AE 308: Control Theory AE 775: System Modelling, Dynamics and Control

Lecture 20: PD and PID Control Designs

Dr. Arnab Maity Department of Aerospace Engineering Indian Institute of Technology Bombay Powai, Mumbai 400076, India

Table of Contents

- Introduction
- 2 Control Design using Root Locus
- Control Design using Bode
- 4 Lead Compensator
- 6 PID Controller
- 6 PID controller Design using Bode

Introduction

ullet Given below is the basic form of the PD controller

$$G_{PD} = K_p + K_d s = K_p \left(1 + T_d s \right)$$

- PD controller adds a zero at $s=-(1/T_d)=-K_p/K_d$, where K_d is the derivative gain and K_p is proportional gain
- PD controllers are used to improve the damping of dominant system behaviour, as well as speed of response in terms of rise time

Effect on Root Locus

Effect on Step Response

Effect on Bode Diagram

Table of Contents

- Introduction
- 2 Control Design using Root Locus
- Control Design using Bode
- 4 Lead Compensator
- 6 PID Controller
- 6 PID controller Design using Bode

PD Controller - Control Design

Control Design using Root Locus

- Design of PD controllers is mainly concerned with determining the location of zero, based on the closed loop transient response specifications.
- In this method, we attempt to modify the root locus such that it passes through the desired dominant closed loop poles.
- The procedure makes use of angle and magnitude conditions, commonly used for drawing the root locus.
- This is done by first calculating the angle deficiency at the required dominant poles, which is used to set the zero location.
- Next, gain is determined from the magnitude condition.

Example: A system is defined by the following transfer function,

$$G(s) = \frac{20}{(s+1)(s+2)(s+3)}$$

- Design a PD controller to achieve following performance in the closed loop.
 - **1** 2% Settling time ≤ 4 seconds
 - 2 Peak time ≤ 1 second

Solution: Step Response of system,

Figure: Step Response without Controller

- $T_s(2\%) = \frac{4}{\sigma} \le 4 \implies \sigma \ge 1$
- $T_p = \frac{\pi}{\omega_d} \le 1 \implies \omega_d \ge \pi$
- Therefore desired pole,

$$p_c = -\sigma \pm j\omega_d = -1 \pm j3.14$$

•

$$G(s) = \frac{20K(s+z)}{(s+1)(s+2)(s+3)}$$

Substituting,

$$s = -1 + j3.14$$

Thus,

$$G(-1+j3.14) = \frac{20K(-1+j3.14+z)}{(j3.14)(j3.14+1)(j3.14+2)}$$

• Satisfying Angle Condition, $\angle G(-1+j3.14)=-180^{\circ}$

$$\theta_1 = \tan^{-1} \frac{3.14}{0} = 90^{\circ}, \quad \theta_2 = \tan^{-1} \frac{3.14}{1} = 72.3^{\circ}$$
 $\theta_3 = \tan^{-1} \frac{3.14}{2} = 57.5^{\circ}, \quad \phi = \tan^{-1} \frac{3.14}{z - 1}$

• $\phi = -180 + \theta_1 + \theta_2 + \theta_3 = 39.8$

- $\tan^{-1} \frac{3.14}{z-1} = 39.8 \implies z = 4.77$
- $G_{PD} = K(s + 4.77)$
- As at p_c , $|G_{PD}G| = 1$

$$\implies K = \frac{|p_c + 1| \times |p_c + 2| \times |p_c + 3|}{20|p_c + 4.77|}$$
$$= \frac{3.14 \times 3.297 \times 3.724}{20 \times 4.906} = 0.3929$$

• $G_{PD} = 0.3929(s + 4.77)$

PD Control Design - Observations

Observations

- Design is meeting the setting time and peak time requirements.
- Tracking error is also reduced

PD Control - Effects on root locus

Effect on root locus

PD Control - Effects on root locus

Effect on root locus

PD Control - Observations

Observations

- Large improvements in transient response are possible with PD controllers.
- The addition of 'zero' changes the root locus shape and influences both σ and ω_d , so that all attributes of the transient response are influenced.

Table of Contents

- Introduction
- 2 Control Design using Root Locus
- 3 Control Design using Bode
- 4 Lead Compensator
- 6 PID Controller
- 6 PID controller Design using Bode

PD Controller - Control Design

Control Design using Bode Plots

- Design of PD controller in frequency domain is primarily governed by the requirements on PM.
- In addition, a condition is put that DC gain remains unchanged. Therefore, in case there are requirements also on error constants, these are satisfied first, before designing PD
- The general form of PD in this case is $K_p(1+T_ds)$, where corner frequency $1/T_d$ is chosen such that the positive phase to be added, occurs close to the GCO.

PD Controller - Control Design

Bode Plot of (1 + 0.5s)

PD Control Design - Observations

Observations

- We see that at frequencies $>1/T_d$, increase in phase is accompanied by an increase in gain as well.
- This has the effect of pushing the GCO of the compensated system to a higher value.
- Thus, the design of PD controller has to take this fact into account and add the required additional phase at the new GCO.
- This also results in a kind of iteration as the additional phase is actually calculated at the original GCO.

Example: A system is defined by the following transfer function,

$$G(s) = \frac{K_x}{s(s^2 + 4.2s + 14.4)}$$

- Design a PD controller to achieve following performance in the closed loop.
 - **1** $K_v \geq 3$
 - ② GM > 6dB, $PM > 30^{\circ}$

Solution:

• First step is to achieve the specified K_v which can be done by making $K_x \ge 43.2$ (How??)

Solution:

• First step is to achieve the specified K_v which can be done by making $K_x \ge 43.2$ (How??)

$$K_v = \lim_{s \to 0} sG(s)$$

$$\implies \frac{K_x}{14 \cdot 4} \ge 3, \quad K_x \ge 43.2$$

Bode plot of
$$\frac{43.2}{s(s^2+4.2s+14.4)}$$

Both GM and PM are below the desired values.

- \bullet PM is to be increased by 10° at 3.11 rad/sec.
- Approximate solution for PD controller can be the one which add 15° phase.

$$\angle (1 + T_d s)|_{\omega = 3.11} = 15^{\circ}$$
 $\implies 3.11T_d = \tan 15^{\circ}, \quad T_d = 0.086$

$$G_{PD} = 1 + 0.086s$$

Bode plot of $\frac{43.2(1+0.086s)}{s(s^2+4.2s+14.4)}$

All requirements are met.

PD Controller - Drawbacks

Drawbacks

- PD controllers are improper transfer functions and hence, reduce relative degree (n m), and may result in unexpected changes.
- \bullet Further, we may also wish to preserve (n m) in order to ensure a desired slope of high frequency asymptote in bode plot.
- Therefore, we need an alternative to PD control to ensure (n m), which is the lead compensator.

Table of Contents

- Introduction
- 2 Control Design using Root Locus
- 3 Control Design using Bode
- 4 Lead Compensator
- 6 PID Controller
- 6 PID controller Design using Bode

Lead Compensator - Structure

Structure

• Lead compensator structure is as shown below.

$$G_{Lead}(s) = K_c \frac{\alpha(Ts+1)}{\alpha Ts+1} = K_c \frac{(s+1/T)}{s+1/\alpha T}, \quad \alpha < 1$$

- Here, K_c is compensator gain, T is the compensator time constant and (α) is a parameter that decides the amount of lead added by the compensator.
- We see that above form will preserve relative degree.

Lead Compensator - Features

Features

- Lead compensator adds a zero at s=-1/T and a pole at $s=-1/(\alpha T)$, to the plant, so that (n m) is constant.
- Further, as a bonus, we also get additional design degree of freedom, to better achieve the specifications.
- When $\alpha \to 0$, pole lies at $-\infty$, resulting in PD controller.
- Also, if $\alpha \to 0$ and $T \to \infty$, the zero moves towards the origin, leading to a pure D control.
- DC gain of lead compensator is $K_c\alpha$, and is usually kept 1.0, which fixes K_c once α is determined.

Lead Compensator - Features

Phase is given by,

$$\phi = tan^{-1}\omega T - tan^{-1}\alpha\omega T$$

• Maximum phase occurs at,

$$\frac{d\phi}{d\omega} = 0 \to \omega_m = \frac{1}{\sqrt{\alpha}T}, \text{ as } \frac{d^2\phi}{d\omega^2}|_{\omega=\omega_m} < 0$$

• Substituting $\omega = \omega_m = \frac{1}{\sqrt{\alpha}T}$ in phase equation, we obtain

$$\tan \phi_m = \frac{1 - \alpha}{2\sqrt{\alpha}} \to \sin \phi_m = \frac{1 - \alpha}{1 + \alpha}$$

Lead Compensator - Example

Example : Find maximum phase and the frequency at which it occurs of the following system,

$$G(s) = \frac{0.01(1+s)}{0.01s+1}$$

Lead Compensator - Example

Solution:

Figure: $\omega_m = 10 rad/sec$, $\phi_m = 78.6^{\circ}$

Limitations of P, PI, PD

Limitations

- With the design of P, PI and PD controllers, we are in a position to ensure a wide range of tracking and transient responses for any given plant.
- However, the above assurance is usually under the condition that either tracking or transient response features drive the design of control element.
- In reality, we are likely to encounter a combination of steady-state and transient response specifications, so that employing any one of these would not be adequate.

Table of Contents

- Introduction
- 2 Control Design using Root Locus
- Control Design using Bode
- 4 Lead Compensator
- 5 PID Controller
- 6 PID controller Design using Bode

PID controller - Introduction

Introduction

- PID controller aims to achieve both tracking and transient response simultaneously and, hence, is a better option in comparison to either PI or PD.
- This is so because it includes all three actions which help in achieving a wide range of performance.
- Further, it manages the overall design effort well, while increasing the overall design degrees of freedom.

PID controller - Zeigler - Nichols

Zeigler - Nichols PID Design

- Zeigler Nichols is a methodology for designing PID controllers, based on the specific assumptions about the unit step response of the plant.
- \bullet The controller transfer function is rewritten in terms of the overall gain K_p and time constants T_i and T_d , as shown below.

$$G_c(s) = K_p \left(1 + \frac{1}{T_i s} + T_d s \right)$$

• There are two methods for arriving at the controller.

First Method

 This method applies if the response to a step input exhibits an S-shaped curve

Figure: Source - "Modern Control Engineering" by Katsuhiko Ogata

- ullet The S-shaped curve is characterized by two constants, delay time L and time constant T.
- ullet The delay time and time constant are determined by drawing a tangent line at the inflection point of the S-shaped curve and determining the intersections of the tangent line with the time axis and line c(t)=K
- Transfer function may then be approximated by a first-order system with a transport lag as follows:

$$\frac{C(s)}{U(s)} = \frac{Ke^{-Ls}}{Ts+1}$$

• Ziegler and Nichols suggested to set the values of K_p, T_i, T_d according to the following table,

Type of Controller	K_p	T_i	T_d
Р	$\frac{T}{L}$	∞	0
PI	$0.9\frac{T}{L}$	$\frac{L}{0.3}$	0
PID	$1.2\frac{T}{L}$	2L	0.5L

PID controller tuned by the first method of Ziegler–Nichols rules gives:

$$G_c(s) = K_p \left(1 + \frac{1}{T_i s} + T_d s \right)$$
$$= 1.2 \frac{T}{L} \left(1 + \frac{1}{2Ls} + 0.5 L s \right)$$
$$= 0.6 T \frac{\left(s + \frac{1}{L}\right)^2}{s}$$

 \bullet Thus, the PID controller has a pole at the origin and double zeros at s=-1/L.

Ziegler Nichols - Second Method

Second Method

- In the second method, we first set $T_i=\infty$ and $T_d=0$. Using the proportional control action only, increase K_p from 0 to a critical value K_{cr} at which the output first exhibits sustained oscillations.
- \bullet If the output does not exhibit sustained oscillations for whatever value K_p may take, then this method does not apply.
- Thus, the critical gain K_{cr} and the corresponding period P_{cr} are experimentally determined.

Figure: Source - "Modern Control Engineering" by Katsuhiko Ogata

Ziegler Nichols - Second Method

 \bullet Ziegler and Nichols suggested that we set the values of the parameters K_p , T_i , and T_d according to the table

Type of Controller	K_p	T_i	T_d
Р	$0.5K_{cr}$	∞	0
PI	$0.45K_{cr}$	$\frac{1}{1.2}P_{cr}$	0
PID	$0.6K_{cr}$	$0.5P_{cr}$	$0.125P_{cr}$

Ziegler Nichols - Second Method

 PID controller tuned by the second method of Ziegler–Nichols rules gives:

$$G_c(s) = K_p \left(1 + \frac{1}{T_i s} + T_d s \right)$$

$$= 0.6 K_{cr} \left(1 + \frac{1}{0.5 P_{cr} s} + 0.125 P_{cr} s \right)$$

$$= 0.075 K_{cr} P_{cr} \frac{\left(s + \frac{4}{P_{cr}} \right)^2}{s}$$

• Thus, the PID controller has a pole at the origin and double zeros at $s=-4/P_{cr}$.

Table of Contents

- Introduction
- 2 Control Design using Root Locus
- Control Design using Bode
- 4 Lead Compensator
- 5 PID Controller
- 6 PID controller Design using Bode

PID Controller Design - Bode

PID control design using Bode

- Zeigler-Nichols method of tuning broadly aims to arrive at a stable closed loop system with acceptable transient response.
- However, a more focused design can be done using frequency domain methods, which take into account the design specifications.
- In this method, following generic form of the PID controller is assumed

$$G_{PID}(s) = \frac{K(as+1)(bs+1)}{s}$$

Example: Consider a system as given below.

$$G(s) = \frac{1}{s^2 + 1}$$

• Design a PID controller so that K_v is 4, PM is at least 50° and GM is more than 10dB.

Solution:

• PID controller is assumed as,

$$G_{PID}(s) = \frac{K(as+1)(bs+1)}{s}$$

ullet First step is to achieve the specified K_v which can be done by making K=4

$$K_v = \lim_{s \to 0} sG(s)G_{PID}(s)$$

 $\implies \frac{K}{1} = 4, \quad K = 4$

Bode plot of $\frac{4}{s(s^2+1)}$

• We see that we need to add a large positive phase at the GCO.

- Large positive phase at the GCO can be added by first choosing value of 'a' to be large (say 5) (i.e. zero at -0.2)
- This acts as the PI controller, as shown below.

$$G''(s) = \frac{5s+1}{s} \times \frac{4}{s^2+1}$$

Bode plot of G''(s)

 \bullet We see that, while GCO increases from 1.8 to 4.58, PCO remains unchanged.

- We now choose 'b' so that PM requirement is met. This also will change PCO by adding more positive phase in low frequency regime.
- \bullet Approximate solution for PD controller can be the one which add 50° phase.

$$\angle (1+bs)|_{\omega=4.58} = 50^{\circ}$$

 $\implies 4.58b = \tan 50^{\circ}, \quad b = 0.26$
 $G'''(s) = (1+0.26s)\frac{5s+1}{s} \times \frac{4}{s^2+1}$

Bode plot of G'''(s)

PID Controller Design - Observations

Observations

- Desired conditions are met
- We see that, as GCO increases to 6.14, PM is more than required.
- Further, as there is no PCO, GM becomes infinite.

References

- Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini: "Feed-back Control of Dynamic Systems", Pearson Education, Inc., Upper Saddle River, New Jersey, Seventh Edition, 2015.
- Katsuhiko Ogata: "Modern Control Engineering", Pearson Education, Inc., Upper Saddle River, New Jersey, Fifth Edition, 2010.
- Farid Golnaraghi and Benjamin C. Kuo: "Automatic Control Systems", John Wiley & Sons, Inc., New Jersey, Ninth Edition, 2010.
- Ashok Joshi: "System Modeling Dynamics and Control", Lecture Notes, IIT Bombay, Mumbai, 2019.