Multiobjective Minimum Spanning Trees Using Dynamic Programming

Pedro Maristany de las Casas Antonio Sedeño Noda Ralf Borndörfer EURO 2022, Espoo

July, 06 2022

maristany@zib.de

Input

Undirected graph G = (V, E), edge cost vectors $c_e \in \mathbb{R}_{\geq}^d$, $d \in \mathbb{N}$.

Input

Undirected graph G = (V, E), edge cost vectors $c_e \in \mathbb{R}^d_>$, $d \in \mathbb{N}$.

Dominance

Let $t,\ t'$ be (sub-) trees in $G.\ t$ dominates t' $(c(t) \leq c(t'))$ if

Input

Undirected graph G = (V, E), edge cost vectors $c_e \in \mathbb{R}^d_>$, $d \in \mathbb{N}$.

Dominance

Let t, t' be (sub-) trees in G. t dominates t' ($c(t) \leq c(t')$) if

$$\bullet \ \ V(t) = V(t')$$

Input

Undirected graph G = (V, E), edge cost vectors $c_e \in \mathbb{R}^d_>$, $d \in \mathbb{N}$.

Dominance

Let t, t' be (sub-) trees in G. t dominates t' ($c(t) \leq c(t')$) if

- V(t) = V(t')
- $c(t) \le c(t')$ and $c(t) \ne c(t')$

Input

Undirected graph G = (V, E), edge cost vectors $c_e \in \mathbb{R}_{\geq}^d$, $d \in \mathbb{N}$.

Dominance

Let t, t' be (sub-) trees in G. t dominates t' ($c(t) \leq c(t')$) if

- V(t) = V(t')
- $c(t) \le c(t')$ and $c(t) \ne c(t')$

Efficiency/Optimality

For $V' \subseteq V$, the set $\mathcal{T}^*(V')$ is a minimum complete set of efficient spanning trees.

Input

Undirected graph G = (V, E), edge cost vectors $c_e \in \mathbb{R}^d_>$, $d \in \mathbb{N}$.

Dominance

Let t, t' be (sub-) trees in G. t dominates t' ($c(t) \leq c(t')$) if

- V(t) = V(t')
- $c(t) \leq c(t')$ and $c(t) \neq c(t')$

Efficiency/Optimality

For $V' \subseteq V$, the set $\mathcal{T}^*(V')$ is a minimum complete set of efficient spanning trees.

Output

The MO-MST problem is to find $\mathcal{T}^*(V)$.

Lemma

Lemma

$$\mathcal{T}^*(\textcolor{red}{V'}) := \min_{\preceq_{\mathcal{D}}} \left\{ t \circ \{u,v\} \mid t \in \mathcal{T}^*(V''), \ \forall V'' \subset V' \ , \ |V''| = k-1 \right.$$
 and $u \in V'', \ v \in V' \backslash V'' \right\}.$

Lemma

$$\mathcal{T}^*(V') := \min_{\preceq_{\mathcal{D}}} \left\{ t \circ \{u, v\} \mid t \in \mathcal{T}^*(V''), \ \forall V'' \subset V' \ , \ |V''| = k-1 \right.$$
 and $u \in V'', \ v \in V' \backslash V'' \right\}.$

Lemma

$$\mathcal{T}^*(V') := \min_{\preceq_{\mathcal{D}}} \left\{ t \circ \{ \textcolor{red}{\textit{u}}, \textcolor{red}{\textit{v}} \} \mid t \in \mathcal{T}^*(V''), \ \forall V'' \subset V' \ , \ |V''| = k-1 \right.$$
 and $u \in V'', \ v \in V' \backslash V'' \right\}.$

MO-MST → MO Shortest Path

MO-MST instance $(G, c) \Leftrightarrow \text{MOSP}$ instance $(D_G, \bar{c}, \{1\})$

Lemma

The implicit search graph D_G of a MO-MST instance (G,c) is a directed, acyclic multigraph with $\mathcal{O}(2^{n-1})$ nodes, one for every subset $\{v_1\} \cup V', \ V' \subseteq \{v_2, \dots, v_n\}$.

MO-MST instance $(G, c) \Leftrightarrow \text{MOSP}$ instance $(D_G, \bar{c}, \{1\})$

Lemma

The implicit search graph D_G of a MO-MST instance (G,c) is a directed, acyclic multigraph with $\mathcal{O}(2^{n-1})$ nodes, one for every subset $\{v_1\} \cup V', \ V' \subseteq \{v_2, \dots, v_n\}$.

Theorem

Efficient $\{v_1\}$ -V-paths in D_G uniquely correspond to efficient spanning trees of G.

MO-MST instance $(G, c) \Leftrightarrow \text{MOSP}$ instance $(D_G, \bar{c}, \{1\})$

Lemma

The implicit search graph D_G of a MO-MST instance (G,c) is a directed, acyclic multigraph with $\mathcal{O}(2^{n-1})$ nodes, one for every subset $\{v_1\} \cup V', \ V' \subseteq \{v_2, \dots, v_n\}$.

Theorem

Efficient $\{v_1\}$ -V-paths in D_G uniquely correspond to efficient spanning trees of G.

Proof.

Follows from the Bellman Condition for MO-MST.

MO-MST → MO Shortest Path

Tailored MOSP algorithm for MO-MST instances

• Preprocessing: eliminate *red* edges and contract *blue* edge components.

- Preprocessing: eliminate red edges and contract blue edge components.
- Pruning by Chen et al., 2007: Remove parallel dominates edges.

- Preprocessing: eliminate red edges and contract blue edge components.
- Pruning by Chen et al., 2007: Remove parallel dominates edges.

Early pruning of subtrees (not today)

- Preprocessing: eliminate red edges and contract blue edge components.
- Pruning by Chen et al., 2007: Remove parallel dominates edges.

- Early pruning of subtrees (not today)
- Dimensionality reduction (e.g. Pulido et al., 2014)

$MO\text{-}MST \rightarrow MO$ Shortest Path

Preprocessing Edges

Cut and Cycle Optimality Conditions

Red/Blue coloring inspired by...

- Tarjan, 1983. Data Structures and Network Algorithms.
- Corley, 1985, Hamacher and Ruhe, 1994, Ehrgott, 2005.
- Sourd and Spanjaard, 2008. Multiobjective B&B: Application to Bi-MST.

Cut and Cycle Optimality Conditions

Red/Blue coloring inspired by...

- Tarjan, 1983. Data Structures and Network Algorithms.
- Corley, 1985, Hamacher and Ruhe, 1994, Ehrgott, 2005.
- Sourd and Spanjaard, 2008. Multiobjective B&B: Application to Bi-MST.

Preprocessing

Red and Blue edges can be determined running two DFS searches on G. Cycle and Cut Optimality conditions are checked.

$MO\text{-}MST \rightarrow MO$ Shortest Path

Remove dominated parallel arcs

Delete dominated parallel arcs – Chen et al., 2007

Efficient Deletion Use lex. sorting of outgoing arcs.

(a) Search Graph D_G with costs \bar{c} induced by c.

Delete dominated parallel arcs – Chen et al., 2007

Efficient Deletion Use lex. sorting of outgoing arcs.

(a) Search Graph D_G with costs \bar{c} induced by c.

What MOSP algorithm to choose?

Multiobjective Dijkstra Algorithm (MDA). M. et al., 2021

Consider the *d*-dimensional MOSP instance $(D_G = (\bar{V}, A), \bar{c}, \{1\})$.

What MOSP algorithm to choose?

Multiobjective Dijkstra Algorithm (MDA). M. et al., 2021

Consider the *d*-dimensional MOSP instance $(D_G = (\bar{V}, A), \bar{c}, \{1\})$.

- N sum of all efficient s-v-paths in D for all $v \in \bar{V}$.
- N_{\max} max. number of efficient s-v-paths, $v \in \bar{V}$.

What MOSP algorithm to choose?

Multiobjective Dijkstra Algorithm (MDA). M. et al., 2021

Consider the *d*-dimensional MOSP instance $(D_G = (\bar{V}, A), \bar{c}, \{1\})$.

- N sum of all efficient s-v-paths in D for all $v \in \bar{V}$.
- N_{\max} max. number of efficient s-v-paths, $v \in \bar{V}$.

Then, the MDA runs in
$$\mathcal{O}\left(d(N\log(n) + N_{\max}^2|A|)\right)$$
.

What MOSP algorithm to choose?

Multiobjective Dijkstra Algorithm (MDA). M. et al., 2021

Consider the *d*-dimensional MOSP instance $(D_G = (\bar{V}, A), \bar{c}, \{1\})$.

- N sum of all efficient s-v-paths in D for all $v \in \bar{V}$.
- N_{\max} max. number of efficient s-v-paths, $v \in \bar{V}$.

Then, the MDA runs in $\mathcal{O}\bigg(d\big(N\log(n)+N_{\max}^2|A|\big)\bigg)$.

Figure 4: MDA vs. (Martins, 1984) algorithm on 3-d MOSP instances.

Experiments

Setup

Choice Justification

Fernandes et al., 2019. Empirical study of exact algorithms for the multi-objective spanning tree.

Setup

Choice Justification

Fernandes et al., 2019. Empirical study of exact algorithms for the multi-objective spanning tree.

	BN algo. original	Our BN algo.	New algo.
Coloring	No	Yes	Yes
Arc ordering	Head/Tail Ids	Head/Tail Ids	Lex.
Lower bound pruning	No	Yes	Yes
Dim. reduction	No	Yes	Yes
MOSP algo.	(Martins, 1984)	(Martins, 1984)	MDA

Setup

Choice Justification

Fernandes et al., 2019. Empirical study of exact algorithms for the multi-objective spanning tree.

	BN algo. original	Our BN algo.	New algo.
Coloring	No	Yes	Yes
Arc ordering	Head/Tail Ids	Head/Tail Ids	Lex.
Lower bound pruning	No	Yes	Yes
Dim. reduction	No	Yes	Yes
MOSP algo.	(Martins, 1984)	(Martins, 1984)	MDA

Table 1: Original BN vs. Our BN on Santos et al., 2018 instances with 14 nodes.

Instance dimension	BN algo. original	Our BN algo.
2	1.12s	0.09s
3	86.33s	44.34s
4	3656.91s	1823.48s

Experiments

Biobjective (d=2) MST

Solutions on complete graphs with 2 anticorrelated objectives

n	TIME NEW [s]	TIME BN [s]	SPEEDUP	$\mathcal{T}^*(V)$ cardinality
10	0.05	0.05	1	143
12	0.57	0.58	1	218
15	19.97	20.14	1	359
17	163.06	163.47	1	453
20	677.97	712.44	1.05	374
22	1877.95	1978.14	1.05	289
25	4192.325	-	-	398

Two phase approaches for BO-MST problems

Graph	n	m'	blue	LS	Sort	Shaving	BnB	Total
Clique	50	156.5	1.4	0.62	0.05	0.05	0.75	1.54
	100	339.8	2.8	4.34	0.56	0.23	3.17	8.56
	150	534.3	3.0	12.71	1.89	0.40	3.87	19.68
	200	727.0	3.5	28.22	4.10	0.45	4.10	38.64
	250	905.3	4.8	52.26	7.06	0.46	2.28	65.74
	300	1075.9	5.2	87.94	9.47	0.43	7.61	105.82
	350	1181.8	8.7	137.92	13.27	0.58	4.87	154.01
	400	1650.4	7.4	208.94	-	-	1.56	225.68
	450	1839.3	10.1	308.38	-	-	0.44	331.68
	500	1980.9	13.6	438.75	-	-	1.88	473.34

Figure 5: Extremely fast Biobjective algorithm by Sourd and Spanjaard.

References

- Sourd and Spanjaard, 2008
- Amorosi and Puerto, 2022

Experiments

Random graphs from Santos et al., 2018

Random graphs from Santos et al., 2018

Table 2: 3-d instances with anticorrelated edge costs.

NODES	TIME NEW [s]	TIME BN [s]	SPEEDUP
10	0.03	0.08	3.44
11	0.06	0.22	3.56
12	0.18	1.63	7.45
13	0.49	7.69	14.35
14	1.76	44.34	25.33

Random graphs from Santos et al., 2018

Table 3: 4-d instances with anticorrelated edge costs.

NODES	TIME NEW [s]	TIME BN [s]	SPEEDUP
10	1.35	1.48	1.22
11	4.90	7.39	1.50
12	35.00	82.87	2.35
13	102.79	311.90	2.86
14	523.48	1823.48	3.96

Complete graphs

Table 4: 4-d instances with anticorrelated edge costs.

NODES	TIME NEW [s]	TIME BN [s]	SPEEDUP
7	0.01	0.02	2
10	8.36	150.75	18.03
12	272.45	4044.89	14.85

Multiobjective Minimum Spanning Trees Using Dynamic Programming

Pedro Maristany de las Casas Antonio Sedeño Noda Ralf Borndörfer EURO 2022, Espoo

July, 06 2022

maristany@zib.de

References

Chen, G., Chen, S., Guo, W., & Chen, H. (2007). The multi-criteria minimum spanning tree problem based genetic algorithm. Information Sciences, 177(22), 5050–5063. https://doi.org/https://doi.org/10.1016/j.ins.2007.06.005

References ii

- Corley, H. W. (1985). Efficient spanning trees. *Journal of Optimization Theory and Applications*, 45(3), 481–485. https://doi.org/10.1007/bf00938448
- Ehrgott, M. (2005). *Multicriteria optimization*. Springer-Verlag. https://doi.org/10.1007/3-540-27659-9
- Fernandes, I. F. C., Goldbarg, E. F. G., Maia, S. M. D. M., & Goldbarg, M. C. (2019). Empirical study of exact algorithms for the multi-objective spanning tree.

 Computational Optimization and Applications, 75(2), 561–605. https://doi.org/10.1007/s10589-019-00154-1
- Hamacher, H. W., & Ruhe, G. (1994). On spanning tree problems with multiple objectives. *Annals of Operations Research*, 52(4), 209–230. https://doi.org/10.1007/bf02032304

References iii

M., P., Sedeño-Noda, A., & Borndörfer, R. (2021). An improved multiobjective shortest path algorithm. *Computers and Operations Research*, 135, 105424. https://doi.org/https://doi.org/10.1016/j.cor.2021.105424

Martins, E. Q. V. (1984). On a multicriteria shortest path problem. European Journal of Operational Research, 16(2), 236–245. https://www.sciencedirect.com/science/article/pii/0377221784900778

Pulido, F. J., Mandow, L., & de la Cruz, J. L. P. (2014).

Multiobjective shortest path problems with lexicographic goal-based preferences. *European Journal of Operational Research*, 239(1), 89–101.

https://doi.org/10.1016/j.ejor.2014.05.008

References iv

Sourd, F., & Spanjaard, O. (2008). A Multiobjective
Branch-and-Bound Framework: Application to the
Biobjective Spanning Tree Problem. *INFORMS Journal on Computing*, 20(3), 472–484.
https://doi.org/10.1287/ijoc.1070.0260

Tarjan, R. E. (1983). *Data structures and network algorithms*. Society for Industrial; Applied Mathematics.