Métodos dedutivos e inferência lógica

Eduardo Furlan Miranda 2025-10-13

Baseado em: SCHEFFER, VC; VIEIRA, G; LIMA, TPFS. Lógica Computacional. EDE, 2020. ISBN 978-85-522-1688-9.

Termos

- Proposição: é a ideia mais básica. Uma frase declarativa que pode ser classificada como verdadeira ou falsa, ex.:
 - "O céu é azul" (V), "Humanos podem voar sem ajuda" (F)
- Premissas: conjunto de proposições que usamos como ponto de partida ou evidência em um raciocínio; fatos que aceitamos como verdadeiros para construir nossa lógica, ex.:
 - "Todo computador funciona com eletricidade"
- Argumento: é o raciocínio completo, um conjunto estruturado de proposições onde as premissas são usadas para dar suporte e levar a uma conclusão
- Silogismo: um raciocínio dedutivo
- Falácia: argumentos que logicamente estão incorretos

$P_1 \wedge P_2 \wedge P_3 \wedge \dots \wedge P_n$

 A lógica proposicional é composta por proposições e conectivos lógicos que permitem criar fórmulas que quando escritas corretamente são chamadas fbf

- Uma fbf é valorada em verdadeira (V) ou falsa (F),
 respeitando a ordem de precedência dos operadores lógicos
 - (), ¬, ∧ ∨, →, ↔

 A valoração de uma fórmula também depende dos valores lógicos de entrada para cada uma das proposições

Valoração para a fórmula A A B v C

Dada a fórmula A Λ B V C, e as entradas

$$A = V$$
, $B = V$, $C = F$,

ela será verdadeira ou falsa?

a)
$$A = V, B = V, C = F$$

b)
$$A = V$$
, $B = F$, $C = F$ (outro ex.)

- Quando uma fórmula apresenta um conjunto de proposições, das quais uma delas é uma conclusão, dizemos que tal fórmula é um argumento (vide próx. slide)
- Um argumento é um conjunto de proposições ou fórmulas,
 - nas quais uma delas (conclusão) deriva,
 - ou é consequência das outras (premissas)

• Forma simbólica de representação do argumento:

```
P_1 \wedge P_2 \wedge P_3 \wedge \dots \wedge P_n \rightarrow \textbf{C}
P_1 = \textbf{False}
P_2 = P_3 = P_4 = \textbf{True}
\textbf{if P1 and P2 and P3 and P4 :}
print("Verdadeiro")
\textbf{else :}
print ("Falso")
Falso
```

conclusão do argumento

C também pode ser uma proposição simples ou uma fbf

 $x \le y$

Conectivo condicional

condição

Sunciente	necessaria	
Р	Q	P → Q
1	1	1
1	0	0
0	1	1
0	0	1

condição

"Ex.: se eu já estou dizendo **que estou mentindo**, eu posso dizer qualquer outra coisa, não importa"

Tabela verdade

and

or

x <= y

Р	Q	٨	V	→
1	1	1	1	1
1	0	0	1	0
0	1	0	1	1
0	0	0	0	1

possui uma conclusão

- Dado um argumento,
 - é importante validar se ele é válido ou inválido

- A lógica possui mecanismos que permitem validá-los
 - compostos pelas regras de equivalência e inferência lógica.
 - Permite avaliar a relação entre as
 - hipóteses, e a
 - conclusão
 - também chamada de consequência lógica, dedução lógica, conclusão lógica ou implicação lógica

Uma proposição pode ser

P1 Λ P2 Λ P3 Λ ... Λ Pn

- verdadeira ou falsa
 - e não pode ser válida ou inválida
- Um argumento pode ser
 - válido ou inválido

 $P_1 \wedge P_2 \wedge P_3 \wedge \dots \wedge P_n \rightarrow C$

• e não pode ser verdadeiro ou falso

```
if P1 and P2 and P3 and P4 :
    print("Verdade[iro")
```

Tautologia

 Tautologia é um resultado no qual todas as entradas possíveis de uma fórmula obtêm verdadeiro como resultado

 Um argumento só é válido quando a fórmula é uma tautologia

Exemplo

p	~ p	p ^ ~p
V	F	V
F	V	V

- Para saber se um argumento é válido ou não, precisamos saber se ele é uma tautologia
 - Poderíamos testar todas as combinações de entrada possíveis para o argumento (ex.: tabela verdade)

- Na Lógica Formal podemos usar um sistema de regras de dedução e,
 - seguindo uma sequência de demonstração
 - provar se o argumento é válido ou não

Sequência de demonstração

- É uma sequência de fbfs,
 - nas quais cada fbf é uma hipótese, ou
 - o resultado de se aplicar uma das regras de dedução do sistema formal a fbfs anteriores na sequência

Lógica Formal

 P_1 , P_2 , ..., P_n , são as hipóteses

Sequência de demonstração

P1 \wedge P2 \wedge P3 \wedge ... \wedge Pn \rightarrow C

1. P ₁	(hipótese)
2. P ₂	(hipótese)
•••	***
n) P_n	(hipótese)
n+1) <i>fbf</i> ₁	(resultado da aplicação de uma regra de dedução a hipóteses anteriores.)
n+2) <i>fbf</i> ₂	(resultado da aplicação de uma regra de dedução a hipóteses anteriores.)
	•••
n+n) C	(resultado da aplicação de uma regra de dedução a hipóteses anteriores.)

Da tabela anterior:

- Cada proposição deve ficar em uma linha
- Em cada linha indicamos o que ela representa,
 - se é uma hipótese ou então a regra que foi aplicada
- Após elencar todas as proposições é hora de começar a aplicar as regras e, consequentemente, obter novas fbfs
- As regras de dedução devem ser aplicadas até que se consiga
 - provar que o argumento é verdadeiro, ou
 - que não existam mais regras a serem aplicadas
 - e neste caso o argumento é falso

Regras de **equivalência** de dedução para a Lógica Proposicional Pl A P2 A P3 A ... A Pn

- As regras de dedução são divididas em dois tipos
 - Regras de equivalência
 - Regras de inferência
- 2 fbfs são equivalentes quando todas as combinações possíveis de entradas geram o mesmo resultado de saída
- Regras de equivalência serão usadas quando uma fbf (que pode ser uma hipótese ou resultado de uma regra) pode ser substituída por outra fbf, mantendo o resultado lógico

Regras de equivalência

Expressão (fbf)	Equivalente (fbf)	Nome/Abreviação	
$P \lor Q$ $P \land Q$	$Q \lor P$ $Q \land P$	Comutatividade/com	
$(P \lor Q) \lor R$ $(P \land Q) \land R$	$P \lor (Q \lor R)$ $P \land (Q \land R)$	Associatividade/ass	
$\neg (P \lor Q)$ $\neg (P \land Q)$	$\neg P \land \neg Q$ $\neg P \lor \neg Q$	Leis de De Morgan/De Morgan	
$P \rightarrow Q$	$\neg P \lor Q$	Condicional/cond	
P	←(←P)	Dupla negação/dn	
$P \leftrightarrow Q$	$(P \rightarrow Q) \land (Q \rightarrow P)$	Definição de equivalência/ que	

Regras de inferência de dedução para a Lógica Proposicional

• Em contraste com as regras de equivalência, as regras de inferência não funcionam em ambas as direções

- Regras de inferência para condicionais (implicações lógicas)
 - Modus Ponens (MP): eliminação do condicional
 - Modus Tollens (MT): prova que o antecedente não aconteceu
 - Silogismo Hipotético (SH): consequente é antecedente na outra

"então"

Modus Ponens (MP)

 Poder ser representado como uma tautologia (sempre verdadeira)

$$P o Q$$
 "se" P

 $x \le y$

$$((P \rightarrow Q) \land P) \rightarrow Q$$

and

 $x \le y$

Exemplo MP

• P→Q: Se João receber seu salário, ele irá ao cinema

P: João recebe o salário

• Q: João vai ao cinema.

Modus Ponens (MP) - simulação

 $((P \rightarrow Q) \land P) \rightarrow Q$

```
for P in [True, False]:
    for Q in [True, False]:
        R1 = (P \le 0)
        R2 = (R1 \text{ and } P)
         print(f"{P:6}{Q:6}{R1:6}{R2:6}{R2<=Q:6}")
                   0
```

"se temos"

Modus Tollens (MT)

- Além de envolver uma implicação e uma conjunção, também envolve a negação de uma das proposições
- Sua estrutura é dada pela fbf

$$(P \rightarrow Q) \land \neg Q \rightarrow \neg P$$
 $\neg Q$ "e temos" $\neg P$ $\neg P$ "então"

• Se na implicação o consequente não é verdade, então a conclusão é que o antecedente também não aconteceu

Exemplo MT

"Se Marina for a autora, então o livro será de ficção" (P→Q)

"Mas o livro não é de ficção" (¬Q)

Portanto, Marina não é a autora" (¬P)

Modus Tollens (MT)

O MT é representado pela tautologia: (P→Q) ∧¬Q → ¬P.

P	Q	$\neg Q$	P o Q	Premissas: $(P o Q) \wedge \neg Q$	Conclusão: $\neg P$	MT (Fórmula Completa)
1	1	0	1	1 \(\cdot 0 = 0 \)	0	0 → 0 = 1
1	0	1	0	0 \ 1 = 0	0	0 → 0 = 1
0	1	0	1	1 \ 0 = 0	1	0 → 1 = 1
0	0	1	1	1 \ 1 = 1	1	1 → 1 = 1

Silogismo Hipotético (SH)

 Além de existirem implicações e conjunções nas hipóteses, a conclusão também é uma implicação

Sua estrutura é dada pela fbf:

•
$$(P \rightarrow Q) \land (Q \rightarrow R) \rightarrow (P \rightarrow R)$$

$$P \rightarrow Q$$

$$Q \rightarrow R$$

$$P \rightarrow R$$

Exemplo SH

 P→Q: Se as árvores começam a florir, então começa a primavera

Q→R: Se começa a primavera, então as árvores dão frutos

∴P→R: Se as árvores começam a florir, então darão frutos

Silogismo Hipotético (SH)

• O SH é representado pela tautologia: $(P\rightarrow Q)\Lambda(Q\rightarrow R)\rightarrow (P\rightarrow R)$

Р	Q	R	P o Q	Q o R	Premissas: $(P ightarrow Q) \wedge (Q ightarrow R)$	Conclusão: $P o R$	SH (Fórmula Completa)
1	1	1	1	1	1	1	1
1	1	0	1	0	0	0	1
1	0	1	0	1	0	1	1
1	0	0	0	1	0	0	1
0	1	1	1	1	1	1	1
0	1	0	1	0	0	1	1
0	0	1	1	1	1	1	1
0	0	0	1	1	1	1	1

Resumo de algumas das principais regras de inferências

Quadro 3.6 | Regras de inferência

De (fbf)	Podemos deduzir (fbf)	Nome/Abreviação
$P \rightarrow Q$, P	Q	Modus Ponens/MP
$P \rightarrow Q$, $\leftarrow Q$	<i>←</i> P	Modus Tollens/MT
$P \rightarrow Q$, $Q \rightarrow R$	$P \rightarrow R$	Silogismo Hipotético/SH
P, Q	$P \wedge Q$	Conjunção/conj
$P \wedge Q$	P, Q	Simplicação/simp
P	$P \wedge Q$	Adição/ad