C*-Algebras An Elementary Introduction

Zakaria Zerrouki

University of Michigan - Ann Arbor

06/12/2022

Table of Contents

- Fundamentals
 - Algebras
 - Definitions and Properties
 - Subalgebras and Ideals
 - Normed Algebras
 - Definitons and Properties
 - The Spectrum
 - The Exponential
 - Homomorphisms and Characters
 - Involutive Algebras
- C*-Algebras
 - Definitions and Examples
 - The Gelfand-Naimark Theorem
 - Positive Elements and Positive Linear Functionals
 - The Gelfand-Naimark-Segal Theorem

1) Fundamentals

1) a) Algebras - Definitions and Properties

DEFINITION 1: Let $(\mathbb{K}, +_{\mathbb{K}}, \times_{\mathbb{K}})$ be a field, let A be a non-empty set, let + and \times be binary operations in $\mathscr{F}(A^2, A)$ and let \cdot be a binary operation in $\mathscr{F}(\mathbb{K} \times A, A)$. The ordered quadruple $(A, +, \cdot, \times)$ is a \mathbb{K} -algebra if and only if all of the following axioms are satisfied:

- $\bullet \qquad \text{The ordered triple } (A,+,\times) \text{ is a ring.}$
- ② The ordered triple $(A, +, \cdot)$ is a \mathbb{K} -vector space.

DEFINITION 2: Let $(\mathbb{K}, +_{\mathbb{K}}, \times_{\mathbb{K}})$ be a field and let $(A, +, \cdot, \times)$ be a \mathbb{K} -algebra. The **additive identity** of A is the element of A denoted by 0_A and defined by:

$$\forall x \in A, \ 0_A + x = x + 0_A = x$$

DEFINITION 3: Let $(\mathbb{K}, +_{\mathbb{K}}, \times_{\mathbb{K}})$ be a field. A \mathbb{K} -algebra $(A, +, \cdot, \times)$ is:

• commutative (or Abelian) if and only if the following condition is satisfied:

$$\forall (x, y) \in A^2, \ x \times y = y \times x$$

• unital if and only if the following condition is satisfied:

$$\exists e \in A \setminus \{0_A\} : \forall x \in A, \ e \times x = x \times e = x$$

• a division K-algebra if and only if the following condition is satisfied:

$$\forall (x,y) \in A^2, \ x \times y = 0_A \Longrightarrow 0_A \in \{x,y\}$$

PROPOSITION 1: Let $(\mathbb{K}, +_{\mathbb{K}}, \times_{\mathbb{K}})$ be a field and let $(A, +, \cdot, \times)$ be a unital \mathbb{K} -algebra. If there exists an ordered pair (e, f) in $(A \setminus \{0_A\})^2$ such that, for every ordered pair (x, y) in A^2 , one has $e \times x = x \times e = x$ and $f \times y = y \times f = y$, then:

$$e = f$$

DEFINITION 4: Let $(\mathbb{K}, +_{\mathbb{K}}, \times_{\mathbb{K}})$ be a field and let $(A, +, \cdot, \times)$ be a unital \mathbb{K} -algebra. The **multiplicative identity** of $A \setminus \{0_A\}$ is the element of A denoted by 1_A and defined by:

$$\forall x \in A, \ 1_A \times x = x \times 1_A = x$$

DEFINITION 5: Let $(\mathbb{K}, +_{\mathbb{K}}, \times_{\mathbb{K}})$ be a field, let $(A, +, \cdot, \times)$ be a unital \mathbb{K} -algebra and let (x, y) be an ordered pair in A^2 .

• The element *x* of *A* is **invertible** if and only if the following condition is satisfied:

$$\exists z \in A: \quad x \times z = z \times x = 1_A$$

• The element y of A is a **multiplicative inverse** of x if and only if the following condition is satisfied:

$$x \times y = y \times x = 1_A$$

• The **set of invertible elements** of *A* is the set denoted by A^* and defined by:

$$A^* = \{x \in A: \exists z \in A: x \times z = z \times x = 1_A\}$$

PROPOSITION 2: Let $(\mathbb{K}, +_{\mathbb{K}}, \times_{\mathbb{K}})$ be a field, let $(A, +, \cdot, \times)$ be a unital \mathbb{K} -algebra, and let (x, y, z) be an ordered triple in $A^* \times A \times A$. If y and z are multiplicative inverses of x, then:

$$y = z$$

DEFINITION 6: Let $(\mathbb{K}, +_{\mathbb{K}}, \times_{\mathbb{K}})$ be a field, let $(A, +, \cdot, \times)$ be a unital \mathbb{K} -algebra and let x be an element of A^* . The **multiplicative inverse** of x is the element denoted by x^{-1} and defined by:

$$x \times x^{-1} = x^{-1} \times x = 1_A$$

1) a) Algebras - Subalgebras and Ideals

DEFINITION 7: Let $(\mathbb{K}, +_{\mathbb{K}}, \times_{\mathbb{K}})$ be a field, let $(A, +, \cdot, \times)$ be a \mathbb{K} -algebra and let B be a subset of A. The set B is a \mathbb{K} -subalgebra of $(A, +, \cdot, \times)$ if and only if all of the following conditions are satisfied:

- 1 The set *B* is a subring of $(A, +, \times)$.
- The set *B* is a \mathbb{K} -vector subspace of $(A, +, \cdot)$.

DEFINITION 8: Let $(\mathbb{K}, +_{\mathbb{K}}, \times_{\mathbb{K}})$ be a field, let $(A, +, \cdot, \times)$ be a \mathbb{K} -algebra and let I be a \mathbb{K} -vector subspace of $(A, +, \cdot, \times)$.

• The set *I* is a **left-ideal** of *A* if and only if the following condition is satisfied:

$$\forall (a,b) \in A \times I, \ x \times y \in I$$

• The set *I* is a **right-ideal** of *A* if and only if the following condition is satisfied:

$$\forall (a,b) \in A \times I, \ y \times x \in I$$

• The set *I* is a **bilateral ideal** (or **ideal**) of *A* if and only if the following condition is satisfied:

$$\forall (a,b) \in A \times I, \ \big(x \times y, y \times x\big) \in I$$

DEFINITION 9: Let $(\mathbb{K}, +_{\mathbb{K}}, \times_{\mathbb{K}})$ be a field, let $(A, +, \cdot, \times)$ be a \mathbb{K} -algebra and let I be an ideal of A.

• The ideal *I* is **proper** if and only if the following condition is satisfied:

 $I \neq A$

- ullet The ideal I is **maximal** if and only if the following conditions are satisfied:

 - 2 If J is a proper ideal of A, then $J \subseteq I$.

The **set of maximal ideals** of A is denoted by M(A).

DEFINITION 10: Let $(\mathbb{K}, +_{\mathbb{K}}, \times_{\mathbb{K}})$ be a field, let $(A, +, \cdot, \times)$ be a \mathbb{K} -algebra, let I be an ideal of A and let x be an element of A.

• The **coset** of x **modulo** I is the set denoted by $[x]_I$ and defined by:

$$[x]_I = \{x + y \in A: y \in I\}$$

• The **quotient mapping modulo** I is function denoted by $[\cdot]_I$ and defined by:

$$[\cdot]_I$$
: $A \longrightarrow A/I$; $x \longmapsto [x]_I$

• The **quotient algebra** of A **modulo** I is the set denoted by A/I and defined by:

$$A/I=\{[x]_I\colon\ x\in I\}=[A]_I$$

PROPOSITION 3: Let $(\mathbb{K}, +_{\mathbb{K}}, \times_{\mathbb{K}})$ be a field, let $(A, +, \cdot, \times)$ be a \mathbb{K} -algebra, let I be an ideal of A and let $+_I$, \cdot_I and \times_I be the functions defined by:

$$+_{I}: \quad A/I \times A/I \quad \longrightarrow \quad A/I; \quad \left([x]_{I}, [y]_{I} \right) \quad \longmapsto \quad [x+y]_{I}$$

$$\cdot_{I}: \quad \mathbb{K} \times A/I \quad \longrightarrow \quad A/I; \quad \left(\lambda, [x]_{I} \right) \quad \longmapsto \quad [\lambda \cdot x]_{I}$$

$$\times_{I}: \quad A/I \times A/I \quad \longrightarrow \quad A/I; \quad \left([x]_{I}, [y]_{I} \right) \quad \longmapsto \quad [x \times y]_{I}$$

Then the ordered quadruple $\left(A/I,+_I,\cdot_I,\times_I\right)$ is a $\mathbb{K}\text{-algebra}.$

PROPOSITION 4: Let $(\mathbb{K}, +_{\mathbb{K}}, \times_{\mathbb{K}})$ be a field, let $(A, +, \cdot, \times)$ be a \mathbb{K} -algebra, let I be an ideal of A. Then I is maximal if and only if the ring $(A/I, +_I, \times_I)$ is a field.

1) b) Normed Algebras - Definitons and Properties

DEFINITION 11: Let $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$, let $(A, +, \cdot, \times)$ be a \mathbb{F} -algebra and let $\|\cdot\|$ be a function in $\mathscr{F}(A, \mathbb{R}_+)$.

- The function $\|\cdot\|$ is a **norm** on $(A, +, \cdot, \times)$ if and only if all of the following conditions are satisfied:
 - The ordered quadruple $(A, +, \cdot, ||\cdot||)$ is a normed \mathbb{F} -vector space.
 - $\forall (x,y) \in A^2, \ \left\| x \times y \right\| \le \left\| x \right\| \left\| y \right\|$ 2
- The ordered quintuple $(A, +, \cdot, \times, \|\cdot\|)$ is a **normed** \mathbb{F} -algebra if and only if the function $\|\cdot\|$ is a norm on $(A, +, \cdot, \times)$.
- The ordered quintuple $(A, +, \cdot, \times, \|\cdot\|)$ is a **unital normed** \mathbb{F} -algebra if and only if the function $\|\cdot\|$ is a norm on $(A, +, \cdot, \times)$, the \mathbb{F} -algebra $(A, +, \cdot, \times)$ is unital and the following condition is satisfied:

$$\|1_A\|=1$$

C*-Algebras Zakaria Zerrouki (UMich) 06/12/2022 14 / 48

DEFINITION 12: Let $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$ and let $(A, +, \cdot, \cdot, \|\cdot\|)$ be a normed \mathbb{F} -algebra. The **induced metric** of $\|\cdot\|$ is the function denoted by d_A and defined by:

$$d_A: \left| \begin{array}{ccc} A \times A & \longrightarrow & \mathbb{R}_+ \\ (x,y) & \longmapsto & \left\| y - x \right\| \end{array} \right|$$

THEOREM 1: Let $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$ and let $(A, +, \cdot, \times, \|\cdot\|)$ be a normed \mathbb{F} -algebra. Then the ordered pair (A, d_A) is a metric space.

DEFINITION 13: Let $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$ and let $(A, +, \cdot, \times, \|\cdot\|)$ be a normed \mathbb{F} -algebra.

• The normed \mathbb{F} -algebra $(A, +, \cdot, \times, \|\cdot\|)$ is a **Banach** \mathbb{F} -algebra if and only if the ordered pair (A, d_A) is a complete metric space.

DEFINITION 14: Let $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}\$ and let $(A, +, \cdot, \times, \|\cdot\|)$ be a Banach \mathbb{F} -algebra.

- The Banach \mathbb{F} -algebra $(A, +, \cdot, \times, \|\cdot\|)$ is a **unital** if and only if the \mathbb{F} -algebra $(A, +, \cdot, \times)$ is unital.
- The Banach \mathbb{F} -algebra $(A, +, \cdot, \times, \|\cdot\|)$ is a **Banach division** \mathbb{F} -algebra if and only if the \mathbb{F} -algebra $(A, +, \cdot, \times)$ is a division F-algebra.

DEFINITION 15: Let *n* be a natural number in \mathbb{N} , Let $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$, let $(A, +, \cdot, \times)$ be a unital \mathbb{F} -algebra and let *x* be an element of A. The n-th power of x is the element of A denoted x^n and defined by:

$$x^n = \begin{cases} 1_A, & \text{if } n = 0. \\ x \times x^{n-1}, & \text{if } n > 0. \end{cases}$$

THEOREM 2 (Neumann Series): Let $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$, let $(A, +, \cdot, \times, \|\cdot\|)$ be a unital Banach \mathbb{F} -algebra and let x be an element of A such that ||x|| < 1 and $1_A - x \in A^*$. Then:

$$(1_A - x)^{-1} = \sum_{k=0}^{+\infty} x^k$$

PROPOSITION 5: Let $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$, let $(A, +, \cdot, \times, \|\cdot\|)$ be a unital normed \mathbb{F} -algebra. Then:

- The set A^* is d_A -open in A. 0
- The function $A^* \to A^*$; $x \mapsto x^{-1}$ is a homeomorphism (with respect to d_A). **a**

PROPOSITION 6: Let $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$, let $(A, +, \cdot, \times, \|\cdot\|)$ be a unital Banach \mathbb{F} -algebra and let I be a subset of A. Then:

- If *I* is a proper ideal of *A*, then so is $clos_{d_A}(I)$. 0
- If I is a maximal ideal of A, then I is closed. **a**

THEOREM 3: Let $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$, let $(A, +, \cdot, \times, \|\cdot\|)$ be a Banach \mathbb{F} -algebra, let I be a closed ideal of A and let $\|\cdot\|_I$ be the function defined by:

$$\|\cdot\|_I\colon\quad A/I\quad\longrightarrow\quad \mathbb{R}_+;\quad [x]_I\quad\longmapsto\quad \inf\nolimits_{y\in I}\left(\left\|x+y\right\|\right)$$

Then:

- 0 The ordered quintuple $(A/I, +_I, \cdot_I, \times_I, ||\cdot||_I)$ is a Banach \mathbb{F} -algebra.
- 4 If $(A, +, \cdot, \times)$ is unital, then so is $(A/I, +_I, \cdot_I, \times_I)$ and $1_{A/I} = [1_A]_I$.

1) b) Normed Algebras - The Spectrum

DEFINITION 16: Let $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$, let $(A, +, \cdot, \times)$ be a unital \mathbb{F} -algebra and let x be an element of A.

• The **spectrum** of *x* is the set denoted by $\sigma(x)$ and defined by:

$$\sigma(x) = \left\{ \lambda \in \mathbb{F} \colon \ x - \lambda \cdot 1_A \notin A^* \right\}$$

• The **resolvent set** of *x* is the set denoted by $\rho(x)$ and defined by:

$$\rho(x) = \mathbb{F} \setminus \sigma(x)$$

DEFINITION 17: Let U be an open set in \mathbb{C} , let $(A, +, \cdot, \times, \|\cdot\|)$ be a Banach \mathbb{C} -algebra and let f be a function in $\mathscr{F}(U, A)$. The function *f* is **holomorphic** if and only if, for every complex number *z* in *U*, the limit:

$$\lim_{w \to z} \left(\frac{f(w) - f(z)}{w - z} \right)$$

exists in A.

C*-Algebras Zakaria Zerrouki (UMich) 06/12/2022 19 / 48 **THEOREM 4:** Let $(A, +, \cdot, \times, \|\cdot\|)$ be a unital Banach \mathbb{C} -algebra and let x be an element of A. Then the function f defined by:

$$f: \mid \rho(x) \longrightarrow A^*$$
 $z \longmapsto (x-z \cdot 1_A)^{-1}$

is holomorphic.

THEOREM 5: Let $(A, +, \cdot, \times, \|\cdot\|)$ be a unital Banach \mathbb{C} -algebra and let x be an element of A. Then $\sigma(x)$ is non-empty and compact.

DEFINITION 18: Let $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$, let $(A, +, \cdot, \times, \|\cdot\|)$ be a unital Banach \mathbb{F} -algebra and let x be an element of A. The **spectral radius** of x is the positive real number denoted by r(x) and defined by:

$$r(x) = \sup_{\lambda \in \sigma(x)} (|\lambda|)$$

THEOREM 6 (Spectral radius formula): Let $(A, +, \cdot, \times, \|\cdot\|)$ be a unital Banach \mathbb{C} -algebra and let x be an element of A. Then:

$$r(x) = \lim_{n \to +\infty} \left(\sqrt[n]{\|x^n\|} \right) = \inf_{n \in \mathbb{N}} \left(\sqrt[n]{\|x^n\|} \right)$$

COROLLARY 1: Let $(A, +, \cdot, \times, \|\cdot\|)$ be a unital Banach \mathbb{C} -algebra and let x be an element of A. Then:

$$\lim_{n \to +\infty} (\|x^n\|) = 0 \iff r(x) < 1$$

THEOREM 7 (Spectral mapping theorem): Let $(A, +, \cdot, \times, \|\cdot\|)$ be a unital Banach \mathbb{C} -algebra, let x be an element of A and let p be a complex polynomial. Then:

$$\sigma\big(p(x)\big)=p(\sigma(x))$$

THEOREM 8 (Gelfand-Mazur theorem): Let $(A, +, \cdot, \times, \|\cdot\|)$ be a Banach division \mathbb{C} -algebra. Then:

$$A \cong \mathbb{C}$$

THEOREM 9 (Gelfand-Mazur-Kaplansky theorem): Let $(A, +, \cdot, \times, \|\cdot\|)$ be a Banach division \mathbb{R} -algebra. Then exactly one of the following propositions holds true:

- 0 $A \cong \mathbb{R}$
- $A \cong \mathbb{C}$ 2
- $A\cong \mathbb{H}$ 6

THEOREM 10: Let $(A, +, \cdot, \times, \|\cdot\|)$ be a unital Banach \mathbb{C} -algebra and let λ be a complex number in \mathbb{C}^* . Then:

$$\forall (x,y) \in A^2, \ x \times y - y \times x \neq \lambda \cdot 1_A$$

1) b) Normed Algebras - The Exponential

DEFINITION 19: Let $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$, let $(A, +, \cdot, \times, \|\cdot\|)$ be a unital Banach \mathbb{F} -algebra and let x be an element of A. The **exponential** of x is the element of A denoted by $\exp(x)$ and defined by:

$$\exp(x) = \sum_{n=0}^{+\infty} \frac{1}{n!} \cdot x^n$$

PROPOSITION 7: Let $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$, let $(A, +, \cdot, \times, \|\cdot\|)$ be a unital Banach \mathbb{F} -algebra and let (x, y) be an ordered pair in A^2 . Then:

- $\|\exp(x)\| \le e^{\|x\|}$

- $\exp(x)^{-1} = \exp(-x)$

Zakaria Zerrouki (UMich) C*-Algebras 06/12/2022

COROLLARY 2: Let $(A, +, \cdot, \times, \|\cdot\|)$ be a non-commutative unital Banach \mathbb{C} -algebra. Then there exists an ordered pair (x, y) in $A \times A^*$ such that:

$$\|x\| \neq \left\| y \times x \times y^{-1} \right\|$$

1) b) Normed Algebras - Homomorphisms and Characters

DEFINITION 20: Let $(\mathbb{K}, +_{\mathbb{K}}, \times_{\mathbb{K}})$ be a field, let $(A, +_A, \cdot_A, \times_A)$ and $(B, +_B, \cdot_B, \times_B)$ be \mathbb{K} -algebras and let φ be a function in $\mathscr{F}(A,B)$.

- The function φ is a K-algebra homomorphism of A into B if and only if all of the following conditions are satisfied:
 - 0 The function φ is a \mathbb{K} -linear mapping of $(A, +_A, \cdot_A)$ into $(B, +_B, \cdot_B)$.
- 2 The function φ is a ring homomorphism of $(A, +_A, \times_A)$ into $(B, +_B, \times_B)$.
- The function φ is a \mathbb{K} -algebra isomorphism of A onto B if and only if φ is a bijective \mathbb{K} -algebra homomorphism of A into B.

PROPOSITION 8: Let $(\mathbb{K}, +_{\mathbb{K}}, \times_{\mathbb{K}})$ be a field, let $(A, +_A, \cdot_A, \times_A)$ and $(B, +_B, \cdot_B, \times_B)$ be \mathbb{K} -algebras and let φ be a \mathbb{K} -algebra homomorphism of A into B. Then:

- The set $\operatorname{im}(\varphi)$ is a \mathbb{K} -subalgebra of $(B, +_B, \cdot_B, \times_B)$.
- The set $ker(\varphi)$ is an ideal of A. **2**

C*-Algebras Zakaria Zerrouki (UMich) 06/12/2022 26 / 48 **DEFINITION 21:** Let $(\mathbb{K}, +_{\mathbb{K}}, \times_{\mathbb{K}})$ be a field, let $(A, +_A, \cdot_A, \times_A)$ and $(B, +_B, \cdot_B, \times_B)$ be unital \mathbb{K} -algebra and let φ be a \mathbb{K} -algebra homomorphism φ is a **unital** if and only if the following condition is satisfied:

$$\varphi(1_A)=1_B$$

PROPOSITION 9: Let $(\mathbb{K}, +_{\mathbb{K}}, \times_{\mathbb{K}})$ be a field, let $(A, +_A, \cdot_A, \times_A)$ and $(B, +_B, \cdot_B, \times_B)$ be unital \mathbb{K} -algebras, let φ be a unital \mathbb{K} -algebra homomorphism of A into B and let x be an element of A^* . Then:

- $\varphi(x) \in B^*$
- $\varphi\left(x^{-1}\right) = \varphi(x)^{-1}$

PROPOSITION 10: Let $(\mathbb{K}, +_{\mathbb{K}}, \times_{\mathbb{K}})$ be a field, let $(A, +, \cdot, \times)$ be a \mathbb{K} -algebra and let I be an ideal of A.

- Then the quotient mapping modulo $I[\cdot]_I$ is a \mathbb{K} -algebra homomorphism of A into A/I.
- If $(A, +, \cdot, \times)$ is unital, then so is $[\cdot]_I$.

DEFINITION 22: Let $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$ and let $(A, +_A, \cdot_A, \times_A, \|\cdot\|_A)$ and $(B, +_B, \cdot_B, \times_B, \|\cdot\|_B)$ be Banach \mathbb{F} -algebras and let φ be a \mathbb{F} -algebra homomorphism of A into B.

• The **operator norm** of φ is the positive real number denoted by $\|\varphi\|$ and defined by:

$$\|\varphi\| = \sup_{\substack{x \in A \\ \|x\| \le 1}} (\|\varphi(x)\|_B)$$

if it exists in \mathbb{R}_+ (in which case φ is **bounded**).

• The function φ is an **isometry** of *A* into *B* if and only if the following condition is satisfied:

$$\forall x \in A, \ \left\| \varphi(x) \right\|_B = \|x\|_A$$

• The function φ is an **isometric isomorphism** of A onto B if and only if φ is a bijective isometry of A into B.

PROPOSITION 11: Let $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$, let $(A, +, \cdot, \times, \|\cdot\|)$ be a Banach \mathbb{F} -algebra and let I be an ideal of A. Then:

$$\|[\cdot]_I\| \leq 1$$

C*-Algebras Zakaria Zerrouki (UMich) 06/12/2022 28 / 48 **DEFINITION 23:** Let $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$, let $(A, +, \cdot, \times, \|\cdot\|)$ be a Banach \mathbb{F} -algebra and let χ be a \mathbb{K} -algebra homomorphism of Ainto \mathbb{F} . The \mathbb{K} -algebra homomorphism χ is a **character** of *A* if and only if the following condition is satisfied:

$$\chi(A) \neq \{0_A\}$$

The **Gelfand spectrum** of *A* is the set of all characters of *A*, denoted by $\Sigma(A)$.

PROPOSITION 12: Let $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$, let $(A, +, \cdot, \times, \|\cdot\|)$ be a unital Banach \mathbb{F} -algebra, let χ be character of A and let X be an element of A^* . Then:

- 0 $\chi(1_A) = 1$
- **a** $\gamma(x) \neq 0$

THEOREM 11: Let $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$, let $(A, +, \cdot, \times, \|\cdot\|)$ be a commutative Banach \mathbb{F} -algebra and let χ be a character of A. Then γ is bounded and:

$$\|\chi\|=1$$

THEOREM 12: Let $(A, +, \cdot, \times, \|\cdot\|)$ be a commutative and unital Banach \mathbb{C} -algebra. Then the function κ defined by:

$$\kappa \colon \quad \Sigma(A) \quad \longrightarrow \quad \mathrm{M}(A); \quad \chi \quad \longmapsto \quad \ker(\chi)$$

is a bijection.

THEOREM 13: Let $(A, +, \cdot, \times, \|\cdot\|)$ be a commutative and unital Banach \mathbb{C} -algebra and let x be an element of A. Then:

$$\sigma(x) = \big\{ \chi(x) \in A \colon \ \chi \in \Sigma(A) \big\}$$

DEFINITION 24: Let $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$, let $(A, +, \cdot, \times, \|\cdot\|)$ be a commutative Banach \mathbb{F} -algebra and let x be an element of A.

• The **Gelfand transform** of *x* is the function denoted by \hat{x} and defined by:

$$\hat{x}$$
: $\Sigma(A)$ \longrightarrow \mathbb{F} ; χ \longmapsto $\chi(x)$

• The **Gelfand transform** of *A* is the function denoted by γ_A and defined by:

$$\gamma_A: A \longrightarrow \mathscr{F}(\Sigma(A), \mathbb{F}); x \longmapsto \hat{x}$$

THEOREM 14 (Gelfand representation theorem): Let $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$, let $(A, +, \cdot, \times, \|\cdot\|)$ be a commutative Banach \mathbb{F} -algebra and let x be an element of A. Then:

1 In the weak-* topology of $\Sigma(A)$ inherited from A^{\vee} , one has:

$$\gamma_A(x) \in \mathcal{C}_0(\Sigma(A))$$

 γ is a continuous homomorphism of *A* into $\mathscr{C}_0(\Sigma(A))$.

 $\|\gamma\| \le 1$ 6

2

- $\|\hat{x}\| = r(x)$ 4
- **5** If $\mathbb{F} = \mathbb{C}$ and $(A, +, \cdot, \times, ||\cdot||)$ is unital, then:

$$\ker(\gamma) = \bigcap_{I \in \mathcal{M}(A)} I$$

THEOREM 15 (Gleason-Kahane-Żelazko theorem): Let $(A, +, \cdot, \times, \|\cdot\|)$ be a unital Banach \mathbb{C} -algebra and let φ be a \mathbb{C} linear functional on A. Then:

$$\varphi \in \Sigma(A) \iff \begin{cases} \varphi(1_A) = 1 \\ 0 \notin \varphi(A^*) \end{cases}$$

1) c) Involutive Algebras

DEFINITION 25: Let $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$, let $(A, +, \cdot, \times)$ be a \mathbb{F} -algebra and let * be a unary operation in $\mathscr{F}(A, A)$ (also denoted by

• The function * is an **involution** on $(A, +, \cdot, \times)$ if and only if all of the following axioms are satisfied:

$$\forall x \in A, \ (x^*)^* = x$$

$$\forall (x, y) \in A^2, (x+y)^* = x^* + y^*$$

$$\forall (\lambda, x) \in \mathbb{F} \times A, \ (\lambda \cdot x)^* = \overline{\lambda} \cdot x$$

$$\forall (x, y) \in A^2, \ (x \times y)^* = y^* \times x^*$$

• The ordered quintuple $(A, +, \cdot, \times, *)$ is a *- \mathbb{F} -algebra (or involutive \mathbb{F} -algebra) if and only if the function * is an involution on $(A, +, \cdot, \times)$.

C*-Algebras Zakaria Zerrouki (UMich) 06/12/2022 34 / 48 **PROPOSITION 13:** Let $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$ and let $(A, +, \cdot, \times, *)$ be a * -\mathbb{F}-algebra. If $(A, +, \cdot, \times)$ is unital, then:

$$1_A^* = 1_A$$

DEFINITION 26: Let $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$, let $(A, +, \cdot, \times, \|\cdot\|)$ be a Banach \mathbb{F} -algebra and let * be a unary operation in $\mathscr{F}(A, A)$.

- The ordered sextuple $(A, +, \cdot, \times, \|\cdot\|, *)$ is a **normed** *-**F-algebra** if and only if the function * is an involution on $(A, +, \cdot, \times)$.
- The ordered sextuple $(A, +, \cdot, \times, \|\cdot\|, *)$ is a **Banach** *-**F**-algebra if and only if the ordered quintuple $(A, +, \cdot, \times, \|\cdot\|)$ is a Banach \mathbb{F} -algebra and the function * is an involution on $(A, +, \cdot, \times)$

2) **C***-Algebras

2) a) Definitions and Examples

DEFINITION 27: Let $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$ and let $(A, +, \cdot, \times, \|\cdot\|, *)$ be a Banach *- \mathbb{F} -algebra. The Banach *- \mathbb{F} -algebra $(A, +, \cdot, \times, \|\cdot\|, *)$ is a **C*-algebra** if and only if the following condition is satisfied:

$$\forall x \in A, \ \left\|x^* \times x\right\| = \|x\|^2$$

PROPOSITION 14: Let $(A, +, \cdot, \times, ||\cdot||, *)$ be a \mathbb{C}^* -algebra and let x be an element of A. Then:

- 2 The function * is a homeomorphism.
- $\|x\| = \sup_{\substack{y \in A \\ \|y\| \le 1}} (\|x \times y\|) = \sup_{\substack{y \in A \\ \|y\| \le 1}} (\|y \times x\|)$
- If $(A, +, \cdot, \times)$ is unital, then $||1_A|| = 1$.

Example 1: Let $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$. Then all of the following are \mathbf{C}^* -algebras:

- $(\mathbb{F}^n, +, \cdot, \times, \|\cdot\|, \overline{\cdot})$, for any non-zero natural number n.
- $(\mathscr{C}([a,b],\mathbb{F}),+,\cdot,\times,\sup_{[a,b]}(|\cdot|),\overline{\cdot}).$
- **6** $(L^{\infty}(X, \mathcal{A}, \mu), +, \cdot, \times, \sup_{X} (|\cdot|), \overline{\cdot})$ for any measure space (X, \mathcal{A}, μ) .

$$\left(\mathscr{B}(V),+,\cdot,\circ,\sup_{\substack{x\in V\\ \|x\|\leq 1}} (\|\cdot(x)\|),*\right) \text{ for any } \mathbb{F}\text{-Hilbert space } (V,+,\cdot,\langle\cdot,\cdot\rangle).$$

DEFINITION 28: Let $(A, +, \cdot, \times, \|\cdot\|, *)$ be a \mathbb{C}^* -algebra and let x be an element of A.

• The element *x* is **Hermitian** (or **self-adjoint**) if and only if the following condition is satisfied:

$$x = x^*$$

• The element *x* is **normal** if and only if the following condition is satisfied:

$$x \times x^* = x^* \times x$$

• The element x is **unitary** if and only if $(A, +, \cdot, \times)$ is unital and the following condition is satisfied:

$$x \times x^* = x^* \times x = 1_A$$

THEOREM 16: Let $(A, +, \cdot, \times, \|\cdot\|, *)$ be a \mathbb{C}^* -algebra and let x be an element of A. If x is normal, then:

$$||x|| = r(x)$$

COROLLARY 3: Let $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$, let $(A, +, \cdot, \times, *)$ be a *-\mathbb{F}-algebra and let $\|\cdot\|$ be a norm on $(A, +, \cdot, \times)$ such that $(A, +, \cdot, \times, ||\cdot||, *)$ is a \mathbb{C}^* -algebra. Then:

$$\forall x \in A, \ \|x\| = \sqrt{r(x^* \times x)}$$

2) b) The Gelfand-Naimark Theorem

DEFINITION 29: Let $(A, +_A, \cdot_A, \times_A, \|\cdot\|_A, *_A)$ and $(B, +_B, \cdot_B, \times_B, \|\cdot\|_B, *_B)$ and let φ be a function in $\mathscr{F}(A, B)$.

The function φ is a C*-homomorphism of A into B if and only if φ is an isometry and a homomorphism of A into B and the following condition is satisfied:

$$\forall x \in A, \ \varphi(x^*A) = \varphi(x)^*B$$

• The function φ is a \mathbb{C}^* -isomomorphism of A onto B if and only if φ is a bijective \mathbb{C}^* -homomorphism of A into B.

THEOREM 17: Let $(A, +_A, \cdot_A, \times_A, \|\cdot\|_A, *_A)$ and $(B, +_B, \cdot_B, \times_B, \|\cdot\|_B, *_B)$ and let φ be a \mathbb{C}^* -homomorphism of A into B. Then φ is bounded and:

$$\left\|\varphi\right\| \leq 1$$

Zakaria Zerrouki (UMich) C*-Algebras 06/12/2022 41/48

PROPOSITION 15: Let $(A, +, \cdot, \times, \|\cdot\|, *)$ be a \mathbb{C}^* -algebra and let (x, χ) be an ordered pair in $A \times \Sigma(A)$. Then:

- $\chi(x^* \times x) \in \mathbb{R}_{\geq 0}$
- If $(A, +, \cdot, \times)$ is unital and x is unitary, then $|\chi(x)| = 1$.

THEOREM 18: Let $(A, +, \cdot, \times, \|\cdot\|, *)$ be a \mathbb{C}^* -algebra and let x be an element of A. Then:

- $\sigma(x^* \times x) \subseteq \mathbb{R}_{\geq 0}$
- If $(A, +, \cdot, \times)$ is unital and x is unitary, then $\sigma(x) \subseteq \partial \mathbb{D}$.

THEOREM 19: Let $(A, +, \cdot, \times, \|\cdot\|, *)$ be a unital \mathbb{C}^* -algebra (over the field \mathbb{C}) and let x be an element of A. Then:

- $\exp(x^*) = \exp(x)^*$
- If x is Hermitian, then $\exp(i \cdot x)$ is unitary.

THEOREM 20: Let $(A, +, \cdot, \times, \|\cdot\|, *)$ be a commutative \mathbb{C}^* -algebra. Then the Gelfand transform γ_A of A is a \mathbb{C}^* -isomorphism of A onto $\mathscr{C}_0(\Sigma(A))$:

$$A \cong \mathcal{C}_0 \left(\Sigma(A) \right)$$

THEOREM 21 (Gelfand-Naimark theorem): For every commutative \mathbb{C}^* -algebra $(A, +, \cdot, \times, \|\cdot\|, *)$, there exists a locally compact Hausdorff topological space (X, τ) and a \mathbb{C}^* -isomorphism of A onto X:

$$A \cong X$$

2) c) Positive Elements and Positive Linear Functionals

DEFINITION 30: Let $(A, +, \cdot, \times, \|\cdot\|, *)$ be a \mathbb{C}^* -algebra and let x be an element of A. The element x of A is **positive** if and only if x is Hermitian and the following condition is satisfied:

$$\sigma(x) \subseteq \mathbb{R}_{\geqslant 0}$$

PROPOSITION 16: Let $(A, +, \cdot, \times, \|\cdot\|, *)$ be a \mathbb{C}^* algebra and let x be an element of A. The the following are equivalent:

- 1 x is positive.
- $\exists y \in A: \quad (x,y) = (y^2, y^*)$
- $\exists y \in A: \quad x = y^* \times y$

45 / 48

DEFINITION 31: Let $(A, +, \cdot, \times, ||\cdot||, *)$ be a \mathbb{C}^* algebra and let φ be a linear functional in A^{\vee} .

• The functional φ is **positive** if and only if the following condition is satisfied:

$$\forall x \in A, \ \varphi(x^* \times x) \ge 0$$

• The functional φ is a **state** on *A* if and only if the following condition is satisfied:

$$\|\varphi\|=1$$

PROPOSITION 17: Let $(A, +, \cdot, \times, ||\cdot||, *)$ be a \mathbb{C}^* algebra and let x be a normal element of A. Then:

- If $(A, +, \cdot, \times)$ is commutative, then every character χ of A is a state on A.
- For every complex number λ in $\sigma(x)$, there exists a state φ on A such that $\varphi(x) = \lambda$.

THEOREM 22 (Cauchy-Schwarz inequality): Let $(A, +, \cdot, \times, \|\cdot\|, *)$ be a \mathbb{C}^* -algebra, let φ be a positive linear functional in A^{V} and let (x, y) be an ordered pair in A^{Z} . Then:

$$|\varphi(y^* \times x)|^2 \le \varphi(x^* \times x)\varphi(y^* \times y)$$

2) d) The Gelfand-Naimark-Segal Theorem

THEOREM 23 (Gelfand-Naimark-Segal Theorem): For every \mathbb{C}^* -algebra $(A, +, \cdot, \times, \|\cdot\|, *)$, there exists a Hilbert space $(V, +, \cdot, \langle \cdot, \cdot \rangle)$, a closed \mathbb{C}^* -subalgebra \mathscr{L} of $\mathscr{B}(V)$ and a \mathbb{C}^* -isomorphism of A onto \mathscr{L} :

$$A \cong \mathcal{L} \subseteq \mathcal{B}(V)$$

Zakaria Zerrouki (UMich) C*-Algebras 47 / 48 06/12/2022

Bibliography

- [1] Senan Sekhon. C* -algebras: The (Quantum) Path Less Traveled. 2021. DOI: 10.48550/ARXIV.2104.02038. URL: https://arxiv.org/abs/2104.02038.
- [2] Robert Yuncken. *Notes on C*-algebras*. 2015. URL: https://lmbp.uca.fr/~yuncken/Teaching_docs/C-star-algebras.pdf.