- 1. (Aug-13.3) Let I and J be ideals in a commutative ring R.
 - (a) Show that if I + J = R, then $I \cap J = IJ$.
 - (b) Suppose that I and J are ideals in $\mathbb{C}[x]$, and suppose that I + J = (x). Show that $(I \cap J)/IJ$ is 1-dimensional as a complex vector space, and moreover that it is isomorphic to $\mathbb{C}[x]/(x)$ as a $\mathbb{C}[x]$ -module.
 - (c) On the other hand, for general commutative rings R, once R/(I+J) is not trivial, the difference between $I \cap J$ and IJ can be large even if $R/(I \cap J)$ is small. Demonstrate this by showing that, if $R = \mathbb{C}[x,y]$, there exist ideals I and J in R such that I+J=(x,y) and the dimension of $(I\cap J)/IJ$ as a \mathbb{C} -vector space is at least 100.
 - **Solution:** We will also assume that R has a 1, because otherwise the result of (a) is false: if $I = J = R = 2\mathbb{Z}$, then clearly I + J = R, $I \cap J = 2\mathbb{Z}$, and $IJ = 4\mathbb{Z}$.
 - a) Clearly $IJ \subseteq I \cap J$, even without the comaximality condition. For the other direction, suppose $x \in I \cap J$ and note that there exist $r_i \in I$ and $r_j \in J$ such that $r_i + r_j = 1$: then $x = x(r_i + r_j) = r_i x + x r_j$, and each term is in IJ.
 - b) Since $\mathbb{C}[x]$ is a PID, let I=(xp) and J=(xq). Since I+J=(x), there exist polynomials r and s such that rxp+sxq=x hence rp+sq=1, so p and q are relatively prime. It is then immediate that $I\cap J=(xpq)$ and $IJ=(x^2pq)$. The cosets of $(I\cap J)/IJ$ are just the \mathbb{C} -multiples of \overline{xpq} , and multiplication by x kills everything, so the $\mathbb{C}[x]$ -module structure is the same as that of $\mathbb{C}[x]/(x)$. The statement about the dimension follows immediately.
 - c) Take $I = (x^n, x^{n-1}y, \dots, y^n)$ and J = (x, y): then $I \cap J = I$ while $IJ = (x^{n+1}, x^ny, \dots, y^{n+1})$. Then each coset of $(I \cap J)/IJ$ has a unique representative that is a homogeneous polynomial of degree n, so the quotient is an (n+1)-dimensional \mathbb{C} -vector space. Now just pick any $n \geq 99$.
- 2. (Jan-04.2) Let K be a field and R be the subring of K[x] of all polynomials with zero x-coefficient.
 - (a) Show that x^2 and x^3 are irreducible but not prime in R.
 - (b) Show that R is Noetherian.
 - (c) Show that the ideal of all polynomials of R with zero constant term is not principal.

- a) If $p(x) \cdot q(x)$ were a nontrivial factorization of x^2 or x^3 , then one of p, q would necessarily have degree 1, but there are no polynomials in R of degree 1. They are not prime since x^2 divides $x^6 = x^3 \cdot x^3$ but does not divide x^3 , and x^3 divides $x^6 = x^4 \cdot x^2$ but does not divide x^4 or x^2 .
- b) Observe that R is generated (as a ring) by $1, x^2, x^3$, since these elements generate all the monomials in R. Hence we see that R is a quotient of the ring K[y, z] under the map φ sending $y \mapsto x^2$ and $z \mapsto x^3$. Then since K[y, z] is Noetherian and quotients of Noetherian rings are Noetherian, we see R is Noetherian.
- **Remark** It is not necessary for the argument above, but one can show that the kernel of φ is the principal ideal $(y^3 z^2)$.
- c) If this ideal were principal and generated by q(x), then x^2 and x^3 would necessarily be polynomials in q(x), but then deg(q) must divide 2 and 3, hence must divide 1, which is impossible.

- 3. (Jan-13.3) A ring R is "von Neumann regular" if for every $a \in R$ there exists an $x \in R$ with a = axa. (The element x is called a weak inverse of a.) In particular, observe that every division ring is von Neumann regular: take x = 0 for a = 0 and $x = a^{-1}$ otherwise.
 - (a) Give an example of a commutative von Neumann regular ring which is not a field.
 - (b) Let $R = M_2(\mathbb{C})$ and $a = e_{12}$, the nilpotent matrix which sends $(e_1, e_2) \mapsto (0, e_1)$. Find a weak inverse for a.
 - (c) Show that if V is a vector space over a field k, the ring of endomorphisms $\operatorname{End}_k V$ is von Neumann regular.

- a) A general class of examples is the collection of (finite or infinite) direct products of fields $R = \prod F_i$, where there is more than one term in the product. The weak inverse of an element is taken componentwise: either 0 (for a component of 0) or the inverse (for nonzero components).
- **Remark** This class includes all rings $\mathbb{Z}/n\mathbb{Z}$ where n is squarefree. In fact, $\mathbb{Z}/n\mathbb{Z}$ is von Neumann regular iff n is squarefree: we require for every $a \in R$ that there exists x such that n divides a(1-ax); if n is divisible by p^2 where p is prime, then taking a=p yields a contradiction. Otherwise, if $\gcd(a,n)=d$, then we require $\frac{n}{d}$ to divide 1-ax, and such an x exists because a and $\frac{n}{d}$ are relatively prime (since n is squarefree).
- **b)** One can check with direct calculation that for $a = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $x = \begin{pmatrix} p & q \\ r & s \end{pmatrix}$, we have $axa = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} p & q \\ r & s \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} r & s \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & r \\ 0 & 0 \end{pmatrix}$, so we can take $x = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.
- c) Choose a basis $\{e_i\}_{i\in I}$ for $\operatorname{im}(a)$ and a basis $\{f_j\}_{j\in J}$ for $\operatorname{ker}(a)$. By the first isomorphism theorem, if we choose arbitrary $v_i \in V$ with $a(v_i) = e_i$ for $i \in I$, then $\{v_i\}_{i\in I} \cup \{f_j\}_{j\in J}$ is a basis of V. Now define the transformation x by setting $x(e_i) = v_i$ and $x(f_j) = 0$: we have $axa(v_i) = ax(e_i) = a(v_i)$, and $axa(f_i) = ax(0) = 0 = a(f_i)$, so x is a weak inverse of a.
- **c-alt)** In the event that V is finite-dimensional we can give a more explicit linear-algebra argument: write $V = W \oplus W'$ where W is the generalized 0-eigenspace of a. On W', a acts as an invertible matrix so there we can take the weak inverse to be $a^{-1}|_{W'}$. On W, the Jordan form of $a|_W$ has entries of only 0 and 1, hence by changing K-basis we can assume that $a|_W$ is a direct sum of Jordan blocks. Again by considering each block separately, it is enough to find a weak inverse of a $d \times d$ Jordan block with eigenvalue 0. Following the example from part (b), we see that if we take $a:e_1\mapsto 0$ and $e_{i+1}\mapsto e_i$, then it has a weak inverse given by $x:e_d\mapsto 0$, $e_i\mapsto e_{i+1}$. We conclude that every element of $\operatorname{End}_k V$ has a weak inverse.
- 4. (Aug-05.2) Let R be a ring with 1, V a Noetherian right R-module, and $\theta: V \to V$ a homomorphism.
 - (a) Show that $\ker(\theta^{n+1}) = \ker(\theta^n)$ for some $n \ge 1$.
 - (b) If θ is onto, prove that it is one-to-one.
 - (c) If V has a unique maximal submodule M, and it is true that if $X \subseteq Y$ are any submodules with $Y/X \cong V/M$ then Y = V, prove that θ is either 0 or an isomorphism.

Solutions

- a) Clearly $\ker(\theta^{j+1}) \supseteq \ker(\theta^j)$, so the successive kernels of θ, θ^2, \cdots form an ascending chain of submodules. Since V is Noetherian, it must stabilize at some finite stage j = n.
- b) Suppose $\theta(v) = 0$. By a trivial induction, θ^n is onto, so there exists v' with $\theta^n(v') = v$. Then $\theta^{n+1}(v') = 0$, meaning that $v' \in \ker(\theta^{n+1})$. But $\ker(\theta^{n+1}) = \ker(\theta^n)$, so in fact $v' \in \ker(\theta^n)$ whence $v = \theta^n(v') = 0$.
- c) Suppose θ is nontrivial: then the kernel of θ is a proper submodule hence contained in M. The first isomorphism theorem then says $\theta(V) \cong V/\ker(\theta)$ and $\theta(M) \cong M/\ker(\theta)$, so by the third isomorphism theorem we see $V/M \cong \theta(V)/\theta(M)$. The given criterion then says $\theta(V) = V$ so θ is onto; then by part (b) it is one-to-one, hence an isomorphism.

- 5. (Aug-03.2) Let R be a commutative integral domain (with 1).
 - (a) If K is the field of fractions of R and $t \in R$ is such that K = R[1/t], show that t is contained in every nonzero prime ideal of R.
 - (b) Let $R = F[x_1, \dots, x_n]$ for a field F. If $f(x_1, \dots, x_n)$ is contained in every nonzero prime ideal of R, show that $f(a_1, \dots, a_n) = 0$ for all $a_1, \dots, a_n \in F$.
 - (c) Suppose $f(x_1, \dots, x_n)$ is a polynomial with coefficients in F, where F is an infinite field. If $f(a_1, \dots, a_n) = 0$ for all $a_1, \dots, a_n \in F$, show that f is the zero polynomial.

- a) Let P be a prime ideal and $r \in P \setminus \{0\}$. By hypothesis, 1/r is a polynomial in 1/t, so $1/r = a_0 + a_1 t^{-1} + \cdots + a_n t^{-n}$, so $t^n = r(a_0 t^n + \cdots + a_n)$. We conclude that $t^n \in P$ so since P is prime, $t \in P$.
- b) The evaluation map $g \mapsto g(a_1, \dots, a_n)$ is a surjective homomorphism from R to F, whose kernel is therefore a maximal hence prime ideal of R. Then f is contained in the kernel of this homomorphism, so $f(a_1, \dots, a_n) = 0$ for any $a_1, \dots, a_n \in F$.
- c) We prove the contrapositive (a nonzero function takes a nonzero value) by induction on the number of variables. If f is a one-variable function, it has only finitely many zeroes over F, since F is a field, so it is nonzero somewhere since F is infinite. Now suppose the result holds for any polynomial in at most k variables and let $f \in F[x_1, \dots, x_k, y]$ where f has positive y-degree. Consider f as a function of y with coefficients in $F[x_1, \dots, x_k]$: explicitly, as $f(\bar{x}, y) = p_0 + p_1 y + \dots + p_n y^n$, where p_n is not the zero polynomial. Now by hypothesis, there exists a choice (a_1, \dots, a_k) for which $p_n(a_1, \dots, a_k) \neq 0$: then $f(\bar{a}, y) = c_0 + \dots + c_n y^n$ where $c_n \neq 0$. Since this polynomial in the single variable y is not the zero polynomial, we conclude that it is nonzero somewhere. Hence we are done.

Remark Part (c) is a version of the weak Nullstellensatz.

- 6. (Jan-09.2) Let S be the subring of $\mathbb{C}[x]$ consisting of all polynomials with real constant term.
 - (a) Show that the ideal of S consisting of all polynomials with 0 constant term is not principal.
 - (b) Let I be a nonzero ideal of S and choose $f \in I \setminus \{0\}$ to have minimal possible degree n. If $g \in I$, show that there exists $s \in S$ with g sf either equal to 0 or to a polynomial of degree n.
 - (c) Conclude that any ideal I of S is either principal or generated by two elements of the same degree.

- a) Suppose this ideal were principal and generated by p(x); note clearly that p has degree ≥ 1 . Then there would necessarily exist elements q_1 and q_2 in S such that $p(x) \cdot q_1(x) = x$ and $p(x) \cdot q_2(x) = ix$. Since the degree of p is ≥ 1 we see that it must equal 1, which forces q_1 and q_2 to have degree 0 hence be (nonzero) constants. Since they are in S they must be real numbers, but this is a contradiction since dividing the two relations yields $i = \frac{q_2}{q_1}$.
- b) By minimality of $f = b_n x^n + \cdots$, we know that g has degree at least n. If the degree of g is exactly n then we are done since we may take s = 0. If the degree of g is larger than n, say $g = a_{n+k} x^{n+k} + \cdots$ with $k \ge 1$, then we may perform the first step of polynomial division to replace g with $g \frac{a_{n+k}}{b_n} x^k f$ to reduce the degree of g by (at least) 1; note that $\frac{a_{n+k}}{b_n} x^k \in S$ since it has positive degree. Then by an obvious downward induction, the result holds.
- c) If I=0 we are done. Otherwise, apply part (b) with $f\in I$ of minimal degree n, say $f=(c+di)x^n+o(x^{n-1})$. Either it is the case that every other $g\in I$ is a multiple of f (in which case I is principal) or some $g\in I$ can be written as g=sf+g' where the degree of g' is also n, say $g'=(a+bi)x^n+o(x^{n-1})$. By minimality, we know that a+bi and c+di must be \mathbb{R} -linearly independent, otherwise we would have an \mathbb{R} -linear combination f-rg' of degree less than n, contradicting the minimality of f. Hence we may take appropriate linear combinations to see that I contains two elements $f'=x^n+o(x^{n-1})$ and $g''=ix^n+o(x^{n-1})$. Applying the result of part (b) to this f' shows that every $h\in I$ can be written in the form $h=sf+\left[ax^n+bix^n+o(x^{n-1})\right]=(s-a)f'+bg''+o(x^{n-1})$, and by minimality the $o(x^{n-1})$ term must be zero since h-(s-a)f'-bg'' lies in I and has degree less than n. Hence I is generated by f' and g'', so it is generated by 2 elements.

- 7. (Aug-01.2) Let R be a commutative ring with 1 and M a maximal ideal of R.
 - (a) Show that R/M^2 has no idempotents other than 0 and 1.
 - (b) If R is Noetherian, show that M/M^2 is a finitely-generated R/M-module.
 - (c) If $R = K[x_1, \dots, x_t]$ where K is a field, show that $\dim_K(R/M^2) < \infty$.

- a) The ring R/M^2 has a maximal ideal M/M^2 , since $(R/M^2)/(M/M^2) \cong R/M$ is a field. If e is an idempotent in R/M^2 then $\bar{e}(1-\bar{e})$ in R/M, but this forces \bar{e} or $1-\bar{e}$ to be zero since R/M is a field. We conclude that e or 1-e is in M/M^2 , but since the square of any element in M/M^2 is zero, we see either $e^2=e$ or $(1-e)^2=1-e$ is zero, so that e is 0 or 1.
- b) Since R is Noetherian, M is finitely-generated as an R-module, say by x_1, \dots, x_k : then for any $m \in M$ we can write $m = \sum r_i x_i$ for some $r_i \in R$. Passing to M/M^2 gives $\bar{m} = \sum \bar{r}_i \bar{x}_i$, so we see that $\bar{x}_1, \dots, \bar{x}_k$ generate M/M^2 . (Note that $\bar{r}_i \in R/M = F$ so this does make sense!)
- c) Since polynomial rings are Noetherian by Hilbert's Basis Theorem, part (b) implies that M/M^2 is a finitely-generated R/M-module. Since $(R/M^2)/(M/M^2) \cong R/M$, the desired statement then follows from the fact that R/M is itself a finite-dimensional K-vector space, which is in turn implied by the Nullstellensatz. Explicitly: if $M = (p_1, \dots, p_t)$, then if $(\alpha_1, \dots, \alpha_t)$ is a common root of the polynomials p_i (in some algebraic closure \bar{F}) whose existence is guaranteed by the Nullstellensatz, then the evaluation map sending $p \mapsto p(\alpha_1, \dots, \alpha_t)$ yields an isomorphism of R/M with $K(\alpha_1, \dots, \alpha_t)$, and the latter is a finite-degree extension of K (since all of the α_i are roots of polynomials of finite degree over K).
- 8. (Aug-00.5) Let R be a ring with 1 and Z be its center. A derivation $D: R \to R$ is an additive map such that D(ab) = aD(b) + D(a)b.
 - (a) If $r \in R$, show that the map $A_r : R \to R$ given by $A_r(A) = ar ra$ for all $a \in R$, is a derivation.
 - (b) If D is a derivation, show that $D(Z) \subseteq Z$.
 - (c) If D is a derivation of R and $e \in Z$ is an idempotent, show that D(e) = 0.

- a) A_r is obviously additive, and $A_r(ab) = abr rab = a[br rb] + [ar ra]b$.
- b) If $z \in Z$ and $r \in R$, then 0 = D(rz) D(zr) = rD(z) + [D(r)z zD(r)] D(z)r = rD(z) D(z)r, so D(z) commutes with r hence is in Z.
- c) We have $D(e) = D(e^2) = 2eD(e)$ so (1 2e)D(e) = 0. Multiplying by 1 2e gives $0 = (1 2e)^2D(e) = (1 4e + 4e^2) = D(e)$.

- 9. (Aug-12.2) Let F be a field, R = F[x, y], and I = (x).
 - (a) Prove that I/I^2 is infinite-dimensional as an F-vector space.
 - (b) Let $S \subset R$ be the subring S = F + I, so that I is also an ideal of S. Show that I is not finitely-generated as an ideal of S.
 - (c) Let M be a maximal ideal of R and $\theta: R \to R/M$ be the projection map. Then $\theta(S)$ is a ring with $\theta(F) \subseteq \theta(S) \subseteq \theta(R)$. Discuss the nature of the extension $\theta(F) \subseteq \theta(R)$, prove that $\theta(S)$ is a field, and conclude that $M \cap S$ is a maximal ideal of S.

- a) The elements of I are of the form $x \cdot p(x, y)$ for a polynomial p(x, y). We can write any such element in the form $x \cdot q(y) + x^2 r(x, y)$, the image of which in I^2 is $x \cdot q(y)$. Thus we see that I/I^2 is generated as a vector space by x, xy, xy^2, \cdots , and is infinite-dimensional.
- b) If I were finitely-generated as an ideal of S, then I/I^2 would be a finitely-generated ideal of S/I^2 . But the elements of S/I^2 are of the form c + xp(y) where $c \in F$ and $p(y) \in F[y]$, and the only ones in I/I^2 are those with c = 0. But then the product of any two terms xp(y) and xq(y) is zero, so I/I^2 has trivial ring structure. The non-finite-generation then follows from part (a), since then finite generation of I/I^2 as a ring is equivalent to finite generation as an F-vector space. (Or, explicitly: if there are only finitely many generators, then it is not possible to obtain the term $x \cdot y^n$ where n is any integer larger than any of the y-degrees of the generators' images in I/I^2 .)
- c) $\theta(R) \cong R/M$ is a field extension of $\theta(F)$; since R is Noetherian, this field extension is of finite degree. If $x \in M$ then $\theta(S) = \theta(F)$ is a field; otherwise, assume $x \notin M$, so that x is invertible in R/M. We also see that S + M = F + I + M, and I + M is an ideal of R containing M, hence since M is maximal it is either equal to M or to R: thus S + M is either F + M or F + R, so we see $\theta(S)$ is either $\theta(F)$ or $\theta(R)$, hence is a field. By the first isomorphism theorem for rings, we conclude that $S/(M \cap S) \cong \theta(S)$ is a field, so $M \cap S$ is a maximal ideal of S.