### **Abstract:**

Project #1 requires us to implement various sorting and searching algorithms. Amongst these implementations, they will result in different running time. Some implementations may cause the algorithm to run faster/slower and perform differently according to the data that is being inputted. We are required to analyze the different cases of these algorithms and find the Big-O analysis of each. We look for the best case, the worst case, and the average case to see how these algorithms perform and to see if they are efficient for n input size they are given.

Sequential search was implemented in a way where if the list was stored as an array, we start at the first element of the array and compare it to the target. If the result concluded in that it matched it will return that index. If the target was not found, it will go to the next element and continue on until the element we are looking for is found. If at the end of the list, the element was not found the method would return -1 stating that it has not been found. We should come with results:

Worst case - O(n)

Average case - O(n)

Best case - O(1)

In the worst case, we would be looking through all the list and find the element in the end of the list or not even find it at all. In the best case, we might find the element in the beginning of the array if we happen to be lucky.

**Binary search** was implemented so that it would accept an array, target, low and high. The binary search will look at the middle element of the list. If the middle element is the target, then it will return the middle element. If the element is greater than the middle element, it

will look in the direction to the right where elements are greater. The same goes for when it is less but they will be looking in the direction to the left. We should come up with results as:

Average case - O(log n)

Best case - O(1)

As the sequential search, the worst case is when it does not find the element in the list. The best case will occur when the element is found as the first element.

Selection sort was implemented so that two arrays were created, array[i] and array[j]. One would be empty and the other would be a whole array. In each step the algorithm will find the least element in the unsorted array and add it to the empty array. It will keep running until the unsorted array is empty. We should come up with results as:

Worst case - 
$$O(n^2)$$

Average case - 
$$O(n^2)$$

Best case - 
$$O(n^2)$$

The worst case will be when the array is in descending order so it will take n times to compare and then n times again to place it in the right order ascending. The best case is also  $O(n^2)$  because we always iterate forward n and swap with the smallest element.

*Insertion sort* was implemented so that it consumes an element finds the location that it belongs to and inserts the element there. Then the other elements would be shifted to the right.

We should get results as:

Worst case - 
$$O(n^2)$$

Average case - 
$$O(n^2)$$

As stated with the selection sort, the worst case is when the array is sorted in a reverse order.

The best case input is when an array is already sorted

Merge sort is a divide and conquer algorithm and was implemented so that it is recursively

splitting the array into two parts from the midpoint. Note that if elements are odd then the

right half would have an extra one. Once they are split into two arrays, they are compared to

one another and finding the lesser element and merging the two adjacent lists.

We should get results as:

Worst case -  $O(n \log n)$ 

Average case - O(n log n)

Best case - O(n)

The worst case occurs when the input is halved in recursion as it needs to keep sorting the

halves and them merge them into one sorted output. As for best case, if the arrays are sorted

we only need to go through it n number of iterations.

Quick sort is also a divide and conquer algorithm and was implemented to divide the large

array into two smaller sub-arrays with the low elements and high elements. It would pick an

element called the pivot and reorder the array so that all the elements lesser than the pivot would come before the pivot and all the elements that are greater would come after the pivot. It will recursively call the steps until there are no more elements to compare to.

We should get results as:

Worst case - 
$$O(n^2)$$
  
Average case -  $O(n \log n)$   
Best case -  $O(n)$ 

Getting the pivot equal to the lowest number or highest number will result in the worst case which would split the elements lower/higher onto another side and then recursively sort the two sub group. Best case is when the elements are already sorted.

#### **Analysis:**

### Sequential Search:

$$\left\{ \begin{matrix} \boldsymbol{T}(n-1) + a & \text{if } n > 1 \\ b & \text{if } n = 1 \end{matrix} \right.$$

$$T(n) = a(n - 1) + b = an + (b - a) = O(n)$$

Upper Bound:

Lower Bound:

### **Binary Search**

Initial condition: 
$$\begin{split} T(1) &= O(1) = 1 \\ Recurrence \ relation: \ T(N) &= T(N/2) + 1 \\ T(N) &= T(N/4) + 2 \\ T(N) &= T(N/8) + 3 \\ T(N) &= T(N/2^k) + k \end{split}$$
 Set 
$$N \leq 2^m$$
 
$$T(N) \leq T(2^m/2^k) + k$$

Let 
$$k = m$$

$$T(N) \le T(2^m/2^m) + m = T(1) + m = 1 + m = O(m)$$
  
If  $N = 2^m$ , then  $m = \log N$   
 $T(N) = O(\log N)$ 

#### Selection Sort

Initial condition:

1) 
$$T(0) = a$$

2) 
$$T(n) = T(n-1) + n + c$$
 if  $n > 0$ 

$$\begin{split} T(n) &= [T(n-2) + (n-1) + c] + n + c = T(n-2) + (n-1) + n + 2c \\ T(n) &= [T(n-3) + (n-2) + c] + (n-1) + n + 2c = T(n-3) + (n-2) + (n-1) + n + 3c \\ T(n) &= T(n-4) + (n-3) + (n-2) + (n-1) + n + 4c \\ T(n) &= T(n-k) + (n-k+1) + (n-k+2) + \dots + n + kc \end{split}$$

When 
$$n - k = 0 --> k = n$$

$$T(n) = T(0) + 1 + 2 + \dots + n + nc$$

$$T(n) = a + \sum_{i=1}^{n} i$$

$$T(n) = a + \frac{1}{2} (n(n+1)) + c n$$

$$T(n) = a + c n + \frac{n^2}{2} + \frac{n}{2}$$

$$T(N) = O(n^2)$$

Upper Bound: O(n) for some element: min, max Lower Bound:  $\Omega$  (n) must examine every element

### **Insertion Sort**

Initial condition

1) 
$$T(1) = 1$$
  $n = 1$ 

2) 
$$T(n-1) + n \quad n > 1$$

$$T(n) = T(n-1) + n$$

$$T(n) = T(n-2) + (n-1) + n$$

$$T(n) = T(n-3) + (n-2) + (n-1) + n$$

$$T(n) = \sum_{i=1}^{n} i$$

$$T(N) = O(n^2)$$

Upper Bound: O(n<sup>2</sup>)

### Lower Bound: $\Omega$ (n<sup>2</sup>)

### Merge Sort

Initial condition:

1) 
$$T(1) = 1$$
  $n = 1$ 

2) 
$$2T(n/2) + \Theta(n)$$
  $n > 1$ 

$$n = 2^k$$

$$T(n) = \log(n) + 1$$

$$T(1) = 1$$

$$T(2^{k+1}) = T(2^k) + 1$$

$$T(2^{k+1}) = \log(2^k) + 1 + 1$$

$$T(2^{k+1}) = k + 2$$

$$T(2^{k+1}) = \log(2^{k+1}) + 1$$

$$T(N) = O(n \log n)$$

Upper Bound: O(n log n)

Lower Bound:  $\Omega$  (n log n)

### Quick Sort

**Best case** when the pivot is the middle:

$$T(N) = 2T(N/2) + cN$$

$$T(N) / N = T(N/2) / (N/2) + c$$

$$T(N/2) / (N/2) = T(N/4) / (N/4) + c$$

$$T(N/4) / (N/4) = T(N/8) / (N/8) + c$$

Adding all the terms

$$T(N) / N = T(1) + cLogN = 1 + cLogN$$

$$T(N) = N + NcLogN$$

$$T(N) = O(Nlog N)$$

**Worst case** when the pivot is the smallest element:

Base Case: 
$$T(1) = 1$$

$$T(N) = T(N-1) + cN, N > 1$$

$$T(N) = T(N - 2) + (N - 1) + N$$

$$T(N) = T(N-3) + (N-2) + (N-1) + N$$

$$T(N) = T(1) + 2 + 3 + \dots + (N-1) + N$$

$$T(N) = \sum_{i=1}^{N} i$$

$$T(N) = O(n^2)$$

Upper Bound: O(n<sup>2</sup>)

Lower Bound:  $\Omega$  (n)

### **Test Case:**

The test cases for each algorithm were very similar. For the search algorithms (sequential and binary) to find the worst case values, I made the elements either in the end of the list or got rid of them, so the algorithm would iterate towards the end. For the best case, I made it so that the elements were first in the list so when the it would iterate it would just find the first value and stop. For the sorts worst case, I made elements in the array reversed, so that it would go through all the iterations to compare and sort the values. Quick sort was different in the fact that the pivot point had to be a value of the smallest element as it is a divide and conquer method. The best case for the sorts was when the arrays were already sorted out and the algorithms would just iterate over them to see if they were in order.

#### **Experimental Results:**

### Sequential Search - Worst Case

| Size (n) | Time (nano seconds) |
|----------|---------------------|
| 256      | 11879               |
| 512      | 19251               |
| 1024     | 27852               |
| 2048     | 55705               |
| 4096     | 109363              |
| 8192     | 209304              |
| 16384    | 453425              |
| 32768    | 968701              |
| 65536    | 1937401             |
| 131072   | 3369766             |

### Sequential Search - Average Case

| Size (n) | Time (nano seconds) |
|----------|---------------------|
| 256      | 9420                |

| 512    | 11469   |
|--------|---------|
| 1024   | 15975   |
| 2048   | 49152   |
| 4096   | 105267  |
| 8192   | 69222   |
| 16384  | 57344   |
| 32768  | 55295   |
| 65536  | 1098543 |
| 131072 | 3462335 |

## Binary Search - Worst Case

| Size (n) | Time (nano seconds) |
|----------|---------------------|
| 256      | 6144                |
| 512      | 7373                |
| 1024     | 6964                |
| 2048     | 11879               |
| 4096     | 12288               |
| 8192     | 9012                |
| 16384    | 15155               |
| 32768    | 43008               |
| 65536    | 41779               |
| 131072   | 52428               |

## Binary Search - Average Case

| Size (n) | Time (nano seconds) |
|----------|---------------------|
| 256      | 6144                |
| 512      | 6554                |
| 1024     | 6963                |
| 2048     | 12288               |
| 4096     | 7373                |
| 8192     | 10240               |
| 16384    | 11469               |
| 32768    | 41779               |
| 65536    | 61031               |
| 131072   | 65023               |

# Selection Sort - Worst Case

| Size (n) | Time (seconds) |
|----------|----------------|
| 256      | 0.002          |
| 512      | 0.006          |

| 1024   | 0.007  |
|--------|--------|
| 2048   | 0.009  |
| 4096   | 0.019  |
| 8192   | 0.062  |
| 16384  | 0.222  |
| 32768  | 0.764  |
| 65536  | 3.412  |
| 131072 | 13.156 |

## Selection Sort - Average Case

| Size (n) | Time (seconds) |
|----------|----------------|
| 256      | 0.002          |
| 512      | 0.006          |
| 1024     | 0.006          |
| 2048     | 0.009          |
| 4096     | 0.019          |
| 8192     | 0.058          |
| 16384    | 0.212          |
| 32768    | 0.836          |
| 65536    | 3.305          |
| 131072   | 13.103         |

### Insertion Sort - Worst Case

| Size (n) | Time (seconds) |
|----------|----------------|
| 256      | 0.002          |
| 512      | 0.005          |
| 1024     | 0.009          |
| 2048     | 0.013          |
| 4096     | 0.031          |
| 8192     | 0.106          |
| 16384    | 0.365          |
| 32768    | 1.465          |
| 65536    | 5.792          |
| 131072   | 22.938         |

## Insertion Sort - Average Case

| Size (n) | Time (seconds) |
|----------|----------------|
| 256      | 0              |

| 512    | 0.003  |
|--------|--------|
| 1024   | 0.004  |
| 2048   | 0.007  |
| 4096   | 0.015  |
| 8192   | 0.049  |
| 16384  | 0.189  |
| 32768  | 0.745  |
| 65536  | 2.936  |
| 131072 | 11.525 |

## Merge Sort - Worst Case

| Size (n) | Time (seconds) |
|----------|----------------|
| 256      | 0.001          |
| 512      | 0.001          |
| 1024     | 0.001          |
| 2048     | 0.003          |
| 4096     | 0.008          |
| 8192     | 0.018          |
| 16384    | 0.021          |
| 32768    | 0.022          |
| 65536    | 0.030          |
| 131072   | 0.043          |

## Merge Sort - Average Case

| Size (n) | Time (seconds) |
|----------|----------------|
| 256      | 0              |
| 512      | 0              |
| 1024     | 0.001          |
| 2048     | 0.003          |
| 4096     | 0.008          |
| 8192     | 0.020          |
| 16384    | 0.020          |
| 32768    | 0.020          |
| 65536    | 0.030          |
| 131072   | 0.043          |

# Quick Sort - Worst Case

| Size (n) | Time (seconds) |
|----------|----------------|
| 256      | 0              |
| 512      | 0              |
| 1024     | 0.001          |

| 2048   | 0.001 |
|--------|-------|
| 4096   | 0.006 |
| 8192   | 0.007 |
| 16384  | 0.009 |
| 32768  | 0.025 |
| 65536  | 0.033 |
| 131072 | 0.039 |

## Quick Sort - Average Case

| Size (n) | Time (seconds) |
|----------|----------------|
| 256      | 0              |
| 512      | 0              |
| 1024     | 0.001          |
| 2048     | 0.001          |
| 4096     | 0.005          |
| 8192     | 0.005          |
| 16384    | 0.007          |
| 32768    | 0.025          |
| 65536    | 0.031          |
| 131072   | 0.037          |

### Sequential vs Binary Search (Worst Case) (Time (nano-second) vs. Size (n))



Sequential vs Binary Search (Average Case) (Time (nano-second) vs. Size (n))



Selection, Insertion, Merge, Quick Sort - Worst Case (Time (s) vs. Size (n))



### Selection, Insertion, Merge, Quick Sort - Average Case (Time (s) vs. Size (n))



### **Conclusion:**

There were difficulties trying to test the different run times with the searches. I had trouble getting an exact time especially with the binary search because it kept printing as 0 seconds when done using the System.currentMillis() timer. I had to switch it to nano seconds. Overall, I think it matched my experimental results and did exactly what I had planned it to do.