Europäisches Patentamt European Patent Office Office européen des brevets

(11) **EP 1 505 149 A1**

(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC

(43) Date of publication: 09.02.2005 Bulletin 2005/06

(21) Application number: 03720967.3

(22) Date of filing: 28.04.2003

(51) Int CI.7: **C12N 15/09**, C12N 1/19, C12N 9/04, C12N 9/10, C12N 9/50
// C12R1:645

(86) International application number: PCT/JP2003/005464

(87) International publication number: WO 2003/091431 (06.11.2003 Gazette 2003/45)

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

(30) Priority: 26.04.2002 JP 2002127677

(71) Applicants:

- KIRIN BEER KABUSHIKI KAISHA Tokyo 104-8288 (JP)
- National Institute of Advanced Industrial Science and Technology Tokyo 100-8921 (JP)
- (72) Inventors:
 - KOBAYASHI, Kazuo, Kirin Beer Kabushiki Kaisha Takasaki-shi, Gunma 370-0013 (JP)

- KITAGAWA, Yoshinori, Kirin Beer Kabushiki Kaisha Takasaki-shi, Gunma 370-0013 (JP)
- KOMEDA, Toshihiro,
 Kirin Beer Kabushiki Kaisha
 Yokohama-shi, Kanagawa 236-0004 (JP)
- KAWASHIMA, Nagako, Kirin Beer Kabushiki Kaisha Takasaki-shi, Gunma 370-1295 (JP)
- JIGAMI, Y., Nat. Inst. of Adv. Ind. Scie. Tech. Tsukuba-shi, Ibaraki 305-8566 (JP)
- CHIBA, Y., Nat. Inst. of. Adv. Ind. Scie. Tech. Tsukuba-shi, Ibaraki 305-8566 (JP)
- (74) Representative: HOFFMANN EITLE
 Patent- und Rechtsanwälte
 Arabellastrasse 4
 81925 München (DE)

(54) METHYLOTROPH PRODUCING MAMMALIAN TYPE SUGAR CHAIN

This invention is to provide a process for producing a glycoprotein comprising a mammalian type sugar chain, characterized in that the process comprises introducing an α-1,2-mannosidase gene into a methylotrophic yeast having a mutation of a sugar chain biosynthesizing enzyme gene, so that the α -1,2-mannosidase gene is expressed under the control of a potent promoter in the yeast; culturing in a medium the methylotrophic yeast cells with a heterologous gene transferred thereinto; and obtaining the glycoprotein comprising a mammalian type sugar chain from the culture. Using the newly created methylotrophic yeast having a sugar chain mutation, a neutral sugar chain identical with a high mannose type sugar chain produced by mammalian cells such as human cells, or a glycoprotein comprising such a neutral sugar chain, can be produced in a large amount at a high purity. By introducing a mammalian type sugar chain biosynthesizing gene into the above-described mutant, a mammalian type sugar chain, such as a hybrid or complex, or a protein comprising a mammalian type sugar chain can be efficiently produced.

Description

5

10

15

20

25

30

35

40

45

50

55

Technical Field

[0001] The present invention provides a process for mass production of non-antigenic mammalian type glycoproteins comprising a sugar chain structure at their asparagine residues using a methylotrophic yeast wherein the sugar chain structure is identical to that produced by mammalian cells. More specifically, the present invention relates to a novel mutant yeast capable of producing a glycoprotein comprising a mammalian type sugar chain, which is created by introducing an α -1,2-mannosidase gene into a methylotrophic yeast having a mutation of sugar chain biosynthesizing enzyme genes, so that the α -1,2-mannosidase gene is highly expressed under the control of a potent promoter in the yeast, and the (α -1,2-mannosidase exists in the endoplasmic reticulum (ER); and to a process for producing a glycoprotein comprising a mammalian type sugar chain wherein the process comprises culturing the methylotrophic yeast cells with a heterologous gene transferred thereinto in a medium and obtaining the glycoprotein comprising mammalian type sugar chains from the culture.

Background of the Invention

[0002] Yeast has been intensively studied as a host for production of foreign genes since establishment of yeast transformation systems. The use of a yeast for production of foreign proteins involves advantages in that molecular-genetic manipulation and culture of yeasts are as easy as those of prokaryotic organisms, and that yeasts bear eukaryotic type functions to allow post-translational modifications of proteins such as glycosylation. However, since production of proteins using Saccharomyces cerevisiae is low with exception of some successes, protein production systems using yeasts other than Saccharomyces cerevisiae have been developed, including systems using, for example, Shizosaccharomyces pombe, Kluyveromyces lactis, methylotrophic yeasts, or the like.

[0003] A methylotrophic yeast (or methanol-utilizing yeast), which can grow on methanol as a single carbon source, has been developed as a host for production of foreign proteins (K. Wolf (ed.) "Non Conventional Yeasts in Biotechnology" (1996)). This is because methods of culturing yeasts have been established in industrial scale and because the yeast has a potent promoter controlled by methanol. At that time when a methylotrophic yeast was discovered, the use thereof as SCP (Single Cell Protein) was studied and, as a result, a high-density culture technique at a dry cell weight of 100 g/L or more was established in an inexpensive culture medium, which contains minerals, trace elements, biotin, and carbon sources.

[0004] Researches on elucidation of a C1 compound-metabolic pathway, as well as on application of C1 compounds, revealed that a group of enzymes required for the methanol metabolism was strictly regulated by carbon sources. The methanol metabolism in a methanol-utilizing yeast generates formaldehyde and hydrogen peroxide from methanol and oxygen by alcohol oxidase in the first reaction. The generated hydrogen peroxide is decomposed into water and oxygen by catalase, while formaldehyde is oxidized to carbon dioxide by actions of formaldehyde dehydrogenase, S-forinylglutathione hydrolase, and alcohol oxidase, and NADH generated during the oxidation is utilized as an energy source of the cell. At the same time, formaldehyde is condensed with xylulose-5-phosphate by dihydroxyacetone synthase, then converted into glyceraldehyde-3-phosphate and dihydroxyacetone, which subsequently enter the pentose phosphate pathway and serve as cell components.

[0005] Alcohol oxidase; dihydroxyacetone synthase, and formate dehydrogenase are not detected in the cell when it is cultured in the presence of glucose, but they are induced in the cell cultured in methanol, so that the amount of them is dozens of percentage of the total inner cell protein. Since the production of these enzymes is controlled at a transcription level, inducible expression of a foreign gene of interest is enabled under the regulation of promoters of the genes which encode the enzymes. The foreign gene expression system using a promoter for a methanol metabolizing enzyme gene has been estimated so highly among yeast expression systems due to its efficient production, with an example in which the expression amount of a foreign gene was dozens of percentage of the total protein in cell or several g/L culture medium in secretion.

[0006] To date, four types of the transformation and foreign gene expression systems have been established in the methylotrophic yeasts: *Candida boidinii, Hansenula polymorpha, Pichia pastoris* and *Pichia methanolica*. Differences are recognized among the expression systems in terms of codon usage, expression regulation, and integration of expression plasmid, which provide characteristics of each expression system.

[0007] In the meantime, it is known that naturally occurring proteins are classified into two types, i.e., the one being a simple protein comprising amino acids alone, the other being a complex protein comprising sugar chains, lipids, phosphates or the like attached thereto, and that most of cytokines are glycoproteins. Recently, besides conventional analyses with lectin, new analyses using HPLC, NMR or FAB-MAS have been developed in analyzing sugar chain structures, by which new sugar chain structures of a glycoprotein have been found successively. On the other hand, studies on functional analysis of sugar chains lead to elucidation of the fact that the sugar chain plays an important

role in lots of bio-mechanisms, such as intercellular recognition, molecular recognition, keeping of protein structures, contribution to protein activity, *in vivo* clearance, secretion, localization, etc.

[0008] For example, it has been revealed that erythropoietin (EPO), tissue plasminogen activator (TPA) or the like did not exhibit its inherent bioactivity when the sugar chains are removed (Akira Kobata, Tanpakushitsu-Kakusan-Koso, 36, 775-788 (1991)), Importance of sugar chains has been pointed out in erythropoietin, which was the first glycoprotein medicament in history produced by transgenic animal cells as the host. Specifically, the sugar chains of erythropoietin act in inhibitory manner against binding to receptor, whereas they have a decisive contribution to keeping of active structures and to improvement in in vivo pharmacokinetics, and are totally essential for expression of the pharmacological activity (Takeuchi and Kobata, Glycobiology, 1, 337-346 (1991)). Furthermore, high correlation between the structure, type and number of branches (i.e., the number of branches formed by GlcNAc attached to Man3GlcNAc2) of sugar chains and the pharmacological effect of erythropoietin has been found (Takeuchi et al., Proc. Natl. Acad. Sci. USA, 86, 7819-7822 (1989)). It was reported that a main cause of this phenomenon was that erythropoietin with immature branch structure is prone to occur its rapid clearance from the kidney, resulting in a shorter retention time in the body (Misaizu et al., Blood, 86, 4097-4104 (1995)). Another similar example is observed in serum glycoproteins including fetuin. That is, it was found that when removal of sialic acid at the end of a sugar chain leads to exposure of galactose, the galactose is recognized by lectin on the surface of liver cells, whereby the serum glycoprotein disappears promptly from the blood (Ashwell and Harford, Annu.Rev.Biochem., 51, 531-554 (1982); Morell et al., J.Biol.Chem., 243, 155-159 (1968)).

10

20

25

30

35

40

45

50

[0009] Glycoprotein sugar chains are largely classified into Asn-linked (N-linked), mucin type, O-GlcNAc type, GPI-anchored type, and proteoglycan type (Makoto Takeuchi, Glycobiology Series 5, Glycotechnology; edited by Akira Kibata and Senichiro Hakomori, Katsutaka Nagai, Kodansha Scientific, 191-208 (1994)), each of which has an intrinsic biosynthesis pathway and serves for individual physiological functions. Of them, for the biosynthesis pathway of Asn-linked sugar chains, there are many findings and detailed analyses.

[0010] Biosynthesis of Asn-linked sugar chains starts with synthesis of a precursor comprising N-acetylglucosamine, mannose and glucose on a lipid carrier intermediate, which precursor is converted to a specific sequence (Asn-X-Ser or -Thr) of a glycoprotein in the endoplasmic reticulum (ER). It is then subjected to processing (i.e., cleavage of glucose and specific mannose residues) to synthesize an M8 high-mannose type sugar chain comprising eight mannose residues and two N-acetylglucosamine residues (Man8GlcNAc2). The protein including high mannose type sugar chains is transported to the Golgi apparatus which undergoes a variety of modifications significantly different between yeast and mammal (Gemmill, T.R., Trimble, R.B., Biochim.Biophys.Acta., 1426, 227 (1999)).

[0011] In mammalian cells, in many cases, α -mannosidase I (α -1,2-mannosidase), an exomannosidase which cleaves an α -1,2-mannoside linkage, acts on high mannose type sugar chains to cut off several mannose residues. The sugar chain (Man5-8GlcNAc2) generated in this process is a sugar chain referred to as a high mannose type. N-acetylglucosaminyl transferase (GnT) I acts on an M5 high mannose type sugar chain (Man5GlcNAc2) from which three mannose residues have been cut off, to transfer one N-acetylglucosamine residue to the sugar chain, resulting in formation of a sugar chain comprising GlcNAcMan5GlcNAc2. The thus formed sugar chain is referred to as a hybrid type. Further, when α -mannosidase II and GnT II act, the sugar chain structure GlcNAc2Man3GlcNAc2, referred to as a complex type, is formed. Thereafter, a variety of mammalian type sugar chains are formed through the action of a group of ten-odd glycosyltransferase enzymes, by which addition of N-acetylglucosamine, galactose, sialic acid, etc. occurs (Fig. 1).

[0012] Accordingly, the mammalian type sugar chain as defined in this application means an N-linked (or Asn-linked) sugar chain present in mammals, which is generated in the sugar chain biosynthesis process of mammals. Specifically, they include an M8 high mannose type sugar chain represented by Man8GlcNAc2; an M5, M6 or M7 high mannose type sugar chain represented by Man8GlcNAc2, respectively, generated from Man8GlcNAc by action of α-mannosidase I; a hybrid type sugar chain represented by GlcNAcMan5GlcNAc2 generated from Man5GlcNAc2 by action of GlcNAc transferase-I (GnT-I); a double-stranded complex type sugar chain represented by GlcNAc2Man3GlcNAc2 generated from GlcNAcManSGlcNAc2 by action of α-mannosidase-I and GlcNAc transferase-II (GnT-II); and a double-stranded complex type sugar chain represented by Gal2GlcNAc2Man3GlcNAc2 generated from GlcNAc2Man3GlcNAc2 by action of galactosyl transferase (GalT).

[0013] In mammals, any of high mannose type, hybrid type and complex type sugar chains can be found. In one case, sugar chains to be attached are different depending on a protein, or in another, different types of sugar chains are attached within a protein. These sugar chains exhibit important functions, such as biosynthesis of glycoproteins, sorting within a cell, concealment of antigenicity, *in vivo* stability, organ-targeting properties, and the like, depending on the type or class of sugar chains attached to a glycoprotein (Tamao Endo, Tosa Kogaku (Sugar chain engineering), Sangyo Chosakai, 64-72 (1992)).

[0014] On the other hand, in yeast a mannan-type sugar chain (outer sugar chain) is produced, in which several to 100 or more mannose residues are attached to M8 high mannose type sugar chain. For example, the biosynthesis of outer sugar chains in *Saccharomyces cerevisiae* known as baker's yeast or laboratory yeast is considered to proceed

along a pathway as shown in Fig. 2 (Ballou et al., Proc. Natl. Acad. Sci. USA, 87, 3368-3372 (1990)). That is, a reaction for initiating elongation begins in which a mannose is first attached to M8 high mannose type sugar chain through α-1,6 linkage (Fig. 2, Reaction I, B). The enzyme performing this reaction is clarified as a protein encoded by OCH1 gene (Nakayama et al., EMBO J., 11, 2511-2519 (1992)). Further, seguential elongation of mannose by α-1,6-linkage reaction (Fig. 2, II), forms a poly α -1,6-mannose linkage being the backbone of an outer sugar chain (Fig. 2, E). The α -1,6-mannose linkage sometimes contains a branch of α -1,2-linked mannose (Fig. 2: C, F, H), and additionally, α -1,3-linked mannose is attached to the end of the branched α-1,2-linked mannose chain (Fig. 2: D, G, H, I). The addition of the α-1,3-linked mannose is caused by a MNN1 gene product (Nakanishi-Shindo et al., J. Biol. Chem., 268, 26338-26345 (1993)). Formation of an acidic sugar chain, in which mannose-1-phosphate has been attached to high mannose type sugar chain moieties and outer chain moieties, is known as well (Fig. 2, *; a possible phosphorylation site corresponding to * in the above formula (I)). This reaction was found to be caused by a protein encoded by MNN6 gene (Wang et al., J. Biol. Chem., 272, 18117-18124 (1997)). Further, a gene (MNN4) coding for a protein positively regulating the transfer reaction was clarified (Odani et al., Glycobiology, 6, 805-810 (1996); Odani et al., FEBS Letters, 420, 186-190 (1997)). [0015] Production of substances using microorganisms including yeast has some advantages as mentioned above, such as low production costs and utilizing culture technology developed as fermentation engineering, as compared with the production of substances using animal cells. There is a problem, however, that microorganisms cannot attach sugar chains with the same structure as human glycoprotein. Specifically, glycoproteins from cells of an animal including human have a variety of mucin type sugar chains in addition to three kinds of Asn-linked sugar chains, i.e., complex type, hybrid type and high mannose type as shown in Fig. 1, while the Asn-linked sugar chain whose attachment is observed even in baker's yeast (Saccharomyces cerevisiae), is only a high mannose type, and a mucin type is attached only to a sugar chain mainly composed of mannose.

10

20

25

30

40

45

50

55

[0016] Such sugar chains of yeast may produce a heterogeneous protein product resulting in difficulties in purification of the protein or in reduction of specific activity (Bekkers et al., Biochim. Biophys. Acta, 1089, 345-351 (1991)). Furthermore, since the structure of the sugar chains significantly differ, glycoproteins produced by yeast may not have the same detectable biological activity as those of the mammalian origin, or have strong immunogenicity to a mammal, etc. Thus, yeast is unsuitable as a host for producing useful glycoproteins from mammalian origin, and in general microorganisms are not suitable for DNA recombinant production of a glycoprotein, such as erythropoietin as described above, in which sugar chain has an important function. Indeed, for production of erythropoietin, Chinese hamster ovary (CHO) cells are used.

[0017] Thus, it is expected that the sugar chain of a glycoprotein not only has a complicated structure but also plays an important role in expression of biological activity. However, since the correlation of the structure of sugar chain with biological activity is not necessarily clear, development of the technology, which enables to freely modify or control the structure (the type of sugar, a linking position, chain length, etc.) of a sugar chain attached to a protein moiety, is needed. When developing a glycoprotein especially as medicament, the structure and function analyses of the glycoprotein become important. Under these circumstances, the development of yeast, which can produce a glycoprotein with biological activity equivalent to that of the mammalian origin, i.e., a glycoprotein comprising a mammalian type sugar chain, is desired by the academic society and the industrial world.

[0018] In order to produce a mammalian type sugar chain using yeast, it is important to prepare a mutant having the sugar chain biosynthesis system, which does not comprise a reaction as mentioned above of attaching a lot of mannose residues to modify the glycoprotein sugar chain as seen particularly in yeast; in which no outer sugar chains are attached; and the synthesis of sugar chains generates M5 high mannose type sugar chain. Subsequently, M8 high mannose type sugar chain, a precursor for this mammalian type sugar chain, might be produced by introducing biosynthetic genes for the mammalian type sugar chain into the mutant yeast.

[0019] To obtain a glycoprotein lacking outer sugar chains, use of a mutant strain deficient in enzymes for producing outer sugar chains in yeast, particularly a mutant of *Saccharomyces cerevisiae*, has been studied so far. Methods to obtain such a deficient mutant strain include obtaining a gene mutant by chemicals, ultraviolet irradiation or natural mutation, or obtaining it by artificial disruption of a target gene.

[0020] As to the former methods, there are many reports thereon. For example, mnn2 mutant is defective in the step of branching which causes α -1,2 linkage from the α -1,6 backbone of an outer sugar chain, and mnn1 mutant is defective in the step of producing α -1,3-linked mannose at the end of the branch. However, these mutants do not have defects in α -1,6 mannose linkage as the backbone of outer sugar chains and so they produce a long outer sugar chain in length. Mutants like mnn7, 8, 9, 10 mutants have been isolated as mutants having only about 4 to 15 molecules of the α -1,6 mannose linkage. In these mutants, the outer sugar chains are merely shortened, but the elongation of high mannose type sugar chains does not stop (Ballou et al., J. Biol. Chem., 255, 5986-5991 (1980); Ballou et al., J. Biol. Chem., 264, 11857-11864 (1989)). Defects in the addition of outer sugar chains are also observed in, for example, secretion mutants such as sec18 in which the transportation of a protein from endoplasmic reticulum to Golgi apparatus is temperature-sensitive. However, in a sec mutant, since the secretion of a protein itself is inhibited at a high temperature, the sec mutant is not suitable for secretion and production of glycoproteins.

[0021] Accordingly, since these mutants cannot completely biosynthesize the high mannose type sugar chain of interest, they are considered unsuitable as host yeast for producing a mammalian type sugar chain.

[0022] On the other hand, as to the latter, the deficient mutant strain in which a plurality of target genes have been disrupted can be established by development of genetic engineering techniques in recent years. Specifically, through *in vitro* operation, a target gene DNA on plasmid is first fragmentated or partially deleted, and an adequate selectable marker DNA is inserted at the fragmented or deleted site to prepare a construct in which the selectable marker is sandwiched between upstream and downstream regions of the target gene. Subsequently, the linear DNA having this structure is transferred into a yeast cell to cause two homologous recombinations at portions homologous between both ends of the introduced fragment and the target gene on chromosome, thereby substituting the target gene with a DNA construct in which the selectable marker has been sandwiched (Rothstein, Methods Enzymol., 101, 202-211 (1983)).

10

20

25

30

35

40

45

50

55

[0023] Molecular cloning of a yeast strain deficient in outer sugar chain has already been described by Jigami et al. in Japanese Patent Publication (Kokai) No. 6-277086A (1994) and No. 9-266792A (1997). Jigami et al. succeeded in cloning of the *S. cerevisiae OCH1* gene (which expresses α -1,6-mannosyl transferase), the *OCH1* enzyme being assumed to be a key enzyme for elongation of the α -1,6 linked mannose. The glycoprotein of the *OCH1* gene knockout mutant (Δ och1) had three types of attached sugar chains, i.e., Man8GlcNAc2, Man9GlcNAc2 and Man10G1cNAc2. Of them, the Man8GlcNAc2 chain had the same structure (i.e., the structure shown in Fig. 2A) as the ER core sugar chain which was common between *S. cerevisiae* and mammalian cell, while the Man9GlcNAc2 and Man10GlcNAc2 chains had a structure where α -1,3-linked mannose was attached to this ER core sugar chain [Nakanish-Shindo, Y., Nakayama, K., Tanaka, A., Toda, Y. and Jigami, Y., (1994), J.Biol.Chem.]. Furthermore, a *S. cerevisiae* host which can attach only the Man8GlcNAc2 chain having the same structure as the ER core sugar chain, which structure is common between *S. cerevisiae* and mammalian cell, was successfully produced by preparing a Δ och1mnn1 dual mutant and inhibiting the α -1,3-linked mannose transfer at the end. It is supposed that this Δ och1mnn1 double mutant serves as a host useful in case where the mammalian glycoprotein, which has a high mannose type sugar chain, is produced by DNA recombinant technology [Yoshifumi Jigami (1994) Tanpakushitsu-Kakusan-Koso, 39, 657].

[0024] It was found, however, that sugar chains of the glycoprotein produced by the double mutant (\(\Delta och 1 mm 1 \)) described in Japanese Patent Publication (Kokai) No. 6-277086 (1994) comprised acidic sugar chains containing a phosphate residue. This acidic sugar chain has a structure which is not present in sugar chains of mammals including human, and it is likely to be recognized as a foreign substance in mammal, thereby exhibiting antigenicity (Ballou, Methods Enzymol., 185, 440-470 (1990)). Hence, a quadruple mutant (as described in Japanese Patent Publication (Kokai) No. 9-266792A (1997)) was constructed in which the functions of a gene for positively regulating the transfer of mannose-1-phosphate (MNN4) and of a mannose transferase gene for performing the elongation reaction for an Olinked sugar chain (KRE2) have been disrupted. It was revealed that the sugar chain of a glycoprotein produced by the yeast strain described therein had the M8 high mannose type sugar chain of interest. It was further found that a strain in which Aspergillus saitoi-derived α-1,2-mannosidase gene is transferred to a yeast cell where a gene involved in the particular sugar chain biosynthesis system of yeast has been disrupted, had a high mannose type sugar chain (Man5-8GlcNAc2) in which one to several mannose residues were cleaved (Chiba et al., J. Biol. Chem., 273, 26298-26304 (1998)). Furthermore, they attempted production of a mammalian type glycoprotein in yeast by transfer of a gene involved in the mammalian sugar chain biosynthesis system into this prepared strain (PCT/JP 00/05474). However, despite that an α -1,2-mannosidase gene was expressed using a promoter for glyceraldehyde-3-phosphate dehydrogenase gene which is considered to be the highest in the expression amount as a constitutive expression promoter according to the disclosure, the conversion efficiency to Man5GlcNAc2 by carboxypeptidaseY (CPY) in the cell wall-derived mannoprotein is as low as 10-30% and so it is hard to say that its application to various glycoproteins is sufficiently prospective, although the rate of conversion to a high mannose type sugar chain (Man5GlcNAc2) was almost 100% in FGF as a foreign protein.

[0025] Separately, Schwientek et al. reported on the expression of the activity of human β -1,4-galactosyl transferase gene in *S. cerevisiae* in 1994 [Schwientek, T. and Ernst, J.F., Gene, 145, 299 (1994)]. Similarly, Krezdrn et al. achieved the expression of the activity of human β -1,4-galactosyl transferase gene and α -2,6-sialyl transferase in *S. cerevisiae* [Krezdrn, C.H.et al., Eur.J.Biochem.220, 809 (1994)].

[0026] However, when these findings are tried to be applied to other yeast, various problems arise. First of all, it is known that yeasts themselves have various sugar chain structures (K. Wolf et al., Nonconventional Yeasts in Biotechnology (1995)).

[0027] For example, a divided yeast *Schizosaccharomyces pombe* contains galactose. *Kluyveromyces lactis* has GlcNAc. Both the methylotrophic yeast *Pichia pastoris* and the pathogenic yeast *Candida albicans* have been confirmed to contain β-mannoside linkage. Even yeasts having xylose and rhamnose as sugar chain components exist (Biochim. et Biophy.Acta, 1426, 1999, 227-237).

[0028] In fact, no yeasts capable of producing mammalian type sugar chains have been obtained except Saccharomyces cerevisiae as reported by Jigami et al. Also, although use of a methylotrophic yeast as the host for producing

a foreign protein was exemplified in Japanese Patent Publication (Kokai) No. 9-3097A (1997), substantially no other example has been given.

[0029] In Japanese Patent Publication (Kokai) No. 9-3097A (1997), a homologue of *Pichia pastoris OCH1* gene and a *Pichia pastoris* mutant strain in which the *OCH1* gene was knockout were prepared, to obtain from them a modified methylotrophic yeast strain whose ability to extend a sugar chain was inhibited as compared with natural methylotrophic yeast strain. This publication, however, provides only information on SDS-PAGE of the produced glycoprotein, and no such support as structural analysis data. That is, it did not actually identify the activity but only pointed out about possibility of being α -1,6-mannosyl transferase. In fact, although *HOC1* gene (GenBank accession number; U62942), which is an *OCH1* gene homologue, exists also in *Saccharomyces cerevisiae*, the activity and function thereof are unknown at present.

10

20

25

30

35

40

45

50

55

[0030] Moreover, in the same publication a sugar chain having β -mannoside linkage in P. pastoris was identified, but it did not describe about the structure of the chain in any way. Indeed, structural analysis of the sugar chain was neither performed nor identified the produced sugar chain. So, it was not demonstrated whether or not the obtained gene is actually the OCH1 gene, and whether or not the sugar chain of the knockout strain was a mammalian type. Accordingly, one cannot safely say that the technique disclosed in Japanese Patent Publication (Kokai) No. 9-3097A (1997) produces a mammalian type sugar chain bearing glycoprotein and is sufficient as the production system that can be adapted for production of medicaments.

[0031] There is also a study using a filamentous fungus *Trichoderma reesei* by Maras et al. as an attempt to produce a mammalian type sugar chain using a microorganism other than yeast (USP 5,834,251). The disclosed method comprises making α -1,2-mannosidase and GnT-I to act on filamentous fungus and yeast to synthesize a hybrid type sugar chain (i.e., GN1Man5 sugar chain).

[0032] Filamentous fungi inherently express α-1,2-mannosidase, and consequently it is believed that little sugar chain modification occurs as compared with the case of yeast. On the other hand, since yeast attaches a particular outer sugar chain, all sugar chains are not obtained as Man5 by the procedure in which only α -1,2-mannosidase is introduced. In fact, produced in Saccharomyces cerevisiae as disclosed in this patent publication was a mixture of Man5 as the final product with sugar chains of Man6 or more as partial decomposition products, which mixture is produce by action of the outer sugar chain synthesizing gene OCH1, as described by Jigami or Chiba et al. (supra). It would accordingly be hard to say that the mammalian type sugar chain was produced in S. cerevisiae, and so this purpose cannot be attained without disrupting a sugar chain biosynthesizing gene of yeast. Maras et al. did not mention the gene disruption in the sugar chain biosynthesis system inherent to yeast at all, so obviously this technique could not be applied to yeasts (Pichia pastoris, Hansenula polymorpha, Kluyveromyces lactis, Saccharomyces cerevisiae, Yarrowia lipolytica). Moreover, Maras et al. refers to RNaseB as a heterologous expression protein in the Examples, but RNaseB has originally a high mannose type sugar chain of Man5 or Man6. Many of the sugar chains of the animal cell origin are complex type sugar chains having complicated structures, and many of glycoproteins such as cytokines expected to be applied to medicaments etc. have complex type sugar chains. In fact, it is known that the sugar chain structure changes greatly depending on kinds of foreign glycoproteins expressed (Method in Molecular Biologylogy, 103, 95-105 (1998)). Therefore, it is considered inappropriate to use as an example RNaseB which is a glycoprotein originally having a high mannose type sugar chain, in the application to glycoproteins having complex type sugar chains. [0033] Furthermore, filamentous fungi are commonly used for the production of industrial enzymes, food enzymes, etc., and the transformation system is established, and production of enzymes by DNA recombinant technology has also been conducted. Nevertheless, there are the following disadvantages:

- 1) Since the protease activity is very strong, proteins produced are prone to receive limited proteolysis.
- 2) Since the fungi produce many proteins secreted outside the cell, they are unsuitable for the production of proteinous medicaments where homogeneity would be required.

[0034] Ogataea minuta as defined in the present invention is a strain once referred to as *Pichia minuta* or *Hansenulla minuta*, and was named *Ogataea minuta* by Ogata et al. (Biosci. Biotecnol. Biochem., 58, 1245-1257 (1994)). *Ogataea minuta* produces significant amounts of alcohol oxidase, dihydroxyacetone synthase and the formate dehydrogenase within the cell as in other methylotrophic yeasts, but nothing was known about the genes relating to these methanol utilization enzyme nor about sugar chain structures of this yeast.

[0035] Under the above-mentioned circumstances, the object of the present invention is to solve the above-described problems in production of glycoproteins in yeast, and to provide a process for mass production of non-antigenic mammalian type sugar chains and glycoproteins containing the sugar chains using a methylotrophic yeast wherein the sugar chain structures are identical to those of sugar chains as produced in human and other mammalian cells.

Disclosure of the Invention

5

10

15

20

25

30

35

40

45

50

55

[0036] For the purpose of constructing a production technique of glycoproteins having mammalian cell compatible sugar chain structures using a methylotrophic yeast, we conducted intensive researches to achieve the above-mentioned object. Consequently, we have found that sugar chains in $Ogataea\ minuta$, which is a kind of methylotrophic yeast, comprises mainly α -1,2-mannoside linkage, by NMR analysis of the cell wall sugar chain and by α -1,2-mannosidase digestion test, and further that glycoproteins having mammalian type sugar chains can be obtained by introducing an α -1,2-mannosidase gene into a mutant strain comprising mutated sugar chain biosynthesizing enzyme genes (for example, an OCH1 gene (α -1,6-mannosyl transferase) knockout mutant, which is considered to be a key enzyme for the elongation reaction where mannose residues attach to an M8 high mannose type sugar chain one by one via α -1,6 linkage), and expressing it under the control of a potent promoter such as methanol-inducible promoter, followed by culturing the $Ogataea\ minuta$ transformed with a heterologous gene in a culture medium, thereby to obtain a glycoprotein from the culture. By this finding was completed the present invention. Thus, it was found that a mammalian type sugar chain could be produced without disrupting MNN1 and MNN4 genes in $Saccharomyces\ cerevisiae$.

- 1) A methylotrophic yeast strain producing a mammalian type sugar chain, obtained by introducing an α -1,2-mannosidase gene into a mutant strain comprising a mutated sugar chain biosynthesizing enzyme gene (for example, an *OCH1* gene (α -1,6-mannosyl transferase) knockout mutant, which is considered to be a key enzyme for the elongation reaction where mannose residues attach to an M8 high mannose type sugar chain one by one via α -1,6 linkage), and expressing it under the control of a potent promoter such as methanol-inducible promoter;
- 2) A process of producing a glycoprotein comprising a mammalian type sugar chain, comprising culturing in a culture medium the yeast strain bred by introducing heterologous genes into a mutant yeast which comprises mutated sugar chain biosynthesizing enzyme genes and expressing these genes, and obtaining the glycoprotein comprising a mammalian sugar chain from the culture; and
- 3) A glycoprotein comprising a mammalian type sugar chain, produced by this production process.

[0038] More specifically, the invention provides the following 1 to 122.

- 1. A process for producing a methylotrophic yeast capable of producing a mammalian type sugar chain, which comprises the steps of:
 - 1) disrupting an OCH1 gene which encodes α -1,6-mannosyl transferase, in a methylotrophic yeast; and
 - 2) introducing an α -1,2-mannosidase gene into the yeast and expressing it therein.

2. A process according to (1), wherein the mammalian type sugar chain is represented by the following structural formula (Man₅GlcNAc₂):

Structural Formula 2

- 3. A process according to (1) or (2), wherein the methylotrophic yeast belongs to the genus *Pichia, Hansenula, Candida,* or *Ogataea*.
- 4. A process according to (1) or (2), wherein the methylotrophic yeast is Ogataea minuta.
- 5. A process according to any one of (1) to (4), wherein the methylotrophic yeast is a strain from *Ogataea minuta* strain IFO 10746.

- 6. A process according to any one of (1) to (5), wherein the α -1,2-mannosidase gene is expressed under the control of a methanol-inducible promoter.
- 7. A process according to (6), wherein the methanol-inducible promoter is a promoter of an alcohol oxidase (AOX) gene.
- 8. A process according to (7), wherein the alcohol oxidase (AOX) gene is from Ogataea minuta.

5

10

15

20

25

30

40

45

50

- 9. A process according to any one of (1) to (8), characterized in that the α -1,2-mannosidase gene to be introduced is attached to a yeast endoplasmic reticulum (ER) retention signal (HDEL).
- 10. A process according to any one of (1) to (9), wherein the α-1,2-mannosidase gene is from Aspergillus saitoi.
- 11. A process according to any one of (1) to (10), which further comprises a step of transforming a heterologous gene into the yeast.
- 12. A process according to (11), wherein the heterologous gene is transferred using an expression vector and is expressed in the yeast.
- 13. A process according to (12), wherein the expression vector comprises a methanol-inducible promoter.
- 14. A process according to (13), wherein the methanol-inducible promoter is a promoter of an alcohol oxidase (AOX) gene.
- 15. A process according to (14), wherein the alcohol oxidase (AOX) gene is from Ogataea minuta.
- 16. A process according to (12), wherein the expression vector comprises a promoter of a glyceraldehyde-3 -phosphate dehydrogenase (*GAPDH*) gene.
- 17. A process according to any one of (11) to (16), wherein 20 % or more of N-linked sugar chains produced of the protein encoded by a heterologous gene is the mammalian type sugar chain represented by Structural Formula 2.
- 18. A process according to any one of (11) to (16), wherein 40 % or more of N-linked sugar chains produced of the protein encoded by a heterologous gene is the mammalian type sugar chain represented by Structural Formula 2
- 19. A process according to any one of (11) to (16), wherein 60 % or more of N-linked sugar chains produced of the protein encoded by a heterologous gene is the mammalian type sugar chain represented by Structural Formula 2.
 - 20. A process according to any one of (11) to (16), wherein 80 % or more of N-linked sugar chains produced of the protein encoded by a heterologous gene is the mammalian type sugar chain represented by Structural Formula 2.
 - 21. A process according to any one of (11) to (20), wherein the protein encoded by a heterologous gene is from humans.
 - 22. A process according to any one of (11) to (21), wherein the protein encoded by a heterologous gene is an antibody or a fragment thereof.
- 35 23. A methylotrophic yeast produced by a process according to any one of (1) to (22).
 - 24. A process for producing a protein encoded by a heterologous gene, wherein the process comprises culturing the methylotrophic yeast of (23) in a medium to obtain the protein encoded by a heterologous gene comprising a mammalian type sugar chain from the culture.
 - 25. A protein comprising a mammalian type sugar chain encoded by a heterologous gene, wherein the protein is produced by the process of (24).
 - 26. An orotidine-5'-phosphate decarboxylase (*URA3*) gene DNA encoding an amino acid sequence substantially represented by SEQ ID NO:16.
 - 27. A URA3 gene DNA comprising a nucleotide sequence substantially represented by SEQ ID NO: 15.
 - 28. A recombinant expression vector substantially comprising the gene DNA of (26) or (27) or a fragment thereof as a selectable marker.
 - 29. An Ogataea minuta strain transformed with a recombinant expression vector of (28).
 - 30. An Ogataea minuta strain according to (29), the strain being from the strain IFO 10746.
 - 31. A phosphoribosyl-amino-imidazole succinocarboxamide synthase (ADE1) gene DNA encoding an amino acid sequence substantially represented by SEQ ID NO:28.
 - 32. An ADE1 gene DNA comprising a nucleotide sequence substantially represented by SEQ ID NO:27.
 - 33. A recombinant expression vector substantially comprising the gene DNA of (31) or (32) or a fragment thereof as a selectable marker.
 - 34. An *Ogataea minuta* strain transformed with the recombinant expression vector of (33).
 - 35. An Ogataea minuta strain according to (34), the strain being from the strain IFO 10746.
- 36. An imidazole-glycerol-phosphate dehydratase (HIS3) gene DNA encoding an amino acid sequence substantially represented by SEQ ID NO:100.
 - 37. An HIS3 gene DNA comprising a nucleotide sequence substantially represented by SEQ ID NO:99.
 - 38. A recombinant expression vector substantially comprising the gene DNA of (36) or (37) or a fragment thereof

as a selectable marker.

5

20

- 39. A Ogataea minuta strain transformed with a recombinant expression vector of (38).
- 40. An Ogataea minuta train according to (39), the strain being from the strain IFO 10746.
- 41. A 3-isopropylmalate dehydrogenase (*LEU2*) gene DNA encoding an amino acid sequence substantially represented by SEQ ID NO:108.
- 42. A LEU2 gene DNA comprising a nucleotide sequence substantially represented by SEQ ID NO: 107.
- 43. A recombinant expression vector substantially comprising the gene DNA of (41) or (42) or a fragment thereof as a selectable marker.
- 44. An Ogataea minuta strain transformed with the recombinant expression vector of (43).
- 45. An Ogataea minuta stain according to claim 44, the strain being from the IFO 10746.
 - 46. An α -1,6-mannosyl transferase (*OCH1*) gene DNA encoding an amino acid sequence substantially represented by SEQ ID NO:43.
 - 47. An OCH1 gene DNA comprising a nucleotide sequence substantially represented by SEQ ID NO:42
 - 48. An Ogataea minuta strain wherein the gene of (46) or (47) has been disrupted.
- 49. An Ogataea minuta strain according to (48), the strain being from the strain IFO 10746 strain.
 - 50. A proteinase A (*PEP4*) gene DNA encoding an amino acid sequence substantially represented by SEQ ID NO. 52.
 - 51. A PEP4 gene DNA comprising a nucleotide sequence substantially represented by SEQ ID NO:51.
 - 52. An Ogataea minuta strain wherein the gene of (50) or (51) has been disrupted.
 - 53. An Ogataea minuta strain according to (52), the strain being from the strain IFO 10746.
 - 54. A proteinase B (*PRB1*) gene DNA encoding an amino acid sequence substantially represented by SEQ ID NO: 58.
 - 55. A PRB1 gene DNA comprising a nucleotide sequence substantially represented by SEQ ID NO:57.
 - 56. An Ogataea minuta strain wherein the gene of (54) or (55) has been disrupted.
- 25 57. An Ogataea minuta strain according to (56), the strain being from the strain IFO 10746.
 - 58. A YPS1 gene DNA encoding an amino acid sequence substantially represented by SEQ ID NO:116.
 - 59. A YPS1 gene DNA comprising a nucleotide sequence substantially represented by SEQ ID NO:115.
 - 60. An Ogataea minuta strain wherein the gene of (58) or (59) has been disrupted.
 - 61. An Ogataea minuta strain according to (60), the strain being from the strain IFO 10746.
- 30 62. A process for producing a protein encoded by a heterologous gene, wherein the heterologous gene is transferred into the *Ogataea minuta* strain of (60) or (61).
 - 63. A process according to (62), wherein the heterologous gene encodes an antibody or a fragment thereof.
 - 64. A process for preventing from decomposition of an antibody or a fragment thereof, comprising disrupting a *YPS1* gene in a methylotrophic yeast.
- 35 65. A process according to (64), wherein the methylotrophic yeast is an *Ogataea minuta* strain.
 - 66. A process according to (65), wherein the Ogataea minuta strain is from the strain IFO 10746.
 - 67. A process according to any one of (64) to (66), wherein the class of the antibody is IgG.
 - 68. A process according to (67), wherein the subclass of the antibody is IgG1.
 - 69. A process according to any one of (64) to (68), wherein the antibody is a human antibody.
- 40 70. A KTR1 gene DNA encoding an amino acid sequence substantially represented by SEQ ID NO: 64.
 - 71. A KTR1 gene DNA comprising a nucleotide sequence substantially represented by SEQ ID NO:63.
 - 72. An Ogataea minuta strain wherein the gene of (70) or (71) has been disrupted.
 - 73. An Ogataea minuta strain according to (72), the strain being from the strain IFO 10746.
 - 74. An MNN9 gene DNA encoding an amino acid sequence substantially represented by SEQ ID NO:70.
- 45 75. An MNN9 gene DNA comprising a nucleotide sequence substantially represented by SEQ ID NO:69.
 - 76. An Ogataea minuta strain wherein the gene of (74) or (75) has been disrupted.
 - 77. An Ogataea minuta strain according to claim 76, the strain being from the strain IFO 10746.
 - 78. An alcohol oxidase (AOX) gene DNA encoding an amino acid sequence substantially represented by SEQ ID NO:78.
- 50 79. An AOX gene DNA comprising a nucleotide sequence substantially represented by SEQ ID NO:77.
 - 80. A DNA comprising a promoter of alcohol oxidase (*AOX*), wherein the DNA comprises a nucleotide sequence substantially represented by SEQ ID NO:79.
 - 81. A DNA comprising a terminator of alcohol oxidase (AOX), wherein the DNA comprises a nucleotide sequence substantially represented by SEQ ID NO:80.
- 82. A gene expression cassette comprising a DNA comprising a promoter as defined in (80), a heterologous gene, and a DNA comprising a terminator as defined in (81).
 - 83. A recombinant expression vector comprising a gene expression cassette of (82).
 - 84. An Ogataea minuta strain transformed with the recombinant expression vector of (83).

- 85. An Ogataea minuta strain according to (84), the strain being from the strain IFO 10746.
- 86. A glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene DNA encoding an amino acid sequence substantially represented by SEQ ID NO:6.
- 87. A glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene DNA comprising a nucleotide sequence substantially represented by SEQ ID NO:5.
- 88. A DNA comprising a promoter of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), wherein the DNA comprises an amino acid sequence substantially represented by SEQ ID NO:7.
- 89. A DNA comprising a terminator of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), wherein the DNA comprises an amino acid sequence substantially represented by SEQ ID NO:8.
- 90. A gene expression cassette comprising a DNA comprising a promoter as defined in (88), a heterologous gene, and a DNA comprising a terminator as defined in (89).
- 91. A recombinant expression vector comprising the gene expression cassette of (90).
- 92. An Ogataea minuta strain transformed with a recombinant expression vector of (91).
- 93. An Ogataea minuta strain according to claim 92, the strain being from the strain IFO 10746.
- 94. A process for producing an *Ogataea minuta* strain, which is capable of producing a mammalian type sugar chain represented by the following structural formula (Man₅GlcNAc₂):

Structural Formula 2

20 Structurar Formula

30

35

40

45

50

55

25

5

10

15

comprising a step of disrupting OCH1 gene (SEQ ID NO:42) in the Ogataea minuta strain.

- 95. A process of (94), wherein the Ogataea minuta strain is from the strain IFO 10746.
- 96. A process according to (94) or (95), which further comprises a step of disrupting at least one gene selected from the group consisting of a URA3 gene comprising the nucleotide sequence represented by SEQ ID NO:15, an *ADE1* gene comprising the nucleotide sequence represented by SEQ ID NO:27, an *HIS3* gene comprising the nucleotide sequence represented by SEQ ID NO:99, and *a LEU2* gene comprising the nucleotide sequence represented by SEQ ID NO:107.
- 97. A process according to any one of (94) to (96), which further comprises a step of disrupting at least one gene selected from the group consisting of a *PEP4* gene comprising the nucleotide sequence represented by SEQ ID NO:51, a *PRB1* gene comprising the nucleotide sequence represented by SEQ ID NO:57, and a *YPS1* gene comprising the nucleotide sequence represented by SEQ ID NO: 115.
- 98. A process according to any one of (94) to (97), which further comprises a step of disrupting a *KTR1* gene comprising the nucleotide sequence represented by SEQ ID NO:63 and/or an *MNN9* gene comprising the sequence represented by SEQ ID NO: 69.
- 99. A process according to any one of (94) to (98), which further comprises a step of introducing and expressing an α -1,2-mannosidase gene from *Aspergillus saitoi*.
- 100. A process according to (99), wherein the α -1,2-mannosidase gene is transferred into the vector of (83) and expressed.
- 101. A process according to any one of (94) to (100), which further comprises a step of introducing and expressing a *PDI* gene.
- 102. A process according to (101), wherein the PDI gene is a gene (M62815) from Saccharomyces cerevisiae.
- 103. A process according to (101) or (102), wherein the *PDI* gene is transferred into the vector of claim 83 and expressed
- 104. A process according to any one of (94) to (103), which further comprises a step of introducing and expressing a heterologous gene.
- 105. A process according to (104), wherein the heterologous gene is transferred into the vector of claim 83 and

expressed.

- 106. A process for producing a protein encoded by a heterologous gene, which comprises culturing Ogataea minuta produced by the process of (104) or (105) in a medium, to obtain the protein comprising a mammalian type sugar chain encoded by the heterologous gene from the culture.
- 107. A protein comprising a mammalian type sugar chain encoded by a heterologous gene, wherein the protein has been produced by the process of (106).
- 108. A process for producing an Ogataea minuta strain, which is capable of producing a mammalian type sugar chain represented by the following structural formula (Man₅GlcNAc₂):

Structural Formula 2

Man a 1 Man a 1, Man β 1- 4 GICNAC β 1- 4 GICNAC Man @ 1 Man @ 1

wherein the process comprises the steps of:

disrupting an OCH1 gene represented by SEQ ID NO:42 in an Ogataea minuta strain; and disrupting a URA3 gene represented by SEQ ID NO:15 in the same strain; and disrupting a PEP4 gene represented by SEQ ID NO:51 in the same strain; and disrupting a PRB1 gene represented by SEQ ID NO:57 in the same strain.

- 109. A process according to (108), wherein the Ogataea minuta strain is from the strain IFO 10746.
- 110. A process according to (108) or (109), which further comprises a step of disrupting an ADE1 gene comprising the nucleotide sequence represented by SEQ ID NO:27.
- 111. A process according to (110), which further comprises a step of disrupting a KTR1 gene comprising the nucleotide sequence represented by SEQ ID NO:63.
- 112. A process according to (111), which further comprises a step of disrupting an HIS3 gene comprising the nucleotide sequence represented by SEQ ID NO:99.
- 113. A process according to (111), which further comprises a step of disrupting a LEU2 gene comprising the nucleotide sequence represented by SEQ ID NO:107.
- 114. A process according to (111), which further comprises the step of:
 - 1) disrupting a YPS1 gene comprising the nucleotide sequence represented by SEQ ID NO:115.
- 115. A process according to any one of (108) to (114), which further comprises a step of introducing and expressing an α -1,2-mannosidase gene.
- 116. A process according to (115), wherein the α -1,2-mannosidase gene is transferred into the vector of (83) and expressed.
- 117. A process according to any one of claims 108 to 116, which further comprises a step of introducing and expressing a PDI gene (M62815).
- 118. A process according to (117), wherein the PD1 gene (M62815) is transferred into the vector of (83) and expressed.
- 119. A process according to any one of (108) to (118), which further comprises a step of introducing and expressing a heterologous gene.
- 120. A process according to claim 119, wherein the heterologous gene is transferred into the vector of (83) and
- 121. A process for producing a protein encoded by a heterologous gene comprising a mammalian type sugar

11

10

5

15

25

20

30

35

40

45

50

55

chain, wherein the process comprises culturing *Ogataea minuta* produced by the process of (119) or (120) in a medium to obtain the protein from the culture.

122. A protein encoded by a heterologous gene comprising a mammalian type sugar chain, wherein the protein has been produced by the process of (121).

[0039] This specification includes the contents disclosed by the specification and/or drawings of the Japanese Patent Application No. 2002- 127677, which is the basis of the priority claim of this application.

Brief Description of the Drawings

[0040]

5

10

15

20

25

30

35

40

45

50

55

Fig. 1 shows the biosynthesis pathway of N-linked sugar chains, which is general in mammals.

Fig. 2 shows the biosynthesis pathway of N-linked sugar chains in yeast (*S. cerevisiae*), wherein M is mannose, and α 2, α 3, α 6 and β 4 mean α -1,2 linkage, α -1,3 linkage, α -1,6 linkage and β -1,4 linkage, respectively.

Fig. 3 shows the ¹H-NMR analysis of cell wall sugar chains of various yeasts.

Fig. 4 shows the HPLC (amide column) analysis of digests which were obtained by digesting sugar chains prepared from mannoproteins of cell walls of various yeasts by *Aspergillus saitoi* α -1,2-mannosidase (product of Seikagaku Corporation).

Fig. 5 shows the restriction maps of plasmids pOMGP1, pOMGP2, pOMGP3 and pOMGP4.

Fig. 6 shows the restriction maps of plasmids pOMUR1, pOMUM1 and pDOMU1.

Fig. 7 shows the structures of the *URA3* loci of a wild strain of *Ogalaea minuta*, a strain transformed with plasmid pDOMU1 and a *URA3* gene knockout mutant, along with positions of PCR primers.

Fig. 8 shows the restriction maps of plasmids pOMAD1 and pDOMAD1. The restriction enzyme sites added artificially are underlined.

Fig. 9 shows the restriction maps of plasmids pOMUR2 and pROW1.

Fig. 10 shows the structures of the *ADE1* loci of a wild strain of *Ogataea minuta*, an *ADE1* gene knockout mutant disrupted by plasmid pDOMAD1, and a *URA3* gene deficient mutant, along with positions of PCR primers.

Fig. 11 shows the restriction maps of plasmids pOMOC1, pOMOC2B, pOMOC3H and pDOMOCH1. The restriction enzyme sites of the vector are underlined.

Fig. 12 shows the structures of the *OCH1* gene loci of a wild strain of *Ogataea minuta*, an *OCH1* gene knockout mutant disrupted by the plasmid pDOMOCH1, and a *URA3* gene deficient mutant, along with positions of PCR primers.

Fig. 13 shows the structure analysis by an amide and reverse phase columns for sugar chains of the mannan glycoproteins of *Ogataea minuta* strain TK3-A which is an *OC1* gene knockout mutant and of its parent strain *Ogataea minuta* strain TK1-3.

Fig. 14 shows the restriction maps of plasmids pOMPA1 and pDOMPA1, and the structures of the *PEP4* loci of a wild strain of *Ogataea minuta*, a *PEP4* gene knockout mutant disrupted by plasmid pDOMPA1, and a *URA3* gene deficient mutant. The restriction enzyme sites of the vector origin are underlined.

Fig. 15 shows the restriction maps of plasmids pOMPB1 and pDOMPB1, and the structures of the *PRB1* loci of a wild strain of *Ogataea minuta*, a PRB1 gene knockout mutant disrupted by plasmid pDOMPB1, and a *URA3* gene deficient mutant.

Fig. 16 the restriction maps of plasmids pOMKR1 and pDOMKR1, and the structures of the *KTR1* loci of a wild strain of *Ogataea minuta*, a *KTR1* gene knockout mutant disrupted by plasmid pDOMKR1, and a *URA3* gene deficient mutant. The restriction enzyme sites of the vector are underlined.

Fig. 17 shows the restriction maps of plasmids pOMMN9-1 and pDOMN9, and the structures of the *MNN9* loci of a wild strain of *Ogataea minuta*, an *MNN9* gene knockout mutant disrupted by the plasmid pDOMN9 and a *URA3* gene deficient mutant, along with positions of PCR primers.

Figs. 18 A and 18B show the restriction maps of plasmids pOMAX1, pOMAXPT1, pOMUR5, pOMUR6, pOMUR-X, pOMUR-XN, pOMex1U, pOMex2U, pOMex3G, pOMex4A, pOMex5H, pOMexGP1U and pOMexGP4A. The restriction enzyme sites of the vector are underlined.

Fig. 19 shows the structure analysis by amide and reverse phase columns for sugar chains of the mannan glycoprotein of *Ogataea minuta* strain TK3-A-MU1, which is an och1 Δ strain expressing an *Aspergillus saitoi*-derived α -1,2-mannosidase gene.

Fig. 20 shows the structure analysis by amide and reverse phase columns of the *Saccharomyces cerevisiae-derived* invertase produced by *Ogataea minuta* strain TK3-A-MU-IVG1, which is an *Ogataea minuta OCH1* gene knockout mutant expressing *Aspergillus saitoi*-derived α-1,2-mannosidase gene.

Fig. 21 shows the Western analysis of the antibody produced by using Ogataea minuta strain TK9-IgB-aM.

12

- Fig. 22 shows the purification of the antibody produced by using Ogataea minuta strain TK9-IgB-aM.
- Fig. 23 shows the binding activity to G-CSF of the antibody produced by using Ogataea minuta strain TK9-IgB-aM.
- Fig. 24 shows the analysis of the sugar chains of antibodies produced by using *Ogataea minuta* strain TK9-IgB and *Ogataea minuta* strain TK9-IgB-aM.
- Fig. 25 shows the restriction maps of plasmids pOMHI1, pOMHI2, pOMHI3, pOMHI4 and pDOMHI1. The restriction enzyme sites of the vector and linker are underlined.
 - Fig. 26 shows the structures of the *HIS3* loci of a wild strain of *Ogataea minuta*, an *HIS3* gene knockout mutant disrupted by plasmid pDOMHI1, and a *URA3* gene deficient mutant, along with positions of PCR primers.
 - Fig. 27 shows the construction of plasmid pOMex6HS and its restriction map. The restriction enzyme sites of the vector and linker are underlined.
 - Fig. 28 shows the restriction maps of plasmids pOMLE1, pOMLE2 and pDOMLE1. The restriction enzyme sites of the vector and linker are underlined.
 - Fig. 29 shows the structures of the *LEU2* loci of a wild strain of *Ogataea minuta*, a *LEU2* gene knockout mutant disrupted by the plasmid pDOMLE1, and a *URA3* gene deficient mutant, along with positions of PCR primers.
- Fig. 30 shows the construction of plasmid pOMex7L and its restriction map. The restriction enzyme sites of the vector and linker are underlined.
- Fig. 31 shows the restriction maps of plasmids pOMYP1, pOMYP2, pOMYP3 and pDOMYP1. The restriction enzyme sites of the vector and linker are underlined.
- Fig. 32 shows the structures of the *YPS1* loci of a wild strain of *Ogataea minuta*, a *YPS1* gene knockout mutant disrupted by plasmid pDOMLE1 and a *URA3* gene deficient mutant, along with positions of PCR primers.
- Fig. 33 shows the Western analysis of the antibody produced by using Ogataea minuta strain YK3-IgB-aM.
- Fig. 34 shows the purification of the antibody produced by using *Ogataea minuta* strain YK3-IgB-aM (Western analysis, and reducing & non-reducing condition).
- Fig. 35 shows the Western analysis of the antibody produced by using Ogataea minuta strain YK3-IgB-aM-PDI.

Abbreviation

[0041]

5

10

15

20

25

35

40

45

50

55

30 GlcNAc, GN: N- acetylglucosamine

Man, M: mannose

PA: 2- amino pyridylation

Modes for Carrying out the Invention

[0042] Hereinafter, the invention will be described in detail.

[0043] According to the invention, the process for producing a glycoprotein comprising a mammalian type sugar chain(s) comprises the following steps of:

1) breeding a methylotrophic yeast strain producing a mammalian type sugar chain, by introducing an α -1,2-mannosidase gene into a mutant strain comprising mutated sugar chain biosynthesizing enzyme genes (for example, an *OCH1* gene (α -1,6-mannosyl transferase) knockout mutant, which is considered to be a key enzyme for the elongation reaction where mannose residues attach to an M8 high mannose type sugar chain one by one via α -1,6 linkage), and expressing it under the control of a potent promoter such as methanol-inducible promoter; and 2) culturing in a medium the yeast strain bred by introducing heterologous genes into a mutant yeast which comprises mutated sugar chain biosynthesizing enzyme genes and expressing these genes, and obtaining the glycoproteins comprising a mammalian sugar chain from the culture.

1. Preparation of mammalian type sugar chain producing strains

[0044] According to the present invention, mutant strains of yeast capable of producing mammalian type sugar chains, wherein the mutant strain has a disruption in its outer chain biosynthesis gene specific to yeast and has been deprived of sugar chains specific to yeast, can be prepared in the following manner.

1-1 Preparation of Man5 type sugar chain ("high mannose type sugar chain") producing yeasts

[0045] Mutation trait necessary for the mutant yeast of the invention is a mutation of a gene(s) peculiar to yeast associated with the outer sugar chain biosynthesis system, and specifically at least a mutation of *OCH1* gene. That is,

as long as the mutant yeast has the above-mentioned mutation, it may be either a natural mutant strain or an artificial mutant strain.

[0046] The *OCH1* gene means a gene encoding α -1,6 mannosyl transferase, which catalyses the initial reaction of the outer sugar chain formation in yeast, and works to further transfer a mannose residue to the core sugar chain of N-linked sugar chain of a glycoprotein of yeast via α -1,6-linkage. This reaction functions as a trigger for attaching mannose excessively compared with the glycoproteins of animal cells ("hyper-mannosylation"), thereby forming a mannan-type sugar chain peculiar to yeast. Therefore, *OCH1* gene encodes a protein having the above-mentioned activity and function strictly, and it does not refer to a gene which simply has a homology to the gene sequence or the amino acid sequence deduced from the gene sequence.

10 [0047] However, in order to change the sugar chain of yeast into a mammalian type sugar chain, just the manipulation that disrupts this OCH1 gene is not enough.

[0048] As mentioned above, in a mammalian cell, α-mannosidase I acts on a high mannose type sugar chain to cut off several mannose residues, and finally generates a Man5 high mannose type sugar chain ("Man5GlcNAc2"). This Man5 type sugar chain serves as a prototype of mammalian type sugar chain. N-acetylglucosaminyl transferase (GnT) I acts on this sugar chain, and causes the transfer of one N-acetylglucosamine residue to generate a hybrid type sugar chain which comprises GlcNAcMan5GlcNAc2, followed by successive formation of complex type sugar chains. Therefore, to make a yeast cell to produce a mammalian type sugar chain(s), it would be necessary to create a yeast which produces a Man5 high mannose type sugar chain (i.e., Man5GlcNAc2) first.

[0049] α -1,2-mannosidase (also referred to as α -mannosidase-I) as used in the invention is not limited as long as it has the above-mentioned enzyme activity. For example, α -mannosidase-I involved in the above-mentioned sugar chain biosynthesis system in mammalian cells, α -mannosidase enzymes from other animals such as nematode, and α -1,2-mannosidase enzymes from fungi such as *Aspergillus saitoi* can be used.

20

25

30

35

40

45

50

[0050] In order to effect the invention efficiently, the expression site of α -1,2-mannosidase is important. It is said that α -1,2-mannosidase functions in the *cis* Golgi in mammalian cells. On the other hand, addition of a sugar chain peculiar to yeast in the yeast cell is performed in the *cis*, *medial* or *trans* Golgi. Therefore, it is necessary to make (α -1,2-mannosidase act prior to the modification in which a sugar chain peculiar to yeast is attached, i.e., modification in Golgi apparatus. If the expression site is in the Golgi apparatus which exists downstream in the transportation pathway of glycoprotein, then Man5 type sugar chains cannot be generated efficiently.

[0051] Therefore, to attain this purpose, endoplasmic reticulum (ER) retention signal (for example, amino acid sequence shown by His-Asp-Glu-Leu) in yeast may be attached to the C terminus of the protein of α -1,2-mannosidase thereby localizing the enzyme within ER to cause expression of the activity so that the attachment of sugar chain peculiar to yeast can be inhibited. This method was already reported by inventors (Chiba et al., J.Biol.Chem., 273, 26298-26304 (1998)).

[0052] However, when the sugar chain of a certain protein is changed into a mammalian type sugar chain in order to use this protein as a drug, it is required to remove sugar chains peculiar to yeast almost completely, and use of only the above-mentioned technique is supposed to be insufficient. In fact, although in the above-mentioned report Chiba et al. use the promoter of glyceraldehyde-3-phosphate dehydrogenase, which is known to be the strongest promoter functioning in *Saccharomyces cerevisiae*, in the expression of the glyceraldehyde-3-phosphate dehydrogenase, the results of analyzing the sugar chains of cell wall glycoproteins reveal that Man5 type sugar chains were generated in the level of only about 10%.

[0053] The system using the sugar chain mutant of *Ogataea minuta* in the invention enables formation of a Man5 type sugar chain in the amount of 20% or more, preferably 40% or more, more preferably 60% or more, most preferably 80% or more of the sugar chains of the cell wall glycoproteins which the yeast produces as in the Examples below. Also, Man5 type sugar chains are formed in the amount of 20% or more, preferably 40% or more more preferably 60% or more, most preferably 80% or more in the example of the secretion and expression of a heterologous gene. Thus the problems in *Saccharomyces cerevisiae* have been solved. The application of *Ogataea minuta* in the invention to various glycoproteins will be expected from these results.

[0054] On the other hand, Chiba et al. uses the Δoch1Δmnn1Δmnn4 strain which generates only the Man8 type sugar chain, a core sugar chain. *MNN1* gene is presumed to be a gene peculiar to *Saccharomyces cerevisiae*, and the sugar chain synthesis pathway and sugar chain synthesizing genes was isolated and analyzed, but sugar chain structure was not fully analyzed for other yeasts. For example, the existence of a sugar chain which has β- mannoside linkage is known for *Pichia pastoris* as mentioned above (Higgins (ed.), Pichia Protocols, 1998, pp. 95-105, Humana Press and Biochim.et Biophy. Acta, 1426, 227-237 (1999)). Moreover, the results of SDS-PAGE of the glycoproteins produced by the *OCH1* gene homologue knockout mutant disclosed in Japanese Patent Publication (Kokai) No. 9-3097A (1997) surely presented the data indicating that the sugar chains have been shortened into lower molecules; namely, it is presumed that they are not glycoproteins having a single sugar chain like Man8 type sugar chain. No gene involved in the synthesis of these sugar chains has been isolated, and great labors are needed for isolating and disrupting the gene.

[0055] Thus, to allow a yeast strain to produce Man5 type sugar chains, it is necessary to cause α -1,2-mannosidase to highly express, and for this purpose, a potent promoter is needed. In these circumstances, the invention was completed by using an alcohol oxidase (AOX) gene promoter (inducible by methanol) from methylotrophic yeast known as the strongest inducible expression promoter. Other inducible expression promoters usable in the invention include, but not limited to, promoters for dihydroxyacetone synthetase (DAS) gene and formate dehydrogenase (FDH) gene, and any promoter can used as long as it has an ability to express the enzyme gene in the methylotrophic yeast of the invention

5

10

20

25

30

40

45

50

55

[0056] Thus, mammalian type sugar chains can be produced without disrupting an outer sugar chain synthesis gene peculiar to yeast, by preliminarily trimming (removing) the sites on the sugar chain to which sugar chains peculiar to yeast is attached in the ER and Golgi apparatus. Accordingly, the acquisition of a gene for forming β -mannoside linkage and of an *MNN4* gene, which is for addition of mannose phosphate, becomes unnecessary.

[0057] However, OCH1 exists quite ubiquitously in yeast, and the location thereof is relatively near the reducing terminal side of the core sugar chain and so it is believed that the gene should be destroyed in order to remove its activity. [0058] Yeast strains applicable to the invention include any strain in which the sugar chain of glycoprotein mainly comprises α -1,2-mannoside linkage, and methylotrophic yeasts are not limited as long as they produce N-linked sugar chains which mainly comprise α -1,2-mannoside linkage, including as specific examples Ogataea minuta, C and C succiphila, C including C includi

[0059] Therefore, the procedures disclosed by the invention are inapplicable to yeast strains having the structure where sugar chains other than α -1,6 mannose have been attached directly to the core sugar chain by the *OCH1* gene. That is, any yeast strain which generates glycoproteins with sugar chains peculiar to yeast attached to moieties of the core sugar chain, strictly to moieties of the Man5 type sugar chain, cannot utilize in the procedures of the invention.

[0060] Furthermore, mammalization can be more efficiently attained by auxiliary disruption of a *KTR* gene homologue belonging to α -mannosyl transferase gene family (for example, *KTR1* gene of *Ogataea minuta* as found in the invention), or of an *MNN9* gene homologue (for example, *MNN9* gene of *Ogataea minuta* as found by the invention) which is believed to be involved in the attachment of sugar chains in the Golgi apparatus.

[0061] Furthermore, since sugar chain mutants have generally shorter sugar chains in glycoproteins, and as a result, the cell wall becomes weaker, so the drug susceptibility increases or the resistance to osmotic pressure decreases in the mutants. In such a case problems may occur in cell culture. On the contrary, in the procedure of the invention, which utilizes a methanol-inducible promoter and expresses α -1,2-mannosidase, mammalian type sugar chains can be produced as a by-product along with a glycoprotein encoded by a heterologous gene. Hence, the culture and production can be performed without applying a burden at the time of multiplication of the yeast cell.

[0062] The term "a gene(s) associated with the mammalian type sugar chain biosynthesis" as described above means an appropriate number of transgenes, which belong to a group of one or more of the above-mentioned genes, required to produce a sugar chain of interest. When the transgenes are plural, they may belong to a group of homo-type genes or to a group of hetero-type genes.

[0063] In order to obtain the produced sugar chains and glycoproteins in high yield, it is desirable to make the above-mentioned enzymes to express highly in a suitable organ (for example, Golgi apparatus). Therefore, it is effective to use genes compatible to the codon usage of yeast. Also, to localize the enzymes in a suitable organ, the addition of a signal sequence or the like of yeast will become effective. For the transfer of a gene, use of vectors such as chromosome integration type (Ylp type) vector may be considered. Promoters required to express the gene include, but are not limited to, constitutive expression promoters such as GAPDH and PGK, inducible expression promoters such as AOX1, etc. However, since multiplication of yeast may be affected when one or more glycosidase, glycosyltransferases, or sugar nucleotide transporter genes are expressed, it is necessary to take into consideration the use of an inducible promoter or the appropriate order of introducing genes.

[0064] The mutant yeast which produces the above-mentioned mammalian type sugar chain, or the mutant to which the above-mentioned foreign gene has been transferred, is cultured in a culture medium, thereby to produce glyco-proteins comprising the same Asn-linked sugar chain as the high-mannose type sugar chain (Man₅GlcNAc₂), the hybrid type sugar chain (GlcNAcMan₅GlcNAc₂) or the complex type sugar chain (for example, Gal₂GlcNAc₂Man₃GlcNAc₂), which the mammalian cell produces, either intracellularly or extracellularly. In this case, the content of an outer sugar chain peculiar to yeast is significantly reduced.

[0065] Specifically, the transfer of a GnT-I gene into the above-mentioned mutant enables production of a hybrid type sugar chain, and the transfer of a gene(s) associated with the mammalian type sugar chain biosynthesis system (α -mannosidase II, GnT-II, GalT, UDP-GlcNAc Transporter, and /or UDP-Gal Transporter genes) enables production of a double-stranded complex type sugar chain (Gal₂GlcNAc₂Man₂GlcNAc₂).

2. Different genes from Ogataea minuta usable in the invention

[0066] The proteins usable in the invention are not particularly limited as long as they have respective activities, and specifically they are proteins comprising an amino acid sequence substantially represented by the SEQ ID NO described in the Examples below. As used herein, the term "an amino acid sequence substantially represented by SEQ ID NO:X" means that the amino acid sequence includes:

- (a) the amino acid sequence represented by SEQ ID NO:X; or
- (b) an amino acid sequence which comprises a deletion(s), a substitution(s) or an addition(s) of one or several amino acids in the amino acid sequence represented by SEQ ID NO:X.

That is, the above amino acid sequence may be partially modified (for example, substitution, deletion, insertion or addition of an amino acid residue(s) or a peptide chain(s), etc.). Herein, the term "several" in relation to the number of deleted, substituted or added amino acids means any number in the range capable of being introduced by the methods usually used in art, preferably 2 to 10, more preferably 2 to 5, and most preferably 2 to 3.

[0067] DNAs comprising a nucleotide sequence, which encodes the protein usable in the invention, are characterized by comprising the nucleotide sequences encoding the above-mentioned proteins from *Ogataea minuta* as defined in the invention. Such nucleotide sequences are not particularly limited as long as they are the nucleotide sequences encoding the proteins of the invention, and their examples are the nucleotide sequences which encode amino acid sequences substantially represented by the SEQ ID NOs described in the Examples below. As used herein, the term "a nucleotide sequence substantially represented by SEQ ID NO:X" means that the nucleotide sequence includes:

- (a) the nucleotide sequence represented by SEQ ID NO:X; or
- (b) a nucleotide sequence comprising a deletion, a substitution or an addition of one or several nucleotides in the nucleotide sequence represented by SEQ ID NO:X.

[0068] This DNA may be conventionally produced by the known procedures. For example, all or part of the DNA may be synthesized by using a DNA synthesizer based on the nucleotide sequence illustrated in the invention, or may be prepared by PCR amplification using chromosome DNA. Here, the term "several" in relation to the number of deleted, substituted or added nucleotides means any number in the range capable of being introduced by the methods usually used in art, for example, site-directed mutagenesis (e.g., Molecular Cloning, A Laboratory Manual, second edition, ed. by Sambrook et al., Cold Spring Harbor Laboratory Press, 1989; CurrentProtocols in Molecular Biology, John Wiley & Sons (1987-1997)), for example, 2 to 10, preferably 2 to 5, and more preferably 2 to 3.

Obtaining genes

5

10

15

20

25

30

35

40

45

50

[0069] Isolation of a target gene fragment can be performed by extracting genomic DNA from a yeast strain, and selecting the target gene, by using general procedures (Molecular Cloning (1989), Methods in Enzymology 194 (1991)). In the above, the genomic DNA from *Ogataea minuta* can be extracted, for example, by the methods of Cryer et al. (Methods in Cell Biology, 12, 39-44 (1975)) and of P. Philippsen et al. (Methods Enzymol., 194, 169-182 (1991)).

[0070] For example, the protoplast prepared from yeast can be subjected to a conventional DNA extraction method, an alcohol precipitation method after removing cell debris under high salt concentration, an alcohol precipitation method after extracting with phenol and/or chloroform, etc. Besides the above method utilizing the preparation of protoplast, DNA may be extracted by break of cells with glass beads. The protoplast method is preferable because preparation of high molecular weight DNA is easy.

[0071] A target gene can be obtained, for example, by the PCR method (PCR Technology, Henry A. Erlich, Atockton press (1989)). The PCR is a technique which enables *in vitro* amplification of a specific DNA fragment to hundreds of thousands fold or more in about 2 to 3 hours, using a combination of sense/antisense primers annealed at each end of the target region, a heat-resistant DNA polymerase, and a DNA amplification system. In the amplification of a target gene, 25-30mer synthetic single-stranded DNAs and genomic DNA can be used as primers and as a template, respectively. The amplified gene may be identified in terms of its nucleotide sequence before use.

[0072] The DNA sequence of a gene can be determined by usual methods such as, for example, dideoxy method (Sanger et al., Proc. Natl. Acad. Sci., USA, 74, 5463-5467 (1977)). Alternatively, the nucleotide sequence of DNA can easily be determined by use of commercially available sequencing kits or the like.

[0073] The isolation, purification, etc. of the DNA can also be carried out by ordinary methods, and in the case of *E. coli* for example, the DNA may be extracted by the alkali/SDS method and ethanol precipitation, and the DNA subsequently purified by RNase treatment, PEG precipitation or the like.

[0074] A target gene can also be obtained by: (a) extracting the total DNA of the above-mentioned yeast, transferring

a gene transfer vector, which comprises a DNA fragment derived from said DNA, into a host, thereby to prepare a gene library of the yeast, and (b) subsequently selecting the desired clone from the gene library, followed by amplifying the clone.

[0075] The gene library can be prepared as a genomic library by partially digesting the chromosomal DNA obtained by the above-mentioned method with appropriate restriction enzymes (such as Sau3Al) to obtain fragments thereof, ligating the fragments with an appropriate vector, and transforming an appropriate host with the vector. Alternatively, it is also possible by amplifying a fragment of the target gene by PCR first, screening for restriction sites by the genomic Southern analysis so that the target gene can be obtained efficiently, and digesting the chromosomal DNA by this restriction enzyme to obtain the desired fragment. Vectors usable for this purpose include commercially available plasmids such as pBR system, pUC system, Bluescript system, etc., usually known as the known vectors for preparing a gene library. Phage vectors of Charon system or EMBL system etc. or cosmids can be also used widely. The host to be transformed or transduced with the prepared vector for preparation of gene library can be selected depending on the type of the above-mentioned vectors.

[0076] Clones can be selected and obtained from the above-mentioned gene library using a labeled probe which comprises a sequence peculiar to a target gene, by means of colony hybridization, plaque hybridization or the like. A sequence peculiar to target gene used as a probe can be obtained by synthesizing a corresponding oligonucleotide of the gene which encodes the amino acid sequence of a target protein purified from *Ogataea minuta*, specifically amplifying the desired DNA fragment by PCR using the chromosomal DNA of *Ogataea minuta* as a template, to obtain it. The peculiar sequence may also be obtained by searching for a gene which encodes a protein homolog from different species in DNA databases such as GenBank or protein databases such as SWISS-PROT, to obtain the sequence information, synthesizing an oligonucleotide corresponding to the conserved amino acid sequence analyzed with an analyzing software such as homology search programs such as BLAST, GENETYX (Software Development), and DNAsis (Hitachi Software), and specifically amplifying the desired DNA fragment by PCR using the chromosomal DNA of *Ogataea minuta* as a template. The synthesized oligonucleotide may be used as a probe. Once the nucleotide sequence is determined, the desired gene can be obtained by chemical synthesis or PCR using primers synthesized based on the determined nucleotide sequence, or by hybridization using as a probe the DNA fragment comprising the above-mentioned nucleotide sequence.

4. Gene disruption

10

20

25

30

35

40

45

50

55

[0077] In the invention, a target gene is basically disrupted in accordance with the method disclosed by Rothstein, in Methods Enzymol., 101, 202-211 (1983). Specifically, a target gene DNA obtained by the above-described method is first cut or partially deleted, an appropriate selectable marker gene DNA is inserted at the cut or deleted site, thereby to prepare a DNA structure in which the selectable marker has been sandwiched between upstream and downstream regions of the target gene. Subsequently, this structure is transferred to a yeast cell. The above manipulation results in two recombinations at homologous moieties between each end of the transferred fragment (i.e., the DNA structure with a selectable marker sandwiched) and a target gene on chromosome, thereby substituting the target gene on chromosome with the transferred fragment. Auxotrophic markers and drug resistant markers, as shown below, may be used as the selectable marker for gene disruption. In this case, one selectable marker will generally be required for disrupting one gene. When *URA3* gene is used, ura3 trait can be efficiently reproduced and so it is often used for this purpose.

[0078] Specific explanation is provided using an example of the preparation of an *OCH1* gene knockout strain. A plasmid carrying *URA3* gene, which comprises a repeated structure before and after structural gene, is constructed, and the gene cassette cleaved out with a restriction enzyme is inserted at a target gene on the plasmid, thereby to construct a disrupted allele. Gene-knockout strain can be obtained by substituting with a target gene on the chromosome using this plasmid. As the *URA3* gene inserted into the chromosome is sandwiched by the repeated structures, it is dropped out of the chromosome due to homologous recombination between the repeated structures. The selection of this *URA3* deficient strain can be carried out by use of 5-fluoroorotic acid (5-FOA). A *ura3* mutant is resistant to 5-FOA (Boeke et al., Mol. Gen. Genet., 197, 345-346 (1984); Boeke et al., Methods Enzymol.,154, 165-174 (1987)), and a cell strain having URA3+ phenotype can no longer grow in the 5-FOA medium. Thus, separating a strain with resistant trait in a medium to which 5-FOA is supplemented, enables manipulations using a *URA3* gene marker again. Therefore, the mutated auxotrophic trait of the original yeast strain is not damaged by gene destruction in the "artificial knockout mutant" which has undergone the gene disruption artificially by this technique.

[0079] In addition, in the "natural mutant" where the gene disruption occurs naturally without using the above-mentioned procedures but spontaneously, the number of the mutated auxotrophic traits is not decreased nor increased.

5. Marker for gene transfer

5

10

20

25

30

35

40

45

50

[0080] The auxotrophic marker for transfer of a heterologous gene into the mutant yeast of the invention is defined by yeast strains to be used, and is specifically selected from *ura3*, *his3*, *leu2*, *ade1* and *trp1* mutations. Although the number of auxotrophic markers depends on the number of transfer genes, generally one auxotrophic marker is required for transfer of one gene. When plural of genes are transferred, a larger number of auxotrophic markers become necessary as the number of transfer genes increases more and more, since the transfer gene fragment is longer, and transfer efficiency decreases, and as a result, expression efficiency also decreases.

[0081] In the invention, the gene which complements the auxotrophy is a gene associated with the *in vivo* synthetic system of biological components such as amino acids and nucleic acids. The complementing gene is an original functional gene itself, since the mutated traits include such a mutation that the gene fails to function. Therefore, the gene from the original yeast strain is desirable.

[0082] Usable selectable markers other than the above-mentioned auxotrophic markers include drug resistance markers, which impart resistance to drugs such as G418, cerulenin, aureobasidin, zeocin, canavanine, cycloheximide, hygromycin and blastcidin, and may be used to transfer and disrupt a gene. Also, it is possible to perform the transfer and disruption of a gene by using, as a marker, the gene which imparts a solvent resistance like ethanol resistance, an osmotic pressure resistance like resistance to salt or glycerol, and a metal ion resistance like resistance to copper, etc.

6. Method for transfer of DNA into cell and transformation with same

[0083] Methods for transferring a DNA into a cell for its transformation with the DNA in the above procedures include general methods, for example, a method of incorporating a plasmid into a cell after the cell is treated with lithium salt so that the DNA is prone to be naturally transferred into the cell (Ito et al., Agric. Biol. Chem., 48, 341 (1984)), or a method of electrically transferring a DNA into a cell, a protoplast method (Creggh et al., Mol. Cell. Biol., 5, 3376 (1985)), and the like (Becker and Guarente, Methods Enzymol., 194, 182 -187 (1991)). The expression vector of the invention can be incorporated into the host chromosome DNA, and can exist stably.

7. Expression of heterologous gene

[0084] The term "heterologous gene" as used herein is a gene of interest to be expressed, and means any gene different from the gene for *Ogataea minuta*-derived alcohol oxidase or glyceraldehyde-3-phosphate dehydrogenase. Examples of heterologous genes include:

enzyme genes such as acidic phosphatase gene, α -amylase gene and α -galactosidase gene; interferon genes such as interferon α gene and interferon γ gene; interleukin (IL) genes such as IL1 and IL2; cytokine genes such as erythropoietin (EPO) gene and granulocyte colony stimulating factor (G-CSF) gene; growth factor genes; and antibody genes. These genes may be obtained by any procedures.

[0085] To utilize the invention efficiently, a gene encoding a glycoprotein produced by a mammal cell, particularly human cell, can be used. That is, since the object of the invention is to produce a glycoprotein which has the same or similar sugar chain structure as that of mammals particularly human, the invention is effectively applied to the glycoprotein which has a sugar chain structure on the protein molecule, and additionally to useful physiologically active proteins including antibodies. An antibody has been used as a medicament for many years. The antibody, however, was from an origin other than a human and so it causes the production of an antibody against the administered antibody itself. Accordingly, multiple administrations cannot be conducted, so its use is limited. In recent years, humanized antibody in which the amino acid sequence except the antigen-binding site is replaced by a sequence of human antibody, has been prepared. Furthermore, a mouse producing human antibody into which human antibody gene has been transferred has been created. Complete human antibody is now available and the use of an antibody as drug has prevailed quickly. These antibodies can be produced by hybridomas or by cultured cells such as CHO cell, which comprise a transfer gene encoding an antibody, however there are many problems in respect of productivity, safety, etc. Under such a circumstance, production of antibodies using yeast is expected, because the above problems may be overcome by the use of yeast. In this case, as the antibody molecule is a glycoprotein to which N-type sugar chains are attached at two or more sites in each heavy chain, and when the antibody is produced with yeast, sugar chains peculiar to yeast are attached thereto. These sugar chains have antigenicity by themselves as mentioned above, and/ or an action to decrease physiological activity. Hence, when the antibody produced with yeast is used as a medicament, the conversion of the sugar chain to a mammalian type is unavoidable.

[0086] In the meantime, the method for preparing antibodies with high ADCC activity has been reported, which meth-

od comprises removal of α -1,6-fucose attached to GlcNAc on the side of the reduced terminus of a sugar chain (PCT/JP00/02260). Although α -1,6-fucosyl transferase gene (FUT8) is known as a gene involved in addition of α -1,6-fucose, this gene is present ubiquitously in animal cells, and unless the cells deficient in this enzyme activity or the cells in which this gene is artificially disrupted are used, part of the prepared antibody is inevitably attached with α -1,6-fucose. [0087] On the contrary, since the yeast generally has no synthetic systems of fucose and α -1,6-fucosyl transferase gene (FUT8), glycoproteins free from α -1,6-fucose can be produced without artificial gene disruption. So, highly active antibodies could be naturally produced.

[0088] While there is a report on high production of antibody fragments such as Fab and ScFv in yeast, there is almost no report on high production of a full-length antibody. Since antibody fragments such as Fab and ScFv do not comprise the Fc domain which exists in the heavy chain of an antibody, they have neither antibody-dependent cellular cytotoxicity (ADCC) nor complement-dependent cytotoxicity (CDC), which is a physiological activity peculiar to an antibody, and their use as drug is restricted. The antibody has 14 disulfide (S-S) linkages in total, and it is presumed that the reason why full-length antibody cannot be highly produce within a yeast cell is due to that the antibody molecule cannot appropriately fold. Although this cause is not clear, it cannot be denied that the phenomenon may possibly be caused by difference in the structure of N-type sugar chain attached to the antibody heavy chain. So, use of the yeast of the invention producing mammalian sugar chains may enable the efficient production of an antibody molecule having suitable conformation. Probably, functional antibody may also be highly produced by introducing Protein Disulfide Isomerase (PDI), a molecule chaperon. In addition, according to the invention, it is possible to produce either an intact antibody molecule or other antibody fragments as mentioned above, or other antibody fragments as long as it has a desired function. The antibody is not particularly limited, but preferred antibody includes a humanized antibody in which an antibody-binding site of another mammalian antibody is introduced into a mammalian, particularly preferably human type framework, or a human antibody. Although not limited particularly, the antibody to be expressed is preferably in the class of IgG and more preferably in the subclass of IgG1.

[0089] When a heterologous protein is produced by the gene recombinant technology, it is sometimes degraded by a protease in the host. In such a case, the production of the protein of interest decreases, heterogeneous proteins generate, and the purification of the protein becomes difficult due to the contamination of proteolysis products.

[0090] In order to circumvent these problems, such a culture method that the activity of a protease degrading the desired protein is inhibited has been studied, for example, a method of adjusting the pH of a medium for culturing a recombinant cell to inhibit a protease activity. However, this method will affect the growth of host yeast which expresses a certain type of heterologous protein, and is effective only for the degradation of the protein outside the cell.

[0091] There is an example which increased the production of cell proteins present inside and outside the cell by using a protease deficient strain in which proteinase A and proteinase B have been inactivated in *Saccharomyces cerevisiae, Pichia pastoris*, or *Candida boidinii* (Japanese Patent Publication (Kohyo) No.6-506117A (1994), Weis, H. M. et al., FEBS Lett., 377, 451 (1995), Inoue, K. et al., Plant Cell Physiol., 38 (3), 366 (1997), and Japanese Patent Publication (Kokai) No.2000-78978).

[0092] Proteinase A and proteinase B are proteases located in the vacuole and are encoded by *PEP4* gene and *PRB1* gene, respectively. According to researches on yeast *Saccharomyces cerevisiae*, proteinase A and proteinase B activate themselves and other proteases such as carboxypeptidase Y (vandenHazel, H.B. et al., YEAST, 12, 1 (1996)).

[0093] In the meantime, Yapsin is a protease which exists widely in the Golgi apparatus and cell membrane, and according to researches on *Saccharomyces cerevisiae*, it was isolated as a homologue of the protein encoded by *KEX2* gene known as a processing enzyme of α-factor. To date, genes of Yapsin1 (Aspartic proteinase 3, YAP3), Yapsin2 (Aspartic proteinase MKC7), Yapsin3, Yapsin6, Yapsin7, etc. are known (Egel-Mitani, M. et al., Yeast 6 (2), 127-137 (1990); Komano, H. et al., Proc. Natl. Acad. Sci. U.S.A. 92(23), 10752-10756 (1995); and Saccharomyces Genome Database (SGD)). Of them, Yapsin1 is encoded by YPS1 gene.

[0094] An example in which the production of cell proteins present inside and outside the cell was increased by using a protease deficient *Saccharomyces cerevisiae* strain in which Yapsin1 has been inactivated is known (M. Egel-Mitani et al., Enzyme and Microbial Technology, 26, 671 (2000); Bourbonniais, Y. et al., Protein Expr. Purif., 20, 485 (2000)). [0095] *Ogataea minuta* strains of the invention deficient in *PEP4* gene, *PEP4PRB1* gene or *PEP4PRB1YPS1* gene, whose protease activities have been reduced, maintain an ability to grow themselves equivalent to the wild strain under culture conditions of using a nutrition medium, and are thus very good hosts for the production of heterologous proteins. Therefore, the above-mentioned yeasts can efficiently produce heterologous proteins, such as an antibody highly susceptible to protease, due to suppressing the degradation of the yeasts.

8. Construction of expression cassette for heterologous gene

10

20

25

30

35

40

45

50

55

[0096] The expression system useful for production of proteins can be prepared by various methods. A protein expression vector comprises at least a promoter area, a DNA encoding the protein, and the transcription terminator area

in the direction of the reading frame of transcription. These DNAs are arranged as related operably to each other so that the DNA encoding the desired glycoprotein may be transcribed to RNA.

[0097] The high expression promoter which can be used in the invention is preferably a methanol-inducible expression promoter, and includes, for example, alcohol oxidase (AOX) gene promoter of Ogataea minuta, dihydroxyacetone synthase (DAS) gene promoter of Ogataea minuta, formate dehydrogenase (FDH) gene promoter of Ogataea minuta, etc.

[0098] The constitutive expression promoter includes glyceraldehyde-3-phosphate dehydrogenase (*GAPDH*) gene promoter of *Ogataea minuta*, phosphoglycerokinase (*PGK*) gene promoter of *Ogataea minuta*, etc.

[0099] The transcription terminator may be the sequence that has an activity to cause the termination of the transcription directed by the promoter, and may be identical to or different from the promoter gene.

[0100] According to one aspect of the invention, we (1) obtained the nucleotide sequences of an *Ogataea minuta* alcohol oxidase (*AOX*) gene as a methanol-inducible expression cassette and a glyceraldehyde-3-phosphate dehydrogenase (*GAPDH*) gene as a constitutive expression cassette, along with their promoters and terminators, (2) isolated the promoters and terminators, (3) constructed expression vectors, and (4) used the expression vectors of the invention to prepare transformed cells, and confirmed that when expressed in the transformed cells, heterologous genes are expressed in the same manner as the genes from *Ogataea minuta*. The expression cassette of a heterologous gene using the promoter and terminator for the alcohol oxidase (*AOX*) gene will be described below as an example.

8-1 Cloning of alcohol oxidase (AOX) gene

5

10

20

25

30

40

45

50

55

[0101] In order to obtain the expression cassette of the invention, alcohol oxidase (*AOX*) gene was cloned at first. As the starting material, yeast such as *Ogataea minuta* strain IFO 10746 is exemplified. Cloning of the gene can be performed by a method as mentioned above.

8-2 Isolation of promoter and terminator areas

[0102] Promoter and terminator areas can be cut out with a restriction enzyme(s) but generally a convenient restriction site does not necessarily exist at a suitable position. Accordingly, the nucleotide sequence may be cleaved in order from restriction sites in the coding area toward the promoter area by an endonuclease, thereby to find a clone deleted until the suitable position. Recently, a primer with a restriction enzyme recognition site at the end has been used to be easily able to amplify and obtain desired promoter and terminator areas by PCR.

[0103] It is also possible to chemically synthesize those areas, or alternatively, to make semi-synthesized promoter and terminator by use of both a DNA whose partial area is chemically synthesized and which is then cloned using the partial DNA, and a restriction enzyme site(s).

[0104] The sequence comprising a promoter area or a terminator area is illustrated in SEQ ID NO:79 or in SEQ ED NO:80, respectively. They are, however, not to be limited to the specific sequences, and the nucleotide sequences thereof may be modified by deletion, insertion, substitution, addition, or the like, as long as they essentially hold transcription activity.

[0105] Modification of the nucleotide sequences can be performed by any known mutagenesis method (e.g., by the method using TAKARALA LA PCR in vitro Mutagenesis kit, TAKARA SHUZO CO., LTD., Japan), or the like. When the promoter area is deleted widely, this deletion may appropriately be conducted by PCR using a commercially available kit for deletion (e.g., Deletion kit for kilo sequences of TAKARA SHUZO CO., LTD.).

8-3 Construction of expression vector

[0106] The expression vector of the invention can be obtained by inserting AOX promoter, a heterologous structural gene, an AOX terminator, a marker gene and a homologous area into an appropriate vector. Examples of the vector used for this purpose include, but are not limited to, *E. coli* plasmid vectors such as the above-mentioned pBR system, pUC system and Bluescript system. Inserting the components of the expression vector into a vector can easily be carried out by those skilled in the art with reference to the description of Examples as described below or by conventional techniques. Those skilled in the art can determine the selectable marker gene and the homologous area easily. Examples of the marker gene include antibiotic resistance genes such as the above-mentioned G-418 and hygromycin resistant genes, and auxotrophy complementing genes such as URA3, ADE1 (phosphoribosyl-amino-imidazole succinocarboxamide synthase), HIS3 (imidazole-glycerol-phosphate dehydratase), LEU2 (3-isopropylmalate dehydrogenase) genes.

[0107] DNA encoding a secretion signal sequence which functions in a yeast cell may be added to a heterologous structural gene. Since this expression system allows production and secretion of a glycoprotein out of the host cell, the desired glycoprotein can easily be isolated and purified. The secretion signal sequence includes secretion signal

sequences of Saccharomyces cerevisiae α -mating factor (α -MF), Saccharomyces cerevisiae invertase (SUC2), human α -galactosidase, human antibody light chains, etc.

[0108] The constructed expression vector is a chromosome integration type vector, and the desired gene is incorporated by being integrated onto the chromosome. In the case of an auxotrophic marker type vector, a part of the marker gene is cleaved by a restriction enzyme(s) to form a single stranded marker gene. Then the transformation is performed and the vector is generally integrated into a part of the allele on the chromosome. In the case of a drug resistance marker, no allele exists, and so the expression promoter or terminator area is cleaved by a restriction enzyme (s) to form a single stranded promoter or terminator. Then the transformation is performed and the vector is generally integrated onto the above-mentioned part on the chromosome. Once the gene is integrated, it exists on a chromosome, and maintained stably.

8-4 Use of expression vector

10

15

20

25

30

35

40

45

50

[0109] The expression vector using the AOX promoter of the invention is effective not only for expression of α -1,2-mannosidase gene and heterologous genes of interest but also for expression of other genes. By using expression vectors to which different types of selectable markers have been attached, the vectors can be transferred sequentially into a yeast cell, and high expression of plural genes can be achieved.

[0110] For example, the yeast is not a host which originally generates a significant amount of secreted proteins, when compared with mold or the like. Thus, it is expected that the yeast bears no complete secretion mechanism. In fact, as mentioned above, the productivity of an antibody in yeast is originally low.

[0111] Therefore, in order to enhance secretion efficiency, it is effective that a molecule chaperon or the like is introduced to attain high expression.

9. Production of glycoprotein having mammalian type sugar chain

[0112] To produce glycoproteins having the above-mentioned sugar chains from a heterogeneous organism, the above-mentioned yeast mutant strain is used as a host, and a gene in which a heterologous gene (e.g., cDNA) is ligated downstream of a promoter and can be expressed in the above-mentioned yeast, is prepared. The gene is integrated into the above-mentioned yeast host by homologous recombination or inserted into a plasmid to carry out transformation of the above-mentioned host. The thus prepared transformant of the above-mentioned host is cultured by known methods. The glycoprotein, which is encoded by the heterologous gene, produced intracellularly or extracellurally is collected and purified, thereby obtaining the glycoprotein.

[0113] The above-mentioned mammalian type sugar chain producing yeast mutant strain maintains an ability to grow itself almost equivalent to the wild yeast strain, and this yeast mutant can be cultured by conventional methods as commonly used for culture of yeast. For example, the synthesized medium (containing carbon source, nitrogen source, mineral salts, amino acids, vitamins, etc.) supplemented with various culture-medium ingredients as supplied from Difco and free from amino acids as supplied by a marker required for duplication and maintenance of the plasmid can be used (Scherman, Methods Enzymol., 194, 3-57 (1991)).

[0114] The culture medium for expression of a heterologous gene by an expression vector which is controlled by a methanol-inducible promoter to produce the desired gene expression product may contain a compound which has an oxygen atom(s) or a nitrogen atom(s) and at least one C1 substituent which binds to the atom. For example, methanol can be added as the compound which has an oxygen atom, and at least one compound selected from the group consisting of methylamine, dimethylamine, trimethylamine, and an ammonium compound with N-substituted methyl (e.g., choline) can be added as the compound having a nitrogen atom(s).

[0115] The medium may contain, in addition to methanol as the carbon source, one or more nitrogen sources such as yeast extract, tryptone, meat extract, casamino acid and ammonium salt, and mineral salts such as phosphate, sodium, potassium, magnesium, calcium, iron, copper, manganese and cobalt, and if necessary, trace nutrients such as various types of vitamins and nucleotide, and appropriately carbohydrate materials for growth of yeast cells before the methanol induction. Specifically, the medium includes YPM medium (0.67% yeast nitrogen base, 1% yeast extract, 2% peptone, 0.5% methanol), BYPM medium (0.67% yeast nitrogen base, 1% yeast extract, 2% peptone, 0.5% methanol, 0.1M phosphate buffer pH 6.0), BM medium (0.67% yeast nitrogen base, 0.5% methanol, 0.1M phosphate buffer pH 6.0), etc.

[0116] The culture medium for expressing heterologous genes by an expression vector, which is controlled by a constitutive expression promoter, to produce a desired gene expression product includes culture mediums suitable for cell growth. For example, synthesized media such as natural culture media such as YPD medium (1% yeast extract, 2% peptone, 2% glucose) and SD medium (0.67% yeast nitrogen base, 2% glucose) can be used. Complementary nutrients may be supplemented in the above-mentioned media for yeast strains having an auxotrophic marker.

[0117] pH of the culture medium is suitably adjusted to 5.5 to 6.5. Culture temperature is 15-30°C, preferably around

28°C. When the protein has a complex conformation like an antibody, culturing at low temperature is desirable in order to perform folding more efficiently within the cell. Culture time is about 24-1,000 hours, and culture can be conducted by means of standing culture, shaking culture, stirring culture, batch culture or continuous culture under aeration, or the like.

[0118] Conventional methods for isolation and purification of proteins can be used for isolating and purifying the expression product of a heterologous gene from the above-mentioned culture (i.e., culture broth or cultured cells).

[0119] For example, the cells may be collected by centrifugation after the culture, suspended in an aqueous buffer,

[0119] For example, the cells may be collected by centrifugation after the culture, suspended in an aqueous buffer, and disrupted by ultrasonicator, French press, Manton-Gaulin homogenizer, Dynomill or the like, to obtain a cell-free extract. When the desired protein is produced in the culture supernatant, the culture broth itself can be used. If necessary, a protease inhibitor may be added to the medium. It is effective to use a protease deficient strain in order to suppress degradation of the expression product of a heterologous gene. Purified preparation or standard can be obtained by a conventional method for isolating and purifying proteins, from the supernatant obtained by centrifugation of the cell-free extract or supernatant. Specifically, the purification can be conducted by using: for example, removal of nucleic acids by protamine treatment; precipitation by fractionating with ammonium sulfate, alcohol, acetone added; anion exchange chromatography using resins such as DEAE Sepharose and Q Sepharose; cation exchange chromatography using resins such as DEAE Sepharose and Q Sepharose; cation exchange chromatography using resins such as Buetylsepharose and phenylsepharose; gel filtration using molecular sieves; chelate columns such as His Bind resin (Novagen); affinity chromatography using resins such as Protein A Sepharose, specific dye-adsorbed resins such as Blue Sepharose; or lectin columns such as a ConA Sepharose; reverse phase chromatography; chromatofocusing; and electrofocusing; electrophoresis using polyacrylamide gel, singly or in combination, thereby to obtain the purified preparation or standard. However, the above-mentioned culture and purification methods are specific examples and are not limited thereto.

[0120] The amino acid sequence of the purified gene product can be identified by the known amino acid analyses, such as the automated amino acid sequencing using the Edman degradation method.

Examples

5

10

15

20

25

30

35

40

45

50

55

[0121] The invention will now be described in detail with reference to specific examples. These are for illustrative purposes only, and are not intended to be limiting in any way the scope of the invention. The plasmids, enzymes such as restriction enzymes, T4 DNA ligase, and other substances are all commercially available and can be used by conventional methods. Manipulations used in DNA cloning, sequencing, transformation of host cells, culture of transformed cells, harvest of enzymes from resultant cultures, purification, etc. are also well known to those skilled in the art or can be known from the literature.

[0122] The restriction sites in restriction maps of various types of genes are shown by the following abbreviation. Ac; Accl, Ap; Apal, Bl; Ball, Bm; BamHl, Bg; Bglll, Bt;Btgl, Bw; BsiWl, Cl; Clal, Rl; EcoRl, RV; EcoRV, Tl; EcoT22l, Hc; Hincll, Hd; Hindlll, Kp; Kpnl, Nd; Ndel, Nh; Nhel, Nt; Notl, Pf; PflMl, Pm; PmaCl, Ps; Pstl, Sc; Sacl, Sl; Sall, Sm; Smal, Sp; Spel, Sh; Sphl, Su; Stul, St; Styl, Xb; Xbal, and Xh; Xhol.

Example 1

Selection of methylotrophic yeast suitable for production of mammalian type sugar chain

[0123] To obtain a mammalian type sugar chain producing yeast using methylotrophic yeast, it is necessary to clone and inactivate a sugar chain synthesizing gene peculiar to the methylotrophic yeast. The sugar chain structure differs largely with the type of the yeast, as described above. In other words, the enzyme and gene involved in the biosynthesis of sugar chain also differ depending on the type of the yeast. Accordingly, when intending to disrupt the gene involved in the biosynthesis of sugar chain to remove the sugar chain peculiar to the yeast, the first thing to do is to isolate the gene. As such isolation, however, requires a large number of steps, we decided to select a methylotrophic yeast, which requires the smallest possible number of isolation steps. The selection of strains suitable for the isolation was made using NMR data on the cell wall of yeast as an indication of selection (Figure 3) (P.A.J. Gorin et al. (eds), Advanced in Carbohydrate Chemistry and Biochemistry, Vol. 23, 367-417 (1968)). Specifically, in a primary selection, strains suitable for isolation were selected, which had an α -1,2-mannoside linkage-related signal at around 4.3 ppm as a main peak but neither a α-1,3-mannoside linkage-related signal at around 4.4 ppm nor any signals at 4.5 ppm or larger. Then a secondary selection was made by extracting N-linked sugar chains from mannoprotein on the surface of the cells from the yeast strains and analyzing the extracted sugar chains by α -1,2-mannosidase digestion and HPLC. The methylotrophic yeast for the secondary selection were Candida succiphila IFO 1911 and Ogataea minuta IFO 10746. At the same time, both of Saccharomyces cerevisiae having α-1,3-mannoside linkage at unreduced termini of sugar chains, and Candida boidinii ATCC 48180 which is a methylotrophic yeast having a peak at 4.5 ppm or larger on the

above NMR data, were also analyzed as controls.

[0124] Fifty ml of YPD medium containing the above strains was put into a 500 ml Sakaguchi flask, and cultured at 30° C for 24-48 hours, and cells were harvested from the culture by centrifugation, suspended in 10 ml of 100 mM sodium citrate buffer (pH 7.0) and heated in autoclave at 121° C for 1 hour. After cooling, the suspension was centrifuged to collect the supernatant, 10 ml of water was added to the solid matter, and a mixture was heated in the same manner as above and centrifuged to collect the supernatant. The combined cell extracts were poured into 3 volumes of ethanol. The resultant white precipitate was dried, which was then dissolved in concanavalin A (ConA) column buffer (0.1 M sodium phosphate buffer containing 0.15 M sodium chloride, 0.5 mM calcium chloride (pH 7.2)), applied to a ConAagarose column (0.6 \times 2 cm, Honen Corporation), washed with ConA column buffer, and eluted with ConA column buffer containing 0.2 M α -methylmannoside. Concanavalin A is a lectin that has an affinity for sugar chains containing two or more α -D-mannose residues whose C-3, C-4 and C-6 hydroxyl groups remain unsubstituted, and the column with immobilized lectin enables the separation of mannan protein from glucan, chitin and the like, which are yeast cell wall polysaccharides (Peat et al. J. Chem. Soc., 29 (1961)). The resultant fraction was dialyzed and freeze-dried to yield mannan protein.

[0125] Then, the obtained mannan protein was treated with enzyme to cut out Asn-linked sugar chains. Specifically, the freeze-dried standard was dissolved in 100 μ l of N-glycosidase F buffer (0.1 M Tris-HCl buffer containing 0.5% SDS, 0.35% 2-mercaptoethanol (pH 8.0)) and boiled for 5 minutes. After cooling the boiled solution to room temperature, 50 μ l of 7.5% Nonidet P-40, 138 μ l of H₂O and 12 μ l of N-glycosidase F (Boehringer Ingelheim) were added and treated at 37°C for 16 hours. After desalting with a BioRad AG501-X8 column, the equal amount of phenol: chloroform (1:1) was added and vigorously shaken to remove the detergent and proteins, to yield a sugar chain preparation.

[0126] To fluorescence-label (pyridylamination; referred to as PA) the obtained sugar chains, the following were carried out. After concentrating the sugar chain preparation to dryness, 40 μ l of a coupling agent (552 mg of 2-aminopyridine dissolved in 200 μ l of acetic acid) was added, sealed, and treated at 90°C for 60 minutes. After cooling to room temperature, 140 μ l of a reducing agent (200 mg of borane-dimethylamine complex dissolved in 50 μ l of H₂O and 80 μ l of acetic acid) was added, sealed, followed by treating at 80°C for 80 minutes. After reaction, 200 μ l of aqueous ammonia was added, the equal amount of phenol: chloroform (1: 1) was added and vigorously shaken to recover the water layer that contained PA-oligosaccharides. A series of the steps was repeated 7 times to remove unreacted 2-aminopyridine. The supernatant was filtered through a 0.22 μ m filter to yield a PA-oligosaccharide preparation.

[0127] The obtained sugar chains were cleaved with *Aspergillus saitoi* α-1,2-mannosidase (SEIKAGAKU CORPO-RATION, Japan) and then analyzed by HPLC. HPLC using an amide column enables PA-oligosaccharides to be separated depending on the chain length. The HPLC conditions were as follows.

Column: TSK-Gel Amido-80 (4.6 × 250 mm, TOSOH CORPORATION, Japan)

Column temperature: 40°C

Flow rate: 1 ml

10

20

25

30

35

40

45

50

55

Elution conditions: A: 200 mM triethylamine acetate pH 7.0 + 65% acetonitrile

B: 200 mM triethylamine acetate pH 7.0 \pm 30% acetonitrile Linear gradient of 0 minute A = 100% and 50 minutes A = 0%

Excitation wavelength: 320 nm Fluorescence wavelength: 400 nm

[0128] The results are shown in Figure 4. The results revealed that N-linked sugar chains derived from *Ogataea* minuta and *Candida Succiphila* were degraded to small molecules of Man5 or Man6 by α -1,2-mannosidase treatment, and thus suggested that sugar chain mutants (Man5 producing strains) corresponding to *och1*, *mnn1* and *mnn4* in *Saccharomyces cerevisiae* could be prepared by inactivation of *OCH1* gene and expression of α -1,2-mannosidase. On the other hand, for *Candida boidinii*, sugar chains remained undegraded at a considerably high rate. This is possibly due to the linkage of a unit other than α -1,2-mannosidic linkage at the terminus of the sugar chains. Similarly, for *Saccharomyces cerevisiae* as the control, there existed sugar chains undegraded, because possible addition of α -1,3-mannose resulting from the action *of MNN1* gene.

Example 2

Cloning of glyceraldehyde-3-phosphate dehydrogenase (GAP) gene of Ogataea minuta

[0129] The GAP gene was obtained from Ogataea minuta IFO 10746 and its nucleotide sequence was determined.

(2-1) Preparation of Probe

[0130] Oligonucleotides comprising nucleotide sequences corresponding to the following amino acid sequences conserved in glyceraldehyde-3-phosphate dehydrogenases from *Saccharomyces cerevisiae* (GenBank accession number; P00359) and from *Pichia pastoris* (GenBank accession number; Q92263):

AYMFKYDSTHG (SEQ ID NO:1);

and

5

10

15

20

25

30

40

45

55

DGPSHKDWRGG (SEQ ID NO:2)

were synthesized as follows.

PGP5; 5'-GCNTAYATGTTYAARTAYGAYWSNACNCAYGG-3' (SEQ ID NO:3)

PGP3: 5'-CCNCCNCKCCARTCYTTRTGNSWNGGNCCRTC-3' (SEQ ID NO:4)

[0131] The primer PGP5 has a sequence complementary to the nucleotide sequence corresponding to the amino acid sequence AYMFKYDSTHG, and the primer PGP3 has a sequence complementary to the nucleotide sequence corresponding to the amino acid sequence DGPSHKDWRGG.

[0132] Chromosomal DNA was prepared from the cells of *Ogataea minuta* IFO 10746, which were cultured until stationary phase in YPD medium (comprising 1% yeast extract, 2% peptone, 2% glucose, pH 6.0), by means of potassium acetate method (Methods in yeast genetics (1986), Cold Spring Harbor Laboratory, Cols Spring Harbor, New York)

[0133] PCR by Ex Taq polymerase (TAKARA SHUZO CO., LTD., Japan) ((94°C for 30 seconds, 50°C for 1 minute and 72°C for 45 seconds) × 25 cycles) was carried out using the obtained chromosomal DNA of *Ogataea minuta* IFO 10746, as a template, and primers PGP5, PGP3. An amplified DNA fragment of approximately 0.5 kb was recovered and cloned using TOPO TA Cloning Kit (Invitrogen). Plasmid DNA was isolated from the obtained clones and sequenced using BigDye Terminator Cycle Sequencing FS Ready Reaction Kit (Applied Biosystems). For a DNA insert of the plasmid, a clone was selected, which had a nucleotide sequence encoding an amino acid sequence having a high homology with the amino acid sequences for GAP genes from *Saccharomyces cerevisiae* and *Pichia pastoris*. The 0.5-kb DNA insert was recovered after EcoRI digestion of the plasmid and agarose gel electrophoresis.

(2-2) Construction of library and screening

[0134] The chromosomal DNA of *Ogataea minuta* IFO 10746 was cleaved with different restriction enzymes and subjected to 0.8% agarose gel electrophoresis. The separated DNA was transferred to Hybond N+ nylon membrane (Amersham). The DNA fragment obtained in Example (2-1) was radiolabeled using Megaprimar DNA Labeling System (Amersham) and subjected to Southern analysis. The hybridization was carried out by conventional procedure (Molecular cloning 2nd edn., ed. Sambrook, J., et al., Cold Spring Harbor Laboratory U.S.A., 1989). The results suggested that there existed a GAP gene in the HindIII-EcoRV fragment of approximately 6 kb. Then, to clone the DNA fragment, a library was constructed. The chromosomal DNA of *Ogataea minuta* was cleaved with HindIII and EcoRV and subsequently electrophoresed on agarose gel, and the approximately 6-kb DNA fragment was recovered from the gel. The recovered DNA fragment was ligated with HindIII- and HincII-cleaved pUC118 and then transformed into *Escherichia coli* DH5 α strain by the Hanahan method (Gene, *10*, 63 (1980)) to obtain a library.

[0135] Approximately 4,000 clones were screened by colony hybridization using the above described DNA fragment as a probe. A clone bearing plasmid pOMGP1 was selected from the 11 positive clones obtained.

(2-3) Sequencing of nucleotide sequence

[0136] The nucleotide sequence of the HindIII-BamHI region of the plasmid pOMGP (Fig. 5) was determined by deletion mutant and primer walking method using Double-Stranded Nested Deletion Kit (Pharmacia). The nucleotide sequence represented by SEQ ID NO:5 was determined by aligning the obtained nucleotide sequences.

[0137] In the nucleotide sequence of SEQ ID NO:5 there existed an open reading frame of 1,011 bp, starting at position 1,492 and ends at position 2,502. The homology studies between the amino acid sequence (SEQ ID NO:6) deduced from the open reading frame and the glyceraldehyde-3-phosphate dehydrogenase from *Saccharomyces cerevisiae* or *Pichia pastoris* showed that 77% or 81% of amino acids were respectively identical between them.

Example 3

5

10

25

30

45

50

Construction of expression cassette using GAP gene promoter and terminator

[0138] An expression cassette for transferring foreign genes was constructed between the GAP gene promoter (SEQ ID NO:7) and terminator (SEQ ID NO: 8) of Ogataea minuta. A 3.2-kb HindIII-BamHI fragment was isolated from pOMGP1 described in Example 2-2 and inserted into the HindIII-BamHI of pBluscript II SK-. The obtained plasmid was named pOMGP2 (Fig. 5). A 3-kb HindIII-KpnI fragment was isolated from the pOMGP2 and the EcoRI site was inserted into the HindIII-KpnI of blunt-ended pUC19. The resultant plasmid was named pOMGP3 (Fig. 5). To transfer Sall and EcoT22I sites between the GAP gene promoter and terminator, the primers:

and

5'-TTTTTACTAGTACGGTACCGCTCGAATCGACACAGGAG-3' (SEO ID NO:10)

were synthesized. These primers were used to carry out PCR using the pOMGP2 as a template ((94°C for 30 seconds, 55°C for 1 minute and 72°C for 45 seconds) × 20 cycles)). An amplified DNA fragment of approximately 0.6 kb was recovered and cloned using TOPO TA Cloning Kit. An inserted DNA fragment of 0.6 kb was isolated as an EcoRI-KpnI fragment and inserted into the EcoRI-KpnI of the pOMGP3. The obtained plasmid was named pOMGP4. (Figure 5). The pOMGP4 comprises an expression cassette controlled by *GAP* gene promoter and terminator, which cassette allows foreign genes to transfer into SaII-EcoT22I.

Example 4

Construction of G418 resistant gene expression cassette

[0139] To perform the transformation comprising selection of an antibiotic G418 resistant gene, a plasmid was constructed which comprised an expression cassette of a G418 resistant gene (aminoglycoside phosphotransferase gene). A 1.1-kb G418 resistant gene isolated, as a Xhol-Pstl fragment, from plasmid pUC4K (Amersham Pharmacia) was inserted into the Sall-EcoT22l of the pOMGP4 constructed in Example 3. The resultant plasmid was named pOMKmR1.

Example 5

Cloning of orotidin-5-phosphate decarboxylase (URA3) gene of Ogataea minuta

55 [0140] The URA3 gene was obtained from Ogataea minuta IFO 10746, and its nucleotide sequence was determined.

(5-1) Preparation of Probe

[0141] Oligonucleotides having the nucleotide sequences corresponding to the amino acid sequences conserved in orotidin-5'-phosphate decarboxylases from *Saccharomyces cerevisiae* (GenBank accession number; K02207) and *Pichia pastoris* (GenBank accession number; AF321098):

GPYICLVKTHID (SEQ ID NO:11);

10 and

5

15

20

25

30

35

45

GRGLFGKGRDP (SEQ ID NO:12)

were synthesized as follows.

PUR5; 5'-GGNCCNTAYATHTGYYTNGTNAARACNCAYATHGA-3' (SEQ ID NO:13)

PUR3; 5'-GGRTCNCKNCCYTTNCCRAANARNCCNCKNCC-3' (SEQ ID NO:14)

[0142] The primer PUR5 has a sequence complementary to the nucleotide sequence corresponding to the amino acid sequence GPYICLVKTHID, and the primer PUR3 has a sequence complementary to the nucleotide sequence corresponding to the amino acid sequence GRGLFGKGRDP

[0143] PCR by primers PURS and PUR3 was performed using the chromosomal DNA of *Ogataea minuta* IFO 10746 as a template ((94°C for 30 seconds, 50°C for 1 minute and 72°C for 30 seconds) × 25 cycles). The amplified DNA fragment of approximately 0.6 kb was recovered and cloned using TOPO TA Cloning Kit. Plasmid DNA was isolated from the obtained clone and sequenced. For a DNA insert of the plasmid, a clone was selected which had a nucleotide sequence encoding an amino acid sequence highly homologous to the amino acid sequences of orotidin-5'-phosphate decarboxylases from *Saccharomyces cerevisiae* and *Pichia pastoris*. The 0.6-kb DNA insert was recovered after EcoRl cleavage of the plasmid and agarose gel electrophoresis.

(5-2) Preparation of library and screening

[0144] The chromosomal DNA of *Ogataea minuta* IFO 10746 was cleaved with different restriction enzymes, and subjected to Southern analysis using the DNA fragment obtained in (5-1) as a probe by the method described in Example (2-2). The results suggested that there was present *URA3* gene in the HindIII fragment of approximately 4.5 kb. Then, to clone the DNA fragment, a library was constructed. The chromosomal DNA of *Ogataea minuta* was cleaved with HindIII and electrophoresed on agarose gel, and then the approximately 4.5-kb DNA fragment was recovered from the gel. The resultant DNA fragment was ligated with HindIII-cleaved pUC18 and then transformed into *Escherichia coli* DH5 α strain to obtain a library.

[0145] Approximately 6,000 clones were screened by colony hybridization using the above described DNA fragment as a probe. A clone bearing plasmid pOMUR1 was selected from the 3 positive clones obtained.

(5-3) Sequencing of nucleotide sequence

[0146] The nucleotide sequence of the Notl-HindIII region of the plasmid pOMUR1 (Fig. 6) was determined by deletion mutant and primer walking method to obtain a nucleotide sequence represented by SEQ ID NO:15.

[0147] In the nucleotide sequence of SEQ ID NO:15, there existed an open reading frame of 798 bp, starting at position 1,732 and ends at position 2,529. The homology studies between the amino acid sequence (SEQ ID NO:16) deduced from the open reading frame and the orotidin-5'-phosphate decarboxylase from *Saccharomyces cerevisiae* or *Pichia pastoris* showed that 82% or 75% of amino acids were respectively identical between them.

55

50

Example 6

Preparation of Ogataea minuta URA3 knockout mutant

5 [0148] An Ogataea minuta URA3 knockout mutant was prepared by the "pop-in, pop-out" method (Rothstein R., Methods Enzymol., 194 (1991)).

(6-1) Preparation of URA3 gene disruption vector

[0149] A 3-kb Notl-KpnI fragment was isolated from the plasmid pOMUR1 (Fig. 6) described in Example (5-2) and inserted into the Notl-KpnI of pBluescript II SK-. After cleaving the plasmid with Notl and StyI, plasmid pOMUM1 (Fig. 6) was obtained by blunt-end treatment and self-ligation. Primers 5'-ATGGAGAAAAAACTAGTGGATATACCACC-3' (SEQ ID NO:17) and 5'-CTGAGACGAAAAAGATATCTCAATAAACCC-3' (SEQ ID NO:18) were used to carry out PCR using plasmid pHSG398 (TAKARA SHUZO CO., LTD., Japan) as a template ((94°C for 30 seconds, 55°C for 1 minute and 72°C for 45 seconds) × 20 cycles)) to amplify part of chloramphenicol resistant gene. The 0.4-kb amplified DNA fragment was cleaved with SpeI and EcoRV and inserted into the SpeI-RcoRV of the pOMUMI. The obtained plasmid was named pOMUM2.

[0150] The plasmid pOMKmRI, which contained the G418 resistant gene expression cassette controlled by the *GAP* gene promoter and terminator as prepared in Example 4, was cleaved with HindIII, blunt-ended, and ligated with a KpnI linker. The G418 resistant gene expression cassette was isolated as a 3-kb KpnI fragment from the plasmid and transferred at KpnI of the pOMUM2. The obtained plasmid was named pDOMU1 (Fig. 6).

(6-2) Transformation

20

25

30

40

45

50

55

[0151] The pDOMU1 constructed in Example (6-1) was cleaved with Sall and transformed into $Ogataea\ minuta\ IFO\ 10746$ by the electric pulse method. The transformants were precultured in YPD medium at 30°C overnight, inoculated into 100 ml of YPD medium, and cultured at 30°C for 8-16 hours until logarithmic growth phase (OD_{600} = about 1.5). The cells were harvested by centrifugation at 1400 x g for 5 minutes, washed once with 100 ml of sterilized ice-cooled water, then once with 40 ml of sterilized ice-cooled water. Then the cells were suspended in 20 ml of LC buffer (100 mM LiCl, 50 mM potassium phosphate buffer, pH 7.5) and shaken at 30°C for 45 minutes, and then 0.5 ml of 1 M DTT was added to the suspension and shaken for another 15 minutes. After washed with 80 ml of ice-cooled STM buffer (270 mM sucrose, 10 mM Tris-HCl buffer, pH 7.5, 1 mM MgCl₂), the cells were suspended in 320 μ l of STM buffer. The transformation by the electric pulse method was performed with Gene Pulser (BIO-RAD). After mixing 50 μ l of the cell suspension and 5 μ l of DNA sample, the mixture was put into a 0.2 cm disposable cuvette, and an electric pulse was applied to the mixture under appropriate conditions (voltage: 1.0 to 1.5 kv, resistance: 200-800 Ω). After application of the pulse, 1 ml of ice-cooled YDP medium containing 1 M sorbitol was added and subjected to shaking culture at 30°C for 4-6 hours. After the culture, the cell liquid was applied on a YPD selection medium containing 400-1000 μ g/ml G418, and the plate was incubated at 30°C to obtain transformant colonies.

[0152] To confirm that the *URA3* gene was disrupted, the following primers were synthesized (see Fig. 7 with regard to the position of each primer).

DU5; 5'-AGGAAGAAGAGGAGGAAGAAAC-3' (SEQ ID NO:19)

DUC5; 5'-CGATGCCATTGGGATATATCAACGGTGG-3' (SEQ ID NO:20)

DU3; 5'-CCGTGTTTGAGTTTGTGAAAAACCAGGGC-3' (SEQ ID NO:21)

DUC3: 5'-TGTGGCGTGTTACGGTGAAAACCTGGCC-3' (SEQ ID NO:22)

[0153] PCR by primers DU5 and DUC5 was performed using the chromosomal DNA isolated from the transformant as a template ((94°C for 30 seconds, 60°C for 1 minute and 72°C for 1 minute) \times 25 cycles). As shown in Fig. 7, a 1.1-kb amplified DNA fragment was detected from the strain whose *URA3* locus had the plasmid integrated there into. After culturing the selected strain in the YPD medium until stationary phase, a strain resistant to 5-fluoroorotic acid (5-FOA) was obtained in accordance with the method described in a manual for experimental procedures (Methods

Enzymol., 154, 164 (1987)). PCR by primers DU5 and DU3 ((94°C for 30 seconds, 60°C for 1 minute and 72°C for 3 minutes) \times 25 cycles), PCR by primers DU5 and DUC5 ((94°C for 30 seconds, 60°C for 1 minute and 72°C for 1 minute) \times 25 cycles), and PCR by primers DU3 and DUC3 ((94°C for 30 seconds, 60°C for 1 minute and 72°C for 1 minute) \times 25 cycles), were performed using the chromosomal DNA isolated from the 5-FOA resistant strain as a template. As shown in Fig. 7, in the strain in which G418 resistant gene was deleted and the ORF of *URA*3 gene was replaced with the chloramphenicol resistant gene region, a 2.6-kb amplified DNA fragment was detected by PCR using DU5 and DU3, a 1.1-kb amplified DNA fragment by PCR using DU5 and DUC5, and a 1.0-kb amplified DNA fragment by PCR using DU3 and DUC3, respectively. The yeast was named *Ogataea minuta* strain TK1-3 (ura3 Δ).

10 Example 7

Cloning of ADE1 (phosphoribosyl-amino-imidazole succinocarboxamide synthase) gene from Ogataea minuta

[0154] The ADE1 gene was obtained from Ogataea minuta IFO 10746 and its nucleotide sequence was determined.

(7-1) Preparation of Probe

[0155] Oligonucleotides having nucleotide sequences corresponding to the amino acid sequences conserved in the *ADE1* gene products from *Saccharomyces cerevisiae* (GenBank accession number; M61209) and *Candida maltosa* (GenBank accession number; M58322):

FVATDRISAYDVIM (SEQ ID NO:23);

25 and

15

20

35

40

45

50

55

QDSYDKQFLRDWLT (SEQ ID NO:24)

30 were synthesized as follows.

PADS5; 5'-TTYGTNGCNACNGAYMGNATHWSNGCNTAYGAYGTNATHATG-3' (SEQ ID NO:25)

PAD3; 5'-GTNARCCARTCNCKNARRAAYTGYTTRTCRTANSWRTCYTG-3' (SEQ ID NO:26)

[0156] The primer PADS has a sequence complementary to the nucleotide sequence corresponding to the amino acid sequence FVATDRISAYDVIM, and the primer PAD3 has a sequence complementary to the nucleotide sequence corresponding to the amino acid sequence QDSYDKQFLRDWLT.

[0157] PCR by primers PADS and PAD3 was performed using the chromosomal DNA of Ogataea minuta IFO 10746 as a template ((94°C for 30 seconds, 50°C for 1 minute and 72°C for 1 minute) \times 25 cycles). The amplified DNA fragment of approximately 0.7 kb was recovered and cloned using TOPO TA Cloning Kit. Plasmid DNA was isolated from the obtained clone and sequenced. For a DNA insert of the plasmid, a clone was selected which had a nucleotide sequence encoding an amino acid sequence highly homologous to the amino acid sequences of the ADE1 genes from Saccharomyces C0 cerevisiae and C2 and C3 and C4 and C5 are C6.

[0158] The 0.7-kb DNA insert was recovered after EcoRI cleavage of the plasmid and agarose gel electrophoresis.

(7-2) Preparation of library and screening

[0159] The chromosomal DNA of *Ogataea minuta* IFO 10746 was cleaved with different restriction enzymes, and subjected to Southern analysis using the DNA fragment obtained in (7-1) as a probe by the method described in Example (2-2). The results suggested that there existed *ADE1* gene in the approximately 5 kb HindIII-BamHI fragment. Then, to clone the DNA fragment, a library was prepared. The chromosomal DNA of *Ogataea minuta* was cleaved with HindIII and BamHI and electrophoresed on agarose gel, and then the approximately 5-kb DNA fragment was recovered

from the gel. The DNA fragment was ligated with HindIII- and BamHI-cleaved pBluescript II SK- and then transformed into *Escherichia coli* strain DH5 α to prepare a library.

[0160] Approximately 6,000 clones were screened by colony hybridization using the above described DNA fragment as a probe. A clone bearing plasmid pOMAD1 was selected from the 9 positive clones obtained.

(7-3) Sequencing of nucleotide sequence

[0161] The nucleotide sequence of the EcoRV-Smal region of the plasmid pOMAD1 (Fig. 8) was determined by deletion mutant and primer walking method to obtain a nucleotide sequence represented by SEQ ID NO:27.

[0162] In the nucleotide sequence of SEQ ID NO:27, there existed an open reading frame of 912 bp, starting at position 939 and ends at position 1,850. The homology studies between the amino acid sequence (SEQ ID NO:28) deduced from the open reading frame and the *ADE1* gene product from *Saccharomyces cerevisiae* or *Pichia pastoris* showed that 69% or 74% of amino acids were respectively identical between them.

15 Example 8

5

10

20

25

30

35

40

45

Preparation of Ogataea minuta ADE1 knockout mutant

[0163] The ADE1 gene was disrupted by transformation using the URA3 gene of Ogataea minuta as a marker.

(8-1) Preparation of ADE1 Disruption Vector

[0164] As shown in Fig. 8, plasmid pDOMAD1 was prepared by replacing approximately 70-bp region of the *ADE1* structural gene by the *URA3* gene. To obtain a uracil auxotrophic mutant again from *ADE1* gene knockout mutants, the *URA3* gene having repetitive structures before and after the structural gene was used as a marker. PCR by the primers:

5'-CCCGAGCTCAAAAAAAAGGTACCAATTTCAGCTCCGACGCCGGAGCCCACT ACGCCTAC-3' (SEQ ID No. 29);

and

5'-GGGAAGCTTCCCCAGTTGTACACCAATCTTGTCGACAG-3' (SEQ ID No. 30)

was performed using, as a template, the plasmid pOMUR1 having the *URA3* gene region as described in Example 5 ((94°C for 30 seconds, 50°C for 1 minute and 72°C for 45 seconds) × 20 cycles) to amplify the upstream region of the URA3 structural gene. The amplified DNA fragment of approximately 0.8 kb was recovered, cleaved with SacI and HindIII, and inserted into the SacI-HindIII of the pUC18.

[0165] The 3.3-kb SacI-KpnI fragment isolated from the pOMUR1 was inserted into the SacI-KpnI of the obtained plasmid. The resultant plasmid was cleaved with KpnI, blunt-ended, and self-ligated. The obtained plasmid was named pOMUR2 (Fig. 9). The pOMUR2 was cleaved with Styl, blunt-ended, and ligated with a BgIII linker. The obtained plasmid was named pROMU1. In the 3.3-kb DNA fragment obtained by cleaving the pROMU1 with BgIII and HindIII, there existed approximately 0.8-kb repetitive sequences before and after the *URA3* structural gene (Fig. 9).

PCR by the primers:

Dad1-5:5'-AAAAAGCGGCCGCTCCCGGTGTCCCGCAGAAATCTTTATGCGTAGTCTT
G-3' (SEQ ID NO:31);

and

55

50

Dadl-3:5'-CCCCGGATCCTTTTTTTAAGCTTGTTGTACTCCTTCCATGCACTTCCGG TGATG-3' (SEQ ID NO:32)

((94°C for 30 seconds, 50°C for 1 minute and 72°C for 1 minute) \times 20 cycles), and PCR by the primers:

Dad2-5:5'-TTTTCACCCCGTCAAGGATCCCTGAACAAGGCGAACACGACGAAAACA
TTTCCCCCGAG-3' (SEQ ID NO:33);

15 and

20

25

30

35

40

45

50

5

Dad2-3:5'-TTTTTGGGCCCACCTGGGTGAAGATTTGCCAGATCAAGTTCTCC-3' (SEQ ID NO:34)

((94°C for 30 seconds, 50°C for 1 minute and 72°C for 1 minute) \times 20 cycles) were performed using, as a template, the plasmid pOMAD1 having the *ADE1* gene region as described in Example 7. The amplified DNA fragments of approximately 0.7 kb and 1 kb were recovered and cleaved with Notll and BamHI and with BamHI and ApaI, respectively. Both of the Notl-BamHI and BannHI-ApaI DNA fragments obtained were inserted into the Notl-ApaI of the pB-luescript II SK-. The 3.3-kb BgIII-HindIII fragment isolated from the pROMU1 was inserted into the BamHI-HindIII of the obtained plasmid. The resultant plasmid was named pDOMADI (Fig. 8).

(8-2) Transformation

[0166] The pDOMAD1 obtained in Example (8-1) was cleaved with Apal and Notl and transformed into *Ogataea minuta* strain TK1-3 (ura3 Δ) obtained in Example (6-2) by the electric pulse method. Strains exhibiting *ade1* trait produce a red pigment, which is an intermediate metabolite in the adenine biosynthesis, and their colonies are dyed red. Thus, strains whose colonies were dyed red compared with the transformants were selected. To confirm that the *ADE1* genes of these strains were disrupted, the following primers were synthesized (see Fig. 10 with regard to the position of each primer).

DA5; 5'-GATGCTTGCGCCTTCAACCACATACTCCTC-3' (SEQ ID NO:35)

DA3; 5'-AAAAGTTCTTGCACAGCCTCAATATTGACC-3' (SEQ ID NO:36)

DOUS; 5'-ATCGATTTCGAGTGTTTGTCCAGGTCCGGG-3' (SEQ ID NO:37)

[0167] PCR by primers DA5 and DOU5 was performed using the chromosomal DNA isolated from the transformant as a template ((94°C for 30 seconds, 60°C for 1 minute and 72°C for 2 minutes) × 25 cycles). As shown in Fig. 10, a 1.6-kb amplified DNA fragment was detected from the strain whose *ADE1* locus had the plasmid integrated thereinto. After culturing the selected strain in the YPD medium until stationary phase, a strain resistant to 5-fluoroorotic acid (5-FOA) was obtained. PCR by primers DA5 and DA3 was performed using the chromosomal DNA isolated from the 5-FOA resistant strain as a template ((94°C for 30 seconds, 60°C for 1 minute and 72°C for 3 minutes) × 25 cycles). As shown in Fig. 10, in the strain in which *URA3* gene was deleted, a 2.9-kb amplified DNA fragment was detected. The ura3Δ ade1Δ strain was named *Ogataea minuta* strain TK4-1

Example 9

Cloning of OCH1 gene from Ogataea minuta

⁵ [0168] The OCH1 gene was obtained from Ogataea minuta IFO 10746 and its nucleotide sequence was determined.

(9-1) Preparation of Probe

[0169] Oligonucleotides having nucleotide sequences corresponding to the amino acid sequences conserved in OCH1 gene products from Saccharomyces cerevisiae (GenBank accession number; P31755) and Pichia pastoris (Japanese Patent Publication (Kokai) No. 9-3097A):

POH(R)I(V)WQTWKV (SEQ ID NO:38);

and

15

20

25

40

WYARRIQFCQW (SEQ ID NO:39)

were synthesized as follows.

POH5; 5'-CCNCARCRYRTHTGGCARACNTGGAARGT-3' (SEQ ID NO:40)

POH3: 5'-CCAYTGRCARAAYTGDATNCKNCKNGCRTACCA-3' (SEQ ID NO:41)

30 [0170] The primer POH5 has a sequence complementary to the nucleotide sequence corresponding to the amino acid sequence PQH(R)I(V)WQTWKV, and the primer POH3 has a sequence complementary to the nucleotide sequence corresponding to the amino acid sequence WYARRIQFCQW.

[0171] PCR by primers POH5 and POH3 was performed using the chromosomal DNA of *Ogataea minuta* IFO 10746 as a template ((94°C for 30 seconds, 50°C for 1 minute and 72°C for 30 seconds) × 25 cycles). The amplified DNA fragment of approximately 0.4 kb was recovered and cloned using TOPO TA Cloning Kit. Plasmid DNA was isolated from the obtained clone and sequenced. For a DNA insert of the plasmid, a clone was selected which had a nucleotide sequence encoding an amino acid sequence highly homologous to the amino acid sequences of *OCH1* gene products from *Saccharomyces cerevisiae* and *Pichia pastoris*. The 0.4-kb DNA insert was recovered after EcoRI cleavage of the plasmid and agarose gel electrophoresis.

(9-2) Preparation of library and screening

[0172] The chromosomal DNA of *Ogataea minuta* IFO 10746 was cleaved with different restriction enzymes, and subjected to Southern analysis using the DNA fragment obtained in Example (9-1) as a probe by the method described in Example (2-2). The results suggested that there existed *OCH1* gene in the Xbal fragment of approximately 5 kb. Then, to clone the DNA fragment, a library was prepared. The chromosomal DNA of *Ogataea minuta* was cleaved with Xbal and subjected to agarose gel electrophoresis, and then the approximately 5-kb DNA fragment was recovered from the gel. The recovered DNA fragment was ligated with Xbal-cleaved pBluescript II SK- and then transformed into *Escherichia coli* DH5 α. strains to prepare a library.

[0173] Approximately 6,000 clones were screened by colony hybridization using the above described DNA fragment as a probe. A clone bearing plasmid pOMOCI was selected from the 4 positive clones obtained.

(9-3) Sequencing of nucleotide sequence

55 [0174] The nucleotide sequence of the BgIII-Spel region of the plasmid pOMOCI (Fig. 11) was determined by deletion mutant and primer walking method to obtain a nucleotide sequence represented by SEQ ID NO:42.

[0175] In the nucleotide sequence of SEQ ID NO:42 there existed an open reading frame consisting of 1,305 bp, starting at position 508 and ends at position 1,812. The homology studies between the amino acid sequence (SEQ ID

NO:43) deduced from the open reading frame and the mannosyltransferase OCH1 gene product from Saccharomyces cerevisiae or $Pichia\ pastoris$ showed that 42% or 29% of amino acids were respectively identical between them. It remains unknown whether or not the $Pichia\ pastoris$ - $derived\ OCH1$ gene disclosed in Japanese Patent Publication (Kokai) No. 9-3097A substantially encodes the OCH1 (α -1,6 mannosyltransferase), or whether or not the same $Pichia\ pastoris$ -derived OCH1 gene has the functions of the OCH1 gene of OcH1 gene of OcH1 was 29% in amino acid, and that it has not been studied whether the OcH1 OcH1 has the activity of the OcH1 O

10 Example 10

15

20

25

30

40

45

50

55

Preparation of Ogataea minuta-derived OCH1 knockout mutant

[0176] The OCH1 gene was disrupted by transformation using the URA3 gene of Ogataea minuta as a marker.

(10-1) Preparation of OCH1 gene disruption vector

[0177] Plasmid pDOMOCH1 was prepared by replacing approximately 0.5-kb Ball-Smal region of the *OCH1* gene by the *URA3* gene (Fig. 11). To obtain a uracil auxotrophic mutant again from *OCH1* knockout mutant, the *URA3* gene having repetitive structures before and after the structural gene, as described in Example (8-1), was used as a marker [0178] The 4.4-kb Notl-Xbal fragment was isolated from the pOMOC and inserted into the Notl-Xbal of pBluescript II SK-. The obtained plasmid was named pOMOC2. The pOMOC2 was cleaved with AccI and XhoI, blunt-ended, and self-ligated. The obtained plasmid was named pOMOC3. The pOMOC2 was cleaved with Ball, and ligated with a BamHI linker. The obtained plasmid was named pOMOC2B (Figure 11). The pOMOC3 was cleaved with Smal, and ligated with a HindIII linker. The obtained plasmid was named pOMOC3H (Fig. 11). The 3.3-kb BgIII-HindIII fragment isolated from the pROMUI described in Example (8-1) was inserted into the BamHI-HindIII of the pOMOC2B. The 1.5-kb HindIII-Apal fragment isolated from the pOMOC3H was inserted into the HindIII-Apal of the obtained plasmid. The resultant plasmid was named pDOMOCH1.

(10-2) Transformation

[0179] The pDOMOCH1 obtained in Example (10-1) was cleaved with Apal and Notl, and transformed into *Ogataea minuta* TK1-3 strain (ura3Δ), which was obtained in Example (6-2), and into *Ogataea minuta* TK4-1 strain (ura3Δ Adel1Δ), which was obtained in Example (8-2), by electric pulse method. The transformation was performed in accordance with the method described in Example (6-2).

[0180] To confirm that the *OCH1* genes of these strains were disrupted, the following primers were synthesized (see Fig. 12 with regard to the position of each primer).

DO3; 5'-CCATTGTCAGCTCCAATTCTTTGATAAACG-3' (SEQ ID NO:44)

DOU5; 5'-ATCGATTTCGAGTGTTTGTCCAGGTCCGGG-3' (SEQ ID NO:37)

DO5; 5'-ACACTTCCGTAAGTTCCAAGAGACATGGCC-3' (SEQ ID NO:45)

DO3-2; 5'-TCACCACGTTATTGAGATAATCAAACAGGG-3' (SEQ ID NO:46)

[0181] PCR by primers DO5 and DOU5 was performed using the chromosomal DNA isolated from the transformant as a template ((94°C for 30 seconds, 60°C for 1 minute and 72°C for 3 minutes) \times 25 cycles). As shown in Fig. 12, a 2.4-kb amplified DNA fragment was detected in the strain whose *OCH1* locus had the plasmid integrated thereinto. After culturing the selected strain in the YPD medium until stationary phase, a strain resistant to 5-fluoroorotic acid (5-FOA) was obtained. PCR by primers DO3 and DO5 ((94°C for 30 seconds, 60°C for 1 minute and 72°C for 3 minutes) \times 25 cycles) and PCR by primers DO5 and DOC3-2 ((94°C for 30 seconds, 60°C for 1 minute and 72°C for 1 minute)

 \times 25 cycles) were performed using the chromosomal DNA isolated from the 5-FOA resistant strain as a template. As shown in Fig. 12, in the strain in which *URA3* gene was deleted, a 2.4-kb amplified DNA fragment was detected by the PCR using primers DO3 and DO5 and a 0.9 kb amplified DNA fragment by the PCR using primers DO5 and DOC3-2. The och1 Δ ura3 Δ strain obtained was named *Ogataea minuta* TK3-A strain, and the och1 Δ ura3 Δ ade1 Δ strain was named *Ogataea minuta* TK5-3 strain.

Example 11

5

15

25

30

35

Isolation of cell surface mannan protein from *Ogataea minuta OCH1* knockout mutant and structure analysis of sugar chain contained therein

[0182] Structure analysis of sugar chains of cell surface mannan proteins was performed for *Ogataea minuta OCH1* knockout mutant strainTK3-A and its parent strain TK1-3. The preparation of PA-oligosaccharides was performed by the method described in Example 1.

[0183] The prepared sugar chains were cleaved with *Aspergillus saitoi* α-1,2-mannosidase (SEIKAGAKU CORPO-RATION, Japan). Analysis was performed by HPLC. HPLC on amide column enables PA-oligosaccharides to be separated depending on the chain length. HPLC using a reverse-phase column enables PA-oligosaccharides to be separated depending on the hydropholicity, thereby to identify sugar chain structures. The HPLC conditions were as follows.

20 1) Size analysis by amide column

[0184]

Column: TSK-Gel Amido-80 (4.6 × 250 mm, TOSOH CORPORATION, Japan)

Column temperature: 40°C

Flow rate: 1 ml

Elution conditions: A: 200 mM triethylamine acetate pH 7.0 + 65% acetonitrile

B: 200 mM triethylamine acetate pH 7.0 + 30% acetonitrile Linear gradient of 0 minute A = 100% and

50 minutes A = 0%

2) Structure analysis by reverse phase column

[0185]

Column: TSK-Gel ODS80TM (4.6 × 250 mm, TOSOH CORPORATION, Japan)

Column temperature: 50°C

Flow rate: 1.2 ml

Elution conditions: 100 mM ammonium acetate containing 0.15% n-butanol pH 6.0

[0186] The results are shown in Fig. 13. From the size analysis using an amide column, it was confirmed that the TK1-3 strain as a parent strain produced both Man5 and Man6 as shown in Fig. 13, whereas the TK3-A strain, i.e., a ΔOCH1 strain, mainly produced Man5. Further, from the structure analysis using a reverse phase column and the comparison with commercially available standard sugar chains (TAKARA SHUZO CO., LTD., Japan), it was found that Man6 of the TK1-3 strain was a sugar chain having the structural formula 1 below, Man5 of the TK1-3 strain a sugar chain having the structural formula 2 below.

Structural Formula 1

50

55

Man α 1 α 1

Structural Formula 2

Manα1 6 Manα1 3 6 Manα1 Manβ1-4 GICNAcβ1-4 GICNAc 3 Manα1

30 [0187] From the above results, it was confirmed that the obtained gene was substantially Ogataea minuta OCH1 gene and that it was possible to prepare sugar chain mutants corresponding to the och1, mnn1 and mnn4 strains in Saccharomyces cerevisiae in which α-1,2-mannosidase gene was expressed.

Example 12

15

20

25

35

45

Cloning of proteinase A (PEP4) gene of Ogataea minuta

[0188] The PEP4 gene was obtained from Ogataea minuta IFO 10746 and its nucleotide sequence was determined.

40 (12-1) Preparation of probe

[0189] Oligonucleotides having nucleotide sequences corresponding to the following amino acid sequences conserved in *PEP4* gene from *Saccharomyces cerevisiae* (GenBank accession number; M13358) and *Pichia angusta* (GenBank accession number; U67173):

TNYLNAQY (SEQ ID NO:47)

50 and

KAYWEVKF (SEQ ID NO:48)

55 were synthesized as follows.

PPA5; 5'-ACNAAYTAYYTNAAYGCNCARTA-3' (SEQ ID NO:49)

PPA3: 5'-AAYTTNACYTCCCARTANGCYTT-3' (SEQ ID NO:50)

[0190] The primer PPA5 has a sequence complementary to the nucleotide sequence corresponding to the amino acid sequence TNYLNAQY, and the primer PPA3 has a sequence complementary to the nucleotide sequence corresponding to the amino acid sequence KAYWEVKF.

[0191] PCR by primers PPA5 and PPA3 was performed using the chromosomal DNA of *Ogataea minuta* IFO 10746 as a template ((94°C for 30 seconds, 55°C for 1 minute and 72°C for 1 minute) × 25 cycles). The amplified DNA fragment of approximately 0.6 kb was recovered and cloned using TOPO TA Cloning Kit. Plasmid DNA was isolated from the obtained clone and sequenced. For a DNA insert of the plasmid, a clone was selected which had a nucleotide sequence encoding an amino acid sequence highly homologous to the amino acid sequences for *PEP4* genes from *Saccharomyces cerevisiae* and *Pichia angusta*. The 0.6-kb DNA insert was recovered after EcoRI cleavage of the plasmid and agarose gel electrophoresis.

20 (12-2) Preparation of library and screening

[0192] The chromosomal DNA of *Ogataea minuta* IFO 10746 was cleaved with different restriction enzymes, and subjected to Southern analysis using the DNA fragment obtained in Example (12-1) as a probe by the method described in Example (6-2). The results suggested that there existed *PEP4* gene in the approximately 6 kb BamHI fragment. Then, to clone the DNA fragment, a library was prepared. The chromosomal DNA of *Ogataea minuta* was cleaved with BamHI and subjected to agarose gel electrophoresis, and then the approximately 6-kb DNA fragment was recovered from the gel. The recovered DNA fragment was ligated with BamHI-cleaved pUC18 and then transformed into *Escherichia coli* strain DH5 α to prepare a library.

[0193] About 5,000 clones were screened by colony hybridization using the above described DNA fragment as a probe. A clone bearing plasmid pOMPA1 was selected from the 8 positive clones obtained.

(12-3) Sequencing of nucleotide sequence

[0194] The nucleotide sequence of the Ndel-Xbal region of the plasmid pOMPAI (Fig. 14) was determined by deletion mutant and primer walking method to obtain a nucleotide sequence represented by SEQ ID NO:51.

[0195] In the nucleotide sequence represented by SEQ ID NO:51, there existed an open reading frame of 1,233 bp, starting at position 477 and ends at position 1,709. The homology studies between the amino acid sequence (SEQ ID NO:52) deduced from the open reading frame and the *PEP4* from *Saccharomyces cerevisiae* or *Pichia angusta* showed that 67% or 78% of amino acids were respectively identical between them.

Example 13

5

25

30

40

Preparation of Ogataea minuta PEP4 knockout mutant

45 [0196] The PEP4 gene was disrupted by transformation using the URA3 gene of Ogataea minuta as a marker.

(13-1) Preparation of PEP4 Disruption Vector

[0197] As shown in Fig. 14, plasmid pDOMPA1 was prepared by replacing the approximately 1.1-kb Smal-Xbal region of the *PEP4* structural gene by the *URA3* gene. To obtain a uracil auxotrophic mutant again from *PEP4* knockout mutants, the *URA3* gene having repetitive structures before and after the structural gene was used as a marker. Plasmid was prepared by SacI cleavage, self-ligation, ClaI cleavage, and self-ligation of the plasmid pOMPA1 carrying the *PEP4* gene region, as described in Example (12-2).

[0198] The obtained plasmid was cleaved with Smal, ligated with a HindIII linker; cleaved with Xbal, blunt0ended, and ligated with a BgIII linker.

[0199] The 3.3-kb BgIII-HindIII fragment isolated from the pROMUI described in Example (8-1) was inserted into the BgIII-HindIII of the obtained plasmid. The resultant plasmid was named pDOMPA1 (Fig. 14).

(13-2) Transformation

[0200] The pDOMPA1 obtained in Example (13-1) was cleaved at SacI-ClaI, and then transformed into the *Ogataea* minuta TK3-A strain (och1 Δ ura3 Δ) and the *Ogataea* minuta TK5-3 strain (och1 Δ ura3 Δ ade1 Δ) obtained in Example (10-2), by means of the electric pulse method.

[0201] The PEP4 knockout mutants were screened by subjecting the chromosomal DNAs of the obtained transformants to Southern analysis. Specifically, when cleaving the chromosomal DNAs of the host strain and the transformants with BamHI and subjecting the cleaved chromosomal DNAs to Southern analysis using the 4.8-kb SacI-Clal fragment isolated from the pDOMPA1 (Fig. 14) as a probe, a band was detected at 6 kb in the host strain, while a band was detected at 9 kb in the knockout mutants. After culturing the knockout mutants in the YPD medium until stationary phase, a strain resistant to 5-fluoroorotic acid (5-FOA) was obtained. The chromosomal DNA of the 5-FOA resistant strain was cleaved with BamHI and again subjected to Southern analysis using the 4.8-kb SacI-Clal fragment isolated from the pDOMPA1 (Fig. 14) as a probe, and a strain was selected from which the URA3 gene was deleted and in which a band was detected at 5.5 kb. The och1Δ pep4Δ ura3Δ strain obtained was named Ogataea minuta TK6 strain, and the och1Δ pep4Δ ura3Δ ade1Δ strain was named Ogataea minuta TK7 strain.

Example 14

5

10

15

20

25

30

40

45

55

Cloning of PRB1 gene of Ogataea minuta

[0202] The *PRB1* gene was obtained from *Ogataea minuta* IFO 10746 and its nucleotide sequence was determined. (14-1) Preparation of Probe

[0203] Oligonucleotides having nucleotide sequences corresponding to the following amino acid sequences conserved in *PRB1* from *Saccharomyces cerevisiae* (GenBank accession number; M18097) and *Kluyveromyces lactis* (GenBank accession number; A75534) and their homologues:

DG(L)NGHGTHCAG (SEQ ID NO:53)

GTSMAS (T) PHV (I) A (V) G (SEQ ID NO:54)

35 were synthesized as follows.

PPB5; 5'-GAYBKNAAYGGNCAYGGNACNCAYTGYKCNGG-3' (SEQ ID NO:55)

PPB3: 5'-CCNRCNAYRTGNGGNWSNGCCATNWSNGTNCC-3' (SEQ ID NO:56)

[0204] The primer PPB5 has a sequence complementary to the nucleotide sequence corresponding to the amino acid sequence DG(L)NGHGTHCAG, and the primer PPB3 has a sequence complementary to the nucleotide sequence corresponding to the amino acid sequence GTSMAS(T)PHV(I)A(V)G.

[0205] PCR by primers PPB5 and PPB3 was performed using the chromosomal DNA of *Ogataea minuta* IFO 10746 as a template ((94°C for 30 seconds, 50°C for 1 minute and 72°C for 1 minute) × 25 cycles). The amplified DNA fragment of approximately 0.5 kb was recovered and cloned using TOPO TA Cloning Kit. Plasmid DNA was isolated from the obtained clone and sequenced. For a DNA insert of the plasmid, a clone was selected which had a nucleotide sequence encoding an amino acid sequence highly homologous to the amino acid sequences for *PRB1* genes from *Pichia pastoris* and *Kluyveromyces lactis*. The 0.5-kb DNA insert was recovered after EcoRl cleavage of the plasmid and agarose gel electrophoresis.

(14-2) Preparation of library and screening

[0206] The chromosomal DNA of *Ogataea minuta* IFO 10746 was cleaved with different restriction enzymes, and subjected to Southern analysis using the DNA fragment obtained in Example (14-1) as a probe by the method described in Example (2-2). The results suggested that there existed *PRB1* gene in the BamHI fragment of approximately 5 kb.

Then, to clone the DNA fragment, a library was prepared. The chromosomal DNA of *Ogataea minuta* was cleaved with BamHI and electrophoresed on agarose geI, and then the approximately 5-kb DNA fragment was recovered from the geI. The DNA fragment was ligated with BamHI-cleaved and BAP-treated pUC18 and then transformed into *Escherichia coli* strain DH5 α to prepare a library.

5 [0207] About 6,000 clones were screened by colony hybridization using the above described DNA fragment as a probe. A clone bearing plasmid pOMPB1 was selected from the 2 positive clones obtained.

(14-3) Sequencing of nucleotide sequence

10 [0208] The nucleotide sequence of the BamHI-HindIII region of the plasmid pOMPB1 (Fig. 15) was determined by deletion mutant and primer walking method to obtain a nucleotide sequence represented by SEQ ID NO:57.

[0209] In the nucleotide sequence of SEQ ID NO:57, there existed an open reading frame of 1,620 bp, starting at position 394 and ends at position 2,013. The homology studies between the amino acid sequence (SEQ ID NO:) deduced from the open reading frame and the *PRB1* gene product from *Pichia pastoris* or *Kluyveromyces lactis* showed that 47% or 55% of amino acids were respectively identical between them.

Example 15

15

20

35

40

45

50

55

Preparation of Ogataea minuta PRB1 knockout mutant

[0210] The PRB1 gene was disrupted by transformation using the URA3 gene of Ogataea minuta as a marker.

(15-1) Preparation of PRB1 gene disruption vector

[0211] As shown in Fig. 15, plasmid pDOMPB1 was prepared by replacing the approximately 0.2-kb Clal-SphI region of the *PRB1* structural gene by the *URA3* gene. To obtain a uracil auxotrophic mutant again from *PRB1* knockout mutants, the *URA3* gene having repetitive structures before and after the structural gene was used as a marker. The BamHI fragment was isolated from the plasmid pOMPB1 having the *PRB1* gene region as described in Example (14-2) and inserted into pTV19ΔSph (i.e., pTV19 which was cleaved with SphI, blunt-ended and self-ligated, and from which SphI site was deleted), which had been cleaved with BamHI and treated with BAP.

[0212] The 3.3-kb Clal-SphI fragments isolated from the plasmid, as described in Example (8-1), which were obtained by changing the BgIII site of the pROMU1 to a Clal site and changing the HindIII site of the pROMUI to a SphI site, respectively, by linker ligation method, were inserted into the Clal-SphI of the obtained plasmid. The resultant plasmid was named pDOMPB1 (Fig. 15).

(15-2) Transformation

[0213] The pDOMPB1 obtained in Example (15-1) was cleaved with BamHI and transformed into the *Ogataea minuta* TK6 strain (och1 Δ pep4 Δ ura3 Δ) and the *Ogataea minuta* TK7 strain (och1 Δ pep4 Δ ura3 Δ ade1 Δ) obtained in Example (13-2) by electric pulse method.

[0214] The *PRB1* knockout mutants were screened by subjecting the chromosomal DNAs of the obtained transformants to Southern analysis. Specifically, when cleaving the chromosomal DNAs of the host strain and the transformants with BamHI and subjecting the cleaved chromosomal DNAs to Southern analysis using the 5-kb BamHI fragment isolated from the pDOMPB1 (Fig. 15) as a probe, 5 kb band was detected in the host strain, while 8.5 kb band was detected in the knockout mutants. After culturing the knockout mutants in the YPD medium until stationary phase, a strain resistant to 5-fluoroorotic acid (5-FOA) was obtained. The chromosomal DNA of the 5-FOA resistant strain was cleaved with BamHI and again subjected to Southern analysis using the 5-kb BamHI fragment isolated from the pDOMPB1 (Fig. 15) as a probe, and a strain was selected from which the *URA3* gene was deleted and for which 5 kb band was detected. The och1Δ pep4Δ prb1Δ ura3Δ strain obtained was named *Ogataea minuta* TK8 strain, and the och1Δ pep4Δ prb1Δ ura3Δ ade1Δ strain was named *Ogataea minuta* TK9 strain.

Example 16

Cloning of KTR1 gene of Ogataea minuta

[0215] The KTR1 gene was obtained from Ogataea minuta IFO 10746 and its nucleotide sequence was determined.

(16-1) Preparation of probe

[0216] The amino acid sequences conserved in the KTR gene family from Saccharomyces cerevisiae (Biochim. Biophys, Acta, (1999) Vol. 1426, p326) was extracted:

H(N)YDWV(T)FLND (SEQ ID NO:59);

and

YNLCHFWSNFEI (SEQ ID NO:60),

15 and oligonucleotides having nucleotide sequences corresponding the above amino acid sequences were synthesized as follows.

PKR5: 5'-MAYTAYGAYTGGRYNTTYYTNAAYGA-3' (SEQ ID NO:61)

20

25

30

35

5

10

PKR3: 5'-ATYTCRAARTTNSWCCARAARTGRCANARRTTRTA-3' (SEQ ID NO:62)

[0217] The primer PKR5 has a sequence complementary to the nucleotide sequences corresponding to the amino acid sequence H(N)YDWV(T)FLND, and the primer PKR3 has a sequence complementary to the nucleotide sequences corresponding to the amino acid sequence YNLCHFWSNFEI.

[0218] PCR by primers PKR5 and PKR3 was performed using the chromosomal DNA of Ogataea minuta IFO 10746 as a template ((94°C for 30 seconds, 50°C for I minute and 72°C for 1 minute) × 25 cycles). The amplified DNA fragment of approximately 0.6 kb was recovered and cloned using TOPO TA Cloning Kit. Plasmid DNA was isolated from the obtained clone and sequenced. From the nucleotide sequence analysis for 60 clones, it was confirmed that total 4 types of gene fragments existed, all of which had a high homology with the amino acid sequences of the KTR1 gene family from Saccharomyces cerevisiae. One clone was selected from the 60 clones and the 0.6-kb DNA insert was recovered after EcoRI cleavage of the plasmid and separation by agarose gel electrophoresis.

(16-2) Preparation of library and screening

[0219] The chromosomal DNA of Ogataea minuta IFO 10746 was cleaved with different restriction enzymes and subjected to Southern analysis using the DNA fragment obtained in Example (12-1) as a probe by the method described in Example (2-2). The results suggested that there existed the KTR1 gene in the SacI fragment of approximately 2 kb. Then, to clone the DNA fragment, a library was prepared. The chromosomal DNA of Ogataea minuta was cleaved with Sacl and subjected to agarose gel electrophoresis, and then the approximately 2-kb DNA fragment was recovered from the gel. The DNA fragment was ligated with Sacl-cleaved and BAP-treated pUC18 and then transformed into Escherichia coli strain DH5 α to prepare a library.

[0220] About 4,000 clones were screened by colony hybridization using the above described DNA fragment as a probe. A clone bearing plasmid pOMKR1 was selected from the 2 positive clones obtained.

(16-3) Sequencing of nucleotide sequence

[0221] The nucleotide sequence of the Sacl insert in the plasmid pOMKR1 (Fig. 16) was determined by deletion mutant and primer walking method to obtain a nucleotide sequence represented by SEQ ID NO:63.

[0222] In the nucleotide sequence of SEQ ID NO:63, there existed an open reading frame of 1,212 bp, starting at position 124 and ends at position 1,335. The homology studies between the amino acid sequence (SEQ ID NO:64) deduced from the open reading frame and the KTR1 or KRE2 gene product, as KTR family, from Saccharomyces cerevisiae, showed that 53% or 49% of amino acids were respectively identical between them

55

50

45

Example 17

Preparation of Ogataea minuta KTR1 knockout mutant

⁵ [0223] The KTR1 gene was disrupted by transformation using the URA3 gene of Ogataea minuta as a marker.

(17-1) Preparation of KTR1 gene disruption vector

[0224] As shown in Fig. 16, plasmid pDOMKR1 was prepared by replacing the 0.3-kb EcoRI-BgIII region of the KTR1 structural gene by the *URA3* gene. To obtain a uracil auxotrophic mutant again from *KTR1* knockout mutants, the *URA3* gene having repetitive structures before and after the structural gene was used as a marker. The plasmid pOMKR1 carrying the *KTR1* gene region as described in Example (16-2) was cleaved at HindIII-Xbal, blunt-ended, and ligated. The obtained plasmid was cleaved with EcoRI and ligated with a HindIII linker.

[0225] The 3.3-kb BgIII-HindIII fragment isolated from the pROMU1 as described in Example (8-1) was inserted into the BgIII-HindIII of the obtained plasmid. The resultant plasmid was named pDOMKRI (Fig. 16).

(17-2) Transformation

15

25

30

40

45

55

[0226] The pDOMKRI obtained in Example (17-1) was cleaved at SacI-Clal and transformed into the *Ogataea minuta* 20 TK8 strain (och1Δ pep4Δ prb1Δ ura3Δ) and the *Ogataea minuta* TK9 strain (och1Δ pep4Δ prb1Δ ura3Δ ade1Δ) obtained in Example (15-2), by electric pulse method.

[0227] The KTR1 knockout mutants were screened by subjecting the chromosomal DNAs of the obtained transformants to Southern analysis. Specifically, the chromosomal DNAs of the host strain and the transformants were cleaved with SacI and subjected to Southern analysis using the 2-kb SacI fragment isolated from the pDOMKR1 (Fig. 16) as a probe. As a result, 2 kb band was detected in the host strain, while 5 kb band was detected in the knockout mutants. After culturing the knockout mutants in the YPD medium until stationary phase, a strain resistant to 5-fluoroorotic acid (5-FOA) was obtained. The chromosomal DNA of the 5-FOA resistant strain was cleaved with SacI and again subjected to Southern analysis using the 2-kb SacI fragment isolated from the pDOMKRI (Fig. 16) as a probe, and a strain was selected from which the URA3 gene was deleted and for which 5 kb band was detected. The och1 Δ ktr1 Δ pep4 Δ prb1 Δ ura3 Δ strain obtained was named Ogataea minuta TK10 strain, and the och1 Δ ktr1 Δ pep4 Δ prb1 Δ ura3 Δ ade1 Δ strain was named Ogataea minuta TK11 strain.

[0228] The sensitivity of *Ogataea minuta* TK10 and *Ogataea minuta* TK11 strains to hygromycin B was examined. *Ogataea minuta* IFO 10746, a wild strain, yielded colonies on a plate containing 50 μg/ml hygromycin B, but neither *Ogataea minuta* TK10 nor *Ogataea minuta* TK11 strain yielded a colony even on a plate containing 5 μg/ml hygromycin B. It is known that sugar chain mutants of *Saccharomyces cerevisiae* have higher sensitivity to a drug like hygromycin B than the wild strain of the same. Thus, it was presumed that these *Ogataea minuta* ktr1Δ strains had short sugar chains

[0229] Further, in the *Ogataea minuta* ktr 1Δ strains, the precipitation of cells was markedly increased just like the *Saccharomyces cerevisiae* och 1Δ strain. This may show that the sugar chains of these *Ogataea minuta* ktr 1Δ strains were short.

Example 18

Cloning of MNN9 gene of Ogataea minuta

[0230] The MNN9 gene was obtained from Ogataea minuta IFO 10746 and its nucleotide sequence was determined.

(18-1) Preparation of probe

[0231] Oligonucleotides having nucleotide sequences corresponding to the following amino acid sequences conserved in MNN9 from Saccharomyces cerevisiae (GenBank accession number; L23752) and Candida albicans (GenBank accession number; U63642):

TSWVLWLDAD (SEQ ID NO:65); and ETEGFAKMAK (SEQ ID NO:66) were synthesized as follows.

PMN5; 5'-ACNWSNTGGGTNYTNTGGYTNGAYGCNGA-3' (SEQ ID NO:67)

PMN3: 5'-TTNGCCATYTTNGCRAANCCYTCNGTYTC-3' (SEQ ID NO:68)

[0232] The primer PMN5 has a sequence complementary to the nucleotide sequence corresponding to the amino acid sequence TSWVLWLDAD, and the primer PMN3 has a sequence complementary to the nucleotide sequence corresponding to the amino acid sequence ETEGFAKMAK.

[0233] PCR by primers PMN5 and PMN3 was performed using the chromosomal DNA of *Ogataea minuta* IFO 10746 as a template ((94°C for 30 seconds, 50°C for 1 minute and 72°C for 1 minute) × 25 cycles). The amplified DNA fragment of approximately 0.4 kb was recovered and cloned using TOPO TA Cloning Kit. Plasmid DNA was isolated from the obtained clone and sequenced. For a DNA insert of the plasmid, a clone was selected which had a nucleotide sequence encoding an amino acid sequence highly homologous to the amino acid sequences for *MNN9* genes from *Saccharomyces cerevisiae* and *Candida albicans*. The 0.4-kb DNA insert was recovered after EcoRI cleavage of the plasmid and agarose gel electrophoresis.

15 (18-2) Preparation of library and screening

[0234] The chromosomal DNA of $Ogataea\ minuta\ IFO\ 10746$ was cleaved with different restriction enzymes, and subjected to Southern analysis using the DNA fragment obtained in Example (18-1) as a probe by the method described in Example (2-2). The results suggested that there existed the MNN9 gene in the BamHI fragment of approximately 8 kb. Then, to clone the DNA fragment, a library was prepared. The chromosomal DNA of $Ogataea\ minuta$ was cleaved with BamHI and subjected to agarose gel electrophoresis, and then the approximately 8-kb DNA fragment was recovered from the gel. The DNA fragment was ligated with BamHI-cleaved pUC118 and then transformed into $Escherichia\ coli$ strain DHS α to prepare a library.

[0235] About 6,000 clones were screened by colony hybridization using the above described DNA fragment as a probe. A clone bearing plasmid pOMMN9 was selected from the 2 positive clones obtained.

(18-3) Sequencing of nucleotide sequence

[0236] The nucleotide sequence of the Apal-BgIII region of the plasmid pOMMN9 (Fig. 17) was determined by deletion mutant and primer walking method to obtain a nucleotide sequence represented by SEQ ID NO:69.

[0237] In the nucleotide sequence of SEQ ID NO:69, there existed an open reading frame of 1,104 bp, starting at position 931 and ends at position 2,034. The homology studies between the amino acid sequence (SEQ ID NO:70) deduced from the open reading frame and the *MNN9* gene product from *Saccharomyces cerevisiae* or *Candida albicans* showed that 59% or 62% of amino acids were respectively identical between them.

Example 19

5

10

20

25

30

35

45

50

Preparation of Ogataea minuta MNN9 knockout mutant

40 [0238] The MNN9 gene was disrupted by transformation using the URA3 gene of Ogataea minuta as a marker.

(19-1) Preparation of MNN9 Disruption Vector

[0239] As shown in Fig. 17, plasmid pDOMN9 was prepared by replacing the approximately 1-kb Sal-BgIII region of the *MNN9* structural gene by the *URA3* gene. To obtain a uracil auxotrophic mutant again from *MNN9* knockout mutants, the *URA3* gene having repetitive structures before and after the structural gene was used as a marker. The 1.2-kb Apal-Sall fragment isolated from the plasmid pOMMN9-1 having the *MNN9* gene region described in Example 18 was inserted into the Apal-Sall of the pBluescript II SK-. The 2.2-kb Nhel-BgIII fragments isolated from the plasmid pOMNIN9-I and the 3.3 kb BgIII-HindIII fragment isolated from the pROMUI described in Example (8-1) were inserted into the Xbal-HindIII of the obtained plasmid. The resultant plasmid was named pDOMN9 (Fig. 17).

(19-2) Transformation

[0240] The pDOMN9 obtained in Example (19-1) was cleaved with Apal and transformed into the *Ogataea minuta*TK8 strain (och1Δ pep4Δ prb1Δ ura3Δ), the *Ogataea minuta* TK9 strain (och1Δ pep4Δ prb1Δ ura3Δ ade1Δ) obtained in Example (15-2) and the *Ogataea minuta* TK10 strain (och1Δ ktr1Δ pep4Δ prb1Δ ura3Δ), the *Ogataea minuta* TK11 strain (och1Δ ktr1Δ pep4Δ prb1Δ ura3Δ ade1Δ) obtained in Example (17-2), by electric pulse method.

[0241] The MNN9 knockout mutants were screened by subjecting the chromosomal DNAs of the obtained trans-

formants to Southern analysis. Specifically, the chromosomal DNAs of the host strain and the transformants were cleaved with Apal and BgIII and subjected to Southern analysis using the 1.2-kb Apal-Sall fragment isolated from the pOMIVIN9-1 (Figure 17) as a probe. As a result, a band was detected at 2.2 kb in the host strain, while a band at 5.5 kb in the knockout mutants. After culturing the knockout mutants on the YPD medium until stationary phase, a strain resistant to 5-fluoroorotic acid (5-FOA) was obtained. PCR by primers DMN5; 5'-AGATGAGGTGATTCCACGTAATTTGCCAGGC-3' (SEQ ID NO:71) and DMN3; 5'-TTTTGATTGTCATCTATTTCGCACACCCTG-3' (SEQ ID NO:72) was performed using the chromosomal DNA of the 5-FOA resistant strain as a template ((94°C for 30 seconds, 60°C for 1 minute and 72°C for 1 minute) \times 25 cycles). As a result, a 1 kb amplified DNA fragment was detected in the strain from which the URA3 gene was deleted. The och1 Δ mnn9 Δ pep4 Δ prb1 Δ ura3 Δ strain obtained was named *Ogataea minuta* TK12 strain, the och1 Δ ktr1 Δ mnn9 Δ pep4 Δ prb1 Δ ura3 Δ strain was named *Ogataea minuta* TK14 strain, and the och1 Δ ktr1 Δ mnn9 Δ pep4 Δ prb1 Δ ura3 Δ ade1 Δ strain was named *Ogataea minuta* TK15 strain.

[0242] The sensitivity of the *Ogataea minuta* TK14 and *Ogataea minuta* TK15 strains to hygromycin B was examined. *Ogataea minuta* IFO 10746, a wild strain, yielded colonies on a plate containing 50 μg/ml hygromycin B as described in Example (17-2), but neither *Ogataea minuta* TK12 nor *Ogataea minuta* TK13 strain yielded a colony even on a plate containing 20 μg/ml hygromycin B. Thus, it was presumed that these *Ogataea minuta* mnn9Δ strains had short sugar chains.

Example 20

20

5

10

25

30

45

50

55

Cloning of alcohol oxidase (AOX1) gene of Ogataea minuta

[0243] The AOX1 gene was obtained from Ogataea minuta IFO 10746 and its nucleotide sequence was determined.

(20-1) Preparation of probe

[0244] Oligonucleotides having nucleotide sequences corresponding to the following amino acid sequences conserved in alcohol oxidase from *Pichia pastoris* (GenBank accession number; U96967, U96968) and *Candida boidinii* (GenBank accession number; Q00922):

GGGSSINFMMYT (SEQ ID NO:73);

35 and

DMWPMVWAYK (SEQ ID NO:74)

40 were synthesized as follows.

PAX5: 5'-GGNGGNGSNWSNWSNATHAAYTTYATGATGTAYAC-3' (SEQ ID NO:75)

PAX3; 5'-TTRTANGCCCANACCATNGGCCACATRTC-3' (SEQ ID NO:76)

[0245] The primer PAX5 has a sequence complementary to the nucleotide sequence corresponding to the amino acid sequence GGGSSINFMMYT, and the primer PAX3 has a sequence complementary to the nucleotide sequence corresponding to the amino acid sequence DMWPMVWAYK.

[0246] PCR by primers PAX5 and PAX3 was performed using the chromosomal DNA of *Ogataea minuta* IFO 10746 as a template ((94°C for 30 seconds, 50°C for 1 minute and 72°C for 1 minute) x 25 cycles). The amplified DNA fragment of approximately 1.1 kb was recovered and cloned using TOPO TA Cloning Kit. Plasmid DNA was isolated from the obtained clone and sequenced. For a DNA insert of the plasmid, a clone was selected which had a nucleotide sequence encoding an amino acid sequence highly homologous to the amino acid sequences for alcohol oxidase genes from *Pichia pastoris* and *Candida boidinii*. The 1.1-kb DNA insert was recovered after EcoRl cleavage of the plasmid and agarose gel electrophoresis.

(20-2) Preparation of library and screening

[0247] The chromosomal DNA of *Ogataea minuta* IFO 10746 was cleaved with different restriction enzymes, and subjected to Southern analysis using the DNA fragment obtained in Example (20-1) as a probe by the method described in Example (2-2). The results suggested that there existed *AOX1* gene in the HindIII fragment of approximately 8 kb. Then, to clone the DNA fragment, a library was prepared. The chromosomal DNA of *Ogataea minuta* was cleaved with HindIII and subjected to agarose gel electrophoresis, and then the approximately 6-kb DNA fragment was recovered from the gel. The DNA fragment was ligated with HindIII-cleaved pUC118 and then transformed into *Escherichia coli* strain DH5 α to prepare a library.

10 [0248] About 6,000 clones were screened by colony hybridization using the above described DNA fragment as a probe. A clone bearing plasmid pOMAX1 was selected from the 6 positive clones obtained.

(20-3) Sequencing of nucleotide sequence

[0249] The nucleotide sequence of the HindIII-Smal region of the plasmid pOMAX (Fig. 18) was determined by deletion mutant and primer walking method to obtain a nucleotide sequence represented by SEQ ID NO:77.

[0250] In the nucleotide sequence of SEQ ID NO:77 there existed an open reading frame of 1,992 bp, starting at position 2,349 and ends at position 4,340. The homology studies between the amino acid sequence (SEQ ID NO:78) deduced from the open reading frame and the alcohol oxidase from *Pichia pastoris* or *Candida boidinii* showed that 72% or 74% of amino acids were respectively identical between them.

Example 21

5

15

20

25

30

35

40

45

55

Construction of heterologous gene expression plasmid using AOX1 gene promoter and terminator

(21-1) Construction of expression cassette using AOX1 gene promoter and terminator

[0251] An expression cassette was constructed for transferring foreign genes between the *Ogataea minuta AOX1* gene promoter (SEQ ID NO:79) and terminator (SEQ ID NO:80). To transfer Xbal, Smal and BamHI sites between the *AOX1* gene promoter and terminator, the following primers were synthesized:

OAP5; 5'-CTGCAGCCCCTTCTGTTTTTCTTTTGACGG-3' (SEQ ID NO:81)

OAP3;5'-CCCCGGATCCAGGAACCCGGGAACAGAATCTAGATTTTTCGTAAGT CGTAAGTCGTAACAGAACACAAGAGTCTTTGAACAAGTTGAG-3' (SEQ ID NO:82)

OAT5;5'-CCCCCCGGATCCGAGACGGTGCCCGACTCTTGTTCAATTCTTTTGG-3'
(SEQ ID NO:83)

OAT3: 5'-CCCATAATGGTACCGTTAGTGGTACGGGCAGTC-3' (SEQ ID NO:84)

[0252] PCR by primers OAP5 and OAP3 ((94°C for 30 seconds, 55°C for 1 minute and 72°C for 1 minute) × 20 cycles), and PCR by primers OAT5 and OAT3 ((94°C for 30 seconds, 55°C for 1 minute and 72°C for 1 minute) × 20 cycles) were performed using the pOMAX1 shown in Fig. 18 as a template. The amplified DNA fragments of 0.5 kb and 0.8 kb were recovered and cloned using TOPO TA Cloning Kit. The nucleotide sequences of DNA inserts were determined, and then clones having correct nucleotide sequences were selected. The DNA inserts of 0.5 kb and 0.8 kb were isolated as PstI-BamHII fragment and BamHI-KpnI fragment, respectively. The above described 0.5-kb PstI-BamHII fragment was inserted into the PstI-BamHII of the pOMAX1. Then, the 0.8-kb BamHI-KpnI fragment was inserted into the BamHI-KpnI of the obtained plasmid. The resultant plasmid was named pOMAXPT1 (Fig. 18).

[0253] The pOMAXPT1 had an expression cassette controlled by the *AOX1* promoter and terminator that allowed foreign genes to be transferred at the Xbal, Smal and BamHI sites.

(21-2) Construction of heterologous gene expression plasmid using AOX1 gene promoter and terminator, and using URA3 gene as a selectable marker

[0254] The 3.1-kb Bg1II-HindIII fragment containing the *Ogataea minuta URA3* gene and isolated from the pOMUR1 described in Example (5-2) was inserted into the BamHI-HindIII of pUC19. The obtained plasmid was named pOMUR5 (Fig. 18). The pOMUR5 was cleaved with Styl and Sacl and blunt-ended, and Apal linkers were then inserted thereinto. The obtained plasmid was named pOMUR6. The pOMUR6 was cleaved with Xbal and blunt-ended, and ligated. The obtained plasmid was named pOMUR-X. The pOMUR-X was cleaved with Sall and blunt-ended, and a Notl linker was inserted thereinto.

5

20

25

30

35

40

45

- 10 [0255] The resultant plasmid was named pOMUR-XN. The 3.1-kb HindIII-KpnI fragment containing the expression cassette controlled by the *Ogataea minuta AOX1* promoter and terminator which was isolated from the pOMAXPT1 as described in Example (21-1), was inserted into the HindIII-KpnI of the pOMUR-XN. The obtained plasmid was named pOMex1U (Fig. 18).
 - [0256] The pOMex1U was cleaved with BgIII and blunt-ended, and a NotI linker was inserted thereinto. The obtained plasmid was named pOMex1U-NO (Fig. 18). The 3.1-kb HindIII-KpnI fragment containing the expression controlled by the *Ogataea minuta AOX1* gene promoter and terminator which was isolated from the pOMex1U-NO, was inserted into the HindIII-KpnI of the pOMUR-X. The resultant plasmid was named pOMex2U (Fig. 18).
 - (21-3) Construction of heterologous gene expression plasmid using AOX1 gene promoter and terminator, and using G418 resistant gene as a selectable marker
 - [0257] The pOMKmR1, which comprised the G418 resistant gene expression cassette controlled by the *GAP* gene promoter and terminator described in Example 4, was cleaved with Pstl and blunt-ended, and an Apal linker was inserted thereinto. The G418 resistant gene expression cassette was isolated, as a 2.3-kb Apal-Kpnl fragment, from the obtained plasmid and inserted into the Apal-Kpnl of the POMexIU-NO described in Example (21-2). The resultant plasmid was named pOMex3G (Fig. 18).
 - (21-4) Construction of heterologous gene expression plasmid using AOX1 gene promoter and terminator, and using ADE1 gene as a selectable marker
 - **[0258]** A plasmid was prepared by cleaving with Smal the pOMADI, which contained the *ADE1* gene described in Example 7, transferring an Apal linker, cleaving with EcoRV, transferring a KpnI linker, cleaving with BgIII, blunt-ending, and transferring a NotI linker. The *ADE1* gene expression cassette was isolated, as a 3.1-kb Apal-KpnI fragment, from the obtained plasmid, and inserted into the Apal-KpnI containing the expression cassette controlled by the *Ogataea minuta AOX1* gene promoter and terminator which was obtained by Apal-KpnI from the pOMex1U. The resultant plasmid was named pOMex4A (Fig. 18).
 - (21-5) Construction of heterologous gene expression plasmid using AOX1 gene promoter and terminator, and using hygromycin B resistant gene as a selectable marker
 - **[0259]** To perform transformation by the selection of antibiotic hygromycin B resistance, a plasmid containing the hygromycin B resistant gene (hygromycin B phosphotransferase gene) expression cassette was constructed.
 - [0260] To isolate the hygromycin B resistant gene, the following primers were synthesized: HGP5; 5'-GTCGACAT-GAAAAAGCCTGAACTCACCGC-3' (SEQ ID NO:85); and HGP3; 5'-ACTAGTCTATTCCTTTGCCCTCGGACG-3' (SEQ ID NO:86).
 - **[0261]** PCR by primers HGP5 and HGP3 was performed using the plasmid pGARH containing the hygromycin B resistant gene (Applied Environ. Microbiol., Vol. 64 (1998) p2676) as a template ((94°C for 30 seconds, 50°C for 1 minute and 72°C for 1 minute) \times 20 cycles). The 1.0 kb amplified DNA fragment was recovered and cloned using TOPO TA Cloning Kit.
- 50 [0262] The nucleotide sequence of the DNA insert was determined, and a clone having the correct nucleotide sequence was selected. The 1.0 kb DNA insert was isolated as a SallI-Ec0T22II fragment and inserted into the Sall-EcoT22I of the pOMGP4 constructed in Example 3. The obtained plasmid was named pOMHGR1. The obtained plasmid was cleaved with HindIII and blunt-ended, and an Apal linker was inserted thereinto. The hygromycin B resistant gene expression cassette was isolated, as a 3.0-kb Apal-KpnI fragment, from the obtained plasmid, and then inserted into the Apal-KpnI of the pOMex1U-NO described in Example 21-2. The resultant plasmid was named pOMex5H (Fig. 18).

Example 22

5

10

15

20

30

35

40

45

50

55

Construction of heterologous gene expression plasmid using GAP gene promoter and terminator, and using *URA3* gene as a selectable maker

[0263] The gene expression cassette using the *GAP* gene promoter and terminator, as described in Example 3, was isolated as a 2.0-kb HindIII-KpnI, and then inserted into the HindIII-KpnI of each of the pOMUR-XN described in Example (21-2) and the pOMex4A described in Example (21-4) (where pOMex4A was a fragment comprising pUC19-ADE1). The obtained plasmids were named pOMexGP1U and pOMexGP4A, respectively (Fig. 18).

Example 23

Construction of Aspergillus saitoi-derived α -1,2-mannosidase expression plasmid using AOX1 gene promoter and terminator

[0264] Example 11 suggested that expression of α -1,2-mannosidase in the *Ogataea minuta* Δ och1 strain enabled the preparation of a Man5 producing yeast. So, *Ogataea minuta* Δ och 1 strain in which α -1,2-mannosidase was expressed was prepared. The *Aspergillius saitoi*-derived α -1,2-mannosidase gene, which comprised a signal sequence of asperginopepsin I (apnS) at the amino terminus and a yeast endoplasmic reticulum (ER) retention signal (HDEL) at the carboxyl terminus (J. Biol. Chem., 273 (1998) 26298), was used for expression. PCR by the primers:

5'-GGGGGGTCGACATGGTGGTCTTCAGCAAAACCGCTGCCC-3' (SEQ ID NO:87);

25 and

5'-GGGGGGCGCCGCGTGATGTTGAGGTTGTTGTACGGAACCCCC-3' (SEQ ID NO:88)

was performed using the plasmid pGAMH1 comprising the above described gene as a template ((94°C for 30 seconds, 50°C for 1 minute and 72°C for 30 seconds) \times 20 cycles). The approximately 0.5-kb DNA fragment 5'-upstream of the amplified a-1,2-mannosidase gene was recovered, cleaved with Sall and NotI, and inserted into the Sall-NotI of the pBluescript II SK-. The nucleotide sequence of the DNA insert was determined and a clone comprising the correct nucleotide sequence was selected. The 1.2-kb BgIII-NotI fragment downstream of the BgIII site in the α -1,2-mannosidase gene isolated from the pGAMH1 was inserted into the BgIII-NotI of the obtained plasmid. This plasmid was named paMSN. The paMSN was cleaved with Sall and blunt-ended, and an Xbal linker was inserted thereinto. This plasmid was named paMSN was cleaved with NotI and blunt-ended, and a BamHI linker was inserted thereinto. The resultant plasmid was named paMSB. The 0.4-kb Xbal-BgIII fragment upstream of the α -1,2-mannosidase gene isolated after cleaving the paMXN with Xbal-ApaI, and the 1.1-kb Apal-BamHI fragment downstream of the α -1,2-mannosidase gene isolated after cleaving the paMSB with Apal-BamHI, were inserted into the Xbal-BamHII of the pOMex1U described in Example (21-2) and of the pOMex3G described in Example (21-3), respectively, by three points ligation. The obtained plasmids were named pOMaM1U and pOMaM3G, respectively.

Example 24

Preparation of Aspergillus saitoi-derived α -1,2-mannosidase gene expressing Ogataea minuta Δ och1 strain and sugar chain analysis of same

[0265] The pOMaM1U obtained in Example 23 was cleaved with Notl, and the *Ogataea minuta* TK3-A strain (och1Δ ura3Δ) obtained in Example (10-2) was transformed with it. The intracellular α-1,2-mannosidase activity of the obtained transformant was measured. The transformants cultured in the BYPM medium (0.67% yeast nitrogen base, 1% yeast extract, 2% polypeptone, 100 mM potassium phosphate buffer pH 6.0, 0.5% methanol) were harvested and suspended in 0.1 M sodium acetate buffer pH 5.0 containing 1% Triton X100 and 1mM PMSF, then the cells were disrupted with glass beads to obtain a cell extract. The extract was appropriately diluted, 20 pmol of Man6b sugar chain (TAKARA SHUZO CO., LTD., Japan) was added, and the mixture was incubated for reaction at 37°C for 10-60 minutes. After the incubation, the mixture was boiled to inactivate the enzyme and subjected to HPLC to analyze the produced Man5

sugar chain. The HPLC conditions were as follows.

Column: TSK-Gel ODS 80TM (6 × 150 mm, TOSOH CORPORATION, Japan)

Column temperature: 50°C

Flow rate: 1.2 ml

Elution conditions: A: 100 mM ammonium acetate pH 6.0 B: 100 mM ammonium acetate pH 6.0 + 0.15% butanol Linear gradient of 0 minute A = 70% and 12 minutes A = 0%

[0266] A yeast strain having the highest α-1,2-mannosidase activity was selected and named *Ogataea minuta* TK3-A-MU1 strain. The yeast strain was cultured again in the BYPM medium, and the structure of the sugar chain of cell surface mannan proteins was analyzed. The preparation of PA-oligosaccharides was carried out in accordance with the method described in Example 1. And HPLC analysis was performed by the method described in Example 11.
 [0267] The results are shown in Fig. 19. The size analysis by normal phase column revealed that the *Ogataea minuta* TK3-A-MU1 strain mainly produced Man5GlcNAc2. The structure analysis by reverse phase column revealed that the Man5GlcNAc2 was the sugar chain of the following structural formula 2:

Structural Formula 2

20

35

40

45

50

55

5

Man α 1

6

Man α 1

3

6

Man α 1

which sugar chain was consistent with the human-type, high mannose-type sugar chain, and precursor of hybrid type or complex type sugar chains.

Example 25

Construction of Saccharomyces cerevisiae-derived invertase expression plasmid using AOX1 gene promoter and terminator

[0268] Invertase (SUC2) gene of Saccharomyces cerevisiae (GenBank accession number; V01311) was obtained by PCR. PCR by the primers:

5'-GGGGACTAGTATGCTTTTGCAAGCTTTCCTTTTC-3' (SEQ ID NO:89);

and

5'-CCCCAGATCTTATTTTACTTCCCTTACTTGGAACTTGTC-3' (SEQ ID NO:90)

was performed using the chromosomal DNA of Saccharomyces cerevisiae S288C strain as a template ((94° C for 30 seconds, 50°C for 1 minute and 72°C for 1.5 minute) \times 20 cycles). The amplified DNA fragment of approximately 1.4 kb was recovered, cleaved with Spel and BgIII, and inserted into the Xbal-BamHI of the pOMex1U described in Example (21-2) and of the pOMex3G described in Example (21-3). The obtained plasmids were named pOMTV1U and pOMIV3G, respectively.

Example 26

5

10

15

20

25

30

55

Transferring of Saccharomyces cerevisiae-derived invertase gene into Aspergillus saitoi-derived α-1,2-mannosidase gene expressing Ogataea minuta OCH1 knockout mutant and expression of same

[0269] The pOMIV3G obtained in Example 25 was cleaved with Not1 and transferred into the *Ogataea minuta* TK3-A-MU1 strain described in Example 24. The transformant was cultured in the BYPM medium (0.67% yeast nitrogen base, 1% yeast extract, 2% polypeptone, 100 mM potassium phosphate buffer pH 6.0, 0.5% methanol). The culture was centrifuged and the resultant supernatant was assayed for invertase activity by the following procedures. Specifically, 2 μ l of appropriately diluted culture supernatant and 200 μ l of 100 mM sodium acetate buffer (pH 5.0) containing 2% sucrose were mixed together and incubated at 37°C for 10-30 minutes, and 500 μ l of Glucose-Test Wako (Wako Pure Chemical Industries, Ltd., Japan) was added to 2 μ l of the reaction mixture to develop color. An absorbance based on free glucose generated by invertase was measured at 505 nm. The most productive yeast strain *Ogataea minuta* TK3-A-MU-IVGI strain produced about 600 mg invertase/I medium, and the invertase was most part of proteins in the culture supernatant.

Example 27

Structure analysis of sugar chain of Saccharomyces cerevisiae-derived invertase secreted by the strain prepared in Example 26

[0270] The culture supernatant of the *Ogataea minuta* TK3-A-MU-IVG1 strain obtained in Example 26 was concentrated by ultrafiltration using Amicon YM76 membrane (Amicon), desalted, and subjected to an anion exchange column chromatography (Q-Sepharose FF, Amersham Pharmacia Biotech) to purify invertase fractions. The fractions were freeze-dried and PA-N-linked sugar chain was prepared by the method described in Example 1. The analysis by HPLC was performed by the method described in Example 11. The results are shown in Fig. 20. The results of the size analysis by amide column revealed that 90% or more sugar chains of the invertase was composed of Man5GlcNAc2. The structure analysis by reverse phase column showed that the Man5GlcNAc2 was the sugar chain represented by the structural formula 2 described in Example 24:

Structural Formula 2

Man
$$\alpha$$
 1 6 Man α 1 6 Man α 1 6 Man α 1 6 Man α 1 4 GIcNAc β 1 - 4 GIcNAc β 3 Man α 1

45 This sugar chain was consistent with the Man5 type, high mannose type sugar chain, which is a precursor of hybrid type or complex type sugar chain.

Example 28

50 Preparation of human antibody gene-transferred *Ogataea minuta OCH1* knockout mutant, transfer and expression of Aspergillus saitoi-derived α-1,2-mannosidase gene in the mutant, and production of human antibody using same

[0271] Anti-human G-CSF antibody gene was transferred into the *Ogataea minuta* TK9 strain (och1 Δ pep4 Δ prb1 Δ ura3 Δ ade1 Δ) obtained in Example (15-2).

[0272] Anti-human G-CSF antibody producing hybridoma was obtained by producing a mouse producing anti-human G-CSF antibodies using human G-CSF as an antigen in accordance with the method by Tomiduka et al. (Proc. Natl. Acad. Sci. U.S.A. 97(2), 722-7 (2000)), removing the spleen from the mouse by conventional procedure (Muramatsu et al., Jikken Seibutsugaku Koza, Vol. 14, pp.348-364), and fusing the B cells with a mouse myeloma. The antibody

gene was obtained from the hybridoma by the method described by Welschof, M et al. (J. Immunol. Methods. 179 (2), 203 -14 (1995)).

[0273] Xbal linker and BamHl linker were added at the N-terminus and the C-terminus, respectively, of each of the anti-G-CSF light chain gene (SEQ ID NO:91; the coded amino acid sequence, SEQ ID NO:92) and anti-G-CSF heavy chain gene (SEQ ID NO:93, the coded amino acid sequence, SEQ ID NO:94). Subsequently, the light chain gene was transferred at the Xbal-BamHI site of the pOMex4A described in Example (21-4) while the heavy chain gene at the Xbal-BamHl site of the pOMex3G described in Example (21-3), respectively. Each of the constructed expression vectors was cleaved with Notl, and the Ogataea minuta TK9 strain was in turn transformed. The obtained transformants were cultured in the BYPMG medium (0.67% yeast nitrogen base, 1% yeast extract, 2% polypeptone, 100 mM potassium phosphate buffer pH 6.0, 0.1% methanol, 0.2% glycerol) at 20°C for 72 hours, and then centrifuged. The culture supernatant was subjected to Western analysis using a horseradish peroxidase labeled anti-human IgG sheep antibody (Amersham Pharmacia Biotech). First, 100 µl of the culture supernatant was concentrated through Microcon YM30 membrane and subjected to SDS-PAGE. Then, the electrophoresed proteins were blotted on PVDF membrane (Immobilon, Millipore), which membrane was then blocked over 1 hour using Block Ace (Dainippon Pharmaceutical Co., Ltd., Japan). Proteins on the membrane were incubated for 1 hour in TBS solution (Tris buffer containing 0.15 M NaCl) containing the horseradish peroxidase labeled anti-human IgG sheep antibody (1000:1 dilution), and unbound antibodies were washed out with TBS containing 0.04% Tween 20. The detection of signal was carried out using Super Signal WestDura (Pierce). Thus, the transformant producing the antibody in the culture supernatant was selected. The Ogataea minuta TK9-derived antibody producing strain was named Ogataea minuta TK9-lqB 1.

[0274] Then, the Aspergillus saitoi-derived α-1,2-mannosidase gene was transferred into the Ogataea minuta TK9-lgB1 strain. After transformation, α-1,2-mannosidase expressing strain was selected from the obtained transformants by the method described in Example 24 using the plasmid pOMaM1U prepared in Example 23. The resultant strain was named Ogataea minuta TK9-lgB-aM. This strain was cultured in the BYPMG medium at 20°C for 72 hours and centrifuged. The culture supernatant obtained by the centrifugation was subjected to Western analysis.

[0275] The results are shown in Fig. 21. The results revealed that the *Ogataea minuta* TK9-IgB-aM strain produced both antibody heavy chains and light chains, although part of the antibody heavy chains was degraded.

[0276] Further, the culture supernatant of the *Ogataea minuta* TK9-IgB-aM strain was concentrated by ultrafiltration using Amicon YM76 membrane (Amicon), desalted, and subjected to Protein A column chromatography (Hi-Trap ProteinA HP, Amersham Pharmacia Biotech) to purify the antibody fractions through the elution with glycine-HCl, pH 3.0 (Fig. 22). To detect the binding of the antibody to G-CSF as the antigen, Western analysis was performed. The analysis was done in accordance with the above described procedures using the purified antibody as a primary antibody and the horseradish peroxidase labeled anti-human IgG sheep antibody as a secondary antibody. The results are shown in Fig. 23. The results revealed that the antibody produced by the *Ogataea minuta* TK9-IgB1 strain bound to G-CSF as the antigen.

Example 29

Structure analysis of sugar chains of human antibody produced by the strains prepared in

40 Example 28

10

20

25

30

35

45

55

[0277] The purified antibodies produced using the *Ogataea minuta* TK9-IgB-aM strain and the *Ogataea minuta* TK9-IgB strain as shown in Example 28 were dialyzed and freeze-dried. PA-N-linked sugar chains were prepared by the method described in Example 11 and subjected to size analysis by normal phase column. The results are shown in Fig. 24. The results revealed that the sugar chain of the antibody produced by the *Ogataea minuta* TK9-IgB strain was composed mainly of Man₇GlcNAc₂, while the sugar chain of the antibody produced by the *Ogataea minuta* TK9-IgB-aM strain was composed mainly of Man₅GlcNAc₂, which was a mammalian type, high mannose type sugar chain. The results indicated that 80% or more sugar chains were composed of Man₅GlcNAc₂.

50 Example 30

Cloning of HIS3 (imidazoleglycerol phosphate dehydratase) gene from Ogataea minuta

[0278] The HIS3 gene was obtained from Ogataea minuta IFO 10746 strain, and its nucleotide sequence was determined.

(30-1) Preparation of probe

[0279] Oligonucleotides having nucleotide sequences corresponding to the amino acid sequences conserved in *HIS3* gene products from *Saccharomyces cerevisiae* (Accession number; CAA27003) and *Pichia pastoris* (Accession number; Q92447):

VGFLDHM (SEQ ID NO:95)

and

5

10

15

20

25

30

35

40

45

50

PSTKGVL (SEQ ID NO:96)

were synthesized as follows.

PHI5; 5'-TNGGNTTYYTNGAYCAYATG-3' (SEQ ID NO:97)

PHI3; 5'-ARNACNCCYTTNGTNSWNGG-3' (SEQ ID NO:98)

[0280] The primer PHI5 has a sequence complementary to the nucleotide sequence corresponding to the amino acid sequence VGFLDHM, and the primer PHI3 has a sequence complementary to the nucleotide sequence corresponding to the amino acid sequence PSTKGVL.

[0281] PCR by primers PHI5 and PHI3 was performed using the chromosomal DNA of *Ogataea minuta* IFO 10746 strain as a template ((94°C for 30 seconds, 50°C for 30 seconds and 72°C for 1 minute) × 25 cycles). The amplified DNA fragment of approximately 0.5 kb was recovered and cloned using TOPO TA Cloning Kit. Plasmid DNA was isolated from the obtained clone and sequenced. For a DNA insert of the plasmid, a clone was selected which had a nucleotide sequence encoding an amino acid sequence highly homologous to the amino acid sequences of *HIS3* gene products from *Saccharomyces cerevisiae* and *Pichia pastoris*. The 0.5-kb DNA insert was recovered after EcoRI digestion of the plasmid and agarose gel electrophoresis.

(30-2) Preparation of library and screening

[0282] The chromosomal DNA of *Ogataea minuta* IFO 10746 was cleaved with different restriction enzymes, and subjected to Southern analysis using the DNA fragment obtained in Example (30-1) as a probe by the method described in Example (2-2). The results indicated that there existed the *HIS3* gene in the Pstl fragment of approximately 4 kb. Then, to clone the DNA fragment, a library was constructed. The chromosomal DNA of *Ogataea minuta* was cleaved with Pstl and subjected to agarose gel electrophoresis, and then the approximately 4-kb DNA fragment was recovered from the gel. The recovered DNA fragment was ligated with Pstl-cleaved and BAP-treated pUC118 and then transformed into *Escherichia coli* DH5 α strains to prepare a library.

[0283] About 2,000 clones were screened by colony hybridization using the above described DNA fragment as a probe. A clone bearing plasmid pOMHI1 was selected from the 4 positive clones obtained.

(30-3) Sequencing of nucleotide sequence

[0284] The nucleotide sequence of the PstI-PstI region of the plasmid pOMHI1 (Fig. 25) was determined by primer walking method to obtain a nucleotide sequence represented by SEQ ID NO:99.

[0285] In the nucleotide sequence of SEQ ID 0: 99, there existed an open reading frame of 714 bp, starting at position 1,839 and ends at position 2,552. The homology studies between the amino acid sequence (SEQ ID NO:100) deduced from the open reading frame and the *HIS3* gene product from *Saccharomyces cerevisiae* or *Pichia pastoris* showed that 73% or 71% of amino acids were respectively identical between them.

55

Example 31

10

25

30

35

40

Preparation of Ogataea minuta HIS3 knockout mutant

5 [0286] The HIS3 gene was disrupted by transformation using the Ogataea minuta URA3 gene as a marker.

(31-1) Preparation of HIS3 gene disruption vector

[0287] As shown in Fig. 25, plasmid pDOMHII was prepared by replacing the approximately 70 bp region of the *HIS3* structural gene by the *URA3* gene.

[0288] The plasmid pROMU1 described in Example 8-1 was cleaved with BgIII, blunt-ended, and ligated with an EcoT22I linker. The obtained plasmid was named pROMUHT.

[0289] The plasmid pOMHI1 containing the *HIS3* gene region and described in Example (30-3) was cleaved with PfIMI, blunt-ended, and ligated with an EcoT22I linker. The obtained plasmid was named pOMHI2. This plasmid was then cleaved with EcoRI and SaII and ligated with the EcoRI- and SaII-cleaved pBluescript II KS+. The obtained plasmid was named pOMHI3. The pOMHI3 was cleaved with Btgl, blunt-ended, and ligated with a HindIII linker. The obtained plasmid was named pOMHI4. The 3.3-kb EcoT22I-HindIII fragment isolated from the pROMUHT was inserted into the EcoT22I-HindIII of the obtained plasmid. The resultant plasmid was named pDOMHII (Fig. 25).

20 (31-2) Transformation

[0290] The pDOMHI1 obtained in Example (30-2) was cleaved with BamHI and XhoI and transformed into the *Ogataea minuta* TK11 strain (och1 Δ ktr1 Δ pep4 Δ prb1 Δ ura3 Δ ade1 Δ) obtained in Example (17-2) by electric pulse method. To confirm that the *HIS3* gene was disrupted, the following primers were synthesized (see Fig. 26 with regard to the position of each primer):

DHI5; 5'-.GGCCCAATAGTAGATATCCC-3' (SEQ ID NO:101)

DHI3; 5'-CACGGCCCGTGTAGCTCGTGG-3' (SEQ ID NO:102)

[0291] PCR by primers DHI5 and DHI3 was performed using the chromosomal DNA isolated from the transformant as a template ((94°C for 30 seconds, 60°C for 1 minute and 72°C for 2 minutes) x 25 cycles). As shown in Fig. 26, a 4.6 kb amplified DNA fragment was detected in the strain whose *HIS3* locus had the plasmid integrated thereinto. The selected strain was cultured on the YPD medium until stationary phase and a strain resistant to 5-fluoroorotic acid (5-FOA) was obtained. PCR by primers DHI5 and DHI3 was performed using the chromosomal DNA of the 5-FOA resistant strain as a template ((94°C for 30 seconds, 60°C for 1 minute and 72°C for 3 minutes) \times 25 cycles). As shown in Fig. 26, in the strain from which the *URA3* gene was deleted, a 2 kb amplified DNA fragment was detected. This och 1Δ ktr 1Δ pep 4Δ prb 1Δ ura 3Δ ade 1Δ his 3Δ strain was named *Ogataea minuta* YK1.

Example 32

45 Construction of heterologous gene expression plasmid using AOX1 gene promoter and terminator, and HIS3 gene as a selectable marker

[0292] A plasmid was prepared by the steps of: cleaving with SacI the pOMHI1 containing the *HIS3* gene as described in Example (30-3); blunt-ending; transferring an Apal; cleaving with NcoI; blunt-ending; transferring a KpnI linker; cleaving with EcoRI; blunt-ending; and transferring a NotI linker. The *HIS3* gene expression cassette was isolated, as a 2.6-kb Apal-KpnI fragment, from the obtained plasmid, and inserted into the Apal-KpnI of the POMex1U. The resultant plasmid was named pOMex6HS (Fig. 32).

[0293] The approximately 1.4-kb SpeI-BgIII fragment comprising *Saccharomyces cerevisiae*-derived invertase gene, which was prepared in Example 25, was inserted into the XbaI-BamHI of the pOMex6HS to prepare pOMIV6HS. This plasmid was cleaved with NotI and transferred into the *Ogataea minuta* YK1 strain described in Example (31-2). The transformants were cultured in the BYPM medium (0.67% yeast nitrogen base, 1% yeast extract, 2% polypeptone, 100 mM potassium phosphate buffer pH 6.0, 0.5% methanol). The culture was centrifuged, and invertase activity was measured for the supernatant by the following procedures. Specifically, 2 μI of the culture supernatant appropriately

diluted and 200 μ l of 100 mM sodium acetate buffer (pH 5.0) containing 2% sucrose were mixed and incubated at 37°C for 10-30 minutes, and then 500 μ l of Glucose-Test Wako (Wako Pure Chemical Industries, Ltd., Japan) was added to the reaction mixture to develop color. An absorbance based on free glucose generated by invertase was measured at 505 nm. In the yeast strain *Ogataea minuta YK*1-IVH1, a significant amount of invertase was produced in the medium.

Example 33

5

15

25

30

35

40

45

50

55

Cloning of LEU2 (3-isopropylmalate dehydrogenase) gene from Ogataea minuta

10 [0294] The LEU2 gene was obtained from Ogataea minuta strain IFO 10746, and its nucleotide sequence was determined.

(33-1) Preparation of probe

[0295] Oligonucleotides having nucleotide sequences corresponding to the amino acid sequences conserved in LEU2 gene products from Saccharomyces cerevisiae (Accession number; CAA27459) and Pichia angusta (P34733):

AVGGPKWG (SEQ ID NO: 103);

20 and

AAMMLKL (SEQ ID NO:104)

were synthesized as follows.

PLE5: 5'-GCNGTNGGNGGNCCNAARTGGGG-3' (SEQ ID NO:105)

PLE3; 5'-NARYTTNARCATCATNGCNGC-3' (SEQ ID NO:106)

[0296] The primer PLE5 has a sequence complementary to the nucleotide sequence corresponding to the amino acid sequence AVGGPKWG, and the primer PLE3 has a sequence complementary to the nucleotide sequence corresponding to the amino acid sequence AAMMLKL.

[0297] PCR by primers PLE5 and PLE3 was performed using the chromosomal DNA of *Ogataea minuta* IFO 10746 as a template ((94°C for 30 seconds, 50°C for 1 minute and 72°C for 1 minute) × 25 cycles). The amplified DNA fragment of approximately 0.7 kb was recovered and cloned using TOPO TA Cloning Kit. Plasmid DNA was isolated from the obtained clone and sequenced. For a DNA insert of the plasmid, a clone was selected which had a nucleotide sequence encoding an amino acid sequence highly homologous to the amino acid sequence of *LEU2* gene products from *Saccharomyces cerevisiae* and *Pichia angusta*. The 0.7-kb DNA insert was recovered after EcoRI cleavage of the plasmid and agarose gel electrophoresis.

(33-2) Preparation of library and screening

[0298] The chromosomal DNA of *Ogataea minuta* IFO 10746 strain was cleaved with different restriction enzymes, and subjected to Southern analysis using the DNA fragment obtained in Example (33-1) as a probe by the method described in Example (2-2). The results suggested that there existed the *LEU2* gene in the BamHI-Clal fragment of approximately 6 kb. Then, to clone the DNA fragment, a library was prepared. The chromosomal DNA of *Ogataea minuta* was cleaved with BamHI and Clal and subjected to agarose gel electrophoresis, and then the approximately 6-kb DNA fragment was recovered from the gel. The recovered DNA fragment was ligated with BamHI- and Clal-cleaved pBluescript II KS+ and then transformed into *Escherichia coli* strain DH5 α to prepare a library.

[0299] About 3,000 clones were screened by colony hybridization using the above described DNA fragment as a probe. A clone bearing plasmid pOMYP1 was selected from the 7 positive clones obtained.

(33-3) Sequencing of nucleotide sequence

[0300] The nucleotide sequence of the BamHI-Clal region of the plasmid pOMLE1 (Fig. 28) was determined by primer walking method to obtain the nucleotide sequence represented by SEQ ID NO:107.

[0301] In the nucleotide sequence of SEQ ID NO:107, there existed an open reading frame of 1,089 bp, starting at position 1,606 and ends at position 2,694. The homology studies between the amino acid sequence (SEQ ID NO:108) deduced from the open reading frame and the *LEU2* gene product from *Saccharomyces cerevisiae* or *Pichia angusta* showed that 80% or 85% of amino acids were respectively identical between them.

10 Example 34

15

20

25

30

35

40

45

50

55

Preparation of Ogataea minuta LEU2 knockout mutant

[0302] The LEU2 gene was disrupted by transformation using the URA3 gene of Ogataea minuta as a marker.

(34-1) Preparation of LEU2 gene disruption vector

[0303] As shown in Fig. 28, plasmid pDOMLE1 was prepared by replacing the approximately 540-bp region of the *LEU2* structural gene by the *URA3* gene. To obtain a uracil auxotrophic mutant again from *LEU2* gene knockout mutants, the *URA3* gene having repetitive structures before and after the structural gene was used as a marker. The pROMUHT described in Example (31-1) was cleaved with HindIII, blunt-ended, and ligated with a Nhel linker. The obtained plasmid was named pROMUNT.

[0304] The pOMLE1 was cleaved with Stul, blunt-ended, and ligated with a Nhel linker. The obtained plasmid was named pOMLE2. The 3.3-kb Nhe-EcoT22I fragment isolated from the pOMURNT was inserted into the Nhel-Pstl of the pOMLE2. The obtained plasmid was named pDOMLE1.

(34-2) Transformation

[0305] The pDOMLEI obtained in Example (34-1) was cleaved with BamHI and ClaI, and transformed into the *Ogataea minuta* TK11 strain (och1 \triangle ktr1 \triangle pep4 \triangle prb1 \triangle ura3 \triangle ade1 \triangle) obtained in Example (17-2) by electric pulse method. To confirm that the *LEU2* gene of these strains was disrupted, the following primers were synthesized (see Fig. 29 with regard to the position of each primer):

DL5; 5'-CAGGAGCTACAGAGTCATCG-3' (SEQ ID NO:109)

DL3; 5'-ACGAGGGACAGGTTGCTCGC-3' (SEQ ID NO:110)

[0306] PCR by primers DL5 and DL3 was performed using the chromosomal DNA isolated from the transformant as a template ((94°C for 30 seconds, 60°C for 1 minute and 72°C for 2 minutes) x 25 cycles). As shown in Fig. 29, a 4 kb amplified fragment was detected in the strain whose LEU2 locus had the plasmid integrated thereinto. The selected strain was cultured on the YPD medium until stationary phase, and a strain resistant to 5-fluoroorotic acid (5-FOA) was obtained. PCR by primers DL5 and DL3 was performed using the chromosomal DNA of the 5-FOA resistant strain as a template ((94°C for 30 seconds, 60°C for 1 minute and 72°C for 3 minutes) \times 25 cycles). As shown in Fig. 29, in the strain from which the URA3 gene was deleted, a 1.6 kb amplified DNA fragment was detected. This och1 Δ ktr1 Δ pep4 Δ prb1 Δ ura3 Δ ade1 Δ leu2 Δ strain was named Ogataea minuta YK2.

Example 35

Construction of heterologous gene expression plasmid using AOX1 gene promoter and terminator, and LEU2 gene as a selectable marker

[0307] The pOMLE1 comprising the *LEU2* gene described in Example (33-2) was cleaved with PmaCI, ligated with an Apal linker, cleaved with BamHI, blunt-ended, and ligated with a KpnI linker. The *LEU2* gene expression cassette was isolated, as a 3.3-kb Apal-KpnI fragment, from the obtained plasmid, and then inserted into the Apal-KpnI of the

POMexIU. The obtained plasmid was cleaved with Spel, blunt-ended, and ligated with a Notl linker. The resultant plasmid was named pOMex7L (Fig. 30).

[0308] The approximately 1.4-kb Spel-BgIII fragment comprising the *Saccharomyces cerevisiae*-derived invertase gene, obtained in Example 25, was inserted into the Xbal-BamHI of the pOMex7L to prepare pOMIV7L. This plasmid was cleaved with Notl and transferred into the *Ogataea minuta* YK2 strain described in Example (34-2). The transformant was cultured in the BYPM medium (0.67% yeast nitrogen base, 1% yeast extract, 2% polypeptone, 100 mM potassium phosphate buffer pH 6.0, 0.5% methanol). The culture was centrifuged and the supernatant was measured for invertase activity by the following procedures. Specifically, 2 μ I of the culture supernatant appropriately diluted and 200 μ I of 100 mM sodium acetate buffer (pH 5.0) containing 2% sucrose were mixed together and incubated at 37°C for 10-30 minutes, and 500 μ I of Glucose-Test Wako (Wako Pure Chemical Industries, Inc., Japan) was added to the 2 μ I of the reaction mixture to develop color. The absorbance based on free glucose generated by invertase was measured at 505 nm. In the most productive yeast strain *Ogataea minuta* YK2-IVL1, a significant amount of invertase was produced in the medium.

15 Example 36

Cloning of YPS1 gene from Ogataea minuta

[0309] The YPS1 gene was obtained from Ogataea minuta IFO 10746, and its nucleotide sequence was determined.

(36-1) Preparation of probe

[0310] Oligonucleotides having nucleotide sequences corresponding to the following amino acid sequences conserved in *YPS1* gene products from *Saccharomyces cerevisiae* (Accession number; NP_013221) and *Candida albicans* (Accession number; AAF66711):

DTGSSDLW (SEQ ID NO:111)

30 and

20

25

40

45

50

55

FGAIDHAK (SEQ ID NO:112)

35 were synthesized as follows.

PLE5; 5'-GAYACNGGHTCNTCNGAYYTNTGG-3' (SEQ ID NO:113)

PLE3; 5'-TTYGGHGCNATYGAYCAYGCNAA-3' (SEQ ID NO:114)

[0311] The primer PYP5 has a sequence complementary to the nucleotide sequence corresponding to the amino acid sequence DTGSSDLW, and the primer PYP3 has a sequence complementary to the nucleotide sequence corresponding to the amino acid sequence FGAIDHAK.

[0312] PCR by primers PYP5 and PYP3 was performed using the chromosomal DNA of *Ogataea minuta* IFO 10746 as a template ((94°C for 30 seconds, 50°C for 1 minute and 72°C for 1 minute) x 25 cycles). Approximately 0.6 kb amplified DNA fragment was recovered and cloned using TOPO TA Cloning Kit. Plasmid DNA was isolated from the obtained clone and sequenced. For a DNA insert of the plasmid, a clone was selected which had a nucleotide sequence encoding an amino acid sequence highly homologous to the amino acid sequences of *YPS1* gene products from *Saccharomyces cerevisiae* and *Candida albicans*. The 0.6-kb DNA insert was recovered after EcoRI digestion of the plasmid and agarose gel electrophoresis.

(36-2) Preparation of library and screening

[0313] The chromosomal DNA of *Ogataea minuta* IFO 10746 was cleaved with different restriction enzymes, and subjected to Southern analysis using the DNA fragment obtained in Example (36-1) as a probe by the method described in Example (2-2). The results suggested that there existed *YPS1* gene in the EcoRI fragment of approximately 4 kb.

Then, to clone the DNA fragment, a library was constructed. The chromosomal DNA of the *Ogataea minuta* was cleaved with EcoRI and subjected to agarose gel electrophoresis, and then the approximately 6-kb DNA fragment was recovered from the gel. The recovered DNA fragment was ligated with EcoRI-cleaved and BAP-treated pUC118 and then transformed into *Escherichia coli* strain DH5 α to prepare a library.

5 [0314] About 2,000 clones were screened by colony hybridization using the above described DNA fragment as a probe. A clone bearing plasmid pOMYP1 was selected from the 4 positive clones obtained.

(36-3) Sequencing of nucleotide sequence

10 [0315] The nucleotide sequence of the EcoRI region of the plasmid pOMLE1 (Fig. 31) was determined by primer walking method to obtain a nucleotide sequence represented by SEQ ID NO:115.

[0316] In the nucleotide sequence of SEQ ID NO:115, there existed an open reading frame of 1,812 bp, starting at lposition 1,712 and ends at position 3,523. The homology studies between the amino acid sequence (SEQ ID NO:16) deduced from the open reading frame and the *YPS1* gene product from *Saccharomyces cerevisiae* or *Candida albicans* showed that 40% or 27% of amino acids were respectively identical between them.

Example 37

15

20

30

35

40

45

50

55

Preparation of Ogataea minuta YPS1 knockout mutant

[0317] The YPS1 gene was disrupted by transformation using the URA3 gene of Ogataea minuta as a marker.

(37-1) Preparation of YPS1 gene disruption vector

[0318] As shown in Fig. 31, plasmid pDOMYP1 was prepared by replacing the approximately 300-bp region of the YPS1 structural gene by the URA3 gene. To obtain a uracil auxotrophic mutant again from YPS1 knockout mutants, the URA3 gene having repetitive structures before and after the structural gene was used as a marker. The pROMUHT described in Example (31-1) was cleaved with HindIII, blunt-ended, and ligated with an EcoT22I linker. The obtained plasmid was named pROMUTT.

[0319] The pOMYPI was cleaved with EcoRI, and the obtained fragment was ligated with EcoRI-cleaved and BAP-treated pBluescript II KS+. The obtained plasmid was named pOMYP2. This plasmid was cleaved with BsiWI and blunt-ended, and an EcoT22I linker was inserted thereinto. The obtained plasmid was named pOMYP3. The 3.3-kb EcoT22I fragment isolated from the pOMURTT was inserted at the EcoT22I of the pOMYP3. The obtained plasmid was named pDOMYP1.

(37-2) Transformation

[0320] The pDOMYP1 obtained in Example (37-1) was cleaved with BamHI and ClaI, and transformed into the *Ogataea minuta* TK11 strain ($och1\Delta$ ktr 1Δ pep 4Δ prb 1Δ ura 3Δ ade 1Δ) obtained in Example (17-2) by electric pulse method. To confirm that the *YPS1* gene was disrupted, the following primers were synthesized (see Fig. 32 with regard to the position of each primer).

DY5; 5'-CTCAAGGGCCTGGAGACTACG-3' (SEQ ID NO:117)

DY3; 5'-CGGGATTCCCGAGTCGCTCACC-3' (SEQ ID NO:118)

[0321] PCR by primers DY5 and DY3 was performed using the chromosomal DNA isolated from the transformant as a template ((94°C for 30 seconds, 60°C for 1 minute and 72°C for 2 minutes) \times 25 cycles). As shown in Fig. 8, a 3.7 kb amplified DNA fragment was detected in the strain whose *YPS1* locus had the plasmid integrated thereinto. The selected strain was cultured on the YPD medium until stationary phase, and a strain resistant to 5-fluoroorotic acid (5-FOA) was obtained. PCR by primers DY5 and DY3 was performed using the chromosomal DNA of the 5-FOA resistant strain as a template ((94°C for 30 seconds, 60°C for 1 minute and 72°C for 3 minutes) \times 25 cycles). As shown in Fig. 32, a 1.2 kb amplified DNA fragment was detected in the strain from which the *URA3* gene was deleted. This och1 Δ ktr1 Δ pep4 Δ prb1 Δ ura3 Δ ade1 Δ yps1 Δ strain was named *Ogataea minuta* YK3.

Example 38

5

10

20

25

30

35

40

45

50

55

Transferring of human antibody gene into Ogataea minuta YPS1 knockout mutant and expression of same

[0322] Human G-CSF light chain gene (SEQ ID NO:91) and heavy chain gene (SEQ ID NO:92) were transferred into the *Ogataea minuta* YK3 strain (och1Δ ktr1Δ pep4Δ prb1Δ ura3Δ ade1Δ yps1Δ) obtained in Example (37-2). The plasmid vector expressing anti-G-CSF light chain and heavy chain genes, described in Example 28, was cleaved with Notl, the *Ogataea minuta* YK3 strain was transformed in turn. In accordance with the method described in Example 28, a transformant that produced the antibodies in the culture supernatant was selected from the obtained transformants, and the *Ogataea minuta* YK3-derived antibody producing strain was named *Ogataea minuta* YK3-lgB 1.

[0323] Then Aspergillus saitoi-derived α -1,2-mannosidase gene was transferred into the *Ogataea minuta* YK3-IgB1 strain. After transformation using the plasmid pOMaM1U prepared in Example 23 by the method described in Example 24, an α -1,2-mannosidase expressing strain was selected from the obtained transformants. The resultant strain was named *Ogataea minuta* YK3-IgB-aM. The *Ogataea minuta* YK3-IgB-aM strain and the *Ogataea minuta* TK9-IgB-aM strain prepared in Example 28 as a control were cultured in the BYPMG medium at 28°C for 72 hours and centrifuged. The culture supernatant obtained by the centrifugation was subjected to Western analysis. The results are shown in Fig. 33. The results revealed that in antibody molecules produced by the *Ogataea minuta* TK9-IgB-aM strain, as a control, molecules with degraded heavy chains were detected, whereas in the antibody molecules produced by the *Ogataea minuta* YK3-IgB-aM strain, the degradation of the heavy chains was retarded.

[0324] Further, the culture supernatant of the *Ogataea minuta* YK3-IgB-aM strain was concentrated by ultrafiltration using an Amicon YM76 membrane (Amicon), desalted, and subjected to Protein A column chromatography (Hi-Trap ProteinA HP, Amersham Pharmacia Biotech) to purify the antibody fractions through the elution with glycine - HCI, pH 3.0. Western analysis was performed for the purified antibody samples (Fig. 34). The results of SDS-PAGE under non-reducing conditions, it was found that a full-length antibody molecule, which was composed mainly of two light chain molecules and two heavy chain molecules, was produced. The binding of the purified antibody to G-CSF was confirmed by the method described in Example 28. The antibody was dialyzed and freeze-dried. PA-N-linked sugar chains were prepared by the method described in Example 11 and subjected to size analysis by normal phase column. From the results, it was confirmed that the sugar chain of the antibody contained Man₅GlcNAc₂, which was a mammalian and high mannose type sugar chain.

Example 39

Transferring of a molecular chaperone Protein Disulfide Isomerase (PDI) gene into human antibody producing strain prepared in Example 38, and expression of same

[0325] The results obtained above confirmed that the *Ogataea mimita* YK3-lgB1-aM strain produced only a trace amount of the antibody in the culture supernatant, while the results of the Western analysis revealed that a significant amount of the antibody was accumulated in the cells (Fig. 35, lanes 1, 5). As it was presumed that the antibody protein was not fully folded, we attempted to express Protein Disulfide Isomerase (*PDI*) gene, as a molecular chaperone. To express the *PDI* gene, we constructed a plasmid, which expressed *PDI* gene using *AOX1* gene promoter and a hygromycin resistant gene as a selectable marker.

[0326] To obtain the *PDI* gene (M62815) from *Saccharomyces cerevisiae*, the following primers corresponding to the N-and C-termini of the PDI were synthesized.

PDI5; 5'-TCTAGAATGAAGTTTTCTGCTGGTGCCGTCCTG-3' (SEQ ID NO:119)

PDI3; 5'-GGATCCTTACAATTCATCGTGAATGGCATCTTC-3' (SEQ ID NO:120)

[0327] PCR by primers PDI5 and PDI3 was performed using the chromosomal DNA of $Saccharomyces\ cerevisiae\ S288C$ as a template ((94°C for 30 seconds, 55°C for 1 minute and 72°C for 1 minute) \times 20 cycles). 1.5 kb amplified DNA fragment was recovered and cloned using TOPO TA Cloning Kit. The nucleotide sequence of the DNA insert was determined and a clone having the correct nucleotide sequence was selected. The PDI gene of $Saccharomyces\ cerevisiae\ can be isolated as a Spel-BamHI fragment.$

[0328] Then, the Xbal-BamHI fragment comprising the above-described *PDI* gene was inserted into the Xbal-BamHI of the expression cassette using the *Ogataea minuta AOX1* gene promoter and terminator, as prepared in Example

(21-5), and the expression plasmid pOMex5H comprising the hygromycin resistant gene as a selectable marker. The resultant plasmid was named pOMex5H-PDI.

[0329] The pOMex5H-PDI was cleaved with Notl, and the *Ogataea minuta* YK3-IgB1-aM strain was transformed therewith. The transformants were cultured in the BYPMG medium and centrifuged, the culture supernatant obtained by the centrifugation was subjected to Western analysis in the same manner as in Example 38, and a transformant that produced the antibody in the culture supernatant was selected. The *Ogataea minuta* YK3-IgB-aM-derived antibody producing strain was named *Ogataea minuta* YK3-IgB-aM-P. The *Ogataea minuta* YK3-IgB-aM-P strain produced a significant amount of the full-length antibody molecule as compared with the original strain *Ogataea minuta* YK3-IgB-aM into which no molecular chaperon was transferred (Fig. 35, lane 4), and in which the amount of antibody accumulated in the cells was decreased (Fig. 35, lane 6).

[0330] The antibody fractions were purified from the culture supernatant of the *Ogataea minuta* YK3-lgB-aM strain by the method described in Example 38. The antibody fractions were dialyzed and freeze-dried. PA-N-linked sugar chains were prepared by the method described in Example 11, and subjected to size analysis by normal phase column to confirm that the sugar chain of the antibody produced by the *Ogataea minuta* YK3-lgB-aM strain contained Man₅GlcNAc₂, which was a mammalian type, high mannose type sugar chain.

Industrial Applicability

[0331] Using the methylotrophic yeast carrying a sugar chain mutation, which is newly prepared by genetic engineering techniques of the invention, a neutral sugar chain identical with a high mannose type sugar chain produced by mammalian cells such as human cells, or a glycoprotein having the same neutral sugar chain, can be produced in a large amount at a high purity. Further, by transferring a mammalian type sugar chain biosynthesis-associated gene (s) into the above described mutant strain, a hybrid type or complex type mammalian sugar chain or a protein comprising mammalian type sugar chain can be efficiently produced. The yeast strains and glycoproteins of the invention are applicable to medicaments, etc..

[0332] The disclosure of all the publications, patents and patent applications cited herein is incorporated herein by reference.

SEQUENCE LISTING

5	<110> KIRIN BEER KABUSHIKI KAISHA
	National Institute of Advanced Industrial Science and Technolog
10	
	<120> Methylotrophic yeast producing mammalian type sugar chain
15	<130> PH-1796-PCT
20	<150> JP 2002-127677
	<151> 2002-04-26
25	<160> 120
30	<170> PatentIn Ver. 2.0
	<210> 1
35	<211> 11
	<212> PRT
	<213> Saccharomyces cerevisiae
40	
	<400> 1
45	Ala Tyr Met Phe Lys Tyr Asp Ser Thr His Gly
	1 5 10
50	<21 0 > 2
	<211> 11
	<212> PRT
55	(213) Saccharomyces cerevisiae

5	<400> 2							
	Asp Gly Pr	o Ser His Lys Asp	Trp Arg Gly (Gly				
	1	5	10					
10								
	<210≻ 3							
	<211> 32							
15	<212> DNA							
	<213≻ Arti	ficial Sequence						
20								
	<220>							
	<223> Desc	ription of Artifici	al Sequence:	primer	PGP5 fo	r ampl:	ification	of
25	5'-region	of <u>Ogataea</u> minuta	GAP gene					
	<400> 3							
30	gcntayatgt	tyaartayga ywsnac	ncay gg				32	
35	<210> 4							
	<211> 32							
	<212> DNA							
40	<213> Arti	ficial Sequence						
	<220>							
45	<223> Desc	ription of Artifici	al Sequence:	primer	PGP3 fo	r ampli	ification	of
	3'-region	of <u>Ogataea minuta</u>	GAP gene					
50								
	<400> 4							
	cencenckee	artcyttrtg nswngg	nccr tc				32	
55								

<210> 5

⟨211⟩ 3186 5 <212> DNA <213> Ogataea minuta 10 <220> <221> CDS 15 <222> 1492..2502 <400> 5 20 aagetttact ggttcaaggg gttaagtagg ggegeggtet ggtetttgtg gttgttteta 60 cacggaccac agttgacagc atcgactgct catcgaaaac ggtcgcagtg cggcaatctg 120 25 ctctatctaa tcccaggcta ctcgatccct gcacaaccta cagagtgatc cgaccgcact 180 georgagatt cageagacte tegeagegea gegtgegttt taateeetea aateaagget 240 gtgcagacce ggaggatgtg aagctgggac ggcgggaggg aagtctggag tggtgagaga 300 30 atgtgggage tgtgcaaagg ggcaatggte acteagegea gagegatggt ggegegggg 360 ccaatatctc ggcaacaaga acgcccgagg acgacgggac tctgaatgcg agcacgttgt 420 ctttcagaca gtccaccegg attccaatat tegcaggact egegeteaga aaegeaacce 480 35 cggcagattc gcgtccagtc aggccatctg cggcgagctg ctgcgctcgc gggctgcgcc 540 acaacgcatc gccacatata cgtcaccgcc cgcccgctgg caacctgagg tttttccgca 600 40 acgggtgcac tgattgctgc gttaacgagg caactggaga tgtcagaggc caagtggagc 660 catateacag eggactgege atetetggee tgeeggacge ggtagegtee egtetttttg 720 eggacagett ettaaaacet ggetgaaact aagegagace tgegacetgg aacgeeegca 780 45 caccegtaca ceteeggagt tgtateetea gaageggagt aacetgeagg ectaegeaag 840 aaaagagccc gggacccatc gaccggaaaa gaggggtgga gctagtgggg tagccttgga 900 50 geagacetgg ggeagacetg ggttagtace agggeegaaa agggteagag gaateagggt 960 ggcacggcag tctataccgt agaagctctt ctcgacagca gcgagcagaa actgcacaga 1020 ggtccgttcg ccagtctcgt accaccaccg catgacccaa tcagcattga tgctcccaca 1080 55 tgggtagtgc gcgcgaacgc ctggcaccca aacacaccac ttacgcttcc cgcaccgcgg 1140

	tggttaacac	tggcccggag	tagtcatata	cggagatttt	ggcatgattc	taattccggg	1200	
5	tcgggacacg	acctaagtgg	cgtgcaaagc	tcgggggcta	aatgtttccc	ggcgctcgcg	1260	
	gcgactcttg	tgcgcgcccg	cggcggttcg	cgggagacgg	gggaaagaga	ggggtgaccg	1320	
	cagcgagcga	tggtgtgcca	gatctcaggc	cgagtcaaga	caatatataa.	agagaggatt	1380	
10	gtccactttt	ctccaatagt	atttgacccg	ggttgctctc	tgttgatttt	ttctagatca	1440	
	tacaattatt	gtttgaattc	actcaattaa	catacacaaa	tacaatacaa	aatggcttac	1500	
15	aacgtcggta	tcaacggatt	cggaagaatt	ggtagactcg	ttcttagaat	tgctttgtcc	1560	
	agaaaggaca	tcaacgtggt	tgccgtgaat	gatccattca	tcgctgccga	gtacgctgct	1620	
	tacatgttca	agtacgactc	cactcacgga	agataccaag	gtgaagtcac	cttcgaggga	1680	
20	aagtaccttg	tgatcgacgg	tcagaagatt	gaggtgttcc	aagagagaga	ccctgctgac	1740	
	atcccatggg	gtaaggaggg	cgttgacttt	gtcattgact	ccaccggtgt	gttcaccacc	1800	
0.5	accgccggcg	ctcaaaagca	cattgatgct	ggtgccaaga	aggttatcat	cactgctcca	1860	
25	tccgctgacg	ctccaatgtt	cgttatgggt	gtcaaccaca	aggagtacac	caaggacttg	1920	
	tccattgtct	ccaacgcttc	ctgtaccacc	aactgtctgg	ctccattggc	caaggttgtt	1980	
30	aacgacgttt	tcggtattga	gtctggtttg	atgaccaccg	tccactctat	cactgccacc	2040	
	caaaagaccg	ttgacggtcc	atcccacaag	gactggagag	gaggaagaac	cgcttccggt	2100	
	aacatcattc	catcctccac	cggtgccgct	aaggctgtcg	gtaaggtctt	gccagctctt	2160	
35	gctggtaagt	tgactggtat	gtctctgaga	gttcctacca	ccgatgtttc	cgttgttgac	2220	
	ttgactgtca	acttgaagac	cccaaccacc	tacgcagaga	tctccgccgc	catcaagaag	2280	
40	gcctctgagg	gtgaacttgc	cggtatcttg	ggttacactg	aggacgccgt	tgtctccact	2340	
	gacttcttga	ccgacaacag	atcttcgatc	tttgacgcct	ctgccggtat	cttgttgacc	2400	
	ccaactttcg	tcaagttgat	ctcctggtac	gataacgagt	acggttactc	caccagagtt	2460	
45	gtcgacttgc	ttgagcacgt	tgccaaggtc	tcttccgctt	aagtggatag	atgaccaatg	2520	
	gcctctttaa	gtaaacattt	cgttttgaat	atatttcaag	ttgaataatg	aaagccttgt	2580	
	tgtagactta	ctccgaagct	ccggggcttc	ggctccctga	atttattttt	tacatctctg	2640	
50	caccggaaaa	ctggctattt	gaaaaatttc	gacgttttgc	ttgaaactcg	agttgaggag	2700	
	cattgccaaa	ttcgatcgtt	ttctaacgga	cgccagtcga	gttattgtta	tgtcacgtga	2760	;
55 .	catcaattgt	cctctattcc	tttttggccg	atctcgtttg	tgctgacggc	ctccgaacag	2820	
	ttacttctac	cggcagggat	tggggatgat	cgggatcgat	gtcctcaact	ccagaggctg	2880	

	atco	gatg	cg g	gtggg	actt	c at	gcgt	ccaa	ato	tgtt	gga	tgat	tgtgd	etc	ttct	gctttt	2940
5	ttgg	tgac	ca a	aacga	gatg	a ca	attg	actg	cat	tgaa	aag	gtta	attag	gct	tttt	tggtct	3000
	tctc	ctgt	gt	egatt	cgag	c gg	tacc	gtag	gta	ggto	etgc	tate	ggagg	gca	tgcg	tcataa	3060
	gtca	gcct	tg a	attaa	cttt	c gg	agct	gcgc	gat	ccac	atc	tct	gcaco	egc	gcgg	aggcct	3120
10	ttga	ctgo	ag	cattt	taat	t aa	itctc	gtaa	aat	aago	tct	taaa	acga	gat	tagc	ttacgg	3180
	ggat	cc												,			3186
15	<210)> 6															
· V	<211	> 33	3 6														
20	<212	2> PF	RT.														
	<213	3> Og	gata	ea mi	nuta	1											
25	<400)> 6															
	Met	Ala	Tyr	Asn	Val	Gly	Ile	Asn	Gly	Phe	G1y	Arg	Ile	Gly	Arg	Leu	
30	. 1				5					10					15		
	Val	Leu	Arg		Ala	Leu	Ser	Arg		Asp	Ile	Asn	Val		Ala	Val	
35				20					25					30	•		
				n.	* 1			61	T		4.1	, T	M .	D.		*	
40	Asn	Asp			116	Ата	Ala		ıyr	нта	AIa	ıyr		Pne	Lys	lyr	
			35					40					45				
	4.55	C	The	u; o	Clu-	Ara	T.,	Gln.	61 11	C1	Va1	Thr	Dho	C1	Gly	Luc	
45	nsp	50	1111	1115	Uly	VI B	55	OIII	GLY	Ulu	vai	60	I IIE	GIU	u u y	rys	
		30					00					00					
50	Tur	Lau	Val	Ile	Asp	Glv	Gln	Ivs	Πle	Glu	Val	Pho	Gln	Glu	Arg	Aen	
	65	Leu	,,,	110	пор	70	GIN	Lys	116	Olu	75	1 116	OIII	010	nig.	80 80	
	00					10					10					00	
55 .	Pro	Ala	Asn	[]e	Pro	Trp	Glv	Lvs	G) v	Glv	Val	Asp	Phe	Va1	Ile	Asp	
	1 1 0	1110		~ ~ ~		1	3	— , ~				2			~ 1 0		

					85					90					95			
5																		
	Ser	Thr	Gly	Val	Phe	Thr	Thr	Thr	Ala	Gly	Ala	G1n	Lys	His	Ile	Asp		
				100					105					110		•		
10																		
	Ala	Gly	Ala	Lys	Lys	Val	Ile	Ile	Thr	Ala	Pro	Ser	Ala	`Asp	Ala	Pro		
			115					120					125					
15																		
	Met	Phe	Val	Met	Gly	Val	Asn	His	Lys	Glu	Tyr	Thr	Lys	Asp	Leu	Ser		
20		130					135					140						
	Ile	Val	Ser	Asn	Ala	Ser	Cys	Thr	Thr	Asn	Cys	Leu	Ala	Pro	Leu	Ala		
25	145					150					155					160		
30	Lys	Val	Val	Asn	Asp	Val	Phe	Gly	Ile	Glu	Ser	Gly	Leu	Met	Thr	Thr	. · .	
50					165					170					175			
															•			
35	Val	His	Ser	Ile	Thr	Ala	Thr	Gln	Lys	Thr	Val	Asp	Gly.	Pro	Ser	His		
				180					185					190				
							-											
40	Lys	Asp	Trp	Arg	Gly	Gly	Arg	Thr	Ala	Ser	Gly	Asn	Ile	Ile	Pro	Ser		
			195				•	200					205					
45																		
40	Ser	Thr	Gly	Ala	Ala	Lys	Ala	Val	Gly	Lys	Val	Leu	Pro	Ala	Leu	Ala		
		210					215					220						
50		•																
	Gly	Lys	Leu	Thr	Gly	Met	Ser	Leu	Arg	Val	Pro	Thr	Thr	Asp	Val	Ser		
	225					230					235					240		
<i>55</i> .																		

5	Val	Val	Asp	Leu	Thr 245	Val	Asn	Leu	Lys	Thr 250	Pro	Thr	Thr	Tyr	A1a 255	Glu	
10	Ile	Ser	Ala	Ala 260	Ile	Lys	Lys	Ala	Ser 265	Glu	Gly	G1u	Leu	Ala 270	Gly	İle	
15	Leu	Gly	Tyr 275	Thr	Glu	Asp	Ala	Val 280	Val	Ser	Thr	Asp	Phe 285	Leu	Thr	Asp	
20	Asn	Arg 290	Ser	Ser	Ile	Phe	Asp 295	Ala	Ser	Ala	Gly	Ile 300	Leu	Leu	Thr	Pro	
25	Thr 305	Phe	Val	Lys	Leu	Ile 310	Ser	Trp	Tyr	Asp	Asn 315	Glu	Tyr	Gly	Tyr	Ser 320	
30	Thr	Arg	Val	Val	Asp 325	Leu	Leu	Glu	His	Val	Ala	Lys	Val	Ser	Ser 335	Ala	
35																	
40	<21:	0> 7 1> 14 2> DI 3> O		ea m	inut:	a											
45	<40	0> 7															
50	aag	cttt: ggac	act cac	agtt	gaca	gc a	tcga	ctgc	t ca	tega	aaac	ggt	cgca	gtg	cggca	tttcta aatctg	120
55 .	_	-														aaggct gagaga	

	atgtgggagc	tgtgcaaagg	ggcaatggtc	actcagcgca	gagcgatggt	ggcgcggggg	360
5	ccaatatctc	ggcaacaaga	acgcccgagg	acgacgggac	tctgaatgcg	agcacgttgt	420
	ctttcagaca	gtccacccgg	attccaatat	tcgcaggact	cgcgctcaga	aacgcaaccc	480
	cggcagattc	gcgtccagtc	aggccatctg	cggcgagctg	ctgcgctcgc	gggctgcgcc	540
10	acaacgcatc	gccacatata	cgtcaccgcc	cgcccgctgg	caacctgagg	tttttccgca	600
	acgggtgcac	tgattgctgc	gttaacgagg	caactggaga	tgtcagaggc	caagtggagc	660
15	catatcacag	cggactgcgc	atctctggcc	tgccggacgc	ggtagcgtcc	cgtctttttg	720
, 3	cggacagctt	cttaaaacct	ggctgaaact	aagcgagacc	tgcgacctgg	aacgcccgca	780
	cacccgtaca	cctccggagt	tgtatcctca	gaagcggagt	aacctgcagg	cctacgcaag	840
20	aaaagagccc	gggacccatc	gaccggaaaa	gaggggtgga	gctagtgggg	tagccttgga	900
	gcagacctgg	ggcagacctg	ggttagtacc	agggccgaaa	agggtcagag	gaatcagggt	960
	ggcacggcag	tctataccgt	agaagctctt	ctcgacagca	gcgagcagaa	actgcacaga	1020
25	ggtccgttcg	ccagtctcgt	accaccaccg	catgacccaa	tcagcattga	tgctcccaca	1080
	tgggtagtgc	gcgcgaacgc	ctggcaccca	aacacaccac	ttacgcttcc	cgcaccgcgg	1140
30	tggttaacac	tggcccggag	tagtcatata	cggagatttt	ggcatgattc	taattccggg	1200
	tcgggacacg	acctaagtgg	cgtgcaaagc	tcgggggcta	aatgtttccc	ggcgctcgcg	1260
	gcgactcttg	tgcgcgcccg	cggcggttcg	cgggagacgg	gggaaagaga	ggggtgaccg	1320
35	cagcgagcga	tggtgtgcca	gatctcaggc	cgagtcaaga	caatatataa	agagaggatt	1380
	gtccactttt	ctccaatagt	atttgacccg	ggttgctctc	tgttgatttt	ttctagatca	1440
40	tacaattatt	gtttgaattc	actcaattaa	catacacaaa	tacaatacaa	а	1491
+0				•			
	<210> 8						
45	<211> 524						
	<212> DNA						
	<213> Ogata	aea minuta					
50							
	<400> 8						
55 ·	gtggatagat	gaccaatggc	ctctttaagt	aaacatttcg	ttttgaatat	atttcaagtt	60
	gaataatgaa	agccttgttg	tagacttact	ccgaagctcc	ggggcttcgg	ctccctgaat	120

	ttatttttta	catctctgca	ccggaaaact	ggctatttga	aaaatttcga	cgttttgctt	180
5	gaaactcgag	ttgaggagca	ttgccaaatt	cgatcgtttt	ctaacggacg	ccagtcgagt	240
	tattgttatg	tcacgtgaca	tcaattgtcc	tctattcctt	tttggccgat	ctcgtttgtg	300
	ctgacggcct	ccgaacagtt	actictaccg	gcagggattg	gggatgatcg	ggatcgatgt	360
10	cctcaactcc	agaggctgat	ccgatgcggt	gggacttcat	gcgtccaaat	ctgttggatg	420
	atgtgctctt	ctgctttttt	ggtgaccaaa	cgagatgaca	attgactgca	ttgaaaaggt	480
15	tattagcttt	tttggtcttc	tcctgtgtcg	attcgagcgg	tacc		524
15							
	<210> 9				•		
20	<211> 113						
	<212> DNA						
	<213> Arti	ficial Seque	ence				
25							
	<220>		·				
	(223) Dec	wintion of	Artificial	Saguanaa.	primar for	nnoduation	of on
30						production	
30		cassette wi					
30	expression						
30 35	expression	cassette wi	th <u>GAP</u> gene p	romoter and	terminator i	from <u>Ogataea</u>	minuta
	expression <400> 9 gtttgaatto	cassette wi	th <u>GAP</u> gene p	romoter and	terminator i	from <u>Ogataea</u> aaatgcatgt	minuta
	expression <400> 9 gtttgaatto	cassette wi	th <u>GAP</u> gene p	romoter and	terminator i	from <u>Ogataea</u> aaatgcatgt	minuta
35	expression <400> 9 gtttgaattc ggatagatga	cassette wi	th <u>GAP</u> gene p	romoter and	terminator i	from <u>Ogataea</u> aaatgcatgt	minuta
35	expression <400> 9 gtttgaattc ggatagatga <210> 10	cassette wi	th <u>GAP</u> gene p	romoter and	terminator i	from <u>Ogataea</u> aaatgcatgt	minuta
35	expression <400> 9 gtttgaattc ggatagatga <210> 10 <211> 38	cassette wi	th <u>GAP</u> gene p	romoter and	terminator i	from <u>Ogataea</u> aaatgcatgt	minuta
<i>35</i>	expression <400> 9 gtttgaattc ggatagatga <210> 10 <211> 38 <212> DNA	cassette wi	th <u>GAP</u> gene p catacacaaa ctttaagtaa	romoter and	terminator i	from <u>Ogataea</u> aaatgcatgt	minuta
35 40 45	expression <400> 9 gtttgaattc ggatagatga <210> 10 <211> 38 <212> DNA	cassette wi	th <u>GAP</u> gene p catacacaaa ctttaagtaa	romoter and	terminator i	from <u>Ogataea</u> aaatgcatgt	minuta
<i>35</i>	expression <400> 9 gtttgaattc ggatagatga <210> 10 <211> 38 <212> DNA <213> Arti	cassette wi	th <u>GAP</u> gene p catacacaaa ctttaagtaa	romoter and	terminator	from <u>Ogataea</u> aaatgcatgt	minuta
35 40 45	expression <400> 9 gtttgaattc ggatagatga <210> 10 <211> 38 <212> DNA <213> Arti <220>	cassette wi	th <u>GAP</u> gene p catacacaaa ctttaagtaa	tacaatacaa	agtcgacaaa ttgaatatat	from <u>Ogataea</u> aaatgcatgt ttc	minuta 60 113
35 40 45	expression <400> 9 gtttgaattc ggatagatga <210> 10 <211> 38 <212> DNA <213> Arti <220> <223> Desc	cassette wi	th <u>GAP</u> gene p catacacaaa ctttaagtaa ence	tacaatacaa acatttcgtt	agtcgacaaa ttgaatatat primer for	from Ogataea aaatgcatgt ttc	minuta 60 113 of an

<400> 10 5 tttttactag tacggtaccg ctcgaatcga cacaggag 38 10 ⟨210⟩ 11 <211> 12 <212> PRT 15 <213> Saccharomyces cerevisiae <400> 11 20 Gly Pro Tyr Ile Cys Leu Val Lys Thr His Ile Asp 1 5 10 25 ⟨210⟩ 12 ⟨211⟩ 11 30 <212> PRT (213) Saccharomyces cerevisiae 35 ⟨400⟩ 12 Gly Arg Gly Leu Phe Gly Lys Gly Arg Asp Pro 40 5 1 10 <210> 13 45 <211> 35 <212> DNA 50 <213> Artificial Sequence <220> 55 <223> Description of Artificial Sequence: primer PUR5 for amplification of

	5'-region of <u>Ogataea Minuta URA3</u> gene	
5		
	<400> 13	
	ggnccntaya thtgyytngt naaracncay athga	35
10		
	<210> 14	
15	<211> 32	
,,,	<212> DNA	
	<213> Artificial Sequence	
20		
	<220>	
	<223> Description of Artificial Sequence: primer PUR3 for amplificate	ion of
25	3'-region of <u>Ogataea Minuta</u> <u>URA3</u> gene	
30	<400> 14	• •
	ggrtenekne cyttneeraa narneenekn ee	32
35	<210> 15	
	<211> 3113	
	<212> DNA	
40	<213> Ogataea minuta	
		•
45	<220>	
	<221> CDS	
	<222> 1732. 2529	
50		
	<400≻ 15	
	gccgcggccg ctgctgctgc ttccactaaa acagcaacga gcaacgcgtc tgccgaaaac 6	5 0
55	tecttgaate aagaeetgga caateatttg aegttgggea gagageattt egaeaeeaet 1	120

	gaggttccta	ccgcggacgg	gtccaaagtg	gaggttctcc	gaaacatgtc	tgtcgagacg	180
5	ggtcctgccg	acgatcttaa	сааааасссс	tccaccagcg	agctggtgca	tctggaggaa	240
	aaatcacagg	aaagcgcatc	cgaggaagag	gtcaggacct	cgaaccatgc	cgacacagcc	300
	ggaacagaac	caggtccaga	acacgtccat	ggcaacgata	aagcggaggg	cgagggcgag	360
10	tcctcagaag	atgaccagga	aatggtggac	gctccactgc	ctccttcgga	cgataaggag	420
	actgagaacg	cgctgccgac	ggagactaaa	gtggagtcga	ccaaagacga	tgtagaccag	480
15	gaagaagagg	aagaagagga	ggaagaggaa	gaaacagtac	ctttccaagt	ctctaaaaag	540
	gtatccaagg	aggaagaaat	ttcagctccg	acgccggagc	ccactacgcc	tacgtcggcg	600
	aacgagagcg	aggaggaagg	cgataccagg	ccccggaaaa	ggcggcggtc	ggagtcgatt	660
20	tcggccgcct	ccagcaagag	atttttggct	cttggtactc	aactgttgag	ccaagtttcg	720
	tcgaatcggt	ttgcgtcgat	gtttttgcag	ccagtgaaca	aaaacgagga	gcctgagtat	780
	tacaagctca	tccaccagcc	gatcgatctc	aagacgctgt	cgaagtcggt	ccgaaccggc	840
25	gagattcagt	cgttcgatga	ccttgagttc	cagctgcaac	tcatgttcag	caatgcaatc	900
	atgtacaacg	acacctacca	gacggaaacg	tacaaatgga	cgatcgagat	gatggaggaa	960
30	gcccagaatc	tgattgaaat	gttcagggaa	acttccaaca	actgagatca	actgcgacta	1020
	cttctgttgg	ctggctggac	gggttgtatt	actatcttgg	acaacgctat	gtaaccttat	1080
	ctaaatacaa	gaattcatgt	acaaaatcat	ttgtgcgggc	gcagagacga	gcgacgagtt	1140
35	gccgaaatca	cccggctgct	cagttaccac	ctctcatttg	gttcatgagc	atttgattct	1200
	gctcctggaa	tctagatccg	actctctcac	tgtgcttgag	gaacttctca	gcacacttgt	1260
40	tcaaacaggt	ctcctctctg	gagctgagct	tgttggaggt	gaagtcattg	acacagtcgt	1320
40	tgaaacatct	gtcgacaaga	ttggtgtaca	actggggcaa	aataatgtta	gtcgtggttc	1380
	atcaaaggct	cgacgtcatt	ttgctgtctc	tagtaactta	ccctcatgaa	gtcgttcatc	1440
45	tgcttctgct	cgacgatttt	ctggaattcc	tgttgttctt	tgtagttgag	ttgatccatt	1500
	ttgctgtttt	tctagttctg	ctttgctaga	ctgttggcca	atatctggtt	atccctctag	1560
	cttatcgtgg	agaagggtgt	ttttttgcta	ccaaaagctg	aaaattctga	aaaattttcg	1620
50	gatttgaatt	tttttttacc	cggcactttt	tgaccccata	ctagttgtac	caaactgaaa	1680
	gagactgcag	ttggtctttg	cggggagatt	ttggcagata	aacaggcgac	tatgtcctcg	1740
<i>55</i> .	actaagacat	acgcgcaaag	ggcggcggct	catccgtcgc	ctgtggccag	aagactgctg	1800
•	aacttgatgg	aatccaagaa	gacgaacttg	tgtgcctcgg	tcgatctcac	ctctacaaag	1860

	gaccttttgg	agctgttgga	caagctggga	ccgttcattt	gtctggtcaa	gacacacatc	1920
5	gacattgtgg	aagacttttc	gtacgaaaac	accgtggtgc	cgctgctgaa	actggccaag	1980
	aaacacaact	tcatgatctt	cgaggaccga	aaatttgccg	atataggcaa	caccgtcaaa	2040
	ctccagtaca	agggaggagt	ttaccaaatc	gcaaagtggg	ccgatatcac	caacgcccac	2100
10	ggagtgaccg	gctcgcgaat	tgtctcgggt	ctcagacagg	ctgcccagga	gaccaccgac	2160
	gagccaagag	gtctgctcat	gctggctgag	ctgtcgtctg	aaggctcgct	cgcgtacgga	2220
15	gagtacacca	aaaagacggt	tgaaatcgca	aagtccgaca	gagattttgt	gatcggtttc	2280
75	attgcgcaaa	acgacatggg	tggccgcgat	gagggcttcg	actggctcat	catgacccca	2340
	ggtgtcggac	tcgacgacac	cggtgacgct	ctgggccagc	agtaccgcac	ggtcagcgcc	2400
20	gttatgaaga	cgggaactga	catcataatc	gtgggcaggg	gactgttcgg	caagggaaga	2460
	gaccctgtcg	tggaaggcga	aagatacaga	aaggctggat	gggacgctta	tttgagtcgt	2520
	gtcgcatgat	ttcgggtcac	gtgactatat	agctattggt	atgtacaaga	attaattagc	2580
25	ggagtttgtc	gccaaactct	tcggccaact	cgatgctcag	tttctggcgt	gaaatttcga	2640
	acaccagcag	cccgatggag	gtagccggta	gacttgttgt	tgcagttctc	gcgaatcccc	2700
30	tgtagaagaa	gcccagtagg	gagagatggg	acttgcggta	tctggtcatc	atgatttcga	2760
	aagtttcgag	gtatgaattg	tagtagagct	taaagaaacg	gcttctctct	agatggtggg	2820
	cctcgttgta	cagatcaagc	gactccagtc	tggacagatg	gaccttctgg	attttgttga	2880
35	acggaaattg	gattgccagc	agggttgtgg	cggcactggc	tccagccaaa	agaatgaagg	2940
	tcagccggag	agctttgatc	gatttcgagt	gtttgtccag	gtccgggttc	ttctctccgt	3000
	ataacagacg	ggctttccag	tactggtacc	agtttatcat	gctctgagtt	ctgtggaagc	3060
40	cctggttttt	cacaaactca	aacacggaga	agtagaacgc	aaacccaaag	ctt	3113

55

<211> 265

<212> PRT

50 <213> Ogataea minuta

<400> 16

Met Ser Ser Thr Lys Thr Tyr Ala Gln Arg Ala Ala His Pro Ser

	1				5					10					15	
5	Pro	Val	Ala	Arg	Arg	Leu	Leu	Asn	Leu	Met	Glu	Ser	Lys	Lys	Thr	Asn
				20					25					30		
10																
	Leu	Cys	Ala	Ser	Val	Asp	Leu	Thr	Ser	Thr	Lys	Asp	Leu	Leu	Glu	Leu
			35					40					45			
15																
	Leu	Asp	Lys	Leu	Gly	Pro	Phe	Ile	Cys	Leu	Val	Lys	Thr	His	Ile	Asp
20		50					55				· v	60				
	Ile	Val	Glu	Asp	Phe	Ser	Tyr	Glu	Asn	Thr	Val	Val	Pro	Leu	Leu	Lys
25	6 5					70					75					80
30	Leu	Ala	Lys	Lys		Asn	Phe	Met	Ile		Glu	Asp	Arg	Lys	Phe	Ala
					85					90					95	
		~ 1	0.1		m.	** 1	•		0.1	æ		0.1	0.1		_	
35	Asp	lle	Gly		inr	val	Lys	Leu			Lys	Gly	Gly		Tyr	GIn
				100					105					110		
40	Ilo	4 T a	Ive	Trn	412	Acn	T1a	Thr	Asn	412	Hic	Gly	Va 1	Thr	Gly	Sar
	116	nia	115	пр	NIG	nsp	116	120	non	AIA	1115	Oly	125	1111	Gly	261
			110					120					120			
45	Arg	Ile	Val	Ser	G1v	Leu	Arg	Gln	Ala	Ala	Gln	G1u	Thr	Thr	Asp	Glu
		130			,		135					140				010
50																
	Pro	Arg	Gly	Leu	Leu	Met	Leu	Ala	Glu	Leu	Ser	Ser	Glu	Gly	Ser	Leu
	145	J	·			150					155			-		160
55																

	Ala	Tyr	G1y	Glu	Tyr	Thr	Lys	Lys	Thr	Val	Glu	He	Ala	Lys	Ser	Asp	
5					165					170					175		
	Arg	Asp	Phe	Val	Ile	Gly	Phe	Ile	Ala	G1n	Asn	Asp	Met	Gly	Gly	Árg	
10				180					185					190			
15	Asp	Glu		Phe	Asp	Trp	Leu		Met	Thr	Pro	Gly	Val	Gly	Leu	Asp	
			195					200					205				
20	Asp	Thr	Gly	Asp	Ala	Leu	G1y	Gln	Gln	Tyr	Arg	Thr	Val	Ser	Ala	Val	
		210					215					220					
25	M. A	1	T)	C1	7 °L	۸	T1.	7 1.	71-	V-1	C1	Λ	C1	ī	DL -	C1	
	мет 225	Lys	inr	GIY	inr	230	116	116	116	Val	235	Arg	Gly	Leu	rne	240	
30				,			٠.			•							
	Lys	Gly	Arg	Asp	Pro	Val	Val	Glu	Gly	Glu	Arg	Tyr	Arg	Lys	Ala	Gly.	•
					245					250					255	,	
35	Trp	Asp	Ala	Tyr	Leu	Ser	Arg	Val	Ala								
				260					265								
40																	
		0> 1'													,		
45		1> 30 2> DI															
				icia	l Se	quen	ce										
50																	
	<220																
55															ficat	tion of a	gene
	ırag	gmen	L CO	ni er	TIUG	res	rsta	псе	agali	ust (CHIO	t ampi	heni	:01			

5	<400> 17	
	atggagaaaa aaactagtgg atataccacc	30
	·	
10	⟨210⟩ 18	
	<211> 30	
15	<212> DNA	
	<213> Artificial Sequence	
		•
20	<220>	
	<pre><223> Description of Artificial Sequence: primer for amplification or</pre>	f a gene
	fragment conferring resistance against chloramphenicol	
25		
	<400> 18	
30	ctgagacgaa aaagatatct caataaaccc	30
	Z010\ 10	
	<210> 19	
35	<211> 28 <212> DNA	
	<213> Artificial Sequence	
40	\Z13/ Altiticial bequence	
	<220>	
45	<pre><223> Description of Artificial Sequence: primer DU5 used for config</pre>	rmation
	of destruction of <u>Ogataea minuta URA3</u> gene	
50	<400> 19	
	aggaagaaga ggaggaagag gaagaaac	28
55	<210> 20	

	<211>	28	
5	<212>	DNA .	
	<213>	Artificial Sequence	
10	<220>		
	<223>	Description of Artificial Sequence: primer DUC5 used for confi	rmation
15	of des	struction of <u>Ogataea minuta URA3</u> gene	
	<400>		
20	cgatgo	ccatt gggatatatc aacggtgg	28
	⟨210⟩	21	
25	<211>		
	<212>		
30	(213)	Artificial Sequence	
	<220>		
0.5		Description of Artificial Sequence: primer DU2 word for a self-	
35		Description of Artificial Sequence: primer DU3 used for config	rmation
	or des	struction of <u>Ogataea minuta URA3</u> gene	
40	<400>	21	
	ccgtgi	tttga gtttgtgaaa aaccagggc	29
15			
45	<210>	22	
	<211>	28	
50	<212>	DNA	
	<213>	Artificial Sequence	
55			
-	<220>		

	<223> Description of	Artificial Seque	nce: primer DUC3	Bused for confi	rmation
5	of destruction of Oga	ataea minuta <u>URA</u>	3 gene		
	<400> 22			•	
10	tgtggcgtgt tacggtgaa	a acctggcc		,	28
15	<210> 23				
	<211> 14				
	<212> PRT				
20	<213> Saccharomyces	cerevisiae			
	(400) DD				
25	<400> 23	Ama II a San Ala	T., A. V. J. I.		
	Phe Val Ala Thr Asp	Arg lie Ser Ala	10	e met	
			10		
30					
	<210> 24				
35	<211> 14				
	<212> PRT	,			
	<213> Saccharomyces	cerevisiae			
40	·				
	<400> 24				
45	Gln Asp Ser Tyr Asp	Lys Gln Phe Leu	Arg Asp Trp Leu	1 Thr	
	1 5		10		
	(010) 05				
50	<210> 25				
	<211> 42				
55	<pre><212> DNA <213> Artificial Seq</pre>	uonco			
	- ZVION UT LITTETAT OGU	neme.			

_	<220>	
5	<223> Description of Artificial Sequence: primer PAD5 for amplificati	on of
	5'-region of Ogataea minuta ADE1 gene	
10		
	<400> 25	
	ttygtngcna engaymgnat hwsngentay gaygtnatha tg 4	2
15	,	
	<210> 26	
20	<211> 41	
	<212> DNA	
	<213> Artificial Sequence	
25	•	
	<220>	
30	<223> Description of Artificial Sequence: primer PAD3 for amplification	on of
	3'-region of <u>Ogataea minuta ADE1</u> gene	
	<400> 26	
35		
	gtnarccart cncknarraa ytgyttrtcr tanswrtcyt g 41	
40	<210> 27	
	<211> 2560	
	<212> DNA	
45	<213> Ogataea minuta	
50	<220>	
	<221> CDS	
	<222> 9391850	
55		

<400> 27

gatateceaa gaacetatge egagggttea geteaeggee gataaaceaa teaaagacaa 60 5 cgtttcctga gtttcctcca acggccagga ttatctcgtg agttcccaga ccgttcggct 120 tgcgtgtggg cacgaacgag cccacgtaga caaacaggct caaagccaac gaaaactcgt 180 acgcagtcac catcaattcc agaaagttct cgtggatgaa cgacagctca ggaaggttga 240 10 actttgtgag ataagetetg etggeaagaa tteecaegag aagagtgete aattetttee 300 cgttgacgag atagttgagc tttgttccgt ctcgtaacag gactccctct ttatggtagc 360 15 cagginaticae aagateeace aacgicagag tgaagaacea caccaggina acciticage 420 acgtgacatt taacacaaga teeegecagt tgeegactat ettggacteg aaaagegttt 480 tcagcgtggc aaaatcgatg cttgcgcctt caaccacata ctcctcatta cagcaaaagt 540 20 agaggaaaag gaccactgaa gggagaaata ctgacaaaac gaccgctccc ggtgtcccgc 600 agaaatettt atgegtagte ttggggttea atteagaeat ggtagattgg tgagggtaat 660 25 tgtgaagagg attcgataaa gagaggggaa cagcaccgga gatagttctt agatcaaaat 720 gtttttctga ccttttttgc tctttctcgt ttagctcgcg tacagtcgac gcgtcggttt 780 gegtegaaaa gagteaagee gegategega ttaaaaatga ateeggagaa gteaaaaata 840 30 tgtaatttaa accatcacag tatataagta ggcgggaagc gcacaatttc taggcattcc 900 acagatcago taaccaggac attocactgg agocaacaat gtoactoaca acaaccaaco 960 tegacegeat ettgeegeta attgeeaagg geaaagteag agacatetat caagttgaeg 1020 35 aggaaageet getgttegtg geaacagace ggattteege etaegatgtg atcatggaga 1080 atggaatcaa agacaagggt aaaatactga ctcagctgtc agtattctgg tttgatttgc 1140 40 tgaaagacac tatcaagaac caccttatcg catccactga cgacgaagtg tttgccagac 1200 ttccacagga gctgtctcag ccaaagtaca agtcgcagct gagtggaaga gcactggtgg 1260 tgagaaagca caaattgatc cccctggagg tgattgtcag aggctacatc accggaagtg 1320 45 catggaagga gtacaacaag agcaagaccg tgcacggtct cgaggttggc gcagagctga 1380 aggagagtea agagtteece gtteegattt teacceegte aacgaaaget gaacaaggeg 1440 aacacgacga aaacatttcc cccgagaaag ctgcagagat tgtcggggaa caactgtgtg 1500 50 cgcggctcgc agaaaaggct gtgcagctgt actccaaggc cagaacttac gccaaaagca 1560 agggtateat tetegeegae acaaagtttg agtttggaat tgaegagaae gaegaattgg 1620 55 ttcttgtgga cgaggttttg acccctgatt cctcgagatt ttgggacgca aagacttaca 1680

agateggaca gtegeaggae tettaegaca aacagtttet gagagaetgg etcaegteea 1740 acggtctgaa cgggaaagac ggtgtctcta tgaccgcgga gatcgctgaa cgcacgggtg 1800 5 cgaagtacgt cgaggcattt gagtctctga cgggaagaaa gtggacgtag tttttgataa 1860 tagtaaccct ggaaatttga tatgtggcgg tgtagtctgt ggcggtggaa taaaatctaa 1920 attgaattta gtcgcttccc aaaacagcaa tttgtcaaca cttagtctgt gcacagcctt 1980 · 10 gacggcattt gagccatccc agggtctggc agttacaggg ctttgatcaa aagaaaactg 2040 gtgaagtttg acaacaggct acagctgcca agtcgcaact tgggtagtag ctcattcgtc 2100 15 gaacaccagt gcgccatgtc catcgccaac gagttccagc ccttggagct tattggtagg 2160 ggttcctttg gatgtgttcg gaaagtgcgc cgcaagtcgg acggcaagat atttgtgaga 2220 aaggagatet cetacatege catgaacace aaaggagaage agcageteae agcagagttt 2280 20 cgtattctca gagaactaaa gcatcccaac attgtccatt atgtccacca cgaccacgtc 2340 caggaggaac agaccgtcca tctgtacatg gaatactgcg atggggggga cttgtcggtg 2400 25 ttgatcagga agtacaaagg aaagaacgag tttatcccgg agaacttgat ctggcaaatc 2460 ttcacccagg ttctcaacgc tctctatcaa tgccactatg gggtcaatat tgaggctgtg 2520 caagaacttt tccagtccac tccagagatt gcacccggg 2560 30

⟨210⟩ 28

₃₅ <211> 303

<212> PRT

<213> Ogataea minuta

<400> 28

40

45

55

Met Ser Leu Thr Thr Thr Asn Leu Asp Gly Ile Leu Pro Leu Ile Ala

1 5 10 15

Lys Gly Lys Val Arg Asp Ile Tyr Gln Val Asp Glu Glu Ser Leu Leu
20 25 30

Phe Val Ala Thr Asp Arg Ile Ser Ala Tyr Asp Val Ile Met Glu Asn

			35					40					45			
5	G1y	Ile	Lys	Asp	Lys	G1 y	Lys	Ile	Leu	Thr	G1n	Leu	Ser	Val	Phe	Trp
		50					55					60				
10																
	Phe	Asp	Leu	Leu	Lys	Asp	Thr	Ile	Lys	Asn	His	Leu	Ile	`Ala	Ser	Thr
	65					70					75					80
15																
	Asp	Asp	Glu	Val	Phe	Ala	Arg	Leu	Pro	Gln	Glu	Leu	Ser	G1n	Pro	Lys
00	-				85					90					95	
20																
	Tvr	Lvs	Ser	Gln	Leu	Ser	Gl v	Arg	Ala	Leu	Val	Val	Arg	Lys	His	Lvs
25	1,72	D, O	501	100	202		,	0	105					110		•
				100					100							
	Lou	Tlo	Dro	Lou	Glu	Val	Ila	Val	Ara	Glv	.Tvr	Ile	Thr	Glv	Ser	Ala
30	Leu	116		Leu	GIU	vai	116		AI g	GIY	. 1 AT	116		Oly	361	nia
			115					120					125			
	_		0.1	_					Tr)	17 1		01	•	C1	17 1	01
35	Trp		Glu	Tyr	Asn	Lys		Lys	Inr	vai	HIS	Gly	Leu	GIU	val	GIA
		130					135					140				
																_
40	Ala	Glu	Leu	Lys	Glu	Ser	Gln	Glu	Phe	Pro	Val	Pro	Ile	Phe	Thr	Pro
	145					150					155					160
45																
	Ser	Thr	Lys	Ala	Glu	G1n	Gly	Glu	His	Asp	Glu	Asn	Ile	Ser	Pro	Glu
					165					170					175	
50																
	Lys	Ala	Ala	Glu	Ile	Val	Gly	Glu	G1n	Leu	Cys	Ala	Arg	Leu	Ala	Glu
				180					185					190		
55																

	Lys	Ala	Val	Gln	Leu	Tyr	Ser	Lys	Ala	Arg	Thr	Tyr	Ala	Lys	Ser	Lys
_			195					200					205			
5																
	Glv	Tle	He	Len	Ala	Asn	Thr	ľ.v.s	Phe	Glu	Phe	Glv	Πle	Asn	Glu	Asn
	UL J		110	Dou	MIG	пор		Lyu	1110	Olu	1110		110	лор	, ,	non.
10	·	210					215					220				
15	Asp	Glu	Leu	Val	Leu	Val	Asp	Glu	Val	Leu	Thr	Pro	Asp	Ser	Ser	Arg
15	225					230					235					240
20	Phe	Trp	Asp	Ala	Lys	Thr	Tyr	Lys	Ile	Gly	Gln	Ser	Gln	Asp	Ser	Tyr
					245					250					255	
			•													
25	Asn	Ive	Gln	Phe	Len	Ara	Asn	Trn	Leu	Thr	Ser	Asn	G1v	Len	Asn	G1v
	пэр	2,3	0111		Dou	••• 5			265	••••	001		01,	270		01)
				260					200					210		
30																
	Lys	Asp	Gly	Val	Ser	Met	Thr		Glu	Ile	Ala	Glu	Arg	Thr	Gly	Ala
			275					280					285		•	
35																
	Lys	Tyr	Val	Glu	Ala	Phe	Glu	Ser	Leu	Thr	Gly	Arg	Lys	Trp	Thr	
		290					295					300				
40																
	<210)> 29	9													
	<21	1> 60)													
45		2> Di														
				icia	i Sa	allan	00									
	1614)/ N		1014	r 96	queil	Ų .									
50																
	<220															
•	<223	3> D	escr	ipti	on o	f Ar	tifi	cial	Sequ	uence	e: 5'	-pr	imer	for	amp]	ification of
55	ups	trea	m re	gion	of !	URA3	str	uctu	ral (gene						

5	<400> 29
	ccccgagete aaaaaaaagg taccaattte ageteegaeg eeggageeca etacgeetae 60
10	⟨210⟩ 30
	<211> 38
15	<212> DNA
	<213> Artificial Sequence
20	<220>
	<pre><223> Description of Artificial Sequence: 3'-primer for amplification of</pre>
25	upstream region of <u>URA3</u> structural gene
25	
	<400> 30
30	gggaagette eccagttgta caccaatett gtegacag 38
	<210> 31
35	<211> 50
	<212> DNA
	<213> Artificial Sequence
40	
	⟨220⟩
45	<223> Description of Artificial Sequence: primer Dadl-5 used for destruction
	of <u>Ogataea minuta ADE1</u> gene
50	<400> 31
	aaaaagcggc cgctcccggt gtcccgcaga aatctttatg cgtagtcttg 50
55	
<i>33</i>	<210> 32

	⟨211⟩ 56
5	<212> DNA
	<213> Artificial Sequence
	·
10	<220>
	<pre><223> Description of Artificial Sequence: primer Dad1-3 used for destruction</pre>
15	of <u>Ogataea minuta ADE1</u> gene
	<400> 32
20	ccccggatc cttttttta agcttgttgt actccttcca tgcacttccg gtgatg 56
	· · · · · · · · · · · · · · · · · · ·
25	(210) 33 (211) 52
23	<211> 59
	(212) DNA
30	<213> Artificial Sequence
	⟨220⟩
35	<223> Description of Artificial Sequence: primer Dad2-5 used for destruction
	of <u>Ogataea minuta ADE1</u> gene
40	<400> 33
	ttttcacccc gtcaaggatc cctgaacaag gcgaacacga cgaaaacatt tcccccgag 59
45	
	<210> 34
	<211> 44
50	<212> DNA
	<213> Artificial Sequence
55	(000)
	⟨220⟩

	(223) Description of Artificial Sequence: primer Dad2-3 used for dest	ruction
5	of <u>Ogataea minuta ADE1</u> gene	
	<400> 34	•
10	tttttgggcc cacctgggtg aagatttgcc agatcaagtt ctcc	44
15	<210> 35	
10	<211> 30	
	<212> DNA	
20	<213> Artificial Sequence	
	<220>	
25	$\langle 223 \rangle$ Description of Artificial Sequence: primer DA5 used for confidence	rmation
	of destruction of Ogataea minuta ADE1 gene	
30		
	<400> 35	
	gatgettgcg cetteaacca catactecte	30
35		
	<210> 36	
	<211> 30	
40	<212> DNA	
	<213> Artificial Sequence	
45		
	<220>	
	<223> Description of Artificial Sequence: primer DA3 used for confirmation of Artificial Sequence: primer DA3 used for confirmation.	rmation
50	of destruction of Ogataea minuta ADE1 gene	
	<400> 36	
55	aaaagttott goacagooto aatattgaco	30

_	(210)	31					
5	⟨211⟩ 3	30					
	<212> I	DNA					
10	<213> · A	Artificial Sequence					
	⟨220⟩						
15	<223> D	Description of Artificial Sequence: p	rimer	DOU5 used	for	confirmation	n
	of dest	truction of <u>Ogataea minuta</u> <u>ADE1</u> gene	е				
20							
	<400> 3	37		•			
	atcgati	ttcg agtgtttgtc caggtccggg				30	
25							
	⟨210⟩ 3	•			•		
30	<211> 1						
	〈212〉 F						
	<213> S	Saccharomyces cerevisiae					
35							
	⟨220⟩						
10		variation					
40	〈222〉 3						
	(223)	Xaa=His or Arg				,	
45	<220>						
		variation					
	(222)						
50		* Kaa=Ile or Val					
	1220/ /	100 210 OI 101					
55	<400> 3	38			•		
	11001	~~					

	Pro Gin Xaa	xaa irp Gin inr	irp Lys vai	
5	1	5	10	
	<210> 39			
10	<211> 11			
	<212> PRT			
	<213> Sacch	aromyces cerevisi	ae	
15				
	<400> 39			
20	Trp Tyr Ala	Arg Arg Ile Gln	Phe Cys Gln Trp	
	1	5	10	
25	<210> 40			
	<211> 29			
20	<212> DNA	• • • •		·
30	<213> Artif	icial Sequence		
35	<220>			
			ial Sequence: primer POH5 f	or amplification of
	5'-region o	f Ogataea minuta	OCH1 gene	
40				
	<400> 40			
45	cencareryr	thtggcarac ntggaa	irgt	29
	〈210〉 41			
50	<211> 33			
	<212> DNA	icial Sequence		
55	72137 MI til	iciai pedaeuce		

	⟨220⟩					
_	<223> Description of Ar	tificial Se	quence: pri	mer POH3 fo	r amplifica	tion of
5	3'-region of Ogataea m	inuta OCH1	gene			
					•	
10	<40 0 > 4 1					
	ccaytgrcar aaytgdatnc	knckngcrta	cca	•	,	33
15						
	<210> 42					
	<211> 2527			,		
20	<212> DNA					
	<213> Ogataea minuta					
	(000)					
25	<220>					
	<221> CDS					
30	<222> 5081812.	•			•	
	<400> 42					
	agatetgttg acactggtca	agcgtgtagc	caagagaata	ggaaacggaa	tttcatactg	60
35	ccggcacaca aggacaataa	gggcgtccgg	ggctgtcgaa	attgtcgaga	ccgtagagct	120
	attgttacct caataagttg	ctctacgatt	gtttccgtct	ttgacaaagc	agtaggcctt	180
40	tctcaaggtg gtgtacgggt	gtttcatttt	taatttgcat	cgagaacgcg	tagtgcgcca	240
	atggatctgc agggggctcg	gctgattgca	ctgaaatttc	agcaataaat	agctgaggat	30 0
45	attcaggcac aacggtacca	acggggcagg	cttgatcgcg	aagcagcagg	agaaggcagc	360
10	gaagtgactg aagagacgag	aaggagacga	atcagcctac	ccctggaacc	ataaacaaag	420
	tcgagccgtt tttttaggga	cagaaaccgt	tctggatatt	tattcgacgc	agagactcgg	480
50	tagtcatctc tacgttcagc	acacaccatg	aactatcacg	acttgtacga	tgatagcaaa	540

cggcagtcgt tgatgcgaaa ggcgcgaaag ttcgctgaga tgaacaagaa gttggtggtg 600

gtggtcattt taacgatgta cgttgtgtcg cgtctggcgt cggttggaag cacgaaacag 660

gagtcgattc caggactcac catgaaagag tcagagttag aggtgaattt taaaacattt 720

55

	ggaatggatc	tgcagaagcg	gaacgagcta	ccggccgcaa	gtgcaacgct	gagagaaaaa	780
5	ctatcgtttt	acttccccta	tgaccctgaa	aaaccagtgc	ccaaccaaat	atggcagacg	840
	tggaaagtgg	acatcaacga	caaatcattc	ccgagacact	tccgtaagtt	ccaagagaca	900
	tggccacaac	taaacagcgg	gtacacgtac	catctcattc	cagacagtat	tgtggacgag	960
10	ttcatgagga	gtctttttgc	caatgtccct	gaggttattg	cagcctacaa	catgttaccg	1020
	aaaaatatcc	tcaaggcgga	tttttccgg	tatttggtga	tttttgcgcg	cggtggaact	1080
15	tattcggata	tcgacacgat	ctgcctcaaa	ccagtgaacg	aatgggccac	gtttaacgaa	1140
	caaactgtca	tttcgcacta	tctcaagacc	aacggtaaaa	cctcgcagtt	gccagaagtg	1200
	gacccctcca	cgcgcaaaac	accgatcgga	ctcaccattg	gaatagaggc	cgacccagac	126 0
20	agacccgact	ggcacgaatg	gtacgctaga	cgtattcagt	tctgtcaatg	gacgatccag	1320
	ggcaagcaag	gccatcccat	gctgcgcgag	ttgatcatcc	gtatagtgga	gcaaactttc	1380
	cgcaaagagg	ccatgggcaa	tttgaaaaaa	gtagagggga	aggatatggg	tggtgacatc	1440
25	atgcagtgga	caggacccgg	ggttttcaca	gataccctgt	ttgattatct	caataacgtg	1500
	gtgagtgacg	gaaagctggg	agacggttac	ggagtcgggt	ccaagtactg	gaacagtcac	1560
30	gccaagtaca	agctgtctca	cattgaggtg	gatgccaaca	acgagccgat	gcactctgac	1620
	aagcaaacta	tcagctggaa	gtccatgagt	aagctatcgg	agcccctgat	tatagatgac	1680
	gtgatgatcc	tgccaatcac	tagcttcagc	cccggcgtgg	gccagatggg	ctcgcattcg	1740
35	cccgaccacc	cgctcgcatt	tgtccggcac	atgttccagg	gcagctggaa	accagatgca	1800
	gagaagatgt	gactgcatat	aggaacgcat	tttatacagt	agatcaagtt	aaaagtttga	1860
40	acttttgcgg	ggaagtggtg	taagggtgtt	tgacgagggc	ctgaacccgt	gagtcaacgc	1920
40	gcttggacgg	aagaacgggt	gcacgccgca	tggggctgtt	cgttcagttt	tgacgctgct	1980
	aacgagagag	tagcttgcag	attgcaatcc	cgactgagtc	cacccggttg	agctagtcac	2040
45	acgactgcgt	cttttctttc	tggtgtacgg	gtgtcaatac	attttcggtt	taaaaacgat	2100
	aagatgcaac	aaggtatctt	ctgtagctaa	accccacttc	tccagacacc	ttccaccagc	2160
	cgatgactat	gacagacagg	tttttggagg	attacaagaa	gtttctcccc	aaagcgcacg	2220
50	atttgagggg	cacgcactca	cggcttttca	cgacggcggg	cggggccgat	gcggggagtt	2280
	tggctgattg	gagagagtgg	acagatgatt	tgggtcattc	gcaggagtat	tacgagctga	2340
<i>55</i> ·	aacaggagat	caattgtctt	gttcttaact	accttatcta	cgaaggatat	gttggtgctg	2400
-	ttcgagagtt	ttcgaaagag	ctgggattcg	attttatcgt	ggaggagttg	gaaggaattg	2460

	aaga	ggag	aa g	8508	gcca	ic ca	agag	gacg	, gae	ague	icac	gacc	aug	cca	gacac	rgacg	2020
5	tact	agt															2527
	<210	> 43	}			•											
10	<211	> 43	34														,
	<212													V			
	<213			ea mi	nuta	ì											
15																	
	<400	> 43	}														
20	Met	Asn	Tyr	His	Asp	Leu	Tyr	Asp	Asp	Ser	Lys	Arg	Gln	Ser	Leu	Met	
	1				5					10					15		
25	Arg	Lys	Ala	Arg	Lys	Phe	Ala	Glu	Met	Asn	Lys	Lys	Leu	Val	Val	Val	
				20					25					30			
30						•											
	Val	Ile	Leu	Thr	Met	Tyr	Val	Val	Ser	Arg	Leu	Ala	Ser	Val	Gly	Ser	
			3 5					40					45				
35																	
	Thr	Lys	G1n	Glu	Ser	Ile		Gly	Leu	Thr	Met	Lys	Glu	Ser	Glu	Leu	
40		50					55					60					
		Val	Asn	Phe	Lys		Phe	Gly	Met	Asp		Gln	Lys	Arg	Asn		
45	65					70					75					80	
							TC)	,		61	,		C	TO I	æ	DI.	
50	Leu	Pro	Ala	Ala		Ala	ınr	Leu	Arg		Lys	Leu	Ser	rne	Tyr	Pne	
30					85					90					95		
	n	Т	A	D	C1	1	D	V-1	D	۸	C1-	71 ~	т	C1-	Th	Т	
55	rro	ıyr	нѕр		oru	Lys	110	vai		ASII	GIH	116	11 b		Thr	11 р	
				100					105					110			

5	Lys	Val	Asp 115	Ile	Asn	Asp	Lys	Ser 120	Phe	Pro	Arg	His	Phe 125	Arg	Lys	Phe
10	Gln	Glu 130	Thr	Trp	Pro	Gln	Leu 135	Asn	Ser	G1y	Tyr	Thr 140	Tyr	His	Leu	Ile
15	Pro 145	Asp	Ser	Ile	Val	Asp 150	Glu	Phe	Met	Arg	Ser 155	Leu	Phe	Ala	Asn	Val 160
25	Pro	Glu	Val	Ile	Ala 165	Ala	Tyr	Asn	Met	Leu 170	Pro	Lys	Asn	Ile	Leu 175	Lys
30	Ala	Asp	Phe	Phe 180	Arg	Tyr	Leu	Val	Ile 185	Phe	Ala	Arg	Gly	Gly 190	Thr	Tyr _.
35	Ser	Asp	Ile 195	Asp	Thr	Ile	Cys	Leu 200	Lys	Pro	Val	Asn	Glu 205	Trp	Ala	Thr
40	Phe	Asn 210	Glu	G ln	Thr	Val	Ile 215	Ser	His	Tyr	Leu	Lys 220	Thr	Asn	Gly	Lys
45	Thr 225	Ser	Gln	Leu	Pro	Glu 230	Val	Asp	Pro	Ser	Thr 235	Arg	Lys	Thr.	Pro	Ile 240
50	Gly	Leu	Thr	Ile	Gly 245	Ile	Glu	Ala	Asp	Pro 250	Asp	Arg	Pro	Asp	Trp 255	His
55	Glu	Trp	Tyr	Ala	Arg	Arg	Ile	Gln	Phe	Cys	Gln	Trp	Thr	Ile	Gln	G1y

				260					265					270		
5																
	Lys	Gln	Gly	His	Pro	Met	Leu	Arg	G1u	Leu	Ile	Ile	Arg	Ile	Val	Glu
			275					280					285			
10																
	Gin	Thr	Pho	Ara	lve	Glu	Ala	Met	Glv	Asn	Len	Ive	Lys	Val	Glu	Glw
	0111	290	1110	S	2,5	01 u	295	inc c	O1,	11011	LUU	300	2,5	, ar	Olu	ory
15		290					293					300				
	_									_			· _			
		Asp	Met	Gly	Gly		He	Met	GIn	Trp		Gly	Pro	Gly	Val	
20	305					310					315					320
	Thr	Asp	Thr	Leu	Phe	Asp	Tyr	Leu	Asn	Asn	Val	Val	Ser	Asp	Gly	Lys
25					325					330					335	
30	Leu	Gly	Asp	Gly	Tyr	Gly	Val	Gly	Ser	Lys	Tyr	Trp	Asn	Ser	His	Ala
				340					345					350		
35	Lys	Tyr	Lys	Leu	Ser	His	Ile	Glu	Val	Asp	Ala	Asn	Asn	Glu	Pro	Met
			355					360					365			
40	His	Ser	Asp	Lys	GIn	Thr	Ile	Ser	Trp	Lys	Ser	Met	Ser	Lys	Leu	Ser
		370	-				375					380				
				•												
45	Glu	Pro	Lou	T10	710	4 cn	4 cn	Val	Mat	T10	Lou	Pro	Ile	Thr	Sor	Dha
		110	Leu	116	116		nsp	Val	Met	116		110	116	1111	Set	
	385					390					395					40 0
50		_		••		~-			_		_	_			_	
	Ser	Pro	Gly	Val		Gln	Met	Gly	Ser		Ser	Pro	Asp	His		Leu
55					405					410					415	

	Ala Phe Val Arg His Met Phe Gln ${\bf G}$	ly Ser Trp Ly	s Pro Asp	Ala Glu
5	420 4	25	430	
	Lys Met			
10	•			
15	<210> 44			
	<211> 30	,		
	<212> DNA		•	
20	<213> Artificial Sequence	•		
	<220>			
25	<223> Description of Artificial Se	quence: prime	r DO3 used	for confirmation
	of destruction of Ogataea minuta	OCH1 gene		
30				
	<400> 44			
	ccattgtcag ctccaattct ttgataaacg			30
35				
	<210> 45			
	<211> 30	,		
40	<212> DNA			
	<213> Artificial Sequence			
45				
	<220>			
	$\langle 223 \rangle$ Description of Artificial Se	quence: prime	r DO5 used	for confirmation
50	of destruction of Ogataea minuta	OCH1 gene		
	<400> 45			
55	acacttccgt aagttccaag agacatggcc			30

5	<210> 46	•
	<211> 30	
	<212> DNA	
10	<213> Artificial Sequence	
	· ·	
15	<220>	
13	<223> Description of Artificial Sequence: primer DO3-2 used for con	firmation
	of destruction of Ogataea minuta OCH1 gene	
20		
	<400> 46	
	tcaccacgtt attgagataa tcaaacaggg	30
25		
	⟨210⟩ 47	
30	<211> 8	
	<212> PRT	
	<213> Saccharomyces cerevisiae	
35		
	<400> 47	
40	Thr Asn Tyr Leu Asn Ala Gln Tyr	
	1 5	
	<010\ A0	
45	<210> 48	
	<211> 8 <a><a><a><a><a><a><a><a><a><a><a><a><a><	
50	<212> PRT	
	<213> Saccharomyces cerevisiae	
	<400> 48	
55	Lys Ala Tyr Trp Glu Val Lys Phe	

	1	5	
5			
	(210>	49	
	<211>	23	
10	<212>	DNA	
	<213>	Artificial Sequence	
15			
	<220>		
	<223>	Description of Artificial Sequence: primer PPA5 for amplificati	on of
20	5'-re	gion of <u>Ogataea minuta PEP4</u> gene	
			•
0.5	<400>	49	
25	acnaa	ytayy tnaaygcnca rta 23	3
	• •		
30	<210>	50	
	<211>	23	
	〈212〉	DNA	
35	<213>	Artificial Sequence	
40	(220)	·	
		Description of Artificial Sequence: primer PPA3 for amplification	of מכ
	3 -re	gion of <u>Ogataea minuta PEP4</u> gene	
45	(400)	50	
	<400>		
50	aaytti	nacyt cccartangc ytt 23	;
50	(010)	F1	
	(210)		
55	(211)		
	(212>	DINA	

<213> Ogataea minuta

5

20

25

30

35

40

45

50

55

⟨220⟩

<221> CDS

¹⁰ <222> 477...1709

<400> 51

catatgtatt catcaatcta cagettttct aatengtgtg actteagtea catgateete 60 tgacccgcca cgaccttgct ggcttccagc gcgcgaaact cactcccaat tttcggatta 120 gctaatcacg aagatttttg gatttcctga tctgtagtgt atccatcctg ccttaatcgt 180 tttcgataca tttgttatcc gaattgggaa tggcattagt cgtgcgccac ccgactcgcc 240 acceccatte tagtggcaaa caggattgaa agagggctaa aaggtaactt agtgttttat 300 ctctgaatct tccttctgat atcaatcaac aattgttaaa cgattgaaag ttttgaaaca 360 ttcattgaac ttgcgaagcg ctcacacagc atcgttcggt tagcagttac aacagtttag 420 gtttttttcc ccacaaaaag gctcacgctg cctcctcact cttgcctctt ttcttgatga 480 aactctcgct tgcattgctc gcccttggtg gtttccaaga ggcccacgcc aaggttcatc 540 atgcgccaat caagaagact cctgccgcgg aaacttacaa ggacgtgagt ttcggcgact 600 acgtggattc tctgaagggc aagtatgtct ctatgtttgc taagcatgct gcggagtcct 660 cccaaaacgc ctttgtccct tttgttcagg aagtgcaaga cccagagttt actgttcagg 720 agggacacaa ctcccctctc acgaactacg tgaacgctca gtacttcact gagattcaaa 780 ttggtacccc gggccaaccg ttcaaggtca tcctcgacac tggttcgtcc aatttgtggg 840 ttccaggete ggattgttet tetettgett getacetgea teagaagtae gaeeaegaet 900 cttcgtcaac ctacaaggcc aacggctctg aatttgctat cagatacggc tctggttcgc 960 tggagggttt tgtctcccag gacaccctga ctcttggtga cctcatcatt ccaaagcaag 1020 actttgccga ggccaccagt gagccaggtc tcgcatttgc ctttggtaag tttgacggta 1080 ttctcggact tgcgtacgac accatctcgg tggacaagat tgttcctcct atctacaacg 1140 ctttgaacct ggggcttttg gacgagcctc agttcgcctt ctacctcgga gacactgcca 1200 agtctgaggc agacggtgga gtggctactt tcggaggtgt tgacgaaact aagtacgacg 1260 gaaagatcac ttggttgcca gtgagaagaa aggcttactg ggaggtgaag tttgacggta 1320

togotottgg tgacgagtac gcgactttag acggatatgg cgctgccatc gacacaggta 1380 cctctttaat tgctttgcct tcccaattgg ctgagatttt gaactctcaa atcggtgccg 1440 5 agaagteetg gteeggeeag tacaccattg actgtgaaaa gagagcatet ttgccagace 1500 teactiticaa ettigaeggi taeaattiet etateteege giaegaetae aetetigagg 1560 10 tttcaggete gtgcatttee geetteacte egatggaett ceetgeecea attggeecte 1620 tegecateat tggtgatget tteetgagaa agtattaete egtgtaegae ttgggeaagg 1680 acgctgttgg attggctaag gccgtttaat ctctagcctt ctagttattg attgctattg 1740 15 ttaattctgc catcctggat tggcatgaat ggttggttgg tacgcatata cggttggcgg 1800 tggtatgttt attgctttta ttacgtgacc aaatgttggt ttttctttca ccttttactc 1860 20 tgcactactt cactetttea ttggetttgg aagtaegtta ttttttteac eetatgtaac 1920 tgaattgcac aaatttaaag attgctctag a 1951 25 <210> 52 ⟨211⟩ 410 <212> PRT 30 <213> Ogataea minuta

<400> 52

35

40

45

50

Met Lys Leu Ser Leu Ala Leu Leu Ala Leu Gly Gly Phe Gln Glu Ala

1 5 10 15

His Ala Lys Val His His Ala Pro Ile Lys Lys Thr Pro Ala Ala Glu 20 25 30

Thr Tyr Lys Asp Val Ser Phe Gly Asp Tyr Val Asp Ser Leu Lys Gly

35 40 45

Lys Tyr Val Ser Met Phe Ala Lys His Ala Ala Glu Ser Ser Gln Asn
55 60

5	Ala	Phe	Val	Pro	Phe	Val	Gln	Glu	Val	G1n	Asp	Pro	Glu	Phe	Thr	Val
	65					70					75					80
10	Gln	G1u	Gly	His	Asn 85	Ser	Pro	Leu	Thr	Asn 90	Tyr	Val	Asn	Ala	Gln 95	Tyr
15	Phe	Thr	Glu	Ile 100	Gln	Ile	Gly	Thr	Pro 105	Gly	Gln	Pro	Phe	Lys	Val	Ile
20	Leu	Asp	Thr 115	Gly	Ser	Ser	Asn	Leu 120	Trp	Val	Pro	Gly	Ser 125	Asp	Cys	Ser
25			110					120					120			
30	Ser	Leu 130	Ala	Cys	Tyr	Leu	His 135	Gln	Lys	Tyr	Asp	His 140	Asp	Ser	Ser	Ser
35	Thr 145	Tyr	Lys	Ala	Asn	Gly 150	Ser	Glu	Phe	Ala	Ile 155	Arg	Tyr	G1y	Ser	Gly 160
40	Ser	Leu	Glu	Gly	Phe	Val	Ser	G1n	Asp	Thr 170	Leu	Thr	Leu	Gly	Asp 175	Leu
45	Ile	Ile	Pro	Lys 180	Gln	Asp	Phe	Ala	Glu 185	Ala	Thr	Ser	Glu	Pro 190	Gly	Leu
50	Ala	Phe	Ala 195	Phe	Gly	Lys	Phe	Asp 200	Gly	Ile	Leu	Gly	Leu 205	Ala	Tyr	Asp
55	Thr	Ile	Ser	Val	Asp	Lys	Ile	Val	Pro	Pro	Ile	Tyr	Asn	Ala	Leu	Asn

	210	215	220	
5				
	Leu Gly Leu Leu	Asp Glu Pro Gln	Phe Ala Phe Tyr Leu	Gly Asp Thr
	225	230	235	240
10				
	Ala Lys Ser Glu	Ala Asp Gly Gly	Val Ala Thr Phe Gly	Gly Val Asp
15		245	250	255
	Glu Thr Lys Tyr	Asp Gly Lys Ile	Thr Trp Leu Pro Val	Arg Arg Lys
20	260)	265	270
				V
25			Gly Ile Ala Leu Gly	Asp Glu Tyr
25	275	280	285	
	All The Lee As	Clar Tour Clar Ale	Alo Ilo Aon Thu Clu	The San Law
30		295	Ala Ile Asp Thr Gly	inr Ser Leu
	290	293	300	
	Ile Ala Leu Pro	o Ser Gln Leu Ala	Glu Ile Leu Asn Ser	Gln Ile Glv
35	305	310	315	320
40	Ala Glu Lys Se	r Trp Ser Gly Gln	Tyr Thr Ile Asp Cys	Glu Lys Arg
		325	330	335
45	Ala Ser Leu Pr	o Asp Leu Thr Phe	Asn Phe Asp Gly Tyr	Asn Phe Ser
	34	0	345	350
50				
	Ile Ser Ala Ty	r Asp Tyr Thr Leu	Glu Val Ser Gly Ser	Cys Ile Ser
	355	360	365	
55				

	Ala Phe Thr Pro	Met Asp Phe Pro	Ala Pro Ile Gly Pro Leu Ala Ile)
5	370	375	380	
	Ile Gly Asp Ala	Phe Leu Arg Lys	Tyr Tyr Ser Val Tyr Asp Leu Gly	ī
10	385	390	395 400)
15	Lys Asp Ala Val	Gly Leu Ala Lys A	Ala Val	
		405	410	
			•	
20	<210> 53			
	<211> 11			
	<212> PRT			
25	<213> Saccharomy	ces cerevisiae		
30	<220>			
	<221> variation			
	<222> 2			
35	<223> Xaa=Gly or	Leu		
	(400) 50			
40	<400> 53			
	Asp Xaa Asn Gly		·	
	1	5	10	
45	<210> 54			
	<211> 11			
50	<211> 11 <212> PRT			
30	<213> Saccharomy	ces cerovisiae		
	12107 Suconal Only	000 0010110100		
55	<220>			
	1207			

	<221> variation				
5	<222> 6				
	<223> Xaa=Ser or Thr	-			
10	<220>				
	<221> variation				
15	<222> 9				
	<223> Xaa=Val or Ile	e			
20	<220>				
	<221> variation				
	<222> 10				
25	<223> Xaa=Ala or Va	l			
		·			
30	<400> 54	•			•
	Gly Thr Ser Met Ala	Xaa Pro His Xaa	Xaa Gly		
	1 5		10		
35					
	<210> 55				
40	<211> 32				
40	<212> DNA				
	<213> Artificial Se	quence			
45				•	
	<220>				
	<223> Description of			for amplifica	ition of
50	5'-region of <u>Ogatae</u>	<u>a minuta PRB1</u> ger	ne		
55	<400> 55				
	gaybknaayg gncayggn	ac ncaytgykon gg			32

5	<210> 56	
	<211> 32	
	<212> DNA	
10	<213> Artificial Sequence	
15	<220>	
	<223> Description of Artificial Sequence: primer PPB3 for amplifications	tion of
	3'-region of Ogataea minuta PRB1 gene	r
20		
	<400> 56	
	conronayrt gnggnwsngc catnwsngtn cc	32
25		
	<210> 57	• •
30	<211> 2214	
	<212> DNA	
	<213> Ogataea minuta	
35		
	<220>	
10	<221> CDS	
40	<222> 3942013	
45	<400> 57	
	ggatcccctc tctcgctagc gagtttcgcc tgctctgcga taagagaaaa ccggctgtgc	
	agctttcacc ccaacacgtc actttctgca gtcgtgcgcc ggcttgcatt aggtcgtgcg	
50	cagatcccaa atttgccacc agactaaatt ggggcattct ggtgagggaa taggggaaat	
	aagagggtgt tttgacgttt catatacatt gctctttctt ttcttggacg gttagcggta	
55	ttgccataga ttatcttgcg cagttcagca tccttaggag ttattctttc ttgtaggtct	
	tttttcagaa cagaaaaatc gccaatcaca gaaagattca gtcctaattg aagccttatc	360

		ttatcttatc	tcacctcaac	cacttgaacc	aaaatgaagt	tatcccagtc	tgctgcggtg	420
5		gctattctgt	cttcgttggc	agcagtggag	gccttggtca	tcccgttatt	tgacgacttg	480
		ccagcagagt	ttgcccttgt	tccaatggat	gcgaaagcgg	aagtcatttc	tgacgttcct	540
		gtcgactcgg	ccattagtga	tgctcctatc	gcggcactaa	atgatgctcc	aagccctctc	600
10		gtcacatcgc	tgatcgcatc	tcaaaatttg	attccaaact	cttatattgt	cgttttcaag	660
		aatggcctag	cttccggggc	agttgacttc	cacatggagt	ggctcaagga	aacgcactcc	720
15		caaaccctgg	ctgctttgtc	taaggacatg	ccagcagaag	aattggccgc	cgaaggtttc	780
		gtttccgaaa	gcattgatct	tactgaggtg	tttagcatct	ccgatttgtt	cagtggatat	840
		accggatact	tcccggagaa	ggtggttgac	ctcatcagaa	gacaccctga	cgtggcgttc	900
20		gttgagcagg	actcgagagt	tttcgccgat	aagtcgtcta	ctcaaaacgg	tgctccttgg	960
		ggtttgtcta	gaatctctca	cagagageet	ctcagtctcg	gcaatttcaa	cgagtacgtt	1020
		tacgacgatc	ttgctggaga	tggcgtcacg	gcttatgtca	ttgataccgg	tatcaatgtg	1080
25		aagcacgagc	agttcggtgg	cagagcagag	tggggtaaga	ccatcccaac	cggtgatgat	1140
		gatattgacg	gaaacggtca	cggtactcac	tgcgctggta	caattggctc	ggaagattat	1200
30	٠.	ggagtttcta	agaactccaa	aattgtcgca	gtgaaggttt	tgagatctaa	cggttctggt	1260
		tccatgtctg	acgtgatcaa	gggtgttgaa	ttcgctgcaa	atgatcacgt	tgccaagtct	1320
		aaagccaaga	aggacggttt	caagggatcg	actgccaaca	tgtctttggg	aggtggcaag	1380
35		tctcctgctc	ttgacttggc	tgtcaatgcc	gctgtcaaag	ctggtttaca	ctttgctgtt	1440
		gccgctggta	acgacaatgc	tgacgcatgc	aactattctc	ctgctgctgc	agagaacgca	1500
		gtcactgttg	gtgcgtccac	tttgtctgac	tctagagctt	acttttccaa	ctatggtaaa	1560
40		tgtgttgaca	tttttgctcc	gggcttgaac	atcctttcca	cctacatagg	ttctgacact	1620
		gccaccgcca	ctctttctgg	tacatcgatg	gcctccctc	acgtttgtgg	tctgttgacc	1680
45		tactttttga	gcttgcaacc	agaatcgtcg	tcgttgtttt	cttcggcagc	tatctcccct	1740
		gctcagctga	agaagaacct	gatcaagttt	ggtacgaaga	acgttttgtc	tgagattcca	1800
		tcggacggaa	ccccaaatat	tctcatttac	aacggtgctg	gcaagaacat	cagtgacttc	1860
50		tgggcgtttg	aagacgaggc	ctcggccaag	tccgacttga	agaaggctgt	cgatattgcc	1920
		acaagtgttg	acttagacct	gcaagatatc	aaggagaagt	tcaaccatat	tttggaggag	1980
<i>55</i>		gtcgccgaag	aggttgctga	tttgttcgat	taggtttcta	acaattcagt	gatcttgtct	2040
55		ttactgtggt	ttcggaaact	gggtttagac	agcggtcctg	ttactcatat	tgcgcttgat	2100

	cgct	tttc	ctt	ττττ	ττςτ	g tt	giii	ggag	ıgı	iligi		ici	ggatz	iat	grggi	lagii	2100
5	ttto	aagt	tg c	ttcc	aata	t tg	tttg	teca	gat	taga	gtc	att	gcttg	gaa	gctt		2214
	<210)> 58	3														
10	<211	> 53	39					•			-						
	<212	2> PF	TS											•			
15	<213	3> Og	gatae	ea mi	nuta	l											
13																	
	<400	> 58	3														
20	Met	Lys	Leu	Ser	G1n	Ser	Ala	Ala	Val	Ala	Ile	Leu	Ser	Ser	Leu	Ala	
	1				5					10					15		
25	Ala	Val	Glu	Ala	Leu	Val	Ile	Pro	Leu	Phe	Asp	Asp	Leu	Pro	Ala	Glu	
				20			•		25					30	•		
30										**							
	Phe	Ala		Val	Pro	Met	Asp		Lys	Ala	G1u	Val		Ser	Asp	Val	
			35					40					45				
35	_			_			•			5	~ 1		. 1				
	Pro		Asp	Ser	Ala	He		Asp	Ala	Pro	116		Ala	Leu	Asn	Asp	
40		50					55					60					
	41.	Dwa	Com.	Dwo	Lou	Vo1	Thr	Sor	Lou	Tio	Δ1 a	Sor	Gln	Acn	Leu	T10	
	65	710	ser	110	Leu	70	1111	361	Leu	116	75	361	OIII	nsii	Leu	80	
45	00					,,,					,,,					00	
	Pro	Asn	Ser	Tvr	Tle	Va1	Val	Phe	Lvs	Asn	G1 v	Len	Ala	Ser	Gly	Ala	
50	110	71311	UCI	1,12	85	,	,,,		D , 3	90	U1 ,	Dou	,,,,	001	95	1110	
	Val	Asp	Phe	His	Met	Glu	Trp	Leu	Lys	Glu	Thr	His	Ser	G1n	Thr	Leu	
55		•		100			-		105					110			

5	Ala	Ala	Leu 115	Ser	Lys	Asp	Met	120	Ala	Glu	Glu	Leu	A1a 125	Ala	Giu	Gly
10	Phe	Val 130	Ser	G1u	Ser	Ile	Asp 135	Leu	Thr	Glu	Val	Phe 140	Ser	Ile	Ser	Asp
15	Leu 145	Phe	Ser	Gly	Tyr	Thr 150	Gly	Tyr	Phe	Pro	Glu 155	Lys	Val	Val	Asp	Leu 160
20	Ile	Arg	Arg	His	Pro 165	Asp	Val	Ala	Phe	Val 170	G1u	G1n	Asp	Ser	Arg 175	Val
30	Phe	Ala	Asp	Lys 180	Ser	Ser	Thr	G1n	Asn 185	Gly	Ala	Pro	Trp	G1y 190	Leu	Ser
35	Arg	Ile	Ser 195	His	Arg	Glu	Pro	Leu 200	Ser	Leu	Gly	Asn	Phe 205	Asn	Glu	Tyr
40	Val	Tyr 210	Asp	Asp	Leu	Àla	Gly 215	Asp	Gly	Val	Thr	Ala 220	Tyr	Val	Ile	Asp
45	Thr 225	Gly	Ile	Asn	Val	Lys 230	His	Glu	Gln	Phe	Gly 235	Gly	Arg	Ala	Glu	Trp 240
50	Gly	Lys	Thr	Ile	Pro 245	Thr	Gly	Asp	Asp	Asp 250	Ile	Asp	Gly	Asn	Gly 255	His
55	Gly	Thr	His	Cys	Ala	Gly	Thr	Ile	Gly	Ser	Glu	Asp	Tyr	Gly	Val	Ser

		260	265	270
5				
5	Lys Asn Ser	Lys Ile Val	Ala Val Lys Val Leu	Arg Ser Asn Gly Ser
	275		280	285
10				200
		0 4 11 1	71 1 01 1/1 01	
		Ser Asp Val	Ile Lys Gly Val Glu	
15	290		295	300
			•	
	His Val Ala	a Lys Ser Lys	Ala Lys Lys Asp Gly	Phe Lys Gly Ser Thr
20	305	310	315	320
	Ala Asn Met	t Ser Leu Gly	Gly Gly Lys Ser Pro	Ala Leu Asp Leu Ala
25		325	330	335
	Val Acn Al	a Ala Val Ive	Ala Gly Leu His Phe	Ala Val Ala Ala Gly
30	vai nsii nii			
		340	345	350
35	Asn Asp Asi	n Ala Asp Ala	Cys Asn Tyr Ser Pro	Ala Ala Ala Glu Asn
	35	5	360	365
			;	
40	Ala Val Th	r Val Gly Ala	Ser Thr Leu Ser Asp	Ser Arg Ala Tyr Phe
	370		375	380
45	Ser Asn Ty	r Gly Lys Cys	Val Asp Ile Phe Ala	Pro Gly Leu Asn Ile
	385	390	395	400
50		344	-	
50	I C 171-	n Tun 11a Cl	Son Acn The Ala Th-	Ala The Lon Sam Cla
	Leu Ser In		Ser Asp Thr Ala Thr	
55		405	410	415
55		•		

**

	Thr	Ser	Met	Ala	Ser	Pro	His	Val	Cys	Gly	Leu	Leu	Thr	Tyr	Phe	Leu
5			•	420					425					430		
40	Ser	Leu	Gln	Pro	G1u	Ser	Ser	Ser	Leu	Phe	Ser	Ser	Ala	Ala	Ile	Ser
10		•	435					440					445	·		
15	Pro	Ala	Gln	Leu	Lys	Lys	Asn	Leu	Ile	Lys	Phe	Gly	Thr	Lys	Asn	Val
		450					455					460				
20	Leu	Ser	Glu	Ile	Pro		Asp	Gl y	Thr	Pro		Ile	Leu	Ile	Tyr	
	465					470					475					480
25	Gly	Ala	Gly	Lys			Ser	Asp	Phe		Ala	Phe	Glu	Asp		Ala
					485				-	490					495	
30	 C	41.	7	C	100	Lou	lve	Lvo	Λla	Va 1	Acn	T1a	41a	Thr	Sor	Val
	Ser	АТа	Lys	500		Leu	Lys	Lys	505	101	изр	116	Ala	510	361	Val
35																
	Asp	Leu	Asp 515		Gln	Asp	Ile	Lys 520		Lys	Phe	Asn	His 525	Ile	Leu	Glu
40			313					020					020			
	G1 u	Val	Ala	G1u	Glu	l Val	Ala	Asp	Leu	Phe	Asp					
45		530	•				535	•								
	⟨21	0> 5	9													
50	⟨21	1> 9	ŀ													
	<21	2> P	RT													
55	<21	3> S	acch	aron	nyces	s cei	revis	iae								

	<220>
5	<221> variation
	⟨222⟩ 1
	<223> Xaa=His or Asn
10	
	⟨220⟩
15	<221> variation
75	<222> 5
	<223> Xaa=Val or Thr
20	
	<400> 59
	Xaa Tyr Asp Trp Xaa Phe Leu Asn Asp
25	1 5
30	<210> 60
	<211> 12
	<212> PRT
35	<213> Saccharomyces cerevisiae
40	<400> 60
40	Tyr Asn Leu Cys His Phe Trp Ser Asn Phe Glu Ile
	1 5 10
45	, (O. O. O.
	<210> 61
	<211> 26
50	(212) DNA
	<213> Artificial Sequence
. 55	(000)
	⟨220⟩

	(223) Description of Artificial Sequence: primer PKK5 for amplification (21
5	5'-region of <u>Ogataea minuta KTR1</u> gene	
	<400> 61	
10	maytaygayt ggrynttyyt naayga 26	
	<21 0 > 62	
15	<211> 3 5	
	<212> DNA	
20	<213> Artificial Sequence	
	. <220>	
25	<223> Description of Artificial Sequence: primer PKR3 for amplification of Artificial Sequence:) f
	3'-region of Ogataea minuta KTR1 gene	
30	· <400> 62	
	atytcraart tnswccaraa rtgrcanarr ttrta 35	
35		
	<210> 63	
	<211> 1930	
40	<212> DNA	
	<213> Ogataea minuta	
45	⟨220⟩	
	<221> CDS	
50	<222> 1241335	
	Z400\ 63	
55	<pre><400> 63 gagctctata tttagctttg gacattggta ctagttggac tgttgatcgg ttgacttgac</pre>	
	gagororara irragorrig gacariggia oraginggae igingarogg rigacingae ou	

agtgagttet atagaaagae aggetacaaa gaccaccaag getggeaaat ttgegagatt 120 acaatggcta gagcgaatgc gaggctgatc cggtttgcaa tctttgctac cgtgttggtt 180 5 ttatgtggat acattttatc caagggctcg tctacttcgt atacgatttc gacgccagag 240 teeggetega gtteeagtgg cactgttget aatactgaga aatetgeeet egeagtgggt 300 10 gagaaaagcg ttgcaggcgc agccgagaaa agcgttcctg cagctgacgt cccagatgga 360 aaggtgaagg ccacttttgt ctctttggcc agaaaccagg atctgtggga gctggtgaac 420 tegateagae aggtegaaga eegttteaae aacaagtate attaegattg ggtgttettg 480 15 aacgacgegg aattcaacga cgagttcaag aaggtgacct ctcaggtctg ttcgggtaag 540 accaagtatg gtgtcattcc aaaggaacag tggagcttcc cttcgtggat cgacactgat 600 aaggetgetg ceaccagaga geaaatgaga aaggacaaga teatetaegg agaeteeate 660 20 tegtacagae acatgtgeag atacgagteg ggattettet teaaacaeee agaactegea 720 gagtacgagt actactggag agtggagcca agcatcaaga totactgtga cattgactac 780 25 gacatettea agtteatgaa ggacaacaag aagtegtaeg gatggaceat ttetetteet 840 gagtacaagg agaccatece aactetgtgg aagaccacta gagactteat gaaggaaaac 900 ccacagtacg ttgcccagga caacctgate aactttattt cggacgacgg aggaagcage 960 30 tacaatggat gtcacttctg gtctaacttc gaggtcggct cgctcgagtt ctggagaggc 1020 gaagcctaca ccaagtactt tgaggcgttg gaccaggctg gtgggttctt ctacgaaaga 1080 tggggagatg cccctatcca ctcgattgcc gttgctctgt tcatgcctaa ggacgaggtt 1140 35 cattletteg acgaegtegg atactteeae aateegttee acaactgeee gategacaae 1200 gctgtcagag aggccaagaa ctgtgtctgc aaccaagccg acgacttcac cttccagcac 1260 40 tactcctgta cccctaagtt ttaccaggag atgggtttga aaaagcctgc taactgggag 1320 cagtacatcc attagttgac ccaggccacg ggttgatttc gcctggttgt tttttgtttt 1380 tacaagtett teaatactaa attagetgga tteaagtgat aegagatgat ttteatetee 1440 45 ggggtttctg taatttttgt ttcgagaaaa ataaatctac aaaaaaacgt gccagatact 1500 tgtctcccgg gggcaaacaa cgtgctctct ctgctactaa gtgttttgtt tctgtccaca 1560 acgcccgcag gtaaacgcaa tgtccgatac agattctgag tcagtctcga cgatcacaca 1620 50 gatgagette gagaaegtte tegaggttet agaagaetet gegtetgagt getecaagaa 1680 caaggacttc ctctccttct cgacgatcat cgacgtccat ctgggtgatc tttccattta 1740 55 cactgagtcc gagcgacttg agctgttgtc gaaactgaca tctattctga gcaatgacca 1800

	ccaa	ııgg		acga	ggia	g ga	rggg	actt	acc	acce	aic	atat	, cca e	500		sgactc	1000
5	tgaa	tctt	cg c	ccag	tgag	g gg	ctga	tgaa	cag	caag	gtc	acgg	gttct	tt 1	tcttg	gaagct	1920
	gttt	gago	tc														1930
																•	
10	<210	> 64	Į.														٠
	<211	> 40)3											•			
15	<212	> PF	T														
	<213	3> Og	gatae	a mi	nuta												
												•					
20	<400)> 64	ł								-						
	Met	Ala	Arg	Ala	Asn	Ala	Arg	Leu	Ile	Arg	Phe	Ala	Ile	Phe	Ala	Thr	
05	1				5					10					15		
25																	
	Val	Leu	Val	Leu	Cys	Gly	Tyr	Ile		Ser	Lys				Thr	Ser	
30	•			20				•	25			٠	•	30			
						_				_	_		_			4	
	Tyr	Thr		Ser	Thr	Pro	Glu	Ser	Gly	Ser	Ser	Ser		Gly	Thr	Val	
35			35					40					45				
			T)	01		C -	41.		41-	V- 1	C12.	C1	T	C	W - 1	41-	
40	Ala		inr	Glu	Lys	Ser		Leu	Ala	vai	Gly		Lys	2er	Vai	Ala	
		50					55					60					
	C1	410	A1 a	C1	Luc	Sor	Va1	Dro	410	410	Asp	Val	Pro	Acn	Gly	lve	
45	65	на	HIA	Olu	Lys	70	Val	Pro	піа	ЛІС	75		110	nsp	Oly	80	
	00					•0										00	
50	Val	lve	412	Thr	Phe	Val	Ser	Leu	Ala	Aro	Asn	Gln	Asn	leu	Trn	Glu	
50	vai	Lys	nia	1111	85	741	561	LCu	Mu	90	71511	o I II	цор	LCu	95	O1u	
					00					33					50		
55	Lan	Val	Aen	Ser	Tle	Arø	Gln	Val	Glu	Asn	Arg	Phe	Asn	Asn	[.ve	Tvr	
	Leu	101	11311	CCI	LIC	••• Б	0111		JIU	p	6				د ر پ	*	

				100					105					110		
5																
	His	Tyr	Asp	Trp	Val	Phe	Leu	Asn	Asp	Ala	G1u	Phe	Asn	Asp	Glu	Phe
			115					120					125			•
10																
	Lys	Lys	Val	Thr	Ser	G 1n	Val	Cys	Ser	Gly	Lys	Thr	Lys	`Tyr	Gly	Val
15		130					135					140				
												,	••			
	Ile	Pro	Lys	Glu	Gln	Trp	Ser	Phe	Pro	Ser	Trp	Ile	Asp	Thr	Asp	Lys
20	145					150					155					160
	Ala	Ala	Ala	Thr	Arg	Glu	Gln	Met	Arg	Lys	Asp	Lys	Ile	Ile	Tyr	Gly
25					165					170					175	
30	Asp	Ser	Ile	Ser	Tyr	Arg	His	Met	Cys	Arg	Tyr	Glu	Ser	Gly	Phe	Phe
				180					185					190		
35	Phe	Lys	His	Pro	Glu	Leu	Ala	Glu	Tyr	Glu	Tyr	Tyr	Trp	Arg	Val	Glu
			195					200					205			
40	Pro	Ser	Ile	Lys	Ile	Tyr	Cys	Asp	Ile	Asp	Tyr	Asp	Ile	Phe	Lys	Phe
		210					215	٠				220				
45																
45	Met	Lys	Asp	Asn	Lys	Lys	Ser	Tyr	Gly	Trp	Thr	Ile	Ser	Leu	Pro	Glu
	225					230					235					240
50																
	Tyr	Lys	Glu	Thr	Ile	Pro	Thr	Leu	Trp	Lys	Thr	Thr	Arg	Asp	Phe	Met
					245					250					255	
55																

	Lys	Glu	Asn	Pro	G1n	Tyr	Val	Ala	Gln	Asp	Asn	Leu	Ile	Asn	Phe	Ile
5				260					265					270		
	C	A	A	C1	C1	C	C	Т	۸	C1	C	u.	Dha	т	C	۸
10	Ser	Asp	Asp	GIY	GIA	Ser	ser		Asn	GIA	Lys	nıs		irp	ser	ASN
10			275					280					285			
														•		
	Phe	Glu	Val	Gly	Ser	Leu	Glu	Phe	Trp	Arg	Gly	Glu	Ala	Tyr	Thr	Lys
15		290					295		•			300				
	Т	Dh.a	C1	۸۱۵	Lau	1 am	C15	A10	C1 v	C1 ₁₁	Dha	Dha	Tun	C1.,	A ~ ~	Twn
20		rne	GIU	ита	Leu		U 111	nia	Gly	оту		rne	1 11	Olu	VIR	
	305					310					315					320
25	Gly	Asp	Ala	Pro	Ile	His	Ser	Ile	Ala	Val	Ala	Leu	Phe	Met	Pro	Lys
					325					330					335	
	•						÷									
30	Aen	Glu	Va1	His	Phe	Phe	Asn	Asp	Val	Glv	Tvr	Phe	His	Asn	Pro	Phe
	пор	Olu	, 41					ъ		01)	.,.					
				340					345					350		
35																
	His	Asn	Cys	Pro	Ile	Asp	Asn	Ala	Val	Arg	Glu	Ala	Lys	Asn	Cys	Val
			355					360					365			
40																
	Cvs	Asn	Gln	Ala	Asp	Asp	Phe	Thr	Phe	Gln	His	Tyr	Ser	Cys	Thr	Pro
	•	370					375					380				
45		510					010					000				
														•		
	Lys	Phe	Tyr	Gln	Glu	Met	Gly	Leu	Lys	Lys	Pro	Ala	Asn	Trp	Glu	Gln
50	385					390					395					400
	Tvr	Ile	His													
55	- , -															

5	<210> 65			
	<211> 10			
	<212> PRT			
10	<213> Saccha	aromyces cerevisi	ae	
15	<400> 65			
	Thr Ser Trp	Val Leu Trp Leu	Asp Ala Asp	
	1	5	10	
20		•		
	<210> 66			
25	<211> 10			
25	<212> PRT			
	<213> Sacch	aromyces cerevisi	ae .	
30				•
	<400> 66			
	Glu Thr Glu	Gly Phe Ala Lys	Met Ala Lys	
35	1	5	10	
40	<210> 67			
	<211> 29			
	<212> DNA			
45	<213> Artif	icial Sequence		
	Z000N			
50	<220>	intion of Autific	al Sequence: primer PMN5 for	lification of
		f <u>Ogataea minuta</u>		ampiliteation of
	o region o	1 ogacaca minuta	mino Belle	
55 ·	<400> 67			

	acnwsntggg tnytntggyt ngaygenga	29
5		
	<210> 68	
	<211> 29	
10	<212> DNA	
	<213> Artificial Sequence	
15		
	<220>	
	<pre><223> Description of Artificial Sequence: primer PMN3 for amplifica-</pre>	tion of
20	3'-region of Ogataea minuta MNN9 gene	
25	<400> 68	
25	ttngccatyt tngcraance ytengtyte	29
30	⟨210⟩ 69	
	<211> 2221	
	<212> DNA	
35	<213> Ogataea minuta	
40	<220> <021> CDS	
	<221> CDS	
	<222> 9312034	
45		
	<400> 69	60
	gggcccagag gaggaggtag gagtgggggg atcgccaatt ttctggcgcg ctactccgcg	
50	ctgccccgca cttcggccgc accgccaacc ttttctttgc gcaccccctc tccaacgttt	
	ccggcctttc cattgaagcg agctaagcag tcagagagca ccaccgggag acgtgatcgc	
55	agcccctgtt tgccccgaaa ccgggttaga caaaacgcgg ttcggcttca acggactctc	
	atctttcaga tggccgcagg ttgctggcag cttcgggctg acaacatcat ggctgacgta	300

	ggctagtcag	tagggcaccc	igogggicag	taagteteee	igcaggicac	cgttgottga	500
5	gcatcgcagg	agtgttaagc	ggcagaaaag	aggaggtgga	gtggggacga	gagatccggg	420
	taaccgtagt	cggcgcgcga	gtccgagaag	ttaatcgacg	cgtcgaaact	gggtcttttg	480
	ttacccaaaa	gaagcaggac	tggaaggaaa	cagaccggga	ttggtgtgta	tttctgtcag	540
10	ggcacactgg	acggtcatcc	tagtgtggtt	ccgctcaccg	cttacctggc	tggtgttcct	600
	ggtccatccc	ctagcaaact	cgagccggat	caccctattc	tggccggttt	tgctatttcc	660
15	cgcctcgaaa	tccccttgaa	gtacacagcc	tgaaatttgg	cttttcttc	actgtcgtgc	720
	aagacgcaaa	acgccttact	ttgaacaaca	tcaacatcta	gcaaatgctg	acgaaatttg	780
	agaaacacaa	gagctttacc	aacctctaaa	aaataaccta	ggctcccgtt	tgcagctccg	840
20	catetette	agcaccatta	tagaactccg	gaaagcatat	tcacagcacg	tgagacgcgg	900
	attggctaaa	taatcagtgc	tgatttggac	atgttgaaag	gcgttttgaa	acaccctctg	960
	gtacaccaga	tacgaaggaa	acccgtgaag	gtgttggttc	ccgtcttcgg	attggctgtt	1020
25	ttgttgtttc	tggtgtttgg	aggctcgtct	tccaacagaa	agaccaacag	tccctactcg	1080
	tacaagcgca	acaacagaga	tgaggtgatt	ccacgtaatt	tgccagcgga	tcacatctcc	1140
30	cactatgacc	tgaacaacct	tgcgtcgacg	ccgatggctg	cttacaacaa	ggagagagtg	1200
	ttgattttga	cgccaatggc	gaagtttctg	gacggatact	gggacaactt	gctgaaattg	1260
	acatatccac	gtgacctgat	cgagctcgga	ttcattgtgc	cgcgcacagc	agagggagac	1320
35	caagcattga	agaagctgga	gcacgcggtg	aagattatcc	agaacccaaa	gaacaccaag	1380
	gaacctaagt	togocaaagt	cacgatecte	agacaggaca	acgagtccct	ttcgtcacag	1440
40	tcggaaaagg	acagacacgc	gttcaaggtg	cagaaagaac	ggcgcgcaca	aatggccaca	1500
40	gccagaaact	cgctgctgtt	caccaccatt	ggcccgtaca	cctcatgggt	tctgtggctt	1560
	gactcagata	tegtggagte	gcctcacacg	ttgatccagg	atcttgtttc	gcacgacaag	1620
45	ccagtcattg	ctgccaattg	ctaccagaga	tactacgacg	aggacaagaa	ggaggactcc	1680
	atccgtcctt	acgacttcaa	caactggatc	gagtctgaag	agggactacg	gatcgcatcc	1740
	acgatgtcgg	acgacgagat	catcgtggaa	gcgtacgcag	aaattgccac	ctatcgtcca	1800
50						actggatggt	
	-					catgttcccg	
55	aacttcccct	tetaccatct	catcgaaacc	gaagggttcg	ccaaaatggc	caaacggctt	1980
	ggctaccagg	tgtttggtct	tccaaactat	cttgttttcc	actacaacga	gtgactcttg	2040

	gtcttt	tata 1	tagtt	gagca	aa	aatg	aaaa	aac	atgt	caa	aaat	agca	ag	acaad	cgtgaa	2100
5	atgtgt	cgcg a	acgcg	acge	gt	agtt	gttg	cac	cgca	acg	cgaa	actto	etg	tcgcg	gcctgt	2160
	caacta	gaat a	aggtt	cgcac	c ac	gacc	ccac	cgt	tccg	att	tcct	tato	ag	caaag	gagatc	2220
	t															2221
10						٠										
	<210>	70												٠		
	<211>	367														
15	<212>															
	⟨213⟩		ea mi	nuta												
20															-	
	<400>	70														
	Met Le		G1 v	Val 1	l.eu	l.v.s	His	Pro	Leu	Va1	His	G1n	Tle	Arø	Aro	
25	1	u <i>D</i> ,0	01)	5	500	2,0			10	,			110	15	112.8	
	1			J					10					10		
	Lys Pr	o Val	Ive	Val i	Lou	Va 1	Pro	Va 1	Pho		Lau.	Δ T 2	Va I	Lou	Low	
30	LyS II	O VAI	20	741	Leu	121	110	25	1116	ULY	Leu	nια	30		Leu	
			20					20					50			
	DL - 1 -	Val	DL -	C1	C1	Can.	Som.	Sam	A ~ n	A ====	Ia	The	۸	C	D	
35	Phe Le		rne	GIY	ату	ser		261	NSII	ni g	Lys		ASII	Set	FIO	
		35					40					45				
40	T . C	. T.		A	A	A	A	A	C1	V = 1	τ1.	n	A	A	T	
	Tyr Se		Lys	Arg	ASN		Arg	ASP	GIU	vai		PTO	Arg	ASI	Leu	
	5	0				55					60					
45					_		-		_			_		_		
	Pro Al	a Asp	His	He		His	Tyr	Asp	Leu		Asn	Leu	Ala	Ser		
	65				70					75					80	
50																
	Pro Me	t Ala	Ala	Tyr	Asn	Lys	G1u	Arg	Val	Leu	Ile	Leu	Thr	Pro	Met	
·. 55				85					90					95		

	Ala	Lys	Phe	Leu	Asp	Gly	Tyr	Trp	Asp	Asn	Leu	Leu	Lys	Leu	Thr	Tyr
5				100					105					110		
3																
	_			_	~ 1			63	-		., .			<i>m</i> .		
	Pro	Arg	Asp	Leu	lle	Glu	Leu	Gly	Phe	lie	Val	Pro	Arg	lhr	Ala	Glu
10			115		•			120			•		125			
	Gly	Asp	Gln	Ala	Leu	Lys	Lys	Leu	Glu	His	Ala	Val	Lys	Ile	Ile	Gln
15		130					135					140				
		_			 .			_		D 1						
20	Asn	Pro	Lys	Asn	Thr	Lys	Glu	Pro	Lys	Phe	Ala	Lys	Val	lhr	He	Leu
	145					150					155					160
25	Arg	Gln	Asp	Asn	Glu	Ser	Leu	Ser	Ser	Gln	Ser	Glu	Lys	Asp	Arg	His
					165					170					175	
30	A10	Dha	l uc	Val	Gln.	lve	Gl.,	Ara	Ara	Δla	Gln	Mot	412	Thr	412	Ara
	NIA	rne	Lys		GIII	Lys	014	VI &		nia	OIII	mec	Ala		ліа	ur g
				180					185					190		
35																
	Asn	Ser	Leu	Leu	Phe	Thr	Thr	Ile	Gly	Pro	Tyr	Thr	Ser	Trp	Val	Leu
			195					200				•	205			
40																
	Trp	Leu	Asp	Ser	Asp	Ile	Val	Glu	Ser	Pro	His	Thr	Leu	Ile	Gln	Asp
		210					215					220				
45		210					210					220				
	Leu	Val	Ser	His	Asp	Lys	Pro	Val	Ile	Ala	Ala	Asn	Cys	Tyr	Gln	Arg
50	225					230					235					240
	Tyr	Tyr	Asp	Glu	Asp	Lys	Lys	Glu	Asp	Ser	Ile	Arg	Pro	Tyr	Asp	Phe
55	-	-	-		245					250					255	
					210					200					200	

5	Asn	Asn	Trp		Glu	Ser	Glu	G1u		Leu	Arg	Ile	Ala		Thr	Met
				260					265					270		
10	Ser	Asp	Asp	Glu	Ilė	Ile	Val	Glú	Ala	Tyr	Ala	Glu	Ile	Ala	Thr	Tyr
			275					280					285	•		
15	Arg	Pro	Leu	Met	Gly	His	Phe	Tyr	Asp	Pro	Asn	Gly	Asp	Leu	Gly	Thr
		290					295					300				
20	Glu	Met	G ln	Leu	Asp	Gly	Val	Gly	Gly	Thr	Cys	Leu	Met	Val	Lys	Ala
25	305					310					315					320
23	Asp	Val	His	Arg	Asp	Gly	Ala	Met	Phe	Pro	Asn	Phe	Pro	Phe	Tyr	His
30					325					330		•			335	
	Leu	Tle	Glu	Thr	GIn	G1 v	Phe	Ala	Lvs	Met	Ala	Lvs	Arg	Leu	Glv	Tvr
35	202			340		,			345				0	350		-,-
	Gln.	Val	Pho	61 v	Lou	Pro	Acn	Tvr	l eu	Val	Phe	Hic	Tyr	Acn	Glu	
40	OIII	*41	355	U1,	Lcu	110	11511	360	Lou	,,,	1 110		365	11011	,	
	401 /	n> 7	•													
45		0> 7 1> 3														
		2> Di														
50	<213	3> A:	rtif	icia	l Se	quen	ce									
55	<220	0>														
<i>55</i>	<223	3> D	escr	ipti	on o	f Ar	tifi	cial	Seq	uenc	e: p	rime	r DMI	V 5		

5	<400> 71	
	agatgaggtg attccacgta atttgccagc	30
10	<210> 72	
	<211> 30	
15	<212> DNA	
	<213> Artificial Sequence	
20	<220>	
	<pre><223> Description of Artificial Sequence: primer DMN3</pre>	
25	Z400\ 70	
	<pre><400> 72 ttttgattgt catctatttc gcacaccctg</pre>	20
	titigatigi calcuattic geacaccetg	30
30	⟨210⟩ 73	
	<211> 12	
35	<212> PRT	
	<213> Pichia pastoris	
40	<400> 73	
	Gly Gly Gly Ser Ser Ile Asn Phe Met Met Tyr Thr	
45	1 5 10	
	<210> 74	
50	<211> 10	
	<212> PRT	
55	<213> Pichia pastoris	

	<400> 74
5	Asp Met Trp Pro Met Val Trp Ala Tyr Lys
	1 5 10
10	<210> 75 ·
	<211> 35
15	<212> DNA
	<213> Artificial Sequence
20	<220>
	<223> Description of Artificial Sequence: primer PAX5 for amplification of
25	5'-region of <u>Ogataea minuta AOX1</u> gene
23	
	<400> 75
30	ggnggnggnw snwsnathaa yttyatgatg tayac 35
	<21 0 > 76
35	<211> 29
00	<212> DNA
	<213> Artificial Sequence
40	
	⟨220⟩
15	<223> Description of Artificial Sequence: primer PAX3 for amplification of
45	3'-region of Ogataea minuta AOX1 gene
50	<40 0 > 76
	ttrtangccc anaccatngg ccacatrtc 29
55	(010) 77
	<21 0> 77

<211> 5817 <212> DNA

<213> Ogataea minuta

10 <220>

5

15

20

25

30

35

40

45

50

55

<221> CDS

<222> 2349. . 4340

<400> 77

aagetttett tegeaaacag etetttggta gaggagaata gagtgeecag etgataaaga 60 aggegeaett taaaagataa tetacateea gaaaaataaa aaaataaaae tgaaceggea 120 tttgcgatta cgtaagccac aaaatttcag gaaactcgta caagatcagg ttggcgaggg 180 ggctagcgat agaatgtatc agtgttatta gtggctctag gagtagaaaa caatagaata 240 aagatoogaa gaaagggago aagaaggooa ogooagaogt totagtaggt agoocaatog 300 tcaatgtage tgttcaggte tttcaacagg ttcttggtet egtetggaet ggagatecaa 360 caagtogttg ctgcggttcg actggcatag tcgttggcgc cgagggagct gaactggtcg 420 ccgacgtgca gggtgttttc gggcttgatg gttcggttgt cgttgcagct gaggaactct 480 tggaggattt tcaccccgta ggacttgtcg ccaatatcga cccagatgtc cgagcctccg 540 ttgaaagcgc accatctgat tttcttagag gaagggaagt ggcggagacg tttgtctacg 600 cgcagaacca cctcttccag ctgctcgcga acgagtttgt agccttcttt ggggaccagt 660 ccaacggcac geteettet gatgatgatg geatgeaatg aaagtttett gateaggtee 720 gagaagatet cetgegeaaa gteeagggte eggatgatgt etteetegga ceagtegage 780 atgttttcaa gcagccattt gtctttggag aagaactcga gtccgccaag ctcgttggag 840 tagoggaata ggtagtttgo ttogootooc atoacoagaa ogttotggog otgtotgtog 900 gtgagetttg gggtggtett cacctegtet atgageceet tgagteggge gtagtaettg 960 gagccgtcgg agtagcccgc ggcagtgacg atgccgacat agaggtcttt ggcgagcagc 1020 ttgatgagat ggggcaagat cggcgacgag gcgtcgaagt tggagccgtc atcgtagaga 1080 gtgatgtctc cgtcaaaagt cacgagctgg agtctgcggt gtacggatgt tttgttgtgg 1140 aaagtgttgg agagctcgag aagttgcgcc gtgttcagaa tgagccgaat gtcgttgaac 1200

gagggcgcta caagtctcct tttgctgatt gtgcggcgtc cgtcctcgat gtagaacgcc 1260 ttctccaggg gcaatcgggt gaagaaacag ccaacggaag gcaccaattg gaccaatctg 1320 5 gacatttcag gcattcccgc ctgggtcatc tcgatgttgt cgttgatcag cagctcgagg 1380 tcatggaaga tttccgcgta gcgtcgcttc gcttccgaat tcaccatgag gtcgtccact 1440 10 geggagatee cattggaett gaetgeatag agaacaaaeg gggtggeeag caagecettg 1500 atccactcaa teagteegte teggeggtge teettgageg egtaetegae tetgtatetg 1560 gttgtcattt gcgggaggg tgtaaagcag ctcagccggt gactgtgcaa ggacgaacgg 1620 15 ttoctacttg aatgotaggo tggotaattg ggtatggoac aaacggoaca aacggoagat 1680 gactgcaaat gacgacggta aacagaatcc actcagctgg cactaactgg gtgtagacta 1740 agagttcgag ccggggaggg agtgacgatg cagccagaaa aagagccggt acgcaatcag 1800 20 ggaaatagee gteaaaagaa aaacagaagg ggetgeagtt ttgetgeege eegeegegeg 1860 cccgcgctgg ctttccccgg ccggggaggc agccggctaa agaaaatagc ctatttcgat 1920 25 ttcgcgtage ccctcggttg cctattgagg gttacttttc gctccctctt ttgggccaac 1980 tgaçagtttg tggggtaaca acggtgtccg aggccagcta ttcggcaaac aatagacaga 2040 ttagagacet actaeggagt tteagtgtet teggaagetg caeageeega atgteggage 2100 30 ccgtgtgacg acacccccgc atggcttttg gcaatctcac atcgcccctc cctgcgtctc 2160 cactotgggo atgagoagtg gtgtgcctgg tgtatototg gcccccgcgg ggcagacage 2220 aaactgcgta taaatagcta cttccatctc ctacttgttg caccattgcc atagtaagaa 2280 35 aagaagcaga tcactcaact tgttcaaaga ctcttgtgtt ctgttacgac ttacgactta 2340 cgaaaaaaat ggctattcct gacgaattcg atatcatcgt tgtgggtgga ggctcatgcg 2400 40 gctgcgccat cgccggtaga ctcggtaacc tcgacccgga cgttactgtg gctctcatcg 2460 agggtggtga gaacaacatc aataacccat gggtctacct teetggtgte tatccaagaa 2520 acatgagact cgactccaag acggctacct tctacaactc gagaccatcc aagcacctga 2580 45 acggcagaag ggccattgtc ccctgcgcta acattcttgg tggaggttcc tccatcaact 2640 tecteatgta caccagagee teggeeteeg actaegaega etgggageaa gagggatgga 2700 ccaccgacga gctgcttccg ctcatgaaga agctcgagac gtatcaacgt ccttgcaaca 2760 50 acagggaggt geaeggttte gaeggteega teaaggtete etteggtaac tacacetace 2820 caactgccca agacttcctg agagcctgcg agtcgcaggg tattcctttc aacgacgatc 2880 55 ttgaagacct caaggcctcg cacggagctg agtactggct caagtggatc aacagggatc 2940

	tcggtagaag	atcggactcg	gcacacgcct	acatecaece	taccatgaga	aacaagagca	30 00
5	atctgttcct	cattacgtcc	accaaggctg	acaaggtgat	cattgagaac	ggcgttgctg	3060
	tcggtgtcag	gaccgttcca	atgaagccgg	tcgagaccaa	aaaccctcca	agcaggatct	3120
	tcaaggccag	aaagcaaatt	gtggtttcgt	gcggtacgat	ctcctctcca	ttggtgctgc	3180
10	aaagatctgg	tatcggtgcg	gcccacaagc	tgagacaagc	gggcatcaag	ccgatcgtcg	3240
	acttgcctgg	tgtcggtgag	aacttccagg	accactactg	cttcttcacc	ccatactatt	3300
15	ccaagccaga	ggttccaacc	tttgacgact	ttgtcagagg	tgacccagtc	gctcaaaagt	3360
	ccgcctttga	ccagtggtac	tccaacaagg	acggtcctct	taccaccaac	ggtatcgagg	3420
	ctggtgtcaa	gatcagacca	accgacgagg	agttggccac	ggctgacgat	gacttcatcc	3480
20	aagggtacca	cgagtacttt	gacaacaagc	cagacaagcc	actgatgcat	tactctgtca	3540
	tttccggttt	cttcggtgac	cacaccaaga	ttccaaacgg	caagttcttc	accatgttcc	3600
	actttttgga	gtacccattt	tcgagaggtt	tcgtttatgc	tgtttcccca	gacccatacg	3660
25	aagctccaga	ctttgatcca	ggtttcctga	acgattccag	agacatgtgg	cctatggttt	3720
	ggtcttacaa	gaagtcgaga	cagacagcca	gaagaatgga	gtcgtttgct	ggtgaagtca	3780
30	cctcgcacca	cccactctac	ccggttgact	ctccagcccg	tgccaaggac	ttggatctcg	3840
	agacatgcaa	ggcatttgct	ggaccaaacc	acttcaccgc	caacttgtac	cacggttcct	3900
	ggactgttcc	aattgagaag	ccaacgccaa	agaacgactc	gcacgtgacc	tgcaaccagg	3960
35	tcgagatctt	ctccgacatt	gactactctg	ccgaggacga	tgaggctatt	gtcaagtaca	4020
	tcaaggagca	cactgagacc	acctggcact	gtttgggaac	ctgttcgatg	gctccacaag	40 80
	aaggtagcaa	gatogotoca	aagggtggtg	ttgtcgatgc	cagattgaac	gtgtacgaag	4140
40	tgaagaacct	caaggttgcc	gacctgtcga	tctgcccaga	taacgttgga	tgtaatactt	4200
	actccactgc	tcttctgatt	ggtgagaagg	ctgccacttt	ggtcgccgag	gacctgggat	4260
45	actcaggatc	tgatctcgcc	atgaccattc	caaacttcaa	gctaggtact	tacgaggaga	4320
	agggtctggc	tagattctaa	gagacggtgc	ccgactcttg	ttcaattctt	ttggttcttt	4380
	ttctgttttt	ctctacgatt	ctacttgatg	atgtatgacg	agtgaagatt	gtgtttttt	4440
50	ctctctatag	ttttgactgt	aatgaaaata	gtctacatga	atgaaagaga	tagctgacca	4500
	atacggggcg	tctggtcacg	tgatgtatca	cgtgatcttt	aagttttcga	aatgactaaa	4560
55	tttataacga	aaaaaagagt	ctaaatgaaa	aaaaatcgat	ctctgccaaa	gactcatcga	4620
55	taggctaact	caggaagcat	tccgagcaac	gcataatgcc	ctcaaccaca	gtctcagaga	4680

tgcgcaaaaa ggtgctgatg atcgacaatt acgactcgtt cacatggaac ttgtacgagt 4740 atctttgtca agagggagcc gatgtcgagg tctatcgtaa cgacaagatc acaattgaag 4800 5 aaatcgagga aatgaagcct gacattatag tgatttcgcc aggccccgga catccgagat 4860 cggactctgg tatctctcga aagactattg agattttcaa gggccggatt cctgtttttg 4920 10 gagtgtgcat gggccaacag tgcatttacg aggttttcgg gggagacgtt gagtacgctg 4980 gtgaaattgt toacggaaaa acctottotg tgaccoacga caatcgtgga gtottcaaga 5040 acgttccgca gggagttgct gtgacgagat accattcgtt ggctggaacg ctaaaaactt 5100 15 tgcccagcga gttggaggtg actgcccgta ccactaacgg tatcattatg ggtgtcaggc 5160 ataaaagata cactattgaa ggcgttcagt ttcacccgga gtccattttg acagaagagg 5220 ggcacttaat gatcaagaac attttgaaga gtagcggtgg ttactggaac gaggaggagg 5280 20 aggaggtaaa acaaggoggt gocaagaagg agtogatttt agacaagatt tacggogaga 5340 gaaaaaaggc gtacgaagag attgaaaaac agccaggtcg ctcgtttgcc gatttggagg 5400 25 cctatttgga gctatgtggt gccccagacg ttttgaactt ctacgaccgg ttaaatgaga 5460 acgtcaagca aggaaagcct gccattttga gtgaaatcaa gagagcctcg ccttcgaaag 5520 gggctattca gatgggtgcc aatgctgcaa aacaggcgta cacctatgcc acggcggggg 5580 30 tttcggctat atccgttttg acagagccaa actggttcaa aggaacgatt gaggatttac 5640 gagttgcgcg tcagacggtt ggaaaactcc aacaccgtcc gtgcattttg cgcaaggagt 5700 35 ttgtcttttg caagtaccag attctggagg ccagactggc gggcgcagac actgttttgc 5760 tgattgtcaa gatgctttca ggagctgagt tgcgcgaact ggttggctat tcccggg 5817 40 ⟨210⟩ 78 <211> 663 <212> PRT 45 (213) Ogataea minuta

⟨400⟩ 78 Met Ala Ile Pro Asp Glu Phe Asp Ile Ile Val Val Gly Gly Ser 15 5 10 1 55

50

	Cys	Gly	Cys	Ala	Ile	Ala	Gly	Arg	Leu	Gly	Asn	Leu	Asp	Pro	Asp	Val
5				20					25					30		
10	Thr	Val		Leu	Ile	Glu	Gly		Glu	Asn	Asn	Ile		Asn	Pro	Trp
			35					40					45	v.		
15	Val	Tyr 50	Leu	Pro	Gly	Val	Tyr 55	Pro	Arg	Asn	Met	Arg	Leu	Asp	Ser	Lys
	T)	4.7	T)	Di	Т	۸	S	A	Daga	S	I	11: -	T	A	C1	A
20	65	Ala	ınr	Pne	ıyr	70	ser	arg	rro	Ser	75	nis	Leu	ASN	GIA	80
25	Arg	Ala	Ile	.Val	Pro	Cys	Ala	Asn	Ile	Leu	Gly	Gly	Gly	Ser	Ser	Ile
					85					90					95	
30	Asn	Phe	Leu	Met	Tyr	Thr	Arg	Ala		Ala	Ser	Asp	Tyr	Asp	Asp	Trp
35				100					105					110		
	Glu	Gln	Glu 115	Gly	Trp	Thr	Thr	Asp 120	Glu	Leu	Leu	Pro	Leu 125	Met	Lys	Lys
40																
45	Leu	Glu 130		Tyr	Gln	Arg	Pro 135		Asn	Asn	Arg	Glu 140	Val	His	Gly	Phe
	Asp	Glv	Pro	Ile	Lvs	Val	Ser	Phe	Gly	Asn	Tyr	Thr	Tyr	Pro	Thr	Ala
50	145	_				15 0			·		155					160
	Gln	Asp	Phe	Leu	Arg	Ala	Cys	Glu	Ser	Gln	Gly	Ile	Pro	Phe	Asn	Asp
55					165					170					175	

5	Asp	Leu	Glu	Asp 180	Leu	Lys	Ala	Ser	His 185	Gly	Ala	Glu	Tyr	Trp 190	Leu	Lys
10	Trp	Ile	Asn 195	Arg	Asp	Leu	Gly	Arg 200	Arg	Ser	Asp	Ser	Ala 205	His	Ala	Tyr
15	Ile	His 210	Pro	Thr	Met	Arg	Asn 215	Lys	Ser	Asn	Leu	Phe 220	Leu	Ile	Thr	Ser
20	Thr 225	Lys	Ala	Asp	Lys	Val 230	Ile	Ile	Glu	Asn	Gly 235	Val	Ala	Val	Gly	Val 240
<i>25</i> <i>30</i>	Arg	Thr	Val	Pro	Met 245	Lys	Pro	Val	Glu	Thr 250	Lys	Asn	Pro	Pro	Ser 255	Arg
35	Ile	Phe	Lys	Ala 260	Arg	Lys	Gln	Ile	Val 265	Val	Ser	Cys	Gly	Thr 270	Ile	Ser
40	Ser	Pro	Leu 275	Val	Leu	Gln	Arg	Ser 280	Gly	Ile	Gly	Ala	Ala 285	His	Lys	Leu
45	Arg	Gln 290	Ala	Gly	Ile	Lys	Pro 295	Ile	Val	Asp	Leu	Pro	Gly	Val	Gly	Glu
50	Asn 305	Phe	Gln	Asp	His	Tyr 310	Cys	Phe	Phe	Thr	Pro	Tyr	Tyr	Ser	Lys	Pro 320
55	Glu	Val	Pro	Thr	Phe	Asp	Asp	Phe	Val	Arg	Gly	Asp	Pro	Val	Ala	Gln

					325					330					335	
5	Lys	Ser	Ala	Phe 340	Asp	Gln	Trp	Tyr	Ser 345	Asn	Lys	Asp	Gly	Pro 350	Leu	Thr
10										٠						
15	Thr	Asn	Gly 355	Ile	Glu	Ala	Gly	Val 360	Lys	Ile	Arg	Pro	Thr 365	Asp	Glu	Glu
20	Leu	Ala 370	Thr	Ala	Asp	Asp	Asp 375	Phe	Ile	Gln		Tyr ,380	His	Glu	Tyr	Phe
25	Asp 385	Asn	Lys	Pro	Asp	Lys 390	Pro	Leu	Met	His	Tyr 395	Ser	Val	Ile	Ser	Gly 400
30	Phe	Phe	Gly	Asp	His 40 5	Thr	Lys	Ile	Pro	Asn 410	Gly	Lys	Phe	Phe	Thr 415	Met
35	Phe	His	Phe	Leu 420	Glu	Tyr	Pro	Phe	Ser 425	Arg	Gly	Phe	Val	Tyr 430	Ala	Val
40	Ser	Pro	Asp 435	Pro	Tyr	Glu	Ala	Pro 440	Asp	Phe	Asp	Pro	Gly 445	Phe	Leu	Asn
45	Asp	Ser 450	Arg	Asp	Met	Trp	Pro 455	Met	Val	Trp	Ser	Tyr 460	Lys	Lys	Ser	Arg
50	Gln	Thr	Ala	Arg	Arg	Met	Glu	Ser	Phe	Ala	Gly	Glu	Val	Thr	Ser	His
55	465					470					475					480

	His	Pro	Leu	Tyr	Pro 485	Val	Asp	Ser	Pro	Ala 490	Arg	Ala	Lys	Asp	Leu 495	Asp
5																
10	Leu	Glu	Thr		Lys	Ala	Phe	Ala		Pro	Asn	His	Phe		Ala	Asn
10				500					505					510		
<i>15</i>	Leu	Tyr	His	Gly	Ser	Trp	Thr	Val	Pro	Ile	G1u	Lys	Pro	Thr	Pro	Lys
			515					520					525			
20	Asn	Asp	Ser	His	Val	Thr	Cys	Asn	Gln	Val	Glu	Ile	Phe	Ser	Asp	Ile
		530					535					540				
25	Asn	Tvr	Ser	Ala	Glu	Asp	Aso	Glu	Ala	Ile	Val	Lvs	Tyr	Ile	Lvs	Glu
	545	-,-				550					555	•				560
										•						
	His	Thr	Glu	Thr		Trp	His	Cys	Leu		Thr	Cys	Ser	Met		Pro
35					, 565 ,					570					575	
	G1n	Glu	Gly	Ser	Lys	Ile	Ala	Pro	Lys	Gly	Gly	Val	Val	Asp	Ala	Arg
				580					585					590		
40																
	Leu	Asn		Tyr	Glu	Val	Lys	Asn 600	Leu	Lys	Val	Ala	Asp 605	Leu	Ser	Ile
45			595					000					003			
	Cys	Pro	Asp	Asn	Val	Gly	Cys	Asn	Thr	Tyr	Ser	Thr	Ala	Leu	Leu	Ile
50		610					615					620				
	0.1	0.1	1	A 7 .	۸٦.	TL.	t	W - 1	A1.	C1	۸	Lav	C1	T	Carr	C1
. 55	G1y 625	Glu	Lys	нıа	WIS	630	Leu	vai	Ala	GIU	635	Leu	Gly	ıyr	ser	640
	J.20															; = =

5	Ser Asp Leu	Ala Met Th	r Ile Pro	Asn Phe Lys	Leu Gly Tha	Tyr Glu	
		645		650		655	
10	Glu Lys Gly	Leu Ala Ar	g Phe		•		
		660			•		
15				•			
	<210> 79						
	<211> 2348						
20	<212> DNA						
	<213> Ogata	ea minuta					
		•					
25	<400> 79						
	aagctttctt	tcgcaaacag	ctctttggta	gaggagaata	gagtgcccag	ctgataaaga	60
30	aggcgcactt	taaaagataa	tctacatcca	gaaaaataaa	aaaataaaac	tgaaccggca	120
	tttgcgatta	cgtaagccac	aaaatttcag	gaaactcgta	caagatcagg	ttggcgaggg	180
	ggctagcgat	agaatgtatc	agtgttatta	gtggctctag	gagtagaaaa	caatagaata	240
35	aagatccgaa	gaaagggagc	aagaaggcca	cgccagacgt	tctagtaggt	agcccaatcg	300
	tcaatgtagc	tgttcaggtc	tttcaacagg	ttcttggtct	cgtctggact	ggagatccaa	360
	caagtcgttg	ctgcggttcg	actggcatag	tcgttggcgc	cgagggagct	gaactggtcg	420
40	ccgacgtgca	gggtgttttc	gggcttgatg	gttcggttgt	cgttgcagct	gaggaactct	480
	tggaggattt	tcaccccgta	ggacttgtcg	ccaatatcga	cccagatgtc	cgagcctccg	5 40
45	ttgaaagcgc	accatctgat	tttcttagag	gaagggaagt	ggcggagacg	tttgtctacg	600
	cgcagaacca	cctcttccag	ctgctcgcga	acgagtttgt	agccttcttt	ggggaccagt	660
	ccaacggcac	gctcctttct	gatgatgatg	gcatgcaatg	aaagtttctt	gatcaggtcc	720
50	gagaagatct	cctgcgcaaa	gtccagggtc	cggatgatgt	cttcctcgga	ccagtcgagc	780
	atgttttcaa	gcagccattt	gtctttggag	aagaactcga	gtccgccaag	ctcgttggag	840
	tagcggaata	ggtagtttgc	ttcgcctccc	atcaccagaa	cgttctggcg	ctgtctgtcg	900
55	gtgagctttg	gggtggtctt	cacctcgtct	atgageceët	tgagtcgggc	gtagtacttg	960

	gagccgtcgg	agtagcccgc	ggcagtgacg	atgccgacat	agaggtcttt	ggcgagcagc	1020
5	ttgatgagat	ggggcaagat	cggcgacgag	gcgtcgaagt	tggagccgtc	atcgtagaga	1080
	gtgatgtctc	cgtcaaaagt	cacgagctgg	agtctgcggt	gtacggatgt	tttgttgtgg	1140
	aaagtgttgg	agagctcgag	aagttgcgcc	gtgttcagaa	tgagccgaat	gtcgttgaac	1200
10	gagggcgcta	caagtetect	tttgctgatt	gtgcggcgtc	cgtcctcgat	gtagaacgcc	1260
	ttctccaggg	gcaatcgggt	gaagaaacag	ccaacggaag	gcaccaattg	gaccaatctg	1320
15	gacatttcag	gcattcccgc	ctgggtcatc	tcgatgttgt	cgttgatcag	cagctcgagg	1380
	tcatggaaga	tttccgcgta	gcgtcgcttc	gcttccgaat	tcaccatgag	gtcgtccact	1440
	gcggagatcc	cattggactt	gactgcatag	agaacaaacg	gggtggccag	caagcccttg	1500
20	atccactcaa	tcagtccgtc	tcggcggtgc	tccttgagcg	cgtactcgac	tctgtatctg	1560
	gttgtcattt	gcgggagggg	tgtaaagcag	ctcagccggt	gactgtgcaa	ggacgaacgg	1620
	ttcctacttg	aatgctaggc	tggctaattg	ggtatggcac	aaacggcaca	aacggcagat	1680
25	gactgcaaat	gacgacggta	aacagaatcc	actcagctgg	cactaactgg	gtgtagacta	1740
	agagttcgag	ccggggaggg	agtgacgatg	cagccagaaa	aagagccggt	acgcaatcag	1800
30	ggaaatagcc	gtcaaaagaa	aaacagaagg	ggctgcagtt	ttgctgccgc	ccgccgcgcg	1860
	cccgcgctgg	ctttccccgg	ccggggaggc	agccggctaa	agaaaatagc	ctatttcgat	1920
	ttcgcgtagc	ccctcggttg	cctattgagg	gttacttttc	gctccctctt	ttgggccaac	1980
35	tgacagtttg	tggggtaaca	acggtgtccg	aggccagcta	ttcggcaaac	aatagacaga	2040
	ttagagacct	actacggagt	ttcagtgtct	toggaagotg	cacagecega	atgtcggagc	2100
	ccgtgtgacg	acacccccgc	atggcttttg	gcaatctcac	atcgcccctc	cctgcgtctc	2160
40	cactctgggc	atgagcagtg	gtgtgcctgg	tgtatctctg	gcccccgcgg	ggcagacagc	2220
	aaactgcgta	taaatagcta	cttccatctc	ctacttgttg	caccattgcc	atagtaagaa	2280
45	aagaagcaga	tcactcaact	tgttcaaaga	ctcttgtgtt	ctgttacgac	ttacgactta	2340
	cgaaaaaa						2348
50	<210≻ 80						
	<211> 802						

<212> DNA

<213> Ogataea minuta

55

5	<400> 80						
	gagacggtgc	ccgactcttg	ttcaattctt	ttggttcttt	ttctgttttt	ctctacgatt	60
	ctacttgatg	atgtatgacg	agtgaagatt	gtgtttttt	ctctctatag	ttttgactgt	120
10 .	aatgaaaata	gtctacatga	atgaaagaga	tagctgacca	atacggggcg	tctggtcacg	180
	tgatgtatca	cgtgatcttt	aagttttcga	aatgactaaa	tttataacga	aaaaaagagt	240
15	ctaaatgaaa	aaaaatcgat	ctctgccaaa	gactcatcga	taggctaact	caggaagcat	300
	tccgagcaac	gcataatgcc	ctcaaccaca	gtctcagaga	tgcgcaaaaa	ggtgctgatg	360
	atcgacaatt	acgactcgtt	cacatggaac	ttgtacgagt	atctttgtca	agagggagcc	420
20	gatgtcgagg	tctatcgtaa	cgacaagatc	acaattgaag	aaatcgagga	aatgaagcct	480
	gacattatag	tgatttcgcc	aggccccgga	catccgagat	cggactctgg	tatctctcga	540
25	aagactattg	agattttcaa	gggccggatt	cctgtttttg	gagtgtgcat	gggccaacag	600
	tgcatttacg	aggttttcgg	gggagacgtt	gagtacgctg	gtgaaattgt	tcacggaaaa	660
	acctcttctg	tgacccacga	caatcgtgga	gtcttcaaga	acgttccgca	gggagttgct	720
30	gtgacgagat	accattcgtt	ggctggaacg	ctaaaaactt	tgcccagcga	gttggaggtg	780
	actgcccgta	ccactaacgg	ta				802
35	<210> 81						
	<211> 30						
40	<212> DNA						
	<213> Arti:	ficial Sequ	ence				
45	<220>					•	
					imer OAP5 fo		n of an
50	expression	cassette w	ith <u>AUXI</u> ge	ne promoter	and termina	ator	
	/400\ 01						
	<400> 81						20
55	ctgcagcccc	ttctgttttt	cttttgacgg				30

	(210) 82	
5	⟨211⟩ 90	
	<212> DNA	
	<213> Artificial Sequence	
10 -		
	⟨220⟩	
15	(223) Description of Artificial Sequence: primer OAP3 for production	on of an
	expression cassette with $\underline{A0X1}$ gene promoter and terminator	
20	<400> 82	
	cccccggatc caggaacccg ggaacagaat ctagattttt tcgtaagtcg taagtcgtaa	60
25	cagaacacaa gagtctttga acaagttgag	90
20		
	<210> 83	•
30	<211> 47	
	<212> DNA	
	<213> Artificial Sequence	
35		
	<220>	
40	(223) Description of Artificial Sequence: primer OAT5 for production	n of an
	expression cassette with <u>AOX1</u> gene promoter and terminator	
	ZADON 92	
45	<400> 83	47
	ccccccgga tccgagacgg tgcccgactc ttgttcaatt cttttgg	41
50	⟨210⟩ 84	
	<211> 33	
	<212> DNA	
55 .	<213> Artificial Sequence	

5	<220>	
	<223> Description of Artificial Sequence: primer OAT3 for produ	ction of an
	expression cassette with <u>AOX1</u> gene promoter and terminator	
10		
	<400≻ 84	
15	cccataatgg taccgttagt ggtacgggca gtc	33
15		
	<210≻ 85	
20	<211> 29	
	<212> DNA	
	<213> Artificial Sequence	
25		
	<220 <u>></u>	
30	<223> Description of Artificial Sequence: primer HGP5 for ampli	fication of
	a gene conferring resistance against hygromycin B	
35	<400> 85	
	gtcgacatga aaaagcctga actcaccgc	29
40	(010) 00	
	<210> 86	
	<211> 27 <212> DNA	
45	<213> Artificial Sequence	
	(SIO) Altificial ocquence	
50	<22 0 >	
	<223> Description of Artificial Sequence: primer HGP3 for amplifulations.	fication of
	a gene conferring resistance against hygromycin B	
55		

	<400> 86		
5	actagtetat teetttgeec teggaeg	2 7	
	<210> 87		
10	<211> 39		
	<212> DNA		
15	<213> Artificial Sequence		
	<220>		
20	<223> Description of Artificial Sequence: primer for amplificat	tion	οí
	5'-region of α-mannosidase gene		
25	<400> 87		
	ggggggtcga catggtggtc ttcagcaaaa ccgctgccc	39	
30	·		
	<210> 88		
	<211> 43		
35	<212> DNA		
	<213> Artificial Sequence		
40	<220>		
	<223> Description of Artificial Sequence: primer for amplificat	ion	of
45	5'-region of α -mannosidase gene		
	<400> 88		
50	gggggggggcggc cgcgtgatgt tgaggttgtt gtacggaacc ccc	43	
	<210> 89		
55 .	<211> 40		

	<212> DNA	
5	<213> Artificial Sequence	
	<220>	
10	<223> Description of Artificial Sequence: primer for amplification	of
	Saccharomyces cerevisiae SUC2 gene	
15	<400> 89	
	ggggactagt atgcttttgc aagctttcct tttccttttg 40	
20		
	<210> 90	
	<211> 39	
25	<212> DNA	
	<213> Artificial Sequence	
30		
	<220>	
	<223> Description of Artificial Sequence: primer for amplification	of
35	Saccharomyces cerevisiae SUC2 gene	
	//00\ 00	
40	<400> 90	
	ccccagatet tattttaett cccttaettg gaacttgte 39	
	<21 0> 91	
45	<211> 711	
	<212> DNA	
50	<213> Homo sapiens	
	⟨220⟩	

<222> 7...711

5

10

15

20

25

30

35

<400> 91

ctcaccatga gggtccccgc tcagctcctg gggctcctgc tgctctggct cccaggtgca 60
cgatgtgaca tccagatgac ccagtctcca tcttccgtgt ctgcatctgt aggagacaga 120
gtcaccatca cttgtcgggc gagtcaggtt attagcagct ggttagcctg gtatcagcag 180
aaaccaggga aagcccctaa gctcctgatc tatgctgcat ccagtttgca aagtggggtc 240
ccatcaaggt tcagcggcag tggatctggg acagatttca ctctcaccat cagcagcctg 300
cagcctgaag attttgcaac ttactattgt caacaggcta acagtttcc tccgacgttc 360
ggccaaggga ccaaggtgga aatcaaacgt acggtggctg caccatctgt cttcatcttc 420
ccgccatctg atgagcagt gaaatctgga actgcctctg ttgtgtgcct gctgaataac 480
ttctatccca gagaggccaa agtacagtgg aaggtggata acgccctcca atcgggtaac 540
tcccaggaga gtgtcacaga gcaggacagc aaggacagca cctacagcct cagcagcacc 600
ctgacgctga gcaaagcaga ctacgagaaa cacaaagtct acgcctgcga agtcacccat 660
cagggcctga gctcgcccgt cacaaagagc ttcaacaggg gagagtgttg a 711

<210> 92

<211> 234

<212> PRT

(213) Homo sapiens

40

45

50

<400> 92

Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp Leu Pro

1 5 10 15

Gly Ala Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Val Ser
20 25 30

Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Val

			35					40					45			
5															•	
	Ile		Ser	Trp	Leu	Ala		Tyr	Gln	Gln	Lys		Gly	Lys	Ala	Pro
10		50					55					60				
10		_		~ .	_				~			_		`~ ·	_	
		Leu	Leu	He	Tyr		Ala	Ser	Ser	Leu		Ser	Gly	Vai	Pro	
15	65					70					75					80
			-	0.1			^	01	m1		D.	en i		m)		
	Arg	Phe	Ser	Gly		Gly	Ser	Gly	inr		Pne	Inr	Leu	Inr		Ser
20					85					90					95	
	C	1		Dava	C1	1	Dha	۸1.	Thm	Тин	T	Cva	C1-	C1=	110	1
25	Ser	Leu	GIN	100	GIU	кѕр	rne	Ala	105	Lyr	I y I	Cys	GIII	110	Ala	ASI
				100					103					110		
	Sor	Pho	Pro	Pro	Thr	Phe	Glv	Gln	Glv	Thr	Eve	.Val	Glui	Ile	Ivs	Ara
30	Ser	1 116	115	110	1111	1110	01)	120	O,L y	1111	11 ,3	*41	125	110	Lys	WI E
			110													
35	Thr	Val	Ala	Ala	Pro	Ser	Val	Phe	Ile	Phe	Pro	Pro	Ser	Asp	G1u	Gln
		130					135					140		•		
40	Leu	Lys	Ser	G1y	Thr	Ala	Ser	Val	Val	Cys	Leu	Leu	Asn	Asn	Phe	Tyr
	145					150					155	•				160
45	Pro	Arg	Glu	Ala	Lys	Val	Gln	Trp	Lys	Val	Asp	Asn	Ala	Leu	Gln	Ser
					165					170					175	
50																
	Gly	Asn	Ser	Gln	Glu	Ser	Val	Thr	Glu	Gln	Asp	Ser	Lys	Asp	Ser	Thr
				180					185					190		
55																

Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys

195 200 205 5 His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro 10 220 210 215 Val Thr Lys Ser Phe Asn Arg Gly Glu Cys 15 230 225 <210> 93 20 <211> 1428 <212> DNA 25 <213> Homo sapiens <220> 30 <221> CDS ⟨222⟩ 1..1428 35 **<400> 93** atgggttgga gcctcatctt gctcttcctt gtcgctgttg ctacgcgtgt ccagtctgag 60 40 gtgcagctgg tggagtctgg gggaggcctg gtcaagcctg gggggtccct gagactctcc 120 tgtgcagcct ctggattcac cttcagtagc tatagcatga actgggtccg ccaggctcca 180 gggaaggggc tggagtgggt ctcatccatt agtagtagta gtagttacat atactacgca 240 45 gactcagtga agggccgatt caccatctcc agagacaacg ccaagaactc actgtatctg 300 caaatgaaca gcctgagagc cgaggacacg gctgtgtatt actgtgcgag agatcggatt 360 attatggttc ggggagtcta ctactactac ggtatggacg tctggggcca agggaccacg 420 50 gtcaccgtct cctcagctag caccaagggc ccatcggtct tcccctggc accetcctcc 480 aagagcacct ctgggggcac agcggccctg ggctgcctgg tcaaggacta cttccccgaa 540 55 ccggtgacgg tgtcgtggaa ctcaggcgcc ctgaccagcg gcgtgcacac cttcccggct 600

	gtcctacagt cctcaggact ctactccctc agcagcgtgg tgaccgtgcc ctccagcagc 660)
5	ttgggcaccc agacctacat ctgcaacgtg aatcacaagc ccagcaacac caaggtggac 720)
	aagaaagttg agcccaaatc ttgtgacaaa actcacacat gcccaccgtg cccagcacct 780)
	gaacteetgg ggggacegte agtetteete tteececcaa aacceaagga cacceteatg 840)
10	atctcccgga cccctgaggt cacatgcgtg gtggtggacg tgagccacga agaccctgag 900)
	gtcaagttca actggtacgt ggacggcgtg gaggtgcata atgccaagac aaagccgcgg 960)
15	gaggagcagt acaacagcac gtaccgtgtg gtcagcgtcc tcaccgtcct gcaccaggac 102	90
75	tggctgaatg gcaaggagta caagtgcaag gtctccaaca aagccctccc agcccccatc 108	30
	gagaaaacca totocaaago caaagggcag coccgagaac cacaggtgta caccotgccc 114	Ю
20	ccatcccggg atgagctgac caagaaccag gtcagcctga cctgcctggt caaaggcttc 120	0(
	tatcccagcg acatcgccgt ggagtgggag agcaatgggc agccggagaa caactacaag 126	0
	accacgeete eegtgetgga eteegaegge teettettee tetacageaa geteaeegtg 132	20
25	gacaagagca ggtggcagca ggggaacgtc ttctcatgct ccgtgatgca tgaggctctg 138	0
	cacaaccact acacgcagaa gagcctctcc ctgtctccgg gtaaatga 142	:8
30		
	<210> 94	
	<211> 475	
35	<212> PRT	
	<213> Homo sapiens	
40	<400> 94·	
	Met Gly Trp Ser Leu Ile Leu Leu Phe Leu Val Ala Val Ala Thr Arg	
45	1 5 10 15	
	Val Gln Ser Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Lys	
50	20 25 30	
55	Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe	
	3 5 4 0 4 5	

5	Ser	Ser	Tyr	Ser	Met	Asn	Trp	Val	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu
		50					55					60				
																•
10	Glu	Trp	Val	Ser	Ser	Ile	Ser	Ser	Ser	Ser	Ser	Tyr	Ile	Tvr	Tyr	Ala
	65					70					75	.,-			-,-	80
	00					10					10					00
15																
	Asp	Ser	Val	Lys	Gly	Arg	Phe	Thr	Ile	Ser	Arg	Asp	Asn	Ala	Lys	Asn
					85					90					95	
20																
	Ser	Leu	Tyr	Leu	Gln	Met	Asn	Ser	Leu	Arg	Ala	Glu	Asp	Thr	Ala	Val
				100					105					110		
25				•												
	Т.,,,,	T.,,	Cvo	410	Ara	Acn	Ara	Tlo	110	Mat	Vol	Ara	Gly	Va l	Tyr	Tun
	lyr	1 9 1		NIa	urg	nsp	urg		116	Met	Val	urg		141	1 9 1	T A T
30			115		•		•	120					125			
	Tyr	Tyr	Gly	Met	Asp	Val	Trp	Gly	Gln	Gly	Thr	Thr	Val	Thr	Val	Ser
35		130					135					140				
	Ser	Ala	Ser	Thr	Lys	Gly	Pro	Ser	Val	Phe	Pro	Leu	Ala	Pro	Ser	Ser
40	145					150					155			•		160
	•	C	Th	C	C1	C1	Th	A 7 -	A1.	1	C1	C	T	V - 1	1	A
45	Lys	Ser	Inr	ser		GIA	Inr	мта	Ala		GIY	cys	Leu	vai	Lys	АЅР
					165					170					175	
50	Tyr	Phe	Pro	Glu	Pro	Val	Thr	Val	Ser	Trp	Asn	Ser	Gly	Ala	Leu	Thr
				180					185					190		
55	Sor	G1v	Val	Hie	Thr	Phe	Pro	Ala	Val	[.eu	GIn	Ser	Ser	G1 v	Leu	Tvr
	Ser	OIÀ	101	1112	1111	1 116	110	ura	, 41	Leu	OIN	OGI	OCI	Oly	Leu	1 7 1

		195		200	205
5					
					Ser Ser Leu Gly Thr Gln
10	210		2	15	220
	The Tue	Ilo Cve	Acn Val A	en Hie Lye Pro	Son Asp Thr Lya Vol Asp
	225	Tie Cys	230		Ser Asn Thr Lys Val Asp 235 240
15	220		200		210
	Lys Lys	Val Glu	Pro Lys S	er Cys Asp Lys	Thr His Thr Cys Pro Pro
20			245	250	255
	Cys Pro	Ala Pro	Glu Leu L	eu Gly Gly Pro	Ser Val Phe Leu Phe Pro
25		260		265	270
30	Pro Lys		Asp Thr L		Arg Thr Pro Glu Val Thr
		275		280	285
35	Cys Val	Val Val	Asp Val S	Ser His Glu Asp	Pro Glu Val Lys Phe Asn
	290			.95	300
40	Trp Tyr	Val Asp	Gly Val G	Slu Val His Asn	Ala Lys Thr Lys Pro Arg
	305		310		315 320
45					
	Glu Glu	Gln Tyr			Val Ser Val Leu Thr Val
			325	330	335
50	len Hic	Gln Acn	Trn leu 4	en Gly Ive Glu	Tyr Lys Cys Lys Val Ser
	ren 1112	340		345	350
55		- 2-			

	Asn	Lys	Ala	Leu	Pro	Ala	Pro	He	Glu	Lys	Thr	He	Ser	Lys	Ala	Lys
5			355					360					365			
	Gly	G1n	Pro	Arg	G lu	Pro	Gln	Val	Tyr	Thr	Leu	Pro	Pro	Ser	Arg	Asp
10		370					375					380			•	
15	Glu	Leu	Thr	Lys	Asn	G1n	Val	Ser	Leu	Thr	Cys	Leu	Val	Lys	Gly	Phe
15	385					390	`	-			395					400
20	Tyr	Pro	Ser	Asp	Ile	Ala	Val	Glu	Trp	Glu	Ser	Asn	Gly	Gln	Pro	Glu
					405					410					415	
25	Asn	Asn	Tyr	Lys	Thr	Thr	Pro	Pro	Val	Leu	Asp	Ser	Asp	Gly	Ser	Phe
				420					425					430		
30								•			•			-		
	Phe	Leu	Tyr	Ser	Lys	Leu	Thr	Val	Asp	Lys	Ser	Arg	Trp	Gln	Gln	Gly
			435					440					445			
35																
	Asn	Val	Phe	Ser	Cys	Ser	Val	Met	His	Glu	Ala	Leu	His	Asn	His	Tyr
		450					455					460				
40																
	Thr	Gln	Lys	Ser	Leu	Ser	Leu	Ser	Pro	Gly	Lys					
45	465					470					475					
	<210	0> 9	5													
50	<21	1> 7														
	<212	2> Pi	RT												•	
	<213	3> S	acch	arom	yces	cer	evis	iae								
55																

	<400> 95	
5	Val Gly Phe Leu Asp His Met	
	1 5	
10	<210> 96	
	<211> 7	
15	<212> PRT	
	<213> Saccharomyces cerevisiae	
20	< 400> 96	
20	Pro Ser Thr Lys Gly Val Leu	
	1 5	
25		
	<210≻ 97	
30	<211> 20	
30	<212> DNA	
	<213> Artificial Sequence	
35		
	<220>	
40	<223> Description of Artificial Sequence: primer PHI5 for amplification	of
40	Ogataea minuta HIS3 gene	
45	<400> 97	
	tnggnttyyt ngaycayatg 20	
50	<210> 98	
	<211> 20	
	<212> DNA	
55	<pre><213> Artificial Sequence</pre>	

 of

⟨220⟩

	<223> Description of Artificial Sequence: primer PHI3 for amplification	tion
	Ogataea minuta HIS3 gene	
10	·	
	<400> 98	
15	arnacnecyt tngtnswngg	20
13		
	<210> 99	
20	<211> 3831	
	<212> DNA	
	<213> Ogataea minuta	
25		
	<220>	
30	<221> CDS	
	<222> 1839 2552	
35	<400> 99	
	ctgcagatgc gccgttgctg ctgagcaaag tgaaagagca cagagccaaa attgcctctg	60
	ttttggaaca gattgacccg aagttggagg aactgaacaa agaaaaagaa gctcacattt	120
40	ccagtgaaga tatccgggac ggttggaaca gctcttttat caacaagaaa tctgagattg	180
	aggaaccage gtccaacaca aaaagcgact ctgcttcgtc tgtcaagaag accaaggcga	
45	tagagaccat taacagtcca aaattgtcga aagaaccgac cecgtccaaa ccgttagacc	3 0 0
	aattgggcga gctggaactg ttggaagaga ccgaacgatt cgcccagatc tcgtctcaag	360
	acctgcttaa atcgatcaag tttcttgaga gacatctata catagtgagc gagcagcaga	
50	aggacgcgtt gatgatgaag tgttttgact acgagctgga cggtgactcc cagcgtgcca	
	aacagagcgt tcaccaggcg ctgattctgc aatatttgga tgatctgttc aaagccgctg	540
55	gcggcccgcg cgccagtcca caccagaagg agcaggctat tggtctgttc attgggaaac	
55	tgcttgacaa aacgacgcct gcctcgcggg cttttgaggc cgattggaag aagacttatc	660

	atcacattgt	ttccagatgc	gagattatca	agcaagaaca	cgaacaagag	ggccaagaag	720
5	agcccgaggg	ggttgaacag	atacagctga	gatccatgga	ccccaactcg	gagctggtga	780
	tcaacctgcc	ttcccagaaa	accccggagt	acgaggcttt	caagcaacta	ccggagccaa	840
	tgcagaaggc	gattgaaacc	gaaaaattgg	acgaaatcaa	ccgtgttttt	gcctccatgt	900
10	cggtggaaga	cgccgagggt	gttttggaac	tgtttgaccg	ctgcggggtg	attcagatac	960
	aggcattgct	ggagaacgag	gaggagttca	accagttgaa	acatgagtac	gagggagaac	1020
45	ctcttgagca	aatcgaagaa	gagcgaccac	aaaccgcaaa	ggaagagaac	gcttttatac	1080
15	aaacagctga	ccttgttgat	tgaagctcaa	attacgctaa	acgatatata	catgtcaatt	1140
	gcacttaatc	catatttttg	agaggaggca	ttctaagaat	ctctctagtt	ttgttctcgc	1200
20	tcattgcttg	cagttttttg	agaatctcag	agttcttcca	cttctcaggc	agcggggtga	1260
	cgtcgtactt	cttagtggcc	caatagtaga	tatcccagtc	cggctcatca	agcaatttgt	1320
	cgtactcttc	cagttggtcc	gcagtcatcg	aagccaagta	cttgtccgca	aatctactca	1380
25	agagcaagtc	agattcaaga	attccccgct	ttcttgactg	gtaaaccagt	cgtcttctct	1440
	ttgtttccac	gtcctcattg	tctcttggga	ttggctcgac	cctgatcttc	agctctccgt	1500
30	cctcctcagt	taacatggtg	tgggtgtttg	ctccctggcc	aagtctggcc	accgaggttg	1560
	cgaatcttct	tctggtcaca	aatcctgtca	gcttaagcat	tttgtccgtt	gtgagaccaa	1620
	aactagcctt	gtctagggag	tagttaacat	ttgtaatgga	tcttttcgtt	ttctttgctc	1680
35	ggaaagcagc	gacagatcgg	ccgaccgcga	ctatcgacgc	gacgataggg	attttttt	1740
	ttaaaaaaaaa	gagtcaaaaa	aacatcctga	agagaaactt	ttcatgggga	accatgtcca	1800
	ggagtcatcc	gacggtatcc	ctttacagtc	aaaaaaacat	gtctgaagag	aacaagaaac	1860
40	gcaagctgga	aaacggcaca	aatgatgcaa	aagctgctcg	gtttgcagag	gtgagaagag	1920
	tcaccaatga	aaccagcatc	cagatcatcc	tgaacttgga	tggtggactc	atcgagtgca	1980
45	aagagtcgat	tcttggggcc	acttacgaaa	aagagagcca	cgcggcacaa	aatacgagtg	2040
	cacaggtgat	ctccatcaag	acaggactcg	gtttccttga	ccacatgctg	cacgcccttg	2100
	ccaaacactc	tggttggtca	ttgattgtcg	agtgtattgg	ggacctgcac	attgacgacc	2160
50	atcacactgc	ggaagacgtc	ggcattgcac	tgggtgaaac	gttcaagcgc	gcgttgggac	2220
	ctgtcaaagg	tctcaaacga	ttcgggcacg	catacgctcc	actggatgag	gctctaagtc	2280
	gcgcggttgt	tgatctgtct	aaccgtccat	ttgccgtggt	ggaacttggc	ctgcgcagag	2340
55	aaaaaatcgg	ggaccttagt	tgcgagatga	ttccccacgt	tttggagagt	tttgctacga	2400

```
gcgcgcacat cacgatgcac gtcgattgtc ttcgcgggtt caatgaccac caccgcagtg 2460
        aaagcgcgtt caaggcattg gccgttgcca tcagagatgc cacgagctac acgggccgtg 2520
5
        atgatgttcc aagtacgaag ggagttttga tgtaactcca cacccaggag cttctactaa 2580
        tattcagccc tctccctctt catcgtgtac agtttaacca tactagacta accaactccg 2640
10
        ccgtattctc acgtagccgc aaccgaaagc cctggaaagc agatagtcta accaatcgag 2700
        agattgggta ttcaaatatc gattttaggc aattgtaccc gtcttgagcc gccacccgcc 2760
        actacageca caatttgcac egecacegaa aaattteetg egtegegett tgttteeeet 2820
15
        ccgtttgtct tgtcctttct tgtcttaatg cgtctggttt gcttgttttc ttctttgccg 2880
        tagtotgato coacacgoag cogtoaactg aaccgocaca ggaatocogo ttogtogoga 2940
        atgttgaacg gtccgtcggt agactcttct tcttcgaccc cgtctgccct gtataaagag 3000
20
        geaggegete tgggagttta tteetactae tacgagaace agegtgagte etteaacaga 3060
        georgtetga ceteceetat acgateeggt tetecteaaa etaageteae tgeoagaeeg 3120
25
        tccaaggtgt ccgaggtttc cggcccaatc aacttaatca actcaatgtc gtctcctata 3180
        ccccatttgc cctcttctcc gacgcctcgc atgtcccgtt ctaacggcca cgccaatgga 3240
        caatctccca caactccgtt caagacagca gatatgccgt cacgagtcag cacgccgtcg 3300
30
        tegtactege gacagetggg etegeegee aaactegace tggtgaacce tgeeeeggtg 3360
        acggacgagg aactcatggt gacgagccgc gagctcattc aggacgcaat gcgctcaaga 3420
        agegtacaca gagageette geagetggaa etgtggatea aagtgatgte gttgeteaeg 3480
35
        ggaaaagata aggtagggaa gtgtcttcaa tacggaatac ggattctgat cgcatactcg 3540
        gtccgggcca ggaagacgcc cttcctgtcc gacttcaagc tcacgggcgt tgacttcacg 3600
40
        gggtccaaag agaacgttct gttgcagctg gtgcggaaac cagaactgct ggtgattctg 3660
        tttctaggcc agtttgagtc caaactcgtc gggcttacca aaatcctctc catctacaga 3720
        cagatgctgc gagccggtac tgttccgttc aaggtaatca aactgttcgg cagactgaca 3780
45
                                                                           3831
         gactcagttc agatactcag cacaaacgat aaggcgtctt tgaagctgca g
```

₅₀ <210> 100

<211> 238

<212> PRT

55 (213) Ogataea minuta

5	<400)> 10	00													
	Met	Ser	Glu	Glu	Asn	Lys	Lys	Arg	Lys	Leu	Glu	Asn	Gly	Thr	Asn	Asp
	1				5					10					15	•
10		٠														
	Ala	Lys	Ala	Ala	Arg	Phe	Ala	Glu	Val	Arg	Arg	Val	Thr	Asn	Glu	Thr
				20					25					30		
15																
	Ser	Ile	Gln	Ile	Ile	Leu	Asn	Leu	Asp	Gly	Gly	Leu	Ile	Glu	Cys	Lys
20			35					40					45			
	Glu	Ser	Ile	Leu	Gly	Ala	Thr	Tyr	Glu	Lys	Glu	Ser	His	Ala	Ala	Gln
25		50			;		55					60				
	Asn	Thr	Ser	Ala	Gln	Val	Ile	Ser	Île	Lys	Thr	Gly	Leu	Gly	Phe	Leu
30	65					70					75					80
30	65					70					75					80
35		His	Met	Leu	His		Leu	Ala	Lys	His		Gly	Trp	Ser	Leu	
		His	Met	Leu	His 85		Leu	Ala	Lys	His 90		Gly	Trp	Ser	Leu 95	
		His	Met	Leu			Leu	Ala	Lys			Gly	Trp	Ser		
	Asp			Leu	85	Ala				90	Ser				95	Ile
35	Asp				85	Ala				90	Ser				95	Ile
35	Asp			Ile	85	Ala			Ile	90	Ser			Thr	95	Ile
35	Asp Val	Glu	Cys	Ile	85 Gly	Ala	Leu	His	Ile 105	90 Asp	Ser Asp	His	His	Thr 110	95 Ala	Ile Glu
<i>35</i>	Asp Val	Glu	Cys	Ile 100	85 Gly	Ala	Leu	His	Ile 105	90 Asp	Ser Asp	His	His	Thr 110	95 Ala	Ile Glu
<i>35</i>	Asp Val	Glu	Cys	Ile 100	85 Gly	Ala	Leu	His Glu	Ile 105	90 Asp	Ser Asp	His	His Ala	Thr 110	95 Ala	Ile Glu
35 40 45	Asp Val	Glu Val	Cys Gly 115	Ile 100	85 Gly Ala	Ala Asp Leu	Leu Gly	His Glu 120	Ile 105 Thr	90 Asp Phe	Ser Asp Lys	His	His Ala 125	Thr 110 Leu	95 Ala Gly	Ile Glu Pro
35 40 45	Asp Val	Glu Val	Cys Gly 115	Ile 100	85 Gly Ala	Ala Asp Leu	L eu Gly	His Glu 120	Ile 105 Thr	90 Asp Phe	Ser Asp Lys	His	His Ala 125	Thr 110 Leu	95 Ala Gly	Ile Glu Pro

	Ala Leu Ser Arg Ala Val Val Asp Leu Ser Asn Arg Pro Phe Ala Val	
5	145 150 155 160	
	Vol Clu Lou Cly Lou Arg Arg Clu Lyg The Cly Ago Lou Ser Cyc Clu	
10	Val Glu Leu Gly Leu Arg Arg Glu Lys Ile Gly Asp Leu Ser Cys Glu 165 170 175	
	Met Ile Pro His Val Leu Glu Ser Phe Ala Thr Ser Ala His Ile Thr	
15	180 185 190	
20	Met His Val Asp Cys Leu Arg Gly Phe Asn Asp His His Arg Ser Glu	
	195 200 205	
25		
	Ser Ala Phe Lys Ala Leu Ala Val Ala Ile Arg Asp Ala Thr Ser Tyr	
	210 215 220	
30	Thr Gly Arg Asp Asp Val Pro Ser Thr Lys Gly Val Leu Met	
	225 230 235	
35		
	<210> 101	
	<211> 20	
40	<212> DNA	
	<213> Artificial Sequence	
45	<220>	٠
	<pre><223> Description of Artificial Sequence: primer DHI5</pre>	
50	Dodd i polon of in tallolar boddonoo, plamot billo	
	<400> 101	
	ggcccaatag tagatatccc	20
55		

	<210> 102		
5	<211> 21		
	<212> DNA		
	<213≻ Artifi	cial Sequence	•
10			
	<220>		•
45	<223> Descri	ption of Artificial Sequence: primer	DHI3
15			
	<400> 102		
20	cacggcccgt	tagetegtg g	21
	⟨210⟩ 103		
25	<211> 8	•	
	<212> PRT		
30	<213> Saccha	romyces cerevisiae	
	<400> 103		
35		Gly Pro Lys Trp Gly	
	1	5	
40	ZO10\ 104		
	〈210〉 104		
	<211> 7		
45	<212> PRT	romyces cerevisiae	
	\213/ 3accna	romyces cerevisiae	
50	<400> 104		
50		Met Leu Lys Leu	
	l l	5	
55	1	•	

	<210> 105	
5	<211> 23	
	<212> DNA	
	<213> Artificial Sequence	
10		
	<220>	
	<223> Description of Artificial Sequence: primer PLE5 for amplifica	tion of
15	Ogataea minuta LEU2 gene	
20	< 400> 10 5	
	gengtnggng gneenaartg ggg	23
25	<210> 106	
	<211> 21	
	<212> DNA	
30	<213> Artificial Sequence	
35	<220>	
	(223) Description of Artificial Sequence: primer PLE3 for amplification	tion of
	Ogataea minuta LEU2 gene	
40		
	⟨400⟩ 106	
45	naryttnarc atcatngcng c	21
10		
	<210> 107	
50	<211> 5615	
	<212> DNA	
	<213> Ogataea minuta	
55		

<220>

<221> CDS

<222> 1606..2694

10 <400> 107

5

15

20

25

30

35

40

45

50

55

ggatectice tegagateeg ggetgttttt cacegaceca teegateetg acticaacec 60 cgacttetee taegacagae tgtgggagtg tetegteagg geagaacaga tgaceggtga 120 cgagaaagag ctgctcaggt cgaacgccaa ttacgttgcg aaaaccaagt ttggaaagaa 180 ggttttcggc gaacaatgga ccaagctgct cgcctttgtt gtcagcttgg agctgtacaa 240 aagacgccag cgggggaagg tggaggagct gtattgaata aggaatgagg agaatggttt 300 tggaaagagc cagtttatac atccgtacac cggatctaac aactgttttc acgaaatgca 360 cgacttttca atttttttt ttacttctaa aattttttat ctctaaaaag ctgtagatct 420 aagggtatgt gtgttgtatt tgcagcagtc cacttagcaa gaacacacac acacgaatga 480 ctgaagttgg ccagaaactg aacagcaacc ctgaggttct tctcaagaag agaaagcaag 540 ccgacagact ccgtctggag aaacaggaac aggctagaaa gagaatcgaa gacaaaaaga 600 gaaagaagca ggaaagaaga aaggccaagt tcatcagagc agagacacta gttgccaagc 660 acagaaccac tgaaagagag cagtacagag tgaaaagagt gacgcagaac gagaaaatca 720 agaccgaaac cgagtccgcc aagcaagaag cagctgggga ggatgaatcc aagcttcttt 780 tegttgtgag agtgccagge cegeaeggtg ceaaggttee aggaaaagee agaaaggtte 840 tgtcgttgct gcgtcttgaa cacacctaca cgggaacttt cataaagtcc aatgccacca 900 taagacetet tittgagactg ateaacecgt atgtggtgat tggaactect tegetggeea 960 ctgtgagaaa cctgatacaa aagagagcta cagtgaccgt gacaagcgaa gacggttctg 1020 ctagagaggt taacttggat gacaacaatc tcatcgaaga gaaattggga gagtgtggta 1080 teatttgege agaagatett atteaegaga tegtetettt gggagaetae tteaageeet 1140 ccgtcaagtt cctgaatcct ttccaactga acgctcctgt ccacggctgg ggtccgctca 1200 gtaagttaaa gagactcgag ctgagagaag agagcaagaa ccacaaggtg aacaacgctg 1260 gaaacgetee tttgaacgag gttgacattg accagtteat egetgageag atetgagggt 1320 atttaagtaa gcatgttcga gtaatgacaa gatctgtcca cagtaagatt tgaaataatg 1380 gtctatcaat ctcgcgtcga tcgacgcgcg acgcctggcc gcttccctcc ggtttccggc 1440

	gccgccagct	cctgcgaccg	gagaatattg	ttttttatct	tgatttttcg	aggggattga	1500
5	gcattaattt	ttcacccaca	aaatagctag	atttcggttt	tcaggagcta	cagagtcatc	1560
	gtgaacagaa	ttgtgacctt	ttatcgcagc	ttttttacat	tcagaatgac	cacaaagaac	1620
	atagttttgc	tgcctggtga	ccacgttggc	ccggaggttg	ttgacgaggc	cgtcaaagtt	1680
10	ctcaacgcca	tttcggccgc	caagccggaa	atcaagttca	acttcgaaca	ccacttgatc	1740
	gggggtgctg	ctatcgacgc	cactggccag	ccaatcacag	acgcggctct	cgaggcttcc	1800
45	aagaaagcag	atgctgtcct	gctaggatct	gtcggaggtc	ctaaatgggg	tactggtcaa	1860
15	gttcgtcctg	agcaagggtt	gctgaagatc	agaaaagagc	tcaacttgta	cgccaacctg	1920
	agaccgtgca	gctttgcatc	ggacgccttg	ttggacctgt	cgcctctgaa	gccggaaatt	1980
20	gtcagaggta	ccgacttcgt	tgttgtcaga	gagcttgttg	gaggaatcta	cttcggtgag	2040
	agaaaggagg	acgacggatc	aggattcgct	tccgacactg	aggcctactc	cgtgcccgaa	2100
	gttcaaagaa	tcaccagaat	ggctgctttc	atggccctgc	aaagtgaccc	ccctctccca	2160
25	gtgtattcgc	tggacaaggc	caacgttctg	gcttcgtccc	gtctgtggag	aaagaccgtt	2220
	gaagagacta	tcaagaacga	gtttcctcag	ctgaagctgc	aacaccatct	gategaetea	2280
30	gccgctatga	ttttggtgaa	gtccccaacc	aaactgaacg	gtgttgttct	cacatccaac	2340
	atgtttggag	acatcatcte	tgacgaagct	tcggtgattc	ccggttcgct	gggcctgctg	2400
	ccgtccgcat	ctctggcttc	tcttccagac	tccaacgagg	cgttcggtct	gtacgagcct	2460
35	tgccacggtt	ccgctcccga	tctcgccaaa	ggactggtga	acccgctggc	taccattctc	2520
	teggeegeea	tgatgctcaa	gttgtcgctc	aaccttgttg	aggagggccg	tgccgtcgaa	2580
	aaggctgtca	gagccgttct	ggaccaaggc	atcatgactg	cagacttggg	cggatcgtcg	2640
40	tcgaccactg	aggttggaga	cgctgttgcc	aaggaagtga	ccaaattgct	gggctaaagg	2700
	ggtcaatttt	gtcctgatcc	ggcagagatt	gttccatgca	ctcgtcgagc	ttccatgcag	2760
45	cgagcaacct	gtccctcgtg	tagcagctgt	tccctcaat	atactggtgg	ctcgccctat	2820
	agtgagccag	ctaccttctt	ctataaatag	cctaggcata	cccgaatttc	ttttgctccc	2880
	cgagaacgta	gcccgacgcg	cgcctgaaca	atagaaaaaa	ttacaaacaa	tagcggctcc	2940
50	aaaaatctat	tgtcggagcg	ttttttcaca	gacttctatt	cgaggtttgg	tgatcctgtt	3000
	tgtttttgtt	ttgttgttat	atgtcaccaa	tcgtgaaatt	ttcagacccg	tagttcaacc	3060
	ttgtcaggaa	ctcaatcact	ggttcaagtc	tctgccaatc	gcctcggcac	aaactactcc	3120
55	cgtcctgcat	ttcatcctct	tctgaacggt	tgcaagcact	ctaggtgttt	cagaattggc	3180

	tgtacgacaa	gcaacacaag	gcaacaccag	gcagcaaaac	aagcaaaaca	agcaaaaaaa	3240
5	ggcaccgtca	attggaacaa	cctgttgaac	ggtgatagca	tcacgtgtct	ttgaaataac	3300
	gaaacagcat	cctcattcaa	cacccctgac	ctgtatttct	ctggctccat	cctgttccac	3360
	gatgacagcc	tcctgcggtc	cgttcaagct	cgcactcagt	ctgctgttga	tctcgccatc	3420
10	gacgctcgca	tccttctcgt	acttgggatg	ctactcctcg	tcttccgtcg	actccctttc	3480
	gctgtcggac	tcatacatct	accagtcctc	gttgcattgc	aagtcgcaat	gctccggtag	3540
15	cgcggtggcc	gctctgaccg	gcggaaataa	gtgctattgc	ggcgactcag	taccttctgg	3600
75	cgacgccagc	agcgactcca	aatgctcgac	cgcctgtgac	gggtacggct	cggaaaactg	3660
	cggtggcagc	gggtactatt	cggtgtatgt	tgactccgac	caagaaaacg	actcgagctc	3720
20	gggatcgtcc	agttcggaaa	ccaccagctc	cacaagctcc	acaagctcca	ccagctccag	3780
	ctccacctcg	agttctacct	cgacaagttc	aagctcaaca	agctcaacga	gctcgtccac	3840
	tttgacgagc	tcctcctctt	cgtcatcatc	aacttcgacg	tcgagctcct	ccgcttcgtc	3900
25	ggtctctgaa	ataatcacca	gttcggcttc	ggaaacctcc	tccgagacaa	ccagcacccc	3960
	atcaacctca	tcatcgtcct	cgtcgtcatc	gtcatcgtca	tccgcatcgt	cctcttcgtc	4020
30	gtcctctacg	acgtcgacca	cgtcttcatc	ctcgtcctcg	atctcctcta	catcagccac	4080
	aacctcagcc	acaacatcag	ccacaccaac	aacaacctct	ccggctgtgc	tcgtttccac	4140
	ctctgtttcc	cccggagcaa	ccatgacgtc	tctgatctac	atcacccagt	cgatctccgc	4200
35	ttccagcggg	ctgccatcgc	cctcttcatc	ggcaagcacg	ggcaacagct	cggcccacga	4260
	ctcaaaaaaa	tcctcctcgg	gctccaagct	tagcggagga	gctatagccg	gaatagtcat	4320
	cggagtcatt	gtgggggtgg	cagcgctcat	cgcagccgtc	ctctttttc	tgtggtacaa	4380
40	gaaaagatcc	gacgaagacg	aagagtccat	caacgaaaaa	gacgttccgg	agatgctcaa	4440
	ttcgccgaga	aacaccgttt	ctggcctcac	ggccgccgca	atcggagtca	ataagttcgg	4500
45	cttcctcagc	gaagacgacc	gactggacca	cccgggagca	aaccgaagat	tcagcgacgg	4560
	ttcgctgcca	aacgcagcgg	ccggagcccc	cggtgaccaa	tcgcgcaagt	ccaaagccgg	4620
	aggtcttagg	gttatcaatc	cagacctcag	tgacgaagaa	tgaaaaattg	tttcttgtct	4680
50	tttacggtcg	agttcgtccc	gttaattagc	atatccctcc	ttttgtatgg	ttattcccca	4740
	acatccttcc	gaacactgtg	tattttaaac	cggcctgtct	gcttgttagc	gtctaggcta	4800
	cttggtggcg	ttctggagtg	cttcttctta	cgtctttcaa	tataatcttg	actacttatt	4860
55	caagcctcga	atagtataat	ttggggagat	ccagtcacaa	gagtacaata	tacacaaaaa	4920

	cgct	caaa	aa o	caggt	ccaat	t ct	ccgt	actt	tgg	gggt	gtc	ctta	acc	tta	atga	ccagcc	4980
5	cact	cgat	cg a	agtto	aaato	c aa	atacc	ctcg	tte	acca	atct	ccca	acago	gg	acte	aattct	5040
	ctca	aaaa	ct t	gaco	cgcto	e ge	gtcag	cgct	tto	acaa	ecgt	aato	caac	etc	ctcc	tcggtg	5100
	gtaa	atct	tc	caaca	ccga	a to	tgat	cgaa	gag	tggg	gcca	aago	gtc	gtc	cgca	cccaac	5160
10	gcgt	gcaa	aa o	catat	gatg	g ct	ccaa	cgag	gcg	gaag	gtac	atgo	ccga	ccc	cgag	gaaaga	5220
	gcaa	atgto	ct 1	caac	gcca	t ca	acag	cgac	tea	ccct	cca	cgta	acge	àaa	cgaa	acgttc	5280
15	acac	agco	gg (ggtac	cggc	g te	gtttt	ggaa	CCE	ttca	agtt	gcgt	gtg	ttc	catg	gccaga	5340
75	agat	tgtt	ca t	tcaat	ttgt	t ce	gacaa	ccgg	gte	atat	gct	cgts	ggtc	ggc	gtcg	tactcg	5400
	gatt	gcat	ca a	atctg	gcag	c ct	tctcc	aaat	cca	caaa	acaa	gcgg	gagga	agc	caga	gttccc	5460
20	gaco	ctcag	tc (ctctt	tcct	g to	cctcc	tccg	ttg	atca	aatg	ggt	cage	ccg	gaca	cggggt	5520
	ctto	ttct	ca	cgtaa	caag	c ac	cceac	tccc	ato	ggc	ccgt	aaat	ctt	gtg	cgac	gaaatg	5580
	gaca	itcag	gt	caatg	ttgc	a ct	ttgtt	caca	tc	gat							5615
25																	
	<210)> 10	8														
30	<211	1> 3€	53 ,														
	<212	2> PF	TS														
	<21 3	3> 0g	gata	ea mi	nuta												
35																	
	<400)> 10	8														
	Met	Thr	Thr	Lys	Asn	Ile	Val	Leu	Leu	Pro	Gly	Asp	His	Val	Gly	Pro	
40	1				5					10					15		
45	Glu	Val	Val	Asp	Glu	Ala	Val	Lys	Val	Leu	Asn	Ala	Ile	Ser	Ala	Ala	
				20					25					30	ı		
50	Lys	Pro	Glu	Ile	Lys	Phe	Asn	Phe	Glu	His	His	Leu	Ile	Gly	Gly	Ala	
			35					40					45				
55	Ala	Ile	Asp	Ala	Thr	Gly	Gln	Pro	Ile	Thr	Asp	Ala	Ala	Leu	Glu	Ala	

		50					55					60				
5																
	Ser	Lys	Lys	Ala	Asp	Ala	Val	Leu	Leu	Gly	Ser	Val	Gly	Gly	Pro	Lys
	65					70					7 5					80
10													•			-
	Trp	Gly	Thr	Gly	Gln	Val	Arg	Pro	Glu	Gln	Gly	Leu	Leu	Lys	Ile	Arg
15					85					90					95	
	Lys	Glu	Leu	Asn	Leu	Tyr	Ala	Asn	Leu	Arg	Pro	Cys	Ser	Phe	Ala	Ser
20				100					105					110		
	Asp	Ala	Leu	Leu	Asp	Leu	Ser	Pro	Leu	Lys	Pro	Glu	Ile	Val	Arg	Gly
25			115					120					125			
														.,		
30	Thir	Asp	Phe	Val	Val	Val	Arg	Glu	Leu	Val	Gly	Gly	Ile	Tyr	Phe	Gly
		130					135					140				
													•			
35	Glu	Arg	Lys	Glu	Asp	Asp	Gly	Ser	Gly	Phe	Ala	Ser	Asp	Thr	Glu	Ala
	145					150					155					160
40	Tyr	Ser	Val	Pro	Glu	Val	Gln	Arg	Ile	Thr	Arg	Met	Ala	Ala	Phe	Met
					165					170					175	
45																•
	Ala	Leu	Gln	Ser	Asp	Pro	Pro	Leu	Pro	Val	Tyr	Ser	Leu	Asp	Lys	Ala
				180					185					190		
50																
	Asn	Val	Leu	Ala	Ser	Ser	Arg	Leu	Trp	Arg	Lys	Thr	Val	Glu	Glu	Thr
			195					200					205			
55																

	Ile	Lys	Asn	Glu	Phe	Pro	Gln	Leu	Lys	Leu	Gln	His	His	Leu	Ile	Asp
_		210					215					220				
5																
	Ser	Ala	Ala	Met	Ile	Leu	Val	Lys	Ser	Pro	Thr	Lys	Leu	Asn	Gly	Val
10	225					230		•			235			•		240
															•	
	Val	la Í	Thr	Ser	Asn	Met	Phe	Gly	Asn	He	He	Ser	Asn	Glu	Ala	Ser
15	141	Dou	1111	J 01		1400	1110	OI,	пор		110	501	,	O14		501
					245					250					255	
20	Val	Ile	Pro	Gly	Ser	Leu	Gly	Leu	Leu	Pro	Ser	Ala	Ser	Leu	Ala	Ser
				260					265					270		
25	•	n		C	A	C1	41-	DL -	C1	Lau	Т	C1	D	C	II.: _	C1
	Leu	Pro		ser	ASN	GIU	Ala		GIÀ	Leu	lyr	GIU		Cys	nis	Gly
			275					280				• •	285			
20									•							
30	Ser	Ala	Pro	Asp	Leu	Ala	Lys	Gly	Leu	Val	Asn	Pro	Leu	Ala	Thr	Ile
		290					295					300				
35									_	_			_			
	Leu	Ser	Ala	Ala	Met	Met	Leu	Lys	Leu	Ser	Leu	Asn	Leu	Val	Glu	Glu
	305					310					315					320
40																
	Glv	Arg	Ala	Val	Glu	Lvs	Ala	Val	Arg	Ala	Val	Leu	Asp	Gln	Gly	Ile
	,				325		•		Ŭ	330			•		335	
45					323					330					333	•
	Met	Thr	Ala	Asp	Leu	Gly	Gly	Ser	Ser	Ser	Thr	Thr	Glu	Val	Gly	Asp
50				340					345					350		
	A 1 .	W = 1	۸1.	1	C1	V-1	TL	Ī	1	Lau	<u>را</u>					
55	Ala	val			GIU	val	ınr	Lys	Leu	Leu	GTÀ					
			355					360								

5	<210> 109	
	<211> 20	
	<212> DNA	
10	<213> Artificial Sequence	
	<220>	
15	<223> Description of Artificial Sequence: primer DL5	
20	<400> 109	
	caggagctac agagtcatcg	20
25	⟨210⟩ 110	
	<211> 20	
30	<212> DNA	
	<213> Artificial Sequence	
35	<220>	
	<pre><223> Description of Artificial Sequence: primer DL3</pre>	
40		
10	<400> 110	
	acgagggaca ggttgctcgc	20
45	Z010\ 111	
	<210> 111 <211> 8	
	<212> PRT	
50	<213> Saccharomyces cerevisiae	
	- 1210/ Saccidiolinyces celevisiae	
55	<400> 111	
	7200/ 111	

	Asp Thr Gly Ser Ser Asp Leu Trp			
5	1 5			
	<210> 112			
10	<211> 8			
	<212> PRT		ı	
15	<213> Saccharomyces cerevisiae			
	<400> 112			
20	Phe Gly Ala Ile Asp His Ala Lys			
	1 5			
25	<210> 113			
	⟨211⟩ 24			
	<212> DNA	. •		
30	<213> Artificial Sequence			
35	· <220>			
	<223> Description of Artificial Sequence	ce: primer PI	E5 for ampli	fication of
40	Ogataea minuta YPS1 gene			
	<400> 113			
45	gayacngght cntcngayyt ntgg			24
	<210> 114			
50	<211> 23 ⋅			
	<212> DNA			
	<213> Artificial Sequence			
<i>55</i>				

of

	⟨220⟩	
5	<223> Description of Artificial Sequence: primer PLE3 for amplifica	tion
	Ogataea minuta YPS1 gene	
10	<400> 114	
	ttygghgcna tygaycaygc naa	23
15		
	<210> 115	
	<211> 3661	
20	<212> DNA	
	<213> Ogataea minuta	
25	<220>	
	<221> CDS	
30	⟨222⟩ 17123523	
	<400> 115	
35	gaattcacca gttatctgga cgaggcttgt gtttcagacg agttgctgta cagtcaaatt	
	tgccaggatt attgctcatt gattgggctt tcttccaact ctcccctgta caacaccctt	
40	ctctctagtt tcattgcact gcccagtttt atcaaatacc acaggatatc caagctttct	
40	ggtaagctca actggacaac ggaaaacgag ctgccgtttg aaatcaatct gccactgttt	
	ctgcaatttc attctgtgtt tatctgcccc atctccaaag aggagactac tcctacgaat	
45	ccgcctatag ttctgggttg ccatcacatc atatcgaagg agagcgctga caagctattg	
	aaacagattt teegggtgaa gtgteeatae tgteeaatga ettggtatga agategtete	
	agagagatta getttetega tatatgatti gaaagattae agegatteta agaegettat	400

ttgatacaag ttggttgatt tttcaaggct gtgtaggaaa atttggagta aaaaaaattt 540

tggatctcaa attaagttat caaaagctac gtaggggctg gccgagacga cagcactgaa 600

tcaataaacc atcagtgatg agcgacgcac agataagaaa cggagcgcag aagagcaaga 660

aggcgaaccg gaggtcgagg aagaagcgga gaaccgagga tttctcgtcg tcttctgaga 720

50

	gctcagattc	agacagagag	gaggaagtga	aggagagcgt	tgaagctacc	gaggaggttg	780
5	aaacattaga	gccagaggcc	atggatctgg	ctatcgatca	gctgaatgtt	acaggtgccg	840
	acgcggcaat	gacgcaggat	ttggacaaga	ccagactgaa	cttacgccgt	cttgatgccc	900
	cgttggaggt	gacgaggctt	gggcagaccg	ttgactccgg	acgcgctgca	aagttgggcg	960
10	ggaacgaact	gcagggcgcg	cagtccaagg	ttgagggggc	ccgtaatgag	ctgagaaatg	1020
	cttacttggg	caagatgttg	gggctctaca	gtgacgactt	ggatgctctc	aggcagcaga	1080
15	gcgatttcac	cgagaactcg	ctgtccatgt	tggcgcagct	actgaaaaac	agcggtaatg	1140
15	tgtttgatga	cgaggcgctg	aagtcattag	ttgaatagaa	aacaggcaaa	taattttggc	1200
	agggccgttt	tgccgatgcg	atataggctc	tgttgccgat	acgttcccgg	ggagcttccc	1260
20	tacggttgct	gttctgtcgg	tcttggcgag	ttttccactt	ttgcggccgc	acgaagccca	1320
	gactagccag	tcataccagc	cgtggactcc	gcctacttga	cggggaaatt	tttcccgtgc	1380
	cacttttccc	ggggcaaaat	aagtggctaa	gcagcagaca	agaaaaaaag	gctcgaaaaa	1440
25	gttaaaagaa	gtaacagcag	aatatatata	gccaagtgtg	gtttgtcaga	agcaaagcac	1500
	gctaatttga	agcattttca	cgggtgaaca	gcacacaaag	atctccaggg	gggcgttctg	1560
30	gttgtgaatt	ttatatagag	agcaaaaagg	atttagaaat	cgccgaaatt	tgtttggttt	1620
	agaagtgctt	ttattgtgag	acgttttcgt	gtatcagaag	ggcatcttga	cactcggtta	1680
	gaatatgagg	tgcaaaaaaca	ttttggaagc	aatgttgttg	gtggccgggg	gcacagtccc	1740
35	cgtggcgggg	ttgcctgctg	gcgagtcgaa	ggcaaactcg	agtccggggt	atctgcgaat	1800
	ggaggccgag	atctacagag	ggcattcgtt	tgagacgtcc	caacgcggag	gacggccgta	1860
	tatgctggag	aagcgagccg	aggacggatc	ggtgctaatg	gagctgcaga	acaaccaatc	1920
40	attttacaaa	gtggagcttg	aagtgggttc	agacaagcaa	aagattggtg	tcttagtgga	1980
	tacgggttcg	tcagatctgt	ggatcatgaa	ccaaaacaac	tcgtactgtg	agtcctcgtc	2040
45						gaaacctgaa	
						aaacgatgac	
						gcagcggggg	
50	agaaacagaa	acggcttccg	gagacagctc	cgaggccacc	attgattgct	ctgtttacgg	2280
						tttcgatttc	
55						ccttcaacgg	
55	tgtcacggtg	gatcaattgt	ctatggcaat	tgctgatgag	accaactcgt	cgatgggagt	2460

```
tettggaatt ggactcaagg geetggagae taegtactee ggagaegtga egaatgegta 2520
       cacgtacgaa aacttgccgt acaagatgca gtcccaggga ctgatcagca agccggtcta 2580
5
       ctcggtttat ttgaacgaca gcgagtccag cgctgcgtcg attttgtttg gagccgttga 2640
       ccacgacaag tacactggaa cgttgacgtt gctcccgatc atcaacacgg ccgaaagcct 2700
10
       gggctactcg accccgtca gactcgaggt gacactgtca aagetttaca cgggctcgtc 2760
       ctcgaataaa acggccgtga gcatcgcgtc tggggctgcg gcagctctgt tggacacggg 2820
       aaccacgttg acgtacgttc cttcggacat catctctaca atcgtggacc agtacggctt 2880
15
       tcaatacagc agttcggttg gaacgtatgt ggccaagtgc gactcgctcg acgatgctga 2940
       gattgtettt gaetteeagg gaaccaagat atgggtteeg ttetegtegt ttgeggtete 3000
       acteaceace aacggagget egeagtegte gtactgtgeg ettggettga tggacagegg 3060
20
       agacgacacc ttcactctgg gagactcgtt cctcaacaac gtctacttcg ttgccgatct 3120
       agagaacctg cagattgcca ttgctccggc taacctggac tccacgtcgg aggacattga 3180
25
       agtggtgage gactegggaa tecegtetge aaagteeget tetgeetact etteeagttg 3240
       gggtgcgtct ggctccgcgg tggcctcgtc gttgtctgtt caaaccggcg cagaaaccgt 3300
       cacctccacc gatgctggct ccgactccac gggatctgcg tctgggtcgt ccggttcggc 3360
30
       ctcgtcctcc tcgtccaagt cttctgcgtc ctcctcgtct ggttcgtccg gctcgtcgtc 3420
       caagtcgggc tcgagctcgt ccaagtacgc tgccggaaac gcctggggaa tgagcgtctg 3480
       cagcotgget tteaceateg eggteteggt gttggtgatt ggetaacetg geegeageeg 3540
35
       ctttgcttcc atcctgctga ccccgccggt aactctggtc ggattgtatt acatacatac 3600
       atacctccca egegtttgat atcaegatgt gacttatttt tetgtgeaca geeeggaatt 3660
40
                                                                          3661
       С
```

<210> 116

45

55

<211> 604

<212> PRT

50 (213) Ogataea minuta

<400> 116

Met Leu Leu Val Ala Gly Gly Thr Val Pro Val Ala Gly Leu Pro Ala

	1				5					10					15	
_																
5	Glv	Glu	Ser	Ĺvs	Ala.	Asn	Ser	Ser	Pro	G1 v	Tvr	Leu	Arg	Met	Glu	Ala
	U1)		-	20					25	V-,	-,-			30	***	
10				20					. 20					30		
70														,		
	Glu	Ile	Tyr	Arg	Gly	His	Ser	Phe	Glu	Thr	Ser	GIn	Arg	Gly	Gly	Arg
15			35					40					45			
	Pro	Tyr	Met	Leu	Glu	Lys	Arg	Ala	Glu	Asp	Gly	Ser	Val	Leu	Met	Glu
20		50					55					60				
	Leu	Gln	Asn	Asn	Gln	Ser	Phe	Tyr	Lvs	Val	Glu	Leu	Glu	Val	G1v	Ser
25	65					70		•	•		7 5				•	80
	00															00
		•	61		т1.	61.	17 - 1	1	11 - 1		TOL	61		c		
30	Asp	Lys	GIN	Lys		GIY	vai	Leu	vai		inr	GIY	Ser	Ser		Leu
					85					90		•			95	
35	Trp	Ile	Met	Asn	Gln	Asn	Asn	Ser	Tyr	Cys	Glu	Ser	Ser	Ser	Ser	Ser
				100					105					110		
40	Ser	Lys	Met	Arg	Glu	Arg	Lys	Gly	Arg	Lys	Leu	Ser	Asp	Leu	Arg	Asn
			115					120					125			
45	Len	Asn	1 eu	Asn	Val	Ser	Glu	Lvs	Asn	Val	Lvs	Ala	Va1	G1v	Ala	Ala
	500		Dou	пор	, , ,	501		2,0		,	2,3		, ,	019	,,,,,	
		130					135					140				
50																
	Glu	Thr	Glu	Thr	Met	Thr	Leu	Ser	Val	Gly	Glu	Gly	Leu	Phe	Ser	Trp
	145					150					155					160
55																

5	Phe	Glu	Thr	GIn	165	Asp	Gly	Ser	Gly	170	Glu	Thr	Glu	Thr	175	Ser
10	Gly	Asp	Ser	Ser 180	G1u	Ala	Thr	Ile	Asp 185	Cys	Ser	Val	Tyr	Gly 190	Thr	Phe
15	Asp	Pro	Ser 195	Ser	Ser	Asp	Thr	Phe 200	Lys	Ser	Asn	Gly	Thr 205	Gl u	Phe	Ser
20	Ile	Ser 210	Tyr	Ala	Asp	Asp	Ser 215	Phe	Ala	Lys	Gly	Thr 220	Trp	Gly	Thr	Asp
25	Asp 225	Val	Thr	Phe	Asn	Gly 230	Val	Thr	Val	Asp	Gln 235	Leu	Ser	Met	Ala	Ile- 240
30	Ala	Asp	G1u	Thr	Asn 245	Ser	Ser	Met	Gly	Val 250	Leu	Gly	Ile	Gly	Leu 255	Lys
35	Gly	Leu	Glu	Thr 260	Thr	Tyr	Ser	Gly	Asp 265	Val	Thr	Asn	Ala	Tyr 270	Thr	Tyr
45	Glu	Asn	Leu 275	Pro	Tyr	Lys	Met	Gln 280	Ser	Gln	Gly	Leu	Ile 285	Ser	Ĺys	Pro
50	Val	Tyr 290	Ser	Val	Tyr	Leu	Asn 295	Asp	Ser	Ģlu	Ser	Ser 300	Ala	Ala	Ser	Ile
55	Leu 305	Phe	Gly	Ala	Val	Asp 310	His	Asp	Lys	Tyr	Thr 315	Gly	Thr	Leu	Thr	Leu 320

5	Leu	Pro	116	11e	325	lhr	Ala	olu	Ser	330	GIY	lyr	Ser	lhr	335	val
					020					000					000	
10	Arg	Leu	Glu	Val	Thr	Leu	Ser	Lys	Leu	Tyr	Thr	Gly	Ser	Ser	Ser	Asr
				340					345					`350		
15	lva	The	۸1 a	Val	Sor	Tla	A1 a	Sor	G1v	ΔΙα	Δ1a	Δ1a	Δ1a	Lau	Leu	Aer
	Lys	1111	355	141	Ser	110	Mia	360	G ₁ ,	MIG	nia	nia	365	Leu	Leu	nsp
20																
	Thr		Thr	Thr	Leu	Thr		Val	Pro	Ser	Asp		Ile	Ser	Thr	Ile
25		370					375					380				
	Val	Asp	Gln	Tyr	Gly	Phe	Gln	Tyr	Ser	Ser	Ser	Val	Gly	Thr	Tyr	Val
30	385				•	390					395					400
	41-	·	Coop	۸	C	1	4	100	۸1.	C1	71.	Vol.	Dha	1.00	Dha	C1
35	Ala	Lys	Cys	ASP	ser 405	Leu	ASP	ASP	ита	410	116	Val	riie	изр	Phe 415	GIR
40	Gly	Thr	Lys		Trp	Val	Pro	Phe		Ser	Phe	Ala	Val		Leu	Thr
40				420					425			•		430		
	Thr	Asn	Gly	Gly	Ser	G1n	Ser	Ser	Tyr	Cys	Ala	Leu	Gly	Leu	Met	Asp
45			435					440					445			
					<i>a</i> .	n.	æ.	,	01		C	D.	7			17 7
50	Ser	G1y 450	Asp	Asp	Ihr	Phe	1nr 455		GIY	Asp	Ser	460	Leu	ASN	Asn	vaı
					-											
55	Tyr	Phe	Val	Ala	Asp	Leu	Glu	Asn	Leu	Gln	Ile	Ala	Ile	Ala	Pro	Ala

	465					470					475					480
5	Asn	Leu	Asp	Ser	Thr 485	Ser	G1u	Asp	Ile	Glu 490	Val	Val	Ser	Asp	Ser 495	Gly
10					400					430					430	
	Ile	Pro	Ser	Ala 500	Lys	Ser	Ala	Ser	Ala 505	Tyr	Ser	Ser	Ser	Trp 510	G1y	Ala
15												•	•			
20	Ser	Gly	Ser 515	Ala	Val	Ala	Ser	Ser 520	Leu	Ser	Val	Gln	Thr 525	Gly	Ala	Glu
25	Thr	Val 530	Thr	Ser	Thr	Asp	Ala 535	Gly	Ser	Asp	Ser	Thr 540	Gly	Ser	Ala	Ser
30	Gly 545	Ser	Ser	Gly	Ser	Ala 550	Ser	Ser	Ser	Ser	Ser. 555	Lys	Ser	Ser	Ala	Ser 560
35	Ser	Ser	Ser	Gly	Ser 565	Ser	Gly	Ser	Ser	Ser 570	Lys	Ser	Gly	Ser	Ser 575	Ser
40	Ser	Lys	Tyr	Ala 580	Ala	Gly	Asn	Ala	Trp 585	Gly	Met	Ser	Val	Cys 590	Ser	Leu
45	Ala	Phe		Ile	Ala	Val	Ser	Val		Val	Ile	Gly				
50	<21	0> 1	595 17					000								
55	<21	1> 2	1													
	<21	2> D	NA													

	<213> Artificial Sequence	
5		
	<220>	
	<223> Description of Artificial Sequence: primer DY5	
10		•
	<400> 117	
15	ctcaagggcc tggagactac g	21
	⟨210⟩ 118	
20	<211> 22	
	<212> DNA	
25	<213> Artificial Sequence	
	<220≻	
	<223> Description of Artificial Sequence: primer DY3	
30	\223\triangleright Description of Artificial Sequence. primer Dis	
	<400> 118	
35	cgggattccc gagtcgctca cc	22
	<210> 119	
40	<211> 33	
	<212> DNA	
45	<213> Artificial Sequence	
	⟨220⟩	
50	<223> Description of Artificial Sequence: primer PDI5 for ampl	li ficatio n of
	5'-region of <u>Saccharomyces</u> <u>cerevisiae</u> PDI gene	
55		
55	<400> 119	

tctagaatga agttttctgc tggtgccgtc ctg

33

5

10

<210> 120

<211> 33

<212> DNA

<213> Artificial Sequence

15

20

<220>

<223> Description of Artificial Sequence: primer PDI3 for amplification of 3'-region of <u>Saccharomyces cerevisiae</u> PDI gene

25 <400> 120

ggatccttac aattcatcgt gaatggcatc ttc

33

30

35

Claims

- 1. A process for producing a methylotrophic yeast capable of producing a mammalian type sugar chain, which comprises the steps of:
 - 1) disrupting an *OCH1* gene which encodes α -1,6-mannosyl transferase, in a methylotrophic yeast; and 2) introducing an α -1,2-mannosidase gene into the yeast and expressing it therein.
- 2. A process according to claim 1, wherein the mammalian type sugar chain is represented by the following structural formula (Man₅GlcNAc₂):

Structural Formula 2

45

- **3.** A process according to claim 1 or 2, wherein the methylotrophic yeast belongs to the genus *Pichia, Hansenula, Candida*, or *Ogataea*.
 - 4. A process according to claim 1 or 2, wherein the methylotrophic yeast is Ogataea minuta.

- 5. A process according to any one of claims 1 to 4, wherein the methylotrophic yeast is a strain from *Ogataea minuta* strain IFO 10746.
- **6.** A process according to any one of claims 1 to 5, wherein the α-1,2-mannosidase gene is expressed under the control of a methanol-inducible promoter.
 - 7. A process according to claim 6, wherein the methanol-inducible promoter is a promoter of an alcohol oxidase (AOX) gene.
- 10 8. A process according to claim 7, wherein the alcohol oxidase (AOX) gene is from Ogataea minuta.
 - **9.** A process according to any one of claims 1 to 8, **characterized in that** the α-1,2-mannosidase gene to be introduced is attached to a yeast endoplasmic reticulum (ER) retention signal (HEDL).
- 15 **10.** A process according to any one of claims 1 to 9, wherein the α -1,2-mannosidase gene is from *Aspergillus saitoi*.
 - 11. A process according to any one of claims I to 10, which further comprises a step of transforming a heterologous gene into the yeast.
- 20 12. A process according to claim 11, wherein the heterologous gene is transferred using an expression vector and is expressed in the yeast.
 - 13. A process according to claim 12, wherein the expression vector comprises a methanol-inducible promoter.
- 25 **14.** A process according to claim 13, wherein the methanol-inducible promoter is a promoter of an alcohol oxidase (AOX) gene.
 - 15. A process according to claim 14, wherein the alcohol oxidase (AOX) gene is from Ogataea minuta.
- 30 16. A process according to claim 12, wherein the expression vector comprises a promoter of a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene.
 - 17. A process according to any one of claims 11 to 16, wherein 20 % or more of N-linked sugar chains produced of the protein encoded by the heterologous gene is the mammalian type sugar chain represented by Structural Formula 2.
 - **18.** A process according to any one of claims 11 to 16, wherein 40 % or more of N-linked sugar chains produced of the protein encoded by the heterologous gene is the mammalian type sugar chain represented by Structural Formula 2.
 - 19. A process according to any one of claims 11 to 16, wherein 60 % or more of N-linked sugar chains produced of the protein encoded by the heterologous gene is the mammalian type sugar chain represented by Structural Formula 2.
- 45 20. A process according to any one of claims 11 to 16, wherein 80 % or more of N-linked sugar chains produced of the protein encoded by the heterologous gene is the mammalian type sugar chain represented by Structural Formula 2.
- **21.** A process according to any one of claims 11 to 20, wherein the protein encoded by the heterologous gene is from humans.
 - 22. A process according to any one of claims 11 to 21, wherein the protein encoded by the heterologous gene is an antibody or a fragment thereof.
- 23. A methylotrophic yeast produced by a process according to any one of claims 1 to 22.

35

40

24. A process for producing a protein encoded by a heterologous gene, wherein the process comprises culturing the methylotrophic yeast of claim 23 in a medium to obtain the protein encoded by the heterologous gene comprising

a mammalian type sugar chain from the culture.

5

10

15

20

- 25. A protein comprising a mammalian type sugar chain encoded by the heterologous gene, wherein the protein is produced by the process of claim 24.
- 26. An orotidine-5'-phosphate decarboxylase (*URA3*) gene DNA encoding an amino acid sequence substantially represented by SEQ ID NO:16.
- 27. A URA3 gene DNA comprising a nucleotide sequence substantially represented by SEQ ID NO:15.
- 28. A recombinant expression vector substantially comprising the gene of claim 26 or 27 or a fragment thereof as a selectable marker.
- 29. An Ogataea minuta strain transformed with the recombinant expression vector of claim 28.
- 30. An Ogataea minuta strain according to claim 29, the strain being from the strain IFO 10746.
- **31.** A phosphoribosyl-amino-imidazole succinocarboxamide synthase (*ADE1*) gene DNA encoding an amino acid sequence substantially represented by SEQ ID NO:28.
- 32. An ADE1 gene DNA comprising a nucleotide sequence substantially represented by SEQ ID NO:27.
- **33.** A recombinant expression vector substantially comprising the gene of claim 31 or 32 or a fragment thereof as a selectable marker.
- 34. An Ogataea minuta strain transformed with the recombinant expression vector of claim 33.
- 35. An Ogataea minuta strain according to claim 34, the strain being from the strain IFO 10746.
- 36. An imidazole-glycerol-phosphate dehydratase (HIS3) gene DNA encoding an amino acid sequence substantially represented by SEQ ID NO: 100.
 - 37. An HIS3 gene DNA comprising a nucleotide sequence substantially represented by SEQ ID NO:99.
- 35 **38.** A recombinant expression vector substantially comprising the gene DNA of claim 36 or 37 or a fragment thereof as a selectable marker.
 - 39. A Ogataea minuta strain transformed with the recombinant expression vector of claim 38.
- 40. An Ogataea minuta train according to claim 39, the strain being from the strain IFO 10746.
 - **41.** A 3-isopropylmalate dehydrogenase (*LEU2*) gene DNA encoding an amino acid sequence substantially represented by SEQ ID NO:108.
- 45 42. A LEU2 gene DNA comprising a nucleotide sequence substantially represented by SEQ ID NO:107.
 - **43.** A recombinant expression vector substantially comprising the gene of claim 41 or 42 or a fragment thereof as a selectable marker.
- 50 44. An Ogataea minuta strain transformed with the recombinant expression vector of claim 43.
 - 45. An Ogataea minuta stain according to claim 44, the strain being from the IFO 10746.
- 46. An α-1,6-mannosyl transferase (OCH1) gene DNA encoding an amino acid sequence substantially representedby SEQ ID NO:43.
 - 47. An OCH1 gene DNA comprising a nucleotide sequence substantially represented by SEQ ID NO:42.

- 48. An Ogataea minuta strain wherein the gene of claim 46 or 47 has been disrupted.
- 49. An Ogataea minuta strain according to claim 48, the strain being from the strain IFO 10746.
- 50. A proteinase A (PEP4) gene DNA encoding an amino acid sequence substantially represented by SEQ ID NO:52.
 - 51. A PEP4 gene DNA comprising a nucleotide sequence substantially represented by SEQ ID NO:51.
 - 52. An Ogataea minuta strain wherein the gene of claim 50 or 51 has been disrupted.

10

20

40

- 53. An Ogataea minuta strain according to claim 52, the strain being from the strain IFO 10746.
- 54. A proteinase B (PRB1) gene DNA encoding an amino acid seguence substantially represented by SEQ ID NO:58.
- 15 55. A PRB1 gene DNA comprising a nucleotide sequence substantially represented by SEQ ID NO:57.
 - 56. An Ogataea minuta strain wherein the gene of claim 54 or 55 has been disrupted.
 - 57. An Ogataea minuta strain according to claim 56, the strain being from the strain IFO 10746.
 - 58. A YPS1 gene DNA encoding an amino acid sequence substantially represented by SEQ ID NO:116.
 - 59. A YPS1 gene DNA comprising a nucleotide sequence substantially represented by SEQ ID NO:115.
- 25 **60.** An *Ogataea minuta* strain wherein the gene of claim 58 or 59 has been disrupted.
 - 61. An Ogataea minuta strain according to claim 60, the strain being from the strain TFO 10746.
- **62.** A process for producing a protein encoded by a heterologous gene, wherein the heterologous gene is transferred into the *Ogataea minuta* strain of claim 60 or 61.
 - 63. A process according to claims 62, wherein the heterologous gene encodes an antibody or a fragment thereof.
- **64.** A process for preventing decomposition of an antibody or a fragment thereof, comprising disrupting a *YPS1* gene in a methylotrophic yeast.
 - 65. A process according to claim 64, wherein the methylotrophic yeast is an Ogataea minuta strain.
 - 66. A process according to claim 65, wherein the Ogataea minuta strain is from the strain IFO 10746.
 - 67. A process according to any one of claims 64 to 66, wherein class of the antibody is IgG.
 - 68. A process according to claim 67, wherein subclass of the IgG is IgG1.
- 45 69. A process according to any one of claims 64 to 68, wherein the antibody is a human antibody.
 - 70. A KTR1 gene DNA encoding an amino acid sequence substantially represented by SEQ ID NO:64.
 - 71. A KTR1 gene DNA comprising a nucleotide sequence substantially represented by SEQ ID NO:63.
 - 72. An *Ogataea minuta* strain wherein the gene of claim 70 or 71 has been disrupted.
 - 73. An Ogataea minuta strain according to claim 72, the strain being from the strain IFO 10746.
- 74. An MNN9 gene DNA encoding an amino acid sequence substantially represented by SEQ ID NO:70.
 - 75. An MNN9 gene DNA comprising a nucleotide sequence substantially represented by SEQ ID NO: 69.

- 76. An Ogataea minuta strain wherein the gene of claim 74 or 75 has been disrupted.
- 77. An Ogataea minuta strain according to claim 76, the strain being from the strain IFO 10746.
- 78. An alcohol oxidase (AOX) gene DNA encoding an amino acid sequence substantially represented by SEQ ID NO: 78.
 - 79. An AOX gene DNA comprising a nucleotide sequence substantially represented by SEQ ID NO:77.
- 80. A DNA comprising a promoter of alcohol oxidase (AOX) gene which is substantially represented by SEQ ID NO:79.
 - 81. A DNA comprising a terminator of alcohol oxidase (AOX) gene which is substantially represented by SEQ ID NO:80.
- **82.** A gene expression cassette comprising the DNA comprising the promoter as defined in claim 80, a heterologous gene, and the DNA comprising the terminator as defined in claim 81.
 - 83. A recombinant expression vector comprising the gene expression cassette of claim 82.
 - 84. An Ogataea minuta strain transformed with the recombinant expression vector of claim 83.
 - 85. An Ogataea minuta strain according to claim 84, the strain being from the strain IFO 10746.
 - **86.** A glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene DNA encoding an amino acid sequence substantially represented by SEQ ID NO:6.
 - **87.** A glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene DNA comprising a nucleotide sequence substantially represented by SEQ ID NO:5.
- **88.** A DNA comprising a promoter of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene which is substantially represented by SEQ ID NO:7.
 - **89**. A DNA comprising a terminator of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene which is substantially represented by SEQ ID NO:8.
- 90. A gene expression cassette comprising a DNA comprising the promoter as defined in claim 88, a heterologous gene, and the DNA comprising a terminator as defined in claim 89.
 - 91. A recombinant expression vector comprising the gene expression cassette of claim 90.
- 40 92. An Ogataea minuta strain transformed with the recombinant expression vector of claim 91.
 - 93. An Ogataea minuta strain according to claim 92, the strain being from the strain IFO 10746.
- 94. A process for producing an *Ogataea minuta* strain, which is capable of producing a mammalian type sugar chain represented by the following structural formula (Man₅GlcNAc₂):

50

20

25

Structural Formula 2

5

10

50

55

comprising a step of disrupting OCH1 gene (SEQ ID NO:42)in the Ogataea minuta strain.

- 95. A process of claim 94, wherein the Ogataea minuta strain is from the strain IFO 10746.
- 96. A process according to claim 94 or 95, which further comprises a step of disrupting at least one gene selected from the group consisting of a URA3 gene comprising the nucleotide sequence represented by SEQ ID NO:15, an ADE1 gene comprising the nucleotide sequence represented by SEQ ID NO:27, an HIS3 gene comprising the nucleotide sequence represented by SEQ ID NO:99, and a LEU2 gene comprising the nucleotide sequence represented by SEQ ID NO:107.
- 97. A process according to any one of claims 94 to 96, which further comprises a step of disrupting at least one gene selected from the group consisting of a PEP4 gene comprising the nucleotide sequence represented by SEQ ID NO:51, a PRB1 gene comprising the nucleotide sequence represented by SEQ ED NO:57, and a YPS1 gene comprising the nucleotide sequence represented by SEQ ID NO:115.
- 98. A process according to any one of claims 94 to 97, which further comprises a step of disrupting a KTR1 gene comprising the nucleotide sequence represented by SEQ ID NO:63 and/or an MNN9 gene comprising the sequence represented by SEQ ID NO:69.
- **99.** A process according to any one of claims 94 to 98, which further comprises a step of introducing and expressing an α-1,2-mannosidase gene from *Aspergillus saitoi*.
 - 100.A process according to claim 99, wherein the α -1,2-mannosidase gene is transferred into the vector of claim 83 and expressed.
- 40 101.A process according to any one of claims 94 to 100, which further comprises a step of introducing and expressing a PDI gene.
 - 102.A process according to claim 101, wherein the PDI gene is a gene (M62815) from Saccharomyces cerevisiae.
- 45 103.A process according to claim 101 or 102, wherein the PDI gene is transferred into the vector of claim 83 and expressed.
 - **104.**A process according to any one of claims 94 to 103, which further comprises a step of introducing and expressing a heterologous gene.

105.A process according to claim 104, wherein the heterologous gene is transferred into the vector of claim 83 and expressed.

- 106.A process for producing a protein encoded by a heterologous gene, which comprises culturing Ogataea minuta produced by the process of claim 104 or 105 in a medium, to obtain the protein comprising a mammalian type sugar chain encoded by the heterologous gene from the culture.
 - 107.A protein comprising a mammalian type sugar chain encoded by a heterologous gene, wherein the protein has

been produced by the process of claim 106.

5

10

15

20

25

30

40

45

108.A process for producing an *Ogataea minuta* strain, which is capable of producing a mammalian type sugar chain represented by the following structural formula (Man₅GlcNAc₂):

Structural Formula 2 Man α 1 6 Man α 1 3 6 Man β 1- 4 GIcNAc β 1- 4 GIcNAc Man α 1 Man α 1

wherein the process comprises the steps of:

- disrupting an *OCH1* gene comprising the nucleotide sequence represented by SEQ I NO:42 in an *Ogataea minuta* strain; and
- disrupting a URA3 gene comprising the nucleotide sequence represented by SEQ ID NO:15 in the same strain; and
- disrupting a *PEP4* gene comprising the nucleotide sequence represented by SEQ ID NO:51 in the same strain; and
- disrupting a PRB1 gene comprising the nucleotide sequence represented by SEQ ID NO:57 in the same strain.
- 109.A process according to claim 108, wherein the Ogataea minuta strain is from the strain IFO 10746.
- **110.**A process according to claim 108 or 109, which further comprises a step of disrupting an *ADE1* gene comprising the nucleotide sequence represented by SEQ ID NO:27.
- 111.A process according to claim 110, which further comprises a step of disrupting a KTR1 gene comprising the nucleotide sequence represented by SEQ ID NO:63.
 - 112.A process according to claim 111, which further comprises a step of disrupting an *HIS3* gene comprising the nucleotide sequence represented by SEQ ID NO:99.
 - **113.**A process according to claim 111, which further comprises a step of disrupting a *LEU2* gene comprising the nucleotide sequence represented by SEQ ID NO:107.
 - 114.A process according to claim 111, which further comprises a step of: 1) disrupting a *YPS1* gene comprising the nucleotide sequence represented by SEQ ID NO:115.
 - 115.A process according to any one of claims 108 to 114, which further comprises a step of introducing and expressing an α -1,2-mannosidase gene.
- 116.A process according to claim 115, wherein the α -1,2-mannosidase gene is transferred into the vector of claim 83 and expressed.
 - 117.A process according to any one of claims 108 to 116, which further comprises a step of introducing and expressing a *PDI* gene (M62815).
- 118.A process according to claim 117, wherein the PDI gene (M62815) is transferred into the vector of claim 83 and expressed.
 - 119.A process according to any one of claims 108 to 118, which further comprises a step of introducing and expressing

a heterologous gene.

- 120.A process according to claim 119, wherein the heterologous gene is transferred into the vector of claim 83 and expressed.
- **121.**A process for producing a protein encoded by a heterologous gene comprising a mammalian type sugar chain, wherein the process comprises culturing *Ogataea minuta* produced by the process of claim 119 or 120 in a medium to obtain the protein from the culture.
- 122.A protein encoded by a heterologous gene comprising a mammalian type sugar chain, wherein the protein has been produced by the process of claim 121.

Fig. 1

Fig. 2

Fig. 2

Fig. 3

Fig. 2

a-1,2-Mannosidase

Ogataea minuta

a-1,2-Mannosidase

Candida succiphila

Candida boidinii

Fig. 4

a-1,2-Mannosidase

Saccharomyces cerevisiae

Fig. 5

Fig. 6

Fig. 8

Hd RV ADE1 Bg Sm Bm

pOMAD1 Hd Bm/Bg

Nt ADE1 Bg Sm Bm

Hd Bm/Bg

Nt ADE1 Bg Sm Bm

Hd Bm/Bg

Nt ADE1 Bg Sm Bm

Hd Bm/Bg

Nt ADE1 Bg Sm Bm

Hd Bm/Bg

Nt ADE1 Bg Sm Bm

Hd Bm/Bg

Nt ADE1 Bg Sm Bm

Hd Bm/Bg

Nt ADE1 Bg Sm Bm

Hd Bm/Bg

Nt ADE1 Bg Sm Bm

Hd Bm/Bg

Nt ADE1 Bg Sm Bm

Fig. 10

Fig. 11

Fig. 12

Amide column before digested with $\alpha\text{--}1,2\text{-mannosidase}$

Amide column after digested with α -1,2-mannosidase

Fig. 13

Reverse phase column

Fig. 13

Fig. 14

Fig. 15

Fig. 16 XbSc Sc El Bg Wild strain (pOMKR1) KTR1 Xb Sc (EI) Bg KTR1 knockout strain (pDOMKR1) Bg Hd Xb Sc Sc(RI) Bg URA3 deficient strain -1kb

Hd

Bg

Fig. 18A

Fig. 18B

Fig. 19

Ogataea minuta TK3-A(Δoch1) strain . 20 08. min Amide column -09

Fig. 19

194

Fig. 20

Fig. 21

1: Control antibody

2: Antibody produced by Ogataea minuta TK9-IgB-aM strain

Fig. 22

- 1. Culture supernatant
- 2. Column non-adsorbed fraction
- 3. Wash fraction
- 4. Elution fraction
- 5. Control antibody

Fig. 23

- 1. Control antibody
- 2. Antibody produced by Ogataea minuta TK9-IgB-aM strain

Fig. 24

- A. Ogataea minuta TK9-IgB strain
- B. Ogataea minuta TK9-IgB-aM strain

Fig. 27

Fig. 28

Fig. 29

Fig. 30

URA3 deficient strain -

Fig. 33

Fig. 34

- 1 Molecular weight marker
- 2 Yeast culture supernatant
- 3 Protein A Elution fraction
- 4 Control antibody

Fig. 35 **1 2 3 4 5 6**

Lanes 1, 3, 5;

Control strain (Ogataea minuta YK3-IgB1-aMstrain)

Lanes 2, 4, 6;

PDI-transferred strain (<u>Ogataea minuta</u> YK3-IgB1-aM-P strain)

Lanes 1, 2: Reduced (Culture supernatant)

Lanes 3, 4: Unreduced (Culture supernatant)

Lanes 5, 6: Unreduced (Cell extract)

International application No.

PCT/JP03/05464 A. CLASSIFICATION OF SUBJECT MATTER Int.Cl⁷ Cl2N15/09, 1/19, 9/04, 9/10, 9/50//Cl2R1:645 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) Int.Cl7 C12N15/09, 1/19, 9/04, 9/10, 9/50//C12R1:645 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) GeneBank/EMBL/DDBJ/SwissProt/PIR/GeneSeq CA/BIOSIS/WPIDS/MEDLINE(STN) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Category* 1-25,94-122 WO 02/00856 A2 (Flanders Interuniversity X,Y Institute for Biotechnology), 03 January, 2002 (03.01.02), Claims; examples & US 2002/188109 A & EP 1294910 A2 WO 02/00879 A2 (Glycofi INC.), 1-25,94-122 X,Y 03 January, 2002 (03.01.02), Claims; examples & EP 1297172 A2 & US 2002/137134 A Yasuyoshi SAKAI et al., "The Orotidine-5'-Phosphate 26-30 Х Decarboxylase Gene (URA3) of a Methylotrophic Yeast, Candida boidinii: Nucleotide Sequence and Its Expression in Escherichia coli", Journal of Fermentation and Bioengineering, 1992, Vol. 73(4), pages 255 to 260, full text; particularly, Fig. 2 Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents: later document published after the international filing date or "A" document defining the general state of the art which is not considered to be of particular relevance priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "E" earlier document but published on or after the international filing document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other step when the document is taken alone document of particular relevance; the claimed invention cannot be special reason (as specified) considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later document member of the same patent family than the priority date claimed Date of mailing of the international search report Date of the actual completion of the international search 28 July, 2003 (28.07.03) 12 August, 2003 (12.08.03) Authorized officer Name and mailing address of the ISA/ Japanese Patent Office Telephone No.

Form PCT/ISA/210 (second sheet) (July 1998)

EP 1 505 149 A1

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/05464

0.40- ::	DOCUMENTS CONSTRUCTS TO BE THE STANF		703/05464
· · · · · ·	tion). DOCUMENTS CONSIDERED TO BE RELEVANT		Dalamari 3 2 2 2
Category*	Citation of document, with indication, where appropriate, of the relevant passages Vina W. Yang et al., "High-Efficiency Transformation of Pichia stipitis Based on Its URA 3 Gene and a Homologous Autonomous Replication Sequence, ARS2", Applied and Environmental Microbiology, 1994, Vol.60(12), pages 4245 to 4254, full text; particularly, Fig. 3		Relevant to claim No 26-30
х	Yoshiaki NISHIYA et al., "Primary Structure of ADE1 Gene from Candida utilis", Bioscience Biotechnology and Biochemistry, 1994, Vol.58(1), pages 208 to 210, full text; particularly, Fig. 3		31~35
x	Inmaculada C. Casano et al., "Cloning and Sequence Analysis of the Pichia pastoris TRP1, IPP1 and HIS 3 Genes", Yeast, 1998, Vol.14, pages 861 to 867, full text; particularly, Fig. 4		36-40
x	WO 98/14600 A1 (CENTRO DE INGENIERIA Y BIOTECNOLOGIA), 09 April, 1998 (09.04.98), Claims; sequence Nos. 5 to 6 & JP 2001-501475 A & EP 956356 A1		36-40
х	Yasuyoshi SAKAI et al., "Directed Mutagenesis in an Asporogenous Methylotrophic Yeast: Cloning, Sequencing, and One-Step Gene Disruption of the 3-Isopropylmalate Dehydrogenase Gene (LEU2) of Canadida boidinii To Derive Doubly Auxotrophic Marker Strains", Journal of Bacteriology, 1992, Vol.174(18), pages 5988 to 5993, full text; particularly, Figs. 1 to 2		41-45
x	Ying-Pei Zhang et al., "LEU2 Gene Homolog in Kluyveromyces lactis", Yeast, 1992, Vol.8, pages 801 to 804, full text; particularly, Fig. 1		41-45
х	JP 9-3097 A (The Green Cross Corp.), 07 January, 1997 (07.01.97), Claims; sequence No. 5; Fig. 5 (Family: none)		46-49
х .	WO 00/14259 A1 (Kirin Brewery Co., Ltd.), 16 March, 2000 (16.03.00), Claims; sequence Nos. 2 to 3 & JP 2000-78978 A		50–57
х	WO 92/17595 Al (The Salk Institute Bioted Industrial Associates), 15 October, 1992 (15.10.92), Claims; sequence Nos. 1 to 2 & JP 6-506117 A & EP 578746 Al & US 5324660 A	chnology/	50-53

Form PCT/ISA/210 (continuation of second sheet) (July 1998)

International application No.
PCT/JP03/05464

X A A A A A A A A A A A A A A A A A A A	Citation of document, with indication, where appropriate, of the relevantal V. Azaryan et al., "Purification Characterization of a Paires Basic Residucest Aspartic Protease Encoded by the Y. The Journal of Biological Chemistry, 199 yol.263(16), pages 11968 to 11975, full director KOMANO et al., "Shared functions of a glycosyl-phosphatidylinositol-linked appartyl protease, Mkc7, and the proproterocessing protease Kex2 in yeast", Procedual Sci.USA, 1995, Vol.92, pages 10752 full text; particularly, Fig. 2 Ed T. Buurman et al., "Molecular analysical Campartyl a mannosyl transferase important adhesion and virulence of Candida albical Proc.Natl.Acad.Sci.USA, 1998, Vol.95, pages 7670 to 7675, full text; particularly, Fig. 2 Ed T. Buurman et al., "Molecular analysical Camparty, a mannosyl transferase important adhesion and virulence of Candida albical Proc.Natl.Acad.Sci.USA, 1998, Vol.95, pages 7670 to 7675, full text; particularly, Fig. 314096 A2 (Zymogenetics, INC.), Claims; Fig. 4 Ed JP 2-419 A & US 5135854 A	and ne-specific AP3 Gene", 3, text in vivo d ein .Natl. to 10756, s of t for ns", ges	Relevant to claim No. 58-69 58-69 70-73
X AACCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	Anahit V. Azaryan et al., "Purification Characterization of a Paires Basic Residurest Aspartic Protease Encoded by the Yene Journal of Biological Chemistry, 1997ol.263(16), pages 11968 to 11975, full Hiroto KOMANO et al., "Shared functions of a glycosyl-phosphatidylinositol-linked aspartyl protease, Mkc7, and the proprotoprocessing protease Kex2 in yeast", Procedure Sci.USA, 1995, Vol.92, pages 10752 full text; particularly, Fig. 2 Ed T. Buurman et al., "Molecular analysical and the proprotoprocessing and virulence of Candida albicator analysis and virulence of Candida albicator analysis and virulence of Candida albicator analysis analysis analysis analysis analysis analy	and ne-specific AP3 Gene", 3, text in vivo d ein .Natl. to 10756, s of t for ns", ges	58-69 58-69 70-73
X Hoaa PAAAA X COAAAAA X X COAAAAAAAAAAAAAAAAAAA	Characterization of a Paires Basic Residule (east Aspartic Protease Encoded by the Y. The Journal of Biological Chemistry, 199 (ol.263(16), pages 11968 to 11975, full directions of a glycosyl-phosphatidylinositol-linked aspartyl protease, Mkc7, and the proprote processing protease Kex2 in yeast", Procedural Sci. USA, 1995, Vol.92, pages 10752 full text; particularly, Fig. 2 Ed T. Buurman et al., "Molecular analysical amongs and virulence of Candida albical Proc. Natl. Acad. Sci. USA, 1998, Vol.95, page 7670 to 7675, full text; particularly, Fig. 2 ED 314096 A2 (Zymogenetics, INC.), D3 May, 1989 (03.05.89), Claims; Fig. 4 ED 372-419 A & US 5135854 A	ne-specific AP3 Gene", 3, text in vivo d ein .Natl. to 10756, s of t for ns", ges	58–69 70–73
X E C C C C C C C C C C C C C C C C C C	of a glycosyl-phosphatidylinositol-linked aspartyl protease, Mkc7, and the proprotoprocessing protease Kex2 in yeast", Procedad.Sci.USA, 1995, Vol.92, pages 10752 full text; particularly, Fig. 2 Ed T. Buurman et al., "Molecular analysicamntlp, a mannosyl transferase important andhesion and virulence of Candida albicatoro.Natl.Acad.Sci.USA, 1998, Vol.95, page 7670 to 7675, full text; particularly, Fig. 314096 A2 (Zymogenetics, INC.), and May, 1989 (03.05.89), Claims; Fig. 4 Ed JP 2-419 A & US 5135854 A	d ein .Natl. to 10756, s of t for ns", ges	70-73
X E O O O O O O O O O O O O O O O O O O	CaMntlp, a mannosyl transferase important adhesion and virulence of Candida albicatoroc.Natl.Acad.Sci.USA, 1998, Vol.95, pa 7670 to 7675, full text; particularly, F EP 314096 A2 (Zymogenetics, INC.), D3 May, 1989 (03.05.89), Claims; Fig. 4 E JP 2-419 A & US 5135854 A	t for ns", ges	
X A C C C A A E E	03 May, 1989 (03.05.89), Claims; Fig. 4 g JP 2-419 A & US 5135854 A		74-77 .
X E	DE 3887082 A		
0 C &	A M. Ledeboer et al., "Molecular cloning characterization of a gene coding for me exidase in Hansenula polymoepha", Proc.N Acad.Sci.USA, 1998, Vol.95, pages 7670 to full text; particularly, Fig. 6	thanol atl.	78-85
v m	EP 173378 A2 (Nnilever PLC), D5 March, 1986 (05.03.86), Claims; Figs. 11, 13 © JP 61-92569 A © US 5240838 A © DE 3583194 A		78-85
2	NO 00/78978 Al (Zymogenetics INC.), 28 December, 2000 (28.12.00), Claims; sequence Nos. 1 to 2 5 JP 2003-503030 A & EP 1192263 Al		8,6-89
P T	Yuzo YAMADA et al., "The Phylogenetic Rel of Methanol-assimilating Yeasts Based on Partial Sequences of 18S and 25S Ribosom The Proposal of Komagataella Gen. Novemb (Saccharomycetaceae)", Vol.59(3), pages 444, full text	the al.RNAs: er	3-25,29-30, 34-35,39-40, 44-45,48-49, 52-53,56-57, 60-62,65-66, 72-73,76-77, 84-85,92-122

Form PCT/ISA/210 (continuation of second sheet) (July 1998)

International application No. PCT/JP03/05464

Box I Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)					
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:					
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:					
because they relate to subject matter not required to be seatched by this Authority, namely:					
2. Claims Nos.:					
because they relate to parts of the international application that do not comply with the prescribed requirements to such an					
extent that no meaningful international search can be carried out, specifically:					
3. Claims Nos.:					
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).					
The state of the s					
Box II Observations where unity of invention is lacking (Continuation of item 3 of first sheet)					
This International Searching Authority found multiple inventions in this international application, as follows: The inventions of this international application can be classified into					
the following groups.					
(1) Claims 1 to 25 and 94 to 122: inventions relating to methods of					
constructing a methylotroph yeast capable of producing a mammalian type sugar					
chain. (2) Claims 26 to 30: inventions relating to an orotidine-5'-phosphate					
decarboxylase (URA3) gene.					
(3) Claims 31 to 35: inventions relating to a phosphoribosyl-amino-					
<pre>imidazole succinocarboxamide synthase (ADE1) gene. (4) Claims 36 to 40: inventions relating to an (continued to extra sheet)</pre>					
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
1. As all required additional search rees were difficilly paid by the applicant, this international search report covers all searchable claims.					
Gams.					
2. X As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment					
of any additional fee.					
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers					
only those claims for which fees were paid, specifically claims Nos.:					
,					
•					
<u>.</u>					
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is					
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:					
$ \cdot $					
Remark on Protest The additional search fees were accompanied by the applicant's protest.					
No protest accompanied the payment of additional search fees.					
1					

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1998)

International application No.

PCT/JP03/05464

Continuation of Box No.II of continuation of first sheet(1)

imidazole-glycerol-phosphate dehydratase (HIS3) gene.

- (5) Claims 41 to 45: inventions relating to 3-isopropylmalate dehydrogenase (LEU2) gene.
- (6) Claims 46 to 49: inventions relating to α -1,6-mannosyl transferase (OCH1) gene.
 - (7) Claims 50 to 53: inventions relating to a PEP4 gene.
- (8) Claims 54 to 57: inventions relating to a proteinase B (PRB1) gene.
 - (9) Claims 58 to 69: inventions relating to a YPS1 gene.
 - (10) Claims 70 to 73: inventions relating to a KTR1 gene.
 - (11) Claims 74 to 73: inventions relating to a Kiki gene.
- (12) Claims 78 to 85: inventions relating to an alcohol oxidase (AOX) gene.
- (13) Claims 86 to 93: inventions relating to a glyceryl aldehyde-3-dehydrogenase (GAPDH) gene.

However, there had been publicly known before the priority date of the present case: (1) inventions relating to methods of constructing a methylotroph yeast capable of producing a mammalian type sugar chain; (2) inventions relating to an orotidine-5'-phosphate decarboxylase (URA3) gene; (3) inventions relating to a phosphoribosyl-amino-imidazole succinocarboxamide synthase (ADE1) gene; (4) inventions relating to an imidazole-glycerol-phosphate dehydratase (HIS3) gene; (5) inventions relating to 3-isopropylmalate dehydrogenase (LEU2) gene;

(6) inventions relating to $\alpha-1$, 6-mannosyl transferase (OCH1) gene; (7) inventions relating to a PEP4 gene; (8) inventions relating to a proteinase B (PRB1) gene; (9) inventions relating to a YPS1 gene; (10) inventions relating to a KTR1 gene; (11) inventions relating to an MNN9 gene; (12) inventions relating to an alcohol oxidase (AOX) gene; and (13) inventions relating to a glyceryl aldehyde-3-dehydrogenase (GAPDH) gene; (see, International Search Report "C. Documents Considered To Be Relevant"). Thus, they cannot be considered as technical features that define a contribution over the prior art.

Such being the case, these 13 groups of inventions are not considered as relating to a group of inventions so linked as to form a single general inventive concept.

Form PCT/ISA/210 (extra sheet) (July 1998)