```
In [1]:
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        sns.set()
        %matplotlib inline
        from scipy import stats
        import warnings
        warnings.simplefilter("ignore")
        sns.set theme(style='darkgrid')
        f2 = {"family":"cambria","color":"g","size":50}
        f3 = {"family":"cambria","color":"k","size":40}
        f1 = {"family":"cambria","color":"r","size":30}
        from sklearn.linear_model import LinearRegression,Lasso, LogisticRegression
        from sklearn.model_selection import train_test_split,cross_val_score
        from sklearn.metrics import confusion_matrix,accuracy_score,f1_score,recall_sc
        from sklearn.preprocessing import MinMaxScaler,LabelEncoder,OneHotEncoder
        from sklearn.preprocessing import StandardScaler,RobustScaler
         \triangleleft
                                                                                      •
```

C:\ProgramData\Anaconda3\envs\lib\site-packages\scipy__init__.py:146: UserWa
rning: A NumPy version >=1.16.5 and <1.23.0 is required for this version of S
ciPy (detected version 1.26.0</pre>

warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"</pre>

```
In [2]: df1 = pd.read_csv(r"C:\Users\Sinha Rahul\Documents\Superstore csv.csv")
```

In [3]: df1

Out[3]:

	order_id	order_date	ship_date	ship_mode	customer_name	segment	state	СО
0	AG- 2011- 2040	1/1/2011	6/1/2011	Standard Class	Toby Braunhardt	Consumer	Constantine	A
1	IN-2011- 47883	1/1/2011	8/1/2011	Standard Class	Joseph Holt	Consumer	New South Wales	Au
2	HU- 2011- 1220	1/1/2011	5/1/2011	Second Class	Annie Thurman	Consumer	Budapest	Hu
3	IT-2011- 3647632	1/1/2011	5/1/2011	Second Class	Eugene Moren	Home Office	Stockholm	Sv
4	IN-2011- 47883	1/1/2011	8/1/2011	Standard Class	Joseph Holt	Consumer	New South Wales	Au
51285	CA- 2014- 115427	31-12-2014	4/1/2015	Standard Class	Erica Bern	Corporate	California	l {
51286	MO- 2014- 2560	31-12-2014	5/1/2015	Standard Class	Liz Preis	Consumer	Souss- Massa- Draâ	Mc
51287	MX- 2014- 110527	31-12-2014	2/1/2015	Second Class	Charlotte Melton	Consumer	Managua	Nica
51288	MX- 2014- 114783	31-12-2014	6/1/2015	Standard Class	Tamara Dahlen	Consumer	Chihuahua	N
51289	CA- 2014- 156720	31-12-2014	4/1/2015	Standard Class	Jill Matthias	Consumer	Colorado	\ {
51290 ı	rows × 21	columns						
1								•

Display Top 10 row in dataset

In [4]: df1.head(10)

Out[4]:

	order_id	order_date	ship_date	ship_mode	customer_name	segment	state	country
0	AG- 2011- 2040	1/1/2011	6/1/2011	Standard Class	Toby Braunhardt	Consumer	Constantine	Algeria
1	IN-2011- 47883	1/1/2011	8/1/2011	Standard Class	Joseph Holt	Consumer	New South Wales	Australia
2	HU- 2011- 1220	1/1/2011	5/1/2011	Second Class	Annie Thurman	Consumer	Budapest	Hungary
3	IT-2011- 3647632	1/1/2011	5/1/2011	Second Class	Eugene Moren	Home Office	Stockholm	Sweden
4	IN-2011- 47883	1/1/2011	8/1/2011	Standard Class	Joseph Holt	Consumer	New South Wales	Australia
5	IN-2011- 47883	1/1/2011	8/1/2011	Standard Class	Joseph Holt	Consumer	New South Wales	Australia
6	CA- 2011- 1510	2/1/2011	6/1/2011	Standard Class	Magdelene Morse	Consumer	Ontario	Canada
7	IN-2011- 79397	3/1/2011	3/1/2011	Same Day	Kean Nguyen	Corporate	New South Wales	Australia
8	ID-2011- 80230	3/1/2011	9/1/2011	Standard Class	Ken Lonsdale	Consumer	Auckland	New Zealand
9	IZ-2011- 4680	3/1/2011	7/1/2011	Standard Class	Lindsay Williams	Corporate	Ninawa	Iraq
10	rows × 21	columns						
4								•

Display tail 10 row in dataset

In [5]: df1.tail(10)

Out[5]:

	order_id	order_date	ship_date	ship_mode	customer_name	segment	state	c
51280	TZ- 2014- 8220	31-12-2014	6/1/2015	Standard Class	Christine Kargatis	Home Office	Dar Es Salaam	Τŧ
51281	CA- 2014- 115427	31-12-2014	4/1/2015	Standard Class	Erica Bern	Corporate	California	
51282	UP- 2014- 4410	31-12-2014	4/1/2015	Standard Class	Guy Thornton	Consumer	Zaporizhzhya	ı
51283	IN-2014- 23754	31-12-2014	7/1/2015	Standard Class	Kalyca Meade	Corporate	Guangdong	
51284	MX- 2014- 108574	31-12-2014	4/1/2015	Standard Class	Julia Barnett	Home Office	Tamaulipas	
51285	CA- 2014- 115427	31-12-2014	4/1/2015	Standard Class	Erica Bern	Corporate	California	
51286	MO- 2014- 2560	31-12-2014	5/1/2015	Standard Class	Liz Preis	Consumer	Souss- Massa-Draâ	N
51287	MX- 2014- 110527	31-12-2014	2/1/2015	Second Class	Charlotte Melton	Consumer	Managua	Nic
51288	MX- 2014- 114783	31-12-2014	6/1/2015	Standard Class	Tamara Dahlen	Consumer	Chihuahua	
51289	CA- 2014- 156720	31-12-2014	4/1/2015	Standard Class	Jill Matthias	Consumer	Colorado	
10 rows	s × 21 colu	umns						
4								•

Find the shape of our dataset(number of column & number of row)

In [6]: df1.shape

Out[6]: (51290, 21)

Find the size of our dataset

```
In [9]: df1.size
Out[9]: 1077090
```

Getting information about our dataset likes total number of rows, total number of columns,data type of each column and memory requirement

```
In [10]: df1.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 51290 entries, 0 to 51289
         Data columns (total 21 columns):
             Column
                             Non-Null Count Dtype
             -----
                             -----
             order_id
         0
                             51290 non-null object
         1
             order_date
                             51290 non-null object
          2
             ship date
                             51290 non-null object
          3
             ship_mode
                             51290 non-null object
            customer_name
                             51290 non-null object
         5
            segment
                             51290 non-null object
         6
            state
                             51290 non-null object
         7
                             51290 non-null
                                            object
            country
             market
                             51290 non-null
                                            object
         9
             region
                             51290 non-null
                                            object
         10 product_id
                             51290 non-null
                                            object
         11 category
                             51290 non-null
                                            object
         12 sub_category
                             51290 non-null
                                            object
         13 product_name
                             51290 non-null
                                            object
         14 sales
                             51290 non-null
                                            object
         15 quantity
                             51290 non-null
                                            int64
         16 discount
                             51290 non-null float64
         17 profit
                             51290 non-null float64
         18 shipping_cost
                             51290 non-null float64
         19 order_priority 51290 non-null object
                             51290 non-null
          20
             year
                                            int64
         dtypes: float64(3), int64(2), object(16)
         memory usage: 8.2+ MB
```

```
df1.info( memory_usage='deep')
In [11]:
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 51290 entries, 0 to 51289
         Data columns (total 21 columns):
              Column
                              Non-Null Count Dtype
             -----
         _ _ _
              order id
          0
                              51290 non-null
                                              object
          1
              order_date
                              51290 non-null object
          2
              ship_date
                              51290 non-null
                                              object
          3
              ship mode
                              51290 non-null
                                              object
          4
                                              object
              customer_name
                              51290 non-null
          5
              segment
                              51290 non-null
                                              object
          6
              state
                              51290 non-null
                                             object
          7
              country
                              51290 non-null
                                             object
                                              object
              market
                              51290 non-null
          9
              region
                              51290 non-null
                                              object
          10 product id
                              51290 non-null
                                              object
          11 category
                              51290 non-null
                                              object
          12 sub_category
                              51290 non-null
                                             object
          13 product_name
                              51290 non-null
                                             object
          14 sales
                              51290 non-null
                                             object
          15 quantity
                              51290 non-null
                                              int64
          16 discount
                              51290 non-null float64
          17 profit
                              51290 non-null float64
                              51290 non-null float64
          18 shipping_cost
          19
              order_priority 51290 non-null object
          20 year
                              51290 non-null
         dtypes: float64(3), int64(2), object(16)
         memory usage: 55.0 MB
```

Changing the Incorrect Data Types

```
df1.info()
In [13]:
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 51290 entries, 0 to 51289
         Data columns (total 21 columns):
              Column
                               Non-Null Count Dtype
         _ _ _
              -----
          0
              order id
                               51290 non-null
                                               object
          1
              order_date
                               51290 non-null datetime64[ns]
          2
              ship_date
                               51290 non-null
                                               datetime64[ns]
          3
              ship mode
                               51290 non-null
                                               object
          4
              customer_name
                               51290 non-null
                                               object
          5
                               51290 non-null
                                               object
              segment
          6
              state
                               51290 non-null
                                               object
          7
              country
                               51290 non-null
                                               object
                               51290 non-null
          8
              market
                                               object
          9
              region
                               51290 non-null
                                               object
          10 product_id
                               51290 non-null
                                               object
          11 category
                               51290 non-null
                                               object
          12 sub_category
                               51290 non-null
                                               object
          13
              product_name
                               51290 non-null
                                               object
In [14]:
         df1.isnull().sum()
Out[14]: order id
                               0
         order_date
                               0
         ship_date
                               0
         ship_mode
                               0
         customer_name
                               0
         segment
         state
                               0
         country
                               0
         market
                               0
         region
                               0
         product_id
                               0
         category
                               0
         sub_category
         product_name
                               0
         sales
                            2630
         quantity
                               0
         discount
                               0
         profit
                               0
         shipping_cost
In [15]:
         df1 = df1.dropna()
```

```
In [16]: df1.isnull().sum()
Out[16]: order_id
                            0
         order_date
                            0
         ship_date
                            0
         ship_mode
         customer_name
                            0
                            0
         segment
         state
                            0
         country
                            0
         market
         region
         product_id
         category
                            0
         sub_category
                            0
         product_name
         sales
                            0
         quantity
         discount
                            0
         profit
                            0
         shipping_cost
         order_priority
         year
         dtype: int64
```

check missing value in dataset

check duplicate value in dataset

```
In [17]: df1.duplicated().values.any()
Out[17]: False
```

Get overall statistics about the dataframe

In [18]: df1.describe()

Out[18]:

	sales	quantity	discount	profit	shipping_cost	year
count	48660.000000	48660.000000	48660.000000	48660.000000	48660.000000	48660.000000
mean	161.017838	3.350658	0.145722	14.688249	17.593780	2012.777579
std	201.092519	2.198216	0.215066	86.825672	28.559365	1.098732
min	0.000000	1.000000	0.000000	-1924.542000	0.000000	2011.000000
25%	29.000000	2.000000	0.000000	0.000000	2.450000	2012.000000
50%	77.000000	3.000000	0.000000	8.460000	7.030000	2013.000000
75%	208.000000	4.000000	0.200000	31.154400	20.152500	2014.000000
max	999.000000	14.000000	0.850000	486.600000	427.100000	2014.000000

correlation

In [19]: df1.corr()

Out[19]:

	sales	quantity	discount	profit	shipping_cost	year
sales	1.000000	0.276072	-0.106719	0.252703	0.771133	-0.002479
quantity	0.276072	1.000000	-0.008913	0.043134	0.207242	-0.006984
discount	-0.106719	-0.008913	1.000000	-0.472681	-0.081453	-0.005690
profit	0.252703	0.043134	-0.472681	1.000000	0.204664	0.005668
shipping_cost	0.771133	0.207242	-0.081453	0.204664	1.000000	-0.002724
year	-0.002479	-0.006984	-0.005690	0.005668	-0.002724	1.000000

```
In [20]: plt.figure(figsize=(12,8))
    sns.heatmap(df1.corr(),annot = True)
    plt.show()
```


EDA

Q1: Which segment is the best seller?

```
In [23]: plt.figure(figsize=(7,12))
    sns.countplot(df1["segment"])
    plt.show()
```


Q2: Which Region has the highest order count and In which Region do we need to grow our Business?¶

```
df1.columns
In [24]:
Out[24]: Index(['order_id', 'order_date', 'ship_date', 'ship_mode', 'customer_name',
                   'segment', 'state', 'country', 'market', 'region', 'product_id',
'category', 'sub_category', 'product_name', 'sales', 'quantity',
                   'discount', 'profit', 'shipping_cost', 'order_priority', 'year'],
                  dtype='object')
In [25]: df1["region"].unique()
Out[25]: array(['Africa', 'Oceania', 'EMEA', 'North', 'Canada', 'Southeast Asia',
                   'Central', 'Caribbean', 'South', 'North Asia', 'East', 'West',
                   'Central Asia'], dtype=object)
           plt.figure(figsize=(12,10))
           sns.countplot(df1["region"])
           plt.xticks(rotation=90)
           plt.show()
              10000
              8000
              6000
              4000
              2000
                                                    Southeast Asia
```

Q3: Who are the Top 10 Customers of the SuperStore and How much is their Repartition

region

of the Profit?¶

Out[29]:

	customer_name	profit
421	Katharine Harms	3400.0
502	Mathew Reese	3105.0
109	Brian Moss	3028.0
673	Sanjit Engle	3007.0
386	John Grady	2870.0
90	Bill Shonely	2840.0
450	Larry Tron	2805.0
374	Jim Karlsson	2791.0
565	Neil Knudson	2790.0
451	Laura Armstrong	2774.0

```
In [30]: plt.figure(figsize=(12,10))
    sns.barplot(x = "customer_name",y = "profit", data = df3)
    plt.xticks(rotation = 90)
    plt.show()
```


How much each Sub-Category is contributing in Sales of SuperStore?

Out[33]:

	sub_category	sales
0	Accessories	2956
1	Appliances	1427
2	Art	4882
3	Binders	6108
4	Bookcases	2031
5	Chairs	3105
6	Copiers	1810
7	Envelopes	2435
8	Fasteners	2420
9	Furnishings	3163
10	Labels	2606
11	Machines	1302
12	Paper	3538
13	Phones	2950
14	Storage	4903
15	Supplies	2417
16	Tables	607

```
In [34]: plt.figure(figsize=(12,15))
    sns.barplot(x = "sub_category", y = "sales", data= df4,saturation=0.65)
    plt.xticks(rotation = 75)
    plt.show()
```


What are the Top 10 States with highest Order Count?¶

```
df1.columns
In [35]:
Out[35]: Index(['order_id', 'order_date', 'ship_date', 'ship_mode', 'customer_name',
                    'segment', 'state', 'country', 'market', 'region', 'product_id',
'category', 'sub_category', 'product_name', 'sales', 'quantity',
                    'discount', 'profit', 'shipping_cost', 'order_priority', 'year'],
                   dtype='object')
In [36]: df1["state"].nunique()
Out[36]: 1088
           df5 = df1.groupby("state")["sales"].count().sort_values(ascending=False).head()
In [37]:
Out[37]:
                               state sales
            0
                           California
                                      1901
            1
                            England
                                      1388
            2
                           New York
                                      1060
                              Texas
                                       959
                        Ile-de-France
                                       900
            5
                    New South Wales
                                       715
               North Rhine-Westphalia
                                       670
            7
                         Queensland
                                       659
            8
                        San Salvador
                                       586
```

Look for Top 10 Consumer Countries is contributing in sales of supermarket

9

Pennsylvania

565

In [39]: df1["country"].unique()

```
'Guatemala', 'Iran', 'Thailand', 'Tanzania', 'Mexico', 'Cuba',
                 'France', 'Brazil', 'United States', 'Japan', 'Sudan', 'Taiwan',
                 'Indonesia', 'Vietnam', 'Angola', 'China', 'Mozambique', 'Lebanon',
                 'Singapore', 'Netherlands', 'Nigeria', 'Egypt', 'Venezuela',
                 'South Africa', 'Spain', 'India', 'Turkey', 'Austria', 'Italy',
                 'Germany', 'Nicaragua', 'Dominican Republic', 'Denmark',
                 'Saudi Arabia', 'Zambia', 'Myanmar (Burma)', 'Russia', 'Mongolia',
                 'Belgium', 'Kenya', 'El Salvador', 'Colombia', 'Estonia',
                 'Madagascar', 'Portugal', 'Morocco', 'Sierra Leone', 'Norway',
                 'Central African Republic', 'Czech Republic', 'Benin',
                 'Bangladesh', 'Panama', 'Chile', 'South Korea', 'Switzerland',
                 'Moldova', 'Uganda', 'Zimbabwe', 'Niger', 'Senegal', 'Hong Kong',
                 'Democratic Republic of the Congo', 'Poland', 'Ireland',
                 'Pakistan', 'Azerbaijan', 'Ukraine', 'Romania', 'Honduras',
                 'Israel', 'Cameroon', 'Cambodia', 'Georgia', 'Argentina', 'Finland', 'Lithuania', 'Peru', 'Somalia', 'Haiti', "Cote d'Ivoire", 'Afghanistan', 'Guinea', 'Liberia', 'South Sudan',
                 'Turkmenistan', 'Kazakhstan', 'Lesotho', 'Burundi', 'Qatar',
                 'Bulgaria', 'Martinique', 'Croatia', 'Ghana', 'Rwanda', 'Ecuador',
                 'Paraguay', 'Ethiopia', 'Syria', 'Tajikistan', 'Slovakia',
```

```
In [40]: df7 = df1.groupby("country")["sales"].count().sort_values(ascending=False).hea
    df8 = df7.reset_index()
    df8
```

'Belarus', 'Papua New Guinea', 'Togo', 'Libya', 'Djibouti', 'Yemen', 'United Arab Emirates', 'Barbados', 'Uzbekistan',

'Guinea-Bissau', 'Bosnia and Herzegovina', 'Tunisia', 'Armenia', 'Mali', 'Jordan', 'Trinidad and Tobago', 'Namibia', 'Gabon', 'Macedonia', 'Nepal', 'Mauritania', 'Guadeloupe', 'Sri Lanka', 'Chad', 'Eritrea', 'Bahrain', 'Equatorial Guinea', 'Slovenia',

'Albania', 'Jamaica', 'Uruguay', 'Bolivia',

'Montenegro'], dtype=object)

'Republic of the Congo', 'Swaziland', 'Kyrgyzstan',

Out[40]:

	country	sales
0	United States	9523
1	France	2626
2	Australia	2623
3	Mexico	2514
4	Germany	1928
5	China	1696
6	Brazil	1530
7	United Kingdom	1512
8	India	1411
9	Turkey	1367

Look for Top 10 Consumer Countries is contributing in profit of supermarket

```
In [41]: df9 = df1.groupby("country")["profit"].sum().sort_values(ascending=False).head
df9
```

Out[41]:

	country	profit
0	United States	138292.93160
1	China	85736.15100
2	France	71152.04250
3	Germany	67514.97150
4	India	67316.68500
5	Mexico	67190.97832
6	United Kingdom	56649.52500
7	Australia	51011.63100
8	Spain	30682.19700
9	El Salvador	30367.47532

What are the Top 3 Consumer Countries orders as per Segment & Category?

Out[45]:

	country	count_sales
0	United States	9523
1	France	2626
2	Australia	2623

```
In [46]: plt.figure(figsize=(15,10))
    plt.title("United States",fontdict=f1)
    sns.set_theme(style="darkgrid")
    sns.countplot(x=df1["segment"],hue=df1["category"])
    plt.show()
```



```
In [47]: plt.figure(figsize=(15,10))
   plt.title("Australia",fontdict=f1)
   sns.set_theme(style="darkgrid")
   sns.countplot(x=df1["segment"],hue=df1["category"])
   plt.show()
```



```
In [48]: plt.figure(figsize=(15,10))
   plt.title("France",fontdict=f1)
   sns.set_theme(style="darkgrid")
   sns.countplot(x=df1["segment"],hue=df1["category"])
   plt.show()
```


Growth of Superstore Sales over the year 2011-2014?¶

```
In [51]: df11 = df1.groupby("year")["sales"].sum().reset_index()
df11
```

Out[51]:

```
        year
        sales

        0
        2011
        1378151.0

        1
        2012
        1681499.0

        2
        2013
        2107021.0

        3
        2014
        2668457.0
```

```
In [52]: plt.figure(figsize=(15,10))
    sns.barplot(x = "year", y = "sales", data= df11,saturation=0.65)
    plt.xticks(rotation = 75)
    plt.title("Growth of the Store",fontdict=f1)
    plt.show()
```


Growth of Superstore quantity over the year 2011-2014?¶

Out[55]:

	year	quantity
0	2011	28763
1	2012	34899
2	2013	44041
3	2014	55340

```
In [56]: plt.figure(figsize=(15,10))
    sns.barplot(x = "year", y = "quantity", data= df12,saturation=0.65)
    plt.xticks(rotation = 75)
    plt.title("Growth of the Store",fontdict=f1)
    plt.show()
```


Analyzing Profit category and sub_category wise

Out[58]:

	category	sub_category	profit
0	Furniture	Bookcases	53580.68990
1	Furniture	Chairs	68377.74450
2	Furniture	Furnishings	45012.21550
3	Furniture	Tables	-69921.27200
4	Office Supplies	Appliances	29702.84570
5	Office Supplies	Art	57842.60850
6	Office Supplies	Binders	48538.11600
7	Office Supplies	Envelopes	29601.11630
8	Office Supplies	Fasteners	11525.42410
9	Office Supplies	Labels	15010.51200
10	Office Supplies	Paper	59207.68270
11	Office Supplies	Storage	74684.47350
12	Office Supplies	Supplies	23994.54570
13	Technology	Accessories	81507.85580
14	Technology	Copiers	85220.44908
15	Technology	Machines	22674.96240
16	Technology	Phones	78170.20510

```
In [59]: plt.figure(figsize=(15,10))
    sns.barplot(x = "category", y = "profit", data= df13,saturation=0.65, hue = "s
    plt.xticks(rotation = 75)
    plt.title("Growth of the Store",fontdict=f1)
    plt.show()
```


Analyzing Profit from each Market in the World

Out[62]:

	segment	market	profit
0	Consumer	APAC	102256.62970
1	Consumer	Africa	17075.41500
2	Consumer	Canada	6865.14000
3	Consumer	EMEA	5981.83800
4	Consumer	EU	97761.50400
5	Consumer	LATAM	61972.67200
6	Consumer	US	68011.96000
7	Corporate	APAC	58161.73990
8	Corporate	Africa	4210.48500
9	Corporate	Canada	3476.58000
10	Corporate	EMEA	5179.33800
11	Corporate	EU	62801.42550
12	Corporate	LATAM	39195.83224
13	Corporate	US	43021.94230
14	Home Office	APAC	39489.08130
15	Home Office	Africa	8854.71900
16	Home Office	Canada	1990.83000
17	Home Office	EMEA	649.08300
18	Home Office	EU	38608.56450
19	Home Office	LATAM	21906.36604
20	Home Office	US	27259.02930

```
In [63]: plt.figure(figsize=(15,10))
    sns.barplot(x = "market", y = "profit", data= df14,saturation=0.65, hue = "seg
    plt.xticks(rotation = 75)
    plt.title("Growth of the Store",fontdict=f1)
    plt.show()
```


Analyzing sales from each Market in the World

```
In [65]: df14 = df1.groupby("market")["sales"].sum().reset_index()
df14
```

Out[65]:

	market	sales
0	APAC	2000746.0
1	Africa	538115.0
2	Canada	50314.0
3	EMEA	575562.0
4	EU	1803099.0
5	LATAM	1563126.0
6	US	1304166.0

```
In [66]: plt.figure(figsize=(15,10))
    sns.barplot(x = "market", y = "sales", data= df14,saturation=0.65)
    plt.xticks(rotation = 75)
    plt.title("Growth of the Store",fontdict=f1)
    plt.show()
```


Top 5 Profitable Countries?

```
In [67]: |df1.columns
Out[67]: Index(['order_id', 'order_date', 'ship_date', 'ship_mode', 'customer_name',
                  'segment', 'state', 'country', 'market', 'region', 'product_id',
                 'category', 'sub_category', 'product_name', 'sales', 'quantity',
                  'discount', 'profit', 'shipping cost', 'order priority', 'year'],
                dtype='object')
In [68]: df1["country"].unique()
Out[68]: array(['Algeria', 'Australia', 'Hungary', 'Sweden', 'Canada',
                  'New Zealand', 'Iraq', 'Philippines', 'United Kingdom', 'Malaysia',
                  'Guatemala', 'Iran', 'Thailand', 'Tanzania', 'Mexico', 'Cuba',
                 'France', 'Brazil', 'United States', 'Japan', 'Sudan', 'Taiwan',
                  'Indonesia', 'Vietnam', 'Angola', 'China', 'Mozambique', 'Lebanon',
                  'Singapore', 'Netherlands', 'Nigeria', 'Egypt', 'Venezuela',
                  'South Africa', 'Spain', 'India', 'Turkey', 'Austria', 'Italy',
                 'Germany', 'Nicaragua', 'Dominican Republic', 'Denmark',
                  'Saudi Arabia', 'Zambia', 'Myanmar (Burma)', 'Russia', 'Mongolia',
                  'Belgium', 'Kenya', 'El Salvador', 'Colombia', 'Estonia',
                  'Madagascar', 'Portugal', 'Morocco', 'Sierra Leone', 'Norway',
                  'Central African Republic', 'Czech Republic', 'Benin',
                  'Bangladesh', 'Panama', 'Chile', 'South Korea', 'Switzerland',
                 'Moldova', 'Úganda', 'Zimbabwe', 'Niger', 'Senegal', 'Hong Kong',
                  'Democratic Republic of the Congo', 'Poland', 'Ireland',
                  'Pakistan', 'Azerbaijan', 'Ukraine', 'Romania', 'Honduras',
                  'Israel', 'Cameroon', 'Cambodia', 'Georgia', 'Argentina',
                 'Finland', 'Lithuania', 'Peru', 'Somalia', 'Haiti', "Cote d'Ivoire", 'Afghanistan', 'Guinea', 'Liberia',
                                                                         'South Sudan',
                 'Turkmenistan', 'Kazakhstan', 'Lesotho', 'Burundi', 'Qatar',
                  'Bulgaria', 'Martinique', 'Croatia', 'Ghana', 'Rwanda', 'Ecuador',
                 'Paraguay', 'Ethiopia', 'Syria', 'Tajikistan', 'Slovakia',
                  'Belarus', 'Papua New Guinea', 'Togo', 'Libya', 'Djibouti',
                 'Yemen', 'United Arab Emirates', 'Barbados', 'Uzbekistan', 'Albania', 'Jamaica', 'Uruguay', 'Bolivia',
                  'Republic of the Congo', 'Swaziland', 'Kyrgyzstan',
                  'Guinea-Bissau', 'Bosnia and Herzegovina', 'Tunisia', 'Armenia',
                  'Mali', 'Jordan', 'Trinidad and Tobago', 'Namibia', 'Gabon',
                  'Macedonia', 'Nepal', 'Mauritania', 'Guadeloupe', 'Sri Lanka',
                  'Chad', 'Eritrea', 'Bahrain', 'Equatorial Guinea', 'Slovenia',
                  'Montenegro'], dtype=object)
         df16 = df1.groupby("country")["profit"].sum().sort_values(ascending = False).r
In [69]:
          df16
Out[69]:
                 country
                              profit
           0 United States 138292.9316
           1
                   China
                         85736.1510
           2
                  France
                          71152.0425
```

Germany

India

67514.9715

67316.6850

3

4

```
In [70]: plt.figure(figsize=(15,10))
    sns.barplot(x = "country", y = "profit", data= df16,saturation=0.65)
    plt.xticks(rotation = 75)
    plt.title("top 5 Profitable country",fontdict=f1)
    plt.show()
```


What are the top 10 most selling Products?¶

In [73]: df17 = df1.groupby("product_name")["sales"].sum().sort_values(ascending = Fals
df17

Out[73]:

	product_name	sales
0	Eldon File Cart, Single Width	31319.0
1	Rogers File Cart, Single Width	22645.0
2	Tenex File Cart, Single Width	20778.0
3	Smead File Cart, Single Width	20775.0
4	Office Star Executive Leather Armchair, Adjust	19355.0
5	Fellowes Lockers, Industrial	19172.0
6	Smead Lockers, Industrial	18648.0
7	Hewlett Copy Machine, Color	16849.0
8	Rogers Lockers, Blue	16494.0
9	Fellowes Lockers, Wire Frame	16470.0

```
In [74]: plt.figure(figsize=(15,8))
    f2 = {"family":"cambria","color":"g","size":50}
    f3 = {"family":"cambria","color":"k","size":40}
    sns.barplot(x="product_name",y="sales",data = df17)
    plt.xlabel("product_name", fontdict=f2)
    plt.ylabel("selas_count",fontdict=f3)
    plt.title("Growth of the Store",fontdict=f1)
    plt.xticks(rotation=90,fontsize = 15)
    plt.show()
```


What is the most preferred Shipment Mode?

```
In [75]: | df1.columns
Out[75]: Index(['order_id', 'order_date', 'ship_date', 'ship_mode', 'customer_name',
                  'segment', 'state', 'country', 'market', 'region', 'product_id',
'category', 'sub_category', 'product_name', 'sales', 'quantity',
                  'discount', 'profit', 'shipping_cost', 'order_priority', 'year'],
                 dtype='object')
In [76]: df1["ship_mode"].unique()
Out[76]: array(['Standard Class', 'Second Class', 'Same Day', 'First Class'],
                dtype=object)
In [77]: |df1["ship_mode"].value_counts()
Out[77]: Standard Class
                              29202
          Second Class
                               9789
          First Class
                               7121
          Same Day
                               2548
          Name: ship_mode, dtype: int64
In [78]: | df1["ship_mode"].value_counts().keys()
Out[78]: Index(['Standard Class', 'Second Class', 'First Class', 'Same Day'], dtype='o
          bject')
          plt.pie(df1["ship_mode"].value_counts(),labels=df1["ship_mode"].value_counts()
In [79]:
          plt.show()
           Standard Class
                             60.0%
                                                 5.2%
                                                                Same Day
                                            14.6%
```

First Class

Second Class

20.1%

In which Region the store is giving more discount and what is the most profitable region?¶

```
In [80]:
          df1.columns
Out[80]: Index(['order_id', 'order_date', 'ship_date', 'ship_mode', 'customer_name',
                  'segment', 'state', 'country', 'market', 'region', 'product_id',
                  'category', 'sub_category', 'product_name', 'sales', 'quantity',
                  'discount', 'profit', 'shipping_cost', 'order_priority', 'year'],
                dtype='object')
In [81]:
          df1["region"].unique()
Out[81]: array(['Africa', 'Oceania', 'EMEA', 'North', 'Canada', 'Southeast Asia',
                  'Central', 'Caribbean', 'South', 'North Asia', 'East', 'West',
                  'Central Asia'], dtype=object)
          df19 = df1.groupby("region")["discount", "profit"].sum()
In [82]:
Out[82]:
                         discount
                                        profit
                  region
                                  30140.61900
                         717.100
                  Africa
                 Canada
                           0.000
                                  12332.55000
               Caribbean
                         226.606
                                  21379.30896
                 Central 1479.998 168764.86940
             Central Asia
                         133.500
                                  66450.97000
                  EMEA
                         977.700
                                  11810.25900
                   East
                         393.300
                                  42644.30580
                         444.272 106622.10832
                  North
              North Asia
                         105.400
                                  86676.69300
                Oceania
                         503.700
                                  54548.28600
```

```
In [83]: df19.plot(kind='bar',figsize=(16,10))
    plt.title("discount vs. Profits")
    plt.ylabel("In Lakhs")
```

Out[83]: Text(0, 0.5, 'In Lakhs')

Creating only Profit/Loss Dataframe to calculate Total Profit & Loss of the superstore from 2011-2014 and the Net Profit¶

In [84]: df_profit = df1[df1["profit"]>0]
 df_profit.head()

Out[84]:

	order_id	order_date	ship_date	ship_mode	customer_name	segment	state	country
0	AG- 2011- 2040	2011-01-01	2011-06- 01	Standard Class	Toby Braunhardt	Consumer	Constantine	Algeria
1	IN-2011- 47883	2011-01-01	2011-08- 01	Standard Class	Joseph Holt	Consumer	New South Wales	Australia
2	HU- 2011- 1220	2011-01-01	2011-05- 01	Second Class	Annie Thurman	Consumer	Budapest	Hungary
4	IN-2011- 47883	2011-01-01	2011-08- 01	Standard Class	Joseph Holt	Consumer	New South Wales	Australia
5	IN-2011- 47883	2011-01-01	2011-08- 01	Standard Class	Joseph Holt	Consumer	New South Wales	Australia

5 rows × 21 columns

In [85]: df_loss = df1[df1["profit"]<0]
df_loss.head()</pre>

Out[85]:

	order_id	order_date	ship_date	ship_mode	customer_name	segment	state	countr
3	IT-2011- 3647632	2011-01-01	2011-05- 01	Second Class	Eugene Moren	Home Office	Stockholm	Swede
8	ID-2011- 80230	2011-03-01	2011-09- 01	Standard Class	Ken Lonsdale	Consumer	Auckland	Ne Zealan
10	IN-2011- 65159	2011-03-01	2011-07- 01	Second Class	Larry Blacks	Consumer	National Capital	Philippine
11	IN-2011- 65159	2011-03-01	2011-07- 01	Second Class	Larry Blacks	Consumer	National Capital	Philippine
14	ID-2011- 80230	2011-03-01	2011-09- 01	Standard Class	Ken Lonsdale	Consumer	Auckland	Ne Zealan

5 rows × 21 columns

```
total_profit = df_profit["profit"].sum().round(2)
In [86]:
         total profit
Out[86]: 1425420.41
In [87]: total_loss = df_loss["profit"].sum().round(2)
         total_loss
Out[87]: -710690.23
         net_worth =total_profit - total_loss
In [88]:
         net_worth.round(2)
Out[88]: 2136110.64
In [89]: df_net_profit = pd.DataFrame({"total_profit" : {0:1425420.41},
                                       "total loss" : {0:710690.23},
                                       "net_worth":{0:714730.18}})
         df_net_profit
In [90]:
Out[90]:
             total_profit total_loss net_worth
          0 1425420.41 710690.23 714730.18
```

Find weighted avarage sales by region

Out[92]:

	region	sales
0	Africa	538115.0
1	Canada	50314.0
2	Caribbean	251441.0
3	Central	1806638.0
4	Central Asia	389506.0
5	EMEA	575562.0
6	East	366492.0
7	North	790546.0
8	North Asia	453686.0
9	Oceania	625382.0
10	South	1031101.0
11	Southeast Asia	532172.0
12	West	424173.0

In [93]: df_count = df1.groupby("region")["sales"].count().reset_index().rename(columns
df_count

Out[93]:

	region	freq
0	Africa	4448
1	Canada	375
2	Caribbean	1643
3	Central	10543
4	Central Asia	1867
5	EMEA	4891
6	East	2705
7	North	4520
8	North Asia	2121
9	Oceania	3238
10	South	6340
11	Southeast Asia	2926
12	West	3043

Out[94]:

	region	sales	freq
0	Africa	538115.0	4448
1	Canada	50314.0	375
2	Caribbean	251441.0	1643
3	Central	1806638.0	10543
4	Central Asia	389506.0	1867
5	EMEA	575562.0	4891
6	East	366492.0	2705
7	North	790546.0	4520
8	North Asia	453686.0	2121
9	Oceania	625382.0	3238
10	South	1031101.0	6340
11	Southeast Asia	532172.0	2926
12	West	424173.0	3043

In [96]: df_wt

Out[96]:

	region	sales	freq	fre_SUM
0	Africa	538115.0	4448	2.393536e+09
1	Canada	50314.0	375	1.886775e+07
2	Caribbean	251441.0	1643	4.131176e+08
3	Central	1806638.0	10543	1.904738e+10
4	Central Asia	389506.0	1867	7.272077e+08
5	EMEA	575562.0	4891	2.815074e+09
6	East	366492.0	2705	9.913609e+08
7	North	790546.0	4520	3.573268e+09
8	North Asia	453686.0	2121	9.622680e+08
9	Oceania	625382.0	3238	2.024987e+09
10	South	1031101.0	6340	6.537180e+09
11	Southeast Asia	532172.0	2926	1.557135e+09
12	West	424173.0	3043	1.290758e+09

```
In [97]: weight_avg = df_wt.fre_SUM.sum() / df_wt.freq.sum()
    weight_avg

Out[97]: 870368.7723797781
```

state wise profit of supermarket

```
In [98]: df1.columns
Out[98]: Index(['order_id', 'order_date', 'ship_date', 'ship_mode', 'customer_name',
                   'segment', 'state', 'country', 'market', 'region', 'product_id',
                   'category', 'sub_category', 'product_name', 'sales', 'quantity',
                   'discount', 'profit', 'shipping_cost', 'order_priority', 'year'],
                 dtype='object')
 In [99]: df1["state"].nunique()
Out[99]: 1088
In [100]:
           df21 = df1.groupby("state")[["profit", "sales"]].sum()
           df22 = df21.sort_values(by = "profit",ascending=False)
           df22.head(10)
Out[100]:
                                      profit
                                               sales
                           state
                        England 49869.90600 273710.0
                       California 48342.49910 270615.0
                       New York 33118.39490 153366.0
                    Ile-de-France 29976.85800 188108.0
            North Rhine-Westphalia 27066.12600 135097.0
                    San Salvador 25632.30912 105245.0
                 New South Wales 24131.54100 145380.0
                        Managua 14877.19724
                                             59055.0
                       São Paulo 14736.37324
                                             70388.0
                      Guatemala 14736.27248
                                             69372.0
```

country wise profit of supermarket

```
df1.columns
In [101]:
Out[101]: Index(['order_id', 'order_date', 'ship_date', 'ship_mode', 'customer_name',
                     'segment', 'state', 'country', 'market', 'region', 'product_id',
'category', 'sub_category', 'product_name', 'sales', 'quantity',
                     'discount', 'profit', 'shipping_cost', 'order_priority', 'year'],
                    dtype='object')
In [102]: | df1["country"].nunique()
Out[102]: 147
In [103]:
            df23 = df1.groupby("country")[["profit", "sales"]].sum()
            df24 = df23.sort_values(by = "profit", ascending=False)
            df24.head(10)
Out[103]:
                                     profit
                                                sales
                     country
                United States
                             138292.93160 1304166.0
                      China
                               85736.15100
                                            368852.0
                     France
                               71152.04250
                                            526745.0
                    Germany
                              67514.97150
                                            389320.0
                       India
                              67316.68500
                                            302511.0
                     Mexico
                               67190.97832
                                            416083.0
             United Kingdom
                               56649.52500
                                            300040.0
                    Australia
                               51011.63100
                                            516624.0
```

check state wise loss of supermarket

165619.0

123814.0

```
In [104]: df22.head()

Out[104]:

profit sales

state

England 49869.9060 273710.0

California 48342.4991 270615.0

New York 33118.3949 153366.0

Ile-de-France 29976.8580 188108.0

North Rhine-Westphalia 27066.1260 135097.0
```

Spain

El Salvador

30682.19700

30367.47532

```
In [105]:
           df25 = df22["profit"]<0</pre>
           df25_loss = df22[df22["profit"]<0]</pre>
In [106]:
           df25_loss.head(10)
```

Out[106]:

	protit	sales
state		
Táchira	-0.5400	33.0
Ayacucho	-1.3160	609.0
Cojedes	-3.3400	114.0
T?nh C?n Th?	-4.4103	1983.0
Matabeleland North	-5.3250	3.0
Kabarole	-5.4870	4.0
Lambayeque	-8.4240	32.0
Ardahan	-10.7760	36.0
Setúbal	-11.0250	182.0
Ruvuma	-12.2040	273.0

country wise loss of supermarket

```
In [107]: df24.head()
```

Out[107]:

	profit	sales
country		
United States	138292.9316	1304166.0
China	85736.1510	368852.0
France	71152.0425	526745.0
Germany	67514.9715	389320.0
India	67316.6850	302511.0

Out[108]:

	profit	sales
country		
Tajikistan	-262.86600	242.0
Papua New Guinea	-475.62900	1786.0
United Arab Emirates	-1036.86000	742.0
Indonesia	-1336.08380	224180.0
Myanmar (Burma)	-1864.07490	26341.0
Uganda	-2426.08500	1625.0
Vietnam	-3290.15730	47572.0
Turkmenistan	-3302.70900	2029.0
Haiti	-3659.76300	9945.0
Yemen	-3706.45800	2464.0
Denmark	-4282.04700	8643.0
Portugal	-4967.91000	9106.0
Lithuania	-5043.10200	3379.0
Zimbabwe	-5428.78500	3767.0
Peru	-5507.87628	17834.0
Thailand	-5896.38060	41102.0
Kazakhstan	-7099.89600	4602.0
Ireland	-7145.25600	15609.0
Dominican Republic	-8678.08072	106487.0
Venezuela	-10906.43044	25533.0
South Korea	-11029.62300	27418.0
Sweden	-12454.48200	23420.0
Pakistan	-12491.14500	38967.0
Philippines	-15257.16150	120135.0
Panama	-16619.58048	46257.0
Argentina	-17084.62872	47783.0
Honduras	-26956.24836	82109.0
Netherlands	-29391.09000	59377.0
Nigeria	-77615.74200	51552.0
Turkey	-82359.08400	92522.0

```
In [109]: df26.shape
Out[109]: (30, 2)
In [110]: df26.plot(kind='bar',figsize=(16,10))
    plt.title("Sales vs. Profits")
    plt.ylabel("In Lakhs")
Out[110]: Text(0, 0.5, 'In Lakhs')
```


What are the Highest selling and Lowest Selling Sub-Category?¶

```
In [112]: plt.figure(figsize=(12,6))
    sns.countplot(x=df1['sub_category'])
    plt.xticks(rotation=90)
    plt.show()
```


Analyzing the product needs of Top 10 countries as per Coustomer Segment¶

```
In [115]: df27 = df1["country"].value_counts().head(10)
df27
```

Out[115]:	United States	9523
	France	2626
	Australia	2623
	Mexico	2514
	Germany	1928
	China	1696
	Brazil	1530
	United Kingdom	1512
	India	1411
	Turkey	1367
	Name: country,	dtype: int64

```
#Products by Categories consumed by Top 10 countries
In [116]:
        plt.figure(figsize=(15,10))
        plt.title("United States")
        sns.set_theme(style="darkgrid")
        sns.countplot(x=df1["segment"],hue=df1["sub_category"])
        plt.figure(figsize=(15,10))
        plt.title("Australia")
        sns.set_theme(style="darkgrid")
        sns.countplot(x=df1["segment"],hue=df1["sub_category"])
        plt.figure(figsize=(15,10))
        plt.title("France")
        sns.set_theme(style="darkgrid")
        sns.countplot(x=df1["segment"], hue=df1["sub_category"])
        plt.figure(figsize=(15,10))
        plt.title("Mexico")
        sns.set_theme(style="darkgrid")
        sns.countplot(x=df1["segment"], hue=df1["sub_category"])
        plt.figure(figsize=(15,10))
        plt.title("Germany")
        sns.set theme(style="darkgrid")
        sns.countplot(x=df1["segment"],hue=df1["sub_category"])
        plt.figure(figsize=(15,10))
        plt.title("China")
        sns.set_theme(style="darkgrid")
        sns.countplot(x=df1["segment"],hue=df1["sub category"])
        plt.figure(figsize=(15,10))
        plt.title("Brazil")
        sns.set_theme(style="darkgrid")
        sns.countplot(x = df1["segment"], hue=df1["sub_category"])
        plt.figure(figsize=(15,10))
        plt.title("United States")
        sns.set_theme(style="darkgrid")
        sns.countplot(x=df1["segment"],hue=df1["sub_category"])
        plt.figure(figsize=(15,10))
        plt.title("India")
        sns.set_theme(style="darkgrid")
        sns.countplot(x=df1["segment"],hue=df1["sub_category"])
        plt.figure(figsize=(15,10))
        plt.title("Indonesia")
        sns.set theme(style="darkgrid")
        sns.countplot(x=df1["segment"],hue=df1["sub_category"])
Out[116]: <AxesSubplot:title={'center':'Indonesia'}, xlabel='segment', ylabel='coun</pre>
```

localhost:8888/notebooks/superstore sales business analysis.ipynb#

t'>

year wise SALES vs. PROFITS¶

```
In [117]: df1["year"].unique()
```

Out[117]: array([2011, 2012, 2013, 2014], dtype=int64)

Out[118]:

	sales	profit
year		
2011	1378151.0	112367.33366
2012	1681499.0	157966.74694
2013	2107021.0	194353.15878
2014	2668457.0	250042.93540

```
In [119]: df28.plot(kind='bar',figsize=(16,10))
plt.title("Sales vs. Profits")
plt.ylabel("In Lakhs")
```

Out[119]: Text(0, 0.5, 'In Lakhs')

Analyzing shiping mode for each category in Super-store¶

```
In [121]: plt.figure(figsize=(10,7))
    sns.countplot(x=df1["category"],hue=df1["ship_mode"])
```

Out[121]: <AxesSubplot:xlabel='category', ylabel='count'>

Checking the concentration of customer segment in each market¶

```
plt.title("APAC market")
In [124]:
          sns.countplot(x=df1["segment"],hue=df1["category"])
          plt.show()
          plt.title("Africa market")
          sns.countplot(x=df1["segment"],hue=df1["category"])
          plt.show()
          plt.title("EMEA market")
          sns.countplot(x=df1["segment"],hue=df1["category"])
          plt.show()
          plt.title("EU market")
          sns.countplot(x=df1["segment"],hue=df1["category"])
          plt.show()
          plt.title("Canada market")
          sns.countplot(x=df1["segment"],hue=df1["category"])
          plt.show()
          plt.title("LATAM market")
          sns.countplot(x=df1["segment"],hue=df1["category"])
          plt.show()
          plt.title("US market")
          sns.countplot(x=df1["segment"],hue=df1["category"])
          plt.show()
```


Analyzing profits from each Category¶

```
In [125]:
           df1.columns
Out[125]: Index(['order_id', 'order_date', 'ship_date', 'ship_mode', 'customer_name',
                   'segment', 'state', 'country', 'market', 'region', 'product_id',
                   'category', 'sub_category', 'product_name', 'sales', 'quantity',
                   'discount', 'profit', 'shipping_cost', 'order_priority', 'year'],
                 dtype='object')
In [126]: | df29 = df1.groupby("category")[["profit", "sales"]].sum()
           df29
Out[126]:
                                profit
                                          sales
                 category
                 Furniture
                           97049.37790 2406605.0
            Office Supplies
                          350107.32450 2790258.0
               Technology 267573.47238 2638265.0
           df29.plot(kind='bar',figsize=(16,5))
In [127]:
           plt.ylabel("In millions")
           plt.show()
             2.5
             2.0
            1.5
             1.0
             0.5
             0.0
```

Analyzing profits from each Market in world¶

```
In [128]: df30 = df1.groupby('market')[['sales','profit']].sum()
df30
```

Out[128]:

	sales	profit
market		
APAC	2000746.0	199907.45090
Africa	538115.0	30140.61900
Canada	50314.0	12332.55000
EMEA	575562.0	11810.25900
EU	1803099.0	199171.49400
LATAM	1563126.0	123074.87028
US	1304166.0	138292.93160

```
In [129]: df30.plot(kind='bar',figsize=(16,5))
    plt.ylabel("In millions")
    plt.show()
```


regional profits by segment

In [131]: df31 = df1.groupby(["region","segment"])[["profit"]].sum()
df31

Out[131]:

		profit
region	segment	
Africa	Consumer	17075.41500
	Corporate	4210.48500
	Home Office	8854.71900
Canada	Consumer	6865.14000
	Corporate	3476.58000
	Home Office	1990.83000
Caribbean	Consumer	11362.96628
	Corporate	7235.83972
	Home Office	2780.50296
Central	Consumer	78394.93122
	Corporate	55102.42690
	Home Office	35267.51128
Central Asia	Consumer	33354.81600
	Corporate	19736.76400
	Home Office	13359.39000
EMEA	Consumer	5981.83800
	Corporate	5179.33800
	Home Office	649.08300
East	Consumer	23088.58090
	Corporate	11056.67370
	Home Office	8499.05120
North	Consumer	51483.98052
	Corporate	36503.71956
	Home Office	18634.40824
North Asia	Consumer	42371.26200
	Corporate	27277.88100
	Home Office	17027.55000
Oceania	Consumer	28925.55600
	Corporate	16179.46200
	Home Office	9443.26800
South	Consumer	33151.31248
	Corporate	16640.50416
	Home Office	13963.03026

profit

region	segment	
Southeast Asia	Consumer	-2395.00430
	Corporate	-5032.36710
	Home Office	-341.12670
West	Consumer	30264.36460
	Corporate	18480.03600
	Home Office	8629.45590

```
In [132]: plt.figure(figsize=(14,6))
    sns.barplot(data = df31, x = df1["region"], y = df1["profit"], hue = df1["segm
    plt.xticks(rotation = 90)
    plt.title("Regional profits by customer segment")
    plt.show()
```


regional sales by segment

```
In [133]: df32 = df1.groupby(["region","segment"])[["sales"]].sum()
df32
```

Out[133]:

		sales
region	segment	
Africa	Consumer	288829.0
	Corporate	148790.0
	Home Office	100496.0
Canada	Consumer	26317.0
	Corporate	14371.0
	Home Office	9626.0
Caribbean	Consumer	121909.0
	Corporate	84377.0
	Home Office	45155.0
Central	Consumer	951781.0
	Corporate	523414.0
	Home Office	331443.0
Central Asia	Consumer	195862.0
	Corporate	116873.0
	Home Office	76771.0
EMEA	Consumer	290891.0
	Corporate	180550.0
	Home Office	104121.0
East	Consumer	185562.0
	Corporate	119370.0
	Home Office	61560.0
North	Consumer	393840.0
	Corporate	261153.0
	Home Office	135553.0
North Asia	Consumer	216330.0
	Corporate	139918.0
	Home Office	97438.0
Oceania	Consumer	323314.0
	Corporate	190974.0
	Home Office	111094.0
South	Consumer	551020.0
	Corporate	305163.0
	Home Office	174918.0

sales

region	segment	
Southeast Asia	Consumer	289642.0
	Corporate	150063.0
	Home Office	92467.0
West	Consumer	222821.0
	Corporate	134245.0
	Home Office	67107.0

```
In [134]: plt.figure(figsize=(14,6))
    sns.barplot(data = df31, x = df1["region"], y = df1["sales"], hue = df1["segme
    plt.xticks(rotation = 90)
    plt.title("Regional profits by customer segment")
    plt.show()
```


profits and sales by sub-category of goods in 2014

In [136]: df33 = df1.groupby(["year","sub_category"])["profit"].sum().reset_index()
df33

Out[136]:

	year	sub_category	profit
0	2011	Accessories	10467.3298
1	2011	Appliances	5756.1202
2	2011	Art	10287.7209
3	2011	Binders	4707.4678
4	2011	Bookcases	9853.8312
63	2014	Paper	20975.8306
64	2014	Phones	26981.2150
65	2014	Storage	25919.8409
66	2014	Supplies	8597.9678
67	2014	Tables	-24044.9311

In [138]: df34 = df1.groupby(["year","sub_category"])["sales"].sum().reset_index()
df34

Out[138]:

	year	sub_category	sales
0	2011	Accessories	92648.0
1	2011	Appliances	68907.0
2	2011	Art	63049.0
3	2011	Binders	60257.0
4	2011	Bookcases	134937.0
63	2014	Paper	79627.0
64	2014	Phones	295662.0
65	2014	Storage	312252.0
66	2014	Supplies	74472.0
67	2014	Tables	100180.0

68 rows × 3 columns

OveraqII profit vs sales by sub__category in 2014

```
df1.columns
In [140]:
Out[140]: Index(['order_id', 'order_date', 'ship_date', 'ship_mode', 'customer_name',
                    'segment', 'state', 'country', 'market', 'region', 'product_id',
'category', 'sub_category', 'product_name', 'sales', 'quantity',
                    'discount', 'profit', 'shipping_cost', 'order_priority', 'year'],
                  dtype='object')
           df35 = df33[df33["year"]==2014]["profit"]/df34[df34["year"] == 2014]["sales"]
In [141]:
           df35
Out[141]:
           51
                  0.133598
           52
                  0.084353
           53
                  0.157384
           54
                  0.143995
           55
                  0.070289
                  0.076379
           56
           57
                  0.118605
           58
                  0.154525
           59
                  0.128578
           60
                  0.119401
           61
                  0.195095
                  0.067641
           62
           63
                  0.263426
           64
                  0.091257
           65
                  0.083009
           66
                  0.115452
           67
                 -0.240017
           dtype: float64
In [142]:
           plt.figure(figsize=[28,12])
           sns.barplot(x=df34['sub_category'], y=df35).set_title("Overall profits vs sale
           plt.show()
```

Most profitable category in sub-category

Out[144]:

profit

category	sub_category	
Furniture	Bookcases	53580.68990
	Chairs	68377.74450
	Furnishings	45012.21550
	Tables	-69921.27200
Office Supplies	Appliances	29702.84570
	Art	57842.60850
	Binders	48538.11600
	Envelopes	29601.11630
	Fasteners	11525.42410
	Labels	15010.51200
	Paper	59207.68270
	Storage	74684.47350
	Supplies	23994.54570
Technology	Accessories	81507.85580
	Copiers	85220.44908
	Machines	22674.96240
	Phones	78170.20510

Part2 Machine learning

```
In [146]: df2 = df1
```

In [147]: df2

Out[147]:

	order_id	order_date	ship_date	ship_mode	customer_name	segment	state	co
0	AG- 2011- 2040	2011-01-01	2011-06- 01	Standard Class	Toby Braunhardt	Consumer	Constantine	Д
1	IN-2011- 47883	2011-01-01	2011-08- 01	Standard Class	Joseph Holt	Consumer	New South Wales	Au
2	HU- 2011- 1220	2011-01-01	2011-05- 01	Second Class	Annie Thurman	Consumer	Budapest	Hu
3	IT-2011- 3647632	2011-01-01	2011-05- 01	Second Class	Eugene Moren	Home Office	Stockholm	Sv
4	IN-2011- 47883	2011-01-01	2011-08- 01	Standard Class	Joseph Holt	Consumer	New South Wales	Au
•••								
51285	CA- 2014- 115427	2014-12-31	2015-04- 01	Standard Class	Erica Bern	Corporate	California	l {
51286	MO- 2014- 2560	2014-12-31	2015-05- 01	Standard Class	Liz Preis	Consumer	Souss- Massa- Draâ	Mc
51287	MX- 2014- 110527	2014-12-31	2015-02- 01	Second Class	Charlotte Melton	Consumer	Managua	Nica
51288	MX- 2014- 114783	2014-12-31	2015-06- 01	Standard Class	Tamara Dahlen	Consumer	Chihuahua	N
51289	CA- 2014- 156720	2014-12-31	2015-04- 01	Standard Class	Jill Matthias	Consumer	Colorado	l {

48660 rows × 21 columns

```
In [148]: df2.isnull().sum().any()
```

Out[148]: False

```
In [149]: df2.columns
```

```
In [150]: | df2 = df2.drop(columns = ["order_id", "order_date", "ship_date", "customer_name",
In [151]:
          df2
Out[151]:
```

		ship_mode	segment	market	region	category	sub_category	sales	quantity	discoun
	0	Standard Class	Consumer	Africa	Africa	Office Supplies	Storage	408.0	2	0.0
	1	Standard Class	Consumer	APAC	Oceania	Office Supplies	Supplies	120.0	3	0.
	2	Second Class	Consumer	EMEA	EMEA	Office Supplies	Storage	66.0	4	0.0
	3	Second Class	Home Office	EU	North	Office Supplies	Paper	45.0	3	0.
	4	Standard Class	Consumer	APAC	Oceania	Furniture	Furnishings	114.0	5	0.
5	1285	Standard Class	Corporate	US	West	Office Supplies	Binders	14.0	2	0.:
5	1286	Standard Class	Consumer	Africa	Africa	Office Supplies	Binders	4.0	1	0.0
5	1287	Second Class	Consumer	LATAM	Central	Office Supplies	Labels	26.0	3	0.0
5	1288	Standard Class	Consumer	LATAM	North	Office Supplies	Labels	7.0	1	0.0
5	51289	Standard Class	Consumer	US	West	Office Supplies	Fasteners	3.0	3	0

48660 rows × 12 columns

```
In [152]: df2["order_priority"].unique()
```

Out[152]: array(['Medium', 'High', 'Critical', 'Low'], dtype=object)

```
In [153]:
          labelencoder = LabelEncoder()
```

In [154]: | df2["order_priority"] = labelencoder.fit_transform(df2["order_priority"])

In [155]: df2 Out[155]: ship_mode segment market region category sub_category sales quantity disc Standard Office 0 Africa Africa 408.0 2 Consumer Storage Class Supplies Standard Office 1 3 Consumer APAC Oceania Supplies 120.0 Class Supplies Second Office 2 Consumer **EMEA EMEA** Storage 66.0 4 Class Supplies Second Home Office 3 ΕU 3 North Paper 45.0 Supplies Class Office Standard 5 4 Consumer Furniture Furnishings APAC Oceania 114.0 Class Office Standard 51285 US 2 West **Binders** 14.0 Corporate Class Supplies

In [156]: | df2 = pd.get_dummies(df2)

In [157]: df2.sample(15)

Out[157]:

	sales	quantity	discount	profit	shipping_cost	order_priority	ship_mode_First Class	ship_
22397	336.0	6	0.10	111.7440	37.30	1	0	
32276	55.0	1	0.00	26.9304	3.24	3	0	
33310	132.0	3	0.00	47.5200	7.83	3	0	
47325	87.0	8	0.40	-7.3280	6.20	3	0	
21349	35.0	3	0.00	11.9952	3.88	1	0	
43124	880.0	4	0.40	44.0160	61.06	3	0	
49449	49.0	2	0.00	1.4400	10.73	1	0	
14525	13.0	1	0.00	5.0700	0.84	3	0	
39406	54.0	2	0.00	24.3600	7.56	1	0	
6521	26.0	7	0.17	3.9921	2.02	3	0	
47490	20.0	3	0.10	0.6210	3.04	1	0	
7446	266.0	5	0.40	-168.6800	10.62	3	0	
4195	13.0	4	0.60	-5.9520	1.17	3	0	
32669	21.0	2	0.00	3.9600	0.92	3	0	
46380	57.0	3	0.00	28.3500	5.99	3	0	

15 rows × 53 columns

In [158]: df2.describe()

Out[158]:

	sales	quantity	discount	profit	shipping_cost	order_priority	sł
count	48660.000000	48660.000000	48660.000000	48660.000000	48660.000000	48660.000000	
mean	161.017838	3.350658	0.145722	14.688249	17.593780	2.119503	
std	201.092519	2.198216	0.215066	86.825672	28.559365	1.080231	
min	0.000000	1.000000	0.000000	-1924.542000	0.000000	0.000000	
25%	29.000000	2.000000	0.000000	0.000000	2.450000	1.000000	
50%	77.000000	3.000000	0.000000	8.460000	7.030000	3.000000	
75%	208.000000	4.000000	0.200000	31.154400	20.152500	3.000000	
max	999.000000	14.000000	0.850000	486.600000	427.100000	3.000000	

8 rows × 53 columns

•

```
x = df2.drop("order_priority",axis = 1)
In [159]:
In [160]: x
Out[160]:
                                                                       ship_mode_First ship_mode_Same sl
                                                 profit shipping_cost
                    sales quantity discount
                                                                                 Class
                 0
                    408.0
                                 2
                                         0.0
                                              106.1400
                                                                35.46
                                                                                    0
                                                                                                       0
                    120.0
                                 3
                                         0.1
                                               36.0360
                                                                 9.72
                                                                                     0
                                                                                                       0
                     66.0
                                         0.0
                                               29.6400
                                                                 8.17
                                                                                     0
                     45.0
                                                                 4.82
                                                                                     0
                                 3
                                         0.5
                                              -26.0550
                                                                                                       0
                    114.0
                                 5
                                         0.1
                                               37.7700
                                                                 4.70
                                                                                     0
             51285
                                 2
                                         0.2
                     14.0
                                                4.5188
                                                                 0.89
                                                                                     0
                                                                                                       0
             51286
                      4.0
                                         0.0
                                                0.4200
                                                                 0.49
             51287
                     26.0
                                 3
                                         0.0
                                               12.3600
                                                                 0.35
                                                                                     0
                                                                                                       0
             51288
                      7.0
                                         0.0
                                                0.5600
                                                                 0.20
                                                                                     0
             51289
                      3.0
                                         0.2
                                                -0.6048
                                                                 0.17
                                                                                     0
            48660 rows × 52 columns
            y = df2["order_priority"]
In [161]:
In [162]:
Out[162]:
                       3
            1
                       3
            2
                       1
            3
                       1
                       3
            51285
                       3
                       3
            51286
            51287
                       3
            51288
                       3
            51289
            Name: order_priority, Length: 48660, dtype: int32
```

Data Split for traing data and test¶

```
In [163]: x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.4,random_st
```

```
In [164]: | x_train.shape,x_test.shape,y_train.shape,y_test.shape
Out[164]: ((29196, 52), (19464, 52), (29196,), (19464,))
In [165]: y_test
Out[165]: 25041
                    0
                    3
          25688
          11991
                    1
          33176
                    1
          2687
                    2
          39970
                    1
          7138
                    3
                    1
          25105
          45986
                    3
          29991
          Name: order_priority, Length: 19464, dtype: int32
```

Feature Scalling¶

```
In [166]:
          st = StandardScaler()
          x_train = st.fit_transform(x_train)
          x_test = st.fit_transform(x_test)
In [167]: x train
Out[167]: array([[ 1.61098266, -0.61504197, -0.67566805, ..., -0.33683628,
                  -0.22835504, -0.11344942],
                 [2.05504396, -0.15976027, -0.20984457, ..., 2.96880136,
                  -0.22835504, -0.11344942],
                 [-0.76898635, -1.07032367, 1.65344932, ..., -0.33683628,
                  -0.22835504, -0.11344942],
                 [-0.65921838, -1.07032367, -0.67566805, ..., -0.33683628,
                  -0.22835504, -0.11344942],
                 [-0.72408127, 0.75080312, -0.67566805, ..., -0.33683628,
                  -0.22835504, -0.11344942],
                 [-0.03553678, 0.29552142, 2.58509627, ..., -0.33683628,
                  -0.22835504, -0.11344942]])
```

```
In [168]: x_test
Out[168]: array([[-0.41497337, -0.61353931, -0.68043682, ..., -0.33157994,
                   4.36646074, -0.11078704],
                  [-0.64259729, -0.61353931, -0.2167086, ..., -0.33157994,
                   -0.22901843, -0.11078704],
                  [-0.66733902, -1.06791603, -0.68043682, ..., -0.33157994,
                   4.36646074, -0.11078704],
                  [0.70335283, -0.61353931, -0.68043682, ..., -0.33157994,
                  -0.22901843, -0.11078704],
                  \lceil -0.26652299, -0.61353931, -0.68043682, \ldots, -0.33157994, \rceil
                   -0.22901843, -0.11078704],
                  [3.91977776, 2.56709777, 1.17447605, ..., -0.33157994,
                   -0.22901843, -0.11078704]])
In [169]:
          model = LogisticRegression()
          model.fit(x_train, y_train)
Out[169]: LogisticRegression()
In [170]: model.score(x_test, y_test)
Out[170]: 0.6580867242087958
In [171]: |model.score(x_train, y_train)
Out[171]: 0.6600904233456638
```

after remove outlier

```
In [172]: df3 = df2
In [173]: z_scores = np.abs((df3 - df3.mean()) / df3.std())
```

In [174]: z_scores

Out[174]:

	sales	quantity	discount	profit	shipping_cost	order_priority	ship_mode_First s Class	5
0	1.228202	0.614434	0.677567	1.053280	0.625582	0.815101	0.414036	_
1	0.203975	0.159519	0.212593	0.245869	0.275699	0.815101	0.414036	
2	0.472508	0.295395	0.677567	0.172204	0.329972	1.036355	0.414036	
3	0.576938	0.159519	1.647302	0.469253	0.447271	1.036355	0.414036	
4	0.233812	0.750310	0.212593	0.265840	0.451473	0.815101	0.414036	
51285	0.731096	0.614434	0.252380	0.117125	0.584879	0.815101	0.414036	
51286	0.780824	1.069348	0.677567	0.164332	0.598885	0.815101	0.414036	
51287	0.671421	0.159519	0.677567	0.026815	0.603787	0.815101	0.414036	
51288	0.765905	1.069348	0.677567	0.162720	0.609039	0.815101	0.414036	
51289	0.785797	0.159519	0.252380	0.176135	0.610090	0.815101	0.414036	

48660 rows × 53 columns

```
In [175]: threshold = 3
outliers = (z_scores > threshold).any(axis=1)
```

```
In [176]: outliers
```

```
Out[176]: 0
                      True
           1
                      True
           2
                    False
           3
                     True
           4
                     True
           51285
                     True
           51286
                     True
           51287
                     True
                     True
           51288
           51289
                      True
```

Length: 48660, dtype: bool

```
In [177]: cleaned_df = df3[~outliers]
```

In [178]: cleaned_df

Out[178]:

	sales	quantity	discount	profit	shipping_cost	order_priority	ship_mode_First Class	ship_m
2	66.0	4	0.0	29.64	8.17	1	0	
21	52.0	1	0.0	7.77	5.91	1	0	
22	62.0	2	0.0	8.70	5.16	3	0	
30	140.0	3	0.0	20.88	10.78	3	0	
44	207.0	4	0.0	76.56	20.64	3	1	
51234	557.0	3	0.1	216.72	51.79	3	0	
51261	59.0	3	0.0	16.44	6.34	1	0	
51267	30.0	2	0.5	-9.69	4.46	1	0	
51272	23.0	4	0.5	-6.42	3.46	1	0	
51279	32.0	5	0.0	8.25	2.21	3	0	

6881 rows × 53 columns

In [179]: | x = cleaned_df.drop("order_priority",axis = 1)

In [180]: x

Out[180]:

	sales	quantity	discount	profit	shipping_cost	ship_mode_First Class	ship_mode_Same Day
2	66.0	4	0.0	29.64	8.17	0	0
21	52.0	1	0.0	7.77	5.91	0	0
22	62.0	2	0.0	8.70	5.16	0	0
30	140.0	3	0.0	20.88	10.78	0	0
44	207.0	4	0.0	76.56	20.64	1	0
							•••
51234	557.0	3	0.1	216.72	51.79	0	0
51261	59.0	3	0.0	16.44	6.34	0	0
51267	30.0	2	0.5	-9.69	4.46	0	0
51272	23.0	4	0.5	-6.42	3.46	0	0
							•

In [181]: y = cleaned_df["order_priority"]

```
In [182]: y
Out[182]: 2
                    1
          21
                    1
          22
                    3
          30
                    3
          44
                    3
          51234
                    3
          51261
                    1
          51267
                    1
          51272
                    1
          51279
                    3
          Name: order_priority, Length: 6881, dtype: int32
In [183]: x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.4,random_st
In [184]: x_train.shape,x_test.shape,y_train.shape,y_test.shape
Out[184]: ((4128, 52), (2753, 52), (4128,), (2753,))
In [185]: y_test
Out[185]: 35090
                    1
          7657
                    3
          37532
                    1
          4908
                    1
          39452
                    3
          23866
                    3
          26369
                    3
          11865
                    3
                    3
          21789
          5580
                    3
          Name: order_priority, Length: 2753, dtype: int32
In [186]: st = StandardScaler()
          x_train = st.fit_transform(x_train)
          x_test = st.fit_transform(x_test)
```

```
In [187]: x_train
Out[187]: array([[ 0.66271247, -0.60359554, -0.63359378, ..., 1.47409087,
                   0.
                              , 0.
                 [0.10138497, 0.41506447, -0.63359378, ..., 1.47409087,
                 [-0.54630061, -0.09426553, -0.63359378, \ldots, -0.67838423,
                   0.
                                           ],
                 [-0.71901677, -1.11292554, -0.63359378, ..., -0.67838423,
                 \lceil -0.39085607, -1.11292554, -0.63359378, \ldots, -0.67838423, \rceil
                 [2.61440502, -0.60359554, -0.63359378, ..., 1.47409087,
                             , 0.
                                           11)
In [188]: |x_test
Out[188]: array([[-0.40037643, -0.58991909, -0.63513045, ..., -0.65981007,
                 [-0.65977498, -0.08065372, -0.63513045, ..., -0.65981007,
                                           , 1.55215267, ..., -0.65981007,
                 [-0.44360952, 0.937877
                   0.
                 [-0.28797039, -0.08065372, -0.63513045, ..., -0.65981007,
                 [-0.12368465, 0.42861164, -0.63513045, ..., -0.65981007,
                              , 0.
                 [0.1357139, -0.58991909, -0.63513045, ..., -0.65981007,
                                           11)
In [189]:
          model = LogisticRegression()
          model.fit(x_train, y_train)
Out[189]: LogisticRegression()
In [190]: model.score(x_test, y_test)
Out[190]: 0.6694515074464221
In [191]: |model.score(x_train, y_train)
Out[191]: 0.6790213178294574
In [192]: df4 = df2
```

```
In [193]: df4
```

Out[193]:

	sales	quantity	discount	profit	shipping_cost	order_priority	ship_mode_First Class	ship_
0	408.0	2	0.0	106.1400	35.46	3	0	
1	120.0	3	0.1	36.0360	9.72	3	0	
2	66.0	4	0.0	29.6400	8.17	1	0	
3	45.0	3	0.5	-26.0550	4.82	1	0	
4	114.0	5	0.1	37.7700	4.70	3	0	
51285	14.0	2	0.2	4.5188	0.89	3	0	
51286	4.0	1	0.0	0.4200	0.49	3	0	
51287	26.0	3	0.0	12.3600	0.35	3	0	
51288	7.0	1	0.0	0.5600	0.20	3	0	
51289	3.0	3	0.2	-0.6048	0.17	3	0	

48660 rows × 53 columns

```
In [194]: def remove_outliers(df4, columns, threshold=3):
    z_scores = np.abs(stats.zscore(df4[columns]))
    outliers_mask = (z_scores > threshold).any(axis=1)
    df_no_outliers = df4[~outliers_mask]
    return df_no_outliers
```

```
In [195]: columns_to_check = ['sales', 'quantity', 'discount', "profit", "shipping_cost"]
```

```
In [196]: df_no_outliers = remove_outliers(df4, columns_to_check)
```

In [197]: df_no_outliers

Out[197]:

	sales	quantity	discount	profit	shipping_cost	order_priority	ship_mode_First Class	ship_
0	408.0	2	0.0	106.1400	35.46	3	0	
1	120.0	3	0.1	36.0360	9.72	3	0	
2	66.0	4	0.0	29.6400	8.17	1	0	
3	45.0	3	0.5	-26.0550	4.82	1	0	
4	114.0	5	0.1	37.7700	4.70	3	0	
51285	14.0	2	0.2	4.5188	0.89	3	0	
51286	4.0	1	0.0	0.4200	0.49	3	0	
51287	26.0	3	0.0	12.3600	0.35	3	0	
51288	7.0	1	0.0	0.5600	0.20	3	0	
51289	3.0	3	0.2	-0.6048	0.17	3	0	

45220 rows × 53 columns

In [198]: x = df_no_outliers.drop("order_priority",axis = 1)

In [199]: y = df_no_outliers["order_priority"]

In [200]: x

Out[200]:

0 408.0 2 0.0 106.1400 35.46 0 0 1 120.0 3 0.1 36.0360 9.72 0 0 2 66.0 4 0.0 29.6400 8.17 0 0 3 45.0 3 0.5 -26.0550 4.82 0 0 4 114.0 5 0.1 37.7700 4.70 0 0 51285 14.0 2 0.2 4.5188 0.89 0 0 51286 4.0 1 0.0 0.4200 0.49 0 0 51287 26.0 3 0.0 12.3600 0.35 0 0 51288 7.0 1 0.0 0.5600 0.20 0 0 51289 3.0 3 0.2 -0.6048 0.17 0 0			sales	quantity	discount	profit	shipping_cost	ship_mode_First Class	ship_mode_Same Day	s
2 66.0 4 0.0 29.6400 8.17 0 0 3 45.0 3 0.5 -26.0550 4.82 0 0 4 114.0 5 0.1 37.7700 4.70 0 0 51285 14.0 2 0.2 4.5188 0.89 0 0 51286 4.0 1 0.0 0.4200 0.49 0 0 51287 26.0 3 0.0 12.3600 0.35 0 0 51288 7.0 1 0.0 0.5600 0.20 0 0	_	0	408.0	2	0.0	106.1400	35.46	0	0	
3 45.0 3 0.5 -26.0550 4.82 0 0 4 114.0 5 0.1 37.7700 4.70 0 0 51285 14.0 2 0.2 4.5188 0.89 0 0 51286 4.0 1 0.0 0.4200 0.49 0 0 51287 26.0 3 0.0 12.3600 0.35 0 0 51288 7.0 1 0.0 0.5600 0.20 0 0		1	120.0	3	0.1	36.0360	9.72	0	0	
4 114.0 5 0.1 37.7700 4.70 0 0 51285 14.0 2 0.2 4.5188 0.89 0 0 51286 4.0 1 0.0 0.4200 0.49 0 0 51287 26.0 3 0.0 12.3600 0.35 0 0 51288 7.0 1 0.0 0.5600 0.20 0 0		2	66.0	4	0.0	29.6400	8.17	0	0	
51285 14.0 2 0.2 4.5188 0.89 0 0 51286 4.0 1 0.0 0.4200 0.49 0 0 51287 26.0 3 0.0 12.3600 0.35 0 0 51288 7.0 1 0.0 0.5600 0.20 0 0		3	45.0	3	0.5	-26.0550	4.82	0	0	
51285 14.0 2 0.2 4.5188 0.89 0 0 51286 4.0 1 0.0 0.4200 0.49 0 0 51287 26.0 3 0.0 12.3600 0.35 0 0 51288 7.0 1 0.0 0.5600 0.20 0 0		4	114.0	5	0.1	37.7700	4.70	0	0	
51286 4.0 1 0.0 0.4200 0.49 0 0 51287 26.0 3 0.0 12.3600 0.35 0 0 51288 7.0 1 0.0 0.5600 0.20 0 0										
51287 26.0 3 0.0 12.3600 0.35 0 0 51288 7.0 1 0.0 0.5600 0.20 0 0		51285	14.0	2	0.2	4.5188	0.89	0	0	
51288 7.0 1 0.0 0.5600 0.20 0		51286	4.0	1	0.0	0.4200	0.49	0	0	
		51287	26.0	3	0.0	12.3600	0.35	0	0	
51289 3.0 3 0.2 -0.6048 0.17 0		51288	7.0	1	0.0	0.5600	0.20	0	0	
		51289	3.0	3	0.2	-0.6048	0.17	0	0	

45220 rows × 52 columns

Name: order_priority, Length: 45220, dtype: int32

```
In [202]: x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.4,random_st
```

```
In [203]: x_train.shape,x_test.shape,y_train.shape,y_test.shape
```

Out[203]: ((27132, 52), (18088, 52), (27132,), (18088,))

```
In [204]:
          st = StandardScaler()
          x train = st.fit transform(x train)
          x_test = st.fit_transform(x_test)
In [205]: x_train
Out[205]: array([[-0.28765687, 0.96008078, -0.66964854, ..., -0.33522756,
                  -0.23166766, -0.08916317],
                 [-0.03723694, 0.96008078, -0.66964854, ..., -0.33522756,
                  -0.23166766, -0.08916317],
                 [-0.59079679, 0.96008078, -0.66964854, ..., -0.33522756,
                  -0.23166766, -0.08916317],
                 [0.91831281, 0.96008078, -0.185704, ..., -0.33522756,
                  -0.23166766, -0.08916317],
                 [ 1.85409257, -0.08054369, -0.66964854, ..., 2.9830483 ,
                  -0.23166766, -0.08916317],
                 [0.77333285, 2.00070526, 0.54021282, ..., -0.33522756,
                  -0.23166766, -0.08916317]])
In [206]: x_test
Out[206]: array([[-0.68298941, -0.59986396, -0.1900683 , ..., -0.33672207,
                  -0.23972604, -0.09565429],
                 [-0.01599248, -0.59986396, 1.72996042, ..., 2.96980826,
                  -0.23972604, -0.09565429],
                 [3.96617734, -0.08362363, -0.33407045, ..., -0.33672207,
                  -0.23972604, -0.09565429],
                 [-0.81506801, -1.11610429, 2.68997477, ..., 2.96980826,
                  -0.23972604, -0.09565429],
                 [-0.73582085, -0.59986396, -0.67007548, \ldots, -0.33672207,
                  -0.23972604, -0.09565429],
                 [-0.80846408, -1.11610429, 0.28993888, ..., -0.33672207,
                  -0.23972604, -0.09565429]])
In [207]:
          model = LogisticRegression()
          model.fit(x_train, y_train)
Out[207]: LogisticRegression()
In [208]: model.score(x_test, y_test)
Out[208]: 0.6653029632905794
In [209]: |model.score(x_train, y_train)
Out[209]: 0.6672195193867021
```