CS171 Problem Set 4

Justin Mac 861086907

Problem 2: If there are m items/features, prove there are 3^m-2^{m+1}+1 different association rules possible.

I will use combinatorics to prove this. If there are m items, we choose k of them, $\binom{m}{k}$ ways for forming the left side. To choose the remaining, there are $\binom{m-k}{k}$ ways.

Total =
$$\sum_{k=1}^{m} {m \choose k} \sum_{i=1}^{m-k} {m-k \choose i}$$

Since
$$\sum_{i=1}^{m-k} {m-k \choose i} = 2^{m-k} - 1 \implies \text{Total} = \sum_{k=1}^{m} {m \choose k} (2^{m-k} - 1)$$

Distribute the sigma: Total =
$$\sum_{k=1}^{m} {m \choose k} 2^{m-k} - \sum_{k=1}^{m} {m \choose k}$$

Total =
$$\sum_{k=1}^{m} {m \choose k} 2^{m-k} - (2^m - 1) + 3^m$$
The from LHS

There are a total of 3^m-2^{m+1}+1 different association rules possible