# GigaDevice Semiconductor Inc.

GD32F4xx 系列硬件开发指南

应用笔记 AN056



# 目 录

| 目  | 录         |                      | 2    |
|----|-----------|----------------------|------|
| 图  | <b>索引</b> |                      | 3    |
|    |           |                      |      |
|    |           |                      |      |
|    |           | 불<br>                |      |
| 2. | 硬件        | 牛设计                  | 6    |
| 2  | 2.1.      | 电源                   | 6    |
|    | 2.1.      | 1. 备份域               | 6    |
|    | 2.1.2     | 55. 55.1 3.4. 7.     |      |
|    | 2.1.3     | ,, = >,,,            |      |
|    | 2.1.4     | 4. 复位及电源管理           | 8    |
| 2  | 2.2.      | 时钟                   | 12   |
|    | 2.2.      | 1. 外部高速晶体振荡时钟(HXTAL) | .13  |
|    | 2.2.2     | 2. 外部低速晶体振荡时钟(LXTAL) | .14  |
|    | 2.2.3     | 3. 时钟输出能力(CKOUT)     | .16  |
|    | 2.2.4     | 4. HXTAL 时钟监视器(CKM)  | .16  |
|    | 2.2.      | 5. PLL 展频(SSCG)      | .16  |
| 2  | 2.3.      | 启动配置                 | 18   |
| 2  | 2.4.      | 典型外设模块               | 18   |
| _  | 2.4.      |                      |      |
|    | 2.4.2     | 2. ADC 电路            | . 19 |
|    | 2.4.3     | 3. DAC 电路            | .21  |
|    | 2.4.4     | 4. USB 电路            | .21  |
|    | 2.4.      | 5. Standby 模式唤醒电路    | .22  |
| 2  | 2.5.      | 下载调试电路               | 23   |
| 2  | 2.6.      | 参考原理图设计              | 26   |
| 3  | PC        | B Layout 设计          |      |
|    |           | •                    |      |
|    |           | 电源去耦电容               |      |
| 3  |           | 时钟电路                 |      |
| 3  | 3.3.      | 复位电路                 | 28   |
| 3  | 3.4.      | USB 电路               | 29   |
| 3  | 3.5.      | BGA 封装的扇出            | 30   |
| 4. | 封装        | <b>专说明</b>           | 32   |
| 5. | 版才        | <b>达历</b> 中          | 33   |



# 图索引

| 图 2-1. GD32F4xx 系列电源域概览        | 6  |
|--------------------------------|----|
| 图 2-2. GD32F4xx 系列推荐供电设计       | 8  |
| 图 2-3. 上电/掉电复位波形图              | 9  |
| 图 2-4. LVD 阈值波形图               | 9  |
| 图 2-5. BOR 阈值波形图               | 10 |
| 图 2-6. 推荐 PDR_ON 引脚电路设计        | 11 |
| 图 2-7. RCU_RSTSCK 寄存器          | 11 |
| 图 2-8. 系统复位电路                  | 11 |
| 图 2-9. 推荐外部复位电路                | 12 |
| 图 2-10. 时钟树                    | 13 |
| 图 2-11 HXTAL 外部晶体电路            | 14 |
| 图 2-12 HXTAL 外部时钟电路            | 14 |
| 图 2-13. LXTAL 外部晶体电路           | 15 |
| 图 2-14. LXTAL 外部时钟电路           | 15 |
| 图 2-15. 中心扩频方式展频               | 17 |
| 图 2-16. 向下扩频方式展频               | 17 |
| 图 2-17. 推荐 BOOT 电路设计           | 18 |
| 图 2-18. 标准 IO 的基本结构            | 19 |
| 图 2-19. ADC 采集电路设计             | 20 |
| 图 2-20. 推荐 USB-Device 参考电路     | 22 |
| 图 2-21. 推荐 USB-Host 参考电路       | 22 |
| 图 2-22. 推荐 Standby 外部唤醒引脚电路设计  | 23 |
| 图 2-23. 推荐 JTAG 接线参考设计         | 24 |
| 图 2-24. 推荐 SWD 接线参考设计          | 25 |
| 图 2-25. GD32F4xx 推荐参考原理图设计     | 26 |
| 图 3-1. 推荐电源引脚去耦 Layout 设计      | 27 |
| 图 3-2. 推荐时钟引脚 Layout 设计(无源晶体)  | 28 |
| 图 3-3. 推荐 NRST 走线 Layout 设计    | 28 |
| 图 3-4. 推荐 DM、DP 差分走线 Layout 设计 | 29 |
| 图 3-5. 推荐 MCU 与 PHY Layout 设计  | 30 |
| 图 3-6. BGA100 封装的扇出方式          | 31 |
| 图 3-7 RGΔ176 封装的扇出方式           | 31 |



# 表索引

| 表 1-1. 适用产品                                                                |             |
|----------------------------------------------------------------------------|-------------|
| 表 2-1. VBOR 阈值电压设置                                                         | 10          |
| 表 2-2. CKOUT0SEL[1:0]控制位                                                   | 10          |
| 表 2-3. CKOUT1SEL[1:0]控制位                                                   | 16          |
| 表 2-4. PLL spread spectrum clock generation (SSCG) characteristics         | 10          |
| 表 2-5. BOOT 模式                                                             | 18          |
| 表 2-6. f <sub>ADC</sub> =40MHz 采样周期与外部输入阻抗关系(适用 GD32F405xx/ GD32F407xx/ GD | 32F450xx 系列 |
| MCU)                                                                       | 20          |
| 表 2-7. f <sub>ADC</sub> =40MHz 采样周期与外部输入阻抗关系(适用 GD32F425xx/ GD32F427xx/ GD | 32F470xx 系列 |
| MCU)                                                                       | 20          |
| 表 2-8. DAC 相关引脚描述                                                          | 21          |
| 表 2-9. JTAG 下载调试接口分配                                                       | 23          |
| 表 2-10. SWD 下载调试接口分配                                                       | 24          |
| 表 4-1. 封装型号说明                                                              | 32          |
| 表 5-1. 版本历史                                                                | 33          |



# 1. 前言

本文是专为基于Arm® Cortex®-M4架构的32位通用MCU GD32F4xx系列开发者提供的,对GD32F4xx系列产品硬件开发做了总体介绍,如电源、复位、时钟、启动模式的设置及下载调试等。该应用笔记的目的是让开发者快速上手使用GD32F4xx系列产品,并快速进行产品硬件开发使用,节约研读手册的时间,加快产品开发进度。

本应用笔记总共分为七部分来讲述:

- 1. 电源,主要介绍GD32F4xx系列电源管理、供电及复位功能的设计;
- 2. 时钟, 主要介绍GD32F4xx系列高、低速时钟的功能设计;
- 3. 启动配置,主要介绍GD32F4xx系列BOOT配置及设计;
- 4. 典型外设模块,主要介绍GD32F4xx系列主要功能模块硬件设计;
- 5. 下载调试电路,主要介绍GD32F4xx系列推荐典型下载调试电路;
- 6. 参考电路及PCB Layout设计,主要介绍GD32F4xx系列硬件电路设计及PCB Layout设计 注意事项:
- 7. 封装说明,主要介绍GD32F4xx系列所包含的封装形式及命名。

该文档也满足了基于GD32F4xx系列产品应用开发中所用到的最小系统硬件资源。

表 1-1. 适用产品

| 类型   | 型号            |
|------|---------------|
|      | GD32F405xx 系列 |
|      | GD32F425xx 系列 |
| MCU  | GD32F407xx 系列 |
| MICO | GD32F427xx 系列 |
|      | GD32F450xx 系列 |
|      | GD32F470xx 系列 |



#### 硬件设计 2.

#### 2.1. 电源

GD32F4xx系列Vpp/Vppa工作电压范围为2.6 V ~ 3.6 V。如图2-1. GD32F4xx系列电源域概览 所示,GD32F4xx系列设备有三个电源域,包括Vpp/Vppa域,1.2 V域和备份域。Vpp/Vppa域由 电源直接供电,且在V<sub>DD</sub>/V<sub>DDA</sub>域中嵌入了一个LDO,用来为1.2 V域供电。备份域供电V<sub>BAK</sub>可通 过电源切换器Power Switch切换由VDD或VBAT供电,当VDD电源关闭时,电源切换器可以将备份 域的电源切换到VBAT引脚,此时备份域由VBAT引脚(电池)供电。

**V**DD **Backup Domain V**BAK Power Switch 3.3V **LXTAL BPOR WKUP WKUPR** PA0 RTC **BLDO** 1.2V **PMU** WKUPN NRST CTL **BSRAM** WKUPF SLEEPING **FWDGT** Cortex-M4 POR/PDR **HXTAL** LDO **AHB IPs APB IPs** 1.2V **V**<sub>DD</sub> **Domain** 1.2V Domain **V**<sub>DDA</sub> **Domain** IRC16M IRC32K ADC **V**DDA LVD **PLLs** DAC LVD: 低压检测器 LDO: 电压调节器 BPOR: 备份域上电复位 POR: 上电复位 PDR: 掉电复位 BLDO: 备份SRAM LDO输出1.2V电压

图2-1. GD32F4xx系列电源域概览

#### 2.1.1. 备份域

备份域供电电压范围为1.8 V~3.6 V。电池备份域由内部电源切换器来选择VDD供电或VBAT(电 池)供电,然后由VBAK为备份域供电。为了确保备份域中寄存器的内容及RTC正常工作,当VDD 关闭时,VBAT引脚可以连接至电池或其他电源等备份源供电。如果外部没有电池供电的应用, 建议将VBAT引脚通过100nF电容对地后接至VDD引脚上。

关于VBAT电源有以下注意事项:

- 1、由于在VDD上电阶段,芯片内部备份域电源仍然连接VBAT脚,如果此时VDD>VBAT+0.6V,电 流可能通过VDD与VBAT之间的内部二极管注入到VBAT, 引起VBAT的脉冲;
- 2、关于VBAT引脚的功耗,理论上,当MCU的VDD上电时,备份域内部swich连接到VDD上,VBAT



引脚无电流,但是,当主程序有使用ADC通过内部channel测量V<sub>BAT</sub>电压时,由于MCU设计,会对V<sub>BAT</sub>上的电压进行4分压,然后进ADC channel,因此会在V<sub>BAT</sub>引脚上引起额外的功耗(几十uA级)。

# 2.1.2. V<sub>DD</sub>/V<sub>DDA</sub> 电源域

VDD/VDDA电源域包括VDD域和VDDA域两部分。如果VDDA不等于VDD,要求两者之间的压差不能超过300mV(芯片内部VDDA与VDD通过背靠背二极管连接)。为避免噪声,VDDA可通过外部滤波电路连接至VDD,相应的VSSA通过特定电路(单点接地,通过0Ω电阻或者磁珠等)连接至VSS。

为了提高ADC的转换精度,为VDDA独立供电可使模拟电路达到更好的特性。在大封装上含有专为ADC独立供电的VREF引脚(2.6 V≤VREF+≤VDDA, VREF-=VSSA)。

- BGA封装中,100及以上引脚的封装芯片含有V<sub>REF</sub>+和V<sub>REF</sub>-,V<sub>REF</sub>+可以使用外部参考电源, 也可以直连至V<sub>DDA</sub>,V<sub>REF</sub>-必须连接到V<sub>SSA</sub>;
- LQFP封装中,100及以上引脚的封装芯片含有V<sub>REF+</sub>,V<sub>REF+</sub>可以使用外部参考电源,也可以直连至V<sub>DDA</sub>;
- 64引脚封装芯片无V<sub>REF+</sub>和V<sub>REF-</sub>,其在内部直连至V<sub>DDA</sub>和V<sub>SSA</sub>,所有模拟模块均由V<sub>DDA</sub>供电(包括ADC/DAC)。

## 2.1.3. 供电设计

系统需要稳定的电源,开发使用的时候有些重要事项需要注意:

- V<sub>DD</sub>脚必须外接电容(N\*100nF陶瓷电容+不小于4.7uF钽电容,至少一个V<sub>DD</sub>需要接不小于4.7uF电容到GND,其他V<sub>DD</sub>引脚接100nF);
- VDDA脚必须外接电容(建议10nF+1uF陶瓷电容);
- VREF引脚可由内部产生也可直连至VDDA,且在VREF引脚对地连接10nF+1uF陶瓷电容。



## 图 2-2. GD32F4xx 系列推荐供电设计



注意: 所有去耦电容须靠近芯片对应VDD、VDDA、VREF引脚放置。

# 2.1.4. 复位及电源管理

GD32F4xx系列复位控制包括三种复位: 电源复位、系统复位和备份域复位。电源复位为冷复位, 电源启动时复位除了备份域的所有系统。电源和系统复位的过程中, NRST会维持一个低电平, 直至复位结束。MCU无法执行起来时,可以通过示波器监测NRST管脚波形来判断芯片是否有一直发生复位事件。

芯片内部集成 POR/ PDR(上电/掉电复位)电路,用于检测 VDD/VDDA并在电压低于特定阈值时产生电源复位信号复位除备份域之外的整个芯片。VPOR表示上电复位的阈值电压,典型值约为 2.4 V,VPDR表示掉电复位的阈值电压,典型值约为 1.8 V。迟滞电压 Vhyst 值约为 600mV。



图2-3. 上电/掉电复位波形图



LVD的功能是检测VDD/VDDA供电电压是否低于低电压检测阈值(2.1V~3.1V),该阈值由电源控制寄存器(PMU\_CTL)中的LVDT[2:0]位进行配置。LVD通过LVDEN置位使能,位于电源状态寄存器(PMU\_CS)中的LVDF位表示VDD/VDDA高于或低于LVD阈值电压事件是否出现,该事件连接至EXTI的第16线,用户可以通过配置EXTI的第16线产生相应的中断。图2-4. LVD阈值波形图显示了VDD/VDDA供电电压和LVD输出信号的关系。(LVD中断信号依赖于EXTI第16线的上升或下降沿配置)。迟滞电压Vhyst值为100mV。

LVD 应用场合: 当 MCU 电源受到外部干扰时,如发生电压跌落,我们可通过 LVD 设置低电压 检测阈值(该阈值大于 PDR 值),一旦跌落到该阈值,LVD 中断被打开,可在中断函数里设置 软复位等操作,避免 MCU 发生其他异常。

图2-4. LVD阈值波形图



GD32F4xx系列MCU内部还集成有BOR电路。BOR电路检测VDD/VDDA并在电压低于选项字节



的BOR\_TH定义的阈值且该阈值不为0b11(默认状态:BOR\_TH=0b11,BOR功能关闭)时产生电源复位信号复位除备份域外的整个芯片。不管选项字节BOR\_TH的值是否为0b11,POR/PDR(上电/掉电复位)电路会一直处于检测状态。*图2-5. BOR阈值波形图*显示了供电电压和BOR复位信号之间的关系。VBOR表示BOR复位的阈值电压,该值在选项字节BOR\_TH中定义。迟滞电压V<sub>hyst</sub>值为100mV。

图2-5. BOR阈值波形图



BOR阈值通过选项字节BOR\_TH设置,可以设置三种不同的level,对应关系参照下表:

表 2-1. VBOR 阈值电压设置

| Symbol                | Conditions   | Тур    |
|-----------------------|--------------|--------|
| DOD TH 00/DOD lovel2) | Falling edge | 2.79 V |
| BOR_TH=00(BOR level3) | Rising edge  | 2.88 V |
| DOD TH 04/DOD lovel2) | Falling edge | 2.49 V |
| BOR_TH=01(BOR level2) | Rising edge  | 2.58 V |
| DOD TH 40/DOD lovel4) | Falling edge | 2.19 V |
| BOR_TH=10(BOR level1) | Rising edge  | 2.29 V |
| BOR_TH=11(BOR off)    | -            | -      |

对于LQFP封装,在144pin及以上封装上有PDR\_ON引脚,对于BGA封装,则在BGA100及以上封装上有PDR\_ON引脚,该引脚使能芯片内部POR/PDR电路,为确保芯片在上电阶段与掉电阶段发生有效POR与PDR,我们十分建议将该pin通过一个10k欧姆电阻上拉到V<sub>DD</sub>,如下图所示。



# 图 2-6. 推荐 PDR\_ON 引脚电路设计



另外,MCU复位源可以通过查询寄存器RCU\_RSTSCK (0x40023874)该寄存器只有上电复位才能清除标志位,所以在使用过程中,获取到复位源后,可通过RSTFC控制位清除复位标志,那样发生看门狗复位或其他复位事件时,才能较准确在RCU\_RSTSCK寄存器中体现出来:

图 2-7. RCU\_RSTSCK 寄存器

|   | •    |       | _     |      |      |      |      |       |    |    |    |    |    |    |        |         |
|---|------|-------|-------|------|------|------|------|-------|----|----|----|----|----|----|--------|---------|
| ſ | 31   | 30    | 29    | 28   | 27   | 26   | 25   | 24    | 23 | 22 | 21 | 20 | 19 | 18 | 17     | 16      |
|   | LP   | WWDGT | FWDGT | SW   | POR  | EP   | BOR  |       |    |    |    |    |    |    |        |         |
|   | RSTF | RSTF  | RSTF  | RSTF | RSTF | RSTF | RSTF | RSTFC |    |    |    | 保  | 留  |    |        |         |
|   | г    | r     | r     | г    | r    | r    | r    | rw    |    |    |    |    |    |    |        |         |
|   | 15   | 14    | 13    | 12   | 11   | 10   | 9    | 8     | 7  | 6  | 5  | 4  | 3  | 2  | 1      | 0       |
|   |      |       |       |      |      |      |      |       |    |    |    |    |    |    | IRC32K | IRC32KE |
|   | 保留   |       |       |      |      |      |      | STB   | N  |    |    |    |    |    |        |         |
| L |      |       |       |      |      |      |      | ·     |    |    |    |    |    |    | r      | rw      |

MCU内部集成有上电/掉电复位电路,在设计外部复位电路时,NRST管脚必须要放置一个电容(典型值100nF),确保NRST管脚上电能产生一个至少20us的低脉冲延时,完成有效上电复位过程。

# 图2-8. 系统复位电路





## 图 2-9. 推荐外部复位电路



### 注意:

- 1. 上拉电阻建议10kΩ即可,以使得电压干扰不会导致芯片工作异常;
- 2. 若考虑静电等影响,可在NRST管脚处放置ESD保护二极管;
- 3. 尽管MCU内部有硬件POR电路,仍推荐外部加NRST复位阻容电路;
- 4. 如果MCU启动异常(由于电压波动等),可适当增加NRST对地电容值,拉长MCU复位完成时间,避开上电异常时序区。

# 2.2. 时钟

GD32F4xx系列内部有完备的时钟系统,可以根据不同的应用场合,选择合适的时钟源,时钟主要特征:

- 4-32 MHz外部高速晶体振荡器(HXTAL)
- 内部16 MHz RC振荡器(IRC16M)
- 内部48 MHz RC振荡器(IRC48M)
- 32.768 KHz外部低速晶体振荡器 (LXTAL)
- 内部32 KHz RC振荡器(IRC32K)
- PLL时钟源可选HXTAL或IRC16M
- HXTAL时钟监视器



### 图 2-10. 时钟树



**注意:** GD32F405xx/ GD32F407xx系列MCU最高主频为168M; GD32F425xx/ GD32F427xx/ GD32F450xx系列MCU最高主频为200M; GD32F470xx系列MCU最高主频为240M。

# 2.2.1. 外部高速晶体振荡时钟(HXTAL)

4-32MHz外部高速晶体振荡器(无源晶体)可为系统提供精准的主时钟。该特定频率的晶体必须靠近HXTAL引脚放置,和晶体连接的外部电阻和匹配电容必须根据所选择的振荡器参数来调整。HXTAL还可以使用旁路输入的模式来输入时钟源(1-50MHz有源晶振等)。旁路输入时,信号接至OSC IN,OSC OUT保持悬空状态,软件上需要打开HXTAL的Bypass功能(使能



RCU\_CTL里的HXTALBPS位)。

#### 图 2-11 HXTAL 外部晶体电路



#### 图 2-12 HXTAL 外部时钟电路



#### 注意:

- 1. 使用旁路输入时,信号从OSC\_IN输入,OSC\_OUT保持悬空状态。
- 2. 关于外部匹配电容大小可参考公式:  $C_1 = C_2 = 2^*(C_{LOAD} C_S)$ , 其中 $C_S$ 为PCB和MCU引脚的杂散电容,典型值为10pF。推荐选用外部高速晶体时,尽量选择晶体负载电容在20pF左右的,这样外部所接匹配电容 $C_1$ 和 $C_2$ 电容值为20pF即可,且PCB Layout时尽可能近地靠近晶振引脚。
- 3. Cs为PCB板走线及IC pin上的寄生电容,当晶体离MCU越近,Cs越小,反之越大。所以,在实际应用中,当晶体离MCU较远导致晶体工作异常时,可适当减小外部匹配电容。
- 4. 使用外部高速晶体时,建议在晶体两端并联1MΩ电阻,以使得晶体更容易起振。
- 5. 精度:外部有源晶振>外部无源晶体>内部IRC16M。
- 6. 正常使用有源晶振,会打开Bypass,此时要求高电平不低于0.7V<sub>DD</sub>,低电平不大于0.3V<sub>DD</sub>。 如不打开Bypass,对有源晶振的振幅幅值要求会大大降低。
- 7. 谐振器与MCU时钟引脚连接的走线可能会应为PCB布局布线的空间限制导致连接到OSC\_OUT和OSC\_IN两个引脚的走线长度不一致。这会使两条PCB走线引入的杂散电容不一致,从而导致谐振器两边的负载电容在取值时不能相等,需要存在差值以匹配实际的PCB板。对于这种情况建议联系谐振器厂家测算实际的数值。

## 2.2.2. 外部低速晶体振荡时钟(LXTAL)

LXTAL晶体是一个32.768KHz的低速外部晶体(无源晶体),能够为RTC提供一个低功耗且高



精度的时钟源。MCU的RTC模块相当于一个计数器,精度会受到晶体性能、匹配电容以及PCB 材质等影响,如果想要获取到较好精度,在电路设计时,建议将PC13接至定时器输入捕获管 脚,通过TIMER来对LXTAL进行校准,根据校准情况设定RTC的分频寄存器。LXTAL也可以支持旁路时钟输入(有源晶振等),可以通过配置RCU\_BDCTL里面的LXTALBPS位来使能。

### 图 2-13. LXTAL 外部晶体电路



#### 图 2-14. LXTAL 外部时钟电路



# 注意:

- 1. 使用旁路输入时,信号从OSC32 IN输入,OSC32 OUT保持悬空状态;
- 2. 关于外部匹配电容大小可参考公式: C<sub>1</sub> = C<sub>2</sub> = 2\*(C<sub>LOAD</sub> C<sub>S</sub>), 其中C<sub>S</sub>为PCB和MCU引脚的杂散电容, 经验值在2pF-7pF之间, 建议以5pF为参考值计算。推荐选用外部晶体时, 尽量选择晶体负载电容在10pF左右的, 这样外部所接匹配电容C<sub>1</sub>和C<sub>2</sub>电容值为10pF即可, 且PCB Lavout时尽可能近地靠近晶振引脚:
- 3. 当RTC选择IRC32K作为时钟源,并且使用V<sub>BAT</sub>外部独立供电时,如果此时MCU掉电,RTC 会停止计数,重新上电后,RTC会接着之前的计数值继续累加计时。若应用需要使用V<sub>BAT</sub> 给RTC供电时,RTC仍能正常计时,RTC须选择LXTAL作为时钟源;
- 4. MCU可以设置LXTAL的驱动能力,若实际调试过程中,发现外部低速晶体难以起振,可尝试将LXTAL的驱动能力调整为高驱动能力;
- 5. 谐振器与MCU时钟引脚连接的走线可能会应为PCB布局布线的空间限制导致连接到MCU两个晶振引脚的走线长度不一致。这会使两条PCB走线引入的杂散电容不一致,从而导致谐振器两边的负载电容在取值时不能相等,需要存在差值以匹配实际的PCB板。对于这种情况建议联系谐振器厂家测算实际的数值。



### 2.2.3. 时钟输出能力(CKOUT)

GD32F4xx 系列 MCU 可输出从 32kHz 到 200MHz 的时钟。通过设置时钟配置寄存器 0(RCU\_CFG0)中的CK\_OUT0时钟源选择位域CKOUT0SEL能够选择不同的时钟信号。CK\_OUT1时钟输出源选择通过设置时钟配置寄存器RCU\_CFG0中的CKOUT1SEL位域实现。相应的GPIO引脚应该被配置成备用功能I/O(AFIO)模式来输出选择的时钟信号。CK\_OUT0对应的IO口为PA8,CK\_OUT1对应的IO口为PC9。

表 2-2. CKOUT0SEL[1:0]控制位

| CKOUT0SEL[1:0] | 时钟源       |
|----------------|-----------|
| 00             | CK_IRC16M |
| 01             | CK_LXTAL  |
| 10             | CK_HXTAL  |
| 11             | CK_PLLP   |

表 2-3. CKOUT1SEL[1:0]控制位

| CKOUT1SEL[1:0] | 时钟源        |
|----------------|------------|
| 00             | CK_SYS     |
| 01             | CK_PLLI2SR |
| 10             | CK_HXTAL   |
| 11             | CK_PLLP    |

### 2.2.4. **HXTAL** 时钟监视器(CKM)

设置控制寄存器RCU\_CTL中的HXTAL时钟监视使能位CKMEN,HXTAL可以使能时钟监视功能。该功能必须在HXTAL启动延迟完毕后使能,在HXTAL停止后禁止。一旦监测到HXTAL故障,HXTAL将自动被禁止,中断寄存器RCU\_INT中的HXTAL时钟阻塞中断标志位CKMIF将被置'1',产生HXTAL故障事件。这个故障引发的中断和Cortex-M4的不可屏蔽中断NMI相连。如果HXTAL被选作系统或PLL的时钟源,HXTAL故障将促使选择IRC16M为系统时钟源且PLL将被自动禁止。

**注意:** 如果HXTAL被选作系统或PLL的时钟源,HXTAL故障将促使选择IRC16M为系统时钟源且PLL将被自动禁止。RTC的时钟源需要重新配置。

# 2.2.5. PLL 展频 (SSCG)

为了减小EMI干扰,GD32F4xx系列PLL集成时钟展频功能(只适用于主PLL),有效降低在主时钟频点及其奇次谐波能量。根据设置的调制频率fmod与调制峰值mdamp(范围参照<u>表2-4. PLL spread spectrum clock generation (SSCG) characteristics</u>),通过公式(2-1)与公式(2-2),计算出MODCNT与MODSTEP,填入PLL时钟扩频控制寄存器(RCU\_PLLSSCTL)中,注意MODCNT与MODSTEP的乘积不能大于2^15-1,如果出现大于的情况,则需要降低调制峰值Mdamp重新计算。

表 2-4. PLL spread spectrum clock generation (SSCG) characteristics

| Symbol Parameter | Conditions | Min | Тур | Max | Unit |  |
|------------------|------------|-----|-----|-----|------|--|
|------------------|------------|-----|-----|-----|------|--|





| $f_{mod}$       | Modulation frequency      | _ | _ | _ | 10                 | kHz |
|-----------------|---------------------------|---|---|---|--------------------|-----|
| mdamp           | Peak modulation amplitude | _ | _ | _ | 2                  | %   |
| MODCNT* MODSTEP | _                         | _ | _ | _ | 2 <sup>15</sup> -1 | _   |

MODCNT与MODSTEP通过以下算式得出:

$$MODCNT=round(f_{PLLIN}/4/f_{mod}) \tag{2-1}$$

fpllin表示PLL输入时钟频率,fmod表示扩频调制频率,mdamp表示扩频调制振幅(按百分比表示), PLLN 表示PLL时钟频率倍频因子

例如PLL参考时钟源HXTAL=8MHz,预分频PLLM=4,则f<sub>PLLIN</sub>=2MHz,设置PLLN=200(此时 VCO频率400MHz,二分频得到系统时钟200MHz),展频调制频率10KHz,调制幅度2%,则计算得到MODCNT=50,MODSTEP=1311,此时MODCNT\*MODCNT>2^15-1,无法达到。降低调制幅度为1%,则MODCNT=50,MODSTEP=655,此时MODCNT\*MODCNT=32750<2^15-1满足要求。

根据寄存器RCU\_PLLSSCTL中SS\_TYPE的设置,可选择两种扩频调制类型,分别为中心扩频和向下扩频,PLL输出频率会按如下波形变化。

### 图 2-15. 中心扩频方式展频



图 2-16. 向下扩频方式展频





**注意:** 如果使能了PLL展频功能,则系统时钟频率则会处于波动状态,对于时钟精度要求较高的外设则可能发生工作不正常的情况,如使用MCU IO输出时钟作为PHY时钟的以太网应用以及USB相关应用。

# 2.3. 启动配置

GD32F4xx系列提供三种启动方式,可以通过BOOT0位和BOOT1引脚进行选择来确定启动选项。电路设计时,运行用户程序,BOOT0引脚不能悬空,建议通过一个10kΩ电阻到GND;运行System Memory进行程序更新,需要将BOOT0引脚接高,BOOT1引脚接低,更新完成后,再将BOOT0接低后上电才能运行用户程序;SRAM执行程序多用于调试状态下。

嵌入式的Bootloader存放在系统存储空间,用于对FLASH存储器进行重新编程。Bootloader可以通过USART0(PA9 and PA10)、USART2(PB10 and PB11 or PC10 and PC11)或USB FS(PA9、PA11和PA12)和外界交互。

表 2-5. BOOT 模式

| BOOT 模式           | BOOT1 | воото |
|-------------------|-------|-------|
| Main Flash Memory | X     | 0     |
| System Memory     | 0     | 1     |
| On Chip SRAM      | 1     | 1     |

图 2-17. 推荐 BOOT 电路设计



### 注意:

- 1. MCU运行后,如果改变BOOT状态,须系统复位后才可生效;
- 2. 一旦BOOT1引脚状态被采样到,它可以被释放用于其他用途。

# 2.4. 典型外设模块

### 2.4.1. GPIO 电路

GD32F4xx最多可支持140个通用I/O引脚(GPIO),分别为PAO~PA15,PBO~PB15,PC0



~PC15, PD0~PD15, PE0~PE15, PF0~PF15, PG0~PG15, PH0~PH15, PI0~PI11; 每个引脚都可以通过寄存器独立配置, GPIO口的基本结构详见下图:

### 图 2-18. 标准 IO 的基本结构



#### 注意:

- 1. IO口分为5V耐受和非5V耐受,使用时注意区分IO口耐压情况,对于GD32F4xx系列芯片,除去PA4,PA5两个pin为非5V耐受pin,其余pin脚均为5V耐受脚;
- 2. 5V耐受的IO口直接5V时,建议IO口配置为开漏模式,外部上拉来工作;
- 3. IO口上电复位后,默认模式为浮空输入,电平特性不确定,为了获得较一致的功耗,建议 所有IO口配置成模拟输入然后再根据应用需求来修改为相应的模式(芯片内部没有引出的 端口也需要配置);
- 4. 为提高EMC性能,未使用的IO口引脚建议硬件上拉或者是下拉;
- 5. PC13、PC14、PC15和PI8这四个IO口的驱动能力偏弱,输出电流能力有限,配置为输出模式时,其工作速度不能超过2MHz;
- 6. 多组中同一标号PIN仅可配置一个IO口为外部中断,例: PA0、PB0、PC0仅支持三个中的 其中一个IO口产生外部中断,不支持三个同为外部中断模式。

### 2.4.2. ADC 电路

GD32F4xx系列内部集成了一个12位的SAR ADC,它有多达19个通道,可测量16个外部和2个内部信号源及1个外部电池监测信号源。内部信号为温度传感器通道(ADC0\_CH16),内部参考电压输入通道(ADC0\_CH17),外部信号为外部监测电池VBAT供电引脚输入通道(ADC0\_CH18)。温度传感器体现的是温度的变化,并不适合测量绝对温度。如果需要测量精确的温度,必须使用一个外置的温度传感器。内部参考电压VREFINT提供了一个稳定的电压输出(1.2V)给到ADC,并内部连接至ADC0\_IN17。提供外部检测VBAT引脚电池电压功能,其转换的值为VBAT/4。

如果在使用过程中,ADC采集外部输入电压,若采样数据波动较大,可能是由于电源波动引起



的干扰,可通过采样内部VREFINT进行校准,反推外部采样电压。

设计ADC电路时,建议在ADC输入管脚处放置个小电容,建议放置一个500pF的小电容即可。

## 图 2-19. ADC 采集电路设计



fanc = 40MHz时,输入阻抗和采样周期关系如下,为了获得较好的转换结果,使用过程中,建议尽量降低fanc的频率,采样周期尽量选较大的值,外部电路设计时也尽量减小输入阻抗,必要时采用运放跟随来降低输入阻抗。

表 2-6. f<sub>ADC</sub>=40MHz 采样周期与外部输入阻抗关系(适用 GD32F405xx/ GD32F407xx/ GD32F450xx 系列 MCU)

| T <sub>s</sub> (cycles) | t <sub>s</sub> (us) | R <sub>AIN max</sub> (KΩ) |
|-------------------------|---------------------|---------------------------|
| 3                       | 0.075               | 0.85                      |
| 15                      | 0.375               | 6.5                       |
| 28                      | 0.7                 | 12.6                      |
| 55                      | 1.375               | 25.7                      |
| 84                      | 2.1                 | 38.8                      |
| 112                     | 2.8                 | 51.9                      |
| 144                     | 3.6                 | N/A                       |
| 480                     | 12                  | N/A                       |

表 2-7. f<sub>ADC</sub>=40MHz 采样周期与外部输入阻抗关系(适用 GD32F425xx/ GD32F427xx/ GD32F470xx 系列 MCU)

| T <sub>s</sub> (cycles) | t <sub>s</sub> (us) | R <sub>AIN max</sub> (KΩ) |
|-------------------------|---------------------|---------------------------|
| 3                       | 0.075               | 1.3                       |
| 15                      | 0.375               | 9.1                       |
| 28                      | 0.7                 | 17.4                      |
| 55                      | 1.375               | 34.8                      |
| 84                      | 2.1                 | 53.5                      |
| 112                     | 2.8                 | 71.5                      |
| 144                     | 3.6                 | 92.4                      |
| 480                     | 12                  | 308.6                     |



## 2.4.3. DAC 电路

GD32F4xx系列MCU的数字/模拟转换器可以将12位的数字数据转换为外部引脚上的电压输出。数据可以采用8位或12位模式,左对齐或右对齐模式。当使能了外部触发,DMA可被用于更新输入端数字数据。在输出电压时,可以利用使能DAC输出缓冲区来获得更高的驱动能力。两个DAC可以独立或并发工作。

表2-8. DAC相关引脚描述

| 名称                | 描述                                          | 信号类型                      |  |
|-------------------|---------------------------------------------|---------------------------|--|
| V <sub>DDA</sub>  | 模拟电源                                        | 输入,模拟电源                   |  |
| Vssa              | 模拟电源地                                       | 输入,模拟电源地                  |  |
| V                 | DAC 正参考电压,                                  | <b>公</b> 超刊工会 <b>之</b> 由区 |  |
| V <sub>REF+</sub> | 2.6V ≤ V <sub>REF+</sub> ≤ V <sub>DDA</sub> | 输入,模拟正参考电压<br>            |  |
| DAC_OUTx          | DACx 模拟输出                                   | 模拟输出信号                    |  |

在使能DAC模块前,GPIO口(PA4对应DAC0, PA5对应DAC1)应配置为模拟模式。

# 2.4.4. USB 电路

GD32F4xx系列MCU拥有两种USB接口,其为一个USBFS接口,另一个为USBHS接口。USBFS包含了一个内部的全速USB PHY,并且不再需要外部PHY芯片。USBHS为外部USB物理层(PHY)提供了一个ULPI接口,并且其也包含了一个内部的全速USB PHY。所以,对于全速操作,不再需要外部的USB PHY;若使用外部高速ULPI PHY,USBHS支持的最大速度为高速。USBFS接口与USBHS接口使用同一个全速USB PHY。

USB协议要求时钟精度不低于500ppm,内部时钟可能无法达到这样的精度,所以建议使用USB功能时使用外部晶体或有源晶振做为USB模块时钟源。

GD32F4xx系列USB既可设计为USB device,又可设计为USB host。设计为Device时,如果PA9接至VBUS上,DP线不用外接1.5K上拉电阻;如果PA9不接至VBUS上,若已配置USBFS\_GCCFG寄存器中VBUSIG控制位,那么USB\_DP数据线可不外接1.5K上拉电阻,若不配置该寄存器,那么USB\_DP数据线需要外接1.5K上拉电阻。

在设计电路时,为了提升USB的ESD性能,USB外壳建议设计阻容放电隔离电路。



# 图 2-20. 推荐 USB-Device 参考电路



推荐: R = 1MΩ,C = 4700pF。

### 图 2-21. 推荐 USB-Host 参考电路



推荐: R = 1MΩ, C = 4700pF。

# 2.4.5. Standby 模式唤醒电路

GD32F4xx系列支持三种低功耗模式,分别为睡眠模式,深度睡眠模式和待机模式,其中功耗最低的是Standby待机模式,此低功耗模式需要的唤醒时间也是最长的。从Standby模式唤醒可通过WKUP引脚上升沿唤醒,此时无需配置对应GPIO,仅需配置PMU\_CS寄存器里的WUPEN位即可。对应WKUP唤醒引脚参考电路设计如下:



# 图 2-22. 推荐 Standby 外部唤醒引脚电路设计



**注意:** 该模式在电路设计时需要注意,WKUP引脚至Vpp间如果有串电阻,可能会增加额外的功耗。

# 2.5. 下载调试电路

GD32F4xx系列内核支持JTAG调试接口与SWD调试接口。JTAG接口标准为20针接口,其中5根信号接口,SWD接口标准为5针接口,其中2根信号接口。

注意:复位后,调试相关端口为输入PU/PD模式,其中:

PA15: JTDI为上拉模式;

PA14: JTCK / SWCLK为下拉模式; PA13: JTMS / SWDIO为上拉模式;

PB4: NJTRST为上拉模式; PB3: JTDO为浮空模式。

表 2-9. JTAG 下载调试接口分配

| 备用功能   | GPIO 端口 |
|--------|---------|
| JTMS   | PA13    |
| JTCK   | PA14    |
| JTDI   | PA15    |
| JTDO   | PB3     |
| NJTRST | PB4     |



# 图 2-23. 推荐 JTAG 接线参考设计



表 2-10. SWD 下载调试接口分配

| 备用功能  | GPIO 端口 |
|-------|---------|
| SWDIO | PA13    |
| SWCLK | PA14    |



# 图 2-24. 推荐 SWD 接线参考设计



有以下几种方式可以提高SWD下载调试通信的可靠性,增强下载调试的抗干扰能力。

- 1. 缩短SWD两个信号线长度,最好15cm以内;
- 2. 将SWD两根线和GND线编个麻花,缠在一起;
- 3. 在SWD两根信号线对地各并几十pF小电容;
- 4. SWD两根信号线任意IO串入100Ω~1KΩ电阻。



# 2.6. 参考原理图设计

# 图 2-25. GD32F4xx 推荐参考原理图设计



# 3. PCB Layout 设计

为增强MCU的功能稳定性及EMC性能,不仅需要考虑配套外围元器件性能,在PCB Layout上也至关重要。另外,在条件允许的情况下,尽量选用有独立GND层和独立电源层的PCB设计方案,这样可以提供更好的EMC性能。如果条件不允许的情况下,无法提供独立的GND层和电源层,那也需要保证有一个良好的供电和接地设计,如尽量使得MCU下方GND平面的完整性等。

在有大功率或可产生强干扰的应用下,需要考虑将MCU远离这些强干扰源。

# 3.1. 电源去耦电容

GD32F4xx系列电源有VDD、VDDA、VREF等供电脚,100nF去耦电容采用陶瓷MLCC即可,且需要保证位置尽可能地靠近电源引脚。电源走线要尽量使得经过电容后再到达MCU电源引脚,建议可通过靠近电容PAD处打Via的形式Layout。

图 3-1. 推荐电源引脚去耦 Layout 设计



# 3.2. 时钟电路

GD32F4xx系列时钟有HXTAL和LXTAL,要求时钟电路(包括晶体或晶振及电容等)靠近MCU时钟引脚放置,且尽量时钟走线由GND包裹起来。



# 图 3-2. 推荐时钟引脚 Layout 设计 (无源晶体)



### 注意:

- 1. 晶体尽量靠近MCU时钟Pin, 匹配电容等尽量靠近晶体;
- 2. 整个电路尽量与MCU在同层,走线尽量不要穿层;
- 3. 时钟电路PCB区域尽量禁空,不走任何与时钟无关走线;
- 4. 大功率、强干扰风险器件及高速走线尽量远离时钟晶体电路;
- 5. 时钟线进行包地处理,以起到屏蔽效果。

# 3.3. 复位电路

NRST走线PCB Layout参考如下:

# 图 3-3. 推荐 NRST 走线 Layout 设计



**注意:** 复位电路阻容等尽可能地靠近MCU NRST引脚,且NRST走线尽量远离强干扰风险器件及高速走线等,条件允许的话,最好将NRST走线做包地处理,以起到更好的屏蔽效果。



# 3.4. USB 电路

对于GD32F4xx系列MCU USB FS模块有DM、DP两根差分信号线,对于USB HS模块,连接外部高速PHY后,PHY芯片也会引出DM、DP两根差分信号线,建议PCB走线要求做特性阻抗90ohm,差分走线严格按照等长等距规则来走,且尽量使走线最短,如果两条差分线不等长,可在终端用蛇形线补偿短线。由于阻抗匹配考虑,串联匹配电阻建议50Ω左右即可。

DM、DP差分走线参考如下:

图 3-4. 推荐 DM、DP 差分走线 Layout 设计



推荐: R1 = R2 =  $50\Omega$ , R3 =  $1M\Omega$ , C = 4700pF。

# 注意:

- 1. 布局时摆放合理,以缩短差分走线距离;
- 2. 优先绘制差分线,一对差分线上尽量不要超过两对过孔,且需要对称放置;
- 3. 对称平行走线,保证两根线紧密耦合,避免90°、弧形或45°走线方式;
- 4. 差分走线上所接阻容、EMC等器件,或测试点,也要做到对称原则。

对于USB HS模块,MCU与外部HS PHY之间的数据线与信号控制线也尽量走短,需要用蛇形线做等长处理,参考如下:



# 图 3-5. 推荐 MCU 与 PHY Layout 设计



### 注意:

- 1. 图中只绘制了MCU与USB HS-PHY之间的连线,其他电路未绘制;
- 2. 布局时摆放合理, USB HS-PHY芯片与MCU之间尽量紧凑;
- 3. 布线时,以信号线中最长的一根线长度为目标,将其他信号线通过蛇形走线补偿即可。

# 3.5. BGA 封装的扇出

对于GD32F4xx 系列MCU部分型号存在BGA176(0.65mm Pitch)封装与BGA100(0.5mm Pitch) 封装,我们推荐以下的走线规则与扇出方式。



## 图 3-6. BGA100 封装的扇出方式



对于0.5 mm Pitch的BGA封装,若将BGA焊盘大小设置为0.25/0.35,过孔距焊盘以及线宽线距为3 mil时,可以使用Dog bone型扇出,扇出后如*图3-6. BGA100封装的扇出方式*所示,过孔距焊盘距离为4.5mil;但此种布线对PCB制造商工艺要求较高,需与PCB制造商沟通后再进行布线,若制造商工艺达不到要求,可对此BGA封装打盘中孔以及盲埋孔。

图 3-7. BGA176 封装的扇出方式



对于0.65 mm Pitch的BGA封装推荐使用规则设置4 mil线宽线距,使用8/12 mil(若所过电流较大,8/13 mil亦可,大于8/13 mil 尺寸, 4 mil线宽线距无法出线)过孔进行扇出,扇出后如**图** 3-7. BGA176封装的扇出方式所示,过孔距焊盘距离为6.2mil。

# 4. 封装说明

GD32F405xx/ GD32F425xx系列共有4种封装形式,分别为LQFP64、LQFP100、BGA100和LQFP144;

GD32F407xx/GD32F427xx系列共有5种封装形式: LQFP64、LQFP100、BGA100、LQFP144和BGA176;

GD32F450xx系列共有3种封装形式,分别为LQFP100、LQFP144和BGA176;

GD32F470xx系列共有4种封装形式,分别为LQFP100、LQFP144、BGA100和BGA176;

表 4-1. 封装型号说明

| Ordering code | Package                  |  |
|---------------|--------------------------|--|
| GD32F40xRxT6  | LQFP64(10x10, 0.5pitch)  |  |
| GD32F42xRxT6  | LQFP64(10x10, 0.5pitch)  |  |
| GD32F40xVxT6  | LQFP100(14x14, 0.5pitch) |  |
| GD32F42xVxT6  | LQFP100(14x14, 0.5pitch) |  |
| GD32F40xVxH6  | BGA100(7x7, 0.5pitch)    |  |
| GD32F42xVxH6  | BGA100(7x7, 0.5pitch)    |  |
| GD32F40xZxT6  | LQFP144(20x20, 0.5pitch) |  |
| GD32F42xZxT6  | LQFP144(20x20, 0.5pitch) |  |
| GD32F407IxH6  | BGA176(10x10, 0.65pitch) |  |
| GD32F427IxH6  | BGA176(10x10, 0.65pitch) |  |
| GD32F4x0VxT6  | LQFP100(14x14, 0.5pitch) |  |
| GD32F4x0ZxT6  | LQFP144(20x20, 0.5pitch) |  |
| GD32F4x0IxH6  | BGA176(10x10, 0.65pitch) |  |
| GD32F470VxH6  | BGA100(7x7, 0.5pitch)    |  |

(Original dimensions are in millimeters)



# 5. 版本历史

表 5-1. 版本历史

| 版本号. | 说明   | 日期         |
|------|------|------------|
| 1.0  | 首次发布 | 2022年4月20日 |



# **Important Notice**

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the "Product"), is owned by the Company under the intellectual property laws and treaties of the People's Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability arising out of the application or use of any Product described in this document. Any information provided in this document is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Except for customized products which has been expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury, death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers shall and hereby do release the Company as well as it's suppliers and/or distributors from any claim, damage, or other liability arising from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it's suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes, corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.

© 2022 GigaDevice - All rights reserved