Topologia I

Rozwiązanie zadania domowego nr. 4

KONRAD KACZMARCZYK

16 stycznia 2025

Zadanie. Prozpatrujemy \mathbb{R}^2 z metryką rzeka. Niech:

$$X = \{(x, y) \in \mathbb{R}^2 : -1 \le x \le 0 \le y \le \}$$

- 1. Czy X jest przestrzenią spójną? Odpowiedź uzasadnij.
- 2. Czy X jest przestrzenią zwartą? Odpowiedź uzasadnij.
- 3. Czy X jest przestrzenią zupełną? Odpowiedź uzasadnij.
- 1. Tak, przestrzeń jest spójna, a nawet łukowo spójna (oczywstą drogą miedzy punktami jest przejście do rzeki i zniej dostanie się do dowolnego punktu).
- 2. Nie, przestrzeń nie jest zwarta. Weźmy punkty których współrzędna "igrekowa" jest równa dla przykładu $\frac{1}{2}$, możemy wybrać na nich dowolny ciąg, i on (pod warunkiem że punkty się nie powtarzają) jest niezbieżny w tej przestrzeni.
- 3. Tak, przestrzeń X jest zupełna. Udowodnijmy że (\mathbb{R}^2, d_r) jest zupełna: Weźmy dowolny ciąg Cauchy'ego $(a_n)_{n=1}^{\infty}$, czyli $a_n = (x_n, y_n)$. Z definicji metryki kolejowej mamy że:

$$|x_n - x_k| \le d_r(a_n, a_k) \qquad |y_n - y_k| \le d_r(a_n, a_k)$$

czyli spełniają warunek Cauchy'ego na prostej. Mamy więc $x_n \to x$ i $y_n \to y$. Wystarczy pokazać: $a_n \to (x, y)$.

- (a) Jeśli $y \neq 0$ to dla dostatecznie dużego N punkty leżą na tej samej prostopadłej do rzeki czyli od pewnego momentu mamy $x_n = x$ i $d_r = d_e$ więc zbieganie jest jak na prostej czyli $a_n \to (x, y)$
- (b) Jeśli y = 0 to dowolnym rombie wokół (x, y) leża prawie wszystkie wyrazy a_n , gdyż prawie wszystkie leża w dowolnych odcinkach wokół x i y, więc możemy wziąć takie dla których współędna "igrekowa"lub "iksowa"są stałe.

co dowodzi że (\mathbb{R}^2, d_r) jest przestrzenią zupełną, a obcięcie jej do X której jest domknięte, ciągle jest zupełne.

Zadanie. Dla dowolnej liczby rzeczywistej a niech $X(a) = \{f \in C[0,1] : f(0) = a\}.$

- (a) Udowodnij, że X(a) jest zbiorem domkniętym i brzegowym w przestrzeni metrycznej $(C[0,1].d_{sup}).$
- (b) Niech $X=\bigcup_{q\in\mathbb{Q}}X(q)$. Czy przestrzeń X przestrzeni $(C[0,1],d_{sup})$ jest metryzowalna w sposób zupełny?