Problem statement:

$$\Omega_{x}^{CW} = f_{\sigma_{tilt}}^{CW}(\Omega_{y}),$$

Need to show that

$$\Omega_{x}^{CCW} = f_{\sigma_{tilt}}^{CCW}(\Omega_{y})$$

 $\forall \epsilon > 0 \forall \exists \delta > 0$:

$$|\Omega_{y}^{0}| - |\Omega_{y}^{1}| < \delta \rightarrow |f_{\sigma_{tilt}}^{CW}(\Omega_{y}^{0})| - |f_{\sigma_{tilt}}^{CCW}(\Omega_{y}^{1})| < \epsilon$$

For a given σ_{tilt}

CW ring

CCW ring

Injection space

HOW:

$$\forall ((x,y), \Delta \gamma_s)$$

get the pair $((\Omega_y, \Omega_x)_{CW}, (\Omega_y, \Omega_x)_{CCW})$ $f_x^{CW}(\gamma_s)$

 $f_y^{CW}(\gamma_s)$

 $\Omega_{\nu}(x,\Delta \gamma_{s})$

Combine each line for CW w/each for CCW

Get stats:

$$S_{1} = \Omega_{x}^{CW}(\vec{x}_{i}, \Delta \gamma_{s}^{j}) + \Omega_{x}^{CCW}(\vec{x}_{t}, \Delta \gamma_{s}^{p}),$$

$$S_{2} = \Omega_{y}^{CW}(\vec{x}_{i}, \Delta \gamma_{s}^{j}) - \Omega_{y}^{CCW}(\vec{x}_{t}, \Delta \gamma_{s}^{p})$$

