

McStas

Simulating Polarized Neutron Scattering Experiments and Equipment with McStas

Erik Bergbäck Knudsen, DTU Physics

McStas

Mcstas "particle" model

$$P_{i} = 2\left(\left\langle \hat{s}_{x,i} \right\rangle \hat{i}_{x,i} + \left\langle \hat{s}_{y,i} \right\rangle \hat{i}_{y,i} + \left\langle \hat{s}_{z,i} \right\rangle \hat{i}_{z,i}\right) \qquad P = \frac{1}{N} \sum_{n=0}^{N} P_{i}$$

From G. Williams: "Polarized neutrons", Oxford Science Publ., 1988

McStas

McStas detectors/monitors

Monitoring: How and What do we monitor?

McStas

McStas detectors/monitors

Monitoring: How and What do we monitor?

McStas

McStas detectors/monitors

Monitoring: How and What do we monitor?

McStas

Polarization monitors

- Available monitors:
- Pol monitor.comp:0D
- Pollambda_monitor.comp:2D
- MeanPolLambda_monitor.comp:

1D

McStas

McStas precession algorithm

- Magnetic fields in McStas
- The challenge:

$$rays > 10^6$$

- * Fast beam/ray transport: #
- * Unknown magnetic field and field strength
- * >1 Magnet \rightarrow nested fields.

McStas

McStas precession algorithm

```
while n_t < t_{target} do store neutron; sample magnetic f eld: \mathbf{B}_1 = \mathbf{B}(n_x, n_y, n_z, n_t); propagate neutron: \delta t (< \Delta t); sample magnetic f eld: \mathbf{B}_2 = \mathbf{B}(n_x, n_y, n_z, n_t); while |\mathbf{B}_1 - \mathbf{B}_2| > \delta B_{threshold} do restore neutron; \delta t := \delta t/2; propagate neutron: \delta t (< \Delta t); sample magnetic f eld: \mathbf{B}_1 = \mathbf{B}(n_x, n_y, n_z, n_t); precess polarization: \mathbf{P}_n by \omega around \frac{\mathbf{B}_1 + \mathbf{B}_2}{2};
```

Algorithm 1: SimpleNumMagnetPrecession: Simplistic algorithm for tracking polarization of a Monte-Carlo neutron in a magnetic f eld. The neutron's state is stored as a position (n_x, n_y, n_z) , a velocity \mathbf{v} , time n_t , and polarization vector $\mathbf{P_n}$.

McStas

McStas precession algorithm

McStas

NEUTRONS FOR SCENCE

McStas precession algorithm

McStas

McStas precession algorithm

```
while n_t < t_{target} do store neutron; sample magnetic f eld: \mathbf{B}_1 = \mathbf{B}(n_x, n_y, n_z, n_t); propagate neutron: \delta t (< \Delta t); sample magnetic f eld: \mathbf{B}_2 = \mathbf{B}(n_x, n_y, n_z, n_t); while |\mathbf{B}_1 - \mathbf{B}_2| > \delta B_{threshold} do restore neutron; \delta t := \delta t/2; propagate neutron: \delta t (< \Delta t); sample magnetic f eld: \mathbf{B}_1 = \mathbf{B}(n_x, n_y, n_z, n_t); precess polarization: \mathbf{P}_n by \omega around \frac{\mathbf{B}_1 + \mathbf{B}_2}{2};
```

Algorithm 1: SimpleNumMagnetPrecession: Simplistic algorithm for tracking polarization of a Monte-Carlo neutron in a magnetic f eld. The neutron's state is stored as a position (n_x, n_y, n_z) , a velocity \mathbf{v} , time n_t , and polarization vector $\mathbf{P_n}$.

McStas

McStas precession algorithm

```
while n_t < t_{target} do store neutron; sample magnetic f eld: \mathbf{B}_1 = \mathbf{B}(n_x, n_y, n_z, n_t); propagate neutron: \delta t < \Delta t; sample magnetic f eld: \mathbf{B}_2 = \mathbf{B}(n_x, n_y, n_z, n_t); while |\mathbf{B}_1 - \mathbf{B}_2| > \delta B_{threshold} do restore neutron; \delta t := \delta t / 2; propagate neutron: \delta t (< \Delta t); sample magnetic f eld: \mathbf{B}_1 = \mathbf{B}(n_x, n_y, n_z, n_t); precess polarization: \mathbf{P}_n by \omega around \frac{\mathbf{B}_1 + \mathbf{B}_2}{2};
```

Algorithm 1: SimpleNumMagnetPrecession: Simplistic algorithm for tracking polarization of a Monte-Carlo neutron in a magnetic f eld. The neutron's state is stored as a position (n_x, n_y, n_z) , a velocity \mathbf{v} , time n_t , and polarization vector $\mathbf{P_n}$.

McStas

McStas precession algorithm

```
while n_t < t_{target} do store neutron; sample magnetic f et propagate neutron: \delta void mc_pol_set_timestep (double dt); sample magnet void mc_pol_set_angular_accuracy (double while |\mathbf{B}_1 - \mathbf{B}| domega); restore neutron; \delta t := \delta t/2; propagate neutron: \delta t (< \Delta t); sample magnetic f eld: \mathbf{B}_1 = \mathbf{B}(n_x, n_y, n_z, n_t); precess polarization: \mathbf{P}_n by \omega around \frac{\mathbf{B}_1 + \mathbf{B}_2}{2};
```

Algorithm 1: SimpleNumMagnetPrecession: Simplistic algorithm for tracking polarization of a Monte-Carlo neutron in a magnetic f eld. The neutron's state is stored as a position (n_x, n_y, n_z) , a velocity \mathbf{v} , time n_t , and polarization vector $\mathbf{P_n}$.

McStas

McStas polarization components

Magnetic fields:

- Pol FieldBox.comp
- Pol_constBfield.comp
- Pol_simpleBfield.comp
- Pol_simpleBfield_stop.c
 omp
- Pol_triafield.comp Monitors:
- Pol_monitor.comp
- MeanPolLambda monitor.com

Contrib:

- Pollambda monitor.comp
- Foil_flipper_magnet.comp

Optics:

- Monochromator pol.comp
- Pol bender.comp
- Pol_guide_vmirror.comp
- Pol_mirror.comp
- Pol pi 2 rotator.comp
- Transmission polarisatorABSnT. compdealized components:

- · Polender taper ideal compo
 - Set pol.comp

McStas

McStas

6. marts 2019

McStas magnetic fields

- Pol_constBfield.comp
- · Single constant Magnetic field in a "box".
- user may specify a wavelength to flip.

- blocking walls

2019 McStas school @ CSNS

McStas

6. marts 2019

McStas magnetic fields

- Pol_FieldBox.comp
- Single Magnetic field in a "box"
- optional user supplied field c-function

2019 McStas school @ CSNS

McStas

McStas magnetic fields

- Pol simpleBfield.comp
- Pol_simpleBfield_stop.comp
 - Entry/Exit contruction allows for nested magnetic field descriptions.
 - Any magnetic fields through user supplied c-function
 - Tabled magnetic fields

McStas

McStas Polarization Capabilities IV

- Pol simpleBfield.comp
- Pol_simpleBfield_stop.comp
 - Entry/Exit contruction allows for nested magnetic field descriptions.
 - Any magnetic fields through user supplied c-function
 - Tabled magnetic fields

McStas

Pol_monitors along the way...

McStas

Pol_monitors along the way...

McStas

Pol_monitors along the way...

McStas

Pol_monitors along the way...

McStas

McStas

Nested fields

McStas

6. marts 2019

Getting help

- Check example header.
- ♥ Use mcdoc
- Read/check the manual
- User mailing list: mcstas-users@mcstas.org
- Give us a call/write us an email!

2019 McStas school @ CSNS

McStas

McStas components on the way

Things on the way

Magnetic fields:

- Pol FieldBox.comp
 - Tabled fields
- Pol_constBfield.comp
- Pol simpleBfield.comp
 - 3D entry/exit windows
- Pol simpleBfield_stop.c Monitors:
- · Pol_monitoreformeomp
- MeanPolLambda monitor.com

Contrib: ambda_monitor.comp

Foil PSD mont to recomp

Optics:

- Monochromator pol.comp
- Pol bender.comp
- Pol_guide_vmirror.comp
- Pol mirror.comp
- Pol pi 2 rotator.comp
- Transmission polarisatorABSnT.
- PolAnalyser ideal co
- Pol McRadia.comp

Sample component

Magnetic_single_crystal.comp

McStas

McStas components on the way

Generalized Simple B-Fields: constant, functional,

tabled, ... but in more general shapes

RF-flipper

He3-objects

McStas

6. marts 2019

McStas components on the way

McRadia compared with analytical field description

2019 McStas school @ CSNS

McStas

McStas components on the way

McRadia compared with other field descriptions

McStas

McStas components on the way

Magnetic single crystal

index	iontype	\boldsymbol{x}	y	z	$b_{coh}[fm]$	85	S_x	S_y	S_z	g_L	L_x	L_y	L_z
1	Cu2+	0.5	0.5	0	7.718	2	0	-0.5	0	0	0	0	0
:	:	:	:	:	:	:	:	:	:	:	:	:	:

McStas

6. marts 2019

McStas components on the way Magnetic single crystal – Unpolarized beam

2019 McStas school @ CSNS 32

McStas

6. marts 2019

McStas components on the way Magnetic single crystal – Polarized beam

2019 McStas school @ CSNS

McStas

McStas components on the way

Magnetic single crystal

The magnetic scattering cross-section for a sample with localised spin+orbital angular moment $g\mathbf{J} = (g_S + g_L)\mathbf{J} = 2\mathbf{S} + \mathbf{L}$ is:

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}\Omega_f \mathrm{d}E_f} = \frac{k_f}{k_i} \sum_{i,f} P(\lambda_i) \left| \langle \lambda_f \mid \sum_j e^{i\mathbf{Q} \cdot \mathbf{d}_j} U_j^{\sigma_i \sigma_f} \mid \lambda_i \rangle \right|^2 \delta(\hbar \omega + E_i - E_f)$$

where $|\lambda_i\rangle$ and $\langle\lambda_f|$ are the initial and final states of the sample with energies E_i and E_f respectively, $P(\lambda_i)$ is the distribution of initial states and

$$U_j^{\sigma_i \sigma_f} = \langle \sigma_f \mid b_j - m_j \mathbf{J}_{\perp j} \cdot \boldsymbol{\sigma} \mid \sigma_i \rangle$$

where $|\sigma_i\rangle$ and $\langle\sigma_f|$ are the initial and final spin states of the neutron, and σ are the Pauli spin matrices working on the neutron state.

From: G. Shirane et.al., "Neutron Scattering with Triple-Axis Spectrometer", *Cambridge Univ. Press*, 2002

McStas

McStas components on the way

Magnetic single crystal

If $\mathbf{P} = P(\xi, \eta, \zeta) = P\hat{\zeta}$. Thus, the matrix elements of $U^{\sigma_i \sigma_f}$ can now be written

$$\begin{array}{rcl} U^{++} & = & b - mJ_{\perp\zeta} \\ U^{--} & = & b + mJ_{\perp\zeta} \\ U^{+-} & = & -m \left(J_{\perp\xi} + iJ_{\perp\eta} \right) \\ U^{+-} & = & -m \left(J_{\perp\xi} - iJ_{\perp\eta} \right) \end{array}$$

where $m = \frac{r_0 \gamma}{2} gf(\mathbf{Q})$ with r_0 the classical electron radius, $\gamma = 1.913$, g the Landé splitting factor and $f(\mathbf{Q})$ the magnetic form factor of a particular ion in the sample.