2024-03-04

一、选择题: 本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知 z_1, z_2 是方程 $x^2 - 2x + 2 = 0$ 的两个复根,则 $|z_1^2 - z_2^2| = ($) A. 2 B. 4 C. 2i2.M 是双曲线 $\frac{x^2}{4} - \frac{y^2}{12} = 1$ 上一点,点 F_1, F_2 分别是双曲线左右焦点,若 $\left| MF_1 \right| = 5$,则 $\left| MF_2 \right| = ($) C. 9 A.9或1 D.9或2 B. 1 3.设A, B 是一个随机试验中的两个事件,则下列结论正确的是() A. $P(A \cup B) = P(A) + P(B)$ B. $P(A) + P(B) \le 1$ C. $P(A \cap B) = P(A)P(B)$ D. 若 $A \subset B$, 则 $P(A) \le P(B)$ 4.中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究. 设a,b,m(m>0)为整数,若a和b被m除得 的余数相同,则称 a 和 b 对模 m 同余,记为 $a \equiv b \pmod{m}$. 若 $a = C_{20}^0 + C_{20}^1 \times 3 + C_{20}^2 \times 3^2 + \dots + C_{20}^{20} \times 3^{20}$, $a \equiv b \pmod{5}$, 则 b 的值可以是 () A. 2004 B. 2005 C. 2025 D. 2026 5.己知平面向量 \vec{a} , \vec{b} 不共线, $|\vec{a}|=1$, $\vec{a}\cdot\vec{b}=1$,记 \vec{b} 与 $2\vec{a}+\vec{b}$ 的夹角是 θ ,则 θ 最大时, $|\vec{a}-\vec{b}|=$ () C. $\sqrt{3}$ B. $\sqrt{2}$ A. 1 D. 2 6.已知三个函数 $f(x) = 2^x + x - 2$, $g(x) = x^3 - 8$, $h(x) = \log_2 x + x - 2$ 的零点依次为 a, b, c,则 a + b + c = () B. 5 C. 4 A. 6 D. 3 7.等比数列 $\{a_n\}$ 中,首项 $a_1 > 0$, $a_1 + a_2 + a_3 = a_1 \cdot a_2 \cdot a_3$,则() B. $a_1 \cdot a_3 < 2a_2$ C. $a_1 + a_3 > a_2^2$ D. $a_1 + a_3 < a_2^2$ 8.设 $\alpha, \beta \in R$, 且 $\frac{3}{2+\sin 2\alpha} + \frac{2021}{2+\sin \beta} = 2024$, 则 $\tan(\alpha - \beta) = ($) A. -1 B. 1 C. $\sqrt{3}$ D. $-\sqrt{3}$ 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6 分, 部分选对的得部分分. 9.已知复数 $z = 2 + \sqrt{x} \cdot i(x > 0)$,设 $y = z \cdot \overline{z}$,当 x 取大于 0 的一组实数 x_1, x_2, x_3, x_4, x_5 时,所得的 y 值依次为另一组实 数 y_1, y_2, y_3, y_4, y_5 , 则 () A. 两组数据的中位数相同 B. 两组数据的极差相同 C. 两组数据的方差相同 D. 两组数据的均值相同 10.已知 P 是正方体 $ABCD - A_iB_iC_iD_i$ 的中心,过点 P 的直线 I 与该正方体的表面交于 E, F 两点.下列叙述正确的 有 () A. 点 E, F 到正方体 6 个表面的距离分别为 e_i , $f_i(i=1,2,6)$, 则 $\sum_{i=1}^{6} (e_i+f_i)$ 为定值. B. 线段 *EF* 在正方体 6 个表面的投影长度为 t_i ($i = 1, 2, \dots, 6$),则 $\sum_{i=1}^{6} t_i$ 为定值. C. 正方体 8 个顶点到直线 l 的距离分别为 d_i (i = 1, 2, ..., 8) ,则 $\sum_{i=1}^{8} d_i$ 为定值.

D. 直线 l 与正方体 12 条棱所成的夹角的 $\alpha_i (i=1,2,\cdots,12)$,则 $\sum_{i=1}^{12} \cos^2 \alpha_i$ 为定值.

11.已知定义在[0,1] 上的函数 f(x) 满足: $\forall x \in [0,1]$, 都有 f(1-x) + f(x) = 1 , 且 $f(\frac{x}{3}) = \frac{1}{2} f(x)$, f(0) = 0 , 当 $0 \le x_1 < x_2 \le 1$ 时,有 $f(x_1) \le f(x_2)$,则() A. $f(\frac{1}{2}) = \frac{1}{2}$ B. $f(1) = \frac{1}{2}$ C. $f(\frac{1}{3}) = \frac{1}{2}$ D. $f(\frac{\ln 3}{3}) = \frac{1}{2}$

三、填空题:本题共3小题,每小题5分,共15分.

12.设集合 $A = \{(m_1, m_2, m_3) | m_i \in \{-2, 0, 2\}, i \in \{1, 2, 3\}\}$,则集合 A 满足条件: " $2 \le m_1 | + | m_2 | + | m_3 | \le 5$ "的元素个数为

13.若曲线 $\frac{x^2}{4} + \frac{y |y|}{9} = 1$ 和曲线 kx + y - 3 = 0 有三个交点,则 k 的取值范围是______.

14.小王准备在单位附近的某小区买房,若小王看中的高层住宅总共有 n 层 $(20 \le n \le 30, n \in N^*)$,设第 1 层的"环境 满意度"为 1, 且第 $k \in (2 \le k \le n, k \in N^*)$ 比第 k-1 层的"环境满意度"多出 $3k^2-3k+1$; 又已知小王有"恐高症", 设第 1 层的"高层恐惧度"为 1, 且第 k 层 $(2 \le k \le n, k \in N^*)$ 比第 k-1 层的"高层恐惧度"高出 $\frac{1}{2}$ 倍.在上述条件下,若第 k 层 "环境满意度"与"高层恐惧度"分别为 a_k , b_k ,记小王对第 k 层"购买满意度"为 c_k ,且 $c_k = \frac{a_k}{b_k}$,则小王最想买第 _____ 层住宅.(参考公式及数据: $1^2+2^2+3^2+\cdots+n^2=\frac{n(n+1)(2n+1)}{6}$ 其中 $n\in N^*$, $\ln 2\approx 0.6931$, $\ln 3 \approx 1.0986$, $\sqrt[3]{\frac{4}{3}} \approx 1.1006$)

四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.

15.已知函数 $f(x) = ax^2 - x - \ln x$, 其中 $a \in R$. (1) 若 a = 1, 求函数的极值

(2) 是否存在实数 a,使得函数 y = f(x) 在(0,1) 内单调? 若存在,求出 a 的取值范围;若不存在,请说明理由;

16. 如图,圆柱上,下底面圆的圆心分别为O,O₁,该圆柱的轴截面为正方形,三棱柱 $ABC - A_1B_1C_1$ 的三条侧棱均

为圆柱的母线,且 $AB = AC = \frac{\sqrt{30}}{6}OO_1$,点 P 在轴 OO_1 上运动.

- (1) 证明:不论 P 在何处,总有 $BC \perp PA_{l}$;
- (2) 当 P 为 OO 的中点时, 求平面 APB 与平面 B_1PB 夹角的余弦值.

17.如图,小华和小明两个小伙伴在一起做游戏,他们通过划拳(剪刀、石头、布)比赛决胜谁首先登上第3个台阶,他们规定从平地开始,每次划拳赢的一方登上一级台阶,输的一方原地不动,平局时两个人都上一级台阶,如果一方连续两次赢,那么他将额外获得一次上一级台阶的奖励,除非已经登上第3个台阶,当有任何一方登上第3个台阶时,游戏结束,记此时两个小伙伴划拳的次数为X.

- (1) 求游戏结束时小华在第2个台阶的概率;
- (2) 求 X 的分布列和数学期望.

2024-03-04

- 18. 已知椭圆 $C_1: \frac{x^2}{8} + \frac{y^2}{4} = 1$ 与椭圆 C_2 有相同的离心率,椭圆 C_2 焦点在 y 轴上且经过点 $(1,\sqrt{2})$.
- (1)求椭圆 C_2 的标准方程;(2)设A为椭圆 C_1 的上顶点,经过原点的直线 l交椭圆 C_2 于P、Q,直线 AP、AQ与椭圆 C_1 的另一个交点分别为点M和N,若 ΔAMN 与 ΔAPQ 的面积分别为 S_1 和 S_2 ,求 $\frac{S_1}{S_2}$ 的取值范围.

19.设正整数 $n \ge 3$,有穷数列 $\{a_n\}$ 满足 $a_i > 0 (i=1,2,\cdots,n)$,且 $a_1 + a_2 + \cdots + a_n = n$,定义积值 $S = a_1 \cdot a_2 \cdot \cdots \cdot a_n$.

- (1) 若n=3时,数列 $\{\frac{1}{2},1,\frac{3}{2}\}$ 与数列 $\{\frac{1}{6},\frac{2}{3},\frac{13}{6}\}$ 的S的值分别为 S_1,S_2 .①试比较 S_1 与 S_2 的大小关系;
- ②若数列 $\{a_n\}$ 的S满足 $\min\{S_1,S_2\}$ <S< $\max\{S_1,S_2\}$,请写出一个满足条件的 $\{a_n\}$;
- (2) 若 n=4 时,数列 $\{a_1,a_2,a_3,a_4\}$ 存在 $i,j\in\{1,2,3,4\}$,使得 $a_i<1< a_j$,将 a_i,a_j 分别调整为 $a_i^{'}=a_i+a_j-1$, $a_j^{'}=1$, 其它 $2 \land a_k (k \neq i,j)$,令 $a_k^{'}=a_k$.数列 $\{a_1,a_2,a_3,a_4\}$ 调整前后的积值分别为 S,S',写出 S,S'的大小关系并给出证明;
- (3) 求 $S = a_1 \cdot a_2 \cdot \cdots \cdot a_n$ 的最大值,并确定 S 取最大值时 a_1, a_2, \cdots, a_n 所满足的条件,并进行证明.

解答

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1.已知 z_1, z_2 是方程 $x^2 - 2x + 2 = 0$ 的两个复根,则 $\left|z_1^2 - z_2^2\right| = (B)$ A. 2 B. 4 C. 2i

2.M 是双曲线 $\frac{x^2}{4} - \frac{y^2}{12} = 1$ 上一点,点 F_1, F_2 分别是双曲线左右焦点,若 $|MF_1| = 5$,则 $|MF_2| = (B)$

A.9或1

B. 1

C.9 D.9或2

key: 若*M*在右支上,则5 =| MF_1 | ≥ a+c=2+4=6

:: M在左支上,:| MF_2 |=| MF_1 |+2a=9,选C

3.设A,B是一个随机试验中的两个事件,则下列结论正确的是(

A. $P(A \cup B) = P(A) + P(B)$ B. $P(A) + P(B) \le 1$ C. $P(A \cap B) = P(A)P(B)$ D. 若 $A \subset B$, 则 $P(A) \le P(B)$

4.中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究. 设a,b,m(m>0)为整数,若a和b被m除得 的余数相同,则称 a 和 b 对模 m 同余,记为 $a\equiv b \pmod{m}$. 若 $a=C_{20}^0+C_{20}^1\times 3+C_{20}^2\times 3^2+\cdots+C_{20}^{20}\times 3^{20}$, $a\equiv b \pmod{5}$,

则 b 的值可以是 (D) A. 2004B. 2005 C. 2025 D. 2026

5.己知平面向量 \vec{a} , \vec{b} 不共线, $|\vec{a}|=1$, $\vec{a}\cdot\vec{b}=1$,记 \vec{b} 与 $2\vec{a}+\vec{b}$ 的夹角是 θ ,则 θ 最大时, $|\vec{a}-\vec{b}|=(C)$

A. 1

B. $\sqrt{2}$

C. $\sqrt{3}$

6.已知三个函数 $f(x) = 2^x + x - 2$, $g(x) = x^3 - 8$, $h(x) = \log_2 x + x - 2$ 的零点依次为 a, b, c,则 a + b + c = (C)

A. 6

B. 5

C. 4

D. 3

7.等比数列 $\{a_n\}$ 中,首项 $a_1 > 0$, $a_1 + a_2 + a_3 = a_1 \cdot a_2 \cdot a_3$,则(C)

A. $a_1 \cdot a_3 > 2a_2$

B. $a_1 \cdot a_3 < 2a_2$ C. $a_1 + a_3 > a_2^2$ D. $a_1 + a_3 < a_2^2$

 $key: a_1 + a_2 + a_3 = a_1(1 + q + q^2) = a_2^3 = a_1^3 q^3 \stackrel{\text{H}}{\circlearrowleft} a_1^2 = \frac{1 + q + q^2}{a^3} > 0 \stackrel{\text{H}}{\circlearrowleft} q > 0, \therefore a_2 = a_1 q = \sqrt{1 + q + \frac{1}{a}} \ge \sqrt{3}$

 $\therefore a_1 + a_3 - a_2^2 = a_2^3 - a_2 - a_2^2 = a_2(a_2^2 - a_2 - 1) > 0$

8.设 $\alpha, \beta \in R$, 且 $\frac{3}{2+\sin 2\alpha} + \frac{2021}{2+\sin \beta} = 2024$, 则 $\tan(\alpha - \beta) = (B)$ A. -1 B. 1 C. $\sqrt{3}$ D. $-\sqrt{3}$

 $key: \frac{3}{2+\sin 2\alpha} + \frac{2021}{2+\sin \beta} = 2024 \Leftrightarrow 0 = 3 - \frac{3}{2+\sin 2\alpha} + 2021 - \frac{2021}{2+\sin \beta} = 3 \cdot \frac{1+\sin 2\alpha}{2+\sin 2\alpha} + 2021 \cdot \frac{1+\sin \beta}{2+\sin \beta}$

 $\therefore \frac{1+\sin 2\alpha}{2+\sin 2\alpha} \ge 0, \frac{1+\sin \beta}{2+\sin \beta} \ge 0, \therefore 1+\sin 2\alpha = 0, \exists 1+\sin \beta = 0, \therefore 2\alpha = 2k_1\pi - \frac{\pi}{2}, \exists \beta = 2k_2\pi - \frac{\pi}{2}, k_1, k_2 \in \mathbb{Z},$

 $\therefore \tan(\alpha - \beta) = \tan(k_1 \pi - \frac{\pi}{4} - 2k_2 \pi + \frac{\pi}{2}) = 1$

二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6 分,部分选对的得部分分.

2024-03-04

9.已知复数 $z=2+\sqrt{x}\cdot i(x>0)$,设 $y=z\cdot \overline{z}$,当 x 取大于 0 的一组实数 x_1,x_2,x_3,x_4,x_5 时,所得的 y 值依次为另一组实数 y_1,y_2,y_3,y_4,y_5 ,则(BC)

A. 两组数据的中位数相同 B. 两组数据的极差相同 C. 两组数据的方差相同 D. 两组数据的均值相同 10.已知 P 是正方体 $ABCD - A_lB_lC_lD_l$ 的中心,过点 P 的直线 l 与该正方体的表面交于 E,F 两点.下列叙述正确的 有(AD)A. 点 E,F 到正方体 6 个表面的距离分别为 e_i , $f_i(i=1,2,6)$,则 $\sum_{i=1}^6 (e_i+f_i)$ 为定值.

C. 正方体 8 个顶点到直线
$$l$$
 的距离分别为 d_i ($i = 1, 2, ..., 8$) ,则 $\sum_{i=1}^{8} d_i$ 为定值.

D. 直线
$$l$$
 与正方体 12 条棱所成的夹角的 $\alpha_i (i=1,2,\cdots,12)$,则 $\sum_{i=1}^{12} \cos^2 \alpha_i$ 为定值.

key:设正方体的棱长为1,

$$A$$
:如图, $\sum_{i=1}^{6} (e_i + f_i) = 0 + 0 + 1 + 1 + 1 + 1 = 4$

B:如图,EF在面ABCD,面 $A_1B_1C_1D_1$ 上的投影长度为 E_1F_1 , E_2F_2 之和不为定值, $\therefore \sum_{i=1}^{6} t_i$ 不是定值,B错,C也错;

$$D$$
:由长方体体对角线性质: $\cos^2 \angle C_1 AB + \cos^2 \angle C_1 AD + \cos^2 \angle C_1 AA_1 = \frac{AB^2 + AD^2 + AA_1^2}{AC_1^2} = 1$, $\therefore D$ 对

11.已知定义在[0,1]上的函数 f(x) 满足: $\forall x \in [0,1]$, 都有 f(1-x)+f(x)=1, 且 $f(\frac{x}{3})=\frac{1}{2}f(x)$, f(0)=0, 当 $0 \le x_1 < x_2 \le 1$ 时,有 $f(x_1) \le f(x_2)$,则(ACD)A. $f(\frac{1}{2})=\frac{1}{2}$ B. $f(1)=\frac{1}{2}$ C. $f(\frac{1}{3})=\frac{1}{2}$ D. $f(\frac{\ln 3}{3})=\frac{1}{2}$ key:由f(1-x)+f(x)=1得 $f(\frac{1}{2})=\frac{1}{2}$,A对;f(1)+f(0)=f(1)=1,B错; $f(\frac{1}{3})=\frac{1}{2}f(1)=\frac{1}{2}$,C对;

$$\because \frac{1}{2} > \frac{1}{3} \ln 3 > \frac{1}{3}, \therefore f(\frac{\ln 3}{3}) = \frac{1}{2}, D$$

三、填空题:本题共3小题,每小题5分,共15分.

12.设集合 $A = \{(m_1, m_2, m_3) | m_i \in \{-2, 0, 2\}, i \in \{1, 2, 3\}\}$,则集合 A 满足条件:" $2 \le m_1 | + | m_2 | + | m_3 | \le 5$ "的元素个数为

_____. key:
$$(|m_1| + |m_2| + |m_3| = 2)C_3^1 \cdot 2 + (|m_1| + |m_2| + |m_3| = 4)C_3^2 \cdot 2^2 = 18$$

13.若曲线
$$\frac{x^2}{4} + \frac{y|y|}{9} = 1$$
 和曲线 $kx + y - 3 = 0$ 有三个交点,则 k 的取值范围是_____

key:
$$\begin{cases} \frac{x^2}{4} - \frac{y^2}{9} = 1(y < 0) \\ kx + y - 3 = 0 \end{cases}$$
 if $\pm y$? $= (9 - 4k^2)x^2 + 24kx - 72 = 0$

$$\therefore 9 - 4k^2 \neq 0, \, \text{且}\Delta = 32 \times 9(9 - 2k^2) = 0 \\ \text{得}k = \pm \frac{3}{\sqrt{2}}, \, \text{如图}, \, \therefore \, k \in (-\frac{3\sqrt{2}}{2}, -\frac{3}{2}) \cup (\frac{3}{2}, \frac{3\sqrt{2}}{2})$$

14.小王准备在单位附近的某小区买房,若小王看中的高层住宅总共有 n 层 $(20 \le n \le 30, n \in N^*)$,设第 1 层的"环境 满意度"为 1,且第 $k \in (2 \le k \le n, k \in N^*)$ 比第 k-1 层的"环境满意度"多出 $3k^2-3k+1$;又已知小王有"恐高症",设第 1 层的"高层恐惧度"为 1, 且第 k 层 (2 ≤ k ≤ n,k ∈ N^*) 比第 k −1层的"高层恐惧度"高出 $\frac{1}{3}$ 倍.在上述条件下,若第 k 层 "环境满意度"与"高层恐惧度"分别为 a_k , b_k ,记小王对第 k 层"购买满意度"为 c_k ,且 $c_k = \frac{a_k}{b_k}$,则小王最想买第 $\ln 3 \approx 1.0986$, $\sqrt[3]{\frac{4}{3}} \approx 1.1006$)

key:由己知得 $a_k = a_{k-1} + 3k^2 - 3k + 1, b_k = \frac{4}{3}b_{k-1}$

$$\therefore a_k = a_k - a_{k-1} + \dots + a_2 - a_1 + a_1 = 3(k^2 + \dots + 2^2) - 3(k + \dots + 2) + k - 1 + 1 = k^3, b_k = (\frac{4}{3})^{k-1}, \\ \therefore \frac{c_{k+1}}{c_k} = \frac{(k+1)^3}{k^3} \cdot \frac{3}{4} > 1 \Leftrightarrow k < \frac{1}{\sqrt[3]{\frac{4}{3}} - 1} \approx 9.9,$$

 $\therefore c_1 < c_2 < \dots < c_9 < c_{10} > c_{11} > \dots, \therefore c_{10}$ 最大

四、解答题: 本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.

15.已知函数 $f(x) = ax^2 - x - \ln x$, 其中 $a \in R$. (1) 若 a = 1, 求函数的极值

(2) 是否存在实数 a,使得函数 y = f(x) 在(0,1) 内单调?若存在,求出 a 的取值范围:若不存在,请说明理由:

解: (1) 函数的定义域为
$$(0,+\infty)$$
 , 当 $a=1$ 时, $f'(x)=2x-1-\frac{1}{x}=\frac{2x^2-x-1}{x}=\frac{(2x+1)(x-1)}{x}$

当 $x \in (0,1), f'(x) < 0$, 函数单调递减, 当 $x \in (1,+\infty), f'(x) > 0$, 函数单调递增,

 $\therefore x = 1$ 是函数的极小值点, 函数的极小值为 f(1) = 1 - 1 - 0 = 0

(2) 若函数 y = f(x) 在 (0,1) 内单调递增,

则
$$f'(x) = 2ax - 1 - \frac{1}{x} \ge 0$$
 在 $(0,1)$ 恒成立.即 $a \ge \frac{1}{2} \left(\frac{1}{x^2} + \frac{1}{x} \right)$ 在 $(0,1)$ 恒成立.

因为
$$\frac{1}{2}\left(\frac{1}{x^2} + \frac{1}{x}\right) = \frac{1}{2}\left[\left(\frac{1}{x} + \frac{1}{2}\right)^2 - \frac{1}{4}\right] \in (1, +\infty)$$

所以使得函数 y = f(x) 在 (0,1) 内单调递增的 a 不存在,

若函数 y = f(x) 在 (0,1) 内单调递减,则 $f'(x) = 2ax - 1 - \frac{1}{x} \le 0$ 在 (0,1) 恒成立.

即
$$a \le \frac{1}{2} \left(\frac{1}{x^2} + \frac{1}{x} \right)$$
在 $(0,1)$ 恒成立.即 $a \le \frac{1}{2} \left(\frac{1}{x^2} + \frac{1}{x} \right) = \frac{1}{2} \left[\left(\frac{1}{x} + \frac{1}{2} \right)^2 - \frac{1}{4} \right]$ 在 $(0,1)$ 恒成立.

又 $\frac{1}{2} \left(\frac{1}{x^2} + \frac{1}{x} \right) = \frac{1}{2} \left| \left(\frac{1}{x} + \frac{1}{2} \right)^2 - \frac{1}{4} \right| \in (1, +\infty)$,所以 $a \le 1$ 时,函数 y = f(x) 在 (0, 1) 内单调递减.

综上, 当 a≤1 时, 使得函数 y = f(x) 在 (0,1) 内单调递减.

16. 如图,圆柱上,下底面圆的圆心分别为O,O,该圆柱的轴截面为正方形,三棱柱 $ABC - A_iB_iC_i$ 的三条侧棱均

为圆柱的母线,且 $AB = AC = \frac{\sqrt{30}}{6}OO_1$,点 P 在轴 OO_1 上运动.

- (2) 当 P 为 OO_1 的中点时,求平面 A_1PB 与平面 B_1PB 夹角的余弦值.
- 【答案】(1)证明:连接AO并延长,交BC于M,交圆柱侧面于N.

因为 AB = AC , AM = AM , 所以 $\triangle ABM \cong \triangle ACM$, 所以 MB = MC , 即 M 为 BC 中点,

所以 $OA \perp BC$.

又在圆柱 OO_1 中, AA_1 上 平面 ABC, BC \subset 平面 ABC,

所以
$$AA_1 \perp BC$$
 , 因为 $AO \cap AA_1 = A$, $AO, AA_1 \subset \text{平面 } AOO_1A_1$,

所以 BC 上平面 AOO_1A_1 .

因为不论 P 在何处, 总有 PA_{l} \subset 平面 $AOO_{l}A_{l}$,

所以 $BC \perp PA_1$.

(2) 解: 设
$$OO_1 = AA_1 = AN = a(a > 0)$$
, 则 $AB = AC = \frac{\sqrt{30}}{6}a$.

在
$$\triangle ABC$$
 中, $AM = AC\cos\angle CAM = AC \times \frac{AC}{AN} = \frac{5}{6}a$,

则
$$OM = \frac{1}{3}a$$
. 所以 $CM = BM = \sqrt{\left(\frac{\sqrt{30}}{6}a\right)^2 - \left(\frac{5}{6}a\right)^2} = \frac{\sqrt{5}}{6}a$.

$$\text{ for } A_{\rm I}\!\left(0,\!-\frac{1}{2}a,\!0\right), \quad B_{\rm I}\!\left(\frac{\sqrt{5}}{6}a,\!\frac{1}{3}a,\!0\right), \quad B\!\left(\frac{\sqrt{5}}{6}a,\!\frac{1}{3}a,\!a\right), \quad P\!\left(0,\!0,\!\frac{1}{2}a\right),$$

所以
$$\overline{A_1B} = (\frac{\sqrt{5}}{6}a, \frac{5}{6}a, a)$$
 , $\overline{A_1P} = (0, \frac{1}{2}a, \frac{1}{2}a)$, $\overline{B_1B} = (0, 0, a)$, $\overline{B_1P} = (-\frac{\sqrt{5}}{6}a, -\frac{1}{3}a, \frac{1}{2}a)$.

设平面 A_1PB 的一个法向量为 $\vec{m} = (x, y, z)$,

则
$$\left\{ \frac{\sqrt{5}}{6}ax + \frac{5}{6}ay + az = 0\frac{1}{2}ay + \frac{1}{2}az = 0 \right\}$$
, 取 $x = 1$, 得 $\vec{m} = (1, \sqrt{5}, -\sqrt{5})$.

设平面 B_1PB 的一个法向量为 $\vec{n} = (b,c,d)$,

则
$$\left\{ad = 0 - \frac{\sqrt{5}}{6}ab - \frac{1}{3}ac + \frac{1}{2}ad = 0, \ \$$
取 $b = 2, \ \$ 得 $\vec{n} = (2, -\sqrt{5}, 0).$

设平面 A_lPB 与平面 B_lPB 的夹角为 θ ,则 $\cos\theta$ = \cos < \vec{m} , \vec{n} > = $\frac{|\vec{m}\cdot\vec{n}|}{|\vec{m}\,||\,\vec{n}\,|}$ = $\frac{\sqrt{11}}{11}$,

所以平面 A_1PB 与面 B_1PB 夹角的余弦值为 $\frac{\sqrt{11}}{11}$.

17.如图,小华和小明两个小伙伴在一起做游戏,他们通过划拳(剪刀、石头、布)比。他们规定从平地开始,每次划拳赢的一方登上一级台阶,输的一方原地不动,平局方连续两次赢,那么他将额外获得一次上一级台阶的奖励,除非已经登上第3个台阶时,游戏结束,记此时两个小伙伴划拳的次数为 X.

(1) 求游戏结束时小华在第 2 个台阶的概率; (2) 求 X 的分布列和数学期望.

解: (1) 设第i次划拳小华赢为事件 A_i ,平为 B_i ,输为 C_i ,则 $P(A_i) = P(B_i) = P(C_i) = \frac{1}{3}$,

所以游戏结束时小华在第2台阶,小明在第3台阶,

:. 所求概率为
$$\frac{3}{3^3} + \frac{7}{3^4} + \frac{2}{3^5} = \frac{50}{243}$$

(2) 依题可知 X 的可能取值为 2、3、4、5,

$$P(X = 5) = 2P(A_1)P(C_2)P(A_3)P(C_4) = 2 \times (\frac{1}{3})^4 = \frac{2}{81}$$

$$P(X = 2) = 2P(A_1)P(A_2) = 2 \times (\frac{1}{3})^2 = \frac{2}{9}$$
,

$$P(X = 3) = 2P(A_1)P(B_2)P(A_3) + 2P(B_1)P(A_2)P(A_3) + P(B_1)P(B_2)P(B_3)$$

$$+2P(A_1)P(B_2)P(B_3) + 2P(B_1)P(A_2)P(B_3) + 2P(B_1)P(B_2)P(A_3) + 2P(C_1)P(A_2)P(A_3) = \frac{13}{27}$$

$$P(X=4)=1-P(X=5)-P(X=2)-P(X=3)=\frac{22}{81}$$
,

所以
$$X$$
 的数学期望为: $E(X) = 2 \times \frac{2}{9} + 3 \times \frac{13}{27} + 4 \times \frac{22}{81} + 5 \times \frac{2}{81} = \frac{251}{81}$.

- 18. 已知椭圆 $C_1: \frac{x^2}{8} + \frac{y^2}{4} = 1$ 与椭圆 C_2 有相同的离心率,椭圆 C_2 焦点在 y 轴上且经过点 $(1,\sqrt{2})$.
- (1) 求椭圆 C_2 的标准方程; (2) 设A为椭圆 C_1 的上顶点,经过原点的直线 l交椭圆 C_2 于P、Q,直线 AP、

AQ 与椭圆 C_1 的另一个交点分别为点 M 和 N,若 $\triangle AMN$ 与 $\triangle APQ$ 的面积分别为 S_1 和 S_2 ,求 $\frac{S_1}{S_2}$ 的取值范围.

解: (1) 由己知得 $\begin{cases} \frac{c}{a} = \frac{2}{2\sqrt{2}} \\ \frac{2}{a^2} + \frac{1}{b^2} = 1 \end{cases}$ 得 $c = b = \sqrt{2}, a = 2, \therefore$ 椭圆 C_2 的标准方程为 $\frac{y^2}{4} + \frac{x^2}{2} = 1$

将
$$l_{AP}$$
: $y = k_1 x + 2$ 代入 C_2 方程得 $(k_1^2 + 2)x^2 + 4k_1 x = 0$, $\therefore x_P = \frac{-4k_1}{k_1^2 + 2}$

将
$$l_{AP}: y = k_1 x + 2$$
代入 C_1 方程得 $(1 + 2k_1^2)x^2 + 8k_1 x = 0$, $\therefore x_M = -\frac{8k_1}{1 + 2k_1^2}$

$$\therefore \frac{|AM|}{|AP|} = \left| \frac{x_M}{x_P} \right| = \frac{2(k_1^2 + 2)}{2k_1^2 + 1}, \quad |\exists \mathbb{H} \frac{|AN|}{|AQ|} = \frac{2(k_2^2 + 2)}{2k_2^2 + 1} = \frac{4(k_1^2 + 2)}{k_1^2 + 8}$$

$$=\frac{8}{-18(\frac{1}{t}-\frac{1}{4})^2+\frac{25}{8}}\in [\frac{16}{25},4)$$
即为所求的

- (1) 若n=3时,数列 $\{\frac{1}{2},1,\frac{3}{2}\}$ 与数列 $\{\frac{1}{6},\frac{2}{3},\frac{13}{6}\}$ 的S的值分别为 S_1,S_2 . ①试比较 S_1 与 S_2 的大小关系;
- ②若数列 $\{a_n\}$ 的S满足 $\min\{S_1,S_2\}$ <S< $\max\{S_1,S_2\}$,请写出一个满足条件的 $\{a_n\}$;
- (2) 若 n=4 时,数列 $\{a_1,a_2,a_3,a_4\}$ 存在 $i,j\in\{1,2,3,4\}$,使得 $a_i<1< a_j$,将 a_i,a_j 分别调整为 $a_i'=a_i+a_j-1$, $a_j'=1$,

其它 2 个 $a_k(k \neq i, j)$,令 $a_k' = a_k$.数列 $\{a_1, a_2, a_3, a_4\}$ 调整前后的积值分别为 S, S',写出 S, S'的大小关系并给出证明;

(3) 求 $S = a_1 \cdot a_2 \cdot \cdots \cdot a_n$ 的最大值,并确定 S 取最大值时 a_1, a_2, \cdots, a_n 所满足的条件,并进行证明.

(1)
$$\Re: S_1 = \frac{3}{4}, S_2 = \frac{13}{54}, \Im S_1 > S_2;$$

②
$$\min\{S_1, S_2\} = \frac{13}{54} < S < \max\{S_1, S_2\} = \frac{3}{4}, - \uparrow\{a_n\} \not \supset : \frac{1}{3}, \frac{2}{3}, 2,$$

(2) 解: 由己知得
$$a_i' + a_j' + a_{k_1}' + a_{k_2}' = a_1 + a_2 + a_3 + a_4 = 4(a_i > 0, i = 1, 2, 3, 4)$$

不妨设
$$a_i < 1 < a_2$$
,则 $S = a_1 a_2 a_3 a_4$, $S' = (a_1 + a_2 - 1) \cdot 1 \cdot a_3 a_4$

$$\therefore S - S' = a_3 a_4 (a_1 a_2 - a_1 - a_2 + 1) = a_3 a_4 (a_1 - 1)(a_2 - 1) < 0, \therefore S > S'$$

2024-03-04

(3) 解: 由己知得: $a_1 + a_2 + \cdots + a_n = n(a_i > 0, i = 1, 2, \cdots, n)$

$$\therefore$$
 S的最大值为1,且 $a_1 = a_2 = \cdots = a_n = 1$