Projeto Fantasma - Parte 1

Consultores Responsáveis:

Estatiano 1

Estatiano 2

..

Estatiano n

Requerente:

ESTAT

Brasília, 13 de outubro de 2024.

Sumário

		Pági	na
1	Introd	ução	3
2	Refere	encial Teórico	4
	2.1	Frequência Relativa	4
	2.2	Média	4
	2.3	Mediana	4
	2.4	Desvio Padrão	5
		2.4.1 Desvio Padrão Amostral	5
	2.5	Coeficiente de Variação	5
3	Anális	ses	6
	3.1	Top 5 Países com Maior Número de Mulheres Medalhistas	6
	3.2	Tabela de Análises Descritivas	6
	3.3	Distribuição de Medalhistas entre os Principais Países	7
	3.4	Proporção de Medalhistas em Relação ao Total de Atletas por País	8
4	Concl	usão	9

1 Introdução

O presente relatório visa analisar o desempenho das mulheres atletas que participaram das Olimpíadas de 2000 a 2016, com foco no número de medalhas conquistadas por cada país. Essa análise é crucial para a House of Excellence, pois permitirá identificar quais nações têm se destacado na formação de atletas femininas de alta performance. Compreender esses dados pode auxiliar na definição de estratégias para otimizar o treinamento e a performance dos atletas da academia.

2 Referencial Teórico

2.1 Frequência Relativa

A frequência relativa é utilizada para a comparação entre classes de uma variável categórica com c categorias, ou para comparar uma mesma categoria em diferentes estudos.

A frequência relativa da categoria j é dada por:

$$f_j = \frac{n_j}{n}$$

Com:

- j = 1, ..., c
- $n_j = {
 m n\'umero}$ de observações da categoria j
- n= número total de observações

Geralmente, a frequência relativa é utilizada em porcentagem, dada por:

$$100 \times f_i$$

2.2 Média

A média é a soma das observações dividida pelo número total delas, dada pela fórmula:

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

Com:

- i = 1, 2, ..., n
- n= número total de observações

2.3 Mediana

Sejam as n observações de um conjunto de dados $X=X_{(1)},X_{(2)},\dots,X_{(n)}$ de determinada variável ordenadas de forma crescente. A mediana do conjunto de dados X é o valor que deixa metade das observações abaixo dela e metade dos dados acima.

Com isso, pode-se calcular a mediana da seguinte forma:

$$med(X) = \begin{cases} X_{\frac{n+1}{2}}, \text{para n impar} \\ \frac{X_{\frac{n}{2}} + X_{\frac{n}{2}+1}}{2}, \text{para n par} \end{cases}$$

2.4 Desvio Padrão

O desvio padrão é a raiz quadrada da variância. Ele avalia o quanto os dados estão dispersos em relação à média.

2.4.1 Desvio Padrão Amostral

Para uma amostra, o desvio padrão é dado por:

$$S = \sqrt{\frac{\sum\limits_{i=1}^{n}\left(X_{i} - \bar{X}\right)^{2}}{n-1}}$$

Com:

- $X_i=$ i-ésima observação da amostra
- $\bar{X}=$ média amostral
- n= tamanho da amostra

2.5 Coeficiente de Variação

O coeficiente de variação fornece a dispersão dos dados em relação à média. Quanto menor for o seu valor, mais homogêneos serão os dados. O coeficiente de variação é considerado baixo (apontando um conjunto de dados homogêneo) quando for menor ou igual a 25%. Ele é dado pela fórmula:

$$C_V = \frac{S}{\bar{X}} \times 100$$

Com:

- $\bullet \ S = {\rm desvio} \ {\rm padr\~{a}o} \ {\rm amostral}$
- $\bar{X}=$ média amostral]

3 Análises

3.1 Top 5 Países com Maior Número de Mulheres Medalhistas

País	Total de atletas	Número de Medalhas	Frequência Relativa (%)
1. Estados Unidos	340	146	42,94%
2. Rússia	265	91	34,34%
3. Alemanha	243	74	30,45%
4. China	317	64	20,19%
5. Austrália	274	62	22,63%

3.2 Tabela de Análises Descritivas

Observação: os resultados vieram de contas com a tabela acima

Média	Mediana	Desvio Padrão	Coeficiente de Variação
87,40	74	34,71	39,71

3.3 Distribuição de Medalhistas entre os Principais Países

Como se pode ver do gráfico, é notavel a disparidade entre número de medalhistasdos Estados Unidos e os demais, o que leva a aumentar a media para cima, por issoa mediana é mais representativa da tendência central, considerando que metade dospaíses possui menos de 74 medalhistas. Isso também indica que, tirando o valor maisalto (EUA), os demais países tendem a ter valores bem menores.

3.4 Proporção de Medalhistas em Relação ao Total de Atletas por País

A frequência relativa é fundamental para entender a competitividade entre os países. Com isso em mente, a distribuição assimétrica é visualmente clara, pois há duas fatias grandes (Estados Unidos e Rússia) e três menores (Alemanha, China e Austrália) o que ajuda a destacar a predominância dos dois primeiros.

Com o coeficiente de variação meio consistente se sugere que existe uma disparidade que pode ser explorada. Para a House of Excellence, isso implica que há potencial para aumentar o número de medalhas se estratégias eficazes de treinamento e suporte forem implementadas, focando nas áreas onde a variabilidade é maior.

4 Conclusão

Os dados analisados revelam que os Estados Unidos são o país com o maior número de mulheres medalhistas entre as Olimpíadas de 2000 e 2016, indicando uma forte cultura e estrutura de apoio ao esporte feminino. A Rússia e a Alemanha também se destacam, sugerindo programas robustos de treinamento e desenvolvimento de atletas.

O coeficiente de variação revela uma distribuição relativamente consistente de medalhistas entre os países, mas com variações notáveis que podem refletir as diferenças de investimento e recursos. Para a House of Excellence, esses dados sugerem que o benchmarking contra programas de sucesso, especialmente dos Estados Unidos, pode oferecer insights valiosos para melhorar o desempenho das atletas da academia.

Ademais, a análise do número de medalhistas em diferentes modalidades e a identificação de tendências ao longo dos anos poderiam fornecer uma visão ainda mais profunda sobre as áreas de maior potencial para desenvolvimento futuro. Esse conhecimento permitirá decisões estratégicas mais informadas e aprimorará o suporte e treinamento oferecido pela House of Excellence a suas atletas de elite.