Video Compression Technology

Presented by – Teerayuth M. Technical Support Engineer

Agenda

- Digital TV Introduction
- Video Compression Standards
- Video Formats and Quality
- Video Coding Concepts

Digital Television

What is Digital Television?

- sending and receiving of moving images and sound by discrete signals
- more flexible and efficient than analog television
- After June 12, 2009, *full-power* television stations in the USA will broadcast in digital only

Digital Television Format

Standard Definition Television (SDTV)

Europe

- 4:3 Aspect ratio, 625 lines, 50 fields/sec
- 16:9 Aspect ratio, 625 lines, 50 fields/sec

North America

- 4:3 Aspect ratio, 525 lines, 60 fields/sec

Digital Television Format

High Definition Television (HDTV) - All 16:9 Aspect Ratios

- 1125 (1080i) lines, 60 or 59.94 fields/sec, Interlaced
- 750 (720p) lines, 60 or 59.54 frames/sec, Progressive
- 525 (480p) lines, 60 or 59.94 frames/sec, Progressive
- Others: 24 Hz p, 25 Hz p, 30 Hz p, 50 Hz i/p, 60 50 Hz i/p

Digital Video Broadcast Standard

- Digital Video Broadcasting (DVB)
 - DVB-S (Digital Video Broadcasting Satellite)
 - DVB-T (Digital Video Broadcasting Terrestrial)
 - DVB-C (Digital Video Broadcasting Cable)
 - DVB-H (Digital Video Broadcasting Handheld)
- Advanced Television Systems Committee (ATSC)
- Integrated Services Digital Broadcasting (ISDB)
- Digital Multimedia Broadcasting (DMB)

Agenda

- Digital TV Introduction
- Video Compression Standards
- Video Formats and Quality
- Video Coding Concepts

Video Compression Standards

- JPEG, still images (Joint Photographic Experts Group)
 - M-JPEG; motion JPEG, not a standard, generally proprietary, JPEG 2000
- ITU-T: H.261 (px64), H.262, H.263 (Video conference), H.264
- MPEG-1 (Moving Picture Experts Group), CD-ROM and multimedia
- MPEG-2, Broadcast entertainment/contribution and DVD
- MPEG-4, very low bit rate coding of objects
- Other formats DV, RealVideo, VC-1, WMV, XVD

MPEG-1

- ISO/IEC 11172 (1993)
- Lossy compression of video & audio
- Design focused on non-interlaced (progressive)
 Source Input Format (SIF) = 352x240, 352x288, or 320x240
- Application was media storage e.g. CD-ROM
 ~1.5 Mbps data rate
- Uses most of the H.261 techniques
- Used in early DTV testing

MPEG-2

- ISO/IEC 13818 (1994)
- Lossy compression of video & audio
- Evolved out of the shortcomings of MPEG-1
- Applications
 - RF Transmission
 - ATSC, DVB-T, DVB-C, DVB-S
 - Other satellite; ENG, Backhaul, Affiliate Distribution
 - Broadband Network (Telco)
 - Storage Media
 - Intra-studio
 - Internet
 - Video Conferencing
 - Education
 - Entertainment

MPEG-2 Standard Documents

MPEG-2 ISO/IEC 13818

- Part 1 Systems
- Part 2 Video
- Part 3 Audio
- Part 4 Conformance Testing (for 1, 2 and 3)
- Part 5 Software Simulation
- Part 6 System Extensions DSM-CC (Digital Storage Media - Command and Control)
- Part 7 Audio Extension NBC (Non-Backward Compatible)
- Part 9 System Extension RTI (Real-Time Interface)
- Part 10 Conformance Extension DSM-CC
- Part 11 Intellectual property management (IPMP)

MPEG-4

- ISO/IEC 14496 (1998)
- Low bit rate video communications
 - 2 Kbps 10 Kbps
- Applications
 - AV data for web (Streaming media)
 - CD Distribution
 - Voice (Telephone, Videophone)
 - Broadcast television

MPEG-4 - Parts

MPEG-4 ISO/IEC 14496

- Part 1 Systems
- Part 2 Visual
- Part 3 Audio
- Part 4 Conformance
- Part 5 Reference Software
- Part 6 Delivery Multimedia Integration Framework (DMIF)
- Part 7 Optimized Reference Software
- Part 8 Carriage on IP networks
- Part 9 Reference Hardware
- Part 10 Advanced Video Coding (AVC)

MPEG-4 - Parts

MPEG-4 ISO/IEC 14496

- Part 11 Scene description and Application engine("BIFS")
- Part 12 ISO Base Media File Format
- Part 13 Intellectual Property Management and Protection (IPMP)
 Extensions
- Part 14 MPEG-4 File Format
- Part 15 AVC File Format
- Part 16 Animation Framework eXtension (AFX)
- Part 17 Timed Text subtitle format
- Part 18 Font Compression and Streaming (for OpenType fonts)
- Part 19 Synthesized Texture Stream
- Part 20 Lightweight Application Scene Representation (LASeR)

MPEG-4 - Parts

MPEG-4 ISO/IEC 14496

- Part 21 MPEG-J Graphics Framework eXtensions (GFX)
- Part 22 Open Font Format
- Part 23 Symbolic Music Representation (SMR)
- Part 24 Audio and systems interaction
- Part 25 3D Graphics Compression Model
- Part 26 Audio Conformance
- Part 27 3D Graphics conformance

Overview of MPEG-4 Visual

- MPEG-4 Visual (Part 2, "Coding of Visual Objects")
- Support many different application
 - "Legacy" video application
 - Rendered computer graphics
 - Streaming video
 - High-quality video editing
- Block-based video CODEC, Quantization, Entropy coding
- Introduction Overview
- Section 1-5 Technical detail
- Section 6 Syntax & Semantics
- Section 7 Processes for decoding
- Section 8 Objects
- Section 9 Profiles & Levels
- 15 Annexes

Overview of H.264

- Designed primarily to support efficient and robust coding and transport of rectangular video frames
- Target applications include two-way video communication
- Introduction Application, Concept of Profiles and Levels
- Section 1-5 Preamble to the detail, terminology and definitions, abbreviations
- Section 6 input and output data formats
- Section 7 syntax and semantics
- Section 8 processes involved in decoding slices
- Section 9 how a coded bitstream
- 4 Annexes

Agenda

- Digital TV Introduction
- Video Compression Standards
- Video Formats and Quality
- Video Coding Concepts

Natural Video Scenes

- Composed of multiple objects each with their own characteristic shape, depth, texture and illumination.
- Spatial Characteristics & Temporal Characteristics

Spatial & Temporal

- Temporal Compression (IntER-frame)
 - Compresses the data from multiple frames
- Spatial Compression (IntRA-frame)
 - Compresses the data within one frame
 - (Similar to JPEG)

Frames & Fields

Top field

Bottom field

RGB Color Spaces

Red, Green and Blue components of color image

YCbCr

ITU-R recommendation BT.601

$$Y = 0.299R + 0.587G + 0.114B$$

 $Cb = 0.564(B - Y)$
 $Cr = 0.713(R - Y)$

Cr, Cg and Cb components

Sampling Formats

YCbCr 4:2:0 Samples

Video Formats

Format	Luminance resolution (horiz. × vert.)	Bits per frame (4:2:0, eight bits per sample)
Sub-QCIF	128 × 96	147456
Quarter CIF (QCIF)	176×144	304128
CIF	352×288	1216512
4CIF	704×576	4866048

Quality

- Subjective Quality Measurement
 - DSCQS (Double Stimulus Continuous Quality Scale)
- Objective Quality Measurement
 - PSNR (Peak Signal to Noise Ratio)

PSNR examples: (a) original; (b) 30.6 dB; (c) 28.3 dB

Agenda

- Digital TV Introduction
- Video Compression Standards
- Video Formats and Quality
- Video Coding Concepts

Video Compression - Purpose Of

• What is the purpose of video compression?

• Reduce the amount of data required to be transmitted to create the picture at the receiver.

Video Codec

- Encodes a source image/video sequence into a compressed form
- Lossless and Lossy
- Three main functional units: *Temporal model, Spatial model, Entropy encoder*

Encoder Block Diagram

Temporal Model

 Reduce redundancy between transmitted frames by forming a predicted frame and subtract this form the current frame

Macroblock

- represents a block of 16 by 16 pixels
- contains 4 Y (luminance) block, 1 Cb (blue color difference) block,
- 1 Cr (red color difference)

Motion Estimation & Compensation

- Motion Estimation Sample region in a reference frame that closely matches the current macroblock
- Motion Compensation The selected "best" matching region in the reference frame is subtracted from the current macroblock to produce a residual macroblock

Residual (Block Size)

Residual (Block Size)

Residual (16x16 Block Size)

Residual (8x8 Block Size)

Residual (4x4 Block Size)

Motion Vector 16x16

Motion Vector 4x4

Transform Coding

- What is the purpose of "Transform"?
- Block-Based Transform; KLT (Karhunen-Loeve Transform), SVD (Singular Value Decomposition), DCT (Discrete Cosine Transform)
- Image-Based Transform; DWT (Discrete Wavelet Transform)

DCT Basis Patterns

DCT Coefficients

Image section 4x4 block

Original Block

98 151 181 181 80 137 176 156 75 114 88 68				
98 151 181 181	75	114	88	68
_	80	137	176	156
120 100 170 101	98	151	181	181
126 159 178 181	126	159	178	181

DCT Coefficients

Quantization

 Usually made up of two parts: a forward quantizer FQ in the encoder and an 'inverse quantizer' in the decoder

Scanning

Field Block

Entropy Coder

- Converts as series of symbols representing elements of the video sequence into a compressed bitstream
 - Predictive Coding
 - Variable-length Coding
 - Huffman Coding
 - Arithmetic Coding

Example

Frame Fn

Residual Fn - Fn-1
TRINERGY INSTRUMENT CO., LTD.

Reconstructed reference Frame Fn-1

16 x 16 Motion Vector

Example

MPEG-2 MPEG-4

Example

MPEG-4 H.264

Applications

Application	Requirements	MPEG-4 Profiles*	H.264 Profiles
Broadcast television	Coding efficiency, reliability (over a 'controlled' distribution channel), interlace, low-complexity decoder	ASP	Main
Streaming video	Coding efficiency, reliability (over an 'uncontrolled' packet-based network), scalability	ARTS or FGS	Extended
Video storage and playback (e.g. DVD)	Coding efficiency, interlace, low-complexity decoder	ASP	Main
Videoconferencing	Coding efficiency, reliability, low latency, low-complexity encoder and decoder	SP	Baseline
Mobile video	Coding efficiency, reliability, low latency, low-complexity encoder and decoder, low power consumption	SP	Baseline
Studio distribution	Lossless or near-lossless, interlace, efficient transcoding	Studio	Main

Thank You For Your Attendance