### Homework 3

Victor Croisfelt victorcroisfelt@gmail.com

January 14, 2022

## 1 Subgraphs and Order Embeddings

First, we give the definition of a subgraph.

**Definition 1.1.** (Subgraph) Let  $A = (\mathcal{V}_A, \mathcal{E}_A)$  and  $B = (\mathcal{V}_B, \mathcal{E}_B)$  denote two different graphs. Without loss of generality, graph A is said to be a **subgraph** of B if and only if (iff) there exists a bijection or one-to-one correspondence  $f_{AB'}: \mathcal{V}_A \mapsto \mathcal{V}_{B'}$  such that  $(f(u), f_{AB'}(v)) \in \mathcal{E}_B$  for  $u, v \in \mathcal{V}_A$  and  $(u, v) \in \mathcal{E}_A$ ; B' is an induced subgraph of B. We denote the subgraph relationship between A and B by overloading the operator  $\subseteq$  as  $A \subseteq B$ .

In the following, we consider that we have an embedding space which preserves the subgraph relationship  $\subseteq$  by making all entries of the embedding vector  $\mathbf{z}_A \in \mathbb{R}^d_+$  of graph A be smaller than the embedding entries of  $\mathbf{z}_B \in \mathbb{R}^d_+$ , where d is the dimension of the embedding space. Thus, in the embedding space, a graph A is said to be a subgraph of B iff  $\mathbf{z}_A \leq \mathbf{z}_B$ , where  $\leq$  evaluates  $\leq$  to all d dimensions.

Now, we are good to go:)

### Question 2.1 Transitivity

We have three graphs  $A = (\mathcal{V}_A, \mathcal{E}_A)$ ,  $B = (\mathcal{V}_B, \mathcal{E}_B)$ , and  $C = (\mathcal{V}_C, \mathcal{E}_C)$ . A is a subgraph of B. B is a subgraph of C. Show that A is also a subgraph of C. We answer this question in two parts.

1) Playing with sets. First, if A is a subgraph of B, the set of nodes  $\mathcal{V}_B$  can be decomposed into two disjoint sets:

$$\mathcal{V}_B = \mathcal{V}_{B'} \cup (\mathcal{V}_B \setminus \mathcal{V}_{B'}), \tag{1}$$

where  $\mathcal{V}_{B'} = \{f_{AB'}(u)|u \in \mathcal{V}_A\}$  represents the induced subgraph of B which is graph-isomorphic to A. Now, if B is a subgraph of C, we can do something similar and write:

$$\mathcal{V}_C = \mathcal{V}_{C'} \cup (\mathcal{V}_C \setminus \mathcal{V}_{C'}), \tag{2}$$

where  $\mathcal{V}_{C'} = \{f_{BC'}(v) | v \in \mathcal{V}_B\}$  is graph-isomorphic to B.

Lets take a closer look at  $\mathcal{V}_{C'}$ . By using (1), we have that

$$\mathcal{V}_{C'} = \{ f_{BC'}(v) | v \in \mathcal{V}_B \} = \{ f_{BC'}(v) | v \in (\mathcal{V}_{B'} \cup (\mathcal{V}_B \setminus \mathcal{V}_{B'})) \}$$
(3)

$$\stackrel{(a)}{=} \{ f_{BC'}(n) | n \in \mathcal{V}_{B'} \} \cup \{ f_{BC'}(m) | m \in \mathcal{V}_B \setminus \mathcal{V}_{B'} \}$$

$$\tag{4}$$

$$\stackrel{(b)}{=} \{ f_{BC'}(n) | n \in \{ f_{AB'}(u) | u \in \mathcal{V}_A \} \} \cup \{ f_{BC'}(m) | m \in (\mathcal{V}_B \setminus \mathcal{V}_{B'}) \}$$
 (5)

$$\stackrel{(c)}{=} \{ f_{BC'}(f_{AB'}(u)) | u \in \mathcal{V}_A \} \cup \{ f_{BC'}(m) | m \in (\mathcal{V}_B \setminus \mathcal{V}_{B'}) \}, \tag{6}$$

where in (a) we used the fact that the sets are disjoint, in (b) we used the definition of  $\mathcal{V}_{B'}$  which is graph-isomorphic to  $\mathcal{V}_A$ , and in (c) we substituted n. From the expressions above, we can conclude that  $\mathcal{V}_{C'}$  can be decomposed into two disjoint pats, where one of these parts is graph-isomorphic to A. This conclusion relies on the fact that the sets are disjoint and the bijection of a bijection is also a bijection, meaning that  $f_{BC'}(f_{AB'}(u)): \mathcal{V}_A \mapsto \mathcal{V}'_C$ . Since  $\mathcal{V}_{C'}$  is a disjoint subset of  $\mathcal{V}_C$ , this shows that A is also a subgraph of C.

However, we are still not satisfied. The above conclusion is based on the fact that a bijection of a bijection is also bijection. How do we know that?

2) Is a Bijection of a Bijection, a Bijection?. To show this<sup>2</sup>, let us forget about subgraphs and graph-isomorphism a little. Thus, we have that:  $f: \mathcal{A} \mapsto \mathcal{B}$  and  $g: \mathcal{B} \mapsto \mathcal{C}$  are bijections. Proof that the composition  $h = g \circ f$  is also a bijection for  $h: \mathcal{A} \mapsto \mathcal{C}$ . To do so, let us recall the definition of a bijective function.

**Definition 1.2.** A function  $f: X \mapsto \mathcal{Y}$  is said to be a bijection if the following conditions are satisfied:

- every element of X must be paired with exactly one element of Y, that is, X is the domain of f;
- each element of  $\mathcal{Y}$  must be paired with at least one element of  $\mathcal{X}$ , that is, the codomain and the image of f are the same thing -f is a *surjection*;
- no element of  $\mathcal{Y}$  must be paired with more than two elements of  $\mathcal{X}$ , that is, f is a injection (one-to-one).

From these conditions, we can see that a bijective function is simultaneously a subjection and an injection.

*Proof.* We now proof that the composition of bijections is a bijection. Note that  $f(\mathcal{A}) = \mathcal{B}$  and  $g(\mathcal{B}) = \mathcal{C}$ .

First, we show that h is surjective. To do so, we evaluate what happens when h is

<sup>&</sup>lt;sup>1</sup>Is someone missing a bijection anywhere?

<sup>&</sup>lt;sup>2</sup>We will refer as "this", because... you know.

evaluated over its domain, yielding in:

$$h(\mathcal{A}) = (g \circ f)(\mathcal{A}) \tag{7}$$

$$\stackrel{(a)}{=} \{ c \in C | (g \circ f)(a), \text{ for } a \in \mathcal{A} \}$$
 (8)

$$\stackrel{(b)}{=} \{c \in C | g(f(a)) = c, \text{ for } a \in \mathcal{A}\}$$
 (9)

$$\stackrel{(c)}{=} \{c \in C | g(b) = c, \text{ for } b \in f(\mathcal{A})\}$$

$$\tag{10}$$

$$\stackrel{(d)}{=} g(f(\mathcal{A})) \tag{11}$$

$$\stackrel{(e)}{=} g(\mathcal{B}) \tag{12}$$

$$\stackrel{(f)}{=} C, \tag{13}$$

where in (a) we use the definition of the function h (evaluate it over all domain  $a \in \mathcal{A}$  to obtain an element in the co-domain C), (b) we use the definition of composition, (c) we use the fact that, if f(a) is surjective, f(a) is mapped to  $b \in \mathcal{B}$ , in (d) we use the definition of g (evaluate it over the domain), in (e) we explicitly use the fact that f is a surjection, and we do the same in (f) for g. So, h is surjective, since going from its domain  $\mathcal{A}$ , all elements of its co-domain C are mapped at least to one element from  $\mathcal{A}$ .

Second, we show that h is injective by evaluating if h(a) = h(a') implies that a = a' for arbitrary  $a, a' \in \mathcal{A}$ . Thus, assuming that this equation is true,

$$h(a) = h(a') \tag{14}$$

$$(g \circ f)(a) = (g \circ f)(a') \tag{15}$$

$$g(f(a)) = g(f(a')). \tag{16}$$

The above holds true since g(b) = g(b'), since g is a bijection; the same applies for f. Then, h is an injection.

Since h is simultaneously a surjection and an injection, h is a bijection.

This ends our way of showing that **Transitivity** holds for the Subgraph definition:  $(A \subseteq B) \land (B \subseteq C) \implies A \subseteq C$ , for graphs  $A, B, \text{ and } C^3$ .

### Question 2.2 Anti-symmetry

The anti-symmetry property reads as follows: if A is a subgraph of B, and B is a subgraph of A, then A and B are graph-isomorphic. To show that, we evaluate each of the conditions individually.

- 1) If  $A \subseteq B$ , there exists a subgraph B' of B defined by the nodes  $\mathcal{V}_{B'} = \{f_{AB'}(v)|v \in \mathcal{A}\}$ . Note that  $|\mathcal{V}_{B'}| = |\mathcal{V}_A|$ .
- 2) If  $B \subseteq A$ , there exists a subgraph A' of A defined by the nodes  $\mathcal{V}_{A'} = \{f_{BA'}(u) | u \in \mathcal{B}\}$ . Note that  $|\mathcal{V}_{A'}| = |\mathcal{V}_B|$ .

Therefore, if we want that 1) and 2) occur together, we have that:

$$|\mathcal{V}_{B'}| = |\mathcal{V}_A| \wedge |\mathcal{V}_{A'}| = |\mathcal{V}_B|.$$

 $<sup>^{3} \</sup>wedge$  stands for logical and.

Since  $|\mathcal{V}_B| \ge |\mathcal{V}_{B'}|$  and  $|\mathcal{V}_A| \ge |\mathcal{V}_{A'}|$ , we can rewrite the condition as:

$$|\mathcal{V}_B| \ge |\mathcal{V}_A| \wedge |\mathcal{V}_A| \ge |\mathcal{V}_B|$$
,

both can only hold true together if  $|\mathcal{V}_A| = |\mathcal{V}_B|$ . Since the number of nodes in both graphs are the same,  $\mathcal{V}_A = \mathcal{V}_{A'}$  and  $\mathcal{V}_B = \mathcal{V}_{B'}$ . This means that  $f_{AB} : \mathcal{V}_A \mapsto \mathcal{V}_B$ , while  $f_{BA} : \mathcal{V}_B \mapsto \mathcal{V}_A$  is its inverse. Due to the respective edge mappings coming from the subgraph definition, we conclude that A and B are graph-isomorphic.

#### Question 2.3 Common subgraph

Let A have embedding  $\mathbf{z}_A \in \mathbb{R}^2_+ = [x_A, y_A]^T$ , B have embedding  $\mathbf{z}_B \in \mathbb{R}^2_+ = [x_B, y_B]^T$ , and X have embedding  $\mathbf{z}_X \in \mathbb{R}^2_+ = [x_X, y_X]^T$ . We have the following conditions for X be a common subgraph of A and B.

- 1) If X is a subgraph of A,  $\mathbf{z}_X \leq \mathbf{z}_A$  or  $x_X \leq x_A \wedge y_X \leq y_A$ .
- 2) If X is a subgraph of B,  $\mathbf{z}_X \leq \mathbf{z}_B$  or  $x_X \leq x_B \wedge y_X \leq y_B$ . Putting both together and evaluating per coordinates:

for x-dimension, 
$$x_X \le x_A \land x_X \le x_B$$
 (17)

$$\wedge \tag{18}$$

for y-dimension, 
$$y_X \le y_A \land y_X \le y_B$$
. (19)

Alternatively, this can be written as  $x_X \leq \min\{x_A, x_B\} \land y_X \leq \min\{y_A, y_B\}$ . Following the independence of the dimensions, we have that X is simultaneously a subset of A and B iff:

$$\mathbf{z}_X \le \left[\min\{x_A, x_B\}, \min\{x_A, x_B\}\right]^T \le \min\{\mathbf{z}_A, \mathbf{z}_B\}. \tag{20}$$

# Q2.4 Order embeddings for graphs that are not subgraphs of each other

Given that  $\mathbf{z}_A[0] > \mathbf{z}_B[0] > \mathbf{z}_C[0]$ , we need to look at the second dimension in order to avoid that one of the graphs is graph-isomorphic or a subgraph of another graph. Formally, the conditions are

a) Non-isomorphic:

$$\mathbf{z}_A \neq \mathbf{z}_B \neq \mathbf{z}_C,$$
 (21)

where  $\neq$  evaluates all dimensions simultaneously.

- b) Non-subgraph: the observations below are based on  $\mathbf{z}_A[0] > \mathbf{z}_B[0] > \mathbf{z}_C[0]$ .
  - Graph A: there is no way that A is a subgraph of the other two. Therefore,  $\mathbf{z}_A[1]$  is free to be placed over  $\mathbb{R}_+$  by now. It depends on the constraints imposed by the following observations.
  - Graph B: B can be a subgraph of A if  $\mathbf{z}_B[1] \leq \mathbf{z}_A[1]$ . Therefore,  $\mathbf{z}_B[1] > \mathbf{z}_A[1]$ . B cannot be a subgraph of C.

<sup>&</sup>lt;sup>4</sup>[0], [1] index the first and second dimension of a vector.

• Graph C: C can be a subgraph of A if  $\mathbf{z}_C[1] \leq \mathbf{z}_A[1]$ . In addition, C can be a subgraph of B if  $\mathbf{z}_C[1] \leq \mathbf{z}_B[1]$ . Therefore,  $\mathbf{z}_C[1] > \mathbf{z}_A[1]$  and  $\mathbf{z}_C[1] > \mathbf{z}_B[1]$ .

By putting the three observations for non-subgraph and the non-isomorphic condition together, we have that

$$\mathbf{z}_B[1] > \mathbf{z}_A[1] \wedge \mathbf{z}_C[1] > \mathbf{z}_A[1] \wedge \mathbf{z}_C[1] > \mathbf{z}_B[1]. \tag{22}$$

Therefore,

$$\mathbf{z}_C[1] > \mathbf{z}_B[1] > \mathbf{z}_A[1]. \tag{23}$$

Given the derived relations of the embeddings  $\mathbf{z}_A[0] > \mathbf{z}_B[0] > \mathbf{z}_C[0] \wedge \mathbf{z}_C[1] > \mathbf{z}_B[1] > \mathbf{z}_A[1]$  so as to have three non-isomorphic and non-subgraphs graphs, Fig. 1 illustrates the embedding space.



Figure 1: Embedding space considering three non-isomorphic and non-subgraphs graphs: A, B, and C. The labels within the boxes formed by the node embeddings coordinates indicate of which graphs an arbitrary graph would be a subgraph if its embedding was placed within that box.



### Q2.5 Limitation of 2-dimensional order embedding space

Fig. 2 visually evaluates the regions in which we can place the subgraphs X, Y, Z so as to have the desired relationships:

- X is a common subgraph of A and B;
- Y is a common subgraph of A and C;
- Z is a subgraph of C.

Note that we cannot have disjoint regions in which Y holds true alone (this is the limitation).

To better evaluate the scenario, we follow the proposed guidelines. Without loss of generality, we assume that  $\mathbf{z}_A[0] > \mathbf{z}_B[0] > \mathbf{z}_C[0]$ , therefore  $\mathbf{z}_C[1] > \mathbf{z}_B[1] > \mathbf{z}_A[1]$  (Q2.4). We construct the subgraphs X, Y, Z to obtain the relationships as defined above. From those, we have:

•  $X \subseteq (A, B)$ :  $\mathbf{z}_X \leq \mathbf{z}_A \wedge \mathbf{z}_X \leq \mathbf{z}_B$  or  $\mathbf{z}_X \leq \min{\{\mathbf{z}_A, \mathbf{z}_B\}}$ , which evaluates to  $\mathbf{z}_X \leq [\mathbf{z}_B[0], \mathbf{z}_A[1]]^T$  given the assumptions;



Figure 2: Embedding space considering three non-isomorphic and non-subgraphs graphs: A, B, and C. X is a common subgraph of A and B. Y is a common subgraph of A and C. Z is a subgraph of C.

- $Y \subseteq (A, C)$ :  $\mathbf{z}_Y \leq \mathbf{z}_A \wedge \mathbf{z}_Y \leq \mathbf{z}_C$  or  $\mathbf{z}_Y \leq \min{\{\mathbf{z}_A, \mathbf{z}_C\}}$ , which evaluates to  $\mathbf{z}_Y \leq [\mathbf{z}_C[0], \mathbf{z}_A[1]]^T$  given the assumptions;
- $Z \subseteq C$ :  $\mathbf{z}_Z \leq \mathbf{z}_C$ , which evaluates to  $\mathbf{z}_Z \leq [\mathbf{z}_C[0], \mathbf{z}_C[1]]^T$  given the assumptions.

As suggested, we want to satisfy  $\mathbf{z}_X \leq \mathbf{z}_Y \wedge \mathbf{z}_X \leq \mathbf{z}_Z$ . By splitting the analysis, we have:<sup>5</sup>

1. 
$$\mathbf{z}_X \leq \mathbf{z}_Y \implies \mathbf{z}_X \leq [\mathbf{z}_C[0], \mathbf{z}_A[1]]^T$$

2. 
$$\mathbf{z}_X \leq \mathbf{z}_Z \implies \mathbf{z}_X \leq [\mathbf{z}_C[0], \mathbf{z}_C[1]]^T$$

Therefore, X needs to satisfy three different conditions simultaneously

$$\mathbf{z}_X \leqslant [\mathbf{z}_B[0], \mathbf{z}_A[1]]^T$$
, from  $X \subseteq (A, B)$  (24)

$$\leq [\mathbf{z}_C[0], \mathbf{z}_A[1]]^T$$
, from  $\mathbf{z}_X \leq \mathbf{z}_Y$  (25)

$$\leq [\mathbf{z}_C[0], \mathbf{z}_C[1]]^T$$
, from  $\mathbf{z}_X \leq \mathbf{z}_Z$ . (26)

By putting those together (taking the minimum over each dimension), we have that  $\mathbf{z}_x \leq [\mathbf{z}_C[0], \mathbf{z}_A[1]]^T$ . Therefore, in the end, we have:

$$\mathbf{z}_X \leqslant [\mathbf{z}_C[0], \mathbf{z}_A[1]]^T, \tag{27}$$

$$\mathbf{z}_Y \leqslant [\mathbf{z}_C[0], \mathbf{z}_A[1]]^T$$
, and (28)

$$\mathbf{z}_Z \leqslant [\mathbf{z}_C[0], \mathbf{z}_C[1]]^T. \tag{29}$$

From these, we can conclude that X is a subgraph of Z, because  $\mathbf{z}_C[1] > \mathbf{z}_A[1]$ ; and that, X is also a subgraph of Y, since  $\mathbf{z}_X \leq \mathbf{z}_Y$  is an imposed condition. Note that  $\mathbf{z}_X$  and  $\mathbf{z}_Y$  are confined to the same space.

**Conclusion.** The limitation is that some relationships cannot be realized depending on the embedding dimension d. For example, for d = 2, we do not have a region where a graph is simultaneously a subgraph of A and C without being of B.

<sup>&</sup>lt;sup>5</sup>Recall to substitute the thinks that we figured out above for  $\mathbf{z}_Y$  and  $\mathbf{z}_Z$