73.019: 사진측량학특론

Lab #1: Basic Transformation, Data Import & Export, Visualization

석사과정 전일서

1-1. 회전행렬에서 3 개의 회전 각 값을 계산하는 식 유도하기

Ans) x 축에 대한 회전 각을 ω , y 축에 대한 회전 각을 ϕ , z 축에 대한 회전 각을 κ 라고 한다면, 회전행렬에 대한 계산은 다음과 같이 정리되어 있다.

$$\begin{split} R &= R_{\omega} \cdot R_{\phi} \cdot R_{\kappa} = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix} \\ &= \begin{bmatrix} \cos \phi \cos \kappa & -\cos \phi \sin \kappa & \sin \phi \\ \cos \omega \sin \kappa + \sin \omega \sin \phi \cos \kappa & \cos \omega \cos \kappa - \sin \omega \sin \phi \sin \kappa & -\sin \omega \cos \phi \\ \sin \omega \sin \kappa - \cos \omega \sin \phi \cos \kappa & \sin \omega \cos \kappa + \cos \omega \sin \phi \sin \kappa & \cos \omega \cos \phi \end{bmatrix} \end{split}$$

따라서 각 행렬 요소는 다음을 의미한다.

 $r_{11} = \cos \phi \cos \kappa$

 $r_{12} = -\cos\phi\sin\kappa$

 $r_{13} = \sin \phi$

 $r_{21} = \cos \omega \sin \kappa + \sin \omega \sin \phi \cos \kappa$

 $r_{22} = \cos \omega \cos \kappa - \sin \omega \sin \phi \sin \kappa$

 $r_{23} = -\sin\omega\cos\phi$

 $r_{31} = \sin \omega \sin \kappa - \cos \omega \sin \phi \cos \kappa$

 $r_{32} = \sin \omega \cos \kappa + \cos \omega \sin \phi \sin \kappa$

 $r_{33} = \cos \omega \cos \phi$

각 행렬 요소 값을 알고 있다면, 세 축에 대한 회전 값은 다음과 같이 유도할 수 있다. 우선, r_{13} 과 $(\sin\phi)^2 + (\cos\phi)^2 = 1$ 을 이용하여 $\sin\phi$, $\cos\phi$ 값을 다음과 같이 표현한다.

$$\sin \phi = r_{13} \\ \cos \phi = \pm \sqrt{(1 - r_{13}^2)}$$

사진측량에 사용되는 드론을 생각해보면, 영상에 대한 자세 값은 0~360° 범위로 산출될 수 있다. 따라서 범위가 한정되지 않도록 ϕ , ω , κ 를 구하기 위해 단위원 개념을 사용하여 삼각함수를 정의한다. 단위원 기반의 삼각함수는 아래 그림과 같이 원점 0 를 중심으로 한 반지름이 1 인 원(단위원)을 생각하고, 그 단위원 상의 점 P(x, y)를 사용해서 정의하는 것을 의미한다.

 ϕ , ω , κ 는 다음을 통해 얻을 수 있다.

$$\phi = \tan^{-1} \left(\frac{r_{13}}{\pm \sqrt{(1 - r_{13}^2)}} \right)$$

$$\omega = \tan^{-1} \left(\frac{r_{23}}{-r_{23}} \right) \text{ or } \omega = \tan^{-1} \left(\frac{-r_{23}}{r_{23}} \right)$$

$$\kappa = \tan^{-1}\left(\frac{r_{12}}{-r_{11}}\right) or \ \kappa = \tan^{-1}\left(\frac{-r_{12}}{r_{11}}\right)$$

다시 탄젠트 값을 결정하는 분모 값이 +인지 –인지의 부호에 따라 다음의 2 가지 경우의 수를 생각할 수 있다.

$$(i) + \sqrt{(1-r_{13}^2)} = \cos \phi > 0$$
 일때,

$$\phi = \tan^{-1}\left(\frac{r_{13}}{+\sqrt{(1-r_{13}^2)}}\right), \omega = \tan^{-1}\left(\frac{-r_{23}}{r_{33}}\right), \kappa = \tan^{-1}\left(\frac{-r_{12}}{r_{11}}\right)$$

(ii)
$$-\sqrt{(1-r_{13}^2)} = \cos \phi < 0$$
 일 때,

$$\phi = \tan^{-1}\left(\frac{r_{13}}{-\sqrt{(1-r_{13}^2)}}\right)$$
, $\omega = \tan^{-1}\left(\frac{r_{23}}{-r_{33}}\right)$, $\kappa = \tan^{-1}\left(\frac{r_{12}}{-r_{11}}\right)$

1-2. 회전 각에서 회전 행렬 구하는 함수, 회전행렬에서 회전각 구하는 함수 만들기 (MATLAB 이용)

실행 파일: Lab1_1.m

함수 파일: A2R RPY, A2R OPK1, R2A RPY, R2A OPK1

Lab1_1.m

①Mavic pro 로 촬영한 영상을 불러온다. 2019 년 6 월 25 일 연도에서 촬영된 영상이다.

```
fid = fopen( 'mavic2_eoini_tm.txt', 'r');
% % 차례대로 영상이름 Easting, Northing, Altitude, Yaw, Pitch, Roll
imgexif = textscan(fid, '%s %f %f %f %f %f %f', 'CommentStyle','#');
fclose(fid);
```

②모든 영상에 대한 yaw, pitch, roll 값을 새로운 변수에 저장한다.

```
no_data = size(imgexif{2},1);
angles = zeros(no_data, 3);

for n = 1:no_data
    angles(n,:) = [imgexif{5}(n), imgexif{6}(n), imgexif{7}(n)];
end
```

③A2R_RPY 함수를 이용하여 회전행렬을 구한다.

A2R_RPY 함수를 살펴보면, 3 개의 축에 대한 회전 값 roll, pitch, yaw 를 NED 좌표계로의 회전 행렬로 만드는 함수에 해당한다. 입력 순서가 yaw pitch roll 이라면, yaw, pitch 는시계 반대 방향이 양의 방향으로 회전하도록, kappa 는 반시계 방향이 양의 방향으로 회전하도록 정의되어 있다. 또한, Rx 자리에는 pitch 가, Ry 자리에는 roll 이, Rz 자리에는 kappa 를 이용하도록 정의되어 있다.

```
om = ra(2);
ph = ra(1);
kp = -ra(3);
각 축에 대한 행렬 곱의 순서는 다음과 같이 정해져 있다.
Rx = [1 0 0; 0 cos(om) -sin(om); 0 sin(om) cos(om)];
Ry = [cos(ph) 0 sin(ph); 0 1 0; -sin(ph) 0 cos(ph)];
Rz = [cos(kp) -sin(kp) 0; sin(kp) cos(kp) 0; 0 0 1];
```

④A2R_OPK1 함수를 이용하여 회전행렬을 구한다.

```
% ypr => ypr
% R = Rx * Ry * Rz;
A2R_2 = cell(no_data, 1);
]for n = 1:no_data
    A2R_2\{n\} = A2R_0PK1(angles(n,:));
- end
3 개의 축에 대한 회전 값 omega, phi, kappa 를 지상좌표계로의 회전 행렬로 만드는
함수에 해당한다. 입력 순서가 yaw pitch roll 이라면, 반시계방향 회전이 양의 방향으로
정의되어 있다. Omega 에는 vaw 가, phi 에는 pitch 가, kappa 에는 roll 이 입력되도록
되어 있다.
 om = ra(1);
ph = ra(2);
kp = ra(3);
각 축에 대한 행렬 곱의 순서는 다음과 같이 정해져 있다.
 Rx = [1 \ 0 \ 0; \ 0 \ cos(om) \ -sin(om); \ 0 \ sin(om) \ cos(om)];
 Ry = [\cos(ph) \ O \ \sin(ph); \ O \ 1 \ O; \ -\sin(ph) \ O \ \cos(ph)];
 Rz = [cos(kp) - sin(kp) 0; sin(kp) cos(kp) 0; 0 0 1];
-R = Rx * Ry * Rz;
⑤R2A RPY 를 이용하여 다시 각 축에 대한 회전각을 구한다.
  R2A_1 = zeros(no_data, 3);
⊡ for n = 1:no_data
      R2A_1_{tmp} = R2A_RPY(A2R_1\{n\});
      R2A_1_a = R2A_1_tmp(1,:);
      R2A_1_b = R2A_1_tmp(2,:);
 ∟endi
1-1 에서 유도한 식이 구현되어 있다.
 s_{om} = R(3,2);
 c_{om} = zeros(2,1);
 c_{om}(1) = sqrt(1-s_{om}^2);
 c_{om}(2) = -sqrt(1-s_{om}^2);
 kp = zeros(2,1);
 ph = zeros(2,1);
 kp(1) = atan2(-R(1,2), R(2,2));
 ph(1) = atan2(-R(3,1), R(3,3));
```

A2R_RPY 에서 입력되었던 시계방향, 반시계방향과 omega, phi, kappa 의 자리, 행렬 곱의 순서가 고려되어 다시 다음과 같이 얻는다.

kp(2) = atan2(R(1,2), -R(2,2));ph(2) = atan2(R(3,1), -R(3,3));

```
ra(:,1) = ph;
ra(:,2) = atan2(s_om, c_om);
-ra(:,3) = -kp;
```

1-1 에서 확인 하였듯이 2 가지 경우의 값을 구할 수 있다.

⑥R2A OPK1 을 이용하여 다시 각 축에 대한 회전각을 구한다.

```
% rotation matrix to angle
% R = Rx * Ry * Rz;
R2A_2 = zeros(no_data, 3);

for n = 1:no_data
    R2A_2_tmp = R2A_OPK1(A2R_1{n});
    R2A_2_a = R2A_2_tmp(1,:);
    R2A_2_b = R2A_2_tmp(2,:);
end
```

마찬가지로 1-1 에서 유도한 식이 구현되어 있고, A2R_OPK1 에서 입력되었던대로 고려되어 다시 다음과 같이 각 값을 얻을 수 있다.

```
ra(:,1) = om;
ra(:,2) = atan2(s_ph, c_ph);
·ra(:,3) = kp;
```

2.a exif 태그에서 영상 위치/자세 값 추출하기

%copyright 강민

사용 언어: 파이썬

사용 라이브러리: pillow, csv 등

Extract data 함수 안에서 영상에 태깅 되어 있는 yaw, pitch, roll 값을 추출한다.

다음의 코드에서 GPS 값을 입력받는다.

저장 방식은 tsv 혹은 csv 형태가 있다.

2.b 지상좌표계에서 카메라 좌표계와 영상 바운더리 표현하기,

영상을 읽는다. 영상 자료는 2019 년 6 월 연도에서 mavic pro 로 취득되었다. 위치 값은 위경도 좌표계에서 중부원점 tm 좌표계로 변환되었다. flight yaw, pitch, roll 을 입력받아 카메라 자세를 변환하도록 한다.

②지상 좌표계에 표현된 카메라 위치/자세를 입력한다.

C BG 는 차례로 Easting, Northing, Altitude 를 의미한다.

A BG 는 차례로 yaw, pitch, roll 을 의미한다.

R BG 는 차례로 A2R RPY 함수로 계산된 각에서 행렬로 변환된 것을 의미한다.

```
%% 지상 좌표계에 표현된 카메라 위치/자세 입력

C_BG = zeros(no_data,3);

A_BG = zeros(no_data,3);

R_BG = cell(no_data,1);

for n = 1:no_data

    C_BG(n,:) = [imgexif{2}(n) imgexif{3}(n) imgexif{4}(n)];

    A_BG(n,:) = [imgexif{5}(n) imgexif{6}(n) imgexif{7}(n)];

    R_BG(n) = A2R_RPY(A_BG(n,:));

end
```

③카메라 렌즈와 영상이 평행하다고 가정이 되어 영상 각 4 개의 모서리의 좌표 값을 지상기준점으로 표현되게 구한다. 이 과정에서 초점거리, 픽셀사이즈와 해상도가 필요하다. 실제 단위 m 로 변환하려면 /1000 을 해야하지만, 그래프에 가시화하기 위해임의로 단위를 더 크게 한다...

```
%% 지상 좌표계에 표현된 명상 위치

%mavic pro spec

p_size = (0.00241228)/10; %단위 : m

f= (8.8)/10; %단위 : m

f_mat = [0 0 f];

s_width = 5472;

s_height = 3648;
```

④영상좌표계에서 카메라 좌표계로 변환한다. 영상에서 4 개의 꼭짓점을 정의하고 각점을 카메라 좌표계로 원점 이동한 뒤 좌표 변환한다.

⑤카메라좌표계에서 지상좌표계로 변환한다. 영상의 4 꼭지점을 다시 지상좌표계 기준으로 표현하기 위해 회전변환과 이동변환을 수행한다.

⑥지상좌표계에 표현된 카메라 좌표계와 영상 위치를 그린다. 여러장의 영상을 표현하기에 실제 영상의 크기가 너무 작아 한 장의 영상만 표현하였다.

```
pt=zeros(no_data, 3);
 cs = {'r', 'g', 'b'};
 img_x=cell(no_data, 1);
 img_y=cell(no_data, 1);
 img_z=cell(no_data, 1);
 figure ()
hold on
]for n = 1:no_data
     %% 카메라 좌표계 그리기
     for k = 1:3
         cstr = cs{k};
         pt(n,:) = C_BG(n,:)' + 0.005 * R_BG(n)(k,:)';
         plot3([C\_BG(n,1),\ pt(n,1)],\ [C\_BG(n,2),\ pt(n,2)],\ [C\_BG(n,3),\ pt(n,3)],\ 'r-',\ 'LineWidth',\ 1,\ 'Color',\ cstr);
     🗯 명상 위치 그리기
     img_x\{n\} = [u_1|_gcs(n,1)|u_1|_gcs(n,1)|d_1|_gcs(n,1)|d_1|_gcs(n,1)|u_1|_gcs(n,1)]';
     img\_y\{n\} = [u\_l\_gcs(n,2) \ u\_r\_gcs(n,2) \ d\_r\_gcs(n,2) \ d\_l\_gcs(n,2) \ u\_l\_gcs(n,2)]';
     img_z\{n\} = [u_ll_gcs(n,3) \ u_rl_gcs(n,3) \ d_rl_gcs(n,3) \ d_ll_gcs(n,3) \ u_ll_gcs(n,3)]^*;
     plot3(img_x\{n\}, img_y\{n\}, img_z\{n\}, 'b--', 'LineWidth', 4);
end
 view(3)
 grid on, axis equal
 title('R(BG)')
 xlabel('X'), ylabel('Y'), zlabel('Z')
```

아래는 결과 화면이다. 카메라 좌표계 위치/자세와 영상의 위치/자세를 표현하였다. 카메라 좌표계의 파란색 축이 z 축을, 빨강색 축이 x 축을, 초록색 축이 y 축을 나타내고 있다.

