PRACTICAL - 14

Submitted By: Ridam Singhal(5040)

AIM: To plot a correlogram for the given moving average process.

EXPERIMENT:

Plot the correlogram of Moving Average Process for the following.

$$Y_t = \frac{1}{2}\epsilon_t + \frac{3}{4}\epsilon_{t-1} - \frac{3}{8}\epsilon_{t-2} - \frac{15}{16}\epsilon_{t-3} - \frac{15}{32}\epsilon_{t-4} - \frac{29}{64}\epsilon_{t-5} - \frac{29}{128}\epsilon_{t-6}.$$

THEORY:

<u>Correlogram</u>: A correlogram is a visual way to show autocorrelation in the data that changes over time (i.e. time series data).

<u>Correlogram of Moving Average:</u> For a moving average of extent m, with weights $(a_1, a_2, ...a_m)$ of random components $(\varepsilon_i; i=1,2,...)$, the generated series is given by:

$$y_{i} = a_{1}\varepsilon_{i+1} + a_{2}\varepsilon_{i+2} + \dots + a_{k+1}\varepsilon_{i+k+1} + \dots + a_{m}\varepsilon_{i+m}$$
$$y_{i+k} = a_{1}\varepsilon_{i+k+1} + a_{2}\varepsilon_{i+k+2} + \dots + a_{m-k}\varepsilon_{i+m-k} + \dots + a_{m}\varepsilon_{i+k+m}$$

Where ε_i 's are iid N(0, σ^2). Thus,

$$E(y_i) = 0 = E(y_{i+k})$$

And
$$Var(y_i) = E(y_i^2) = (a_1^2 \, + \, a_2^2 \, + \, ... \, + \, a_m^2)\sigma^2 \, = \, \sigma^2 \sum_{j=1}^m a_j^2 \; \forall \; i=1,2,\ldots$$

Similarly,
$$Var(y_{i+k}) = \; E(y_{i+k}^2) = \; \sigma^2 \sum_{j=1}^m a_j^2$$

$$E(y_i y_{i+k}) = (a_1 a_{k+1} + a_2 a_{k+2} + \dots + a_{m-k} a_m) \sigma^2 = \sigma^2 \sum_{j=1}^{m-k} a_j a_{j+k}, k < m$$

$$r_{k} = \frac{E(y_{i} y_{i+k})}{\sqrt{\operatorname{Var}(y_{i}) \operatorname{Var}(y_{i+k})}}$$

$$= \frac{\sum_{j=1}^{m-k} a_{j} a_{j+k}}{\sum_{j=1}^{m} a_{j}^{2}}, \text{ if } k < m$$

$$r_{k} = 0, \text{ if } k \ge m$$

CALCULATIONS:

<u>Table 14.1</u>

m	а	a2	k						
			1	2	3	4	5	6	
1	0.5	0.25							
2	0.75	0.5625	0.375						
3	-0.375	0.140625	-0.28125	-0.1875					
4	-0.9375	0.878906	0.351563	-0.70313	-0.46875				
	-								
5	0.46875	0.219727	0.439453	0.175781	-0.35156	-0.23438			
	-						-		
6	0.45313	0.205322	0.212402	0.424805	0.169922	-0.33984	0.22656		
_	- 0.22656	0.054224	0.400664	0.400204	0.242402	0.004064	- 0.46002	- 0 11220	
7	0.22656	0.051331	0.102661	0.106201	0.212402	0.084961	0.16992	0.11328	
	-						-	-	
SUM	1.21094	2.308411	1.199829	-0.18384	-0.43799	-0.48926	0.39648	0.11328	

<u>Table 14.2</u>

k	1	2	3	4	5	6
r	0.519764	0.07964	0.18974	0.21195	0.17176	0.04907

RESULT:

- The value of autocorrelation (r_k)for the order k have been shown in <u>Table 14.2</u>
- <u>Graph 14.1</u> shows the correlogram plotted for the moving average.