Homework 2 of Introduction to Analysis(II)

AM15 黃琦翔 111652028

February 27, 2024

1. Suppose $f_k(x) = \sum_{n=1}^k \frac{x}{n^{\alpha}(1+nx^2)}$ and $E_I = [-L, L]$ for $L \in \mathbb{N}$. Then, we want to proof that for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ s.t. $|f_k(x) - f_I(x)| < \varepsilon$ for all k, l > N and all $x \in I_L$.

First, suppose that l > k > N, then

$$|f_k(x) - f_l(x)| = \sum_{n=k}^{l} \frac{x}{n^{\alpha} (1 + nx^2)}$$

$$\leq \sum_{n=k}^{l} \frac{L}{n^{\alpha} (1 + nL^2)}$$

2. Since $f_k \to f$ uniformly and f_k are continuous, f is continuous. Then, for any $\varepsilon > 0$, we have $\delta > 0$ s.t. if $|y - y'| < \delta$ then $|f(y) - f(y')| < \frac{\varepsilon}{2}$ for all $y, y' \in \mathbb{R}$. Since $x_k \to x$, there exists $N_1 \in \mathbb{N}$ s.t. $|x_k - x| < \varepsilon$ for all $k > N_1$. Also we have $N_2 \in \mathbb{N}$ s.t. $|f_k(x) - f(x)| < \frac{\varepsilon}{2}$ for all $k > N_2$.

Then, take $N=\max\{N_1,N_2\}$, we can get $|f_k(x_k)-f(x)|\leq |f_k(x_k)-f_k(x)|+|f_k(x)-f(x)|=rac{\varepsilon}{2}+rac{\varepsilon}{2}=\varepsilon$ for all k>N. Thus, $\lim_{k\to\infty}f_k(x_k)=f(x)$.