DAFTAR ISI

DAFTAR ISI	i
DAFTAR TABEL	iii
DAFTAR GAMBAR	iv
BAB 1. PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	2
1.3 Tujuan Penelitian	2
1.4 Manfaat Penelitian	3
1.5 Keutamaan Penelitian	3
1.6 Temuan yang Ditargetkan	3
1.7 Kontribusi Penelitian Terhadap Ilmu Pengetahuan	3
1.8 Luaran Penelitian	3
BAB 2. TINJAUAN PUSTAKA	4
2.1 Limbah Cair Pabrik Kelapa Sawit	4
2.2 Microbial Fuel Cell (MFC)	5
2.3 Lactobacillus bulgaricus	5
2.4 Produksi Biolistrik dari Limbah Cair Organik dengan Metode	
Microbial Fuel cell	<i>6</i>
BAB 3. METODE PENELITIAN	7
3.1 Lokasi Penelitian	7
3.2 Bahan dan Peralatan	7
3.2.1 Bahan Penelitian	7
3.2.2 Peralatan Penelitian	7
3.3 Variabel Penelitian	7
3.3.1 Variabel Tetap	7
3.3.2 Variabel Tetap	7
3.4 Prosedur Penelitian	7
3.4.1 Preparasi Elektroda	7
3.4.2 Preparasi Bioreaktor	8
3.4.3 Preparasi Kultur Lactobacillus bulgaricus	8
3.4.4 Preparasi Substrat	8
3.4.5 Eksperimen Microbial Fuel Cell	8
3.4.6 Analisis Data dan Evaluasi	8
BAB 4. BIAYA DAN JADWAL KEGIATAN	9
4.1 Rencana Anggaran Biaya	9
4.2 Jadwal Kegiatan	9
DAFTAR PUSTAKA	9
Lampiran 1. Biodata Ketua, Anggota dan Dosen Pendamping	. 11
Lampiran 2. Justifikasi Anggaran Kegiatan	20
Lampiran 3. Susunan Organisasi Tim Peneliti dan Pembagian Tugas.	21

Lampiran 4. Surat Pernyataan Ketua Pelaksana	22

DAFTAR TABEL

Tabel 2.1 Kandungan Komponen pada POME	. 4
Tabel 4.1 Rekapitulasi Rencana Anggaran Biaya	. 9
Tabel 4.2 Jadwal Kegiatan	. 9

DAFTAR GAMBAR

Gambar 2.1 Konsep sistem Microbial Fuel Cell (MFC) (Wulandari, 2019)	. 5
Gambar 2.2 Bakteri Lactobacillus bulgaricus (Uyun, 2018)	. 6

BAB 1. PENDAHULUAN

1.1 Latar Belakang

Ketersediaan sumber energi yang semakin langkah akan menyebabkan terjadinya krisis energi di Indonesia. Semakin meningkat jumlah penduduk dan majunya peralatan di Indonesia maka semakin meningkat pemakaian energi setiap tahunnya. Rumah tangga merupakan salah satu pengguna energi listrik terbanyak. Kesadaran masyarakat dalam mengkonsumsi energi listrik masih belum baik, hal ini merupakan faktor utama pemicu terjadinya krisis energi di Indonesia (Wiwaha, 2017).

Menurut Kementrian Energi dan Sumber Daya Mineral (2019), permintaan listrik diperkirakan meningkat sampai dengan tahun 2050. Permintaan listrik per kapita pada tahun 2025 akan mencapai 2.030 kWh/kapita pada skenario *business as usual*, 1.892 kWh/kapita pada skenario pembangunan berkelanjutan, dan 1.834 kWh/kapita pada skenario rendah karbon. Sedangkan pada tahun 2050 permintaan listrik akan mencapai 6.723 kWh/kapita pada skenario *business as usual*, 5.824 kWh/kapita pada skenario pembangunan berkelanjutan, dan 4.935 kWh/kapita pada skenario rendah karbon.

Saat ini Indonesia merupakan produsen minyak sawit mentah (*crude palm oil*) terbesar di dunia. Menurut Direktorat Jendral Perkebunan Pada tahun 2020, produksi kelapa sawit di Sumatera Utara mencapai 6 juta ton dengan pertumbuhan produksi meningkat sebesar 12,07%. Perkebunan kelapa sawit terbesar di Indonesia berada di Pulau Sumatera dan Kalimantan. Lebih jauh, produksi minyak kelapa sawit yang tinggi di Pulau Sumatera berdampak pada produksi limbah pengolahan sawit yang tinggi pula. Limbah cair dari pengolahan sawit atau sering disebut *Palm Oil Mill Effluent* (POME) yang dihasilkan dari pengolahan kelapa sawit merupakan limbah cair (55–67%) dapat mencemari air karena mengandung 20.000–30.000 mg/l *Biological Oxygen Demand* (BOD) dan 45.000 mg/l *Chemical Oxygen Demand* (COD). Pengolahan limbah POME dapat mengurangi sejumlah dampak negatif dari limbah pabrik kelapa sawit terhadap ekosistem perairan (Yogaswara dkk., 2017).

POME didefinisikan sebagai air yang dihasilkan dari industri perkebunan kelapa sawit yang mengandung bahan terlarut yang berbahaya bagi lingkungan. Material terlarut tersebut berupa gas (CH₄, SO₂, NH₃), cairan, dan padatan yang mengandung ion-ion organik maupun anorganik dengan konsentrasi masih di atas level yang ditetapkan. Limbah cair POME bewarna kecoklatan dan mengandung senyawa terlarut berupa serat-serat pendek, hemiselulosa dan turunannya, protein, asam organik bebas, dan campuran mineral-mineral. Selain itu terdapat pigmen organik seperti antosianin, karoten, polifenol, lignin, dan tanin pada limbah POME (Agustina, 2016).

Salah satu alternatif dalam pengolahan limbah POME adalah dengan menggunakannya sebagai substrat pada sel bahan bakar berbasis mikroba

(microbial fuel cell/MFC). MFC adalah peralatan yang memanfaatkan bakteri atau mikroorganisme sebagai katalis untuk mengoksidasi senyawa organik dan anorganik sehingga menghasilkan listrik (Yogaswara dkk., 2017). Sejauh ini telah banyak penelitian yang mengkaji pemanfaatan bahan organik sebagai bahan baku MFC, antara lain pemanfaatan limbah industri tahu menggunakan sistem double chamber MFC (Hermawan dkk., 2014) dan kinerja microbial fuel cell penghasil biolistrik dengan perbedaan jenis elektroda pada limbah cair industri perikanan (Ibrahim dkk., 2017).

Bakteri *Lactobacillus bulgaricus* merupakan bakteri yang digunakan dalam memproduksi susu fermentasi (Uyun, 2018). Bakteri ini merupakan bakteri penghasil asam laktat dan dapat dimanfaatkan untuk sistem *microbial fuel cell* (MFC), dengan kondisi ekologis tumbuh pada pH optimal antara 5,5–6,2 dan suhu optimum 30-40°C. *Double chamber* digunakan sebagai membran pemisah antara anoda dan katoda, agar larutan yang terdapat di masing-masing ruang tidak mencampuri larutan lainnya. Berberapa penelitian terdahulu menggunakan jembatan garam sebagai alternatif penggantian penukar ion. Namun, pada penggunaan jembatan garam memiliki kekurangan, yakni listrik yang dihasilkan sangat sedikit karena memiliki ketahanan internal yang tinggi (Wulandari, 2019).

Berdasarkan paparan di atas, perlu dilakukan kajian mengenai produksi biolistrik limbah cair pabrik kelapa sawit dengan metode *double chamber Microbial Fuel Cell* sebagai bioenergi alternatif.

1.2 Rumusan Masalah

Permasalahan yang akan dikaji pada penelitian ini adalah:

- 1. Berapa nilai tegangan dan kuat arus yang dapat dihasilkan dari limbah cair kelapa sawit dengan metode *double chamber microbial fuel cell*?
- 2. Bagaimana perkembangan inokulum bakteri *Lactobacillus bulgaricus* pada substrat limbah cair kelapa sawit?
- 3. Bagaimana kadar BOD dan COD limbah cair kelapa sawit setelah diolah dengan metode *double chamber microbial fuel cell*?

1.3 Tujuan Penelitian

Tujuan penelitian ini adalah:

- 1. Mengetahui nilai tegangan dan kuat arus yang dihasilkan dari limbah cair kelapa sawit dengan metode *double chamber microbial fuel cell*.
- 2. Mengetahui perkembangan inokulum bakteri *Lactobacillus bulgaricus* pada substrat limbah cair kelapa sawit.
- 3. Mengetahui kadar BOD dan COD limbah cair kelapa sawit setelah diolah dengan metode *double chamber microbial fuel cell*.

1.4 Manfaat Penelitian

Penelitian ini diharapkan mampu menjadi solusi penyediaan biolistrik berbasis limbah cair kelapa sawit dengan metode *double chamber microbial fuel cell*. Selain itu, penelitian ini juga bermanfaat sebagai solusi pengolahan limbah cair pabrik kelapa sawit untuk mewujudkan konsep *zero waste* pada industri kelapa sawit di Indonesia.

1.5 Keutamaan Penelitian

Krisis listrik di Indonesia menjadi permasalahan serius yang masih belum bisa diatasi secara maksimal. Penggunaan listrik di masyarakat semakin meningkat seiring dengan meningkatnya pemakaian teknologi digital yang membutuhkan energi listrik. Selain itu, limbah cair kelapa sawit juga menjadi salah satu bencana bagi flora dan fauna perairan serta manusia sehingga perlu dicegah. Oleh karena itu, penelitian ini memiliki urgensi untuk menyelesaikan kedua permasalahan ini, yakni penyediaan energi listrik di Indonesia sekaligus pengolahan limbah cair industri kelapa sawit.

1.6 Temuan yang Ditargetkan

Temuan yang ditargetkan pada penelitian ini adalah biolistrik dari limbah cair kelapa sawit dengan metode *double chamber microbial fuel cell* sebagai bioenergi alternatif. Informasi yang ingin diperoleh melalui penelitian ini adalah data tegangan dan kuat arus yang dihasilkan, perkembangan inokulum bakteri *Lactobacillus bulgaricus*, serta kadar COD dan BOD dari limbah cair kelapa sawit setelah diolah dengan metode *double chamber microbial fuel cell*.

1.7 Kontribusi Penelitian Terhadap Ilmu Pengetahuan

Penelitian ini dapat memberikan kontribusi bagi perkembangan ilmu pengetahuan di Indonesia, terkhusus di bidang energi terbarukan dan lingkungan. hasil dari penelitian ini diharapkan dapat menjadi referensi untuk penelitian selanjutnya serta dapat diterapkan dalam mengolah limbah cair kelapa sawit dalam skala nasional.

1.8 Luaran Penelitian

Luaran yang diharapkan dari penelitian ini adalah sebagai berikut

- 1. Biolistrik dari limbah cair kelapa sawit
- 2. Laporan Kemajuan
- 3. Laporan Akhir
- 4. Artikel Ilmiah

BAB 2. TINJAUAN PUSTAKA

2.1 Limbah Cair Pabrik Kelapa Sawit

Limbah cair pabrik kelapa sawit atau *palm oil mill effluent* (POME) merupakan limbah cair yang berminyak dan tidak beracun, hasil pengolahan minyak sawit. Meski tak beracun, limbah cair tersebut dapat menyebabkan bencana lingkungan karena dibuang di saluran terbuka dan melepaskan sejumlah gas metana dan gas berbahaya lainnya yang menyebabkan emisi gas rumah kaca (Sinaga dan Nasution, 2016). POME adalah limbah cair kelapa sawit yang masih mengandung banyak padatan terlarut. Sebagian besar padatan terlarut ini berasal dari material lignoselulosa mengandung minyak yang berasal dari buah sawit. Lignoselulosa dalam POME adalah penyusun terbanyak dari tanaman berkayu. Lignoselulosa terdiri dari lignin, hemiselulosa, dan material berselulosa (Irvan dkk., 2012). POME mempunyai kandungan bahan organik yang tinggi sehingga harus diolah atau dimanfaatkan kembali. POME memiliki sejumlah kandungan hara yang dibutuhkan tanaman, yaitu N, P, K, Ca, dan Mg (Susilawati dan Supijatno, 2015). Kandungan komponen pada POME ditunjukkan pada Tabel 2.1

Tabel 2.1 Kandungan Komponen pada POME

	1 1	
Parameter	Satuan	Konsentrasi
pН	mg/l	4,7
Suhu	°C	80-90
Minyak dan lemak	mg/l	5.000-7.000
Total Solids (mg/l)	mg/l	30.000-70.000
Suspended Solids	mg/l	15.000-40.000
(mg/l)		13.000 +0.000
$N-NH_3$ (mg/l)	mg/l	30-40
BOD (mg/l)	mg/l	25.000
COD (mg/l)	mg/l	45.000-64.000
Total Volatile	mg/l	34.000
Solids		34.000
Amonical-Nitrogen	mg/l	35
Total Nitrogen	mg/l	750
Phosporus	mg/l	18
Potassium	mg/l	2.270
Magnesium	mg/l	615
Kalsium	mg/l	439
Boron	mg/l	7,6
Iron	mg/l	46,5
Manganese	mg/l	2,0
Zinc	mg/l	2,3

Sumber: Valentino (2016)

2.2 Microbial Fuel Cell (MFC)

Microbial Fuel Cell (MFC) atau sel elektrokimia berbasis mikroba adalah salah satu contoh teknologi alternatif yang berpotensi untuk dikembangkan untuk menghasilkan energi substituen karena *fuel cell* ini mengubah energi kimia menjadi energi listrik melalui reaksi katalitik menggunakan mikroorganisme. Sistem ini memanfaatkan air buangan sebagai substrat (Ibrahim dkk., 2017).

Sistem MFC terdiri dari dua ruangan yakni anoda dan katoda. Namun, sistem MFC umumnya terdiri dari anoda, katoda, dan larutan elektrolit. Mikroba akan melakukan metabolisme pada komparatif anoda dalam kondisi anaerob untuk mengurai substrat menjadi proton, elektron (e), dan karbon dioksida (CO₂). Elektron akan dialirkan menuju katoda melalui sirkuit luar, sedangkan proton berdifusi melalui jembatan garam menuju katoda (Suyati dkk., 2014).

Double chamber microbial fuel cell adalah metode microbial fuel cell dengan dua ruang yaitu anoda dan katoda. Anoda merupakan tempat terjadinya penguraian substrat oleh mikroorganisme menjadi proton dan elektron. Elektron yang dihasilkan akan dialirkan ke ruang katoda. Ruang anoda dan katoda dipisahkan oleh membran penukar proton/elektron atau jembatan garam (Wulandari, 2019). Gambaran konsep dari sistem *Microbial Fuel Cell* (MFC) yang ditunjukkan pada Gambar 2.1.

Gambar 2.1 Konsep sistem *Microbial Fuel Cell* (MFC) (Wulandari, 2019)

2.3 Lactobacillus bulgaricus

Bakteri *Lactobacillus bulgaricus* merupakan bakteri gram positif yang berbentuk batang, berantai, tidak berspora, tidak berflagel dan bersifat homofermentatif. Nutrisi yang dibutuhkan oleh *Lactobacillus bulgaricus* adalah asam amino, peptide, derivate asam nukleat, vitamin, garam, asam lemak, dan karbohidrat (Uyun, 2018). Bakteri ini merupakan bakteri penghasil asam laktat dan dapat dimanfaatkan untuk sistem *microbial fuel cell* (MFC), dengan kondisi ekologis tumbuh pada pH optimal antara 5,5–6,2 dan suhu optimum 30-40°C. *Lactobacillus bulgaricus* tumbuh dengan baik dalam medium yang mengandung glukosa dan protein, dimana substrat glukosa dapat menggunakan *Protein Exchange Membrane* (PEM) nafion. Dalam metabolismenya, *Lactobacillus bulgaricus* menggunakan glukosa sebagai sumber energi yang akan membentuk ATP dan beberapa molekul lainnya seperti CO₂, asam laktat, dan etanol. Substrat

yang sering digunakan umumnya monosakarida dan disakarida. Kemampuan bakteri *Lactobacillus bulgaricus* dalam memecah senyawa organik tersebut pada limbah berpotensi menghasilkan energi listrik (Sulistiyawati dkk., 2020).

Gambar 2.2 Bakteri Lactobacillus bulgaricus (Uyun, 2018)

2.4 Produksi Biolistrik dari Limbah Cair Organik dengan Metode Microbial Fuel cell

Sejauh ini telah dilakukan banyak penelitian untuk mempelajari produksi biolistrik dari limbah cair organik menggunakan microbial fuel cell. Yogaswara dkk. (2017) mengkaji pengaruh penambahan Saccharomyces cerevisiae dan Eschericia coli pada substrat limbah POME terhadap kinerja microbial fuel cell. Listrik yang dihasilkan sebesar 103,15 mW/m² menggunakan S. cereviceae dan 103,02 mW/m² menggunakan E. coli. Dan hasil analisa BOD dan COD setelah dilakukan percobaan adalah kadar BOD 7155,364 mg/L dan Kadar COD 62954,19 mg/L, kadar BOD dan COD mengalami penurunan efisiensi setelah dilakukan percobaan MFC. Sulistiyawati dkk. (2020) mengkaji produksi biolistrik menggunakan microbial fuel cell dengan bakteri Lactobacillus bulgaricus pada substrat limbah tahu dan tempe. Dari penelitian ini, lisrik yang dihasilkan sebesar 282 mV dan jumlah sel bakteri *Lactobacillus bulgaricus* 12,4 x 10⁶ CFU/ml pada inkubasi jam ke-5. Widodo dan Ali (2019) mengkaji biokonversi bahan organik pada limbah cair rumah pemotongan hewan menjadi energi listrik menggunakan microbial fuel cell. Dari penelitian ini, listrik maksimum yang dihasilkan adalah 2,14 Ma dan power density maksimum 4738,55 mW/m². Sementara kadar COD dan BOD pada penelitian ini mengalami penurunan dengan efisiensi penyisihan 71%.

Penelitian terdahulu juga dilakukan oleh Bose dkk. (2018). Penelitian tersebut menggunakan substrat limbah cair domestik. Penelitian dilakukan secara *batch* dengan *dual chamber* MFC serta volume substrat yang 24 digunakan 250 mL dengan suhu 25±3°C. Elektroda yang dipakai adalah karbon dengan membran Nafion 117. Pada ruang anoda diisi dengan substrat 250 mL dan pada ruang katoda diisi dengan larutan *buffer phosphate* 250 mL. Kandungan COD awal 820±30 mg/L menjadi 170 mg/L. Tegangan maksimum yang dihasilkan 1,45 V dengan rata-rata 750-850 V. Dioperasikan selama 2 minggu.

BAB 3. METODE PENELITIAN

3.1 Lokasi Penelitian

Penelitian ini dilakukan di dua tempat yakni Laboratorium Mikrobiologi dan Labratorium Kimia Fisika yang berlokasi di Departemen Teknik Kimia, Fakultas Teknik, Universitas Sumatera Utara, Medan. Adapun analisa kadar BOD dan COD dilakukan di Balai Riset dan Standarisasi Medan.

3.2 Bahan dan Peralatan

3.2.1 Bahan Penelitian

Pada penelitian ini substrat yang digunakan antara lain limbah cair pabrik kelapa sawit (POME) yang diperoleh dari PTPN IV Pagar Merbau, Deli Serdang. Bahan tambahan lain yang digunakan adalah alkohol dan spiritus. Mikroorganisme yang digunakan adalah bakteri *Lactobacillus bulgaricus* yang didapat dari laboratorium mikrobiologi PT Tirta Lyonnaise, Medan. MFC yang didesain adalah MFC tipe dua kamar (*dual chamber*) dengan menggunakan batang karbon sebagai elektrodanya dan larutan KMnO₄ sebagai mediator elektronnya. Luas permukaan dari elektroda ini sebesar 1,534 x 10⁻³ m² dengan diameter sebesar 0,8 cm dan panjang 5,7 cm.

3.2.2 Peralatan Penelitian

Peralatan yang digunakan pada penelitian ini adalah alat-alat gelas, wadah plastik (toples), obeng, *cutter*, multimeter digital DT 920 A.2 DV, pH meter, oven, gelas ukur, cawan petri, ose, kabel, jepit buaya, inkubator, autoklaf, labu erlenmeyer, pipet ukur, mikro pipet, *shaker*, pipet 100 ml, penangas air, botol semprot, *solder*, lem tembak, selang/pipa, kapas/kasa, karet gelang, dan kabel.

3.3 Variabel Penelitian

Variabel – variable penelitian yang digunakan adalah:

3.3.1 Variabel Tetap

Variabel tetap penelitian yang digunakan adalah waktu inkubasi 2 x 24 jam dan temperatur substrat 30 °C dan volume substrat 500 ml.

3.3.2 Variabel Berubah

Variabel berubah penelitian yang digunakan adalah konsentrasi substrat yaitu 5%; 10%; 15%; 20%; 25%.

3.4 Prosedur Penelitian

3.4.1 Preparasi Elektroda

Elektroda tembaga dengan ukuran 2 x 10 cm direndam dalam larutan NaCl 1M selama 24 jam. Selanjutnya, elektron direndam dalam *aquadest* sampai saat akan digunakan.

3.4.2 Preparasi Bioreaktor

Bioreaktor dibuat dari bahan plastik (wadah toples) berukuran 10 x 10 x 10 cm dengan penutup. Semua ujung tutup bioreaktor dilubangi menggunakan solder. Salah satu bagian penutup tabung dilubangi dengan ukuran 1 x 1 cm untuk tempat katoda.

3.4.3 Preparasi Kultur Lactobacillus bulgaricus

Inokulum kultur *Lactobacillus bulgaricus* diujicobakan pada media limbah cair pabrik kelapa sawit sebagai preparasi awal dengan masa inkubasi selama 24 jam.

3.4.4 Preparasi Substrat

Substrat POME diperoleh disiapkan sebanyak 5 liter lalu dimasukkan dalam jerigen. Sebelum digunakan, substrat tersebut diinkubasi dengan didiamkan selama 2 x 24 jam.

3.4.5 Eksperimen Microbial Fuel Cell

Setelah preparasi substrat dan kultur *Lactobacillus bulgaricus* selesai dilakukan, inokulum *Lactobacillus bulgaricus* diinokulasikan pada substrat. Substrat dan inokulum yang ada di dalam bioreaktor diinkubasi terlebih dahulu selama 2 x 24 jam sebelum dilakukan pengamatan. Eksperimen dilakukan dengan mengukur tegangan (mV) dan penghitungan jumlah sel bakteri *Lactobacillus bulgaricus* setiap 1 jam sekali selama 7 jam perlakuan. Alat multimeter digital DT 920 A.2 DV disambungkan ke sistem MFC dengan penjepit buaya pada setiap variasi perlakuan. Selanjutnya dilakukan pengukuran tegangan. Pengukuran suhu dan pH dilakukan setiap 1 jam selama 7 jam masa inkubasi. Setelah itu, limbah cair kelapa sawit yang telah digunakan di uji kadar COD dan BOD.

3.4.6 Analisis Data dan Evaluasi

Analisi data pada eksperimen ini meliputi pengukuran nilai tegangan dan kuat arus, perkembangan bakteri *lactobacillus bulgaricus* dan pengujian kadar BOD dan COD. Pengukuran Nilai Tegangan dan Kuat Arus dilakukan setiap 1 jam sekali, dengan mencatat nilai kuat arus dan tegangan yang tertera pada multimeter. Kemudian data ini dihitung nilai rata-rata dari data setiap hari pada masa percobaan sehingga dapat menghitung daya rata-rata dan *power density* yang dihasilkan. Data nilai tegangan yang dihasilkan dianalisis dengan metode statistik uji ANOVA dengan tingkat kepercayaan 95%. Kemudian dilakukan evaluasi untuk mengetahui seberapa efektif metode *double chamber mcirobial fuel cell* dalam menghasilkan biolistrik. Evaluasi SSdilakukan dengan membandingkan data biolistrik yang dihasilkan dengan data biolistrik dari penelitian lain. Perkembangan bakteri dilakukan dengan mengamati pertumbuhan bakteri selama masa inkubasi. Data diambil setiap 1 jam sekali selama 7 jam dan

dihitung jumlah sel bakteri. Kemudian dilakukan evaluasi untuk membandingkan data pertumbuhan bakteri pada penelitian sebelumnya. Analisis BOD dan COD dilakukan untuk mengetahui efisiensi *removal* pada sistem MFC. Kemudian dilakukan evaluasi untuk membandingkan penurunan kadar BOD dan COD pada penelitian sebelumnya.

BAB 4. BIAYA DAN JADWAL KEGIATAN

4.1 Rencana Anggaran Biaya

Rekapitulasi anggaran biaya pada penelitian ini dapat dilihat pada Tabel 4.1. Tabel 4.1 Rekapitulasi Rencana Anggaran Biaya

No	Jenis Pengeluaran	Biaya (Rp.)
1	Perlengkapan yang diperlukan	1.900.000,-
2	Bahan habis pakai	2.500.000,-
3	Perjalanan dalam kota	300.000,-
4	Lain-lain	3.250.000,-
	Jumlah	7.950.000,-

4.2 Jadwal Kegiatan

Jadwal pelaksanaan kegiatan ini dapat dilihat pada Tabel 4.2. Tabel 4.2 Jadwal Kegiatan

No	Jenis Kegiatan	Bulan			Person	
		1	2	3	4	Penanggung-jawab
1	Penelusuran pustaka					Diky Syah Putra
2	Tahap persiapan					Wisnu Junior Butar
	(Pembelian sampel, perancangan					Butar
	desain percobaan)					
3	Tahap perancangan dan riset					Ardiansyah Putra
	(uji material bahan dan uji					
	keefektivitasan bahan)					
4	Penulisan laporan hasil dan					Alnazir Samuel
	evaluasi					Ibrahim Manullang
5	Publikasi					Donny Irawan

DAFTAR PUSTAKA

Agustina, T. E., B. Sulistyono dan R. Anugrah. 2016. Pengolahan *Palm Oil Mill Effluent* (POME) dengan Metode Fenton dan Kombinasi Adsorpsi-Fenton. *Jurnal Teknik Kimia*. 3(22): 1-8.

Bose, D., Dhawan, H., Kandpal, V., Vijay, P., dan Gopinath, M. 2018. Bioelectricity Generation From Sewage And Wastewater Treatment Using

- Two-Chambered Microbial Fuel Cell. *International Journal of Energy Research*. 42(14): 4335–4344.
- Direktorat Jenderal Perkebunan. 2019. *Statistika Perkebunan Indonesia 2018-2020: Kelapa Sawit (Palm Oil)*. Jakarta: Sekretariat Direktorat Jenderal Perkebunan.
- Direktorat Jenderal Dewan Energi Nasional.2019. *Outlook Energi Indonesia 2019*. Jakarta: Sekretariat Jenderal Dewan Energi Nasional.
- Ibrahim, B., Suptijah, P. dan Z. N. Adjani. 2017. Kinerja *Microbial Fuel Cell* Penghasil Biolistrik dengan Perbedaan Jenis Elektroda pada Limbah Cair Industri Perikanan. *JPHPI*. 20(2): 296-304.
- Irvan, Trisakti, B., Vincent, M. dan Y. Tandean. 2012. Pengolahan Lanjut Limbah Cair Kelapa Sawit secara Aerobik Menggunakan *Effective Microorganism* Guna Mengurangi Nilai TSS. *Jurnal Teknik Kimia USU*. 1(2): 27-29.
- Sinaga, N. dan A. S. B. Nasution. 2016. Simulasi Pengaruh Komposisi Limbah Cair Pabrik Kelapa Sawit (POME) Terhadap Kandungan Air Biogas dan Daya Listrik Yang Dihasilkan Sebuah Pembangkit Listrik Tenaga Biogas. *Jurnal Teknik Energi*. 11(3): 66-72.
- Susilawati dan Supijatno. 2015. Pengelolaan Limbah Kelapa Sawit (*Elaeis guineensis* Jacq.) di Perkebunan Kelapa Sawit, Riau. *Bul. Agrohorti*. 3(2): 202-212.
- Sulistiyawati, I., Rahayu, N. L. dan F. S. Purwitaningrum. 2020. Produksi Biolistrik menggunakan *Mircobial Fuel Cell* (MFC) *Lactobacillus bulgaricus* dengan Substrat Limbah Tempe dan Tahu. *Majalah Ilmiah Biologi Biosfera: A Scientific Journal*. 37(2): 112-117.
- Suyati, L., Putra, A. dan R. Nuryanto. 2014. Lactose Bioelectricity on A Mircobial Fuel Cell System Parallel Circuit using *Lactobacillus bulgaricus*. *Jurnal Sains dan Matematika*. 22(4): 107-111 ISSN: 0854-0675.
- Uyun, Q.2018.Analisis Lama Penyimpanan Yoghurt Menggunakan Box Sekam Sebagai Sarana Menjaga Baku Mutu Yoghurt Berdasarkan Suhu, Pertumbuhan Bakteri dan pH pada Yoghurt. *Skripsi*. Universitas Islam Negeri Maulana Malik Ibrahim.
- Valentino, V. A. 2016. Perbandingan Persen Volume Limbah Cair Keluaran Digester Sedimentasi dan Fermentasi Biogas Untuk Pembuatan Pupuk Organik Cair. *Skripsi*. Politeknik Negeri Sriwijaya, Palembang.
- Widodo, A. A dan M. Ali. 2019. Biokonversi Bahan Organik pada Limbah Cair Rumah Pemotongan Hewan menjadi Energi Listrik Menggunakan *Microbial Fuel Cell. Jurnal Envirotek*. 11(2): 30-37
- Wiwaha, S. S. 2017. Analisis Peluang Penghematan Konsumsi Energi Listrik Pada Pelanggan Rumah Tangga. *Jurnal ELTEK*. 15(1): 47-58 ISSN: 1693-4024.
- Yogaswara, R. R., Farha, A. S., Pusfitasari, M. D. dan A. Gunawan. 2017. Studi Penambahan Mikroorganisme pada Substrat Limbah POME Terhadap Kinerja *Microbial Fuel Cell. Jurnal Teknik Kimia*. 12(1): 14-18.

LAMPIRAN

Lampiran 1. Biodata Ketua dan Anggota serta Dosen Pendamping

Biodata Ketua

A. IdentitasDiri

1	Nama Lengkap	Ardiansyah Putra
2	Jenis Kelamin	Laki-laki
3	Program Studi	Teknik Kimia
4	NIM	180405006
5	Tempat dan Tanggal Lahir	Pondok Ladang, 10 Oktober 1999
6	Alamat E-mail	kimriikoo10@gmail.com
7	Nomor Telepon/HP	-/082284745738

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Inkubator Sains USU	Anggota Divisi Sains dan Teknologi	2019 – Sekarang di Universitas Sumatera Utara
2	Covalen Study Group	Pengurus Bidang Peningkatan Akademik dan Literatur	2020 - Sekarang di Departemen Teknik Kimia FT USU

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1	Juara 3 OSN Matematika	Kemdikbud	2017
2	Harapan 1 Lomba Cerdas Cermat 4 Pilar MPR	MPR	2017

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggung jawabkan secara hukum. Apabila dikemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya muat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Medan, 10-02-2021 Ketua Tim,

(Ardiansyah Putra)

A. Identitas Diri

1	Nama Lengkap	Wisnu Junior Butarbutar	
2	Jenis Kelamin	Laki – laki	
3	Program Studi	Teknik Kimia	
4	NIM	180405040	
5	Tempat dan Tanggal Lahir	Tanjungbalai, 01November 1999	
6	E-mail	bwisnujunior3@gmail.com	
7	Nomor Telepon/HP	-/081770059869	

B. Kegiatan Mahasiswa yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Camping Rohani KMK Yoseph Engineering Fakultas Teknik 2019	Anggota Konsumsi	Minggu-Selasa, 2-4 Juni 2019 di Pulau Samosir
2	Penyambutan Mahasiswa Baru KMK Yoseph Engineering Fakultas Teknik 2019	Anggota Konsumsi	Jumat-Sabtu, 4- 6Oktober 2019, di Sembahe, Kabanjahe
3	Penyambutan Mahasiswa Baru KMK Yoseph Engineering Fakultas Teknik 2020	Koordinator Kerohanian	Sabtu, 12 Desember 2020 secara Daring via Aplikasi Zoom Meeting

C. Penghargaan yang pernah diterima

No	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1	Juara 1 OSN Fisika SMA Tingkat Kabupaten/Kota	Kemendikbud	2017
2	Juara Harapan 1 Lomba Pidato Bahasa Inggris tingkat SMA	Dinas Pendidikan Kota Tajungbalai	2017

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggung jawabkan secara hukum. Apabila dikemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya muat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Medan, 10-02-2021 Anggota Tim,

(Wisnu Junior Butarbutar)

A. Identitas Diri

1	Nama Lengkap	Diky Syah Putra
2	Jenis Kelamin	Laki-laki
3)	Program Studi	Teknik Kimia S1
4	NIM	180405129
5	Tempat dan Tanggal Lahir	Penggalangan 15 November 1999
5	Akamat E-mail	dikysyahputra1199@gmail.com
7	Nomor Telepon/HP	-/082277920726

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Inkubator Sains USU	Anggota Divisi Sains dan Teknologi	2019 – Sekarang di Universitas Sumatera Utara
2	Covalen Study Group	Pengurus Bidang Peningkatan Akademik dan Literatur	2020 - Sekarang di Departemen Teknik Kimia FT USU
3	Himpunan Mahasiswa Teknik Kimia USU	Pengurus Bidang Penelitian dan pengembangan	2020 - Sekarang di Departemen Teknik Kimia FT USU

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1	Penerima Hibah PKM-K Pendanaan 2020	Kemdikbud	2020
2	Juara 2 Karya Tulis Ilmiah Al-Qur'an (KTIQ)	Universitas Sumatera Utara	2020

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggung jawabkan secara hukum. Apabila dikemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya muat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Medan, 10-02-2021 Anggota Tim,

(Diky Syah Putra)

A. Identitas Diri

1	Nama Lengkap	Donny Irawan	
2	Jenis Kelamin	Laki-Laki	
3	Program Studi	Teknik Elektro	
4	NIM	170402034	
5	Tempat dan Tanggal Lahir	Medan, 09 Juli 1999	
6	E-mail	idonny456@gmail.com	
7	Nomor Telepon/HP	-/085265403046	

B. Kegiatan Mahasiswa yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Gerakan Teknik USU	Anggota	14-18 Agustus 2018 di Desa
	Mengajar	Pengajar	Gambus Laut
2	Tabligh Akbar PEMA FT	Koordinator	16 November 2018, Mesjid
	USU	Acara	Al-Jihad
3	Pekan Ilmiah Teknik Elektro USU	Anggota Konsumsi	29 April-2 Mei 2019, Gelanggang Mahasiswa dan Auditorium USU

C. Penghargaan yang pernah diterima

No	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1	# H	25	

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggung jawabkan secara hukum. Apabila dikemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya muat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Medan, 10-02-2021 Anggota Tim,

(Donny Irawan)

A. Identitas Diri

1	Nama Lengkap	Alnazir Samuel Ibrahim Manullang
2	Jenis Kelamin	Laki-Laki
3	Program Studi	Teknik Elektro
4	NIM	180402007
5	Tempat dan Tanggal Lahir	Medan,12 Januari 2001
6	E-mail	samibrahim1201@gmail.com
7	NomorTelepon/HP	-/082384073090

B. Kegiatan Mahasiswa yang Sedang/Pernah Diikuti

No.	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1.	Inkubator Sains Dan Teknologi - USU	Staff Sains Dan Teknologi	Medan, 20 Oktober 2020- Sekarang
2.	Pioneer Project	Koordinator Seksi Pendidikan	Medan, 10 Juli 2020
3.	Sahabat Nusantara	Staff Pendidikan	Medan, 20 November 2020 - Sekarang

C. Penghargaan yang pernah diterima

No	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1.	Mendali Perak Matematika Tingkat Nasional	Pelatihan Olimpiade Sains Indonesia	2021
2.	Juara 3 Debat	Universitas Sumatera Utara	2018

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggung jawabkan secara hukum. Apabila dikemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya muat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Medan, 10-02-2021

Anggota Tim,

(Alnazir Samuel Ibrahim Manullang)

Biodata Dosen Pendamping

A. Identitas Diri

1	Nama Lengkap (dengan gelar)	Ir. Maya Sarah, S.T., M.T, PhD, IPM
2	Jenis Kelamin	Perempuan
3	Program Studi	Teknik Kimia
4	NIP/NIDN	19700501 200012 2 001/ 0008047301
5	Tempat dan Tanggal Lahir	Surabaya, 01 Mei 1970
6	E-mail	mayasharid@yahoo.com
7	Nomor Telepon/HP	-/08126061817

B. Riwayat pendidikan

	Sarjana	S2/Magister	S3/Doktor
Nama Institusi	Universitas	Institut	Universitas
	Sumatera Utara,	Teknologi	Teknologi
	Medan	Bandung	Malaysia
Jurusan	Teknik Kimia	Teknik Kimia	Teknik Kimia
Tahun Masuk – Lulus	1989-1995	1998-2000	2009-2015

C. Rekam Jejak Tri Dharma PT

Pendidikan/Pengajaran

No	Nama Mata Kuliah	Wajib/Pilihan	SKS
1	Teknologi Pengolahan Buangan Industri	Wajib	3
2	Bioreaktor	Pilihan 2	
3	Bioseparasi	Pilihan	2
4	Analaisis Resiko Lingkungan	Pilihan	2
5	Teknologi Bioproses	Wajib	3
6	Perancangan Proses	Wajib	3
7	Teknologi Pengolahan Minyak Bumi dan	Pilihan	2
	Gas Alam		
8	Pengantar Bioproses	Wajib	2

Penelitian

No.	Judul Penelitian	Penyandang Dana	Tahun
1	Pengolahan Limbah Cair Industri Kelapa	Dana Mandiri	1994
	Sawit dengan Bioreaktor UASB		
2	Penelitian Dampak Pencemaran Industri	Dana Mitra	1997
	Pulp dan Kertas Terhadap Kesehatan	Lingkungan	
	Masyarakat		
3	Pengolahan Limbah Cair Industri	Dana Mandiri	2000
	Pengolahan Limbah Cair Industri Fatty		
	Alcohol secara Anaerobik		

4	Influence of Volatile Acid Acumulation	Forum HEDS	2003
	and Hydrogen Purging in The	(SDPF)	2002
	Degradation of Glycerin Pitch	(SDII)	
5	Proses Reduksi Ekses Lumpur Aktif dari	Dana Mandiri	2004
	Unit Pengolahan Limbah Industri Pulp	Dana Manani	200.
	dan Kertas		
6	Study on The Performance of Anaerobic	Forum HEDS	2004
	Baffled Reactor in The Degradation of	(SDPF)	_00.
	Glycerin Pitch		
7	Proses Penghilangan Tinta dari Kertas	Dana Mandiri	2004
	Bekas		
8	Pengolahan Glycerin Pitch dengan	Dana Mandiri	2005
	Bioreaktor Anaerobik 2 Tahap		
9	Pengolahan Glycerin Pitch dengan	Dana Mandiri	2005
	Bioreaktor UASB		
10	Studi Fermentasi Glukosa Proses	Dana Mandiri	2006
	Sinambung Menggunakan		
	Saccharomyces Cereviseae		
11	Pembuatan Bioetanol dari Tandan	Direktorat	2007
	Kosong Kelapa Sawit (TKKS): Hidrolisis	Jenderal	
	Tandan Kosong Kelapa Sawit Menjadi	Pendidikan	
	Glukosa (Tahun I)	Tinggi (DIKTI)	
		(Hibah	
		PEKERTI)	
12	Pembuatan Bioetanol dari Tandan	Pendidikan	2008
	Kosong Kelapa Sawit (TKKS):	Tinggi (DIKTI)	
	Fermentasi Glukosa Menjadi Etanol	(Hibah	
	(Tahun II)	PEKERTI)	
13	Pembuatan Gas Metana dari Limbah Cair	Metawater Co dan	2008
	Pabrik Kelapa Sawit	Toyohashi	
		University	
14	Efektivitas Pengolahan Air di Instalasi	PDAM Tirtanadi	2008
4.5	Pengolahan Air (IPA) Deli Tua	Medan	2000
15	Studi Pendahuluan Sterilisasi Buah	Chemical Eng.	2009
	Kelapa Sawit dengan Iradiasi	Department	
	Microwave, High Temperature	Universiti	
	Processing	Teknologi	
1.0	D	Malaysia (UTM)	2010
16	Penentuan Parameter Kinetika Proses	Chemical Eng.	2010
	Sterilisasi Tandan Buah Kelapa Sawit	Department	
	dengan Iradiasi Microwave	Universiti	

		Teknologi	
		Malaysia (UTM)	
17	Evaluasi Kualitas Minyak Kelapa Sawit	Chemical Eng.	2013
	dari Proses Sterilisasi dengan Iradiasi	Department	
	Microwave	Universiti	
		Teknologi	
		Malaysia (UTM)	
18	Potensi ampah TPA Terjun untuk	Dinas Kebersihan	2016
	Menjadi Biogas	Kota Medan	
19	Hidrolisis Tandan Kosong Kelapa Sawit	Dana Mandiri	2017
	Melalui Iradiasi <i>Microwave</i> untuk		
	Pembuatan Bioetanol		
20	Sterilisasi Buah Kelapa Sawit	Dana Mandiri	2017
	Menggunakan Iradiasi Microwave		
	Secara Sinambung untuk Pembuatan		
	Crude Palm Oil		
21	Pembuatan Biogas dari Sampah Organik	Dana Mandiri	2018
	Perkotaan Menggunakan Sistem		
	Bioreaktor Anaerobik Berpenyekat		
22	Ekstraksi Pektin dari Kulit Buah Kakao	Dana Mandiri	2019
	Melalui Iradiasi Gelombang Mikro		

Pengabdian Kepada Masyarakat

No.	Judul Pengabdian Kepada Masyarakat	Penyandang Dana	Tahun
1	Sosialisasi Bahaya Bahan Kimia pada	Dana Mandiri	2016
	Peralatan Memasak untuk Anggota		
	Perispindo I BICT		
2	Pemanfaatan Asap Cair Hasil Pirolisis	BOPTN USU	2016
	Limbah Pelepah Kelapa Sawit untuk		
	Peningkatan Kualitas Bahan Olah Karet		
	(Bokar) Kelompok Petani Karet Di Desa		
	Sekoci, Kabupaten Langkat.		
3	Penyuluhan Pengolahan Tanaman Herbal	Dana Mandiri	2017
	untuk Terapi Kesehatan Alternatif.		
4	Penyuluhan Pengaruh Zat Kimia dan	Dana Mandiri	2017
	Parasit dalam Makanan dan Cara		
	Mengidentifikasinya.		
5	Pengoperasian Bioreaktor Berpengaduk	BOPTN	2017

	Ribbon untuk Pembuatan Pupuk Organik Cair		
6	Sosialisasi Penyakit Menular untuk Anggota Aisyiah Cabang Medan Johor.	Dana Mandiri	2018
7	Sosialisasi Bahan Kosmetik Berbahan Natural (Chemical Free) pada Ibu-Ibu Perispindo I Cabang Belawan.	Dana Mandiri	2018
8	Sosialisasi tentang Gaya Hidup Sehat untuk Badan Pengurus Pusat Perispindo I.	Dana Mandiri	2018

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggung jawabkan secara hukum. Apabila dikemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya muat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Medan, 10-02-2021 Dosen Pendamping,

(Maya Sarah)

Lampiran 2. Justifikasi Anggaran Kegiatan

Jenis Pengeluaran	Volume	Harga Satuan (Rp)	Nilai (Rp)		
Kebutuhan kegiatan virtual					
a. Sewa Kuota Internet	3 bulan	300.000,-	900.000,-		
b. Sewa Aplikasi Video Conference (Zoom)	3 bulan	250.000,-	750.000,-		
c. Perlengkapan Audio – Visual Sederhana	1 buah	250.000,-	250.000,-		
		SUB TOTAL (Rp)	1.900.000,-		
2. Bahan Habis Pakai	Volume	Harga Satuan (Rp)	Nilai (Rp)		
a. Kalium Permanganat	1 kg	160.000,-	160.000,-		
b. Limbah Kelapa Sawit	5 L	20.000,-	100.000,-		
c. Kultur Bakteri Lactobacillus Bulgaricus	100 gr	150.000,-	150.000,-		
d. Batang Karbon	8 Batang	20.000,-	160.000,-		
e. Alumunium Foil	2 buah	25.000,-	50.000,-		
f. Aquadest	5 L	6.000,-	30.000,-		
g. ATK	1 set	50.000,-	50.000,-		
h. Akses Jurnal	5 jurnal	300.000,-	1.500.000,-		
i. APD (Faceshield)	5 Kotak	20.000,-	100.000,-		
j. APD (Masker)	2 Kotak	50.000,-	100.000,-		
k. APD (Sarung Tangan)	2 Kotak	50.000,-	100.000,-		
		SUB TOTAL (Rp)	2.500.000,-		
3. Perjalanan	Volume	Harga Satuan (Rp)	Nilai (Rp)		
a. Perjalanan Pembelian Bahan	5 orang	20.000,-	100.000,-		
b. Perjalanan Uji Coba Sampel	5 orang	40.000,-	200.000,-		
		SUB TOTAL (Rp)	300.000,-		
4. Lain - lain	Volume	Harga Satuan (Rp)	Nilai (Rp)		
a. Uji BOD dan COD	5 sampel	350.000,-	1.750.000,-		
b. Biaya Sewa Lab	-	1.500.000,-	1.500.000,-		
	3.250.000,-				
	TOTAL KES	SELURUHAN (Rp)	7.950.000,-		
(Terbilang Tujuh Juta Sembilan Ratus Lima Puluh Ribu Rupiah)					

Lampiran 3. Susunan Organisasi Tim Peneliti dan Pembagian Tugas

No	Nama/	Program	Bidang Ilmu	Alokasi	Uraian Tugas
	Nim	Studi		Waktu	
				(jam/minggu)	
1	Ardiansyah	Teknik	Bioreaktor	8	Mengkoordinasi-
	Putra/	Kimia			kan kegiatan,
	180405006				memimpin rapat,
					penanggung
					jawab
					pelaksanaan
2	Wisnu	Teknik	Bioreaktor	8	Mempersiapkan
	Junior	Kimia			dan memantapkan
	Butar-				metode kerja serta
	Butar/				peralatan yang
	180405040				dibutuhkan pada
					tiap kegiatan
3	Diky Syah	Teknik	Bioreaktor	8	Mempersiapkan
	Putra/	Kimia			dan memantapkan
	180405129				metode kerja serta
					peralatan yang
					dibutuhkan pada
					tiap kegiatan
4	Donny	Teknik	Teknik	8	Mempersiapkan
	Irawan/	Elektro	Telekomunikasi		dan memantapkan
	170402034				metode kerja serta
					peralatan yang
					dibutuhkan pada
					tiap kegiatan
5	Alnazir	Teknik	Energi	8	Mempersiapkan
	Samuel	Elektro	Telkom		dan memantapkan
	Ibrahim				metode kerja serta
	Manullang				peralatan yang
	/				dibutuhkan pada
	180402007				kegiatan

Lampiran 4. Surat Pernyataan Ketua Pelaksana

SURAT PERNYATAAN KETUA TIM PELAKSANA

Yang bertandatangan dibawah ini:

Nama : Ardiansyah Putra

NIM : 180405006

Program Studi : S-1 Teknik Kimia

Fakultas : Teknik

Dengan ini menyatakan bahwa proposal PKM-RE saya dengan judul "Produksi Biolistrik Limbah Cair Pabrik Kelapa Sawit dengan Metode *Double Chamber Microbial Fuel Cell Lactobacillus Bulgaricus* sebagai Bioenergi Alternatif' yang diusulkan untuk tahun anggaran 2021 adalah asli karya kami dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan penyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya yang sudah diterima ke kas Negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenarbenarnya.

> Medan, 10-02-2021 Yang menyatakan,

(Ardiansyah Putra) NIM, 181501109