Sampled waveform

Aliasing

☐ to avoid aliasing:

- 1) digitize only bandwidth-limited signals
- + 2) use a sample rate greater than 2 f_{max}

FFT properties

□each frequency point (bin) is the equivalent of the filter/detector output in the bank-of-filters analyser

□ the module value of each complex number is equivalent to the bank-of-filter channel readout

FFT properties

time record N=2ⁿ real values

frequency record N/2+1 complex values

□ the bins are equally spaced in the frequency:

$$\delta f = \frac{\frac{f_S}{2}}{\sqrt{\frac{N}{2}}} = \frac{f_S}{N} = \frac{1}{\Delta T}$$

 \Box the frequency associated with bin n is:

$$f_n = n \cdot \frac{f_s}{N}$$

□the highest frequency, that of the last bin, is:

$$f_{max} = f_s/2$$

Digital (FFT based) spectrum analyzer

Frequency span and frequency resolution

- □ the FFT is an inherently base-band transformation: the frequency interval always starts at 0~Hz and ends at $f_s/2$
- \Box total frequency span: $0 \div BW = 0 \div f_s/2$
- $\Box \text{frequency resolution: } \delta f = f_S/N$
- \Box given the dimension N of the time record, to improve the resolution we must decrease the sampling frequency f_s and, therefore, the working bandwidth
- \Box given the bandwidth, to improve the resolution we must increase the time record length N, and therefore augment the computing resource
- □ FFT number of computations: $N \cdot \log_2(N)$

Oversampling and digital filtering

- ☐ the input signal is oversampled
- □ a digital low-pass filtering (LPF) is applied to limit the signal bandwidth to the desired analysis frequency range
- □ the signal is decimated before applying the FFT algorithm

Leakage (frequency dispersion)

□FFT actually replicates the finite time record indefinitely:

cont.

- ☐ the leakage must be reduced
- ☐ to avoid discontinuities the sampled waveform is forced to zero at the ends of the sample

Example: Hanning window

$$w_n = \frac{1}{2} \{ 1 - \cos[2\pi n/(N-1)] \}$$

Flat top window

Sine wave spectrum

Hanning

Flat top

