

SCHOOL OF Electronics And Communication Engineering (SENSE)

Submitted for the course:
Microcontrollers and its Applications (ECE 3003)

"DIGITAL THERMOMETER USING 8051 MICRO CONTROLLER"

PROJECT REPORT

By

19BEC0864 Sankha patra 19BEC0254 Padmini Reethi 18BEC0910 M Guru Maheswar Reddy

Name of the faculty: Dr. Padmini T N

Slot:L19+20

TABLE OF CONTENTS:

S.NO	TITLE	Pg.No.
1.	Abstract	1
2.	Introduction	2
3.	Block diagram	3
4.	Overview of software components	4
5.	Code with comments	5
6.	Results	7
7.	Conclusion	10
8.	References	10

ABSTRACT

- The objective of this project is to design a digital thermometer using 8051 microcontroller.
- Digital thermometer displays the ambient temperature through a LCD display. It consists of two sections.
- One is that which senses the temperature. This is a temperature sensor LM 35.
- The other section converts the temperature value into a suitable number in Celsius scale which is done by the ADC0808.

Introduction

- This is about 0-100°C digital thermometer with 1°C resolution using 8051. The circuit is based on LM35 analog temperature sensor, ADC0808 and AT89c51 microcontroller. LM35 is an analogue temperature sensor IC which can measure a temperature range of -55 to 150°C. Its output voltage varies 10mV per °C change in temperature.
- For example, if the temperature is 32°C, the output voltage will be 32 x 10mV = 320mV. ADC 0804 is used to convert the analogue output voltage of the LM35 to a proportional 8 bit digital value suitable for the microcontroller. The microcontroller accepts the output of ADC, performs necessary manipulations on it and displays it numerically on a 2 digit seven segment LED display.

Block Diagram

Oveview view of software components:

- 1.ADC0808 8Bit ADC:
 - ADC0808 is an Analog-to-Digital Converter (ADC) with 8-Channel Multiplexer.
- 2.LM35 Temperature Sensor:

 LM35 is a sensor which is used to measure temperature. It provides electrical output proportional to the temperature (in Celsius).
- 3.LCD 16x2 Display Module: LCD16x2 has two lines with 16 character in each line. LCD16x2 is generally used for printing values and string in embedded application.
- 4.8051 micro-controller:
 It is used to process all the input given by the temperature sensor

CODE WITH COMMENTS:

```
#include<reg51.h>
                                                                   oe=0;
#include<string.h>
                                    clk=~clk;
                                                                   start=0;
sbit RS = P2^5;
                                  }
                                                                   TMOD=0x02; // timer 0
sbit RW = P2^6:
                                                                   in mode 2
sbit EN = P2^7;
                                 void main()
                                                                   TH0=0xc2; // 15khz
                                 MAIN PROGRAM
sbit ale=P2^3;
                                                                   IE=0x82; // set timer 0
                                                                   interrupt
sbit oe=P2^4;
                                 lcd_init(); // lcd
                                                                   TR0=1; // start timer 0
                                 initialization
sbit start=P2^1;
                                                                   while(1)
sbit eoc=P2^0;
                                 str("MICRO PROJECT");
                                                                   {
sbit clk=P2^2;
                                 lcd_command(0x01); //
                                  clear display
                                                                   chc=0; // select channel 0
                                  str("G2 SLOT");
sbit chc=P0^7; //Address
                                 lcd command(0x01); //
pins for selecting input
                                                                   chb=0;
channels.
                                 clear display
                                                                   cha=0;
sbit chb=P0^6:
                                 str("Temp:");
                                                                   ale=1; // send high to low
sbit cha=P0^5;
                                 lcd_command(96);
                                                                   pulse on start and ale pin
                                 //custom character (°c)
                                  display
                                                                   start=1;
void delay(int t);
                                 lcd_data(0x10);
                                                                   delay(1);
void lcd_init(void);
                                 lcd_data(0x07);
                                                                   ale=0;
void lcd_command(char
                                 lcd_data(0x08);
                                                                   start=0;
                                 lcd_data(0x08);
                                                                   while(eoc==1);
                                                                                     // wait
void lcd_data(char d);
                                                                   for conversion
                                 lcd_data(0x08);
void str(char a[]);
                                                                   while(eoc==0);
                                 lcd_data(0x08);
void print( long float p);
                                                                   oe=1;
                                 lcd_data(0x07);
long float k;
                                                                   k=P1:
                                 lcd_command(0x8b);
unsigned long int q,r,x,y,z;
                                                                   lcd_command(0x85);
                                 lcd_data(4);
                                                                   print(k); // send the
                                                                   digital data to lcd
                                  eoc=1;
                                                // make eoc
void timer0() interrupt 1
                                  an input
// TIMER 0 interrupt ISR
                                                                   oe=0;
                                  ale=0:
```

}		y=y+48;
}	EN=1;	z=((x%1000)%100)/10;
void str(char a[]) // lcd	delay(5);	z=z+48;
function to display string	EN=0;	r=x%10;
{	delay(5);	r=r+48;
int j;	}	,
for(j=0;a[j]!='\0';j++) {	void lcd_data(char d) // lcd data function	<pre>lcd_data(q); lcd_data(y);</pre>
<pre>lcd_data(a[j]);</pre>	{	<pre>lcd_data(z);</pre>
} }	P3=d;	lcd_data(46); //ascii value of point
<pre>void lcd_init(void) // lcd initialization</pre>	RS=1; //select data register	lcd_data(r);
{	RW=0;	}
	EN=1;	else
lcd_command(0x38); //8 bit,2 line,5x8 dots	delay(5);	{
<pre>lcd_command(0x01); // clear display</pre>	EN=0;	q=x/100;
lcd_command(0x0f); //	delay(5);	q=q+48;
display on, cursor blinking	void delay(int t) // delay function	y=(x%100)/10;
<pre>lcd_command(0x06); //Entry mode</pre>	{	y=y+48;
lcd_command(0x0c);		z=x%10;
//cursor off	int j;	z=z+48;
lcd_command(0x80); //// force cursor to beginning	for(j=0;j <t*1275;j++);< td=""><td>lcd_data(q);</td></t*1275;j++);<>	lcd_data(q);
of first row	void print(long float p) // number display function	<pre>lcd_data(y);</pre>
}	{ x=p*10;	lcd_data(46); //ascii value
<pre>void lcd_command(char c) // lcd command function</pre>	if(x>=1000)	of point
{	{	lcd_data(z);
P3=c;	q=x/1000;	r=0;
RS=0; // select command	q=q+48;	lcd_data(r);
registeer	y=(x%1000)/100;	}
RW=0;		

RESULTS:

CIRCUIT DIAGRAM:

1. SIMULATION IN KEIL:

2. SIMULATION IN PROTEUS:

CONCLUSION:

In the end of the project, By using the lm35(temparature sensor), ADC0808(analog to digital convertor) and 8051 micro controller we are able to get the temperature reading in the lcd display.

REFERENCES:

- https://ieeexplore.ieee.org/abstract/document/6703317
- https://ieeexplore.ieee.org/abstract/document/5629906
- https://circuitdigest.com/microcontroller-projects/digital-thermometer-using-lm35-8051
- https://www.circuitstoday.com/thermometer-using-8051
- https://www.researchgate.net/publication/344417353_DIGITAL_THERM OMETER_BY_USING_AT89C51_MICROCONTROLLER