PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-018873

(43)Date of publication of application: 28.01.1994

(51)Int.CI.

G02F 1/1335 G02F 1/1335 G02B 5/04

(21)Application number: 04-173564

(71)Applicant: FUJITSU LTD

(22)Date of filing:

01.07.1992

(72)Inventor: YAMADA FUMIAKI

MIYAHARA DAIKI **NAGATANI SHINPEI** ITO TAKAHIDE

(54) LIQUID CRYSTAL DISPLAY DEVICE

(57) Abstract:

PURPOSE: To decrease an optical loss of a back light by a polarizer, and to realize high luminance and low power consumption by forming the device by allowing the lengthwise direction of a prism to conform to the polarization axis direction of the polarizer. CONSTITUTION: As a means for converting a circularly polarized light emitted from a light source 42 to an elliptically polarized light in which the greater part of a polarized light component can transmit through a polarizer 2, a prism plate 5 constituted by forming plural prisms 51 in parallel is interposed between the polarizer 2 and the light source 42, and also, formed by allowing the lengthwise direction of the prism 51 to conform to the polarization axis direction of the polarizer 2. By interposing the prism plate 5 on which plural prisms 51 are formed in parallel between the polarizer 2 and the light source 42, the circularly polarized light emitted from the light source s 42 is separated into a polarized light component P and a polarized light component S and the greater part thereof is converted to an elliptically polarized light which can transmit through the polarizer 2. Also, by allowing the lengthwise direction of the prism 51 to conform to the polarization axis direction of the polarizer 2, an optical loss of a back light by the polarizer 2 becomes small and high luminance and low power consumption can be realized.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-18873

(43)公開日 平成6年(1994)1月28日

(51)Int.Cl. ⁵		識別記号	庁内整理番号	FI	技術表示箇所
G 0 2 F	1/1335	5 1 0	7408-2K		
			7408-2K		
		5 3 0	7408-2K		
G 0 2 B	5/04	D	9224-2K		

審査請求 未請求 請求項の数3(全 7 頁)

(21)出願番号	特顯平4-173564	(71)出願人 000005223
		富士通株式会社
(22)出願日	平成 4年(1992) 7月1日	神奈川県川崎市中原区上小田中1015番地
•		(72)発明者 山田 文明
		神奈川県川崎市中原区上小田中1015番地
		富士通株式会社内
		(72)発明者 宮原 大樹
		神奈川県川崎市中原区上小田中1015番地
		富士通株式会社内
		(72)発明者 永谷 真平
		神奈川県川崎市中原区上小田中1015番地
		富士通株式会社内
		(74)代理人 弁理士 井桁 貞一
		最終頁に続く

(54)【発明の名称】 液晶表示装置

(57)【要約】

【目的】 パーソナルコンピュータを始めとする各種電子機器において表示装置として用いられる液晶表示装置に関し、偏光子によるバックライトの光損失が小さく高輝度化と低消費電力化が可能な液晶表示装置の提供を目的とする。

【構成】 光源42から出る円偏光を偏光成分の大半が偏光子2を透過可能な楕円偏光に変換する手段として、複数のプリズム51が平行に形成されてなるプリズム板5を偏光子2と光源42との間に介在せしめ、かつプリズム51の長さ方向を偏光子2の偏光軸方向に合致させるように構成する。

本発明になる液晶患示装置を示す概念図

【特許請求の範囲】

【請求項1】 両面に検光子および偏光子を具備してな る液晶表示パネルとバックライトを有する液晶表示装置 において、光源(42)から出る円偏光を偏光成分の大半が 偏光子(2) を透過可能な楕円偏光に変換する手段とし て、

1

複数のプリズム(51)が平行に形成されてなるプリズム板 (5) を該偏光子(2) と該光源(42)との間に介在せしめ、 かつ該プリズム(51)の長さ方向を該偏光子(2)の偏光軸 方向に合致させてなることを特徴とする液晶表示装置。 【請求項2】 請求項1記載のプリズム板(5) が複数の プリズム(51)を片面に突出させた単層の片面プリズム 板、若しくは複数のプリズム(51)を両面に突出させた単 層の両面プリズム板であることを特徴とする液晶表示装

【請求項3】 請求項1記載のプリズム板(5) が複数の 片面プリズム板または両面プリズム板を重合した複合プ リズム板、若しくは片面プリズム板と両面プリズム板を 重合した複合プリズム板であることを特徴とする液晶表 示装置。

【発明の詳細な説明】

[0001]

置。

【産業上の利用分野】本発明はパーソナルコンピュータ を始めとする各種電子機器において表示装置として用い られる液晶表示装置に係り、特に偏光子によるバックラ イトの光損失が小さく高輝度化と低消費電力化を可能に する液晶表示装置に関する。

【0002】近年の液晶表示装置は表示容量が拡大され ると共に表示特性が向上し薄型軽量化が可能で消費電力 が小さいことから、携帯用のノートブック型パーソナル 30 コンピュータやワードプロセッサ等において表示装置と して広く利用されている。

【0003】しかし、従来の液晶表示装置は偏光子によ るパックライトの光損失が大きく輝度を低下させる要因 になっている。そこで偏光子によるバックライトの光損 失が小さく高輝度化と低消費電力化が可能な液晶表示装 置の開発が望まれている。

[0004]

【従来の技術】図8は液晶表示装置の表示原理を示す概 念図、図9は従来の液晶表示装置の偏光状態を示す概念 40 図である。

【0005】図8において液晶表示装置は両面にそれぞ れ検光子1および偏光子2を具備してなる液晶表示パネ ル3を具えており、偏光軸方向の偏光成分を透過させる 偏光板からなる検光子1と偏光子2は偏光軸方向が直交 するように配置されている。

【0006】また、液晶表示パネル3は透明電極31が形 成されたガラス基板32と透明電極33が形成されたガラス 基板34とで構成され、透明電極31、33を内側にして対向 させてなるガラス基板32、34の間には液晶分子35を含む 50 ム板5を偏光子2と光源42との間に介在せしめ、かつプ

液晶が封入されている。

【0007】液晶分子35は図8(a) に示す如く透明電極 31、33間に電圧が印加されていない状態ではほぼ水平で 同一方向を向き、しかも液晶分子35の軸方向がガラス基 板32の近傍からガラス基板34の近傍の間でほぼ90度旋回 するように配列されている。

【0008】 偏光子2に照射された円偏光に含まれる偏 光成分の偏光子2の偏光軸方向に合致した偏光成分が偏 光子2を透過し、偏光子2を透過した偏光成分は液晶表 示パネル3を透過する間に液晶分子35に沿って90度旋回 10 して検光子1を透過する。

【0009】しかるに図8(b) に示す如く透明電極31、 33間に電圧が印加された状態では全ての液晶分子35が垂 直方向に配列され、偏光子2を透過した偏光成分は90度 旋回しないで液晶表示パネル3を透過するため検光子1 を透過することができない。

【0010】液晶表示装置は偏光子2に円偏光を照射す る手段として図9に示す如くバックライト4を偏光子2 に対向させており、バックライト4はフレーム41の内部 20 に装着された蛍光管42とフレーム41の開口部に装着され た拡散板43を具えている。

【0011】バックライト4から偏光子2に照射された 円偏光の偏光子2の偏光軸方向に合致した偏光成分が偏 光子2を透過する。なお、バックライト4の内部に装着 されたライティングカーテン44は出射光の輝度を一様に するためのものである。

[0012]

【発明が解決しようとする課題】しかし、バックライト から偏光子に照射される光は光学的な操作が施されてい ない無作為な円偏光状態の光であり、偏光子を透過でき るのは偏光子の偏光軸方向に合致した偏光成分だけで原 理的には50%以上の光損失が発生している。

【0013】また、偏光子とバックライトの間にプリズ ム板を設け拡散板から出た光を垂直方向に集中させた従 来例もあるが、かかる場合においても偏光子における効 率は変わらず原理的には50%以上の光損失が発生すると いう問題があった。

【0014】本発明の目的は偏光子によるバックライト の光損失が小さく高輝度化と低消費電力化が可能な液晶 表示装置を提供することにある。

[0015]

【課題を解決するための手段】図1は本発明になる液晶 表示装置を示す概念図である。なお全図を通し同じ対象 物は同一記号で表している。

【0016】上記課題は両面に検光子および偏光子を具 備してなる液晶表示パネルとバックライトを有する液晶 表示装置において、光源42から出る円偏光を偏光成分の 大半が偏光子2を透過可能な楕円偏光に変換する手段と して、複数のプリズム51が平行に形成されてなるプリズ

リズム51の長さ方向を偏光子2の偏光軸方向に合致させ てなる本発明の液晶表示装置によって達成される。

[0017]

【作用】図2は媒体による光の屈折と反射を説明する 図、図3は反射率と透過率の入射角度依存性を示す図、 図4はプリズムに入射した光を示す図である。

【0018】図2において入射側媒体の屈折率をn,、

出射側媒体の屈折率を
$$n$$
,、光の入射角を θ ,、出射角を θ ,とすると、界面に垂直な偏光成分 P の透過率 T ,と反射率 R ,、および界面に平行な偏光成分 S の透過率 T ,と反射率 R ,はそれぞれ次式によって求められる。 【 0019 】 【数 1 】

$$\frac{4n_1n_2\cos\theta_1\cos\theta_2}{(n_2\cos\theta_1+n_1\cos\theta_2)^2} = \frac{\sin2\theta_1\sin2\theta_2}{\sin^2(\theta_1+\theta_2)\cos^2(\theta_1-\theta_2)}$$

$$T_{s} = \frac{4n_{1}n_{2}\cos\theta_{1}\cos\theta_{2}}{(n_{1}\cos\theta_{1} + n_{2}\cos\theta_{2})^{2}} = \frac{3\sin^{2}\theta_{1}\sin^{2}\theta_{2}}{\sin^{2}(\theta_{1} + \theta_{2})^{2}}$$

 $4n_1n_2\cos\theta_1\cos\theta_2$

$$R_{P} = \frac{\left(n_{2}\cos\theta_{1} - n_{1}\cos\theta_{2}\right)^{2}}{\left(n_{z}\cos\theta_{1} + n_{1}\cos\theta_{2}\right)^{2}} = \frac{\tan^{2}(\theta_{1} - \theta_{2})}{\tan^{2}(\theta_{1} + \theta_{2})}$$

[0022]
$$R_{s} = \frac{(n_{1}\cos\theta_{1} - n_{2}\cos\theta_{2})^{2}}{(n_{1}\cos\theta_{1} + n_{2}\cos\theta_{2})^{2}} = \frac{\sin^{2}(\theta_{1} - \theta_{2})}{\sin^{2}(\theta_{1} + \theta_{2})}$$

【0023】前記の式は入射側媒体と出射側媒体の屈折 率の差、または入射角が大きいほど偏光成分Pと偏光成 分Sが分離しやすく、界面に入射した円偏光が例えば偏 光成分Sが大きく偏光成分Pが小さい楕円偏光になりや すいことを示している。

【0024】例えば図3に示す如く入射角 θ 。が増大す るに伴って偏光成分Sの反射率は急激に増大し90度にお いて 100%になるが、偏光成分Pの反射率は臨界点 $heta_{ t B}$ においてほぼ0%になったあと急激に増大するため偏光 成分Sとの間に差が生じる。

【0025】図4に示す如くプリズムを用いることによ って頂角を小さくするほど界面における屈折光の入射角 θ , が大きくなり、反射率の差を利用することによって 界面に入射した円偏光を偏光成分Pと偏光成分Sに容易 に分離することができる。

【0026】したがって、頂角と屈折率を適宜選択され たプリズムに入射し屈折と反射を繰り返して出射される 光は円偏光ではなく、残存している偏光成分Pを短軸と 40 しプリズムの長さ方向に平行な偏光成分Sを長軸とする 楕円偏光に変換されている。

【0027】即ち、複数のプリズムが平行に形成された プリズム板を偏光子と光源との間に介在せしめることに よって、光源から出た円偏光は偏光成分Pと偏光成分S に分離されて大半が偏光子を透過可能な楕円偏光に変換 される。

【0028】楕円偏光の長軸はプリズムの長さ方向に合 致しプリズムの長さ方向を偏光子の偏光軸方向に合致さ せることによって、偏光子によるバックライトの光損失 50

が小さく高輝度化と低消費電力化が可能な液晶表示装置 を実現することができる。

[0029]

30

【実施例】以下添付図により本発明の実施例について説 明する。なお図5はプリズムの頂角と楕円率の関係を示 す図、図6は偏光軸と楕円率の関係を示す図、図7は本 発明になる液晶表示装置の変形例を示す概念図である。

【0030】図5は回転する偏光板にプリズム板から出 射された光を照射し透過光の最小値と最大値の比率をプ ロットした実測値で、最小値/最大値の比率、即ち楕円 率は照射された光が円偏光であれば 100%で直線偏光に 近くなるほど小さくなる。

【0031】図によればプリズムの頂角が 180度、即ち 上面が平らな場合は偏光成分PとSが分離されず円偏光 が偏光板に入射し、プリズムの頂角が小さくなるに伴っ て偏光成分PとSが分離されやすくなって直線偏光に近 づくことが明らかである。

【0032】図6は回転する偏光板にプリズム板から出 射された光を照射し偏光板の偏光軸と楕円率の関係を測 定した実測値で、図によれば偏光板の偏光軸方向がプリ ズムの長さ方向と平行なとき楕円率が最小になり直交す るとき楕円率が最大になる。

【0033】プリズムによって円偏光から変換された楕 円偏光は一般に長軸方向がプリズムの長さ方向に合致す ると考えられ、偏光板の偏光軸方向がプリズムの長さ方 向と平行なとき楕円率が最小になるという実測結果がそ れを証明している。

【0034】図1において本発明になる液晶表示装置は

ĥ

対向するバックライト4と偏光子2の間にプリズム板5を介在させており、バックライト4はフレーム41の内部に装着された蛍光管42とフレーム41の開口部に装着された拡散板43を具えている。

【0035】偏光子2は液晶表示パネル3の配向特性に合わせ偏光軸方向が長さ方向に対して45度傾斜するよう配置されており、プリズム板5は平行に形成された複数のプリズム51の長さ方向が偏光子2の偏光軸方向に合致するように配置されている。

【0036】また、図7に示す如く液晶表示パネル3の 10配向特性に合わせ偏光子2の偏光軸方向が長さ方向を指している場合も、プリズム板5は平行に形成された複数のプリズム51の長さ方向が偏光子2の偏光軸方向に合致するように配置されている。

【0037】即ち、複数のプリズムが平行に形成されたプリズム板を偏光子と光源との間に介在せしめることによって、光源から出た円偏光は偏光成分Pと偏光成分Sに分離されて大半が偏光子を透過可能な楕円偏光に変換される。

【0038】楕円偏光の長軸はプリズムの長さ方向に合 20 致しプリズムの長さ方向を偏光子の偏光軸方向に合致させることによって、偏光子によるバックライトの光損失が小さく高輝度化と低消費電力化が可能な液晶表示装置を実現することができる。

【0039】なお、実施例において用いたプリズム板5は複数のプリズム51が片面に突出する単層の片面プリズム板であるが、片面プリズム板に代えて複数のプリズム51が両面に突出する単層の両面プリズム板を用いてもほぼ同等の効果を得られる。

【0040】また、単層の片面プリズム板に代えて複数 30 の片面プリズム板または両面プリズム板を重合してなる複合プリズム板、若しくは片面プリズム板と両面プリズム板を重合した複合プリズム板の採用により楕円率を更に小さくすることができる。

【0041】本発明の実施例ではいずれもプリズム板5がパックライト4と液晶表示パネル3の間に配置した場合について説明しているが、拡散板43の代わりにプリズム板5をパックライト4に組み込む等蛍光管42と本発明

の実施例ではいずれもプリズム板5が液晶表示パネル3とパックライト4の管に配設されるものと説明しているが、拡散板43の代わりにプリズム板5を用いる等液晶表示パネル3と蛍光管42の間に配設すれば同等の効果が得られる。

【0042】しかも本発明の実施例はいずれもTN型液晶表示パネルを適用光学素子の代表例として取上げ説明しているが、偏光板を用いる光学素子であればTN型液晶表示パネル以外の光学素子に適用して同等を効果を得ることも可能である。

[0043]

【発明の効果】上述の如く本発明によれば偏光子による パックライトの光損失が小さく高輝度化と低消費電力化 が可能な液晶表示装置を提供することができる。

【図面の簡単な説明】

【図1】 本発明になる液晶表示装置を示す概念図である。

【図2】 媒体による光の屈折と反射を説明する図である。

【図3】 反射率と透過率の入射角度依存性を示す図である。

【図4】 プリズムに入射した光を示す図である。

【図5】 プリズムの頂角と楕円率の関係を示す図である。

【図6】 偏光軸と楕円率の関係を示す図である。

【図7】 本発明になる液晶表示装置の変形例を示す概念図である。

【図8】 液晶表示装置の表示原理を示す概念図である。

30 【図9】 従来の液晶表示装置の偏光状態を示す概念図 である。

【符号の説明】

1 検光子

2 偏光子

3 液晶表示パネル

4 バックライト

5 プリズム板42 蛍光管

41 フレーム 43 拡散板

44 ライティングカーテン

51 プリズム

【図1】

【図2】

【図4】

本発明になる液晶表示装置を示す概念図

媒体による光の屈折と反射を説明する図

プリズムに入射した光を示す図

【図5】

プリズムの頂角と精円率の関係を示す図

【図3】 反射率と透過率の入射角度依存性を示す図

[図6]

偏光軸と楕円率の関係を示す図

被晶表示装置の表示原理を示す概念図

【図7】

本発明になる液晶表示装置の変形例を示す概念図

【図9】

従来の液晶表示装置の偏光状態を示す概念図

フロントページの続き

(72)発明者 伊藤 高英 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内