Piotr Durniat

I rok, Fizyka Wtorek, 8:00-10:15 Data wykonania pomiarów: 21.05.2025

Prowadząca: dr Iwona Mróz

Ćwiczenie nr 22

Pomiar wilgotności powietrza atmosferycznego

Spis treści

1	Wstęp teoretyczny				
	1.1	Podstawowe pojęcia	2		
	1.2	Para wodna w powietrzu	2		
	1.3	Wilgotność powietrza	2		
	1.4	Metody pomiaru wilgotności powietrza	2		
2	Opi	s doświadczenia	3		
	2.1	Metoda punktu rosy	3		
	2.2	Psychrometr Assmanna	3		
	2.3	Higrometr włosowy	3		
3	Opracowanie wyników pomiarów				
	3.1^{-}	Tabele pomiarowe	4		
	3.2	Temperatura punktu rosy	4		
4	Ocena niepewności pomiaru				
	4.1 Złożona niepewność standardowa pomiaru wilgotności względnej (metoda punktu rosy)				
	4.2 Niepewność standardowa pomiaru wilgotności względnej (metoda psychrometryczna)				
	4.3	Niepewność standardowa pomiaru wilgotności względnej (metoda higrometryczna)	6		
5	Wn	iioski	6		

1 Wstęp teoretyczny

1.1 Podstawowe pojęcia

Powietrze atmosferyczne składa się z różnych gazów, w tym pary wodnej, której zawartość wpływa na jego wilgotność. Zachowanie gazów, w tym pary wodnej, można opisać równaniem Clapeyrona dla gazu doskonałego:

$$pV = nRT \tag{1}$$

gdzie p to ciśnienie, V to objętość, n to liczba moli, R to stała gazowa, a T to temperatura bezwzględna.

1.2 Para wodna w powietrzu

Para wodna może występować w stanie nienasyconym lub nasyconym. Para nasycona to stan, w którym występuje równowaga między procesami parowania i skraplania. Zależność ciśnienia pary nasyconej p_s od temperatury opisuje równanie Clausiusa-Clapeyrona, które pokazuje wykładniczy wzrost ciśnienia pary nasyconej wraz ze wzrostem temperatury.

Para nienasycona zawiera mniej cząsteczek wody niż para nasycona w tej samej temperaturze i może przyjmować dodatkową parę wodną, zanim osiągnie stan nasycenia. Przejście pary nienasyconej do stanu nasycenia może nastąpić przez:

- Obniżenie temperatury przy stałym ciśnieniu (do osiągnięcia temperatury punktu rosy)
- Zwiększenie ciśnienia przy stałej temperaturze

1.3 Wilgotność powietrza

Wilgotność bezwzględna (W_b) określa masę pary wodnej zawartej w jednostce objętości powietrza:

$$W_b = \frac{m_w}{V} \tag{2}$$

gdzie m_w to masa pary wodnej, a V to objętość powietrza.

Wilgotność względna (S lub W_w) jest stosunkiem ciśnienia pary wodnej p do ciśnienia pary nasyconej p_s w danej temperaturze:

$$S = \frac{p}{p_s} \cdot 100\% \tag{3}$$

1.4 Metody pomiaru wilgotności powietrza

Do pomiaru wilgotności względnej powietrza stosuje się różne metody:

- Metoda punktu rosy polega na wyznaczeniu temperatury, w której para wodna zawarta w powietrzu osiąga stan nasycenia (skrapla się). Na podstawie temperatury punktu rosy i temperatury otoczenia oblicza się wilgotność względną.
- Metoda psychrometryczna wykorzystuje różnicę temperatur między termometrem suchym i mokrym. Parowanie wody z mokrego termometru powoduje obniżenie jego temperatury, przy czym różnica temperatur jest tym większa, im niższa jest wilgotność powietrza.
- Metoda higrometryczna opiera się na zmianach właściwości fizycznych niektórych materiałów (np. włosa ludzkiego) pod wpływem zmian wilgotności powietrza.

W niniejszym ćwiczeniu zastosowano wszystkie trzy metody, co umożliwi porównanie ich dokładności i wiarygodności w danych warunkach laboratoryjnych.

Powyższe zagadnienia teoretyczne opracowano na podstawie materiałów pomocniczych do ćwiczenia [4], podręcznika "Fizyka dla szkół wyższych" [3] oraz rozdziału 47 "Wyznaczanie wilgotności powietrza" z podręcznika "Ćwiczenia laboratoryjne z fizyki" [2].

2 Opis doświadczenia

Celem doświadczenia było wyznaczenie wilgotności względnej powietrza atmosferycznego za pomocą trzech różnych metod pomiarowych.

2.1 Metoda punktu rosy

W metodzie punktu rosy wykorzystano efekt Peltiera do obniżania temperatury płytki krzemowej. Powierzchnia płytki była oświetlana wiązką laserową. Pomiar polegał na:

- Stopniowym zwiększaniu natężenia prądu zasilającego element Peltiera, co powodowało obniżanie temperatury płytki
- Obserwacji powierzchni płytki i odnotowaniu temperatury T_1 , przy której pojawia się mgiełka (rozproszenie światła laserowego)
- \bullet Zmniejszaniu prądu i odnotowaniu temperatury T_2 , przy której mgiełka znika

Wykonano 15 pomiarów, każdorazowo zmieniając natężenie prądu wokół punktu rosy. Temperatura punktu rosy została obliczona jako średnia z temperatur pojawienia się i zniknięcia mgiełki. Następnie, korzystając z tablic ciśnienia pary nasyconej, obliczono wilgotność względną ze wzoru:

$$S = \frac{p_t}{p_0} \tag{4}$$

gdzie p_t to ciśnienie pary nasyconej przy temperaturze punktu rosy, a p_0 to ciśnienie pary nasyconej przy temperaturze otoczenia.

2.2 Psychrometr Assmanna

W pomiarach wykorzystano psychrometr Assmanna wyposażony w dwa termometry: suchy i mokry. Procedura pomiaru obejmowała:

- Napełnienie próbówki wodą destylowaną
- Wsunięcie próbówki do osłony termometru oznaczonego kolorem niebieskim (termometr mokry)
- Nakręcenie mechanizmu dmuchawy
- Odczytanie wskazań obu termometrów po około 4 minutach

Na podstawie różnicy temperatur między termometrem suchym (T_s) i mokrym (T_m) obliczono wilgotność względną korzystając z tablic psychrometrycznych.

2.3 Higrometr włosowy

Pomiar wilgotności przy użyciu higrometru włosowego polegał na bezpośrednim odczycie wskazań przyrządu. Wykonano dwa odczyty: na początku i na końcu sesji pomiarowej.

3 Opracowanie wyników pomiarów

3.1 Tabele pomiarowe

Nr. pomiaru	Wilgotność
1	59%
2	61%

Tabela 1: Wilgotność powietrza odczytana z higrometru włosowego.

$T_s [^{\circ}C]$	$T_m [^{\circ}C]$	$\Delta T [^{\circ}C]$	wilgotność względna
25,00	20,00	5,00	$63,\!00\%$

Tabela 2: Wyniki pomiarów dla Psychrometru Assmanna.

Nr. pomiaru	$T_1 [^{\circ}C]$	$T_2[^{\circ}C]$
1	11,4	14,0
2	12,0	14,7
3	11,9	16,0
4	12,3	13,8
5	12,5	14,5
6	12,5	14,1
7	12,5	13,5
8	11,9	14,4
9	11,5	15,7
10	12,0	14,9
11	12,0	15,4
12	12,3	14,9
13	11,8	15,4
14	12,4	15,1
15	12,2	14,2

Tabela 3: Wyniki pomiarów metodą punktu rosy.

3.2 Temperatura punktu rosy

Temperatura punktu rosy obliczana jest jako średnia z temperatur pojawienia i znikania mgiełki. Wartość ciśnienia pary nasyconej p_t dla każdej z temperatur punktu rosy T_{rosy} została odczytana ze strony internetowej [1] (wykorzystując równanie Antoine'a). Ciśnienie pary nasyconej dla temperatury otoczenia $T_s = 25,00\,^{\circ}C$ wynosi $p_0 = 3158\,Pa$.

Wilgotność względna ${\cal S}$ obliczana jest ze wzoru:

$$S = \frac{p_t}{p_0} \tag{5}$$

Powyższe wartości zostały zapisane w tabeli 4.

Nr. pomiaru	$T_{rosy} [^{\circ}C]$	$p_t[Pa]$	S
1	12,70	1461,3	0,461
2	$13,\!35$	1525,0	0,481
3	13,95	1586,0	0,500
4	13,05	1495,3	0,472
5	13,50	1540,0	0,486
6	13,30	1520,0	0,479
7	13,00	1490,4	0,470
8	$13,\!15$	1505,0	0,475
9	13,60	1550,0	0,489
10	13,45	1535,0	0,484
11	13,70	1560,2	0,492
12	13,60	1550,0	0,489
13	13,60	1550,0	0,489
14	13,75	1565,3	0,494
15	13,20	1510,0	0,476

Tabela 4: Temperatura punktu rosy oraz ciśnienie pary nasyconej dla każdego pomiaru.

Średnia arytmetyczna wartości wilgotności względnej wynosi $\hat{S}=0.4824.$

4 Ocena niepewności pomiaru

4.1 Złożona niepewność standardowa pomiaru wilgotności względnej (metoda punktu rosy)

Złożoną niepewność standardową obliczono na podstawie wzoru:

$$u_c(S) = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (S_i - \hat{S})^2}$$
 (6)

gdzie:

- n = 15 liczba pomiarów
- $\bullet \ S_i$ wartość wilgotności względnej dla i-tego pomiaru
- $\hat{S} = 0.4824$ średnia wartość wilgotności względnej

Po podstawieniu wartości do wzoru otrzymujemy:

$$u_c(S) = 0.0027 (7)$$

4.2 Niepewność standardowa pomiaru wilgotności względnej (metoda psychrometryczna)

Dla psychrometru Assmanna wykonano tylko jeden pomiar, dlatego niepewność standardową oszacowano jako niepewność typu B. Niepewność pomiarowa termometrów użytych w psychrometrze wynosi $\Delta_d T = 0.1^{\circ}C$, co daje niepewność standardową:

$$u_B(T) = \frac{\Delta_d T}{\sqrt{3}} = \frac{0.1}{\sqrt{3}} \approx 0.058^{\circ} C$$
 (8)

Wilgotność względna S w metodzie psychrometrycznej zależy od różnicy temperatur $\Delta T=T_s-T_m$, zatem korzystając z prawa przenoszenia niepewności:

$$u_B(\Delta T) = \sqrt{u_B^2(T_s) + u_B^2(T_m)} = \sqrt{2} \cdot u_B(T) \approx 0.082^{\circ}C$$
 (9)

4.3 Niepewność standardowa pomiaru wilgotności względnej (metoda higrometryczna)

Dla higrometru włosowego niepewność standardową oszacowano jako niepewność typu B, wynikającą z dokładności odczytu skali przyrządu. Przy podziałce co 1%, niepewność odczytu wynosi $\Delta_d S = 1\%$ wilgotności względnej, co daje niepewność standardową:

$$u_B(S_{higr}) = \frac{\Delta_d S}{\sqrt{3}} = \frac{1}{\sqrt{3}} \approx 0.58\%$$
 (10)

5 Wnioski

Na podstawie przeprowadzonych pomiarów wilgotności powietrza atmosferycznego przy pomocy różnych metod pomiarowych można sformułować następujące wnioski:

1. Metoda punktu rosy wyznaczono wilgotność względną powietrza:

$$S = 0.4824 = 48.24\%$$

 $u_c(S) = 0.0027 = 0.27\%$

- 2. Za pomocą higrometru włosowego uzyskano dwa odczyty wilgotności względnej: 59,00% na początku wykonywania pomiarów oraz 61,00% na końcu. Niepewność standardowa wynosi $u_B(S)=0.58\%$.
- 3. Psychrometr Assmanna wskazał wilgotność względną na poziomie 63%, przy temperaturze suchego termometru $T_s = 25,00^{\circ}C$ i mokrego termometru $T_m = 20,00^{\circ}C$.
- 4. Występują znaczące różnice między wynikami uzyskanymi różnymi metodami pomiarowymi. Wartość zmierzona metodą punktu rosy (najbardziej dokładną w tym doświadczeniu) jest znacząco niższa od wartości otrzymanych pozostałymi metodami.

Literatura

- [1] Omni Calculator. Vapour pressure of water. https://www.omnicalculator.com/chemistry/vapour-pressure-of-water, 2025. Dostęp: 25.05.2025.
- [2] Tadeusz Dryński. *Ćwiczenia laboratoryjne z fizyki*. Państwowe Wydawnictwo Naukowe, Warszawa, 5 edition, 1976.
- [3] William Moebs, Samuel J. Ling, and Jeff Sanny. Fizyka dla szkół wyższych, Tom 2. Open-Stax, 2018. Dostęp: 14.04.2024.
- [4] Instytut Fizyki Doświadczalnej UWr. Materialy pomocnicze do ćwiczenia 22. https://wfa.uwr.edu.pl/wp-content/uploads/sites/216/2024/02/Ciep.22-wstep.pdf, 2024. Dostep: 25.05.2025.