

1) Schematic implementation

2)

a)

V _A /V	V _B /V	V _o /V
0.2	0.2	3.6
3.6	0.2	0.2
0.2	3.6	0.2
3.6	3.6	0.2

Output values of the RTL circuit is similar to the output values of a NOR gate

V _A /V	V _B /V	V _o /V
0	0	1
0	1	0
1	0	0
1	1	0

NOR gate truth table

3)

- a) For logic "LOW" → Output voltage : 1.14521 V
 - For logic "HIGH" → Output voltage: 0.198535 V
- b) i) When output is at logic 'LOW' $I_c=5.32mA$ power drawn by the circuit from the supply = 3.6×5.32 = 19.152 mW
 - ii) When output is at logic 'LOW' $I_c=3.84mA$

power drawn by the circuit from the supply = 3.6×3.84 = 13.824 mW

c) For Logic "Low"

For RTL,
$$V_{out.low} = 0.2V \rightarrow V_{OL} = 0.2 V$$

When $V_A >= cut$ in voltage of T_A , T_B will start to conduct

Cut in voltage = $0.5 \text{ V} \rightarrow \text{V}_{IL} = 0.5 \text{ V}$

$$\Delta L = V_{IL} - V_{OL} = 0.5 - 0.2 = 0.3 V$$

For Logic "HIGH"

Vo will depends on N,

For N = 5;
$$V_0 = 1.1452 \text{ V} \rightarrow V_{OH} = 1.1452 \text{ V}$$

 V_{IH} is minimum V_{O} , that can keep next stage transistors still in saturation.

For saturation:

$$\beta I_B > I_C$$

$$I_B > \frac{I_C}{\beta}$$

Let
$$\beta$$
 = 30,

$$V_{cc} = I_C R_C + V_{CE,Sat}$$

$$I_C = (3.6 - 0.2) / 640 = 5.31 \text{ mA}$$

So
$$I_{C,max} = 5.31 \text{ mA}$$

$$I_B > 5.31 / 30 = 0.177 \text{ mA}$$

$$I_{B.min} = 0.177 \text{ mA}$$

$$V_{out,min}(V_{IH}) = I_{B.min} x R_B + V_{BE.sat} = 0.177 x 0.45 + 0.8 = 0.88 V$$

$$V_{IH} = 0.88 V$$

$$V_{OH} = 1.1452 V$$

$$\Delta H = V_{OH} - V_{IH} = 1.1452 - 0.88 = 0.27 V$$

4) A)

Number of load gates	Output voltage for logic LOW	Output voltage for logic HIGH
5	0.198535	1.14521
10	0.274765	0.983942
15	0.33376	0.925373
20	0.380797	0.895094
25	0.41919	0.876596
30	0.451126	0.864122
35	0.478073	0.855142
40	0.501217	0.848369
45	0.521224	0.843077
50	0.538717	0.838829

B) $V_{IL}=0.5V$ and $V_{IH}=0.88V$

Number of load gates	Low level noise margin (V) $\Delta L = V_{IL} - V_{OL}$	High level noise margin (V) $\Delta H = V_{OH} - V_{IH}$
5	0.303155	0.26521
10	0.226999	0.103942
15	0.167998	0.045373
20	0.120918	0.015094
25	0.082466	-0.003404
30	0.050465	-0.015878
35	0.023413	-0.024858
40	0.000243	-0.031631
45	-0.019825	-0.036923
50	-0.037377	-0.041171

