Aigerim Gilmanova Machine Learning (F21) Innopolis University, 2021

Assignment 1

Github: https://github.com/aigerimu/ML_A1

Introduction

The following report is directed to describe the Assignment 1 of flight delay estimation by using machine learning models. The flight delay estimation is based on the dataset which is obtained from Innopolis University partner company. The main parts of the report include Task and Data description, Data Preprocessing and Visualization, Outlier Detection and Removal, Machine Learning Models and Conclusion.

Task and Data description

The assignment task is to measure the flight delay using machine learning methods. In particular, it is necessary to:

- Preprocess data, visualize it and split the dataset
- Apply 3 machine learning models to estimate the flight delay
- Compare these models

This task is a Regression task because flight delay is estimated in minutes.

	Depature Airport	Scheduled depature time	Destination Airport	Scheduled arrival time	Delay
0	SVO	2015-10-27 07:40:00	HAV	2015-10-27 20:45:00	0.0
1	SVO	2015-10-27 09:50:00	JFK	2015-10-27 20:35:00	2.0
2	SVO	2015-10-27 10:45:00	MIA	2015-10-27 23:35:00	0.0
3	SVO	2015-10-27 12:30:00	LAX	2015-10-28 01:20:00	0.0
4	OTP	2015-10-27 14:15:00	SVO	2015-10-27 16:40:00	9.0
675508	SVO	2018-08-31 23:50:00	SVX	2018-09-01 02:10:00	0.0
675509	LED	2018-08-31 23:50:00	SVO	2018-09-01 01:10:00	0.0
675510	SVO	2018-08-31 23:55:00	EGO	2018-09-01 01:20:00	0.0
675511	SVO	2018-08-31 23:55:00	TSE	2018-09-01 03:15:00	0.0
675512	SVO	2018-08-31 17:25:00	IKT	2018-08-31 23:05:00	379.0

675513 rows × 5 columns

Figure 1. Flight delay estimation dataset.

The figure above illustrates the given dataset for the assignment task. It can be seen that there are 4 predictors, which are Departure and Destination Airports, Scheduled departure time and Scheduled arrival time. Also, there is 1 target value, it is a Delay column. The whole dataset includes 675513 rows and 5 columns.

Data Preprocessing and Visualization

The dataset contains categorical features (string representation), so it is necessary to transform them into integer format to get data from the 'Departure Airport' and 'Destination Airport' columns. It is done by using **LabelEncoder**. However, this encoder converts categorical features into numerical representation in a random way. Thus, the model might suggest them as an order (SVO > HAV), while these data is different and cannot be ordered. Also, there is another encoder that is **OneHotEncoder**. However, it was not used as this encoder increases the dimensionality. The figure below represents the dataset with encoded categorical features.

	Depature Airport	Scheduled depature time	Destination Airport	Scheduled arrival time	Delay
0	144	2015-10-27 07:40:00	56	2015-10-27 20:45:00	0.0
1	144	2015-10-27 09:50:00	68	2015-10-27 20:35:00	2.0
2	144	2015-10-27 10:45:00	94	2015-10-27 23:35:00	0.0
3	144	2015-10-27 12:30:00	82	2015-10-28 01:20:00	0.0
4	113	2015-10-27 14:15:00	144	2015-10-27 16:40:00	9.0

Figure 2. Dataset with encoded categorical features.

In order to estimate flight delay, it is necessary to understand its relation with other features. As there is no direct relation with 'Departure Airport', 'Destination Airport', 'Scheduled departure time', 'Scheduled arrival time', the new feature was added. This feature is 'Flight duration', that is the difference between 'Scheduled arrival time' and 'Scheduled departure time'. However, according to the correlation matrix from the figure 3, that shows the correlations among values, there is no strong relations of the proposed features with flight delay. Thus, the following features are insignificant in flight delay estimation. The strongest correlation of flight delay is with flight duration.

Figure 3. Correlation matrix

In order to visualize data, the graph 'Flight duration vs Delay' was plotted.

Figure 4. Flight duration vs Delay

After preprocessing, data was split into train and test set. The train set consists of data that was collected in 2015-2017 years, while test set includes data from 2018 year.

Outlier Detection and Removal

Outliers are observation points which are significantly differ from the other observation points. They can be treated either as a mistake or as a new behavior. Thus, to detect outliers, different methods can be used. One of them is a Box plot that graphically illustrates sets of numerical data according to quartiles, and outliers are shown as individual points. According to figure 5, points that are larger than 900 min, are outliers.

Figure 5. Outliers detection

After outliers observation, it is necessary to remove them from the train dataset. Then, the train dataset was split into predictors and target, *X_train and y_train*, respectively, without such features as 'Scheduled departure time' and 'Scheduled arrival time'.

Machine Learning Models

The regression models for this task were used. They are Linear Regression, Polynomial Regression and Linear Regression with Lasso regularization. The models were trained on the train and test datasets. Their performance can be seen from Tables 1 and 2. The performance of the following models can be evaluated through the metrics. The regression metrics were chosen, which are Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE). These metrics represent errors in minutes. Also, R2 (coefficient of determination) score was used. This score shows the relation between predictors and target. R2 = 1 means the strongest relation (maximum), while R2 = 0 the weakest relation (minimum).

Model / Metrics	Linear regression	Polynomial regression	Linear regression with
			Lasso regularization
MAE	15.378918182116797	15.358906223983395	15.335765748398678
MSE	2148.3813857403484	2144.5207378790783	2130.7620652088576
RMSE	46.35063522477711	46.30897038241164	46.160178348971506
R2 score	0.003102281599158263	0.004893709820420145	0.003112191962348354

Table 1. Metrics for train data

Model / Metrics	Linear regression	Polynomial regression	Linear regression with
			Lasso regularization
MAE	14.355920147039628	14.405498917663062	14.339740132569611
MSE	1617.2888538653208	1620.4170470177985	1617.0759834246674
RMSE	40.21553000850941	40.2544040698381	40.21288330155732
R2 score	-0.00905757032108534	-0.011009310094960645	-0.00892475636572665

Table 2. Metrics for test data

Linear Regression

According to tables 1 and 2, linear regression predicts with large errors and its R2 score is 0. It is because the given data is not linear. Also, after applying this model to train and test sets, both gives huge errors, so it means that linear regression model **underfits**.

Polynomial Regression

In polynomial regression, it is necessary to define the degree of the polynomial. In this case, it is 3 because it provides the best results and requires less computations comparing with higher orders. Polynomial regression provides better results comparing with the linear model, however, it is still low. Thus, the model **underfits.**

Linear Regression with Lasso Regularization

The Lasso regularization was chosen because the provided dataset has not many predictors. Lasso has a hyperparameter that was obtained from the graph below. It is 1.

Figure 6. Detection of hyperparameter

Comparing with other models, linear regression with Lasso regularization has the best results. However, from the tables above it can be seen that results from train and test sets are almost the same, so the following model **underfits.**

Conclusion

In order to make chosen models fitting, several steps were done. In particular, preprocessing, adding features and outliers removal. However, all 3 models are underfitting. One of the underfitting reason is choosing simple models for complex dataset. The second reason is selecting useful predictors. For instance, the weather more influences flight delay, comparing with the given features.