## Supplementary Information for

## Toward Sustainable Groundwater Management: Harnessing Remote Sensing and Climate Data to Estimate Field-Scale Groundwater Pumping and Irrigation Efficiencies

Thomas J. Ott <sup>a\*</sup>, Sayantan Majumdar <sup>a\*</sup>, Justin L. Huntington <sup>a†</sup>, Christopher Pearson <sup>a</sup>, Matt Bromley <sup>a</sup>, Blake A. Minor <sup>a</sup>, Charles G. Morton <sup>a</sup>, Sachiko Sueki <sup>b</sup>, Jordan P. Beamer <sup>c</sup>, Richard Jasoni <sup>a</sup>

This supplementary information file has five figures and two tables referenced in the main manuscript.

**Supplementary Table 1.** Ensemble machine learning (ML) models and the hyperparameters tuned in a randomized grid search with five-fold cross-validation. The random seed value is set to 1234 throughout, and the root mean square error (RMSE) is used as the objective function across these models. ERT and RF are available from <u>scikit-learn</u>, and GBT is available from <u>LightGBM</u>.

| Model          | Hyperparameter values                                   | Tuned hyperparameters   |
|----------------|---------------------------------------------------------|-------------------------|
| Extremely      | 'n_estimators': [300, 400, 500, 800]                    | 'n_estimators': 800     |
| Randomized     | 'max_features': [5, 6, 7, 10, 12, 20, 30, None]         | 'max_features': None    |
| Trees (ERT)    | 'max_depth': [8, 15, 20, 6, 10, None]                   | 'max_depth': 10         |
|                | 'min_samples_leaf': [1, 2]                              | 'min_samples_leaf': 2   |
|                | 'max_samples': [None, 0.9]                              | 'max_samples': None     |
|                | 'max_leaf_nodes': [16, 20, 31, 32, 63, 127, 15, 255, 7, | 'max_leaf_nodes': 127   |
|                | None]                                                   | 'min_samples_split': 2  |
|                | 'min_samples_split': [2, 3, 4, 0.01]                    |                         |
|                | Fixed parameters: bootstrap=True                        |                         |
| Gradient       | 'n_estimators': [300, 400, 500, 800]                    | 'n_estimators': 800     |
| Boosting       | 'max_depth': [8, 15, 20, 6, 10, -1]                     | 'max_depth': 8          |
| Machine (GBT)  | 'learning_rate': [0.01, 0.005, 0.05, 0.1]               | 'learning_rate': 0.01   |
|                | 'subsample': [1, 0.9, 0.8]                              | 'subsample': 0.8        |
|                | 'colsample_bytree': [1, 0.9]                            | 'colsample_bytree': 0.9 |
|                | 'colsample_bynode': [1, 0.9]                            | 'colsample_bynode': 1   |
|                | 'path_smooth': [0, 0.1, 0.2]                            | 'path_smooth': 0.2      |
|                | 'num_leaves': [16, 20, 31, 32, 63, 127, 15, 255, 7]     | 'num_leaves': 7         |
|                | 'min_child_samples': [30, 40, 10, 20]                   | 'min_child_samples': 20 |
|                | Fixed parameters: tree_learner='feature',               |                         |
|                | deterministic=True, force_row_wise=True                 |                         |
| Random Forests | Same as ERT                                             | 'n_estimators': 500     |
| (RF)           |                                                         | 'max_features': 20      |
|                |                                                         | 'max_depth': 6          |
|                |                                                         | 'min_samples_leaf': 2   |
|                |                                                         | 'max_samples': None     |
|                |                                                         | 'max_leaf_nodes': 16    |
|                |                                                         | 'min_samples_split': 4  |

<sup>\*</sup> These two authors have contributed equally.

<sup>&</sup>lt;sup>a</sup> Desert Research Institute, Reno, NV, USA

<sup>&</sup>lt;sup>b</sup> Desert Research Institute, Las Vegas, NV, USA

<sup>&</sup>lt;sup>c</sup> Oregon Water Resources Department, Salem, OR, USA

<sup>&</sup>lt;sup>†</sup> Corresponding author at: Division of Hydrologic Sciences, Desert Research Institute, 2215 Raggio Parkway, Reno, Nevada 89512-1095, USA

**Supplementary Table 2.** Description of the 28 predictors used in the full machine learning models to estimate groundwater pumping depths in Diamond Valley, Nevada<sup>‡</sup>. The data references are in the main manuscript.

| Predictor name               | Description                             | Operations                   |
|------------------------------|-----------------------------------------|------------------------------|
| annual_net_et_ensemble_mm§   | OpenET ensemble-based Net ET in mm      | annual_et_ensemble_mm -      |
|                              |                                         | annual_gridmet_precip_eff_mm |
| annual_et_eemetric_mm        | eeMETRIC actual ET in mm                | Temporal sum (calendar year) |
|                              |                                         | and zonal mean               |
| annual_et_ssebop_mm          | SSEBop actual ET in mm                  | Temporal sum (calendar year) |
|                              |                                         | and zonal mean               |
| annual_et_geesebal_mm        | geeSEBAL actual ET in mm                | Temporal sum (calendar year) |
|                              |                                         | and zonal mean               |
| annual_et_ensemble_mm        | OpenET ensemble actual ET in mm         | Temporal sum (calendar year) |
|                              |                                         | and zonal mean               |
| annual_daymet_precip_eff_mm  | Daymet v4 effective precipitation in mm | annual_daymet_precip_mm *    |
|                              |                                         | eff_factor                   |
| annual_daymet_precip_mm      | Daymet v4 precipitation in mm           | Temporal sum (calendar year) |
|                              |                                         | and zonal mean               |
| annual_et_disalexi_mm        | ALEXI/DisALEXI actual ET in mm          | Temporal sum (calendar year) |
|                              |                                         | and zonal mean               |
| annual_gridmet_precip_mm     | gridMET precipitation in mm             | Temporal sum (calendar year) |
|                              |                                         | and zonal mean               |
| annual_gridmet_precip_eff_mm | gridMET effective precipitation in mm   | annual_gridmet_precip_mm *   |
|                              |                                         | eff_factor                   |
| annual_et_pt_jpl_mm          | PT-JPL actual ET in mm                  | Temporal sum (calendar year) |
|                              |                                         | and zonal mean               |
| annual_et_sims_mm            | SIMS actual ET in mm                    | Temporal sum (calendar year) |
|                              |                                         | and zonal mean               |
| annual_ndvi                  | Landsat-8 32-day composite NDVI         | Temporal max (calendar year) |
|                              |                                         | and zonal mean               |
| annual_rmin                  | gridMET minimum relative humidity %     | Temporal median (calendar    |
|                              |                                         | year) and zonal mean         |

\_

<sup>&</sup>lt;sup>‡</sup> Here, the temporal operations are performed for each year between 2018 and 2022, and the zonal operations are performed for each field. If a well waters multiple fields, then we sum up the corresponding actual ET, reference ET, Net ET, precipitation, effective precipitation, effective precipitation factor, and vapor pressure deficit for those fields, average the NDVI, minimum relative humidity, maximum relative humidity, minimum air temperature, soil depth, saturated hydraulic conductivity, and wind velocity, and take the mode of the hydrologic soil groups for those fields.

<sup>§</sup> For the ML models used to compare the ET model performances (Table 5, main manuscript), we replace the annual\_net\_et\_ensemble\_mm with the corresponding Net ET (e.g., annual\_net\_et\_eemetric\_mm) and only keep the corresponding actual ET predictor, e.g, annual\_et\_eemetric\_mm. Other ET predictors are removed to negate the correlation effects. All the remaining predictors are kept as in the full ML model. Therefore, we end up with 22 predictors for each of the models in Table 5 of the main manuscript.

**Supplementary Table 2 (Contd.).** Description of the 28 predictors used in the full machine learning models to estimate groundwater pumping depths in Diamond Valley, Nevada. Here, the temporal operations are performed for each year between 2018 and 2022, and the zonal operations are performed for each field.

| Predictor name     | Description                                                   | Operations                                     |
|--------------------|---------------------------------------------------------------|------------------------------------------------|
| annual_rmax        | gridMET maximum relative humidity                             | Temporal median (calendar year) and zonal      |
|                    | %                                                             | mean                                           |
| ksat_mean_micromps | Saturated hydraulic conductivity in $\mu$ m/s                 | Zonal mean                                     |
| soil_depth_mm      | Soil depth in mm                                              | Zonal mean                                     |
| annual_vpd_kPa     | gridMET vapor pressure deficit in kPa                         | Temporal sum (calendar year) and zonal mean    |
| annual_tmmn_K      | gridMET minimum air temperature (K)                           | Temporal median (calendar year) and zonal mean |
| annual_tmmx_K      | gridMET maximum air temperature (K)                           | Temporal median (calendar year) and zonal mean |
| eff_factor         | ET-Demands-derived basin-scale effective precipitation factor |                                                |
| elevation_m        | NASADEM elevation in m                                        | Zonal mean                                     |
| annual_vs_mps      | gridMET wind velocity in m/s                                  | Temporal mean (calendar year) and zonal mean   |
| annual_etr_mm      | gridMET alfalfa reference ET in mm                            | Temporal sum (calendar year) and zonal mean    |
| annual_eto_mm      | gridMET grass reference ET in mm                              | Temporal sum (calendar year) and zonal mean    |
| HSG_1              | Hydrologic soil group 1 (A)                                   | Zonal mode                                     |
| HSG_3              | Hydrologic soil group 3 (B)                                   | Zonal mode                                     |
| HSG_5              | Hydrologic soil group 5 (C)                                   | Zonal mode                                     |



**Supplementary Figure 1.** Permutation importance plots showing the top five features for the training data (including validation) for (a) ERT, (b) GBM, and (c) RF.



**Supplementary Figure 2.** Permutation importance plots showing the top five features for the test data for (a) ERT, (b) GBM, and (c) RF.



**Supplementary Figure 3.** Scatter plots of the linear regression models for (a) ALEXI/DisALEXI, (b) eeMETRIC, (c) geeSEBAL, (d) PT-JPL, (e) SIMS, and (f) SSEBop in DV, Nevada. The symbols and labels are defined in the main manuscript. The scatter plot of the OpenET ensemble is shown in Figure 7 (a) of the main manuscript.



**Supplementary Figure 4.** Scatter plots of the linear regression models for (a) ALEXI/DisALEXI, (b) eeMETRIC, (c) geeSEBAL, (d) PT-JPL, (e) SIMS, and (f) SSEBop in HB, Oregon. The symbols and labels are defined in the main manuscript. The scatter plot of the OpenET ensemble is shown in Figure 10 (a) of the main manuscript.







(b)

**Supplementary Figure 5.** Comparisons of the (a) total annual ET depths and (b) total *Net ET* and total reported metered *GP* depths for each ET model in HB, Oregon.