Wavelets, Sparsity and their Applications

Pier Luigi Dragotti

Communications and Signal Processing Group Imperial College London

Session Five: Multiresolution Analysis and Splines

Multi-Resolution Analysis

Definition By a multi-resolution analysis we mean a sequence of embedded closed subspaces

$$...V_2 \subset V_1 \subset V_0 \subset V_{-1}...$$

such that

- 1. Upward Completeness: $\lim_{m\to -\infty}V_m=\bar{\bigcup}_{m\in\mathbb{Z}}V_m=L_2(\mathbb{R})$. (finite energy)
- 2. Downward Completeness: $\lim_{m\to\infty}V_m=\bigcap_{m\in\mathbb{Z}}V_m=\{0\}$.
- 3. Scale Invariance: $f(t) \in V_m \leftrightarrow f(2^m t) \in V_0$.
- 4. Shift Invariance: $f(t) \in V_0 \to f(t-n) \in V_0$ for all $n \in \mathbb{Z}$.
- 5. Existence of a Basis. There exists $\varphi(t) \in V_0$, such that $\{\varphi(t-n)\}_{n \in \mathbb{Z}}$ is an orthonormal basis for V_0 .

Consequences of the Multi-Resolution Analysis

First notice that:¹

$$\langle \varphi(t-n), \varphi(t-m) \rangle = \delta_{m,n} \iff \sum_{k=-\infty}^{\infty} |\hat{\varphi}(\omega + 2k\pi)|^2 = 1.$$

Since V_1 is included in V_0 , if $\varphi(t/2)$ belongs to V_1 , it belongs to V_0 as well. Thus:

$$\varphi(x/2) = \sqrt{2} \sum_{n=-\infty}^{\infty} g_0[n] \varphi(x-n)$$

or

$$\varphi(t) = \sqrt{2} \sum_{n=-\infty}^{\infty} g_0[n] \varphi(2t-n).$$

This is the two-scale relation.

¹see Appendix

$$\begin{split} & \int_{\mathbb{R}^{2}} \{ t \} = \int_{\mathbb{R}^{2}} \sum_{h=0}^{\infty} g_{h}[h] f(\nu t-h) \\ & \bigcup_{h=0}^{\infty} f(\nu) = \int_{\mathbb{R}^{2}} \sum_{h=0}^{\infty} g_{h}[h] \int_{-\infty}^{\infty} f(\nu t-h) e^{-\int_{\mathbb{R}^{2}} d\nu} d\nu \\ & \underbrace{\frac{\nu + \nu + \nu}{2\nu + \nu}}_{\text{By-taking the Fourier transform of both sides of the two-scale relation, we obtain}_{=\frac{\nu + \nu}{2\nu + \nu}} = \int_{\mathbb{R}^{2}} g_{h}[h] \int_{-\infty}^{\infty} f(x) e^{-\int_{\mathbb{R}^{2}} d\nu} dx \\ & = \int_{\mathbb{R}^{2}} g_{h}[h] e^{-\int_{\mathbb{R}^{2}} d\nu} \int_{-\infty}^{\infty} f(x) e^{-\int_{\mathbb{R}^{2}} d\nu} dx \\ & = \int_{\mathbb{R}^{2}} g_{h}[h] e^{-\int_{\mathbb{R}^{2}} d\nu} \int_{-\infty}^{\infty} f(x) e^{-\int_{\mathbb{R}^{2}} d\nu} dx \\ & = \int_{\mathbb{R}^{2}} g_{h}[h] e^{-\int_{\mathbb{R}^{2}} d\nu} \int_{-\infty}^{\infty} f(x) e^{-\int_{\mathbb{R}^{2}} d\nu} dx \\ & = \int_{\mathbb{R}^{2}} g_{h}[h] e^{-\int_{\mathbb{R}^{2}} d\nu} \int_{-\infty}^{\infty} f(x) e^{-\int_{\mathbb{R}^{2}} d\nu} dx \\ & = \int_{\mathbb{R}^{2}} g_{h}[h] e^{-\int_{\mathbb{R}^{2}} d\nu} \int_{-\infty}^{\infty} f(x) e^{-\int_{\mathbb{R}^{2}} d\nu} dx \\ & = \int_{\mathbb{R}^{2}} g_{h}[h] e^{-\int_{\mathbb{R}^{2}} d\nu} \int_{-\infty}^{\infty} f(x) e^{-\int_{\mathbb{R}^{2}} d\nu} dx \\ & = \int_{\mathbb{R}^{2}} g_{h}[h] e^{-\int_{\mathbb{R}^{2}} d\nu} \int_{-\infty}^{\infty} f(x) e^{-\int_{\mathbb{R}^{2}} d\nu} dx \\ & = \int_{\mathbb{R}^{2}} g_{h}[h] e^{-\int_{\mathbb{R}^{2}} d\nu} \int_{\mathbb{R}^{2}} f(x) e^{-\int_{\mathbb{R}^{2}} d\nu} dx \\ & = \int_{\mathbb{R}^{2}} g_{h}[h] e^{-\int_{\mathbb{R}^{2}} d\nu} \int_{\mathbb{R}^{2}} f(x) e^{-\int_{\mathbb{R}^{2}} d\nu} dx \\ & = \int_{\mathbb{R}^{2}} g_{h}[h] e^{-\int_{\mathbb{R}^{2}} d\nu} \int_{\mathbb{R}^{2}} f(x) e^{-\int_{\mathbb{R}^{2}} d\nu} dx \\ & = \int_{\mathbb{R}^{2}} g_{h}[h] e^{-\int_{\mathbb{R}^{2}} d\nu} \int_{\mathbb{R}^{2}} f(x) e^{-\int_{\mathbb{R}^{2}} d\nu} dx \\ & = \int_{\mathbb{R}^{2}} g_{h}[h] e^{-\int_{\mathbb{R}^{2}} d\nu} \int_{\mathbb{R}^{2}} f(x) e^{-\int_{\mathbb{R}^{2}} d\nu} dx \\ & = \int_{\mathbb{R}^{2}} g_{h}[h] e^{-\int_{\mathbb{R}^{2}} d\nu} \int_{\mathbb{R}^{2}} f(x) e^{-\int_{\mathbb{R}^{2}} d\nu} d\nu \\ & = \int_{\mathbb{R}^{2}} g_{h}[h] e^{-\int_{\mathbb{R}^{2}} d\nu} \int_{\mathbb{R}^{2}} f(x) e^{-\int_{\mathbb{R}^{2}} d\nu} d\nu \\ & = \int_{\mathbb{R}^{2}} g_{h}[h] e^{-\int_{\mathbb{R}^{2}} d\nu} \int_{\mathbb{R}^{2}} f(x) e^{-\int_{\mathbb{R}^{2}} d\nu} d\nu \\ & = \int_{\mathbb{R}^{2}} g_{h}[h] e^{-\int_{\mathbb{R}^{2}} d\nu} \int_{\mathbb{R}^{2}} f(x) e^{-\int_{\mathbb{R}^{2}} d\nu} d\nu \\ & = \int_{\mathbb{R}^{2}} g_{h}[h] e^{-\int_{\mathbb{R}^{2}} d\nu} \int_{\mathbb{R}^{2}} f(x) e^{-\int_{\mathbb{R}^{2}} d\nu} d\nu \\ & = \int_{\mathbb{R}^{2}} g_{h}[h] e^{-\int_{\mathbb{R}^{2}} d\nu} \int_{\mathbb{R}^{2}} f(x) e^{-\int_{\mathbb{R}^{2}} d\nu \\ & = \int_{\mathbb{R}^{2}} g_{h}[h] e^{-\int_{\mathbb{R}^{2}} d\nu} \int_{\mathbb{R}$$

1. 1 Go (ejw) 1 + 1 Go (ej(w+2)) 12 = 2

Consequences of the Multi-Resolution Analysis

Theorem 1. Let $\{V_n\}$, $n \in \mathbb{Z}$ be a multiresolution analysis with the scaling function $\varphi(t)$.

There exists an orthonormal basis for $L_2(\mathbb{R})$:

$$\psi_{m,n}(t)=2^{-m/2}\psi(2^{-m}t-n)$$
 $m,n\in\mathbb{Z}$ (basis of V_0)

and

$$\psi(t) = \sum_{n=-\infty}^{\infty} (-1)^n g_0[1-n]\varphi(2t-n)$$

such that $\{\psi_{m,n}\}$, $n\in\mathbb{Z}$ is an orthonormal basis for W_m , where W_m is the orthogonal

complement of V_m in V_{m-1} .

$$(+) \qquad (+) \qquad (+)$$

Scaling Function and Splines

Central to multiresolution analysis is the design of a proper scaling function. It is possible to show that $\varphi(t)$ is an admissible scaling function of $L_2(\mathbb{R})$ if and only if it satisfies the three following conditions: existense of a (bierthogonal) basis:

$$A \leq \sum_{k \in \mathbb{Z}} |\hat{\varphi}(\omega + 2\pi k)|^2 \leq B$$

$$(1)$$

$$E \left[P(\omega + 2\pi k) \right]^2 \leq B$$

- 1. Riesz basis criterion: There exists two constants $|\hat{q}(t)| \in V_0$, $|\hat{q}(t-n)| = 1$ is a (orthogonal) basis for $|\hat{q}(t)| = 1$.

 1. Riesz basis criterion: There exists two constants $|\hat{q}(t)| = 1$ and $|\hat{q}(t)| = 1$.

 1. Riesz basis criterion: There exists two constants $|\hat{q}(t)| = 1$ and $|\hat{q}(t)| = 1$.

 1. Riesz basis criterion: There exists two constants $|\hat{q}(t)| = 1$ and $|\hat{q}(t)| = 1$ and $|\hat{q}(t)| = 1$.

 2. Two scale relation $|\hat{q}(t)| = 1$ and $|\hat{q}(t)| = 1$ and $|\hat{q}(t)| = 1$ are $|\hat{q}(t)| = 1$ and $|\hat{q}(t)| = 1$ and $|\hat{q}(t)| = 1$ and $|\hat{q}(t)| = 1$ and $|\hat{q}(t)| = 1$ are $|\hat{q}(t)| = 1$ and $|\hat{q}(t)| = 1$ and $|\hat{q}(t)| = 1$ are $|\hat{q}(t)| = 1$
- 3. Partition of unity (=) (upward completeness (im $V_m = \bigcap_{m \to \infty} V_m = \{0\}$. $| \text{downward completeness (im <math>V_m = \bigcup_{m \in \mathbb{Z}} V_m = L_2(R)$ $\sum_{k \in \mathbb{Z}} \varphi(t k) = \frac{m_1^{n-2}}{2}$ (3)

Spline: have a certain number of continuous derivatives. $\beta_N(t) \cdot (N-1)$ -order derivatives is continuous. $\beta_{i}(t) \cdot (N-1)$ -order derivatives is continuous. $\beta_{i}(w) = \frac{1-e^{-jw}}{jw} \beta_{i}(w) = (\frac{1-e^{-jw}}{jw})^{-1}$ $\beta_{i}(w) = (\frac{1-e^{-jw}}{jw})^{-1}$ Bo(w) = sinc w Br(w) = (sincw) 4+1 Bo(t): box function (3.(1): triangular function \bigwedge A remarkable example of scaling functions is given by the family of B-splines. A B-spline $\beta_N(t)$ of order N is obtained from the (N+1)-fold convolution of the box function $eta_0(t)$ or 16-splines Bi(t) $\beta_N(t) = \beta_0(t) * \beta_0(t) \dots * \beta_0(t) \qquad \text{with } \hat{\beta}_0(\omega) = \frac{1 - e^{-j\omega}}{j\omega} A * \sum_{\text{res}} |\hat{\beta}(w + izk)|^2 \le B$ N+1 timesscaling function. f(t)=12 Zg.(k)f(t-k) where $\hat{\beta}(\omega)$ is the Fourier transform of $\beta(t)$. · Partition of unity box function is a valid scaling function: 2 f(t-k):1 1. $\langle \beta_0(t), \beta_0(t-n) \rangle = \int [n] \langle \beta_0(t-n) \rangle = \int$ P[n] = 1/2 \(\int \) 9. [k] + [2n-k] 0 95 1 3. => \(\begin{aligned} \Gamma \beta & \beta & \left(\t-k) = 1 \\ \text{ke} & \text{ke} & \text{?} \end{aligned}

(inear spline / is a valid scaling function.

3.

Scaling Function and Splines

$$\sum_{i=2,3} \sum_{k \in 2} \beta_i (t-k) = 1$$

Given two valid biorthogonal scaling functions arphi(t) and $ilde{arphi}(t)$ satisfying the

following two scale relations
$$\beta_{1}(\frac{1}{2}) = \frac{1}{2}\beta_{1}(t+1) + \beta_{1}(t) + \frac{1}{2}\beta_{2}(t+1)$$

$$\varphi(t) = \sqrt{2}\sum_{k\in\mathbb{Z}}g_{0}[k]\varphi(2t-k)$$

$$g_{0}[-1] = \frac{1}{2\pi}\sum_{k\in\mathbb{Z}}G_{0}(2t-k)$$

$$g_{0}[0] = \frac{1}{2\pi}\sum_{k\in\mathbb{Z}}G_{0}(2t-k)$$

$$f(\frac{t}{2}) = \int \sum_{k=\infty}^{\infty} g_{0}[k] f(t-k) g_{0}[i] = \int \sum_{k \in \mathbb{Z}} h_{0}[k] \tilde{\varphi}(2t-k). \quad \therefore H_{0}(z) = \frac{f'_{0}}{8\alpha} (1+z)(1+z'')(1+\alpha z'')$$

$$(1-\alpha z')$$

There exist two biorthogonal wavelets ψ and $\tilde{\psi}$ such that

$$\begin{array}{ll} \text{ finite } \\ \text{ (. compact support : check in forme than } FT. \\ \psi(t) = \sqrt{2} \sum_{k=1}^{\infty} \frac{1}{h_0} [1-k] \varphi(2t-k) \text{ Action} \\ \text{ (algulate alin] then } FT. \\ \text{ (algulate aline) then } FT. \\ \text{ (algulate aligned align$$

calculate a [n] thut
$$\tilde{\psi}(t) = \sqrt{2} \sum_{k \in \mathbb{Z}} (-1)^{k-1} g_0 [1-k] \tilde{\varphi}(2t-k)$$

$$\text{a [o]} = 2 \int_0^t t^t dt = \frac{1}{2} \sum_{k \in \mathbb{Z}} (-1)^{k-1} g_0 [1-k] \tilde{\varphi}(2t-k)$$

$$-k \varphi(2t-k)$$
 (inear spline: biorthogonal

$$\begin{aligned}
& \alpha[-1] = \alpha[1] = \int_{0}^{\infty} t((-t)) dt = \frac{1}{6} \\
& \therefore A(e^{j\omega}) = \frac{2}{3} + \frac{1}{6}(e^{-j\omega} + e^{j\omega}) \\
& = \frac{2}{3} + \frac{1}{3}\cos\omega
\end{aligned}$$

$$h \cdot [-h] \Leftrightarrow h \cdot (2^{-1}) = \frac{7}{8}(-2^{-1} + 22^{-1} + 6 + 22^{-1} - 2^{-1})$$
 $h \cdot [-h] \Leftrightarrow \frac{7}{8}(-2^{-3} + 22^{-1} + 62^{-1} + 2 - 2^{-1})$
 $(-1)^{n-1}h \cdot [-h] \Leftrightarrow \frac{7}{8}(-2^{-3} - 22^{-2} + 62^{-1} - 2 - 2^{-1})$

Assume that $\varphi(t)$ is a linear spline. The two scale equation is satisfied when $G_0(z)=(\frac{1}{2}z^{-1}+1+\frac{1}{2}z)/\sqrt{2}$.

The biorthogonality relation says that

$$\langle \tilde{\varphi}(t), \varphi(t-n) \rangle = \delta_n.$$

Since both $\varphi(t)$ and $\tilde{\varphi}(t)$ satisfy a two scale relation, it follows that

$$\langle \tilde{\varphi}(t), \varphi(t-n) \rangle = \langle h_0[k], g_0[k-2n] \rangle = \delta_n.$$

The above relation is equivalent to the condition P(z) + P(-z) = 2 with $P(z) = H_0(z^{-1})G_0(z)$. Here $G_0(z)$ is known and has two zeros at $\omega = \pi$, the shortest $H_0(z)$ with the same number of zeros at π is then

$$H_0(z) = \frac{\sqrt{2}}{8}(1+z)(1+z^{-1})(-z+4-z^{-1}) = \frac{\sqrt{2}}{8}(z^{-1}+2+z)(-z+4-z^{-1}).$$

$$f(t) = \sum_{n} C_{J,n} f_{J,n}(t) + \sum_{m=-\infty}^{J} \sum_{n} d_{n,m} \psi_{m,n}(t)$$

Haar (orthogonal) Scaling Function and Splines (inear spline (biorthogonal)

Given $H_0(z)$ the construction of the wavelet $\psi(t)$ is then straightforward. The scaling function $\varphi(t)$ and wavelet $\psi(t)$ for this example are shown below.

$$A[n] = \langle f(t), f(t-n) \rangle = \int_{-\infty}^{\infty} f(t) f(t-t) dt$$

$$A(t) = \langle f(t), f(t-t) \rangle = \int_{-\infty}^{\infty} f(t) f(t-t) dt$$

$$Appendix$$

$$A(w) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f^{*}(t) f(t-t) dt e^{\int_{-\infty}^{\infty} f(t) dt} dt$$

$$\begin{aligned} \text{Claim}_{i=t}^{\underbrace{\mathsf{Xzt-i}}} & \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f^*(t) \, e^{-j\omega t} \, dt \, f(x) \, e^{j\omega t} \, dx = \left[\int_{-\infty}^{\infty} f(t) \, e^{j\omega t} \, dt \right]^* \left[\int_{-\infty}^{\infty} f(x) \, e^{j\omega t} \, dx \right] \\ & \langle \varphi(t-n), \varphi(t-m) \rangle = \delta_{m,n} \iff \sum_{k=-\infty}^{\infty} \left| \hat{\varphi}(\omega + 2k\pi) \right|^2 = 1. \\ & k=-\infty = \left| f(-\omega) \cdot f(-\omega) \right|^2 \end{aligned}$$

Proof:

Define $p(\tau) = \langle \varphi(t), \varphi(t-\tau) \rangle$. Then $\langle \varphi(t), \varphi(t-m) \rangle$ is obtained by sampling $p(\tau)$ with sampling period T=1. The Fourier transform of $p(\tau)$ is given by: α and β (w) β

$$\int_{-\infty}^{\infty} p(\tau) e^{-j\omega\tau} d\tau = \int_{-\infty}^{\infty} \langle \varphi(t), \varphi(t-\tau) \rangle e^{-j\omega\tau} d\tau = |\hat{\varphi}(\omega)|^2.$$

Applying the rule that sampling in time corresponds to replica in frequency leads to the desired equality.