Série d'exercices

Exercice 1

On introduit une quantité d'eau dans un récipient posé sur un plaque

chauffante produisant une puissance moyenne $P_m = 1, 2KW$.

On fait fonctionner la plaque pendant une durée $\Delta t = 2min$

- Calculer la quantité de chaleur produite par la plaque pendant la durée Δt .
- 2 Quelle est l'influence de l'échauffement de l'eau à l'échelle microscopique?

Exercice 2

Un récipient fermé par un piston de masse négligeable et de section $S = 200cm^2$ peut coulisser à l'intérieur duquel sans frottements.

On introduit dans le récipient une masse

m = 7g de l'éther à la température $\theta = 35$ °C et

à la pression atmosphérique

On chauffe l'éther et il s'évapore complétement

à la même température $\theta = 35^{\circ}C$ et le piston

s'élève lentement d'une hauteur h = 12, 11cm.

- 2 Calculer l'intensité de la force pressante exercée la pression atmosphérique sur le pistonne.
- © Calculer le travail de la force pressante exercée par l'éther sur le pistonne lors de l'échauffement
- ① Lors du chauffage l'éther reçoit une quantité de chaleur Q=2,64KJ. Calculer la variation de l'énergie interne de l'éther.

Donnée: La pression atmosphérique $P_{atm} = 10^5 Pa$

La masse volumique de l'éther liquide à $\theta = 35^{\circ}C$ est : $\rho = 0,71g.$ cm^{-3}

