Arithmetic Logic Unit

- The ALU is the brawn of the computer
- Performs integer arithmetic operations
 - Addition and subtraction
 - Multiplication and division
- Performs logical operations
 - AND, OR, XOR
- Acts on commands from control unit

JOHNS HOPKINS

UNIVERSITY

- Multiple 1-bit ALUs can be used to build a 32-bit ALU
- This is called a bit sliced design
- The AND and OR operations map directly to gates

From module 3 we know how to build a full adder

 The single bit inputs (a and b) together with the Carryin are added to produce the Sum and Carryout

Truth table and possible circuit to generate CarryOut

Inputs		
а	b	Carryin
0	1	1
1	0	1
1	1	0
1	1	1

CarryOut =
$$(a \cdot CarryIn) + (a \cdot b) + (b \cdot CarryIn)$$

= $(a \cdot b) + (a + b) \cdot CarryIn$

1-Bit ALU containing AND gate, OR gate and Full adder

Full 32-Bit ALU can be builtup from multiple copies

Subtraction can be included by noting that:

$$a + \overline{b} + 1 = a + (\overline{b} + 1) = a + (-b) = a - b$$

 $\overline{b} + 1$ is the negative of b

Subtract b from a by adding the negative of b to a

Uses two's complement of b

Building an ALU

1-Bit ALU that subtracts, adds and performs AND and OR

Building an ALU

Ainvert allows the computation of (b - a) and other functions