CONTENTS

# Contents

| 1 | Unbiased Implicit Variational Inference |  |
|---|-----------------------------------------|--|
|   | 1.1 Quality of approximation            |  |
|   | 1.1.1 Gradient variance                 |  |
|   | 1.1.2 Scratch notes                     |  |
| 2 | Semi-implicit variational inference     |  |
|   | Hierarchical variational inference      |  |
|   | Theoretical guarantees for implicit VI  |  |
| 5 | Other references                        |  |

# 1 Unbiased Implicit Variational Inference

Based on Titsias and Ruiz [7].

- Authors introduce unbiased implicit variational inference (UIVI) that defines a flexible variational family. Like semi-implicit variational inference (SIVI), UIVI uses an implicit variational distribution  $q_{\theta}(z) = \int q_{\theta}(z|\varepsilon) d\varepsilon$  where  $q_{\theta}(z|\varepsilon)$  is a reparameterizable distribution whose parameters can be outputs of some neural network g, i.e.,  $q_{\theta}(z|\varepsilon) = h(u; g(\varepsilon;\theta))$  with  $u \sim q(u)$ . Under two assumptions on the conditional  $q_{\theta}(z|\varepsilon)$ , the ELBO can be approximated via Monte Carlo sampling. In particular, the entropy component of the ELBO can be rewritten as an expectation w.r.t. the reverse conditional  $q_{\theta}(\varepsilon|z)$ . Efficient approximation of this expectation w.r.t. the reverse conditional is done by reusing samples from approximating the main expectation to initialize a MCMC sampler.
- In SIVI, the variational distribution  $q_{\theta}(z)$  is defined as

$$q_{\theta}(z) = \int q_{\theta}(z|\varepsilon)q(\varepsilon)d\varepsilon$$

where  $\varepsilon \sim q(\varepsilon)$ .

- UIVI:
  - Like SIVI, UIVI uses an implicit variational distribution  $q_{\theta}(z)$  whose density cannot be evaluated but from which samples can be drawn. Unlike SIVI, UIVI directly maximizes the ELBO rather than a lower bound.
  - The dependence of  $q_{\theta}(z|\varepsilon)$  on  $\varepsilon$  can be arbitrarily complex. Titsias and Ruiz [7] take the parameters of a reparameterizable distribution (Assumption 1) as the output of a neural network with parameters  $\theta$  that takes  $\varepsilon$  as input, i.e.,

$$z = h(u; q_{\theta}(\varepsilon)) = h_{\theta}(u; \varepsilon)$$

where  $u \sim q(u)$  and  $g_{\theta}$  is some neural network. It is also assumed that  $\nabla_z \log q_{\theta}(z|\varepsilon)$  can be evaluated (Assumption 2).

- The gradient of the ELBO is given by

$$\begin{split} \nabla_{\theta} \mathcal{L}(\theta) &= \nabla_{\theta} \mathbb{E}_{q_{\theta}(z)} \left[ \log p(x,z) - \log q_{\theta}(z) \right] \\ &= \nabla_{\theta} \int \left( \log p(x,z) - \log q_{\theta}(z) \right) q_{\theta}(z) dz \\ &= \int \nabla_{\theta} \left( \left( \log p(x,z) - \log q_{\theta}(z) \right) q_{\theta}(z) \right) dz \\ &= \int \nabla_{\theta} \left( \left( \log p(x,z) - \log q_{\theta}(z) \right) \int q_{\theta}(z|\varepsilon) q(\varepsilon) d\varepsilon \right) dz \\ &= \int \int \nabla_{\theta} \left( \left( \log p(x,z) - \log q_{\theta}(z) \right) \Big|_{z=h_{\theta}(u;\varepsilon)} \right) q(u) q(\varepsilon) d\varepsilon du \\ &= \mathbb{E}_{q(\varepsilon)q(u)} \left[ \nabla_{z} \log p(x,z) \Big|_{z=h_{\theta}(u;\varepsilon)} \nabla_{\theta} h_{\theta}(u;\varepsilon) \right] - \mathbb{E}_{q(\varepsilon)q(u)} \left[ \nabla_{z} \log q_{\theta}(z) \Big|_{z=h_{\theta}(u;\varepsilon)} \nabla_{\theta} h_{\theta}(u;\varepsilon) \right] \; . \end{split}$$

(Note that is  $\mathbb{E}_{q_{\theta}(z)}[\nabla_{\theta} \log q_{\theta}(z)] = 0$  is applied as below; see Slide 24) (Gradient can be pushed into expectation using DCT.)

$$\begin{split} \nabla_{\theta} \mathbb{E}_{q_{\theta}(z)} \left[ \log q_{\theta}(z) \right] &= \nabla_{\theta} \mathbb{E}_{q(\varepsilon)} \left[ \log q_{\theta}(f_{\theta}(\varepsilon)) \right] \\ &= \mathbb{E}_{q(\varepsilon)} \left[ \nabla_{\theta} \log q_{\theta}(z) \big|_{z = f_{\theta}(\varepsilon)} \right] + \mathbb{E}_{q(\varepsilon)} \left[ \nabla_{z} \log q_{\theta}(z) \big|_{z = f_{\theta}(\varepsilon)} \nabla_{\theta} f_{\theta}(\varepsilon) \right] \\ &= \mathbb{E}_{q_{\theta}(z)} \left[ \nabla_{\theta} \log q_{\theta}(z) \right] + \mathbb{E}_{q(\varepsilon)} \left[ \nabla_{z} \log q_{\theta}(z) \big|_{z = f_{\theta}(\varepsilon)} \nabla_{\theta} f_{\theta}(\varepsilon) \right] \\ &= \mathbb{E}_{q(\varepsilon)} \left[ \nabla_{z} \log q_{\theta}(z) \big|_{z = f_{\theta}(\varepsilon)} \nabla_{\theta} f_{\theta}(\varepsilon) \right] \end{split}$$

As  $\nabla_z \log q_\theta(z)$  cannot be evaluated, this gradient is rewritten as an expectation using the logderitative identity:  $\nabla_x \log f(x) = \frac{1}{f(x)} \nabla_x f(x)$ :

$$\nabla_{z} \log q_{\theta}(z) = \frac{1}{q_{\theta}(z)} \nabla_{z} q_{\theta}(z)$$

$$= \frac{1}{q_{\theta}(z)} \nabla_{z} \int q_{\theta}(z|\varepsilon) q(\varepsilon) d\varepsilon$$

$$= \frac{1}{q_{\theta}(z)} \int \nabla_{z} q_{\theta}(z|\varepsilon) q(\varepsilon) d\varepsilon$$

$$= \frac{1}{q_{\theta}(z)} \int q_{\theta}(z|\varepsilon) q(\varepsilon) \nabla_{z} \log q_{\theta}(z|\varepsilon) d\varepsilon$$

$$= \int q_{\theta}(\varepsilon|z) \nabla_{z} \log q_{\theta}(z|\varepsilon) d\varepsilon$$

$$= \mathbb{E}_{q_{\theta}(\varepsilon|z)} \left[ \nabla_{z} \log q_{\theta}(z|\varepsilon) \right] .$$

 $\nabla_z \log q_\theta(z|\varepsilon)$  can be evaluated by assumption.

• UIVI estimates the gradient of the ELBO by drawing S samples from  $q(\varepsilon)$  and q(u) (in practice, S=1):

$$\nabla_{\theta} \mathcal{L}(\theta) \approx \frac{1}{S} \sum_{s=1}^{S} \left( \nabla_{z} \log p(x, z) \big|_{z=h_{\theta}(u_{s}, \varepsilon_{s})} \nabla_{\theta} h_{\theta}(u_{s}; \varepsilon_{s}) - \mathbb{E}_{q_{\theta}(\varepsilon|z)} \left[ \nabla_{z} \log q_{\theta}(z|\varepsilon) \right] \big|_{z=h_{\theta}(u_{s}; \varepsilon_{s})} \nabla_{\theta} h_{\theta}(u_{s}; \varepsilon_{s}) \right) .$$

To estimate the inner expectation, samples are drawn from the reverse conditional  $q_{\theta}(\varepsilon|z) \propto q_{\theta}(z|\varepsilon)q(\varepsilon)$  using MCMC. Exploiting the fact that  $(z_s, \varepsilon_s)$  comes from the joint  $q_{\theta}(z, \varepsilon)$ , UIVI initializes the MCMC at  $\varepsilon_s$  so no burn-in is required. A number of iterations are run to break the dependency between  $\varepsilon_s$  and the  $\varepsilon'_s$  that is used to estimate the inner expectation.

## 1.1 Quality of approximation

TODO: analyze the (best-case) approximation of UIVI. Questions:

- 1. Approach? Probabilistic bound on KL as function of ELBO optimization iteration?
- 2. How to deal with implicit mixing component? Do surrogate families simpler than neural networks help? What assumptions would be needed?
- 3. Posterior contraction in terms of limiting data?
- Can we say something about ELBO maximizer  $\hat{\theta}$ , e.g.,
  - KL upper bound

$$\begin{split} \mathrm{KL}(q_{\hat{\theta}}(z) \| p(z|x)) &= -\mathbb{E}_{q_{\hat{\theta}}(z)} \left[ \log \frac{p(z|x)}{q_{\hat{\theta}}(z)} \right] \\ &= \mathbb{E}_{q_{\hat{\theta}}(z)} \left[ \log \frac{q_{\hat{\theta}}(z)}{p(z|x)} \right] \\ &= \mathbb{E}_{q_{\hat{\theta}}(z)} \left[ \log \frac{\mathbb{E}_{q(\varepsilon)} \left[ q_{\hat{\theta}}(z|\varepsilon) \right]}{p(z|x)} \right] \end{split}$$

ELBO lower bound

$$\begin{split} \mathcal{L}(\hat{\theta}) &= \mathbb{E}_{q_{\hat{\theta}}(z)} \left[ \log p(x,z) - \log q_{\hat{\theta}}(z) \right] \\ &= \mathbb{E}_{q_{\hat{\theta}}(z)} \left[ \log p(x,z) - \log \mathbb{E}_{q(\varepsilon)} \left[ q_{\hat{\theta}}(z|\varepsilon) \right] \right] \end{split}$$

- Simple case:

$$X \sim N(Z, \sigma^2)$$
, prior  $Z \sim N(\mu_0, \sigma_0^2)$ , posterior  $Z|X_{1:n} \sim N\left(\frac{\mu_0 \sigma_0^{-2} + n\bar{X}\sigma^{-2}}{\sigma_0^{-2} + n\sigma^{-2}}, \sigma_1^2 = \frac{1}{\sigma_0^{-2} + n\sigma^{-2}}\right)$ .  
Gaussian  $q_{\theta}(z|\varepsilon)$ :

$$\varepsilon \sim N(0, 1)$$

$$u \sim N(0, 1)$$

$$z = h_{\theta}(u; \varepsilon) = \mu_{\theta}(\varepsilon) + \sigma_{1}u$$

$$\mu_{\theta}(\varepsilon) = \theta + \varepsilon$$

$$z|\varepsilon \sim N(\mu_{\theta}(\varepsilon), \sigma_{1}^{2}) = N(\theta + \varepsilon, \sigma_{1}^{2})$$

$$z|\varepsilon, u = \theta + \varepsilon + \sigma_{1}u$$

$$z \sim N(\theta, \sigma_{1}^{2} + 1)$$

$$z \sim N\left(\mathbb{E}\left[\mu_{\theta}(\varepsilon)\right], \sigma_{1}^{2} + \operatorname{Var}\left(\mu_{\theta}(\varepsilon)\right)\right)$$

This says that for this normal-normal model, the true posterior is not in our variational family, and no function  $\mu_{\theta}(\varepsilon)$  is able to change that unless  $\mu_{\theta}(\varepsilon)$  is constant. TODO: problem is that  $\sigma$  in  $h_{\theta}$  is misspecified. Learning both fixes issue?

$$z = \mu_{\theta}(\varepsilon_{1}) + \sigma_{\theta}(\varepsilon_{2})u$$
  
 
$$\sim N \left( \mathbb{E} \left[ \mu_{\theta}(\varepsilon_{1}) \right], \operatorname{Var} \left( \mu_{\theta}(\varepsilon_{1}) \right) + \operatorname{Var} \left( \sigma_{\theta}(\varepsilon_{2}) \right) \right)$$

if learning independently.

Differential entropy not invariant under change of variables.

### Approaches:

- Question mainly boils down to how expressive is the implicit distributional family?
- KL between true posterior and variational distribution:
  - Analytic approach: normal-normal example below shows simple case where true posterior is in variational family and where it is not.
  - More complicated attempt: come up with analytic  $q_{\theta}(z)$  for more complex mixing (e.g., normalizing flow) but likely not generalizable as in general is intractable. Intention: for any well-behaved target and base, there exists a diffeomorphism that can turn the base into the target.
  - Plummer et al. [5] provides probabilistic bounds on KL between true posterior and variational distribution given by a particular implicit model (non-linear latent variable model with a Gaussian process prior), and maybe posterior contraction to true density? Unclear how generalizable results are based on current understanding.
- Posterior contraction/measure of approximation of variational distribution and limiting posterior?
- Dimensionality? Is this just a problem of convergence/complexity?

### 1.1.1 Gradient variance

TODO are there scenarios where UIVI breaks down that other VI methods may not?

• If mixing distribution is discrete, we may have label-switching problems, particularly with MCMC? [1] Example:  $q(\varepsilon)$  = Bernoulli(0.5). Then in normal reparameterization, we end up with parameters  $\{\mu_1, \Sigma_1\}, \{\mu_2, \Sigma_2\}$ . Can we estimate these following ELBO gradient or do we get degeneracy somehow?

### 1.1.2 Scratch notes

$$\hat{\theta} = \frac{\mu_0 \sigma_0^{-2} + n\bar{X}\sigma^{-2}}{\sigma_0^{-2} + n\sigma^{-2}}$$
:

$$KL(q_{\theta}(z)||p(z|x)) = -\int q_{\theta}(z) \log \frac{p(z|x)}{q_{\theta}(z)} dz$$
$$= -\int q_{\theta}(z) \log p(z|x) + \int q_{\theta}(z) \log q_{\theta}(z) dz$$

$$\begin{aligned} u &\sim N(0,1) \\ z &= h_{\theta}(u;\varepsilon) = \mu_{\theta}(\varepsilon) + \sigma_{1}u \\ \mu_{\theta}(\varepsilon) &= \theta + \varepsilon \\ u &= h_{\theta}^{-1}(z;\varepsilon) = \sigma_{1}^{-1}(z - \mu_{\theta}(\varepsilon)) \\ \nabla_{z}h_{\theta}^{-1}(z;\varepsilon) &= \sigma_{1}^{-1} \\ q_{\theta}(z|\varepsilon) &= q_{u}(h_{\theta}^{-1}(z;\varepsilon))\sigma_{1}^{-1} \\ q_{\theta}(z) &= \int q_{\theta}(z|\varepsilon)q(\varepsilon)d\varepsilon \\ &= \int \sigma_{1}^{-1}q_{u}\left(\sigma_{1}^{-1}\left(z - \mu_{\theta}(\varepsilon)\right)\right)q(\varepsilon)d\varepsilon \\ &= \int \sigma_{1}^{-1}q_{u}\left(\sigma_{1}^{-1}\left(z - \theta - \varepsilon\right)\right)q(\varepsilon)d\varepsilon \\ &= \int \frac{1}{\sqrt{2\pi\sigma_{1}^{2}}}\exp\left(-\frac{1}{2}\left(\sigma_{1}^{-2}(z - \theta - \varepsilon)^{2}\right)\right)q(\varepsilon)d\varepsilon \\ &= \int \frac{1}{\sqrt{2\pi\sigma_{1}^{2}}}\exp\left(-\frac{1}{2\sigma_{1}^{2}}\left((z - \theta)^{2} - 2(z - \theta)\varepsilon + \varepsilon^{2}\right)\right)q(\varepsilon)d\varepsilon \\ &= \frac{1}{\sqrt{2\pi\sigma_{1}^{2}}}\exp\left(-\frac{1}{2\sigma_{1}^{2}}(z - \theta)^{2}\right)\int \exp\left(-\frac{1}{2\sigma_{1}^{2}}\left(-2(z - \theta)\varepsilon + \varepsilon^{2}\right) - \frac{1}{2}\varepsilon^{2}\right)d\varepsilon \\ &= \frac{1}{\sqrt{2\pi\sigma_{1}^{2}}}\exp\left(-\frac{1}{2\sigma_{1}^{2}}(z - \theta)^{2}\right)\int \frac{1}{\sqrt{2\pi}}\exp\left(-\frac{1}{2\sigma_{1}^{2}}\left(-2(z - \theta)\varepsilon + \varepsilon^{2}\right) - \frac{1}{2}\varepsilon^{2}\right)d\varepsilon \end{aligned}$$

Posterior exact when?

• If  $h_{\theta}$  monotonic, invertible:

$$z = h_{\theta}(u; \varepsilon)$$

$$q_{\theta}(z|\varepsilon) = q_{u} \left( h_{\theta}^{-1}(z; \varepsilon) \right) \left| \nabla_{z} h_{\theta}^{-1}(z; \varepsilon) \right|$$

$$q_{\theta}(z) = \int q_{u} \left( h_{\theta}^{-1}(z; \varepsilon) \right) \left| \nabla_{z} h_{\theta}^{-1}(z; \varepsilon) \right| q(\varepsilon) d\varepsilon$$

**TODO**: normalizing flow literature? Restrict  $h_{\theta}$  to be independent of  $\varepsilon$  (e.g., linear flows)?

# 2 Semi-implicit variational inference

Based on Yin and Zhou [8].

SIVI is addresses the issues of classical VI attributed to the requirement of a conditionally conjugate variational family by relaxing this requirement to allow for implicit distributional families from which samples can be drawn. This implicit family consists of hierarchical distributions with a mixing parameter. While the distribution conditioned on the mixing parameter is required to be analytical and reparameterizable, the mixing distribution can be arbitrarily complex. The use of such a variational family also addresses the problems of conventional mean-field families as dependencies between the latent variables can be introduced through the mixing distribution.

The objective in SIVI is a surrogate ELBO that is only exact asymptotically and otherwise a lower bound of the ELBO [3]. Like in black box VI, the gradients are rewritten as expectations and estimated via Monte Carlo samples.

Molchanov et al. [3] extends SIVI to doubly SIVI for variational inference and variational learning in which both the variational posterior and the prior are semi-implicit distributions. They also show that the SIVI objective is a lower bound of the ELBO.

Molchanova et al. [4] and Moens et al. [2] comment that SIVI and UIVI struggle in high-dimensional regimes. MCMC methods also have high variance [2].

Moens et al. [2] introduce compositional implicit variational inference (CI-VI), which rewrites the SIVI ELBO as a compositional nested form  $\mathbb{E}_{\nu} \left[ f_{\nu} \left( \mathbb{E}_{\omega} \left[ g_{\omega}(\theta) \right] \right) \right]$ . The gradient involves estimating the nested expectations, for which a simple Monte-Carlo estimator would be biased. CI-VI uses an extrapolation-smoothing scheme for which the bias converges to zero with iterations. In practice, the gradient involves matrix-vector products that are expensive but can be approximated via sketching techniques. Under certain assumptions, convergence of the CI-VI algorithm is proved in terms of the number of oracle calls needed to convergence (TODO).

### 3 Hierarchical variational inference

Based on Ranganath et al. [6].

Predating SIVI and UIVI, HVM first(?) addressed the restricted variational family issue of classical VI by using a hierarchical variational distribution which is enabled by BBVI. HVM considers a mean-field variational likelihood and a variational prior that is differentiable (e.g., a mixture or a normalizing flow). HVM also optimizes a lower bound of the ELBO that is constructed using a recursive variational distribution that approximates the variational prior.

# 4 Theoretical guarantees for implicit VI

Based on Plummer et al. [5].

TODO: Considers non-linear latent variable model (NL-LVM)

$$z = \mu(\varepsilon) + u$$

$$u \sim N(0, \sigma^2)$$

$$\varepsilon \sim U(0, 1)$$

$$\mu \sim \Pi_{\mu}$$

$$\sigma \sim \Pi_{\sigma}$$

where  $\Pi_{\mu}$  and  $\Pi_{\sigma}$  are priors. Can write as

$$z = \mu(\varepsilon) + \sigma u$$
$$u \sim N(0, 1)$$

This leads to density

$$f_{\mu,\sigma}(z) = f(z; \mu, \sigma) = \int_0^1 \phi_{\sigma}(y - \mu(\varepsilon)) d\varepsilon$$
$$= \int \phi_{\sigma}(y - t) d\nu_{\mu}(t)$$

where  $\phi_{\sigma}$  is the density of a N(0,  $\sigma^2 \mathbf{I}_d$ ) distribution, and  $\nu_{\mu} = \lambda \circ \mu^{-1}$  the image measure where  $\lambda$  is the Lebesgue measure and  $\mu : [0,1] \to \mathbb{R}$ . The second form is a convolution with a Gaussian kernel and suggests that  $f_{\mu,\sigma}$  is flexible depending on the choice of  $\mu$ . Under certain assumptions on  $f_0$ , it is known that  $\phi_{\sigma} * f_0$  can approximate  $f_0$  arbitrarily close as bandwidth  $\sigma \to 0$ .

A Gaussian process latent variable model puts a GP prior for the transfer function  $\mu$ . (Theorem 3.1) If  $\Pi_{\mu}$  has full sup-norm support on C[0,1] and  $\Pi_{\sigma}$  has full support on  $[0,\infty)$ , then the  $L_1$  support of the induced prior  $\Pi = (\Pi_{\mu} \otimes \Pi_{\sigma}) \circ f_{\mu,\sigma}^{-1}$  contains all densities which have a first finite moment and are non-zero almost everywhere on their support.

TODO: posterior contraction says expected divergence of posterior density and true density goes to 0 given observations of the response z. The response in our case is the latent variable. Can this work with our observations x?

Introduces Gaussian process implicit VI (GP-IVI), which uses a finite mixture of uniform mixing distributions. TODO: transfer function not necessarily GP? Has probabilistic bound on error of best approximation to posterior and an  $\alpha$ -variational Bayes risk bound.

For simple normal-normal model, KL divergence for true normal model and true posterior converges weakly to a  $\chi_1^2$  and not to 0.

## 5 Other references

#### VI review:

- Advances in Variational Inference (2019)
- Variational Inference: A Review for Statisticians (2017)
- Black Box Variational Inference (2013): dominated convergence theorem used to push gradient into expectation

Possibly related VI approaches/of interest

• Semi-Implicit Variational Inference (2018)

Doubly Semi-Implicit Variational Inference (2019)

Structured Semi-Implicit Variational Inference (2019): mentions that previous methods scale exponentially with dimension of the latent variables. Imposes that the high-dimensional semi-implicit distribution factorizes into a product of low-dimensional conditional semi-implicit distributions and shows that the resulting entropy bound is tighter than that of SIVI's and consequently a tighter ELBO objective.

Efficient Semi-Implicit Variational Inference (2021)

- Variational Inference using Implicit Distributions (2017): implicit with density ratio estimation?
- Importance Weighted Hierarchical Variational Inference (2019)
- Normalizing Flows for Probabilistic Modeling and Inference (2021) Stochastic Normalizing Flows (2020)
- Implicit VI:

Variational Inference with Implicit Models (2018; slides)

Implicit Variational Inference: the Parameter and the Predictor Space (2020): optimizing over predictor space rather than parameter space?

### Theory/analysis

• Statistical Guarantees for Transformation Based Models with Applications to Implicit Variational Inference (2021)

Statistical and Computational Properties of Variational Inference (2021; thesis)

- Theoretical Guarantees of Variational Inference and Its Applications (2020; thesis)  $\alpha$ -Variational Inference with Statistical Guarantees (2018): a particular variational family with theoretical guarantees
- Contributions to the theoretical study of variational inference and robustness (2020; thesis)
- On Statistical Optimality of Variational Bayes (2018): general guarantees for variational estimates as approximations for true data-generating parameter for MF-VI using variational risk bounds?
   Statistical guarantees for variational Bayes (2021; slides)
- Statistical Guarantees and Algorithmic Convergence Issues of Variational Boosting (2020)
- Robust, Accurate Stochastic Optimization for Variational Inference (2020) iterates as MCMC?
- Convergence Rates of Variational Inference in Sparse Deep Learning (2019)
   On the Convergence of Extended Variational Inference for Non-Gaussian Statistical Models (2020)

REFERENCES REFERENCES

## References

[1] Hwan Chung, Eric Loken, and Joseph L Schafer. Difficulties in drawing inferences with finite-mixture models: A simple example with a simple solution. *The American Statistician*, 58(2):152–158, 2004.

- [2] Vincent Moens, Hang Ren, Alexandre Maraval, Rasul Tutunov, Jun Wang, and Haitham Ammar. Efficient semi-implicit variational inference. arXiv preprint arXiv:2101.06070, 2021.
- [3] Dmitry Molchanov, Valery Kharitonov, Artem Sobolev, and Dmitry Vetrov. Doubly semi-implicit variational inference. In *The 22nd International Conference on Artificial Intelligence and Statistics*, pages 2593–2602. PMLR, 2019.
- [4] Iuliia Molchanova, Dmitry Molchanov, Novi Quadrianto, and Dmitry Vetrov. Structured semi-implicit variational inference. 2019.
- [5] Sean Plummer, Shuang Zhou, Anirban Bhattacharya, David Dunson, and Debdeep Pati. Statistical guarantees for transformation based models with applications to implicit variational inference. In *International Conference on Artificial Intelligence and Statistics*, pages 2449–2457. PMLR, 2021.
- [6] Rajesh Ranganath, Dustin Tran, and David Blei. Hierarchical variational models. In *International Conference on Machine Learning*, pages 324–333. PMLR, 2016.
- [7] Michalis K Titsias and Francisco Ruiz. Unbiased implicit variational inference. In *The 22nd International Conference on Artificial Intelligence and Statistics*, pages 167–176. PMLR, 2019.
- [8] Mingzhang Yin and Mingyuan Zhou. Semi-implicit variational inference. In *International Conference on Machine Learning*, pages 5660–5669. PMLR, 2018.