BMMS2633 Advanced Discrete Mathematics

Tutorial 4

- (1) Determine whether the description of * is a valid definition of binary operation on the set.
 - (a) On \mathbb{R} , where a*b = ab
 - (b) On \mathbb{Z}^+ , where $a^*b = \frac{a}{b}$
 - (c) On \mathbb{Z} , where $a*b = a^b$
 - (d) On \mathbb{Z}^+ , where $a^*b = a^b$
 - (e) On \mathbb{Z}^+ , where a*b = a b
 - (f) On \mathbb{R} , where $a*b = a\sqrt{b}$
 - (g) On \mathbb{Z} , where a*b = 2a + b
- (2) Determine whether the binary operation * on the set S is commutative and whether it is associative:
 - (a) $S = \mathbb{R}, \ a * b = \min\{a, b\}$
 - (b) $S = \mathbb{R}, a * b = \frac{ab}{3}$
- (3) Fill in the following table so that the binary operation * is commutative.

*	a	b	c
a	b		
b	c	b	a
c	a		С

(4) Fill in the following table so that the binary operation * is commutative and has the idempotent property.

*	a	b	c
a		c	
b			
c	c	a	

(5) Consider the binary operation * defined on the set $A = \{a, b, c\}$ by the following table.

*	a	b	c
a	b	c	b
b	a	b	С
С	c	a	b

- (a) Is * a commutative operation?
- (b) Compute $a^*(b^*c)$ and $(a^*b)^*c$.
- (c) Is * an associative operation?

- (6) Complete the following tables so that the binary operation * is associative.
 - (a)

*	a	b	c	d
a	a	b	c	d
b	b	a	d	c
c	c	d	a	b
d				

(b)

*	a	b	c	d
a	a	b	c	d
b	b	a	c	d
c				
d	d	c	c	d

- (7) Let $A = \{a, b\}$. Which of the following tables define a semigroup on A? Which define a monoid on A?
 - (a)

*	a	b
a	a	b
b	a	a

(b)

*	a	b
a	a	b
b	b	b

(8) Does the following table define a semigroup?

*	a	b	c
a	c	b	a
b	b	c	b
С	a	b	С

(9) Complete the following table to obtain a semigroup.

*	a	b	c
a	c	a	b
b	a	b	c
c			a

(10) Let $S = \{a,b\}$. Write the operation table for the semigroup $(P(S), \cup)$.

- (11) Determine whether the set together with the binary operation is a group.
 - (a) \mathbb{Z} , where * is ordinary subtraction.
 - (b) \mathbb{Z}^+ , under the operation of addition.
 - (c) Q, the set of all rational numbers under the operation of addition.
- (12) Let G be the group of integers under the operation of addition. Determine whether the following subsets of G are subgroups of G.
 - (a) the set of all even integers;
 - (b) the set of all odd integers;
 - (c) the set of all multiples of 3.

Answer

- (2) (a) Commutative, associative.
 - (b) Commutative, associative.
- (5) Not commutative. (a)
 - (b)
 - Not associative. (c)
- (8) Not associative and not semigroup.
- (11) Not a group. (a)
 - (b) Not a group.
 - (c) A group.
- (12)(a)
- Subgroup of G. Not a subgroup of G. (b)
 - Subgroup of G. (c)