Math 1410 Assignment #5 Solutions University of Lethbridge, Spring 2017

Sean Fitzpatrick

March 28, 2017

- 1. Suppose *A* and *B* are 4×4 matrices such that det(A) = 3 and det(B) = -4. Determine the values of
 - (a) $\det(A^2B) = (\det(A))^2(\det(B)) = 3^2(-4) = -36$.
 - (b) $\det(B^T B A B^{-1}) = \det(B^T) \det(B) \det(B) \det(B) \det(B) \det(B) \det(B) \det(A) \left(\frac{1}{\det B}\right) = \det(B) \det(A) = -12.$
 - (c) $\det(2AB^{-1}) = 2^4 \det(AB^{-1}) = 2^4 \det(A) \det(B^{-1}) = 2^4 \left(\frac{\det(A)}{\det(B)}\right) = 16\left(\frac{3}{-4}\right) = -12.$
- 2. Suppose det(AB) = 0. Must it be the case that det(A) = 0 or det(B) = 0? Prove this, or give a counterexample.
 - Yes. If this were not the case, then we'd have $\det(A) \neq 0$ and $\det(B) \neq 0$, in which case we'd know that both *A* and *B* are invertible. However, we know that if *A* and *B* are invertible, then so is *AB*, which would imply that $\det(AB) \neq 0$, contradicting our assumption that $\det(AB) = 0$.
- 3. We say that an $n \times n$ matrix B is **similar** to an $n \times n$ matrix A if $B = P^{-1}AP$ for some invertible matrix P, and write $B \sim A$.
 - (a) Show that if $B \sim A$, then tr(B) = tr(A).

Recall that tr(XY) = tr(YX) for any $n \times n$ matrices X and Y. If $B \sim A$, then $B = P^{-1}AP$ for some invertible matrix P. Therefore, (with $X = P^{-1}$ and Y = AP) we have

$$tr(B) = tr(P^{-1}AP) = tr(APP^{-1}) = tr(AI) = tr(A).$$

(b) Show that if $B \sim A$, then det(B) = det(A).

We know that $\det(XY) = \det(X)\det(Y)$ for any $n \times n$ matrices X and Y. If $B \sim A$, then $B = P^{-1}AP$ for some invertible matrix P, and

$$\det(B) = \det(P^{-1}AP) = \det(P^{-1})\det(A)\det(P) = \left(\frac{1}{\det(P)}\right)\det(A)\det(P) = \det(A).$$

(c) Suppose *A* is similar to a matrix $D = \begin{bmatrix} x & 0 & 0 \\ 0 & x & 0 \\ 0 & 0 & y \end{bmatrix}$, and we know that tr(A) = 0, and det(A) = 16. What are the values of *x* and *y*?

By parts (a) and (b), we know that tr(A) = tr(D), and by direct computation we have tr(D) = x + x + y = 2x + y. Thus, 2x + y = 0. Similarly, $x^2y = det(D) = det(A) = 16$, so we have two equations:

$$2x + y = 0$$
 and $x^2y = 16$.

From the first equation we have y = -2x; substituting this into the second, we have $x^2y = -2x^3 = 16$, so $x^3 = -8$, giving us x = -2. Since y = -2x, we have y = 4.

4. Let adj(A) denote the adjugate matrix of an $n \times n$ matrix A. Show that

$$\det(\operatorname{adj}(A)) = (\det(A))^{n-1}.$$

We know from the proof of the adjugate formula for the inverse that $A(\operatorname{adj}(A)) = \operatorname{det}(A)I_n$. This is true for any $n \times n$ matrix A, but let us first assume that A is invertible, so that $\operatorname{det}(A) \neq 0$. In this case, taking the determinant of both sides of the equation $A\operatorname{adj}(A) = \operatorname{det}(A)I_n$ gives us

$$\det(A)\det(\operatorname{adj}(A)) = \det(\det(A)I_n) = (\det(A))^n.$$

(On the right-hand side, $det(A)I_n$ is diagonal, with each diagonal entry equal to det(A), and the determinant is given by multiplying the diagonal entries.)

Assuming that $det(A) \neq 0$, we divide both sides by det(A), giving $det(adj(A)) = det(A)^{n-1}$, as required.

Now, what if $\det(A) = 0$? We claim that we must have $\det(\operatorname{adj}(A)) = 0$ as well. Notice that if $\det(A) = 0$, we have $A\operatorname{adj}(A) = \det(A)I_n = \mathbf{0}_n$, since $\det(A) = 0$. If $\det(\operatorname{adj}(A)) \neq 0$, then $\operatorname{adj}(A)$ is invertible, and we would have

$$A = (A \operatorname{adj}(A))(\operatorname{adj}(A))^{-1} = \mathbf{0}_n(\operatorname{adj}(A))^{-1}) = \mathbf{0}_n.$$

But this is impossible, because if $A = \mathbf{0}_n$, then $\mathrm{adj}(A) = \mathbf{0}_n$ as well, and the zero matrix is not invertible.

Thus, if det(A) = 0, then A is not invertible and then neither is adj(A), giving us

$$\det(\operatorname{adj}(A)) = 0 = 0^{n-1} = \det(A)^{n-1}.$$