Carlingford High School

Year 9 (5.3) Mathematics

Term 3 Exam 2018

Print your Name: Solution	5	
Circle your class:		
9MA31 (Ms Hooner, Ms Gamble)	9MA32 (Mr Gong)	9MA33 (Ms Bennett)

- Time allowed: 50 minutes
- Approved calculators may be used
- Show all necessary working
- Marks may be deducted for untidy setting out
- Marks for questions are indicated

TOPICS	Marks	
Algebraic Techniques	/20	
Geometry	/28	
Surds	/18	
TOTAL	/66	%

Algebraic Techniques

1. Fully factorise the following

a).
$$x^3 - x$$

$$= >((>(>(-1))$$

$$= >((>(+1)(>(-1))$$

3. Fully simplify $\frac{3x^2 - 75}{3x^2 - 30x + 75}$ [2] $= 3(x^2 - 25)$

b).
$$3ab - 6a + bp - 2p$$
 [2]
= $3a(b-2) + P(b-2)$
= $(b-2)(3a+P)$

 $3(x^{2}-10x+25)$ = (x+5)(x-5) (x-5)(x-5)= $\frac{x+5}{x-5}$

[2]

- c). $a(x-y) 2b(x-y) + 3ab 6b^2$ [2] = (2c-y)(a-2b) + 3b(a-2b)= (a-2b)(2c-y+3b)
- 2. Fully factorise the following

a).
$$x^2 + 6x - 27$$
 [2] = $(x + 9)(x - 3)$

b).
$$a^2 - 3a - 18$$
 [2]
= $(\alpha - 6)(\alpha + 3)$

c).
$$1-2x-24x^2$$
 [2]
$$= (1-6x)(1+4x)$$

Fully simplify the following

a). $\frac{x}{2x+6} + \frac{5}{x^2-9}$ [2] $= \frac{x}{2(x+3)} + \frac{5}{(x+3)(x-3)}$ $= \frac{x(x-3) + 5(2)}{2(x+3)(x-3)}$ $= \frac{x^2 - 3x + 10}{x^2 - 3x + 10}$

b).
$$\frac{3x-6}{x+3} \times \frac{3x+9}{5x-10}$$
 [2]
= $\frac{3(x-2)}{x+3} \times \frac{3(x+3)}{5(x-2)}$
= $\frac{3\times3}{5}$
= $\frac{9}{5}$ or $1\frac{4}{5}$
c). $\frac{y}{y^2+y} \div \frac{4}{5y+5}$ [2]
= $\frac{y}{x(y+1)} \times \frac{5(y+1)}{4}$
= $\frac{5}{4}$ or $1\frac{1}{4}$

Geometry

What is a regular polygon?

Equal lengths & equal internal angles

[2]

[2]

[2]

6.

How many sides does a dodecagon [1] have? 12

- - Name the quadrilateral(s) whose diagonals are equal and intersect at right [1] angles.

Irregular Monagon

Name this polygon.

Find the value of each pronumeral in the diagram below, giving reasons.

Square

x+65°=140° (Exterior angle of triangle)

Find the interior angle sum of a decagon.

[2]

Angle sum =
$$(10-2) \times 180^{\circ}$$

= $8 \times 180^{\circ}$
= 1440°

m = 96

Find the value of x.

[2]

 $m + 85^{\circ} + 108^{\circ} + 71^{\circ} = 360^{\circ}$ (Angle sum = $(5-2) \times 180$ = 540° of quadrilateral) $2x + 96 + 120^{\circ} + 144^{\circ} = 540^{\circ}$ >c = 90°

Find the size of $\angle PQR$, giving reasons.

- For a regular octagon, find the size of:
 - a). each exterior angle
 - b). each interior angle. [1] = 180°-45° =125°

[1]

Geometry continued

10. Find the value of x^0 and k in the pair of congruent triangles.

X = 45° K = 8cm 12. $\triangle LPR \parallel \triangle LMN$. Find the value of a correct to 2 decimal places.

[2]

 $\frac{a}{30} = \frac{15}{21} \text{ (ratio of matching side are in proportion)}$ $a = \frac{15 \times 30}{21}$ a = 21.43 unite

11. If $\angle EDF = \angle DEG$ and FD = GE, prove that $\triangle EDF = \triangle DEG$.

In AEDF & ADEG

ED = DE (common side)

LEDF = LDEG (given)

FD = GE (given)

... AEDF = ADEG (SAS)

13. Given the diagram

[2]

[3]

a). Prove $\triangle KNP \parallel \triangle KMT$.

In $\triangle KNP \in \triangle KMT$

LPKN = LTKM (common)

LKPN = LKTM (corresponding angles, TM//PN)

LKNP = LKMT (corresponding angles TM/(PN)

: AKNPILLAKMT (Three pairs of matching angles equal).

b). Hence find the value of w. [2]

 $\frac{w}{w+10} = \frac{6}{9}$ (matching sides are in 9w = 6w + 60 proportion). 3w = 60

1, W = 20

[3]

Surds

- 1. Circle the surds from this list of square roots: $\sqrt{289}$, $\sqrt{101}$, $\sqrt{121}$, [1]
- 6. Expand and simplify this expression $(\sqrt{5} \sqrt{7})(2\sqrt{7} + 3\sqrt{5})$ $= 2\sqrt{3}S + 3\times 5 2\times 7 3\sqrt{3}S$ $= -\sqrt{3}S + 1S 14$

= 1-135

- 2. Simplify $(-6\sqrt{3})^2 = (-6)^2 \times (\sqrt{3})^2$ [1] = 36 × 3 = 108
- 3. Simplify $\frac{\sqrt{288}}{6} = \frac{\sqrt{144 \times 2}}{6}$ [2] $= \frac{12\sqrt{2}}{6}$ $= 2\sqrt{2}$
- 4. Simplify $\sqrt{18} \sqrt{27} + \sqrt{8}$ [2] = $9 \times 2 - 9 \times 3 + 4 \times 2$ = $3 \cdot 2 - 3 \cdot 3 + 2 \cdot 2$ = $5 \cdot 2 - 3 \cdot 3$
- 7. Rationalise the denominator of $\frac{\sqrt{5}}{2\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}} [2]$ $= \frac{\sqrt{35}}{14}$
- 5. Simplify each expression. a). $6\sqrt{27} \times 4\sqrt{6} = 6 \times 3\sqrt{3} \times 4\sqrt{6}$
 - $= 18 \times 4 \times \sqrt{18}$ $= 18 \times 4 \times 32$ $= 216\sqrt{2}$
 - b). $\sqrt{54} \div \sqrt{3} = 9 \times 6$ $= 3 \sqrt{6}$ $= 3 \sqrt{5}$
 - c). $\frac{4\sqrt{12} \times 5\sqrt{2}}{10\sqrt{8}} = \frac{4 \times 2\sqrt{3} \times 5\sqrt{2}}{10 \times 2\sqrt{2}}$ [2] = 2.53
- Rationalise the denominator of $\frac{\sqrt{2}-1}{3+\sqrt{2}} \times \frac{3-\sqrt{2}}{3-\sqrt{2}}$ $= 3\sqrt{2}-2-3+\sqrt{2}$ $= 4\sqrt{2}-5$

[2]

[2]