Math 63: Real Analysis

Winter 2024

PSET 8 — 02/28/2024

Prof. Erchenko Student: Amittai Siavava

Credit Statement

I worked on these problems alone, with reference to class notes and the following books:

(a) Introduction to Analysis by Maxwell Rosenlicht

Problem 1.

Prove that $\int_{0}^{1} f(x) dx = 0$ if $f(\frac{1}{n}) = 1$ for all $n \in \mathbb{N}$ and f(x) = 0 for all other x.

Problem 2.

Prove that if f is a continuous real-valued function on the interval [a,b] such that $f(x) \ge 0$ for all $x \in [a,b]$ and f(x) > 0 for some $x \in [a,b]$, then $\int\limits_a^b f(x) \,\mathrm{d}x > 0$.

Problem 3.

Let $f: \mathbb{R} \to \mathbb{R}$ with

$$f(x) = \begin{cases} 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \text{ (i.e. not rational).} \\ \frac{1}{q} & \text{if } x \coloneqq \frac{p}{q} \in \mathbb{Q} \text{ with } p, q \text{ coprime.} \end{cases}$$

Show that $\int_{0}^{1} f(x) dx$ exists and is not equal to 0.

Hint: Use the Lebesgue criterion for integrability. In particular, you need to determine at what points f is continuous.

Problem 4.

Prove that if the real-valued function f on the interval $\left[a,b\right]$ is integrable on $\left[a,b\right]$, then so is f, and

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}x \right| \leq \int_{a}^{b} |f(x)| \, \mathrm{d}x.$$

Problem 5.

Prove integration by parts. That is, suppose F and G are continuously differentiable functions on $\left[a,b\right]$. Then, prove that

$$\int_{a}^{b} F(x)G'(x) dx = F(b)G(b) - F(a)G(a) - \int_{a}^{b} F'(x)G(x) dx.$$

Problem 6.

Let $g, f : \mathbb{R} \to \mathbb{R}$ be Riemann integrable on any interval $[a, b] \subset \mathbb{R}$. Is it true that $g \circ f$ is also Riemann integrable on any interval $[a, b] \subset \mathbb{R}$?

<u>Hint:</u> Consider g such that g(x) = 0 if x = 0 and g(x) = 1 if $x \neq 0$, and f as in Problem 3.