PHƯƠNG TRÌNH HÀM VỚI PHƯƠNG PHÁP SAI PHÂN Nguyễn Quốc Khánh Trường THPT chuyên Lê Quý Đôn, TP Đà Nẵng ===================================
Phương trình hàm là một nội dung không thể thiếu được trong chương trình bổi dưỡng cho học sinh giỏi bậc trung học; các bài toán về phương trình hàm rất phong phú và đa dạng, hay và thường rất khó, bao gồm nhiều mảng kiến thức sâu và rộng, nó đòi hỏi người học không những nắm vững các kiến thức về số học, đại số, giải tích mà còn phải có những kỹ thuật và tư duy tốt trong khi giải một bài toán về phương trình hàm.
Mặt khác hiện nay các tài liệu viết về phương trình hàm còn ít, rời rạc và cũng chưa có một tài liệu nào trình bày khá đầy đủ và chi tiết về một lớp phương trình hàm nào đó, điều đó càng khó hơn nữa cho người học cũng như người đạy về chuyên đề này. Bài viết này nêu lên một phương pháp để giải một phương trình hàm đó là phương pháp sai phân, nó có một hiệu quả nhất định trong một số lớp phương trình hàm.
II. Phương pháp sai phân: Là phương pháp được áp dụng rộng rãi trong nhiều lĩnh vực khoa học và kỹ thuật ,nội dung của nó là dẫn đối tượng cần xét về việc giải phương trình sai phân (tức là hệ thức hoặc các hệ thức liên hệ các giá trị của các hàm số tại các điểm khác nhau).
Ví dụ: Để tìm nghiệm của phương trình đại số hoặc siêu việt $f(x) = 0$ (1) trên (a,b) tiên đó $f'(x)$ và $f''(x)$ không đổi dấu và $f(a).f(b) < 0$, ta có thể dùng phương pháp Niuton theo công thức: $ \begin{cases} x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \\ x_0 = C \text{vàii} f(c).f''(c) > 0 \end{cases} $
+ Ta cũng có thể viết (1) đưới đạng: $\mathbf{x} = \varphi(\mathbf{x})$ (3) sao cho $\varphi'(\mathbf{x}) \le \mathbf{q} < 1, \forall \mathbf{x} \in (\mathbf{a}, \mathbf{b})$ và tìm nghiệm của (3) (cũng có nghĩa là nghiệm của $\begin{cases} x_{n+1} = \varphi(x_n) \\ x_0 = c \end{cases}$ (1) bằng phương pháp lặp đơn theo công thức : $\begin{cases} x_0 = c \\ x_0 = c \end{cases}$ c tùy ý (4)
tức là ta đã thay (1) bằng phương trình sai phân (4) + Phương pháp sai phân (còn gọi là phương pháp lưới) có hiệu quả nhất đối với việc giải bài toán vi phân và bài toán đạo hàm riêng, có thể nói đây là phương pháp vạn năng để giải các bài toán trong lĩnh vực này. +Các bài toán sai phân ở bậc phổ thông phần nhiều liên quan đến phương trình sai phân tuyến tính bậc một ,hai và ba .
Giải phương trình hàm bằng phương pháp sai phân mục đích là từ giả thiết để bài ta thiết lập một dãy U_0 =x, U_1 =f(x),, U_{n+1} =f(u_n); từ đó dẫn đến một phương trình sai phân tuyến tính cấp k, từ đó tìm được nghiệm của bài toán phương trình hàm đã cho. Ở bài viết này không đi sâu về chi tiết về định nghĩa sai phân , tính chất cũng như cách giải các phương trình sai phân tuyến tính các cấp một ,hai ,ba nếu muốn chặt chẽ độc giả có thể xem thêm trong các tài liệu tham khảo được ghi ở cuối bài viết .
IV. Phương trình hàm giải bằng phương pháp sai phân. Dạng 1: $f(f(x)) + af(x) = b(a+b)x$ trong đó a,b > 0
Bàil: (Dự tuyển quốc tế năm 1992) Cho a, b là 2 số thực dương. Chứng tổ rằng tồn tại duy nhất một hàm xác định trên tập các số thực dương, nhận giá trị trên tập các số thực dương và thỏa mãn phương trình hàm sau với mọi x: f(f(x)) + af(x) = b(a+b)x.
Từ giả thiết, ta có: $u_1 = x$, $u_2 = f(u_1) = f(x)$, $u_3 = f(u_2) = f(f(x))$ $\Rightarrow f(f(u_n)) = \grave{a}(u_n) = b(a+b)u_n$ $\text{hay } u_{n+2} + au_{n+1} - b(a+b)u_n = 0 \text{và } u_n > 0, \ \forall n \in Z^+$ Phương trình đặc trưng: $y^2 + ay - b(a+b) = 0$ có 2 nghiệm là: $y_1 = b$ và $y_2 = -(a+b)$
nên $\mathbf{u_n}$ có dạng: $\mathbf{u_n} = \lambda_1 \mathbf{b^n} + \lambda_2 (-\mathbf{a} - \mathbf{b})^\mathbf{n}, \mathbf{n} \in \mathbb{Z}^+$ $ \underline{\mathbf{Trường hợp 1}} \colon \lambda_2 \leq 0, \mathrm{khi đó} \colon $
$\lim_{k \to \infty} u_{2k} = \lim_{k \to \infty} \left[\lambda_1 . b^{2k} + \lambda_2 . (-a - b^{2k}) \right]$ $= \lim_{k \to \infty} \left[\lambda_1 . b^{2k} + \lambda_2 . (a + b^{2k}) \right] = \lim_{k \to \infty} (a + b)^{2k} \left[\lambda_1 \left(\frac{b}{a + b} \right)^{2k} \right] = -\infty $ (mâu thuẩn)
Trường hợp 2: $\lambda_2 > 0$. Tương tự $\lim_{k \to \infty} u_{2k+1} = -\infty$ (mâu thuấn) Vậy $\lambda_2 = 0$ tức là $u_n = \lambda_1.b^n$
$ \begin{cases} u_1 = \lambda_1.b = x \\ u_2 = \lambda_1.b^2 = f(x) \end{cases} \Rightarrow \begin{cases} \lambda_1 = \frac{x}{b} \\ f(x) = bx \end{cases} $ Thử lại thấy đúng
Vậy: $f(x) = bx$ là hàm số duy nhất cần tìm. Bài 2: Tìm hàm số f: $R^+ \to R^+$ thỏa mãn: $f(f(x)) + a f(x) = b(a + b)x$ $(a, b > 0)$
Suy ra giới hạn của hàm số $g(x) = f(f(\underline{f(f(x)}^1)))$ khi $x \to \infty$ (R^+ là tập hợp các số thực dương). 2007 lần Giải:
Cố định x > 0 tùy ý,Xét dãy (u_n) xác định bởi: $u_1 = x$, $u_2 = f(u_1) = f(x)$, $u_{n+1} = f(u_n)$, $\forall n \in \mathbb{N}$ Suy ra: $u_3 + au_2 = b(a+b) u_1 => u_{n+2} + au_{n+1} = b(a+b)u_n$, $\forall n \in \mathbb{Z}^+$ và $u_n > 0$, $\forall n \in \mathbb{Z}^+$ Phương trình đặc trưng của dãy (u_n) là: $y^2 + ay - b(a+b) = 0 ==> y_1 = b$, $y_2 = -(a+b)$
$\begin{split} & \text{Vây } \textbf{u}_n \text{ c\'o dạng: } \textbf{u}_n = \textbf{A}.\textbf{b}^n + \textbf{B}(-1)^n (\textbf{a} + \textbf{b})^n = (\textbf{a} + \textbf{b})^n \Bigg[\textbf{A} \bigg(\frac{\textbf{b}}{\textbf{a} + \textbf{b}} \bigg)^n + \textbf{B}(-1)^n \Bigg], \textbf{n} \in \textbf{Z}^+ \\ & \text{Ta c\'o: } \lim_{n \to \infty} \bigg(\frac{\textbf{b}}{\textbf{a} + \textbf{b}} \bigg)^n = \textbf{0} \\ & \text{. Do d\'o} \end{split}$
+ Nếu B > 0 thì u_{2k+1} < 0 với k đủ lớn, mâu thuẩn. + Nếu B < 0 thì u_{2k} < 0 với k đủ lớn, mâu thuẩn. Từ đó B = 0 hay u_n = A.b ⁿ
Cho n = 1 \Rightarrow u ₁ = A.b = x \Rightarrow A = $\frac{x}{b}$ Cho n = 2 \Rightarrow u ₂ = A.b ² = f(x) \Rightarrow f(x) = $\frac{x}{b}$.b ² = bx
Thử lại $f(x) = bx$ thấy đúng. Khi đó: $f(f(\dots(f(\frac{1}{bx}))\dots)) = \frac{b^{2005}}{x} \to 0$ khi $x \to \infty$
<u>Bài 3</u> : Tìm tất cả các hàm f: $[0, +\infty) \rightarrow [0, +\infty)$ thỏa f[f(x)] + 3f(x) = 4x, \forall x \geq 0 <u>Giải</u> : Đặt f ⁿ (x) = f(f(f(f(x))00, n \in N
n dấu ngoặc $\begin{cases} f^{\circ}(x) = x, f^{\circ}(x) = f(x) \\ f^{n+2}(x) + 3f^{n+1}(x) = 4f^{n}(x) , \forall x \ge 0 \end{cases}$ Theo đề ta có:
Phương trình đặc trưng của dãy $\{f^n(x)\}_{n=0}^\infty$ là : $y^2 + 3y - 4 = 0 \Leftrightarrow y = 1, y = -4$ => $f^n(x) = \alpha_1$. $1^n + \alpha_2(-4)^n$
Sử dụng: $\begin{cases} f^{\circ}(x) = x \\ f^{1}(x) = f(x) \end{cases} \Rightarrow \begin{cases} \alpha_{1} + \alpha_{2} = x \\ \alpha_{1} - 4\alpha_{2} = f(x) \Rightarrow \alpha_{1} = \frac{x + f(x)}{5}, \alpha_{2} = \frac{x - f(x)}{5} \end{cases}$ Do đó: $f^{n}(x) = \frac{x + f(x)}{5} + \frac{x - f(x)}{5}.(-4)^{n} $ (*)
Ta có: $f(x) \ge 0$, $\forall x \ge 0$; bằng quy nạp suy ra $f_n(x) \ge 0$, $\forall n \in \mathbb{N}, x \ge 0$ + Với n chẵn, $(*) \Rightarrow f^n(x) = \frac{x + f(x)}{5} + \frac{x - f(x)}{5} \cdot (-4)^n$
$f^{n}(x) \ge 0, \ \forall x \ge 0 \Longrightarrow \mathbf{r} - \mathbf{f}(x) \ge \mathbf{x} \qquad (1)$ $+ \text{V\'oi n l\'e}, (*) \implies f^{n}(x) = \frac{x + \mathbf{f}(x)}{5} - \frac{x - \mathbf{f}(x)}{5}.(4)^{n}$ $f^{n}(x) \ge 0, \ \forall x \ge 0 \Longrightarrow x - \mathbf{f}(x) \le 0 \Longrightarrow \mathbf{f}(x) \ge \mathbf{x} \qquad (2)$
Từ (1) và (2) => $f(x) = x$ Thử lại thấy đúng. $\underline{\text{Dạng2}}: \text{Tìm hàm f: } [0;+_{\infty}) \rightarrow [0;+_{\infty}) \text{ thoả}$ $f(f(x)) + a f(x) -b(a+b)x = c \text{ trong đó a,b} > 0, b \neq 1, a+b > 1$
Phương pháp: Cổ định $\mathbf{x} \in [0; +\infty)$ Đặt $\mathbf{u}_1 = \mathbf{x}, \mathbf{u}_2 = \mathbf{f}(\mathbf{x}), \mathbf{u}_3 = \mathbf{f}(\mathbf{u}_2) = \mathbf{f}(\mathbf{f}(\mathbf{x})),, \mathbf{U}_{n+1} = \mathbf{f}(\mathbf{U}_n)$ Từ giả thiết, ta có: $\mathbf{U}_{n+2} + \mathbf{a}\mathbf{U}_{n+1} - \mathbf{b}(\mathbf{a}+\mathbf{b})\mathbf{U}_n = \mathbf{C} (1) \text{và } \mathbf{U}_n \geq 0 \forall \ n \in \mathbf{Z}^+$ Phương trình đặc trung giác (1) là $\mathbf{v}^2 + \mathbf{a}\mathbf{v}$, $\mathbf{b}(\mathbf{c}+\mathbf{b}) = 0$
Phương trình đặc trưng của (1) là $y^2 + ay - b(a + b) = 0$ $\Rightarrow y_1 = b \text{ và } y_2 = -(a + b) (y_1, y_2 \neq 1)$ Do đó phương trình (1) có nghiệm riêng $U_n = d$ (hằng số) c
Thay vào (1) ta có d + ad - b(a + b)d = c \Rightarrow d = $\overline{1 + a - b(a + b)}$ Suy ra nghiệm tổng quát của phương trình (1) là: $\frac{c}{U_n = A \cdot b^n + B \cdot (-1)^n \cdot (a + b)^n + \overline{1 + a - b(a + b)}}$
$= (a+b)^n \left[A \left(\frac{b}{a+b} \right)^n + B(-1)^n . (a+b)^n + \frac{C}{(1+a-b(a+b))(a+b)^n} \right]$ +Nếu B > 0 thì U _n < 0 với n chẵn đủ lớn (mâu thuẩn)
+Nếu B > 0 thì U_n < 0 với n lẻ đủ lớn (mâu thuần) $\frac{c}{Vay B} = 0 . Suy \ ra \ U_n = A.b^n + \frac{c}{1+a-b(a+b)}$
$\begin{cases} u_1 = x \\ u_2 = f(x) \end{cases} \Leftrightarrow \begin{cases} A.b + \frac{c}{1 + a - b(a + b)} = x \\ A.b^2 + \frac{c}{1 + a - b(a + b)} = f(x) \end{cases}$ Ta có:
$\Rightarrow f(x) = bx + \overline{1 + a - b(a + b)}, \ \forall x \ge 0$ Thử lại thấy thỏa.
$\underline{\underline{B}}\underline{\dot{a}}\underline{\dot{1}}: Tim \ hàm \ f: [0, \infty) \rightarrow [0, \infty) \ sao \ cho \qquad f(f(x)) + 2f(x) - 15x = 2007$ $\underline{\underline{G}}\underline{\dot{a}}\underline{\dot{i}}$ $\underline{C}\hat{o} \ d\dot{f} = [0, \infty), \ D\check{a}t \ u_1 = x, \ u_2 = f(u_1) = f(x),, \ u_{n+1} = f(u_n).$
Từ giả thiết, ta có: $u_{n+2} + 2u_{n+1} - 15u_n = 2007$, $\forall n \in Z^+$ (1) và $u_n \ge 0$, $\forall n \in Z^+$ Phương trình đặc trưng: $y^2 + 2y - 15 = 0$ có 2 nghiệm là $y_1 = -5$, $y_2 = 3$ Phương trình (1) có nghiệm riêng $u_n = c$, thay vào (1), ta có:
$-12c = 2007 \Rightarrow c = 2007/12$ Suy ra nghiệm tổng quát của phương trình (1) là: $u_n = A \cdot 3^n + B(-5)^n - 2007/12$
$= (-5)^n \left[A \left(\frac{3}{-5} \right)^n + B - \left(\frac{2007}{12(-5)^n} \right) \right]$ - Nếu B < 0 thì u _n < 0 với n lẻ đủ lớn (mâu thuẩn) - Nếu B > 0 thì u _n < 0 với n chẵn đủ lớn (mâu thuẩn)
Do đó B = 0 \Rightarrow u _n = A.3 ⁿ - 2007/12 $\begin{cases} u_1 = x \\ u_2 = f(x) \end{cases} \Leftrightarrow \begin{cases} 3A - \frac{2007}{12} = x \\ 9A - \frac{2007}{12} = f(x) \end{cases}$
Ta có: $\begin{cases} 9A - \frac{2007}{12} = f(x) \\ \Rightarrow f(x) - 3x = 2007/6 \Rightarrow f(x) = 3x + 2007/6 \\ \text{Thử lại thấy thỏa.} \\ \text{Vây } f(x) = 3x + 2007/6, \ \forall \ x \ge 0 \end{cases}$
f: $R^+ \to R^+$ thỏa mãn phương trình: $f(f(x)) + f(x) = 1999.2000x, \forall x \in R^+$ Giải:
$\begin{cases} u_1 = x \\ \text{C\'o dịnh } x \in \mathbb{R}^+, \text{X\'et d\~ay} \\ u_{n+1} = f(u_n), n \in \mathbb{N} \end{cases}$ Từ giả thiết ta có: $u_2 = f(u_1) = f(x)$; $u_3 = f(u_2) = f(f(x))$
$U_3 + U_2 = 1999.2000U_1 \Rightarrow \begin{cases} U_{n+2} + U_{n+1} = 1999.2000U_n \\ U_n > 0, \forall n \in Z^+ \end{cases}$ Phương trình đặc trưng của dãy hàm $\left\{f^n(x)\right\}_{n=0}^{\infty}$ là:
$y^2 + y = 1999.2000 \Rightarrow y_1 = 1999, y_2 = -2000$ $\Rightarrow U_n = A.1999^n + B(-2000)^n$ $+ N\acute{e}u B > 0 \Rightarrow U_n < 0 \text{ với n lẻ đủ lớn. Điều này trái với giải thiết } U_n > 0$
+ Nếu B < 0, cũng có U_n < 0 với n chẵn đủ lớn (trái với giả thiết) Vậy B = 0 => U_n = A.1999n nên U_1 = A. 1000 = $x \Rightarrow f(x)$ = 1999.x Thử lại thấy hàm số vừa tìm thỏa mãn yêu cầu bài toán.
Bài2(Olympic 2005) Tìm các hàm số f: R+ \rightarrow R+ thỏa mãn phương trình hàm: f(f(x)) + 2 f(x) = 15x $\frac{Giải}{(n-1)(n)}$ Exist. II = f(n)(n) = f(f(n-1)(n))
Đặt $U_n = f^{(n)}(x) = f(f^{(n-1)}(x))$ $U_0 = f^{(0)}(x) = x$ $U_1 = f^{(1)}(x) = f(x)$ Thất hằng $f^{(n)}(x)$ trong physics trình hàm to được:
Thế x bằng $f^{(n)}(x)$ trong phương trình hàm ta được: $U_{n+2} + 2U_{n+1} = 15U_n$ $\Leftrightarrow U_{n+2} + 2U_{n+1} - 15U_n = 0$ Xét phương trình đặc trưng: $t^2 + 2t - 15 = 0 \Rightarrow t_1 = 3, t_2 = -5$
$v\hat{a}y U_n = \alpha.3^n + \beta(-5)n$ $\begin{cases} \alpha = \frac{f(x) + 5x}{8} \\ \alpha = \frac{3x - f(x)}{8} \end{cases}$ $f: R^+ \to R^+ \to f(x) \in R^+ \to U > 0$
$1. R \rightarrow R \rightarrow I(A) \in R \rightarrow O_n \ge 0$
$U_{2n+1} = \alpha.3^{2n+1} - \beta.5^{2n+1} \ge 0 \Rightarrow \alpha \left(\frac{3}{5}\right)^{2n+1} \ge \beta$ $U_{2n} = \alpha.3^{2n} - \beta.5^{2n} \ge 0 \qquad \Rightarrow \alpha \left(\frac{3}{5}\right)^{2n} \ge -\beta$
$\Rightarrow \beta \ge -\alpha . \left(\frac{3}{5}\right)^{2n} \Rightarrow \alpha \left(\frac{3}{5}\right)^{2n+1} \ge \beta \ge -\alpha \left(\frac{3}{5}\right)^{2n}$ Cho $n \to \infty \Rightarrow \beta = 0 \Rightarrow f(x) = 3x$
Thử lại ta thấy $f(x) = 3x$ thỏa. Bài 3: Tìm các hàm số $f: \mathbb{R}^+ \to \mathbb{R}^+$ thỏa mãn: $f(f(x)) + f(x) = 2006.2007x$, $\forall x \in \mathbb{R}^+$ Giải:
Cố định $x \in R^+$, X tố dãy (u_n) xác định bởi: $\begin{cases} u_1 = x \\ u_{n+1} = f(u_n), \forall x \in R^+ \\ Từ giả thiết, ta có: u_1 = x, u_2 = f(u_1) = f(x); u_3 = f(u_2) = f(f(x)) \end{cases}$
$\begin{split} f(f(u_n)) + f(u_n) &= 2006.2007 u_n \ \ var \ U_n > 0, \ \forall \ n \in Z^+ \\ \text{Như vậy } (U_n) \ \text{là dãy truy hồi tuyến tính cấp 2.} \\ \text{Phương trình đặc trưng: } y^2 + y - 2006.2007 = 0 \ \text{có 2 nghiệm là:} \\ y_1 &= 2006, y_2 = -2007. \end{split}$
Từ đó U_n có dạng: $U_n = A$. $2006^n + B(-2007)^n$, $n \in Z^+$ Trường hợp 1: $B \le 0$. Khi đó
$\lim_{n \to \infty} U_{2k} = \lim_{n \to \infty} (A. \ 2006^{2k} + B(-2007)^{2k})$ $= \lim_{n \to \infty} 2007^{2k} \left[A \left(\frac{2006}{2007} \right)^{2k} + B \right]_{=-\infty} (\text{mâu thuẩn})$
Trường hợp 2: B > 0, tương tự $\lim_{n\to\infty} u_{2k+1} = -\infty$: mâu thuẩn. Vậy B = 0, tức là $u_n = A.2006^n$
$\begin{cases} u_1 = A.2006 = x \\ u_2 = A.2006^2 = f(x) => \end{cases} \begin{cases} A = \frac{x}{2006} \\ f(x) = 2006x \end{cases}$ Thử lại thấy đúng. Vậy đáp số $f(x) = 2006.x$
V. Các bài tập khác: $1.\underline{\mathbf{B}}\underline{\mathbf{ai1}}\text{: Tìm hàm }f\text{: }[0,+\infty) \to [0,+\infty) \text{ sao cho:} f(f(f(x))) + 6 \ f(f(x)) - 32x = 0, \ \forall \ x \geq 0$ Giải:
Cố định $x \in [0, \infty)$, Đặt $u_1 = x$, $u_2 = f(u_1) = f(x)$,, $u_{n+1} = f(u_n)$. Từ giả thiết, ta có: $u_{n+3} + 6u_{n+2} + 32u_n = 0$, $(1) \ \forall \ n \in Z^+ \ và \ u_n \ge 0$ Phương trình đặc trưng (1) là: $y^3 + 6y^2 - 32 = 0$ có 2 nghiệm là $y_1 = 2$, $y_2 = y_3 = -4$
=
$= 4^{n} \left[A \left(\frac{1}{2} \right)^{n} + (-1)^{n} B + (-1)^{n} .Cn \right]$
$Vi u_n \ge 0, \forall n \in Z^+ \text{ nên } B = C = 0$ $Do d\acute{o} u_n = A \cdot 2^n$
$Ta c\acute{o}: \begin{cases} u_1 = x \\ u_2 = f(x) \end{cases} \Leftrightarrow \begin{cases} 2A = x \\ 4A = f(x) \end{cases} \Rightarrow f(x) = 2x, \\ \forall x \ge 0 \end{cases}$ $Thử lại f(x) = 2x, \forall x \ge 0, thỏa để bài.$
Bài2: (Olympic Toán11-2001) Cho r ∈ R, r ≥ 2. Tìm tất cả các hàm f: $[0, 1] \rightarrow [0, 1]$ thỏa mãn đồng thời các điều kiện: $1/ rx - (r - 1)f(x) \in [0, 1], \ \forall \ x \in [0, 1]$ $2/ f(rx - (r-1)f(x)) = x, \ \forall \ x \in [0, 1]$
Giả sử đã tìm được hàm f thỏa mãn yêu cầu đề bài Xét một x bất kỳ thuộc $[0, 1]$ Đặt $x_0 = x \Rightarrow x_0 \in [0,1]$ và $rx_0 - (r-1)$ $f(x_0) \in [0,1]$ (do 1/)
Đặt $x_0 = x = x_0 \in [0,1] \text{ và } rx_0 - (r-1) f(x_0) \in [0,1] (\text{do } 1/)$ Đặt $x_1 = rx_0 - (r-1) f(x_0) = x_1 \in [0,1] \text{ và } f(x_1) = f(rx_0 - (r-1)f(x_0)) = x_0 \text{ (do } 2)$ * Bằng quy nạp và sử dụng tính chất 1/ của hàm f, ta chứng minh được có thể thiết lập dãy (x_n) như sau: $x_n = rx_{n-1} - (r-1)f(x_{n-1}), \ \forall \ n \ge 1 \ (3) \ \text{ và } x_n \in [0,1], \ \forall \ n.$
* Ta có $x_n = rx_{n+1}$ - $(r-1)f(x_{n-1})$, $\forall n \ge 1$ => $f(x_n) = f(rx_{n-1} - (r-1)f(x_{n-1})) = x_{n-1}$ (do 2/) => $f(x_{n-1}) = x_{n-2}$
nên 3/: $x_n = rx_{n-1}$ - $(r-1)$. x_{n-2} , \forall $n \ge 2$ Như vậy, ta có công thức truy hồi: $x_n = rx_{n-1}$ - $(r-1)x_{n-2}$, \forall $n \ge 2$ Phương trình đặc trưng: $\alpha^2 = r\alpha$ - $(r-1) <=> \alpha^2$ - $r\alpha$ + $r-1 = 0 => \alpha_1 = 1$, $\alpha_2 = r-1$
+ Nếu r = 2 => $\alpha_1 = \alpha_2 = 1$. Phương trình đặc trưng có nghiệm kép nên công thức của (x_n) là $x_n = (C_1n + C_2)$. $1^n = C_1n + C_2 => C_1 = x_1 - x_0$, $C_2 = x_0 => x_n = (x_1 - x_0)n + x_0$ Bây giờ, nếu $x_1 - x_0 \neq 0$ thì $\lim x_n = \infty$ (vô lý), vì $0 \leq x_n \leq 1$
Do đó $x_1 - x_0 = 0 \Rightarrow x_0 - f(x_0) = 0 \Rightarrow f(x_0) = x_0$ hay $f(x) = x$, $\forall x \in [0,1]$ + Nếu $r > 2 \Rightarrow \alpha_2 > \alpha_1$. Phương trình đặc trưng có 2 nghiệm phân biệt α_1 , α_2 nên công thức tổng quát của dãy (x_n) là: $x_n = C_1 \alpha_1^{\ n} + C_2 \alpha_2^{\ n} = C_1 + C_2 (r - 1)^n, \forall \ n \in \mathbb{N}$ $x_1 - x_0 = x_1 - x_0$
$(C_1 = x_0 - \frac{x_1 - x_0}{r - z}, C_2 = \frac{x_1 - x_0}{r - z})$ $vi \ r > 2 \Rightarrow r - 1 > 1 \Rightarrow \lim_{n \to \infty} (r - 1)^n = \infty$ $Do \ do, \ n\acute{e}u \ C_2 \neq 0 \ thi \ \lim_{n \to \infty} x^n = \infty \ (v\^{o} \ l\acute{y}) \ vi \ 0 \leq x_n \leq 1, \ \forall n$
$\Rightarrow C_2 = 0 \Rightarrow \frac{x_1 - x_0}{r - z} = 0$ $\Rightarrow x_1 - x_0 = 0 \Rightarrow (r - 1)(x_0 - f(x_0)) = 0$ $\Rightarrow f(x_0) = x_0 \Rightarrow f(x) = x, \ \forall \ x \in [0, 1]$
Thử lại trong mọi trường hợp f(x)=x là hàm duy nhất thỏa yêu cầu đề bài. Bài3: (Đề thi học sinh giỏi Việt Nam) Gọi M là một tập hợp tất cả các hàm số f xác định với mọi số nguyên và nhận những giá trị thoả mãn tính chất sau: 1) Với mọi số nguyên x và y thì f(x).f(y) = f(x+y) + f(x-y)
2) f(0) ≠ 0 Tìm tất cả các hàm f thuộc M sao cho f(1) = $\frac{5}{2}$ Giải:
Từ 1) cho x = n , y = 1 ta được $f(n).f(1) = f(n+1) + f(n-1)$ Đặt $U_n = f(n)$ ta được phương trình sai phân : $U_{n+1} = f(1) U_n - U_{n-1}$ và $U_1 = f(1) = 5/2$ $\Rightarrow U_{n+1} = \frac{5}{2} U_n - U_{n-1} , U_0 \neq 0 ; U_1 = 5/2$
+) Phương trình đặc trưng : $y^2 - \frac{5}{2}y - 1 = 0$ có nghiệm : $y_1 = 2$; $y_2 = 1/2$ suy ra $U_n = A.2^n + B(\frac{1}{2})^n$
Từ 1) cho x = 1, y = 0 \Rightarrow f(1).f(0) = 2f(1) \Rightarrow f(0) = U ₀ = 2 $\begin{cases} A.2^{0} + B.(\frac{1}{2})^{0} = 2 \\ A.2^{1} + B.\frac{1}{2} = \frac{5}{2} \end{cases} \Leftrightarrow \begin{cases} A+B=2 \\ 2A + \frac{1}{2}B = \frac{5}{2} \end{cases}$
\Rightarrow A = B = 1 \Rightarrow U _n = 2 ⁿ + $\frac{1}{2^n}$ \Rightarrow f(x) = 2 ^x + $\frac{1}{2^x}$ Thử lại đúng Bài4 : (Đề thi quốc tế 1982)
Cho hàm f (x,y) thoả mãn các điều kiện : 1) $f(0,y) = y + 1$ 2) $f(x+1,0) = f(x,1)$ 3) $f(x+1, y+1) = f(x,f(x+1,y))$
với mọi số nguyên không âm x ,y . Tìm $f(4,1981)$ $\frac{\textbf{Giải}}{\text{Trong 3) thay x}} = 0 , y bởi n - 1 ta có : f(1,n) = 1 + f(1,n-1) (do1))$ Đặt $U_n = f(1,n) \Rightarrow U_n = U_{n-1} + 1$. Giải phương trình sai phân này ta được : $U_n = f(1,n) = n+2$ (*)
Ta lại có : $f(2,n) = f(1,f(2,n-1)) = f(2,n-1) + 2$ (do *) Do đó : $f(2,n) = 2n + f(2,0) = 2n + f(1,1) = 2n + (1+2) = 2n + 3$ Lại xét : $f(3,n) = f(2,f(3,n-1)) = 2f(3,n-1) + 3$ Đặt $U_n = f(3,n) + 3$ suy ra ta có : $U_n = 2U_{n-1}$ và $U_0 = f(3,0) + 3 = f(2,1) + 3 = 5 + 3 = 8$
Do đó $U_n = 2^{n+3}$ và $f(3,n) = 2^{n+3}$ -3 Ta có : $f(4,n) = f(3,f(4,n-1)) = 2^{f(4,n-1)} - 3$ Đặt $V_n = f(4,n) + 3$ suy ra : $V_n = 2^{V_{n-1}} = 2^{2^{N_n-1}} = 2^{2^{N_n-1}} = 2^{2^{N_n-1}}$ (în số 2 ở mũ)
và $V_0 = f(4,0) + 3 = f(3,1) + 3 = 2^4 - 3 + 3 = 16 = 2^4$ suy ra : $V_n = 2^{2^{2^2}} (n+4 \text{ số } 2 \text{ ở mũ}) \implies f(4,y) = 2^{2^{2^2}} - 3 \qquad (n+4 \text{ số } 2 \text{ ở mũ})$ Vậy : $f(4,1981) = 2^{2^{2^2}} - 3 (1985 \text{ số } 2 \text{ ở mũ})$
VI. Bài tập tương tự: Bài 1: Tìm hàm $f: [0,+\infty) \to [0,+\infty)$ sao cho: $f(f(x)) + 2 f(x) - 15x = 1, \forall x \ge 0$
Bài 2: Tìm hàm $f: [0, +\infty) \to [0, +\infty)$ sao cho: $f(f(x)) + 2 f(x) - 3x = 1, \forall x \ge 0$ Bài 3: Tìm hàm $f: [0, +\infty) \to [0, +\infty)$ sao cho: $f(f(x)) + 5 f(x) + 6x = 2007$ Bài 4: (Balkan -2002)
$\frac{\mathbf{B}\grave{\mathbf{a}}\mathbf{i}\;4\mathbf{:}}{1}\;(\mathbf{B}\mathbf{a}\mathbf{l}\mathbf{k}\mathbf{a}\mathbf{n}\;-2002)$ $\mathbf{T}\grave{\mathbf{i}}\mathbf{m}\;t\grave{\mathbf{a}}t\;c\grave{\mathbf{a}}\;cac\;h\grave{\mathbf{a}}\mathbf{m}\;\mathbf{f}\;\mathbf{:}\;\mathbf{N}^*\to\mathbf{N}^*\;tho\grave{\mathbf{a}}\;m\\a\mathbf{n}\;\mathbf{:}\;\mathbf{f}(\mathbf{f}(\mathbf{n})+\mathbf{f}(\mathbf{n})=2\mathbf{n}+2001\;ho\\ac\;f(\mathbf{f}(\mathbf{n})+\mathbf{f}(\mathbf{n})=2\mathbf{n}+2002$ $\underline{\mathbf{B}\grave{\mathbf{a}}\mathbf{i}\;5\mathbf{:}}\;T\grave{\mathbf{i}}\mathbf{m}\;h\grave{\mathbf{a}}\mathbf{m}\;\mathbf{f}\;\mathbf{:}\;[0,+\infty)\to\;[-1,+\infty)\;sao\;cho\mathbf{:}\;\mathbf{f}(\mathbf{f}(\mathbf{x})+1)+3\mathbf{f}(\mathbf{x})-10\mathbf{x}\mathbf{-5}=0$
V. <u>Tài liệu tham khảo</u> :
 [1] Lê Đình Thịnh - Phương trình sai phân và một số ứng dụng .NXBGD-2001 [2] Nguyễn Văn Mậu - Một số bài toán chọn lọc về dãy số -NXBGD -2003 [3] Nguyễn Văn Nho - Tuyển chọn các bài toán từ những cuộc thi tại một số nước Đông Âu-NXBGD -2003
 [4] Tài liệu trên Internet [5] Nguyễn Trọng Tuấn – Bài toán hàm số qua các kỳ thi Olympic –NXBGD-2004
 [6] ĐHKHTN Hà Nội – 30 năm Việt Nam tham dự Olympic toán quốc tế -2005 [7] ĐHKHTN Hà Nội - Một số chuyên đề Toán học chọn lọc bồi đưỡng học sinh giỏi -2004 [8] Tuyển tập các đề thi Olympic 30-4 lớp 11