4.7 – L'Hôpital's Rule

MATH 2554 - Calculus I

L'Hôpital's Rule is an extremely useful technique for evaluating a class of limits for which simple analytic techniques do not work.

Theorem (L'Hôpital's Rule, Indeterminate form: 0/0)

Suppose f and g are differentiable on an open interval I containing a value a such that $g'(x) \neq 0$ on I when $x \neq a$. If $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)},$$

provided the limit on the right-hand side exists or is $\pm \infty$. The rule also applies when $x \to a$ is replaced with $x \to \pm \infty$, $x \to a^+$, or $x \to a^-$.

Exercise: Compute

- 1. $\lim_{x\to 0} \frac{e^x 1}{x^2 + 3x}$.
- $\lim_{y \to 0} \frac{\tan 3y}{\tan 6y}.$

Theorem (L'Hôpital's Rule, Indeterminate form: ∞/∞)

Suppose f and g are differentiable on an open interval I containing a value a such that $g'(x) \neq 0$ on I when $x \neq a$. If $\lim_{x \to a} f(x) = \pm \infty$ and $\lim_{x \to a} g(x) = \pm \infty$, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)},$$

provided the limit on the right-hand side exists or is $\pm\infty$. The rule also applies when $x\to a$ is replaced with $x\to \pm\infty$, $x\to a^+$, or $x\to a^-$.

Exercise: Compute

$$1. \lim_{x \to \infty} \frac{e^{3x}}{4e^{3x} + 5}.$$

2.
$$\lim_{y \to \infty} \frac{\ln(3x + 5e^x)}{\ln(7x + 3e^{2x})}$$
.

3.
$$\lim_{s \to \infty} \frac{s}{\sqrt{s^2 + 4}}$$

Related Indeterminate Forms: $0 \cdot \infty$ and $\infty - \infty$. L'Hôpital's Rule can often be used to evaluate limits in these forms, but the expressions must first be manipulated to an indeterminate form of the type 0/0 or ∞/∞ .

Example: Find

$$1. \lim_{x \to \infty} x^2 \left(1 - \cos \frac{1}{x^2} \right)$$

2.
$$\lim_{x \to \infty} x - \sqrt{x^2 - 1}$$
. (Hint: factor out an x)

Related Indeterminate Forms: 1^{∞} , 0^{0} , and ∞^{0} . Using logarithms and exponentials, we can handle forms of this type. Observe:

$$\lim_{x\to a} f(x)^{g(x)} = \lim_{x\to a} e^{\ln(f(x)g(x))} = \lim_{x\to a} e^{g(x)\ln f(x)}.$$

Thus, if $\lim_{x\to a} f(x)^{g(x)}$ has the indeterminate form $1^{\infty}, 0^0$, or ∞^0 , then use the following procedure:

- 1. Analyze $L = \lim_{x \to a} g(x) \ln f(x)$. This limit can be put into the indeterminate form 0/0 or ∞/∞ .
- 2. When L is finite, $\lim_{x\to a} f(x)^{g(x)} = e^L$. If $L = \infty$, then $\lim_{x\to a} f(x)^{g(x)} = \infty$. If $L = -\infty$, then $\lim_{x\to a} f(x)^{g(x)} = 0$.

Find

- $1. \lim_{x \to 0^+} x^x$
- $2. \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x.$

Growth Rates of Functions

Definition

Suppose f and g are functions with $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} g(x) = \infty$. We say f grows faster than g as $x\to\infty$ if

$$\lim_{x\to\infty}\frac{g(x)}{f(x)}=0\quad\text{or, equivalently, if }\lim_{x\to\infty}\frac{f(x)}{g(x)}=\infty.$$

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = M$$

where $0 < M < \infty$ (i.e. M is nonzero and finite).

Notation: If f grows faster than g as $x \to \infty$, we write $g \ll f$.

Homework Problems: Section 4.7 (pp.310-311) #13-81 odd