Федеральное агентство связи федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный университет телекоммуникаций и информатики» (СибГУТИ)

09.04.01 «Информатика и вычислительная техника»,

ОТЧЕТ

по ознакомительной практике

Выполнил:	
магистрант гр. МГ-101	/Гусев С.В./
подпись	·
Руководитель практики от университета:	
должность	/& A II /
профессор каф. ПМиК	/Фионов А.Н./
ОПЕНКА, полнись	

Содержание

Индивидуальное задание на ознакомительную практику	3
Общая характеристика темы исследования	4
Обзор ведущих технологий и стандартов	5
Литература	6

Индивидуальное задание на ознакомительную практику

Магистрант: Гусев Станислав Владимирович

Направление подготовки: 09.04.01 «Информатика и вычислительная техника» Период прохождения практики: с 01.09.2020г. по 28.12.2020г. (3 3E/108 час.)

Тема практики: Применение нейронных сетей для предсказания продолжительности нахождения задач в определенной колонке на Kanban доске.

Виды и содержание работ	Отметка о вы-	Примечания
	полнении	
	(ненужное вы-	
	черкнуть)	
1. Регистрация в информационно-библио-	выполнено	
течной системе СибГУТИ	не выполнено	
2. Размещение портфолио в ЭИОС	выполнено	
	не выполнено	
3. Выбор темы исследования	выполнено	
	не выполнено	
4. Изучение основных понятий и определе-	выполнено	
ний	не выполнено	
5. Обзор ведущих технологий и стандартов	выполнено	
	не выполнено	
6. Выделение значимых публикаций по	выполнено	
теме исследования	не выполнено	
7. Сбор информации об исследовательских	выполнено	
группах и разработчиках	не выполнено	
8. Составление списка изданий и конфе-	выполнено	
ренций	не выполнено	
9. Поиск источников актуальной информа-	выполнено	
ции по теме исследования	не выполнено	
10. Подготовка отчета	выполнено	
	не выполнено	

адание получил:		_/Гусев С.В./	
·	дата, подпись	·	
Задание выдал:		/Фионов А.Н./	
	дата, подпись		

Общая характеристика темы исследования

Нейронная сеть — математическая модель, а также её программное или аппаратное воплощение, построенная по принципу организации и функционирования биологических нейронных сетей — сетей нервных клеток живого организма.

В настоящее время нейронные сети применяются в широком спектре человеческой жизнедеятельности: от предсказания загруженности дорог в городских условиях и постановки диагноза пациентам до предсказания солнечной активности и управления орбитальным движением космического аппарата.

Одна из имеющихся классификаций нейронных сетей — это классификация по характеру обучения. Нейронные сети в этом случае делят на три вида: общение с учителем (выходное пространство решений нейронной сети известно), обучение без учителя (нейронная сеть формирует выходное пространство решений только на основе входных воздействий (такие сети называют самоорганизующимися)) и обучение с подкреплением (система назначения штрафов и поощрений от среды).

Существуют следующие этапы решения задачи с помощью нейронной сети:

- Сбор данных для обучения;
- Подготовка и нормализация данных;
- Выбор топологии сети;
- Экспериментальный подбор характеристик сети;
- Экспериментальный подбор параметров обучения;
- Собственно обучение;
- Проверка адекватности обучения;
- Корректировка параметров, окончательное обучение;
- Вербализация сети с целью дальнейшего использования.

Обзор ведущих технологий и стандартов

Для ознакомления с темой, её основными технологиями и стандартами была выбрана книга Рашида Т. «Создаем нейронную сеть» [1]. Эта книга представляет собой введение в теорию и практику создания нейронных сетей. Автор простым и доступным языком объясняет теоретические аспекты, знание которых необходимо для понимания принципов функционирования нейронных сетей и написания соответствующих программных инструкций. Изложение материала сопровождается подробным описанием процедуры поэтапного создания полностью функционального кода, который реализует нейронную сеть на языке Python.

Для углубления знаний в выбранной теме была выбрана книга Хайкина С. «Нейронные сети. Полный курс» [2]. В книге рассматриваются основные парадигмы искусственных нейронных сетей. Представленный материал содержит строгое математическое обоснование всех нейросетевых парадигм, иллюстрируется примерами, описанием компьютерных экспериментов, содержит множество практических задач.

Статья Воеводы А. и Романникова Д. «Формирование структуры нейронной сети посредством декомпозиции исходной задачи на примере задачи управления роботом манипулятором» [3] описывает результаты работы нейронных сетей в совокупности с конечными автоматами, демонстрируя большую наблюдаемость и возможность «отладки», а также в значительной мере упрощение процесса обучения за счёт использования более простых типов нейронных сетей и решаемых задач.

Для закрепления теоретических знаний и получения практических навыков была выбрана книга Жерона О. «Прикладное машинное обучение с помощью Scikit-Learn, Keras и TensorFlow: концепции, инструменты и техники для создания интеллектуальных систем» [4]. За счет применения конкретных примеров и минимума теории книга отлично подходит под вышеназванные за-

дачи. Начиная с простой линейной регрессии и заканчивая глубокими нейронными сетями, автор объясняет и показывает на примере построение и обучение разных видов нейронных сетей.

Литература

- 1. *Рашид Т.* Создаем нейронную сеть. Вильямс, 2018. 272 р.
- 2. Хайкин С. Нейронные сети. Полный курс. Вильямс, 2018. 1104 с.
- 3. *Воевода А. А.*, *Романников Д. О.* Формирование структуры нейронной сети посредством декомпозиции исходной задачи на примере задачи управления роботом манипулятором. Известия СПБГЭТУ ЛЭТИ, 2018. С. 27-32.
- 4. Жерон О. Прикладное машинное обучение с помощью Scikit-Learn, Keras и TensorFlow: концепции, инструменты и техники для создания интеллектуальных систем, 2-е издание. Диалектика, 2020. 1040 с.