Outlier detection

From statistical analysis to more advanced ML/DL approaches

Raphael Espanha
Data Scientist

October 15th, 2019

Know the unknown.

technologies

A MOBILEUM Company

BYPASS MTR USE CASE

Phone companies have agreements with each other and use the <u>services of carriers</u>

By paying interconnection fees

COUNTRY A (Mexico)

COUNTRY B (Brazil)

Fraudster profit

International Fee to forward the call

Local call cost

Financial Impact

Loss of revenue for legitimate operators

Image Impact

- No call completion
- Odd or no calling number
- Bad call quality

GOAL

Goal – Detect abnormal ranges

Range with abnormal behavior

DATA

Data – Signaling events

Signaling data from august 2018

COUNTRY B (Brazil)

a_number - origin numberb_number - destiny numbertime: call timestamp

	a_number ♦	b_number \$	time ♦
	ZNFNNUULP	BNFVZNOPOIUFP	20180806211322
	ZIIIPZIUZ	BNFVZNFROIRFO	20180816191720
	IIFLIZPUOFL	BNFVZNLFVNOIO	20180820154021
	LLRRNRUIUZUI	BNFVZNNIUPZVP	20180814122533
	ZNFZUPPPR	BURVDUZNZUUZFOLIFNFP	20180815204314
	VNNVVFRLZ	BNFVZNOLOUVNV	20180806160006
	IOVFFNVOOLNF	BURVZNNIUFRUV	20180804105707
	LLRIZIILIPFR	BNFVZNNIUZIUO	20180814012423
	ZNUPOZROO	BNFVZNNIUFOPL	20180813171510
	ZNOZNULOZ	BNFVZNVOLLLNO	20180815141804

Data Cleansing

Client requested filters were applied:

- A numbers from starting with L or I
- A number length > 9
- Null values

time ♦	b_number \$	a_number ♦
0180806211322	BNFVZNOPOIUFP	ZNFNNUULP
0180816191720	BNFVZNFROIRFO	ZIIIPZIUZ
0180820154021	BNFVZNLFVNOIO	IIFLIZPUOFL
0180814122533	BNFVZNNIUPZVP	LLRRNRUIUZUI
0180815204314	BURVDUZNZUUZFOLIFNFP	ZNFZUPPPR
0180806160006	BNFVZNOLOUVNV	VNNVVFRLZ
0180804105707	BURVZNNIUFRUV	IOVFFNVOOLNF
0180814012423	BNFVZNNIUZIUO	LLRIZIILIPFR
0180813171510	BNFVZNNIUFOPL	ZNUPOZROO
0180815141804	BNFVZNVOLLLNO	ZNOZNULOZ

time ♦	b_number ♦	a_number ♦
20180821201213	BNFVZNNIUZIZL	IIFVNZFFNZR
20180805114643	BURVZNNIUFUVR	IOVFZNPZZLUZ
20180824190610	BNFVZNNIUOILR	ILFNFVNPURP
20180820130935	BNFVZNNIUZRNZ	LLRPILRNPLUU
20180805202844	BURVZNNIUFIPU	IOVFVNVRPZLU
20180802125215	BNFVZNNIULIVI	LVUFUOLNRFLZ
20180815202426	BURVZVULLUPRU	LURFVPIVLVN
20180803114237	BURVZVUIIVPNU	IPUZZUOIIRVP
20180806085534	BNFVZNNIURNOO	IIFNUNRLPZV
20180816120950	BNFVZNNIURLIU	IIFUIPPNVNU

33 929 956 events

20 636 037 events

Data Analysis – Time and distinct values

Outlier Detection Range Numbers

Statistical approach

Statistical Approach – Multiple time context analysis

RANGE ANALYSIS

Statistical Approach – Daily analysis overview

Statistical Approach – Preprocessing - Time binning

Creating intervals of 10 min

10:43	10:40
10:45	10:40
10:47	10:40
10:51	10:50
10:55	10:50
10:59	10:50

1	time	\$	interval_b	in ¢
20180819	1607	32	20180819	1600
20180806	1140	05	20180806	1140
20180824	0929	34	20180824	0920
20180822	1553	36	20180822	1550
20180807	1310	51	20180807	1310
20180802	0859	20	20180802	0850
20180820	1004	27	20180820	1000
20180825	1643	52	20180825	1640
20180812	1238	31	20180812	1230
20180815	1735	23	20180815	1730
20180824	1524	37	20180824	1520

Statistical Approach - First aggregation (daily analysis example)

Group by a_number

a_number \$	b_number \$	time ♦	interval_bin ♦
LLRPPNFVOZPL	BNFVZNNIUFNFP	20180801143033	201808011430
IIFOUVZLLUO	BNFVZNNIULZUI	20180801182655	201808011820
IIFRRONLVNU	BNFVZNNIUORRR	20180801193622	201808011930
LLROILIOPRIU	BURVZNLRZNIZO	20180801133657	201808011330
INFIINRFOOU	BNFVZNNIUZUPZ	20180801174707	201808011740
LZLNRNRZFU	BNFVZNNIUOZVO	20180801115318	201808011150
LLROFPNLIZOO	BNFVZNNIUPLZU	20180801190527	201808011900
IIFVRIFOUNF	BNFVZNNIUFFVZ	20180801210050	201808012100
ILFUPUZORFR	BURVZNIPIONZV	20180801101755	201808011010
IIRFZZUFZNV	BNFVZNZIPPIVR	20180801123153	201808011230
IVLZNVIPVFF	BNFVZNNIUPVOV	20180801124409	201808011240
IIFNFVOIZZO	BURVZNFZFVORU	20180801201836	201808012010
IIFUZZPPUFP	BNFVZNNIUOLRU	20180801171554	201808011710

a_number ♦	distinct_b_numbers \$	distinct_interval_bin ♦	signalling_events \$
IIFZOVRLUOI	1	1	1
IIFNOOZPZRN	1	1	1
LLVURNFFZUPI	1	1	1
LFRIURNFPIV	1	1	1
LLRPFRINZUVU	1	1	1
IIFVVZIOLZF	1	1	1
IIFFNNUVIIP	4	4	4
IZULVVPIVPZU	1	1	1
LLVURPIINZII	1	1	1
ILFRZNRPRZR	1	1	1
LLRLZILUPZFP	2	1	2
IIFNZIVIVVN	1	1	1
LRZORIULII	1	1	1

Statistical Approach – dropping low event ranges

Assuming that a numbers and ranges with very low daily events are not fraudsters

Using Tukey's fences

Removing a_numbers with less than 5 events in one day:

✓ Greatly improves algorithm performance

Statistical Approach – Event's intensity

a_number ♦	distinct_b_numbers \$	distinct_interval_bins \$	signalling_events \$	event_intensity_score \$
IFIULVNPLOR	16	1	20	0.9328
IFRUIRFUVIL	22	2	30	0.9036
IFRUZURNUIV	86	6	100	0.3165
LZVNNPPVFVFNZ	32	6	39	0.2633

Statistical Approach – Coefficient of Variation (CV)

Also known as relative standard deviation (RSD)

Standardized measure of dispersion of a frequency distribution

$$c_{
m v} = rac{\sigma}{\mu}$$

Compute a rotation score based on CV computed from events

Statistical Approach – Map back possible a numbers level up

Jaily Analysis Finished

A MOBILEUM Company

Rotation score

Hour consistency score

Event intensity score

B dispersion score

A/B ratio score

A number
level 1 {0,1,2}
High profile score
Rotator profile score

Overall Analysis

Day 20181201 analysis

(...)

Day X analysis

Global High

Local Rotators

Local High

Statistical Approach – Results

A MOBILEUM Company

Outlier Detection Range Numbers

Machine Learning - PCA

Principal Component Analysis

Similar data preparation steps

- Range
- Range Level
- Signaling Events CV
- AB Ratio
- Rotation Score
- Interval consistency
- (...)

standardized scale (z)

$$z = \frac{x - \mu}{\sigma}$$

Principal Component Analysis is a linear transformation of data that reduces its dimension into Principal Components (PCs)

Principal Components are new variables that are constructed as linear combinations of the initial variable

PCs	Retained Information (%)	
1	43	
2	70	
3	84	
4	93	

Principal Component Analysis - Results

Autoencoders

Similar data preparation steps

- Range
- Range Level
- Signaling Events CV
- AB Ratio
- Rotation Score
- Interval consistency
- (...)

standardized scale (z)

$$z = rac{x - \mu}{\sigma}$$

Autoencoders - Results

ReLU

Leaky ReLU

13-8-2-8-13

Optimizer	Adam
Loss	MSE
Act. Function	ReLU
Epochs	50

Tukey (k=3) 83 459 cases

20 / 21 known bypass (95%)

2/52 known FP (2%)

Predict

MSE

Q(0.99) 6807 cases

16 / 21 known bypass (76%)

0 / 52 known FP (0%)

Outlier Detection Range Numbers

Deep Learning – LSTM + AE

Stacked LSTM + Autoencoders

3D Approach

Sequence of hours (scaled)

Sequence of ranges (scaled)

Stacked LSTM + Autoencoders - Results

Conclusions

Conclusions

Statistical with scoring approach

- Fast (18 secs for 10 days)
- Good results with low cases
- Keeps the history of daily studies to help end user to understand what is going on
- Simple and easy to explain
- Overfitting can occur

Autoencoders

- Can learn new feature representation
- Relatively simple to understand
- Hyper parameter tuning
- Good results but only with a high number of cases
- Not so easy to explain results (feature importance)

PCA

- Fast
- Good results but only with a high number of cases
- Not easy to explain results

LSTM + Autoencoders

- Can learn new feature representation
- Sequence learning capability
- Good results require very high number of cases (high FPs)
- Very high computational cost (fit)
- Complex
- Hard to explain results

THANK YOU

raphael.espanha@wedotechnologies.com

Know the unknown...

