SHANNON MEETS TURING

Pei Wu

April. 2023

A.Turing

deterministic polynomial-time non-determinism

A.Turing

deterministic polynomial-time non-determinism

deterministic polynomial-time non-determinism randomness

A. Turing

deterministic polynomial-time non-determinism randomness

A.Turing

deterministic polynomial-time non-determinism randomness quantum

A. Turing

deterministic polynomial-time non-determinism randomness quantum

Theory of Communication (one-way)

Reprinted with corrections from *The Bell System Technical Journal*, Vol. 27, pp. 379–423, 623–656, July, October, 1948.

A Mathematical Theory of Communication

By C. E. SHANNON

INTRODUCTION

THE recent development of various methods of modulation such as PCM and PPM which exchange bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communication. A

Theory of Communication (one-way)

Reprinted with corrections from *The Bell System Technical Journal*, Vol. 27, pp. 379–423, 623–656, July, October, 1948.

A Mathematical Theory of Communication

By C. E. SHANNON

INTRODUCTION

THE recent development of various methods of modulation such as PCM and PPM which exchange bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communication. A

A. Yao '79

 $f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$

A. Yao '79

 $f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$

A trivial, O(n)-communication solution

Central in cs:

circuits complexity,
streaming algorithm,
learning theory,
differential privacy,
computational economics

. . .

communication ≈ running time

Communication Complexity

[Babai-Frankl-Simon '86]

P: deterministic communication

NP: non-deterministic communication

BPP: randomized communication (bounded-error)

BQP: quantum communication

PP: randomized communication (unbounded-error)

Communication Complexity

[Babai-Frankl-Simon '86]

P: deterministic communication

NP: non-deterministic communication

BPP: randomized communication (bounded-error)

BQP: quantum communication

PP: randomized communication (unbounded-error)

Communication Complexity

[Babai-Frankl-Simon '86]

P: deterministic communication

NP: non-deterministic communication

BPP: randomized communication (bounded-error)

BQP: quantum communication

PP: randomized communication (unbounded-error)

[Babai-Frankl-Simon '86]

•UPP research frontier

In communication world,
P ⊊ BPP ⊆ BQP ⊊ UPP,
P ⊊ NP ⊊ UPP.

[Babai-Frankl-Simon '86]

•UPP research frontier

In communication world, $P \subsetneq BPP \subseteq BQP \subsetneq UPP$, $P \subsetneq NP \subsetneq UPP$.

[Babai-Frankl-Simon '86]

•UPP research frontier

Result I: $AC^0 \notin UPP$

In communication world,P ⊊ BPP ⊆ BQP ⊊ UPP,

 $P \subsetneq NP \subsetneq UPP$.

[Babai-Frankl-Simon '86]

•UPP research frontier

Result I: $AC^0 \notin UPP$

In communication world, $P \subsetneq BPP \subseteq BQP \subsetneq UPP,$ $P \subset NP \subset UPP$

[Babai-Frankl-Simon '86]

•UPP research frontier

Result I: $AC^0 \notin UPP$

In communication world, $P \subsetneq BPP \subseteq BQP \subsetneq UPP$, $P \subsetneq NP \subsetneq UPP$.

Result 2: quantum advantage in communication world

Roadmap

- UPP Unbounded-error comm.
- BQP vs. BPP communication

Roadmap

- UPP Unbounded-error comm.
- BQP vs. BPP communication

[Babai-Frankl-Simon '86]

$$f: X \times Y \rightarrow \{0,1\}$$

[Babai-Frankl-Simon '86]

$$f: X \times Y \to \{0,1\}$$

[Babai-Frankl-Simon '86]

$$f: X \times Y \rightarrow \{0,1\}$$

Correctness:
$$\Pr[\pi(x, y) = f(x, y)] > \frac{1}{2}, \forall x, y$$
.

[Babai-Frankl-Simon '86]

$$f: X \times Y \rightarrow \{0,1\}$$

Correctness:
$$\Pr[\pi(x, y) = f(x, y)] > \frac{1}{2} \forall x, y$$
.

Barely larger than guess

 $f: \{0,1\}^n \to \{0,1\}$

 $f: \{0,1\}^n \to \{0,1\}$

 $f: \{0,1\}^n \to \{0,1\}$

 $f: \{0,1\}^n \to \{0,1\}$

$$f: (0,1)^n \to \{0,1\}$$

$$f: (0,1)^n \to \{0,1\}$$

Theorem * (Forster et al. '01).

$$size(f) \gtrsim 2^{\Omega(U(f))}$$

Learn halfspaces

Learn halfspaces

$$a_1x_1 + a_2x_2 + a_3x_3 + a_0 \ge 0$$

Learn low degree polynomials

Learn low degree polynomials

Learn low degree polynomials

$$a_{1}x_{1} + a_{2}x_{2} + a_{3}x_{3} + a_{12} \cdot x_{1}x_{2} + a_{13} \cdot x_{1}x_{3} + a_{23} \cdot x_{2}x_{3} \ge 0$$

$$y_{13} \qquad y_{23}$$

Learn low degree polynomials

$$a_{1}x_{1} + a_{2}x_{2} + a_{3}x_{3} + a_{12} \cdot x_{1}x_{2} + a_{13} \cdot x_{1}x_{3} + a_{23} \cdot x_{2}x_{3} \ge 0$$

$$y_{13} \qquad y_{23}$$

Def.
$$f: \{0,1\}^n \to \{0,1\},$$
 $\deg_{\pm}(f)$: min degree of a separating curve

Embedding into spaces with larger dimension

Dimension complexity

& concept class,

dc(&) minimum dimension

for such embedding

Embedding into spaces with larger dimension

Dimension complexity

& concept class,

dc(&) minimum dimension

for such embedding

Surprisingly powerful!

Captures many results in PAC learning model.

Embedding into spaces with larger dimension

Dimension complexity

& concept class,

dc(&) minimum dimension

for such embedding

Fact (folklore).

$$\label{eq:dcap} \begin{split} \operatorname{dc}(\mathscr{C}) &= 2^{\Theta(U(M_{\mathscr{C}}))},\\ \text{where } M_{\mathscr{C}}(f,x) &= f(x) \;. \end{split}$$

goal: output f(x)

Theorem (Sherstov-W. 19)

$$U(AC^0) \ge \Omega(n^{1-\epsilon})$$
.

Theorem (Sherstov-W. 19)

$$U(AC^0) \ge \Omega(n^{1-\epsilon})$$
.

 AC^0 : constant depth, polynomial #gates (Λ , V, \neg)

Theorem (Sherstov-W. 19)

$$U(AC^0) \ge \Omega(n^{1-\epsilon})$$
.

a decision tree

Theorem (Sherstov-W. 19)

$$U(AC^0) \ge \Omega(n^{1-\epsilon})$$
.

Theorem (Sherstov-W. 19)

$$U(AC^0) \ge \Omega(n^{1-\epsilon})$$
.

 AC^0 : constant depth, polynomial #gates (Λ , V, \neg)

Circuits
lower bound
"P vs NP"

[FSS84, Ajt83, Yao85, Has86, Aar10, RS10, LV11, BIL12, IMP12, Has14, AA15, LRR17, Ros18, Vio18]

Circuits
lower bound
"P vs NP"

[FSS84, Ajt83, Yao85, Has86, Aar10, RS10, LV11, BIL12, IMP12, Has14, AA15, LRR17, Ros18, Vio18]

"P vs BPP"

[LN90, Nis91, Baz07, Raz08, Bra09, ETT10, GMR13, TX13, Tal14, CSV15, HS16, Tal17, ST18, DHH18, Lyu22]

Quantum advantage

[AS04, Amb07, ACR+10, BM10, Rei10, Bel12, BS13, RT19]

Quantum advantage

[AS04, Amb07, ACR+10, BM10, Rei10, Bel12, BS13, RT19]

Learning

[LMN93, Jac02, BES03, OS03, KOS04, KS04, LMSS07, AMY16, DRG17, AGS20]

.

Theorem (Sherstov-W. 19).

$$\deg_{\pm}(AC^0) = \Omega(n^{1-\epsilon})$$
.

Theorem (Sherstov-W. 19).

$$\deg_{\pm}(AC^0) = \Omega(n^{1-\epsilon})$$
.

Definition.

 $\deg_{\pm}(f) = \min\{\deg p : p(x) \cdot (-1)^{f(x)} > 0, \ \forall x \in X\}.$

Definition.

 $\deg_{\pm}(f) = \min\{\deg p : p(x) \cdot (-1)^{f(x)} > 0, \ \forall x \in X\}.$

$$\deg_{\pm}(f) = \min\{\deg p : p(x) \cdot (-1)^{f(x)} > 0, \ \forall x \in X\}.$$

$$\deg_{\pm}(f) = \min\{\deg p : p(x) \cdot (-1)^{f(x)} > 0, \ \forall x \in X\}.$$

$$\deg_{\pm}(f) = \min\{\deg p : p(x) \cdot (-1)^{f(x)} > 0, \ \forall x \in X\}.$$

$$\deg_{\pm}(f) = \min\{\deg p : p(x) \cdot (-1)^{f(x)} > 0, \ \forall x \in X\}.$$

$$\deg_{\pm}(f) = \min\{\deg p : p(x) \cdot (-1)^{f(x)} > 0, \ \forall x \in X\}.$$

$$\deg_{\pm}(f) = \min\{\deg p : p(x) \cdot (-1)^{f(x)} > 0, \ \forall x \in X\}.$$

$$\deg_{\pm}(f) = \min\{\deg p : p(x) \cdot (-1)^{f(x)} > 0, \ \forall x \in X\}.$$

$$\deg_{\pm}(XOR(x)) = n.$$

Threshold degree of AC⁰

Definition.

 $\deg_{\pm}(f) = \min\{\deg p : p(x) \cdot (-1)^{f(x)} > 0, \ \forall x \in X\}.$

Prob. Minsky-Papert 69

Max threshold degree of AC^0 ?

$$\deg_{\pm}(XOR(x)) = n.$$

Threshold degree of AC⁰

Theorem (Sherstov-W. 19).

$$\deg_{\pm}(AC^0) = \Omega(n^{1-\epsilon})$$
.

Threshold degree of AC⁰

Theorem (Sherstov-W. 19).

$$\deg_{\pm}(AC^0) = \Omega(n^{1-\epsilon}).$$

Trivial bound: $\deg_{\pm}(f) \leq n$.

Proof Sketch: Hardness amplification

Given
$$f: \{0,1\}^n \to \{0,1\}, \quad \deg_{\pm}(f) = n^{1-\epsilon}$$

Proof Sketch: Hardness amplification

Given
$$f: \{0,1\}^n \to \{0,1\}, \quad \deg_{\pm}(f) = n^{1-\epsilon}$$

Then
$$F = f$$

$$// \setminus$$

$$CNIF$$

$$| | | | | |$$

$$y \in \{0,1\}^{N}$$

Proof Sketch: Hardness amplification

Given
$$f: \{0,1\}^n \to \{0,1\}, \quad \deg_{\pm}(f) = n^{1-\epsilon}$$

$$\deg_+(f) = n^{1-\epsilon}$$

Then
$$F = f$$

$$// \setminus$$

$$CNF$$

$$| | | | | |$$

$$y \in \{0,1\}^{N}$$

$$\deg_{\pm}(f \circ \mathrm{CNF}_m) \ge n^{1-\epsilon} \cdot m$$

Proof Sketch: Compression

Given
$$f: \{0,1\}^n \to \{0,1\}, \quad \deg_{\pm}(f) = n^{1-\epsilon}$$

$$\deg_+(f) = n^{1-\epsilon}$$

Then
$$F = f$$

$$// \setminus$$

$$CNF$$

$$| | | | | |$$

$$y \in \{0,1\}^{N}$$

$$\deg_{\pm}(f \circ \mathrm{CNF}_m) \ge n^{1-\epsilon} \cdot m$$

Compression: input transformation

n

Compression: input transformation

n

Proof Sketch: Compression

Given
$$f: \{0,1\}^n \to \{0,1\},$$
 $\deg_{\pm}(f) = n^{1-\epsilon}$

$$\deg_+(f) = n^{1-\epsilon}$$

Then
$$F = f$$

$$// \setminus$$

$$CNF|_{\leq \theta}$$

$$| | | | | |$$

$$y \in \{0,1\}^{N}$$

$$(f \circ \text{CNF}_{\text{m}}) |_{\leq \theta}$$

 $\deg_{\pm}(f \circ \text{CNF}_{m}) \geq n^{1-\epsilon} \cdot m$

More tools from duality.

Open problems

Problem:

$$\deg_{\pm}(AC^0) \ge \Omega(n)$$
?
 $U(AC^0) \ge \Omega(n)$?

Problem:

$$\widetilde{\deg}(AC^0) \ge \Omega(n)$$
?

Problem:

Understand depth-2 circuits,

$$deg(triangle) = ?$$

Triangle detection problem: Is there a triangle in the graph?

Open problems

Problem:

$$\deg_{\pm}(AC^0) \ge \Omega(n)$$
?
 $U(AC^0) \ge \Omega(n)$?

Problem:

$$\widetilde{\deg}(AC^0) \ge \Omega(n)$$
?

Problem:

Understand depth-2 circuits,

$$deg(triangle) = ?$$

Significant in quantum computing

Triangle detection problem: Is there a triangle in the graph?

Roadmap

- UPP Unbounded-error comm.
- BQP vs. BPP communication

Communication complexity (Quantum)

"Quantum advantage?"

Communication complexity (Quantum)

Communication complexity (Quantum)

Correctness: $\Pr[\pi(x, y) = f(x, y)] \ge \frac{2}{3}, \ \forall x, y$.

Partial functions $f: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1,\text{undef}\},$

	Classical	Quantum
Buhrman et al. '98	$D(f) = \Omega(n)$	$O(\log n)$

Partial functions $f: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1,\text{undef}\},$

	Classical	Quantum
Buhrman et al. '98	$D(f) = \Omega(n)$	$O(\log n)$
Raz '99	$R(f) = \tilde{\Omega}(n^{1/4})$	$O(\log n)$
Klartag-Regev '10	$R(f) = \tilde{\Omega}(n^{1/3})$	$O(\log n)$
Aaronson-Ambainis '15	$R(f) = \tilde{\Omega}(n^{1/2})$	$O(\log n)$
Tal'19	$R(f) = \Omega(n^{2/3 - \epsilon})$	$O(\log n)$

Partial functions $f: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1,\text{undef}\},$

	Classical	Quantum
Buhrman et al. '98	$D(f) = \Omega(n)$	$O(\log n)$
Raz '99	$R(f) = \tilde{\Omega}(n^{1/4})$	$O(\log n)$
Klartag-Regev '10	$R(f) = \tilde{\Omega}(n^{1/3})$	$O(\log n)$
Aaronson-Ambainis '15	$R(f) = \tilde{\Omega}(n^{1/2})$	$O(\log n)$
Tal'19	$R(f) = \Omega(n^{2/3 - \epsilon})$	$O(\log n)$
SS W. , '20	$R(f) = \Omega(n^{1-\epsilon})$	$O(\log n)$

Partial functions $f: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1,\text{undef}\},$

	Classical	Quantum
Buhrman et al. '98	$D(f) = \Omega(n)$	$O(\log n)$
Raz '99	$R(f) = \tilde{\Omega}(n^{1/4})$	$O(\log n)$
Klartag-Regev '10	$R(f) = \tilde{\Omega}(n^{1/3})$	$O(\log n)$
Aaronson-Ambainis '15	$R(f) = \tilde{\Omega}(n^{1/2})$	$O(\log n)$
Tal '19	$R(f) = \Omega(n^{2/3 - \epsilon})$	$O(\log n)$
SS W. , '20	$R(f) = \Omega(n^{1-\epsilon})$	$O(\log n)$

near-optimal

Total functions $f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\},$

	Classical vs. Quantum
Buhrman et al., '98, Razborov, '02	$R(f) \ge \Omega(Q(f)^2)$
Aaronson et al., '15	$R(f) \ge \tilde{\Omega}(Q(f)^{5/2})$
Tal, '19	$R(f) \ge \Omega(Q(f)^{8/3 - o(1)})$
SSW., '20	$R(f) \ge \Omega(Q(f)^{3-o(1)})$

Total functions $f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\},$

	Classical vs. Quantum
Buhrman et al., '98, Razborov, '02	$R(f) \ge \Omega(Q(f)^2)$
Aaronson et al., '15	$R(f) \ge \tilde{\Omega}(Q(f)^{5/2})$
Tal, '19	$R(f) \ge \Omega(Q(f)^{8/3 - o(1)})$
SSW., '20	$R(f) \ge \Omega(Q(f)^{3-o(1)})$

Lifting

In short,

f, hard for query model

[Raz-McKenzie., '99]

lift
[Goos et al., '15]
[Chattopattyay et al., '19]

F, hard for communication model

a huge unstructured database

a huge unstructured database

f(0100111010100010100010111111100110001011)

a huge unstructured database

a huge unstructured database

query complexity = min queries

State any unit vector in a fixed Euclidean space

Query
$$|\phi\rangle = \sum_{i,w} a_{i,w} |i\rangle |w\rangle$$

State any unit vector in a fixed Euclidean space

Query
$$|\phi\rangle = \sum_{i,w} a_{i,w}(i)|w\rangle$$
 query index

State any unit vector in a fixed Euclidean space

Query
$$|\phi\rangle = \sum_{i,w} a_{i,w} (i) (w)$$
 query index

State

any unit vector in a fixed Euclidean space

Query

$$|\phi\rangle = \sum_{i,w} a_{i,w}(i)(w)$$
 $|\phi'\rangle = \sum_{i,w} a_{i,w}(-1)^{x_i} |i\rangle |w\rangle$

State

any unit vector in a fixed Euclidean space

Query

$$|\phi\rangle = \sum_{i,w} a_{i,w}(i)(w)$$
 $|\phi'\rangle = \sum_{i,w} a_{i,w}(-1)^{x_i} |i\rangle |w\rangle$

can access all x_i in a single query!

Quantum speedups

Query model captures nearly all quantum breakthroughs:

Deutsch-Jozsa's algorithm Bernstein-Vazirani's algorithm

Simon's algorithm Shor's factoring algorithm

Grover's search

Largest possible separation?

Partial functions

	Randomized	Quantum
Simon '97	$\Omega(\sqrt{n})$	$O(\log n)$
Aaronson-Ambainis '15	$\tilde{\Omega}(\sqrt{n})$	1
AA '15, BGGS '21	$O_k(n^{1-\frac{1}{k}})$	<i>k</i> /2
Tal'19	$\tilde{\Omega}(n^{\frac{2k-2}{3k-1}})$	<i>k</i> /2
Our result	$\tilde{\Omega}(n^{1-\frac{1}{k}})$	<i>k</i> /2

Largest possible separation?

Partial functions

	Randomized	Quantum
Simon '97	$\Omega(\sqrt{n})$	$O(\log n)$
Aaronson-Ambainis '15	$\tilde{\Omega}(\sqrt{n})$	1
AA '15, BGGS '21	$O_k(n^{1-\frac{1}{k}})$	<i>k</i> /2
Tal'19	$\tilde{\Omega}(n^{\frac{2k-2}{3k-1}})$	<i>k</i> /2
Our result	$\Omega(n^{1-\frac{1}{k}})$	k/2
	Optimal	i

Largest possible separation?

Total functions

	Randomized vs. Quantum
Grover '69, BBBV '97	$R(f) = \Omega(Q(f)^2)$
Beals et al. '0 I	$R(f) = O(Q(f)^6)$
Aaronson et al. '16	$R(f) \ge \tilde{\Omega}(Q(f)^{2.5})$
Tal '19	$R(f) \ge Q(f)^{\frac{8}{3} - o(1)}$
Aaronson et al. '20	$R(f) = O(Q(f)^4)$
Our result	$R(f) \ge Q(f)^{3 - o(1)}$

Largest possible separation?

Total functions

	Randomized vs. Quantum
Grover '69, BBBV '97	$R(f) = \Omega(Q(f)^2)$
Beals et al. '01	$R(f) = O(Q(f)^6)$
Aaronson et al. '16	$R(f) \ge \tilde{\Omega}(Q(f)^{2.5})$
Tal '19	$R(f) \ge Q(f)^{\frac{8}{3} - o(1)}$
Aaronson et al. '20	$R(f) = O(Q(f)^4)$
Our result	$R(f) \ge Q(f)^{3 - o(1)}$

Largest possible separation?

Total functions

	Randomized vs. Quantum
Grover '69, BBBV '97	$R(f) = \Omega(Q(f)^2)$
Beals et al. '01	$R(f) = O(Q(f)^6)$
Aaronson et al. '16	$R(f) \ge \tilde{\Omega}(Q(f)^{2.5})$
Tal '19	$R(f) \ge Q(f)^{\frac{8}{3} - o(1)}$
Aaronson et al. '20	$R(f) = O(Q(f)^4)$
Our result	$R(f) \ge Q(f)^{3-o(1)}$

Fourier weight of decision trees

Theorem. (Sherstov-Storochenko-W.)

For any decision tree $T: \{-1,1\}^n \to \{0,1\}$ of depth d,

$$\sum_{\substack{S \subseteq \{1,2,\ldots,n\}:\\ |S| = \ell}} |\hat{T}(S)| \le c^{\ell} \sqrt{\binom{d}{\ell}} (1 + \log n)^{\ell-1}.$$

$$T(v) \prod_{i=1}^{d} \frac{1 + v_i x_{T(v_{< i})}}{2}$$

$$T = \sum_{v \in \{-1,1\}^d} T(v) \prod_{i=1}^d \frac{1 + v_i x_{T(v_{< i})}}{2}$$

$$T = \sum_{v \in \{-1,1\}^d} T(v) \prod_{i=1}^d \frac{1 + v_i x_{T(v_{< i})}}{2}$$

$$= \sum_{v \in \{-1,1\}^d} T(v) 2^{-d} \sum_{S \subseteq \{1,...,d\}} \prod_{i \in S} v_i x_{T(v_{< i})}$$

$$T = \sum_{v \in \{-1,1\}^d} T(v) \prod_{i=1}^d \frac{1 + v_i x_{T(v_{< i})}}{2}$$

$$= \sum_{v \in \{-1,1\}^d} T(v) 2^{-d} \sum_{S \subseteq \{1,...,d\}} \prod_{i \in S} v_i x_{T(v_{< i})}$$

$$= \sum_{S \subseteq \{1,...,d\}} \sum_{v \in \{-1,1\}^d} T(v) 2^{-d} \prod_{i \in S} v_i x_{T(v_{< i})}.$$

$$T = \sum_{v \in \{-1,1\}^d} T(v) \prod_{i=1}^d \frac{1 + v_i x_{T(v_{< i})}}{2}$$

$$= \sum_{v \in \{-1,1\}^d} T(v) 2^{-d} \sum_{S \subseteq \{1,...,d\}} \prod_{i \in S} v_i x_{T(v_{< i})}$$

$$= \sum_{S \subseteq \{1,...,d\}} \sum_{v \in \{-1,1\}^d} T(v) 2^{-d} \prod_{i \in S} v_i x_{T(v_{< i})}.$$

$$L_{\ell} T = \sum_{S \in \mathcal{P}_{d,\ell}} \sum_{v \in \{-1,1\}^d} T(v) 2^{-d} \prod_{i \in S} v_i x_{T(v_{< i})}.$$

$$L_{\ell} T = \sum_{S \in \mathcal{P}_{d,\ell}} \sum_{v \in \{-1,1\}^d} T(v) 2^{-d} \prod_{i \in S} v_i x_{T(v_{< i})}.$$

$$L_{\ell} T = \sum_{S \in \mathcal{P}_{d,\ell}} \sum_{v \in \{-1,1\}^d} T(v) 2^{-d} \prod_{i \in S} v_i x_{T(v_{< i})}.$$

$$L_{\ell} T = \sum_{S \in \mathcal{P}_{d,\ell}} \sum_{v \in \{-1,1\}^d} T(v) 2^{-d} \prod_{i \in S} v_i x_{T(v_{< i})}.$$

$$T|_{I_1*I_2*...*I_{\ell}} = \sum_{S \subseteq \{1,...,d\}: \ v \in \{-1,1\}^d} T(v) 2^{-d} \prod_{i \in S} v_i x_{T(v_{< i})}.$$

$$|S \cap I_i| = 1$$

$$L_{\ell} T = \sum_{S \in \mathcal{P}_{d,\ell}} \sum_{v \in \{-1,1\}^d} T(v) 2^{-d} \prod_{i \in S} v_i x_{T(v_{< i})}.$$

$$T|_{I_1*I_2*...*I_{\ell}} = \sum_{S \subseteq \{1,...,d\}: v \in \{-1,1\}^d} T(v) 2^{-d} \prod_{i \in S} v_i x_{T(v_{< i})}.$$

$$|S \cap I_i| = 1$$

Fourier weight of decision trees

$$L_{\ell}T =$$

Fourier weight of decision trees

$$L_{\ell}T =$$

$$\|L_{\ell}T\| \leq \sum \|T|_{\mathcal{E}_i}\|$$
 . (Triangle-inequality)

Some more problems

Problem I. In the query world, for total function, R(f) v.s. Q(f)

Problem 2. In the query worlk, for total function, R(f) v.s. exact quantum algorithm (think about Monte Carlo)

Problem 3. Unified theory for partial and total functions.

Grand Challenges

Grand Challenges

- 1. Quantum v.s. Classical Communication
- 2. Quantum Proof System

Grand Challenges

- I. Quantum v.s. Classical Communication
- 2. Quantum Proof System

Thank you!