

CLAIMS

1. In a charge control agent for controlling a charge of powder or granules, wherein the charge control agent comprises a polyhydroxyalkanoate having 5 at least one kind of 3-hydroxy- ω -carboxyalkanoic acid unit represented by the chemical formula (1):

$$n = 1\text{--}8 \quad (1)$$

wherein n is an integer selected from the range shown 10 in the same chemical formula; R₁ is an H, Na or K atom, or

and when more than one unit exists, n and R₁ may differ from unit to unit.

- 15 2. The charge control agent according to claim 1, wherein the 3-hydroxy- ω -carboxyalkanoic acid unit represented by the chemical formula (1) includes any one or more selected from the group consisting

of:

a 3-hydroxy-11-carboxyundecanoic acid unit
represented by the chemical formula (2):

5 wherein R_2 is an H, Na or K atom, or

and when more than one unit exists, R_2 may differ from unit to unit,

10 a 3-hydroxy-9-carboxynonanoic acid unit represented by the chemical formula (3):

wherein R₃ is an H, Na or K atom, or

and when more than one unit exists, R₃ may differ from unit to unit.

- 5 a 3-hydroxy-7-carboxyheptanoic acid unit represented by the chemical formula (4):

wherein R₄ is an H, Na or K atom, or

- 10 and when more than one unit exists, R₄ may differ from unit to unit,

and

a 3-hydroxy-5-carboxyvaleric acid unit represented by the chemical formula (5):

wherein R_5 is an H, Na or K atom, or

and when more than one unit exists, R_5 may differ from
5 unit to unit.

3. The charge control agent according to
claim 1, characterized by comprising a
polyhydroxyalkanoate that may have, besides at least
10 one kind of 3-hydroxy- ω -carboxyalkanoic acid
represented by the chemical formula (1), a 3-hydroxy-
 ω -alkanoic acid unit represented by the chemical
formula (6):

wherein m is an integer selected from the range shown in the same chemical formula; R_6 comprises a residue having either a phenyl structure or a thienyl structure; and when more than one unit exists, m and R_6 may differ from unit to unit,

or

a 3-hydroxy- ω -cyclohexylalkanoic acid unit represented by the chemical formula (7):

10

wherein R_7 represents a substitute in the cyclohexyl group and is an H atom, a CN group, an NO₂ group, a

halogen atom, a CH₃ group, a C₂H₅ group, a C₃H₇ group, a CF₃ group, C₂F₅ group or a C₃F₇ group; and k is an integer selected from the range shown in the same chemical formula, and when more than one unit exists,

5 R₇ and k may differ from unit to unit.

4. The charge control agent according to claim 1, characterized in that R₆ in the chemical formula (6), namely a residue having either a phenyl 10 or thiienyl structure has at least any one chemical formula selected from the group consisting of chemical formulae (8), (9), (10), (11), (12), (13), (14), (15), (16), (17) and (18), and when more than one unit exists, R₆ may differ from unit to unit,

15 wherein

the chemical formula (8) is a group consisting of unsubstituted and substituted phenyl groups represented by:

20 wherein R₈ represents a substituent on the aromatic ring and is an H atom, a halogen atom, a CN group, an NO₂ group, a CH₃ group, a C₂H₅ group, a C₃H₇ group, a CH=CH₂ group, COOR₉, (R₉ represents any one of H, Na

and K atoms), a CF₃ group, a C₂F₅ group or a C₃F₇ group, and when more than one unit exists, R₈ may differ from unit to unit.

- the chemical formula (9) is a group consisting of
 5 unsubstituted and substituted phenoxy groups
 represented by:

wherein R₁₀ represents a substituent on the aromatic ring and is an H atom, a halogen atom, a CN group, an
 10 NO₂ group, a CH₃ group, a C₂H₅ group, a C₃H₇ group, an SCH₃ group, a CF₃ group, a C₂F₅ group or a C₃F₇ group, and when more than one unit exists, R₁₀ may differ from unit to unit,

- the chemical formula (10) by a group consisting of
 15 unsubstituted and substituted benzoyl groups
 represented by:

wherein R₁₁ represents a substituent on the aromatic ring and is an H atom, a halogen atom, a CN group, an
 20 NO₂ group, a CH₃ group, a C₂H₅ group, a C₃H₇ group, a

CF_3 group, a C_2F_5 group or a C_3F_7 group, and when more than one unit exists, R_{11} may differ from unit to unit, the chemical formula (11) is a group consisting of unsubstituted and substituted phenylsulfanyl groups

5 represented by:

wherein R_{12} represents a substituent on the aromatic ring and is an H atom, a halogen atom, a CN group, an NO_2 group, a COOR_{13} , an SO_2R_{14} (R_{13} represents any one 10 of an H atom, an Na atom, a K atom, a CH_3 group and a C_2H_5 group and R_{14} represents any one of an OH group, an ONa group, an OK group, a halogen atom, an OCH_3 group and OC_2H_5 group), a CH_3 group, a C_2H_5 group, a C_3H_7 group, a $(\text{CH}_3)_2\text{-CH}$ group or a $(\text{CH}_3)_3\text{-C}$ group, and 15 when more than one unit exists, R_{12} may differ from unit to unit,

the chemical formula (12) is a group consisting of unsubstituted and substituted (phenylmethyl)sulfanyl groups represented by:

wherein R_{15} represents a substituent on the aromatic ring and is an H atom, a halogen atom, a CN group, an NO_2 group, a $COOR_{16}$, an SO_2R_{17} (R_{16} represents any one of an H atom, an Na atom, a K atom, a CH_3 group and a C_2H_5 group and R_{17} represents any one of an OH group, an ONa group, an OK group, a halogen atom, an OCH_3 group and OC_2H_5 group), a CH_3 group, a C_2H_5 group, a C_3H_7 group, a $(CH_3)_2-CH$ group or a $(CH_3)_3-C$ group, and
 5 when more than one unit exists, R_{15} may differ from unit to unit,
 10 the chemical formula (13) is a 2-thienyl group represented by:

15 the chemical formula (14) is a 2-thienylsulfanyl group represented by:

the chemical formula (15) is 2-thienylcarbonyl group represented by:

the chemical formula (16) is a group consisting of
5 unsubstituted and substituted phenylsulfinyl groups represented by:

wherein R₁₈ represents a substituent on the aromatic ring and is an H atom, a halogen atom, a CN group, an
10 NO₂ group, a COOR₁₉, an SO₂R₂₀ (R₁₉ represents any one of an H atom, an Na atom, a K atom, a CH₃ group and a C₂H₅ group and R₂₀ represents any one of an OH group, an ONa group, an OK group, a halogen atom, an OCH₃ group and OC₂H₅ group), a CH₃ group, a C₂H₅ group, a
15 C₃H₇ group, a (CH₃)₂-CH group or a (CH₃)₃-C group, and when more than one unit exists, R₁₈ may differ from unit to unit,

the chemical formula (17) is a group consisting of unsubstituted and substituted phenylsulfonyl groups
20 represented by:

wherein R_{21} represents a substituent on the aromatic ring and is an H atom, a halogen atom, a CN group, an NO_2 group, a $COOR_{22}$, an SO_2R_{23} (R_{22} represents any one of an H atom, an Na atom, a K atom, a CH_3 group and a C_2H_5 group and R_{23} represents any one of an OH group, an ONa group, an OK group, a halogen atom, an OCH_3 group and OC_2H_5 group), a CH_3 group, a C_2H_5 group, a C_3H_7 group, a $(CH_3)_2-CH$ group or a $(CH_3)_3-C$ group, and when more than one unit exists, R_{21} may differ from unit to unit,

the chemical formula (18) is a group of a (phenylmethyl)oxy group represented by:

5. The charge control agent according to claim 1, wherein the powder and granular material is a toner for developing electrostatic charge images.

6. The charge control agent according to claim 1, wherein the number average molecular weight

of the polyhydroxyalkanoate is in the range of 1,000 to 1,000,000.

7. In a toner binder used for a toner for
5 developing electrostatic charge images, characterized
by comprising the charge controlling agent according
to any one of claims 1 to 6.

8. A toner for developing electrostatic
10 charge images, characterized by comprising at least a
binder resin, a colorant and the charge control agent
according to any one of claims 1 to 6.

9. An image forming method, comprising at
15 least a charging step of charging an electrostatic
latent image carrier by applying voltage to a
charging member from the outside; an electrostatic
charge image forming step of forming an electrostatic
charge image on the charged electrostatic latent
20 image carrier; a developing step of developing the
electrostatic charge image with a toner for
developing electrostatic charge images to form a
toner image on the electrostatic latent image
carrier; a transferring step of transferring the
25 toner image on the electrostatic latent image carrier
to a recording medium; and a fixing step of fixing
the toner image on the recording medium by heat,

characterized in that it uses at least a binder resin, a colorant and the charge control agent according to any one of claims 1 to 6.

5 10. The image forming method according to
claim 9, characterized in that the transferring step
comprises a first transferring step of transferring
the toner image on the electrostatic latent image
carrier to an intermediate transfer medium; and a
10 second transferring step of transferring the toner
image on the intermediate transfer medium to a
recording medium.

11. An image forming apparatus, comprising at
15 least charging means of charging an electrostatic
latent image carrier by applying voltage to a
charging member from the outside; electrostatic
charge image forming means of forming an
electrostatic charge image on the charged
20 electrostatic latent image carrier; developing means
of developing the electrostatic charge image with a
toner for developing electrostatic charge images to
form a toner image on the electrostatic latent image
carrier; transferring means of transferring the toner
25 image on the electrostatic latent image carrier to a
recording medium; and fixing means of fixing the
toner image on the recording medium by heat,

characterized in that it uses at least a binder resin, a colorant and the charge control agent according to any one of claims 1 to 6.

5 12. The image forming apparatus according to
claim 11, characterized in that the transferring
means comprises first transferring means of
transferring the toner image on the electrostatic
latent image carrier to an intermediate transfer
10 medium; and second transferring means of transferring
the toner image on the intermediate transfer medium
to a recording medium.

13. A charge controlling method, characterized
15 by comprising the steps of preparing the charge
controlling agent according to any one of claims 1 to
6; and controlling the charged state of a toner using
the charge controlling agent.