Substitute Teacher - Day 31

Today we're going to learn about the method of finding antiderivatives called *substitution*, which is closely related to the chain rule for derivatives.

1. To warm up, let's do a couple of chain rule problems. Find f'(x) in each case:

(a)
$$f(x) = 3e^{-4x}$$

(b)
$$f(x) = \sin(x^3) - 2$$

2. Use the previous results to evaluate the following integrals:

$$\int (-12e^{-4x}) \, dx =$$

$$\int 3x^2 \cos(x^3) \, dx =$$

- 3. Consider $y = (2x^3 + 3)^4$.
 - (a) Calculate $\frac{dy}{dx}$.
 - (b) Use that answer to evaluate $\int 24x^2(2x^3+3)^3 dx$.
 - (c) One more: what is $\int x^2(2x^3+3)^3 dx$?

(Use your answer from (b) here.)

(d) Check that last answer by calculating a derivative.

4. So, if we can recognize the function that we want to find the antiderivative of as a result of the chain rule, then we can find the answer. But how can we do that if we aren't told the function to begin with? The *method of substitution* gives us a process to follow.

Let's again consider $\int x^2(2x^3+3)^3 dx$. The function we want to integrate (called the *integrand*) has an "inside" or "inner" function, so we will set $u=2x^3+3$. Calculate $\frac{du}{dx}$.

5. Rewrite the previous answer as $du = 6x^2 dx$. Our goal is now to rewrite the entire integral in terms of our new variable u and du. Since $du = 6x^2 dx$ and our integrand includes $x^2 dx$, we will write $\frac{1}{6} du = x^2 dx$. So we can rewrite the integral as follows:

$$\int x^2 (2x^3 + 3)^3 dx = \int \frac{1}{6} u^3 du.$$

This new integral is one that we can do easily. Complete this integral, getting an answer in terms of u:

$$\int \frac{1}{6} u^3 du =$$

6. Finally substitute back in the expression for u to get an answer in terms of x:

$$\int x^2 (2x^3 + 3)^3 \, dx =$$

Does your answer agree with 3(c)?

7. So let's see if we can do this with a brand new problem. Try to evaluate $\int xe^{1-x^2} dx$. Start with u = "inner" function.