The Weil Pairing

Scribe: Matthew Stevens March 9, 2022

The following is a WIP typed adaptation of Dr. Andreas Mihatsch's notes on the Weil pairing, available here: https://www.math.uni-bonn.de/people/mihatsch/21u22%20WS/moduli/.

The Pairing

Let *E* be an elliptic curve over *S*.

Recall that the contravariant functor

$$\operatorname{Pic}_{E/S}^0 \colon \operatorname{\mathbf{Sch}}/S \to \operatorname{\mathbf{Set}} \colon T \mapsto \operatorname{Pic}^0(T \times_S E)/p_T^* \operatorname{Pic}(T)$$

is representable. Its universal object \widehat{E}/S is called the **dual elliptic curve**. It is isomorphic to E as an S-scheme via the map $p \mapsto \mathcal{O}_E([p] - [e])$.

Let $\mu_{n,S}$ denote the group scheme of roots of unity of S.

Our aim is to construct a bilinear pairing $e_n \colon E[n] \times \widehat{E}[n] \to \mu_{n,S}$. We will sometimes regard e_n as a pairing $E[n] \times E[n] \to \mu_{n,S}$ via the canonical isomorphism $E \to \widehat{E}$.

First, suppose that S is equal to the spectrum of an algebraically closed field k. Let x be a point in E[n](k) and let L be an element of $\widehat{E}[n]$, i.e. let L be a degree 0 line bundle on E such that $L^{\otimes n}$ is isomorphic to \mathcal{O}_E . Write $L \cong \mathcal{O}([y] - [e])$.

Fix $y' \in E(k)$ such that ny' equals y. Then, we have $\lfloor n^2 \rfloor y' = 0$. Since E[n](k) consists of n^2 elements, the sum $\sum_{x \in E[n](k)} (x' + y' - x')$ equals 0. Thus, there exists a meromorphic function f on E such that we have

$$\operatorname{div}(f) = [n]^{-1}([y] - [e]) = \sum_{x' \in F[n](k)} [x' + y'] - [x'].$$

One readily verifies that $t_x^*(f)$ has the same divisor as f, so $t_x^*(f)$ and f differ by a constant. Now, we define $e_n(x, L)$ to be $(t_x^*f)/f \in k^\times$. When regarding e_n as a pairing with domain $E[n] \times E[n]$ rather than $E[n] \times \widehat{E}[n]$, we will write $e_n(x, y)$ instead of $e_n(x, L)$.

Now, for a general base scheme S, let x be an element of E[n](S). Let L be an element of $\widehat{E}[n](S)$. After restricting to a sufficiently small open U in S, we can pick a trivialization $\psi\colon \mathscr{O}_E \xrightarrow{\widetilde{}} [n]^*L$, which is unique up to an element of \mathscr{O}_S^\times . Since t_x is an isomorphism, we get an isomorphism $\mathscr{O}_E \xrightarrow{\widetilde{}} t_x^* \mathscr{O}_E$. Composing with the map $t_x^*\psi\colon t_x^*\mathscr{O}_E \xrightarrow{\widetilde{}} t_x^*([n]^*L)$, we get a map $\psi_x\colon \mathscr{O}_E \cong t_x^*([n]^*L)$. Now, we have $t_x^*([n]^*L) = ([n] \circ t_x)^*L = [n]^*L$, where the last step follows from the fact that x is an n-torsion point; in particular, the map ψ_x is an isomorphism $\mathscr{O}_E \xrightarrow{\widetilde{}} [n]^*L$. Thus, there exists a unit u over U such that ψ_x equals $u\psi$.

Definition-Theorem 1. 1. The constant u over $U \subseteq S$ arising from our choice of ψ in the previous paragraph is independent of the choice of ψ . Thus, by repeating the

See Stacks [040M] for more information about $\mu_{n.S}$.

The fact that E is isomorphic as a group scheme to $\operatorname{Pic}_{E/S}^O$ means that a divisor on E is principle if and only if the corresponding sum in E is trivial! We'll use this crucial observation repeatedly.

"Translation on top". The notes have $t_x^* f$ in the denominator, but I think that was a typo.

For T-valued points, this same discussion goes through after base-changing by T.

above construction for the various $U \subseteq S$ on which $[n]^*L$ is trivial and gluing, we get a global section $s \in \mathcal{O}_S^{\times}(S)$. In particular, the process described in the previous paragraph yields a function $e_n(x,L): E[n] \times \widehat{E}[n] \to \mathcal{O}_S^{\times}(S)$.

- 2. The function e_n is bilinear and takes values in $\mu_{n,S} = \{ \xi \in \mathcal{O}_S^{\times}(S) : \xi^n = 1 \}$. We call e_n the **Weil pairing** with respect to the n-torsion of E. As before, if L is the line bundle corresponding to a point $y \in E[n]$, we sometimes write $e_n(x, y)$ in place of $e_n(x, L)$.
- 3. The Weil pairing is alternating, i.e., for any $y \in E[n]$, we have $e_n(y, y) = 1$.
- 4. For every $y_1 \in E[nm]$ and every $y_2 \in E[n]$, we have $e_{nm}(y_1, y_2) = e_n(my_1, y_2)$.
- *Proof.* To see that (1) holds, suppose that $\lambda \psi \colon \mathscr{O}_E \xrightarrow{\sim} [n]^* L$ is another choice of trivialization for $[n]^*L$ on $U \subseteq S$. We have $t_r^*(\lambda \psi) = \lambda t_r^*(\psi) = u\lambda \psi = u(\lambda \psi)$. Thus, the constant u is independent of our choice of trivialization and we get a well-defined map $E[n] \times \widehat{E}[n] \to \mathcal{O}_S(S)$.

Now, let's prove (2), (3), and (4). We claim that it suffices to assume that S is an algebraically closed field of characteristic 0. To see this, first note that by the local nature of the statements in question, it suffices to work at each \mathcal{O}_S , for each $s \in S$, so we can assume that S is the spectrum of a local ring and, in particular, that ω_E is trivial. The triviality of ω_E implies that we can put E into Weierstrass form $Y^2 + c_1 XY + c_3 Y = X^3 + c_2 X^2 + c_4 X + c_6$. Now, over the base Spec $\mathbf{Z}[a_1, \dots, a_6][\Delta^{-1}]$, we have the elliptic curve \mathscr{E} cut out by $Y^2 + a_1XY + a_3Y = X^3 + a_2X^2 + a_4X + a_6$. The elliptic curve E/S arises as a pullback of $\mathscr{E}/\operatorname{Spec} \mathbf{Z}[a_1, ..., a_6][\Delta^{-1}]$. One readily verifies that if (2), (3), and (4) are preserved by base-change, so it suffices to prove them for $\mathscr{E}/\operatorname{Spec} \mathbf{Z}[a_1,\ldots,a_6][\Delta^{-1}]$. Since $\operatorname{Spec} \mathbf{Z}[a_1,\ldots,a_6][\Delta^{-1}]$ arises from inverting an element in a polynomial ring in finitely many variables over Z, and C has infinite transcendence degree over Q, it suffices to treat the case in which E is an elliptic curve over C.

Under this assumption, let's prove (2), (3), and (4). Suppose that x_1, x_2 , and y_2 are elements of E[n]. We have

$$e_n(x_1 + x_2, y) = \frac{t_{x_1 + x_2}(f)}{f}$$

$$= \frac{t_{x_1 + x_2}^*}{t_{x_1}^*(f)} \cdot \frac{t_{x_1}^*(f)}{f}$$

$$= t_{x_1}^* \left(\frac{t_{x_2}^*(f)}{f}\right) \frac{t_{x_1}^*(f)}{f}$$

$$= t_{x_1}^* (e_n(x_1, y)) \cdot e_n(x_2, y)$$

$$= e_n(x_1, y)e_n(x_2, y),$$

which proves that e_n is linear in the first argument. Linearity in the second argument is clear from the definition.

Linearity in the first argument implies that $e_n(x, y)^n$ equals e(nx, y). Since x lies in E[n], we have nx = 0, so e(nx, y) equals e(0, y). Linearity in the first argument implies that e(0, y) equals 1, so e_n takes values in $\mu_{n,S}$ and (2) is proved.

This step follows because constants are translation invariant!

Now, let's prove (3). Let y be an element of E[n]. Since $\mathcal{O}([y] - [e])$ is n-torsion in \widehat{E} , there exists a meromorphic function g on E such that $\operatorname{div}(g)$ equals n[y] - n[e]. Consider the function $\prod_{i=0}^{n-1} t_{iy}^*g$. The divisor $\operatorname{div}(\prod_{i=0}^{n-1} t_{iy}^*g)$ is the sum $n \sum_{i=0}^{n-1} [(i-i)y] - [-iy]$ which telescopes and simplifies to 0. Thus, the function $\prod_{i=0}^{n-1} t_{iy}^*g$ is constant. Let f be a meromorphic function such that $\operatorname{div}(f)$ equals $[n]^{-1}([y] - [e])$. The functions f^n and $g \circ [n]$ differ by multiplication by a constant. Let g' be such that g' equals g. Then, we have that $(\prod_{i=0}^{n-1} t_{iy}^*f)^n$ differs from $(\prod_{i=0}^{n-1} t_{iy}^*g) \circ [n]$ by multiplication by a constant. Since $\prod_{i=0}^{n-1} t_{iy}^*g$ is constant, so is $\prod_{i=0}^{n-1} t_{iy}^*f$. To say that $\prod_{i=0}^{n-1} t_{iy}^*f$ is constant is to say that it is translation-invariant, so for every point g, we have $\prod_{i=0}^{n-1} f(g+iy') = \prod_{i=0}^{n-1} f(g+iy')$. This implies that for every g such that $\prod_{i=0}^{n-1} f(g+iy')$ is nonzero, we have f(g) = f(g+iy') = f(g+iy); since g and $g \circ [n]$ differ by multiplication by a constant (or, alternatively, since g has only a single zero), the functions $g \circ [n]$ and $g \circ [n]$ must coincide identically. In particular, we have $g \circ [n]$ and $g \circ [n]$. This proves (3).

Let y_1 be an element of E[nm] and let y_2 be an element of E[n]. Let f be a function such that $\operatorname{div}(f)$ equals $[n]^{-1}([y_2] - [e])$. Then, the divisor $\operatorname{div}(f \circ [m])$ equals $[nm]^{-1}([y] - [e])$. Thus, we have

$$e_{nm}(y_1, y_2) = \frac{t_{y_1}^*(f \circ [m])}{f \circ [m]}$$

$$= \left(\frac{f}{t_{mx}^*(f)}\right) \circ [m]$$

$$= \left(\frac{f}{t_{mx}^*(f)}\right)$$

$$= e_n(mx, y),$$

which proves (4).

Lemma 2. Let x and y be elements of E[n]. We have $e_n(x, y) = e_n(y, x)^{-1}$.

Proof. Since e_n is alternating, we have $e_n(x+y,x+y)=1$. By bilinearity, we have $e_n(x+y,x+y)=e(x,x)e(x,y)e(y,x)e(y,y)$. Since e_n is alternating, both e(x,x) and e(y,y) are equal to 1, so we have e(x,y)e(y,x)=1.

Lemma 3. If S is the spectrum of an algebraically closed field k such that char k does not divide n, then the Weil pairing is nondegenerate.

Proof. Suppose that y is an element of E[n] is an element such that for all $x \in E[n]$, there holds $e_n(x, y) = 1$. This means that if f is a meromorphic function on E with $\operatorname{div}(f) = n^{-1}([y] - [e])$, then f is invariant under translation by elements of E[n]. Now, let h be such that f equals $h \circ [n]$ and let g be a function such that $\operatorname{div}(g)$ equals n[y] - n[e]. Then, the functions f^n and $g \circ [n]$ differ by multiplication by a constant. Thus, the functions $(h \circ [n])^n$ and $g \circ [n]$ differ by multiplication by a constant. This implies that g and h^m differ by multiplication by a constant. Thus, we have $\operatorname{div}(h) = [y] - [e]$. Thus, the points y and e coincide.

Remember, the fact that $t_y^*(f)$ and f differ by a constant was used to show that e_n is well-defined; to show that $e_n(y,y)$ is 1, we technically only need to show that f and $t_y^*(f)$ coincide for even a single input.