Dwuwymiarowe Range-Minimum Queries

8 grudnia 2014

Planowanie przestrzeni

Gdzie budować domy, a gdzie pola?

1D RMQ

Dana jest jednowymiarowa tablica A rozmiaru N. $A[RMQ_{a,b}(A)] = \min_{a \leq i \leq b} A[i].$

1D RMQ

Po ludzku – w zadanym przedziale szukamy **pozycji** najmniejszego elementu.

Wielowymiarowe RMQ

RMQ można uogólnić na więcej wymiarów – wtedy $N=n_1\cdot n_2\cdot \cdots \cdot n_d.$

Powrót do 1D i 2D

Zajmiemy się jedno- i dwuwymiarowymi RMQ. Przedstawioną konstrukcję można uogólnić na więcej wymiarów.

Co to?

Powtórka z AiSD. Czy to nas satysfakcjonuje? (i dlaczego nie)

Co to?

Powtórka z AiSD. Czy to nas satysfakcjonuje? (i dlaczego nie)

Co to?

```
CT [] = E

CT rng =

let m = min rng

in T(CT rng[0:m], m, CT rng[m+1:n])
```

Dwuwymiarowe Range-Minimum Queries

└─1D - metody naiwne
 └─Drzewo kartezjańskie

Jak je zastosować?

Co w 2D?

W 1D ratuje nas tani preprocesing przypadków małych. W 2D jednak...

Podsumowanie

W przypadku jednowymiarowym drzewa kartezjańskie działają dobrze.

Nie dają się jednak uogólnić na więcej wymiarów.

Wstęp

Yuan i Atallah (2010) stworzyli strukturę, która dobrze się uogólnia na więcej wymiarów.

Dwuwymiarowe Range-Minimum Queries L Struktura Yuana-Atallaha L Wstęp

Idea

Struktura

Szkic dowodu

Szkic dowodu