Total Time: 60 Minutes Maximum Points: 26

Question # 1 (Propositional Logic and Rules of Inference)

[5x2=10 points]

(i) Consider the following propositions i, j, k & I:

i: Hashim is a cricketer.k: Hashim is an early riser.j: Hashim is determined.l: Hashim likes banana.

Express these statements using the propositions i, j, k, and I together with logical connectives (including negations).

(a) "If Hashim is a cricketer, then he is determined." Solution: $i \rightarrow j$ (b) "If Hashim is an early riser then he does not like banana." Solution: $k \rightarrow \neg l$ (c) "If Hashim is determined then he is an early riser." Solution: $j \rightarrow k$

(ii) Write in English, the Converse of statement (a), Contrapositive of statement (b) & Inverse of statement (c) of part (i) above.

Solution:

Converse(a): If Hashim is determined then he is a cricketer.

Contrapositive(b): If Hashim like banana then he is not an early riser. Inverse(c): If Hashim is not determined then he is not an early riser.

(iii) Using the premises(statements) from part(i), apply rules of inference to obtain conclusion(s) from these premises.

The premises are: (a) $i \rightarrow j$

- (b) $k \rightarrow \neg l$
- (c) $j \rightarrow k$

 $\begin{array}{ll} \mbox{(i) i} \rightarrow \mbox{j} & \mbox{premise (a)} \\ \mbox{(ii) j} \rightarrow \mbox{k} & \mbox{premise (c)} \\ \end{array}$

(iii) $i \rightarrow k$ Hypothetical Syllogism (i) & (ii)

(iv) $k \rightarrow \neg l$ premise (b)

(v) $i \rightarrow \neg I$ Hypothetical Syllogism (iii) & (iv)

Conclusion: $i \rightarrow \neg I$: If Hashim is a cricketer then he does not like banana.

(iv) Prove or disprove the following logical equivalence using the laws of logic:

$$\neg$$
 (a \leftrightarrow b) and a \leftrightarrow \neg b

SOLUTION: Replace "P" with "a" and "Q" with "b"

Solution:

(v) Let \mathbf{a} , \mathbf{b} and \mathbf{c} be statements. Determine, using a truth table, whether $(\mathbf{a} \mathbf{v} \mathbf{b}) \wedge (\mathbf{b} \mathbf{v} \mathbf{c}) \wedge (\mathbf{c} \mathbf{v} \mathbf{a})$ and $(\mathbf{a} \wedge \mathbf{b}) \mathbf{v} (\mathbf{b} \wedge \mathbf{c}) \mathbf{v} (\mathbf{c} \wedge \mathbf{a})$ is logically equivalent or not. Solution:

а	b	С	aVb	b V c	сVа	$(a \lor b) \land (b \lor c) \land (c \lor a)$	a∧b	bΛc	сла	$(a \land b) \lor (b \land c) \lor (c \land a)$
T	T	Т	Т	Т	T	T	T	T	T	T
T	T	F	T	Т	T	T	T	F	F	T
T	F	Т	T	Т	T	T	F	F	T	T
T	F	F	T	F	T	F	F	F	F	F
F	Т	Т	T	T	T	T	F	T	F	T
F	T	F	T	Т	F	F	F	F	F	F
F	F	Т	F	Т	T	F	F	F	F	F
F	F	F	F	F	F	F	F	F	F	F

Question # 2 (Predicate, Quantifiers and Set theory)

[4x2= 08 points]

(i) Transform the following sentence into an expression using predicate logic and quantifiers, where:

$$C(x,y) = x can do y$$
.

$$D(x,y) = x \text{ does } y$$
.

$$T(x,y) = x \text{ disturbs } y.$$

"He who can, does. He who cannot, disturbs all others".

Solution:

$$\forall x \forall y [C(x,y) \rightarrow D(x,y)] \land \forall x \forall y [\neg C(x,y) \rightarrow T(x,y)]$$

- (ii) Suppose **R** (**x**, **y**) is the predicate "**x** plays **y**", the universe of discourse for **x** is "the set of students in your discrete class", and the universe of discourse for **y** is "the set of all sports." Write the following predicate expressions in good English without using variables in your answers:
- (a) $\exists x \forall y R (x, y)$ Solution: There exist some students in discrete class who play all sports.
- (b) $\forall x \exists y R (x, y)$ Solution: All the students in the class play some sports (or at least one sport).
- (iii) FAST-NUCES, Department of Computer Science received **400** applications. Suppose that **250** majored in Computer Science, **123** majored in Software Engineering, and **64** majored in both. How many of these applicants majored either in Computer Science or in Software Engineering? Draw the Venn diagram.

Solution:

Let, A: Applicants majored in Computer Science B: Applicants majored in Software Engineering Now.

$$|A \cup B| = |A| + |B| - |A \cap B| = 250 + 123 - 64 = 309$$

(iv) Let **A** and **B** be two sets. Prove or disprove using set identities that $A - (A \cap B) = (A - B)$. Solution:

$$= A \cap (A \cap B)^{c}$$

$$= A \cap (A^{c} \cup B^{c})$$

$$= (A \cap A^{c}) \cup (A \cap B^{c})$$

$$= \emptyset \cup (A \cap B^{c})$$

$$= A - B \text{ Hence Proved}$$

$$A - B = A \cap B^{c}$$

$$Complement Law$$

$$A - B = A \cap B^{c}$$

Question #3 (Functions and Relations)

[4x2=08 points]

- (i) Abdul Karim is teaching Relational Algebra to Database Systems students. Before he starts teaching, he wants to check the basic concepts of relation of his students. He has designed a simple quiz as shown below: Find a matrix that represents the given relation. Use elements in the order given to determine rows and columns of the matrix.
- (a) **R1** on $\{-2, -1, 0, 1, 2\}$ where a R b means $a^2 = b^2$
- (b) **R2** on {1, 2, 3, 4, 6} where a R b means a | b.

Solution:

\[\begin{pmatrix} 1 & 0 & 0 & 0 & 1 \ 0 & 1 & 0 & 1 & 0 \ 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix} \]

•	Colution.												
	Γ 1	1	1	1	17								
	0	1	0	1	1								
	0	0	1	0	1								
	0	1 0 0	0	1	0								
	_												

Solution

Abdullah is a 2nd semester student. He missed the lectures of the topic "Functions". He asked his friend to help him in understanding the topic and asked the questions given below (ii-iv):

(ii) Define **a**: $R \rightarrow Z$ by the rule a(x) = [2x - 1]. Is "a" one-to-one function (injective) **OR** onto function (surjective)? Solution:

Yes, Function a(x) is Surjective. Because g(0.3) = g(0.4) = 1.

(iii) Suppose **b**: $P \rightarrow Q$ and **a**: $Q \rightarrow R$ where $P = \{1, 2, 3, 4\}$, $Q = \{f, g, h\}$, $R = \{2, 7, 10\}$. "**a**" and "**b**" are defined by **a** = $\{(f, 10), (g, 7), (h, 2)\}$ and **b** = $\{(1, g), (2, f), (3, f), (4, g)\}$. Find **a** ° **b** and **b** ° **a** (if the composition does not exist, give reason).

Solution:

a ° b:
$$a(1) = 7$$
, $a(2) = 10$, $a(3) = 10$, $a(4) = 7$.

b o a is not defined, because the range of a is not a subset of the domain of b.

(iv) Are the functions **a** and **b** in part (iii) invertible? If yes find **a**⁻¹ and **b**⁻¹ or if not, give reason in one sentence. Solution:

a is invertible since it's a bijective function. $a^{-1}(10) = f$, $a^{-1}(7) = g$, $a^{-1}(2) = h$.

b is not invertible since it's not a bijective function.