

Problem Solving

Course Introduction

Instructor: Jae-Pil Heo (허재필)

About the Instructor

- Jae-Pil Heo (허재필)
- Joined SKKU in 2017
- Visual Computing Lab @ SKKU
 - Mainly focuses on Computer Vision and Machine Learning
 - 7 master, 7 undergraduate students + me
- E-mail: jaepilheo@skku.edu
- Office: 85472 (4th floor in Corporate Collaboration Bd.)
- Phone: 031-290-7965

Acknowledgements

- The materials are built upon previous efforts of:
 - Prof. Kyung-Yong Chwa (KAIST)
 - Prof. Chang Wook Ahn (GIST)
 - Prof. Jinkyu Lee (SKKU)

Course Information

- Mon 16:30 17:45, Wed 15:00 16:15
- 3 credits
- Language: English
- This course is designed for the second-year students
- Prerequisites
 - High-school math (matrix, vector, ...)
 - Data structures (tree, graph, ...)
 - C programming language
 - If you are unsure, consult the instructor at the end of this class.

Course Objectives

- Problem solving techniques for computer science and engineering
 - Deal with the problems creatively and effectively
 - Develop computational thinking
 - Implement ideas using C programming language
 - Present your idea to your classmates
 - (Know your departmental students and make friends)
- This course is designed for those who have not taken the Algorithm course.
- Problem-based course: It seems unorganized!

Computational Thinking

- Computational thinking [Wikipedia]
 - Problem formulation (abstraction)
 - Solution expression (automation)
 - Solution execution and evaluation (analysis)
- + Implementation
- + Presentation
- + Discussion

Overview

Lecture

 I will give you a few lectures about problem solving strategies and complexity analysis

Problem Solving

- You will solve 1 or 2 problems for each week
- Present and discuss your solutions in class
- Your participation is very important!

Grading

- Homework: 80%
 - (Mostly) You are asked to solve problems and submit a report
 - A few programming assignments (in C)
 - Late submission is not allowed
- Group projects: 20%
- Extra credits for in-class presentation
 - +1 ~ +3 points for each presentation
 - The same scale with homework. Each homework problem = 10 pts
 - +0.x points for good questions or feedbacks
 - State your major and name when you give questions or feedback to the presenter
- No exam ⓒ

Homework Evaluation Protocol

- Correctness of your solution
 - Check whether your algorithm has counter-examples.
- Efficiency of your solution
 - Time and space complexities
- Clarity of your explanation
 - TAs are not a compiler. Avoid to write code if possible.
 - Describe your solution first, and give an example
- Additional comments:
 - Do not write in cursive letters
 - Do not discuss too much with your friends or google.
 - Spend enough time to develop solution.

Class Attendance Rule

- The following cases will be regarded as presence:
 - Department/college activities
 - Military services (e.g., 예비군훈련)
 - Your family passed away; go there immediately and let me know later
- Every two absences \rightarrow lower your grade (e.g., A+ \rightarrow A)
 - No credit for any lateness
 - Exemption for the first absence
 - Example
 - late + absence 3 − 4 times → 1 lower grade
 - late + absence 5 − 6 times → 2 lower grade
 - late + absence 7 − 8 times → 3 lower grade
 - → F

Official Language in Class

- Lecture
 - I'll give lectures in English
 - I may explain again in Korean if materials are unclear to you
- Presentation/discussion/questions in class
 - You're highly recommended to use English.
- Assignments
 - Comments in source codes: English
 - Your report: either in English or Korean
- Exam
 - Questions will be given in English.
 - Your answers: either in English or Korean

Sample Problem #1: Finding k

Finding k

- There is an $N \times N$ matrix. All elements in each row and column are sorted in an ascending order.
- Find a single k efficiently (in terms of number of element accesses).
 If there are multiples k in the matrix, you need to find ANY SINGLE k.

Sample Problem #1: Finding k

- Example
 - Input: 5×5 matrix, k = 7
 - Output: (2,1) or (0,3)

Sample Problem #2: Papers

Papers

- We have N rectangular papers on a desk.
- We want to pin them down with a pin.
- Given positions, orientations, and sizes of papers.
- Design an algorithm that determines whether they can be pinned with only one pin or not.

Example:

Group Project #1: Human Sorting

- Each member will have 15 cards.
- An integer between 100 and 999 is written on each card.
 - There can be multiple cards with the same number.
 - Each team will prepare a deck of cards. A deck for playing will be randomly chosen.
- The goal is to sort all the cards while minimizing time.
 - The evaluation is mostly based on the sorting time
- Each team will play twice and be evaluated by the average sorting time.

Project #1

- There is only a single physical operation that each member can do with other members:
 - A member can give some cards to another team member beside him/her.
 - You can use a linear or circular formation.
 - You can communicate
- During sorting, all cards should be in your hands.
 - Each player should be holding at least 1 card in hands.
- Finally, each member should have 15 cards
 - The team leader should declare the end of your play.
 - Collected cards from the last member to the forefront member should be sorted.

Any Question?