☐ R&D Document: Understanding the OSI Model, TCP/IP Architecture, and Key Internet Protocols

😡 🔳 Submitted To: Celebal Technologies, Summer Internship Program – Cloud Infra and Security

Submitted By: Sanskar Vishnoi

Summer Intern - Batch 2 (June-August 2025)

Date of Submission:7th June 2025

★ Table of Contents

- 1. Introduction
- 2. Objectives
- 3. OSI Model Layers and Working
- 4. TCP/IP Model Architecture and Functionality
- 5. Protocols: TCP, UDP, HTTP, HTTPS, and ICMP
- 6. Comparative Analysis
- 7. Applications in Real-World Networking
- 8. Conclusion
- 9. References

1. Introduction

In the modern era of networking and cloud computing, understanding network communication models and protocols is foundational. This R&D document explores the detailed architecture, functionality, and relevance of the OSI and TCP/IP models. Additionally, it analyzes key protocols—TCP, UDP, HTTP, HTTPS, and ICMP—used in every layer of internet-based communication.

② 2. Objectives

- To study the structure and operation of the OSI and TCP/IP models.
- To understand how data flows across a network using layered architecture.
- To analyze the working mechanisms of transport and application layer protocols.
- To explore the importance of secure and reliable communication.
- To document findings in a format suitable for internal learning and documentation within Celebal Technologies.

☐ 3. OSI Model – Layers and Working

The **OSI (Open Systems Interconnection)** model, developed by ISO, divides network communication into **7 abstraction layers**, each with defined roles.

Layer	· Name	Function	Examples
7	Application	User interface and communication (e.g., browsers)	HTTP, FTP, SMTP
6	Presentation	Data translation, encryption/decryption	SSL, TLS, JPEG, ASCII
5	Session	Dialog control between systems	NetBIOS, RPC
4	Transport	Reliable/unreliable delivery; segmentation	TCP, UDP
3	Network	Logical addressing, routing, path determination	IP, ICMP
2	Data Link	MAC addressing, error detection (node-to-node)	Ethernet, PPP, Switches
1	Physical	Raw bit transmission through medium	Cables, Hubs, Voltages

Data Flow (Encapsulation)

Each layer **adds headers or trailers** to data before passing it to the next lower layer (encapsulation). The reverse occurs during reception (decapsulation).

4. TCP/IP Model – Architecture and Functionality

The **TCP/IP model**, also known as the **Internet Protocol Suite**, is a 4-layer protocol suite that underpins the modern internet.

TCP/IP Layer	OSI Equivalent	Responsibilities	Protocols
Application	Layer 7–5	Provides services to the user (email, web, file transfer)	HTTP, FTP, DNS
Transport	Layer 4	Reliable/unreliable data delivery	TCP, UDP
Internet	Layer 3	Routing, IP addressing	IP, ICMP, ARP
Network Access	Layer 2–1	Physical and data link level transmission	Ethernet, Wi-Fi, ARP

☐ Key Design Goals

- Interoperability across diverse systems
- End-to-end communication

• Fault tolerance and congestion handling

5 5. Protocols and Their Working

\$ 5.1 TCP (Transmission Control Protocol)

- Connection-oriented, reliable, byte-stream protocol
- Uses 3-way handshake for connection establishment (SYN → SYN-ACK → ACK)
- Ensures data sequencing, acknowledgment, error correction
- Common Ports: 80 (HTTP), 443 (HTTPS), 25 (SMTP), 21 (FTP)

Use Case: Web pages, email, file transfers requiring data integrity.

◆ 5.2 UDP (User Datagram Protocol)

- Connectionless, unreliable, lightweight protocol
- No handshake, less overhead
- Suitable for real-time applications: VoIP, DNS, video streaming
- No flow or congestion control

Use Case: Gaming, live audio/video, DNS queries where speed is more important than reliability.

⑤ 5.3 HTTP (Hypertext Transfer Protocol)

- Application Layer, stateless protocol
- Works over TCP (Port 80)
- Follows a request-response model
- Methods: GET, POST, PUT, DELETE

Use Case: Web communication (HTML documents, images, APIs)

5.4 HTTPS (HTTP Secure)

- Secure version of HTTP
- Adds TLS/SSL encryption over TCP
- Uses Port 443
- Protects against man-in-the-middle attacks, data tampering, and eavesdropping

Use Case: Secure online transactions, login systems, banking apps.

% 5.5 ICMP (Internet Control Message Protocol)

- Used for error reporting and network diagnostics
- Works at the Network Layer
- Does not transport user data
- Examples: ping, traceroute

Use Case: Verifying connectivity, diagnosing unreachable hosts, TTL expiry.

6. Comparative Analysis Criteria **TCP UDP ICMP HTTP HTTPS** Reliability X N/A Encryption X X Control Connection-Connection **Connectionless Stateless** Stateless & Secure oriented Protocol Slightly slower than Speed Moderate Fast Fast Very Fast **HTTP** Typical Use Email, Web VoIP, DNS **Browsing Secure Browsing** Diagnostics

☐ 7. Applications in Real-World Networking

Sector	Use Case	Related Protocols
Cloud Services	API requests, service authentication	HTTPS, TCP
Streaming Platforms	Real-time video/audio	UDP
Network Monitoring	Packet inspection, health check	ICMP
Web Development	REST APIs, client-server interaction	HTTP/HTTPS
IoT Devices	Lightweight messaging	UDP, MQTT

8. Conclusion

A deep understanding of network models and protocols enables professionals to build scalable, secure, and interoperable systems. While OSI serves as a theoretical reference, TCP/IP defines the backbone of real-world internet systems. Each protocol—TCP, UDP, HTTP, HTTPS, and ICMP—plays a

crucial role in enabling seamless digital communication, supporting the cloud infrastructure we rely on today.

9. References

- 1. Tanenbaum, A. S., & Wetherall, D. J. Computer Networks, 5th Edition, Pearson
- 2. RFC 791 (IP), RFC 793 (TCP), RFC 768 (UDP)
- 3. www.geeksforgeeks.org
- 4. www.cloudflare.com/learning/ddos/glossary/internet-protocols
- 5. Cisco Networking Academy Material