

Algoritmos y Estructuras de Datos

HDT 5: Event Discrete Simulation

Realizar: Programa de uso de colas.

Realizarse: INDIVIDUAL

Objetivos:

a. Simulación DES (Discrete Event Simulation) usando el módulo SimPy.

b. Utilización de colas con la clase Resources y Container de SimPy.

"Realizar una simulación (Discrete Event Simulation utilizando el módulo SimPy) en un sistema operativo de tiempo compartido (el procesador se comparte por una porción de tiempo entre cada programa que se desea correr)."

GitHub:

https://github.com/adirnnn/HDT5-EDS.git

Tareas:

a. Hacer el programa de simulación y usarlo con 25 procesos, luego con 50 procesos, con 100, 150 y 200 procesos.

Para esto fue utilizado el código de simulacion_a.py, el tiempo promedio es en milisegundos ya que por alguna razón ningún número de procesos o cambio de especificaciones me daba tiempos más largos. Gráfica realizada con MatPlotLib y cálculos con NumPy.

b. Vuelva a correr su simulación, pero ahora los procesos llegarán más rápido, es decir en intervalos de 5. Repita lo mismo para intervalos de 1.

Realizados con simulacion_b_c.py con el valor de los intervalos siendo [5, 1], la gráfica de intervalo 1 aparece al cerrar la de intervalo 5 como referencia.

- c. Revise las gráficas y trate de reducir el tiempo promedio. Pruebe con:
- i. incrementar la memoria a 200

Realizado con simulacion_b_y.py, cambiando MEMORY_SIZE a 200.

ii. luego con poner la memoria nuevamente a 100, pero tener un procesador más rápido (es decir que ejecuta 6 instrucciones por unidad de tiempo).

Realizado con simulacion_b_c.py cambiando la variable NUM_INSTRUCTIONS al doble.

iii. luego regrese a la velocidad normal del procesador pero emplee 2 procesadores.

Realizado con simulacion_b_c.py con el doble en ambos CPU_SPEED y NUM_INSTRUCTIONS para representar dos cpus.

Gracias a estas pruebas podemos afirmar que la mejor estrategia para disminuir los tiempos es utilizar un procesador más rápido que procesa una cantidad mayor de instrucciones por unidad de tiempo. Ya que en esa prueba los tiempos nunca sobrepasan los 16ms, mientras que el resto se promedian en 90 a 175 y 40 a 50 ms.