

Part III: Entity Alignment

Zequn Sun

Embedding-based Entity Alignment

- Two modules for embedding-based entity alignment
 - Embedding learning
 - □ Structure-based methods, e.g., MTransE (Chen et al., IJCAI-2017)
 - Auxiliary information enhanced methods
 - Alignment learning
 - Supervised methods
 - Semi-supervised methods

Structure-based Methods: AliNet (Sun et al., AAAI-2020)

- Gated multi-hop neighborhood aggregation
- Entities with similar neighborhood subgraphs should have similar embeddings.
 - However, the counterpart entities usually have non-isomorphic neighborhood structures.
 - Gated multi-hop GNN can mitigate the non-isomorphism of neighborhood structures by attentively aggregating distant neighbor information.

Structure-based Methods: HyperKA (Sun et al., EMNLP-2020)

- Hyperbolic relational GNN
 - Basic operations of hyperbolic geometry
 - \blacksquare Hyperbolic distance $d_{\mathbb{D}}(\mathbf{u}, \mathbf{v})$
 - \Box Vector translation $\mathbf{u} \oplus \mathbf{v}$
 - \Box Transformation $M \otimes u$
 - HyperKA is a GNN-based model.
 - Hyperbolic relation translation at the input layer $\mathbf{M} \otimes \mathbf{u}$.
 - Hyperbolic neighborhood aggregation with highlighting input features.

Auxiliary Information Enhanced Methods: JAPE

- Attribute based entity clustering (Sun et al., ISWC-2017)
 - Aligned entities have high similarity in attributes.
 - Use a Skip-gram model to train attribute embeddings. Correlated attributes have similar embeddings.
 - The attribute-view embedding of an entity is the average of embeddings of its attributes.
 - Expect the entities with similar attribute embeddings to be clustered.

Auxiliary Information Enhanced Methods: AttrE

- Joint structure and attribute embeddings (Trisedya et al., AAAI-2019)
 - Entity embeddings learned from attribute triples also contribute to entity alignment.
 - Attribute values can be represented by **pre-trained word and character embeddings** using LSTM.
 - Model attribute triples through the same way of modeling relation triples.

```
G_1 (lgd:240111203, lgd:population, 1595) (lgd:240111203, rdfs:label, 'Kromsdorf') (lgd:240111203, lgd:country, lgd:51477) ...
```

```
G_2 $$ $$ {\rm dbp:Kromsdorf,\ rdfs:label,\ 'Kromsdorf'} $$ $$ {\rm dbp:Kromsdorf,\ dbp:populationTotal,\ 1595} $$ $$ {\rm dbp:Kromsdorf,\ dbp:country,\ dbp:Germany} $$ ... $$
```

```
G_{1\,2} \langle \text{lgd:240111203, :population, 1595} \rangle \langle \text{lgd:240111203, :label, 'Kromsdorf'} \rangle \langle \text{lgd:240111203, :country, lgd:51477} \rangle \langle \text{dbp:Kromsdorf, :label, 'Kromsdorf'} \rangle \langle \text{dbp:Kromsdorf, :population, 1595} \rangle \langle \text{dbp:Kromsdorf, :country, dbp:Germany} \rangle ...
```

```
Attribute Triple

(lgd:240111203, :population, 1595)
(lgd:240111203, rdfs:label, 'Kromsdorf')
(dbp:Kromsdorf, rdfs:label, 'Kromsdorf')
(dbp:Kromsdorf, :population, 1595)
...

Relationship Triple
(lgd:240111203, :country, lgd:51477)
(dbp:Kromsdorf, :country, dbp:Germany)
...
```

Auxiliary Information Enhanced Methods: MultiKE

- Multi-view KG embedding (Zhang et al., IJCAI-2019)
 - Entities have multi-view features, such as names, relation triples, attribute triples, etc.
 - Learn view-specific embeddings for entities.
 - Represent names using pre-trained word embeddings.
 - Encode attribute triples with CNNs.
 - **□** Encode relation triples with TransE.
 - View combination strategies
 - Weighted view averaging
 - Shared space learning
 - In-training combination

Alignment Learning: Supervised Methods

- Embedding space calibration
 - Minimize the embedding distance of pre-aligned entities

- Embedding space transformation
 - Map source entity embeddings to the target embedding space to match their counterparts.

target space with mapped source entity embeddings

Alignment Learning: Self-training Methods

- Bootstrapping entity alignment (Sun et al., IJCAI-2018)
 - The accessible pre-aligned entity pairs usually accounts for a small proportion.
 - Iteratively label likely entity alignment as training data.
 - Bootstrapping strategies to reduce error accumulation
 - Select new alignment by solving the max-weighted matching on bipartite graphs.

- □ Detect labeling conflicts when accumulating the newly-labeled alignment of different iterations.
- Edit the new alignment using a greedy strategy
 - Choose the label with more alignment likelihood as the final label.

Alignment Learning: Co-training Methods

- Co-training embeddings of structures and descriptions (Chen et al., IJCAI-2018)
 - Learn structure embeddings by TransE.
 - Learn description embeddings by GRU with pre-trained word embeddings.
 - Alternately propose new entity alignment based on structure embeddings and description embeddings.

Entity Alignment Datasets

- DBP15K (Sun et al., ISWC-2017)
 - Three cross-lingual datasets built from the multilingual versions of DBpedia: DBP_{ZH-EN} (Chinese to English), DBP_{JA-EN} (Japanese to English) and DBP_{FR-EN} (French to English). Each dataset contains 15 thousand reference entity alignment.

Dataset	s	Entities	Relationships	Attributes	Rel. triples	Attr. triples
$\mathrm{DBP15K_{ZH\text{-}EN}}$	Chinese	66,469	2,830	8,113	153,929	379,684
DDI 13KZH-EN	English	98,125	2,317	$7,\!173$	$237,\!674$	567,755
$\mathrm{DBP15K_{JA-EN}}$	Japanese	65,744	2,043	$5,\!882$	164,373	354,619
	English	95,680	2,096	6,066	233,319	497,230
DBD15K	French	66,858	1,379	4,547	192,191	528,665
$\mathrm{DBP15K_{FR\text{-}EN}}$	English	105,889	2,209	$6,\!422$	$278,\!590$	576,543

- DWY100K (Sun et al., IJCAI-2018)
 - Two large-scale datasets extracted from DBpedia, Wikidata and YAGO3, denoted by DBP-WD and DBP-YG. Each dataset has 100 thousand reference entity alignment.

Datasets		# Ent.	# Rel.	# Attr.	# Rel tr.	# Attr tr.
DBP-WD	DBpedia	100,000	330	351	463,294	381,166
	Wikidata	100,000	220	729	448,774	789,815
DBP-YG	DBpedia	100,000	302	334	428,952	451,646
	YAGO3	100,000	31	23	502,563	118,376

Benchmarking Study of Entity Alignment (Sun et al., VLDB-2020)

- Survey the field of embedding-based entity alignment.
- Create benchmark datasets (2.0 version is coming!).
- Conduct an experimental study of the representative approaches.
- Perform exploratory experiments for future studies.

			15K (V1)			15K (V2)			100K (V1)			100K (V2)	
		Hits@1	Hits@5	MRR	Hits@1	Hits@5	MRR	Hits@1	Hits@5	MRR	Hits@1	Hits@5	MRR
	MTransE	$.247 \pm .006$	$.467 \pm .009$	$.351 \pm .007$	$.240 \pm .005$	$.436 \pm .007$	$.336 \pm .005$	$.138 \pm .002$	$.261 \pm .004$	$.202 \pm .002$	$.090_{\pm.003}$	$.174 \pm .003$	$.135 \pm .003$
	IPTransE	$.169 \pm .013$	$.320 \pm .025$	$.243 \pm .019$	$.236 \pm .012$	$.449 \pm .021$	$.339 \pm .016$	$.158 \pm .004$	$.277 \pm .008$	$.219 \pm .006$	$.234 \pm .007$	$.431 \pm .015$	$.329 \pm .010$
	JAPE	$.262 \pm .006$	$.497 \pm .010$	$.372 \pm .007$	$.292 \pm .009$	$.524 \pm .006$	$.402 \pm .007$	$.165 \pm .002$	$.310 \pm .002$	$.240 \pm .002$	$.125 \pm .003$	$.239 \pm .005$	$.183 \pm .004$
	KDCoE	$.581 \pm .004$	$.680 \pm .004$	$.628 \pm .003$	$.730 \pm .007$	$.837 \pm .006$	$.778 \pm .005$	$.482 \pm .005$	$.515 \pm .006$	$.499 \pm .005$	$.611_{\pm.012}$	$.653 \pm .015$	$.632 \pm .014$
Ř	BootEA	$.507 \pm .010$	$.718 \pm .012$	$.603 \pm .011$	$.660_{\pm.006}$	$.850 \pm .005$	$.745 \pm .005$	$.389 \pm .004$	$.561 \pm .004$	$.474 \pm .004$	$.640 \pm .001$	$.806 \pm .001$	$.716 \pm .000$
EN-FR	GCNAlign	$.338 \pm .002$	$.589 \pm .009$	$.451 \pm .005$	$.414 \pm .005$	$.698 \pm .007$	$.542 \pm .005$	$.230_{\pm.002}$	$.412 \pm .004$	$.319 \pm .003$	$.257 \pm .002$	$.455 \pm .003$	$.351 \pm .002$
百	AttrE	$.481_{\pm.010}$	$.671 \pm .009$	$.569 \pm .010$	$.535 \pm .015$	$.746 \pm .014$	$.631 \pm .014$	$.403 \pm .019$	$.572 \pm .019$	$.483 \pm .019$	$.466 \pm .011$	$.644 \pm .012$	$.549 \pm .011$
	IMUSE	$.569 \pm .006$	$.717 \pm .010$	$.638 \pm .008$	$.607_{\pm.013}$	$.760 \pm .014$	$.678 \pm .013$	$.439 \pm .002$	$.546 \pm .004$	$.492 \pm .003$	$.461 \pm .003$	$.605 \pm .005$	$.529 \pm .004$
	SEA	$.280 \pm .015$	$.530 \pm .026$	$.397 \pm .019$	$.360 \pm .018$	$.651 \pm .018$	$.494 \pm .017$	$.225 \pm .011$	$.399 \pm .013$	$.314 \pm .012$	$.297 \pm .002$	$.500 \pm .002$	$.395 \pm .002$
	RSN4EA	$.393 \pm .007$	$.595 \pm .012$	$.487 \pm .009$	$.579 \pm .006$	$.759 \pm .006$	$.662 \pm .006$	$.293 \pm .004$	$.452 \pm .006$	$.371 \pm .004$	$.495 \pm .003$	$.672 \pm .005$	$.578 \pm .004$
	MultiKE	$.749 \pm .004$	$.819 \pm .005$	$.782 \pm .004$	$\textbf{.864} \pm .007$	$.909 \pm .005$	$.885 \pm .006$	$.629 \pm .002$	$.680 \pm .002$	$.655 \pm .002$	$.642 \pm .003$	$.696 \pm .003$	$.670 \pm .003$
	RDGCN	$.755 \pm .004$	$.854 \pm .003$	$.800 \pm .003$	$.847 \pm .006$	$.919 \pm .004$	$.880 \pm .005$	$.640 \pm .004$	$.732 \pm .004$	$.683 \pm .004$	$.715 \pm .003$	$.787 \pm .002$	$.748 \pm .002$
	MTransE	$.307 \pm .007$	$.518 \pm .004$	$.407 \pm .006$	$.193 \pm .016$	$.352 \pm .023$	$.274 \pm .018$	$.140 \pm .003$	$.264 \pm .004$	$.204 \pm .004$	$.115 \pm .003$	$.215 \pm .004$	$.168 \pm .003$
	IPTransE	$.350 \pm .009$	$.515 \pm .012$	$.43 \pm .011$	$.476 \pm .012$	$.678 \pm .011$	$.571 \pm .010$	$.226 \pm .014$	$.357 \pm .019$	$.292 \pm .017$	$.346 \pm .013$	$.535 \pm .016$	$.437 \pm .014$
	JAPE	$.288 \pm .016$	$.512 \pm .018$	$.394 \pm .016$	$.167 {\scriptstyle \pm .011}$	$.329 \pm .015$	$.250 \pm .013$	$.152 \pm .006$	$.291 \pm .009$	$.223 \pm .007$	$.11_{\pm.004}$	$.218 \pm .006$	$.167 \pm .005$
	KDCoE	$.529 \pm .014$	$.629 \pm .015$	$.580 \pm .014$	$.649 \pm .017$	$.788 \pm .017$	$.715 \pm .016$	$.506 \pm .014$	$.591 \pm .019$	$.549 \pm .016$	$.651_{\pm.011}$	$.756 \pm .010$	$.701 \pm .011$
田田	BootEA	$.675 \pm .004$	$.820 \pm .004$	$.740 \pm .004$	$\textbf{.833} \pm .015$	$.912 \pm .008$	$.869 \pm .012$	$.518 \pm .003$	$.673 \pm .003$	$.592 \pm .003$	$.739 \pm .004$	$.851 \pm .003$	$.791 \pm .004$
EN-DE	GCNAlign	$.481 \pm .003$	$.679 \pm .005$	$.571 \pm .003$	$.534 \pm .005$	$.717 \pm .005$	$.618 \pm .005$	$.317 \pm .007$	$.485 \pm .008$	$.399 \pm .007$	$.375 \pm .005$	$.549 \pm .006$	$.457 \pm .005$
百	AttrE	$.517 \pm .011$	$.687 \pm .013$	$.597 \pm .011$	$.650 \pm .015$	$.816 \pm .008$	$.726 \pm .012$	$.399 \pm .010$	$.554 \pm .012$	$.473 \pm .011$	$.464 \pm .011$	$.637 \pm .010$	$.546 \pm .011$
	IMUSE	$.580 \pm .017$	$.720 \pm .014$	$.647 \pm .015$	$.674 \pm .011$	$.803 \pm .008$	$.734 \pm .010$	$.421 \pm .005$	$.516 \pm .005$	$.469 \pm .005$	$.457_{\pm.005}$	$.588 \pm .007$	$.521 \pm .006$
	SEA	$.530 \pm .027$	$.718 \pm .026$	$.617 \pm .025$	$.606 \pm .024$	$.779 \pm .018$	$.687 \pm .020$	$.341_{\pm.016}$	$.502 \pm .017$	$.421 \pm .016$	$.447 \pm .006$	$.625 \pm .006$	$.532 \pm .006$
	RSN4EA	$.587 \pm .001$	$.752 \pm .003$	$.662 \pm .001$	$.791 \pm .009$	$.890 \pm .006$	$.837 \pm .008$	$.430_{\pm.002}$	$.57 \pm .001$	$.497 \pm .001$	$.639 \pm .001$	$.763 \pm .001$	$.697 \pm .001$
	MultiKE	$.756 \pm .004$	$.809 \pm .003$	$.782 \pm .003$	$.755 \pm .008$	$.813 \pm .008$	$.784 \pm .007$	$.668 \pm .002$	$.712 \pm .002$	$.690 \pm .001$	$.661 \pm .004$	$.709 \pm .004$	$.686 \pm .004$
	RDGCN	$.830 \pm .006$	$.895 \pm .004$	$.859 \pm .005$	$.833 \pm .007$	$.891 \pm .005$	$.860 \pm .006$	$.722 \pm .002$	$.794 \pm .002$	$.756 \pm .002$	$.766 \pm .002$	$.829 \pm .002$	$.796 \pm .002$

Benchmarking Study of Entity Alignment (Sun et al., VLDB-2020)

- Some conclusions from main results
 - All the relation-based approaches run better in aligning entities with rich relation triples while their results decline on long-tail entities.
 - Attribute heterogeneity has a strong effect on capturing attribute correlations, and literal embeddings facilitate entity alignment.
 - The quantity and quality of the augmented entity alignment have great impact on the semi-supervised approaches.
 - Using auxiliary information or techniques to boost performance usually increases training time and GPU memory cost.
 - Not all KG embedding models are suitable for entity alignment, and non-Euclidean embeddings are still worth further exploration.

Benchmarking Study of Entity Alignment (Sun et al., VLDB-2020)

- Comparison to conventional approaches
 - Conventional approaches better support the scenario with attribute information.
 - Embedding-based approaches cover most of the typical scenarios with either relation information, attribute information or both.
 - We find that they can produce complementary entity alignment.

	Using re	elation trip	les only	Using attribute triples only				
	Precision	Recall	F1-score	Precision	Recall	F1-score		
LogMap	-	-	-	$.816 \pm .003$	$.723_{\pm.002}$	$.767_{\pm.001}$		
PARIS	_	-	-	$.917_{\pm.000}$	$.769_{\pm.000}$	$.837_{\pm.000}$		
BootEA	$.507_{\pm.010}$	$.507_{\pm.010}$	$.507_{\pm.010}$	-	-	-		
MultiKE	$337_{\pm .005}$	$.337_{\pm.005}$	$.337_{\pm.005}$	$.719_{\pm.005}$	$.719_{\pm.005}$	$.719_{\pm.005}$		
RDGCN	$255_{\pm.004}$	$.255 \pm .004$	$.255_{\pm.004}$	-	-	-		

Comparison with conventional approaches using different features (only relation or attribute triples)

Proportions of the correct alignment found. OpenEA additionally finds 13.25% (3.50% + 9.75%) and 7.51% (3.50% + 4.01%) of the alignment that LogMap and PARIS do not

End of Part III