Beadható házi feladatok II. éves prog.inf. Bsc szakos hallgatóknak (Beadható az 1. zh-ig az alábbiak közül.)

HF1. Az $\sqrt{6}$ -t és $\sqrt{3}$ -t közelítsük az M(4,-5,5) gépi számok halmazában, majd számítsuk ki a $\sqrt{6}+\sqrt{3}$ és $\sqrt{6}-\sqrt{3}$ -t az adott gépi aritmetikában. Adjunk (a számábrázolásból adódó) abszolút és relatív hibakorlátot a közelítő értékekre.

HF2. Legyen $\Lambda = \left\{ L \in I\!\!R^{n \times n} \ l_{ij} = 0, \ i < j \ \left(i,j=1...n\right) \right\}$ az alsóháromszög mátrixok halmaza. Igazoljuk, hogy $L_1, L_2 \in \Lambda$ esetén $L_1 \cdot L_2 \in \Lambda$, illetve $L_1^{-1} \in \Lambda$.

 $\textbf{HF3.} \text{ Legyen } \Lambda^{(1)} = \left\{\!\! L \in I\!\!R^{n \times n} \middle| \ l_{ii} = 1, l_{ij} = 0, \, i < j \ \left(i,j = 1...n\right)\!\!\right\} \text{ az 1-es átlójú alsóháromszög mátrixok halmaza. Igazoljuk, hogy } L_1, L_2 \in \Lambda^{(1)} \text{ esetén } L_1 \cdot L_2 \in \Lambda^{(1)} \text{ , illetve } L_1^{-1} \in \Lambda^{(1)} \text{ .}$

H4. Legyen $Y = \{U \in IR^{n \times n} u_{ij} = 0, i > j \ (i, j = 1...n)\}$ a felsőháromszög mátrixok halmaza. Igazoljuk, hogy $U_1, U_2 \in Y$ esetén $U_1 \cdot U_2 \in Y$, illetve $U_1^{-1} \in Y$.

HF5. Határozzuk meg a következő mátrix inverzét Gauss-eliminációval (indukciós bizonyítást kérek).

$$A = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 1 & 1 & 0 & \dots & 0 \\ 1 & 1 & 1 & & & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \dots & 1 \end{bmatrix} \in \mathbb{R}^{n \times n}$$

HF6. Határozzuk meg a következő tridiagonális mátrix

- a) LU felbontását és
- b) Cholesky-féle felbontását.

Indukciós bizonyítást kérek, nem csak sejtést, képleteket! LU-felbontásból lehet Cholesky-t előállítani.

$$A = \begin{bmatrix} 1 & 1 & 0 & \dots & 0 & 0 \\ 1 & 2 & 1 & \dots & 0 & 0 \\ 0 & 1 & 2 & \ddots & \vdots & \vdots \\ 0 & 0 & 1 & \ddots & 1 & 0 \\ \vdots & \vdots & \vdots & \ddots & 2 & 1 \\ 0 & 0 & 0 & \dots & 1 & 1 \end{bmatrix} \in \mathbb{R}^{n \times n}$$

HF7. A $H(\underline{v})$ Householder mátrixnak adjuk meg a sajátértékeit. (A geometriai szemlélet segít.)

HF8. A $H(\underline{v})$ Householder mátrix determinánsáról mit tudunk mondani?

HF9. Készítsük el a Gauss-eliminációval történő mátrix inverz meghatározás algoritmusát és visszahelyettesítést a felfelé történő soronkénti nullázásokkal. A jobboldali egységmátrixon csak a legszükségesebb műveletekkel számoljunk. Számítsuk ki mindkét algoritmus műveletigényét.