Lenguajes Formales y Computabilidad Definiciones y Convenciones: Combo 11

Nicolás Cagliero

June 23, 2025

Defina:

- 1. $\Psi_{P}^{n,m,\#}$
- 2. "f es Σ -computable"
- 3. " \mathcal{P} computa a f"
- 4. $M^{\leq}(P)$

Respuestas:

1. Dado $\mathcal{P} \in \text{Pro}^{\Sigma}$, definamos para cada par $n, m \geq 0$, la función $\Psi_{\mathcal{P}}^{n,m,\#}$ de la siguiente manera:

$$D^{n,m,\#}_{\Psi_{\mathcal{P}}} = \{ (\vec{x},\vec{\alpha}) \in \omega^n \times \Sigma^{*m} : \mathcal{P} \text{ termina, partiendo del estado } \parallel x_1,\dots,x_n,\alpha_1,\dots,\alpha_m \parallel \}$$

$$\Psi^{n,m,\#}_{\mathcal{D}}(\vec{x},\vec{\alpha}) =$$

valor de N1 en el estado obtenido cuando $\mathcal P$ termina, partiendo de $\parallel x_1,\dots,x_n,\alpha_1,\dots,\alpha_m \parallel$

- 2. Una función $f:S\subseteq\omega^n\times\Sigma^{*m}\to s$ con $s\in\{\omega,\Sigma^*\}$ es llamada $\Sigma-computable$ si hay un programa $\mathcal P$ de $\mathcal S^\Sigma$ que la computa
- 3. Diremos que $\mathcal P$ computa a $f:S\subseteq\omega^n\times\Sigma^{*m}\to s$ con $s\in\{\omega,\Sigma^*\}$ si $f=\Psi^{n,m,\#}_{\mathcal P}$ si s=# ó $f=\Psi^{n,m,*}_{\mathcal P}$ si s=*
- 4. Sea Σ un alfabeto no vacío, sea \leq un orden total sobre Σ y sea $P: D_P \subseteq \omega^n \times \Sigma^{*m} \times \Sigma^* \to \omega$ un predicado. Dado $(\overrightarrow{x}, \overrightarrow{\alpha}) \in \omega^n \times \Sigma^{*m}$, cuando exista al menos un $\alpha \in \Sigma^*$ tal que $P(\overrightarrow{x}, \overrightarrow{\alpha}, \alpha) = 1$, usaremos $\min_{\alpha} P(\overrightarrow{x}, \overrightarrow{\alpha}, \alpha)$ para denotar al menor $\alpha \in \Sigma^*$ tal que $P(\overrightarrow{x}, \overrightarrow{\alpha}, \alpha) = 1$. Definimos:

$$M^{\leq}(P) = \lambda \vec{x}\overset{\rightarrow}{\alpha}[\min_{\alpha}^{\leq}P(\vec{x},\overset{\rightarrow}{\alpha},\alpha)]$$