Numerical Optimisation: Constraint Optimisation Assignment Project Exam Help

https://eduassistpro.github.

Add West Media In Ige Could University College London

Lecture 12

Constraint optimisation problem

https://eduassistpro.github.

Feasible set Ω is a set of all points satisfying the co $A \underset{\Omega}{\text{dd}} = \{x \in \mathcal{D} : c_i(x) = 0, \ i \in \text{edu_assist_properties} \}$

Optimal value: $x^* = \inf_{x \in \Omega} f(x)$

- $x^* = \infty$ if (COP) is infeasible i.e. $\Omega = \emptyset$
- $x^* = -\infty$ if (COP) is unbounded below

Examples: smooth constraints

Smooth constraints can describe regions with *kinks*.

Example: 1-norm:

Assignment Project Exam Help

can be

*https://eduassistpro.github.

Example didwis Wae Chat edu_assist_properties $f(x) = \max(x, x)$

can be reformulated as

min
$$t$$
, s.t. $t \ge x$, $t \ge x^2$.

Types of minimisers of constraint problems

A point $x^* \in \Omega$ is a **global minimiser** if

Assignment Project Exam Help A point x^* Ω is a local minimiser if

https://eduassistpro.github.

A point $x^* \in \Omega$ is a **strict (or strong) local minimiser** if

Add WeChat edu_assist_pr

A point $x^* \in \Omega$ is an **isolated local minimiser** if

 $\exists \mathcal{N}(x^*) : x^*$ is the only local minimiser in $\mathcal{N}(x^*) \cap \Omega$.

Acti

Assignment Project Exam Help

whichttps://eduassistpro.github.

$$\mathcal{A}(x) = \mathcal{E} \cup \{i \in \mathcal{I} :$$

At a facility intwent the mean line of u_assist_problem active if $c_i(x) = 0$ and inactive if the s $c_i(x) > 0$.

Single equality constraint

$$\min x_1 + x_2$$
 s.t. $x_1^2 + x_2^2 - 2 = 0$.

Assignment Projective Example Help

https://eduassistpro.github.

Decrease direction: (Taylor

Add WeChat edu_assist_pr

The only situation that such s does not exist is if for some scalar λ_1

$$\nabla f(x) = \lambda_1 \nabla c_1(x).$$

Single inequality constraint

$$\min x_1 + x_2$$
 s.t. $2 - x_1^2 - x_2^2 \ge 0$.

Assignment Projecty: Exam-Help

https://eduassistpro.github.

expa

Add WeChat edu_assist_pr

Case: x inside the circle, i.e. $c_1(x) > 0$

$$s = -\alpha \nabla f(x)$$

Single inequality constraint

$$\min x_1 + x_2 \quad \text{s.t.} \quad 2 - x_1^2 - x_2^2 \ge 0.$$

Assignment Project Exam Help

https://eduassistpro.github.

expa

Add WeChat edu_assist_pr

Case: x on the boundary of the circle, i.e. $c_1(x) = 0$

$$\nabla f(x)^{\mathrm{T}} s < 0, \quad \nabla c_1(x)^{\mathrm{T}} s \geq 0$$

Empty only if $\nabla f(x) = \lambda_1 \nabla c_1(x)$ for some $\lambda_1 \geq 0$.

Linear independent constraint qualification (LICQ)

Given the point x in the active set $\mathcal{A}(x)$, the linear independent Schrödin Hattation (LCO) for it the sex or of latin \mathbf{P} constraint gradients $c_i(x)$, i (x) is linearly independent.

gradinttps://eduassistpro.github.

Example: LICQ is not satisfied if we define the equali

AddThere are other constraint qualifications e.g. SI

There are other constraint qualifications e.g. SI

There are other constraint qualifications e.g. SI

There are other constraint qualifications e.g. SI

convex problems.

Theorem: 1st order necessary conditions

Lagrangian function

Assignment Project Exam Help

Let x be a local solution of (COP) and f and c_i be continuously diffe grange

 $_{\text{follo}}^{\text{mult}}$ https://eduassistpro.github.

Add Wechiat edu_assist pr

$$c_i(x^*) \ge 0, \quad \forall i \in \mathcal{I},$$
 (1c)

$$\lambda^{\star} \ge 0, \quad \forall i \in \mathcal{I},$$
 (1d)

$$\lambda_i^{\star} c_i(x^{\star}) = 0, \quad \forall i \in \mathcal{E} \cup \mathcal{I}.$$
 (1e)

Strong complementarity condition

The *complementarity condition* (2)(e) can be made stronger. ssignment Project Examin Help KKT conditions (2), the strict complementarity condition holds if exac wordhttps://eduassistpro.github. Strict complementarity makes it easier for the algorithms to identify the active set and converge quickly to the so For a given solution x* of (cop), there madu_assist_pr which satisfy the KKT condition (2). However, if LICQ holds, the optimal λ^* is unique.

Lagrangian: primal problem

For convenience we change (and refine) our notation for the constraint optimisation problem. The following slides are based on Boyd (Convex Optimization I).

Assignment Project Exam Help

https://eduassistpro.github.

The Lagrangian $\mathcal{L} \mathcal{P} \times \mathbb{C} h$ at edu assist $properties for the distribution of <math>\mathcal{L}(x,\lambda,\nu) = f(x) + \sum_{i=1}^{n} \lambda_i f_i(x) + \sum_{i=1}^{n} \nu_i h_i(x)$

- λ_i are Lagrange multipliers associated with $f_i(x) \leq 0$
- ν_i are Lagrange multipliers associated with $h_i(x) = 0$

Lagrange dual function

Lagrange dual function: $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

Assignment Project Exam Help

g: is https://eduassistpro.github.

Lower bound property: If $\lambda \geq 0$, then Proof A for all few property and A tweedu_assist_property.

$$f(\tilde{x}) \geq \mathcal{L}(\tilde{x}, \lambda, \nu) \geq \inf_{x \in \mathcal{D}} \mathcal{L}(x, \lambda, \nu) = g(\lambda, \nu).$$

Minimising over all feasible \tilde{x} gives $p^* \geq g(\lambda, \nu)$.

Convex problem in standard form Assignment Project Exam Help

https://eduassistpro.github.

- f is convex and \mathcal{D} is convex
- fAreder we Chat edu_assist_pr

Feasibility set Ω of a convex problem is a convex set.

Example: least norm solution of linear equations

$$\min_{x \in \mathbb{R}^n} \ x^{\mathrm{T}} x$$
subject to $Ax = b$

Assignment Project-Exam Help

- Dual function:
- https://eduassistpro.github.
- . A $d_{\text{int}}^{\nabla_{x}\mathcal{L}(x,\nu)=2x+A^{T}\nu=0}$ edu_assist_pr

$$g(\nu) = \mathcal{L}(x_{\min}, \nu) = -\frac{1}{4}\nu A^{\mathrm{T}}A\nu - b^{\mathrm{T}}\nu.$$

g is a concave function of ν .

Lower bound property: $p^{\star} \geq -1/4\nu A^{\mathrm{T}}A\nu - b^{\mathrm{T}}\nu$ for all ν .

Example: standard form LP

$$\min_{x \in \mathbb{R}^n} \quad c^{\mathrm{T}} x$$
 subject to $Ax = b, \quad x \geq 0$

Assignment Project Exam Help $(x,\nu) = c^{T}x + \nu^{T}(Ax \quad b) \quad \lambda^{T}x = \quad b^{T}\nu + (c + A^{T}\nu - \lambda)^{T}x$

• https://eduassistpro.github.

• \mathcal{L}_{A} , disaffwhether at edu_assist_property $g(\lambda, \nu) = \inf_{x \in \mathbb{R}^n} \mathcal{L}(x, \nu) = \begin{cases} -\infty, & \text{otherwise} \\ f(\lambda, \nu) : A^T \nu - \lambda + c = 0 \end{cases}$, hence concave.

Lower bound property: $p^* \ge -b^T \nu$ if $A^T \nu + c \ge 0$.

Example: equality constraint norm minimisation

$$\min_{x \in \mathbb{R}^n} \quad \|x\|$$
 subject to $Ax = b$

Assignment Project Exam Help

https://eduassistpro.github.

If $||y||_{\star} > 1$, choose x = tu, u : ||

Add-We@hat edu_assist_pr

• Dual function:

$$g(
u) = \inf_{\mathbf{x} \in \mathbb{R}^n} \mathcal{L}(\mathbf{x},
u) = \left\{ egin{array}{ll} b^{\mathrm{T}}
u, & \|A^{\mathrm{T}}
u\|_\star \leq 1 \\ -\infty, & ext{otherwise} \end{array}
ight.$$

Lower bound property: $p^* \ge b^T \nu$ if $||A^T \nu||_* \le 1$.

Conjugate function

The **conjugate** of function f is

$$f^{\star}(y) = \sup_{x \in \mathcal{D}} (y^{\mathrm{T}}x - f(x))$$

 $f^{*}(y) = \sup_{x \in \mathcal{D}} (y^{T}x - f(x))$ Assignment, Project of Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Figure: Boyd, Convex Optimization I

Lagrange dual and conjugate function

$$\min_{x \in \mathbb{R}^n} f(x)$$

Assignment Project Exam Help

https://eduassistpro.github.

Dual function:

Add WeChat edu_assist_pr

$$= -\sup_{\mathbf{x} \in \mathcal{D}} \left(-f(\mathbf{x}) - (A^{\mathrm{T}}\lambda + C^{\mathrm{T}}\nu)^{\mathrm{T}}\mathbf{x} - b^{\mathrm{T}}\lambda - d^{\mathrm{T}}\nu \right)$$
$$= -f^{*}(-A^{\mathrm{T}}\lambda - C^{\mathrm{T}}\nu) - b^{\mathrm{T}}\lambda - d^{\mathrm{T}}\nu$$

Lagrangian: dual problem

Lagrange dual problem

Assignment Project Exam Help subject to λ 0

- * https://eduassistpro.github.
- is a convex optimization problem, we deno . Add We Chat edu_assist_pr
- often simplified by making implicit constraint $(\lambda, \nu) \in \text{dom } g$, explicit

Assignment Project Exam Help always holds (for convex and nonconvex problems)

https://eduassistpro.github.

```
Strong duality: d^* = p^*
```

- does not hold in general hat edu_assist_problems and e

Slater's constraint qualification

Strong duality holds for a convex problem

Assignment
$$P_{Ax=b}^{\min}$$
 Exam Help

if it intitps://eduassistpro.github.i

- · a reductive the hattiedut assist_property assist_property and the contractive dute assist_property assist_pr
- can be sharpened: e.g. can replace $int\mathcal{D}$ with relint \mathcal{D} (interior of the affine hull); linear inequalities do not need to hold with strict inequality, ...
- other constraint qualifications exist e.g. LICQ

Example: inequality form LP

Primal problem

https://eduassistpro.github.

Add WeChat edu_assist_pr

subject to
$$A^{\mathrm{T}}\lambda + c = 0$$
, $\lambda \geq 0$

- From Slater's condition: $p^* = d^*$ if $\exists \tilde{x} : A\tilde{x} < b$
- In fact, $p^* = d^*$ except when primal and dual are infeasible

Example: Quadratic program

Primal problem (assume P symmetric positive definite)

Dual function

^{ε(}https://eduassistpro.github.

Add WeChat edu_assist_pr

subject to $\lambda \geq 0$

- From Slater's condition: $p^* = d^*$ if $\exists \tilde{x} : A\tilde{x} < b$
- In fact, $p^* = d^*$ always

Example: nonconvex problem with strong duality

Primal problem

Assignment Project Exam Help

 $A \not\succeq$

Dualhttps://eduassistpro.github.

$$\begin{array}{l} g(\lambda) = \inf\limits_{\mathbf{x} \in \mathbb{R}^n} (\mathbf{x}^{\mathrm{T}} (A + \lambda I) \\ \mathbf{Add} \ \ \mathbf{WeChat} \ \ \mathbf{edu_assist_pr} \end{array}$$

- unbounded below if $A + \lambda I \not\succeq 0$ or if $A + \lambda I \succeq 0$ and $b \notin \mathcal{R}(A + \lambda I)$
- otherwise minimised by $x = -(A + \lambda I)^{\dagger} b$: $g(\lambda) = -b^{T}(A + \lambda I)^{\dagger} b - \lambda$

Dual problem

Assignment $P_{b}^{\max} \stackrel{b^{\mathrm{T}}(A+\lambda I)^{\dagger}b-\lambda}{\text{eot}} Exam Help$

^{and} https://eduassistpro.github.

Add Wetchat edu_assist_pr

Strong duality although primal problem is not convex (not easy to show).

KKT conditions revisited

Karush-Kuhn-Tucker conditions are satisfied at x^*, ν^*, λ^* i.e.

https://eduassistpro.github.

$$\lambda_i^{\star} f_i(x^{\star}) = 0, \quad i = 1, \dots, m$$
 [com

Necessary condition: If strong duality nor under the property optimal, then they must satisfy KKT conditions.

For any problem for which strong duality holds, KKT are necessary conditions.

KKT conditions for convex problem

Sufficient condition: If $x^\star, \nu^\star, \lambda^\star$ satisfy KKT conditions and the problem is convex, then $x^\star, \nu^\star, \lambda^\star$ are primal and dual optimal:

Assignmentary slackness: $f(x^*) = Assignmentary slackness: f(x^*) = Assig$

https://eduassistpro.github.

If Slater's conditions satisfied: x* is paid in an incitation aits edu_assist_processions

- recall that Slater implies strong duality, and that the dual optimum is attained
- generalises optimality condition $\nabla f(x) = 0$ for unconstrained problem