Practice IMC

Seed: 283502

Problem 1 Each vertex of a regular dodecagon (12-gon) is to be colored either red or blue, and thus there are 2¹² possible colorings. Find the number of these colorings with the property that no four vertices colored the same color are the four vertices of a rectangle.

Problem 2 Let S be the set of ordered pairs (x,y) such that $0 < x \le 1, 0 < y \le 1$, and $\left[\log_2\left(\frac{1}{x}\right)\right]$ and $\left[\log_5\left(\frac{1}{y}\right)\right]$ are both even. Given that the area of the graph of S is m/n, where m and n are relatively prime positive integers, find m+n. The notation [z] denotes the greatest integer that is less than or equal to z.

Problem 3 Let f be a three times differentiable function (defined on \mathbb{R} and real-valued) such that f has at least five distinct real zeros. Prove that f + 6f' + 12f'' + 8f''' has at least two distinct real zeros.

Problem 4 Find the smallest positive integer j such that for every polynomial p(x) with integer coefficients and for every integer k, the integer

$$p^{(j)}(k) = \left. \frac{d^j}{dx^j} p(x) \right|_{x=k}$$

(the j-th derivative of p(x) at k) is divisible by 2016.

Problem 5 let H be the unit hemisphere $\{(x,y,z): x^2+y^2+z^2=1, z\geq 0\}$, C the unit circle $\{(x,y,0): x^2+y^2=1\}$, and P the regular pentagon inscribed in C. Determine the surface area of that portion of H lying over the planar region inside P, and write your answer in the form $A\sin\alpha+B\cos\beta$, where A,B,α,β are real numbers.