Chapter 1 Section B Exercises

1. Prove that -(-v) = v for every $v \in V$.

Proof. For every $v \in V$, we have

$$(-v) + [-(-v)] = 1 \cdot (-v) + (-1) \cdot (-v) = [1 + (-1)] \cdot (-v) = 0 \cdot (-v) = 0,$$

so -(-v) is the additive inverse of -v. Because (-v) + v = 0, v is also the additive inverse of -v. Since every element in a vector space has a unique additive inverse, we have -(-v) = v for every $v \in V$.

2. Suppose $a \in \mathbf{F}, v \in V$, and av = 0. Prove that a = 0 or v = 0.

Proof. Suppose that $a \neq 0$ and $v \neq 0$, then we have

$$v + (a-1)v = v + av + (-1)v = v + 0 - v = v - v = 0.$$

Thus, (a-1)v is the additive inverse of v. Because v-v=0, -v is also the additive inverse of v. However,

$$a \neq 0 \quad \Rightarrow \quad a - 1 \neq -1$$

$$v \neq 0$$

$$\Rightarrow \quad (a - 1)v \neq -v.$$

Therefore, there are two different additive inverses of v, which contradicts the statement that every element in a vector space has a unique additive inverse. Hence, a = 0 or v = 0.

3. Suppose $v, w \in V$. Explain why there exists a unique $x \in V$ such that v + 3x = w. **Proof.** We have

$$v + 3x = w$$
 \Rightarrow $v + 3x - w = v - w + 3x = 0$
 \Rightarrow $\frac{1}{3}(v - w + 3x) = \frac{1}{3}v + \frac{1}{3}w + x = \frac{1}{3} \cdot 0 = 0.$

Therefore, x is the additive inverse of v/3 + w/3. Since every element in a vector space has a unique additive inverse, there exists a unique $x \in V$ such that v + 3x = w.

1

4. The empty set is not a vector space. The empty set fails to satisfy only one of the requirements listed in Definition 1.10. Which one?

Solution. The third item: Additive identity because there does not exist any element in an empty set.

5. Show that in the definition of a vector space, the additive inverse condition can be replaced with the condition that

$$0 \cdot v = 0$$
 for all $v \in V$.

Here the 0 on the left side is the number 0, and the 0 on the right side is the additive identity of V. (The phrase "a condition can be replaced" in a definition means that the collection of objects satisfying the definition is unchanged if the original condition is replaced with the new condition.)

Proof. For every $v \in V$, we have $1 \cdot v = v$ and

$$v + (-1) \cdot v = 1 \cdot v + (-1) \cdot v = [1 + (-1)] \cdot v = 0 \cdot v = 0.$$

Therefore, for every $v \in V$, there exists $w = (-1) \cdot v \in V$ such that v + w = 0.

6. Let ∞ and $-\infty$ denote two distinct objects, neither of which is in **R**. Define an addition and scalar multiplication on $\mathbf{R} \cup \{\infty\} \cup \{-\infty\}$ as you could guess from the notation. Specifically, the sum and product of two real numbers is as usual, and for $t \in \mathbf{R}$ define

$$t(\infty) = \begin{cases} -\infty & \text{if } t < 0, \\ 0 & \text{if } t = 0, \\ \infty & \text{if } t > 0. \end{cases} \qquad t(-\infty) = \begin{cases} \infty & \text{if } t < 0, \\ 0 & \text{if } t = 0, \\ -\infty & \text{if } t > 0. \end{cases}$$

$$t + \infty = \infty + t = \infty, \qquad t + (-\infty) = (-\infty) + t = -\infty,$$

$$\infty + \infty = \infty, \qquad (-\infty) + (-\infty) = (-\infty) = -\infty, \qquad \infty + (-\infty) = 0.$$

Is $\mathbf{R} \cup \{\infty\} \cup \{-\infty\}$ a vector space over **R**? Explain.

Solution. $\mathbb{R} \cup \{\infty\} \cup \{-\infty\}$ is a vector space over \mathbb{R} . The proof is shown as follows: **Proof.** Let $V = \mathbb{R} \cup \{\infty\} \cup \{-\infty\}$ and for all $u, v, w \in \mathbb{R}$. We have

Addition

$$u + v \in V, \quad u + \infty = \infty + u = \infty \in V, \quad u + (-\infty) = (-\infty) + u = -\infty \in V,$$

$$\infty + \infty = \infty \in V, \quad (-\infty) + (-\infty) = (-\infty) = -\infty \in V, \quad \infty + (-\infty) = 0 \in V.$$

Scalar multiplication

$$uv \in V, \quad u(\infty) = \begin{cases} -\infty \in V & \text{if } u < 0, \\ 0 \in V & \text{if } u = 0, \\ \infty \in V & \text{if } u > 0. \end{cases} \quad u(-\infty) = \begin{cases} \infty \in V & \text{if } u < 0, \\ 0 \in V & \text{if } u = 0, \\ -\infty \in V & \text{if } u > 0. \end{cases}$$

Commutativity

$$u + v = v + u,$$
 $u + \infty = \infty + u,$ $u + (-\infty) = (-\infty) + u,$
$$\infty + (-\infty) = (-\infty) + \infty = 0.$$

Associativity

$$(u+v)+w=u+(v+w),$$

$$(u+v)+\infty=\infty$$

$$u+(v+\infty)=u+\infty=\infty$$

$$(u+v)+v=u+(v+\infty),$$

$$(u+\infty)+v=\infty+v=\infty$$

$$u+(\infty+v)=u+\infty=\infty$$

$$(\infty+u)+v=\infty+v=\infty$$

$$\infty+(u+v)=\infty$$

$$\Rightarrow (u+v)+v=u+(\infty+v),$$

$$(w+v)+v=w+v=\infty$$

$$\Rightarrow (\infty+u)+v=\infty+(u+v),$$

$$(u+v)+(-\infty)=-\infty$$

$$\Rightarrow (u+v)+(-\infty)=u+(v+v),$$

$$(u+v)+(-\infty)=-\infty$$

$$\Rightarrow (u+v)+v=\infty+(u+v),$$

$$(u+v)+(-\infty)=-\infty$$

$$\Rightarrow (u+v)+v=\infty+(u+v),$$

$$(u+v)+(-\infty)=\omega+(u+v),$$

$$(u+v)+(-$$

$$[(-\infty) + u] + v = -\infty + v = -\infty$$

$$(-\infty) + (u + v) = -\infty$$

$$(u + \infty) + \infty = \infty + \infty = \infty$$

$$u + (\infty + \infty) = u + \infty = \infty$$

$$(\infty + u) + \infty = \infty + \infty = \infty$$

$$\infty + (u + \infty) = \infty + \infty = \infty$$

$$\infty + (u + \infty) = \infty + \infty = \infty$$

$$\infty + (u + \infty) = \infty + \infty = \infty$$

$$\infty + (u + \infty) = \infty + \infty = \infty$$

$$\infty + (u + \infty) = \infty + \omega = \infty$$

$$\infty + (u + \infty) = \infty + \omega = \infty$$

$$\infty + (u + \infty) = \infty + \omega = \infty$$

$$\infty + (u + \infty) = \infty + \omega = \infty$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \infty) + u = \infty + (u + \infty),$$

$$\infty + (u + \omega) + u = \infty + (u + \omega)$$

$$\infty + (u + \omega) + (u + \omega) + (u + \omega)$$

Additive identity

$$u + 0 = u$$
, $\infty + 0 = \infty$, $-\infty + 0 = -\infty$.

Additive inverse

$$u + (-u) = 0,$$
 $\infty + (-\infty) = 0,$ $-\infty + \infty = 0.$

• Multiplicative identity

$$1 \cdot u = u, \qquad 1 \cdot \infty = \infty, \qquad 1 \cdot (-\infty) = -\infty.$$