CLAIMS

Therefore, having thus described the invention, at least the following is claimed:

1	1. An analog front end system, comprising:
2	a digital-to-analog converter;
3	a line driver, electrically coupled to said digital-to-analog converter;
4	a hybrid, electrically coupled to said line driver;
5	a multiple-input device having a plurality of inputs and at least one output,
6	wherein at least one of said inputs is electrically coupled to said hybrid;
7	an analog-to-digital converter, electrically coupled to said output of said multiple-
8	input device;
9	an isolation circuit configured to maintain direct-current isolation between the
10	terminals of said isolation circuit, wherein:
11	said isolation circuit is electrically coupled to at least one of said inputs of
12	said multiple-input device; and
13	said isolation circuit comprises a plurality of resistance elements and a
14	plurality of capacitance elements, electrically coupled;
15	a ground circuit configured to provide a ground reference, wherein:
16	said ground circuit is electrically coupled to at least one of said inputs of
17	said multiple-input device; and
18	said ground circuit comprises a plurality of resistance elements and at least
10	one ground reference point electrically counled; and

- a processing circuitry, said processing circuitry being configured to control said digital-to-analog converter, said line driver, said analog-to-digital converter, and said multiple-input device in response to commands received by said processing circuitry.
- 1 2. The analog front end system of claim 1, wherein said multiple-input device is configured such that said inputs are selectively operational.
- 1 3. The analog front end system of claim 1, wherein said multiple-input device is a multiplexer.
- 1 4. An analog front end system, comprising:
- 2 a digital-to-analog converter;
- a line driver, electrically coupled to said digital-to-analog converter;
- 4 means for multiplexing a plurality of inputs to at least one output, electrically
- 5 coupled to said line driver; and
- an analog-to-digital converter, electrically coupled to said means for multiplexing.
- The analog front end system of claim 4, further comprising a hybrid,
- 2 electrically coupled between said line driver and one of said inputs of said means for
- 3 multiplexing.

- 1 6. The analog front end system of claim 4, further comprising means for
- 2 direct current isolation of said multiple-input device from an input terminal, electrically
- 3 coupled to one of said inputs of said means for multiplexing.
- The analog front end system of claim 4, further comprising means for
- 2 providing a ground reference, electrically coupled to one of said inputs of said means for
- 3 multiplexing.
- 1 8. The analog front end system of claim 4, further comprising means for
- 2 controlling said digital-to-analog converter, said line driver, said analog-to-digital
- 3 converter, and said multiple-input device responsive to commands received by said
- 4 means for controlling.
- 9. An analog front end system, comprising:
 - 2 a digital-to-analog converter;
 - a line driver, electrically coupled to said digital-to-analog converter;
 - a multiple-input device having a plurality of inputs and at least one output,
 - 5 electrically coupled to said line driver; and
 - an analog-to-digital converter, electrically coupled to said multiple-input device.
 - 1 10. The analog front end system of claim 9, further comprising a hybrid,
 - 2 electrically coupled between said line driver and said multiple-input device.

- 1 11. The analog front end system of claim 9, further comprising an isolation
- 2 circuit, electrically coupled to said multiple-input device.
- 1 12. The analog front end system of claim 11, wherein said isolation circuit
- 2 comprises a plurality of resistance elements and a plurality of capacitance elements,
- 3 electrically coupled.
- 1 13. The analog front end system of claim 9, further comprising a ground
- 2 circuit configured to provide a ground reference, electrically coupled to said multiple-
- 3 input device.
- 1 14. The analog front end system of claim 13, wherein said ground circuit
- 2 comprises a plurality of resistance elements and at least one ground reference point,
- 3 electrically coupled.
- 1 15. The analog front end of claim 9, wherein said multiple-input device is
- 2 configured such that said inputs are selectively operational.
- 1 16. The analog front end system of claim 9, further comprising a processing
- 2 circuitry, said processing circuitry being configured to control said digital-to-analog
- 3 converter, said line driver, said analog-to-digital converter, and said multiple-input device
- 4 in response to commands received by said processing circuitry.

1	17.	A method for	testing a DSI	Jine,	comprising t	he steps	of:

- transmitting test samples to an analog front end;
- 3 interpreting said test samples as multi-bit digitized values using said analog
- 4 front end;
- 5 generating test patterns, from said digitized values, having a plurality of
- 6 samples; and
- 7 testing a DSL line using said test patterns.
- 1 18. The method of claim 17, wherein said interpreting step comprises
- 2 interpreting said test samples as 8-bit digitized values using said analog front end.
- 1 19. The method of claim 17, wherein said interpreting step, said generating
- step, and said testing step are controlled by a processing circuitry responsive to received
- 3 commands.
- 1 20. A method for DSL line testing, comprising the steps of:
- 2 providing test stimuli to a DSL line using an analog front end; and
- 3 receiving responses to said test stimuli from said DSL line using said analog
- 4 front end.
- 1 21. The method of claim 20, wherein said providing step comprises providing
- 2 test stimuli to a DSL line using a digital-to-analog converter and an analog-to-digital
- 3 converter of said analog front end.

1	22.	The method of claim 20, wherein said providing step comprises
2	transmitting to	est stimuli to a DSL line on a carrier signal using an analog front end.
1	23.	The method of claim 20, wherein said receiving step further comprises
2	storing said re	esponses to said test stimuli to a computer.
1	24.	A DSL line testing format, comprising:
2	a plur	ality of test frames, wherein:
3		said test frames comprise a plurality of multi-bit test samples; and
4		the first of said samples of said test frames comprises a test header.
1	25.	The testing format of claim 24, wherein said test header comprises a test
2	control heade	er format.
1	26.	The testing format of claim 24, wherein said test header comprises a test
2	status header	format.
1	27.	A test header, comprising:
2	a mul	ti-bit test control header format, said test control header format comprising:
3		a pattern length field configured to control the generation of a plurality of
4	test p	atterns by an analog front end;

5	a sample rate field configured to control the selection of sample rates of a
6	digital-to-analog converter and of an analog-to-digital converter;
7	a spare field, capable of being configured to control at least one function
8	of an analog front end;
9	a loop-back field configured to control a loop-back function of an analog
10	front end;
11	a hybrid field configured to control the operating status of a hybrid of an
12	analog front end; and
13	an input select field configured to control the selection of a plurality of test
14	inputs to an analog front end.
1	28. The test header of claim 27, wherein said test control header format is
2	12-bits long.
1	29. The test header of claim 28, wherein:
2	said pattern length field is 4-bits long;
3	said sample rate field is 2-bits long;
4	said spare field is 2-bits long;
5	said loop-back field is 1-bit long;
6	said hybrid field is 1-bit long; and
7	said input select field is 2-bits long

1	30. The test header of claim 27, further comprising a	buffer configured to store
2	test samples.	
1	31. A test header, comprising:	
2	a multi-bit test status header format, said test status head	er format comprising:
3	a pattern length field configured to provide ident	ification of one or more of
4	a plurality of test patterns generated by an analog front	end;
5	a sample rate field configured to provide the sele	ction status of sample
6	rates of a digital-to-analog converter and of an analog-to-	-digital converter;
7	a spare field, capable of being configured to prov	ride the status of at least
8	one function of an analog front end;	
9	a loop-back field configured to provide the statu	s of a loop-back function
10	of an analog front end;	
11	a hybrid field configured to provide the operating	g status of a hybrid of an
12	analog front end; and	
13	an input select field configured to provide the se	lection status of a plurality
14	of test inputs to an analog front end.	
1	32. The test header of claim 31, wherein said test sta	atus header format is
2	2 12-bits long.	
1	The test header of claim 32, wherein:	

said pattern length field is 4-bits long;

- 3 said sample rate field is 2-bits long;
- 4 said spare field is 2-bits long;
- said loop-back field is 1-bit long;
- 6 said hybrid field is 1-bit long; and
- 7 said input select field is 2-bits long.
- 1 34. The test header of claim 31, further comprising a buffer configured to store
- 2 test samples.