

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа М	3102	К работе допущен		
Студент Ло	опатенко Георгий Валентинович	Работа выполнена		
Преподава	тель Тимофеева Э.О.	Отчет принят		

Рабочий протокол и отчет по лабораторной работе №1.04

Равноускоренное вращательное движение. Маятник Обербека

1. Цель работы:

Изучить равноускоренное вращательное движение.

2. Задачи, решаемые при выполнении работы:

- 1. Получить данные измерений (построить экспериментальную выборку);
- 2. Проверить зависимость момента инерции от положения масс относительно оси вращения;
- 3. Экспериментально проверить основной закон динамики вращения, связывающего угловое ускорение вращающегося тела с моментами действующих сил.

3. Объект исследования:

Маятник Обербека: крестовина с перемещаемыми по спицам грузами-утяжелителями и груз, создающий натяжение нити и раскручивающий крестовину.

4. Метод экспериментального исследования:

Условные прямые измерения времени падения груза, раскручивающего крестовину.

5. Рабочие формулы и исходные данные:

- 1) Основной закон динамики вращения: $I\varepsilon = M M_{_{\rm Tp}}$, где I момент инерции крестовины, ε угловое ускорение крестовины, ε моменты сил натяжения нити и трения на крестовине
- 2) Зависимость пройденного пути от времени при равноускоренном движении:

$$h = \frac{at^2}{2} \Rightarrow a = \frac{2h}{t^2}$$

- 3) Связь между угловым ускорением и линейным ускорением груза: $\varepsilon = \frac{2a}{d} = \frac{4h}{t^2 d}$, d диаметр ступицы
- 4) Момент силы натяжения нити: $M = \frac{md}{2} (g \frac{2h}{t^2})$
- 5) Момент инерции крестовины по т.Штейнера: $I = I_0 + 4m_{\rm yr} R^2$
- 6) Момент инерции крестовины с утяжелителями по МНК: $I = \frac{\sum\limits_{i=1}^{N} (\varepsilon_i \overline{\varepsilon}) (M_i \overline{M})}{\sum\limits_{i=1}^{N} (\varepsilon_i \overline{\varepsilon})^2}$

- 7) Расстояние от оси крестовины до грузов-утяжелителей: $R = l_1 + (n-1)l_0 + \frac{b}{2}$
- 8) Абсолютная погрешность с учетом погрешности приборов: $\Delta x = \sqrt{(\overline{\Delta x})^2 + \left(\frac{2}{3}\Delta_{ux}\right)^2}$
- 9) Погрешность косвенного значения: $\Delta z = \sqrt{\left(\frac{\partial z}{\partial x 1} \Delta x 1\right)^2 + \left(\frac{\partial z}{\partial x 2} \Delta x 2\right)^2}$; z = f(x1, x2) Δ_{xx} погрешность прибора, $\overline{\Delta x}$ случайная погрешность (доверительный интервал)
- 10) Относительная погрешность: $\varepsilon_{x} = \frac{\Delta x}{\bar{x}} \cdot 100\%$
- 11) Момент инерции крестовины по т.Штейнера: $I_0 = \overline{I} 4m_{yT}^{-2} \overline{R}^2$, $m_{yT} = \frac{\sum\limits_{i=1}^{N} (R_i \overline{R})(I_i \overline{I})}{4\sum\limits_{i=1}^{N} (R_i \overline{R})}$

$$12) \Delta m_{yT} = \frac{2 \cdot \sqrt{\frac{\sum\limits_{i=1}^{N} (I_i - (I_0 + 4m_{yT}R_i^2))^2}{(N-2)\sum\limits_{i=1}^{N} (R_i^2 - \overline{R}^2)^2}}}{4}; \quad \Delta I_0 = 2 \cdot \sqrt{\left(\frac{1}{N} + \frac{\overline{R}^2}{\sum\limits_{i=1}^{N} (R_i^2 - \overline{R}^2)^2}\right) \cdot \frac{\sum\limits_{i=1}^{N} (I_i - (I_0 + 4m_{yT}R_i^2))^2}{N-2}}$$

6. Измерительные приборы:

No	Наименование	Измерение	Используемый диапазон	$\Delta_{\scriptscriptstyle m H}$
1	Секундомер	промежутка времени	[0, 11] c	0.005 c
2	Линейка	начальной высоты тела, длин	[0, 0.7] м	0.0005 м
1 2 Пинеика	спиц и диаметра ступицы	[0, 0.7] M	U.0003 M	

7. Схема установки:

Груз подвешен на нерастяжимой невесомой нити, которая перекинута через неподвижный блок и намотана на ступицу крестовины. В ступице закреплены четыре спицы, на каждой из которых размещен груз-утяжелитель (грузы идентичны и находятся на одинаковом расстоянии от оси вращения крестовины). Момент инерции системы крестовина-утяжелители искусственно изменяется при выставлении расстояния от грузов до ступицы.

Рис. 2. Стенд лаборатории механики (общий вид): 1 — основание; 2 — рукоятка сцепления крестовин; 3 — устройство принудительного трения; 4 — поперечина; 5 — груз крестовины; 6 — трубчатая направляющая; 7 — передняя крестовина; 8 — задняя крестовина; 9 — шайбы каретки; 10 — каретка; 11 — система передних стоек.

8. Результаты прямых измерений и их обработки:

Таблица 1. Время падения для различных значений расстояний, масс раскручивающего груза

,	Пол	Положение утяжелителей отн. оси вращения (риски), м						
Macca	0.057(1)	0.082(2)	0.107(3)	0.132(4)	0.157(5)	0.182(6)		
груза	Время $t_{_{\mathrm{падения}}}$, с							
	4,87	5,80	6,51	7,81	9,69	10,88		
$m_{_{1}}$ 0.267 кг	4,71	5,84	6,95	7,93	9,88	10,52		
(1 шайба)	4,90	5,90	6,83	7,88	9,93	10,90		
шайба)	4,83 <u>+</u> 0,25	5,85 <u>+</u> 0,13	6,76 <u>+</u> 0,57	7,87 <u>+</u> 0,15	9,83 <u>+</u> 0,31	10,77 <u>+</u> 0,53		
	3,54	4,25	4,85	6,10	7,16	7,54		
$m_{_2}$ 0.487 кг	3,58	4,22	4,82	6,37	7,08	7,77		
(2 шайбы)	3,64	4,26	4,82	6,13	6,90	7,86		
шайоы)	3,59 <u>+</u> 0,13	4,24 <u>+</u> 0,05	4,83 <u>+</u> 0,04	6,20 <u>+</u> 0,37	7,05 <u>+</u> 0,33	7,72 <u>+</u> 0,41		
	2,95	3,40	4,05	4,90	5,44	6,30		
т ₃ 0.707 кг	3,00	3,33	4,64	4,82	5,18	6,30		
(3 шайбы)	2,97	3,58	4,20	5,07	5,65	6,44		
шайові	2,97 <u>+</u> 0,06	3,44 <u>+</u> 0,32	4,29 <u>+</u> 0,76	4,93 <u>+</u> 0,32	5,42 <u>+</u> 0,58	6,35 <u>+</u> 0,21		
	2,53	2,90	3,89	4,31	4,76	5,33		
$m_{_4}$	2,61	2,88	3,99	4,21	4,85	5,48		
(4 шайбы)	2,66	3,00	4,12	4,30	4,65	5,52		
шайоы)	2,60 <u>+</u> 0,16	2,93 <u>±</u> 0,16	4,00 <u>±</u> 0,29	4,27 <u>±</u> 0,14	4,75 <u>+</u> 0,25	5,44 <u>+</u> 0,25		

9. Результаты косвенных измерений:

Таблица 2. Ускорение раскручивающего груза при разных условиях

	Положение утяжелителей отн. оси вращения (риски), м							
Macca	0.057(1)	0.082(2)	0.107(3)	0.132(4)	0.157(5)	0.182(6)		
груза	Ускорение a , $\frac{M}{c^2}$							
$m_{_1}$	0,0600	0,0409	0,0306	0,0226	0,0145	0,0121		
	±0,0062	±0,0018	±0,0052	±0,0009	±0,0009	±0,0012		
$m_{_2}$	0,1086	0,0779	0,0600	0,0364	0,0282	0,0235		
	±0,0079	±0,0018	±0,0009	<u>+</u> 0,0043	±0,0026	±0,0025		
$m_{_3}$	0,1587	0,1183	0,0761	0,0578	0,0477	0,0347		
	±0,0064	±0,0220	±0,0269	±0,0075	±0,0102	±0,0023		
$m_{_4}$	0,2071	0,1631	0,0875	0,0768	0,0620	0,0473		
	±0,0255	±0,0178	±0,0129	±0,0050	±0,0065	±0,0043		

Таблица 3. Угловое ускорение крестовины при разных условиях

	Положение утяжелителей отн. оси вращения (риски), м							
Macca	0.057(1)	0.082(2)	0.107(3)	0.132(4)	0.157(5)	0.182(6)		
груза	Угловое ускорение ϵ , рад \cdot c^{-1}							
$m_{_1}$	2,6092	1,7786	1,3320	0,9828	0,6299	0,5248		
	±0,2716	±0,0814	±0,2251	±0,0389	±0,0403	±0,0519		
$m_{_2}$	4,7229	3,3859	2,6092	1,5835	1,2247	1,0213		
	±0,3459	±0,0879	±0,0517	±0,1898	±0,1154	±0,1090		
$m_{_3}$	6,9006	5,1438	3,3074	2,5044	2,0721	1,5096		
	±0,2888	±0,9586	±1,1724	±0,3263	±0,4440	±0,1012		
$m_{_4}$	9,0444	7,0903	3,8043	3,3384	2,6978	2,0568		
	±1,1126	±0,7782	±0,5532	±0,2219	±0,2855	±0,1904		

Таблица 4. Момент силы натяжения нити при разных условиях

	Положение утяжелителей отн. оси вращения (риски), м								
Масса	0.057(1)	0.082(2)	0.107(3)	0.132(4)	0.157(5)	0.182(6)			
груза	Момент силы натяжения M , $H \cdot M$								
$m_{_1}$	0,0599 ± 0,0007	0,0599	0,0601	0,0601	0,0601	0,0602			
$m_{_2}$	0,1087	0,1090	0,1092	0,1095	0,1096	0,1096			
$m_{_3}$	0,1569	0,1576	0,1583	0,1586	0,1587	0,1589			
$m_{_4}$	0,2047	0,2057	0,2073	0,2075	0,2078	0,2082			

Таблица 5. Момент инерции крестовины при разных условиях

Положение утяжелителей отн. оси вращения (риски), м								
0.057(1) 0.082(2) 0.107(3) 0.132(4) 0.157(5) 0.182(6)								
Момент инерции крестовины I , кг \cdot м 2								
0,0225	0,0225 0,0274 0,0577 0,0611 0,0695 0,0969							
	Момент силы трения $M_{_{ m TP}} = M - I \epsilon$, $H \cdot { m M}$							
0,0016	0,0016 0,0139 -0,0257 0,0055 0,0189 0,0104							
Расстояние от оси до утяжелителя в квадрате R^2 , ${\rm M}^2$								
0,0059	0,0104	0,0161	0,0231	0,0313	0,0408			

Расчет по МНК значений $m_{_{\mathrm{NT}}}$ и $I_{_{0}}$:

$$m_{
m yT} = rac{\sum\limits_{i=1}^{N} (R_i - \overline{R}\)(I_i - \overline{I})}{4\sum\limits_{i=1}^{N} (R_i - \overline{R}\)} = 0$$
, 4946 кг; тогда сумма моментов инерции стержней крестовины, момента

инерции ступицы и собственных центральных моментов инерции утяжелителей будет равна:

$$I_0 = \bar{I} - 4m_{\rm yr} \bar{R}^2 = 0$$
, 01427 кг · м² $\Delta I_0 = 0$, 00076 кг · м²

10. Расчет погрешностей измерений:

Расчет погрешности для прямых измерений времени к таблице 1:

$$\Delta t_{\rm cp} = \sqrt{\frac{t_{\alpha,n}^{2}}{N \cdot (N-1)} \sum_{i=1}^{N} (t_{i} - \bar{t})^{2} + (\frac{2}{3} \Delta_{ux})^{2}} \quad (t_{\alpha,n} = 4.30265, \alpha = 0.95); \quad \Delta t_{1} = 0.25396 c$$

Расчет погрешности косвенного значения ускорения груза к таблице 2:

$$\Delta a = \sqrt{\left(\frac{\partial a}{\partial h}\Delta h\right)^{2} + \left(\frac{\partial a}{\partial t}\Delta t\right)^{2}} = \sqrt{\left(\frac{2}{t^{2}}\Delta h\right)^{2} + \left(\frac{4h}{t^{3}}\Delta t\right)^{2}}; \ a = \frac{2h}{t^{2}}; \ \Delta a_{1} = \ 0,0062\frac{M}{c^{2}}$$

Расчет погрешности косвенного значения углового ускорения крестовины к таблице 3:

$$\Delta \varepsilon = \sqrt{\left(\frac{\partial \varepsilon}{\partial h} \Delta h\right)^2 + \left(\frac{\partial a}{\partial t} \Delta t\right)^2 + \left(\frac{\partial a}{\partial d} \Delta d\right)^2} = \sqrt{\left(\frac{4}{t^2 d} \Delta h\right)^2 + \left(\frac{8h}{t^3 d} \Delta t\right)^2 + \left(\frac{4h}{t^2 d^2} \Delta d\right)^2}; \ \varepsilon = \frac{4h}{t^2 d}; \ \Delta \varepsilon_1 = \ 0,2716 \frac{\text{pag}}{\text{c}^2}$$

Расчет погрешности косвенного значения момента силы натяжения нити к таблице 4.

$$\Delta M = \sqrt{\left(\frac{md}{t^2}\Delta h\right)^2 + \left(\frac{2mdh}{t^3}\Delta t\right)^2 + \left(\frac{m(gt^2-2h)}{2t^2}\Delta d\right)^2 + \left(\frac{d(gt^2-2h)}{2t^2}\Delta m\right)^2} \; ; \; \Delta M_1 = \; 0,00066 \; H \; \cdot \; \text{м}$$

$$\Delta m_{_{\mathrm{VT}}} = \; 0,0045 \; \mathrm{Kg}$$

11. Графики:

График 1. Зависимость М(ε). Аппроксимирующие прямые для каждой риски.

График 2. Зависимость $I(R^2)$. Аппроксимирующая прямая и аналитически полученная зависимость.

12. Окончательные результаты:

Доверительные интервалы первых значений к ускорению груза:

$$a = (0.0600 \pm 0.0062) \frac{M}{c^2}$$
 $\varepsilon_a = 10.3\%$ $\alpha = 0.95$

к угловому ускорению:

$$\epsilon = (2.6092 \pm 0.2716) \frac{\text{рад}}{c^2}$$
 $\epsilon_{\epsilon} = 10.4\%$ $\alpha = 0.95$

и к моменту силы натяжения нити:

$$M = (0.0599 \pm 0.0007) H \cdot \text{M} \quad \epsilon_{M} = 1,1\% \quad \alpha = 0.95$$

Значения $m_{_{\mathrm{YT}}}$ и $I_{_{0}}$ с погрешностями:

$$m_{_{\mathrm{YT}}} = (0,4946 \pm 0,0045) \,\mathrm{Kr} \quad \epsilon_{m_{_{\mathrm{YT}}}} = 0,9\% \qquad \alpha = 0.95$$
 $I_{_{0}} = (0,0143 \pm 0,0008) \,\mathrm{Kr} \cdot \mathrm{M}^{^{2}} \quad \epsilon_{I_{_{0}}} = 5,6\% \qquad \alpha = 0.95$

13. Выводы и анализ результатов работы:

После построения экспериментальной выборки были рассчитаны необходимые параметры и значения для проверки зависимости момента инерции от масс грузов-утяжелителей на спицах вращающейся крестовины. Также экспериментально подтверждена теория динамики вращения - был проверен основной закон, связывающий угловое ускорение с моментами сил трения и натяжения нити. Были получены доверительные интервалы для некоторых характеристик динамики вращения, построены соответствующие графики.

Измерения:

лопатенко Георгий М3102 Ермолаева Апастасия М3102

Измерения по лабораторной работе л 1.04.

		noro	xenne y	taxemie	neu 1	
Macca rpy3a, r	1 риска	2 риска	Зриска	Чриска	5 риска	6 риска
m4	4,87	5,80	16,51	7,81	9,69	10,88
Ma	4,71	5,84	6,95	7,93	9,88	10,52
MA	4,90	5,90	6,83	7,88	9,93	10,90
MA	4,83	5,85	6,76	7,87	9,83	10,77
M2	3,54	4,25	4,85	6,10	7,16	7,54
Ma	3,58	4,22	4,82	6,37	7,08	7,77
mz	3, 64	4,26	4,82	6,13	6,90	7,86
mz	3,59	4,24	4,83	6,20	7,05	7,72
m ₃	2,95	3,40	4,55	4,90	5,44	6,30
m ₃	3,00	3,33	4,64	4,82	5,18	6,30
mz	2,97	3,58	4,20	5,07	5,65	6,44
m3	2,97	3,44	4,29	4,93	5,42	6,35
my	2,53	2,90	3,89	4,31	4,76	5,33
mu	2,61	2,88	3,99	4,21	4,85	5,48
My	2,66	3,00	4,12	4,30	4,65	5,52
My	2,60	2,93	4,00	4,27	4,75	5,44

Macia Kapetku: 47,0±0,5 r

Macca wanton: 220,0±0,5 r Macca rpy30B na repectobine: 408,0±0,5 r Pacctosnue repoor puchu ot ocu: 57,0±0,5 MM

Pacctornue mexqy puckarue: 25 ± 0,2 MM Duametp ctyruyon: 46,0 ± 0,5 MM

BURNETP PPYSA NA REPECTOBURE: 40,0±0,5 MM BULLOTA PPYSA NA REPECTOBURE: 40,0±0,5 MM

Unxenep: 03.03.22 Malleto