EBU5503 Database Systems

Welcome to Database Systems

Content

- Week 1
 - Introduction
 - Relational model
 - Relational Algebra
 - Entity-relationship(ER)modelling

- Week 2
 - EER modelling
 - ER to RelationalModel mapping
 - SQL
 - Database design

Content

- Week 3
 - Normalization
 - AdvancedNormalization
 - Transaction management

- Week 4
 - Distributed DBMS
 - Database security and Ethics
 - -XML
 - NoSQL

Organisation of the module

- Lectures
- Lab: Five 2-hour lab sessions (starting in teaching week
 2)
- Assessment
 - Two tests: QMplus timed quizzes, mid-term test total
 10%
 - Coursework (practical group project): 10%
 - Exam: 80%
 - QMplus Quizzes: beneficial to check your own learning, not assessed
- Modules Reps
 - One module representative for each teaching group
 - Anyone interested please contact the teaching group lecturer

Textbook:

Modern Database Management, Thirteenth edition / Jeffrey A. Hoffer, V. Ramesh, Heikki Topi. Available from QMUL library as e-book https://www.qmul.ac.uk/library/

Recommended reading:

Database systems: a practical approach to design, implementation, and management, 6th edition, Thomas M. Connolly, Carolyn E. Begg.

Tips on doing well for this module

- Attend the lectures
- Ask when you don't understand anything
 - No questions too "silly"!
 - Ask in live lectures
 - Use <u>Student forum</u> on QMPlus
 - Use Mentimeter during live lectures
 - Ask in Office hour
- Check the "Learning Outcomes"
- Do the exercises and attend labs
 - QMplus quizzes, tutorial, in-lecture quizzes/exercises
 - Turn up to scheduled labs! There are TAs there to help.

Database

- Data: "facts and statistics collected together for reference or analysis" (Oxford dictionary)
- Database: a shared collection of logically related data (and a description of this data), designed to meet the information needs of an organization.

- System catalogue (metadata)
 - description of data to enable program-data independence.

"Original database" by shinichi, flickr

- Logically related data comprises entities, attributes, and relationships of an organization's information.
- Entity: a distinct object in the organization that is to be represented in the database.
- E.g. person, place, thing, etc
- Attribute: a property that describes some aspect of the object that we wish to record.
- Relationship: an association between entities.

Lecturer	teaches	Student
staffNo	(relationship)	studentNo
(entity)		(entity)

Database Management Systems (DBMS)

- DBMS: A software system
 - enables users to define, create, maintain, and control access to the database.

- (Database) application program: a computer program that interacts with database
 - issues appropriate requests (eg SQL statements) to the DBMS.

Key concepts

- Data model
 - A model is a representation of 'real world' objects and events, and their associations.
- Schema vs Data
 - The description of the database is the database schema.
 - Data is the actual information stored in the database.

Components of DBMS Environment

Roles in the Database Environment

- Data Administrator (DA)
- Database Administrator (DBA)
- Database Designers (Logical and Physical)
- Application Developers
- End Users (naive and sophisticated)

Three level ANSI-SPARC architecture

The three-level ANSI-SPARC architecture

Objective of three level ANSI-SPARC architecture: Separate each user's view of the database from the way the database is physically represented.

- Users should be able to:
 - Access data but with customised view.
 - Change user's view without affecting other users.
- Users should not have to deal with physical database storage details.
 - Interaction with database independent of storage considerations.

The three-level ANSI-SPARC architecture

Objective of three level ANSI-SPARC architecture: Separate each user's view of the database from the way the database is physically represented.

- Users' views should be unaffected by changes to the physical aspects of storage.
- Internal structure of the database should be unaffected by changes to the physical aspects of storage.
- The DBA should be able to change the conceptual structure of the database with minimum affect to users' views.

History of DBMS (1)

- Early 60s
 - Charles Bachman (Turing Award 1973)
 - Integrated Data Store
 - Network Data Model
 - CODASYL
- Late 60s
 - IBM
 - Information Management System (IMS)
 - Hierarchichal Data Model
- 70s
 - Edgar Codd, IBM (Turing Award 1981)
 - Relational Data Model

Edgar F. Codd - Wikipedia

History of DBMS (2)

• 80s

- Relational Data Model
- Standard Query Language (SQL)
- Transaction Management (James Gray, Turing Award 1999)

Now

- Object-oriented Data Model
- Data warehouse and data mining
- Accessing databases through the web/internet
- Multimedia data
- Text data (information retrieval)
- Structure of the data (XML,JSON)

Learning Outcomes

- Be able to explain the key terms:
 - Data, Database, DBMS, Database application programme, Data model, schema,
- Be able to explain the components and roles in database environment
- Be able to explain the three level ANSI-SPARC architecture and the purpose of it:
 - External level, Conceptual level, Internal level
- Understand the history of database development