Retele neuronale artificiale

-AI notes-

Curs 4: Rețele neuronale artificiale (RNA)

- O structură similară unei rețele neuronale biologice
- O mulțime de noduri (unități, neuroni), dispuse ca
 într-un graf pe mai multe straturi (layere)
- Unele sarcini pot fi efectuate foarte uşor de către oameni, însă sunt greu de codificat sub forma unor algoritmi
 - Recunoaşterea formelor
 - vechi prieteni
 - caractere scrise de mână
 - vocea
 - Diferite raţionamente
 - conducerea autovehiculelor
 - cântatul la pian
 - jucarea baschetului
 - înnotul

Definire → Cum învaţă reţeaua?

■ Plecând de la un set de *n* date de antrenament de forma

$$((x_{p1}, x_{p2}, ..., x_{pm}, y_{p1}, y_{p2}, ..., y_{pri}))$$

cu p = 1, 2, ..., n, m – nr atributelor, r – nr ieşirilor

- se formează o RNA cu m noduri de intrare, r noduri de ieşire şi o anumită structură internă
 - un anumit nr de nivele ascunse, fiecare nivel cu un anumit nr de neuroni
 - cu legături ponderate între oricare 2 noduri
- se caută valorile optime ale ponderilor între oricare 2 noduri ale reţelei prin minimizarea erorii
 - diferența între rezultatul real y și cel calculat de către rețea

Projectare

- Construirea RNA pentru rezolvarea unei probleme P
 - pp. o problemă de clasificare în care avem un set de date de forma:
 - (x^d, t^d), cu:
 - $\mathbf{x}^{d} \in \mathbf{R}^{m} \rightarrow \mathbf{x}^{d} = (\mathbf{x}^{d}_{1}, \mathbf{x}^{d}_{2}, \dots, \mathbf{x}^{d}_{m})$
 - $t^d \in \mathbb{R}^R \rightarrow t^d = (t^d_1, t^d_2, \dots, t^d_R),$
 - cu d = 1,2,...,n,n+1,n+2,...,N
 - primele n date vor fi folosite drept bază de antrenament a RNA
 - ultimele N-n date vor fi folosite drept bază de testare a RNA
 - se construieşte o RNA astfel:
 - stratul de intrare conţine exact m noduri (fiecare nod va citi una dintre proprietăţile de intrare ale unei instanţe a problemei – x^d₁, x^d₂,..., x^d_m)
 - stratul de ieşire poate conţine R noduri (fiecare nod va furniza una dintre proprietăţile de ieşire ale unei instanţe a problemei t^d₁, t^d₂,..., t^d_R)
 - unul sau mai multe straturi ascunse cu unul sau mai mulţi neuroni pe fiecare strat
- Iniţializarea parametrilor RNA
 - Iniţializarea ponderile între oricare 2 noduri de pe straturi diferite
 - Stabilirea funcţiei de activare corespunzătoare fiecărui neuron (de pe straturile ascunse)
- Antrenarea (învăţarea) RNA
 - Scop:
 - stabilirea valorii optime a ponderilor dintre 2 noduri
 - Algoritm
 - Se caută valorile optime ale ponderilor între oricare 2 noduri ale reţelei prin minimizarea erorii (diferenţa între rezultatul real y şi cel calculat de către reţea)
 - Cum învață rețeaua?
 - Reţeaua = mulţime de unităţi primitive de calcul interconectate între ele →
 - Învățarea rețelei = ∪ învățarea unităților primitive
 - Unităţi primitive de calcul
 - Perceptron
 - Unitate liniară
 - Unitate sigmoidală

Funcții:

- constantă
- prag
- rampă
- liniară
- sigmoidală
- Gaussiană
- ReLu

■ Funcţia de activare a unui neuron

- Funcţia constantă f(net) = const
- Funcţia prag (c pragul)

$$f(net) = \begin{cases} a, & \text{dacă } net < c \\ b, & \text{dacă } net > c \end{cases}$$

- Pentru a=+1, b =-1 și c = 0 → funcția semn
- Funcţie discontinuă

Funcţia liniară

$$f(net) = a * net + b$$

- Pentru a = 1 și b = 0 → funcția identitate f(net)=net
- Funcţie continuă

f(net)

Funcţia sigmoidală

- În formă de S
- Continuă şi diferenţiabilă în orice punct
- Simetrică rotaţional faţă de un anumit punct (net = c)
- Atinge asimptotic puncte de saturaţie

$$\lim_{n \to \infty} f(net) = a \qquad \lim_{n \to \infty} f(net) = b$$

Exemple de funcții sigmoidale:

$$f(net) = z + \frac{1}{1 + \exp(-x \cdot net + x)}$$
$$f(net) = \tanh(x \cdot net - y) + z$$

unde
$$tanh(u) = \frac{e^{u} - e^{-u}}{e^{u} + e^{-u}}$$

- Pentru y=0 și z = -0.5 \rightarrow a=-0.5, b = 0.5, c=0
- Cu cât x este mai mare, cu atât curba este mai abruptă

Funcția Gaussiană

- În formă de clopot
- Continuă
- Atinge asimptotic un punct de saturaţie

$$\lim_{n \neq t \to \infty} f(net) = a$$

- Are un singur punct de optim (maxim) atins când net = μ
- Exemplu

$$f(net) = \frac{1}{\sqrt{2\pi\sigma}} \exp \left[-\frac{1}{2} \left(\frac{net - \mu}{\sigma} \right)^2 \right]$$

Funcţia ReLU

- În formă de rampă
- Continuă, monotonă
- Derivata ei este monotonă
- Codomeniu pozitiv [0, ∞)

$$f(net) = \max(0, net)$$

$$f(net) = \begin{cases} 0, & \text{dacă } net < 0 \\ net, & \text{dacă } net > 0 \end{cases}$$

Variantă: Leaky ReLU

Compensează problemele cu argumentele negative dint ReLU

$$f(net) = \begin{cases} a \cdot net, & \text{dacă } net < 0 \\ net, & \text{dacă } net \ge 0 \end{cases}$$

Învățarea neuronului:

- Regula perceptronului -> algoritmul perceptronului

- 1. Se porneste cu un set de ponderi oarecare
- Se stabileşte calitatea modelului creat pe baza acestor ponderi pentru UNA dintre datele de intrare
- 3. Se ajustează ponderile în funcție de calitatea modelului
- 4. Se reia algoritmul de la pasul 2 până când se ajunge la calitate maximă

- Regula Delta -> algoritmul scăderii după gradient

- 1. Se porneste cu un set de ponderi oarecare
- Se stabileşte calitatea modelului creat pe baza acestor ponderi pentru TOATE dintre datele de intrare
- 3. Se ajustează ponderile în funcție de calitatea modelului
- 4. Se reia algoritmul de la pasul 2 până când se ajunge la calitate maximă

• RNA feed-forward:

- o Informația se procesează și circulă de pe un strat pe altul
- o Conexiunile între noduri nu formează cicluri
- o Se folosesc, în special, pentru învățarea supervizată
- Funcțiile de activare a nodurilor -> liniare, sigmoidale, gaussiene

• RNA recurente (cu feedback):

o Pot conține conexiuni între noduri de pe același strat

- o Conexiunile între noduri pot forma cicluri
- o RNA de tip Jordan
- o RNA de tip Elman
- o RNA de tip Hopfield
- o RNA auto-organizate -> pentru învățarea nesupervizată
 - De tip Hebbian
 - De tip Kohonen (Self organised maps)