Econometrics III Assignment Part 1 & 2 Tinbergen Insitute

Stanislav Avdeev student no stnavdeev@gmail.com

Bas Machielsen 590049bm 590049bm@eur.nl

March 9, 2021

Instructions

I created a file .Renviron, where the python distribution is located on my system. You can find that by opening a terminal, and entering \$ which -a python python3. Then, in RStudio, use usethis::edit_r_environ(), and add RETICULATE_PYTHON="/Users/basmachielsen/opt/anaconda3/bin/python" (or your directory) on a new line to the file. In this way, we can seamlessly interchange R and Python code chunks. Restart RStudio, and then everything is ready to go:

Question 1

Part (a)

```
# Part 1: Plot the Dutch GDP, ACF, and PACF
df <- readr::read_csv("./data/data_assign_p1.csv")

## Parsed with column specification:
## cols(
## obs = col_character(),
## GDP_QGR = col_double()
## )

df <- ts(df$GDP_QGR, frequency = 4, start = c(1987, 2))

plot(df)</pre>
```


acf(df, lag.max = 12)

Series df


```
Box.test(df, lag = 12, type = "Ljung-Box")
```

```
##
## Box-Ljung test
##
## data: df
## X-squared = 12.106, df = 12, p-value = 0.4372
pacf(df, lag.max = 12)
```

Series df

Part (b)

```
ar4 <- dynlm(df ~ L(df, 1) + L(df, 2) + L(df, 3) + L(df, 4))
ar3 <- dynlm(df ~ L(df, 1) + L(df, 3) + L(df, 4))
ar2 <- dynlm(df ~ L(df, 1) + L(df, 3))
ar1 <- dynlm(df ~ L(df, 1))
stargazer(ar4, ar3, ar2, ar1, type = "latex")</pre>
```

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: Tue, Mar 09, 2021 - 17:53:57

```
ar1_m \leftarrow arima(df, c(1, 0, 0))
```

Part c

```
# Part 3: Plot ACF of residuals
acf(ar1_m$resid, 12)
```

Series ar1_m\$resid

Table 1:

Table 1:				
	$\underline{\hspace{2cm}} Dependent \ variable: \\ df$			
	(1)	(2)	(3)	(4)
L(df, 1)	0.232^{*}	0.240^{*}	0.257**	0.267**
	(0.124)	(0.122)	(0.119)	(0.117)
L(df, 2)	0.055			
	(0.126)			
L(df, 3)	0.203	0.210^{*}	0.210^{*}	
	(0.126)	(0.124)	(0.120)	
L(df, 4)	0.094	0.092		
	(0.125)	(0.124)		
Constant	0.479	0.533^{*}	0.631***	0.896***
	(0.299)	(0.271)	(0.238)	(0.181)
Observations	84	84	85	87
\mathbb{R}^2	0.099	0.097	0.089	0.058
Adjusted R^2	0.054	0.063	0.067	0.047
Residual Std. Error	0.902 (df = 79)	0.898 (df = 80)	0.891 (df = 82)	0.895 (df = 85)
F Statistic	$2.181^* \text{ (df} = 4; 79)$	$2.873^{**} (df = 3; 80)$	$4.019^{**} (df = 2; 82)$	$5.229^{**} (df = 1; 85)$

*p<0.1; **p<0.05; ***p<0.01

Part d

```
# Part 4: Forecast AR model for 2 years
df_pred <- predict(ar1_m, n.ahead = 8)$pred</pre>
```

Part e

```
# Part 5: Produce CI
df_ciu <- predict(ar1_m, n.ahead = 8)$pred + predict(ar1_m, n.ahead = 8)$se*1.96
df_cil <- predict(ar1_m, n.ahead = 8)$pred - predict(ar1_m, n.ahead = 8)$se*1.96</pre>
```

Part f

```
# Part 6: Check normality
jb.norm.test(ar1_m$resid)

##
## Jarque-Bera test for normality
##
```

```
# reject HO, innovations are not normally distributed
```

```
import pandas as pd
import numpy as np
r.mtcars.sum()
```

```
642.900
## mpg
## cyl
          198.000
## disp
          7383.100
## hp
          4694.000
           115.090
## drat
## wt
           102.952
## qsec
           571.160
## vs
            14.000
            13.000
## am
## gear
          118.000
            90.000
## carb
## dtype: float64
```

data: ar1_m\$resid

JB = 26.298, p-value = 0.002

Including Plots

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.

Including Matplotlib

```
hoi = np.arange(0,10)

hoi

## array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

#py$hoi

#gert::git_branch_checkout("attempt_bas")

#gert::git_add(c("*"))

#gert::git_commit(message = "Automatic commit")

#gert::git_push()
```