\ / · . ·	17	c . •
Variation	dine	tonction
variation	u unc	TOTICLION

Extrait du programme

Contenus

- Lien entre le sens de variation d'une fonction dérivable sur un intervalle et signe de sa fonction dérivée ;
 - caractérisation des fonctions constantes.
- Nombre dérivé en un extremum, tangente à la courbe représentative.

Capacités attendues

- Étudier les variations d'une fonction. Déterminer les extremums.
- Résoudre un problème d'optimisation.
- Exploiter les variations d'une fonction pour établir une inégalité. Étudier la position relative de deux courbes représentatives.
- Étudier, en lien avec la dérivation, une fonction polynôme du second degré : variations, extremum, allure selon le signe du coefficient de x^2 .

Référence : Albert le chat vénère

DÉMONSTRATIONS

EXEMPLE D'ALGORITHME

• Méthode de Newton, en se limitant à des cas favorables.

A la fin de ce chapitre

	Oui	Non	Qu'en pense mon professeur?
• Je sais dériver une fonction			
• Je sais étudier le signe d'une fonction			
• Je sais étudier le sens de variation d'une fonction			
• Je sais construire une courbe représentative			

Vous retrouverez ce cours à l'adresse suivante :

https://github.com/NaturelEtChaud/Math-premiere/tree/main/09%20Variation%20d'une%20fonction

I. Sens de variation d'une fonction dérivable

THÉORÈME

Soit f une fonction dérivable sur un intervalle I.

- f est croissante sur I si et seulement si, $f' \ge 0$ sur I;
- f est décroissante sur I si et seulement si, $f' \leq 0$ sur I;
- f est constante sur I si et seulement si, f' = 0 sur I.

Exemple

Pour connaître le sens de variation d'une fonction, il nous suffit maintenant d'étudier le signe de la dérivée. Étudions le sens de variation de la fonction $g(x) = x^3 - 6x^2 + 9x + 1$, définie et dérivable sur \mathbb{R} .

1. On calcule la fonction dérivée de g(x).

$$g'(x) = 3x^{2} - 6 \times 2x + 9 \times 1 + 0$$
$$= 3x^{2} - 12x + 9$$

2. On étudie le signe de la dérivée.

 g^\prime est une fonction trinôme du second degré avec a=3,b=-12,c=9

$$\Delta = b^2 - 4ac = 144 - 108 = 36 = 6^2 > 0.$$

Il y a deux racines :

$$x_{1} = \frac{-b - \sqrt{\Delta}}{2a}$$
 $x_{2} = \frac{-b + \sqrt{\Delta}}{2a}$ $x_{1} = \frac{12 - 6}{6}$ $x_{2} = \frac{12 + 6}{6}$ $x_{2} = \frac{18}{6}$ $x_{1} = 1$ $x_{2} = 3$

3. On en déduit le tableau de signe de g' puis le tableau de variation de g en fonction du signe de g'.

x	$-\infty$		1		3		$+\infty$
signe de $g'(x)$		+	0	_	0	+	
variation de $g(x)$			5		1		

FIGURE 9.1 – Représentation graphique de la fonction $g(x) = x^3 - 6x^2 + 9x + 1$.

Questions à Choix Multiple n° 1

Soit f une fonction dérivable sur [-1; 5] qui admet le tableau suivant :

x	-1		0		5
signe de $f'(x)$		+	0	-	
variation de $f(x)$	-1		4		0

- 1. f est strictement croissante sur :
 - a) [-1; 5]

b) [0; 5]

c) [-1;0]

- 2. Si a < b appartiennent à [0; 5] alors :
 - a) f(a) < f(b)
- b) f(a) > f(b)
- c) f(a)f(b) < 0
- d) f(a)f(b) > 16

- 3. L'équation f(x) = 0 admet de façon sûre :
- a) exactement une so- b) exactement deux solution
 - lutions
- c) exactement trois solutions
- d) au moins trois solutions

DÉFINITION

Soit f une fonction définie sur un intervalle I et soient m et M des réels.

- M est le **maximum** de f sur I si et seulement si : $f(x) \leq M$ pour tout x de I, et il existe un réel α dans I tel que $f(\alpha) = M$.
- m est le **minimum** de f sur I si et seulement si : $f(x) \ge m$ pour tout x de I, et il existe un réel β dans I tel que $f(\beta) = m$.
- On appelle extremum de f sur I son maximum ou son minimum (s'il existe).
- Si m ou M est un extremum de f sur un intervalle ouvert D contenu dans I, on dit que M est un extremum local de f sur I.

FIGURE 9.2 – La représentation graphique d'une fonction.

Exemple

La courbe ci-dessus est la représentation graphique d'une fonction f définie sur I = [-4; 5].

- Le maximum de la fonction f sur I est 5; il est atteint en x=2.
- Le minimum de la fonction f sur I est -4; il est atteint en x=5.
- Les extrema de f sur I sont -4 et 5.
- f admet un minimum local -3, car c'est le minimum de f sur]-4;2[; il est atteint en x=-2.

Questions à Choix Multiple n° 2

Soit f une fonction dérivable sur [-10; 10] qui admet le tableau de variation suivant :

- 1. 3 est le maximum de f sur [-10; 10]:
 - a) Vrai

- b) Faux
- 2. -5 est le minimum de f sur [-10; 10]:
 - a) Vrai

b) Faux

- 3. f', la dérivée de f est négative sur :
 - a) [-1; 5]

b) [5; 10]

c) $[-10; -1] \cup [5; 10]$

- 4. f', la dérivée de f est positive sur :

b) [5; 10]

c) $[-10; -1] \cup [5; 10]$

- 5. f', la dérivée de f est s'annule en :
 - a) -10

- b) -10 et un nombre entre -1 et c) en -1 et en 5

THÉORÈME

Soit f une fonction définie sur un intervalle I.

f admet un extremum en $a \in I$ si et seulement si, f'(a) s'annule en changeant de signe.

FIGURE 9.3 – La fonction cube.

Exemple (Contre exemple)

Soit $f(x) = x^3$ la fonction cube. f est définie et dérivable sur \mathbb{R} et $f'(x) = 3x^2$. On en déduit le tableau suivant :

x	$-\infty$		0		$+\infty$
signe de $f'(x)$		+	0	+	
variation de $f(x)$					

Bien que la dérivée de la fonction cube s'annule en 0, la fonction cube n'admet aucun extremum.

Questions à Choix Multiple n° 3

Soit f une fonction définie et dérivable sur \mathbb{R} telle que $f(x) = -x^3 + x^2 + x - 4$.

- 1. f admet un extremum local en x = 1:
 - a) Vrai

b) Faux

- 2. $f\left(-\frac{1}{12}\right) > 0$:
 - a) Vrai

b) Faux

- 3. Si $x \ge 0$, alors $f(x) \le -3$:
 - a) Vrai

b) Faux

II. Variation d'une fonction - Exercices

a) Exercices données au BAC de STMG

Exercice 1 (Polynésie, juin 2013)

Partie A. Étude d'une fonction

On considère la fonction f définie sur l'intervalle I = [0,3;6] par

$$f(x) = 4x + \frac{9}{x}$$

On note \mathcal{C} sa courbe représentative dans un repère du plan et f' sa fonction dérivée.

- 1. Calculer f'(x) pour tout réel x de l'intervalle I.
- 2. On admet que, pour tout réel x de l'intervalle I, on peut écrire

$$f'(x) = \frac{(2x-3)(2x+3)}{x^2}.$$

- (a) Étudier le signe de f' sur l'intervalle I.
- (b) En déduire le tableau de variation de f sur l'intervalle I.
- 3. (a) Recopier et compléter le tableau de valeurs suivant :

x	0,3	0,5	1	2	3	4	4,5	5	6
f(x)									

(b) Construire dans un repère orthogonal la courbe $\mathcal C$ de la fonction f sur une feuille de papier millimétré.

Unités graphiques : 1 cm pour 0,5 unité sur l'axe des abscisses et 1 cm pour 2 unités sur l'axe des ordonnées.

Partie B. Application à l'économie

Une entreprise agroalimentaire peut produire entre 0,3 et 6 tonnes de farine biologique par jour. Le coût moyen de production d'une tonne de farine biologique pour x tonnes produites est f(x), où f est la fonction définie dans la **partie A**. Ce coût moyen est exprimé en centaines d'euros.

- 1. En utilisant les résultats de la partie A, déterminer le coût moyen minimal exprimé en centaines d'euros.
- 2. La tonne de farine biologique est vendue 20 centaines d'euros.
 - (a) Calculer la recette correspondant à la vente de 3 tonnes de farine vendues,
 - (b) Calculer le coût total de production de 3 tonnes de farine.
 - (c) En déduire le bénéfice réalisé par l'entreprise pour la production et la vente de 3 tonnes de farine.
- 3. On admet que l'entreprise vend toute sa production.

On rappelle que l'entreprise réalise un profit lorsque le prix de vente d'une tonne est supérieur au coût moyen de production d'une tonne.

À l'aide du graphique tracé dans la **partie A**, déterminer les quantités produites pour lesquelles l'entreprise réalise un profit.

b) Travail de recherche en autonomie

Exercice 2

Étudier, en lien avec la dérivation, les variations et les extremums d'une fonction polynôme du second degré quelconque (autrement dit $f(x) = ax^2 + bx + c$, avec a, b, et c des réels quelconques, $a \neq 0$).

Exercice 3 (Les cinq signes - Exercice académique des Olympiades de mathématiques)

Dans cet exercice, on considère des fonctions f admettant le tableau de variations (T) suivant :

Nota bene : les trois questions sont indépendantes.

- **1.** Donner un exemple de fonction f définie sur \mathbb{R} admettant le tableau de variation (T) ci-dessus (on répondra par une expression de f(x) en fonction de x et on donnera l'allure de la représentation graphique de la fonction).
- **2.** On considère maintenant une nouvelle fonction f définie sur \mathbb{R} telle que :
 - pour tout réel x, $f(x) = ax^2 + bx + c$, où a, b, c sont trois nombres réels ;
 - f admet le tableau de variations (T) ci-dessus.
 Déterminer le signe de chacun des trois nombres réels a, b, c.
- **3.** On considère maintenant une nouvelle fonction f définie sur \mathbb{R} telle que :
 - f est le carré d'une fonction trinôme du second degré, c'est-à-dire : pour tout réel x, $f(x) = \{x\}^2$ avec $\{x\} = ux^2 + vx + w$, u, v et w désignant trois nombres réels, $u \neq 0$;
 - f admet le tableau de variations (T) ci-dessus.

L'expression développée réduite de f(x) peut s'écrire sous la forme :

$$f(x) = ax^4 + bx^3 + cx^2 + dx + e$$
,

où a, b, c, d et e sont des nombres réels.

Déterminer le signe – strictement positif ou strictement négatif – de chacun des cinq réels a, b, c, d et e (on prendra soin de vérifier que chacun des cinq réels est non nul).

c) Feuille d'exercices du site Maths en ligne :

EXERCICE 2A.1

Dans chaque cas, compléter le tableau de variation de f, puis tracer une courbe qui pourrait être celle de f.

x	-5	6
f'(x)	+	
f(x)	-1	3

b.

_	x	-3		1		4
	f'(x)		-	0	-	
	f(x)	2		-1		-3

C.

x	-5	-3	1	3
f'(x)	ı	0 +	0	-
f(x)	3	-1	2	-3

d.

x	-7	-4	1	2
f'(x)	_	0 –	0 -	
f(x)	3	1	-1	-3

EXERCICE 2A.2

Dresser le tableau de variation chaque fonction (y compris le signe et les valeurs nulles de la dérivées) à partir de sa courbe.

a.

\boldsymbol{x}	
f'(x)	
f(x)	

\mathbf{d} Feuilles d'exercices du site Lycée d'Adultes

Sens de variation

Exercice 12

Déterminer et exécuter un programme permettant de tracer 31 tangentes de paramètre $m \in [-3; 3]$ de la courbe \mathcal{C}_f de la fonction f définie par :

$$f(x) = \frac{1}{4}x^4 - 2x^2 + 2$$

On montrera que les tangentes de \mathcal{C}_f en x = m sont des droites (D_m) d'équations :

$$y = (m^3 - 4m)x - \frac{3}{4}m^4 + 2m^2 + 2$$

On prendra comme fenêtre : $x \in [-3, 3]$ et $y \in [-3, 5]$. On tracera ensuite \mathcal{C}_f .

Exercice 13

Pour les fonctions suivantes, déterminer la fonction dérivée, son signe en précisant l'ensemble pour lequel le calcul est valable. On cherchera à factoriser f'(x) lorsque cela est possible. Dresser le tableau de variation de la fonction f

1)
$$f(x) = 2x^3 - 3x^2 - 1$$

4)
$$f(x) = 4x + 3 + \frac{9}{x - 2}$$

2)
$$f(x) = x^4 + x^2 + 1$$

3)
$$f(x) = 2x^4 - 4x^3 + 2x^2$$

5)
$$f(x) = \frac{x^2 + 2x + 6}{x - 1}$$

Exercice 14

Pour les fonctions suivantes, déterminer la fonction dérivée, son signe en précisant l'ensemble pour lequel le calcul est valable. On cherchera à factoriser f'(x) lorsque cela est possible. Dresser le tableau de variation de la fonction f

1)
$$f(x) = -x^3 + 3x^2 - 4$$

6)
$$f(x) = 2x + 1 - \frac{2}{x - 3}$$

2)
$$f(x) = -x^3 + 3x^2 + 9x - 4$$

7)
$$f(x) = \frac{-3x}{1+x^2}$$

3)
$$f(x) = -x^4 - 4x^2 + 5$$

4) $f(x) = \frac{2x - 3}{2x + 4}$

8)
$$f(x) = 1 - x - \frac{1}{x - 1}$$

$$5) \ f(x) = \frac{2x}{x^2 - 9}$$

9)
$$f(x) = \frac{-x^2 + 2x + 11}{x^2 - 2x - 3}$$

Exercice 15

Pour les fonctions suivantes, déterminer la fonction dérivée, son signe en précisant l'ensemble pour lequel le calcul est valable. On cherchera à factoriser f(x) lorsque cela est possible. Dresser le tableau de variation de la fonction f

1)
$$f(x) = \frac{x^2 + x - 1}{x^2 + x + 1}$$
 2) $f(x) = x\sqrt{x + 3}$

$$2) \ f(x) = x\sqrt{x+3}$$

$$3) \ f(x) = \left(\frac{x-3}{x-2}\right)^2$$

4)
$$f(x) = \sqrt{x-1} \sqrt{3-x}$$
 5) $f(x) = \frac{x\sqrt{x}}{x+3}$

Exercice 16

Reconnaître une courbe

La figure ci-contre est la représentation graphique \mathcal{C}_f d'une fonction f dérivable sur $]0; +\infty[$

Parmi les trois courbes ci-dessous, quelle est celle qui est susceptible de représenter la fonction dérivée f' de f.

Reconnaître une fonction

Exercice 17

Soit une fonction f du 3^e degré définie sur \mathbb{R} dont la représentation \mathscr{C}_f se trouve ci-après.

- 1) Justifier que la fonction f peut se mettre sous la forme : $f(x) = ax^3 + bx^2 + cx + d$
- 2) D'après la courbe, justifier les égalités suivantes :
 - f(0) = 0 et f'(0) = -2
 - f'(-1) = f'(2) = 0
- 3) À partir des égalités de la question 2), déterminer les coefficients a, b, c et d.
- 4) Tracer la fonction f sur votre calculatrice pour vérifier votre solution

Exercice 20

Encadrement

Soit la fonction f définie sur \mathbb{R} par : $f(x) = \frac{1}{3}x^3 - x + 2$.

Trouver un encadrement de la fonction f pour $x \in [-2; 2]$

Exercice 21

Minimum

- 1) Étudier les variations de la fonction f définie par : $f(x) = -2x^2 + 4x 3$
- 2) En déduire le minimum sur [-2; 2] de la fonction g définie par ;

$$g(x) = \frac{1}{-x^2 + 4x - 3}$$

Optimisation

Exercice 22

Problème d'immersion

On dispose d'un récipient cylindrique de rayon 40 cm contenant de l'eau dont la hauteur est 20 cm. On y plonge une bille sphérique de diamètre d (en cm) et on constate que le niveau de l'eau est tangent à la bille. Le but de cet exercice est de calculer le diamètre d de la bille.

- 1) Vérifier que d est solution du système : $\begin{cases} 0 \le d \le 80 \\ d^3 9600d + 192000 = 0 \end{cases}$
- 2) f est la fonction sur [0; 80] par : $f(x) = x^3 9600x + 192000$
 - a) Déterminer la dérivée de la fonction f. En déduire le signe de la dérivée puis dresser le tableau de variation de la fonction f sur l'intervalle [0; 80].
 - b) D'après le tableau de variation, montrer que l'équation f(x) = 0 admet une solution unique sur [0; 80].
 - c) Déterminer un algorithme permettant de calculer cette solution à 10^{-2} près.

On rappelle que:

- le volume d'un cylindre de rayon r et de hauteur h est égal à : $\pi r^2 h$
- le volume d'une sphère de rayon r est égal à : $\frac{4}{3}\pi r^3$

III. Variation d'une fonction - Correction des exercices

b) Travail de recherche en autonomie

Correction de l'exercice 2

$$f(x) = ax^{2} + bx + c$$

$$f'(x) = a \times 2x + b \times 1 + 0$$

$$f'(x) = 2ax + b$$

2ax + b s'annule en :

$$f'(x) = 0$$

$$\iff 2ax + b = 0$$

$$\iff 2ax = -b$$

$$\iff x = -\frac{b}{2a}$$

car $a \neq 0$ donc on ne prend pas le risque de diviser par 0

• Si a > 0, on a :

x	$-\infty$	$-\frac{b}{2a}$	$+\infty$
signe de $f'(x)$		- 0	+
variation de $f(x)$		$f\left(-\frac{b}{2a}\right)$	

• Si a < 0, on a:

x	$-\infty$ $-\frac{b}{2a}$ $+\infty$
signe de $f'(x)$	+ 0 -
variation de $f(x)$	$f\left(-\frac{b}{2a}\right)$

d) Feuilles d'exercices du site Lycée d'Adultes

Correction de l'exercice 13

5)
$$f(x) = \frac{x^2 + 2x + 6}{x - 1}$$

$$f \text{ est de la forme } \frac{u}{v} \text{ avec } \begin{cases} u(x) = x^2 + 2x + 6 & v(x) = x - 1 \\ u'(x) = 2x + 2 & v'(x) = 1 \end{cases}$$

$$f' = \frac{u'v - uv'}{v^2}$$

$$f'(x) = \frac{(2x + 2) \times (x - 1) - (x^2 + 2x + 6) \times 1}{(x - 1)^2}$$

$$f'(x) = \frac{2x^2 - 2x + 2x - 2 - x^2 - 2x - 6}{(x - 1)^2}$$

$$f'(x) = \frac{x^2 - 2x - 8}{(x - 1)^2}$$

Pour
$$x^2 - 2x - 8$$
,

$$a = 1, b = -2$$
 et $c = -8$

$$\Delta = b^2 - 4ac = 4 + 32 = 36 = 6^2 > 0$$

Il y a deux racines:

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{2 - 6}{2} = -2$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{2+6}{2} = 4.$$

Pour
$$(x-1)^2$$
,

c'est un carré, donc est positif et s'annule en x = 1, notre valeur interdite.

x	$-\infty$		-2		1		4		$+\infty$
$x^2 - 2x - 8$		+	0	_		_	0	+	
$(x-1)^2$		+		+	0	+		+	
signe de $f'(x)$		+	0	_		_	0	+	
variation de $f(x)$		f	$f(-2) = -\frac{1}{2}$	-2	*		f(4) = 10)	<i>"</i>

$$f(-2) = \frac{(-2)^2 + 2 \times (-2) + 6}{(-2) - 1} = -2$$

$$f(4) = \frac{4^2 + 2 \times 4 + 6}{4 - 1} = 10$$

Correction de l'exercice 14

4)
$$f(x) = \frac{2x-3}{2x+4}$$

f est de la forme
$$\frac{u}{v}$$
 avec
$$\begin{cases} u(x) = 2x - 3 & v(x) = 2x + 4 \\ u'(x) = 2 & v'(x) = 2 \end{cases}$$

$$f' = \frac{u'v - uv'}{v^2}$$

$$f' = \frac{u'v - uv'}{v^2}$$

$$f'(x) = \frac{2 \times (2x+4) - (2x-3) \times 2}{(2x+4)^2}$$

$$f'(x) = \frac{4x + 8 - 4x + 6}{(2x+4)^2}$$

$$f'(x) = \frac{14}{(2x+4)^2}$$

$$f'(x) = \frac{4x + 8 - 4x + 6}{(2x + 4)^2}$$

$$f'(x) = \frac{14}{(2x+4)^2}$$

Pour
$$(2x+4)^2$$
,

c'est un carré, donc est positif et s'annule en x = -2, notre valeur interdite.

x	$-\infty$		-2		$+\infty$
14		+		+	
$(2x+4)^2$		+	0	+	
signe de $f'(x)$		+		+	
variation de $f(x)$		<i></i>			A

Variation d'une fonction - Les démonstrations IV.

Sens de variation d'une fonction dérivable **a**)

Démonstration

• Supposons f croissante sur I.

Si h > 0, alors $f(a+h) \ge f(a)$ donc $f(a+h) - f(a) \ge 0$.

Si h < 0, alors $f(a+h) \le f(a)$ donc $f(a+h) - f(a) \le 0$.

Donc h et f(a+h)-f(a) sont de même signe, donc $\frac{\overline{f}(a+h)-f(a)}{h}\geq 0$.

Donc
$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = f'(a) \ge 0.$$

La réciproque est hors-programme.

• Supposons f décroissante sur I.

Si
$$h > 0$$
, alors $f(a+h) \le f(a)$ donc $f(a+h) - f(a) \le 0$.

Si h < 0, alors $f(a+h) \ge f(a)$ donc $f(a+h) - f(a) \ge 0$.

Donc h et f(a+h)-f(a) sont de signes différents, donc $\frac{f(a+h)-f(a)}{h} \leq 0$.

Donc
$$\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = f'(a) \le 0.$$
 La réciproque est hors-programme.

• Supposons f constante sur I.

Pour tout h, f(a+h) = f(a) donc f(a+h) - f(a) = 00.

Donc
$$\frac{f(a+h)-f(a)}{h}=0$$

Donc
$$\frac{f(a+h)-f(a)}{h}=0$$
.

Donc $\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}=f'(a)=0$.

La réciproque est hors-programme.