Baidu-III Project-II

Al for CV Group 2020

Week 7-8 II Face Detection & Recognition

Contents:

I. Face Detection

- A. Introduction
- B. A real example: FaceBoxes
- C. Code of FaceBoxes
- D. Advices for Projects

II. Face Recognition

- E. What Is Recognition
- F. Face Recognition Procedure
- G. A real example: LightCNN

A. Introduction:

Red: Have to know before interview

1998~

Development: ASM — Viola Jones — MTCNN — SSH — BlazeFace

- AAM / CLM
- PCA

A. Introduction: Pink: Better to know before interview Blue: Code!!

2001

Development: ASM — Viola Jones — MTCNN — SSH — BlazeFace

- Haar Feature
- Integral Image
- Adaboost
- Cascade

A. Introduction: Pink: Better to know before interview

2015

Development: ASM — Viola Jones — MTCNN — SSH — BlazeFace

Accurate and fast

P-Net: Proposal Net

3 stages / 3 networks

R-Net: Refined Net

O-Net: Output Net

A. Introduction: Green: Good to know before interview

2017

Development: ASM — Viola Jones — MTCNN — SSH — BlazeFace

- Accurate and fast
- Small faces in wild
- SSD-like structure

A. Introduction: Green: Good to know before interview

2019

Development: ASM — Viola Jones — MTCNN — SSH — BlazeFace

- Accurate and extremely fast!
- Small faces in wild
- Latest tech in face detection
- Realtime in mobile devices

A. Introduction:

```
Trend: Small face in the wild
Real time in mobile devices
[Anti-spoof]
```

```
Companies: Megvii (Face++)
Sensetime
Google
Economic Companies
[Alibaba / Amazon / VISA / ...]
```

B. A Real Example, FaceBoxes [2017-2018]:

Features: Fast! Real-time on CPU
100+FPS on GPU
Practical & Acceptable

B. A Real Example, FaceBoxes [2017-2018]:

Structure:

B. A Real Example, FaceBoxes [2017-2018]:

Structure:

B. A Real Example, FaceBoxes [2017-2018]:

Structure:

B. A Real Example, FaceBoxes [2017-2018]:

Structure: 1. CRelu [2016]

```
class CReLU(nn.Module):
    def __init__(self):
        super(CReLU, self).__init__()
    def forward(self, x):
        return torch.cat((F.relu(x), F.relu(-x)), 1)
```

- Reduce parameters / Accelerate system: $\frac{n}{2}$ filters, n channels
- Filters of lower conv layers form pairs

B. A Real Example, FaceBoxes [2017-2018]:

Structure: 1. CReLU [2016]

```
class CReLU(nn.Module):
    def __init__(self):
        super(CReLU, self).__init__()
    def forward(self, x):
        return torch.cat((F.relu(x), F.relu(-x)), 1)
```

- Don't be bewildered by <u>CELU</u>

 CELU: continuously differentiable exponential linear units

 CReLU: concatenated rectified linear units
- Reduce parameters / Accelerate system: $\frac{n}{2}$ filters, n channels
- Filters of lower conv layers form pairs

B. A Real Example, **FaceBoxes** [2017-2018]:

Structure: 2. Rapid Digested Convolutional Layers

- Rapidly shrink the input size: 7x7
- Carefully choose filter size: bigger for getting info; smaller for speeding up
- Reducing channel number: CReLU

B. A Real Example, FaceBoxes [2017-2018]:

Structure: 3. Inception

- 1x1 Conv: reduce dimension
- Inception Module: multiple resolution

B. A Real Example, FaceBoxes [2017-2018]:

B. A Real Example, FaceBoxes [2017-2018]:

4.1 feature maps: 3 scales: 32 x 32, 16 x 16, 8 x 8

B. A Real Example, **FaceBoxes** [2017-2018]:

• 4.2 skips: 1024 / 32 = 32; 1024 / 64 = 16; 1024 / 128 = 8

B. A Real Example, FaceBoxes [2017-2018]:

Structure: 4. Anchor

• 4.3 min_sizes [anchor size]:

min_sizes	skips	feature maps
[32x32, 64x64, 128x128]	32	32x32
[256x256]	64	16x16
[512x512]	128	8x8

B. A Real Example, FaceBoxes [2017-2018]:

Structure: 4. Anchor

• 4.3 min_sizes [anchor size]:

min_sizes	skips	feature maps
[32x32, 64x64, 128x128]	32	32×32
[256x256]	64	16×16
[512x512]	128	8x8

B. A Real Example, FaceBoxes [2017-2018]:

Structure: 4. Anchor

• 4.3 min_sizes [anchor size]:

min_sizes	skips	feature maps
[32x32, 64x64, 128x128]	32	32x32
[256x256]	64	16×16
[512x512]	128	8x8

C. Code of FaceBoxes

- whole structure
- prior_box
- faceboxes
- multibox_loss

Accelerated by CPP

Latest Advanced Code

Structure Refined by SSD

Added Facial Keypoints

D. Advices for Projects

BlazeFace: Google 2019 [Assembled in Google Mediapipe]
 Faster than Face Boxes; real-time in mobile devices
 No official code released. Be No.1 in the world!

FaceBoxes Revised:

Input size of official FaceBoxes.PyTorch is fixed. Anchor sizes are fixed.

Let's fix it!

- E. What Is Recognition
 - Object
 - Expression
 - Face

E. What Is Recognition

Object

Classification

Expression

Face

E. What Is Recognition

Object

Classification

Expression

Classification

Face

E. What Is Recognition

Object

Classification

Expression

Classification/Regression

Face

E. What Is Recognition

Object

Classification

Expression

Classification/Regression

AII-WI

Face

<u>AffecNet</u>

Aff-Wild

E. What Is Recognition

Object

Classification

Expression

Classification/Regression

Face

"Recognition"

AffecNet

Aff-Wild

E. What Is Recognition

Object

Classification

Expression

Classification/Regression

Aff-Wild

AffecNet

Face

"Recognition"

Recognition: The procedure of extracting wanted info from data

F. Face Recognition Procedure

Object

Classification

AffecNet

Expression

Classification/Regression

Aff-Wild

Face

"Recognition"

Let's see this "real recognition" in algorithm level

Recognition: The procedure of extracting wanted info from data

E. What Is Recognition

Object

Classification

<u>AffecNet</u>

Expression

Classification/Regression

Aff-Wild

Face

"Recognition"

Let's see this "real recognition" in algorithm level

Recognition in Algorithm

Extract features & Retrieve

F. Face Recognition Procedure **FO. Two Steps**

Feature Database + Face Recognition

F. Face Recognition Procedure

F1. Construct the Database

0. Face Detection

1. Facial Feature Extraction

2. Database

F. Face Recognition Procedure

F1. Construct the Database

0. Face Detection

1. Facial Feature Extraction

2. Database

- > Data preparation
- Collected under control

F. Face Recognition Procedure

F1. Construct the Database

0. Face Detection

1. Facial Feature Extraction

2. Database

- > Face represents: Vector
- ➤ How to get: VGG / Resnet / ...
- > Algorithm: classification

F. Face Recognition Procedure

F1. Construct the Database

0. Face Detection

1. Facial Feature Extraction

2. Database

Not interested in building

Mad of retrieving

- F. Face Recognition Procedure
 - F2. Face Recognition
 - 0. Face Detection
 - 1. Facial Keypoints
 Detection
 - 2. Face Alignment
 - 3. Facial Feature Extraction
 - 4. Feature Retrieve

F. Face Recognition Procedure

F2. Face Recognition

- 0. Face Detection
- 1. Facial Keypoints
 Detection
- 2. Face Alignment
- 3. Facial Feature Extraction
- 4. Feature Retrieve

- ➤ Most common dataset: 5 / 68 landmarks
- ➢ If you're enthusiastic: dlib (official + example)

F. Face Recognition Procedure

F2. Face Recognition

- 0. Face Detection
- 1. Facial Keypoints
 Detection
- 2. Face Alignment
- 3. Facial Feature Extraction
- 4. Feature Retrieve

- > 人脸对齐
- Remove rotation / light influences / expression / ...
- A practical example: <u>dlib_alignment</u>

F. Face Recognition Procedure

F2. Face Recognition

- 0. Face Detection
- 1. Facial Keypoints
 Detection
- 2. Face Alignment
- 3. Facial Feature Extraction
- 4. Feature Retrieve

- ➤ Historical: Geometrical Info / Handcrafted Feature
- ➤ Now: CNN-based feature (A trained network: VGG / ResNet...)
- A real example: <u>LightCNN</u>
- \rightarrow If you want more: <u>TP-GAN</u>/... + <u>LightCNN</u> + <u>Perceptual Loss</u>

Feature Vector

F. Face Recognition Procedure

F2. Face Recognition

- 0. Face Detection
- 1. Facial Keypoints **Detection**
- 2. Face Alignment
- 3. Facial Feature **Extraction**
- 4. Feature Retrieve

- > Target: Retrieve vector most similar to our feature vector

Pink: Better to know

Green: Good to know

Red: Have to know

Blue: Code

- > Problem: How to retrieve fast & accurate
- Methods: cosine distance (most common way)

K-Dimensional Tree (# dimension is small)

PCA (# of dimension is high)

cluster / K-nary tree (large scale)

......

G. A real example: <u>LightCNN</u> (2017)

G1. Framework

- Small Medium Large
- We use small as an e.g.

TABLE I
THE ARCHITECTURES OF THE LIGHT CNN-4 MODEL.

Type	Filter Size /Stride	Output Size	#Params
Conv1	$9 \times 9/1$	$120 \times 120 \times 96$	7.7K
MFM1	-	$120 \times 120 \times 48$	-
Pool1	$2 \times 2/2$	$60 \times 60 \times 48$	-
Conv2	$5 \times 5/1$	$56 \times 56 \times 192$	230.4K
MFM2	-	$56 \times 56 \times 96$	-
Pool2	$2 \times 2/2$	$28 \times 28 \times 96$	-
Conv3	$5 \times 5/1$	$24 \times 24 \times 256$	614K
MFM3	-	$24 \times 24 \times 128$	-
Pool3	$2 \times 2/2$	$12 \times 12 \times 128$	-
Conv4	$4 \times 4/1$	$9 \times 9 \times 384$	786K
MFM4	-	$9 \times 9 \times 192$	-
Pool4	$2 \times 2/2$	$5 \times 5 \times 192$	-
fc1	-	512	2,457K
MFM_fc1	2	256	-
Total	-	-	4,095K

G. A real example: LightCNN (2017)

G2. MFM: Max-Feature Map

$$\hat{x}_{ij}^k = \max(x_{ij}^k, x_{ij}^{k+N})$$

G. A real example: LightCNN (2017)

G2. MFM: Max-Feature Map

G. A real example: <u>LightCNN</u> (2017)

G3. Semantic Bootstrapping for Noisy Labels

Firstly, we train the Light CNN-9 model on CASIA-WebFace and fine-tune it on the original noisy labeled MS-Celeb-1M dataset. Second, we employ the trained model to relabel the noisy labeled dataset according to the conditional probabilities $p(t_i|f(x))$. And then we retrain Light CNN-9 on the relabeled dataset. Finally, we further re-sample the original noisy labeled dataset by the retrained model and construct the cleaned MS-Celeb-1M dataset. The details and discussions for

G. A real example: <u>LightCNN</u> (2017)

G3. Semantic Bootstrapping for Noisy Labels

Firstly, we train the Light CNN-9 model on CASIA-WebFace and fine-tune it on the original noisy labeled MS-Celeb-1M dataset. Second, we employ the trained model to relabel the noisy labeled dataset according to the conditional probabilities $p(t_i|f(x))$. And then we retrain Light CNN-9 on the relabeled dataset. Finally, we further re-sample the original noisy labeled dataset by the retrained model and construct the cleaned MS-Celeb-1M dataset. The details and discussions for

How to deal with bad dataset

G. A real example: LightCNN (2017)

G3. Semantic Bootstrapping for Noisy Labels

Firstly, we train the Light CNN-9 model on CASIA-WebFace and fine-tune it on the original noisy labeled MS-Celeb-1M dataset. Second, we employ the trained model to relabel the noisy labeled dataset according to the conditional probabilities $p(t_i|f(x))$. And then we retrain Light CNN-9 on the relabeled dataset. Finally, we further re-sample the original noisy labeled dataset by the retrained model and construct the cleaned MS-Celeb-1M dataset. The details and discussions for

- How to deal with bad dataset
- > Train
- > Use it
- > Train again