Unive	ersité	Denis	Diderot
UFR	de M	Iathém	atiques

Année 2015/2016 U1TC35

	Test n°	$\mathbf{L}\mathbf{I}$ (durée : 30 mn)
NOM :		

Question de cours

Soit X un sous-ensemble de \mathbb{R}^n et soit d un entier naturel. Quand dit-on que X est une sous-variété différentiable de dimension d et de classe \mathbf{C}^{∞} de \mathbb{R}^n ?

 $\mathbf{Bar\`eme}:\mathit{Question}\ \mathit{de}\ \mathit{cours}\ \mathrm{sur}\ 5\ \mathrm{points}\,;\,1)\ \mathrm{sur}\ 5\ \mathrm{points}\,;\,2)\ \mathrm{sur}\ 5+5\ \mathrm{points}.$

Exercices

1) Soit $f:\mathbb{R}^2 \to \mathbb{R}$ une application de classe \mathbf{C}^2 telle que

$$f(0,0) = \frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = \frac{\partial^2 f}{\partial x^2}(0,0) = \frac{\partial^2 f}{\partial y^2}(0,0) = 0 \quad \text{et} \quad \frac{\partial^2 f}{\partial x \partial y}(0,0) = 1.$$

Montrer que l'application $g \colon \mathbb{R}^2 \to \mathbb{R}$ définie par

$$g(x,y) = \frac{f(x,y)-xy}{x^2+y^2}$$
 si $(x,y) \neq (0,0)$ et $g(0,0) = 0$

est continue.

- 2) Soit $h: \mathbb{R}^2 \to \mathbb{R}$ définie par : h(x,y) = xy(x+y-1) pour tout $(x,y) \in \mathbb{R}^2$. Elle est C^{∞} (clair).
 - a) Déterminer les points critiques de h.

b) Parmi les points critiques de h, on trouve les points (0,0) et $(\frac{1}{3},\frac{1}{3})$. Correspondent-ils à un maximum local de h? à un minimum local de h?