X, acts by Z X, & xi
x; Basis of of

Brauer alg.

Rnek:	quantited deg. Haff affine Hecke wis Ha BMN wy Wd
	Brd (par) like CESAT with add, generators et = 1 (X) von) (v, w) Zv; ov 1 ≤ i ≤ d-1 i i r i Banis of V
	rel. eg: Sixi = xixi Si - (-ei parameters
1 Theorem:	(Brundan-K., Brundau-S) type A: let & p=gla be a standard parabolic Then 1) 7 choice M=M°(X) simple, proj. such that the actions centralise each other, in particular Hd >> Endy (M°(1) × vod)
	2) This factors through Hd/Ie, where $Ie = (II(x_1-ai))$ $l = \#blocks$ in p give the size 3) \exists central idenupotent e sit. $ta/Ie = \xrightarrow{\sim} E$
	Horally; understand E = understanding Or Controlled by MOP

gr (Hd/Ie) = Clasd] # Clxi, xd] (xi) Rnuk: J Explicit bases for 2 (gr Ha/Ie) by depends complete numbers

Squemetric in the cycle on the indexed by position 1-multipartitions in the l-part. ef d. Gives a description of Z(Ha/Ie) Brandon Z(U(g)) Z(Ha/Ie) Z(Ha/Ie)-> 2(U(g)) ->> 2 (OP(g))

· -> surjectivity from lost lecture. Rusk: Etinpor-S., S. Analogous results for BCD. Behind this: U(glo)-action on category (E:= pr: (-0V) pri= projection
outs its generalised
from the CCSa7-action.
eigenspace. · Put a grading on Hy · understand interaction with eigenspaces. KLR: Quiver Hecke algebra (KLR-algebras) Now Hd. Consider a quiver Q (say to or to, (aydic))

F1(1) SF10) Ed, F1) Cd2 (de 3) f2 Ficele Facele fr Fix d din vector ~? Repa $Q = \frac{1}{1} \left(\frac{x}{x}, \frac{x}{y} \right) \left(\frac{x}{y} \right) \left(\frac{x}{x} \right) \left(\frac{x}{y} \right) \left(\frac{x}$ Gla/Pj à is a multi-dimension vector " Steinberg variety" Z(Ā, Â)= @ Q(Ă) ×Q(Â) Defu. Quiver-Selver algebra (with conv. product) Ad = (7, 12) GLd (2 (3, 14)) Quiver-Hecke Rd= (1,2) <- entries are <1 De fine affine Scheur alg. End Haff (DC [I/5]) Fact: 2 (Haff) = CTx_1, xd] Sd G=GLn(Qp)

Pick maximal ideal in Z_{a} (H_{a}^{aff}) corr. to the point $(q^{a_{1}}, q^{a_{d}})$, $1 \le ai \le e$, q is $e^{+e_{1}} = coot$ of unity	
There are iso morphismes of algebras The are iso morphismes of algebras There are iso morphismes of algebr	
generators: e(i) = 1 1 \le i; \le e dego i, iz is pairwise or the gonal issempotents	
pairwise or the gonal ident potents	
relations: $ \begin{array}{cccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	