A new result for the Degree/Diameter Problem

Yawara ISHIDA

July 14, 2015

Abstract

The Degree/Diameter Problem is one of the most famous problem in graph theory. I found a new (306, 2)-graph with 88723 vertices.

1 Prerequisite

A graph G=(V,E) consists of a set V called vertices and a set $E\subset V^2$ called edges. If (v,w) is in E, it is said that v and w are adjacent. If the vertex v is adjacent to itself, the edge (v,v) is called loop. The graph G without any loops is simple. The $order\ N$ of the graph is the size of the set of vertices. The degree of the vertex $\delta(v)$ is a number of vertices which are adjacent to v. The degree of the graph Δ is the maximal degree of the vertex. The distance for each pair (v,w) of vertices is the shortest path length between v and w. The $diameter\ D$ of the graph is the maximum distance for all pairs of vertices. The $Degree/Diameter\ problem$ is finiding the graph with the maximum vertices for given degree Δ and diameter D. The order of a graph with degree Δ $(\Delta > 2)$ of diameter D is easily seen to be bounded by

$$1 + \Delta \sum_{k=1}^{D-1} (\Delta - 1)^k$$

which is called *Moore bound*. The genaral constructions for small degree and small diameter are known. Especially for D=2 there exists the general construction called Brown's construction. Given the finite field F_q where q is a power of prime, we construct Brown's one $B(F_q)$ whose vertices are lines in F_q^3 and two lines are adjacent if and only if they are orthogonal. The order of $B(F_q)$ is q^2+q+1 and the degree of it is q+1. The diameter of it is 2 because $B(F_q)$ includes many triangles.