AI, Headquarters and Guijie

Zehao Zhang

August 29, 2025

Simplified attribution model

Environment and timing

A principal (headquarters, P) contracts with an agent (local manager, A). The agent's ability $\theta \in \{\theta_L, \theta_H\}$ satisfies $\theta_H > \theta_L$ and is privately known to A. The prior distribution of θ , $\Pr(\theta = \theta_H) = \mu \in (0, 1)$, is common knowledge.

Timeline: (1) P offers a linear contract w(Y) = a + bY with $a \ge 0$. (2) A chooses effort $e \ge 0$. (3) Outcome $Y \in \{0,1\}$ realizes and pay is made.

Technology and attribution

Success requires both the agent's action and a favorable external state. Let $A_e \sim \text{Bernoulli}(\theta e)$ be agent-driven success and $L \sim \text{Bernoulli}(\lambda)$ be exogenous luck, independent. The observed success is the conjunction

$$Y = \min\{A_e, L\} \implies \Pr(Y = 1 \mid \theta, e) = \lambda \theta e.$$

This encodes attribution stringency: success is creditable only when both the agent performs and luck realizes.

Preferences and objectives

Players are risk-neutral. The agent's cost of effort is $c(e, \theta) = e^2/(2\theta)$ (effort is cheaper for higher ability). The principal values a success at v > 0.

Agent problem and best response

Given (a, b), the agent maximizes

$$\max_{e \ge 0} \ a + b \left[\lambda \, \theta e \right] - \frac{e^2}{2\theta}.$$

For interior solutions, the FOC yields

$$e^*(\theta; b, \lambda) = b \lambda \theta^2, \qquad \frac{\partial e^*}{\partial \lambda} = b \theta^2 > 0, \ \frac{\partial e^*}{\partial \theta} = 2b \lambda \theta > 0.$$

The induced success probability is

$$p(\theta; b, \lambda) \equiv \Pr(Y = 1 \mid \theta, e^*) = \lambda \theta e^* = b \lambda^2 \theta^3.$$

Propositions

Proposition 1 (Incentive amplification under necessary luck). The marginal impact of effort on success is $\partial \Pr(Y=1)/\partial e = \lambda \theta$. Hence, for any fixed bonus b, the agent's optimal effort $e^*(\theta;b,\lambda) = b \lambda \theta^2$ is strictly increasing in λ . A more favorable environment (higher λ) strengthens performance-based incentives and raises effort.

Proposition 2 (Attribution stringency strengthens screening). Under any common bonus b, the success probability by type satisfies $p(\theta_H; b, \lambda) - p(\theta_L; b, \lambda) = b \lambda^2 (\theta_H^3 - \theta_L^3) > 0$ and is strictly increasing in λ . When success requires both luck and effort, improvements in the external environment (higher λ) enlarge type separation in outcomes and strengthen the screening power of performance pay.

Remarks

- All incentive and screening forces scale with λ : when $\lambda \to 0$, effort becomes ineffective and performance pay loses power; when $\lambda \to 1$, returns to performance pay are maximal.
- Additional signals or contract instruments that separately observe effort or the external state would further sharpen attribution; absent such instruments, λ is the sufficient statistic for incentive and screening strength.