

Types of Trial Design

Lea Drye, PhD

Johns Hopkins University

Phases of trials

Phase I:

- First stage in testing a new intervention in humans
- Usually 10-30 people
- Identify tolerable dose, provide information on drug metabolism, excretion, and toxicity
- Often not controlled

Phase II:

- Usually 30-100 people
- Preliminary information on efficacy, additional information on safety and side effects

Phase III:

- Usually 100+ people
- Assess efficacy and safety
- Controlled, usually randomized

Lecture Outline

- Discuss various trial design types
 - Parallel
 - Crossover
 - Group allocation
 - Factorial
 - Large simple
 - Equivalency
 - Non-inferiority
 - Adaptive

Section A

Comparison Structure: Parallel, Crossover, and Group Allocation Designs

Parallel Design

- Simultaneous treatment and control groups
- Each person is randomly assigned to one treatment group
- Randomization removes treatment selection bias and promotes comparability of treatment groups
- Statistical comparisons made between treatment groups

Parallel Design Graph

Parallel Design Example: NETT

- National Emphysema Treatment Trial (NETT)
 - Phase III trial, unmasked

Population	People with severe emphysema
Sample size	1,200
Allocation to treatment	Randomized
Treatments	Lung volume reduction surgery plus medical therapyMedical therapy (standard therapy control)

Parallel Design Example: NETT

Hypothesis testing	Superiority
Outcomes	 Primary: mortality, exercise capacity Secondary: quality of life, symptoms, lung function and mechanics, functional capacity
Follow-up	Up to 7.5 years
Number of recruiting centers	Multi-center (17)

Crossover Design

- Randomization of order in which treatments are received
 - AB or BA
 - Randomization promotes balance between treatment groups in timing of exposure
- Testing of both treatments in each patient
 - Each patient serves as his/her own control
 - Variability reduced because less variability within patient than between patients
- Fewer patients needed

Crossover Design Graph

Crossover Design: Disadvantages

- Treatment can't have permanent effects or cures
- Potential carry-over effects of first-period treatment to second period
 - Washout needs to be long enough
 - Unequal carry-over effects
 - Treatment during washout
- Test for period by treatment interactions not powerful
- Dropouts more significant
- Analysis may be more difficult

Crossover Design: Uses

- Constant intensity of underlying disease
 - Chronic diseases—asthma, hypertension, arthritis
- Short-term treatment effects
 - Relief of signs or symptoms of disease
- Metabolic, bioavailability, or tolerability studies

Crossover Design: Examples

- Evening-dose vs. morning-dosed travoprost in open-angle glaucoma for 24-hour intraocular pressure control
- Montelukast vs. salmeterol as adjuvant to inhaled fluticasone for exercise-induced asthma in children
- Topical oil vs. placebo for neuropathic pain

Group Allocation Design

- Also known as "cluster randomization"
- Randomization unit is a group of individuals (community, school, clinic)
- Individual randomization and intervention is not feasible or is unacceptable
 - Tracking
 - Contamination
- If there is a correlation in the responses within a group, design loses some efficiency (more individuals required)

Group Allocation Design Graph

Group Allocation Example: Sommer Vit A trial

- Population
 - Preschool children in northern Sumatra in 1982-83
- Treatments
 - Vitamin A supplementation during study
 - Vitamin A supplementation after study
- Clusters
 - Villages (450) selected using survey sampling method
 - Each randomly allocated to one treatment