CSE 431::Cryptography and Network Security

MD. ARSHAD WASIF

MSc. (appeared), BSc. In CSE from IUT

Varendra University, Rajshahi.

Course Contents

Cryptography and Network Security

Cryptography

Mathematics in Cryptography

(Number Theory)

Symmetric Ciphers

Public Key Encryption Network Security

Message Authentication

Network Security
Practice

System Security

Course Contents

MID EXAM SYLLABUS MAR 18 – 31

Network Security

Network Security Practice

System Security

Number Theory (Mathematics in Cryptography)

Fields

Algebraic Closures

Integers

Divisibility

Primes

Testing Primes

Factorization

Page 45 Forouzan book

Symmetric Ciphers

- Symmetric Cipher Model,
- Substitution Techniques,
- Transposition Techniques,
- Steganography,
- Simplified DES,
- Block Cipher Principles,
- The Data Encryption Standard,
- The Strength of DES,

- Block Cipher Design Principles,
- Evaluation Criteria for AES,
- The AES Cipher, Triple DES, Blowfish, RC5
- Characteristics of Advanced Symmetric Block Ciphers,
- RC4 Stream Cipher, Placement of Encryption Function,
- Traffic Confidentiality,
- Key Distribution

Public Key Encryption

- Principles of Public-Key Cryptosystems,
- The RSA Algorithm,
- Key Management

Fields

Algebraic Closures

Integers

Divisibility

Primes

Testing Primes

Factorization

Page 45 Forouzan book

FIELDS

- Arithmetic Operations: +, -, ×, ÷
- IF YOU CAN + and it is a "GROUP" (a+b), (a-b)
- IF YOU CAN + and × it is a "RING" (a+b), (a-b), a×b, b×a
- IF YOU CAN + × and ÷ it is a "FIELD" (a+b), (a-b), a×b, b×a, a/b, b/a
- **❖**Terminology:
 - ❖ Subtract = Additive inverse
 - ❖ Divide = Multiplicative inverse

FIELDS

Sets	Elements	Commutative Groups under +	Multiplication × (rings)	Commuta tive rings (a.b = b.a)	Multiplica tive Inverses (except 0)
Z	{,-3,-2,-1,0,1,2,3,}			✓	Not integer
R(2×3)	1 2 3 5 9 0		\times	\times	\times
R(2×2)	1 2 5 0			\times	X
Q	$\{\frac{p}{q}\} :: \{\frac{2}{3}, \frac{6}{10},\}$			$\overline{\checkmark}$	✓

FIELDS – formal Mathematical Definition

• A field(F) is a set of elements with two operations addition and multiplication. Under addition the elements are commutative group and under multiplication the non-zero elements are commutative group. Also, addition and multiplication are linked with distributive property.

<F,+> is a commutative group

<F,> is a commutative group

$$a.(b+c) = a.b + a.c$$

$$(b+c).a = b.a + c.a$$

Fields

Algebraic Closures

Integers

Divisibility

Primes

Testing Primes

Factorization

Page 45 Forouzan book

Divisibility

- A | B if and only if A%B = 0
- A ∤ B if A%B != 0

General rules of divisibility:

Property 1: if $a \mid 1$, then $a = \pm 1$.

Property 2: if a|b and b|a, then $a = \pm b$.

Property 3: if a|b and b|c, then a|c.

Property 4: if a|b and a|c, then $a|(m \times b + n \times c)$, where m and n are arbitrary integers.

Number	Rules				
2	Even number (x%2==0)				
3	Sum(all digits)%3 == 0				
4	Number(with last 2 digits)%4 ==0				
5	Unit's digit 0, 5				
6	X%2 && X%3				
7	Only divisible to 7*n itself				
9	X%3 && sum of digits%9				
10	Unit's digit 0				

Fields

Algebraic Closures

Integers

Divisibility

Primes

Testing Primes

Factorization

Page 45 Forouzan book

Prime Numbers and Finding them (Sieve of Eratosthenis)

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22		24	25	26	27	28		30
31	32	33	34	35	36		38	39	40
41	42		44	45	46		48	49	50

Fields

Algebraic Closures

Integers

Divisibility

Primes

Testing Primes

Factorization

Page 45 Forouzan book

Algebraic Closures

 A field K is called algebraically closed if every nonconstant polynomial f(x) ∈ K[x] has a root in K.

$$f(x) = a x^n + b x^{n-1} \cdot 1^1 + c x^{n-2} \cdot 1^2 + c$$

 $x^{n-2} \cdot 1^2 + \dots + 1^n$

Has a root in K[x] then we call K as a closure \overline{K} .

Similarly, \overline{K} has a closure in K.

Theorem: Every field F has an algebraic closure \overline{F} .

Fields

Algebraic Closures

Integers

Divisibility

Primes

Testing Primes

Factorization

Page 45 Forouzan book

Prime Power Factorization (PPF)

• If N is any positive integer, you can always write it down using factors of single/multiple prime(s).

$$388 = 4 \times 97 = 2^{2} \times 97^{1}$$

$$3880000 = 4 \times 97 \times 10000$$

$$= 2^{2} \times 97^{1} \times 10^{4}$$

$$= 2^{2} \times 97^{1} \times (2 \times 5)^{4}$$

$$= 2^{6} \times 5^{4} \times 97^{1}$$

How many distinct prime factors are there in number 5120?

Fields

Algebraic Closures

Integers

Divisibility

Primes

Testing Primes

Factorization

Page 45 Forouzan book

Euclidian Algorithm (A way of finding GCD)

• GCD = Greatest Common Divisor

gcd (36, 10) = gcd (10, 6) = gcd (6, 4) = gcd (4, 2) = gcd (2, 0) = 2
10)
$$36 \left(3 \right)$$

 $30 \left(6 \right)$ 10 $\left(1 \right)$
 $4 \left(1 \right)$ 6 $\left(1 \right)$
 $2 \left(1 \right)$ 4 $\left(2 \right)$
 $4 \left(2 \right)$