(12) (19) (CA) Demande-Application

CIPO
CANADIAN INTELLECTUAL
PROPERTY OFFICE

(21)(A1) **2,266,639**

(86) 1997/09/22 (87) 1998/03/26

(72) SINGH, Rajeshwar, CA

(72) ZHOU, Nian E., CA

(72) GUO, Deqi, US

(72) MICETICH, Ronald G., CA

(71) SYNPHAR LABORATORIES INC., CA

(51) Int.Cl.⁶ C07D 205/085, A61K 31/395

(30) 1996/09/23 (60/026,516) US

(54) DERIVES D'AZETIDINE-2-ONE DISUBSTITUEE EN 3,4 REGULATEURS DE CYSTEINE PROTEINASE

(54) 3,4-DISUBSTITUTED AZETIDIN-2-ONE DERIVATIVES USEFUL AS CYSTEINE PROTEINASE REGULATORS

(57) Certains dérivés d'azétidine-2-one disubstituée en 3,4 exercent une excellente inhibition de cystéine protéinase, et on peut les utiliser pour le traitement de différentes maladies, à savoir par exemple: myopathie musculaire progressive, infarctus du myocarde, résorption osseuse, arthrite, métastases cancéreuses, emphysème pulmonaire, choc septique, ischémie cérébrale, fonction mnésique, maladie d'Alzheimer et cataracte, paludisme, dégradation de la membrane basale des capillaires du glomérule rénal, infection bactérienne, maladies inflammatoires, maladies parasitaires, et infections virales. On décrit les dérivés susmentionnés, représentés par la formule (I), dans laquelle R₁, R₂ et R₃ sont tels que définis, ou bien un sel pharmaceutiquement acceptable de ces dérivés.

(57) The present invention is based on the discovery that certain 3,4-disubstituted-azetidin-2-one derivatives exhibit excellent cysteine proteinase inhibitory activity which can be used for treatment of different diseases such as muscular dystrophy, myocardial infarction, bone resorption, arthritis, cancer metastatis, pulmonary emphysema, septic shock, cerebral ischemia, memory function, Alzheimer and cataract, malaria, glomerular basement membrane degradation, bacterial infection, inflammatory diseases, parasitic infections, and viral infections. In accordance with the present invention, there is provided a 3,4-disubstituted-azetidin-2-one derivatives of formula (I), wherein R₁, R₂ and R₃ are as defined herein, or a pharmaceutically acceptable salt thereof.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

- (51) International Patent Classification 6:
 C07D 205/085, A61K 31/395

 A1
 (11) International Publication Number: WO 98/12176
 (43) International Publication Date: 26 March 1998 (26.03.98)
- (21) International Application Number: PCT/IB97/01145
- (22) International Filing Date: 22 September 1997 (22.09.97)

23 September 1996 (23.09.96)

- (71) Applicant: SYNPHAR LABORATORIES INC. [CA/CA]; #2
 Taiho Alberta Center, 4290-91A Street, Edmonton, Alberta
- (72) Inventors: SINGH, Rajeshwar; 7927-22 Avenue, Edmonton, Alberta T6K 1Z2 (CA). ZHOU, Nian, E.; 425 Michener Park, Edmonton, Alberta T6H 4M5 (CA). GUO, Deqi; #1502 GH, Michener Park, Edmonton, Alberta T6H 5B5 (CA). MICETICH, Ronald, G.; 12 Braeside Terrace, Sherwood Park, Alberta T8A 3V6 (CA).
- (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: 3,4-DISUBSTITUTED AZETIDIN-2-ONE DERIVATIVES USEFUL AS CYSTEINE PROTEINASE REGULATORS

(57) Abstract

(30) Priority Data: 60/026,516

T6E 5V2 (CA).

The present invention is based on the discovery that certain 3,4-disubstituted-azetidin-2-one derivatives exhibit excellent cysteine proteinase inhibitory activity which can be used for treatment of different diseases such as muscular dystrophy, myocardial infarction, bone resorption, arthritis, cancer metastatis, pulmonary emphysema, septic shock, cerebral ischemia, memory function, Alzheimer and cataract, malaria, glomerular basement membrane

degradation, bacterial infection, inflammatory diseases, parasitic infections, and viral infections. In accordance with the present invention, there is provided a 3,4-disubstituted-azetidin-2-one derivatives of formula (I), wherein R_1 , R_2 and R_3 are as defined herein, or a pharmaceutically acceptable salt thereof.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑŤ	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV.	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Мопасо	TD	Chad
BA	Bosnia and Herzegovina	GB	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	T.J	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	77	Trinidad and Tobago
BJ	Benin	lE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	us	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	* Uzbekistan
CF	Central African Republic	JP	Japan	' NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	2**	Zimoaowe
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

15

20

25

30

3,4-Disubstituted Azetidin-2-one Derivatives Useful as Cysteine Proteinase Regulators

This application claims priority of United States Provisional patent application Serial Number 60/026,516, filed September 23, 1996.

5 Background of the Invention

Cysteine proteinases containing a highly reactive cysteine residue with a free thiol group at the active site have been known as playing an important role in certain conditions distinguished by aberrant protein turnover such as: muscular dystrophy (Am. J. Pathol. 1986, 122, 193-198; Am. J. Pathol. 1987, 127, 461-466), myocardial infarction (J. Am. Coll. Cardiol. 1983, 2, 681-688), bone resorption (Biochem. J. 1991, 279, 167-274; J. Biol. Chem. 1996, 271, 2126-2132; and Biochem. Biophys. Acta 1992, 1116, 57-66), arthritis (Arthritis Rheumatism 1994, 37, 236-247; and Biochem. Pharmacol. 1992, 44, 1201-1207), cancer metastasis (Cancer Metastasis Rev. 1990, 9, 333-352), pulmonary emphysema (Am. Rev. Respir. Dis. 1975, <u>111</u>, 579-586), septic shock (Immunol. Today 1991, 11, 404-410, Biochemistry 1994, 33, 3934-3940), cerebral ischemia, memory function, Alzheimer and cataract (TIPS 1994, 15, 412-419, Bioorg. Med. Chem. Lett. 1995, 4, 387-392, Proc. Natl. Acad. Sci. USA 1991, 88, 10998-11002), malaria (J. Med. Chem. 1995, 38, 5031-5037), glomerular basement membrane degradation (Biochem. Bioph. Acta 1989, 990, 246-251), bacterial infection (Nature 1989, 337, 385-386), inflammatory diseases (Protein Science 1995, 4, 3-12), parasitic infections (Annu. Rev. Microbiol. 1993, 47, 821-853; Parasitol. Today 1990, 6, 270-275), and viral infections (Biochem, 1992, 31, 7862-7869).

A variety of cysteine proteinase have been shown to be present in mammalian tissue. The most notable of these proteinase are the lysosomal cathepsins (cathepsin B, H, S, K and L) and the cytoplasmic Ca²⁺ dependent enzymes, the calpains. These enzymes are, therefore, excellent targets for the development of specific inhibitors as possible therapeutic agents.

Cysteine proteinase are inhibited by several types of peptide derived inhibitors such as peptidyl aldehyde (Eur. J. Biochem. 1982, <u>129</u>, 33-41), chloromethyl ketone (Acta. Biol. Med. Ger. 1981, <u>40</u>, 1503-1511), diazomethyl

10

15

20

4.

- :

ketone (Biochemistry 1977,16, 5857-5861), monofluoromethyl ketone (Biochemical Pharmacology 1992 44, 1201-1207), acyloxy methyl ketone (J. Med. Chem. 1994, 37, 1833-1840), O-acyl hydroxamates (Biochem. Biophy. Research Communications 1988, 155, 1201-1206), methyl sulphonium salts (J. Biol. Chem. 1988, 263, 2768-2772) and epoxy succinyl derivatives (Agric. Biol. Chem. 1978, 42, 523-527) without significantly inhibiting other classes of proteinases.

Unfortunately, the effectiveness in vivo of such compounds is not as much as expected on the basis of in vitro inhibitory activity, and there exits a continuing need to develop new cysteine proteinase inhibitors with high selectivity and lower toxicity.

Peptidyl-CO-Y

Y = H, CH_2CI , CHN_2 , CH_2F , CH_2OCOAr , NHOCOR, CH_2S - $(CH_3)_2$ HOOC M. H

Epoxysuccinyl derivative

Our laboratory has been actively involved in search of novel types of cysteine proteinase inhibitors with high selectivity among cysteine proteinase class of enzymes. We have found that a novel class of compounds having natural peptidyl group at C-3 of reactive group 3-amino-4-substituted azetidin-2-one, represented by formula I, exhibit an excellent cysteine proteinase regulatory (e.g., inhibitory) activity and selectivity among cysteine proteinases, which is reported in US patent application no.08/415,055.

10

Summary of the Invention

In accordance with the present invention, there are provided 3,4-disubstituted azetidin-2-one derivatives which exhibit excellent cysteine proteinase regulatory activity and which can be used for treatment of different diseases such as muscular dystrophy, myocardial infarction, bone resorption, arthritis, cancer metastasis, pulmonary emphysema, septic shock, cerebral ischemia, memory function, Alzheimer and cataract, malaria, glomerular basement membrane degradation, bacterial infection, inflammatory diseases, parasitic infections, and viral infections.

In accordance with the present invention, there are provided 3,4disubstituted azetidin-2-one derivatives of formula I and pharmaceutically acceptable salts thereof:

$$R_3$$
-NH R_2 I

wherein

15 R₁ is

hydrogen; or

-SO3⁻M⁺ wherein M is a hydrogen atom, a metal ion which is selected from sodium, potassium, magnesium, and calcium, or N⁺(R₄)₄ wherein R₄ is a C₁-C₆ alkyl group.

20 R₂ is

25

- (a) a group -OCOR₅ wherein R₅ is
 - (i) a C₁-C₆ alkyl group,
 - (ii) a C2-C6 alkenyl group,
 - (iii) a C2-C6 alkynyl group,
 - (iv) a C₃-C₆ cycloalkyl group,
 - (v) a phenyl group,
 - (vi) a naphthyl group, or
 - (vii) a monocyclic or bicyclic heterocyclic group,

which group (i), (ii), (iii), (iv), (v), (vi), or (vii) is unsubstituted or substituted by 1, 2 or 3 substituents independently selected from

hydroxy,

5

halogen,

carboxy,

C₁-C₄ alkyl (which is unsubstituted or substituted at least once with carboxy and/or amino),

C₁-C₂ alkoxy,

10

amino,

cyano, and

phenyl and monocyclic or bicyclic heterocyclic groups, which phenyl and heterocyclic groups are unsubstituted or substituted by 1 or 2 substituents independently selected from

15

20

25

30

hydroxy,

halogen,

carboxy,

C₁-C₄ alkyl,

C₁-C₂ alkoxy,

amino, and

cyano;

or (b) a group -XR₅ wherein X is selected from the group consisting of O, S, SO, and SO₂, and R₅ is as defined above;

 R_3 is selected from the group consisting of D- or L-phenyl glycine, D- or L-t-butyl alanine, D- or L-homophenyl alanine, D- or L-pyridyl alanine, D- or L-thienyl alanine, D- or L-naphthyl alanine, D- or L-methoxy phenyl alanine, D- or L-halo phenyl alanine, D- or L- ε -nitro arginine, D- or L-citrulline, D- or L-2-indoline carboxylic acid, D- or L-cycloalkyl glycine (e.g., cyclopentyl glycine), D- or L-4-hydroxy-3-nitro-phenylalanine, D- or L-4-amino-3,5-diiodophenylalanine, D- or L-4-hydroxy-3,5-diiodo-phenylalanine, D- or L-4-hydroxy-3,5-dibromo-phenylalanine, D- or L-3,4(ethylenedioxy)phenylalanine,

10

15

D- or L-4,4'-biphenylalanine, D- or L-3,4-dichlorophenylalanine, D- or L-4-D-L-4-nitrophenylalanine. iodophenvlalanine. or pentafluorophenylalanine, D- or L-4-thiazolylalanine, D- or L-3trifluoromethylphenylalanine, D- or L-4-trifluoromethylphenylalanine, D- or L-3-sulfamoyl-alanine, or L-t-butyloxy alanine, D-Dor L-trimethylalanine, Dbutyloxymethylalanine, Dor L-3.4diisopropyloxyphenylalanine, D- or L-propyl alanine, and D- or L-ethyl alanine, in which the NH₂ of any of the above groups is unsubstituted or substituted once or twice with R7 wherein R7 is -COOR5, -COR5, -SO2R5, or -COR14 wherein R₅ is as defined above and R₁₄ is amino group which is unsubstituted or substituted at least once with C1-C6 alkyl group which is unsubstituted or substituted at least once with 1 or 2 substitutents selected from hydroxy, halogen, cyano, amino, heterocycle, and phenyl (wherein the heterocycle or phenyl is unsubstituted or substituted at least once by 1 or 2 substituents selected from halogen, hydroxy, cyano, carboxy and amino).

In a preferred aspect of the present invention, there are provided 3,4-disubstituted azetidin-2-one derivatives of formula 1 and pharmaceutically acceptable salts thereof:

$$R_3$$
-NH R_2 R_1

20 wherein

25

R₁ is

hydrogen; or

-SO3'M* wherein M is a hydrogen atom, a metal ion which is selected from sodium, potassium, magnesium, and calcium, or N*(R₄)₄ wherein R₄ is a C₁-C₆ alkyl group.

R₂ is

-OCOR₅ wherein R₅ is (i) a C₁-C₆ alkyl group which is unsubstituted or substituted at least once by 1 or 2 substitutents selected from

10

15

20

25

30

hydroxy, halogen, and amino, or (ii) a phenyl group which is unsubstituted or substituted at least once by 1-3 substituents selected from hydroxy; halogen, C_1 - C_4 alkyl group, C_1 - C_2 alkoxy group, and cyano; or

-XR₆ wherein X is O, S, SO₁or SO₂; R₆ is (i) a C₁-C₆ alkyl group which is unsubstituted or substituted at least once by 1 or 2 substitutents selected from hydroxy, halogen, amino and phenyl (ii) a C₃-C₆ cycloalkyl group, (iii) a phenyl group which is unsubstituted or substituted at least once by 1-3 substituents selected from hydroxy, halogen, carboxy, C₁-C₄ alkyl group (which is unsubstituted or substituted with carboxy, amino or both), C₁-C₂ alkoxy group, cyano and heterocycle group, or (iv) naphthyl group which is unsubstituted or substituted at least once by 1-3 substituents selected from hydroxy, halogen, carboxy, C₁-C₄ alkyl group (which is unsubstituted or substituted at least once by 1-3 substituted or substituted or substituted at least once by 1-3 substitutents selected from hydroxy, halogen, carboxy, C₁-C₄ alkyl group (which is unsubstituted or substituted at least once with carboxy, amino or both), C₁-C₂ alkoxy group and cyano;

 R_3 is selected from α -amino acid residues of α -amino acids, the NH_2 of which is unsubstituted or substituted once or twice with R7 as defined below. The term "amino acid residue" used herein refers to the remaining group after the removal of the hydroxy group from a carboxy group of an amino acid. According to the present invention, the α-amino acid can be selected from the group consisting of: D- or L-phenyl glycine, D- or L-t-butyl alanine, D- or L-homophenyl alanine, D- or L-pyridyl alanine, D- or L-thienyl alanine, D- or L-naphthyl alanine, D- or L-methoxy phenyl alanine, D- or Lhalo phenyl alanine, D- or L-e-nitro arginine, D- or L-citrulline, D- or L-2indoline carboxylic acid, D- or L-cycloalkyl glycine (e.g., cyclopentyl glycine), D- or L-4-hydroxy-3-nitro-phenylalanine, D- or L-4-amino-3,5-diiodophenylalanine, D- or L-4-hydroxy-3,5-diiodo-phenylalanine, D- or L-4-hydroxy-3,5-dibromo-phenylalanine, D- or L-β-(3-benzothienyl)-alanine, D- or L-3,4(methylenedioxy)phenylalanine, D- or L-3,4(ethylenedioxy)phenylalanine, D- or L-4,4'-biphenylalanine, D- or L-3,4-dichlorophenylalanine, D- or L-4-D-L-4-nitrophenylalanine, L-Diodophenylalanine, or or L-4-thiazolylalanine, Dor L-3pentafluorophenylalanine, Dtrifluoromethylphenylalanine, D- or L-4-trifluoromethylphenylalanine, D- or L-

10

15

20

25

30

3-sulfamoyl-alanine, Dor L-t-butyloxy alanine, Dor L-1-tbutyloxymethylalanine. D-Dor L-trimethylalanine, or L-3.4diisopropyloxyphenylalanine, D- or L-propyl alanine, and D- or L-ethyl alanine, in which the NH2 of any of the above groups is unsubstituted or substituted once or twice with R7 wherein R7 is

-COOR₈ wherein R₈ is a C₁-C₆ alkyl group which is unsubstituted or substituted at least once with phenyl group,

-COR₉ wherein R₉ is

(i) a C₁-C₆ alkyl group which is unsubstituted or substituted at least once by 1 or 2 substitutents selected from hydroxy, halogen, cyano, amino, heterocycle, or phenyl (wherein the heterocycle or phenyl is unsubstituted or substituted at least once by 1 or 2 substituents selected from halogen, hydroxy, cyano, carboxy and amino); (ii) a heterocycle which may be mono or bicyclic or (iii) amino group which is unsubstituted or substituted at least once with C₁-C₆ alkyl group which is unsubstituted or substituted at least once with 1 or 2 substitutents selected from hydroxy, halogen, cyano, amino, heterocycle, and phenyl (wherein the heterocycle or phenyl is unsubstituted or substituted at least once by 1 or 2 substituents selected from halogen, hydroxy, cyano, carboxy and amino); or

SO₂R₁₀ wherein R₁₀ is

(i) a C_1 - C_6 alkyl group (ii) a C_2 - C_4 alkenyl group which is unsubstituted or substituted at least once with heterocycle or phenyl, or (iii) a phenyl group which is unsubstituted or substituted at least once by 1-3 substituents selected from hydroxy, halogen, carboxy, C_1 - C_4 alkyl group, C_1 - C_2 alkoxy group and cyano.

The pharmaceutically acceptable salts of formula I are selected from salts of sodium, potassium, magnesium, calcium, hydrogen chloride, tartaric acid, succinic acid, fumaric acid or p-toluenesulfonic acid.

Examples of C_1 - C_6 alkyl group as substituents in R_4 , R_5 , R_6 , R_8 , R_9 , or R_{10} are straight or branched chain alkyl group having 1-6 carbon atoms such as methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylprop-1-yl, 2-methylprop-2-yl, pentyl, 3-methylbutyl, hexyl and the like.

10

15

20

25

30

Examples of halogen atoms as substitutents in R_5 , R_6 , R_9 , or R_{10} are fluorine, chlorine, bromine or iodine.

Examples of C_2 - C_6 alkenyl group as defined in R_5 and R_{10} are alkenyl group having 2-4 carbon atoms such as ethenyl, 1-propenyl, 2-propenyl, 1-butenyl, 3-butenyl and the like.

Examples of C_2 - C_6 alkynyl group as defined in R_5 and R_{10} are alkynyl group having 2-4 carbon atoms such as ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 3-butynyl and the like.

Examples of C_3 - C_6 cycloalkyl group as defined in R_5 and R_6 are cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl.

As used herein "monocyclic heterocyclic" means a 5- or 6-membered aromatic or non-aromatic heterocyclic group containing 1, 2, 3 or 4 heteroatoms selected from O, S or N; and "bicyclic heterocyclic" means a monocyclic heterocyclic as defined above which is fused to a second 5- or 6-membered carbocyclic or 5- or 6-membered heterocyclic ring.

Examples of preferred heterocyclic group or substituent as defined in R_5 , R_6 , R_9 , or R_{10} include C_2 - C_{11} mono or bicyclic heterocyclic group which may have 1-3 heteroatoms selected from nitrogen, sulphur or oxygen such as thiophene, pyridine, 1,2,3-triazole, 1,2,4-triazole, quinoline, benzofuran, benzothiophene, morpholine, thiomorpholine, piperizine, piperidine and the like.

Examples of C_1 - C_6 alkyl group as substituents in R_5 , R_6 , R_9 , or R_{10} are methyl, ethyl, propyl, 2-methyl propyl, butyl, 1,1-dimethyl ethyl and the like.

Examples of C_1 - C_2 alkoxy group as substituents in R_5 , R_6 , R_9 , or R_{10} are methoxy or ethoxy.

The term "amino acid residue" used herein refers to the remaining group after the removal of the hydroxy group from a carboxy group of an amino acid.

The azetidinone nucleus carries two asymmetric carbon atoms at position 3 and 4, and can exist as 4-diastereoisomers. In general, the preferred isomer is that in which the hydrogen atoms at C3 and C4 are cis to each other for superior inhibitory activity against different cysteine proteinase

10

15

20

25

such as papain, Cathepsin B and Cathepsin L. Such diasterioisomers and their racemic mixtures are also included within use of the azetidinone derivatives as cystein proteinase inhibitor.

In accordance with preferred embodiments of the invention, there are provided 3,4-disubstituted-azetidin-2-one derivatives of formula I.

$$R_3$$
-NH R_2 R_1

Wherein:

R₁ is selected from hydrogen, or sulphonic acid;

R₂ is selected from acetoxy, butyloxy, 2-carboxy ethyloxy, 2-aminoethyloxy, 2-fluoro ethoxy, cyclopentyloxy, cyclohexyloxy, cyclohexylthio, phenoxy, methyl phenoxy, naphthyloxy, morpholino phenyloxy, 2-hydroxy ethylthio, phenylthio, phenylsulphonyl, 4-(2-carboxy-2-amino ethyl)-phenoxy, 4-carboxy phenoxy, 3-carboxy phenoxy, 2-pyridylthio, 4-pyridylthio, benzyloxy and the like;

R₃ is selected from 1-benzyloxycarbonyl-2-indoline carboxylic acid, Nbenzyloxy carbonyl phenyl glycine, N-benzyloxy carbonyl homophenyl alanine, N-benzyloxy carbonyl pyridyl alanine, N-benzyloxy carbonyl thienyl alanine, N-benzyloxy carbonyl naphthyl alanine, N-benzyloxy carbonyl halophenyl alanine, N-benzyloxy carbonyl naphthyl alanine, N-(3-phenyl propanoyl) naphthyl alanine, N^e-nitro arginine, N-(3-phenyl propanoyl) citrulline, N-benzylamino carbonyl naphthyl alanine, N-(2-phenyl-eth-1-ensulphonyl)-naphthyl alanine, N-benzyloxycarbonyl-t-butyloxyalanine; Nbenzyloxycarbonyl-t-butyloxymethyl alanine; N-benzyloxycarbonyl-t-butyl alanine; N-phenylpropionoyl-t-butyl alanine; N-phenylpropionoyl-trimethyl N-phenylpropionoyl-(3, alanine: 4-dimethoxyphenyl) alanine; phenylpropionoyl-(3,4-ethylenedioxyphenyl) alanine; N-benzyloxycarbonyl-3benzothienyl alanine; N-benzyloxycarbonyl-(4,4'-biphenyl) alanine; N-

10

15

20

25

30

benzyloxycarbonyl-(2-chlorophenyl)alanine; N-benzyloxycarbonyl-(4chlorophenyl)alanine; N-benzyloxycarbonyl-(3,4-dichloro)-phenylalanine; Nbenzyloxycarbonyl-(diphenyl) alanine; N-benzyloxycarbonyl-(2-fluoro) phenylalanine; N-benzyloxycarbonyl-(4-fluoro-phenyl) alanine: Nbenzyloxycarbonyl-(3,4-difluoro-phenyl) alanine; N-benzyloxycarbonyl-(4iodo-phenyl) alanine; N-benzyloxycarbonyl-2-(naphthyl) alanine; Nbenzyloxycarbonyl-(4-nitro-phenyl) alanine: N-benzyloxycarbonyl-(pentafluorophenyl) alanine; N-benzyloxycarbonyl-(4-thiazolyl) alanine; Nbenzyloxycarbonyl-3-(trifluoromethylphenyl) alanine; N-benzyloxycarbonyl-4-(trifluoromethylphenyl) alanine; N-benzyloxycarbonyl-(3-sulfamoyl) alanine; N-phenylpropionoyl-(3,4-methylenedioxyphenyl) alanine; N-phenylpropionoyl-(3,4-diisopropyloxyphenyl) alanine; N-benzyloxycarbonyl-propyl alanine; and N-benzyloxycarbonyl-ethyl alanine.

More specifically, the most preferred embodiments of the present invention include the following compounds:

(3S,4S)-3-(1-N-benzyloxycarbonyl-2-indolinecarbonyl)-amino-4 - acetoxy-azetidin-2-one:

(3S,4S)-3-(N-benzyloxycarbonyl-D-phenylglycyl)-amino-4-acetoxy-azetidin-2-one;

(3S,4S)-3-(N-benzyloxycarbonyl-DL-phenylglycyl)-amino-4-acetoxy-azetidin-2-one;

(3S,4S)-3-(N-benzyloxycarbonyl-L-homophenylalanyl)-amino-4 acetoxy-azetidin-2-one;

(3S,4S)-3-{N-benzyloxycarbonyl-β-(3-pyridyl)-L-alanyl}-amino-4 - acetoxy-azetidin-2-one;

(3S,4S)-3-{N-benzyloxycarbonyl-β-(2-pyridyl)-L-alanyl}-amino-4 - acetoxy-azetidin-2-one;

 $(3S,4S)-3-\{N-benzyloxycarbonyl-\beta-(2-thienyl)-DL-alanyl\}-amino-4-acetoxy-azetidin-2-one;$

(3S,4S)-3-{N-benzyloxycarbonyl-β-(2-naphthyl)-L-alanyl}-amino-4-acetoxy-azetidin-2-one;

(3S,4S)-3-{N-benzyloxycarbonyl-β-(3-fluorophenyl)-L-alanyl}-amino-4-

10

15

20

25

30

acetoxy-azetidin-2-one;

(3S,4S)-3-{N-benzyloxycarbonyl-β-(4-methoxyphenyl)-L-alanyl}-amino-4-acetoxy-azetidin-2-one;

(3S,4S)-3-{N-benzyloxycarbonyl-β-(2-naphthyl)-L-alanyl}-amino-4-phenoxy-azetidin-2-one;

(3S,4S)-3-{N-benzyloxycarbonyl-β-(2-naphthyl)-L-alanyl}-amino-4-(3-methyl phenoxy)-azetidin-2-one;

(3S,4R)-3-{N-benzyloxycarbonyl-β-(2-naphthyl)-L-alanyl}-amino-4-(3-methyl phenoxy)-azetidin-2-one;

(3S,4S)-3-{N-benzyloxycarbonyl-β-(2-naphthyl)-L-alanyl}-amino-4-(2-naphthoxy)-azetidin-2-one;

 $(3S,4R)-3-\{N-benzyloxycarbonyl-\beta-(2-naphthyl)-L-alanyl\}-amino-4-(2-naphthoxy)-azetidin-2-one;$

(3S,4S)-3-{N-benzyloxycarbonyl- β -(2-naphthyl)-L-alanyl}-amino-4-{3-(morpholin-4-yl)-phenoxy}-azetidin-2-one;

(3S,4R)-3-{N-benzyloxycarbonyl-β-(2-naphthyl)-L-alanyl}-amino-4-{3- (morpholin-4-yl)-phenoxy}-azetidin-2-one;

(3S,4SR)-3-{N-(3-phenylpropionoyl)-β-(2-naphthyl)-L-alanyl}-amino-4-phenylthio-azetidin-2-one;

 $(3S,4SR)-3-\{N-(3-phenylpropionoyI)-\beta-(2-naphthyI)-L-alanyI\}-amino-4-phenylsulphonyl-azetidin-2-one;$

 $(3S,4SR)-3-\{N-(3-phenylpropionoyl)-\beta-(2-naphthyl)-L-alanyl\}-amino-4-(2-hydroxy ethyl thio)-azetidin-2-one;$

(3S,4SR)-3-{N-(3-phenylpropionoyl)-β-(2-naphthyl)-L-alanyl}-amino-4-benzyloxy-azetidin-2-one;

(3S,4SR)-3-{N-(3-phenylpropionoyl)- β -(2-naphthyl)-L-alanyl}-amino-4-cyclohexyloxy-azetidin-2-one;

 $\label{eq:continuous} (3S,4S)-3-\{N-(trans-2-phenyl-eth-1-enesulfonyl)-\beta-(2-naphthyl)-L-alanyl\}-amino-4-acetoxy-azetidin-2-one;$

(3S,4SR)-3-{N-(3-phenylpropionoyl)-β-(2-naphthyl)-L-alanyl}-amino-4-{4-(2S-2-amino-2-carboxyethyl)-phenoxy}-azetidin-2-one;

(3S,4S)-3-{N-(benzylaminocarbonyl)-β-(2-naphthyl)-L-alanyl}-amino-4-

10

15

20

25

30

```
acetoxy-azetidin-2-one;
```

(3S,4SR)-3-{N-(benzylaminocarbonyl)-β-(2-naphthyl)-L-alanyl}-

amino-4-{4-(2S-2-amino-2-carboxyethyl)-phenoxy}-azetidin-2-one;

(3S,4S)-3-{N-(3-phenylpropionoyl)-L-citrullinyl}-amino-4-

acetoxy-azetidin-2-one; and

(3S,4S)-3-{N-(2-phenyl-eth-1-en-sulphonyl)-β-(2-naphthyl)-L-alanyl}-amino-4-acetoxy-azetidin-2-one;

(3S,4S)-3- $\{N^{\alpha}$ -(3-phenylpropionyl)- N^{ε} -nitro-L-arginyl}-amino-4-acetoxy-azetidin-2-one;

(3S,4R)-3-(2S-2-benzyloxycarbonylamino-2-t-butyloxymethyl - acetamido)-4-phenoxy-azetidin-2-one;

(3S,4R)-3-[2S-2-benzyloxycarbonylamino-2-(1-t-butyloxyethyl) - acetamido]-4-phenoxy-azetidin-2-one;

(3S, 4S)-3-(2S-2-benzyloxycarbonylamino-2-t-butylmethyl-acetamido)-4-phenoxy-azetidin-2-one;

(3S,4S)-3-[2S-2-(3-phenylpropionoyl)amino-2-t-butylmethyl-acetamido]-4-phenoxy-azetidin-2-one;

(3S,4S)-3-[2S-2-(3-phenylpropionoyl)amino-2-t-butyl-acetamido]-4-phenoxy-azetidin-2-one;

(3S,4S)-3-[2S-2-(3-phenylpropionoyl) amino-2-(3, 4-dimethoxyphenyl) methyl- acetamido]-4-phenoxy-azetidin-2-one;

(3S,4S)-3-[2S-3-phenylpropionoyl) amino-2-(3,4-ethylenedioxyphenylmethyl)-acetamido]-4-phenoxy-azetidin-2-one;

(3\$,4\$)-3-[2\$-2-benzyloxycarbonylamino-2-(3-benzothienylmethyl)-acetamido]-4-phenoxy-azetidin-2-one;

(3S,4S)-3-[2S-2-benzyloxycarbonylamino-2-(4,4'-biphenylmethyl)-acetamido]-4-phenoxy-azetidin-2-one;

(3S, 4S)-3-[2S-2-benzyloxycarbonylamino-2-(2-chloro-phenylmethyl)-acetamido]-4-phenoxy-azetidin-2-one;

(3S, 4S)-3-[2S-2-benzyloxycarbonylamino-2-(4-chloro-phenylmethyl)-acetamido]-4-phenoxy-azetidin-2-one;

(3S,4S)-3-[2S-2-benzyloxycarbonylamino-2-(3,4-dichloro -

10

15

20

25

30

phenylmethyl)-acetamido]-4-phenoxy-azetidin-2-one;

- (3S,4S)-3-[2S-2-benzyloxycarbonylamino-2-(diphenylmethyl) acetamidol-4-phenoxy-azetidin-2-one;
- (3S,4S)-3-[2S-2-benzyloxycarbonylamino-2-(2-fluoro-phenylmethyl)-acetamido]-4-phenoxy-azetidin-2-one;
- (3S,4S)-3-[2S-2-benzyloxycarbonylamino-2-(4-fluoro-phenylmethyl)-acetamido]-4-phenoxy-azetidin-2-one;
- (3S,4S)-3-[2S-2-benzyloxycarbonylamino-2-(3,4-difluoro phenylmethyl)-acetamido]-4-phenoxy-azetidin-2-one;
- (3S,4S)-3-[2S-2-benzyloxycarbonylamino-2-(4-iodo-phenylmethyl)-acetamidol-4-phenoxy-azetidin-2-one;
 - (3S,4S)-3-[2S-2-benzyloxycarbonylamino-2-(naphth-1-yl)methyl acetamido]-4-phenoxy-azetidin-2-one;
 - (3S,4S)-3-[2S-2-benzyloxycarbonylamino-2-(4-nitro-phenylmethyl)-acetamido]-4-phenoxy-azetidin-2-one;
 - (3S,4S)-3-[2S-2-benzyloxycarbonylamino-2-(pentafluorophenyl methyl)-acetamidol-4-phenoxy-azetidin-2-one;
 - (3S,4S)-3-[2S-2-benzyloxycarbonylamino-2-(4-thiazolylmethyl)-acetamido]-4-phenoxy-azetidin-2-one;
 - (3S,4S)-3-[2S-2-benzyloxycarbonylamino-2-(3-trifluoromethylphenyl-methyl)-acetamido]-4-phenoxy-azetidin-2-one;
 - (3S,4S)-3-[2S-2-benzyloxycarbonylamino-2-(3-sulfamoylmethyl) acetamido]-4-phenoxy-azetidin-2-one;
 - (3S,4S)-3-[2S-2-(3-phenylpropionoyl) amino-2-(3,4-methylenedioxyphenylmethyl)-acetamido]-4-phenoxy-azetidin-2-one;
 - (3S,4S)-3-[2S-2-(3-phenylpropionoyl) amino-2-(3,4-diisopropyloxyphenylmethyl)-acetamido]-4-phenoxy-azetidin-2-one;
 - (3S,4S)-3-[2S-2-benzyloxycarbonylamino-2-butyl-acetamido]-4-phenoxy-azetidin-2-one; and
- (3S,4S)-3-[2S-2-benzyloxycarbonylamino-2-propyl-acetamido]-4 phenoxy-azetidin-2-one.

Compounds of formula I may be utilized for different diseases such as

10

15

20

muscular dystrophy, myocardial infarction, bone resorption, arthritis, cancer metastasis, pulmonary emphysema, septic shock, cerebral ischemia, memory function, Alzheimer and cataract, malaria, glomerular basement membrane degradation, bacterial infection, inflammatory diseases, parasitic infections, and viral infections by inhibiting the cysteine proteinase in medicaments formulated with pharmaceutically acceptable carriers.

Description of Preferred Embodiments

The present invention relates to the certain 3,4-disubstituted-azetidin-2-one derivatives having excellent cysteine proteinase inhibitory activity and selectivity among cysteine proteinase enzymes. The compounds of this invention are characterized by having hydrogen, ester (OCOR₅), ether (OR₅), thioether (SR₅), SOR₅, SO₂R₅ at position 4 of azetidin-2-one. Certain derivatives of formula I were prepared by the common intermediates II by reacting with substituted unnatural amino acids either in presence of dicyclohexylcarbidiimide (DCC) or acid chloride in presence of base, or activated ester according to techniques known in the art.

$$R_3$$
-OH + R_2 R_3 - HN R_3 R_4

The preparation of compounds II were carried out by following the synthetic route as described in Eur. J. Med. Chem 1992, $\underline{27}$, 131-140, and Tetrahedron 1983, $\underline{39}$, 2577-2589, wherein R_2 is OCOR₅, and R_3 is an amino acid residue with a COOR₈ substituent. The definitions of R_1 , R_5 and R_8 are the same as defined above.

Certain 3,4-disubstituted-azetidin-2-one derivatives of formula I wherein substititions at amino acid group are other than COOR₅, such as

10

 ${\rm COR_5}$ or ${\rm SO_2R_5}$, were prepared by following the synthetic route as shown in the scheme depicted below, wherein "AA" refers to an α -amino acid residue as disclosed herein. The ${\rm R_5}$ groups are the same as defined above. The benzyloxycarbonyl substituted unnatural amino acid were desubstituted and resubstituted through amide bond by reacting with ${\rm R_5}$ -COOH either in presence of DCC or acid chloride in presence of base or anhydride in presence of base or activated ester, or through sulphonamide bond by reacting with ${\rm R_5SO_2Cl}$ in presence of base or through urea bond by reacting with ${\rm R_{11}NCO}$. ${\rm R_{11}}$ is a ${\rm C_1-C_6}$ alkyl group which may be substituted with phenyl or heterocyclic group.

CBZ-AA-CO - NH OAC

$$R_{11}$$
NHCON-AA-CO - NH OAC

 R_{5} SO₂-AA-CO - NH OAC

 R_{5} CO-AA-CO - NH OAC

 R_{11}

Certain 3,4-disubstituted-aztidin-2-one derivatives of formula I wherein R_2 is XR_5 , wherein X is O or S, and R_6 is the same as defined above, were

10

15

prepared by following the synthetic route as shown below starting from compound of formula I wherein R_2 is OCOCH₃ by reacting with R_5 XH in presence of lewis acids such as zinc acetate, zinc iodide, zinc chloride, titanium tetrachloride, palladium acetate, boron trifluoride, aluminium trichloride and the like or in presence of base such as sodium hydroxide. In certain cases where carboxy group as substituent in R_5 is substituted with R_{12} such as diphenyl methyl or 1,1-dimethyl ethyl, or amino group as substituent in R_5 is substituted with R_{13} such as benzyloxy carbonyl or 1,1-dimethyl ethoxy carbonyl, or both groups as substituents in R_5 together were desubstituted by hydrogenation or hydrolysis with acids.

Certain 3,4-disubstituted-azetidin-2-one derivatives of formula 1 wherein R_2 is SR_5 were converted to SOR_5 or SO_2R_5 by oxidation with oxidizing agent selected from m-chloroperbenzoic acid, hydrogen peroxide. peracetic acid, potassium permanganate, magnese dioxide and the like. The

10

15

synthetic route is outlined below.

3,4-Disubstituted-azetidin-2-one derivatives of formula I wherein R_1 is hydrogen can be converted to N-sulphonic acid by the sulphonation with pyridine-SO₃ or dimethylformamide-SO₃ complex by following the synthetic route as outlined below.

$$R_3$$
 -HN R_2 R_3 -HN R_2

In the above descriptions, the reactants are reacted together with solvent at elevated or low temperatures for sufficient time to allow the reaction to proceed to completion. The reaction conditions will depend upon the nature and reactivity of the reactants. Wherever a base is used in a reaction, they are selected from triethylamine, pyridine, 4-dimethylaminopyridine, diisopropylethylamine, 1,5-diazabicyclo[4,3,0]non-5-ene, 1,8-diazabicyclo[5,4,0]undec-7-ene, sodium carbonate, potassium carbonate or cesium carbonate.

The solvent of choice for the reaction are selected from non reactive solvents depending on the reactants such as benzene, toluene, acetonitrile, tetrahydrofuran, ethanol, methanol, chloroform, ethyl acetate, methylene

10

15

20

25

30

chloride, dimethyl formamide, dimethyl sulfoxide, hexamethyl phosphoric triamide, or the like. Solvent mixtures may also be utilized.

Reaction temperatures would generally be in the range of from -70°C to 150°C. The preferred molar ratio of reactants are 1:1 to 5.0. The reaction time is in the range of from 0.5 to 72 hours, depending on the reactants.

The desubstitution of N-substituted group is carried out either by hydrogenation or by hydrolysis with appropriate acids such as hydrochloric acid, trifluoroacetic acid or acetic acid in solvent such as methanol, ethanol, propanol or ethyl acetate. The hydrogenation reaction is usually carried out in the presence of a metal catalyst, such as Pd, Pt, or Rh, under normal pressure to high pressure.

The compounds of this invention, when used alone or in combination with other drugs as an agent for treating muscular dystrophy, myocardial infarction, bone resorption, arthritis, cancer metastasis, pulmonary emphysema, septic shock, cerebral ischemia, memory function, Alzheimer and cataract, malaria, glomerular basement membrane degradation, bacterial infection, inflammatory diseases, parasitic infections, and viral infections, in mammals including humans, may take pharmaceutical dosage forms including parenteral preparations such as injections, suppositories, aerosols and the like, and oral preparations such as tablets, coated tablets, powders, granules, capsules, liquids and the like. Injections are generally preferred. The above preparations are formulated in a manner known in the art.

For the formulation of solid preparations for oral administration, an excipient, and if desired, a binder, disintegrator, lubricant, coloring agent, corrigent, flavor etc. are added to the compound of the invention, and then tablets, coated tablets, granules, powders, capsules or the like are prepared in a conventional manner.

For the formulation of injections, a pH adjusting agent, buffer, stabilizer, isotonic agent, local anesthetic or the like is added to the active ingredient of the invention, and injections for subcutaneous, intramuscular or intravenous administration can be prepared in the conventional manner.

For the formulation of suppositories, a base, and if desired, a surfactant

WO 98/12176 PCT/IB97/01145

5

10

15

20

25

30

19

are added to the active ingredient of the invention, and the suppositories are prepared in a conventional manner.

The excipients useful for solid preparations for oral administration are those generally used in the art, and the useful examples are excipients such as lactose, sucrose, sodium chloride, starches, calcium carbonate, kaolin, crystalline cellulose, methyl cellulose, glycerin, sodium alginate, gum arabic and the like, binders such as polyvinyl alcohol, polyvinyl ether, polyvinyl pyrrolidone, ethyl cellulose, gum arabic, schellac, sucrose, water, ethanol, propanol, carboxymethyl cellulose, potassium phosphate and the like, lubricants such as magnesium stearate, talc and the like, and further include additives such as usual known coloring agents, disintegrators and the like. Examples of bases useful for the formulation of suppositories are oleaginous bases such as cacao butter, polyethylene glycol, lanolin, fatty acid triglycerides, witepsol (trademark, Dynamite Nobel Co. Ltd.) and the like. Liquid preparations may be in the form of aqueous or oleaginous suspension, solution, syrup, elixir and the like, which can be prepared by a conventional way using additives.

The amount of the compound I of the invention to be incorporated into the pharmaceutical composition of the invention varries with the dosage form, solubility and chemical properties of the compound, administration route, administration scheme and the like. Preferably the amount is about 1 to 25 w/w% in the case of oral preparations, and about 0.1 to about 5 w/w% in the case of injections which are parenteral preparations.

The dosage of the compound I of the invention is suitably determined depending on the individual cases taking symptoms, age and sex of the subject and the like into consideration. Usually the dosage in the case of oral administration is about 50 to 1500 mg per day for an adult in 2 to 4 divided doses, and the dosage in the case of injection, for example, by intravenous administration is 2 ml (about 1 to 100 mg) which is administered once a day for adults wherein the injection may be diluted with physiological saline or glucose injection liquid if so desired, and slowly administered over at least 5 minutes. The dosage in case of suppositories is about 1 to 1000 mg which is

10

15

20

25

(

administered once or twice a day at an interval of 6 to 12 hours wherein the suppositories are administered by insertion into the rectum.

Example 1

(3S.4S)-3-(1-N-benzyloxycarbonyl-2-indolinecarbonyl)-amino-4 = acetoxy-azetidin-2-one (1)

(3S,4S)-3-benzyloxycarbonylamino-4-acetoxy-azetidin-2-one (278 mg, 1 mmol) was hydrogenated with 300 mg of 10 % palladium on activated carbon in 25 ml of ethyl acetate at 50 psi hydrogen pressure at room temperature for 1.5 hrs. After removal of catalyst by filtration, desubstituted (3S,4S)-3-amino-4-acetoxy-azetidin-2-one in ethyl acetate was obtained.

To a solution of 1-benzyloxycarbonyl-2-indoline carboxylic acid (320 mg, 1.05 mmol) and triethylamine (106 mg, 1.05 mmol) in chloroform (20 ml), ethyl chloroformate (109 mg, 1 mmol) was added at -15 °C. The reaction mixture was stirred at a bath temperature of -10 to 5 °C for 1 hr. Then a precooled solution of (3S,4S)-3-amino-4-acetoxy-azetidin-2-one in ethyl acetate was added at -15 °C and stirring was continued at a bath temperature of -15 to 5 °C for 1 hr. After removal of solvent, the residue was dissolved in ethyl acetate, washed with water, brine and dried over sodium sulfate. After removal of solvent, the residue was purified by silica gel column chromatography using hexane-ethyl acetate (1:3) as eluent and the title compound was obtained.

Yield: 71 %.

m.p.: 196-197 °C

FAB-MS: 424 (MH $^{+}$), calcd for $C_{22}H_{21}N_{3}O_{6}$ 423

¹H NMR (DMSO-d₆), δ (ppm): 2.05 (3H, s), 2.90-3.05 (1H, m), 3.45-3.65 (1H, m), 4.65 (1H, m), 4.90 (1H, m), 5.17 (2H, s), 5.70 (1H, s), 6.95-7.40 (9H, m), 8.95 (1H, d, J=8Hz), 9.20 (1H, s).

IR (KBr, cm⁻¹): 3300, 1800, 1745, 1716, 1670, 1541, 1485, 1408, 1363, 1275, 1223.

Example 2

10

20

25

azetidin-2-one (2)

To a soulution of N-benzyloxycarbonyl-D-phenylglycine (285 mg, 1.0 mmol) and 1-hydroxybenzotriazole (135 mg, 1.0 mmol) in THF (20 ml), DCC (206 mg, 1.0 mmol)/THF (10 ml) was added at 0 °C. The reaction mixture was stirred at room temperature for 2 hrs and then cooled with an ice bath. The resulting DCU was removed by filtration. Then a precooled solution of (3S,4S)-3-amino-4-acetoxy-azetidin-2-one in ethyl acetate was added at -15 °C and the resulting mixture was stirred at a bath temperature of -15 to 5 °C for 1 hr and then at room temperature for 4 hrs. After removal of solvent, the residue was dissolved in ethyl acetate, washed with cold saturated NaHCO₃ solution, water, brine and dried over sodium sulfate. after removal of solvent, the residue was purified by silica gel column chromatography using hexane-ethyl acetate (1:2) as eluent and the title compound was obtained.

Yield: 71 %.

15 m.p.: 181-182 °C

FAB-MS: 412 (MH $^+$), calcd for C₂₁H₂₁N₃O₆ 411 1 H NMR (DMSO-d₆), δ (ppm): 2.07 (3H, s), 4.61 (1H, d, J=8 Hz), 5.05 (2H, s), 5.25 (1H, d, J=8.3 Hz), 5.71 (1H, s), 7.25-7.45 (10H, m), 8.06 (1H, d, J=8.3 Hz), 8.99 (1H, d, J=8 Hz), 9.20 (1H, s).

IR (KBr, cm⁻¹): 3375, 1796, 1749, 1721, 1690, 1663, 1530, 1505, 1373, 1328, 1250, 1228.

Example 3

(3S.4S)-3-(N-benzyloxycarbonyl-DL-phenylglycyl)-amino-4-acetoxy-azetidin-2-one (3)

By a similar method as described in example 2, the title compound was obtained by reacting N-benzyloxycarbonyl-DL-phenylglycine with (3S,4S)-3-amino-4-acetoxy-azetidin-2-one.

Yield: 50 %.

m.p.: 145-146 °C

30 FAB-MS: 412 (MH $^+$), calcd for C₂₁H₂₁N₃O₆ 411 ¹H NMR (DMSO-d₆), δ (ppm): 2.07 (3H, s), 4.66 (1H, d, J=8.4 Hz), 5.05 (2H, s), 5.25 (1H, d, J=8.4 Hz), 5.71 (1H, s), 7.25-7.45 (10H, m), 8.06 (1H, d,

15

(

J=8.4 Hz), 8.97 (1H, m), 9.21 (1H, s).

IR (KBr, cm⁻¹): 3375, 1799, 1743, 1688, 1660, 1533, 1372, 1324, 1250, 1226.

Example 4

(3S.4S)-3-(N-benzyloxycarbonyl-L-homophenylalanyl)-amino-4 = acetoxy-azetidin-2-one (4)

By a similar method as described in example 1, the title compound was obtained by reacting N-benzyloxycarbonyl-L-homophenylalanine with (3S,4S)-3-amino-4-acetoxy-azetidin-2-one.

10 Yield: 45 %.

m.p.: 180-181 °C

FAB-MS: 440 (MH $^+$), calcd for C₂₃H₂₅N₃O₆ 439 1 H NMR (DMSO-d₆), δ (ppm): 1.75-1.95 (2H, m), 2.08 (3H, s), 2.60 (2H, m), 4.04 (1H, m), 4.65 (1H, d, J=8 Hz), 5.06 (2H, m), 5.76 (1H, s), 7.15-7.40

(10H, m), 7.65 (1H, d, J=8 Hz), 8.70 (1H, d, J=8 Hz), 9.18 (1H, s). IR (KBr, cm⁻¹): 3310, 1802, 1748, 1687, 1660, 1555, 1532, 1367, 1242.

Example 5

(3S,4S)-3-{N-benzyloxycarbonyl-β-(3-pyridyl)-L-alanyl}-amino-4 = acetoxy-azetidin-2-one (5)

By a similar method as described in example 2, the title compound was obtained by reacting N-benzyloxycarbonyl-β-(3-pyridyl)-L-alanine with (3S,4S)-3-amino-4-acetoxy-azetidin-2-one.

Yield: 75 %.

m.p.: 186 °C (dec.)

FAB-MS: 427 (MH*), calcd for C₂₁H₂₂N₄O₆ 426

¹H NMR (DMSO-d₆), δ (ppm): 2.09 (3H, s), 2.75-3.15 (2H, m), 4.28 (1H, m), 4.66 (1H, d, J=8.3 Hz), 4.94 (2H, m), 5.75 (1H, s), 7.15-7.40 (6H, m), 7.65-7.75 (2H, m), 8.40-8.55 (2H, m), 8.85 (1H, d, J=8 Hz), 9.21 (1H, s). IR (KBr, cm⁻¹): 3300, 1792, 1743, 1690, 1662, 1534, 1373, 1227.

Example 6

acetoxy-azetidin-2-one (6)

By a similar method as described in example 2, the title compound was obtained by reacting N-benzyloxycarbonyl- β -(2-pyridyl)-L-alanine with (3S,4S)-3-amino-4-acetoxy-azetidin-2-one.

5 Yield: 19 %.

m.p.: 115-117 °C

FAB-MS: 427 (MH⁺), calcd for C₂₁H₂₂N₄O₆ 426

¹H NMR (CDCl₃), δ (ppm): 2.10 (3H, s), 3.28 (2H, m), 4.70 (2H, m), 5.08 (2H, s), 5.72 (1H, s), 6.63 (1H, m), 7.10-7.40 (8H, m), 7.55-7.65 (1H, m),

10 8.35-8.50 (2H, m).

IR (KBr, cm⁻¹): 3315, 1792, 1741, 1716, 1686, 1655, 1526, 1256, 1222.

Example 7

(3S,4S)-3-(N-benzyloxycarbonyl-β-(2-thienyl)-DL-alanyl)-amino-4-acetoxy-azetidin-2-one (7)

By a similar method as described in example 2, the title compound was obtained by reacting N-benzyloxycarbonyl-β-(2-thienyl)-DL-alanine with (3S,4S)-3-amino-4-acetoxy-azetidin-2-one.

Yield: 61 %.

15

m.p.: 68-69 °C

FAB-MS: 432 (MH $^+$), calcd for C₂₀H₂₁N₃O₆S 431 ¹H NMR (DMSO-d₆), δ (ppm): 2.09 (3H, s), 2.95-3.30 (2H, m), 4.21 (1H, m), 4.64 (0.5H, d, J=8 Hz), 4.68 (0.5H, d, J=8 Hz), 5.00 (2H, m), 5.68 (0.5H, s), 5.75 (0.5H, s), 6.85-6.95 (2H, m), 7.25-7.40 (6H, m), 7.68 (0.5H, d, J=8 Hz), 7.72 (0.5H, d, J=8 Hz), 8.86 (0.5H, d, J=8 Hz), 8.88 (0.5H, d, J=8 Hz), 9.21 (0.5H, s), 9.22 (0.5H, s).

IR (KBr, cm⁻¹): 3300, 1790, 1747, 1718, 1697, 1670, 1536, 1506, 1225.

Example 8

(3S,4S)-3-(N-benzyloxycarbonyl-β-(2-naphthyl)-L-alanyl)-amino-4acetoxy-azetidin-2-one (8)

By a similar method as described in example 2, the title compound was obtained by reacting N-benzyloxycarbonyl-β-(2-naphthyl)-L-alanine with (3S,4S)-3-amino-4-acetoxy-azetidin-2-one.

20

25

Yield: 61 %.

m.p.: 172-173 °C

FAB-MS: 476 (MH $^{+}$), calcd for $C_{26}H_{25}N_3O_6$ 475

¹H NMR (DMSO-d₆), δ (ppm): 2.07 (3H, s), 2.85-3.25 (2H, m), 4.38 (1H, m), 4.63 (1H, d, J=8 Hz), 4.92 (2H, m), 5.76 (1H, s), 7.05-7.25 (5H, m), 7.40-7.55 (2H, m), 7.67 (4H, s), 7.6

7.55 (3H, m), 7.67 (1H, d, J=8.7 Hz), 7.75-7.95 (4H, m), 8.85 (1H, d, J=8 Hz), 9.21 (1H, s).

IR (KBr, cm⁻¹): 3370, 1800, 1773, 1688, 1661, 1527, 1262, 1218.

Example 9

10 (3S.4S)-3-(N-benzyloxycarbonyl-β-(3-fluorophenyl)-L-alanyl)-amino-4acetoxy-azetidin-2-one (9)

By a similar method as described in example 1, the title compound was obtained by reacting N-benzyloxycarbonyl- β -(3-fluorophenyl)-L-alanine with (3S,4S)-3-amino-4-acetoxy-azetidin-2-one.

15 Yield: 52 %.

m.p.: 166-167 °C

FAB-MS: 444 (MH⁺), calcd for C₂₂H₂₂FN₃O₆ 443

¹H NMR (DMSO-d₆), δ (ppm): 2.11 (3H, s), 2.75-3.15 (2H, m), 4.28 (1H, m), 4.67 (1H, d, J=8 Hz), 4.97 (2H, m), 5.78 (1H, s), 7.00-7.40 (9H, m), 7.65

(1H, d, J=8.7 Hz), 8.84 (1H, d, J=8 Hz), 9.22 (1H, s).

IR (KBr, cm⁻¹): 3310, 1789, 1747, 1698, 1668, 1528, 1371, 1250, 1225.

Example 10

(3S,4S)-3-(N-benzyloxycarbonyl-β-(4-methoxyphenyl)-L-alanyl)-amino-4-acetoxy-azetidin-2-one (10)

By a similar method as described in example 1, the title compound was obtained by reacting N-benzyloxycarbonyl-β-(4-methoxyphenyl)-L-alanine with (3S,4S)-3-amino-4-acetoxy-azetidin-2-one.

Yield: 28 %.

m.p.: 112-113 °C

FAB-MS: 456 (MH $^+$), calcd for C₂₃H₂₅N₃O₆ 455 ¹H NMR (CdCl₃), δ (ppm): 2.11 (3H, s), 3.02 (2H, d, J=6.4 Hz), 3.77 (3H, s), 4.42 (1H, m), 4.59 (1H, d, J=7.3 Hz), 5.06 (2H, s), 5.38 (1H, d, J=7 Hz),

15

20

25

5.77 (1H, s), 6.80 (4H, m), 7.09 (2H, d, J=8.5 Hz), 7.25-7.40 (5H, m). IR (KBr, cm⁻¹): 3380, 1811, 1748, 1680, 1524, 1369, 1286, 1245.

Example 11

(3S.4S)-3-(N-benzyloxycarbonyl-β-(2-naphthyl)-L-alanyl}-amino-4phenoxy-azetidin-2-one (11)

To a solution of phenol (30 mg, 0.32 mmol) in acetone (2 ml) and 1 N NaOH (0.25 ml), (3S,4S)-3-{N-benzyloxycarbonyl- β -(2-naphthyl)-L-alanyl}-amino-4-acetoxy-azetidin-2-one (95 mg, 0.2 mmol) in acetone (1ml) and THF (2 ml) was added at 5 °C. The mixture was stirred at 5 °C for 1 hr and then at room temperature for 1 hr. After removal of solvent, the residue was dissolved in ethyl acetate, washed with water, brine and dried over sodium sulfate. After removal of solvent, the residue was purified by silica gel column chromatography using ethyl acetate-hexane (1:2) as eluent and 45 mg of (3S,4S)-3-{N-benzyloxycarbonyl- β -(2-naphthyl)-L-alanyl}-amino-4-phenoxy-azetidin-2-one was obtained.

Yield: 44%.

m.p.: 205-206 °C

FAB-MS: 510 (MH $^{+}$), calcd for C₃₀H₂₇N₃O₅ 509

¹H NMR (DMSO- d_6), δ (ppm): 2.85-3.30 (2H, m), 4.38 (1H, m), 4.70 (1H, d,

J=8.2 Hz), 4.94 (2H, m), 5.55 (1H, s), 6.85 -7.90 (18H, m), 8.99 (1H, d, J=8.3 Hz), 9.34 (1H, s).

IR (KBr, cm⁻¹): 3280, 1798, 1681, 1654, 1525, 1489, 1351, 1298, 1229. Example 12

(3S.4S)-3-{N-benzyloxycarbonyl-β-(2-naphthyl)-L-alanyl}-amino-4-(3-methyl phenoxy)-azetidin-2-one (12A) and (3S.4R)-3-{N-benzyloxycarbonyl-β-(2-naphthyl)-L-alanyl}-amino-4-(3-methylphenoxy)-azetidin-2-one (12B)

By a similar method as described in example 11, the title compounds (12A) and (12B) were obtained by reacting (3S,4S)-3-{N-benzyloxycarbonyl-β-(2-naphthyl)-L-alanyl}-amino-4-acetoxy-azetidin-2-one with 3-methylphenol.

30 For (12A):

Yield: 29 %.

m.p.: 108.5 -109.5 °C.

FAB-MS: 524 (MH $^{+}$), calcd for C₃₁H₂₉N₃O₅ 523

¹H NMR (DMSO-d₆), δ (ppm): 2.27 (3H, s), 2.90-3.30 (2H, m), 4.35-4.45 (1H, m), 4.67 (1H, d, J=8.3 Hz), 4.92 (2H, m), 5.53 (1H, s), 6.69 (2H, m), 6.84 (1H, d, J=7.4Hz), 7.10-7.25 (6H, m), 7.40-7.50 (3H, m), 7.70-7.90 (5H, m), 8.97 (1, d, J=8.3 Hz), 9.32 (1H, s).

IR (KBr, cm⁻¹): 3265, 1793, 1682, 1652, 1588, 1526, 1354, 1278, 1249. For (12B):

Yield: 16 %.

·m.p.: 216 -218 °C.

FAB-MS: 524 (MH $^+$), calcd for C₃₁H₂₉N₃O₅ 523 ¹H NMR (DMSO-d₆), δ (ppm): 2.25 (3H, s), 2.75-3.20 (2H, m), 4.40-4.50 (1H, m), 4.86 (2H, s), 5.42 (1H, m), 5.73 (1H, d, J=3.8 Hz), 6.70-6.85 (3H, m), 7.10-7.25 (6H, m), 7.40-7.60 (4H, m), 7.75-7.90 (4H, m), 8.95 (1H, d, J=9.2 Hz), 9.31 (1H, s).

15 IR (KBr, cm⁻¹): 3285, 1780, 1663, 1588, 1537, 1251.

Example 13

(3S,4S)-3-{N-benzyloxycarbonyl-β-(2-naphthyl)-L-alanyl}-amino-4-(2-naphthoxy)-azetidin-2-one (13A) and (3S,4R)-3-{N-benzyloxycarbonyl-β-(2-naphthyl)-L-alanyl}-amino-4-(2-naphthoxy)-azetidin-2-one (13B)

By a similar method as described in example 11, the title compounds (13A) and (13B) were obtained by reacting (3S,4S)-3-{N-benzyloxycarbonyl-β-(2-naphthyl)-L-alanyl}-amino-4-acetoxy-azetidin-2-one with 2-naphthol. For (13A):

Yield: 13 %.

25

m.p.: 224 - 225 °C.

FAB-MS: 560 (MH $^+$), calcd for C $_{34}$ H $_{29}$ N $_3$ O $_5$ 559 1 H NMR (DMSO-d $_6$), δ (ppm): 3.0-3.4 (2H, m), 4.45-4.55 (1H, m), 4.77 (1H, d, J=8.4 Hz), 4.97 (2H, m), 5.71 (1H, s), 7.15-7.30 (7H, m), 7.40-7.60 (5H, m), 7.80-7.95 (8H, m), 9.11 (1H, d, J=8.4 Hz), 9.43 (1H, s).

30 IR (KBr, cm⁻¹): 3305, 1792, 1649, 1535, 1372, 1275. For (13B):

Yield: 13 %.

15

m.p.: 109 - 110 °C.

FAB-MS: 560 (MH⁺), calcd for C₃₄H₂₉N₃O₅ 559

 1 H NMR (DMSO-d₆), δ (ppm): 2.75-3.10 (2H, m), 4.35-4.50 (1H, m), 4.78 (2H, m), 5.45-5.55 (1H, m), 5.92 (1H, d, J=3.7 Hz), 7.05-7.60 (13H, m), 7.70-7.90 (7H, m), 9.02 (1H, d, J=9.0), 9.43 (1H, s).

IR (KBr, cm⁻¹): 3290, 1788, 1665, 1529, 1358, 1249.

Example 14

(3S,4S)-3-{N-benzyloxycarbonyl-β-(2-naphthyl)-L-alanyl}-amino-4-{3-(morpholin-4-yl)-phenoxy}-azetidin-2-one (14A) and (3S,4R)-3-{N-benzyloxycarbonyl-β-(2-naphthyl)-L-alanyl}-amino-4-{3-(morpholin-4-yl)-phenoxy}-azetidin-2-one (14B)

By a similar method as described in example 11, the title compounds (14A) and (14B) were obtained by reacting (3S,4S)-3-{N-benzyloxycarbonyl-β-(2-naphthyl)-L-alanyl}-amino-4-acetoxy-azetidin-2-one with 3-(morpholin-4-yl)-phenol.

For (14A):

Yield: 15 %.

m.p.: 140 °C (dec.)

FAB-MS: 595 (MH $^{+}$), calcd for $C_{34}H_{34}N_{4}O_{6}$ 594

¹H NMR (DMSO-d₆), δ (ppm): 2.90-3.30 (6H, m), 3.70-3.80 (4H, m), 4.35-4.50 (1H, m), 4.70 (1H, d, J=8.1 Hz), 4.95 (2H, m), 5.57 (1H, s), 6.36 (1H, m), 6.44 (1H, s), 6.67 (1H, m), 7.10-7.30 (6H, m), 7.45-7.55 (3H, m), 7.71 (1H, d, J=8.6 Hz), 7.80-7.95 (4H, m), 9.00 (1H, d, J=8.1 Hz), 9.35 (1H, s). IR (KBr, cm⁻¹): 3265, 1791, 1653, 1601, 1528, 1490, 1250.

25 For (14B):

30

Yield: 24 %.

m.p.: 147 °C (dec.)

FAB-MS: 595 (MH⁺), calcd for C₃₄H₃₄N₄O₆ 594

¹H NMR (DMSO-d₆), δ (ppm): 2.80-3.00 (1H, m), 3.07 (5H, m), 3.68 (4H, m), 4.40-4.60 (1H, m), 4.85 (2H, s), 5.40-5.50 (1H, m), 5.73 (1H, d, J=3.7 Hz), 6.40-6.55 (2H, m), 6.60-6.70 (1H, m), 7.10-7.30 (6H, m), 7.45-7.60 (4H, m), 7.80-7.95 (4H, m), 8.95 (1H, d, J=9.4), 9.31 (1H, s).

IR (KBr, cm⁻¹): 3285, 1780, 1682, 1661, 1593, 1532, 1487 1249.

Example 15

(3S.4SR)-3-(N-(3-phenylpropionoyl)-β-(2-naphthyl)-L-alanyl}-amino-4-phenylthio-azetidin-2-one (15)

By a similar method as described in example 11, the title compound 15 was obtained by reacting (3S,4S)-3-{N-(3-phenylpropionoyl)- β -(2-naphthyl)-L-alanyl}-amino-4-acetoxy-azetidin-2-one with thiophenol.

Yield: 67 %.

m.p.: 189 - 191 °C.

FAB-MS: 524 (MH $^+$), calcd for C₃₁H₂₉N₃O₃S 523 ¹H NMR (DMSO-d₆), δ (ppm): 2.25-2.40 (2H, m), 2.55-2.70 (2H, m), 2.85-3.00 (1H, m), 3.10-3.25 (1H, m), 4.56 (0.5H, m), 4.60-4.70 (0.5H, m), 4.70-4.90 (0.5H, m), 4.92 (0.5H, d, J=2.3), 5.28 (0.5H, d, J=4.6 Hz), 5.35-5.45 (0.5H, m), 6.95-7.20 (5H, m), 7.25-7.50 (8H, m), 7.65-7.90 (4H, m), 8.19 (1H, m), 8.84 (0.5H, d, J=8.3 Hz), 9.02 (0.5H, s), 9.05 (0.5H, s), 9.06 (0.5H, d, J=8 Hz).

IR (KBr, cm⁻¹): 3265, 3035, 1784, 1634, 1524, 1437, 1350, 1259, 1224. Example 16

(3S,4SR)-3-(N-(3-phenylpropionoyl)-β-(2-naphthyl)-L-alanyl}-amino-4-20 phenylsulfonyl-azetidin-2-one (16)

A mixture of (3S,4SR)-3-{N-(3-phenylpropionoyl)- β -(2-naphthyl)-L-alanyl}-amino-4-phenylthio-azetidin-2-one (52 mg, 0.1 mmol) obtained in example 15, and KMnO₄ (24 mg, 0.15 mmol) in acetic acid (2 ml) and H₂O (0.5 ml) was stirred at 5 °C for 1 hr and then room temperature for 1 hr. One drop of H₂O₂ (30% aq) was added. The reaction mixture was partitioned between ethyl acetate and water, the organic layer was washed with water, saturated NaHCO₃, water, brine and dried over Na₂SO₄. After removal of the solvent, solid was washed with ether and 40 mg of the title compound was obtained.

30 Yield: 72 %.

25

m.p.: 175 °C (dec.)

FAB-MS: 556 (MH $^{+}$), calcd for $C_{31}H_{29}N_3O_5S$ 555

WO 98/12176 PCT/IB97/01145

29

¹H NMR (DMSO-d₆), δ (ppm): 2.25-2.40 (2H, m), 2.55-2.65 (2H, m), 2.80-3.00 (1H, m), 3.05-3.25 (1H, m), 4.55-4.70 (0.5H, m), 4.80-4.95 (1.5H, m), 5.26 (0.5H, d, J=4.6 Hz), 5.50-5.60 (0.5H, m), 7.00-7.20 (5H, m), 7.30-7.95 (12H, m), 8.17 (0.5H, d, J=8 Hz), 8.22 (0.5H, d, J=8 Hz), 8.93 (1H, d, J=8.8 Hz), 9.36 (0.5H, s), 9.47 (0.5H, s).

IR (KBr, cm⁻¹): 3275, 1780, 1639, 1519, 1300.

Example 17

(3S.4SR)-3-(N-(3-phenylpropionoyl)-β-(2-naphthyl)-L-alanyl}-amino-4-(2-hydroxyethylthio)-azetidin-2-one (17)

By a similar method as described in example 11, the title compound 17 was obtained by reacting (3S,4S)-3-{N-(3-phenylpropionoyl)-β-(2-naphthyl)-L-alanyl}-amino-4-acetoxy-azetidin-2-one with 2-mercaptoethanol.

Yield: 26 %.

5

10

25

30

m.p.: 134 - 136 °C.

FAB-MS: 492 (MH $^+$), calcd for C₂₇H₂₉N₃O₄S 491 ¹H NMR (DMSO-d₆), δ (ppm): 2.30-2.40 (2H, m), 2.55-2.70 (4H, m), 2.85-3.00 (1H, m), 3.10-3.25 (1H, m), 3.45-3.60 (2H, m), 4.51 (0.6H, m), 5.70-5.80 (0.4H, m), 4.60-4.65 (1H, m), 4.70 (0.6H, d, J=2.3 Hz), 5.00 (0.4H, d, J=4.5 Hz), 7.00-7.20 (5H, m), 7.35-7.50 (3H, m), 7.70-7.90 (4H, m), 8.15-8.25 (1H, m), 8.70-8.90 (2H, m).

IR (KBr, cm⁻¹): 3270, 1757, 1636, 1527.

Example 18

(3S.4SR)-3-(N-(3-phenylpropionoyl)-β-(2-naphthyl)-L-alanyl}-amino-4benzyloxy-azetidin-2-one (18)

A mixture of $(3S,4S)-3-\{N-(3-phenylpropionoyl)-\beta-(2-naphthyl)-L-alanyl\}-amino-4-acetoxy-azetidin-2-one (236 mg, 0.5 mmol), benzyl alcohol (54 mg, 0.5 mmol), and zinc acetate dihydrate (110 mg, 0.5 mmol) in benzene (20 ml) and toluene (20 ml) was refluxed for 5 hrs using Dean-Stark water separator. After cooling, the reaction mixture was partitioned between ethyl acetate, containing a small volume of acetone, and water. The organic layer was washed with water, brine and dried over sodium sulfate. After removal of solvent, the residue was purified by silica gel column chromatography using$

hexane-ethyl acetate (1:1) as eluent and the title compound was obtained.

Yield: 23 %.

m.p.: 171 -172 °C.

FAB-MS: 522 (MH $^{+}$), calcd for $C_{32}H_{31}N_{3}O_{4}$ 521

¹H NMR (CDCl₃), δ (ppm): 2.30-2.50 (2H, m), 2.65-2.85 (2H, m), 3.00-3.35 (2H, m), 4.40-4.55 (2.5H, m), 4.70-4.85 (1H, m), 5.01 (0.5H, s), 5.12 (0.5H, d, J=4.5 Hz), 5.20-5.30 (0.5H, m), 7.00-7.80 (18H, m), 8.20-8.30 (1H, m), 8.46 (0.5H, s), 8.61 (0.5H, s).

IR (KBr, cm⁻¹): 3265, 1767, 1635, 1531.

10

15

20

30

5

Example 19

(3S,4SR)-3-{N-(3-phenylpropionoyl)-β-(2-naphthyl)-L-alanyl}-amino-4-cyclohexyloxy-azetidin-2-one (19)

By a similar method as described in example 18, the title compound 19 was obtained by reacting (3S,4S)-3-{N-(3-phenylpropionoyl)- β -(2-naphthyl)-L-alanyl}-amino-4-acetoxy-azetidin-2-one with cyclohexanol.

Yield: 35 %.

m.p.: 169 -171 °C.

FAB-MS: 514 (MH⁺), calcd for C₃₄H₃₅N₃O₄ 513

¹H NMR (CDCl₃), δ (ppm): 1.10-2.10 (10H, m), 2.40-2.55 (2H, m), 2.80-2.95 (2H, m), 3.05-3.40 (2H, m), 3.95-4.10 (1H, m), 5.70-5.85 (1H, m), 6.31 (1H, m), 6.51 (1H, d, J=8.1 Hz), 7.10-7.90 (13H, m), 8.35 (1H, s), 8.64 (1H, s). IR (KBr, cm⁻¹): 3275, 1780, 1639, 1519, 1300.

Example 20

(3S.4S)-3-(N-(trans-2-phenyl-eth-1-enesulfonyl)-β-(2-naphthyl)-

25 L-alanyl)-amino-4-acetoxy-azetidin-2-one (20)

(3S,4S)-3-{N-benzyloxycarbonyl-β-(2-naphthyl)-L-alanyl}-amino-4-acetoxy-azetidin-2-one (237 mg, 0.5 mmol) obtained in example 8, was hydrogenated with 400 mg of 10% palladium on activated carbon in ethyl acetate (20 ml) and THF (10 ml) at 50 psi hydrogen pressure at room temperature for 2 hrs. After removal of catalyst by filtration, the desubstituted (3S,4S)-3{β-(2-naphthyl)-L-alanyl}-amino-4-acetoxy-azetidin-2-one was cooled to -15 °C. Then triethylamine (50 mg, 0.5 mmol) and trans-2-phenyl-

WO 98/12176 PCT/IB97/01145

31

eth-1-ene sulfonyl chloride (101 mg, 0.5 mmol) were added at -15 °C. Stirring was continued at a bath temperature of -10 to 0 °C for 1 hr and 5 °C overnight. The reaction mixture was diluted with ethyl acetate, washed with cold saturated NaHCO₃ solution, water, brine and dried over sodium sulfate.

After removal of solvent, the residue was purified by silica gel column chromatography using hexane-ethyl acetate (1:1) as eluent and the title compound (30 mg) was obtained.

Yield: 12%.

m.p.: 176 °C (dec.).

FAB-MS: 508 (MH $^+$), calcd for C₂₆H₂₅N₃O₆S 507 ¹H NMR (DMSO-d₆), δ (ppm): 2.01 (3H, s), 2.70-3.20 (2H, m), 4.05-4.20 (1H, m), 4.57 (1H, d, J=7.8 Hz), 5.61 (1H, s), 6.50 (1H, d, J=15.5 Hz), 7.14 (1H, d, J=15.5 Hz), 7.25-7.50 (8H, m), 7.70-7.85 (4H, m), 8.05 (1H, d, J=7.8 Hz), 8.90 (1H, d, J=7.9 Hz), 9.22 (1H, s).

15 IR (KBr, cm⁻¹): 3285, 1774, 1661, 1515, 1315, 1222.

Example 21

(3S,4S)-3-(N-(benzylaminocarbonyl)-β-(2-naphthyl)-L-alanyl}-amino-4-acetoxy-azetidin-2-one (21)

By a similar method as described in example 2, the title compound was obtained by reacting N-(benzylaminocarbonyl)- β -(2-naphthyl)-L-alanine with (3S,4S)-3-amino-4-acetoxy-azetidin-2-one.

Yield: 70 %.

m.p.: 203 °C (dec.).

FAB-MS: 475 (MH⁺), calcd for C₂₆H₂₆N₄O₅ 474

¹H NMR (DMSO-d₆), δ (ppm): 2.05 (3H, s), 2.85-3.20 (2H, m), 4.05-4.20 (2H, m), 4.50-4.65 (1H, m), 4.57 (1H, d, J= 8.0 Hz), 5.73 (1H, s), 6.22 (1H, d, J=8.5 Hz), 6.55 (1H, t, J=8.5 Hz), 7.05-7.20 (5H, m), 7.30-7.50 (3H, m), 7.65-7.90 (4H, m), 8.81 (1H, d, J=8.0 Hz), 9.17 (1H, s). IR (KBr, cm⁻¹): 3325, 1799, 1744, 1652, 1626, 1555, 1222.

Example 22

20

25

10

15

amino-4-(4-(2S-2-amino-2-carboxy-ethyl)-phenoxy)-azetidin-2-one (22)

To a solution of 4-(2S-2-tert-butyloxycarbonylamino-2-diphenylmethoxy carbonyl-ethyl)-phenol (0.585 g, 1.3 mmol) in acetone (6 ml), H_2O (3 ml) and 1 N NaOH (1.2ml), (3S,4S)-3-{N-(benzylaminocarbonyl)- β -(2-naphthyl)-L-alanyl)-amino-4-acetoxy-azetidin-2-one (0.5 g, 1.09 mmol) in acetone (10 ml) and H_2O (5 ml) was slowly added at 5 °C. The mixture was stirred at 5 °C for 2 hrs. After removal of solvent, the residue was dissolved in ethyl acetate, washed with water, brine and dried over sodium sulfate. After removal of solvent, the residue was recrystallized from ethyl acetate/hexane and 400 mg of (3S,4SR)-3-{N-(benzylaminocarbonyl)- β -(2-naphthyl)-L-alanyl)-amino-4-{(2S-2-tert-butyloxycarbonylamino-2-diphenylmethoxycarbonyl-ethyl)-phenoxy}-azetidin-2-one was obtained as white solid.

200 mg of (3S,4SR)-3-{N-(benzylaminocarbonyl)- β -(2-naphthyl)-L-alanyl}-amino-4-{(2S-2-tert-butyloxycarbonylamino-2-diphenylmethoxycarbonyl-ethyl)-phenoxy}-azetidin-2-one was added to a mixture of anisole (1 ml), TFA (2 ml) and DCM (1 ml) at -15 °C. The mixture was stirred at a bath temperature of -15 to 0 °C for 2 hrs. After removal of solvent, the resulting solid was washed with ether, ethyl acetate and acetonitril and 80 mg of the title compound was obtained as white solid.

20 Yield: 58 %.

m.p.: 180 °C (dec.).

FAB-MS: 596 (MH $^{+}$), calcd for C₃₃H₃₃N₅O₆ 595

¹H NMR (DMSO-d₆), δ (ppm): 2.80-3.20 (4H, m), 3.65-3.80 (1H, m), 4.05-

4.25 (2H, m), 4.50-4.65 (1H, m), 4.65 (0.7H, d, J=8Hz), 5.50 (0.7H, s), 5.35-

5.50 (0.3H, m), 5.75 (0.3H, d, J=3Hz), 6.20-6.35 (1H, m), 6.55-6.70 (1H, m),

6.75-6.95 (2H, m), 7.05-7.25 (7H, m), 7.35-7.55 (3H, m), 7.70-7.90 (4H, m),

8.90-9.00 (1H, m), 9.33 (1H, s).

IR (KBr, cm⁻¹): 3280, 3035, 1763, 1631, 1549, 1503, 1357, 1225.

Example 23

25

acetoxy-azetidin-2-one (23)

By a similar method as described in example 2, the title compound was obtained by reacting N-(3-phenylpropionyl)-L-citrulline with (3S,4S)-3-amino-4-acetoxy-azetidin-2-one.

5 Yield: 35 %.

m.p.: 193 °C (dec.).

FAB-MS: 434 (MH $^{+}$), calcd for $C_{20}H_{27}N_5O_6$ 433

¹H NMR (DMSO-d₆), δ (ppm): 1.20-1.70 (4H, m), 2.08 (3H, s), 2.40-2.50 (2H, m), 2.75-2.95 (4H, m), 4.20-4.35 (1H, m), 4.62 (1H, d, J=8.0 Hz), 5.37

10 (2H, s), 5.74 (1H, s), 5.89 (1H, m), 7.10-7.35 (5H, m), 8.08 (1H, d, J=8.0 Hz), 8.65 (1H, d, J=8.0 Hz), 9.18 (1H, s).

IR (KBr, cm⁻¹): 3290, 1793, 1738, 1652, 1541, 1363, 1323, 1216.

Example 24

$(3S.4S)-3-(N^{\alpha}-(3-phenylpropionyl)-N^{\epsilon}-nitro-L-arginyl)-amino-$

15 <u>4-acetoxy-azetidin-2-one (24)</u>

By a similar method as described in example 1, the title compound was obtained by reacting N^{α} -(3-phenylpropionyl)- N^{ε} -nitro-L-arginine with (3S,4S)-3-amino-4-acetoxy-azetidin-2-one.

Yield: 12 %.

20 m.p.: 92 °C (dec.).

FAB-MS: 478 (MH $^{+}$), calcd for $C_{20}H_{27}N_{4}O_{7}$ 477

¹H NMR (DMSO-d₆), δ (ppm): 1.30-1.75 (4H, m), 2.08 (3H, s), 2.40-2.50 (2H, m), 2.75-2.95 (2H, m), 3.05-3.20 (2H, m), 4.20-4.35 (1H, m), 4.62 (1H, d, J=8.2 Hz), 5.74 (1H, s), 7.15-7.35 (5H, m), 7.70-8.20 (1H, br), 8.08 (1H,

d, J=8.1 Hz), 8.30-8.60 (1H, br), 8.66 (1H, d, J=8.2 Hz), 9.19 (1H, s). IR (KBr, cm⁻¹): 3285, 1772, 1637, 1524, 1366, 1253.

Example 25

(3S,4R)-3-(2S-2-benzyloxycarbonylamino-2-t-butyloxymethyl-acetamido)-4-phenoxy-azetidin-2-one (25)

To a solution of phenol (2.82 g 30 mmole) in THF (30ml) and 1N NaOH (26ml, 26 mmole), (3S, 4S)-3-benzyloxycarbonylamino-4-acetoxy-azetidin-2-one (5.56 g, 20 mmole) in THF (40ml) and H₂O(20ml) is added

10

15

20

25

at 0°C. The mixture is stirred at 0°C for 1 hour and then at room temperature for 30 min. After removal of solvent, the residue is dissolved in ethyl acetate, washed with water, brine and dried over sodium sulphate. After removal of solvent, the residue is purified by silica gel column chromatography using hexane-ethyl acetate as eluent. 2.75 g of (3S, 4S)-3-benzyloxycarbonylamino-4-phenoxy-azetidin-2-one (A), 890 mg of (3S, 4R)-3-benzyloxycarbonylamino-4-phenoxy-azetidin-2-one (B) and 1.08 g of a mixture of (A) and (B) is obtained.

(3S, 4R)-3-benzyloxycarbonylamino-4-phenoxy-azetidin-2-one (1.85 g. 5.9 mmole) is hydrogenated with 2g of 10% palladium on activated carbon in THF (30ml) and ethyl acetate (30ml) at 50 psi hydrogen pressure at room temperature for 2 hours. After removal of catalyst by filtration, 810 mg of deprotected (3S, 4R)-3-amino-4-phenoxy-azetidin-2-one is obtained.

To a solution of 2S-2-benzyloxycarbonylamino-2-t-butyloxymethylacetic acid (148 mg, 0.5 mmole), (3S, 4R)-3-amino-4-phenoxy-azetidin-2-one (80mg, 0.45 mmole) in DMF (3ml), BOP (221 mg, 0.5 mmole) and triethyl amine (101 mg, 1 mmole) is added. The reaction mixture is stirred at room temperature overnight and then diluted with ethyl acetate (50ml) and ether (50ml), washed with saturated NaHCO₃ solution, water, brine and dried over sodium sulfate. After removal of solvent, the residue is purified by silica gel column chromatography using hexane-ethyl acetate as eluent and 70mg of the title compound is obtained.

Yield: 34%

m.p.: 135-136.5°C

¹H-NMR (**DMSO-d**₆), δ (ppm): 1.05 (9H, s), 3.25-3.40 (2H, m), 4.05-4.20 (1H,m), 5.01 (2H,s), 5.33 (1H,m), 5.73 (1H,d,J=3.8 Hz), 6.85-7.10 (3H,m), 7.15 (1H,d, J=8.6 Hz), 7.20-7.40 (7H,m), 8.66 (1H, d, J=9.1 Hz), 9.27 (1H, s).

Example 26

acetamido]-4-phenoxy-azetidin-2-one (26)

By a similar method as described in example 25, the title compound is obtained by reacting 2S-2-benzyloxycarbonylamino-2-(1-t-butyloxyethyl)-acetic acid and (3S, 4R)-3-amino-4-phenoxy-azetidin-2-one

Yield: 57%

5

10

15

20

m.p.: 62-64°C

¹H-NMR (DMSO-d₆),δ (ppm): 0.86 (3H, d, J=6 Hz), 0.98 (9H, s), 3.75-3.90 (1H,m), 3.95-4.10 (1H, m), 5.03 (2H,s), 5.39 (1H, m), 5.78 (1H, d, J=3.8 Hz), 6.80-7.10 (4H, m), 7.20-7.45 (7H,m), 8.53 (1H, d, J=9.4 Hz), 9.31 (1H, s).

Example 27

(3S. 4S)-3-(2S-2-benzyloxycarbonylamino-2-t-butylmethyl-acetamido)-4-phenoxy-azetidin-2-one (27)

By a similar method as described in example 25, the title compound is obtained by reacting 2S-2-benzyloxycarbonylamino-2-t-butylmethylacetic acid and (3S, 4S)-3-amino-4-phenoxy-azetidin-2-one.

Yield: 71%

m.p.: 157-158°C.

¹H-NMR (DMSO-d₆),δ (ppm): 0.90 (9H,s), 1.50-1.80 (2H,m), 4.00-4.13 (1H, m), 4.66 (1H, d, J=8.4 Hz), 5.07 (2H, AB system, J=8.2 and 12.6 Hz), 5.54 (1H, s), 6.85-7.35 (10H,m), 7.56 (1H, d, J=8.2 Hz), 8.80 (1H, d, J=8.5 Hz), 9.30 (1H, s).

Example 28

(3S. 4S)-3-[2S-2-(3-phenylpropionoyl)amino-2-t-butylmethyl-

acetamidol-4-phenoxy-azetidin-2-one (28)

By a similar method as described in example 25, the title compound is obtained by reacting 2S-2-(3-phenylpropionoyl) amino-2-t-butylmethylacetic acid and (3S,4S)-3-amino-4-phenoxy-azetidin-2-one.

Yield: 68%

30 m.p.: 169-171°C.

 1 H-NMR (DMSO-d₆),δ (ppm): 0.86 (9H,s), 1.40-1.69 (2H,m), 2.40-2.50 (2H, m), 2.82 (2H, t, J=6.4 and 8.6 Hz), 4.27-4.39 (1H, m), 4.63 (1H, d, J=8.3

(

Hz), 5.54 (1H, s), 6.88-7.37 (10H, m), 8.13 (1H,d, J=8.1 Hz), 8.73 (1H, d, J=8.4 Hz), 9.29 (1H,s).

Example 29

(3S, 4S)-3-[2S-2-(3-phenylpropionoyl)amino-2-t-butyl-acetamido]-4-phenoxy-azetidin-2-one (29)

By a similar method as described in example 25, the title compound is obtained by reacting 2S-2-(3-phenylpropionoyl)amino-2-t-butyl-acetic acid and (3S, 4S)-3-amino-4-phenoxy-azetidin-2-one.

Yield: 43%

10 m.p.: 104-105°C

¹H-NMR (DMSO-d₆),δ (ppm): 0.89 (9H, s), 2.40-2.70 (2H,m), 2.82 (1H, t, J=8.2, 7.6 Hz), 4.22 (1H, d, J=9.1 Hz), 4.67 (1H,d, J=8.2 Hz), 5.55 (1H, s), 6.89-7.35 (10H, m), 7.91 (1H, d, J=9 Hz), 8.85 (1H,d, J=8.4 Hz), 9.30 (1H, s).

15

20

25

30

5

Example 30

(3S, 4S)-3-[2S-2-(3-phenylpropionoyl) amino-2-(3, 4-dimethoxyphenyl) methyl- acetamido]-4-phenoxy-azetidin-2-one (30)

A solution of L-3,4-dihydroxyphenylalanine (1.97g, 10 mmole) in 2N NaOH (10ml) is cooled in an ice-water bath. Hydrocinnamoyl chloride (1.8g, 10.6 mmole) in THF (2ml) and 1N NaOH (10ml) are added alternatingly at 0°C. The mixture is stirred at 0°C for 1hour and then room temperature for 1 hour. The alkaline solution is washed two times with ether. The aqueous layer is acidified to pH 2 and then extracted 3 times with ethyl acetate. The ethyl acetate layer is washed with brine and dried over sodium sulfate. After removal of solvent, the residue is dissolved in acetone (20ml). Diazodiphenylmethane (1.63 g, 8.4 mmole) in acetone (20ml) is added at 0°C. The reaction mixture is stirred at 0°C for 2 hours and room temperature overnight. After removal of solvent, the residue is purified by silica gel column chromatography using hexane-ethyl acetate as eluent and 2.2g of N-(3-phenylpropionoyl)-L-3,4-dihydroxyphenylalanine diphenylmethyl ester was obtained.

A reaction mixture of N-(3-phenylpropionoyl)-L-3,4-

10

15

20

25

30

dihydroxyphenylalanine diphenylmethyl ester (248 mg, 0.5 mmole), CH₃I(213 mg, 1.5 mmole) and K₂CO₃(172 mg, 1.25 mmole) in acetone (10ml) is stirred at room temperature overnight. After removal of solvent, the residue is dissolved in ethyl acetate, washed with water, brine and dried over sodium sulfate. After removal of solvent, the residue is purified by silica gel column chromatography using hexane-ethyl acetate as eluent and 160 mg of N-(3-phenylpropionoyl)-L-3,4-dimethoxyphenylalanine diphenylmethyl ester is obtained.

To a solution of N-(3-phenylpropionoyl)-L-3,4-dimethoxyphenylalanine diphenylmethyl ester (130mg, 0.25 mmole) and anisole (0.5 ml) in dichloromethane (3 ml), trifluoroacetic acid (6ml) is added at 0°C. The reaction mixture is stirred at 0°C for 1hour and room temperature for 30 min. The solution is evaporated to dryness in vacuo and the residue triturated with ether. After removal of solvent, 80mg of 2S-2-(3-phenylpropionoyl) amino-2-(3,4-dimethoxyphenyl) methyl-acetic acid is obtained as white solid.

(3S, 4S)-3-benzyloxycarbonylamino-4-phenoxy-azetidin-2-one (63mg, 0.2 mmole) is hydrogenated with 100mg of 10% palladium on activated carbon in ethyl acetate (10ml) at 50 psi hydrogen pressure at room temperature for 2 hours. After removal of catalyst by filtration, deprotected (3S, 4S)-3-amino-4-phenoxy-azetidin-2-one in ethyl acetate is obtained.

To a solution of 2S-2-(3-phenylpropionoyl) amino-2-(3,4-dimethoxyphenyl) methyl-acetic acid (70mg, 0.2 mmole) and 1-hydroxybenzotriazole (30mg, 0.22 mmole) in THF (4ml), DCC (41 mg, 0.2 mmole) is added. The reaction mixture is stirred at room temperature for 1 hour and then cooled with an ice bath. The resulting DCU is removed by filtration. Then a precooled solution of (3S, 4S)-3-amino-4-phenoxy-azetidin-2-one in ethyl acetate is added at 0°C and the resulting mixture is stirred at 0°C for 1 hour and room temperature for 1 hour. After removal of solvent, the residue is dissolved in ethyl acetate, washed with saturated NaHCO₃ solution, water, brine and dried over sodium sulfate. After

removal of solvent, the residue is purified by recrystallization using hexaneethyl acetate as solvent and 60mg of title compound is obtained as white solid.

Yield: 58%

m.p.: 183.5-185°C

¹H-NMR (DMSO-d₆),δ (ppm): 2.35-2.45 (2H, m), 2.65-3.05 (4H,m), 3.65 (3H, s), 3.70 (3H,s), 4.45-4.60 (1H, m), 4.64 (1H, d, J=8.4 Hz), 5.51 (1H, s), 6.70-6.95 (3H,m), 7.00-7.40 (10H, m), 8.19 (1H, d, J=8.1 Hz), 8.83 (1H,d, J=8.3 Hz), 9.32 (1H, s).

10

15

20

25

5

Example 31

(3S, 4S)-3-[2S-3-phenylpropionoyl) amino-2-(3,4ethylenedioxyphenylmethyl)-acetamido]-4-phenoxy-azetidin-2-one (31)

A reaction mixture of N-(3-phenylpropionoyl)-L-3,4-dihydroxyphenylalanine diphenylmethyl ester (360 mg, 0.72 mmole), 1-bromo-2-chloromethane (0.5 ml) and Cs₂CO₃ (472mg, 1.45 mmole) in DMF (5ml) is stirred at room temperature overnight and then at 90°C for 1 hour. The reaction mixture is diluted with ethyl acetate and ether, and washed with water, brine and dried over sodium sulfate. After removal of solvent, the residue is purified by silica gel column chromatography using hexaneethyl acetate as eluent and 240 mg of N-(3-phenylpropionoyl)-L-(3,4-ethylenedioxyphenyl)-alanine diphenylmethyl ester is obtained.

To a solution of N-(3-phenylpropionoyl)-L-(3,4-ethylenedioxyphenyl)-alanine diphenylmethyl ester (240 mg, 0.46 mmole) and anisole (0.5 ml) in dichloromethane (3 ml), trifluoroacetic acid (6ml) is added at 0°C. The reaction mixture is stirred at 0°C for 1 hour and room temperature for 30 min. The solution is evaporated to dryness in vacuo and the residue triturated with ether. After removal of solvent, 160 mg of 2S-2-(3-phenylpropionoyl)amino-2-(3,4-ethylenedioxyphenylmethyl)-acetic acid is obtained as white solid.

30

(3S, 4S)-3-benzyloxycarbonylamino-4-phenoxy-azetidin-2-one (140 mg, 0.45 mmole) is hydrogenated with 100 mg of 10% palladium on activated carbon in ethyl acetate (20ml) at 50 psi hydrogen pressure at

10

15

20

25

room temperature for 2 hours. After removal of catalyst by filtration, deprotected (3S, 4S)-3-amino-4-phenoxy-azetidin-2-one in ethyl acetate is obtained.

ethylenedioxyphenylmethyl)-acetic acid (160 mg, 0.45 mmole) and 1-hydroxybenzotriazole (66 mg, 0.49 mmole) in THF (6ml), DCC (93 mg, 0.45 mmole) is added. The reaction mixture is stirred at room temperature for 1 hour and then cooled with an ice bath. The resulting DCU is removed by filtration. Then a precooled solution of (3S, 4S)-3-amino-4-phenoxy-azetidin-2-one in ethyl acetate is added at 0°C and the resulting mixture is stirred at 0°C for 1hour and room temperature for 1 hour. After removal of solvent, the residue is dissolved in ethyl acetate, washed with saturated NaHCO₃ solution, water, brine and dried over sodium sulfate. After removal of solvent, the residue is purified by recrystallization using hexane-ethyl acetate as solvent and 140 mg of title compound is obtained as white solid.

Yield: 60%

m.p.: 210-212°C

¹H-NMR (DMSO-d₆) , δ (ppm): 2.35-2.45 (2H, m), 2.60-3.00 (4H,m), 4.10-4.25 (4H, s), 4.40-4.55 (1H,m), 4.62 (1H, d, J=8.4 Hz), 5.51 (1H, s), 6.65-6.95 (3H,m), 7.00-7.40 (10H, m), 8.19 (1H,d, J=8.1 Hz), 8.83 (1H, d, J=8.3 Hz), 9.32 (1H, s).

Example 32

(3S, 4S)-3-[2S-2-benzyloxycarbonylamino-2-(3-benzothienylmethyl)-acetamido]-4-phenoxy-azetidin-2-one (32)

By a similar method as described in example 25, the title compound is obtained by reacting 2S-2-benzyloxycarbonylamino-2-(3-benzothienylmethyl)-acetic acid and (3S, 4S)-3-amino-4-phenoxy-azetidin-2-one.

Example 33

30

(3S, 4S)-3-[2S-2-benzyloxycarbonylamino-2-(4,4'-biphenylmethyl)-

10

15

acetamido]-4-phenoxy-azetidin-2-one (33)

By a similar method as described in example 25, the title compound is obtained by reacting 2S-2-benzyloxycarbonylamino-2-(4,4'-biphenylmethyl)-acetic acid and (3S, 4S)-3-amino-4-phenoxy-azetidin-2-one.

Example 34

(3S, 4S)-3-[2S-2-benzyloxycarbonylamino-2-(2-chloro-phenylmethyl)-acetamido]-4-phenoxy-azetidin-2-one (34)

By a similar method as described in example 25, the title compound is obtained by reacting 2S-2-benzyloxycarbonylamino-2-(2-chloro-phenylmethyl)-acetic acid and (3S, 4S)-3-amino-4-phenoxy-azetidin-2-one.

Example 35

(3S, 4S)-3-[2S-2-benzyloxycarbonylamino-2-(4-chloro-phenylmethyl)-acetamido]-4-phenoxy-azetidin-2-one (35)

By a similar method as described in example 25, the title compound is obtained by reacting 2S-2-benzyloxycarbonylamino-2-(4-chloro-phenylmethyl)-acetic acid and (3S, 4S)-3-amino-4-phenoxy-azetidin-2-one.

Example 36

(3S. 4S)-3-[2S-2-benzyloxycarbonylamino-2-(3,4-dichloro-

20 <u>phenylmethyl)-acetamido]-4-phenoxy-azetidin-2-one (36)</u>

By a similar method as described in example 25, the title compound is obtained by reacting 2S-2-benzyloxycarbonylamino-2-(3,4-dichloro-phenylmethyl)-acetic acid and (3S, 4S)-3-amino-4-phenoxy-azetidin-2-one.

Example 37

(3S, 4S)-3-[2S-2-benzyloxycarbonylamino-2-(diphenylmethyl)-acetamido]-4-phenoxy-azetidin-2-one (37)

By a similar method as described in example 25, the title compound is obtained by reacting 2S-2-benzyloxycarbonylamino-2-(diphenylmethyl)-acetic acid and (3S, 4S)-3-amino-4-phenoxy-azetidin-2-one.

Example 38

25

10

15

20

25

phenylmethyl)-acetamido]-4-phenoxy-azetidin-2-one (38)

By a similar method as described in example 25, the title compound is obtained by reacting 2S-2-benzyloxycarbonylamino-2-(2-fluoro-phenylmethyl)-acetic acid and (3S, 4S)-3-amino-4-phenoxy-azetidin-2-one.

Example 39

(3S, 4S)-3-[2S-2-benzyloxycarbonylamino-2-(4-fluoro-phenylmethyl)-acetamidol-4-phenoxy-azetidin-2-one (39)

By a similar method as described in example 25, the title compound is obtained by reacting 2S-2-benzyloxycarbonylamino-2-(4-fluoro-phenylmethyl)-acetic acid and (3S, 4S)-3-amino-4-phenoxy-azetidin-2-one.

Example 40

(3S, 4S)-3-[2S-2-benzyloxycarbonylamino-2-(3,4-difluoro-phenylmethyl)-acetamido]-4-phenoxy-azetidin-2-one (40)

By a similar method as described in example 25, the title compound is obtained by reacting 2S-2-benzyloxycarbonylamino-2-(3,4-difluoro-phenylmethyl)-acetic acid and (3S, 4S)-3-amino-4-phenoxy-azetidin-2-one.

Example 41

(3S. 4S)-3-[2S-2-benzyloxycarbonylamino-2-(4-iodo-phenylmethyl)-acetamido]-4-phenoxy-azetidin-2-one (41)

By a similar method as described in example 25, the title compound is obtained by reacting 2S-2-benzyloxycarbonylamino-2-(4-iodo-phenylmethyl)-acetic acid and (3S, 4S)-3-amino-4-phenoxy-azetidin-2-one.

Example 42

(3S, 4S)-3-[2S-2-benzyloxycarbonylamino-2-(naphth-1-yl)methyl-acetamido]-4-phenoxy-azetidin-2-one (42)

By a similar method as described in example 25, the title compound is obtained by reacting 2S-2-benzyloxycarbonylamino-2-(naphth-1-yl)methyl-acetic acid and (3S, 4S)-3-amino-4-phenoxy-azetidin-2-one.

Example 43

(3S, 4S)-3-[2S-2-benzyloxycarbonylamino-2-(4-nitro-phenylmethyl)-

15

25

30

acetamido]-4-phenoxy-azetidin-2-one (43)

By a similar method as described in example 25, the title compound is obtained by reacting 2S-2-benzyloxycarbonylamino-2-(4-nitro-phenylmethyl)-acetic acid and (3S, 4S)-3-amino-4-phenoxy-azetidin-2-one.

Example 44

(3S, 4S)-3-[2S-2-benzyloxycarbonylamino-2-(pentafluorophenyl-methyl)-acetamido]-4-phenoxy-azetidin-2-one (44)

By a similar method as described in example 25, the title compound is obtained by reacting 2S-2-benzyloxycarbonylamino-2-

(pentafluorophenyl-methyl)-acetic acid and (3S, 4S)-3-amino-4-phenoxy-azetidin-2-one.

Example 45

(3S, 4S)-3-[2S-2-benzyloxycarbonylamino-2-(4-thiazolylmethyl)-acetamido]-4-phenoxy-azetidin-2-one (45)

By a similar method as described in example 25, the title compound is obtained by reacting 2S-2-benzyloxycarbonylamino-2-(4-thiazolylmethyl)-acetic acid and (3S, 4S)-3-amino-4-phenoxy-azetidin-2-one.

Example 46

20 (3S. 4S)-3-[2S-2-benzyloxycarbonylamino-2-(3-

trifluoromethylphenyl-methyl)-acetamido]-4-phenoxy-azetidin-2-one (46)

By a similar method as described in example 25, the title compound is obtained by reacting 2S-2-benzyloxycarbonylamino-2-(3-trifluoromethylphenyl methyl)-acetic acid and (3S, 4S)-3-amino-4-phenoxy-azetidin-2-one.

Example 47

(3S, 4S)-3-[2S-2-benzyloxycarbonylamino-2-(3-sulfamoylmethyl)-acetamido]-4-phenoxy-azetidin-2-one (47)

By a similar method as described in example 25, the title compound is obtained by reacting 2S-2-benzyloxycarbonylamino-2-(3-sulfamoylmethyl)-acetic acid and (3S, 4S)-3-amino-4-phenoxy-azetidin-2-one.

10

15

20

25

30

Example 48

(3S, 4S)-3-[2S-2-(3-phenylpropionoyl) amino-2-(3,4-methylenedioxyphenylmethyl)-acetamidol-4-phenoxy-azetidin-2-one (48)

By a similar method as described in example 30, the title compound is obtained by reacting 2S-2-(3-phenylpropionoyl) amino-2-(3,4-methylenedioxyphenyl)methyl acetic acid and (3S, 4S)-3-amino-4-phenoxy-azetidin-2-one.

Example 49

(3S. 4S)-3-[2S-2-(3-phenylpropionovl) amino-2-(3,4-

diisopropyloxyphenylmethyl)-acetamidol-4-phenoxy-azetidin-2-one (49).

By a similar method as described in example 30, the title compound is obtained by reacting 2S-2-(3-phenylpropionoyl) amino-2-(3,4-diisopropyloxyphenyl)methyl acetic acid and (3S, 4S)-3-amino-4-phenoxy-azetidin-2-one.

Example 50

(3S, 4S)-3-[2S-2-benzyloxycarbonylamino-2-butyl-acetamido]-4-phenoxy-azetidin-2-one (50)

By a similar method as described in example 25, the title compound is obtained by reacting 2S-2-benzyloxycarbonylamino-2-butyl-acetic acid and (3S, 4S)-3-amino-4-phenoxy-azetidin-2-one.

Example 51

(3S, 4S)-3-[2S-2-benzyloxycarbonylamino-2-propyl-acetamido]-4-phenoxy-azetidin-2-one (51)

By a similar method as described in example 25, the title compound is obtained by reacting 2S-2-benzyloxycarbonylamino-2-propyl-acetic acid and (3S, 4S)-3-amino-4-phenoxy-azetidin-2-one.

Testing of inhibitors for inhibition of Cathepsin B and L

Test Example 1

In vitro assay procedure for cathepsin B

The compounds of formula I were tested for inhibition of cathepsin B using the known method (A.J. Barret et al., Biochem. J. 1982, 201, 189-198). To a 170 μ I of enzyme-buffer mixture (enzyme: r rat cathepsin B, diluted to

give approximate 10 F units/min, buffer: 56 mM sodium acetate, 1.124 mM EDTA, 10 mM DTT, pH 5.1) a 10 μ L of inhibitor (dissolved in DMSO) was added. After 10 min of incubation at room temperature, a 20 μ l of 5 mM substrate (N-CBZ-Phe-Arg-AMC, dissolved in DMSO) was added to initiate reaction. Reading is followed up for 10 min at the fluoroscan reader (excitation at 380 nm emission at 460 nm).

A plot of percentage of inhibition vs inhibitor concentration is obtained, and IC_{50} is determined using a linear regression calculation (concentration of inhibitor which will give 50% inhibition).

10

15

20

5

Test Example 2

In vitro assay procedure for cathepsin L.

To a 170 μ l of enzyme-buffer mixture (enzyme: r rat cathepsin L, diluted to give approximate 15 F units/min, buffer: 58.8 mM sodium citrate, 1.18 mM EDTA, 235 mM sodium chloride, 5 mM DTT, pH 5.0) a 10 μ L of inhibitor (dissolved in DMSO) was added. After 10 min of incubation at room temperature, a 20 μ l of 1 mM substrate (N-CBZ-Phe-Arg-AMC, dissolved in DMSO) was added to initiate reaction. Reading is followed up for 10 min at the fluoroscan reader (excitation at 380 nm emission at 460 nm).

A plot of percentage of inhibition vs inhibitor concentration is obtained, and IC₅₀ is determined using a linear regression calculation (concentration of inhibitor which will give 50% inhibition).

<u>Table 1</u>. In vitro inhibitory activity of monobactam compounds on cysteine proteases

25	Example No.	IC ₅₀ (µМ)			
		Cathepsin B	Cathepsin L		
	1	>50	26.7		
30	2	>50	>50		
	3	>50	43.09		
	4	>50	11.39		

WO 98/12176		•	РСТ/ПВ97/01145
		45	
	5	>50	8.26
	6	>50	12.08
	7	28.57	2.32
	8	16.42	0.0135
5	9	18.85	0.341
	10	7.51	0.057
	11	0.9	0.015
	12A	0.38	0.003
	12B	0.08	0.0004
10	13A	1.8	0.0029
	13B	0.0715	0.00011
	14A	1.7	0.0027
	14B	0.34	0.0005
	15	1.91	0.0061
15	16	1.6	0.0086
	17	10.1	0.4
	18	1.92	0.0767
	19	1.95	0.39
	20	0.395	0.079
20	21	2.2	0.01
	22	8.4	0.013
	23	11.0	11.5
	24	31.4	0.0168
	25	11	2.19
25	26	>50	10.65
	27	23	2.3
	28	45	11.43
	29	>50	>50
	30	48	1.6
30	31	9.7	0.08

Although the compounds and compositions, and methods of making

and administering them in accordance with the present invention have been described in connection with preferred embodiments, it will be appreciated by those skilled in the art that modifications not specifically described may be made without departing from the spirit and scope of the invention defined in the following claims.

WE CLAIM:

1. A 3,4-disubstituted-azetidin-2-one compound of formula I, or a pharmaceutically acceptable salt thereof:

$$R_3$$
-NH R_2 I

5 wherein

R₁ is

hydrogen; or

-SO3⁻M⁺ wherein M is a hydrogen atom, a metal ion which is selected from sodium, potassium, magnesium, and calcium, or N⁺(R₄)₄ wherein R₄ is a C₁-C₆ alkyl group;

R₂ is

- (a) a group -OCOR₅ wherein R₅ is
 - (i) a C₁-C₆ alkyl group,
 - (ii) a C2-C6 alkenyl group,
 - (iii) a C2-C6 alkynyl group,
 - (iv) a C₃-C₆ cycloalkyl group,
 - (v) a phenyl group,
 - (vi) a naphthyl group, or
 - (vii) a monocyclic or bicyclic heterocyclic group,
 which group (i), (ii), (iii), (iv), (v), (vi), or (vii) is
 unsubstituted or substituted by 1, 2 or 3
 substituents independently selected from

hydroxy,

halogen,

carboxy,

20

10

15

25

C₁-C₄ alkyl (which is unsubstituted or substituted at least once with carboxy and/or amino),

C₁-C₂ alkoxy,

amino,

5

cyano, and

phenyl and monocyclic or bicyclic heterocyclic groups, which phenyl and heterocyclic groups are unsubstituted or substituted by 1 or 2 substituents independently selected from

hydroxy,

10

halogen,

carboxy,

C₁-C₄ alkyl,

C₁-C₂ alkoxy,

amino, and

15

20

25

30

cyano:

or (b) a group -XR $_5$ wherein X is selected from the group consisting of O, S, SO, and SO $_2$, and R $_5$ is as defined above;

R₃ is selected from the group consisting of D- or L-phenyl glycine, Dor L-t-butyl alanine, D- or L-homophenyl alanine, D- or L-pyridyl alanine, Dor L-thienyl alanine, D- or L-naphthyl alanine, D- or L-methoxy phenyl alanine, D- or L-halo phenyl alanine, D- or L-e-nitro arginine, D- or L-citrulline, D- or L-2-indoline carboxylic acid, D- or L-cycloalkyl glycine (e.g., cyclopentyl glycine), D- or L-4-hydroxy-3-nitro-phenylalanine, D- or L-4-amino-3,5-diiodophenylalanine, D- or L-4-hydroxy-3,5-diiodo-phenylalanine, D- or L-4-hydroxy-3,5-dibromo-phenylalanine, D- or L-β-(3-benzothienyl)-alanine, D- or L-3,4(methylenedioxy)phenylalanine, D- or L-3,4(ethylenedioxy)phenylalanine, D- or L-4,4'-biphenylalanine, D- or L-3,4-dichlorophenylalanine, D- or L-4iodophenylalanine, Dor L-4-nitrophenylalanine, Dor Lpentafluorophenylalanine. Dor L-4-thiazolylalanine, Dtrifluoromethylphenylalanine, D- or L-4-trifluoromethylphenylalanine, D- or L-3-sulfamoyl-alanine, Dor L-t-butyloxy alanine. Dor L-1-tbutyloxymethylalanine. D-L-trimethylalanine. or D-L-3,4diisopropyloxyphenylalanine, D- or L-propyl alanine, and D- or L-ethyl alanine, in which the NH_2 of any of the above groups is unsubstituted or substituted once or twice with R_7 wherein R_7 is $-COR_5$, $-COR_5$, $-SO_2R_5$, or $-COR_{14}$ wherein R_5 is as defined above and R_{14} is amino group which is unsubstituted or substituted at least once with C_1 - C_6 alkyl group which is unsubstituted or substituted at least once with 1 or 2 substitutents selected from hydroxy, halogen, cyano, amino, heterocycle, and phenyl (wherein the heterocycle or phenyl is unsubstituted or substituted at least once by 1 or 2 substituents selected from halogen, hydroxy, cyano, carboxy and amino).

10

5

2. A 3,4-disubstituted-azetidin-2-one compound of formula I, or a pharmaceutically acceptable salt thereof:

$$R_3$$
-NH R_2 I

wherein

R₁ is

15

hydrogen; or

-SO3⁻M⁺ wherein M is a hydrogen atom, a metal ion which is selected from sodium, potassium, magnesium, and calcium, or N⁺(R₄)₄ wherein R₄ is a C₁-C₆ alkyl group;

R₂ is

20

-OCOR $_5$ wherein R $_5$ is (i) a C $_1$ -C $_6$ alkyl group which is unsubstituted or substituted at least once by 1 or 2 substitutents selected from hydroxy, halogen, and amino, or (ii) a phenyl group which is unsubstituted or substituted at least once by 1-3 substituents selected from hydroxy, halogen, C $_1$ -C $_4$ alkyl group, C $_1$ -C $_2$ alkoxy group, and cyano; or

25

-XR₆ wherein X is O, S, SO₁or SO₂; R₆ is (i) a C_1 - C_6 alkyl group which is unsubstituted or substituted at least once by 1 or 2 substitutents selected from hydroxy, halogen, amino and phenyl (ii) a C_3 - C_6 cycloalkyl

10

15

20

25

30

(

group, (iii) a phenyl group which is unsubstituted or substituted at least once by 1-3 substituents selected from hydroxy, halogen, carboxy, C_1 - C_4 alkyl group (which is unsubstituted or substituted with carboxy, amino or both), C_1 - C_2 alkoxy group, cyano and heterocycle group, or (iv) naphthyl group which is unsubstituted or substituted at least once by 1-3 substituents selected from hydroxy, halogen, carboxy, C_1 - C_4 alkyl group (which is unsubstituted or substituted at least once with carboxy, amino or both), C_1 - C_2 alkoxy group and cyano;

R₃ is selected from the group consisting of D- or L-phenyl glycine, Dor L-t-butyl alanine, D- or L-homophenyl alanine, D- or L-pyridyl alanine, Dor L-thienyl alanine, D- or L-naphthyl alanine, D- or L-methoxy phenyl alanine, D- or L-halo phenyl alanine, D- or L-e-nitro arginine, D- or L-citrulline, D- or L-2-indoline carboxylic acid, D- or L-cycloalkyl glycine (e.g., cyclopentyl glycine), D- or L-4-hydroxy-3-nitro-phenylalanine, D- or L-4-amino-3,5-diiodophenylalanine, D- or L-4-hydroxy-3,5-diiodo-phenylalanine, D- or L-4-hydroxy-3,5-dibromo-phenylalanine, D- or L-β-(3-benzothienyl)-alanine, D- or L-3,4(methylenedioxy)phenylalanine, D- or L-3,4(ethylenedioxy)phenylalanine, D- or L-4,4'-biphenylalanine, D- or L-3,4-dichlorophenylalanine, D- or L-4iodophenylalanine, Dor L-4-nitrophenylalanine. Dor pentafluorophenylalanine, D- or L-4-thiazolylalanine, or L-3trifluoromethylphenylalanine, D- or L-4-trifluoromethylphenylalanine, D- or L-3-sulfamoyl-alanine. Dor L-t-butyloxy alanine. D-L-1-tbutyloxymethylalanine, Dor L-trimethylalanine, D-L-3,4or diisopropyloxyphenylalanine, D- or L-propyl alanine, and D- or L-ethyl alanine, in which the NH2 of any of the above groups is unsubstituted or substituted once or twice with R7 wherein R7 is

-COOR₈ wherein R₈ is a C₁-C₆ alkyl group which is unsubstituted or substituted at least once with phenyl group.

-COR_a wherein R_a is

(i) a C₁-C₆ alkyl group which is unsubstituted or substituted at least once by 1 or 2 substitutents selected from hydroxy, halogen, cyano, amino, heterocycle, or phenyl (wherein the heterocycle or phenyl is

unsubstituted or substituted at least once by 1 or 2 substituents selected from halogen, hydroxy, cyano, carboxy and amino); (ii) a heterocycle which may be mono or bicyclic or (iii) amino group which is unsubstituted or substituted at least once with C_1 - C_6 alkyl group which is unsubstituted or substituted at least once with 1 or 2 substitutents selected from hydroxy, halogen, cyano, amino, heterocycle, and phenyl (wherein the heterocycle or phenyl is unsubstituted or substituted at least once by 1 or 2 substituents selected from halogen, hydroxy, cyano, carboxy and amino); or

SO₂R₁₀ wherein R₁₀ is

10

5

(i) a C_1 - C_6 alkyl group (ii) a C_2 - C_4 alkenyl group which is unsubstituted or substituted at least once with heterocycle or phenyl, or (iii) a phenyl group which is unsubstituted or substituted at least once by 1-3 substituents selected from hydroxy, halogen, carboxy, C_1 - C_4 alkyl group, C_1 - C_2 alkoxy group and cyano.

15

3. A compound or salt as recited in claim 1 or claim 2, wherein R_1 is selected from hydrogen and sulphonic acid.

4. A compound or salt as recited in claim 1 or claim 2, wherein R₂ is

20

selected from acetoxy, butyloxy, 2-carboxy ethyloxy, 2-aminoethyloxy, 2-fluoro ethoxy, cyclopentyloxy, cyclohexyloxy, cyclohexylthio, phenoxy, methyl phenoxy, naphthyloxy, morpholino phenyloxy, 2-hydroxy ethylthio, phenylthio, phenylsulphonyl, 4-(2-carboxy-2-amino ethyl)-phenoxy, 4-carboxy phenoxy, 3-carboxy phenoxy, 2-pyridylthio, 4-pyridylthio, and benzyloxy.

25

30

5. A compound or salt as recited in claim 1 or claim 2, wherein R₃ is selected from the group consisting of 1-benzyloxycarbonyl-2-indoline carboxylic acid, N-benzyloxy carbonyl phenyl glycine, N-benzyloxy carbonyl homophenyl alanine, N-benzyloxy carbonyl pyridyl alanine, N-benzyloxy carbonyl thienyl alanine, N-benzyloxy carbonyl naphthyl alanine, N-benzyloxy carbonyl halophenyl alanine, N-benzyloxy carbonyl naphthyl alanine, N-(3-phenyl propanoyl) naphthyl alanine, N-enitro arginine, N-(3-phenyl propanoyl) citrulline, N-benzylamino carbonyl naphthyl alanine, N-(2-phenyl-eth-1-ensulphonyl)-naphthyl alanine, N-benzyloxycarbonyl-t-butyloxymethyl alanine; N-benzyloxycarbonyl-t-butyloxymethyl alanine; N-benzyloxycarbonyl-t-butyl

10

15

20

25

30

alanine; N-phenylpropionoyl-t-butyl alanine; N-phenylpropionoyl-trimethyl N-phenylpropionoyl-(3, 4-dimethoxyphenyl) Nalanine: alanine: phenylpropionoyl-(3,4-ethylenedioxyphenyl) alanine; N-benzyloxycarbonyl-3benzothienyl alanine; N-benzyloxycarbonyl-(4,4'-biphenyl) alanine; Nbenzyloxycarbonyl-(2-chlorophenyl)alanine; N-benzyloxycarbonyl-(4chlorophenyl)alanine; N-benzyloxycarbonyl-(3,4-dichloro)-phenylalanine; Nbenzyloxycarbonyl-(diphenyl) alanine; N-benzyloxycarbonyl-(2-fluoro) phenylalanine: N-benzyloxycarbonyl-(4-fluoro-phenyl) alanine: benzyloxycarbonyl-(3,4-difluoro-phenyl) alanine; N-benzyloxycarbonyl-(4iodo-phenyl) alanine; N-benzyloxycarbonyl-2-(naphthyl) alanine; benzyloxycarbonyl-(4-nitro-phenyl) N-benzyloxycarbonylalanine: (pentafluorophenyl) alanine; N-benzyloxycarbonyl-(4-thiazolyl) alanine; Nbenzyloxycarbonyl-3-(trifluoromethylphenyl) alanine; N-benzyloxycarbonyl-4-(trifluoromethylphenyl) alanine; N-benzyloxycarbonyl-(3-sulfamoyl) alanine; N-phenylpropionoyl-(3,4-methylenedioxyphenyl) alanine; N-phenylpropionoyl-(3,4-diisopropyloxyphenyl) alanine; N-benzyloxycarbonyl-propyl alanine; and N-benzyloxycarbonyl-ethyl alanine.

- 6. A compound or salt as recited in claim 1 or claim 2, having (3R,4S), (3R,4R), (3S,4R) or (3S,4S) configuration at two asymmetric carbons 3 and 4 on azetidin-2-one ring system or a racemic mixture thereof.
- 7. A compound or salt as recited in claim 1 or claim 2, wherein said unnatural amino acid residue is a D isomer, an L isomer, or a racemic mixture thereof.
- 8. A compound or salt as recited in claim 1 or claim 2, wherein said substituent group is selected from the group consisting of aryloxy carbonyl, alkoxy carbonyl, substituted alkanoyl, arylalkanoyl, arylalkanoyl, heterocyclealkanoyl, alkylsulphonyl, arylalkanylsulphonyl, arylalkanylsulphonyl, heterocyclealkanylsulphonyl, heterocyclealkanylsulphonyl, heterocyclealkanylsulphonyl, and heterocyclesulphonyl.
- 9. A salt as recited in claim 1 or claim 2, wherein said salt comprises a component selected from sodium, potassium, magnesium, calcium, hydrogen chloride, tartaric acid, succinic acid, fumaric acid and p-

PCT/IB97/01145

5

10

15

20

25

30

toluenesulfonic acid.

- 10. A pharmaceutical composition comprising a compound or salt as recited in claim 1 or claim 2 and a pharmaceutically acceptable carrier.
- 11. A method of treatment of muscular dystrophy, comprising administering to a patient in need of said treatment a pharmaceutical composition comprising a compound or salt as recited in claim 1 or claim 2 in an amount effective for treating said muscular dystrophy, and a pharmaceutically acceptable carrier.
- 12. A method of treatment of cancer metastasis, comprising administering to a patient in need of said treatment a pharmaceutical composition comprising a compound or salt as recited in claim 1 or claim 2 in an amount effective for treating said cancer metastasis, and a pharmaceutically acceptable carrier.
- 13. A method of treatment of myocardial infarction, comprising administering to a patient in need of said treatment a pharmaceutical composition comprising a compound or salt as recited in claim 1 or claim 2 in an amount effective for treating said myocardial infarction, and a pharmaceutically acceptable carrier.
- 14. A method of treatment of inflammatory disease in a patient in need of such treatment, comprising administering to said patient a pharmaceutical composition comprising a compound or salt as recited in claim 1 or claim 2 in an amount which is effective for treating inflammatory disease, and a pharmaceutically acceptable carrier.
- 15. A method of treatment of arthritis in a patient in need of such treatment, comprising administering to said patient a pharmaceutical composition comprising a compound or salt as recited in claim 1 or claim 2 in an amount which is effective for treating arthritis, and a pharmaceutically acceptable carrier.
- 16. A method of treatment of pulmonary emphysema in a patient in need of such treatment, comprising administering to said patient a pharmaceutical composition comprising a compound or salt as recited in claim 1 or claim 2 in an amount which is effective for treating pulmonary

10

15

20

25

30

emphysema, and a pharmaceutically acceptable carrier.

- 17. A method of treatment of septic shock in a patient in need of such treatment, comprising administering to said patient a pharmaceutical composition comprising a compound or salt as recited in claim 1 or claim 2 in an amount which is effective for treating septic shock, and a pharmaceutically acceptable carrier.
- 18. A method of treatment of cerebral ischemia in a patient in need of such treatment, comprising administering to said patient a pharmaceutical composition comprising a compound or salt as recited in claim 1 or claim 2 in an amount which is effective for treating cerebral ischemia, and a pharmaceutically acceptable carrier.
- 19. A method for improvement of memory function in a patient in need of such improvement, comprising administering to said patient a pharmaceutical composition comprising a compound or salt as recited in claim 1 or claim 2 in an amount which is effective for improving memory function, and a pharmaceutically acceptable carrier.
- 20. A method of treatment of parasitic infection in a patient in need of such treatment, comprising administering to said patient a pharmaceutical composition comprising a compound or salt as recited in claim 1 or claim 2 in an amount which is effective for treating parasitic infection, and a pharmaceutically acceptable carrier.
- 21. A method of treatment of cataract in a patient in need of such treatment, comprising administering to said patient a pharmaceutical composition comprising a compound or salt as recited in claim 1 or claim 2 in an amount which is effective for treating cataract, and a pharmaceutically acceptable carrier.
- 22. A method of treatment of malaria in a patient in need of such treatment, comprising administering to said patient a pharmaceutical composition comprising a compound or salt as recited in claim 1 or claim 2 in an amount which is effective for treating malaria, and a pharmaceutically acceptable carrier.

10

15

20

25

- 23. A method of treatment of glomerular basement membrane degradation in a patient in need of such treatment, comprising administering to said patient a pharmaceutical composition comprising a compound or salt as recited in claim 1 or claim 2 in an amount which is effective for treating glomerular basement membrane degradation, and a pharmaceutically acceptable carrier.
- 24. A method of treatment of viral infection in a patient in need of such treatment, comprising administering to said patient a pharmaceutical composition comprising a compound or salt as recited in claim 1 or claim 2 in an amount which is effective for treating viral infection, and a pharmaceutically acceptable carrier.
- 25. A method of regulating cysteine protease in a patient in need of such regulating, comprising administering to said patient a pharmaceutical composition comprising a compound or salt as recited in claim 1 or claim 2 in an amount which is effective for treating regulating cysteine protease, and a pharmaceutically acceptable carrier.
- 26. A method of treatment of osteoporosis, comprising administering to a patient in need of said treatment a pharmaceutical composition comprising a compound or salt as recited in claim 1 or claim 2 in an amount effective for treating said osteoporosis, and a pharmaceutically acceptable carrier.
- 27. A method of preparing a compound of formula I, comprising reacting a compound according to formula II with a compound of the formula R₃-OH acid in presence of at least one member selected from the group consisting of dicyclohexylcarbidiimide and acid chloride in the presence of at least one member selected from the group consisting of base and activated ester:

15

20

wherein

R₁ is

hydrogen; or

-SO3*M* wherein M is a hydrogen atom, a metal ion which is selected from sodium, potassium, magnesium, and calcium, or N*(R_4)₄ wherein R_4 is a C_1 - C_6 alkyl group;

R₂ is

(a) a group -OCOR₅ wherein R₅ is

(i) a C₁-C₆ alkyl group,

(ii) a C₂-C₆ alkenyl group,

(iii) a C2-C6 alkynyl group,

(iv) a C₃-C₆ cycloalkyl group,

(v) a phenyl group,

(vi) a naphthyl group, or

(vii) a monocyclic or bicyclic heterocyclic group,

which group (i), (ii), (iii), (iv), (v), (vi), or (vii) is unsubstituted or substituted by 1, 2 or 3 substituents independently selected from

hydroxy,

•

halogen, carboxy,

C₁-C₄ alkyl (which is unsubstituted or substituted at least once with carboxy and/or amino),

C₁-C₂ alkoxy,

25 amino,

cyano, and

phenyl and monocyclic or bicyclic heterocyclic groups, which phenyl and heterocyclic groups are unsubstituted or substituted by 1 or 2 substituents independently selected from

hydroxy,

halogen,

carboxy,

30

WO 98/12176

57

C₁-C₄ alkyl, C₁-C₂ alkoxy, amino, and cyano;

5

10

15

20

25

or (b) a group - XR_5 wherein X is selected from the group consisting of O, S, SO, and SO₂, and R₅ is as defined above;

R₃ is selected from the group consisting of D- or L-phenyl glycine, Dor L-t-butyl alanine. D- or L-homophenyl alanine, D- or L-pyridyl alanine, Dor L-thienyl alanine, D- or L-naphthyl alanine, D- or L-methoxy phenyl alanine, D- or L-halo phenyl alanine, D- or L-e-nitro arginine, D- or L-citrulline, D- or L-2-indoline carboxylic acid, D- or L-cycloalkyl glycine (e.g., cyclopentyl glycine), D- or L-4-hydroxy-3-nitro-phenylalanine, D- or L-4-amino-3,5-diiodophenylalanine, D- or L-4-hydroxy-3,5-diiodo-phenylalanine, D- or L-4-hydroxy-3,5-dibromo-phenylalanine, D- or L-β-(3-benzothienyl)-alanine, D- or L-3,4(methylenedioxy)phenylalanine, D- or L-3,4(ethylenedioxy)phenylalanine, D- or L-4,4'-biphenylalanine, D- or L-3,4-dichlorophenylalanine, D- or L-4or Liodophenylalanine, Dor L-4-nitrophenylalanine, D-D- or L-4-thiazolylalanine, pentafluorophenylalanine, trifluoromethylphenylalanine, D- or L-4-trifluoromethylphenylalanine, D- or L-L-1-tor L-t-butyloxy alanine. Dor 3-sulfamoyl-alanine, D-L-trimethylalanine, Dor L-3,4butyloxymethylalanine, Dor diisopropyloxyphenylalanine, D- or L-propyl alanine, and D- or L-ethyl alanine, in which the NH2 of any of the above groups is unsubstituted or substituted once or twice with R_7 wherein R_7 is -COOR₅, -COR₅, -SO₂R₅, or -COR₁₄ wherein R₅ is as defined above and R₁₄ is amino group which is unsubstituted or substituted at least once with C1-C6 alkyl group which is unsubstituted or substituted at least once with 1 or 2 substitutents selected from hydroxy, halogen, cyano, amino, heterocycle, and phenyl (wherein the heterocycle or phenyl is unsubstituted or substituted at least once by 1 or 2 substituents selected from halogen, hydroxy, cyano, carboxy and amino).

30

28. A method of preparing a compound of formula I, comprising reacting a compound according to formula II with a compound of the formula

10

15

20

25

(

R₃-OH acid in presence of at least one member selected from the group consisting of dicyclohexylcarbidiimide and acid chloride in the presence of at least one member selected from the group consisting of base and activated ester:

$$R_3$$
-OH + H_2N R_2 R_3 -HN R_3

wherein

R₄ is

hydrogen; or

-SO3⁻M⁺ wherein M is a hydrogen atom, a metal ion which is selected from sodium, potassium, magnesium, and calcium, or N⁺(R₄)₄ wherein R₄ is a C₁-C₆ alkyl group;

R₂ is

 $-\text{OCOR}_5$ wherein R_5 is (i) a C_1 - C_6 alkyl group which is unsubstituted or substituted at least once by 1 or 2 substitutents selected from hydroxy, halogen, and amino, or (ii) a phenyl group which is unsubstituted or substituted at least once by 1-3 substituents selected from hydroxy, halogen, C_1 - C_4 alkyl group, C_1 - C_2 alkoxy group, and cyano; or

-XR₆ wherein X is O, S, SO, or SO₂; R₆ is (i) a C₁-C₆ alkyl group which is unsubstituted or substituted at least once by 1 or 2 substitutents selected from hydroxy, halogen, amino and phenyl (ii) a C₃-C₆ cycloalkyl group, (iii) a phenyl group which is unsubstituted or substituted at least once by 1-3 substituents selected from hydroxy, halogen, carboxy, C₁-C₄ alkyl group (which is unsubstituted or substituted with carboxy, amino or both), C₁-C₂ alkoxy group, cyano and heterocycle group, or (iv) naphthyl group which is unsubstituted or substituted at least once by 1-3 substituents selected from hydroxy, halogen, carboxy, C₁-C₄ alkyl group (which is unsubstituted or

substituted at least once with carboxy, amino or both), C₁-C₂ alkoxy group and cyano;

R₃ is selected from the group consisting of D- or L-phenyl glycine, Dor L-t-butyl alanine, D- or L-homophenyl alanine, D- or L-pyridyl alanine, Dor L-thienyl alanine, D- or L-naphthyl alanine, D- or L-methoxy phenyl alanine, D- or L-halo phenyl alanine, D- or L-e-nitro arginine, D- or L-citrulline, D- or L-2-indoline carboxylic acid, D- or L-cycloalkyl glycine (e.g., cyclopentyl glycine), D- or L-4-hydroxy-3-nitro-phenylalanine, D- or L-4-amino-3,5-diiodophenylalanine, D- or L-4-hydroxy-3,5-diiodo-phenylalanine, D- or L-4-hydroxy-3,5-dibromo-phenylalanine, D- or L-β-(3-benzothienyl)-alanine, D- or L-3,4(methylenedioxy)phenylalanine, D- or L-3,4(ethylenedioxy)phenylalanine, D- or L-4,4'-biphenylalanine, D- or L-3,4-dichlorophenylalanine, D- or L-4or L-L-4-nitrophenylalanine, D-Dor iodophenylalanine, or L-3-D- or L-4-thiazolylalanine, Dpentafluorophenylalanine, trifluoromethylphenylalanine, D- or L-4-trifluoromethylphenylalanine, D- or L-L-1-t-Dor alanine. or L-t-butyloxy 3-sulfamovi-alanine. D-L-3.4-L-trimethylalanine, Dor Dor butvloxymethylalanine, diisopropyloxyphenylalanine, D- or L-propyl alanine, and D- or L-ethyl alanine, in which the NH_2 of any of the above groups is unsubstituted or substituted once or twice with R7 wherein R7 is

-COOR₈ wherein R₈ is a C₁-C₆ alkyl group which is unsubstituted or substituted at least once with phenyl group,

-COR_a wherein R_a is

5

10

15

20

25

30

(i) a C₁-C₆ alkyl group which is unsubstituted or substituted at least once by 1 or 2 substitutents selected from hydroxy, halogen, cyano, amino, heterocycle, or phenyl (wherein the heterocycle or phenyl is unsubstituted or substituted at least once by 1 or 2 substituents selected from halogen, hydroxy, cyano, carboxy and amino); (ii) a heterocycle which may be mono or bicyclic or (iii) amino group which is unsubstituted or substituted at least once with C₁-C₆ alkyl group which is unsubstituted or substituted at least once with 1 or 2 substitutents selected from hydroxy, halogen, cyano, amino, heterocycle, and phenyl (wherein the heterocycle or phenyl is unsubstituted

10

15

20

25

or substituted at least once by 1 or 2 substituents selected from halogen, hydroxy, cyano, carboxy and amino); or

SO₂R₁₀ wherein R₁₀ is

- (i) a C_1 - C_6 alkyl group (ii) a C_2 - C_4 alkenyl group which is unsubstituted or substituted at least once with heterocycle or phenyl, or (iii) a phenyl group which is unsubstituted or substituted at least once by 1-3 substituents selected from hydroxy, halogen, carboxy, C_1 - C_4 alkyl group, C_1 - C_2 alkoxy group and cyano.
 - 29. A compound selected from the group consisting of:
- (3S,4S)-3-(1-N-benzyloxycarbonyl-2-indolinecarbonyl)-amino-4 acetoxy-azetidin-2-one;
 - (3S,4S)-3-(N-benzyloxycarbonyl-D-phenylglycyl)-amino-4-acetoxy-azetidin-2-one;
 - (3S,4S)-3-(N-benzyloxycarbonyl-DL-phenylglycyl)-amino-4-acetoxy-azetidin-2-one;
 - (3S,4S)-3-(N-benzyloxycarbonyl-L-homophenylalanyl)-amino-4 acetoxy-azetidin-2-one:
 - $(3S,4S)-3-\{N-benzyloxycarbonyl-\beta-(3-pyridyl)-L-alanyl\}-amino-4-acetoxy-azetidin-2-one;$
 - (3S,4S)-3-{N-benzyloxycarbonyl-β-(2-pyridyl)-L-alanyl}-amino-4 acetoxy-azetidin-2-one;
 - $(3S,4S)-3-\{N-benzyloxycarbonyl-\beta-(2-thienyl)-DL-alanyl\}-amino-4-acetoxy-azetidin-2-one;$
- (3S,4S)-3-{N-benzyloxycarbonyl-β-(2-naphthyl)-L-alanyl}-amino-4-acetoxy-azetidin-2-one;
 - $(3S,4S)-3-(N-benzyloxycarbonyl-\beta-(3-fluorophenyl)-L-alanyl)-amino-4-acetoxy-azetidin-2-one;$
- $(3S,4S)-3-\{N-benzyloxycarbonyl-\beta-(4-methoxyphenyl)-L-alanyl\}-amino-4-acetoxy-azetidin-2-one;$
- 30 (3S,4S)-3-{N-benzyloxycarbonyl-β-(2-naphthyl)-L-alanyl}-amino-4-phenoxy-azetidin-2-one;
 - (3S,4S)-3-{N-benzyloxycarbonyl-β-(2-naphthyl)-L-alanyl}-amino-4-(3-

10

15

20

25

30

methyl phenoxy)-azetidin-2-one;

- (3S,4R)-3-{N-benzyloxycarbonyl-β-(2-naphthyl)-L-alanyl}-amino-4-(3-methyl phenoxy)-azetidin-2-one;
- (3S,4S)-3-{N-benzyloxycarbonyl-β-(2-naphthyl)-L-alanyl}-amino-4-(2-naphthoxy)-azetidin-2-one;
- (3S,4R)-3-(N-benzyloxycarbonyl- β -(2-naphthyl)-L-alanyl)-amino-4-(2-naphthoxy)-azetidin-2-one;
- $(3S,4S)-3-\{N-benzyloxycarbonyl-\beta-(2-naphthyl)-L-alanyl\}-amino-4-\{3-(morpholin-4-yl)-phenoxy\}-azetidin-2-one;$
- (3S,4R)-3-{N-benzyloxycarbonyl-β-(2-naphthyl)-L-alanyl}-amino-4-{3- (morpholin-4-yl)-phenoxy}-azetidin-2-one;
- $(3S,4SR)-3-\{N-(3-phenylpropionoyl)-\beta-(2-naphthyl)-L-alanyl\}-amino-4-phenylthio-azetidin-2-one;$
- (3S,4SR)-3-{N-(3-phenylpropionoyl)-β-(2-naphthyl)-L-alanyl}-amino-4-phenylsulphonyl-azetidin-2-one;
 - $(3S,4SR)-3-\{N-(3-phenylpropionoyl)-\beta-(2-naphthyl)-L-alanyl\}-amino-4-(2-hydroxy ethyl thio)-azetidin-2-one;$
- (3S,4SR)-3-{N-(3-phenylpropionoyl)-β-(2-naphthyl)-L-alanyl}-amino-4-benzyloxy-azetidin-2-one;
- (3S,4SR)-3-{N-(3-phenylpropionoyI)-β-(2-naphthyl)-L-alanyI}-amino-4-cyclohexyloxy-azetidin-2-one;
- (3S,4S)-3-{N-(trans-2-phenyl-eth-1-enesulfonyl)-β-(2-naphthyl)-L-alanyl}-amino-4-acetoxy-azetidin-2-one;
- (3S,4SR)-3-{N-(3-phenylpropionoyl)-β-(2-naphthyl)-L-alanyl}-amino-4-(4-(2S-2-amino-2-carboxyethyl)-phenoxy}-azetidin-2-one;
- $(3S,4S)-3-\{N-(benzylaminocarbonyl)-\beta-(2-naphthyl)-L-alanyl\}-amino-4-acetoxy-azetidin-2-one;$
- (3S,4SR)-3-{N-(benzylaminocarbonyl)-β-(2-naphthyl)-L-alanyl}-amino-4-(4-(2S-2-amino-2-carboxyethyl)-phenoxy}-azetidin-2-one;
- (3S,4S)-3-{N-(3-phenylpropionoyl)-L-citrullinyl}-amino-4-acetoxy-azetidin-2-one;
 - (3S,4S)-3-{N-(2-phenyl-eth-1-en-sulphonyl)-β-(2-naphthyl)-L-alanyl}-

10

15

20

25

30

amino-4-acetoxy-azetidin-2-one;

(3S,4S)-3-{N^α-(3-phenylpropionyl)-N^ε-nitro-L-arginyl}amino-4-acetoxy-azetidin-2-one;

(3S,4R)-3-(2S-2-benzyloxycarbonylamino-2-t-butyloxymethyl - acetamido)-4-phenoxy-azetidin-2-one;

(3S,4R)-3-[2S-2-benzyloxycarbonylamino-2-(1-t-butyloxyethyl) - acetamido]-4-phenoxy-azetidin-2-one:

(3S, 4S)-3-(2S-2-benzyloxycarbonylamino-2-t-butylmethyl-acetamido)-4-phenoxy-azetidin-2-one;

(3S,4S)-3-[2S-2-(3-phenylpropionoyl)amino-2-t-butylmethyl-acetamido]-4-phenoxy-azetidin-2-one;

(3S,4S)-3-[2S-2-(3-phenylpropionoyl)amino-2-t-butyl-acetamido]-4-phenoxy-azetidin-2-one;

(3S,4S)-3-[2S-2-(3-phenylpropionoyl) amino-2-(3, 4-dimethoxyphenyl) methyl- acetamido]-4-phenoxy-azetidin-2-one;

(3S,4S)-3-[2S-3-pheny[propionoy]) amino-2-(3,4-ethylenedioxyphenylmethyl)-acetamido]-4-phenoxy-azetidin-2-one;

(3S, 4S)-3-[2S-2-benzyloxycarbonylamino-2-(3-benzothienylmethyl)-acetamido]-4-phenoxy-azetidin-2-one:

(3S,4S)-3-[2S-2-benzyloxycarbonylamino-2-(4,4'-biphenylmethyl)-acetamido]-4-phenoxy-azetidin-2-one:

(3S, 4S)-3-[2S-2-benzyloxycarbonylamino-2-(2-chloro-phenylmethyl)-acetamido]-4-phenoxy-azetidin-2-one;

(3S, 4S)-3-[2S-2-benzyloxycarbonylamino-2-(4-chloro-phenylmethyl)-acetamido]-4-phenoxy-azetidin-2-one;

(3S,4S)-3-[2S-2-benzyloxycarbonylamino-2-(3,4-dichloro - phenylmethyl)-acetamido]-4-phenoxy-azetidin-2-one;

(3S,4S)-3-[2S-2-benzyloxycarbonylamino-2-(diphenylmethyl) - acetamido]-4-phenoxy-azetidin-2-one;

(3S, 4S)-3-[2S-2-benzyloxycarbonylamino-2-(2-fluoro-phenylmethyl)-acetamido]-4-phenoxy-azetidin-2-one;

(3S, 4S)-3-[2S-2-benzyloxycarbonylamino-2-(4-fluoro-phenylmethyl)-

10

20

acetamido]-4-phenoxy-azetidin-2-one;

- (3S,4S)-3-[2S-2-benzyloxycarbonylamino-2-(3,4-difluoro phenylmethyl)-acetamido]-4-phenoxy-azetidin-2-one:
- (3S,4S)-3-[2S-2-benzyloxycarbonylamino-2-(4-iodo-phenylmethyl)-acetamido]-4-phenoxy-azetidin-2-one;
- (3S,4S)-3-[2S-2-benzyloxycarbonylamino-2-(naphth-1-yl)methyl acetamido]-4-phenoxy-azetidin-2-one;
- (3S,4S)-3-[2S-2-benzyloxycarbonylamino-2-(4-nitro-phenylmethyl)-acetamido]-4-phenoxy-azetidin-2-one;
- (3S,4S)-3-[2S-2-benzyloxycarbonylamino-2-(pentafluorophenyl methyl)-acetamido]-4-phenoxy-azetidin-2-one;
 - (3S,4S)-3-[2S-2-benzyloxycarbonylamino-2-(4-thiazolylmethyl)-acetamido]-4-phenoxy-azetidin-2-one;
- (3S,4S)-3-[2S-2-benzyloxycarbonylamino-2-(3-trifluoromethylphenylmethyl)-acetamido]-4-phenoxy-azetidin-2-one;
 - (3S,4S)-3-[2S-2-benzyloxycarbonylamino-2-(3-sulfamoylmethyl) acetamido]-4-phenoxy-azetidin-2-one;
 - (3S,4S)-3-[2S-2-(3-phenylpropionoyl) amino-2-(3,4-methylenedioxyphenylmethyl)-acetamido]-4-phenoxy-azetidin-2-one;
 - (3S,4S)-3-[2S-2-(3-phenylpropionoyl) amino-2-(3,4-diisopropyloxyphenylmethyl)-acetamido]-4-phenoxy-azetidin-2-one;
 - (3S,4S)-3-[2S-2-benzyloxycarbonylamino-2-butyl-acetamido]-4-phenoxy-azetidin-2-one; and
- (3S,4S)-3-[2S-2-benzyloxycarbonylamino-2-propyl-acetamido]-4 phenoxy-azetidin-2-one, and salts thereof.

International Application No PCT/IB 97/01145

		1	PCT/IB 97	/01145
A. CLASSI	FICATION OF SUBJECT MATTER			
IPC 6	C07D205/085 A61K31/395			
			•	
According to	o International Patent Classification (IPC) or to both national clas	sification and IPC		
B. FIELDS	SEARCHED			
Minimum do	commentation searched (classification system followed by classif CO7D	ication symbols)		
170 0	C070			
				-,-, -
Documenta	tion searched other than minimum documentation to the extent the	at such documents are includ	ded in the fields sea	rohed
с мотго піо а	lata base consulted during the international search (name of dat	a pase and, where practical, t	searon terms users)	•
	•			
0.000100	ENTS CONSIDERED TO BE RELEVANT			
	I			Relevant to claim No.
Category *	Citation of document, with indication, where appropriate, of the	Televani passages		THE TOTAL TO GLESS THE STATE OF
A,P	LIO DE 22400 A CEVADUAD LABORAT	ODIES THE 1		1,2,10,
И,Р	WO 96 32408 A (SYNPHAR LABORAT 17 October 1996	URIES, INC.)		27.28
	cited in the application			, = , , = -
	see claims 1,7,14,20		i	
	ED O OES OIE A (TAKEDA CUEMICA	,		1-3.10
A	EP 0 053 815 A (TAKEDA CHEMICA INDUSTRIES, LTD.) 16 June 1982			1-3,10
	see page 14, line 1 - line 11;			
	1,2,16			
		1		1-3,10
A	EP 0 053 816 A (TAKEDA CHEMICA INDUSTRIES, LTD.) 16 June 1982	L		1-3,10
	see page 15, line 19 - line 24	; claims		
	1,35,67			
		,		
1		-/		
				•
X Furth	ner documents are listed in the continuation of box C.	X Patent family m	embers are listed in	annex.
Special cat	regories of cited documents :	"T" later document publi	shed after the inter	national filing data
A* docume	nt defining the general state of the art which is not ered to be of particular relevance	or priority date and cited to understand	not in conflict with !	he application but
E" earlier d	ocument but published on or after the international	invention "X" document of particul	ar relevance: the of	eimed invention
filing da L' documen	nt which may throw doubts on priority claim(s) or	cannot be consider	ed novel or cannot	be considered to urnent is taken alone
which i	s cited to establish the publication date of another or other special reason (as specified)	"Y" document of particul	ar relevance; the ol	
O* documer	nt referring to an oral disclosure, use, exhibition or regrs	document is combi	ned with one or mo:	e other such doou- s to a person skilled
P" documen	ant published prior to the international filing date but an the priority date claimed	in the art. "&" document member o	T	
	chial completion of the international search	Date of mailing of the		
	The second secon	Case or making of the		
16	5 December 1997		0 7.	v1. 98
lame and m	nailing address of the ISA	Authorized officer	······································	
	European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk			
	Tel. (+31-70) 340-2040, Tx. 31 651 apo nl. Fax: (+31-70) 340-3016	Hass, C		
	•	t '		

International Application No
PCT/IB 97/01145

0.10==4!::		PCT/IB 97/01145	
ategory *	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Chation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
	The state of the s	Hervant to basin red.	
	EP 0 093 376 A (TAKEDA CHEMICAL INDUSTRIES, LTD.) 9 November 1983 see page 11, line 34 - page 12, line 10 see page 15, line 19 - line 24; claims 1,34	1-3,10	
\	EP 0 021 678 A (TAKEDA YAKUHIN KOGYO K.K.) 7 January 1981 see page 13, line 22 - page 14, line 3; claims 1-3,7	1-3,10	
4	EP 0 050 965 A (TAKEDA CHEMICAL INDUSTRIES, LTD.) 5 May 1982 see page 11, line 26 - line 35; claims 1,3	1-3,10	
A	R. B. SYKES ET AL.: NATURE, vol. 291, no. 5815, 11 June 1981, pages 489-91, XP002050350 see page 490, left-hand column, compound IX	1-3	
	J. C. ARNOULD ET AL.: EUR. J. MED. CHEM., vol. 27, 1992, pages 131-40, XP002050351 cited in the application		
	C. M. CIMARUSTI ET AL.: TETRAHEDRON, vol. 39, no. 15, 1983, pages 2577-89, XP002050352 cited in the application		

1

International application No. PCT/IB 97/01145

Box i Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
see FURTHER INFORMATION sheet PCT/ISA/210
Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

Claims Nos.: 11-26

because they relate to subject matter not required to be searched by this Authority, namely:

Rule 39.1(iv) PCT - Method for treatment of the human or animal body by therapy

Remark: Although claims 11-26 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

information on patent family members

Inernational Application No
PCT/IB 97/01145

Patent docume cited in search re		Publication date	{	Patent family member(s)		Publication date
WO 9632408	A	17-10-96	AU	4951896	A	30-10-96
EP 53815	Α	16-06-82	WO	8201872		10-06-82
2, 00022	• •	=	. WO	8203858		11-11-82
			WO	8300690		03-03-83
			AU 1	551463		01-05-86
			AU	7831381		10-06-82
			BE	891365		04-06-82
			CH	656122		13-06-86
			DE	3148020		21-10-82
			DK	534381		06-06-82
			FR	2495612		11-06-82
			WO	8202042		24-06-82
			LU	83820		07-05-82
			NL	8105468		01-07-82
			US	4822790	Α	18-04-89
		10 00 00	LIA	8201873		10-06-82
EP 53816	A	16-06-82	WO WO	8203859		11-11-82
			WO WO	8300689		03-03-83
			WO	8301063		31-03-83
			AR	240171		28-02-90
			AU	557689		08-01-87
			AU	7782981		10-06-82
			BE	891366		04-06-82
			BR	8107866		08-09-82
			CA	1338539		20-08-96
			CH	657610		15-09-86
			CS	253572		12-11-87
			ĊS	253565		12-11-87
			DE	3148021	Ā	21-10-82
			DE	3176731	A	09-06-88
			DK	534481	Α	06-06 - 82
			FR	2495613	Α	11-06-82
			GB	2091724	A,B	04-08-82
			WO	8202043	A	24-06-82
			LU	83819		07-05-82
			NL	8105470	A	01-07-82
			SE	457256	В.	12-12-88
			SE	8197274	Α	06-06 - 82

Information on patent family members

International Application No
PCT/IB 97/01145

			PCT/1	B 97/01145
Patent docum cited in search r		Publication date	Patent family member(s)	Publication date
EP 53816	A		SU 1396962 A SU 1484294 A US 4550105 A US 4822788 A US 4675397 A US 4782147 A US 4665067 A US 4673739 A US 4572801 A AU 7894582 A	15-05-88 30-05-89 29-10-85 18-04-89 23-06-87 01-11-88 12-05-87 16-06-87 25-02-86 17-06-82
EP 93376	A	09-11-83	JP 1485084 C JP 58189176 A JP 63034155 B AU 564150 B AU 1344583 A CS 8303053 A CS 8405205 A CS 8506479 A DK 188983 A,B, GB 2124207 A,B GB 2156350 A,B SU 1480763 A SU 1380612 A US 4675397 A US 4572801 A US 4673739 A US 4782147 A	14-03-89 04-11-83 08-07-88 06-08-87 03-11-83 12-02-90 12-02-90 12-02-90 31-10-83 15-02-84 09-10-85 15-05-89 07-03-88 23-06-87 25-02-86 16-06-87 01-11-88
EP 21678	A	07-01-81	JP 56133260 A JP 1001468 B JP 1522581 C JP 55164672 A AT 10191 T CA 1338538 A	19-10-81 11-01-89 12-10-89 22-12-80 15-11-84 20-08-96
EP 50965	A	05-05-82	WO 8201551 A WO 8201820 A US 4725591 A CA 1338539 A	13-05-82 10-06-82 16-02-88 20-08-96

	((•	•	
,				
			·	