Під час аналізу даних виділяються наступні етапи: отримання вхідної інформації, безпосередньо сама обробка її, аналіз та інтерпретація результатів обробки даних.

Головне зробити правильні висновки з результатів.

Значення змінних які спостерігаються можуть бути як *кількісні* так і *якісні*. Якісні змінні поділяють на *ординальні* та *номінальні*. Ординальні змінні називають *порядковими*, а номінальні — *класифікаційними*. Обидва типи змінних приймають свої значення з деякої множини, елементи якої називають *градаціями*. Градації, які приймає як свої значення ординальна змінна, природно **впорядковані за степенем прояву властивості**. Градації номінальної змінної такого порядку **не мають**. Серед якісних змінних виділяють *категоризовані* та *не категоризовані*.

До категоризованих змінних відносять змінні, для яких повністю визначена множина градацій та правило віднесення значення змінної, яке спостерігається, до певної градації.

Змінні ще поділяють на дискретні та неперервні.

1 Групування змінних

 ξ – скалярна змінна, яка досліджується.

Вибірка об'єму $n: x_1, x_2, \ldots, x_n$.

У випадку великих об'ємів вибірок виникає бажання провести деяке перетворення їх з метою стиснення даних без суттєвої втрати вибірками інформативності, а тільки згодом проводити обробку цих перетворених даних. Як правило, його застосовують при обробці спостережень над неперервними змінними, коли об'єм вибірки перевищує 50, а над дискретними змінними, коли кількість значень m, які вони приймають, перевищує 10.

Перехід до згрупованих даних:

- 1. Визначити $x_{\min} = \min_i(x_i), x_{\max} = \max_i(x_i);$
- 2. Інтервал $[x_{\min}, x_{\max}]$ розбивають на s однакових під-інтервалів $[a_i, b_i), i = \overline{1, s}$. Зазвичай $5 \le s \le 30$. Зазвичай $s = 1 + [\log_2 n]$ або $s = [10 \log_{10}(n)];$
- 3. $x_i^* = \frac{a_i + b_I}{2}$ центральна точка.

 v_i – кількість вимірів з вибірки що належать інтервалу $[a_i,b_i)$.

$$\{x_1, x_2, \dots, x_n\} \mapsto \{x_i^*, v_i\}_{i=1}^s \left(\sum_{i=1}^s v_i = n\right).$$

Рекомендується $v_i \ge 5$, в разі $v_i < 5$ сусідні інтервали зливаються в один.

Зауваження! При проведенні групування даних зовсім не обов'язково брати під-інтервали однакової довжини.

 $F_{\xi}(x) = P\{\xi < x\}$ – функція розподілу, $p_{\xi}(x)$ – функція щільності, $\{y_i, p_i\}_{i=1}^m$ – полігон ймовірності, якщо ξ – дискретна випадкова величина, що набуває значення y_i з ймовірністю p_i , $i=\overline{1,m}$.

Оцінка характеристик по згрупованим даним:

Емпірична (вибіркова) функція розподілу $\hat{F}_{\xi}(x)$ буде $\hat{F}_{\xi}(x)=\frac{1}{n}\sum_{i:b_i\leq x}v_i$. Емпірична (вибіркова) функція щільності $\hat{p}_{\xi}(x)$ буде $\hat{p}_{\xi}(x)=\frac{v_{i(x)}}{n(b_{i(x)}-a_{i(x)}}$, де i(x) – номер підінтервалу якому належить x.

Моделювання змінних 2

Потреба в генерації спостережень над випадковими величинами із заданими функціями розподілу.

Зазвичай $\xi = g(\xi_1, \xi_2, \dots, \xi_q)$, де $\xi_1, \xi_2, \dots, \xi_q$ – найпростіші випадкові величини, як правило вони рівномірно розподілені на відрізку [0, 1).

Датчик (генератор) випадкових чисел – спеціальний пристрій, який після запиту на виході дозволяє отримати реалізацію випадкової величини із заданим законом розподілу.

Класи датчиків (генераторів) випадкових чисел:

- табличні таблиця, заповнена реалізаціями випадковою величини із заданим законом розподілу, зазвичай досить високої якості, але вони маю обмежений об'єм. Кількість вибірок невелика.
- фізичні деякий електронний пристрій на виході якого отримують необхідну реалізацію вибірки довільного об'єму, але кожна вибірка унікальна і неповторна.
- програмні програма, що формує потрібну реалізацію. Базуються на використанні рекурентних формул з деякою глибиною пам'яті: задаючи однакові початкові значення можна отримати однакові вибірки. Генератор періодичний, отримані числа "псевдовипадкові".

3 Програмні датчики

Генератор випадкової величини з F(x) = U([0,1)).

Лінійна змішана формула:

$$\begin{cases} x_i = \frac{\tilde{x}_i}{M} \\ \tilde{x}_i = \left(a_0 + \sum_{j=1}^{\ell} a_j \tilde{x}_{i-j}\right) \mod M, i = 1, 2, \dots \end{cases}$$

$$\ell \geq 1, \ a_j \geq 0 \ (j=\overline{1,\ell}), \ M>0, \ \ell, \ a_j \ (j=\overline{0,\ell}), \ M \in \mathbb{Z}^+, \ 0 \leq \tilde{x}_{\ell-j} \leq M-1, \ j=\overline{1,\ell}.$$

Мультиплікативний конгруентний метод: Лінійна змішана формула ($\ell = 1, a_0 = 0$).

$$\begin{cases} x_i = \frac{\tilde{x}_i}{M} \\ \tilde{x}_i = (a_1 \tilde{x}_{i-1}) \mod M, i = 1, 2, \dots \end{cases}$$

$$0 \le \tilde{x}_0 \le M - 1, \{\tilde{x}_i\}_{i>0} \in \{0, 1, \dots, M - 1\}.$$

Послідовність $\{\tilde{x}_i\}_{i\geq 0}$ періодична. T_{\max} — максимальний період. $T_{\max}\leq M$. Вигідно взяти M якомога більшим, ближчим до максимального цілого числа, наприклад найбільше просте число, що менше \max int.

Мультиплікативний конгру
ентний метод не дозволяє досягти максимального теоретично можливого періоду рівного M.

$$\lambda(M) = \begin{cases} 1, & M = 2\\ 2, & M = 4\\ p^{q-1}(p-1), & M = p^q, p > 2, p \in \mathbb{P}, q \ge 1\\ \operatorname{lcm}(\lambda(p_1^{q_1}), \lambda(p_2^{q_2}), \dots, \lambda(p_k^{q_k})), & M = p_1^{q_1} \cdot p_2^{q_2} \cdot \dots \cdot p_k^{q_k}. \end{cases}$$

Теорема 3.1. Максимальний період послідовність $\{\tilde{x}_i\}_{i\geq 0}$ мультиплікативного конгруентного методу $T_{\max} = \lambda(M)$. T_{\max} досягається при:

- 1. $gcd(\tilde{x}_0, M) = 1$;
- 2. $a_1^{\lambda(M)} \mod M = 1$, a_1 є первісним коренем за модулем M.

Зауваження. Якщо покласти M рівним простому числу, то $T_{\max} = M - 1$. В залежності від розрядності комп'ютера найбільшим простим числом буде:

розрядність
$$16$$
 32 64 \max просте число $2^{16}-15$ $2^{32}-5$ 2^64-59

Змішаний конгруентний метод:

Лінійна змішана формула ($\ell = 1, a_0 > 0$).

$$\begin{cases} x_i = \frac{\tilde{x}_i}{M} \\ \tilde{x}_i = (a_0 + a_1 \tilde{x}_{i-1}) \mod M, i = 1, 2, \dots \end{cases}$$

Теорема 3.2. Для отримання послідовності $\{\tilde{x}_i\}_{i\geq 0}$ яка досягає свого тах періоду $T_{\max}=M,$ необхідно:

- $gcd(a_0, M) = 1$;
- $(a_1-1) \mod p = 0$ для всіх $p|M, p \in \mathbb{P}$;
- $(a_1-1) \mod 4 = 0$, якщо 4|M.

Зауваження! Вибір параметрів змішаного конгруентного методу не є гарантією високої якості вибірки. Наприклад $a_0 = a_1 = 1$.

Квадратичний конгруентний метод:

$$\begin{cases} x_i = \frac{\tilde{x}_i}{M} \\ \tilde{x}_i = (a_0 + a_1 \tilde{x}_{i-1} + a_2 \tilde{x}_{i-1}^2) \mod M, i = 1, 2, \dots \end{cases}$$

 $T_{\text{max}} = M$.

Ускладнення лінійної змішаної формули:

$$\begin{cases} x_i = \frac{\tilde{x}_i}{M} \\ \tilde{x}_i = g(\tilde{x}_{i-1}, \tilde{x}_{i-2}, \dots, \tilde{x}_{i-\ell}) \mod M, i = 1, 2, \dots \end{cases}$$