3. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ С ОДНОЙ ПЕРЕМЕННОЙ

2.1 Основные определения.

Нелинейное уравнение имеет вид

$$f(x) = 0, \tag{2.1}$$

гдеf(x) -функция, определенная на отрезке [a,b]. Здесь a и b - действительные числа.

Определение 1

Всякое число $\xi \in [a,b]$, при котором f(x) = 0, называется корнем уравнения f(x) = 0.

Определение 2

Если f(x) - многочлен, отличный от нулевого, то уравнение называется алгебраическим, иначе - трансцендентным (показательным, логарифмическим, тригонометрическим и т.п.).

Задача приближенного вычисления корней уравнения f(x) = 0 распадается на две:

- 1. Отделение корней уравнения процедура нахождения отрезков , на которых уравнение f(x) = 0 имеет только одно решение.
- 2. Вычисление корня с заданной точностью ε . Справедлива следующая теорема:

Теорема Больцано-Коши:

Если непрерывная функция f(x) принимает на концах отрезка [a,b] значения разных знаков, т.е. $f(a) \cdot f(b) < 0$, то внутри этого отрезка содержится, по крайней мере, один корень. Этот корень будет единственным, если производная f'(x) существует и сохраняет постоянный знак внутри отрезка [a,b].

3.1. Отделение корней

1. Графический метод

Этот метод основан на построении графика функции y=f(x). (1)

Если построить график данной функции, то искомым отрезком [a,b], содержащим корень уравнения (1), будет отрезок оси абсцисс, содержащий точку пересечения графика с этой осью. Иногда выгоднее функцию f(x) представить в виде разности двух более простых функций, т.е. $f(x) = \varphi(x) - \psi(x)$ и строить графики функций $\varphi(x)$ и $\psi(x)$. Абсцисса точки пересечения этих графиков и будет являться корнем уравнения (1), а отрезок на оси абсцисс которому принадлежит данный корень, будет являться интервалом изоляции. Этот метод отделения корней хорошо работает только в том случае, если исходное уравнение не имеет близких корней. Данный метод дает тем результат, чем мельче берется сетка по оси Ох.

Пример. Графически решить уравнение $x \cdot \ln(x) = 1$. **Решение**. Запишем исходное уравнение в виде: $\ln(x) = 1/x$, т.е. $\phi(x) = \psi(x) \ \phi(x) = \ln(x) \ \mu(x) = 1/x$.

Таким образом, корни данного уравнения могут быть найдены как абсциссы точек пересечения кривых $y = \ln(x)$ и y)=1/x. Теперь построим графики функций и определим интервал изоляции корня.

Из рис.1 видно, что корень находится на отрезке [1,2]. В качестве приближенного значения этого корня можно взять значение x=1.5. Если взять шаг по оси Ох меньше, то и значение корня можно получить более точное.

2. Аналитический метод (табличный или шаговый).

Для отделения корней полезно помнить следующие известные теоремы:

- 1) если непрерывная функция f(x) принимает значения разных знаков на концах отрезка $[\alpha,\beta]$, т.е. $f(\alpha)\cdot f(\beta)<0$, то внутри этого отрезка содержится, по крайне мере, один корень уравнения f(x)=0;
- 2) если непрерывная и монотонная функция f(x) на отрезке [α,β] принимает на концах отрезка значения разных знаков, то внутри данного отрезка содержится единственный корень;
- 3) если функция f(x) непрерывна на отрезка [α,β] и принимает на концах отрезка значения разных знаков, а производная ее сохраняет постоянный знак внутри отрезка, то внутри отрезка существует корень уравнения (1) и притом единственный.

Пример. Найти интервалы изоляции корня уравнения x^2 -2=0 на [0,4].

Решение. Построим таблицу значений, где $y=x^2-2$.

X	y(x)				
0	-2				
1	-1				
2	2				
3	7				
4	14				

Из таблицы значений видно, что функция у(х) меняет знак на отрезке [1,2], поэтому корень находится на этом отрезке.

3. Отделение корней алгебраических уравнений

Для отделения корней алгебраического уравнения

$$a_0 \cdot x^n + a_1 \cdot x^{n-1} \dots + a_n \tag{1}$$

с действительными коэффициентами полезно помнить следующие известные теоремы алгебры:

1) если
$$a=\max\{|a_1|,|a_2|,\ldots,|a_n|\},$$
 $b=\max\{|a_0|,|a_1|,\ldots,|a_{n-1}|\},$

то все корни уравнения (1) расположены в кольце

$$\frac{\left|a_{n}\right|}{b+\left|a_{n}\right|} \le x \le 1 + \frac{a}{\left|a_{0}\right|} \tag{2}$$

2) если а максимум модулей отрицательных коэффициентов уравнения, $a_0>0$ и первый отрицательный коэффициент последовательности a_0,a_1,\ldots,a_n есть a_m , то все положительные корни уравнения меньше

 $N = 1 + \sqrt[m]{\frac{a}{a_0}}$ (если отрицательных коэффициентов нет, то нет и положительных корней).

3) если $a_0>0$ и при x=c>0 имеют место неравенства f(c)>0, f'(c)>0, ..., $f^{(n)}(c)>0$, то число с служит верхней границей положительных корней уравнения (1).

4) Пусть заданы многочлены

$$f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$$

$$\phi_1(x) = x^n f\left(\frac{1}{x}\right) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_n$$

$$\phi_2(x) = f(-x) = (-1)^n \left[a_0 x^n - a_1 x^{n-1} + a_2 x^{n-2} \dots + (-1)^n a_n\right]$$

$$\phi_3(x) = x^n f\left(-\frac{1}{x}\right) = (-1)^n \left[a_n x^n - a_{n-1} x^{n-1} + a_{n-2} x^{n-2} \dots + (-1)^n a_0\right]$$

и N_0 , N_1 , N_2 , N_3 верхние границы положительных корней соответственно многочленов f(x), $\phi_1(x)$, $\phi_2(x)$, $\phi_3(x)$. Тогда все положительные корни уравнения (1) лежат на отрезке $[1/N_1,N_0]$, а все отрицательные корни на отрезке $[-N_2,-1/N_3]$.

Пример. Отделить корни данного алгебраического уравнения, используя теорему 4: x^3 - $0.5x^2$ + 0.78=0.

Решение. $f(x) = x^3 - 0.5x^2 + 0.78$, $N_0 = 1 + 0.5/1 = 1.5$,

$$\phi_1(x) = x^3 f\left(\frac{1}{x}\right) = 0.78x^3 - 0.5x + 1$$
 $N_1 = 1 + \sqrt{\frac{0.5}{0.78}} \approx 1.8006$

$$\phi_2(x) = f(-x) = -x^3 - 0.5x^2 + 0.78$$
 $N_2 = 1 + \sqrt[3]{0.78} \approx 1.9205$

$$\phi_3(x) = x^3 f\left(-\frac{1}{x}\right) = -0.78x^3 + 0.5x + 1$$
 $N_3 = 1 + \sqrt{\frac{1}{0.78}} \approx 2.1323$

Таким образом корни уравнения могут лежать на интервалах: [-1.9205,-04690], [0.5554, 1.5].

Для определения количества действительных корней уравнения (1) необходимо воспользоваться **теоремой Декарта**: число положительных корней уравнения (1) с учетом их кратности равно числу перемен знаков в последовательности коэффициентов a_0, a_1, \ldots, a_n (при этом равные нулю коэффициенты не учитываются) или меньше этого числа на четное число.

Теорема Декарта не требует больших вычислений, но не всегда дает точное количество действительных корней уравнения (1). **Замечание**. Для определения количества отрицательных корней достаточно применить теорему Декарта к многочлену f(-x).

Если уравнение (1) не имеет кратных корней на $[\alpha,\beta]$, то точное число действительных корней дает теорема Штурма.

Предположим, что уравнение (1) не имеет кратных корней. Обозначим через $f_1(x)$ производную f'(x); через $f_2(x)$ остаток от деления f(x) на $f_1(x)$, взятый с обратным знаком; через $f_3(x)$ остаток от деления $f_1(x)$ на $f_2(x)$, взятый с обратным знаком и т.д., до тех пор пока не придем к постоянной. Полученную последовательность

$$f(x), f_1(x) f_2(x), ..., f_n(x)$$
 (3)

Теорема Штурма: Число действительных корней уравнения f(x)=0, расположенных на отрезке $[\alpha,\beta]$, равно разности между числом перемен знаков в последовательности (3) при $x=\alpha$ и числом перемен знаков в последовательности (3) при $x=\beta$. **Замечание**. Использование теоремы Штурма на практике, связано с большой вычислительной работой при построении рядя Штурма.

Пример. Отделить корни данного алгебраического уравнения, используя теорему Штурма:

$$x^{3} - \frac{1}{2}x^{2} + \frac{39}{50} = 0 : f(x) = x^{3} - \frac{1}{2}x^{2} + \frac{39}{50}$$

$$f_1(x) = 3x^2 - x$$
 $f_2(x) = \frac{1}{18}x - 0.78$ $f_3(x) = -577.3248$

Построим таблицу для подсчета смены знаков:

	-∞	-1	-0.4	0.5	1	∞
sign f(x)	-	-	+	+	+	+
$sign f_1(x)$	+	+	+	+	+	+
$sign f_2(x)$	-	-	ı	-	-	+
$sign f_3(x)$	-	-	I	-	-	-
Число перемен знаков	2	2	1	1	1	1

Из таблицы подсчета смены знаков видно, что есть один корень данного уравнения, и он находится на [-1,-0.4].