BST 210 Applied Regression Analysis

Lecture 3 Plan for Today

- Questions from last class
- Recap: Framework for Analyses
- Multiple Linear Regression
- Confounding
- Effect Modification (interaction)

Questions from/since last class

- When comparing multiple means, students are sometimes advised to compare confidence intervals to see whether the intervals overlap. When 95% confidence intervals for the means of two independent populations don't overlap, there will indeed be a statistically significant difference between the means (at the 0.05 level of significance).
- * However the opposite (or converse) is not always true. The CI's may overlap, yet there may be a statistically significant difference between the means. That is, if two test statistics have non-overlapping confidence intervals, they are necessarily significantly different but if they have overlapping confidence intervals, it is not necessarily true that they are not significantly different. *
- The discrepancy arises since distance from the mean is calculated in a different way for the t-statistic than it is for mean confidence intervals.

Questions from/since last class

Results

ttest pdi, by(dhca) level(95)

Two-sample t test with equal variances

Group	1	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
low-flow deep hyp	 	69 73	98.46377 91.91781	1.636459 1.929775	13.59345 16.488	95.19827 88.07087	101.7293 95.76474
combined	İ	142	95.09859	1.296565	15.45036	92.53537	97.66181
diff			6.54596	2.543947		1.51644	11.57548

Degrees of freedom: 140

Ho: mean(low-flow) - mean(deep hyp) = diff = 0

Slide 30

Questions from/since last class

- Lowess smoothing: bandwidth = .8 is default
- What does larger bandwidth do? Smaller?

Review: True of false?

- R² = amount of variability in Y that our fitted model is unable to explain.
- Correlation => Causation

- One assumption of linear regression is that the outcomes Y are dependent.
- A mnemonic acronym for remembering the assumptions of linear regression is LANE.

Review: Is It a Linear Model?

- $E(Y_i) = \beta_0$
- $E(Y_i) = \beta_0 + \beta_1 \cdot age_i + \beta_2 \cdot age_i^2$
- $E(Y_i) = \beta_0 + \beta_1 \cdot age_i + \beta_2 \cdot female_i + \beta_3 \cdot age_i \cdot female_i$
- $E(Y_i) = \beta_0 + \beta_1 \cdot \exp(age_{i1})$
- $E(Y_i) = \beta_0 + \exp(\beta_1 \cdot age_{i1})$
- $E(Y_i) = \exp(\beta_0 + \beta_1 \cdot x_{i1})$
- $E(Y_i) = (\beta_0 + \beta_1 \cdot age_i + \beta_2 \cdot age_i^2)^2$

Continue to develop general framework for approaching analyses

First -

- Learn the topic/study well, really well
- Collaborate to define motivating questions of interest, check PubMed, other sources
- What techniques might help to achieve answers? Which do the data warrant? (develop intuition, read literature)
- Possible Confounding or Effect Modification to account for?
- Keep an open mind, and the larger picture there is no recipe

Continue to develop general framework for approaching analyses

Next -

- Diagnostics/Checking Assumptions:
 - Scatterplot, summary statistics
 - Boxplots, histograms
 - Correlations
 - Smoothing (example: Lowess)
 - Residual Analysis
- Hypothesis testing/modeling:
 - t-test?
 - Correlation (r)?
 - ANOVA useful?
 - Nonparametric approach better?
 - Linear regression or extensions (multiple reg.)?
 - Generalizations

Recall Motivating Questions in last example – how do we accommodate?

- Is PDI related to the (continuous) duration of CA?
- Is PDI related to the (categorical) treatment group (CA vs. LFB)?
- Is PDI related to treatment group, after adjusting for diagnosis group (IVS and VSD)?
- Other predictor variables?

Recall Motivating Questions in last example – how do we accommodate?

- Considering all of the possible covariates, which factors are most predictive of PDI?
- What are the final conclusions regarding treatment group comparisons, adjusting for other factors?
- Need to build multiple linear regression models to predict PDI

- Simple linear regression: a single independent variable (Y) is used to predict the value of a dependent variable (X).
- Multiple linear regression: two or more independent variables (X) are used to predict the value of a dependent variable (Y).
- The difference between the two is simply the number of independent variables.
- Data: $(x_{i1}, x_{i2}, ..., x_{ip}, Y_i), i = 1, ..., N$

 $x_{ij} = j^{th}$ predictor variable for the i^{th} subject, measured without error

 Y_i = outcome for the i^{th} subject, random, continuous, may have error

N = number of subjects

- Model: $E(Y_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + ... + \beta_p x_{ip}$
 - $E(Y_i)$ = expected value of Y for a given set of covariates, x_{i1} , x_{i2} ,..., x_{ip}
 - $-\beta_0$ = intercept, or constant term, corresponding to the mean value of *Y* when all covariates = 0
 - $β_j$ = slope, or the change in Y corresponding to a 1 unit increase in the jth covariate, x_j , holding all the other covariates constant

Assumptions:

- (L) the mean of Y_i is an unknown, but **linear**, function of x_{i1} , x_{i2} ,..., and x_{ip}
- (I) all responses are independent
- (N) the distribution of Y about its mean value is normally distributed
- (E) the variability of Y about its mean value is equal for all x values (homoscedasticity)
- Existence: For any <u>fixed</u> value of the variable X, Y is a random variable with a certain probability distribution having finite mean and variance

For any <u>fixed</u> value of the variable *X*, *Y* is a random variable with a certain probability distribution having finite mean and variance

Let's back up: Confounding

- Suppose we are interested in the association between an exposure and outcome
- But there may be other factors that distort the relationship between exposure and outcome
- What to do?

Confounding Review

- A variable is a confounding variable if it satisfies two conditions (classical definition of confounding):
 - It is a risk factor for the outcome
 - It is associated with exposure, but not a consequence of exposure
- Failure to control for confounding can lead to
 bias

Control of Confounders: Study Design

- Randomization (clinical trials)
 - Should balance confounders in groups being compared
- Restriction
 - Select a restricted subgroup to study
- Matching (case-control studies)
 - Cases and controls have same confounding characteristics (hence balanced)

Control of Confounders: Data Analysis

Stratification

- Split the data into strata, make within-strata comparisons, then recombine to get overall estimates
- Compare crude (unadjusted) and stratified (adjusted) estimates to assess confounding

Multivariable analysis

Include covariate in multiple linear regression

$$E(Y_i) = \beta_0 + \beta_1 C_i + \beta_2 X_i$$

- Used to investigate the relationship between a response variable and several explanatory variables
- Model: $E(Y) = \beta_0 + \beta_1 \cdot x_1 + ... + \beta_p \cdot x_p$
- The intercept β_0 is the predicted value of Y when all covariates = 0

- The slope β_j is the change in Y corresponding to a 1 unit change in x_j , assuming all other covariates are held constant
- We say that we are adjusting for, or controlling for, the other covariates

Recall: significant relationship

predict resids, residuals
lowess resids minutes

What about birth weight?

lowess resids birthwt

- We found a significant relationship between minutes of CA and PDI
- Residual plots suggested a possible association with birth weight
- After accounting for minutes of CA, does birth weight improve our ability to predict PDI?

regress pdi minutes birthwt

Source	SS	df	MS		Number of obs F(2, 139)	
Model Residual + Total	3377.28384 30281.3359 33658.6197	139 21	88.64192 7.851337 8.713615		Prob > F R-squared Adj R-squared	= 0.0006 = 0.1003
pdi	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
minutes birthwt _cons	164923 .0084129 71.20498	.0566858 .0029668 10.62018	-2.91 2.84 6.70	0.004 0.005 0.000	277001 .0025471 50.207	052845 .0142788 92.20297

PDI = 71.2 - 0.165 minutes + 0.0084 birthwt

- For two infants with identical minutes of CA, a birth weight difference of 1000 grams would yield an 8.4 point change in predicted PDI score (P = 0.005)
- Not sensible to interpret intercept (71.2)
 here, as no birth weights are zero

PDI = 71.2 - 0.165 minutes + 0.0084 birthwt

 The coefficient of minutes adjusting for birthwt (– 0.165) is fairly close to the unadjusted, or crude, coefficient (– 0.155); thus birthwt does not appreciably confound the association between minutes of CA and PDI

Confounding

- If an adjusted analysis gives an appreciably different result than a crude (unadjusted) analysis, we say the added variable is a confounder of the exposure-outcome association; use the adjusted analysis!
- Confounding bias can be large or small (and can even reverse direction of effect)
- Generally, define a confounder based on prior knowledge or biological reasoning

Confounding

- Leads to bias in your estimate of the exposure-outcome association if you fail to control for the effects of the confounder
- Can sometimes be controlled for in the analysis or avoided by design
- Confounder versus Covariate
- Is a bias, and worth avoiding!

Indicator Variables

- When there are categorical or binary predictor variables, we create indicator variables (or dummy variables or design variables)
- Examples: Diagnosis (IVS vs. VSD), Sex (F vs. M), Age group (< 1 mo, 1-2 mo, 3-9 mo)
- We create variables with numeric 0/1 coding

```
regress pdi minutes vsd
predict yhat
gen yhativs=yhat if vsd==0
gen yhatvsd=yhat if vsd==1
gen pdiivs=pdi if vsd==0
gen pdivsd=pdi if vsd==1
sort minutes
scatter pdiivs pdivsd yhativs yhatvsd
minutes, xlabel(0(20)120) ylabel(50(2)150)
symbol (O T i i i) c(. . l l)
```

regress pdi minutes vsd

Source	SS	df	MS		Number of obs		142
Model Residual	2266.77325 31391.8465 33658.6197	139 225 	3.38662 5.840622 5.713615		F(2, 139) Prob > F R-squared Adj R-squared Root MSE	= = =	5.02 0.0079 0.0673 0.0539 15.028
pdi	Coef.	Std. Err.			[95% Conf.	In [.]	terval]
minutes vsd cons	1351676 -5.245585 101.0308	.0587281 3.112904 2.413607	-2.30 -1.69 41.86	0.023 0.094 0.000	2512836 -11.40035 96.25865		0190516 .90918 05.8029

- Here vsd = 1 for VSD diagnosis, vsd = 0 for IVS diagnosis
- Fitted regression model is:

```
PDI = 101.0 - 0.135 \text{ minutes} - 5.25 \text{ vsd}
```

- For IVS, PDI = 101.0 0.135 minutes
- For VSD, PDI = 95.8 0.135 minutes
- Parallel lines, different intercepts

PDI = 101.0 - 0.135 minutes - 5.25 vsd

- P-value for vsd effect is marginally significant (P = 0.09), and minutes is still significant (P = 0.023)
- Study surgeons and cardiologists thought that diagnosis was an important factor to consider

- In particular, infants with VSD (relative to IVS) were:
 - older at time of surgery
 - looked better preoperatively
 - had more complex surgeries with longer duration of CA
- Is diagnosis a confounder of the effect of minutes of CA?

Effect Modification

- It is not necessarily true that the effect of minutes of CA should be the same for both diagnosis groups
- Models including effect modification (or interaction) allow the effects of one variable to vary depending on the levels of another
- Modelled using product terms

Effect Modification Review

- Relationship between variable (X) and outcome (Y) differs by level of third variable (C)
- Example: No effect modification (parallel slopes)

Example: effect modification (NOT parallel slopes)

generate interact = minutes * vsd regress pdi minutes vsd interact

Source	SS	df 	MS		Number of obs F(3, 138)	
Model Residual			3.751927 5.104087		Prob > F R-squared Adj R-squared	= 0.0148 = 0.0730
Total	33658.6197	141 238	3.713615		Root MSE	= 15.037
pdi	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
minutes vsd interact _cons	1141839 1.451135 1588876 100.3351	.0630748 7.950786 .173564 2.531758	-1.81 0.18 -0.92 39.63	0.072 0.855 0.362 0.000	238902 -14.26998 5020763 95.32905	.0105343 17.17225 .1843011 105.3412

PDI = 100.3 - 0.114 minutes + 1.45 vsd - 0.159 minutes · vsd

- For IVS, PDI = 100.3 0.114 minutes
- For VSD, PDI = 101.8 0.273 minutes
- Lines not parallel, though minutes effect is negative for both diagnosis groups

PDI = 100.3 - 0.114 minutes + 1.45 vsd - 0.159 minutes · vsd

- P-value for the interaction is only 0.36, so no statistical evidence to support the interaction
- Reasonable to drop nonsignificant interactions, and to only test for those thought interesting in advance

Effect Modification Review

 Models including effect modification (or interaction) allow the effects of one variable to vary depending on the levels of another

- No Interaction:
$$\mathbf{E}(Y_i) = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \boldsymbol{C}_i + \boldsymbol{\beta}_2 \boldsymbol{X}_i$$

For C=0: $\mathbf{E}(Y_i) = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_2 \boldsymbol{X}_i$ For C=1: $\mathbf{E}(Y_i) = (\boldsymbol{\beta}_0 + \boldsymbol{\beta}_1) + \boldsymbol{\beta}_2 \boldsymbol{X}_i$
-Different Intercepts and Same Slopes

- Interaction:
$$\mathbf{E}(Y_i) = \beta_0 + \beta_1 C_i + \beta_2 X_i + \beta_3 C_i X_i$$

For C=0: $\mathbf{E}(Y_i) = \beta_0 + \beta_2 X_i$
For C=1: $\mathbf{E}(Y_i) = (\beta_0 + \beta_1) + (\beta_2 + \beta_3) X_i$
-Different Intercepts and Different Slopes

Coming Up

- Development of LS regression results
- Model fit assessment
- Residual analysis
- More multiple regression