MANUAL DO MEDIDOR DE VAZÃO TIPO TURBINA

BLASTER CONTROLES

0.00	LZm
0.00	L

BATELADA Unidade: 9al

LIMITE ALTO 45.00 L/s

VAZAO EM 20mA 40.00 L/s

DI MALOR LUNISUU DA	BLASTER CON	TDOI EC		

ÍNDICE 1 2 Instalação do medidor.......4 Conhecendo o Medidor de Vazão tipo Turbina 5 3 5 Unidades de Medida...... 8 6 Resolução Vazão 8 7 8 9.1 9.2 9.3 Iniciando a batelada......11 9.4 9.4.1 Cancelar Batelada em execução......12 9.5 11 12

13

15

16

17

19

2 INSTALAÇÃO DO MEDIDOR

Recomendação de instalação do medidor de vazão tipo turbina.

Observações:

- Caso deseje utilizar válvula para dosagem esta deve ser instalada na posição 2.
- Recomenda-se que as válvulas 1, 2 e a tubulação principal tenha o mesmo diâmetro do medidor.
- Filtro:

•Medidor até ¾" → Malha 10 mícrons

•Medidor de ¾" até 1" → Malha 20 mícrons

•Medidor maior que 1" → Malha 50 mícrons

3 CONHECENDO O MEDIDOR DE VAZÃO TIPO TURBINA

KIT DE REPARO PARA O MEDIDOR DE VAZÃO TIPO TURBINA (ITEM 21	
KIT DE KEFAKO FAKA O MEDIDOK DE VAZAO TIFO TOKDINA (IILIVI 3)	

Descrição	Material	Quantidade (Peças)
Rotor e Rolamento	AISI 420	3
Linearizador	AISI	2
Espaçador e Cone Fluxo	AISI	4
Eixo Central	AISI	1
Porcas	AISI	4

4 CONHECENDO A ELETRÔNICA

Ao ligar a eletrônica o usuário será apresentado ao nome do fabricante, como na figura abaixo.

Funções Usuário

5 VAZÃO E TOTALIZAÇÃO

Três segundos após ligar a eletrônica o usuário será transferido para a tela de medição de vazão. Nesta tela têm-se informações da vazão instantânea e do total acumulado.

• Ao pressionar o botão de ação (✓) troca-se a unidade de medida.

6 UNIDADES DE MEDIDA

A eletrônica possui nove unidades de vazão instantânea e três de totalização volumétrica, as unidades são trocadas ao pressionar o botão de ação (✓) na tela de Medição de Vazão.

Vazão volumétrica	Totalização
L/S	L
L/MIN	L
L/H	L
m³/s	m³
m³/min	m³
m³/h	m³
GPS	Gal
GPM	Gal
GPH	Gal

7 RESOLUÇÃO VAZÃO

A eletrônica possui sistema de ajuste de resolução da vazão de 0,1 a 0,00001, sendo acessado ao pressionar o botão avançar (►) a partir da tela de **Medição de Vazão**.

Estando na tela de **Resolução Vazão** para alterar apenas pressione o botão incremento (▲), ao chegar ao valor desejado pressione o botão ação (✓) para confirmar, isto te levará a tela **Resolução Total.**

8 RESOLUÇÃO TOTALIZAÇÃO

A eletrônica possui sistema de ajuste de resolução da totalização de 0,1 a 0,00001, sendo acessado ao pressionar o botão **Avançar** (▶+▶) duas vezes a partir da tela de medição de Vazão ou após ajustar (alterar e confirmar) a resolução da vazão.

Estando na tela de **Resolução Total** para alterar apenas pressione o botão incremento, ao chegar ao valor desejado pressione o botão **ação** (✓) para confirmar, isto te levará a tela **Medição de Vazão**.

9 BATELADA

A Batelada aplica-se quando o usuário necessita controlar a quantidade de fluido que passará pela turbina. Realizando assim uma configuração da quantidade desejada e assim que esta marca for atingida a eletrônica inverterá o estado do rele **Batelada**.

9.1 UNIDADE DE BATELADA

Ao pressionar o botão **avançar** (▶+▶+▶) quatro vezes o usuário será apresentado à tela abaixo.

Nesta tela o usuário pode usar a tecla de **incremento** (\blacktriangle) ou **decremento** (\blacktriangledown) para alterar a unidade de medida. Ao encontrar a unidade desejada basta apertar a tecla de **ação** (\checkmark) para confirmar e ir à tela de configuração do valor de **batelada**.

9.2 VALOR DA BATELADA

Na tela de **Valor Batelada**, acessada após confirmar a unidade de medida, o usuário deve utilizar as teclas de incremento (\blacktriangle) e decremento (\blacktriangledown) para configurar o valor desejado com resolução de 0,01.

Neste caso utilizamos a unidade de medida em galão e ajustamos o valor para 0,26.

Ao configurar o valor desejado o usuário deve pressionar a tecla de **ação** (/), isto o levará a tela de **Iniciar Batelada.**

9.3 INICIANDO A BATELADA

Nesta tela o usuário visualizará todas as informações programadas, caso alguma informação esteja errada, basta pressionar o botão **Avançar** (►) até encontrar a tela **Unidade Batelada**, estando tudo correto basta pressionar o botão de **Ação** (✓), isto iniciará o processo de batelada.

INICIAR BATELADA 0.26 9al

9.4 BATELADA EM EXECUÇÃO

Ao pressionar o botão de **Ação** em **Iniciar Batelada** o usuário é encaminhado para a tela **Batelada em Execução**, ao finalizar o processo o usuário é automaticamente direcionado para a tela do item 9.5.

9.4.1 CANCELAR BATELADA EM EXECUÇÃO

Para cancelar uma batelada em execução o usuário deve pressionar a combinação de botões abaixo.

9.5 FINAL BATELADA

Ao finalizar a batelada, o usuário é direcionado para a tela abaixo, nela é possível reiniciar o processo pressionando o botão **Ação** (✓), isto encaminhará o usuário para a parte referente ao item 9.3.

Caso contrário basta navegar usando o botão **Avançar** (►) até encontrar a tela de **Medição de Vazão**.

10 ZERAR TOTAL PARCIAL

Para zerar o total parcial o usuário deve pressionar o botão de **Ação**(✓) na tela abaixo.

ZERAR TOTAL PARC 284.20 L

Essa tela é acessada pressionando o botão **Avançar** (▶+▶+▶+▶+) cinco vezes a partir da tela de **Medição**.

11 INFORMAR O LIMITE BAIXO E ALTO

Pressione o botão **Avançar (▶+▶+▶+▶+▶)** até encontrar a tela de Limite Baixo, nesta tela o usuário visualizará qual a configuração do limite, idem para a tela de Limite Alto.

Ambas as telas possuem caráter informativo, não sendo possível realizar nenhuma operação de ajuste.

12 TENSÃO FONTE

Esta tela é encontrada pressionando oito vezes botão **Avançar** (▶ + ▶ + ▶ + ▶ + ▶ + ▶ + ▶ + ▶) a partir da tela de Medição de Vazão, nela pode-se visualizar a tensão da fonte de alimentação do sistema.

Funções Programador

As funções de programador são acessadas pressionando uma sequência específica de botões a partir da tela de Medição de Vazão, são nestas telas que o programador configura os parâmetros da eletrônica.

Sequência de acesso:

• Tela de Medição de Vazão.

13 FATOR K

É a primeira tela encontrada ao acessar as funções de programador, nesta tela o usuário deve utilizar os botões de incremento (\blacktriangle) e decremento (\blacktriangledown) para alterar o valor do fator K e pressionar o botar de **Ação** (\checkmark) para confirmar a operação.

13.1 CALIBRANDO O FATOR K

Para calibrar o Fator K deve-se utilizar a fórmula abaixo.

$$Fator K_{NOVO} = \frac{Fator K_{antigo} * Vazão_{ELETRÔNICA}}{Vazão_{PADRÃO}}$$

14 TOTAL ETERNO

A segunda tela das funções de programador, acessada utilizando o botão **Avançar** (▲+▼+▶) a partir da tela de **Medição de Vazão**, possui caráter informativo, e registra a operação da turbina desde o inicio de sua vida, não sendo possível reiniciar.

15 AJUSTAR O LIMITE BAIXO

É a terceira tela encontrada ao acessar as funções de programador, estando na tela de **Medição de Vazão** pressione $\blacktriangle + \blacktriangledown + \blacktriangleright + \blacktriangleright$, nesta tela o usuário deve utilizar os botões de incremento e decremento para alterar o valor do limite baixo e pressionar o botão de **Ação** (\checkmark) para confirmar a operação, isto o encaminhará para a tela de ajuste do **Limite Alto**.

16 AJUSTAR O LIMITE ALTO

É a quarta tela encontrada ao acessar as funções de programador, estando na tela de **Medição de Vazão** pressione $\triangle + \nabla + \triangleright + \triangleright$, nesta tela o usuário deve utilizar os botões de incremento (\triangle) e decremento (∇) para alterar o valor do Limite Alto e pressionar o botar de **Ação** (\checkmark) para confirmar a operação.

Ao pressionar o botão de **Ação** (✓) a operação é confirmada e o usuário é encaminhado para a tela de **Medição de Vazão**.

17 SINAL DE 4 A 20 MA

Observação: O valor de 4 a 20 mA deve ser inserido na unidade de L/s.

O sinal de 4 a 20 mA é utilizado quando o usuário define o intervalo de operação da turbina e deseja transmitir o valor lido pela eletrônica para um PLC por exemplo. Ao configurar o valor de vazão mínima, 4 mA, e o valor de vazão máxima, 20 mA, a eletrônica enviará sinais entre 4 – 20 mA caso a vazão da linha esteja na faixa configurada.

17.1 Configurando 4 mA

Para configurar o valor de 4 mA basta acessar as funções de programador e usar o botão **Avançar** até encontrar a tela abaixo, a sequência a partir da tela de **Medição de Vazão** é ▲+▼+▶+▶+▶.

Nesta tela o usuário deve utilizar os botões de incremento (▲) e decremento (▼) para alterar o valor da vazão mínima e pressionar o botar de **Ação** (✓) para confirmar a operação, isto o encaminhará para a tela de ajuste da **Vazão em 20 mA**.

17.2 CONFIGURANDO 20 MA

Nesta tela o usuário deve utilizar os botões de incremento (▲) e decremento (▼) para alterar o valor da vazão máxima e pressionar o botar de **Ação** (✓) para confirmar a operação, isto o encaminhará para a tela de **Medição de Vazão**.

18 DUMP

O DUMP é um filtro conhecido como média móvel e é utilizado para tornar mais estável o valor da vazão. É um valor configurável entre 1 a 20, sendo estes números a quantidade de amostras mantidas para se aplicar a média.

Para configurar o valor de DUMP basta acessar as funções de programador e usar o botão **Avançar** (\triangleright) até encontrar a tela abaixo, estando na tela de **Medição de Vazão** a sequência que deve ser realizada é $\triangle + \nabla + \triangleright + \triangleright + \triangleright + \triangleright + \triangleright + \triangleright$.

Nesta tela o usuário deve utilizar os botões de incremento e decremento para alterar o valor do Dump e pressionar o botar de **Ação** (✓) para confirmar a operação, isto o encaminhará para a tela de **Medição de Vazão**.

19 INFORMAÇÕES DE CONTATO

Na última tela das funções de programador têm-se as informações de contato do fabricante, possui caráter informativo não sendo possível realizar nenhuma operação.

Ao pressionar o botão de **Ação** (✓) nesta tela o usuário é encaminhado para a tela de **Medição de Vazão.**

20 FAIXAS DE VAZÃO – TURBINA

	Faixas de Va	zão – Gases	Faixas de Vaz	ão – Líquidos
Modelo	Vazão mínima m³/h	Vazão máxima m³/h	Vazão mínima m³/h	Vazão máxima m³/h
BLLC12	1,7	17,0	0,32	2,34
BLLC19	3,5	35,0	0,67	6,80
BLLC25	8,5	85,0	0,90	13,8
BLLC32	15,0	150,0	1,46	21,5
BLLC38	20,4	204,0	1,90	29,5
BLLC50	30,0	300,0	3,50	52,0
BLLC63	85,0	850,0	6,20	91,8
BLLC75	110,0	1100,0	9,00	143,8
BLLC100	187,0	1870,0	18,30	282,8
BLLC150	510,0	5100,0	46,80	455,2
BLLC200	820,0	8200,0	76,50	1082,6

	Comprimento do Medid	or de Vazão	
Diâmetro	Comprimento [mm] – FLANGE ANSI e DIN	Comprimento [mm] – ROSCA SMS e TC	Comprimento [mm] – ROSCA BSPM e NPTM
1/2"	90,0	-	80
3/4"	90,0	90	80
1"	140,0	90	90
1 ¼"	152,4	110	110
1 ½"	152,4	110	110
2"	160,0	120	120
2 ½"	178,0	178	140
3"	254,0	178	178
4"	300,0	178	-
6"	335,6	-	-
8"	420,0	-	-

LINHA DE PRODUTOS

Rotâmetro BLI

Rotâmetro BLIP

Rotâmetro BL

Calha Parshall ISBL

Eletrônica Painel – Turbina

Medidor Eletromagnético

Medidor tipo Turbina

Deslocamento Positivo

Deslocamento Positivo

Hidrômetro

Vortex Modelo BLVL

Vortex Modelo BLVN

Ultrassônico

Válvula para Bateladas

Blaster Controles