Homework 29

Austin Frownfelter

Matthew Bialecki

April 2, 2018

Problem 53 1

1.1 Part a

Alice can do rotations, specifically $\frac{\pi}{2}$ rotations, based on values x, y:

If x = y = 0, do not rotate.

If x = 1, y = 0, rotate a by $\frac{\pi}{2}$.

If x = 1, y = 1, rotate a by π .

If x = 0, y = 1, rotate a by $3\frac{\pi}{2}$.

1.2 Part b

The general form for the process described above:

$$|a\rangle = \frac{1}{\sqrt{2}} \left[-2(x - \frac{1}{2}) |0\rangle - 2(y - \frac{1}{2}) |1\rangle \right]$$

$$|b\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

$$|b\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

1.3 Part c

In the case of the values (x, y), the qubits are in the following states:

(0,0): $\frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle)$

(0,1): $\frac{1}{2}(|00\rangle + |01\rangle - |10\rangle - |11\rangle)$

(1,0): $\frac{1}{2}(-|00\rangle - |01\rangle + |10\rangle + |11\rangle)$

(1,1): $\frac{1}{2}(-|00\rangle - |01\rangle - |10\rangle - |11\rangle)$

If an H_2 operation is applied, the following states remain:

(0,0): $|00\rangle$

(0,1): $|10\rangle$

 $(1,0): -|10\rangle$

 $(1,1): -|00\rangle$

There is no way to distinguish the values of x, y other than whether x = y.

If an H_1 operation is applied to a, the following states remain:

$$(0,0)$$
: $\frac{1}{\sqrt{2}}(|00\rangle + |01\rangle)$

$$(0,1): \frac{1}{\sqrt{2}}(|10\rangle + |11\rangle)$$

$$(1,0): -\frac{1}{\sqrt{2}}(|10\rangle + |11\rangle)$$

$$(1,1): -\frac{1}{\sqrt{2}}(|00\rangle + |01\rangle)$$

 $(1,0): -\frac{1}{\sqrt{2}}(|10\rangle + |11\rangle)$ $(1,1): -\frac{1}{\sqrt{2}}(|00\rangle + |01\rangle)$ As before, there is no way to distinguish the values of x,y other than whether x = y.

We were unable to come up with a process that would give us a way for Bob to be certain the values x, y. We believe it must involve H_1 operations with measurements, perhaps with something we are missing.