LECTURE 03 - PERCEPTRONS

AGENDA

- 1. Introdução
- 2. Portas de limiar
- . Perceptron
- 1. Adaline

INTRODUÇÃO

O Neurônio MCP: na sua forma mais simples,

em:

Padrão de

entrada

vetor x

INTRODUÇÃO

1.0 Neurônio MCP resolve o problema da porta /

MARCOS G QUILES - NEURAL NETWORKS

INTRODUÇÃO

1.E o problema do OR, como ficaria?

IF cor=vermelha AND forma=redonda THEN fruta: IF cor=vermelha AND forma=ovalada THEN fruta= IF cor=amarela AND forma=redonda THEN fruta= IF cor=amarela AND forma=ovalada THEN fruta=I

corredor umido e banheiro seco entao problema cozinha. Se

corredor_umido e cozinha seca vazamento banheiro. entao Se

janela fechada ou nao chove entao nao entrou agua de fora. Se

corredor umido e banheiro seco entao problema cozinha: 1. Se

problema cozinha e nao entrou ag entao vazamento cozinha: 0.9. Se

NEURÔNIO MCP

1.0 que é o BIAS?

2.0 que o neurônio MCP representa?

PORTAS DE LIMIAR

- As portas de limiar podem ser divididas em dois principais:
- 1. Portas de Limiar Lineares
- 1. O próprio modelo MCP
- Capacidade limitada: funções linearmente separávo
- 2. Portas de Limiar Polinomial, etc.

PERCEPTRON

- 1.0 perceptron é uma rede neural simples
- 2. Utilizada para classificação de padrões linearmen separáveis
- 3.É formado por neurônios do tipo MCP com pesos ajustáveis e um bias (portas de limiar lineares)
- 4.Qual a diferença entre o perceptron e o neurônic

CARACTERÍSTICAS BÁSICAS

1. Regra de propagação

$$v_j = \sum_i x_i w_{ij} +$$

- 2. Função de ativação: Degrau
- 3. Topologia: uma única camada de processadores original é composto por várias camadas, mas ap ajustável)
- 4. Algoritmo de Aprendizado (supervisionado):

ALGORITMO DE APRENDIZAGE

1.IMPORTANTE

- 1.não ocorre variação no peso se a saída e correta
- 2.caso contrario, cada peso é incrementac a saída é menor que o alvo decrementac a saída é maior que o alvo

PERCEPTRON - REVISITANDO C

PERCEPTRON – ADAPTAÇÃO DO

- 1.De uma forma geral, o processo de adapta consiste na obtenção do (de)incremento A aplicado ao vetor de pesos w
- 2.Com o conjunto de pesos w(n+1), a rede c apresentar um sinal mais próximo a saída do que a saída produzida utilizando w(n)

ALGORITMO DE TREINAMENTO

- 1. Iniciar os pesos sinápticos com valores aleatórios ou iguais a zero;
- 2. Aplicar um padrão com seu respectivo valor desej (t_i) e verificar a saída da rede (s_i);
- 3. Calcula o erro na saída $e_i = t_j s_j$;
- 4. Se $e_i = 0$, volta ao passo 2;

Se e; != 0, atualiza os pesos:

EXEMPLO DE PERCEPTRON

†	0	0	0	_
x_2	0	Н	0	Н
\mathbf{x}_1	0	0	Н	_
×	Н	-	-	H
AND	Entrada 1:	Entrada 2:	Entrada 3:	Entrada 4:

Peso inicial: $w_0 = 0$, $w_1 = 0$, $w_2 = 0$

Taxa de aprendizado: $\eta = 0.5$

EXEMPLO DE PERCEPTRON - CICLO 1 (OU ÉI

Entrada 1:
$$s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)$$

= $f(0 \times 1 + 0 \times 0 + 0 \times 0) = f(0) = 0$
Entrada 2: $s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)$

$$= f(0x1+0x1+0x0) = f(0) = 0 - Entrada 3: S_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)$$

$$= f(0 \times 1 + 0 \times 0 + 0 \times 1) = f(0) = 0 - 1$$
Entrada 4: $S_{out} = f(w_0 \times_0 + w_1 \times_1 + w_2 \times_2)$

$$= f(0 \times 1 + 0 \times 1 + 0 \times 1) = f(0) = 0 - 1$$

$$W_0 = W_0 + (t-S_{out})X_0 = 0 + 0.5 \times (1-0) \times 1 = 0.5$$

EXEMPLO DE PERCEPTRON - CICLO 2

Entrada 1:
$$s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)$$

= $f(0.5 \times 1 + 0.5 \times 0 + 0.5 \times 0) = f(0.5) = 1$ —

 $w_0 = w_0 + (t - s_{out})x_0 = 0.5 + 0.5 \times (0-1) \times 1 = 0$
 $w_1 = w_1 + (t - s_{out})x_1 = 0.5 + 0.5 \times (0-1) \times 0 = 0$
 $w_2 = w_2 + (t - s_{out})x_2 = 0.5 + 0.5 \times (0-1) \times 0 = 0$

Entrada 2: $S_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)$

 $W_{i} = W_{i} + (t-c_{i}) \times (i - 0) \times (i - 0$

EXEMPLO DE PERCEPTRON - CICLO 2 (CONT

Entrada 3:
$$s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)$$

= $f(-0.5 \times 1 + 0.5 \times 1 + 0 \times 0) = f(0) = 0$ —
Entrada 4: $s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)$
= $f(-0.5 \times 1 + 0.5 \times 1 + 0 \times 1) = f(0) = 0$ —
 $w_0 = w_0 + (t - s_{out})x_0 = -0.5 + 0.5 \times (1 - 0) \times 1 = 1$
 $w_1 = w_1 + (t - s_{out})x_1 = 0.5 + 0.5 \times (1 - 0) \times 1 = 1$
 $w_2 = w_2 + (t - s_{out})x_2 = 0 + 0.5 \times (1 - 0) \times 1 = 0.5$

EXEMPLO DE PERCEPTRON - CICLO 3

Entrada 1:
$$s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)$$

= $f(0 \times 1 + 1 \times 0 + 0.5 \times 0) = f(0) = 0$ $\longrightarrow s_0$
Entrada 2: $s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)$
= $f(0 \times 1 + 1 \times 0 + 0.5 \times 1) = f(0.5) = 1$ $\longrightarrow s_0$
 $w_0 = w_0 + (t - s_{out})x_0 = 0 + 0.5 \times (0 - 1) \times 1 = -0.5$
 $w_1 = w_1 + (t - s_{out})x_1 = 1 + 0.5 \times (0 - 1) \times 0 = 1$
 $w_2 = w_2 + (t - s_{out})x_2 = 0.5 + 0.5 \times (0 - 1) \times 1 = 0$

EXEMPLO DE PERCEPTRON - CICLO 3 (C

Entrada 3:
$$S_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)$$

=
$$f(-0.5 \times 1 + 1 \times 1 + 0 \times 0)$$
 = $f(0.5)$ = 1 \longrightarrow S_{out}
 $W_0 = W_0 + (t-S_{out}) \times_0 = -0.5 + 0.5 \times (0-1) \times 1 = -1$

$$w_1 = w_1 + (t-s_{out})x_1 = 1 + 0.5 \times (0-1) \times 1 = 0.5$$

$$W_2 = W_2 + (t-S_{out})X_2 = 0 + 0.5 \times (0-1) \times 0 = 0.0$$

Entrada 4: $S_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)$

$$= f(-1x1+0.5x1+0x1) = f(-0.5) = 0 \longrightarrow s_0$$

$$w_0 = w_0 + (t-s_{out})x_0 = -1 + 0.5 \times (1-0) \times 1 = -0.5$$

$$w_1 = w_1 + (t-S_{out})x_1 = 0.5 + 0.5 \times (1-0) \times 1 = 1.0$$

EXEMPLO DE PERCEPTRON - CICLO 4

Entrada 1:
$$s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)$$

= $f(-0.5 \times 1 + 1.0 \times 0 + 0.5 \times 0) = f(-0.5) = 0$ —
Entrada 2: $s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)$
= $f(-0.5 \times 1 + 1.0 \times 0 + 0.5 \times 1) = f(0) = 0$ —
Entrada 3: $s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)$
= $f(-0.5 \times 1 + 1.0 \times 1 + 0.5 \times 0) = f(0.5) = 1$ —
 $w_0 = w_0 + (t-s_{out})x_0 = -0.5 + 0.5 \times (0-1) \times 1 = -1$

 $w_1 = w_1 + (t-s_{out})x_1 = 1.0 + 0.5 \times (0-1) \times 1 = 0$

EXEMPLO DE PERCEPTRON - CICLO 4 (C

Entrada 4:
$$s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)$$

 $f(-1 \times 1 + 0.5 \times 1 + 0.5 \times 1) = f(0.0) = 0$ —
$$w_0 = w_0 + (t-s_{out})x_0 = -1.0 + 0.5 \times (1-0) \times 1$$

$$w_1 = w_1 + (t-s_{out})x_1 = 0.5 + 0.5 \times (1-0) \times 1$$

$$w_2 = w_2 + (t-s_{out})x_2 = 0.5 + 0.5 \times (1-0) \times 0 = 0$$

5a Ciclo

Entrada 1: $S_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)$

EXEMPLO DE PERCEPTRON - CICLO 5

Entrada 2:
$$s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)$$

= $f(-0.5 \times 1 + 1 \times 0 + 1 \times 1) = f(0.5) = 1$ \longrightarrow s_{out}
 $w_0 = w_0 + (t - s_{out})x_0 = -0.5 + 0.5 \times (0-1) \times 1 = -1.0$
 $w_1 = w_1 + (t - s_{out})x_1 = 1.0 + 0.5 \times (0-1) \times 0 = 1.0$
 $w_2 = w_2 + (t - s_{out})x_2 = 1.0 + 0.5 \times (0-1) \times 1 = 0.5$

=
$$f(-1.0 \times 1 + 1 \times 1 + 0.5 \times 0) = f(0.0) = 0$$
 —
Entrada 4: $S_{out} = f(w_0 x_0 + w_1 x_1 + w_2 x_2)$

Entrada 3: $S_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)$

EXEMPLO DE PERCEPTRON - CICLO 6 (F

Entrada 1:
$$s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)$$

= $f(-1.0 \times 1 + 1 \times 0 + 0.5 \times 0) = f(-1.0) = 0$ ——
Entrada 2: $s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)$
= $f(-1.0 \times 1 + 1 \times 0 + 0.5 \times 1) = f(-0.5) = 0$ ——

=
$$f(-1.0 \times 1 + 1 \times 0 + 0.5 \times 1) = f(-0.5) = 0$$

Entrada 3: $S_{out} = f(w_0 x_0 + w_1 x_1 + w_2 x_2)$

$$= f(-1.0 \times 1 + 1 \times 1 + 0.5 \times 0) = f(0.0) = 0$$

Entrada 4:
$$s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)$$

= $f(-1.0 \times 1 + 1 \times 1 + 0.5 \times 1) = f(0.5) = 1$

VARIANDO A TAXA DE APRENC

Taxa constante:

$$\eta(n) = \eta_0$$

for all n

Taxa variando no tempo:

$$u(n) = \frac{c}{n}$$

Estratégia "Procura-então-converge":

O PROBLEMA DO XOR

- Mudando-se os valores de w1, w2 e θ , muda-s inclinação e a posição da reta;
- Entretanto é impossível achar uma reta que di de forma separar os pontos A1 e A2 de um lad de outro
- Resumo: redes com <mark>uma</mark> única camada só repr funções linearmente separáveis

O PROBLEMA DO XOR

FILTRAGEM ADAPTATIVA

- 1. Filtros adaptativos são dispositivos auto-ajustáveis em algoritmos recursivos, que modificam seus pará acordo com critérios pré-estabelecidos.
- 2.Em ambiente estacionário, acompanham a solução
- 3.Em ambiente não estacionário, acompanham as m do sinal envolvido.

A Race nara o decenvolvimento do Adalina

FILTRAGEM ADAPTATIVA

ADALINE: PREDIÇÃO

ADALINE: CANCELAMENTO DE

FILTRAGEM ADAPTATIVA

- 1. ADAptive LINear Element ou
- 2. ADAptive Linear NEuron

- 4. Concebido por Widrow e Hoff (1960)
- 5. Máquina adaptável para classificações de padrões problemas lineares

Teacher

Error

ADALINE

O Modelo Adaline tem

seus pesos adaptados em

função do erro de sua

saída linear (antes da

aplicação da função de

utiverso (daí o pome

- O algoritmo de aprendizagem visa minimizar o saídas em relação aos valores desejados (conju treinamento)
- 2. A função de custo a ser minimizada é a soma d quadráticos:

PROCESSO DE APRENDIZAGEM

Processo de minimização do erro quadrático pel **Gradiente Descendente**

$$\Delta w_{ij} = -\eta \frac{\partial E}{\partial w_{ii}}$$

Cada peso sináptico i do elemento processador j proporcionalmente ao negativo da derivada parc deste processador em relação ao peso.

PROCESSO DE APRENDIZAGEM

Calcula Awii

(0)⁸%

Curva de Aprendizagem

 $0.1 \mathcal{E}_{\rm av}(0)$

É importante observar que a regra Delta (LMS uma estimativa do vetor de pesos que resultar utilização do método da descida mais íngreme descendente). Por quê?

"Método do Gradiente Estocástico"

ADALINE VS. PERCEPTRON

Qual a diferença entre o processo de atualizaç do Adaline e do Perceptron?

$$\Delta w_{ij} = \eta \left(d_j - s_j \right) k_i$$

UMA OBSERVAÇÃO!

Redes Neurais de múltiplas camadas só oferecem va sobre as de uma única camada se existir uma função não-linear entre as camadas. Supondo:

$$\mathbf{y} = (\mathbf{x} \mathbf{w}_A) \mathbf{w}_B$$

Utilizando propriedades da álgebra linear

 $V(\mathbf{w}_A \in \mathbf{w}_B) \exists \mathbf{w}_C \mid \mathbf{w}_C = \mathbf{w}_C$ - 080

MULTI LAYER PERCEPTRON (M

- Redes com apenas uma camada representar funções linearmente separáveis (correto?)
- Redes de múltiplas camadas solucionam ess
- O desenvolvimento do algoritmo Back-Propa um dos motivos para o reaquecimento da ár neurais

N EXT

1. Redes Multi Layer Perceptron (MLP) e o algorit Retropropagação (Backpropagation)