

Overview

What is Al?

Intelligence: ability to extract knowledge from observations

This knowledge is used to **solve tasks in different contexts and environments** (automation)

Old way: Memorize

- Human experts code the machines
- Goods: we know what we are doing.
- Bads: requires explicit solutions (not available for some problems).

Modern way: Generalize

- Let machines teach themselves how to solve a problem (implicit).
- Goods: universally applicable
- Bads: lack of understandability/robustness.
- Requires training.

- The use of GPUs for computation.
- The share of huge datasets on Internet
- Github/Arxiv new ways of sharing research.
- The return of representation learning.

- The use of GPUs for computation.
- The share of huge datasets on Internet.
- Github/Arxiv new ways of sharing research.
- The return of representation learning.

- The use of GPUs for computation.
- The share of huge datasets on Internet.
- Github/Arxiv new ways of sharing research.
- The return of representation learning.

- The use of GPUs for computation.
- The share of huge datasets on Internet.
- Github/Arxiv new ways of sharing research
- The return of representation learning.

- Compositional Approach: Instead of directly mapping x to y, express solutions as an assembly of simple mathematical functions called layers
- End-to-end learning: Tune all atomic functions together
- Training: Backpropagate throughout the architecture (to compute the gradient of the loss wrt all layers parameters)

- Compositional Approach: Instead of directly mapping x to y, express solutions as an assembly of simple mathematical functions called layers
- End-to-end learning: Tune all atomic functions together
- Training: Backpropagate throughout the architecture (to compute the gradient of the loss wrt all layers parameters)

- Compositional Approach: Instead of directly mapping x to y, express solutions as an assembly of simple mathematical functions called layers
- End-to-end learning: Tune all atomic functions together
- Training: Backpropagate throughout the architecture (to compute the gradient of the loss wrt all layers parameters)

- Compositional Approach: Instead of directly mapping x to y, express solutions as an assembly of simple mathematical functions called layers
- End-to-end learning: Tune all atomic functions together
- Training: Backpropagate throughout the architecture (to compute the gradient of the loss wrt all layers parameters)

- Compositional Approach: Instead of directly mapping x to y, express solutions as an assembly of simple mathematical functions called layers
- End-to-end learning: Tune all atomic functions together
- Training: Backpropagate throughout the architecture (to compute the gradient of the loss wrt all layers parameters)

- Compositional Approach: Instead of directly mapping x to y, express solutions as an assembly of simple mathematical functions called layers
- End-to-end learning: Tune all atomic functions together
- Training: Backpropagate throughout the architecture (to compute the gradient of the loss wrt all layers parameters)

- Compositional Approach: Instead of directly mapping x to y, express solutions as an assembly of simple mathematical functions called layers
- End-to-end learning: Tune all atomic functions together
- Training: Backpropagate throughout the architecture (to compute the gradient of the loss wrt all layers parameters)

- Compositional Approach: Instead of directly mapping x to y, express solutions as an assembly of simple mathematical functions called layers
- End-to-end learning: Tune all atomic functions together
- Training: Backpropagate throughout the architecture (to compute the gradient of the loss wrt all layers parameters)

- Compositional Approach: Instead of directly mapping x to y, express solutions as an assembly of simple mathematical functions called layers
- End-to-end learning: Tune all atomic functions together
- Training: Backpropagate throughout the architecture (to compute the gradient of the loss wrt all layers parameters)

- Compositional Approach: Instead of directly mapping x to y, express solutions as an assembly of simple mathematical functions called layers
- End-to-end learning: Tune all atomic functions together
- Training: Backpropagate throughout the architecture (to compute the gradient of the loss wrt all layers parameters)

- Compositional Approach: Instead of directly mapping x to y, express solutions as an assembly of simple mathematical functions called layers
- End-to-end learning: Tune all atomic functions together
- Training: Backpropagate throughout the architecture (to compute the gradient of the loss wrt all layers parameters)

- Compositional Approach: Instead of directly mapping x to y, express solutions as an assembly of simple mathematical functions called layers
- End-to-end learning: Tune all atomic functions together
- Training: Backpropagate throughout the architecture (to compute the gradient of the loss wrt all layers parameters)

- Compositional Approach: Instead of directly mapping x to y, express solutions as an assembly of simple mathematical functions called layers
- End-to-end learning: Tune all atomic functions together
- Training: Backpropagate throughout the architecture (to compute the gradient of the loss wrt all layers parameters)

- Compositional Approach: Instead of directly mapping x to y, express solutions as an assembly of simple mathematical functions called layers
- End-to-end learning: Tune all atomic functions together
- Training: Backpropagate throughout the architecture (to compute the gradient of the loss wrt all layers parameters)

- Compositional Approach: Instead of directly mapping x to y, express solutions as an assembly of simple mathematical functions called layers
- End-to-end learning: Tune all atomic functions together
- Training: Backpropagate throughout the architecture (to compute the gradient of the loss wrt all layers parameters)

Main idea

- Compositional Approach: Instead of directly mapping x to y, express solutions as an assembly of simple mathematical functions called layers
- End-to-end learning: Tune all atomic functions together
- Training: Backpropagate throughout the architecture (to compute the gradient of the loss wrt all layers parameters)

Number of layers, choice of the architecture are hyperparameters

Main idea

- Compositional Approach: Instead of directly mapping x to y, express solutions as an assembly of simple mathematical functions called layers
- End-to-end learning: Tune all atomic functions together
- Training: Backpropagate throughout the architecture (to compute the gradient of the loss wrt all layers parameters)

Number of layers, choice of the architecture are hyperparameters

Layers

- $\mathbf{x} \rightarrowtail h(\mathbf{W}\mathbf{x} + \mathbf{b}).$
 - h is a nonlinear parameterwise function (often without parameters),
 - W is a tensor:
 - Can be agnostic of the structure: fully-connected layers
 - Can be structure-dependent: convolutional layers.

Layers

- $\mathbf{x} \rightarrow h(\mathbf{W}\mathbf{x} + \mathbf{b}).$
 - h is a nonlinear parameterwise function (often without parameters),
 - W is a tensor:
 - Can be agnostic of the structure: fully-connected layers,
 - Can be structure-dependent: convolutional layers.

Fully connected layer

W1,2	<i>W</i> 1,3	$W_{1,4}$	$W_{1,5}$
W2,2	W2,3	W2,4	W _{2,5}
<i>W</i> 3,2	<i>W</i> 3,3	W3,4	W 3,5
	W2,2	W _{2,2} W _{2,3}	W _{2,2} W _{2,3} W _{2,4}

Layers

- $\mathbf{x} \rightarrowtail h(\mathbf{W}\mathbf{x} + \mathbf{b}).$
 - his a nonlinear parameterwise function (often without parameters),
 - W is a tensor:
 - Can be agnostic of the structure: fully-connected layers,
 - Can be structure-dependent: convolutional layers.

What are the potential targets?

- CPU
- GPU
- ASICs
 - IPU (Graphcore)
 - TPU (Google)
 - Edge TPU (Google)
 - Eyeriss (MIT)
 - O ...
- FPGA

What are the differences between them?
Which use case for each target?

What are the potential targets?

- CPU
- GPU
- ASICs
 - IPU (Graphcore)
 - TPU (Google)
 - Edge TPU (Google)
 - Eyeriss (MIT)
 - O ..
- FPGA

What are the elements of a CPU?

- Control: Fetches and decodes instructions, controls the ALU,
- ALU: Arithmetical and Logical Unit, performs all computations, exchanges data between memory and register file,
- Memory: Stores data.

What are the elements of a CPU?

- There are many ways to increase the overall performance of a CPU architecture.
- Two key features will be described:
 - 1- Increasing the computational parallelism
 - 2- Reducing data accesses time with close and fast memories.

What are the elements of a CPU?

- There are many ways to increase the overall performance of a CPU architecture.
- Two key features will be described:
 - 1- Increasing the computational parallelism
 - 2- Reducing data accesses time with close and fast memories.

- SIMD: Single Instruction Multiple Data Hardware feature in ALU
- Available in Intel CPUs (SSE, AVX)
- Available in ARM CPUs (Neon)

"Normal" Single Instruction Single Data (SISD) example

- 1- Load data from memory to register file
- 2- Execute addition
- 3-Execute addition

"Normal" Single Instruction Single Data (SISD) example

1- Load data from memory to register file

- 2- Execute addition
- 3-Execute addition

"Normal" Single Instruction Single Data (SISD) example

- Load data from memory to register file
- 2- Execute addition
- 3-Execute addition

"Normal" Single Instruction Single Data (SISD) example

- 1- Load data from memory to register file
- 2- Execute addition
- 3-Execute addition

Increasing Parallelism : SIMD

- Single Instruction Multiple Data Additional hardware
- Parallel load
- Parallel arithmetic
- Increase number of computations per instruction

Increasing Parallelism: SIMD

- Single Instruction Multiple Data
- Additional hardware
- Parallel load
- Parallel arithmetic
- Increase number of computations per instruction

Increasing Parallelism : SIMD

vload 0x00 r1 vload 0x04 r2 vmul vr1 vr2 vr3

- Single Instruction Multiple Data
- Additional hardware
- Parallel load
- Parallel arithmetic
- Increase number of computations per instruction

Increasing Parallelism : SIMD

- Single Instruction Multiple Data
- Additional hardware
- Parallel load
- Parallel arithmetic
- Increase number of computations per instruction

Increasing Parallelism: SIMD

- Increased parallelism
- Multiple quantization formats handled (8-, 16-, 32-, 64-bit)
- The more quantized, the more parallel
- Need aligned data in memory

|64Ko |512Ko |8Mo |OffChip

- Cache Hierarchy
- SRAM vs DRAM
- Primary access
- Cache Hit
- Cache Miss

- Cache Hierarchy
- SRAM vs DRAM
- Primary access
- Cache Hit
- Cache Miss

- SRAM 6T (typically) vs DRAM 1T
- SRAM is more expensive
- DRAM is denser
- DRAM`needsrefreshment
- SRAM is faster

- Cache Hierarchy
- SRAM vs DRAM
- Primary access
- Cache Hit
- Cache Miss

- Cache Hierarchy
- SRAM vs DRAM
- Primary access
- Cache Hit
- Cache Miss

- Cache Hierarchy
- SRAM vs DRAM
- Primary access
- Cache Hit
- Cache Miss

- Cache Hierarchy
- SRAM vs DRAM
- Primary access
- Cache Hit
- Cache Miss

Cache hierarchy Control ALU Cache (L1) Cache (L2) Cache (L3)

Cache Hierarchy

Main memory

- SRAM vs DRAM
- Primary access
- Cache Hit
- Cache Miss

- Cache Hierarchy
- SRAM vs DRAM
- Primary access
- Cache Hit
- Cache Miss

- Cache Hierarchy
- SRAM vs DRAM
- Primary access
- Cache Hit
- Cache Miss

- Cache Hierarchy
- SRAM vs DRAM
- Primary access
- Cache Hit
- Cache Miss

Multicore

- Add CPU cores on the same chip
- Last Level Cache (LLC) is shared between cores
- Linear increasing of computing capacity

|Simultaneous Multi Threading (SMT)

Control	Control	ALU		Control	Control	ALU
L1						
L2						
L3						
MAIN						

- Known as "Hyperthreading" which is Intel's own SMT implementation
- Multiple instruction threads (here 2) are processed on each core
- Sublinear increasing of computing capacity, resources are shared

What are the potential targets?

- CPU
- GPU
- ASICs
 - IPU (Graphcore)
 - TPU (Google)
 - Edge TPU (Google)
 - Eyeriss (MIT)
 - O ...
- FPGA

What are the differences between them?
Which use case for each target?

GPU

- GPUs have a huge computation power
- Simpler control
- Each core execute warps of 32 threads (Nvidia)
- Same instructions in each thread, but different execution contexts
- Yields higher throughput, but also higher latency

CPU vs GPU

Sequential vs Parallel

What are the potential targets?

- CPU
- GPU
- ASICs
 - IPU (Graphcore)
 - TPU (Google)
 - Edge TPU (Google)
 - Eyeriss (MIT)
 - 0 ...
- FPGA

What are the differences between them?
Which use case for each target?

ASICs : Example of Graphcore's IPU

- Manycore approach :
- Each core handles 6 independent threads
- Fully distributed cache memory
- 256Ko / core

ASICs : Example of Graphcore's IPU

- Claims better efficiency (\$/Gops, kWh/Gops)
- Claims faster inference
- Cautious: lack of independent benchmarks

FPGAs : (Re)Configurable Integrated Circuits

- Designing a custom architecture
- No "Non Recurring Engineering" compared to custom ASIC
- Prototyping
- Small markets

FPGAs: (Re)Configurable Integrated Circuits

Remote vs. Local use cases

Use case

Remote

Key features

- Throughput
- Cost (\$/Gops)
- Scaling

Targets

- GPU
- TPU
- IPU

Use case

Local

Key features

- Availability
- Power consumption
- Cost (\$/unit)
- Latency
- Data privacy

Targets

- CPU
- Edge TPU
- Embedded GPU (Tegra)
- FPGA

Power!!

A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi and J. Kepner, "Survey and Benchmarking of Machine Learning Accelerators," 2019 IEEE High Performance Extreme Computing Conference (HPEC), 2019, pp. 1-9, doi: 10.1109/HPEC.2019.8916327.

And what about software?

- High level frameworks
- Broadly used
- Programmed and optimized to be used on CPU and GPU
- Not systematically ported on each target
- Supporting these frameworks becomes critical for chips makers

And what about software?

- High level frameworks
- Broadly used
- Programmed and optimized to be used on CPU and GPU
- Not systematically ported on each target
- Supporting these frameworks becomes critical for chips makers

And what about software?

- High level frameworks
- Broadly used
- Programmed and optimized to be used on CPU and GPU
- Not systematically ported on each target
- Supporting these frameworks becomes critical for chips makers

Interoperability?

Interoperability ?

Software for CPU & GPU: matrix multiplication

Data is repeated

- Use existing optimized libraries
- Repeating Data

From: http://eyeriss.mit.edu/2019 neurips tutorial.pdf

Software for CPU & GPU: matrix multiplication

- Keep data in caches
- Activations and / or weights

From: http://eyeriss.mit.edu/2019 neurips tutorial.pdf