A Bayesian Model for Brain Network Functional Connectivity using PyMC3

Rui Wang
M.S. Defense Presentation

Department of Biostatistics

- Introduction
- Methods
 - Spatiotemporal Structure
 - Hierarchical Structure
 - Double Fusion
 - Prior Distribution
 - PyMC3 and NUTS
 - Optimization and Decomposition
- Simulation and Case Study

• Introduction

- Methods
 - Spatiotemporal Structure
 - Hierarchical Structure
 - Double Fusion
 - Prior Distribution
 - PyMC3 and NUTS
 - Optimization and Decomposition
- Simulation and Case Study

Previous Study

Precise Timing
High Electrical Sensitivity
High Throughput
High Spatial Accuracy
Long-term Duration

Wang, R et. al, *Nano Letter* (in review)

Brain Imaging

Brain Imaging

Rykhlevskaia et. al, *Psychophysiology* 45, 2 (2008)

Functional Connectivity

van den Heuvel et. al, European Neuropsychopharmacology 20, 8 (2008)

Structural Connectivity

Anisotropic motion

Rykhlevskaia et. al, *Psychophysiology* 45, 2 (2008)

Introduction

- Methods
 - Spatiotemporal Structure
 - Hierarchical Structure
 - Double Fusion
 - Prior Distribution
 - PyMC3 and NUTS
 - Optimization and Decomposition
- Simulation and Case Study

Introduction

- Methods
 - Spatiotemporal Structure
 - Hierarchical Structure
 - Double Fusion
 - Prior Distribution
 - PyMC3 and NUTS
 - Optimization and Decomposition
- Simulation and Case Study

Spatiotemporal Structure

$$Y_{cv}(t) = \beta_c + b_c(v) + d_c + \epsilon_{cv}(t)$$

- β_c : the grand mean
- $b_c(v)$: the zero-mean voxel-specific random effect
 - Local spatial dependency:

$$Cov(b_c(v), b_c(v')) = K_c(||v - v'||)$$

- d_c : the zero-mean ROI-specific random effect
- $\epsilon_{cv}(t)$: the noise
 - AR (1) temporal structure

Kernel Covariance Function

Constant	K(x,x')=c
Linear	$K(x,x') = x^T x'$
Gaussian noise	$K(x,x') = \sigma^2 \delta_{x,x'}$
Squared exponential	$K(x, x') = \exp(-\frac{\ x - x'\ ^2}{2l^2})$
Exponential	$K(x,x') = \exp(-\frac{\ x - x'\ }{l})$
Matérn	$K(x,x') = \frac{2^{1-v}}{\Gamma(v)} \left(\frac{\sqrt{2v} x - x' }{l} \right)^{v} B_{v} \left(\frac{\sqrt{2v} x - x' }{l} \right)$
Periodic	$K(x,x') = \exp\left(-\frac{2\sin^2(\frac{x-x'}{2})}{l^2}\right)$
Rational quadratic	$K(x, x') = (1 + x - x' ^2)^{-\alpha}, \alpha \ge 0$

Kernel Covariance Function

$$r = \|v - v'\|\varphi_c$$

Exponential (Matérn1/2):

$$\sigma_{b_c}^2 \exp(-r)$$

Gaussian or square exponential (Matérn∞):

$$\sigma_{b_c}^2 \exp(-\frac{1}{2}r^2)$$

Matérn5/2:

$$\sigma_{b_c}^2 (1 + \sqrt{5}r + \frac{5}{3}r^2) \exp(-\sqrt{5}r)$$

Matérn3/2:

$$\sigma_{b_c}^2(1+\sqrt{3}r)\exp(-\sqrt{3}r)$$

Temporal Correlation

AR (1) structure:

$$\epsilon_{cv}(t) = \delta_c + \phi_{cv} \epsilon_{cv}(t-1) + w(t)$$

- δ_c : the constant shift
- ϕ_{cv} : the coefficient with $|\phi_{cv}| < 1$
- w(t): the Gaussian random noise

$$E[\epsilon_{cv}(t)] = \frac{\delta_c}{1 - \phi_{cv}}$$

$$Var[\epsilon_{cv}(t)] = \frac{\sigma_{cv}^2}{1 - \phi_{cv}^2}$$

• Introduction

- Methods
 - Spatiotemporal Structure
 - Hierarchical Structure
 - Double Fusion
 - Prior Distribution
 - PyMC3 and NUTS
 - Optimization and Decomposition
- Simulation and Case Study

Hierarchical Structure

$$Y_c(t) = \boldsymbol{\beta}_c + \boldsymbol{b}_c + \boldsymbol{d}_c + \boldsymbol{\epsilon}_c(t)$$

•
$$Y_c(t) = [Y_{c1}(t), Y_{c2}(t), ..., Y_{cV}(t)]^T$$

$$\bullet \boldsymbol{\beta}_c = \beta_c \boldsymbol{J}_{(1 \times V)}$$

•
$$b_c = [b_{c1}, b_{c2}, ..., b_{cV}]^T$$

•
$$d_c = d_c J_{(1 \times V)}$$

•
$$\epsilon_c(t) = [\epsilon_{c1}(t), \epsilon_{c2}(t), ..., \epsilon_{cV}(t)]^T$$

Hierarchical Structure

$$Y_c(t) = \boldsymbol{\beta}_c + \boldsymbol{b}_c + \boldsymbol{d}_c + \boldsymbol{\epsilon}_c(t)$$

- $\beta_c \sim N(0, \sigma_{\beta_c}^2)$
- $\boldsymbol{b}_c \sim N(0, \Sigma_{b_c})$
- $d_c \sim N(0, \Sigma_d)$
- $\epsilon_{cv}(t) \sim N(\frac{\delta_c}{1-\phi_{cv}}, \frac{\sigma_{cv}^2}{1-\phi_{cv}^2})$

Introduction

- Methods
 - Spatiotemporal Structure
 - Hierarchical Structure
 - Double Fusion
 - Prior Distribution
 - PyMC3 and NUTS
 - Optimization and Decomposition
- Simulation and Case Study

Double Fusion

Double Fusion

$$L_d(direct) = \lambda L_{sc} + (1 - \lambda) L_{nfc}$$

$$L_d(indirect) = M_{sc}\lambda L_{sc} + (1 - M_{sc}\lambda)L_{nfc}$$

$$L_d = \omega L_d(direct) + (1 - \omega)L_d(indirect)$$

$$\Sigma_d = L_d \times L_d^T$$

Double Fusion

$$\rho_d = \begin{pmatrix} 1 & \rho_{12} & \dots & \rho_{1n} \\ & 1 & \ddots & \vdots \\ & & 1 & \rho_{(n-1)n} \\ & & & 1 \end{pmatrix}_{n \times n}$$

$$[\rho_{12}, \dots, \rho_{1n}, \rho_{23}, \dots, \rho_{2n}, \dots, \rho_{(n-1)n}]_{n_vec}$$

Introduction

- Methods
 - Spatiotemporal Structure
 - Hierarchical Structure
 - Double Fusion
 - Prior Distribution
 - PyMC3 and NUTS
 - Optimization and Decomposition
- Simulation and Case Study

$$Y_{cv}(t) = \beta_c + b_c(v) + d_c + \epsilon_{cv}(t)$$

• $\beta_c \sim N(0, 0.01^2)$

$$Y_{cv}(t) = \beta_c + b_c(v) + d_c + \epsilon_{cv}(t)$$

$$Cov(b_c(v), b_c(v')) = \sigma_{b_c}^2 \exp(-\|v - v'\|\varphi_c)$$

- $\varphi_c \sim \text{Unif}(0, 20)$
- σ_{b_c} ~ Unif (0, 100)

$$Y_{cv}(t) = \beta_c + b_c(v) + d_c + \epsilon_{cv}(t)$$

- $\lambda \sim \text{Beta}(1,1)$
- $\omega \sim \text{Beta}(1,1)$
- σ_{d_c} ~ Unif(-8,8)

$$Y_{cv}(t) = \beta_c + b_c(v) + d_c + \epsilon_{cv}(t)$$

$$\epsilon_{cv}(t) = \delta_c + \phi_{cv} \epsilon_{cv}(t-1) + w(t)\varphi_c$$

- $\phi_{cv} \sim \text{Unif}(0,1)$
- $\sigma_{cv} \sim \text{Unif}(0, 100)$

$$Y_{obs} \sim N(Y_{cv}, \sigma^2)$$

• $\sigma \sim \text{Unif}(0, 100)$

Introduction

- Methods
 - Spatiotemporal Structure
 - Hierarchical Structure
 - Double Fusion
 - Prior Distribution
 - PyMC3 and NUTS
 - Optimization and Decomposition
- Simulation and Case Study

PyMC3 and NUTS

$$Y \sim N(\mu, \sigma^2)$$

$$\mu = \alpha + \beta_1 X_1 + \beta_2 X_2$$

- $\alpha \sim N(0, 100)$
- β_1 or $\beta_2 \sim N(0, 20)$
- $\sigma \sim \text{HalfNormal}(0, 1)$

29

PyMC3 and NUTS

```
import pymc3 as pm
with pm.Model() as basic model:
   # Priors for unknown model parameters
    alpha = pm.Normal('alpha', mu=0, sd=100)
    beta = pm.Normal('beta', mu=0, sd=20, shape=2)
    sigma = pm.HalfNormal('sigma', sd=1)
   # Expected value of outcome
    mu = alpha + beta[0]*X1 + beta[1]*X2
    # Likelihood (sampling distribution) of observations
    Y_obs = pm.Normal('Y_obs', mu=mu, sd=sigma, observed=Y)
with basic_model:
    # instatiate sampler
    step = pm.NUTS()
    # draw 1000 posterior samples and tune 500 as default
    trace = pm.sample(1000, step = step)
```

Model Diagnostics

Gelman Rubin statistics:

$$\hat{R} = \frac{\hat{V}}{W}$$

Effective sample size:

$$\hat{n}_{eff} = \frac{mn}{1 + 2\sum_{t=1}^{T} \hat{\rho}_t}$$

Introduction

- Methods
 - Spatiotemporal Structure
 - Hierarchical Structure
 - Double Fusion
 - Prior Distribution
 - PyMC3 and NUTS
 - Optimization and Decomposition
- Simulation and Case Study

Optimization and Decomposition

- Vectorization
- Cholesky decomposition

$$X \sim N(\mu, \Sigma)$$

$$\Sigma = U^T U$$

$$X = \mu + U^T Z, Z \sim N(0, 1)$$

Introduction

- Methods
 - Spatiotemporal Structure
 - Hierarchical Structure
 - Double Fusion
 - Prior Distribution
 - PyMC3 and NUTS
 - Optimization and Decomposition
- Simulation and Case Study

Simulation Study

- Generate time-series data with a length of T = 128 scans using AR (1) (coefficient: 0.6) at 5 ROIs and each ROI contains 100 voxels
- Imposed correlation using a multivariate normal distribution

$$\rho_d = \begin{pmatrix} 1 & 0.6 & 0 & 0.5 & 0 \\ & 1 & 0.2 & 0.1 & 0 \\ & & 1 & 0 & 0.1 \\ & & & 1 & 0.2 \\ & & & 1 \end{pmatrix}$$

• $SC \sim W_p(6, \rho_d)$

Simulation Study

Bayesian correct SC				Bayesian independence				
FC	Median (SD)	[2.5% 97.5%]	R	\widehat{n}_{eff}	Median (SD)	[2.5% 97.5%]	Ŕ	\widehat{n}_{eff}
$ ho_1$	0.645 (0.014)	[0.617 0.669]	0.999	1675.438	0.531 (0.125)	[0.170 0.652]	1.002	979.951
ρ_2	0.310 (0.080)	[0.074 0.378]	0.999	1110.936	0.305 (0.078)	[0.091 0.379]	0.999	1303.385
ρ_3	0.546 (0.017)	[0.513 0.576]	0.999	1877.821	0.463 (0.108)	[0.151 0.572]	0.999	1033.009
ρ_4	0.145 (0.042)	[0.039 0.204]	0.999	1341.864	0.146 (0.042)	[0.040 0.204]	0.999	1034.929
$ ho_5$	0.478 (0.053)	[0.340 0.547]	0.999	1152.252	0.432 (0.090)	[0.197 0.537]	1.001	1285.429
ρ_6	0.123 (0.020)	[0.088 0.165]	1.000	1721.880	0.017 (0.106)	[-0.194 0.216]	1.000	1218.262
ρ_7	0.399 (0.083)	[0.180 0.522]	0.999	1102.607	0.419 (0.098)	[0.174 0.558]	0.999	1381.804
ρ_8	0.173 (0.049)	[0.047 0.235]	0.999	1293.770	0.158 (0.068)	[0.016 0.283]	1.000	1251.840
ρ_9	0.105 (0.070)	[-0.026 0.254]	0.999	1417.283	0.057 (0.063)	[-0.066 0.177]	1.000	1458.304
ρ_{10}	0.316 (0.077)	[0.165 0.484]	1.000	1524.805	0.348 (0.118)	[0.054 0.532]	0.999	1095.445

Convergence

Bayesian Correct SC

Bayesian Correct SC

	Metropolis-Hastings Median (SD)				NUTS Median (SD)			
FC	Exponential	Gaussian	Matérn <mark>52</mark>	Matérn32	Exponential	Gaussian	Matérn52	Matérn32
$ ho_1$	0.651(0.016)	0.640(0.016)	0.645(0.016)	0.654(0.016)	0.651(0.015)	0.640(0.015)	0.645(0.015)	0.654(0.015)
ρ_2	0.303(0.061)	0.305(0.061)	0.333(0.061)	0.273(0.061)	0.303(0.077)	0.305(0.077)	0.333(0.077)	0.273(0.077)
ρ_3	0.559(0.014)	0.540(0.014)	0.544(0.014)	0.548(0.014)	0.559(0.018)	0.540(0.018)	0.544(0.018)	0.548(0.018)
$ ho_4$	0.129(0.040)	0.160(0.040)	0.132(0.040)	0.162(0.040)	0.129(0.046)	0.160(0.046)	0.132(0.046)	0.162(0.046)
ρ_5	0.492(<mark>0.</mark> 046)	0.469(0.046)	0.486(0.046)	0.470(0.046)	0.492(0.052)	0.469(0.052)	0.486(0.052)	0.470(0.052)
ρ_6	0.139(0.017)	0.107(0.017)	0.119(0.017)	0.128(0.017)	0.139(0.019)	0.107(0.019)	0.119(0.019)	0.128(0.019)
ρ_7	0.438(0.068)	0.430(0.068)	0.378(0.068)	0.379(0.068)	0.438(0.088)	0.430(0.088)	0.378(0.088)	0.379(0.088)
ρ_8	0.179(0.043)	0.182(0.043)	0.170(0.043)	0.142(0.043)	0.179(0.047)	0.182(0.047)	0.170(0.047)	0.142(0.047)
ρ_9	0.116(0.053)	0.111(0.053)	0.108(0.053)	0.086(0.053)	0.116(0.066)	0.111(0.066)	0.108(0.066)	0.086(0.066)
ρ_{10}	0.293(0.069)	0.293(0.069)	0. <mark>336(0.069</mark>)	0.350(0.069)	0.293(0.077)	0.293(0.077)	0.336(0.077)	0.350(0.077)

Bayesian Correct SC

Metropolis-Hastings			NUTS					
MSE	Exponential	Gaussian	Matérn52	Matérn32	Exponential	Gaussian	Matérn52	Matérn32
Total FC	0.043	0.042	0.040	0.037	0.040	0.039	0.040	0.041
Zero FC	0.083	0.084	0.075	0.066	0.076	0.073	0.076	0.078
Low FC	0.024	0.020	0.025	0.024	0.023	0.022	0.023	0.024
High FC	0.003	0.002	0.002	0.003	0.002	0.002	0.002	0.002

Bayesian Independence

Bayesian Independence

Metropolis-Hastings Median (SD)					NUTS Median (SD)				
FC	Exponential	Gaussian	Matérn52	Matérn32	Exponential	Gaussian	Matérn52	Matérn32	
ρ_1	0.547(0.016)	0.56(0.016)	0.529(0.016)	0.517(0.016)	0.547(0.015)	0.560(0.015)	0.529(0.015)	0.517(0.015)	
$\rho_2 \\$	0.283(0.061)	0.339(0.061)	0.283(0.061)	0.317(0.061)	0.283(0.077)	0.339(0.077)	0.283(0.077)	0.317(0.077)	
ρ_3	0.488(0.014)	0.481(0.014)	0.453(0.014)	0.493(0.014)	0.488(0.018)	0.481(0.018)	0.453(0.018)	0.493(0.018)	
ρ_4	0.116(<mark>0.0</mark> 40)	0.134(0.040)	0.136(0.040)	0.145(0.040)	0.116(0.046)	0.134(0.046)	0.136(0.046)	0.145(0.046)	
ρ_5	0.461 <mark>(0.</mark> 046)	0.449(0.046)	0.443(0.046)	0.434(0.046)	0.461(0.052)	0.449(0.052)	0.443(0.052)	0.434(0.052)	
ρ_6	0.032(0.017)	0.047(0.017)	0.025(0.017)	0.053(0.017)	0.032(0.019)	0.047(0.019)	0.025(0.019)	0.053(0.019)	
ρ_7	0.456(0.068)	0.407(0.068)	0.391(0.068)	0.391(0.068)	0.456(0.088)	0.407(0.088)	0.391(0.088)	0.391(0.088)	
ρ_8	0.136(0.043)	0.162(0.043)	0.139(0.043)	0.167(0.043)	0.136(0.047)	0.162(0.047)	0.139(0.047)	0.167(0.047)	
ρ_9	0.108(0.053)	0.079(0.053)	0.048(0.053)	0.042(0.053)	0.108(0.066)	0.079(0.066)	0.048(0.066)	0.042(0.066)	
ρ_{10}	0.307(0.069)	0.339(0.069)	0.356(0.069)	0.411(0.069)	0.307(0.077)	0.339(0.077)	0.356(0.077)	0.411(0.077)	

Bayesian Independence

		Metropolis-Hastings			NUTS			
MSE	Exponential	Gaussian	Matérn <mark>52</mark>	Matérn32	Exponential	Gaussian	Matérn52	Matérn32
Total FC	0.118	0.119	0.108	0.118	0.111	0.113	0.113	0.113

Case Study

	Control (n=23)	MDD (n=18)	Wilson Doub Com Toute	
	Mean (SD)	Mean (SD)	Wilcoxon Rank Sum Tests	
Age(years)	31.78 (10.16)	32.06 (8.55)	t = -0.512, p = 0.608	
Sex (% female)	65%	50%	t = 0.828, p = 0.408	
Education (years)	15.78 (1.73)	16.28 (1.90)	t = -0.512, p = 0.608	
Beck Depression Inventory (BDI)	1.90 (2.62)	22.11 (9.38)	t = -4.085, p < 0.001	
Montgomery–Asberg Depression Rating Scale (MADRS)	0.70 (1.06)	25.29 (3.20)	t = -5.438, p < 0.001	
Processing Speed Domain	0.36 (0.67)	0.20 (0.61)	t = 0.841, p = 0.401	
Working Memory Domain	0.10 (0.88)	0.02 (0.81)	t = 0.158, p = 0.875	
Episodic Memory Domain	0.23 (0.55)	0.07 (0.75)	t = 0.578, p = 0.563	
Executive Function Domain	0.20 (0.55)	0.23 (0.59)	t = -0.053, p = 0.958	

Case Study

Case Study

Cognitive domain \sim Age + Sex + Education + FC_i + Depress + FC_i * Depress

• Cognitive domain:

Processing Speed Domain
Working Memory Domain
Episodic Memory Domain
Executive Function Domain

• Interaction term FC_i * Depress: "FC80"

Variable Selection

	Processing Speed Domain	Working Memory Domain	Episodic Memory Domain	Executive Function Domain
Exhaustive	FC4, FC27, FC28,	FC26, FC29, FC62,	FC6, FC9, FC42,	FC6, FC7, FC26,
	FC48, FC57, FC69	FC64, FC69, FC71	FC57, FC78, FC79	FC27, FC50. FC79
Forward	FC10, FC20, FC29,	FC20, FC26, FC33,	FC6, FC9, FC11,	FC18, FC20, FC26,
	FC44, FC51, FC58	FC62, FC69, FC85	FC26, FC35, FC65	FC43, FC50, FC77
Backward	FC2, FC4, FC6, FC12,	FC7, FC18, FC19,	FC7, FC9, FC11,	FC3, FC6, FC8, FC11,
	FC20, FC24	FC25, FC26, FC33	FC22, FC29, FC30	FC13, FC26
Sequential	FC10, FC11, FC17,	FC26, FC29, FC62,	FC1, FC5, FC6, FC9,	FC18, FC20, FC26,
	FC28, FC29, FC78	FC64, FC69, FC71	FC11, FC35	FC43, FC50, FC77
Lasso	FC10, FC11, FC26,	FC20, FC26, FC62,	FC6, FC25, FC34,	FC11, FC26, FC58,
	FC29, FC70, FC85	FC64, FC69, FC84	FC57, FC77, FC86	FC70, FC77, FC85

Documentation

Future Work

- Other kernel covariance functions
- 200-300 subjects
- Other machine learning methods of variable selection
- MDD classification

Acknowledgement

Committee Members

Dr. Hakmook Kang (Advisor)

Dr. Qingxia Chen

Faulty and Students

Dr. Jeffrey Blume

Dr. Fonnesbeck Christopher

Dr. Warren Taylor

Sandya Lakkur

David Schlueter

Ya-Chen Lisa Lin

and all the faulty and fellow students in the department

Thank you!