In [51]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns
 from sklearn.linear_model import LinearRegression
 from sklearn.linear_model import ElasticNet
 from sklearn.linear_model import BayesianRidge
 from sklearn.metrics import r2_score as r2
 from sklearn.ensemble import RandomForestRegressor

In [28]: df=pd.read_excel(r'C:\Users\Shubham\Desktop\DS-assignment\DS - Assignment Part 1 data set.xlsx')

In [29]: df.head()

Out[29]:		Transaction date	House Age	Distance from nearest Metro station (km)	Number of convenience stores	latitude	longitude	Number of bedrooms	House size (sqft)	House price of unit area
	0	2012.916667	32.0	84.87882	10	24.98298	121.54024	1	575	37.9
	1	2012.916667	19.5	306.59470	9	24.98034	121.53951	2	1240	42.2
	2	2013.583333	13.3	561.98450	5	24.98746	121.54391	3	1060	47.3
	3	2013.500000	13.3	561.98450	5	24.98746	121.54391	2	875	54.8
	4	2012.833333	5.0	390.56840	5	24.97937	121.54245	1	491	43.1

In [30]: df.describe()

Out[30]:		Transaction date	House Age	Distance from nearest Metro station (km)	Number of convenience stores	latitude	longitude	Number of bedrooms	House size (sqft)	House price of unit area
	count	414.000000	414.000000	414.000000	414.000000	414.000000	414.000000	414.000000	414.000000	414.000000
	mean	2013.148953	17.712560	1083.885689	4.094203	24.969030	121.533361	1.987923	931.475845	37.980193
	std	0.281995	11.392485	1262.109595	2.945562	0.012410	0.015347	0.818875	348.910269	13.606488
	min	2012.666667	0.000000	23.382840	0.000000	24.932070	121.473530	1.000000	402.000000	7.600000
	25%	2012.916667	9.025000	289.324800	1.000000	24.963000	121.528085	1.000000	548.000000	27.700000
	50%	2013.166667	16.100000	492.231300	4.000000	24.971100	121.538630	2.000000	975.000000	38.450000
	75%	2013.416667	28.150000	1454.279000	6.000000	24.977455	121.543305	3.000000	1234.750000	46.600000
	max	2013.583333	43.800000	6488.021000	10.000000	25.014590	121.566270	3.000000	1500.000000	117.500000
In [31]:	df.inf	0()								

```
In [31]:
         <class 'pandas.core.frame.DataFrame'>
```

memory usage: 29.2 KB

RangeIndex: 414 entries, 0 to 413 Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype			
0	Transaction date	414 non-null	float64			
1	House Age	414 non-null	float64			
2	Distance from nearest Metro station (km)	414 non-null	float64			
3	Number of convenience stores	414 non-null	int64			
4	latitude	414 non-null	float64			
5	longitude	414 non-null	float64			
6	Number of bedrooms	414 non-null	int64			
7	House size (sqft)	414 non-null	int64			
8	House price of unit area	414 non-null	float64			
<pre>dtypes: float64(6), int64(3)</pre>						

In [33]: df.drop(columns='Transaction date',inplace=True)

```
In [34]: # showing correlation between 'House price of unit area' with other columns
         corr= df.corr()
         print(corr['House price of unit area'].sort_values(ascending=False))
```

```
House price of unit area
                                                      1.000000
         Number of convenience stores
                                                      0.571005
         latitude
                                                      0.546307
         longitude
                                                      0.523287
         Number of bedrooms
                                                      0.050265
         House size (sqft)
                                                     0.046489
         House Age
                                                     -0.210567
         Distance from nearest Metro station (km)
                                                     -0.673613
         Name: House price of unit area, dtype: float64
In [55]: # Checking the distribution
         %matplotlib inline
         plt.figure(figsize = (20,5))
         plt.subplot(1,4,1)
         sns.kdeplot(df['House Age'], shade = True, color = "g")
         plt.subplot(1,4,2)
         sns.kdeplot(df["Distance from nearest Metro station (km)"], shade = True, color = "r")
         plt.subplot(1,4,3)
         sns.kdeplot(df['Number of convenience stores'], shade = True, color = "b")
         <AxesSubplot:xlabel='Number of convenience stores', ylabel='Density'>
Out[55]:
```



```
In [44]: plt.figure(figsize = (20,5))

plt.subplot(1,4,1)
sns.kdeplot(df.latitude, shade = True, color = "purple")

plt.subplot(1,4,2)
sns.kdeplot(df.longitude, shade = True, color = "b")

plt.subplot(1,4,3)
sns.kdeplot(df['Number of bedrooms'], shade = True, color = "r")
```

Out[44]: <AxesSubplot:xlabel='Number of bedrooms', ylabel='Density'>


```
In [47]: plt.figure(figsize = (20,5))

plt.subplot(1,4,1)
sns.kdeplot(df['House size (sqft)'], shade = True, color = "g")

plt.subplot(1,4,3)
sns.kdeplot(df['House price of unit area'], shade = True, color = "orange")
```

Out[47]: <AxesSubplot:xlabel='House price of unit area', ylabel='Density'>


```
In [48]: # Dividing data into test and train
from sklearn.model_selection import train_test_split

X_var = df[['House Age', 'Distance from nearest Metro station (km)', 'Number of convenience stores', 'latitude','longitude','Numl y_var = df['House price of unit area'].values

X_train, X_test, y_train, y_test = train_test_split(X_var, y_var, test_size = 0.2, random_state = 100)
```

Checking different models for prediction

```
en = ElasticNet(alpha = 0.01)
         en.fit(X_train, y_train)
         en yhat = en.predict(X test)
         RFR = RandomForestRegressor(n estimators=50)
         RFR.fit(X train, y train)
         RFR yhat = RFR.predict(X test)
In [54]: # Finding Scores
         print('Score of linear regression model is:',(r2(y test, lr yhat)))
         print('Score of bayesian ridge model is:',(r2(y_test, bs_yhat)))
         print('Score of elastic net model is:',(r2(y test, en yhat)))
         print('Score of random fores regressor model is:',(r2(y test, RFR yhat)))
         Score of linear regression model is: 0.6706304461257995
         Score of bayesian ridge model is: 0.639153931657249
         Score of elastic net model is: 0.6466951999153748
         Score of random fores regressor model is: 0.8370383173986403
In [19]: # Best model is Random Forest
```