ELEC 344 - 201: Applied Electronics and Electromechanics

Instructor: Ignacio Galiano Zurbriggen

TAs: Daniel Hsu, Abbas Arshadi, Matthieu Amyotte, Jorge May

Tutorial 1

- 1) Series and Parallel Inductors and Capacitors.
 - a) Find the equivalent capacitance of n capacitors connected in series.
 - b) Find the equivalent capacitance of n capacitors connected in parallel.
 - c) Find the equivalent inductance of n inductors connected in series.
 - d) Find the equivalent inductance of n inductors connected in parallel.
- 2) A Solving DC networks using mesh and nodal analysis methods. For the circuit shown in Fig. 1, find:
 - a) The current being supplied by the voltage source (I_1)
 - b) The current through the 3Ω resistor (I_2)
 - c) The voltage at node A (V_A)
 - d) The voltage at the current source terminals (V_I)

Figure 1 – DC Circuit

3) The venin and Norton equivalent circuits. Find the Thevenin and Norton equivalent circuits for the circuit shown in Fig. 1, taking the 3Ω resistor as the load.

Figure 2 – Thevenin and Norton equivalent circuits