Modulazioni analogiche

MODULA ZIONE	BANDA	INDICE di MODULAZIONE	PRESTAZIONI
AM-classica	$B_T = 2B_m$	$\mu = k_a m(t) _{max}$	$S_u/N_u = [k_a^2 P_m / (1 + k_a^2 P_m)] (S/N)_b$
AM-DSB	$B_T = 2B_m$		$S_{u}/N_{u} = (S/N)_{b}$
AM-SSB	$B_T = B_m$		$S_{u}/N_{u} = (S/N)_{b}$
FM	$B_T = 2B_m(\beta{+}1)$	$\begin{split} \beta &= \Delta f_{max}/B_m \\ \Delta f_{max} &= k_f m(t) _{max} \\ \beta &= \left[k_f/B_m \right] m(t) _{max} \end{split}$	$S_u/N_u = [3 k_f^2 P_m / B_m^2] (S/N)_b$
PM	$B_T = 2B_m(\beta{+}1)$	$\begin{split} \beta &= \Delta f_{max}/B_m \\ \Delta f_{max} &= k_p / 2\pi d/dt \; m(t) _{max} \\ \beta &= [k_p / 2\pi B_m] \; d/dt \; m(t) _{max} \end{split}$	$S_u/N_u = [k^2_p P_m] (S/N)_b$

Efficienza nel caso di modulante sinusoidale

MODULAZIONE	EFFICIENZA
AM-classica	$\eta = 1/3$
AM-DSB	$\eta = 1$
AM-SSB	$\eta = 1$
FM	$\eta = 3/2 \beta^2$
PM	$\eta = 1/2 \beta^2$

Attenuazione in spazio libero

Antenne filari corte:	L= $(4 \pi d)^2 / (G_{tx} G_{rx} \lambda^2)$	[d = distanza collegamento]
Antenne paraboliche:	$L= (\lambda d)^2 / (\mu_{tx} \mu_{rx} A_{tx} A_{rx})$	$[A = \pi R^2 \qquad R \text{ raggio antenna}]$

```
\begin{split} \cos(t_1-t_2) &= \cos\,t_1\cos\,t_2 + \sin\,t_1\sin\,t_2 \\ \cos(t_1+t_2) &= \cos\,t_1\cos\,t_2 - \sin\,t_1\sin\,t_2 \\ \sin(t_1-t_2) &= \sin\,t_1\cos\,t_2 - \sin\,t_2\cos\,t_1 \\ \sin(t_1+t_2) &= \sin\,t_1\cos\,t_2 + \sin\,t_2\cos\,t_1 \\ \sin\,t_1\cos\,t_2 &= 1/2[\sin(t_1+t_2) + \sin(t_1-t_2)] \\ \sin\,t_1\sin\,t_2 &= 1/2[\cos(t_1-t_2) - \cos(t_1+t_2)] \\ \cos\,t_1\cos\,t_2 &= 1/2[\cos(t_1-t_2) + \cos(t_1+t_2)] \end{split}
```