本章重点

导数 — 描述函数变化快慢 微分 — 描述函数变化程度 微分学 — 基本概念是导数与微分

微分学

基本概念是导数与微分

中值定理

罗尔、拉格朗日、柯西

导 数

描述函数变化快慢

应用一

研究函数性质 及曲线性态

微分

描述函数变化程度

应用二

利用导数解决实际问题

目录 CONTENTS

第一节 导数与微分的概念

第二节 导数与微分的运算性质

第三节 隐函数及由参数方程所确定的

函数的导数 相关变化率

第四节 高阶导数

第五节 微分中值定理与泰勒公式

第六节 洛必达法则

第七节 函数及其图像性态的研究

第1.1节 导数概念

一、引例

二、导数的定义

三、由定义求导数举例

四、导数的几何意义

五、可导与连续的关系

一、引例

1. 变速直线运动的速度

设描述质点运动位置的函数为

$$s = f(t)$$

则 t_0 到t的平均速度为

$$\bar{v} = \frac{f(t) - f(t_0)}{t - t_0}$$

而在 t_0 时刻的瞬时速度为

$$\bar{v} = \lim_{t \to t_0} \frac{f(t) - f(t_0)}{t - t_0}$$

自由落体运动

2. 曲线的切线

曲线C: y = f(x) 在 P_0 点处的切线——割线 PP_0 的极限位置 P_0T

设
$$P_0(x_0, y_0)$$
, $P(x, y)$.

$$k_{\text{Blg}} = \frac{f(x) - f(x_0)}{x - x_0}$$

$$P \xrightarrow{\text{沿曲线}C} P_0$$
, $x \rightarrow x_0$,

$$k_{\text{IJ}} = \lim_{x \to 0} \frac{f(x) - f(x_0)}{x - x_0}$$
.

两个问题的共性: 所求量为函数增量与自变量增量之比的极限.

瞬时速度

$$\lim_{x \to x_0} \frac{f(t) - f(t_0)}{t - t_0}$$

$$f(x) - f(x_0)$$

切线斜率
$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

类似问题还有: 加速度

角速度

线密度

变化率问

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

$$\Delta x = x - x_0$$

$$\Delta y = f(x) - f(x_0)$$

$$= \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

二、导数的定义

1. 函数在一点处的导数

设函数 y = f(x)在点 x_0 的某个邻域内有定义, 当自变量x在 x_0 处取得增量 Δx (点 $x_0 + \Delta x$ 仍在该邻域内)时,

- (1) 因变量的增量 $\Delta y = f(x_0 + \Delta x) f(x_0)$,
- (2) 两增量的比值 $\frac{\Delta y}{\Delta x} = \frac{f(x_0 + \Delta x) f(x_0)}{\Delta x}$,
- (3) 极限 $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$ 存在,

则称函数 y = f(x)在点 x_0 处可导,或在点 x_0 导数存在.

并称这个极限为函数 y = f(x)在点 x_0 处的导数, 记为 $f'(x_0)$, 即

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

也可记作
$$y' \mid_{x=x_0}$$
, $\frac{\mathrm{d}y}{\mathrm{d}x} \mid_{x=x_0}$, 或 $\frac{\mathrm{d}f(x)}{\mathrm{d}x} \mid_{x=x_0}$.

- 关于导数的几点说明:
- (1)当极限 1 式不存在时,则称f(x)在 x_0 处不可导或导数不存在.
- 特别地, 当 1 式的极限为 ∞ 时, 也称f(x)在 x_0 处的导数为无穷大.

(2)在利用导数的定义证题或计算时,要注意导数定义可以写成 多种形式:

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x},$$

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h},$$

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

特别地,
$$f'(0) = \lim_{x \to x_0} \frac{f(x) - f(0)}{x}$$
.

(3) 导函数(瞬时变化率)是函数平均变化率的逼近函数.

$$f'(x_0) = \lim_{\Delta x \to \infty} \frac{\Delta y}{\Delta x}$$
: x_0 处的瞬时变化率

 $\frac{\Delta y}{\Delta x}$: y在以 x_0 和 x_0 + Δx 为端点的区间上的平均变化率.

2. 单侧导数

(1)左导数:

$$f'_{-}(x_0) = \lim_{h \to 0^{-}} \frac{f(x_0 + h) - f(x_0)}{h}$$

(2)右导数:

$$f'_{+}(x_0) = \lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h}$$

(3)单侧导数:左导数和右导数统称为单侧导数.

例1 讨论函数 f(x)=|x| 在x=0 处的可导性.

$$\text{ if } f'(0) = \lim_{h \to 0} \frac{f(0+h)-f(0)}{h} = \lim_{h \to 0} \frac{|h|}{h},$$

$$f'_{+}(0) = \lim_{h \to 0^{+}} \frac{h}{h} = 1,$$

$$f'_{-}(0) = \lim_{h \to 0^{-}} \frac{-h}{h} = -1.$$

即
$$f'_{+}(0) \neq f'_{-}(0)$$
, :函数 $y = f(x)$ 在 $x = 0$ 点不可导.

3. 导函数

- (1) 如果函数 y = f(x)在开区间I内的每点处都可导,就称函数 f(x)在开区间I内可导。
- (2) 如果f(x)在开区间(a,b)内可导,且 $f'_{+}(a)$ 及 $f'_{-}(b)$ 都存在,就说f(x)在闭区间[a,b]上可导.

(3) 对于 $\forall x \in I$, 都对应着 f(x)的一个确定的导数值. 这个函数叫做原来函数 f(x)的导函数.

记作
$$y', f'(x), \frac{\mathrm{d}y}{\mathrm{d}x}$$
或 $\frac{\mathrm{d}f(x)}{\mathrm{d}x}$.

即
$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

或
$$f'(x)$$
= $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$.

显然

$$f'(x_0) = f'(x) \Big|_{x=x_0}$$

 $f'(x_0) \neq [f(x_0)]'$

三、由定义求导数

步骤: (1)求增量
$$\Delta y = f(x + \Delta x) - f(x)$$
;

(2)算比值
$$\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}$$
;

$$(2) 求极限 f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}.$$

例1 求函数 f(x) = C(C为常数)的导数.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{C - C}{h} = 0.$$

即
$$(C)'=0$$
.

例2 求函数 $f'(x) = x^{\mu} (\mu \in \mathbf{R})$ 的导数.

解 设x在幂函数 x^{μ} 的定义域内, 且 $x \neq 0$.

$$f'(x) = \lim_{h \to 0} \frac{(x+h)^{\mu} - x^{\mu}}{h} = x^{\mu-1} \lim_{h \to 0} \frac{\left(1 + \frac{h}{x}\right)^{\mu} - 1}{\frac{h}{x}} = \mu x^{\mu-1}.$$

即
$$(x^{\mu})' = \mu x^{\mu - 1}$$
. (*)

对x = 0,经分析可知,(*)式两端相等.

故
$$(x^{\mu})' = \mu x^{\mu-1} (\mu \in \mathbf{R}).$$

$$\lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{x} = \alpha(\alpha \in \mathbf{R})$$

例3 求下列函数的导数. $(x^{\mu})' = \mu x^{\mu-1}$

$$(x^{\mu})' = \mu x^{\mu - 1}$$

(1)
$$y = x^2$$
 $y' = 2x^{2-1} = 2x$

(2)
$$y = \frac{1}{x}$$
 $= x^{-1}$ $y' = (-1)x^{-1-1} = -x^{-2} = -\frac{1}{x^2}$

(3)
$$y = \sqrt{x}$$
 $= x^{\frac{1}{2}}$ $y' = \frac{1}{2}x^{\frac{1}{2}-1} = \frac{1}{2\sqrt{x}}$

(4)
$$y = \frac{1}{\sqrt[3]{x^2}} = x^{-\frac{2}{3}}$$
 $y' = -\frac{2}{3}x^{-\frac{2}{3}-1} = -\frac{2}{3}x^{-\frac{5}{3}}$

例4 求函数 $f(x) = \sin x$ 的导数.

$$(\sin x)' = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h} = \lim_{h \to 0} \cos(x + \frac{h}{2}) \cdot \frac{\sin \frac{h}{2}}{\frac{h}{2}} = \cos x.$$

即
$$(\sin x)' = \cos x$$
.

同理可得
$$(\cos x)' = -\sin x$$
.

例5 求函数 $f(x)=a^{x}$ $(a>0, a\neq 1)$ 的导数.

$$\mathbf{\hat{\mu}} \qquad (a^x)' = \lim_{h \to 0} \frac{a^{x+h} - a^x}{h} = \lim_{h \to 0} \frac{a^x (a^h - 1)}{h} = a^x \ln a.$$

即
$$(a^x)' = a^x \ln a$$
. 特别地 $(e^x)' = e^x$.

 $x \rightarrow 0$ 时.

求函数 $f(x) = \log_a x(a > 0, a \neq 1)$ 的导数.

$$f'(x) = \lim_{h \to 0} \frac{\log_a(x+h) - \log_a x}{h}$$

$$= \lim_{h \to 0} \frac{\log_a \left(1 + \frac{h}{x}\right)}{\frac{h}{x}} \cdot \frac{1}{x} = \frac{1}{x} \lim_{h \to 0} \log_a \left(1 + \frac{h}{x}\right)^{\frac{x}{h}} = \frac{1}{x} \log_a e.$$

即
$$(\log_a x)' = \frac{1}{x}\log_a e$$
. 特别地, $(\ln x)' = \frac{1}{x}$.

特别地,
$$(\ln x)' = \frac{1}{x}$$
.

四、导数的几何意义与物理意义

1. 几何意义

$$k = f'(x_0) = \tan \alpha, (\alpha$$
为倾角)

表示曲线 y = f(x)在点

 $M(x_0, f(x_0))$ 处的切线的

斜率.

切线方程为
$$y - y_0 = f'(x_0)(x - x_0)$$

法线方程为
$$y-y_0=-\frac{1}{f'(x_0)}(x-x_0).$$

例7 求等边双曲线 $y = \frac{1}{x}$ 在点 $\left(\frac{1}{2}, 2\right)$ 处的切线的斜率,并写出在该

点处的切线方程和法线方程.

$$\mathbf{p} \quad \because y = \frac{1}{x} = x^{-1}, \quad y' = (x^{-1})' = -x^{-2} = -\frac{1}{x^2},$$

$$\therefore k = y' \Big|_{x = \frac{1}{2}} = -\frac{1}{x^2} \Big|_{x = \frac{1}{2}} = -4.$$

故所求

切线方程为
$$y-2=-4\left(x-\frac{1}{2}\right)$$
, 即 $4x+y-4=0$.

法线方程为
$$y-2=\frac{1}{4}\left(x-\frac{1}{2}\right)$$
, 即2 $x-8y+15=0$.

例8 求曲线 $y = x^{\frac{3}{2}}$ 通过点(0, -4)的切线方程.

解 设切点为 (x_0, y_0) ,则切线的斜率为

$$\therefore k = f'(x_0) = \frac{3}{2} x^{\frac{1}{2}} \Big|_{x=x_0} = \frac{3}{2} \sqrt{x_0}.$$

于是所求切线方程可设为 $y-y_0=\frac{3}{2}\sqrt{x_0}(x-x_0)$,

由
$$y_0 = x_0^{\frac{3}{2}}$$
,以及点 $(0, -4)$ 在切线上,可得 $x_0 = 4$, $y_0 = 8$.

故所求的切线方程为3x - y - 4 = 0.

2. 物理意义

变速直线运动: 路程对时间的导数为物体的瞬时速度.

$$v(t) = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \frac{\mathrm{d}s}{\mathrm{d}t}.$$

交流电路:电量对时间的导数为电流强度.

$$i(t) = \lim_{\Delta t \to 0} \frac{\Delta q}{\Delta t} = \frac{\mathrm{d}q}{\mathrm{d}t}.$$

非均匀的物体:质量对长度(面积,体积)的导数为物体的线(面,体)密度.

一般地:非均匀变化量的瞬时变化率.

五、可导与连续的关系

定理 凡可导函数都是连续函数.

证 设函数 f(x)在点 x_0 可导, 即 $f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$,

则
$$\frac{\Delta y}{\Delta x} = f'(x_0) + \alpha$$
, 其中 $\lim_{\Delta x \to 0} \alpha = 0$,

于是
$$\Delta y = f'(x_0)\Delta x + \alpha \Delta x \xrightarrow{\Delta x \to 0} 0.$$

即 $\lim_{\Delta x \to 0} \Delta y = 0$, 故函数 f(x) 在点 x_0 连续.

思考 可导 💳 🔭 连续

结论:连续未必可导.例如,y = |x|在x = 0处连续,但不可导.

例9 讨论函数 $y = \sqrt[3]{x}$ 在x = 0处的连续性和可导性.

 $\lim_{x \to 0} y = \lim_{x \to 0} \sqrt[3]{x} = 0 = f(0),$

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x}$$
$$= \lim_{x \to 0} \frac{\sqrt[3]{x}}{x} = \lim_{x \to 0} \frac{1}{\sqrt[3]{x^2}} = +\infty.$$

∴ 函数 $y = \sqrt[3]{x}$ 在x = 0连续但不可导.

本题中, 也称 $y = \sqrt[3]{x}$ 在 x = 0 处有无穷大导数. 在图形中表现为它在原点具有垂直的切线 x = 0.

例10 讨论函数
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, x \neq 0, \\ 0, x = 0 \end{cases}$$
 在 $x = 0$ 处的连续性和可导性.

$$: \lim_{x \to 0} f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x}$$

$$= \lim_{x \to 0} \frac{x^2 \sin \frac{1}{x} - 0}{x} = \lim_{x \to 0} x \sin \frac{1}{x} = 0,$$

 $\therefore f(x)$ 在x=0处可导,因而f(x)在x=0处也连续.

第1.2节 函数的微分

一、微分的定义

二、可微的条件

三、微分的几何意义

四、微分公式与微分运算法则

五、微分在近似计算中的应用

一、微分的定义

正方形金属薄片受热后面积的改变量.

设边长由 x_0 变到 $x_0 + \Delta x_t$

: 正方形面积
$$A = x_0^2$$
,

- (1): Δx 的线性函数,且为 ΔA 的主要部分;
- (2): Δx 的高阶无穷小, 当 $|\Delta x|$ 很小时可忽略.

再例如,

设函数 $y = x^3$ 在点 x_0 处的改变量为 Δx 时,求函数的改变量 Δy .

$$\Delta y = (x_0 + \Delta x)^3 - x_0^3$$

$$= 3x_0^2 \cdot \Delta x + 3x_0 \cdot (\Delta x)^2 + (\Delta x)^3.$$
(1)

当 $|\Delta x|$ 很小时,(2)是 Δx 的高阶无穷小 $o(\Delta x)$,

 $\Delta y \approx 3x_0^2 \cdot \Delta x$. 既容易计算又是较好的近似值

问题: 这个线性函数(改变量的主要部分)是否所有函数的改变量都有?

它是什么?如何求?

微分定义

设函数y = f(x)在某区间内有定义, x_0 及 $x_0 + \Delta x$ 在这区间内, 如果

$$\Delta y = f(x_0 + \Delta x) - f(x_0) = A \cdot \Delta x + o(\Delta x)$$

成立(其中A是与 Δx 无关的常数),则称函数y = f(x)在点 x_0 可微,并且称 $A \cdot \Delta x$ 为函数y = f(x)在点 x_0 相应于自变量增量 Δx 的微分,记作d $y|_{x=x_0}$ 或d $f(x_0)$,即d $y|_{x=x_0} = A \cdot \Delta x$.

微分dy叫做函数增量 Δy 的线性主部.(微分的实质)

一、可微的条件

定理 函数f(x)在点 x_0 可微的充要条件是函数f(x)在点 x_0 处可导,

且
$$A = f'(x_0)$$
.

证 必要性.

- : f(x)在点 x_0 可微,
- $\therefore \Delta y = A \cdot \Delta x + o(\Delta x),$
- $\therefore \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = A + \lim_{\Delta x \to 0} \frac{o(\Delta x)}{\Delta x} = A$
- $\therefore f(x) 在 x_0 可导, 且 A = f'(x_0).$

充分性.

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

$$\Delta y$$

$$\frac{\Delta y}{\Delta x} = f'(x_0) + \alpha \left(\lim_{\Delta x \to 0} \alpha = 0 \right)$$

$$\Delta y = f'(x_0) \cdot \Delta x + \alpha \cdot (\Delta x)$$

线性主部 高阶无穷小

:: f(x)在点 x_0 可微.

由上述可知:

- (1) 可导 \Leftrightarrow 可微, 且d $y = f'(x_0)\Delta x$.
- (2) $\Delta y \mathrm{d}y = o(\Delta x)$ 是比 Δx 高阶无穷小,即 $\lim_{\Delta x \to 0} \frac{\Delta y \mathrm{d}y}{\Delta x} = 0$.
- (3) 当 $f'(x_0) \neq 0$ 时, dy与 Δy 是等价无穷小,即 $\lim_{\Delta x \to 0} \frac{\Delta y}{dy} = 1$.
- (4) 当 $|\Delta x|$ 很小时, dy是 Δy 的线性主部,即 $\Delta y \approx dy$.

$$\Delta y = dy + o(dy) \Leftrightarrow \lim_{\Delta x \to 0} \frac{\Delta y}{dy} = 1.$$

(5)有限增量公式 $f(x_0 + \Delta x) - f(x_0) \approx f'(x_0) \Delta x$.

例1 求函数 $y = x^3$ 当x = 2, $\Delta x = 0.02$ 时的微分.

$$\therefore dy \begin{vmatrix} x = 2 \\ \Delta x = 0.02 \end{vmatrix} = 3x^2 \Delta x \begin{vmatrix} x = 2 \\ \Delta x = 0.02 \end{vmatrix} = 0.24.$$

通常把自变量x的增量 Δx 称为自变量的微分,记作dx,即d $x = \Delta x$.

$$\therefore dy = f'(x)dx. \longrightarrow \frac{dy}{dx} = f'(x).$$

即函数的微分dy与自变量的微分dx之商等于该函数的导数. 导数也叫"微商".

二、微分的几何意义

几何意义:(如图)

当 Δy 是曲线的纵坐标增量时,dy就是切线纵坐标对应的增量. 当 $|\Delta x|$ 很小时,在点M的附近,切线段MP可近似代替曲线段MN.

在局部范围内,用线性函数近似代替非线性函数

称为非线性函数的局部线性化

三、微分在近似计算中的应用

1. 函数的近似计算

利用 Δy ≈ dy, 可得如下公式:

(1)
$$f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \cdot \Delta x$$
 (当|\Delta x|很小时).

(2)
$$f(x) \approx f(x_0) + f'(x_0) \cdot (x - x_0)$$
 (当 $|x - x_0|$ 很小时).

(3)
$$f(x) \approx f(0) + f'(0) \cdot x$$
 (当|x|很小时).

例7 求sin29°的近似值.

解

设
$$f(x) = \sin x$$
,

$$: 29^{\circ} = 30^{\circ} - 1^{\circ} = \frac{\pi}{6} - \frac{\pi}{180},$$
利用 $f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \cdot \Delta x$

$$\therefore \sin 29^\circ = \sin\left(\frac{\pi}{6} - \frac{\pi}{180}\right) \approx \sin\frac{\pi}{6} + \cos\frac{\pi}{6} \cdot \left(-\frac{\pi}{180}\right)$$

$$=\frac{1}{2}+\frac{\sqrt{3}}{2}\cdot(-0.0175)\approx 0.485.$$

例8 计算 $\sqrt[5]{245}$ 的近似值.

$$245 = 243 + 2 = 3^5 + 2 = 3^5 \left(1 + \frac{2}{3^5}\right),$$

$$\therefore \sqrt[5]{245} = \sqrt[5]{243 + 2}$$

$$= 3\left(1 + \frac{2}{243}\right)^{\frac{1}{5}}$$

$$\approx 3\left(1 + \frac{1}{5} \cdot \frac{2}{243}\right)$$

$$= 3.0049 \approx 3$$

设
$$f(x) = (1+x)^{\alpha}$$

则由
$$f(x) \approx f(0) + f'(0) \cdot x$$

可得
$$(1+x)^{\alpha} \approx 1 + \alpha x$$

*2. 误差估计

某个量的精确值为A, 其近似值为a, 称|A - a|为a的绝对误差.

称
$$\frac{|A-a|}{|a|}$$
为 a 的相对误差.

 $\Xi|A-a| \leq \delta_A$,则称 δ_A 为测量A的绝对误差限,

称
$$\frac{\delta_A}{|a|}$$
为测量 A 的相对误差限.

误差传递公式:

若直接测量某量得x, 已知测量误差限为 δ_x , 按公式y = f(x)计算y值时的误差

$$|\Delta y| \approx |\mathrm{d}y| = |f'(x)| \cdot |\Delta x| \leq |f'(x)| \cdot \delta_x$$

故y的绝对误差限约为 $\delta_y \approx |f'(x)| \cdot \delta_x$,

相对误差限约为
$$\frac{\delta_y}{|y|} \approx \left| \frac{f'(x)}{f(x)} \right| \cdot \delta_x$$
.

例9 设测得圆钢截面的直径D = 60.03mm, 测量D的绝对误差限 $\delta_D = 0.05$ mm, 欲利用公式 $A = \frac{\pi}{4}D^2$ 计算圆钢截面积, 试估计面积的误差.

解 计算A的绝对误差限约为

$$\delta_A = |A'| \cdot \delta_D = \frac{\pi}{2} D \cdot \delta_D = \frac{\pi}{2} \times 60.03 \times 0.05 \approx 4.712 \text{(mm)}$$

A的相对误差限约为

$$\frac{\delta_A}{|A|} = \frac{\frac{\pi}{2}D\delta_D}{\frac{\pi}{4}D^2} = 2\frac{\delta_D}{D} = 2 \times \frac{0.05}{60.0} = 0.17\%$$