Skills and Knowledge Matrix

Use the previous steps to fill in the Skills and Knowledge Matrix (S&K Matrix) for the task. The S&K Matrix is a tool that helps identify the skills and knowledge required to perform a task successfully. It can be used to develop training materials, assess training needs, and evaluate performance. The matrix is divided into steps, with each step listing the skills and knowledge needed to complete that step.

Questions Answered by the S&K Matrix

Q #1:

Based on the S&K Matrix for this task is there any prerequisite knowledge or skills individuals should have?

Yes, individuals must possess foundational competencies in: - Mathematical computation (S1) and formulas (K2) for accurate calculations - Technical data interpretation (S2) and platform-specific knowledge (K3) for sUAS operations - Critical thinking (S3) and attention to detail (S4) for precise execution - Documentation standards (K5) and technical documentation skills (S9) for interoperability - Unit conversion proficiency (K4) for standardized calculations

These prerequisites align with the Problem Statement's emphasis on standardized calculation methods and interoperability with partner forces.

Q #2:

Based on this S&K Matrix is there anything that should become its own learning objective? Yes, separate learning objectives should be established for:

- 1. Core Calculation Competencies:
 - Mathematical formulas and computation (skills S1, S5; knowledge K2)
 - Technical documentation and standards (skill S9; knowledge K5)
 - Critical thinking and analysis (skill S3; knowledge K24)
- 2. Platform-Specific Skills:
 - Technical data interpretation (skill S2; knowledge K3)
 - Environmental data processing (skills S7, S8; knowledge K6, K7)
 - Vector physics applications (skills S12, S13; knowledge K12, K19)
- 3. Operational Integration:
 - Risk assessment and security (skill S15; knowledge K21, K22)
 - Contingency planning (skill S19; knowledge K25)
 - Strategic decision-making (skill S18; knowledge K24)

This structure supports the Problem Statement's focus on standardized methods, interoperability, and operational effectiveness.

Q #3:

Based on this S&K Matrix is there anything that should be removed from the learning objectives?

No, all identified knowledge and skill elements are essential for ensuring: 1. Technical accuracy in sUAS leaflet dissemination calculations 2. Operational safety and security in contested environments 3. Inter-operability with partner forces through standardized methods 4. Mission effectiveness in achieving MISO objectives

The high reference counts for critical elements like attention to detail (S4), technical documentation (S9), and platform-specific knowledge (K3) validate their importance in addressing the Problem Statement's identified gaps.

Task: Determine and Select Appropriate Aircraft Platform

Task Number: 0001

Skills and Knowledge Matrix

Skills	Knowledge
S2: Technical data interpretation	K3: sUAS platform-specific performance characteristics
S15: Risk assessment	K21: Operational security considerations
S16: Constraint analysis	K22: Terrain effects on sUAS operations
S17: Adaptive planning	K23: Airspace control measures

Task: Define Mission and Target Requirements

Task Number: 0002

Skills and Knowledge Matrix

Skills	Knowledge
S3: Critical thinking and analysisS18: Strategic decision-makingS19: Contingency planning	 K17: Target area characteristics K18: Mission objectives and constraints K25: Contingency planning principles

Task: Review Mission Briefing and Objectives

Task Number: 0003

Skills and Knowledge Matrix

Skills	Knowledge
S3: Critical thinking and analysis S4: Attention to detail S10: Organized data retrieval	 K18: Mission objectives and constraints K24: Mission success criteria K17: Target area characteristics

Task: Determine Target Area Parameters

Task Number: 0004

Skills and Knowledge Matrix

Skills	Knowledge
S12: Spatial analysis	K17: Target area characteristics
S14: Coordinate plotting	K19: Coordinate systems and mapping concepts
S16: Constraint analysis	K22: Terrain effects on sUAS operations

Task: Gather sUAS Performance Data and Environmental Inputs

Task Number: 0005

Skills and Knowledge Matrix

Skills	Knowledge
S2: Technical data interpretation	K3: sUAS platform-specific performance characteristics
S7: Environmental data interpretation	K6: Effects of temperature, pressure, and humidity on
	aerial delivery
S10: Organized data retrieval	K8: Real-time data integration methodology

Task: Retrieve sUAS Technical Specifications

Task Number: 0006

Skills and Knowledge Matrix

Skills	Knowledge
S2: Technical data interpretationS4: Attention to detailS10: Organized data retrieval	 K3: sUAS platform-specific performance characteristics K5: Documentation requirements and standards K13: Aerodynamic properties of sUAS

Task: Collect Real-Time Environmental Data

Task Number: 0007

Skills and Knowledge Matrix

Skills	Knowledge
S7: Environmental data interpretation	K6: Effects of temperature, pressure, and humidity on aerial delivery
S8: Adjustment factor application S10: Organized data retrieval	K7: Environmental adjustment principlesK8: Real-time data integration methodology

Task: Calculate Descent Time Using sUAS Parameters

Task Number: 0008

Skills and Knowledge Matrix

Step 1: Gather Altitude and Descent Rate Data

Skills	Knowledge
S1: Mathematical computation skillsS2: Technical data interpretationS3: Critical thinking and analysis	 K1: Physics principles of aerial delivery K2: Mathematical formulas for time calculation K3: sUAS platform-specific performance characteristics

Skills	Knowledge
S4: Attention to detail	K4: Unit conversion standards and procedures

Step 2: Apply Descent Time Formula

Skills	Knowledge
 S1: Mathematical computation skills S4: Attention to detail S5: Formula application S6: Systematic calculation methodology 	 K2: Mathematical formulas for time calculation K4: Unit conversion standards and procedures K5: Documentation requirements and standards

Step 3: Adjust for Environmental Factors

Skills	Knowledge
S3: Critical thinking and analysis	K6: Effects of temperature, pressure, and humidity on
	aerial delivery
S7: Environmental data interpretation	K7: Environmental adjustment principles
S8: Adjustment factor application	K8: Real-time data integration methodology

Step 4: Validate and Document Final Calculation

Skills	Knowledge
S3: Critical thinking and analysisS4: Attention to detailS9: Technical documentation	K5: Documentation requirements and standardsK9: Expected ranges for descent time valuesK10: Validation methodologies

Task: Calculate Forward Drift with sUAS Airspeed

Task Number: 0009

Skills and Knowledge Matrix

Step 1: Gather Required Input Parameters

Skills	Knowledge
S2: Technical data interpretation	K3: sUAS platform-specific performance characteristics
S4: Attention to detail	K4: Unit conversion standards and procedures
S10: Organized data retrieval	K11: Forward drift calculation methodology

Step 2: Apply Forward Drift Formula

Skills	Knowledge
S1: Mathematical computation skills	K2: Mathematical formulas for time calculation
S5: Formula application	K11: Forward drift calculation methodology
S6: Systematic calculation methodology	K12: Basics of vector physics

Skills	Knowledge

Step 3: Adjust for Platform-Specific Factors

Skills	Knowledge
S2: Technical data interpretation S8: Adjustment factor application S3: Critical thinking and analysis	 K3: sUAS platform-specific performance characteristics K13: Aerodynamic properties of sUAS K14: Methods for applying adjustment factors

Step 4: Validate and Document Final Forward Drift Calculation

Skills	Knowledge
S4: Attention to detail	K10: Validation methodologies
S11: Data validation	K5: Documentation standards
S9: Technical documentation	K15: Expected forward drift ranges

Task: Determine Optimal Release Point

Task Number: 0014

Skills and Knowledge Matrix

Step 1: Gather All Calculated Parameters

Skills	Knowledge
S10: Organized data retrieval	K16: Relationship between drift, dispersion, and release point
S12: Spatial analysisS6: Systematic calculation methodology	K17: Target area characteristics K18: Mission objectives and constraints

Step 2: Calculate Release Point Coordinates

Skills	Knowledge
S12: Spatial analysis S13: Vector calculation S14: Coordinate plotting	 K12: Vector physics principles K19: Coordinate systems and mapping concepts K20: Techniques for calculating release points

Step 3: Adjust for Operational Constraints

Skills	Knowledge
S15: Risk assessment S16: Constraint analysis	K21: Operational security considerationsK22: Terrain effects on sUAS operations
S17: Adaptive planning	K23: Airspace control measures

Step 4: Validate Final Release Point

Skills	Knowledge
S3: Critical thinking and analysis S18: Strategic decision-making S19: Contingency planning	K24: Mission success criteriaK10: Validation methodologiesK25: Contingency planning principles

Task: Calculate Lateral Wind Drift with Sensor Data

Task Number: 0010

Skills and Knowledge Matrix

Skills	Knowledge
S1: Mathematical computation skills S7: Environmental data interpretation	K2: Mathematical formulas for time calculationK6: Effects of temperature, pressure, and humidity on aerial delivery
S8: Adjustment factor application S12: Spatial analysis	K7: Environmental adjustment principles K12: Basics of vector physics

Task: Calculate Total Drift Distance

Task Number: 0011

Skills and Knowledge Matrix

Skills	Knowledge
S1: Mathematical computation skills S5: Formula application S6: Systematic calculation methodology S12: Spatial analysis	 K2: Mathematical formulas for time calculation K11: Forward drift calculation methodology K12: Basics of vector physics K16: Relationship between drift, dispersion, and release point

Task: Calculate Dispersion Ellipse Dimensions

Task Number: 0012

Skills and Knowledge Matrix

Skills	Knowledge
 S1: Mathematical computation skills S5: Formula application S6: Systematic calculation methodology S12: Spatial analysis 	 K2: Mathematical formulas for time calculation K11: Forward drift calculation methodology K12: Basics of vector physics K16: Relationship between drift, dispersion, and release point

Task: Calculate Leaflet Density and Distribution

Task Number: 0013

Skills and Knowledge Matrix

Skills	Knowledge
S1: Mathematical computation skills	K2: Mathematical formulas for time calculation
S4: Attention to detail	K15: Expected forward drift ranges
S6: Systematic calculation methodology	K16: Relationship between drift, dispersion, and release
	point
S12: Spatial analysis	K17: Target area characteristics

Task: Validate and Refine Calculations

Task Number: 0015

Skills and Knowledge Matrix

Skills	Knowledge
S3: Critical thinking and analysis	K10: Validation methodologies
S4: Attention to detail	K5: Documentation requirements and standards
S11: Data validation	K9: Expected ranges for descent time values
S9: Technical documentation	K15: Expected forward drift ranges

Task: Integrate Calculations into Flight Plan

Task Number: 0016

Skills and Knowledge Matrix

Skills	Knowledge
S3: Critical thinking and analysis	K5: Documentation requirements and standards
S6: Systematic calculation methodology	K16: Relationship between drift, dispersion, and release point
S9: Technical documentation	K24: Mission success criteria
S18: Strategic decision-making	K25: Contingency planning principles

Task: Conduct Operational Review

Task Number: 0017

Skills and Knowledge Matrix

Skills	Knowledge
S3: Critical thinking and analysis	K5: Documentation requirements and standards
S15: Risk assessment	K21: Operational security considerations

Skills	Knowledge
S18: Strategic decision-making S19: Contingency planning	K24: Mission success criteria K25: Contingency planning principles

Task: Document and Secure Approvals

Task Number: 0018

Skills and Knowledge Matrix

Skills	Knowledge
S4: Attention to detail S9: Technical documentation	K5: Documentation requirements and standards K24: Mission success criteria

Task: Develop Product Action Worksheet

Task Number: 0019

Skills and Knowledge Matrix

Knowledge
K5: Documentation requirements and standards
K24: Mission success criteria
K17: Target area characteristics

Task: Adapt MISO Products for sUAS Delivery

Task Number: 0020

Skills and Knowledge Matrix

Skills	Knowledge
S2: Technical data interpretationS4: Attention to detailS9: Technical documentation	 K3: sUAS platform-specific performance characteristics K5: Documentation requirements and standards K24: Mission success criteria

Comprehensive List of Knowledge and Skill Elements

Knowledge Elements (Sorted by Number of References)

Referenced 5 Times: - K2: Mathematical formulas for time calculation

- $\mathbf{K3:}$ sUAS platform-specific performance characteristics
- K5: Documentation requirements and standards
- $\mathbf{K24}$: Mission success criteria

Referenced 4 Times: - K12: Basics of vector physics

- K16: Relationship between drift, dispersion, and release point
- K17: Target area characteristics

Referenced 3 Times: - K6: Effects of temperature, pressure, and humidity on aerial delivery

- K7: Environmental adjustment principles
- K10: Validation methodologies
- **K25**: Contingency planning principles

Referenced 2 Times: - K1: Physics principles of aerial delivery

- $\mathbf{K4}$: Unit conversion standards and procedures
- K8: Real-time data integration methodology
- $\mathbf{K9}$: Expected ranges for descent time values
- K11: Forward drift calculation methodology
- K15: Expected forward drift ranges
- K18: Mission objectives and constraints
- K19: Coordinate systems and mapping concepts
- $\mathbf{K21}$: Operational security considerations
- **K22:** Terrain effects on sUAS operations

Referenced 1 Time: - K13: Aerodynamic properties of sUAS

- $\mathbf{K}14$: Methods for applying adjustment factors
- K20: Techniques for calculating release points
- **K23:** Airspace control measures

Skill Elements (Sorted by Number of References)

Referenced 7 Times: - S4: Attention to detail

Referenced 6 Times: - S3: Critical thinking and analysis

Referenced 5 Times: - S2: Technical data interpretation

- **S9:** Technical documentation

Referenced 4 Times: - S1: Mathematical computation skills

- S6: Systematic calculation methodology
- S10: Organized data retrieval
- S12: Spatial analysis

Referenced 3 Times: - S5: Formula application

- S8: Adjustment factor application
- S18: Strategic decision-making
- **S19:** Contingency planning

Referenced 2 Times: - S7: Environmental data interpretation

- S11: Data validation
- S15: Risk assessment
- **S16:** Constraint analysis

Referenced 1 Time: - S13: Vector calculation

- **S14:** Coordinate plotting
- S17: Adaptive planning