Final Exam Sample Questions

Soru-1

Basit TM yapılarını kullanarak sola-ötele (S_L) makinesini tasarlayınız.

S_L makinesi başlangıç konfigürasyonu olarak ⊔w<u>⊔</u> alır ve bunu w<u>⊔</u> olarak dönüştürür.

Burada $w \in (\Sigma - \{\Delta, \sqcup\})^*$ şeklindedir ve giriş bilgisi teybin herhangi bir yerinde olabilir.

Yani teyp başlangıçta $\Delta x \coprod w \coprod$ ise sonuçta $\Delta xw \coprod$ olması istenmektedir. Burada $x \in (\Sigma - \{\Delta\})^*$.

- Ne yapmalıyız?
- · Önce en soldaki sembol üzerine gelebilirim,
- Sonra bu sembolü bir sola öteleyip bu işlemi tüm semboller ötelenene kadar (boşluk sembölüne ulaşana kadar) devam ettiririm,
- Bunu basit TM'ler ile (R_{\square} , S_{\square} , $R_{\overline{\square}}$, $S_{\overline{\square}}$, L, R, a) yapmaya çalışırım.

Umbal

Soru-2

 $M = (K, \Sigma, \delta, s, h)$ TM için $K = \{q_0, q_1, q_2\}, \Sigma = \{0, 1, \sqcup, \Delta\}, s = q_0, h = q_2$ olduğuna göre verilen bir girişi sağa doğru tarayan ve her gördüğü diğer 1'i 0 yapan makineye ait geçiş fonksiyonu tablosunu veriniz. (011101010111 girişinde makine halt durumuna geçerek şeriti 010100010010 yapar.)

011101010111 girişinde makine halt durumuna geçerek şeriti 010100010010 yapar.

Aşağıda stay-put TM olarak verilmiştir.

Soru-3

Bir G gramerine ait kurallar

 $S \rightarrow aSdd, A \rightarrow bAc, bc$

olarak verilmiştir.

- (a) aabbccdddd katarının soldan türetmesini (leftmost derivation) türetme sembolleri (=>) ile elde ediniz.
- (b) aabbccdddd katarına ait türetme ağacını (parse tree / derivation tree) çiziniz.
- (c) Bu gramere ait L(G) dilini ifade ediniz.

(a) aabbccdddd katarının soldan türetmesi

```
S \Rightarrow aSdd

\Rightarrow aaSdddd

\Rightarrow aaAdddd

\Rightarrow aabAcdddd

\Rightarrow aabbccdddd
```

b) Parse Tree

 $L(G) = \{a^n b^m c^m d^{2n} | n \ge 0, m > 0\}$