Comenzado el	domingo, 7 de julio de 2024, 13:37
Estado	Finalizado
Finalizado en	domingo, 7 de julio de 2024, 14:30
Tiempo empleado	52 minutos 51 segundos
Puntos	25,75/30,00
Calificación	8,58 de 10,00 (85,83 %)

Parcialmente correcta

Se puntúa 2,25 sobre 3,00

Considere $f:A o\mathbb{N}$ con $A=\{1,2,3,7\}$, cuyo criterio es f(x)=3n-2.

Nota: Recuerde que no debe usar ningún otro carácter (ni espacio, punto, símbolo) solamente debe usar números. Además en cada espacio solamente debe colocar un elemento del conjunto en forma **ascendente.**

Para calcular el ámbito de f, se evalúa la función en los cuatro elementos del dominio:

$$f(1) = 1$$
, $f(2) = 4$, $f(3) = 7$, $f(7) = 19$

Con lo cual, el ámbito de la función $f(A)=\{1,4,7,19\}$.

Correcta

Se puntúa 3,00 sobre 3,00

Sea m y p funciones cuyos criterios están dados por:

$$m(x)=\sqrt{x^2-2x+15}$$
 y $p(x)=rac{2-x}{15-5x}$

Determine la veracidad de las siguientes expresiones; para ello seleccione entre Verdadero o Falso según corresponda:

- 1. El dominio máximo de la función $m(x)\colon D_{max}=\mathbb{R}$ $\Big[$ Verdadero $\Big]$.
- 2. El dominio máximo de la función $p(x)\colon D_{max}=\mathbb{R}$ { 2, 3} Falso
- 1. Para la función m hay que hallar el conjunto solución de $P(x)=x^2-2x+15\geqslant 0$.

Como P es una función cuadrática, el discriminante brinda información valiosa para determinar el dominio de m.

 $\Delta=(-2)^2-4\cdot 1\cdot 15=-56$, indicando que no hay raíces reales para la función y por ende no se factoriza el criterio

Otro elemento importante es que a=1, con lo cual la gráfica es convexa (cóncava hacia arriba). Lo anterior, permite asegurar que la función siempre toma valores positivos, para todo $x\in\mathbb{R}$.

Por lo tanto el dominio de la la función, indicado para $m \colon D_{max} = \mathbb{R}$ es Verdadero.

2. En el caso de la función $p(x)=\dfrac{2-x}{15-5x}$ el denominador corresponde a una función polinomial, por lo tanto, se tiene que:

$$15 - 5x = 0$$

15 = 5x despejando x se obtiene el valor que indefine la función, en este caso para:

$$3 = x$$

El dominio máximo de p es $D_{max} = \mathbb{R} - \{3\}$.

Por lo tanto, el dominio máximo indicado sobre la función $p\colon D_{max}=\mathbb{R}-\{2,3\}$ es Falso.

Correcta

Se puntúa 3,00 sobre 3,00

Dada la función biyectiva, bien definida en su dominio máximo, cuyo criterio corresponde a:

$$f(x) = \frac{x-3}{5}$$

Entonces:

- a) El criterio de la función inversa de f(x) corresponde a $f^{-1}(x) = \int 5x + 3$
- b) El valor numérico de $f^{-1}(0)=3$

Nota: Recuerde que no debe usar ningún otro carácter (ni espacio, punto, coma o símbolo) solamente debe usar números y en caso de ser necesario el signo negativo. En caso de usar fracciones debe escribirlas de la forma a/b para representar la fracción $\frac{a}{b}$.

a)En este caso debemos calcular el criterio de la función inversa, por lo que procedemos de la siguiente manera (despejando x):

$$f(x) = \frac{x-3}{5}$$

$$y = \frac{x-3}{5}$$

$$5y = x - 3$$

$$5y + 3 = x$$

Por lo que
$$h^{-1}(x)=5x+3$$

Para el inciso b)
$$f^{-1}(0) = 5 \cdot 0 + 3 = 0 + 3 = 3$$

Luego para el inciso c) se debe realizar:

$$f^{-1}(2) = 5 \cdot 2 + 3 = 10 + 3 = 13$$

Parcialmente correcta

Se puntúa 1,50 sobre 3,00

Sean a y b números naturales y suponga que Q se define recursivamente de la siguiente manera:

$$Q(a,b) = egin{cases} 2b & ext{si} & a \geq b \ Q(2a,b) & ext{si} & b > a \end{cases}$$

Determine el valor numérico de las siguientes expresiones:

a)
$$Q(4,3)= \$$
 3

Nota: Recuerde que no debe usar ningún otro carácter (ni espacio, punto, coma o símbolo) solamente debe usar números y en caso de ser necesario el signo negativo. En caso de usar fracciones debe escribirlas de la forma a/b para representar la fracción $\frac{a}{b}$.

Se tiene:

a) Como
$$4 \geq 3$$
 entonces $Q(4,3) = 2 \cdot 3 = 6$

b) Como
$$4>3$$
 entonces $Q(3,4)=Q(2\cdot 3,4)=Q(6,4)$ Luego Como $6\geq 4$ entonces $Q(6,4)=2\cdot 4=8$

Correcta

Se puntúa 2,00 sobre 2,00

Determine el valor numérico de las siguientes expresiones:

a)
$$INT(\sqrt{30}) - INT(-21, 45) = \boxed{26}$$

b)
$$INT(18,25) + INT(\log 5) = \boxed{$$
 18

Nota: Recuerde que no debe usar ningún otro carácter (ni espacio, punto, coma o símbolo) solamente debe usar números y en caso de ser necesario el signo negativo.

Recuerde que la función INT(x) convierte a x en un entero al eliminar la parte decimal, entonces:

a)
$$INT(\sqrt{30}) - INT(-21, 45)$$

= $INT(5, 47) - INT(-21, 45)$
= $5 - -21$

$$=26$$

b)
$$INT(18, 25) + INT(\log 5)$$

= $INT(18, 25) + INT(0, 69)$
= $18 + 0$
= 18

Correcta

Se puntúa 2,00 sobre 2,00

Sean m y n números enteros no negativos y suponga que A (función de Ackermann) se define recursivamente de la siguiente manera:

$$A(m,n) = \left\{ egin{aligned} n+1, & ext{si } m=0 \ A(m-1,1), & ext{si } m
eq 0, n=0 \ A(m-1,A(m,n-1)) & ext{si } m
eq 0, n
eq 0 \end{aligned}
ight.$$

Según la información anterior, determine el valor numérico de las siguientes expresiones:

a)
$$A(1,1) = 3$$

b)
$$A(0,15) = 16$$

Nota: Recuerde que no debe usar ningún otro carácter (ni espacio, punto, coma o símbolo) solamente debe usar números y en caso de ser necesario el signo negativo.

a)
$$A(1,1)=(0,A(1,0))$$
 pues $m
eq 0$, $n
eq 0$ $A(1,1)=(0,A(0,1))$ pues $n=0$ en $A(1,0)$ $A(1,1)=(0,2)$ pues $m=0$ en $A(0,1)$ $A(1,1)=3$ pues $m=0$

b)
$$A(0,15)=15+1=16$$
 pues según la definición $A(m,n)=n+1$ cuando $m=0$.

Correcta

Se puntúa 3,00 sobre 3,00

Dadas las funciones

$$m(x) = 3x$$
 y $n(x) = x^2 + 3$.

Determine el valor numérico de las siguientes composiciones:

a)
$$(m\circ n)(-2)=$$
 21

b)
$$(n\circ m)(2)=39$$

Nota: Recuerde que no debe usar ningún otro carácter (ni espacio, punto, coma o símbolo) solamente debe usar números y en caso de ser necesario el signo negativo.

Considerando la información anterior:

a)
$$(m \circ n)(-2) = m(n(-2))$$

$$n(-2) = (-2)^2 + 3 = 7$$

$$m(7) = 3 \cdot 7 = 21$$

b)
$$(n \circ m)(2) = n(m(2))$$

$$m(2) = 3 \cdot 2 = 6$$

$$n(6) = (6)^2 + 3 = 39$$

Parcialmente correcta

Se puntúa 1,00 sobre 3,00

Considere la permutación eta dada por

$$\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 6 & 4 & 1 & 5 \end{pmatrix}$$

Con base en la información anterior, determine lo que se le solicita:

- a) $\beta^2(1) = 3$
- b) $\beta^2(3) = 6$
- c) $\beta^2(6) = \boxed{5}$

Nota: Recuerde que no debe usar ningún otro carácter (ni espacio, punto, coma o símbolo) solamente debe usar números y en caso de ser necesario el signo negativo. Además, no se le olvide que las respuestas se dan en forma ascendente, es decir, de menor a mayor. Si es fracción se escribe a/b por ejemplo: $\frac{a}{k} = a/b$

a) Para hallar β^2 es necesario considerar donde se manda cada valor para β , así:

- $\beta(1)=2$ entonces $\beta^2(2)=3$
- $\beta(2)=3$ entonces $\beta^2(3)=6$
- $\beta(3) = 6$ entonces $\beta^2(6) = 5$
- eta(4)=4 entonces $eta^2(4)=4$
- $\beta(5) = 1$ entonces $\beta^2(1) = 2$
- $\beta(6) = 5$ entonces $\beta^2(5) = 1$

De esta forma se obtiene:

$$\beta^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 5 & 4 & 2 & 1 \end{pmatrix}$$

Por lo tanto, tenemos que $\beta^2(1) = 3$.

b) Anteriormente se anotó que $\beta^2\,$ está dada por:

$$\beta^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 5 & 4 & 2 & 1 \end{pmatrix}$$

De esta forma, se tiene que $\beta^2(3) = 5$.

c) Como β^2 está dada por:

$$\beta^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 5 & 4 & 2 & 1 \end{pmatrix}$$

De esta forma, se tiene que $\beta^2(6) = 1$.

Correcta

Se puntúa 3,00 sobre 3,00

Dado el conjunto $A=\{1,2,3,4,5,6,7\}$, determine el valor de a y de b en el siguiente arreglo para que α corresponda a una permutación del conjunto A

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & \mathbf{a} & 6 & 7 \\ 1 & 4 & \mathbf{b} & 2 & 5 & 3 & 6 \end{pmatrix}$$

Respuesta: El valor numérico de a es $\boxed{5}$ \checkmark y el valor numérico de b es $\boxed{7}$

Nota: Recuerde que no debe usar ningún otro carácter (ni espacio, punto, coma o símbolo) solamente debe usar números y en caso de ser necesario el signo negativo. En caso de usar fracciones debe escribirlas de la forma a/b para representar la fracción $\frac{a}{b}$.

Considere que el conjunto $A=\{1,2,3,4,5,6,7\}$ por lo que en el primer reglón falta el 5 y en el segundo el 7 Por lo tanto el valor a=5 y b=7

Finalizado

Se puntúa 5,00 sobre 5,00

Considere las siguientes funciones para determinar lo que se le solicita, simplifique al máximo donde sea posible:

$$f(x) = rac{2}{\sqrt{x+3}} - 4 \qquad \qquad h(x) = rac{8-2x}{2} \qquad y \qquad g(x) = x^2 + 3$$

- a) Determine el dominio máximo de la función f(x). (1 punto)
- b) Determine el criterio de la función $h^{-1}(x)$. (2 puntos)
- c) Determine la expresión resultante de la composición. $(h \circ g)(x)$ (2 puntos)

Nota: Recuerde que debe subir una fotografía del procedimiento de respuesta de este ítem. El mismo debe desarrollarlo a mano (no digital) y deberá agregar su nombre, número de cédula y firmar al final del ejercicio si esto no se presenta la respuesta no será calificada.

- Pregunta10_JonatahanObrandoObregon.jpeg
- a) En este caso considere que la restricción para la función f es que el subradical debe ser positivo, por lo que para determinar el dominio máximo de esa función se debe resolver la siguiente inecuación:

$$x + 3 > 0$$

$$x > 0 - 3$$

$$x > -3$$

Por lo tanto, el dominio máximo de la función f es $D_f =]-3, +\infty[$ (1 punto)

b) Para determinar la inversa de h(x) se sigue el siguiente proceso:

$$h(x) = \frac{8 - 2x}{2}$$

$$y = \frac{8 - 2x}{2}$$

$$2y = 8 - 2x$$

$$2y - 8 = -2x \qquad (1 \text{ punto})$$

$$\frac{2y - 8}{-2} = x$$

$$-y + 4 = x \qquad (1 \text{ punto})$$

Por lo tanto $h^{-1}(x) = -x + 4$

C) Sustituyendo g en h obtenemos:

$$(h \circ g)(x) = h(g(x)) = \frac{8 - 2 \cdot g(x)}{2}$$

$$= \frac{8 - 2 \cdot (x^2 + 3)}{2} \qquad (1 \text{ punto})$$

$$= \frac{8 - 2x^2 - 6}{2}$$

$$= \frac{2 - 2x^2}{2} = 1 - x^2$$

$$(h \circ f)(x) = 1 - x^2 \qquad (1 \text{ punto})$$

Comentario: