$$\iint\limits_R g(x) h(y) dA = \int_a^b g(x) dx \int_c^d h(y) dy \quad \text{onde } R = [a, b] \times [c, d]$$

EXEMPLO 5 Se $R = [0, \pi/2] \times [0, \pi/2]$, então, pela Equação 5,

A função $f(x, y) = \operatorname{sen} x \cos y do$ Exemplo 5 é positiva em R, assim, a integral representa o volume do sólido que está acima de R e entre o gráfico de f, como mostrado na Figura 6.

$$\iint_{R} \operatorname{sen} x \cos y \, dA = \int_{0}^{\pi/2} \operatorname{sen} x \, dx \int_{0}^{\pi/2} \cos y \, dy$$
$$= \left[-\cos x \right]_{0}^{\pi/2} \left[\operatorname{sen} y \right]_{0}^{\pi/2} = 1 \cdot 1 = 1$$

FIGURA 6

Exercícios

1–2 Determine $\int_0^5 f(x, y) dx = \int_0^1 f(x, y) dy$.

1.
$$f(x, y) = 12x^2y^3$$

2.
$$f(x, y) = y + xe^{y}$$

3–14 Calcule a integral iterada.

3.
$$\int_{1}^{4} \int_{0}^{2} (6x^2 - 2x) \, dy \, dx$$

3.
$$\int_{1}^{4} \int_{0}^{2} (6x^{2} - 2x) dy dx$$
 4. $\int_{0}^{1} \int_{1}^{2} (4x^{3} - 9x^{2}y^{2}) dy dx$

5.
$$\int_0^2 \int_0^{\pi/2} x \sin y \, dy \, dx$$
 6. $\int_{\pi/6}^{\pi/2} \int_{-1}^5 \cos y \, dx \, dy$

6.
$$\int_{\pi/6}^{\pi/2} \int_{-1}^{5} \cos y \, dx \, dy$$

7.
$$\int_{-3}^{3} \int_{0}^{\pi/2} (y + y^2 \cos x) \, dx \, dy$$
 8. $\int_{0}^{1} \int_{1}^{2} \frac{x e^x}{y} \, dy \, dx$

8.
$$\int_0^1 \int_1^2 \frac{x e^x}{y} \, dy \, dx$$

9.
$$\int_{1}^{4} \int_{1}^{2} \left(\frac{x}{y} + \frac{y}{x} \right) dy dx$$
 10. $\int_{0}^{1} \int_{0}^{3} e^{x+3y} dx dy$

10.
$$\int_0^1 \int_0^3 e^{x+3y} dx dy$$

11.
$$\int_0^1 \int_0^1 v(u-v^2)^4 du dv$$

11.
$$\int_0^1 \int_0^1 v(u-v^2)^4 du dv$$
 12. $\int_0^1 \int_0^1 xy \sqrt{x^2+y^2} dy dx$

13.
$$\int_0^2 \int_0^{\pi} r \sin^2 \theta \ d\theta \ dr$$

13.
$$\int_0^2 \int_0^{\pi} r \sin^2 \theta \ d\theta \ dr$$
 14. $\int_0^1 \int_0^1 \sqrt{s+t} \ ds \ dt$

15–22 Calcule a integral dupla.

15.
$$\iint_{R} \operatorname{sen}(x+y) \, dA, \, R = \{(x,y) \mid 0 \le x \le \pi/2, 0 \le y \le \pi/2 \}$$

16.
$$\iint\limits_{R} (y + xy^{-2}) dA, \quad R = \{(x, y) \mid 0 \le x \le 2, 1 \le y \le 2\}$$

17.
$$\iint_{R} \frac{xy^2}{x^2 + 1} dA, \quad R = \{(x, y) \mid 0 \le x \le 1, \ -3 \le y \le 3\}$$

18.
$$\iint_{R} \frac{1+x^2}{1+y^2} dA, \quad R = \{(x,y) \mid 0 \le x \le 1, \ 0 \le y \le 1\}$$

19.
$$\iint_{R} x \operatorname{sen}(x+y) dA$$
, $R = [0, \pi/6] \times [0, \pi/3]$

20. $\iint \frac{x}{1+xy} dA, \quad R = [0,1] \times [0,1]$

21.
$$\iint_{R} ye^{-xy} dA, \quad R = [0, 2] \times [0, 3]$$

22.
$$\iint_{p} \frac{1}{1+x+y} dA, \quad R = [1,3] \times [1,2]$$

23–24 Esboce o sólido cujo volume é dado pela integral iterada.

23.
$$\int_0^1 \int_0^1 (4 - x - 2y) \, dx \, dy$$

24.
$$\int_0^1 \int_0^1 (2 - x^2 - y^2) dy dx$$

- 25. Determine o volume do sólido que se encontra abaixo do plano 4x + 6y - 2z + 15 = 0 e acima do retângulo $R = \{(x, y) \mid -1 \le x \le 2, -1 \le y \le 1\}.$
- 26. Determine o volume do sólido que se encontra abaixo do paraboloide hiperbólico $z = 3y^2 - x^2 + 2$ e acima do retângulo $R = [-1, 1] \times [-2, 2].$
- 27. Determine o volume do sólido que está abaixo do paraboloide elíptico $x^2/4 + y^2/9 + z = 1$ e acima do retângulo $R = [-1, 1] \times [-2, 2].$
- 28. Determine o volume do sólido limitado pela superfície $z = 1 + e^x \operatorname{sen} y$ e pelos planos $x = \pm 1, y = 0, y = \pi e$
- 29. Determine o volume do sólido limitado pela superfície $z = x \sec^2 y$ e pelos planos z = 0, x = 0, x = 2, y = 0 e $y = \pi/4$.
- 30. Encontre o volume do sólido no primeiro octante limitado pelo cilindro $z = 16 - x^2$ e pelo plano y = 5.

É necessário usar uma calculadora gráfica ou computador

1. As Homework Hints estão disponíveis em www.stewartcalculus.com

SCA É necessário usar um sistema de computação algébrica