# SiPM readout electronics

#### Detector

- there are 3 boxes
- each box have 2 layers scintillator, they are located in x,y direction.
- each layer have 10 modules, each module have 4 scintillator bars
- each scintillator bar have 1 SiPMs
- we have 3 \* 2 \* 10 \* 4 = 240 Scintillator and SiPMs in total

#### Basic connection

- each layer connect to one FEE and FPGA board
- each FEE and FPGA board have 64 channels, but we only use 40 channels
- each box have 2 FEE and FPGA board
- The FEE and FPGA board get CLK from DAQ and use LVDS send data to DAQ
- One DAQ get 3 boxes data and send to PC
- we can set the coincidence mode and coincidence window in DAQ by configure the switch on the board



## SiPM board

- each SiPM board have 4 SiPMs
- each SiPM have 2 signal output, one is positive, one is negative
- SiPM board get HV from connector





### Connector board

- each connector board connect to 10 SiPM board
- connector get the cathode signal from SiPM board and send to FEE board
- connector get the anode signal from SiPM board but send it to GND
- connector get the HV from FEE board and send it to SiPM board







# FEE (front end Electronics)

- each FEE board have 64 channels, we use 40 channels
- FEE get the cathode signal from connector board, get the HV from DC Voltage source.
- FEE get discharge signal from FPGA board and send the pulse to FPGA board







#### **FPGA** board

- each FPGA board have 64 channels, we use 40 channels
- FPGA get the pulse from FEE board and use inner LVDS comparator compare the pulse with threshold, and get the digital signal
- we can adjust the threshold by change the register of DC/DC circuit in FPGA board. usually we set the threshold to 0.2V
- FPGA get the CLK from DAQ board and send the data to DAQ board
- all parameters and feature can be find at "discharge\_time\_digitalize.v" file



## DAQ (Data Acquisition)

- each DAQ board can get data from 16 FPGA board but now we only use 6 FPGA board
- DAQ board get the data from FPGA board, send CLK to FPGA board, compress data and send to PC by UART

 we can set the coincidence mode and coincidence window in DAQ by configure the switch on the board



- DAQ data format
  - FPGA board data output [1024 bit]/[128 byte] per event
  - o every 2 byte is one channel data

| 探测器编号 | 转接板输入连接器 | 转接板输出连接器 | 前端板连接器 | FEE标号 | FPGA输入信号序号      | 字节序号 |
|-------|----------|----------|--------|-------|-----------------|------|
| 1(左侧) | J1 9     | J11 1    | J6     | C32   | SIPM_SIGNAL[22] | 48   |
| 2     | J1 7     | J11 3    | J6     | 31    | SIPM_SIGNAL[23] | 49   |
| 3     | J1 5     | J11 5    | J6     | 30    | SIPM_SIGNAL[25] | 50   |
| 4     | J1 3     | J11 7    | J6     | 29    | SIPM_SIGNAL[24] | 51   |
| 5     | J2 9     | J11 9    | J6     | 28    | SIPM_SIGNAL[17] | 52   |
| 6     | J2 7     | J11 11   | J6     | 27    | SIPM_SIGNAL[26] | 53   |
| 7     | J2 5     | J11 13   | J6     | 26    | SIPM_SIGNAL[16] | 54   |
| 8     | J2 3     | J11 15   | J6     | C25   | SIPM_SIGNAL[27] | 55   |
| 9     | J3 9     | J11 16   | J6     | A24   | SIPM_SIGNAL[12] | 56   |
| 10    | J3 7     | J11 18   | J6     | 23    | SIPM_SIGNAL[13] | 57   |
| 11    | J3 5     | J11 20   | J6     | 22    | SIPM SIGNAL[10] | 58   |
| 12    | J3 3     | J11 22   | J6     | A21   | SIPM_SIGNAL[11] | 59   |
| 13    | J4 9     | J12 1    | J3     | C16   | SIPM SIGNAL[42] | 16   |
| 14    | 34 7     | J12 3    | J3     | 15    | SIPM_SIGNAL[45] | 17   |
| 15    | J4 5     | J12 5    | J3     | 14    | SIPM_SIGNAL[44] | 18   |
| 16    | J4 3     | J12 7    | J3     | 13    | SIPM SIGNAL[43] | 19   |
| 17    | J5 9     | J12 9    | J3     | 12    | SIPM_SIGNAL[33] | 20   |
| 18    | J5 7     | J12 11   | J3     | 11    | SIPM_SIGNAL[32] | 21   |
| 19    | J5 5     | J12 13   | J3     | 10    | SIPM_SIGNAL[35] | 22   |
| 20    | J5 3     | J12 15   | J3     | C9    | SIPM SIGNAL[34] | 23   |
| 21    | J6 9     | J13 1    | J4     | C1    | SIPM_SIGNAL[41] | 0    |
| 22    | J6 7     | J13 3    | J4     | C2    | SIPM_SIGNAL[39] | 1    |
| 23    | J6 5     | J13 5    | J4     | C3    | SIPM SIGNAL[38] | 2    |
| 24    | J6 3     | J13 7    | J4     | C4    | SIPM_SIGNAL[40] | 3    |
| 25    | J7 9     | J13 9    | Ј4     | C5    | SIPM SIGNAL[37] | 4    |
| 26    | J7 7     | J13 11   | J4     | C6    | SIPM_SIGNAL[46] | 5    |
| 27    | J7 5     | J13 13   | J4     | C7    | SIPM SIGNAL[47] | 6    |
| 28    | J7 3     | J13 15   | J4     | C8    | SIPM_SIGNAL[36] | 7    |
| 29    | J8 9     | J13 16   | J4     | A9    | SIPM_SIGNAL[50] | 8    |
| 30    | J8 7     | J13 18   | J4     | 10    | SIPM_SIGNAL[51] | 9    |
| 31    | J8 5     | J13 20   | J4     | 11    | SIPM_SIGNAL[53] | 10   |
| 32    | J8 3     | J13 22   | ]4     | A12   | SIPM_SIGNAL[52] | 11   |
| 33    | J9 9     | J14 1    | J5     | C17   | SIPM_SIGNAL[20] | 32   |
| 34    | J9 7     | J14 3    | J5     | C18   | SIPM_SIGNAL[19] | 33   |
| 35    | J9 5     | J14 5    | J5     | C19   | SIPM_SIGNAL[18] | 34   |
| 36    | J9 3     | J14 7    | J5     | C20   | SIPM_SIGNAL[21] | 35   |
| 37    | J10 9    | J14 9    | J5     | C21   | SIPM_SIGNAL[31] | 36   |
| 38    | J10 7    | J14 11   | J5     | C22   | SIPM_SIGNAL[30] | 37   |
| 39    | J10 5    | J14 13   | J5     | C23   | SIPM_SIGNAL[28] | 38   |
| 40    | J10 3    | J14 15   | J5     | C24   | SIPM_SIGNAL[29] | 39   |

• [channel63high,channel63low....channel0high,channel0low]

o if you find byte100 is 0x22,byte101 is 0x11, it means "字节序号50", "探测器编号3" channel data is 0x1122

#### data compress

- o cosmic ray signal is rare, so we can compress the data by remove the 0 data
- we can compress one FPGA board data to 8/16 byte
- o data format is
- 8bit compress[byteaddr0,byte0,byteaddr1,byte1,byteaddr2,byte2,byteaddr3,byte3]
- 16bit compress[byteaddr0,byte0,byteaddr1,byte1,byteaddr2,byte2,byteaddr3,byte3,byteaddr4,byte4 ,byteaddr5,byte5,byteaddr6,byte6,byteaddr7,byte7]
- o notice that is the byte address, if a signal adc value <256, it will only cost 1 byte to store the data, if the adc value >256, it will cost 2 byte to store the data.
- so in the case of 8 byte compress, we can get 4 channel data at maximum, 2 channel data at minimum
- in the case of 16 byte compress, we can get 8 channel data at maximum, 4 channel data at minimum
- data pack to User PC(uart)
  - [header(11111100),DAQ0(8/16byte),DAQ1(8/16byte),DAQ2(8/16byte),DAQ3(8/16byte),DAQ4(8/16byte),DAQ5(8/16byte),DAQ6(8/16byte)(0 now),DAQ7(8/16byte)(0 now),end(00000011)]
- user data reconstruct
  - we can use the header and end to get package
  - o check package length to filter the data
  - o reconstruct the data to get the channel data