Bousfield Localization (Lecture 20)

April 27, 2010

Let C be a full subcategory of the category Sp of spectra, which is closed under shifts and homotopy colimits and satisfies the following technical condition:

(*) There exists a small subcategory $\mathcal{C}_0 \subseteq \mathcal{C}$ which generates \mathcal{C} under homotopy colimits.

In this case, the inclusion $\mathcal{C} \subseteq \operatorname{Sp}$ preserves homotopy colimits; using a version of the adjoint functor theorem one deduces that this inclusion admits a right adjoint G (at the level of homotopy categories). We can think of G as a functor from Sp to itself, which takes values in C .

Remark 1. Roughly speaking, if X is a spectrum then we want to define G(X) to be the homotopy colimit of all objects $Y \in \mathcal{C}$ with a map to X. Condition (*) is used to make this homotopy colimit sensible (that is, to replace it by a homotopy colimit indexed by a small category).

For every spectrum X, we have a counit map $v:G(X)\to X$. We let L(X) denote the cofiber of v, so that we have a cofiber sequence

$$G(X) \to X \to L(X)$$
.

By construction, for every object $Y \in \mathcal{C}$, the map of function spectra $G(X)^Y \to X^Y$ is a homotopy equivalence; it follows that $L(X)^Y \simeq 0$.

Definition 2. A spectrum X is C-local if every map $Y \to X$ is nullhomotopic when $Y \in C$. We denote the category of C-local spectra by C^{\perp} .

Remark 3. The full subcategory $\mathcal{C}^{\perp} \subseteq \operatorname{Sp}$ is stable under shifts and homotopy limits.

The above analysis shows that for every X, the spectrum L(X) is \mathcal{C} -local. Moreover, for every \mathcal{C} -local spectrum Z, we have $Z^{G(X)} \simeq 0$, so that the map $Z^{L(X)} \to Z^X$ is a homotopy equivalence. It follows that L can be viewed as a left adjoint to the inclusion $\mathcal{C}^{\perp} \subseteq \operatorname{Sp}$.

Example 4 (Bousfield). Fix a spectrum E. We say that another spectrum X is E-acyclic if the smash product $X \otimes E$ is zero. The collection \mathcal{C}_E of E-acyclic spectra is clearly stable under shifts and homotopy colimits, and one can show that it satisfies (*). We say that a spectrum X is E-local if every map $Y \to X$ is nullhomotopic whenever Y is E-acyclic. The above analysis shows that every spectrum X sits in an essentially unique cofiber sequence

$$G_E(X) \to X \to L_E(X)$$

where G(X) is E-acyclic and $L_E(X)$ is E-local. The functor L_E is called Bousfield localization with respect to E. The map $X \to L_E(X)$ is characterized up to equivalence by two properties:

- (a) The spectrum $L_E(X)$ is E-local.
- (b) The map $X \to L_E(X)$ is an E-equivalence: that is, it induces an isomorphism on E-homology groups $E_*(X) \simeq E_*L_E(X)$.

Example 5. Let E be a ring spectrum. If X is an E-module spectrum, then X is E-local. Indeed, suppose that Y is E-acyclic and we are given a map $f: Y \to X$. Then f can be written as the composition

$$Y \xrightarrow{f} X \to E \otimes X \to X.$$

The composition of the first pair of morphisms factors as a composition

$$Y \to E \otimes Y \stackrel{\mathrm{id} \otimes f}{\to} E \otimes X,$$

and is therefore nullhomotopic since $E \otimes Y \simeq 0$.

Remark 6. Let E be an A_{∞} -ring spectrum and X an arbitrary spectrum, and let X^{\bullet} be the cosimplicial spectrum given by $X^n = E^{\otimes n+1} \otimes X$. Each X^n is E-local, so the totalization $\varprojlim X^{\bullet}$ of X^{\bullet} is E-local. It follows that the canonical map $X \to \varprojlim X^{\bullet}$ factors through a map $\alpha : L_E X \to \varprojlim X^{\bullet}$. In many cases, one can show that α is a homotopy equivalence: that is, the cosimplicial object X^{\bullet} is a means of computing the E-localization of X.

Example 7. Let E be the Eilenberg-MacLane spectrum H \mathbf{Q} . Then a spectrum X is E-acyclic if and only if the homotopy groups π_*X consist entirely of torsion. A spectrum X is E-local if and only if the homotopy groups π_*X are rational vector spaces.

Example 8. The theory of Bousfield localization works in a very general context. For example, rather than working with spectra, we can work with chain complexes of abelian groups. Fix a prime number p. We say that a projective chain complex A_{\bullet} is $\mathbf{Z}/p\mathbf{Z}$ -acyclic if $A_{\bullet}\otimes\mathbf{Z}/p\mathbf{Z}$ is nullhomotopic: equivalently, A_{\bullet} is $\mathbf{Z}/p\mathbf{Z}$ -acyclic if each homology group $H_n(A_{\bullet})$ is a $\mathbf{Z}[\frac{1}{p}]$ -module. We say that A_{\bullet} is $\mathbf{Z}/p\mathbf{Z}$ -local if every map from a projective $\mathbf{Z}/p\mathbf{Z}$ -acyclic chain complex into A_{\bullet} is nullhomotopic.

For any projective chain complex A_{\bullet} , we define its completion \widehat{A}_{\bullet} to be the homotopy limit

$$\varprojlim_n A_{\bullet} \otimes \mathbf{Z}/p^n \mathbf{Z}.$$

As a homotopy limit of $\mathbb{Z}/p\mathbb{Z}$ -local chain complexes, we conclude that \widehat{A}_{\bullet} is $\mathbb{Z}/p\mathbb{Z}$ -local. On the other hand, a simple calculation shows that the map $A_{\bullet} \to \widehat{A}_{\bullet}$ induces a quasi-isomorphism modulo p, so that \widehat{A}_{\bullet} can be identified with the $\mathbb{Z}/p\mathbb{Z}$ -localization of A_{\bullet} .

In general, it is good to think of Bousfield localization as involving a mix of Examples 7 and 8. In algebro-geometric terms, it can behave sometimes like restriction to an open subscheme (as in Example 7) and sometimes like completion along a closed subscheme (Example 8). Our next goal is to describe Bousfield localizations of the first type more precisely.

Lemma 9. Let \mathbb{C} , \mathbb{C}^{\perp} , G, and L be as above. The following conditions are equivalent:

- (1) The subcategory $\mathfrak{C}^{\perp} \subseteq \operatorname{Sp}$ is stable under homotopy colimits.
- (2) The functor L preserves homotopy colimits.
- (3) The functor G preserves homotopy colimits.
- (4) The functor L has the form $L(X) = K \otimes X$ for some spectrum K.

Proof. We first prove $(1) \Rightarrow (2)$. Assume \mathcal{C}^{\perp} is stable under homotopy colimits. For any diagram of spectra $\{X_{\alpha}\}$, we have canonical maps

$$\lim X_{\alpha} \xrightarrow{\gamma} \lim L(X_{\alpha}) \xrightarrow{\beta} L \lim X_{\alpha}.$$

The fiber of γ belongs to \mathcal{C} (since \mathcal{C} is stable under homotopy colimits), and $\varinjlim L(X_{\alpha}) \in \mathcal{C}^{\perp}$ by (1). It follows that β is an equivalence.

To prove that $(2) \Rightarrow (1)$, we note that if $\{X_{\alpha}\}$ is a diagram in \mathcal{C}^{\perp} , then $L(\varinjlim X_{\alpha}) \simeq \varinjlim L(X_{\alpha}) \simeq \varinjlim X_{\alpha}$ so that $\lim_{\alpha \to \infty} X_{\alpha} \in \mathcal{C}^{\perp}$.

The equivalence of (2) and (3) follows from the cofiber sequence of functors

$$G \to \mathrm{id} \to L$$
.

Finally, the equivalence of (2) and (4) follows from from the following observation: every functor $F: \mathrm{Sp} \to \mathrm{Sp}$ which preserves homotopy colimits has the form $F(X) \simeq K \otimes X$, for some spectrum K.

We say that a Bousfield localization L is smashing if it satisfies the equivalent conditions of Lemma 9.

Remark 10. In the situation of Lemma 9, the spectrum K can be recovered as the image L(S) of the sphere spectrum S under the localization functor L.

Remark 11. Let $\mathcal{C} \subseteq \mathrm{Sp}$ be a subcategory satisfying the conditions of Lemma 9. Then a spectrum X belongs to \mathcal{C} if and only if $L(X) = L(S) \otimes X \simeq 0$. In other words, \mathcal{C} can be identified with the collection of L(S)-acyclic spectra, so that $L = L_E$ for E = L(S).

Example 12. Let $\mathcal{C} \subseteq \operatorname{Sp}$ be a subcategory which is stable under shifts and homotopy colimits, which is generated under homotopy colimits by a subcategory $\mathcal{C}_0 \subseteq \mathcal{C}$ consisting of *finite* spectra. Then it is easy to see that \mathcal{C} satisfies condition (1) of Lemma 9, so that \mathcal{C} determines a smashing localization functor.