

IS221: Project Management

WEEK-03: Project Selection

Reda M. Hussien

Table of Contents

- 1 Numeric Selection Models
 - Payback Period
 - Return On Investment (IOR)
 - Discounted Cash-Flow (DCF)
 - Net-Present Value (NPV)
 - Internal Rate of Return (IRR)
- 2 Nonnumeric Selection Models
 - Scoring Models
- 3 References

Project Selection Models

- The selection of the right project for future investment is a crucial decision for the long-term survival of your company.
- The selection of the wrong project may well precipitate project failure leading to company liquidation.
- A numeric model: is usually financially focused and quantifies the project in terms of either time to repay the investment (payback or return on investment)
- nonnumeric models: look at a much wider view of the project considering items from market share to environmental issues.
- The main purpose of these models is to aid decision-making leading to project selection.

Reda M. Hussien IS221: Project Management September 17, 2022 2 / 16

Project Selection :points to consider

- Realism
- Capability
- ease of use
- flexibility and
- low cost.

Project Selection Models

The following sub-headings indicate the type of questions to ask:

- Will the project maximize profits?
- Will the project maximize the utilization of the workforce?
- Will the project maintain market share, increase market share or consolidate market position?
- Will the project enable the company to enter new markets?
- Will the project improve the company's image?
- Will the project satisfy the needs of the stakeholders and political aspirations?
- Is the project's risk and uncertainty acceptable?
- Is the project's scope consistent with company expertise?

Payback Period

- The payback period for a project is the initial fixed investment in the project divided by the estimated annual cash inflows from the project.
- The ratio of these quantities is the number of years required for the project to repay its initiate fixed investment.

Example

Assume a project costs \$100,000 to implement and has annual net cash inflows of \$25.000.

Then Payback period = \$100,000/\$25,000 = 4 years.

Return on Investment (ROI)

- technique which does look at the whole project is return on investment (ROI).
- This method first calculates the average annual profit, which is simply the project outlay deducted from the total gains, divided by the number of years the investment will run.
- The profit is then converted into a percentage of the total outlay using the following equations:

$$\label{eq:avarage_annual} \begin{aligned} \text{Avarage Annual profit} &= \frac{\text{Total Gian} - \text{Total Outlay}}{\text{No. of Years}} \\ \text{Return on Investment (ROI)} &= \frac{\text{Avarage Annual profit} \times 100}{\text{Original Investment}} \end{aligned}$$

Reda M. Hussien IS221: Project Management September 17, 2022 6 / 16

Return on Investment (ROI)

Machine selection Example

Year	Cash-flow Machine A	(\$35,000)	
0	(\$35,000)		
1	\$20,000	\$10,000	
2	\$15,000	\$10,000	
3	\$10,000	\$15,000	
4	\$10,000	\$20,000	
Total gains	\$55,000	\$55,000	

$$Profit(A) = $55,000 - $35,000 = $20000$$

Annual Profit = \$20.000/4 = \$5,000per year (same for both machines)

Return on Investment (ROI) = $(\$5.000 \times 100)/(\$35,000) = 14\%$

Return on Investment (ROI)

- although machine A and machine B have different cash-flows, their profit and return on investment come out the same.
- To address this short-coming of both return on investment and payback period, the time value of money must be considered using a discounted cash-flow technique.

Discounted Cash-Flow (DCF)

 The discounted cash-flow (DCF) technique takes into consideration the time value of money

Example

a \$100 today will not have the same worth or buying power as a \$100 this time next year.

- There are two basic DCF techniques which can model this effect,
 - 1 Net-Present-Value (NPV) and
 - 2 Internal-Rate of Return (IRR).

Net-Present Value (NPV)

To assist the understanding of NPV let us first look at compound interest which is commonly used in saving accounts.

Example

If we invest \$100 at 20% interest, after one year it will be worth \$120 and after two years compounded it will be worth \$144.

Now NPV is the reverse of compound interest.

Net-Present Value (NPV)

Net-Present value (NPV)

If you were offered \$120 one year from now and the inflation and interest rate was 20%, working backwards its value in todays terms would be \$100. This is called the present value, and when the cash-flow over a number of years is combined in this manner the total figure is called the **Net-Present value (NPV)**.

If NPV>0 Accept the project

Net-Present Value (NPV)

Cash-out Flow

$$NPV = -10000 + \frac{2500}{(1+0.06)} + \frac{4000}{(1+0.06)^2} + \frac{5000}{(1+0.06)^3} + \frac{3000}{(1+0.06)^4} + \frac{1000}{(1+0.06)^5} = 3239$$

0.06=> Discount Rate

NPV>0 Accept Project

Internal Rate of Return (IRR)

The Internal Rate of Return (IRR) is the discount rate that makes the net present value (NPV) of a project zero.

$$NPV = -100 + \frac{130}{(1+R)} = 0 \quad R = 0.3$$

If R>r Accept the project

Nonnumeric models-Scoring Models

- a useful tool to help put things into a more clear, objective view To create a weighted scoring model, the following steps are applied:
 - Identify the criteria important to the decision process
 - Assign a weight to each criterion based on its relative importance in the decision (ideally, so they all add up to 100%)
 - Assign numerical scores to each criterion for all of the options being considered.
 - Calculate the weighted scores by multiplying the weight for each criterion by its score and adding the resulting values.

Nonnumeric models-Scoring Models

Criteria	Weight	Requirement score			
		Α	В	С	
х	50%				
Υ	30%				
z	20%				
Weighted Scores	100%				

Criteria	Weight	Requirement score		
		Α	В	С
х	50%	70	45	40
Υ	30%	40	85	30
z	20%	40	80	50
Weighted Scores	100%	55	64	39

References

R. Burke, *Project Management: Planning and Control Techniques.* wiley, 5th ed., 2013.

S. J. M. Jr., *Project Management in Practice*. wiley, 4th ed., 2010.

C. Petersen, *The Practical Guide to Project Management*. bookboon, 2017.

