Vertex of the Quadratic

Given a quadratic u(t)=at² + b t + c compute its value at $t_1 = -\frac{b}{2a}$ namely $u(t_1) = c - \frac{b^2}{4a}$

Now compute the same quadratic at $\mathsf{t}_{1^+}\mathsf{h}$, namely $u(t_1+h) = -\frac{b^2}{4a} + a h^2 + c$ Compute $\triangle = u(t_1 + h) - u(t_1) = a h^2$

Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the global minimum!

Example 1.

 $u(t) = 2 t^2 + 12 t + 30$ 500 400

Example 2.

