Lecture 23 Dynamic Game (Analytical Approaches)

	Single Agent	Multi Agent
Static	Static optimization	Static Game
Dynamic	Dynamic Optimization	Dynamic Game

Action space

	Model based	Finite	Infinite	
space	Discrete	Discrete time MDP $P(s_{t+1} s_t, a_t)$	Discrete-time dynamic system $x_{t+1} = f(x_t, u_t)$	
Time	Continuous	Continuous time MDP $P(s_{t+h} s_t, a_t)$	Continuous-time dynamic system $\dot{x}_t = f(x_t, u_t)$	

	Single Agent	Multi Agent
Static	Static optimization	Static Game
Dynamic	Dynamic Optimization	Dynamic Game

Action space

Model Infinite **Finite** free Value-based Policy-based Reinforcement Discrete Reinforcement Learning Learning Continuous

Time space

	Single Agent	Multi Agent
Static	Static optimization	Static Game
Dynamic	Dynamic Optimization	Dynamic Game

Action space

	Model based	Finite	Infinite
O Discrete		Markov Game (Stochastic Game)	DT Infinite dynamic game (Stochastic Game)
Time s	Continuous	Continuous time Markov Game	CT-time Infinite dynamic game (differential game)

	Single Agent	Multi Agent
Static	Static optimization	Static Game
Dynamic	Dynamic Optimization	Dynamic Game

Action space

	Model free	Finite	Infinite
space	Discrete	Multi-Agent Value-based RL	Multi-Agent Policy-based RL
lime	Continuous		

Basic Principle to Analyze Dynamic Games

	Single Agent	Multi Agent
Static	Static optimization	Static Game
Dynamic	Dynamic Optimization	Dynamic Game

Equilibrium concept:

- -Nash
- -Zero-sum
- -Stackelberg
- -Correlated

(Think in normal form game setting)

Dynamic optimization as a static optimization concept:

- -Minimum principle (necessary condition)
- -Dynamic programming principle (sufficient condition)
- -Need to specify information structure

$$L^{1*} \triangleq L^{1}(u^{1*}; u^{2*}; ...; u^{N*}) \leq L^{1}(u^{1}; u^{2*}; ...; u^{N*}),$$

$$L^{2*} \triangleq L^{2}(u^{1*}; u^{2*}; ...; u^{N*}) \leq L^{2}(u^{1*}; u^{2}; ...; u^{N*}),$$

$$...$$

$$L^{N*} \triangleq L^{N}(u^{1*}; u^{2*}; ...; u^{N*}) \leq L^{N}(u^{1*}; u^{2*}; ...; u^{N*})$$

Basic Principle to Analyze Dynamic Games

Equilibrium concept:

(Dynamic)
Information
structure

	Nash	Zero-sum	Stackelberg
Open-loop (perfect state)	Open-loop Nash-Strategy	Open-loop Zero-sum Strategy	
Feedback (perfect state)	Feedback Nash-Strategy	Feedback Zero-sum Strategy	
•			

- We need to specify information structure
 - ✓ Open-loop vs. close-loop (feedback)
 - ✓ Perfect vs. imperfect
- We need to **equilibrium concept**
 - ✓ Nash, Zero-sum, Stackelberg, Correlated,...

Contents

- Discrete-time Infinite Dynamic Game
 - ✓ Definition
 - ✓ Information Structure
 - ✓ Open-loop Nash Equilibrium Strategy
 - ✓ Minimum principle to derive the equilibrium strategy
 - ✓ Feedback Nash Equilibrium Strategy
 - ✓ **Dynamic Programming principle (HJB)** to derive the equilibrium strategy

Continuous-time Infinite Dynamic Game

- ✓ Definition
- ✓ Information Structure
- ✓ Open-loop Nash Equilibrium Strategy
 - ✓ Minimum principle to derive the equilibrium strategy
 - ✓ Linear Quadratic game
- ✓ Feedback Nash Equilibrium Strategy
 - ✓ Dynamic Programming principle (HJB) to derive the equilibrium strategy
- ✓ Structural Dynamic Game and its various solutions

Definition (N-person discrete-time deterministic infinite dynamic game)

N-person discrete-time deterministic infinite dynamic game involves:

- players' index set $N = \{1, ..., N\}$
- The stage of game index set $\mathbf{K} = \{1, ..., K\}$
- state of game at stage $k \in \mathbf{K}$, x_k
- Action of P_i at stage $k \in \mathbf{K}$, $u_k^i \in U_i^k$ where U_i^k denotes permissible action set
- A state equation of dynamic game, $f_k: X \times U_i^1 \times \cdots \times U_i^N \to X$ defined for $\forall k \in \mathbf{K}$,

$$x_{t+1} = f_k(x_k, u_k^1, ..., u_k^N),$$

defined for each $k \in \mathbf{K}$ describes the evolution of the game

- Observation of P_i at stage $k, y_i^k \in Y_k^i$
- state measurement $h_k^i: X \to Y_k^i$

$$y_k^i = h_k^i(x_k), \qquad k \in \mathbf{K}, i \in \mathbf{N}$$

Definition (N-person discrete-time deterministic infinite dynamic game)

• Information structure(pattern) $\eta_k^i \in N_k^i$

$$N_k^i \subset \{Y_1^1, \dots, Y_k^1; \dots; Y_1^N, \dots, Y_k^N; U_1^1, \dots U_{k-1}^1; \dots; U_1^N, \dots, U_{k-1}^N\}$$

determines the information gained and recalled by P_i at stage k

- A strategy of P_i at stage k, $\gamma_k^i \colon N_k^i \to U_k^i$ maps information to action set, and its aggregation $\gamma^i = \{\gamma_1^i, \dots, \gamma_K^i\}$ defines strategy of P_i in game
- A cost function of P_i ,

$$L^i: (X \times U_1^1 \times \cdots \times U_1^N) \times \cdots \times (X \times U_K^1 \times \cdots \times U_K^N) \to R$$

defined for each $i \in \mathbb{N}$

- \checkmark L^i is the accumulated cost for player i
- Goal : P_i wants to find strategy $\gamma^i = \{\gamma_1^i, ..., \gamma_K^i\}$ which minimize L_i given available information η_k^i

Normal form description of a dynamic game

- For each fixed initial state x_1 and for each fixed N —tuple permissible strategies $\{\gamma^i \in \Gamma^i; i \in \mathbf{N}\}$ the extensive form description leads to a unique set of vectors $\{u_k^i \triangleq \gamma_k^i(\eta_k^i), x_{k+1}; i \in \mathbf{N}, k \in \mathbf{K}\}$
 - ✓ because of the causal nature of the information structure
 - ✓ the state evolves according to a difference equation.
- Substitution of these quantities into $L^i(i \in \mathbb{N})$ clearly leads to a unique N —tuple of numbers reflecting the corresponding costs to the players.
- This further implies existence of a composite mapping

$$J^i: \Gamma^1 \times \cdots \times \Gamma^N \to \mathbf{R}$$
, for each $i \in \mathbf{N}$

which is known as the cost functional of Pi ($i \in \mathbb{N}$)

• Hence, the permissible strategy spaces of the players $(\Gamma^1, ..., \Gamma^N)$ together with these cost functions $(J^i, ..., J^N)$ constitute the normal form description of the dynamic game for each fixed initial state vector x_1

There is no difference between *infinite discrete-time dynamic gams* and *finite games*

> allows us to use static game equilibrium concept to analyze the dynamic game

Definition (stage-additive cost function)

In a N-person discrete-time deterministic dynamic game of pre-specified fixed duration (i.e., K stages), $\mathbf{P}i$'s cost functional is said to be stage-additive if there exist $g_k^i: X \times X \times U_k^1 \times \cdots \times U_k^N \to \mathbf{R}$, $(k \in K)$, so that

$$L^{i}(u^{1}, \dots, u^{N}) = \sum_{k=1}^{K} g_{k}^{i}(x_{k+1}, u_{k}^{1}, \dots, u_{k}^{N}, x_{k})$$

where

$$u^{j} = \left(u_{1}^{j'}, \dots, u_{K}^{j'}\right)'$$

Furthermore, if $L^i(u^1, ..., u^N)$ depends on only on x_{K+1} , (the termination state), then we call it a terminal cost functional.

State-additive cost function is widely used for optimal control or dynamic game

DT: Information Structure

We call that $P_i's$ information structure η_k^i is

- i. (OL) open-loop information pattern if $\eta_k^i = \{x_1\}$ ii. (CLPS) closed-loop perfect state information pattern if $\eta_k^i = \{x_1, \cdots, x_k\}, \ k \in \mathbf{K}$ iii. (CLIS) closed-loop imperfect state information pattern if $\eta_k^i = \{y_1^i, \cdots, y_k^i\}, \ k \in \mathbf{K}$ iv. (MPS) memoryless perfect state information pattern if $\eta_k^i = \{x_1, x_k\}, \ k \in \mathbf{K}$ v. (FB) feedback perfect state information pattern if $\eta_k^i = \{x_1, x_k\}, \ k \in \mathbf{K}$ vi. (FIS) feedback imperfect state information pattern if $\eta_k^i = \{y_k^i\}, \ k \in \mathbf{K}$
- With each information structure η_k^i , action $u_k^i \triangleq \gamma_k^i (\eta_k^i)$ can be realized
- Under the information structure, the Nash solution is referred "open-loop Nash equilibrium solution" or "feedback Nash equilibrium solution"

Time Consistency

Definition (Weakly time consistent)

An N-tuple of policies γ^* is weakly time consistent if its truncation to the interval [s,T], $\gamma^*_{[s,T]}$ solves the truncated game $D^{\gamma^*}_{[s,T]}$, this being so for all $s \in (0,T]$

Definition (Strongly time consistent on subgame perfect)

An N-tuple of policies γ^* is strongly time consistent if its truncation to the interval $[s,T], \gamma^*_{[s,T]}$ solves the truncated game $D^{\gamma}_{[s,T]}$, for every $\gamma_{[0,s)}$, this being so for all $s \in (0,T]$

- In both case, players have no reason to deviate from strategy
 - Difference lies in the consistency of past actions with the adopted strategies

DT: Nash Equilibrium Strategy (Formulation)

Definition (Nash equilibrium in discrete time dynamic game : action space)

N — tuple of strategies $\{\gamma^{i*}(\cdot) \in \Gamma^i; i \in N\}$ constitutes a Nash equilibrium(for any information set) if it satisfies following inequalities for all $u^{i*} = \gamma^{i*}(\cdot)$, $i \in N$

$$L^{1*} \triangleq L^{1}(\mathbf{u}^{1*}; u^{2*}; ...; u^{N*}) \leq L^{1}(\mathbf{u}^{1}; u^{2*}; ...; u^{N*}),$$

$$L^{2*} \triangleq L^{2}(u^{1*}; \mathbf{u}^{2*}; ...; u^{N*}) \leq L^{2}(u^{1*}; \mathbf{u}^{2}; ...; u^{N*}),$$

$$\vdots$$

$$L^{N*} \triangleq L^{N}(u^{1*}; u^{2*}; ...; u^{N*}) \leq L^{N}(u^{1*}; u^{2*}; ...; u^{N*}).$$

Here, $u^i \triangleq \{u^i_i \dots, u^i_K\}$ is the aggregate action of \mathbf{P}_i

Definition (Nash equilibrium in discrete time dynamic game: strategy space)

N- tuple permissible strategies $\{\gamma^{i*}\in\Gamma^i;i\in\mathbf{N}\}$ constitutes a Nash equilibrium solution if, and only if, the following inequalities are satisfied for all $\{\gamma^i\in\Gamma^i;i\in\mathbf{N}\}$

$$J^{1*} \triangleq J^{1}(\gamma^{1*}; \gamma^{2*}; ...; \gamma^{N*}) \leq J^{1}(\gamma^{1}; \gamma^{2*}; ...; \gamma^{N*}),$$

$$J^{2*} \triangleq J^{2}(\gamma^{1*}; \gamma^{2*}; ...; \gamma^{N*}) \leq J^{2}(\gamma^{1*}; \gamma^{2}; ...; \gamma^{N*}),$$

$$\vdots$$

$$I^{N*} \triangleq I^{N}(\gamma^{1*}; \gamma^{2*}; ...; \gamma^{N*}) \leq I^{N}(\gamma^{1*}; \gamma^{2*}; ...; \gamma^{N}).$$

Here, $\gamma^i \triangleq \{\gamma^i_i \dots, \gamma^i_K\}$ is the aggregate strategy of \mathbf{P}_i

DT: Open-loop Nash Equilibrium Strategy (Solution Method)

Open-Loop Nash equilibria: Information set $\eta_k^i = \{x_1\}$

- Identical to optimal control problem for each P_i , since open-loop control does not depend on other's control
- The minimum principle provides optimal control $u^{i*}=(u_1^{i*},\dots,u_K^{i*})\ \forall i\in N$ and corresponding state trajectory, $(x_1^{i*},\dots,x_K^{i*})$
- Optimal open-loop NE strategy $\gamma^{i*}(x_1)$ is weekly time consistent, as it cannot provide optimal strategy out of optimal trajectory

DT: Open-loop Nash Equilibrium Strategy (Solution Method)

Definition (open-loop Nash equilibria in discrete time dynamic game)

If $\gamma^{i*}(x_1) = u^{i*}$ provides an open-loop Nash equilibrium, and $\{x_k^*, k \in \mathbf{K}\}$ is corresponding state trajectory, there exists costate vectors $\{p_1^i, \dots, p_K^i\}$ for each $i \in \mathbf{N}$ such that:

$$H_{k}^{i}(x_{k}, u_{k}^{1}, ..., u_{k}^{N}, p_{k+1}) := g_{k}^{i}(x_{k}, u_{k}^{1}, ..., u_{k}^{N}) + p_{k+1}^{i} f_{k}(x_{k}, u_{k}^{1}, ..., u_{k}^{N})$$

$$x_{k+1}^{*} = f_{k}(x_{k}^{*}, u_{k}^{1*}, ..., u_{k}^{N*}), \qquad x_{1}^{*} = x_{1}$$

$$\gamma_{k}^{i*}(x_{1}) = u_{k}^{i*} = \arg\min_{u_{k}^{i} \in U_{k}^{i}} H_{k}^{i}(x_{k}^{*}, u_{k}^{1*}, ..., u_{k}^{i-1*}, u_{k}^{i}, u_{k}^{i+1*}, ..., u_{k}^{N*}, p_{k+1})$$

$$p_{k}^{i} = \frac{\partial}{\partial x_{k}} f_{k}(x_{k}^{*}, u_{k}^{1*}, ..., u_{k}^{N*}) p_{k+1}^{i} + \frac{\partial}{\partial x_{k}} g_{k}^{i}(x_{k}^{*}, u_{k}^{1*}, ..., u_{k}^{N*}), \qquad p_{k}^{i} = 0$$

 $\forall k \in \mathbf{K}, i \in \mathbf{N}$

상대방의 action이 optimal하게 고정되었다는 가정하에 minimum principle이 모든 agent와 모든 시간 instance에 대해 정의된다.

Feedback Nash equilibria

- initial state information is known a priori
- depend only on the time variable and current value of the state
- $-\ x_k\in\eta_k^i$
- Feedback NE solution provides NE for any subgame defined in $\{s, s+1, ..., K\}$ for all $s \in \mathbf{K}$
- N person feedback game in extensive form
 - Recursive procedure to obtain NE of finite game
- Feedback strategy $\gamma^{i*}(\cdot)$ is strongly time consistent

Definition (feedback Nash equilibria in discrete time dynamic game)

Level K

$$\begin{cases} L^{1}(\gamma_{1}^{1},...,\gamma_{K-1}^{1},\textcolor{red}{\gamma_{K}^{1}};\gamma_{1}^{2},...,\gamma_{K-1}^{2},\gamma_{K}^{2*};...;\gamma_{1}^{N},...,\gamma_{K-1}^{N},\gamma_{K}^{N*}) \leq L^{1}(\gamma_{1}^{1},...,\gamma_{K-1}^{1},\textcolor{red}{\gamma_{K}^{1}};\gamma_{1}^{2},...,\gamma_{K-1}^{2},\gamma_{K}^{2*};...;\gamma_{1}^{N},...,\gamma_{K-1}^{N},\gamma_{K}^{N*}) \\ L^{2}(\gamma_{1}^{1},...,\gamma_{K-1}^{1},\gamma_{K}^{1*};\gamma_{1}^{2},...,\gamma_{K-1}^{2},\textcolor{red}{\gamma_{K}^{2}};...;\gamma_{1}^{N},...,\gamma_{K-1}^{N},\gamma_{K}^{N*}) \leq L^{2}(\gamma_{1}^{1},...,\gamma_{K-1}^{1},\gamma_{K}^{1*};\gamma_{1}^{2},...,\gamma_{K-1}^{2},\gamma_{K}^{2};...;\gamma_{1}^{N},...,\gamma_{K-1}^{N},\gamma_{K}^{N*}) \\ \vdots \\ L^{K}(\gamma_{1}^{1},...,\gamma_{K-1}^{1},\gamma_{K}^{1*};\gamma_{1}^{2},...,\gamma_{K-1}^{2},\gamma_{K}^{2*};...;\gamma_{1}^{N},...,\gamma_{K-1}^{N},\gamma_{K}^{N*}) \leq L^{K}(\gamma_{1}^{1},...,\gamma_{K-1}^{1},\gamma_{K}^{1*};\gamma_{1}^{2},...,\gamma_{K-1}^{2},\gamma_{K}^{2*};...;\gamma_{1}^{N},...,\gamma_{K-1}^{N},\gamma_{K}^{N}) \end{cases}$$

Level K-1

```
\begin{cases} L^{1}(\gamma_{1}^{1},...,\gamma_{K-1}^{1*},\gamma_{K}^{1*};\gamma_{1}^{2},...,\gamma_{K-1}^{2*},\gamma_{K}^{2*};...;\gamma_{1}^{N},...,\gamma_{K-1}^{N*},\gamma_{K}^{N*}) \leq L^{1}(\gamma_{1}^{1},...,\gamma_{K-1}^{1*},\gamma_{K}^{1*};\gamma_{1}^{2},...,\gamma_{K-1}^{2*},\gamma_{K}^{2*};...;\gamma_{1}^{N},...,\gamma_{K-1}^{N*},\gamma_{K}^{N*}) \\ L^{2}(\gamma_{1}^{1},...,\gamma_{K-1}^{1*},\gamma_{K}^{1*};\gamma_{1}^{2},...,\gamma_{K-1}^{2*},\gamma_{K}^{2*};...;\gamma_{1}^{N},...,\gamma_{K-1}^{N*},\gamma_{K}^{N*}) \leq L^{2}(\gamma_{1}^{1},...,\gamma_{K-1}^{1*},\gamma_{K}^{1*};\gamma_{1}^{2},...,\gamma_{K}^{2*};...;\gamma_{1}^{N},...,\gamma_{K-1}^{N*},\gamma_{K}^{N*}) \\ \vdots \\ L^{K}(\gamma_{1}^{1},...,\gamma_{K-1}^{1*},\gamma_{K}^{1*};\gamma_{1}^{2},...,\gamma_{K}^{2*};...;\gamma_{1}^{N},...,\gamma_{K-1}^{N*},\gamma_{K}^{N*}) \leq L^{K}(\gamma_{1}^{1},...,\gamma_{K-1}^{1*},\gamma_{K}^{1*};\gamma_{1}^{2},...,\gamma_{K}^{2*};...;\gamma_{1}^{N},...,\gamma_{K-1}^{N*},\gamma_{K}^{N*}) \end{cases}
```

Level 1

```
\begin{cases} L^{1}(\gamma_{1}^{1*},\gamma_{2}^{1*}\ldots,\gamma_{K}^{1*};\gamma_{1}^{2*},\gamma_{2}^{2*}\ldots,\gamma_{K}^{2*};\cdots;\gamma_{1}^{N*},\gamma_{2}^{N*}\ldots,\gamma_{K}^{N*}) \leq L^{1}(\gamma_{1}^{1},\gamma_{2}^{1*}\ldots,\gamma_{K}^{1*};\gamma_{1}^{2*},\gamma_{2}^{2*}\ldots,\gamma_{K}^{2*};\cdots;\gamma_{1}^{N*},\gamma_{2}^{N*}\ldots,\gamma_{K}^{N*}) \\ L^{2}(\gamma_{1}^{1*},\gamma_{2}^{1*}\ldots,\gamma_{K}^{1*};\gamma_{1}^{2*},\gamma_{2}^{2*}\ldots,\gamma_{K}^{2*};\cdots;\gamma_{1}^{N*},\gamma_{2}^{N*}\ldots,\gamma_{K}^{N*}) \leq L^{2}(\gamma_{1}^{1*},\gamma_{2}^{1*}\ldots,\gamma_{K}^{1*};\gamma_{1}^{2},\gamma_{2}^{2*}\ldots,\gamma_{K}^{2*};\cdots;\gamma_{1}^{N*},\gamma_{2}^{N*}\ldots,\gamma_{K}^{N*}) \\ \vdots \\ L^{N}(\gamma_{1}^{1*},\gamma_{2}^{1*}\ldots,\gamma_{K}^{1*};\gamma_{1}^{2*},\gamma_{2}^{2*}\ldots,\gamma_{K}^{2*};\cdots;\gamma_{1}^{N*},\gamma_{2}^{N*}\ldots,\gamma_{K}^{N*}) \leq L^{N}(\gamma_{1}^{1*},\gamma_{2}^{1*}\ldots,\gamma_{K}^{1*};\gamma_{1}^{2*},\gamma_{2}^{2*}\ldots,\gamma_{K}^{2*};\cdots;\gamma_{1}^{N},\gamma_{2}^{N*}\ldots,\gamma_{K}^{N*}) \end{cases}
```

Backward Induction:

Definition (feedback Nash equilibria in discrete time dynamic game)

For N-person discrete time infinite dynamic game, the set of strategies $\{\gamma_k^{i*}(x_k); k \in K, i \in N\}$ provides **feedback Nash equilibrium** solution if and only if there exists functions $V^i(k,\cdot): R^n \to R$ such that following recursive relations are satisfied:

$$\begin{split} V^{i}(k,x) &= \min_{\substack{u_{k}^{i} \in U_{k}^{i}}} \left[g_{k}^{i} \left(x, \gamma_{k}^{1*}(x), \dots, u_{k}^{i}, \dots, \gamma_{k}^{N*}(x) \right) + V^{i} \left(k+1, \tilde{f}_{k}^{i*}(x, u_{k}^{i}) \right) \right] \\ &= g_{k}^{i} \left(x, \gamma_{k}^{1*}(x), \dots, \gamma_{k}^{i*}(x), \dots, \gamma_{k}^{N}(x) \right) + V^{i} \left(k+1, \tilde{f}_{k}^{i*} \left(x, \gamma_{k}^{i*}(x) \right) \right); \\ V^{i}(K+1, x) &= 0, \quad \forall i \in \mathbb{N} \end{split}$$

where

$$\tilde{f}_{k}^{i*}(x, u_{k}^{i}) \triangleq f_{k}\left(dx, \gamma_{k}^{1*}(x), \dots, \gamma_{k}^{i-1*}(x), u_{k}^{i}, \gamma_{k}^{i+1*}(x), \dots, \gamma_{k}^{N*}(x)\right)$$

Every such equilibrium solution is strongly time consistent, and corresponding NE cost for P_i is $V^i(1, x_1)$

- Employ HJB equation (Dynamic Programming Principle)
- Apply Best response principle for every time step (rationality), and the best responses of all the players are consistent (consistency)

Proof Sketch:

In definition, the first set of N inequalities have to hold for all $\gamma_k^i \in \Gamma_k^i$ implies that they have to hold for all state x_k which are reachable by combination of strategies.

At time k, set of inequalities becomes equivalent to the problem of seeking Nash equilibria of N-person static game with cost functional

$$g_{k-1}^i(x_{k-1}, u_{k-1}^1, \dots, u_{k-1}^N) + V^i(k, x_k), \qquad i \in N,$$

where

$$x_k = f_{k-1}(x_{k-1}, u_{k-1}^1, \dots, u_{k-1}^N)$$

Here, we observe that the Nash equilibrium controls can only be functions of x_{k-1} , and previous theorem provides a set of necessary and sufficient conditions for $\{\gamma_{k-1}^{i*}(x_{k-1}); i \in N\}$ to solve this static Nash game.

Definition (N-person continuous-time deterministic infinite dynamic game, differential game)

N-person differential game involves:

- players' index set $\mathbf{N} = \{1, ..., N\}$
- A time interval [0, T] which is specified a priori, duration of the evolution of game
- Permissible state trajectories of the game, $\{x(t), 0 \le t \le T\}$
- control function(or simply control) of P_i , $\{u_i(t), 0 \le t \le T\}$
- A differential equation

$$\frac{dx(t)}{dt} = f(t, x(t), u^{1}(t), \dots, u^{N}(t)), \qquad x(0) = x_{0}$$

whose solution describes the state trajectory of the game

- state information gained and recalled by P_i at time t, $\eta^i(t)$
- strategy of $\mathbf{P}_i \, \gamma^i$, with property $u^i(t) = \gamma^i(t, \eta^i(t))$ cost function of \mathbf{P}_i in the differential game L^i ,

$$L^{i}(u^{1}, \dots, u^{N}) = \int_{0}^{T} g^{i}(t, x(t), u^{1}(t), \dots, u^{N}(t)) dt + q^{i}(x(T))$$

Goal :player P_i wants to find strategy γ^i which minimize L_i given available information $\eta^i(t)$

CT: Information Structure

• We call that $\mathbf{P}_i's$ information structure is

i. (OL) open-loop information pattern if	$ \eta^i(t) = \{x_0\}, \ t \in [0, T] $
ii. (CLPS) closed-loop perfect state information pattern if	$\eta^{i}(t) = \{x(s), 0 \le s \le t\}, \ t \in [0, T]$
iii. (MPS) memoryless perfect state information pattern if	$ \eta^{i}(t) = \{x_0, x(t)\}, t \in [0, T] $
iv. (FB) feedback pattern if	$ \eta^{i}(t) = \{x(t)\}, \ t \in [0, T] $

- With each information structure $\eta^i(t)$, $u^i(t) ext{ } ext{ }$
- Under the information structure, the Nash solution is referred "open-loop Nash equilibrium solution" or "feedback Nash equilibrium solution"

CT: Open-loop Nash Equilibrium Strategy (Formulation)

• We consider N — person dynamic game defined in continuous time

$$\frac{dx(t)}{dt} = f(t, x(t), u^{1}(t), \dots, u^{N}(t)), \qquad x(0) = x_{0}$$

and cost functional

$$L^{i}(u^{1}, \dots, u^{N}) = \int_{0}^{T} g^{i}(t, x(t), u^{1}(t), \dots, u^{N}(t)) dt + q^{i}(x(T))$$

CT: Open-loop Nash Equilibrium Strategy (Formulation)

Definition (Nash equilibrium in discrete time dynamic game : action space)

N — tuple of strategies $\{\gamma^{i*}(\cdot) \in \Gamma^i; i \in N\}$ constitutes a Nash equilibrium(for any information set) if it satisfies following inequalities for all $u^{i*} = \gamma^{i*}(\cdot)$, $i \in N$

$$L^{1*} \triangleq L^{1}(\mathbf{u}^{1*}; u^{2*}; \dots; u^{N*}) \leq L^{1}(\mathbf{u}^{1}; u^{2*}; \dots; u^{N*}),$$

$$L^{2*} \triangleq L^{2}(u^{1*}; \mathbf{u}^{2*}; \dots; u^{N*}) \leq L^{2}(u^{1*}; \mathbf{u}^{2}; \dots; u^{N*}),$$

$$\vdots$$

$$L^{N*} \triangleq L^{N}(u^{1*}; u^{2*}; \dots; \mathbf{u}^{N*}) \leq L^{N}(u^{1*}; u^{2*}; \dots; \mathbf{u}^{N*}),$$

Here, $u^i(t) \in S^i$ is the action of \mathbf{P}_i chosen at time $t \in [0, T]$

Definition (Nash equilibrium in discrete time dynamic game : strategy space)

N- tuple permissible strategies $\{\gamma^{i*}\in\Gamma^i;i\in\mathbf{N}\}$ constitutes a Nash equilibrium solution if, and only if, the following inequalities are satisfied for all $\{\gamma^i\in\Gamma^i;i\in\mathbf{N}\}$

$$J^{1*} \triangleq J^{1}(\gamma^{1*}; \gamma^{2*}; ...; \gamma^{N*}) \leq J^{1}(\gamma^{1}; \gamma^{2*}; ...; \gamma^{N*}),$$

$$J^{2*} \triangleq J^{2}(\gamma^{1*}; \gamma^{2*}; ...; \gamma^{N*}) \leq J^{2}(\gamma^{1*}; \gamma^{2}; ...; \gamma^{N*}),$$

$$\vdots$$

$$J^{N*} \triangleq J^{N}(\gamma^{1*}; \gamma^{2*}; ...; \gamma^{N*}) \leq J^{N}(\gamma^{1*}; \gamma^{2*}; ...; \gamma^{N}),$$

Here, $\gamma^i(t, \eta^i(t))$ is the strategy of \mathbf{P}_i at time $t \in [0, T]$

CT: Open-loop Nash Equilibrium Strategy (Solution Method)

- Open-Loop Nash equilibria
 - Information set $\eta_k^i = \{x_0\}$
- Identical to optimal control problem for each P_i , since open-loop control does not depend on other's control

minimize
$$J^{i}\left(u^{1*}(t), \dots, u^{i-1*}(t), \mathbf{u}^{i}(t), u^{i+1*}(t), \dots u^{N*}(t)\right)$$

s.t $\dot{x^{i}} = f\left(t, x^{*}(t), u^{1*}(t), \dots, u^{i-1*}(t), \mathbf{u}^{i}(t), u^{i+1*}(t), \dots u^{N*}(t)\right)$

- The minimum principle provides optimal control $u^{i*}(t) \ \forall i \in \mathbb{N}$ and state trajectory $x^*(t)$
- Optimal open-loop NE strategy $\gamma^{i*}(t,x_0) = u^{i*}(t)$ is weekly time consistent, as it cannot provide optimal strategy out of optimal trajectory

CT: Open-loop Nash Equilibrium Strategy (Solution Method)

Definition (Open-loop Nash equilibria in continuous time dynamic game)

If $\gamma^{i*}(t, x_0) = u^{i*}(t)$ provides an open-loop Nash equilibrium, there exists N co-state functions $p^i(\cdot): [0, T] \to R^n$ for each $i \in N$ such that:

$$\begin{split} \dot{x}^i &= f \Big(t, x^*(t), u^{1*}(t), \dots, u^{N*}(t) \Big), x^*(0) = x_0 \\ \gamma^{i*}(t, x_0) &= u^{i*}(t) = \operatorname*{argmin}_{u^i(t)} H^i \Big(t, p^i(t), x^*(t), u^{1*}(t), \dots, u^i(t), \dots, u^{N*}(t) \Big) \\ \dot{p}^i &= -\frac{\partial}{\partial x} H^i \left(t, p^i(t), x^*, u^{1*}(t), \dots, u^{N*}(t) \right) \\ \dot{p}^i(T) &= -\frac{\partial}{\partial x} q^i(x^*(T)) \end{split}$$

where

$$H^{i}(t, p^{i}, x, u^{1}, ..., u^{N}) := g^{i}(t, x, u^{1}, ..., u^{N}) + p^{i}f(t, x, u^{1}, ..., u^{N})$$

CT: Feedback Nash Equilibrium Formulation

Feedback Nash equilibria

- ✓ initial state information is known a priori
- ✓ depend only on the time variable and current value of the state
- $\checkmark x(t) \in \eta_t$
- ✓ Feedback NE solution provides NE for any subgame defined in [t,T] for all $t \in [0,T)$
- Definition of the feedback NE leads to a recursive derivation
 - Value function $V^i(t,x)$, minimum cost-to-go for player i at time t on state x
- Optimal feedback NE strategy $\gamma^{i*}(t,\eta_t)$ is strongly time consistent

CT: Feedback Nash Equilibrium Formulation

Definition (Feedback NE Solution)

An N-tuple of strategies $\{\gamma^{i*} \in \Gamma^i; i \in N\}$ constitutes a feedback Nash equilibrium solution if there exists $V^i(\cdot,\cdot)$ on $[0,T] \times R^n$ s.t.

$$\begin{split} V^{i}(t,x) &= \int_{t}^{T} g^{i}\left(s,x^{*}(s),\gamma^{1*}(s,\eta_{s}),\cdots,\gamma^{i*}(s,\eta_{s}),\cdots,\gamma^{N*}(s,\eta_{s})\right) ds + q^{i}\left(x^{*}(T)\right) \\ &\leq \int_{t}^{T} g^{i}\left(s,x^{*}(s),\gamma^{1*}(s,\eta_{s}),\cdots,\gamma^{i}(s,\eta_{s}),\cdots,\gamma^{N*}(s,\eta_{s})\right) ds + q^{i}\left(x^{i}(T)\right),\forall\gamma^{i} \\ &\in \Gamma^{i},x\in R^{n} \end{split}$$

Where, on [t, T],

$$\dot{x}^{i}(s) = f\left(s, x^{i}(s), \gamma^{1*}(s, \eta_{s}), \cdots, \gamma^{i}(s, \eta_{s}), \cdots, \gamma^{N*}(s, \eta_{s})\right); \quad x^{i}(t) = x,$$

$$\dot{x}^{*}(s) = f\left(s, x^{*}(s), \gamma^{1*}(s, \eta_{s}), \cdots, \gamma^{i*}(s, \eta_{s}), \cdots, \gamma^{N*}(s, \eta_{s})\right); \quad x^{*}(t) = x$$

 η_s stands for data set $\{x(s), x_0\}$ or $\{x(\sigma), \sigma \leq s\}$, depending on information pattern is MPS or CLPS

- Time interval restriction, [t,T] provides same differential game with initial state x(t), $\forall t$
- Under either MPS or CLPS information pattern, feedback NE will depend only on the time variable and current value of the state, but not on memory.
- If value functions V^i are continuously differentiable in x and t, then N partial differential equations replace previous equation (HJB equation)

Definition (Feedback NE solution with value function)

For an N person differential game for [0,T] and under either MPS or CLPS, N tuple of strategies $\{\gamma^{i*} \in \Gamma^i, i \in N\}$ provides a feedback Nash equilibrium solution if there exists functions $V^i \colon \{0,T\} \times R^n \to R, i \in N$ satisfying the partial differential equations

$$-\frac{\partial V^{i}(t,x)}{\partial t} = \min_{u^{i} \in S^{i}} \left[\frac{\partial V^{i}(t,x)}{\partial t} \tilde{f}^{i*}(t,x,u^{i}) + \tilde{g}^{i*}(t,x,u^{i}) \right]$$
$$= \frac{\partial V^{i}(t,x)}{\partial t} \tilde{f}^{i*}(t,x,\gamma^{i*}(t,x)) + \tilde{g}^{i*}(t,x,\gamma^{i*}(t,x))$$

 $V^i(T,x) = q^i(x), \quad \forall i \in N$

where

$$\tilde{f}^{i*}(t,x,u^i) \triangleq f(t,x,\{\gamma_{-i}^*(t,x),u^i\}),
\tilde{g}^{i*}(t,x,u^i) \triangleq g^i(t,x,\{\gamma_{-i}^*(t,x),u^i\}),$$

$$\{\gamma_{-i}^*(t,x), u^i\} \triangleq \gamma^{1*}(t,x), \dots, u^i, \dots, \gamma^{N*}(t,x)$$

Every such equilibrium solution is STC, and Nash equilibrium cost of P_i is $V^i(0, x_0)$

- Linear Quadratic Differential game is defined as follows
 - Cost function for each agent:

$$J_{i} = \frac{1}{2} \int_{0}^{T} \left\{ x^{T}(t)Q_{i}x(t) + \sum_{j=1}^{N} u_{j}(t)^{T}R_{ij}u_{j}(t) \right\} dt + \frac{1}{2}x^{T}(T)Q_{T}x(T)$$

Dynamics of joint state

$$\dot{x}(t) = Ax(t) + \sum_{j=1}^{N} B_j u_j(t) + Eg(t)$$

Dynamic control of the three story building is expressed as:

$$J_{1} = \int_{0}^{\infty} \left\{ x^{T} Q_{1} x + u_{1}^{T} R_{11} u_{1} + u_{2}^{T} R_{12} u_{2} + u_{3}^{T} R_{13} u_{3} \right\} dt$$

$$J_{2} = \int_{0}^{\infty} \left\{ x^{T} Q_{3} x + u_{1}^{T} R_{21} u_{1} + u_{2}^{T} R_{32} u_{2} + u_{3}^{T} R_{23} u_{3} \right\} dt$$

$$J_{3} = \int_{0}^{\infty} \left\{ x^{T} Q_{3} x + u_{1}^{T} R_{31} u_{1} + u_{2}^{T} R_{32} u_{2} + u_{3}^{T} R_{33} u_{3} \right\} dt$$

$$\dot{x} = Ax + B_{1} u_{1} + B_{2} u_{2} + B_{3} u_{3} + Eg$$

Cooperative Control

 The cooperative control policy is derived assuming each agent tries to minimize the commonly shared objective

$$J_1 + J_2 + J_3 = \int_0^\infty \left\{ x^T (Q_1 + Q_2 + Q_3) x + \begin{bmatrix} u_1 u_2 u_3 \end{bmatrix}^T \begin{bmatrix} R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{23} \\ R_{31} & R_{32} & R_{33} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \right\} dt$$

$$J_1 + J_2 + J_3 = \int_0^\infty \left\{ z^T Q z + u^T R u \right\} dt$$

- ✓ where $u = [u_1, u_2, u_3]$ is aggregated control action vector
- \checkmark Q and R are aggregated accordingly
- Due to the cooperation, the cooperative control problem can be formulated as an optimal control problem and can be solved using optimal control theory

$$PA + A^{T}P - PSP + Q = 0$$

 $S = BR^{-1}B^{T}$
 $u(x) = -R^{-1}B^{T}Px(t) = F^{*}x(t)$

Nash Feedback Control

• Assuming the control actions are expressed as linear function of constant gain matrix such that $u_i = F_i x$, we can re-write the cost functions

$$J_{1}(F_{1}, F_{2}, F_{3}, x_{0}) = \int_{0}^{\infty} \left\{ x^{T}(Q_{1} + F_{1}^{T}R_{11}F_{1} + F_{2}^{T}R_{12}F_{2} + F_{3}^{T}R_{13}F_{3})x \right\} dt$$

$$J_{2}(F_{1}, F_{2}, F_{3}, x_{0}) = \int_{0}^{\infty} \left\{ x^{T}(Q_{2} + F_{1}^{T}R_{21}F_{1} + F_{2}^{T}R_{22}F_{2} + F_{3}^{T}R_{23}F_{3})x \right\} dt$$

$$J_{3}(F_{1}, F_{2}, F_{3}, x_{0}) = \int_{0}^{\infty} \left\{ x^{T}(Q_{3} + F_{1}^{T}R_{31}F_{1} + F_{2}^{T}R_{32}F_{2} + F_{3}^{T}R_{33}F_{3})x \right\} dt$$

• Assuming the control actions are expressed as linear function of constant gain matrix such that $u_i = F_i x$, we can re-write the cost functions

$$\dot{x} = (A + B_1 F_1 + B_2 F_2 + B_3 F_3)x + Eg$$

Nash Feedback Control

• The Nash equilibrium (F_1^*, F_2^*, F_3^*) satisfies the following conditions:

$$J_1(F_1^*, F_2^*, F_3^*, x_0) \le J_1(F_1, F_2^*, F_3^*, x_0)$$

$$J_2(F_1^*, F_2^*, F_3^*, x_0) \le J_2(F_1^*, F_2, F_3^*, x_0)$$

$$J_3(F_1^*, F_2^*, F_3^*, x_0) \le J_3(F_1^*, F_2^*, F_3, x_0)$$

- Nash equilibrium (F_1^*, F_2^*, F_3^*) strategy can be computed by solving the coupled inequality equations
- When agent 2 and 3 are assumed to follow the optimum strategy, the first agent should best respond to the fixes strategies as:

$$F_1^* = \arg\min_{F_1} J_1(F_1, F_2^*, F_3^*, x_0)$$

• When $F_2^* = -R_{22}^{-1}B_2^TP_2$ and $F_3^* = -R_{33}^{-1}B_3^TP_3$ (P_2 and P_3 are unknown matrices), the objection function of player 1 becomes:

$$J_1(F_1, F_2^*, F_3^*, x_0) = \int_0^\infty \left[x^T \{ Q_1 + F_1^T R_{11} F_1 + (-R_{22}^{-1} B_2^T P_2)^T R_{12} (-R_{22}^{-1} B_2^T P_2) \right]$$

$$(-R_{33}^{-1} B_3^T P_3)^T R_{13} (-R_{33}^{-1} B_3^T P_3) \} x dt$$

Nash Feedback Control

$$J_1(F_1, F_2^*, F_3^*, x_0) = \int_0^\infty \left[x^T \{ Q_1 + F_1^T R_{11} F_1 + (-R_{22}^{-1} B_2^T P_2)^T R_{12} (-R_{22}^{-1} B_2^T P_2) \right]$$

$$(-R_{33}^{-1} B_3^T P_3)^T R_{13} (-R_{33}^{-1} B_3^T P_3) \} x dt$$

• Setting $S_{ij} = B_i R_{ii}^{-1} R_{ij} R_{ii}^{-1} B_i^T$, Agent 1 needs to maximizes

$$\bar{J}_1(F_1, x_0) = \int_0^\infty \{x^T(Q_1 + P_2 S_{12} P_2 + P_3 S_{13} P_3) x + x^T F_1^T R_{11} F_1 x\} dt$$

Assuming the following state dynamics

$$\dot{x} = (A + B_1 F_1 + B_2 F_2 + B_3 F_3) x + Eg$$

$$= \left\{ A + B_1 F_1 + B_2 (-R_{22}^{-1} B_2^T P_2) + B_3 (-R_{33}^{-1} B_3^T P_3) \right\} x + Eg$$

$$= (A - S_{22} P_2 - S_{33} P_3) x + B_1 F_1 x + Eg$$

 Having formulated the cost function and the system dynamics, while assuming the gain matrices for other controller, we can derive the Riccati equation for player 1:

$$(A')^T P_1 + P_1 A' - P_1 S_{11} P_1 + Q' = 0$$

$$(A - S_{22} P_2 - S_{33} P_3)^T P_1 + P_1 (A - S_{22} P_2 - S_{33} P_3) - P_1 S_{11} P_1 + (Q_1 + P_2 S_{12} P_2 + P_{33} S_{13} P_3) = 0$$

Two Person Min-Max Game

 To explicitly account for a external load (earthquake), a two player zero-sum game framework can be used. In it, the external load is treated as a fictitious agent competing with controllers. The cost function for the controller is redefined as

$$J_c(u, g, x_0) = \int_0^\infty \{x^T Q x + u^T R u - g^T V g\} dt$$

or the external load is defined as the negative of that for the controller

$$J_g(u, g, x_0) = -J_c(u, g, x_0) = \int_0^\infty \{-x^T Q x - u^T R u + g^T V g\} dt$$

the Min-Max control problem is to find the gain matrix $F^*(u^*(t)) = F^*(x(t))$ that minimizes the worst-case cost function incurred by the external load as follows [5]:

$$F^* = \min_{F \in F} \sup_{g \in L_2^q(0,\infty)} J_c(F, g, x_0)$$

$$J_c(F, g, x_0) = \int_0^\infty \{x^T (Q + F^T R F) x - g^T V g\} dt$$

Two Person Min-Max Game

Policies for the controllers and the earthquake are

$$u^*(t) = -R^{-1}B^T P_1 x(t)$$
$$g^*(t) = -V^{-1}E^T P_2 x(t)$$

• Inserting the policy into the cost function:

$$\bar{J}_c(F, x_0) = \int_0^\infty \left[x^T \left\{ Q + F^T R F - (-V^{-1} E^T P_2)^T V (-V^{-1} E^T P_2) \right\} x \right] dt$$

• Setting $M = EV^{-1}ET$

$$\bar{J}_c(F, x_0) = \int_0^\infty \left[x^T \left\{ (Q - P_2 M P_2) + T F^T R F \right\} x \right] dt$$

State dynamics is expressed as:

$$\dot{x} = Ax + BFx + Eg$$

= $\{A - E(V^{-1}E^TP_2)\} x + BFx = (A - MP_2)x + BFx$

Two Person Min-Max Game

• Setting $S = BR^{-1}B^T$, $M = EV^{-1}E^T$,

$$(A - MP_2)^T P_1 + P_1(A - MP_2) - P_1 SP_1 + (Q - P_2 MP_2) = 0$$
$$(A - SP_1)^T P_2 + P_2(A - SP_1) - P_2 MP_2 + (-Q - P_1 SP_1) = 0$$

Adding Two equations:

$$(P_1 + P_2)(A - SP_1 - MP_2) + (A - SP_1 - MP_2)^T(P_1 + P_2) = 0$$

• Substituting $P_1 = -P_2 = P$, the above equation becomes

$$A^T P + PA - P(S - M)P + Q = 0$$