MA 2073 Midterm 1

February 3, 2014

Elissa Ross, WPI

Name:		
Q. 1 . 37 . 1		
Student Number: _		

You have 50 minutes to complete this exam.

Examination rules and instructions:

- closed book
- no calculators or cell phones are permitted

Question	Mark
1	
2	
$\begin{bmatrix} 2\\ 3 \end{bmatrix}$	
4	
5	
6	
7	
Total	/40

MA 2073 Midterm 1

Question 1 (8 marks). TRUE FALSE: Circle T for true, or F for false. Each correct answer is worth 1 mark.

- a) **T** / **F** Every matrix with 1's down its diagonal is invertible.
- b) $\boxed{\mathbf{T} / \mathbf{F}}$ If A is invertible, then A^{-1} and A^2 are invertible.
- c) $\boxed{\mathbf{T} / \mathbf{F}}$ Every set of four non-zero vectors in \mathbb{R}^4 is a basis.
- d) $\boxed{\mathbf{T} / \mathbf{F}}$ If the rows of A are independent, and the columns of A are independent, then A is a square matrix.
- e) $\boxed{\mathbf{T} / \mathbf{F}}$ The column space of A is the set of all solutions of $A\mathbf{x} = \mathbf{b}$.
- f) \mathbf{T} / \mathbf{F} The vectors \mathbf{b} that are *not* in the column space of A form a subspace.
- g) $\boxed{\mathbf{T} / \mathbf{F}}$ An $m \times n$ matrix has no more than n pivot variables.
- h) $\boxed{\mathbf{T} / \mathbf{F}}$ If A is not a square matrix, then the row vectors of A must be dependent.

MA 2073 Midterm 1 February 3, 2014

Question 2 (6 marks).

- a) Let A be an $n \times n$ matrix. Define A^{-1} .
- b) Use the definition of the inverse of a matrix to prove that an $n \times n$ matrix with a column of zeros cannot have an inverse.

Question 3 (6 marks). Find the complete solution to the following system of equations:

$$x + y + z = 4$$

$$x - y + z = 4$$

MA~2073~Midterm~1

Question 4 (4 marks). What matrix E puts A into upper triangular form EA = U? Multiply by $E^{-1} = L$ to factor A into LU:

$$A = \left[\begin{array}{ccc} 2 & 1 & 0 \\ 0 & 4 & 2 \\ 6 & 3 & 0 \end{array} \right]$$

Question 5 (6 marks).

- a) Draw the row and column pictures for the equations x 2y = 0, x + y = 6.
- b) What is the nullspace of the matrix A?

$$A = \left[\begin{array}{cc} 1 & -2 \\ 1 & 1 \end{array} \right]$$

MA 2073 Midterm 1 February 3, 2014

Question 6 (5 marks).

- a) Is \mathbb{R}^k a subspace of \mathbb{R}^n when k < n? Why or why not?
- b) Describe geometrically all subspaces of \mathbb{R}^3 , and list their dimensions.

Question 7 (5 marks).

- a) Find a basis for the subspace of \mathbb{R}^4 consisting of all vectors whose components are equal.
- b) The cosine space ${\bf F_3}$ contains all combinations

$$y(x) = A\cos x + B\cos 2x + C\cos 3x.$$

Find a basis for the subspace of $\mathbf{F_3}$ with y(0) = 0 (recall that $\cos(0) = 1$).

This exam has 5 pages (including the cover sheet) and 7 problems, worth a total of 40 marks.