==:	====	===:	===	===	===	===	===	===	===	===	===	===	===	===:	====	===	===	===	==:
==:	====	===	===	===	===	===	===	===	=										
===	====	===:	===	===	===	===	===	===	===	===	===	===	===	====	====	===	===	===	==:
									_										

- Todos os códigos devem ser necessariamente genéricos (quando fizer sentido) e as entradas e saídas devem ser do tipo std_logic/std_logic_vector
- 1) Crie um detector da sequência de caracteres "aba", com overlap configurável, utilizando a técnica de FSM.

2) Projetar um circuito, utilizando a técnica de máquina de estados (FSM - apresente seu diagrama de transição de estados), que faça o controle de um cruzamento de ferrovias. Cada ferrovia tem um sinaleiro que pode estar verde ou vermelho apenas. O operador tem a seu dispor um único botão que toda vez apertado, deve trocar os sinaleiros (um vai para o verde e o outro para o vermelho e vice versa). O sistema, quando energizado, coloca os dois sinaleiros em vermelho e logo em seguida (i.e. um ciclo de clock depois) começa o funcionamento normal.