Chapitre 6

Perte de Charge de Fluides Visqueux Incompressibles

6.1 RÉGIMES D'ÉCOULEMENTS

Écoulement laminaire

- Couches du fluide s'écoulent concentriquement les unes par rapport aux autres sans se mélanger.
- Près de paroi : écoulement stationnaire (faible vitesse)
- Au centre : écoulement avec plus grande vitesse

Écoulement turbulent

Mélange aléatoire des couches du fluide : effet positif sur transfert de chaleur

Mélange → pulsation vitesse & pression pouvant provoquer des vibrations

6.1 RÉGIMES D'ÉCOULEMENTS

Expériences de Reynolds : fluides à différentes viscosités, variation de débit et diamètre de conduit (canalisation) :

$$R_e = v \cdot d/v$$

v: vitesse moyenne d'écoulement (m/s) , d : diamètre conduite (m), v viscosité cinématique fluide (m²/s)

- → Différentes valeurs de R_e
 - R_e ≤ 2300 : écoulement laminaire (organisé)
 - $R_e \ge 4000$: écoulement turbulent (agité)
 - $2300 \le R_e \le 4000$: écoulement transitoire (entre laminaire et turbulent)

6.2 PERTES DE CHARGE ET D'ÉNERGIE

- ➤ Viscosité ⇒ frottements dans le fluide, entre fluide et parois tuyau ou canalisation
- Frottements:
 - → Convertir en chaleur une partie d'énergie de pression du fluide en déplacement
 - → Augmenter la température du fluide et de la tuyauterie
 - → Critiques dans le fonctionnement de certaines pièces d'équipement
 - → Entraînent production de chaleur = perte d'énergie pour le fluide : perte de charge
 - → Canalisation horizontale, pertes = diminution de pression dans le sens d'écoulement
- Pertes de charge dépendent de :
 - Longueur de canalisation : pertes ↑ quand L ↑
 - Viscosité du liquide : liquide + visqueux, pertes ↑
 - Diamètre intérieur du tuyau : $d \downarrow$, pertes ↑
 - Débit : pertes (frottements) ↑ lorsque Q ↑
 - Rugosité de la canalisation : rugosité ↑ les frottements, d'où ↑ des pertes

Équation de conservation d'énergie :
$$z_1 + \frac{p_1}{\gamma} + \frac{v_1^2}{2g} = z_2 + \frac{p_2}{\gamma} + \frac{v_2^2}{2g} + h_L$$

$$h_L = \left(z_1 + \frac{p_1}{\gamma} + \frac{v_1^2}{2g}\right) - \left(z_2 + \frac{p_2}{\gamma} + \frac{v_2^2}{2g}\right)$$

 h_L : perte de charge

Équation de conservation d'énergie :
$$z_1 + \frac{p_1}{\gamma} + \frac{v_1^2}{2g} \pm E = z_2 + \frac{p_2}{\gamma} + \frac{v_2^2}{2g} + h_L$$

E = énergie fournie (pompe) ou absorbée (turbine)

Types de pertes de charge :

▶ Perte de charge linéaire : frottements dans une conduite à A constante et L donnée.

$$h_L = \frac{\lambda L v^2}{d 2g}$$

v: vitesse moyenne d'écoulement (m/s), L longueur conduite (m), d diamètre conduite (m), λ coefficient de perte de charge linéaire dépendant de R_e

Coefficients de perte de charge linéaire :

• Écoulement laminaire : $R_e \le 2300$ (formule de Poiseuille)

$$\lambda = 64/R_{\rho}$$

• Écoulement turbulent lisse : $2300 \le R_e \le 10^5$ (formule de Blasius)

$$\lambda = 0.316 R_e^{-0.25}$$

• Écoulement turbulent rugueux : $R_e > 10^5$ (formule de Blench)

$$\lambda = 079 \sqrt{\epsilon/d}$$
 ϵ : rugosité de la surface interne de la conduite (tuyau)

Types de pertes de charges :

→ Perte de charge singulière (locale) : accidents de parcours fluide (changement de direction, changement de section, vanne, ...)

Exemples de quelques changements de direction

Types de pertes de charges :

Perte de charge singulière (locale) :

$$h_S = K_S \frac{v^2}{2}$$

 K_s coefficient (adimensionnel) de perte de charge (nature & géométrie de forme de l'accident)

Perte totale de charge

 $h_F = h_L + h_S$: somme de pertes de charge singulières et linéaires entre (1) et (2)

Exemple de pertes de charges singulières :

Tuyau plié

θ	20°	40°	60°	80°	90°	100°	110°	120°	130°	160°
Ks	0.046	0.139	0.364	0.741	0.985	1.260	1.560	1.861	2.150	2.431

Tuyau à 3 voies

Tuyau à 3 voies à 90°				
K_s	0.1	1.3	1.3	3
Tuyau à 3 voies à 45°			_/_	
K_s	0.15	0.005	0.5	3

Exemple de pertes de charges singulières :

Contraction soudaine du diamètre du tuyau

A_2	A_1	0.01	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
K	ζ_s	0.490	0.469	0.431	0.387	0.343	0.298	0.257	0.212	0.161	0.070	0.000

Exemple de pertes de charges singulières :

Tuyau courbé (coude)

Coude à 90°

r/R	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1
K_{S}	0.132	0.138	0.158	0.206	0.294	0.440	0.661	0.977	1.408	1.978

Exemple de pertes de charges :

Exemple de pertes de charges :

 $h_{L1}=$ perte linéaire dans la conduite de ϕd_1 et de longueur L_1

 $h_{L2}=$ perte linéaire dans la conduite de ϕd_2 et de longueur L_2

 $h_{L3} = \text{perte linéaire dans la conduite de } \phi d_3 \text{ et de longueur } L_3 + L_4 + L_5$

 h_{S1} = perte singulière élargissement

 h_{S2} = perte singulière rétrécissement progressif

 h_{S3} = perte singulière coude

 h_{S4} = perte singulière vanne

 $h_F = h_{L1} + h_{L2} + h_{L3} + h_{S1} + h_{S2} + h_{S3} + h_{S4}$

Exemple 1:

La figure ci-dessous est un système de tuyauterie avec une pompe à eau. Le diamètre de tous les tuyaux est de 200 mm et le débit Q est de 0.06 m³/s. La différence de hauteur entre le réservoir C et le réservoir C et le réservoir C est C est

Exemple 2:

Une huile lourde de poids spécifique 9.31 kN/m³ est transportée par un pipeline de longueur 1 000 m et de diamètre 300 mm grâce à un débit de 0.0686 m³/s. Déterminer la perte de charge si la température de l'huile est respectivement de 10 °C et 40 °C. La viscosité cinématique de l'huile est 25 cm²/s à 10 °C et 1.5 cm²/s à 40 °C. Quelle est la nature de l'écoulement dans les 2 cas (de température) ?