

Identification of Functional Lung Cancer Risk-Associated SNPs Through Examination of Allele-Specific Effects

C Yang¹, TR Stueve¹, E Tran¹, C Yan¹, CN Marconett¹, B Zhou¹, Z Borok¹, KD Siegmund², IA Laird-Offringa^{*, 1} ¹Norris Comprehensive Cancer Center, ² Dept of Preventive Medicine, University of Southern California

Background

To date, a number of SNPs have been found to be associated with lung cancer risk through genome-wide association studies (GWASs). However, since most GWAS SNPs lie in non-coding regions and are coinherited with hundreds of SNPs in linkage disequilibrium (LD), which SNP(s) play a causal role in the disease remains poorly understood.

We aimed to identify causal SNPs associated with lung cancer risk by investigating allele-specific effects (ASE) in epigenetic marks.

Schematic plot of allele-specific effects (ASE)

Methods

Research Workflow

NGS data sources

ILO lab	ENCODE	Roadmap Epigenomics	DBTSS	GEO
AECBasal Cells	A549SAECNHLFHPFIMR90	IMR9024 Fetal Lung2 Human Lung	 26 LUAD cell lines SAEC BEAS2B	H1819H2087H3122

Results

Chosen SNPs that showed ASE in lung relevant cells Number of SNPs at each step

rsID	Region	Index SNPs	Genes	Potential function	r2	biofeature	eQTL	TF binding prediction	ASE in other cells types (ENCODE DGF)	Fine mapping
rs7*	5p15.33	rs2736100	TERT	Enhancer	0.81	Roadmap_FetalLung_DGF		GR	N	1 st most sig SNP after imputation in 5p15.33 ¹
rs7*	5p15.33	rs2736100	TERT	Enhancer	0.81	Roadmap_FetalLung_DGF Roadmap_FetalLung_DNase		MEIS1	N	2 nd most sig SNP after imputation in 5p15.33 ¹
rs3*	6p21.33	rs3117582	BAT3, APOM	Promoter	1	Nhlf_DGF	C4A, NOTCH4	E2F, NRF1	Y	7 th in LUSQ ²
rs3*	6p21.33	rs3117582	CLIC1	Enhancer	0.98	Nhlf_DGF, Nhlf_Dnase	C4A, NOTCH4	ATF3, GR, SREBP	Y	NA
rs3*	12p13.33	rs6489769 rs10849605	RAD52	Promoter	0.57	Beas2B_IL4+_H3K4me3, PC-3_H3K4me3	RAD52	Ehf, ELF5	Y	1 st most sig SNP after imputation in 12p13.33 ^{2,3}
rs1*	12p13.33	rs6489769 rs10849605	RAD52	Promoter	0.54	Roadmap_FetalLung_H23266_DGF, AEC_2014_4_CTCF_D0, AEC_2013_3_CTCF_D0, Beas2B_CTCF_ChIPSeq_Nickel, ENCODE_HPF_DGF	RAD52	CTCF	Y	6 th most sig SNP after imputation in 12p13.33 ²
rs4*	22q12.22	rs36600	MTMR3	Enhancer	0.64	Basal Cell ATAC-long Basal Cell ATAC-short	MTMR3, ASCC2	SOX	Y	1 st most sig SNP after imputation in 22q12.2 ⁴
rs1*	22q12.22	rs17728461	HORMAD2	Enhancer	1	IMR90_DGF	UQCR10	Gm397	N	1 st most sig SNP after imputation in

Allele-specific effects in RAD52 locus

Analysis of SNPs showing allele-specific effects (ASE) in the RAD52 locus. Two SNPs (rs3* and rs1*) that are associated with lung cancer risk showed allele-specific effects in numerous sequencing experiments (A). Allelic distribution showed a preference for the alternative allele (B). Transcription factor binding sites were predicted around the two SNPs (C). Expression Quantitative Trait Loci (eQTL) showed that the alternative alleles are associated with higher expression of RAD52 (D and E). Luciferase assays showed that vectors containing the promoter region of RAD52 with alternative alleles of the two SNPs have higher activity than those with reference alleles.

Discussion

RAD52 Expression in TCGA lung cancer

RAD52

• The protein encoded by this gene shares similarity with Saccharomyces cerevisiae Rad52, a protein important for DNA double-strand break repair and homologous recombination. This gene product was shown to bind single-stranded DNA ends, and mediate the DNA-DNA interaction necessary for the annealing of complementary DNA strands. It was also found to interact with DNA recombination protein RAD51, which suggested its role in RAD51-related DNA recombination and repair. [RefSeq]

RAD52 and cell proliferation

Lieberman, et al. 2015

References

- Wang, Z. et al. Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33. Hum
- Mol Genet 23, 6616-6633, doi:10.1093/hmg/ddu363 (2014). Wang, Y. et al. Deciphering associations for lung cancer risk through imputation and analysis of 12,316 cases and 16,831 controls. Eur J Hum Genet 23, 1723-1728, doi:10.1038/ejhg.2015.48 (2015).
- Timofeeva, M. N. et al. Influence of common genetic variation on lung cancer risk: meta-analysis of 14 900 cases and 29 485 controls. Hum Mol Genet 21, 4980-4995, doi:10.1093/hmg/dds334 (2012).
- Hu, Z. et al. A genome-wide association study identifies two new lung cancer susceptibility loci at 13q12.12 and 22q12.2 in Han Chinese. Nat Genet 43, 792-796, doi:10.1038/ng.875 (2011).
- 5. Genotype-Tissue Expression Portal (**GTEx**): http://www.gtexportal.org/home/ 6. Pruitt, K. D. et al. RefSeq: an update on mammalian reference sequences. Nucleic Acids Res 42, D756-763, doi:10.1093/nar/gkt1114 (2014).
- The Cancer Genome Atlas (TCGA) Data Portal: https://tcga-data.nci.nih.gov/tcga/. 8. Lieberman, R. et al. Functional characterization of RAD52 as a lung cancer susceptibility gene in the 12p13.33 locus. Mol Carcinog 55, 953-963, doi:10.1002/mc.22334 (2016).