

Deep Learning Basics

ENEE4584/5584 - CV Apps in DL

Dr. Alsamman

Artificial Neuron

- •• Weights: $\mathbf{w} = w_1, w_2, \dots, w_n$
- ❖ Bias: b
- ❖ Pre-activation: z

$$z = b + \sum_{i}^{n} w_i x_i = b + \boldsymbol{W}^T \boldsymbol{X}$$

- Activation: a(z)
 - > Linear
 - > Threshold
 - > Sigmoid
 - > Tanh
 - > ReLU

Multi-Layer Feedforward

- AKA directed acyclic graph
- AKA feedforward network
- Depth is L

$$f(\mathbf{X}) = f^{(L)} \left(f^{(i)} \left(\dots \left(f^{(2)} \left(f^{(1)} (\mathbf{X}) \right) \right) \right) \right)$$
Input: $\mathbf{X} = \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}$; $a_i^{(l)}$ is the activation function

Feed-forward

- \bullet Layer l: column in network
- \bullet neuron i: row number
- *j: row number of neuron in next layer
- $w_{ij}^{(l)}$: weight of connection

between neuron i in layer I and neuron j in layer l+1

Feedforward Algorithm

- 1. $\forall i = 1 \rightarrow I, j = 1 \rightarrow J, l = 0 \rightarrow L$: Randomly assign weights $w_{ij}^{(l)}$
- 2. Initialize: $a_i^{(0)} = x_i$
- 3. $\forall l = 0 \rightarrow L$:

compute
$$\mathbf{Z}^{(l+1)} = \left(\mathbf{W}^{(l)}\right)^T \mathbf{a}^{(l)}$$
, $\mathbf{a}^{(l+1)} = a\left(\mathbf{Z}^{(l+1)}\right)$

Objective Function

- A measurement of learning success
 - Maximization or minimization
- Depends on the learning type and learning problem
 - > 2 Major types: Supervised, Unsupervised
 - > 2 major applications: Regression and classification
- Supervised vs unsupervised:
 - "labeled" training data
 - > Training data contains inputs matched to outputs
- *Regression:
 - Real-valued output defined by the problem
 - > value estimation
- Classification: aka Logistic Regression
 - > Real valued output between 0 and 1 (percentage)
 - Group estimation

Objective Function: MSE

$$J(W,b) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})^2 = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}(x^{(i)}; W, b)^{(i)} - y^{(i)})^2$$

- Mean square error
- Supervised regression
- Minimization
- $(x^{(i)}, y^{(i)})$: input, output training sample i
- *m: total number of samples
- $\mathbf{\hat{y}}$: estimate, system output based on input and learning parameters W, b
- Variants: mean absolute error (MAE)

MSE Example

у	5.1	1.6	2.3	3.7	
yhat	4.8	0.9	1.1	5.1	
d = yhat - y	-0.3	-0.7	-1.2	1.4	
d^2	0.09	0.49	1.44	1.96	
mse (sum/4)	0.995				

Objective Function: CE

Binary Cross-Entropy (BCE), log-likelihood

$$\mathcal{L}(W,b) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

- Classification/logistic regression
- ≥ 2 classes (binary)
- Minimization
- Cross-Entropy, multinomial (classes>2)

$$\mathcal{L}(W,b) = -\sum_{i=1}^{m} Y^{(i)} \log(\widehat{Y}^{(i)})$$

 $\succ Y$: multiple outputs

BCE Example

У	1	0	0	1	
yhat	0.9	0.5	0.4	0.2	
-log(yhat)	0.046			0.699	
-log(1-yhat)		0.301	0.222		
BCE	0.317				

$$\frac{\partial \mathcal{L}}{\partial w_{ij}^{(l)}} = \frac{\partial \mathcal{L}}{\partial a_i^{(l+1)}} \frac{\partial a_i^{(l+1)}}{\partial Z_i^{(l+1)}} \frac{\partial Z_i^{(l+1)}}{\partial w_{ij}^{(l)}} = \frac{\partial \mathcal{L}}{\partial a_j^{(l+1)}} g_j^{(l+1)} a_i^{(l)}$$

$$\frac{\partial \mathcal{L}}{\partial w_{ij}^{(0)}} = \delta_n g\left(Z_n^{(4)}\right) w_{mn}^{(3)} g\left(Z_m^{(3)}\right) w_{km}^{(2)} g\left(Z_k^{(2)}\right) w_{jk}^{(1)} g\left(Z_j^{(1)}\right) x_i$$

Backprop Algorithm

- $lacktriangledow{f G}$ Given a weight matrix, $m W^{(l)}$ and $m Z^{(l)}$ computed for each layer l in feedforward; and a cost function $m {\cal L}$
 - 1. Initialize $W^{(l)}$
 - 2. \forall samples $(X^{(m)}, Y^{(m)})$: Feedforward to generate $a^{(l)}$
 - 3. Compute the gradient of each layer $m{g}^{(l)}$

4.
$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{a}^{(L)}} = \boldsymbol{\delta} = (\widehat{\boldsymbol{Y}} - \boldsymbol{Y})$$

5. $\forall l = (L-1) \rightarrow 1$:

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{a}^{(l)}} = \frac{\partial \mathcal{L}}{\partial \boldsymbol{a}^{(l+1)}} \boldsymbol{g}^{(l+1)} \boldsymbol{W}^{(l)}$$

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{W}^{(l)}} = \frac{\partial \mathcal{L}}{\partial \boldsymbol{a}^{(l+1)}} \boldsymbol{a}^{(l)}$$

$$\mathbf{W}^{(l)} = \mathbf{W}^{(l)} + \alpha \frac{1}{m} \frac{\partial \mathcal{L}}{\partial \mathbf{W}^{(l)}}$$

Backpropogation Example

Assume

> all activations are linear

$$> a_j^{(l+1)} = Z_{ij}^{(l+1)} = W_{ij}^{(l)} a_i^{(l)} + b_j^{(l)}$$

- $>W_{ij}^{(l)}, b_j^{(l)}=1$
- \rightarrow { $x_1, x_2; y$ } = {1,1; 0}

Forward pass:

$$a_1^{(1)}, a_2^{(1)}, a_3^{(1)} = 1 * 1 + 1 * 1 + 1 = 3$$

$$a_1^{(2)} = 3 * 1 + 3 * 1 + 3 * 1 + 1 = 10$$

$$\delta = \hat{y} - y = 10 - 0 = 10$$

Backprop:

$$\frac{\partial L}{w_{11}^{(1)}} = \delta \ g_1^{(2)} \ a_1^{(1)} = 10 * 1 * 3 = 30$$

$$\frac{\partial L}{\partial u_{11}^{(0)}} = \delta \ g_1^{(2)} \ w_{11}^{(1)} \ g_1^{(1)} \ x_1 = 10 * 1 * 1 * 1 * 1 = 10$$

Layer 0

Layer 1

Layer 2

Forward Pass as Matrix

$$\mathbf{*} \mathbf{W}^{(0)} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}, \mathbf{W}^{(1)} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}, \mathbf{b}^{(0)} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{b}^{(1)} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{b}^{(2)} = [1]$$

Backprop as Vectors

$$\boldsymbol{\dot{*}} \boldsymbol{g}^{(1)} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \boldsymbol{g}^{(2)} = [1]$$

$$\frac{\partial L}{W^{(1)}} = \delta \mathbf{g}^{(2)} \mathbf{a}^{(1)} = 10 * 1 * \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 30 \\ 30 \\ 30 \end{bmatrix} = \begin{bmatrix} \partial L/w_{11}^{(1)} \\ \partial L/w_{21}^{(1)} \\ \partial L/w_{31}^{(1)} \end{bmatrix}$$

Gradient Descent

$$w = w - \frac{\alpha}{m} \frac{\partial}{\partial w} J(w, b)$$

- Gradient: use derivate/slope
- Descent: make sure that with each iteration cost is decreasing
- Gradient descent algorithm:
 - 1. Start with initial values for W, b
 - 2. Compute *J*
 - 3. Update all variables **simultaneously**:

$$w = w - \frac{\alpha}{m} \frac{\partial}{\partial w} J(w, b)$$

$$b = b - \frac{\alpha}{m} \frac{\partial}{\partial b} J(w, b)$$

4. Goto 2 until w, b converge.

ENEE 4584/5584

Gradient Descent

- Understanding the effect of gradient descent
 - ➤ W,b: learning parameters
 - \triangleright Learning rate α : hyperparameter

Batch, Stochastic, Minibatch

- ❖ Batch: m = entire data set
 - > can be too large, slows down learning
- ❖Stochastic: m = 1
 - Randomly selected
 - > fast but susceptible to outliers
- Minibatch
 - ➤ 1 < m < total sample size
 - > Randomly selected samples

To Enable Deep Learning

- Overcome overfitting
- Better activation functions
- Better weight initialization
- Better learning algorithms
- Better generalization algorithms

Sigmoid

Relationship to step function:

$$a(z) = \lim_{k \to \infty} \left(\frac{1}{1 + e^{-kz}} \right)$$

- Probability driven
- Non-linear
- Derivative: g(z) = a(z)(1 a(z))
- Problems:
 - Gradient is small
 - > Gradient slows down learning in deeper networks
 - ➤ Learning stops when |z|>6

Tanh(z)

Relationship to step function:

$$u(x) = \lim_{k \to \infty} \left(\frac{1 + \tanh kx}{2} \right)$$

Relationship to sigmoid:

$$\tanh(x) = \frac{e^z - e^{-z}}{e^z + e^{-z}} = \frac{2}{1 + e^{-2x}} - 1$$

- ❖ Derivative: $g(z) = 1 a^2(z)$
- "Faster" gradient
- Tristate output
- Problem: Learning stops when |z| > 3

ReLU

- Rectified linear unit activation function
 - > AKA max function
 - ➤ Max{0,Z}
- No learning slowdown
- Negative Z causes output to 0
- Simple to calculate the gradient
- Preforms better than tanh and sigmoid
- ❖ No real understanding of when/why RELU are preferable
- ❖ Eliminates the need of unsupervised "pre-training" phase ₃
- Problem: exploding Z.

ReLU Variants

Softplus:

➤ Derivative is sigmoid

Leaky ReLU:

 $\triangleright \beta$ a fraction < 1.

❖ Noisy ReLU:

Exponential ReLU:

 $a(z) = \ln(1 + e^z)$

$$a(z) = \begin{cases} z & \text{if } z > 0\\ \beta z & \text{otherwise} \end{cases}$$

$$a(z) = \max(0, z + N(0, \sigma(z)))$$

$$a(z) = \begin{cases} z & \text{if } z > 0\\ \beta(e^z - 1) & \text{otherwise} \end{cases}$$

- > mean activations closer to zero which speeds up learning
- $\geqslant \beta \ge 0$ is a tuning parameter

Softmax

- Used in classification, multinomial cases
- The output is 1-hot encoded:
 - > Each class gets an output
 - \triangleright E.g. 3 classes = {0,1,2} => output: Y = [1,0,0] for class0; [0,1,0] for class1; [0,0,1] for class2.
- Problem with sigmoid: output for each class is independent from other outputs
- Softmax fixes the problem

$$y_i = \frac{\exp(Z_i)}{\sum_j \exp(Z_j)}$$

- $> y_i$: output for class i
- $\triangleright Z_i$: weight sum of inputs for class i output
- $\geq Z_i$: weight sum of input for all class outputs
- ightharpoonup E.g. For a 3 classes, to get y=[1,0,0] => $y_0 = \frac{\exp(Z_0)}{\exp(Z_0) + \exp(Z_1) + \exp(Z_2)}$, for y0>0.5 => y0 >> y1,y2

Alsamman

Softmax Gradient

$$\frac{\partial \mathcal{L}}{\partial w_k} = \sum_j (\hat{y}_k - \delta_{jk}) x_k$$

https://madalinabuzau.github.io/2016/11/29/gradient-descent-on-a-softmax-cross-entropy-cost-function.html

Generalization Techniques

Dataset Related:

- > Validation set for detection of overfitting
- > Larger training database
- Data Normalization

Parameter related:

- ➤ Learning parameter Initialization
- Regularization of learning parameters
 - L1 and L2
- > Learning rate: search, annealing

Gradient related:

- Gradient clipping
- Network related:
 - Dropout

Training Validation Split

Training data split:

- > Training set (~80%): used for learning only
- > Testing set (~20%): used for reporting performance only
- Randomly selected
- Capture in the testing set the variety of input cases and outputs

Training iterations vs epochs:

- > 1 epoch = training once for entire training set
- > Number of iterations per epoch = size of training / batch size

Training-Validation split:

- > <20% of training data, randomly selected
- Not used in training
- > Applied at the end of the epoch
- Used to track performance, detecting overfitting

Overfitting During Training

Augmenting

- Problem with increasing training data: expensive or unavailable
- Solution: Artificial data expansion
 - > Aka augmenting existing data
 - Corrupt the existing data with noise or other effects and add it to training
 - ➤ Noise must mimic RW noise
 - For images: rotate, scale, drop pixels

Learning Parameter Initialization

- Initialization affects:
 - Convergence to local or global minima
 - ➤ Speed of convergence
 - Generalization error
- Modern schemes focus on heuristics and simplicity
- Goal: independence & variance
 - Maintain independence between neurons
 - "Break symmetry" between different units
 - Symmetry leads to duplication of neurons
 - Conserve variance between layers

Initialization Schemes

- Xavier Glorot & Bengio initialization (aka Glorot, Xavier):
 - > sigmoid:

$$W \sim U \left[-\sqrt{\frac{6}{n_{in} + n_{out}}} , \sqrt{\frac{6}{n_{in} + n_{out}}} \right]$$

> tanh:

$$W \sim U \left[-4\sqrt{\frac{6}{n_{in}+n_{out}}}, 4\sqrt{\frac{6}{n_{in}+n_{out}}} \right]$$

> ReLU:

$$W \sim U\left[-\sqrt{\frac{6}{n_{in}}}, \sqrt{\frac{6}{n_{in}}}\right]$$

- U[] : uniform distribution
- n_{in} , n_{out} : number of neurons in input, output

- Kiaming He initialization (aka He):
 - > Xavier's derived for activation function is linear

$$\blacktriangleright W \sim N \left[\mu = 0 \text{ , } \sigma = \sqrt{\frac{2}{n_{in}}} \right]$$

• N[]: normal distribution

Data Normalization

- Protect against outlier data
- Typical normalization: controls the mean, std dev of the data
- Can be applied to
 - > Entire dataset
 - ➤ Mini batch
- Mini-batch normalization can be applied to any dimension
- The mean and std dev calculated and applied, or learnt

L2 Regularization Parameter

- Most popular in ML
- Force a weight decay
 - > Keep weights from increasing uncontrollably
 - ➤ Sigmoid-like functions: Large weights => zero gradients
- *Reformulate cost function:

$$C = \sum_{i} C_{i} + \frac{\lambda}{2m} \sum_{iil} \left(w_{ij}^{(l)} \right)^{2}$$

- $\succ C_i$ is the cost function: cross-entropy/log-likelihood/loss or mean square error
- $\triangleright \lambda$: regularization parameter
- Doesn't affect bias
- Learning objective always to reduce cost (error)
 - $> w^2$ punishes large weights

L2 Regularized Backprop

L2 regularized cost function

$$C = \sum_{i} C_{i} + \frac{\lambda}{2m} \sum_{ijl} \left(w_{ij}^{(l)} \right)^{2}$$

Gradient descent

$$w_{ij}^{(l)} = w_{ij}^{(l)} - \alpha \frac{\partial C_i}{\partial w_{ij}^{(l)}} - \alpha \frac{\lambda}{m} w_{ij}^{(l)} = \left(\mathbf{1} - \alpha \frac{\lambda}{m} \right) w_{ij}^{(l)} - \frac{\alpha}{m} \frac{\partial C_i}{\partial w_{ij}^{(l)}}$$

L1 Regularization

Penalizes large weights

$$C = \sum_{i} C_{i} + \frac{\lambda}{m} \sum_{ijl} \left| w_{ij}^{(l)} \right|$$

- > L2 rewards fractional weights, L1 doesn't
 - L2 reduces weights towards 1
 - L1 reduces weights towards 0
- > L2 small decrements in weights lead to great reduction in C.
 - L1 large decrements cause large reductions in C
- L1 few weights survive. Most weights are close to 0.
 - > concentrate the weights in a relatively small number of connection

L1 Regularized Backprop

Learning:

$$w_{ij}^{(l)} = w_{ij}^{(l)} - \alpha \frac{\partial C_i}{\partial w_{ij}^{(l)}} + \alpha \frac{\lambda}{m} \operatorname{sgn}\left(w_{ij}^{(l)}\right) = w_{ij}^{(l)} - \frac{\alpha}{m} \frac{\partial C_i}{\partial w_{ij}^{(l)}} \pm \alpha \frac{\lambda}{m}$$

- ❖sgn() is the sign function
- Not defined at w = 0

Dropout

- Applied to the network not backprop
 - > Easier on computation
- Strategy:
 - > Randomly delete a percentage of the hidden neurons in each epoch
 - Not input or output neurons
 - > Learn weights and biases
 - Repeat
 - ➤ When done, decrease weights and biases by percentage
- ❖ Why does it work?
 - Averaging
 - > Reduction of co-dependence of neurons
 - > Similar to bagging: multiple classifiers, averaged output

Dropout Alternatives

- Zoneout
 - > RNN
 - > Randomly chosen units remain unchanged across a time transition
- Dropconnect
 - > Drop individual connections, instead of nodes
- Shakeout
 - > Scale up the weights of randomly selected weights
 - $w = \alpha w + (1 \alpha) c$
 - > Fix remaining weights to a negative constant
 - w = -c
- Whiteout
 - > Add or multiply weight-dependent Gaussian noise to the signal on each connection

Better Learning Functions

- SGD assumes convex cost function which is overly simplistic
- Alternative learners:
 - **≻** Momentum
 - ➤ Adaptive gradient
 - ≥ 2nd order gradients

Momentum Learning

Introduce a velocity parameter, V, for each, W, such that:

$$W = W + V$$
$$V = \beta V - \frac{\alpha}{m}g$$

- β is friction, β =1 no friction (no slowing down)
- Scheme:
 - \triangleright Initialize $w, v = 0, \alpha, \beta$
 - ➤ While not (stopping criterion):
 - Given $\{X, Y\}$ feedforward
 - Compute gradient: $g = \frac{\partial \mathcal{L}}{\partial W}$
 - Compute velocity: $V = \beta V \frac{\alpha}{m}g$
 - Update weights: W = W + V

- Nestrov momentum:
 - \triangleright Initialize $W, V = 0, \alpha, \beta$
 - ➤ While not (stopping criterion):
 - Given $\{X, Y\}$ feedforward
 - Update weights: W = W + V
 - Compute gradient: $g = \frac{\partial \mathcal{L}}{\partial w}$
 - Compute velocity: $V = \beta V \frac{\alpha}{m}g$

Adaptive Gradient

$$r = r + g^2;$$

*Adagrad:
$$r = r + g^2$$
; $W = W - \frac{\alpha}{m} \frac{g}{\sqrt{r+\gamma}}$

$$r = \rho r + (1 - \rho)g^2;$$

*RMSprop:
$$r = \rho r + (1 - \rho)g^2$$
; $W = W - \frac{\alpha}{m} \frac{g}{\sqrt{r + \nu}}$

❖ Adam:

$$s = \frac{\rho_1 s + (1 - \rho_1)g}{\rho_1};$$

$$r = \frac{\rho_2 r + (1 - \rho_2) g^2}{\rho_2}; \qquad W = W - \frac{\alpha}{m} \frac{s}{\sqrt{r + \gamma}}$$

$$W = W - \frac{\alpha}{m} \frac{S}{\sqrt{r+\gamma}}$$

$$0 < \rho, \rho_1 \rho_1 < 1$$

Saddle Points

