

The team

Nara Surya (Presenter)
Ketua Divisi Smart Technology Tecart

Jana
Anggota Divisi Smart Technology Tecart

Gede OchaAnggota Divisi Smart Technology Tecart

Recap Workshop week 2

- 1 Proses Konvolusi
- 2 Convolutional Neural Network
- Sedikit Computer Vision

Mengklasifikasi Wasp and Bee

Materi Hari ini

Apa itu Recurrent Neural Network?

Permasalahan-permasalahan yang umum terjadi di RNN

architecture RNN

4 Mengklasifikasi Sentiment

Available:

Pengenalan RNN

Apa itu RNN?

Generative RNN

conditional distribution

- Sequence to Vector
- Sequence to Sequence (same length)
- Vector to Sequence

Sequence to Sequence

Sequence to vector

Sequence to vector.

$$\frac{-0 \ln_{\ell-1}}{4} - 0 \ln_{\ell} - 0 \dots - 0 \ln_{n}$$

$$\frac{4}{4}$$

$$\times_{\ell-1}$$

$$\times_{\ell}$$

Sequence to Sequence (Same length)

Sequence to sequence.

Vector to Sequence

Sequence to Sequence

Permasalahan dalam RNN

Backpropagation Through Time

$$\frac{\partial E_3}{\partial W} = \sum_{k=0}^{3} \frac{\partial E_3}{\partial \hat{y}_3} \frac{\partial \hat{y}_3}{\partial s_3} \frac{\partial s_3}{\partial s_k} \frac{\partial s_k}{\partial W}$$

Vanishing or Exploding Gradient Problem

Gradient Clipping

Algorithm 1 Pseudo-code for norm clipping the gradients whenever they explode

$$\hat{\mathbf{g}} \leftarrow rac{\partial \mathcal{E}}{\partial heta} \ ext{if} \ \|\hat{\mathbf{g}}\| \geq threshold \ ext{then} \ \hat{\mathbf{g}} \leftarrow rac{threshold}{\|\hat{\mathbf{g}}\|} \hat{\mathbf{g}} \ ext{end if}$$

Image By Pascanu, Razvan et al. "On the difficulty of training recurrent neural networks." ICML (2013).

Learn More: Pascanu, Razvan et al. "On the difficulty of training recurrent neural networks." ICML (2013).

LSTM dan GRU

LSTM

GRU

$$z_{t} = \sigma (W_{z} \cdot [h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} \cdot [h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = \tanh (W \cdot [r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$

Biderectional RNN

Another Architecture RNN

Tree RNN

y_1 y_2 x_1 y_3 x_1 y_4 x_2 x_4 x_5 x_6

Dilated RNN

Image By Tai, Kai Sheng et al. "Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks." ArXiv abs/1503.00075 (2015): n. pag.

Image By Chang, S. et al. "Dilated Recurrent Neural Networks." NIPS (2017)..

Natural Languange Processing

NLP Task

- 1. Sentiment Analysist
- 2. Question Answer
- 3. POS-tagging
- 4. Dialogue
- 5. Language Modelling
- 6. Machine Translation
- 7.DLL

Word Embedding

Demo

<u>Twitter</u>

@NaraSurya13

Email Address

ibagungnsd13@gmail.com

<u>Telegram</u>

@Gusagung

Contact

Next Week

Week 1 Neural Network Week 2 CNN

Week 3 RNN Week 4
Attention Mechanism &
Transformer

See You...