### Telco Customer Churn Prediction & Visualization

Smeet Agrawal

Jun 2025

### **Project Summary**

- An end-to-end classification project to predict customer churn.
- Objectives:
  - Clean and preprocess telco data
  - Build ML models to predict churn
  - Evaluate model performance using metrics
- Stack: Python (Pandas, Scikit-learn, Seaborn, Matplotlib)

### **Dataset Overview**

- Source: IBM Telco Customer Churn dataset
- Shape: 7043 rows  $\times$  21 columns
- Key fields:
  - gender
  - tenure
  - PhoneService
  - InternetService

- Contract
- MonthlyCharges
- TotalCharges
- Churn (target)

## **Data Cleaning**

- Converted TotalCharges to numeric
- Handled missing values:
  - Replaced NaNs in numeric fields with column mean
- Removed whitespace in categorical fields
- Encoded categorical variables using LabelEncoder

### Exploratory Data Analysis

- Visualized churn rates using countplots
- Checked correlation between numerical features
- Identified key churn indicators:
  - Contract type, tenure, Internet service
- Used Seaborn + Matplotlib for plots

# Modeling Approach

- Target variable: Churn (Yes/No)
- Train-test split (80/20)
- Models used:
  - Random Forest Classifier
- Feature scaling done using StandardScaler

#### **Evaluation Metrics**

- Accuracy Score
- Confusion Matrix
- Classification Report:
  - Precision, Recall, F1-score
- Achieved 80–85

## Visualization Highlights

- Explored churn patterns using:
  - Bar charts and heatmaps
  - Box plots for numerical spread
- Found strong patterns between contract type and churn rate



## Key Takeaways

- Cleaned and explored customer churn dataset
- Built accurate churn prediction model
- Identified key drivers of churn
- Project can guide retention strategies in telco industry

#### **Future Enhancements**

- Tune hyperparameters with GridSearchCV
- Try other models: XGBoost, SVM
- Build Streamlit app for interactive churn prediction
- Apply SHAP for model interpretability

### Thank You!

Smeet Agrawal smeetagrawal2003@gmail.com