```
In [7]:
         import pandas as pd
         subs=pd.read_csv("bollywood.csv",index_col="movie")
         subs.value counts()
 Out[7]: lead
         Akshay Kumar
                              48
         Amitabh Bachchan
                              45
         Ajay Devgn
                              38
         Salman Khan
                              31
         Sanjay Dutt
                              26
                               . .
         Raghuvir Yadav
                               1
         Rahul Dev
                               1
         Rahul Jaiswal
                               1
         Rahul Khanna
                               1
         Aadar Jain
                               1
         Length: 566, dtype: int64
 In [8]: |movies=subs.value_counts()
         movies[movies>20]
 Out[8]: lead
         Akshay Kumar
                              48
         Amitabh Bachchan
                              45
         Ajay Devgn
                              38
         Salman Khan
                              31
         Sanjay Dutt
                              26
         Shah Rukh Khan
                              22
          Emraan Hashmi
                              21
         dtype: int64
In [12]: | marks={"ram":55, "shyam":60, "radha":70}
         mark_series=pd.Series(marks,name="Result")
         print(mark_series)
                   55
         ram
          shyam
                   60
         radha
                   70
         Name: Result, dtype: int64
Out[12]: [55, 60, 70]
In [13]: list(mark_series)
Out[13]: [55, 60, 70]
In [14]: dict(mark series)
Out[14]: {'ram': 55, 'shyam': 60, 'radha': 70}
```

```
mark_series[1]=100
In [16]:
         mark_series
Out[16]: ram
                    55
                  100
         shyam
         radha
                   70
         Name: Result, dtype: int64
In [17]:
         100+mark_series
Out[17]: ram
                  155
                  200
         shyam
                  170
         radha
         Name: Result, dtype: int64
In [18]: mark_series
Out[18]: ram
                    55
         shyam
                  100
         radha
                   70
         Name: Result, dtype: int64
In [19]: mark_series>=100
                  False
Out[19]: ram
         shyam
                   True
                  False
         radha
         Name: Result, dtype: bool
```

```
a=pd.Series([2,4,6,8,10])
In [24]:
         b=pd.Series([1,3,5,7,10])
         print(a+b)
         print(a-b)
         print(a==b)
         print(a>b)
                3
         0
               7
         1
         2
               11
         3
               15
         4
               20
         dtype: int64
               1
         1
               1
         2
               1
         3
               1
         4
               0
         dtype: int64
               False
         1
               False
         2
               False
         3
               False
         4
               True
         dtype: bool
               True
         1
               True
         2
                True
         3
               True
               False
         dtype: bool
         ### 1.4 DataFrame
         1. 2 Dinmensional data like 2D array or a table with roes and columns.
In [26]:
         data={'calories':[400,434,656],'duration':[50,46,38]}
         df=pd.DataFrame(data)
         print(df)
             calories
                       duration
         0
                  400
                             50
                  434
         1
                             46
         2
                  656
                             38
In [28]: print(df.loc[1])
         calories
                      434
         duration
                       46
         Name: 1, dtype: int64
In [29]:
         print(df.iloc[1])
         calories
                      434
         duration
                       46
         Name: 1, dtype: int64
```

In [30]: df.calories
#df['calories']

Out[30]: 0 400 1 434

2 656

Name: calories, dtype: int64

In [31]: df.loc[[0,1]]

Out[31]:

	calories	duration
0	400	50
1	434	46

In [33]:

df.loc[[1,2,3,4]]

```
KevError
                                          Traceback (most recent call last)
<ipython-input-33-be503a41816a> in <module>
----> 1 df.loc[[1,2,3,4]]
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexing.py in getitem (s
elf, key)
    877
    878
                    maybe callable = com.apply if callable(key, self.obj)
                    return self. getitem axis(maybe callable, axis=axis)
--> 879
    880
            def is scalar access(self, key: Tuple):
    881
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexing.py in getitem axis
(self, key, axis)
   1097
                            raise ValueError("Cannot index with multidimensional ke
   1098
                        return self. getitem iterable(key, axis=axis)
-> 1099
   1100
                    # nested tuple slicing
   1101
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexing.py in getitem iter
able(self, key, axis)
   1035
   1036
                # A collection of keys
                keyarr, indexer = self. get listlike indexer(key, axis, raise missi
-> 1037
ng=False)
   1038
                return self.obj. reindex with indexers(
   1039
                    {axis: [keyarr, indexer]}, copy=True, allow dups=True
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexing.py in get listlike
_indexer(self, key, axis, raise_missing)
   1252
                    keyarr, indexer, new_indexer = ax._reindex_non_unique(keyarr)
   1253
-> 1254
                self._validate_read_indexer(keyarr, indexer, axis, raise_missing=ra
ise missing)
   1255
                return keyarr, indexer
   1256
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexing.py in validate rea
d_indexer(self, key, indexer, axis, raise_missing)
   1313
                        with option context("display.max seg items", 10, "display.w
   1314
idth", 80):
-> 1315
                            raise KeyError(
   1316
                                "Passing list-likes to .loc or [] with any missing
labels "
   1317
                                "is no longer supported. "
KeyError: "Passing list-likes to .loc or [] with any missing labels is no longer su
```

pported. The following labels were missing: Int64Index([3, 4], dtype='int64'). See https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#deprecate-loc-reindex-listlike" (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexin

g.html#deprecate-loc-reindex-listlike")

Name: day1, dtype: int64

In [36]: df.loc[1]

```
Traceback (most recent call last)
KevError
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexes\base.py in get loc(s
elf, key, method, tolerance)
   2894
                    try:
-> 2895
                        return self. engine.get loc(casted key)
   2896
                    except KeyError as err:
pandas\ libs\index.pyx in pandas. libs.index.IndexEngine.get loc()
pandas\_libs\index.pyx in pandas. libs.index.IndexEngine.get loc()
pandas\_libs\hashtable_class_helper.pxi in pandas. libs.hashtable.PyObjectHashTabl
e.get item()
pandas\_libs\hashtable_class_helper.pxi in pandas. libs.hashtable.PyObjectHashTabl
e.get_item()
KeyError: 1
The above exception was the direct cause of the following exception:
KeyError
                                          Traceback (most recent call last)
<ipython-input-36-1f09d9ff6611> in <module>
----> 1 df.loc[1]
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexing.py in getitem (s
elf, key)
    877
                    maybe callable = com.apply_if_callable(key, self.obj)
    878
                    return self. getitem axis(maybe callable, axis=axis)
--> 879
    880
            def is scalar access(self, key: Tuple):
    881
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexing.py in getitem axis
(self, key, axis)
   1108
                # fall thru to straight lookup
   1109
                self._validate_key(key, axis)
                return self. get label(key, axis=axis)
-> 1110
   1111
   1112
            def get slice axis(self, slice obj: slice, axis: int):
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexing.py in _get_label(se
1f, label, axis)
   1057
            def _get_label(self, label, axis: int):
                # GH#5667 this will fail if the label is not present in the axis.
   1058
                return self.obj.xs(label, axis=axis)
-> 1059
   1060
   1061
            def handle lowerdim multi index axis0(self, tup: Tuple):
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\generic.py in xs(self, key,
axis, level, drop level)
   3489
                    loc, new index = self.index.get loc level(key, drop level=drop
level)
   3490
                else:
-> 3491
                    loc = self.index.get loc(key)
   3492
   3493
                    if isinstance(loc, np.ndarray):
```

C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexes\base.py in get_loc(s
elf, key, method, tolerance)

2895 return self._engine.get_loc(casted_key)

2896 **except** KeyError **as** err:

-> 2897 raise KeyError(key) from err

2898

2899 **if** tolerance **is not None:**

KeyError: 1

In [41]: df.iloc[0]

Out[41]: calories 400

duration 50

Name: day1, dtype: int64

In [42]: dataset=pd.read_csv("auto-mpg.csv")

dataset

Out[42]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	car name
0	18.0	8	307.0	130	3504	12.0	70	1	chevrolet chevelle malibu
1	15.0	8	350.0	165	3693	11.5	70	1	buick skylark 320
2	18.0	8	318.0	150	3436	11.0	70	1	plymouth satellite
3	16.0	8	304.0	150	3433	12.0	70	1	amc rebel sst
4	17.0	8	302.0	140	3449	10.5	70	1	ford torino
393	27.0	4	140.0	86	2790	15.6	82	1	ford mustang gl
394	44.0	4	97.0	52	2130	24.6	82	2	vw pickup
395	32.0	4	135.0	84	2295	11.6	82	1	dodge rampage
396	28.0	4	120.0	79	2625	18.6	82	1	ford ranger
397	31.0	4	119.0	82	2720	19.4	82	1	chevy s-10

398 rows × 9 columns

```
Ch.-1 lec-2 - Jupyter Notebook
In [43]: dataset.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 398 entries, 0 to 397
         Data columns (total 9 columns):
          #
              Column
                             Non-Null Count Dtype
                             398 non-null
                                             float64
          0
              mpg
                             398 non-null
                                             int64
          1
              cylinders
           2
              displacement 398 non-null
                                             float64
          3
              horsepower
                             398 non-null
                                             object
          4
             weight
                             398 non-null
                                             int64
          5
              acceleration 398 non-null
                                             float64
```

int64

int64

car name 398 non-null object dtypes: float64(3), int64(4), object(2)

398 non-null

398 non-null

memory usage: 28.1+ KB

model year

origin

In [44]: dataset.describe()

6

7

Out[44]:

	mpg	cylinders	displacement	weight	acceleration	model year	origin
count	398.000000	398.000000	398.000000	398.000000	398.000000	398.000000	398.000000
mean	23.514573	5.454774	193.425879	2970.424623	15.568090	76.010050	1.572864
std	7.815984	1.701004	104.269838	846.841774	2.757689	3.697627	0.802055
min	9.000000	3.000000	68.000000	1613.000000	8.000000	70.000000	1.000000
25%	17.500000	4.000000	104.250000	2223.750000	13.825000	73.000000	1.000000
50%	23.000000	4.000000	148.500000	2803.500000	15.500000	76.000000	1.000000
75%	29.000000	8.000000	262.000000	3608.000000	17.175000	79.000000	2.000000
max	46.600000	8.000000	455.000000	5140.000000	24.800000	82.000000	3.000000

In [49]: import pandas as np dataset.describe(inculde=[np.number])

```
AttributeError
                                          Traceback (most recent call last)
<ipython-input-49-f0c43c5eb296> in <module>
      1 import pandas as np
---> 2 dataset.describe(inculde=[np.number])
C:\ProgramData\Anaconda3\lib\site-packages\pandas\__init__.py in __getattr__(name)
    256
                    return SparseArray
    257
--> 258
                raise AttributeError(f"module 'pandas' has no attribute '{name}'")
    259
    260
```

AttributeError: module 'pandas' has no attribute 'number'

In [52]: dataset[['mpg','cylinders']].describe()

Out[52]:

	mpg	cylinders
count	398.000000	398.000000
mean	23.514573	5.454774
std	7.815984	1.701004
min	9.000000	3.000000
25%	17.500000	4.000000
50%	23.000000	4.000000
75%	29.000000	8.000000
max	46.600000	8.000000

In [53]: dataset.describe(percentiles=[.30,.45,.60])

Out[53]:

	mpg	cylinders	displacement	weight	acceleration	model year	origin
count	398.000000	398.000000	398.000000	398.000000	398.000000	398.000000	398.000000
mean	23.514573	5.454774	193.425879	2970.424623	15.568090	76.010050	1.572864
std	7.815984	1.701004	104.269838	846.841774	2.757689	3.697627	0.802055
min	9.000000	3.000000	68.000000	1613.000000	8.000000	70.000000	1.000000
30%	18.000000	4.000000	112.000000	2301.000000	14.200000	73.000000	1.000000
45%	21.065000	4.000000	140.000000	2670.650000	15.000000	75.000000	1.000000
50%	23.000000	4.000000	148.500000	2803.500000	15.500000	76.000000	1.000000
60%	25.000000	6.000000	200.000000	3085.200000	16.000000	77.000000	1.000000
max	46.600000	8.000000	455.000000	5140.000000	24.800000	82.000000	3.000000

In [55]: dataset[0:2].describe()

Out[55]:

	mpg	cylinders	displacement	weight	acceleration	model year	origin
count	2.00000	2.0	2.000000	2.000000	2.000000	2.0	2.0
mean	16.50000	8.0	328.500000	3598.500000	11.750000	70.0	1.0
std	2.12132	0.0	30.405592	133.643182	0.353553	0.0	0.0
min	15.00000	8.0	307.000000	3504.000000	11.500000	70.0	1.0
25%	15.75000	8.0	317.750000	3551.250000	11.625000	70.0	1.0
50%	16.50000	8.0	328.500000	3598.500000	11.750000	70.0	1.0
75%	17.25000	8.0	339.250000	3645.750000	11.875000	70.0	1.0
max	18.00000	8.0	350.000000	3693.000000	12.000000	70.0	1.0

In [56]: dataset.loc[15]

Out[56]: mpg 22 cylinders 6 displacement 198 horsepower 95 2833 weight acceleration 15.5 model year 70 origin

car name plymouth duster

Name: 15, dtype: object

In [57]: dataset.loc[5:15]

Out[57]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	car name
5	15.0	8	429.0	198	4341	10.0	70	1	ford galaxie 500
6	14.0	8	454.0	220	4354	9.0	70	1	chevrolet impala
7	14.0	8	440.0	215	4312	8.5	70	1	plymouth fury iii
8	14.0	8	455.0	225	4425	10.0	70	1	pontiac catalina
9	15.0	8	390.0	190	3850	8.5	70	1	amc ambassador dpl
10	15.0	8	383.0	170	3563	10.0	70	1	dodge challenger se
11	14.0	8	340.0	160	3609	8.0	70	1	plymouth 'cuda 340
12	15.0	8	400.0	150	3761	9.5	70	1	chevrolet monte carlo
13	14.0	8	455.0	225	3086	10.0	70	1	buick estate wagon (sw)
14	24.0	4	113.0	95	2372	15.0	70	3	toyota corona mark ii
15	22.0	6	198.0	95	2833	15.5	70	1	plymouth duster

In [58]: dataset.iloc[5:15]

Out[58]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	car name
5	15.0	8	429.0	198	4341	10.0	70	1	ford galaxie 500
6	14.0	8	454.0	220	4354	9.0	70	1	chevrolet impala
7	14.0	8	440.0	215	4312	8.5	70	1	p l ymouth fury iii
8	14.0	8	455.0	225	4425	10.0	70	1	pontiac catalina
9	15.0	8	390.0	190	3850	8.5	70	1	amc ambassador dpl
10	15.0	8	383.0	170	3563	10.0	70	1	dodge challenger se
11	14.0	8	340.0	160	3609	8.0	70	1	plymouth 'cuda 340
12	15.0	8	400.0	150	3761	9.5	70	1	chevrolet monte carlo
13	14.0	8	455.0	225	3086	10.0	70	1	buick estate wagon (sw)
14	24.0	4	113.0	95	2372	15.0	70	3	toyota corona mark ii

In [59]: dataset['mpg'].loc[4]

Out[59]: 17.0

In [61]: dataset.shape

Out[61]: (398, 9)

In [62]: dataset.shape[0]

Out[62]: 398

In [63]: dataset.corr()

Out[63]:

	mpg	cylinders	displacement	weight	acceleration	model year	origin
mpg	1.000000	-0.775396	-0.804203	-0.831741	0.420289	0.579267	0.563450
cylinders	-0.775396	1.000000	0.950721	0.896017	-0.505419	-0.348746	-0.562543
displacement	-0.804203	0.950721	1.000000	0.932824	-0.543684	-0.370164	-0.609409
weight	-0.831741	0.896017	0.932824	1.000000	-0.417457	-0.306564	-0.581024
acceleration	0.420289	-0.505419	-0.543684	-0.417457	1.000000	0.288137	0.205873
model year	0.579267	-0.348746	-0.370164	-0.306564	0.288137	1.000000	0.180662
origin	0.563450	-0.562543	-0.609409	-0.581024	0.205873	0.180662	1.000000

1.5 Scatter Matrix/ Pair Plots

In [68]: import matplotlib.pyplot as plt
pd.plotting.scatter_matrix(dataset,figsize=[20,20],marker='v',alpha=0.5,diagonal='kd
plt.show()

