CSE 6331 HOMEWORK 2

BRENDAN WHITAKER

Theorem 5. If T(n) is asymptotically nondecreasing and f(n) is smooth, then T(n) = O(f(n)|n) is a power of b) implies T(n) = O(f(n)).

1. Show that Theorem 5 would not hold if T(n) is not asymptotically nondecreasing. Let $f(n) = n^2$, and let b = 2. We define:

$$T(n) = \begin{cases} n^2 & n = 2^k, k \in \mathbb{N} \\ n^n & otherwise \end{cases}.$$

Observe that $f(n) = n^2$ is smooth: $f(2n) = (2n)^2 = 4n^2 \le 4 \cdot n^2, \forall n \in \mathbb{N}$, so $f(2n) \in O(n^2)$. Also $T(n) \in O(n^2|n)$ is a power of 2), since $T(n) = n^2$ when n is a power of 2. We show $T(n) \notin O(n^2)$. Suppose for contradiction that there was a positive constant $c \in \mathbb{N}$ and $N \in \mathbb{N}$ s.t. $\forall n > N$, $T(n) \le cn^2$. Then this must hold for all powers of 3, so we restrict ourselves to the case when $n \in B = \{n : n = 3^k, k \in \mathbb{N}\}$. Then n is not a power of 2, so $T(n) = n^n$. So we have $n^n \le cn^2, \forall n > N, n \in B$. Then we would have:

$$n^2 \cdot n^{n-2} \le cn^2,$$

$$n^{n-2} \le c.$$

for all $n > N, n \in B$, which is a contradiction, since c is a constant. So we must have $T(n) \notin O(n^2)$.

2. Show that Theorem 5 would not hold if f(n) is nondecreasing but not smooth (even if T(n) is asymptotically nondecreasing).

Let
$$f(n) = 2^n$$
. Let:

$$T(n) = 2^{2^{\lceil \log_2 n \rceil}}.$$

When n is a power of 2, $n=2^k$, we have $\lceil log_2 n \rceil = k$, so $T(n)=2^n$, so $T(n) \in O(2^n)$ when n is a power of 2. But is $T(n) \in O(2^n)$ in general? Let $n=2^k+1$, so n runs through the positive integers which are one more than a power of 2. Then for $k \in \mathbb{N}$ we have $T(n)=2^{2^{k+1}}=2^{2\cdot n} \notin O(2^n)$, so Theorem 5 does not hold in this case.

3. Prove **Theorem 6:** If T(n) is asymptotically nondecreasing and f(n) is smooth, then $T(n) = \Omega(f(n)|n)$ is a power of b) implies $T(n) = \Omega(f(n))$.

Proof. We know $T(n) \ge c_1 f(n)$ for n sufficiently large and a power of b. And by definition of smooth, we know $f(bn) \in O(f(n)) \Rightarrow f(n) \in \Omega(f(bn))$. So we have $f(n) \ge c_2 f(bn)$ for sufficiently large n, and $\forall n$ there is $k \in \mathbb{N}$ s.t. $b^k \le n < b^{k+1}$. When n is sufficiently large, we have:

$$T(n) \ge T(b^k) \ge c_1 f(b^k) \ge c_1 c_2 f(b \cdot b^k) \ge c_1 c_2 f(b^{k+1}) \ge c_1 c_2 f(n).$$

1

Thus we know $T(n) \in \Omega(f(n))$.

Date: SP18.