CornellEngineering

Civil and Environmental Engineering

CEE 4540

Sustainable municipal drinking water treatment

Topic: Residual Handing

Instructor: YuJung Chang

YuJung.Chang@aecom.com

Class #20 11/12/2018 2:55 - 4:10pm

Overview of WTP Sludge Treatment/Disposal

- Physical
- Chemical Conditioning
- Final Disposal
- Beneficial Reuse

Overview of WTP Sludge Treatment/Disposal

- Physical
- Chemical Conditioning
- Final Disposal
- Beneficial Reuse

Types of Residual from WTP: Liquid Stream

- Liquid waste stream
 - Filter to waste (15 60 min)
 - Backwash wastewater (usually containing 10 400 mg/L of solids)
 - Chemical cleaning wastewater (needs to be neutralized for pH or oxidation/reduction power)
 - Sludge dewatered wastewater
- Collected liquid wastes stream can be
 - Discharged back to river (downstream of intake)
 - Treated to further increase overall recovery if higher water recovery is desirable

Considerations for Recycling Backwashed Wastewater

- Recycling undesirable materials
 - Pathogens
 - Taste & Odor causing compounds or carried over algae
 - Increased Disinfection by Products (DBPs)
- Recycled waste stream will required additional treatment prior to returned to the had of the plant, with sedimentation/decanting with disinfection being the minimum requirement
- Equalization Tank required for more homogenous water quality returning back to the plant
- Discharge of liquid waste stream to a receiving water source may require EPA
 NPDES permit

Other Types of Liquid Waste from WTP

- Ion Exchange Resin (IXR) regeneration brine waste
 - Containing substances removed by ion exchange
 - High TDS (Na, Cl, Ca, Mg, SO4 etc.)
 - o All other constituents removed by IX, e.g., NOM, and potential contaminants
- Some IXR uses acids or bases for regeneration, therefore the initial treated water immediately following regeneration may contains high or low pH
- MF/UF Membrane Wastewater
 - Backwash wastewater
 - CIP chemical wastewater
- RO Membrane Wastewater
 - CIP chemical cleaning wastewater
 - RO reject brine (covered in SWRO & BWRO), require neutralization of pH and ORP

Types of Residual from WTP: Solid Waste

- Sludge collected from
 - Intake Screening
 - Sedimentation basin or skimmed off from DAF
- Sludge from backwash wastewater recovery
 - Backwash wastewater collected, settled, and decanted; with decant water pumped back to the head of the plant (mixed with raw water inflow)
- Solid waste contains particulates/silts/ from water supply as well as metal hydroxides formed by the coagulants added, such as Fe and Al based coagulants
- Solid waste (sludge) from different sources is usually collected in the same sludge holding tank/basin, thickened (increasing sludge concentration), then dewatered.

Types of Residual from WTP: Solid Waste (Continued)

- Precipitated Salts from softening processes (with the addition of Lime & Soda Ash), typically 80 – 95% of the softening sludge is CaCO3, with remaining solid being MgOH
- Spent adsorptive media, such as Granular Activated Carbon (GAC) and Ion Exchange Resins (IXR)
- Additional Considerations for solid waste disposal
 - Solid waste may contain pathogens removed from the water (pending on local regulations on disposal)
 - Does solid waste contain regulated contaminants?
 - o Arsenic, Selenium, Chromium 6+, PFAS, etc.
 - May require certified testing results prior to disposal
 - EPA's Toxic Contaminant Leaching Testing Protocol (TCLP)
 - Regional toxicity testing requirements, such as WET test in CA

Characteristics of Alum Sludge

- Quantity of Alum sludge is usually much more than ferric-based sludge due the gelatinous nature of the solid (high water content)
- Typical solid content in alum sludge is only 0.5-2% (5,000 20,000 mg/L)
- Note: Alum: Al2SO4(14 H2O) with MW = 594

Solid Production, S = (8.34Q)(0.44AI + SS + A)

S = sludge produced (lbs/day)

Q =plant flow, million gallons per day (mgd)

 $Al = \text{liquid alum dose (mg/L, as } 17.1\% \text{ Al}_2\text{O}_3)$

SS = raw-water suspended solids (mg/L)

 $A = \text{net solids from additional chemicals added, such as polymer or powdered activated carbon (PAC) (mg/L)$

Ferric Sludge

- Ferric Based Coagulants:
 - Ferric Chloride: FeCl₃
 - Ferric Sulfate: Fe₂(SO₄)₃
 - Ferrous Sulfate FeSO₄-7H₂O
- With per Lb (0.45 kg) of ferric sulfate added, 0.54 lb (0.25 kg) of ferric hydroxide (FeOH₃) is formed

Softening Sludge

Assuming only Calcium Carbonate (CaCO₃) and Magnesium Hydroxide (MgOH) solids are formed:

$$S = 8.336 (Q)(2.0 Ca + 2.6 Mg)$$

```
S = sludge produced, lb/day (kg/d)

Q = plant flow, mgd (m³/s)

Ca = calcium hardness removed as CaCO<sub>3</sub>, mg/L

Mg = magnesium hardness removed as CaCO<sub>3</sub>, mg/L

8.336 = constant for use with English units (86.4 is the constant for use with the metric units shown)
```

Overall Sludge Production for Surface Water Treatment

$$S = 8.143(Q)(2.0 \text{ Ca} + 2.6 \text{ Mg} + 0.44 \text{ Al} + 1.9 \text{ Fe} + \text{SS} + A)$$

S = sludge produced, lb/day (kg/d)

 $Q = \text{plant flow, mgd } (\text{m}^3/\text{s})$

Al = alum dose as 17.1 percent Al₂O₃, mg/L

Fe = iron dose as Fe, mg/L

SS = raw-water suspended solids, mg/L

A = additional chemicals such as polymer, clay, or activated carbon, mg/L

8.143 = constant for use with English units (84.4 is the constant for use with the metric units shown)

Typical Solid Concentration in Sludge

- Volume of sludge is about 1 1.5% of the WTP flow
- Spent Filter Backwash Wastewater Solid: ~ 50 400 mg/L
- Ultimate thickened sludge solid: ~6%
- Vacuum Dewatered sludge: 42%

Effect of Ca/Mg Ratio on Softening Sludge Solid Content

Hither Ca/Mg ratio favors higher solid%

Calculation of Specific Resistance for Sludge Cake

$$r = \frac{2PA^2b}{\mu c}$$

where:

r = specific resistance to filtration

P =pressure drop across sludge cake

A = surface area of filter

 μ = filtrate viscosity

c = weight of dry solids deposited per volume of filtration

b = slope of a plot of t/V versus V

t = time of filtrate

V = filtrate volume

Conditioning Sludge for Optimum Dewatering

- Sludge's dewatering characteristics can be enhanced by adding polymers
- Higher Molecular Weight Polymers usually work better; but need to watch out for potential handling issues if the viscosity is too high
- Typical polymer dosage:
- 1 g/kg sludge10 g/kg sludge

Mechanical Gravity Thickening

- Commonly used for typical WTP and softening plants
- With proper operation solid of thicken sludge can be ~ 2 – 6% for alum sludge and ~ 30% for softening sludge

Gravity Thickeners

Gravity Sludge Thickener

Typical Design & Operation Parameters

Table 21-13

Typical performance and design data for gravity mechanical thickening of coagulant and lime sludges

		Type	Type of Sludge	
Parameter	Unit	Coagulant	Lime Softening	
Feed solids Thickened solids Solids recovery Solids loading	% % kg/m ² · d lb/ft ² · d	0.2-1 2-3 80-90 20-80 4-16	1-4 >5 80-90 100-200 20-40	

Thickening with DAF

 Ideal for solids that doesn't settle well (e.g., some membrane filtration backwash wastewater)

Table 21-14

Typical performance and design data for dissolved air flotation thickening for coagulant and lime-softening sludges

		Туре	Type of Sludge	
Parameter	Unit	Coagulant	Lime Softening	
Feed solids	%	0.5-1	0.5-1	
Thickened solids	%	3-5	3-5	
Solids recovery	%	80-90	80-90	
Solids loading	kg/m² ⋅ d	48-120	48-120	
	lb/ft² ⋅ d	10-24	10-24	
Volumetric loading	m³/m² ⋅ d	110-150	110-150	
	gal/ft ² · d	2800-3600	2800-3600	

Sludge Lagoon

- Non-chemical, conventional and typical sludge thickening process
- Cost effective for sludge thickening, drying and storage, if land is available
- Solid can be increased to 30 50%, depending on the types of solids
 - Usually ~ 3 months for filling and another 3 months for drying

Filtration Sludge Lagoon

Softening Sludge Lagoon

Typical Sludge Lagoon Loading Rate

- 8.2 lb/ft2 for wet sludge
- 16.4 lb/ft2 for dried sludge
- Sand layer is used to support sludge
- Lagoon is usually lined

Overall Water Recovery & Sludge Thickening/Storage

Alternative Sludge Drying Processes

- Freezing
 - Destroy the gelatinous characteristics of ferric/alum sludge; making it coarse and granular. Concentration can be increased from 2% to 20%, and further drained to reach 30%
 - Only available during winter, not applicable to places with short or no freezing weather in the winter
- Heat Treatment: Applied in wastewater sludge, but cost prohibitive for WTP sludge

Common Sludge Dewatering Processes used in WTP

- Vacuum Filtration
- Plate and frame filter presses
- Belt filter presses, and
- Centrifuges.

Vacuum Filtration for WTP Sludge Dewatering

Figure 21-21
Schematic diagram of typical vacuum filtration installation.

Vacuum Filtration for WTP Sludge Dewatering

Performance of Vacuum Filtration Dewatering System

	Parameter	Unit	Range of Values
	Feed solids	%	2–6
	Feed rate	L/m² ⋅ h	0.7-2.1
		gal/ft² ⋅ h	2–6
	Solids recovery	%_	96-99+
	Dry-solids yield	kg/m² ⋅ h	0.2-0.3
ج ج		4b/ft² - h	1,01,5
i	Thickened solids		
!	Alum sludges	%	15-25
	Lime sludges	%	20-40
•	Filtrate suspended solids	mg/L	10-20
	Precoat recovery	%	30–35
	Precoat rate	kg/m² ⋅ h	0.02-0.04
		lb/ft² ⋅ h	0.1-0.2
	Precoat thickness	mm	38.1-63.5
		in.	1.5-2.5
	Drum speed	rev/min	0.2-0.3
	Operating vacuum	mm Hg	127-508
		in. Hg	5–20

Plate & Frame Filter Press for WTP Sludge Dewatering

- Very commonly seen in small & medium size WTP
- Sludge filled between plates
- Filter cloths attached to each plate
- Plates got pressurized hydraulically to "squeeze" out water from the sludge
- Can achieve 30 40% of solids
 with lime/polymer conditioning

Plate & Frame Filter Press for WTP Sludge Dewatering

Key Components of a Plate & Frame System

Can produce 30 – 40% solids

Parts & Filter of a Plate & Frame Filter Press System

Belt Filters (Gravity Filters)

- Simpler mechanism
- Lower energy
- Can achieve ~ 20% solid

Centrifuge for WTP Sludge Dewatering

Final Solid Waste Disposal

- Landfilling
- □ Disposal on land (reuse as a soil amendment)
- Discharge to a wastewater collection system
- Co-disposal with wastewater biosolids
- Reuse in building or fill materials

Additional Considerations for Waste Disposal

- Does residual containing regulated contaminants?
 - Radionuclides
 - Regulated contaminants (adsorbing to the solids)
- Additional testing for hazardous material may be required prior to disposal
 - EPA Toxicity Characteristic Leaching Procedure(TCLP)
 - California Water Extraction Test (WET)
- Land application is regulated under USEPA's Resource Conservation and Recovery Act (RCRA)

Homework & Reading

- Problem 21-7
- Assume the use of Plate & Frame sludge dewatering system for the sludge from Problem 21-7, estimate the mass and volume of the final sludge coming out of the Plate & Frame filter Press.
- Reading Assignment: Chapter 21 Residual Management