Hoja de ecuaciones Física General III

Electrostática

Ley de Coulomb

$$egin{equation} ec{F}_{1,2} = rac{k \cdot q_1 \cdot q_2}{r_{1,2}^2} \cdot \hat{r}_{1,2} \end{aligned}$$

 $egin{aligned} ec{F}_{1,2} = rac{k \cdot q_1 \cdot q_2}{r_{1,2}^2} \cdot \hat{r}_{1,2} \end{aligned} \qquad ec{F}_{1,2} = ext{Fuerza que el cuepo 1 le ejerce al cuerpo 2}.$

 $q_i =$ cargas de los cuerpos.

 $\vec{r}_{1,2} = \text{vector de posición de 1 a 2.}$

- $k \equiv \text{constante de Coulomb}$.
- $\bullet \ k = 8,98755 \cdot 10^9 \frac{Nm^2}{C^2} = \frac{1}{4\pi\varepsilon_0}$
- $\bullet \ \varepsilon_0 \equiv {\rm perimitividad}$ en el vacío.
- $\bullet \ \varepsilon_0 = 8,85419 \cdot 10^{-12} \frac{C^2}{Nm^2}$
- $C \equiv Coulomb$.

Principio de superposición

ullet En un sistema con múltiples cargas , la fuerza ejercida sobre una partícula (X), es la suma de las fuerzas $\vec{F}_{i,X}$:

$$ec{F}_T = k \cdot \sum_{i=0}^n rac{q_X \cdot q_i}{r_{i,X}^2} \cdot \hat{r}_{i,X}$$

Constantes

- ullet Las cargas están cuantizadas de la forma $q=ne:n\in\mathbb{Z}$, tal que $e=1,6022\cdot 10^{-19}C$
- ullet Carga del protón: $p^+=e$
- ullet Carga del electrón: $e^-=-e$
- ullet Carga del neutrón: $N^0=0$
- ullet Masa del protón: $m_{p^+}=1,673\cdot 10^{-27}kg$
- ullet Masa del electrón: $m_{e^-}=9,109\cdot 10^{-31} kg$
- ullet Masa del neutrón: $m_{N^0}=1,675\cdot 10^{-27} kg$

Campo eléctrico

- ullet $ec{F} = q \cdot ec{E}$
- $\vec{E} \equiv \text{Campo eléctrico}, \ [E] = \frac{N}{C}$

Principio de superposición del campo

$$ec{E}_T(ec{r}) = k \cdot \sum_i rac{q_i}{r_{i,0}^2} \cdot \hat{r}_{i,0} = k \cdot \sum_i rac{q_i \cdot (ec{r}_0 - ec{r}_i)}{|ec{r}_0 - ec{r}_i|^3}$$

Líneas de campo

ullet Son líneas continuas tangentes al campo, tal que la cantidad de líneas de campo por unidad de área esta asociada a la magnitud de \vec{E} . Estas tienen sentido de forma que apuntan desde cargas positivas hacia cargas negativas.

Campo de una densidad de carga

- ullet $ho \equiv$ densidad de carga volumétrica.
- ullet $\sigma \equiv$ densidad de carga superficial.
- $\lambda \equiv$ densidad de carga lineal.

$$ec{E}=\iiint_V rac{k\cdot
ho\cdot \hat{r}_p}{r_p^2}dV$$
 $ec{r}_p\equiv$ vector desde el dV hasta la posición en la que se calcula el campo

Flujo de campo eléctrico y Ley de Gauss

- ullet $\Phi_E = \iint_S ec{E} \cdot ec{dA}$
- Ley de Gauss para el campo eléctrico:

$$oxed{\Phi_E = \iint \; ec{E} \cdot ec{dA} = rac{q_{in}}{arepsilon_0}}$$

$$\Phi_E = \oiint \; \; ec{E} \cdot ec{dA} = \iiint_V rac{
ho}{arepsilon_0} \cdot dV$$

$$ullet$$
 De forma diferencial $ightarrow$ $egin{aligned}
abla \cdot ec{E} = rac{
ho}{arepsilon_0} \end{aligned}$

Energía y potencial eléctrico

$$ullet dW = q \cdot \vec{E} \cdot \vec{dS} = -dU$$

$$ullet$$
 $\Delta U = -q \cdot \int_i^f ec{E} \cdot ec{dS}$

$$ullet$$
 Se define el potencial eléctrico como $V=rac{U}{q},\ [V]=rac{J}{C}=V\equiv Voltio$

$$ullet \left| \Delta V = - \int_i^f ec{E} \cdot \left| dec{S}
ight| \Rightarrow \left[ec{E}
ight] = rac{V}{m}$$

• Se define el Electronvoltio como la energía de un electrón al moverse 1 voltio:

$$1 \ eV = q_{e^-} \cdot 1V = 1,602 \cdot 10^{-19} J$$

$$ullet$$
 Potencial de una carga puntual: $V(ec{r})=rac{kq}{r}$

$$ullet$$
 Potencial para N cargas: $V(ec{r}) = k \sum_{i}^{N} rac{q_i'}{r_i}$

$$\bullet$$
 Potencial de una carga puntual: $V(\vec{r}) = \frac{kq}{r}$
 \bullet Potencial para N cargas: $V(\vec{r}) = k \sum_{i}^{N} \frac{q_{i}}{r_{i}}$
 \bullet Energía potencial para N cargas: $U_{N} = k \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{q_{i}q_{j}}{r_{ij}} = \frac{k}{2} \sum_{i \neq j}^{N} \frac{q_{i}q_{j}}{r_{ij}}$

• Potencial para una densidad de carga:

$$V(ec{p}) = k \iiint_V rac{
ho \cdot dV}{r_p}$$

$$ullet$$
 Se cumple que: $ec{ec{E}}=-
abla V$ \Rightarrow $ec{E}$ es un campo conservativo \Rightarrow $abla imes ec{E}=0$

Ecuación de Laplace y de Poisson

ullet Si en un punto del espacio $ec{p}$ no hay carga se cumple la ecuación de Laplace o $|
abla^2 V(ec{p})=0|$

ullet Si en un punto del espacio $ec{p}$ hay una densidad de carga ho se cumple la ecuación de Poisson

$$ightarrow \sqrt{
abla^2 V(ec p) = -rac{
ho}{arepsilon_0}}$$

Capacitores/Condensador

$$ullet Q = C \cdot \Delta V$$

 $\bullet \boxed{Q=C\cdot \Delta V}$ $\bullet \ C \equiv \text{capacitancia o capacidad del condensador; } \left[C\right]=F=\tfrac{C}{V}, \ F \equiv \text{Faradio.}$

• Notación en circuitos:

ullet Capacitancia de un capacitor de placas paralelas: $C=rac{A\,arepsilon_0}{d}$