انجیبنتری حساب (جلد اول)

خالد خان يوسفر. كي

جامعه کامسیٹ، اسلام آباد khalidyousafzai@comsats.edu.pk

عنوان

میری پہلی کتاب کادیباچہ

گزشتہ چند برسوں سے حکومتِ پاکستان اعلیٰ تعلیم کی طرف توجہ دے رہی ہے جس سے ملک کی تاریخ میں پہلی مرتبہ اعلیٰ تعلیمی اداروں میں تحقیق کا رجحان پیدا ہوا ہے۔امید کی جاتی ہے کہ یہ سلسلہ جاری رہے گا۔

پاکستان میں اعلٰی تعلیم کا نظام انگریزی زبان میں رائج ہے۔دنیا میں تحقیقی کام کا بیشتر حصہ انگریزی زبان میں ہی چھپتا ہے۔انگریزی زبان میں ہر موضوع پر لا تعداد کتابیں پائی جاتی ہیں جن سے طلبہ و طالبات استفادہ کرتے ہیں۔

مارے ملک میں طلبہ و طالبات کی ایک بہت بڑی تعداد بنیادی تعلیم اردو زبان میں حاصل کرتی ہے۔ان کے لئے انگریزی زبان میں موجود مواد سے استفادہ کرنا تو ایک طرف، انگریزی زبان ازخود ایک رکاوٹ کے طور پر ان کے سامنے آتی ہے۔یہ طلبہ و طالبات ذبین ہونے کے باوجود آگے بڑھنے اور قوم و ملک کی بھر پور خدمت کرنے کے قابل نہیں رہے۔ایسے طلبہ و طالبات کو اردو زبان میں نصاب کی اچھی کتابیں درکار ہیں۔ہم نے قومی سطح پر ایسا کرنے کی کوئی خاطر خواہ کوشش نہیں گی۔

میں برسوں تک اس صورت حال کی وجہ سے پریشانی کا شکار رہا۔ پچھ کرنے کی نیت رکھنے کے باوجود پچھ نہ کر سکتا تھا۔ میرے لئے اردو میں ایک صفحہ بھی لکھنا ناممکن تھا۔ آخر کار ایک دن میں نے اپنی اس کمزوری کو کتاب نہ لکھنے کا جواز بنانے سے انکار کر دیا اور بوں بیہ کتاب وجود میں آئی۔

یہ کتاب اردو زبان میں تعلیم حاصل کرنے والے طلبہ و طالبات کے لئے نہایت آسان اردو میں لکھی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کہ اسکول کی سطح پر نصاب میں استعال ہونے والے الفاظ چنے گئے۔ تکنیکی الفاظ کی چنائی کے وقت اس بات کا دہان موجود نہ تھے وہاں روز مرہ میں استعال ہونے والے الفاظ چنے گئے۔ تکنیکی الفاظ کی چنائی کے وقت اس بات کا دہان رکھا گیا کہ ان کا استعال دیگر مضامین میں بھی ممکن ہو۔

کتاب میں بین الا توامی نظامِ اکائی استعال کی گئے۔ اہم متغیرات کی علامتیں وہی رکھی گئی ہیں جو موجودہ نظامِ تعلیم کی نصابی کتابوں میں رائج ہیں۔ یوں اردو میں کھی اس کتاب اور انگریزی میں اسی مضمون پر کھی کتاب پڑھنے والے طلبہ و طالبات کو ساتھ کام کرنے میں دشواری نہیں ہو گی۔

امید کی جاتی ہے کہ یہ کتاب ایک دن خالصتاً اردو زبان میں انجنیرُ نگ کی نصابی کتاب کے طور پر استعال کی جائے گی۔اردو زبان میں برقی انجنیرُ نگ کی مکمل نصاب کی طرف یہ پہلا قدم ہے۔

اس کتاب کے پڑھنے والوں سے گزارش کی جاتی ہے کہ اسے زیادہ سے زیادہ طلبہ و طالبات تک پہنچانے میں مدد دیں اور انہیں جہاں اس کتاب میں غلطی نظر آئے وہ اس کی نشاندہی میری ای-میل پر کریں۔میں ان کا نہایت شکر گزار ہوں گا۔

اس کتاب میں تمام غلطیاں مجھ سے ہی سر زد ہوئی ہیں البتہ انہیں درست کرنے میں بہت اوگوں کا ہاتھ ہے۔میں ان سب کا شکریہ اداکرتا ہوں۔ یہ سلسلہ ابھی جاری ہے اور مکمل ہونے پر ان حضرات کے تاثرات یہاں شامل کئے جائیں گے۔

میں یہاں کامسیٹ یونیورسٹی اور ہائر ایجو کیش کمیشن کا شکرید ادا کرنا چاہتا ہوں جن کی وجہ سے ایسی سر گرمیاں ممکن ہوئیں۔

خالد خان يوسفر. ئي

28 اكتوبر 2011

مخلوط تحليل تفاعل اور نظريه مخفى قوه

مساوات لا پلاس $abla^2 u = 0$ انجینئری حساب میں اہم ترین جزوی تفرقی مساوات میں سے ایک ہے چونکہ یہ تقلی میدان (حصہ 10.8)، ساکن برقی میدان (حصہ 13.11)، برقرار حال ایصال حرارت (حصہ 15.5)، داب نا پذیر بہاو سیال، وغیرہ کے مسکوں میں پایا جاتا ہے۔ اس مساوات کے حل کو نظریہ مخفی قوہ آکہتے ہیں۔

دو بعدی صورت جہاں u کار تیسی محدد کے دو محور x اور y کے تابع ہو میں لاپلاس مساوات درج ذیل صورت اختیار کرتی ہے۔

$$\nabla^2 u = u_{xx} + u_{yy} = 0$$

ہم جانتے ہیں کہ تب اس کے حل مخلوط تحلیلی تفاعل (حصہ 14.5) کے ساتھ گہرا تعلق رکھتے ² ہیں۔ ہم اس تعلق پر اب تفصیلاً غور کرتے ہیں اور ما قواح رکیات اور برقی سکون سے چند مثال بھی پیش کریں گے۔ ہم آگے دیکھیں گے کہ تحلیلی تفاعل کے نتائج کو استعال کرتے ہوئے ہارمونی تفاعل کی مختلف عمومی خواص بیان کی جا سکتی ہیں (حصہ ??)۔ آخر میں ہم دائری قرص پر مساوات لاپلاس کے سرحدی مسائل کے حل کا ایک اہم عمومی کلیہ (پوسوں تکملی کلیہ) اخذ کریں گے۔

potential theory¹ 2تین بعدی صورت میں ایسا گہرا تعلق نہیں پایاجاتا ہے۔

20.1 ساكن برقى سكون

بار بردار ذرات کے مابین قوت کشش یا دفع کو کلیہ کولمب سے حاصل کیا جا سکتا ہے۔ یہ قوت تفاعل س جس کو برقی ساکن مخفی قوہ 3 کہتے ہیں کی ڈھلوان ہے، اور بار سے پاک نقطوں پر س مساوات لا پلاس (حصہ 13.11)

$$\nabla^2 u = 0$$

کو مطمئن کرتا ہے۔ سطیں مستقل u=0 کو ہم قوہ سطحیں ⁴ کہتے ہیں۔ہر نقطہ N پر u کی ڈھلوان نقطہ u پر سطح مستقل u=0 کی قائمہ ہوگی، لینی برقی قوت اور ہم قوہ سطح آپس میں قائمہ ہوں گے۔

مثال 20.1: متوازی چادروںکے درمیان خطہ میں مخفی قوہ

دو لا متنابی و سعت کی متوازی موصل چادر جنہیں بالترتیب U_1 اور U_2 برتی دباو پر رکھا گیا ہے کے در میان مخفی قوہ تلاش کریں (شکل 20.1-الف)۔ چادروں کی شکل سے ظاہر ہے کہ u صرف x کا تابع ہو گا لہذا مساوات لا پلاس u=ax+b صورت اختیار کرتی ہے۔ دو مرتبہ تکمل لے کر u=ax+b حاصل ہوتا ہے جہاں مستقل a اور b کو چادروں پر برقی دباو u کی سرحدی شرائط سے حاصل کیا جاتا ہے۔ مثال کے طور پر اگر چادر x=1 ور x=1 یہ واقع ہوں تب حل x=1

$$u(x) = \frac{1}{2}(U_2 - U_1)x + \frac{1}{2}(U_2 + U_1)$$

ہو گا۔ہم قوہ سطحیں چادروں کے متوازی سطحیں ہوں گ۔

مثال 20.2: ہم محور نلکیوں کیے درمیان خطہ میں محفی قوہ دو میان کی ہم محور نلکیوں کیے درمیان محفی قوہ وہ لا تناہی لمبائی کی ہم محور موصل نلکیاں جنہیں بالترتیب U_1 اور U_2 مخفی قوہ پر رکھا گیا ہو کے درمیان مخفی قوہ تلاش کریں (شکل 20.1-ب)۔ یہاں تشاکل کی بنا u صرف $v=\sqrt{x^2+y^2}$ کا تابع ہو گا اور مساوات لایلاس

electrostatic potential³ equipotential surfaces⁴

20.1 - كن برقى كون

(الف)متوازی چادروں کے در میان مخفی قوہ

شكل 20.1: اشكال برائے مثال 20.1 اور مثال 20.2

صورت اختیار کرتی ہے۔ علیحدگی متغیرات کے بعد تکمل لینے سے

$$\frac{u''}{u'} = -\frac{1}{r}, \quad \ln u' = -\ln r + \tilde{a}, \quad u' = \frac{a}{r}, \quad u = a \ln r + b$$

حاصل ہو گا جہاں مستقل a اور b کو ہم محوری نلکیوں پر u کی دی گئی قیمتوں سے حاصل کیا جائے گا۔ اگرچہ لا متناہی لمبائی کی موصل نکلی کہیں نہیں پائی جاتے ہے، ہماری حاصل کردہ مخفی قوہ کسی بھی لمبی موصل نکلی کے اندر، نگلی کی سروں سے دور، اصل مخفی قوہ کے بہت قریب مخفی قوہ دے گی۔

اگر مخفی قوه صرف دو کار تیسی محدد x اور y پر مخصر ہو تب مساوات لایلاس درج ذیل ہو گی۔

(20.1)
$$\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

مستوی xy میں ہم قوہ سطیں مستقل u=u بطور ہم قوہ خطوط نظر آئیں گی۔

u(x,y) ہم فرض کرتے ہیں کہ u(x,y) ہارمونی ہے لینی اس کے دو درجی جزوی تفرق استمراری ہیں۔اب اگر v(x,y) کا جوڑی دار ہارمونی تفاعل v(x,y) ہو (حصہ 14.5) تب تفاعل

$$F(z) = u(x, y) + iv(x, y)$$

متغیرہ z=x+iy کا تحلیلی تفاعل ہو گا۔اس تفاعل کو حقیقی مخفی قوہ u کا مطابقتی محلوط محفہی قوہ z=x+iy ہیں۔ یاد رہے کہ u کا جوڑی دار، ما سوائے جمعی حقیقی جزو کے، یکتا ہو گا۔

 $complex\ potential^5$

چونکہ خطوط مستقل v=v ہم قوہ خطوط مستقل u=v کو قائمہ الزاویہ قطع کرتی ہیں [ما سوائے ان نقطوں پر جہاں v=v ہوگی۔ای گئے مستقل v=v کو خطوط قوت کی سمت ایک ہوگی۔ای گئے مستقل v=v کو خطوط قوت کی سمت ایک ہوگی۔ای گئے ہیں۔

مثال 20.3: مخلوط مخفى قوه

مثال 20.1 میں u کا جوڑی دار v=ay ہے۔یوں مخلوط مخفی قوہ

F(z) = az + b = ax + b + iay

ہو گا اور خطوط قوت x محور کے متوازی سیر هی لکیریں ہوں گا۔

مثال 20.4: مخلوط مخفى قوه مثال 20.2 ميں

 $u = a \ln r + b = a \ln|z| + b$

ہے جس کا جوڑی دار v=z ہے۔ یوں مخلوط مخفی قوہ $F(z)=a\ln z+b$ ہو گا اور قوت کے خطوط مبدا ہے جس کا جوڑی دار v=z ہوں گا۔ v=z کو الی منبع کیبر کا مخلوط مخفی قوہ تصور کیا جا سکتا ہے جس کا v=z میں عکس مبدا ہو۔

عموماً خطی میل کی مدد سے زیادہ پیچیدہ مخفی توہ حاصل کیے جا سکتے ہیں۔درج ذیل مثال میں ایسا کیا گیا ہے۔

مثال 20.5: جوڑی منبع لکیروں کی مخلوط مخفی قوہ

اور $z=x_2$ پر یکسال کیکن مخالف علامت کی بار بردار منبع کیبریں پائی جاتی ہیں۔ان کا مخلوط مخفی قوہ تلاش کریں۔ مثال 20.2 اور مثال 20.2 سے ان منبع کلیروں کی مخفی قوہ

 $u_1 = -c \ln|z - x_1|$, $u_2 = c \ln|z - x_2|$

ہوں گی جو درج ذیل مخلوط مخفی قوہ کے حقیقی اجزاء ہیں۔

 $F_1(z) = -c \ln(z - x_1), \quad F_2(z) = c \ln(z - x_2)$

force $lines^6$

20.1 ساكن برقى سكون

شكل 20.2: شكل برائے مثال 20.5

یوں دونوں منبع لکیروں کا مجموعی مخلوط مخفی قوہ

(20.2)
$$F(z) = F_1(z) + F_2(z) = c \ln \frac{z - x_2}{z - x_1}$$

$$F(z) = F_1(z) + F_2(z) = c \ln \frac{z - x_2}{z - x_1}$$

$$v = c(\theta_2 - \theta_1) = \sigma$$
مستقل

ہوں گی (شکل 20.2)۔اب در حقیقت $|\theta_2 - \theta_1|$ نقطہ z سے x_1 اور x_2 تک کیروں کے مابین زاویہ علیہ یوں قوت کی کئیریں ایک منحنیات ہوں گی جن پر قطع x_1x_2 کا زاویہ تبدیل نہیں ہوتا ہے۔ مساوات 20.2 میں دیے گئے تفاعل کو ایسی غیر ہم محور نگلی برق گیر کے اندر کا مخلوط مخفی قوہ تصور کیا جا سکتا ہے جس کے دونوں نلکیوں کے محور متوازی ہوں۔

سوالات

سوال 20.1 تا سوال 20.4 میں لامتناہی لمبائی کے دو ہم محور نلکیوں کے رواس r_1 اور $r_2 (> r_1)$ ہیں جنہیں بالترتیب برقی دباو u_1 اور u_2 پر رکھا جاتا ہے۔ان نلکیوں کے درمیان خطہ میں مخفی قوہ u تلاش کریں۔

$$r_1 = 1, r_2 = 5, U_1 = 0, U_2 = 100 \,\mathrm{V}$$
 :20.1 عوال $u = \frac{100}{\ln 5} \ln r = 62.13 \ln r$:20.1 يواب

$$r_1 = 0.5, r_2 = 2, U_1 = -110, U_2 = 110 \mathrm{V}$$
 :20.2 عوال : $u = \frac{220}{\ln 4} \ln r$:20.2 يواب:

$$r_1=2,\,r_2=20,\,U_1=100,\,U_2=200\,\mathrm{V}$$
 :20.3 عوال $u=rac{100}{\ln 10}(\ln r + \ln 5)$:جواب

$$r_1 = 3$$
, $r_2 = 6$, $U_1 = 100$, $U_2 = 50 \,\mathrm{V}$:20.4 عوال $u = -\frac{50}{\ln 2} (\ln r - 50 \ln 12)$.

سوال 20.5: مخلوط مخفی قوه
$$F(z)=rac{1}{z}$$
 کی نهم قوه خطوط تلاش کریں اور ان کی ترسیم کھینجیں۔ $(x-rac{1}{2c})^2+y^2=rac{1}{4c^2}$ جواب:

سوال 20.6: نقطہ z=a اور z=-a پر آپس میں الٹ علامتی بارسے بار بردار منبع کی کئیریں پائی جاتی z=-a ہیں۔ہم قوہ خطوط کی ترسیم کھینچیں۔

سوال 20.7: نقطہ z=a اور z=-a پر یکسال علامتی بار سے بار بردار منبع کی کلیریں پائی جاتی ہیں۔ہم توہ خطوط تلاش کریں۔

قوه خطوط علاش کریں۔
$$u=c\ln(z^2-a^2)$$
 جواب: $u=c\ln\left|z^2-a^2\right|$

سوال 20.8: وکھائیں کہ $z=\cos^{-1}z$ کو شکل 20.3 میں دکھائی گئی تینوں شکل کی موصل چادروں کی مخلوط مخفی قوہ تصور کیا جا سکتا ہے۔

سوال 20.9: وکھائیں کہ $z=\cosh^{-1}z$ کو دو ہم ماسکہ تر خیمی نلکیوں کا مخلوط مخفی قوہ تصور کیا جا سکتا ہے۔ جواب:

 $z = x + iy = \cosh(u + iv) = \cosh u \cos v + i \sinh u \sin v, \quad \frac{x^2}{\cosh^2 u} + \frac{y^2}{\sinh^2 u} = 1$

یوں ہم قوہ خطوط مستقل u=0 ہم ماسکہ ترخیم ہیں۔

سوال 20.10: شکل 20.4 میں لامتناہی لمبائی کے دو نلکیاں دکھائی گئی ہیں۔بایاں نلکی پر u=-1 اور دایاں نلکی پر u=-1 نلکی پر u=1 ہیں مخفی قوہ u=1 تلاش کریں۔ اشارہ۔ سوال 20.6 کا نتیجہ استعال کریں۔

20.1 - كن برقى كون

شكل 20.3: شكل برائے سوال 20.8

شكل 20.10: شكل برائے سوال 20.10

شكل 20.5: سمت بهاواور سمتی رفتار

20.2 دوبعدى بهاوسيال

ہار مونی تفاعل بہاو سیال میں کلیدی کردار ادا کرتے ہیں۔آئیں غیر چیچیا سیال کا دو بعدی برقرار بہاو پر غور کرتے ہیں۔ آئیں غیر سیچیا سیال کا دو بعدی اللہ کی حرکت بیساں ہے اور بیس سیال ادو بعدی" کا مطلب ہے کہ سمج میں صفر میں سطح میں حرکت پر غور کرناکافی ہو گا۔ "بر قرار" کا حرکت ان سطحوں کے متوازی ہے۔ایسی صورت میں صفر میں حرکت پر غور کرناکافی ہو گا۔ "بر قرار" کا مطلب ہے کہ سمتی رفتار وقت کا تابع نہیں ہے۔

کسی بھی نقطہ (x,y) پر بہاو کی سمتی رفتار پائی جائے گی جس کو اس کی مقدار اور سمت سے ظاہر کیا جا سکتا ہے للذا م سمتی رفتار ایک سمتیہ ہو گا۔ چونکہ مخلوط سطح میں کوئی بھی عدد a ایک سمتیہ کو ظاہر کرتا ہے (جو مبدا سے عدد کی مطابقتی مقام تک کا سمتیہ ہو گا) للذا ہم بہاو کی سمتی رفتار کو مخلوط متغیرہ سے ظاہر کر سکتے ہیں مثلاً

$$(20.3) V = V_1 + iV_2$$

جہاں مخلوط سطح پر سمتی رفتار کے x اور y سمت میں اجزاء بالترتیب V_1 اور V_2 ہوں گے اور V حرکت کرتے ذرات کی راہ کو مماتی ہو گا۔ایس راہ کو سعت بہاو 7 کہتے ہیں (شکل 20.5-الف)۔

C اب کسی ایک ہموار منحنی C پر غور کریں جس کی لمبائی قوس کو ہم S سے ظاہر کرتے ہیں۔ فرض کریں کہ C کو ممای سمتی رفتار C کا جزو حقیقی متغیرہ C ہے (شکل 20.5-ب) تب C کی بڑھتی رخ خطی کمل

streamline⁷

20.2 دوبعيدي بهاوسيال

کو C پر سیال کی دائری بہاو⁸ کہتے ہیں۔دائری بہاو کو C کی لمبائی سے تقسیم کرنے سے منحنی C پر اوسط سمتی رفتار ⁹ حاصل ہوتی ہے۔اب شکل 20.5 سے

$$V_m = |V| \cos \alpha$$

لکھا جا سکتا ہے۔ نتیجتا 🕻 کے اکائی مماسی سمتیہ (حصہ 15.2)

$$\frac{\mathrm{d}z}{\mathrm{d}s} = \frac{\mathrm{d}x}{\mathrm{d}s} + i\frac{\mathrm{d}y}{\mathrm{d}s}$$

اور V کا اندرونی ضرب (حصہ 7.5) ہو گا جہال V کو V_m (7.5 سے ظاہر کیا جائے V_m اور V_m ds کا اندرونی ضرب کو ملک کیا جائے کا داس طرح

$$V_m ds = V \cdot dz = V_1 dx + V_2 dy \qquad (dz = dx + i dy)$$

کھا جا سکتا ہے۔(یہاں اچھی طرح سمجھ سمجھ لیں کہ یہ دو سمتیات کے مابین غیر سمتی ضرب ہے ناکہ مخلوط ضرب۔)

اب فرض کریں کہ C ایک بند منحنی ہے لینی سادہ تعلق دائرہ کار D کا سرحد۔ تب اگر ایبا دائرہ کار جس میں D اور C ثامل ہوں میں V کے استمراری جزوی تفرق پائے جاتے ہوں تب مسئلہ گرین (حصہ 11.4) کے تحت C یر دائری بہاد کو دوہرا تکمل

(20.5)
$$\int_{C} (V_1 dx + V_2 dy) = \iint_{D} \left(\frac{\partial V_2}{\partial x} - \frac{\partial V_1}{\partial y} \right) dx dy$$

کی صورت میں کھا جا سکتا ہے۔ دائیں ہاتھ کمل کے اندر تفاعل کا ایک سادہ طبعی مطلب ہے جس پر اب غور کرتے ہیں۔ فرض کریں کہ C ایک دائرہ ہے جس کا رداس r ہے۔ تب دائری بہاو کو $2\pi r$ سے تقسیم کرنے سے سیال کی C پر اوسط سمتی رفتار حاصل ہوگی جس کو r سے تقسیم کرتے ہوئے دائرے کی محور پر سیال کی زاویائی سمتی رفتار ω_0 حاصل ہوتی ہے۔

(20.6)
$$\omega_0 = \frac{1}{\pi r^2} \iint_D \frac{1}{2} \left(\frac{\mathrm{d}V_2}{\mathrm{d}x} - \frac{\mathrm{d}V_1}{\mathrm{d}y} \right) \mathrm{d}x \, \mathrm{d}y$$

circulation⁸

9اوسط قیمتوں کی تعریفیں درج ذیل ہیں۔

وقفہ $a \leq x \leq b$ کا وسط قیمت ہے۔ $a \leq x \leq b$ کا وسط قیمت ہے۔

ير f کی اوسط قبت ہے جہاں C کی کہائی $C=\frac{1}{l}\int_{C}f(s)\,\mathrm{d}s$

ين f کی اوسط قيت ہے جہال D کارتبہ $D=rac{1}{A}\iint\limits_{\Omega}f(x,y)\,\mathrm{d}x\,\mathrm{d}y$

دایاں ہاتھ قرص D جس کی سرحد C ہے پر درج ذیل تفاعل کی اوسط قیت 10 ہے۔

$$(20.7) \qquad \qquad \omega = \frac{1}{2} \left(\frac{\mathrm{d}V_2}{\mathrm{d}x} - \frac{\mathrm{d}V_1}{\mathrm{d}y} \right)$$

تفاعل ω گھومنا $r \to 0$ کہ اتا ہے جبکہ ω کو حرکت کی گردابیت ω بیں۔اگر ω ہو تب مساوات ω کی قیمت وے گی۔یوں اگر دائرہ ω کی مرکز پر ω کی قیمت وے گی۔یوں اگر دائرہ ω سکٹر کر نقطہ ω مانند رہ جائے تب سیال کے دائری گلڑے کی زاویائی سمتی رفتار کی تحدیدی قیمت ω ہوگی۔ہم کہہ سکتے ہیں کہ اگر سیال کا کروی گلرا یک دم ٹھوس صورت اختیار کرے اور ساتھ ہی باقی تمام سیال ہٹا دیا جائے تب اس کلائے کی زاویائی سمتی رفتار ω ہوگی (حصہ 10.11 دیکھیں)۔

ہم صرف نا گھومتے 13 سیال پر غور کرتے ہیں یعنی ایسا سیال جس کا س پورے خطہ D پر صفر کے برابر ہو،

$$\frac{\mathrm{d}V_2}{\mathrm{d}x} - \frac{\mathrm{d}V_1}{\mathrm{d}y} = 0$$

جہاں تفرق کی موجود گی اور استمرار فرض کی گئی ہے۔

ہم مزید فرض کرتے ہیں کہ سیال داب نا پذیر ہے۔تب ہر اس خطہ میں، جس میں نا کوئی منبع 14 (سوال 20.20) اور نا ہی کوئی گڑھا¹⁵ پایا جانا ہو یعنی جس میں سیال نا پیدا ہوتا ہو اور نا ہی غائب ہوتا ہو، مساوات 10.121 کے تحت

$$\frac{\mathrm{d}V_1}{\mathrm{d}x} + \frac{\mathrm{d}V_2}{\mathrm{d}y} = 0$$

_6 %

اگر D سادہ تعلق خطہ ہو اور بہاو نا گھومنے والی ہو تب مسکلہ 11.9 کے تحت خطی تکمل

(20.9)
$$\int_{C} (V_1 \, \mathrm{d}x + V_2 \, \mathrm{d}y)$$

10 اوسط کی تعریف کے لئے گزشتہ حاشیہ دیکھیں

rotation¹¹ vorticity¹²

 $irrotational^{13}$

source¹⁴

 $[\]rm sink^{15}$

20.2 دوبعه دی بهاوسیال 20.2

D میں راہ کا تابع نہیں ہو گا۔یوں D میں مقررہ نقطہ D سے D میں متغیر نقطہ D تک تکمل D حاصل کرنے سے نقطہ D کا تابع نقاعل مثلاً D مثلاً D حاصل ہو گا:

(20.10)
$$\Phi(x,y) = \int_{(a,b)}^{(x,y)} (V_1 \, dx + V_2 \, dy)$$

تفاعل $\Phi(x,y)$ کو حرکت کی سمتی رفتار مخفی قوہ 16 کہتے ہیں۔اب چونکہ درج بالا حکمل راہ کا تابع نہیں ہے لمذا $\Phi(x,y)$ تظعی تفرق (حصہ 11.12) ہو گا لینی بیہ تفاعل $\Phi(x,y)$ کا تفرق ہو گا:

(20.11)
$$V_1 dx + V_2 dy = \frac{\partial \Phi}{\partial x} dx + \frac{\partial \Phi}{\partial y} dy$$

بوں

(20.12)
$$V_1 = \frac{\partial \Phi}{\partial x}, \quad V_2 = \frac{\partial \Phi}{\partial y}$$

ہو گا لہذا سمتی رفتار سمتیہ تفاعل $\Phi(x,y)$ کی ڈھلوان (حصہ 10.8) ہو گا۔

(20.13)
$$V = V_1 + iV_2 = \frac{\partial \Phi}{\partial x} + i\frac{\partial \Phi}{\partial y}$$

منحنی مستقل $\Phi(x,y)=0$ کو ہم قوہ خط17 کہتے ہیں۔چونکہ Φ کی ڈھلوان V ہے لہذا ($V \neq 0$ کی صورت میں) ہر نقطہ پر V اور اس نقطہ سے گزرتا ہم قوہ خط آپس میں قائمہ الزاویہ ہوں گے۔

ماوات 20.12 کو مساوات 20.8 میں پر کرنے سے ہم دیکھتے ہیں کہ 🏻 🗗 مساوات لایلاس

$$\nabla^2 \Phi = \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} = 0$$

کو مطمئن کرتا ہے۔ فرض کریں کہ $\Phi(x,y)$ کا جوڑی دار ہار مونی نفاعل $\Psi(x,y)$ ہو، تب[(ماسواتے اس نقطہ پر جہال (مساوات 20.14 میں دیا گیا) F'(z)=0 ہو] ہر ایک نقطہ پر منحنیات

$$\Psi(x,y) = 0$$

velocity potential¹⁶ equipotential lines¹⁷

 $\Psi(x,y)=\Psi(x,y)=0$ اور ہم قوہ خطوط متنقل $\Phi(x,y)=0$ آپس میں قائمہ الزاویہ ہوں گی۔یوں منحنیات متنقل $\Psi(x,y)=\Psi(x,y)=0$ سیال کی سمت اور سیال کی سمتی رفتار کی سمت ایک جیسی ہوں گی۔ نتیجتاً منحنیات مستقل $\Psi(x,y)=0$ سیال کی سمت بہاو خط ہوں گے۔تفاعل مستقل $\Psi(x,y)=0$ کو بہاو کا تفاعل بہاو 18 کہتے ہیں۔

 $F(z) = \Phi(x,y) + i\Psi(x,y)$ اور Ψ رونوں کے استمراری دوہرا جزوی تفرق پائے جاتے ہیں۔تب مخلوط تفاعل $\Phi(z) = \Phi(x,y) + i\Psi(x,y)$

بہاو کے خطہ میں تحلیلی ہو گا۔اس تفاعل کو بہاو کی مخلوط مخفی قوہ Φ ہیں۔ Φ اور Ψ کے ساتھ علیحدہ علیحدہ کام کرنے سے مخلوط مخفی قوہ کے ساتھ کام کرنا زیادہ آسان ثابت ہوتا ہے۔

مساوات 20.14 کا تفرق لے کر اور مساوات کوشی ریمان استعال کرتے ہوئے بہاو کی سمتی رفتار حاصل کی جا سکتی ہے۔ بول

$$F'(z) = \frac{\partial \Phi}{\partial x} + i \frac{\partial \Psi}{\partial x} = \frac{\partial \Phi}{\partial x} - i \frac{\partial \Phi}{\partial y} = V_1 - i V_2$$

حاصل ہوتا ہے جس سے

(20.15)
$$V = V_1 + iV_2 = \overline{F'(z)}$$

لکھا جا سکتا ہے۔

اس طرح دو بعدی، نا گھومنے والی، داب نا پذیر سیال کی برقرار بہاو کو تحلیلی تفاعل کی صورت میں بیان کیا جا سکتا ہے اور مخلوط تجزیہ کے تراکیب، مثلاً محافظ زاویہ نقش، استعال کیے جا سکتے ہیں۔

چونکہ وہ سرحد جس کو بہاو پار نہ کر سکتا ہو بہاو ست ہو گا لہذا سرحدی شرائط مسائل میں بہاو ست تفاعل Ψ نہایت ہم ثابت ہوتا ہے۔زیر محافظ زاویہ نقش، بہاو ست کا تبادل سطح عکس میں بہاو ست پر ہو گا۔ پیچیدہ بہاو کے حصول اور ان پر غور کے لئے سادہ بہاو کا ممیل زیر استعال لایا جا سکتا ہے۔دو بہاو F_1 ، F_2 کا مجموعہ بہاو کا محبوعہ سے حاصل بہاو کا مخلوط مخفی قوہ ہو گا۔ چونکہ مساوات لاپلاس خطی اور متجانس ہے للذا دو ہارمونی تفاعل کا مجموعہ بھی ہارمونی ہو گا۔

stream function¹⁸ complex potential¹⁹

20.2 دوبعد ي بهاوسيال

دھیان رہے کہ اگرچہ برقی سکون میں دی گئی سر حدیں (موصل سطحیں) ہم قوہ خطوط ہوں گی، ماقوا حرکیات میں سے سر حدیں بہاو سمت ہوں گی اور ہم قوہ خطوط کے قائمہ الزاویہ ہوں گی۔

آئیں ایک عمومی مثال کو دیکھیں۔مزید مسائل سوالات میں پیش کیے گئے ہیں۔

مثال 20.6: کونے کیے ساتھ بہاو گلوط مُثْنی قوہ

(20.16) $F(z) = z^2 = x^2 - y^2 + i2xy$ الیی بہاو کو ظاہر کرتا ہے جس کے ہم قوہ خطوط درج ذیل قطع زائد $\Phi = x^2 - y^2 = \frac{1}{2}$

اور بهاو سمت درج ذیل قطع زائد

 $\Psi = 2xy = 0$

ہوں گی۔مساوات 20.15 سے درج ذیل سمتی رفتار سمتیہ حاصل ہوتا ہے۔

 $V = 2\overline{z} = 2(x - iy), \Longrightarrow V_1 = 2x, V_2 = -2y$

ر فبار (سمتیه کی مقدار) درج ذیل ہو گی۔

$$|V| = \sqrt{V_1^2 + V_2^2} = 2\sqrt{x^2 + y^2}$$

اس بہاو کو ایس ندی کی بہاو تصور کیا جا سکتا ہے جس کے اطراف کار تیسی محدد کے مثبت محور اور قطع زائد مثلاً xy = 1 ہو (شکل 20.6)۔ہم دیکھتے ہیں کہ کسی بہاو ست xy = 1 پر نقطہ y بر رفتار کم تر ہو گا۔ یہ وہ نقطہ ہے جہاں ندی کی عمودی تراش رقبہ زیادہ سے زیادہ ہو گا۔

سوالات

سوال 20.11: (متوازی بہاو) و کھائیں کہ F(z)=Kz (جہاں K مثبت حقیقی ہے) دائیں رخ کیساں بہاو تصور بہاو کو ظاہر کرتی ہے جس کو دو متوازی کیروں (تین بعدی فضا میں دو متوازی چادروں) کے در میان کیساں بہاو تصور کیا جا سکتا ہے (شکل 20.7)۔ سمتی رفتار سمتیے، بہاو سمت اور ہم قوہ خطوط تلاش کریں۔

شكل 20.6: كونے يربهاو

شكل20.7: يكسال متوازي بهاو

 $V = V_1 = K$, $Ky = \sqrt{M}$ متقل :جواب:

سوال 20.12: وکھائیں کہ کونے پر بہاو کو $F(z)=iz^2$ ظاہر کرتی ہے۔ بہاو سمت اور ہم قوہ خطوط تلاش کریں۔ کریں اور انہیں ترسیم کریں۔ سمتی رفتار سمتہ V تلاش کریں۔

سوال 20.13: مثال 20.6 کی بہاو محافظ نقش کی استعال سے سوال 20.11 سے حاصل کریں۔آپ کو ربع اول کا نقش بالائی نصف مستوی پر کرنا ہو گا۔

سوال 20.14: مخلوط مخفی قوہ $F(z)=z^3$ کے بہاو سمت اور ہم قوہ خطوط تلاش کریں۔انہیں ترسیم کریں۔سمتی رفتار سمتیہ V تلاش کریں اور وہ تمام نقطے دریافت کریں جہال یہ سمتیہ V تلاش کریں اور وہ تمام نقطے دریافت کریں جہال یہ سمتیہ V

سوال 20.15 تا سوال 20.19 میں دی گئ مخلوط مخفی قوہ F(z) پر غور کریں۔ ہم قوہ خطوط اور بہاو سمت کی ترسیم کینجیں۔ سمتی رفتار سمتیہ V تلاش کریں اور وہ تمام نقطے دریافت کریں جہاں سے سمتیہ V متوازی ہے۔

F=iz :20.15 سوال 20.15 جواب: منفی y محور کے رخ متوازی بہاو۔ V=-i

20.2 د وبعب دی بها و سیال 20.2

شكل 20.8: اشكال برائے سوال 20.20 اور سوال 20.21

$$k$$
 $F=-ikz$:20.16 سوال

$$F=(1+i)z$$
 :20.17 سوال $V=1-i$ کی رخ متوازی بیباوہ $y=-x$

$$F = z^2 + z$$
 :20.18 سوال

$$F=iz^3$$
 :20.19 عوال 19.19 $V_2=0$ ي $y=x$: $V=-6xy+3i(y^2-x^2)$ ي اور

سوال 20.20 منبع اور گڑھا مخلوط مخفی قوہ $\Gamma(z) = \frac{c}{2\pi} \ln z$ پر غور کریں جہاں C منبع اور گڑھا مخلوط مخفی قوہ C ہو گا جہاں C ہو گا جہاں C ہو گا جہاں C ہو گا جہاں ہو گا گرتی ہے دھا میں C ہو گا ہو گرتی ہو گا ہو گ

سوال 20.21: (لکیر گرداب) و کھائیں کہ $F(z) = -\frac{iK}{2\pi} \ln z$ جہاں کہ حقیق ہے، مبدا کے گرد کھڑی کی الٹ رخ بہاو کو ظاہر کرتی ہے (شکل 20.8-ب)۔ نقطہ z=0 گھڑی کی الٹ رخ بہاو کو ظاہر کرتی ہے (شکل 20.8-ب)۔ نقطہ z=0 گھری کی الٹ رخ نہاو کو ظاہر کرتی ہے جہال ہر مرتبہ بڑھنے کی مقدار K ہو گی۔

source²⁰ sink²¹

 $vortex^{22}$

شكل 20.27: اشكال برائے سوال 20.26 اور سوال 20.27

سوال 20.22: نقطہ z=-a پر اکائی زور کی منبع کے بہاو کا مخلوط مخفی قوہ تلاش کریں۔

سوال 20.23: و کھائیں کہ دو بہاو کے سمتی رفتار سمتیات کا سمتی مجموعہ حاصل کرنے سے ایسا بہاو حاصل ہو گا جس کا مخلوط مخفی قوہ ان بہاو کے مخلوط مخفی قوہ کو جمع کرنے سے حاصل ہوتا ہے۔

سوال 20.24: سوال 20.22 اور سوال 20.23 کے مخفی قوہ جمع کرتے ہوئے بہاو ست کی ترسیم کھیپنیں۔

سوال 20.25: $F(z) = \frac{1}{z}$ کے بہاو کی بہاو ست تلاش کریں۔دکھائیں کہ چھوٹ $F(z) = \frac{1}{z}$ سوال 20.24 کے بہاو ست موجودہ بہاو ست کی طرح ہیں۔

سوال 20.26: وکھائیں کہ $z=\cosh^{-1}z$ کے بہاو سمت، ہم ماسکہ قطع زائد ہوں گی جن کے ماسکہ $z=\pm 1$ بین اور بہاو کو شگاف سے گزرتی بہاو تصور کیا جا سکتا ہے (شکل 20.9-الف)۔

موال 20.28: (بیلن کمے گرد بہاو) $F(z)=z+z^{-1}$ پر غور کریں۔ $z=re^{i\theta}$ لیتے ہوئے دکھائیں کہ سمتی قوہ مستقل $g=re^{i\theta}$ بیں اور سمتی قوہ $g=re^{i\theta}$ اکائی دائرہ اور دکھائیں کہ سمتی قوہ مستقل $g=re^{i\theta}$ اکائی دائرہ اور کھائیں کہ سمتی قوہ مستقل ہے، اور بڑے $g=re^{i\theta}$ کے لئے بہاو تقریباً بیساں اور متوازی ہے جس کو اکائی رداس کے بیلن کے گرد بہاو تضور کیا جا سکتا ہے (شکل ??)۔ بہاو کا نقطہ گھراو تلاش کریں (جہاں سمتی رفتار صفر ہو گی)۔

شکل20.10: بیلن کے گرد بہاو(سوال 20.28)

جواب: نقطه
$$V=1-ar{z}^{-1}=0$$
 ي $z=1$ اور $z=1$ هو گار

سوال 20.29: (دائری بہاو کیے ساتھ بیلن کیے گرد بہاو) سوال 20.21 اور سوال 20.28 کے مخفی قوہ جمع کرتے ہوئے دکھائیں کہ بیلن کی سطح |z|=1 سمت بہاو ہے۔ سمتی رفتار تلاش کریں اور دکھائیں کہ نقطہ گھراو

$$z = \frac{iK}{4\pi} \sqrt{-\frac{K^2}{16\pi^2} + 1}$$

ییں جو K=0 کی صورت میں $Z=\mp 1$ دیتی ہے۔ K=0 بڑھانے سے دونوں نقطہ ٹھراو اکائی دائرہ پر اوپر رخ منتقل ہوں گے حتی کہ $K=4\pi$ پر دونوں Z=i پر آن ملیں گے۔اگر $K>4\pi$ کیا جائے تب ایک نقطہ ٹھراو خیالی محور پر بیلن کے باہر اور دوسرا خیالی محور پر بیلن کے اندر منتقل ہوتا ہے۔ بیلن کے اندر نقطہ ٹھراو کی کوئی طبعی معنی نہیں ہے۔(شکل ?? میں K=0 کے لئے نقطہ ٹھراو کو چھوٹے دائروں سے ظاہر کیا گیا ہے۔)

20.3 ہار مونی تفاعل کے عمومی خواص

اس حصہ میں ہارمونی تفاعل کی عمومی خواص کو مخلوط تحلیلی تفاعل کے نتائج سے حاصل کرنا دکھایا جائے گا۔

فرض کریں کہ سادہ تعلق دائرہ کار D میں تفاعل u(x,y) ہارمونی ہے۔ تب ہم کوشی ریمان کلیات کی مدد سے f(z)=u(x,y)+iv(x,y) کا جوڑی دار ہارمونی تفاعل v(x,y) تلاش کیا جا سکتا ہے۔ یوں u(x,y) کا جوڑی دار ہارمونی تفاعل v(x,y) تارہ کار v(x,y) میں تحلیلی ہو گا (حصہ 14.5 دیکھیں اور صفحہ 1121 پر حاشیہ دیکھیں۔)۔ یہ وہ تعلق ہے جس کو استعال دائرہ کار

کرتے ہوئے ہم تحلیلی تفاعل کے خواص سے ہار مونی تفاعل کے خواص اخذ کر سکتے ہیں۔چونکہ تحلیلی تفاعل کے ہر درجہ کے تفرق یائے جاتے ہیں للذا ہم درج زیل اخذ کر سکتے ہیں۔

مسّله 20.1: (جزوی تفرق)

ا ایبا تفاعل u(x,y) جو سادہ تعلق دائرہ کار D میں ہارمونی ہو کا D میں ہر درجہ کا جزوی تفرق پایا جائے گا۔

مزید اگر سادہ تعلق دائرہ کار D میں f(z) تحلیلی ہو تب کوشی کلیہ تکمل (مساوات 16.31) کے تحت

(20.17)
$$f(z_0) = \frac{1}{i2\pi} \int_C \frac{f(z)}{z - z_0} dz$$

ہو گا جہاں D میں C ایک سادہ بند راہ ہے اور نقطہ z_0 اس راہ کے اندر پایا جاتا ہے۔ C کو دائرہ

$$z = z_0 + re^{i\phi}$$

میں D ہے، D اور ردای r ہے، D میں

$$z - z_0 = re^{i\phi}$$
, $dz = ire^{i\phi} d\phi$

لکھا جا سکتا ہے اور یوں مساوات ?? درج ذیل صورت اختیار کرتی ہے۔

(20.18)
$$f(z_0) = \frac{1}{2\pi} \int_{0}^{2\pi} f(z_0 + re^{i\phi}) d\phi$$

دایاں ہاتھ دائرہ f کی اوسط قیت ہے (یعنی کمل کی قیت تقسیم راہ کی لمبائی)۔اس سے درج ذیل ثابت ہوتا ہے۔

مسکہ 20.2: تحلیلی تفاعل کی اوسط قیمت فرض کریں کہ سادہ تعلق دائرہ کار D میں f(z) کی قیمت D میں کہ سادہ تعلق دائرہ کار D میں D میں خلیل ہے۔تب D میں نقطہ D کی قیمت Dمیں ایسے کسی بھی دائرے پر f(z) کی اوسط قبت ہو گی جس کا مرکز z_0 ہو۔

تحلیلی تفاعل کی ایک اہم خاصیت درج ذیل ہے۔

شكل20.11: ثبوت مسئله??

مسكه 20.3: تحليلي تفاعل كي زياده سر زياده معياركا مسئلم

فرض کریں کہ D محدود خطہ ہے اور D میں اور D کی سرحد پر f(z) تحلیلی اور غیر مستقل تفاعل ہے۔ تب |f(z)| کی زیادہ قیمت D کے اندر کسی بھی نقطہ پر نہیں ہو گی۔ نتیجتاً |f(z)| کی زیادہ سے زیادہ قیمت D کی سرحد پر ہو گی۔ اگر D میں D میں D تب یہی پچھ D کی سرحد پر ہو گی۔ اگر D میں D میں D تب کہ جبی درست ہو گا۔

$$\begin{aligned} M &= \left| f(z_0) \right| \le \frac{1}{2\pi} \left| \int_{C_1} \frac{f(z)}{z - z_0} \, \mathrm{d}z \right| + \frac{1}{2\pi} \left| \int_{C_2} \frac{f(z)}{z - z_0} \, \mathrm{d}z \right| \\ &\le \frac{1}{2\pi} (M - \epsilon) \frac{1}{r} l_1 + \frac{1}{2\pi} M \frac{1}{r} (2\pi r - l_1) = M - \frac{\epsilon l_1}{2\pi r} < M \end{aligned}$$

حاصل ہو گا جس کے تحت M < M ہے جو تضاد ہے۔ یوں ہمارا مفروضہ درست نہیں تھا للذا مسکلہ کا پہلا فقرہ ثابت ہوتا ہے۔

اب مسکلے کا آخری فقرہ ثابت کرتے ہیں۔ اگر D میں $f(z) \neq 0$ ہو تب D میں $\frac{1}{f(z)}$ تحلیلی ہو گا۔ جو فقرہ ہم ثابت کر چکے ہیں اس کے تحت D کی سرحد پر $\frac{1}{|f(z)|}$ پایا جائے گا۔ اب $\frac{1}{|f(z)|}$ کی زیادہ سے زیادہ قیمت سے مراد |f(z)| کی کم سے کم قیمت ہے۔ یوں ثبوت مکمل ہوتا ہے۔

П

ان مسکوں سے اب ہم ہارمونی تفاعل کے مطابقتی نتائج حاصل کرتے ہیں۔

مسكله 20.4: (بارموني تفاعل)

u(x,y) ایک سادہ تعلق محدود دائرہ کار ہے جس کی سرحدی منحنی D ہے۔ اگر تفاعل u(x,y) ایسے دائرہ کار میں ہارمونی ہو جس میں D اور D پائے جاتے ہوں تب u(x,y) کے درج ذیل خواص ہوں گ۔ (الف) D میں نقطہ u(x,y) پر u(x,y) کی قیمت، D میں ایسے کسی بھی دائرہ پر u(x,y) کی اوسط قیمت کے برابر ہوگی جس کا مرکز u(x,y) ہو۔

u(x,y) ی رائری قرص پر (x_0,y_0) ی قیت، u(x,y) ی و رائری قرص پر u(x,y) کی اوسط قیمت کے برابر ہو گی جس کا مرکز $u(x,y_0)$ ہو۔ $u(x,y_0)$ ناکوئی u(x,y) اصول زیادہ سے زیادہ قیمت u(x,y) گی ناکوئی u(x,y) کی ناکوئی

(پ) اصول زیادہ سے زیادہ قیمت u(x,y) اصول زیادہ سے زیادہ قیمت u(x,y) اگر u(x,y) غیر مستقل ہو تب u(x,y) کی ناکوئی ناکوئی کم سے کم قیمت پائی جائے گی۔ نتیجتاً u(x,y) کی زیادہ سے زیادہ قیمت اور کم سے کم قیمت کی۔ سے کم قیمت u(x,y) کی سرحد پر پائی جائیں گی۔

رت u(x,y) پر u(x,y) مستقل ہو گا۔ u(x,y) مستقل ہو گا۔

h(x,y) = u(x,y) پر h(x,y) بارمونی ہو اور اگر C پر h(x,y) ہو تب h(x,y) = u(x,y) ہو تب u(x,y) = u(x,y) ہو گا۔

ثبوت: مساوات ؟؟ كے دونوں اطراف حقیقی حصہ لے كر

$$u(x_0, y_0) = f(x_0, y_0)$$
 عَنْ $u(x_0, y_0) = \frac{1}{2\pi} \int_{0}^{2\pi} u(x_0 + r\cos\phi, y_0 + r\sin\phi) d\phi$

 r_0 ت 0 تا 0 تا r کہالا فقرہ ثابت ہوتا ہے۔ ہم درج بالا کے دونوں اطراف کو r سے ضرب دے کر، r کہ ساتھ r تا r کہل حاصل کرتے ہیں جہال r میں دائری قرص جس کا مرکز r کا رداس r ہاتھ r کہ باتھ r کا رداس r کہ باتھ وگا۔ اس طرح r کے برابر حاصل ہو گا۔ اس طرح

$$u(x_0, y_0) = \frac{1}{\pi r_0^2} \int_0^{r_0} \int_0^{2\pi} u(x_0 + r\cos\phi, y_0 + r\sin\phi) r \,d\phi \,dr$$

حاصل ہوتا ہے جو دوسرے فقرے کا ثبوت ہے۔

بھی ہار مونی ہو گا۔اس کی مطلق قیمت

 $|F(z)| = e^{f(z)\ddot{z}} = e^{u(x,y)}$

ہوگی۔مسکلہ ?? کے تحت، |F(z)| کی زیادہ سے زیادہ قیمت D کے اندر نہیں پائی جائے گی۔چونکہ u حقیقی متغیرہ u کا یک سر بڑھتا تفاعل ہے للذا فقرہ-پ میں u کی زیادہ سے زیادہ قیمت کی بات اخذ ہوتی ہے جس میں u کی جگ u کی کم سے کم قیمت کی بات بھی ثابت ہوتی ہے۔ u کی کم سے کم قیمت کی بات بھی ثابت ہوتی ہے۔

اگر u مستقل ہو مثلاً u=k تب نقرہ-پ کے تحت u کی زیادہ سے زیادہ قیمت اور کم سے کم قیمت برابر ہوں گے جس سے فقرہ-ت اخذ ہوتا ہے۔

П

مسکلہ ?? کا آخری فقرہ انتہائی اہم ہے۔اس کے تحت D کی سرحد پر ہارمونی تفاعل کی قیمت سے D کے اندر u(x,y) ہارمونی تفاعل کیتا طور پر تعین ہوتا ہے۔ عموماً D میں u(x,y) کا ہارمونی ہونا اور D کی سرحد پر D کی سرحدی قیمتوں سے کا استمراری D ہونا ضروری ہو گا۔ایسی صورت میں بھی مسکلہ P کا فقرہ پ کارآمہ ہو گا۔دی گئی سرحدی قیمتوں سے D فقرہ پ کارآمہ ہو گا۔دی گئی سرحدی قیمتوں سے D کی قیمتیں تعین کرنے کو دو بعدی متغیرات کی مساوات لاپلاس کا معمہ ڈرشلے D کہتے ہیں۔ مسکلہ D سے درج ذیل اخذ ہوتا ہے۔

مِسُله 20.5: معمه ڈرشلے

ا گر دیے گئے خطہ اور دیے گئے سرحد پر دو متغیرات کی مساوات لاپلاس کے معمہ ڈرشلے کا عل موجود ہو تب ہیہ حل کیتا ہو گا۔

 $[\]lim_{\substack{x o x_0 \ y o y_0}} u(x,y) = u(x_0,y_0)$ بوتب (x,y) بوتب (x,y) اور (x_0,y_0) اور (x_0,y_0) بوتب (x_0,y_0)

 $^{{\}rm Dirichlet\ problem^{24}}$

سوالات

سوال 20.30: تفاعل $f(z)=(z+2)^2,\ z_0=1$ کے لئے مسکلہ $f(z)=(z+2)^2,\ z_0=1$ کا رواس 1 اور مرکز $z_0=z_0$

?? اور متطیل $f(z)=z^2$ تفاعل $z^2=z^2$ اور متطیل $z^2=z^2$ تفاعل کی تفدیق کریں۔

سوال 20.32: تفاعل $f(z)=e^z$ اور کسی مجھی محدود دائرہ کار میں مسئلہ $f(z)=e^z$ کی تصدیق کریں۔اشارہ۔ $|e^z|=e^x$

مسالہ ?? عوال 20.33: تفاعل $f(x) = \cos x$ کی زیادہ سے زیادہ قیمت $f(z) = \cos z$ کی زیادہ سے زیادہ قیمت کے تحت استعمال کرتے ہوئے دکھائیں کہ مقیاس سطح $f(z) = \cos z$ (حصہ 14.9) کی زیادہ سے زیادہ قیمت z = 0 پر نہیں ہو سکتی ہے۔

|f(z)|=(1,1) سادہ تعلق دائرہ کار |f(z)|=(1,1) غیر مستقل اور تحلیلی تفاعل ہے اور بند منحن |f(z)|=(1,1) ال دائرے کے اندر کسی نقطہ |f(z)|=(1,1) ال دائرے کے اندر کسی نقطہ پر ہو گا۔مثال پیش کریں۔

20.4 يوسون كليه تكمل

دائری قرص کے لئے معمہ ڈرشلے کو کلیہ پوسوں کی مدد سے حل کیا جا سکتا ہے جو ہارمونی تفاعل کو قرص کی سرحدی دائرے پر تفاعل کی قیمتوں کی صورت میں پیش کرتا ہے۔ہم کوشی کلیہ تکمل

(20.19)
$$f(z) = \frac{1}{i2\pi} \int_C \frac{f(z^*)}{z^* - z} dz^*$$

کی مدد سے اس کلیہ کو اخذ کرتے ہیں جہال دائرہ C کو

$$z^* = Re^{i\phi} \qquad (0 \le \phi \le 2\pi)$$

20.4 پوسوں کلیے تکمل 20.4

اور تفاعل کو

$$f(z) = u(r,\theta) + iv(r,\theta)$$
 $(z = re^{i\theta})$

روپ میں لکھا جائے گا۔ ہم فرض کرتے ہیں کہ تفاعل اس سادہ تعلق خطہ میں تحلیلی ہے جس کی اندرون میں C

يونكه $dz^* = iRe^{i\phi} d\phi = iz^* d\phi$ يے للذا مساوات ?? كو

(20.20)
$$f(z) = \frac{1}{2\pi} \int_{0}^{2\pi} f(z^*) \frac{z^*}{z^* - z} d\phi (z^* = Re^{i\phi}, z = re^{i\theta})$$

کھا جا سکتا ہے۔ اس کے برعکس اگر ہم Z کے باہر کسی نقطہ Z ، مثلاً $\frac{z^*\bar{z}^*}{\bar{z}}$ Z ہو گا لہذا تکمل صفر کے $|z| \leq R$ ہیں تحلیلی ہو گا لہذا تکمل صفر کے برابر ہو گا۔

$$0=rac{1}{i2\pi}\int\limits_{C}rac{f(z^{*})}{z^{*}-Z}\,\mathrm{d}z^{*}=rac{1}{2\pi}\int\limits_{0}^{2\pi}f(z^{*})rac{z^{*}}{z^{*}-Z}\,\mathrm{d}\phi$$
 اس میں $Z=rac{z^{*}ar{z}^{*}}{z}$ پر کرتے ہوئے کسر کی سادہ صورت اختیار کرنے سے $Z=rac{z^{*}ar{z}^{*}}{ar{z}}$ فرید $Z=rac{z^{*}ar{z}^{*}}{ar{z}}$ مادہ صورت اختیار کرنے سے $0=rac{1}{2\pi}\int\limits_{0}^{2\pi}f(z^{*})rac{ar{z}}{ar{z}-ar{z}^{*}}\,\mathrm{d}\phi$

حاصل ہو گا۔اس کو مساوات ?? سے منفی کر کے درج ذیل

(20.21)
$$\frac{z^*}{z^* - z} - \frac{\bar{z}}{\bar{z} - \bar{z}^*} = \frac{z^* \bar{z}^* - z\bar{z}}{(z^* - z)(\bar{z}^* - \bar{z})}$$

استعال کرتے ہوئے

(20.22)
$$f(z) = \frac{1}{2\pi} \int_{0}^{2\pi} f(z^*) \frac{z^* \bar{z}^* - z\bar{z}}{(z^* - z)(\bar{z}^* - \bar{z})} d\phi$$

حاصل ہو گا۔ z^* اور z^* کی قطبی روپ سے ہم دیکھتے ہیں کہ متکمل میں حاصل تقسیم درج ذیل کے برابر ہے۔

$$\frac{R^2 - r^2}{(Re^{i\phi} - re^{i\theta})(Re^{-i\phi} - re^{-i\theta})} = \frac{R^2 - r^2}{R^2 - 2Rr\cos(\theta - \phi) + r^2}$$

تتیجتاً مساوات ?? کے دونوں اطراف حقیقی حصہ لیتے ہوئے پوسوں کلیہ تکمل²⁵

(20.23)
$$u(r,\theta) = \frac{1}{2\pi} \int_{0}^{2\pi} u(R,\phi) \frac{R^2 - r^2}{R^2 - 2Rr\cos(\theta - \phi) + r^2} d\phi$$

 $u(R,\phi)$ کی تفاعل کی قیمت از کا جو قرص $|z| \leq R$ کی سرحدی دائرے پر ہار مونی تفاعل کی قیمت اندر ہار مونی تفاعل سے کو ظاہر کرتا ہے۔

 $u(r,\theta)$ کی جگر ایبا تفاعل استعال کیا جا سکتا ہے جو وقفہ کمل پر محض کلڑوں میں $u(r,\theta)$ کی جگر مساوات z کی کھل قرص |z| < R میں بار مونی اور دائرہ |z| = R پر استمراری تفاعل $u(r,\theta)$ کو ظاہر کرے گا۔ اس دائرے پر تفاعل $u(R,\phi)$ کے برابر ہو گا ماسوائے ان نقطوں پر جہاں $u(R,\phi)$ غیر استمراری ہو۔اس کا ثبوت اس کتاب میں بیش نہیں کیا جائے گا۔

مساوات ?? سے ہم u کی ایک اہم تسلسل حاصل کر سکتے ہیں جس کے اجزاء ہار مونی تفاعل ہوں گے۔مساوات ?? کے متکمل کو مساوات ?? سے حاصل کیا گیا ہے جس کا دایاں ہاتھ $\frac{z^*+z}{z^*-z}$ کا حقیقی حصہ ہے۔ہندسی تسلسل سے

(20.24)
$$\frac{z^* + z}{z^* - z} = \frac{1 + \frac{z}{z^*}}{1 - \frac{z}{z^*}} = \left(1 + \frac{z}{z^*}\right) \sum_{n=0}^{\infty} \left(\frac{z}{z^*}\right)^n = 1 + 2 \sum_{n=1}^{\infty} \left(\frac{z}{z^*}\right)^n$$

کو بین لیذا $z^*=Re^{i\phi}$ اور $z^*=Re^{i\phi}$ بین لیذا $z=re^{i heta}$

(20.25)
$$\left(\frac{z}{z^*}\right)^n \ddot{\mathcal{Z}} = \left[\frac{r^n}{R^n} e^{in\theta} e^{-in\phi}\right] \ddot{\mathcal{Z}} = \left(\frac{r}{R}\right)^n \cos(n\theta - n\phi)$$

$$= \left(\frac{r}{R}\right)^n (\cos n\theta \cos n\phi + \sin n\theta \sin n\phi)$$

ہو گا۔مساوات ?? اور مساوات ?? سے

$$\frac{z^* + z}{z^* - z}$$
 عنتی $z^* = 1 + 2\sum_{n=1}^{\infty} \frac{r^n}{R^n} (\cos n\theta \cos n\phi + \sin n\theta \sin n\phi)$

ملتا ہے جو، جیسا ہم پہلے ذکر کر چکے ہیں، مساوات ?? میں متکمل کے حاصل تقسیم کے برابر ہے۔ اس تسلسل کو مساوات ؟? میں پر کرتے ہوئے

(20.26)
$$u(r,\theta) = a_0 + \sum_{n=1}^{\infty} \left(\frac{r}{R}\right)^n (a_n \cos n\theta + b_n \sin n\theta)$$

Poisson's integral formula²⁵

20.4 يوسوں كائے تىمل 20.4

حاصل ہو گا جس کے عددی سر

(20.27)
$$a_{0} = \frac{1}{2\pi} \int_{0}^{2\pi} u(R,\phi) d\phi, \quad a_{n} = \frac{1}{\pi} \int_{0}^{2\pi} u(R,\phi) \cos n\phi d\phi,$$
$$b_{n} = \frac{1}{\pi} \int_{0}^{2\pi} u(R,\phi) \sin n\phi d\phi, \qquad n = 1, 2, \cdots$$

ہوں گے جو $u(R,\phi)$ کے جانے بیچانے فور بیڑ عددی سر ہیں۔ آپ دیکھ سکتے ہیں کہ $u(R,\phi)$ کی صورت میں مساوات ?? تفاعل $u(R,\phi)$ کا فور بیڑ تسلسل ہو گا لہذا جب بھی $u(R,\phi)$ کا فور بیڑ تسلسل کی روپ میں ظاہر کرنا ممکن ہو، مساوات ?? کی روپ درست ہو گی۔

مثال 20.7: اکائی قرص کے لئے معمہ ڈرشلے $u(r,\theta)$ نال $u(r,\theta)$ تلاش کریں (شکل r < 1)۔

$$u(1,\phi) = \begin{cases} -\frac{\phi}{\pi} & -\pi < \phi < 0\\ \frac{\phi}{\pi} & 0 < \phi < \pi \end{cases}$$

اور $a_0=rac{1}{2}$ جفت ہے لہذا $b_n=0$ ہو گا۔مساوات $a_0=rac{1}{2}$ اور $u(1,\phi)$

$$a_n = \frac{1}{\pi} \left[- \int_{-\pi}^{0} \frac{\phi}{\pi} \cos n\phi \, d\phi + \int_{0}^{\pi} \frac{\phi}{\pi} \cos n\phi \, d\phi \right] = \frac{2}{n^2 \pi^2} (\cos n\pi - 1)$$

 $a_n = -rac{4}{n^2\pi^2}$ ما صل ہوں گے۔ یوں جفت $a_n = 0$ کی صورت میں مصورت میں موں گے۔ یوں مخفی قوہ درج ذیل ہو گی۔

$$u(r,\theta) = \frac{1}{2} - \frac{4}{\pi^2} [r\cos\theta + \frac{r^3}{3^2}\cos 3\theta + \frac{r^5}{5^2}\cos 5\theta + \cdots]$$

شكل 20.12: سرحدى مخفى قوه (مثال??)

سوالات

سوال 20.35: مساوات ?? كى تصديق كرير_

سوال 20.36: وکھائیں کہ مساوات ?? کا ہر جزو قرص $r^2 < R^2$ میں ہار مونی تفاعل ہے۔

مساوات ?? استعال کرتے ہوئے سوال ?? تا سوال ?? میں اکائی قرص r < 1 میں مخفی قوہ $u(r,\theta)$ تا تا $u(r,\theta)$ کریں۔ قرص کی سرحد پر مخفی قوہ $u(1,\theta)$ ہے۔ تسلسل کے چند ابتدائی اجزاء کے مجموعہ سے u کی قیمت حاصل کرتے ہوئے ہم قوہ خطوط کا ترسیم کھیجیں۔

 $u(1,\theta) = \sin \theta$:20.37 سوال $u = r \sin \theta$:جواب

 $u(1,\theta) = 1 - \cos\theta$:20.38 عوال $u = 1 - r\cos\theta$

 $u(1,\theta) = \sin 3\theta$:20.39 عوال $u = r^3 \sin 3\theta$:جواب:

 $u(1,\theta) = \cos 2\theta - \cos 4\theta$:20.40 عوال $u = r^2 \cos 2\theta - r^4 \cos 4\theta$:جواب:

 $u(1,\theta) = 4\sin^3\theta$:20.41 سوال $3r\sin\theta - r^3\sin3\theta$:جواب: 20.4 يوسوں كلي تحمل 20.4

 $u(1,\theta)=\theta$:20.42 سوال $\pi-2r\sin\theta-r^2\sin2\theta-rac{2r^3}{3}\sin3\theta-rac{r^4}{2}\sin4\theta-\cdots$ بواب:

 $u(1,\theta)=0$ پ $u(1,\theta)=1$ پ $0<\theta<\pi$:20.43 پول $u(1,\theta)=1$ پ $0<\theta<\pi$:20.43 پول $\frac{1}{2}+\frac{2}{\pi}(r\sin\theta+\frac{r^3}{3}\sin3\theta+\frac{r^5}{5}\sin5\theta+\cdots)$:جواب:

 $u(1,\theta)=$ پ $\frac{\pi}{2}<\theta<\frac{3\pi}{2}$ پ $\frac{\pi}{2}<\theta<\frac{3\pi}{2}$ پ $\frac{\pi}{2}<\theta<\frac{3\pi}{2}$ ي $\frac{\pi}{2}<\theta<\frac{\pi}{2}$ $\frac{\pi}{2}<\theta<\frac{\pi}{2}$ $\frac{\pi}{2}<\theta<\frac{\pi}{2}$ $\frac{\pi}{2}<\theta<\frac{\pi}{2}$ $\frac{\pi}{2}<\theta<\frac{\pi}{2}$ $\frac{\pi}{2}$ $\frac{$

 $u(1,\theta)=-1$ پ $\frac{\pi}{2}<\theta<\pi$ ہے۔ $u(1,\theta)=1$ پ $0<\theta<\frac{\pi}{2}$:20.46 عوال جب باتی تمام θ پ θ پ θ پ θ ہیں باتی تمام θ پ θ ہیں باتی تمام θ پ θ ہیں باتی تمام θ ہواب: $\frac{2}{\pi}(r\cos\theta+r^2\sin2\theta-\frac{r^3}{3}\cos3\theta+\frac{r^5}{5}\cos5\theta\cdots)$:جواب

سوال 20.47: مساوات 18.42 استعال کرتے ہوئے دکھائیں کہ سوال ؟? کے نتیجہ کو درج ذیل کھا جا سکتا ہے۔

$$u(r,\theta) = \frac{1}{\pi} \operatorname{Ln} \frac{(1+iz)(1+z^2)}{(1-iz)(1-z^2)}$$
نيا

 $u(r, \theta) = 2 \ln(1+z)$ سوال $u(r, \theta) = 2 \ln(1+z)$ کی مخفی قوہ کو خیالی

سوال 20.49: مساوات ?? استعال کرتے ہوئے دکھائیں کہ اکائی قرص r < 1 ، جس کا سرحدی مخفی قوہ

$$u(1,\theta) = \begin{cases} -1 & -\pi < \theta < 0 \\ 1 & 0 < \theta < \pi \end{cases}$$

 $u(r, \theta)$ درج ذیل ہو گا۔ $u(r, \theta)$

$$u(r,\theta) = \frac{4}{\pi} (r \sin \theta + \frac{r^3}{3} \sin 3\theta + \frac{r^5}{5} \sin 5\theta + \cdots)$$

شكل 20.13: شكل برائے سوال??

اس تسلسل کے چند ابتدائی اجزاء استعال کرتے ہوئے u کی قیمتیں حاصل کر کے چند ہم قوہ خطوط ترسیم کریں۔ قوت کی لکیروں (قائمہ الزاویہ خطوط) کو ترسیم کر کے ان کا شکل ?? کے ساتھ موازنہ کریں۔

سوال 20.50: مساوات 18.42 استعال کرتے ہوئے دکھائیں کہ سوال ?? کے نتیجہ کو درج ذیل لکھا جا سکتا ہے۔

$$u(r,\theta) = \frac{2}{\pi} \operatorname{Ln} \frac{1+z}{1-z}$$
 دیان $u(r,\theta) = \frac{2}{\pi} \left(\frac{1+z}{1-z} - \frac{1-z}{1-z} \right)$

سوال 20.51: جیومیٹری کے ایک بنیادی مسئلے کو سوال ?? کے نتیجے پر لاگو کرتے ہوئے دکھائیں کہ سوال ?? میں مستقل u=0 دائری قوس ہیں۔

-1 < u < 1 عین درج ذیل ہار مونی ہے اور وقفہ v > 0 میں درج ذیل ہار مونی ہے اور وقفہ v > 0 سوال 20.52 در پر اس کی قیت v > 0 کور پر اس کی قیت v > 0 کی تیت v > 0

$$H = 1 + \frac{2}{\pi} \operatorname{Ln} \frac{w+1}{w-1}$$
 ($w = u + iv$)

 $w_3=1$ ، $w_2=0$ ، $w_1=-1$ کو بالترتیب $w_3=1$ ، $w_2=0$ ، $w_1=-1$ کو بالترتیب $v_3=1$ ، $v_3=1$ ، v

$$z = \frac{w - i}{-iw + 1}$$

20.4. پوسوں کلیے تکمل 20.4

ہے۔اس کا الٹ تبادل w=w(z) تلاش کرتے ہوئے سوال ?? میں دیے گئے w=w(z) میں پر کرتے ہوئے وکھائیں کہ حاصل ہارمونی تفاعل سوال ?? کا ہارمونی تفاعل ہے۔

سوال 20.54: مسئلہ ?? کو پوسوں کلیہ تکمل مساوات ?? سے اخذ کریں۔

اضافی ثبوت

صفحہ 139 پر مسکلہ 2.2 بیان کیا گیا جس کا ثبوت یہاں پیش کرتے ہیں۔

$$(0.1) y'' + p(x)y' + q(x)y = 0, y(x_0) = K_0, y'(x_0) = K_1$$

کے دو عدد حل $y_1(x)$ اور $y_2(x)$ یائے جاتے ہیں۔ہم ثابت کرتے ہیں کہ $y_1(x)$

$$y(x) = y_1(x) - y_2(x)$$

کمل صفر کے برابر ہے۔ یوں $y_1(x) \equiv y_2(x)$ ہو گا جو کیتائی کا ثبوت ہے۔

یو نکہ مساوات ?? خطی اور متجانس ہے للذا y(x) پر y(x) جمی اس کا حل ہو گا اور چونکہ y_1 اور وونوں یکسال ابتدائی معلومات پر پورا اترتے ہیں للذا الله ورج ذیل ابتدائی معلومات پر پورا اترے گا۔

$$(0.2) y(x_0) = 0, y'(x_0) = 0$$

ہم تفاعل

$$(1.3) z = y^2 + y'^2$$

انسانی ثبوت ضمیب المنافی ثبوت

اور اس کے تفرق

$$(1.4) z' = 2yy' + 2y'y''$$

یر غور کرتے ہیں۔ تفرقی مساوات ?? کو

$$y'' = -py' - qy$$

لکھتے ہوئے اس کو 'z' میں پر کرتے ہیں۔

$$(1.5) z' = 2yy' + 2y'(-py' - qy) = 2yy' - 2py'^2 - 2qyy'$$

اب چونکه y اور y حقیقی تفاعل میں للذا ہم

$$(y \mp y')^2 = y^2 \mp 2yy' + y'^2 \ge 0$$

لعيني

(1.7)
$$(1.7) 2yy' \le y^2 + y'^2 = z, -2yy' \le y^2 + y'^2 = z,$$

لکھ سکتے ہیں جہاں مساوات ?? کا استعال کیا گیا ہے۔مساوات ??-ب کو $z-z=yy'\geq 0$ کھتے ہوئے مساوات ?? کے دونوں حصوں کو z=z=0 کھا جا سکتا ہے۔یوں مساوات ?? کے آخری جزو کے لئے

$$-2qyy' \le \left| -2qyy' \right| = \left| q \right| \left| 2yy' \right| \le \left| q \right| z$$

کھا جا سکتا ہے۔اس منتیج کے ساتھ ساتھ $|p| \le p$ استعال کرتے ہوئے اور مساوات ??-الف کو مساوات ?? 2yy' کے 2yy'

$$z' \le z + 2|p|y'^2 + |q|z$$

ماتا ہے۔اب چونکہ $y'^2 \leq y^2 + y'^2 = z$ ہنتا ہے۔اب

$$z' \le (1+|p|+|q|)z$$

ملتا ہے۔ اس میں 1 + |q| + |p| = h کھتے ہوئے

$$(1.8) z' \le hz x \checkmark \checkmark I$$

عاصل ہوتا ہے۔اس طرح مساوات ?? اور مساوات ?? سے درج ذیل بھی عاصل ہوتا ہے۔

(i.9)
$$-z' = -2yy' + 2py'^2 + 2qyy'$$
$$\leq z + 2|p|z + |q|z = hz$$

مساوات ؟? اور مساوات ؟? کے غیر مساوات درج ذیل غیر مساوات کے متر ادف ہیں
$$z'-hz \leq 0, \quad z'+hz \geq 0$$

جن کے بائیں ہاتھ کے جزو تکمل درج ذیل ہیں۔

 $F_1 = e^{-\int h(x) dx}, \qquad F_2 = e^{\int h(x) dx}$

چونکہ h(x) استمراری ہے لہذا اس کا تکمل پایا جاتا ہے۔ چونکہ F_1 اور F_2 مثبت ہیں لہذا انہیں مساوات ?? کے ساتھ ضرب کرنے ہے

 $(z'-hz)F_1 = (zF_1)' \le 0, \quad (z'+hz)F_2 = (zF_2)' \ge 0$

حاصل ہوتا ہے۔اس کا مطلب ہے کہ I پر zF_1 بڑھ نہیں رہا اور zF_2 گھٹ نہیں رہا۔ مساوات Y تحت میں $x \leq x_0$ کی صورت میں $x \leq x_0$ کی صورت میں

$$(.11) zF_1 \ge (zF_1)_{x_0} = 0, zF_2 \le (zF_2)_{x_0}$$

ہو گا اور اسی طرح $x \geq x_0$ کی صورت میں

$$(0.12) zF_1 \leq 0, zF_2 \geq 0$$

ہو گا۔اب انہیں مثبت قیتوں F₁ اور F₂ سے تقسیم کرتے ہوئے

$$(0.13)$$
 $z \le 0$, $z \ge 0$ $z \ge 0$ $z \le 1$

 $y_1 \equiv y_2$ کی $y \equiv 0$ پ $y \equiv 0$ ہاتا ہے جس کا مطلب ہے کہ $y \equiv 0$ پ $z = y^2 + y'^2 \equiv 0$ پر $y \equiv 0$ ماتا ہے جس کا مطلب ہے کہ $y \equiv 0$ باتا ہے جس کا مطلب ہے کہ $y \equiv 0$ باتا ہے جس کا مطلب ہے کہ ایک مطلب

1376 منيم_الانت في ثبوت

صميمه ب مفيد معلومات

1.ب اعلی تفاعل کے مساوات

(شکل ??-الف e^x قوت نمائی تفاعل e^x

e = 2.718281828459045235360287471353

(4.1)
$$e^x e^y = e^{x+y}, \quad \frac{e^x}{e^y} = e^{x-y}, \quad (e^x)^y = e^{xy}$$

قدرتی لوگارهم (شکل ??-ب)

(....)
$$\ln(xy) = \ln x + \ln y, \quad \ln \frac{x}{y} = \ln x - \ln y, \quad \ln(x^a) = a \ln x$$

$$-\ln x = e^{\ln \frac{1}{x}} = \frac{1}{x} \quad \text{if } e^{\ln x} = x \quad \text{if } e^{\ln x} = x$$

 $\log x$ اساس دس کا لوگارهم $\log_{10} x$ اساس دس کا لوگارهم

(....3) $\log x = M \ln x$, $M = \log e = 0.434294481903251827651128918917$

$$(-.4) \quad \ln x = \frac{1}{M} \log x, \quad \frac{1}{M} = 2.302585092994045684017991454684$$

شكل 1. ب: قوت نمائي تفاعل اور قدرتي لو گار تهم تفاعل

شكل2.ب:سائن نما تفاعل

ال کے علاوہ $x=10^{\log x}=10^{\log x}=1$ اور $x=10^{\log x}=10^{\log x}=1$ بیں۔ $\log x$

سائن اور کوسائن تفاعل (شکل ??-الف اور ب)۔ احسائے کملات میں زاویہ کو ریڈئیں میں ناپا جاتا ہے۔ یوں $\sin x$ اور $\cos x$ کا دور کی عرصہ $\sin x$ ہوگا۔ $\sin x$ طاق ہے لیخی $\sin x$ دور کی عرصہ $\cos x$ ہوگا۔ $\cos x$ منت ہے لیخی $\cos x$ جفت ہے لیخی $\cos x$

 $1^{\circ} = 0.017453292519943 \text{ rad}$ $1 \text{ radian} = 57^{\circ} 17' 44.80625'' = 57.2957795131^{\circ}$ $\sin^2 x + \cos^2 x = 1$

$$\sin(x + y) = \sin x \cos y + \cos x \sin y \sin(x - y) = \sin x \cos y - \cos x \sin y$$
$$\cos(x + y) = \cos x \cos y - \sin x \sin y$$
$$\cos(x - y) = \cos x \cos y + \sin x \sin y$$

$$(-.7) \sin 2x = 2\sin x \cos x, \cos 2x = \cos^2 x - \sin^2 x$$

$$\sin x = \cos\left(x - \frac{\pi}{2}\right) = \cos\left(\frac{\pi}{2} - x\right)$$

$$\cos x = \sin\left(x + \frac{\pi}{2}\right) = \sin\left(\frac{\pi}{2} - x\right)$$

$$(-.9) \sin(\pi - x) = \sin x, \cos(\pi - x) = -\cos x$$

(-.10)
$$\cos^2 x = \frac{1}{2}(1 + \cos 2x), \quad \sin^2 x = \frac{1}{2}(1 - \cos 2x)$$

$$\sin x \sin y = \frac{1}{2} [-\cos(x+y) + \cos(x-y)]$$

$$\cos x \cos y = \frac{1}{2} [\cos(x+y) + \cos(x-y)]$$

$$\sin x \cos y = \frac{1}{2} [\sin(x+y) + \sin(x-y)]$$

$$\sin u + \sin v = 2\sin\frac{u+v}{2}\cos\frac{u-v}{2}$$

$$\cos u + \cos v = 2\cos\frac{u+v}{2}\cos\frac{u-v}{2}$$

$$\cos v - \cos u = 2\sin\frac{u+v}{2}\sin\frac{u-v}{2}$$

$$(-.13) A\cos x + B\sin x = \sqrt{A^2 + B^2}\cos(x \mp \delta), \tan \delta = \frac{\sin \delta}{\cos \delta} = \pm \frac{B}{A}$$

(.14)
$$A\cos x + B\sin x = \sqrt{A^2 + B^2}\sin(x \mp \delta)$$
, $\tan \delta = \frac{\sin \delta}{\cos \delta} = \mp \frac{A}{B}$

$$(-.15) \tan x = \frac{\sin x}{\cos x}, \cot x = \frac{\cos x}{\sin x}, \sec x = \frac{1}{\cos x}, \csc = \frac{1}{\sin x}$$

$$(-.16) \tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}, \tan(x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$

شكل 3.ب: ٹىنجنٹ اور كو ٹىنجنٹ

بذلولى تفاعل (بذلولي سائن sin hx وغيره مشكل ??-الف، ب

$$\sinh x = \frac{1}{2}(e^x - e^{-x}), \quad \cosh x = \frac{1}{2}(e^x + e^{-x})$$

$$\tanh x = \frac{\sinh x}{\cosh x}, \quad \coth x = \frac{\cosh x}{\sinh x}$$

$$\cosh x + \sinh x = e^x, \quad \cosh x - \sinh x = e^{-x}$$

$$\cosh^2 x - \sinh^2 x = 1$$

(-.19)
$$\sinh^2 = \frac{1}{2}(\cosh 2x - 1), \quad \cosh^2 x = \frac{1}{2}(\cosh 2x + 1)$$

$$\sinh(x \mp y) = \sinh x \cosh y \mp \cosh x \sinh y$$
$$\cosh(x \mp y) = \cosh x \cosh y \mp \sinh x \sinh y$$
$$\cosh(x \mp y) = \cosh x \cosh y \mp \sinh x \sinh y$$

(21)
$$\tanh(x \mp y) = \frac{\tanh x \mp \tanh y}{1 \mp \tanh x \tanh y}$$

گیما نفاعل (شکل ?? اور ضمیمه ?? کی جدول ??) کی تعریف درج ذیل کمل ہے
$$\Gamma(\alpha)=\int_0^\infty e^{-t}t^{\alpha-1}\,\mathrm{d}t \qquad (\alpha>0)$$

-ب coth x ہے۔ نقطہ دار خط x tanh x ہے۔

(الف) تھوس خط sinh x ہے جبکہ نقطہ دار خط cosh x ہے۔

شكل 4.ب: ہذلولی سائن، ہذلولی تفاعل۔

جو صرف مثبت ($\alpha>0$) کے لئے معنی رکھتا ہے (یا اگر ہم مخلوط α کی بات کریں تب ہے α کی ان قیمتوں کے لئے معنی رکھتا ہے جن کا حقیقی جزو مثبت ہو)۔ حکمل بالحصص سے درج ذیل اہم تعلق حاصل ہوتا ہے۔

$$\Gamma(\alpha+1) = \alpha\Gamma(\alpha)$$

مساوات ?? سے $\Gamma(1)=1$ ملتا ہے۔ یوں مساوات ?? استعال کرتے ہوئے $\Gamma(2)=1$ حاصل ہو گا جے دوبارہ مساوات ?? میں استعال کرتے ہوئے $\Gamma(3)=2\times 1$ ملتا ہے۔ اس طرح بار بار مساوات ?? استعال کرتے ہوئے α کی کسی بھی عدد صحیح مثبت قیت α کے لئے درج ذیل حاصل ہوتا ہے۔

$$\Gamma(k+1) = k!$$
 $(k = 0, 1, 2, \cdots)$

مساوات ?? کے بار بار استعال سے درج ذیل حاصل ہوتا ہے

$$\Gamma(\alpha) = \frac{\Gamma(\alpha+1)}{\alpha} = \frac{\Gamma(\alpha+2)}{\alpha(\alpha+1)} = \cdots = \frac{\Gamma(\alpha+k+1)}{\alpha(\alpha+1)(\alpha+2)\cdots(\alpha+k)}$$

جس کو استعال کرتے ہوئے ہم می کی منفی قیمتوں کے لئے گیما تفاعل کی درج ذیل تعریف پیش کرتے ہیں

$$\Gamma(\alpha) = \frac{\Gamma(\alpha+k+1)}{\alpha(\alpha+1)(\alpha+2)\cdots(\alpha+k)} \qquad (\alpha \neq 0, -1, -2, \cdots)$$

جہاں k کی ایکی کم سے کم قیمت چنی جاتی ہے کہ $\alpha+k+1>0$ ہو۔ مساوات ?? اور مساوات ?? مل کر α کی تمام مثبت قیمتوں اور غیر عددی صحیحی منفی قیمتوں کے لئے سیما تفاعل دیتے ہیں۔ α

شكل 5.ب: سيما تفاعل

گیما تفاعل کو حاصل ضرب کی حد بھی فرض کیا جا سکتا ہے لینی

$$\Gamma(\alpha) = \lim_{n \to \infty} \frac{n! n^{\alpha}}{\alpha(\alpha+1)(\alpha+2)\cdots(\alpha+n)} \qquad (\alpha \neq 0, -1, \cdots)$$

مساوات ?? اور مساوات ?? سے ظاہر ہے کہ مخلوط lpha کی صورت میں $lpha=0,-1,-2,\cdots$ پر گیما تفاعل کے قطب یائے جاتے ہیں۔

α کی بڑی قیت کے لئے گیما تفاعل کی قیت کو درج ذیل کلیہ سٹر لنگ سے حاصل کیا جا سکتا ہے جہاں e قدرتی لوگار تھم کی اساس ہے۔

$$\Gamma(\alpha+1) \approx \sqrt{2\pi\alpha} \left(\frac{\alpha}{e}\right)^{\alpha}$$

آخر میں گیما تفاعل کی ایک اہم اور مخصوص (درج ذیل) قیمت کا ذکر کرتے ہیں۔

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

نا مكمل گيما تفاعل

$$(-.29) \qquad P(\alpha, x) = \int_0^x e^{-t} t^{\alpha - 1} dt, \quad Q(\alpha, x) = \int_x^\infty e^{-t} t^{\alpha - 1} dt \qquad (\alpha > 0)$$

(...30)
$$\Gamma(\alpha) = P(\alpha, x) + Q(\alpha, x)$$

بيٹا تفاعل

$$(-.31) B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt (x > 0, y > 0)$$

بیٹا تفاعل کو سیما تفاعل کی صورت میں بھی پیش کیا جا سکتا ہے۔

$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$

تفاعل خلل (شكل ?? اور ضميمه ?? كي جدول ??)

(-.33)
$$\operatorname{erf} x = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

ساوات ?? کے تفرق $erf' x = \frac{2}{\sqrt{\pi}}e^{-t^2}$ کی مکلارن شکسل

$$\operatorname{erf}' x = \frac{2}{\sqrt{\pi}} \left(x - \frac{x^3}{1!3} + \frac{x^5}{2!5} - \frac{x^7}{3!7} + \cdots \right)$$

کا تکمل لینے سے تفاعل خلل کی تسلسل صورت حاصل ہوتی ہے۔

(...34)
$$\operatorname{erf} x = \frac{2}{\sqrt{\pi}} \left(x - \frac{x^3}{1!3} + \frac{x^5}{2!5} - \frac{x^7}{3!7} + \cdots \right)$$

ے۔ مکملہ تفاعل خلل $\operatorname{erf} \infty = 1$

(-.35)
$$\operatorname{erfc} x = 1 - \operatorname{erf} x = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} dt$$

فرسنل تكملات (شكل ??)

(-.36)
$$C(x) = \int_0^x \cos(t^2) dt, \quad S(x) = \int_0^x \sin(t^2) dt$$

شكل 7.ب: فرسنل تكملات

1
اور 1 اور $S(\infty)=\sqrt{rac{\pi}{8}}$ اور $C(\infty)=\sqrt{rac{\pi}{8}}$

(...37)
$$c(x) = \frac{\pi}{8} - C(x) = \int_{x}^{\infty} \cos(t^{2}) dt$$

$$(5.38) s(x) = \frac{\pi}{8} - S(x) = \int_{x}^{\infty} \sin(t^2) dt$$

تكمل سائن (شكل ?? اور ضميمه ?? كي حدول ??)

ا کے برابر ہے۔ تکملہ تفاعل Si $\infty = \frac{\pi}{2}$

(.40)
$$\operatorname{si}(x) = \frac{\pi}{2} - \operatorname{Si}(x) = \int_{x}^{\infty} \frac{\sin t}{t} dt$$

complementary functions¹

تكمل كوسائن (ضميمه ?? كى جدول ??)

(i.41)
$$\operatorname{ci}(x) = \int_{x}^{\infty} \frac{\cos t}{t} \, \mathrm{d}t \qquad (x > 0)$$

تكمل قوت نمائي

تكمل لوگارتهمي

(i.43)
$$\operatorname{li}(x) = \int_0^x \frac{\mathrm{d}t}{\ln t}$$

ضمیمه *ج* جدول

جدول 1 . ج: بيسل تفاعل (قشم اول)

х	$J_0(x)$	$J_1(x)$	x	$J_0(x)$	$J_1(x)$	x	$J_0(x)$	$J_1(x)$
0	1.0000	0.0000	3.4	-0.3643	0.1792	6.8	0.2931	-0.0652
0.1	0.9975	0.0499	3.5	-0.3801	0.1374	6.9	0.2981	-0.0349
0.2	0.9900	0.0995	3.6	-0.3918	0.0955	7	0.3001	-0.0047
0.3	0.9776	0.1483	3.7	-0.3992	0.0538	7.1	0.2991	0.0252
0.4	0.9604	0.1960	3.8	-0.4026	0.0128	7.2	0.2951	0.0543
0.5	0.9385	0.2423	3.9	-0.4018	-0.0272	7.3	0.2882	0.0826
0.6	0.9120	0.2867	4	-0.3971	-0.0660	7.4	0.2786	0.1096
0.7	0.8812	0.3290	4.1	-0.3887	-0.1033	7.5	0.2663	0.1352
0.8	0.8463	0.3688	4.2	-0.3766	-0.1386	7.6	0.2516	0.1592
0.9	0.8075	0.4059	4.3	-0.3610	-0.1719	7.7	0.2346	0.1813
1.0	0.7652	0.4401	4.4	-0.3423	-0.2028	7.8	0.2154	0.2014
1.1	0.7196	0.4709	4.5	-0.3205	-0.2311	7.9	0.1944	0.2192
1.2	0.6711	0.4983	4.6	-0.2961	-0.2566	8	0.1717	0.2346
1.3	0.6201	0.5220	4.7	-0.2693	-0.2791	8.1	0.1475	0.2476
1.4	0.5669	0.5419	4.8	-0.2404	-0.2985	8.2	0.1222	0.2580
1.5	0.5118	0.5579	4.9	-0.2097	-0.3147	8.3	0.0960	0.2657
1.6	0.4554	0.5699	5	-0.1776	-0.3276	8.4	0.0692	0.2708
1.7	0.3980	0.5778	5.1	-0.1443	-0.3371	8.5	0.0419	0.2731
1.8	0.3400	0.5815	5.2	-0.1103	-0.3432	8.6	0.0146	0.2728
1.9	0.2818	0.5812	5.3	-0.0758	-0.3460	8.7	-0.0125	0.2697
2	0.2239	0.5767	5.4	-0.0412	-0.3453	8.8	-0.0392	0.2641
2.1	0.1666	0.5683	5.5	-0.0068	-0.3414	8.9	-0.0653	0.2559
2.2	0.1104	0.5560	5.6	0.0270	-0.3343	9	-0.0903	0.2453
2.3	0.0555	0.5399	5.7	0.0599	-0.3241	9.1	-0.1142	0.2324
2.4	0.0025	0.5202	5.8	0.0917	-0.3110	9.2	-0.1367	0.2174
2.5	-0.0484	0.4971	5.9	0.1220	-0.2951	9.3	-0.1577	0.2004
2.6	-0.0968	0.4708	6	0.1506	-0.2767	9.4	-0.1768	0.1816
2.7	-0.1424	0.4416	6.1	0.1773	-0.2559	9.5	-0.1939	0.1613
2.8	-0.1850	0.4097	6.2	0.2017	-0.2329	9.6	-0.2090	0.1395
2.9	-0.2243	0.3754	6.3	0.2238	-0.2081	9.7	-0.2218	0.1166
3	-0.2601	0.3391	6.4	0.2433	-0.1816	9.8	-0.2323	0.0928
3.1	-0.2921	0.3009	6.5	0.2601	-0.1538	10.8	-0.2032	-0.1422
3.2	-0.3202	0.2613	6.6	0.2740	-0.1250	11.8	0.0020	-0.2323
3.3	-0.3443	0.2207	6.7	0.2851	-0.0953	12.8	0.1887	-0.1114

ر بای جاتیں۔ $x=2.405,5.520,8.654,11.792,14.931,\cdots$ پیائے جاتیں۔ $J_0(x)$ کے صفر $x=0,3.832,7.016,10.173,13.324,\cdots$ پیائے جاتیں۔ $J_1(x)$

جدول2. ج: بييل تفاعل (قشم دوم)

x	$Y_0(x)$	$Y_1(x)$	x	$Y_0(x)$	$Y_1(x)$	x	$Y_0(x)$	$Y_1(x)$
0	$(-\infty)$	$(-\infty)$	2.5	0.498	0.146	5	-0.309	0.148
0.5	-0.445	-1.471	3	0.377	0.325	5.5	-0.339	-0.024
1	0.088	-0.781	3.5	0.189	0.410	6	-0.288	-0.175
1.5	0.382	-0.412	4	-0.017	0.398	6.5	-0.173	-0.274
2	0.510	-0.107	4.5	-0.195	0.301	7	-0.026	-0.303

جدول 3. ۾: گيما تفاعل (ضميمه ?? ميں مساوات ??)

α	$\gamma(\alpha)$								
1	1.000 000	1.22	0.913 106	1.44	0.885 805	1.66	0.901 668	1.88	0.955 071
1.02	0.988 844	1.24	0.908 521	1.46	0.885 604	1.68	0.905 001	1.9	0.961766
1.04	0.978 438	1.26	0.904397	1.48	0.885747	1.7	0.908 639	1.92	0.968774
1.06	0.968744	1.28	0.900718	1.5	0.886 227	1.72	0.912 581	1.94	0.976 099
1.08	0.959 725	1.3	0.897 471	1.52	0.887 039	1.74	0.916826	1.96	0.983 743
1.10	0.951 351	1.32	0.894 640	1.54	0.888 178	1.76	0.921 375	1.98	0.991708
1.12	0.943 590	1.34	0.892 216	1.56	0.889 639	1.78	0.926 227	2	1.000 000
1.14	0.936416	1.36	0.890 185	1.58	0.891 420	1.8	0.931 384	2.02	1.008 621
1.16	0.929 803	1.38	0.888 537	1.6	0.893 515	1.82	0.936 845	2.04	1.017 576
1.18	0.923728	1.4	0.887 264	1.62	0.895 924	1.84	0.942 612	2.06	1.026 868
1.2	0.918 169	1.42	0.886356	1.64	0.898 642	1.86	0.948 687	2.08	1.036 503

جدول4. ۾: فيکٽوريل تفاعل

n	n!	$\log(n!)$	n	n!	$\log(n!)$	n	n!	$\log(n!)$
1	1	0.000 000	6	720	2.857 332	11	39 916 800	7.601 156
2	2	0.301 030	7	5040	3.702 431	12	479 001 600	8.680 337
3	6	0.778 151	8	40 320	4.605 521	13	6 227 020 800	9.794 280
4	24	1.380 211	9	362 880	5.559 763	14	87 178 291 200	10.940408
5	120	2.079 181	10	3 628 800	6.559 763	15	1 307 674 368 000	12.116500

ضميم ج. جدول

F(x) جدول 5. ج: ثنائی تقتیم به نقامل احمال f(x) (مساوات :)اور نفاعل تقتیم

		p =	0.1	p =	0.2	p =	0.3	p =	0.4	p =	0.5
n	х	f(x)									
1	0	0.9000	0.9000	0.8000	0.8000	0.7000	0.7000	0.6000	0.6000	0.5000	0.5000
1	1	0.1000	1.0000	0.2000	1.0000	0.3000	1.0000	0.4000	1.0000	0.5000	1.0000
	0	0.8100	0.8100	0.6400	0.6400	0.4900	0.4900	0.3600	0.3600	0.2500	0.2500
2	1	0.1800	0.9900	0.3200	0.9600	0.4200	0.9100	0.4800	0.8400	0.5000	0.7500
	2	0.0100	1.0000	0.0400	1.0000	0.0900	1.0000	0.1600	1.0000	0.2500	1.0000
	0	0.7290	0.7290	0.5120	0.5120	0.3430	0.3430	0.2160	0.2160	0.1250	0.1250
3	1	0.2430	0.9720	0.3840	0.8960	0.4410	0.7840	0.4320	0.6480	0.3750	0.5000
"	2	0.0270	0.9990	0.0960	0.9920	0.1890	0.9730	0.2880	0.9360	0.3750	0.8750
	3	0.0010	1.0000	0.0080	1.0000	0.0270	1.0000	0.0640	1.0000	0.1250	1.0000
	0	0.6561	0.6561	0.4096	0.4096	0.2401	0.2401	0.1296	0.1296	0.0625	0.0625
	1	0.2916	0.9477	0.4096	0.8192	0.4116	0.6517	0.3456	0.4752	0.2500	0.3125
4	2	0.0486	0.9963	0.1536	0.9728	0.2646	0.9163	0.3456	0.8208	0.3750	0.6875
	3	0.0036	0.9999	0.0256	0.9984	0.0756	0.9919	0.1536	0.9744	0.2500	0.9375
	4	0.0001	1.0000	0.0016	1.0000	0.0081	1.0000	0.0256	1.0000	0.0625	1.0000
	0	0.5905	0.5905	0.3277	0.3277	0.1681	0.1681	0.0778	0.0778	0.0313	0.0313
	1	0.3281	0.9185	0.4096	0.7373	0.3602	0.5282	0.2592	0.3370	0.1563	0.1875
5	2	0.0729	0.9914	0.2048	0.9421	0.3087	0.8369	0.3456	0.6826	0.3125	0.5000
"	3	0.0081	0.9995	0.0512	0.9933	0.1323	0.9692	0.2304	0.9130	0.3125	0.8125
	4	0.0005	1.0000	0.0064	0.9997	0.0284	0.9976	0.0768	0.9898	0.1563	0.9688
	5	0.0000	1.0000	0.0003	1.0000	0.0024	1.0000	0.0102	1.0000	0.0313	1.0000
	0	0.5314	0.5314	0.2621	0.2621	0.1176	0.1176	0.0467	0.0467	0.0156	0.0156
	1	0.3543	0.8857	0.3932	0.6554	0.3025	0.4202	0.1866	0.2333	0.0938	0.1094
	2	0.0984	0.9842	0.2458	0.9011	0.3241	0.7443	0.3110	0.5443	0.2344	0.3438
6	3	0.0146	0.9987	0.0819	0.9830	0.1852	0.9295	0.2765	0.8208	0.3125	0.6563
	4	0.0012	0.9999	0.0154	0.9984	0.0595	0.9891	0.1382	0.9590	0.2344	0.8906
	5	0.0001	1.0000	0.0015	0.9999	0.0102	0.9993	0.0369	0.9959	0.0938	0.9844
	6	0.0000	1.0000	0.0001	1.0000	0.0007	1.0000	0.0041	1.0000	0.0156	1.0000
	0	0.4783	0.4783	0.2097	0.2097	0.0824	0.0824	0.0280	0.0280	0.0078	0.0078
	1	0.3720	0.8503	0.3670	0.5767	0.2471	0.3294	0.1306	0.1586	0.0547	0.0625
	2	0.1240	0.9743	0.2753	0.8520	0.3177	0.6471	0.2613	0.4199	0.1641	0.2266
7	3	0.0230	0.9973	0.1147	0.9667	0.2269	0.8740	0.2903	0.7102	0.2734	0.5000
`	4	0.0026	0.9998	0.0287	0.9953	0.0972	0.9712	0.1935	0.9037	0.2734	0.7734
	5	0.0002	1.0000	0.0043	0.9996	0.0250	0.9962	0.0774	0.9812	0.1641	0.9375
	6	0.0000	1.0000	0.0004	1.0000	0.0036	0.9998	0.0172	0.9984	0.0547	0.9922
	7	0.0000	1.0000	0.0000	1.0000	0.0002	1.0000	0.0016	1.0000	0.0078	1.0000
	0	0.4305	0.4305	0.1678	0.1678	0.0576	0.0576	0.0168	0.0168	0.0039	0.0039
	1	0.3826	0.8131	0.3355	0.5033	0.1977	0.2553	0.0896	0.1064	0.0313	0.0352
	2	0.1488	0.9619	0.2936	0.7969	0.2965	0.5518	0.2090	0.3154	0.1094	0.1445
_	3	0.0331	0.9950	0.1468	0.9437	0.2541	0.8059	0.2787	0.5941	0.2188	0.3633
8	4	0.0046	0.9996	0.0459	0.9896	0.1361	0.9420	0.2322	0.8263	0.2734	0.6367
	5	0.0004	1.0000	0.0092	0.9988	0.0467	0.9887	0.1239	0.9502	0.2188	0.8555
	6	0.0000	1.0000	0.0011	0.9999	0.0100	0.9987	0.0413	0.9915	0.1094	0.9648
	7	0.0000	1.0000	0.0001	1.0000	0.0012	0.9999	0.0079	0.9993	0.0313	0.9961
	8	0.0000	1.0000	0.0000	1.0000	0.0001	1.0000	0.0007	1.0000	0.0039	1.0000

جدول6. ج: پوئسن تقسیم

F(x)نفاعل اخمال f(x) (مساوات f(x)اور تفاعل تقسیم

	$\mu =$	0.1	μ =	0.2	μ =	0.3	μ =	0.4	$\mu = 0.5$	
X	f(x)	F(x)	f(x)	F(x)	f(x)	F(x)	f(x)	F(x)	f(x)	F(x)
0	0.9048	0.9048	0.8187	0.8187	0.7408	0.7408	0.6703	0.6703	0.6065	0.6065
1	0.0905	0.9953	0.1637	0.9825	0.2222	0.9631	0.2681	0.9384	0.3033	0.9098
2	0.0045	0.9998	0.0164	0.9989	0.0333	0.9964	0.0536	0.9921	0.0758	0.9856
3	0.0002	1.0000	0.0011	0.9999	0.0033	0.9997	0.0072	0.9992	0.0126	0.9982
4	0.0000	1.0000	0.0001	1.0000	0.0003	1.0000	0.0007	0.9999	0.0016	0.9998
5							0.0001	1.0000	0.0002	1.0000

	μ =	0.6	$\mu =$	0.7	μ =	0.8	μ =	0.9	$\mu = 1$	
X	f(x)	F(x)	f(x)	F(x)	f(x)	F(x)	f(x)	F(x)	f(x)	F(x)
0	0.5488	0.5488	0.4966	0.4966	0.4493	0.4493	0.4066	0.4066	0.3679	0.3679
1	0.3293	0.8781	0.3476	0.8442	0.3595	0.8088	0.3659	0.7725	0.3679	0.7358
2	0.0988	0.9769	0.1217	0.9659	0.1438	0.9526	0.1647	0.9371	0.1839	0.9197
3	0.0198	0.9966	0.0284	0.9942	0.0383	0.9909	0.0494	0.9865	0.0613	0.9810
4	0.0030	0.9996	0.0050	0.9992	0.0077	0.9986	0.0111	0.9977	0.0153	0.9963
5	0.0004	1.0000	0.0007	0.9999	0.0012	0.9998	0.0020	0.9997	0.0031	0.9994
6			0.0001	1.0000	0.0002	1.0000	0.0003	1.0000	0.0005	0.9999
7									0.0001	1.0000

	$\mu =$	1.5	μ =	= 2	μ =	= 3	μ =	= 4	μ =	= 5
X	f(x)	F(x)	f(x)	F(x)	f(x)	F(x)	f(x)	F(x)	f(x)	F(x)
0	0.2231	0.2231	0.1353	0.1353	0.0498	0.0498	0.0183	0.0183	0.0067	0.0067
1	0.3347	0.5578	0.2707	0.4060	0.1494	0.1991	0.0733	0.0916	0.0337	0.0404
2	0.2510	0.8088	0.2707	0.6767	0.2240	0.4232	0.1465	0.2381	0.0842	0.1247
3	0.1255	0.9344	0.1804	0.8571	0.2240	0.6472	0.1954	0.4335	0.1404	0.2650
4	0.0471	0.9814	0.0902	0.9473	0.1680	0.8153	0.1954	0.6288	0.1755	0.4405
5	0.0141	0.9955	0.0361	0.9834	0.1008	0.9161	0.1563	0.7851	0.1755	0.6160
6	0.0035	0.9991	0.0120	0.9955	0.0504	0.9665	0.1042	0.8893	0.1462	0.7622
7	0.0008	0.9998	0.0034	0.9989	0.0216	0.9881	0.0595	0.9489	0.1044	0.8666
8	0.0001	1.0000	0.0009	0.9998	0.0081	0.9962	0.0298	0.9786	0.0653	0.9319
9			0.0002	1.0000	0.0027	0.9989	0.0132	0.9919	0.0363	0.9682
10					0.0008	0.9997	0.0053	0.9972	0.0181	0.9863
11					0.0002	0.9999	0.0019	0.9991	0.0082	0.9945
12					0.0001	1.0000	0.0006	0.9997	0.0034	0.9980
13							0.0002	0.9999	0.0013	0.9993
14							0.0001	1.0000	0.0005	0.9998
15									0.0002	0.9999
16									0.0000	1.0000

جدول 7.ج: عموی تقسیم ـ تفاعل تقسیم $\Phi(z)$ (مساوات ??)

 $\Phi(0) = 0.5000$, $\Phi(-z) = 1 - \Phi(z)$

	x / \ I		1(0)			~)	1 1 (~		* / \		* / \
Z	$\Phi(z)$	Z	$\Phi(z)$	Z	$\Phi(z)$	Z	$\Phi(z)$	z	$\Phi(z)$	z	$\Phi(z)$
0.01	0.5040	0.51	0.6950	1.01	0.8438	1.51	0.9345	2.01	0.9778	2.51	0.9940
0.02	0.5080	0.52	0.6985	1.02	0.8461	1.52	0.9357	2.02	0.9783	2.52	0.9941
0.03	0.5120	0.53	0.7019	1.03	0.8485	1.53	0.9370	2.03	0.9788	2.53	0.9943
0.04	0.5160	0.54	0.7054	1.04	0.8508	1.54	0.9382	2.04	0.9793	2.54	0.9945
0.05	0.5199	0.55	0.7088	1.05	0.8531	1.55	0.9394	2.05	0.9798	2.55	0.9946
0.06	0.5239	0.56	0.7123	1.06	0.8554	1.56	0.9406	2.06	0.9803	2.56	0.9948
0.07	0.5279	0.57	0.7157	1.07	0.8577	1.57	0.9418	2.07	0.9808	2.57	0.9949
0.07	0.5319	0.58	0.7190	1.08	0.8599	1.58	0.9429	2.08	0.9812	2.58	0.9951
0.08	0.5359	0.59	0.7190	1.09	0.8539	1.59	0.9429	2.09	0.9812	2.59	0.9951
0.09	0.5398	1	l I	1	0.8643	1	0.9441	1	0.9817	2.60	0.9953
		0.6	0.7257	1.10		1.60		2.1			
0.11	0.5438	0.61	0.7291	1.11	0.8665	1.61	0.9463	2.11	0.9826	2.61	0.9955
0.12	0.5478	0.62	0.7324	1.12	0.8686	1.62	0.9474	2.12	0.9830	2.62	0.9956
0.13	0.5517	0.63	0.7357	1.13	0.8708	1.63	0.9484	2.13	0.9834	2.63	0.9957
0.14	0.5557	0.64	0.7389	1.14	0.8729	1.64	0.9495	2.14	0.9838	2.64	0.9959
0.15	0.5596	0.65	0.7422	1.15	0.8749	1.65	0.9505	2.15	0.9842	2.65	0.9960
0.16	0.5636	0.66	0.7454	1.16	0.8770	1.66	0.9515	2.16	0.9846	2.66	0.9961
0.16	0.5675	0.67	0.7434	1.17	0.8770	1.67	0.9515	2.10	0.9850	2.67	0.9961
0.17	0.5714	0.68	0.7517	1.17	0.8810	1.68	0.9525	2.17	0.9854	2.68	0.9963
0.18	0.5714	1	0.7517	1.19	0.8830	1.69	0.9535	2.19	0.9857	2.69	0.9964
	0.5753	0.69	0.7549	1	0.8849	1	0.9545	1	0.9861		0.9964
0.20		0.70		1.20		1.7		2.20		2.70	
0.21	0.5832	0.71	0.7611	1.21	0.8869	1.71	0.9564	2.21	0.9864	2.71	0.9966
0.22	0.5871	0.72	0.7642	1.22	0.8888	1.72	0.9573	2.22	0.9868	2.72	0.9967
0.23	0.5910	0.73	0.7673	1.23	0.8907	1.73	0.9582	2.23	0.9871	2.73	0.9968
0.24	0.5948	0.74	0.7704	1.24	0.8925	1.74	0.9591	2.24	0.9875	2.74	0.9969
0.25	0.5987	0.75	0.7734	1.25	0.8944	1.75	0.9599	2.25	0.9878	2.75	0.9970
0.26	0.6026	0.76	0.7764	1.26	0.8962	1.76	0.9608	2.26	0.9881	2.76	0.9971
0.27	0.6064	0.77	0.7794	1.27	0.8980	1.77	0.9616	2.27	0.9884	2.77	0.9972
0.28	0.6103	0.78	0.7823	1.28	0.8997	1.78	0.9625	2.28	0.9887	2.78	0.9973
0.29	0.6141	0.79	0.7852	1.29	0.9015	1.79	0.9633	2.29	0.9890	2.79	0.9974
0.29	0.6179	0.80	0.7881	1.30	0.9013	1.80	0.9641	2.30	0.9893	2.80	0.9974
0.31	0.6217	0.81	0.7910	1.31	0.9049	1.81	0.9649	2.31	0.9896	2.81	0.9975
0.32	0.6255	0.82	0.7939	1.32	0.9066	1.82	0.9656	2.32	0.9898	2.82	0.9976
0.33	0.6293	0.83	0.7967	1.33	0.9082	1.83	0.9664	2.33	0.9901	2.83	0.9977
0.34	0.6331	0.84	0.7995	1.34	0.9099	1.84	0.9671	2.34	0.9904	2.84	0.9977
0.35	0.6368	0.85	0.8023	1.35	0.9115	1.85	0.9678	2.35	0.9906	2.85	0.9978
0.36	0.6406	0.86	0.8051	1.36	0.9131	1.86	0.9686	2.36	0.9909	2.86	0.9979
0.37	0.6443	0.87	0.8078	1.37	0.9147	1.87	0.9693	2.37	0.9911	2.87	0.9979
0.38	0.6480	0.88	0.8106	1.38	0.9162	1.88	0.9699	2.38	0.9913	2.88	0.9980
0.39	0.6517	0.89	0.8133	1.39	0.9177	1.89	0.9706	2.39	0.9916	2.89	0.9981
0.40	0.6554	0.90	0.8159	1.40	0.9192	1.90	0.9713	2.4	0.9918	2.90	0.9981
0.41	0.6591	0.91	0.8186	1.41	0.9207	1.91	0.9719	2.41	0.9920	2.91	0.9982
0.42	0.6628	0.92	0.8212	1.42	0.9222	1.92	0.9726	2.42	0.9922	2.92	0.9982
0.43	0.6664	0.93	0.8238	1.43	0.9236	1.93	0.9732	2.43	0.9925	2.93	0.9983
0.44	0.6700	0.94	0.8264	1.44	0.9251	1.94	0.9738	2.44	0.9927	2.94	0.9984
0.45	0.6736	0.95	0.8289	1.45	0.9265	1.95	0.9744	2.45	0.9929	2.95	0.9984
0.46	0.6772	0.96	0.8315	1.46	0.9279	1.96	0.9750	2.46	0.9931	2.96	0.9985
0.47	0.6808	0.97	0.8340	1.47	0.9292	1.97	0.9756	2.47	0.9932	2.97	0.9985
0.48	0.6844	0.98	0.8365	1.48	0.9306	1.98	0.9761	2.48	0.9934	2.98	0.9986
0.49	0.6879	0.99	0.8389	1.49	0.9319	1.99	0.9767	2.49	0.9936	2.99	0.9986
0.50	0.6915	1.00	0.8413	1.50	0.9332	2.00	0.9772	2.50	0.9938	3.00	0.9987
	0.0710	1.00	0.0110	1 2.00	0.7002	00	J.,,,_		0.7700	1 0.00	0.550

جدول8. ج: عمومی تقسیم

رساوات??)اور $D(z) = \Phi(z) - \Phi(-z)$ اور $D(z) = \Phi(z)$ وساوات??)اور $\Phi(z) = \Phi(z)$ وساوات??)اور $\Phi(z) = \Phi(z)$ برگال کے طور پر $\Phi(z) = 0.860$ پر $\Phi(z) = 0.860$ برگال کے طور پر

%	$z(\Phi)$	z(D)	%	$z(\Phi)$	z(D)	%	$z(\Phi)$	z(D)
1	-2.326	0.013	41	-0.228	0.539	81	0.878	1.311
2	-2.054	0.025	42	-0.202	0.553	82	0.915	1.341
3	-1.881	0.038	43	-0.176	0.568	83	0.954	1.372
4	-1.751	0.050	44	-0.151	0.583	84	0.994	1.405
5	-1.645	0.063	45	-0.126	0.598	85	1.036	1.440
6	-1.555	0.075	46	-0.100	0.613	86	1.080	1.476
7	-1.333 -1.476	0.073	47	-0.100 -0.075	0.628	87	1.126	1.514
8	-1.476 -1.405	0.100	48	-0.073 -0.050	0.643	88	1.175	1.555
9	-1.341	0.100	49	-0.030 -0.025	0.659	89	1.173	1.598
10	-1.282	0.113	50	0.000	0.674	90	1.282	1.645
11	-1.227	0.138	51	0.025	0.690	91	1.341	1.695
12	-1.175	0.151	52	0.050	0.706	92	1.405	1.751
13	-1.126	0.164	53	0.075	0.722	93	1.476	1.812
14	-1.080	0.176	54	0.100	0.739	94	1.555	1.881
15	-1.036	0.189	55	0.126	0.755	95	1.645	1.960
16	-0.994	0.202	56	0.151	0.772	96	1.751	2.054
17	-0.954	0.215	57	0.176	0.789	97	1.881	2.170
18	-0.915	0.228	58	0.202	0.806	97.5	1.960	2.241
19	-0.878	0.240	59	0.228	0.824	98	2.054	2.326
20	-0.842	0.253	60	0.253	0.842	99	2.326	2.576
21	-0.806	0.266	61	0.279	0.860	99.1	2.366	2.612
22	-0.772	0.279	62	0.305	0.878	99.2	2.409	2.652
23	-0.739	0.292	63	0.332	0.896	99.3	2.457	2.697
24	-0.706	0.305	64	0.358	0.915	99.4	2.512	2.748
25	-0.674	0.319	65	0.385	0.935	99.5	2.576	2.807
26	-0.643	0.332	66	0.412	0.954	99.6	2.652	2.878
27	-0.643 -0.613	0.345	67	0.412	0.934	99.7	2.748	2.968
28	-0.583	0.358	68	0.448	0.994	99.8	2.878	3.090
29	-0.553 -0.553	0.372	69	0.496	1.015	99.9	3.090	3.291
30	-0.535 -0.524	0.372	70	0.490	1.015	22.2	3.090	3.291
1						00.01	0.451	0.05.0
31	-0.496	0.399	71	0.553	1.058	99.91	3.121	3.320
32	-0.468	0.412	72	0.583	1.080	99.92	3.156	3.353
33	-0.440	0.426	73	0.613	1.103	99.93	3.195	3.390
34	-0.412	0.440	74	0.643	1.126	99.94	3.239	3.432
35	-0.385	0.454	75	0.674	1.150	99.95	3.291	3.481
36	-0.358	0.468	76	0.706	1.175	99.96	3.353	3.540
37	-0.332	0.482	77	0.739	1.200	99.97	3.432	3.615
38	-0.305	0.496	78	0.772	1.227	99.98	3.540	3.719
39	-0.279	0.510	79	0.806	1.254	99.99	3.719	3.891
40	-0.253	0.524	80	0.842	1.282			
						•		

ضميم ۽. جدول

جدول 9. ج: بلامنصوبه اعداد

شار					ظار	شار ق				
صف	0	1	2	3	4	5	6	7	8	9
0	87331	82442	28104	26432	83640	17323	68764	84728	37995	96106
1	33628	17364	01409	87803	65641	33433	48944	64299	79066	31777
2	54680	13427	72496	16967	16195	96593	55040	53729	62035	66717
3	51199	49794	49407	10774	98140	83891	37195	24066	61140	65144
4	78702	98067	61313	91661	59861	54437	77739	19892	54817	88645
5	55672	16014	24892	13089	00410	81458	76156	28189	40595	21500
6	18880	58497	03862	32368	59320	24807	63392	79793	63043	09425
7	10242	62548	62330	05703	33535	49128	66298	16193	55301	01306
8	54993	17182	94618	23228	83895	73251	68199	64639	83178	70521
9	22686	50885	16006	04041	08077	33065	35237	05502	94755	72062
10	42349	03145	15770	70665	53291	32288	41568	66079	98705	31029
11	18093	09553	39428	75464	71329	86344	80729	40916	18860	51780
12	11535	03924	84252	74795	40193	84597	42497	21918	91384	84721
13	35066	73848	65351	53270	63341	70177	92373	17604	42204	60476
14	57477	22809	73558	96182	96779	01604	25748	59553	64876	94611
15	48647	33850	52956	45410	88212	05120	99391	32276	55961	41775
16	86857	81154	22223	74950	53296	67767	55866	49361	66937	81818
17	20182	36907	94644	99122	09774	29189	27212	79000	50217	71077
18	83687	31231	01133	41432	54542	60204	81618	09586	34481	87683
19	81315	12390	46074	47810	90171	36313	95440	77583	28506	38808
20	87026	52826	58341	76549	04105	66191	12914	55348	07907	06978
21	34301	76733	07251	90524	21931	83695	41340	53581	64582	60210
22	70734	24337	32674	49508	49751	90489	63202	24380	77943	09942
23	94710	31527	73445	32839	68176	53580	85250	53243	03350	00128
24	76462	16987	07775	43162	11777	16810	75158	13894	88945	15539
25	14348	28403	79245	69023	64196	46398	05964	64715	11330	17515
26	74618	89317	30146	25606	94507	98104	04239	44973	37636	88866
27	99442	19200	85406	45358	86253	60638	38858	44964	54103	57287
28	26869	44399	89452	06652	31271	00647	46551	83050	92058	83814
29	80988	08149	50499	98584	28385	63680	44638	91864	96002	87802
30	07511	79047	89289	17774	67194	37362	85684	55505	97809	67056
31	49779	12138	05048	03535	27502	63308	10218	53296	48687	61340
32	47938	55945	24003	19635	17471	65997	85906	98694	56420	78357
33	15604	06626	14360	79442	13512	87595	08542	03800	35443	52823
34	12307	27726	21864	00045	16075	03770	86978	52718	02693	09096
35	02450	28053	66134	99445	91316	25727	89399	85272	67148	78358
36	57623	54382	35236	89244	27245	90500	75430	96762	71968	65838
37	91762	78849	93105	40481	99431	03304	21079	86459	21287	76566
38	87373	31137	31428	67050	64309	44914	80711	61738	61498	24288
39	67094	41485	54149	86088	10192	21174	39948	67286	29938	32476
40	94456	66767	76922	87627	71834	57688	04878	78348	68970	60048
41	68359	75292	27710	86889	81678	79798	58360	39175	75667	65782
42	52393	31404	32584	06837	79762	13168	76055	54833	22841	98889
43	59565	91254	11847	20672	37625	41454	86861	55824	79793	74575
44	48185	11066	20162	38230	16043	48409	47421	21195	98008	57305
45	19230	12187	86659	12971	52204	76546	63272	19312	81662	96557
46	84327	21942	81727	68735	89190	58491	55329	96875	19465	89687
47	77430	71210	00591	50124	12030	50280	12358	76174	48353	09862
48	12462	19108	70512	53926	25595	97085	03833	59806	12351	64253
49	11684	06644	57816	10078	45021	47751	38285	773520	08434	65627
17	11001	00011	0,010	100/0	10041	1,701	00200	,,0020	00101	00021

بلا منصوبه اعداد (جدول ??)

				(;;	اعداد (جدول	•				
شار					قطار	شار				
صف	0	1	2	3	4	5	6	7	8	9
50	12896	36576	68686	08462	65652	76571	70891	09007	04581	01684
51	59090	05111	27587	90349	30789	50304	70650	06646	70126	15284
52	42486	67483	65282	19037	80588	73076	41820	46651	40442	40718
53	88662	03928	03249	85910	97533	88643	29829	21557	47328	36724
54	69403	03626	92678	59460	15465	83516	54012	80509	55976	46115
55	56434	70543	38696	98502	32092	95505	62091	39549	30117	98209
56	58227	62694	42837	29183	11393	68463	25150	86338	95620	39836
57	41272	94927	15413	40505	33123	63218	72940	98349	57249	40170
58	36819	01162	30425	15546	16065	68459	35776	64276	92868	07372
59	31700	66711	26115	55755	33584	18091	38709	57276	74660	90392
60	69855	63699	36839	90531	97125	87875	62824	03889	12538	24740
61	44322	17569	45439	41455	34324	90902	07978	26268	04279	76816
62	62226	36661	87011	66267	78777	78044	40819	49496	39814	73867
63	27284	19737	98741	72531	52741	26699	98755	19657	08665	16818
64	88341	21652	94743	77268	79525	44769	66583	30621	90534	62050
65	53266	18783 49330	51903	56711 42529	38060	69513 95219	61963 88724	80470 37247	88018 84116	86510 23023
66	50527 15655	07852	24839 77206	35944	03944 71446	30573	19405	57824	23576	23301
68	62057	22206	03314	83465	57466	10465	19891	32308	01900	67484
69	41769	56091	19892	96253	92808	45785	52774	49674	68103	65032
70	25993	72416	44473	41299	93095	17338	69802	98548	02429	85238
71	22842	57871	04470	37373	34516	04042	04078	35336	34393	97573
72	55704	31982	05234	22664	22181	40358	28089	15790	33340	18852
73	94258	18706	09437	96041	90052	80862	20420	24323	11635	91677
74	74145	20453	29657	98868	56695	53483	87449	35060	98942	62697
75	88881	12673	73961	89884	73247	97670	69570	88888	58560	72580
76	01508	56780	52223	35632	73347	71317	46541	88023	36656	76332
77	92069	43000	23233	06058	82527	25250	27555	20426	60361	63525
78	53366	35249	02117	68620	39388	69795	73215	01846	16983	78560
79	88057	54097	49511	74867	32192	90071	04147	46094	63519	07199
80	85492	82238	02668	91854	86149	28590	77853	81035	45561	16032
81	39453	62123	69611	53017	34964	09786	24614	49514	01056	18700
82	82627	98111	93870	56969	69566	62662	07353	84838	14570	14508
83	61142	51743	38209	31474	96095	15163	54380	77849	20465	03142
84	12031	32528	61311	53730	89032	16124	58844	35386	45521	59368
85	31313	59838	29147	76882	74328	09955	63673	96651	53264	29871
86	50767	41056	97409	44376	62219	35439	70102	99248	71179	26052
87	30522	95699	84966	26554	24768	72247	84993	85375	92518	16334
88	74176	19870	89874	64799	03792	57006	57225	36677	46825	14087
89	17114	93248	37065	91346	04657	93763	92210	43676	44944	75798
90	53005	11825	64608	87587	05742	31914	55044	41818	29667	77424
91	31985	81539	79942	49471	46200	27639	94099	42085	79231	03932
92	63499	60508	77522	15624	15088	78519	52279	79214	43623	69166
93	30506	42444	99047	66010	91657	37160	37408	85714	21420	80996
94	78248	16841	92357	10130	68990	38307	61022	56806	81016	38511
95	64996	84789	50185	32200	64382	29752	11876	00664	54547	62597
96	11963	13157	09136	01769	30117	71486	80111	09161	08371	71749
97	44335	91450	43456	90449	18338	19787	31339	60473	06606	89788
98	42277	11868	44520	01113	11341	11743	97949	49718	99176	42006
99	77562	18863	58515	90166	78508	14864	19111	57183	85808	59385

ضميم ج. جدول

E(~)					جه آزادی	ور.				
F(z)	1	2	3	4	5	6	7	8	9	10
0.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.6	0.32	0.29	0.28	0.27	0.27	0.26	0.26	0.26	0.26	0.26
0.7	0.73	0.62	0.58	0.57	0.56	0.55	0.55	0.55	0.54	0.54
0.8	1.38	1.06	0.98	0.94	0.92	0.91	0.90	0.89	0.88	0.88
0.9	3.08	1.89	1.64	1.53	1.48	1.44	1.41	1.40	1.38	1.37
0.95	6.31	2.92	2.35	2.13	2.02	1.94	1.89	1.86	1.83	1.81
0.975	12.71	4.30	3.18	2.78	2.57	2.45	2.36	2.31	2.26	2.23
0.99	31.82	6.96	4.54	3.75	3.36	3.14	3.00	2.90	2.82	2.76
0.995	63.66	9.92	5.84	4.60	4.03	3.71	3.50	3.36	3.25	3.17
0.999	318.31	22.33	10.21	7.17	5.89	5.21	4.79	4.50	4.30	4.14

	Γ(~)					ُزاد ی	درجه آ				
	F(z)	11	12	13	14	15	16	17	18	19	20
	0.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.6	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26
	0.7	0.54	0.54	0.54	0.54	0.54	0.54	0.53	0.53	0.53	0.53
	0.8	0.88	0.87	0.87	0.87	0.87	0.86	0.86	0.86	0.86	0.86
	0.9	1.36	1.36	1.35	1.35	1.34	1.34	1.33	1.33	1.33	1.33
	0.95	1.80	1.78	1.77	1.76	1.75	1.75	1.74	1.73	1.73	1.72
İ	0.975	2.20	2.18	2.16	2.14	2.13	2.12	2.11	2.10	2.09	2.09
	0.99	2.72	2.68	2.65	2.62	2.60	2.58	2.57	2.55	2.54	2.53
	0.995	3.11	3.05	3.01	2.98	2.95	2.92	2.90	2.88	2.86	2.85
L	0.999	4.02	3.93	3.85	3.79	3.73	3.69	3.65	3.61	3.58	3.55

E(~)					أزادى	ورجه آ				
F(z)	22	24	26	28	30	40	50	100	200	∞
0.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.6	0.26	0.26	0.26	0.26	0.26	0.26	0.25	0.25	0.25	0.25
0.7	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.52
0.8	0.86	0.86	0.86	0.85	0.85	0.85	0.85	0.85	0.84	0.84
0.9	1.32	1.32	1.31	1.31	1.31	1.30	1.30	1.29	1.29	1.28
0.95	1.72	1.71	1.71	1.70	1.70	1.68	1.68	1.66	1.65	1.64
0.975	2.07	2.06	2.06	2.05	2.04	2.02	2.01	1.98	1.97	1.96
0.99	2.51	2.49	2.48	2.47	2.46	2.42	2.40	2.36	2.35	2.33
0.995	2.82	2.80	2.78	2.76	2.75	2.70	2.68	2.63	2.60	2.58
0.999	3.50	3.47	3.43	3.41	3.39	3.31	3.26	3.17	3.13	3.09

جدول 11.ج: مربع خاتشیم جدول 11.ج. مربع خاتشیم جدول F(z) رساوات F(z) کے لئے z کی قیمتیں۔ مثال کی طور پر z درجہ آزادی کے لئے z=11.34 تب ہو گا جب z=11.34 جو۔

E(~)					زادی	درجه آ				
F(z)	1	2	3	4	5	6	7	8	9	10
0.005	0.00	0.01	0.07	0.21	0.41	0.68	0.99	1.34	1.73	2.16
0.01	0.00	0.02	0.11	0.30	0.55	0.87	1.24	1.65	2.09	2.56
0.025	0.00	0.05	0.22	0.48	0.83	1.24	1.69	2.18	2.70	3.25
0.05	0.00	0.10	0.35	0.71	1.15	1.64	2.17	2.73	3.33	3.94
0.95	3.84	5.99	7.81	9.49	11.07	12.59	14.07	15.51	16.92	18.31
0.975	5.02	7.38	9.35	11.14	12.83	14.45	16.01	17.53	19.02	20.48
0.99	6.63	9.21	11.34	13.28	15.09	16.81	18.48	20.09	21.67	23.21
0.995	7.88	10.60	12.84	14.86	16.75	18.55	20.28	21.95	23.59	25.19

E(~)					أزادي	درجه آ				
F(z)	11	12	13	14	15	16	17	18	19	20
0.005	2.60	3.07	3.57	4.07	4.60	5.14	5.70	6.26	6.84	7.43
0.01	3.05	3.57	4.11	4.66	5.23	5.81	6.41	7.01	7.63	8.26
0.025	3.82	4.40	5.01	5.63	6.26	6.91	7.56	8.23	8.91	9.59
0.05	4.57	5.23	5.89	6.57	7.26	7.96	8.67	9.39	10.12	10.85
0.95	19.68	21.03	22.36	23.68	25.00	26.30	27.59	28.87	30.14	31.41
0.975	21.92	23.34	24.74	26.12	27.49	28.85	30.19	31.53	32.85	34.17
0.99	24.72	26.22	27.69	29.14	30.58	32.00	33.41	34.81	36.19	37.57
0.995	26.76	28.30	29.82	31.32	32.80	34.27	35.72	37.16	38.58	40.00

Γ(~)					ُزاد ی	درجه آ				
F(z)	21	22	23	24	25	26	27	28	29	30
0.005	8.03	8.64	9.26	9.89	10.52	11.16	11.81	12.46	13.12	13.79
0.01	8.90	9.54	10.20	10.86	11.52	12.20	12.88	13.56	14.26	14.95
0.025	10.28	10.98	11.69	12.40	13.12	13.84	14.57	15.31	16.05	16.79
0.05	11.59	12.34	13.09	13.85	14.61	15.38	16.15	16.93	17.71	18.49
0.95	32.67	33.92	35.17	36.42	37.65	38.89	40.11	41.34	42.56	43.77
0.975	35.48	36.78	38.08	39.36	40.65	41.92	43.19	44.46	45.72	46.98
0.99	38.93	40.29	41.64	42.98	44.31	45.64	46.96	48.28	49.59	50.89
0.995	41.40	42.80	44.18	45.56	46.93	48.29	49.64	50.99	52.34	53.67

F(z)					جه آزادی	פנ		
1 (2)	40	50	60	70	80	90	100	> 100(تخمين)
0.005	20.71	27.99	35.53	43.28	51.17	59.20	67.33	$\frac{1}{2}(h-2.58)^2$
0.01	22.16	29.71	37.48	45.44	53.54	61.75	70.06	$\frac{1}{2}(h-2.33)^2$
0.025	24.43	32.36	40.48	48.76	57.15	65.65	74.22	$\frac{1}{2}(h-1.96)^2$
0.05	26.51	34.76	43.19	51.74	60.39	69.13	77.93	$\frac{1}{2}(h-1.64)^2$
0.95	55.76	67.50	79.08	90.53	101.88	113.15	124.34	$\frac{1}{2}(h+1.64)^2$
0.975	59.34	71.42	83.30	95.02	106.63	118.14	129.56	$\frac{1}{2}(h+1.96)^2$
0.99	63.69	76.15	88.38	100.43	112.33	124.12	135.81	$\frac{1}{2}(h+2.33)^2$
0.995	66.77	79.49	91.95	104.21	116.32	128.30	140.17	$\frac{1}{2}(h+2.58)^2$

m درجه آزادی ہے۔ $h=\sqrt{2m-1}$ درجه آزادی ہے۔

جدول 12.ج: (m,n) درجہ آزادی کے F

کی وہ قیمتیں جن پر تفاعل تفتیم F(z) (ساوات ??) کی قیمت z0.95 ہوگے۔ مثال کے طور پر z1,09 درجہ آزادی کے لئے z2 z3 ہو۔ جو کہ جو کا جب z3 رمین کے لئے وہ

	1	m = 2	m = 3		m = 5	(7	0	0
n	m=1			m=4		m = 6	m = 7	m = 8	m = 9
1	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59
	4.49	3.63	3.24			2.74		2.59	2.54
16 17	4.49		3.24	3.01	2.85	2.74	2.66	2.59	2.54 2.49
18	4.45	3.59 3.55		2.96 2.93	2.81 2.77	2.70	2.61 2.58	2.55	2.49
19	4.41		3.16	2.93				2.31	2.46
20	4.35	3.52	3.13 3.10	2.90	2.74	2.63	2.54 2.51		
		3.49			2.71	2.60		2.45	2.39
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21
32	4.15	3.29	2.90	2.67	2.51	2.40	2.31	2.24	2.19
34	4.13	3.28	2.88	2.65	2.49	2.38	2.29	2.23	2.17
36	4.11	3.26	2.87	2.63	2.48	2.36	2.28	2.21	2.15
38	4.10	3.24	2.85	2.62	2.46	2.35	2.26	2.19	2.14
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12
50	4.03	3.18	2.79	2.56	2.40	2.29	2.20	2.13	2.07
60	4.00	3.15	2.79	2.53	2.40	2.25	2.20	2.13	2.07
70	3.98	3.13	2.76	2.50	2.35	2.23	2.17	2.10	2.04
80	3.96	3.13	2.74	2.30	2.33	2.23	2.14	2.06	2.02
90	3.95	3.10	2.72	2.49	2.32	2.21	2.13	2.06	1.99
100	3.94	3.09	2.70	2.46	2.31	2.19	2.10	2.03	1.97
150	3.90	3.06	2.66	2.43	2.27	2.16	2.07	2.00	1.94
200	3.89	3.04	2.65	2.42	2.26	2.14	2.06	1.98	1.93
1000	3.85	3.00	2.61	2.38	2.22	2.11	2.02	1.95	1.89
∞	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88

(??) درجه آزادی کی F تقسیم (جدول (m,n) درجه آزادی کی z کی وه قیمتیں جن پر z

n	m = 10	m = 15	m = 20	m = 30	m = 40	m = 50	m = 100	$m = \infty$
1	241.88	245.95	248.01	250.10	251.14	251.77	253.04	254.31
2	19.40	19.43	19.45	19.46	19.47	19.48	19.49	19.50
3	8.79	8.70	8.66	8.62	8.59	8.58	8.55	8.53
4	5.96	5.86	5.80	5.75	5.72	5.70	5.66	5.63
5	4.74	4.62	4.56	4.50	4.46	4.44	4.41	4.37
6	4.06	3.94	3.87	3.81	3.77	3.75	3.71	3.67
7	3.64	3.51	3.44	3.38	3.34	3.32	3.27	3.23
8	3.35	3.22	3.15	3.08	3.04	3.02	2.97	2.93
9	3.14	3.01	2.94	2.86	2.83	2.80	2.76	2.71
10	2.98	2.85	2.77	2.70	2.66	2.64	2.59	2.54
11	2.85	2.72	2.65	2.57	2.53	2.51	2.46	2.40
12	2.75	2.62	2.54	2.47	2.43	2.40	2.35	2.30
13	2.67	2.53	2.46	2.38	2.34	2.31	2.26	2.21
14	2.60	2.46	2.39	2.31	2.27	2.24	2.19	2.13
15	2.54	2.40	2.33	2.25	2.20	2.18	2.12	2.07
16	2.49	2.35	2.28	2.19	2.15	2.12	2.07	2.01
17	2.45	2.31	2.23	2.15	2.10	2.08	2.02	1.96
18	2.41	2.27	2.19	2.11	2.06	2.04	1.98	1.92
19	2.38	2.23	2.16	2.07	2.03	2.00	1.94	1.88
20	2.35	2.20	2.12	2.04	1.99	1.97	1.91	1.84
22	2.30	2.15	2.07	1.98	1.94	1.91	1.85	1.78
24	2.25	2.11	2.03	1.94	1.89 1.85	1.86	1.80	1.73
26	2.22	2.07	1.99	1.90	1.85	1.82	1.76	1.69
28	2.19	2.04	1.96	1.87	1.82	1.79	1.73	1.65
30	2.16	2.01	1.93	1.84	1.79	1.76	1.70	1.62
32	2.14	1.99	1.91	1.82	1.77	1.74	1.67	1.59
34	2.12	1.97	1.89	1.80	1.75	1.71	1.65	1.57
36	2.11	1.95	1.87	1.78	1.73	1.69	1.62	1.55
38	2.09	1.94	1.85	1.76	1.71	1.68	1.61	1.53
40	2.08	1.92	1.84	1.74	1.69	1.66	1.59	1.51
50	2.03	1.87	1.78	1.69	1.63	1.60	1.52	1.44
60	1.99	1.84	1.75	1.65	1.59	1.56	1.48	1.39
70	1.97	1.81	1.72	1.62	1.57	1.53	1.45	1.35
80	1.95	1.79	1.70	1.60	1.54	1.51	1.43	1.32
90	1.94	1.78	1.69	1.59	1.53	1.49	1.41	1.30
100	1.93	1.77	1.68	1.57		1.48	1.39	1.28
150	1.89	1.73	1.64	1.54	1.48	1.44	1.34	1.22
200	1.88	1.72	1.62	1.52	1.46 1.41	1.41	1.32	1.19
1000	1.84	1.68	1.58	1.47	1.41	1.36	1.26	1.08
∞	1.83	1.67	1.57	1.46	1.39	1.35	1.24	1.01

(??) درجه آزادی کی F تقسیم (جدول (m,n) درجه آزادی کی z کی وه قیمتیں جن پر z

1 4052.18 4999.50 5403.35 5624.58 5763.65 5858.99 5928.36 5981 2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.3 3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.4 4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.8 5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.3 6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.1 7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.8 8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.0 9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.4 10 10.04 7.56	99.39 27.35 14.66 19 10.16 0 7.98 4 6.72 3 5.91 7 5.35 6 4.94 4 4.63 0 4.39 0 4.19
3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.4 4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.3 5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.3 6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.1 7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.8 8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.0 9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.4 10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.0 11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.7 12 9.33 6.93 5.95	27.35 14.66 19 10.16 0 7.98 4 6.72 3 5.91 7 5.35 6 4.94 4 4.63 0 4.39 0 4.19
4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.8 5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.3 6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.1 7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.8 8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.0 9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.4 10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.0 11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.7 12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.5	14.66 10.16 10.16 10.16 10.7.98 44 6.72 35.91 75.35 64.94 44 4.63 10 4.39 10 4.19
5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.2 6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.1 7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.8 8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.0 9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.4 10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.0 11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.7 12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.5	10.16 0 7.98 4 6.72 3 5.91 7 5.35 6 4.94 4 4.63 0 4.39 0 4.19
6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.1 7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.8 8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.0 9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.4 10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.0 11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.7 12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.5	7.98 4 6.72 5.91 7 5.35 6 4.94 4 4.63 0 4.39 0 4.19
7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.89 8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.0 9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.4 10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.0 11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.7 12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.5	4 6.72 3 5.91 7 5.35 6 4.94 4 4.63 0 4.39 0 4.19
7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.89 8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.0 9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.4 10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.0 11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.7 12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.5	3 5.91 7 5.35 6 4.94 4 4.63 0 4.39 0 4.19
8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.0 9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.4 10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.0 11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.7 12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.5	3 5.91 7 5.35 6 4.94 4 4.63 0 4.39 0 4.19
9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.4 10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.0 11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.7 12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.5	7 5.35 6 4.94 4 4.63 0 4.39 0 4.19
10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.0 11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.7 12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.5	6 4.94 4 4.63 0 4.39 0 4.19
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.5	0 4.39 0 4.19
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.5	0 4.39 0 4.19
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.3	.
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.1	4 4.03
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.0	0 3.89
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.8	9 3.78
17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.7	9 3.68
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.7	1 3.60
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.6	
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.5	6 3.46
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.4	5 3.35
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.3	
26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.2	9 3.18
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.2	3 3.12
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.1	7 3.07
32 7.50 5.34 4.46 3.97 3.65 3.43 3.26 3.1	3 3.02
34 7.44 5.29 4.42 3.93 3.61 3.39 3.22 3.0	
36 7.40 5.25 4.38 3.89 3.57 3.35 3.18 3.0	
38 7.35 5.21 4.34 3.86 3.54 3.32 3.15 3.0	
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.9	9 2.89
50 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.8	9 2.78
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.8	
70 7.01 4.92 4.07 3.60 3.29 3.07 2.91 2.7	
80 6.96 4.88 4.04 3.56 3.26 3.04 2.87 2.7	
90 6.93 4.85 4.01 3.53 3.23 3.01 2.84 2.7	
100 6.90 4.82 3.98 3.51 3.21 2.99 2.82 2.6	9 2.59
150 6.81 4.75 3.91 3.45 3.14 2.92 2.76 2.6	
200 6.76 4.71 3.88 3.41 3.11 2.89 2.73 2.6	
1000 6.66 4.63 3.80 3.34 3.04 2.82 2.66 2.5	
∞ 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.5	

ضميم ۽. جدول

(??) درجه آزادی کی F تفتیم (جدول (m,n) درجه آزادی کی و و قیتین جن په z

n	m = 10	m = 15	m = 20	m = 30	m = 40	m = 50	m = 100	$m = \infty$
1	6055.85	6157.28	6208.73	6260.65	6286.78	6302.52	6334.11	6365.85
2	99.40	99.43	99.45	99.47	99.47	99.48	99.49	99.50
3	27.23	26.87	26.69	26.50	26.41	26.35	26.24	26.13
4	14.55	14.20	14.02	13.84	13.75	13.69	13.58	13.46
5	10.05	9.72	9.55	9.38	9.29	9.24	9.13	9.02
6	7.87	7.56	7.40	7.23	7.14	7.09	6.99	6.88
7	6.62	6.31	6.16	5.99	5.91	5.86	5.75	5.65
8	5.81	5.52	5.36	5.20	5.12	5.07	4.96	4.86
9	5.26	4.96	4.81	4.65	4.57	4.52	4.41	4.31
10	4.85	4.56	4.41	4.25	4.17	4.12	4.01	3.91
11	4.54	4.25	4.10	3.94	3.86	3.81	3.71	3.60
12	4.30	4.01	3.86	3.70	3.62	3.57	3.47	3.36
13	4.10	3.82	3.66	3.51	3.43	3.38	3.27	3.17
14	3.94	3.66	3.51	3.35	3.27	3.22	3.11	3.00
15	3.80	3.52	3.37	3.21	3.13	3.08	2.98	2.87
16	3.69	3.41	3.26	3.10	3.02	2.97	2.86	2.75
17	3.59	3.31	3.16	3.00	2.92	2.87	2.76	2.65
18	3.51	3.23	3.08	2.92	2.84	2.78	2.68	2.57
19	3.43	3.15	3.00	2.84	2.76	2.71	2.60	2.49
20	3.37	3.09	2.94	2.78	2.69	2.64	2.54	2.42
22	3.26	2.98	2.83	2.67	2.58	2.53	2.42	2.31
24	3.17	2.89	2.74	2.58	2.49	2.44	2.33	2.21
26	3.09	2.81	2.66	2.50	2.42	2.36	2.25	2.13
28	3.03	2.75	2.60	2.44	2.35	2.30	2.19	2.06
30	2.98	2.70	2.55	2.39	2.30	2.25	2.13	2.01
32	2.93	2.65	2.50	2.34	2.25	2.20	2.08	1.96
34	2.89	2.61	2.46	2.30	2.21	2.16	2.04	1.91
36	2.86	2.58	2.43	2.26	2.18	2.12	2.00	1.87
38	2.83	2.55	2.40	2.23	2.14	2.09	1.97	1.84
40	2.80	2.52	2.37	2.20	2.11	2.06	1.94	1.80
50	2.70	2.42	2.27	2.10	2.01	1.95	1.82	1.68
60	2.63	2.35	2.20	2.03	1.94	1.88	1.75	1.60
70	2.59	2.31	2.15	1.98	1.89	1.83	1.70	1.54
80	2.55	2.27	2.12	1.94	1.85	1.79	1.65	1.49
90	2.52	2.24	2.09	1.92	1.82	1.76	1.62	1.46
100	2.50	2.22	2.07	1.89	1.80	1.74	1.60	1.43
150	2.44	2.16	2.00	1.83	1.73	1.66	1.52	1.33
200	2.41	2.13	1.97	1.79	1.69	1.63	1.48	1.28
1000	2.34	2.06	1.90	1.72	1.61	1.63	1.38	1.11
∞	2.32	2.04	1.88	1.70	1.59	1.52	1.36	1.01

جدول 13.ج: بلا منصوبہ متغیر
$$T$$
 کا تفاعل تقسیم $F(x)=P(T\leq x)$ برائے قصہ $F(x)=1$ ہوگا۔ مثال کے طور پر $x=3$ پر $x=3$ ہوگا۔ مثال کے طور پر $x=3$ پر $x=3$ ہوگا۔ $x=3$ ہول گے۔ $x=3$ ہے۔

x	n = 3	x	n = 4	x	n = 5	x	n = 6	x	n = 7	x	n = 8	x	n = 9	x	n = 10	x	n = 11	
	0.		0.		0.		0.		0.		0.		0.		0.		0.	1
0	167	0	042	0	008	0	001	1	001	2	001	4	001	6	001	8	001	İ
1	500	1	167	1	042	1	008	2	005	3	003	5	003	7	002	9	002	İ
		2	375	2	117	2	028	3	015	4	007	6	006	8	005	10	003	İ
				3	242	3	068	4	035	5	016	7	012	9	008	11	005	İ
				4	408	4	136	5	068	6	031	8	022	10	014	12	008	İ
						5	235	6	119	7	054	9	038	11	023	13	013	
						6	360	7	191	8	089	10	060	12	036	14	020	
						7	500	8	281	9	138	11	090	13	054	15	030	
								9	386	10	199	12	130	14	078	16	043	
								10	500	11	274	13	179	15	108	17	060	
									•	12	360	14	238	16	146	18	082	
										13	452	15	306	17	190	19	109	
												16	381	18	242	20	141	İ
												17	460	19	300	21	179	İ
														20	364	22	223	İ
														21	431	23	271	İ
														22	500	24	324	İ
																25	381	İ
																26	440	İ
																27	500	İ

ضميم ج. جدول

(??	را	(مروا
(· ·	\cup	ן שננ

	n																
x	= 20																
	0.		n	l													
50	001	x	= 19														
51	002		0.														
52	002	43	001														
53	003	44	002		n												
54	004	45	002	x	= 18												
55	005	46	003		0.												
56	006	47	003	38	001	x	n										
57	007	48	004	39	002	_ ^	= 17										
58	008	49	005	40	003		0.										
59	010	50	006	41	003	32	001	x	n								
60	012	51	008	42	004	33	002		= 16								
61	014	52	010	43	005	34	002		0.			1					
62	017	53	012	44	007	35	003	27	001	x	n						
63	020	54	014	45	009	36	004	28	002		= 15	l		ı			
64 65	023 027	55 56	017	46 47	011	37	005	29	002		0.	x	n $= 14$				
			021		013	38 39	007 009	30 31	003 004	23 24	001 002		0.				
66 67	032 037	57 58	025 029	48 49	016 020	40	011	32	004	25	002	10	001		n		
68	043	59	029	50	020	41	014	33	008	26	003	18 19	001	x	= 13		
69	049	60	040	51	024	42	014	34	010	27	004	20	002	-	0.		
70	056	61	047	52	034	43	021	35	013	28	008	20	002	14	001		n
71	064	62	054	53	041	44	026	36	016	29	010	22	005	15	001	x	= 12
72	073	63	062	54	048	45	032	37	021	30	014	23	007	16	002		0.
73	082	64	072	55	056	46	038	38	026	31	018	24	010	17	003	11	001
74	093	65	082	56	066	47	046	39	032	32	023	25	013	18	005	12	002
75	104	66	093	57	076	48	054	40	039	33	029	26	018	19	007	13	003
76	117	67	105	58	088	49	064	41	048	34	037	27	024	20	011	14	004
77	130	68	119	59	100	50	076	42	058	35	046	28	031	21	015	15	007
78	144	69	133	60	115	51	088	43	070	36	057	29	040	22	021	16	010
79	159	70	149	61	130	52	102	44	083	37	070	30	051	23	029	17	016
80	176	71	166	62	147	53	118	45	097	38	084	31	063	24	038	18	022
81	193	72	184	63	165	54	135	46	114	39	101	32	079	25	050	19	031
82	211	73	203	64	184	55	154	47	133	40	120	33	096	26	064	20	043
83	230	74	223	65	205	56	174	48	153	41	141	34	117	27	082	21	058
84	250	75	245	66	227	57	196	49	175	42	164	35	140	28	102	22	076
85	271	76	267	67	250	58	220	50	199	43	190	36	165	29	126	23	098
86	293	77	290	68	275	59	245	51	225	44	218	37	194	30	153	24	125
87	315	78	314	69	300	60	271	52	253	45	248	38	225	31	184	25	155
88	339	79	339	70	327	61	299	53	282	46	279	39	259	32	218	26	190
89 90	362 387	80 81	365 391	71 72	354	62	328 358	54 55	313 345	47 48	313 349	40 41	295 334	33	255 295	27	230 273
90	387 411	81	418	72	383 411	63	358	56	345 378	48	349	41	374	34 35	338	28 29	319
91	411	83	418	74	441	64 65	420	57	412	50	423	42	415	36	383	30	369
92	462	84	443	75	470	66	420 452	58	412	51	423	43	415	37	383 429	31	420
93	487	85	500	76	500	67	484	59	482	52	500	45	500	38	476	32	473
	10,	- 00				L.,	101		102		550						170

جدول 14. ج: تفاعل خلل، سائن اور كوسائن تحملات تفاعل خلل، سائن اور كوسائن تحملات (بالترتيب ضميمه ?? مين مساوات ??، مساوات ?? اور مساوات ??)

x	erf x	Si(x)	ci(x)	x	erf x	Si(x)	ci(x)
0.0	0.0000	0.0000	∞	2.0	0.9953	1.6054	-0.4230
0.2	0.2227	0.1996	1.0422	2.2	0.9981	1.6876	-0.3751
0.4	0.4284	0.3965	0.3788	2.4	0.9993	1.7525	-0.3173
0.6	0.6039	0.5881	0.0223	2.6	0.9998	1.8004	-0.2533
0.8	0.7421	0.7721	-0.1983	2.8	0.9999	1.8321	-0.1865
1.0	0.8427	0.9461	-0.3374	3.0	1.0000	1.8487	-0.1196
1.2	0.9103	1.1080	-0.4205	3.2	1.0000	1.8514	-0.0553
1.4	0.9523	1.2562	-0.4620	3.4	1.0000	1.8419	0.0045
1.6	0.9763	1.3892	-0.4717	3.6	1.0000	1.8219	0.0580
1.8	0.9891	1.5058	-0.4568	3.8	1.0000	1.7934	0.1038
2.0	0.9953	1.6054	-0.4230	4.0	1.0000	1.7582	0.1410