\$	第一章 开关理论基础			
	教 学 内 容		正确理解	了解
	数制	$\sqrt{}$	$\sqrt{}$	
数制与码制	数制间相互转换	$\sqrt{}$	$\sqrt{}$	
	编码		$\sqrt{}$	
	逻辑变量与逻辑函数的概念		$\sqrt{}$	
	三种基本逻辑及其运算	$\sqrt{}$	$\sqrt{}$	
逻辑代数	复合逻辑及其运算	$\sqrt{}$	$\sqrt{}$	
	逻辑函数的六种描述方法	$\sqrt{}$	$\sqrt{}$	
	逻辑代数的定律、规则及常用公式	$\sqrt{}$	$\sqrt{}$	
	逻辑函数的最简形式	$\sqrt{}$	$\sqrt{}$	
逻辑函数化简	代数法化简(与或表达式)	$\sqrt{}$	$\sqrt{}$	
这相四级门间	卡诺图化简(最小项表达式)	$\sqrt{}$	$\sqrt{}$	
	具有无关项的逻辑函数及其化简	$\sqrt{}$	$\sqrt{}$	
门电路	集成电路使用特性			$\sqrt{}$

1、用布尔代数证明 $BC+D+\overline{D}(\overline{B}+\overline{C})(AD+B)=B+D$

$$BC + D + \overline{D}(\overline{B} + \overline{C})(AD + B)$$

$$= BC + D + (\overline{B} + \overline{C})B\overline{D}$$

$$= BC + D + \overline{C}B\overline{D}$$

$$= B(C + \overline{C} \cdot \overline{D}) + D$$

$$= B(C + \overline{D}) + D$$

$$= BC + B\overline{D} + D$$

 $= \boldsymbol{B} + \boldsymbol{D}$

2、卡诺图如右图,它所描述的逻辑表达式F = (B)

$$\mathbf{A} \cdot F(A,B,C,D) = \sum_{m} (0,1,3,4,5,9,13,15)$$

$$\mathbf{B} \cdot F(A,B,C,D) = \sum_{m} (1,2,4,5,9,10,13,15)$$

$$\mathbf{C} \cdot F(A,B,C,D) = \sum_{m} (1,2,3,4,5,8,9,14)$$

$$\mathbf{D} \cdot F(A,B,C,D) = \sum_{m} (1,4,5,8,9,10,13,15)$$

 AB
 00
 01
 11
 10

 00
 1
 1
 1

 01
 1
 1
 1

 11
 1
 1
 1

 10
 1
 1
 1

3、已知函数
$$F_1 = A\overline{B} + AD + BC + C\overline{D}$$
 $F_2 = \overline{ABD} + \overline{AC} + \overline{BCD}$ F_1 、 F_2 之间的逻辑关系是($F_1 = F_2$)。

4,
$$(376.2)_{O} = (1111111110.01)_{B} = (FE.4)_{H}$$
.

5、波形如图,写出F₁F₂F₃的表达式。

	第二章 组合逻辑	基	本要求	
	教学内容	熟练掌握	正确理解	了解
	组合逻辑的概念和特点		$\sqrt{}$	
组	合逻辑电路的分析方法	$\sqrt{}$	$\sqrt{}$	
组	合逻辑电路的设计方法	$\sqrt{}$	$\sqrt{}$	
	数据选择器(多路选择器)	$\sqrt{}$	$\sqrt{}$	
	数据分配器	$\sqrt{}$	$\sqrt{}$	
学田 44	译码器(3:8译码器)	$\sqrt{}$	$\sqrt{}$	
常用组合 逻辑部件	编码器	$\sqrt{}$	$\sqrt{}$	
	数值比较器	$\sqrt{}$	$\sqrt{}$	
	加法器	$\sqrt{}$	$\sqrt{}$	
	奇偶校验器		$\sqrt{}$	
ᄱᄼᅚ	产生根源		$\sqrt{}$	
组合逻辑的竞 争冒险现象	发现方法	√	$\sqrt{}$	
J 14 14 70 201	消除方法	$\sqrt{}$	$\sqrt{}$	

1、8选1数据选择器74LS151构成的电路如图所示。写出电路输出函数Y的逻辑表达式,以最小项之和表达。若要使函数 $Y(ABCD)=\sum m(1,2,5,7,8,10,14,15),则接线应如何改动?$

+ABCD+ABCD+ABC

2、三线排队的组合电路框图如图,A、B、C为三路输入信号, F_1 、 F_2 、 F_3 为其对应的输出,电路在同一时刻只允许通过一路信号,且优先的顺序为A、B、C,写出三路输出信号的逻辑表达式。

 $\mathbf{F}_1 = (\mathbf{A}) \quad \mathbf{F}_2 = (\mathbf{A}B) \quad \mathbf{F}_3 = (\mathbf{A}BC)$

A	В	С	F_1	F ₂	F_3
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	1	0	0
1	1	0	1	0	0
1	1	1	1	0	0

3、由4选1数据选择器组成的电路和输入波形如图所示。写出电路输出函数 F的逻辑表达式,并画出输出函数F的波形。

4、电路如图,由四位全加器和异或门组成。

当K=0实现(四位二进制加法),当K=1实现(四位二进制减法)

5、将2:4译码器改为四路分配器。

	第三章 时序逻辑	基	本要求	
	教学内容	熟练掌握	正确理解	了解
时序	逻辑电路的概念和特点		$\sqrt{}$	
	四种基本触发器	$\sqrt{}$	$\sqrt{}$	
时序逻辑电路的	为状态转移图、状态转移表和时序图	$\sqrt{}$	$\sqrt{}$	
	以触发器为组件的电路分析 (计数器、序列检测器)	√	$\sqrt{}$	
同步时序逻辑 	以触发器为组件的电路设计 (计数器、序列检测器)	√	$\sqrt{}$	
异步时序逻辑	以触发器为组件的电路分析		$\sqrt{}$	$\sqrt{}$
	寄存器、锁存器	√	$\sqrt{}$	
	移位寄存器	√	$\sqrt{}$	
常用时序	计数器(频率计)	√	$\sqrt{}$	
逻辑部件	节拍信号发生器	√	$\sqrt{}$	
	以MSI为为组件的电路分析	$\sqrt{}$	$\sqrt{}$	
	以MSI为为组件的电路设计	$\sqrt{}$	$\sqrt{}$	

边沿 触发 CP 一〇〉 下降沿触发

电平 触发 **CP** —

高电平触发

── 低电平触发

CP	 上升沿触发

	RS触发	器	D触发器		JK触发器		T触发器		
特征方程	$Q^{n+1} = \overline{\overline{S}} + \overline{R}Q^n$		Q^{n}	$^{+I}=D$	Q^{n+1}	$=J\overline{Q}^n$	$+\overline{K}Q^{n}$	$Q^{n+l} = 1$	$T\overline{Q}^n + \overline{T}Q^n$
功能表	R S 0 0 0 1 1 0 1 1	Qn+1 x 0 1 Qn	D 0 1	Q ⁿ⁺¹ 0 1	J 0 0 1 1	0 1 0 1	$\begin{array}{c} \mathbf{Q^{n+1}} \\ \mathbf{Q^{n}} \\ 0 \\ 1 \\ \overline{\mathbf{Q^{n}}} \end{array}$	T 0 1	Qn+1 Qn Qn Qn
状态转换	01 11 10	11	0		0×	1> 0 ×1	×0	0.00	1 0

米里型

1、能完成Qⁿ⁺¹=Qⁿ逻辑功能的电路有____a、b、c、d。

2、如图 所示电路名称是__A___计数器。其中Sn为异步置1端,Rn为异步置0端,状态按Q4Q3Q2Q1排序。当预置脉冲作用后,再经3个CP脉冲作用,电路状态Q4Q3Q2Q1=__B_。

A、环形

B, 0100

3、分析如下电路功能。

激励方程:

$$D_1 = \overline{Q}_2 \overline{Q}_1$$
$$D_2 = Q_1$$

状态方程:

$$Q_1^{n+1} = D_1 = \overline{Q}_2 \overline{Q}_1$$
$$Q_2^{n+1} = D_2 = Q_1$$

 $Z = Q_2$

输出方程:

模3计数器(可自启动)

4 设计一个满足 如下图 所示波型的时序电路。若选用D触发器实现,写出激励方程和输出方程表达式。

输出

Z

 Q_1^{n+1}

$$5$$
、触发器完成 $Q^{n+1}=\overline{Q}^n$,

$$A D = \overline{Q^n}$$

其激励方程应为(A,B,C,D,E)。

$$\mathbf{B} \quad T = 1$$

C
$$J = 1, K = 1$$

$$\mathbf{D} \quad J = Q^n, K = Q^n$$

$$\mathbf{E} \quad \overline{\mathbf{S}} = \mathbf{Q}^n, \overline{\mathbf{R}} = \mathbf{0}$$

6、74LS163组成的电路如图,可以实现几进制计数。

$$4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 1 \ 0 \rightarrow 11$$

$$\rightarrow 12 \rightarrow 13 \rightarrow 14 \rightarrow 15 \rightarrow 4$$

模7(复位法)

 $\overline{\mathbf{Q}_{\mathbf{B}}}$ $\overline{\mathbf{Q}_{\mathbf{C}}}$ LOAD 0-1 CP___CLK CLR A B C D

7、级联扩模 (第三章PPT)

第	四章 存储逻辑	基	基本要求			
	教学内容		正确理解	了解		
RAM	SRAM		$\sqrt{}$			
TAIVI	DRAM		$\sqrt{}$			
	ROM的电路结构		$\sqrt{}$			
	掩膜ROM		$\sqrt{}$			
ROM	PROM		$\sqrt{}$			
	EPROM、E2PROM		$\sqrt{}$			
	Flash Memory		$\sqrt{}$			
存	了储器容量扩展	$\sqrt{}$	$\sqrt{}$			
用ROI	V实现组合逻辑函数		$\sqrt{}$			

1、某RAM芯片其地址线为 $A0\sim A10$ 位,数据线 $D0\sim D7$ 位,该存储 四章习题 器芯片描述为: ($2K\times 8$

2、打开第四章PPT

	第五章 可编程	基	基本要求			
	教 学 内	熟练掌握	正确理解	了解		
月	PLA实现组合 设	逻辑函数		$\sqrt{}$	$\sqrt{}$	
Ŧ	见场可编程门阵。	FJFPGA		$\sqrt{}$		
	ISP技术特	点			$\sqrt{}$	
	ispLSI1032的内	部结构		$\sqrt{}$		
is	spLSI的下载原理	里与方式			$\sqrt{}$	
	VHDL语	言的程序结构	$\sqrt{}$	$\sqrt{}$		
	VHDL语言的	內对象及数据结构	$\sqrt{}$	$\sqrt{}$		
VHDL	VHDL语言的护	并行语句及顺序语句	√	$\sqrt{}$		
语言基础		数据流描述方式	√	$\sqrt{}$		
	方式	结构描述方式	√	$\sqrt{}$		
		行为描述方式	$\sqrt{}$	$\sqrt{}$		

3、用PLA实现输出二进制数是输入二进制数的平方。要求三个输入端A、B、C。输出6位

$$O_{5} = AB$$

$$O_{4} = \underline{AB} + AC$$

$$O_{3} = \overline{ABC} + ABC$$

$$O_{2} = B\overline{C}$$

$$O_{1} = 0$$

$$O_{0} = C$$

$$A = AB = ABC$$

A						
$\overline{\mathbf{A}}$						
<u>B</u> .			_			
$\overline{\mathbf{B}}$						
\overline{C} .			0-0			
$\overline{\mathbb{C}}$						
	\longrightarrow					
		· >	<			
			>	\hookrightarrow		
				• •	·	
						 <

A	В	С	O_5	O_4	O_3	O_2	O_1	O_0
0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	1
0	1	0	0	0	0	1	0	0
0	1	1	0	0	1	0	0	1
1	0	0	0	1	0	0	0	0
1	0	1	0	1	1	0	0	1
1	1	0	1	0	0	1	0	0
1	1	1	1	1	0	0	0	1

 ${\bf O}_5 \\ {\bf O}_4 \\ {\bf O}_3 \\ {\bf O}_2 \\ {\bf O}_1 \\ {\bf O}_0$

```
LIBRARY ieee;
USE ieee.std logic 1164.all;
USE ieee.std logic unsigned.all;
ENTITY upcount IS
       PORT ( Clear, Clock : IN
                                             STD LOGIC;
                              STD LOGIC VECTOR(1 DOWNTO 0));
               Q:BUFFER
END upcount;
ARCHITECTURE Behavior OF upcount IS
BEGIN
       upcount: PROCESS (Clock)
       BEGIN
               IF (Clock'EVENT AND Clock = '1') THEN
                      IF Clear = '1' THEN
                              Q \le "00";
                      ELSE
                              Q \le Q + '1';
                      END IF;
               END IF;
                                        同步清零二位二进制计数器
       END PROCESS;
```

END Behavior;

第五章习题

```
LIBRARY ieee;
USE ieee.std logic 1164.all;
ENTITY compare1 IS
      PORT (A, B : IN STD_LOGIC;
             AeqB: OUT STD LOGIC);
END compare1;
ARCHITECTURE Behavior OF compare1 IS
BEGIN
      PROCESS (A, B)
      BEGIN
             AeqB \leq '0';
             IFA = BTHEN
                    AeqB \leq '1';
             END IF;
      END PROCESS;
END Behavior;
```

一位相等比较器

```
LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.std logic arith.ALL;
USE IEEE.std logic unsigned.ALL;
entity counter10 is
   port(clk,reset : in std_logic;
   dataout: out std_logic_vector(3 downto 0);
end counter10;
architecture hav of counter10 is
 signal data tmp: std logic vector(3 downto 0);
   begin
   process(clk,reset)
   begin
    if (reset ='1') then
      data tmp <= "0000";else
      if (clk 'event and clk = '1') then
                                               异步复位模十计数器
       if data tmp = "1001" then
        data tmp <="0000";
       else
       data_tmp <=data_tmp+1;
      end if;
     end if;
   end if;
  end process;
   dataout <= data tmp;
end hav;
```

有限状态机的VHDL描述: P162 例12

	第六章	基	基本要求			
	熟练掌握	正确理解	了解			
玎	1代数字系统	统的设计方法		$\sqrt{}$		
		算术逻辑运算单元ALU		$\sqrt{}$		
		各种用途寄存器		$\sqrt{}$		
数字系统的组	l成及功能	存储器RAM		$\sqrt{}$		
		数据总线	$\sqrt{}$	$\sqrt{}$		
		控制器		$\sqrt{}$		
ASM算	算法流程图	的符号及表示方法	$\sqrt{}$	$\sqrt{}$		
小型控制器		计数器型	$\sqrt{}$	$\sqrt{}$		
设计		多路选择器型	$\sqrt{}$	$\sqrt{}$		
IX V		定序型			$\sqrt{}$	

1、已知状态转移图如下:设计计数型控制器。

$$Q_2^{n+1} = \overline{Q}_2 Q_1 \overline{X} + Q_2 \overline{Q}_1 X + Q_2 Q_1 X$$

$$= \overline{Q}_2 Q_1 \overline{X} + Q_2 X$$

$$Q_I^{n+1} = Q_2 + Q_I X$$

在 S_1 状态产生控制信号 C_1 在 S_2 状态产生控制信号 C_2 在 S_3 状态产生控制信号 C_1 , C_3

	现态			次态		
	Q_2	Q_1		Q_2^{n+1}	Q_1^{n+1}	转移条件
S_1	0	1	\mathbf{S}_2	1	0	\overline{X}
\mathbf{S}_1	0	1	\mathbf{s}_1	0	1	X
S_2	1	0	s_1	0	1	\overline{X}
\mathcal{S}_2	1	U	S_3	1	1	X =
S_3	1	1	\mathbf{S}_3	1	1	$X \\ X$
53	1	1	\mathbf{s}_1	0	1	Λ

$$Q_2^{n+1} = \overline{Q}_2 Q_1 \overline{X} + Q_2 X$$

$$Q_I^{n+1} = Q_2 + Q_I X$$

$$Q_2^{n+l} = \overline{Q}_2 Q_1 \overline{X} + Q_2 X$$
 在 S_1 状态产生控制信号 C_1 在 S_2 状态产生控制信号 C_2 在 S_3 状态产生控制信号 C_1 。 在 S_3 状态产生控制信号 C_1 。

2、已知状态转移图如下:设计多路选择器型控制器。

	现态			次态		
	Q_2	Q_1		Q_2^{n+1}	Q_1^{n+1}	转移条件
S_1	0	1	s_2	1	0	\overline{X}
			\mathbf{s}_1	0	1	X
S_2	1	0	\mathbf{s}_1	0	1	\overline{X}
			s_3	1	1	X
S_3	1	1	s_3	1	1	\overline{X}
			s_1	0	1	X

在 S_1 状态产生控制信号 C_1 题 在 S_2 状态产生控制信号 C_2 在 S_3 状态产生控制信号 C_1 , C_3

3、已知状态转移图如下:设计定序型控制器。

$$Q_{3}^{n+1} = Q_{3}X + Q_{2}\overline{X} + Q_{1}X$$

$$Q_{2}^{n+1} = Q_{3}\overline{X}$$

$$Q_{1}^{n+1} = Q_{2}X + Q_{1}\overline{X}$$

在 S_1 状态产生控制信号 C_1 在 S_2 状态产生控制信号 C_2 在 S_3 状态产生控制信号 C_1 , C_3

现态)			
	Q_3	Q_2	Q_1		Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	转移条件
C	1	0	0	\mathbf{S}_2	0	1	0	\overline{X}
S_1	1			\mathbf{s}_1	1	0	0	X
$oxed{S_2}$	0	1	0	\mathbf{s}_1	1	0	0	\overline{X}
2				s_3	0	0	1	X
S_3	0	0	1	s_3	0	0	1	\overline{X}
3				\mathbf{s}_1	1	0	0	X

$$Q_3^{n+1} = (Q_3 + Q_1)X + Q_2\overline{X}$$

$$Q_2^{n+1} = Q_3\overline{X}$$

$$Q_1^{n+1} = Q_2X + Q_1\overline{X}$$

$$egin{aligned} oldsymbol{C}_1 &= oldsymbol{Q}_1 + oldsymbol{Q}_3 \ oldsymbol{C}_2 &= oldsymbol{Q}_2 \ oldsymbol{C}_3 &= oldsymbol{Q}_3 \end{aligned}$$

- 综合题:电路如图所示,其中 R_A 、 R_B 和 R_S 均为8位移位寄存器,其余电路分别为全加器和D触发器,要求
- 1) 若电路工作前所有寄存器先清零,两组数码A=10001000, B=00001110, 8个CP脉冲后(先送入 a_0 和 b_0), R_A 、 R_B 和 R_S 的内容为何?
 - 2) 再来8个CP脉冲Rs中的内容如何?
 - 3) 说明电路的逻辑功能。

感谢同学们的支持祝同学们取得好成绩

```
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY COUNT10 IS
  PORT (CLK: IN STD_LOGIC;
   CLR: IN STD_LOGIC; -- 清零信号
ENA: IN STD_LOGIC; -- 计数使能信号
CNTQ: OUT INTEGER RANGE 0 TO 15; -- 计数结果
CNTOUT: OUT STD_LOGIC); -- 计数进位
 END COUNT10;
ARCHITECTURE A OF COUNT10 IS
  SIGNAL CNTI: INTEGER RANGE 0 TO 15;
BEGIN
  PROCESS(CLK, CLR, ENA)
   BEGIN
    IF (CLR = '1') THEN CNTI <= 0; - - 清零
    ELSIF (CLK'EVENT AND CLK = '1')THEN
      IF (ENA = '1')THEN
        IF (CNTI < 9) THEN CNTI <= CNTI + 1;
         ELSE CNTI <= 0; -- 等于9, 则回转
        END IF;
      END IF;
    END IF;
  END PROCESS;
  PROCESS(CNTI)
  BEGIN
    IF (CNTI = 9)THEN CNTOUT <= '1';
    ELSE
      CNTOUT <= '0';
    END IF;
  END PROCESS;
  CNTQ <= CNTI;
END A;
```


作业 以班为单位提交一份PPT,内容为:

第一章1道题及详细解题过程。

第二章 2道题(分析、设计)及详细解题过程。

第三章 2道题(分析、设计)及详细解题过程。

第四章 1道题及详细解题过程。

第五章 1道题(VHDL语言)及详细解题过程。

第六章 1道题及详细解题过程。

不得使用教科书、题解书及课件上的题目。