# Лабораторная работа 3.3.5 Эффект Холла в металлах

Шерхалов Денис Б02-204 Фаттахов Марат Б02-204

2 декабря 2023 г.

Цель работы: измерение подвижности и концентрации носителей заряда в металлах.

**Оборудование:** электромагнит с источником питания, источник постоянного тока, микровольтметр  $\Phi 116/16$  амперметры, милливеберметр, образцы из меди, серебра и цинка.

### 1. Введение

Одновременное исследование эффекта Холла и проводимости позволяет находить плотность носителей заряда и их подвижность. Суть эффекта Холла состоит в следующем. Пусть через однородную пластину металла вдоль оси x течет ток I. Если эту пластину поместить в магнитное поле, направленно по оси y, то между гранями появится раность потенциалов. На электрон, движущийся со скоростью  $\mathbf{b}$  в электромагнитном поле, действует сила Лоренца.

$$\mathbf{F}_{\pi} = -e\mathbf{E} - e\mathbf{v} \times \mathbf{B}$$

В нашем случае сила, обусловленная вторым слагаемым, направлена вдоль оси z.

$$F_B = e |v_x| B$$

Под действием этой силы электроны отклоняются к грани Б, заряжая ее отрицательно. При этом на грани А накапливаются нескомпенсированные положительные заряды, что приводит к возникновению электрического поля  $E_z$ , направленного от А к Б, которое действует на электроныс силой  $F_E = eE_z$ , направленной против силы  $F_B$ . В стационарном режиме  $F_E$  уравновешивает  $F_B$ , и накопление зарядов на боковых гранях прекращается. Из условия равновесия найдем:

$$E_z = |v_x| B$$

С полем  $E_z$  связана разность потенциалов  $U_{\rm AB}$  между гранями A и Б.

$$U_{AB} = -E_z l = -\left|v_x\right| B l$$

Заметим, что сила тока

$$I = ne |v_x| l \cdot a,$$

отсюда найдем ЭДС Холла:

$$U_x = U_{AB} = -\frac{IB}{nea} = -R_x \cdot \frac{IB}{a},$$

где  $R_x = \frac{1}{ne}$  — постоянная Холла.

#### Экспериментальная установка



Рисунок 1.Схема установки для исследования эффекта Холла в металлах.

В зазоре электромагнита создается постоянное магнитное поле, которое можно регулировать с помощью источника питания электромагнита.

Иногда контакты 2 и 4 вследствие неточности подпайки не лежат на одной эквипотенциали, и тогда напряжение между ними связано не только с эффектом Холла, но и с омическим напряжением, вызванным протеканием основного тока через образец.

Неточности измерений можно избежать путем фиксирования этого омического напряжения при нулевом значении силы тока и отсчитывании от него Холловского напряжения.

$$\varepsilon_x = U_{24} \pm U_0$$

Измерив ток в образце и нарпяжение  $U_{34}$  между контактами 3 и 4 в отсутствии магнитного поля, можно, зная параметры образца, рассчитать проводимость материала образца по очевидной формуле:

$$\sigma = \frac{IL_{34}}{U_{34}al}$$

## 2. Ход работы

#### 2.1. Калибровка

Проводим измерение зависимости магнитного потока от величины силы тока. Результаты приведены в таблице и на графике ниже.

|   | $I_{\scriptscriptstyle \mathrm{M}}, A$ | $\sigma_{I_{\mathrm{m}}}, A$ | B, м $T$ л | $\sigma_B$ , м $T$ л |
|---|----------------------------------------|------------------------------|------------|----------------------|
| 1 | 0,19                                   | 0,01                         | 252        | 5                    |
| 2 | 0,37                                   | 0,01                         | 455        | 10                   |
| 3 | 0,56                                   | 0,01                         | 678        | 10                   |
| 4 | 0,75                                   | 0,01                         | 940        | 50                   |
| 5 | 0,94                                   | 0,01                         | 1070       | 50                   |
| 6 | 1,13                                   | 0,01                         | 1150       | 50                   |

**Таблица**  $\mathbf{1}.B = f(I_{\scriptscriptstyle \mathrm{M}})$ 



**График 1.**Нахождение  $B = f(I_{\scriptscriptstyle \mathrm{M}})$ 

#### 2.2. Медь

Для начала отметим, что при измерении меди 75 дел = 3 мкВ

Проводим измерения ЭДС Холла. Для этого вставляем образец в зазор выключенного электромагнита и определяем  $U_0$  между контактами 2 и 4. Это значение следует принять за 0.

Далее включаем электромагнит и измеряем  $U = f(I_{\scriptscriptstyle \mathrm{M}})$  для образца из меди.

Проводим серию для 8 значений тока через образец.

То же делаем для образца из цинка при одном фиксированном значении тока через образец. Определяем знак носителей заряда для меди -(+).

$$L_{3,4} = 6 \,\mathrm{mm}$$
  $a = 0.05 \,\mathrm{mm}$   $l = 8 \,\mathrm{mm}$ 

Таблица 1: Для тока через материал  $I=0.20~\mathrm{A}$ 

|   | $(I = 0.20 \pm 0.01) \text{ A}, \qquad U_0 = (11 \pm 1) \text{ ед.}$ |                              |        |                  |        |          |                 |  |  |  |
|---|----------------------------------------------------------------------|------------------------------|--------|------------------|--------|----------|-----------------|--|--|--|
|   | $I_{\scriptscriptstyle \mathrm{M}}, A$                               | $\sigma_{I_{\mathrm{m}}}, A$ | В, мТл | $\sigma_B$ , мТл | U, ед. | U, н $B$ | $\sigma_U$ , нВ |  |  |  |
| 1 | 0.19                                                                 | 0.01                         | 190    | 11               | 11     | 440      | 20              |  |  |  |
| 2 | 0.37                                                                 | 0.01                         | 370    | 13               | 12     | 480      | 20              |  |  |  |
| 3 | 0.56                                                                 | 0.01                         | 559    | 14               | 14     | 560      | 20              |  |  |  |
| 4 | 0.75                                                                 | 0.01                         | 749    | 15               | 15     | 600      | 20              |  |  |  |
| 5 | 0.94                                                                 | 0.01                         | 939    | 17               | 16     | 640      | 20              |  |  |  |
| 6 | 1.13                                                                 | 0.01                         | 1129   | 18               | 16     | 640      | 20              |  |  |  |
| 7 | 1.28                                                                 | 0.01                         | 1279   | 19               | 16     | 640      | 20              |  |  |  |

Таблица 2: Для тока через материал  $I=0.35~\mathrm{A}$ 

|   | $(I = 0.35 \pm 0.01) \text{ A}, \qquad U_0 = (10 \pm 1) \text{ ед.}$ |                              |            |                  |        |          |                         |  |  |  |
|---|----------------------------------------------------------------------|------------------------------|------------|------------------|--------|----------|-------------------------|--|--|--|
|   | $I_{\scriptscriptstyle \mathrm{M}}, A$                               | $\sigma_{I_{\mathrm{m}}}, A$ | B, м $T$ л | $\sigma_B$ , мТл | U, ед. | U, н $B$ | $\sigma_U$ , н ${ m B}$ |  |  |  |
| 1 | 0.19                                                                 | 0.01                         | 190        | 11               | 12     | 480      | 20                      |  |  |  |
| 2 | 0.37                                                                 | 0.01                         | 370        | 13               | 14     | 560      | 20                      |  |  |  |
| 3 | 0.56                                                                 | 0.01                         | 559        | 14               | 16     | 640      | 20                      |  |  |  |
| 4 | 0.75                                                                 | 0.01                         | 749        | 15               | 18     | 720      | 20                      |  |  |  |
| 5 | 0.94                                                                 | 0.01                         | 939        | 17               | 19     | 760      | 20                      |  |  |  |
| 6 | 1.13                                                                 | 0.01                         | 1129       | 18               | 20     | 800      | 20                      |  |  |  |
| 7 | 1.26                                                                 | 0.01                         | 1259       | 19               | 21     | 840      | 20                      |  |  |  |

Таблица 3: Для тока через материал  $I=0.50~\mathrm{A}$ 

|   | $(I=0.50\pm0.01) \; \mathrm{A}, \qquad U_0=(10\pm1) \; \mathrm{eg}.$ |                              |            |                      |        |       |                 |  |  |  |
|---|----------------------------------------------------------------------|------------------------------|------------|----------------------|--------|-------|-----------------|--|--|--|
|   | $I_{\scriptscriptstyle \mathrm{M}}, A$                               | $\sigma_{I_{\mathrm{m}}}, A$ | B, м $T$ л | $\sigma_B$ , м $T$ л | U, ед. | U, нВ | $\sigma_U$ , нВ |  |  |  |
| 1 | 0.19                                                                 | 0.01                         | 190        | 11                   | 14.5   | 580   | 20              |  |  |  |
| 2 | 0.37                                                                 | 0.01                         | 370        | 13                   | 18     | 720   | 20              |  |  |  |
| 3 | 0.56                                                                 | 0.01                         | 559        | 14                   | 21     | 840   | 20              |  |  |  |
| 4 | 0.75                                                                 | 0.01                         | 749        | 15                   | 24     | 960   | 20              |  |  |  |
| 5 | 0.94                                                                 | 0.01                         | 939        | 17                   | 26     | 1040  | 20              |  |  |  |
| 6 | 1.13                                                                 | 0.01                         | 1129       | 18                   | 27     | 1080  | 20              |  |  |  |
| 7 | 1.26                                                                 | 0.01                         | 1259       | 19                   | 28     | 1120  | 20              |  |  |  |

Таблица 4: Для тока через материал  $I=0.65~\mathrm{A}$ 

|   | $(I = 0.65 \pm 0.01) \text{ A}, \qquad U_0 = (11 \pm 1) \text{ ед.}$ |                              |            |                  |        |          |                 |  |  |  |
|---|----------------------------------------------------------------------|------------------------------|------------|------------------|--------|----------|-----------------|--|--|--|
|   | $I_{\scriptscriptstyle \mathrm{M}}, A$                               | $\sigma_{I_{\mathrm{m}}}, A$ | B, м $T$ л | $\sigma_B$ , мТл | U, ед. | U, н $B$ | $\sigma_U$ , нВ |  |  |  |
| 1 | 0.19                                                                 | 0.01                         | 190        | 11               | 15.5   | 620      | 20              |  |  |  |
| 2 | 0.37                                                                 | 0.01                         | 370        | 13               | 19     | 760      | 20              |  |  |  |
| 3 | 0.56                                                                 | 0.01                         | 559        | 14               | 24     | 960      | 20              |  |  |  |
| 4 | 0.75                                                                 | 0.01                         | 749        | 15               | 28     | 1120     | 20              |  |  |  |
| 5 | 0.94                                                                 | 0.01                         | 939        | 17               | 30     | 1200     | 20              |  |  |  |
| 6 | 1.13                                                                 | 0.01                         | 1129       | 18               | 32     | 1280     | 20              |  |  |  |
| 7 | 1.26                                                                 | 0.01                         | 1259       | 19               | 33     | 1320     | 20              |  |  |  |

Таблица 5: Для тока через материал  $I=0.80~\mathrm{A}$ 

|   | $(I = 0.80 \pm 0.01) \text{ A}, \qquad U_0 = (12 \pm 1) \text{ ед.}$ |                              |        |                  |        |       |                             |  |  |  |
|---|----------------------------------------------------------------------|------------------------------|--------|------------------|--------|-------|-----------------------------|--|--|--|
|   | $I_{\scriptscriptstyle \mathrm{M}},  \mathrm{A}$                     | $\sigma_{I_{\mathrm{m}}}, A$ | В, мТл | $\sigma_B$ , мТл | U, ед. | U, нВ | $\sigma_U$ , н $\mathrm{B}$ |  |  |  |
| 1 | 0.19                                                                 | 0.01                         | 190    | 11               | 17     | 680   | 20                          |  |  |  |
| 2 | 0.37                                                                 | 0.01                         | 370    | 13               | 23     | 920   | 20                          |  |  |  |
| 3 | 0.56                                                                 | 0.01                         | 559    | 14               | 28     | 1120  | 20                          |  |  |  |
| 4 | 0.75                                                                 | 0.01                         | 749    | 15               | 32     | 1280  | 20                          |  |  |  |
| 5 | 0.94                                                                 | 0.01                         | 939    | 17               | 36     | 1440  | 20                          |  |  |  |
| 6 | 1.16                                                                 | 0.01                         | 1159   | 18               | 38     | 1520  | 20                          |  |  |  |
| 7 | 1.26                                                                 | 0.01                         | 1259   | 19               | 39     | 1560  | 20                          |  |  |  |

Таблица 6: Для тока через материал  $I=0.95~\mathrm{A}$ 

|   | $(I = 0.95 \pm 0.01) \text{ A}, \qquad U_0 = (13 \pm 1) \text{ ед.}$ |                              |            |                  |        |          |                 |  |  |  |
|---|----------------------------------------------------------------------|------------------------------|------------|------------------|--------|----------|-----------------|--|--|--|
|   | $I_{\scriptscriptstyle \mathrm{M}}, A$                               | $\sigma_{I_{\mathrm{m}}}, A$ | B, м $T$ л | $\sigma_B$ , мТл | U, ед. | U, н $B$ | $\sigma_U$ , нВ |  |  |  |
| 1 | 0.19                                                                 | 0.01                         | 190        | 11               | 19     | 760      | 20              |  |  |  |
| 2 | 0.37                                                                 | 0.01                         | 370        | 13               | 25     | 1000     | 20              |  |  |  |
| 3 | 0.56                                                                 | 0.01                         | 559        | 14               | 32     | 1280     | 20              |  |  |  |
| 4 | 0.74                                                                 | 0.01                         | 739        | 15               | 38     | 1520     | 20              |  |  |  |
| 5 | 0.94                                                                 | 0.01                         | 939        | 17               | 42     | 1680     | 20              |  |  |  |
| 6 | 1.16                                                                 | 0.01                         | 1159       | 18               | 45     | 1800     | 20              |  |  |  |
| 7 | 1.25                                                                 | 0.01                         | 1249       | 19               | 46     | 1840     | 20              |  |  |  |

Таблица 7: Для тока через материал  $I=1.10~\mathrm{A}$ 

|   | $(I = 1.10 \pm 0.01) \text{ A}, \qquad U_0 = (14 \pm 1) \text{ ед.}$ |                              |        |                  |        |          |                 |  |  |  |
|---|----------------------------------------------------------------------|------------------------------|--------|------------------|--------|----------|-----------------|--|--|--|
|   | $I_{\scriptscriptstyle \mathrm{M}}, A$                               | $\sigma_{I_{\mathrm{m}}}, A$ | В, мТл | $\sigma_B$ , мТл | U, ед. | U, н $B$ | $\sigma_U$ , нВ |  |  |  |
| 1 | 0.19                                                                 | 0.01                         | 190    | 11               | 21     | 840      | 20              |  |  |  |
| 2 | 0.37                                                                 | 0.01                         | 370    | 13               | 28     | 1120     | 20              |  |  |  |
| 3 | 0.56                                                                 | 0.01                         | 559    | 14               | 36     | 1440     | 20              |  |  |  |
| 4 | 0.74                                                                 | 0.01                         | 739    | 15               | 43     | 1720     | 20              |  |  |  |
| 5 | 0.94                                                                 | 0.01                         | 939    | 17               | 47     | 1880     | 20              |  |  |  |
| 6 | 1.16                                                                 | 0.01                         | 1159   | 18               | 50     | 2000     | 20              |  |  |  |
| 7 | 1.25                                                                 | 0.01                         | 1249   | 19               | 51     | 2040     | 20              |  |  |  |

Таблица 8: Для тока через материал  $I=1.25~\mathrm{A}$ 

|   | $(I=1.25\pm0.01)~{ m A}, \qquad U_0=(-6\pm1)~{ m eg}.$ |                              |        |                  |        |          |                         |  |  |  |
|---|--------------------------------------------------------|------------------------------|--------|------------------|--------|----------|-------------------------|--|--|--|
|   | $I_{\scriptscriptstyle \mathrm{M}}, A$                 | $\sigma_{I_{\mathrm{m}}}, A$ | В, мТл | $\sigma_B$ , мТл | U, ед. | U, н $B$ | $\sigma_U$ , н ${ m B}$ |  |  |  |
| 1 | 0.19                                                   | 0.01                         | 190    | 11               | 23     | 920      | 20                      |  |  |  |
| 2 | 0.37                                                   | 0.01                         | 370    | 13               | 32     | 1280     | 20                      |  |  |  |
| 3 | 0.56                                                   | 0.01                         | 559    | 14               | 41     | 1640     | 20                      |  |  |  |
| 4 | 0.75                                                   | 0.01                         | 749    | 15               | 49     | 1960     | 20                      |  |  |  |
| 5 | 0.93                                                   | 0.01                         | 929    | 17               | 53     | 2120     | 20                      |  |  |  |
| 6 | 1.14                                                   | 0.01                         | 1139   | 18               | 57     | 2280     | 20                      |  |  |  |
| 7 | 1.24                                                   | 0.01                         | 1239   | 19               | 58     | 2320     | 20                      |  |  |  |



Рис. 1: График  $\varepsilon_x = f(B)$  для меди

Далее находим функцию зависимости k=f(I), где k - коэффициент угла наклона для каждого из токов.

Таблица 9: Функция k=f(I)

|   | <i>I</i> , A | $\sigma_I$ , A | $k, \frac{\text{мкB}}{\text{Тл}}$ | $\sigma_k, \frac{\text{мкB}}{\text{Тл}}$ |
|---|--------------|----------------|-----------------------------------|------------------------------------------|
| 1 | 0.20         | 0.01           | 0.195                             | 0.005                                    |
| 2 | 0.35         | 0.01           | 0.330                             | 0.005                                    |
| 3 | 0.50         | 0.01           | 0.500                             | 0.005                                    |
| 4 | 0.65         | 0.01           | 0.665                             | 0.005                                    |
| 5 | 0.80         | 0.01           | 0.808                             | 0.005                                    |
| 6 | 0.95         | 0.01           | 1.024                             | 0.005                                    |
| 7 | 1.10         | 0.01           | 1.133                             | 0.005                                    |
| 8 | 1.25         | 0.01           | 1.330                             | 0.005                                    |



Рис. 2: График k = f(I)

Из угла наклона графика зависимости k=f(I) мы получаем, что угол наклона этого графика  $K^{Cu}=(1.08\pm0.02)\frac{\text{MKOM}}{\text{Tл}}$ 

Из этого мы получаем, что из формулы во введении следует, что

$$R_x^{Cu} = -K^{Cu} \cdot a = -(5.4 \pm 0.1) \cdot 10^{-11} \frac{\text{M}^3}{\text{K}_{\text{JI}}}$$

Как видим, полученное нами значение хорошо совпадает с табличным  $R_x^{Cu,th} = -5.5 \cdot 10^{-11} \frac{\text{м}^3}{\text{K}_{\text{Л}}}$ 

### 2.3. Цинк

Для начала отметим, что при измерении цинка 75дел = 7.5мкВ. Определяем знак носителей заряда для цинка – (-).

$$L_{3,4} = 3.5 \,\mathrm{mm}$$
  $a = 0.12 \,\mathrm{mm}$   $l = 9 \,\mathrm{mm}$ 

Таблица 10: Для тока через материал  $I=1.00~\mathrm{A}$ 

|   | $(I = 1.00 \pm 0.01) \text{ A}, \qquad U_0 = (13 \pm 1) \text{ ед.}$ |                              |        |                  |        |          |                         |  |  |  |
|---|----------------------------------------------------------------------|------------------------------|--------|------------------|--------|----------|-------------------------|--|--|--|
|   | $I_{\scriptscriptstyle \mathrm{M}}, A$                               | $\sigma_{I_{\mathrm{m}}}, A$ | В, мТл | $\sigma_B$ , мТл | U, ед. | U, н $B$ | $\sigma_U$ , н ${ m B}$ |  |  |  |
| 1 | 0.19                                                                 | 0.01                         | 190    | 11               | 16     | 1600     | 50                      |  |  |  |
| 2 | 0.37                                                                 | 0.01                         | 370    | 13               | 19     | 1900     | 50                      |  |  |  |
| 3 | 0.56                                                                 | 0.01                         | 559    | 14               | 22     | 2200     | 50                      |  |  |  |
| 4 | 0.74                                                                 | 0.01                         | 739    | 15               | 24     | 2400     | 50                      |  |  |  |
| 5 | 0.93                                                                 | 0.01                         | 929    | 17               | 26     | 2600     | 50                      |  |  |  |
| 6 | 1.16                                                                 | 0.01                         | 1159   | 18               | 27     | 2700     | 50                      |  |  |  |
| 7 | 1.25                                                                 | 0.01                         | 1249   | 19               | 28     | 2800     | 50                      |  |  |  |



Рис. 3: График  $\varepsilon_x = f(B)$  для цинка

Теперь ищем то же самое для цинка:

$$K^{Zn} = (1.1 \pm 0.3) \frac{\text{MKB}}{\text{T}_{\text{T}}}$$

$$R_x^{Zn} = -\frac{K^{Zn} \cdot a}{I} = (1.3 \pm 0.4) \cdot 10^{-10} \frac{\text{M}^3}{\text{K}_{\text{J}}}$$

Сравнивая с табличным значением, видим, что наше значение, с учетом погрешности, совпадает с табличным  $R_x^{Zn,th}=+1.04\cdot 10^{-10} \frac{\text{M}^3}{\text{K}\pi}$ 

### 2.4. Серебро

Для начала отметим, что при измерении серебра 75дел = 1.5мкВ. Определяем знак носителей заряда для серебра – (+) .

$$L_{3,4} = 15 \, \text{mm}$$
  $a = 0.09 \, \text{mm}$   $l = 11 \, \text{mm}$ 

Таблица 11: Для тока через материал  $I=1.00~\mathrm{A}$ 

|   | $(I = 1.00 \pm 0.01) \text{ A}, \qquad U_0 = (-3 \pm 1) \text{ ед.}$ |                              |            |                  |        |          |                 |  |  |
|---|----------------------------------------------------------------------|------------------------------|------------|------------------|--------|----------|-----------------|--|--|
|   | $I_{\scriptscriptstyle \mathrm{M}}, A$                               | $\sigma_{I_{\mathrm{m}}}, A$ | B, м $T$ л | $\sigma_B$ , мТл | U, ед. | U, н $B$ | $\sigma_U$ , нВ |  |  |
| 1 | 0.19                                                                 | 0.01                         | 190        | 11               | 7      | 140      | 10              |  |  |
| 2 | 0.37                                                                 | 0.01                         | 370        | 13               | 19     | 380      | 10              |  |  |
| 3 | 0.56                                                                 | 0.01                         | 559        | 14               | 30     | 600      | 10              |  |  |
| 4 | 0.74                                                                 | 0.01                         | 739        | 15               | 40     | 800      | 10              |  |  |
| 5 | 0.93                                                                 | 0.01                         | 929        | 17               | 47     | 940      | 10              |  |  |
| 6 | 1.16                                                                 | 0.01                         | 1159       | 18               | 51     | 1020     | 10              |  |  |
| 7 | 1.25                                                                 | 0.01                         | 1249       | 19               | 52     | 1040     | 10              |  |  |



Рис. 4: График  $\varepsilon_x = f(B)$  для серебра

Теперь ищем то же самое для серебра:

$$K^{Ag} = (0.85 \pm 0.15) \frac{\text{MKB}}{\text{T}_{\text{J}}}$$

$$R_x^{Ag} = -\frac{K^{Ag} \cdot a}{I} = (-7.7 \pm 1.4) \cdot 10^{-11} \frac{\text{M}^3}{\text{K}_{\text{J}}}$$

Сравнивая с табличным значением, видим, что наше значение, с учетом погрешности, совпадает с табличным  $R_x^{Ag,\,th}=-0.9\cdot 10^{-10} \frac{\text{M}^3}{\text{K}_{\text{Л}}}$ 

#### 2.5. Концентрация носителей тока и удельная проводимость

Далее рассчитаем концентрацию носителей тока по формуле (6)

Рассчитаем удельную проводимость  $\sigma$  для образцов по формуле (7).

Используя найденные значения рассчитываем подвижность носителей по формуле

$$b = \frac{\sigma}{n \cdot e} = R_x \cdot \sigma$$

Занесём данные в таблицу

| Металл  | $R \pm \Delta R, 10^{-11} \frac{M^3}{K_{JJ}}$ | Табл. R, $10^{-11} \frac{\text{м}^3}{\text{Кл}}$ | Знак | $n \pm \Delta n, 10^{30} \frac{1}{M^3}$ | $\sigma \pm \Delta \sigma, 10^8 \frac{1}{\mathrm{O}_{\mathrm{M} \cdot \mathrm{M}}}$ | b, $\frac{c_{\rm M}^2}{O_{\rm M\cdot M}}$ |
|---------|-----------------------------------------------|--------------------------------------------------|------|-----------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------|
| Медь    | $-5,4\pm0,1$                                  | -5,5                                             | +    | $-0,12\pm0,01$                          | $0,48\pm0,06$                                                                       | 26±3                                      |
| Цинк    | 13 ±4                                         | 10,4                                             | _    | $0.05\pm0.01$                           | $0,07\pm0,01$                                                                       | $9,1\pm2,8$                               |
| Серебро | $-7,7\pm1,4$                                  | -9.0                                             | +    | $-0.08\pm0.01$                          | $0,40\pm0,05$                                                                       | $31 \pm 6$                                |

# 3. Вывод

Найденнае нами постоянные Холла с учётом погрешности совпадают с табличными. Знак этой постоянной показывает, что основными носителями заряда в меди и серебре являются электроны, а в цинке дырки.