Một ma trận bất kì luôn phân tích thành tích 3 ma trận đó là: 2 ma trận trực giao, 1 ma trận đường chéo.

Bước 1: Tính A^T , A^TA và AA^T

Bước 2: Xác định trị riêng của ma trận $A^TA =>$ Các giá trị kì dị ma trận AVới mỗi giá trị riêng λ_i của ma trận ta tìm được giá trị kì dị của ma trận $\sigma_i = \sqrt{\lambda_i}$

Bước 3: Xây dựng ma trận Σ

Từ các giá trị σ_i ta tìm được ma trận $\Sigma = \begin{bmatrix} \sigma_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_r \end{bmatrix}$

Tùy thuộc kích thước ma trận A ta chia Σ thành 2 dạng :

$$\Sigma = \begin{bmatrix} \sigma_1 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & 0 \\ 0 & \cdots & \sigma_r & \cdots & 0 \end{bmatrix} (m < n)$$

$$\Sigma = \begin{bmatrix} \sigma_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_r \\ \vdots & \ddots & \vdots \\ 0 & 0 & 0 \end{bmatrix} (m \ge n)$$

Bước 4: Tính giá trị ma trận $V => V^T$

Úng với mỗi trị riêng của A^TA ta tìm được một vector riêng v_i , từ đó ta được $V=[v_1v_2\dots v_n]=>V^T$

Bước 5: Tính giá trị ma trận U

Úng với mỗi trị riêng của AA^T ta tìm được một vector riêng u_i , từ đó ta được $U=[u_1u_2\dots u_m]$

Bước 6: => Dạng kì dị của ma trận <math>A

$$A = U * \Sigma * V^T$$