Amplificadores

José Humberto de Araújo¹

¹DFTE-UFRN

2 de junho de 2022

Sumário

- Introdução
 - Circuito Universal de Polarização

- Tipos de Amplificadores
 - Amplificador Emissor Comum
 - Amplificador Coletor Comum
 - Amplificador Base Comum

 Uma importante aplicação dos transistores é a amplificação de um sinal AC.

- Uma importante aplicação dos transistores é a amplificação de um sinal AC.
- Para amplificar um sinal AC devemos garantir a operação DC do transistor na região linear ativa.

- Uma importante aplicação dos transistores é a amplificação de um sinal AC.
- Para amplificar um sinal AC devemos garantir a operação DC do transistor na região linear ativa.
- O circuito que assegura esta condição é chamado de Circuito Universal de Polarização (CUP). Ele é usado para manter as condições de operação constantes.

- Uma importante aplicação dos transistores é a amplificação de um sinal AC.
- Para amplificar um sinal AC devemos garantir a operação DC do transistor na região linear ativa.
- O circuito que assegura esta condição é chamado de Circuito Universal de Polarização (CUP). Ele é usado para manter as condições de operação constantes.
- O diagrama do CUP é mostrado na figura 1. Posteriormente um sinal AC será adicionado ao circuito para produzir a amplificação.

Circuito Universal de Polarização

Figura 1: Circuito Universal de Polarização

2 de junho de 2022

4/13

• A potência adicional, para que haja amplificação, é fornacida por uma fonte DC de tensão, V_{CC} .

- A potência adicional, para que haja amplificação, é fornacida por uma fonte DC de tensão, V_{CC}.
- O circuito é constituido de um transistor, divisor de tensão formado pelos resistores R₁ e R₂ e mais dois resistores; um resistor no coletor R_C e outro no emissor R_E.

- A potência adicional, para que haja amplificação, é fornacida por uma fonte DC de tensão, V_{CC}.
- O circuito é constituido de um transistor, divisor de tensão formado pelos resistores R₁ e R₂ e mais dois resistores; um resistor no coletor R_C e outro no emissor R_E.
- A aplicação da lei das malhas na malha formada do lado direito do circuito e a fonte DC, fornece a equação:

$$V_{CC} - V_C - V_{CE} - V_{RE} = 0$$
 (1)

- A potência adicional, para que haja amplificação, é fornacida por uma fonte DC de tensão, V_{CC}.
- O circuito é constituido de um transistor, divisor de tensão formado pelos resistores R₁ e R₂ e mais dois resistores; um resistor no coletor R_C e outro no emissor R_E.
- A aplicação da lei das malhas na malha formada do lado direito do circuito e a fonte DC, fornece a equação:

$$V_{CC} - V_C - V_{CE} - V_{RE} = 0$$
 (1)

Assim o resistor R_C pode ser obtido da equação,

$$R_C = \frac{V_{CC} - V_{CE} - V_{RE}}{I_C}.$$
 (2)

• O resistor R_E pode ser obtido pelas equação,

$$R_E = \frac{V_{RE}}{I_E} \tag{3}$$

Onde $I_E = \frac{I_C}{\alpha}$ e a constante α pode ser obtida pela equação:

$$\alpha = \frac{\beta}{\beta + 1} \tag{4}$$

e β é uma constante característica do transistor usado no seu projeto, ela é fornecida pelo fabricante no datasheet do transistor.

• O resistor R_E pode ser obtido pelas equação,

$$R_E = \frac{V_{RE}}{I_E} \tag{3}$$

Onde $I_E = \frac{I_C}{\alpha}$ e a constante α pode ser obtida pela equação:

$$\alpha = \frac{\beta}{\beta + 1} \tag{4}$$

e β é uma constante característica do transistor usado no seu projeto, ela é fornecida pelo fabricante no datasheet do transistor.

 Para calcular R₂, usa-se a malha formada por R₂, V_{BE} e R_E, onde a lei das malhas fornece,

$$-V_{R_2} + V_{BE} - V_{R_E} = 0, (5)$$

onde V_{BE} é obtido da equação,

$$I_C = I_S e^{V_{BE}/KT} \Rightarrow V_{BE} = 0,659 V. \tag{6}$$

O resistor R_1 pode ser obtido pela malha V_{CC} , R_1 e R_2 , que pela lei das malhas vem:

$$V_{CC} - V_{R_1} - V_{R_2} = 0. (7)$$

Amplificador emissor comum

 O circuito universal de polarização é a base para várias configurações de circuitos com de transistores.

Amplificador emissor comum

- O circuito universal de polarização é a base para várias configurações de circuitos com de transistores.
- O amplificador emissor comum é mostrado na figura 2.

Figura 2: Amplificador emissor comum

 Observe que a parte central do circuito é o circuito universal de polarização, que sintoniza o ponto DC de operação.

- Observe que a parte central do circuito é o circuito universal de polarização, que sintoniza o ponto DC de operação.
- O sinal AC v_{in}(t) é adicionado a base do transistor atraves do capacitor C₁. Para esta configuração, o sinal de saida v_{out}(t) é tirado do coletor do transistor, através do capacitor C₂.

- Observe que a parte central do circuito é o circuito universal de polarização, que sintoniza o ponto DC de operação.
- O sinal AC v_{in}(t) é adicionado a base do transistor atraves do capacitor C₁. Para esta configuração, o sinal de saida v_{out}(t) é tirado do coletor do transistor, através do capacitor C₂.
- O resistor R_L representa a carga na saída. Os capacitores de acoplamento C₁ e C₂ asseguram que o ponto DC de operação não seja afetado pelos circuitos conectados na entrada e na saída.

Amplificador coletor comum

Figura 3: Amplificador coletor comum

Figura 4: Amplificador base comum