The SIR Model Family

Jonathan Dushoff

MMED 2017

Goals

- This lecture will:
 - introduce the idea of dynamical modeling
 - explain why dynamical modeling is a key tool for understanding infectious disease
 - discuss and demonstrate simple dynamical models from the SIR model family
 - investigate some insights that can be gained from these models

Dynamic modeling connects scales

- Start with rules about how things change in short time steps
 - Usually based on *individuals*
- Calculate results over longer time periods
 - Usually about populations

Compartmental models Divide people into categories:

 \bullet Susceptible \to Infectious \to Recovered

What determines transition rates?

- People get better independently
- People get infected by infectious people

Conceptual modeling

- What is the final result?
- When does disease increase, decrease?

Dynamic implementation

- Requires assumptions about recovery and transmission
- The conceptually simplest implementation uses Ordinary Differential Equations (ODEs)
 - Other options may be more realistic
 - Or simpler in practice

Recovery

- Infectious people recover at per capita rate γ
 - Total recovery rate is γI
 - Mean time infectious is $D = 1/\gamma$

Transmission

- Susceptible people get infected by:
 - Going around and contacting people (rate c)
 - Some of these people are infectious (proportion I/N)
 - Some of these contacts are effective (proportion p)
- Per capita rate of becoming infected is $cpI/N \equiv \beta I/N$
- Population-level transmission rate is $\mathcal{T} = \beta SI/N$

Another perspective on transmission

- Infectious people infect others by:
 - Going around and contacting people (rate c)
 - Some of these people are susceptible (proportion S/N)
 - Some of these contacts are effective (proportion p)
- Per capita rate of infecting others is $cpS/N \equiv \beta S/N$
- Population-level transmission rate is $\mathcal{T} = \beta SI/N$

ODE implementation

$$\begin{array}{rcl} \frac{dS}{dt} & = & -\beta \frac{SI}{N} \\ \frac{dI}{dt} & = & \beta \frac{SI}{N} - \gamma I \\ \frac{dR}{dt} & = & \gamma I \end{array}$$

Spreadsheet implementation

http://tinyurl.com/SIR-MMED-2017

ODE assumptions

- Lots and lots of people
- Perfectly mixed

ODE assumptions

- Waiting times are exponentially distributed
- Rarely realistic

Scripts vs. spreadsheets

- Scripts are more transparent, less redundant
- Spreadsheets are more intuitive for simple problems

More about transmission

- $\beta = pc$
 - What is a contact?
 - What is the probability of transmission?
- Sometimes this decomposition is clear
- But usually it's not

Population sizes

$$\frac{dS}{dt} = -\beta(N) \frac{SI}{N}$$

$$\frac{dI}{dt} = \beta(N) \frac{SI}{N} - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

Standard incidence

$$\bullet \ \beta(N) = \beta_0$$

- $\mathcal{T} = \frac{\beta_0 SI}{N}$
- ullet Also known as frequency-dependent transmission

- $\beta(N) = \beta_1 N$
- $\mathcal{T} = \beta_1 SI$
- \bullet Also known as density-dependent transmission

General

- ullet May not go to zero when N does
- May not go to ∞ when N does

${\bf Digression-units}$

- $\mathcal{T} = \beta SI/N : [ppl/time]$
- β : [1/time]
 - $-\beta/\gamma = \beta D : [1]$
 - Standard incidence, $\beta_0 : [1/\text{time}]$
 - Mass-action incidence, $\beta_1:[1/(\text{people} \cdot \text{time})]$

Closing the circle

Tendency to oscillate

With individuality

Summary

- Dynamic models are an essential tool because they allow us to link between scales
- There are many ways to construct and implement dynamic models
- Very simple models can provide useful insights
 - Reproductive numbers and thresholds
 - Tendency for oscillation (and tendency for damping)
- More complex models can provide more detail, but also require more assumptions, and more choices
- Understanding simple models can help guide our understanding of more complicated models

© 2014–2017, ICI3D. May be reproduced and distributed, with this notice, for non-commercial purposes only.