Section 30: Vector Spaces

Def: Let F be a field. A *vector space* over F consists of an abelian group V under addition together with an operation of scalar multiplication of each element of V by each element of F on the left, such that for all $a, b \in F$ and $\alpha, \beta \in V$, the following conditions are satisfied:

- 1. $a\alpha \in V$
- 2. $a(b\alpha) = (ab)\alpha$
- 3. $(a+b)\alpha = (a\alpha) + (b\alpha)$
- 4. $a(\alpha + \beta) = (a\alpha) + (a\beta)$
- 5. $1\alpha = \alpha$

The elements of V are *vectors* and the elements of F are scalars.

Note: Let E be an extension field over a field F. Then E is vector space over F with the usual addition in E and scalar multiplication is the usual multiplication $\alpha a \in E$ where $\alpha \in E$ and $a \in F$.

Thm. If V is a vector space over F, then $0\alpha = 0$, a0 = 0 and $(-a)\alpha = a(-\alpha) = -(a\alpha)$ for all $a \in F$ and $\alpha \in V$.

Def: Let V be a vector space over F. The vectors in the subset $S = \{\alpha_i | i \in I\}$ of V span V if for every $\beta \in V$, we have

$$\beta = a_1 \alpha_{i_1} + a_2 \alpha_{i_2} + \dots + a_n \alpha_{i_n}$$

for some $a_j \in F$ and $\alpha_{i_j} \in S, j = 1, ..., n$. A vector $\sum_{j=1}^n a_j \alpha_{i_j}$ is a linear combination of the α_{i_j} .

Example: Let F be a field and E an extension field of F. Let $\alpha \in E$ be algebraic over F. Then $F(\alpha)$ is a vector space over F and is spanned by vectors of of the form $a_0 + a_1\alpha + \cdots + a_{n-1}\alpha^{n-1}$, where $n = deg(\alpha, F)$.

Def: A vector space V over a field F is *finite dimensional* if there is a finite subset of V whose vectors span V.

Example: If $F \leq E$ and $\alpha \in E$ is algebraic over F, $F(\alpha)$ is a finite dimensional vector space over F. This happens because the degree of the irreducible polynomial of α is finite and therefore the spanning vector will have that number of components.

Def: The vectors in the subset $S = \{\alpha_i | i \in I\}$ of a vector space V over a field F are *linearly independent* over F if, for any distinct vectors $\alpha_{i_j} \in S$, coefficients $a_j \in F$ and $n \in \mathbb{Z}^+$, we have $\sum_{j=1}^n a_j \alpha_{i_j} = 0$ in V only if $a_j = 0$ for $j = 1, \ldots, n$. If the vectors are not linearly independent, they are *linearly dependent*.

Note: Another way to think of linear independence is that there is only way to represent the 0 vector. Also, if the vectors are linearly dependent, one will be a linear combination of the remaining vectors.

Example: Back to the $F(\alpha)$ case in previous examples, the vectors look like $v = a_0 + a_1 \alpha, \dots, a_{n-1} \alpha^{n-1}$. Setting v = 0,

$$0 = a_0 + a_1 \alpha + \dots + a_{n-1} \alpha^{n-1} = 0 + 0\alpha + \dots + 0\alpha^{n-1}$$

Therefore, the α 's are linearly independent.

Def: If V is a vector space over a field F, the vectors in a subset $B = \{\beta_i | i \in I\}$ of V form a basis for V over F if they span V and are linearly independent.

Lemma: Let V be a vector space over a field F, and let $\alpha \in V$. If α is a linear combination of vectors β_i in V for i = 1, ..., m and each β_i is a linear combination of vectors γ_j in V for j = 1, ..., n, then α is a linear combination of the γ_i .

Thm. In a finite dimensional vector space, every finite set of vectors spanning the space contains a subset that is a basis.

Note: This theorem means that we can always generate a finite dimensional vector space from a finite number of basis vectors. (whoops, got ahead of the text)

Corollary: A finite dimensional vector space has a finite basis.

Thm. Let $S = \{\alpha_1, \ldots, \alpha_r\}$ be a finite set of linearly independent vectors of a finite dimensional vector space V over a field F. Then S can be enlarged to a basis for V over F. Furthermore, if $B = \{\beta_1, \ldots, \beta_n\}$ is any basis for V over F, then $r \leq n$.