Activité 4

Détermination de la concentration d'une solution

Doc. 1 Dosage et concentration d'une solution

Une solution de permanganate de potassium est une solution colorée grâce à la présence des ions permanganate MnO₄-.

Pour déterminer la valeur inconnue de la concentration massique en soluté $C_{\text{m,inconnue}}$ d'une solution de permanganate de potassium ($K^+_{(aq)} + MnO^-_{4(aq)}$), on peut la comparer à des solutions de concentrations connues. Pour cela, on procède en trois étapes :

- on prépare une **échelle de teintes**, c'est-à-dire une collection de solutions étalons dont on connaît les concentrations précisément ;
- on mesure ensuite une grandeur physique qui ne dépend que de la concentration. Dans le cas de solutions colorées, on mesure leur **absorbance**. L'absorbance A d'une solution mesure la capacité de cette solution à absorber la lumière qui la traverse. Cette absorbance est mesurée avec un spectrophotomètre. L'absorbance dépend de plusieurs facteurs : de la nature du soluté, de l'épaisseur de la solution, de la concentration en soluté de la solution et de la longueur d'onde λ de la lumière qui traverse cette solution.
- on compare l'absorbance de la solution de concentration inconnue afin de déterminer sa concentration massique.

Doc. 2 Préparation d'une échelle de teinte

À partir d'une solution mère de permanganate de potassium de concentration massique en soluté $C_{m,mère} = 0,080 \text{ g} \cdot \text{L}^{-1}$, préparer les solutions diluées suivantes (voir activité 2).

Concentration massique en soluté solution fille	Volume de solution mère à prélever	Volume de la solution fille obtenue
$C_{m,1} = 0.040 \text{ g} \cdot \text{L}^{-1}$	V _{mère,1} = 10,00 mL	
$C_{m,2} = 0.016 \text{ g} \cdot \text{L}^{-1}$		V _{fille,2} = 50,00 mL
$C_{m,3} = 0,0080 \text{ g} \cdot \text{L}^{-1}$	V _{mère,3} = 10,00 mL	
$C_{m,4} = 0,0040 \text{ g} \cdot \text{L}^{-1}$	V _{mère,4} = 5,00 mL	
$C_{m,5} = 0,0020 \text{ g} \cdot \text{L}^{-1}$		V _{fille,5} = 200,00 mL

Doc. 3 Mesure de l'absorbance

Avec un spectrophotomètre, mesurer l'absorbance des 6 solutions précédentes puis l'absorbance de la solution de concentration massique inconnue à une longueur d'onde $\lambda = 525$ nm. Puis tracer sur papier millimétré la courbe $A = f(C_m)$.

Concentration massique des solutions (g·L ⁻¹)	0,080	0,040	0,016	0,0080	0,0040	0,0020	$C_{m,inconnue}$
Absorbance							

Questions

Raisonner

Analyser

Analyser Analyser

Raisonner - Raisonner

- 1 Doc. 3 Lorsqu'on étudie la variation de l'absorbance d'une solution en fonction de la concentration du soluté, quels sont les autres facteurs qui ne doivent pas varier ?
- 2 Doc. 2 Calculer les volumes des solutions mères et filles manquantes.
- 3 Doc. 3 Quel type de courbe obtient-on lorsqu'on trace $A = f(C_m)$?
- \bigcirc Doc. 3 D'après la courbe, que peut-on dire de A en fonction de C_m ?
- $\boxed{5}$ Doc. 3 Déterminer graphiquement la concentration massique $C_{m,\text{inconnue}}$