

# Universidad Nacional Autónoma de México Facultad de Ingeniería



#### MICROPROCESADORES Y MICROCONTROLADORES

## Tema 2

## Arquitectura y funcionamiento de un microprocesador

#### Tabla de contenidos

Objetivo del tema

Unidades funcionales de un microcontrolador

Arquitectura interna de un microprocesador

Principio de operación de un microprocesador

Tarea 2 – Código de instrucciones de un procesador

Microprocesador

Provecto 2 – Procesador de 8 bits

Conceptos adicionales de microprocesadores

Microcontrolador

Tarieta de desarrollo

Clasificación de los microprocesadores

Arquitectura de los microprocesadores

Microprocesadores ARM



#### Objetivo del tema

#### Objetivo general:

El alumno analizará la arquitectura interna y el funcionamiento de un microprocesador y un microcontrolador.

#### Contenido:

- 2.1. Arquitectura interna de un microprocesador.
- 2.2. Sistema de reloj.
- 2.3. Arquitectura de un microcontrolador.





#### Unidades funcionales de un microcontrolador





#### Arquitectura interna de un microprocesador

#### Unidad lógica aritmética

Unidad que realiza operaciones con operandos binarios.

- Operaciones lógicas.
- Operaciones aritméticas.
- Complementos.
- Rotaciones hacia la derecha/izquierda.
- Contiene un conjunto de flip-flops denominados banderas que guardan información relacionada con el resultado de una operación anterior.





### Arquitectura interna de un microprocesador

#### Registros

Unidades de almacenamiento temporal en el microprocesador.

- Contador de programa (PC). Instrucción que se ejecuta.
- Registro de instrucciones (IR). Instrucción leída de la ROM. previo a su decodificación.
- Registro de datos (DR). Datos leídos de la RAM. previo a su ingreso a la ALU.
- Acumuladores (ACC y ACCT). Resultado de la ALU, lo ingresa de nuevo como operando para otra instrucción (operaciones acumuladas).



### Arquitectura interna de un microprocesador

#### Unidad de control

Unidad encargada de mantener la secuencia de eventos en un microprocesador.

- Funciona a partir de una señal de reloj que distribuye al resto de elementos que forman parte del procesador.
- Mantiene un funcionamiento secuencial.
- Su corazón es el Generador de ciclo de máquina (GCM), el cual produce las señales de control.
- Puede responder a señales externas (interrupciones).













8 / 50

#### Diagrama de tiempos del procesador









10 / 50









































20 / 50









22 / 50













25 / 50





26 / 50

## CÓDIGO DE INSTRUCCIONES DEL PROCESADOR

|     | Ciclo de<br>instrucción | Pulso<br>de reloj<br>OSC | Línea<br>activa<br>GCM | PC            | Memoria de instrucciones | Memoria<br>de datos | Registro<br>activo | Línea<br>activa<br>DECO | Salida<br>ALU | Instrucción |
|-----|-------------------------|--------------------------|------------------------|---------------|--------------------------|---------------------|--------------------|-------------------------|---------------|-------------|
| -   | ı                       | 0                        |                        | 0×00          | 0×07                     | 0×03                | IR                 | ٤?                      | ¿?            |             |
|     |                         | 1                        | Α                      | 0×00          | 0×07                     | 0×03                |                    | 7                       | ٤?            |             |
|     |                         | 2                        |                        | 0×00          | 0×07                     | 0×03                |                    | 7                       | ٤?            |             |
|     |                         | 3                        | В                      | 0×00          | 0×07                     | 0×03                | DR                 | 7                       | 0×03          | C           |
|     |                         | 4                        | Ε                      | $0 \times 01$ | 0×02                     | 0×0A                | PC                 | 7                       | 0×03          | Carga       |
|     |                         | 5                        | C                      | $0 \times 01$ | 0×02                     | 0×0A                | ACCT               | 7                       | 0×03          |             |
|     |                         | 6                        |                        | $0 \times 01$ | 0×02                     | 0×0A                |                    | 7                       | 0×03          |             |
|     |                         | 7                        | D                      | $0 \times 01$ | 0×02                     | 0×0A                | ACC                | 7                       | 0×03          |             |
| -   | Ш                       | 8                        |                        | 0×01          | 0×02                     | 0×0A                |                    | 7                       | 0×03          |             |
|     |                         | 9                        | Α                      | $0 \times 01$ | 0×02                     | 0×0A                | IR                 | 2                       | 0×00          |             |
|     |                         | 10                       |                        | $0 \times 01$ | 0×02                     | 0×0A                |                    | 2                       | 0×00          |             |
|     |                         | 11                       | В                      | $0 \times 01$ | 0×02                     | 0×0A                | DR                 | 2                       | 0×09          | VOD         |
|     |                         | 12                       | Ε                      | 0×02          | 0×01                     | 0×05                | PC                 | 2                       | 0×09          | XOR         |
|     |                         | 13                       | C                      | 0×02          | 0×01                     | 0×05                | ACCT               | 2                       | 0×09          |             |
|     |                         | 14                       |                        | 0×02          | 0×01                     | 0×05                |                    | 2                       | 0×09          |             |
| 1   |                         | 15                       | D                      | 0×02          | 0×01                     | 0×05                | ACC                | 2                       | 0×03          |             |
| 110 |                         |                          |                        |               |                          |                     |                    |                         |               |             |



## Tarea 2 – Código de instrucciones de un procesador

Indicar el resultado a la salida del procesador para cada uno de los ciclos de instrucción y desarrollar el código de instrucción para los siguientes datos almacenados en las memorias de instrucciones y datos:

| Equipo 1 |           |        |       |    | Equipo 2 |        |      |   | Equipo 3 |    |        |       |   |
|----------|-----------|--------|-------|----|----------|--------|------|---|----------|----|--------|-------|---|
|          | Localidad | Instr. | Datos | Lo | calidad  | Instr. | Date | S | Localid  | ad | Instr. | Datos |   |
|          | 0x00      | 0x07   | 0x0C  |    | 0x00     | 0x07   | 0x0  | 3 | 0x00     | )  | 0x07   | 0x09  | _ |
|          | 0x01      | 0x05   | 0x04  |    | 0x01     | 0x01   | 0x0  | 5 | 0x01     |    | 0x00   | 0x03  |   |
|          | 0x02      | 0x01   | 0x05  |    | 0x02     | 0x06   | 0x0  | 3 | 0x02     | 2  | 0x05   | A0x0  |   |
|          | 0x03      | 0x03   | 0x09  |    | 0x03     | 0x00   | 0x0  | 6 | 0x03     | 3  | 0x02   | 0x06  |   |
|          | 0x04      | 0x04   | 0x04  |    | 0x04     | 0x04   | 0x0  | 5 | 0x04     | :  | 0x03   | 0x0B  |   |
|          | 0x05      | 0x06   | 0x07  |    | 0x05     | 0x05   | 0x0  | 3 | 0x05     | ,  | 0x01   | 0x07  |   |
|          | 0x06      | 0x02   | A0x0  |    | 0x06     | 0x03   | 0x0  | 2 | 0x06     | ;  | 0x06   | 0x02  |   |
|          | 0x07      | 0x00   | 0x02  |    | 0x07     | 0x02   | 0x0  | 3 | 0x07     | •  | 0x04   | 0x01  |   |



#### MICROPROCESADOR.

Dispositivo programable con una muy alta escala de integración (VLSI, por sus siglas en inglés), encargado de dirigir todas las tareas que realiza la máquina, a través de una búsqueda cíclica de las instrucciones y de los datos, para posteriormente interpretarlas y ejecutarlas, con el objetivo de realizar cálculos complejos a través de una secuencia de instrucciones correspondientes a operaciones básicas.

#### Características principales:

- Dispositivo programable.
- Flujo de operación secuencial.
- Velocidad de operación alta (varios MHz).





#### Proyecto 2 – Procesador de 8 bits

Describir en VHDL, con estilo de flujo de datos y/o estructural, la arquitectura del procesador de 8 bits que pueda ejecutar códigos de al menos 16 instrucciones de extensión.

El procesador debe tener la capacidad de ejecutar las instrucciones: OR, NOR, AND, NAND, XOR, XNOR, inversor del dato de memoria, inversor del acumulador, no operación (NOP), carga del acumulador, suma aritmética y multiplicación aritmética (no signada).

Además, agregar las banderas de acarreo (C) y overflow (V) como salidas de la ALU para las operaciones aritméticas.



#### Conceptos adicionales de microprocesadores

#### Registros

- Registros de propósito específico (IR, DR, PC, ACC, ACCT, etc.).
- Registros de propósito general (R1, R2, R3, etc. / A, B, C, etc.).

#### **Memorias**

- Memoria de instrucciones ROM.
- Memoria de datos RAM.

#### Puertos de entrada/salida

- Funciones digitales.
  - Paralelo (GPIO).
  - Serial (UART, I2C, SPI, etc.).
- Funciones analógicas (ADC, DAC).

#### Módulos embebidos

Unidades de procesamiento (FPU),
Temporizadores, controladores, etc.

#### Buses de interconexión

- Grupos/conjuntos de líneas de conexión que comunican a los múltiples circuitos del sistema (internos y externos).
- Bus de direcciones unidireccional.
- Bus de datos bidireccional.
- Bus de control unidireccional (dependiendo de la señal).



### MICROCONTROLADOR

Circuito electrónico con una muy alta escala de integración (VLSI) que incluye en su interior a un microprocesador, memoria y unidades de entrada/salida. Además, puede contener algún otro módulo embebido (ADC, DAC, UART, I2C, SPI, TIMER, etc.).





#### Tarjeta de desarrollo

Circuito electrónico que cuenta con un dispositivo programable y diversos elementos que le permitan al usuario acceder fácil y rápidamente a los periféricos para realizar aplicaciones y pruebas (como conectores, reguladores, sensores, etc.).

Las tarjetas de desarrollo también pueden ser de propósito general o de propósito específico.





### Clasificación de los microprocesadores

#### Longitud de palabra

- Número de bits que se pueden procesar simultáneamente (4, 8, 16, 32, 64).
  - Arquitectura.
  - Tamaño de los registros.
  - Tamaño de la ALU.
  - Buses internos.

#### Tecnología de fabricación

- PMOS (P-type metal-oxide-semiconductor).
- NMOS (N-type metal-oxide-semiconductor).
- CMOS (complementary metal-oxide-semiconductor).

#### **Aplicación**

- Propósito general.
- Propósito específico.
  - Procesador digital de señales (DSP).

#### Cantidad de núcleos

- Un solo núcleo.
- Multi-núcleo.

#### **Arquitectura**

- Von Neumann.
- Harvard.
- RISC (reduced instruction set computer).
- CISC (complex instruction set computer).



### Arquitectura de los microprocesadores

#### Arquitectura Von Neumann

Las instrucciones (programa) y los datos se encuentran en misma misma memoria.



# Arquitectura de los microprocesadores

#### Arquitectura Harvard

Las instrucciones (programa) y los datos se encuentran memorias diferentes.



# ARQUITECTURA DE LOS MICROPROCESADORES

| Parámetro                                                                                                  | CISC                             | RISC                            |
|------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|
| Cantidad de instrucciones.                                                                                 | Muchas                           | Pocas                           |
| Cantidad de instrucciones que pueden acceder a memoria.                                                    | Muchas                           | Pocas                           |
| Cantidad de instrucciones en donde el procesador puede leer y escribir en memoria en la misma instrucción. | Muchas                           | Ninguna                         |
| Cantidad de registros.                                                                                     | Pocos, con función<br>específica | Muchos, de propósito<br>general |
| Cantidad de modos de direccionamiento                                                                      | Muchos                           | Limitado                        |
| Cantidad de ciclos de reloj por instrucción.                                                               | Varios                           | Uno                             |
| Eficiencia en hardware                                                                                     | Compleja                         | Alta                            |
| Consumo energético.                                                                                        | Mayor                            | Muy bajo                        |
| Complejidad para la ejecución simultanea (pipeline).                                                       | Alta                             | Baja                            |



# Principales sucesos históricos

| Fecha | Microprocesador       | Tipo | Descripción                                 |
|-------|-----------------------|------|---------------------------------------------|
| 1971  | INTEL 4004            | CISC | Primer microprocesador de 4 bits.           |
| 1972  | INTEL 8008            | CISC | Primer microprocesador de 8 bits.           |
| 1974  | INTEL 8080            | CISC | Primer microprocesador de 8 bits canal N.   |
| 1974  | MOTOROLA 6800         | CISC | Microprocesador con 6800 transistores.      |
| 1975  | IBM 801               | RISC | Mini-computadora experimental.              |
| 1976  | INTEL 8048            | CISC | Primer micro-computadora en un circuito in- |
|       |                       |      | tegrado de 8 bits.                          |
| 1979  | MOTOROLA 68000        | CISC | Microprocesador con 68000 transistores.     |
| 1979  | INTEL 8088            | CISC | Primer microprocesador de 8 bits con arqui- |
|       |                       |      | tectura interna de 16 bits.                 |
| 1981  | IBM PC con INTEL 8088 | CISC |                                             |
| 1981  | MIPS                  | RISC | Universidad de Standford.                   |
| 1984  | RISC II               | RISC | Universidad de Berkeley.                    |
| 1985  | Acorn Computers ARM-1 | RISC | ARM.                                        |



## Microprocessadores ARM

### Acorn Computers (1985)

- Requiere realizar computadoras baratas para el sector educativo.
- Diseña una arquitectura de procesador con pocos transistores (Acorn RISC Machine ARM 1, 2).
- La arquitectura consume poca energía, por lo que es ideal para dispositivos móviles y aplicaciones de sistemas embebidos.

### APPLE - Acorn - VLSI Technology (1991)

- Procesador para un asistente digital personal (PDA, por sus siglas en inglés).
- Se crea un nuevo modelo de negocio Advanced RISC Machines Ltd diseña el núcleo del procesador y vende los derechos de manufactura a otras compañías (Intellectual Property, IP).
- ARM7.



## Microprocessadores ARM

#### **ARMvX**

Versión de la arquitectura.

#### **ARMX**

■ Familia de procesadores basados en la misma arquitectura pero con implementaciones diferentes.

#### ARM<sub>v</sub>7

 De las versiones más recientes de la arquitectura, con varios diseños diferentes que dan lugar a múltiples familias.

#### **Familia Cortex**

- Nueva familia ARM.
  - Cortex A: Alto desempeño para plataformas abiertas (smartphone, tablets, etc.).
  - Cortex R: Aplicaciones en tiempo real (autos, impresoras, switches de red).
  - Cortex M: Microcontroladores para aplicaciones de sistemas embebidos.



### MICROPROCESADORES ARM

#### Versiones de las arquitecturas ARM





## MICROPROCESADORES ARM





# Arquitectura de un microprocesador ARM Cortex-M



#### Tareas que se pueden ejecutar en paralelo

- ICode Bus: Extraer código de la ROM.
- DCode Bus: Leer datos constantes de la ROM.
- System Bus: Leer/Escribir datos de la RAM o de los puertos de E/S y extraer código de la RAM.
- PPB (Private Peripheral Bus): Leer/Escribir datos de los periféricos internos.
- AHB (Advanced High-Performance Bus): Leer/Escribir datos de los puertos de E/S con una alta velocidad.



M. I. Christo Aldair Lara Tenorio

## Pipeline de un procesador ARM Cortex-M

### Diagrama de tiempos del procesador ARM Cortex M4

Emplea un pipeline de 3 etapas.





# ARQUITECTURA DE UN MICROCONTROLADOR CON UN CORTEX-M





45 / 50

# Familia de microcontroladores con un Cortex-M

| Part number   | RAM | Flash | I/O  | I/O modules                                  |
|---------------|-----|-------|------|----------------------------------------------|
| LM3S811       | 8   | 64    | 32   | PWM                                          |
| LM3S1968      | 64  | 256   | 52   | PWM                                          |
| LM3S6965      | 64  | 256   | 42   | PWM, Ethernet                                |
| LM3S8962      | 64  | 256   | 42   | PWM, CAN, Ethernet, IEEE1588                 |
| TM4C1231C3PM  | 32  | 12    | 43   | floating point, CAN, DMA                     |
| TM4C1233H6PM* | 32  | 256   | 43   | floating point, CAN, DMA, USB                |
| TM4C123GH6PM  | 32  | 256   | 43   | floating point, CAN, DMA, USB, PWM           |
| TM4C123GH6ZRB | 32  | 256   | 120  | floating point, CAN, DMA, USB, PWM           |
| TM4C1294NCPDT | 256 | 1024  | 90   | floating point, CAN, DMA, USB, PWM, Ethernet |
|               | KiB | KiB   | pins |                                              |



# Mapa de memoria del TM4C1294





## Set de registros del procesador ARM Cortex-M4





## Almacenamiento en memoria del TM4C1294

Si se cuenta con bancos de memoria de 8 bits (1 byte) por cada dirección ... ¿Cómo almacenar números de 16 bits (2 bytes)?

Por ejemplo 
$$\rightarrow$$
 1000 = 0x03E8

Almacenar el **byte más significativo** en la dirección inferior.

| Dirección   | Datos |
|-------------|-------|
| 0x2000.0450 | 0x03  |
| 0x2000.0451 | 0xE8  |

Almacenar el **byte menos significativo** en la dirección inferior.

| Dirección   | Datos |
|-------------|-------|
| 0x2000.0450 | 0xE8  |
| 0x2000.0451 | 0x03  |

Las instrucciones en ARM se almacenan con este formato.



## Almacenamiento en memoria del TM4C1294

Si se cuenta con bancos de memoria de 8 bits (1 byte) por cada dirección  $\dots$  ¿Y ahora cómo almacenar números de 32 bits (4 bytes)?

Por ejemplo → Almacenar el dato 0x12345678 a partir de la dirección de memoria 0x2000.0450

Almacenar el **byte más significativo** en la dirección inferior.

| Dirección   | Datos |
|-------------|-------|
| 0x2000.0450 | 0x12  |
| 0x2000.0451 | 0x34  |
| 0x2000.0452 | 0x56  |
| 0x2000.0453 | 0x78  |

Almacenar el **byte menos significativo** en la dirección inferior.

| Dirección   | Datos |
|-------------|-------|
| 0x2000.0450 | 0x78  |
| 0x2000.0451 | 0x56  |
| 0x2000.0452 | 0x34  |
| 0x2000.0453 | 0x12  |

Las instrucciones en ARM se almacenan con este formato.

