Probabilités fere 1: Vecleurs gaussiens

Exercie 2: Joient Xs,,, xm des variables aléatoires indépendantes, de la doi W(0,1)

1) Montrer que X = t(X1,..., Xm) est un vecteur gaussien

+ Fonction earactérishque de X.

Yout t= (tap., tm) & IR

$$P_{X}(t) = P_{X_{2},...,X_{m}}(t_{2},...,t_{m}) = E[e^{i < t, \times}]$$

indépendance des ti

$$= \widehat{T} \cdot \varphi_{X_i}(t_i)$$

$$\varphi_{x_i(t_i)}$$

$$= \frac{1}{1} \sum_{i=1}^{n} t_i^2$$

or
$$(x_i) = e^{-\frac{1}{2}t_i^2}$$

$$-\frac{1}{2} \cdot \mathbf{t} \cdot \mathbf{t} \qquad (t_1, t_1) \cdot \begin{pmatrix} t_1 \\ t_2 \end{pmatrix}$$

X est de moyenno $M = (E[X_1], E[X_m]) = (o_1, o) = O_{R^m}$

21 de matrice de covarionce P tq Vij Pij = cov(Xi, Xi) = 0

ear les Xi ~ N(P,1) indépendents et [= coo(Xi,Xi) = Van(Xi) = 1

Ona ublise la définition suivante: Una uhlise la définition suivante:

Soit X = t(Xs, , Xn) un vecteur gaussion. On note { [= Var(X) Xadmer pour fonction enacterishque la fonction YMERM, Px(w)= E[eizu, x7] = E[eintx] = ELe i Lu, m7 - LTu, u>] = e i u m - u Tu La loi de X est done entièrement déterminée par m et l' on note X as N(m, 17) 2) Écrire la donsité et la fonction earactéristique du vecteur \times . Int $x = (x_1, x_m)$ et $x = (x_1, x_m)$ On a f (x) = f (nx17 km) = fx(xx) x -- x f (xm) lands x i sont independentes in dipendentes $= \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi}} e^{-\frac{\pi e^{i}}{2}} e^{-\frac{\pi e^{i}}{2}}$ = (1) me - 1 2 2 xi2 dopis 1) $\Psi_{\chi}(n) = e^{-\frac{1}{2}\sum_{i=1}^{\infty}x_{i}^{2}}$

3) On posse of
$$Y = a_1 x_1 + \cdots + a_n x_n$$
 arec $a_1, b_1 \in \mathbb{R}$, $\forall i$
 $Z = b_1 x_1 + \cdots + b_n x_n$

Thomas ha bir du vecteur aboutain (Y, Z)
 (Y, Z) at gaussion for $\forall x_1 p_2 \in \mathbb{R}$
 $\forall Y + p_2 = d = \sum_{i=1}^{n} a_i x_i + p_i = \sum_{i=1}^{n} b_i x_i$
 $= \sum_{i=1}^{n} (a_i + p_i) x_i$

If of done combination linearis (x_1, x_n) done governien.

4) Morton que le variables obtatoires $Y \neq Z$ sont independentes

 $\Rightarrow a_1 b_1 + \cdots + a_n b_n = 0$

Lomme (Y, Z) of an vecteur governien, l'independente carrepord à la elicarrelation obs variables.

 $Y \neq Z$ independente $\Rightarrow cov(Y, Z) = 0$

On colore $\Rightarrow cov(Y, Z) = cov(X_1, X_2)$
 $\Rightarrow Z \Rightarrow cov(X_1, X_2)$
 $\Rightarrow Z \Rightarrow cov(X_1, X_2)$
 $\Rightarrow Z \Rightarrow cov(X_1, X_2)$

Comme, $\Rightarrow X_1 \Rightarrow N(P_1(X_1) \Rightarrow cov(X_1, X_2) = \begin{cases} 1 & \text{is } i = j \end{cases}$

done $\Rightarrow cov(Y, Z) = Z \Rightarrow b_1 = a_1b_2 + \cdots + a_2b_n$

Findement, $\Rightarrow Z \Rightarrow cov(X_1, X_2) \Rightarrow Z \Rightarrow cov(X_1, X_2)$

Findement, $\Rightarrow Z \Rightarrow cov(X_1, X_2) \Rightarrow Z \Rightarrow cov(X_1, X_2)$

Findement, $\Rightarrow Z \Rightarrow cov(X_1, X_2) \Rightarrow Z \Rightarrow cov(X_1, X_2)$

Findement, $\Rightarrow Z \Rightarrow cov(X_1, X_2) \Rightarrow Z \Rightarrow zov(X_1, X_2)$

Findement, $\Rightarrow Z \Rightarrow cov(X_1, X_2) \Rightarrow Z \Rightarrow zov(X_1, X_2)$

Findement, $\Rightarrow Z \Rightarrow zov(X_1, X_2) \Rightarrow Z \Rightarrow zov(X_1, X_2)$

Findement, $\Rightarrow Z \Rightarrow zov(X_1, X_2) \Rightarrow Z \Rightarrow zov(X_1, X_2)$

Findement, $\Rightarrow Z \Rightarrow zov(X_1, X_2) \Rightarrow Z \Rightarrow zov(X_1, X_2)$