8. Доверительные интервалы

Сгенерируйте выборку $X_1, ..., X_{100}$ из распределения P_{θ} в теоретических задачах 1, 3, 4 и 5. В задачах 1, 3 и 4 возьмите $\theta = 1$, в задаче 5 возьмите $(\theta, \lambda) = (10, 1)$. Для уровня доверия $\alpha = 0.95$ для всех $n \leq 100$ постройте доверительный интервал (или интервалы, если их несколько), определенный в теоретической задаче. Изобразите их на графиках в координатах (n, θ) , используя matplotlib.pyplot.fill_between. Если типов доверительных интервалов несколько, то какой из них лучше?

Для n=10 и n=100 оцените вероятность попадания истинного значения θ в интервал (в каждой задаче для каждого интервала). Для этого сгенерируйте достаточно много выборок (предложите, сколько нужно выборок), постройте по каждой из них интервалы и определите, сколько раз в интервалы попадает истинное значение θ . Таким способом будет построена бернуллиевская выборка, по ней оцените вероятность.