Lógica y Programación Sintaxis y semántica de la lógica proposicional

Antonia M. Chávez, Carmen Graciani, Agustín Riscos

Dpto. Ciencias de la Computacion e Inteligencia Artificial Universidad de Sevilla

Aplicaciones de la Lógica Proposicional

La Lógica es a los informáticos como la matemática a los arquitectos o físicos.

Es "el cálculo de la informática" (M. Y. Vardi).

- Análisis de las propiedades de los sitemas en su diseño, desarrollo, mantenimiento.
- Planificación: manufactura automática, robótica, programación de vuelos en aerolíneas, ...
- Diseño y verificación de circuitos ...
- Deducción: resolución de problemas SAT
- Resolución de problemas de la vida real: horarios, rutas de transporte planificación de obras, ...

Elementos de una lógica

- Elementos de una lógica:
 - Sintaxis: ¿qué expresiones son fórmulas?
 - Semántica: ¿qué significa que una fórmula F es consecuencia de un conjunto de fórmulas S?: $S \models F$
 - Cálculo: ¿qué significa que una fórmula F puede deducirse a partir de un conjunto de fórmulas S?: S ⊢ F
- Propiedades:
 - Potencia expresiva
 - Adecuación: $S \vdash F \Longrightarrow S \models F$
 - Completitud: $S \models F \Longrightarrow S \vdash F$
 - Decidibilidad
 - Complejidad

Sintaxis de la lógica proposicional

- Alfabeto proposicional:
 - Símbolos proposicionales: $p, p_0, p_1, ..., q, q_0, q_1, ...$
 - Constantes: ⊥, ⊤
 - Conectivas lógicas: Negación: ¬ Condicional: ¬
 - Conjunción: \land Equivalencia: \leftrightarrow Disyunción: \lor
 - Símbolos auxiliares: (,).

Sintaxis de la lógica proposicional

Dado un conjunto SP de símbolos proposicionales, se puede definir un **lenguaje proposicional** L(SP), que contiene todas las fórmulas posibles según la siguiente definición:

- Una fórmula proposicional es:
 - Un elemento de SP: (Fórmula atómica)
 - Si F y G son fórmulas, entonces: $(\neg F)$, $(F \land G)$, $(F \lor G)$, $(F \to G)$, $(F \leftrightarrow G)$ también lo son.
- Ejemplos:
 - $((p \rightarrow q) \lor (q \rightarrow p))$
 - $(p \rightarrow (q \lor (\neg r)))$

Sintaxis de la lógica proposicional

- Metavariables:
 - *SP*: conjunto de símbolos proposicionales
 - FProp: conjunto de fórmulas proposicionales
 - Símbolos proposicionales: $p, p_0, p_1, ..., q, q_0, q_1, ..., r, ...$
 - Fórmulas proposicionales: F, F_0 , F_1 , ..., G, G_0 , G_1 , ...
- Eliminación de paréntesis:
 - Paréntesis externos: $(p \rightarrow q) \Longrightarrow p \rightarrow q$
 - Prioridad: \neg , \wedge , \vee , \rightarrow , \leftrightarrow $(p \lor (\neg q \land r)) \to (s \lor t) \implies p \lor \neg q \land r \to s \lor t$ $((p \land \neg q) \lor r) \to s \implies p \land \neg q \lor r \to s$
 - Asociatividad: \land y \lor asocian por la derecha $p \land (q \land r) \implies p \land q \land r$

Símbolos de una fórmula

Símbolos proposicionales de una fórmula:

```
sp(p) = \{p\}

sp(\neg F) = sp(F)

sp(F \land G) = sp(F) \cup sp(G)

sp(F \lor G) = sp(F) \cup sp(G)

sp(F \leftrightarrow G) = sp(F) \cup sp(G)
```

- La semántica debe proporcionarnos:
 - Noción de verdad: función de verdad
 - Significado de las fórmulas: especificación
 - Noción de consecuencia lógica: conclusiones
- Valores de verdad: \bot y \top (utilizaremos *False* y *True*)

Funciones de verdad

•
$$fv_{\neg}: \{False, True\} \rightarrow \{False, True\}$$

 $fv_{\neg}(i) = \begin{cases} True & \text{si} & i = False \\ False & \text{si} & i = True \end{cases}$
• $fv_{\wedge}: \{False, True\}^2 \rightarrow \{False, True\}$
 $fv_{\wedge}(i,j) = \begin{cases} True & \text{si} & i = j = True \\ False & \text{en otro caso} \end{cases}$
• $fv_{\vee}: \{False, True\}^2 \rightarrow \{False, True\}$
 $fv_{\vee}(i,j) = \begin{cases} False & \text{si} & i = j = False \\ True & \text{en otro caso} \end{cases}$

Funciones de verdad

•
$$fv_{\rightarrow}$$
: {False, $True$ }² \rightarrow {False, $True$ }
 $fv_{\rightarrow}(i,j) = \begin{cases} False & \text{si } i = True \text{ y } j = False \\ True & \text{en otro caso} \end{cases}$

•
$$fv_{\leftrightarrow}$$
: {False, True}² \rightarrow {False, True}
 $fv_{\leftrightarrow}(i,j) = \begin{cases} True & \text{si } i = j \\ False & \text{en otro caso} \end{cases}$

- Interpretación:
 - Una interpretación I es un conjunto de símbolos proposicionales
- Interpretaciones: Conjunto de todas las interpretaciones
- $sig : FProp \times Interpretaciones \rightarrow \{False, True\}$

•
$$sig(p, I) = \begin{cases} True & \text{si} \quad p \in I \\ False & \text{en otro caso} \end{cases}$$

•
$$sig(\neg F, I) = fv_{\neg}(sig(F, I))$$

•
$$sig(F \wedge G, I) = fv_{\wedge}(sig(F, I), sig(G, I))$$

•
$$sig(F \lor G, I) = fv_{\lor}(sig(F, I), sig(G, I))$$

•
$$sig(F \rightarrow G, I) = fv_{\rightarrow}(sig(F, I), sig(G, I))$$

•
$$sig(F \leftrightarrow G, I) = fv_{\leftrightarrow}(sig(F, I), sig(G, I))$$

```
• Ejemplo: F = (p \lor q) \land (\neg q \lor r)
                  I = \{p, r\}
    sig(F, I) = sig((p \lor q) \land (\neg q \lor r), I)
                   = fv_{\wedge}(sig(p \vee q, I), sig(\neg q \vee r, I))
                   = fv_{\wedge}(sig(p \vee q, I), sig(\neg q \vee r, I))
                   = fv_{\wedge}(fv_{\vee}(sig(p, I), sig(q, I)),
                              f_{V_{i}}(sig(\neg q, I), sig(r, I)))
                   = fv_{\wedge}(fv_{\vee}(True, False), fv_{\vee}(fv_{\neg}(sig(q, I)), True))
                   = fv_{\wedge}(True, fv_{\vee}(fv_{\neg}(False), True))
                   = fv_{\wedge}(True, fv_{\vee}(True, True))
                   = fv_{\wedge}(True, True)
                   = True
```

•
$$I = \{p, r\}$$

$$F = \begin{array}{cccc} (p & \lor & q) & \land & (\neg q & \lor & r) \\ (\textit{True} & \lor & \textit{False}) & \land & (\neg \textit{False} & \lor & \textit{True}) \\ & & \textit{True} & & \land & (\textit{True} & \lor & \textit{True}) \\ & & \textit{True} & & \land & & \textit{True} \\ & & & & \textit{True} \end{array}$$

•
$$I = \{r\}$$

$$F = \begin{array}{ccccc} (p & \lor & q) & \land & (\neg q & \lor & r) \\ (False & \lor & False) & \land & (\neg False & \lor & True) \\ False & & \land & (True & \lor & True) \\ False & & \land & True \\ False & & False & \end{array}$$

Modelos y contramodelos

- $interpretaciones(F) = \{I \in Interpretaciones : I \subseteq sp(F)\}$
- $|interpretaciones(F)| = 2^{|sp(F)|}$
- Modelo
 - I es modelo de $F \iff sig(F, I) = True$
 - Representación: $I \models F$
 - Ejemplo: $\{p,r\} \models (p \lor q) \land (\neg q \lor r)$
- Contramodelo
 - I es contramodelo de $F \iff sig(F, I) = False$
 - Representación: $I \not\models F$
 - Ejemplo: $\{r\} \not\models (p \lor q) \land (\neg q \lor r)$
- Modelos de una fórmula
 - $modelos(F) = \{I \in interpretaciones(F) : I \models F\}$

Tablas de verdad

• Comprobación de todas las interpretaciones

р	q	r	$(p \rightarrow q)$	$(q \rightarrow r)$	$(p \rightarrow q) \lor (q \rightarrow r)$
True	True	True	True	True	True
True	True	False	True	False	True
True	False	True	False	True	True
True	False	False	False	True	True
False	True	True	True	True	True
False	True	False	True	False	True
False	False	True	True	True	True
False	False	False	True	True	True

Validez y satisfactibilidad

- Fórmulas válidas o tautologías
 - F es válida \iff toda interpretación de F es modelo de F
 - Representación: $\models F$
 - Ejemplos: $\models (p \rightarrow p), \models (p \rightarrow q) \lor (q \rightarrow p), \not\models (p \rightarrow q)$
- Fórmulas satisfacibles
 - F es satisfacible
 ⇔ tiene algún modelo

 - Ejemplos:

$$(p \rightarrow q) \lor (q \rightarrow r)$$
 es satisfacible $(p \land (\neg p))$ no es satisfacible $(p \land (\neg p))$ es insatisfacible $(p \rightarrow q) \lor (q \rightarrow r)$ no es insatisfacible

Validez y satisfactibilidad

- Problema de la satisfacibilidad: Dada F determinar si es satisfacible
- Problema de la validez: Dada F determinar si es válida
- Relaciones entre validez y satisfacibilidad
 - F es válida $\iff \neg F$ es insatisfacible
 - F es válida $\Rightarrow F$ es satisfacible
 - F es satisfacible $\not\Rightarrow \neg F$ es insatisfacible
- El problema de la satisfacibilidad es NP-completo

Conjuntos de fórmulas

- Símbolos proposicionales de un conjunto de fórmulas
 - $sp(S) = \bigcup \{sp(F) : F \in S\}$
 - Ejemplo: $sp(\lbrace p \land q \rightarrow r, p \rightarrow s \rbrace) = \lbrace p, q, r, s \rbrace$
- Interpretaciones de un conjunto de fórmulas
 - $interpretaciones(S) = \{I \in Interpretaciones : I \subseteq sp(S)\}$
- Modelos de un conjunto de fórmulas
 - I es modelo de $S \iff$ para toda F de S, $I \models F$
 - Representación $I \models S$
 - Ejemplo: $\{p,r\} \models \{(p \lor q) \land ((\neg q) \lor r), q \to r\}$
- Contramodelo de un conjunto de fórmulas
 - I es contramodelo de $\mathcal{S} \Longleftrightarrow$ para alguna F de \mathcal{S} , $I \not\models F$
 - Representación $I \not\models \mathcal{S}$
 - Ejemplo: $\{p,r\} \not\models \{(p \lor q) \land ((\neg q) \lor r), r \to q\}$

Conjuntos de fórmulas

- Modelos de un conjunto de fórmulas
 - $modelos(S) = \{I \in interpretaciones(S) : I \models S\}$
- Conjuntos consistentes e inconsistentes de fórmulas
 - \mathcal{S} es consistente $\iff \mathcal{S}$ tiene algún modelo
 - \mathcal{S} es inconsistente $\iff \mathcal{S}$ no tiene ningún modelo
 - Ejemplos:

Consecuencia lógica

- F es consecuencia lógica de $S \iff$ para toda interpretación $I \in interpretaciones(S \cup \{F\})$, si $I \models S$ entonces $I \models F$
- Representación: $S \models F$
- Ejemplos:

$$\begin{cases}
 p \to q, q \to r \} \models p \to r \\
 p \} \not\models p \land q \\
 p \} \not\models \neg r
 \end{cases}$$

- Las siguientes condiciones son equivalentes:
 - $\{F_1, ..., F_n\} \models G$
 - $\models (F_1 \land ... \land F_n) \rightarrow G$
 - $\{F_1, ..., F_n, \neg G\}$ es inconsistente

- Sean S = {p → (q → ¬r), p ∨ s, (¬q ∧ r) → s} y F = s ∨ ¬r.
 Se pide comprobar que S ⊨ F mediante la definición de consecuencia lógica.
- Sean S = {(p ∧ ¬q) → r, (¬p ∨ r), q → ¬r} y F = r → s. Se pide comprobar que S |= F mediante la definición de consecuencia lógica.
- Sean S = {a → ¬b, ¬a → (c ∨ b), b → (d ∧ a), d → ¬c} y
 F = a ∨ ¬d. Se pide comprobar que S ⊨ F mediante la definición de consecuencia lógica.
- Sean S = {a → ¬b, ¬b → (c ∨ d), c → ¬d, d → (b ∧ ¬a)} y
 F = b ∨ ¬d. Se pide comprobar que S ⊨ F mediante la definición de consecuencia lógica.

Sean S = {p → (q → ¬r), p ∨ s, (¬q ∧ r) → s} y F = s ∨ ¬r.
 Se pide comprobar que S ⊨ F mediante la definición de consecuencia lógica.

$$p \mid q \mid r \mid s \mid \{p \rightarrow (q \rightarrow \neg r) \mid p \lor s \mid (\neg q \land r) \rightarrow s\} \parallel s \lor \neg r$$

• Sean $S = \{p \to (q \to \neg r), p \lor s, (\neg q \land r) \to s\}$ y $F = s \lor \neg r$. Se pide comprobar que $S \models F$ mediante la definición de consecuencia lógica. (False = 0, True = 1)

$$p \mid q \mid r \mid s \mid \{p \rightarrow (q \rightarrow \neg r) \mid p \lor s \mid (\neg q \land r) \rightarrow s\} \parallel s \lor \neg r$$

Sean S = {p → (q → ¬r), p ∨ s, (¬q ∧ r) → s} y F = s ∨ ¬r.
 Se pide comprobar que S ⊨ F mediante la definición de consecuencia lógica. (False = 0, True = 1)

р	q	r	S	$\{p \rightarrow (q \rightarrow \neg r) \mid$	$p \lor s$	$(\neg q \land r) \rightarrow s\}$	$s \vee \neg r$
0	0	0	0	1	0	1	1
0	0	0	1	1	1	1	1
0	0	1	0	1	0	0	0
0	0	1	1	1	1	1	1
0	1	0	0	1	0	1	1
0	1	0	1	1	1	1	1
0	1	1	0	1	0	1	0
0	1	1	1	1	1	1	1

Sean S = {p → (q → ¬r), p ∨ s, (¬q ∧ r) → s} y F = s ∨ ¬r.
 Se pide comprobar que S ⊨ F mediante la definición de consecuencia lógica. (False = 0, True = 1)

p	q	r	s	$ \{p \to (q \to \neg r) $	$p \lor s$	$(\neg q \land r) \rightarrow s\}$	$s \vee \neg r$
1	0	0	0	1	1	1	1
1	0	0	1	1	1	1	1
1	0	1	0	1	1	0	0
1	0	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	1	0	1	1	1	1	1
1	1	1	0	0	1	1	0
1	1	1	1	0	1	1	1

Referencias

- Chang, C.L. y Lee, R.C.T Symbolic Logic and Mechanical Theorem Proving. (Academic Press, 1973)
 - Cap. 2: "The propositional logic"
- Genesereth, M.R. Computational Logic
 - Cap. 2: "Propositional logic"
- Nilsson, N.J. Inteligencia artificial (Una nueva síntesis). (McGraw–Hill, 2000)
 - Cap. 13: "El cálculo proposicional"
- Russell, S. y Norvig, P. Inteligencia artificial (un enfoque moderno). (Prentice Hall Hispanoamericana, 1996)
 - Cap. 6.4: "Lógica propositiva: un tipo de lógica muy sencillo"