

وزارة التربية التوجيه الفني العام للعلوم اللجنة الفنية المشتركة للكيمياء

بنك كيمياء الصف الحادي عشر العلمي (الفترة الأولى) الفترة الأولى العام الدراسي 2018 – 2019 م

رئيس اللجنة الفنية المشتركة للكيمياء أ/ منى الأنصاري الموجه الفني العام للعلوم بالإنابة أ/ عايده الشريف

الوحدة الأولى

الإلكتـرونـات في الـذرة

ع الأول)- 2019/2018 (3)	التوجية الفني العام للعلوم اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء الصف الحادي عشر العلمي - (الجز
، التالية :	السؤال الأول: اكتب بين القوسين الاسم أو المصطلح العلمي الذي تدل عليه كل من العبارات
(الفلك الجزيئي)	1 - فلك ترابطي ينتج من تداخل الأفلاك الذرية ويغطي النواتين المترابطتين
(الرابطة سيجما)	2 - نوع من الروابط ينتج من التداخل المحوري عندما يتداخل فلكين ذربين رأسا لرأس
	3 - نوع من الروابط ينتج من التداخل الجانبي عندما يتداخل فلكين ذريين جنبا الى جنب
(الرابطة باي)	عندما يكون محور الفلكين متوازيين
	4 – عملية يتم فيها اندماج أفلاك تختلف في الشكل والطاقة والاتجاه كى تنتج أفلاكا جديدة
(تهجين الأفلاك)	تتماثل في الشكل والطاقة
	5 - نوع من أنواع التهجين يتم فيها دمج فلك واحد 2s مع ثلاثة أفلاك 2p لتكوين أربعة
	أفلاك مهجنة وهذه الأفلاك تشير في اتجاه قمم رباعي السطوح وتكون قيمة الزاوية بين
(sp^3)	109.5° الأفلاك المهجنة تساوي
	6 - نوع من أنواع التهجين يتم فيها دمج فلك واحد 2s مع فلكين 2p لتكوين ثلاثة أفلاك
(sp^2)	مهجنة و يبعد كل فلك مهجن عن الآخر بزاوية 120°
	7 - نوع من أنواع التهجين يتم فيها دمج فلك واحد 2s مع فلك واحد 2p لتكوين فلكين
(sp)	مهجنین و یبعد کل فلك مهجن عن الآخر بزاویة 180° .
(البنزين)	${\sf C}_6{\sf H}_6$ يعتبر أصل المركبات الأروماتية صيغته الجزيئية ${\sf C}_6{\sf H}_6$.
(نظرية رابطة التكافؤ)	9 - نظرية تفترض أن إلكترونات الرابطة تشغل الأفلاك الذرية في الجزيئات .
(نظرية الفلك الجزيئي)	10- نظرية تفترض تكوين فلك جزيئي من الأفلاك الذرية يغطي كلّ من النواتين المترابطتين.
(الرابطة باي)	-11 نوع من الروابط لا يتكون إلا إذا سبقه تكوين الرابطة δ .
(sp^3)	. (CH_4) نوع التهجين لذرة الكربون في الميثان -12
(sp^2)	. ($H_2C = CH_2$) وربون في الإيثين ($H_2C = CH_2$

<u>(4) 201</u>	التوجية الفني العام للعلوم اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء -الصف الحادي عشر العلمي - (الجزء الأول) - 9/2018.
<u>: ي</u>	السؤال الثاني: ضع علامة (√) أمام العبارة الصحيحة وعلامة (×) أمام العبارة غير الصحيحة في كل مما يل
(×)	1 - يمكن تحديد مكان الإلكترون وسرعته بدقة تامة
(<)	2 - تنتج الرابطة التساهمية الأحادية من التداخل المحوري للأفلاك الذرية رأسا لرأس
	δ – تعتمد طاقة الرابطة سيجما δ على المسافة بين نواتي الذرتين المرتبطتين وعلى عدد الروابط التي
(<)	تشكلها هاتان الذرتان
(×)	-4 يمكن أن تحتوي أحد الجزيئات على الرابطة π فقط .
(×)	π الرابطة التساهمية δ أضعف من الرابطة التساهمية – الرابطة التساهمية – δ
(<)	الجزيئات التي تحتوي على الرابطة π تتميز بنشاطها على التفاعل الكيميائي. -6
(<)	7 - تنتج الرابطة التساهمية الثنائية من تداخل الأفلاك الذرية جنبا الى جنب
(<)	δ - جميع الروابط في جزئ الأمونيا NH_3 من النوع سيجما $-$
(×)	π يحتوي جزئ الإيثاين C_2H_2 على ثلاث روابط من النوع -9
(✓)	SP^2 تتكون الرابطة π في جزئ الإيثين C_2H_4 بين أفلاك مهجنة من النوع -10
	11- الروابط التساهمية الثنائية والثلاثية التي تكونها ذرات الكربون في جزيئاتها تكونها أفلاك مهجنة
(✓)	SP^2 و SP^2
(×)	π يحتوي جزئ البنزين على ستة روابط من النوع سيجما δ وستة روابط من النوع البنزين على ستة روابط من النوع -12
(✓)	13- تتوزع ذرات الهيدروجين توزيعا متكافئا على حلقة البنزين
(×)	SP^3 ذرات الكربون في جزئ البنزين تقوم بعمل تهجين من النوع -14
(×)	-16 كلما كانت المسافة بين نواتي الذرتين المترابطتين أكبر كانت الرابطة بينهما أقوى .
(✓)	. الجزئ (Cl_2) ترتبط ذرتا الكلور برابطة تساهمية نتيجة تداخل الفلكين (Cl_2) من كل منهما رأساً لرأس -17
(✓)	-18 جميع الروابط التساهمية الأحادية من النوع سيجما δ) .
	$^{-19}$ إذا كانت الصيغة البنائية لغاز ثاني أكسيد الكربون ($^{-0}$ O=) فهذا يعني أن جميع الروابط فيه
(×)	، (π) من النوع باي .
	الثنائية الرابطة سيجما (δ) والرابطة باي (π) في الجزيئات التي تحتوي على الرابطة التساهمية الثنائية –20
(<)	أو الرابطة التساهمية الثلاثية .
(×)	-22 الرابطة التساهمية الثلاثية تتكون من ثلاث روابط باي π) .
(✓)	23 – في التهجين يكون عدد الأفلاك التي يتم اندماجها مساوي لعدد الأفلاك المهجنة الناتجة .
(×)	-24 الزوايا بين الأفلاك المهجنة من النوع (${\sf sp}$) تساوي (-24
(×)	. تكون جميع الروابط بين ذرات الكربون هي روابط تساهمية ثنائية -26
(×)	. (sp) فإن كل ذرة كربون تستخدم التهجين من النوع (C_6H_6) فإن كل ذرة كربون تستخدم التهجين من النوع
(×)	. (sp^3) فإن كل ذرة كربون تستخدم التهجين من النوع ($HC \equiv CH$) .

التوجية الفني العام للعلوم – اللجنة الفنية المشتركة للكيمياء – بنك الكيمياء – الصف الحادي عشر العلمي – (الجزء الأول) – 2019/2018 (5) السؤال الثالث: أكمل الفراغات في الجمل التالية بما يناسبها علمياً:

- 1 كل رابطة تساهمية أحادية في الكيمياء تكون من النوع .. سيجما... .
 - . (π) وقوة الرابطة سيجما (δ) أكبر من قوة الرابطة باي 2
- 3 الرابطة التساهمية الثنائية تتكون من .. الرابطة سيجما. , . ثم الرابطة باي. .
- ${
 m sp}^3$ هو من النوع (${
 m H}_3{
 m C}-{
 m CH}_3$) هو من النوع -4
 - 5 نوع التهجين الذي تستخدمه ذرة الألومنيوم في المركب ($AICl_3$) ، هو من النوع . . . sp^2 . . .
 - ... هو .. شكل خطى ... C_2H_2 الشكل الفراغى للأفلاك المهجنة في كل ذرة كربون في غاز الإيثاين C_2H_2
- 7- عدد الأفلاك غير المهجنة المتداخلة في ذرة الكربون الواحدة في جزئ غاز الإيثين CH₂=CH₂ هو
- -8 تتكون الرابطة التساهمية الأحادية عندما تتقاسم الذرتان عدد من أزواج الإلكترونات يساوي -1. زوج من الالكترونات -8
 - 9 تنتج الرابطة سيجما δ عن التداخل ...رأس برأس أو المحوري.... للأفلاك الذرية
 - الذرية π عن التداخل ...الجانبي..... للأفلاك الذرية π
 - 11- تتألف الرابطة التساهمية الأحادية دائما من رابطة ...سيجما...
 - التي عدد الروابط. التي على المسافة بين الذرتين المترابطتين وعلى عدد الروابط. التي تشكلها هاتان الذرتان .
 - الأفلاك محوري أو رأس برأس. NH_3 الأفلاك محوري أو رأس برأس.
 - الروابط سيجما δ في جزئ البروباين CH_3 -C = CH يساوي ، بينما عدد الروابط π في الجزيء السابق نفسه يساوي .2.
 - 15- تداخل فلكين (s) هو تداخل من النوع .. رأس برأس..
 - 16- تداخل فلكين (p و p) هو تداخل من النوع ... رأس برأس.....
 - 17 عدد الروابط سيجما في جزئ كلوريد الهيدروجين (HCl) يساوي
 - المحوري... المحوري ... المحوري دراك الغلكين (${\sf Cl}_2$) هو تداخل من النوع ${\sf Ilo}_2$
 - 19 عدد الروابط سيجما في جزئ الكلور (1_2) يساوي 11
- ورابطتین علی رابطة تساهمیة ثلاثیة ، رابطة واحدة منهم من النوع . سیجما.. ورابطتین -20 من النوع ... بای...
 - -21 في التهجين (${\sf sp}^3$) يكون عدد الأفلاك المهجنة
 - 22- في التهجين (sp) يكون عدد الأفلاك المهجنة2.... وعدد الأفلاك غير المهجنة2....
 - -23 في التهجين (${\sf sp}^2$) يكون عدد الأفلاك المهجنة -3 وعدد الأفلاك غير المهجنة -23

-الصف الحادي عشر العلمي - (الجزء الأول) - 2019/2018 (6)	التوجية الفني العام للعلوم-اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء -
ملة من الجمل التالية:	السؤال الرابع: ضع علامة (٧) أمام أنسب عبارة تكمل كل ج
	$1-1$ الروابط سيجما δ):
🗖 تنتج عن التداخل الجانبي لفلكي ذرتين .	☑ تنتج عن التداخل المحوري لفلكي ذرتين .
\Box يمكن أن تكون ثنائية أو ثلاثية .	\cdot (π) اضعف من الروابط باي \Box
	: (O_2) الرابطة بين ذرتي الأكسجين في الجزئ -2
. (δ) تساهمية ثنائية من النوع سيجما	* · · · · · · · · · · · · · · · · · · ·
π تساهمية ثنائية من النوع باي (π) .	
4 2	: (H-C \equiv C-H الروابط في الصيغة البنائية التالية $=$ 3
. (δ) و رابطة سيجما (π) و رابطة \Box	
$oxdot$ ثلاث روابط سيجما (δ) و رابطتين باي (π	\square خمس روابط سیجما (δ) .
	4 – الرابطة التساهمية الثلاثية تتكون من:
\square ثلاث روابط با 2 (π) .	\square ثلاث روابط سيجما (δ) .
\square رابطة با (π) ورابطتين سيجما (δ) .	
√ متوازبین .	5 – يتداخل الفلكان جنباً إلى جنب عندما يكون محورهما :□ متعامدين .
ك متوابلين رأساً إلى جنب . □ متقابلين رأساً إلى جنب .	
المعابين رسا إلى جنب .	المعابيين رسا ترس .
	6 – أحد الجزيئات التالية يحتوي على رابطة تساهمية ثلاثية ه
. N_2 ✓ . Cl_2 \Box	. Br2
	δ - من خواص الرابطة سيجما (δ) :
☑ يكون محور تداخل الفلكين هو محور التناظر .	\Box أضعف من الرابطة باي (π) .
 □ لا تعتمد على المسافة بين الذرتين المترابطتين . 	
	8 – في المركبين CH ₃ CH ₂ CH ₃ , CH ₃ CH=CH ₂ جميع ال
· ·	☑ المركب CH ₃ CH=CH ₂ يتفاعل بالإضافة
	☐ التهجين من النوع sp³ في جميع ذرات كربون المركبين
• , ,	9 – عدد الأفلاك المهجنة الناتجة عن تهجين فلك (s) مع ف
1 🗖	3 ☑ 4 □ 2 □

(الجزء الأول) - 2019/2018 (7)	<u> الحادي عشر العلمي - (</u>	ء – بنك الكيمياء –الصف	جنة الفنية المشتركة للكيميا	التوجية الفني العام للعلوم-الل
ة هو :	, تأخذه الأفلاك المهجنة	الشكل الهندسي الذي	ن النوع (${\sf sp}^3$) فإن	10- إذا كان التهجين م
🗖 خطي .	ستو <i>ي</i> .	. 🗖 مثلث ه	🗖 مكعب مركز <i>ي</i>	√ رباعي السطوح .
	مهجنة تساوي:	الزوايا بين الافلاك اا	ن النوع (sp^3) فإن	11– إذا كان التهجين م
. 90°		120° □	. 180° 🗖	. 109.5° ☑
	لمهجنة تساوي:	الزوايا بين الافلاك ا	ن النوع (${\sf sp}^2$) فإن	12- إذا كان التهجين م
. 90°		120° ☑	. 180° 🗖	. 109.5° □
	مهجنة تساو <i>ي</i> :	زوايا بين الافلاك الم	ن النوع (sp) فإن ال	13- إذا كان التهجين م
. 90°		120° □	. 180° ☑	. 109.5° □
	: هو (sp³)	ربون فيه من النوع ا	ية يكون تهجين ذرة الك	14– أحد المركبات التال
$HC \equiv CH C$	$. H_2C = C$	H ₂ □	. CH ₄ ☑	. O = C= O 🗖
	روفورم CHCl ₃ هو :	ختلفة في جزئ الكلو	حوربة بين الأفلاك الم	15- عدد التداخلات اله
2 🗖	- (•		
2 🗖				16- عدد التداخلات الـ □ 4
	$: C_6H_6 $	فتلفة في جزئ البنزير اللهنزير اللهنزير الله المالية المالية المالية المالية المالية المالية المالية المالية ال	جانبية بين الأفلاك المخ ☑ 3	16- عدد التداخلات الـ 4 □
	$\mathbb{C}: C_6H_6$: SP^2 : SP^2 :	فتلفة في جزئ البنزير المنزير المنزير الله المنافقة المنا	جانبية بين الأفلاك المخ ☑ 3	
2 🗖	$\mathbb{C}: C_6H_6$: SP^2 : SP^2 :	فتلفة في جزئ البنزير 1 طي 1 على ذرة كربون مهجد CH 🔲 C	جانبية بين الأفلاك المذ ☑ 3 ☑ ية يحتوي الجزئ فيه ع كH ₃ CH ₂ CH ₃ □	16- عدد التداخلات الـ 4 □ 18- أحد المركبات التالـ
2 🗖	$\mathbb{C}: C_6H_6$: SP^2 : SP^2 :	فتلفة في جزئ البنزير الله الله الله الله الله الله الله الله	جانبية بين الأفلاك المذ ☑ 3 ية يحتوي الجزئ فيه ع كH ₃ CH ₂ CH ₃ ☐ جنة من النوع SP ³ تسن	16 عدد التداخلات الـ 4 □ 18 أحد المركبات التالـ CH ₃ CH ₃ □
2 🗖	$\mathbb{C}: C_6H_6$: SP^2 : \mathbb{C} : CH^2	فتلفة في جزئ البنزير الله في جزئ البنزير الله ذرة كربون مهجد الله CH	جانبية بين الأفلاك المخ ☑ 3 ية يحتوي الجزئ فيه ع كاله كاCH ₂ CH ₃ تسن جنة من النوع SP ³ تسن جما ورابطة باي	16- عدد التداخلات الـ 4 □ 18- أحد المركبات التالـ CH ₃ CH ₃ □ 19- ذرة الكربون المهـ
2 🗖	ن C_6H_6 : C_6H_6 : SP^2 : CH^2 : CH^2	فتلفة في جزئ البنزير 1 □ المى ذرة كربون مهجد الله CH □ C الطيع عمل : الله البع رو	جانبية بين الأفلاك المذ ☑ 3 ية يحتوي الجزئ فيه ع كا كا كا CH ₃ CH ₂ CH ₃ تسن جنة من النوع SP ³ تسن جما ورابطة باي ورابطة سيجما	16- عدد التداخلات الـ 4 □ 18- أحد المركبات التالـ CH ₃ CH ₃ □ 19- ذرة الكربون المهـ □ ثلاث روابط سيـ
2 🗖	ن C_6H_6 : C_6H_6 : SP^2 : CH^2 : CH^2	عتلفة في جزئ البنزير 1 □ اللي ذرة كربون مهجنا اللي خرة كربون مهجنا الليع عمل : الليع تكوين :	جانبية بين الأفلاك المذ ☑ 3 ☑ 1 ية يحتوي الجزئ فيه ع كالACH2CH3 ☐ 3 جنة من النوع SP ³ تسنا عما ورابطة باي ورابطة سيجما نة من النوع SP ² تستد	16- عدد التداخلات الـ 4
2 🗖	\bigcirc : C_6H_6 : SP^2 : \bigcirc	عتلفة في جزئ البنزير 1 □ الله ذرة كربون مهجنا	جانبية بين الأفلاك المذ ☑ 3 ☑ ية يحتوي الجزئ فيه ع كا كا كا كا كا كا كا كا كا جنة من النوع SP³ تسنا جما ورابطة باي ورابطة سيجما نة من النوع SP² تستد ما ورابطة باي	16- عدد التداخلات الـ 4
2 🗖	ن C ₆ H ₆ : الله النوع SP ² : حال النوع CH النوع CH الله الله الله الله الله الله الله الل	عتلفة في جزئ البنزير 1 □ اللي ذرة كربون مهجنا	جانبية بين الأفلاك المخ 2 3 √ ية يحتوي الجزئ فيه ع كاركا كا كا كا SP تسن جما ورابطة باي ورابطة سيجما نة من النوع SP² تستد ما ورابطة باي ما ورابطة باي ورابطة سيجما ورابطة سيجما	16- عدد التداخلات الـ 4
2 🗖	ن C ₆ H ₆ : الله النوع SP ² : حال النوع CH النوع CH الله الله الله الله الله الله الله الل	عتلفة في جزئ البنزير الله ذرة كربون مهجنا الله خرة كربون مهجنا الله حمل : الله عمل : الله الله الله الله الله الله الله الله	جانبية بين الأفلاك المذ ∑ 3 ية يحتوي الجزئ فيه ع كاركائ فيه ع كاركائ فيه ع كاركائ فيه ع كاركائ فيه ع كاركائ فيه ع جنة من النوع SP² تستد ما ورابطة باي ورابطة باي ورابطة سيجما ورابطة سيجما عنة من النوع SP² تستد ورابطة سيجما	16- عدد التداخلات الـ 4
2 🗖	ن C ₆ H ₆ : الله النوع SP ² : حالاً الله النوع CH ² : كا CH ² : كا اله الله الله الله الله الله الله ال	عتلفة في جزئ البنزير الله ذرة كربون مهجنا الله خرة كربون مهجنا الله حمل : الله عمل : الله الله الله الله الله الله الله الله	جانبية بين الأفلاك المذ ☑ 3 ☑ ية يحتوي الجزئ فيه عائل كالمذكل فيه عائل كالتالية كالتالية كالتالية من النوع SP² تستة من النوع SP² تستد من النوع SP² تستد من النوع SP² تستد من النوع SP² تستد من النوع SP² تستط ما ورابطة سيجما ما ورابطة باي	16 عدد التداخلات الـ 4 □ 18 - أحد المركبات التالـ CH ₃ CH ₃ □ 19 - ذرة الكربون المهـ □ ثلاث روابط سيـ □ ثلاث روابط باى □ ثلاث روابط باى □ ثلاث روابط باى □ ثلاث روابط باى

العلمي - (الجزء الأول) - 2019/2018 (8)	الكيمياء -الصف الحادي عشر	<u>نة الفنية المشتركة للكيمياء – بنك</u>	التوجية الفني العام للعلوم-اللج
: SP	بت كربون مهجنة من النوع	ة يحتوي الجزئ فيه على ذرا	22- أحد المركبات التاليا
$CH_3CH=CH_2$	CH ≅ CH ☑	$CH_3CH_2CH_3$	CH ₃ CH ₃ □
	(3)		and the second of account
	, , ,	ة يكون فية نوع التهجين لذرز	.
C_6H_6	C_2H_4	C_2H_2	CH ₄ ☑
	· 🚓 / CaH	كربون في جزئ الإيثين (،	24 - زوع الته حين اذرة الآ
on ² d T		ـربوں ني جري 'دٍينيں (. sp² ☑	_
sp^2d \square	sp ⊔	5p <u>⊾</u>	S p □
: (sp ²	ة التي تحتها خط هو (ة يكون فية نوع التهجين للذر	25- أحد الجزيئات التاليا
·	•	\underline{C}_2H_2 \square	-
2 0		<u></u> 2	
	: هو (C ₂ H ₂	كربون في جزئ الإيثاين (26- نوع التهجين لذرة الن
sp , sp^2 \square	sp^3 \square	sp^2 \square	sp ✓
	, , ,	ة يكون فية نوع التهجين لذره	-
C_2H_6	BCl ₃ □	C_2H_2 \square	CH₄ □
· 20 (180 °) 4	.å (H – С – С – Н)	ة تكون الزوايا بين الروابط	28 – לבנ ולבנולות ולוונו
,	,		*
C_2H_6	$\mathbf{C}_2\mathbf{\Pi}_4$	C_2H_2 \square	Сп4 🗓
ما sp فان صيغة المركب هي	کربون التهجین فی کل منه	ر وکربونی یتکون من ذرتین ک	29- مرکب عضو <i>ی</i> هیدر
$H_3C - CH_2 - CH_3 \square$			
$H_3C - cH_2 - cH_3$		<u> </u>	2 2 🗓
	وم BeCl ₂ من النوع:	يليوم في جزي كلوريد البريلب	30- التهجين في ذرة البر
√ لا تهجين	$sp^3 \square$	sp □	sp^2 \square
: CH ₃ – CH ، هو	$- \frac{CH_2}: H_2$ المركب التالي	إ الكربون التي تحتها خط في	31- نوع التهجين في ذرة
sp^3, sp^2	sp^3 \square	sp^2 $lacksquare$	sp,sp^3

التوجية الفني العام للعلوم – اللجنة الفنية المشتركة للكيمياء – بنك الكيمياء – الصف الحادي عشر العلمي – (الجزء الأول) – 2019/2018 (9) علل فسر مايلي

1 - لا يمكن أن تحتوى أحد الجزيئات على الرابطة باى فقط

يجب ان يتداخل فلكين بشكل محوري رأسا برأس فيصبح هناك فلكين متوازيين يتمكننان من التداخل الجانبي وتكوين رابطة باي

2 - الربطة سيجما أقوى من الرابطة باي

لان محور تداخل الفلكين في الرابطة سيجما يكون محور التناظر

 CH_2 = CH_2 اقل نشاطا من الإيثين CH_4 الميثان - 3

لأن جميع الروابط في الميثان من النوع سيجما القوية صعبة الكسر فلا يتفاعل بالاضافة لذلك هو أقل نشاط بينما الايثين يمكنه التفاعل بالإضافة عن طريق كسر الرابطة باي الأضعف بسهولة .

4 - طبقاً لنظرية رابطة التكافؤ لا تكون الغازات النبيلة روابط تساهمية.

لان الأفلاك الذرية للغازات النبيلة مشبعة بالالكترونات ومستقرة أي لا توجد الكترونات مفردة

5 - الرابطة سيجما في جزئ الهيدروجين أقوي من الرابطة سيجما في جزئ الكلور.

لقصر المسافة بين نواتى ذرتى الهيدروجين وهذا يزبد من قوة الرابطة سيجما

6 الرابطة سيجما بين ذرتي الكربون في جزئ الإيثاين أقوي من الرابطة سيجما بين ذرتي الكربون في جزئ الإيثين.

لقصر المسافة بين نواتي ذرتي الكربون وهذا يزيد من قوة الرابطة سيجما

. بالإضافة C_2H_4 بالإستبدال بينما يتفاعل الإيثين C_2H_4 بالإضافة - 7

لأن جميع الروابط الموجودة في جزيء الميثان تساهمية احادية بينما يوجد في الإيثين C_2H_4 رابطة تساهمية ثنائية .

8 – إستقرار الشكل الحلقي السداسي لجزئ البنزين.

التداخل جنبا الى جنب للأفلاك الذرية Pz يؤدي الى عدم تمركز تام في نظام الروابط باي مما يؤدي لاستقرار الجزيء

9 - لا يمكن الاعتماد على نظرية رابطة التكافؤ لشرح تكوين الروابط في جزئ الميثان.

لأن ذرة الكربون وفق هذه النظرية لن تتمكن الا من تكوين رابطتين فقط لوجود الكترونين اثنين مفردين فقط السؤال الخامس: أجب عما يلي:

1- حدد الأفلاك الذرية التى تندمج لتكوين كل من الجزيئات التالية وما نوع الرابطة المتكونة نتيجة هذاالاندماج

~	_		* *
نوع الرابطة		الأفلاك المندمجة (المتداخلة)	الصيغة البنائية للجزئ
تساهمية أحادية	سيجما (δ)	1s - 1s	H—H
تساهمية أحادية	سيجما (δ)	$3P_z - 3P_z$	CI—CI
تساهمية ثنائية	سيجما (δ)	2p _y -2p _y	0=0
ساهمیه سی	π بای	2P _z - 2P _z	0=0
	سيجما (δ)	$2P_x - 2P_x$	
تساهمية ثلاثية	بای π	2p _y - 2p _y	$N \equiv N$
	بای π	2P _z - 2P _z	
تساهمية أحادية	سيجما (δ)	1s-3p _z	H—CI

التوجية الفني العام للعلوم -اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء -الصف الحادي عشر العلمي - (الجزء الأول) - 2019/2018 (10)

π - قارن بين الرابطة سيجما (δ) والرابطة باي (π) من خلال الجدول التالي :

الرابطة باي (π)	الرابطة سيجما (δ)	وجه المقارنة
×	✓	وجودها في الرابطة التساهمية الأحادية
√	√	وجودها في الرابطة التساهمية الثنائية
√	√	وجودها في الرابطة التساهمية الثلاثية
اضعف	اقوى	قوة كل منهما بالنسبة للأخرى

: عدد الروابط سيجما (δ) وعدد الروابط باي (π) في كل من الجزيئات التالية :

عدد الروابط باي (π)	عدد الروابط سيجما (6)	الصيغة البنائية للجزئ
2	2	O = C = O
<u>0</u>	3	H H
2	1	$N \equiv N$
2	<u>3</u>	-C≡C-
<u>1</u>	<u>11</u>	$-\stackrel{ }{\mathbf{c}}-\stackrel{ }{\mathbf{c}}=\stackrel{ }{\mathbf{c}}-\stackrel{ }{\mathbf{c}}-$
2	7	$-\mathbf{c} \equiv \mathbf{c} - \mathbf{c} - \mathbf{c}$
<u>1</u>	<u>1</u>	O = O

4 – أكمل الجدول التالي بما هو مطلوب:

الزوايا بين الأفلاك	الشكل الهندسي الأفلاك المهجنة	عدد ونوع الأفلاك المتداخلة	نوع التهجين
<u>180</u>	<u>خطي</u>	<u>2</u>	sp
120	مثلث مستو <u>ي</u>	<u>3</u>	sp^2
109.5	رباعي السطوح	4	sp ³

التوجية الفني العام للعلوم - اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء - الصف الحادي عشر العلمي - (الجزء الأول) - 2019/2018 (11) 5 - ما نوع التهجين لذرة الكربون في المركبات التالية :

البنزين	غاز الإيثاين	غاز الإيثين	غاز الميثان	وجه المقارنة
C ₆ H ₆	C_2H_2	C_2H_2	CH ₄	الصيغة الكيميائية
	HC ≡ CH	$H_2C = CH_2$	CH₄	الصيغة التركيبية
12	<u>3</u>	<u>5</u>	4	عدد الروابط σ
<u>3</u>	<u>2</u>	<u>1</u>	<u>0</u>	عدد الروابط π
Sp ²	<u>sp</u>	Sp ²	sp ³	التهجين في الكربون
<u>مستوي</u> <u>حلقي</u> سداسي	<u>خطي</u>	مثلث مستوي	رباعي السطوح	الشكل الفراغى للأفلاك المهجنة
<u>120°</u>	<u>180°</u>	<u>120°</u>	<u>109.5°</u>	الزوايا بين الأفلاك المهجنة لكل ذرة كربون
<u>3</u>	2	3	4	عدد الأفلاك المهجنة لكل ذرة كربون
1	2	1	<u>0</u>	عدد الأفلاك غير المهجنة لكل ذرة كربون

$H_3C^3 - C^2 \equiv C^1 H$	$H_2C^3 = C^2 = C^1H_2$	وجه المقارنة
<u>6</u>	<u>6</u>	عدد الروابط σ في الجزيء
<u>2</u>	<u>2</u>	عدد الروابط π في الجزيء
<u>Sp</u>	Sp ²	نوع التهجين في ذرة الكربون رقم 1
<u>Sp</u>	Sp ²	نوع التهجين في ذرة الكربون رقم 2
Sp ³	Sp ²	نوع التهجين في ذرة الكربون رقم 3

التوجية الفني العام للعلوم –اللجنة الفنية المشتركة للكيمياء – بنك الكيمياء –الصف الحادي عشر العلمي – (الجزء الأول)– 2019/2018 (12)
$egin{array}{cccccccccccccccccccccccccccccccccccc$
$\stackrel{ ext{1}}{1}$ $\stackrel{ ext{Y}}{2}$ $ rac{ ext{Sp}^3 : ext{Sp}^3 : ext{Sp}^3 : ext{Sp}^3 : ext{Notation}$ التهجين لذرة الكربون رقم (1) هو (1)
Sp^2
الرابطة الأولى هى رابطة : - <u>سيجما</u> , الرابطة الثانية هى الرابطة : - <u>سيجما وباي</u> -
$C_2H_2O_4$) الشكل المقابل والذي يمثل الصيغة البنائية لحمض الأكساليك -7
$ \hspace{.08cm} \hspace{.08cm} $ نوع التهجين لذرة الكربون رقم $(\hspace{.08cm} 1 \hspace{.08cm})$ هو $(\hspace{.08cm} 1 \hspace{.08cm})$ هو $(\hspace{.08cm} 1 \hspace{.08cm})$
$\mathrm{HO}-\mathrm{C}-\mathrm{C}-\mathrm{OH}$ ، Sp^2 هو Sp^2 هو $\mathrm{C}-\mathrm{OH}$ التهجين لذرة الكربون رقم (C) هو
3 - اكتب الترتيب الالكتروني النقطي للشكل السابق: 2 1 2 اكتب الترتيب الالكتروني النقطي للشكل السابق
4 - حدد نوع الروابط التي تربط كل ذرة كربون بكل من ذرتي الأكسجين
الرابطة الأولى هي رابطة : - سيجما , الرابطة الثانية هي الرابطة : سيجما وباي
 5 - عدد الروابط سيجما في الجزئ هو7 , وعدد الروابط باي هو :2
8 – استخدم المفاهيم التالية لعمل خريطة مفاهيم :
$egin{aligned} egin{aligned} 120^{ m o} \ \end{array} \end{aligned}$ الزاوية $^{ m o}$ 6 ${ m SP}^3$
180° الزاوية SP ²
الزاوية °109.5 SP
نظرية الأفلاك
المهجنة

التوجية الفني العام للعلوم اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء -الصف الحادي عشر العلمي - (الجزء الأول)- 2019/2018 (13)
9 – استخدم المفاهيم التالية لعمل خريطة مفاهيم :
الرابطة سيجما التكافؤ التكافؤ
أفلاك ذرية تداخل محوري
تداخل جانبي
السؤال السادس: الجمل التالية غير صحيحة اقرأها جيداً وبتمعن ثم أعد كتابتها بحيث تكون صحيحة:
$egin{aligned} egin{aligned} eg$
عمس
يعتبر البنزين (C_6H_6) أصل المركبات الأروماتية وفيه تكون ذرات الكربون موجودة في شكل مستوي حلقي سداسي يصاحبه سحابة من تداخل إلكترونات الرابطة سيجما (δ) أعلى وأسفل الحلقة
3 – تنتج الرابطة التساهمية الأحادية من التداخل الجانبي للأفلاك الذربة
المحوريالمحوري
. تعتمد طاقة الرابطة سيجما δ على نوع الذرتين المرتبطتين وعلى تكافؤ الذرتين.
طول الرابطة وعدد الروابط لكل من الذرتينطول الرابطة وعدد الروابط لكل من الذرتين
π الرابطة التساهمية δ أضعف من الرابطة التساهمية π
δ - الجزيئات التي تحتوي على الرابطة δ فقط تتميز بنشاطها وقدرتها العالية على التفاعل الكيميائي (π) باي (π)
π الرابطة التساهمية الثنائية تنتج من تداخل الأفلاك الذرية جنبا الى جنب فقط وتحتوي على رابطتين π رابطة وإحدة
π الأمونيا NH_3 من النوع با π من النوع با π
\ldots سیجما (δ)

التوجية الفني العام للعلوم -اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء -الصف الحادي عشر العلمي - (الجزء الأول)- 2019/2018 (14)
π على ثلاث روابط من النوع π على ثلاث روابط من النوع – يحتوي جزئ الإيثاين C_2H_2 على ثلاث روابط من النوع
π أو π من النوع π أو π من النوع سيجما
SP^2 تتكون الرابطة π في جزئ الإيثين C_2H_4 من تداخل جانبي لأفلاك مهجنة من النوع π
2p _z غیر مهجنة
11- الروابط التساهمية الثنائية والثلاثية التي تكونها ذرات الكربون في جزيئاتها تتكون جميعها من تداخل أفلاك
SP و SP 2 و SP
غير مهجنة
π يحتوي جزئ البنزين على ستة روابط من النوع سيجما δ وستة روابط من النوع البنزين على ستة روابط من النوع -12
<u>12</u>
SP^3 ذرات الكربون في جزئ البنزين تقوم بعمل تهجين من النوع -13
SP^2
BF_3 نوع التهجين في ذرة البورن (BB_3) في ثلاثي فلوريد البورون BF_3 من النوع
SP^2
يزداد طول الرابطة δ وتقل قوتها كلما كان التداخل بين الأفلاك أكبر -15
أقلأقل
5 عدد الروابط من النوع سيجما δ في جزئ البروباين CH_3 $C = CH_3$ يساوي 5
6
5 يساوي CH $_3$ C \equiv CH يساوي π في جزئ البروباين π البروباين π عدد الروابط بای
2
18- نظرية الفلك الجزيئ تفرض أن الالكترونات تشغل الأفلاك الذرية في الجزيئات.
رابطة التكافؤرابطة التكافؤ
180^0 الأفلاك المهجنة من النوع ${ m sp}^3$ تأخذ شكل خطى يكون فيه الزاوية بين الأفلاك 180^0
sp sp


```
التوجية الفنى العام للعلوم اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء -الصف الحادي عشر العلمي - ( الجزء الأول) - 2019/2018 (16)
                           السؤال الأول: اكتب الاسم أو المصطلح العلمي الذي تدل عليه كل من العبارات التالية:
                                        1-عينات الماء التي تحتوي على مواد ذائبة وهي مخاليط متجانسة وثابتة.
    ( المحاليل )
                 2 - عملية تحدث عندما يذوب المذاب وتتم إماهة الكاتيونات والأنيونات بالمذيب أى تحيط جزيئات
         ( الإذابة
                                                                                     المذيب بكل منهما.
          3 - المركبات التي توصل التيار الكهربي في المحلول المائي أو في الحالة المنصهرة مثل المركبات الأيونية
(مركبات الكتروليتية )
              4 - المحلول الذي يحتوي على أكبر كمية من المذاب في كمية معينة من المذيب عند درجة حرارة ثابتة
أو المحلول الذي أضيف إليه مذاب ما وحرك يبقى بعد التحريك قسم من المذاب غير ذائب ( المحلول المشبع )
                  5 - المحلول الذي يحتوي على كمية من المذاب زائدة على الكمية المسموح بها نظرباً. أو المحلول
           الذي يكون فيه تركيز المذاب في المحلول أكبر مما يجب أن يكون عليه عند التشبع عند درجة معينة
( المحلول فوق المشبع )
( النسبة المئوبة الكتلية )
                                                                6- النسبة بين كتلة المذاب الى كتلة المحلول.
(النسبة المئوية الحجمية)
                                                              7 - النسبة بين حجم المذاب الى حجم المحلول.
  ( تركيز المحلول )
                                                          8- مقياس لكمية المذاب في كمية معينة من المذيب.
        (المولارية)
                                                                  9- عدد مولات المذاب في 1L من المحلول.
      ( المولالية )
                                                               10− عدد مولات المذاب في 1kg من المذيب.
11- نسبة عدد مولات المذاب او المذيب في المحلول الي عدد المولات الكلي لكل من المذيب والمذاب. (الكسر المولي)
(الخواص المجمعة)
                                     12- التغيرات في الخواص الفيزبائية للسائل المذيب عند إضافة المذاب إليه.
13 - ضغط البخار على السائل عند حدوث حالة اتزان بين السائل وبخاره عند درجة حرارة معينة. ( الضغط البخاري)
  14- التغير في درجة غليان محلول تركيزه المولالي واحد m لمذاب جزيئي وغير متطاير. (ثابت الغليان المولالي)
  15- التغير في درجة تجمد محلول تركيزه المولالي واحد m لمذاب جزيئي وغير متطاير. ( ثابت التجمد المولالي)
  (الرابطة الهيدروجينية)
                                                                   16- الرابطة التي تجمع بين جزيئات الماء .
      ( المحاليل )
                                                                              17 مخاليط متجانسة و ثابته .
                                                            18- اتحاد قوي جداً لأيونات الملح بجزيئات الماء .
      (التبلر)
    ( ماء التبلر)
                                                       19 - جزيئات الماء المتحدة بقوة مع بلورات الملح المتبار.
                                 -20 عملية يتم فيها تكون راسب نتيجة تفاعل كيميائي عند مزج محلولين مائيين .
     (الترسيب)
     21 – كتلة المادة التي تذوب في كمية معينة من المذيب لتكوين محلولاً مشبعاً عند درجة حرارة معينة ( الذوبانية )
                                            22- الامتزاج الذي يحدث عندما يذوب سائلان كل منهما في الآخر.
   (الامتزاج الكلي)
    (امتزاج جزئی)
                                        23- الامتزاج الذي يحدث للسوائل شحيحة الذوبان كل منهما في الآخر.
                                                                      24 - سوائل لا يذوب أحدها في الآخر .
 (سوائل عديمة الامتزاج)
```

```
التوجية الفنى العام للعلوم اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء -الصف الحادي عشر العلمي - ( الجزء الأول) - 2019/2018 (17)
         25- عند ثبوت درجة الحرارة فإن ذوبانية الغاز في سائل (S) تتناسب تناسباً طردياً مع ضغط الغاز (P)
       (قانون هنري)
                                                                                    الموجود فوق سطح السائل.
       26- المحلول الذي يحتوي على كمية من المذاب زائدة عن الكمية المسموح بها نظرياً عند درجة حرارة معينة .
   (محلول فوق مشبع)
  (النسبة المئوبة الكتلية)
                                            27- كمية المذاب بالجرام ( g ) الموجودة في مائة جرام من المحلول .
28- نسبة عدد مولات المذاب في المحلول إلى عدد المولات الكلى لكل من المذيب والمذاب . (الكسر المولى للمذاب)
 29- نسبة عدد مولات المذيب في المحلول إلى عدد المولات الكلى لكل من المذيب والمذاب (الكسر المولى للمذيب)
                                                                             -30 المحلول المعلوم تركيزه بدقة .
  (محلول قياسي)
31- الخواص التي تتأثر بعدد جزيئات المذاب بالنسبة إلى عدد جزيئات المذيب ولا تتأثر بنوعها. (الخواص المجمعة)
    السؤال الثاني: ضع علامة (\checkmark) أمام العبارة الصحيحة وعلامة (×) أمام العبارة غير الصحيحة في كل مما يلي:
   (\sqrt{})
                                                 1 - ليس كل المحاليل سائلة حيث يمكن أن تكون صلبة أو غازية
  ( × )
                                   3 - المركبات الأيونية يمكنها أن توصل التيار الكهربائي وهي في الحالة الصلبة
  (\sqrt{\phantom{a}})
                                         4 - المذيبات القطبية تذيب المركبات الأيونية والمركبات التساهمية القطبية
  (\sqrt{\phantom{a}})
                                                 5 - عندما يذوب المركب الأيوني في الماء فإنه يتأين الى أيونات
                                            6 - غاز الأمونيا المسال مثل محلول الأمونيا يوصل التيار الكهربائي.
  (\times)
                            7 - قطبية الروابط التساهمية بين جزيئات الماء متساوية ولذلك فهي تلغي بعضها الآخر
  (\times)
  (√)
                         8 - للماء قدرة عالية على الإذابة تعزي إلى القيمة العالية لثابت العزل الخاص به وقطبيته .
 ( × )
                                                9 - في المحاليل المتجانسة يكون المذيب في الحالة السائلة دائماً.
                                                  10- الهيدروجين في البلاتين هو مثال لمحلول غاز في صلب.
( \lor )
 ( \lor )
                                                        11 - جميع محاليل المركبات الأيونية مركبات إلكتروليتية .
                12 عندما يذوب إلكتروليت قوي في الماء فإنه يتفكك تفككاً كاملا ويتواجد على شكل أيونات منفصلة
                                                                                             في المحلول.
( √ )
                      CH_3CH_2OH أن يذوب في مركب مثل كحول الإيثيل CH_3OH أن يذوب في مركب مثل كحول الإيثيل
                 14- جميع مركبات الكربونات والكبربتيت والفوسفات شحيحة الذوبان في الماء إلا إذا كانت مركباتها
(\sqrt{\phantom{a}})
                                                              من عناصر المجموعة ( 1A ) أو الأمونيوم.
\sqrt{15} تعتبر الأشكال المختلفة التي تظهر على الصخور الكلسية مثالا لبعض مظاهر التفاعل في المحاليل المائية \sqrt{15}
                                            16- يعتبر تكون الراسب وانبعاث الحرارة من مؤشرات حدوث التفاعل.
   \sqrt{}
                     17- يعمل التسخين على زيادة سرعة ذوبان المادة الصلبة في السائل المذيب في أغلب الأحيان.
    \sqrt{}
                                                           19- يزداد ذوبان الغاز في السائل بإرتفاع درجة الحرارة
                                                -20 تقل ذوبانية غاز في سائل كلما ارتفعت درجة حرارة المحلول.
                                                    21- الأمطار الإصطناعية يعد من تطبيقات المحاليل المشبعة
                                               22- إنتاج سكر النبات يعد من أحد تطبيقات المحاليل فوق المشبعة
  ( √
```

(18) 2019	التوجية الفني العام للعلوم اللجنة الفنية المشتركة للكيمياء – بنك الكيمياء -الصف الحادي عشر العلمي - (الجزء الأول)- 2018/
	23- يمكن تحويل المحلول غير المشبع الى محلول مشبع بإذابة كميات أخرى من المذاب عند نفس درجة الـ
	24- المحلول المشبع يكون في حالة اتزان ديناميكي بين المحلول والمادة الصلبة غير المذابة عند ثبات
(√)	درجة الحرارة .
(×)	25- يمكن التعبير عن تركيز محلول صلب في سائل بالنسبة المئوية الحجمية .
(√)	26– مجموع الكسور المولية لمكونات المحلول تساوي الواحد دائماً .
(×)	27 عند تخفيف محلول مركز بالماء المقطر يقل عدد مولات المادة المذابة في المحلول .
	28- الخواص المجمعة للمحاليل تتأثر بعدد جسيمات المذاب بالنسبة لعدد جزيئات المذيب ولا تتأثر
(√)	بنوع جسيمات المذاب .
(×)	29- بزيادة تركيز محلول السكر في الماء ترتفع كل من درجة غليانه ودرجة تجمده .
(√)	30- الضغط البخاري للمحلول يقل بزيادة تركيز المذاب غير المتطاير فيه .
(×)	31- عند زيادة حجم المحلول بالماء المقطر الى ضعف ماكان عليه يقل عدد مولات المذاب الى النصف.
(√)	32- الضغط البخاري للماء أكبر من الضغط البخاري للمحلول المائي للجلوكوز .
$(\sqrt{)(2m)}$	ان ينتج محلول تركيزه (NaOH= 40) من هيدروكسيد الصوديوم (NaOH= 40) عن إذابة $2~{ m mol}$ ماء. ينتج محلول تركيزه
سیتون $(ee u)$	34- للحصول على محلول (V/V) %50 من الأسيتون نضيف 10mLمن الماء المقطر الى 10mLمن الإ
(√)	35 عندما يكون الكسر المولي للمذاب يساوي 0.5 فإن عدد مولات المذاب يساوي عدد مولات المذيب.
(√)	1 مجموع الكسر المولي لكل من المذاب والمذيب يساوي 1
(√)	37- محلولين متساويين في الحجم فإن المحلول المركز فيهما هو الذي يحتوي على عدد مولات مذاب أكبر.
	38- عند إذابة مادة غير متطايرة في مذيب سائل فإن مقدار الارتفاع في درجة غليان المحلول يزداد بزيادة
(√)	تركيز المحلول بالمول/كجم .
	39– مقدار الانخفاض في درجة تجمد محلول السكر الذي تركيزه 2m يساوي مقدار الانخفاض في محلول
(√)	اليوريا الذي له نفس التركيز المولالي

التوجية الفني العام للعلوم – اللجنة الفنية المشتركة للكيمياء – بنك الكيمياء – الصف الحادي عشر العلمي – (الجزء الأول) – 2019/2018 (19) السؤال الثالث: أكمل الفراغات في الجمل التالية بما يناسبها علمياً:

- 1 ترتبط جزيئات الماء فيما بينها بروابط هيدروجينية .
- 2 من الأسباب التي جعلت قدرة الماء عالية على الإذابة قيمة ثابت العزل العالية للماء
- 3 لكل رابطة تساهمية (O H) خاصية قطبية بدرجة كبيرة لأن الأكسجين أكثر سالبية كهربائية من الهيدروجين
 - 4 يعود السبب في الخواص المهمة للماء مثل ارتفاع درجة الغليان والتوتر السطحي إلى <u>تجمع جزيئات الماء</u> القطبية بروابط هيدروجينية .
- 5 وجود الروابط الهيدروجينية بين جزيئات الماء أدت الى انخفاض الضغط البخاري للماءعن المركبات المشابهة له .
 - 6 من الخواص المميزة للماء بسبب الروابط الهيدروجينية بين جزيئاته ارتفاع درجة الغليان.
 - 7 نوع الرابطة بين (O-H) في جزيء الماءتساهمية قطبية.
 - 8 الشكل الفراغي للماء (زاوي / خطي) زاوي
 - 104.5° ساوي H_2O الزاوية بين ذرتي الهيدروجين وذرة الأكسجين في جزيء الماء و H_2O
 - 10- جميع المركبات الأيونية تعتبر مركبات الكتروليتية.
 - 11- غاز الأمونيا لا يوصل التيار الكهربائي في حالته النقية .
 - 12- محلول كلوريد الهيدروجين (حمض الهيدروكلوريك) يوصل التيار الكهربائي
 - 13- محلول الجلوكوز مثال لمحلول غير الكتروليتي لذلك لا يوصل التيار الكهربائي .
 - 14- السبائك هي مثال لمحلول يكون فيه حالة المذاب صلبة وحالة المذيب صلبة .
 - 15 إذا كانت قوى التجاذب بين أيونات بلورة ملح ما أقوى من قوى التجاذب بين جزيئات الماء وهذه الأيونات، فإن الملح $\frac{1}{2}$ لا يذوب في الماء.
 - 16- تذوب المركبات الأيونية والجزيئات القطبية في المذيبات القطبية .
 - 17- المحلول المائي لكلوريد الهيدروجين يوصل التيار الكهربائي .
 - -18 عندما يذوب إلكتروليت ضعيف في الماء يتواجد جزء ضئيل منه على شكل أيونات
 - 20- عند إضافة محلول كربونات الصوديوم الى محلول اسيتات الباريوم يحدث تفاعل وتترسب مادة صيغتها الكيميائية BaCO₃
 - 21- عند اضافة محلول نيترات الرصاص II الى محلول كلوريد الكالسيوم يحدث تفاعل ويتكون راسب ومادة ذائبة في المحلول هي نترات الكالسيوم
 - 22 عند مزج محلول هيدروكسيد الصوديوم مع محلول من نيترات الحديد II يتكون راسب من هيدروكسيد الحديد II.
 - II مع محلول نيترات الرصاص (KCl) مع محلول كلوريد البوتاسيوم عند خلط محلول كلوريد البوتاسيوم (PbCl $_2$ هي $Pb(NO_3)_2$
 - 24 عند طحن المذاب الصلب تزداد مساحة السطح المشترك بين المذاب والمذيب مما يسرع من عملية الإذابة .
 - 25- ذوبانية الغازات تكون أقل في الماء الساخن منها في الماء البارد .

التوجية الفني العام للعلوم اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء -الصف الحادي عشر العلمي - (الجزء الأول)- 2019/2018 (20)

- 26- يمكن تسريع عملية الذوبان عن طريق زيادة مساحة السطح المشتركة بين المذاب والمذيب بواسطة عملية الطحن
 - 27 عند رفع درجة الحرارة تقل ذوبانية الغاز في السائل
 - 28- ذوبانية الغاز في السائل <u>تزداد</u> كلما زاد الضغط الجزيئي على سطح المحلول
 - 29– إذا علمت أن ذوبانية كبريتات الصوديوم في الماء تساوي g/100 50 وعند g/100 فإن كتلة كبريتات الصوديوم اللازم إذابتها في g/100 من الماء لعمل محلول مشبع عند نفس درجة الحرارة تساوي g/100 عند g/100
 - 30- إذا خفف محلول مائي مركز للسكر بالماء فإن عدد مولات السكر بعد التخفيف يساوي عدد مولات السكر قبل التخفيف في المحلول .
 - 31- يوضح الملصق على زجاجة حمض الأسيتيك في المختبر أن تركيزه (V/V) %28 فإن عدد الملليترات من الحمض الموجودة في 500 ml من محلوله المائي تساوي 140 ml
 - 20محلول يحتوي على g من السكر مذابة في g من المحلول فإن تركيز المحلول يساوي g % محلول يحتوي على g من السكر مذابة في g
 - 33- إذا أذيب ml من الأسيتالدهيد النقى في 180 ml من الماء نحصل على محلول تركيزه 10 %
 - g 10 فيه كتلة الملح فيه g 10 وكتلته g 6 وكتلته g 6 فتكون كتلة الملح فيه g 10 محلول لكلوريد الصوديوم تركيزه
 - 35- محلول كتلته g 150 يحتوي على % 20 من كتلته جلوكوز فتكون كتلة الماء في هذا المحلول 120 جرام
 - النقي المتر معلول حمض الكبريتيك ($H_2SO_4 = 98$) النقي يحتوي اللتر منه على $\frac{24.5~g}{0.25~M}$ من الحمض النقي يساوى 0.25~M
 - $0.1~{
 m M}$ وتركيزه $200~{
 m cm}^3$ محلول حجمه $200~{
 m cm}^3$ والكرزمة لتحضير محلول حجمه $200~{
 m cm}^3$ وتركيزه $2.12~{
 m g}$ وتركيزه
- L = 0.25 فيكون حجمه $0.4 \, \mathrm{M}$ في محلول تركيزه $0.4 \, \mathrm{M}$ فيكون حجمه 0.25
 - $0.5 \, \mathrm{M}$ فإن كتلته المذابة في لتر من المحلول تساوي $0.5 \, \mathrm{M}$ فإن كتلته المذابة في لتر من المحلول تساوي $\mathrm{O} = 16 \, , \; \mathrm{H} = 1 \, , \; \mathrm{Na} = 23 \,)$
- صحلول مائي لكلوريد الصوديوم تركيزه $0.4~{
 m mol}\,/\,L$ وحجمه $500~{
 m cm}^3$ فيكون عدد مولات كلوريد الصوديوم المذابة في المحلول تساوي $0.2~{
 m mol}$
- 41 حجم أن (CI = 35.5, Na = 23) فعند إذابة S.85 g فعند إذابة وإكمال حجم الماء المقطر لتكوين لتر من المحلول فإن تركيز المحلول الناتج يساوي O.1 M بالماء المقطر التكوين لتر من المحلول فإن تركيز المحلول الناتج المعلول الناتج على المحلول المحلول المحلول الناتج على المحلول الناتج على المحلول الناتج على المحلول المحلول الناتج على المحلول المحلول الناتج على المحلول المحل
 - الماء ثم أكمل ($H_2SO_4 = 98$) من حمض الكبريتيك ($H_2SO_4 = 98$) في قليل من الماء ثم أكمل المحلول بإذابة $\frac{M\ 0.1}{}$
 - المولالي في الماء تركيزه (%) كتلياً فإن تركيزه بالمولالي (%) كتلياً فإن تركيزه بالمولالي —43 محلول لحمض الأسيتيك (%) % . m 0.88 يساوي
 - لكبريتيك في الماوي (2 m) في الماء تركيزه (4 m) في الماء الكبريتيك ((4 m) الكبريتيك في المحلول تساوي (4 m) في المحلول تساوي (4 m) في المحلول تساوي (4 m)

التوجية الفني العام للعلوم اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء -الصف الحادي عشر العلمي - (الجزء الأول) - 2019/2018 (21)

- 8 g من هيدروكسيد الصوديوم 0.5 m من الكرزمة لتحضير محلول تركيزه 0.5 m
 - 400 g تساوي (NaOH = 40)
- 46- محلول يتكون من 0.5 mol من السكر في الماء فإذا كان الكسر المولي للسكر في هذا المحلول يساوي 0.2 فإن عدد مولات الماء في هذا المحلول يساوي 2mol
 - $(H_2O=18)$ من الماء (g من كحول الإيثيل (كتلة المول = 46) في g من الماء (g من الماء (g محلول يتكون من g من كحول الإيثيل (كتلة المولى يساوي g من كحول في هذا المحلول بالكسر المولى يساوي g
 - 48 هذا كانت كتلة الماء في 20~mol من محلول الإيثانول في الماء تساوي g 270 فإن كتلة الإيثانول في هذا -48 المحلول تساوي g g g المحلول تساوي g g g المحلول تساوي g g أن كتلة الإيثانول في هذا المحلول تساوي g أن كتلة الإيثانول في أن كتلة الأيثانول في أن كتلة الإيثانول في أن كتلة الإيثانول في أن كتلة الإي
 - 49- محلول يحتوي mol 15 من الكحول والماء فإذا كان تركيز الماء فيه بالكسر المولي يساوي 0.9 فإن عدد مولات الكحول فيه تساوى 1.5mol
- محلول يحتوي g 18 من الجلوكوز (كتلة المول له = 180) في $\frac{10 \text{ mol}}{10 \text{ mol}}$ من المحلول فيكون عدد مولات الماء في هذا المحلول يساوي g 9.9 mol
 - 0.7 محلول يحتوي 0.7 من الإيثانول والماء فإذا كان الكسر المولي للماء في هذا المحلول يساوي 0.7 فإن كتلة الإيثانول (كتلة المول له = 46) في هذا المحلول تساوي 9
- ضلبة في (g) من الماء ($H_2O=18$) فإن الكسر المولي للمادة المذابة –52 عند إذابة 0.286 في المادة عند إذابة 0.286
 - $MgSO_4$ إذا اضيف g 540 من الماء ($H_2O=18$) الي $MgSO_4$ من محلول $MgSO_4$ الكسر المولي للماء فيه يساوي 0.5 ينتج محلول الكسر المولي للمذاب فيه يساوي 0.5
 - 54- إذا أضيف 400 ml من الماء المقطر الى 200 ml من محلول حمض HCl تركيزه 0.15 M فإن تركيز المحلول الناتج 0.05M
- من محلول هيدروكسيد الصوديوم الذي تركيزه $0.3~\mathrm{M}$ الماء اللازم إضافته الى $300~\mathrm{ml}$ من محلول هيدروكسيد الصوديوم الذي تركيزه $0.1~\mathrm{M}$ الماء اللازم إضافته الى $0.0~\mathrm{ml}$ الماء اللازم إضافته الى $0.0~\mathrm{ml}$ الماء اللازم إضافته الى $0.1~\mathrm{ml}$
- 56- عدد الملليترات من محلول KOH مولاريته M 2 لتحضير 100 ml KOH مولاريته M 0.4 M يساوي 20 ml
 - 57- عند إضافة 500g من الماء الى محلول مائي لهيدروكسيد البوتاسيوم تركيزه m 0.3 m فإن تركيز المحلول يصبح m 0.29 m
 - 58- الضغط البخاري للماء النقي أكبر من الضغط البخاري لمحلول الجلوكوز.
 - 59- درجة غليان الماء النقي أقل من درجة غليان المحلول المائي لجليكول الإيثيلين.
 - 60- درجة تجمد المحلول المائي للسكروز أقل من درجة تجمد الماء النقي.
- $0.1~{
 m m}$ فإن درجة تجمد محلول مائي للسكر تركيزه $^{\circ}$ C.kg / mol $_{
 m fp}$) فإن درجة تجمد محلول مائي للسكر تركيزه $^{\circ}$ C $^{\circ}$

	التوجية الفني العام للعلوم اللجنة الفنية المشتركة للكيمياء – بنك الكيمياء –الد			
62− إذا كانت قيمة ثابت الغليان للماء هي «C.kg / mol=K _{bp} وأن درجة غليان محلول مائي لمادة				
$^{\circ}$ غير إلكتروليتية يساوي $^{\circ}$ $^{\circ}$ $^{\circ}$ فإن تركيز المحلول يساوي $^{\circ}$ $^{\circ}$				
$0.1~\mathrm{m}$ ن درجة غليان نفس المحلول الذي تركيزه	63- درجة غليان محلول السكروز الذي تركيزه 0.4 m أكبر مز			
<u>اب</u> في كمية معينة من المذيب .	64- الخواص المجمعة للمحاليل تعتمد على عدد جسيمات المذ			
ن الضغط البخاري للمحلول يكون أقل من الضغط	65 عند إذابة مادة غير إلكتروليتية وغير متطايرة في سائل فإر			
	البخاري للسائل النقي عند درجة الحرارة نفسها .			
مادتين غير إلكتروليتين وغير متطايرتين $(C_{12}H_{22}O)$	C_{6} اذا كان سكر الجلوكوز (C_{6}			
	فإن درجة غليان محلول الجلوكوز الذي تركيزه (0.5 m)			
	نفس التركيز .			
فإن درجة غليان محلول مادة غير إلكتروليتية وغير	$(0.512^{\circ}\text{C/m})$ إذا كانت قيمة ثابت الغليان للماء هي -67			
	متطايرة في الماء تركيزه (m 0.2 m) تساوي <u>100.1042</u>			
	68- إذا كان ثابت التجمد للماء (1.86°C.kg/mol) فإن درج			
•	تساو <i>ي</i> C −0.186°.			
لة من الجمل التالية:	السؤال الرابع: ضع علامة (٧) أمام أنسب عبارة تكمل كل جما			
	1 – أحد المركبات التالية له أعلى درجة غليان هو:			
H_2 Te \square H_2 Se \square	$H_2S \square \underline{H_2O \square}$			
	2 - يعود سبب الخواص المهمة للماء إلى:			
 تجمع جزيئات الماء بروابط هيدروجينية . 	□ ارتفاع الكتلة الجزيئية للماء .			
☐ شفافية الماء وعدم وجود لون له .	□ عدم قطبية جزيئات الماء .			
	3 – الماء مركب تساهمي قطبي بسبب:			
 □ قطبية الرابطة (O − H) والشكل الخطي للماء . 	□ قطبية الرابطة (O – H) فقط .			
م. و الماء $O - H$ والشكل الزاوي للماء $O - H$.	—			
	•			
 تبلر هذه الأيونات. تغكك هذه الأيونات 	 4 – اتحاد أيونات الملح بقوة بجزيئات الماء يؤدي إلى: □ ذوبانها . 			
 □ تبلر هذه الأيونات. □ تفكك هذه الأيونات 	□ ذوبانها . □ إماهة الايونات.			
n ton . n . an . an	5 – القيمة العالية لثابت العزل الخاصة بالماء تجعل منه:			
☐ مذيب قوي للمركبات التساهمية غير القطبية . ☐ التعميد التعمي	☐ مذيباً جيداً للمركبات القطبية <u>.</u> ☐ التابية التابي			
🗖 مادة جيدة التوصيل للتيار الكهربائي .	🗖 مادة غير موصلة للتيار الكهربائي .			

التوجية الفني العام للعلوم اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء -الصف الحادي عشر العلمي - (الجزء الأول)- 2019/2018 (23)				
	ا تدل على ($CuSO_4.5H_2O$) تدل على الصيغة الكيميائية التالية			
🗖 محلول كبريتات النحاس II .	☐ كبريتات النحاس II المذابة في الماء .			
🗖 محلول كبريتات النحاس II تركيزه (M 5) .	☐ بللورات من كبريتات النحاس II.			
	7 – إماهة الأيونات عملية يتم فيها :			
□ إحاطة جزيئات الماء بأيونات المذاب .	□ إحاطة أيونات المذاب بجزيئات الماء .			
🗖 تبلر أيونات المذاب .	□ تفاعل أيونات المذاب مع الماء .			
الماء ماعدا:	8- جميع ما يلي يحدث عند ذوبان بلورة صلبة (مذاب) في			
🗖 اصطدام جزيئات الماء بالبلورة	□ انفصال جزيئات الماء عن بعضها البعض.			
🗖 انفصال الكاتيونات عن الأنيونات للبلورة الصلبة	□ التجاذب بين جزيئات الماء وايونات المذاب.			
غير القطبي) الى :	9- يرجع ذوبان زيت الزيتون (غير القطبي) في البنزين (
🗖 انعدام قوى التنافر بينهما	🗖 قوي التجاذب بينهما			
🗖 إماهة جزيئات البنزين	□ انفصال جزيئات الزيت الى انيونات وكاتيونات			
هربی عدا:	10- جميع المحاليل التالية محاليلها المائية توصل التيار الك			
	☐ غاز الأمونيا محلول كلوريد الصوديوم			
f m 91				
ينما محلوله المائي يوصل الكهرباء فمن المتوقع ان	11- المركب A لا يوصل الكهرباء وهو في الحالة الغازية بي			
نِما محلوله المائي يوصل الكهرباء فمن المتوقع ان	11- المركب A لا يوصل الكهرباء وهو في الحالة الغازية بي يكون			
نما محلوله المائي يوصل الكهرباء فمن المتوقع ان مركب تساهمي قطبي	يكون			
	یکون □ مرکب أیوني			
🗖 مرکب تساهمي قطبي	یکون □ مرکب أيوني			
مركب تساهمي قطبي مركب يحتوى رابطه تناسقية	يكون			
مركب تساهمي قطبي مركب يحتوى رابطه تناسقية مركب يحتوى رابطه تناسقية ملول هيدروكسيد الصوديوم	يكون مركب أيوني مركب تساهمي غير قطبي مركب تساهمي التالية الكتروليت ضعيف: مصهور كبريتات النحاس مصهور السكروز م			
مركب تساهمي قطبي مركب يحتوى رابطه تناسقية مركب يحتوى رابطه تناسقية ملول هيدروكسيد الصوديوم	يكون مركب أيوني مركب تساهمي غير قطبي مركب تساهمي التالية الكتروليت ضعيف: مصهور كبريتات النحاس مصهور السكروز م			
مركب تساهمي قطبي مركب يحتوى رابطه تناسقية مركب يحتوى رابطه تناسقية حلول حمض الأسيتيك محلول هيدروكسيد الصوديوم والأسيتيك المتساويين في التركيز من خلال:	يكون مركب أيوني مركب تساهمي غير قطبي مركب تساهمي غير قطبي 12 أحد المركبات التالية الكتروليت ضعيف: مصهور كبريتات النحاس مصهور السكروز ما مصهور التمييز بين محلولي حمض الهيدروكلوريك وحمض الذوبانية في الماء . الشويانية في الماء .			
مركب تساهمي قطبي مركب يحتوى رابطه تناسقية مركب يحتوى رابطه تناسقية حلول حمض الأسيتيك محلول هيدروكسيد الصوديوم والأسيتيك المتساويين في التركيز من خلال:	يكون مركب أيوني مركب تساهمي غير قطبي 12 مركب تساهمي غير قطبي 12 أحد المركبات التالية الكتروليت ضعيف : مصهور كبريتات النحاس مصهور السكروز م م مصهور السكروز م م محلولي حمض الهيدروكلوريك وحمض الدوبانية في الماء . الثانية لا يذوب في الماء هو :			
 مركب تساهمي قطبي مركب يحتوى رابطه تناسقية حلول حمض الأسيتيك محلول هيدروكسيد الصوديوم لأسيتيك المتساويين في التركيز من خلال: درجة حرارة كل منهما درجة التوصيل الكهربي 	يكون مركب أيوني مركب تساهمي غير قطبي 12 مركب تساهمي غير قطبي 12 أحد المركبات التالية الكتروليت ضعيف: مصهور كبريتات النحاس مصهور السكروز مي معلولي حمض الهيدروكلوريك وحمض الميدروكلوريك وحمض الذوبانية في الماء . الذوبانية في الماء . الديوب في الماء هو: 13			
 مركب تساهمي قطبي مركب يحتوى رابطه تناسقية حلول حمض الأسيتيك محلول هيدروكسيد الصوديوم لأسيتيك المتساويين في التركيز من خلال: درجة حرارة كل منهما درجة التوصيل الكهربي 	يكون مركب أيوني مركب أيوني مركب تساهمي غير قطبي مركب تساهمي غير قطبي 12 أحد المركبات التالية الكتروليت ضعيف : مصهور كبريتات النحاس مصهور السكروز م 13 محكن التمييز بين محلولي حمض الهيدروكلوريك وحمض الذوبانية في الماء . تشتيت الضوء . 15 أحد الأملاح التالية لا يذوب في الماء هو : الدوبات التالية يذوب في الماء هو : محركبات التالية يذوب في الماء هو : 16 أحد المركبات التالية يذوب في الماء هو : 16 أحد المركبات التالية يذوب في الماء هو :			
ا مركب تساهمي قطبي ا مركب يحتوى رابطه تناسقية حلول حمض الأسيتيك □ محلول هيدروكسيد الصوديوم الأسيتيك المتساويين في التركيز من خلال : ا درجة حرارة كل منهما □ درجة التوصيل الكهربي ا درجة حرارة كل منهما □ درجة التوصيل الكهربي ا درجة حرارة كل منهما □ . CaSO ₄ □ . NA ₂ CO ₃ .	يكون مركب أيوني مركب أيوني مركب تساهمي غير قطبي مركب تساهمي غير قطبي 12 أحد المركبات التالية الكتروليت ضعيف : مصهور كبريتات النحاس مصهور السكروز م 13 مصهور التمييز بين محلولي حمض الهيدروكلوريك وحمض الذوبانية في الماء . تشتيت الضوء . 15 أحد الأملاح التالية لا يذوب في الماء هو : K ₂ SO ₄ .			
ا مركب تساهمي قطبي ا مركب يحتوى رابطه تناسقية حلول حمض الأسيتيك □ محلول هيدروكسيد الصوديوم الأسيتيك المتساويين في التركيز من خلال : ا درجة حرارة كل منهما □ درجة التوصيل الكهربي ا درجة حرارة كل منهما □ درجة التوصيل الكهربي ا درجة حرارة كل منهما □ . CaSO ₄ □ . NA ₂ CO ₃ .	يكون □ مركب أيوني □ مركب تساهمي غير قطبي □ مركب تساهمي غير قطبي □ المركبات التالية الكتروليت ضعيف : □ مصهور كبريتات النحاس □ مصهور السكروز □ م م الميدروكلوريك وحمض الميدروكلوريك وحمض الذوبانية في الماء . □ تشتيت الضوء . □ الذوبانية في الماء . □ تشتيت الضوء . □ 15 احد الأملاح التالية لا يذوب في الماء هو : □ Na2SO4 . □ Na2SO4 . □ PbS . □ . PbS □ . BaCO3 . □ . PbS □ . BaCO3 . □ . PbS □			

التوجية الفني العام للعلوم - اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء -الصف الحادي عشر العلمي - (الجزء الأول) - 2019/2018 (24)					
، الرصاص:	ی محلول نیترات	, كبريتيت الصوديوم الم	18- عند إضافة محلول		
🗖 يترسب كبريتيت الرصاص فقط		سوديوم فقط	🗖 يترسب نيترات الم		
🗖 لا يتكون راسب .	إت الصوديوم	بريتيت الرصاص ونيتر	🗖 يترسب كلا من ك		
	ن في الماء:	ب أيوني شحيح الذوبار	19- واحدا مما يلي مرك		
🗖 هيدروكسيد الصوديوم 🔻 فلوريد الباريوم	البوتاسيوم	🗖 كربونات	🗖 كبريتيد الأمونيوم		
مع محلول نيترات الفضة هي :	كلوريد البوتاسيوم	نهائية لتفاعل محلول ك	20- المعادلة الأيونية ال		
KCl _(aq) + AgNO ₂	3(aq)	$K^{+}_{(aq)} + NO_{3}^{-}_{(a}$	_{q)} + AgCl _(s) \square		
$K^{+}_{(aq)} + CI^{-}_{(aq)} + Ag^{+}_{(aq)} + NO_{3}$					
		AgCl _(s)			
$K^{+}_{(aq)} + CI^{-}_{(aq)} + Ag$					
	: CuF ₂ ک	Ba(OH) ₂ الى محلو	21- عند إضافة محلول		
يترسب $\operatorname{Cu}(OH)_2$ فقط \square			يترسب BaF₂ فقد		
🗖 لا يتكون راسب		Cu(OH) و BaF			
ول غير مشبع بأحد العوامل التالية:	لأحيان الى محلو	ول المشبع في أغلب ا	22– يمكن تحوبل المحا		
□ خفض درجة الحرارة			 إضافة كميات أخر		
🗖 بجميع ماسبق		•	 ا إضافة كميات أخر		
وديوم الصلب في الماء عدا واحداً منها وهو:	بان كلوريد الصو	ية تؤثر على سرعة ذو	23- جميع العوامل التال		
درجة الحرارة 🗖 الضغط		🗖 الطحن	🗖 المزج والتقليب		
:	العوامل التالية	الغاز في السائل بأحد	24- يمكن زيادة ذوبان		
ادة درجة الحرارة وخفض الضغط	🗖 زيا	وزيادة الضغط	🗖 زيادة درجة الحرارة		
مض درجة الحرارة وزيادة الضغط	فخ 🗖	ة وخفض الضغط	🗖 خفض درجة الحرار		
0°C و 88 عند 20°C فإنه يمكن تحويل محلول	ماء g 74عند	يترات الصوديوم في الم	25- إذا كانت ذوبانية ن		
		لصوديوم الى محلول			
افة محلول الكتروليتي	🗖 إض	ري من المذاب	🗖 إضافة كميات أخر		
درجة الحرارة	<u> </u>	اِرة	🗖 خفض درجة الحرا		
سيد الكربون تكون في أحد المحاليل الغازية التي	نية لغاز ثاني أك	الحرارة فإن أكبر ذوبانا	26- بفرض ثبوت درجة		
.	.		يؤثر عليها ضغط ب		
<u>1.5 atm</u> □ 1.25 a	atm 🗖	0.5 atm □	1 atm □		

التوجية الفني العام للعلوم اللجنة الفنية المشتركة للكيمياء – بنك الكيمياء –الصف الحادي عشر العلمي – (الجزء الأول)– 2019/2018 (25)					
27- من الأمثلة على المحاليل تامة الأمتزاج:					
خل.	🗖 الزيت وال	الايثانول والماء	🗖 ثنائي إيثيل إيثر والماء	🗖 الزيت والماء	
		درجة حرارة معينة :	, المشبع تكون كمية المذاب عند	28– في المحلول فوق	
	. هبت	🗖 أقل مما يجب لن	. هبشت	🗖 أكبر مما يجب ل	
برارة .	لي جميع درجات الح	🗖 ثابته لا تتغير ف	(زمة لتشبعه .	🗖 تساوي الكمية الا	
29- في المحلول المشبع وعند درجة حرارة ثابته تكون:					
ني تترسب .	تي تذوب > عدد الت	🗖 عدد الجسيمات ال	ل ما يمكن .	🗖 كمية المذاب أقا	
تي تترسب .	لتي تذوب < عدد الذ	🗖 عدد الجسيمات ال	بر ما ي <i>مكن</i> .	🗖 كمية المذاب أك	
			ىائل:	30- ذوبان غاز في س	
	ط الغاز والتبريد .	🗖 يقل بزيادة ضغم	ط الغاز وارتفاع درجة الحرارة .	🗖 يقل بزيادة ضغه	
	مغط الغاز والتسخين	. 🗖 يزداد بتقليل ض	غط الغاز وانخفاض درجة الحرارة	🗖 يزداد بزيادة ضي	
, كتلة الماء اللازمة	74 g/100g) فإن	H ₂ O) هي (0°C)	و نيترات الصوديوم في الماء عند	31- إذا كانت ذوبانية	
		0° C) يساوي :	1) من نيترات الصوديوم عند (3	لذوبان (g 50.	
<u>20</u>	02.70 g 🗖		150 g □		
فإذا علمت أن	, الماء عند 20°C ف	ابه في (g 150) من	ىلى (90 g) من Na ₂ SO ₄ مذ	32- محلول يحتوي ع	
			Na_2SO_4 من Na_2SO_4 مذ الماء تساوي ($Og/100g\;H_2O$		
	عدد الجرامات المترس	5) عند C°C فإن ا		ذوبانية Na ₂ SO ₄ في	
ىبة من المحلول هو:	عدد الجرامات المترس D g 🗖	5) عند 20°C فإن ـ ∏ 75 g	0 g $/100$ g H $_2$ O) الماء تساوي	ذوبانية Na ₂ SO ₄ في □ 90 g	
ىبة من المحلول هو:	عدد الجرامات المترس D g 🗖	5) عند C°C فإن ـ ¶ 75 g . في (70 g H ₂ O) عند	0 g $/100$ g H $_2$ O) الماء تساوي 15 g \Box	ذوبانية Na ₂ SO ₄ في 90 g □ محلول يحتوي ع	
ببة من المحلول هو: أن ذوبانية KClO ₃	عدد الجرامات المترس 50 g □ 50°C فإذا علمت	5) عند C°C فإن ـ ¶ 75 g . في (70 g H ₂ O) عند	الماء تساوي (0g/100g H ₂ O) 15 g □ ملى (13.41 g) من KClO ₃	ذوبانية Na ₂ SO ₄ في 90 g □ محلول يحتوي ع	
ببة من المحلول هو: أن ذوبانية KClO ₃	عدد الجرامات المترس 50 g 50°C فإذا علمت عير ال	50) عند C°C فإن - 10 g g - في (70 g H ₂ O) عند هذا المحلول : □ غير مشبع	0 g $/100$ g H $_2$ O) الماء تساوي 15 g $ \square $ من 13.41 g من 13.41 g ملى (13.41 g) فإن ي (19.3 g $/100$ g H $_2$ O) فإن	ذوبانية Na ₂ SO ₄ في 90 g	
ببة من المحلول هو: أن ذوبانية KClO ₃	عدد الجرامات المترس 50 g	50) عند C°C فإن - 10 g g - في (70 g H ₂ O) عند هذا المحلول : □ غير مشبع	الماء تساوي (0g/100g H ₂ O) <u>15 g □</u> ملى (13.41 g) من KClO ₃ يى (13.3g/100g H ₂ O) فإن فوق مشبع الله فوق مشبع	ذوبانية Na ₂ SO ₄ في 90 g	
ببة من المحلول هو: أن ذوبانية KClO ₃ كتروليتي تساوي :	عدد الجرامات المترس 50 g	50) عند 20°C فإن . 75 g □ في (70 g H ₂ O) عند هذا المحلول : □ غير مشبع ركيزه (% 20) كتلياً فتا 80 g □	0 g $/100$ g H_2 O) الماء تساوي 15 g \square 15 g 1 13.41 g كامن 13.41 g كامن 13.41 g كامن 19.3 g $/100$ g 19.3 g	ذوبانية Na ₂ SO ₄ في 90 g	
ببة من المحلول هو: أن ذوبانية KClO ₃ كتروليتي تساوي :	عدد الجرامات المترس 50 g	50) عند 20°C فإن . 75 g □ في (70 g H ₂ O) عند هذا المحلول : □ غير مشبع ركيزه (% 20) كتلياً فتا 80 g □	الماء تساوي (0g/100g H ₂ O <u>15 g □</u> على (13.41 g) من KCIO ₃ ا ي (13.41 g) من إلى الكري ي (19.3g/100g H ₂ O) فإن قوق مشبع سيد البوتاسيوم كتلته (100 g) وتر 120 g □	ذوبانية Na ₂ SO ₄ في 90 g	
ببة من المحلول هو: KClO ₃ أن ذوبانية كتروليتي تساوي : 20 g = 145 g	عدد الجرامات المترس 50 g المترس 50°C فإذا علمت المتحدد المتحد	20°C فإن - 20°C فإن - 75 g	الماء تساوي (15 g كوراً 15 g كوراً 15 g كوراً كوراً 15 g كوراً كوراً كوراً كالم المدى (13.41 g) من المدى (13.41 g) فإن المدى الموتاسيوم كتلته (100 g و توروكلوريك الملازمة لتحضير محلوا المدى	ذوبانية Na ₂ SO ₄ في 90 g	
ببة من المحلول هو: KClO ₃ أن ذوبانية كتروليتي تساوي : 20 g = 145 g	عدد الجرامات المترس g و 50 و 50 فإذا علمت كون كتلة الماء فيه نا و 100 و 100 و أو أ	20°C فإن - 20°C فإن - 75 g	الماء تساوي (0g/100g H ₂ O 	ذوبانية Na ₂ SO ₄ في 90 g	
بية من المحلول هو: KClO ₃ أن ذوبانية كتروليتي كتروليتي تساوي : تساوي : 145 g أ	عدد الجرامات المترس 50 g ك 50°C فإذا علمت عدر الناكون كتلة الماء فيه ناكون كتلة الماء فيه ناكون كتلة (100 g) في المحلول تساوي 8	20°C فإن - 20°C فإن - 75 g	الماء تساوي (15 و الماء تساوي (13.41 و المن (13.41 و المن (13.41 و المن (19.3g/100g المن (19.3g/100g المن (19.3g/100g المن (100 و المن (120 و 120 و اللازمة لتحضير محلو اللازمة لتحضير محلو اللازمة المن الماء فتكو السكر في (8 و) من الماء فتكو	ذوبانية Na ₂ SO ₄ في 90 g	
بية من المحلول هو: KClO ₃ أن ذوبانية كتروليتي كتروليتي تساوي : تساوي : 145 g أ	عدد الجرامات المترس 50 g ك 50°C فإذا علمت عدر الناكون كتلة الماء فيه ناكون كتلة الماء فيه ناكون كتلة (100 g) في المحلول تساوي 8	20°C فإن - 20°C فإن - 75 g	الماء تساوي (15 g الماء تساوي (15 g الماء تساوي (15 g المن 15 g المن (13.41 g المن (13.41 g المن (19.3g/100g H ₂ O) فإن الموتاسيوم كتلته (100 g المن الماء فتكو اللازمة التحضير محلو المنكر في (8 g) من الماء فتكو المن الماء فتكو المن الماء فتكو	ذوبانية Na ₂ SO ₄ في 90 g	

$(26) \ 2019/2018 - (019/2018$	<u> مف الحادي عشر العلمي - (الجزء الأ</u>	<u>شتركة للكيمياء – بنك الكيمياء –الص</u>	التوجية الفني العام للعلوم-اللجنة الفنية اله		
38- إذا خفف 10ml من الاسيتون النقى بالماء ليعطى محلولا حجمه 200ml فإن النسبة المئوية الحجمية					
		:	للأسيتون في المحلول تساوي		
10%	15% □	50% □	<u>5% □</u>		
250) وتركيزه	المذابة في محلول حجمه (mL	روجينية (NaHCO ₃ = 84)	39- كتلة كربونات الصوديوم الهيد		
			: تساوي $(0.1 M)$		
33.6 g □	210 g □	21 g 🗖	<u>2.1 g □</u>		
ﯩﺎ <i>ﻭﻯ</i> :	0.4 M) وحجمه (0.4 mL) تس	محلولها المائي الذي تركيزه (1	في (Na $_2$ SO $_4$) في –40		
$0.2 \; mol \; \square$	$0.4 \; mol \; \square$	20 mol □	$0.8 \; mol \; \square$		
رً) من هيدروكسيد	المحلول الناتج عن إذابة (20 g	H = 1 , O= 16) فإن تركيز	, Na = 23) أن (41 –41		
	ي :	, لتكوين لتر من المحلول يساو	الصوديوم (NaOH) في الماء		
10 M □	<u>0.5 M □</u>	0.2 M □	2 M □		
تساو <i>ي</i>	0.1 mol/l) وكتلة المذاب فيه ا	_ ترکیزه (Na $_2$ CO $_3$ = 106)	42- محلول لكربونات الصوديوم (
			(21.2 g) فيكون حجمه :		
0.5L □	200 mL □	0.2L □	<u>2</u> L □		
43- محلول هيدروكسيد صوديوم تركيزه (0.1 mol/kg) ، فإن (g) 100) من هذا المحلول تحتوي على عدد من					
توي على عدد من	، (100 g) من هذا المحلول تحا	تركيزه (0.1 mol/kg) ، فإن	43- محلول هيدروكسيد صوديوم		
توي على عدد من	, (100 g) من هذا المحلول تحا	تركيزه (0.1 mol/kg) ، فإن	43- محلول هيدروكسيد صوديوم المولات يساوي :		
توي على عدد من ــــــــــــــــــــــــــــــــــــ	، (100 g) من هذا المحلول تحد □ 1	تركيزه (0.1 mol/kg) ، فإن $_0.01$	·		
10 🗖	1 🗖	0.01 🗖	المولات يساوي:		
10 🗖	1 🗖	0.01 🗖	المولات يساوي : $0.1 \ \square$		
10	1 🗖	0.01 🗖	المولات يساوي : □ 0.1 44- عند إذابة g 13.8 من كربو		
☐ 10 ☐ فإن تركيز المحلول ☐ 0.2 mol/kg ☐	1 □ K ₂ C0 في g 500 من الماء — 0.1 mol/kg □		المولات يساوي : 10.1 □ 13.8 g من كربو المناوي:		
☐ 10 ☐ فإن تركيز المحلول ☐ 0.2 mol/kg ☐	1 □ K ₂ C0 في g 500 من الماء — 0.1 mol/kg □		المولات يساوي : 0.1 □ 44 عند إذابة 13.8 g من كربو يساوي: 0.1 mol/L □		
☐ 10 ☐ فإن تركيز المحلول ☐ 0.2 mol/kg ☐	1 □ K ₂ C0 و في 500 من الماء K ₂ C0 من الماء □ .1 mol/kg □		المولات يساوي : 10.1 □ 44 □ 44 □ 45 □ 13.8 g من كربو الخابة القائد القائ		
□ 10 افإن تركيز المحلول	1		المولات يساوي : 10.1 □ 10.1 □ 44 − عند إذابة 13.8 g من كربو يساوي: 10.1 mol/L □ 10.3 محلول لحمض النيتريك (0.3 − 45 − 45 − 10.8 −		
□ 10 افإن تركيز المحلول	1		المولات يساوي : 0.1 □ 0.1 □ 44 - عند إذابة 13.8 g من كربو يساوي: 0.1 mol/L □ 0.3 - محلول لحمض النيتريك (03) 1, N = 14, O = 16) 63.03 □		
□ 10 افإن تركيز المحلول	1		المولات يساوي : 0.1		
□ 10 افإن تركيز المحلول	1 □ K ₂ C0 و ي K ₂ C0 من الماء (K ₂ C0 من الماء □ 0.1 mol/kg □ يتلياً منه حمض نقي فإن مولالية □ 27.03 □ 70 فيكون تركيزه بالمولال يساود 47.6 □		المولات يساوي : 0.1		
□ 10 افإن تركيز المحلول	1 □ K ₂ C0 و ي K ₂ C0 من الماء (K ₂ C0 من الماء □ 0.1 mol/kg □ يتلياً منه حمض نقي فإن مولالية □ 27.03 □ 70 فيكون تركيزه بالمولال يساود 47.6 □		المولات يساوي : 0.1 □ 0.1 □ 13.8 g عند إذابة 13.8 من كربو يساوي: 0.1 mol/L □ 0.3 — محلول لحمض النيتريك (03) 1, N = 14, O = 16) 63.03 □ 03 — محلول الحمض النيتريك (03) -46 — محلول الحمض النيتريك (03)		

التوجية الفني العام للعلوم اللجنة الفنية المشتركة للكيمياء – بنك الكيمياء -الصف الحادي عشر العلمي – (الجزء الأول)- 2019/2018 (27						
اللازمة لتحضير محلول عدد مولاته 48 وتركيز السكر فيه بالكسر $H_2O=18$ والكيز السكر السكر الكسر						
		: تساو <i>ي</i> $:$	المولي يساوي 1.2			
345.6 g □	14.4 g □	72 g 🗖	_288 g □			
ن كتلة الإيثانول	و49 إذا علمت أن الكسر المولي للإيثانول ($46 = C_2H_5OH$) في الماء يساوي 0.2 فإن كتلة الإيثانول -49					
		ت من المحلول تساوي:	المذابة في 5 مولاً			
92 🗖	4.6 □	23 🗖	<u>46 □</u>			
	ب يساو <i>ي</i> :	ع الكسر المولي للمذاب و للمذيد	50- القيمة العددية لمجمو			
	🗖 عدد مولات المذاب .		🗖 عدد مولات المذيب			
دد مولات المذيب .	🗖 عدد مولات المذاب + ء		🗖 واحداً صحيحاً .			
ر الحزيئي للماء	لسكر فيه يساوي (0.15) فإن الكس	الماء فاذا كان الكسر الحزيئي ا	51-محلول من السكر في			
<u>.</u>	S, () 43 3	بري .	يساوي:			
<u>0.85</u> □	1.85 □	99.85 🗖	0.15 🗖			
ت المحلول تساوي	ر الجزيئي يساوي (0.4) وعدد مولاد	الماء تركيزه الإيثانول فيه بالكسر	52 محلول للإيثانول في			
u u	•	عدد مولات الماء تساوي:				
<u>9.6 □</u>	6.4 □	0.6 🗖	16 □			
حجم المحلول	0.2 N) إلى ماء مقطر حتى أصبح	من محلول حمض ما تركيزه (١	53– أضيف (200 mL)			
		كيز المحلول الناتج يساوي:				
0.8 M □	0.2 M □	<u>0.08M □</u>	0.04 M □			
) من الماء المقطر	54- أضيف (150 mL) من محلول هيدروكسيد الصوديوم تركيزه (0.2 M) إلى (150 mL) من الماء المقطر					
		الناتج يساوي :	فإن تركيز المحلول			
0.2 M □	<u>0.1 M □</u>	0.04M □	0.2 M □			
55- حجم الماء اللازم إضافته إلى (100 mL) من محلول حمض الكبريتيك الذي تركيزه (0.4 M) للحصول						
		(0.2 M) يساو <i>ي</i> :	على محلول تركيزه			
400 mL □	100 mL □	50 mL □	200 mL □			
56- حجم الماء اللازم إضافته الى 400 mL من محلول اليوريا الذي تركيزه M 0.2 M ليصبح تركيزه M 0.08 M						
			يساو <i>ي</i>			
1000 mL [800 mL □	400 mL □			

 (الجزء الأول) - 2019/2018 (28) 	الصف الحادي عشر العلمي -	لفنية المشتركة للكيمياء – بنك الكيمياء	التوجية الفني العام للعلوم –اللجنة اا	
57- مقدار الارتفاع في درجة غليان محلول ناتج عن ذوبان g 7.2 من مادة غير متطايرة كتلتها الجزيئية				
(0.52 kg/mol kg/mol) من الماء يساوي: K _b) من الماء يساوي 37.6 g من الماء يساوي				
0.52 °C □	0.26 °C □	0.97 °C □	1.038 °C □	
		ي درجة غليان المحلول المائي لا		
0.1 m □	0.5 m □	_2 m □	1 m □	
ماء يساوي 1.86 0C.kg/mol	هِا (1.327 m) و Kf لله	ِ متطايرة وغير إلكتروليتية تركيز		
0.6190 =	- 4.59°C □		فإن درجة تجمد هذا الد	
0.61°C □				
<u>0.1 m □</u>	: ق	أعلى درجة تجمد هو الذي تركيز		
<u>0.1 m □</u>	0.5 m □	2 m □	1 m □	
في المناطق الباردة فإن	ر السيارة لمنع تجمد الماء	هي مادة تضاف الى ماء رادياتير	61- مادة جليكول الإيثيلين	
	ل بكفاء عالية هو	ذه المادة في رادياتير السيارة للعم	أفضل تركيز لمحلول ه	
0.1 m □	0.5 m □	2 m □	<u>3 m</u> □	
المحاليل التالية هو المحلول	أقل ضغط بخاري من بين	ماء فإن المحلول الذي يكون له	62 محلول للجلوكوز في ال	
		زيئي فيه:	الذي يكون الكسر الج	
0.8للجلوكوز يساوي 0.8	0.8للماء يساوي 0.8	الجلوكوز يساوي 0.5 .	اللماء يساوي 0.85	
100.05) فإن ثابت	0.1) يغلي عند (C° 12	وريا في الماء والذي تركيزه (m	63 إذا علمت أن محلول الي	
			الغليان للماء يساوي:	
5.12 °C/m □	512 °C/m □	0.0512 °C/m □	<u>0.512 °C/m □</u>	
كانت درجة غليان المحلول	في (800 g) من الماء ف	ة غير إلكتروليتية وغير متطايرة	64– أذيب (36 g) من ماد	
(0.512 °C	ا: ثابت غلیان الماء m/	الكتلة المولية لهذه المادة تساوي	(100.128°C) فإن	
115.2 g □	0.18 g □	<u>180 g □</u>	90 g □	
سكر الذي تركيزه (2 m)	.0) فإن المحلول المائي لا	ليان للماء يساو <i>ي</i> (C/m، 512°	65- إذا علمت أن ثابت الغا	
		:	يغلي عند درجة حرارة	
□ 98.96 °C	□1.024 °C	□101.024 °C	□100 °C	
مقدار الانخفاض في درجة	اء تركيزه (m) يساوي	رجة تجمد محلول اليوريا في الما	66– مقدار الانخفاض في د	
تجمد :				
<u>. (1 m)</u>	□محلول السكر تركيزه	. (0.5	□ محلول اليوريا تركيزه (m	
کیزه (2 m) .	🗖 محلول السكر تر	. (0.5	□ محلول السكر تركيزه (m	

التوجية الفني العام للعلوم اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء -الصف الحادي عشر العلمي - (الجزء الأول) - 2019/2018 (29)

67– إذا علمت أن محلول اليوريا في الماء الذي تركيزه (2m) يتجمد عند (3.72 °C) فإن ثابت التجمد للماء

: يساو*ي* (K_{fp})

100.86 °C/m □

1.86 °C/m

0.93 °C/m □

3.72 °C/m □

السؤال الخامس: علل (فسر) ما يلي:

- -1 جزئ الماء قطبي. (لوجود فرق في السالبية الكهربائية ،الأكسجين أكثر سالبية من الهيدروجين -1
- 2 يعتبر الماء مذيباً قوياً للمركبات الأيونية . . (لأن قوى التجاذب بين أيوناتها أضعف من التجاذب التي تحدثه جزيئات الماء لهذه الايونات)
- 3 يتميز الماء بخواص فريدة عن المركبات المشابهة له في التركيب . (يعود ذلك إلى تجمع الجزئيات القطبية وتكوين الروابط الهيدر وجنية بين جزيئات الماء)
 - (يرجع ذلك إلى القيمة العالية لثابت العزل) 4
- 5 تكون ماء التبلر. (بسبب قدرة الماء على الاذابة والتي تفصل الايونات مختلفة الشحنة للمذاببعضها عن بعض وقد يحدث أحيانا أن يكون اتحاد الايونات بجزيئات الماء قويا لدرجة أن الملح عندما يتبلور من المحلول المائي تنفصل البلورات متحدة بالماء الذي يسمى ماء التبلور)
 - معه) عدم وجود الماء في صورة نقية (لأنه يذيب الكثير من المواد التي تتواجد معه)
- 7 لا تذوب بعض المركبات الايونية في الماء .(لأن قوى التجاذب بين أيوناتها أقوى من التجاذب التي تحدثه جزيئات الماء لهذه الايونات)
 - 8 يذوب الزيت في البنزين . (بسبب انعدام قوى التنافر بينهما)
 - 9 تتكون بلورات مائية من كبريتات النحاس الثنائية . (يكون اتحاد الايونات بجزيئات الماء قويا لدرجة أن الملح عندما يتبلور من المحلول المائي تنفصل البلورات متحدة بالماء الذي يسمى ماء التبلور)
 - 10- في بعض الأحيان عندما تنفصل بلورات المركب عن المحلول المائي تكون مرتبطة بعدد من جزيئات الماء . (يكون اتحاد الايونات بجزيئات الماء قويا لدرجة أن الملح عندما يتبلور من المحلول المائي تنفصل البلورات متحدة بالماء)
 - الماء. (لأن التجاذببين الأيونية مثل كبريتات الباريوم ($BaSO_4$) وكربونات الكالسيوم ($CaCO_3$) لا تذوب في الماء. (لأن التجاذببين الأيونات في بلورات تلك المركبات أقوى من التجاذب الذي تحدثه جزبئات الماء لهذه الأيونات)
 - 12– الأمونيا في حالتها النقية لا توصل التيار الكهربائي ولكن عند إذابتها في الماء فإن محلولها يوصل التيار الكهربائي. (لأن عند اذابته في الماء يتأين ويتكون أيون الأمونيوم أنيون الهيدروكسيد يصبح المحلول قادر $NH_{3(g)} + H_2O_{(l)} \longrightarrow NH^+_{4(aq)} + OH^-_{(aq)}$

التوجية الفني العام للعلوم – اللجنة الفنية المشتركة للكيمياء – بنك الكيمياء – الصف الحادي عشر العلمي – (الجزء الأول) – 2019/2018 (30) -13 -13 -13 -13 -13 -13 -13 -13 -14

1- محلول قياسي لكربونات الصوديوم حجمه (100~mL) و تركيزه (0.5~M) . احسب حجم الماء اللازم اضافته إليه للحصول على محلول تركيزه (0.1~M) .

 $M_1 \times V_1 = M_2 \times V_2$ $100 \times 0.5 = 0.1 \times V_2$ $V_2 = 500 \text{ mL}$

يساوي حان ثابت الغليان للماء يساوي ($C_6H_{12}O_6$ من الماء فإذا كان ثابت الغليان للماء يساوي –2 ديب ($C_6H_{12}O_6$ من سكر الجلوكوز $C_6H_{12}O_6$ في (C=12,H=1,O=16) (0.52 °C.kg / mol)

 $M_{wt} = (6x12) + (8x1) + (6x16) = 180 \text{ g/mol}$

 $\begin{array}{c} n = m_s/M_{wt} \\ n = 45g/180g/mol = 0.25 \ mol \\ m = n \ / \ kg \ _{solvent} \\ m = 0.25/0.5_{kg} = 0.5 \ mol/kg \\ \Delta T = K_{fp} \ x \ m \\ = 0.52 \ x \ 0.5 = 0.26 \ C \\ \\ 0 = 100 \ + 0.26 = 100.26 \ ^{\circ}C \end{array}$

 $C_{10}H_{8}$ فإذا علمت أن $C_{10}H_{8}$ من النفثالين $C_{10}H_{8}$ في ($C_{10}H_{8}$ من البنزين $C_{10}H_{8}$ فإذا علمت أن درجة غليان البنزين النقي ($C_{10}H_{8}$ = $C_{10}H_{8}$) درجة غليان البنزين النقي ($C_{10}H_{8}$ = $C_{10}H_{8}$) درجة غليان البنزين النقي ($C_{10}H_{8}$ = $C_{10}H_{8}$) درجة تجمد البنزين النقي ($C_{10}H_{8}$ = $C_{10}H_{8}$) درجة غليان البنزين النقي ($C_{10}H_{8}$ = $C_{10}H_{8}$) درجة تجمد البنزين النقي ($C_{10}H_{8}$ = $C_{10}H_{8}$) درجة غليان البنزين النقي ($C_{10}H_{8}$ = $C_{10}H_{8}$) درجة غليان البنزين النقي ($C_{10}H_{8}$ = $C_{10}H_{8}$

و المطلوب: أولا: حساب درجة تجمد المحلول إذا علمت أن ثابت تجمد البنزين ($K_f = 5.2 \, ^{\circ} \mathrm{C.kg} \, / \, \mathrm{mol}$

 $n = m_s / M_{wt} = 20.8 / 128 = 0.1625 \text{ mol}$ $m = n / kg_{solvent}$ m = 0.1625 / 0.1 kg = 1.625 mol/kg $\Delta T = K_{fp} \times m$ $= 5.2 \times 1.625 = 8.45 \text{ C}$

°C 2.95 -=8.45= درجة تجمد المحلول

 $K_b = 2.53~^{\circ} \text{C.kg / mol}$ ثانيا : حساب درجة غليان المحلول إذا علمت أن ثابت غليان البنزين $\Delta T = K_{bp} \ x \ m$ = 2.53 \times 1.625 = 4.11 \times 2 = 80.1 + 4.11 = 84.21 $^{\circ} \text{C}$

التوجية الفني العام للعلوم اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء -الصف الحادي عشر العلمي - (الجزء الأول)- 2019/2018 (31)

-4 يستخلص كحول اللورايل من زيت جوز الهند ويستخدم في صناعة المنظفات الصناعية محلول مكون من -4 من كحول اللورايل و -4 (10) من البنزين يغلي عند (-4 (80.87 °C) فإذا كانت درجة غليان البنزين النقي

(80.1°C) .احسب الكتلة الجزيئية للكحول (2.53°C.kg / mol) وثابت الغليان للبنزين = (80.1°C)

 $\Delta T = 80.1 \text{--} 80.87 = 0.77 \text{ C}$ $\Delta T = \text{Kbp x m}$ m = 0.77 / 2.53 = 0.304 mol/kg $n = m \text{ x kg }_{\text{solvent}}$ = 0.304 x 0.01 = 0.003 mol $M_{\text{wt}} = m_{\text{s}} / n = 5 / 0.003 = 1666.6 \text{ g/mol}$

رجة على الجزيئية هي ($254 \, \text{g/mol}$) أذيبت كتلة معينة منها في ($45 \, \text{g}$) إيثر فكان الارتفاع في درجة $-5 \, \text{c.kg/mol}$) . احسب كتلة هذه المادة إذا علمت أن ثابت الغليان للإيثر = $2.16 \, \text{c.kg/mol}$) . احسب كتلة هذه المادة إذا علمت أن ثابت الغليان للإيثر = $0.585 \, \text{c}$)

$$\begin{split} \Delta T &= K_{bp} \ x \ m \\ m &= 0.585 \ / \ 2.16 \ = 0.27 \ mol \ / kg \\ m_s &= m \ x \ M_{wt} \ x \ Kg_{solvent} \\ &= 0.27 \ x \ 254 \ x \ 0.045 = 3.1 \ g \end{split}$$

-6 إذا علمت أن محلول اليوريا في الماء تركيزه (0.1 mol / kg) يغلي عند (0.052 °C) فاحسب قيمة ثابت الغليان للماء.

 $\Delta T = 100.052 - 100 = 0.052 \text{ C}$ $\Delta T = \text{Kbp x m}$ K bp = 0.052 / 0.1 = 0.52° C.Kg

عند عند الماء لكي يغلى المحلول الناتج عند $C_3H_8O_3$ اللازم إذابتها في ($C_3H_8O_3$ اللازم

 $\Delta T = 100.208 - 100 = 0.208 \text{ C}$ $\Delta T = \text{Kbp x m}$

m = 0.208 / 0.52 = 0.4 mol/kg $ms = m \times Mwt \times Kg \text{ solvent}$

 $= 0.4 \times 92 \times 0.5 = 18.4 g$

التوجية الفني العام للعلوم –اللجنة الفنية المشتركة للكيمياء – بنك الكيمياء –الصف الحادي عشر العلمي – (الجزء الأول) – 2019/2018 (32)
8 – أذيب (2.5 g) من مادة صلبة غير الكتروليتية غير متطايرة في (72 g) من مذيب فتجمد المحلول عند $^{\circ}$ C احسب الكتلة الجزيئية للمذاب علماً بأن درجة تجمد المذيب النقي (5.5 °C) وأن ثابت التجمد لهذا المذيب يساوي (5.1 °C.kg / mol)

 $\Delta T = 5.5 - 4.79 = 0.71 \ C$ $\Delta T = K_{fp} \ x \ m$ $m = 0.71 \ / 5.1 = 0.14 \ mol/kg$ $m_s = m \ x \ M_{wt} \ x \ Kg_{solvent}$ $M_{wt} = 2.5 / \ 0.14 \ x \ 0.072 kg = 248 \ g/mol$

(20 g) من مادة غير إلكتروليتية وغير متطايرة في (20 g) من الماء وتم تعيين درجة غليان المحلول فوجد أنها تساوي (20 s) فما الكتلة المولية لهذه المادة (20 s) علماً بأن ثابت الغليان للماء يساوي (20.512) فما الكتلة المولية لهذه المادة (20 s) علماً بأن ثابت الغليان للماء يساوي (20.512) فما الكتلة المولية لهذه المادة (20 s)

 $\Delta T = 100.5 - 100 = 0.5 \text{ C}$ $\Delta T = Kbp \text{ x m}$ m = 0.5 / 0.52 = 0.96 mol/kg ms = m x Mwt x Kg solvent $M_{wt} = 6.67 / 0.96 \text{ x } 0.02 = 347.4 \text{ g/mol}$

س7 الجمل التالية غير صحيحة اقرأها جيداً وبتمعن ثم أعد كتابتها بحيث تكون صحيحة:

- . الالكتروليتات القوية ($HgCl_2$) الزئبق الالكتروليتات القوية 1
- يعتبر كلوريد الزئبق ال HgCl₂) من الالكتروليتات الضعيفة ...
- 2- ارتفاع درجة غليان الماء بسبب وجود روابط تساهمية بين جزيئات الماء .
-ارتفاع درجة غليان الماء بسبب وجود روابط هيدروجينية بين جزيئات الماء
 - 3 تذوب كبريتات الباريوم في الماء ومحلولها يوصل التيار الكهربائي .
- كبريتات الباريوم شحيحة الذوبان في الماء ومحلولها لا يوصل التيار الكهربائي...
 - 4- كلوريد الهيدروجين المسال يوصل التيار الكهربائي .
 -غاز كلوريد الهيدروجين المسال \underline{V} يوصل التيار الكهربائي.
 - -5 الرابطة بين ذرة الهيدروجين و الأكسجين في جزيء الماء غير قطبية .
 -الرابطة بين ذرة الهيدروجين و الأكسجين في جزيء الماء قطبية
 - 6 حمض البيركلوريك من الالكتروليتات الضعيفة .
 - حمض البيركلوريك من الالكتروليتات القوية
- 7- لا تختلف الإلكتروليتات في درجة توصيلها للتيار الكهربائي وذلك لأن درجة تفككها (تأينها) متساوية .
- ... تختلف الإلكتروليتات في درجة توصيلها للتيار الكهربائي وذلك لأن درجة تفككها (تأينها) غير متساوية

التوجية الفني العام للعلوم اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء -الصف الحادي عشر العلمي - (الجزء الأول) - 2019/2018 (33)

- 8- يفضل تنفيذ التفاعلات الكيميائية في المحاليل الصلبة
- يفضل تنفيذ التفاعلات الكيميائية في المحاليل السائلة
- 9- المركبات الأيونية يمكنها أن توصل التيار الكهربائي وهي في حالتها الصلبة
- المركبات الأيونية لا يمكن أن توصل التيار الكهربائي وهي في حالتها الصلبة
 - 10- يزداد ذوبان الغاز في السائل بإرتفاع درجة الحرارة
 - يزداد ذوبان الغاز في السائل بانخفاض درجة الحرارة
- 100 kPa عند ضغط 104 kPa عند صغط 104 kPa عند صغط 104 kPa عند صغ
- 12- يمكن تحويل المحلول غير المشبع الى محلول مشبع بإذابة كميات أخرى من المذيب عند نفس درجة الحرارة
 - .. يمكن تحويل المحلول غير المشبع الى محلول مشبع بإذابة كميات أخرى من المذاب عند نفس درجة الحرارة
 - 13 عند زيادة حجم المحلول بالماء المقطر الى ضعف ماكان عليه يقل عدد مولات المذاب الى النصف
 - عند زيادة حجم المحلول بالماء المقطر الى ضعف ماكان عليه لا يتغير عدد مولات المذاب .
 - 14- الضغط البخاري للماء أقل من الضغط البخاري للمحلول المائي للجلوكوز
 - الضغط البخاري للماء أعلى من الضغط البخاري للمحلول المائي للجلوكوز
- (2m) في $100 \, \mathrm{g}$ ماء. ينتج محلول تركيزه (2m) من هيدروكسيد الصوديوم ($100 \, \mathrm{moH} = 40$) في
 - عند إذابة $20 \, \text{m}$ ماء. ينتج محلول تركيزه (NaOH = $40 \, \text{m}$) عند إذابة $20 \, \text{m}$ ماء. ينتج محلول تركيزه
 - 16- عندما يكون الكسر المولى للمذاب يساوي 0.5 فإن عدد مولات المذاب يساوي مثلى عدد مولات المذيب
 - عندما يكون الكسر المولى للمذاب يساوي 0.5 فإن عدد مولات المذاب يساوي عدد مولات المذيب
 - 17- محلولين متساوبين في الحجم فإن المحلول المركز فيهما هو الذي يحتوي على عدد جرامات مذاب أكبر
 - محلولين متساويين في الحجم فإن المحلول المركز فيهما هو الذي يحتوي على عدد مولات مذاب أكبر

س8 الرسم البياني التالي: يوضح ذوبانية غازي الأكسجين والنيتروجين وهما المكونين الأساسين للهواء الجوي عند درجات حرارة مختلفه.

<u> والمطلوب</u> : –

- 1 استنتج العلاقة بين ذوبانية غازي (O2 ، N2) ودرجة الحرارة : .تقل الذوبانية بزيادة درجة الحرارة العلاقة عكسية
 - 2 ذوبانية غاز الأكسيجن في الماء الساخنأقل..... من ذوبانيته في الماء البارد .
 - 3 ذوبانية غاز النيتروجين في الماء الباردأعلى من ذوبانيتة في الماء الساخن .

التوجية الفني العام للعلوم – اللجنة الفنية المشتركة للكيمياء – بنك الكيمياء –الصف الحادي عشر العلمي – (الجزء الأول) – 2019/2018 (34)

- 4 ذوبانية غاز الأكسجين في الماء عند (70° C) تساوي : 9/100 1/100 الأكسجين في الماء عند (1/100
- -----0.0030 g/100g H $_2$ O : تساوي 0°C) عند الماء عند (0°C) عند في الماء عند -5
- \sim : ساوي $^{\circ}$... $^{\circ}$..
 - 7 درجة الحرارة التي تكون عندها ذوبانية غاز النيتروجين أكبر ما يمكن هي : °C
- 8 ذوبانية غاز الأكسجين في الماء عند (°C)اعلى.. من ذوبانية غاز النيتروجين عند نفس الدرجة .
 - 9 ذوبانية غاز الأكسجين وغاز النيتروجين تقل كلما ..زادت. درجة الحرارة , وتزداد كلما ..قلت. درجة الحرارة .

س 9 كون من الكلمات التالية خريطة مفاهيم علمية :

التوجية الفني العام للعلوم – اللجنة الفنية المشتركة للكيمياء – بنك الكيمياء – الصف الحادي عشر العلمي – (الجزء الأول) – 2019/2018 (35) س 10 أكمل المنظومة التالية :

الأنظمة غير المتجانسة

س 11 أكتب المعادلة الأيونية النهائية الموزونة الناتجة عن مزج:

1 - محلول نيترات الرصاص مع محلول يوديد الصوديوم

$$Pb^{+2}_{(aq)} + 2I_{(aq)}^{-} \longrightarrow PbI_{2(s)}$$

2- المحلول المائي لنيترات الحديد (١١١) مع محلول هيدروكسيد الصوديوم

 $Fe^{+3}_{(aq)} + 3OH_{(aq)} \longrightarrow Fe(OH)_{3(S)}$

س 12 أكمل المعادلات الكيميائية التالية:

التوجية الفني العام للعلوم اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء الصف الحادي عشر العلمي - (الجزء الأول) - 2019/2018 (36)


```
التوجية الفنى العام للعلوم اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء -الصف الحادي عشر العلمي - ( الجزء الأول) - 2019/2018 (37)
                            السؤال الأول: اكتب الاسم أو المصطلح العلمي الذي تدل عليه كل من العبارات التالية:
             1 - من أهم فروع الكيمياء الفيزيائية التي تهتم بدراسة التغيرات الحرارية التي ترافق التفاعلات الكيميائية .
 ( الكيمياء الحرارية )
         2 - هو جزءاً معيناً من المحيط الفيزيائي الذي هو موضع الدراسة وبشكل أيضاً مجموعة أجسام مادية تتفاعل
                                                 في ما بينها بطريقة تعكس نمطاً معيناً في بنية العالم المادي .
       النظام
                                                                3 - هو ما تبقى من الفضاء الذي يحيط بالنظام.
   ( المحيط )
                       4 – هي الطاقة التي تتدفق داخل النظام أو خارجه بسبب وجود اختلاف في درجة الحرارة بين
    ( الحرارة )
                                                                                         النظام ومحيطه .
 (طاردة للحرارة)
                                                    5 - تفاعلات تنتج طاقة حرارية يمتصها المحيط خارج النظام .
 ( ماصة للحرارة )
                                          6 - تفاعلات يمتص فيها النظام طاقة حرارية من المحيط خارج النظام .
  ( لا حرارية )
                                  7 - تفاعلات لايمتص فيها النظام ولا تنتج طاقة حرارية من المحيط خارج النظام.
                                8 - هو كمية الحرارة الممتصة أو المنطلقة خلال تفاعل كيميائي تحت ضغط ثابت.
 (التغير في الانثالبي)
                      9 - هي كمية الحرارة التي تنطلق أو تمتص عندما يتفاعل عدد من المولات للمواد المتفاعلة مع
                                                            بعض خلال تفاعل كيميائي لتتكون مواد ناتجة.
  (حرارة التفاعل)
                     10- هي محصلة تغيرات الطاقة الناتجة عن تحطم الروابط الكيميائية في المواد المتفاعله وتكوين
                                                                          روابط جديدة في المواد الناتجة.
   (حرارة التفاعل)
                               11- التغير في المحتوى الحراري (الإنثالبي) المصاحب لتكوين مول واحد من المركب
 انطلاقاً من عناصره الأولية ، وأن جميع المواد تكون في حالتها القياسية عند ℃25. (حرارة التكوبن القياسية )
                           P = 1 atm= 101.3 k<sub>Pa</sub>وضغط وضغط ^{\circ}C = 298 K = T وضغط عند درجة حرارة
(الظروف القياسية)
                       13- هي كمية الحرارة المنطلقة عند احتراق مول واحد من المادة ( عنصرية أو مركبة ) احترقاً
تاماً في وفرة من الأكسجين أو الهواء الجوي عند 25°C وتحت ضغط يعادل 1 atm . (حرارة الاحتراق القياسية)
                         14 - حرارة التفاعل الكيميائي تساوي قيمة ثابتة سواء حدث هذا التفاعل مباشرة خلال خطوة
                                                                            واحدة أو خلال عدة خطوات.
   ( قانون هس )
                                  \Delta H_{
m r} > 0 التفاعلات التي يكون التغير في الإنثالبي لها أكبر من صفر ( \Delta H_{
m r} > 0 ) .
  ( ماص للحرارة )
                                   \Delta H_r < 0 التفاعلات التي يكون التغير في الإنثالبي لها أصغر من صفر (\Delta H_r < 0)
  (طارد للحرارة)
   ( لا حراري )
                                   \Delta H_r = 0 التفاعلات التي يكون التغير في الإنثالبي لها يساوي من صفر \Delta H_r = 0
  ( ماص للحرارة )
                                     \Delta H_r - 1التفاعلات التي يكون التغير في الإنثالبي لها إشارة موجبة (\Delta H_r - \Delta) .
                                         \Delta H_{-} التفاعلات التي يكون التغير في الإنثالبي لها إشارة سالبة (-4
  (طارد للحرارة)
```

```
التوجية الفني العام للعلوم اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء -الصف الحادي عشر العلمي - ( الجزء الأول) - 2019/2018 (38)
     السؤال الثاني: ضع علامة (\checkmark) أمام العبارة الصحيحة وعلامة (x) أمام العبارة غير الصحيحة في كل مما يلي:
                                                         1 - في الكيمياء الحراربة الفضاء والمحيط يشكلان النظام .
( X)
( ✓ )
                                                                2 - النظام مجموعة أجسام مادية تتفاعل فيما بينها .
                        HCl_{(aq)} + NaOH_{(aq)} --- NaCl_{(aq)} + H_2O_{(l)} + 57kJ: التفاعل التالى -3
( X)
                                                             التغير في المحتوى الحراري له يأخذ إشارة موجبة .
(X)
                                                                      4 - الجول يساوي ( 4.18 ) سعرات حرارية .
                                       . (\Sigma\Delta H_{\text{abol}} من من (\Sigma\Delta H_{\text{abol}}) أكبر من أعلات الطاردة للحرارة يكون أراتحة \Sigma\Delta H_{\text{abol}}
(X)
                                               في التفاعلات اللاحرارية يكون (ناتجة \Sigma \Delta H_{ablable}) مساوية (متفاعله \Delta \Delta H_{ablable}).
(\checkmark)
( X)
                                                . أيشارة موجبة \Delta H في التفاعلات الطاردة للحرارة يكون لقيمة \Delta H
                      8 – إذا كانت لقيمة (ΔH ) إشارة موجبة فإن مجموع المحتويات الحرارية للمواد الناتجة أقل من
( X)
                                                                     مجموع المحتوبات الحراربة للمواد الداخلة .
(✓)
                                          -9 إشارة موجبة فإن التفاعل يكون ماصاً للحرارة -9
                                  2CO_{(g)} + O_{2(g)} \longrightarrow 2CO_{2(g)} + 568 \text{ kJ} - التفاعل التالي -10
( ✓ )
                          CO_2) يدل على أن المحتوى الحراري لغاز (CO)أكبر من المحتوى الحراري لغاز
                                     N_{2(q)} + O_{2(q)} \longrightarrow 2NO_{(q)}, \Delta H = +180 kJ: إذا علمت أن -11
                 (N_2)، (O_2) فإن المحتوى الحراري لغاز (NO) أكبر من مجموع المحتويات الحرارية لغازي
( ✓ )
                                                                                           بمقدار (90kJ).
                     ا ولأكسيد الحديد المغناطيسي ({\sf Fe}_2{\sf O}_3) الكسيد الحديد المغناطيسي – الحديد المغناطيسي – الك-12
                           : فإن التفاعل التالي ( -1218 , -824 kJ/mol ) هي على الترتيب ( -1218 , -824 kJ/mol
( 🗸 )
                                            . فارد للحرارة 6 Fe_2O_{3(s)} \longrightarrow 4 Fe_3O_{4(s)} + O_{2(g)}
               الصلب في ( Na ) الصلب في المحتوى الحراري لغاز الأكسجين ( O_2 ) الصلب في
( ✓ )
                                                                                           الظروف القياسية .
                14- حرارة التكوين القياسية لغاز الميثان ( CH<sub>4</sub> ) تساوى حرارة التكوين لنصف مول من غاز الميثان
( X )
                                                               عند نفس الظروف من الضغط ودرجة الحرارة .
( ✓ )
                                                    15- حرارة التكوبن القياسية للمركب تساوى المحتوى الحراري له .
         16- المحتوى الحراري لمول من غاز النيتروجين يساوى المحتوى الحراري لنصف مول منه عند نفس الظروف
( ✓ )
                                                                                  من الضغط ودرجة الحرارة .
                 2H_{2(g)} + O_{2(g)} \longrightarrow 2H_2O_{(g)} , \Delta H = -936 {\rm kJ} : الطاقة المصاحبة للتغير التالى -17
( X)
                                                                          تسمى حرارة التكوين القياسية للماء .
                 SO_{2(g)} + \frac{1}{2}O_{2(g)} \longrightarrow SO_{3(g)} , \Delta H = +49 {\rm kJ} : الطاقة المصاحبة للتغير التالي -18
                                                     تسمى حرارة الاحتراق القياسية لغاز ثانى أكسيد الكبريت .
( X)
```

```
التوجية الفني العام للعلوم اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء -الصف الحادي عشر العلمي - ( الجزء الأول) - 2019/2018 (39)
                -19 حرارة التكوبن القياسية لأكسيد الألومنيوم ( Al_2O_3 ) تساوى حرارة الاحتراق القياسية للألومنيوم .
(X)
                  20- إذا علمت أن تكوبن ( 20 g ) من غاز الميثان ( CH<sub>4</sub> ) يصاحبه انطلاق ( 150 kJ ) فإن
( ✓ )
                            . ( C = 12 , H = 1 ) (-75 \, \text{kJ/mol} ) حرارة التكوبن القياسية للميثان تساوي
                التغير في المحتوى الحراري (\Delta H) لتفاعل ما يختلف باختلاف الطربق الذي يسلكه التفاعل ولا -21
( X )
                                                              يعتمد على الحالتين الابتدائية والنهائية للتفاعل.
(✓)
                                                      22- المحتوى الحراري للعنصر في حالته القياسية يساوي صفراً
(✓)
                                                          \Delta H ) في التفاعلات الماصة للحرارة موجبة \Delta H
             H_{2(g)} + Cl_{2(g)} \rightarrow 2HCl_{(g)} + 184.6kJ: التغير في المحتوى الحراري المصاحب للتفاعل التالي: -24
                                                           تسمى حرارة التكوبن القياسية لغاز كلوربد الهيدروجين
(X)
   N_{2(g)} + 2O_{2(g)} \rightarrow N_2O_{4(g)} , \Delta H^0c = +9.6~kJ/mol : التغير الحراري المصاحب للتفاعل التالي -25
                                                                             بحرارة الاحتراق القياسية للنيتروجين
(X)
                                    C_{(g)} + \frac{1}{2}O_{2(g)} \rightarrow CO_{(g)} । التغير المصاحب للتفاعل التالي: -26
                                                                             يعتبر حرارة احتراق قياسية للكربون
(X)
           CO_{(g)} + \frac{1}{2}O_{2(g)} \rightarrow CO_{2(g)} \Delta H = -283.5 \text{kJ/mol} التغير الحراري المصاحب للتفاعل التالي -27
( ✓ )
                                                                      يعتبر حرارة احتراق قياسية لغاز CO.
           CO_{(g)} + \frac{1}{2}O_{2(g)} \rightarrow CO_{2(g)} \Delta H = -283.5 \text{kJ/mol} التغير الحراري المصاحب للتفاعل التالي -28
(X)
                                                                         يعتبر حرارة تكوبن قياسية لغاز CO<sub>2</sub>
                 H_{(g)}+Cl_{(g)} \rightarrow HCl_{(g)}, \Delta H=-432 k J/mol: التغير الحراري المصاحب للتفاعل التالي: -29
                                                                       يعتبر حرارة تكوين قياسية لغاز H-Cl
(X)
            30- إذا كانت حرارة التكوين القياسية الأكسيد الخارصين ( ZnO ) تساوي 348 kJ / mol - ، فإن حرارة
(X)
                                            (+348 \text{ kJ/mol}) تساوي ( Zn ) الاحتراق القياسية للخارصين
31- التغير في المحتوى الحراري لأي تفاعل كيميائي يكون أقل ما يمكن عندما يتم هذا التفاعل في خطوة واحدة (X)
```

السؤال الثالث: أكمل الفراغات في الجمل التالية بما يناسبها علمياً:

- المارة ΔH_r المارة التفاعل لها إشارة ΔH_r أكبر من ΔH_r المارة التفاعل لها إشارة ΔH_r المارت هذا التفاعل من النوع الطارد للحرارة .
 - 2 في التفاعلات الكيميائية الطاردة للحرارة يكون التغير في الإنثالبي للمواد المتفاعلة أكبر من التغير في الإنثالبي للمواد الناتجة .
 - النوع الماص النوع الماص الحرارة $|_{2(s)}| + |_{2(g)}| + |_{2(g)}| + |_{2(g)}|$ الماص الخرارة $|_{2(s)}|$

التوجية الفني العام للعلوم اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء -الصف الحادي عشر العلمي - (الجزء الأول) - 2019/2018 (40)

- 4 في التفاعلات الكيميائية الطاردة للحرارة يكون كمية الحرارة المصاحبة لتفكيك الروابط في جزيئات المتفاعلات أقل من كمية الحرارة المصاحبة لتكوين الروابط في جزيئات النواتج.
 - $CH_3OH_{(I)}$ \longrightarrow $CH_3OH_{(g)}$ $\Delta H=+37$ kJ / mol المعادلة الحرارية التالي الميثانول أقل من التغير في الإنثالبي للميثانول السائل فإن التغير في الإنثالبي لبخار الميثانول أقل من التغير في الإنثالبي الميثانول السائل
- $2H_{2(g)} + O_{2(g)} \longrightarrow 2H_2O_{(l)}$, $\Delta H = -572$ kJ /mol : حسب المعادلة الكيميائية الحرارية التالية : -6 kJ / mol -286 فإن حرارة الاحتراق القياسية للهيدروجين تساوي
- نستنتج أن: $4Cr_{(s)} + 3O_{2(g)} \longrightarrow 2Cr_2O_{3(s)}$, $\Delta H = -2282 \text{ kJ}$ نستنتج أن: $4Cr_{(s)} + 3O_{2(g)} \longrightarrow 4Cr_2O_{3(s)}$ نستنتج أن: حرارة التكوين القياسية لأكسيد الكروم (III) تساوي III تساوي III نستنج أن:
- المحتوى الحراري لأكسيد الألومنيوم $Al_2O_{3(s)}$ يساوي $Al_2O_{3(s)}$ ، فإن حرارة الاحتراق القياسية -835 kJ/mol للألومنيوم تساوي -835 kJ/mol
- 9 عند احتراق (4 g) من غاز الميثان (16 = 16) احتراقا تاماً ينطلق 220 kJ فإن حرارة الإحتراق القياسية 9 لغاز الميثان تساوي -880 KJ/mol KJ/ أ
- المنطلقة عند احتراق ($C_2H_6=30$) من غاز الإيثان ($C_2H_6=30$) تساوي -1560 kJ/mol فإن كمية الحرارة المنطلقة عند احتراق (15 g) من غاز الإيثان تساوي -780 kJ من غاز الإيثان تساوي
- 11- إذا كانت كمية الحرارة المنطلقة عند احتراق (g/ 5.7) من مركب عضوي تساوي (273.5) وحرارة الاحتراق g/mol 114 القياسية لهذا المركب العضوي تساوي 5470.4 kJ/mol فإن الكتلة الجزيئية لهذا المركب تساوي 114 القياسية لهذا المركب العضوي تساوي 5470.4 أوراد المركب العضوي العضوي المركب العضوي المركب العضوي المركب العضوي المركب العضوي العضوي المركب العضوي العضوي
 - القياسية -318 kJ تساوي -318 kJ تساوي (Ca = 40) من الكالسيوم (20 g) من الكالسيوم (Ca = 40) من الكالسي
 - $2AI_{(s)} + Fe_2O_{3(s)} \longrightarrow AI_2O_{3(s)} + 2Fe_{(s)}$, $\Delta H = -847.8$ kJ نامعادلة الحرارية التالية: -211.95 kJ ساوي (AI=27) ساوي (AI=27) من الألومنيوم (AI=27) ساوي (AI=27) ساوي (AI=27)
 - $C_{(s)} + \frac{1}{2}O_{2(g)} \longrightarrow CO_{(g)}$, $\Delta H = -109$ kJ / mol : بالاستعانة بالمعادلتين التاليتين : $CO_{(g)} + \frac{1}{2}O_{2(g)} \rightarrow CO_2$ $\Delta H = -283.5$ kJ/mol ثانى اكسيد الكربون تساوي $\frac{-392.5}{2}$ kj/mol غالم
 - $4 AI_{(s)} + 3O_{2(g)} \longrightarrow 2 AI_2O_{3(s)}$, $\Delta H = -3340 kJ$: فإن حرارة الاحتراق القياسية للألومنيوم تساوي . -835~kJ/mol

عشر العلمي - (الجزء الأول) - 2019/2018 (41)	ء -الصف الحادي	الفنية المشتركة للكيمياء – بنك الكيمياء	التوجية الفني العام للعلوم اللجنة
208 -) فإن حرارة الاحتراق القياسية) تساو <i>ي</i> (kJ	C_2H_6) من الإيثان (4 g) ن	16- إذا كانت حرارة احتراؤ
(C = 12)	2 , H = 1)	. <u>−1560</u> kJ	للإيثان تساو <i>ي</i> mol/
يي (394 kJ/mol) فإن حرارة	ېون CO_2 تساو	بن القياسية لغاز ثاني أكسيد الكر	17- إذا كانت حرارة التكوب
		بون تساو <i>ي</i> kJ/mol394 .	
هي على الترتيب (1670-, 1246-	(Cr_2O_3 , A	Al_2O_3) لتكوين القياسية لكل من	18- إذا علمت أن حرارة ال
$2Cr + Al_2O_3$		عل التالي: Cr ₂ O ₃ + Cr ₂ O ₃	kJ/mol) فإن التفاء
			يكون <u>ماص</u> للحرارة
مل التالية:	, جملة من الجر	(٧) أمام أنسب عبارة تكمل كل	السؤال الرابع: ضع علامة
2 NaHCO _{3(s)} \longrightarrow N	$a_2CO_{3(s)} +$	$CO_{2(g)} + H_2O_{(\ell)}$	1 - في التفاعل التالي:
- ، وحرارة التكوين القياسية لكربونات	- 1767 kJ	ات الحرارية للمواد الناتجة يسا <i>وي</i>	إذا كان مجموع المحتوب
	ن هذا التفاعل:	تساو <i>ي</i> 948 kJ / mol ، فإ	الصوديوم الهيدروجينية
$+$ 819 kJ= برارة وقيمة Δ H برارة وقيمة	🗖 طارد للد	- 819 kJ = ما <u>۸</u>	☐ ماص للحرارة وقيمة H.
$-$ 129 kJ= له Δ H رارة وقيمة	🗖 طارد للد	+ 129 kJ= ما <u>۸</u>	🗖 ماص للحرارة وقيمة H.
$2Fe_{(s)} + 3/2O_{2(g)} \longrightarrow$	Fe ₂ O _{3(s)} +	بة الحرارية التالية: 820 kJ -	
		ارات التالية صحيحة <u>عدا</u> :	
	– 820 kJ /	سية لأكسيد الحديداااتساوي mol	🗖 حرارة التكوين القياس
	410	$0\;kJ\:/\;mol$ سية للحديد تساوي	🗖 حرارة الاحتراق القيا
		. – 820 kJ	🗖 حرارة التفاعل تساوء
	للمواد المتفاعلة	ناتج <u>أكبر</u> من المحتو <i>ي</i> الحراري ا	🗖 المحتوى الحراري لل
Ca تساوي 318kJ ، فإن حرارة التكوين	كالسيوم 40 =		_
		,	القياسية لأكسيد الكالس
+ 636 kJ/mol ☐ + 318 ks	J/mol □	- 318 kJ/mol □	– 636 kJ/mol 🗖
:	للمواد التالية	نِها القياسية تساو <i>ي</i> صفر من بير	4 – المادة التي حرارة تكوي
$Hg_{(g)}$	$F_{2(g)}$	I _{2(g)} □	$Br_{2(g)} \; \square$

<u> - (الجزء الأول) - 2019/2018 (42)</u>	الكيمياء -الصف الحادي عشر العلمي	الفنية المشتركة للكيمياء - بنك	التوجية الفني العام للعلوم-اللجنة
نيب تساوي :	, Al , Mg , C على الترن	H_2 من القياسية لكل من	5 - إذا كانت حرارة الاحتراز
ة محتوى حراري من بين	/kJ ، فإن أقل المركبات التالي	/mol (-835 , - 609	, - 394 , - 286)
_			المركبات التالية هو:
Al_2O_3	MgO □	CO ₂ □	H ₂ O □
اعلات أكبر من كمية الحرارة	تفكيك الروابط في جزيئات المتف		
		بط في النواتج فإن هذا الت	
الماصة للحرارة	🗖 من التفاعلات الكيميائية	ية الطاردة للحرارة	🗖 من التفاعلات الكيميائ
التي لا ينطبق عليها قانون هس	🗖 من التفاعلات الكيميائية	ية اللاحرارية	🗖 من التفاعلات الكيميائ
	وجود اختلاف في درجة الحرار		
🗖 الطاقة النوعية .	ية . 🗖 الحرارة .	□الحرارة النوع	🗖 درجة الحرارة .
		لحرارة يكون :	8- في التفاعلات الطاردة ل
$\left(\Sigma \Delta H_{ ext{aliable}} ight)$ ل من لمن المتفاعلة	أز $\Sigma \Delta H_{i$ ا أق	$\left(\Sigma\DeltaH_{ ilde{a}$ متفاعلة	ا ($\Sigma \Delta H_{ir_{F_{F}}}$ أكبر من
$\Sigma \Delta H$ ل من $(_{arb = Li} Li H Li)$ إشارة موجبة (ΔLi)	☐ تكون لقيمة (H	$\left(\Sigma\DeltaH_{alab}\right)$ متفاعلة	مساوية $(\Sigma \Delta H_{ii$ مساوية
	_	لحرارة يكون :	9– في التفاعلات الماصة ا
، الإنثالبي أكبر من الصفر	🗖 قيمة التغير في	ي أقل من الصفر	🗖 قيمة التغير في الإنثالب
، الإنثالبي سالبة أو موجبة	□ قيمة التغير في	ي مساوية الصفر	🗖 قيمة التغير في الإنثالب
	ن التفاعل :	عل ما لها إشارة موجبة فإر	اذا کانت (ΔH) لتفاء -10
ط. 🗖 ماص للحرارة.	□ لا يتبادل الحرارة مع المحي	🗖 طارد للحرارة.	🗖 لا حراري.
CH_4	+ 2O ₂	$+ 2H_2O + 890 \text{ kg}$	11_ في التفاعل التالي: ل
الحرارة من محيطه .	🗖 يمتص النظام	لى محيطه .	🗖 يطرد النظام الحرارة إ
حرارة النظام .	🗖 لا تتغير درجة	تص الحرارة .	🗖 النظام لا يطرد ولا يم
ا نستنتج أن:	$_{2(s)}$ + $H_{2(g)}$ + 51.8 kJ	— → 2HI _(g)	12_من التفاعل التالي:
. (51	الهيدروجين يساوي (+kJ 8.	نثالبي) لمولين من يوديد	🗖 المحتوى الحراري (الإ
	. (51.8 kJ+) ر	ة ليوديد الهيدروجين يساوي	🗖 حرارة التكوين القياسيا
	البة .	$_{\sim}$ حراري ($_{ m AH}$) له إشارة س	🗖 التغير في المحتوى ال
			🗖 التفاعل طارد للحرارة

			التوجية الفني العام للعلوم –اللجنة الفنية المث
احتراق مولین من	ي (−286 kJ/mol) فإن	ية للماء السائل (H_2O) تساوي	13- إذا كانت حرارة التكوين القياسي
	_		: الهيدروجين (H_2) تساوي
+ 286 kJ/mol □	- 572 kJ/mol <mark>□</mark>	- 143 kJ/mol □	-286 kJ/mol □
	<u>:</u>	الألومنيوم (Al_2O_3) تساوي	14 حرارة التكوين القياسية لأكسيد
من الألومنيوم .	🗖 حرارة الاحتراق لمولين ،	ىنيوم .	🗖 حرارة الاحتراق القياسية للألوه
مولات من الألومنيوم .	🗖 حرارة الاحتراق لأربعة م	ىن الألومنيوم .	🗖 حرارة الاحتراق لنصف مول ه
) فإن حرارة التكوين			15- إذا علمت أن تكوين (8 g)
			القياسية للميثان تساوي:
+ 75 kJ/mol □	-4.7 kJ/mol □	- 300 kJ/mol □	– 75 kJ/mol 🗖
) هو :	إنواع التالية لا تساوي (صفراً	16- حرارة التكوين القياسية لأحد ال
CO _(g)			Fe _(s)
2C ₂ H ₄₍₉	+ 6O _{2(g)} ——	► 4CO _{2(g)} + 4H ₂ O _(l)	17– إذا علمت أن : 2750 kJ +
		لإيثين (بـ kJ/mol) تساو <i>ي</i>	
+ 5500 🗖	- 2750 □	+ 1375 🗖	- 1375
وريد الفضية AgCl _(s) وهو:			18– التغير الحراري ΔΗ المصاحب
		$Ag^{+}_{(aq)} + CI^{-}_{(aq)}$	\rightarrow Ag ⁺ Cl ⁻ _(s)
	A	$ag_{(s)} + AuCl_{(aq)}$ ——	\rightarrow Au _(s) + AgCl _(s) \square
		$Ag_{(s)} + \frac{1}{2}CI_{2(g)}$ ———	→ AgCl _(s)
		AgCl _(s) —	\rightarrow Ag _(s) + ½Cl _{2(g)}
			19 حرارة الاحتراق القياسية:
	وفرة من الأكسجين .	الواحد عند احتراقه التام بوجود	🗖 حرارة منطلقة وتحسب للمول
ن .	تام بوجود وفرة من الأكسجي	مية من المادة عند احتراقها الن	🗖 حرارة ممتصة وتحسب لأي ك
جين .	التام بوجود وفرة من الأكسد	سب للمول الواحد عند احتراقه	🗖 حرارة منطلقة أو ممتصة وتح
	واحد احتراقاً تاماً .	إشارة موجبة عند احتراق مول	 التغير في الإنثالبي لها يأخذ

التوجية الفني العام للعلوم – اللجنة الفنية المشتركة للكيمياء – بنك الكيمياء – الصف الحادي عشر العلمي – (الجزء الأول) – 2019/2018 (44) السؤال الخامس: علل (فسر) ما يلي:

. الحرارة المصاحبة للتغير التالي $C_{(s)} + \frac{1}{2}O_{2(g)} \rightarrow CO_{(g)}$ لا تمثل حرارة الاحتراق القياسية للكربون -1 لأن احتراق الكربون غاز ثاني أكسيد الكربون لعدم وجود كمية وافرة من الأكسجين لتكوين غاز ثاني أكسيد الكربون CO_2

. (H_2) تساوي حرارة التكوين القياسية للماء السائل (H_2O) تساوي حرارة الاحتراق القياسية لغاز الهيدروجين -2

لأن كمية الحرارة المنطلقة عند تكوبن مول واحد من H2O تساوي كمية الحرارة المنطلقة عند احتراق مول واحد من H2 .

$$SO_{2(g)} + \frac{1}{2}O_{2(g)} + 49$$
لا $J \to SO_{3(g)}$: التغير التالي التغير التالي التعتبر حرارة الاحتراق القياسية لغاز ثاني أكسيد الكبريت .

لأن الحرارة في التفاعل السابق حرارة ممتصة بينما حرارة الاحتراق القياسية هي كمية الحرارة المنطلقة عند احتراق واحد مول من المادة المحترقة ,

$$2AI_{(s)} + 1\frac{1}{2}O_{2(g)} \longrightarrow AI_2O_{3(s)}$$
 : فإن حرارة الاحتراق القياسية للألومنيوم تساوي نصف حرارة الاحتراق القياسية للألومنيوم تساوي نصف عرارة الاحتراق القياسية للألومنيوم .

لأنه عند تكوين مول واحد من أكسيد الالومنيوم من عناصره الأولية في حالتها القياسية يحترق مولين من الالومنيوم احتراقاً تاماً وحيث أن حرارة الاحتراق القياسية للألومنيوم تحسب للمول الواحد منه وليس للمولين ،لذلك حرارة الاحتراق القياسية للألومنيوم .

5 – من المخطط التالي:

نالي : مجموع التغيرات الحرارية فيه يمكن تمثيلها بالتفاعل التالي $2C_{(e,c)} + 2O_{2(g)} \longrightarrow 2CO_{2(g)}$

.....f

أكتب المعادلات الحرارية الحادثة:

$$2C + 2O_2 \rightarrow 2CO + O_2$$
 $\Delta H = -221 \text{ KJ}$
 $2CO + O_2 \rightarrow 2CO_2$ $\Delta H = -566.5 \text{ KJ}$
 $2C + 2O_2 \rightarrow 2CO_2$ $\Delta H = -787.5 \text{ KJ}$

- حدد أي المواد السابقة (CO أم CO₂) الأكبر محتوى حراري ؟ CO أكبر محتوى حراري من CO₂

2

التوجية الفني العام للعلوم – اللجنة الفنية المشتركة للكيمياء – بنك الكيمياء – الصف الحادي عشر العلمي – (الجزء الأول) – 2019/2018 (45) $\frac{1}{1}$ الجمل التالية غير صحيحة اقرأها جيداً وبتمعن ثم أعد كتابتها بحيث تكون صحيحة: 1 – التفاعل الماص للحرارة يكون التغير في الإنثالبي 1 0 0 0 التفاعل الماص للحرارة يكون التغير في الإنثالبي 1 0 0 0 0 التفاعل الطارد للحرارة يكون التغير في الإنثالبي 1 0 0 0

 $\Delta \; {
m H} < 0$ التفاعل الطارد للحرارة يكون التغير في الإنثالبي .

 $\Delta H < 0$ التفاعل اللاحراري يكون التغير في الإنثالبي - 3

 $\Delta H = 0$ التفاعل اللاحراري يكون التغير في الإنثالبي

4 - في التفاعلات الكيميائية الطاردة للحرارة التغير في الإنثالبي موجب ويطرد النظام الحرارة للمحيط في التفاعلات الكيميائية الطاردة للحرارة التغير في الإنثالبي سالب ويطرد النظام الحرارة للمحيط

5 – في التفاعلات الكيميائية الماصة للحرارة التغير في الإنثالبي سالب ويطرد النظام الحرارة للمحيط في التفاعلات الكيميائية الطاردة للحرارة التغير في الإنثالبي سالب ويطرد النظام الحرارة للمحيط

6 – في التفاعلات الكيميائية اللاحراريه لا تغيير في الإنثالبي ويطرد النظام الحرارة للمحيط ولا يمتص حرارة في التفاعلات الكيميائية اللاحراريه لا تغيير في الإنثالبي ولا يطرد النظام الحرارة للمحيط ولا يمتص حرارة

مالبة الماصة للحرارة لها قيمة سالبة ΔH مي التفاعلات الماصة للحرارة لها قيمة سالبة

قيمة (ΔH) في التفاعلات الماصة للحرارة لها قيمة موجبة

 $H_{2(g)} + Cl_{2(g)} \rightarrow 2HCl_{(g)} + 184.6kJ$: التغير في المحتوى الحراري المصاحب للتفاعل التالي: -8 تسمى حرارة التكوين القياسية لغاز كلوريد الهيدروجين

 $H_{2(g)} + Cl_{2(g)} \rightarrow 2HCl_{(g)} + 184.6kJ$ التغير في المحتوى الحراري المصاحب للتفاعل التالي: يسمى حرارة التكوين لـ 2 مول من كلوريد الهيدروجين

9 - يسمى التغير الحراري المصاحب للتفاعل التالي:

بحرارة الاحتراق القياسية للنيتروجين $N_{2(g)} + 2O_{2(g)} \longrightarrow N_2O_{4(g)}$, $\Delta H^0 = +9.6 \, \text{kJ/mol}$ يسمى التغير الحراري المصاحب للتفاعل التالي:

بحرارة التفاعل $N_2(g)+2O_2(g)$ بحرارة التفاعل $N_2O_4(g)$, $\Delta H^0=+9.6~kJ$ / mol

 $C_{(g)} + \frac{1}{2}O_{2(g)} \longrightarrow CO_{(g)}$ يعتبر حرارة احتراق قياسية للكربون $C_{(g)} + \frac{1}{2}O_{2(g)} \longrightarrow CO_{(g)}$ يعتبر حرارة احتراق قياسية للكربون المصاحب للتفاعل التالي: $C_{(g)} + \frac{1}{2}O_{2(g)} \longrightarrow CO_{(g)} + \frac{1}{2}O_{2(g)}$ يعتبر حرارة تكوين قياسية لأول أكسيد الكربون $C_{(g)} + \frac{1}{2}O_{2(g)} \longrightarrow CO_{2(g)} \longrightarrow CO_{2(g)} \longrightarrow CO_{2(g)}$ $\Delta H = -283.5 \text{kJ/mol}$ يعتبر حرارة تكوين قياسية لغاز $C_{(g)} + \frac{1}{2}O_{2(g)}$

 $CO_{(g)} + 1/2O_{2(g)}$ \longrightarrow $CO_{2(g)}283.5- =kJ/mol$ التغير الحراري المصاحب للتفاعل التالي $CO_{(g)} + 1/2O_{(g)}$ التغير حرارة احتراق قياسية لغاز

12- التغير في المحتوى الحراري لأي تفاعل كيميائي يكون أقل ما يمكن عندما يتم هذا التفاعل في خطوة واحدة التغير في المحتوى الحراري لأي تفاعل كيميائي قيمة ثابتة ما يمكن عندما يتم هذا التفاعل في خطوة واحدة.

التوجية الفني العام للعلوم - اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء - الصف الحادي عشر العلمي - (الجزء الأول) - 2019/2018 (46) السؤال السادس: أجب عن الأسئلة التالية:

1 - أكمل الجدول التالي بما هو مطلوب:

نوع التفاعل (ماص- طارد- لا حراري)	قيمة(∆H)	التفاعل الكيميائي
ماص	موجبة	$SO_{2(g)} + \frac{1}{2}O_{2(g)} + 49kJ \longrightarrow SO_{3(g)}-1$
طارد	سالبة	$2Na_{(s)} + Cl_{2(g)} \longrightarrow 2Na^{+}Cl_{(s)}^{-} + 411.2 \text{ kJ} - 2$
طارد	سالبة	$N_{2(s)} + 3O_{2(g)} + H_{2(g)} \longrightarrow 2HNO_{3(l)} + 348 \text{ kJ} - 3$
لا حراري	صفر	$CH_3COOH_{(I)} + C_2H_5OH_{(I)} \ \to CH_3COOC_2H_{5(I)} + \ H_2O_{(I)} \ - \ 4$

2- أكمل الجدول التالي بما هو مطلوب:

التفاعلات اللاحرارية	التفاعلات الماصة	التفاعلات الطاردة	وجه المقارنة
تساوي الصفر	أكبر	أقل	قيمة H∆(أكبر أو أقل أو تساوي الصفر)
_	موجبة	سالبة	إشارة التغير في المحتوى الحراري (ΔH)
ناتجةΔΗΣ تساوي المتفاعلهΔΗΣ	Δ H Σ ناتجة Δ H Δ أكبر متفاعله	$\Delta H\Sigma$ ناتجة $\Delta H\Sigma$ أصغر متفاعله	$\Sigma \Delta H$ العلاقة بين ΔH و متفاعله

3 - أعطيت المعادلات الحرارية التالية :

1)
$$8Mg_{(s)} + Mg(NO_3)_{2(s)} \longrightarrow Mg_3N_{2(s)} + 6MgO_{(s)}$$
 , $\Delta H = -3884 \text{ kJ}$

2)
$$Mg_3N_{2(s)} \longrightarrow 3Mg_{(s)} + N_{2(g)}$$
 , $\Delta H = +463 \text{ kJ}$

3)
$$Mg_{(s)} + \frac{1}{2}O_{2(g)} \longrightarrow MgO_{(s)}$$
 , $\Delta H = -601.5 \text{ kJ}$

. $(Mg(NO_3)_2)$ والمطلوب حساب حرارة التكوين القياسية لنيترات المغنيسيوم

الحل : بضرب المعادلة (1) في 1- , والمعادلة (2) في 1- , والمعادلة (3) في 6 ثم الجمع الجبري :

1)
$$Mg_3N_{2(s)} + 6MgO_{(s)} \rightarrow 8Mg_{(s)} + Mg(NO_3)_{2(s)}$$
, $\Delta H = +3884 \text{ kJ}$

2)
$$3Mg_{(s)} + N_{2(g)} \rightarrow Mg_3N_{2(s)}$$
 , $\Delta H = -463 \text{ kJ}$

3)
$$6Mg_{(s)} + 3O_{2(g)} \rightarrow 6MgO_{(s)}$$
, $\Delta H = -3609 \text{ kJ}$

 $Mg + N_2 + 3O_2 \rightarrow Mg(NO_3)_2 \Delta H = -188 \text{ KJ/mol}$

4 - احسب حرارة التكوين القياسية لخامس كلوريد الفوسفور الصلب من المعادلات التالية :

1)
$$PCI_{3(l)} + CI_{2(g)} \longrightarrow PCI_{5(s)}$$
, $\Delta H = -137 \text{ kJ}$

2)
$$P_{4(s)} + 6CI_{2(g)} \rightarrow 4PCI_{3(l)}$$
, $\Delta H = -1264 \text{ kJ}$

الحل : بضرب المعادلة (1) في 1 , والمعادلة المعادلة (2) في 1/4 , ثم الجمع الجبري :

1)
$$PCI_{3(l)} + CI_{2(g)} \rightarrow PCI_{5(s)}$$
, $\Delta H = -137 \text{ kJ}$

2)
$$\frac{1}{4}P_{4(s)} + \frac{6}{4}CI_{2(g)} \rightarrow PCI_{3(l)}$$
 , $\Delta H = -316 \text{ kJ}$

$$^{1/4}P_4 + ^{5}/_{2}CI_2 \rightarrow PCI_5 \qquad \Delta H = -453KJ / mol$$

```
التوجية الفني العام للعلوم – اللجنة الفنية المشتركة للكيمياء – بنك الكيمياء –الصف الحادي عشر العلمي – ( الجزء الأول) – 2019/2018 (47)
                                                                                                                                                      5 - مستعيناً بالمعادلات الحراربة التالية:
                 1) C_3H_{8(g)} + 5O_{2(g)} \rightarrow 3CO_{2(g)} + 4H_2O_{(I)} , \Delta H = -2200 \text{ kJ}
                                           \textbf{C}_{(\textbf{s})} \ + \ \textbf{O}_{2(\textbf{g})} \quad \rightarrow \quad \textbf{CO}_{2(\textbf{g})}
                                                                                                                                                               , ∆H = −394 kJ
                   2)
                                                \text{H}_{2(\text{g})} \ + \ {}^{1\!\!/_{\!\!2}}\text{O}_{2(\text{g})} \quad \rightarrow \quad \  \text{H}_{2}\text{O}_{(\text{I})}
                    3)
                                                                                                                                                                , \Delta H = -286 \text{ kJ}
                                                                                                                                                                 احسب قيمة ∆H للتفاعل التالى:
                                                         3C_{(s)} + 4H_{2(g)} \rightarrow C_3H_{8(g)}, \Delta H = ? kJ
              , 3 في \DeltaH المعادلة (\DeltaH المعادل
                                                                                                والمعادلة ( 3 ) في 4 , ثم الجمع الجبري للمعادلات الثلاث:
                                  3CO_{2(g)} + 4H_2O_{(I)} \rightarrow C_3H_{8(g)} + 5O_{2(g)} , \Delta H = +2200 \text{ kJ}
                 1)
                                                                                                                                                        , \Delta H = -1182 \text{ kJ}
                 2)
                                 3C_{(s)} + 3O_{2(g)} \rightarrow 3CO_{2(g)}
                                         4\text{H}_{2(\text{g})} + 2\text{O}_{2(\text{g})} \rightarrow 4\text{H}_2\text{O}_{(\text{I})} , \Delta\text{H} = - 1144 kJ
                3)
                                               3C_{(s)} +4H<sub>2(g)</sub> \rightarrow C<sub>3</sub>H<sub>8(g)</sub> , \triangleH = -126 KJ
                                                                  (C_6H_6) استخدم المعلومات التالية لحساب حرارة الاحتراق القياسية للبنزين - 6
                                1) 6C_{(s)} + 3H_{2(g)}
                                                                                                                                 C_6H_{6(1)} , \Delta H = +49 \text{ kJ}
                                                                                                                                     CO_{2(g)}
                                2) C_{(s)} + O_{2(g)}
                                                                                                                                                                            , ∆H = - 394 kJ
                                         H_{2(g)} + \frac{1}{2}O_{2(g)} \longrightarrow
                                                                                                                                     H_2O_{(I)}
                                                                                                                                                                            , \Delta H = -286 \text{ kJ}
                                3)
                            الحل : نضرب المعادلة ( 1 ) في 1- , والمعادلة ( 2 ) في 6 , والمعادلة (3) في 8 , ثم الجمع الجبري للمعادلات :
                                                             C_6H_{6(I)} \rightarrow 6C_{(s)} + 3H_{2(g)}
                                                                                                                                                                           , ∆H = −49 kJ
                                               2) 6C_{(s)} + 6O_{2(g)} \rightarrow 6CO_{2(g)} , \Delta H = -2364 \text{ kJ}
                                                3) 3H_{2(g)} + {}^3/_2O_{2(g)} \rightarrow 3H_2O_{(l)} , \Delta H = -858 \text{ kJ}
                                            C_6H_6 + \frac{15}{2}O_2 \longrightarrow 6 CO_2 + 3 H_2O \triangle H = -3271KJ /mol
                                                                                            بالمعادلات الحرارية التالية : CS_2 مستعيناً بالمعادلات الحرارية التالية :
                                 1) C_{(s)} + O_{2(g)} \longrightarrow CO_{2(g)}
                                                                                                                                                                            \Delta H = - 393 KJ.
                                          S_{(s)} + O_{2(g)} \longrightarrow SO_{2(g)}
                                                                                                                                                          \Delta H = - 296 KJ.
                                 2)
                                             CS_{2 \ (l)} + \ 3O_2 \qquad \longrightarrow \ CO_{2(g)} + \ 2SO_{2(g)} \qquad \Delta H = \text{-} \ 1108 \ KJ.
                                 3)
                     الحل : بضرب المعادلة ( 1 ) في 1 والمعادلة ( 2 ) في 2 , وضرب المعادلة ( 3 ) في 1- , ثم الجمع الجبري للمعادلات:
                                 1) C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}
                                                                                                                                                                                 \Delta H = - 393 KJ.
                                 2) 2S_{(s)} + 2O_{2(g)} \rightarrow 2SO_{2(g)}
                                                                                                                                                                                \Delta H = - 592 KJ.
                                             CO_{2(g)} + 2SO_{2(g)} \rightarrow CS_{2(l)} + 3O_2 \Delta H = +1108 \text{ KJ}.
                               3)
                                                        C + 2 S \rightarrow CS_2 \Delta H = +123 KJ / mol
```

```
التوجية الفني العام للعلوم اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء -الصف الحادي عشر العلمي - ( الجزء الأول) - 2019/2018 (48)
       1) 2C_{(s)} + 3H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow C_2H_5OH_{(l)} , \Delta H = -277~KJ : \frac{1}{2} - 8
              C_{(s)} + O_{2_{(g)}} \rightarrow CO_{2_{(g)}} , \Delta H = -393 \text{ KJ}.
      2)
              H_{2 (g)} + \frac{1}{2} O_{2 (g)} \rightarrow H_2 O_{(l)}, \Delta H = -286 \text{ KJ}.
      3)
                                      أحسب حرارة الأحتراق القياسية للإيثانول السائل طبقاً للمعادله التالية:
                         C_2H_5OH_{(l)} + 3O_2_{(g)} \rightarrow 2CO_{2_{(g)}} + 3H_2O_{(l)}, \Delta H = ? KJ.
               الحل : نضرب المعادلة ( 1 ) في 1- , والمعادلة ( 2 ) في 2 , والمعادلة (3) في 3 , ثم الجمع الجبري للمعادلات :
                1) C_2H_5OH_{(1)} \rightarrow 2C_{(s)} + 3H_{2(g)} + \frac{1}{2}O_{2(g)}, \Delta H = +277 \text{ KJ}.
                2) 2C_{(s)} + 2O_{2(g)} \rightarrow 2CO_{2(g)}, \Delta H = -786 \text{ KJ}.
                3) 3H_{2(g)} + \frac{3}{2}O_{2(g)} \rightarrow 3H_{2}O_{(l)}, \Delta H = -858 \text{ KJ}.
                   C_2H_5OH_{(l)} + 3O_2_{(g)} \rightarrow 2CO_{2(g)} + 3H_2O_{(l)}, \Delta H = -1367 \text{ KJ}
                                                                                  9 - من المعادلات الحراربة التالية:
                                                                                  , \Delta H = -393 \text{ KJ}.
                C_{(s)} + O_{2(g)} \longrightarrow CO_{2(g)}
           1)
                                                                             , \Delta H = -286 \text{ KJ}.
           2) H_{2(g)} + \frac{1}{2} O_{2(g)} \longrightarrow H_2O_{(l)}
           3) 2C_2H_{6(g)} + 7O_{2(g)} \longrightarrow 4CO_{2(g)} + 6H_2O_{(l)}, \Delta H = -3000 \text{ KJ}
     2C_{(s)} + 3H_{2(g)} \rightarrow C_{2}H_{6(g)}, \Delta H = ?KJ: أحسب حرارة التكوين القياسية للإيثان (C_{2}H_{6}) طبقاً للمعادله التالية
             الحل : بضرب المعادلة ( 1 ) في 2 , والمعادلة ( 2 ) في 3 , والمعادلة ( 3 ) في \frac{1}{2} , ثم الجمع الجبري للمعادلات :
          1) \ 2C_{(s)} \ + \ 2O_{2 \ (g)} \quad \rightarrow \ 2CO_{2(g)}
                                                               , \quad \Delta H = -786 \text{ KJ}.
          2) 3H_{2(g)} + {}^{3}/_{2} O_{2(g)} \rightarrow 3H_{2}O_{(l)} , \Delta H = -858 \text{ KJ}.
          3) 2CO_{2 (g)} + 3H_2O_{(l)} \rightarrow C_2H_{6(g)} + {}^7\!/_2O_{2(g)}, \Delta H = +1500 \ KJ
                       2C_{(s)} + 3H_{2(g)} \rightarrow C_2H_{6(g)}, \Delta H = -144 KJ
                                                                            10- مستعيناً بالمعادلات الحراربة التالية:
            1) N_2 + 3O_2 + H_2 \longrightarrow
                                                               2HNO<sub>3</sub> \Delta H = -348 \text{ kJ}
                                              \longrightarrow N<sub>2</sub>O<sub>5</sub> + H<sub>2</sub>O · \DeltaH = +77 kJ
            2) 2HNO<sub>3</sub>
                                                        2H_2 + O_2 \qquad \Delta H = +571 \text{ kJ}
            3) 2H<sub>2</sub>O
                   2N_2 + 5O_2 \rightarrow 2N_2O_5، \Delta H =  ^\circ kJ التالى: \Delta H = 
                الحل : بضرب المعادلة ( 1 ) في 2 , والمعادلة ( 2 ) في 1 , ثم الجمع الجبري للمعادلات :
            1) 2N_2 + 6O_2 + 2H_2 \longrightarrow 4HNO_3 \quad \Delta H = -696 \text{ kJ}
                        4HNO<sub>3</sub> \longrightarrow 2N<sub>2</sub>O<sub>5</sub> + 2H<sub>2</sub>O \wedge \DeltaH = +154 kJ
            2)
                        2H<sub>2</sub>O \longrightarrow 2H<sub>2</sub> + O<sub>2</sub> \wedge \DeltaH = +571 kJ
            3)
                              2N_2 + 5O_2 \rightarrow 2N_2O_5, \Delta H = +29 \text{ kJ}
```

```
التوجية الفني العام للعلوم اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء -الصف الحادي عشر العلمي - ( الجزء الأول) - 2019/2018 (49)
                                                                                                                                         11- مستعيناً بالمعادلات الحراربة التالية:
                                                                                                           Cu<sub>2</sub>S \Delta H = -79.5 \text{ kJ}
                           1) 2Cu + S
                                                                                                                SO<sub>2</sub> \Delta H = -297 \text{ kJ}
                          2) S + O_2
                                                                            \longrightarrow 2CuO + SO<sub>2</sub> \wedge \DeltaH = -525 kJ
                          3) Cu_2S + 2O_2
                                                                                                                إحسب حرارة التكوبن القياسية لأكسيد النحاس II
                        الحل : بضرب المعادلة ( 1 ) في \frac{1}{2} , والمعادلة ( 2 ) في \frac{1}{2} , والمعادلة ( 3 ) في \frac{1}{2} , ثم الجمع الجبري للمعادلات :
                        1) Cu + \frac{1}{2}S \rightarrow \frac{1}{2}Cu<sub>2</sub>S \rightarrow \DeltaH = -39.75 kJ
                       2) \frac{1}{2} SO<sub>2</sub> \rightarrow \frac{1}{2}S + \frac{1}{2}O<sub>2</sub> \rightarrow \Delta H = +148.5 \text{ kJ}
                        3) ^{1}/_{2}Cu_{2}S + O_{2} \rightarrow CuO + ^{1}/_{2}SO_{2} \wedge \Delta H = -262.5 \text{ kJ}
                                              Cu + \frac{1}{2}O_2 \rightarrow CuO
                                                                                                                     \Delta H = -153.75 \text{ KJ/mol}
                                                                                                                                          12- مستعيناً بالمعادلات الحراربة التالية:
                1) BCl_3 + 3H_2O \longrightarrow H_3BO_3 + 3HCl  \Delta H = -112.5 \text{ kJ}
                2) B_2H_6 + 6H_2O \longrightarrow 2H_3BO_3 + 6H_2  \Delta H = -493.4 \text{ kJ}
                 3) \frac{1}{2} H<sub>2</sub> + \frac{1}{2} Cl<sub>2</sub> \longrightarrow
                                                                                                     HCl
                                                                                                                                              \Delta H = -92.3 \text{ kJ}
             B_2H_6 + 6Cl_2 \rightarrow 2BCl_3 + 6HCl ، \Delta H =  R_2 + R_3 + R_4 + R_5 + R
                           الحل: بضرب المعادلة (1) في -2, والمعادلة (2) في 1, والمعادلة (3) في 12, ثم الجمع الجبري للمعادلات:
                    1) 6HCl + 2H_3BO_3 \rightarrow 2BCl_3 + 6H_2O \Delta H = +225 \text{ kJ}
                    2) B_2H_6 + 6H_2O \longrightarrow 2H_3BO_3 + 6H_2 \quad \Delta H = -493.4 \text{ kJ}
                    3) 6 \text{ H}_2 + 6 \text{ Cl}_2 \longrightarrow
                                                                                                     12HCl
                                                                                                                                                   \Delta H = -1107.6 \text{ kJ}
                  B_2H_6 + 6Cl_2 \rightarrow 2BCl_3 + 6HCl \cdot \Delta H = -1376 \text{ kJ}
         -13 مول ) علمت أن حرارة التكوبن القياسية لكل من ( الماء , الامونيا هي -286 , -286 كيلو جول -13
                                                                            على الترتيب ، احسب التغير في المحتوى الحراري للتفاعل التالى:
                                                                4NH_{3(g)} + 3O_{2(g)} \longrightarrow 2N_{2(g)} + 6H_2O_{(l)}, \triangle H=?
                                                                      \Delta H_{\text{reaction}} = \Delta H_{\text{products}}^0 - \Delta H_{\text{Reactants}}^0
                                                        \Delta H = [(6 \times -286) + (2 \times 0)] - [(4 \times -46) + (3 \times 0)] = -1532 \text{ KJ}
14 - التفاعل التالي يمثل احتراق غاز الامونيا في جو من الاكسجين في وجود البلاتين الساخن كعامل مساعد:
                                                            4NH_{3(g)} + 5O_{2(g)} \longrightarrow 4NO_{(g)} + 6H_2O_{(l)}, \triangle H=?
                                     احسب التغير في المحتوى الحراري لهذا التفاعل علما بأن حرارة التكوين القياسية لكل من:
                         ( الماء , أكسيد النيتربك , الامونيا هي على الترتيب 286 , 90 + , 46 - كيلو جول / مول )
                                                                       \Delta H_{\text{reaction}} = \Delta H_{\text{products}}^0 - \Delta H_{\text{Reactants}}^0
                                                     \Delta H = [(6 \times -286) + (4 \times 90)] - [(4 \times -46) + (5 \times 0)] = -1172 \text{ KJ}
```

التوجية الفني العام للعلوم اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء -الصف الحادي عشر العلمي - (الجزء الأول) - 2019/2018 (50)

15 - من التفاعلات الحراربة التالية:

1)
$$CO_{(g)} + \frac{1}{2}O_{2(g)} \rightarrow CO_{2(g)}$$
 , $\Delta H = -283kJ$

2) /
$$C_{(s)}$$
 + $O_{2(g)}$ \rightarrow $CO_{2(g)}$, $\Delta H = -393.5 kJ$

أحسب حرارة التكوين القياسية لغاز CO ؟

الحل:

من المعادلة (2) نستنتج أن حرارة التكوين القياسية لغاز
$$CO_2$$
 تساوي -393.5 كيلو جول -393.5 من المعادلة (1) بالعلاقة التالية: $\Delta H_{\text{reaction}} = \Delta H_{\text{products}}^0$ $\Delta H_{\text{Reactants}}^0$ المعادلة (1) بالعلاقة التالية: $-283 = [(1 \times -393.5)] - [(1 \times x) + (1/2 \times 0)]$

ومنها (x) حرارة تكوبن CO تساوي (x)

16 - من المعادلات الحراربة التالية:

1)
$$2NF_3 + 2NO \longrightarrow N_2F_4 + 2ONF$$
 $\triangle H = -82.9kJ$

2) NO +
$$\frac{1}{2}F_2$$
 \longrightarrow ONF $\triangle H = -156.9kJ$

3)
$$Cu + F_2 \longrightarrow CuF_2$$
 $\triangle H = -531kJ$

احسب حرارة التفاعل التالى:

$$\mathbf{2NF_3} \ + \ \mathbf{Cu} \qquad \longrightarrow \quad \mathbf{N_2F_4} \ + \ \mathbf{CuF_2} \quad \Delta \mathbf{H=?}$$

الحل : بضرب المعادلة (1) في 1 $\,$, والمعادلة (2 $\,$) في 2 $\,$, والمعادلة (3 $\,$ ثم الجمع الجبري $\,$

1)
$$2NF_3 + 2NO \rightarrow N_2F_4 + 2ONF$$
 $\Delta H = -82.9kJ$

2) 2ONF
$$\rightarrow$$
 2NO + F₂ \triangle H= +313.8kJ

3)
$$Cu + F_2 \rightarrow CuF_2$$
 $\triangle H = -531kJ$

$$2\text{NF}_3 + \text{Cu} \quad \rightarrow \quad \text{N}_2\text{F}_4 + \text{CuF}_2 \quad \Delta \text{H=-300.1kJ}$$

وزارة التربية التوجيه الفني العام للعلوم اللجنة الفنية المشتركة للكيمياء

بنك كيمياء الصف الحادي عشر العلمي (الفترة الأولى) الفترة الأولى العام الدراسي 2020 – 2020 م

رئيس اللجنة الفنية المشتركة للكيمياء أ/ نادية الغريب

الموجه الفني العام للعلوم أ/ منى الأنصاري التوجية الفني العام للعلوم – اللجنة الفنية المشتركة للكيمياء – بنك الكيمياء – الصف الحادي عشر العلمي – (الجزء الأول) – 2020/2019 (2)

الوحدة الأولى

الإلكترونات في النذرة

الأول) - 2020/2019 (3)	التوجية الفني العام للعلوم اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء الصف الحادي عشر العلمي - (الجزء
التالية :	<u>السؤال الأول: اكتب بين القوسين الاسم أو المصطلح العلمي الذي تدل عليه كل من العبارات</u>
()	 أ - فلك ترابطي ينتج من تداخل الأفلاك الذرية ويغطي النواتين المترابطتين
()	2 - نوع من الروابط ينتج من التداخل المحوري عندما يتداخل فلكين ذريين رأسا لرأس
	3 - نوع من الروابط ينتج من التداخل الجانبي عندما يتداخل فلكين ذربين جنبا الى جنب
()	عندما يكون محور الفلكين متوازيين
	4 – عملية يتم فيها اندماج أفلاك تختلف في الشكل والطاقة والاتجاه كى تنتج أفلاكا جديدة
()	تتماثل في الشكل والطاقة
	5 - نوع من أنواع التهجين يتم فيها دمج فلك واحد 2s مع ثلاثة أفلاك 2p لتكوين أربعة
	أفلاك مهجنة وهذه الأفلاك تشير في اتجاه قمم رباعي السطوح وتكون قيمة الزاوية بين
()	109.5° الأفلاك المهجنة تساوي
	6 - نوع من أنواع التهجين يتم فيها دمج فلك واحد 2s مع فلكين 2p لتكوين ثلاثة أفلاك
()	مهجنة و يبعد كل فلك مهجن عن الآخر بزاوية 120°
	7 - نوع من أنواع التهجين يتم فيها دمج فلك واحد 2s مع فلك واحد 2p لتكوين فلكين
()	مهجنین و یبعد کل فلك مهجن عن الآخر بزاویة 180° .
()	${\sf C}_6{\sf H}_6$ يعتبر أصل المركبات الأروماتية صيغته الجزيئية ${\sf C}_6{\sf H}_6$.
()	9 - نظرية تفترض أن إلكترونات الرابطة تشغل الأفلاك الذرية في الجزيئات .
()	10- نظرية تفترض تكوين فلك جزيئي من الأفلاك الذرية يغطي كلّ من النواتين المترابطتين.
()	-11 نوع من الروابط لا يتكون إلا إذا سبقه تكوين الرابطة δ) .
()	-12 نوع التهجين لذرة الكربون في الميثان ($\mathrm{CH_4}$) .
()	. ($H_2C = CH_2$) ونوع التهجين لذرتي الكربون في الإيثين -13

<u>(4) 2020/20</u>	التوجية الفني العام للعلوم-اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء -الصف الحادي عشر العلمي - (الجزء الأول)- 119
مما يلي:	السؤال الثاني: ضع علامة (√) أمام العبارة الصحيحة وعلامة (×) أمام العبارة غير الصحيحة في كل م
()	مكن تحديد مكان الإلكترون وسرعته بدقة تامة -1
(2 - تنتج الرابطة التساهمية الأحادية من التداخل المحوري للأفلاك الذرية رأسا لرأس
	3 - تعتمد طاقة الرابطة سيجما δ على المسافة بين نواتي الذرتين المرتبطتين وعلى عدد الروابط التي
()	تشكلها هاتان الذرتان
()	-4 يمكن أن تحتوي أحد الجزيئات على الرابطة π فقط .
()	π الرابطة التساهمية δ أضعف من الرابطة التساهمية – الرابطة التساهمية – δ
()	-6 الجزيئات التي تحتوي على الرابطة π تتميز بنشاطها على التفاعل الكيميائي.
()	7 - تنتج الرابطة التساهمية الثنائية من تداخل الأفلاك الذرية جنبا الى جنب
j	8 – جميع الروابط في جزئ الأمونيا NH_3 من النوع سيجما 9 ()
()	π يحتوي جزئ الإيثاين C_2H_2 على ثلاث روابط من النوع -
()	SP^2 تتكون الرابطة π في جزئ الإيثين C_2H_4 بين أفلاك مهجنة من النوع -10
هجنة	11- الروابط التساهمية الثنائية والثلاثية التي تكونها ذرة الكربون في جزيئاتها تكونها أفلاك مهجنة وغير م
()	SP^2 و SP^2
()	π يحتوي جزئ البنزين على ستة روابط من النوع سيجما δ وستة روابط من النوع -12
()	13- تتوزع ذرات الهيدروجين توزيعا متكافئا على حلقة البنزين
()	SP^3 ذرات الكربون في جزئ البنزين تقوم بعمل تهجين من النوع -14
()	-16 كلما كانت المسافة بين نواتي الذرتين المترابطتين أكبر كانت الرابطة بينهما أقوى .
()	ا نرتبط ذرتا الكلور برابطة تساهمية نتيجة تداخل الفلكين (Cl_2) من كل منهما رأساً لرأس -17
()	-18 جميع الروابط التساهمية الأحادية من النوع سيجما δ) .
	19- إذا كانت الصيغة البنائية لغاز ثاني أكسيد الكربون (O=C=O) فهذا يعني أن جميع الروابط فيه
()	، (π) من النوع باي .
ثنائية	20 تتواجد الرابطة سيجما (δ) والرابطة باي (π) في الجزيئات التي تحتوي على الرابطة التساهمية ال
()	أو الرابطة التساهمية الثلاثية .
()	π الرابطة التساهمية الثلاثية تتكون من ثلاث روابط باي π) .
()	23- في التهجين يكون عدد الأفلاك التي يتم اندماجها مساوي لعدد الأفلاك المهجنة الناتجة .
()	-24 الزوايا بين الأفلاك المهجنة من النوع (${\sf sp}$) تساوي ($^\circ$
()	. تساهمية ثنائية -26 جميع الروابط بين ذرات الكربون في جزيء البنزين -26
()	. (sp 3) کل ذرة کربون في ا $\overline{\mathbb{Y}}$ يثاين (HC \equiv CH) ، تستخدم تهجين من النوع

التوجية الفني العام للعلوم -اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء -الصف الحادي عشر العلمي - (الجزء الأول) - 2020/2019 (5)
السؤال الثالث: أكمل الفراغات في الجمل التالية بما يناسبها علمياً:
1 – كل رابطة تساهمية أحادية في الكيمياء تكون من النوع
$-$ قوة الرابطة سيجما δ)من قوة الرابطة باي $-$ 2
3 – الرابطة التساهمية الثنائية تتكون من
4 – التهجين الذي تستخدمه ذرتي الكربون في الإيثان (H3C – CH3) هو من النوع
5 – نوع التهجين الذي تستخدمه ذرة الألومنيوم في المركب ($AlCl_3$) ، هو من النوع
C_2H_2 الشكل الفراغي للأفلاك المهجنة في كل ذرة كربون في غاز الإيثاين C_2H_2 هو
CH_2 عدد الأفلاك غير المهجنة في ذرة الكربون الواحدة في جزئ غاز الإيثين CH_2 حدد الأفلاك غير المهجنة في ذرة الكربون الواحدة في جزئ عاز
8- تتكون الرابطة التساهمية الأحادية عندما تتقاسم الذرتان عدد من أزواج الإلكترونات يساوي زوج من الالكترونات
9 – تنتج الرابطة سيجما δ عن التداخلللأفلاك الذرية
الذرية π عن التداخلاللأفلاك الذرية π عن التداخلاللافلاك الذرية
11- تتألف الرابطة التساهمية الأحادية دائما من رابطة
التي الذرتين المترابطتين وعلى عدد التي المسافة بين الذرتين المترابطتين وعلى عدد δ بين ذرتين على المسافة بين الذرتين المترابطتين وعلى عدد
تشكلها هاتان الذرتان .
NH_3 ترتبط ذرة النيتروجين مع ثلاث ذرات الهيدروجين مكونة جزئ الأمونيا NH_3 ويكون التداخل بين
الأفلاك
الروابط سيجما δ في جزئ البروباين CH_3 - $C \equiv CH$ يساوي، بينما عدد الروابط عدد الروابط
باى π في الجزيء السابق نفسه يساوي
الفلكين ($1s$) عند تكوين الجزيء H_2 ، يعتبر من نوع التداخل $1s$) عند تكوين الجزيء $1s$
16- تداخل فلكين (s و p) هو تداخل من النوع
17− عدد الروابط سيجما في جزئ كلوريد الهيدروجين (HCl) يساو <i>ي</i>
الفلكين (\mathfrak{p}_{Z}^{1}) لذرتي الكلور لتكوين جزئ الكلور (\mathfrak{Cl}_2) هو تداخل من النوع
الذرتي الكلور لتكوين جزئ الكلور (Cl_2) هو تداخل من النوع
الفلكين $(3p_Z^1)$ لذرتي الكلور لتكوين جزئ الكلور (Cl_2) هو تداخل من النوع
18 - تداخل الفلكين $(3p_z^1)$ لذرتي الكلور لتكوين جزئ الكلور (Cl_2) هو تداخل من النوع
-18 تداخل الفلكين $(3p_Z^1)$ لذرتي الكلور لتكوين جزئ الكلور (Cl_2) هو تداخل من النوع
-18 تداخل الفلكين $(3p_Z^1)$ لذرتي الكلور لتكوين جزئ الكلور (Cl_2) هو تداخل من النوع

-الصف الحادي عشر العلمي - (الجزء الأول) - 2020/2019 (6)	التوجية الفني العام للعلوم اللجنة الفنية المشتركة للكيمياء – بنك الكيمياء
جملة من الجمل التالية:	السؤال الرابع: ضع علامة (٧) أمام أنسب عبارة تكمل كل.
□ تنتج عن التداخل الجانبي لفلكي ذرتين .□ يمكن أن تكون ثنائية أو ثلاثية .	1 – الروابط سيجما δ) : \Box تنتج عن التداخل المحوري لفلكي ذرتين . \Box أضعف من الروابط باي (π) .
. (δ) تساهمية ثنائية من النوع سيجما (π) . \Box	O_2 الرابطة بين ذرتي الأكسجين في الجزئ (O_2): \square تساهمية أحادية من النوع سيجما \square تساهمية ثنائية من النوع سيجما \square وباي (\square
: \square ثلاث روابط با 2 (π) و رابطة سيجما (δ) . \square ثلاث روابط سيجما (δ) و رابطتين با (π) .	$(H-C \equiv C-H) : 1$ الروابط في الصيغة البنائية التالية $(\pi) = 1$: $(\pi) = 1$ أربع روابط سيجما $(\delta) = 1$. $(\pi) = 1$ خمس روابط سيجما $(\delta) = 1$.
\square ثلاث روابط باي (π) . \square رابطة باي (π) ورابطتين سيجما \square	4 – الرابطة التساهمية الثلاثية تتكون من : \square ثلاث روابط سيجما \square . \square رابطة سيجما \square و رابطتين باي \square .
□ متوازيين . □ متقابلين رأساً إلى جنب .	5 – يتداخل الفلكان جنباً إلى جنب عندما يكون محورهما: الله متعامدين . متقابلين رأساً لرأس .
	التالية يحتوي على رابطة تساهمية ثلاثية - 6 ما الجزيئات التالية يحتوي على الجزيئات التالية . O_2 . O_2
 □ يكون محور تداخل الفلكين هو محور التناظر . □ لا تعتمد على المسافة بين الذرتين المترابطتين . 	δ – من خواص الرابطة سيجما δ : \Box أضعف من الرابطة باي \Box . \Box تكون أقوى كلما كان التداخل بين الأفلاك أقل. \Box
□ المركبان لهما نفس عدد الروابط باي. □ عدد الروابط سيجما متساو في المركبين. و فلكين (p) ، يساوي :	8 – في المركبين CH ₃ CH ₂ CH ₃ , CH ₃ CH=CH ₂ جميع المركب CH ₃ CH=CH ₂ يتفاعل بالإضافة التهجين من النوع sp ³ في جميع ذرات كربون المركبين 9 – عدد الأفلاك المهجنة الناتجة عن تهجين فلك (s) مع المحدد الأفلاك المهجنة الناتجة عن المحدد المحدد الأفلاك المهجنة الناتجة عن المحدد المح
ر العبارات التالية غير صحيحة عدا: □ المركبان لهما نفس عدد الروابط باي. □ عدد الروابط سيجما متساو في المركبين. ع فلكين (p) ، يساوي:	8 – في المركبين $CH_3CH_2CH_3$, $CH_3CH=CH_2$ جميع \Box المركب \Box $CH_3CH=CH_2$ يتفاعل بالإضافة \Box التهجين من النوع \Box \Box في جميع ذرات كربون المركبين \Box – عدد الأفلاك المهجنة الناتجة عن تهجين فلك \Box) مع

<u>- (الجزء الأول)- 2020/2019 (7)</u>	الكيمياء -الصف الحادي عشر العلمي	<u> الفنية المشتركة للكيمياء – بنك</u>	<u>التوجية الفني العام للعلوم –اللجنا</u>
هجنة هو :	الهندسي الذي تأخذه الأفلاك المو	النوع (${\rm sp}^3$) فإن الشكل	10- إذا كان التهجين من
🗖 خطي .	. مثلث مستوي $ $	🗖 مكعب مركز <i>ي</i> .	🗖 رباعي السطوح .
	· al = = · tl «Navi ·	1.1 : $11 \cdot 12 \cdot (sn^3) \cdot s : 11$	
000 🗖	بين الافلاك المهجنة تساوي : 120°	, , ,	
. 90 Ц	. 120° □	. 180	. 109.3
	بين الافلاك المهجنة تساوي:	النوع (sp ²) فإن الزوايا	12- إذا كان التهجين من
. 90° □	. 120° □	. 180° 🗖	. 109.5° □
	1 - 1 - 1 - 1 - 1 - 1 - 1	11.11.11.(00)11	
000 =	ين الافلاك المهجنة تساوي :	, , ,	
. 90° 🗇	. 120° □	. 180° 🗓	. 109.5° 🔟
	نيه من النوع (sp³) هو :	يكون تهجين ذرة الكربون ف	14– أحد المركبات التالية
нс≡ сн □	. $H_2C = CH_2$ □	. CH ₄ □	. O = C= O □
	في جزئ الكلوروفورم CHCl ₃ هو —		
2 🗖	1 🗖	3 🗆	4 🗖
	ي جزئ البنزين C ₆ H ₆ : [بية بين الأفلاك المختلفة ف	16- عدد التداخلات الجان
2 🗖	ي جزئ البنزين C ₆ H ₆ : □	بية بين الأفلاك المختلفة ف	16- عدد التداخلات الجان □ 4
	ي جزئ البنزين C ₆ H ₆ : □		
	غ كربون مهجنة من النوع SP ² :	يحتوي الجزئ فيه على ذرن	18– أحد المركبات التالية
	غ كربون مهجنة من النوع SP ² :		
	ة كربون مهجنة من النوع SP ² : CHE CH ☐	يحتوي الجزئ فيه على ذرن CH₃CH₂CH₃ □	18 أحد المركبات التالية CH ₃ CH ₃ □
$CH_3CH=CH_2$	إ كربون مهجنة من النوع SP ² : CHE CH ☐ عمل :	يحتوي الجزئ فيه على ذرة CH₃CH₂CH₃ ☐ أ أد من النوع SP³ تستطيع ع	18 – أحد المركبات التالية CH ₃ CH ₃ □
$CH_3CH=CH_2$	إ كربون مهجنة من النوع SP ² : CHE CH ☐ عمل : أ رابطتين سيجما ورابطة با	يحتوي الجزئ فيه على ذرن □ CH ₃ CH ₂ CH نه من النوع SP ³ تستطيع ع ا ورابطة باي	18- أحد المركبات التالية CH₃CH₃ □
$CH_3CH=CH_2$	إ كربون مهجنة من النوع SP ² : CHE CH ☐ عمل :	يحتوي الجزئ فيه على ذرن □ CH ₃ CH ₂ CH نه من النوع SP ³ تستطيع ع ا ورابطة باي	18 – أحد المركبات التالية CH ₃ CH ₃ □
$CH_3CH=CH_2$	ف كربون مهجنة من النوع SP ² : CHE CH عمل: ال رابطتين سيجما ورابطة باع اربع روابط سيجما	يحتوي الجزئ فيه على ذرن □ CH ₃ CH ₂ CH نه من النوع SP ³ تستطيع ع ا ورابطة باي	18- أحد المركبات التالية CH₃CH₃ □ 19- ذرة الكربون المهجنا الثلاث روابط سيجم الكث روابط باى و
CH ₃ CH=CH ₂ □	ف كربون مهجنة من النوع SP ² : CHE CH عمل: ال رابطتين سيجما ورابطة باع اربع روابط سيجما	يحتوي الجزئ فيه على ذرة CH ₃ CH ₂ CH ₃	18- أحد المركبات التالية CH ₃ CH ₃
CH ₃ CH=CH ₂ □	في كربون مهجنة من النوع SP ² : CHE CH عمل: ال رابطتين سيجما ورابطة باع وين:	يحتوي الجزئ فيه على ذرة CH ₃ CH ₂ CH ₃	18- أحد المركبات التالية CH ₃ CH ₃
CH ₃ CH=CH ₂ □	SP ² : كربون مهجنة من النوع SP ² : CHE CH and : رابطتين سيجما ورابطة باو اربع روابط سيجما وين : رابطتين سيجما ورابطة باو اربع روابط سيجما اربع روابط سيجما	يحتوي الجزئ فيه على ذرة يحتوي الجزئ فيه على ذرة CH ₃ CH ₂ CH ₃ أمن النوع SP ³ تستطيع على المواجعة المياني النوع SP ² تستطيع تكامن النوع SP ² تستطيع تكامن النوع إلى أبطة سيجما	18 أحد المركبات التالية CH₃CH₃ □ 19 خرة الكربون المهجنة ثلاث روابط سيجم ثلاث روابط باى و ثلاث روابط باى و ثلاث روابط سيجم ثلاث روابط باى و ثلاث روابط سيجما ثلاث روابط سيجما
CH ₃ CH=CH ₂ □		يحتوي الجزئ فيه على ذرة CH ₃ CH ₂ CH ₃	18 أحد المركبات التالية CH ₃ CH ₃ □ 19 خرة الكربون المهجنة تلاث روابط سيجم الكث روابط باى و حدة الكربون المهجنة الكث روابط سيجما تلاث روابط سيجما الكث روابط سيجما الكث روابط باى و الكث روابط باى ور
CH ₃ CH=CH ₂ □	SP ² : كربون مهجنة من النوع SP ² : CHE CH and : رابطتين سيجما ورابطة باو اربع روابط سيجما وين : رابطتين سيجما ورابطة باو اربع روابط سيجما اربع روابط سيجما	يحتوي الجزئ فيه على ذرة CH ₃ CH ₂ CH ₃ أ من النوع SP ³ تستطيع على أورابطة باي من النوع SP ² تستطيع تك ورابطة باي ورابطة باي إبطة سيجما إبطة سيجما ورابطة باي من النوع SP تستطيع تكو ورابطة باي من النوع SP تستطيع تكو ورابطة باي	18 أحد المركبات التالية CH₃CH₃ □ 19 خرة الكربون المهجنة ثلاث روابط سيجم ثلاث روابط باى و ثلاث روابط باى و ثلاث روابط سيجم ثلاث روابط باى و ثلاث روابط سيجما ثلاث روابط سيجما ثلاث روابط سيجما

ي - (الجزء الأول)- 2020/2019 (8)	الكيمياء -الصف الحادي عشر العلم	ة الفنية المشتركة للكيمياء - بنك	التوجية الفني العام للعلوم-اللجن
	ت كربون مهجنة من النوع P	•	
CH ₃ CH=CH ₂ □	Ch≡ CH □	CH ₃ CH ₂ CH ₃ □	CH ₃ CH ₃ □
	: هو (sp^3) الكربون	يكون فية نوع التهجين لذرة	23- أحد الجزيئات التالية
C_6H_6	C_2H_4	C_2H_2	CH₄ □
	: هو : C ₂ ⊦	ربون في جزئ الإيثين ($_4$ ا	24- نوع التهجين لذرة الك
sp²d □	sp ³ □	•	
: (s	p^2) التي تحتها خط هو	يكون فية نوع التهجين للذرة	25- أحد الجزيئات التالية
\underline{C}_2H_6	\underline{BCl}_3 \square	\underline{C}_2H_2 \square	<u>C</u> H₄ □
	: هو (C ₂ H	ربون في جزئ الإيثاين ($_{2}$	26- نوع التهجين لذرة الك
sp , sp^2 \square	sp^3 \square	sp^2 \square	sp □
	الكربون (sp) هو :	يكون فية نوع التهجين لذرة	27- أحد الجزيئات التالية
C_2H_6	BCl₃ □	C_2H_2	CH₄ □
(° 180) وهو :	H − C ≡ C − H فیه	تكون الزوايا بين الروابط (28– أحد الجزيئات التالية
C_2H_6	C_2H_4	C_2H_2	CH ₄ □
sp فان صيغة المركب هي	ربون التهجين في كل منهما	وکربوني يتکون من ذرتين ک	29- مرکب عضو <i>ي</i> هيدر
$H_3C - CH_2 - CH_3$	$. ^{H-C \equiv C-H} \Box$	H_3C-CH_3	$H_2C = CH_2$
	م BeCl ₂ من النوع :	ليوم في جز <i>ي</i> كلوريد البريليو	30- التهجين في ذرة البرب
sp³d □	sp³ □	sp □	sp^2 \square
: مو ، CH ₃ – C	$H = \underline{C}H_2$: المركب التالي	الكربون التي تحتها خط في	31- نوع التهجين في ذرة
sp^3, sp^2	sp^3 \square	sp^2 \square	sp,sp^3

التوجية الفني العام للعلوم اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء -الصف الحادي عشر العلمي - (الجزء الأول)- 2020/2019 (9)
علل فسر مايلي
1 - لا يمكن أن تحتوي أحد الجزيئات على الرابطة باى فقط
2 – الربطة سيجما أقوى من الرابطة باى
$ m CH_2=CH_2$ أقل نشاطا من الإيثين $ m CH_2=CH_2$ الميثان $ m CH_4$
4 - طبقاً لنظرية رابطة التكافؤ لا تكون الغازات النبيلة روابط تساهمية.
5 – الرابطة سيجما في جزئ الهيدروجين أقوي من الرابطة سيجما في جزئ الكلور.
CH_4 بالإستبدال بينما يتفاعل الإيثين C_2H_4 بالإضافة. C_2H_4
7 – إستقرار الشكل الحلقي السداسي لجزئ البنزين.
8 - لا يمكن الاعتماد على نظرية رابطة التكافؤ لشرح تكوين الروابط في جزئ الميثان.
السؤال الخامس: أجب عما يلي:

1- حدد الأفلاك الذرية التي تندمج (تتداخل) لتكوين كل من الجزيئات التالية وما نوع الرابطة المتكونة نتيجة هذاا لاندماج (التتداخل)

نوع الرابطة		الأفلاك المندمجة (المتداخلة)	الصيغة البنائية للجزئ
			Н–Н
			Cl – Cl
			O = O
			0-0
			$N \equiv N$
			H— Cl

التوجية الفني العام للعلوم اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء -الصف الحادي عشر العلمي - (الجزء الأول) - 2020/2019 (10)

 π - قارن بين الرابطة سيجما (δ) والرابطة باي (π) من خلال الجدول التالي :

الرابطة باي (π)	الرابطة سيجما (δ)	وجه المقارنة
		وجودها في الرابطة التساهمية الأحادية
		وجودها في الرابطة التساهمية الثنائية
		وجودها في الرابطة التساهمية الثلاثية
		قوة كل منهما بالنسبة للأخرى

: عدد الروابط سيجما (δ) وعدد الروابط باى (π) في كل من الجزبئات التالية :

	الروب بي د من اجريت	3(*)
عدد الروابط باي (π)	عدد الروابط سيجما (δ)	الصيغة البنائية للجزئ
		O = C = O
		H H
		$N \equiv N$
		-C≡C-
		$-\stackrel{ }{\mathbf{c}}-\stackrel{ }{\mathbf{c}}=\stackrel{ }{\mathbf{c}}-\stackrel{ }{\mathbf{c}}-$
		$-\mathbf{c} \equiv \mathbf{c} - \mathbf{c} - $
		O = O

4 - أكمل الجدول التالي بما هو مطلوب:

الزوايا بين الأفلاك	الشكل الهندسي الأفلاك المهجنة	عدد ونوع الأفلاك المتداخلة	نوع التهجين
	•••••	•••••	sp
			sp^2
			sp^3

التوجية الفني العام للعلوم - اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء - الصف الحادي عشر العلمي - (الجزء الأول) - 2020/2019 (11) 5 - ما نوع التهجين لذرة الكربون في المركبات التالية :

البنزين	غاز الإيثاين	غاز الإيثين	غاز الميثان	وجه المقارنة
C ₆ H ₆	C_2H_2	C_2H_2	CH₄	الصيغة الكيميائية
	HC ≡ CH	$H_2C = CH_2$	CH ₄	الصيغة التركيبية
				عدد الروابط σ
				عدد الروابط π
				التهجين في الكربون
				الشكل الفراغى للأفلاك المهجنة
				الزوايا بين الأفلاك المهجنة لكل ذرة كربون
				عدد الأفلاك المهجنة لكل ذرة كربون
				عدد الأفلاك غير المهجنة لكل ذرة كربون

$H_3C^3 - C^2 \equiv C^1 H$	$H_2C^3 = C^2 = C^1H_2$	وجه المقارنة
		عدد الروابط σ في الجزيء
		عدد الروابط π في الجزيء
		نوع التهجين في ذرة الكربون رقم 1
		نوع التهجين في ذرة الكربون رقم 2
		نوع التهجين في ذرة الكربون رقم 3

ي عشر العلمي - (الجزء الأول) - 2020/2019 (11)	نك الكيمياء –الصف الحاد	شتركة للكيمياء – بأ	للعلوم – اللجنة الفنية الم	التوجية الفني العام
H O				
H – C – C – O – H	حمض الأسيتي <u>ك</u>	صيغة البنائية ا	مقابل والذي يمثل ال	<u>6 - الشكل ال</u>
п-С-С-О-П				والمطلوب: -
(1) H (2)		ئم (1) هو :	جين لذرة الكربون رق	1 - نوع الته
		نم (2) هو :	جين لذرة الكربون رة	2 - نوع الته
الأكسجين	(2) بكل من ذرتي	رة الكربون رقم	الروابط التي تربط ذ	4 - حدد نوع
هي الرابطة :	الرابطة الثانية		الأولى هي رابطة:	الرابطة
$(C_2H_2O_4)$	ية لحمض الأكساليك	لصيغة البنائب	ً <u>، المقابل والذي يمثل</u>	<u>7 - من الشكل</u>
0 0		ئم (1) هو :	جين لذرة الكربون رة	1 - نوع الته
HO – C – C – OH,		نم (2) هو :	جين لذرة الكربون رة	2 - نوع الته
1 2	ابق :ا	نطي للشكل السد	رتيب الالكتروني النة	3 – اكتب التر
<u>ـ</u> ىين	كل من ذرتي الأكسج	ئل ذرة كربون ب	الروابط التي تربط ك	4 - حدد نوع
الرابطة :	الرابطة الثانية هي	,	لِي هي رابطة :	الرابطة الأو
وابط باي هو :	, وعدد الر	يئ هو	إبط سيجما في الجز	5 – عدد الرو
			1 4 7 44 44	
	<u>:</u> ,	<u>، خریطه مفاهیم</u>	لمفاهيم التالية لعمل	<u>8 – استخدم ال</u>
الزاوية °120	4أفلاك مهجنة		SP ³	
الزاوية ° 180	3أفلاك مهجنة		SP ²]
		,		
الزاوية °109.5	فلكين مهجنين		SP	
	نظ من المُفارد)		
	نظرية الأفلاك المهجنة			
		,		

- التوجية الفني العام للعلوم –اللجنة الفنية المشتركة للكيمياء – بنك الكيمياء –الصف الحادي عشر العلمي – (الجزء الأول)– 2020/2019 (13)
9 – استخدم المفاهيم التالية لعمل خريطة مفاهيم :
الرابطة سيجما لنظرية رابطة التكافؤ
أفلاك ذرية تداخل محوري
تداخل جانبي
السؤال السادس: الجمل التالية غير صحيحة اقرأها جيداً وبتمعن ثم أعد كتابتها بحيث تكون صحيحة:
$\Xi=c$. (π) ورابطة با δ ورابط سيجما δ ورابطة با δ . (π) . (π) المنائية التالية (π) .
يعتبر البنزين (C_6H_6) أصل المركبات الأروماتية وفيه تكون ذرات الكربون موجودة في شكل مستوي حلقي سداسي يصاحبه سحابة من تداخل إلكترونات الرابطة سيجما δ) أعلى وأسفل الحلقة .
3 – تنتج الرابطة التساهمية الأحادية من التداخل الجانبي للأفلاك الذرية
δ – تعتمد طاقة الرابطة سيجما δ على نوع الذرتين المرتبطتين وعلى تكافؤ الذرتين.
π الرابطة النساهمية δ أضعف من الرابطة النساهمية π
δ - الجزيئات التي تحتوي على الرابطة δ فقط تتميز بنشاطها وقدرتها العالية على التفاعل الكيميائي δ
π الرابطة التساهمية الثنائية تنتج من تداخل الأفلاك الذرية جنبا الى جنب فقط وتحتوي على رابطتين π
π من النوع باء NH $_3$ من النوع باء \sim 8 – جميع الروابط في جزئ الأمونيا

التوجية الفني العام للعلوم -اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء -الصف الحادي عشر العلمي - (الجزء الأول) - 2020/2019 (14)
π على ثلاث روابط من النوع π على ثلاث وابط من النوع π
SP^2 تتكون الرابطة π في جزئ الإيثين C_2H_4 من تداخل جانبي لأفلاك مهجنة من النوع -10
11- الروابط التساهمية الثنائية والثلاثية التي تكونها ذرات الكربون في جزيئاتها تتكون جميعها من تداخل أفلاك
مهجنة من النوع SP^2 و SP
π يحتوي جزئ البنزين على ستة روابط من النوع سيجما δ وستة روابط من النوع π
SP^3 ذرات الكربون في جزئ البنزين تقوم بعمل تهجين من النوع SP^3
SP^3 نوع التهجين في ذرة البورن (BB) في ثلاثي فلوريد البورون BF_3 من النوع
رة الماذية عند المادية
يزداد طول الرابطة δ وتقل قوتها كلما كان التداخل بين الأفلاك أكبر -15
•••••••••••••
5 عدد الروابط من النوع سيجما δ في جزئ البروباين $CH_3 \subset CH_3$ يساوي $CH_3 \subset CH_3$
5 يساوي CH $_3$ CH عدد الروابط باى π في جزئ البروباين π البروباين -17
10 · " ' 11 / 18 15 ·
18- نظرية الفلك الجزيئ تفرض أن الالكترونات تشغل الأفلاك الذرية في الجزيئات.
الأفلاك المهجنة من النوع ${\sf sp}^3$ تأخذ شكل خطى يكون فيه الزاوية بين الأفلاك ${\sf sp}^0$

التوجية الفني العام للعلوم -اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء -الصف الحادي عشر العلمي - (الجزء الأول) - 2020/2019 (15)

(الاول) - 2020/2019 (16)	التوجية الفني العام للعلوم اللجنة الفنية المشتركة للكيمياء – بنك الكيمياء –الصف الحادي عشر العلمي – (الجزء
	السؤال الأول: اكتب الاسم أو المصطلح العلمي الذي تدل عليه كل من العبارات التالية:
()	1-عينات الماء التي تحتوي على مواد ذائبة وهي مخاليط متجانسة وثابتة.
بكل منهما.	2 - عملية تحدث عندما يذوب المذاب وتتم إماهة الكاتيونات والأنيونات بالمذيب أى تحيط جزيئات المذيب
()	
	3 - المركبات التي توصل التيار الكهربائي في المحلول المائي أو في الحالة المنصهرة.
()	
•	4- المركبات التي لا توصل التيار الكهربائي سواء في المحلول المائي أو في الحالة المنصهرة
()	
رارة ثابتة	5 - المحلول الذي يحتوى على أكبر كمية من المذاب في كمية معينة من المذيب عند درجة ح
() ÷	أو المحلول الذي أضيف إليه مذاب ما وحرك يبقى بعد التحريك قسم من المذاب غير ذائد
ة حرارة معينة.	6 - المحلول الذي يحتوي على كمية من المذاب زائدة على الكمية المسموح بها نظرياً عند درج
تشبع عند درجة معينة	أو المحلول الذي يكون فيه تركيز المذاب في المحلول أكبر مما يجب أن يكون عليه عند ال
()	
()	7- النسبة بين كتلة المذاب الى كتلة المحلول.
()	8 – النسبة بين حجم المذاب الى حجم المحلول.
()	9- مقياس لكمية المذاب في كمية معينة من المذيب.
()	9 – مقياس لكمية المداب في كمية معينة من المديب. -10 عدد مولات المذاب في -11 من المحلول.
() ()	1 من المحلول. 1 من المحلول.
() ()	-10 عدد مولات المذاب في -11 من المحلول. -11 عدد مولات المذاب في -18 من المذيب.
() () والمذاب.()	1L عدد مولات المذاب في $1L$ من المحلول. $1kg$ عدد مولات المذاب في $1kg$ من المذيب. -11 نسبة عدد مولات المذاب او المذيب في المحلول الى عدد المولات الكلى لكل من المذيب
() () والمذاب.()	10 عدد مولات المذاب في 1L من المحلول. 11 عدد مولات المذاب في 1kg من المذيب. 12 نسبة عدد مولات المذاب او المذيب في المحلول الى عدد المولات الكلى لكل من المذيب 13 التغيرات في الخواص الفيزيائية للسائل المذيب عند إضافة المذاب إليه.
() () والمذاب.() () ()	10 عدد مولات المذاب في 1L من المحلول. 11 عدد مولات المذاب في 1kg من المذيب. 12 نسبة عدد مولات المذاب او المذيب في المحلول الى عدد المولات الكلى لكل من المذيب 13 التغيرات في الخواص الفيزيائية للسائل المذيب عند إضافة المذاب إليه. 14 ضغط البخار على السائل عند حدوث حالة اتزان بين السائل وبخاره عند درجة حرارة معين
() () والمذاب () () د	10 عدد مولات المذاب في 1L من المحلول. 11 عدد مولات المذاب في 1kg من المذيب. 12 نسبة عدد مولات المذاب او المذيب في المحلول الى عدد المولات الكلى لكل من المذيب 13 التغيرات في الخواص الفيزيائية للسائل المذيب عند إضافة المذاب إليه. 14 ضغط البخار على السائل عند حدوث حالة اتزان بين السائل وبخاره عند درجة حرارة معين 15 التغير في درجة غليان محلول تركيزه المولالي واحد m لمذاب جزيئي وغير متطاير.
() والمذاب.() () () نة. () ()	10 عدد مولات المذاب في 1kg من المحلول. 11 عدد مولات المذاب في 1kg من المذيب. 12 نسبة عدد مولات المذاب او المذيب في المحلول الى عدد المولات الكلى لكل من المذيب 12 التغيرات في الخواص الفيزيائية للسائل المذيب عند إضافة المذاب إليه. 13 ضغط البخار على السائل عند حدوث حالة اتزان بين السائل وبخاره عند درجة حرارة معين 14 ضغط البخار في درجة غليان محلول تركيزه المولالي واحد m لمذاب جزيئي وغير متطاير. 15 التغير في درجة تجمد محلول تركيزه المولالي واحد m لمذاب جزيئي وغير متطاير.
() والمذاب.() () () ()	10 عدد مولات المذاب في 1k من المحلول. 11 عدد مولات المذاب في 1kg من المذيب. 12 نسبة عدد مولات المذاب او المذيب في المحلول الى عدد المولات الكلى لكل من المذيب 13 التغيرات في الخواص الفيزيائية للسائل المذيب عند إضافة المذاب إليه. 13 ضغط البخار على السائل عند حدوث حالة اتزان بين السائل وبخاره عند درجة حرارة معين 14 ضغط البخار على السائل عند حدوث المولالي واحد m لمذاب جزيئي وغير متطاير. 15 التغير في درجة تجمد محلول تركيزه المولالي واحد m لمذاب جزيئي وغير متطاير. 16 الرابطة التي تجمع بين جزيئات الماء .
(10- عدد مولات المذاب في 1kg من المحلول. 11- عدد مولات المذاب في 1kg من المذيب. 12- نسبة عدد مولات المذاب او المذيب في المحلول الى عدد المولات الكلى لكل من المذيب 13- التغيرات في الخواص الفيزيائية للسائل المذيب عند إضافة المذاب إليه. 13- التغيرات في الخواص الفيزيائية للسائل عند حدوث حالة اتزان بين السائل وبخاره عند درجة حرارة معين 14- ضغط البخار على السائل عند حدوث حالة اتزان بين السائل وبخاره عند درجة حرارة معين 15- التغير في درجة غليان محلول تركيزه المولالي واحد m لمذاب جزيئي وغير متطاير. 14- الرابطة التي تجمع بين جزيئات الماء . 15- مخاليط متجانسة و ثابته .
(10- عدد مولات المذاب في 1kg من المحلول. 11- عدد مولات المذاب في 1kg من المذيب. 12- نسبة عدد مولات المذاب او المذيب في المحلول الى عدد المولات الكلى لكل من المذيب 13- التغيرات في الخواص الفيزيائية للسائل المذيب عند إضافة المذاب إليه. 13- التغيرات في الخواص الفيزيائية للسائل عند حدوث حالة اتزان بين السائل وبخاره عند درجة حرارة معين 15- التغير في درجة غليان محلول تركيزه المولالي واحد m لمذاب جزيئي وغير متطاير. 13- الرابطة التي تجمع بين جزيئات الماء . 14- مخاليط متجانسة و ثابته .
(
(10 عدد مولات المذاب في 1k من المحلول. 11 عدد مولات المذاب في 1kg من المذيب. 12 نسبة عدد مولات المذاب او المذيب في المحلول الى عدد المولات الكلى لكل من المذيب 13 التغيرات في الخواص الفيزيائية للسائل المذيب عند إضافة المذاب إليه. 13 ضغط البخار على السائل عند حدوث حالة اتزان بين السائل وبخاره عند درجة حرارة معين 14 ضغط البخار على السائل عند حدوث المولالي واحد m لمذاب جزيئي وغير متطاير. 15 التغير في درجة تجمد محلول تركيزه المولالي واحد m لمذاب جزيئي وغير متطاير. 16 التغير في درجة تجمع بين جزيئات الماء . 17 الرابطة التي تجمع بين جزيئات الماء . 18 مخاليط متجانسة و ثابته . 20 جزيئات الماء المتحدة بقوة مع بلورات الملح المتبلر .

(17) 2020/201	التوجية الفني العام للعلوم اللجنة الفنية المشتركة للكيمياء – بنك الكيمياء -الصف الحادي عشر العلمي – (الجزء الأول)– 9
(25 - سوائل لا يذوب أحدها في الآخر .
(P)	26- عند ثبوت درجة الحرارة فإن ذوبانية الغاز في سائل (S) تتناسب تتاسباً طردياً مع ضغط الغاز (
(الموجود فوق سطح السائل.
(27- كمية المذاب بالجرام (g) الموجودة في مائة جرام من المحلول .
(28- نسبة عدد مولات المذاب في المحلول إلى عدد المولات الكلي لكل من المذيب والمذاب . (
(. <mark></mark>	29- نسبة عدد مولات المذيب في المحلول إلى عدد المولات الكلي لكل من المذيب والمذاب
(-30 المحلول المعلوم تركيزه بدقة .
(31 – الخواص التي تتأثر بعدد جزيئات المذاب بالنسبة إلى عدد جزيئات المذيب ولا تتأثر بنوعها. (
<u>، مما يلي:</u>	السؤال الثاني: ضع علامة (٧) أمام العبارة الصحيحة وعلامة (×) أمام العبارة غير الصحيحة في كل
()	1 - ليس كل المحاليل سائلة حيث يمكن أن تكون صلبة أو غازية
()	3 - المركبات الأيونية يمكنها أن توصل التيار الكهربائي وهي في الحالة الصلبة
()	4 - المذيبات القطبية تذيب المركبات الأيونية والمركبات التساهمية القطبية
()	5 – عندما يذوب المركب الأيوني في الماء فإنه يتأين الى أيونات
()	6 - غاز الأمونيا المسال مثل محلول الأمونيا يوصل التيار الكهربائي .
()	7 - قطبية الروابط التساهمية بين جزيئات الماء متساوية ولذلك فهي تلغي بعضها الآخر
()	8 – للماء قدرة عالية على الإذابة تعزي إلى القيمة العالية لثابت العزل الخاص به وقطبيته .
()	9 – في المحاليل المتجانسة يكون المذيب في الحالة السائلة دائماً .
()	-10 الهيدروجين في البلاتين هو مثال لمحلول غاز في صلب .
()	11- جميع محاليل المركبات الأيونية مركبات إلكتروليتية .
	12 عندما يذوب إلكتروليت قوي في الماء فإنه يتفكك تفككاً كاملا ويتواجد على شكل أيونات منفصلة
()	في المحلول .
()	CH_3CH_2OH أن يذوب في مركب مثل كحول الإيثيل CH_3OH أن يذوب في مركب مثل كحول الإيثيل
	14- جميع مركبات الكربونات والكبريتيت والفوسفات شحيحة الذوبان في الماء إلا إذا كانت مركباتها
(<mark>)</mark>	من عناصر المجموعة (1A) أو الأمونيوم.
	15- تعتبر الأشكال المختلفة التي تظهر على الصخور الكلسية مثالا لبعض مظاهر التفاعل في المحالب
(<mark>)</mark>	16- يعتبر تكون الراسب وانبعاث الحرارة من مؤشرات حدوث التفاعل .
()	17- يعمل التسخين على زيادة سرعة ذوبان المادة الصلبة في السائل المذيب في أغلب الأحيان.
()	19- يزداد ذوبان الغاز في السائل بإرتفاع درجة الحرارة
()	20- تقل ذوبانية غاز في سائل كلما ارتفعت درجة حرارة المحلول .
()	21- الأمطار الإصطناعية يعد من تطبيقات المحاليل المشبعة
()	22- إنتاج سكر النبات يعد من أحد تطبيقات المحاليل فوق المشبعة

<u>(18) 2020/</u>	التوجية الفني العام للعلوم اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء الصف الحادي عشر العلمي - (الجزء الأول) - 2019
حرارة()	23- يمكن تحويل المحلول غير المشبع الى محلول مشبع بإذابة كميات أخرى من المذاب عند نفس درجة ال
	24- المحلول المشبع يكون في حالة اتزان ديناميكي بين المحلول والمادة الصلبة غير المذابة عند ثبات
(درجة الحرارة .
(<mark></mark>	25 - يمكن التعبير عن تركيز محلول صلب في سائل بالنسبة المئوية الحجمية .
(<mark></mark>	26- مجموع الكسور المولية لمكونات المحلول تساوي الواحد دائماً .
(27 عند تخفيف محلول مركز بالماء المقطر يقل عدد مولات المادة المذابة في المحلول .
	28- الخواص المجمعة للمحاليل تتأثر بعدد جسيمات المذاب بالنسبة لعدد جزيئات المذيب ولا تتأثر
(بنوع جسيمات المذاب .
(29- بزيادة تركيز محلول السكر في الماء ترتفع كل من درجة غليانه ودرجة تجمده .
(30- الضغط البخاري للمحلول يقل بزيادة تركيز المذاب غير المتطاير فيه .
(31- عند زيادة حجم المحلول بالماء المقطر الى ضعف ماكان عليه يقل عدد مولات المذاب الى النصف. (
(32- الضغط البخاري للماء أكبر من الضغط البخاري للمحلول المائي للجلوكوز.
()(2m)	ماء. ينتج محلول تركيزه (NaOH= 40) ماء. ينتج محلول تركيزه -33
(<mark>سیتون (</mark>)	34- للحصول على محلول (V/V) %50 من الأسيتون نضيف 10mLمن الماء المقطر الى 10mLمن الإ
(<mark></mark>	0.5 عندما يكون الكسر المولي للمذاب يساوي 0.5 فإن عدد مولات المذاب يساوي عدد مولات المذيب. (
(36- مجموع الكسر المولي لكل من المذاب والمذيب يساوي 1
()	37- محلولين متساويين في الحجم فإن المحلول المركز فيهما هو الذي يحتوي على عدد مولات مذاب أكبر.
	38- عند إذابة مادة غير متطايرة في مذيب سائل فإن مقدار الارتفاع في درجة غليان المحلول يزداد بزيادة
()	تركيز المحلول بالمول/كجم .
	39− مقدار الانخفاض في درجة تجمد محلول السكر الذي تركيزه 2m يساوي مقدار الانخفاض في محلول
()	اليوريا الذي له نفس التركيز المولالي

التوجية الفني العام للعلوم –اللجنة الفنية المشتركة للكيمياء – بنك الكيمياء –الصف الحادي عشر العلمي – (الجزء الأول)– 2020/2019 (19)
السؤال الثالث: أكمل الفراغات في الجمل التالية بما يناسبها علمياً:
1 - ترتبط جزيئات الماء فيما بينها بروابط
2 - من الأسباب التي جعلت قدرة الماء عالية على الإذابة قيمةالعالية للماء
3 – لكل رابطة تساهمية (O – H) خاصية قطبية بدرجة كبيرة لأن الأكسجينسالبية كهربائية من الهيدروجين
4 – يعود السبب في الخواص المهمة للماء مثل ارتفاع درجة الغليان والتوتر السطحي إلى تجمع جزيئات الماء
القطبية بروابط
5 - وجود الروابطبين جزيئات الماء أدت الى انخفاض الضغط البخاري للماء عن المركبات المشابهة له .
6 - من الخواص المميزة للماء بسبب الروابط الهيدروجينية بين جزيئاته ارتفاع درجة
7 - نوع الرابطة بين (O-H) في جزيء الماء
8 – الشكل الفراغي للماء (زاوي / خطي)
H_2 O - الزاوية بين ذرتي الهيدروجين وذرة الأكسجين في جزيء الماء H_2 O تساوي
10- جميع المركبات الأيونية تعتبر مركبات
11- غاز الأمونياالتيار الكهربائي في حالته النقية .
12- محلول كلوريد الهيدروجين (حمض الهيدروكلوريك) التيار الكهربائي
13- محلول الجلوكوز مثال لمحلول غير الكتروليتي لذلكالتيار الكهربائي .
14- السبائك هي مثال لمحلول يكون فيه حالة المذاب وحالة المذيب صلبة .
15- إذا كانت قوى التجانب بين أيونات بلورة ملح ما أقوى من قوى التجانب بين جزيئات الماء وهذه الأيونات ،
فإن الملحفي الماء .
16- تذوب المركبات الأيونية والجزيئات القطبية في المذيبات
17- المحلول المائي لكلوريد الهيدروجين التيار الكهربائي .
18 عندما يذوب إلكتروليت ضعيف في الماء يتواجد جزء ضئيل منه على شكل
20 عند إضافة محلول كربونات الصوديوم الى محلول اسيتات الباريوم يحدث تفاعل وتترسب مادة صيغتها
الكيميائية
21- عند اضافة محلول نيترات الرصاص II الى محلول كلوريد الكالسيوم يحدث تفاعل ويتكون راسب من
ومادة ذائبة في المحلول هي
22- عند مزج محلول هيدروكسيد الصوديوم مع محلول من نيترات الحديد II يتكون راسب من
23- الصيغة الكيميائية للراسب المتكون عند خلط محلول كلوريد البوتاسيوم (KCl) مع محلول نيترات
الرصاص Pb(NO ₃) ₂ II هي
24 عند طحن المذاب الصلبمساحة السطح المشترك بين المذاب والمذيب مما يسرع من عملية الإذابة .
25- ذوبانية الغازات تكون في الماء الساخن منها في الماء البارد .

التوجية الفني العام للعلوم – اللجنة الفنية المشتركة للكيمياء – بنك الكيمياء – الصف الحادي عشر العلمي – (الجزء الأول) – 2020/2019 (20)
26- يمكن تسريع عملية الذوبان عن طريقمساحة السطح المشتركة بين المذاب والمذيب بواسطة عملية الطحن
27- عند رفع درجة الحرارة ذوبانية الغاز في السائل
28- ذوبانية الغاز في السائلكلما زاد الضغط الجزيئي على سطح المحلول
29- إذا خفف محلول مائي مركز للسكر بالماء فإن عدد مولات السكر بعد التخفيفعدد مولات
السكر قبل التخفيف في المحلول .
30- يوضح الملصق على زجاجة حمض الأسيتيك في المختبر أن تركيزه (V/V) %28 فإن عدد الملليترات من
الحمض الموجودة في ml 500 من محلوله المائي تساوي <u>ml</u>
31- محلول يحتوي على g من السكر مذابة في g 50من المحلول فإن تركيز المحلول يساوي g
32- إذا أذيب $20~\mathrm{ml}$ من الأسيتالدهيد النقي في ml من الماء نحصل على محلول تركيزه $10~\%$
g 10 وكتلته g فتكون كتلة الملح فيه g 10 وكتلته g g وكتلته g
34- محلول كتلته g 150 يحتوي علي 20% من كتلته جلوكوز فتكون كتلة الماء في هذا المحلول <u>120</u> جر <mark>ا</mark> م
الذي يحتوي اللتر منه على g الخمض الكبريتيك ($H_2SO_4=98$) الذي يحتوي اللتر منه على g
النقي يساو <i>ي</i> M 0.25 النقي يساوي
$0.1~\mathrm{M}$ وتركيزه $\mathrm{Na_2CO_3} = 106$ وتركيزه) كتلة كربونات الصوديوم ($\mathrm{Na_2CO_3} = 106$) اللازمة لتحضير محلول حجمه
تساو <i>ي</i> g
L الصوديوم ($NaOH=40$) في محلول تركيزه M فيكون حجمه -37
$0.5 \; \mathrm{M}$ إذ كان تركيز محلول هيدروكسيد الصوديوم يساوي $0.5 \; \mathrm{M}$ فإن كتلته المذابة في لتر من المحلول تساوي
(O = 16, H = 1, Na = 23) g
وحجمه $500~\mathrm{cm^3}$ فيكون عدد مولات كلوريد الصوديوم تركيزه $1.4~\mathrm{mol}$ $1.4~\mathrm{mol}$ وحجمه أند محلول مائي لكلوريد الصوديوم المحاوية المح
المذابة في المحلول تساوي mol
ان ($Cl = 35.5$ ، $Na = 23$) فعند إذابة $\frac{5.85}{8}$ من كلوريد الصوديوم في الماء وإكمال حجم –40
بالماء المقطر لتكوين لتر من المحلول فإن تركيز المحلول الناتج يساوي $ { m M} $
41- إذا حضر محلول بإذابة $\frac{4.9}{9}$ من حمض الكبريتيك ($\frac{4.9}{9}$ المي قليل من الماء ثم أكمل المحلول
$ m M$ بالماء حتى أصبح حجمه $ m 500~cm^3$ فإن مولارية المحلول تساوي
42- محلول لحمض الأسيتيك (CH3COOH = 60) في الماء تركيزه (% 5) كتلياً فإن تركيزه بالمولالي
يساو <i>ي _</i>
43 محلول لحمض الكبريتيك ($H_2SO_4 = 98$) في الماء تركيزه ($M_2 = 4$) فإن النسبة المئوية الكتلية لحمض
الكبريتيك في المحلول تساوي
(NaOH = 40) من هيدروكسيد الصوديوم $8~g$ من هيدروكسيد الصوديوم (NaOH = 40)
تساو <i>ي</i> g

التوجية الفني العام للعلوم اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء -الصف الحادي عشر العلمي - (الجزء الأول)- 2020/2019 (21) 45- محلول يتكون من 0.5 mol من السكر في الماء فإذا كان الكسر المولى للسكر في هذا المحلول يساوي 0.2 فإن عدد مولات الماء في هذا المحلول يساوي $H_2O=18$) من كحول الإيثيل (كتلة المول = 46) في $171~\mathrm{g}$ من كحول الإيثيل (كتلة المول = 46) في فيكون تركيز الكحول في هذا المحلول بالكسر المولى يساوي 47- إذا كانت كتلة الماء في mol من محلول الإيثانول في الماء تساوي g 270 فإن كتلة الإيثانول في هذا $(46 = C_2H_5OH, H_2O = 18)$ g المحلول تساوي 48- محلول يحتوي mol 15 من الكحول والماء فإذا كان تركيز الماء فيه بالكسر المولى يساوي 0.9 فإن عدد مولات الكحول فيه تساويمولات الكحول 49- محلول يحتوي g 18 من الجلوكوز (كتلة المول له = 180) في $10 \, \text{mol}$ من المحلول فيكون عدد مولات الماء في هذا المحلول يساوي mol 50- محلول يحتوي mol من الإيثانول والماء فإذا كان الكسر المولى للماء في هذا المحلول يساوي 0.7 فإن كتلة الإيثانول (كتلة المول له = 46) في هذا المحلول تساوي g صلبة في ($270~\mathrm{g}$) من الماء ($H_2\mathrm{O}=18$) فإن الكسر المولى للمادة المذابة -51 يساوي.... يساوي 0.2 ينتج محلول الكسر المولى للمذاب فيه يساوي 53- إذا أضيف HCl من الماء المقطر الى 200 ml من محلول حمض HCl تركيزه _0.15 M فإن تركيز المحلول الناتجМ. 54 - حجم الماء اللازم إضافته الى 300 ml من محلول هيدروكسيد الصوديوم الذي تركيزه M 0.3 M ليصبح تركيزه 0.1 M يساوى ml يساوى 55- عدد الملليترات من محلول KOH مولاربته M 2 لتحضير 100 ml KOH مولاربته M 0.4 M يساوى ml 56 عند إضافة 500g من الماء الى محلول مائى لهيدروكسيد البوتاسيوم تركيزه m 0.3 m فإن تركيز المحلول يصبح m 57 - الضغط البخاري للماء النقيمن الضغط البخاري لمحلول الجلوكوز. 58 - درجة غليان الماء النقىمن درجة غليان المحلول المائي لجليكول الإيثيلين. 59 - درجة تجمد المحلول المائي للسكروزمن درجة تجمد الماء النقي. $0.1~\mathrm{m}$ فإن درجة تجمد محلول مائي للسكر تركيزه ($1.86~\mathrm{^{\circ}C.kg}\ /\ \mathrm{mol}K_\mathrm{fp}$) المسكر تركيزه -60تساوى 61− إذا كانت قيمة ثابت الغليان للماء هي 0.512 °C.kg / mol=K_{bp} فإن درجة غليان محلول مائي لمادة غير إلكتروليتية يساوي °C 100.256 فإن تركيز المحلول يساوي

التوجية الفني العام للعلوم -اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء -الصف الحادي عشر العلمي - (الجزء الأول) - 2020/2019 (22)					
$0.1~\mathrm{m}$ درجة غليان محلول السكروز الذي تركيزه $0.4~\mathrm{m}$ من درجة غليان نفس المحلول الذي تركيزه					
63- الخواص المجمعة للمحاليل تعتمد على عدد جسيمات في كمية معينة من المذيب .					
64 عند إذابة مادة غير إلكتروليتية وغير متطايرة في سائل فإن الضغط البخاري للمحلول يكونمن					
الضغط البخاري للسائل النقي عند درجة الحرارة نفسها .					
ا وسكر المحروز ($C_6H_{12}O_6$) وسكر السكروز ($C_{12}H_{22}O_{11}$) مادتين غير إلكتروليتين وغير متطايرتين ($C_6H_{12}O_6$					
فإن درجة غليان محلول الجلوكوز الذي تركيزه (m 0.5 m)من درجة غليان محلول السكروز					
		يز .	الذي له نفس الترك		
الاكانت قيمة ثابت الغليان للماء هي (0.512° C/m) فإن درجة غليان محلول مادة غير إلكتروليتية وغير					
		تركيزه (0.2 m) تساو <i>ي</i>			
سكر تركيزه(mol/kg))	ن درجة تجمد محلول مائي لل	ىمد للماء (C.kg/mol ° 1.86 فإز	67– إذا كان ثابت التج		
		. °C	تسا <i>وي</i>		
	، جملة من الجمل التالية:	مة (٧) أمام أنسب عبارة تكمل كل			
		ية له أعلى درجة غليان هو:			
H ₂ Te □	H₂Se □	H₂S □	H ₂ O □		
			2 – يعود سبب الخواص		
باء بروابط هيدروجينية .	11 15		E1 351 351 1 1 -		
			🗖 ارتفاع الكتلة الج		
	 □ نجمع جريبات الم □ شفافية الماء وعدم 		□ ارتفاع الكتلة الج□ عدم قطبية جزيئا		
		ت الماء .			
	🗖 شفافية الماء وعد	ت الماء . سي قطبي بسبب :	🗖 عدم قطبية جزيئا		
م وجود لون له .	□ شفافية الماء وعد□ قطبية الرابطة (ا	ت الماء . سي قطبي بسبب :	□ عدم قطبية جزيئا 3 – الماء مركب تساهه □ قطبية الرابطة (
م وجود لون له . O – H) والشكل الخطي للماء .	□ شفافية الماء وعد□ قطبية الرابطة (ا	ت الماء . سي قطبي بسبب : O – H) فقط .	□ عدم قطبية جزيئا 3 – الماء مركب تساهه □ قطبية الرابطة (□ الشكل الخطي ال		
م وجود لون له . O – H والشكل الخطي للماء . O – H والشكل الزاوي للماء .	□ شفافية الماء وعد□ قطبية الرابطة (ا	ت الماء . سي قطبي بسبب : O – H) فقط . ذي يأخذه جزئ الماء .	□ عدم قطبية جزيئا 3 – الماء مركب تساهه □ قطبية الرابطة (□ الشكل الخطي اله 4 – اتحاد أيونات الملح		
م وجود لون له . O – H والشكل الخطي للماء . O – H والشكل الزاوي للماء .	 شفافیة الماء وعده قطبیة الرابطة (ا قطبیة الرابطة (ا تبلر هذه الأیونات. 	ت الماء . سبب : سبب : O – H فقط . ذي يأخذه جزئ الماء . فقوة بجزيئات الماء . ويقوة بجزيئات الماء يؤدي إلى : □ إماهة الايونات.	 □ عدم قطبیة جزیئا 3 – الماء مرکب تساهه □ قطبیة الرابطة (□ الشکل الخطي الد 4 – اتحاد أیونات الملح □ ذوبانها . 		
م وجود لون له . O – H والشكل الخطي للماء . O – H والشكل الزاوي للماء .	 شفافیة الماء وعده قطبیة الرابطة (ا قطبیة الرابطة (ا تبلر هذه الأیونات. 	ت الماء . سي قطبي بسبب : صي قطبي بسبب : O − H فقط . ذي يأخذه جزئ الماء . وقوة بجزيئات الماء يؤدي إلى : العزل الخاصة بالماء تجعل منه :	 □ عدم قطبیة جزیئا 3 – الماء مرکب تساهه □ قطبیة الرابطة (□ الشکل الخطي الد 4 – اتحاد أیونات الملح □ ذوبانها . 		
م وجود لون له . O − H والشكل الخطي للماء . H − O) والشكل الزاوي للماء . □ تفكك هذه الأيونات	 □ شفافية الماء وعده □ قطبية الرابطة (ا قطبية الرابطة (ا تبلر هذه الأيونات. □ مذيب قوي للمركب 	ت الماء . سبب : سبب : O − H وقط . فقط . فقط . فقط . في يأخذه جزئ الماء . ويقوة بجزيئات الماء يؤدي إلى : العزل الخاصة الايونات. العزل الخاصة بالماء تجعل منه : بات القطبية .	عدم قطبية جزيئا حالماء مركب تساهه قطبية الرابطة (قطبية الرابطة (الشكل الخطي اله الشكل الخطي اله حاتحاد أيونات الملح دوبانها .		
م وجود لون له . O − H والشكل الخطي للماء . H − O) والشكل الزاوي للماء . □ تفكك هذه الأيونات . □ تفكك هذه الأيونات التساهمية غير القطبية .	 شفافیة الماء وعده قطبیة الرابطة (ا قطبیة الرابطة (ا قطبیة الرابطة (ا تبلر هذه الأیونات. مذیب قوي للمرکب مادة جیدة التوصید 	ت الماء . سبب : سبب : O − H فقط . فقط . فقط . فقط . في يأخذه جزئ الماء . وقوة بجزيئات الماء يؤدي إلى : والماء الايونات . العزل الخاصة بالماء تجعل منه : التيار الكهربائي . فالتيار الكهربائي .	عدم قطبية جزيئا حالماء مركب تساهه قطبية الرابطة (قطبية الرابطة (الشكل الخطي اله حاتحاد أيونات الملح دوبانها . ذوبانها . مذيباً جيداً للمركد مادة غير موصلا		
م وجود لون له . O – H والشكل الخطي للماء . O – H والشكل الزاوي للماء . تفكك هذه الأيونات ات التساهمية غير القطبية . يل للتيار الكهربائي .	شفافية الماء وعده قطبية الرابطة (ا قطبية الرابطة (ا قطبية الرابطة (ا تبلر هذه الأيونات مذيب قوي للمركب مادة جيدة التوصي	ت الماء	عدم قطبية جزيئا حالماء مركب تساهه قطبية الرابطة (قطبية الرابطة (الشكل الخطي اله حاتحاد أيونات الملح دوبانها . ذوبانها . مذيباً جيداً للمركد مذيباً جيداً للمركد مادة غير موصل مادة غير موصل		
م وجود لون له . O – H والشكل الخطي للماء . O – H والشكل الزاوي للماء . تفكك هذه الأيونات ات التساهمية غير القطبية . يل للتيار الكهربائي .	شفافية الماء وعده قطبية الرابطة (الحدود المبية الرابطة (الحدوث الأيونات المركب قوي للمركب المدة جيدة التوصيد ا	ت الماء	عدم قطبية جزيئا حالماء مركب تساهه قطبية الرابطة (قطبية الرابطة (الشكل الخطي اله حاتحاد أيونات الملح دوبانها . ذوبانها . مذيباً جيداً للمركد مذيباً جيداً للمركد مادة غير موصل مادة غير موصل		

	التوجية الفني العام للعلوم – اللجنة الفنية المشتركة للكيمياء – بنك الكيمياء –
1: 11 - 1· f	7 - إماهة الأيونات عملية يتم فيها:
☐ إحاطة جزيئات الماء بأيونات المذاب . ◘ ما مأ مد النانا	☐ إحاطة أيونات المذاب بجزيئات الماء . ◘ تعديد أن من المذاب بجزيئات الماء .
🗖 تبلر أيونات المذاب .	□ تفاعل أيونات المذاب مع الماء .
الماء ماعدا :	8- جميع ما يلي يحدث عند ذوبان بلورة صلبة (مذاب) في
] اصطدام جزيئات الماء بالبلورة	□ انفصال جزيئات الماء عن بعضها البعض.
ا انفصال الكاتيونات عن الأنيونات للبلورة الصلبة	□ التجاذب بين جزيئات الماء وايونات المذاب.
بر القطبي) الى :	9- يرجع ذوبان زيت الزيتون (غير القطبي) في البنزين (غب
] انعدام ق <i>وى</i> التنافر بينهما	☐ ق <i>وي</i> التجاذب بينهما
ا إماهة جزيئات البنزين	□ انفصال جزيئات الزيت الى انيونات وكاتيونات
<u>ب</u> ي <u>عدا</u> :	10- جميع المحاليل التالية محاليلها المائية توصل التيار الكهر
محلول الجلوكوز □ غاز كلوريد الهيدروجين □ عار كاوريد الهيدروجين	
ا محلوله المائي يوصل الكهرباء فمن المتوقع أن	11- المركب A لا يوصل الكهرباء وهو في الحالة الغازية بينم
	يكون
مركب تساهمي قطبي	🗖 مركب أيوني
مركب يحتوى رابطه تناسقية	🗖 مركب تساهمي غير قطبي
	ك مرتب تساملي خير تنطبي
	 □ المركبات التالية الكتروليت ضعيف :
لول حمض الأسيتيك 🗖 محلول هيدروكسيد الصوديوم	12- أحد المركبات التالية الكتروليت ضعيف:
لول حمض الأسيتيك 🗖 محلول هيدروكسيد الصوديوم	12 أحد المركبات التالية الكتروليت ضعيف: □ مصهور كبريتات النحاس □ مصهور السكروز □ محا 13 مكن التمييز بين محلولي حمض الهيدروكلوريك وحمض
لول حمض الأسيتيك □ محلول هيدروكسيد الصوديوم الأسيتيك المتساويين في التركيز من خلال:	12 أحد المركبات التالية الكتروليت ضعيف: □ مصهور كبريتات النحاس □ مصهور السكروز □ محا 13 مكن التمييز بين محلولي حمض الهيدروكلوريك وحمض
لول حمض الأسيتيك □ محلول هيدروكسيد الصوديوم الأسيتيك المتساويين في التركيز من خلال:	12- أحد المركبات التالية الكتروليت ضعيف: □ مصهور كبريتات النحاس □ مصهور السكروز □ محا 13- يمكن التمييز بين محلولي حمض الهيدروكلوريك وحمض □ الذوبانية في الماء . □ تشتيت الضوء . □ 15- أحد الأملاح التالية لا يذوب في الماء هو :
لول حمض الأسيتيك	12 أحد المركبات التالية الكتروليت ضعيف: □ مصهور كبريتات النحاس □ مصهور السكروز □ محا 13 بيكن التمييز بين محلولي حمض الهيدروكلوريك وحمض □ الذوبانية في الماء . □ تشتيت الضوء . □ 15 أحد الأملاح التالية لا يذوب في الماء هو :
لول حمض الأسيتيك	12- أحد المركبات التالية الكتروليت ضعيف : □ مصهور كبريتات النحاس □ مصهور السكروز □ محا 13- يمكن التمييز بين محلولي حمض الهيدروكلوريك وحمض □ الذوبانية في الماء . □ تشتيت الضوء . □ 15- أحد الأملاح التالية لا يذوب في الماء هو : □ K ₂ SO ₄ □ Na ₂ SO ₄ . □
لول حمض الأسيتيك \square محلول هيدروكسيد الصوديوم الأسيتيك المتساويين في التركيز من خلال : درجة حرارة كل منهما \square درجة التوصيل الكهربي \square . CaSO $_4$ \square . (NH $_4$) $_2$ SO $_4$. Fe(OH) $_3$ \square . Na $_2$ CO $_3$	12- أحد المركبات التالية الكتروليت ضعيف : □ مصهور كبريتات النحاس □ مصهور السكروز □ محا 13- يمكن التمييز بين محلولي حمض الهيدروكلوريك وحمض □ الذوبانية في الماء . □ تشتيت الضوء . □ 15- أحد الأملاح التالية لا يذوب في الماء هو : □ K₂SO₄ . □ . Na₂SO₄ . □
لول حمض الأسيتيك \square محلول هيدروكسيد الصوديوم الأسيتيك المتساويين في التركيز من خلال : درجة حرارة كل منهما \square درجة التوصيل الكهربي \square . CaSO $_4$ \square . (NH $_4$) $_2$ SO $_4$. Fe(OH) $_3$ \square . Na $_2$ CO $_3$	12- أحد المركبات التالية الكتروليت ضعيف : □ مصهور كبريتات النحاس □ مصهور السكروز □ محا 13 - يمكن التمييز بين محلولي حمض الهيدروكلوريك وحمض □ الذوبانية في الماء . □ تشتيت الضوء . □ 15- أحد الأملاح التالية لا يذوب في الماء هو : □ . K2SO4 . □ . Na2SO4 . □ . □ . PbS □ . BaCO3 . □ . □ . PbS □ . BaCO3 . □ .
لول حمض الأسيتيك	12- أحد المركبات التالية الكتروليت ضعيف : □ مصهور كبريتات النحاس □ مصهور السكروز □ محا 13 - يمكن التمييز بين محلولي حمض الهيدروكلوريك وحمض □ الذوبانية في الماء . □ تشتيت الضوء . □ الذوبانية في الماء . □ تشتيت الضوء . □ . 15- أحد الأملاح التالية لا يذوب في الماء هو : □ Na₂SO₄ . □ . Na₂SO₄ . □ . 16- أحد المركبات التالية يذوب في الماء هو : □ PbS □ . BaCO₃ . □
الول حمض الأسيتيك	12- أحد المركبات التالية الكتروليت ضعيف : □ مصهور كبريتات النحاس □ مصهور السكروز □ محا □ يمكن التمييز بين محلولي حمض الهيدروكلوريك وحمض □ الذوبانية في الماء . □ تشتيت الضوء . □ 15- أحد الأملاح التالية لا يذوب في الماء هو : □ Na ₂ SO ₄ . □ Na ₂ SO ₄ . □ 16- أحد المركبات التالية يذوب في الماء هو : □ PbS □ . BaCO ₃ . □ 17- عند مزج محلول نيترات الرصاص اا مع محلول يوديد الديوديد الموديوم . □ يوديد الرصاص المع محلول يوديد الموديوم . □ هوديد الموديوم . □ هوديد الرصاص المع محلول يوديد الموديوم . □ هوديد الموديوم . □ هود

(الجزء الأول)- <u>2020/2019 (24)</u>	اء -الصف الحادي عشر العلمي -	فنية المشتركة للكيمياء – بنك الكيمي	التوجية الفني العام للعلوم –اللجنة اا
	:	يوني شحيح الذوبان في الماء	19– واحدا مما يلي مركب أ
🗖 فلوريد الباريوم	🗖 هيدروكسيد الصوديوم	🗖 كربونات البوتاسيوم	🗖 كبريتيد الأمونيوم
هي :	سيوم مع محلول نيترات الفضة	بة لتفاعل محلول كلوريد البوتا	20- المعادلة الأيونية النهائب
	$KCl_{(aq)} + AgNO_{3(aq)}$	\longrightarrow $K^{+}_{(aq)}$ + NC	$^{\circ}_{3}^{\circ}_{(aq)} + AgCl_{(s)} \square$
	$_{\rm o}$ + Ag ⁺ _(aq) + NO ₃ ⁻ _(aq)		
	$CI_{(aq)}^{-} + Ag_{(aq)}^{+}$	→ AgCl _(s)	
K [†]	$(aq) + Cl^{-}(aq) + Ag^{+}(aq)$	$K^+_{(aq)} + A$	$gCl_{(s)}$
		Ba(OF الى محلول Ba	21 عند إضافة محلول
فقط	□ يترسب Cu(OH) ₂		☐ يترسب BaF ₂ فقط
	🗖 لا يتكون راسب	Cu(C	$OH)_2$ يترسب كلا من \Box
لتالية:	محلول غير مشبع بأحد العوامل	المشيع في أغلب الأحيان الي	22- يمكن تحويل المحلول
•	<u>_</u>	 -	ا إضافة كميات أخرى م
	🗖 بجميع ماسبق		اً اضافة كميات أخرى ما
ا ماحداً منها مهم	الصوديوم الصلب في الماء عد		
	المصوديوم المصلب في الله: عد درجة الحرارة		_
			_
•		ِ في السائل بأحد العوامل التا 	
] زيادة درجة الحرارة وخفض الد ع مناسبة السالم المسالم المسالم		☐ زيادة درجة الحرارة وزيا
ضغط	 أ خفض درجة الحرارة وزيادة الـ 	عفض الضغط	خفض درجة الحرارة وخ
ً فإنه يمكن تحويل محلول	20° C و 88 عند 0° C عند	و الصوديوم في الماء 74 g	25- إذا كانت ذوبانية نيتران
	بأحد العوامل التالية :	ديوم الى محلول غير مشبع	مشبع من نيترات الصو
	إضافة محلول الكتروليتي	ىن المذاب	🗖 إضافة كميات أخرى م
	رفع درجة الحرارة		🗖 خفض درجة الحرارة
المحاليل الغازية التي	ي أكسيد الكربون تكون في أحد	رارة فإن أكبر ذوبانية لغاز ثان	26- بفرض ثبوت درجة الح
•	•		يؤثر عليها ضغط يعادل
1.5 atm	1.25 atm	□ 0.5 atm □	1 atm □
		يل تامة الأمتزاج :	27- من الأمثلة على المحال
الزيت والخل.	 الایثانول والماء 	•	□ الزيت والماء
	- - -		-

<u> (25) 2020/2019 (25)</u>	ياء -الصف الحادي عشر العلمي - (الجزء ا'	فنية المشتركة للكيمياء – بنك الكيم	التوجية الفني العام للعلوم-اللجنة ال
	جة حرارة معينة :	ع تكون كمية المذاب عند در	28– في المحلول فوق المشب
	🗖 أقل مما يجب لتشبعه .		🗖 أكبر مما يجب لتشبعه
لحرارة .	🗖 ثابته لا تتغير في جميع درجات ا	تشبعه .	🗖 تساوي الكمية اللازمة ل
		ند درجة حرارة ثابته تكون:	29– في المحلول المشبع وع
التي تترسب .	🗖 عدد الجسيمات التي تذوب > عدد	. كن	🗖 كمية المذاب أقل ما يد
التي تترسب .	🗖 عدد الجسيمات التي تذوب < عدد	يمكن .	🗖 كمية المذاب أكبر ما
			30- ذوبان غاز في سائل :
	 یقل بزیادة ضغط الغاز والتبرید . 	وارتفاع درجة الحرارة .	ق. على الله العادة صنعط العاز □ يقل بزيادة ضغط العاز
ن .	يزداد بتقليل ضغط الغاز والتسخي	از وانخفاض درجة الحرارة <u>.</u>	
ا تساوی :	يزه (% 20) كتلياً فتكون كتلة الماء في	تاسبوم کتلته (g 100) وترک	31– محلول لهيدر وكسيد اليو
	80 g □		
	تركيزه (% 45) كتلياً وكتلته (100 g		
	طریق (۳۶ میں طریق (۳۶ میں اور 100 علیہ (۳۶ میں اور 100 علیہ (۳۶ میں اور 100 علیہ اور 100 علیہ اور 100 علیہ اور		
	النسبة المئوية للسكر في المحلول تسار		
	80 % □		25 % 🗖
النسبة المئوية	صبح حجم المحلول (200 mL) فإن		
		المحلول تساوي تساوي:	•
5.66 % □	6 % □	12 % 	24 % 🗖
وية الحجمية	محلولا حجمه 200ml فإن النسبة المئ	لاسيتون النقى بالماء ليعطى	35- إذا خفف 10ml من ا
		تساو <i>ي</i> :	للأسيتون في المحلول
10%	15% □	50% □	5% □
وتركيزه (250	NaH) المذابة في محلول حجمه (NaH	$CO_3 = 84$) م الهيدروجينية	36- كتلة كربونات الصوديو،
			: تساوي $(0.1 M)$
33.6 g □	210 g □	21 g 🗖	2.1 g □
ساو <i>ي</i> :	کیزه (0.4 M) وحجمه (500 mL) ت	ا) في محلولها المائي الذي تر	Na ₂ SO ₄) عدد مولات –37
0.2 mol □	$0.4 \; mol \; \square$	20 mol □	0.8 mol □
2) من هیدروکسید	ن تركيزالمحلول الناتج عن إذابة (g 0.	H = 1 , O= 16 , Na) فإ	38 – إذا علمت أن (23 = 1
2) من هیدروکسید	ن تركيزالمحلول الناتج عن إذابة (g 0 ول يساوي :	H = 1, O= 16, Na) فإ للماء لتكوين لتر من المحلو	•

	ء -الصف الحادي عشر العلمي - (الجز		-
فیه تسا <i>وي</i>	يزه (0.1 mol/L) وكتلة المذاب ا	, ,	•
		نجمه :	(21.2 g) فیکون ح
0.5L □	200 mL □	0.2L □	2L □
، تحتوي على عدد من	، فإن (g 100) من هذا المحلول	سوديوم تركيزه (0.1 mol/kg)	40- محلول هيدروكسيد ص
			المولات يساوي:
10 🗖	1 🗖	0.01	0.1 🗖
ماء فإن تركيز المحلول	في g في (K_2CO_3 =	من كربونات البوتاسيوم (138	41– عند إذابة g –41
			يساو <i>ي</i> :
0.2 mol/kg \Box	0.1 mol/kg □	2 mol/L □	$0.1~{ m mol/L}~\square$
للية المحلول تساوي:	63) كتلياً منه حمض نقي فإن مولا	ك (HNO ₃) يحتو <i>ي</i> على (% 3	42- محلول لحمض النيترب
		(H = 1, N)	= 14 , O = 16)
2.703 🗖	27.03 🗖	0.03 □	63.03 □
يساو <u>ي</u> :	70 % m فيكون تركيزه بالمولال	$/$ m پك (63= $+$ HNO $_3$) تركيزه	43- محلول الحمض النيتر
6.8 🗖	47.6 □	11.11	37.03 □
	=	11.11	27.02
H ₂ 0) فإن الكسر) في 72 g من الماء (18 = O		
H ₂ 0) فإن الكسر			
H ₂ 0 فإن الكسر (H ₂ 0) فإن الكسر			44- عند إذابة g 46 من
) في 72 g من الماء (18 = O	(C ₂ H ₅ OH = 46) الإيثانول	44 عند إذابة g 46 من المولي للماء :
0.08) في 72 g من الماء (18 = O	الإيثانول (C ₂ H ₅ OH = 46) الإيثانول 0.8 □	44− عند إذابة 9 46 من المولي للماء : □ 0.2
0.08) في 72 g من الماء (18 = 0 − 0.06	$(C_2H_5OH = 46)$ الإيثانول 0.8 \Box 0.8	44− عند إذابة 9 46 من المولي للماء : □ 0.2
0.08) في 72 g من الماء (18 = 0 − 0.06	$(C_2H_5OH = 46)$ الإيثانول 0.8 \Box 0.8	44− عند إذابة 9 46 من المولي للماء : 0.2 □ -45 كتلة الماء (18 = 0
0.08 □ سكر فيه بالكسر 345.6 g □) في 72 g من الماء (18 = 0 □ 0.06 عدد مولاته mol وتركيز اله	الإيثانول (C ₂ H ₅ OH = 46) الإيثانول (0.8 □ 0.8 □ 0.8 □ 0.8) اللازمة لتحضير محلول الساوي : 72 g □	44- عند إذابة 9 46 من المولي للماء : 0.2 □ 0.2 □ 45- كتلة الماء (18 = 0 18 المولي يساوي 282 □ 288 g □
0.08 □ سكر فيه بالكسر 345.6 g □) في 72 g من الماء (18 = 0 0.06 □ عدد مولاته mol وتركيز اله 14.4 g □	الإيثانول (C ₂ H ₅ OH = 46) الإيثانول (0.8 □ 0.8 □ 0.8 □ 0.8) اللازمة لتحضير محلول الساوي : 72 g □	44- عند إذابة g 46 من المولي للماء: 0.2 □ 18) كتلة الماء (18 = 0.45 كتلة الماء (18 = 0.2 كتلة الماء (288 g □ 45- إذا علمت أن الكسر 140-
0.08 □ سكر فيه بالكسر 345.6 g □) في 72 g من الماء (18 = 0 0.06 □ عدد مولاته mol وتركيز اله 14.4 g □	الإيثانول (C ₂ H ₅ OH = 46) الإيثانول (0.8	44- عند إذابة g 46 من المولي للماء: 0.2 □ 18) كتلة الماء (18 = 0.45 كتلة الماء (18 = 0.2 كتلة الماء (288 g □ 45- إذا علمت أن الكسر 140-
0.08 □ مكر فيه بالكسر 345.6 g □ فإن كتلة الإيثانول) في 72 g من الماء (18 = 0 0.06 □ عدد مولاته mol وتركيز اله 14.4 g □ = 4.6) في الماء يساوي 0.2 ف	الإيثانول (C ₂ H ₅ OH = 46) الإيثانول (O.8	المولي للماء: المولي للماء: 0.2 □ 18 45 245
0.08 □ مكر فيه بالكسر 345.6 g □ فإن كتلة الإيثانول) في 72 g من الماء (18 = 0 0.06 □ عدد مولاته mol وتركيز اله 14.4 g □ = 4.6) في الماء يساوي 0.2 ف	الإيثانول (C ₂ H ₅ OH = 46) الإيثانول (C ₂ H ₅ OH = 46) 0.8	المولي للماء: المولي للماء: 0.2 □ 18 45 245
0.08 الكسر فيه بالكسر على الكسر 345.6 g المالكسوفيات كتلة الإيثانول المالكسوفيات ا) في 72 g من الماء (18 = 0 0.06 □ عدد مولاته 20 mol وتركيز السا = 14.4 g □ = 4.6 □ 4.6 □	الإيثانول (C ₂ H ₅ OH = 46) الإيثانول (C ₂ H ₅ OH = 46) 0.8	المولي الماء : المولي الماء : 0.2 □ 18 0.4 0.5

(27) 2020 2012 (0.35) 87	-الصف الحادي عتبر العلمي - (الـ	الفنية المشتركة للكيمياء – بنك الكيمياء	التوجيه الفني العام للعلوم-اللجنة
سر المولي للماء	كر فيه يساوي (0.15) فإن الك	الماء فإذا كان الكسر المولي للسك	48-محلول من السكر في
			يساوي:
0.85	1.85 □	99.85 🗖	0.15
إت المحلول تساوي	المولي يساوي (0.4) وعدد موا	الماء تركيزه الإيثانول فيه بالكسر	49- محلول للإيثانول في
		دد مولات الماء تساوي:	(16 mol) فتكون عا
9.6	6.4 □	0.6 🗖	16 🗖
بح حجم المحلول	0.2) إلى ماء مقطر حتى أصد	من محلول حمض ما تركيزه (M	50 أضيف (200 mL)
		كيز المحلول الناتج يساوي:	(500 mL) فإن ترك
0.8 M □	0.2 M □	0.08M □	0.04 M □
15) من الماء المقطر	تركيزه (0.2 M) إلى (50 mL)	من محلول هيدروكسيد الصوديوم	51– أضيف (150 mL)
		الناتج يساو <i>ي</i> :	فإن تركيز المحلول
0.2 M □	0.1 M □	0.04M □	0.2 M □
(0.4 M) للحصول	حمض الكبريتيك الذي تركيزه (افته إلى (100 mL) من محلول	52 حجم الماء اللازم إض
		(0.2 M) يساو <i>ي</i> :	على محلول تركيزه
$400~\mathrm{mL}$	100~mL	50 mL □	200 mL □
$0.08~{\sf M}$ بح ترکیزه	يوريا الذي تركيزه 0.2 M ليصا	افته الى 400 mL من محلول ال	53- حجم الماء اللازم إض
0.08~M بح ترکیزه	يوريا الذي تركيزه M 0.2 ليصد	افته الى 400 mL من محلول ال	53- حجم الماء اللازم إض يساوي
		افته الى 400 mL من محلول الـ □ 800 mL	يساو <i>ي</i>
1000 mL □	_600 mL □		يسا <i>وي</i> ط 400 mL
1000 mL □	600 mL ☐ 7.2 g من مادة غير متطايرة	800 mL □	يساوي ط 400 mL 54- مقدار الارتفاع في در
ــــــــــــــــــــــــــــــــــــ		☐ 800 mL ₪ جة غليان محلول ناتج عن ذوبان	يساوي 400 mL ط 54– مقدار الارتفاع في در 57.6 g/mol في
1000 mL الجزيئية الجزيئية 0.52 °C		□ 800 mL جة غليان محلول ناتج عن ذوبان 250 g من الماء يساوي: (الم	يساوي 400 mL ط 54 مقدار الارتفاع في در 57.6 g/mol 1.038 °C ط
اً 1000 mL ق كتلتها الجزيئية ال 0.52 °C ان تركيز المحلول:		جة غليان محلول ناتج عن ذوبان جة غليان محلول ناتج عن ذوبان 250 g من الماء يساوي: (م5 □ 0.97 °C في درجة غليان المحلول المائي ا	يساوي 400 mL ط 54 مقدار الارتفاع في در 57.6 g/mol 1.038 °C ط
1000 mL □ ق كتلتها الجزيئية □ 0.52 °C □ ن تركيز المحلول: □ 0.1 m □		جة غليان محلول ناتج عن ذوبان جة غليان محلول ناتج عن ذوبان 250 g من الماء يساوي: (م5	يساوي 400 mL
1000 mL □ ق كتلتها الجزيئية □ 0.52 °C □ ن تركيز المحلول: □ 0.1 m □		جة غليان محلول ناتج عن ذوبان جة غليان محلول ناتج عن ذوبان 250 g من الماء يساوي: (مَّ 0.97 °C □ في درجة غليان المحلول المائي المحلول المائي المحلول المائي المحلول المائي المحلول المائي الدير متطايرة وغير إلكتروليتية تركيز	يساوي 400 mL
1000 mL □ ق كتلتها الجزيئية □ 0.52 °C □ ن تركيز المحلول: □ 0.1 m □		جة غليان محلول ناتج عن ذوبان جة غليان محلول ناتج عن ذوبان 250 g من الماء يساوي: (مَّ 0.97 °C □ في درجة غليان المحلول المائي المحلول المائي المحلول المائي المحلول المائي المحلول المائي الدير متطايرة وغير إلكتروليتية تركيز	يساوي 400 mL
ا المحلول: ا 1000 mL ا 200 cc ا 200 cc ا 300 cc 300 cc 		جة غليان محلول ناتج عن ذوبان جة غليان محلول ناتج عن ذوبان 250 g من الماء يساوي: (المحلول المائي الفي درجة غليان المحلول المائي المحلول المائي السلامة وغير إلكتروليتية تركيز لمحلول تساوي :	يساوي 400 mL
ا المحلول: ا 1000 mL ا 200 cc ا 200 cc ا 300 cc 300 cc 		جة غليان محلول ناتج عن ذوبان جة غليان محلول ناتج عن ذوبان 250 g من الماء يساوي: (مَّمُ 0.97 °C □ في درجة غليان المحلول المائي المحلول المائي الصلول المائي المحلول المائي المحلول المائي المحلول المائي المحلول تساوي :	يساوي 400 mL

			التوجية الفني العام للعلوم –اللجنة الف
مناطق الباردة فإن	ر السيارة لمنع تجمد الماء في ال	هي مادة تضاف الى ماء رادياتير	58- مادة جليكول الإيثيلين ه
	ل بكفاء عالية هو	ه المادة في رادياتير السيارة للعم	أفضل تركيز لمحلول هذ
0.1 m □	0.5 m □	2 m □	3 m □
اليل التالية هو المحلول	أقل ضغط بخاري من بين المحا	ماء فإن المحلول الذي يكون له	59 محلول للجلوكوز في الم
			الذي يكون الكسر المو
لجلوكوز يساو <i>ي</i> 0.8	□ للماء يساوي 0.8		
	0.0512 °C) يغلي عند (0.1		
<i>ـــبـ کړ</i> = (۱۷	0.11 يعني عد (3	ري تي المدم وسي ترميره (۱۱۱۰	الغليان للماء يساوي:
5.12 °C/m □	512 °C/m □	0.0512 °C/m □	
	في (800 g) من الماء فكانت ا		
	:(ثابت غلیان الماء °C/m علیان):		
115.2 g □	0.18 g □	180 g □	90 g □
الذ <i>ي</i> تركيزه (m 2)	.0) فإن المحلول المائي للسكر	يان للماء يساو <i>ي</i> (C/m° 512.	62 إذا علمت أن ثابت الغلب
			يغلي عند درجة حرارة:
□ 98.96 °C	□1.024 °C	□101.024 °C	□100 °C
خفاض في درجة تجمد :	تركيزه (1 m) يساوي مقدار الات	مة تجمد محلول اليوريا في الماء	63- مقدار الإنخفاض في درج
	🗖 محلول السكر تركيزه		m) محلول اليوريا تركيزه
. (2 m	🗖 محلول السكر تركيزه (. (0.5	m) محلول السكر تركيزه
إن ثابت التجمد للماء	ال تتحد عند (C) عند عند (C) فا		
, , ,		ورياً في الماء الذ <i>ي</i> تركيزه (2m	64 إذا علمت أن محلول الب
	ر) ينجمد عند (٥ ع.١٤) ا	بوريا في الماء الذي تركيزه (2m	64- إذا علمت أن محلول البه (K _{fo})
100.86 °C/m □	1.86 °C/m	بوريا في الماء الذ <i>ي</i> تركيزه (2m © C/m	: يساو <i>ي</i>
100.86 °C/m □		0.93 °C/m □	: يساو <i>ي</i> (K _{fp}) 3.72 °C/m □
100.86 °C/m □		0.93 °C/m □	: يساو <i>ي</i>
100.86 °C/m □		0.93 °C/m □	(K _{fp}) يساوي : 3.72 °C/m ☐ السؤال الخامس: علل (فسر
100.86 °C/m □		0.93°C/m □ <u>) ما يلي:</u>	(K _{fp}) يساوي : 3.72 °C/m ☐ السؤال الخامس: علل (فسر
100.86 °C/m □		0.93°C/m □ <u>) ما يلي:</u>	(K _{fp}) يساوي : 3.72 °C/m □ <u>السؤال الخامس: علل (فسر</u> –1 جزئ الماء قطبي؟
100.86 °C/m □	1.86 °C/m_	0.93°C/m □ <u>) ما يلي:</u>	(K _{fp}) يساوي : 3.72 °C/m □ السؤال الخامس: علل (فسر 1 - جزئ الماء قطبي؟ 2 - يعتبر الماء مذيب عام أ
100.86 °C/m □	1.86 °C/m_	0.93 °C/m □) ما يلي: دة عن المركبات المشابهة له في	(K _{fp}) يساوي : 3.72 °C/m □ السؤال الخامس: علل (فسر 1 – جزئ الماء قطبي؟ 2 – يعتبر الماء مذيب عام ؟ 3 – يتميز الماء بخواص فريد
100.86 °C/m □	1.86 °C/m_	0.93 °C/m □) ما يلي: دة عن المركبات المشابهة له في	(K _{fp}) يساوي : 3.72 °C/m □ السؤال الخامس: علل (فسر 1 - جزئ الماء قطبي؟ 2 - يعتبر الماء مذيب عام أ

التوجية الفني العام للعلوم اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء -الصف الحادي عشر العلمي - (الجزء الأول)- 2020/2019 (29)
5 – تكون ماء التبلر ؟
6 – عدم وجود الماء في صورة نقية ؟
7 – لا تذوب بعض المركبات الايونية في الماء ؟
8 – يذوب الزيت في البنزين ؟
9 – تتكون بلورات مائية من كبريتات النحاس الثنائية ؟
10- في بعض الأحيان عندما تنفصل بلورات المركب عن المحلول المائي تكون مرتبطة بعدد من جزيئات الماء .
الأيونية مثل كبريتات الباريوم ($BaSO_4$) وكربونات الكالسيوم ($CaCO_3$) لا تذوب في الماء -1
-12 الأمونيا في حالتها النقية لا توصل التيار الكهربائي ولكن عند إذابتها في الماء فإن محلولها يوصل التيار الكهربائي.
13- كلوريد الهيدروجين في حالته النقية لا يوصل التيار الكهربائي بينما محلوله المائي يوصل التيار الكهربائي.
السؤال السادس: حل المسائل التالية:
-1 محلول قياسي لكربونات الصوديوم حجمه ($-100~\mathrm{mL}$) و تركيزه ($-100~\mathrm{mL}$) . احسب حجم الماء اللازم
اضافته إليه للحصول على محلول تركيزه ($0.1~{ m M}$) .

التوجية الفني العام للعلوم -اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء -الصف الحادي عشر العلمي - (الجزء الأول)- 2020/2019 (30)
رك أذيب (45 g) من سكر الجلوكوز $C_6H_{12}O_6$ في ($C_6H_{12}O_6$) من ألماء فإذا كان ثابت الغليان للماء يساوي -2
(C=12,H=1,O=16) (0.52 °C.kg / mol) احسب درجة غليان المحلول الناتج.
C_{10} فإذا علمت أن C_{10} و كا C_{10} في C_{10} في C_{10} في البنزين C_{10} فإذا علمت أن C_{10} فإذا علمت أن درجة غليان البنزين النقي C_{10} (C_{10}) (C_{10} (C_{10})
و المطلوب: أولا: حساب درجة تجمد المحلول إذا علمت أن ثابت تجمد البنزين (K _f = 5.2 °C.kg / mol)
$K_b = 2.53 ^{\circ} \text{C.kg / mol}$ ثانيا : حساب درجة غليان المحلول إذا علمت أن ثابت غليان البنزين
4- يستخلص كحول اللورايل من زيت جوز الهند ويستخدم في صناعة المنظفات الصناعية محلول مكون
من g 5 من كحول اللورايل و g (10) من البنزين يغلي عند (0° 80.87) فإذا كانت درجة غليان البنزين
النقي (0° 80.1 °C) وثابت الغليان للبنزين = (C.kg / mol) دعسب الكتلة الجزيئية للكحول

التوجية الفني العام للعلوم – اللجنة الفنية المشتركة للكيمياء – بنك الكيمياء – الصف الحادي عشر العلمي – (الجزء الأول) – 2020/2019 (31) 5 مادة كتلتها الجزيئية هي (254 g/mol) أذيبت كتلة معينة منها في (45 g) إيثر فكان الارتفاع في درجة الغليان (0.585 °C) . احسب كتلة هذه المادة إذا علمت أن ثابت الغليان للإيثر = 2.16 °C.kg/mol) . احسب كتلة هذه المادة إذا علمت أن ثابت الغليان للإيثر = 0.585 °C)
6- إذا علمت أن محلول اليوريا في الماء تركيزه (0.1 mol / kg) يغلي عند (100.052 °C) فاحسب قيمة ثابت الغليان للماء.
را احسب كتلة الجليسرول $C_3H_8O_3$ اللازم إذابتها في $C_3H_8O_3$ من الماء لكي يغلى المحلول الناتج عند
((C = 12 , O = 16 , H = 1 ، 0.52 °C.kg / mol = غليان الماء = (100.208 °C)
8- أذيب (2.5 g) من مادة صلبة غير الكتروليتية غير متطايرة في (72 g) من مذيب فتجمد المحلول عند °C وأن ثابت التجمد لهذا المذيب النقي (5.5 °C) وأن ثابت التجمد لهذا المذيب
يساو <i>ي</i> (5.1 °C.kg / mol)

التوجية الفني العام للعلوم اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء -الصف الحادي عشر العلمي - (الجزء الأول) - 2020/2019 (32)
9– أذيب (6.67 g) من مادة غير إلكتروليتية وغير متطايرة في (g) من الماء وتم تعيين درجة غليان
المحلول فوجد أنها تساوي (°C 100.5°C) فما الكتلة المولية لهذه المادة ؟ علماً بأن ثابت الغليان للماء
يساو <i>ي</i> (0.512 °C/m)
س7 الجمل التالية غير صحيحة اقرأها جيداً وبتمعن ثم أعد كتابتها بحيث تكون صحيحة:
. معتبر كلوريد الزئبق $ (m HgCl_2) $ من الالكتروليتات القوية -1
2- ارتفاع درجة غليان الماء بسبب وجود روابط تساهمية بين جزيئات الماء .
3 – تذوب كبريتات الباريوم في الماء ومحلولها يوصل التيار الكهربائي .
١
5- – الرابطة بين ذرة الهيدروجين و الأكسجين في جزيء الماء غير قطبية .
6 - حمض البيركلوريك من الالكتروليتات الضعيفة .
٠ - ٢ ، ٩ ي - رب و - ي - و - ي و - ي و - ي و - ي و - ي و - ي و - ي و - ي و - ي و - ي و - ي و - ي و - ي
8- يفضل تنفيذ التفاعلات الكيميائية في المحاليل الصلبة
9- المركبات الأيونية يمكنها أن توصل التيار الكهربائي وهي في حالتها الصلبة
-10 يزداد ذوبان الغاز في السائل بإرتفاع درجة الحرارة
10 يرداد دوبان العار في السائل بإربعاج درجه العرارة
11- ذوبان غاز الأكسجين في الماء عند ضغط kPa أعلى من ذوبانه عند ضغط RPa 300 kPa

التوجية الفني العام للعلوم -اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء -الصف الحادي عشر العلمي - (الجزء الأول)- 2020/2019 (33)
12- يمكن تحويل المحلول غير المشبع الى محلول مشبع بإذابة كميات أخرى من المذيب عند نفس درجة الحرارة
13 عند زيادة حجم المحلول بالماء المقطر الى ضعف ماكان عليه يقل عدد مولات المذاب الى النصف عند زيادة حجم المحلول بالماء المقطر الى ضعف ماكان عليه لا يتغير عدد مولات المذاب . 14 الضغط البخاري للماء أقل من الضغط البخاري للمحلول المائي للجلوكوز الضغط البخاري للماء أعلى من الضغط البخاري للمحلول المائي للجلوكوز 10 عند إذابة mol من هيدروكسيد الصوديوم (NaOH = 40) في g 100 ماء. ينتج محلول تركيزه (2m). 100 عندما يكون الكسر المولى للمذاب يساوي مالى عدد مولات المذاب يساوي مثلى عدد مولات المذيب
10 عدم يدون الدسر الموتي تمداب يتدوي 0.5 تإن عدد مودك العداب يتدوي منتى عدد مودك العديب
17- محلولين متساويين في الحجم فإن المحلول المركز فيهما هو الذي يحتوي على عدد جرامات مذاب أكبر
س8 <u>الرسم البياني التالي : يوضح ذوبانية غازي الأكسجين والنيتر وجين وهما المكونين الأساسين للهواء الجوي عند درجات حرارة مختلفه .</u>
والمطلوب : –
استنتج العلاقة بين ذوبانية غازي ($ m O_2 \cdot N_2$) ودرجة الحرارة : $ m 1$
2 - ذوبانية غاز الأكسيجن في الماء الساخنمن ذوبانيته في الماء البارد .
3 - ذوبانية غاز النيتروجين في الماء الباردمن نوبانيتة في الماء الساخن .
4 - ذوبانية غاز الأكسجين في الماء عند (70°C) تساوي : g/100g H ₂ O

الوحدة الثالثة

الكيمياء الحرارية

(36) 2020/2019 -(J	التوجية الفني العام للعلوم –اللجنة الفنية المشتركة للكيمياء – بنك الكيمياء –الصف الحادي عشر العلمي – (الجزء الأ
	السؤال الأول: اكتب الاسم أو المصطلح العلمي الذي تدل عليه كل من العبارات التالية:
بميائية .	1 - من أهم فروع الكيمياء الفيزيائية التي تهتم بدراسة التغيرات الحرارية التي ترافق التفاعلات الكب
()	
مادية تتفاعل	2 - هو جزءاً معيناً من المحيط الفيزيائي الذي هو موضع الدراسة ويشكل أيضاً مجموعة أجسام
()	في ما بينها بطريقة تعكس نمطاً معيناً في بنية العالم المادي .
()	3 - هو ما تبقى من الفضاء الذي يحيط بالنظام .
	4 - هي الطاقة التي تتدفق داخل النظام أو خارجه بسبب وجود اختلاف في درجة الحرارة بين
()	النظام ومحيطه .
()	5 - تفاعلات تنتج طاقة حرارية يمتصها المحيط خارج النظام .
()	6 - تفاعلات يمتص فيها النظام طاقة حرارية من المحيط خارج النظام .
()	7 - تفاعلات لايمتص فيها النظام ولا تنتج طاقة حرارية من المحيط خارج النظام.
()	8 - هو كمية الحرارة الممتصة أو المنطلقة خلال تفاعل كيميائي تحت ضغط ثابت.
	9 - هي كمية الحرارة التي تنطلق أو تمتص عندما يتفاعل عدد من المولات للمواد المتفاعلة مع
()	بعض خلال تفاعل كيميائي لتتكون مواد ناتجة.
	10- هي محصلة تغيرات الطاقة الناتجة عن تحطم الروابط الكيميائية في المواد المتفاعله وتكوين
()	روابط جديدة في المواد الناتجة.
ن عناصره الأولية ،	11- التغير في المحتوى الحراري (الإنثالبي) المصاحب لتكوين مول واحد من المركب انطلاقاً م
()	وأن جميع المواد تكون في حالتها القياسية عند 25°C.
()	P=1 atm= 101.3 k _{Pa} وضغط وضغط 25°C = 298 K =T الظروف عند درجة حرارة
	13- هي كمية الحرارة المنطلقة عند احتراق مول واحد من المادة (عنصرية أو مركبة) احترقاً
()	. $1~{ m atm}$ عند $25^{ m o}$ C وتحت ضغط يعادل $1~{ m atm}$
	14 - حرارة التفاعل الكيميائي تساوي قيمة ثابتة سواء حدث هذا التفاعل مباشرة خلال خطوة
()	واحدة أو خلال عدة خطوات .
()	. ($\Delta H_{f} > 0$) التفاعلات التي يكون التغير في الإنثالبي لها أكبر من صفر
` '	
()	$\Delta H_{r} < 0$ التفاعلات التي يكون التغير في الإنثالبي لها أصغر من صفر ($\Delta H_{r} < 0$)
() ()	$\Delta H_r < 0$ التفاعلات التي يكون التغير في الإنثالبي لها أصغر من صفر ($\Delta H_r < 0$) $\Delta H_r = 0$ التفاعلات التي يكون التغير في الإنثالبي لها يساوي من صفر ($\Delta H_r = 0$)
()	$\Delta H_{r} < 0$ التفاعلات التي يكون التغير في الإنثالبي لها أصغر من صفر ($\Delta H_{r} < 0$)

(37) 2020/20	التوجية الفني العام للعلوم – اللجنة الفنية المشتركة للكيمياء – بنك الكيمياء –الصف الحادي عشر العلمي – (الجزء الأول) – 19
مما يلي:	السؤال الثاني: ضع علامة (√) أمام العبارة الصحيحة وعلامة (×) أمام العبارة غير الصحيحة في كل
()	1 – في الكيمياء الحرارية الفضاء والمحيط يشكلان النظام .
(2 - النظام مجموعة أجسام مادية تتفاعل فيما بينها .
	$HCl_{(aq)}$ + $NaOH_{(aq)}$ \longrightarrow $NaCl_{(aq)}$ + $H_2O_{(I)}$ + $57\mathrm{kJ}:$ التفاعل التالي - 3
()	التغير في المحتوى الحراري له يأخذ إشارة موجبة .
()	4 - الجول يساوي (4.18) سعرات حرارية .
()	. ($\Sigma \Delta H_{_{ m abs}}$ في التفاعلات الطاردة للحرارة يكون $(\Sigma \Delta H_{_{ m abs}})$ أكبر من أمت $\Delta H_{_{ m abs}}$
()	مساوية (متفاعلات اللاحرارية يكون $(\Sigma \Delta H_{1})$ مساوية $(\Sigma \Delta H_{1})$.
(. ΔH إشارة موجبة الطاردة للحرارة يكون لقيمة ΔH إشارة موجبة ΔH
	المحتويات الحرارية للمواد الناتجة أقل من ΔH المحتويات الحرارية للمواد الناتجة أقل من 8
(مجموع المحتويات الحرارية للمواد الداخلة .
($-$ إذا كانت لقيمة ΔH) إشارة موجبة فإن التفاعل يكون ماصاً للحرارة .
	$2CO_{(g)} + O_{2(g)} \longrightarrow 2CO_{2(g)} + 568 \text{ kJ} :$ التفاعل التالي -10
()	. (${ m CO}_2$) يدل على أن المحتوى الحراري لغاز (${ m CO}$)أكبر من المحتوى الحراري لغاز
، لغاز (NO)	الحراري (المحتوى الحراري $N_{2(g)} + O_{2(g)} \longrightarrow 2NO_{(g)}, \Delta H = + 180 kJ$ الحراري -11
()	. ($90 \mathrm{kJ}$) بمقدار (N_2)، (O_2) أكبر من مجموع المحتويات الحرارية لغازي
	المغناطيسي الحديد الحديد الحديد ${\sf Fe}_2{\sf O}_3$) ولأكسيد الحديد المغناطيسي -12
	: فإن التفاعل التالي (Fe $_3$ O $_4$) هي على الترتيب (Fe $_3$ O $_4$)
()	. طارد للحرارة $6 \; Fe_2O_{3(s)} \longrightarrow 4 \; Fe_3O_{4(s)} \; + \; O_{2(g)}$
وف القياسية .	الصلب في الظر (O_2) الصلب في الظر (O_2) الصلب في الظر O_3 الصلب في الظر
()	
	الميثان (CH_4) تساوي حرارة التكوين القياسية لغاز الميثان CH_4) تساوي حرارة التكوين لنصف مول من غاز الميثان
()	عند نفس الظروف من الضغط ودرجة الحرارة .
()	15- حرارة التكوين القياسية للمركب تساوي المحتوى الحراري له .
روف	16- المحتوى الحراري لمول من غاز النيتروجين يساوى المحتوى الحراري لنصف مول منه عند نفس الظ
()	من الضغط ودرجة الحرارة .
	$2H_{2(g)}$ + $O_{2(g)}$ \longrightarrow $2H_2O_{(g)}$, ΔH = $-936 kJ$: الطاقة المصاحبة للتغير التالي -17
()	تسمى حرارة التكوين القياسية للماء .
	$SO_{2(g)}$ + ½ $O_{2(g)}$ \longrightarrow $SO_{3(g)}$, ΔH = + $49 \mathrm{kJ}$: الطاقة المصاحبة للتغير التالي -18
(تسمى حرارة الاحتراق القياسية لغاز ثاني أكسيد الكبريت .

(38) 2020/2019 - (18) الأولى	<u> التوجية الفني العام للعلوم اللجنة الفنية المشتركة للكيمياء – بنك الكيمياء –الصف الحادي عشر العلمي – (الجزء</u>
منيوم ، ()	الكوين القياسية لأكسيد الألومنيوم (Al_2O_3) تساوي حرارة الاحتراق القياسية للألوم -19
) فإن	($\mathrm{CH_4}$) من غاز الميثان ($\mathrm{CH_4}$) يصاحبه انطلاق ($\mathrm{32~g}$) أمن غاز الميثان ($\mathrm{CH_4}$
()	. ($C = 12$, $H = 1$) (– 75 kJ/mol) مرارة التكوين القياسية للميثان تساوي
عل ولا	التغير في المحتوى الحراري (ΔH) لتفاعل ما يختلف باختلاف الطريق الذي يسلكه التفا -21
(يعتمد على الحالتين الابتدائية والنهائية للتفاعل .
()	22– المحتوى الحراري للعنصر في حالته القياسية يساوي صفراً
()	23- قيمة (ΔH) في التفاعلات الماصة للحرارة موجبة .
$H_{2(g)} + C$	$\mathrm{Cl}_{2(\mathrm{g})} ightarrow \ 2\mathrm{HCl}_{(\mathrm{g})} + 184.6\mathrm{kJ}$ التغير في المحتوى الحراري المصاحب للتفاعل التالي: -24
()	تسمى حرارة التكوين القياسية لغاز كلوريد الهيدروجين
$N_{2(g)}\!+2O_{2(g)}\!\rightarrow\!$	$N_2O_{4(g)}$, $\Delta H^0c = +9.6~~kJ/mol$ يسمى التغير الحراري المصاحب للتفاعل التالي: -25
()	بحرارة الاحتراق القياسية للنيتروجين
	$ m C_{(g)} + rac{1}{2} O_{2(g)} ightarrow m CO_{(g)}$ التغير الحراري المصاحب للتفاعل التالي: -26
()	يعتبر حرارة احتراق قياسية للكربون
$CO_{(g)} + {}^{1}$	$ ho_{2{ m O}_{2({ m g})}} ightarrow { m CO}_{2({ m g})}$ ΔH =-283.5 ${ m kJ/mol}$ التغير الحراري المصاحب للتفاعل التالي -27
()	يعتبر حرارة احتراق قياسية لغاز CO .
$CO_{(g)} + {}^{1}$	$ m /_{2}O_{2(g)} ightarrow ~CO_{2(g)} ~\Delta H$ =-283.5 k J/mol التالي المصاحب للتفاعل التالي -28
()	$ m CO_2$ يعتبر حرارة تكوين قياسية لغاز
$H_{(g)}$ -	$+\mathrm{Cl}_{(\mathrm{g})} ightarrow \mathrm{HCl}_{(\mathrm{g})}$, $\Delta\mathrm{H}=-432\mathrm{kJ/mol}$ التغير الحراري المصاحب للتفاعل التالي: -29
()	يعتبر حرارة تكوين قياسية لغاز H-Cl .
، فإن حرارة	-30 إذا كانت حرارة التكوين القياسية الأكسيد الخارصين (ZnO) تساوي 348 kJ / mol -30
()	الاحتراق القياسية للخارصين (Zn) تساوي (+ 348 kJ / mol)
ل في خطوة واحدة ()	31- التغير في المحتوى الحراري لأي تفاعل كيميائي يكون أقل ما يمكن عندما يتم هذا التفاعل
	السؤال الثالث: أكمل الفراغات في الجمل التالية بما يناسبها علمياً:
اعل لها إشارة	التف ما إذا كانت قيمة $\Delta H_{ m c}$ أكبر من $\Delta H_{ m c}$ ، فإن قيمة $\Delta H_{ m c}$ لهذا التف التف
	ويكون هذا التفاعل من النوع
من التغير في	2 – في التفاعلات الكيميائية الطاردة للحرارة يكون التغير في الإنثالبي للمواد المتفاعلة
	الإنثالبي للمواد الناتجة .

التفاعل التالي: $2HI_{(g)}$ + $H_{2(g)}$ + $H_{2(g)}$ + 51.8 kJ \longrightarrow $2HI_{(g)}$ التفاعل التالي: 3

التوجية الفنى العام للعلوم اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء -الصف الحادي عشر العلمي - (الجزء الأول) - 2020/2019 (39)

- 4 في التفاعلات الكيميائية الطاردة للحرارة يكون كمية الحرارة المصاحبة لتفكيك الروابط في جزيئات المتفاعلاتمن كمية الحرارة المصاحبة لتكوين الروابط في جزيئات النواتج.
 - $CH_3OH_{(I)}$ $CH_3OH_{(g)}$ $\Delta H= +37$ kJ / mol المعادلة الحرارية التالبي للميثانول السائل فإن التغير في الإنثالبي لبخار الميثانولمن التغير في الإنثالبي للميثانول السائل
- $2H_{2(g)} + O_{2(g)} \longrightarrow 2H_2O_{(l)}$, $\Delta H = -572$ kJ /mol : حسب المعادلة الكيميائية الحرارية التالية :kJ / mol فإن حرارة الاحتراق القياسية للهيدروجين تساوي
- نستنتج أن: $4Cr_{(s)} + 3O_{2(g)} \longrightarrow 2Cr_2O_{3(s)}$, $\Delta H = -2282 \text{ kJ}$ نستنتج أن: -7 حرارة التكوين القياسية لأكسيد الكروم (-111) تساوي -111 المعادلة المعادلة الكروم (-111) تساوي -111 المعادلة الكروم (-111) تساوي -111
- المحتوى الحراري الأكسيد الألومنيوم $Al_2O_{3(s)}$ يساوي $Al_2O_{3(s)}$ ، فإن حرارة الاحتراق القياسية $Al_2O_{3(s)}$ للألومنيوم تساوي $Al_2O_{3(s)}$
- و عند احتراق ($4 \, g$) من غاز الميثان ($CH_4 = 16$) احتراقا تاماً ينطلق $220 \, k$ فإن حرارة الإحتراق القياسية $8 \, k$ لغاز الميثان تساوي
- المنطلقة عند احتراق ($C_2H_6=30$) من غاز الإيثان ($C_2H_6=30$) تساوي -1560 kJ/mol فإن كمية الحرارة (-1560 kJ/mol) من غاز الإيثان تساوي -1560 kJ من غاز الإيثان تساوي -1560 kJ من غاز الإيثان تساوي -1560 kJ/mol ،
- 11- إذا كانت كمية الحرارة المنطلقة عند احتراق (g 5.7 و) من مركب عضوي تساوي (273.5) وحرارة الاحتراق القياسية لهذا المركب العضوي تساوي g/mol فإن الكتلة الجزيئية لهذا المركب العضوي تساوي g/mol
 - القياسية -318 kJ تساوي -318 kJ ، فإن حرارة التكوين القياسية -12 kJ/mol نائكسيد الكالسيوم -12 kJ/mol تساوي -12 kJ/mol
 - $2AI_{(s)} + Fe_2O_{3(s)}$ \rightarrow $AI_2O_{3(s)} + 2Fe_{(s)}$, $\Delta H = -847.8$ kJ ناتجة من تفاعل = -3.5 من الألومنيوم (= -3.5 من الألومنيوم (= -3.5 من الألومنيوم (= -3.5 من الألومنيوم المعادلة الحرارة الناتجة من تفاعل = -3.5 من الألومنيوم (= -3.5
 - $C_{(s)} + \frac{1}{2}O_{2(g)} \longrightarrow CO_{(g)}$, $\Delta H = -109$ kJ / mol : بالاستعانة بالمعادلتين التاليتين $CO_{(g)} + \frac{1}{2}O_{2(g)} \longrightarrow CO_2$ نستنتج أن حرارة التكوين القياسية لغاز $CO_{(g)} + \frac{1}{2}O_{2(g)} \longrightarrow CO_2$ $\Delta H = -283.5$ kJ/mol ثانى اكسيد الكربون تساوي
 - $4Al_{(s)} + 3O_{2(g)}$ \longrightarrow $2Al_2O_{3(s)}$, $\Delta H = -3340kJ$: فإن حرارة الاحتراق القياسية للألومنيوم تساوي kJ/mol فإن حرارة الاحتراق القياسية للألومنيوم تساوي

(الجزء الأول)- 2020/2019 (40)	اء -الصف الحادي عشر العلمي -	ة الفنية المشتركة للكيمياء – بنك الكيميا	التوجية الفني العام للعلوم –اللجنا
حرارة الاحتراق القياسية) تساوي (208kJ –) فإن	C_2H_6) من الإيثان ($4\;g$) ق	16- إذا كانت حرارة احترا
	(C = 12, H = 1)	. <u>-1560</u> kJ _/	للإيثان تساو <i>ي</i> mol/
394-) فإن حرارة	ربون CO ₂ تساو <i>ي</i> (kJ/mol	ين القياسية لغاز ثاني أكسيد الكر	17- إذا كانت حرارة التكو
		394 kJ/mol يبون تساو <i>ي</i>	
−1246 , −1670) -	Cr ₂ O ₃ , A) هي على الترتيا	التكوين القياسية لكل من $(_2O_3)$	18- إذا علمت أن حرارة
20	$cr + Al_2O_3 \longrightarrow$	$2AI + Cr_2O_3$ على التالي:	kJ/mol) فإن التفا
		•	يكون <u>ماص</u> للحرارة
	م جملة من الجمل التالية:	 (√) أمام أنسب عبارة تكمل كل 	السؤال الرابع: ضع علامة
2 NaHCO ₃₍	$Na_2CO_{3(s)} +$	$CO_{2(9)} + H_2O_{(\ell)}$	1 - في التفاعل التالي:
ين القياسية لكربونات	ي 1767 kJ - ، وحرارة التكو	يات الحرارية للمواد الناتجة يساوع	إذا كان مجموع المحتو
	إن هذا التفاعل:	، تساو <i>ي</i> 948 kJ / mol ، ف	الصوديوم الهيدروجينية
+ 819 kJ= عا ر	\square طارد للحرارة وقيمة \bowtie	$-819 \text{ kJ} = 4 \Delta$	🗖 ماص للحرارة وقيمة H
- 129 kJ= ما	Δ H طارد للحرارة وقيمة Δ	+ 129 kJ= ما <u>۸</u>	☐ ماص للحرارة وقيمة H
$2Fe_{(s)} + 3/2$	$2O_{2(g)} \rightarrow Fe_2O_{3(s)} +$	ية الحرارية التالية: 820 kJ	2 - من المعادلة الكيميائ
		بارات التالية صحيحة <u>عدا</u> :	نستنتج أن جميع الع
	820 kJ / ı	سية لأكسيد الحديداااتساو <i>ي</i> mol	🗖 حرارة التكوين القيا
	410	باسية للحديد تسا <i>وي</i> kJ / mol (🗖 حرارة الاحتراق القب
		ي . – 820 kJ	🗖 حرارة التفاعل تساو
	للمواد المتفاعلة	لناتج أكبر من المحتوي الحراري	🗖 المحتوى الحراري ل
318k ، فإن حرارة التكوين	كالسيوم Ca = 40 تساو <i>ي</i> ل،	ة المصاحبة لاحتراق 20g من ال	
		,	القياسية لأكسيد الكالم
+ 636 kJ/mol □	+ 318 kJ/mol □	- 318 kJ/mol □	– 636 kJ/mol □
	ن المواد التالية :	ينها القياسية تساوي صفر من بير	4 - المادة التي حرارة تكو
Hg _(g) □	F _{2(g)} □	I _{2(g)} □	$Br_{2(g)} \; \square$

(41) 2020/2019 (41) الجزء الأول) -	صف الحادي عشر العلمي - (ركة للكيمياء – بنك الكيمياء –اا	لوم-اللجنة الفنية المشتر	التوجية الفني العام للع
ساو <i>ي</i> :	Al , M على الترتيب ت	g , C , H_2 ة لكل من	رة الاحتراق القياسية	5 – إذا كانت حرا
ت <i>وی</i> حرار <i>ي</i> من بین	أقل المركبات التالية محا	kJ/mol (−835 ، فإن	, - 609 , - 39	4 , - 286)
			ية هو :	المركبات التال
Al_2O_3	MgO 🗆	j co	$O_2 \square$	H_2O
ت أكبر من كمية الحرارة	إبط في جزيئات المتفاعلا،	رارة المصاحبة لتفكيك الرو	إذا كانت كمية الحر	6 - في تفاعل ما
	Ċ	واتج فإن هذا التفاعل يكور	وين الروابط في النر	المصاحبة لتك
مة للحرارة	التفاعلات الكيميائية الماص	ة للحرارة 🗖 من	ت الكيميائية الطاردة	🗖 من التفاعلان
لا ينطبق عليها قانون هس	التفاعلات الكيميائية التي	رية 🗖 من	ت الكيميائية اللاحرار	🗖 من التفاعلان
النظام ومحيطه هي:	نلاف في درجة الحرارة بين	أو خارجه بسبب وجود اخذ	تدفق داخل النظام أ	7 – الطاقة التي ت
🗖 الطاقة النوعية .	🗖 الحرارة .	□الحرارة النوعية .	•	🗖 درجة الحرارة
		: ن	الطاردة للحرارة يكور	8- في التفاعلات
$\left(\Sigma \Delta H_{ ilde{alaba}} ight)$ (متفاعلة	اقل مز $\Sigma \Delta H_{i ext{irr}}$ أقل مز	($\Sigma\Delta$	أكبر من (متفاعلة H	$(\Sigma \Delta H_{i = i})$ \square
إشارة موجبة	ΔH ا تكون لقيمة (ΔH	(Σ	$\Delta H_{arishal}$ مساوية (متفاعلة	(ΣΔΗننجة) □
		: ين	الماصة للحرارة يكو	9– في التفاعلات
ثالبي أكبر من الصفر	🗖 قيمة التغير في الإن	ن الصفر	في الإنثالبي أقل مز	🗖 قيمة التغير ا
ثالبي سالبة أو موجبة	🗖 قيمة التغير في الإِن	ة الصفر	في الإنثالبي مساوية	🗖 قيمة التغير ا
	:	إشارة موجبة فإن التفاعل	ا∆) لتفاعل ما لها	10- إذا كانت (H
🗖 ماص للحرارة.	بادل الحرارة مع المحيط.	للحرارة. 🗖 لا يت	🗖 طارد ل	🗖 لا حراري.
(CH ₄ + 2O ₂	\bullet CO ₂ + 2H ₂ O +	التالي : 890 kJ	11- في التفاعل ا
رة من محيطه .	🗖 يمتص النظام الحرار	. 4	م الحرارة إلى محيطه	🗖 يطرد النظام
ةِ النظام .	🗖 لا تتغير درجة حرار	اِرة .	طرد ولا يمتص الحرا	🗖 النظام لا يد
ستنتج أن:	ن ا _{2(s)} + H _{2(g)} + :	51.8 kJ ——→	التالي : عاطر	12- من التفاعل
. (ىن يساو <i>ي</i> (+51.8 kJ)	مولين من يوديد الهيدروجب	عراري (الإنثالبي) لـ	🗖 المحتوى الد
	. (51.8	لهيدروجين يساوي (+kJ	ن القياسية ليوديد ال	🗖 حرارة التكوي
		Δ ا له إشارة سالبة Δ	لمحتوى الحراري (H	🗖 التغير في ا
			يد للحرارة .	🗖 التفاعل طار

<u>ءِ الأول) - 2020/2019 (42)</u>	<u>صف الحادي عشر العلمي – (الجز</u>	<u>شتركة للكيمياء – بنك الكيمياء –الد</u>	التوجية الفني العام للعلوم-اللجنة الفنية الم
احتراق مولين من	اوي (–286 kJ/mol) فإن	ية للماء السائل (H_2O) تسا	13- إذا كانت حرارة التكوين القياس
			: الهيدروجين (H_2) تساوي
+ 286 kJ/mol □	- 572 kJ/mol □	- 143 kJ/mol □	-286 kJ/mol □
	: (9	. الألومنيوم (Al2O3) تساوي	14 حرارة التكوين القياسية لأكسيد
من الألومنيوم .	- □ حرارة الاحتراق لمولين ه		حرارة الاحتراق القياسية للألو □ حرارة الاحتراق القياسية للألو
	□ حرارة الاحتراق لأربعة م		🗖 حرارة الاحتراق لنصف مول
) فإن حرارة التكوين	صاحبه انطلاق (37.5 kJ	، من غاز الميثان (CH ₄) ب	15- إذا علمت أن تكوين (8 g)
			القياسية للميثان تساوي:
+ 75 kJ/mol □			- 75 kJ/mol □
	راً) هو :	لأنواع التالية <mark>لا تساوي</mark> (صف	16- حرارة التكوين القياسية لأحد ا
CO _(g) □			Fe _(s) □
$2C_{2}H_{46}$	-> + 60 ₂	400 + 44 0	17. ادا ما ۱۳. ام ۲۰۰۱ ۱۲. ۱۲. ۱۲. ۱۲. ۱۲. ۱۲. ۱۲. ۱۲. ۱۲. ۱۲
/.	(9) (3) (2) (9)	$4CO_{2(g)} + 4\Pi_2O_{(l)}$	17− إذا علمت أن : 2750 kJ +
- '('			
+ 5500 🗖	يي :	للإيثين (ب kJ/mol) تساو	فإن حرارة الاحتراق القياسية
+ 5500 🗖	ي : - 2750 🗖	للإيثين (بـ kJ/mol) تساو □ 1375 +	فإن حرارة الاحتراق القياسية 1375 -
+ 5500 🗖	ي : □ 2750 – سى حرارة التكوين القياسية لكلو	للإيثين (بـ kJ/mol) تساو □ 1375 + ب لأحد التفاعلات التالية يسه	فإن حرارة الاحتراق القياسية □ 1375 - 18 التغير الحراري ΔΗ المصاحد
+ 5500 🗖	ري : ☐ 2750	للإيثين (بـ kJ/mol) تساو + 1375 ☐ ب لأحد التفاعلات التالية يسه g ⁺ (aq) + Cl ⁻ (aq)	فإن حرارة الاحتراق القياسية □ 1375 - 18 - التغير الحراري ΔH المصاحد Ag ⁺ Cl ⁻ _(s)
+ 5500 🗖	ي : □ 2750 − سى حرارة التكوين القياسية لكلو A Ag	للإيثين (بـ kJ/mol) تساو + 1375 ☐ ب لأحد التفاعلات التالية يسم + يسم (aq) + Cl ⁻ (aq) + Cl ⁻ (aq) + AuCl	فإن حرارة الاحتراق القياسية 1375 − 1375 − 18 − التغير الحراري ΔH المصاحد Ag ⁺ Cl ⁻ _(s) □ Au _(s) + AgCl _(s) □
+ 5500 🗖	ي : □ 2750 − سى حرارة التكوين القياسية لكلو A Ag	للإيثين (بـ kJ/mol) تساو + 1375	فإن حرارة الاحتراق القياسية - 1375 □ - 1375 □ - 18
+ 5500 🗖	ي : □ 2750 − سى حرارة التكوين القياسية لكلو A Ag	للإيثين (بـ kJ/mol) تساو + 1375	
+ 5500 🗖	ي : ت 2750 – سى حرارة التكوين القياسية لكلو A Ag A	للإيثين (بـ kJ/mol) تساو + 1375	فإن حرارة الاحتراق القياسية - 1375 □ - 1375 □ - 1375 □ - 18 - Ag ⁺ Cl ⁻ _(s) □ - Ag ⁺ Cl ₋ _(s) □ - AgCl _(s) □ - AgCl _(s) □ - AgCl _(s) □ - Ag _(s) + ½Cl _{2(g)} □
+ 5500 ☐ وهو: AgCl _(s) وهو:	ي : - 2750 2750	للإيثين (بـ kJ/mol) تساو + 1375	فإن حرارة الاحتراق القياسية - 1375
+ 5500 الفضة AgCl _(s) وهو:	ي :	للإيثين (بـ kJ/mol) تساو + 1375	فإن حرارة الاحتراق القياسية - 1375
+ 5500 الفضة AgCl _(s) وهو:	ي : - 2750	للإيثين (بـ kJ/mol) تساو + 1375	فإن حرارة الاحتراق القياسية - 1375
+ 5500 الفضة AgCl _(s) وهو:	ي : - 2750	للإيثين (بـ kJ/mol) تساو + 1375	فإن حرارة الاحتراق القياسية - 1375

التوجية الفني العام للعوم-اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء -الصف الحادي عشر العلمي - (الجزء الأول)- 2020/2019 (3 السؤال الخامس: علل (فسر) ما يلي:
. لا تمثل حرارة المصاحبة للتغير التالي $\mathrm{C}_{(\mathrm{s})} + \frac{1}{2}\mathrm{O}_{2(\mathrm{g})} o \mathrm{CO}_{(\mathrm{g})}$: الحرارة المصاحبة للتغير التالي $\mathrm{C}_{(\mathrm{s})}$
. (H_2) حرارة التكوين القياسية للماء السائل (H_2 O) تساوي حرارة الاحتراق القياسية لغاز الهيدروجين (H_2).
${ m SO}_{2(g)}+{ m 1}_2{ m O}_{2(g)}+49$ لا ${ m SO}_{3(g)}$: الحرارة المصاحبة للتغير التالي ${ m SO}_{3(g)}$: لا تعتبر حرارة إحتراق القياسية لغاز ثاني أكسيد الكبريت .
$2 Al_{(s)} + 1 \frac{1}{2} O_{2(g)} \longrightarrow Al_2 O_{3(s)}$ 4 - من التغير التالي : $Al_2 O_{3(s)}$ $+ 1 \frac{1}{2} O_{2(g)}$
5 – من المخطط التالي : ↑ Δ مجموع التغيرات الحرارية فيه يمكن تمثيلها بالتفاعل التالي :
$2C_{(0,0)} + 2O_{2(g)}$ \rightarrow $2CO_{2(g)}$ \rightarrow $2CO_{2(g)}$ \rightarrow $2CO_{2(g)}$ \rightarrow
سُير التفاعل – أكتب المعادلات الحرارية الحادثة:
-حدد أي المواد السابقة (CO أم CO ₂) الأكبر محتوى حراري ؟
· · · · · · · · · · · · · · · · · · ·

التوجية الفني العام للعلوم - اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء - الصف الحادي عشر العلمي - (الجزء الأول) - 2020/2019 (44)
الجمل التالية غير صحيحة اقرأها جيداً وبتمعن ثم أعد كتابتها بحيث تكون صحيحة:
$\Delta~H < 0$ التفاعل الماص للحرارة يكون التغير في الإنثالبي $M < 0$
A 77 > 0 - man
$\Delta H>0$ التفاعل الطارد للحرارة يكون التغير في الإنثالبي $\Delta H>0$
$\Lambda II = 0$ Haar \cdot . The I such \cdot 2
$\Delta~H < 0$ التفاعل اللاحراري يكون التغير في الإنثالبي $M < 0$
t 12 m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 – في التفاعلات الكيميائية الطاردة للحرارة التغير في الإنثالبي موجب ويطرد النظام الحرارة للمحيط
t 1 m 1 to 11 to 11 to 11 to 12 m 1 m 1 to 12
5 - في التفاعلات الكيميائية الماصة للحرارة التغير في الإنثالبي سالب ويطرد النظام الحرارة للمحيط
6 – في التفاعلات الكيميائية اللاحراريه لا تغيير في الإنثالبي ويطرد النظام الحرارة للمحيط ولا يمتص حرارة
" N " " 1 N " N 1 N " N 1 N " " 7
7 – قيمة (ΔH) في التفاعلات الماصة للحرارة لها قيمة سالبة .
II
$H_{2(g)} + Cl_{2(g)} \rightarrow 2HCl_{(g)} + 184.6kJ$: التغير في المحتوى الحراري المصاحب للتفاعل التالي: $H_{2(g)} + Cl_{2(g)} \rightarrow 2HCl_{(g)} + 184.6kJ$
تسمى حرارة التكوين القياسية لغاز كلوريد الهيدروجين
0 - سيد التغير العراب المعالمين التقامل التال
9 - يسمى التغير الحراري المصاحب للتفاعل التالي:
بحرارة الاحتراق القياسية للنيتروجين $N_{2(g)} + 2O_{2(g)} \longrightarrow N_2O_{4(g)}$, $\Delta H^0 = +9.6~~{ m kJ}~/{ m mol}$
التغير الحراري المصاحب للتفاعل التالى: $C_{(g)} \longrightarrow C_{(g)} \longrightarrow C_{(g)}$ يعتبر حرارة احتراق قياسية للكربون -10
$CO_{(g)} + {}^{1}\!/_{2}O_{2(g)}$ حصاحب للتفاعل التالي ΔH =-283.5kJ/mol التغير الحراري المصاحب للتفاعل التالي –11
CO_2 يعتبر حرارة تكوبن قياسية لغاز
12- التغير في المحتوى الحراري لأي تفاعل كيميائي يكون أقل ما يمكن عندما يتم هذا التفاعل في خطوة واحدة
· · · · · · · · · · · · · · · · · · ·

التوجية الفني العام للعلوم اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء -الصف الحادي عشر العلمي - (الجزء الأول)- 2020/2019 (45)						
			<u>بة:</u>	السؤال السادس: أجب عن الأسئلة التالب		
			: •	1 – أكمل الجدول التالي بما هو مطلوب		
نوع التفاعل	قیمة(AH)		الكيميائي	التفاعا		
(ماص-طارد- لا حراري)	(ΔΠ)					
			$SO_{2(g)} + \frac{1}{2}O_{2(g)} +$	$+ 49kJ \longrightarrow SO_{3(g)}-1$		
•••••	•••••		$2Na_{(s)} + Cl_{2(g)} \longrightarrow$	2Na ⁺ Cl ⁻ _(s) + 411.2 kJ- 2		
•••••		N ₂₍	$_{(s)}$ + $3O_{2(g)}$ + $H_{2(g)}$ \rightarrow	$2HNO_{3(l)} + 348 \text{ kJ} - 3$		
		$CH_3COOH_{(l)} + C_2H_5OH_{(l)} \ \to CH_3COOC_2H_{5(l)} + H_2O_{(l)} \ - \ 4$				
			:	2- أكمل الجدول التالي بما هو مطلوب		
التفاعلات اللاحرارية	علات الماصة	التفا	التفاعلات الطاردة	وجه المقارنة		
	•••••	•		قيمة A∆(أكبر أو أقل أو تساوي الصفر)		
		•		إشارة التغير في المحتوى الحراري (AH)		
	•••••	•		$\Sigma \Delta H$ العلاقة بين $\Sigma \Delta H$ و م $\Sigma \Delta H$		
3 – أعطيت المعادلات الحراربة التالية :						
1) $8Mg_{(s)}$	+ Mg(NO ₃) ₂	(s) —	\longrightarrow Mg ₃ N _{2(s)} + 6MgO _(s)	•		
, ,) —	` '	` ,	, ΔH = + 463 kJ		
	+ ½O _{2(g)} —			, $\Delta H = -601.5 \text{ kJ}$		
والمطلوب حساب حرارة التكوين القياسية لنيترات المغنيسيوم ($(Mg(NO_3)_2)$.						
		•••••				
		•••••				
" Nimble and the second of the						
1)			**	4 - احسب حرارة التكوين القياسية لخاه		
,	$PCI_{3(l)} + C$	` ,		$, \Delta H = -137 \text{ kJ}$		
2)	$P_{4(s)} + 6C$	¹2(g)	→ 4PCI _{3(I)}	, ΔH = −1264 kJ		
		•••••				

(46) 2020/2	<u> 2019 -(</u>	عشر العلمي - (الجزء الأول	الصف الحادي	كيمياء – بنك الكيمياء –	م-اللجنة الفنية المشتركة للأ	التوجية الفني العام للعلق
				:	ادلات الحرارية التالية	5 - مستعيناً بالمع
1)		$-6(g) + 5O_{2(g)} -$	→ 3CO ₂	$L(g)$ + $4H_2O_{(I)}$, $\Delta H = -220$	0 kJ
2)		$C_{(s)} + O_{2(g)}$	→ CO ₂₍₉	9)	, $\Delta H = -394$	kJ
3)		$H_{2(g)} + \frac{1}{2}O_{2(g)}$	\rightarrow	$H_2O_{(I)}$, $\Delta H = -286$	kJ
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		.,	<u> /</u> للتفاعل التالي :	احسب قيمة H
		3C _(s) +4H _{2(g)}	\rightarrow (С ₃ Н _{8(g)} , <u>А</u> Н =	= ? kJ	
			,			
	•••••					
		•••••	• • • • • • • • • • • • • • • • • • • •	••••••		••••••
					_	
		: (C ₆ H ₆)	ية للبنزين	رارة الاحتراق القياس	مات التالية لحساب ح	6 - استخدم المعلو
	1)	$6C_{(s)} + 3H_{2(g)}$		\rightarrow $C_6H_{6(I)}$, ∆H =	+49 kJ
	2)	$C_{(s)} + O_{2(g)}$		CO _{2(g)}	, ∆H = -	- 394 kJ
	3)	$H_{2(g)} + \frac{1}{2}O_{2(g)}$		$H_2O_{(I)}$, $\Delta H = -$	- 286 kJ
	•••••					
	•••••					
•••••	•••••					•••••
	•		التالية :	المعادلات الحرارية	كوين CS ₂ مستعيناً ب	7 – إحسب حرارة تا
	1)	$C_{(s)} + O_{2(g)}$		-	$\Delta H = -$	
	•	$S_{(s)} + O_{2_{(g)}}$		\mathbf{SO}_{2} (g)	$\Delta H = -$	
	3)	$\mathbf{CS}_{2 \text{ (l)}} + \mathbf{3O}_2$		$CO_{2(g)} + 2S$		
				2 (g)3	- Z(g) ===	
	•••••	•••••			•••••	
						•••••
	•••••					
•••••	•••••					

التوجية الفني العام للعلوم-اللجنة الفنية المشتركة للكيمياء – بنك الكيمياء –الصف الحادي عشر العلمي – (الجزء الأول)– 2020/2019 (47)
8 - إذا علمت أن:
1) $2C_{(s)} + 3H_{2_{(g)}} + \frac{1}{2}O_{2_{(g)}} \rightarrow C_2H_5OH_{(l)}$, $\Delta H = -277 \text{ KJ}$.
2) $C_{(s)}$ + $O_{2_{(g)}}$ \rightarrow $CO_{2_{(g)}}$, $\Delta H = -393 \text{ KJ}$.
3) $H_{2 (g)} + \frac{1}{2} O_{2 (g)} \rightarrow H_{2}O_{(l)}$, $\Delta H = -286 \text{ KJ}$.
أحسب حرارة الأحتراق القياسية للإيثانول السائل طبقاً للمعادله التالية:
$C_2H_5OH_{(l)} + 3O_2_{(g)} \rightarrow 2CO_{2_{(g)}} + 3H_2O_{(l)}, \Delta H = ? KJ.$
9 - من المعادلات الحرارية التالية:
1) $C_{(s)} + O_{2(g)} \longrightarrow CO_{2(g)}$, $\Delta H = -393 \text{ KJ}.$
2) $H_{2(g)} + \frac{1}{2} O_{2(g)} \longrightarrow H_2O_{(l)}$, $\Delta H = -286 \text{ KJ}$.
3) $2C_2H_{6(g)} + 7O_{2(g)} \longrightarrow 4CO_{2(g)} + 6H_2O_{(l)}$, $\Delta H = -3000 \text{ KJ}$
أحسب حرارة التكوين القياسية للإيثان $({ m C}_2{ m H}_6)$ طبقاً للمعادله التالية:
$2C_{(s)} + 3H_{2(g)} \rightarrow C_2H_{6(g)}$, $\Delta H = ? KJ$.
10 - مستعيناً بالمعادلات الحرارية التالية:
10- مستعيناً بالمعادلات الحرارية التالية:
المعادلات الحرارية التائية: -10 N2 + $3O_2$ + H_2 \longrightarrow 2HNO3 ، ΔH = - 348 kJ
المعادلات الحرارية التالية: -10 1) $N_2 + 3O_2 + H_2 \longrightarrow 2HNO_3$ ، $\Delta H = -348 \ kJ$ 2) $2HNO_3 \longrightarrow N_2O_5 + H_2O$ ، $\Delta H = +77 \ kJ$
-10 1) N ₂ + 3O ₂ + H ₂ \longrightarrow 2HNO ₃ ، Δ H = -348 kJ 2) 2HNO ₃ \longrightarrow N ₂ O ₅ + H ₂ O ، Δ H = +77 kJ 3) 2H ₂ O \longrightarrow 2H ₂ + O ₂ ، Δ H = +571 kJ
-10 1) N ₂ + 3O ₂ + H ₂ \longrightarrow 2HNO ₃ ، Δ H = -348 kJ 2) 2HNO ₃ \longrightarrow N ₂ O ₅ + H ₂ O ، Δ H = +77 kJ 3) 2H ₂ O \longrightarrow 2H ₂ + O ₂ ، Δ H = +571 kJ
-10 1) N ₂ + 3O ₂ + H ₂ \longrightarrow 2HNO ₃ ، Δ H = -348 kJ 2) 2HNO ₃ \longrightarrow N ₂ O ₅ + H ₂ O ، Δ H = +77 kJ 3) 2H ₂ O \longrightarrow 2H ₂ + O ₂ ، Δ H = +571 kJ
-10 1) N ₂ + 3O ₂ + H ₂ \longrightarrow 2HNO ₃ ، Δ H = -348 kJ 2) 2HNO ₃ \longrightarrow N ₂ O ₅ + H ₂ O ، Δ H = +77 kJ 3) 2H ₂ O \longrightarrow 2H ₂ + O ₂ ، Δ H = +571 kJ

التوجية الفني العام للعلوم اللجنة الفنية المشتركة للكيمياء - بنك الكيمياء الصف الحادي عشر العلمي - (الجزء الأول) - 2020/2019 (48)
11- مستعيناً بالمعادلات الحرارية التالية:
1) $2Cu + S \longrightarrow Cu_2S \qquad \Delta H = -79.5 \text{ kJ}$
2) S + O ₂ \longrightarrow SO ₂ \wedge Δ H = -297 kJ
3) $Cu_2S + 2O_2 \longrightarrow 2CuO + SO_2 \triangle H = -525 \text{ kJ}$
إحسب حرارة التكوين القياسية لأكسيد النحاس II
12- مستعيناً بالمعادلات الحرارية التالية:
1) BCl ₃ + 3H ₂ O \longrightarrow H ₃ BO ₃ + 3HCl \wedge \triangle H = -112.5 kJ
2) $B_2H_6 + 6H_2O \longrightarrow 2H_3BO_3 + 6H_2 $ $\Delta H = -493.4 \text{ kJ}$
3) $\frac{1}{2}$ H ₂ + $\frac{1}{2}$ Cl ₂ \longrightarrow HCl Δ H = -92.3 kJ
فإحسب حرارة التفاعل التالى:
$B_2H_6 + 6Cl_2 \rightarrow 2BCl_3 + 6HCl \cdot \Delta H = $ kJ
13 – إذا علمت أن حرارة التكوين القياسية لكل من (الماء , الامونيا هي 286 , -46 كيلو جول / مول)
على الترتيب ، احسب التغير في المحتوى الحراري للتفاعل التالي:
$4NH_{3(g)} + 3O_{2(g)} \longrightarrow 2N_{2(g)} + 6H_2O_{(I)}$, $\triangle H=?$
14 - التفاعل التالي يمثل احتراق غاز الامونيا في جو من الاكسجين في وجود البلاتين الساخن كعامل مساعد:
$4NH_{3(g)} + 5O_{2(g)} \longrightarrow 4NO_{(g)} + 6H_2O_{(I)}$, $\triangle H = ?$
احسب التغير في المحتوى الحراري لهذا التفاعل علما بأن حرارة التكوين القياسية لكل من:
(الماء , أكسيد النيتريك , الامونيا هي على الترتيب 286- , 90+ , 46- كيلو جول / مول)

- بنك الكيمياء -الصف الحادي عشر العلمي - (الجزء الأول)- 2020/2019 (49)	التوجية الفني العام للعلوم –اللجنة الفنية المشتركة للكيمياء
	15 - من التفاعلات الحرارية التالية:
1) $CO_{(g)} + \frac{1}{2}O_{2(g)} \rightarrow CO_{2(g)}$, $\Delta H = -283$	kJ
2) $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$, $\triangle H = -393.5 kg$	J
لغاز ٢٠٠	أحسب حرارة التكوين القياسية ا
	16 - من المعادلات الحرارية التالية:
1) $2NF_3 + 2NO \longrightarrow N_2F_4 + 2ONF$	Δ H= -82.9kJ
2) NO + $\frac{1}{2}F_2 \longrightarrow ONF$	Δ H= -156.9 kJ
3) $Cu + F_2 \longrightarrow CuF_2$	∆H= −531kJ
,	احسب حرارة التفاعل التالي:
$2NF_3 + Cu \longrightarrow N_2F_4 + Cu$	*
_ 3	2 -