## Computer Graphics Sergey Kosov



#### Lecture 6:

## **BRDF**

#### Contents

- 1. Bidirectional Reflectance Distribution Function (BRDF)
- 2. Reflection models
- 3. Projection onto spherical basis functions
- 4. Shading

#### Reflection Equation - Reflectance



# Reflection equation

$$L(x, \omega_0) = \int_{\Omega_+} f_r(\omega_i, x, \omega_0) L_i(x, \omega_i) \cos \theta_i d\omega_i$$

#### **BRDF**

Ratio of reflected radiance to incident irradiance

$$f_r(\omega_i, x, \omega_o) = \frac{L_o(x, \omega_o)}{dE_i(x, \omega_i)}$$

#### **Bidirectional Reflectance Distribution Function**



# BRDF describes surface reflection for light incident from direction $(\theta_i, \varphi_i)$ observed from direction $(\theta_o, \varphi_o)$

$$f_r(\omega_i, x, \omega_o) = \frac{L_o(x, \omega_o)}{dE_i(x, \omega_i)} = \frac{L_o(x, \omega_o)}{L_i(x, \omega_i)\cos\theta_i d\omega_i}$$

#### **Bidirectional**

• Depends on two directions and position (6-D function)

#### Distribution function

Can be finite

# Unit [1 / sr]



#### **BRDF** Properties



# Helmholtz reciprocity principle

• BRDF remains unchanged if incident and reflected directions are interchanged

$$f_r(\omega_i, x, \omega_0) = f_r(\omega_0, x, \omega_i)$$



# Smooth surface: isotropic BRDF

- · Reflectivity independent of rotation around surface normal
- BRDF has only 3 instead of 4 directional degrees of freedom

$$f_r(\omega_i, x, \omega_o) \equiv f_r(\theta_i, \varphi_i, x, \theta_o, \varphi_o) \equiv$$

$$\equiv f_r(\theta_i, x, \theta_o, \varphi_i - \varphi_o)$$



#### **BRDF Properties**



#### Characteristics

- BRDF units [sr<sup>-1</sup>]
  - Not intuitive
- Range of values:
  - From 0 (absorption) to  $\infty$  (reflection,  $\delta$ -function)
- Energy conservation law
  - No self-emission
  - Possible absorption

$$\int_{\Omega_{+}} f_{r}(\omega_{i}, x, \omega_{o}) \cos \theta_{o} d\omega_{o} \leq 1 \quad \forall \theta, \varphi$$

# Reflection only at the point of entry $(x_i = x_o)$

No subsurface scattering

#### **BRDF** Measurement



#### Gonio-Reflectometer

#### **BRDF** measurement

- Point light source position  $(\theta_i, \varphi_i)$
- Light detector position  $(\theta_o, \varphi_o)$

# 4 directional degrees of freedom

# **BRDF** representation

- m incident direction samples  $(\theta_i, \varphi_i)$
- n outgoing direction samples  $(\theta_o, \varphi_o)$
- *m\*n* reflectance values (large!!!)





Stanford light gantry

#### Rendering from Measured BRDF



# Linearity, superposition principle

- Complex illumination: integrating light distribution against BRDF
- Sampled BRDF: superimposed point light sources

# Interpolation

- Look-up during rendering
- Sampled BRDF must be filtered

# **BRDF Modeling**

- Fit parameterized BRDF model to measured data
- Continuous function
- No interpolation
- Fast evaluation

# Representation in spherical harmonics basis

- Mathematically elegant filtering, illumination-BRDF integration
- Soon supported by graphics hardware?

#### Reflectance



# Reflectance may vary with

- Illumination angle
- Viewing angle
- Wavelength
- Polarization
- ...

#### Variations due to

- Absorption
- Surface micro-geometry
- Index of refraction / dielectric constant
- Scattering





#### **BRDF Modeling**



# Phenomenological approach

• Description of visual surface appearance

# Ideal specular reflection

- Reflection law
- Mirror

# **Glossy reflection**

- Directional diffuse
- Shiny surfaces

## Ideal diffuse reflection

- Lambert's law
- Matte surfaces



#### **Reflection Geometry**



# Direction vectors (normalize):

• N: surface normal

• I: vector to the light source

• V: viepoint direction vector

• H: halfway vector: H= (I + V) / |I + V|

• R(I): reflection vector  $R(I) = I - 2(I \cdot N)N$ 

• Tangential surface: local plane









# Angle of reflectance equal to angle of incidence

# Reflected vector in a plane with incident ray and surface normal vector

$$R+(-I) = 2 \cos \theta N = -2(I \bullet N) N$$

$$R(I) = I - 2(I \cdot N) N$$





$$\varphi = \varphi_o + 180^\circ$$



# Dirac Delta function $\delta(x)$

- $\delta(x)$ : zero everywhere except at x=0
- Unit integral iff integration domain contains zero (zero otherwise)

$$f_{r,m}(\omega_i, x, \omega_o) = \frac{\delta(\cos\theta_i - \cos\theta_o)}{\cos\theta_i} \cdot \delta(\varphi_i - \varphi_o \pm \pi)$$

$$L_{o}(x, \omega_{0}) = \int f_{r,m}(\omega_{o}, x, \omega_{i}) L_{i}(\theta_{i}, \varphi_{i}) \cos \theta_{i} d\omega_{i}$$

$$= \int \frac{\delta(\cos \theta_{i}^{\Omega_{+}} - \cos \theta_{o})}{\cos \theta_{i}} \cdot \delta(\varphi_{i} - \varphi_{o} \pm \pi) L_{i}(\theta_{i}, \varphi_{i}) \cos \theta_{i} d\omega_{i}$$

$$=L_i(\theta_o,\varphi_o\pm\pi)$$



#### **Diffuse Reflection**



# Light equally likely to be reflected in any output direction (independent of input direction)

#### **Constant BRDF**

$$f_{r,d}(\omega_i, x, \omega_o) = k_d = const$$

$$L_o(x, \omega_0) = \int_{\Omega_+} k_d L_i(x, \omega_i) \cos \theta_i d\omega_i = k_d \int_{\Omega_+} L_i(x, \omega_i) \cos \theta_i d\omega_i = k_d E$$

•  $k_d$ : diffuse coefficient, material property [1 / sr]





#### **Lambertian Diffuse Reflection**



# Radiosity

$$B = \int_{\Omega_{+}} L_{o}(x, \omega_{o}) \cos \theta_{o} d\omega_{o} = L_{o} \int_{\Omega_{+}} \cos \theta_{o} d\omega_{o} = \pi L_{o}$$

#### Diffuse Reflectance

$$B = \pi k_d E$$

#### Lambert's Cosine Law

$$B = \pi k_d E_i \cos \theta_i$$

# For each light source:

$$L_{r,d} = k_d L_i \cos \theta_i = k_d L_i (I \cdot N)$$



#### **Lambertian Objects**



# Self-Luminous spherical Lambertian Light Source

 $\Phi_0 \propto L_0 d\Omega$ 



# $d\Omega$

# Eyelight illuminated Spherical Lambertian Reflector

$$\Phi_1 \propto L_0 \cdot \cos \varphi \cdot d\Omega$$





#### Lambertian Objects II



The Sun The Moon





- Absorption in photosphere
- Path length through photosphere longer from the Sun's rim
- Surface covered with fine dust
- Dust on TV visible best from slanted viewing angle

Neither the Sun nor the Moon are Lambertian

#### "Diffuse" Reflection



# Theoretical explanation

• Multiple scattering

# **Experimental realization**

- Pressed magnesium oxide powder
- Almost never valid at high angles of incidence

# Paint manufacturers attempt to create ideal diffuse paints

# **Glossy Reflection**





# **Glossy Reflection**



# Due to surface roughness

# **Empirical models**

- Phong
- Blinn-Phong

# Physical models

- Blinn
- Cook & Torrance



#### **Phong Reflection Model**



# Cosine power lobe

$$f_r(\omega_i, x, \omega_o) = k_s(R(I) \cdot V)^{k_e}$$

- $L_{r,s} = L_i k_s (\cos \theta_{RV})^{k_e}$
- Dot product & power
- Not energy conserving / reciprocal
- Plastic-like appearance







# Phong Exponent k<sub>e</sub>



$$f_r(\omega_o, x, \omega_i) = k_s(R(I) \cdot V)^{k_e}$$

# Determines size of highlight









# Blinn – Phong Reflection Model

$$f_r(\omega_i, x, \omega_o) = k_s (H \cdot N)^{k_e}$$

- $L_{r,s} = L_i k_s (\cos \theta_{HN})^{k_e}$
- $\theta_{RV} \rightarrow \theta_{HN}$
- Light source, viewer far away
- *I*, *R* constant: *H* constant
  - $oldsymbol{ heta}_{HN}$  less expensive to compute







#### Phong Illumination Model



# Extended light sources: *l* point light sources

$$L_r = k_a L_{i,a} + k_d \sum_{l} L_i(I_l \cdot N) + k_s \sum_{l} L_i(R(I_l) \cdot V)^{k_e}$$
 (Phong)

$$L_r = k_a L_{i,a} + k_d \sum_{l} L_i(I_l \cdot N) + k_s \sum_{l} L_i(H_l \cdot N)^{k_e}$$
(Blinn)

# Color of specular reflection equal to light source

#### Heuristic model

- Contradicts physics
- Purely local illumination
  - Only direct light from the light sources
  - No further reflection on other surfaces
  - Constant ambient term

# Often: light sources & viewer assumed to be far away

#### Assignment 2 (Theoretical part)



**Submission deadline:** Friday, 4. October 2019 9:45 (before the lecture)

Written solutions have to be submitted in the lecture room before the lecture. Every assignment sheets counts 100 points (theory and practice)

#### 2.1 Reflection Rays (5 Points)

Given a ray  $\vec{r}(t) = \vec{o} + t \cdot \vec{d}$  which hits a reflective surface at  $t = t_{hit}$ . The surface has the geometry normal  $\vec{n}$  at the hit point. Assume that both, the ray direction  $\vec{d}$  and the surface normal  $\vec{n}$  are normalized. Compute the ray that has been reflected (assuming a perfect mirror reflection) by the surface.

You have to submit your solutions from this exercise in written form.