Hourly energy demand and prices: an analysis on risk measures and correlation

Camilo Oberndorfer Mejía

Gregorio Pérez Bernal

Luisa Toro Villegas

Miguel Valencia Ochoa

May 24, 2021

Abstract

blah blah lo que vamos a usar blah blah.

The previously mentioned methodologies will be applied to the hourly energy demand generation in Spain from 2015 to 2019. The hope to this paper is to find a way to predict energy prices using correlation techniques and understand how demand affects supply and vicersa.

1 Introduction

2 Data description

2.1 Original dataset

2.2 Modifications

Montly= Demand

3 Estimation and results

Historical data (Explicar que se hizo y que dataset se uso) (Analisis)

3.1 Identifying underlying distribution

To construct a thorough analysis on any given set of data, a crucial first step is to attempt to understand that way the data is distributed. If the data follow a normal distribution, the following analysis could have a smaller margin of error, but it is rare to see that any real life data follows a normal distribution.

The data's energy generation histogram and quantile-quantile plot (qqplot) are graphic tools that help identify normality, which are shown in the following figures:

The previous figures are a characteristic example of under-dispersed data (for example a uniform distribution or any other beta distribution) and the qqplot, which compares the theoric quantiles and sample quantiles, shows an s-shape, which bleah blah blah.

Hacemos linealizacion?

3.2 Stability tests

Given the data's underlying bleh bleh window volatility (ya) (Explicar que se hizo y que dataset se uso) (Analisis)

Cartas de control: hablar sobre esto. (Explicar que se hizo y que dataset se uso) (Analisis)

Exponential smoothing (Explicar que es) Hice exponential smoothing normal.. Es diferente al metodo Gausiano??

(Realizar analisis de las figuras)

3.3 Performance and prediction error

(Explicar que se hizo y que dataset se uso)

(Analisis)

¿Esto lo vamos a incluir?? ¿Que analisis haremos?

3.4 Extreme values and outliers

Metricas (Distancia euclidiana, mahalanobis) Mahalanobis distance is used to detect outliers in multivariant testing. Revisar esto y ponerle ejes a las graficas

 $\ensuremath{\mathcal{C}}$ Cuales otras comparaciones hacemos? EVT ?

El método de picos sobre el umbral, POT por sus siglas en inglés, identifica los valores extremos de la serie de retornos como aquellos que excedan un umbral u , estos valores son conocidos como excesos de retorno (Esto lo copypastee, hay que explicar bien) (Explicar que se hizo y que dataset se uso) (Analisis)

Falta esto Funciones de densidad (izquierda) y distribución (derecha) de las distribuciones de valor extremo.

partir de la teoría del valor extremo es posible introducir otras medidas de riesgo que se concentran en la frecuencia y la magnitud de la realización de eventos extremos. Estas medidas son conocidas como el Return level y el Return period.

3.5 Measuring dependency

Autocorrelation functions, partial and simple, ACF and FACF (Explicar que se hizo y que dataset se uso) (Analisis)

A copula helps detect dependency structures in multivariate data. (Explicar que se hizo y que dataset se uso) (Analisis)

Dejamos las tablas?? Como ponemos l leyenda??

Coeficiente de correlacion (R2)

Table	TotalEnergyGeneration	EnergyDemand	EnergyPrice
"Correlation coeficient between variables (R2)"	0.74797	0.81922	0.46958

Coeficiente de correlacion (R2) con matriz de covarianzas robusta

Table	TotalEnergyGeneration	EnergyDemand	EnergyPrice
"Correlation coeficient between variables (R2)"	0.82075	0.83201	0.27476

Coeficiente de correlacion (R2) con matriz de covarianzas robusta entre dos variables de interés

Table	TotalEnergyGeneration	EnergyDemandPrediction
"Correlation coeficient between variables (R2)"	0.83751	0.83751

proyecciones ¿Esto se va a hacer?

4 Conclusions

Esto no se puede borrar, hay que buscar donde ponerlo [MV06] [GP09] [Jha19]

References

- [GP09] Humberto Gutiérrez Pulido. Control estadístico de la calidad y seis sigma. Segunda Edición, 2009.
- $[{\it Jha19}] \ \ {\it Nicolas\ Jhana}. \ \ {\it Hourly\ energy\ demand\ generation\ and\ weather}. \ \ {\it Kaggle}, \ 2019.$
- [MV06] Luis Fernando Melo Velandia. Medidas de riesgo, características y técnicas de medición: una aplicación del var y el es a la tasa interbancaria de colombia. 2006.