

CSE 543 Information Assurance and Security

IA Applications of Formal Methods

Professor Stephen S. Yau Fall 2022

IA Applications of Formal Methods

Objective:

More precisely determine the requirements, and analyze the information system so that *security incidents can be prevented or at least identified.*

IA Applications of Formal Methods

Step 1: System Specification: Abstraction and modeling with a well-defined syntactic and semantic structure for system to operate.

IA Applications of Formal Methods

Step 2: Requirement Specification: Security modeling (e.g., BLP model) to represent the security requirements unambiguously.

Step 3: Validation: Formally validate the system with respect to its requirements.

- *Model checking* (by searching the satisfiability of the given characteristics of the system in the possible models)
- Theorem proving (by inference of given system characteristics using syntactical

Stephen S. inference rules in theory proving)

Formal Methods – Modeling

- Abstract representations of a system using mathematical entities and concepts
- Modeling: Capture essential system characteristics and ignore irrelevant details
- Model can be used for mathematical reasoning to prove system properties or predict new behavior
- Two types of models: continuous and discrete

Stephen S. Yau

Formal Methods – Modeling

- Advantages of using formal specification:
 - Clarify requirements and design
 - Articulate *implicit assumptions*
 - Identify undocumented or unexpected assumptions
 - Expose *defects*
 - Identify *exceptions*
 - Evaluate *test coverage*

Formal Methods – Generating Formal Specifications

- Need to translate non-mathematical description (diagrams, table, natural language) to a formal specification language
- The specification is a concise and precise description of high-level behavior and properties of a system
- Well-defined language semantics are needed to support formal deduction of specification

Stephen S. CSE54 Sau 3

Formal Methods – Generating Formal Specifications (cont.)

- Types of formal specifications,
 - *Model oriented*: Based on a model of the system behavior in terms of mathematical objects, like sets, sequences, etc.
 - Statecharts, SCR (Software Cost Reduction), VDM (Vienna Development Method)
 - Petri nets, automata theoretic models

Formal Methods – Generating Formal Specifications (cont.)

- Types of formal specifications (cont.)
 - Property oriented: Based on a set of properties sufficient to describe system behavior in terms of axioms, rules, etc.
 - Algebraic semantics
 - Temporal logic

Formal Method – Role in System Design and Engineering

Motivated by the expectation that performing appropriate mathematical analysis can contribute to the reliability and robustness of an information system design

* https://en.wikipedia.org/wiki/Formal_methods

Stephen S. Yau

Formal Method – Role in System Design and Engineering (cont.)

- Formal specification of an information system may be used as a guide while the system is being developed.
 - If the formal specification is in *operational* semantics (executable), the observed behavior of the system can be compared with the behavior of the specification.
 - If the formal specification is in *axiomatic semantics*, the pre-conditions and post-conditions of the specification may become assertions in the executable code.*

* https://en.wikipedia.org/wiki/Formal_methods

Formal Methods — Bell-LaPadula (BLP) Model

For *enforcing* <u>access control</u> in information systems and built on the concept of a *state machine with* allowable states in a computer system.

http://e

n.wikipedia.org/wiki/Bell%E2%80%93La Padula model

Stephen S.

CSE54

Formal Methods — Bell-LaPadula (BLP) Model (cont.)

- The model defines two MAC rules and one DAC rule with three security properties:
 - Simple Security Property a subject at a given security level *may not* read an object at a higher security level (no read-up)

Stephen S. Yau

- ★-property ("star"-property) a subject at a given security level *must not write* to any object at a lower security level (no writedown)
- Discretionary Security Property use of an access matrix to specify the discretionary access control. http://e
 n.wikipedia.org/wiki/Bell%E2%80%93LaP
 adula model

Stephen S. Yau CSE54

Limitations of Formal Methods

- Requires sound mathematical knowledge of the developer
- Different aspects of a design may be represented by different formal specification methods
- Useful for *consistency checks*, but cannot guarantee the *completeness* of a specifications

Stephen S. Yau

CSE54