Chapter 9 - Laplace Transform

Chapter 9 - Laplace Transform

What is Laplace Transform

Bilateral Laplace Transform

Relationship between Laplace Transform & Fourier Transform

Region of Convergence (ROC)

Concept

Plot

Poles and Zeros for Rational Laplace Transform

Pole-zero plot

Property of ROC

ROC and System Properties

Geometric Properties of FT from pole-zero plot

Common Laplace Transform & Inverse Laplace Transform

Common Laplace Transform

Property of Laplace Transform

├─ Inverse Laplace Transform

Exercise

☼ Differential Equation

Exercise

Block Diagram

Parallel Interconnection

Series Interconnection

Feedback Interconnection

Exercise

General block diagram for rational systems

Notes

Reference

What is Laplace Transform | Townier Transform

The Laplace Transform (LT) is the **generalization** of the Fourier Transform to **include general complex exponential signals** of the form

$$e^{st}=e^{(\sigma+j\omega)t}=e^{\sigma t}e^{j\omega t}$$

We can generalize because e^{st} also follows:

$$e^{st} \stackrel{ au}{ o} H(s)e^{st} = e^{st} \int_{-\infty}^{\infty} h(au)e^{-s au} d au$$
 Compare $e^{ extstyle au}$ H (jw) $e^{ extstyle au}$

© For **intuitive understanding of Laplace Transform**, you can refer to the following video, which has a lot of 3D plot visualizations to help you better understand!

https://www.youtube.com/watch?v=n2y7n6jw5d0

Bilateral Laplace Transform

In this course, we only concern **Bilateral Laplace Transform**.

Bilateral Laplace Transform means that the integral starts from negative infinity to positive infinity.

The formula is

$$egin{aligned} X(s) &= \int_{-\infty}^{\infty} x(t) e^{-st} dt \ x(t) &= rac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} X(s) e^{st} ds \ s &= \sigma + j\omega \end{aligned}$$

LT pairs can be denoted as:

$$x(t) \leftrightarrow X(s)$$
 & ROC always specify ROC!

Typically, you should **RARELY** use the above 2 equations during the exam. Instead, please use common LT pairs on the exam paper to simplify the calculation.

Relationship between Laplace Transform & Fourier Transform

We can derive the following relationship:

$$X(s)|_{s=j\omega}=\mathcal{F}\{x(t)\}$$
 $X(s)=\mathcal{F}\{x(t)e^{-\sigma t}\}, ext{where } s=\sigma+j\omega$

Summary:

Fourier Transform is a **slice** of Laplace transform.

Region of Convergence (ROC)

Concept

ROC is **the set of values of s** on the complex plane for which the **bilateral Laplace transform is guaranteed to exist/converge**. That is,

$$ROC = \{s \in C: \int_{-\infty}^{\infty} |x(t)| e^{-real\{s\}t} dt < \infty \}$$

To define a pair of Laplace Transform, you have to specify its ROC!

Plot

Often we display the ROC of a signal using the **complex s-plane** as shown in the following figures.

- The horizontal axis is called σ axis, and the vertical axis is called $j\omega$ axis.
- The shaded region indicates ROC.

- Dotted lines is used to indicate boundaries if ROC doesn't include its edges.
- If the shaded region includes the $j\omega$ axis, then the FT of the signal exists.

Poles and Zeros for Rational Laplace Transform

If the Laplace transform of a signal x(t), X(s), has the form:

$$X(s) = rac{N(s)}{D(s)} = rac{\sum_{m=0}^{M} b_m s^m}{\sum_{n=0}^{N} a_n s^n} = G rac{\prod_{k=1}^{M} (s-z_k)}{\prod_{k=1}^{N} (s-p_k)}$$

• **Zeros**: (z_1, z_2, \ldots, z_M) , sometimes infinity

• **Poles**: (p_1, p_2, \ldots, p_N), sometimes infinity

• Gain: G = $\frac{b_M}{a_N}$

Questions:

1. What do zeros & poles mean?

Let z_1 be zero, and p_1 be pole, we can obtain

$$X(z_1) = 0$$

 $X(p_1) = \infty$

2. How to judge zeros/poles at ∞ ?

If $lim_{s o \infty} H(s) = 0$, there is a zero at infinity.

If $lim_{s o \infty} H(s) o \infty$, there is a pole at infinity.

Pole-zero plot

Using 'o' to represent zeros, using 'X' to represent poles

Property of ROC

This part is used to judge the ROC of Laplace Transform.

- XCt) right-sideol
- The ROC of X(s) consists of **stripe-shaped** regions parallel to the $j\omega$ axis in the s plane.
- The ROC of rational LT does not contain any poles.
- ullet If x(t) has a finite duration and is absolutely integrable, the ROC is the whole s plane.
- If x(t) is **right sided** (remaining zeros when $t < t_0$), and if the line $Re\{s\} = \sigma_0$ is in the ROC, then all values of s whose $Re\{s\} > \sigma_0$ will also be in the ROC.

ROC

ne.

- If x(t) is **left sided**, and if the line $Re\{s\}=\sigma_0$ is in the ROC, then all values of s whose $Re\{s\}<\sigma_0$ will also be in the ROC.
- If x(t) is **two sided**, and if the line $Re\{s\} = \sigma_0$ is in the ROC, then the ROC is composed of a stripe-shaped region including the line $Re\{s\} = \sigma_0$ on the s plane.
- If X(s) is rational, its ROC is constrained by the poles or extents to infinity.
- If X(s) is rational, and if x(t) is right sided, the ROC is on the right of the rightest pole.
- If X(s) is rational and left sided, its ROC is on the left of the leftest pole.

You can refer to this video by Prof. Oppenheim for detailed explanation, which derive from scratch: https://www.bilibili.com/video/BV1SB4y1C7yx?p=20&vd_source=0be2819c805c6da41df6967754921b05

ROC and System Properties

The Laplace transform H(s) of a system's impulse response h(t) is called its system function.

- Stability $\Leftrightarrow j\omega$ axis in ROC $\Leftrightarrow h(t)$ absolutely integrable
- Causality $\Leftrightarrow h(t)$ is a right-sided signal \Leftrightarrow ROC of the system function H(s) is the right-half plane (RHP) to the right of the rightmost pole.
- Stability and Causality ⇔ All of its poles lie strictly within the LHP (left-half of the s-plane).
- **CAUTION**: Consider poles at $\pm \infty$! e.g. H(s) = s has a pole at $s = \infty$.
- All improper systems are unstable! (m<n)
- A diffeq system is stable iff all roots of its characteristic polynomial are in the left half plane.

Geometric Properties of FT from pole-zero plot

Given the pole-zero plot corresponding to the transfer function H(s) of an LTI system, we can sketch the magnitude response $|H(\omega)|$ and phase response $\angle H(\omega)$:

$$H(\omega) = Grac{(j\omega-z_1)\cdot\ldots\cdot(j\omega-z_m)}{(j\omega-p_1)\cdot\ldots\cdot(j\omega-p_n)}$$

Magnitude response:

$$|H(\omega)| = Grac{|j\omega-z_1|\cdot\ldots\cdot|j\omega-z_m|}{|j\omega-p_1|\cdot\ldots\cdot|j\omega-p_n|}$$

Phase response:

$$\angle H(\omega) = \angle G + \angle (j\omega - z_1) + \ldots + \angle (j\omega - z_m) - \angle (j\omega - p_1) - \ldots - \angle (j\omega - p_n)$$

See video by Oppenhium if you don't understoud

Common Laplace Transform & Inverse Laplace Transform

Common Laplace Transform

Table of Laplace transform pairs

f(t)	F(s)	ROC
$\delta(t)$	1	$\forall s$
u(t)	$\frac{1}{s}$	$\text{real}\{s\} > 0$
$t^n u(t)$	$\frac{n!}{s^{n+1}}$	$\operatorname{real}\{s\}>0$
$e^{-at}u(t)$	$\frac{1}{s+a}$	$\operatorname{real}\{s\} > \operatorname{real}\{-a\}$
$-e^{-at}u(-t)$	$\frac{1}{s+a}$	$\operatorname{real}\{s\}<\operatorname{real}\{-a\}$
$t^n e^{-at} u(t)$	$\frac{n!}{(s+a)^{n+1}}$	$\operatorname{real}\{s\}>\operatorname{real}\{-a\}$

f(t)	F(s)	notes
$\sin(\omega_0 t) u(t)$	$\frac{\omega_0}{s^2 + \omega_0^2}$	$real\{s\} > 0$
$\cos(\omega_0 t) u(t)$	$\frac{s}{s^2 + \omega_0^2}$	$\operatorname{real}\{s\} > 0$
$e^{-at}\cos(\omega_0 t) u(t)$	$\frac{s+a}{(s+a)^2 + \omega_0^2}$	$\operatorname{real}\{s\} > \operatorname{real}\{-a\}$
$e^{-at}\sin(\omega_0 t) u(t)$	$\frac{\omega_0}{(s+a)^2 + \omega_0^2}$	$\operatorname{real}\{s\}>\operatorname{real}\{-a\}$
$u_n(t) = \frac{d^n}{dt^n}\delta(t)$	s^n	$\forall s$
$u_{-n}(t) = \underbrace{u(t) * \dots * u(t)}_{\cdot}$	$\frac{1}{s^n}$	$\operatorname{real}\{s\} > 0$
n times		

Property of Laplace Transform

Properties of the Laplace Transform

	Time	Laplace	ROC (of result)
Linearity	$a_1 f_1(t) + a_2 f_2(t)$	$a_1F_1(s) + a_2F_2(s)$	contains $ROC_1 \cap ROC_2$
Time shift	f(t- au)	$e^{-s\tau}F(s)$	same
Time-scaling	$f(at), a \neq 0$	$\frac{1}{ a }F\left(\frac{s}{a}\right)$	ROC/a
Time reversal	f(-t)	F(-s)	-ROC
Convolution	$f_1(t) * f_2(t)$ $f(t)e^{j\omega_0 t}$	$F_1(s) \cdot F_2(s)$	contains $\mathrm{ROC}_1 \cap \mathrm{ROC}_2$
Frequency shift	$f(t)e^{j\omega_0t}$	$F(s-j\omega_0)$	same
Frequency shift	$f(t)e^{s_0t}$	$F(s-s_0)$	$ROC + real\{s_0\}$
Time Differentiation	$\frac{d^n}{dt^n}f(t)$	$s^n F(\omega)$	contains ROC
s-domain Differentiation	$(-t)^n f(t)$	$\frac{d^n}{ds^n}F(\omega)$	same
Integration	$\int_{-\infty}^{t} f(\tau) d\tau = f(t) * u(t)$		$\operatorname{contains}\mathrm{ROC}\cap\{\operatorname{real}\{s\}>0\}$
DC Value	$\int_{-\infty}^{\infty} f(t) dt = F(0)$		$\operatorname{must} \operatorname{contain} s = 0$

> Inverse Laplace Transform

Requirement: Given rational X(s) and **ROC**, we are required to invert it to find signal x(t).

Steps:

- Decompose X(s) into the sum of atomic expressions by doing PFE.
- For each expression, find ROC. Select the one including the ROC of LT.
- For each expression, use LT table and LT properties to get the result. Then sum them up.
- **CAUTION**: If the ROC is not given explicitly, discuss all the situations!!!

There are cases that given the pole-zero plot and DC value, and ask you to find x(t). In this case, you need to find the gain G with certain points.

Exercise

The system function of a causal LTI system is

$$H(s) = \frac{s+1}{s^2+2s+2}$$

Determine and sketch the response (y(t)) when the input is

$$e^{-|t|}, \quad -\infty < t < \infty$$

Hint: You can use $e^{-|t|}=e^{-t}u(t)+e^tu(-t)$

Answer:

Answer:

$$A(t) = e^{-|t|} = e^{-t}uct + e^{t}uc - t$$

$$A(t) = e^{-|t|} = e^{-t}uct + e^{t}uc - t$$

$$A(t) = e^{-|t|} = e^{-t}uct + e^{t}uc - t$$

$$A(t) = e^{-|t|} = e^{-t}uct + e^{t}uc - t$$

$$A(t) = e^{-|t|} = e^{-t}uct + e^{t}uc - t$$

$$A(t) = e^{-|t|} = e^{-t}uct + e^{t}uc - t$$

$$A(t) = e^{-|t|} = e^{-t}uct + e^{t}uc - t$$

$$A(t) = e^{-|t|} = e^{-t}uct + e^{t}uc - t$$

$$A(t) = e^{-|t|} = e^{-t}uct + e^{t}uc - t$$

$$A(t) = e^{-|t|} = e^{-t}uct + e^{t}uc - t$$

$$A(t) = e^{-|t|} = e^{-t}uct + e^{t}uc - t$$

$$A(t) = e^{-|t|} = e^{-t}uct + e^{t}uc - t$$

$$A(t) = e^{-|t|} = e^{-t}uct + e^{t}uc - t$$

$$A(t) = e^{-|t|} = e^{-t}uct + e^{t}uc - t$$

$$A(t) = e^{-|t|} = e^{-t}uct + e^{t}uc - t$$

$$A(t) = e^{-|t|} = e^{-t}uct + e^{t}uc - t$$

$$A(t) = e^{-|t|} = e^{-t}uct + e^{t}uc - t$$

$$A(t) = e^{-|t|} = e^{-t}uct + e^{t}uc - t$$

$$A(t) = e^{-|t|} = e^{-t}uct + e^{t}uc - t$$

$$A(t) = e^{-|t|} = e^{-t}uct + e^{t}uc - t$$

$$A(t) = e^{-|t|} = e^{-t}uct + e^{t}uc - t$$

$$A(t) = e^{-|t|} = e^{-t}uct + e^{t}uc - t$$

$$A(t) = e^{-|t|} = e^{-t}uc - t$$

$$A(t) = e^{-|t|} = e^{|t|} = e^{-|t|} = e^{-|t|} = e^{-|t|} = e^{-|t|} = e^{-|t|} = e^{$$

Differential Equation

Solve algebraic expression by Linear Constant Coefficient Differential Equation.

Solve **ROC** by stability & causality & etc. conditions.

Exercise

The system function of a causal LTI system is

$$H(s) = \frac{s+1}{s^2 + 2s + 2}$$

Express H(s) as a differential equation.

$$H(s) = \frac{Y(s)}{x(s)} = \frac{s+1}{s^2 + 2s + 2}$$

$$(s^2 + 2s + 2) Y(s) = (3+1) \times (s)$$

$$\frac{d^2y(t)}{dt^2} + 2 \frac{dy(t)}{dt} + 2 y(t) = \frac{d}{dt} x(t) + x(t)$$

Block Diagram

In this part, you should be capable of **both**:

- 1. Writing H(s) according to the block diagram. Then analyze the system with H(s). e.g. How to solve the Impulse Response h(t)? etc.
- 2. Draw the block diagram according to H(s).

Parallel Interconnection

Thus the overall frequency response of two LTI systems connected in parallel is given by the sum of the frequency responses of the individual systems:

$$H(\omega) = H_1(\omega) + H_2(\omega).$$

The overall system (transfer) function is

Series Interconnection

Thus the overall frequency response of two LTI systems connected in series is given by the *product* of the frequency responses of the individual systems:

$$H(\omega) = H_1(\omega)H_2(\omega)$$
.

The overall system (transfer) function is

$$H(s) = H_1(s)H_2(s).$$

$$x(t) \longrightarrow H_1(s) \longrightarrow H_2(t) \longrightarrow y(t)$$
Associative
$$x(t) \longrightarrow H(s) = H_1(s)H_2(s) \longrightarrow y(t)$$

Feedback Interconnection

$$H(\omega) = \frac{Y(\omega)}{X(\omega)} = \frac{H_1(\omega)}{1 + H_1(\omega)H_2(\omega)}$$

$$H(s) = \frac{Y(s)}{X(s)} = \frac{H_1(s)}{1 + H_1(s)H_2(s)}$$

If you are not sure whether you can write the H(s) according to the block diagram, take the above as an example and practice.

Exercise

Exercise 1

Draw the block diagram of the causal LTI system with system function:

$$H(s) = \frac{1}{s+3}$$
 $\gamma(s) = \frac{1}{3+3}$

1. Use differentiator to implement. Mention, the differentiator is both difficult to implement and extremely sensitive to noise.

2. Use integrator to implement.

Answer:

$$SY(S) = X(S) - 3Y(S)$$

For normal cases, please use integrator ($\frac{1}{s}$) to draw the diagram

Exercise 2:

Draw the block diagram for the causal LTI system with system function:

$$H(s) = \frac{1}{(s+1)(s+2)}$$

Use Direct Form, Cascade Form, and Parallel From

Answer:

1. Direct Form

$$H(s) = \frac{\gamma(s)}{\Lambda(s)} = \frac{1}{s^2 + 3s + 2}$$

$$(s^2 + 3s + 2)\gamma(s) > \chi(s)$$

$$\gamma(s) = \frac{1}{s^2}\chi(s) - \frac{3}{8}\gamma(s) - \frac{2}{5}\gamma(s)$$

2. Cascade Form

3. Parallel From

PFE!

General block diagram for rational systems

- m = n: Just apply the method.
- m < n: e.g. $H(s) = \frac{1}{s^2 + 3s + 2}$, we just first fill all the item in the upper to make the upper and lower part are at the same order. Finally **remove the branch** with zero coefficient.
- m>n: e.g. H(s)=s. It has poles at $s=\infty$, which makes the system improper (All rational but improper systems are unstable!!), thus **won't appear in real cases**.

Notes

Before the exam:

- 1. Review all the quizzes!
- 2. Review homework answers.
- 3. Gain proficiency in calculation (PFE, Common Laplace Transform, differential equation, etc.).

During the exam:

- 1. For solving differential equation problem, consider Laplace Transform first. Do NOT use time domain methods to solve it!
- 2. Always judge and specify the ROC.

Reference

- 1. Hu fan. 216 final recitation class.
- 2. Long yong. 216 slides.