Putnam 2017

A1 Let S be the smallest set of positive integers such that

- (a) 2 is in S,
- (b) n is in S whenever n^2 is in S, and
- (c) $(n+5)^2$ is in S whenever n is in S.

Which positive integers are not in S?

(The set S is "smallest" in the sense that S is contained in any other such set.)

Answer. 1 and all integers divisible by 5.

Solution. To show that all numbers not in the above category must be in S, we note the following lemma: if n is in S for some n, then by (c), $(n+5)^2$ is in S and by (b), n+5 is in S. Hence by repeated iteration of this process, we get

$$n \in S \to n + 5k \in S, \forall k \ge 0 \cdots (d)$$

Thus starting from $2 \in S$ as of (a), we get $2 + 5k \in S \forall k \geq 0$. Now (a) and (c) combined imply that $7^2 = 49 \in S$, too. By (c) again, $(49 + 5)^2 = 54^2 \in S$ too. Notice that $56^2 - 54^2 = 2 \times 110$ is divisible by 5 and is nonnegative, so $56^2 \in S$ by (d) again. By (b), $56 \in S$ and by (d) again, $9^2 = 81 = 56 + 5(5) \in S$ and $11^2 = 121 = 56 + 5(13) \in S$, so by (b), $9, 11 \in S$. By (b) again, $\sqrt{9} = 3 \in S$. Finally, since $11 \in S$, by (d) again, $11 + 5 = 16 \in S$, so by (b), $\sqrt{16} = 4 \in S$. Similarly, $11 + 5(5) = 36 \in S$, by (d) again. Thus $\sqrt{36} = 6 \in S$. Since $2, 3, 4, 6 \in S$ so by (d), $2 + 5k, 3 + 5k, 4 + 5k, 6 + 5k \in S$. These are all the numbers that are not 1 and not divisible by 5.

To show that $S_1\{a: a > 1, 5 \nmid a\}$ is valid, let a be arbitrary integer in S_1 . Clearly, $2 \in S_1$, so (a) is satisfied. If $a = k^2$ for some k, then from a > 1 then $k = \sqrt{a} > 1$. Since $5 \nmid a, 5 \nmid \sqrt{a} = k$ too. So $5 \nmid k$. Hence (b) is fulfilled. Finally, $(a + 5)^2 > a > 1$, and from $5 \nmid a$, we have $5 \nmid a + 5$. As 5 is a prime number, $5 \nmid (a + 5)^2$ too. Thus (c) is also fulfilled.

A2 Let $Q_0(x) = 1$, $Q_1(x) = x$, and

$$Q_n(x) = \frac{(Q_{n-1}(x))^2 - 1}{Q_{n-2}(x)}$$

for all $n \geq 2$. Show that, whenever n is a positive integer, $Q_n(x)$ is equal to a polynomial with integer coefficients.

Solution. We show that $Q_n(x) = xQ_{n-1}(x) - Q_{n-2}(x)$ for all $n \ge 2$ via induction. For n = 2 (base case), we have $Q_2(x) = x^2 - 1 = x(x) - 1 = xQ_1(x) - Q_0(x)$. Now suppose that $Q_{n-1}(x) = xQ_{n-2}(x) - Q_{n-3}(x)$ for some $n \ge 3$. We consider the following:

$$Q_{n-1}^{2}(x) - 1 = (xQ_{n-2}(x) - Q_{n-3}(x))Q_{n-1} - 1$$

$$= xQ_{n-2}(x)Q_{n-1}(x) - Q_{n-3}(x)Q_{n-1}(x) - 1$$

$$= xQ_{n-2}(x)Q_{n-1}(x) - (Q_{n-3}(x)Q_{n-1}(x) + 1)$$

$$= xQ_{n-2}(x)Q_{n-1}(x) - Q_{n-2}^{2}(x)$$

$$= Q_{n-2}(x)(xQ_{n-1}(x) - Q_{n-2}(x))$$

notice the use of the fact $Q_{n-3}(x)Q_{n-1}(x)+1=Q_{n-2}^2(x)$ as followed form the definition $Q_{n-1}(x)=\frac{(Q_{n-2}(x))^2-1}{Q_{n-3}(x)}$; Therefore we have $Q_n(x)=\frac{(Q_{n-1}(x))^2-1}{Q_{n-2}(x)}=xQ_{n-1}(x)-Q_{n-2}(x)$. By inductive hypothesis, we get $Q_n(x)=xQ_{n-1}(x)-Q_{n-2}(x)$ for all $n\geq 2$. Since Q_0 and Q_1 are

A3 Let a and b be real numbers with a < b, and let f and g be continuous functions from [a,b] to $(0,\infty)$ such that $\int_a^b f(x) \, dx = \int_a^b g(x) \, dx$ but $f \neq g$. For every positive integer n, define

$$I_n = \int_a^b \frac{(f(x))^{n+1}}{(g(x))^n} dx.$$

Show that I_1, I_2, I_3, \ldots is an increasing sequence with $\lim_{n \to \infty} I_n = \infty$.

Solution. First, we notice the following use of the Cauchy-Schawz inequality in the form of integrals:

$$I_{n-1} \cdot I_{n+1} = \int_a^b \frac{(f(x))^n}{(g(x))^{n-1}} dx \cdot \int_a^b \frac{(f(x))^{n+2}}{(g(x))^{n+1}} dx \ge \left(\int_a^b \frac{(f(x))^{n+1}}{(g(x))^n} dx\right)^2 = I_n^2$$

In particular, substituting n=0 we get $I_{-1}I_1 \geq I_0$. Now $I_0=\int_a^b f(x)dx$ and $I_{-1}=\int_a^b g(x)dx$, so $I_0=I_{-1}$, and thus $I_1\geq I_0$. Since f(x) and g(x) are both continuous on [a,b], so is the function $\frac{f(x)^2}{g(x)}$, so equality can only hold if and only if $\frac{f(x)^2}{g(x)} \div g(x)$ is constant on [a,b]. This requires |f(x)|=|g(x)| on [a,b], which becomes f(x)=g(x) since both positive returns only positive values. However, this is not true since $f\neq g$.

So $I_1 > I_0$, and denote the ratio $\frac{I_1}{I_0} = c > 1$. We will in fact claim that $\frac{I_{n+1}}{I_n} \ge c$ for all $n \ge 0$, which will finish the proof since $I_n \ge c^n I_0$ and $\lim_{n \to \infty} c^n = \infty$ as c > 1. The base case is given as $\frac{I_1}{I_0} = c$. If $\frac{I_n}{I_{n-1}} \ge c$ for some $n \ge 1$, then from the Cauchy-schawrz inequality we had before, $I_{n-1}I_{n+1} \ge I_n^2$ means that $\frac{I_{n+1}}{I_n} \ge \frac{I_n}{I_{n-1}} = c$. Hence we completed our inductive hypothesis, and concludes the proof.

A4 A class with 2N students took a quiz, on which the possible scores were $0, 1, \ldots, 10$. Each of these scores occurred at least once, and the average score was exactly 7.4. Show that the class can be divided into two groups of N students in such a way that the average score for each group was exactly 7.4.

Solution. The total score of the group is $14.8N = \frac{74N}{5}$, which is an integer since all individual scores are integers. Since $\gcd(74,5) = 1$, we have N = 5k for some integer k. This means 14.8N = 14.8(5k) = 74k, which is even. Thus the goal now becomes finding a group of N students where the total score is 7.4N, which is 37k, an integer.

Let $x_1 \leq \cdots \leq x_{2N}$ be the scores of students. Let $m = x_1 + \cdots + x_N$ and $M = x_{N+1} + \cdots + x_{2N}$. Since m + M = 14.8N and from $x_i \leq x_{N+i}$ we have $m \leq M$, we have $m \leq x \leq M$. We will show that for any integer $x \in \{m, m+1, \cdots, M-1, M\}$ it is possible to choose a group of N students such that the total score in this group is x, thereby showing that it is possible to choose a group of N students with the total group score of 7.4N.

We first notice that for all $1 \le i < N$, $0 \le x_{i+1} - x_i \le 1$. The left inequality is obvious by our sorting algorithm. Suppose that $x_{i+1} - x_i \ge 2$ for some i. By our sorting algorithm, again, nobody scored $x_i + 1, \dots, x_{i+1} - 1$. We now define a sequence of $N^2 + 1$ numbers y_0, y_1, \dots, y^{N^2} as follows:

- $y_0 = x_1 + x_2 + \dots + x_N$
- For some $i < N^2$, denote $y_i = x_{a_1} + x_{a_2} + \cdots + x_{a_N}$ for some $1 \le a_1 < a_2 < \cdots < a_N \le 2N$. If there exists j < N such that $a_{j+1} a_j > 1$, then denote $y_{j+1} = x_{a_1} + x_{a_2} + \cdots + x_{a_{j+1}} + x_{a_{j+1}} + \cdots + x_{a_N}$ (basically, shift one of the indices to the right by 1). Otherwise, denote $y_i = x_{a_1} + x_{a_2} + \cdots + x_{a_{N+1}}$.

We first show that this construction sequence is legitimate: that is, when i < 2N, either such j can be found or $a_N < 2N$ (so x_{a_N+1} exists). To see why, we consider the sum of indices $S(i) = a_1 + a_2 + \cdots + a_N$ when $y_i = x_{a_1} + \cdots + x_{a_N}$. When i = 0 then sum is

 $S(0)=1+\cdots+N=rac{N(N+1)}{2}$, and whenever the sequence y_i and y_{i+1} are both legitimate, S(i+1)-S(i)=1. Thus, the recursion from y_i to y_{i+1} is legitimate if and only if y_i is not $x_{N+1}+\cdots+x_{2N}$. If such i exists, then $S(i)=(N+1)+\cdots+(2N)=rac{N(3N+1)}{2}=S(0)+N^2$. It then follows that such i must be at least N^2 for this to happen. The converse is also true: we have $y_{N^2}=x_{N+1}+\cdots+x_{2N}$.

In addition, for each $0 \le i < 2N$, by the construction above there exists index j such that $y_{i+1} - y_i = x_{j+1} - x_j$. By an earlier lemma, $0 \le x_{j+1} - x_j \le 1$, so $0 \le y_{i+1} - x_i \le 1$. We also have $y_0 = x_1 + \cdots + x_N = m$ and $y_{N^2} = X_{N+1} + \cdots + x_{2N} = M$, which means:

$$m = y_0 \le y_1 \le \dots \le y_{N^2} \le M$$

which means the set $\{y_0, \dots, y_{N^2}\}$ is precisely the set of integers in the interval [m, M], inclusive.

B2 Suppose that a positive integer N can be expressed as the sum of k consecutive positive integers

$$N = a + (a+1) + (a+2) + \dots + (a+k-1)$$

for k = 2017 but for no other values of k > 1. Considering all positive integers N with this property, what is the smallest positive integer a that occurs in any of these expressions?

Answer. a = 16

Solution. N can be written as sum of k consecutive positive integers if and only if $N = \frac{k(2a+k-1)}{2}$ for some positive integer a. This means N need to satisfy the following properties:

- (a) $N \ge \frac{k(k+1)}{2}$
- (b) k|N for k odd, and $k|N-\frac{k}{2}$ when k is even.

The second condition is due to the fact that, when considering mod $k, a, a+1, \dots, a+k-1$ is congruent to $1, 2, \dots, k$ in some order, and thus $N \equiv \frac{k(k+1)}{2} \pmod{k}$. If k is odd then this is divisible by 0; converse ly if k is even, then k+1 is odd so it's congruent to $\frac{k}{2}$.

Coming back to the problem, we need one such N that can be written as sum of k consecutive integers. Denote $N=2017\cdot m$ with $m\geq 1009$. Now consider the case when $m\leq 1024$. If m has an odd divisor that's greater than 1, say q, then q|N too, and since $N\geq \frac{2017(2018)}{2}ge\frac{q\cdot(q+1)}{2}$ (since $q\leq m<2017$), it can be written as the sum of q integers, too. This m will then not be valid. This happens when $m\leq 1024$ and has an odd divisor >1, which is equivalent to the fact that it is not a power of 2. Hence $m\geq 1024$.

To show that m=1024 is good, observe that its only odd divisors are 1 and 2017, so if q is odd and it can be written as sum of q consecutive numbers, then q=1 or q=2017. Now suppose that q is even, whereby we have $N\equiv \frac{q}{2}\pmod{q}$. This means that $2N\equiv 0\pmod{q}$, i.e. $q=2^k2017^\ell$ with $1\leq k\leq 11$ and $0\leq \ell\leq 1$. With $q\nmid N$ we must have k=11, so the only choice is $q=2^{11}$ and $q=2^{11}\cdot 2017$. However, $q\geq 2048$ so $N\geq \frac{2048(2049)}{2}=1024\cdot 2049>1024\cdot 2017$, contradiction. Hence k=2017 is the only possibility here. Since 2a+k-1=2048 in this case, a=16.

B3 Suppose that

$$f(x) = \sum_{i=0}^{\infty} c_i x^i$$

is a power series for which each coefficient c_i is 0 or 1. Show that if f(2/3) = 3/2, then f(1/2) must be irrational.

Solution. Consider c = f(1/2), and consider the binary representation of c. We know that if c is rational, then the binary digits (after decimal point) is eventually periodic. We show that this is the same for the sequence $\{c_i\}$ too.

Clearly, if c < 2 and $c = \overline{d_0.d_1d_2d_3\cdots}$, is the binary representation, then putting $c_i = d_i$ we have $\sum_{i=0}^{\infty} c_i x^i = c$, too (The case $c \ge 2$ happens only when $c \ge 2$, but then $c = f(1/2) \le 1 + 1/2 + 1/4 + \cdots = 2$, so equality must hold and we have $c_i = 1$ for all i, and therefore $\{c_i\}$ is periodic). If $\{c_i\}$ is indeed the binary representation we are done. Now, suppose that $\{c_i\}$ is not the binary representation: this means c has more than 1 way to be represented as the power series. Let $\{c_i\}$ and $\{d_i\}$ to be two different representations and let n_0 be the minimum index such that $c_{n_0} \ne d_{n_0}$. WLOG let $c_{n_0} = 0$ and $d_{n_0} = 1$. Then

$$\sum_{i=n_0+1}^{\infty} c_i/2^i = c - \sum_{i=0}^{n_0-1} c_i/2^i = 1/2^{n_0} + \sum_{i=n_0+1}^{\infty} d_i/2^i$$

But then

$$\sum_{i=n_0+1}^{\infty} c_i/2^i \le \sum_{i=n_0+1}^{\infty} 1/2^i = 1/2^{n_0} \le 1/2^{n_0} + \sum_{i=n_0+1}^{\infty} d_i/2^i$$

therefore equality must hold: $c_i = 0$ and $d_i = 1$, both for all $i > n_0$. Thus both $\{c_i\}$ and $\{d_i\}$ is eventually periodic with period 1 (and we are done).

Now, given that $\{c_i\}$ is eventually periodic: there is an $n_0 \ge 0$ and $m \ge 1$ such that for all $n \ge n_0$ we have $c_n = c_{n+m}$. We now have

$$f(2/3) = \sum_{i=0}^{\infty} \frac{2^{i} c_{i}}{3^{i}}$$

$$= \sum_{i=0}^{n_{0}-1} \frac{2^{i} 3^{n_{0}-1-i} c_{i}}{3^{n_{0}-1}} + \sum_{i=n_{0}}^{\infty} \frac{2^{i} c_{i}}{3^{i}}$$

$$= \sum_{i=0}^{n_{0}-1} \frac{2^{i} 3^{n_{0}-1-i} c_{i}}{3^{n_{0}-1}} + \sum_{i=n_{0}}^{n_{0}+m-1} c_{i} \left(\frac{2^{i}}{3^{i}} + \frac{2^{i+m}}{3^{i+m}} + \frac{2^{i+2m}}{3^{i+2m}} + \cdots\right)$$

$$= \sum_{i=0}^{n_{0}-1} \frac{2^{i} 3^{n_{0}-1-i} c_{i}}{3^{n_{0}-1}} + \sum_{i=n_{0}}^{n_{0}+m-1} c_{i} \cdot \frac{2^{i}}{3^{i}} \cdot \frac{3^{m}}{3^{m}-2^{m}}$$

and since for each i and m, all $3^{n_0-1}, 3^i$ and $3^m - 2^m$ are odd, the quantity f(2/3) can be written as p/q with q odd. However, given that f(2/3) = 1/2 and 1/2 doesn't have this property (2 is even and 1/2 is irreducible: if q is odd then $\frac{q}{2}$ is not an integer), this is a contradiction. Thus $\{c_i\}$ cannot be eventually periodic and the conclusion follows.

B4 Evaluate the sum

$$\sum_{k=0}^{\infty} \left(3 \cdot \frac{\ln(4k+2)}{4k+2} - \frac{\ln(4k+3)}{4k+3} - \frac{\ln(4k+4)}{4k+4} - \frac{\ln(4k+5)}{4k+5} \right)$$

$$= 3 \cdot \frac{\ln 2}{2} - \frac{\ln 3}{3} - \frac{\ln 4}{4} - \frac{\ln 5}{5} + 3 \cdot \frac{\ln 6}{6} - \frac{\ln 7}{7} - \frac{\ln 8}{8} - \frac{\ln 9}{9} + 3 \cdot \frac{\ln 10}{10} - \dots$$

Solution. (Cited from my post on AoPS) To avoid dealing with problems in absolute convergence, we deal with the *n*-th partial sum. That is,

$$\sum_{k=0}^{n} \left(3 \cdot \frac{\ln(4k+2)}{4k+2} - \frac{\ln(4k+3)}{4k+3} - \frac{\ln(4k+4)}{4k+4} - \frac{\ln(4k+5)}{4k+5} \right)$$

$$= 3 \cdot \frac{\ln 2}{2} - \frac{\ln 3}{3} - \frac{\ln 4}{4} - \frac{\ln 5}{5} + \dots + 3 \cdot \frac{\ln(4n+2)}{4n+2} - \frac{\ln(4n+3)}{4n+3} - \frac{\ln(4n+4)}{4n+4} - \frac{\ln(4n+5)}{4n+5}.$$

Because the sum is finite here, we have no issue of convergence and therefore can do the following conversion:

$$\sum_{k=0}^{n} \left(3 \cdot \frac{\ln(4k+2)}{4k+2} - \frac{\ln(4k+3)}{4k+3} - \frac{\ln(4k+4)}{4k+4} - \frac{\ln(4k+5)}{4k+5} \right)$$

$$=\sum_{k=0}^{n}\left(\frac{\ln(4k+2)}{4k+2}-\frac{\ln(4k+3)}{4k+3}+\frac{\ln(4k+4)}{4k+4}-\frac{\ln(4k+5)}{4k+5}\right)+\sum_{k=0}^{n}2\left(\frac{\ln(4k+2)}{4k+2}-\frac{\ln(4k+4)}{4k+4}\right)$$

Also notice that

$$\sum_{k=0}^{n} 2\left(\frac{\ln(4k+2)}{4k+2} - \frac{\ln(4k+4)}{4k+4}\right) = \sum_{k=0}^{n} \left(\frac{\ln 2 + \ln(2k+1)}{2k+1} - \frac{\ln 2 + \ln(2k+2)}{2k+2}\right)$$

So we have

$$\sum_{k=0}^{n} \left(\frac{\ln(4k+2)}{4k+2} - \frac{\ln(4k+3)}{4k+3} + \frac{\ln(4k+4)}{4k+4} - \frac{\ln(4k+5)}{4k+5} \right) + \sum_{k=0}^{n} 2 \left(\frac{\ln(4k+2)}{4k+2} - \frac{\ln(4k+4)}{4k+4} \right)$$

$$= \sum_{k=0}^{2n+1} \left(\frac{\ln(2k+2)}{2k+2} - \frac{\ln(2k+3)}{2k+3} \right) + \sum_{k=0}^{n} \left(\frac{\ln 2 + \ln(2k+1)}{2k+1} - \frac{\ln 2 + \ln(2k+2)}{2k+2} \right)$$

$$= \ln 2 \sum_{k=0}^{n} \left(\frac{1}{2k+1} - \frac{1}{2k+2} \right) - \frac{\ln(2n+2)}{2n+2} + \sum_{k=n+1}^{2n+1} \left(\frac{\ln(2k+2)}{2k+2} - \frac{\ln(2k+3)}{2k+3} \right)$$

Now, notice that $\frac{\ln x}{x}$ is a decreasing sequence with limit 0 as $x \to \infty$. Thus $\sum_{k=0}^{2n+1} \left(\frac{\ln(2k+2)}{2k+2} - \frac{\ln(2k+3)}{2k+3}\right)$ is an alternating sum hence converges), which means that $\sum_{k=n+1}^{2n+1} \left(\frac{\ln(2k+2)}{2k+2} - \frac{\ln(2k+3)}{2k+3}\right) \to 0$ as $n \to 0$. It is also well known that $\sum_{k=0}^{n} \left(\frac{1}{2k+1} - \frac{1}{2k+2}\right) \to \ln 2$ as $n \to \infty$. Therefore $\lim_{n\to\infty} \ln 2 \sum_{k=0}^{n} \left(\frac{1}{2k+1} - \frac{1}{2k+2}\right) - \frac{\ln(2n+2)}{2n+2} + \sum_{k=n+1}^{2n+1} \left(\frac{\ln(2k+2)}{2k+2} - \frac{\ln(2k+3)}{2k+3}\right) = (\ln 2)^2 + 0 + 0 = (\ln 2)^2$

B5 A line in the plane of a triangle T is called an equalizer if it divides T into two regions having equal area and equal perimeter. Find positive integers a > b > c, with a as small as possible, such that there exists a triangle with side lengths a, b, c that has exactly two distinct equalizers.

Answer. 9, 8, 7

Solution. Throughout the solution we focus on lines that split T into equal perimeter. This line is only meaningful if it either passes through two of the sides of the triangle, or it passes through a vertex and its opposite side. In the second case, the fact that this line is an equalizer means that it has to be a median of a side, say having length c. Let m to be the length of median, then the perimeter of the first triangle is $a + \frac{c}{2} + m$ and the second, $b + \frac{c}{2} + m$. But since $a \neq b$, this cannot be an equalizer.

So now each equalizer must pass through exactly two of the sides (it has to be 2 or 0 by menelaus' theorem, and the case of 0 is impossible since it doesn't divide T at all). From now on, denote $s = \frac{a+b+c}{2}$, the semiperimeter. We consider each of the three cases (following a > b > c):

(a) If the line passes through sides with length b and c, let the line cut the first side into a smaller triangle of length b_1 , c_1 , m, with b_1 on the b-side and c_1 on the c-side. This splits T into a triangle of perimeter $b_1 + c_1 + m$ and a quadrilateral of length $a + m + (b - b_1) + (c - c_1)$, which means $b_1 + c_1 = \frac{a+b+c}{2} = s$, and the ratio of area of smaller triangle to the bigger one is $\frac{b_1c_1}{bc}$ (for the case of equalizer, this ratio must

be $\frac{1}{2}$). Given that $b-1+c_1=s$, we have $b_1c_1=\frac{s^2-(b_1-c_1)^2}{4}$. Now considering all such lines on the two sides satisfying the perimeter constraint, we have $b_1\leq b$ and $c_1\leq c$, which means we have $c_1\geq (s-b)$ and $b_1\leq s-c$. Thus b_1-c_1 has to lie in the interval [s-2c,2b-s]. Given that b< a and c< a, when $b_1=b$ we have $c_1=s_b$ so the ratio of the triangle area is now $\frac{s-b}{c}=\frac{a+c-b}{2c}>\frac{1}{2}$ since a>b. Similarly when $c_1=c$ we have $b_1=s-c$ and the resulting ratio is $\frac{a+b-c}{2b}>\frac{1}{2}$ since a>c. Therefore we get $\frac{s^2-(b_1-c_1)^2}{4}>\frac{1}{2}bc$ when $b_1-c_1\in\{s-2c,2b-s\}$. For all $x\in[s-2c,2b-s]$ we either have $|x|\leq s-2c$ or $|x|\leq 2b-s$, so we always have $\frac{s^2-(b_1-c_1)^2}{4}>\frac{1}{2}bc$. Hence no equalizer in this case.

- (b) Similar to the case above we consider what happened when it passes through length a and c. Now denote a_1 and c_1 like above; we get that $a_1 c_1$ is in the interval [s 2c, 2a s]. Now when $a_1 = a$ the resulting ratio is $\frac{(s-a)}{c} = \frac{b+c-a}{2c} < \frac{1}{2}$ while if $c_1 = c$ the ratio is $\frac{s-c}{a} = \frac{a+b-c}{2a} > \frac{1}{2}$. Thus the value $a_1c_1 = \frac{s^2-(a_1-c_1)^2}{4} > \frac{1}{2}ac$ when $a_1-c_1 = s-2c$ while is $<\frac{1}{2}ac$ when $a_1-c_1 = 2a-s$. Therefore considering x that satisfies $\frac{s^2-x^2}{4} = \frac{1}{2}ac$, we get |x| < 2a-s while |x| > s-2c. This implies that there's exactly one such x in the interval [s-2c, 2a-s], and has one equalizer.
- (c) Finally, let the line cuts the sides a and b which forms a smaller triangle with length a_1 on side a and b_1 on side b, then $a_1-b_1\in[s-2b,2a-s]$. When $a_1=a$ we have $b_1=s-a$ and the area ratio becomes $\frac{s-a}{b}=\frac{b+c-a}{2b}<\frac{1}{2}$, and similarly for $b_a=b$ we get $a_1=s-b$, so the ratio becomes $\frac{s-b}{a}=\frac{c+a-b}{2a}<\frac{1}{2}$. Thus $\frac{s^2-(a_1-c_1)^2}{4}<\frac{1}{2}ac$ when a_1-c_1 is at these extreme points. If $s^2<2ac$ then there's no equalizer in this case; if $s^2=2ac$ then equalizer exists when $a_1=c_1$ (here, $0\in[s-2b,2a-s]$ since $s-2b=\frac{a+c-3b}{2}<\frac{a-2b}{2}<0$) as 2b>b+c>a by triangle inequality, and $2a-s=\frac{3a-b-c}{2}>\frac{3a-a-a}{2}>0$); if $s^2>2ac$, denote x as the two solutions to $s^2-x^2=2ac$. From our example we have |x|<|s-2b|, |x|<|2a-s| and s-2b<0<2a-s so both solutions lie in the interval [s-2b,2a-s]. In this case we have two equalizers.

Now knowing all the cases above, there must be exactly 1 equalizer in the second case, and exactly 1 equalizer in the third case. The third case implies that $a_1 = b_1 = \frac{s}{2}$, which entails (by the equality of area) $\frac{s^2}{4} = \frac{1}{2}ab$, or $(a+b+c)^2 = 8ab$. For 8ab to be a square, we need $ac = 2 \cdot k^2$ for some k, bearing in mind that 2a > 2b > a. Considering $k = 1, 2, \cdots$, the smallest k that has this property is when a = 9, b = 8, forcing c = 7. For $k \ge 7$ we have $a > k\sqrt{2} = 7\sqrt{2} > 9$, so a = 9 is the smallest possible answer.