A Workbench for Logically Definable Stringsets

Dakotah Lambert Margaret Fero Andrew Dai James Rogers*

Earlham College

1 Introduction

- 2 Types of Logic
 - First Order
 - Propositional

- 3 Semantics of Logics
 - Satisfaction
 - Other Issues

Computational Workbench

Definition

A workbench is a suite of (computational) tools and an interactive environment for using them.

Our workbench includes:

- Tools for defining sets of strings (Formal Languages) with logical constraints
- Tools for reasoning about those logical constraints

Definition (First-Order Logic)

A first-order logical formula is dependent on the values of variables.

Definition (First-Order Logic)

A first-order logical formula is dependent on the values of variables.

Example

'a' occurs at some position in the string:

$$(\exists x) [a(x)]$$

Definition (First-Order Logic)

A first-order logical formula is dependent on the values of variables.

Example

The substring 'aa' does not occur in the string:

$$(\forall x, y) [(a(x) \land y = x + 1) \implies \neg a(y)]$$

Definition (First-Order Logic)

A first-order logical formula is dependent on the values of variables.

Example

No 'b' or 'c' occurs following an 'a':

$$(\forall x, y) [(a(x) \land x \triangleleft^+ y) \implies \neg (b(y) \lor c(y))]$$

Propositional Logical Constraints on Strings

Definition (Propositional Logic)

Propositional constraints are independent of position.

Two types:

- Local
- Piecewise

Propositional Logical Constraints on Strings

Definition (Propositional Logic)

Propositional constraints are independent of position.

Two types:

- Local reasoning with successor only
- Piecewise

Propositional Logical Constraints on Strings

Definition (Propositional Logic)

Propositional constraints are independent of position.

Two types:

- Local reasoning with successor only
- Piecewise reasoning with less-than only

Local Propositional Constraints

Local constraints apply to *substrings*, sequences of consecutive symbols. These constraints can include end-markers.

Local Propositional Constraints

Local constraints apply to *substrings*, sequences of consecutive symbols. These constraints can include end-markers.

Example

'aa' does not occur as a substring:

 $\neg aa$

Local Propositional Constraints

Local constraints apply to *substrings*, sequences of consecutive symbols. These constraints can include end-markers.

Example

The string starts with 'a' and ends with 'b':

$$\rtimes a \wedge b \ltimes$$

Piecewise Propositional Constraints

Piecewise constraints apply to *subsequences*, sequences of symbols that may not necessarily be consecutive. These constraints cannot include end-markers.

Piecewise Propositional Constraints

Piecewise constraints apply to *subsequences*, sequences of symbols that may not necessarily be consecutive. These constraints cannot include end-markers.

Example

'aa' occurs as a subsequence:

a..a

Piecewise Propositional Constraints

Piecewise constraints apply to *subsequences*, sequences of symbols that may not necessarily be consecutive. These constraints cannot include end-markers.

Example

No 'b' or 'c' occurs following an 'a':

$$\neg (a \dots b \lor a \dots c)$$

Semantics of Logics – Satisfaction (\models)

Satisfaction defines a relation between well-formed formulae and models. A model of a formula is the set of strings satisfying that formula, a Formal Language.

Syntax	Models		
$(\exists x) [a(x)]$	Strings containing 'a'		
ab	Strings containing the substring 'ab'		
ab	Strings containing the subsequence 'ab'		

Systems of Logical Constraints (Axioms)

Definition

A system of logical constraints is a set of logical formulae.

- A model satisfies the system if and only if it satisfies each constraint individually
- The set of models of the system is the intersection of the sets of models of the individual constraints

- Consistency:
 - Does a model exist that satisfies the system?
 - If so, is the stringset it describes non-empty?

- Consistency:
 - Does a model exist that satisfies the system?
 - If so, is the stringset it describes non-empty?
- Consequece:
 - Is a constraint logically implied by another set of constraints?
 - Does every model that satisfies the set satisfy the constraint?
 - Is the negation of the constraint inconsistent with the set?

- Consistency:
 - Does a model exist that satisfies the system?
 - If so, is the stringset it describes non-empty?
- Consequece:
 - Is a constraint logically implied by another set of constraints?
 - Does every model that satisfies the set satisfy the constraint?
 - Is the negation of the constraint inconsistent with the set?
- Independence
 - Are all of the constraints necessary?
 - Are one or more constraints logical consequences of the others?

Transparency

■ Transparency – Logic is used to formalize human reasoning

- Transparency Logic is used to formalize human reasoning
- Modularity

- Transparency Logic is used to formalize human reasoning
- Modularity
 - Stringsets can be defined with independent constraints
 - We can identify common constraints and constraints that distinguish stringsets

- Transparency Logic is used to formalize human reasoning
- Modularity
 - Stringsets can be defined with independent constraints
 - We can identify common constraints and constraints that distinguish stringsets
- Cognitive Complexity

- Transparency Logic is used to formalize human reasoning
- Modularity
 - Stringsets can be defined with independent constraints
 - We can identify common constraints and constraints that distinguish stringsets
- Cognitive Complexity
 - The syntactic form characterizes the important properties
 - This determines what a cognitive mechanism (human, animal, or mechanical) must be able to detect in order to distinguish strings that satisfy the system from those that do not

Metrical Stress

pho·´nol·o·gy `pho·no·´log·i·cal

- Stress Patterns
 - Constraints on the distribution of primary/secondary stress in spoken words
 - Each (stressed) language has a characteristic stress pattern
 - Languages often share the same stress pattern
 - Types of constraints are common across all languages
- Syllable Weight
 - Stress patterns depend only on syllable weight (Light, Heavy, Superheavy,...)—abstract categories of syllables.
 - Each language has its own rules for categorizing

An Example: Khmer (Cambodian)

- Primary stress falls on the final syllable
- Secondary stress falls on all heavy syllables
- Light syllables occur only immediately following heavy syllables.
- Light monosyllables do not occur.

Modeling Stress Patterns

Syllables: Alphabet

	Stress					
Weight	None	Primary	Secondary	Some	Any	
Any	σ	$\acute{\sigma}$	$\grave{\sigma}$	$\overset{+}{\sigma}$	$\overset{*}{\sigma}$	
Light	L	Ĺ	Ĺ	L L	* L	
Heavy	Н	Ĥ	H	$\overset{+}{H}$	$\overset{*}{H}$	
Super	5	Ś	Š	Š	*	
Start: ⋊			End: ⋉			

Words: strings

Constraints: Sets of strings

Stress Patterns: Sets of constraints

Logical Constraints to Automata

Local Atomic Formulae

$$\sigma_1\sigma_2$$

$$\mathtt{contains}\big(\sigma_1 <> \sigma_2\big)$$

Logical Constraints to Automata

Piecewise Atomic Formulae

$$\sigma_1 \dots \sigma_2$$

$$contains(\sigma_1 <> (star xss) <> \sigma_2)$$

Logical Constraints to Automata

Boolean Operations φ_1 and φ_2 are logical formulae

```
eg arphi_1 : complement(arphi_1)
```

 $\varphi_1 \wedge \varphi_2$: $(\varphi_1 / \backslash \backslash \varphi_2)$ intersection

 $\varphi_1 \vee \varphi_2 : (\varphi_1 \setminus \setminus / \varphi_2)$ union

```
\begin{array}{ccc} \text{satisfaction} & \equiv & \text{acceptance} \\ \text{consistency} & \equiv & \text{non-emptiness of intersection} \\ \text{consequence} & \equiv & \text{inconsistency of } \Phi \land \neg \varphi \\ \text{independence} & \equiv & \text{no } \varphi \in \Phi \text{ is a consequence of } \Phi - \varphi. \end{array}
```

An Example: Khmer

- Primary on final
- Secondary on *H*
- L only immediately after H
- \blacksquare No \rtimes $L \ltimes$

Primary on Final

$$\acute{\sigma} \ltimes \equiv (\neg \sigma \ltimes) \wedge (\neg \widecheck{\sigma} \ltimes)$$
Also, $(\neg \widecheck{\sigma} \overset{*}{\sigma})$:

Secondary on H

(Really just some stress on H)

 $\neg H$

L only immediately after H

 $\neg LL$ and $\neg \rtimes L$

Implies no light monosyllables.

Khmer as a Whole

The conjunction of everything

Testing Consequence

 $\dot{\sigma}$

Sub-Regular Classes of Stringsets

- Restricted Propositional
 - Strictly Locally Testable (SL_k, SL)/Strictly Piecewise Testable (SP_k, SP)
 - Conjunctions of forbidden length-*k* substrings/subsequences

$$\neg abb \land \neg b \ltimes \land \cdots \qquad \neg (a \ldots b) \land \neg (b \ldots c \ldots d) \land \cdots$$

■ Only need to be able to sensitive to presence of individual length-*k* substrings/subsequences in isolation

$$\mathbf{SL} = \bigcup_{0 \le k} [\mathbf{SL}_k] \qquad \mathbf{SP} = \bigcup_{0 \le k} [\mathbf{SP}_k]$$

Sub-Regular Classes of Stringsets

- Full Propositional
- Locally Testable (LT_k, LT) /Piecewise Testable (PT_k, PT)
- Boolean combinations of length-*k* substrings/subsequences

$$(abb \rightarrow \neg b \ltimes) \lor \cdots \qquad (a ... b) \lor \neg (b ... c ... d) \land \cdots$$

Need to be sensitive to the entire set of length-k substrings/subsequences in isolation

$$\mathbf{LT} = \bigcup_{0 < k} [\mathbf{LT}_k] \qquad \mathbf{PT} = \bigcup_{0 < k} [\mathbf{PT}_k]$$

Other Sub-Regular Classes of Stringsets

- $lue{}$ First-Order Logic with successor (+1) but not less-than (<)
 - Locally (k, t)-Threshold Testable $(\mathbf{LTT}_{k,t})$
 - lacktriangleright Need to be able to count length-k substrings/subsequences up to a fixed threshold t
- First-Order Logic with less-than (<)
 - Star-Free Stringsets (SF)
 - Regular expressions without Kleene-* but with complement.
 - Need to be able to detect concatenations of LT stringsets
- Monadic Second-Order Logic
 - Regular Stringsets (Reg)
 - Need to be able to categorize symbols into finitely many abstract categories depending on category of previous symbol.

Conclusions

- This workbench can provide a viable approach to reasoning about logical constraints
- This directly translates to reasoning about languages, both formal and natural

Future Work

- Full support for first order and monadic second-order logic
- A complete list of currently-known constraints
- A better user-interface

Introduction Types of Logic Semantics of Logics