ΑΣΚΗΣΗ 68 & 69

ΕΊΣΟΔΟΣ:

```
2 # Ορισμός (1) συνολικού αριθμού βημάτων (2) μεγέθους βημάτων (3) αρχικών συνθηκών
 3 number of steps = 11
 4 steps = 0.5, -0.5
 5 \times 0 = 0
 6 v 0 = 0.5
 8 # Συνάρτηση για τον υπολογισμό της παραγώγου σε κάθε βήμα της μεθόδου Euler
 9 # Δέχεται ορίσματα εισόδου τις τρέχουσες τιμές των x & y και
10 # επιστρέφει τη παράγωγο (σημείωση : στη συγκεκριμένη εφαρμογή τυχαίνει print()
11 # η συνάρτηση που εκφράζει τη παράγωγο στο δεξιό μέλος της διαφορικής εξίσωσης
12 # να είναι απολειστικά συνάρτηση του γ)
13 def slope(x, y):
     return y * (1-y)
14
15
16 # Συνάρτηση υλοποίησης της μεθόδου του Euler
17 # ---> σύμφωνα με τις οδηγίες της άσκησης <-----
18
19 # Ορίσματα εισόδου : (1) Συνάρτηση υπολογισμού της παραγώγου
                (2) αρχική συνθήκη για τη μεταβλητή χ
20 #
                (3) αρχική συνθήκη για τη μεταβλητή γ
21 #
22 #
                (4) τιμή βήματος
23 #
                (5) αριθμός βημάτων που θα χρησιμοποιηθούν
24
25 def euler(f, init x, init y, Dx, N):
26
27 # Αρχικοποίηση λίστας για όλες τις τιμές της μεταβλητής χ
    x = [init x + pos*Dx for pos in range(N)]
29 # Καθορισμός 1ης τιμής της λίστας για τις τιμές της μεταβλητής γ
30
     y = [init y]
31
32 |# Υλοποίηση της μεθόδου μέσω ενός : for loop για όλα τα βήματα ,
33 # με εκκίνηση τις αρχικές συνθήκες (βήμα j = 0)
34 | Χρησιμιποιείται σε κάθε βήμα η τιμή της у καθώς και της у'
35 # (διαμέσου της συνάρτησης f) από το προηγούμενο βήμα.
36
37
     for step in range(1,N):
38
        y.append(y[step-1] + Dx * f(x[step-1], y[step-1]))
39
40
      print(f'Περιγραφή των αποτελεσμάτων επίλυσης με μέθοδο Euler')
41
```

```
42 #
            Θετικό βήμα : Εκτύπωση κατά αύξουσα σειρά της μεταβλητής χ:
43
44
     if Dx > 0:
        print(f'
                 Βήμα ι Θέση χ(i) Εκτίμηση y(i)')
45
        for index in range(N):
46
47
          print(f'{index: 10d} {x[index]:10.4f} {y[index]:10.4f}')
48
            Αρνητικό βήμα : Εκτύπωση κατά φθίνουσα σειρά της μεταβλητής χ:
49 #
50
     else:
51
        print(f' Βήμα i Θέση x(i) Εκτίμηση y(i)')
52 # Εδώ αντιστρέφουμε τις λίστες με τις τιμές των μεταβλητών x και y και
53 # ταυτοχρόνως εκτυπώνουμε το δείκτη του βήματος κατά φθίνουσα σειρά.
54
        x.reverse()
55
       y.reverse()
56
       for index in range(N):
57
          print(f'{(N-1)-index: 10d} {x[index]:10.4f} {y[index]:10.4f}')
58
59
     print()
60
61 # Επιστροφή στο κύριο πρόγραμμα των τιμών των x και y για όλα τα βήματα
62 # σε περίπτωση που απαιτηθεί κάποια τυχόν περαιτέρω επεξεργασία τους
63 # (π.χ γραφική απεικόνιση) - για την ασκησή μας δεν χρειάζεται πάντως.
64
65
     return x, y
66
67 # Κλήση της κύριας συνάρτησης υλοποίησης της μεθόδου του Euler για τη συγκεκριμένη
68 # διαφορική που μας δίνεται στην άσκηση και για τις συγκεκριμένες αρχικές συνθήκες
69 | # και για τις δύο επιλογές βήματος (θετικό & αρνητικό).
70 for step in steps:
     euler(slope, x 0, y 0, step, number of steps)
```

ΈΞΟΔΟΣ: Περιγραφή των αποτελεσμάτων επίλυσης με μέθοδο Euler(Θετικό Δx):

Βήμα ί	Θέση x(i)	Εκτίμηση γ(i)
0	0.0000	0.5000
1	0.5000	0.6250
2	1.0000	0.7422
3	1.5000	0.8379
4	2.0000	0.9058
5	2.5000	0.9485
6	3.0000	0.9729
7	3.5000	0.9861
8	4.0000	0.9929
9	4.5000	0.9964
10	5.0000	0.9982

Περιγραφή των αποτελεσμάτων επίλυσης με μέθοδο Euler(ΑρνητικόΔx):

Βήμα ί	Θέση x(i)	Εκτίμηση y(i)
10	-5.0000	0.0018
9	-4.5000	0.0036
8	-4.0000	0.0071
7	-3.5000	0.0139
6	-3.0000	0.0271
5	-2.5000	0.0515
4	-2.0000	0.0942
3	-1.5000	0.1621
2	-1.0000	0.2578
1	-0.5000	0.3750
0	0.0000	0.5000