Problems on Continuous function

- 1. Let P be a polynomial of odd degree. Show that P has a root.
- **2**. i. Show that a function $f: \mathbb{R} \to \mathbb{R}$ is continuous iff for every open set $O, f^{-1}(O)$ is open. (an alternative definition of continuity!)
 - ii. Does the above result true if $f:[0,1]\to\mathbb{R}$ is continuous?
 - iii. Show that $\{x \in \mathbb{R} : x^2 + 5x + 6 > 0\}$ is open.
 - iv. Show that a function $f:\mathbb{R}\to\mathbb{R}$ is continuous iff for every closed set $C,\,f^{-1}(C)$ is closed.
- **3.** If $f:[a,b]\to\mathbb{R}$ is monotone on [a,b], then the set of points of discontinuities in [a,b] is a countable set.
- **4.** Find all continuous functions $f:[a,b]\to\mathbb{R}$ assumes only rational values on [a,b].
- **5.** Let $f:[0,2\pi] \to [0,2\pi]$ be a continuous function such that $f(0)=f(2\pi)$. Show that there exists $c \in [0,\pi]$ such that

$$f(c) = f(c + \pi).$$

- **6.** Show that the function \sqrt{x} is uniformly continuous but not Lipschitz continuous on (0,1).
- **6.** Show that the function x^2 is uniform continuous on any bounded interval J but not on \mathbb{R} .