

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/684,272	10/10/2003	Daniel Nicholas Crow	5437-65503	1729
24197	7590	03/19/2007	EXAMINER	
KLARQUIST SPARKMAN, LLP			VAN DOREN, BETH	
121 SW SALMON STREET			ART UNIT	PAPER NUMBER
SUITE 1600			3623	
PORTLAND, OR 97204				
SHORTENED STATUTORY PERIOD OF RESPONSE		MAIL DATE	DELIVERY MODE	
3 MONTHS		03/19/2007	PAPER	

Please find below and/or attached an Office communication concerning this application or proceeding.

If NO period for reply is specified above, the maximum statutory period will apply and will expire 6 MONTHS from the mailing date of this communication.

Office Action Summary	Application No.	Applicant(s)	
	10/684,272	CROW ET AL.	
	Examiner	Art Unit	
	Beth Van Doren	3623	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

1) Responsive to communication(s) filed on 08 January 2007.
 2a) This action is **FINAL**. 2b) This action is non-final.
 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4) Claim(s) 18,67,68 and 73-89 is/are pending in the application.
 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
 5) Claim(s) _____ is/are allowed.
 6) Claim(s) 18,67,68 and 73-89 is/are rejected.
 7) Claim(s) _____ is/are objected to.
 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

9) The specification is objected to by the Examiner.
 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) <input checked="" type="checkbox"/> Notice of References Cited (PTO-892)	4) <input type="checkbox"/> Interview Summary (PTO-413)
2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948)	Paper No(s)/Mail Date. _____
3) <input checked="" type="checkbox"/> Information Disclosure Statement(s) (PTO/SB/08) Paper No(s)/Mail Date <u>20050509</u> .	5) <input type="checkbox"/> Notice of Informal Patent Application
	6) <input type="checkbox"/> Other: _____

DETAILED ACTION

1. The following is Final office action in response to communications received 01/08/2007. Claims 18, 67, 77, and 83 have been amended. Claim 72 has been canceled. Claim 89 has been added. Claims 18, 67-68, and 73-89 are pending.

Examiner Note

2. Examiner notes that on page 8 of the remarks in the current communications, Applicant states that claim 72 is pending. However, in the claim listing, on page 4, claim 72 is listed as canceled. Therefore, examiner has taken claim 72 to be canceled and the statement made on page 8 to be in error.

Response to Amendment

3. Applicant's amendment to claim 18 is sufficient to overcome the 35 USC § 112, second paragraph, rejections set forth in the previous office action.

Claim Rejections - 35 USC § 103

4. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

5. Claims 18, 67-68, and 73-88 are rejected under 35 U.S.C. 103(a) as being unpatentable over Sobotka et al. (U.S. 5,197,004) in view of Tunkelang (U.S. 2003/0120630).

As per claim 18, Sobotka et al. teaches a method for finding a plurality of job candidates suitable for a job requisition, the method comprising:

via at least one ontology-based extractor and at least one ontology-independent extractor, conceptualizing job candidate data for a plurality of job candidates to generate conceptualized job candidate data, wherein the conceptualized job candidate data comprises, for each job candidate, a set of concept scores defining a respective point in an n-dimensional concept space, the concept scores including concept scores for at least one job title, and at least one job skill for the job candidate, whereby the job candidates are represented by job candidate points in the n-dimensional concept space (See figures 5-7, column 3, lines 38-60, column 4, lines 29-50 and 56-67, column 5, lines 10-35 and 49-67, column 6, lines 29-45, wherein the job candidate data is conceptualized through an ontology-independent extractor (i.e. the apparatus that accepts and converts the resume into a series of ordered blocked of computer understandable character strings) and an ontology extractor (an extractor that uses a hierarchical knowledge base and word pattern recognition to extract relevant words and word groups). Using this parsed and extracted data, including the resume information of skills and job titles, the candidates are given scores. The concept score defines a point in n-dimensional concept space as the candidate data is conceptualized on multiple attributes to create a score).

converting a job requisition to desired job candidate criteria, wherein the desired job candidate criteria comprises a desired job candidate criteria point in the n-dimensional concept space (See abstract, column 4, lines 55-67, column 5, lines 1-20 and 59-66, column 6, lines 35-45, wherein the system has stored therein desired job candidate criteria (defined for job categories of the system) which comprise attributes of the category. Thus the requirements of the job category are converted into desired criteria points. See column 1, lines 25-30, which

Art Unit: 3623

discloses that job categorization is for the result of hiring new employee (new employee requisition));

finding the job categories that are most applicable to the applicant whose resume is being analyzed and outputting in electronic format (See abstract, column 4, lines 50-67, column 5, lines 1-20 and 59-66, column 6, lines 35-55).

However, while Sobotka et al. discloses finding the job category or categories with desired criteria that most closely match the scores and attributes of the job candidate data, Sobotka et al. does not expressly disclose finding m job candidate points (i.e. multiple job candidates) closest to the desired job candidate criteria point in the n-dimensional concept space and in a graphical user interface, indicating job candidates associated with the m job candidate points as job candidates matching the desired job candidate criteria.

Tunkelang discloses finding m item points closest to the desired item criteria point in the n-dimensional concept space (where the items have multiple associated attributes/properties) and indicating items associated with the m items points as items matching the desired item criteria (See paragraphs 0017, 0019, 0052-4, 0165, 0203-4, 0262, 0272, wherein items have associated properties and items that are closest to the item are determined based on the distance between the two sets of properties. The system returns ordered items in terms of their distance to the reference item).

However, while Tunkelang discloses user interfaces (See paragraph 0272), Tunkelang does not expressly disclose a graphical user interface.

Both Tunkelang and Sobotka et al. disclose matching items with attributes (properties) to other items with attributes. Sobotka et al. specifically discloses being able to output the

applicable matches in electronic format. Tunkelang discloses user interfaces. Graphical user interfaces are well known types of user interfaces used to output data efficiently in an electronic format. Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to use a graphical user interface to electronically output the results of Sobotka et al. in order to more efficiently and accurately classify a job applicant by displaying such information to a recruiter using the system. See column 3, lines 35-50.

Furthermore, Sobotka et al. discloses conceptualizing job candidate data through an ontology-independent extractor (i.e. the apparatus that accepts and converts the resume into a series of ordered blocks of computer understandable character strings) and an ontology extractor (an extractor that uses a hierarchical knowledge base and word pattern recognition to extract relevant words and word groups). Using this converted and extracted data, the data including the resume attributes, the candidates are given scores based on the matches of the job category data and the job candidate's data. Tunkelang discloses distance functions being used to calculate the order of matching of items with a target item based on the number of attributes/properties in common. Tunkelang specifically discloses in paragraph 0272 that the distance function is applicable in any system that determines the distance (i.e. the number of similarities or intersections) between items. Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to include the finding multiple job candidates closest to the desired job candidate criteria in order to more efficiently and accurately compute the subset of employees that most closely match the desired criteria/properties. See Tunkelang, paragraphs 0017-9 and 0199, and Sobotka et al., abstract and column 3, lines 37-50, which disclose accuracy and efficiency of computation.

As per claim 67, Sobotka et al. teaches a computer-implemented method of finding a job candidate suitable to fill a position, the method comprising:

converting a job requisition to characteristics desired to fill the position (See abstract, column 4, lines 55-67, column 5, lines 1-20 and 59-66, column 6, lines 35-45, wherein the system has stored therein desired job candidate criteria (defined for job categories of the system) which comprise attributes of the category. Thus the requirements of the job category are converted into desired criteria points. See column 1, lines 25-30, which discloses that job categorization is for the result of hiring new employee (new employee requisition));

matching the characteristics desired to fill the position to a job candidate via an n-dimensional concept space, wherein the receiving and the matching steps are performed by a computer system (See figures 5-7, column 3, lines 38-60, column 4, lines 29-50 and 56-67, column 5, lines 10-35 and 49-67, column 6, lines 29-45, wherein the job candidate data is conceptualized. The concept score defines a point in n-dimensional concept space as the candidate data is conceptualized on multiple attributes to create a score. See also the abstract, column 4, lines 50-67, column 5, lines 1-20, column 6, lines 35-45).

providing results indicating, for a job candidate, the positions a job candidate would fill based on the matching desired characteristics to fill each position (See column 4, lines 50-60, wherein the positions are output).

However, while Sobotka et al. discloses matching the characteristics of a job category or categories with a job candidate, Sobotka et al. does not expressly disclose matching the characteristics desired to fill the position to a set of a plurality of job candidates or that the provided results indicate a plurality of job candidates.

Tunkelang discloses matching a set of a plurality of items to the desired item characteristics (where the items have multiple associated attributes/properties) and providing results indicating the items closest to the desired characteristics (See paragraphs 0017, 0019, 0052-4, 0165, 0203-4, 0262, 0272, wherein items have associated properties and items that are closest to the item are determined based on the distance between the two sets of properties. The system returns ordered items in terms of their distance to the reference item).

Both Tunkelang and Sobotka et al. disclose matching items with attributes (properties) to other items with attributes. Sobotka et al. discloses conceptualizing job candidate data and using this conceptualized data (which including the resume attributes) to give candidates scores based on the matches of the job category data and the job candidate's data. Tunkelang discloses distance functions being used to calculate the order of matching of items with a target item based on the number of attributes/properties in common. Tunkelang specifically discloses in paragraph 0272 that the distance function is applicable in any system that determines the distance (i.e. the number of similarities or intersections) between items. Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to include find a set of job candidates that match the desired characteristics (and providing these results) in order to more efficiently and accurately compute the subset of employees that most closely match the desired criteria/properties. See Tunkelang, paragraphs 0017-9 and 0199, and Sobotka et al., abstract and column 3, lines 37-50, which disclose accuracy and efficiency of computation.

As per claim 68, Sobotka et al. teaches wherein the plurality of job candidates are represented by a plurality of job candidate representations in the n-dimensional concept space (See figures 5-7, column 3, lines 38-60, column 4, lines 29-50 and 56-67, column 5, lines 10-35

and 49-67, column 6, lines 29-45, wherein an extractor uses a hierarchical knowledge base and word pattern recognition to extract relevant words and word groups, and uses this data that includes resume information like skills and job titles to give scores and place the information in n-dimensional concept space, as the candidate data is conceptualized on multiple attributes to create a score);

the characteristics desired to fill the position are represented by a point in the n-dimensional concept space (See abstract, column 4, lines 55-67, column 5, lines 1-20 and 59-66, column, lines 35-45, wherein the system has stored therein desired job candidate criteria (defined for job categories of the system) which comprise attributes of the category). However, Sobotka et al. does not expressly disclose that the matching is performed via a distance function to find the m job candidate representations closest to the point in the n-dimensional concept space.

Tunkelang discloses matching using a distance function to find m item representation points closest to the desired item point in the n-dimensional concept space (where the items have multiple associated attributes/properties) (See paragraphs 0017, 0019, 0052-4, 0165, 0203-4, 0262, 0272, wherein items have associated properties and items that are closest to the item are determined based on the distance between the two sets of properties. The system returns ordered items in terms of their distance to the reference item).

Both Tunkelang and Sobotka et al. disclose matching items with attributes (properties) to other items with attributes. Sobotka et al. discloses conceptualizing job candidate data and using this conceptualized data (which including the resume attributes) to give candidates scores based on the matches of the job category data and the job candidate's data. Tunkelang discloses distance functions being used to calculate the order of matching of items with a target item based

Art Unit: 3623

on the number of attributes/properties in common. Tunkelang specifically discloses in paragraph 0272 that the distance function is applicable in any system that determines the distance (i.e. the number of similarities or intersections) between items. Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to include the finding multiple job candidates closest to the desired job candidate criteria in order to more efficiently and accurately compute the subset of employees that most closely match the desired criteria/properties. See Tunkelang, paragraphs 0017-9 and 0199, and Sobotka et al., abstract and column 3, lines 37-50, which disclose accuracy and efficiency of computation.

As per claim 73, Sobotka et al. discloses wherein the job candidate data comprises resume data including degrees attained, experience (See column 2, lines 55-65, column 4, lines 40-50, column 5, lines 20-40, and column 6, lines 40-60, which discloses the degrees and education of the job candidate, as well as skill and aptitude information). However, Sobotka et al. does not expressly disclose, nor does Tunkeland, assessment results of the job candidate.

Sobotka et al. discloses job candidate data including resume data, the resume data including degrees, skills, and aptitude data. It is old and well known in the art to include on a resume achievements and awards, those including certifications held by the applicant and ratings attained at previous jobs. Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to include assessments in the resume data of Sobotka et al. in order to more accurately classify an applicant according to his/her potential based on data contained in his/her resume, such as aptitude, certifications, and ratings. See column 3, lines 38-60, and column 5, lines 10-40.

As per claim 74, Sobotka et al. discloses using at least one ontology-based extractor to conceptualize job candidate data for a plurality of job candidates (See figures 5-7, column 3, lines 38-60, column 4, lines 29-50 and 56-67, column 5, lines 10-35 and 49-67, column 6, lines 29-45, wherein the job candidate data is conceptualized through an ontology extractor (an extractor that uses a hierarchical knowledge base and word pattern recognition to extract relevant words and word groups)). Sobotka et al. further discloses a hierarchical data structure for a knowledge base that represents word patterns, with job categories, indicators, and buzzwords (See figure 2, column 3, lines 40-60, and column 4, line 55-column 5, line 35).

However, Sobotka et al. does not expressly disclose that extracting is performed based on detecting a synonym of the concept in the job candidate data. Tunkelang further does not expressly disclose detecting a synonym of the concept in the job candidate data.

Sobotka et al. discloses conceptualizing job candidate data through an ontology based extractor that uses a hierarchical knowledge base and word pattern recognition to extract relevant words and word groups. Examiner takes official notice that the use of synonyms in the knowledge base of ontology, in order to more efficiently capture concepts, is old and well known in the art. Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to include synonyms in the ontology based extractor of Sobotka et al. in order to more efficiently and accurately classify a candidate employee based on the data contained in his/her resume. See figure 2, column 3, lines 40-60, and column 4, line 55-column 5, line 35, of Sobotka et al.

As per claim 75, Sobotka et al. discloses wherein the concept scores are based at least in part on a level of experience for at least one of the concepts (See column 2, lines 55-65, column

Art Unit: 3623

4, lines 35-55, column 5, lines 20-37 and line 60-column 6, lines 1-10 and lines 47-62, wherein level of experience is considered in calculating a score).

As per claim 76, Sobotka et al. discloses concept scores that are based buzzwords and on strengths of the indicators contained in the candidate's data (See column 5, lines 50-67, and column 6, which disclose assessing scores based on strengths and thresholds). However, Sobotka et al. does not expressly disclose that indicator strength is specifically increased based at least in part on reputation of an organization at which an associated concept was applied according to the job candidate data. Tunkelang further does not expressly disclose increasing the score based on the reputation of an organization at which an associated concept was applied according to the job candidate data.

Sobotka et al. and Tunkeland are combinable for the reasons set forth above. Further, Sobotka et al. discloses conceptualizing job candidate data, the data related to resume information (such as job titles, degrees, etc.). Sobotka et al. further discloses assigning scores based on buzzwords and strength of indicators, as well as understanding of aptitude based on these buzzwords and indicators. Examiner takes official notice that it is old and well known to value experience and degrees differently based on the enterprise or university at which it is gained (for example some schools engineering departments are rated higher than other schools) in order to better select and assess job candidates. Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to include consideration of a reputation of an organization in the strengths of indicators of Sobotka et al. in order to more efficiently and accurately classify a candidate employee based on the data contained in his/her resume. See figure 2, column 3, lines 40-60, and column 4, line 55-column 5, line 35, of Sobotka et al.

Claim 77 recites equivalent limitations to claim 18 and is therefore rejected using the same art and rationale set forth above.

Claims 78-82 recite equivalent limitations to claims 72-76, respectively, and are therefore rejected using the same art and rationale set forth above.

Claim 83 recites equivalent limitations to claim 18, and is therefore rejected using the same art and rationale set forth above. Further discloses a system comprising memory for storing computer executable instructions and at least one processor operable in conjunction with the instructions stored in the memory for finding the plurality of job candidates suitable for the job requisition.

Claims 84-88 recite equivalent limitations to claims 72-76, respectively, and are therefore rejected using the same art and rationale set forth above.

As per claim 89, Sobotka et al. teaches wherein the job candidate data comprises a resume of the job candidate (See column 3, lines 38-60, column 4, lines 20-40, column 5, lines 10-35, which discloses resume data concerning a job candidate).

Response to Arguments

6. Applicant's arguments with regards to the rejections based on Sobotka et al. (U.S. 5,197,004) in view of Tunkelang (U.S. 2003/0120630) have been fully considered, but they are not persuasive. In the remarks, Applicant argues that neither Sobotka et al. nor Tunkelang disclose (1) converting a job requisition to desired job candidate criteria, (2) providing results indicating a plurality of job candidates matching the characteristics desired to fill the position and that (3) to combine Sobotka et al. and Tunkelang would require an alteration of a fundamental principal of Sobotka.

In response to argument (1), Examiner respectfully disagrees. Examiner first notes that this is a new limitation, added by the current amendments. Thus; this new limitation has been addressed above, as necessitated by amendment. See abstract, column 4, lines 55-67, column 5, lines 1-20 and 59-66, column 6, lines 35-45, wherein the system has stored therein desired job candidate criteria (defined for job categories of the system). The desired job candidate criteria comprise attributes required for the job category. See column 1, lines 25-30, which discloses that job categorization is for the result of hiring new employee (new employee requisition).

In response to argument (2), Examiner again notes that this is a new limitation, added by the current amendments. Thus, this new limitation has been addressed above, as necessitated by amendment.

Specifically, Sobotka et al. discloses providing results indicating, for a job candidate, the positions a job candidate would fill based on the matching desired characteristics to fill each position. See column 4, lines 50-60, wherein the positions are output. Tunkelang discloses matching a set of a plurality of items to the desired item characteristics (where the items have multiple associated attributes/properties) and providing results indicating the items closest to the desired characteristics. See paragraphs 0017, 0019, 0052-4, 0165, 0203-4, 0262, 0272, wherein items have associated properties and items that are closest to the item are determined based on the distance between the two sets of properties. The system returns ordered items in terms of their distance to the reference item. Therefore, since Tunkelang and Sobotka et al. are analogous art (both disclose matching items with attributes (properties) to other items with attributes), it would have been obvious to combine these references for the reasons set forth above.

In response to argument (3), Examiner respectfully disagrees. Examiner first points out that Applicant does not specifically state why or how the combination of the references would cause the alteration of a fundamental principle, just broadly alleges that such a change occurs. On pages 10-11, Applicant sites certain areas of Sobotka, but does not show how these areas and teachings would be fundamentally changed.

Further, the combination of Sobotka et al. and Tunkelang does teach and suggest “results indicating a plurality of job candidates matching the characteristics desired to fill the position”. See the response to argument (2) above. No alternation in the principles of Soboka et al. is required, as Sobotka et al. already discloses returning the job categories that most closely match a job candidate as output in column 4, lines 50-60. Therefore, these results merely have to return the names of multiple job candidates, instead of just the single candidate discussed, to meet the limitations of the claims. This missing feature is taught by Tunkelang, as set forth above.

7. In the previous Office Action mailed 10/23/2006, notice was taken by the Examiner in claims 73-74, 76, 79-80, 82, 85-86, and 88 that certain subject matter is old and well known in the art. Per MPEP 2144.03(c), these statements are taken as admitted prior art because no traversal of this statement was made in the current response.

Conclusion

8. Applicant's amendment necessitated the new ground(s) of rejection presented in this Office action. Accordingly, **THIS ACTION IS MADE FINAL**. See MPEP § 706.07(a). Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

Art Unit: 3623

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Beth Van Doren whose telephone number is 571-272-6737. The examiner can normally be reached on M-F, 8:00-5:00.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Tariq Hafiz can be reached on 571-272-6729. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

*bvd
bvd
March 13, 2007*

*Beth Van Doren
Patent Examiner
AU 3623*