	Stable	Uniformly stable	Uniformly as. st.	GUAS
	Pos.def.	Pos.def.	Pos.def.	Pos.def.
V		Decrescent	Decrescent	Decrescent
				Rad. unb.
V	Neg.semidef	Neg.semidef.	Neg.def.	Neg.def.
	$\forall x \in \mathbb{D}$	$\forall x \in \mathbb{D}$	$\forall x \in \mathbb{D}$	$\forall x \in \mathbb{D} = \mathbb{R}^n$

Region of attraction

When $x^* = 0$ is Uniformly asymptotically stable

Estimate of Region of attraction

Choose r, c such that

$$B_r = \{ x \in \mathbb{R}^n : ||x|| < r \} \subset \mathbb{D}$$
$$c < \min_{\|x\| = r} W_1(x)$$

then

$$\{x \in B_r : W_2(x) \le c\}$$

is a region of attraction for $x^* = 0$.

0

0

0

Lyapunov's direct method for nonautonomous systems Stability theorem: Exponential stability

Exponential stability

Exponential stability (Theorem 4.10)

Let
$$V:[0,\infty)\times\mathbb{D}\to\mathbb{R}$$
 C

If there exists constants $a, k_1, k_2, k_3 > 0$ such that

- $k_1 ||x||^a \le V(t,x) \le k_2 ||x||^a$, $\forall t \ge 0$, $\forall x \in \mathbb{D}$
- $\dot{V}(t,x) \le -k_3 ||x||^a$, $\forall t \ge 0$, $\forall x \in \mathbb{D}$

then $x^* = 0$ is exponentially stable.

Global exponential stability

If the conditions in the theorem are satisfied with

$$\mathbb{D} = \mathbb{R}^n$$

then $x^* = 0$ is globally exponentially stable.

Lyapunov's direct method for nonautonomous systems Stability theorem: Exponential stability

Examples

Example

Consider the system

$$\dot{x}_1 = -x_1 - e^{-2t} x_2$$

$$\dot{x}_2 = x_1 - x_2$$

Determine the stability properties of $x^* = 0$ using

$$V(t,x) = x_1^2 + (1 + e^{-2t})x_2^2$$

Read: Ex 4.19 and Ex 4.20

Inavariance-like theorems (Sec. 8.3)

0

0

Autonomous systems

 $\dot{V} \leq 0 \Rightarrow \mathsf{LaSalle}\ E = \{x \in \Omega_c : \dot{V}(x) = 0\}$

 $x(t) \rightarrow$ largest invariant set in E.

Nonautonomous systems

$$\dot{V} \leq 0 \Rightarrow$$
 ?

Note

• $\dot{f} \rightarrow 0 \not\Rightarrow f$ converges to a limit $\mathsf{Ex:}\, f(t) = \sin\left(10\log t\right)$

• f converges to a limit $\neq \dot{f} \rightarrow 0$

Lecture 6: Stability analysis of nonautonomous systems

Inavariance-like theorems (Sec. 8.3)

0

Autonomous systems

 $\dot{V} \leq 0 \Rightarrow \mathsf{LaSalle}\ E = \{x \in \Omega_c : \dot{V}(x) = 0\}$ $x(t) \rightarrow \text{largest invariant set in E}.$

Nonautonomous systems

$$\dot{V} \leq 0 \Rightarrow$$
 ?

Note

• $\dot{f} \rightarrow 0 \not\Rightarrow f$ converges to a limit

 $\mathsf{Ex:}\, f(t) = \sin\left(10\log t\right)$

• f converges to a limit $\not \Rightarrow \dot{f} \rightarrow 0$

Lecture 6: Stability analysis of nonautor

Next lectu	ıre	
Next lecture	0	
Lyapunov stability, and g	st other stability concepts than et a taste of these.	
 Recommended reading Khalil Section 4.9 Sections 5.1 ar 	nd E 1	
	d Ex. 5.14 are additional material)	
	<□><□><□><□><□><□><□><□><□><□><□><□><□><	
45	Lecture 6: Stability analysis of nonautonomous systems	