Programowanie Funkcyjne WPPT

Lista zadań

Jacek Cichoń, WPPT, PWr, 2018/19

Zadania oznaczone * są nieco trudniejsze od zadań bez gwiazdki. Zadania oznaczone ** są jeszcze trudniejsze.

1 Wstęp

1.1 Wprowadzenie do Haskell'a

Zadanie 1 — Zrób wszystkie zadania z książki Real World Haskell po rozdziale pierwszym.

Zadanie 2 — Oblicz w GHCI wartości wyrażeń $2 \land 3 \land 2$, $(2 \land 3) \land 2$ i $2 \land (2 \land 3)$. Dowiedz się jaka jest łączność operatora \land za pomocą polecenia :i (\land) .

Zadanie 3 — Funkcją Eulera ϕ nazywamy funkcję określoną wzorem

$$\phi(n) = \operatorname{card}(\{k \le n : \gcd(k, n) = 1\}).$$

o dziedzinie \mathbb{N}^+ .

- 1. Oprogramuj funkcję ϕ (funkcja gcd jest w bibliotece Prelude)
- 2. Napisz funkcję, która dla danej liczby naturalnej n wyznacza liczbę $\sum_{k|n} \phi(k)$.

Zadanie 4 — Trójkę liczb naturalnych (a,b,c) nazywamy właściwą trójką pitagorejską jeśli $a^2=b^2+c^2$ oraz gcd(b,c)=1. Wyznacz wszystkie właściwe trójki pitegorejskie takie, że $a\leq 200$.

Zadanie 5 — Zaimplementuj na kilka sposobów funkcję służącą do wyznaczania liczb Fibbonacciego: rekurencyjnie, rekurencyjnie za pomocą wzorców.

Zadanie 6 — Zaimplementuj funkcję $\binom{n}{k}$. Nie stosuj tożsamości $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ - jest to kosztowne rozwiązanie; zastosuj wzór rekurencyjny na $\binom{n+1}{k+1}$.

Zadanie 7 — Liczbę naturalną n nazywamy doskonałą jeśli $n = \sum \{d < n : d|n\}$. Np. 6 = 1 + 2 + 3. Wyznacz wszystkie liczby doskonałe mniejsze od 10000.

1.2 Elementy teorii kategorii

Zadanie 8 — Które z następujących struktur są monoidami?

- 1. $([0,1], 0, \vee)$, gdzie $x \vee y = \max\{x, y\}$
- 2. ([0, 1], 1, \wedge), gdzie $x \wedge y = \min\{x, y\}$
- 3. $((0,\infty),1,\star)$, gdzie $x\star y=x^y$
- 4. $(X^X, \mathrm{Id}_x, \circ)$ (X jest ustalonym zbiorem)
- 5. $(X^*, [], ++)$, (gdzie X jest ustalonym zbiorem)

Zadanie 9 — Pokaż, że strzałka Id_A jest jednoznaczna, czyli, że jeśli $Id1_A$ oraz $Id2_A$ spełniają własności identyczności to $Id1_A = Id2_A$.

Zadanie 10 — Pokaż, że złożenie monomorfizmów jest monomorfizmem.

Zadanie 11 — Pokaż, że złożenie epimorfizmów jest epimorfizmem. Spróbuj podać proste uzasadnienie tego faktu oparte o poprzednie zadanie.

Zadanie 12 — Pokaż, że jeśli $f:A\to B$ jest izomorfizmem, to odwrotność f^{-1} jest wyznaczona jednoznacznie.

Zadanie 13 — Pokaż, że jeśli f^{-1} jest odwrotnością $f:A\to B$ i g^{-1} jest odwrotnością $g:B\to C$, to $f^{-1}\circ g^{-1}$ jest odwrotnością $g\circ f:A\to C$.

Zadanie 14 — Podaj przykład kategorii ze strzałką która jest monomorfizmem oraz epimorfizmem, ale nie jest izomorfizmem.

Zadanie 15 — Rozważamy kategorię zbudowaną z częściowego porządku (X, \leq) . Kiedy istnieją w niej elementy początkowe i końcowe?

Zadanie 16 — Zinterpretuj w języku informatyki komutowanie następującego diagramu

$$\begin{array}{ccc} Int & \xrightarrow{succ_{Int}} & Int \\ \\ toReal & & & \downarrow toReal \\ Real & \xrightarrow{succ_{Real}} & Real \end{array}$$

Zadanie 17 — Pokaż, że obiekty końcowe (terminalne) w ustalonej kategorii są wyrażone jednoznacznie z dokładnością do izomorfizmu. Pokaż podobną własność obiektów początkowych.

Zadanie 18 — Wyznacz obiekty końcowe i początkowe w następujących kategoriach:

- 1. w kategorii grup Grp
- 2. w kategorii ciał
- 3. w kategorii częściowych porządków Pos
- 4. w kategorii monoidów Mon
- 5. $\mathbf{Set} \times \mathbf{Set}$
- 6. Set $^{\rightarrow}$

Zadanie 19 — Pokaż, że produkt $(A \times B, \pi_A, \pi_B)$ jest wyznaczony jednoznacznie z dokładnością do izomorfizmu w kategorii **Set**. Wskazówka: Skorzystaj z jednoznaczności mediatora w definicji produktu.

C.D.N.

Powodzenia, Jacek Cichoń