Comparing different scales on predictability of structral components in LAIs to LSAT metrics

Hannah-Marie Lamle

2025-03-13

Background

It's hypothesized that the limiting factor for LSAT growth and domination on the coral reef benthos is the structural complexity of the substrate, measured by rugosity and slope. Alain's 2024 paper did find an inverse relationship with reef habitat and LSAT abundance, showing that more structurally complex habitats had less LSAT coverage than those with less structure had more coverage. However, understanding specific metrics of the LSAT patches (turf height, sediment depth) were not explored as a function of structural complexity. We are exploring the possibility of quantifying this relationship using geostatistics extracted from large area images of the reef sites, using photogrammetry.

To do this, I went out in the field with Alain to capture one of the transects where LSAT sediment depth and turf length are measured, in 25 plots at each meter along a 25 meter transect, resulting in 25 plots. Each plot had a microquadrat of 25cm x 25cm where measurements were taken. The large area image of the transect was created in Metashape. In order to extract rugosity values, the point cloud was inserted into VISCORE, and a box in the dimensions of the microquadrat (25x25cm) was drawn to extract depth points along 20 transect lines in the box for further calculation of rugosity. This was repeated for a box of 50cm x 50cm and 100cm x 100cm. Next, the DEM was extracted from Metashape and imported to GIS, where the slope of each box (25x25cm, 50x50cm, 100x100cm) was calculated at each plot site.

After all information was extracted, processesing was ran in R using linear models to assess the relationship between these two structural values and the LSAT metrics.

Figure 1: Screen grab of GIS showing LAI with areas for structural elements extracted. Yellow dot is location of nail marking each point. Green box = $25 \,\mathrm{cm}$, Blue box = $50 \,\mathrm{cm}$, Pink box = $100 \,\mathrm{cm}$. Note that in this image, there is $26 \,\mathrm{plots}$. The last plot in the series was removed.

Rugosity predicting Turf Length:

Call:

lm(formula = `Turf length (mm)` ~ avg_rugo25, data = rawdata25)

Residuals:

Min 1Q Median 3Q Max -2.4604 -0.7563 -0.1524 0.8306 3.0412

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.1751 1.4188 0.828 0.416
avg_rugo25 1.0929 0.7718 1.416 0.170

Residual standard error: 1.48 on 23 degrees of freedom Multiple R-squared: 0.08019, Adjusted R-squared: 0.0402

F-statistic: 2.005 on 1 and 23 DF, p-value: 0.1702

25cm quadrat

Call:

lm(formula = `Turf length (mm)` ~ rugo25_A, data = rawdata25)

Residuals:

Min 1Q Median 3Q Max

-2.5153 -0.8207 -0.1325 0.8839 2.9745

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.194 1.924 2.699 0.0128 *
rugo25_A -3.349 3.098 -1.081 0.2909

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.505 on 23 degrees of freedom Multiple R-squared: 0.04835, Adjusted R-squared: 0.006971

F-statistic: 1.168 on 1 and 23 DF, p-value: 0.2909

50cm Quadrat

Call:

lm(formula = `Turf length (mm)` ~ avg_rugo50, data = rawdata50)

Residuals:

Min 1Q Median 3Q Max -2.2435 -1.2791 -0.1834 0.8571 2.7464

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.1765 1.6419 2.544 0.0182 *
avg_rugo50 -0.5938 0.9241 -0.643 0.5269

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.529 on 23 degrees of freedom Multiple R-squared: 0.01763, Adjusted R-squared: -0.02508

F-statistic: 0.4129 on 1 and 23 DF, p-value: 0.5269

50cm Quadrat

Call:

lm(formula = `Turf length (mm)` ~ rugo50_A, data = rawdata50)

Residuals:

Min 1Q Median 3Q Max -2.1582 -1.1871 -0.1341 0.8689 2.8316

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.7192 2.4023 1.132 0.269
rugo50_A 0.6761 3.8281 0.177 0.861

Residual standard error: 1.542 on 23 degrees of freedom Multiple R-squared: 0.001354, Adjusted R-squared: -0.04206

F-statistic: 0.0312 on 1 and 23 DF, p-value: 0.8614

100cm Quadrat

Call:

lm(formula = `Turf length (mm)` ~ avg_rugo100, data = rawdata100)

Residuals:

Min 1Q Median 3Q Max -2.5372 -1.3316 0.2186 0.6812 2.6409

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.353 1.985 3.201 0.00397 **
avg_rugo100 -1.906 1.164 -1.637 0.11531

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.46 on 23 degrees of freedom Multiple R-squared: 0.1043, Adjusted R-squared: 0.06537

F-statistic: 2.679 on 1 and 23 DF, p-value: 0.1153

Call:

lm(formula = `Turf length (mm)` ~ rugo100_A, data = rawdata100)

Residuals:

Min 1Q Median 3Q Max -2.4443 -1.2932 0.1454 0.8049 2.6872

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.5812 2.8105 -0.207 0.838
rugo100_A 5.8910 4.4244 1.331 0.196

Residual standard error: 1.487 on 23 degrees of freedom Multiple R-squared: 0.07156, Adjusted R-squared: 0.0312

F-statistic: 1.773 on 1 and 23 DF, p-value: 0.1961

Rugosity predicting Sediment Depth:

25cm Quadrat

Call:

lm(formula = `Sediment depth (mm)` ~ avg_rugo25, data = rawdata25)

Residuals:

Min 1Q Median 3Q Max -1.0610 -0.6364 -0.2710 0.3597 2.3543

Coefficients:

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8636 on 23 degrees of freedom Multiple R-squared: 0.2044, Adjusted R-squared: 0.1698

F-statistic: 5.909 on 1 and 23 DF, p-value: 0.02327

Call:

lm(formula = `Sediment depth (mm)` ~ rugo25_A, data = rawdata25)

Residuals:

Min 1Q Median 3Q Max -1.1789 -0.6868 -0.1418 0.5344 2.3341

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.142 1.129 3.669 0.00127 **
rugo25_A -3.916 1.818 -2.154 0.04191 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8832 on 23 degrees of freedom Multiple R-squared: 0.1679, Adjusted R-squared: 0.1317

F-statistic: 4.642 on 1 and 23 DF, p-value: 0.04191

Call:

lm(formula = `Sediment depth (mm)` ~ avg_rugo50, data = rawdata50)

Residuals:

Min 1Q Median 3Q Max -1.2447 -0.7420 -0.7220 0.2676 2.2552

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.76865 1.03945 1.702 0.102
avg_rugo50 -0.01641 0.58504 -0.028 0.978

Residual standard error: 0.9682 on 23 degrees of freedom Multiple R-squared: 3.423e-05, Adjusted R-squared: -0.04344

F-statistic: 0.0007872 on 1 and 23 DF, p-value: 0.9779

Call:

lm(formula = `Sediment depth (mm)` ~ rugo50_A, data = rawdata50)

Residuals:

Min 1Q Median 3Q Max -1.1836 -0.7264 -0.6429 0.3605 2.3260

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.2430 1.5047 1.491 0.150
rugo50_A -0.8083 2.3977 -0.337 0.739

Residual standard error: 0.9658 on 23 degrees of freedom Multiple R-squared: 0.004916, Adjusted R-squared: -0.03835

F-statistic: 0.1136 on 1 and 23 DF, p-value: 0.7391

Call:

lm(formula = `Sediment depth (mm)` ~ avg_rugo100, data = rawdata100)

Residuals:

Min 1Q Median 3Q Max -1.2617 -0.8475 -0.1636 0.4199 2.1623

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.1723 1.2808 2.477 0.021 *
avg_rugo100 -0.8496 0.7515 -1.131 0.270

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9424 on 23 degrees of freedom Multiple R-squared: 0.05265, Adjusted R-squared: 0.01146

F-statistic: 1.278 on 1 and 23 DF, p-value: 0.2699

Call:

lm(formula = `Sediment depth (mm)` ~ rugo100_A, data = rawdata100)

Residuals:

Min 1Q Median 3Q Max -1.2313 -0.8078 -0.3161 0.3773 2.1890

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.2106 1.8019 0.117 0.908
rugo100_A 2.4211 2.8366 0.854 0.402

Residual standard error: 0.9532 on 23 degrees of freedom Multiple R-squared: 0.0307, Adjusted R-squared: -0.01144

F-statistic: 0.7285 on 1 and 23 DF, p-value: 0.4022

Slope predicting Turf Length:

25cm Quadrat

11ء

lm(formula = `Turf length (mm)` ~ MEAN, data = rawdata25)

Residuals:

Min 1Q Median 3Q Max -2.1540 -1.1313 -0.1454 0.8718 2.8733

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.019875 3.117123 0.969 0.343
MEAN 0.002856 0.073736 0.039 0.969

Residual standard error: 1.543 on 23 degrees of freedom
Multiple R-squared: 6.52e-05, Adjusted R-squared: -0.04341

F-statistic: 0.0015 on 1 and 23 DF, p-value: 0.9694

Call:

lm(formula = `Turf length (mm)` ~ MEAN, data = rawdata50)

Residuals:

Min 1Q Median 3Q Max -2.1576 -1.1764 -0.1117 0.8649 2.8414

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.75324 3.60997 1.04 0.309
MEAN -0.01449 0.08496 -0.17 0.866

Residual standard error: 1.542 on 23 degrees of freedom Multiple R-squared: 0.001262, Adjusted R-squared: -0.04216

F-statistic: 0.02907 on 1 and 23 DF, p-value: 0.8661

Call:

lm(formula = `Turf length (mm)` ~ MEAN, data = rawdata100)

Residuals:

Min 1Q Median 3Q Max -2.1426 -1.1590 -0.1582 0.8784 2.8796

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.65063 4.52221 0.586 0.563
MEAN 0.01154 0.10638 0.108 0.915

Residual standard error: 1.543 on 23 degrees of freedom Multiple R-squared: 0.0005113, Adjusted R-squared: -0.04294

F-statistic: 0.01177 on 1 and 23 DF, p-value: 0.9146

Slope predicting Sediment Depth:

25cm Quadrat

۱۱۰دی

lm(formula = `Sediment depth (mm)` ~ MEAN, data = rawdata25)

Residuals:

Min 1Q Median 3Q Max -1.1610 -0.7651 -0.5902 0.5227 2.3803

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.65340 1.94267 0.336 0.740
MEAN 0.02583 0.04595 0.562 0.579

Residual standard error: 0.9616 on 23 degrees of freedom Multiple R-squared: 0.01355, Adjusted R-squared: -0.02934

F-statistic: 0.316 on 1 and 23 DF, p-value: 0.5795

Call:

lm(formula = `Sediment depth (mm)` ~ MEAN, data = rawdata50)

Residuals:

Min 1Q Median 3Q Max -1.2410 -0.7384 -0.7301 0.2727 2.2520

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.849053 2.266465 0.816 0.423
MEAN -0.002576 0.053339 -0.048 0.962

Residual standard error: 0.9681 on 23 degrees of freedom Multiple R-squared: 0.0001014, Adjusted R-squared: -0.04337

F-statistic: 0.002332 on 1 and 23 DF, p-value: 0.9619

Call:

lm(formula = `Sediment depth (mm)` ~ MEAN, data = rawdata100)

Residuals:

Min 1Q Median 3Q Max -1.2870 -0.7439 -0.6764 0.4232 2.2455

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.00307 2.83409 0.354 0.727
MEAN 0.01738 0.06667 0.261 0.797

Residual standard error: 0.9668 on 23 degrees of freedom Multiple R-squared: 0.002945, Adjusted R-squared: -0.04041

F-statistic: 0.06793 on 1 and 23 DF, p-value: 0.7967