NSCSCC2023 龙芯杯大赛设计报告

西北工业大学 刘航

一、设计简介

本工程为以 Verilog 语言编写的一款支持 36 条 MIPS 指令的 CPU。CPU 不支持中断、与异常处理,使用了经典五级流水线结构与单发射机制。CPU 利用旁路和阻塞解决数据冒险、控制冒险、结构冒险。目前该 CPU 频率可达 55MHz,已经通过龙芯杯三级功能测试与性能测试。

二、设计方案

(一) 总体设计思路

整体设计主要有两个模块组成:处理内存与串口和 CPU 交互的 RAM_trans 模块,和运行指令的 myCPU_top 模块。 myCPU_top 模块与 BaseRAM、ExtRAM 或串口的交互全部经由 RAM_trans 模块处理后进行。因此 RAM_trans 主要承担了地址的映射,以及结构冒险的判断等功能。

(二) RAM_trans 模块设计

RAM trans 根据 CPU 发来的两个读/写请求,并根据地址判断分别将两个请求映射

BaseRAM、ExtRAM 或是串口。当两个请求指向同一结构时,发出阻塞信号,使得 CPU 阻塞一周期。在串口设计中,借鉴往届思路,加入了队列,用于避免 CPU 读串口太慢或写串口太快的问题。

(三) myCPU top 模块设计

CPU 为经典五级流水结构。其中 IF 承担读取指令功能,ID 承担译码与判断跳转指令是否执行及跳转地址的功能,EXE 负责运算指令的运算,MEM 承担读取数据的功能。WB 阶段完成对寄存器堆的写回。

Stall 模块负责除 BaseRAM 结构冲突之外冒险的阻塞。由于将分支跳转指令前移至 IF, 因此只在 load-branch 时会阻塞。

Bypassing 模块负责前递。当出现其他写后读冒险时,进行前递操作,避免阻塞。

三、设计结果

(一)设计交付物说明

constrs 1 文件夹下有 xdc 约束文件,借鉴前一届经验,添加了延时。

sim 文件夹下为仿真时用文件。在 tb 文件中添加了 lab2、lab3 本地仿真时,所需的对串口的模拟。

sources_1 文件夹下则为处理内存与串口和 CPU 交互的 RAM_trans 模块, 和运行指令的 myCPU top 模块的代码。其中 myCPU 文件夹为 CPU 的代码, RAM trans 则在 new 文件夹

(二)设计演示结果

功能测试	lab1	lab2	lab2
得分	100	100	100

性能测试	STREAM	MATRIX	CRYPTONIGHT
结果	0.129s	0.163s	0.420s

四、参考设计说明

- [1] 汪文祥、邢金著《CPU设计实战》中实验 3 关于五级流水线框架的设计。
- [2] 龙芯杯 NSCSCC20202 个人赛开源代码 XMIPS 中关于串口与 RAM 控制的设计、关于 XDC 约束文件中延时的设计。

五、参考文献

- [1] 汪文祥,邢金璋.CPU 设计实战. 北京: 机械工业出版社,2021.
- [2] 戴维 A. 帕特森著,王党辉等译. 计算机组成与设计: 硬件软件接口.北京: 机械工业出版社,2022.