

Today's Lecture

- 1. Centrality: PageRank and HITS.
- 2. Random graphs, Erdős-Rényi model.
- 3. Probability recap: binomial and Poisson distribution.
- 4. Probability recap: Chebyshev and Hoeffding inequality.
- 5. Degree distribution in Erdős–Rényi graphs.
- 6. Asymptotics in networks.
- 7. Threshold phenomena and giant component.

Recall: PageRank

Note

We define random walk on a directed graph in analogous way.

Algebraically more complicated as A_G is not symmetric and the eigenvalues are complex.

- Web graph = directed network of pages and hyperlinks.
- Eigenvector centrality does not work directly in directed graphs with sinks or disconnected components.
- PageRank modifies the random walk with teleportation:

$$P_{\alpha} = \alpha P + (1 - \alpha) \frac{1}{N} \mathbf{1} \mathbf{1}^{T},$$

where P is the transition matrix of the web, $\alpha \in (0,1)$.

• Stationary distribution of $P_{\alpha} = \mathsf{PageRank}$ vector.

Beyond PageRank: The HITS Algorithm

Goal: Identify both *authorities* and *hubs* in a directed network.

- A good hub points to many good authorities.
- A good authority is pointed to by many good hubs.

Beyond PageRank: The HITS Algorithm

Goal: Identify both *authorities* and *hubs* in a directed network.

- A good hub points to many good authorities.
- A good authority is pointed to by many good hubs.

Beyond PageRank: The HITS Algorithm

Goal: Identify both *authorities* and *hubs* in a directed network.

- A good hub points to many good authorities.
- A good authority is pointed to by many good hubs.

Context:

- Introduced by Jon Kleinberg (1999).
- Used originally to rank web pages within a topic query.
- Query-dependent unlike PageRank, which is global.

Let A be the adjacency matrix $(A_{ij} = 1 \text{ if } i \rightarrow j)$.

Each node *i* has:

authority score a_i , hub score h_i .

Let A be the adjacency matrix $(A_{ij} = 1 \text{ if } i \rightarrow j)$.

Each node i has:

authority score a_i , hub score h_i .

They satisfy the mutual reinforcement equations:

$$\begin{cases} h = Aa, & \text{(hubs get votes from authorities)} \\ a = A^{\top}h, & \text{(authorities get votes from hubs)} \end{cases}$$

Let A be the adjacency matrix $(A_{ij} = 1 \text{ if } i \rightarrow j)$.

Each node *i* has:

authority score a_i , hub score h_i .

They satisfy the mutual reinforcement equations:

$$\begin{cases} h = Aa, & \text{(hubs get votes from authorities)} \\ a = A^{\top}h, & \text{(authorities get votes from hubs)} \end{cases}$$

Combining:

$$a = A^{T}Aa, \qquad h = AA^{T}h.$$

Let A be the adjacency matrix $(A_{ij} = 1 \text{ if } i \rightarrow j)$.

Each node *i* has:

authority score a_i , hub score h_i .

They satisfy the mutual reinforcement equations:

$$\begin{cases} h = Aa, & \text{(hubs get votes from authorities)} \\ a = A^{\top}h, & \text{(authorities get votes from hubs)} \end{cases}$$

Combining:

$$a = A^{T}Aa, \qquad h = AA^{T}h.$$

Thus:

- a is the leading eigenvector of $A^{\top}A$ (authorities).
- h is the leading eigenvector of AA^{\top} (hubs).
- Equivalent to computing the first left/right singular vectors of A.

Directed graph:

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Directed graph:

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Iterative algorithm:

- 1. Initialize $a_i = h_i = 1$.
- 2. Repeat $a \leftarrow A^{\top}h$, normalize; $h \leftarrow Aa$, normalize.

Directed graph:

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Iterative algorithm:

- 1. Initialize $a_i = h_i = 1$.
- 2. Repeat $a \leftarrow A^{\top}h$, normalize; $h \leftarrow Aa$, normalize.

Python demo:

```
import networkx as nx
G = nx.DiGraph()
G.add_edges_from([(1,2),(1,3),(2,3),(3,4)])
hubs, auth = nx.hits(G)
```

Directed graph:

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Iterative algorithm:

- 1. Initialize $a_i = h_i = 1$.
- 2. Repeat $a \leftarrow A^{\top}h$, normalize; $h \leftarrow Aa$, normalize.

Python demo:

```
import networkx as nx
G = nx.DiGraph()
G.add_edges_from([(1,2),(1,3),(2,3),(3,4)])
hubs, auth = nx.hits(G)
```

Interpretation:

- Node $1 \rightarrow$ strong hub (points to many).
- Node 4 \rightarrow strong authority (pointed to by many).

HITS vs. PageRank

	HITS	PageRank
Output	Two scores: $hub + authority$	One score: global importance
Based on	Mutual reinforcement	Random walk steady state
Matrix	$A^{\top}A$, AA^{\top}	$P_{\alpha} = \alpha P + (1 - \alpha)J/N$
Scope	Local (query dependent)	Global (entire web)
Sinks	Problematic	Fixed via teleportation
Analogy	"Hubs cite; authorities get cited"	"Surfer visits frequently"

Takeaway: HITS reveals two complementary roles in networks: connectors (hubs) and sources (authorities).

Random graphs and Erdős–Rényi model

Why random graphs?

Real networks (social, economic, financial) are noisy and constantly evolving. We need a simple *baseline model* to compare against.

Definition (Erdős-Rényi (ER) model)

G(N, p): a random graph on N nodes where each of the $\binom{N}{2}$ possible edges appears independently with probability p.

Why random graphs?

Real networks (social, economic, financial) are noisy and constantly evolving. We need a simple *baseline model* to compare against.

Definition (Erdős-Rényi (ER) model)

G(N, p): a random graph on N nodes where each of the $\binom{N}{2}$ possible edges appears independently with probability p.

Paul Erdős (1913 - 1996)

Alfréd Rényi (1921-1970)

Erdős and Rényi (1959–60) launched the probabilistic study of graphs.

G(N, p) Model

Take N=4 then the graph can have up to six edges. Each with distribution Bern(p):

If $p = \frac{1}{2}$, each graph appears with the same probability $\frac{1}{2^6} = \frac{1}{64}$.

Probability recap: Binomial

Definition

If $X \sim \text{Bin}(n, p)$ then

$$\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad \mathbb{E}[X] = np, \quad \operatorname{Var}(X) = np(1-p).$$

Useful characterization: $X = \sum_{i=1}^{n} Z_i$ with independent $Z_i \sim \text{Bern}(p)$.

In the ER graph G(N, p):

Number of edges:

$$L \sim \operatorname{Bin}\left(\binom{N}{2}, p\right).$$

Degree of a fixed vertex v:

$$deg(v) \sim Bin(N-1, p).$$

Probability recap: Poisson (as Binomial limit)

Theorem

If $X_n \sim \mathrm{Bin}(n,p_n)$ with $n \to \infty$ and $np_n \to \lambda > 0$, then

$$X_n \longrightarrow X \sim \operatorname{Pois}(\lambda), \qquad \mathbb{P}(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}.$$

The approximation $Bin(n, p) \approx Poiss(\lambda)$ for $\lambda = pn$ is particularly good if p is small.

Example (Quick check)

For n=2000, p=0.003, $\lambda=np=6$. Compare $\mathbb{P}(X=0)$: Binomial $\approx (1-p)^{2000}$ vs. Poisson e^{-6} (very close).

Degree distribution in G(N, p)

If
$$p=\lambda/(N-1)$$
, then, for any $v\in V$,
$$\deg(v)\ \sim\ \mathrm{Bin}(N-1,p)\ pprox\ \mathrm{Pois}(\lambda).$$

- Mean degree: $\mathbb{E}[\deg(v)] = (N-1)p$.
- $\mathbb{P}\{\deg(v)=k\}\approx \frac{\lambda^k}{k!}e^{-\lambda}$.

Note

This gives closed forms for expectations; Poisson is a great approximation when N is large and p small.

Degree distribution: finite *N* concentration bounds

Concentration: Chebyshev (simple but general)

Theorem (Chebyshev inequality)

For any r.v. X with mean μ and variance σ^2 ,

$$\mathbb{P}(|X - \mu| \ge t) \le \frac{\sigma^2}{t^2}.$$

For degree: $deg(v) \sim Bin(N-1, p)$, so

$$\mathbb{P}\big(|\operatorname{deg}(v)-(N-1)p|\geq t\big)\leq \frac{(N-1)p(1-p)}{t^2}.$$

Chebyshev already gives some concentration guarantees (e.g. take $t_0=\sqrt{\frac{N}{\delta}\rho(1-\rho)}$ for small $\delta>0$) but sharper results are possible.

Appendix: Proof of the Chebyshev inequality

Theorem (Markov's inequality)

If
$$Z \ge 0$$
 then $\mathbb{P}(Z \ge t) \le \frac{1}{t}\mathbb{E}[Z]$.

Indeed,

$$\mathbb{E}[Z] \ \leq \ \mathbb{E}[Z11(Z \geq t)] \ \leq \ t\mathbb{E}[11(Z \geq t)] \ = \ t\mathbb{P}(Z \geq t).$$

Now, Chebyshev's inequality follows easily from Markov's. Take $Z=|X-\mu|$ then

$$\mathbb{P}(|X - \mu| \ge t) = \mathbb{P}((X - \mu)^2 \ge t^2) \le \frac{\mathbb{E}(X - \mu)^2}{t^2} = \frac{\sigma^2}{t^2}.$$

Sharper concentration: Hoeffding for Binomial

Theorem (Hoeffding inequality)

If $X=\sum_{i=1}^n Y_i$ with independent $Y_i\in [0,1]$ and $\mathbb{E}X=\mu$, then for t>0, $\mathbb{P}(|X-\mu|\geq t) \ \leq \ 2\exp\Bigl(-\tfrac{2t^2}{n}\Bigr).$

Applied to degree: deg(v) has N-1 independent Bernoulli summands,

$$\mathbb{P}(|\deg(v) - (N-1)p| \ge t) \le 2\exp\left(-\frac{2t^2}{N-1}\right).$$

Fix
$$v \in V$$
. Taking $t_0 = \sqrt{\frac{N-1}{2}\log(\frac{2}{\delta})}$ for small $\delta > 0$ gives
$$\mathbb{P}\big(|\deg(v) - (N-1)p| \ge t_0\big) \ \le \ \delta.$$

Sharper concentration: Hoeffding for Binomial

Theorem (Hoeffding inequality)

If $X = \sum_{i=1}^n Y_i$ with independent $Y_i \in [0,1]$ and $\mathbb{E}X = \mu$, then for t > 0,

$$\mathbb{P}(|X - \mu| \ge t) \le 2 \exp\left(-\frac{2t^2}{n}\right).$$

Applied to degree: deg(v) has N-1 independent Bernoulli summands,

$$\mathbb{P}(|\deg(v) - (N-1)p| \ge t) \le 2\exp\left(-\frac{2t^2}{N-1}\right).$$

Fix $v \in V$. Taking $t_0 = \sqrt{\frac{N-1}{2}\log(\frac{2}{\delta})}$ for small $\delta > 0$ gives

$$\mathbb{P}\big(|\deg(v)-(N-1)p|\geq t_0\big) \leq \delta.$$

e.g.
$$N = 1001$$
, $\delta = 0.05$, $p = 0.1$. Then with prob. ≥ 0.95 deg(v) $\in (100 - 42.95, 100 + 42.95) = (57.05, 142.95)$.

Uniform degree bounds

Recall:
$$\mathbb{P}(|\deg(v) - (N-1)p| \ge t) \le 2\exp\left(-\frac{2t^2}{N-1}\right)$$
 for all $t > 0$.

Suppose we now want to provide a bound for the degrees all $v \in V$.

Uniform degree bounds

Recall: $\mathbb{P}(|\deg(v) - (N-1)p| \ge t) \le 2\exp\left(-\frac{2t^2}{N-1}\right)$ for all t > 0.

Suppose we now want to provide a bound for the degrees all $v \in V$.

Take $t_0 = \sqrt{\frac{N-1}{2} \log(\frac{2N}{\delta})}$ we get that, for any fixed $v \in V$,

$$\mathbb{P}(|\deg(v)-(N-1)p|\geq t_0) \leq \frac{\delta}{N}.$$

Union bound: For any two events $\mathbb{P}(A \cup B) \leq \mathbb{P}(A) + \mathbb{P}(B)$.

$$\mathbb{P}(\exists v \mid \mathsf{deg}(v) - (\mathsf{N} - 1)p| \geq t_0) \leq \sum_{v \in V} \mathbb{P}(|\mathsf{deg}(v) - (\mathsf{N} - 1)p| \geq t_0) \leq \delta.$$

Uniform degree bounds

Recall: $\mathbb{P}(|\deg(v) - (N-1)p| \ge t) \le 2\exp\left(-\frac{2t^2}{N-1}\right)$ for all t > 0.

Suppose we now want to provide a bound for the degrees all $v \in V$.

Take $t_0 = \sqrt{\frac{N-1}{2} \log(\frac{2N}{\delta})}$ we get that, for any fixed $v \in V$,

$$\mathbb{P}(|\deg(v)-(N-1)p|\geq t_0) \leq \frac{\delta}{N}.$$

Union bound: For any two events $\mathbb{P}(A \cup B) \leq \mathbb{P}(A) + \mathbb{P}(B)$.

$$\mathbb{P}(\exists v \mid \mathsf{deg}(v) - (\mathsf{N} - 1)p| \geq t_0) \leq \sum_{v \in V} \mathbb{P}(|\mathsf{deg}(v) - (\mathsf{N} - 1)p| \geq t_0) \leq \delta.$$

e.g. N = 1001, $\delta = 0.05$, p = 0.1. Then with prob. ≥ 0.95 all degrees lie in (100 - 72.8, 100 + 72.8) = (27.2, 172.8).

Asymptotics in networks

Asymptotic Thinking in Random Graphs

Why asymptotics?

- We study G(N,p) as $N \to \infty$ to reveal general patterns.
- Precise constants matter less than the scaling behavior of p with N.

Asymptotic Thinking in Random Graphs

Why asymptotics?

- We study G(N,p) as $N \to \infty$ to reveal general patterns.
- Precise constants matter less than the scaling behavior of p with N.
- f(N) = o(g(N)) means $f(N)/g(N) \rightarrow 0$.
- f(N) = O(g(N)) means $|f(N)| \le C|g(N)|$; for some C > 0 and N large enough.
- $f(N) \sim g(N)$ means $f(N)/g(N) \rightarrow 1$.

Asymptotic Thinking in Random Graphs

Why asymptotics?

- We study G(N,p) as $N \to \infty$ to reveal general patterns.
- Precise constants matter less than the scaling behavior of p with N.
- f(N) = o(g(N)) means $f(N)/g(N) \rightarrow 0$.
- f(N) = O(g(N)) means $|f(N)| \le C|g(N)|$; for some C > 0 and N large enough.
- $f(N) \sim g(N)$ means $f(N)/g(N) \rightarrow 1$.

Probabilistic language:

- "With high probability" (w.h.p.) means $\mathbb{P}(\mathsf{event}) o 1$ as $\mathsf{N} o \infty$.
- Example: in G(N, p) with $p = \frac{\log N}{N}$, the graph is connected w.h.p.

Average degree: dense vs sparse graphs

When N grows, the connection probability $p = p_N$ can scale differently.

Dense regime: (p_N) tends to a constant c > 0.

- $\mathbb{E}[\deg(v)] \approx cN$ grows linearly with N.
- The number of edges $L \approx c \binom{N}{2}$.
- Not a realistic large network, but a useful contrast.

Sparse regime: $p_N = \lambda/(N-1)$ (or smaller).

- $\mathbb{E}[\deg(v)] \approx \lambda$ stays constant as $N \to \infty$.
- The total number of edges $L \approx \lambda N/2$ grows linearly with N.

Average degree: dense vs sparse graphs

When N grows, the connection probability $p = p_N$ can scale differently.

Dense regime: (p_N) tends to a constant c > 0.

- $\mathbb{E}[\deg(v)] \approx cN$ grows linearly with N.
- The number of edges $L \approx c \binom{N}{2}$.
- Not a realistic large network, but a useful contrast.

Sparse regime: $p_N = \lambda/(N-1)$ (or smaller).

- $\mathbb{E}[\deg(v)] \approx \lambda$ stays constant as $N \to \infty$.
- The total number of edges $L \approx \lambda N/2$ grows linearly with N.

Language note:

- Saying "real networks are sparse" means that as they grow, the average degree stays bounded, not that p is small for a fixed N.
- The scaling of p_N determines which asymptotic regime we are in.

Maximum degree in G(N, p)

Let $\Delta = \max_{v} \deg(v)$ be the **maximum degree**.

Dense regime: (p_N) tends to a constant c > 0.

• With high probability (remember we ignore constants here):

$$\Delta = Np + O(\sqrt{N \log N}).$$

Sparse regime: $p_N = \lambda/(N-1)$ (or smaller).

- Each $deg(v) \approx Pois(\lambda)$ mean λ .
- By extreme-value theory for Poisson tails:

$$\Delta \approx \frac{\log N}{\log \log N}.$$

This is very thin tailed: $N=10^3, 10^6, 10^{12}$ gives $\frac{\log N}{\log \log N}=4.3, 6.3, 9.2$. In real networks we observe "hubs".

Notation: average degree vs expected degree

For a graph G with N vertices and L edges:

• The empirical average degree is (a random variable)

$$\overline{\deg}(G) = \frac{1}{N} \sum_{v \in V} \deg(v) = \frac{2L}{N}.$$

• The expected degree under a random graph model is

$$\mathbb{E}[\deg(v)] = \mathbb{E}[\overline{\deg}(G)]$$
 for all $v \in V$.

Example (Erdős–Rényi G(N, p)):

$$\overline{\deg}(G) \approx (N-1)p, \qquad \mathbb{E}[\deg(v)] = (N-1)p.$$

We saw that for large N, $\overline{\deg}(G)$ is concentrated around $\mathbb{E}[\deg]$.

Threshold phenomena and giant component

Threshold phenomena in ER (concept)

Definition

A **threshold** for a graph property \mathcal{P} is a function $p^*(N)$ such that:

$$p \ll p^*(N) \Rightarrow G(N, p)$$
 has $\neg P$ w.h.p.,
 $p \gg p^*(N) \Rightarrow G(N, p)$ has P w.h.p.

ER graphs display many sharp thresholds:

- Emergence of a giant component.
- Connectivity (no isolated vertices).
- Appearance of fixed subgraphs (e.g., triangles).

Regimes of G(N, p) (sparse case p = c/N)

It is useful to describe random graphs in terms of the expected degree

$$\mathbb{E}[\deg(v)] \approx c.$$

- Subcritical regime (c < 1): only small tree-like components; largest size $\sim \log N$.
- Critical point (c=1): largest component has size $\sim N^{2/3}$; no giant yet.
- Supercritical regime (c > 1): a unique giant component emerges, containing a positive fraction of nodes.
- Connected regime ($c \gtrsim \log N$): almost surely the whole graph becomes connected.

Illustration of regimes

Interpretation: As c increases, the largest connected component grows from negligible size, through a sudden phase transition (c=1), and eventually absorbs almost all nodes.

Why the giant component matters (econ/social)

Consider the world's friendship network:

- Clearly disconnected (think small remote communities)
- But "our" component is large, spans most of the world.
- There should be no two big components.

Giant components are important:

- Contagion & diffusion: A giant component enables large cascades (diseases, information, bank runs).
- Market connectivity: Sufficient density is needed for trade/payment networks to connect most participants.
- Infrastructure design: Tuning p (or expected degree c) above 1 ensures large-scale reachability.

Where are real networks?

Most real-world networks live well above the critical point.

They are highly connected (often even "superconnected"), yet they also exhibit additional structure (clustering, hubs, communities).

The ER model a *baseline*: it shows that above c=1, large-scale connectivity is the default, but real networks have richer features.

Connectivity threshold in G(N, p)

Theorem

The threshold for connectivity in G(N, p) is

$$p^*(N) = \frac{\log N}{N}.$$

More precisely:

$$\begin{cases} p = \frac{\log N + \omega(N)}{N}, & G(N, p) \text{ is connected w.h.p.,} \\ p = \frac{\log N - \omega(N)}{N}, & G(N, p) \text{ is disconnected w.h.p..} \end{cases}$$

Here, $\omega(N)$ means any function that grows to infinity (however slowly). Examples: $\log \log N$, $\sqrt{\log N}$, or even $\log \log \log N$.

Idea of proof (intuition)

A vertex is isolated with probability

$$Pr(v \text{ isolated}) = (1-p)^{N-1} \approx e^{-pN}.$$

• Expected number of isolated vertices:

$$\mathbb{E}[N_0] = Ne^{-pN}.$$

• If $p = c \frac{\log N}{N}$, then

$$\mathbb{E}[N_0] \approx N^{1-c}$$
.

• For c < 1, $\mathbb{E}[N_0] \to \infty$; many isolated vertices \to disconnected. For c > 1, $\mathbb{E}[N_0] \to 0$; isolated vertices disappear.

Careful: No isolated vertices do not automatically imply connectivity. However, one can show that once all isolated vertices disappear, all other components merge into one giant component w.h.p.

Simulation in NetworkX (Colab) — generate and inspect

Python (run in Google Colab)

```
import networkx as nx
import matplotlib.pyplot as plt
n, p = 200, 0.015 \# trv also p = 0.005, 0.02, 0.05
G = nx.erdos_renyi_graph(n, p)
print("Nodes:", G.number of nodes())
print("Edges:", G.number of edges())
# Empirical vs expected average degree
deg = [d for . d in G.degree()]
print("Empirical mean degree:", sum(deg)/n)
print("Theoretical mean degree:", (N-1)*p)
# Largest component size
components = list(nx.connected_components(G))
largest = max(components, kev=len)
print("Largest component size:", len(largest))
# Draw (small n looks better)
plt.figure(figsize=(5,5))
pos = nx.spring_layout(G, seed=7)
nx.draw(G, pos, node_size=30, edge_color="#cccccc")
plt.show()
```

Simulation in NetworkX — degree histogram

Python (run in Google Colab)

```
import numpy as np
import matplotlib.pyplot as plt

deg = np.array([d for _, d in G.degree()])
print("Empirical mean degree:", deg.mean())
print("Theoretical mean degree:", (N-1)*p)

plt.figure(figsize=(5,4))
bins = np.arange(deg.max()+2) - 0.5
plt.hist(deg, bins=bins)
plt.xlabel("Degree k"); plt.ylabel("Count")
plt.title("Degree distribution in G(N,p)")
plt.show()
```

Observation. For p = c/N the histogram should resemble a Poisson(c), with empirical mean degree $\overline{\deg}(G)$ close to theoretical $\mathbb{E}[\deg]$.

Summary

- ER G(N, p) is the baseline random network: tractable degrees and component structure.
- \bullet Degrees: Binomial \to Poisson in sparse regime; strong concentration via Hoeffding.
- Phase transitions: giant component at p ~ 1/N; connectivity at p ~ (log N)/N.
- Why we care: gives parameter ranges where large-scale behavior becomes plausible.