Textbook sections: 4.5, 4.7

There are two methods of finding a particular solution.

Method of Undetermined Coefficients (4.5)

Motivating Examples

(i) Motivating Example, $e^{\lambda t}$ (is not a solution to homogeneous) \vee

Find the particular solution to $y'' + 3y' + 2y = 10e^{3t}$.

Testing $y = Ae^{3t}$, we get

$$9Ae^{3t} + 9Ae^{3t} + 2e^{3t} = 10e^{3t} \ 20Ae^{3t} = 10e^{3t} \ A = rac{1}{2}.$$

Therefore, $\frac{1}{2}e^{3t}$ is a particular solution.

(i) Motivating Example, $\sin t \sim$

Find the particular solution to $y'' + 3y' + 2y = \sin t$.

Testing $y = A\cos t + B\sin t$,

$$(-A\cos t - B\sin t) + 3(-A\sin t + B\cos t) + 2(A\cos t + B\sin t) = \sin t \ (-3A + B)\sin t + (A + 3B)\cos t = \sin t$$

We can solve, getting $A = -\frac{3}{10}, B = \frac{1}{10}$.

Therefore, $(-\frac{3}{10}\cos t + \frac{1}{10}\sin t)$ is a particular solution.

\bigcirc Motivating Example, $e^{\lambda t}$ (is a solution to homogeneous) \checkmark

Find the particular solution to $y'' - 6y' + 9y = e^{3t}$.

Testing $y = Ae^{3t}$, we get

$$9Ae^{3t} - 18Ae^{3t} + 9Ae^{3t} = e^{3t}$$
$$0 = e^{3t}$$

 e^{3t} is a solution to the homogeneous problem, so cannot be used.

Testing $y = Ate^{3t}$, the solution fails for the same reason.

Testing $y = At^2e^{3t}$.

$$y' = 2Ate^{3t} + 3At^2e^3t \ y'' = 2Ae^{3t} + 12Ate^{3t} + 9At^2e^{3t}$$

After some math, we see this does work and provides a particular solution to our heterogeneous equation.

Strategy for Undetermined Coefficients

To solve

$$ay'' + by' + cy = g(t),$$

- 1. Obtain the general solution of the homo sol'n.
- Determine if undetermined coefficients can be used.*
- 3. If RHS is a sum, do the problem for the individual terms.
 - 4. Find a particular solution for each problem. Assume particular solution form, determine coefficients.
 - 5. Repeat for all terms.
- 4. Form general solution & solve IVP

*Undetermined coefficients can only be used for polynomials, sin/cos, exponentials. Let:

- P_n be some polynomial of deg n
- Q_n, R_n be polynomials of deg n (with undetermined coefficients)
- t^* designate the smallest exponent of t such that the particular solution is not a solution in the homogeneous counterpart

g(t)	particular solution $Y(t)$
P_n	t^*Q_n
$P_n e^{lpha t}$	$t^*e^{lpha t}Q_n$
$P_n e^{\alpha t} \sin(\beta t), P_n e^{\alpha t} \cos(\beta t)$	$t^*e^{lpha t}(\cos(eta t)Q_n+\sin(eta t)R_n)$

Limitations

Does not give an explicit expression for the particular solution

Can only be applied for sine, cosine, exponentials, and polynomials

These are resolved with variation of parameters.

Variation of Parameters (4.7)

Strategy for Variation of Parameters (for SOLDEs)

We seek a solution to nonhomogeneous problem:

$$y'' + p(t)y' + q(t)y = q(t).$$

(Note: WLOG, y'' coefficient is 1.)

The solution to corresponding homo problem is:

$$y_h = c_1 y_1(t) + c_2 y_2(t)$$

To find a particular solution, replace c_1, c_2 with functions v_1, v_2 , and try to find those functions.

$$y_p = v_1(t)y_1(t) + v_2(t)y_2(t)$$

Procedure for Variation of Parameters (for SOLDEs)

- 1. Solve homogeneous problem to find y_1, y_2 .
- 2. Solve the system of nonlinear equations:

$$y_1v_1'+y_2v_2'=0 \ y_1'v_1'+y_2'v_2'=g$$

- 3. Integrate v_1', v_2' to get v_1, v_2 .
- 4. $y_p = v_1 y_1 + v_2 y_2$.

○ Derivation ∨

We are trying to solve the nonhomogeneous problem

$$y'' + py' + qy = g.$$

Let y_1, y_2 be solutions to the homogeneous problem.

Let $y_p = v_1 y_1 + v_2 y_2$ be the general solution to the nonhomogeneous problem. Then,

$$y_p^\prime = v_1 y_1^\prime + v_2 y_2^\prime + v_1^\prime y_1 + v_2^\prime y_2.$$

For simplicity, assume $v_1^{\prime}y_1+v_2^{\prime}y_2=0$ (eq. 1).

Using this assumption:

$$egin{aligned} y_p' &= v_1 y_1' + v_2 y_2' \ y_p'' &= v_1' y_1' + v_2' y_2' + v_1 y_1'' + v_2 y_2'' \end{aligned}$$

We can substitute this into the nonhomogeneous problem:

$$y_p'' + py_p' + qy_p = (v_1'y_1' + v_2'y_2' + v_1y_1'' + v_2y_2'') + p(v_1y_1' + v_2y_2') + q(v_1y_1 + v_2y_2) = v_1(y_1'' + py_1' + qy_1) + v_2(y_2'' + py_2' + qy_2) + v_1'(y_1') + v_2'(y_2') = v_1'y_1' + v_2'y_2'$$

Thus, our two constraints for variation of parameters are...

$$y_1v_1'+y_2v_2'=0 \ y_1'v_1'+y_2'v_2'=g$$

Variation of parameters can be computed explicitly using the explicit formula:

$$y_p = -y_1 \int rac{y_2 g}{W[y_1,y_2]} \, dt + y_2 \int rac{y_1 g}{W[y_1,y_2]} \, dt$$

This is derived from the systems of FOLDEs formula.

∃ Example ∨

Determine a particular solution to

$$t^2y'' - 4ty' + 6y = 4t^3, \quad t > 0$$

given that $y_1=t^2, y_2=t^3$ are solutions to the homogeneous equation.

Solving

In standard form,

$$y'' - rac{4}{t}y' + rac{6}{t^2}y = 4t. \ t^2v_1' + t^3v_2' = 0 \ 2tv_1' + 3t^2v_2' = 4t$$

Note that $(2) \times t$:

$$2t^2v_1' + 3t^3v_2' = 4t^2 \ t^3v_2' = 4t^2 \ v_2' = rac{4}{t}$$

Then, substituting into (1):

$$t^2v_1' + 4t^2 = 0 \ t^2v_1' = -4t^2 \ v_1' = -4$$

Integrating, we get:

$$egin{aligned} v_1 &= -4t \ v_2 &= 4 \ln t \end{aligned}$$

So our particular solution is:

$$y_n = -4t^3 + 4t^3 \ln t$$

Strategy for Variation of Parameters (for Systems of FOLDEs)

We seek a solution to nonhomogeneous problem:

$$ec{x}_1' = Pec{x} + ec{g}(t)$$

(*P* being some matrix function, \vec{g} being some vector function)

If the solution to the corresponding homogeneous problem is

$$\vec{x}_h = c_1 \vec{x}_1(t) + c_2 \vec{x}_2(t),$$

we define the fundamental matrix:

$$X(t) = [ec{x}_1 \quad ec{x}_2]$$

There is a particular solution:

$$ec{x}_p = X(t) \int \overbrace{X^{-1}(t) ec{g}(t)}^{ ext{solution to } [X | ec{g}]} dt$$

(i) Derivation ~

Let v_1 and v_2 be some scalar function of t, and assume

$$egin{aligned} ec{x}_p &= v_1(t)ec{x}_1(t) + v_2(t)ec{x}_2(t) \ &= \left[ec{x}_1 \quad ec{x}_2
ight] egin{bmatrix} v_1 \ v_2 \end{bmatrix} \ &= Xec{v}. \end{aligned}$$

By differentiating \vec{x}_p , we find that

$$\vec{x}_p' = X'\vec{v} + X\vec{v}'.$$

We can substitute \vec{x}_p and \vec{x}_p' into our nonhomogeneous problem:

$$egin{aligned} ec{x}_p' &= Pec{x}_p + ec{g} \ X'ec{v} + Xec{v}' &= P(Xec{v}) + ec{g} \end{aligned}$$

Note that PX = X'.

$$X'\vec{v} + X\vec{v}' = X'\vec{v} + \vec{g}$$

 $X\vec{v}' = \vec{g}$

Then,

$$egin{aligned} ec{v}' &= X^{-1}ec{g} \ ec{v} &= \int X^{-1}ec{g}\,dt \end{aligned} \ ec{x}_p &= Xec{v} = X\int X^{-1}ec{g}\,dt \end{aligned}$$

:≡ Example ∨

Determine a particular solution to

$$ec{x}_1 = egin{bmatrix} 2 & -3 \ 1 & -2 \end{bmatrix} ec{x}(t) + egin{bmatrix} e^{2t} \ 1 \end{bmatrix}$$

given the solutions to the homogeneous equation are

$$egin{aligned} ec{x}_1 &= e^t egin{bmatrix} 3 \ 1 \end{bmatrix} \ ec{x}_2 &= e^{-t} egin{bmatrix} 1 \ 1 \end{bmatrix} \end{aligned}$$

The fundamental matrix:

$$X = egin{bmatrix} 3e^t & e^{-t} \ e^t & e^{-t} \end{bmatrix}$$

Then, solving $[X|\vec{g}]$:

$$\begin{bmatrix} 3e^t & e^{-t} & | & e^{2t} \\ e^t & e^{-t} & | & 1 \end{bmatrix} \\ \begin{bmatrix} 3e^{2t} & 1 & | & e^{3t} \\ 3e^{2t} & 3 & | & 3e^t \end{bmatrix} \\ \begin{bmatrix} 3e^{2t} & 1 & | & e^{3t} \\ 0 & 2 & | & 3e^t - e^{3t} \end{bmatrix} \\ \begin{bmatrix} 3e^{2t} & 1 & | & \frac{3e^{3t}}{2} \\ 0 & 1 & | & \frac{3e^{3t}}{2} - \frac{e^{3t}}{2} \end{bmatrix} \\ \begin{bmatrix} 3e^{2t} & 0 & | & \frac{3e^{3t}}{2} - \frac{e^{3t}}{2} \\ 0 & 1 & | & \frac{3e^t}{2} - \frac{e^{3t}}{2} \end{bmatrix} \\ \begin{bmatrix} 1 & 0 & | & \frac{e^t}{2} - \frac{e^{-t}}{2} \\ 0 & 1 & | & \frac{3e^t}{2} - \frac{e^{3t}}{2} \end{bmatrix}$$

Then,

$$\begin{split} \vec{x}_p &= X(t) \int X^{-1}(t) \vec{g}(t) \, dt \\ &= \frac{1}{2} X \int \begin{bmatrix} e^t - e^{-t} \\ 3e^t - e^{3t} \end{bmatrix} dt \\ &= \frac{1}{2} \begin{bmatrix} 3e^t & e^{-t} \\ e^t & e^{-t} \end{bmatrix} \begin{bmatrix} e^t + e^{-t} \\ 3e^t - \frac{1}{3}e^{3t} \end{bmatrix} \\ &= \frac{1}{2} \begin{bmatrix} (3e^{2t} + 3) + (3 - \frac{1}{3}e^{2t}) \\ (e^{2t} + 1) + (3 - \frac{1}{3}e^{2t}) \end{bmatrix} \\ &= \frac{1}{2} \begin{bmatrix} \frac{8}{3}e^{2t} + 6 \\ \frac{2}{3}e^{2t} + 4 \end{bmatrix} \\ &= \begin{bmatrix} \frac{4}{3}e^{2t} + 3 \\ \frac{1}{3}e^{2t} + 2 \end{bmatrix} \end{split}$$