

SENSORS AND ACTUATORS

TEMPERATURE AND PELTIER MODULE

Laboratory Guide

IDENTIFICATION

Weekday	Date	Hour	Group	Students
				• •

INTRODUCTION

A smart sensor is an integrated circuit, without external components, that includes a sensing element, an interface with the outside world, signal processing and some "intelligence" including self-test, self-identification and self-validation. It is basically an embedded system that contains sensors, analog-to-digital converters, memory, wired or wireless interface and a microprocessor with its software.

This class is intended to serve as an introduction to the use of smart sensors with a temperature smart sensor from Maxim, model DS18B20.

The temperature is made to change with the help of a Peltier module which is powered by a DC voltage. One of the sides of the module gets hotter and the other one gets colder. If the DC voltage applied is too high the Peltier effect will be less important than two other effects which are also present: heating due to the Joule effect and heating of the cold side due to thermal conduction.

Recommended reading: Book Sensors and Actuators by Francisco Alegria, section 7.5.

EXECUTION

Assemble the temperature sensor and connect it to the Arduino microcontroller. Draw the connection n	
	nade.

Communicati	on with the sensor					
ate software t	hat reads the ten	nperature from the	he sensors using t	he Arduino micro	ocontroller and s	hows it
computer scre	een. Present the fl	owchart of the a	pplication create	d.		
nment on the	e operation of the es implemented.	e system includir	ng the accuracy,	, response time	of the measurer	nent a
nment on the	e operation of the	e system includir	ng the accuracy,	, response time	of the measurer	nent a
nment on the	e operation of the	e system includir	ng the accuracy,	, response time	of the measuren	nent a
nment on the	e operation of the	e system includir	ng the accuracy,	, response time	of the measurer	nent a
nment on the	e operation of the	e system includir	ng the accuracy,	, response time	of the measuren	nent a
nment on the	e operation of the	e system includir	ng the accuracy,	, response time	of the measurer	nent a
nment on the	e operation of the	e system includir	ng the accuracy,	, response time	of the measuren	nent a
nment on the	e operation of the	e system includir	ng the accuracy,	, response time	of the measuren	nent a
nment on the	e operation of the	e system includir	ng the accuracy,	response time	of the measuren	nent a
nment on the	e operation of the	e system includir	ng the accuracy,	response time	of the measuren	nent a
nment on the	e operation of the	e system includir	ng the accuracy,	, response time	of the measuren	nent a
	e operation of the	e system includir	ng the accuracy,	response time	of the measuren	nent a

MATERIAL

- 2 temperature sensors from Maxim, model DS18B20.
- 1 Peltier module
- Personal computer with Arduino software.
- Breadboard and wires.