Coole - entropy (los)

To find coolf-entropy low, we need 2 distributions.

There can be any 2 distⁿ. Grenerally in ML,

then 2 distⁿ are:

i) true diet of a training sample (true y)

ii) feedicted distⁿ of the same training sample (obtained from the model)

So, we find the cool-entropy b/w (i) k (ii)

-> this value of cross-entropy gives an indication of how close the predicted destⁿ is to the true destⁿ

July fulliched

not close to true dell'

→ high croll-entropy

Loll

fru fradiction

low croll-entropy.

Math log perob. of the class

2 as predicted by the

model Cook entropy for one training example I find this description way easy to remember be explain Lets find cools-entropy low for one example (Problem 0, hw4) Model: logistic regn, $\omega = (1, -30, 3)$ Sample 1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 6 \times 7 \times 6 \times 7 \times 6 \times 6 \times 6 \times 7 \times 6 \times 7 \times 6 \times 7 \times 7 \times 7 \times 9 \times for sample 2, true dall = 0

Cools-entropy love for Pample !

For sample 1, true class = 1, so low = -log [p(X=1)]

what elle do we need?

-> ferob. of true class at fuedicted by model

p(Y=1) = ??

= 1 1+e-*w p(X=1)

 $= \frac{1}{1 + e^{-(2000)} \cdot \begin{bmatrix} 1 \\ -30 \\ 3 \end{bmatrix}}$

 $= \frac{1}{1 + e^{-2\delta}} = 0.999 \approx 1$

So, trus class = 1

frob. of (X=1) = frob. of true class = 1
as predicted by the mobil
our model is really good at freedicting

=> our model is for the sample

a) low should be less
$$\sqrt{2}$$
 low $= -\log_2(1) \simeq 0$

So, lou =
$$-\log \left[p(Y=0) \right]$$

$$p(y=0)$$
 $logistic reg^{2} = ??$

* Inf.
$$\rightarrow$$
 logistic tegⁿ given the perob. $p(X=1)$

$$p(Y=1) = \frac{1}{1+e^{-X_2W}}$$

$$= \frac{1}{1 + e^{-(23 \ 1 \ 1)}} \begin{pmatrix} 1 \\ -30 \\ 3 \end{pmatrix}$$

$$= \frac{1}{1 + e^{-(23 \ 1 \ 1)}} \begin{pmatrix} 1 \\ -30 \\ 3 \end{pmatrix}$$

$$=\frac{1}{55.6}=0.018$$

$$\therefore \beta (Y=0) = 1-0.018 = 0.982$$

$$=-log_2(0.982)=0.026$$

Miltake that most groups made in this quel.

-> Both groupe found the dist" for 2 samples predicted

and found the love blue thou 2 dilly

beadicted dist

feredicted dist				free	e deef	
	b(Y=1) b 1 (0, 0.999)	(Y=0)		¥=1	y = 0 0	
Sample 2	0.018	0.982		0		

feeldicked delty mathematical way of log [ferol. of terme dist" and freedicted by the model] saying loll = wing this pudicted Sample 1 log (0.999) Olog (0.018) 1. log (0.98 $=-\log_2(0.982)$