M5231L

VARIABLE OUTPUT VOLTAGE REGULATOR

DESCRIPTION

The M5231L is a semiconductor integrated circuit which is designed for variable output voltage regulator and is housed in a small 5-pin SIL package.

The input range $8\sim70V$, and the output voltage range $3\sim50V$ can be optionally adjusted by the external resistors. In addition, by attaching power transistors, high current gains can be achieved, making the device suitable for use in the power supplies of a wide variety of equipment.

FEATURES

- High input voltage (V₁=70V)
- Wide range of output voltages (V_o=3V~50V)
- Low output noise voltage (V_{NO} =6μVrms typ.)
- Built-in current limiting and thermal shutdown circuits
- Capability of adjusting the output voltage rise time constant of the coefficients by the value of the external capacitor
- Capability of the operating control by the external signal

APPLICATIONS

- Audio, VTR
- General use

RECOMMENDED OPERATING CONDITIONS

Supply voltage range	87	~70V
Rated supply voltage		40V

5 pin plastic SIL

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

Symbol	Parameter	Limits	Unit
Vı	Input voltage	70	٧
ΙL	Load current	30	mA
v_1-v_0	Input-output voltage difference	67	٧
Pd	Power dissipation	300	mW
Topr	Operating temperature	-20~+75	°C
Tstg	Storage temperature	−55∼+125	°C

ELECTRICAL CHARACTERISTICS

(measurement circuit (a) is used, with, Ta = 25°C, Vi = 40V, Vo = 35V, IL = 10mA, C = 10 μ F, Cree = 1 μ F, R1 = 3.3k Ω , unless otherwise noted)

Symbol	Parameter	Test conditions		Limits		
			Min	Тур	Max	Unit
Vı	Input voltage		8		70	V
Vo	Output voltage	R ₂ ≈ 1.5~88 kΩ	3		50	V
V _{REF}	Reference voltage	(between Pin (4) and Pin (5))	(1.62)	1.8	(1.98)	V
$V_1 - V_0$	Minimum input-output voltage differential			2.0		V
Reg-in	Input regulation	V ₁ =38~60V		0.04	0.1	%/V
Reg-L	Load regulation	I_=0~20 mA		0.03	0.1	%
IB	Bias current	I _L =0 (disregarding the current in resistors R ₁ , R ₂)		1.2	3.0	mA
TC _{VO}	Temperature coefficient of output voltage	$T_a = 0 \sim 75^{\circ}C$, $V_0 = 3 \sim 50 \text{ V}$		0.01		%/°C
RR	Ripple rejection	f = 120 Hz (measured with circuit (b))		62		dB
V _{NO}	Output noise voltage	f=20Hz~100kHz (between the output terminal and ground)		6		μVrms

TEST CIRCUITS

(a) Standard test circuit

$$\begin{split} &V_{O}\!=\!V_{REF}\big(1\!+\!\frac{R_{2}}{R_{1}}\big)\!\doteq\!1.8\!\times\!(1\!+\!\frac{R_{2}}{3.3}\big)\quad(V)\\ &R_{2}\!=\!R_{1}\big(\!\frac{V_{O}}{V_{REF}}\!-\!1\big)\!\doteq\!3.3\!\times\!(\!\frac{V_{O}}{1.8}\!-\!1\big)\quad(k\,\Omega)\\ &R_{1}\!=\!3.3\!k\,\Omega\,,\;V_{REF}\!\doteq\!1.8V \end{split}$$

(b) Ripple rejection test circuit

TYPICAL CHARACTERISTICS THERMAL DERATING

LOAD CURRENT VS INPUT-OUTPUT

INPUT-OUTPUT VOLTAGE DIFFERENCE V_1 - V_0 (V)

OUTPUT VOLTAGE REGULATION

OUTPUT VOLTAGE CHARACTERISTICS

LOAD CHARACTERISTICS

BIAS CURRENT VS INPUT VOLTAGE

APPLICATION EXAMPLES

1. Current boost circuit with NPN external power TR

2. Low dropout regulator circuits (V_{IO}=0.1V) Ripple rejection 65dB

CREF

- The connection of this capacitor gives the following characteristics.
- 1) The rise time constant of the output voltage can be adjusted (slowed).
- 2) The ripple rejection ratio is improved.
- 3) Output noise voltage is reduced down to 1/10 of three terminals regulator IC.

Сс

-0 V₀

Capability of the compensation by connecting the capacitor.

OUTPUT VOLTAGE CHARACTERISTICS FOR EXTERNAL CAPACITORS (CREE)

- Stable operations are expected even if the input-output voltage differences are quite low as 0.1V.
- The heat sink of power TR can become small in size owing to the low dissipation.
- The R₃ is a load current limit resistor and the input-output voltage differencial between 1 and 2 pins must be over 3V.

$$V_1 - V_{BE} - (I_1 + I_2 - I_B)R_3 > 3V$$

3. Output voltage ON/OFF controller, Step UP/DOWN controller

