中国科学技术大学

2017 - 2018 学年第一学期考试试卷(A)

考试科目: <u>电子电路</u>	得分:			
系 别:				:面
一、填空题。(20')				
(1)安全电压是指一般环境条件下_ 过人体(电流/电压)的大小 降/上升),并且相同条件下交流安全	和通电时间长短。随	直着所处环境潮湿度的增加		
(2)自然界所有的信号都是			号,需要首先对原信号进行	采
(3) PN结是由于(多子/少 致时,有利于(扩散/漂移)	<u></u>		当外加电场和内电场的方向	
(4) 若要使晶体管工作在线性放大时晶体管输入端口呈现(线				
(5) 乙类对称互补型功率放大电路 真,此时需要用偏置电路予以改善, (增大/降低)。	·			

二、如图所示电路,求开关闭合后电路进入稳态时电容上的<u>电压</u>。(10',关键步骤或过程要列出。)

三、下图所示放大电路,两个晶体管参数相同,求<u>电流放大倍数</u> $A_{ii} \triangleq \frac{i_o}{i_i}$ 。(10',写出推导过程。)

四、求下图所示电流源电路 I_o ,假设 $r_{\!\scriptscriptstyle ce}$ 已知,试估算输出电阻 $r_{\!\scriptscriptstyle o}$ 。 $\,$ $\,$ $\,$ $\,$ $\,$

姓名:_____ 学号:_____

五、差动放大电路如图所示,试求 $A_{uud} = \frac{u_o}{u_i}$; (10')

六、判断<u>反馈组态</u>并试估算深度负反馈条件下 $A_{uusf} \triangleq \frac{u_o}{u_s}$ 。 (10')

七、下图所示电路,已知各个三极管有相同的参数 r_{be}, β ,判断 级间反馈组态 并求 r_{if} , r_{of} ,并求深度负反馈条件

下的
$$A_{uusf} \triangleq \frac{u_o}{u_s}$$
。(10')

八、下图所示电路<u>是否可以振荡</u>?如果可以请说明<u>工作原理</u>及振荡频率 f_0 ;如果不行请<u>改正后</u>说明其<u>工作原理</u>并 $rac{1}{2}$ 求振荡频率 $rac{1}{2}$ 。 (10')

姓名:_____ 学号:_____

九、如图所示电路,请画出其<u>交流通路</u>后判断其<u>是否能够振荡</u>?若可以振荡,叙述其<u>工作原理</u>并求出振荡频率 f_0 ;

若不能振荡,请予以 $\underline{\mathrm{C}}$ 正后 阐述其 工作原理 并求其振荡频率 f_0 。 $\,$ ($10^{\prime}\,$)

