Olimpiada de Fizică Etapa pe județ 24 februarie 2018 Barem

Pagina 1 din 6

$BAREM DE CORECTARE \rightarrow Clasa a IX-a$

Subject I (A+B) CINEMATICĂ	Parţial	Punctaj
Barem subject I (A+B)		10 puncte
I A. O deplasare dus – întors.		4 puncte
a.) Pentru $t \in (t_0, 2 \cdot t_0) \Leftrightarrow t_0 < t < 2t_0$ mişcarea particulei este uniform		
încetinită, cu accelerația $a = -v_0/t_0$.	0,50 p	
Spaţiul parcurs de particulă, de la monentul $t = 0$ până la momentul $2t_0$		
(când se oprește, căci $v=0$) este egal cu aria de sub graficul $v(t)$. Evident		
$X = \mathbf{v}_0 \cdot t_0 + 0.5 \cdot \mathbf{v}_0 \cdot t_0 = (3/2) \cdot \mathbf{v}_0 \cdot t_0$.	0,75 p	
Fie T momentul revenirii particulei în poziția $x = 0$ (în originea axei Ox).		
La întoarcere, spațiul X se parcurge uniform accelerat, cu accelerația		
$a' = v_0 / t_0$, putând scrie $X = 0.5 \cdot a' \cdot (T - 2t_0)^2$	1 p	
Egalând cele două expresii ale lui X găsim $T = (2 + \sqrt{3})t_0$	0,50 p	
b.) La revenire, modulul vitezei particulei este $v_r = a'(T - 2t_0) = = v_0 \sqrt{3}$	0,75 p	
c.) Prin asemănare de triunghiuri oținem $v_1 = v_0/2$ și $v_2 = v_0/2$ (cu sensul	0,50 p	
spre $x = 0$) (punctajul se adaptează corespunzător)	0,50 р	
La întoarcere, distanța X poate fi evaluată ca aria triunghiului de jos, de la		
momentul $2t_0$ până la momentul T (când viteza particulei este $v_r \neq 0$). Avem		
$X = 0.5 \cdot v_r \cdot (T - 2t_0)$. Asemănarea triunghiurilor dreptunghice ne furnizează		
relația $(T-2t_0)/v_r = t_0/v_0$, adică $v_r = v_0 \cdot (T/t_0 - 2)$. Revenind în expresia		
anterioară a lui X și egalând-o apoi cu $X = (3/2) \cdot v_0 \cdot t_0$, obținem din nou		
$T = (2 + \sqrt{3}) \cdot t_0$. Acum putem determina și viteza de revenire:		
$v_r = v_0 (T/t_0 - 2) = v_0 \sqrt{3}$. Tot prin asemănare de triunghiuri găsim $v_1 = v_0 / 2$		
$\sin v_2 = v_0/2$ (cu sensul spre $x = 0$).		
I B. O traversare imprudentă.		5 puncte
Un desen adecvat cu precizarea notațiilor	0,50 p	e panete
a.) și b.) Conform desenului putem scrie	, •	
$V_x = v \cdot \sin \alpha$, $V_y = v \cdot \cos \alpha$,		
$a = \mathbf{v}_{\mathbf{y}} \cdot t = \mathbf{v} \cdot t \cdot \cos \alpha$		
$b + a \cdot tg \alpha = \mathbf{v}_0 \cdot t \dots \frac{atg \alpha}{a}$	1 p	
a autoturism v ₀ v _y v _y v _y	- P	
Bordura b		

- 1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.
- 2. Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică

Etapa pe județ

24 februarie 2018 Barem

Pagina 2 din 6

Pagina 2 din 6		
Eliminarea timpul din ultimele relații : $t = a / v \cdot \cos \alpha$,		
$b + a \cdot tg \alpha = a \cdot v_0 / v \cdot \cos \alpha$, și stabilirea dependenței		
$v = \frac{v_0}{(b/a) \cdot \cos \alpha + \sin \alpha} \equiv v(\alpha) .$	0,50 p	
Cum stabilim valoarea minimă a vitezei ? Notăm convențional $b/a \equiv tg \theta$		
și transcriem relația de mai sus sub forma: $v(\alpha) = \frac{v_0 \cdot \cos \theta}{\sin(\alpha + \theta)}$	0,75 р	
Viteza este minimă pentru $sin(\alpha + \theta) = max = 1$	0,50 р	
Aceasta înseamnă $\theta + \alpha = 90^{\circ}$ ceea ce ne dă $tg \alpha = ctg \theta = a/b$ și imediat	-	
$\mathbf{v}_{\min} = \mathbf{v}_0 \cdot \cos \theta = a \cdot \mathbf{v}_0 / \sqrt{a^2 + b^2} .$	0,75 p	
c.) Cu formula $tg15^0 = tg(60^0 - 45^0) = tg(45^0 - 30^0) = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} = \frac{a}{b} = tg\alpha$,	0,75 р	
găsim că $\alpha = 15^{\circ}$ și $v_{min} = 0.259 \cdot v_{0} = 2.59 \text{ m/s}$ adică 9.32 km/h	1 p	
Altă metodă → (punctajul se adaptează corespunzător)	1 P	
a.) , b.) și c.) Fie $\overrightarrow{\mathbf{v}_r} = \overrightarrow{\mathbf{v}} - \overrightarrow{\mathbf{v}_0}$ viteza relativă a pietonului față de autoturism.		
Pentru un modul dat al vitezei pietonului, având însă diferite orientări,		
vârful vitezei relative $\overrightarrow{\mathbf{v_r}}$ descrie un cerc de rază \mathbf{v} .		
Înclinarea maximă față de bordură a vitezei relative este dată de:		
$sin\alpha = \frac{\mathbf{v}}{\mathbf{v}_0}$. (când $\overrightarrow{\mathbf{v}_r}$ este tangentă		
la cercul de rază v). Evitarea impactului dintre pieton și autoturism presupune ca		
înclinarea α să depășească o v_0 v_0		
valoare minimă: $\sin \alpha \ge \frac{a}{\sqrt{a^2+b^2}}$. Prin urmare, $\frac{\mathbf{v}}{\mathbf{v}_0} \ge \frac{a}{\sqrt{a^2+b^2}}$, deci : $\mathbf{v}_{min} = \frac{v_0.a}{\sqrt{a^2+b^2}}$.		
$\hat{\ln} \mod \text{corespunzător} : \sin \alpha = \frac{a}{\sqrt{a^2 + b^2}}$		
Numeric: $\mathbf{v}_{min} = 9.32 \ km/h \ \text{si} \ sin} \alpha = \frac{\sqrt{3}-1}{2\sqrt{2}} = \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} - \frac{1}{2} \cdot \frac{\sqrt{2}}{2} =$		
$sin60^{\circ} \cdot cos45^{\circ} - cos60^{\circ} \cdot sin45^{\circ} = sin15^{\circ}, \text{ deci } \alpha = 15^{\circ}.$		1 1
Oficiu		1 punct
Subiect II (A+B) O combinație: CINEMATICĂ + DINAMICĂ		10 puncte
II A. Un triunghi echilateral.		4,5puncte
a.) În referențialul legat de centrul O al plăcii, triunghiul efectuează o		
mișcare de rotație uniformă în jurul unei axe verticale ce trece prin punctul O .		
Față de acest referențial, vârfurile A , B și C ale plăcii au vitezele \vec{u}_A , \vec{u}_B , \vec{u}_C		
care sunt perpendiculare pe OA , OB , respectiv OC . În modul, toate aceste <i>viteze</i> sunt <i>egale</i> : $u = \vec{u}_A = \vec{u}_B = \vec{u}_C $.	0,75 p	

- 1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.
- 2. Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică Etapa pe județ

24 februarie 2018

Barem

Pagina 3 din 6

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică Etapa pe județ

24 februarie 2018 Barem

Abscisele variabile în timp ne permit să scriem relațiile: $v(t) = 3v_1(t) - 2v_2(t)$ - pentru viteze, respectiv $a(t) = 3a_1(t) - 2a_2(t)$ - pentru accelerații. Aici $a_1(t) = 3F/M$, cu sensul spre dreapta, și $a_2(t) = 2F/M$, cu sensul spre stânga. Astfel $a(t) = 3(3F/M) - 2(-2F/M) = 13F/M$. 1 p Oficiu 1 punct Subiect III (A+B) 10 puncte HI A. Corp prismatic. Asupra corpului de masă m acționează forțele $m\bar{g}$, \bar{T} (tensiunea din fir) și N_m (reacțiunea normală pe catetă). La echilibru putem scrie: $T = mg \sin \alpha$; $N_m = m.g \cdot \cos \alpha$ (1) Asupra corpului prismatic de masă M acționează forțele $N'_m = -N_m$, reacțiunea din	Pagina 4 din 6		
Absciscle variabile în timp ne permit să scriem relațiile: $v(t) = 3v_1(t) - 2v_2(t)$ - pentru viteze, respectiv $a(t) = 3a_1(t) - 2a_2(t)$ - pentru accelerații.	De aici, după o regrupare a termenilor obținem :		
Abscisele variabile în timp ne permit să scriem relațiile: $v(t) = 3v_1(t) - 2v_2(t)$ - pentru viteze, respectiv $a(t) = 3a_1(t) - 2a_2(t)$ - pentru accelerații	$x(t) = 3x_1(t) - 2x_2(t) + L - 2\pi \cdot r - x_0$, în care ultimii trei termini au o valoare		
$v(t) = 3v_1(t) - 2v_2(t) - \text{pentru viteze}, \text{ respectiv } a(t) = 3a_1(t) - 2a_2(t) - \text{pentru}$ $\text{accclerații.} \qquad 1 \text{ p}$ $\text{Aici } a_1(t) = 3F/M \text{ , cu sensul spre dreapta, } \text{ is } a_2(t) = 2F/M \text{ , cu sensul spre stânga. Astfel } a(t) = 3(3F/M) - 2(-2F/M) = 13F/M. \qquad 1 \text{ p}$ $\text{Oficiu} \qquad \qquad 1 \text{ punct}$ $\text{Subiect III (A+B)} \qquad \qquad 10 \text{ puncto}$ $\text{Subiect III (A+B)} \qquad \qquad 10 \text{ puncto}$ $\text{III A. Corp prismatic.} \qquad \qquad 4 \text{ puncte}$ $\text{Asupra corpului de masă } m \text{ actionează forțele } m_{\tilde{g}}, \tilde{T} \text{ (tensiunea din fir) } \text{ii } \tilde{M} \text$	fixă	0,50 p	
$v(t) = 3v_1(t) - 2v_2(t) - \text{pentru viteze}, \text{ respectiv } a(t) = 3a_1(t) - 2a_2(t) - \text{pentru}$ $\text{accclerații.} \qquad 1 \text{ p}$ $\text{Aici } a_1(t) = 3F/M \text{ , cu sensul spre dreapta, } \text{ is } a_2(t) = 2F/M \text{ , cu sensul spre stânga. Astfel } a(t) = 3(3F/M) - 2(-2F/M) = 13F/M. \qquad 1 \text{ p}$ $\text{Oficiu} \qquad \qquad 1 \text{ punct}$ $\text{Subiect III (A+B)} \qquad \qquad 10 \text{ puncto}$ $\text{Subiect III (A+B)} \qquad \qquad 10 \text{ puncto}$ $\text{III A. Corp prismatic.} \qquad \qquad 4 \text{ puncte}$ $\text{Asupra corpului de masă } m \text{ actionează forțele } m_{\tilde{g}}, \tilde{T} \text{ (tensiunea din fir) } \text{ii } \tilde{M} \text$	Abscisele variabile în timp ne permit să scriem relatiile	:	
Accelerații			
Acici $a_1(t) = 3F/M$, cu sensul spre dreapta, şi $a_2(t) = 2F/M$, cu sensul spre stânga. Astfel $a(t) = 3(3F/M) - 2(-2F/M) = 13F/M$. 1 punct Subiect III (A+B) 10 punct III A. Corp prismatic. Asupra corpului de masă m acționează forțele $m\ddot{g}$, T (tensiunea din fir) şi N_m (reacțiunea normală pe catetă). La echilibru putem scrie: $T = mg \sin \alpha$; $N_m = m.g \cdot \cos \alpha$ (1) Asupra corpului prismatic de masă m acționează forțele $N'm = -Nm$, reacțiunea din partea solului N , greutatea proprie Nm decionează forțele $N'm = -Nm$, reacțiunea din partea solului N greutatea proprie Nm decionează forțele $N'm = -Nm$ reacțiunea din partea solului N greutatea proprie Nm decionează forțele $N'm = -Nm$ reacțiunea din partea solului N greutatea proprie Nm decionează forțele $N'm = -Nm$ reacțiunea din partea solului N greutatea proprie Nm decionează forțele $N'm = -Nm$ reacțiunea din partea solului N greutatea proprie Nm decionează forțele $N'm = -Nm$ reacțiunea din partea solului N greutatea proprie Nm reacțiunea din partea solului Nm reacțiunea din Nm reacțiunea din partea solului Nm reacțiunea din partea solului Nm reacțiunea din partea solului Nm reacțiunea din p			
Subject III (A+B) 1 punct Subject III (A+B) 1 punct Subject III (A+B) 1 punct III A. Corp prismatic. A supra corpului de masă m acționează forțele $m\bar{g}$, \bar{T} (tensiunea din $f\bar{t}r$) și \bar{N}_m (reacțiunea normală pe catetă). La echilibru putem scrie: $T = mg \sin \alpha$; $N_m = m.g \cdot \cos \alpha$ (1) A supra corpului prismatic de masă m acționează forțele $\bar{N}'_m = -\bar{N}_m$, reacțiunea din partea solului \bar{N} , greutatea proprie $M\bar{g}$, tensiunea din fir \bar{T} și forța de frecare statică \bar{F}_f . Din condiția de echilibru a corpului de masă m , se obțin ecuațiile: - pe direcție verticală: $T \cdot \sin \alpha + N = N_m \cdot \cos \alpha + M_m \cdot \sin \alpha = N_m \cdot \cos \alpha + M_m \cdot \cos \alpha + M_m \cdot \cos \alpha + M_m \cdot \cos \alpha = M_m \cdot \cos \alpha + M_m \cdot \cos$			
Oficiu 1 punct Subiect III (A+B) 10 punct III A. Corp prismatic. Asupra corpului de masă m acționează forțele $m\bar{g}$, \bar{T} (tensiunea din fir) şi \bar{N}_m (reacțiunea normală pe catetă). La echilibru putem scrie: $T = mg \sin \alpha$; $N_m = m.g \cdot \cos \alpha$ (1) Asupra corpului prismatic de masă m acționează forțele \bar{N}_m = $-\bar{N}_m$, reacțiunea din partea solului \bar{N} , greutatea proprie $M\bar{g}$, tensiunea din fir \bar{T} și forța de frecare statică \bar{F}_f . Din condiția de echilibru a corpului de masă m , se obțin ecuațiile: - pe direcție verticală: $T \cdot sin\alpha + N = N_m \cdot cos\alpha + M_m \cdot sin\alpha = N_f$. (3)		1	
Subject III (A+B) 10 puncto III A. Corp prismatic. Asupra corpului de masă m acționează forțele $m\bar{g}$, \bar{T} (tensiunea din fir) și \bar{N}_m (reacțiunea normală pe catetă). La echilibru putem scrie: $T = mg \sin \alpha$; $N_m = m.g \cdot \cos \alpha$ (1) Asupra corpului prismatic de masă M acționează forțele $\bar{N}'_m = -\bar{N}_m$, reacțiunea din partea solului \bar{N} , greutatea proprie $M\bar{g}$, tensiunea din fir \bar{T} și forța de frecare statică \bar{F}_f . Din condiția de echilibru a corpului de masă M , se obțin ecuațiile: - pe direcție verticală: $T \cdot sin\alpha + N = N_m \cdot \cos \alpha + Mg$; (2)	stânga. Astfel $a(t) = 3(3F/M) - 2(-2F/M) = 13F/M$	· 1 p	
HI A. Corp prismatic. Asupra corpului de masă m acționează forțele $m\bar{g}$. \bar{T} (tensiunea din fir) și \bar{N}_m (reacțiunea normală pe catetă). La echilibru putem scrie: $T = mg \sin \alpha$; $N_m = m.g \cdot \cos \alpha$ (1) Asupra corpului prismatic de masă m acționează forțele $\bar{N}'_m = -\bar{N}_m$, reacțiunea din partea solului \bar{N} , greutatea proprie $M\bar{g}$, tensiunea din fir \bar{T} și forța de frecare statică \bar{F}_f . Din condiția de echilibru a corpului de masă m , se obțin ecuațiile: - pe direcție verticală: $T \cdot \sin \alpha + N = N_m \cdot \cos \alpha + Mg$; (2)	Oficiu		1 punct
Asupra corpului de masă m acționează forțele $m\vec{g}$, \vec{T} ($tensiunea\ din\ fir$) și \vec{N}_m ($teacțiunea\ normală\ pe\ catetă$). La echilibru putem scrie: $T=mg\sin\alpha$; $N_m=m.g\cdot\cos\alpha$ (1)	Subject III (A+B)		10 puncte
Asupra corpului de masă m acționează forțele $m\vec{g}$, \vec{T} ($tensiunea\ din\ fir$) și \vec{N}_m ($teacțiunea\ normală\ pe\ catetă$). La echilibru putem scrie: $T=mg\sin\alpha$; $N_m=m.g\cdot\cos\alpha$ (1)	III A. Corp prismatic.	†	4 puncte
(reacțiunea normală pe catetă). La echilibru putem scrie: $T = mg \sin \alpha$; $N_m = m.g \cdot \cos \alpha$ (1) Asupra corpului prismatic de masă \mathbf{M} acționează forțele $\overrightarrow{N'}_m = -\overrightarrow{N}_m$, reacțiunea din partea solului \overrightarrow{N} , greutatea proprie $M\overrightarrow{g}$, tensiunea din fir \overrightarrow{T} și forța de frecare statică \overrightarrow{F}_f . Din condiția de echilibru a corpului de masă \mathbf{M} , se obțin ecuațiile: - pe direcție verticală: $T \cdot \sin \alpha + N = N_m \cdot \cos \alpha + M_m \cdot \sin \alpha = N_m \cdot \cos \alpha + M_m \cdot \sin \alpha = N_m \cdot \sin \alpha = N_m \cdot \cos \alpha + M_m \cdot \sin \alpha = N_m \cdot \cos \alpha = N_m \cdot \sin \alpha = N_m \cdot \cos \alpha = N_m \cdot \sin \alpha = N_m \cdot \cos \alpha = N_m \cdot \sin \alpha = N_m \cdot \cos \alpha = N_m \cdot \sin \alpha = N_m \cdot \cos \alpha = N_m \cdot \sin \alpha = N_m \cdot \cos \alpha = N_m \cdot \sin \alpha = N_m \cdot \cos \alpha = N_m \cdot \sin \alpha = N_m \cdot \cos \alpha = N_m \cdot \sin \alpha = N_m \cdot \cos \alpha = N_m \cdot \sin \alpha = N_m \cdot \cos \alpha = N_m \cdot \sin \alpha = N_m \cdot \cos \alpha = N_m \cdot \sin \alpha = N_m \cdot \cos \alpha = N_m \cdot \cos $		7	T P STATE OF
La echilibru putem scrie: $T = mg \sin \alpha$; $N_m = m. g \cdot \cos \alpha$ (1)	forțele $m\vec{g}$, \vec{T} (tensiunea din fir) și \vec{N}_m		
Asupra corpului prismatic de masă \mathbf{M} acționează forțele $\overrightarrow{N'}_m = -\overrightarrow{N}_m$, reacțiunea din partea solului \overrightarrow{N} , greutatea proprie $M\overrightarrow{g}$, tensiunea din fir \overrightarrow{T} și forța de frecare statică \overrightarrow{F}_f . Din condiția de echilibru a corpului de masă \mathbf{M} , se obțin ecuațiile: - pe direcție verticală: $T \cdot sin\alpha + N = N_m \cdot cos\alpha + Mg$; (2)	(reacțiunea normală pe catetă).		
Asupra corpului prismatic de masă M acționează forțele $\overrightarrow{N'}_m = -\overrightarrow{N}_m$, reacțiunea din partea solului \overrightarrow{N} , greutatea proprie $M\overrightarrow{g}$, tensiunea din fir \overrightarrow{T} și forța de frecare statică \overrightarrow{F}_f . Din condiția de echilibru a corpului de masă M, se obțin ecuațiile: - pe direcție verticală: $T \cdot sin\alpha + N = N_m \cdot cos\alpha + M_g$; (2) - pe direcție orizontală: $T \cdot cos\alpha + N_m \cdot sin\alpha = F_f$. (3) Din ecuațiile (1) și (2) deducem $N = mg \cdot (cos^2\alpha - sin^2\alpha) + Mg = mg \cdot cos2\alpha + Mg$ iar din ecuațiile (1) și (3) găsim $F_f = 2 \cdot mg \cdot sin\alpha \cdot cos\alpha = mg \cdot sin2\alpha$. Condiția de nealunecare a corpului prismatic impune ca forța de frecare statică să fie inferioară forței de frecare la alunecare, adică $F_f \leq \mu \cdot N$, deci coeficientul minim de frecare la alunecare are expresia:	· \	$0.75 \mathrm{p}$	
acționează forțele $\overrightarrow{N'}_m = -\overrightarrow{N}_m$, reacțiunea din partea solului \overrightarrow{N} , greutatea proprie $M\overrightarrow{g}$, tensiunea din fir \overrightarrow{T} și forța de frecare statică \overrightarrow{F}_f . Din condiția de echilibru a corpului de masă \mathbf{M} , se obțin ecuațiile: - pe direcție verticală: $T \cdot sin\alpha + N = N_m \cdot cos\alpha + Mg$; (2)	$T = mg \sin \alpha$; $N_m = m.g \cdot \cos \alpha$ (1)	o, re p	
partea solului \vec{N} , greutatea proprie $M\vec{g}$, tensiunea din fir \vec{T} și forța de frecare statică \vec{F}_f . Din condiția de echilibru a corpului de masă \mathbf{M} , se obțin ecuațiile: - pe direcție verticală: $T \cdot sin\alpha + N = N_m \cdot cos\alpha + Mg$; (2) - pe direcție orizontală: $T \cdot cos\alpha + N_m \cdot sin\alpha = F_f$. (3) Din ecuațiile (1) și (2) deducem $N = mg \cdot (cos^2\alpha - sin^2\alpha) + Mg = mg \cdot cos2\alpha + Mg$ iar din ecuațiile (1) și (3) găsim $F_f = 2 \cdot mg \cdot sin\alpha \cdot cos\alpha = mg \cdot sin2\alpha$. Condiția de nealunecare a corpului prismatic impune ca forța de frecare statică să fie inferioară forței de frecare la alunecare, adică $F_f \leq \mu \cdot N$, deci coeficientul minim de frecare la alunecare are expresia:	Asupra corpului prismatic de masă \mathbf{M}	_	
tensiunea din fir \vec{T} și forța de frecare statică \vec{F}_f . Din condiția de echilibru a corpului de masă \mathbf{M} , se obțin ecuațiile: - pe direcție verticală: $T \cdot sin\alpha + N =$ $= N_m \cdot \cos \alpha + Mg \; ; \; (2) \; \dots \qquad \qquad$	acționează forțele $\overrightarrow{N'}_m = -\overrightarrow{N}_m$, reacțiunea din		
Din condiția de echilibru a corpului de masă \mathbf{M} , se obțin ecuațiile: - pe direcție verticală: $T \cdot sin\alpha + N = N_m \cdot cos\alpha + Mg$; (2) - pe direcție orizontală: $T \cdot cos\alpha + N_m \cdot sin\alpha = F_f$. (3) Din ecuațiile (1) și (2) deducem $N = mg \cdot (\cos^2 \alpha - sin^2 \alpha) + Mg = mg \cdot cos2\alpha + Mg$ iar din ecuațiile (1) și (3) găsim $F_f = 2 \cdot mg \cdot sin\alpha \cdot cos\alpha = mg \cdot sin2\alpha$. Condiția de nealunecare a corpului prismatic impune ca forța de frecare statică să fie inferioară forței de frecare la alunecare, adică $F_f \leq \mu \cdot N$, deci coeficientul minim de frecare la alunecare are expresia:	partea solului \vec{N} , greutatea proprie $M\vec{g}$,		
masă \mathbf{M} , se obțin ecuațiile: - pe direcție verticală: $T \cdot sin\alpha + N = \mathbf{M} \cdot \cos \alpha + Mg$; (2)	tensianea din in 1 și forța de necare statica 1 f.		
- pe direcție verticală: $T \cdot sin\alpha + N = \frac{1}{f} \sqrt{Mg}$ - pe direcție orizontală: $T \cdot cos\alpha + N_m \cdot sin\alpha = F_f$. (3)			
$=N_m\cdot\cos\alpha+Mg$; (2)	$\Gamma f = V M \alpha$		
Din ecuațiile (1) și (2) deducem $N = mg \cdot (\cos^2 \alpha - \sin^2 \alpha) + Mg = mg \cdot \cos 2\alpha + Mg$ iar din ecuațiile (1) și (3) găsim $F_f = 2 \cdot mg \cdot \sin \alpha \cdot \cos \alpha = mg \cdot \sin 2\alpha$ Condiția de nealunecare a corpului prismatic impune ca forța de frecare statică să fie inferioară forței de frecare la alunecare, adică $F_f \leq \mu \cdot N$, deci coeficientul minim de frecare la alunecare are expresia:	•	0,75 p	
$N = mg \cdot (\cos^2 \alpha - \sin^2 \alpha) + Mg = mg \cdot \cos 2\alpha + Mg$	- pe direcție orizontală: $T \cdot cos\alpha + N_m \cdot sin\alpha = F_f$. (3)	. 0,75 p	
iar din ecuațiile (1) și (3) găsim $F_f = 2 \cdot mg \cdot sin\alpha \cdot cos\alpha = mg \cdot sin2\alpha$ Condiția de nealunecare a corpului prismatic impune ca forța de frecare statică să fie inferioară forței de frecare la alunecare, adică $F_f \leq \mu \cdot N$, deci coeficientul minim de frecare la alunecare are expresia:			
Tar din ecuațiile (1) și (3) găsim $F_f = 2 \cdot mg \cdot sin\alpha \cdot cos\alpha = mg \cdot sin2\alpha$ Condiția de nealunecare a corpului prismatic impune ca forța de frecare statică să fie inferioară forței de frecare la alunecare, adică $F_f \leq \mu \cdot N$, deci coeficientul minim de frecare la alunecare are expresia:			
statică să fie inferioară forței de frecare la alunecare, adică $F_f \leq \mu \cdot N$, deci coeficientul minim de frecare la alunecare are expresia:	,		
coeficientul minim de frecare la alunecare are expresia:			
$\mu_{min} = \frac{F_f}{N} = \frac{mg \cdot \sin 2\alpha}{mg \cdot \cos 2\alpha + Mg} = \frac{m \cdot \sin 2\alpha}{m \cdot \cos 2\alpha + M} \dots $		-	
$\mu_{min} - \overline{N} - \overline{mg \cdot cos2\alpha + Mg} - \overline{m \cdot cos2\alpha + M} \dots $ 0,75 p	$\frac{1}{1} - \frac{F_f}{g} = \frac{mg \cdot \sin 2\alpha}{m} = \frac{m \cdot \sin 2\alpha}{m}$		
	$\mu_{min} - \frac{1}{N} - \frac{1}{mg \cdot cos2\alpha + Mg} - \frac{1}{m \cdot cos2\alpha + M} \cdots$	0,75 p	

- 1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.
- 2. Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică Etapa pe judeţ

24 februarie 2018 Barem

Pagina 5 din 6

Altă metodă. → [punctajul este trecut între ()] Asupra corpului m acționează forțele $m\vec{g}$, \vec{T} (tensiunea din fir) și \vec{N}_m (reacțiunea normală pe catetă). La echilibru $T = mg \sin \alpha$, $N_m = mg \cdot \cos \alpha$(0,75 p) ► Considerăm acum sistemul "corp + prismă". Pe suprafata orizontală (ipotenuză) apasă greutatea totală $(M+m)\vec{g}$. În sus, pe verticală, acționează reacțiunea normală \vec{N} și proiecțiile respective ale forțelor de tensiune $2 \cdot \vec{T}$. La echilibru putem scrie Mg $(M+m)g = N + 2T \cdot \sin \alpha$(0,75 p) Astfel obţinem: $N = (M + m)g - 2mg \cdot \sin^2 \alpha$(0,50 p) \blacktriangleright În direcție orizontală, forța de frecare $F_{fr} = \mu N$ trebuie să fie compensată de proiecțiile pe respectiva direcție a forțelor de tensiune $2\bar{T}$. Când aceasta avem $\mu N = 2T \cdot \cos \alpha$, întâmplă care $T = mg \sin \alpha$(0,75 p) Astfel $N = (mg/\mu) \cdot \sin(2\alpha)$(0,50 p) ▶ Din cele două expresii ale lui *N* deducem că : $\mu = \sin(2\alpha)/[M/m + \cos(2\alpha)].$ (0.75 p) III B. Tub cu lichide. 5 puncte În sistemul de referință al tubului care se mișcă cu accelerația constantă \vec{a} , **neorizontală** (vezi figura!), suma dintre forța gravitațională $\vec{F}_1 = m\vec{g}$ și forța de inerție $\vec{F}_2 = -m\vec{a}$ poate fi considerată ca o forță gravitațională rezultantă $\vec{G}_{rez} = m\vec{g}_{ef}$ cu accelerația efectivă $\vec{g}_{\it ef} = \vec{g} - \vec{a}$. 1 p (Obs. : punctul (1 p) se acordă în întregime numai când există și un desen corect!)

- Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.
- Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică

Etapa pe judeţ 24 februarie 2018

Pagina 6 din 6

Din echilibrul celor două coloane de lichid găsim înălțimea coloanei de apă de deasupra liniei efective G_1G_2 care trece prin punctul de contact al apei cu uleiul, perpendicular pe direcția \vec{g}_{ef} .		
Avem $h = H\rho/\rho_a$, unde $\rho_a = 1g/cm^3$ este densitatea apei	1 p	
corect echilibrul coloanelor de lichide din cele două brațe !!)		
Din geometria desenului determinăm unghiul φ , de înclinare al liniei G_1G_2 cu orizontala adevărată (reală):		
$tg\varphi = \Delta h/L = (H-h)/L = (H/L)(1-\rho/\rho_a) .$	0,75 p	
Cu valorile numerice din enunț găsim $tg \varphi = 1$, adică $\varphi = 45^{\circ}$	0,25 p	
Accelerația \vec{g}_{ef} poate fi înclinată sub unghiul φ (față de verticală) pentru		
diverse orientări ale accelerației \vec{a} . Însă, ca modul, <u>accelerația</u> \vec{a} este <u>minimă</u> doar atunci când vectorii \vec{a} și \vec{g}_{ef} sunt reciproc perpendiculari	1p	
Aşadar, $a_{\min} = g \cdot \sin \varphi = \frac{g \cdot tg \varphi}{\sqrt{tg^2 \varphi + 1}} = \frac{g}{\sqrt{2}} \approx 7 \text{ m/s}^2.$	1 p	
Observație: Dacă am fi considerat o accelerație \vec{a} pe direcție orizontală, am fi obținut un rezultat greșit, deoarece $a = g \cdot tg \varphi = g > a_{\min}$.		
Oficiu		1 punct

Barem propus de:

prof. univ. dr. **ULIU** Florea, Universitatea din Craiova; prof. **TĂNASE** Dorina, Liceul "KŐRÖSI CSOMA SÁNDOR", Covasna; prof. Cristian **MIU**, Inspectoratul Şcolar Județean Olt; prof. **ANTONIE** Dumitru, Colegiul Tehnic nr.2, Târgu – Jiu.

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.