UNIT

Taiwan Semiconductor

N-Channel Power MOSFET

FEATURES

- Latest super-junction technology
- Low gate charge capacitance

Low gate charge capacitance	V _{DS} @ T _{i,max}	650	V	
High gate noise immunityRoHS compliant	R _{DS(on)} (max)	84	mΩ	
Halogen-free	$Q_{g,typ}$	68	nC	

APPLICATIONS

- Switching applications
- HV motor driver
- Industrial

KEY PERFORMANCE PARAMETERS

VALUE

PARAMETER

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C unless otherwise noted)					
PARAMETER		SYMBOL	LIMIT	UNIT	
Drain-Source Voltage		V _{DS}	600	V	
Gate-Source Voltage		V _G s	±30	V	
Continuous Drain Current	$T_C = 25^{\circ}C$	ID	42	Α	
Pulsed Drain Current (Note 1)		I _{DM}	168	Α	
Total Power Dissipation @ T _C = 25°C		P _D	357	W	
Single Pulse Avalanche Energy (Note 2)	Eas	612	mJ	
Single Pulse Avalanche Current (Note 2)		I _{AS}	5	А	
Operating Junction and Storage Tem	perature Range	T _J , T _{STG}	- 55 to +150	°C	

THERMAL PERFORMANCE				
PARAMETER	SYMBOL	LIMIT	UNIT	
Junction to Case Thermal Resistance	Rejc	0.35	°C/W	
Junction to Ambient Thermal Resistance (Note 3)	Reja	50	°C/W	

Notes:

- 1. Pulse Width ≤ 100µs.
- 2. L = 50mH, R_G = 25 Ω , Starting T_J = 25 $^{\circ}$ C.
- 3. Reja is the sum of the junction-to-case and case-to-ambient thermal resistances. Reja is guaranteed by design while Reja is determined by the user's board design.

1

ELECTRICAL SPECIFICATIONS (T _A = 25°C unless otherwise noted)						
PARAMETER	CONDITIONS	SYMBOL	MIN	TYP	MAX	UNIT
Static (Note 4)						
Drain-Source Breakdown Voltage	$V_{GS} = 0V$, $I_D = 1mA$	BV _{DSS}	600			V
Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 2.9 \text{mA}$	V _{GS(TH)}	4	4.7	6	V
Gate Body Leakage	$V_{GS} = \pm 30V, V_{DS} = 0V$	I _{GSS}			±100	nA
Zero Gate Voltage Drain Current	V _{DS} = 600V, V _{GS} = 0V	I _{DSS}			100	μA
	V _{GS} = 10V, I _D = 14A	_		71	84	mΩ
Drain-Source On-State Resistance	V _{GS} = 12V, I _D = 14A	R _{DS(on)}		68	80	
Dynamic (Note 5)	•					
Total Gate Charge	V _{DS} = 480V, I _D = 42A, V _{GS} = 10V	Qg		68		nC
Gate-Source Charge		Qgs		23		
Gate-Drain Charge		Q _{gd}		37		
Input Capacitance		C _{iss}		2939		
Output Capacitance	$V_{DS} = 300V, V_{GS} = 0V,$	Coss		81		pF
Reverse Transfer Capacitance	f = 100kHz	Crss		6		
Gate Resistance	f = 1.0Hz	Rg		0.9		Ω
Switching (Note 6)						
Turn-On Delay Time		t _{d(on)}		44		
Turn-On Rise Time	$V_{DD} = 300V, R_G = 3.3\Omega,$ $I_D = 42A, V_{GS} = 10V$	t _r		68		
Turn-Off Delay Time		t _{d(off)}		66		ns
Turn-Off Fall Time		t _f		41		
Source-Drain Diode				•		•
Forward Voltage (Note 4)	I _S = 14A, V _{GS} = 0V	V _{SD}		0.9	1.5	V
Reverse Recovery Time	I _S = 21A	t _{rr}		438		ns
Reverse Recovery Charge	dI _F /dt = 100A/μs	Qrr		9		μC
		•	•		•	

Notes:

- 4. Pulse test: Pulse Width $\leq 300 \mu s$, duty cycle $\leq 2\%$.
- Defined by design. Not subject to production test.
- Switching time is essentially independent of operating temperature.

ORDERING INFORMATION

ORDERING CODE	PACKAGE	PACKING
TSM60NE084PW C0G	TO-247	30pcs / Tube

CHARACTERISTICS CURVES

(T_C = 25°C unless otherwise noted)

Ip, Drain Current (A)

V_{GS}, Gate to Source Voltage (V)

 $\mathsf{R}_{\mathsf{DS}(\mathsf{on})},$ Drain-Source On-Resistance (m Ω)

3

CHARACTERISTICS CURVES

(T_C = 25°C unless otherwise noted)

=0V

100kHz

100

200

1

0.1

Normalized Effective Transient

Thermal Impedance, Zeuc

0

BV_{DSS} vs. Junction Temperature 1.20 Drain-Source Breakdown Voltage 1.15 BV_{DSS} (Normalized) 1.10 1.05 1.00 0.95 0.90 0.85 $I_D = 1 \text{mA}$ 0.80 -50 25 50 100 125 150 T_J, Junction Temperature (°C)

Maximum Safe Operating Area, Junction-to-Case

300

V_{DS}, Drain to Source Voltage (V)

400

500

600

Source-Drain Diode Forward Current vs. Voltage

Normalized Thermal Transient Impedance, Junction-to-Case

Reverse Drain Current (A)

t, Square Wave Pulse Duration (sec)

CHARACTERISTICS CURVES

 $(T_C = 25^{\circ}C \text{ unless otherwise noted})$

Ip-Drain Current (A)

5

Normalized gate threshold voltage vs Temperature

Taiwan Semiconductor

PACKAGE OUTLINE DIMENSIONS (Unit: Millimeters)

TO-247

NOTES: UNLESS OTHERWISE SPECIFIED

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. PACKAGE OUTLINE REFERENCE: JEDEC TO-247, VARIATION AD, ISSUE E.
- MOLDED PLASTIC BODY DIMENSIONS DO NOT INCLUDE MOLD FLASH. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREME OF THE PLASTIC BODY.
- 5. DWG NO. REF: HQ2SD07-TO247AD-071 REV C.

MARKING DIAGRAM

Y = YEAR CODE

WW = WEEK CODE (01~52)

L = LOT CODE (1~9, A~Z)

F = FACTORY CODE

Taiwan Semiconductor

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Purchasers are solely responsible for the choice, selection, and use of TSC products and TSC assumes no liability for application assistance or the design of Purchasers' products.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.