$$f_0(1370)$$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

See also the mini-reviews on scalar mesons under $f_0(500)$ (see the index for the page number) and on non- $q\overline{q}$ candidates in PDG 06, Journal of Physics **G33** 1 (2006).

$f_0(1370)$ T-MATRIX POLE POSITION

Note that $\Gamma \approx 2 \ \text{Im}(\sqrt{s_{\text{pole}}})$.

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT		
(1200–1500)- <i>i</i> (150–250) OUR	ESTIMATE					
• • • We do not use the following	ng data for average	s, fits,	limits, e	etc. • • •		
$(1290 \pm 50) - i(170 {+20 \atop -40})$	$^{ m 1}$ ANISOVICH	09	RVUE	0.0 p p, πN		
$(1373 \pm 15) - i(137 \pm 10)$	² BARGIOTTI	03	OBLX	p p		
$(1302 \pm 17) - i(166 \pm 18)$	³ BARBERIS	00 C		450 $pp \rightarrow p_f 4\pi p_s$		
$(1312 \pm 25 \pm 10) - i(109 \pm 22 \pm 15)$	BARBERIS	99 D	OMEG	$450 pp \rightarrow K^+K^-,$ $\pi^+\pi^-$		
$(1406 \pm 19) - i(80 \pm 6)$	⁴ KAMINSKI	99	RVUE			
$(1300 \pm 20) - i(120 \pm 20)$	ANISOVICH	98 B	RVUE	Compilation		
$(1290 \pm 15) - i(145 \pm 15)$	BARBERIS	97 B	OMEG	450 <i>pp</i> →		
				$pp2(\pi^{+}\pi^{-})$		
$(1548 \pm 40) - i(560 \pm 40)$	BERTIN	97 C		$0.0 \; \overline{p} p \rightarrow \; \pi^{+} \pi^{-} \pi^{0}$		
$(1380 \pm 40) - i(180 \pm 25)$	ABELE	96 B	CBAR	$0.0 \; \overline{p} p \rightarrow \; \pi^0 K_L^0 K_L^0$		
$(1300 \pm 15) - i(115 \pm 8)$	BUGG	96	RVUE			
$(1330 \pm 50) - i(150 \pm 40)$	⁵ AMSLER	95 B	CBAR	$\overline{p}p \rightarrow 3\pi^0$		
$(1360 \pm 35) - i(150 - 300)$	⁵ AMSLER	95 C		$\overline{p}p \rightarrow \pi^0 \eta \eta$		
$(1390 \pm 30) - i(190 \pm 40)$	⁶ AMSLER	95 D	CBAR	$\overline{p}p \rightarrow 3\pi^0, \pi^0\eta\eta,$ $\pi^0\pi^0\eta$		
1346 - i249	^{7,8} JANSSEN	95	RVUE	$\pi\pi \to \pi\pi$, $K\overline{K}$		
1214 - i168	^{8,9} TORNQVIST	95	RVUE	$\pi\pi \to \pi\pi, K\overline{K}, K\pi,$		
1364 - i139	AMCLED	94D	CDAD	$\frac{\eta \pi}{\overline{p} p \rightarrow \pi^0 \pi^0 \eta}$		
	AMSLER	_		$\overline{p}p \rightarrow \pi^{0}\pi^{0}\eta$ $\overline{p}p \rightarrow 3\pi^{0},\pi^{0}\eta\eta$		
$(1365^{+20}_{-55}) - i(134 \pm 35)$	ANISOVICH	94		• • • • • • • • • • • • • • • • • • • •		
$(1340 \pm 40) - i(127 + \frac{30}{20})$	¹⁰ BUGG	94	RVUE	$\overline{p}p \rightarrow 3\pi^0, \eta\eta\pi^0, \\ \eta\pi^0\pi^0$		
$(1430 \pm 5) - i(73 \pm 13)$	¹¹ KAMINSKI	94	RVUE	$\pi\pi \to \pi\pi$, $K\overline{K}$		
1420 - i220	¹² AU	87	RVUE	$\pi\pi \to \pi\pi$, $K\overline{K}$		
1 Another pole is found at $(1510\pm130)-i(800{+100\atop-150})$ MeV.						
² Coupled channel analysis of $\pi^+\pi^-\pi^0$, $\kappa^+\kappa^-\pi^0$, and $\kappa^\pm\kappa^0_5\pi^\mp$.						
³ Average between $\pi^+\pi^-2\pi^0$	o and $2(\pi^{+}\pi^{-})$.					
4 T-matrix pole on sheet $-$	` ,					
E						

⁵ Supersedes ANISOVICH 94.

⁶ Coupled-channel analysis of $\overline{p}p \rightarrow 3\pi^0$, $\pi^0\eta\eta$, and $\pi^0\pi^0\eta$ on sheet IV. Demonstrates explicitly that $f_0(500)$ and $f_0(1370)$ are two different poles.

⁷ Analysis of data from FALVARD 88.

⁸ The pole is on Sheet III. Demonstrates explicitly that $f_0(500)$ and $f_0(1370)$ are two different poles.

f₀(1370) BREIT-WIGNER MASS OR K-MATRIX POLE PARAMETER

VALUE (MeV) DOCUMENT ID

1200 to 1500 OUR ESTIMATE

$\pi\pi$ MODE					
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not use	the follo	wing data for avera	ages,	fits, limi	ts, etc. • • •
1400 ± 40		¹ AUBERT	09L	BABR	$B^{\pm} \rightarrow \pi^{\pm}\pi^{\pm}\pi^{\mp}$
$1470 + 6 + 72 \\ -7 - 255$		² UEHARA	A80	BELL	$10.6 e^{+} e^{-} _{e^{+} e^{-} \pi^{0} \pi^{0}}$
$1259\!\pm\!55$	2.6k	BONVICINI	07		$D^+ \rightarrow \pi^- \pi^+ \pi^+$
$1309\pm~1\pm~15$		³ BUGG	07A	RVUE	$0.0 \ p\overline{p} \rightarrow 3\pi^0$
1449 ± 13	4.3k	⁴ GARMASH	06	BELL	$B^+ \rightarrow K^+ \pi^+ \pi^-$
1350 ± 50		ABLIKIM	05	BES2	$J/\psi \rightarrow \phi \pi^+ \pi^-$
$1265 \pm 30 + 20 \\ - 35$		ABLIKIM	05Q	BES2	$\psi(2S) \rightarrow \gamma \pi^+ \pi^- K^+ K^-$
$1434 \pm 18 \pm 9$	848	AITALA	01 A	E791	$D_s^+ \rightarrow \pi^- \pi^+ \pi^+$
1308 ± 10		BARBERIS	99 B	OMEG	$450 pp \rightarrow p_s p_f \pi^+ \pi^-$
1315 ± 50		BELLAZZINI	99	GAM4	450 $pp \rightarrow pp\pi^0\pi^0$
1315 ± 30		ALDE	98	GAM4	$100 \pi^- \rho \rightarrow \pi^0 \pi^0 n$
1280 ± 55		BERTIN	98	OBLX	$0.05-0.405 \ \overline{n}p \rightarrow$
1186	Ę	5,6 TORNQVIST	95	RVUE	$\pi^{+}\pi^{+}\pi^{-}$ $\pi\pi \to \pi\pi$, $K\overline{K}$, $K\pi$, $\eta\pi$
1472 ± 12		ARMSTRONG	91	OMEG	300 $pp \rightarrow pp\pi\pi$, $ppK\overline{K}$
1275 ± 20		BREAKSTONE	90	SFM	62 $pp \rightarrow pp\pi^+\pi^-$
1420 ± 20		AKESSON	86	SPEC	63 $pp \rightarrow pp\pi^+\pi^-$
1256		FROGGATT	77	RVUE	$\pi^+\pi^-$ channel

¹ Breit-Wigner mass.

⁹ Uses data from BEIER 72B, OCHS 73, HYAMS 73, GRAYER 74, ROSSELET 77, CASON 83, ASTON 88, and ARMSTRONG 91B. Coupled channel analysis with flavor symmetry and all light two-pseudoscalars systems.

 $^{^{10}\,\}mathrm{Reanalysis}$ of ANISOVICH 94 data.

¹¹ T-matrix pole on sheet III.

¹² Analysis of data from OCHS 73, GRAYER 74, BECKER 79, and CASON 83.

² Breit-Wigner mass. May also be the $f_0(1500)$.

 $^{^3\,\}mathrm{Reanalysis}$ of ABELE 96C data.

 $^{^4}$ Also observed by GARMASH 07 in $B^0 \to \kappa_S^0 \pi^+ \pi^-$ decays. Supersedes GARMASH 05.

⁵ Uses data from BEIER 72B, OCHS 73, HYAMS 73, GRAYER 74, ROSSELET 77, CASON 83, ASTON 88, and ARMSTRONG 91B. Coupled channel analysis with flavor symmetry and all light two-pseudoscalars systems.

symmetry and all light two-pseudoscalars systems. 6 Also observed by ASNER 00 in $\tau^-\to~\pi^-\pi^0\pi^0\nu_\tau$ decays

$K\overline{K}$ MODE

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not use the following data for averages, fits,					its, etc. • • •
$1360 \pm 31 \pm 28$	430	^{1,2} DOBBS	15		$J/\psi \rightarrow \gamma K^+ K^-$
$1350\!\pm\!48\!\pm\!15$	168	^{1,2} DOBBS	15		$\psi(2S) \rightarrow \gamma K^+ K^-$
1440 ± 6		VLADIMIRSK.	06	SPEC	$40 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n$
1391 ± 10		TIKHOMIROV	03	SPEC	40.0 $\pi^- C \rightarrow K_S^0 K_S^0 K_I^0 X$
1440 ± 50		BOLONKIN	88	SPEC	$40 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n$
1463 ± 9		ETKIN	82 B	MPS	$23 \pi^- p \rightarrow n2K_S^0$
1425 ± 15		WICKLUND			$6 \pi N \rightarrow K^+ K^- N$
~ 1300		POLYCHRO	79	STRC	$7 \pi^- p \rightarrow n2K_S^0$
1 00			a		

 $^{^{}m 1}$ Using CLEO-c data but not authored by the CLEO Collaboration.

4π MODE $2(\pi\pi)_S + \rho\rho$

VALUE (MeV)	EVTS	DOCUMENT ID)	TECN	COMMENT
• • • We do not a	use the followir	ng data for averag	es, fits,	, limits, o	etc. • • •
1395 ± 40		ABELE	01		$0.0 \; \overline{p} d \rightarrow \pi^- 4\pi^0 p$
1374 ± 38		AMSLER	94	CBAR	$0.0 \; \overline{p}p \rightarrow \; \pi^{+}\pi^{-}3\pi^{0}$
1345 ± 12		ADAMO	93	OBLX	$\overline{n}p \rightarrow 3\pi^{+}2\pi^{-}$
1386 ± 30		GASPERO	93	DBC	$0.0 \; \overline{p} n \rightarrow \; 2\pi^{+} 3\pi^{-}$
\sim 1410	5751	$^{ m 1}$ BETTINI	66	DBC	$0.0 \; \overline{p} n \rightarrow \; 2\pi^{+} 3\pi^{-}$
$^{1} ho ho$ dominant.					

$\eta\eta$ MODE

 VALUE (MeV)
 DOCUMENT ID
 TECN
 COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

1262 + 51 + 82 - 78 - 103	¹ UEHARA	10A	BELL	$10.6~e^+e^-\rightarrow~e^+e^-\eta\eta$
1430	AMSLER	92	CBAR	$0.0 \overline{p} p \rightarrow \pi^0 \eta \eta$
1220 ± 40	ALDE	86 D	GAM4	$100 \pi^- p \rightarrow n2\eta$

¹ Breit-Wigner mass. May also be the $f_0(1500)$.

COUPLED CHANNEL MODE

VALUE (MeV) DOCUMENT ID TECN

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

 1306 ± 20 1 ANISOVICH 03 RVUE

 1 K-matrix pole from combined analysis of $\pi^{-}p \rightarrow \pi^{0}\pi^{0}$ n, $\pi^{-}p \rightarrow K\overline{K}$ n, $\pi^{+}\pi^{-} \rightarrow \pi^{+}\pi^{-}$, $\overline{p}p \rightarrow \pi^{0}\pi^{0}\pi^{0}$, $\pi^{0}\eta\eta$, $\pi^{0}\eta^{0}\eta$, $\pi^{+}\pi^{-}\pi^{0}$, $K^{+}K^{-}\pi^{0}$, $K^{0}_{S}K^{0}_{S}\pi^{0}$, $K^{+}K^{0}_{S}\pi^{-}$ at rest, $\overline{p}n \rightarrow \pi^{-}\pi^{-}\pi^{+}$, $K^{0}_{S}K^{-}\pi^{0}$, $K^{0}_{S}K^{0}_{S}\pi^{-}$ at rest.

f₀(1370) BREIT-WIGNER WIDTH

VALUE (MeV) DOCUMENT ID

200 to 500 OUR ESTIMATE

² From a fit to a Breit-Wigner line shape with fixed $\Gamma = 346$ MeV.

$\pi\pi$ MODE

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT		
• • • We do not use the following data for averages, fits, limits, etc. • •							
300± 80		¹ AUBERT	09L	BABR	$B^{\pm} \rightarrow \pi^{\pm}\pi^{\pm}\pi^{\mp}$		
$90 + 2 + 50 \\ - 1 - 22$		² UEHARA	08A	BELL	10.6 $e^+e^- \rightarrow e^+e^-\pi^0\pi^0$		
$298\pm~21$	2.6k	BONVICINI	07		$D^+ \rightarrow \pi^- \pi^+ \pi^+$		
$126\pm\ 25$	4286	³ GARMASH	06	BELL	$B^+ \rightarrow K^+ \pi^+ \pi^-$		
265 ± 40		ABLIKIM	05	BES2	$J/\psi \rightarrow \phi \pi^+ \pi^-$		
$350\pm100{}^{+105}_{-60}$		ABLIKIM	05 Q	BES2	$\psi(2S) \rightarrow \gamma \pi^+ \pi^- K^+ K^-$		
$173\pm 32\pm 6$	848	AITALA	01 A	E791	$D_s^+ \rightarrow \pi^- \pi^+ \pi^+$		
$222\pm\ 20$		BARBERIS	99 B	OMEG	450 $pp \rightarrow p_S p_f \pi^+ \pi^-$		
255 ± 60		BELLAZZINI	99		$450 pp \rightarrow pp\pi^0\pi^0$		
$190\pm~50$		ALDE	98	GAM4	$100 \ \pi^- p \rightarrow \ \pi^0 \pi^0 n$		
323 ± 13		BERTIN	98		$0.05-0.405 \ \overline{n}p \rightarrow \pi^{+}\pi^{+}\pi^{-}$		
350		^{4,5} TORNQVIST	95	RVUE	$\pi\pi ightarrow ~\pi\pi$, K \overline{K} , K π , $\eta\pi$		
195 ± 33		ARMSTRONG	91	OMEG	300 $pp \rightarrow pp\pi\pi$, $ppK\overline{K}$		
285 ± 60		BREAKSTONE	≣90		62 $pp \rightarrow pp\pi^+\pi^-$		
460 ± 50		AKESSON	86	SPEC	63 $pp \rightarrow pp\pi^+\pi^-$		
\sim 400		⁶ FROGGATT	77	RVUE	$\pi^+\pi^-$ channel		

$K\overline{K}$ MODE

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
• • • We do not use the follow	wing data for ave	erage	s, fits, lir	mits, etc. • • •
121± 15	VLADIMIRSK	.06	SPEC	40 $\pi^- p \to K_S^0 K_S^0 n$ 40.0 $\pi^- C \to K_S^0 K_S^0 K_L^0 X$
55± 26	TIKHOMIROV	03	SPEC	40.0 $\pi^- C \rightarrow K_S^0 K_S^0 K_L^0 X$
250± 80	BOLONKIN	88	SPEC	40 $\pi^- p \to K_S^0 K_S^0 n$
$118 ^{+ 138}_{- 16}$	ETKIN	82 B	MPS	$23 \pi^- p \rightarrow n2K_S^0$
160 ± 30				$6 \pi N \rightarrow K^+ K^- N$
~ 150	POLYCHRO	79	STRC	$7 \pi^- p \rightarrow n2K_S^0$

4π MODE $2(\pi\pi)_S + \rho\rho$

`	•				
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not use	e the following	g data for average	es, fits,	limits, e	etc. • • •
275 ± 55		ABELE			$0.0 \overline{p} d \rightarrow \pi^- 4\pi^0 p$
$375\!\pm\!61$		AMSLER	94	CBAR	$0.0 \; \overline{p}p \rightarrow \; \pi^{+}\pi^{-}3\pi^{0}$
$398\!\pm\!26$		ADAMO			$\overline{n}p \rightarrow 3\pi^{+}2\pi^{-}$
$310\!\pm\!50$		GASPERO	93	DBC	$0.0 \; \overline{p} n \rightarrow \; 2\pi^{+} 3\pi^{-}$
\sim 90	5751	$^{ m 1}$ BETTINI	66	DBC	$0.0 \; \overline{p} n \rightarrow \; 2\pi^{+} 3\pi^{-}$
1					

 $^{^{\}mathbf{I}} \rho \rho$ dominant.

HTTP://PDG.LBL.GOV

Page 4

 $^{^1}$ The systematic errors are not reported. 2 Breit-Wigner width. May also be the $f_0(1500).$ 3 Also observed by GARMASH 07 in $B^0\to \,\kappa_S^0\,\pi^+\,\pi^-$ decays. Supersedes GARMASH 05.

 $^{^4}$ Uses data from BEIER 72B, OCHS 73, HYAMS 73, GRAYER 74, ROSSELET 77, CASON 83, ASTON 88, and ARMSTRONG 91B. Coupled channel analysis with flavor symmetry and all light two-pseudoscalars systems. 5 Also observed by ASNER 00 in $\tau^-\to\pi^-\pi^0\pi^0\nu_\tau$ decays 6 Width defined as distance between 45 and 135° phase shift.

$\eta\eta$ MODE

VALUE (MeV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$484 { +246 +246 \atop -170 -263 }$$

¹ UEHARA

10A BELL 10.6 $e^+e^- \to e^+e^- \eta \eta$

250

AMSLER

CBAR $0.0 \overline{p}p \rightarrow \pi^0 \eta \eta$

 320 ± 40

ALDE

86D GAM4 100 $\pi^- p \rightarrow n2\eta$

COUPLED CHANNEL MODE

VALUE (MeV) DOCUMENT ID

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$147^{+30}_{-50}$$

¹ ANISOVICH 03 RVUE

f₀(1370) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$\pi\pi$	seen
Γ_2	4π	seen
Γ_3	$4\pi^0$	seen
Γ_4	$2\pi^+2\pi^-$	seen
Γ_5	$\pi^+\pi^-2\pi^0$	seen
Γ_6	ho ho	dominant
Γ_7	$2(\pi\pi)_{S ext{-wave}}$	seen
	$\pi(1300)\pi$	seen
Γ ₉	$a_1(1260)\pi$	seen
Γ_{10}	$\eta \eta_{_}$	seen
	$K\overline{K}$	seen
Γ_{12}	$K\overline{K}n\pi$	not seen
Γ_{13}	6π	not seen
Γ_{14}	$\omega \omega$	not seen
Γ_{15}		seen
Γ_{16}	e^+e^-	not seen

$f_0(1370)$ PARTIAL WIDTHS

$$\Gamma(\gamma\gamma)$$

See $\gamma\gamma$ widths under $f_0(500)$ and MORGAN 90.

 Γ_{15}

Γ₁₆

 $\Gamma(e^+e^-)$ VALUE (eV) CL% <20 90

DOCUMENT ID **TECN VOROBYEV** ND

¹ Breit-Wigner width. May also be the $f_0(1500)$.

 $^{^{1}}$ K-matrix pole from combined analysis of $\pi^{-}\,p\to\pi^{0}\,\pi^{0}\,n,\;\pi^{-}\,p\to K\overline{K}\,n,\;\pi^{+}\,\pi^{-}\to\pi^{+}\,\pi^{-},\;\overline{p}\,p\to\pi^{0}\,\pi^{0}\,\pi^{0},\;\pi^{0}\,\eta^{0},\;\pi^{0}\,\pi^{0}\,\eta,\;\pi^{+}\,\pi^{-}\,\pi^{0},\;K^{+}\,K^{-}\,\pi^{0},\;K^{0}_{S}\,K^{0}_{S}\,\pi^{0},\;\pi^{0},\;\pi^{0}\,\pi^{0}$ ${\it K}^+ \, {\it K}^0_S \, \pi^- \text{ at rest, } \overline{\it p} \, n \rightarrow \ \pi^- \, \pi^- \, \pi^+ \text{, } {\it K}^0_S \, {\it K}^- \, \pi^0 \text{, } {\it K}^0_S \, {\it K}^0_S \, \pi^- \text{ at rest.}$

$f_0(1370) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$

f_0	(1370) $\Gamma(i)\Gamma(\gamma\gamma)$)/Γ(to	otal)		
$\Gamma(\eta\eta) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$					$\Gamma_{10}\Gamma_{15}/\Gamma$
VALUE (eV)			ECN CO		
• • We do not use the follow	ing data for average	es, fits,	, limits, (etc. • • •	
$121 + 133 + 169 \\ -53 - 106$	¹ UEHARA 1	LOA B	ELL 10).6 e ⁺ e ⁻ -	$\rightarrow e^+e^-\eta\eta$
¹ Including interference with the edition of this review, PDG	the $f_2'(1525)$ (parar 08) and $f_2(1270)$.	meters May al	fixed to so be th	the values fe $f_0(1500)$.	rom the 2008
f ₀ (1	370) BRANCHIN	IG RA	ATIOS		
$\Gamma(\pi\pi)/\Gamma_{ ext{total}}$					Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	. 1/ .
• • • We do not use the follow	·				
0.26 ± 0.09	BUGG	96	RVUE		
< 0.15	¹ AMSLER	94	CBAR	$\overline{p}p \rightarrow \pi^+$	$-\pi^{-}3\pi^{0}$
<0.06	GASPERO	93	DBC	$0.0 \ \overline{p} n \rightarrow$	hadrons
¹ Using AMSLER 95B $(3\pi^0)$.					
$\Gamma(4\pi)/\Gamma_{total}$			Γ	$_2/\Gamma = (\Gamma_3 \cdot$	$+\Gamma_4+\Gamma_5)/\Gamma$
VALUE	DOCUMENT ID				
• • • We do not use the follow					
>0.72	GASPERO	93	DBC	$0.0 \ \overline{p} n \rightarrow$	hadrons
$\Gamma(4\pi^0)/\Gamma(4\pi)$					Γ_3/Γ_2
VALUE	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the follow	ing data for average				
seen	ABELE	96	CBAR	$0.0 \; \overline{p} p \rightarrow$	$5\pi^0$
0.068 ± 0.005	¹ GASPERO	93	DBC	$0.0 \; \overline{p} n \rightarrow$	hadrons
¹ Model-dependent evaluation	1.				
$\Gamma(2\pi^+2\pi^-)/\Gamma(4\pi)$			$\Gamma_4/$	$\Gamma_2 = \Gamma_4/(1$	$\Gamma_3 + \Gamma_4 + \Gamma_5$
VALUE	DOCUMENT ID			COMMENT	
• • • We do not use the follow	-				
0.420 ± 0.014	¹ GASPERO	93	DBC	$0.0 \ \overline{p} n \rightarrow$	$2\pi^{+}3\pi^{-}$
¹ Model-dependent evaluation	۱.				
$\Gamma(\pi^+\pi^-2\pi^0)/\Gamma(4\pi)$			Γ ₅ /	$\Gamma_2 = \Gamma_5/(1$	$\Gamma_3+\Gamma_4+\Gamma_5$
VALUE	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the follow					
0.512 ± 0.019		93	DBC	$0.0 \ \overline{p} n \rightarrow$	hadrons
¹ Model-dependent evaluation	1.				
$\Gamma(ho ho)/\Gamma(4\pi)$					Γ_6/Γ_2
VALUE	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the follow	ing data for average	es, fits,	limits,	etc. • • •	
0.26 ± 0.07	ABELE	01 B	CBAR	$0.0 \ \overline{p}d \rightarrow$	5π <i>p</i>

Page 6

Created: 5/30/2017 17:21

HTTP://PDG.LBL.GOV

$\Gamma(2(\pi\pi)_{S-wave})/\Gamma(\pi\pi)$	DOCUMENT ID		TECN	<u>COMMENT</u>	Γ ₇ /Γ ₁
• • • We do not use the followin					
5.6±2.6	¹ ABELE	01	CBAR	$0.0 \; \overline{p} d \rightarrow$	π^- 4 π^0 p
$^{ m 1}$ From the combined data of A	BELE 96 and AB			•	•
$\Gamma(2(\pi\pi)_{S ext{-wave}})/\Gamma(4\pi)$					Γ_7/Γ_2
VALUE	DOCUMENT ID				
• • • We do not use the followin	g data for average				
0.51 ± 0.09	ABELE	01 B	CBAR	$0.0 \ \overline{p}d \rightarrow$	5π p
$\Gamma(ho ho)/\Gamma(2(\pi\pi)_{S ext{-wave}})$	DOCUMENT ID		TECN	COMMENT	Γ_6/Γ_7
• • • We do not use the followin					
large	BARBERIS		,		$n_c 4\pi n_c$
1.6 ± 0.2	AMSLER	94	CBAR	$\overline{p} p \rightarrow \pi^+$	$\pi^{-3}\pi^{0}$
~ 0.65	GASPERO	93		$0.0 \ \overline{p} n \rightarrow h$	
$\Gamma(\pi(1300)\pi)/\Gamma(4\pi)$					Γ_8/Γ_2
	DOCUMENT ID				
• • We do not use the following	_				
0.17 ± 0.06	ABELE	01 B	CBAR	$0.0 \ \overline{p}d \rightarrow$	5π p
$\Gamma(a_1(1260)\pi)/\Gamma(4\pi)$	<u>DOCUMENT ID</u>		TECN	COMMENT	Γ_9/Γ_2
• • • We do not use the followin				COMMENT	
0.06 ± 0.02	ABELE			$0.0 \ \overline{p}d \rightarrow$	5π n
	ABELL	OID	CD/	0.0 pu -	Sh β
$\frac{\Gamma(\eta\eta)}{\Gamma(4\pi)}$	DOCUMENT ID		,	$\Gamma_2 = \Gamma_{10}/(\Gamma_2)$	3+Γ ₄ +Γ ₅)
• • • We do not use the followin	g data for average	es, fits,	limits,	etc. • • •	
$(28 \pm 11) \times 10^{-3}$ $(4.7 \pm 2.0) \times 10^{-3}$	¹ ANISOVICH BARBERIS				
1 From a combined K-matrix $\pi^0\pi^0\eta)$, GAMS $(\pi ho ightarrow \pi^0 \eta)$					
$\Gamma(K\overline{K})/\Gamma_{\text{total}}$	DOCUMENT ID		TECN		Γ ₁₁ /Γ
• • • We do not use the followin	<u>DOCUMENT ID</u>			etc • • •	
0.35 ± 0.13	BUGG	96	RVUE	etc. • • •	
$\Gamma(K\overline{K})/\Gamma(\pi\pi)$ VALUE	OOCUMENT ID		<u> </u>	MMENT	Γ ₁₁ /Γ ₁
• • We do not use the followin					
	ABLIKIM 05	BES	J/ψ	$\phi \rightarrow \phi \pi^+ \pi^-$	-, φK ⁺ K ⁻
0.91 ± 0.20 1 B	BARGIOTTI 03		LX <u>p</u> p	•	,
0.12 ± 0.06 2 A				nbined fit	
$0.46 \pm 0.15 \pm 0.11$	BARBERIS 991	OM	EG 450	$pp \rightarrow K^+$	K^- , $\pi^+\pi^-$
HTTP://PDG.LBL.GOV	Page 7		Creat	ted: 5/30/2	2017 17:21

 $\Gamma(6\pi)/\Gamma_{\mathsf{total}}$ $\Gamma_{\mathsf{13}}/\Gamma$

93

DBC

 $0.0 \overline{p}n \rightarrow \text{hadrons}$

Created: 5/30/2017 17:21

GASPERO

*VALUE*DOCUMENT ID

TECN
COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • • < 0.22GASPERO

93

DBC $0.0 \, \overline{p} \, n \rightarrow \text{ hadrons}$

 $\Gamma(\omega\omega)/\Gamma_{ ext{total}}$

VALUEDOCUMENT IDTECNCOMMENT• • • We do not use the following data for averages, fits, limits, etc. • •

<0.13 GASPERO 93 DBC $0.0 \ \overline{p} \ n \rightarrow \text{ hadrons}$

$f_0(1370)$ REFERENCES

DOBBS UEHARA	15 10A 09	PR D91 052006 PR D82 114031	S. Dobbs <i>et al.</i> S. Uehara <i>et al.</i>	(NWES) (BELLE Collab.)
ANISOVICH AUBERT PDG UEHARA BONVICINI BUGG	09L 08 08A 07 07A	IJMP A24 2481 PR D79 072006 PL B667 1 PR D78 052004 PR D76 012001 JP G34 151	V.V. Anisovich, A.V. Sarar B. Aubert et al. C. Amsler et al. S. Uehara et al. G. Bonvicini et al. D.V. Bugg et al.	(BABAR Collab.) (PDG Collab.) (BELLE Collab.) (CLEO Collab.)
GARMASH GARMASH PDG VLADIMIRSK	07 06 06	PR D75 012006 PRL 96 251803 JP G33 1 PAN 69 493 Translated from YAF 69	A. Garmash <i>et al.</i> A. Garmash <i>et al.</i> WM. Yao <i>et al.</i> V.V. Vladimirsky <i>et al.</i>	(BELLE Collab.) (BELLE Collab.) (PDG Collab.) (ITEP, Moscow)
ABLIKIM ABLIKIM GARMASH ANISOVICH	05 05Q 05 03	PL B607 243 PR D72 092002 PR D71 092003 EPJ A16 229	M. Ablikim et al. M. Ablikim et al. A. Garmash et al. V.V. Anisovich et al.	(BES Collab.) (BES Collab.) (BELLE Collab.)
BARGIOTTI TIKHOMIROV	03 03	EPJ C26 371 PAN 66 828 Translated from YAF 66	M. Bargiotti <i>et al.</i> G.D. Tikhomirov <i>et al.</i> 860.	(OBELIX Collab.)
ANISOVICH	02D	PAN 65 1545 Translated from YAF 65	V.V. Anisovich <i>et al.</i> 1583.	
ABELE ABELE AITALA ASNER BARBERIS BARBERIS BARBERIS BARBERIS BELLAZZINI KAMINSKI	01 01B 01A 00 00C 00E 99B 99D 99	EPJ C19 667 EPJ C21 261 PRL 86 765 PR D61 012002 PL B471 440 PL B479 59 PL B453 316 PL B462 462 PL B467 296 EPJ C9 141 EPJ A3 361	A. Abele et al. A. Abele et al. E.M. Aitala et al. D.M. Asner et al. D. Barberis et al. D. Barberis et al. D. Barberis et al. R. Bellazzini et al. R. Kaminski, L. Lesniak, E. D. Alde et al.	
ALDE	98	PAN 62 405 Translated from YAF 62	D. Alde <i>et al.</i>	(GAM4 Collab.) (GAMS Collab.)
ANISOVICH	98B	SPU 41 419 Translated from UFN 168	V.V. Anisovich et al.	
BERTIN BARBERIS BERTIN	98 97B 97C	PR D57 55 PL B413 217 PL B408 476	A. Bertin et al.D. Barberis et al.A. Bertin et al.	(OBELIX Collab.) (WA 102 Collab.) (OBELIX Collab.)

< 0.03

ABELE	96	PL B380 453	A. Abele et al.	(Crystal Barrel Collab.)
ABELE	96B	PL B385 425	A. Abele et al.	(Crystal Barrel Collab.)
ABELE	96C	NP A609 562	A. Abele <i>et al.</i>	(Crystal Barrel Collab.)
BUGG	96	NP B471 59	D.V. Bugg, A.V. Sarantsev, E	
AMSLER	95B	PL B342 433	C. Amsler et al.	(Crystal Barrel Collab.)
AMSLER	95C	PL B353 571	C. Amsler <i>et al.</i>	(Crystal Barrel Collab.)
AMSLER	95D	PL B355 425	C. Amsler <i>et al.</i>	(Crystal Barrel Collab.)
JANSSEN	95	PR D52 2690	G. Janssen <i>et al.</i>	(STON, ADLD, JULI)
TORNQVIST	95	ZPHY C68 647	N.A. Tornqvist	(HELS)
AMSLER	94	PL B322 431	C. Amsler <i>et al.</i>	(Crystal Barrel Collab.) JPC
AMSLER	94D	PL B333 277	C. Amsler <i>et al.</i>	(Crystal Barrel Collab.)
ANISOVICH	94	PL B323 233	V.V. Anisovich et al.	(Crystal Barrel Collab.) JPC
BUGG	94	PR D50 4412	D.V. Bugg et al.	(LOQM)
KAMINSKI	94	PR D50 3145	R. Kaminski, L. Lesniak, J.P.	
ADAMO	93	NP A558 13C	A. Adamo <i>et al.</i>	(OBELIX Collab.) JPC
GASPERO	93	NP A562 407	M. Gaspero	(ROMAI) JPC
AMSLER	92	PL B291 347	C. Amsler et al.	(Crystal Barrel Collab.)
ARMSTRONG	91	ZPHY C51 351	T.A. Armstrong et al.	(ATHU, BARI, BIRM+)
	91B	ZPHY C52 389	T.A. Armstrong et al.	(ATHU, BARI, BIRM+)
BREAKSTONE		ZPHY C48 569	A.M. Breakstone et al.	(ISU, BGNA, CERN+)
MORGAN	90	ZPHY C48 623	D. Morgan, M.R. Pennington	(RAL, DURH)
ASTON	88	NP B296 493		SLAC, NAGO, CINC, INUS)
BOLONKIN	88	NP B309 426	B.V. Bolonkin <i>et al.</i>	(ITEP, SERP)
FALVARD	88	PR D38 2706	A. Falvard et al.	(CLER, FRAS, LALO+)
VOROBYEV	88	SJNP 48 273	P.V. Vorobiev et al.	(NOVO)
A 1 1	07	Translated from YAF 48		· · (DUDU DAI)
AUFECCON	87	PR D35 1633	K.L. Au, D. Morgan, M.R. P	
AKESSON	86	NP B264 154	T. Akesson <i>et al.</i>	(Axial Field Spec. Collab.)
ALDE	86D	NP B269 485		ELG, LAPP, SERP, CERN+)
CASON	83	PR D28 1586	N.M. Cason <i>et al.</i>	(NDAM, ANL)
ETKIN	82B	PR D25 1786		NL, CUNY, TÜFTS, VAND)
WICKLUND	80	PRL 45 1469	A.B. Wicklund et al.	(ANL)
BECKER	79	NP B151 46	•	PIM, CERN, ZEEM, CRAC)
POLYCHRO	79	PR D19 1317	V.A. Polychronakos <i>et al.</i>	(NDAM, ANL)
FROGGATT	77	NP B129 89	C.D. Froggatt, J.L. Petersen	(GLAS, NORD)
ROSSELET	77	PR D15 574	L. Rosselet <i>et al.</i>	(GEVA, SACL)
GRAYER	74	NP B75 189	G. Grayer et al.	(CERN, MPIM)
HYAMS	73	NP B64 134	B.D. Hyams et al.	(CERN, MPIM)
OCHS BEIER	73 72B	Thesis	W. Ochs E.W. Beier <i>et al.</i>	(MPIM, MUNI)
	72B 66	PRL 29 511 NC 42A 695		(PENN)
BETTINI	00	NC 42A 093	A. Bettini et al.	(PADO, PISA)