CSCI 113 (Spring 2022)

Memory Heirarchy Simulation Programming (40 pts) due: 05/09 (M)

Write a simulation program for tracing memory operations described below. Please use either C or C++ for coding.

Hardware description:

- Memory hierarchy consists of higher-level (cache) and lower-level (main memory) modules, and we consider only data cache and data memory;
- Cache is 2way-set-associative, total cache data size is 16 words, one word per block, and the replacement policy used is LRU (Least Recently Used); Each cache block has 3 fields, i.e., valid bit, tag and data;
- When write_hit and write_miss, cache uses WB and no-write-allocate policies, respectively;
- Main memory size is 128 words and there are 128 memory blocks (1 word per block);
- Physical address is 7 bits wide and it points a block (a word) in the memory (0^{th} block $\sim 127^{th}$ block); Physical address is divided into index and tag fileds;
- For the sake of simplicity, register file contains only 8 registers (\$s0~\$s7).

Input and output:

- Input is given as an object file (see attached), which consists of a series of MIPS load/store machine instructions;
- After executing each instruction, your program should display either "hit" or "miss" message; At the end of executing all the instructions in the object file, your program should display (in binary) the final contents of register file, cache and main memory.

Submission:

- Source code (.c or .cpp file); Please include a good global documentation and function head documentations in your source code (before compilation).
- Runtime output, e.g., a typescript file or screenshot (png, jpg or pdf); Output should be readable.

Details will be discussed in class and lab.

Initialization

Initially, all cache entries are empty and their valid bits are 0's;

Initialize registers (\$s0~\$s7) in the register file with value 0's;

Initialize memory contents with the following data:

 $mem[block_address] \leftarrow block_address + 5; e.g., mem[0] \leftarrow 5, ... mem[127] \leftarrow 132$

Testing instruction sequence:

you have to use the followng series of MIPS machine codes to submit output.

MIPS Assembly code	MIPS Machine code
lw \$s1, 4(\$zero)	100011 00000 10001 0000000000000100
lw \$s2, 16(\$zero)	100011 00000 10010 0000000000010000
lw \$s3, 32(\$zero)	100011 00000 10011 000000000100000
lw \$s4, 20(\$zero)	100011 00000 10100 0000000000010100
sw \$s1, 80(\$zero)	101011 00000 10001 000000001010000
sw \$s2, 68(\$zero)	101011 00000 10010 0000000001000100
sw \$s3, 76(\$zero)	101011 00000 10011 000000001001100
sw \$s4, 224(\$zero)	101011 00000 10100 0000000011100000
lw \$s1, 36(\$zero)	100011 00000 10001 000000000100100
lw \$s2, 44(\$zero)	100011 00000 10010 000000000101100
lw \$s3, 16(\$zero)	100011 00000 10011 000000000010000
lw \$s4, 172(\$zero)	100011 00000 10100 000000010101100
sw \$s1, 20(\$zero)	101011 00000 10001 0000000000010100
sw \$s2, 24(\$zero)	101011 00000 10010 0000000000011000
sw \$s3, 36(\$zero)	101011 00000 10011 000000000100100
sw \$s4, 68(\$zero)	101011 00000 10100 0000000001000100
lw \$s1, 36(\$zero)	100011 00000 10001 000000000100100
lw \$s2, 44(\$zero)	100011 00000 10010 0000000000101100
lw \$s3, 16(\$zero)	100011 00000 10011 0000000000010000
lw \$s4, 172(\$zero)	100011 00000 10100 0000000010101100
sw \$s1, 96(\$zero)	101011 00000 10001 000000001100000
sw \$s2, 84(\$zero)	101011 00000 10010 0000000001010100
sw \$s3, 92(\$zero)	101011 00000 10011 000000001011100
sw \$s4, 240(\$zero)	101011 00000 10100 0000000011110000

^{*} Macnie code file is placed in the Canvas.