Calculus III - MATH 2210 SP2021

Week 1

Equation for a sphere: $(x-h)^2 + (y-j)^2 + (z-k)^2 = r^2$ $r = \sqrt{\rho^2 + z^2}$

Equation of a plane: $a(x-x_p) + b(y-y_p) + c(z-z_p) = d$

Midpoint: $m_x = \frac{x_1 - x_2}{2}$

Magnitude: $|u| = \sqrt{u_1^2 + u_2^2 + u_3^2}$

Projection of U onto V:

 $pr_v u = \left(\frac{u \cdot v}{||v||}\right)$

Sphere eq.: $(x - j)^2 + (y - k)^2 + (z - l)^2 = r^2$

 $r = \sqrt{m_1^2 + m_2^2 + m_3^2}$

 $u \times v = \langle u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1 \rangle$

 $||u \times v|| = ||u|| ||v|| \sin \theta$

 $a \cdot b = ||a|| ||b|| \cos \theta$

The equation for a plane with normal vector $\langle a,b,c \rangle$ is: ax + by + cz = d - parallel planes have same normal vectors.

Find equation of plane containing three points P, Q, R $\overrightarrow{PQ} = \overrightarrow{P} - \overrightarrow{Q}, \overrightarrow{PR} = \overrightarrow{P} - \overrightarrow{R}, \langle a, b, c \rangle = \overrightarrow{PQ} \times \overrightarrow{PR}$

Week 2

 $a_t = T \cdot a$

 $a_n = \sqrt{||r''(t)||^2 - a_t^2}$

 $A_t = a_t T(t) + a_n N(t)$

 $T(t) = \frac{1}{||r'(t)||} \cdot r'(t)$ $N(t) = \frac{1}{||T'(t)||} \cdot T'(t)$ $K(t) = \frac{||r'(t)||}{||r'(t)||^3}$

 $B(t) = T(t) \times N(t)$

Week 3

Cartesian »Cylindrical

 $r = \sqrt{x^2 + y^2}$

 $\theta = \arctan(\frac{y}{x})$

z = z

Cartesian »Spherical

 $r = \sqrt{x^2 + y^2 + z^2}$

 $\theta = \arctan(\frac{y}{x})$

 $\phi = \arccos(\frac{z}{z})$

Cylindrical »Cartesian

 $x = r \cos \theta$

 $y = r \sin \theta$

z = z

Cylindrical »Spherical

 $\phi = \arctan(\frac{\rho}{z})$

Spherical »Cylindrical

 $\rho = r \sin \theta$

 $\theta = \theta$

 $z = \cos \theta$

Spherical »Cartesian

 $x = r \sin \phi \cos \theta$

 $y = r \sin \phi \sin \theta$

 $z = r \cos \phi$

Equations

Ellipsoid: $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

Elliptic Paraboloid: $z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$

Hyperbolic Paraboloid: $z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$ Hyperboloid of One Sheet: $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$

Hyperboloid of Two Sheets: $\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$

Elliptic Cone: $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2}$

Circles: $(x - h)^2 + (y - k)^2 = r^2$

Cylindrical coordinate system: (ρ, ϕ, z)

Spherical coordinate system: (r, θ, ϕ)

Ellipse: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Hyperbola: $\frac{x^2}{x^2} - \frac{y^2}{x^2} = 1$

Parabola: $y = ax^2 + bx + c$

Examples

Let L be determined by the equations y = 2 and x = 6z.

If we rotate around the X axis, we get an equation

 $Ax^{2} + By^{2} + Cz^{2} = 1$, find A, B, and C.

 $y^2 + z^2 = 2^2 * \frac{1}{4}y^2 + \frac{1}{4}z^2 = 1(B, C)$

Find a second point, this case it will be < 6, 2, 1 >

 $A(6)^{2} + \frac{1}{4}(2)^{2} + \frac{1}{4}(1)^{2} = 1 \times A(6)^{2} + \frac{1}{4}(1)^{2} = 0$

 $A36 = -\frac{1}{4} A = -\frac{1}{4*36}$

Find an equation of the ellipsoid passing through the points

 $(\pm 3, 0, 0), (0, \pm 1, 0), (0, 0, \pm 6)$

Use formula of ellipsoid: $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}$, with $a = \pm 3, b =$

 $\pm 1, c = \pm 6$

A gun has a muzzle speed of 90 meters per second. What angle of elevation θ should be used to hit an object 170 meters away? use $g = 9.8 \frac{m}{s^2}$ $u = 90 \frac{m}{s}, \ s = 170 m, \ g = 9.8 \frac{m}{s^2}, \ u_x = \cos \theta, \ u_y = \sin \theta$ $s = u \cos \theta t \ *170 = 90 \cos \theta t \ *t = \frac{17}{9 \cos \theta}$ $s_y = u_y + \frac{1}{2} a t^2 \ *0 = 90 \sin \theta \frac{17}{9 \cos \theta} + 4.9 (\frac{17}{9 \cos \theta})^2$ $170 \tan \theta = \frac{4.9 \cdot 289}{81} \cdot \frac{1}{\cos^2 \theta} \ *170 \frac{\sin \theta}{\cos \theta} = \frac{4.9 \cdot 289}{81 \cdot 85}$ $\sin \theta \cos \theta = \frac{4.9 \cdot 289}{81 \cdot 85} \ *\sin 2\theta = \frac{4.9 \cdot 289}{81 \cdot 85}$ $2\theta = \arcsin(\frac{4.9 \cdot 289}{81 \cdot 85})$