

Fig 1

210 / 200 TMS/02 2000MT 250 W 0°C PLATEN PRE AND POST ANNEAL

HODDING THURDAGO

Fig. 3(a)

Fig. 3(b)

											,	5	/]	19	•														
×																								2.55	2.5-2.7		3.2		2.87
CH/SiO															0.1062	0.0069			0.1102		0.1715	0.2756	0.303			0.2353		0.237	
SIH/SIO CH/SIO															0	0			0.0063		0.021	0.0365	0.0376			0.039		0.027	
Sic/Sio															0.0343	0.0191			0.0183		0.0316	0.0299	0.0322			0.03		0.0396	
R.j Range SiC/SiO	0.0007	0.0074	0.01	0.015	0.0125	0.0023	0.0075		0.005	0.005	0.005		0.0106	0.025				0.0163		0.0156								0.015	
Ę.	1.482	.3702	.3321	1.3676	.3498	.4736	.3587	.5007	.3749	1.4871	1.374		.4831	1.4064				1.4618	1.458	.4569	1.45					1.4938		1.4913	
ormity	H	5.1	<u> </u>		_	_	8.3		_					25.6							-30					23.4		14.4	-
te Unif																													
Dep rate Uniformity (Å/min)	1166	681	2542	1853	1450	3916	2008	3962	2097	1392	716		1176	738	2000			1731	9938	2166	-10000	-6000		5200	7200	5338	4200	3641	6500
S/head (°C)	100		100	100	100	100		100		100		100	100		100			100	100	100	100	100	100	9	100	100	100	100	100
Platen (°C)	70		20	20	20	70		2		0		0	2		0			70	2	2	20	20	20	20	20	9	40	70	50
F Power Pressure (W) (mT)	1500		906	006	006	006		006		006		006	906	-,	006			900	900	906	900	900	906	906	900	900	006	006	900
RF Power (W)	20		20	100	100	9		2		6		100	200		200			9	200	250	200	250	250	250	250	250	250	250	250
N ₂	0		0	0	0	0		0		0		0	0		0			0	0	0	0	0	0	0	0	0	0	0	•
² 0	0		0	0	0	0		0		0		0	0		0			0	0	0	0	0	0	0	0	0	0	0	•
H ₂ O ₂	0.75		0.75	0.7	0.7	0.7		0.7		0.7		0.7	0.7		0.7			0.5	0.4	0.4	0	0	0	0	0	0	0	0	0
CHMMS	1000		1300	1300	1300	1300		1300		1300		1300	1300		1300	•		800	800	800	800	800	800	800	800	800	800	800	800
Run No	-		7	က	4	9		7		8		6	10		+			12	13	14	15	16	17	28	19	20	21	22	23
Date	10/05/99																Pot Refilled	24/05/99									25/05/99		

DOYNUML DEPOSE

FOREST FAMESKOS

Flowfill chamber depositions using Cyclohexyldimethoxymethylsilane

P727 - Flowfill chamber (Flow_1), 40mm electrode gap - Syringe delivery system

Process Parameter

Bulk Film Properties

																			(5/	/]	19	9																		
	Comment	١	Act. 1000ml , slight s/h	Disma dark and	Purole Plasma				RI wafer						RI wafer	RI wafer	of contract of the contract of	K=2 4 nost oven anneal	* I off overnight before measurement	K=2.55 post oven anneal		Grainv film 5min FTS	5min FTS	5min FTS	10min FTS	30min FTS	5min FTS	5min FTS	5min FTS	5min FTS	30min FTS	5min FTS	5min FTS	Depped with 30min FTS + Cap	Depped with 30min FTS	5min FTS	Feint bowder showerhead pattern				
	0:0/11	CHISIO	0.1347	0.1545	0.3499	0.131	0.1238	0.1886	0.3518																					0.1366	0.0785	0.1418	0.3437			0.1562	0.1498	0.1338	0.1283	0.258	0.0839
	FIIR P.A.R.	DISILIED	_	0 045	-		—	_	-	+								_												7 0.0193	6 0.0096	_	2 0.0338	1			-	-	-	5 0.0248	
			0.055	0.030	0.0354	0.0384	0.0379	0.0364	0.0349		L							L		L		L	L							0.0317	0.0336	0.0284	0.0342	\downarrow	-	0.0309	0.031	0.0311	0.0353	0.035	0.0203
	Dietectric Constant							L	L				L	L	L	L	L	'n	2.78*	2.82	3.01	L												7.28	90.7						
	Refractive	48.0	2	1.4875	1.4652	1.51	1.5089	1.4475	1.4775	1.489	1.538	1.5228	1.5444	1,4895	1.4468	1.4634	1.4558					1.5144	1.5387	1.4737	1.4737	1.4582	1.4332	1.4327	1.4263	1.4856	1.4575	1.503	1.499			1 4552	200	0122.	1.510g	1.3290	1.4209
	Uniformity (%)	1118		6.5	22.8	13.1	4.47	2.37	9.5	3.4	1.72	1.5	-	3.7	6.2	5.6	6.6	ļ.				7.8	5.7	3.5	6.0	1.6	4.5	7.2	6.3	3.5	3.1	3.8	11.5		,	7	3	7,	- 6	0.0 6	3.8
	Dep rate (A/min)	2777		8190	5810	8289	9068	8717	2789	12748	14222	14192	14282	9790	11382	19116	10242					7869	15697	14751	14345	14079	18864	17841	11511	15565	14807	16898	200		47476	47404	24700	00147	3333	65.50	18448
	Platen (°C)	R	S	જ	20	ည	အ	ಜ	95	S S	જ	20	20	20	SS	X	SS	SS	20	20	20	22	20	20	20	20	22	8	8	3 5	3	2	2	2	3 5	3 5	3 5	3 5	3 5	3 5	20
	Showerhead (*C)	P	100	100	100	9	9	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	90	100	100	2	100	001	30	000	3 5	200	200	35	3 5	3 6	3 5	100	100
	(X)	138	250	250	250	250	250	250	100	500	200	200	200	500	500	200	250	250	200	500	20	200	500	200	20 20 20	200	200	750	250	000	2	020	007	200	200	3 5	3	3 5	280	250	500
	Pressure (mT)	108	006	900	8	006	8	S S	006	900	06	006	006	200	200	006	┙	Ц	_	_	_	8	8	8	006	8	8	006	006	000	200	9	200		900		1200	ROD	900	006	900
	N ₂ Flow (Sccm)		0	100(1+8)	50(1+8)	201	50(1+8)	100(1+8)	100(1+8)	100(1+8)	100(1+8)	200(1)	200(8)	100(1+8)	100(1+8)	200(8)	100(1+8)	100(1+8)	200(8)	100(1+8)	100(1+8)	100(1+8)	100(1+8)	100(1+8)	100(1+8)	100(1+8)	200(8)	(8)007	200(8)	200(0)	(0)007	2000	3000	200/8)	2000	2008	200/8	2000	2008	150(8)	150(8)
	(Sccm)	-	0	0	0	9	0		0	0	0	0	0		5		0	0	0		0		9	0	-	0	9	3	5	5		2	9	0	, -	•	6	,	, c	S	25
-	(a/mln)	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.85	0.85	0.85	0.85	0.85	0.85	0.65	0.65	0.85	0.85	0.65	0.85	0.82	0.85	0.85	0.83	0.85	30.0	200	20.0	20.00	0.03	0.03	0.05	0.85	85	0.85	0 85	0.00	0.85	0.85
٤	Number	-	~	~	4	9	او	_	œ	တ	10	Ξ	12	=	4	2	16	1	8	6	2	72	22	2	77	57	8	77	89 8	S S	3	2	3 5	3 2	3	3 5	2	8	3 2	8	41

Fig 7(Part 1 of 3)

ıD
, F
(7)
W
(,)1
-
ing.
5;
ليا
IŲ
ŧΞ
1.3

																							7	7/	1	[9																				
	Comment	Entire film cloudy	Powder stripes	Hazy powder	RI Wafer	RI Wafer	RI Wafer	No FTS	5min FTS, no cap	Wafer thin, 1st of day, 5min FTS, Can	No FTS	30min FTS, Cap	No FTS	No FTS	5min FTS	30min FTS	60min FTS	5min FTS, no cap	30min FTS, no cap	60min FTS, no cap	NoFTS	No FTS	5min FTS @500°C	30min FTS @500°C	60min FTS @500°C	5min FTS @500°C no can	5min FTS. cap @500°C	60min FTS, cap @500°C	30min FTS	60min FTS	30min FTS, cap	60min FTS, cap	5min FTS(centre cracks)	30min FTS no cracks	Sumin F1S, cap	RI Wafer	Pi Wafer	RI Wafer	RI Wafer	RI Wafer	5min FTS	NO FTS	30min FTS	No FTS	30min FTS (peeled off)	60min FTS (peeled off)	
_	CHSIO	0.0572	0.0356	0.0588	0.2189			0.3823					0.3933	0.3885	0.151	0.0785	0.0583				0.3939	0.3911	0 2575	0.1847	0.109				0.094	0.0825			0.0635	0.0403										0.3071	0.079	0.0749	
FTIR P.A.R	SIHISIO	0.0058	0.003	0.0068	0.0164			0.0516					0.0532	0.0599	0.0135	0.0101	0.0082				0.0551	0.0573	0.02	0.0126	0.0102				0.0111	0.0103			0.0073	0.0064										0.3071	0.079	0.0749	
	SICISIO	0.0209	0.0161	0.0145	0.0378			0.0387					0.0371	0.0367	0.0368	0.0376	0.0363				0.0374	0.0367	0.0322	0.0345	0.0373				0.033	0.0323			0.0306	0.0299							8.839E8T	-6.869E8C	Stress = 1.027E9T	0.0343	0.036	0.0349	
Dielectric	Constant			-					2.56	2.72	3.16	2.33						2.62	2.55	2.52						2.93	2.97	2.61	Г	П	2.55	2.53		9, 0	67.5						Stress = 8.839E8	Stress =	Stress =				2.43
Refractive	Yanıı	•	1.3978	1.5031	1.4669	1.4649	1.4635	fix					fix	fix	fix	XI.	TIX				1.5351	1.5658	1.4763	1.4466	1.5553				1.4207	1.4146			1.4218	19707	1.4022	1.4308	1.4115	1.3942	1.4493	1.4307	1.4354	1.5128	1.4463	1.5393			
Uniformity	(N)	•	2.2	6.4	3.4	8.2	29.5	3.3					5.7	5.7	7.7	4.9	3.4				8.1	7.2	6.5	4.2	137				4.2	3.8			4.3	*		8.3	9	6.9	7.4	6.5	3.4	2.7	2.4	6.8			
Dep rate	,	~1.8µm	17888	17896	8213	9912	1792	10233					13034	13929	11131	8808	9853				13020	12601	12450	11885	10679				17388	17484			6986	1000	13971	12355	11928	11070	25340	22157	17612	17736	14636	21774			
Platen (°C)		S	20	20	20	20	20	20	20	95	05	20	20	20	S	25	8	8	8	20	20	8	20	82	20	20	20	20	8	20	8	S	02 5	3 5	8	88	S	20	20	æ	20	20	S	50	20	200	3
Power Showerhead		100	100	100	100	8	100	100	100	100	100	100	100	100	100	100	001	100	100	100	100	100	100	100	100	100	100	99	9	100	100	9	300	900	100	100	100	100	100	100	100	100	100	100	9	90	3
Power		န္တ	ŝ	1000	720 720	220	8	250	250	250	250	250	520	250	520	720	25	720	250	220	220	250	250	250	250	250	250	250	ဇ္ဌ	ŝ	S.	200	250	250	250	250	250	250	200	200	200	200	200	200	200	200	386
Pressure (mT)		8	800	8	900	900	1200	9	900	006	900	800	8	006	8	9	3	900	906	8	8	900	900	006	006	906	900	8	8	8	8	800	006		06	900	006	900	006	006	006	900	006	006	8	006	ann
N, Flow (Sccm)		250(8)	0	150(8)	200(8)	200(8)	200(8)	200g	700(B)	200(8)	300 200 200	200(8)	200(8)	200(8)	(8)007	(8)007	(8)007	20002	200(8)	200(8)	200(8)	200(8)	200(8)	200(8)	200(8)	200(8)	200(8)	200(8)	200(8)	200(8)	200(8)	200(8)	200(8)	150/8	200(8)	200(8)	150(8)	150(8)	200(8)	200(8)	200(8)	200(8)	200(8)	200(8)	200(8)	200(8)	400(0)
O ₂ Flow (Sccm)		S	8	S			0		•	0				0	0	0	3	0,				0		0	0	0	•	4		٥		-	2	3 5	0	0	જ	જ	0	0	0	0	0	0	9	-	, ,
CHMMS (9/min)		0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.83	0.85	69.0	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	983	0.85	0.85	0.85	0.82	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.83	0.0
Run		42	7	4	45	ş	4	2	69	ୟ	2	22	23	24	22	8	٦	3	2	3	9	62	ဌ	64	65	99	29		8	۶	7	75	23	75	92	77	78	79	80	18	82	8	84	82	8	87	8

Fig 7(Part 2 of 3)

Fig. 7(Part 3 of 3)

			_	_	_		_	_	_						_	_		_		_	_	_		_	_		_		_		_	_			_	_	_	_	_	_	_		_	_		_
Comment		Feint powder s/h		Small amount of centre cracking	Massive centre cracking		30min FTS, cap	30min FTS, can	5min FTS	5min FTS	5min FTS, cap	60min FTS, cap	30min FTS, cap	5min FTS Showerhead dots	5min FTS Showerhead dots	30mln FTS cap	5min FTS	30min FTS	30min FTS CAP		30min FTS	30min FTS. RI Wafer	30min FTS	30min FTS. RI Wafer		30min FTS	30min FTS	30min FTS. RI Wafer	30min FTS	30min FTS	30min FTS, Cap	30min FTS, Cap	30min FTS, Stress=8.78E8T	30min FTS, Stress=7.313E8T	30min FTS, Stress=9.856E8T	Jumin F15, Sucess=9,325EB)	30min F15, 51(655=9,041E8)	30min FTS, Stress=6,344E6	30min ETC Ctrosc=0 02550T		30min ETS	30min FTS				
CHSIO	0 1051	0.0776	0.0725	0.0456	0.0532	0.0725			0.1091	0.1441				0.096	0.0116		0.0912	0.0771		'									0.0724	0.0865			0.0751	0,0101	0.0493	70000	0000	0.0344	0.0466	ANLANA						
FTIR P.A.R	1~	0.0075	0.0079	0.0065	0.0079	0.0076			0.0093	0.0117				0.0093	0.0119		0.0149	0.0143											0.0143	9600'0			- 1		_1_	7000	2000	1		200						
SIC/SIO	0.0341	0 027	0.0327	0.0308	0.0344	0.0273			0.0342	0.0334				0.0239	0.025		0.0282	0.0278											0.0255	0.0343			0.0363	0.0386	0.0329	2000	0.005	0.0683	0.0334	2						
Dielectric Constant							2.49	2.48			2.437	2,286	2.426			2.9			2.72	20MM	L										2,556	276								2.414	2.4	2.49	2.41	2.48	2.43	2.45
Refractive Index	1 4129	1.4398	1.3875	1,3646		1.4199			1.4521	1.4592				1.5107	1.5081		1.4983	1.496		NGED TO	1.3437	1.3654	1.3713	1.3888	1.447	1.3756	1.4745	1.4549	1.4524	1.4384			1.4334	286	200 F	1 3807	1 3597	13481	1.3718							
Uniformity (%)	2.4	1.9	2.4	5.9		4.6			8.8	11.7				7.6	5.1		3.5	2.4		CHAMBER SPACING CHANGED TO	•	8.4	17.6	13.6	111	3.4	28	8.6	3.5	2.3																
Dep rate (Mmin)	17344	17840	9279	9663	~10000	21408			9917	9848				12080	12502	20470	14074	13930		BER SPA	17826	21765	11436	12828	14280	12185	9049	10620	9073	14852			11633	200	4064	40840	11727	1250A	9206							
Platen (°C)	Ş	S.	S	8	95	20	20	20	95	20	25	S	8	S	S	82	S	25	50	CHAM	20	95	20	20	S	9	9	S	S	95	8	S	S	7	7 5	S	Ş	Ş	S	Ş	20	S	20	50	20	20
Showerhead (°C)	5	100	100	8	100	5	100	100	100	100	9	9	9	90	9	9	100	5	9		100	100	100	100	100	100	100	100	100	9	ş	2	90	3 5	3	Ş	100	9	5	ē	100	100	100	100	100	ē
Power (M)	200	200	250	250	200	200	250	250	250	250	250	250	220	20	န္တ	ន្ត	720	750	750		500	200	250	250	500	200	ğ	500	20 20	SS SS	8	8	200	250	250	250	250	250	250	250	250	250	250	250	250	520
Pressure (m1)	900	900	006	006	906	900	900	8	900	006	000	8	8	8	8	8	8	000	8		8	98	8	006	9	8	\$	\$	\$	8	8	900	38	88		006	L	L	L			006	Ц	Ц	Ц	8
N, Flow (Sccm)	200(8)	175(8)	175(8)	150(8)	0	0	150(8)	150(8)	175(8)	175(8)	175(8)	175(8)	175(8)	100(8)	100(8)	1200	400(8)	400(8)	400(8)		200(8)	200(8)	175(8)	175(8)	200(8)	200(8)	200(8)	200(8)	200(8)	200(8)	200(8)	200(8)	20008	175/0/	150(8)	185(8)	125(8)	100(8)	175(8)	185(8)	125(8)	100(8)	175(8)	165(8)	185(8)	1700
O ₂ Flow (Sccm)	0	25	25	S	SS	S	S	S	25	52	22	72	52	٩	0	۹,	9	9	0		٩	٥	25	52	٩	٩	4	4	4	4	4	4		1	Ļ	L	75	╀	┞	15	Щ	Ц	4	4	4	4
CHMMS (g/min)	0.85	0.85	085	0 82	0.85	685	0.85	0.85	0.85	685	0.85	0.85	0.85	7	0.43	80	6	0 85	0 85		0.85	0.85	0.85	085	0.85	98		085	0.85	0.85	0.85	682	0.00	20.0	0 85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Run Number	88	8	ā	ä	a	8	2	g	8	ä	8	9	a	ã	9			9			8	9	를	自	7	=======================================	1	4	9		14		3	;	123	124	125	126	127	128	129	130	F	132	133	7

DOVERDAL DEPOSE

现的证明

9/19

1.) 800CHMMS,0.4g/min H202, 900mT, 250W as deposited

18 18

2.) 800Sccm CHMMS, 0.4g/min H202, 900mT, 500W

Fig. 10

11/19

 SiC/SiO:
 0.026

 SiH/SiO:
 0.019

 CH/SiO:
 0.0220

Fig 11

12/19

13/19

0.0000 CH/SiO 0.0321 FTM Treatment - FTIR - oxidising strip resistance Integrated Peak Area Ratios For Pre And Post Oxidising Strip TMS/O₂ LowK Film With FTM Treatment SIH/SIO **FTIR Peaks** 0.0000 ☑ Pre Strip 0.0000 Sic/Sio TMS / O₂ Process 0.0501 0.0000+ 0.0100-0.0500 0.0300 0.0600 Peak Area Ratio (arb.)

Fig 13

DOVERNAT DEPONE

TMS / O₂ Process FTM Treatment – FTIR – oxidising strip resistance

Fig 14

FTM Treatment - FTIR - oxidising strip resistance TMS / O₂ Process

Fig. 15

DOVERSE EFFORM

FTM v Treatment stress - oxidising strip resistance TMS / O₂ Process

DOTERNA DEPOSA

TMS / O₂ Process Plasma Treatment – Dielectric constant

Dielectric Constant Values For TMS/O₂ Films FTM and H₂ Plasma Treatments

Dielectric constant

Dielectric Constant For TMS/O₂ Films FTM and H₂ Plasma Treatments

Fig 18

Fig. 19