US Patent & Trademark Office Patent Public Search | Text View

United States Patent Application Publication

Kind Code

A1

Publication Date

Inventor(s)

August 21, 2025

Parsons; Robert R. et al.

GOLF CLUB HEADS AND METHODS TO MANUFACTURE GOLF CLUB HEADS

Abstract

Embodiments of golf club heads, golf clubs, and methods to manufacture golf club heads and golf clubs are generally described herein. In one example, a golf club head includes a hollow body portion comprising an interior portion and an exterior portion, a first mass portion, a second mass portion coupled to the interior portion of the body portion, and a port extending from the exterior portion of the body portion to the interior portion of the body portion, the port being at a different location on the body portion than the first mass portion and the second mass portion. A maximum width of the interior portion of the body portion is below a horizontal midplane of the body portion and between the first mass portion and the second mass portion. Other examples and embodiments may be described and claimed.

Inventors: Parsons; Robert R. (Scottsdale, AZ), Nicolette; Michael R. (Scottsdale, AZ),

Schweigert; Bradley D. (Cave Creek, AZ), Kirtley; Daniel C. (Phoenix, AZ)

Applicant: PARSONS XTREME GOLF, LLC (Scottsdale, AZ)

Family ID: 1000008586700

Assignee: PARSONS XTREME GOLF, LLC (Scottsdale, AZ)

Appl. No.: 19/202078

Filed: May 08, 2025

Related U.S. Application Data

parent US continuation 18888330 20240918 parent-grant-document US 12324967 child US 19202078

parent US continuation 18760880 20240701 parent-grant-document US 12121784 child US 18888330

parent US continuation 18621589 20240329 parent-grant-document US 12036454 child US 18760880

parent US continuation 18375589 20231002 PENDING child US 18621589

parent US continuation 18205019 20230602 parent-grant-document US 11833398 child US 18375589

parent US continuation 18115222 20230228 parent-grant-document US 11707655 child US 18205019

parent US continuation 17841893 20220616 parent-grant-document US 11806590 child US 17988585

parent US continuation 17685546 20220303 parent-grant-document US 11400352 child US 17841893

parent US continuation 16566597 20190910 parent-grant-document US 11207575 child US 17528402

parent US continuation-in-part 17988585 20221116 parent-grant-document US 11779820 child US 18205019

parent US continuation-in-part 17528402 20211117 parent-grant-document US 11426641 child US 17685546

us-provisional-application US 63389561 20220715 us-provisional-application US 63276981 20211108

Publication Classification

Int. Cl.: A63B53/04 (20150101); A63B60/54 (20150101)

U.S. Cl.:

CPC **A63B53/0475** (20130101); A63B2053/0479 (20130101); A63B60/54 (20151001); A63B2209/00 (20130101)

Background/Summary

CROSS REFERENCE [0001] This application is a continuation of U.S. application Ser. No. 18/888,330, filed Sep. 18, 2024, which is a continuation of application Ser. No. 18/760,880, filed Jul. 1, 2024, now U.S. Pat. No. 12,121,784, which is a continuation of application Ser. No. 18/621,589, filed Mar. 29, 2024, now U.S. Pat. No. 12,036,454, which is a continuation of application Ser. No. 18/375,589, filed Oct. 2, 2023, which is a continuation of application Ser. No. 18/205,019, filed Jun. 2, 2023, now U.S. Pat. No. 11,833,398, which is a continuation of U.S. application Ser. No. 18/115,222, filed Feb. 28, 2023, now U.S. Pat. No. 11,707,655, which claims the benefit of U.S. Provisional Application No. 63/389,561, filed Jul. 15, 2022, and claims the benefit of U.S. Provisional Application No. 63/443,494, filed Feb. 6, 2023. [0002] U.S. application Ser. No. 18/205,019, filed Jun. 2, 2023, is a continuation-in-part of U.S. application Ser. No. 17/988,585, filed Nov. 16, 2022, now U.S. Pat. No. 1,1779,820, which is a continuation of application Ser. No. 17/841,893, filed Jun. 16, 2022, now U.S. Pat. No. 11,806,590, which is a continuation of application Ser. No. 17/685,546, filed Mar. 3, 2022, now U.S. Pat. No. 11,400,352, which claims the benefit of U.S. Provisional Application No. 63/276,981, filed Nov. 8, 2021. [0003] U.S. application Ser. No. 17/685,546, filed Mar. 3, 2022, is a continuation-in-part of application Ser. No. 17/528,402, filed Nov. 17, 2021, now U.S. Pat. No. 11,426,641, which is a continuation of application Ser. No. 16/566,597, filed Sep. 10, 2019, now U.S. Pat. No. 11,207,575. [0004] The disclosures of the above-referenced applications are incorporated by reference herein in their entirety.

COPYRIGHT AUTHORIZATION

[0005] The present disclosure may be subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the present disclosure and its related documents, as they appear in the Patent and Trademark Office patent files or records, but otherwise reserves all applicable copyrights.

FIELD

[0006] The present disclosure generally relates to golf equipment, and more particularly, to golf club heads and methods to manufacture golf club heads.

BACKGROUND

[0007] Various materials (e.g., steel-based materials, titanium-based materials, tungsten-based materials, etc.) may be used to manufacture golf club heads. By using multiple materials to manufacture golf club heads, the position of the center of gravity (CG) and/or the moment of inertia (M OI) of the golf club heads may be optimized to produce certain trajectory and spin rate of a golf ball.

Description

DESCRIPTION OF THE DRAWINGS

[0008] FIG. **1** depicts a golf club head having a golf club according to any embodiment of the apparatus, methods, and articles of manufacture described herein.

[0009] FIGS. **2**, **3**, **4**, **5**, **6**, **7**, **8**, **9**, **10**, **11**, and **12** depict a perspective front view, a perspective back view, a perspective cross-sectional view (along line **4-4** of FIG. **3**), a perspective cross-sectional view (along line **6-6** of FIG. **3**), a perspective front view illustrated without a face portion, another perspective front view illustrated without a face portion, a perspective cross-sectional view (along line **10-10** of FIG. **2**), a perspective cross-sectional view (along line **11-11** of FIG. **2**), and a perspective cross-sectional view (along line **12-12** of FIG. **2**), respectively, of a golf club head according to an embodiment of the apparatus, methods, and articles of manufacture described herein.

[0010] FIG. **13** depicts a back view of a face portion of a golf club head according to any embodiment of the apparatus, methods, and articles of manufacture described herein. [0011] FIG. **14** depicts a manner in which an example golf club head described herein may be manufactured.

[0012] FIGS. **15** and **16** depict schematic cross-sectional views of two example face portions of a golf club head according to embodiments of the apparatus, methods, and articles of manufacture described herein.

[0013] FIG. 17 depicts a top view of a mass portion of a golf club head according to an embodiment of the apparatus, methods, and articles of manufacture described herein.
[0014] FIGS. 18 and 19 depict side views of two example mass portions of a golf club head according to embodiments of the apparatus, methods, and articles of manufacture described herein.
[0015] FIGS. 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, and 33 depict a front view, a top view, a bottom view, a back view, another back view, a top and toe side view, a toe side view, a heel side view, a cross-sectional view taken at line 28-28 of FIG. 23, a cross-sectional view taken at line 29-29 of FIG. 23, a cross-sectional view taken at line 30-30 of FIG. 23, a cross-sectional view taken at line 31-31 of FIG. 20, a cross-sectional view taken at line 32-32 of FIG. 20, a cross-sectional view taken at line 33-33 of FIG. 20, respectively, of a golf club head according to an embodiment of the apparatus, methods, and articles of manufacture described herein.
[0016] FIG. 34 is a mass portion for the golf club head of FIG. 20 according to an embodiment of the apparatus, methods, and articles of manufacture described herein.

- [0017] FIG. **35** is a face portion of the golf club head of FIG. **20** according to an embodiment of the apparatus, methods, and articles of manufacture described herein.
- [0018] FIG. **36** is a face portion of the golf club head of FIG. **20** according to another embodiment of the apparatus, methods, and articles of manufacture described herein.
- [0019] FIG. **37** is an enlarged view of area **37** of FIG. **28**.
- [0020] FIG. **38** is an enlarged view of area **38** of FIG. **29**.
- [0021] FIGS. **39**, **40**, **41**, and **42** are plots of experimental results for the golf club head of FIG. **20** according to several embodiments of the apparatus, methods, and articles of manufacture described herein.
- [0022] FIGS. **43**, **44**, **45**, **46**, **47**, **48**, **49**, **50**, **51**, **52**, **53**, **54**, **55**, **56**, **57**, **58**, **59**, **60**, **61**, **62**, **63**, **64**, **65**, and **66** are face portions according to several embodiments of the apparatus, methods, and articles of manufacture described herein.
- [0023] FIGS. 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, and 87 illustrate a front view, a back view, a top view, a bottom view, a heel side view, a toe side view, a cross-sectional view taken at line 73-73 of FIG. 68, a cross-sectional view taken at line 74-74 of FIG. **68**, a cross-sectional view taken at line **75-75** of FIG. **68**, a cross-sectional view taken at line **76-76** of FIG. **68**, a cross-sectional view taken at line **77-77** of FIG. **67**, a cross-sectional view taken at line **78-78** of FIG. **67**, a cross-sectional view taken at line **79-79** of FIG. **67**, a crosssectional view taken at line **80-80** of FIG. **67**, a cross-sectional view taken at line **81-81** of FIG. **67**, a front view with the face portion removed, a back view without a mass portion and a badge, a side view of an internal mass portion, a rear view of an internal mass portion, a front and side view of an internal mass portion, and a method of manufacturing, respectively, of a golf club head according to embodiments of the apparatus, methods, and articles of manufacture described herein. [0024] FIGS. 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, and 106 illustrate a front view, a back view, a top view, a bottom view, a heel side view, a toe side view, a cross-sectional view taken at line **94-94** of FIG. **89**, a cross-sectional view taken at line **95-95** of FIG. 89, a cross-sectional view taken at line 96-96 of FIG. 89, a cross-sectional view taken at line 97-97 of FIG. 89, a cross-sectional view taken at line 98-98 of FIG. 88, a cross-sectional view taken at line 99-99 of FIG. 88, a cross-sectional view taken at line 100-100 of FIG. 88, a crosssectional view taken at line **101-101** of FIG. **88**, a back view without a mass portion and a badge, a front view with the face portion removed, a side view of an internal mass portion, and a rear view of an internal mass portion, respectively, of a golf club head according to embodiments of the apparatus, methods, and articles of manufacture described herein.
- [0025] FIGS. **107**, **108**, **109**, and **110** illustrate face portions configurations for of a golf club head according to embodiments of the apparatus, methods, and articles of manufacture described herein. [0026] For simplicity and clarity of illustration, the drawing figures illustrate the general manner of construction, and descriptions and details of well-known features and techniques may be omitted to avoid unnecessarily obscuring the present disclosure. Additionally, elements in the drawing figures may not be depicted to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help improve understanding of embodiments of the present disclosure.

DESCRIPTION

[0027] The following U.S. Patents and Patent Applications, which are collectively referred to herein as "the incorporated by reference publications," are incorporated by reference herein in their entirety: U.S. Pat. Nos. 8,961,336, 9,199,143, 9,421,437, 9,427,634, 9,468,821, 9,533,201, 9,610,481, 9,649,542, 9,675,853, 9,814,952, 9,878,220, 10029158, 10029159, 10159876, 10232235, 10265590, 10279233, 10286267, 10293229, 10449428, 10478684, 10512829, 10596424, 10596425, 10632349, 10716978, 10729948, 10729949, 10814193, 10821339, 10821340, 10828538, 10864414, 10874919, 10874921, 10905920, 10933286, 10940375, 11058932, 11097168, 11117030, 11141633, 11154755, 11167187, 11173359, 11192003, 11207575,

11235211; and U.S. Patent Publication Nos. 20170282026, 20170282027, 20170368429, 20180050243, 20180050244, 20180133567, 20180140910, 20180169488, 20180221727, 20180236325, 20190232125, 20190232126, 20190247727, 20200171363, 20210023422, 20210069557, 20210086044, 20210162278, 20210197037, 20210205672, 20210308537, 20220032138, and 20220040541.

[0028] In the example of FIGS. **1-14**, a golf club **100** may include a golf club head **200**, a shaft 104, and a grip 106. The golf club head 200 may be attached to one end of the shaft 104 and the grip **106** may be attached to the opposite end of the shaft **104**. An individual can hold the grip **106** and swing the golf club head **200** with the shaft **104** to strike a golf ball (not illustrated). The golf club head **200** may include a body portion **210** having a toe portion **240** with a toe portion edge **242**, a heel portion **250** with a heel portion edge **252** that may include a hosel portion **255** configured to receive a shaft (an example shaft **104** is illustrated in FIG. **1**) with a grip (an example grip **106** is illustrated in FIG. **1**) on one end and the golf club head **200** on the opposite end of the shaft to form a golf club (an example golf club **100** is illustrated in FIG. **1**), a front portion **260** with a perimeter edge portion 261, a back portion 270 with a back wall portion 272, a top portion 280 with a top portion edge **282**, and a sole portion **290** with a sole portion edge **292**. The toe portion edge **242**, the heel portion edge **252**, the top portion edge **282**, and the sole portion edge **292** may define a periphery of the body portion **210**. The toe portion **240**, the heel portion **250**, the front portion **260**, the back portion **270**, the top portion **280**, and/or the sole portion **290** may partially overlap each other. For example, a portion of the toe portion **240** may overlap portion(s) of the front portion **260**, the back portion **270**, the top portion **280**, and/or the sole portion **290**. In a similar manner, a portion of the heel portion 250 may overlap portion(s) of the front portion 260, the back portion **270**, the top portion **280**, and/or the sole portion **290**. In another example, a portion of the back portion **270** may overlap portion(s) of the toe portion **240**, the heel portion **250**, the top portion **280**, and/or the sole portion **290**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0029] The golf club head **200** may include a face portion **262** (i.e., the strike face), which may be integrally formed with the body portion 210 (e.g., a single unitary piece). In one example, as illustrated in FIGS. 2-13, the face portion 262 may be a separate piece coupled (e.g., adhesively, mechanically, by welding, and/or by soldering) to the front portion **260**. The face portion **262** may include a front surface **264** and a back surface **266**. In one example (not illustrated), the front portion 260 may include one or a plurality of recessed shoulders configured to receive the face portion **262** for attachment of the face portion **262** to the body portion **210**. In another example, as illustrated in FIGS. 2-13, the back surface 266 may include a perimeter portion 267 that may be attached to a perimeter edge portion **261** of the body portion **210**. The perimeter portion **267** of the face portion **262** may be attached to the perimeter edge portion **261** of the body portion **210** by one or more fasteners, one or more adhesive or bonding agents, and/or welding or soldering. In one example, as illustrated in FIGS. 2-13, the perimeter portion 267 of the face portion 262 may be welded to the perimeter edge portion **261** of the body portion **210** at one or more locations. Alternatively, the entire perimeter portion **267** of the face portion **262** may be welded to the entire perimeter edge portion **261** of the body portion **210** (i.e., a continuous weld). The face portion **262** may include a ball strike region **268** to strike a golf ball. In one example, the center of the ball strike region **268** may be a geometric center **263** of the face portion **262**. In another example, the geometric center **263** of the face portion **262** may be offset from a center of the ball strike region 268. In one example, the geometric center 263 and one or more regions near and/or surrounding the geometric center within the ball strike region 268 may provide a generally optimum location (i.e., optimum ball distance, ball speed, ball spin characteristics, etc.) on the face portion 262 for striking a golf ball. In yet another example, any location at or near the geometric center **263** and within the ball strike region 268 may provide a generally optimum location on the face portion 262 for striking a golf ball. However, a ball may be struck with any portion of the face portion 262 within

the ball strike region **268** or outside the ball strike region **268** for any of the golf club heads described herein resulting in certain ball flight characteristics different from an on-center hit that may be preferred by an individual. The configuration of the face portion **262** and the attachment of the face portion **262** (e.g., welding) to the body portion **210** may be similar in many respects to any of the golf club heads described herein and/or described in any of the incorporated by reference publications. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0030] The golf club head **200** may be associated with a ground plane **510**, a horizontal midplane **520**, and a top plane **530**. In particular, the ground plane **510** may be a plane that is parallel or substantially parallel to the ground and is tangent to the lowest portion of the sole portion edge 292 when the golf club head **200** is at an address position (e.g., the golf club head **200** aligned to strike a golf ball). A top plane **530** may be a plane that is tangent to the upper most portion of top portion edge **282** when the golf club head **200** is at the address position. The ground plane **510** and the top plane **530** may be parallel or substantially parallel. The horizontal midplane **520** may be vertically halfway between the ground plane **510** and the top plane **530**. Further, the golf club head **200** may be associated with a loft plane **540** defining a loft angle **545** (*a*) of the golf club head **200**. The loft plane **540** may be a plane that is tangent to the face portion **262**. The loft angle **545** may be defined by an angle between the loft plane **540** and a vertical plane **550** normal to the ground plane **510**. [0031] The body portion **210** may be a hollow body including an interior cavity **310** having inner walls **312**. The interior cavity **310** may extend between the front portion **260**, the back portion **270**, the top portion **280**, and the sole portion **290**. In the example of FIGS. **2-13**, the interior cavity **310** of the body portion **210** may be enclosed with and partially defined with the face portion **262**. The configuration of the interior cavity **310** (e.g., height, width, volume, shape, etc.), the configuration of the interior cavity 310 relative to the body portion 210 (e.g., volume of the interior cavity 310 relative to the volume of body portion 210), the width and height variation of the interior cavity **310**, and access to the interior cavity **310** from one or more ports on the body portion **210** may be similar to any of the golf club heads described herein and/or described in any of the incorporated by reference publications. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0032] The back wall portion **272** of the back portion **270** may include an upper back wall portion **612** and a lower back wall portion **614**. The back wall portion **272** may include a ledge portion **616** that may extend between the toe portion edge 242 and the heel portion edge 252 in a continuous or discontinuous manner. The lower back wall portion **614** may be located farther back on the body portion **210** than the upper back wall portion **612**, with the ledge portion **616** defining a transition portion between the upper back wall portion **612** and the lower back wall portion **614**. Accordingly, the ledge portion **616** may extend transverse to the upper back wall portion **612** and the lower back wall portion **614**. In one example, as illustrated in FIG. **2-13**, the ledge portion **616** may include a first ledge portion **626** and a second ledge portion **636**. The first ledge portion **626** may extend on the back wall portion from the toe portion edge **242** to a center portion of the back wall back wall portion **272**. The second ledge portion **636** may extend from the center portion of the back wall portion **272** to the heel portion edge **252**. As illustrated in FIGS. **2-13**, the ledge portion **616** may provide for a relatively greater mass of the body portion **210** below the horizontal midplane **520**, and the mass of the body portion **210** below the horizontal midplane **520** to be moved farther back on the body portion **210**. The width of the ledge portion **616** may be greater than, equal to, or less than the width of the interior cavity at certain locations of the body portion **210**. The configuration of the ledge portion 616 (e.g., width, segments, tapering, shape, etc.) and the properties of the ledge portion **616** relative to the width of the interior cavity may be similar to any ledge portion or similar structure of any of the golf club heads described herein and/or described in any of the incorporated by reference publications. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

```
[0033] The body portion 210 may include one or more ports, which may be exterior ports and/or
interior ports (e.g., located inside the body portion 210). The inner walls 312 of the interior cavity
310 may include one or more ports (not illustrated). In one example, as illustrated in FIGS. 2-13,
the back portion 270 may include one or more ports along or proximate to the periphery of the
body portion 210. For example, the body portion 210 may include a first set of ports 320 (e.g.,
illustrated as ports 321 and 322) above the horizontal midplane 520, a second set of ports 330 (e.g.,
illustrated as ports 331 and 332) below the horizontal midplane 520, a third set of ports 340 (e.g.,
illustrated as ports 341, 342, and 343) below the horizontal midplane 520, and a fourth set of ports
350 (e.g., illustrated as ports 351 and 352) below the horizontal midplane 520. The locations,
spacing relative to other ports, and any other configuration of each port of the first set of ports 320,
the second set of ports 330, the third set of ports 340, and/or the fourth set of ports 350 may be
similar in many respects to any of the ports described herein or described in any of the incorporated
by reference publications. Further, any one or more of the ports of the first set of ports 320, the
second set of ports 330, the third set of ports 340, and/or the fourth set of ports 350 may be
connected to interior cavity 310 through which one or more filler materials may be injected into the
interior cavity 310. In the example of FIGS. 2-13, the ports 321, 331, and 351 may be connected to
the interior cavity 310 via openings 361, 371, and 381, respectively. The apparatus, methods, and
articles of manufacture described herein are not limited in this regard.
[0034] The body portion 210 may include one or more mass portions (e.g., weight portion(s)),
which may be integral mass portion(s) or separate mass portion(s) that may be coupled to the body
portion 210. In the illustrated example as illustrated in FIGS. 2-13, the body portion 210 may
include a first set of mass portions 420 (e.g., illustrated as mass portions 421 and 422), a second set
of mass portions 430 (e.g., illustrated as mass portions 431 and 432), a third set of mass portions
440 (e.g., illustrated as mass portions 441, 442, and 443), and a fourth set of mass portions 450
(e.g., illustrated as mass portions 451 and 452). While the above example may describe a particular
number or portions of mass portions, a set of mass portions may include a single mass portion, or a
plurality of mass portions as described herein and in any of the incorporated by reference
publications. For example, any one or a combination of adjacent sets of mass portions of the first
set of mass portions 420 may be a single mass portion, the second set of mass portions 430 may be
a single mass portion, the third set of mass portions 440 may be a single mass portion, and/or the
fourth set of mass portions 450 may be a single mass portion. Further, the first set of mass portions
420, the second set of mass portions 430, the third set of mass portions 440, and/or the fourth set of
mass portions 450 may be a portion of the physical structure of the body portion 210. The mass
portions of the first set of mass portions 420, the second set of mass portions 430, the third set of
mass portions 440, and/or the fourth set of mass portions 450 may be similar to any of the mass
portions described in any of the incorporated by reference publications. The apparatus, methods,
and articles of manufacture described herein are not limited in this regard.
[0035] The interior cavity 310 may be partially or entirely filled with one or more filler materials
(i.e., a cavity filling material), which may include one or more similar or different types of
materials. In one example, as illustrated in FIGS. 2-13, the interior cavity 310 may be filled with a
first filler material 512 and a second filler material 514. In one example, the first filler material 512
may be a rubber or rubber compound, and the second filler material 514 may be an epoxy-type of
material. In another example, the first filler material 512 and/or the second filler material 514 may
be different polymer materials. The first filler material 512 and the second filler material 514 may
be similar to any of the filler materials described herein or described in any of the incorporated by
reference publications. The first filler material 512 and/or the second filler material 514 may be
coupled to all or portions of the inner walls 312 of the interior cavity 310. In one example, the first
filler material 512 and/or the second filler material 514 may have inherent adhesive or bonding
properties to attach to all or portions of the inner walls 312. In another example, the first filler
material 512 and/or the second filler material may be attached to all or portions of the inner walls
```

312 with one or more bonding agents or adhesives that may be mixed with the first filler material **512** and/or the second filler material **514**, respectively. In another example, the first filler material **512** and/or the second filler material **514** may be attached to all or portions of the inner walls **312** with one or more bonding agents or adhesives that may be separate from the first filler material **512** and/or the second filler material **514**, respectively. The amount (i.e., volume and/or mass) of the first filler material **512** and/or the second filler material **514** may be determined for each golf club head (i.e., having a certain loft angle) to (i) provide vibration dampening or sound dampening (e.g., consistent and/or pleasing sound and feel when the golf club head 200 strikes a golf ball as perceived by an individual using the golf club head **200**), (ii) provide structural support for the face portion **262**, and/or (iii) optimize ball travel distance, ball speed, ball launch angle, ball spin rate, ball peak height, ball landing angle and/or ball dispersion. Details regarding the filler materials 512 and **514**, coupling of the filler materials **512** and **514** to the body portion **210** and each other, material compositions and/or physical properties of the filler materials 512 and 514, the mass and/or volume of each of the filler materials **512** and **514** in the interior cavity **310** may be provided in detail in any of the incorporated by reference publications, and in particular, in U.S. Pat. No. 10,632,349, which is incorporated by reference herein. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0036] In the example of FIGS. **2-13**, a portion of the interior cavity **310** including a central portion **311** of the interior cavity **310**, which may be a portion of the interior cavity **310** that may generally correspond to the ball strike region **268**, may be include the first filler material **512** and the second filler material **514**. The width **313** of the interior cavity **310** at the central portion **311** of the interior cavity **310** may be generally greater than the width **313** of the interior cavity **310** at other portions of the interior cavity **310**. Accordingly, the region of the interior cavity **310** behind the ball strike region **268**, i.e., the central portion **311**, may include a relatively large volume of the first filler material **512** and/or the second filler material **514**. Further, the configuration of the central portion **311** (i.e., size, shape, contour, volume, etc.) may depend on the loft angle **545**. For example, a golf club head **200** with a relatively small loft angle may have a larger central portion **311** (i.e., larger volume, depth, height, etc.) than a golf club head 200 with a relatively large loft angle. Accordingly, as described herein, the amount of first filler material 512 and/or the second filler material **514** inside the interior cavity **310**, and more specifically, in the central portion **311** may be determined based on the loft angle **545** to provide (i) provide vibration dampening or sound dampening (e.g., consistent and/or pleasing sound and feel when the golf club head 200 strikes a golf ball as perceived by an individual using the golf club head **200**), (ii) provide structural support for the face portion **262**, and/or (iii) optimize ball travel distance, ball speed, ball launch angle, ball spin rate, ball peak height, ball landing angle and/or ball dispersion. The apparatus, methods, and articles of manufacture described herein are not limited in this regard. [0037] The contour of the interior cavity **310** or the shape of the inner walls **312** may be defined by

a plurality of recessed portions that may be recessed relative to the perimeter edge portion **261**. In the example of FIGS. **2-13**, the interior cavity **310** may include a first recessed portion **314**, a second recessed portion **315** that may have a generally smaller depth (i.e., defined by the interior cavity width **313** as viewed in cross section in FIGS. **5-40**) relative to the first recessed portion **314**, a third recessed portion **316** that may have a generally smaller depth than the second recessed portion **315**, a fourth recessed portion **317** that may have a generally smaller depth than the third recessed portion **316**, and a fifth recessed portion **318** that may have a generally smaller depth than the fourth recessed portion **317**. The interior cavity **310** may have more or less recessed portions. The interior cavity **310** may include a first internal channel **325** that may extend from a location at the toe portion **240** to the central portion **311**, and a second internal channel **326** that may extend from a location at the heel portion **250** to the central portion **311**. The first recessed portion **314**, the second recessed portion **315**, the third recessed portion **316**, the fourth recessed portion **317**, the fifth recessed portion **318**, the first internal channel **325**, the second internal channel **326**, and/or

any transition regions therebetween may be described in detail in one or more of the incorporated by reference publications, and in particular, in U.S. Pat. No. 10,632,349, which is incorporated by reference herein. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0038] In one example, as illustrated in FIGS. **2-13**, the first recessed portion **314**, the second recessed portion 315, the third recessed portion 316, and the internal channels 325 and 326 may be filled with the first filler material 512, whereas the remaining portions of the interior cavity 310 may be filled with the second filler material **514**. In another example, the first recessed portion **314**, the second recessed portion **315**, and the internal channels **325** and **326** may be filled with the first filler material **512**, whereas the remaining portions of the interior cavity **310** may be filled with the second filler material **514**. In another example, the first recessed portion **314**, the second recessed portion **315**, the internal channels **325** and **326**, the third recessed portion **316** and the fifth recessed portion **318** may be filled with the first filler material **512**, whereas the remaining portions of the interior cavity **310** may be filled with the second filler material **514**. In yet another example, the entire interior cavity **310** may be filled with the first filler material **512** or the first filler material. The apparatus, methods, and articles of manufacture described herein are not limited in this regard. [0039] A width **522** (W.sub.F1) of the first filler material **512** and the width **524** (W.sub.F2) of the second filler material **514** may vary from the toe portion **240** to the heel portion **250** and/or from the top portion **280** to the sole portion **290** and/or according to the shapes of the first recessed portion **314**, the second recessed portion **315**, the third recessed portion **316**, the fourth recessed portion 317, and/or the fifth recessed portion 318 depending on the location inside the interior cavity 310. The width 522 of the first filler material 512 and the width 524 of the second filler material **514** as related to the physical properties, ball strike and trajectory characteristics, and configuration of the golf club head 200 (e.g., loft angle) may be provided in detail in any of the incorporated by reference publications, and in particular, in U.S. Pat. No. 10,632,349, which is incorporated by reference herein. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0040] In one example, as illustrated in FIG. 13, the back surface 266 of the face portion 262 may include one or more grooves proximate to the perimeter portion 267 of the face portion 262. In one example, as illustrated in FIG. 13, a back groove 269 may be a continuous groove (i.e., defining a loop) extending in a path similar to the path of the perimeter portion **267** proximate to the perimeter portion **267**. The back groove **269** may include a relatively thinner portion of the face portion **262**. Accordingly, the back groove **269** may increase the flexibility of the face portion **262** so that when a golf ball strikes the face portion **262**, the face portion **262** provides a greater rebound (i.e., a greater trampoline effect), and hence may provide a greater velocity for the golf ball. All or portions of the back groove 269 may be filled with the first filler material 512 and/or second filler material **514**. In the example of the golf club head **200**, all of the back groove **269** may be filled with the second filler material **514**. Accordingly, the second filler material **514** may structurally support the relatively thinner portions of the face portion **262** defined by the back groove **269**. In another example, a plurality of separate grooves (not illustrated) may be provided on the back surface **266** of the face portion **262** at certain locations proximate to the perimeter portion **267** to provide a certain rebound effect for the face portion **262**. In yet another example, a continuous groove similar to the back groove **269** and/or a plurality of separate grooves (not illustrated) may be provided at certain locations between the perimeter portion **267** and the geometric center **263** on the back surface **266** of the face portion **262** to provide a certain rebound effect for the face portion **262**. The face portion of any of the golf club heads described herein may include the back groove **269**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0041] As described herein, the face portion **262** may be relatively thin to provide increased bending and deflection of the face portion **262** during a golf ball strike. Further, the face portion

262 may include one or more grooves such as the back groove **269** on the back surface **266** of the face portion **262** as described herein to further increase the flexibility of the face portion **262**. The second filler material **514** may be a polymer material with a relatively high strength and stiffness to provide structural support and stability for the face portion **262** to prevent failure of the face portion **262** during a golf ball strike or repeated golf ball strikes (i.e., face portion fatigue). As described herein, the second filler material **514** may be an epoxy-type of material. The second filler material **514** may also have a relatively high COR as described herein to provide a rebound effect for the face portion **262** after a golf ball strike. As further described herein, the first filler material **512** may be a rubber-type of compound with a lower strength and stiffness (i.e., softer or less rigid) than the second filler material **514** and a higher COR than the second filler material **514**. Accordingly, the first filler material **512** may provide additional structural support for the face portion **262**. Further, the relatively higher COR of the first filler material **512** may allow the first filler material **512** to store the energy from a golf ball strike and to release a substantial amount of the energy back to the golf ball (i.e., without losing much impact energy) by providing a relatively large rebound effect for the face portion **262**. Additionally, the different material properties of the first filler material **512** and the second filler material **514** as described herein may provide sound and vibration dampening at different frequency ranges to provide a pleasant sound and feel for an individual. The apparatus, methods, and articles of manufacture described herein are not limited in this regard. [0042] FIG. **14** depicts one manner by which the golf club head **200** or any of the golf club heads described herein may be manufactured. In the example of FIG. 14, the process 1400 may begin with providing a body portion 210 and a face portion 262 of a golf club head 200 (block 1410). The first filler material 512 may be coupled to the interior cavity 310 (block 1420). In one example, the first filler material 512 may be formed in one or more recessed portions as described herein (i.e., any of the recessed portions described herein) of the interior cavity 310 by injection molding. The first filler material 512 may then cure at ambient temperature or by one or more heating/cooling cycles depending on the material used for the first filler material **512**. In another example, the first filler material **512** may be molded into the shape of one or more recessed portions as described herein and then coupled to the one or more recessed portions with a bonding agent as described herein. The face portion **262** may then be attached to the body portion **210** as described herein to enclose the interior cavity **310** (block **1430**). The second filler material **514** may then be injected into the interior cavity **310** through one or more of the ports of the first set of ports **320**, the second set of ports **330**, the third set of ports **340**, and/or the fourth set of ports **350** that may be connected to the interior cavity **310** as described herein (block **1440**). The second filler material **514** may then cure at ambient temperature or by one or more heating/cooling cycles depending on the material used for the second filler material **514**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard. [0043] In one example, as illustrated in FIG. 15, a face portion 1562, which may be any of the face

portions described herein, may have a first thickness **1510** (T1) or a second thickness **1520** (T2). The first thickness **1510** may be a thickness of a section of the face portion **1562** adjacent to a groove **1568** whereas the second thickness **1520** may be a thickness of a section of the face portion **1562** below the groove **1564**. For example, the first thickness **1510** may be a maximum distance between the front surface **1564** and the back surface **1566**. The second thickness **1520** may be based on the groove **1568**. In particular, the groove **1568** may have a groove depth **1525** (D groove). The second thickness **1520** may be a maximum distance between the bottom of the groove **1568** and the back surface **1566**. The sum of the second thickness **1520** and the groove depth **1525** may be substantially equal to the first thickness **1510** (e.g., T2+Dgroove=T1). Accordingly, the second thickness **1520** may be less than the first thickness **1510** (e.g., T2<T1).

golf club heads described herein, mass from the front portion of a golf club head may be removed by using a relatively thinner face portion **1562**. For example, the first thickness **1510** or the second

thickness **1520** may be less than or equal to 0.1 inch (2.54 millimeters). In another example, the first thickness **1510** or the second thickness **1520** may be about 0.075 inch (1.875 millimeters) (e.g., T1=0.075 inch). With the support of the back wall portion of a golf club head to form an interior cavity and filling at least a portion of the interior cavity with one or more filler materials as described herein, the face portion **1562** may be relatively thinner (e.g., T**1**<0.075 inch) without degrading the structural integrity, sound, and/or feel of a golf club head. In one example, the first thickness **1510** may be less than or equal to 0.060 inch (1.524 millimeters) (e.g., $T1 \le 0.060$ inch). In another example, the first thickness **1510** may be less than or equal to 0.040 inch (1.016 millimeters) (e.g., $T1 \le 0.040$ inch). Based on the type of material(s) used to form the face portion **1562** and/or the body portion **210**, the face portion **1562** may be even thinner with the first thickness **1510** being less than or equal to 0.030 inch (0.762 millimeters) (e.g., $T1 \le 0.030$ inch). The groove depth **1525** may be greater than or equal to the second thickness **1520** (e.g., Dgroove≥T2). In one example, the groove depth **1525** may be about 0.020 inch (0.508 millimeters) (e.g., D groove=0.020 inch). Accordingly, the second thickness **1520** may be about 0.010 inch (0.254 millimeters) (e.g., T2=0.010 inch). In another example, the groove depth 1525 may be about 0.015 inch (0.381 millimeters), and the second thickness **1520** may be about 0.015 inch (e.g., D groove=T2=0.015 inch). Alternatively, the groove depth 1525 may be less than the second thickness **1520** (e.g., D groove<T**2**). Without the support of the back wall portion of a golf club head and one or more filler materials used to fill in the interior cavity, the golf club head may not be able to withstand multiple impacts by a golf ball on a face portion. In contrast, a golf club head with a relatively thin face portion but without the support of the back wall portion and the one or more filler materials as described herein (e.g., a cavity-back golf club head) may produce unpleasant sound (e.g., a tinny sound) and/or feel during impact with a golf ball. The apparatus, methods, and articles of manufacture described herein are not limited in this regard. [0045] Based on manufacturing processes and methods used to form a golf club head such as any of the golf club heads described herein, the face portion **1562** may include additional material at or proximate to a periphery of the face portion **1562**. Accordingly, the face portion **1562** may also include a third thickness **1530**, and a chamfer portion **1540**. The third thickness **1530** may be greater than either the first thickness **1510** or the second thickness **1520** (e.g., T3>T1>T2). In particular, the face portion **1562** may be coupled to the body portion of a golf club head by a welding process. For example, the first thickness **1510** may be about 0.030 inch (0.762 millimeters), the second thickness **1520** may be about 0.015 inch (0.381 millimeters), and the third thickness **1530** may be about 0.050 inch (1.27 millimeters). Accordingly, the chamfer portion **1540** may accommodate some of the additional material when the face portion **1562** is welded to the body portion of the golf club head.

[0046] As illustrated in FIG. **16**, for example, the face portion **1562** may include a reinforcement section, which is generally illustrated as reinforcement section **1605**, below one or more grooves **1568**. In one example, the face portion **1562** may include a reinforcement section **1605** below each groove. Alternatively, face portion **1562** may include the reinforcement section **1605** below some grooves (e.g., every other groove) or below only one groove. The face portion **1562** may include a first thickness **1610**, a second thickness **1620**, a third thickness **1630**, and a chamfer portion **1640**. The groove **1568** may have a groove depth **1625**. The reinforcement section **1605** may define the second thickness **1620**. The first and second thicknesses **1610** and **1620**, respectively, may be substantially equal to each other (e.g., T1=T2). In one example, the first and second thicknesses **1610** and **1620**, respectively, may be about 0.030 inch (0.762 millimeters) (e.g., T1=T2=0.030 inch). The groove depth **1625** may be about 0.015 inch (0.381 millimeters), and the third thickness **1630** may be about 0.050 inch (1.27 millimeters). The groove **1568** may also have a groove width. The width of the reinforcement section **1605** may be greater than or equal to the groove width. The apparatus, methods, and articles of manufacture described herein are not limited in this regard. [0047] Alternatively, the face portion **1562** may vary in thickness at and/or between the top portion

and the sole portion of a golf club head. In one example, the face portion **1562** may be relatively thicker at or proximate to the top portion than at or proximate to the sole portion (e.g., thickness of the face portion **1562** may taper from the top portion towards the sole portion). In another example, the face portion **1562** may be relatively thicker at or proximate to the sole portion than at or proximate to the top portion (e.g., thickness of the face portion **1562** may taper from the sole portion towards the top portion). In yet another example, the face portion **1562** may be relatively thicker between the top portion and the sole portion than at or proximate to the top portion and the sole portion (e.g., thickness of the face portion **1562** may have a bell-shaped contour). The face portion **1562** may be similar to any of the face portions described in any of the incorporated by reference publications. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0048] One or more mass portions of any of the sets of mass portions described herein may have similar or different physical properties (e.g., color, marking, shape, size, density, mass, volume, external surface texture, materials of construction, etc.). In the illustrated example as illustrated in FIG. 17, one or more mass portions of any of the sets of mass portions described herein may have a cylindrical shape (e.g., a circular cross section). Alternatively, one or more mass portions of any of the sets of mass portions described herein may have similar or different shapes relative to one or more other mass portions of the set of mass portions. In another example, one or more mass portions of any of the sets of mass portions described herein may have a different color(s), marking(s), shape(s), density or densities, mass(es), volume(s), material(s) of construction, external surface texture(s), and/or any other physical property as compared to one or more mass portions of another one of the sets of mass portions as described herein. The properties of any of the mass portions and sets of mass portions described herein may be similar to any of the mass portions and sets of mass portions described in any of the incorporated by reference publications. The apparatus, methods, and articles of manufacture described herein are not limited in this regard. [0049] Referring to FIGS. **18** and **19**, for example, a first mass portion **1800** and a second mass portion 1900 may include threads, generally illustrated as threads 1810 and threads 1910, respectively, to engage with correspondingly configured threads in ports on the to secure in the ports as described herein. Accordingly, one or more mass portions as described herein may be shaped similar to and function as a screw or threaded fastener for engaging threads in a port. For example, one or more mass portions of any of the sets of mass portions described herein may be a screw. One or more mass portions of any of the mass portions described herein may not be readily removable from the body portion of a golf club head with or without a tool. Alternatively, one or more mass portions of any of the sets of mass portions described herein may be readily removable (e.g., with a tool) so that a relatively heavier or lighter mass portion may replace one or more mass portions of any of the sets of mass portions described herein. In another example, one or more mass portions of any of the sets of mass portions described herein may be secured in the ports with epoxy or adhesive so that the mass portions may not be readily removable. In yet another example, one or more mass portions of any of the sets of mass portions described herein may be secured in the ports with both threads and thread sealant (e.g., acrylic adhesive, cyanoacrylate adhesive, epoxy, thermoplastic adhesive, silicone sealant, or urethane adhesive) so that the mass portions may not be readily removable. In yet another example, one or more mass portions of any of the sets of mass portions described herein may be press fit in a port. In yet another example, one or more mass portions of any of the sets of mass portions described herein may be formed inside a port by injection molding. For example, a liquid metallic material (i.e., molten metal) or a plastic material (e.g., rubber, foam, or any polymer material) may be injected or otherwise introduced into a port. After the liquid material is cooled and/or cured inside the port, the resulting solid material (e.g., a metal material, a plastic material, or a combination thereof) may form a mass portion. The apparatus, methods, and articles of manufacture described herein are not limited in this regard. [0050] As mentioned above, one or more mass portions of any of the sets of mass portions

described herein may be similar in some physical properties but different in other physical properties. For example, a mass portion may be made from an aluminum-based material or an aluminum alloy whereas another mass portion may be made from a tungsten-based material or a tungsten alloy. In another example, a mass portion may be made from a polymer material whereas another mass portion may be made from a steel-based material. In yet another example, as illustrated in FIGS. 17-19, one or more mass portions of any of the sets of mass portions described herein may have a diameter **1710** of about 0.25 inch (6.35 millimeters) but one or more mass portions of another one or more sets of mass portions described herein may be different in height. In particular, one or more mass portions of any of the sets of mass portions described herein may be associated with a first height **1820**, and one or more mass portions of another one or more sets of mass portions described herein may be associated with a second height **1920**. The first height **1820** may be relatively shorter than the second height **1920**. In one example, the first height **1820** may be about 0.125 inch (3.175 millimeters) whereas the second height **1920** may be about 0.3 inch (7.62 millimeters). In another example, the first height **1820** may be about 0.16 inch (4.064 millimeters) whereas the second height **1920** may be about 0.4 inch (10.16 millimeters). Alternatively, the first height **1820** may be equal to or greater than the second height **1920**. Although the above examples may describe particular dimensions, one or more mass portions described herein may have different dimensions. In one example, any of the mass portions described herein may be interchangeably used in any of the ports described herein. Any property of any of the mass portions described herein may be similar to the corresponding property of any of the mass portions described in any of the incorporated by reference publications. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0051] In the example of FIGS. **20-38**, a golf club head **2000** may include a body portion **2010** having a toe portion **2040** with a toe portion edge **2042**, a heel portion **2050** with a heel portion edge **2052** that may include a hosel portion **2055**. A golf club shaft (such as the shaft **104** that is illustrated for example in FIG. 1) may include one end coupled to the hosel portion 2055, and an opposite end coupled to a golf club grip (such as the grip **106** that is illustrated for example in FIG. **1**) to form a golf club (such as the golf club **100** that is illustrated for example in FIG. **1**). The body portion **2010** may further include a front portion **2060** with a perimeter edge portion **2061**, a back portion 2070 with a back wall portion 2072, a top portion 2080 with a top portion edge 2082, and a sole portion **2090** with a sole portion edge **2092**. The toe portion **2040**, the heel portion **2050**, the front portion **2060**, the back portion **2070**, the top portion **2080**, and/or the sole portion **2090** may partially overlap each other. The toe portion edge **2042**, the heel portion edge **2052**, the top portion edge **2082**, and the sole portion edge **2092** may define a periphery of the body portion **2010**. The golf club head 2000 may be any type of golf club head described herein, such as, for example, an iron-type golf club head or a wedge-type golf club head. The volume of the golf club head **2000**, the materials of construction of the golf club head 2000, and/or any components thereof may be similar to any of the golf club heads described herein and/or described in any of the incorporated by reference patent documents. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0052] The golf club head **2000** may include a face portion **2062** (i.e., the strike face), which may be integrally formed with the body portion **2010** (e.g., a single unitary piece). In one example, as illustrated in FIGS. **20-38**, the face portion **2062** may be a separate piece coupled (e.g., directly or indirectly, adhesively, mechanically, by welding, and/or by soldering) to the front portion **2060** to close a front opening of the front portion **2060**. The face portion **2062** may include a front surface **2064** and a back surface **2066**. The front surface **2064** may include a plurality of front grooves **2068** that may extend between the toe portion **2040** and the heel portion **2050**. Each front groove **2068** may have a front groove depth **2069** (D.sub.FG). In one example, the front groove depth **2069** may be greater than or equal to 0.005 inch (0.127 mm) and less than or equal to 0.025 inch (0.635 mm) (0.005 in \leq DFG \leq 0.025 in). In another example, the front groove depth **2069** may be greater

than or equal to 0.011 inch (0.267 mm) and less than or equal to 0.018 inch (0.445 mm) (0.011 in \leq DFG \leq 0.018 in). In another example, the front groove depth **2069** may be greater than or equal to 0.012 inch (0.311 mm) and less than or equal to 0.016 inch (0.400 mm) (0.012 in \leq D.sub.FG \leq 0.016 in). In yet another example, the front groove depth **2069** may be greater than or equal to 0.013 inch (0.33 mm) and less than or equal to 0.015 inch (0.381 mm) (0.013 in \leq D.sub.FG \leq 0.015 in). The front groove depth **2069** and the configuration of the front grooves **2068** (i.e., cross-sectional shape, curvature, length, width, etc.) may be determined to provide certain performance characteristics for the golf club head **2000**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0053] Each front groove **2068** may have a front groove width **2071** (W.sub.FG). In one example, the front groove width **2071** may be greater than or equal to 0.011 inch (0.267 mm) and less than or equal to 0.033 inch (0.833 mm) (0.011 in \leq W .sub.FG \leq 0.033 in). In another example, the front groove width **2071** may be greater than or equal to 0.014 inch (0.347 mm) and less than or equal to 0.055 inch (1.406 mm) (0.014 in \leq WFG \leq 0.055 in). In another example, the front groove width **2071** may be greater than or equal to 0.017 inch (0.427 mm) and less than or equal to 0.062 inch $(1.562 \text{ mm}) (0.017 \text{ in } \leq \text{WFG} \leq 0.062 \text{ in})$. In another example, the front groove width **2071** may be greater than or equal to 0.021 inch (0.521 mm) and less than or equal to 0.041 inch (1.041 mm) $(0.021 \text{ in } \le \text{W.sub.FG} \le 0.041 \text{ in})$. In another example, the front groove width **2071** may be greater than or equal to 0.025 inch (0.640 mm) and less than or equal to 0.032 inch (0.800 mm) (0.025 in ≤W.sub.FG≤0.032 in). In yet another example, the front groove width **2071** may be greater than or equal to 0.027 inch (0.677 mm) and less than or equal to 0.053 inch (1.354 mm) (0.027 in ≤W.sub.FG≤0.053 in). The front groove width **2071** and the configuration of the front grooves 2068 (i.e., cross-sectional shape, curvature, length, width, etc.) may be determined to provide certain performance characteristics for the golf club head **2000**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0054] In one example (not illustrated), the front portion 2060 may include one or a plurality of recessed shoulders configured to receive the face portion 2062 for attachment of the face portion 2062 to the body portion 2010. In another example, as illustrated in FIGS. 20-38, the back surface 2066 may include a perimeter portion 2067 that may be attached to a perimeter edge portion 2061 of the body portion 2010. The perimeter portion 2067 of the face portion 2062 may be attached to the perimeter edge portion 2061 of the body portion 2010 by one or more fasteners, one or more adhesive or bonding agents, and/or welding or soldering. In one example, the perimeter portion 2067 may be welded to the perimeter edge portion 2061 at one or more locations. In another example, the entire perimeter portion 2067 may be welded to the entire perimeter edge portion 2061 (i.e., a continuous weld). The configuration of the face portion 2062 and the attachment of the face portion 2062 (e.g., welding) to the body portion 2010 may be similar in many respects to any of the golf club heads described herein and/or described in any of the incorporated by reference patent documents. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0055] The golf club head **2000** may be associated with a ground plane **2410**, a horizontal midplane **2420**, and a top plane **2430**. In particular, the ground plane **2410** may be a plane that is parallel or substantially parallel to the ground and is tangent to the lowest portion of the sole portion edge **2092** when the golf club head **2000** is at an address position (e.g., the golf club head **2000** aligned to strike a golf ball). A top plane **2430** may be a plane that is tangent to the upper most portion of top portion edge **2082** when the golf club head **2000** is at the address position. The ground plane **2410** and the top plane **2430**, respectively, may be parallel or substantially parallel to each other. The horizontal midplane **2420** may be vertically halfway between the ground plane **2410** and the top plane **2430**, respectively, and be parallel or substantially parallel to the ground plane **2410**. Further, the golf club head **2000** may be associated with a loft plane **2440** defining a loft angle **2445** (*a*) of the golf club head **2000**. The loft plane **2440** may be a plane that is tangent or coplanar

to the face portion **2062**. The loft angle **2445** may be defined by an angle between the loft plane **2440** and a vertical plane **2450** that is normal to the ground plane **2410**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0056] The back wall portion **2072** may include an upper back wall portion **2120**, a lower back wall portion **2122**, and a ledge portion **2130** between the upper back wall portion **2120** and the lower back wall portion 2122. The ledge portion 2130 may extend outward (i.e., away from the face portion 2062) from the upper back wall portion 2120 to the lower back wall portion 2122 (i.e., the ledge portion **2130** may extend inward or toward the face portion **2062** from the lower back wall portion **2122** to the upper back wall portion **2120**). Accordingly, a body portion upper width **2150** (W.sub.UB) may be defined by a distance between the front surface **2064** of the face portion **2062** and the outer surface of the upper back wall portion 2120, and a body portion lower width 2152 (W.sub.LB) may be defined by a distance between the front surface **2064** of the face portion **2062** and the outer surface of the lower back wall portion 2122. In one example, the maximum value of the body portion lower width **2152** may be greater than or equal to 1.5 the maximum value of the body portion upper width **2150** (W.sub.LB (MAX)≥1.5W.sub.UB (MAX)). In another example, the maximum value of the body portion lower width 2152 may be greater than or equal to 1.25 the maximum value of the body portion upper width **2150** (W.sub.LB (MAX)≥ 1.25W .sub.UB (MAX)). In another example, the maximum value of the body portion lower width **2152** may be greater than or equal to 1.75 the maximum value of the body portion upper width **2150** (W.sub.LB (MAX)≥1.75W.sub.UB (MAX). In another example, the maximum value of the body portion lower width **2152** may be greater than or equal to twice the maximum value of the body portion upper width **2150** (W.sub.LB (MAX)≥2.0W.sub.UB (MAX)). In another example, the maximum value of the body portion lower width **2152** may be greater than the maximum value of the body portion upper width **2150** (W.sub.LB (MAX)≥ W.sub.UB (MAX). The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0057] In the example of FIGS. **20-38**, the ledge portion **2130** may include a first ledge portion **2132** that may extend from a location at or proximate to the toe portion edge **2042** toward the heel portion **2050**, a second ledge portion **2134** that may be located at or proximate to a center portion **2073** of the back wall portion **2072**, and a third ledge portion **2136** that may extend from a location at or proximate to the heel portion edge **2052** toward the toe portion **2040**. The second ledge portion 2134 may extend between the first ledge portion 2132 and the third ledge portion 2136. The first ledge portion 2132 and the third ledge portion 2136 may also extend in a downwardly inclined direction toward the sole portion **2090**. Accordingly, as illustrated in FIGS. **20-38**, a first ledge portion height **2142**, which may be defined by a distance between the first ledge portion **2132** and the ground plane **2410**, may increase from the center portion **2073** toward the toe portion edge **2042**, and a third ledge portion height **2146**, which may be defined by a distance between the third ledge portion 2136 and the ground plane 2410, may increase from the center portion 2073 toward the heel portion edge **2052**. As illustrated in FIGS. **20-38**, for example, the second ledge portion **2134** may include a first side wall portion **2137** that may extend from the first ledge portion **2132** toward the top portion **2080**, a center ledge portion **2138** that may extend from the first side wall portion **2137** toward the heel portion **2050**, and a second side wall portion **2139** that may extend from the center ledge portion **2138** toward the sole portion **2090** and to the third ledge portion **2136**. The second ledge portion **2134** may include a second ledge portion height **2144**, which may be defined by a distance between the center ledge portion **2138** and the ground plane **2410**. The second ledge portion height 2144 may be greater than the first ledge portion height 2142 and the third ledge portion height **2146** at or proximate to the center portion **2073**. In another example, the ledge portion **2130** may be similar in some or many respects to the ledge portion **616** of the golf club head **200**. In yet another example, the ledge portion **2130** may be similar in some or many respects to any of the ledge portions of the golf club heads described in any of the incorporated by reference patent documents. The apparatus, methods, and articles of manufacture described herein

are not limited in this regard.

[0058] In the example of FIGS. **20-38**, the first ledge portion **2132** may include a first ledge portion width **2162** that may decrease from the center portion **2073** toward the toe portion edge **2042**. Accordingly, the widest part of the first ledge portion **2132** may be at the location where the first ledge portion **2132** and the first side wall portion **2137** meet. In one example, the increase in the first ledge portion height **2142** and the decrease in the first ledge portion width **2162** may be correlated. For example, every increase in the first ledge portion height **2142** may correspond to a decrease in the first ledge portion width **2162** that may be based on a certain factor, similar rate of change, certain non-similar rate of change, or a certain mathematical relationship. In another example, the increase in the first ledge portion height **2142** and decrease in the first ledge portion width **2162** may not have any correlation. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0059] In the example of FIGS. **20-38**, the third ledge portion **2136** may include a third ledge portion width **2166** that may decrease from the center portion **2073** toward the heel portion edge **2052**. Accordingly, the widest part of the third ledge portion **2136** may be at the location where the third ledge portion **2136** and the second side wall portion **2139** meet. In one example, the increase in the third ledge portion height **2146** may be correlated. For example, every increase in the third ledge portion height **2146** may correspond to a decrease in the third ledge portion width **2166** that may be based on a certain factor, similar rate of change, certain non-similar rate of change, or a certain mathematical relationship. In another example, the increase in the third ledge portion height **2146** and the decrease in the third ledge portion width **2166** may not have any correlation. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0060] In the example of FIGS. **20-38**, the first side wall portion **2137** and the second side wall portion **2139** may increase in width from the center ledge portion **2138** to the first ledge portion **2132** and from the center ledge portion **2138** to the third ledge portion **2136**, respectively. The downwardly inclined configuration and the increasing widths toward the center portion **2073** of the first ledge portion 2132 and the third ledge portion 2136, and the downwardly increasing widths of the first side wall portion 2137 and the second side wall portion 2139 may allow more mass to be placed at the toe portion 2040 and/or the heel portion 2050 below the first ledge portion 2132 and the third ledge portion 2136, respectively, for optimizing the moment of inertia (MOI) of the golf club head **2000**, and more mass may be placed at or below the center portion **2073** of the back wall portion to lower and move farther aft the center of gravity (CG) of the golf club head **2000**. In other words, the configuration of the ledge portion **2130** may provide for a relatively large portion of the mass of the golf club head 2000 to be selectively placed (i) below the ledge portion 2130 and closer to the toe portion edge 2042, (ii) below the ledge portion 2130 and closer to the heel portion edge **2052**, (iii) at or proximate to the center portion **2073**, and/or, (iv) at or proximate to the sole portion edge **2092** to increase the MOI of the golf club head **2000** and move the CG of the golf club head lower and farther aft. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0061] The body portion **2010** may include one or more ports, which may be exterior ports and/or interior ports (e.g., located inside the body portion **2010**). The one or more ports may be at any location on the body portion **2010**. The inner walls of the body portion **2010** that define the interior cavity **2110** may include one or more ports. In the illustrated example of FIGS. **20-38**, the body portion may include a first port region **2225** located below the first ledge portion **2132** and between the toe portion edge **2042** and the center portion **2073**. In one example, as illustrated in FIGS. **20-38**, the first port region **2225** may include a first perimeter groove **2227**, which may visually define a portion or all of the first port region **2225**. The first perimeter groove **2227** may be a slot, channel, depression, or a recess. The mass that may be removed from the body portion **2010** to define the first perimeter groove **2227** may be placed at other locations on or inside the body portion **2010** to

provide certain MOI, CG location, and/or golf club performance characteristics without changing or substantially changing the overall mass of the body portion **2010**. In another example, the portion of the body portion **2010** within the first perimeter groove **2227** may have a different color, texture, or other visual distinguishing features relative to outside the first perimeter groove **2227** to visually define the first port region **2225**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0062] In the illustrated example of FIGS. 20-38, the body portion may include a second port region 2235 located below the center ledge portion 2138 of the second ledge portion 2134, and a third port region 2245 located below the third ledge portion 2136 and between the heel portion edge 2052 and the center portion 2073. The second port region 2235 may be between the first port region 2225 and the third port region 2245. In one example, as illustrated in FIGS. 20-38, the third port region 2245 may include a second perimeter groove 2247, which may visually define a portion or all of the third port region 2245. The second perimeter groove 2247 may be a slot, channel, depression, or a recess. The mass that may be removed from the body portion 2010 to define the second perimeter groove 2247 may be placed at other locations on or inside the body portion 2010 to provide certain MOI, CG location, and golf club performance characteristics without changing or substantially changing the overall mass of the body portion 2010. In another example, the portion of the body portion 2010 within the second perimeter groove 2247 may have a different color, texture, or other visual distinguishing features relative to outside the second perimeter groove 2247 to visually define the third port region 2245. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0063] The first port region 2225 may include any number of ports, and any one or more of the ports of the first port region 2225 may be connected to the interior cavity 2110. In one example, as illustrated in FIGS. 20-38, the first port region 2225 may include a first set of ports 2220 (e.g., illustrated as ports 2221, 2222, and 2223). The ports 2221, 2222, and 2223 may be arranged in the first port region 2225 in any manner. In one example, the ports 2221, 2222, and 2223 may be arranged so as to be aligned with the contour of the sole portion edge **2092** similar to the ports of the golf club head 200. In another example, as illustrated in FIGS. 20-38, the ports 2221, 2222, and **2223** may be arranged so as to be aligned with the general direction of the first ledge portion **2132**. The spacing between the ports of the first set of ports **2220** may have any configuration. In the illustrated example of FIGS. **20-38**, each port of the first set of ports **2220** may be spaced apart from an adjacent port of the first set of ports **2220** by a distance of less than or equal to the port diameter of any of the ports of the first set of ports **2220**. The distance from any of the ports of the first set of ports **2220** to the toe portion edge **2042** may be less than the distance from any of the ports of the first set of ports 2220 to the heel portion edge 2052 or to the hosel portion 2055. The first port region **2225** may be a thicker portion and/or a structurally enhanced portion of the back wall portion 2072 to accommodate the structures and/or functions of the ports of the first set of ports **2220**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0064] The second port region **2235** may include any number of ports, and any one or more of the ports may be connected to the interior cavity **2110**. In one example, as illustrated in FIGS. **20-38**, the second port region **2235** may include a second set of ports **2230** (e.g., illustrated as port **2231**). The second port region **2235** may be at or proximate to the center portion **2073**. The second port region **2235** may be a thicker portion and/or a structurally enhanced portion of the back wall portion **2072** to accommodate the ports of the second set of ports **2230**. In one example, as illustrated in FIG. **29**, the second port region **2235** may include structurally enhanced portions of the back wall portion **2072** to accommodate the structure and/or function of the port **2231**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard. [0065] The third port region **2245** may include any number of ports, and any one or more of the ports of the third port region **2245** may be connected to the interior cavity **2110**. In one example, as

illustrated in FIGS. 20-38, the third port region 2245 may include a third set of ports 2240 (e.g., illustrated as ports **2241** and **2242**). The ports **2241** and **2242** may be arranged in the third port region **2245** in any manner. In one example, the ports **2241** and **2242** may be arranged so as to be aligned with the contour of the sole portion edge **2092** similar to the ports of the golf club head **200**. In another example, as illustrated in FIGS. **20-38**, the ports **2241** and **2242** may be arranged so as to be aligned with the general direction of the third ledge portion **2136**. The spacing between the ports of the third set of ports **2240** may have any configuration. In the illustrated example of FIGS. 20-38, each port of the third set of ports 2240 may be spaced apart from an adjacent port of the third set of ports **2240** by a distance of less than or equal to the port diameter of any of the ports of the third set of ports **2240**. The distance from any of the ports of the third set of ports **2240** to the toe portion edge **2042** may be greater than the distance from any of the ports of the third set of ports **2240** to the heel portion edge **2052** or to the hosel portion **2055**. The third port region **2245** may be a thicker portion and/or a structurally enhanced portion of the back wall portion 2072 to accommodate the structures and/or functions of the ports of the third set of ports **2240**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard. [0066] The first set of ports **2220**, the second set of ports **2230**, and/or the third set of ports **2240** may include any number of ports. The locations, spacing relative to other ports, and any other configuration of each port of the first set of ports **2220**, the second set of ports **2230**, and/or the third set of ports **2240** may be similar in many respects to any of the ports described herein or described in any of the incorporated by reference patent documents. Further, any one or more of the ports of the first set of ports 2220, the second set of ports 2230, and/or the third set of ports 2240 may be connected to interior cavity 2110 through which one or more filler materials may be injected into the interior cavity 2110. In the illustrated example of FIGS. 20-38, the port 2221 and the port **2241** may be connected to the interior cavity **2110** via opening **2261** and opening **2281**, respectively. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0067] In one example, as illustrated in FIGS. **20-38**, the second set of ports **2230** may include a single port 2231 that may be larger in diameter than any of the ports of the first set of ports 2220 and/or the third set of ports **2240**. The port **2231** may be located at or proximate to the center portion 2073 of the back wall portion 2072 and at or proximate to the sole portion edge 2092. In one example, the diameter of the port **2231** may be greater than or equal to 1.1 times the diameter and less than or equal to 8.0 times the diameter of any of the ports of the first set of ports 2220 and any of the ports of the third set of ports 2240. In another example, the diameter of the port 2231 may be greater than or equal to twice the diameter of any of the ports of the first set of ports 2220 and the third set of ports 2240. In another example, the diameter of the port 2231 may be greater than or equal to 2.5 times the diameter of any of the ports of the first set of ports 2220 and the third set of ports **2240**. In another example, the diameter of the port **2231** may be greater than or equal to 3.5 times the diameter of any of the ports of the first set of ports **2220** and the third set of ports **2240**. In yet another example, the diameter of the port **2231** may be greater than or equal to the diameter any of the ports of the first set of ports **2220** and any of the ports of the third set of ports **2240**. In the example of FIGS. **20-38**, the ports of the first set of ports **2220**, the second set of ports **2230** and the third set of ports **2240** are illustrated to be cylindrical. In other examples (not illustrated), the ports may have any shape. Accordingly, the relative sizes of the ports may be expressed by any dimension such as length, width, radius, diameter, distance between two boundaries, or any dimension corresponding to a particular geometric shape (e.g., major and minor axes for an elliptical shaped port). The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0068] The body portion **2010** may include any number of ports above and/or below the first ledge portion **2132**, the second ledge portion **2134**, and/or the third ledge portion **2136**. The body portion **2010** may include any number of ports above and/or below the horizontal midplane **2420**. The body

portion **2010** may include any number of ports on the toe portion edge **2042**, the heel portion edge **2052**, the top portion edge **2082**, and/or the sole portion edge **2092**. The number of ports on the body portion **2010**, the arrangement and/or the configuration of the ports on the body portion **2010** may be similar in many respects to the golf club head **200** or any of the golf club heads described in any of the incorporated by reference patent documents. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0069] The body portion **2010** may include one or more mass portions (e.g., weight portion(s)) at any location on the body portion **2010**. The one or more mass portions may be integral mass portion(s) or separate mass portion(s) that may be coupled to the body portion **2010** at any exterior or interior location on the body portion **2010**. In the illustrated example of FIGS. **20-38**, the body portion **2010** may include a first set of mass portions **2320** (e.g., illustrated as mass portions **2321**, 2322, and 2323), a second set of mass portions 2330 (e.g., illustrated as mass portion 2331), and a third set of mass portions **2340** (e.g., illustrated as mass portions **2341** and **2342**). In the example of FIGS. **20-38**, the mass portions of the first set of mass portions **2320** and the third set of mass portions **2320** may be similar to any of the mass portions described herein, such as the mass portions **1800** and **1900** of FIGS. **17-19**, or the mass portions described in any of the incorporated by reference patent documents. The second set of mass portions **2330** may include a single mass portion **2331**, which may have a greater mass than any of the mass portions of the first set of mass portions **2320** and the third set of mass portions **2340**. In one example, as illustrated in FIG. **33**, the mass portion **2331** may be cylindrical with a head portion **2333**, a shaft portion **2335** and a top portion **2337** including a tool engagement portion **2339**. The diameter **2334** of the mass portion **2331** may be greater than the length **2336** of the mass portion **2331**. Accordingly, the mass portion 2331 may be disc shaped as illustrated in FIG. 34 with the diameter 2334 being greater as described herein than the diameters of the mass portions of the first set of mass portions 2320 and the third set of mass portions 2340 as illustrated for example by mass portions 1800 and 1900 of FIGS. **17-19**. The port **2231** may be configured to receive the mass portion **2331**, which may be inserted and secured into the port **2231** by any of the methods described herein such as being screwed in, press fitted, secured with an adhesive, or welded. In one example, as illustrated in FIG. 33, the head portion 2333 may be threaded to engage internal threads in the port 2231 to secure the mass portion **2331** in the port **2231**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0070] Each port of the first set of ports **2220** and the third set of ports **2240** may be configured to receive any of the mass portions of the first set of mass portions **2320** and/or the third set of mass portions **2340** similar to the coupling and/or engagement of any of the mass portions and ports described herein (e.g., mass portions 1800 and 1900 of FIGS. 17-19) or described in any of the incorporated by reference patent documents. As illustrated in the example of FIGS. 18 and 19, the mass portions of the first set of mass portions 2320 and/or the third set of mass portions 2340 may have different lengths or other physical properties (e.g., one or more materials of construction) as described herein. Accordingly, each port of the first set of ports 2220 and/or the third set of ports **2240** may receive a mass portion of the first set of mass portions **2320** or the third set of mass portions **2340** that may correspond or substantially correspond in length to the depth of the port. For example, as illustrated in FIGS. **28** and **30**, the depth of the port **2222** may be greater than the depth of the port **2241**. Accordingly, the mass portion **2322** that is secured in the port **2222** may have a greater length (an example illustrated in FIG. 19) than the mass portion 2341 (an example illustrated in FIG. **18**) that is secured in the port **2241**. Thus, as illustrated in FIGS. **20-38**, the inner diameter and/or the depth of each port of the first set of ports **2220**, the second set of ports **2230**, and the third set of ports **2240** and/or the diameter and/or length of each mass portion of the first set of mass portions 2320, the second set of mass portions 2330, and the third set of mass portions **2340** may determine the selection of a corresponding mass portion for a flush configuration of the mass portion relative to the outer surface of the back wall portion 2072. Further, as described

herein and in any of the incorporated by reference patent documents, the material of construction of each mass portion, which affects the density of each mass portion, may determine the selection of a mass portion. In other words, each port may receive a correspondingly sized mass portion having a certain total mass as described herein. In another example, the inner diameter and/or the depth of each port of the first set of ports **2220**, the second set of ports **2230**, and the third set of ports **2240** and/or the diameter and/or length of each mass portion of the first set of mass portions 2320, the second set of mass portions 2330, and the third set of mass portions 2340 may determine the selection of a corresponding mass portion for a recessed configuration of the mass portion relative to the outer surface of the back wall portion 2072. In yet another example, the inner diameter and/or the depth of each port of the first set of ports 2220, the second set of ports 2230, and the third set of ports **2240** and/or the diameter and/or length of each mass portion of the first set of mass portions **2320**, the second set of mass portions **2330**, and the third set of mass portions **2340** may determine the selection of a corresponding mass for a protruding configuration of the mass portion relative to the outer surface of the back wall portion 2072. Certain golf club head performance criteria, which may be affected by the MOI and CG location of the golf club head may also dictate the section of a mass portion for a port. In one example, mass portions having greater masses may be placed in the ports that are closer to the toe portion than to the heel portion to increase the moment of inertia (M OI) of the golf club head. In another example, the ports that are closest to the center portion **2073** may receive relatively heavier mass portions to lower the center of gravity of the golf club head. Each mass of the first set of mass portions 2320, the second set of mass portions 2330, and/or the third set of mass portions 2340 may be interchangeable with a relatively heavier or lighter mass to provide certain performance characteristics for the golf club head 2000. Thus, the configuration of each port, the configuration of each mass portion, and/or certain golf club head performance criteria may determine selection and/or placement of a mass portion in a port. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0071] The total mass of the mass portion 2331 may be greater than the total mass of any mass portion of the first set of mass portions 2320 and/or the third set of mass portions 2340. The total mass of the mass portion 2331 may be greater than or equal to the total mass of the first set of mass portions 2320 and/or the third set of mass portions 2340. The total mass of the mass portion 2331 may be determined to provide certain performance characteristics for the golf club head 2000. In one example, the mass portion 2331 may have a total mass that is greater than or equal to 2 grams and less than or equal to 30 grams. In another example, the mass portion 2331 may have a total mass that is greater than or equal to 4 grams and less than or equal to 18 grams. In another example, the mass portion 2331 may have a total mass that is greater than or equal to 6 grams and less than or equal to 12 grams. In another example, the mass portion 2331 may have a total mass that is greater than or equal to 7 grams and less than or equal to 9 grams. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0072] The diameter of the mass portion **2331** may be determined based on one or more properties (e.g., material density) of the materials of construction of the mass portion **2331**. In one example, the mass portion **2331** may have a diameter that is greater than or equal to 0.2 inch (5.08 mm) and less than or equal to 1.0 inch (25.4 mm). In another example, the mass portion **2331** may have a diameter that is greater than or equal to 0.3 inch (7.62 mm) and less than 1.5 inch (38.1 mm). In another example, the mass portion **2331** may have a diameter that is greater than or equal to 0.4 inch (10.16 mm) and less than or equal to 0.8 inch (20.32 mm). In another example, the mass portion **2331** may have a diameter that is greater than or equal to 0.5 inch (12.7 mm) and less than or equal to 0.7 inch (17.78 mm). The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0073] A center region or a geometric center of the port **2231** of the second set of ports **2230** may be located at or proximate to the CG of the golf club head **2000**. Accordingly, a center of gravity of

the mass portion **2331** may also be located at or proximate to the CG of the golf club head **2000** when the mass portion **2331** is secured in the port **2231** as described herein. As a result, the mass portion **2331** may be interchangeable with another mass portion **2331** having lower mass or a mass portion **2331** having a higher mass without causing a relatively large or a significant shift in the CG of the golf club head **2000**. In one example, for each gram mass increase of the mass portion **2331**, the CG location of the golf club head may shift by less than 0.5% of the CG.sub.X location (x-axis coordinate of the CG), less than 0.5% of the CG.sub.Y location (y-axis coordinate of the CG), and/or less than 0.2% of the CG.sub.Z location (z-axis coordinate of the CG). In another example, for each gram mass increase of the mass portion **2331**, the CG location of the golf club head may shift by less than 0.35% of the CG.sub.X location, less than 0.35% of the CG.sub.Y location, and/or less than 0.15% of the CG.sub.Z location. In yet another example, for each gram mass increase of the mass portion **2331**, the CG location of the golf club head may shift by less than 0.25% of the CG.sub.X location, less than 0.25% of the CG.sub.Y location, and/or less than 0.10% of the CG.sub.Z location. Thus, the mass portion **2331** may be interchangeable with another mass portion **2331** having a lower or a greater mass to provide certain performance characteristics for an individual (i.e., customize the performance of the golf club head **2000** for a certain individual) without substantially shifting the CG of the golf club head 2000 and/or altering the overall or general performance characteristics of the golf club head **2000**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0074] In one example, each mass portion of the first set of mass portions **2320** and/or the third set of mass portions 2340 may have a mass of greater than or equal to 0.25 grams and less than or equal to 6.0 grams. In another example, each mass portion of the first set of mass portions 2320 and/or the third set of mass portions **2340** may have a mass of greater than or equal to 1.25 grams and less than or equal to 5.25 grams. In another example, each mass portion of the first set of mass portions **2320** and/or the third set of mass portions **2340** may have a mass of greater than or equal to 1.75 grams and less than or equal to 4.1 grams. In another example, each mass portion of the first set of mass portions **2320** and/or the third set of mass portions **2340** may have a mass of greater than or equal to 0.75 grams and less than or equal to 3.5 grams. In yet another example, each mass portion of the first set of mass portions 2320 and/or the third set of mass portions 2340 may have a mass of greater than or equal to 0.5 grams and less than or equal to 4.0 grams. The apparatus, methods, and articles of manufacture described herein are not limited in this regard. [0075] The interior cavity **2110** may be partially or entirely filled with one or more filler materials (i.e., a cavity filling material), which may include one or more similar or different types of materials. In one example, as illustrated in FIGS. **20-38**, the interior cavity **2110** may be filled with a filler material **2512** that may be similar to any of the filler materials described herein or in any of the incorporated by reference patent documents. In another example (not illustrated for FIGS. **20**-38), the interior cavity 2110 may be filled with a first filler material and a second filler material that may be similar to the golf club head 200 or similar to any of the golf club heads described in any of the incorporated by reference patent documents. In one example, as illustrated in FIGS. 20-38, the filler material **2512** may be injected into the interior cavity **2110** from any of the ports **2221** and **2241**, while the other one of the ports **2221** and **2241** may functions as an air exhaust port through which the air in the interior cavity **2110** that is displaced by the filler material **2512** may exit. Accordingly, as illustrated in FIGS. **20-38**, the filler material **2512** may be molded in the shape of the interior cavity **2110**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0076] In one example, one or more materials of the filler material, the physical properties of the one or more materials (i.e., density and/or elasticity), the amount (i.e., volume and/or mass) of the filler material **2512** may be determined for each golf club head (i.e., having a certain loft angle) to (i) provide vibration dampening or sound dampening (e.g., consistent and/or pleasing sound and feel when the golf club head **2000** strikes a golf ball as perceived by an individual using the golf

club head **2000**), (ii) provide structural support for the face portion **2062**, and/or (iii) optimize ball travel distance, ball speed, ball launch angle, ball spin rate, ball peak height, ball landing angle and/or ball dispersion. In one example, the filler material **2512** may be formed from any type of polymer materials such as any of the polymer materials described herein or described in any of the incorporated by reference patent documents. In one example, the filler material **2512** may be formed from a rubber or a rubber-based compound such as any of the rubber-based compounds described herein. In another example, the filler material **2512** may be formed from a thermoset material, such as an epoxy-based material. In another example, the filler material **2512** may be formed from a thermoplastic material. In yet another example, the filler material may be formed from a metal or metal alloy (e.g., aluminum or aluminum alloy) that may have a different density than the density of the material of the body portion **2010**. The filler material **2512** may be attached to the inner walls of the body portion **2010** and the face portion **2062** with any bonding agent or any adhesive that may be appropriate for bonding or attaching the filler material 2512 to the material of the body portion 2010 and/or the face portion 2062. In another example (not illustrated), the filler material 2512 may be a polymer material that may include self adhesive properties so as to adhere to the body portion 2010 and/or the face portion 2062 without using a bonding agent or an adhesive. In another example, the injection molding and/or curing the filler material 2512 may provide sufficient holding forces (e.g., the filler material 2512 expanding during the filling or curing process) to maintain the filler material **2512** engaged with the body portion **2010** and/or the face portion **2062** without the use of bonding agents or adhesives. In yet another example, the filler material 2512 may be preformed and placed inside the interior cavity 2110 and/or attached to the interior walls of the body portion **2010** that define the interior cavity **2110** prior to enclosing the interior cavity 2110. The injection molding, curing, and/or attachment of the filler material **2512** in the interior cavity **2110** may be similar to the processes described herein or in any of the incorporated by reference application. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0077] In the illustrated example of FIG. **35**, the face portion **2062** may include a face perimeter that may include four perimeter sides, which may be a first perimeter side defined by a face portion toe portion edge (referred to herein as the face toe edge 2740), a second perimeter side defined by a face portion heel portion edge (referred to herein as the face heel edge 2750), a third perimeter side defined by a face portion top portion edge (referred to herein as face top edge 2780), and fourth perimeter side defined by a face portion sole portion edge (referred to herein as face sole edge **2790**). The back surface **2066** of the face portion **2062** may include one or more grooves, slots, channels, depressions, or recesses, any of which may be referred to herein as back grooves and may define any structure on the back surface **2066** that may provide a relatively decreased face thickness. In the illustrated example of FIG. 35, the back surface 2066 may include a back groove **3500** having a first end portion **3502**, a first portion **3504**, a first transition portion **3505**, a second portion **3506**, a second transition portion **3507**, a third portion **3508**, and a second end portion **3510**. In one example, as illustrated in FIG. **35**, the first end portion **3502** may be proximate to the face toe edge **2740** and proximate to the face sole edge **2790**. The first end portion **3502** may be circular as illustrated in FIG. **35** to eliminate or reduce stress concentration regions on the face portion **2062** at or proximate to the first end portion **3502**. The first portion **3504** may extend from the first end portion **3502** toward the face top edge **2780**. In the illustrated example of FIG. **35**, the first portion **3504** may be linear and extend vertically from the first end portion **3502** toward the face top edge **2780**. In another example, the first portion **3504** may extend from the first end portion **3502** toward the face top edge **2780** with a curvature that may be similar or substantially similar to the curvature or contour of the face toe edge **2740**. In yet another example, the first portion **3504** may be inwardly curved. The first portion **3504** may then transition to the second portion **3506** via the first transition portion **3505** located proximate to the face toe edge **2740** and proximate to the face top edge **2780**. The first transition portion **3505** may be curved to eliminate or reduce stress concentration regions on the face portion 2062 at or proximate to the first transition portion 3505. The second portion 3506 may extend from the first transition portion 3505 toward the face heel edge 2750. The second portion 3506 may be linear and have the same orientation and contour as the face top edge 2780. The second portion 3506 may then transition to the third portion 3508 via the second transition portion 3507 located proximate to the face heel edge 2750 and proximate to the face top edge 2780. The second transition portion 3507 may be curved to prevent or reduce stress concentration regions on the face portion 2062 at or proximate to the second transition portion 3507. The third portion 3508 may extend from the second transition portion 3507 toward the second end portion 3510 to the second end portion 3510. The second portion 3506 may be linear and have the same orientation and contour as the face heel edge 2750. The second end portion 3510 may be located proximate to the face heel edge 2750 and proximate to the face sole edge 2790. The second end portion 3510 may be circular as illustrated in FIG. 35 to eliminate or reduce stress concentration regions on the face portion 2062 at or proximate to the second end portion 3510. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0078] As illustrated in FIG. 35, the back groove 3500 may define an inner area 3562 and an outer area 3564 of the face portion 2062. The inner area 3562 may correspond to or include a portion of the face portion 2062 that may generally strike a golf ball. As discussed herein, the back groove 3500 may provide a relatively thinner part of the face portion 2062 as compared to the remaining parts of the face portion 2062. Accordingly, the back groove 3500 may provide enhanced deflection of the inner area 3562 relative to the outer area 3564 as compared a face portion 2062 without the back groove 3500. In other words, the back groove 3500 may provide a trampoline effect for the inner area 3562 of the face portion 2062. The enhanced deflection of the inner area 3562 may provide enhanced rebounding of the inner area 3562 after the face portion 2062 strikes a golf ball, which may increase ball launch angle, decrease ball backspin and/or increase ball carry distance compared to a similar golf club head as the golf club head 2000 but without having the back groove 3500. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0079] In one example, as illustrated in FIGS. 35, 37, and 38, any portion of the back groove 3500 may include a back groove width **3710** (W.sub.BG). The back groove width **3710** (W.sub.BG) may have any value to provide certain performance characteristics for the golf club head **2000**. In one example, the back groove width **3710** may be greater than or equal to 0.050 inch (1.270 mm) and less than or equal to 0.200 inch (5.080 mm) (0.050 in \leq W.sub.BG \leq 0.200 in). In another example, the back groove width **3710** may be greater than or equal to 0.094 inch (2.381 mm) and less than or equal to 0.156 inch (3.969 mm) (0.094 in \leq W.sub.BG \leq 0.156 in). In another example, the back groove width **3710** may be greater than or equal to 0.109 inch (2.778 mm) and less than or equal to 0.141 inch (3.572 mm) (0.109 in \leq W.sub.BG \leq 0.141 in). In yet another example, the back groove width **3710** may be greater than or equal to 0.120 inch (3.048 mm) and less than or equal to 0.130 inch (3.302 mm) (0.120 in≤W.sub.BG≤0.130 in). The back groove width **3710** may be constant or substantially constant (considering manufacturing tolerances) along any one or more portions of back groove **3500** or along the entire back groove **3500**. The back groove width **3710** may vary at a certain portion or portions of the back groove **3500**. Any portion of back groove **3500** and/or any portion of the back groove **3600** may have any cross-sectional shape. Accordingly, the back groove width **3710** at any one or more portions may vary according to corresponding variations in the cross-sectional shape of the back groove **3500**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0080] In one example, as illustrated in FIGS. **35**, **37**, and **38**, any portion of the back groove **3500** may include a back groove depth **3720** (D.sub.BG). The back groove depth **3720** (D.sub.BG) may have any value to provide certain performance characteristics for the golf club head **2000**. In one example, the back groove depth **3720** may be greater than or equal to 0.003 inch (0.076 mm) and

```
less than or equal to 0.015 inch (0.381 mm) (0.003 in \leqD.sub.BG\leq0.015 in). In another example,
the back groove depth 3720 may be greater than or equal to 0.005 inch (0.133 mm) and less than or
equal to 0.009 inch (0.222 mm) (0.005 in \leqD.sub.BG\leq0.009 in). In another example, the back
groove depth 3720 may be greater than or equal to 0.006 inch (0.156 mm) and less than or equal to
0.008 inch (0.200 mm) (0.006 in \leqD.sub.BG\leq0.008 in). In yet another example, the back groove
depth 3720 may be greater than or equal to 0.0065 inch (0.1651 mm) and less than or equal to
0.0075 inch (0.1905 mm) (0.0065 in \leqD.sub.BG\leq0.0075 in). The back groove depth 3720 may be
constant or substantially constant (considering manufacturing tolerances) along any one or more
portions of back groove 3500 or along the entire back groove 3500. The back groove depth 3720
may vary at a certain portion or portions of the back groove 3500. Any portion of back groove 3500
and/or any portion of the back groove 3600 may have any cross-sectional shape. Accordingly, the
back groove depth 3720 at any one or more portions may vary according to corresponding
variations in the cross-sectional shape of the back groove 3500. The apparatus, methods, and
articles of manufacture described herein are not limited in this regard.
[0081] In one example, as illustrated in FIGS. 37 and 38, the face portion 2062 may include a first
face thickness 3750 (T.sub.1), a second face thickness 3752 (T.sub.2), a third face thickness 3754
(T.sub.3), and a fourth face thickness 3756 (T.sub.4). The first face thickness 3750 may be defined
by a distance between the front surface 2064 and the back surface 2066 of the face portion 2062 at
a location on the face portion 2062 that does not include any portion of a front groove 2068 and
any portion of the back groove 3500. The second face thickness 3752 may be defined by a distance
between the front surface 2064 of the face portion 2062 and a bottom surface of the back groove
3500 at a location on the face portion 2062 that includes a portion of the back groove 3500 but does
not include any portion of a front groove 2068. Accordingly, the second face thickness 3752 may
be determined by subtracting the back groove depth 3720 from the first face thickness 3750. The
third face thickness 3754 may be defined by a distance between a bottom surface of a front groove
2068 and the back surface 2066 of the face portion 2062 at a location on the face portion 2062 that
does not include any portion of the back groove 3500. Accordingly, the third thickness 3754 may
be determined by subtracting a front groove depth 2069 from the first face thickness 3750. The
fourth face thickness 3756 may be defined by a distance between a bottom surface of a front
groove 2068 and a bottom surface of the back groove 3500 at a location on the face portion 2062
that includes a portion of a front groove 2068 and an opposing portion of a back groove 3500.
Accordingly, the fourth face thickness 3756 may be determined by subtracting a sum of the back
groove depth 3720 and a front groove depth 2069 from the first face thickness 3750. The first face
thickness 3750 may be greater than the second face thickness 3752, the third face thickness 3754,
and the fourth face thickness 3756 (T.sub.1>T.sub.2, T.sub.1>T.sub.3, T.sub.1>T.sub.4). The
second face thickness 3752 may be greater than the fourth face thickness 3756 (T.sub.2>T.sub.4).
The third face thickness 3754 may be greater than the fourth face thickness 3756 (T.sub.3>T.sub.4).
In one example, as illustrated in FIGS. 37 and 38, the second face thickness 3752 may be greater
than the third face thickness 3754 (T.sub.2>T.sub.3). In another example (not shown), the third face
thickness 3754 may be greater than the second face thickness 3752 (T.sub.3>T.sub.2). The
apparatus, methods, and articles of manufacture described herein are not limited in this regard.
[0082] The first face thickness 3750 may have any value to provide certain performance
characteristics for the golf club head 2000. In one example, the first face thickness 3750 may be
greater than or equal to 0.025 inch (0.635 mm) and less than or equal to 0.125 inch (3.175 mm)
(0.025 \text{ in } \leq \text{T.sub.} 1 \leq 0.125). In another example, the first face thickness 3750 may be greater than or
equal to 0.047 inch (1.181 mm) and less than or equal to 0.078 inch (1.969 mm) (0.047 in
≤T.sub.1≤0.078). In another example, the first face thickness 3750 may be greater than or equal to
0.054 inch (1.378 mm) and less than or equal to 0.070 inch (1.772 mm) (0.054 in \leqT.sub.1\leq0.070).
In another example, the first face thickness 3750 may be greater than or equal to 0.060 inch (1.524)
mm) and less than or equal to 0.065 inch (1.651 mm) (0.060 in \leqT.sub.1\leq0.065). The apparatus,
```

methods, and articles of manufacture described herein are not limited in this regard. [0083] The second face thickness **3752** may have any value to provide certain performance characteristics for the golf club head **2000**. The value of the second face thickness **3752** may be determined by subtracting the value of the back groove depth **3720** as described herein from the value of the first face thickness **3750**. The value of the second face thickness **3752** may also be expressed as a percentage of the value of the first face thickness 3750. In one example, the second face thickness **3752** may be greater than or equal to 75% and less than or equal to 98% of the first face thickness **3750** (0.75≤T.sub.2/T.sub.1≤0.98). Accordingly, the back groove depth **3720** may be less than or equal to 25% and greater than or equal to 2% of first face thickness **3750** (0.02≤ D.sub.BG/T.sub.1≤0.25). In another example, the second face thickness **3752** may be greater than or equal to 70% and less than or equal to 85% of the first face thickness **3750** $(0.70 \le \text{T.sub.} 2/\text{T.sub.} 1 \le 0.85)$. Accordingly, the back groove depth **3720** may be less than or equal to 30% and greater than or equal to 15% of first face thickness **3750** (0.15 \leq D.sub.BG/T.sub.1 \leq 0.30). In another example, the second face thickness **3752** may be greater than or equal to 85% and less than or equal to 95% of the first face thickness **3750** (0.85≤T.sub.2/T.sub.1≤0.95). Accordingly, the back groove depth **3720** may be less than or equal to 15% and greater than or equal to 5% of first face thickness **3750** ($0.05 \le D.sub.BG/T.sub.1 \le 0.15$). In yet another example, the second face thickness **3752** may be greater than or equal to 80% and less than or equal to 90% of the first face thickness **3750** ($0.80 \le T$.sub. $1 \le 0.90$). Accordingly, the back groove depth **3720** may be less than or equal to 20% and greater than or equal to 10% of first face thickness **3750** (0.10≤D.sub.BG/T.sub.1≤0.20). The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0084] The third face thickness **3754** may have any value to provide certain performance characteristics for the golf club head **2000**. The value of the third face thickness **3754** may be determined by subtracting value of the front groove depth **2069** as described herein from the value of first face thickness **3750**. The value of the third face thickness **3754** may also be expressed as a percentage of the value of the first face thickness **3750**. In one example, the third face thickness **3754** may be greater than or equal to 60% and less than or equal to 97% of the first face thickness **3750** ($0.60 \le T.sub.3/T.sub.1 \le 0.97$). In another example, the third face thickness **3754** may be greater than or equal to 75% and less than or equal to 85% of the first face thickness **3750** ($0.75 \le T.sub.3/T.sub.1 \le 0.85$). In another example, the third face thickness **3754** may be greater than or equal to 80% and less than or equal to 95% of the first face thickness **3754** may be greater than or equal to 70% and less than or equal to 90% of the first face thickness **3754** may be greater than or equal to 70% and less than or equal to 90% of the first face thickness **3750** ($0.70 \le T.sub.3/T.sub.1 \le 0.90$). The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0085] The fourth face thickness **3756** may have any value to provide certain performance characteristics for the golf club head **2000**. The value of the fourth face thickness **3756** may be determined by subtracting the value of the front groove depth **2069** as described herein and the value of the back groove depth **3720** as described herein from the value of the first face thickness **3756** may also be expressed as a percentage of the value of the first face thickness **3756** may also be expressed as a percentage of the value of the first face thickness **3750**. In one example, the fourth face thickness **3750** may be greater than or equal to 45% and less than or equal to 85% of the first face thickness **3750** (0.45 \leq T.sub.4/T.sub.1 \leq 0.85). In another example, the fourth face thickness **3756** may be greater than or equal to 55% and less than or equal to 75% of the first face thickness **3756** may be greater than or equal to 60% and less than or equal to 70% of the first face thickness **3756** may be greater than or equal to 60% and less than or equal to 70% of the first face thickness **3756** may be greater than or equal to 62% and less than or equal to 68% of the first face thickness **3756** may be greater than or equal to 62% and less than or equal to 68% of the first face thickness **3750** (0.62 \leq T.sub.4/T.sub.1 \leq 0.68). The apparatus, methods, and articles of manufacture described herein

are not limited in this regard.

[0086] In one example, as illustrated in FIGS. **37** and **38**, the back groove width **3710** may be greater than the front groove width **2071**, and the back groove depth **3720** may be less than the front groove depth **2069**. In another example (not shown), the back groove width **3710** may be greater than the front groove width **2071**, and the back groove depth **3720** may be greater than the front groove width **2071**, and the back groove depth **3720** may be greater than the front groove depth **2069**. In yet another example (not shown), the back groove width **3710** may be less than the front groove width **2071**, and the back groove depth **3720** may be less than the front groove width **2071**, and the back groove depth **3720** may be less than the front groove depth **2069**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0087] In one example, the back groove width **3710** and the back groove depth **3720** may be similar. In another example, the back groove width **3710** may be less than the back groove depth **3720**. In yet another example, the back groove width **3710** may be greater than the back groove depth **3720**. In the illustrated example of FIGS. **37** and **38**, the back groove width **3710** may be substantially greater than the back groove depth **3720**. The back groove width **3710** and the back groove depth **3720** may be determined to provide sufficient deflection for the face portion **2062** without compromising the structural integrity of the face portion. In other words, the back groove width **3710** and the back groove depth **3720** may be determined so that the face portion **2062** may sufficiently deflect to provide the rebounding and the trampoline effect described herein when striking a golf ball without failure after one, a few, or repeated and long-term use of the golf club head **2000** for golf ball strikes. Additionally, values of the back groove width **3710** and the back groove depth **3720** may depend on the values of the first face thickness **3750**, the front groove width **2071**, and/or the front groove depth **2069**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0088] As described herein, the interior cavity 2110 may be filled with one or more filler materials, such as the filler material 2512. Accordingly, in one example, all or portions of the back groove 3500 may be filled with the filler material 2512. The filler material 2512 may structurally support the relatively thinner portions of the face portion 2062 at locations in and/or proximate to the back groove 3500. In another example, all or portions of the back groove 3500 may be filled with a filler material that may have different physical properties than any of the filler materials in the interior cavity 2110. In yet another example, a portion of the back groove 3500 may be filled with a first filler material, whereas another portion of the back groove 3500 may be filled with a second filler material having one or more different physical properties than the first filler material. The configuration (e.g., depth, width, location on the face portion, cross-sectional shape) of the back groove 3500 may determine the physical properties of the one or more filler materials and the amount of the one or more filler materials that may be used to fill the back groove 3500 and/or the interior cavity 2110. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0089] The first end portion **3502** and/or or the second end portion **3510** may have any shape and/or size without any sharp corners or vertices to eliminate or reduce stress concentration points or regions at or proximate to the back groove **3500**. In one example, the first end portion **3502** and/or the second end portion **3510** may have an elliptical or a semi-elliptical shape. In another example, the first end portion **3502** and/or the second end portion **3510** may have a triangular shape with rounded vertices. In another example, as illustrated in FIG. **49**, the first end portion **3502** and/or the second end portion **3510** may have an obround shape (i.e., a rectangle with semicircles at opposite sides). In another example, as illustrated in FIGS. **65** and **66**, the back groove **3500** may extend to the face perimeter. In other words, any portion of a back groove **3500** may extend to the face perimeter and terminate at the face perimeter. In yet another example, as illustrated in FIG. **59**, the back groove **3500** may terminate at a rounded or curved end portion **5952** having the same

width as the back groove width **3710** without having an enlarged end portion. Any end portion of any of the back grooves described herein may have any shape and/or any shape without sharp corners or vertices so as to eliminate or reduce any stress concentration regions on the face portion **2062** at or proximate to the back groove. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0090] The cross-sectional shape of the back groove **3500** may be without any sharp corners to eliminate or reduce stress concentration points or regions at or proximate to the back groove **3500**. In one example, as illustrated in FIG. **37**, the cross-section of the back groove **3500** may have a wide and shallow U-shape. In another example, the cross-section of the back groove **3500** may have a deep and/or narrow U-shape. In another example, the cross-section of the back groove **3500** may have a rectangular shape with rounded corners or vertices. In yet another example, the cross-sectional shape of the back groove **3500** may be semi-circular or semi-elliptical. Accordingly, the back groove **3500** may be manufactured with any cross-sectional shape. The cross-sectional shape of the back groove **3500** may be manufactured without sharp corners or vertices so as to eliminate or reduce any stress concentration regions on the face portion **2062** at or proximate to the back groove **3500**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0091] In another example, as illustrated in FIG. **36**, the back surface **2066** of the face portion **2062** may include a back groove **3600**, which may be similar in many respects to the back groove **269** of FIG. **13**. The back groove **3600** may have similar back groove width, back groove depth, and/or cross-sectional shape as described and illustrated herein with respect to the back groove **3500**. The back groove **3600** may include a first portion **3604**, a first transition portion **3605**, a second portion **3606**, a second transition portion **3607**, a third portion **3608**, and a third transition portion **3609**, a fourth portion **3610**, and a fourth transition portion **3611**, all of which may define a continuous back groove **3600** that extends proximate to a perimeter of the back surface **2066** of the face portion **2062** and generally follows the contour of the perimeter of the face portion **2062** without having any sharp corners to prevent stress concentration regions at or near any portion of the back groove **3600**. As illustrated in FIG. **36**, the back groove **3600** may define an inner area **3662** and an outer area **3664** of the face portion **2062**. The inner area **3662** may correspond to or include a portion of the face portion **2062** that generally strikes a golf ball. Further, the back groove **3600** may provide a relatively thinner part of the face portion **2062** as compared to the remaining parts of the face portion **2062**. Accordingly, the back groove **3600** may provide enhanced deflection of the inner area **3662** relative to the outer area **3664** as compared to face portion **2062** without the back groove **3600**. In other words, the back groove **3600** may provide a trampoline effect for the inner area **3662** of the face portion **2062**. The enhanced deflection of the inner area **3662** may provide enhanced rebounding of the inner area **3662** after the face portion **2062** strikes a golf ball, which may increase ball speed and/or carry distance. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0092] In one example, to eliminate or reduce stress concentration regions in or around the back groove **3500**, any portion of the back groove **3500** may have a curved or chamfered shape when changing directions. In one example, as illustrated in FIG. **35**, the first transition portion **3505** and/or the second transition portion **3507** of the back groove **3500** may be curved. In another example, as illustrated in FIG. **36**, the first transition portion **3605**, the second transition portion **3607**, the third transition portion **3609**, and the fourth transition portion **3611** of the back groove **3600** may be curved. In another example as illustrated in FIG. **35**, the first end portion **3502** and the second end portion **3510** of the back groove **3500** may be circular. The size of the circle defining the first end portion **3502** and/or the second end portion **3510** may be determined considering the first face thickness, the second face thickness, the third face thickness, the fourth face thickness, material properties of the face portion, the method by which the face portion is manufactured, and/or a broad range of deflections to which the face portion **2062** may be subjected with repeated

golf ball strikes. In one example, the diameter of a circle defining the first end portion **3502** and/or the second end portion **3510** may be greater than or equal to 0.1 inch (2.54 mm) and less than or equal to 0.4 inch (10.16 mm). In another example, the diameter of a circle defining the first end portion **3502** and/or the second end portion **3510** may be greater than or equal to 0.188 inch (4.763) mm) and less than or equal to 0.313 inch (7.938 mm). In yet another example, the diameter of a circle defining the first end portion 3502 and/or the second end portion 3510 may be greater than or equal to 0.219 inch (5.556 mm) and less than or equal to 0.281 inch (7.144 mm). The apparatus, methods, and articles of manufacture described herein are not limited in this regard. [0093] To determine the effect of back grooves **3500** and **3600** on the performance of the golf club head **2000**, certain club performance parameters were measured for three sample golf clubs, which are identified in FIGS. 39-42 as golf club number one (Club No. 1), golf club number two (Club No. 2), and golf club number 3 (Club No. 3). All three golf clubs were 7-iron golf clubs with golf club heads that were identical in every respect to the golf club head **2000** as described herein except for the configuration of the back groove on the back surface **2066** of the face portion **2062**. Club No. 1 did not include any back grooves such as the back groove **3500** or the back groove **3600**. Club No. 2 included the back groove **3500** as described herein and illustrated in FIG. **35**. Club No. 3 included the back groove **3600** as described herein and illustrated in FIG. **36**. The back groove **3500** of Club No. 2 and the back groove **3600** of Club No. 3 had a back groove width **3710** of about 0.125 inch (3.175 mm) and a back groove depth **3720** of about 0.007 inch (0.178 mm). The diameter of the circles defining the first end portion **3502** and the second end portion **3510** of the back groove **3500** were about 0.25 inch (6.350 mm).

[0094] Each of the sample golf clubs was tested with a swing robot to strike a golf ball at an average golf club head speed of 84 mph to 86 mph for multiple iterations at each of five locations on the face portion of the golf club head to determine average ball speed (mph), average ball launch angle (degrees), average ball backspin (rpm), and average total carry distance (yards). For example, the swing robot may be a model manufactured by Golf Laboratories of San Diego, California. The five locations of the face portion were a center location, a toe location, a heel location, a low location, and a high location, all of which may be referred to herein as the measurement locations. The center location was determined as the location on the face portion by which a golf ball is typically struck by an individual. In other words, the center location statistically (e.g., greater than 75%) receives the highest number of ball strikes. The center location was set at 0.75 inches or approximately 0.75 inches up from the sole portion edge **2092** and at the center of a corresponding front groove **2068** on the face portion **2062** subject to variations and/or approximations according to measurement tolerances and/or the actual ball strike region on the face portion **2062** by the swing robot. The toe location and the heel location were set as 0.5 inches or approximately 0.5 inches from the center location in the toe direction and in the heel direction, respectively, subject to variations and/or approximations according to measurement tolerances and the actual ball strike point on the face portion **2062** by the swing robot. The high location and the low location were set at 0.25 inches or approximately 0.25 inches from the center location in the top direction and the bottom direction, respectively, subject to variations and/or approximations according to measurement tolerances and the actual ball strike point on the face portion 2062 by the swing robot. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0095] As illustrated in FIG. **39**, ball speed for Club No. 3 was higher at all measurement locations than the ball speeds for Club No. 1 and Club No. 2. Referring back to FIG. **36**, the back groove **3600** forms a continuous loop on the back surface **2066** of the face portion **2062**. Accordingly, the entire inner area **3662** of the face portion **2062** may deflect inward relative to the outer area **3664** with a golf ball strike to provide an enhanced trampoline or rebounding effect for the golf ball to result in enhanced ball speeds at all measurement locations relative to Club No. 1 and Club No. 3. [0096] As illustrated in FIG. **40**, launch angle for Club No. 2 was higher at all measurement

locations than the launch angle for Club No. 1 and Club No. 3. Referring back to FIG. **35**, the back groove **3500** forms a C-shaped groove on the back surface **2066** of the face portion **2062**. Accordingly, the upper portion of the inner area **3562** of the face portion **2062** may have a greater inward deflection when the face portion **2062** strikes a golf ball than the lower portion of the inner area **3562**, hence launching the golf ball with a higher launch angle. In other words, the upper portion of the inner area **3562** may provide a greater trampoline or rebound effect than the lower portion of the inner area **3562** to produce a relatively higher launch angle than Club No. 1 and Club No. 3.

[0097] As illustrated in FIG. **41**, ball backspin for Club No. 2 was lower at the center location than the backspin for Club No. 1 and Club No. 3. Referring back to FIG. **35**, the back groove **3500** forms a C-shaped groove on the back surface **2066** of the face portion **2062**. Accordingly, the center portion of the inner area **3562** of the face portion **2062** may have a greater inward deflection when the face portion **2062** strikes a golf ball than the lower portion of the inner area **3562**, hence creating a lower backspin on the golf ball. In other words, the relatively greater inward deflection of the upper portion of the inner area **3562** may impart a lower backspin on the ball than Club No. 1 and Club No. 3.

[0098] As illustrated in FIG. **42**, ball carry distance for Club No. 2 and Club No. 3 were generally similar at the center location and the heel location, but higher than the ball carry distance for Club No. 1 at all five locations. As discussed herein, the greater trampoline or rebound effects provided by the back groove **3500** of Club No. 2 and the back groove **3600** of Club No. 3 may generate a larger carry distance than Club No. 1.

[0099] The configuration of a back groove on the back surface 2066 of the face portion 2062 may affect performance characteristics of a golf club. Accordingly, certain performance characteristic for a golf club may be achieved by different groove configurations. In one example, as illustrated in FIG. 43, the face portion 2062 may include a back groove 4300 having a first portion 4304, a first transition portion 4305, a second portion 4306, a second transition portion 4307, a third portion 4308, a third transition portion 4310, a fourth portion 4312, and a fourth transition portion 4314, all of which define a continuous back groove 4300. The back groove 4300 may be similar in many respects to the back groove 3600, except that the first portion 4304 may extend linearly between the face top edge 2780 and the face sole edge 2790 instead of following the contour of the face toe edge 2740 as illustrated in FIG. 36. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0100] In another example, as illustrated in FIG. 44, the face portion 2062 may include a back groove 4400 having a first end portion 4402, a first portion 4404, a first transition portion 4405, a second portion 4406, a second transition portion 4407, a third portion 4408, and a second end portion 4410. The back groove 4400 may be similar in many respects to the back groove 3600, except that the first portion 4404 terminates at the first end portion 4402 located at or proximate to the face toe edge 2740 and the face sole edge 2790, and the third portion 4408 terminates at the second end portion 4410 located at or proximate to the face heel edge 2750 and the face sole edge 2790. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0101] In another example, as illustrated in FIG. **45**, the face portion **2062** may include a back groove **4500** having a first portion **4504**, a first transition portion **4505**, a second portion **4506**, a second transition portion **4507**, and a third portion **4508**. The back groove **4500** may also include a first end portion **4520** that may be at or proximate to the face sole edge **2790** and a second end portion **4530** at or proximate to the face sole edge **2790**. The first end portion **4520** may be closer to the face toe edge **2740** than to the face heel edge **2750**, and the second end portion **4530** may be closer to the face heel edge **2750** than to the face toe edge **2740**. The back groove **4500** may further include a fourth portion **4501** that extends from the first end portion **4520** toward the face toe edge **2740** and to a third transition portion **4503** that connects the fourth portion **4501** to the first portion

4504, and a fifth portion **4512** that extends from the second end portion **4530** toward the face heel edge **2750** and to a fourth transition portion **4509** that connects the fifth portion **4512** to the third portion **4508**. Accordingly, the back groove **4500** may be partially similar in configuration to the back groove **3500** and extend continuously on the back surface **2066** of the face portion **2062** except for a discontinuity defined by a gap **4540** between the first end portion **4520** and the second end portion **4530**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0102] In another example, as illustrated in FIG. 46, the face portion 2062 may include a back groove **4600** having a first portion **4604**, a first transition portion **4605**, a second portion **4606**, a second transition portion **4607**, and a third portion **4608**. The back groove **4600** may also include a first end portion **4620** that may be at or proximate to the face sole edge **2790** and a second end portion **4630** at or proximate to the face sole edge **2790**. The first end portion **4620** may be closer to the face toe edge **2740** than to the face heel edge **2750**, and the second end portion **4630** may be closer to the face heel edge 2750 than to the face toe edge 2740. The back groove 4600 may further include a fourth portion **4601** that extends from the first end portion **4620** toward the face toe edge **2740** and to a third transition portion **4603** that connects the fourth portion **4601** to the first portion **4604**, and a fifth portion **4612** that extends from the second end portion **4630** toward the face heel edge **2750** and to a fourth transition portion **4609** that connects the fifth portion **4612** to the third portion **4608**. Accordingly, the back groove **4600** may be partially similar in configuration to the back groove **3600** and extend continuously on the back surface **2066** of the face portion **2062** except for a discontinuity defined by a gap **4640** between the first end portion **4620** and the second end portion **4630**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0103] In another example, as illustrated in FIG. 47, the face portion 2062 may include a first back groove 4710 and a second back groove 4720. The first back groove 4710 may include a first end portion 4712, a first portion 4714, a transition portion 4715, a second portion 4716, and a second end portion 4718. The first back groove 4710 may be closer to the face toe edge 2740 than to the face heel edge 2750. The second back groove 4720 may include a first end portion 4722, a first portion 4724, a transition portion 4725, a second portion 4726, and a second end portion 4728. The second back groove 4720 may be closer to the face heel edge 2750 than to the face toe edge 2740. Further, all or significant portions of the first back groove 4710 and the second back groove 4720 may be closer to the face top edge 2780 than to the face sole edge 2790. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0104] In another example, as illustrated in FIG. 48, the face portion 2062 may include a first back groove 4810 and a second back groove 4820. The first back groove 4810 may include a first end portion 4812, a first portion 4814, a first transition portion 4815, a second portion 4816, a second transition portion 4817, and a second end portion 4818. The first back groove 4810 may be closer to the face top edge 2780 than to the face sole edge 2790. The second back groove 4820 may include a first end portion 4822, a first portion 4824, a transition portion 4825, a second portion 4826, a second transition portion 4827, and a second end portion 4828. The second back groove 4820 may be closer to the face sole edge 2790 than to the face top edge 2780. Further, each of the first back groove 4810 and the second back groove 4820 may extend from a location at or proximate to the face toe edge 2740 to a location at or proximate to the face heel edge 2750. The first back groove 4810 may be proximate to and follow the contours of the face toe edge 2740, the face top edge 2780, and the face heel edge 2750. The second back groove 4820 may be proximate to and follow the contours of the face heel edge 2750. The sacond back groove 4820 may be proximate to and follow the contours of the face heel edge 2750. The second back groove 4820 may be proximate to and follow the contours of the face heel edge 2750. The second back groove 4820 may be proximate to and follow the contours of the face heel edge 2750. The second back groove 4820 may be proximate to and follow the contours of the face heel edge 2750. The second back groove 4820 may be proximate to and follow the contours of the face heel edge 2750. The second back groove 4820 may be proximate to and follow the contours of the face heel edge 2750. The second back groove 4820 may be proximate to and follow the contours of the face heel edge 2750.

[0105] In another example, as illustrated in FIG. **49**, the face portion **2062** may include a back groove **4900**, which may be similar in many respects to the back groove **3500** except for the first

end portion **4902** and the second end portion **4910**. Referring back to the illustrated example of FIG. **35**, the first end portion **3502** and the second end portion **3510** may be circular and can have any diameter as described herein. In another example, as illustrated in FIG. **49**, the first end portion **4902** may be circular with a larger diameter than the first end portion **3502** of FIG. **35**. In another example, as illustrated in FIG. **49**, the second end portion **4910** may have an obround shape (i.e., a rectangle with semicircles at opposite sides). In another example (not shown), the first end portion **4902** and/or the second end portion **4910** may have an elliptical shape. In another example (not shown), the first end portion **4902** and/or the second end portion **4910** may have a triangular shape with rounded vertices. In yet another example (not shown), the first end portion 4902, the second end portion **4910**, and/or any of the back groove end portions described herein may have any shape and/or any shape without sharp corners or vertices so as to eliminate or reduce any stress concentration regions on the face portion **2062** at or proximate to the back groove. The apparatus, methods, and articles of manufacture described herein are not limited in this regard. [0106] In another example, as illustrated in FIG. 50, the face portion 2062 may include a first back groove **5010** and a second back groove **5020**. The first back groove **5010** may include a first end portion **5012**, a first portion **5014**, a first transition portion **5015**, a second portion **5016**, and a second end portion **5018**. The first back groove **5010** may be closer to the face toe edge **2740** than to the face heel edge **2750**. The second back groove **5020** may include a first end portion **5022**, a first portion **5024**, a transition portion **5025**, a second portion **5026** and a second end portion **5028**. The second back groove **5020** may be closer to the face heel edge **2750** than to the face toe edge **2740**. Further, each of the first back groove **5010** and the second back groove **5020** may extend from a location at or proximate to the face top edge **2780** to a location at or proximate to the face sole edge **2790**. The first back groove **5010** may be proximate to and follow the contours of the face top edge **2780**, the face toe edge **2740**, and the face sole edge **2790**. The second back groove **5020** may be proximate to and follow the contours of the face top edge **2780**, the face heel edge **2750**, and the face sole edge **2790**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0107] In another example, as illustrated in FIG. 51, the face portion 2062 may include a back groove **5100** having a first end portion **5102**, a first portion **5104**, a first transition portion **5105**, a second portion 5106, a second transition portion 5107, a third portion 5108, and a second end portion **5110**. The back groove **5100** may extend proximate to and follow the contours of the face top edge **2780**, the face heel edge **2750**, and the face sole edge **2790**. The first end portion **5102** may be at or proximate to the face top edge **2780** and the face toe edge **2740**, and the second end portion **5110** may be at or proximate to the face sole edge **2790** and the face toe edge **2740**. Accordingly, the back groove **5100** may not include an elongated portion between the first end portion **5102** and the second end portion **5110** that extends in a direction from the face top edge **2780** to the face sole edge **2790** at a location at or proximate to the face toe edge **2740**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard. [0108] In another example, as illustrated in FIG. 52, the face portion 2062 may include a back groove **5200** having a first end portion **5202**, a first portion **5204**, a first transition portion **5205**, a second portion **5206**, a second transition portion **5207**, a third portion **5208**, and a second end portion **5210**. The back groove **5200** may extend proximate to and follow the contours of the face top edge **2780**, the face toe edge **2740**, and the face sole edge **2790**. The first end portion **5202** may be at or proximate to the face top edge **2780** and the face heel edge **2750**, and the second end portion **5210** may be at or proximate to the face sole edge **2790** and the face heel edge **2750**. Accordingly, the back groove **5200** may not include an elongated portion between the first end portion **5202** and the second end portion **5210** that extends in a direction from the face top edge **2780** to the face sole edge **2790** at a location at or proximate to the face heel edge **2750**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard. [0109] In another example, as illustrated in FIG. 53, the face portion 2062 may include a back

groove **5300** having a first end portion **5302**, a first portion **5304**, a first transition portion **5305**, a second portion **5306**, a second transition portion **5307**, a third portion **5308**, and a second end portion **5310**. The back groove **5300** may extend proximate to the face toe edge **2740**, the face sole edge **2790**, and the face heel edge **2750**. The first end portion **5302** may be at or proximate to the face top edge 2780 and the face toe edge 2740, and the second end portion 5310 may be at or proximate to the face top edge **2780** and the face toe edge **2740**. Accordingly, the back groove **5300** may not include an elongated portion between the first end portion 5302 and the second end portion **5310** that extends in a direction from the face toe edge **2740** to the face heel edge **2750** at a location at or proximate to the face top edge **2780**. As illustrated in FIG. **53**, the back groove **5300** may be similar in many respects to the back groove **3500** but may be in an inverted configuration on the back surface **2066** of the face portion **2062** as compared to the back groove **3500**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard. [0110] In another example, as illustrated in FIG. **54**, the face portion **2062** may include a back groove **5400** having a first portion **5404**, a first transition portion **5405**, a second portion **5406**, a second transition portion **5407**, and a third portion **5408**. The back groove **5400** may also include a first end portion 5420 that may be at or proximate to the face top edge 2780 and a second end portion **5430** at or proximate to the face top edge **2780**. The first end portion **5420** may be closer to the face toe edge **2740** than to the face heel edge **2750**, and the second end portion **5430** may be closer to the face heel edge **2750** than to the face toe edge **2740**. As illustrated in FIG. **54**, the back groove **5400** may be similar in many respects to the back groove **4600** but may be in an inverted configuration on the back surface **2066** of the face portion **2062** as compared to the back groove **4600**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0111] In one example, as illustrated in FIG. 55, the face portion 2062 may include a back groove **5500** having a first portion **5504**, a first transition portion **5505**, a second portion **5506**, a second transition portion 5507, a third portion 5508, and a third transition portion 5510, a fourth portion **5512**, and a fourth transition portion **5514**, all of which may define a continuous back groove **5500**. The back groove **5500** may be similar in many respects to the back groove **4300**, except that the fourth portion **5512** may have a convex shape relative to the face sole edge **2790**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard. [0112] In one example, as illustrated in FIG. **56**, the face portion **2062** may include a back groove **5600** having a first portion **5604**, a first transition portion **5605**, a second portion **5606**, a second transition portion **5607**, a third portion **5608**, and a third transition portion **5610**, a fourth portion **5612**, and a fourth transition portion **5614**, all of which may define a continuous back groove **5600**. The back groove **5600** may be similar in many respects to the back groove **3600**, except that the fourth portion **5612** may have a concave shape relative to the face sole edge **2790**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard. [0113] In another example, as illustrated in FIG. 57, the face portion 2062 may include a back groove **5700** having a first end portion **5702**, a first portion **5704**, a first transition portion **5705**, a second portion **5706**, a second transition portion **5707**, a third portion **5708**, and a second end portion **5710**. The back groove **5700** may be similar in many respects to the back groove **3500**, except that the back groove width **5720** of the second portion **5706** may be greater than the back groove width **5720** of the remaining portions of the back groove **5700**. In another example, any one or more of the first portion **5704**, the second portion **5706**, and the third portion **5708** may have similar or different back groove widths and/or back groove depths. Any of the back grooves described herein may have portions with different or similar back groove widths and/or back groove depths. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0114] In another example, as illustrated in FIG. **58**, the face portion **2062** may include a back groove **5800** having a first portion **5804**, a first transition portion **5805**, a second portion **5806**, a

second transition portion **5807**, a third portion **5808**, a third transition portion **5810**, a fourth portion **5812**, and a fourth transition portion **5814**, all of which may define a continuous back groove **5800**. The back groove **5800** may be similar in many respects to the back groove **3600**, except that the back groove width **5820** of the second portion **5806** may vary between the first transition portion **5805** and the second transition portion **5807**. As illustrated in the example of FIG. **58**, the back groove width **5820** may gradually increase from the first transition portion **5805** in a direction toward the second transition portion **5807** to a maximum back groove width **5822** and may gradually decrease from the location of the maximum back groove width **5822** in a direction toward the second transition portion **5807**. Any portion of any of the back grooves described herein may have portions with different or similar back groove widths and/or back groove depths that may increase, decrease in a continuous (i.e., gradual), or discrete manner (i.e., increase or decrease in steps). The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0115] In another example, as illustrated in FIG. **59**, the face portion **2062** may include a first back groove **5900** and a second back groove **5950**. The first back groove **5900** may include a first end portion **5902**, a first portion **5904**, a first transition portion **5905**, a second portion **5906**, a second transition portion **5907**, a third portion **5908**, and a second end portion **5910**. The first back groove **5900** may be similar in many respects to the back groove **3500**. The second back groove **5950** may extend between the first end portion **5902** and the second end portion **5910** and include a second groove first end portion **5952**, a second groove portion **5954**, and a second groove second end portion **5960**. The second groove first end portion **5952** may be proximate to the first end portion **5902**, and the second groove second end portion **5960** may be proximate to the second end portion **5910**. FIG. **59** illustrates an example of multiple back grooves disposed on the back surface **2066** of the face portion **2062** with different configurations. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0116] In another example, as illustrated in FIG. **60**, the face portion **2062** may include a back groove **6000** having a first portion **6004**, a first transition portion **6005**, a second portion **6006**, a second transition portion **6007**, a third portion **6008**, a third transition portion **6010**, a fourth portion **6012**, and a fourth transition portion **6014**, all of which may define a continuous back groove **6000**. The back groove **6000** may be similar in many respects to the back groove **6000**, and further include a fifth portion **6016** and a sixth portion **6018**, both of which may be located between the first portion **6004** and the third portion **6008** and extend from the second portion **6006** to the fourth portion **6012**. The fifth portion **6016** may be closer to the face toe edge **2740** than to the face heel edge **2750**. The sixth portion **6018** may be closer to the face heel edge **2750** than to the face toe edge **2740**. The back groove **6000** may include any groove portions extending between and/or connecting any two adjacent or opposing pairs of the first portion **6004**, the first transition portion **6005**, the second portion **6006**, the second transition portion **6007**, the third portion **6008**, the third transition portion **6010**, the fourth portion **6012**, and/or the fourth transition portion **6014**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard. [0117] In another example, as illustrated in FIG. **61**, the face portion **2062** may include a back groove **6100** having a first end portion **6102**, a first portion **6104**, a first transition portion **6105**, a second portion **6106**, a second transition portion **6107**, a third portion **6108**, and a second end portion **6110**. The back groove **5700** may be similar in many respects to the back groove **3500**, and further include a fifth portion **6114** and a sixth portion **6116**, both of which may be located between the second portion **6106** and the face sole edge **2790** and extend from the first portion **6104** and the third portion **6108**. The fifth portion **6114** may be closer to the face top edge **2780** than to the face sole edge **2700**. The sixth portion **6116** may be closer to the face sole edge **2790** than to the face top edge **2780**. The back groove **6100** may include any groove portions extending between and/or connecting any two adjacent or opposing pairs of the first end portion **6102**, the first portion **6104**, the first transition portion **6105**, the second portion **6106**, the second transition portion **6107**, the

third portion **6108**, and/or the second end portion **6110**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0118] In another example, as illustrated in FIG. 62, the face portion 2062 may include a first back groove 6200 and the second back groove 6230. The first back groove 6200 may extend diagonally on the back surface 2066 of the face portion 2062 and include a first end portion 6202 located proximate to the face toe edge 2740 and the face top edge 2780, a second end portion 6206 located proximate to the face heel edge 2750 and the face sole edge 2790, and a groove portion 6204 connecting the first end portion 6202 and the second end portion 6206. The second back groove 6230 may extend diagonally on the back surface 2066 of the face portion 2062 and include a first end portion 6232 located proximate to the face toe edge 2740 and the face sole edge 2790, a second end portion 6236 located proximate to the face heel edge 2750 and the face top edge 2780, and a groove portion 6234 connecting the first end portion 6232 and the second end portion 6236. The groove portion 6204 of the first back groove 6200 and the groove portion 6234 of the second back groove 6230 may intersect at a common groove portion 6220 that may be located at or proximate to a center region of the face portion 2062. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0119] In another example, as illustrated in FIG. **63**, the face portion **2062** may include a back groove **6300** that may be circular having an inner diameter **6302** that may be within the boundaries of the face portion **2062** as defined by the face toe edge **2740**, the face heel edge **2750**, the face top edge **2780**, and the face sole edge **2790**. The back groove **6300** may be located at a center region of the face portion **2062** as illustrated in the example of FIG. **63**. In another example the back groove **6300** may be at any location on the back surface **2066** of the face portion **2062**. In another example, the back groove **6300** may include a plurality separate or overlapping circular grooves on the back surface **2066** of the face portion. In yet another example, the back groove **6300** may include a plurality separate and concentric circular grooves on the back surface **2066** of the face portion. The apparatus, methods, and articles of manufacture described herein are not limited in this regard. [0120] In another example, as illustrated in FIG. **64**, the face portion **2062** may include a back groove **6400** that may be elliptical and located within the boundaries of the face portion **2062** as defined by the face toe edge **2740**, the face heel edge **2750**, the face top edge **2780**, and the face sole edge **2790**. A center portion of the back groove **6400** may be located at a center region of the face portion **2062** as illustrated in the example of FIG. **64**. In another example the back groove **6400** may be at any location on the back surface **2066** of the face portion **2062**. In another example, the back groove **6400** may include a plurality of separate or overlapping elliptical grooves on the back surface **2066** of the face portion. In yet another example, the back groove **6400** may include a plurality of separate or concentric or nested elliptical grooves on the back surface **2066** of the face portion. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0121] In another example, as illustrated in FIG. **65**, the face portion **2062** may include a back groove **6500** having a first portion **6504**, a first transition portion **6505**, a second portion **6506**, a second transition portion **6507**, and a third portion **6508**. The back groove **6500** may be similar in many respects to the back groove **3500**, except that the back groove **6500** may not include the first end portion **3502** and the second end portion **3510** of the back groove **3500**. The first portion **6504** and the third portion **6508** extend to the face sole edge **2790**. Similarly, any portion of any of the back grooves discussed herein may extend to the face toe edge **2740**, the face heel edge **2750**, the face top edge **2780**, or the face sole edge **2790**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0122] In yet another example, as illustrated in FIG. **66**, the face portion **2062** may include a back groove **6600** having a curved shape that may be concave relative to the face sole edge **2790**. The back groove **6600** may be continuous and extend from a first groove end **6602** at the face sole edge **2790** and proximate to the face toe edge **2740** to a second groove end **6604** at the face sole edge

2790 and proximate to the face heel edge **2750**. Similarly, any portion of any of the back grooves discussed herein may have any linear or curved shape and extend to the face toe edge **2740**, the face heel edge **2750**, the face top edge **2780**, or the face sole edge **2790**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0123] Any one or more of the back grooves illustrated in examples of FIGS. **13**, **35**, **36**, and **43-66**, or any one or more portions of the back grooves illustrated in examples of FIGS. 13, 35, 36, and **43-66** may be combined to provide other back groove configurations. In one example, the back surface **2066** of the face portion **2062** may include any one or both of the back grooves **6200** and **6230** of FIG. **62** in combination with the back groove **64** of FIG. **64**. In another example, the back surface **2066** of the face portion **2062** may include the back groove **3600** of FIG. **36** and the back groove **6300** of FIG. **63**. In another example, the back surface **2066** of the face portion **2062** may include the back grooves **4710** and **4720** of FIG. **47** and the back groove **5950** of FIG. **59**. In another example, the back surface **2066** of the face portion **2062** may include the back groove **6500** of FIG. 65 and the back groove portion 5950 of FIG. 59. In yet another example, the back surface 2066 of the face portion 2062 may include any one or both of the back grooves 5010 and 5020 of FIG. **50**, and the back groove **6300** of FIG. **63**. Thus, any one or more back grooves or any one or more portions of the back grooves discussed herein and illustrated in FIGS. 13, 35, 36, and 43-66 may be combined to provide any configuration of back groove portions on the back surface **2066** of the face portion **2062**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0124] As illustrated by the examples of FIGS. 13, 35, 36, and 43-66, the back surface 2066 of the face portion **2062** may have any number of back grooves with any configuration to provide certain performance characteristics for the golf club head 2000. As described herein, an area of the face portion **2062** that may be partially or fully surrounded by one or more back grooves (i.e., partially or fully bound by a back groove portion) may exhibit greater deflection than an area of the face portion **2062** that surrounds the back groove when a golf ball strikes the face portion **2062**. Accordingly, certain face portion deflection characteristics may be achieved by providing certain back groove characteristics. In one example and referring back to FIG. 50, the portion of the face portion **2062** that is surrounded by the first back groove **5010** and the portion of the face portion **2062** that is surrounded by the second back groove **5020** may each have a greater deflection that a center region of the face portion **2062**. In another example and referring back to FIG. **51**, the portion of the face portion **2062** that is surrounded by the back groove **5100** may have a greater deflection at a location that is closer to the face heel edge **2750** than the portion of the back groove **5100** that is closer to the face toe edge **2740**. In another example, and referring back to FIG. **54**, the portion of the face portion **2062** that is surrounded by the back groove **5400** may have a greater deflection at a location that is closer to the face sole edge **2790** than a portion of the back groove **5400** that is closer to the face top edge **2780**. In yet another example and referring back to FIG. **62**, the greatest deflection of the face portion **2062** may be at or proximate to the common groove portion **6220**. Accordingly, each of the back groove configurations illustrated in the examples of FIGS. **13**, **35**, **36**, and **43-66** may provide a certain performance characteristic for a golf club head. The apparatus, methods, and articles of manufacture described herein are not limited in this regard. [0125] The golf club head **2000** may be manufactured by any of the methods described herein, such as the method illustrated in FIG. **14**, or the methods described in any of the incorporated by reference patent documents. The back groove may be manufactured with the face portion or formed on the face portion after manufacturing the face portion by any method of creating grooves, channels, slots, slits, depressions, dimples, recesses, or in general reducing a thickness of a portion of an object. For example, the back groove may be machined on the back surface of the face portion. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0126] In the example of FIGS. 67-87, a golf club head 6700 may include a body portion 6710

having a toe portion **6740** with a toe portion edge **6742**, a heel portion **6750** with a heel portion edge **6752** that may include a hosel portion **6755**. A golf club shaft (such as the shaft **104** that is illustrated for example in FIG. 1) may include one end coupled to the hosel portion **6755**, and an opposite end coupled to a golf club grip (such as the grip **106** that is illustrated for example in FIG. 1) to form a golf club (such as the golf club **100** that is illustrated for example in FIG. 1). The body portion **6710** may further include a front portion **6760**, a back portion **6770** with a back wall portion **6772**, a top portion **6780** with a top portion edge **6782**, and a sole portion **6790** with a sole portion edge **6792**. The toe portion **6740**, the heel portion **6750**, the front portion **6760**, the back portion **6770**, the top portion **6780**, and/or the sole portion **6790** may partially overlap. The toe portion edge 6742, the heel portion edge 6752, the top portion edge 6782, and the sole portion edge 6792 may define a periphery of the body portion 6710. The golf club head 6700 may be any type of golf club head described herein, such as, for example, an iron-type golf club head or a wedge-type golf club head. The volume of the golf club head 6700, the materials of construction of the golf club head 6700, and/or any components thereof may be similar to any of the golf club heads described herein and/or described in any of the incorporated by reference patent documents. The apparatus, methods, and articles of manufacture described herein are not limited in this regard. [0127] The golf club head **6700** may include a face portion **6762** (i.e., the strike face), which may be integrally formed with the body portion **6710** (e.g., a single unitary piece). In one example, as illustrated in FIGS. 67-87, the face portion 6762 may be a separate piece coupled (e.g., directly or indirectly, adhesively, mechanically, by welding, and/or by soldering) to the front portion 6760 to close a front opening of the front portion **6760**. The face portion **6762** may include a front surface **6764** and a back surface **6766**. The front surface **6764** may include a plurality of front grooves **6768** that may extend between the toe portion **6740** and the heel portion **6750**. The front grooves 6768 may be similar in many respects to the front grooves 2068 of the golf club head 2000 or similar to the front grooves of any of the golf club heads described herein or described in any of the incorporated by reference patent documents. The back surface **6766** of the face portion **6762** may include one or more grooves, slots, channels, depressions, or recesses. In one example, the grooves on the back surface **6766** may be similar in many respects to the back grooves of the golf club head **2000**, such as the back grooves illustrated in FIGS. **35-38** and **43-66**. In another example, the back surface **6766** may not include any grooves, slots, channels, depressions, or recesses. The apparatus, methods, and articles of manufacture described herein are not limited in this regard. [0128] The golf club head **6700** may be associated with a ground plane **7110**, a horizontal midplane **7120**, and a top plane **7130**. In particular, the ground plane **7110** may be a plane that is parallel or substantially parallel to the ground and is tangent to the lowest portion of the sole portion edge **6792** when the golf club head **6700** is at an address position (e.g., the golf club head **6700** aligned to strike a golf ball). A top plane **7130** may be a plane that is tangent to the upper most portion of top portion edge **6782** when the golf club head **6700** is at the address position. The ground plane 7110 and the top plane 7130 may be parallel or substantially parallel. The horizontal midplane 7120 may be vertically halfway between the ground plane 7110 and the top plane 7130, respectively, and be parallel or substantially parallel to the ground plane **7110**. Further, the golf club head **6700** may be associated with a loft plane **7140** defining a loft angle **7145** (*a*) of the golf club head **6700**. The loft plane **7140** may be a plane that is tangent to or coplanar with the face portion **6762**. The loft angle **7145** may be defined by an angle between the loft plane **7140** and a vertical plane **7150** that is normal to the ground plane **7110**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0129] The back wall portion **6772** may include an upper back wall portion **6820**, a lower back wall portion **6820**, and a ledge portion **6830** between the upper back wall portion **6820** and the lower back wall portion **6822**. The ledge portion **6830** may extend outward (i.e., away from the face portion **6762**) from the upper back wall portion **6820** to the lower back wall portion **6822** (i.e., the ledge portion **6830** may extend inward or toward the face portion **6762** from the lower back wall

portion **6822** to the upper back wall portion **6820**). The ledge portion **6830** may include a first ledge portion **6832** that may extend from a location at or proximate to the toe portion edge **6742** toward the heel portion **6750**, a second ledge portion **6834** that may be located at or proximate to a center portion 6773 of the back wall portion 6772, and a third ledge portion 6836 that may extend from a location at or proximate to the heel portion edge **6752** toward the toe portion **6740**. The second ledge portion **6834** may extend between the first ledge portion **6832** and the third ledge portion **6836**. The first ledge portion **6832** may also extend in a downwardly inclined direction toward the sole portion **6790** as it extends from a location at or proximate to the toe portion edge **6742** to the second ledge portion **6834**. The third ledge portion **6836** may also extend in a downwardly inclined direction toward the sole portion **6790** as it extends from a location at or proximate to the heel portion edge 6752 to the second ledge portion 6834. The ledge portion 6830 including the first ledge portion **6832**, the second ledge portion **6834**, and the third ledge portion **6836** may be similar in many respects (e.g., height, width, orientation, configurations of any sidewall portions, configurations of any ledge portion transition portions, etc.) to the ledge portion 2130 including the first ledge portion 2132, the second ledge portion 2134, and the third ledge portion **2136**, respectively, of the golf club head **2000**. The ledge portion **6830** may be similar in many respects to any of the ledge portions described herein or described in any of the incorporated by reference patent documents. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0130] The body portion **6710** may include one or more ports, which may be exterior ports and/or interior ports (e.g., located inside the body portion **6710**). The one or more ports may be at any location on the body portion **6710**. The inner walls of the body portion **6710** that define the interior cavity **6810** may include one or more ports. In one example, the body portion **6710** may include ports that may be similar in many respects to the ports of the golf club head **2000** as illustrated in FIG. 23. In another example, the body portion 6710 may include ports that may be similar in many respects to the ports of the golf club head **200** as illustrated in FIG. **3**. In another example, the body portion **6710** may include ports that may be similar in many respects to any of the ports described in any of the incorporated by reference patent documents. In yet another example, as illustrated in FIGS. **67-87**, the body portion **6710** may include a first port **6921** above the first ledge portion **6832**, a second port **6931** located below the second ledge portion **6834**, and a third port **6941** in the interior cavity **6810**. Accordingly, the first port **6921** and the second port **6931** may be external ports, i.e., having port openings on an external surface of the body portion **6710**, whereas the third port **6941** may be an internal port having an opening on one or more internal walls of the body portion **6710** that define the interior cavity **6810**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0131] In one example as illustrated in FIGS. **67-87**, the first port **6921** may be located above the first ledge portion **6832** and proximate to the toe portion edge **6742**. In another example, the first port **6921** may be on the toe portion edge **6742**. In yet another example, the first port **6921** may be below the first ledge portion **6832**. The first port **6921** may have a first port opening **6926** inside a recessed portion **7026** on the upper back wall portion **6820**. The first port **6921** may be cylindrical and extend from the first port opening **6926** to the interior cavity at a second port opening **6927** to connect to the interior cavity **6810**. Accordingly, the first port opening **6926** may provide access to the interior cavity **6810** from outside the body portion **6710** via the second port opening **6927**. As illustrated in FIGS. **67-87**, the first port **6921** may have a circular cross section (i.e., cylindrical port). In another example, the first port **6921** may be elliptical. In yet another example, the first port **6921** may be configured to receive a cover portion or a badge **7028** to cover the first port opening **6926**. In another example, the first port **6921** may be closed with a mass portion that may be constructed from a material having a different density than a material of the body portion **6710**. In yet another example, the first port **6921** may be closed with a mass portion that may be constructed from a

```
material having the same density as a material of the body portion 6710. The apparatus, methods,
and articles of manufacture described herein are not limited in this regard.
[0132] In one example, the badge 7028 may display one or more alphanumeric characters,
symbols, shapes or other visual marks to signify a particular feature of the golf club head 6700 such
as the manufacturer of the golf club head 6700 (i.e., brand of the golf club head 6700).
Accordingly, the badge 7028 may be configured to be inserted and secured in the recessed portion
7026. In one example, the badge 7028 may be secured in the recessed portion 7026 with an
adhesive or a bonding agent. In another example, depending on the material of construction of the
badge 7028, welding or soldering may be used to attach the badge 7028 inside the recessed portion
7026. In another example, the badge 7028 may be press fit into the recessed portion 7026. In yet
another example, one or more fasteners may be used to attach the badge 7028 inside recessed
portion 7026. As described herein, the badge 7028 may cover and/or close the first port 6921. In
one example, the badge 7028 may be plate shaped to fit in the recessed portion 7026. In another
example, the badge 7028 may further have a projection the may be received in the first port 6921 to
close the first port 6921. In another example, the badge 7028 may be rectangular, circular, or have
any shape. In another example, the badge 7028 may be visible and distinguishable from the
remaining parts of the body portion 6710 by color, texture, materials of construction, and/or other
visual features. In yet another example, the badge 7028 may be attached to the body portion 6710
such as to appear seamless with the body portion 6710 and be an integral part of the body portion
6710, i.e., indistinguishable or substantially indistinguishable from the body portion 6710. The
apparatus, methods, and articles of manufacture described herein are not limited in this regard.
[0133] In one example, as illustrated in FIGS. 67-87, the second port 6931 may be larger in
diameter than the first port 6921. The second port 6931 may be located at or proximate to the
center portion 6773 of the back wall portion 6772 and at or proximate to the sole portion edge
6792. The second port 6931 may be located between the sole portion edge 6792 and the second
ledge portion 6834. The second port 6931 may be similar in many respects to the second port 2231
of the golf club head 2000. The second port 6931 may have a second port outer opening 6933 on
the back wall portion 6772 and port walls 6935 that extend from the second port outer opening
6933 to a second port inner opening 6937 that may be connected to the interior cavity 6810.
Accordingly, the interior cavity 6810 may be accessed from outside the body portion 6710 through
the second port outer opening 6933 and the second port inner opening 6937. The second port inner
opening 6937 may have a smaller diameter than the second port outer opening 6933 to define a port
bottom 6939. In one example, an inner diameter of the second port 6931, which may define the
diameter of the second port 6931 from the second port outer opening 6933 to the port bottom 6939,
may be greater than or equal to 0.2 inch (5.08 mm) and less than or equal to 1.0 inch (25.4 mm). In
another example, the inner diameter of the second port 6931 may be greater than or equal to 0.3
inch (7.62 mm) and less than 1.5 inch (38.1 mm). In another example, the inner diameter of the
second port 6931 may be greater than or equal to 0.4 inch (10.16 mm) and less than or equal to 0.8
inch (20.32 mm). In yet another example, the inner diameter of the second port 6931 may be
greater than or equal to 0.5 inch (12.7 mm) and less than or equal to 0.7 inch (17.78 mm). The
apparatus, methods, and articles of manufacture described herein are not limited in this regard.
[0134] As described herein, the first ledge portion 6832 may extend in a downwardly inclined
direction toward the sole portion 6790 as it extends from a location at or proximate to the toe
portion edge 6742 to the second ledge portion 6834, and the third ledge portion 6836 may extend in
a downwardly inclined direction toward the sole portion 6790 as it extends from a location at or
proximate to the heel portion edge 6752 to the second ledge portion 6834. As illustrated in FIGS.
67-87, the width (i.e., measured in a direction between the lower back wall portion 6822 and the
upper back wall portion 6820) of the first ledge portion 6832 may increase as the first ledge portion
6832 extends from a location at or proximate to the toe portion edge 6742 to the second ledge
portion 6834, and the width (i.e., measured in a direction between the lower back wall portion 6822
```

and the upper back wall portion **6820**) of the third ledge portion **6836** may increase as the third ledge portion **6836** extends from a location at or proximate to the heel portion edge **6752** to the second ledge portion **6834**. As illustrated in FIGS. **67-87**, the second ledge portion **6834** may partially surround the second port **6931**. Accordingly, the second ledge portion **6834** may have a curved, semi-circular, segmented, or concave shape relative to the sole portion edge **6792**. In the example of FIGS. **67-87**, the second ledge portion **6834** may include a toe-side wall **6844** extending upward from the first ledge portion **6832** to a location above the second port **6931**, and a heel-side wall **6864** extending upward from the third ledge portion **6836** to a location above the second port **6931**. A center ledge portion **6854** may extend between and connect the toe-side wall **6844** and the heel-side wall **6864**. The second ledge portion **6834** may have any shape and connect the first ledge portion **6832** and the third ledge portion **6836**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0135] The body portion **6710** may include any number of ports above and/or below the first ledge portion **6832**, the second ledge portion **6834**, and/or the third ledge portion **6836**. The body portion **6710** may include any number of ports above and/or below the horizontal midplane **7120**. The body portion **6710** may include any number of ports on the toe portion edge **6742**, the heel portion edge **6752**, the top portion edge **6782**, and/or the sole portion edge **6792**. Any port may be connected to the interior cavity **6810**. The number of ports on the body portion **6710**, the arrangement and/or the configuration of the ports on the body portion **6710** may be similar in many respects to any of the golf club heads described in any of the incorporated by reference patent documents. The apparatus, methods, and articles of manufacture described herein are not limited in this regard. [0136] The body portion **6710** may include one or more mass portions (e.g., weight portion(s)) at

any location on the body portion **6710**. The one or more mass portions may be integral mass portion(s) or separate mass portion(s) that may be coupled to the body portion **6710** at any exterior or interior location on the body portion **6710**. In the illustrated example of FIGS. **67-87**, the body portion **6710** may include an external mass portion **7035** and an internal mass portion **7045**. The external mass portion **7035** may be similar in many respects to the mass portion **2331** of the golf club head **2000**. Accordingly, the external mass portion **7035** may be disc shaped as illustrated in FIG. **34**. The diameter of the external mass portion **7035** may be determined based on one or more properties (e.g., material density) of the materials of construction of the external mass portion **7035**. The second port **6931** may be configured to receive the external mass portion **7035**, which may be inserted and secured into the second port **6931** by any of the methods described herein with respect to any of the golf club heads described herein such as being screwed in (i.e., second port 6931 with internal threads), press fitted, secured with an adhesive, or welded. The external mass portion **7035** may engage the port bottom 6939 to prevent further insertion of the external mass portion 7035 into the second port **6931**. Accordingly, the inner diameter of the second port **6931** may correspond to the outer diameter of the external mass portion **7035**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0137] A center region or a geometric center of the second port **6931** may be located at or proximate to the CG of the golf club head **6700**. Accordingly, a center of gravity of the external mass portion **7035** may also be located at or proximate to the CG of the golf club head **6700** when the external mass portion **7035** is secured in the second port **6931** as described herein. As a result, the external mass portion **7035** may be interchangeable with another mass portion having a lower mass or a mass portion having a higher mass without causing a relatively large or a significant shift in the CG of the golf club head **6700**. In one example, for each gram of mass increase of the external mass portion **7035**, the CG location of the golf club head may shift by less than 0.5% of the CG.sub.X location (x-axis coordinate of the CG), less than 0.5% of the CG.sub.Y location (y-axis coordinate of the CG), and/or less than 0.2% of the CG.sub.Z location (z-axis coordinate of the CG). In another example, for each gram of mass increase of the external mass portion **7035**, the CG location of the golf club head may shift by less than 0.35% of the CG.sub.X location, less than

0.35% of the CG.sub.Y location, and/or less than 0.15% of the CG.sub.Z location. In yet another example, for each gram of mass increase of the external mass portion **7035**, the CG location of the golf club head may shift by less than 0.25% of the CG.sub.X location, less than 0.25% of the CG.sub.Y location, and/or less than 0.10% of the CG.sub.Z location. Thus, the external mass portion **7035** may be interchangeable with another mass portion having a lower or a greater mass to provide certain performance characteristics for an individual (i.e., customize the performance of the golf club head **6700** for a certain individual) without substantially shifting the CG of the golf club head **6700** and/or altering the overall or general performance characteristics of the golf club head **6700**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0138] The internal mass portion **7045** may be at any location on the body portion **6710**. In one example, as illustrated in FIGS. **67-87**, the internal mass portion **7045** may be located proximate to the toe portion edge **6742**. In another example, the internal mass portion **7045** may be located between the external mass portion **7035** and the toe portion edge **6742**. The location of the internal mass portion **7045** being proximate to the toe portion edge **6742** may increase the moment of inertia of the golf club head **6700** to improve performance. All or portions of the internal mass portion **7045** may be placed close to the toe portion edge **6742** to increase the moment of inertia of the golf club head. In one example, as illustrated in FIGS. **67-87**, the internal mass portion **7045** may have an angled shape that may approximately correspond to the shape of the toe portion edge **6742**. Accordingly, a top portion **7546** of the internal mass portion **7045** may be oriented at an obtuse angle **7547** relative to a bottom portion **7548** of the internal mass portion **7045** to discreetly simulate the curvature of the toe portion edge **6742**. In another example (not shown), the internal mass portion 7045 may be located close to the toe portion edge 6742 and have a plurality of continuous portions oriented at obtuse angles relative to each other to closely simulate the curved shape of the toe portion edge **6742**. In another example (not shown), the internal mass portion **7045** may have a curvature that may exactly or substantially exactly simulate the curved shape of the toe portion edge 6742 and be located close to the toe portion edge 6742. In another example, the internal mass portion **7045** may include two separate mass portions that may be located close to the toe portion edge **6742**. In yet another example, the internal mass portion **7045** may include a plurality of separate mass portions that may be arranged close to the toe portion edge 6742 to correspond to the shape of the toe portion edge **6742**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0139] In one example as illustrated in FIGS. **67-87**, the top portion **7546** of the internal mass portion **7045** may have a smaller volume than the bottom portion **7548**, and the internal mass portion **7045** may have a gradually increasing volume from the top portion **7546** to the bottom portion **7548**. Accordingly, to lower a center of gravity of the golf club head **6700**, all or a larger portion of the internal mass portion **7045** may be below the horizontal midplane **7120**, and/or a distance between a center of gravity of the internal mass portion **7045** and the sole portion edge **6792** may be less than or substantially less than a distance between the center of gravity of the internal mass portion **7045** and the top portion edge **6782**. In other words, the shape of the internal mass portion **7045** as provided herein allows placement of the internal mass portion **7045** close to the toe portion edge and placement of a relatively larger portion of the internal mass portion **7045** below the horizontal midplane **7120**. In another example, all portions of the internal mass portion **7045** may be below the horizontal midplane **7120**. In another example, the internal mass portion **7045** may include a plurality of internal mass portions arranged proximate to the toe portion edge **6742** in a top-to-sole and toe-to heel direction, with a greater number or all of the mass portions being located below the horizontal midplane **7120**. In another example, the internal mass portion **7045** may include large portions that extend close to the sole portion edge **6792**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard. [0140] As illustrated in FIGS. **67-87**, the internal mass portion **7045** may include a height **8410** in a top-to-sole direction, a width **8420** in a toe-to-heel direction, and a depth **8430** in a front-to-back direction. In one example, as illustrated in FIGS. **67-87**, the height **8410** may be greater than the width **8420** and greater than the depth **8430**. Accordingly, the internal mass portion **7045** may extend proximate to a greater portion of the toe portion edge **6742** to increase the moment of inertia of the golf club head **6700**. In another example, as illustrated in FIGS. **67-87**, the depth **8430** may increase in a top-to-sole direction to increase the volume and the mass of the internal mass portion **7045** in a top-to-sole direction as described herein. In another example, as illustrated in FIGS. **67-87**, the depth **8430** may be greater than the width **8420**. Accordingly, the internal mass portion **7045** may extend proximate to a greater portion of the toe portion edge **6742** and farther aft to increase the moment of inertia of the golf club head **6700** and move the center of gravity of the golf club head **6700** lower and farther aft. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0141] The third port **6941** may define a recess or cavity in the body portion **6710** that may be shaped to correspond to the shape of the internal mass portion **7045** to receive the internal mass portion **7045**. In one example, as illustrated in FIGS. **67-87**, the third port **6941** may be shaped to completely receive the internal mass portion **7045** so that the outer surface of the internal mass portion is flush with the interior walls of the body portion **6710** defining the interior cavity **6810**. The internal mass portion **7045** may be secured inside the third port **6941** with one or more adhesives or bonding agents, by welding or soldering, and/or by being press fit. The third port **6941** may be defined by a cavity inside a body mass portion **6745**, which may be an integral portion of the body portion **6710**, formed with the body portion **6710**, and/or include the same materials as the materials of the body portion **6710**. The body mass portion **6745** may be located in the toe portion **6740** and may extend to the toe portion edge **6742** to increase the moment of inertial of the golf club head 6700. The shape, size, volume, and/or mass of the body mass portion 6745 may be determined to provide certain performance characteristics for the golf club head **6700**. In one example, as illustrated in FIGS. 67-87, the body mass portion 6745 may be located in the toe portion **6740**, extend to the toe portion edge **6742**, and extend from the top portion edge **6782** to the sole portion edge **6792**. The shape, size, volume, and/or mass of the body mass portion **6745** may vary and depend on various properties of the golf club head **6700** including the loft angle **7145**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard. [0142] The interior cavity **6810** may vary in width between the toe portion **6740** and the heel portion **6750**. An interior cavity width **7310** may be smaller proximate to the toe portion edge **6742** than the interior cavity width **7310** at the center portion of the body portion or at the heel portion **6750**. Accordingly, a greater portion of the mass of the body portion **6710** may be closer to the toe portion edge **6742** than the heel portion edge **6752** to increase the moment of inertia of the body portion **6710**. In one example, as illustrated in FIGS. **67-87**, the interior cavity width **7310** may have a maximum value at a location between the external mass portion **7035** and the internal mass portion **7045**. As illustrated in the example of FIGS. **74** and **80**, portions of the interior cavity **6810** may extend vertically below the external mass portion **7035** and be farther from the face portion **6762** than portions of the external mass portion **7035**. Accordingly, in one example as illustrated in FIGS. **67-87**, a maximum value of the interior cavity width **7310**, which may be measured in a face-to-back direction, may be between the external mass portion **7035** and the internal mass portion **7045** in a toe-to-heel direction and between the sole portion edge **6792** and the external mass portion **7035** in a top-to sole direction. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0143] In another example, as also illustrated in FIGS. **67-87**, a center portion of the interior cavity **6810**, which may be a region of the interior cavity that is at or surrounding the first port **6921** may define the largest volume of the interior cavity as compared to other portions of the interior cavity **6810** so as to accommodate a larger volume of a filler material as described herein for enhanced sound and vibration dampening and feel. The apparatus, methods, and articles of manufacture

described herein are not limited in this regard.

[0144] In one example, as illustrated in FIGS. **67-87**, the second port **6931**, the badge **7028**, and the internal mass portion **7045** may be located between the external mass portion **7035** and the toe portion edge **6742**. As described herein, the external mass portion **7035** may function to lower the center of gravity of the golf club head **6700** and shift the center of gravity rearward. The internal mass portion **7045** may function to increase the moment of inertia of the golf club head **6700**. Additionally, with the bottom portion **7548** of the internal mass portion **7045** having a greater mass than the top portion **7546**, a vertical location of the center of gravity of the golf club head **6700** may not be largely shifted by the internal mass portion **7045**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0145] Any of the mass portions described herein may be constructed from a material having a greater density than one or more materials of the body portion **6710**. In one example, any of the mass portions described herein may be constructed from tungsten or tungsten-based materials, whereas the body portion **6710** may be constructed from one or more materials having a lower density than tungsten or tungsten based materials such as aluminum, steel, titanium, and/or composite materials. Any of the mass portions described herein may be similar in some physical properties but different in other physical properties. For example, a mass portion may be made from an aluminum-based material or an aluminum alloy whereas another mass portion may be made from a tungsten-based material or a tungsten alloy. In another example, a mass portion may be made from a polymer material whereas another mass portion may be made from a steel-based material. In one example, the badge **7028** may be constructed from a material having a lower density than the material of the body portion 6710 to not have a large effect on the mass distribution of the body portion **6710**. In yet another example, the badge **7028** may be made from a material having a relatively large density such as the material form which any of the mass portions may be constructed. Accordingly, the badge **7028** may function to increase the moment of inertia of the golf club head **6700**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0146] The interior cavity **6810** may be partially or entirely filled with one or more filler materials (i.e., a cavity filling material), which may include one or more similar or different types of materials. In one example, as illustrated in FIGS. **67-87**, the interior cavity **6810** may be filled with a filler material 7212 that may be similar to the filler material 2512 of the golf club head 2000 or similar to any of the filler materials described herein or in any of the incorporated by reference patent documents. In another example (not illustrated for FIGS. 67-87), the interior cavity 6810 may be filled with a first filler material and a second filler material that may be similar to the first filler material **512** and the second filler material **514** of the golf club head **200** or similar to any of the golf club heads described in any of the incorporated by reference patent documents. In one example, as illustrated in FIGS. **67-87**, the filler material **7212** may be injected into the interior cavity **6810** from any of the first port **6921** or the second port **6931**, while the other one of the first port **6921** or the second port **6931** may functions as an air exhaust port through which the air in the interior cavity **6810** that is displaced by the filler material **7212** or excess filler material **7212** may exit. Accordingly, as illustrated in FIGS. **67-87**, the filler material **7212** may be molded in the shape of the interior cavity **6810**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0147] In one example, as illustrated in FIG. **87**, a method **8700** of manufacturing the golf club head **6700** may include forming the body portion **6710** having a first port **6921**, the second port **6931**, and the third port **6941** as described herein (block **8710**). The internal mass portion **7045** may be secured in the third port **6941** as described herein (block **8720**). The face portion **6762** may be attached to the front portion **6760** of the body portion **6710** to enclose the interior cavity **6810** (block **8730**). The interior cavity **6810** may be filled with a filler material **7212** (block **8740**) from one of the first port **6921** or the second port **6931**, while the other one of the first port **6921** or the

second port **6931** may function as an exhaust port for the air inside the interior cavity **6810** to escape during the filling process. The badge **7028** may be attached in the recessed portion **7026** to cover or close the first port **6921**, and the external mass portion **7035** may then be inserted and secured in the second port **6931** as described herein (bock **8750**). Any of the operations described herein may be performed in a different order. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0148] In the example of FIGS. **88-106**, a golf club head **8800** may include a body portion **8810** having a toe portion **8840** with a toe portion edge **8842**, a heel portion **8850** with a heel portion edge **8852** that may include a hosel portion **8855**. A golf club shaft (such as the shaft **104** that is illustrated for example in FIG. 1) may include one end coupled to the hosel portion **8855**, and an opposite end coupled to a golf club grip (such as the grip **106** that is illustrated for example in FIG. 1) to form a golf club (such as the golf club **100** that is illustrated for example in FIG. 1). The body portion **8810** may further include a front portion **8860**, a back portion **8870** with a back wall portion **8872**, a top portion **8880** with a top portion edge **8882**, and a sole portion **8890** with a sole portion edge **8892**. The toe portion **8840**, the heel portion **8850**, the front portion **8860**, the back portion **8870**, the top portion **8880**, and/or the sole portion **8890** may partially overlap. The toe portion edge **8842**, the heel portion edge **8852**, the top portion edge **8882**, and the sole portion edge **8892** may define a periphery of the body portion **8810**. The golf club head **8800** may be any type of golf club head described herein, such as, for example, an iron-type golf club head or a wedge-type golf club head. The volume of the golf club head **8800**, the materials of construction of the golf club head 8800, and/or any components thereof may be similar to any of the golf club heads described herein and/or described in any of the incorporated by reference patent documents. The golf club head 8800 may be manufactured by any of the methods described herein such as the method **8700** or described in any of the incorporated by reference patent documents. The apparatus, methods, and articles of manufacture described herein are not limited in this regard. [0149] The golf club head **8800** may include a face portion **8862** (i.e., the strike face), which may be integrally formed with the body portion **8810** (e.g., a single unitary piece). In one example, as illustrated in FIGS. 88-106, the face portion 8862 may be a separate piece coupled (e.g., directly or indirectly, adhesively, mechanically, by welding, and/or by soldering) to the front portion 8860 to close a front opening of the front portion **8860**. The face portion **8862** may include a front surface **8864** and a back surface **8866**. The front surface **8864** may include a plurality of front grooves **8868** that may extend between the toe portion **8840** and the heel portion **8850**. The front grooves **8868** may be similar in many respects to the front grooves **2068** of the golf club head **2000** or similar to the front grooves of any of the golf club heads described herein or described in any of the incorporated by reference patent documents. The back surface **8866** of the face portion **8862** may include one or more grooves, slots, channels, depressions, or recesses. The grooves on the back surface **8866** may be similar in many respects to the back grooves of the golf club head **2000**, such as the back grooves illustrated in FIGS. **35-38** and **43-66**. The back surface **8866** may not include any grooves, slots, channels, depressions, or recesses. The apparatus, methods, and articles of manufacture described herein are not limited in this regard. [0150] The golf club head **8800** may be associated with a ground plane **9210**, a horizontal midplane

9220, and a top plane **9230**. In particular, the ground plane **9210** may be a plane that is parallel or substantially parallel to the ground and is tangent to the lowest portion of the sole portion edge **8892** when the golf club head **8800** is at an address position (e.g., the golf club head **8800** aligned to strike a golf ball). A top plane **9230** may be a plane that is tangent to the upper most portion of top portion edge **8882** when the golf club head **8800** is at the address position. The ground plane **9210** and the top plane **9230** may be parallel or substantially parallel to each other. The horizontal midplane **9220** may be vertically halfway between the ground plane **9210** and the top plane **9230**, respectively, and be parallel or substantially parallel to the ground plane **9210**. Further, the golf club head **8800** may be associated with a loft plane **9240** defining a loft angle **9245** (*a*) of the golf

club head **8800**. The loft plane **9240** may be a plane that is tangent to or coplanar with the face portion **8862**. The loft angle **9245** may be defined by an angle between the loft plane **9240** and a vertical plane **9250** that is normal to the ground plane **9210**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0151] The back wall portion **8872** may include an upper back wall portion **8920**, a lower back wall portion **8922**, and a ledge portion **8930** between the upper back wall portion **8920** and the lower back wall portion 8922. The ledge portion 8930 may extend outward (i.e., away from the face portion 8862) from the upper back wall portion 8920 to the lower back wall portion 8922 (i.e., the ledge portion 8930 may extend inward or toward the face portion 8862 from the lower back wall portion **8922** to the upper back wall portion **8920**). The ledge portion **8930** may include a first ledge portion **8932** that may extend from a location at or proximate to the toe portion edge **8842** toward the heel portion **8850**, a second ledge portion **8934** that may be located at or proximate to a center portion **8873** of the back wall portion **8872**, and a third ledge portion **8936** that may extend from a location at or proximate to the heel portion edge **8852** toward the toe portion **8840**. The second ledge portion 8934 may extend between the first ledge portion 8932 and the third ledge portion **8936**. The first ledge portion **8932** may also extend in a downwardly inclined direction toward the sole portion **8890** as it extends from a location at or proximate to the toe portion edge **8842** to the second ledge portion **8934**. The third ledge portion **8936** may also extend in a downwardly inclined direction toward the sole portion **8890** as it extends from a location at or proximate to the heel portion edge **8852** to the second ledge portion **8934**. The ledge portion **8930** including the first ledge portion 8932, the second ledge portion 8934, and the third ledge portion 8936 may be similar in many respects (e.g., height, width, orientation, configurations of any sidewall portions, configurations of any ledge portion transition portions, etc.) to the ledge portion 2130 including the first ledge portion 2132, the second ledge portion 2134, and the third ledge portion **2136**, respectively, of the golf club head **2000**. The ledge portion **8930** may be similar in many respects to any of the ledge portions described herein or described in any of the incorporated by reference patent documents. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0152] The body portion **8810** may include one or more ports, which may be exterior ports and/or interior ports (e.g., located inside the body portion **8810**). The one or more ports may be at any location on the body portion **8810**. The inner walls of the body portion **8810** that define the interior cavity **8910** may include one or more ports. In one example, the body portion **8810** may include ports that may be similar in many respects to the ports of the golf club head **2000** as illustrated in FIG. **23**. In another example, the body portion **8810** may include ports that may be similar in many respects to the ports of the golf club head **200** as illustrated in FIG. **3**. In another example, the body portion **8810** may include ports that may be similar in many respects to any of the ports described in any of the incorporated by reference patent documents. In yet another example, as illustrated in FIGS. **88-106**, the body portion **8810** may include a first port **9021** above the first ledge portion **8932**, a second port **9031** located below the second ledge portion **8934**, and a third port **9041** in the interior cavity **8910**. Accordingly, the first port **9021** and the second port **9031** may be external ports, i.e., having port openings on an external surface of the body portion **8810**, whereas the third port **9041** may be an internal port having an opening on one or more internal walls of the body portion **8810** that define the interior cavity **8910**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0153] In one example as illustrated in FIGS. **88-106**, the first port **9021** may be located above the first ledge portion **8932** and proximate to the toe portion edge **8842**. In another example, the first port **9021** may be on the toe portion edge **8842**. In yet another example, the first port **9021** may be below the first ledge portion **8932**. The first port **9021** may have a first port opening **9026** inside a recessed portion **9126** on the upper back wall portion **8920**. The first port **9021** may be cylindrical and extend from the first port opening **9026** to the interior cavity at a second port opening **9027** to

```
connect to the interior cavity 8910. Accordingly, the first port opening 9026 may provide access to
the interior cavity 8910 from outside the body portion 8810 via the second port opening 9027. As
illustrated in FIGS. 88-106, the first port 9021 may have a circular cross section (i.e., cylindrical
port). In another example, the first port 9021 may be elliptical. In yet another example, the first port
9021 may have any shape. In one example, as illustrated in FIGS. 88-106, the recessed portion
9126 may be configured to receive a cover portion or a badge 9128 to cover the first port opening
9026. In another example, the first port 9021 may be closed with a mass portion that may be
constructed from a material having a different density than a material of the body portion 8810. In
yet another example, the first port 9021 may be closed with a mass portion that may be constructed
from a material having the same density as a material of the body portion 8810. The apparatus,
methods, and articles of manufacture described herein are not limited in this regard.
[0154] In one example, the badge 9128 may display one or more alphanumeric characters,
symbols, shapes or other visual marks to signify a particular feature of the golf club head 8800 such
as the manufacturer of the golf club head 8800 (i.e., brand of the golf club head 8800).
Accordingly, the badge 9128 may be configured to be inserted and secured in the recessed portion
9126. In one example, the badge 9128 may be secured in the recessed portion 9126 with an
adhesive or a bonding agent. In another example, depending on the material of construction of the
badge 9128, welding or soldering may be used to attach the badge 9128 inside the recessed portion
9126. In another example, the badge 9128 may be press fit into the recessed portion 9126. In yet
another example, one or more fasteners may be used to attach the badge 9128 inside recessed
portion 9126. As described herein, the badge 9128 may cover and/or close the first port 9021. In
one example, the badge 9128 may be plate shaped to fit in the recessed portion 9126. In another
example, the badge 9128 may further have a projection that may be received in the first port 9021
to close the first port 9021. In another example, the badge 9128 may be rectangular, circular, or
have any shape. In another example, the badge 9128 may be visible and distinguishable from the
remaining parts of the body portion 8810 by color, texture, materials of construction, and/or other
visual features. In yet another example, the badge 9128 may be attached to the body portion 8810
such as to appear seamless with the body portion 8810 and be an integral part of the body portion
8810, i.e., indistinguishable or substantially indistinguishable from the body portion 8810. The
apparatus, methods, and articles of manufacture described herein are not limited in this regard.
[0155] In one example, as illustrated in FIGS. 88-106, the second port 9031 may be larger in
diameter than the first port 9021. The second port 9031 may be located at or proximate to the
center portion 8873 of the back wall portion 8872 and at or proximate to the sole portion edge
8892. The second port 9031 may be located between the sole portion edge 8892 and the second
ledge portion 8934. The second port 9031 may be similar in many respects to the second port 2231
of the golf club head 2000. The second port 9031 may have a second port outer opening 9033 on
the back wall portion 8872 and port walls 9035 that extend from the second port outer opening
9033 to a second port inner opening 9037 that may be connected to the interior cavity 8910.
Accordingly, the interior cavity 8910 may be accessed from outside the body portion 8810 through
the second port outer opening 9033 and the second port inner opening 9037. The second port inner
opening 9037 may have a smaller diameter than the second port outer opening 9033 to define a port
bottom 9039. In one example, an inner diameter of the second port 9031, which may define the
diameter of the second port 9031 from the second port outer opening 9033 to the port bottom 9039,
may be greater than or equal to 0.2 inch (5.08 mm) and less than or equal to 1.0 inch (25.4 mm). In
another example, the inner diameter of the second port 9031 may be greater than or equal to 0.3
inch (7.62 mm) and less than 1.5 inch (38.1 mm). In another example, the inner diameter of the
second port 9031 may be greater than or equal to 0.4 inch (10.16 mm) and less than or equal to 0.8
inch (20.32 mm). In yet another example, the inner diameter of the second port 9031 may be
greater than or equal to 0.5 inch (12.7 mm) and less than or equal to 0.7 inch (17.78 mm). The
apparatus, methods, and articles of manufacture described herein are not limited in this regard.
```

[0156] As described herein, the first ledge portion **8932** may extend in a downwardly inclined direction toward the sole portion **8890** as it extends from a location at or proximate to the toe portion edge **8842** to the second ledge portion **8934**, and the third ledge portion **8936** may extend in a downwardly inclined direction toward the sole portion **8890** as it extends from a location at or proximate to the heel portion edge **8852** to the second ledge portion **8934**. As illustrated in FIGS. 88-106, the width (i.e., measured in a direction between the lower back wall portion 8922 and the upper back wall portion **8920**) of the first ledge portion **8932** may increase as the first ledge portion **8932** extends from a location at or proximate to the toe portion edge **8842** to the second ledge portion **8934**, and the width (i.e., measured in a direction between the lower back wall portion **8922** and the upper back wall portion **8920**) of the third ledge portion **8936** may increase as the third ledge portion **8936** extends from a location at or proximate to the heel portion edge **8852** to the second ledge portion **8934**. As illustrated in FIGS. **88-106**, the second ledge portion **8934** may partially surround the second port **9031**. Accordingly, the second ledge portion **8934** may have a curved, semi-circular, segmented, or concave shape relative to the sole portion edge 8892. In the example of FIGS. 88-106, the second ledge portion 8934 may include a toe-side wall 8944 extending upward from the first ledge portion 8932 to a location above the second port 9031, and a heel-side wall **8964** extending upward from the third ledge portion **8936** to a location above the second port **9031**. A center ledge portion **8954** may extend between and connect the toe-side wall **8944** and the heel-side wall **8964**. The second ledge portion **8934** may have any shape and connect the first ledge portion **8932** and the third ledge portion **8936**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0157] The body portion **8810** may include any number of ports above and/or below the first ledge portion **8932**, the second ledge portion **8934**, and/or the third ledge portion **8936**. The body portion **8810** may include any number of ports above and/or below the horizontal midplane **9220**. The body portion **8810** may include any number of ports on the toe portion edge **8842**, the heel portion edge **8852**, the top portion edge **8882**, and/or the sole portion edge **8892**. Any port of the golf club head **8800** may be connected to the interior cavity **8910**. The number of ports on the body portion **8810**, the arrangement and/or the configuration of the ports on the body portion **8810** may be similar in many respects to any of the golf club heads described in any of the incorporated by reference patent documents. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0158] The body portion **8810** may include one or more mass portions (e.g., weight portion(s)) at any location on the body portion **8810**. The one or more mass portions may be integral mass portion(s) or separate mass portion(s) that may be coupled to the body portion **8810** at any exterior or interior location on the body portion **8810**. In the illustrated example of FIGS. **88-106**, the body portion **8810** may include an external mass portion **9135** and an internal mass portion **9145**. The external mass portion 9135 may be similar in many respects to the mass portion 2331 of the golf club head **2000**. Accordingly, the external mass portion **9135** may be disc shaped as illustrated in FIG. **34**. The diameter of the external mass portion **9135** may be determined based on one or more properties (e.g., material density) of the materials of construction of the external mass portion **9135**. The second port **9031** may be configured to receive the external mass portion **9135**, which may be inserted and secured into the second port **9031** by any of the methods described herein with respect to any of the golf club heads described herein such as being screwed in (i.e., second port **9031** with internal threads), press fitted, secured with an adhesive, or welded. The external mass portion **9135** may engage the port bottom **9039** to prevent further insertion of the external mass portion **9135** into the second port **9031**. Accordingly, the inner diameter of the second port **9031** may correspond to the outer diameter of the external mass portion **9135**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0159] A center region or a geometric center of the second port **9031** may be located at or proximate to the CG of the golf club head **8800**. Accordingly, a center of gravity of the external

mass portion **9135** may also be located at or proximate to the CG of the golf club head **8800** when the external mass portion **9135** is secured in the second port **9031** as described herein. As a result, the external mass portion 9135 may be interchangeable with another mass portion having a lower mass or a mass portion having a higher mass without causing a relatively large or a significant shift in the CG of the golf club head **8800**. In one example, for each gram of mass increase of the external mass portion **9135**, the CG location of the golf club head may shift by less than 0.5% of the CG.sub.X location (x-axis coordinate of the CG), less than 0.5% of the CG.sub.Y location (yaxis coordinate of the CG), and/or less than 0.2% of the CG.sub.Z location (z-axis coordinate of the CG). In another example, for each gram of mass increase of the external mass portion **9135**, the CG location of the golf club head may shift by less than 0.35% of the CG.sub.X location, less than 0.35% of the CG.sub.Y location, and/or less than 0.15% of the CG.sub.Z location. In yet another example, for each gram of mass increase of the external mass portion **9135**, the CG location of the golf club head may shift by less than 0.25% of the CG.sub.X location, less than 0.25% of the CG.sub.Y location, and/or less than 0.10% of the CG.sub.Z location. Thus, the external mass portion 9135 may be interchangeable with another mass portion having a lower or a greater mass to provide certain performance characteristics for an individual (i.e., customize the performance of the golf club head **8800** for a certain individual) without substantially shifting the CG of the golf club head **8800** and/or altering the overall or general performance characteristics of the golf club head **8800**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0160] The internal mass portion **9145** may be at any location on the body portion **8810**. In one example, as illustrated in FIGS. **88-106**, the internal mass portion **9145** may be located proximate to the toe portion edge **8842**. In another example, the internal mass portion **9145** may be located between the external mass portion **9135** and the toe portion edge **8842**. The location of the internal mass portion **9145** being proximate to the toe portion edge **8842** may increase the moment of inertia of the golf club head **8800** to improve performance. All or portions of the internal mass portion 9145 may be placed close to the toe portion edge 8842 to increase the moment of inertia of the golf club head. In one example, as illustrated in FIGS. **88-106**, the internal mass portion **9145** may have an angled shape that may approximately correspond to the shape of the toe portion edge **8842**. Accordingly, a top portion **9646** of the internal mass portion **9145** may be oriented at an obtuse angle **9647** relative to a bottom portion **9648** of the internal mass portion **9145** to discreetly simulate the curvature of the toe portion edge **8842**. In another example (not shown), the internal mass portion **9145** may be located close to the toe portion edge **8842** and have a plurality of continuous portions oriented at obtuse angles relative to each other to closely discreetly but more closely simulate the curved shape of the toe portion edge **8842**. In another example (not shown), the internal mass portion **9145** may have a curvature that may exactly or substantially exactly simulate the curved shape of the toe portion edge **8842** and be located close to the toe portion edge **8842**. In another example, the internal mass portion **9145** may include two separate mass portions that may be located close to the toe portion edge **8842**. In yet another example, the internal mass portion **9145** may include a plurality of separate mass portions that may be arranged close to the toe portion edge **8842** to correspond to the shape of the toe portion edge **8842**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard. [0161] In one example as illustrated in FIGS. **88-106**, the top portion **9646** of the internal mass portion **9145** may have a smaller volume than the bottom portion **9648**, and the internal mass portion **9145** may have a gradually increasing volume from the top portion **9646** to the bottom portion **9648**. Accordingly, to lower a center of gravity of the golf club head **8800**, all or a larger portion of the internal mass portion **9145** may be below the horizontal midplane **9220**, and/or a distance between a center of gravity of the internal mass portion **9145** and the sole portion edge **8892** may be less than or substantially less than a distance between the center of gravity of the internal mass portion 9145 and the top portion edge 8882. In other words, the shape of the internal

mass portion **9145** as provided herein allows placement of the internal mass portion **9145** close to the toe portion edge and placement of all or a relatively larger portion of the internal mass portion **9145** below the horizontal midplane **9220**. In another example, all portions of the internal mass portion **9145** may be below the horizontal midplane **9220**. In another example, the internal mass portion **9145** may include a plurality of internal mass portions arranged proximate to the toe portion edge **8842** in a top-to-sole and toe-to heel direction, with a greater number or all of the mass portions being located below the horizontal midplane **9220**. In another example, the internal mass portion 9145 may include large portions that extend close to the sole portion edge 8892. The apparatus, methods, and articles of manufacture described herein are not limited in this regard. [0162] As illustrated in FIGS. **88-106**, the internal mass portion **9145** may include a height **9420** in a top-to-sole direction, a width **9430** in a toe-to-heel direction, and a depth **9440** in a front-to-back direction. In one example, as illustrated in FIGS. **88-106**, the height **9420** may be greater than the width **9430** and greater than the depth **9440**. Accordingly, the internal mass portion **9145** may extend proximate to a greater portion of the toe portion edge **8842** to increase the moment of inertia of the golf club head **8800**. In another example, as illustrated in FIGS. **88-106**, the depth **9440** may increase in a top-to-sole direction to increase the volume and the mass of the internal mass portion **9145** in a top-to-sole direction as described herein. In another example, as illustrated in FIGS. **88**-**106**, the depth **9440** may be greater than the width **9430**. Accordingly, the internal mass portion **9145** may extend proximate to a greater portion of the toe portion edge **8842** and farther aft to increase the moment of inertia of the golf club head **8800** and move the center of gravity of the golf club head **8800** lower and farther aft. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0163] The third port **9041** may define a recess or cavity in the body portion **8810** that may be shaped to correspond to the shape of the internal mass portion **9145** to receive the internal mass portion **9145**. In one example, as illustrated in FIGS. **88-106**, the third port **9041** may be shaped to completely receive the internal mass portion **9145** so that the outer surface of the internal mass portion is flush with the interior walls of the body portion **8810** defining the interior cavity **8910**. The internal mass portion **9145** may be secured inside the third port **9041** with one or more adhesives or bonding agents, by welding or soldering, and/or by being press fit. The third port 9041 may be defined by a cavity inside a body mass portion **8845**, which may be an integral portion of the body portion **8810**, formed with the body portion **8810**, and/or include the same materials as the materials of the body portion **8810**. The body mass portion **8845** may be located in the toe portion **8840** and may extend to the toe portion edge **8842** to increase the moment of inertia of the golf club head **8800**. The shape, size, volume, and/or mass of the body mass portion **8845** may be determined to provide certain performance characteristics for the golf club head **8800**. In one example, as illustrated in FIGS. **88-106**, the body mass portion **8845** may be located in the toe portion **8840**, extend to the toe portion edge **6742**, and extend from a location at or proximate to the horizontal midplane **9220** to the sole portion edge **6792**. The shape, size, volume, and/or mass of the body mass portion 8845 may vary and depend on various properties of the golf club head 8800 including the loft angle **9245**. For example, as illustrated in FIGS. **72** and **93**, the loft angle **7145** of the golf club head **6700** is greater than the loft angle **9245** of the golf club head **8800**. Accordingly, as illustrated in FIGS. **67-106**, the body mass portion **6745** has a different configuration than the body mass portion **8845**. As illustrated in FIGS. **67-106**, the third ports **6941** and **9041** and the internal mass portions **7045** and **9145** may also have different configurations (e.g., height, width, depth, shape, size) that may depend on certain golf club characteristics including loft angle to provide certain performance characteristics (e.g., ball speed, distance, spin, height, trajectory) for a golf club head. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0164] The interior cavity **8910** may vary in width between the toe portion **8840** and the heel portion **8850**. An interior cavity width **9410** may be smaller proximate to the toe portion edge **8842**

```
than the interior cavity width 9410 at the center portion of the body portion or at the heel portion
8850. Accordingly, a greater portion of the mass of the body portion 8810 may be closer to the toe
portion edge 8842 than the heel portion edge 8852 to increase the moment of inertia of the body
portion 8810. In one example, as illustrated in FIGS. 88-106, the interior cavity width 9410 may
have a maximum value at a location between the external mass portion 9135 and the internal mass
portion 9145. In another example, as also illustrated in FIGS. 88-106, a center portion of the
interior cavity 8910, which may be a region of the interior cavity that is at or surrounding the first
port 9021 may define the largest volume of the interior cavity as compared to other portions of the
interior cavity 8910 so as to accommodate a larger volume of a filler material as described herein
for enhanced sound and vibration dampening and feel. In yet another example, as also illustrated in
FIGS. 88-106, a portion of the interior cavity 8910 above the internal mass portion 9145 and any
filler material that may be in the interior cavity 8910 may extend aft of the internal mass portion
9145 above the internal mass portion 9145. Accordingly, as described herein, a region of the
interior cavity that surrounds the first port 9021 may define the largest volume of the interior cavity
as compared to other portions of the interior cavity 8910 to accommodate a larger volume of a filler
material as described herein for enhanced sound and vibration dampening and feel. The apparatus,
methods, and articles of manufacture described herein are not limited in this regard.
[0165] In one example, as illustrated in FIGS. 88-106, the second port 9031, the badge 9128, and
the internal mass portion 9145 may be located between the external mass portion 9135 and the toe
portion edge 8842. As described herein, the external mass portion 9135 may function to lower the
center of gravity of the golf club head 8800 and shift the center of gravity rearward. The internal
mass portion 9145 may function to increase the moment of inertia of the golf club head 8800.
Additionally, with the bottom portion 9648 of the internal mass portion 9145 having a greater mass
than the top portion 9646, a vertical location of the center of gravity of the golf club head 8800 may
not be largely shifted by the internal mass portion 9145. In one example, the size, shape, and/or
location of the internal mass portion 9145 may be associated with the loft angle 9245. A golf club
head with a lower loft angle may experience higher swing velocities and ball impact forces than a
golf club head with a higher loft angle. Accordingly, the shape, size, and/or location of the internal
mass portion 9145 may vary and be determined based on the loft angle to provide certain center of
gravity location and moments of inertia for optimum golf club head performance. For example, the
golf club head 8800 has a smaller loft angle than the golf club head 6700. As illustrated in FIGS.
67-106, the internal mass portion 7045 may have a different shape, size (e.g., different dimensions,
profiles, angles, and/or relative segment proportions) and location (e.g., different distances to toe
portion edge 8842 and/or sole portion edge 8892) relative to the internal mass portion 9145. The
apparatus, methods, and articles of manufacture described herein are not limited in this regard.
[0166] Any of the mass portions described herein may be constructed from a material having a
greater density than one or more materials of the body portion 8810. In one example, any of the
mass portions described herein may be constructed from tungsten or tungsten-based materials,
whereas the body portion 8810 may be constructed from one or more materials having a lower
density than tungsten or tungsten based materials such as aluminum, steel, titanium, and/or
composite materials. Any of the mass portions described herein may be similar in some physical
properties but different in other physical properties. For example, a mass portion may be made
from an aluminum-based material or an aluminum alloy whereas another mass portion may be
made from a tungsten-based material or a tungsten alloy. In another example, a mass portion may
be made from a polymer material whereas another mass portion may be made from a steel-based
material. In one example, the badge 9128 may be constructed from a material having a lower
density than the material of the body portion 8810 to not have a large effect on the mass
distribution of the body portion 8810. In yet another example, the badge 9128 may be made from a
material having a relatively large density such as the material form which any of the mass portions
may be constructed. Accordingly, the badge 9128 may function to increase the moment of inertia of
```

the golf club head **8800**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0167] The interior cavity **8910** may be partially or entirely filled with one or more filler materials (i.e., a cavity filling material), which may include one or more similar or different types of materials. In one example, as illustrated in FIGS. 88-106, the interior cavity 8910 may be filled with a filler material **9312** that may be similar to the filler material **2512** of the golf club head **2000** or similar to any of the filler materials described herein or in any of the incorporated by reference patent documents. In another example (not illustrated for FIGS. 88-106), the interior cavity 8910 may be filled with a first filler material and a second filler material that may be similar to the first filler material **512** and the second filler material **514** of the golf club head **200** or similar to any of the golf club heads described in any of the incorporated by reference patent documents. In one example, as illustrated in FIGS. **88-106**, the filler material **9312** may be injected into the interior cavity **8910** from any of the first port **9021** or the second port **9031**, while the other one of the first port **9021** or the second port **9031** may functions as an air exhaust port through which the air in the interior cavity **8910** that is displaced by the filler material **9312** or excess filler material **9312** may exit. Accordingly, as illustrated in FIGS. 88-106, the filler material 9312 may be molded in the shape of the interior cavity **8910**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0168] As described herein, the face portion **8862** may be a one-piece part with the body portion 8810 and be co-manufactured with the body portion 8810, or as illustrated in FIGS. 88-106, the face portion **8862** may be a separate piece that may be plate shaped and attached to the front portion **8860** to enclose the interior cavity **8910**. In another example, as illustrated in FIG. **107**, the face portion **8862** may define portions of the body portion **8810** at the top portion **8880**. Accordingly, the face portion **8862** may be L-shaped (i.e., an inverted L-shape as illustrated in FIG. **102**) and attached to the front portion **8860** to enclose the interior cavity **8910**. As illustrated in the example of FIG. 107, the face portion 8862 may include a face top portion 10700 that may define a portion or portions of the top portion **8880** and the top portion edge **8882**. In another example, as illustrated in FIG. 108, the face portion 8862 may define portions of the body portion 8810 at the sole portion **8890**. Accordingly, the face portion **8862** may be L-shaped and attached to the front portion **8860** to enclose the interior cavity **8910**. As illustrated in the example of FIG. **108**, the face portion **8862** may include a face sole portion **10800** that may define a portion or portions of the sole portion **8890** and the sole portion edge **8892**. In another example, as illustrated in FIG. **109**, the face portion **8862** may define portions of the body portion **8810** at the top portion **8880** and portions of the body portion **8810** at the sole portion **8890**. Accordingly, the face portion **8862** may be C-shaped or cup shaped and attached to the front portion **8860** to enclose the interior cavity **8910**. As illustrated in the example of FIG. **109**, the face portion **8862** may include a face top portion **10700** and a face sole portion **10800** that may define a portion or portions of the top portion **8880** including the top portion edge **8882** and the sole portion **8890**, including the sole portion edge **8892**, respectively. In another example, as illustrated in FIG. **110**, the face portion **8862** may define all or portions of the body portion **8810** at the toe portion **8840**. Accordingly, the face portion **8862** may be L-shaped and attached to the front portion **8860** to enclose the interior cavity **8910**. As illustrated in the example of FIG. **110**, the face portion **8862** may include a face toe portion **11000** that may define a portions or portions of the toe portion **8840** include the toe portion edge **8842**. In yet another example, the face portion **8862** may be defined by any combination of the face portions illustrated in FIGS. **88-106** and **107-110**. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0169] Any of the golf club heads described herein may be an iron-type golf club head (e.g., a 1-iron, a 2-iron, a 3-iron, a 4-iron, a 5-iron, a 6-iron, a 7-iron, an 8-iron, a 9-iron, etc.), or a wedge-type golf club head (e.g., a pitching wedge, a lob wedge, a sand wedge, an n-degree wedge such as 44 degrees) (°, 48°, 52°, 56°, 60°, etc.). Although a particular type of club head may be depicted

and described, the apparatus, methods, and articles of manufacture described herein may be applicable to other types of club heads (e.g., a driver-type club head, a fairway wood-type club head, a hybrid-type club head, a putter-type club head, etc.). The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0170] The body portion and/or the face portion of any of the golf club heads described herein may be partially or entirely made of a steel-based material (e.g., 17-4 PH stainless steel, Nitronic® 50 stainless steel, alloy steel 8620, maraging steel or other types of stainless steel), a titanium-based material, an aluminum-based material (e.g., a high-strength aluminum alloy or a composite aluminum alloy coated with a high-strength alloy), any combination thereof, non-metallic materials, composite materials, and/or other suitable types of materials. The body portion and/or the face portion may be constructed with materials that are similar to any of the body portions and/or face portions described herein or in any of the incorporated by reference publications. The apparatus, methods, and articles of manufacture described herein are not limited in this regard. [0171] In one example, the area of the front surface of the face portion of any of the golf club heads described herein may be greater than or equal to 330 mm.sup.2 and less than or equal to 5000 mm.sup.2. In another example, the area of the front surface of the face portion of any of the golf club heads described herein may be greater than or equal to 1000 mm.sup.2 and less than or equal to 5300 mm.sup.2. In yet another example, the area of the front surface of the face portion of any of the golf club heads described herein may be greater than or equal to 1500 mm.sup.2 and less than or equal to 4800 mm.sup.2. While the above examples may describe particular areas, the area of the front surface may greater than or less than those numbers. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0172] In one example, a filler material as described herein may include an elastic polymer or an elastomer material (e.g., a viscoelastic urethane polymer material such as Sorbothane® material manufactured by Sorbothane, Inc., Kent, Ohio), a thermoplastic elastomer material (TPE), a thermoplastic polyurethane material (TPU), other polymer material(s), bonding material(s) (e.g., adhesive), and/or other suitable types of materials that may absorb shock, isolate vibration, and/or dampen noise. In another example, a filler material may be one or more thermoset polymers having bonding properties (e.g., one or more adhesive or epoxy materials). A material may also absorb shock, isolate vibration, and/or dampen noise when a golf club head as described herein strikes a golf ball. Further, a filler material may be an epoxy material that may be flexible or slightly flexible when cured. In another example, a filler material may include any of the 3MTM Scotch-WeldTM DP100 family of epoxy adhesives (e.g., 3MTM Scotch-WeldTM Epoxy Adhesives DP100, DP100 Plus, DP100NS and DP100FR), which are manufactured by 3M corporation of St. Paul, Minnesota. In another example, a filler material may include 3M™ Scotch-Weld™ DP100 Plus Clear adhesive. In another example, a filler material may include low-viscosity, organic, solvent-based solutions and/or dispersions of polymers and other reactive chemicals such as MEGUMTM, ROBONDTM, and/or THIX ONTM materials manufactured by the Dow Chemical Company, Auburn Hills, Michigan. In yet another example, a filler material may be LOCTITE® materials manufactured by Henkel Corporation, Rocky Hill, Connecticut. In another example, a filler material may be a polymer material such as an ethylene copolymer material that may absorb shock, isolate vibration, and/or dampen noise when a golf club head strikes a golf ball via the face portion. In another example, a filler material may be a high density ethylene copolymer ionomer, a fatty acid modified ethylene copolymer ionomer, a highly amorphous ethylene copolymer ionomer, an ionomer of ethylene acid acrylate terpolymer, an ethylene copolymer comprising a magnesium ionomer, an injection moldable ethylene copolymer that may be used in conventional injection molding equipment to create various shapes, an ethylene copolymer that can be used in conventional extrusion equipment to create various shapes, an ethylene copolymer having high compression and low resilience similar to thermoset polybutadiene rubbers, and/or a blend of highly neutralized polymer compositions, highly neutralized acid polymers or highly neutralized

acid polymer compositions, and fillers. For example, the ethylene copolymer may include any of the ethylene copolymers associated with DuPont™ High-Performance Resin (HPF) family of materials (e.g., DuPont™ HPF AD1172, DuPont™ HPF AD 1035, DuPont® HPF 1000 and Dupont[™] HPF 2000), which are manufactured by E.I. du Pont de Nemours and Company of Wilmington, Delaware. The DuPont™ HPF family of ethylene copolymers are injection moldable and may be used with conventional injection molding equipment and molds, provide low compression, and provide high resilience, i.e., relatively high coefficient of restitution (COR). In another example, any one or more of the filler materials described herein may be formed from one or more metals or metal alloys, such as aluminum, copper, zinc, and/or titanium. A filler material not specifically described in detail herein may include one or more similar or different types of materials described herein and in any of the incorporated by reference publications. The apparatus, methods, and articles of manufacture described herein are not limited in this regard. [0173] Any of the filler materials described herein may be subjected to different processes during manufacturing of any of the golf club heads described herein. Such processes may include one or more filler materials being heated and/or cooled by conduction, convection, and/or radiation during one or more injection molding processes or post injection molding curing processes. For example, all of the heating and cooling processes may be performed by using heating or cooling systems that employ conveyor belts that move a golf club head described herein through a heating or cooling environment for a period of time as described herein. The processes of manufacturing a golf club head with one or more filler materials may be similar to any of the processes described in any of the incorporated by reference publications. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0174] While each of the above examples may describe a certain type of golf club head, the apparatus, methods, and articles of manufacture described herein may be applicable to other types of golf club heads (e.g., a driver-type golf club head, a fairway wood-type golf club head, a hybridtype golf club head, an iron-type golf club head, a putter-type golf club head, etc.). [0175] Procedures defined by golf standard organizations and/or governing bodies such as the United States Golf Association (USGA) and/or the Royal and Ancient Golf Club of St. Andrews (R &A) may be used for measuring the club head volume of any of the golf club heads described herein. For example, a club head volume may be determined by using the weighted water displacement method (i.e., Archimedes Principle). Although the figures may depict particular types of club heads (e.g., a driver-type club head or iron-type golf club head), the apparatus, methods, and articles of manufacture described herein may be applicable to other types of club head (e.g., a fairway wood-type club head, a hybrid-type club head, a putter-type club head, etc.). Accordingly, any golf club head as described herein may have a volume that is within a volume range corresponding to certain type of golf club head as defined by golf governing bodies. A driver-type golf club head may have a club head volume of greater than or equal to 300 cubic centimeters (cm3 or cc). In another example, a driver-type golf club head may have a club head volume of 460 cc. A fairway wood golf club head may have a club head volume of between 100 cc and 300 cc. In one example, a fairway wood golf club head may have a club head volume of 180 cc. An iron-type golf club head may have a club head volume of between 25 cc and 100 cc. In one example, an iron-type golf club head may have a volume of 50 cc. Any of the golf clubs described herein may have the physical characteristics of a certain type of golf club (i.e., driver, fairway wood, iron, etc.), but have a volume that may fall outside of the above-described ranges. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0176] Any of the golf club heads and/or golf clubs described herein may include one or more sensors (e.g., accelerometers, strain gauges, etc.) for sensing linear motion (e.g., acceleration) and/or forces in all three axes of motion and/or rotational motion (e.g., angular acceleration) and rotational forces about all three axes of motion. In one example, the one or more sensors may be internal sensors that may be located inside the golf club head, the hosel, the shaft, and/or the grip.

In another example, the one or more sensors may be external sensors that may be located on the grip, on the shaft, on the hosel, and/or on the golf club head. In yet another example, the one or more sensors may be external sensors that may be attached by an individual to the grip, to the shaft, to the hosel, and/or to the golf club head. In one example, data collected from the sensors may be used to determine any one or more design parameters for any of the golf club heads and/or golf clubs described herein to provide certain performance or optimum performance characteristics. In another example, data from the sensors may be collected during play to assess the performance of an individual. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0177] Any of the apparatus, methods, or articles of manufacture described herein may include one or more visual identifiers such as alphanumeric characters, colors, images, symbols, logos, and/or geometric shapes. For example, one or more visual identifiers may be manufactured with one or more portions of a golf club such as the golf club head (e.g., casted or molded with the golf club head), painted on the golf club head, etched on the golf club (e.g., laser etching), embossed on the golf club head, machined onto the golf club head, attached as a separate badge or a sticker on the golf club head (e.g., adhesive, welding, brazing, mechanical lock(s), any combination thereof, etc.), or any combination thereof. The visual identifier may be made from the same material as the golf club head or a different material than the golf club head (e.g., a plastic badge attached to the golf club head with an adhesive). Further, the visual identifier may be associated with manufacturing and/or brand information of the golf club head, the type of golf club head, one or more physical characteristics of the golf club head, or any combination thereof. In particular, a visual identifier may include a brand identifier associated with a manufacturer of the golf club (e.g., trademark, trade name, logo, etc.) or other information regarding the manufacturer. In addition, or alternatively, the visual identifier may include a location (e.g., country of origin), a date of manufacture of the golf club or golf club head, or both.

[0178] The visual identifier may include a serial number of the golf club or golf club head, which may be used to check the authenticity to determine whether or not the golf club or golf club head is a counterfeit product. The serial number may also include other information about the golf club that may be encoded with alphanumeric characters (e.g., country of origin, date of manufacture of the golf club, or both). In another example, the visual identifier may include the category or type of the golf club head (e.g., 5-iron, 7-iron, pitching wedge, etc.). In yet another example, the visual identifier may indicate one or more physical characteristics of the golf club head, such as one or more materials of manufacture (e.g., visual identifier of "Titanium" indicating the use of titanium in the golf club head), loft angle, face portion characteristics, mass portion characteristics (e.g., visual identifier of "Tungsten" indicating the use of tungsten mass portions in the golf club head), interior cavity and filler material characteristics (e.g., one or more abbreviations, phrases, or words indicating that the interior cavity is filled with a polymer material), any other information that may visually indicate any physical or play characteristic of the golf club head, or any combination thereof. Further, one or more visual identifiers may provide an ornamental design or contribute to the appearance of the golf club, or the golf club head.

[0179] Any of the golf club heads described herein may be manufactured by casting from metal such as steel. However, other techniques for manufacturing a golf club head as described herein may be used such as 3D printing or molding a golf club head from metal or non-metal materials such as ceramics.

[0180] All methods described herein may be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. Although a particular order of actions may be described herein with respect to one or more processes, these actions may be performed in other temporal sequences. Further, two or more actions in any of the processes described herein may be performed sequentially, concurrently, or simultaneously.

[0181] The terms "and" and "or" may have both conjunctive and disjunctive meanings. The terms

"a" and "an" are defined as one or more unless this disclosure indicates otherwise. The term "coupled," and any variation thereof, refers to directly or indirectly connecting two or more elements chemically, mechanically, and/or otherwise. The phrase "removably connected" is defined such that two elements that are "removably connected" may be separated from each other without breaking or destroying the utility of either element.

[0182] The term "substantially" when used to describe a characteristic, parameter, property, or value of an element may represent deviations or variations that do not diminish the characteristic, parameter, property, or value that the element may be intended to provide. Deviations or variations in a characteristic, parameter, property, or value of an element may be based on, for example, tolerances, measurement errors, measurement accuracy limitations and other factors. The term "proximate" is synonymous with terms such as "adjacent," "close," "immediate," "nearby," "neighboring," etc., and such terms may be used interchangeably as appearing in this disclosure. [0183] Recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein. A numerical range defined using the word "between" includes numerical values at both end points of the numerical range. A spatial range defined using the word "between" includes any point within the spatial range and the boundaries of the spatial range. A location expressed relative to two spaced apart or overlapping elements using the word "between" includes (i) any space between the elements, (ii) a portion of each element, and/or (iii) the boundaries of each element. [0184] The use of any and all examples, or exemplary language (e.g., "such as") provided herein is intended merely for clarification and does not pose a limitation on the scope of the present disclosure. No language in the specification should be construed as indicating any non-claimed

[0185] Groupings of alternative elements or embodiments disclosed herein are not to be construed as limitations. Each group member may be referred to and claimed individually or in any combination with other members of the group or other elements disclosed herein. One or more members of a group may be included in, or deleted from, a group for reasons of convenience and/or patentability. When any such inclusion or deletion occurs, the specification is deemed to contain the group as modified thus fulfilling the written description of all Markush groups used in the appended claims.

element essential to the practice of any embodiments discussed herein.

[0186] While different features or aspects of an embodiment may be described with respect to one or more features, a singular feature may comprise multiple elements, and multiple features may be combined into one element without departing from the scope of the present disclosure. Further, although methods may be disclosed as comprising one or more operations, a single operation may comprise multiple steps, and multiple operations may be combined into one step without departing from the scope of the present disclosure.

[0187] The apparatus, methods, and articles of manufacture described herein may be implemented in a variety of embodiments, and the foregoing description of some of these embodiments does not necessarily represent a complete description of all possible embodiments. Instead, the description of the drawings, and the drawings themselves, disclose at least one embodiment, and may disclosure alternative embodiments.

[0188] As the rules of golf may change from time to time (e.g., new regulations may be adopted or old rules may be eliminated or modified by golf standard organizations and/or governing bodies such as the USGA, the R & A, etc.), golf equipment related to the apparatus, methods, and articles of manufacture described herein may be conforming or non-conforming to the rules of golf at any particular time. Accordingly, golf equipment related to the apparatus, methods, and articles of manufacture described herein may be advertised, offered for sale, and/or sold as conforming or non-conforming golf equipment. The apparatus, methods, and articles of manufacture described herein are not limited in this regard.

[0189] Further, while the above examples may be described with respect to golf clubs, the apparatus, methods and articles of manufacture described herein may be applicable to other suitable types of sports equipment such as a fishing pole, a hockey stick, a ski pole, a tennis racket, etc. [0190] Although certain example apparatus, methods, and articles of manufacture have been described herein, the scope of coverage of this disclosure is not limited thereto. On the contrary, this disclosure covers all apparatus, methods, and articles of articles of manufacture fairly falling within the scope of the appended claims either literally or under the doctrine of equivalents.

Claims

- 1. A golf club head comprising: a hollow body portion comprising an interior portion, an exterior portion, a toe portion with a toe portion edge, a heel portion with a heel portion edge, a front portion, a back portion with a back wall portion, a top portion with a top portion edge, and a sole portion with a sole portion edge; a face portion coupled to the front portion; a filler material in the interior portion of the body portion; a first mass portion having at least a portion of the first mass portion below a horizontal midplane of the body portion; a second mass portion coupled to the interior portion of the body portion, at least a portion of the second mass portion being below the horizontal midplane; and a port extending from the exterior portion of the body portion to the interior portion of the body portion, the port being at a different location on the body portion than the first mass portion and the second mass portion, wherein a maximum width of the interior portion of the body portion is below the horizontal midplane and between the first mass portion and the second mass portion.
- **2**. A golf club head as defined in claim 1, wherein the second mass portion increases in mass in a top-to-sole direction.
- **3.** A golf club head as defined in claim 1, wherein the filler material comprises a first polymer material having a first elasticity and a second polymer material having a second elasticity different from the first elasticity.
- **4.** A golf club head as defined in claim 1, wherein the second mass portion comprises a top portion and a bottom portion oriented relative to each other at a non-zero angle.
- **5.** A golf club head as defined in claim 1, wherein more than 50% of a total mass of the second mass portion is below a horizontal midplane.
- **6**. A golf club head as defined in claim 1, wherein the second mass portion is configured to at least partially correspond to a shape of a portion of the toe portion edge that is proximate to the second mass portion.
- 7. A golf club head comprising: a hollow body portion defining an interior cavity, the hollow body portion comprising: a material having a body material density; a toe portion with a toe portion edge; a heel portion with a heel portion edge; a front portion including a face portion; a back portion with a back wall portion; a top portion with a top portion edge; a body mass portion extending from the back wall portion toward the front portion and extending from the toe portion edge toward the heel portion, the body mass portion having a front side being spaced apart from the face portion; an external port connected to the interior cavity; and an internal port defined by a recess on the front side of the body mass portion, the internal port located proximate to the toe portion edge and having a shape that at least partially corresponds to a shape of a portion of the toe portion edge; a filler material in the interior cavity, the filler material having a greater elasticity than a material of the hollow body portion; a first mass portion coupled to the hollow body portion, the first mass portion comprising a material having a first density different from the body material density, and a second mass portion having a shape corresponding to the shape of the internal port, the second mass portion comprising a second material having a second density different from the body material density, wherein the internal port is configured to receive the second mass portion, and wherein a maximum width of the interior cavity is below a horizontal midplane of the hollow

body portion and between the first mass portion and the body mass portion.

- **8.** A golf club head as defined in claim 7, wherein the external port is configured to receive the first mass portion to close the external port.
- **9.** A golf club head as defined in claim 7, wherein the second mass portion has a different shape than the first mass portion.
- **10**. A golf club head as defined in claim 7, wherein the body mass portion is a continuous one-piece part of the hollow body portion.
- **11**. A golf club head as defined in claim 7, wherein at least a portion of the first mass portion is below the horizontal midplane of the hollow body portion.
- **12**. A golf club head as defined in claim 7, wherein the hollow body portion comprises another external port connected to the interior cavity.
- **13**. A golf club head as defined in claim 7, wherein more than 50% of a total volume of the second mass portion is below the horizontal midplane.
- **14.** A golf club comprising: a shaft having a first end and a second end; a grip coupled to the first end; a golf club head comprising: a body portion having a hollow interior portion and an exterior portion, the body portion comprising a toe portion with a toe portion edge, a heel portion with a heel portion edge, a front portion including a face portion, a back portion with a back wall portion, a top portion with a top portion edge, a sole portion with a sole portion edge, and an interior port defined by a recess in the hollow interior portion; a first mass portion coupled to the body portion below a horizontal midplane of the body portion, and a second mass portion coupled to the body portion in the interior port; wherein the second mass portion increases in mass in a top-to-sole direction, and wherein a maximum width of the hollow interior portion of the body portion is below the horizontal midplane and between the first mass portion and the second mass portion.
- **15**. A golf club as defined in claim 14, wherein the hollow interior portion of the body portion is at least partially filled with a filler material.
- **16**. A golf club as defined in claim 14, wherein the second mass portion comprises a top portion and a bottom portion oriented relative to each other at a non-zero angle.
- **17**. A golf club as defined in claim 14, wherein the body portion comprises an **8620** alloy steel material.
- **18.** A golf club as defined in claim 14, wherein at least one of the first mass portion or the second mass portion comprises a tungsten-based material.
- **19**. A golf club as defined in claim 14, wherein the first mass portion comprises a cylindrical shaped mass portion and the second mass portion comprises a non-cylindrical shaped mass portion.
- **20**. A golf club as defined in claim 14, the body portion further comprising a port connecting the exterior portion of the body portion to the hollow interior portion of the body portion.