計量経済 II: 宿題 12

村澤 康友

提出期限: 2024年1月22日

注意:すべての質問に解答しなければ提出とは認めない。授業の HP の解答例を正確に再現すること(乱数は除く)。グループで取り組んでよいが,個別に提出すること。解答例をコピペしたり,他人の名前で提出した場合は,提出点を 0 点とし,再提出も認めない。すべての結果をワードに貼り付けて印刷し(A4 縦・両面印刷可・手書き不可),2 枚以上の場合は向きを揃えて問題番号順に重ね,左上隅をホッチキスで留めること。

- 1. gretlで VECM を推定する手順は以下の通り.
 - (a) メニューから「モデル」→「多変量時系列」→「ベクトル誤差修正モデル(VECM)」を選択.
 - (b)「ラグ次数」を入力.
 - (c)「ランク」を入力.
 - (d)「内生変数」を選択.
 - (e)「外生変数」は選択しない.
 - (f) 定数項・トレンドの扱いを選択.
 - (g) その他は必要に応じて設定(基本的にデフォルト値のままでよい).
 - (h)「OK」をクリック.

gretl のサンプル・データ greene11_3 は, $1950\sim1985$ 年のアメリカのマクロの所得と消費の年次データである.この 2 変数の対数系列について,以下の分析を行いなさい.

- (a) VAR(4) モデル(定数項・トレンドあり)を推定しなさい.
- (b) ラグ次数 4, 共和分階数 1 の VECM (制約付きのトレンド) を推定しなさい.
- (c) 2 つのモデルのインパルス応答関数(点推定値と 95 %信頼区間)のグラフを比較しなさい.
- 2. gretl で Johansen の共和分検定を実行する手順は以下の通り.
 - (a) メニューから「モデル」→「多変量時系列」→「共和分検定(Johansen)」を選択.
 - (b)「ラグ次数」を入力.
 - (c)「検定する変数」を選択.
 - (d)「外生変数」は選択しない.
 - (e) 定数項・トレンドの扱いを選択.
 - (f) その他は必要に応じて設定(基本的にデフォルト値のままでよい).
 - (g)「OK」をクリック.

前間と同じデータを用いて Johansen の共和分検定を実行しなさい。ただし前間との整合性からラグ次数を 4 とし、制約付きのトレンドを仮定する。

解答例

1. (a) VAR(4) モデル

VAR モデル, ラグ次数: 4

最小二乗法 (OLS) 推定量, 観測: 1954-1985 (T=32)

 ${\rm Log\text{-}likelihood} = 209.775$

共分散行列の行列式の値 = 6.93501e-009

AIC = -11.8609

BIC = -10.9448

 $\mathrm{HQC} = -11.5573$

かばん検定 (Portmanteau test): LB(8) = 31.3529, df = 16 [0.0121]

方程式 1: LY

	係数	標準誤差	t-ratio	p 値
const	2.52564	1.41644	1.783	0.0884
$l_{-}Y_{-}1$	0.429741	0.375724	1.144	0.2650
lY2	0.762910	0.398567	1.914	0.0687
l_Y_3	0.926422	0.422392	2.193	0.0391
lY4	-0.549537	0.348011	-1.579	0.1286
$l_{-}C_{-}1$	0.653392	0.400788	1.630	0.1173
$l_{-}C_{-}2$	-0.746474	0.443556	-1.683	0.1065
$l_{-}C_{-}3$	-0.982556	0.485654	-2.023	0.0554
$l_{-}C_{-}4$	0.109262	0.456989	0.2391	0.8132
$_{ m time}$	0.0132458	0.00757703	1.748	0.0944

Mean dependent var	7.357680	S.D. dependent var	0.323740
Sum squared resid	0.005128	S.E. of regression	0.015268
R^2	0.998422	Adjusted \mathbb{R}^2	0.997776
F(9, 22)	1546.200	P-value (F)	1.09e-28
$\hat{ ho}$	0.135750	Durbin-Watson	1.597093

ゼロ制約のF検定

All lags of l_Y F(4,22) = 3.43906 [0.0250] All lags of l_C F(4,22) = 4.34541 [0.0097] All vars, lag 4 F(2,22) = 2.96927 [0.0722]

方程式 2: 1_C

	係数	標準	誤差	t-ratio	рſį	直
const	4.02518	1.4076	33	2.860	0.00	91
$l_{-}Y_{-}1$	0.200009	0.3733	389	0.5357	0.59	76
$l_{-}Y_{-}2$	0.929567	0.3960	90	2.347	0.02	83
$l_{-}Y_{-}3$	0.502951	0.4197	767	1.198	0.24	36
l_Y_4	-0.199634	0.3458	848	-0.5772	0.56	96
$l_{-}C_{-}1$	0.794861	0.3982	297	1.996	0.05	85
$l_{-}C_{-}2$	-1.15497	0.4407	799	-2.620	0.01	56
$l_{-}C_{-}3$	-0.567545	0.4826	635	-1.176	0.25	22
$l_{-}C_{-}4$	-0.143471	0.4541	148	-0.3159	0.75	50
time	0.0210867	0.0075	52994	2.800	0.01	04
Mean depend	dent var 7.2	258948	S.D. o	dependent va	ar (0.318996
Sum squared	resid 0.0	005065	S.E. c	of regression	(0.015173
\mathbb{R}^2	0.9	998394	Adjus	sted R^2	(0.997738
F(9, 22)	15	20.018	P-valu	ue(F)		1.31e–28
$\hat{ ho}$	0.0	001383	Durbi	in-Watson		1.953720
	t	で制約の	F 検気	È		
		T (4.00)				

 $\begin{array}{lll} \mbox{All lags of 1.Y} & F(4,22) = 2.38769 & [0.0820] \\ \mbox{All lags of 1.C} & F(4,22) = 4.57647 & [0.0077] \\ \mbox{All vars, lag 4} & F(2,22) = 1.12695 & [0.3420] \end{array}$

連立方程式全体に関して ―

帰無仮説: 最長のラグは 3 である 対立仮説: 最長のラグは 4 である 尤度比検定: $\chi_4^2=10.400$ [0.0342]

(b) VECM

ベクトル誤差修正モデル (VECM), ラグ次数: 4 最尤法 推定値, 観測: 1954-1985 (T = 32)

共和分ランク = 1

ケース 4: 制約つきのトレンド, 制約のない定数項

beta (共和分ベクトル, 丸括弧内は標準誤差)

1_Y 1.0000 (0.00000) 1_C -1.3739 (0.068647)

trend 0.012286 (0.0024168)

alpha (adjustment vectors)

Log-likelihood = 207.95699

共分散行列の行列式の値 = 7.7694513e-009

AIC = -11.8723

BIC = -11.0478

HQC = -11.5990

方程式 1: d_l_Y

	係数	標準誤差	t 値	p 値
const	2.14802	1.39220	1.543	0.1365
d_1_Y_1	- 1.36705	0.580414	- 2.355	0.0274 **
d_1_Y_2	- 0.551470	0.442509	- 1.246	0.2252
d_1_Y_3	0.434638	0.324999	1.337	0.1942
d_1_C_1	1.83261	0.693707	2.642	0.0146 **
d_1_C_2	1.01524	0.572267	1.774	0.0893 *
d_1_C_3	- 0.0506523	0.461823	- 0.1097	7 0.9136
EC1	0.913390	0.595371	1.534	0.1386

Mean dependent var 0.032741 S.D. dependent var 0.018413

Sum squared resid	0.005599	回帰の標準誤差	0.015602
R-squared	0.467300	Adjusted R-squared	0.282013
rho	0.175823	Durbin-Watson	1.559707

方程式 2: d_1_C

	係数	標準誤	差	t 値	p 値	
const	3.82846	3 1.343	309	2.850	0.0091	***
d_1_Y_1	- 1.359	51 0.5	59941	- 2.428	0.02	234 **
d_1_Y_2	- 0.400	598 0.4	26900	- 0.9384	1 0.35	578
d_1_Y_3	0.13561	0.313	3534	0.4325	0.6694	
d_1_C_1	1.98459	0.669	9237	2.965	0.0069	***
d_1_C_2	0.79011	0.552	2081	1.431	0.1658	
d_1_C_3	0.17613	30 0.445	5532	0.3953	0.6962	
EC1	1.62449	0.574	1370	2.828	0.0095	***
Mean depende	nt var	0.033075	S.D.	dependen	t var	0.016820
Sum squared	resid	0.005211	回帰の	の標準誤差		0.015052
R-squared		0.405855	Adju	sted R-sq	uared	0.199196
rho		0.023442	Durb	in-Watson	L	1.920117

${\tt Cross-equation}\ {\tt covariance}\ {\tt matrix:}$

	1_Y	1_C	
1_Y	0.00017497	0.00014395	
1_C	0.00014395	0.00016284	

行列式の値 = 7.76945e-009

(c) VAR(4)

2. Johansen の共和分検定

Johansen 検定:

式の数 = 2

ラグ次数 = 4

推定期間: 1954 - 1985 (T = 32)

ケース 4: 制約つきのトレンド,制約のない定数項

Log-likelihood = 300.587 (定数項を含む: 209.775)

ランク 固有値 トレース検定 p値 最大固有値検定 p値

0 0.32004 15.979 [0.5022] 12.343 [0.3963]

1 0.10740 3.6358 [0.7891] 3.6358 [0.7909]

標本のサイズに合わせて修正した検定 (df = 22)

ランク トレース検定 p値

0 15.979 [0.5664]

1 3.6358 [0.7982]

固有値 0.32004 0.10740

beta (cointegrating vectors)

1_Y 215.86 -89.665 1_C -296.57 75.240

trend 2.6521 0.52767

alpha (adjustment vectors)

1_Y 0.0042314 0.0038349

1_C 0.0075257 0.0021369

renormalized beta

1_Y 1.0000 -1.1917

1_C -1.3739 1.0000

trend 0.012286 0.0070132

renormalized alpha

1_Y 0.91339 0.28854

1_C 1.6245 0.16078

long-run matrix (alpha * beta')

 1_{Y} 1_{C} trend

1_Y 0.56954 -0.96638 0.013246

1_C 1.4329 -2.0711 0.021087