Name: Panneerselvam N

Role: Research Intern – Inspect

Date: 05/06/2021

Paddle Paddle You Only Look Once v2(PP-YOLO v2)

PP-Yolo is a improved version of PP-YOLO v2 and give better performance than Yolov3 and Yolo v4.

Architecture:

Above image shows the detection and neck of PP-Yolo v2.

Backbone:

- ➤ In PP-Yolo v1, ResNet-50 as used as Backbone, but in PP-Yolo v2 ResNet-101 is used as Backbone.
- ➤ ResNet-101 is pre-trained with COCO dataset.

Neck:

➤ Path Aggregation Network(PAN) is used as Neck part of PP-Yolo v2. Path Aggregation Network is improved version of PP-Yolov2.

Detection Part:

- ➤ Detection part is designed in the structure of Residual Blocks which has 3x3 and 1x1 convolutional blocks to produce detection results.
- ➤ The output channel of each final prediction is 3(K + 5), where K is number of classes.

Optimizations:

Apart from PP-Yolo v1 optimizations , v2 has introduced lots of optimization techniques.

Path Aggregation Network:

- ➤ PP-Yolo v2 uses PAN as Neck part of Architecture. PAN is advanced version Feature Pyramid Network.
- ➤ Normal FPN merges the high level features to low level features in Top-Bottom opration. So the features of middel and low level are modified . This givesdifficulties for detect small objects.
- ➤ For overcome above problem, the PANet comes with additional layer pyramid of Bottom-top, this gives very efficient extraction low and middle level features.

Mish Activation Function:

In Yolo v4 and v5, Mish activation function gives good results in accuracy, so that PP-Yolo v2 also uses Mish Activation Function.

Mish Activation function is only used in Path Aggregation Network(PAN) in PP-Yolo v2.

$$f(x) = x \cdot tanh(softplus(x))$$
$$= x \cdot tanh(ln(1 + e^{x}))$$

Large Input Size:

- ➤ Increase input size is one of key technique to improve model accuracy. But increasing image size will take large memory space .
- ➤ Deceasing batch size is one of the solution for above problem, image size is incrased from 608 to 768 and bactch size is decreased from 24 to 12.

IoU Aware Lose:

In PP-Yolo v2 modified IoU Loss is introduced for better result in bounding box prediction.

$$loss = -t * \log(\sigma(p)) - (1 - t) * \log(1 - \sigma(p))$$
 (1)

Optimization technique that didn't work:

Author tried some other optimization also, but that didn't improve performance. The are some of that techniques,

- Cosine Learning Rate Decay
- Backbone Parameter Freezing
- ➤ SiLU activation function

Performance:

Author gives some Ablation study regarding optimizations,

	Methods	mAP	Parameters	GFLOPs	infer time	FPS
A	PP-YOLO	45.1	45 M	45.1	13.7 ms†	72.9
В	A + PAN + MISH	47.1	54 M	52.0	14.0 ms	71.4
C	B + input size 640	47.7	54 M	57.6	14.5 ms	68.9
D	C + Larger input size	48.3	54 M	57.6	14.5 ms	68.9
E	D + IoU Aware Branch	49.1	54 M	57.6	14.5 ms	68.9

Method	Backbone	Size	FPS (V100)		AP	4 D	4 D	4 D	4 D	4 D
Method			w/o TRT	with TRT	AP	\mathbf{AP}_{50}	AP_{75}	\mathbf{AP}_S	\mathbf{AP}_{M}	\mathbf{AP}_L
YOLOv3 + ASFF* [13]	Darknet-53	320	60	-	38.1%	57.4%	42.1%	16.1%	41.6%	53.6%
YOLOv3 + ASFF* [13]	Darknet-53	416	54	-	40.6%	60.6%	45.1%	20.3%	44.2%	54.1%
YOLOv3 + ASFF* [13]	Darknet-53	608	45.5	-	42.4%	63.0%	47.4%	25.5%	45.7%	52.3%
YOLOv3 + ASFF* [13]	Darknet-53	800	29.4	-	43.9%	64.1%	49.2%	27.0%	46.6%	53.4%
EfficientDet-D0 [24]	Efficient-B0	512	98.0+	-	33.8%	52.2%	35.8%	12.0%	38.3%	51.2%
EfficientDet-D1 [24]	Efficient-B1	640	74.1+	-	39.6%	58.6%	42.3%	17.9%	44.3%	56.0%
EfficientDet-D2 [24]	Efficient-B2	768	56.5+	-	43.0%	62.3%	46.2%	22.5%	47.0%	58.4%
EfficientDet-D2 [24]	Efficient-B3	896	34.5+	-	45.8%	65.0%	49.3%	26.6%	49.4%	59.8%
YOLOv4 [1]	CSPDarknet-53	416	96	164.0*	41.2%	62.8%	44.3%	20.4%	44.4%	56.0%
YOLOv4 [1]	CSPDarknet-53	512	83	138.4*	43.0%	64.9%	46.5%	24.3%	46.1%	55.2%
YOLOv4 [1]	CSPDarknet-53	608	62	105.5*	43.5%	65.7%	47.3%	26.7%	46.7%	53.3%
YOLOv4-CSP [26]	Modified CSPDarknet53	512	97	-	46.2%	64.8%	50.2%	24.6%	50.4%	61.9%
YOLOv4-CSP [26]	Modified CSPDarknet53	640	73	-	47.5%	66.2%	51.7%	28.2%	51.2%	59.8%
YOLOv5s	-	640	113*	-	36.7%	55.4%	-	-	-	-
YOLOv5m	-	640	88.2*	-	44.5%	63.1%	-	-	-	-
YOLOv5l	-	640	69.8*	-	48.2%	66.9%	-	-	-	-
YOLOv5x	-	640	43.4*	-	50.4%	68.8%	-	-	-	-
PP-YOLO [16]	ResNet50-vd-dcn	320	132.2†	242.2†	39.3%	59.3%	42.7%	16.7%	41.4%	57.8%
PP-YOLO [16]	ResNet50-vd-dcn	416	109.6†	215.4†	42.5%	62.8%	46.5%	21.2%	45.2%	58.2%
PP-YOLO [16]	ResNet50-vd-dcn	512	89.9†	188.4†	44.4%	64.6%	48.8%	24.4%	47.1%	58.2%
PP-YOLO [16]	ResNet50-vd-dcn	608	72.9†	155.6†	45.9%	65.2%	49.9%	26.3%	47.8%	57.2%
PP-YOLOv2	ResNet50-vd-dcn	320	123.3	152.9	43.1%	61.7%	46.5%	19.7%	46.3%	61.8%
PP-YOLOv2	ResNet50-vd-dcn	416	102	145.1	46.3%	65.1%	50.3%	23.9%	50.2%	62.2%
PP-YOLOv2	ResNet50-vd-dcn	512	93.4	141.2	48.2%	67.1%	52.7%	27.7%	52.1%	62.1%
PP-YOLOv2	ResNet50-vd-dcn	608	72.1	109.9	49.2%	68.0%	54.1%	29.9%	52.8%	61.5%
PP-YOLOv2	ResNet50-vd-dcn	640	68.9	106.5	49.5%	68.2%	54.4%	30.7%	52.9%	61.2%
PP-YOLOv2	ResNet101-vd-dcn	512	69.8	116.8	49.0%	67.8%	53.8%	28.7%	53.0%	63.5%
PP-YOLOv2	ResNet101-vd-dcn	640	50.3	87.0	50.3%	69.0%	55.3%	31.6%	53.9%	62.4%

Conclusion:

Finally PP-YOLOv2 runs in 68.9FPS at 640x640 input size. Paddle inference engine with TensorRT, FP16-precision and batch size = 1 further improves PP-YOLOv2's infer speed, which achieves 106.5 FPS. MAP also gives as 45.5.