Methodology

Michael Nelson

Introduction

In this project, we study [JTMW99].

The Weighted Quadratic Approach

In the weighted quadratic approach a quadratic function of the objective functions

minimize
$$f(x)^{\top}Qf(x) + q^{\top}f(x)$$

subject to $x \in X$ (1)

where *Q* is a $p \times p$ matrix and where *q* is a vector in \mathbb{R}^p .

Theorem 0.1. Under conditions of a quadratic Lagrangian duality, if $\hat{x} \in X$ is efficient, then there exist a symmetric $p \times p$ matrix Q and a vector $q \in \mathbb{R}^p$ such that \hat{x} is an optimal solution to (1)

MOP Formulation

Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a vector-valued objective function. Thus we have

$$f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_m(\mathbf{x}))^{\top}$$

for all $x \in \mathbb{R}^n$, where $f_k : \mathbb{R}^n \to \mathbb{R}$ are the component objective functions of f for $1 \le k \le m$. Next, let $h : \mathbb{R}^n \to \mathbb{R}^p$ be a vector-valued constraint function. Thus we have

$$h(x) = (h_1(x), \ldots, h_p(x))^{\top}$$

for all $x \in \mathbb{R}^n$, where $h_j : \mathbb{R}^n \to \mathbb{R}$ are the component constraint functions of h for $1 \le j \le m$. Finally, let

$$X = \{ x \in \mathbb{R}^n \mid h(x) = 0 \}.$$

We consider the following multi objective program (MOP) below:

maximize
$$f(x)$$
 subject to $x \in X$ (2)

A point $x^0 \in X$ is called an efficient solution of this MOP if there is no other point $x \in X$ such that $f(x) \ge f(x^0)$ with strict inequality holding for at least one component (i.e. $f_k(x) > f_k(x^0)$ for some $1 \le k \le m$).

Tchebycheff Approach

We first use the Tchebycheff approach to find the efficient solutions to (??). Let $\lambda \in \mathbb{R}^m$ be a weight vector and let $z^* \in \mathbb{R}^m$ be the ideal point whose *i*-th component is given by $z_i^* = \max_{x \in X} f_i(x)$. Now consider the problem

$$\min_{\mathbf{x} \in X} \max_{1 \le i \le m} \left\{ \lambda_i (z_i^* - f_i(\mathbf{x})) \right\} \tag{3}$$

where $\lambda \geq 0$ and $\sum_{i=1}^{m} \lambda_i = 1$. All efficient solutions of (??) can be found as optimal solutions of (??) by adjusting the λ -values.

Primal Problem

We can rewrite (5) as

minimize
$$\alpha$$
 subject to $g(x,\alpha) = 0$ (4) $x \in X$

where we set

$$g(x,\alpha) = \lambda^{\top}(z^* - f(x)) - \alpha.$$

Next, let A be the $m \times m$ diagonal matrix whose diagonal entries are all equal to a, and define the augmented Lagrange function:

$$L_Q(x, \alpha, a, y) = \alpha + \mathbf{g}(\mathbf{x}, \alpha)^{\top} A \mathbf{g}(\mathbf{x}, \alpha) + \mathbf{y}^{\top} \mathbf{g}(\mathbf{x}, \alpha),$$

and the following dual program:

$$\max_{a>0,y} \min_{x\in X,\alpha} L_Q(x,\alpha,a,y). \tag{5}$$

Then subject to ceratin conditions, program (??) has an optimal solution (x, α) if and only if its dual (??) has an optimal solution (a, y), and in this case the objective values of both programs are equal. Furthermore, $L_Q(x, \alpha, a, y)$ has a saddle point in the primal variables (x, α) and the dual variables (a, y).

Main Result

Theorem 0.2.

Conclusion

References

References

[JTMW99] JØRGEN TIND1 and MARGARET M. WIECEK. "Augmented Lagrangian and Tchebycheff Approaches in Multiple Objective Programming". In: Journal of Global Optimization 14: 251–266, 1999