1. Outline 1

1 Outline

Goal: try proof Huang and nested equal.

Method: proof for both:

Conjectured Proposition 1. Let I be an interpolant created by \$algorithm. If I contains a term t such that t has a color changes, then I has at least n quantifier alternations.

1.1 generally keep in mind

- Need to define all new terms here: color-changing, single-color, Φ -literal, substitutions from 0 to n
 - essentially same position: path from one position to other only contains grey symbol (this def allows for identical position as well)
- also note: literal is sometimes used for negated or not negated predicate with terms but in regular formulas with arbitrary connectives

2 Preliminaries

Quantifier alternations in I usually assumes the quantifier-alternation-minimizing arrangement of quantifiers in I

Definition 2 (Color alternation col-alt). Colors Γ and Δ , term t:

$$\operatorname{col-alt}(t) \stackrel{\text{def}}{=} \operatorname{col-alt}_{\perp}(t)$$

Let $t = f(t_1, \ldots, t_n)$ for constant, function and variable symbols (syntax abuse):

$$\operatorname{col-alt}_{\Phi}(t) \stackrel{\text{def}}{=} \begin{cases} \max^{1}(\operatorname{col-alt}_{\Phi}(t_{1}), \dots, \operatorname{col-alt}_{\Phi}(t_{n})) & f \text{ is grey} \\ \max(\operatorname{col-alt}_{\Phi}(t_{1}), \dots, \operatorname{col-alt}_{\Phi}(t_{n})) & f \text{ is of color } \Phi \\ 1 + \max(\operatorname{col-alt}_{\Psi}(t_{1}), \dots, \operatorname{col-alt}_{\Psi}(t_{n})) & f \text{ is of color } \Psi, \Phi \neq \Psi \end{cases}$$

Definition 3. PI_{step}° is defined just like PI_{step} but without applying any substitution.

Hence $\operatorname{PI}^{\circ}_{\operatorname{step}}(\cdot)\sigma = \operatorname{PI}_{\operatorname{step}}(\cdot)$. C° is somehow the same, i.e. if $C = D\sigma$, then $C^{\circ} = D$ where σ is derived from the context.

3 Random thoughts

- Quantifiers are introduced for lifting variables which actually occur in the interpolant
- If term t with col-alt(t) = n enters I, we need subterm s of t with col-alt(s) = n 1 to be in I (of course colors of t and s are exactly opposite)

¹We assume that the maximum of an empty list of arguments is 0.

3.1 Proof

- Induction over $\ell^x_{\Delta}[\operatorname{PI}(C) \vee C]$ and also about Γ -terms with Δ -lifting vars in that formula. Cf. -final
- NB: now somewhat described in the proper proof below describe proof method with $\sigma_{(0,i)}$: which PI?
 - Factorisation: easy: just apply σ_i for all i to $PI(C) \vee C$. When done, a literal will be there twice and we can remove it without losing anything
 - Resolution: create propositional structure first.

Ex.: $C_1: D \vee l, C_2: \neg l \vee E$:

If we talk about properties for which it holds that if they hold for $\operatorname{PI}(C_i) \vee C_i$, $i \in \{1, 2\}$, then they also hold for $A \equiv \left((l \wedge \operatorname{PI}(C_2)) \vee \right)$

 $(\neg l \land \operatorname{PI}(C_1)) \lor C^{\circ}$, then we can apply σ_i for all i to that formula.

So if we can assume it for A and show it for all σ_i , we get that it holds for $\operatorname{PI}(C) \vee C$.

Also: clauses are variable disjoint, so e.g. it's not possible that a color-changing var is created by ${\rm PI}_{\rm step}$

Also: do it like a few lemmas further down, like $(\operatorname{PI}_{\operatorname{step}}^{\circ}(\iota,\operatorname{PI}(C_1),\ldots,\operatorname{PI}(C_n))\vee C^{\circ})\sigma_{(0,\,i)}$

4 directly from old proof

just for repetition:

? $\langle lemma:col_change \rangle$? Lemma 4. Resolution or factorisation step ι from \bar{C} .

If u col-change var in $(\operatorname{PI}_{\operatorname{step}}^{\circ}(\iota,\operatorname{PI}(C_1),\ldots,\operatorname{PI}(C_n))\vee C^{\circ})\sigma_{(0,i)}$, then u also occurs grey in that formula.

Proof. Abbreviation: $F \equiv (\operatorname{PI}_{\operatorname{step}}^{\circ}(\iota, \operatorname{PI}(C_1), \dots, \operatorname{PI}(C_n)) \vee C^{\circ})$

Induction over refutation and σ ; base case easy.

Step: Supp color change var u present in $\chi \sigma_{(0,i)}$. (could also say introduced, then proof would be somehow different)

Supp u not grey in $\chi \sigma_{(0,i-1)}$ as otherwise done. As a first step, we show that if a (not necessarily color-changing) variable v occurs in a single-colored Φ -term t[v] in $\chi \sigma_{(0,i)}$, then at least one of the following holds:

- 1. v occurs in some single-colored Φ -term in $\chi \sigma_{(0,i-1)}$
- $\langle \text{var_occ_1} \rangle$ 2. there is a color-changing variable w in $\chi \sigma_{(0,i-1)}$ such that v occurs grey in $w\sigma_i$.
- $\langle \text{var_occ_2} \rangle$ We consider unification process, and particularly the different cases which can introduce a variable v in a single-colored term Φ : Either it has been there before, it was introduced in a s.c. Φ -colored term, or a s.c. Φ -term containing the var is in $\text{ran}(\sigma)$.
 - Suppose a term t'[v] is present in $\chi \sigma_{(0,i-1)}$ such that $t'[v]\sigma_i = t[v]$. Then 1 is the case.

• Suppose a variable w occurs in a single-colored Φ -term in $\chi \sigma_{(0, i-1)}$ such that v occurs grey in $w\sigma_i$. Suppose furthermore that 1 is not the case, i.e. v does not occur in a s.c. Φ -term in $\chi \sigma_{(0, i-1)}$, as otherwise we would be done. We show that 2 is the case.

As v occurs neither grey nor in a s.c. Φ -term in $\chi \sigma_{(0,i-1)}$ but occurs in $\operatorname{ran}(\sigma_i)$, it must occur in $\chi \sigma_{(0,i-1)}$ and this can only be in a single-colored Ψ -term.

As by assumption v occurs grey in $w\sigma_i$, there must be an occurrence \hat{w} of w in a resolved or factorised literal, say $\lambda\sigma_{(0,i-1)}$ such that for the other resolved literal $\lambda'\sigma_{(0,i-1)}$, $\lambda'\sigma_{(0,i-1)}|_{\hat{w}}$ is a subterm in which v occurs grey. But as the occurrence of v in $\lambda'\sigma_{(0,i-1)}|_{\hat{w}}$ must be contained in a single-colored Ψ -term, so is $\lambda\sigma_{(0,i-1)}|_{\hat{w}}$, hence z occurs in a single-colored Ψ -term as well. Therefore 2 is the case.

• Suppose there is a variable z in $\chi \sigma_{(0, i-1)}$ such that v occurs in a single-colored Φ -term in $z\sigma_i$. Then $z\sigma_i$ occurs in $\chi \sigma_{(0, i-1)}$, but this is a witness for 1.

Now recall that we have assumed u to be a color-changing variable in $\chi \sigma_{(0,i)}$. Hence it occurs in a single-colored Γ -term as well as in a single-colored Δ -term. By the reasoning above, this leads to two case:

- In $\chi \sigma_{(0, i-1)}$, u occurs both in some single-colored Γ -term as well as in some single-colored Δ -term. Then we get the result by the induction hypothesis and the fact that $u \notin \text{dom}(\sigma_i)$ as u does occur in $\chi \sigma_{(0, i)}$.
- Otherwise for some color Φ , u does not occur in a single-colored Φ -term in $\chi\sigma_{(0,i-1)}$. Then case 2 above must hold and there is some color-changing variable w in $\chi\sigma_{(0,i-1)}$ such that u occurs grey in $w\sigma_{(0,i)}$. But then by the induction hypothesis, w occurs grey in $\chi\sigma_{(0,i-1)}$ and hence u occurs grey in $\chi\sigma_{(0,i)}$.

Thursday 4

Thursday

WRONG: the resolved/factorised literal is in general not

 $\left\langle \texttt{lemma:var_grey_col_lit} \right\rangle \underbrace{\texttt{Lemma 5.}}_{in \ \chi \sigma_{\{0,\ i\}}} \underbrace{\texttt{Let } \iota \ be \ an \ inference \ in \ a \ refutation \ of \ \Gamma \cup \Delta.}_{of \ he \ following \ statements \ holds:} \underbrace{\texttt{Suppose that a variable } u \ occurs \ grey \ in \ a \ \Phi-literal \ occurs \ grey \ in \ a \ \Phi-literal \ occurs \ grey \ in \ a \ \Phi-literal \ occurs \ grey \ in \ a \ \Phi-literal \ occurs \ grey \ in \ a \ \Phi-literal \ occurs \ grey \ in \ a \ \Phi-literal \ occurs \ grey \ in \ a \ \Phi-literal \ occurs \ grey \ in \ a \ \Phi-literal \ occurs \ grey \ in \ a \ \Phi-literal \ occurs \ grey \ in \ a \ A-literal \ occurs \ grey \ in \ a \ A-literal \ occurs \ grey \ in \ a \ A-literal \ occurs \ grey \ in \ a \ A-literal \ occurs \ grey \ occurs \$

- $\langle 14_1 \rangle$ 1. The variable u occurs grey in a Φ -literal in $\chi\sigma_{(0,\,i-1)}$.
- $\langle 14_5 \rangle$ 2. The variable u occurs in a single-colored Φ -term in $\chi\sigma_{(0,\ i-1)}$.
- $\langle 14_4 \rangle$ 3. The variable u occurs at a grey position in a grey literal in $\chi\sigma_{(0,\,i-1)}$.
- $\langle 14_2 \rangle$ 4. There is a variable v such that
 - u occurs grey in vσ; and
 - v occurs in $\chi\sigma_{(0,\;i-1)}$ grey in a Φ -literal as well as grey in a Ψ -literal.
- <14_3> 5. There is a variable v such that
 - u occurs grey in vσ; 2 and
 - v occurs in $\chi\sigma_{(0,\,i-1)}$ either grey in a Φ -literal as well as in a single-colored Ψ -term in any literal, or grey in a Ψ -literal as well as in a single-colored Φ -term in any literal.

Proof. We consider the unification process, and particularly the different cases which lead to the variable u in a grey position in a Φ -literal in $\chi\sigma(0,i)$:

- There already is a Φ -literal in $\chi\sigma_{(0,\ i-1)}$ which contains u at a grey position and σ_i does not change this. Then clearly 1 is the case.
- Otherwise there must be a Φ -literal in $\chi\sigma_{(0,\ i-1)}$, which contains a variable v at a grey position such that u occurs grey in $v\sigma_i$. Hence in the resolved or factorised literals λ and λ' , there is a position p such that w.l.o.g. $\lambda|_p = v$ and $\lambda'|_p$ contains a grey occurrence of u, and λ and λ coincide along the path to p. We distinguish based properties of the position p:
 - Suppose that p is contained in a single-colored Φ -term. Then u occurs in a single-colored Φ -term in $\chi\sigma_{(0,\;i-1)}$ and 2 is the case.
 - Suppose that p is contained in a single-colored Ψ -term. Then u occurs grey in a Φ -literal as well in a single-colored Ψ -term, which implies 5.
 - Otherwise p is a grey position. We distinguish further:

 - Suppose that the resolved or factorised literal is Φ-colored. Then u occurs grey in a Φ-literal and we have established item 5.
 Suppose that the resolved or factorised literal is Ψ-colored. Then the variable v occurs grey in a Φ-literal as well as grey in a Ψ-literal, hence 4 is the case.

 Otherwise the resolved or factorised literal is grey and u occurs grey in a grey literal, which is coefficient for 2. is sufficient for 3.

 $\left\langle \mathbf{lemma:var_in_sc_term} \right\rangle \underbrace{\mathbf{Lemma~6.}}_{\Phi\text{-}term~in~} \underbrace{\chi\sigma_{(0,~i)}.~Then~at~least~one~of~f\Gamma \cup \Delta.~Suppose~that~a~variable~u~occurs~in~a~single-colored~at~least~one~of~the~following~statements~holds:}$

- $\langle 15_1 \rangle$ 1. The variable u occurs in a single-colored Φ -term in $\chi\sigma_{(0,\;i-1)}$.
- <15₂⟩ 2. There is a variable v such that u occurs grey in $v\sigma_i$ and v occurs in a single-colored Φ -term as well as in a single-colored Ψ -term in $\chi\sigma_{(0,\;i-1)}$.
- $\langle 15_4 \rangle$ 3. There is a variable v such that u occurs grey in $v\sigma_i$ and v occurs in $\chi\sigma_{(0,\,i-1)}$ in a single-colored Φ -term as well as at a grey position in a $\Psi\text{-literal}.$
- ⟨15_3⟩ 4. The variable u occurs grey in a Φ -literal in $\chi \sigma_{(0, i-1)}$.
- ⟨15**_**5⟩ 5. The variable u occurs grey in a grey literal in $\chi \sigma_{(0, i-1)}$.

Proof. We consider the different cases which lead to the variable u in a single-colored Φ -term in $\chi\sigma_{(0,\ i)}$:

• There is a single-colored Φ -term in $\chi\sigma_{(0,\;i-1)}$ which contains u such that σ_i does not change this. Then

²Note that this includes the case that v = u and σ_i is trivial on u. TODO: this really necessary? what about case 1, doesn't that one subsume this?

• Suppose that there is a single-colored Φ -term in $\chi\sigma_{(0,\ i-1)}$ which contains a variable v such that u occurs grey in $v\sigma_i$.

Hence in the resolved or factorised literals λ and λ' , there is a position p such that w.l.o.g. $\lambda|_p = v$ and $\lambda'|_p$ contains a grey occurrence of u, and λ and λ coincide along p. We distinguish based properties of

- Suppose that p is contained in a single-colored Φ -term. Then u is contained in a single-colored Φ -term in $\chi\sigma_{(0,\;i-1)}$ and item 1 holds.
- Suppose that p is contained in a single-colored Ψ -term. As then v is contained in a single-colored Φ -term as well as in a single-colored Ψ -term, 2 is the case.
- Suppose that p is a grey position. We distinguish further:
 - * Suppose that the resolved or factorised literal is Φ -colored. Then u occurs grey in a Φ -literal, which suffices for 4.
 - Suppose that the resolved or factorised literal is Ψ -colored. Then the variable v occurs in a single-colored Φ -term as well as grey in a Ψ -literal, which implies 3.
 - * Otherwise the resolved or factorised literal is grey. But then u occurs grey in a grey literal and we have established item 5.
- Suppose that a variable w occurs in $\chi\sigma_{\left(0,\,i-1\right)}$ such that u occurs in a single-colored Φ -term in $w\sigma_i$. This can only be the case if $w\sigma$ already occurs in $\chi\sigma_{(0,\,i-1)}$, which implies that 1 is the case.

ol_change_and_grey_in_col_lit \rangle Lemma 7. Let C be a clause in the resolution refutation π of $\Gamma \cup \Delta$ and u be a variable which occurs in PI(C) \vee C in some literal in a single-colored Φ -term or grey in a Φ -literal.

Suppose that u also occurs in PI(C) \vee C in some literal in a single-colored Ψ -term or grey in a Ψ -literal. Then u occurs grey in a grey literal.

Note that Φ and Ψ are to be read as any pair of different colors, i.e. Γ and Δ as well as Δ and Γ .

Proof. We proceed by induction over π and σ . Note that initially, every pair of clauses is variable-disjoint and all symbols of a clause are either all grey or Φ -colored or all grey or Ψ -colored, hence the lemma is vacuously true. For the induction step, we assume that the property holds for $\operatorname{PI}(C_i) \vee C_i$, $1 \leq i \leq n$, where C_1, \ldots, C_n are the clauses used in a resolution or factorisation inference ι . Note that then, the property also holds for χ , i.e. for $\operatorname{PI}_{\operatorname{step}}^0(\iota,\operatorname{PI}(C_1),\ldots,\operatorname{PI}(C_n)) \vee C^0$ as it contains all the grey literals present in $\operatorname{PI}(C_i) \vee C_i$ for any i (this Step($v, Y(e_i), \dots, Y(e_i)$). The definition of $\operatorname{Pl}_{\operatorname{Step}}^{(i)}$, and as clauses are pairwise variable-disjoint, the lemma condition can not become true for a variable for which it was not true in $\operatorname{Pl}(C_i) \vee C$ for some i.

Suppose that u occurs in $\chi\sigma_{(0,\,i)}$ in a single-colored Φ -term or grey in a Φ -literal and that u also occurs in $\chi\sigma_{(0,\,i)}$ in a single-colored Ψ -term or grey in a Ψ -literal.

Then we can deduce by Lemma 5 and Lemma 6 that at least one of the following statements holds:

(oozoh70h1)

1. The variable u occurs grey in a Φ -literal in $\chi \sigma_{\left(0,\,i-1\right)}$.

(oozoh70h2)

2. Some variable v occurs in $\chi\sigma_{\left(0,\;i-1\right)}$ grey in a Φ -literal as well as grey in a Ψ -literal such that u occurs grev in $v\sigma$:

(oozoh70h3)

3. There is a variable v such that u occurs grey in $v\sigma_i$ and v occurs in $\chi\sigma_{(0,\,i-1)}$ either grey in a Φ -literal as well as in a single-colored Ψ -term in any literal, or grey in a Ψ -literal as well as in a single-colored Φ -term in any literal.

(oozoh70h4)

4. The variable u occurs at a grey position in a grey literal in $\chi\sigma_{(0,\;i-1)}$

(oozoh70h5)

5. The variable u occurs in a single-colored Φ -term in $\chi\sigma_{(0,\;i-1)}$.

(oozoh70h6)

6. There is a variable v such that u occurs grey in $v\sigma_i$ and v occurs in a single-colored Φ -term as well as in a single-colored Ψ -term in $\chi\sigma_{(0,\;i-1)}$.

By the same lemmata, we get the same set of statements where Φ and Ψ are interchanged. We refer to them by the respective number followed by \star . Suppose that 4 is not the case as otherwise we are done since σ_i is trivial on u as u occurs in $\chi\sigma_{(0,\,i)}$. Furthermore, there are a number of cases which give the result by the induction hypothesis: For the cases 2, 3 and 6, we can infer that by the induction hypothesis, there is a grey occurrence of the variable v in a grey literal in $\chi\sigma(0,i-1)$, and as u occurs grey in $v\sigma_i$, there is a grey occurrence of u in a grey literal in $\chi\sigma(0,i)$.

It remains to show that the lemma holds true in case the statements 1 or 5 as well as 1* or 5* hold. But note that in any combination of 1 or 5 and 1* or 5* in effect yields a situation under which the induction hypothesis again is applicable. Hence we may infer that u occurs grey in a grey literal in $\chi\sigma_{(0,i-1)}$ and since σ_i is trivial u as shown above, u occurs grey in a grey literal in $\chi\sigma_{(0,i)}$.

Thursday prime

Definition 8 (PI*). PI* is defined as PI with the difference that in PI*, all literals are considered to be grey. Δ

Hence PI* coincides with PI_{init}.

PI*step coincides with PIstep in case of factorisation and paramodulation

For resolution inferences, the first two cases in the definition of PI_{step} do not occur for PI_{step}^* .

7. Friday 6

Proposition 9. For every literal which occurs in a clause of a resolution refutation π , a respective successor occurs in $PI^*(\pi)$.

Proof. By structural induction.

Lemma 10. For every clause C of a resolution refutation, every literal which is actually grey and occurs in $PI^*(C)$ also occurs in PI(C).

Proof. Note that PI_{init} and PI_{init}^* coincide and PI_{step} and PI_{step}^* only differ for resolution inferences. But more specifically, they only differ on resolution inferences, where the resolved literal is colored. However here, no grey literals are lost.

7 Friday

Lemma 11. If $PI(C) \vee C$ contains a maximal colored occurrence of a Φ -term t[s] containing Ψ -term s, then s occurs grey in a grey literal in $PI(C) \vee C$.

Proof. Note that it suffices to show that at the step where s is introduced as subterm of t[s], s occurs grey in $PI(C) \vee C$ as any later modification by substitution is applied to both occurrences s, so they stay equal throughout the remaining derivation.

Induction over π and σ . TODO: as in Lemma 7

Base case: vacuously true.

Step: Resolution or factorisation inference ι , $mgu(\iota) = \sigma = \sigma_1 \cdots \sigma_n$ The term t[s] is created by one of the following two ways:

(we abbreviate $(\operatorname{PI}_{\operatorname{step}}^{\circ}(\iota,\operatorname{PI}(C_1),\ldots,\operatorname{PI}(C_n))\vee C^{\circ}$ by F.)

• A variable u occurs in $\chi \sigma_{(0,i-1)}$ such that $u\sigma_i = t[s]$.

Then u occurs in a resolved or factorised literal $\lambda\sigma_{(0,i-1)}$ at \hat{u} such that at the other resolved or factorised literal $\lambda'\sigma_{(0,i-1)}$, $\lambda'\sigma_{(0,i-1)}|_{\hat{u}}=t[s]$. Then the condition is present at $\chi\sigma_{(0,i-1)}$ and we get the result by the induction hypothesis.

• Note that we only consider maximal colored terms.

Let t[u] be a maximal colored Φ -term in $\chi \sigma_{(0,i-1)}$ such that in the treerepresentation of t[u], the path from the root to u does not contain a node labelled with a Ψ -symbol, and $u\sigma_i$ contains a grey occurrence of s. Suppose that u occurs grey in a grey literal in $\chi \sigma_{(0,i-1)}$. Then s occurs grey in a grey literal in $\chi \sigma_{(0,i)}$ as σ_i does not affect u since u occurs in $\chi \sigma_{(0,i)}$ and we are done.

If u occurs grey in a Ψ -literal or if u occurs in a single-colored Ψ -term in $\chi\sigma_{(0,\,i-1)}$, then by Lemma 7, u also occurs grey in a grey literal in $\chi\sigma_{(0,\,i-1)}$ and s hence occurs grey in a grey literal in $\chi\sigma_{(0,\,i)}$.

Now suppose that u does not occur grey in a grey literal $\chi \sigma_{(0,i-1)}$ as otherwise clearly we are done.

Hence as all other cases are excluded, u can only occur in $\chi \sigma_{(0,i-1)}$ in a single-colored Φ -term or grey in a Φ -colored literal. But then, since $u\sigma_i$

are probably not same t and s as in lemma statement, which isn't technically wrong but confusing

contains a grey occurrence of s, there is a position p in the two resolved or factorised literals λ and λ' such that $\lambda|_p = u$ and $\lambda'|_p$ contains a grey occurrence of s. Furthermore, the prefix along the path to p is the same in both λ and λ' . As u only occurs in single-colored Φ -terms, $\lambda'|_p$ does so as well, so s is contained in a single-colored Φ -term in $\chi\sigma_{(0,i-1)}$. Since s is a Ψ -term, by the induction hypothesis, s occurs grey in a grey literal in $\chi\sigma_{(0,i-1)}$ and hence also in $\chi\sigma_i$.

(lemma:grey_lits_all_in_PI) Lemma 12. If there is a grey literal λ in a clause C of a resolution refutation π , then a successor of λ occurs in $PI(\pi)$.

Proof. Immediate by the definition of PI.

TODO: define quantifier alternations as col-alt, 0 == no quants, 1 == one quant, 2 is Π_2 or Σ_2

Proposition 13. If a term with n color alternations occurs in $PI(C) \vee C$ for a clause C, then the interpolant I produced in Theorem ?? contains at least n quantifier alternations.

Proof. We perform an induction on n and show the strenghtening that the quantification of the lifting variable corresponding to a term with n color alternations is required to be in the scope of the quantification of n-1 alternating quantifiers.

For n = 0, no colored terms occur in I and hence by construction no quantifiers and for n = 1, there are only single-colored terms

Suppose the statement holds for n-1 for n>1 and a term t with col-alt(t)=n occurs in $\operatorname{PI}(C)$. We assume that t is a Φ -term. Then t contains a Ψ -colored term s and by Lemma 7, s occurs grey in a grey literal in $\operatorname{PI}(C) \vee C$. By Lemma 12, a successor of s occurs in $\operatorname{PI}(\pi)$. By the induction hypothesis, the quantification of the lifting variable for s requires n-1 alternated quantifiers. As s is a subterm of t and t is lifted, t must be quantified in the scope of the quantification of s, and as t and s are of different color, their quantifier type is different. Hence the quantification of the lifting variable for t requires t0 quantifier alternations.

8 Monday: Paramodulation

8.1 Notes

- 1. Every equality which is used ends up in the interpolant, i.e. it's a grey literal (binary)
- 2. Every equality is used eventually

8.2 Proof

Extension of Lemma 5

Lemma 14. Let ι be a **paramodulation** inference in a refutation of $\Gamma \cup \Delta$. Suppose that a variable u occurs grey in a Φ -literal in $\chi \sigma_{(0,i)}$. Then at least one of the following statements holds:

 $exttt{mma:var_grey_col_lit_paramod}?$

?(11_1)?

1. The variable u occurs grey in a Φ -literal in $\chi \sigma_{(0,i-1)}$.

?(11_2)?

2. Some variable v occurs in $\chi \sigma_{(0,i-1)}$ grey in a Φ -literal as well as grey in a Ψ -literal such that u occurs grey in $v\sigma_i$.

?(11_3)?

3. There is a variable v such that u occurs grey in $v\sigma_i^3$ and v occurs in $\chi\sigma_{(0,i-1)}$ either grey in a Φ -literal as well as in a single-colored Ψ -term in any literal, or grey in a Ψ -literal as well as in a single-colored Φ -term in any literal.

?(11_4)?

4. The variable u occurs at a grey position in a grey literal in $\chi \sigma_{(0,i-1)}$.

Proof. Consider paramodulation: $s = t \vee D$ and $E[r]_p$ create $C : (D \vee E[t]_p)\sigma$ where $\sigma = \text{mgu}(s, r)$.

A grey occurrence of variable can be created in C by 2 means: either t contains a grey variable and p is a grey position or σ introduces a grey occurrence of a variable in a grey position

• case 1: everything which is grey in an equality predicate ends up grey in the interpolant, so this case is easy