2004年9月

- **│1**│ 次の各問に答えよ。
- (1) 定数 α は $-1 < \alpha < 0$ を満たすとする。実変数 x の関数 $(1+x)^{\alpha}$ のマクローリン級数展開 (原点の周りでの整級数展開)を求め、その収束半径を求めよ。
- **(2)**

$$I_k = \int_0^{\pi/2} \sin^k x \ dx$$
 $(k = 0, 1, 2, \ldots)$

とする。漸化式

$$I_{k+2} = \frac{k+1}{k+2} I_k$$
 $(k = 0, 1, 2, \ldots)$

を証明せよ。

(3) 定数 a は $0 \le a < 1$ を満たすとする。等式

$$\int_0^{\pi/2} \frac{dx}{\sqrt{1 - a^2 \sin^2 x}}$$

$$= \frac{\pi}{2} \left\{ 1 + \left(\frac{1}{2}\right)^2 a^2 + \left(\frac{1 \cdot 3}{2 \cdot 4}\right)^2 a^4 + \ldots + \left(\frac{1 \cdot 3 \cdots (2n-1)}{2 \cdot 4 \cdots (2n)}\right)^2 a^{2n} + \ldots \right\}$$
 を証明せよ。

2

2 変数の C^2 級関数 f(x,y) と、(x,y) の極座標表示

$$x = r\cos\theta$$
 , $y = r\sin\theta$

に関する次の関係式を証明せよ(ただしr>0とする)。

(1)
$$\frac{\partial f}{\partial r} = \cos \theta \, \frac{\partial f}{\partial x} + \sin \theta \, \frac{\partial f}{\partial y} \, , \quad \frac{\partial f}{\partial \theta} = -r \sin \theta \, \frac{\partial f}{\partial x} + r \cos \theta \, \frac{\partial f}{\partial y}$$

(2)
$$\frac{\partial f}{\partial x} = \frac{x}{r} \frac{\partial f}{\partial r} - \frac{y}{r^2} \frac{\partial f}{\partial \theta}$$
, $\frac{\partial f}{\partial y} = \frac{y}{r} \frac{\partial f}{\partial r} + \frac{x}{r^2} \frac{\partial f}{\partial \theta}$

(3)
$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = \frac{\partial^2 f}{\partial r^2} + \frac{1}{r} \frac{\partial f}{\partial r} + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2}$$

3 次正方行列

$$A = \left(\begin{array}{rrr} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{array}\right)$$

について次の問に答えよ。

- (1) A の固有値を求めよ。
- (2) (1) で求めた固有値のそれぞれに対応する固有空間を求めよ。
- (3) 直交行列により、Aを対角化せよ。

$$\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$
を $\begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}$ に、 $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ を $\begin{pmatrix} 5 \\ 2 \\ 3 \end{pmatrix}$ に、そして、 $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ を $\begin{pmatrix} -2 \\ -1 \\ -2 \end{pmatrix}$

に写すとする。以下の問に答えよ。

(1) R³ の標準基底

$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
 , $\mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\mathbf{e}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

に関する写像 f の行列表示を求めよ。

(2) 写像 f の核 $\operatorname{Ker} f = \{\mathbf{v} \in \mathbf{R}^3 \mid f(\mathbf{v}) = \mathbf{0}\}$ と像 $\operatorname{Im} f = \{f(\mathbf{v}) \mid \mathbf{v} \in \mathbf{R}^3\}$ の次元を求めよ。

(3)

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} , \quad \mathbf{v}_2 = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} , \quad \mathbf{v}_3 = \begin{pmatrix} 1 \\ 4 \\ 1 \end{pmatrix}$$

が ${f R}^3$ の基底となることを確かめ、この基底に関する写像 f の行列表示を求めよ。

- 正の整数 n,k は $n \ge k$ であるものとして $t_{n,k}$ および $z_{n,k}$ を次のように定める。要素の個数が n である集合から要素の個数が k である集合への全射の総数を $z_{n,k}$ とする。 そして、要素の個数が k である集合から要素の個数が n である集合への単射の総数を $t_{n,k}$ とする。 $n \ge k \ge 2$ であるとして次の間に答えよ。
- (1) $t_{n,k}$ と $t_{n-1,k-1}$ の関係を求めよ。
- (2) $z_{n,k} \geq k z_{n-1,k-1}$ を証明せよ。
- (3) $z_{n,k}=kz_{n-1,k-1}$ ならば n=k であることを証明せよ。

- xy 平面において、x-軸上の点 P と、y-軸上の点 Q を、次のようなルールに従って移動させるものとする。 $n=0,1,2,\ldots$ とし、時刻n における P,Q の位置 $P_n=(x_n,0), Q_n=(0,y_n)$ を次のように帰納的に定める:
- (i) $x_0 = y_0 = 0$
- (ii) 時刻 n において 2 枚の公正なコインを同時に振り、その結果として P_{n+1} 、 Q_{n+1} を

$$x_{n+1} = \begin{cases} x_n + 1 & (表が 2 枚出た場合) \\ x_n & (その他の場合) \end{cases}$$

$$y_{n+1} = \left\{ egin{array}{ll} y_n + 1 & (表が 1 枚出て、かつ裏も 1 枚出た場合) \\ y_n & (その他の場合) \end{array}
ight.$$

とする。

以下の問に答えよ。

- (1) x_n を確率変数と考え、 x_n の平均 $\mathbf{E}(x_n)$ と分散 $\mathbf{V}(x_n)$ を求めよ。
- (2) 「表が 2 枚出る」という事象と「表が1枚出て、かつ裏も1枚出る」という事象は互いに独立ではないことを証明せよ。
- (3) 原点を O とし、三角形 $\triangle OP_nQ_n$ の面積の平均を求めよ。

【7」 閉区間 I=[0,1] 上で定義された関数 f は I の各点で微分可能であり、かつ導関数 f' は I 上で連続であるとし、さらに f(0)=0 とする。このとき I における |f| の最大値 $\max_{0\leq x\leq 1}|f(x)|$ は、 $1\leq p<\infty$ なる任意の p に対して

$$\max_{0 \le x \le 1} |f(x)| \le \left\{ \int_0^1 |f'(x)|^p dx \right\}^{1/p}$$

を満たすことを証明せよ。

- 8 ヒルベルト空間 H は正規直交基底 $\{\mathbf{e}_n\mid n=0,\pm 1,\pm 2,\ldots\}$ を持つとする。H 上の有界線形作用素 S は $S\mathbf{e}_n=\mathbf{e}_{n+1}$ $(n=0,\pm 1,\pm 2,\ldots)$ を満たすとする。以下の問に答えよ。
- S^* を S の共役作用素とする。 $S^*\mathbf{e}_n~(n=0,\pm 1,\pm 2,\ldots)$ を求めよ。
- S は H 上のユニタリ作用素であることを証明せよ。
- (3) 作用素 A を $A = \frac{1}{2}(S + S^*)$ で定義する。内積

$$\langle \mathbf{e}_0 , A^m \mathbf{e}_0 \rangle$$
 $(m = 0, 1, 2, \ldots)$

を計算せよ。

$$S^2 = \{(x, y, z) \mid x^2 + y^2 + z^2 = 1\}$$

に \mathbb{R}^3 からの相対位相が与えられているものとして、以下の問に答えよ。

- (1) S^2 が弧状連結であることを証明せよ。
- $p_0=(0,0,1)\in S^2$ に対して $S^2\setminus\{p_0\}$ から平面 \mathbf{R}^2 への同相写像を構成せよ。
- S^2 の各点 p に対して、 \mathbf{R}^2 の開円板 $\{(x,y) \mid x^2+y^2<1\}$ と同相な、p の S^2 の中での開近傍 U(p) が存在することを証明せよ。

- $egin{array}{c|c} egin{array}{c|c} 1 & \mathbf{0} \\ \mathbf{Q} & \mathbf{e} & \mathbf{q} & \mathbf{E} & \mathbf{Q} & \mathbf{E} & \mathbf{Q} & \mathbf{E} &$
- (1) $a \in \mathbf{Q}$ について $\varphi(a) = a$ となることを示せ。
- (2) R は単項イデアル環であることを示せ。
- (3) φ が単射でないとき、 φ の核は、適当な $a\in \mathbf{Q}$ を選び、(X-a) と書けることを示せ。ただし (X-a) は X-a で生成される単項イデアルとする。