In the claims:

1. (original) A method for performing time and frequency SNR dependent weighting in

speech recognition comprising the steps of:

for each speech frame t estimating the SNR to get time and frequency SNR information $\eta_{i,f;}$

calculating the time and frequency weighting to get $\gamma_{t,f}$:

performing the back and forth weighted time varying DCT transformation matrix $\text{computation } MG_tM^{\text{-}1} \text{ to get } T_t \,;$

providing the transformation matrix computation T_t and the original MFCC feature o_t that contains the information about the SNR to a recognizer including the Viterbi decoding; and performing weighted Viterbi recognition $b_j(o_t)$.

2. (original) The method of claim1 wherein $\gamma_{t,f} = \frac{\sqrt{\eta_{t,f}}}{1 + \sqrt{\eta_{t,f}}}$,

which guarantees that $\gamma_{t,f}$ is equal to 0 when $\eta_{t,f}=0$ and $\gamma_{t,f}$ approaches 1 when $\eta_{t,f}$ is large.

3. (original) A method for performing time and frequency SNR dependent weighting in speech recognition comprising the steps of:

for each period t estimating the SNR to get time and frequency SNR information $\eta_{i,j}$; calculating the time and frequency weighting to get $\gamma_{i,j}$;

performing the back and forth weighted time varying DCT transformation matrix computation $MG_tM^{\text{-}1}$ to get T_t ;

providing the transformation matrix computation T_t and the original MFCC feature o_t that contains the information about the SNR to a recognizer including the Viterbi decoding; and performing weighted Viterbi recognition $b_i(o_t)$.

- 4. (original) The method of claim 3 wherein said estimating step is a pronunciation probability estimation step.
- 5. (original) The method of claim 3 wherein said estimating step is a transmission over a noisy communication channel reliability estimation.
- 6. (original) The method of claim 3 wherein $\gamma_{t,f} = \frac{\sqrt{\eta_{t,f}}}{1 + \sqrt{\eta_{t,f}}}$

which guarantees that $\gamma_{t,f}$ is equal to 0 when $\eta_{t,f}=0$ and $\gamma_{t,f}$ approaches 1 when $\eta_{t,f}$ is large.