Gauge Theory --- PMATH 965

Professor Ruxandra Moraru

Contents

1	Fibr	re Bundles 1
	1.1	Bundle Maps
	$\frac{1.2}{1.3}$	Bundle Atlases
	1.4	Bundle Maps Revisited
	$\frac{1.5}{1.6}$	Vector Bundles8Sections10
	1.7	Sections of Vector Bundles
2	Con	postions
	2.1	Connections on Vector Bundles
		2.1.2 Curvature
	2.2	Connections on a Fibre Bundle

Lecture 1 --- January 7, 2020

1 Fibre Bundles

Definition 1.1. A fibre bundle consists of the data (E, B, π, F) where E, B, F are (topological) manifolds and $\pi : E \to B$ is a continuous surjection that satisfies the local triviality condition: For every $p \in B$, there is an open neighbourhood $U \ni p$ such that $\varphi : \pi^{-1}(U) \cong U \times F$ is a homeomorphism such that $\operatorname{pr}_1 \circ \varphi = \pi$, where $\operatorname{pr}_1 : U \times F \to U$ is the projection. The set of all $\{(U_\alpha, \varphi_\alpha)\}$ is called the local trivialization of the bundle.

E is called the total space, B is the base space and F is the fibre and π is the projection map.

Note. For all $b \in B$, the set $\pi^{-1}(b) = \{p \in E \mid \pi(p) = b\}$ is called the *fibre at b*, or the *fibre over b*. Since $\operatorname{pr}_1 \circ \varphi = \pi$, we have $\pi^{-1}(b) \cong \{b\} \times F \cong F$. So we can think of E as a family of manifolds homeomorphic to F, parametrized by B.

Note. A fibre bundle (E, B, π, F) is also called an F-bundle.

Example 1.1.

- 1. $E = B \times F$ with $\pi = \operatorname{pr}_1$ is the *trivial bundle*. Note that taking $\pi = \operatorname{pr}_2$ gives a fibre bundle structure with base F and fibre B.
- 2. $E = S^1 \times \mathbb{R}$. E is a cylinder. In this case, E has two trivial bundle structures (as above), but with space $B = S^1$ we also have a vector bundle structure, as the fibres are \mathbb{R} .
- 3. Möbius strip. Example of a non-trivial \mathbb{R} -bundle on S^1 . $M = I \times \mathbb{R}/_{\sim}$ where $(0,t) \sim (1,-t)$ for every $t \in \mathbb{R}$.
- 4. **Hopf fibration.** Example of a non-trivial S^1 -bundle over S^2 . Here,
 - $E = S^3 = \{(z_1, z_2) \in \mathbb{C}^2 \mid |z_1|^2 + |z_2|^2 = 1\}$
 - $B = S^2 = \{(z, x) \in \mathbb{C} \times \mathbb{R} \mid |z|^2 + x^2 = 1\}$
 - $\bullet \ F = S^1 = \{\lambda \in \mathbb{C} \mid |\lambda| = 1\}.$

We take

$$\pi: S^3 \to S^2$$

 $(z_0, z_1) \mapsto (2z_0\overline{z}_1, |z_0|^2 - |z_1|^2)$

is called the *Hopf map*. Then $|2z_0z_1|^2 + (|z_0|^2 - |z_1|^2)^2 = 1$, so $\pi(S^3) \subset S^2$, and π is well-defined and continuous. Also, π is surjective with $\pi^{-1}(z,x) \cong S^1$ for every $(z,x) \in S^2$. Indeed, let $(z,x) \in S^2$ so that $|z|^2 + x^2 = 1$ so that $-1 \le x \le 1$. Also, if z = 0, then $x = \pm 1$. Moreover, one can cover S^2 by the following two open sets:

$$U = \{(z, x) \in S^2 \mid x \neq 1\}$$

= $S^2 \setminus \{(0, 1)\}, \text{ and }$
$$V = \{(z, x) \in S^2 \mid x \neq -1\}$$

= $S^2 \setminus \{(0, -1)\}.$

Let us now show that $\pi^{-1}(U) \cong U \times S^1$. let $(z, x) \in U$. So that $x \neq 1$. In particular, $-1 \leq x < 1$. Pick $(z_0 z_1) \in \pi^{-1}(U)$. Then $2z_0\overline{z_1} = z$ and $|z_0|^2 - |z_1|^2 = x$.

- If z = 0, then $(z, x) = (0, -1) \implies z_0 = 0, |z_1|^2 = 1$. Thus $\pi^{-1}(z, x) = \{(0, \lambda) \in \mathbb{C}^2 \mid |\lambda| = 1\} \cong S_1$.
- If $z \neq 0$, then $x \notin \{\pm 1\}$, so -1 < x < 1 and $z_0, z_1 \neq 0$ since $2z_0\overline{z}_1 = z$. Then $z_0 = \frac{z}{2\overline{z}_1}$. Replacing z_0 by this in $|z_0|^2 |z_1|^2 = 1$, one gets $4|z_1|^4 |z_1|^2 x |z|^2 = 0$. There is only one positive solution, which is equal to $|z_1|^2 = \frac{1-x}{2}$. So $z_1 = \lambda \sqrt{\frac{1-x}{2}}$, $\lambda \in S^1$. By the relationship $z_0 = \frac{z}{2\overline{z}_1}$, we have $z_0 = \lambda \frac{z}{\sqrt{2(1-x)}}$. So $\pi^{-1}(z,x) \cong S^1$, as

$$(z_0, z_1) = \lambda \left(\frac{z}{\sqrt{2(1-x)}}, \sqrt{\frac{1-x}{2}} \right)$$

And so
$$\pi^{-1}(z,x) = \{\lambda\left(\frac{z}{\sqrt{2(1-x)}}, \sqrt{\frac{1-x}{2}})\right) \mid \lambda \in S^1\} \cong S^1.$$

This gives the local trivialization

$$\varphi:\pi^{-1}(U)\to U\times S^1$$

where if $\pi(z,x)=(z_0,z_1)$, $\varphi(z_0,z_0)=\lambda\left(\frac{z}{\sqrt{2(1-x)}},\sqrt{\frac{1-x}{2}}\right)$. Finally, $\operatorname{pr}_1\circ\varphi(z_0,z_1)=\pi(z_0,z_1)$. So we have that (E,B,π,F) is a S^1 -bundle. This tells us that S^3 is an S^1 -bundle over S^2 . But, it cannot be a trivial bundle because S^3 is simply connected, but $S^3\times S^1$ is not.

Lecture 2 --- January 9, 2020

Recall. A fibre bundle is a tuple (E, B, π, F) with $\pi : E \to B$ a continuous surjection that satisfies $\forall b \in B$ there is an open neighbourhood $U \subseteq B$ with $b \in U$ and a homeomorphism $\varphi : \pi^{-1}(U) \to U \times F$ such that the following diagram commutes:

Notation.

E = total space B = base space F = fibre $\pi = \text{projection map}$ $E_b := \pi^{-1}(b) = \text{fibre of } E \text{ at } b \cong F$ $E_U = \pi^{-1}(U) \subset E$

A fibre bundle (E, B, π, F) is also called an F-bundle.

Definition 1.2. A fibre bundle (E, B, π, F) is called *smooth* if E, B and F are smooth manifolds and $\pi : E \to B$ is a smooth surjection and for all $b \in B$, there exists and open neighbourhood $U \subset B$ of b and a diffeomorphism : $\pi^{-1}(U) \to U \times F$ such that $\operatorname{pr}_1 \circ \varphi = \pi$.

Note. In Definition 1.2, we just replace the continuity/homeomorphism by smooth/diffeomorphism.

Remark. Note that $\pi: E \to B$ is in fact a smooth submersion (i.e., the differential $\pi_*: TE \to TB$ is surjective at every point). This follows from the local triviality — not every smooth surjection is a submersion.

Example 1.2. 1. All of the examples from lecture 1 are smooth fibre bundles.

2. **Tangent bundles.** Let M be a smooth manifold of dimension n. Then, TM is a smooth \mathbb{R}^n -bundle. Indeed, let $\{(U_\alpha, \phi_\alpha)\}$ be a smooth atlas for M so that $\phi_\alpha : U_\alpha \subset M \stackrel{\text{diffeo}}{\to} \phi_\alpha(U_\alpha) \subset \mathbb{R}^n$. Here, of course, ϕ_α are the coordinate charts and $\phi_\alpha \circ \phi_\beta^{-1}$ are the coordinate transformations. In particular, $\phi_\alpha \circ \phi_\beta^{-1}$ is a diffeomorphism whenever $U_\alpha \cap U_\beta \neq \emptyset$ so that, $\forall p \in U_\alpha \cap U_\beta$,

$$(\phi_{\alpha} \circ \phi_{\beta}^{-1})_*(\phi_{\beta}(p)) : T_{\phi_{\beta}(p)} \mathbb{R}^n \to T_{\phi_{\alpha}(p)} \mathbb{R}^n$$

is an isomorphism (of vector spaces).

Recall that the tangent bundle TM of M is defined as

$$TM = \coprod_{p \in M} T_p M$$

then, TM has the following smooth manifold structure: Let

$$\pi: TM \to M$$
$$X_p \in T_pM \mapsto p$$

Suppose that

$$\phi_{\alpha}: U_{\alpha} \to \mathbb{R}^n$$

 $p \mapsto (x_1(p), \dots, x_n(p)).$

Then, $\forall X \in T_p M$, $X = \sum_{i=1}^n a_i \frac{\partial}{\partial x_i} \Big|_p$ for some appropriate scalars a_1, \ldots, a_n . Denote by

$$\tilde{\phi}_{\alpha} : \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^{n}$$

$$\left(p, X = \sum_{i=1}^{n} a_{i} \frac{\partial}{\partial x_{i}} \Big|_{p}\right) \mapsto \left(p = \pi(X), (a_{1}, \dots, a_{n})\right).$$

Then $\{\pi^{-1}(U_{\alpha})\}$ is a basis for a topology on TM with respect to which $\{(\pi^{-1}(U_{\alpha}), \tilde{\phi}_{\alpha})\}$ is a smooth atlas for TM. Additionally, $\pi: TM \to M$ is smooth with respect to this smooth structure (see Lee's Introduction to Smooth Manifolds). Note that $\pi \circ \tilde{\phi}_{\alpha} = \operatorname{pr}_1$ by the definition of $\tilde{\phi}_{\alpha}$. So $(TM, M, \pi, \mathbb{R}^n)$ is a smooth \mathbb{R}^n -bundle.

Note. Using the notation from above, the coordinate transformations of TM are given by

$$\left(\tilde{\phi}_{\alpha}\circ\tilde{\phi}_{\beta}^{-1}\right)\left(p,v=\left(a_{1},\ldots,a_{n}\right)\right)=\left(p,\left(\phi_{\alpha}\circ\phi_{\beta}^{-1}\right)_{*}\left(p\right)v\right)$$

1.1 Bundle Maps

Definition 1.3. Let (E, B, π, F) and (E', B, π', F') be two smooth fibre bundles over the same base space. A bundle map or a bundle morphism of these bundles is a smooth map $H: E \to E'$ such that $\pi' \circ H = \pi$ (*). Diagrammatically,

A bundle isomorphism is a bundle map which is a diffeomorphism. If such an isomorphism exists, then E and E' are said to be isomorphic, denoted $E \cong E'$.

Note. The property (*) tells us that bundle maps are fibre-preserving: $\forall b \in B, H|_{E_b} : E_b \to E'_b$. Also, if H is an isomorphism, then $H|_b : E_b \to E'_b$ is an isomorphism.

Definition 1.4. Fibre bundles isomorphic to the trivial bundle are called *trivial*. I.e., if there exists a diffeomorphism $H: E \to B \times F$ such that $\pi = \operatorname{proj}_1 \circ H$ (with the typical notations).

Note. If E is a trivial bundle, then we have $E = \pi^{-1}(B)$ so that H is a global trivialization. All fibre bundles are locally trivial (by definition), but may not be globally trivial (e.g. the Hopf fibration is an S^1 -bundle over S^2 with total space S^3 which is not diffeomorphic (in fact, not even homeomorphic) to $S^1 \times S^2$).

Example 1.3. Let $S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$. Then, TS^1 is trivial.

Proof. Let us show that $TS^1 \cong S^1 \times \mathbb{R}$. Define the following atlas for S^1 : Let U_1 be the "right half" of the circle with the top and bottom excluded. Then we define the map

$$\varphi_1: U_1 \to (-\pi/2, \pi/2)$$

 $(x, y) \mapsto \arctan(y/x) =: \theta_1$

We then take the open top U_2 with the map

$$\varphi_2: U_2 \to (0, \pi)$$

 $(x, y) \mapsto \operatorname{arccot}(x/y) =: \theta_2$

and the bottom half U_3 with

$$\varphi_3: U_3 \to (-\pi, 0)$$

 $(x, y) \mapsto \operatorname{arccot}(x/y) - \pi =: \theta_3$

and, lastly, the left open semicircle U_4 with

$$\varphi_4: U_4 \mapsto (\pi/2, 3\pi/2)$$

 $(x, y) \mapsto \arctan(y, x) + \pi =: \theta_4$

In all cases, $(\varphi_i \circ \varphi_i^{-1})_* = id$. Thus, the coordinate transformations for TS^1 are

$$(\tilde{\varphi}_i \circ \tilde{\varphi}_j^{-1})_*(x,v) = ((\varphi_i \circ \varphi_j^{-1})(x),v).$$

We can use the $\tilde{\varphi}_i$'s to construct an isomorphism H between TS^1 and $S^1 \times \mathbb{R}$. Take the usual projection map $\pi: TS^1 \to S^1$ and set

$$H|_{\pi^{-1}(U_i)} = \tilde{\varphi}_i : TU_i \to U_i \times \mathbb{R}.$$

Then, the $H|_{\pi^{-1}(U_i)}$ glue together to give a bundle map $H:TS^1\to S^1\times\mathbb{R}$ where we use the atlas $\{(\pi^{-1}(U_i),\tilde{\varphi}_i)\}$ and $((U_i\times\mathbb{R},\varphi_i\times\mathrm{id}))$, and H is a diffeomorphism, and so $TS^1\cong S^1\times\mathbb{R}$.

Note. Let $E = B \times F$ be the trivial bundle over B with projection $\pi = \operatorname{proj}_1 : E \to B$. Then E also admits a projection onto the fibre: proj_2 . For a general fibre bundle, there may only exist a projection onto the fibre locally. We, however, have the following characteriszation of trivial bundles:

Proposition 1.1. (E, B, π, F) is trivial if and only if there exists a smooth map $\psi : E \to F$ such that the restrictions to each fibres $\psi|_{E_b}$ are diffeomorphisms.

Lecture 3 --- January 14, 2020

Definition 1.5. A smooth fibre bundle is a tuple (E, B, π, F) such that E, B and F are smooth manifolds and $\pi : E \to B$ is a smooth surjective map and for all $b \in B$, there is an open $U \ni b$ and a diffeomorphism $\varphi : \pi^{-1}(U) \to U \times F$ such that $\pi = \operatorname{proj}_1 \circ \varphi$, where $\operatorname{proj}_1 : U \times F \to U$ is the projection onto the first factor.

Note. From now on we will assume that all manifolds are smooth and all fibrre bundles are smooth.

1.2 Bundle Atlases

Definition 1.6. A bundle atlas for a fibre bundle (E, B, π, F) is an open covering $\{U_{\alpha}\}_{{\alpha} \in \mathcal{A}}$ together with bundle charts $\varphi_{\alpha} : E_{\alpha} =: \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times F$ of B such that $\pi^{-1}(U_{\alpha}) \cong U_{\alpha} \times F$.

Definition 1.7. Let $\{(U_{\alpha}, \varphi_{\alpha})\}$ be a bundle atlas for (E, B, π, F) . If $U_{\alpha} \cap U_{\beta} \neq \emptyset$, we define the transition functions by

$$g_{\alpha\beta} := \varphi_{\alpha} \circ \varphi_{\beta}^{-1}\big|_{U_{\alpha} \cap U_{\beta}} : \underbrace{(U_{\alpha} \cap U_{\beta}) \times F}_{\subset U_{\beta} \times F} \to \underbrace{(U_{\alpha} \cap U_{\beta}) \times F}_{\subset U_{\alpha} \times F}$$

Note that the $g_{\alpha\beta}$'s are all diffeomorphisms and they "preserve the fibres", i.e., for all $b \in U_{\alpha} \cap U_{\beta}$,

$$g_{\alpha\beta}|_{\{b\}\times F}:\{b\}\times F\stackrel{\cong}{\longrightarrow}\{b\}\times F$$

(because $\varphi_{\alpha}|_{\{b\}\times F}: E_b \xrightarrow{\cong} \{b\} \times F$). This implies that for all $b \in U_{\alpha} \cap U_{\beta}$,

$$\overline{g}_{\alpha\beta}(b) = g_{\alpha\beta}|_{\{b\}\times F} \in \mathrm{Diff}(\{b\}\times F) \cong \mathrm{Diff}(F)$$

The maps

$$\overline{g}_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to \mathrm{Diff}(F)$$

$$b \mapsto \overline{g}_{\alpha\beta}(b)$$

are also called the transition functions of (E, B, π, F) .

Example 1.4. Hopf fibration. (S^3, S^2, π, S^1) where

- $S^3 = \left\{ (z_0, z_1) \mid |z_0|^2 + |z_1|^2 = 1 \right\} \subset \mathbb{C}^2$
- $S^2 = \left\{ (z, x) \mid |z|^2 + x^2 = 1 \right\} \subset \mathbb{C} \times \mathbb{R}$
- $S^1 = \{\lambda \in \mathbb{C} \mid |\lambda| = 1\}$

and

$$\pi: S^3 \to S^2$$

 $(z_0, z_1) \mapsto \left(2z_0\overline{z}_1, |z_0|^2 - |z_1|^2\right)$

Set $U = \{(z, x) \in S^2 \mid z \neq 1\} = S^2 \setminus \text{north pole and } V = \{(z, x) \in S^2 \mid x \neq -1\} = S^2 \setminus \text{south pole. } \{U, V\} \text{ is an open cover of } S^2.$ We have the bundle charts:

$$\varphi_U : \overbrace{\pi^{-1}(U)}^{\subset S^3} \to \overbrace{U \times S^1}^{\in S^2 \times S^1}$$
$$(z_0, z_1) \mapsto ((z, x), \lambda)$$

where $(z_0, z_1) = \lambda\left(\frac{z}{\sqrt{1(1-x)}}, \sqrt{\frac{1-x}{2}}\right)$, and

$$\varphi_V : \pi^{-1}(V) \to V \times S^2$$

 $(z_0, z_1) \mapsto ((z, x), \lambda')$

where $(z_0, z_1) = \lambda'\left(\sqrt{\frac{x+1}{2}}, \frac{\overline{z}}{\sqrt{2(x+1)}}\right)$. So $\{(U, \varphi_U), (V, \varphi_V)\}$ is a bundle atlas with transition functions

$$g_{UV} = \varphi_U \circ \varphi_V^{-1} : \underbrace{(U \cap V) \times S^1}_{\subset U \times S^1} \to \underbrace{(U \cap V) \times S^1}_{\subset U \times S^1}$$
$$((z, x), \lambda') \mapsto ((z, x), \lambda)$$

with

$$\lambda'\left(\sqrt{\frac{x+1}{2}}, \frac{\overline{z}}{\sqrt{2(x+1)}}\right) \underbrace{=}_{\varphi_{v}^{-1}} (z_0, z_1) \underbrace{=}_{\varphi_{U}} \lambda\left(\frac{z}{\sqrt{2(x+1)}}, \sqrt{\frac{1-x}{2}}\right)$$

This implies that

$$\lambda = \lambda' \left(\frac{\sqrt{1 - x^2}}{z} \right) \stackrel{\text{since } |z^2| + |x|^2 = 1}{=} \lambda' \frac{|z|}{z}.$$

So

$$g_{UV}: (U \cap V) \times S^1 \to (U \cap V) \times S^1$$

 $((z, x)\lambda') \mapsto ((z, x), \lambda'\left(\frac{|z|}{z}\right))$

Thus $\overline{g}_{UV}(z,x) = \left(\text{multiplication in } S^1 \text{ by } \frac{|z|}{z}\right) \in \text{Diff}(S^1).$

It can often be difficult to check that a set we suspect is the total space of a fibre bundle is a manifold. One nonetheless has the following construction:

Definition 1.8. (Formal bundle atlases.) Let B and F be manifolds, E a set and $\pi: E \to B$ a surjective map.

1. Suppose $U \subset B$ is open and

$$\varphi_U:\pi^{-1}(U)\to U\times F$$

is a bijection with $\operatorname{proj}_1 \circ \varphi_U = \pi$. Then, we call (U, φ_U) a formal bundle chart for E.

- 2. A family of bundle charts $\{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha \in \mathcal{A}}$ where $\{U_{\alpha}\}$ is an open cover of B is called a formal bundle atlas for E.
- 3. The charts in a formal bundle atlas $\{(U_{\alpha}, \varphi_{\alpha})\}$ are called *smoothly compatible* iff all transition functions

$$g_{\alpha\beta}: (U_{\alpha} \cap U_{\beta}) \times F \to (U_{\alpha} \cap U_{\beta}) \times F$$

(for $U_{\alpha} \cap U_{\beta} \neq \emptyset$) are all diffeomorphisms.

Theorem 1.1. (Formal bundle atlases define fibre bundles.) Let B and F be smooth manifolds, E a set and $\pi: E \to F$ a surjection. Suppose that $\{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha \in \mathcal{A}}$ is a formal bundle atlas for E of smoothly compatible charts. Then there exists a unique topology and smooth manifold structure on E such that (E, B, π, F) is a smooth fibre bundle with bundle atlas $\{(U_{\alpha}, \alpha)\}_{\alpha \in \mathcal{A}}$.

Let (E, B, π, F) be a fibre bundle with bundle atlas $\{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha \in \mathcal{A}}$. Recall that the transition functions

$$g_{\alpha\beta}: (U_{\alpha} \cap U_{\beta}) \times F \longrightarrow (U_{\alpha} \cap U_{\beta}) \times F.$$

Then they satisfy:

Lemma 1.1. (Cocycle conditions.): If $\overline{g}_{\alpha\beta} = g_{\alpha\beta}|_{\{b\}\times F}$ for all $b \in U_{\alpha} \cap U_{\beta}$,

$$\begin{split} \overline{g}_{\alpha\alpha}(b) &= \mathrm{id}_F, \forall b \in U_\alpha \\ \overline{g}_{\alpha\beta} \circ \overline{g}_{\beta\alpha}(b) &= \mathrm{id}_F, \forall b \in U_\alpha \cap U_\beta \\ \overline{g}_{\alpha\beta} \circ \overline{g}_{\beta\gamma} \circ \overline{g}_{\gamma\alpha}(b) &= \mathrm{id}_F, \forall b \in U_\alpha \cap U_\beta \cap U_\gamma. \end{split}$$

Remark. A fibre bundle can be (re)-constructed from its transition functions as a quotient using the equivalence relation induced by the cocycle condition:

$$E \cong \left(\coprod_{\alpha \in A} U_{\alpha} \times F \right) /_{\sim}$$

where $(b, v) \sim (b', v')$ if and only if $\exists \alpha, \alpha'$ with $b = b' = U_{\alpha} \cap U_{\alpha'} \neq \emptyset$ and $v = \overline{g}_{\alpha\alpha'}(b')v'$.

Lecture 4 --- January 16, 2020

1.3 Comparison Between Manifolds and Fibre Bundles

Manifolds	Fibre bundles
coordinate charts $\varphi: U \subseteq M \xrightarrow{\text{open}} \mathbb{R}^n$	bundle charts / local trivializations $\varphi:\pi^{-1}(U)\to U\times F$
Coordinate transformations	Transition functions
Atlas	Bundle atlas
Trivial manifold $U \subseteq \mathbb{R}^n$	Trivial bundle $E = B \times F$
Non-trivial manifold	Non-trivial bundle

Notation. (E, B, π, F) is a fibre bundle

- $U \stackrel{\text{open}}{\subset} B E_U := \pi^{-1}(U) \subset E$
- $b \in B E_b := \pi^{-1}(b) \subset E$
- $\{(U_{\alpha}, \varphi)\}$ a bundle atlas: if $U_{\alpha} \cap U_{\beta} \neq \emptyset$, the transition functions

$$g_{\alpha\beta} = \varphi_{\alpha} \circ \varphi_{\beta}^{-1} \big|_{U_{\alpha} \cap U_{\beta}} : (U_{\alpha} \cap U_{\beta}) \times F \to (U_{\alpha} \cap U_{\beta}) \times F$$

and for all $b \in U_{\alpha} \cap U_{\beta}$,

$$\begin{split} g_{\alpha\beta}\big|_{\{b\}\times F}: \{b\}\times F \to \{b\}\times F \\ (b,v) \mapsto (b,\overline{g}_{\alpha\beta}(b)(v)). \end{split}$$

The maps $\overline{g}_{\alpha\beta}:(U_{\alpha}\cap U_{\beta})\times F\to \mathrm{Diff}(F)$ are also called the transition functions.

1.4 Bundle Maps Revisited

Let (E, B, π, F) and (E', B, π', F') be two fibre bundles over B. A bundle map is a smooth map $H: E \to E'$ such that $\pi' \circ H = \pi$. Recall that bundle maps are fibre-preserving: For all $b \in B$, $H|_{E_b}: E_b \to E'_b$. Thus, for all $U \subseteq B$, $H|_{E_U}: E_U \to E'_U$. Can one obtain a local description of bundle maps? Let $\{U_\alpha\}_{\alpha \in \mathcal{A}}$ be an open cover of B with respect to which E_{U_α} and E'_{U_α} are trivial for all $\alpha \in \mathcal{A}$. Suppose $\{(U_\alpha, \varphi_\alpha)\}$ and $\{(U_\alpha, \varphi'_\alpha)\}$ are bundle at lases for E and E' respectively, and set $H_\alpha = H|_{E_{U_\alpha}}: E_{U_\alpha} \to E'_{U_\alpha}$.

$$E_{U_{\alpha}} \xrightarrow{H_{\alpha}} E'_{U_{\alpha}}$$

$$\downarrow^{\varphi_{\alpha}} \qquad \qquad \downarrow^{\varphi'_{\alpha}}$$

$$U_{\alpha} \times F \xrightarrow{\varphi'_{\alpha} \circ H_{\alpha} \circ \varphi_{\alpha}^{-1}} U_{\alpha} \times F'$$

Where

$$\varphi'_{\alpha} \circ H_{\alpha} \circ \varphi_{\alpha}^{-1} : U_{\alpha} \times F \to U_{\alpha} \times F'$$
$$(b, v) \mapsto (b, \overline{H}_{\alpha}(b)(v)).$$

Note that $\overline{H}_{\alpha}(b): F \to F'$ are smooth maps, as they are compositions of smooth maps. Also, if $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then $H_{\alpha}\big|_{U_{\alpha} \cap U_{\beta}} = H\big|_{U_{\alpha\beta}} = H_{\beta}\big|_{U_{\alpha} \cap U_{\beta}}$. Thus for any $b \in U_{\alpha} \cap U_{\beta}$,

$$\overline{H}_{\beta}(b) = \overline{g}_{\beta\alpha}'(b) \circ \overline{H}_{\alpha}(b) \circ \overline{g}_{\alpha\beta}(b)(*)$$

Bundle maps are completely determined by smooth maps

$$\overline{H}_{\alpha}: U_{\alpha} \to C^{\infty}(F, F')$$

that satisfy (*). Also, if H is a bundle isomorphism, then $\overline{H}_{\alpha}: U_{\alpha} \to \text{Diff}(F, F')$.

Note. When H is a diffeomorphism, (*) can be rewritten as

$$\overline{g}'_{\alpha\beta}(b) = \overline{H}_{\alpha}(b) \circ \overline{g}_{\alpha\beta}(b) \circ \overline{H}_{\beta}(b)^{-1}(**).$$

So, (E, B, π, F) is isomorphic to (E', B, π', F') if and only if there is a collection of maps $\{H_{\alpha}: U_{\alpha} \to \text{Diff}(F, F')\}$ which satisfies (**).

Corollary 1.1. (E, B, π, F) is trivial if and only if there is a bundle atlas $\{(U_{\alpha}, \varphi_{\alpha})\}$ and smooth maps $\{\overline{H}_{\alpha} : U_{\alpha} \to \text{Diff}(F)\}$ such that $\overline{g}_{\alpha\beta}(b) = \overline{H}_{\alpha}(b)^{-1} \circ \overline{H}_{\beta}(b)$ for all $b \in B$. I.e., the cocycle corresponding to the transition functions is a coboundary.

Theorem 1.2. A bundle map $H: E \to E'$ is an isomorphism if and only if $H|_{E_a}: E_b \to E'_b$ is a diffeomorphism.

1.5 Vector Bundles

Definition 1.9. A fibre bundle (E, B, π, F) is called a *vector bundle* (v.b.) if the following are satisfied:

- (i.) F is a finite-dimensional vector space
- (ii.) For all $b \in B$, $\pi^{-1}(b)$ has the structure of an r-dimensional vector space (where $r = \dim F$)
- (iii.) The local trivializations $\varphi_U: E_U \to U \times F$ restrict to linear maps on the fibres of E. I.e., for all $b \in U$, $\varphi_U|_{E_b}: E_b \to \{b\} \times F \cong \{b\} \times F$ is a linear isomorphism.

r is called the rank of the vector bundle. If r = 1, (E, B, π, F) is called a line bundle.

Note. Vector bundles are \mathbb{R}^r -bundles, or \mathbb{C}^r -bundles whose bundle charts preserve the linear structure on the fibres.

Example 1.5. 1. $E = B \times \mathbb{R}^r$ or $E = B \times \mathbb{C}^r$ is the trivial bundle of rank r.

- 2. the (infinite) Möbius bundle is a line bundle on S^1 that is non-trivial.
- 3. If M is a manifold of dimension n, then TM is a vector bundle of rank n.
- 4. Tautological line bundle over \mathbb{P}^n . Recall that $\mathbb{P}^n = \mathbb{R}^{n+1} \setminus \{0\} /_{\sim}$ where $x \sim \lambda x$ for all $\lambda \in \mathbb{R} \setminus \{0\}$. I.e., it is the set of all lines in \mathbb{R}^{n+1} through the origin. Set

$$E = \coprod_{[x] \in \mathbb{P}^n} L_{[x]}$$

where L[x] is the line in \mathbb{R}^{n+1} through x and 0. Also,

$$\pi: E \to \mathbb{P}^n$$
$$v \in L_{[x]} \mapsto [x]$$

note that for every $x \in \mathbb{P}^n$, $\pi^{-1}([x]) = L_{[x]} \cong \mathbb{R}$. Then $(E, \mathbb{P}^n, \pi, \mathbb{R})$ is a line bundle on \mathbb{P}^n .

Lecture 5 --- January 21, 2020

Recall. A vector bundle is a fibre bundle (E, B, π, F) such that

- (i) F is a finite-dimensional vector space of dimension r
- (ii) For every $b \in B$, E_b has the structure of a r-dimensional vector space
- (iii) There exist bundle charts $\varphi_U: E_U \to U \times F$ such that $\varphi_U|_{E_b}: E_b \xrightarrow{\cong} \{b\} \times F$ is a linear isomorphism.

Example 1.6. Tautological line bundle over \mathbb{P}^1 **.** $\mathbb{P}^1 = (\mathbb{R}^{n+1}\{0\}) /_{\sim}$ where $(x_1, \ldots, x_n) \sim (\lambda x_1, \ldots, \lambda x_n)$ for all $\lambda \in \mathbb{R}^*$. Let

$$E:=\coprod_{[x]\in\mathbb{P}^n}\left\{[x]\right\}\times L_{[x]}$$

where L[x] is the line through $\mathbb{R}^{n+!}$ through 0 and x. Then,

$$\pi: E \to \mathbb{P}^n$$

$$([x], v \in L_{[x]}) \mapsto [x]$$

is a line bundle over \mathbb{P}^n called the tautological line bundle over \mathbb{P}^n , with fibre $E_{[x]} \cong L_{[x]} \cong \mathbb{R}^1$ for every $[x] \in \mathbb{P}^n$.

Proof. let us construct a bundle atlas for E that satisfy condition (iii) of the definition of a vector bundle and whose transition functions are smooth. Cover \mathbb{P}^n by

$$U_i := \{ [x] \in \mathbb{P}^n \mid x_i \neq 0 \} \underbrace{\subset}_{\text{open}} \mathbb{P}^n.$$

Then, for all $[x] \in U_i$ so that $x_i \neq 0$, and so

$$[x] = [x_1 : \dots, x_i : \dots : x_{n+1}]$$
$$= \left[\frac{x_1}{x_i} : \dots : 1 : \dots : \frac{x_{n+1}}{x_i}\right]$$

Then for all $v \in L_{[x]}$, $v = t\left(\frac{x_1}{x_i}, \dots, 1, \dots, \frac{x_{n+1}}{x_i}\right)$ for some unique $t \in \mathbb{R}$. Set

$$\varphi_i : E_{U_i} = \coprod_{[x] \in U_i} \{ [x] \} \times L_{[x]} \longrightarrow U_i \times \mathbb{R}^1$$

$$\left([x], t\left(\frac{x_1}{x_i}, \dots, 1, \dots, \frac{x_{n+1}}{x_i}\right)\right) \mapsto (x, t)$$

Then φ_i is a bijection. The collection $\{(U_i, \varphi_i)\}_{i=1}^{n+1}$ is a formal atlas for E. Also, if $U_i \cap U_j \neq \emptyset$, $[x] \in U_i \cap U_j$ and $v \in L_[x]$,

$$s(x_1/x_i, \dots, 1, \dots, x_{n+1}/x_i) = v = t(x_1/x_j, \dots, 1, \dots, x_{n+1}/x_j)$$
$$= t\frac{x_i}{x_j}(x_1/x_i, \dots, 1, \dots, x_{n+1}/x_i)$$

And thus $s = \left(\frac{x_i}{x_j}\right)t$. Then $\varphi_i([x], v) = ([x], s)$ and $\varphi_j([x], v) = ([x], t)$ and $\varphi_i \circ \varphi_j^{-1}([x], t) = \left([x], \left(\frac{x_i}{x_j}\right)t\right)$, and so $\overline{\varphi}_{ij}([x]) \in \text{Diff}(\mathbb{R}^1)$. So E is a fibre bundle over \mathbb{P}^n with fibre \mathbb{R}^1 . Finally, we need to check that, for $i = 1, \ldots, n+1$,

$$\varphi_i|_{E_{[x]}}: E_{[x]} \mapsto \{[x]\} \times \mathbb{R}^1$$

are linear isomorphisms. Here, $E_{[x]} = \{x\} \times L_{[x]}$, with vector space structure: $\forall \alpha \in \mathbb{R} \text{ and } v, v' \in L_{[x]}$, then $([x], v) + \alpha([x], v') = ([x], v + \alpha v')$. Also, one can write $v = t(x_1/x_i, \dots, x_{n+1}/x_i)$ and $v' = t'(x_1/x_i, \dots, x_{n+1}/x_i)$ for some $t, t' \in \mathbb{R}$. Then $v + \alpha v' = (t+')(x_1/x_i, \dots, x_{n+1}/x_i)$ Then

$$\varphi_i\left(([x], v) + \alpha([x], v')\right) = \varphi_i\left([x], v + \alpha v'\right)$$

$$= ([x], t + \alpha t')$$

$$= ([x], t) + \alpha\left([x], t'\right)$$

$$= \varphi_i([x], v) + \alpha \varphi_i([x], v').$$

Since $\varphi_i|_{E_{[x]}}$ is also a bijection, it is an isomorphism of vector spaces. This implies that, finally, $(E, \mathbb{P}^n, \pi, \mathbb{R}^1)$ is a vector bundle of rank 1.

Note. In the proof above, the transition functions of the bundle atlas we constructed were the $\overline{\varphi}ij:U_i\cap U_j\longrightarrow \mathrm{GL}\,(1,\mathbb{R})\subset \mathrm{Diff}(\mathbb{R}^1)$.

Remark. If $\{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha \in \mathcal{A}}$ is a vector bundle atlas for the vector bundle $(E, B, \pi, \mathbb{R}^r)$ (or $(E, B, \pi, \mathbb{C}^r)$), the transition functions

$$\overline{g}_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to \mathrm{GL}(r,\mathbb{R}) \text{ or } \mathrm{GL}(r,\mathbb{C})$$

In particular, if r = 1, then $\mathrm{GL}(1,\mathbb{R}) = \mathbb{R}^{\times}$ and $\mathrm{GL}(1,\mathbb{C}) = \mathbb{C}^{\times}$ so that $\overline{g}_{\alpha\beta}$ are just nowhere-vanishing scalar functions.

Definition 1.10. Let $(E, B, \pi, \mathbb{R}^r)$ and $(E', B, \pi'. \mathbb{R}^{r'})$ be vector bundles. A map $H: E \to E'$ is a (bundle) map of vector bundles if

 $H|_{E_b}: E_b \to E_b'$

is linear for all $b \in B$.

Note. Unless otherwise stated, we will always assume that bundle maps between vector bundles are actually bundle maps.

1.6 Sections

Definition 1.11. Let (E, B, π, F) be a fibre bundle. A section of (E, B, π, F) is a smooth map $\sigma : B \to E$ such that $\pi \circ \sigma = \mathrm{id}_B$.

Then for all $b \in B$, $\sigma(b) \in E_b$, since $\pi(\sigma(b)) = b$. Also, $\sigma(B) \subset E$ is a smooth submanifold of E diffeomorphic to B (exercise).

Notation. We write $\Gamma(E) = \{\text{set of } all \text{ sections of } (E, B, \pi, F)\}.$

Definition 1.12. If $U \subseteq B$ is open, then a local section of E over U is a smooth map $\sigma: U \to E_U$ such that $\pi \circ \sigma = \mathrm{id}_U$.

Note. Again, $\sigma(b) \in E_b$ for all $b \in U$ if $\sigma: U \to E$ is a local section over U. We denote

$$\Gamma(U, E) = \{ \text{ set of local sections of } E \text{ over } U \}.$$

Example 1.7. (i) $E = B \times F$ with $\pi = \operatorname{pr}_1$. Let $\overline{\sigma}: B \to F$ be any smooth map, and then

$$\sigma: B \to E$$
$$b \mapsto (b, \overline{\sigma}(b))$$

Then σ is smooth and $\pi \circ \sigma = \mathrm{id}_B$, so $\sigma \in \Gamma(E)$.

In fact, sections of any fibre bundle look like this locally: Let (U, φ_U) be a bundle chart for (E, B, π, F) and $\sigma \in \Gamma(E)$. Then, $\pi \circ \sigma = \mathrm{id}_B$ and

$$\varphi_U \circ \sigma|_U : U \to U \times F.$$

 $b \mapsto (b, \overline{\sigma}_U(b))$

for some $\overline{\sigma}_U: U \to F$ smooth. [Note: The first component of $\varphi_U \circ \sigma|_U$ is id_U because $\pi \circ \sigma|_U = \mathrm{id}_U$.] Thus, local sections of E over U are completely determined by the smooth functions $\overline{\sigma}: U$ In particular, local sections always exist.

Example 1.8. (i) Vector bundles always admit sections. For example, given any vector bundle $(E, B, \pi, \mathbb{R}^r)$, one can define the zero section

$$0: B \to E$$
$$b \mapsto 0 \in E_b$$

- (ii) If M is any smooth manifold, them $\Gamma(TM)$ is the collection of smooth vector fields on M, which always exist.
- (iii) Consider S^2 and TS^2 . Sections of TS^2 are smooth, tangent vector fields on S^2 . By the Hairy-Ball Theorem, any smooth vector field on S^2 has at least one zero.
- (iv) For an example of a fibre bundle that does not admit any global sections, take $E = TS^2 \setminus \{\text{zero section}\}$, which has fibre $\mathbb{R}^2 \setminus \{0\}$ and whose projection is simply $\pi|_E$ where $\pi: TS^2 \to S^2$ is the standard projection. This fibre bundle does not have a section because any smooth section $\sigma \in \Gamma(E)$ would be a smooth vector field on S^2 and thus must have a zero.

Lecture 6 --- January 23, 2020

Sections. (E, B, π, F) a fibre bundle. A section is a smooth map $\sigma : B \to E$ such that $\pi \circ \sigma = \mathrm{id}_B$. We denote by $\Gamma(E)$ the set of all sections of (E, B, π, F) .

Gien a bundle chart (E_U, φ_U) with $U \subseteq B$ open,

$$\varphi_U \circ (\sigma|_U) : U \xrightarrow{\sigma} U \times F$$

$$E_U$$

with $\varphi_U \circ (\sigma|_U)(b) = (b, \overline{\sigma}(b))$ for some smooth $\overline{\sigma}: U \to F$.

Let $\{U_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ be an open conver of B and $\{(E_{U_{\alpha}},\varphi_{\alpha})\}_{{\alpha}\in\mathcal{A}}$ be a bundle atlas for (E,B,π,F) . Let $\sigma\in\Gamma(E)$. Set

$$\sigma_{\alpha} := \sigma \big|_{U_{\alpha}} : U_{\alpha} \longrightarrow E_{U_{\alpha}} = \coprod_{b \in U_{\alpha}} E_{b}$$

Then

$$\varphi_{\alpha} \circ \sigma_{:} U_{\alpha} \to U_{\alpha} \times F$$
$$b \mapsto (b, \overline{\sigma}_{\alpha}(b))$$

for some smooth $\overline{\sigma}_{\alpha}: U_{\alpha} \to F$. How are the $\overline{\sigma}_{\alpha}$'s related? Suppose $U_{\alpha} \cap U_{\beta} \neq \emptyset$ and let $b \in U_{\alpha} \cap U_{\beta}$. Then

$$(b, \overline{\sigma}_{\alpha}(b)) = \varphi_{\alpha} \circ \sigma_{\alpha}(b)$$

$$= \varphi_{\alpha} \circ \sigma_{\beta}(b)$$

$$= \underbrace{\varphi_{\alpha} \circ \varphi_{\beta}^{-1}}_{g_{\alpha\beta}} \circ \varphi_{\beta} \circ \sigma_{\beta}(b)$$

$$= (b, \overline{q}_{\alpha\beta}(b) (\overline{\sigma}_{\beta}(b)))$$

which implies that

$$\overline{\sigma}_{\beta}(b) = \overline{g}_{\alpha\beta}(b) \left(\overline{\sigma}_{\beta}(b) \right) (* * *)$$

for all $b \in U_{\alpha} \cap U_{\beta}$.

So, given a bundle atlas $\{(E_{U_{\alpha}}, \varphi_{\alpha})\}$ of (E, B, π, α) , we can think of sections of the bundle as families of smooth maps $\{\sigma_{\alpha}: U_{\alpha} \to F\}$ that satisfy (***).

1.7 Sections of Vector Bundles

Let $(E, B, \pi, \mathbb{R}^r)$ be a vector bundle, which we will denote by E. Let $\{U_\alpha\}$ be an open cover of B and $\{(E_{U_\alpha}, \varphi_\alpha)\}$ be a vector bundle atlas of E. Then, the transition functions of the atlas are

$$\overline{g}_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to \mathrm{GL}\,(r,\mathbb{R})$$

So, for all $b \in U_{\alpha} \cap U_{\beta}$, $\overline{g}_{\alpha\beta}(b) =$ (invertible matrix), and, for all $v \in \mathbb{R}^r$,

$$\overline{g}_{\alpha\beta}(b)(v) = \underbrace{\overline{g}_{\alpha\beta}(b) \cdot v}_{\text{matrix multiplication}}$$

For this reason, $\overline{g}_{\alpha\beta}(b)$ are sometimes called transition matrices.

Also, any section of E is determined by a family

$$\{\overline{\sigma}_{\alpha}: U_{\alpha} \to \mathbb{R}^r\}$$

of smooth vector-valued functions such that

$$\overline{\sigma}_{\alpha}(b) = \underbrace{\overline{g}_{\alpha\beta}(b) \cdot \sigma_{\beta}(b)}_{\text{matrix multiplication}}$$

by (***).

Note. On a vector bundle, any local section can be extended globally (possibly by zero outside of the open set on which it is defined) by using bump functions (exercise).

Definition 1.13. Let $\sigma_1, \ldots, \sigma_l \in \Gamma(E)$. We say that the set $\{\sigma_1, \ldots, \sigma_l\}$ is linearly independent if

$$\{\sigma_1(b),\ldots,\sigma_l(b)\}\subseteq E_b$$

is linearly independent for every $b \in B$. If l = r (the rank of E), then $\{\sigma_1, \ldots, \sigma_l\}$ is called a frame for E.

Note. (i) If $\{\sigma_1, \ldots, \sigma_r\}$ is a frame of E so that $\{\sigma_1(b), \ldots, \sigma_l(b)\}$ is linearly independent in E_b for all $b \in B$, then $\{\sigma_1(b), \ldots, \sigma_l(b)\}$ is a basis for E_b for all $b \in B$. Then $\sigma_i(b) \neq 0$ for all $i = 1, \ldots, l$. So, the σ_i 's are nowhere-vanishing.

(ii) If r=1, then any frame of E consists solely of a nowhere-vanishing section.

Example 1.9. 1) Let S^{2n} be an even-dimensional sphere. Then, by the Hairy Ball theorem, any tangent vector field of S^{2n} has at least one zero. Thus, TS^{2n} does not admit nowhere-vanishing sections. So, TS^{2n} does not admit any (global) frames.

- 2) $S^{2n+1} \subset \mathbb{R}^{2n+2} = \{(x_1, \dots, x_{2n+2})\}.$
 - $S^1 = \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1^2 + x_2^2 = 1\}$. Then $X_{(x_1, x_2)} = (-x_2, x_1)$ is a nowhere-vanishing, tangent vector field of S^1 .
 - On $S^{2n+1} \subset \mathbb{R}^{2n+2}$, We define

$$X_{(x_1,\ldots,x_{2n+2})} = (-x_2,x_1,\ldots,-x_{2k},x_{2k+1},\ldots,-x_{2n-1},x_{2n+2}).$$

• On S^3 , we have that

$$X_1(x_1, \dots x_4) = (-x_2, x_1, -x_3, x_4)$$

$$X_2(x_1, \dots x_4) = (-x_3, -x_4, x_1, x_2)$$

$$X_3(x_1, \dots x_4) = (x_4, -x_3, -x_2, x_1)$$

comprise a frame for TS^3 .

- On S^7 , one can use the octonions to construct a frame for TS^7
- On S^{2n+1} for $n \ge 4$, TS^{2n+1} does not admit a global frame.
- 3) Let $E = B \times \mathbb{R}^r$ be the trivial vector bundle with $\pi(b, v) = b$. Then suppose that $\{e_1, \dots, e_r\}$ is the standard basis for \mathbb{R}^r . Then a global frame is given by $\{\sigma_1, \dots, \sigma_r\}$ where

$$\sigma_i: B \to E$$

 $b \mapsto (b, e_i).$

We will refer to this as the *standard frame on the trivial bundle*. So, the trivial bundle admits at least one frame (in fact... many).

In general, we have:

Proposition 1.2. A vector bundle E is trivial if and only if it admits a frame.

Proof. (\Longrightarrow) If E is trivial, then it is isomorphic to $B \times \mathbb{R}^r$. Thus, there exists a vector bundle isomorphism $H : B \times \mathbb{R}^r \to E$. In particular, $H|_{\{b\} \times \mathbb{R}^r} \to E_b$ is a linear isomorphism. Let $\{\sigma_1, \ldots, \sigma_r\}$ be the standard frame on $B \times \mathbb{R}^r$, and define

$$\tilde{\sigma}_i: B \to E$$

$$b \mapsto H \circ \sigma_i(b).$$

Then each $\tilde{\sigma}_i$ is a section of E, because $\pi \circ \tilde{\sigma}_i = \pi \circ H \circ \sigma_i = \operatorname{proj}_1 \circ \sigma_i = \operatorname{id}_B$. Also, for all $b \in B$,

$$\{\tilde{\sigma}_1(b), \dots, \tilde{\sigma}_r(b)\} = \underbrace{H\Big|_b \left(\{\sigma_1(b), \dots, \sigma_r(b)\}\right)}_{\text{linearly independent}}.$$

So $\{\tilde{\sigma}_1, \dots, \tilde{\sigma}_r(b)\}$ is a frame for E. (\iff) Assume that E admits the frame $\{\sigma_1, \dots, \sigma_r\}$ and use it to construct an isomorphism given by

$$H: B \times \mathbb{R}^r \to E$$

 $(b, (a_1, \dots, a_r)) \mapsto \sum_{i=1}^r a_i \sigma_i(b) \in E_b,$

which is an isomorphism because $\{\sigma_1, \ldots, \sigma_r\}$ is a frame. So, H is a vector bundle isomorphism.

Corollary 1.2. A line bundle is trivial if and only if it admits a nowhere-vanishing section.

Corollary 1.3. TS^k is trivial if and only if $k \in \{1, 3, 7\}$.

Definition 1.14. A manifold M is called *parallelizable* if its tangent bundle is trivial.

Example 1.10. 1. S^1, S^3, S^7 are parallelizable.

2. Any Lie group G is parallelizable.

Proposition 1.3. The tautological line bundle on \mathbb{P}^n is not trivial.

Proof. The tautological line bundle on \mathbb{P}^n does not admit any nowhere-vanishing sections.

Lecture 7 --- January 28, 2020

Let (E, B, π, F) be a vector bundle. A frame is a set $\{\sigma_1, \ldots, \sigma_l\}$ of linearly independent sections $\sigma_i \in \Gamma(E)$.

Proposition 1.4. E is trivial if and only if E admits a frame.

Corollary 1.4. A line bundle is trivial if and only if it admits a nowhere-vanishing section.

Proposition 1.5. The tautological line bundle over \mathbb{P}^n is *not* trivial.

Proof. It is enough to show that the tautological line bundle E over \mathbb{P}^n does not admit any nowhere-vanishing sections. We do it by contradiction: Suppose instead that E admits a nowhere-vanishing section $\sigma: \mathbb{P}^n \to E$ so that $\sigma([x]) \neq 0$ for every $[x] \in \mathbb{P}^n$. Recall that we constructed a vector bundle atlas for E with open cover $\{U_i\}_{i=1}^{n+1}$ where

$$U_i := \{ [x_1 : \cdots : x_{n+1}] \mid x_i \neq 0 \}$$

and transition functions

$$g_{ij}: U_i \cap U_j \to \operatorname{GL}(1, \mathbb{R}) = \mathbb{R}^{\times}$$

 $[x] \mapsto \frac{x_i}{x_j}.$

Then σ is given by scalar functions

$$\overline{\sigma}_i:U_i\to\mathbb{R}$$

such that (without loss of generality)

$$\underbrace{\overline{\sigma}_i([x])}_{>0} = \overline{g}_{ij}([x])\overline{\sigma}_j([x])$$
$$= \left(\frac{x_i}{x_j}\right)\underbrace{\overline{\sigma}_j([x])}_{>0}.$$

but

$$U_i \cap U_j \to \mathbb{R}^{\times}$$

$$[x] \mapsto \frac{x_i}{x_j}$$

is surjective.

Thus, not all vector bundles admit frames, but they ALL admit "local frames":

Definition 1.15. Let $U \subseteq B$ be open and $e_1, \ldots, e_r \in \Gamma(U, E)$. Then $\{e_1, \ldots, e_r\}$ is a local frame of E over U if, for all $b \in U$, $\{e_1(b), \ldots, e_r(b)\}$ is linearly independent.

So, for all $U \subseteq B$ open over which E adits a vector bundle chart $\varphi_U : E_U \to U \times \mathbb{R}^r$, one has the local frame $\{e_1, \dots, e_r\}$ given by

$$e_i: U \to E_U$$

 $b \mapsto \varphi_U^{-1}(b, \vec{e_i})$

where $\{\vec{e}_1, \dots, \vec{e}_r\}$ is the standard basis in \mathbb{R}^r .

Local frames are useful for describing frames locally. Given a local fram $\{e_1, \ldots, e_r\}$ of E over U and a section $\sigma \in \Gamma(E)$,

$$\sigma|_{U} = \overline{\sigma}_1 e_1 + \dots + \overline{\sigma}_r e_r$$

for some $\overline{\sigma}_1, \dots, \overline{\sigma}_r \in C^{\infty}(U)$. Also, if $\{e'_1, \dots, e'_r\}$ is another local frame of E over U' with $U \cap U' \neq \emptyset$, for all $b \in U \cap U'$, we have

$$e'_{j}(b) = \sum_{i=1}^{r} h_{ij}(b)e_{j}(b)$$

for some smooth $h_{ij} \in C^{\infty}(U)$. Thus, we get a map

$$h: U \cap U' \to \operatorname{GL}(r, \mathbb{R})$$

 $b \mapsto [h_{ij}(b)]_{i,j=1}^r$

where h(b) is the "change of basis matrix" from $\{e_i(b)\}\$ to $\{e'_1(b)\}\$.

Note. $\Gamma(U, E)$ has the following $C^{\infty}(U)$ —module structure: For all $\sigma, \tau \in \Gamma(U, E)$ and $f \in C^{\infty}(U)$, set

$$(f\sigma + \tau): U \mapsto E_U$$

 $b \mapsto f(b)\sigma(b) + \tau(b).$

Then, since $f(b) \in \mathbb{R}$ and $\sigma(b)$, $\tau(b) \in E_b$, so $f(b)\sigma(b) + \tau(b) \in E_b$. Thus $f\sigma + \tau \in \Gamma(U, E)$. In terms of a local frame $\{e_1, \ldots, e_r\}$ of E over U, we have $\sigma = \sum_{j=1}^r \overline{\sigma}_j e_j$, $\tau = \sum_{j=1}^r \overline{\tau} e_i$ and

$$f\sigma + \tau = \sum_{j=1}^{r} (f\overline{\sigma}_j + \overline{\tau})e_j.$$

1.8 Linear Algebraic Constructions for Vector Bundles

Let $(E, B, \pi, \mathbb{R}^r)$ and $(E', B, \pi', \mathbb{R}^{r'})$ be vector bundles. One can construct new vector bundles by applying linear algebra constructions fibrewise:

$$E \oplus E', \ E \otimes E', \ E^*, \bigwedge^k E, \ \operatorname{Hom}(E, E').$$

(i) To construct the direct sum of E and E', we take the underlying set

$$E \oplus E' = \bigsqcup_{b \in B} \underbrace{E_b \oplus E'_b}_{\operatorname{rank} r + r'}.$$

Gien an open cover $\{U_{\alpha}\}$ of B and vector bundle at lases $\{(U_{\alpha}, \varphi_{\alpha})\}$ and $\{(U'_{\alpha}, \varphi'_{\alpha})\}$ for E and E', respectively, we define

$$\varphi_{\alpha} \oplus \varphi'_{\alpha} : \bigsqcup_{b \in B} E_b \oplus E'_b \to U_{\alpha} \times (\mathbb{R}^r \oplus \mathbb{R}^{r'})$$
$$E_b \oplus E'_b \ni (e, e') \mapsto (b, (\varphi_{\alpha}(e), \varphi'_{\alpha}(e'))).$$

These are bundle charts for $E \oplus E'$, for all α . Then we get transition functions

$$\overline{g}_{\alpha\beta} \oplus \overline{g}'_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \longrightarrow \operatorname{GL}(r+r',\mathbb{R}).$$

(ii) The tensor product is given (as a set) by

$$E \otimes E' = \bigsqcup_{b \in B} \underbrace{E_b \otimes E'_b}_{\text{rank } rr'}$$

(iii) The dual bundle is given (as a set) by

$$E^* = \bigsqcup_{b \in B} \underbrace{E_b^*}_{\text{rank } r}$$

(iv) The exterior power bundles are given (as sets) by

$$\bigwedge^{k} E = \bigsqcup_{b \in B} \underbrace{\bigwedge^{k} E_{b}}_{\text{rank } \binom{n}{r}}$$

(v) The hom bundles are given (as sets) by

$$\operatorname{Hom}_{E}(E') = \bigsqcup_{b \in B} \underbrace{\operatorname{Hom}(E_{b}, E'_{b})}_{\operatorname{rank} rr'}$$

Example 1.11. 1. • Let M be a smooth manifold and TM its tangent bundle. Then $(TM)^* = T^*M$ is the cotangent bundle. Smooth sections of this bundle are the smooth 1-forms: $\Gamma(T^*M) = \Omega^1(M)$.

- $\bigwedge^k T^*M =: \bigwedge^k M$ have the *k*-forms as sections: $\Gamma\left(\bigwedge^k T^*M\right) = \Omega^k(M)$.
- 2. We will be interested in $\left(\bigwedge^k M\right) \otimes E$ with E a vector bundle on M. Locally, sections of $\left(\bigwedge^k M\right) \otimes E$ look like: Given a local frame $\{e_1, \ldots, e_r\}$ of E over U, for all $s \in \Gamma\left(\left\{\bigwedge^k M\right\} \otimes E\right)$,

$$s\big|_U = \sum_{i=1}^r \omega_i \otimes e_i$$

for some $\omega_1, \ldots, \omega_r \in \Omega^k(U)$.

2 Connections

2.1 Connections on Vector Bundles

2.1.1 Definition and Properties

Fix $(E, B, \pi, \mathbb{R}^r)$ be a vector bundle of rank r. Our goal is to find a way of differentiating sections of E. Let us first assume that $E = B \times \mathbb{R}^r$. In this case, a section $\sigma \in \Gamma(E)$ is just

$$\sigma: B \to B \times \mathbb{R}^r$$
$$b \mapsto (b, \overline{\sigma}(b))$$

for some smooth map $\overline{\sigma}: B \to \mathbb{R}^r$. In particular,

$$\overline{\sigma}: B \to \mathbb{R}^r$$

 $b \mapsto (\overline{\sigma}_1(b), \dots \overline{\sigma}_r(b))$

for some $\overline{\sigma}_i \in C^{\infty}(B)$. Also, if $\{e_1, \dots, e_r\}$ is the standard frame for $B \times \mathbb{R}^r$ (so that $e_i(b) = (b, \vec{e}_i)$), then

$$\sigma = \sum_{i=1}^{r} \overline{\sigma}_i e_i.$$

So, one possible way of differentiating σ is to differentiate $\overline{\sigma}$ component-wise:

$$d\sigma(b) = (b, d\overline{\sigma}(b))$$

where $d\overline{\sigma}(b)L = (d\overline{\sigma}_1(b), \dots, d\overline{\sigma}_r(b)) = \sum_{i=1}^r d\overline{\sigma}(b) \otimes \vec{e}_i$. In terms of the local frame $\{e_1, \dots, e_r\}$,

$$d\sigma = \sum_{i=1}^{r} \underbrace{(d\overline{\sigma}_{i})}_{\text{form}} \otimes \underbrace{e_{i}}_{\in \Gamma(E)} \in \Gamma(T^{*}M \otimes E).$$

Then:

$$d:\Gamma\left(E\right)\to\Gamma\left(T^{*}M\otimes E\right)$$

$$\sigma = \sum_{i=1} \overline{\sigma}_i e_i \mapsto \sum_{i=1}^r (d\overline{\sigma}_i) \otimes e_i$$

which satisfies

- \mathbb{R} -linearity.
- (Leibniz rule): $d(f\sigma) = df \otimes \sigma + f d\sigma \in \Gamma(T^*M \otimes E)$.

Lecture 8 --- January 30, 2020

Recall. $(E, B, \pi, \mathbb{R}^r)$ the trivial bundle with $E = B \times \mathbb{R}^r$. Pick a frame $\{e_1, \dots, e_r\}$ with $e_i(b) = (b, \vec{e_i})$. Then any section looks like $\sigma = \sum_{i=1}^r \overline{\sigma}_i e_i$. One possible way of differentiating σ is to set

$$d\sigma(b) := (b, d\overline{\sigma}(b))$$

where $d\overline{\sigma}(b) = (d\overline{\sigma}_1(b), \dots, d\overline{\sigma}_r(b))$. So we get

$$d\sigma := \sum_{i=1}^{r} \overbrace{d\overline{\sigma}_{i}}^{\in \Omega^{1}(B)} \otimes \overbrace{e_{i}}^{\in \Gamma(E)}$$

Note. • d is \mathbb{R} -linear: for $\sigma, \tau \in \Gamma(E)$ so that $\sigma = \sum_{i=1}^{r} \overline{\tau}_{i} e_{i}$ and $\tau = \sum_{i=1}^{r} \overline{\tau}_{i} e_{i}$. Then for any $c \in \mathbb{R}$,

$$d\left(c\sigma+\tau\right):=\sum_{i=1}^{r}d\left(c\overline{\sigma}_{i}+\overline{\tau}_{i}\right)\otimes e_{i}=cd\sigma+d\tau.$$

• d satisfies the Leibniz rule: For any $\sigma = \sum_{i=1}^r \overline{\sigma}_i e_i$ and $f \in C^{\infty}(B)$,

$$d(f\sigma) = df \otimes \sigma + f d\sigma.$$

Indeed,

$$d(f\sigma) = d\left(\sum_{i=1}^{r} (f\overline{\sigma}_i) \otimes e_i\right)$$

$$= \sum_{i=1}^{r} d(f\overline{\sigma}_i) \otimes e_i$$

$$= \sum_{i=1}^{r} (\overline{\sigma}_i df + f d\overline{\sigma}_i) \otimes e_i$$

$$= df \otimes \left(\sum_{i=1}^{r} \overline{\sigma}_i e_i\right) + f\left(\sum_{i=1}^{r} d\overline{\sigma}_i \otimes e_i\right)$$

$$= df \otimes \sigma + f d\sigma.$$

Definition 2.1. A connection on E is an \mathbb{R} -linear map

$$D:\Gamma(E)to\Gamma(T^*B\otimes E)$$

that safisfies the *Leibniz rule*: For all $f \in C^{\infty}(B)$ and $\sigma \in \Gamma(E)$, we have

$$D(f\sigma) = df \otimes \sigma + fD(\sigma).$$

Note. Connections generalize the notion of exterior derivative "d" to sections of any vector bundle.

Example 2.1. 1. Take $E = B \times \mathbb{R}^r$.

- D = d is called the *trivial connection*.
- What do the others look like? Let $D: \Gamma(E) \to \Gamma(T^*B \otimes E)$ be a connection on $E = B \times \mathbb{R}^r$. Consider the frame $\{e_1, \ldots, e_r\}$ with $e_i(b) = (b, \vec{e_i})$. Then, for all $j = 1, \ldots, r$, $D(e_j) \in \Gamma(T^*B \otimes E)$. Then

$$D(e_j) = \sum_{i=1}^r a_{ij} \otimes e_i$$

for some $a_{ij} \in \Gamma(T^*B)$. If we pick $\sigma \in \Gamma(E)$, then $\sigma = \sum_{j=1}^r \overline{\sigma}_j e_j$ for $\overline{\sigma}_j \in C^{\infty}(B)$. Then

$$D(\sigma) = \sum_{j=1}^{r} D(\overline{\sigma}_{j}e_{j})$$

$$= \sum_{j=1}^{r} (d\overline{\sigma}_{j} \otimes e_{j} + \overline{\sigma}_{j}D(e_{j}))$$

$$= \sum_{j=1}^{r} d\overline{\sigma}_{j} \otimes e_{j} + \sum_{i,j=1}^{r} \overline{\sigma}_{j} (a_{ij} \otimes e_{i})$$

$$= \sum_{j=1}^{r} d\overline{\sigma}_{j} \otimes e_{j} + \sum_{i=1}^{r} \left(\sum_{j=1}^{r} a_{ij}\overline{\sigma}_{j}\right) \otimes e_{i}$$

$$=: d\sigma + A\sigma =: (d + A)\sigma$$

where we set $A = [a_{ij}]_{i,j=1}^r$ is a $r \times r$ matrix of 1-forms, called the *connection matrix of D* and $\overline{\sigma} = [\overline{\sigma}_i]_{i=1}^r$. Here, we mean

$$A\sigma = \sum_{i} \left(\sum_{j} a_{ij} \overline{\sigma}_{j} \right) \otimes e_{i}.$$

Note. The connection matrix depends on the frame $\{e_1, \ldots, e_r\}$: To be precise, if $\{e_1, \ldots, e_r\}$ and $\{e'_1, \ldots, e'_r\}$ are frames of $E = B \times \mathbb{R}^r$ and

$$e_i' = \sum_k h_{ki} e_k$$

so that $h = (h_{ij})_{i,j=1}^r$ is the change of basis matrix. Then:

$$D(e_j) = \sum_i a_{ij} \otimes e_i \qquad \qquad D(e'_j) = \sum_i a'_{ij} \otimes e'_i$$

Then $A' = (a'_{ij})_{i,j=1}^r$ satisfies

$$A' = h^{-1}dh + h^{-1}Ah$$
 (exercise.)

2. E is any vector bundle and $\{(U_{\alpha}, \varphi_{\alpha})\}$ is a vector bundle atlas for E with $\{U_{\alpha}\}$ an open cover of B. Then, for all α , $E_{U_{\alpha}} \cong U_{\alpha} \times \mathbb{R}^r$ and hence admits a local frame $\{e_1^{\alpha}, \ldots, e_r^{\alpha}\}$ with

$$e_1^{\alpha}(b) = \varphi_{\alpha}^{-1}(b, \vec{e_i}).$$

Let D be a connection on E. Then on $E_{U_{\alpha}}$, $D=d+A_{\alpha}$ where A_{α} is the connection matrix of $D\big|_{E_{U_{\alpha}}}$ in terms of the frame $\{e_i^{\alpha}\}$. Note that on $U_{\cap}U_{\beta}$, the change of basis matrix from $\{e_1^{\beta},\ldots,e_r^{\beta}\}$ to $\{e_1^{\alpha},\ldots,e_r^{\alpha}\}$ is $\overline{g}_{\alpha\beta}$ so that

$$A_{\alpha} = \overline{g}_{\alpha\beta}^{-1} d\overline{g}_{\alpha\beta} + \overline{g}_{\alpha\beta}^{-1} A_{\beta} \overline{g}_{\alpha\beta}.$$

Proposition 2.1. Connections always exist.

Proof. Let $(E, B\pi, \mathbb{R}^r)$ be a vector bundle with the vector bundle atlas $\{(U_\alpha, \varphi_\alpha)\}$ and corresponding local frames $\{e_1^\alpha, \dots, e_r^\alpha\}$. Then, on every E_{U_α} , we can pick the trivial connection $d_\alpha = d|_{E_{U_\alpha}}$ (i.e., $A_\alpha \equiv 0$). Let $\{\psi_\alpha : B \to \mathbb{R}\}$ be a partition of unity subordinate to the open cover $\{U_\alpha\}$. Then for every $b \in B$,

- $\operatorname{supp}(\psi_{\alpha}) \subset U_{\alpha}$,
- only a finite number of ψ_{α} 's are nonzero at b, and
- $\sum_{\alpha} \psi_{\alpha}(b) = 1$.

Set $D = \sum_{\alpha} \psi_{\alpha} d_{\alpha}$ so that $D(\sigma) = \sum_{\alpha} \psi_{\alpha} d_{\alpha} \sigma$ for all $\sigma \in \Gamma(E)$. D is a connection because it is \mathbb{R} linear, and the Leibniz rule hols:

$$D(f\sigma) = \sum_{\alpha} \psi_{\alpha} d_{\alpha} (f\sigma)$$

$$= \sum_{\alpha} \psi_{\alpha} (df \otimes \sigma + f d_{\alpha} \sigma)$$

$$= \left(\sum_{\alpha} \psi_{\alpha}\right) df \otimes \sigma + f \left(\sum_{\alpha} \psi_{\alpha} d_{\alpha} \sigma\right)$$

$$= df \otimes \sigma + f d\sigma.$$

Let $\mathcal{A}(E)$ be the set of all connections on E. This set is not closed under addition! Let $D, D' \in \mathcal{A}(E)$ and define

$$D + D' : \Gamma(E) \to \Gamma(T^*B \otimes E)$$
$$\sigma \mapsto D(\sigma) + D'(\sigma).$$

Although D+D' is a well-defined map, it does not satisfy Leibniz: Let $\sigma \in \Gamma(E)$ and $f \in C^{\infty}(B)$. Then

$$(D+D')(f\sigma) = D(f\sigma) + D'(f\sigma)$$
$$df \otimes \sigma + fD(\sigma) + df \otimes \sigma + fD'(\sigma)$$
$$= 2df \otimes \sigma + f(D+D')(\sigma)$$
$$\neq df \otimes \sigma + f(D+D')(\sigma).$$

However, if we had considered $a_1D + a_2D'$ such that $a_1 + a_2 = 1$, then we would have a connection. So $\mathcal{A}(E)$ is convex: For all $D_1, \ldots, D_l \in \mathcal{A}(E)$ and $a_1, \ldots, a_l \in \mathbb{R}$ such that $\sum_{i=1}^l a_i = 1$, then $a_1D_1 + \cdots + a_lD_l \in \mathcal{A}(E)$. $\mathcal{A}(E)$ is an affine space. To see this, we need to following notation:

Notation. Let $(V, B, \tilde{\pi}, \mathbb{R}^m)$ be a vector bundle. We set

$$\Omega^k(B) := \Gamma\left(\bigwedge^k T^*B \otimes V\right).$$

In particular,

$$\Omega^1(V) = \Gamma\left(T^*B \otimes V\right).$$

Proposition 2.2. $\mathcal{A}(E)$ is an affine space modelled on $\Omega^1(\operatorname{End} E)$. To be more precise, if D_0 is any connection on E, then

$$\mathcal{A}(E) = \left\{ D_0 + a \mid a \in \Omega^1(\text{End } E) \right\}$$

Lecture 9 --- February 4, 2020

Recall.

- A connection on a vector bundle $(E, B, \pi, \mathbb{R}^r)$ is a map $D : \Gamma(E) \to \Gamma(T^*B \otimes E)$ that is \mathbb{R} -linear and satisfies $D(f\sigma) = df \otimes \sigma + fD(\sigma)$ for any $f \in C^{\infty}(B)$ and $\sigma \in \Gamma(E)$.
- Given an atlas $\{(U_{\alpha}, \varphi_{\alpha})\}$ of E and local frames $e_i^{\alpha} = \varphi_{\alpha}^{-1}(-, \vec{e_i}),$

$$D(e_j^{\alpha}) = \sum_i \alpha_{ij}^{\alpha} \otimes e_i$$

where $a_{ij}^{\alpha} \in \Omega^{1}(U_{\alpha})$, so that $A_{\alpha} = (a_{ij}^{\alpha})$ is a matrix of 1-forms, called the connection matrix of D over U_{α} .

Claim. For all $b \in U_{\alpha} \cap U_{\beta} \neq \emptyset$,

$$e_j^{\beta}(b) = \sum_i (\overline{g}_{\alpha\beta}(b))_{ij} e_i^{\alpha}(b).$$

Proof.

$$\begin{split} e^{\beta}_{j}(b) &= \varphi_{\beta}^{-1}(b, \vec{e}_{j}) \\ &= \varphi_{\alpha}^{-1} \circ g_{\alpha}\beta(b, \vec{e}_{j}) \\ &= \varphi_{\alpha}^{-1}(b, \overline{g}_{\alpha\beta}(b)\vec{e}_{j}) \\ &= \sum_{i} \left(\overline{g}_{\alpha\beta}(b)\right)_{ij} \varphi_{\alpha}^{-1}(b, \vec{e}_{i}) \\ &= \sum_{i} \left(\overline{g}_{\alpha\beta}(b)\right)_{ij} e^{\alpha}_{i}. \end{split}$$

So the change of basis matrix from $\{e_1^{\alpha}, \dots, e_r^{\alpha}\}$ to $\{e_1^{\beta}, \dots, e_r^{\beta}\}$ is $\overline{g}_{\alpha\beta}$, so

$$A_{\beta} = \overline{g}_{\alpha\beta}^{-1} d\overline{g}_{\alpha\beta} + \overline{g}_{\alpha\beta} A_{\alpha} \overline{g}_{\alpha\beta}.$$

• $\mathcal{A}(E) = \{\text{all connections on } E \}$ is not closed under addition. Nonetheless, it is convex: For all $D_1, \ldots, D_l \in \mathcal{A}(E)$ and $a_1, \ldots, a_l \in \mathbb{R}$ such that $\sum_{j=1}^l a_j = 1$, we have that

$$a_1D_1 + \dots + a_lD_l \in \mathcal{A}(E).$$

Proposition 2.3. A(E) is an affine space modeled on $\Omega^1(\operatorname{End}(E)) := \Gamma(T^*M \otimes \operatorname{End}(E))$.

Note. Let $(V, B, \pi, \mathbb{R}^r)$ be a vector bundle and set $\Omega^k(V) := \Gamma\left(\bigwedge^k B \otimes V\right)$. Locally, $\tau \in \Omega^k(V)$ looks like $\tau = \sum_{i=1}^m \omega_i \otimes e_i$ where $\{e_1, \dots, e_m\}$ is a local frame of V and $\omega_1, \dots, \omega_m \in \bigwedge^k U$ with $U \subseteq B$ open. For any $X_1, \dots, X_k \in \Gamma(TB)$, we define

$$\tau(X_1, \dots, X_k) := \sum_{i=1}^m \omega_i(X_1, \dots, X_k) \otimes e_i$$
$$= \sum_{i=1}^m \omega_i(X_1, \dots, X_k) e_i \in \Gamma(V).$$

Note that the definition of $\tau(X_1,\ldots,X_k)$ is independent of the local description of τ .

Proof. Let $D_0 \in \mathcal{A}(E)$. It is enough to show that

$$\mathcal{A}(E) = \left\{ D_0 + a \mid a \in \Omega^1 \left(\text{End}(E) \right) \right\}$$

What do elements of $\Omega^1(\operatorname{End}(E))$ look like? Locally, $a = \sum_i a_i \otimes \psi_i$ where the a_i are 1-forms and $\psi_i \in \operatorname{End}(E|_U)$ where $U \subset B$ is open. Then for all $\sigma \in \Gamma(E|_U)$,

$$a(\sigma) = \sum_{i} a_i \otimes \psi_i(\sigma)$$

$$a: \Gamma(E) \to \Gamma(T^*B \otimes E)$$

 $\sigma \mapsto a(\sigma).$

So a is $C^{\infty}(B)$ -linear because, for any $f \in C^{\infty}(B)$,

$$a(f\sigma) = \sum_{i} a_{\otimes} \psi_{i}(f\sigma)$$
$$= \sum_{i} a_{i} \otimes f \psi_{i}(\sigma)$$
$$= f \sum_{i} a_{i} \otimes \psi_{i}(\sigma)$$
$$= f a(\sigma).$$

So any $a \in \Omega^1(\operatorname{End}(E))$ induces a $C^{\infty}(B)$ -linear map $a : \Gamma(E) \to \Gamma(T^*B \otimes E)$. Conversely, any $C^{\infty}(B)$ -linear map $a : \Gamma(E) \to \Gamma(T^*B \otimes E)$ induces an element of $\Omega^1(\operatorname{End}(E))$.

Let $D, D' \in \mathcal{A}(E)$. Let us check that

$$D - D' \in \Omega^1(\operatorname{End}(E)).$$

It is enough to check that the induced map

$$D - D' : \Gamma(E) \to \Gamma(T^*B \otimes E)$$
$$\sigma \mapsto D(\sigma) - D'(\sigma)$$

is $C^{\infty}(B)$ -linear. let $\sigma, \sigma' \in \Gamma(E)$ and $f \in C^{\infty}(B)$. Then

$$(D - D')(f\sigma + \sigma') = (D(f\sigma) + D(\sigma')) - (D'(f\sigma) + D'(\sigma'))$$

= $(df \otimes \sigma + fD(\sigma) + D(\sigma')) - (df \otimes \sigma + fD'(\sigma) - D'(\sigma'))$
= $f(D - D')(\sigma) + (D - D')(\sigma')$.

and so $D - D' \in \Omega^1(\text{End}(E))$.

We have seen that connections generalize the exterior derivative.

Recall. Let $U \subset B$ be open with coordinates (x_1, \ldots, x_n) . Then for any $f \in C^{\infty}(U)$, then

$$df = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} dx_i.$$

In particular, if for any $i \in \{1, ..., n\}$, we geta

$$df\left(\frac{\partial}{\partial x_i}\right) = \frac{\partial f}{\partial x_i}.$$

In general, for any $X = \sum_{i} a_i \frac{\partial}{\partial x_i}$, then

$$df(X) = \sum_{i} a_{i} \frac{\partial f}{\partial x_{i}} = \nabla f \cdot (a_{1}, \dots, a_{n}).$$

Also, for all $\omega \in \Omega^1(U)$,

$$\omega = \sum_{i} \omega \left(\frac{\partial}{\partial x_i} \right) dx_i.$$

Lets go back to a connection $D \in \mathcal{A}(E)$. Let $U \subset B$ be an open set over which B has coordinates x_1, \ldots, x_n and E is trivial with local frame $\{e_1, \ldots, e_r\}$. Then for all $\sigma \in \Gamma(E|_U)$,

$$D(\sigma) = \sum_{i=1}^{r} \omega_i \otimes e_i$$

with $\omega_i \in \Omega^1(U)$. And, for all $X \in \Gamma(TU)$,

$$D(\sigma)(X) := \sum_{i=1}^{r} \omega_i(X) e_i \in \Gamma\left(E\big|_{U}\right).$$

So for fixed $X \in \Gamma(TB)$, we get a map

$$D_X : \Gamma(E) \to \Gamma(E)$$

 $\sigma \mapsto D(\sigma)(X)$

Note that D_X is \mathbb{R} -linear and satisfies Leibniz in σ . We say that $D_X(\sigma)$ is the covariant derivative of σ in the direction X. Also note that for any $f \in C^{\infty}(B)$,

$$D(\sigma)(fX) = f(D(\sigma)(X)), \text{ or } D_{fX}(\sigma) = fD_X(\sigma).$$

We then get a map

$$\nabla: \Gamma(TB) \times \Gamma(E) \to \Gamma(E)$$
$$(X, \sigma) \mapsto D_X(\sigma)$$

such that it is

- $C^{\infty}(B)$ -linear in X
- \mathbb{R} linear in σ
- Satisfies Leibniz in σ :

$$D_X(f\sigma) = D(f\sigma)(X)$$

$$= (df \otimes \sigma + fD(\sigma))(X)$$

$$= df(X)\sigma + fD(\sigma)(X)$$

$$= X(f)\sigma + fD_X(\sigma).$$

Definition 2.2. A map $\nabla : \Gamma(TB) \times \Gamma(E) \to \Gamma(E)$ such that

- $C^{\infty}(B)$ -linear in X,
- \mathbb{R} -linear in σ , and
- $\nabla(X, f\sigma) = X(f)\sigma + f\nabla(X, \sigma)$

is called a linear connection on E, or a covariant derivative on E.

Note. 1. Tu defines connections this way.

2. There is a one-to-one correspondence between elements of $\mathcal{A}(E)$ and linear connections $\nabla : \Gamma(TM) \times \Gamma(E) \to \Gamma(E)$. We saw that any $D \in \mathcal{A}(E)$ induces a ∇ . Conversely, given a linear connection ∇ , we can define $D \in \mathcal{A}(E)$ by

$$D: \Gamma(E) \to \Gamma(T^*B \otimes E)$$
$$\sigma \mapsto \nabla(-, \sigma)$$

3. When E = TB, linear connections

$$\nabla : \Gamma(TB) \times \Gamma(TB) \to \Gamma(TB)$$

are called affine connections. In local coordinates (x_1, \ldots, x_n) on B and a local frame $\{e_1, \ldots, e_r\}$ on E:

$$D(\sigma) = \sum_{i} \omega_{i} \otimes e_{i} \quad (\text{with } \omega_{i} \in \bigwedge^{1}(U))$$

$$= \sum_{i,j} \omega_{i} \left(\frac{\partial}{\partial x_{j}} dx_{j} \otimes e_{i} \right)$$

$$= \sum_{j} dx_{j} \otimes \left(\sum_{i} \omega_{i} \left(\frac{\partial}{\partial x_{j}} e_{j} \right) \right)$$

$$= \sum_{j} dx_{j} \otimes D_{\frac{\partial}{\partial x_{j}}}(\sigma)$$

Lecture 10 --- February 6, 2020

Recall. $(E, B, \pi, \mathbb{R}^r)$ a vector bundle and $D : \Gamma(E) \to \Gamma(T^*B \otimes E)$ a connection on E. For any $X \in \Gamma(TB)$ and $\sigma \in \Gamma(E)$, we can define

 $D_X \sigma = (\text{covariant derivative on } \sigma \text{ in the direction of } X)$

where if, locally, $D(\sigma) = \sum_i \omega_i \otimes e_i$ where $\{e_1, \dots, e_r\}$ is a local frame of E and ω_i are local 1-forms, then

$$D_X \sigma := \sum_i \omega_i(X) e_i.$$

Note. If $f \in C^{\infty}(B)$, $D_{fX}\sigma = fD_{X}\sigma$. So $D_{X} : \Gamma(E) \to \Gamma(T^{*}B \otimes E)$ is such that $D_{fX}\sigma = fD_{X}\sigma$ (hence too \mathbb{R} -linear) and D_{X} satisfies a Leibniz rule:

$$D_X(f\sigma) = X(f)\sigma + fD_X(\sigma).$$

$$\nabla: \Gamma(TB) \times \Gamma(E) \to \Gamma(E)$$
$$(X, \sigma) \mapsto D_X \sigma$$

is called a linear connection.

Note. The connection D is completely determined by the D_X 's, for all $X \in \Gamma(TB)$. In particular, if $\{e_1, \ldots, e_r\}$ is a local frame of E and D = d + A with A the connection matrix in this frame and $\{x_1, \ldots, x_n\}$ are local coordinates for B, then

$$a_{ij} = \sum_{k} a_{ij} \left(\frac{\partial}{\partial x_k} \right) dx_k$$

and

$$D_{\frac{\partial}{\partial x_k}}(e_j) = D(e_j) \left(\frac{\partial}{\partial x_j}\right)$$
$$= \sum_i a_{ij} \left(\frac{\partial}{\partial x_k}\right) e_i.$$

So, the connection D is completely determined (locally) by $D_{\frac{\partial}{\partial x_k}}(e_j)$ for $j=1,\ldots r$ and $k=1,\ldots,n$.

Example 2.2. 1. $M \subseteq \mathbb{R}^n$ a submanifold so that $TM \subset T\mathbb{R}^n |_{M} \cong M \times \mathbb{R}^n$. Let $\sigma \in \Gamma(TM)$. Then we can think of it as

$$\sigma: M \to TM \subseteq M \times \mathbb{R}^n$$
$$x \mapsto (x, \overline{\sigma}(x))$$

for some smooth $\overline{\sigma}: M \to \mathbb{R}^n$ such that $\sigma(x) \in T_x M$ for each $x \in M$. Since $\overline{\sigma}: M \to \mathbb{R}^n$ is smooth with $M \subset \mathbb{R}^n$, there is an open $U \subset \mathbb{R}^n$ with $M \subset U$ and $\overline{\sigma}: U \to \mathbb{R}^n$ (i.e., $\overline{\sigma}$ extends to a smooth function on a neigbourhood of M). So, we can think of σ as $\sigma: U \to T\mathbb{R}^n|_U$, and we can apply the trivial connection d on $T\mathbb{R}^n|_U$ to it:

$$d\sigma \in \Gamma (T^*U \otimes TU)$$
.

But, $d\sigma(X) \in \Gamma(TU)$ for any $X \in \Gamma(TU)$. So, we may not have that $d\sigma(X) \in \Gamma(TM)$. So, we just take $\operatorname{pr}_{TM}(d\sigma)$. Thus, we get the connection D on TM: For every $\sigma \in \Gamma(TM)$ and every $X \in TM$,

$$D_X(\sigma) := \operatorname{pr}_{TM}(d\sigma(X)),$$

where $\operatorname{pr}_{TM}: TU|_{TM} \to TM$.

2. Let $(E, B, \pi, \mathbb{R}^r)$ and $(E', B, \pi', \mathbb{R}^{r'})$ be two vector bundles on B with two connections D, D', respectively. Then there exist natural induced connections on $E \oplus E', E \otimes E', E^*$, Hom (E, E') and f^*E for all $f: N \to B$ smooth.

Let $\sigma \in \Gamma(E|_U)$ and $\sigma' \in \Gamma(E'|_U)$ and suppose that on U, Let $D(\sigma) = \sum_i \omega_i \otimes \sigma_i$ for $\omega_i \in \Omega^1(U)$ and $\sigma_i \in \Gamma(E|_U)$ and $D'(\sigma') = \sum_i \omega_i' \otimes \sigma_i'$ for $\omega_i' \in \Omega^1(U)$ and $\sigma_j \in \Gamma(E'|_U)$. Then

(i) $E \oplus E'$. Define a connection ∇ by

$$\nabla(\sigma \oplus \sigma') = D(\sigma) \oplus D'(\sigma')$$

$$= \sum_{i} \omega_{i} \otimes (\sigma_{i} \oplus 0) + \sum_{j} \omega'_{j} \otimes (0 \oplus \sigma'_{j}).$$

(ii) $E \otimes E'$.

$$\nabla(\sigma \otimes \sigma') = D(\sigma) \otimes \sigma' + \sigma \otimes D'(\sigma')$$
$$= \sum_{i} \omega_{i} \otimes (\sigma_{i} \otimes \sigma') + \sum_{j} \omega'_{j} \otimes (\sigma \otimes \sigma'_{j})$$

(iii) E^* . We have a natural connection on E^* defined by:

$$D^*: \Gamma(E^*) \to \Gamma(T^*B \otimes E^*)$$

where for all $\psi \in \Gamma(E^*)$, $D^*(\psi) \in \Gamma(T^*B \otimes E^*)$ is completely determined by $D^*(\psi)(\sigma) \in \Gamma(T^*B)$ for all $\sigma \in \Gamma(E)$. So, we set

$$D^*(\psi)(\sigma) := d(\psi(\sigma)) - \psi(D(\sigma))$$

where

$$\psi(D(\sigma)) = \underbrace{\sum_{i} \psi(\sigma_{i})\omega_{i}}_{\in \Gamma(T^{*}B)}$$

- (iv) **Hom** (E, E'). We have a natural connection ∇ given by, for all $\psi \in \Gamma$ (Hom (E, E')) and for all $\sigma \in \Gamma$ (E) we set $\nabla(\psi)(\sigma) := D'(\psi(\sigma)) \psi(D(\sigma)).$
- (v) If $f: N \to B$ is smooth and we have a local frame $\{e_1, \dots, e_r\}$ of E on U, and D = d + A, then on $f^{-1}(U)$, $f^*D := d + f^*A$

$$J \mathcal{D} := a + J$$

is a connection matrix, where $f^*A = (f^*a_{ij})$ where $A = (a_{ij})$

2.1.2 Curvature

Recall. Suppose M is a smooth manifold with local coordinates (x_1, \ldots, x_n) .

$$\Omega^{0}(M) := C^{\infty}(M)$$

$$\Omega^{k}(M) = (\text{smooth } k\text{-forms on } M) = \Gamma\left(\bigwedge^{k} T^{*}M\right), 1 \le k \le n$$

$$\Omega^k(M) = 0, k > n.$$

Note. • For all $f \in C^{\infty}(M)$, $df = \sum_{i} \frac{\partial f}{\partial x_{i}} dx_{i}$.

- For all $\omega = \sum_{I} a_{I} dx_{I} \in \Omega^{k}(M), d\omega = \sum_{I} da_{I} \wedge dx_{I}.$
- Leibniz. For all $\eta \in \Omega^p(M)$ and $\omega \in \Omega^q(M)$,

$$d(\eta \wedge \omega) = d\eta \wedge \omega + (-1)^p \eta \wedge d\omega.$$

• de Rham Complex.

$$0 \xrightarrow{d} \Omega^0(M) \xrightarrow{d} \Omega^1(M) \to \dots \xrightarrow{d} \Omega^{n-1}(M) \xrightarrow{d} \Omega^n(M) \xrightarrow{d} 0$$

this is a complex because $d \circ d = 0$.

Now, fix a vector bundle $(E, B, \pi, \mathbb{R}^r)$ with $n = \dim B$. Set

$$\Omega^{0}(E) := \Gamma(E)$$

$$\Omega^{k}(E) := \Gamma\left(\bigwedge^{k} B \otimes E\right) = \text{(bundle-valued k-forms)}, 1 \leq k \leq n$$

$$\Omega^{k}(E) := 0, k > n.$$

If $\omega \in \Omega^p(B)$ and $\tau \in \Omega^q(E)$ so that locally

$$\tau = \sum_{i} \eta_i \otimes \sigma_i$$

where η_i are k-forms and $\sigma_i \in \Gamma(E)$. We define

$$\omega \wedge \tau := \sum_{i} (\omega \wedge \eta_{i}) \otimes \sigma_{i} \in \Omega^{p+q}(E|_{U}).$$

Let D be a connection on E so that

$$D:\Omega^0(E)\to\Omega^1(E)$$

is \mathbb{R} -linear and satisfies Leibniz. How can we extend this to a map

$$D: \Omega^p(E) \to \Omega^{p+1}(E)$$
?

If ω is a local p-form on B and σ is a local section of E so that $\omega \otimes \sigma \in \Omega^p(E|_U)$. We set

$$D(\omega \otimes \sigma) := d\omega \otimes \sigma + (-1)^p \omega \wedge D(\sigma) \in \Omega^{p+1}(E|_U),$$

and extend this definition \mathbb{R} -linearly.

- If k = 0: $D(f\sigma) = df \otimes \sigma + fD(\sigma)$. This is just the usual Leibniz.
- If k > 0, then for all $f \in C^{\infty}(B)$, $(f\omega) \otimes \sigma = \omega \otimes (f\sigma)$.

$$D(f\omega \otimes \sigma) = d(f\omega) \otimes \sigma + f\omega \wedge D(\sigma)$$

= $df \wedge \omega \otimes \sigma + fd\omega \otimes \sigma + (-1)^p f\omega \wedge D(\sigma)$

and

$$D(\omega \otimes (f\sigma)) = d\omega \otimes (f\sigma) + (-1)^p \omega D(f\sigma)$$

= $f d\omega \otimes \sigma + (-1)^p \omega \wedge df \otimes \sigma + (-1)^p f\omega \wedge D(\sigma)$

We get

$$0 \xrightarrow{d} \Omega^{0}(E) \xrightarrow{d} \Omega^{1}(E) \to \dots \xrightarrow{d} \Omega^{n-1}(E) \xrightarrow{d} \Omega^{n}(E) \xrightarrow{d} 0$$

but we may not have $D \circ D = 0$.

Definition 2.3. $F_D := D \circ D$ is the *curvature of* D. We say that D is *flat* if and only if $F_D = 0$.

Lecture 11 --- February 11, 2020

Recall. Fix a vector bundle $(E, B, \pi, \mathbb{R}^r)$. We define

$$\Omega^{k}(E) = \Gamma\left(\bigwedge^{k} B \otimes E\right)$$
$$\Omega^{k}(\operatorname{End}(E)) = \Gamma\left(\bigwedge^{k} B \otimes \operatorname{End}(E)\right)$$

and if we have a connection $D: \Omega^0(E) \to \Omega^1(E)$, we extend D to $\Omega^p(E)$ as follows:

$$D: \Omega^p(E) \to \Omega^{p+1}(E)$$

is defined on elements of $\Omega^{p}(B)$ of the form $\omega \otimes \sigma, \omega \in \Omega^{p}(E)$ and $\sigma \in \Gamma(E)$, then we take

$$D(\omega \otimes \sigma) = da \otimes \sigma + (-1)^p \omega \wedge D(\sigma) \quad (*).$$

(where $(-1)^p$ s necessary do ensure that $D(f\omega \otimes \sigma) = D(\omega \otimes f\sigma)$ for all $f \in C^{\infty}(B)$. We extend (*) \mathbb{R} -linearly. Then D satisfies a generalized Leibniz rule: For all $\tau \in \Omega^q(E)$ and $\alpha \in \Omega^p(B)$, then we have $\alpha \wedge \tau \in \Omega^{p+q}(E)$ and

$$D(\alpha \wedge \tau) = \underbrace{(d\alpha)}_{\in \Omega^{p+1}(B)} \wedge \tau + (-1)^p \alpha \wedge D(\tau).$$

Proof. Indeed, suppose that $\tau = \omega \wedge \sigma$ with $\omega \in \Omega^q(B)$ and $\sigma \in \Gamma(E)$. Then,

$$\alpha \wedge \tau = \alpha \wedge (\omega \otimes \sigma)$$
$$= (\alpha \wedge \omega) \otimes \sigma,$$

so that by (*), we have

$$D(\alpha \wedge \tau) = D((\alpha \wedge \omega) \otimes \sigma)$$

$$= d(a \wedge \omega) \otimes \sigma + (-1)^{p+q} (\alpha \wedge \omega) \wedge D(\sigma)$$

$$= (d\alpha \wedge \omega + (-1)^p \alpha \wedge d\omega) \otimes \sigma + (-1)^{p+q} (\alpha \wedge \omega) \wedge D(\sigma)$$

$$= (d\alpha \wedge \omega) \otimes \sigma + (-1)^p (\alpha \wedge d\omega) \otimes \sigma + (-1)^{p+q} \alpha \wedge \omega \wedge D(\sigma)$$

$$= d\alpha \wedge \tau + (-1)^p \alpha \wedge (d\omega \otimes \sigma + (-1)^q \omega \wedge D(\sigma))$$

$$= d\alpha \wedge \tau + (-1)^p \alpha \wedge D(\tau).$$

By \mathbb{R} -linearity, we get the formula for all elements in $\Omega^{q}(E)$.

By extending D to $\Omega^{p}(E)$, we get a chain

$$0 \xrightarrow{D} \Omega^0(E) \xrightarrow{D} \Omega^1(E) \to \dots \xrightarrow{D} \Omega^{n-1}(E) \xrightarrow{D} \Omega^n(E) \xrightarrow{D} 0$$

where $n = \dim B$. In general, $D \circ D$ so that this is not a complex.

Definition 2.4. Given a connection D on E, we define $F_D = D \circ D$, which is called the *curvature of* D. Furthermore, D is called *flat* if $F_D = 0$.

Example 2.3. If $E = B \times \mathbb{R}^r$ is the trivial bundle and D = d is the trivial connection on E, then $F_D = d \circ d = 0$, so the trivial connection is flat. We will see that, locally, any flat connection can be given by d in an appropriate local frame.

What are some of the properties of

$$F_D: \Omega^0(E) \to \Omega^2(E)$$
?

1) F_D is $C^{\infty}(B)$ -linear: For all $\sigma \in \Gamma(E)$ and $f \in C^{\infty}(B)$, we have

$$F_D(f\sigma) := fF_D(\sigma).$$

Proof.

$$F_D(f\sigma) = D(D(f\sigma))$$

$$= D(df \otimes \sigma + fD(\sigma))$$

$$\stackrel{\text{defn}}{=} (d(df) \otimes \sigma + (-1)^1 df \wedge D(\sigma)) + (df \wedge D(\sigma) + fD^2(\sigma))$$

$$= fD(\sigma).$$

In genereal,

$$D \circ D : \Omega^p(E) \to \Omega^{p+1}(E)$$

is $C^{\infty}(B)$ -linear.

2) Locally, in terms of local coordinates (x_1, \ldots, x_n) on B, we have seen that, for any local section σ of E,

$$D(\sigma) = \sum_{i=1}^{n} dx_i \otimes D_{\frac{\partial}{\partial x_i}}(\sigma)$$

(where $D_{\frac{\partial}{\partial x_i}}:\Gamma\left(E\right)\to\Gamma\left(E\right)$ is so that $D_{\frac{\partial}{\partial x_i}}$ are local sections of E). Given this, we also have

$$F_{D}(\sigma) = \sum_{i,j} (dx_{i} \wedge dx_{j}) \otimes \left(D_{\frac{\partial}{\partial x_{i}}} \left(D_{\frac{\partial}{\partial x_{j}}} (\sigma) \right) \right)$$

$$\implies F_{D} \left(\frac{\partial}{\partial x_{k}}, \frac{\partial}{\partial x_{l}} \right) = \sum_{i,j} (dx_{i} \wedge dx_{j}) \left(\frac{\partial}{\partial x_{k}}, \frac{\partial}{\partial x_{l}} \right) \otimes D_{\frac{\partial}{\partial x_{i}}} \left(D_{\frac{\partial}{\partial x_{j}}} (\sigma) \right)$$

$$= D_{\frac{\partial}{\partial x_{k}}} \left(D_{\frac{\partial}{\partial x_{l}}} (\sigma) \right) - D_{\frac{\partial}{\partial x_{l}}} \left(D_{\frac{\partial}{\partial x_{k}}} (\sigma) \right).$$

We then see that $F_D = 0$ if and only if $D_{\frac{\partial}{\partial x_l}}\left(D_{\frac{\partial}{\partial x_k}}\right)(\sigma) = D_{\frac{\partial}{\partial x_k}}\left(D_{\frac{\partial}{\partial x_l}}\right)(\sigma)$ for all $k, l = 1, \ldots, n$. So the connection is flat if and only if the covariant derivatives commute (with respect to the coordinate directions).

As with connections, the curvature can be described as a matrix of 2-forms in terms of a local frame as follows:

Example 2.4. $E = B \times \mathbb{R}^r$ and frame $\{e_1, \dots, e_r\}$ where $e_i(b) = (b, \vec{e_i})$. Suppose that D is a connection on E with connection matrix $A = (a_{ij})$, where $D(e_j) = \sum_i a_{ij} \otimes e_i$. Then

$$F_{D}(e_{j}) = D(D(e_{j}))$$

$$= D\left(\sum_{i} a_{ij} \otimes e_{j}\right)$$

$$= \sum_{i} D(a_{ij} \otimes e_{i})$$

$$= \sum_{i} (da_{ij} \otimes e_{i} + (-1)^{1} a_{ij} \wedge D(e_{i}))$$

$$= \sum_{i} da_{ij} \otimes e_{i} - \sum_{i} a_{ij} \wedge D(e_{i})$$

$$= \sum_{i} da_{ij} \otimes e_{i} - \sum_{i} a_{ij} \left(\sum_{k} a_{ki} e_{k}\right)$$

$$= \sum_{i} da_{ij} \otimes e_{i} - \sum_{i,k} (a_{ij} \wedge a_{ki}) \otimes e_{k}$$

$$= \sum_{i} da_{ij} \otimes e_{i} + \sum_{k} \left(\sum_{i} a_{ki} \wedge a_{ij}\right) \otimes e_{k}$$

$$= \sum_{i} (dA)_{ij} \otimes e_{i} + \sum_{k} (A \wedge A)_{kj} \otimes e_{k}$$

$$= \sum_{i} (dA + A \wedge A)_{ij} \otimes e_{i}$$

$$\implies F_{D}(e_{j}) = \sum_{i} (dA + A \wedge A)_{ij} \otimes e_{i}.$$

In general, any local section σ of E can be written as $\sigma = \sum_{i=1}^r \overline{\sigma}_j e_j$ for some smooth functions $\overline{\sigma}_1, \dots, \overline{\sigma}_r$. By $C^{\infty}(B)$ -linearity of F_D , we get:

$$F_D(\sigma) = \sum_{j=1}^r \overline{\sigma}_j F_D(e_j)$$

$$= \sum_{j=1}^r \overline{\sigma}_j \left(\sum_i (dA + A \wedge A)_{ij} \right) \otimes e_i.$$

$$\implies F_D(\sigma) = \sum_{i=1}^r \left(\sum_j (dA + A \wedge A)_{ij} \overline{\sigma}_j \right) \otimes e_i$$

$$=: (dA + A \wedge A) \cdot \sigma.$$

Here, $F_A := dA + A \wedge A$ is the *curvature matrix of* D with respect to $\{e_1, \dots e_r\}$.

Also, if $\{e'_1, \ldots, e'_r\}$ is another form where

$$e_j' = \sum_i h_{ij} e_j$$

where $h = (h_{ij}) : B \to GL(r, \mathbb{R})$ is the change of basis matrix, and A' is the connection matrix of D with respect to $\{e'_1, \ldots, e'_r\}$ then:

$$A' = h^{-1}Ah + h^{-1}dh$$

and

$$F_{A'} = h^{-1}F_A h$$
 (exercise.)

Note. If $F_D = 0$, then $F_A = 0$ with respect to any local frame on E.

In general, for any vector bundle E with vector bundle atlas $\{(U_{\alpha}, \varphi_{\alpha})\}$ and corresponding local frames $\{e_1^{\alpha}, \dots, e_r^{\alpha}\}$ where $e_i^{\alpha} = \varphi_{\alpha}^{-1}(-, \vec{e_i})$. Suppose that the connection D on E is given by the connection matrices A_{α} . Then $U_{\alpha} \cap U_{\beta} \neq \emptyset$,

$$A_{\beta} = \overline{g}_{\alpha\beta}^{-1} A_{\alpha} \overline{g}_{\alpha\beta} + \overline{g}_{\alpha\beta}^{-1} d\overline{g}_{\alpha\beta}$$

and

$$F_{A_{\beta}} = \overline{g}_{\alpha\beta}^{-1} F_{A_{\alpha}} \overline{g}_{\alpha\beta}$$

where $\overline{g}_{\alpha\beta}: U_{\alpha} \cap \beta \to \mathrm{GL}(r,\mathbb{R}).$

Theorem 2.1. A connection D on E is flat if and only if there exists a vector bundle atlas $\{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha \in \mathcal{A}}$ such that $A_{\alpha} = 0$ for all $\alpha \in \mathcal{A}$.

Remark. If D is flat, then the vector bundle atlas $\{(U_{\alpha}, \varphi_{\alpha})\}$ for which $A_{\alpha} = 0$ is such that $\overline{g}_{\alpha\beta} \equiv \text{constant}$, because $d\overline{g}_{\alpha\beta} = 0$ for all α, β .

Definition 2.5. A vector bundle E is called *flat* if and only if there exists a vector bundle atlas on E whose transition functions are constant.

Corollary 2.1. A vector bundle is flat if and only if it admits a flat connection.

Lecture 12 --- February 13, 2020

Let $(E, B, \pi, \mathbb{R}^r)$ be a vector bundle and D a connection on E. If $\{e_1, \ldots, e_r\}$ is a local frame of E, then locally, if σ is a local section of E given by $\sigma = \sum_i \overline{\sigma}_i e_i$, then

$$F_D(\sigma) = \sum_{i} (F_A)_{ij} \overline{\sigma}_j \otimes e_i$$

where $F_A := dA + A \wedge A$ is the curvature matrix (with respect to this local frame). Also, if $\{e'_1, \dots, e'_r\}$ is another local frame with $e'_j = \sum_i h_{ij} e_i$ (where $h : U \to \operatorname{GL}(r, \mathbb{R})$ is a smooth map with $h = (h_{ij})$), then if A' is the connection matrix of D with respect of $\{e'_1, \ldots, e'_r\}$, then:

$$A' = h^{-1}Ah + {}^{-1}dh$$

and

$$F_{A'} = h^{-1} F_A h.$$

So, we have that $F_D = 0 \iff F_A = 0$ for every connection matrix A.

Proposition 2.4. D is flat if and only if there exists a vector bundle atlas $\{(U_{\alpha}, \varphi_{\alpha})\}$ on E with respect to which every $A_{\alpha} = 0$ for all $\alpha \in \mathcal{A}$, where A_{α} is the connection matrix of D with respect to the frame $\{e_1^{\alpha}, \ldots, e_r^{\alpha}\}$.

Before proving the proposition, we need some notation. Let $U \subset B$ be an open set with local coordinates (x_1, \ldots, x_n) and assume that E admits a vector bundle chart for U with associated local frame $\{e_i\} = \{\varphi^{-1}(-,\vec{e_i})\}$. Let A be the corresponding connection matrix of D. So

$$A = \sum_{k=1}^{n} A_k dx_k$$

where $A_k: U \to \mathfrak{gl}(r, \mathbb{R})$ is a smooth map, and so

$$F_A = dA + A \wedge A = \sum_{k < l} \left(\frac{\partial A_l}{\partial x_k} - \frac{\partial A_k}{\partial x_l} = [A_k, A_l] \right) dx_k \wedge dx_l.$$

Proof.

$$dA = \sum_{k=1}^{n} dA_k \wedge dx_k$$

$$= \sum_{k=1}^{n} \left(\sum_{l=1}^{n} \frac{\partial A_k}{\partial x_l} dx_l \right) \wedge dx_k$$

$$= \sum_{k=1}^{n} \left(\frac{\partial A_l}{\partial x_k} - \frac{\partial A_k}{\partial x_l} \right) dx_k \wedge dx_l$$

and

$$A \wedge A = \left(\sum_{k=1}^{n} A_k dx_k\right) \wedge \left(\sum_{l=1}^{n} A_l dx_l\right)$$
$$= \sum_{k,l=1}^{n} A_k A_l dx_k \wedge dx_l$$
$$= \sum_{k< l} (A_k A_l - A_l A_k) dx_k \wedge dx_l$$
$$= \sum_{k< l} [A_k, A_l] dx_k \wedge dx_l.$$

So, $F_D = 0$ iff $F_A = 0$ for all A iff $\frac{\partial A_l}{\partial x_k} - \frac{\partial A_k}{\partial x_l} + [A_k, A_l] = 0$ for all k < l. Suppose that $\{e'_1, \dots, e'_r\}$ is related to $\{e_1, \dots, e_r\}$ by $h: U \to \operatorname{GL}(r, \mathbb{R})$ so that its connection matrix is

$$A' = h^{-1}Ah + h^{-1}dh$$

If $A = \sum_{k=1}^{n} A_k dx_k$ and $A' = \sum_{k=1}^{n} A'_k dx_k$, then:

$$A_k' = h^{-1}A_kh + h^{-1}\frac{\partial h}{\partial x_k}.$$

Therefore, if there exists a local frame $\{e'_1, \dots, e'_r\}$ with respect to which A' = 0 then there exists $h: U \to \mathrm{GL}(r, \mathbb{R})$ such that

$$h^{-1}A_kh + h^{-1}\frac{\partial h}{\partial x_k}.$$

Proof. (\iff) If there is a vector bundle atlas such that $A_{\alpha} = 0$ for all α , then $F_{A_{\alpha}} = dA_{\alpha} + A_{\alpha} \wedge A_{\alpha} = 0$. (\implies) Suppose that $F_D = 0$, so that $F_A = 0$ for any connection matrix A. Let us first assume that B is a hypercube: $B = \{x = (x_1, \ldots, x_n) \in \mathbb{R}^n \mid |x_i| \leq 1\}$. Then E is trivial on B, so there exists a global vector bundle chart $\varphi : E \to B \times \mathbb{R}^r$ and a corresponding global frame $\{e_i = \varphi^{-1}(-, \vec{e_i})\}_{i=1}^r$. Let A be the connection matrix of D with respect to their frame and lets us write it:

$$A = \sum_{k=1}^{n} A_k dx_k$$

with each $A_k: U \to \mathfrak{gl}(r,\mathbb{R})$ smooth for all $k = 1, \ldots, n$. Then $F_A = 0$, which implies

$$\frac{\partial A_k}{\partial x_l} - \frac{\partial A_l}{\partial x_k} + [A_k, A_l] = 0 \quad (*).$$

We want to fund $h: B \to \operatorname{GL}(r, \mathbb{R})$ smooth such that

$$h^{-1}A_kh + h^{-1}\frac{\partial h}{\partial x_k}.$$

We do this in several steps by finding smooth maps $B \to \operatorname{GL}(r, \mathbb{R})$ that take A to a connection matrix \tilde{A} with $\tilde{A}_1 = 0$, then $\tilde{A}_2 = 0$, etc.

• Can we find $h: B \to \mathrm{GL}(r, \mathbb{R})$ smooth such Mathematics

$$\tilde{A}_1 = h^{-1}A_1h + h^{-1}\frac{\partial h}{\partial x_1} \iff A_1h + \frac{\partial h}{\partial x_1} = 0.$$

This is a linear ODE for h in the variable x_1 with x_2, \ldots, x_n fixed (but also with the equation varying smoothly in x_2, \ldots, x_n)). So there exists a smooth solution by the ODE theorem (exercise)

• Suppose that there is $h :\to \operatorname{GL}(r, \mathbb{R})$ smooth taking A to a connection matrix \tilde{A} with $\tilde{A}_1, \ldots, \tilde{A}_p = 0$. Let us show that there is a new $\tilde{h} : B \to \operatorname{GL}(r, \mathbb{R})$ taking \tilde{A} to \tilde{A} with

$$\tilde{\tilde{A}}_1,\ldots,\tilde{\tilde{A}}_p=0.$$

Then \tilde{h} much satisfy

$$\tilde{\tilde{A}}_{k} = \tilde{h}^{-1} \tilde{A}_{k} \tilde{h} + \tilde{h}^{-1} \frac{\partial \tilde{h}}{\partial x_{k}} = 0, \forall k = 1, \dots, p+1$$

$$\iff \begin{cases} \frac{\partial \tilde{h}}{\partial x_{k}} = 0 & \forall k = 1, \dots, p \ (**) \\ \tilde{A}_{p+1} \tilde{h} + \frac{\partial \tilde{h}}{\partial x_{p+1}} = 0 & (***) \end{cases}$$

As before, by the ODE theorem, there exists a solution h to (***). Also, since $F_{\tilde{A}} = 0$ by (*), for all k , since <math>D is flat we have

$$\frac{\partial \tilde{A}_{p+1}}{\partial x_k} - \underbrace{\frac{\partial \tilde{A}_k}{\partial x_{p+1}}}_{=0} + [\tilde{A}_k, \underbrace{\tilde{A}_{p-1}}_{=0}] = 0$$

$$\iff \frac{\partial \tilde{A}_{p+1}}{\partial x_k} = 0 \quad \forall k = 1, \dots, p.$$

So \tilde{A}_{p+1} does not depend on x_1, \ldots, x_p . So \tilde{h} satisfies (**).

• Now for a general vector bundle, start with a vector bundle atlas whose open cover of B consists of open sets diffeomorphic to hypercubes, and replace every vector bundle chart by a chart with respect to which the connection matrix is 0, as above.

We will end with a few more facts about curvature:

• We have see that if D_0 is a fixed connection on E, then the set of all connections on E is

$$\mathcal{A}(E) = \left\{ D_0 + a \mid a \in \Omega^1 \left(\text{End}(E) \right) \right\}.$$

One can show that

$$F_{D_0+a} = F_{D_0} + D_0(a) + a \wedge a$$

for every $a \in \Omega^1(\text{End}(E))$, where D_0 also denotes the induced connection on End(E).

• Bianchi identity. Let D be a connection on E. Then,

$$F_D:\Gamma\left(E\right)\to\Omega^2\left(E\right)$$

and is $C^{\infty}(B)$ -linear. We can therefore think of F_D as an element of Ω^2 (End(E)).

As an aside: In general, if E_1 and E_2 are vector bundles on B, then $\Gamma(\text{Hom}(E_1, E_2))$ is identified with the set

$$\{C^{\infty}(B) - \text{linear maps } \Gamma(E_1) \to \Gamma(E)_2\}$$

Indeed, given $\psi \in \Gamma (\text{Hom } (E_1, E_2))$ so that

$$\psi: B \to \operatorname{Hom}(E_1, E_2) = \bigsqcup_{b \in B} \operatorname{Hom}((E_1)_b, (E_2)_b)$$

so that $\psi(b): (E_1)_b \to (E_2)_b$ is \mathbb{R} -linear. Then ψ induces

$$\tilde{\psi}: \Gamma(E_1) \to \Gamma(E_2)$$

$$\sigma \mapsto \tilde{\psi}(\sigma)$$

where

$$\tilde{\psi}(\sigma): B \to E_2$$

 $b \mapsto \psi(b)(\sigma(b)) \in (E_2)_b.$

Conversely, let $\tilde{\psi}: \Gamma(E_1) \to \Gamma(E_2)$ be $C^{\infty}(B)$ -linear. Set

$$\psi: B \to \operatorname{Hom}(E_1, E_2)$$
$$b \mapsto \psi(b) \in \operatorname{Hom}((E_1)_b, (E_2)_b)$$

where, for all $b \in B$,

$$\psi(b): (E_1)_b \to (E_2)_b$$
$$e = \sigma(b) \mapsto \tilde{\psi}(\sigma)(b)$$

for some local section σ . One can show that this definition of $\psi(b)$ is independent of the choice of σ by the $C^{\infty}(B)$ -linearty of $\tilde{\psi}$ and $\psi(b)$ is \mathbb{R} -linear.

Proposition 2.5. For any connection D on E,

$$D(F_D) = 0$$

where D also denotes the induced connection on $\operatorname{End}(E)$.

Proof. $F_D \in \Omega^2 \left(\operatorname{End}(E) \right)$ and for all $\psi \in \Gamma \left(\operatorname{End}(E) \right)$, then induced connection on $\operatorname{End}(E)$ is such that for all $\sigma \in \Gamma \left(E \right)$,

$$D(\psi)(\sigma) := D(\psi(\sigma)) - \psi(D(\sigma)).$$

In general if $\tau \in \Omega^k$ (End(E)), for all $\sigma \in \Gamma(E)$,

$$D(\tau)(\sigma) = D(\tau(\sigma)) - \tau(D(\sigma)).$$

So we have

$$D(F_D)(\sigma) = D(F_D(\sigma)) - F_D(D(\sigma))$$

= $D \circ D \circ D(\sigma) - D \circ D \circ D(\sigma)$
= 0.

Lecture 13 --- February 25, 2020

2.1.3 Affine Connections

Let M be a smooth manifold. An affine connection is a linear connection on TM:

$$\nabla : \Gamma(TM) \times \Gamma(TM) \to \Gamma(TM)$$
$$(X,Y) \mapsto \nabla_X Y$$

such that it

- is $C^{\infty}(M)$ -linear in X
- satisfies Leibniz in Y: For all $f \in C^{\infty}(M)$, $\nabla(X, fY) = X(f)Y + f\nabla_X Y$.

Note. If we think of the connection as $D: \Gamma(TM) \to \Omega^1(TM)$ such that D is \mathbb{R} -linear and satisfies Leibniz: for all $Y \in \Gamma(TM)$ and for every $f \in C^{\infty}(M)$, we have that

$$D(fY) = df \otimes Y + fD(Y),$$

then

$$\nabla(X,Y) = D_X(Y) = D(Y)(X).$$

(i) **Torsion.** For all $X, Y \in \Gamma(TM)$,

$$T^{\nabla}(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y].$$

This is $C^{\infty}(M)$ -linear in X and Y, and also is skew. We say that ∇ is torsion-free if $T^{\nabla} \equiv 0$ iff

$$\nabla_X Y - \nabla_Y X = [X, Y] \ \forall X, Y \in \Gamma(TM) \quad (*).$$

(*) is very useful in formulae and in proofs.

Torsion-free connections are 'symmetric': Let x_1, \ldots, x_n be local coordinates on M so that $\left\{\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n}\right\}$ is a local frame of TM. Them for all i, j, we have

$$\nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_j} \in \Gamma \left(TM \big|_U \right)$$

$$\implies \nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_j} = \sum_{k=1}^n \Gamma_{ij}^k \frac{\partial}{\partial x_k}.$$

If $T^{\nabla} \equiv 0$, then by (*),

$$\begin{split} \nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_j} - \nabla_{\frac{\partial}{\partial x_j}} \frac{\partial}{\partial x_i} &= \left[\frac{\partial}{\partial x_i} \frac{\partial}{\partial x_k} \right] = 0 \\ \iff \nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_j} &= \nabla_{\frac{\partial}{\partial x_j}} \frac{\partial}{\partial x_i} \\ \iff \sum_{k=1}^n \Gamma_{ij}^k \frac{\partial}{\partial x_k} &= \sum_{k=1}^n \Gamma_{ji}^k \frac{\partial}{\partial x_k} \\ \iff \Gamma_{ij}^k &= \Gamma_{ji}^k \end{split}$$

So the Christoffel symbols Γ_{ij}^k are symmetric in i, j.

(ii) Curvature. For all $X, Y, Z \in \Gamma(TM)$,

$$R_{X,Y}^{\nabla}(Z) = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z.$$

- R^{∇} is $C^{\infty}(M)$ -linear in X, Y and Z.
- It is also skew in X, Y.

A direct computation gives that

$$\underbrace{F_D(Z)}_{\in\Omega^2(TM)}(X,Y) = R_{X,Y}^{\nabla}(Z)$$

for every $X,Y,Z\in\Gamma\left(TM\right)$. Note that F_D is zero if and only if R^{∇} is zero. We say that ∇ is flat if and only if $R^{\nabla}\equiv0$, which happen if and only if $F_D\equiv0$, so ∇ is flat if and only if D is flat.

2.2 Connections on a Fibre Bundle

Let (E, B, π, F) be a fibre bundle. Here, the notion of a connection is given by an appropriate splitting of TE. For all $e \in E$, set

> $V_e := \{ \text{ the set of tangent vectors to } E \text{ at } e \text{ that are tangent to } E_{\pi(e)} \}$ = $vertical \ tangent \ space \ at \ e.$

Recall that $\pi_*: TE \to TB$ is a submersion so that $E_b \subset E$ is a submanifold for all $b \in B$. and

$$\pi_{*,e}: T_eE \to T_{\pi(e)}B$$

is surjective for all $e \in E$. set

$$V_e = \ker \left(\pi_{*,e} : T_e E \to T_{\pi(e)} B \right).$$

This is a vector space of dimension $\dim E - \dim B = \dim F$.

Let (U, φ) be a bundle chart of E with $e \in U$ so that

$$\varphi: E_U \to U \times F$$

Then $\pi_* = (\operatorname{pr}_1)_* \circ \varphi_*$. For all $e \in E_U$, set $\varphi(e) = (\pi(e), \overline{\varphi}(e))$ with $\overline{\varphi}(e) \in F$. Then,

$$T_{\overline{\varphi}(e)}F = \ker \left((\operatorname{pr}_1)_{*,(\pi(e),\overline{\varphi}(e))} \right)$$

$$\cong \ker(\pi_{*,e})$$

So we have a subspace $V_e \subseteq T_e E$ of dimension dim F. If we set

$$VE = \bigsqcup_{\epsilon \in F} V_{\epsilon}$$

is a smooth vector bundle on E. This bundle is called the *vertical bundle of* E.

Definition 2.6. An (Ehrresmann) connection or a fibre bundle connection on (E, B, π, F) is a collection $\{H_e \mid e \in E\}$ with each H_e a subspace of T_eE of dimension dim B for all $e \in E$, called the horizontal subspaces, such that

- the assignment $e \mapsto H_e$ depends smoothly on $e \in E$, and
- for all $e \in E$, $T_e E = V_e \oplus H_e$.

Note. In other words,

$$HE = \bigsqcup_{e \in E} H_e$$

is a smooth vector bundle on E called the horizontal bundle of E.

In other words, an Ehnresmann connection on E is a smooth distribution on E such that $E = VE \oplus HE$.

Example 2.5. $E = B \times F$. In this case, suppose that $\{x_1, \ldots, x_n\}$ are local coordinates on B and $\{y_1, \ldots, y_r\}$ local coordinates on F. Then:

 $T_e = \operatorname{span}\left\{\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}, \frac{\partial}{\partial y_1}, \dots, \frac{\partial}{\partial y_m}\right\}$

and

$$V_e = \left\{ \frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n} \right\}.$$

If we set $H_e = \text{span}\left\{\frac{\partial}{\partial y_1}, \dots, \frac{\partial}{\partial y_m}\right\}$, then $T_e E = V_e \oplus H_e$ for all $e \in E$ and the corresponding Ehrresmann connection is called the *trivial connection*.

Definition 2.7. An Ehrresmann connection is called *flat* if it is given by an integrable smooth distribution HE on E.

(By Frobenius, this means that $[H_e, H_e] \subset H_e$ for all $e \in E$). This means that H_e are tangent to submanifolds of E.

Note. An Ehnresmann connection is flat if and only if for all $e \in E$, there is a chart (U, φ) such that φ takes HE on E_U to the trivial connection on $U \times F$.

Finally, let us give an equivalent way of defining an Ehresmann connection: An Ehresmann connection can be defined as a vector bundle map

$$K: TE \rightarrow TE$$

such that $K \circ K = K$ and such that $K(T_e E) = V_e$. We recover the previous definition by setting $H_e = \ker K|_{T_e E}$ for every $e \in E$.

Remark. If (E, B, π, F) is a vector bundle, we will see that any linear connection $D : \Gamma(E) \to \Omega^1(E)$ gives rise to an Ehresmann connection, but not all Ehresmann connections on E come from linear connections.

Lecture 14 --- February 27, 2020

Definition 2.8. Let (E, B, π, F) be a fibre bundle. For all $e \in E$, $V_e = \ker(\pi_{*,e} : T_eE \to T_{\pi e}B) \subseteq T_eE$ is called the *vertical subspace*. A *horizontal subspace* at e is a subspace $H_e \subseteq T_eE$ such that $T_eE = V_e \oplus H_e$. An *Ehresmann connection on* E is a connection $\{H_e \mid e \in E\}$ such that

- the assignment $e \mapsto H_e$ varies smoothly in e, and
- for all $e \in E$, H_e is a horizontal subspace.

Note. dim $V_e = \dim F$ and dim $H_e = \dim B$ for all $e \in E$. $HE = \bigsqcup_{e \in E} H_e$ is a smooth distribution on E.

Another way of defining H_e is as a vector bundle map $K: TE \to TE$ such that $K \circ K = K$ and such that $K(TE) = VE = \bigsqcup_{e \in E} V_e$. Then we set $HE = \bigsqcup_{e \in E} \ker (\pi_{*,e} : T_eE \to T_eE)$.

This map K can be interpreted as a 1-form on E with values in TE, i.e., as an element of $\Omega^1(TE)$, which is called the connection 1-form of the Ehresmann connection K.

How can we see this explicitly? Let (U, φ) be a bundle chart for E so that $\varphi : E_U \to U \times F$ is a diffeomorphism with $U \subseteq B$ open and $\operatorname{pr}_1 \circ \varphi = \pi$. Then, for all $e \in E_U$,

$$\varphi_{*,e}: T_eE \to T_{\varphi(e)}(U \times F)$$

is an isomorphism. Pick local coordinates (x_1, \ldots, x_n) on U and (y_1, \ldots, y_r) on F. (assume they are defined on some open set $W \subseteq U \times F$). Then,

$$T_{\varphi(e)}(U \times F) = \operatorname{span} \left\{ \frac{\partial}{\partial x_1} \big|_{\varphi(e)}, \dots, \frac{\partial}{\partial x_n} \big|_{\varphi(e)}, \frac{\partial}{\partial y_1} \big|_{\varphi(e)}, \dots, \frac{\partial}{\partial y_r} \big|_{\varphi(e)} \right\}.$$

so we set

$$\frac{\partial}{\partial x_i}\Big|_e = \varphi_{*,e}^{-1} \left(\frac{\partial}{\partial x_i}\Big|_{\varphi(e)}\right) \quad \text{(and)}$$

$$\frac{\partial}{\partial y_j}\Big|_e = \varphi_{*,e}^{-1} \left(\frac{\partial}{\partial y_j}\Big|_{\varphi(e)}\right)$$

so that $T_e E = \operatorname{span} \left\{ \frac{\partial}{\partial x_j} \Big|_e, \frac{\partial}{\partial y_j} \Big|_e \right\}$. Also,

$$\pi_{*,e} \left(\frac{\partial}{\partial x_i} \Big|_e \right) = (\operatorname{pr}_1)_{*,\varphi(e)} \left(\varphi_{*,e} \left(\frac{\partial}{\partial x_i} \Big|_{\varphi(e)} \right) \right)$$
$$= \frac{\partial}{\partial x_i} \Big|_{\pi(e)}$$

and

$$\pi_{*,e} \left(\frac{\partial}{\partial y_j} \Big|_e \right) = 0.$$

So $V_e = \operatorname{span}\left\{\frac{\partial}{\partial y_j}\Big|_e\right\}$.

Recall that $K: TE \to TE$ is a vector bundle map such that

- $K \circ K = K$
- K(TE) = VE

So for all j = 1, ..., r, since $\frac{\partial}{\partial y_i}\Big|_e \in V_e$,

$$K\left(\frac{\partial}{\partial y_i}\Big|_e\right) = \frac{\partial}{\partial y_i}\Big|_e$$

and for all $i = 1, \ldots, n$,

$$K\left(\frac{\partial}{\partial x_i}\Big|_e\right) \in V_e$$

$$\implies K\left(\frac{\partial}{\partial x_i}\Big|_e\right) = \sum_{i=1}^r b_{ij}(e) \frac{\partial}{\partial y_j}\Big|_e$$

for some $b_{ij}(e) \in \mathbb{R}$. Thus, we have

$$\begin{cases} K\left(\frac{\partial}{\partial x_i}\right) = \sum_{j=1}^r b_{ij} \frac{\partial}{\partial y_j} & \text{for some } b_{ij} \in C^{\infty}(\varphi^{-1}(W)) \\ K\left(\frac{\partial}{\partial y_j}\right) = \frac{\partial}{\partial y_j}. \end{cases}$$

Thus, K corresponds to the 1-form with values in TE given by

$$\tau := \sum_{i=1}^{r} \left(\left(\sum_{i=1}^{n} b_{ij} dx_i \right) + dy_j \right) \otimes \frac{\partial}{\partial y_j}.$$

This is called the connection 1-form of K. Also,

$$\begin{split} H_e &= \ker \left(\pi_{*,e} : T_e E \to T_e E \right) \\ &= \operatorname{span} \left\{ \frac{\partial}{\partial x_i} \Big|_e - \sum_{j=1}^r b_{ij}(e) \frac{\partial}{\partial y_j} \Big|_e \right\}. \end{split}$$

Curvature of an Ehresmann connection. Let HE be an Ehresmann connection on E so that $TE = HE \oplus VE$. So, for all $X \in \Gamma(E)$ we can uniquely write

$$X = X_v + X_h$$

with $X_v \in \Gamma(VE)$ and $X_h \in \Gamma(HE)$

Definition 2.9. The *curvature* of HE is a 2-form on E with values in TE (i.e., an element of $\Omega^2(TE)$) defined by: For all $X, Y \in \Gamma(TE),$

$$R(X,Y) = [X_h, Y_h]_v \in \Gamma(VE) \subset \Gamma(TE)$$
.

We see that

$$\begin{split} R &\equiv 0 \iff [X_h, V_h]_v = 0 \ \forall X, Y \in \Gamma \left(TE \right) \\ &\iff [X_h, V_h] \in HE \ \forall X, Y \in \Gamma \left(TE \right) \\ &\iff [HE, HE] \subset HE \\ &\iff HE \ \text{is flat}. \end{split}$$

Example 2.6. $E = \mathbb{R}^2 \times \mathbb{R}$, where the first factor is the base and the second is the fibre. Pick local coordinates $(x_1, x_2) \in \mathbb{R}^2$ and $y \in \mathbb{R}$. $T_e E = \operatorname{span} \left\{ \frac{\partial}{\partial x_1} \right\} \Big|_e$, $\frac{\partial}{\partial x_2} \Big|_e$ and $V_e = \operatorname{span} \left\{ \frac{\partial}{\partial y} \Big|_e \right\}$.

- 1. Set $H_e = \operatorname{span}\left\{\frac{\partial}{\partial x_1}\Big|_e, \frac{\partial}{\partial x_2}\Big|_e\right\}$. Then $[HE, HE] \subset HE$, so HE is flat. Here, HE is the trivial connection.
- 2. Set $HE = \operatorname{span}_{C^{\infty}(E)} \left\{ \frac{\partial}{\partial x_1} + x_2 \frac{\partial}{\partial y}, \frac{\partial}{\partial x_2} \right\}$. Since

$$\left[\frac{\partial}{\partial x_1} + x_2 \frac{\partial}{\partial y}, \frac{\partial}{\partial x_2}\right] = -\frac{\partial}{\partial y} \notin HE,$$

HE is not flat. Note that $R\left(\frac{\partial}{\partial x_1} + x_2 \frac{\partial}{\partial y}, \frac{\partial}{\partial x_2}\right) = -\left(\frac{\partial}{\partial y}\right)_{yy} = -\frac{\partial}{\partial y} \neq 0$.

How does this relate to linear connections where E is a vector bundle? Suppose that $(E, B, \pi, \mathbb{R}^r)$ is a vector bundle and $D : \Gamma(E) \to \Omega^1(E)$ is a linear connection on E. Without loss of generality, assume that $E = B \times \mathbb{R}^r$ (otherwise, work with a vector bundle atlas on E) with frame $\{e_1, \dots, e_r\}$ where $e_i(\vec{b})L = (\vec{b}, \vec{e_i})$. Also, suppose D = d + A where $A = (a_{ij})$ is the connection matrix of D with respect to the frame $\{e_1, \dots, e_r\}$. Choose local coordinates (x_1, \ldots, x_n) on B and coordinates (y_1, \ldots, y_r) on \mathbb{R}^r . Set

$$b_{ij}(x_1,\ldots,x_n,y_1,\ldots,y_r) = \sum_{l=1}^r a_{jl} \left(\frac{\partial}{\partial x_i}\right) y_l.$$

Here, $a_{jl}\left(\frac{\partial}{\partial x_i}\right) \in C^{\infty}(B)$ and note that b_{ij} is a linear function in y'_js . Thus, we set

$$\begin{split} K: TE &\to TE \\ \frac{\partial}{\partial x_i} &\mapsto \sum_{k=1}^r b_{ij} \frac{\partial}{\partial y_j} \\ \frac{\partial}{\partial y_j} &\mapsto \frac{\partial}{\partial y_j}. \end{split}$$

IMPORTANT. Not all Ehresmann connections on the vector bundle E come from a linear connection D, because the smooth functions b_{ij} need not be linear in the y_j 's.

What is the geometric interpretation of the Ehresmann connection obtained from D?

Definition 2.10. Let $(E, B, \pi, \mathbb{R}^r)$ be a vector bundle and $D : \Gamma(E) \to \Omega^1(E)$ be a linear connection on E. $\sigma \in \Gamma(E)$ is called *flat* or *covariantly constant* if $D\sigma = 0$.

Note that D = 0 if and only if $D_X \sigma = 0$ for all $X \in \Gamma(TB)$.

Example 2.7. Let $\pi : \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}$ be the trivial line bundle on \mathbb{R}^2 . Choose coordinates $(x_1, x_2) \in \mathbb{R}^2$ and $y \in \mathbb{R}$ (the former being the base and the latter the fibre). Then

$$e: \mathbb{R}^2 \to \mathbb{R}^2 \times \mathbb{R}$$

 $(x_1, x_2) \mapsto (x_1, x_2, 1)$

is a frame for E. Then for any $\sigma \in E$, $\sigma = \overline{\sigma}e$ for $\overline{\sigma} : \mathbb{R}^2 \to \mathbb{R}$ smooth.

- If D = d = the trivial connection, then $D\sigma = d\overline{\sigma} \otimes e$. So $D\sigma = 0$ if and only if $\overline{\sigma}$ is a constant function on \mathbb{R}^2 .
- If D = d + A where $A = (a_{11}) = (dx_1)$ (remember, A is 1×1). Then $D(e) = a_{11} \otimes e = dx_1 \otimes e$. Then

$$D(\sigma) = D(\overline{\sigma}e)$$

$$= d\overline{\sigma} \otimes e + \overline{\sigma}D(e)$$

$$= d\overline{\sigma} \otimes e + \overline{\sigma}dx_1 \otimes e$$

$$\implies D(\sigma) = 0 \iff d\overline{\sigma} + \overline{\sigma}dx_1 = 0$$

$$\iff d\overline{\sigma} = -\overline{\sigma}dx_1.$$

This has solution $\overline{\sigma} = Ce^{-x_1}$.

What about along a curve?

Definition 2.11. Let $\gamma: I = (-\varepsilon, \varepsilon) \subset \mathbb{R} \to B$ be smooth. Let $\sigma \in \Gamma(E)$. Then σ is said to be *covariantly constant along* γ if

$$D_{\dot{\gamma}(t)}\sigma = 0$$

for all $t \in I$.

Given the linear connection D and corresponding Ehresmann connection $HE \subset TE$, one can show that

$$H_e = \left\{ \dot{\xi}(0) \mid \xi(t) = \sigma\left(\gamma(t)\right) \text{ for } \sigma \in \Gamma\left(E\right) \text{ such that } D\sigma = 0, \ \gamma: I \to \mathbb{R} \text{ smooth.} \right\}$$