https://github.com/savthe/discrete_math

Многочлены. Разные задачи.

1. Разложите многочлен $x^3 - x^2 + 3x + 5$ на множители в

- **2.** Разложите многочлен $x^4 5x^2 + 6$ на множители в
- a) $\mathbb{Q}[x]$ 6) $\mathbb{Q}[\sqrt{2}][x]$, b) $\mathbb{R}[x]$, $\mathbb{C}[x]$.
- **3.** Перечислите все неприводимые многочлены степени не выше **4** над полем \mathbb{F}_2 .
- **4.** Разложите многочлен $p(x) = x^7 + x^5 + x^4 + x^2$ на множители в $\mathbb{F}_2[x]$.
- **5.** Сколько существует многочленов степени n над полем \mathbb{F}_2 ?
- **6.** Докажите, что многочлен $x^4 + x + 2$ неприводим в $\mathbb{F}_3[x]$.
- 7. Найдите частное и остаток от деления многочлена P(x) и Q(x) в $\mathbb{F}_k[x]$.
- a) $P(x) = x^2 + x + 1$, Q(x) = x + 1, k = 2,
- 6) $P(x) = x^4 + 3x^2 + 4$, $Q(x) = 3x^3 + x + 1$, k = 5.
- **8.** Найдите наибольший общий делитель многочленов в $\mathbb{F}_{5}[x]$:

$$x^4 + x^3 + 4x^2 + x + 3$$
 и $x^4 + x^3 + x^2 + 4x + 2$.

- **9.** Сколько существует неприводимых многочленов вида $x^2 + bx + c$ в \mathbb{Z}_n ?
- **10.** Разложите многочлен P(x) над полем \mathbb{F}_k на неприводимые множители. a) $P(x) = x^6 + 1$, k = 2, б) $P(x) = x^3 + x + 2$, k = 3.

- **11.** Докажите, что в $\mathbb{Q}[x]$ бесконечно много неприводимых многочленов вида $5x^{10}+21x^7+42x^4+n$, где $n\in\mathbb{Z}$.
- **12.** Докажите, что многочлен $P(x) = x^3 + 9x + 6$ неприводим в $\mathbb{Q}[x]$. Пусть ξ корень P(x). Найдите обратный элемент к $1 + \xi$ в $\mathbb{Q}[\xi]$.