Лекции по курсу "Теория Галуа"

Белоусов Григорий Николаевич

Оглавление

Глава	. 1. Группы	3
1.	Коммутант группы	3
2.	Разрешимые и нильпотентные группы	4
3.	Теоремы Силова	6
4.	Простые группы	8
5.	Транзитивные и примитивные группы	10
Глава	. 2. Теория полей	13
1.	Конечные и алгебраические расширения полей	13
2.	Нормальные расширения полей	17
3.	Сепарабельные расширения полей	22
4.	Конечные поля	28
Глава	. 3. Теория Галуа	30
1.	Группа автоморфизмов поля	30
2.	Норма и след	36
3.	Резольвента	40
4.	Нормальный базис	41
5.	Радикальные расширения	44
6.	Теория Куммера	49
7.	Целые расширения Галуа	51
Литература		54

Мы будем придерживаться следующих обозначений.

Обозначения 0.1. Мы будем придерживаться следующих обозначений:

- \mathbb{N} множество натуральных чисел.
- \bullet \mathbb{Z} множество целых чисел.
- ullet \mathbb{Q} множество рациональных чисел.
- ullet \mathbb{R} множество вещественных чисел.
- \forall для любого.
- ∃ существует.
- $\bullet \in -$ принадлежит.
- ∞ бесконечность.

Глава 1

Группы

1. Коммутант группы

Пусть G — группа. Kоммутатором двух элементов $a,b \in G$ называется произведение

$$[a, b] = aba^{-1}b^{-1}.$$

Непосредственно из определения следуют следующие свойства

- (1) ab = [a, b]ba;
- (2) $ab = ba[a^{-1}, b^{-1}];$
- (3) $[a,b]^{-1} = [b,a];$
- $(4) \ [a,b] = e$ тогда и только тогда, когда ab = ba.

Определение 1.1. Коммутантом группы G называется подгруппа K, порожденная всеми коммутантами. Обозначается [G,G]=K.

ТЕОРЕМА 1.2. Пусть H — нормальная подгруппа в группе G. Тогда $[H,H] \triangleleft G$.

Доказательство. Заметим, что

$$\begin{split} g[a,b]g^{-1} &= gaba^{-1}b^{-1}g^{-1} = (gag^{-1})(gbg^{-1})(ga^{-1}g^{-1})(gb^{-1}g^{-1}) = \\ & (gag^{-1})(gbg^{-1})(gag^{-1})^{-1}(gbg^{-1})^{-1} = [gag^{-1},gbg^{-1}]. \end{split}$$

Пусть $h \in [H, H]$ и $g \in G$. Тогда

$$h = [h_1, h'_1][h_2, h'_2] \cdots [h_n, h'_n],$$

где все $h_i, h_i' \in H$. Следовательно,

$$ghg^{-1} = g[h_1, h'_1][h_2, h'_2] \cdots [h_n, h'_n]g^{-1} =$$

$$= (g[h_1, h'_1]g^{-1})(g[h_2, h'_2]g^{-1}) \cdots (g[h_n, h'_n]g^{-1}) =$$

$$= [gh_1g^{-1}, gh'_1g^{-1}][gh_2g^{-1}, gh'_2g^{-1}] \cdots [gh_ng^{-1}, gh'_ng^{-1}].$$

Поскольку H — нормальная подгруппа в группе G, то все $gh_ig^{-1}, gh_i'g^{-1} \in H$. Отсюда, $g^{-1}hg \in [H, H]$

Следствие 1.3. Коммутант K группы G является нормальной подгруппой.

ТЕОРЕМА 1.4. Пусть $K- \kappa$ оммутант группы G. Тогда группа G/K абелева.

ДОКАЗАТЕЛЬСТВО. Действительно,

$$(aK)(bK) = abK = ba[a^{-1}, b^{-1}]K = baK = (bK)(aK).$$

ТЕОРЕМА 1.5. Пусть H — нормальная подгруппа группы G, и пусть G/H абелева. Тогда $K \subset H$, где K — коммутант группы G.

ДОКАЗАТЕЛЬСТВО. Если G/H абелева, то abH = baH, или, поскольку H — нормальная подгруппа, Hab = Hba. Следовательно, существует $h \in H$ такой, что ab = hba, т.е. $h = aba^{-1}b^{-1} = [a, b]$. \square

2. Разрешимые и нильпотентные группы

Определение 1.6. Последовательность подгрупп

$$G = G_0 \supset G_1 \supset G_2 \supset \cdots \supset G_n = \{e\}$$

называется рядом подгрупп. Если для любого i $G_i \triangleleft G$, то ряд называется нормальным. Группа G называется разрешимой, если существует нормальный ряд подгрупп

$$G = G_0 \supset G_1 \supset G_2 \supset \cdots \supset G_n = \{e\}$$

такой, что для любого $i, G_i/G_{i+1}$ — абелева группа.

Пусть $K_0=G,\ K_1=[K_0,K_0],\ K_2=[K_1,K_1]$ и т.д. Тогда имеет место следующая теорема.

ТЕОРЕМА 1.7. Группа G разрешима тогда и только тогда, когда существует n такое, что $K_n = \{e\}$.

ДОКАЗАТЕЛЬСТВО. Предположим, что $K_n=\{e\}$. Из теорем 1.2 1.4 следует, что $G=K_0\supset K_1\supset K_2\supset\cdots\supset K_n=\{e\}$ — нормальный ряд подгрупп, и K_i/K_{i+1} — абелева группа. Следовательно, в одну сторну утверждение доказано. Предположим, что существует нормальный ряд подгрупп

$$G = G_0 \supset G_1 \supset G_2 \supset \cdots \supset G_m = \{e\},\$$

и для любого $i, G_i/G_{i+1}$ — абелева группа. Из теоремы 1.5 следует, что $K_1 \subset G_1$. Докажем по индукции, что $K_i \subset G_i$. Предположим, что $K_{i-1} \subset G_{i-1}$. Тогда $[K_{i-1}, K_{i-1}] \subset [G_{i-1}, G_{i-1}]$. С другой стороны, по теореме 1.5 $[G_{i-1}, G_{i-1}] \subset G_i$. Отсюда, $K_i \subset G_i$.

ПРИМЕР 1.8. Рассмотрим группу S_n ($n \geq 5$). Заметим, что $[\sigma_1, \sigma_2] = \sigma_1 \sigma_2 \sigma_1^{-1} \sigma_2^{-1}$ — четная перестановка. Следовательно, $[S_n, S_n] \subset A_n$. С другой стороны,

$$[(ij), (jk)] = (ij)(jk)(ij)(jk) = (ikj).$$

Следовательно, любые циклы длины три лежат в $[S_n, S_n]$. Тогда $[S_n, S_n] = A_n$. Теперь посчитаем коммутант A_n . Рассмотрим перестановки (ij)(kl) и (ij)(km). Получаем

$$[(ij)(kl), (ij)(km)] = (ij)(kl)(ij)(km)(ij)(kl)(ij)(km) = (klm).$$

Следовательно, $[A_n, A_n] = A_n$. Таким образом, группы S_n и A_n не разрешимы при $n \ge 5$.

ПРИМЕР 1.9. Рассмотрим группу S_4 . Аналогично, $[S_4, S_4] = A_4$. Теперь посчитаем коммутант A_4 . Для этого рассмотрим подгруппу

$$V_4 = \{e, (12)(34), (13)(24), (14)(23)\}.$$

Заметим, что V_4 — нормальная подгруппа в A_4 , и $A_4/V_4\simeq \mathbb{Z}_3$, т.е. A_4/V_4 — абелева группа. Согласно теореме 1.5 $[A_4,A_4]\subset V_4$. С другой стороны,

$$[(ijk),(ijl)] = (ijk)(ijl)(ikj)(ilj) = (ij)(kl).$$

Таким образом, $[A_4,A_4]=V_4$. Поскольку V_4 — абелева группа, то S_4 и A_4 разрешимы.

Определение 1.10. Пусть G — группа. Тогда множество $Z(G):=\{a\in G\mid ag=ga$ для всех $g\in G\}$ называется центром группы G.

Очевидно, что центр группы является нормальной подгруппой.

ОПРЕДЕЛЕНИЕ 1.11. *Центральным рядом подгрупп* называется нормальный ряд подгрупп

$$G = G_0 \supset G_1 \supset G_2 \supset \cdots \supset G_n = \{e\}$$

такой, что $G_i/G_{i+1} \subset Z(G/G_{i+1})$. Группа, обладающая центральным рядом подгрупп, называется нильпотентной группой.

Поскольку центр — абелева группа, то нильпотентная группа является разрешимой. Обратное неверно (см. группу S_4).

Определение 1.12. Группа G называется конечной p-группой, если p — простое и $|G|=p^n$.

ЛЕММА 1.13. Пусть G — конечная p-группа. Тогда $Z(G) \neq \{e\}$.

ДОКАЗАТЕЛЬСТВО. Пусть группа G действует на себе посредством сопряжения. Тогда $|G| = |Z(G)| + \sum |\operatorname{Orb}(g_i)|$, где все $|\operatorname{Orb}(g_i)| > 1$. Заметим, что $|\operatorname{Orb}(g_i)|$ является делителем порядка группы G. Следовательно, $|\operatorname{Orb}(g_i)|$ делится на p. Отсюда, |Z(G)| делится на p. Следовательно, $Z(G) \neq \{e\}$.

ТЕОРЕМА 1.14. Любая конечная р-группа нильпотентна.

ДОКАЗАТЕЛЬСТВО. Пусть G — конечная p-группа. Согласно лемме 1.13, $Z(G) \neq \{e\}$. Пусть $G_1 = Z(G)$. Рассмотрим $G_1' = G/G_1$. Тогда G_1' — также конечная p-группа. Следовательно, $Z(G_1') \neq \{e\}$. Пусть G_2 — прообраз $Z(G_1')$ при естественном гомоморфизме $f \colon G \to G/G_1$. Заметим, что G_2 — нормальная подгруппа в G. Действительно, пусть $h \in G_2$, $g \in G$. Тогда

$$f(ghg^{-1}) = f(g)f(h)(f(g))^{-1} = f(h)f(g)(f(g))^{-1} = f(h).$$

Следовательно, $ghg^{-1} \in G_2$. Рассмотрим $G_2' = G/G_2$. Тогда $G_2' -$ также конечная p-группа. Следовательно, $Z(G_2') \neq \{e\}$. Пусть G_3 — прообраз $Z(G_2')$ при естественном гомоморфизме $f: G \to G/G_2$. Аналогично, G_3 — нормальная подгруппа в G. Продолжая эти действия, мы получим искомый центральный ряд.

3. Теоремы Силова

ТЕОРЕМА 1.15 (1-я теорема Силова). Пусть G — произвольная конечная группа $u |G| = mp^k$, где (m,p) = 1. Тогда существует подгруппа $H \subset G$ такая, что $|H| = p^k$ (такие подгруппы называются силовскими подгруппами).

ДОКАЗАТЕЛЬСТВО. Докажем утверждение индукцией по порядку группы. Предположим, утверждение верно для всех порядков меньших $n=mp^k$. Рассмотрим два случая:

- 1) $p\mid |Z(G)|$. Тогда существует подгруппа $H\subset Z(G)$ такая, что $|H|=p^s$. Заметим, что $H\lhd G$. Пусть G'=G/H. Тогда, по предположению индукции, в G' существует подгруппа A порядка p^{k-s} . Пусть B прообраз A в G. Тогда B подгруппа G и |A|=|B|/|H|. Отсюда, $|B|=p^k$.
- 2) Порядок центра |Z(G)| не делится на p. Рассмотрим разбиение группы G на классы сопряженности. Мы получим

$$|G| = |Z(G)| + \sum |\operatorname{Orb}(g_i)|.$$

Поскольку |Z(G)| не делится на p, то существует $\mathrm{Orb}(g_i)$ такая, что $|\mathrm{Orb}(g_i)|$ не делится на p тогда $|\mathrm{St}(g_i)| = lp^k$, где l < m. Следовательно, по предположению индукции, существует подгруппа $H \subset \mathrm{St}(g) \subset G$ такая, что $|H| = p^k$.

ТЕОРЕМА 1.16 (2-я теорема Силова). Пусть G — конечная группа $u |G| = mp^k$, где (m,p) = 1. Тогда любая p-подгруппа H содержится в силовской подгруппе S u все силовские подгруппы сопряжены.

ДОКАЗАТЕЛЬСТВО. Согласно теореме 1.15 существует силовская p-подгруппа S_1 . Рассмотрим полигон $\{S_1,g_1S_1,\ldots\}$ левых смежных классов. Пусть H действует на нем умножением (т.е. $(h,gS_1)\mapsto hgS_1$). Все орбиты состоят либо из одного элемента, либо число элементов делится на p. Поскольку число смежных классов по подгруппе S_1 равно m и (m,p)=1, то существует одноэлементная орбита g_iS_1 . Таким образом $Hg_iS_1=g_iS_1$. Отсюда, $H\subset g_iS_1g_i^{-1}$. Заметим, что $g_iS_1g_i^{-1}$ — силовская подгруппа. Таким образом, первое утверждение теоремы доказано. Возьмем в качестве H силовскую подгруппу, мы получим второе утверждение теоремы.

Замечание 1.17. Из 2-й теоремы Силова следует, что силовская p-подгруппа нормальна тогда и только тогда, когда она единственна.

ТЕОРЕМА 1.18 (3-я теорема Силова). Пусть G — произвольная группа $u |G| = mp^k$, где (m, p) = 1. Пусть l — число силовских подгрупп порядка p^k . Тогда l является делителем m u l = 1 + qp.

ДОКАЗАТЕЛЬСТВО. Пусть $\{S_1,\ldots,S_l\}$ — множество силовских подгрупп. Пусть группа G действует на $\{S_1,\ldots,S_l\}$ сопряжением. Тогда $\{S_1,\ldots,S_l\}$ образуют одну орбиту. Отсюда, l является делителем порядка группы G. Теперь, пусть S_1 действует на $\{S_1,\ldots,S_l\}$ сопряжением. Заметим, что у этого действия только один неподвижный элемент, сама S_1 . Действительно, предположим, что S_2 — тоже неподвижный элемент. Тогда S_1 лежит в нормализаторе S_2 . Рассмотрим S_1S_2 . Заметим, что S_2 — нормальная подгруппа в S_1S_2 . Следовательно,

$$S_1 S_2 / S_2 \simeq S_1 / (S_1 \cap S_2).$$

Отсюда, S_1S_2 — конечная p-группа. Противоречие. Следовательно, множество $\{S_1,\ldots,S_l\}$ разбивается на одну орбиту из одного элемента и некоторого числа орбит, порядок которых делится на p. Отсюда, l=1+qp.

4. Простые группы

Определение 1.19. Группа G называется npocmoй, если в ней нет нормальных подгрупп, кроме тривиальной (состоящей из единицы) и самой группы.

ТЕОРЕМА 1.20. Пусть G — конечная группа u |G| = pq, где p u q — простые числа. Тогда группа G не простая.

ДОКАЗАТЕЛЬСТВО. Пусть q>p. Рассмотрим силовские q-подгруппы. Согласно 3-й теореме Силова их число делит pq и дает, при делении на q, в остатке 1. Следовательно, такая подгруппа одна. По второй теореме Силова она нормальна.

ТЕОРЕМА 1.21. Пусть G — конечная группа $u |G| = p^2 q$, где p u q — простые числа. Тогда группа G не простая.

ДОКАЗАТЕЛЬСТВО. Предположим p>q. Рассмотрим силовские p-подгруппы. Согласно 3-й теореме Силова их число делит p^2q и дает, при делении на p, в остатке 1. Следовательно, такая подгруппа одна. По второй теореме Силова она нормальна.

Предположим q > p. Рассмотрим силовские q-подгруппы. Согласно 3-й теореме Силова их число делит p^2q и дает, при делении на q, в остатке 1. Следовательно, такая подгруппа либо одна, либо таких подгрупп p^2 . Если силовская q-подгруппа одна, то все доказано. Следовательно, мы можем предполагать, что существуют p^2 таких подгрупп. Заметим, что любая силовская q-подгруппа изоморфна \mathbb{Z}_q . Тогда любые две из них имеют тривиальное пересечение (т.е. пересекаются по единицы), и все их элементы, кроме единицы, имеют порядок q. Посчитаем число элементов порядка q в группе G, получаем $p^2(q-1) = p^2q - p^2$. С другой стороны силовская p-подгруппа состоит из p^2 элементов и не содержит элементы порядка q. Отсюда следует, что существует единственная силовская p-подгруппа. Тогда она нормальна.

ТЕОРЕМА 1.22. Пусть G — конечная группа u |G| = pqr, где p, q, r — простые числа. Тогда группа G не простая.

ДОКАЗАТЕЛЬСТВО. Пусть r>q>p. Рассмотрим силовские r-подгруппы. Согласно 3-й теореме Силова их число делит pqr и дает, при делении на r, в остатке 1. Следовательно, такая подгруппа либо одна, либо таких подгрупп pq. Если силовская r-подгруппа одна, то все доказано. Следовательно, мы можем предполагать, что

существуют pq таких подгрупп. Заметим, что любая силовская r-подгруппа изоморфна \mathbb{Z}_r . Тогда любые две из них имеют тривиальное пересечение (т.е. пересекаются по единицы), и все их элементы, кроме единицы, имеют порядок r. Посчитаем число элементов порядка r в группе G, получаем pq(r-1) = pqr-pq. Рассмотрим силовские q-подгруппы. Мы можем предполагать, что такая подгруппа не единственна. Согласно 3-й теореме Силова их, как минимум, r штук. Заметим, что каждая силовская q-подгруппа изоморфна \mathbb{Z}_q . Тогда все они имеют тривиальное пересечения. Аналогично, посчитаем число элементов порядка q. Получаем, что их, как минимум, r(q-1). Суммируя число элементов порядка r и порядка r

$$pqr - pq + r(q - 1) > pqr.$$

Противоречие.

Teopema 1.23. $\Gamma pynna A_n npocma npu n \geq 5.$

Сначала, докажем следующую лемму.

ЛЕММА 1.24. Пусть нормальная подгруппа H группы A_n содержит цикл дины три. Тогда $H = A_n$.

Доказательство. Если n=3, то утверждение очевидно. Пусть n>3 и H содержит перестановку (ijk). Пусть $\sigma=(ij)(km)$, Тогда

$$\sigma(ijk)\sigma^{-1} = (ij)(km)(ijk)(ij)(km) = (imj).$$

Более того, (ijk)(imj) = (imk). Отсюда легко видеть, что все циклы длины три содержаться в H. Следовательно, $H = A_n$.

Теперь докажем теорему 1.23. Пусть H — нормальная подгруппа группы A_n . Пусть $\sigma \in H$ — элемент подгруппы H, содержащий минимальное количество номеров, при разложении в произведение циклов. Предположим, что σ содержит цикл, длины больше трех, т.е. $\sigma = (i_1 i_2 \cdots i_{n-3} i_{n-2} i_{n-1} i_n) \cdots$. Пусть $\tau = (i_{n-2} i_{n-1} i_n)$. Тогда

$$\sigma_1 = \tau \sigma \tau^{-1} = (i_{n-2}i_{n-1}i_n)(i_1i_2 \cdots i_{n-3}i_{n-2}i_{n-1}i_n)(i_{n-2}i_ni_{n-1}) \cdots =$$

$$= (i_1i_2 \cdots i_{n-3}i_{n-1}i_ni_{n-2}) \cdots.$$

С другой стороны,

$$\sigma^{-1}\sigma_1 = (i_1 i_n i_{n-1} \cdots i_3 i_2)(i_1 i_2 \cdots i_{n-3} i_{n-1} i_n i_{n-2}) \cdots$$

оставляет неподвижным номер i_{n-1} . Таким образом, мы можем считать, что σ состоит из циклов длины два и три. Предположим, что σ содержит цикл длины три. Возводя в квадрат мы можем считать,

что σ состоит из циклов длины три. Предположим, что σ содержит два таких цикла, т.е. $\sigma = (ijk)(lmp)\cdots$. Пусть $\tau = (ij)(kl)$. Тогда

$$\sigma_1 = \tau \sigma \tau^{-1} = (ij)(kl)(ijk)(lmp)(ij)(kl) \cdots = (ilj)(kmp) \cdots$$

С другой стороны,

$$\sigma_1 \sigma^{-1} = (ilj)(kmp)(ikj)(lpm)\cdots$$

оставляет на месте номер p. Следовательно, σ содержит лишь один цикл длины три. Тогда по лемме 1.24 получаем, что $H = A_n$. Предположим, что σ состоит из циклов длины два (транспозиций). Поскольку σ четная, то σ состоит из четного числа транспозиций, т.е. $\sigma = (ij)(kl) \cdots$. Поскольку $n \geq 5$, рассмотрим $\tau = (ij)(km)$. Тогда

$$\sigma_1 = \tau \sigma \tau^{-1} = (ij)(km)((ij)(kl)\cdots)(ij)(km) = (ij)(lm)\cdots.$$

Отсюда,

$$\sigma\sigma_1 = ((ij)(kl)\cdots)((ij)(lm)\cdots)$$

оставляет на месте номера i, j. Противоречие.

5. Транзитивные и примитивные группы

ОПРЕДЕЛЕНИЕ 1.25. Группа перестановок G множества M называется mранзитивной над M, если в M существует элемент a такой, что для любого $x \in M$ существует $g \in G$ такое, что x = ga. Также говорят, что G действует mранзитивно на M.

УТВЕРЖДЕНИЕ 1.26. Пусть группа G действует транзитивно на множестве M. Тогда для любых двух элементов $x, y \in M$ существует элемент $g \in G$ такой, что gx = y.

Доказательство. Пусть
$$x=g_1a,\,y=g_2a.$$
 Тогда
$$(g_2g_1^{-1})x=g_2a=y.$$

Если группа G действует не транзитивно на M, то множество M можно разбить на непересекающиеся множества M_{α} так, что группа G действует транзитивно на каждом множестве M_{α} . Это разбиение осуществляется по следующему принципу. Два элемента $x,y\in M$ относятся в одно подмножество тогда и только тогда, когда существует $g\in G$ такой, что y=gx. Это отношение рефлексивно, симметрично и транзитивно. Действительно,

- (1) x = gx при g = e (рефлексивность);
- (2) если y = gx, то $x = g^{-1}y$ (симметричность);
- (3) если $y = g_1 x \ z = g_2 y$, то $z = (g_2 g_1) x$ (транзитивность).

Определение 1.27. Разбиение множества M на непересекающиеся подмножества M_{α} называется разбиением на блоки относительно G, если для любого M_{α} и любого $g \in G$ существует M_{β} такое, что $M_{\beta} = gM_{\alpha}$. Очевидно, что всегда существует два тривиальных разбиения — на одноэлементные блоки, и на единственный блок в виде всего множества M. Если нетривиального разбиения на блоки не существует, то группа G называется примитивной. В противном случае группа называется импримитивной. Множества M_{α} называются областями импримитивностии.

ТЕОРЕМА 1.28. Пусть G действует транзитивно на множестве M, состоящим из n элементов, и пусть задано неизмельчимое разбиение M на блоки. Тогда стабилизатор любого блока M' является подгруппой группы G, примитивно действующей на M'.

ДОКАЗАТЕЛЬСТВО. Напомним, что

$$\operatorname{St} M' = \{ g \mid g \in G, x \in M', gx \in M' \}.$$

Очевидно, что H — подгруппа. Предположим, что она не примитивна, т.е. существует нетривиальное разбиение M' на блоки M'_1, \ldots, M'_k . Пусть g_1, \ldots, g_l — элементы смежных классов g_1H, \ldots, g_lH . Тогда исходное разбиение M можно измельчить до разбиения $g_iM'_i$.

ТЕОРЕМА 1.29. Пусть G действует транзитивно на множестве M. Пусть $H = \mathrm{St}(x), \ x \in M$. Тогда если G импримитивна, то существует подгруппа $K \neq H, G$ такая, что $H \subset K \subset G$. Обратно, если существует такая группа, то G импримитивна.

ДОКАЗАТЕЛЬСТВО. Предположим, что G импримитивна. Тогда она разбивается на нетривиальные блоки M_1, M_2, \ldots Пусть $x \in M_1$ и $K = \mathrm{St}(M_1)$. Тогда $H \subset K \subset G$. Поскольку G действует транзитивно на множестве M, то существует элемент $g_1 \in G$ такой, что g_1 переводит x в другой элемент множества M_1 . Тогда $g_1 \in K$, $g_1 \not\in H$. С другой стороны, существует элемент $g_2 \in G$ такой, что g_2 переводит M_1 в M_2 , т.е. $g_2 \not\in K$ и $K \neq G$.

Обратно, пусть существует подгруппа K такая, что $H \subset K \subset G$ и $K \neq H, G$. Пусть M_1 — орбита элемента x при действии подгруппы K. Поскольку $K \neq H$, то M_1 состоит не только из элемента x. Рассмотрим левые смежные классы по подгруппе $K, g_1K, g_2K \ldots$ Пусть $M_i = g_iM_1$. Докажем, что эти множества не пересекаются. Предположим, что $y \in M_i \cap M_j$. Тогда $y = g_ix_1 = g_jx_2$, где $x_1, x_2 \in M_1$. Следовательно, $y = g_ih_1x = g_jh_2x$, где $h_1, h_2 \in K$. Тогда $h_2^{-1}g_j^{-1}g_ih_1x = x$. Отсюда, $h_2^{-1}g_j^{-1}g_ih_1 \in H \subset K$. Следовательно,

 $g_j^{-1}g_i\in K$. Тогда $g_iK=g_jK$. Противоречие. Таким образом, мы получили разбиение на нетривиальные блоки. Следовательно, группа G импримитивна.

Следствие 1.30. Для того, чтобы группа G была примитивной необходимо и достаточно, чтобы стабилизатор точки был максимальной подгруппой.

ТЕОРЕМА 1.31. Пусть G действует примитивно на множестве M. Пусть H — нормальная подгруппа в G. Тогда либо H действует транзитивно на M, либо H действует тривиально $(m.e.\ оставляет\ все\ элементы\ M$ на месте).

ДОКАЗАТЕЛЬСТВО. Предположим, что H действует нетранзитивно. Тогда множество M можно разбить на множества M_1, M_2, \ldots орбит группы H. Докажем, что любой элемент $g \in G$ переводит одну орбиту в другую. Пусть $x \in M_1$. Предположим, что $gx = y \in M_2$. Рассмотрим $z = h_1 y$, где $h_1 \in H$. Тогда

$$t = g^{-1}z = g^{-1}h_1y = g^{-1}h_1gx = h_2x,$$

где $h_2 \in H$. Следовательно, $t \in M_1$ и gt = z. Таким образом, мы получили разбиение M на нетривиальные блоки.

Глава 2

Теория полей

1. Конечные и алгебраические расширения полей

Пусть E, k — два поля, причем $k \subset E$. Тогда поле E называется расширением поля k.

ОПРЕДЕЛЕНИЕ 2.1. Расширение E поля k называется конечным (бесконечным), если E конечномерно (бесконечномерно), как линейное пространства над k. Другими словами, E конечно над k, если существуют $a_1, a_2, \ldots, a_n \in E$ такие, что $\forall x \in E$, $x = \alpha_1 a_1 + \alpha_2 a_2 + \cdots + \alpha_n a_n$, где $\alpha_1, \alpha_2, \ldots, \alpha_n \in k$. Степенью E над k мы будем называть размерность E как линейного пространства и обозначать [E:k].

ТЕОРЕМА 2.2. Пусть E — конечное расширение поля k, F — конечное расширение поля E. Тогда F — конечное расширение поля k u [F:k] = [E:k][F:E].

ДОКАЗАТЕЛЬСТВО. Пусть x_1, x_2, \ldots, x_n — базис E над полем k, y_1, y_2, \ldots, y_m — базис F над полем E. Тогда для любого элемента $a \in F$ существует разложение

$$a = \alpha_1 y_1 + \dots + \alpha_m y_m,$$

где $\alpha_1, \ldots \alpha_m \in E$. Поскольку E — конечное расширение поля k, то

$$\alpha_i = \beta_{i1} x_1 + \cdots + \beta_{in} x_n,$$

где $\beta_{ij} \in k$. Таким образом,

$$a = \sum_{i=1}^{m} \sum_{j=1}^{n} \beta_{ij} x_j y_i.$$

Следовательно, $\{x_jy_i\}$ порождают F над k. Таким образом, F — конечное расширение поля k. Осталось доказать равенство [F:k]=[E:k][F:E]. Для этого докажем линейную независимость $\{x_jy_i\}$. Предположим противное, т.е. существуют элементы

 c_{ij} такие, что

$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_j y_i = 0.$$

С другой стороны,

$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_j y_i = \left(\sum_{j=1}^{n} c_{1j} x_j\right) y_1 + \left(\sum_{j=1}^{n} c_{2j} x_j\right) y_2 + \dots + \left(\sum_{j=1}^{n} c_{mj} x_j\right) y_m.$$

Заметим, что $\sum_{j=1}^n c_{ij}x_j \in E$. Поскольку y_1,y_2,\ldots,y_m линейно неза-

висимы, то все $\sum_{j=1}^n c_{ij}x_j=0$. Поскольку x_1,x_2,\ldots,x_n линейно независимы, то все $c_{ij}=0$.

Замечание 2.3. Если $k \subset E \subset F$ и F — конечное расширение поля k, то очевидно, что E — конечное расширение поля k, а F — конечное расширение поля E.

Определение 2.4. Элемент $x \in E$ называется алгебраическим, если он является корнем многочлена с коэффициентами из k, т.е. существуют $\alpha_0, \alpha_1, \ldots, \alpha_n \in k$ такие, что $\alpha_0 + \alpha_1 x + \alpha_2 x^2 + \cdots + \alpha_n x^n = 0$. Расширение E поля k называется алгебраическим, если любой элемент E является алгебраическим.

ТЕОРЕМА 2.5. Любое конечное расширение является алгебраическим.

ДОКАЗАТЕЛЬСТВО. Пусть E — конечное расширение поля k, и пусть $a \in E$. Если $a \in k$, то он алгебраичен. Предположим, что $a \notin k$. Рассмотрим $1, a, a^2 \cdots a^n \cdots$. Поскольку E — конечное расширение поля k, то существует n такое, что элементы $1, a, a^2 \cdots a^n$ линейно зависимы. Тогда существуют $\alpha_0, \alpha_1 \ldots, \alpha_n \in k$ такие, что $\alpha_0 + \alpha_1 a + \alpha_2 a^2 + \cdots + \alpha_n a^n = 0$.

Пусть E — расширение поля k, и $a_1, a_2, \ldots, a_n \in E$ обозначим через $k(a_1, a_2, \ldots, a_n)$ наименьшее подполе поля E, содержащее a_1, a_2, \ldots, a_n . Очевидно оно состоит из элементов вида

$$\frac{f(a_1,a_2,\ldots,a_n)}{g(a_1,a_2,\ldots,a_n)},$$

где f,g — многочлены с коэффициентами из k и $g(a_1,a_2,\ldots,a_n) \neq 0.$

ТЕОРЕМА 2.6. Пусть E — расширение поля k и $a \in E$ алгебраичен над k. Тогда k(a) — конечное расширение поля k.

ДОКАЗАТЕЛЬСТВО. Пусть f(x) — многочлен с коэффициентами из k такой, что f(a) = 0. Предположим, что f(x) приводим над k, т.е. $f(x) = f_1(x)f_2(x)$, где $f_1(x), f_2(x)$ — многочлены над k, степени меньше степени f(x). Тогда либо $f_1(a) = 0$, либо $f_2(a) = 0$. Таким образом, последовательно заменяя f(x) на многочлены меньшей степени, мы можем считать, что f(x) неприводим. Рассмотрим k[x] — множество многочленов от x с коэффициентами из k. Пусть $g(x) \in k[x]$ такой, что $g(a) \neq 0$. Тогда g(x) взаимно прост с f(x). Следовательно, существуют многочлены p(x), q(x) такие, что f(x)p(x) + g(x)q(x) = 1. Подставляя a, получаем g(a)q(a) = 1. Таким образом, k[a] не только кольцо, но и поле. Очевидно, что размерность k[a] как векторного пространства над k не превышает степени многочлена f(x).

Замечание 2.7. Заметим, что многочлен f(x) единственен с точностью до умножения на константу. Мы можем считать, что коэффициент при старшей степени у этого многочлена равен 1. Действительно, пусть существует другой неприводимый многочлен f'(x) такой, что f'(a) = 0. Поскольку они оба неприводимы, то они взаимно просты. Тогда существуют многочлены p(x), q(x) такие, что f(x)p(x) + f'(x)q(x) = 1. Подставляем a, получаем противоречие. Таким образом, мы можем считать, что старший коэффициент многочлена f(x) равен 1. Такой многочлен мы будем называть минимальным многочленом элемента a над b, и обозначать a a0.

СЛЕДСТВИЕ 2.8. Пусть E — расширение поля k и $a_1,a_2,\ldots,a_n\in E$ алгебраичны над k. Тогда $k(a_1,a_2,\ldots,a_n)$ — конечное расширение поля k.

Доказательство. Заметим, что

$$k \subset k(a_1) \subset k(a_1, a_2) \subset \cdots \subset k(a_1, a_2, \ldots, a_n).$$

Поскольку $k(a_1, a_2, \ldots, a_i, a_{i+1}) = k(a_1, a_2, \ldots, a_i)(a_{i+1})$, то согласно теореме 2.6 каждое вложение является конечным расширением. Теперь утверждение следует из теоремы 2.2.

ТЕОРЕМА 2.9. Пусть E — алгебраическое расширение поля k и F — алгебраическое расширение поля E. Тогда F — алгебраическое расширение поля k.

ДОКАЗАТЕЛЬСТВО. Пусть $x \in F$. Тогда

$$a_0 + a_1 x + \dots + a_n x^n = 0,$$

где $a_0, a_1, \ldots, a_n \in E$. Рассмотрим $E_0 = k(a_0, a_1, \ldots, a_n)$. Согласно следствию 2.8 E_0 — конечное расширение k. Рассмотрим $F_0 = E_0(x)$. Аналогично, F_0 — конечное расширение E_0 . Следовательно, по теореме 2.2, F_0 — конечное расширение k. Заметим, что $x \in F_0$. С другой стороны, согласно теореме 2.5, F_0 — алгебраическое расширение поля k. Следовательно, x алгебраичен.

Замечание 2.10. Если $k \subset E \subset F$ и F — алгебраическое расширение поля k, то очевидно, что E — алгебраическое расширение поля k, а F — алгебраическое расширение поля E.

ОПРЕДЕЛЕНИЕ 2.11. Пусть E и F — произвольные поля, содержащиеся в поле L. Наименьшее подполе в L, содержащие E и F называется композитом и обозначается EF. Композитом семейства подполей $\{E_i\}$ в L называется наименьшее подполе в L, содержащее все семейство $\{E_i\}$. Пусть $E = k(\alpha_1, \alpha_2, \ldots, \alpha_n)$ и F — расширение поля k. Предположим, что E и F содержатся в L. Тогда $EF = F(\alpha_1, \alpha_2, \ldots, \alpha_n)$. Мы будем называть расширение EF поля F подъемом E до F.

ТЕОРЕМА 2.12. Пусть E — конечное расширение поля k и F — любое расширение поля k. Предположим, что существует поле L, содержащее E и F. Тогда EF — конечное расширение поля F.

ДОКАЗАТЕЛЬСТВО. Пусть E — конечное расширение поля k. Тогда существуют элементы $\alpha_1,\alpha_2,\ldots,\alpha_n\in E$, алгебраччные над k такие, что $E=k(\alpha_1,\alpha_2,\ldots,\alpha_n)$. Согласно 2.8 $EF=F(\alpha_1,\alpha_2,\ldots,\alpha_n)$ — конечное расширение F.

Следствие 2.13. Пусть E и F — конечные расширения поля k. Предположим, что существует поле L, содержащее E и F. Тогда EF — конечное расширение поля k.

Доказательство. Следует из2.2 и 2.12.

ТЕОРЕМА 2.14. Пусть E — алгебраическое расширение поля k и F — любое расширение поля k. Предположим, что существует поле L, содержащее E и F. Тогда EF — алгебраическое расширение поля F.

ДОКАЗАТЕЛЬСТВО. Пусть $\alpha \in E$ — алгебраический элемент над k. Тогда α алгебраичен над F (любой многочлен из k[x] является многочленом в F[x]).

Следствие 2.15. Пусть E и F — конечные расширения поля k. Предположим, что существует поле L, содержащее E и F. Тогда EF — конечное расширение поля k.

2. Нормальные расширения полей

Пусть p(x) — неприводимый многочлен над полем k. Рассмотрим кольцо многочленов k[x]. Тогда многочлен p(x) порождает главный идеал (p(x)). Поскольку p(x) неприводим, то (p(x)) — максимальный идеал. Следовательно, k[x]/(p(x)) — поле. Пусть $\sigma\colon k[x]\to k[x]/(p(x))$ — естественный гомоморфизм. Заметим, что σ сюръективен на k. Тогда $\sigma(k)$ — подполе поля k[x]/(p(x)) изоморфное k. Мы можем отождествить его с k. Тогда E=k[x]/(p(x)) является расширением поля k. Рассмотрим $\xi=\sigma(x)$. Заметим, что ξ является корнем многочлена p(x) в E. Таким образом, мы получили следующее утверждение.

УТВЕРЖДЕНИЕ 2.16. Для любого многочлена $p(x) \in k[x]$ существует расширение поля k в котором p(x) имеет корень.

Определение 2.17. Поле E называется алгебраически замкнутым, если любой многочлен $f(x) \in E[x]$ имеет корень.

ТЕОРЕМА 2.18. Для любого поля k существует алгебраическое расширение \bar{k} такое, что \bar{k} алгебраически замкнуто.

Пусть k — поле, $\sigma \colon k \to L$ — вложение поля k в алгебраически замкнутое поле L. Пусть $E = k(\alpha), \ p(x) = \operatorname{Irr}(\alpha, k, x)$. Пусть $p^{\sigma}(x)$ — образ многочлена p(x) в L, β — корень $p^{\sigma}(x)$. Заметим, что любой элемент из E можно записать в виде $f(\alpha)$, где $f(x) \in k[x]$. Определим продолжение σ как отображение $f(\alpha) \to f^{\sigma}(\beta)$. Это отображение не зависит от $f(x) \in k[x]$. Действительно, пусть есть $g(x) \in k[x]$ такой, что $f(\alpha) = g(\alpha)$. Тогда $f(\alpha) - g(\alpha) = 0$. Следовательно, f(x) - g(x) делится на p(x). Отсюда, $f^{\sigma}(x) - g^{\sigma}(x)$ делится на $p^{\sigma}(x)$. Тогда $f^{\sigma}(\beta) - g^{\sigma}(\beta) = 0$ и $f^{\sigma}(\beta) = g^{\sigma}(\beta)$. Таким образом, мы получили продолжение σ на $E = k(\alpha)$.

Замечание 2.19. Данное продолжение не единственно и зависит от выбора β .

ЛЕММА 2.20. Пусть E — алгебраическое расширение поля k, и $\sigma \colon E \to E$ — гомоморфизм. Тогда σ — автоморфизм.

ДОКАЗАТЕЛЬСТВО. Очевидно, что σ инъективен. Осталось доказать, что он сюръективен. Пусть α — произвольный элемент из E, и p(x) — его минимальный многочлен. Рассмотрим подполе E'

порожденное всеми корнями p(x), лежащими в E. Тогда E' — конечное расширение поля k. Поскольку σ отображает каждый корень многочлена p(x) в корень этого же многочлена, то σ отображает E' в себя. Тогда $\sigma(E')$ — подпространство в E', имеющее ту же размерность, что и E'. Следовательно, $\sigma(E') = E'$. Поскольку $\alpha \in E'$, то α лежит в образе σ .

ТЕОРЕМА 2.21. Пусть k- поле, E- алгебраическое расширение поля k, $u \sigma: k \to L-$ вложение поля k в алгебраически замкнутое поле L. Тогда существует продолжение σ до вложения E в L. Если L алгебраически замкнуто, u L алгебраично над σk , то любое продолжение σ будет изоморфизмом поля E на L.

ДОКАЗАТЕЛЬСТВО. Рассмотрим множество S пар (F,τ) , где F — подполе E, содержащие k, τ — продолжение σ до вложения F в L. Мы пишем $(F,\tau)<(F',\tau')$, если $F\subset F'$ и τ' совпадает с τ на F. Заметим, что S не пусто $((k,\sigma)\in S)$. Рассмотрим линейно упорядоченое подмножество (F_i,τ_i) . Пусть $F=\cup F_i$, и $\tau=\tau_i$ на каждом F_i . Тогда (F,τ) — верхняя грань этого упорядоченного подмножества. Тогда существует максимальный элемент (K,λ) . Мы утверждаем, что K=E. Действительно, пусть $K\neq E$. Тогда существует $\alpha\in E$, $\alpha\not\in K$. Мы знаем, что λ имеет продолжение на $K(\alpha)$ вопреки максимальности (K,λ) . Если L алгебраически замкнуто, и L алгебраично над σE . Отсюда, $L=\sigma E$.

ПРИМЕР 2.22. $\bar{\mathbb{R}} = \mathbb{C} = \mathbb{R}[x]/(x^2+1)$. Поскольку существуют трансцендентные числа (например e и π), то $\bar{\mathbb{Q}} \neq \mathbb{C}$.

Определение 2.23. Пусть k — поле, $f(x) \in k[x]$. Полем разложения многочлена f(x) мы будем называть расширение K поля k, в котором f(x) разлагается на линейные множители, т.е.

$$f(x) = c(x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n),$$

где все $\alpha_i \in K$ и $K = k(\alpha_1, \alpha_2, \dots, \alpha_n)$.

ТЕОРЕМА 2.24. Пусть K — поле разложения многочлена $f(x) \in k[x]$, и E — другое поле разложения f(x). Тогда существует изоморфизм $\sigma \colon E \to K$, индуцирующий тождественное отображение на k (такой изоморфизм мы будем называть k-изоморфизмом). Более того, если $k \subset K \subset \bar{k}$, то любое вложение E в \bar{k} является k-изоморфизмом E на K.

ДОКАЗАТЕЛЬСТВО. Пусть \bar{K} — алгебраическое замыкание поля K. Тогда \bar{K} алгебраичен над k и, следовательно, $\bar{K}=\bar{k}$. Согласно теореме 2.21 существует вложение $\sigma\colon E\to \bar{K}$, индуцирующее тождественное отображение на k. Заметим, что

$$f(x) = c(x - \beta_1)(x - \beta_2) \cdots (x - \beta_n),$$

где $\beta_i \in E$, $c \in k$. Тогда

$$f(x) = f^{\sigma}(x) = c(x - \sigma(\beta_1))(x - \sigma(\beta_2)) \cdots (x - \sigma(\beta_n)).$$

С другой стороны, f(x) имеет в K[x] разложение

$$f(x) = c(x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n).$$

Поскольку разложение многочлена единственно в $\bar{K}[x]$, то $(\sigma(\beta_1),\sigma(\beta_2),\ldots,\sigma(\beta_n))$ отличается от $(\alpha_1,\alpha_2,\ldots,\alpha_n)$ только перестановкой. Отюсда, $\sigma(\beta_i)\in K$ для любого i. Поскольку $E=k(\beta_1,\beta_2,\ldots,\beta_n)$, то $\sigma E\subset K$. С другой стороны, $K=k(\alpha_1,\alpha_2,\ldots,\alpha_n)=k(\sigma(\beta_1),\sigma(\beta_2),\ldots,\sigma(\beta_n))$. Тогда $\sigma E=K$.

Следствие 2.25. Пусть $\tau \colon k_1 \to k_2$ — изоморфизм двух полей, $f(x) \in k_1[x]$ — многочлен степени $n, \bar{f}(x) = \tau(f(x)) \in k_2[x]$. Пусть k_1' и k_2' — поля разложения над k_1 и k_2 многочленов f(x) и $\bar{f}(x)$ соответственно. Тогда τ может быть продолжен до изоморфизма $\varrho \colon k_1' \to k_2'$, и любое такое продолжение переводит каждый корень многочлена f(x) в корень многочлена $\bar{f}(x)$.

Замечание 2.26. Заметим, что всякий многочлен $f(x) \in k[x]$ имеет поле разложения, а именно поле, порожденное всеми его корнями в \bar{k} .

Пусть $\{f_i\}$ — семейство многочленов из k[x]. Полем разложения этого семейства мы будем называть расширение K поля k такое, что любой f_i разлагается на линейные множители в K[x], и K порождается корнями многочленов $\{f_i\}$.

Замечание 2.27. Если семейство f_1, f_2, \ldots, f_n конечно, то полем разложения этих многочленов будет поле разложения одного многочлена

$$f(x) = f_1(x)f_2(x)\cdots f_n(x).$$

Определение 2.28. Расширение K поля k называется нормальным, если K — алгебраическое расширение поля k, и любой неприводимый многочлен из k[x], имеющий корень в K разлагается на линейные множители.

ПРЕДЛОЖЕНИЕ 2.29. Пусть K — конечное нормальное расширение поля k. Тогда K — поле разложения некоторого многочлена $f(x) \in k[x]$.

ДОКАЗАТЕЛЬСТВО. Поскольку K — конечное расширение поля k, то $K = k(\alpha_1, \alpha_2, \ldots, \alpha_n)$. Пусть $f_i(x) = \operatorname{Irr}(\alpha_i, k, x)$ — минимальный многочлен элемента α_i . Поскольку K — нормальное расширение поля k, то K содержит поле разложения $f_i(x)$. Тогда K содержит поле разложение многочлена $f(x) = f_1(x)f_2(x)\cdots f_n(x)$. Поскольку K порождается корнями f(x) (а именно $\alpha_1, \alpha_2, \ldots, \alpha_n$), то K — поле разложения многочлена f(x).

ТЕОРЕМА 2.30. Поле разложения многочлена $f(x) \in k[x]$ над k является конечным нормальным расширением поля k.

Доказательство. Пусть K — поле разложения многочлена $f(x) \in k[x]$ над k, и g(x) — любой неприводимый многочлен над k имеющий корень α в поле K. Пусть K' — поле разложения многочлена g(x) над K. Пусть $\beta \in K'$ — корень g(x). Поскольку g(x) неприводим над k, то существует k-изоморфизм τ между $k(\alpha)$ и $k(\beta)$, переводящий α в β . Этот изоморфизм оставляет f(x) на месте. Заметим, что K и $K(\beta)$ — поля разложения f(x) над k и $k(\beta)$ соответственно. Таки образом, согласно следствию 2.25, изоморфизм τ продолжается до изоморфизма ϱ поля K на поле $K(\beta)$. Поскольку $\varrho - k$ -изоморфизм и f(x) разлагается на линейные множители в K, то ϱ переводит множество корней f(x) порождают K. Следовательно, ϱ — автоморфизм поля K. Поскольку $\alpha \in K$, то $\varrho(\alpha) = \beta \in K$. Таким образом, K содержит все корни многочлена g(x). Отсюда следует, что K — нормальное расширение поля k.

ТЕОРЕМА 2.31. Пусть K — алгебраическое расширение поля k, $u\ k \subset K \subset \bar{k}$, где \bar{k} — алгебраическое замыкание k. Тогда K — нормальное расширение поля k тогда u только тогда, когда всякое вложение $\sigma\colon K \to \bar{k}$ над k является автоморфизмом поля K.

ДОКАЗАТЕЛЬСТВО. Предположим, что всякое вложение $\sigma\colon K\to \bar k$ над k является автоморфизмом поля K. Пусть $f(x)\in k[x]$ — неприводимый многочлен над k, и $\alpha\in K$ — его корень. Пусть $\beta\in \bar k$ — другой корень этого многочлена. Тогда существует k-изоморфизм σ полей $k(\alpha)$ и $k(\beta)$. Продолжим этот изоморфизм до вложения K в $\bar k$. По предположению, это вложение является автоморфизмом поля K. Отсюда, $\beta\in K$.

Обратно, пусть K — нормальное расширение поля k. Пусть $\sigma \colon K \to \bar{k}$ — вложение над k, и $\alpha \in K$. Пусть p(x) — минимальный многочлен α над k. Поскольку σ — вложение над k, то σ отображает α в корень β многочлена p(x). Поскольку K — нормальное расширение поля k, то $\beta \in K$. Следовательно, σ — автоморфизм поля K (см. 2.20).

ПРЕДЛОЖЕНИЕ 2.32. Пусть E — расширение поля k степени два. Тогда E — нормальное расширение.

ДОКАЗАТЕЛЬСТВО. Пусть $f(x) \in k[x]$ — неприводимый многочлен над k, и $\alpha \in E$ — корень f(x). Тогда $E = k(\alpha)$. Пусть K — поле разложения f(x). Заметим, что $E \subset K$. Рассмотрим минимальный многочлен $p(x) \in k[x]$ элемента α . Поскольку E — расширение степени два, то p(x) имеет степень два. Следовательно, существует $\bar{\alpha} \in E$ такой, что $p(\bar{\alpha}) = 0$. Пусть τ — автоморфизм поля E переводящий α в $\bar{\alpha}$. Поскольку τ — k-изоморфизм, то он оставляет f(x) на месте. Следовательно, он продолжается до автоморфизма поля K. Тогда $\bar{\alpha} = \tau(\alpha)$ является корнем f(x). Отсюда следует, что p(x) делит f(x) (т.е. f(x) = cp(x), $c \in k$). Тогда E — поле разложения многочлена f(x).

ПРИМЕР 2.33. Алгебраическое замыкание является нормальным расширением.

ПРИМЕР 2.34. Пусть $E=\mathbb{Q}(\sqrt[4]{2})$. Тогда E не является нормальным расширением поля \mathbb{Q} , E не содержит комплексные корни многочлена x^2-2 . С другой стороны, пусть $F=\mathbb{Q}(\sqrt{2})$. Тогда $\mathbb{Q}\subset F\subset E$, при этом F — расширение поля \mathbb{Q} степени два, и E расширение поля F степени два, т.е. оба эти расширения нормальны.

ТЕОРЕМА 2.35. Пусть $k \subset E \subset K$, и K — нормальное расширение поля k. Тогда K — нормальное расширение поля E.

ДОКАЗАТЕЛЬСТВО. Рассмотрим вложение полей $k \subset E \subset K$ в алгебраическое замыкание \bar{k} . Пусть $\sigma \colon K \to \bar{k}$ — любое вложение K над E. Тогда σ является вложением и над k. По теореме 2.31 σ является автоморфизмом поля K. По той же теореме, K — нормальное расширение поля E.

3. Сепарабельные расширения полей

Определение 2.36. Пусть k — поле. Предположим, что существует такое число p, что $p \cdot 1 = 0$, т.е.

$$\underbrace{1+1+\cdots+1}_{p \text{ слагаемых}} = 0.$$

Пусть p — минимальное из таких чисел. Тогда говорят, что p — xa-paктеристика поля <math>k. Обозначается char(k). Если не существует такого положительного числа p, то говорим, что поле имеет характеристику ноль.

УТВЕРЖДЕНИЕ 2.37. Характеристика поля либо ноль, либо простое число.

ДОКАЗАТЕЛЬСТВО. Предположим, что характеристика поля p=mn. Тогда

$$\underbrace{1+1+\cdots+1}_{p \text{ слагаемых}} = \underbrace{(1+1+\cdots+1)}_{m \text{ слагаемых}} \cdot \underbrace{(1+1+\cdots+1)}_{n \text{ слагаемых}} = 0.$$

Отсюда, либо

$$\underbrace{1+1+\cdots+1}_{m \text{ слагаемых}} = 0,$$

либо

$$\underbrace{1+1+\cdots+1}_{n \text{ слагаемых}}=0.$$

Рассмотрим поле k характеристики p.

УТВЕРЖДЕНИЕ 2.38. Пусть $k - none \ xapaктeристики \ p. \ Torda \ (a+b)^p = a^p + b^p.$

Доказательство. Следует из формулы Бинома–Ньютона и того, что C_p^i делится на p для любого $i \neq 0, p$.

Определение 2.39. Поскольку $(a+b)^p = a^p + b^p$ и $(ab)^p = a^p b^p$, то отображение $f: k \to k^p$ заданное $f(x) = x^p$ является гомоморфизмом. Он называется морфизмом Фробениуса.

Определение 2.40. Поле k называется совершенным, если либо k характеристики ноль, либо k характеристики p и совпадает с k^p .

ТЕОРЕМА 2.41. Пусть $k - \kappa$ онечное поле. Тогда k совершенно.

ДОКАЗАТЕЛЬСТВО. Заметим, что k^p — подполе в k и k^p изоморфно k. Следовательно, k^p и k имеют одинаковое количество элементов. Тогда они совпадают.

Рассмотрим $f(x) \in k[x]$, т.е.

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0.$$

Пусть f'(x) — обычная производная, т.е.

$$f'(x) = na_n x^{n-1} + (n-1)a_{n-1}x^{n-2} + \dots + a_1.$$

Заметим, что если k имеет характеристику ноль, то $f'(x) \neq 0$ при $n \geq 1$. Более того, если k имеет характеристику p, то f'(x) = 0 тогда и только тогда, когда $f(x) = \tilde{f}(x^p)$, т.е. f(x) — многочлен от x^p .

Определение 2.42. Неприводимый многочлен f(x) называется cenapa beльным, если $f'(x) \neq 0$ и hecenapa beльным, если f'(x) = 0. Произвольный многочлен f(x) называется hecenapa beльным, если сепара beльны все его неразложимые множители.

Замечание 2.43. Если k имеет характеристику ноль, то любой многочлен сепарабелен.

Рассмотрим более подробно связь между полем k и сепарабельности многочленов $f(x) \in k[x]$.

ТЕОРЕМА 2.44. Пусть k — поле характеристики p. Если $a \in k$, $\sqrt[p]{a} \notin k$, то x^{p^m} — а неразложим в k[x] для любого m.

ДОКАЗАТЕЛЬСТВО. Докажем индукцией по m. Для m=0 утверждение очевидно. Пусть $\varphi(x)$ — приведенный неразложимый множитель многочлена $x^{p^m}-a$ в k[x], и $\varphi^l(x)$ — наивысшая степень $\varphi(x)$, которая делит $x^{p^m}-a$. Таким образом,

$$x^{p^m} - a = \varphi^l(x)\psi(x),$$

где $\varphi(x)$ и $\psi(x)$ взаимно просты. Возьмем производную от обеих частей, получим

$$l\varphi^{l-1}(x)\varphi'(x)\psi(x) + \varphi^l(x)\psi'(x) = 0.$$

Поделим на $\varphi^{l-1}(x)$, получим

$$l\varphi'(x)\psi(x) + \varphi(x)\psi'(x) = 0.$$

Заметим, что $\psi(x)$ должен делить $\varphi(x)\psi'(x)$. С другой стороны, $\varphi(x)$ и $\psi(x)$ взаимно просты, а $\psi'(x)$ имеет меньшую степень чем у $\psi(x)$. Тогда $\varphi(x)\psi'(x)=0$, и следовательно, $l\varphi'(x)\psi(x)=0$. Отсюда, $\psi'(x)=0$ и $l\varphi'(x)=0$. Из $\psi'(x)=0$ следует, что $\psi(x)=\psi_1(x^p)$.

Предположим, что l не делится на p. Тогда, из $l\varphi'(x) = 0$ следует, что $\varphi(x) = \varphi_1(x^p)$. Отсюда, заменяя x на x^p , получаем

$$x^{p^{m-1}} - a = \varphi_1^l(x)\psi_1(x).$$

Противоречие с индуктивным предположением. Пусть l делится на p. Тогда $\varphi^l(x) = \varphi_1(x^p)$. Следовательно,

$$x^{p^{m-1}} - a = \varphi_1(x)\psi_1(x).$$

Отсюда, $\psi(x) = 1$ и $x^{p^m} - a = \tilde{\varphi}^p(x)$. С другой стороны, все коэффициенты $\tilde{\varphi}^p(x)$ принадлежат k^p . Противоречие с условием $\sqrt[p]{a} \notin k$.

ТЕОРЕМА 2.45. Поле k совершенно тогда и только тогда, когда каждый многочлен положительной степени сепарабелен.

ДОКАЗАТЕЛЬСТВО. Мы можем считать, что поле k имеет характеристику p. Предположим, что k совершенно, и $f(x) \in k[x]$ — многочлен такой, что f'(x) = 0. Тогда $f(x) \in k[x^p]$, т.е.

$$f(x) = a_n x^{pn} + a_{n-1} x^{p(n-1)} + \dots + a_1 x^p + a_0.$$

Поскольку k совершенно, то существуют элементы $\alpha_i = \sqrt[p]{a_i} \in k$. Тогда

$$f(x) = (\alpha_n x^n + \alpha_{n-1} x^{n-1} + \dots + \alpha_1 x + \alpha_0)^p.$$

Следовательно, f(x) разложим.

Предположим, что k несовершенно. Тогда существует элемент $a \in k$ такой, что $\sqrt[p]{a} \notin k$. Согласно теореме 2.44 многочлен $f(x) = x^p - a$ неразложим, но f'(x) = 0.

Определение 2.46. Пусть K — расширение поля k и $\alpha \in K$ — алгебраический элемент. Мы говорим, что α сепарабелен, если его минимальный многочлен сепарабелен.

Определение 2.47. Алгебраическое расширение K поля k называется cenapaбельным, если каждый элемент поля K сепарабелен над k.

Замечание 2.48. Из теоремы 2.45 следует, что если k совершенно, то любое его алгебраическое расширение сепарабельно.

УТВЕРЖДЕНИЕ 2.49. Пусть α — алгебраический элемент над k, u f(x) — его минимальный многочлен. Тогда α несепарабелен тогда u только тогда, когда $f'(\alpha) = 0$. Более того, если $g(x) \in k[x]$ — многочлен такой, что $g(\alpha) = 0$, то $g'(\alpha) = 0$.

ДОКАЗАТЕЛЬСТВО. Если α несепарабелен, то f'(x) = 0. Обратно, если $f'(\alpha) = 0$, то, поскольку f(x) — минимальный многочлен, а f'(x) имеет степень на единицу меньше чем f(x), то f'(x) = 0. Пусть α несепарабелен, и $g(x) \in k[x]$ — многочлен такой, что $g(\alpha) = 0$. Тогда g(x) делится на f(x), т.е. g(x) = h(x)f(x). Тогда

$$g'(x)=h'(x)f(x)+h(x)f'(x)=h'(x)f(x).$$
 Отсюда, $g'(\alpha)=h'(\alpha)f(\alpha)=0.$

Пусть $f(x) \in k[x]$ такой, что $f(\alpha) = 0$, где $\alpha \in K$, K — расширение поля k. Тогда f(x) делится на $x - \alpha$. Пусть s — наибольшая степень $x - \alpha$ такая, что $f(x) = (x - \alpha)^s f_1(x)$. Заметим, что $f_1(\alpha) \neq 0$. Более того, поскольку $f(x) \in k[x]$, то $f_1(x) \in k(\alpha)[x]$. В силу единственности разложения f(x) над $k(\alpha) \subset K$, получаем, что s и $f_1(x)$ не зависят от расширения. Число s называется s ратностью s корень s многочлена s

УТВЕРЖДЕНИЕ 2.50. Пусть α — алгебраический элемент над k, u $f(x) \in k[x]$ — многочлен такой, что $f(\alpha) = 0$. Тогда α — кратный корень тогда u только тогда, когда $f'(\alpha) = 0$.

ДОКАЗАТЕЛЬСТВО. Пусть
$$f(x) = (x - \alpha)^s f_1(x)$$
. Тогда
$$f'(x) = s(x - \alpha)^{s-1} f_1(x) + (x - \alpha)^s f_1'(x).$$

Если
$$s > 1$$
, то $f'(\alpha) = 0$. Обратно, если $s = 1$, то $f'(\alpha) = f_1(\alpha) \neq 0$.

Следствие 2.51. Пусть α — алгебраический элемент над k, u f(x) — его минимальный многочлен. Тогда α несепарабелен тогда u только тогда, когда α — кратный корень многочлена f(x). Более того, если $g(x) \in k[x]$ — многочлен такой, что $g(\alpha) = 0$, то α — кратный корень многочлена g(x).

ТЕОРЕМА 2.52. Пусть α алгебраичен над k, u f(x) — его минимальный многочлен. Если char(k) = 0, то все корни f(x) имеют кратность один. Если char(k) = p > 0, то существует е такое, что все корни f(x) имеют кратность p^e .

ДОКАЗАТЕЛЬСТВО. Пусть α и β — корни многочлена f(x) в замыкании \bar{k} . Тогда существует изоморфизм $\sigma \colon k(\alpha) \to k(\beta)$, который продолжается до автоморфизма \bar{k} . Следовательно, все корни имеют одинаковую кратность m. Рассмотрим f'(x). Если m > 1, то α является корнем многочлена f'(x), степень которого меньше степени f(x). Поскольку f(x) — минимальный многочлен, то f'(x) = 0.

Следовательно, если f(x) имеет кратные корни, то char(k) = p > 0 и $f(x) = g(x^p)$. Пусть $f(x) = (x - \alpha)^m f_1(x)$, где $f_1(x) \in k(x)$ и $f_1(\alpha) \neq 0$. Тогда

$$f'(x) = m(x - \alpha)^{m-1} f_1(x) + (x - \alpha)^m f_1'(x) = 0.$$

Поделив на $(x-\alpha)^{m-1}$, получим

$$mf_1(x) + (x - \alpha)f_1(x) = 0.$$

Поскольку $f_1(\alpha) \neq 0$, то m делится на p, т.е. $m = m_1 p$. Применив морфизм Фробениуса, получаем

$$f(x) = (x - \alpha)^m f_1(x) = (x^p - \alpha^p)^{m_1} g_1(x^p).$$

Таким образом, все корни многочлена g(x) имеют кратность m_1 . Повторяя наше рассуждение, получаем, что либо $m_1 = 1$, либо $m_1 = pm_2$ и $g(x) = h(x^p)$. Продолжая этот процесс, получаем, что все корни имеют кратность p^e .

Рассмотрим еще одно важное отличие сепарабельных и несепарабельных расширений.

Пусть k — поле и $k(\alpha)$ — расширение, порожденное алгебраическим элементом α , f(x) — минимальный многочлен элемента α . Тогда число вложений $k(\alpha)$ в алгебраическое замыкание \bar{k} равно числу различных корней многочлена f(x). С другой стороны, степень $[k(\alpha):k]=\deg f$. Таким образом, число вложений $k(\alpha)$ в алгебраическое замыкание \bar{k} не превосходит степени $[k(\alpha):k]$. Более того, равенство достигается тогда и только тогда, когда α сепарабелен. Пусть E — конечное расширение поля k. Пусть $[E:k]_S$ — количество вложений поля E в алгебраическое замыкание \bar{k} . Число $[E:k]_S$ будем называть cenapa6eльной cmeneнью E над k.

ТЕОРЕМА 2.53. Пусть E- конечное расширение поля $k,\ u\ F-$ конечное расширение поля E. Тогда

$$[E:k]_S[F:E]_S = [F:k]_S.$$

ДОКАЗАТЕЛЬСТВО. Пусть $\sigma_1, \sigma_2, \ldots, \sigma_n$ — множество вложений E в алгебраическое замыкание \bar{k} над k, и $\tau_{i1}, \tau_{i2}, \ldots, \tau_{im}$ — множество продолжений σ_i до вложения F в \bar{k} . Поскольку $\sigma_i \sigma_j^{-1}$ — изоморфизм полей $\sigma_j E$ и $\sigma_i E$, то количество продолжений одинаково для любого σ_i . Таким образом, мы получили nm вложений F в алгебраическое замыкание \bar{k} . Обратно, пусть ϱ — вложение F в \bar{k} над k. Тогда ограничение ϱ на E совпадает с одним из σ_i . Следовательно, $\varrho = \tau_{ij}$.

Теперь рассмотрим один важный критерий сепарабельности.

ТЕОРЕМА 2.54. Пусть E — конечное расширение поля k. Тогда $[E:k]_S \leq [E:k]$. Более того, $[E:k]_S = [E:k]$ тогда и только тогда, когда E — сепарабельное расширение поля k.

ДОКАЗАТЕЛЬСТВО. Поскольку E — конечное расширение поля k, то существует башня полей

$$k \subset k(\alpha_1) \subset k(\alpha_1, \alpha_2) \subset \cdots \subset k(\alpha_1, \alpha_2, \ldots, \alpha_n) = E.$$

Согласно теоремам 2.53 и 2.2, получаем

$$[E:k]_S = [k(\alpha_1):k]_S \cdots [k(\alpha_1,\alpha_2,\ldots,\alpha_n):k(\alpha_1,\alpha_2,\ldots,\alpha_{n-1})]_S,$$

$$[E:k] = [k(\alpha_1):k] \cdots [k(\alpha_1, \alpha_2, \dots, \alpha_n):k(\alpha_1, \alpha_2, \dots, \alpha_{n-1})].$$

Мы знаем, что

$$[k(\alpha_1, \alpha_2, \dots, \alpha_i) : k(\alpha_1, \alpha_2, \dots, \alpha_{i-1})]_S \le$$

$$\leq [k(\alpha_1, \alpha_2, \dots, \alpha_i) : k(\alpha_1, \alpha_2, \dots, \alpha_{i-1})].$$

Более того, равенство достигается, когда α_i сепарабелен.

Замечание 2.55. Из теоремы 2.52 следует, что $[E:k] = [E:k]_S p^r$.

ТЕОРЕМА 2.56. Пусть E — алгебраическое расширение поля k, u F — алгебраическое расширение поля E. Тогда для того, чтобы F было сепарабельным расширением поля k необходимо u достаточно, чтобы E было сепарабельным расширением поля k u F было сепарабельным расширением поля E.

ДОКАЗАТЕЛЬСТВО. Пусть F — сепарабельное расширение поля k. Заметим, что все элементы поля E являются элементами поля F, и следовательно, сепарабельны над k. Поскольку каждый элемент из F сепарабелен над k, то он сепарабелен и над E. Обратно, пусть E — сепарабельное расширение поля k и F — сепарабельное расширение поля E. Если E и F — конечные расширения, то утверждение следует из теорем 2.53 и 2.54. Пусть $\alpha \in F$, и $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ — его минимальный многочлен. Положим $E_0 = k(a_0, a_1, \ldots, a_n)$, $F_0 = E_0(\alpha)$. Заметим, что E_0 — конечное расширение поля E_0 . Тогда E_0 сепарабельно над E_0 . Следовательно, E_0 0 сепарабельной над E_0 0 сепарабельно над E_0 1. Следовательно, E_0 2 сепарабельной над E_0 3 замент.

Определение 2.57. Пусть k — поле характеристики p. Элемент α называется *чисто несепарабельным* над k, если существует целое $l \geq 0$ такое, что $\alpha^{p^l} \in k$. Расширение K поля k называется *чисто несепарабельным*, если все элементы K чисто несепарабельны.

ТЕОРЕМА 2.58. Пусть α — одновременно сепарабельный и чисто несепарабельный элемент над k. Тогда $\alpha \in k$.

ДОКАЗАТЕЛЬСТВО. Предположим, что α — чисто несепарабельный элемент над k. Пусть l — минимальное число такое, что $\alpha^{p^l}=a\in k$. Тогда $\sqrt[p]{a}\not\in k$. Согласно теореме 2.44 $x^{p^l}-a$ неразложим. Следовательно, $f(x)=x^{p^l}-a$ — минимальный многочлен элемента α . С другой стороны, f'(x)=0. Следовательно, α несепарабелен.

ТЕОРЕМА 2.59. Пусть K — конечное сепарабельное расширение поля k. Тогда существует элемент $\alpha \in K$ такой, что $K = k(\alpha)$.

ДОКАЗАТЕЛЬСТВО. Мы будем предполагать, что k бесконечное поле (доказательство для конечных полей будет дано в следующем параграфе). Предположим, что $K = k(\alpha, \beta)$. Пусть n = [K:k], и $\sigma_1, \sigma_2, \ldots, \sigma_n$ — различные вложения K в k над k. Рассмотрим

$$P(x) = \prod_{i \neq j} (\sigma_i \alpha + (\sigma_i \beta) x - \sigma_j \alpha - (\sigma_j \beta) x).$$

Заметим, что P(x) ненулевой многочлен. Тогда существует $c \in k$ такой, что $P(c) \neq 0$. Тогда все элементы $\sigma_i(\alpha + c\beta)$ различны, а следовательно $k(\alpha + c\beta)$ имеет над k степень не меньше n. С другой стороны, [K:k] = n. Следовательно, $k(\alpha + c\beta) = K$.

Если $K = k(\alpha)$, то элемент α называется *примитивным элементом* поля K над k.

4. Конечные поля

В этом параграфе мы рассмотрим конечные поля. Пусть k — поле из q элементов. Очевидно, что char(k) = p > 0. Следовательно, поле k содержит \mathbb{Z}_p в качестве подполя. Тогда k является конечным расширением поля \mathbb{Z}_p , т.е. $[k:\mathbb{Z}_p] = n$. Таким образом, любой элемент $\alpha \in k$ имеет единственное представление в виде

$$\alpha = a_1 e_1 + a_2 e_2 + \dots + a_n e_n,$$

где e_1, e_2, \ldots, e_n — базис k как векторного пространства над \mathbb{Z}_p , $a_1, a_2, \ldots, a_n \in \mathbb{Z}_p$. Отсюда, число элементов в поле k равно p^n .

ТЕОРЕМА 2.60. Пусть k^* — мультипликативная группа поля k, т.е. множество $k \setminus \{0\}$ с операцией умножение. Тогда k^* — циклическая группа порядка $p^n - 1$.

ДОКАЗАТЕЛЬСТВО. Предположим, что k^* не является циклической группой. Тогда существует $r < p^n - 1$ такое, что $\alpha^r = 1$ для любого $\alpha \in k^*$. Таким образом, все элементы k^* являются корнями многочлена $x^r - 1 = 0$, но этот многочлен имеет не более r корней. Противоречие.

ЗАМЕЧАНИЕ 2.61. Фактически мы доказали, что любая конечная мультипликативная группа в поле циклическая.

Замечание 2.62. Именно из этой теоремы следует теорема 2.59 для конечных полей. Действительно, если K — конечное расширение конечного поля k, то K — конечное поле. Тогда его мультипликативная группа K^* — циклическая. Следовательно, существует $\alpha \in K$ порождающий эту группу. Тогда $K = k(\alpha)$.

Рассмотрим поле разложения многочлена $f(x) = x^{p^n} - x$ над полем \mathbb{Z}_p . Мы утверждаем, что это поле состоит из корней f(x). Действительно, если α, β — корни f(x), то

$$(\alpha + \beta)^{p^{n}} - (\alpha + \beta) = \alpha^{p^{n}} + \beta^{p^{n}} - \alpha - \beta = 0,$$

$$(\alpha \beta)^{p^{n}} - \alpha \beta = \alpha \beta - \alpha \beta = 0,$$

$$(\alpha^{-1})^{p^{n}} - \alpha^{-1} = (\alpha^{p^{n}})^{-1} - \alpha^{-1} = \alpha^{-1} - \alpha^{-1} = 0,$$

$$(-\alpha)^{p^{n}} - (-\alpha) = -\alpha + \alpha = 0.$$

Заметим, что 0 и 1 — корни f(x). Следовательно, поле разложение многочлена $f(x) = x^{p^n} - x$ состоит из его корней. С другой стороны, f'(x) = -1. Следовательно, все корни f(x) различные. Таким образом, мы получили поле состоящее из p^n элементов.

Глава 3

Теория Галуа

1. Группа автоморфизмов поля

Пусть K — поле, и G — группа автоморфизмов поля K. Обозначим через K^G — множество неподвижных элементов относительно группы G. Тогда K^G мы будем называть неподвижным полем группы G (или полем инвариантов группы G). Очевидно, что K^G является полем.

Алгебраическое расширение K поля k называется расширением Γ алуа, если оно нормально и сепарабельно. Мы будем считать, что K вложено в алгебраическое замыкание k. Группа автоморфизмов поля K над k называется $\mathfrak{cpynnou}$ Γ алуа поля K над k и обозначается $\mathfrak{G}(K/k)$.

ТЕОРЕМА 3.1. Пусть K — расширение Галуа поля k, G — его группа Галуа. Тогда $k = K^G$. Если E — промежсуточное поле, $k \subset E \subset K$, то K — расширение Галуа над E. Отображение множества промежуточных полей в множество подгрупп группы G инъективно.

ДОКАЗАТЕЛЬСТВО. Пусть $\alpha \in K^G$ и σ — вложение $k(\alpha)$ в \bar{K} . Продолжим σ до вложения K в \bar{K} . Тогда σ — автоморфизм поля K, и, следовательно, элемент группы G. Поскольку σ оставляет α неподвижным, то $[k(\alpha):k]_S=1$. Поскольку α сепарабелен, то $\alpha \in k$.

Пусть E — промежуточное поле. Тогда K нормально и сепарабельно над E (см. теоремы 2.35 и 2.56). Следовательно, K — расширение Галуа поля E. Пусть $H = G(K/E) \subset G$. Тогда $K^H = E$. Пусть E' — другое промежуточное поле и H' = G(K/E'). Если H = H', то

$$E = K^H = K^{H'} = E'.$$

Следовательно, отображение $E \to G(K/E)$ — инъективно. \square

Следствие 3.2. Пусть K- расширение Галуа поля k, G- его группа Галуа. Пусть E_1 и E_2- два промежуточных поля, H_1, H_2

— группы Галуа поля K над E_1 и E_2 соответственно. Тогда неподвижное поле наименьшей подгруппы, содержащей H_1, H_2 , есть $E_1 \cap E_2$.

СЛЕДСТВИЕ 3.3. Пусть K — расширение Галуа поля k, G — его группа Галуа. Пусть E_1 и E_2 — два промежуточных поля, H_1, H_2 — группы Галуа поля K над E_1 и E_2 соответственно. Тогда $E_2 \subset E_1$ в том и только в том случае, когда $H_1 \subset H_2$.

Мы будем говорить, что подгруппа $H \subset G$ принадлежит промежуточному полю E, если H = G(K/E).

ЛЕММА 3.4. Пусть E- алгебраическое сепарабельное расширение поля k. Предположим, что существует натуральное число n такое, что всякий элемент $\alpha \in E$ имеет степень меньше n. Тогда E- конечное расширение поля k и $[E:k] \leq n$.

ДОКАЗАТЕЛЬСТВО. Пусть $\alpha \in E$ — элемент максимальной степени m, т.е. $m=[k(\alpha):k]$ максимальна. Заметим, что $m \leq n$. Предположим, что $k(\alpha) \neq E$. Тогда существует $\beta \in E$ такой, что $\beta \not\in k(\alpha)$. Тогда

$$k \subset k(\alpha) \subset k(\alpha, \beta)$$

и $[k(\alpha,\beta),k]>m$. По теореме о примитивном элементе (см. теорема 2.59) существует $\gamma\in k(\alpha,\beta)$ такой, что $k(\gamma)=k(\alpha,\beta)$. Тогда степень элемента γ равна $[k(\gamma),k]>m$. Противоречие.

ТЕОРЕМА 3.5. Пусть K — поле и G — конечная группа автоморфизмов поля K, имеющая порядок n. Пусть $k = K^G$. Тогда K — конечное расширение Галуа поля k и его группа Галуа есть G. Более того, [K:k]=n.

ДОКАЗАТЕЛЬСТВО. Пусть $\alpha \in K$, и пусть $\sigma_1, \sigma_2, \ldots, \sigma_m$ — максимальное множество элементов из G таких, что $\sigma_1\alpha, \sigma_2\alpha, \ldots, \sigma_m\alpha$ различны. Тогда группа G действует на множестве $\{\sigma_1\alpha, \sigma_2\alpha, \ldots, \sigma_m\alpha\}$ (если $\tau \in G$, то τ отображает $\{\sigma_1\alpha, \sigma_2\alpha, \ldots, \sigma_m\alpha\}$ в $\{\tau\sigma_1\alpha, \tau\sigma_2\alpha, \ldots, \tau\sigma_m\alpha\}$). Рассмотрим

$$f(x) = \prod_{i=1}^{m} (x - \sigma_i \alpha).$$

Заметим, что α является корнем этого многочлена и любой элемент группы G оставляет f(x) на месте. Следовательно, коэффициенты f(x) лежат в k. Таким образом, K — алгебраическое расширение поля k. Поскольку все корни многочлена f(x) имеют кратность

один, то α сепарабелен над k (см. 2.51). Таким образом, K — сепарабельное расширение поля k. Поскольку f(x) разлагается на линейные множители, то минимальный многочлен любого элемента $\alpha \in K$ над k разлагается на линейные множители. Таким образом, K — нормальное расширение поля k. Следовательно, K — расширение Галуа поля k. Поскольку степень f(x) меньше порядка группы, любой элемент $\alpha \in K$ имеет степень меньшую n. Отсюда, $[K:k] \leq n$. Согласно теореме 2.54 $n \leq [K:k]$. Следовательно, [K:k] = n и G — группа Галуа расширения K над k.

Следствие 3.6. Пусть K — конечное расширение Галуа поля k, G — его группа Галуа. Тогда любая подгруппа $H \subset G$ принадлежит некоторому полю E, такому, что $k \subset E \subset K$.

ДОКАЗАТЕЛЬСТВО. Пусть $E = K^H$. Согласно теореме 3.5 K — расширение Галуа поля E и H = G(K/E).

ТЕОРЕМА 3.7. Пусть K — расширение Галуа поля k, G — его группа Галуа. Пусть E — промежуточное поле, $k \subset E \subset K$, $u \ H = G(K/E)$. Расширение E над k нормально тогда u только тогда, когда H — нормальная подгруппа g G. Более того, $G(E/k) \cong G/H$.

ДОКАЗАТЕЛЬСТВО. Пусть E — нормальное расширение поля k и G' = G(E/k). Тогда отображение ограничения $\sigma \to \sigma|_F$ отображает G в G'. Ядром этого отображения, по определению, является группа H. Следовательно, H — нормальная подгруппа. Пусть $\tau \in G'$. Тогда τ продолжается до вложения K в \bar{K} , которое должно быть автоморфизмом поля K. Следовательно, отображение ограничения сюръективно. Отсюда, $G(E/k) \cong G/H$. Предположим, что E не нормально над k. Тогда, согласно теореме 2.31, существует вложение τ поля E в K над k, которое не является автоморфизмом, т.е. $\tau E \neq E$. Продолжим τ до автоморфизма поля K. Пусть $\sigma \in H$. Тогда $\tau \sigma \tau^{-1}$ — элемент группы $G(K/(\tau F))$. Таким образом, группы Галуа G(K/F) и $G(K/(\tau F))$ сопряжены и, принадлежа разным полям, не могут совпадать.

Определение 3.8. Расширение Галуа называется *абелевым* (*циклическим*), если группа Галуа абелева (циклическая).

УТВЕРЖДЕНИЕ 3.9. Пусть K- абелево (циклическое) расширение Галуа поля k, и E- промежуточное поле, $k \subset E \subset K$. Тогда E- абелево (циклическое) расширение Галуа поля k.

Доказательство. Следует из теоремы 3.7.

Суммируя доказанные утверждения, мы получаем основную теорему теории Галуа.

ТЕОРЕМА 3.10. Пусть K — конечное расширение Галуа поля k, G — его группа Галуа. Тогда между множеством подполей E в K, содержащих k, и множеством подгрупп H в G существует биективное соответствие, задаваемое $E = K^H$. Поле E будет расширением Галуа поля k тогда и только тогда, когда H — нормальная подгруппа в G. Более того, $G(E/k) \cong G/H$.

Пусть k — поле, $f(x) \in k[x]$. Пусть K — поле разложения многочлена f(x), и G — группа Галуа поля K над k. Тогда G называется группой Галуа многочлена f(x). Элементы из G переставляют корни многочлена f(x). Таким образом, мы имеем инъективный гомоморфизм группы G в группу S_n .

ПРИМЕР 3.11. Пусть k — поле и $char(k) \neq 2$, a не является квадратом в k. Тогда многочлен $f(x) = x^2 - a$ неприводим. Поскольку $char(k) \neq 2$, то f(x) сепарабелен. Его группа Галуа — циклическая группа порядка два.

ПРИМЕР 3.12. Пусть k — поле и $char(k) \neq 2,3$. Пусть f(x) — неприводимый кубический многочлен, G — его группа Галуа. Если α — корень многочлена f(x). Тогда $[k(\alpha):k]=3$. Поскольку G — подгруппа S_3 , то G либо \mathbb{Z}_3 , либо S_3 . Пусть $\alpha_1,\alpha_2,\alpha_3$ — различные корни f(x). Рассмотрим

$$\delta = (\alpha_1 - \alpha_2)(\alpha_1 - \alpha_3)(\alpha_2 - \alpha_3), \quad \Delta = \delta^2.$$

Пусть $\sigma \in G$. Заметим, что $\sigma \delta = \pm \delta$, $\sigma \Delta = \Delta$. Следовательно, $\Delta \in k$. Заметим, что множество σ , которые оставляют δ на месте, это в точности четные перестановки. Таким образом, $G = S_3$ тогда и только тогда, когда $\delta \notin k$, т.е. Δ не является квадратом.

Пусть k — поле. Элемент $\zeta \in k$ называется *корнем из единицы* степени n, если $\zeta^n = 1$.

Замечание 3.13. Пусть k — поле характеристики p. Тогда уравнение $x^{p^m}=1$ имеет только один корень, а именно 1. Следовательно, в поле характеристики p нет корней p^m -й степени из 1, кроме 1.

Пусть n — натуральное число, взаимно простое с характеристикой поля k. Тогда многочлен x^n-1 имеет n различных корней. Действительно, его производная равна nx^{n-1} , и обращается в ноль только при x=0. Таким образом, x^n-1 не имеет кратных корней.

Следовательно, в \bar{k} существуют n различных корней n-й степени из единицы. Они образуют циклическую группу. Образующие этой группы называются npumumushumu или nepsoofpashumu корнями n-й степени из единицы.

ЛЕММА 3.14 (лемма Гаусса). Пусть f(x) и g(x) — многочлены c целыми коэффициентами. Пусть a — наибольший общий делитель коэффициентов многочлена f(x), b — наибольший общий делитель коэффициентов многочлена g(x), c — наибольший общий делитель коэффициентов многочлена f(x)g(x). Тогда c = ba.

ДОКАЗАТЕЛЬСТВО. Достаточно доказать, что если a=b=1, то c=1. Предположим, что c делится на простое число p. Пусть

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

$$g(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0.$$

Пусть r — наименьшее число такое, что a_r не делится на p, s — наименьшее число такое, что b_s не делится на p. Рассмотрим коэффициент при x^{r+s} в f(x)g(x). Он равен

$$c_{r+s} = a_r b_s + a_{r+1} b_{s-1} + a_{r+2} b_{s-2} + \dots + a_{r-1} b_{s+1} + a_{r-2} b_{s+2} + \dots$$

Заметим, что все слагаемые, кроме a_rb_s делятся на p, а a_rb_s не делится на p. Тогда c_{r+s} также не делится на p.

ТЕОРЕМА 3.15. Пусть ζ — примитивный корень n-й степени из единицы. Тогда $[\mathbb{Q}(\zeta):\mathbb{Q}] = \varphi(n)$, где $\varphi(n)$ — функция Эйлера.

ДОКАЗАТЕЛЬСТВО. Пусть f(x) — минимальный многочлен элемента ζ над \mathbb{Q} . Тогда f(x) делит x^n-1 , т.е. $x^n-1=f(x)g(x)$. Из леммы Гаусса следует, что f(x) и g(x) — многочлены с целыми коэффициентами. Пусть p — простое число, не делящее n. Тогда ζ^p — примитивный корень n-й степени из единицы. Более того, все примитивные корни n-й степени из единицы могут быть получены последовательным возведением ζ в простые степени с показателями, не делящими n. Докажем, что ζ^p — корень многочлена f(x). Предположим, что ζ^p не является корнем многочлена f(x). Тогда ζ^p — корень многочлена g(x). Тогда ζ — корень многочлена g(x). Следовательно, $g(x^p)$ делится на f(x), т.е. $g(x^p) = f(x)h(x)$. Заметим, что h(x) имеет целые коэффициенты. Поскольку $a^p = a$ (mod p), то $g(x^p) = (g(x))^p$ (mod p). Отсюда,

$$(g(x))^p = f(x)h(x) \pmod{p}.$$

Тогда многочлены \bar{f} и \bar{g} над \mathbb{Z}_p , полученные редукцией по модулю p, не являются взаимно простыми. Следовательно, многочлен

 x^n-1 имеет кратные корни в расширении \mathbb{Z}_p . С другой стороны, его производная не равна нулю в поле характеристики p. Противоречие. Таким образом, ζ^p — корень многочлена f(x). Следовательно, все примитивные корни n-й степени из единицы являются корнями f(x). Тогда степень f(x) не меньше $\varphi(n)$, а, следовательно, равна $\varphi(n)$.

ТЕОРЕМА 3.16. Пусть ζ — примитивный корень n-й степени из единицы. Тогда $G(\mathbb{Q}(\zeta)/\mathbb{Q}) = U(n)$, где U(n) — группа единиц кольца \mathbb{Z}_n .

Замечание 3.17. Группа единиц кольца \mathbb{Z}_n это в точности множество обратимых элементов в \mathbb{Z}_n . Поскольку элемент $k \in \mathbb{Z}_n$ обратим тогда и только тогда, когда (k,n)=1, то порядок группы U(n) равен $\varphi(n)$.

ДОКАЗАТЕЛЬСТВО. Пусть $\sigma \in G$ и ζ — примитивный корень из единицы степени n. Тогда $\sigma(\zeta)$ определяет автоморфизм σ . Заметим, что $\sigma(\zeta) = \zeta^k$ — примитивный корень из единицы степени n. Тогда (k,n)=1. Определим $\psi\colon G \to U(n)$, как $\psi(\sigma)=k$. Если $\sigma'(\zeta)=\zeta^{k'}$, то

$$\sigma'(\sigma(\zeta)) = \sigma'(\zeta^k) = (\zeta^{k'})^k = \zeta^{kk'}.$$

Таким образом, ψ — гомоморфизм. Если $\psi(\sigma)=1$, то $\sigma(\zeta)=\zeta$ и, следовательно, σ — тождественное отображение. Таким образом, ψ — инъективный гомоморфизм. Поскольку $|G(\mathbb{Q}(\zeta)/\mathbb{Q})|=|U(n)|=\varphi(n)$, то ψ — изоморфизм.

ТЕОРЕМА 3.18. Пусть k- поле, содержащее примитивный корень n-й степени из единицы, и n взаимно просто c характеристикой поля. Пусть $a \in k$. Пусть $\alpha-$ корень многочлена x^n-a . Тогда $k(\alpha)-$ циклическое расширение степени d и $\alpha^d \in k$. В частности, если x^n-a неприводим, то $G(k(\alpha)/k)-$ циклическая группа порядка n.

ДОКАЗАТЕЛЬСТВО. Пусть ζ — примитивный корень n-й степени из единицы. Заметим, что корни x^n-a есть $\alpha\zeta^k$. Поскольку они все принадлежат $k(\alpha)$, то $k(\alpha)$ — нормальное расширение k. Более того, $\sigma(\alpha) = \zeta^k \alpha$. Определим $\psi \colon G \to \mathbb{Z}_n$, как $\psi(\sigma) = k$. Пусть $\sigma'(\alpha) = \alpha\zeta^{k'}$. Поскольку все элементы группы Галуа оставляют поле k на месте, а, следовательно и все корни из единицы, то

$$\sigma'(\sigma(\alpha)) = \sigma'(\alpha\zeta^k) = \alpha\zeta^{k'}\zeta^k = \alpha\zeta^{k+k'}.$$

Таким образом, ψ — гомоморфизм. Если $\psi(\sigma) = 0$, то $\sigma(\alpha) = \alpha$ и, следовательно, σ — тождественное отображение. Таким образом, ψ

— инъективный гомоморфизм. Следовательно, $G(k(\alpha)/k)$ — циклическая группа, порядок который делит n. Пусть $|G(k(\alpha)/k)| = d$, и σ — порождающий элемент группы $G(k(\alpha)/k)$. Пусть $\sigma(\alpha) = \zeta^k \alpha$. Тогда k имеет порядок d в \mathbb{Z}_n . Таким образом,

$$\sigma(\alpha^d) = (\zeta^k \alpha)^d = \zeta^{kd} \alpha^d = \alpha^d.$$

Поскольку α^d — неподвижный элемент, то $\alpha^d \in k$. Если $x^n - a$ неприводим, то $[k(\alpha):k] = n$. Следовательно, $|G(k(\alpha)/k)| = n$. Отсюда, $G(k(\alpha)/k) = \mathbb{Z}_n$.

Следствие 3.19. Пусть k- поле, содержащее примитивный корень q-й степени из единицы, где q- простое число, взаимно простое с характеристикой поля. Пусть $a \in k$. Тогда многочлен x^q- а либо неприводим, либо раскладывается на линейные множители.

2. Норма и след

Пусть K — конечное сепарабельное расширение поля k, [K:k]=n. Пусть $\sigma_1,\sigma_2,\ldots,\sigma_n$ — различные вложения K в алгебраическое замыкание \bar{k} поля k. Пусть $\alpha\in K$. Тогда определим норму α формулой

$$N_k^K(\alpha) = \prod_{i=1}^n \sigma_i(\alpha).$$

Аналогично определим cned α формулой

$$\operatorname{Tr}_k^K(\alpha) = \sum_{i=1}^n \sigma_i(\alpha).$$

ТЕОРЕМА 3.20. Норма является мультипликативным гомоморфизмом K^* в k^* . След является аддитивным гомоморфизмом K в k.

ДОКАЗАТЕЛЬСТВО. Заметим, что любой автоморфизм σ оставляет норму и след на месте. Следовательно, $N_k^K(\alpha) \in k^*$, если $\alpha \neq 0$, и $\mathrm{Tr}_k^K(\alpha) \in k$. Очевидно, что

$$N_k^K(\alpha_1\alpha_2) = \prod_{i=1}^n \sigma_i(\alpha_1\alpha_2) = \prod_{i=1}^n \sigma_i(\alpha_1)\sigma_i(\alpha_2) = N_k^K(\alpha_1)N_k^K(\alpha_2).$$

Аналогично,

$$\operatorname{Tr}_{k}^{K}(\alpha_{1}+\alpha_{2}) = \sum_{i=1}^{n} \sigma_{i}(\alpha_{1}+\alpha_{2}) = \sum_{i=1}^{n} \sigma_{i}(\alpha_{1}) + \sigma_{i}(\alpha_{2}) = \operatorname{Tr}_{k}^{K}(\alpha_{1}) + \operatorname{Tr}_{k}^{K}(\alpha_{2}).$$

ТЕОРЕМА 3.21. Пусть F — конечное сепарабельное расширение поля k, E — конечное сепарабельное расширение поля F. Тогда

$$N_k^E = N_k^F \circ N_F^E, \quad \operatorname{Tr}_k^E = \operatorname{Tr}_k^F \circ \operatorname{Tr}_F^E.$$

ДОКАЗАТЕЛЬСТВО. Пусть $\{\tau_i\}$ — семейство вложений F в \bar{k} над k. Продолжим каждое τ_i до вложения E в \bar{k} (будем обозначать это продолжение также через τ_i). Пусть $\{\sigma_i\}$ — семейство вложений E в \bar{k} над F. Пусть σ — вложение E в \bar{k} над k. Поскольку ограничение σ на F совпадает с некоторым τ_j , то $\tau_j^{-1}\sigma$ оставляет F неподвижным. Таким образом, существует σ_i такое, что $\tau_j^{-1}\sigma = \sigma_i$. Отсюда, $\sigma = \tau_j\sigma_i$. Следовательно, семейство $\{\tau_j\sigma_i\}$ задает все различные вложения E в \bar{k} над k. Отсюда,

$$N_k^E(\alpha) = \prod_{i,j} \tau_j \sigma_i(\alpha) = \prod_j \tau_j \left(\prod_i \sigma_i(\alpha) \right) = N_k^F(N_F^E(\alpha)),$$
$$\operatorname{Tr}_k^E(\alpha) = \sum_{i,j} \tau_j \sigma_i(\alpha) = \sum_j \tau_j \left(\sum_i \sigma_i(\alpha) \right) = \operatorname{Tr}_k^F(\operatorname{Tr}_F^E(\alpha)).$$

ТЕОРЕМА 3.22. Пусть $K=k(\alpha)$ и $f(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$ — минимальный многочлен элемента α . Тогда

$$N_k^K(\alpha) = (-1)^n a_0, \quad \text{Tr}_k^K(\alpha) = -a_{n-1}.$$

Доказательство. Пусть

$$f(x) = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n)$$

в \bar{k} . Тогда вложение $\sigma\colon k(\alpha)\to \bar{k}$ задается $\sigma(\alpha)=\alpha_i$. Таким образом,

$$N_k^K(\alpha) = \prod_{i=1}^n \sigma_i(\alpha) = \prod_{i=1}^n \alpha_i = (-1)^n a_0.$$

Аналогично,

$$\operatorname{Tr}_k^K(\alpha) = \sum_{i=1}^n \sigma_i(\alpha) = \sum_{i=1}^n \alpha_i = -a_{n-1}.$$

Теперь нам понадобятся некоторые факты о характерах группы.

Определение 3.23. Пусть G — группа и K — поле. Xаракmером группы G в K называется гомоморфизм $\chi \colon G \to K^*$. Характеры $\chi_1, \chi_2, \ldots, \chi_n$ называются линейно независимыми над K, если равенство

$$a_1\chi_1 + a_2\chi_2 + \dots + a_n\chi_n = 0$$

выполнено тогда и только тогда, когда все $a_i=0$. Здесь все $a_i\in K$, равенство нулю $a_1\chi_1+a_2\chi_2+\cdots+a_n\chi_n$ понимается, как тождественное равенство, т.е.

$$f(g) = a_1 \chi_1(g) + a_2 \chi_2(g) + \dots + a_n \chi_n(g) = 0,$$

для любого $g \in G$.

ТЕОРЕМА 3.24. Пусть $\chi_1, \chi_2, ..., \chi_n$ — различные характеры G в K. Тогда они линейно независимы над K.

ДОКАЗАТЕЛЬСТВО. Докажем по индукции. Один характер, очевидно, линейно независим. Предположим, что мы доказали для n-1 характера. Предположим, что выполнено

$$a_1\chi_1 + a_2\chi_2 + \dots + a_n\chi_n = 0$$

и все $a_i \neq 0$. Поскольку характеры χ_1 и χ_2 различны, то существует $y \in G$ такой, что $\chi_1(y) \neq \chi_2(y)$. Для всех $g \in G$ имеем

$$a_1\chi_1(yg) + a_2\chi_2(yg) + \dots + a_n\chi_n(yg) = 0.$$

Отсюда,

$$a_1\chi_1(y)\chi_1 + a_2\chi_2(y)\chi_2 + \dots + a_n\chi_n(y)\chi_n = 0.$$

Разделим это равенство на $\chi_1(y)$ и вычтем из

$$a_1\chi_1 + a_2\chi_2 + \dots + a_n\chi_n = 0.$$

Получаем

$$\left(a_2 - a_2 \frac{\chi_2(y)}{\chi_1(y)}\right) \chi_2 + \dots + \left(a_n - a_n \frac{\chi_n(y)}{\chi_1(y)}\right) \chi_n = 0.$$

Первый коэффициент отличен от нуля. Таким образом мы получили, что характеры $\chi_1,\chi_2,\ldots,\chi_{n-1}$ линейно зависимы. Противоречие.

ТЕОРЕМА 3.25 (теорема Гильберта 90). Пусть K — циклическое расширение поля k с группой Галуа G. Пусть σ — образующая этой группы, и $\beta \in K$. Норма $N_k^K(\beta) = 1$ тогда и только тогда, когда существует $\alpha \neq 0$ в K, такой, что $\beta = \frac{\alpha}{\sigma \alpha}$.

ДОКАЗАТЕЛЬСТВО. Предположим, что такой элемент существует. Тогда $N(\beta)=\frac{N(\alpha)}{N(\sigma\alpha)}$. Поскольку норма — это произведение по всем автоморфизмам из G, то применение σ лишь переставляет эти автоморфизмы. Следовательно, $N(\sigma\alpha)=N(\alpha)$. Тогда $N(\beta)=1$.

Предположим, что $N(\beta) = 1$. Согласно теореме 3.24 отображение

$$id + \beta \sigma + \beta \sigma(\beta)\sigma^2 + \dots + \beta \sigma(\beta) \dots \sigma^{n-2}(\beta)\sigma^{n-1}$$

не равно тождественно нулю (здесь id — тождественное отображение). Тогда существует $\gamma \in K$ такое, что

$$\alpha = \gamma + \beta \sigma(\gamma) + \beta \sigma(\beta) \sigma^{2}(\gamma) + \dots + \beta \sigma(\beta) \cdots \sigma^{n-2}(\beta) \sigma^{n-1}(\gamma)$$

не равен нулю. Применим $\beta \sigma$ к α . Получаем

$$\beta\sigma(\alpha) = \beta\sigma(\gamma) + \beta\sigma(\beta)\sigma^{2}(\gamma) + \dots + \beta\sigma(\beta)\dots\sigma^{n-2}(\beta)\sigma^{n-1}(\beta)\sigma^{n}(\gamma).$$

Заметим, что

$$\beta \sigma(\beta) \cdots \sigma^{n-2}(\beta) \sigma^{n-1}(\beta) = N(\beta) = 1$$

и
$$\sigma^n(\gamma) = \gamma$$
. Таким образом, $\beta \sigma(\alpha) = \alpha$. Отсюда, $\beta = \frac{\alpha}{\sigma \alpha}$.

ТЕОРЕМА 3.26. Пусть k- поле, содержащее примитивный корень n-й степени из единицы, u n взаимно просто c характеристикой поля. Пусть K- циклическое расширение степени n. Тогда существуют $\alpha \in K$, $a \in k$ такие, что $K=k(\alpha)$ u $\alpha-$ корень уравнения $x^n-a=0$.

ДОКАЗАТЕЛЬСТВО. Пусть ζ — примитивный корень из единицы и K — циклическое расширение поля k. Пусть σ — образующая группы G. Заметим, что $N(\zeta^{-1})=(\zeta^{-1})^n=1$. Согласно теореме Гильберта 90, существует $\alpha\in K$ такой, что $\sigma\alpha=\zeta\alpha$. Поскольку $\zeta\in k$, то $\sigma^k\alpha=\zeta^k\alpha$. Следовательно, $[k(\alpha):k]\geq n$. Поскольку $[K:k]\geq n$, то $K=k(\alpha)$. Более того,

$$\sigma(\alpha^n) = (\sigma(\alpha))^n = (\zeta \alpha)^n = \alpha^n.$$

Отсюда,
$$\alpha^n \in k$$
.

Теперь рассмотрим другой вариант теоремы Гильберта 90.

ТЕОРЕМА 3.27 (теорема Гильберта 90). Пусть K- циклическое расширение поля k с группой Галуа G. Пусть $\sigma-$ образующая этой группы, u $\beta \in K$. След $\mathrm{Tr}_k^K(\beta) = 0$ тогда u только тогда, когда существует $\alpha \in K$, такой, что $\beta = \alpha - \sigma \alpha$.

ДОКАЗАТЕЛЬСТВО. Предположим, что такой элемент существует. Тогда $\operatorname{Tr}_k^K(\beta) = \operatorname{Tr}_k^K(\alpha - \sigma \alpha)$. Поскольку след — это сумма по всем автоморфизмам из G, то применение σ лишь переставляет эти автоморфизмы. Следовательно, $\operatorname{Tr}(\sigma \alpha) = \operatorname{Tr}(\alpha)$. Тогда $\operatorname{Tr}(\beta) = 0$.

Предположим, что ${\rm Tr}(\beta)=0$. Заметим, что существует $\gamma\in K$ такое, что ${\rm Tr}(\gamma)\neq 0$. Положим

$$\alpha = \frac{1}{\text{Tr}(\gamma)} (\beta \sigma(\gamma) + (\beta + \sigma(\beta)) \sigma^2(\gamma) + \dots + (\beta + \sigma(\beta) + \dots + \sigma^{n-2}(\beta)) \sigma^{n-1}(\gamma)).$$
 Тогда $\beta = \alpha - \sigma \alpha$.

3. Резольвента

Определение 3.28. Пусть k — поле, содержащее корни n-й степени из единицы. Предположим, что char(k)=0. Пусть K — циклическое расширение поля k, и σ — порождает группу Галуа G(K/k). Пусть $x\in K,\ \zeta$ — корень n-й степени из единицы. Тогда выражение

$$(\zeta, x) = x + \zeta \sigma(x) + \zeta^2 \sigma^2(x) + \dots + \zeta^{n-1} \sigma^{n-1}(x)$$

называется резольвентой Лагранжа.

Утверждение 3.29. (1) $\sigma((\zeta, x)) = \zeta^{-1}(\zeta, x);$

- (2) $\sigma((1,x)) = \operatorname{Tr}(x) \in k;$
- (3) $(\zeta, x)^n \in k$;
- $(4) (\zeta, x)(\zeta^{-1}, x) \in k.$

Доказательство. Первые два свойства очевидны. Докажем (3). Получаем

$$\sigma((\zeta,x)^n) = \sigma^n((\zeta,x)) = (\zeta^{-1}(\zeta,x))^n = (\zeta,x)^n.$$

Следовательно, $(\zeta, x)^n$ — неподвижный элемент, а значит $(\zeta, x)^n \in k$. Докажем (4). Получаем

$$\sigma((\zeta, x)(\zeta^{-1}, x)) = \sigma((\zeta, x))\sigma((\zeta^{-1}, x)) = \zeta^{-1}(\zeta, x)\zeta(\zeta, x) = (\zeta, x).$$

Следовательно, $(\zeta,x)(\zeta^{-1},x)$ — неподвижный элемент, а значит $(\zeta,x)(\zeta^{-1},x)\in k.$

Рассмотрим кубическое уравнение $x^3+px+q=0$. Пусть $k=\mathbb{Q}(p,q,j)$, где j — кубический корень из единицы. Заметим, что любое кубическое уравнение приводится к такому виду. Пусть α,β,γ — корни этого уравнения. Пусть $d=(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)$. Заметим, что $k(\alpha,\beta,\gamma)=k(\alpha,d)$ и $d^2=-4p^3-27q^2$. Предположим, что группа Галуа этого уравнения есть S_3 . Пусть K — поле разложение

многочлена x^3+px+q , и E — неподвижное поле группы A_3 . Тогда E— расширение степени два над k, т.е. E = k(s). Пусть σ — порождающий элемент группы A_3 . Мы можем считать, что $\sigma = (\alpha \beta \gamma)$, т.е. σ переставляет по кругу корни уравнения $x^3 + px + q = 0$. Поскольку K— нормальное расширение поля k, то K — нормальное расширение поля E. Следовательно, K — расширение Галуа поля E. Заметим, что $G(K/E) = A_3$. Таким образом, K — циклическое расширение поля E. Согласно теореме 3.26 существует элемент $s' \in K$ такой, что $s^{\prime 3} \in E$ и $K = E(s^{\prime})$. Найдем s и s^{\prime} . Заметим, что $\sigma d = d$. Таким образом, $d \in E$. Поскольку транспозиция $(\alpha\beta)$ переводит d в -d, то $d \notin K$. Рассмотрим автоморфизм $\tau = id + j\sigma + j^2\sigma^2$. Согласно теореме 3.24 τ ненулевой. Более того, $\tau(\alpha) \neq 0$. Действительно, если $\tau(\alpha) = 0$, то $\tau(\beta) = \tau(\sigma(\alpha)) = j^2 \tau(\alpha) = 0$. Аналогично, $\tau(\gamma) = 0$. Следовательно, $q\tau(1)=\tau(q)=\tau(\alpha\beta\gamma)=0$ и $\tau=0$. Рассмотрим $(j,\alpha)=\alpha+j\beta+j^2\gamma=\tau(\alpha)$. Поскольку $\sigma((j,\alpha))=j^2(j,\alpha)\neq(j,\alpha)$, то $(j, \alpha) \notin E$. Согласно 3.29 $(j, \alpha)^3 \in E$. Отсюда, $K = L((j, \alpha))$.

4. Нормальный базис

Пусть A — абелева группа, k — поле и $\lambda_1, \lambda_2, \cdots, \lambda_n \colon A \to k$ — аддитивные гомоморфизмы. Будем говорить, что $\lambda_1, \lambda_2, \cdots, \lambda_n$ алгебраически зависимы, если существует многочлен $f(x_1, x_2, \dots, x_n)$ над k такой, что

$$f(\lambda_1(a), \lambda_2(a), \dots, \lambda_n(a)) = 0$$

для всех $a \in A$. Многочлен $f(x_1, x_2, \dots, x_n)$ называется $a\partial \partial umue-$ ным, если он индуцирует аддитивный гомоморфизм k^n в k.

ТЕОРЕМА 3.30. $\lambda_1, \lambda_2, \dots, \lambda_n \colon A \to k - add$ итивные гомоморфизмы абелевой группы A в поле k. Если эти гомоморфизмы алгебраически зависимы, то существует аддитивный многочлен $f(x_1, x_2, \dots, x_n)$ над k такой, что

$$f(\lambda_1(a), \lambda_2(a), \dots, \lambda_n(a)) = 0$$

для всех $a \in A$.

ДОКАЗАТЕЛЬСТВО. Мы докажем эту теорему для случая бесконечного поля. Пусть $f(x_1,x_2,\ldots,x_n)$ — многочлен наименьшей возможной степени такой, что

$$f(\lambda_1(a), \lambda_2(a), \dots, \lambda_n(a)) = 0$$

для всех $a \in A$. Пусть $X = (x_1, x_2, \dots, x_n), Y = (y_1, y_2, \dots, y_n),$ $\Lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$. Рассмотрим g(X, Y) = f(X + Y) - f(X) - f(Y).

Заметим, что

$$g(\Lambda(a), \Lambda(b)) = f(\Lambda(a+b)) - f(\Lambda(a)) - f(\Lambda(b)) = 0$$

для любых $a, b \in A$. Нам нужно доказать, что g — нулевой многочлен. Заметим, что степень g(X,Y) по X строго меньше степени f(X). Аналогично по Y. Предположим, что g не равен тождественно нулю. Рассмотрим два случая.

3.31. Имеем $g(\xi, \Lambda(b)) = 0$ для всех $\xi \in k^n$, $b \in A$. По предположению, существует $\xi \in k^n$ такой, что $g(\xi, Y)$ не равен тождественно нулю. Положим $P(Y) = g(\xi, Y)$. Тогда

$$P(\lambda_1(a), \lambda_2(a), \dots, \lambda_n(a)) = 0$$

для всех $a \in A$. С другой стороны, степень P меньше степени f. Противоречие.

3.32. Существуют $\xi \in k^n$, $b \in A$ такие, что $g(\xi, \Lambda(b)) \neq 0$. Положим $P(X) = g(X, \Lambda(b))$. Тогда P(X) — ненулевой многочлен. С другой стороны, $P(\Lambda(a)) = 0$ для любого $a \in A$, и степень многочлена P меньше степени f. Противоречие.

Таким образом, g индуцирует нулевую функцию. Поскольку поле бесконечно, то g — нулевой многочлен. \square

Утверждение 3.33. Пусть $f(x_1, x_2, \dots, x_n)$ — аддитивный многочлен. Тогда

$$f(x_1, x_2, \dots, x_n) = f_1(x_1) + f_2(x_2) + \dots + f_n(x_n),$$

 $i\partial e f_i(x) - a\partial\partial umu$ вные многочлены от одной переменной.

ДОКАЗАТЕЛЬСТВО. Пусть $f_i(x_i) = f(0, \dots, 0, x_i, 0, \dots, 0)$. Тогда $f_i(x)$ — аддитивные многочлены от одной переменной и

$$f(x_1, x_2, \dots, x_n) = f_1(x_1) + f_2(x_2) + \dots + f_n(x_n).$$

УТВЕРЖДЕНИЕ 3.34. Пусть $f(x)-a\partial d$ итивный многочлен. Тогда

$$f(x) = \sum_{i=1}^{m} a_i x^{p^i},$$

 $ede\ p$ — характеристика поля. Если $char(k)=0,\ mo\ f(x)=ax.$

Доказательство. Пусть $f(x) = \sum_{i=1}^{n} a_i x^i$. Тогда

$$g(x,y) = f(x+y) - f(x) - f(y) = \sum_{i=1}^{n} a_i((x+y)^i - x^i - y^i) = 0.$$

Пусть $a_i \neq 0$. Поскольку $(x+y)^i - x^i - y^i$ содержит $ix^{i-1}y$, то g(x,y) содержит $a_iix^{i-1}y$. С другой стороны, g(x,y) — нулевой многочлен. Следовательно, i делится на характеритику поля. Пусть $i=p^ms$. Тогда

$$(x+y)^i - x^i - y^i = (x^{p^m} + y^{p^m})^s - (x^{p^m})^s - (y^{p^m})^s$$

Отсюда, рассуждая аналогично, s = 1.

ТЕОРЕМА 3.35. Пусть K — бесконечное поле u $\sigma_1, \sigma_2, \ldots, \sigma_n$ — различные элементы конечной группы автоморфизмов поля K. Тогда $\sigma_1, \sigma_2, \ldots, \sigma_n$ алгебраически независимы над K.

ДОКАЗАТЕЛЬСТВО. В случае характеристики ноль, теорема следует из 3.24, 3.30, 3.33, 3.34. Пусть характеристика p>0, и $\sigma_1,\sigma_2,\ldots,\sigma_n$ алгебраически зависимы. Согласно теореме 3.30 существует аддитивный многочлен $f(x_1,x_2,\ldots,x_n)$ такой, что $f\neq 0$, но

$$f(\sigma_1(a), \sigma_2(a), \dots, \sigma_n(a)) = 0$$

для любого $a \in K$. В силу 3.33 и 3.34 мы можем записать

$$\sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij} (\sigma_i(a))^{p^j} = 0$$

для любого $a \in K$. Согласно 3.24 гомоморфизмы $x \to (\sigma_i(x))^{p^j}$ не могут быть различными. Таким образом, существуют i_1, i_2, j_1, j_2 такие, что $(\sigma_{i_1}(x))^{p^{j_1}} = (\sigma_{i_2}(x))^{p^{j_2}}$, при этом либо $i_1 \neq i_2$, либо $j_1 \neq j_2$. Пусть $j_1 \leq j_2$. Заметим, что извлечение корня p-й степени в поле характеристики p однозначно. Тогда $\sigma_{i_1}(x) = (\sigma_{i_2}(x))^{p^{j_2-j_1}}$. Положим $\sigma = \sigma_{i_2}^{-1}\sigma_{i_1}$. Тогда $\sigma(x) = x^{p^{j_2-j_1}}$. Поскольку σ — элемент конечной группы, то существует n такое, что $\sigma^n = id$. Тогда $x = x^{p^{n(j_2-j_1)}}$ для всех $x \in K$. Поскольку K — бесконечное поле, то $j_2 = j_1$. Отсюда, $\sigma_{i_1}(x) = \sigma_{i_2}(x)$ для всех $x \in K$. Противоречие.

ТЕОРЕМА 3.36. Пусть K — конечное расширение Галуа поля k, G — его группа Галуа. Пусть $n = |G|, \sigma_1, \sigma_2, \ldots, \sigma_n$ — элементы группы G. Тогда существует элемент $w \in K$ такой, что $\sigma_1 w, \sigma_2 w, \ldots, \sigma_n w$ — базис K над k.

ДОКАЗАТЕЛЬСТВО. Мы докажем эту теорему для случая бесконечного поля. Рассмотрим множество переменных $x_1 = x_{\sigma_1}, \dots, x_n = x_{\sigma_n}$. Пусть $f(x_1, x_2, \dots, x_n) = \det(t_{ij})$, где $t_{ij} = x_{\sigma_i^{-1}\sigma_j}$. Заметим, что $f(x_1, x_2, \dots, x_n)$ не является тождественным нулем, что видно если подставить 1 вместо x_e и 0 вместо остальных x_i . Согласно теореме 3.35 существует $w \in K$ такое, что $\det(\sigma_i^{-1}\sigma_j(w)) \neq 0$. Докажем, что $\sigma_1 w, \sigma_2 w, \dots, \sigma_n w$ линейно независимы. Предположим, что существуют $a_1, a_2, \dots a_n \in k$ такие, что

$$a_1\sigma_1(w) + a_2\sigma_2(w) + \dots + a_n\sigma_n(w) = 0.$$

Применим σ_i^{-1} к этому соотношению для каждого $i=1,2,\ldots,n$. Получим систему линейных уравнений относительно переменных $a_1,a_2,\ldots a_n$,

$$\begin{cases} \sigma_1^{-1}\sigma_1(w)a_1 + \sigma_1^{-1}\sigma_2(w)a_2 + \dots + \sigma_1^{-1}\sigma_n(w)a_n = 0\\ \sigma_2^{-1}\sigma_1(w)a_1 + \sigma_2^{-1}\sigma_2(w)a_2 + \dots + \sigma_2^{-1}\sigma_n(w)a_n = 0\\ \dots & \dots\\ \sigma_n^{-1}\sigma_1(w)a_1 + \sigma_n^{-1}\sigma_2(w)a_2 + \dots + \sigma_n^{-1}\sigma_n(w)a_n = 0. \end{cases}$$

Определитель этой системы не равен нулю. Следовательно, все $a_i = 0$.

5. Радикальные расширения

ТЕОРЕМА 3.37 (теорема Артина–Шрейера). Пусть k- поле характеристики p. Тогда если K- циклическое расширение k степени p, то существует такой элемент $\alpha \in K$ такой, что $K=k(\alpha)$, $u \alpha -$ корень многочлена x^p-x-a , $a \in k$. Обратно, для любого $a \in k$ многочлен $f(x)=x^p-x-a$ либо имеет корень $a \in k$, $a \in k$ тоглада все его корни лежат $a \in k$, либо $a \in k$ неприводим. В последнем случае, если $a \in k$ корень $a \in k$ то $a \in k$ и то $a \in k$ степени $a \in k$ степени $a \in k$ степени $a \in k$ степени $a \in k$

ДОКАЗАТЕЛЬСТВО. Пусть K — циклическое расширение k степени p. Тогда

$$Tr(-1) = (-1) + (-1) + \dots + (-1) = -p = 0.$$

Согласно теореме 3.27 существует $\alpha \in K$ такой, что $-1 = \alpha - \sigma \alpha$. Отсюда, $\sigma \alpha = \alpha + 1$. Тогда $\sigma^i \alpha = \alpha + i$ при $i = 1, 2, \ldots, p$. Таким образом, σ^i — различные вложения поля $k(\alpha)$. Отсюда, $[k(\alpha):k] \geq p$. Тогда $K = k(\alpha)$. Заметим, что

$$\sigma(\alpha^p - \alpha) = (\sigma(\alpha))^- \sigma(\alpha) = (\alpha + 1)^p - (\alpha + 1) = \alpha^p - \alpha.$$

Следовательно, $\alpha^p - \alpha \in k$. Таким образом, α — корень многочлена $x^p - x - a, \ a \in k$.

Обратно. Пусть α — корень многочлена $x^p-x-a,\,a\in k.$ Заметим, что

$$(\alpha + i)^p - (\alpha + i) - a = \alpha^p + i - \alpha - i - a = \alpha^p - \alpha - a = 0,$$

где $i=1,2,\ldots,p$. Следовательно, $\alpha+i$ — корни многочлена x^p-x-a . Таким образом, x^p-x-a имеет p различных корней, и если один корень лежит в k, то все его корни лежат в k. Предположим, что ни один корень не лежит в k. Докажем, что многочлен x^p-x-a неприводим. Предположим, что

$$x^p - x - a = f(x)g(x),$$

где $1 \le \deg f < p$. Поскольку

$$x^{p} - x - a = (x - \alpha)(x - \alpha - 1)(x - \alpha - 2) \cdots (x - \alpha - (p - 1)),$$

то

$$f(x) = (x - \alpha - i_1)(x - \alpha - i_2) \cdots (x - \alpha - i_d),$$

где $d=\deg f$. Коэффициент при x^{d-1} будет равен $-d\alpha+j$, где j- некоторое целое число, т.е. $j\in k$. Поскольку $d\neq 0$ в k, то $-d\alpha+j$ не принадлежит k. Противоречие. Таким образом, многочлен x^p-x-a неприводим. Все его корни лежат в $k(\alpha)$. Тогда $k(\alpha)$ — нормальное расширение поля k. Так как x^p-x-a не имеет кратных корней, то $k(\alpha)$ — расширение Галуа поля k. Имеется автоморфизм σ поля $k(\alpha)$, такой, что $\sigma\alpha=\alpha+1$. Степени σ^i автоморфизма σ дают $\sigma^i(\alpha)=\alpha+i$, т.е. σ^i различны для $i=0,1,2,\ldots,p-1$. Следовательно, группа Галуа состоит из σ^i , а потому является циклической.

ОПРЕДЕЛЕНИЕ 3.38. Пусть K — расширение поля k. Будем говорить, что K — разрешимо в радикалах (радикальное расширение), если существует башня расширений

$$k = K_0 \subset K_1 \subset \cdots \subset K_n = K$$

такая, что каждое расширение K_i над K_{i-1} принадлежит одному из следующих типов

- (1) получается присоединением корня многочлена $x^n a$, где $a \in K_{i-1}$, n взаимно просто с характеристикой;
- (2) получается присоединением корня многочлена $x^p x a$, где $a \in K_{i-1}, p$ характеристика поля.

Пусть $E = k(\alpha_1, \alpha_2, \dots, \alpha_n)$, K — расширение поля k. Пусть K и E вложены в поле L. Поле

$$F = KE = K(\alpha_1, \alpha_2, \dots, \alpha_n)$$

мы будем называть nod zemom K над F.

ТЕОРЕМА 3.39. Пусть K — конечное расширение Галуа поля k, F — произвольное расширение поля k, причем K, F — подполя некоторого поля L. Тогда KF — расширение Галуа поля F. Пусть H — группа Галуа KF над F, G — группа Галуа K над k. Пусть $\sigma \in H$. Тогда ограничение σ на K задает вложение H в группу G.

ДОКАЗАТЕЛЬСТВО. Докажем, что KF — нормальное расширение поля F. Пусть σ — вложение KF в \bar{L} над F. Тогда σ тождественно на F, а, следовательно, на k. Поскольку K — нормальное расширение k, то σ — автоморфизм K. Таким образом, σ отображает KF в себя. Следовательно, KF — нормальное расширение поля F. Пусть $K = k(\alpha_1, \alpha_2, \ldots, \alpha_n)$. Тогда все α_i сепарабельны. Поскольку $KF = F(\alpha_1, \alpha_2, \ldots, \alpha_n)$, то KF — сепарабельное расширение поля F. Таким образом, KF — расширение Галуа поля F. Пусть H — группа Галуа H0 поле H1. Пусть H3 гождественно на H4 гождественно на H5 пожет быть представлен в виде комбинации сумм, произведений и отношений элементов из H3 и H4 группу H5. Следовательно, ограничение H6 на H7 задает инъективный гомоморфизм H6 группу H6.

ТЕОРЕМА 3.40. Пусть K_1 , K_2 — конечное расширения Галуа поля k, G_1 , G_2 — их группы Галуа соответственно. Предположим, что K_1 , K_2 — подполя некоторого алгебраически замкнутого поля L. Тогда K_1K_2 — расширение Галуа над k. Пусть G — группа Галуа поля K_1K_2 над k. Тогда ограничение $\sigma \in G$ на K_1 и K_2 задает инъективный гомоморфизм групп $G \to G_1 \times G_2$ посредством $\sigma \to (\sigma|_{K_1}, \sigma|_{K_2})$.

Доказательство. Согласно теореме 3.39 K_1K_2 — расширение Галуа поля K_2 (т.е. это расширение нормально и сепарабельно. Поскольку K_2 — сепарабельное расширение поля k, то согласно теореме 2.56 K_1K_2 — сепарабельное расширение поля k. Пусть σ — вложение поля K_1K_2 в поле L над k. Тогда ограничения σ на K_1 и K_2 оставляют эти поля на месте. Следовательно, σ — автоморфизм поля K_1K_2 над k. Таким образом, K_1K_2 — нормально расширение поля k. Следовательно, K_1K_2 — расширение Галуа поля k. Отображение $G \to G_1 \times G_2$ посредством ограничений $\sigma \to (\sigma|_{K_1}, \sigma|_{K_2})$ является гомоморфизмом групп. Если σ тождественен на K_1K_2 , то он очевидно тождественен на K_1K_2 . Таким образом, наше отображение инъективно.

СЛЕДСТВИЕ 3.41. В условиях теоремы 3.40 предположим, что $K_1 \cap K_2 = k$. Тогда отображение $\sigma \to (\sigma|_{K_1}, \sigma|_{K_2})$ задает изоморфизм $G \cong G_1 \times G_2$.

ДОКАЗАТЕЛЬСТВО. Предположим, что $K_1 \cap K_2 = k$. Пусть $\sigma_1 \in G_1$. Тогда σ_1 продолжается на K_1K_2 над K_2 . Таким образом, мы получили, что подгруппа $G_1 \times \{e\}$ лежит в образе нашего гомоморфизма. Аналогично, $\{e\} \times G_2$ лежит в образе нашего гомоморфизма. Следовательно, отображение $\sigma \to (\sigma|_{K_1}, \sigma|_{K_2})$ задает изоморфизм $G \cong G_1 \times G_2$.

Следствие 3.42. Пусть K_1, K_2, \ldots, K_n — конечные расширения Галуа поля k с группами Галуа G_1, G_2, \ldots, G_n соответственно. Предположим, что

$$K_i \cap (K_1 K_2 \cdots K_{i-1} K_{i+1} \cdots K_n) = k$$

для любого i. Тогда группа Галуа $K_1K_2\cdots K_n$ над k изоморфна $G_1\times G_2\times\cdots\times G_n$.

Следствие 3.43. Пусть K — конечное расширения Галуа поля k с группой Галуа G. Предположим, что $G = G_1 \times G_2$. Пусть K_1 — неподвижное поле группы $G_1 \times \{e\}$, K_2 — неподвижное поле группы $\{e\} \times G_2$. Тогда K_1, K_2 — конечные расширения Галуа над k, $K_1 \cap K_2 = k$. Более того, $K = K_1K_2$.

ДОКАЗАТЕЛЬСТВО. Поскольку подгруппы $G_1 \times \{e\}$ и $\{e\} \times G_2$ нормальны в G, то K_1, K_2 — конечные расширения Галуа над k. Пусть $\alpha \in K_1 \cap K_2$ и $\sigma \in G$. Тогда $\sigma = (\sigma_1, \sigma_2), \, \sigma_1 \in G_1, \, \sigma_2 \in G_2$. Тогда

$$\sigma(\alpha) = (\sigma_1, \sigma_2)(\alpha) = (\sigma_1, e)((e, \sigma_2)(\alpha)) = \alpha.$$

Следовательно, $\alpha \in k$. Заметим, что $K_1K_2 \subset K$. С другой стороны, согласно 3.40 и 3.41, K_1K_2 — конечное расширение Галуа над k с группой Галуа $G \cong G_1 \times G_2$. Следовательно, $K = K_1K_2$.

Следствие 3.44. Пусть K — конечное расширения Галуа поля k с группой Галуа G. Предположим, что $G = G_1 \times G_2 \times \cdots \times G_n$. Пусть K_i — неподвижное поле группы

$$G_1 \times G_2 \times \cdots G_{i-1} \times \{e\} \times G_{i+1} \times \cdots \times G_n.$$

Тогда K_i — конечное расширение Галуа над k,

$$K_i \cap (K_1 K_2 \cdots K_{i-1} K_{i+1} \cdots K_n) = k$$

для любого i. Более того, $K = K_1 K_2 \cdots K_n$.

Определение 3.45. Пусть K — конечное сепарабельное расширение поля k. Пусть E — наименьшее расширение Галуа поля k, которое содержит K. Будем говорить, что расширение K над k разрешимо, если группа Галуа G(E/k) разрешима.

ТЕОРЕМА 3.46. Пусть E — разрешимое расширение поля k, F — любое расширение поля k. Причем E и F содержаться в некотором алгебраически замкнутом поле. Тогда EF — разрешимое расширение поля F.

ДОКАЗАТЕЛЬСТВО. Пусть K — разрешимое расширение Галуа поля k и $E \subset K$. Тогда KF — разрешимое расширение Галуа поля F и группа G(KF/F) — подгруппа группы G(K/k) (см. 3.39). Поскольку G(K/k) разрешима, то G(KF/F) разрешима. Так как $EF \subset KF$, то EF — разрешимое расширение поля F.

ТЕОРЕМА 3.47. Пусть F — расширение поля k, E — расширение поля F. Тогда E — разрешимое расширение поля k тогда u только тогда, когда F — разрешимое расширение поля k и E — разрешимое расширение поля F.

ДОКАЗАТЕЛЬСТВО. Пусть F — разрешимое расширение поля k и E — разрешимое расширение поля F. Пусть K — конечное разрешимое расширение Галуа поля k, содержащее F. Согласно теореме 3.46 EK — разрешимо над K. Пусть L — разрешимое расширение Галуа поля K, содержащее EK. Пусть σ — вложение L над k в алгебраически замкнутое поле. Заметим, что $\sigma K = K$. Пусть M — минимальное поле, содержащее все σL , т.е.

$$M = \sigma_1 L \sigma_2 L \cdots \sigma_n L.$$

Заметим, что M — расширение Галуа поля k (оно сепарабельно, поскольку L сепарабельно над k, и нормально, поскольку любое вложение M над k переставляет $\sigma_i L$). В силу теоремы 3.40 группа Галуа поля M над K является подгруппой произведения $\prod G(\sigma L/K)$.

Следовательно, она разрешима. Согласно теореме 3.10 имеет место сюръективный гомоморфизм $G(M/k) \to G(K/k)$. Отсюда, G(M/k) содержит разрешимую нормальную подгруппу, факторгруппа по которой разрешима. Следовательно, G(M/k) разрешима. Поскольку $E \subset M$, то E — разрешимое расширение поля k.

ТЕОРЕМА 3.48. Пусть E — сепарабельное расширение поля k. Тогда E — разрешимо в радикалах тогда и только тогда, когда E — разрешимое расширение поля k.

ДОКАЗАТЕЛЬСТВО. Предположим, что E — разрешимо. Пусть K — разрешимое расширение Галуа поля k, содержащее E. Пусть m — произведение всех степеней простых чисел, не равных характеристике и делящих [K:k]. Положим $F=k(\zeta)$, где ζ — примитивный корень m-й степени из единицы. Заметим, что F — абелево расширение поля k. Поднимем K над F. Согласно 3.46~KF разрешимо над F. Тогда существует башня полей между k и KF такая, что каждый ее этаж — циклическое расширение. В силу теорем 3.18 и 3.37~KF разрешимо в радикалах над k. Следовательно, E — разрешимо в радикалах над k.

Обратно, предположим, что E — разрешимо в радикалах над k. Пусть $\sigma_1, \sigma_2, \ldots, \sigma_n$ — вложения E над k в алгебраическое замыкание \bar{E} . Пусть K — наименьшее поле, содержащее все $\sigma_i E$. Тогда K — расширение Галуа разрешимое в радикалах. Пусть m — произведение всех степеней простых чисел, не равных характеристике и делящих [K:k]. Положим $F=k(\zeta)$, где ζ — примитивный корень m-й степени из единицы. Заметим, что KF разрешимо над F. Отсюда, KF разрешимо над k.

6. Теория Куммера

Пусть K — расширение Галуа поля k и m — целое положительное число. Будем говорить, что это расширение nokasamens m, если $\sigma^m=1$ для всех $\sigma\in G(K/k)$. Пусть m взаимно просто с характеристикой поля. Мы будем обозначать через $a^{\frac{1}{m}}$ любой элемент α , что $\alpha^m=a$. Пусть B — подгруппа k^* , содержащая $(k^*)^m$. Положим $K_B=k(B^{\frac{1}{m}})$ — расширение, порожденное всеми $a^{\frac{1}{m}}$, где $a\in B$. Заметим, что K_B — расширение Галуа. Действительно, любое вложение σ поля K_B в k переводит корни любого многочлена k^m-a в себя. Поскольку k0 порождается k0 над k1. Пусть k0 — группа Галуа расширения k1 над k2. Пусть k3 себя сталуа расширения k4 над k5 порожение k6 является гомоморфизмом k7 в k8 порожение k9 является гомоморфизмом k9 в k9. Заметим, что k9 является гомоморфизмом k9 в k9. Заметим, что k9 является гомоморфизмом k9 в k1. Заметим, что k3 является гомоморфизмом k4 в k5. Пусть k6 является гомоморфизмом k6 в k7. Заметим, что k8 является гомоморфизмом k9 в k9. Заметим, что k9 является гомоморфизмом k9 в k9. Погова k9.

$$\frac{\sigma\alpha'}{\alpha'} = \frac{\sigma(\zeta'\alpha')}{\zeta'\alpha} = \frac{\sigma\alpha}{\alpha} = \zeta.$$

Таким образом, $\frac{\sigma\alpha}{\alpha}$ не зависит от выбора α . Соответствие $(\sigma, a) = \frac{\sigma\alpha}{\alpha}$ задает отображение $G \times B \to \mathbb{Z}_m$. Очевидно, что $(\sigma, a) = 1$, если $a \in (k^*)^m$. Пусть $a, b \in B$ и $\alpha^m = a$, $\beta^m = b$. Тогда $(\alpha\beta)^m = ab$.

Следовательно,

$$(\sigma, ab) = \frac{\sigma(\alpha\beta)}{\alpha\beta} = \frac{\sigma(\alpha)\sigma(\beta)}{\alpha\beta} = \frac{\sigma(\alpha)}{\alpha} \frac{\sigma(\beta)}{\beta} = (\sigma, a)(\sigma, b).$$

ТЕОРЕМА 3.49. Пусть k- поле, m- целое положительное число взаимно простое с характеристикой, причем примитивный корень m-й степени из единицы лежит в k. Пусть B- подгруппа в k^* , содержащая $(k^*)^m$, $K_B=k(B^{\frac{1}{m}})$. Тогда K_B- абелево расшрение Галуа показателя m. Пусть G- его группа Галуа. Имеет место отображение $G \times B \to \mathbb{Z}_m$, задаваемое соответствием $(\sigma,a)=\frac{\sigma\alpha}{\sigma}$. Ядро слева равно 1, ядро справа есть $(k^*)^m$.

ДОКАЗАТЕЛЬСТВО. Пусть $\sigma \in G$ и $(\sigma, a) = 1$ для любого $a \in B$. Тогда $\sigma \alpha = \alpha$ для любого α такого, что $\alpha^n = a$. Следовательно, σ действует тождественно на K_B . Таким образом, $\sigma = e$. Пусть $a \in B$ и $(\sigma, a) = 1$ для любого $\sigma \in G$. Рассмотрим подполе $k(a^{\frac{1}{m}})$. Если $a^{\frac{1}{m}}$ не лежит в k, то существует автоморфизм σ поля $k(a^{\frac{1}{m}})$ над k, который не является тождественным. Автоморфизм σ можно продолжить на K_B , т.е. до элемента группы Галуа. С другой стороны, $(\sigma, a) \neq 1$. Противоречие.

Следствие 3.50. Расширение K_B над k конечно тогда и только тогда, когда индекс $(B:(k^*)^m)$ конечен, и $[K_B:k]=(B:(k^*)^m)$.

ТЕОРЕМА 3.51. Отображение $B \to K_B$ задает биективное соответствие между множеством всех подгрупп B, содержащих $(k^*)^m$, и множеством абелевых расширений над k показателя m.

ДОКАЗАТЕЛЬСТВО. Пусть B_1, B_2 — подгруппы в k^* , содержащие $(k^*)^m$. Если $B_1\subset B_2$, то $k(B_1^{\frac{1}{m}})\subset k(B_2^{\frac{1}{m}})$. Обратно, предположим, что $k(B_1^{\frac{1}{m}})\subset k(B_2^{\frac{1}{m}})$. Нам нужно доказать, что $B_1\subset B_2$. Пусть $b\in B_1$. Тогда $k(b^{\frac{1}{m}})\subset k(B_2^{\frac{1}{m}})$, причем $k(b^{\frac{1}{m}})$ содержится в некотором конечном подрасширении $k(B_2^{\frac{1}{m}})$. Таким образом, мы можем считать, что B_2/k^* — конечно порожденная, а, следовательно, конечная, группа. Пусть B_3 — группа, порожденная B_2 и k. Тогда $k(B_3^{\frac{1}{m}})=k(B_2^{\frac{1}{m}})$. С другой стороны, согласно 3.50,

$$(B_2:(k^*)^m)=[K_{B_2}:k]=[K_{B_3}:k]=(B_3:(k^*)^m).$$

Следовательно, $B_2 = B_3$. Отсюда, $b \in B_2$. Тогда $B_1 \subset B_2$. Отсюда следует инъективность отображения $B \to K_B$.

Пусть K — абелево расширение поля k показателя m. Предположим, что K конечно. Тогда группа Галуа G(K/k) раскладывается в

прямое произведение циклических групп, порядка не выше m. Мы можем применить 3.44. Таким образом, $K = K_1K_2 \cdots K_n$, где K_i — циклические расширения. Согласно теореме 3.26, K_i может быть получено присоединением корня m-й степени из элемента b_i . Следовательно, K может быть получено присоединением корней m-й степени из элементов $\{b_i\}$. Здесь мы уже можем не предполагать конечность расширения K и числа элементов $\{b_i\}$. Пусть B — подгруппа в k^* , порожденная всеми b и $(k^*)^m$. Тогда $k(B^{\frac{1}{m}}) = K$. \square

7. Целые расширения Галуа

В этом параграфе слово "кольцо" будет обозначать коммутативное кольцо с единицей.

Определение 3.52. Пусть A — кольцо и M — A-модуль. Будем говорить, что M точный, если из равентсва aM=0 следует, что a=0.

ТЕОРЕМА 3.53. Пусть A-nодкольцо кольца B и $\alpha \in B$. Следующие условия эквивалентны:

- (1) α есть корень многочлена $x^{n} + a_{n-1}x^{n-1} + \cdots + a_{1}x + a_{0}$.
- (2) Подкольцо $A[\alpha]$ конечно порожденный A-модуль.
- (3) Существует точный модуль над $A[\alpha]$, являющийся конечно порожденным A-модулем.

ДОКАЗАТЕЛЬСТВО. Предположим, что выполнено первое условие. Пусть $f(x) \in A[x]$ — многочлен со старшим коэффициентом единица, для которого $f(\alpha) = 0$. Если $g(x) \in A[x]$, то g(x) = f(x)q(x)+r(x), где $\deg r < \deg f = n$. Тогда $f(\alpha) = r(\alpha)$. Следовательно, $1, \alpha, \alpha^2, \ldots, \alpha^{n-1}$ являются образующими $A[\alpha]$. Уравнение f(x) = 0 называется *целым уравнением* для α над A.

Предположим, что выполнено второе условие. Тогда в качестве точного модуля можно взять само $A[\alpha]$.

Предположим, что выполнено третье условие. Пусть M — точный модуль над $A[\alpha]$, конечнопорожденный над A. Пусть w_1, w_2, \ldots, w_n — его пораждающие. Тогда существуют элементы $a_{ij} \in A$ такие, что

$$\begin{cases} \alpha w_1 = a_{11}w_1 + a_{12}w_2 + \dots + a_{1n}w_n \\ \alpha w_2 = a_{21}w_1 + a_{22}w_2 + \dots + a_{2n}w_n \\ \dots & \dots \\ \alpha w_n = a_{n1}w_1 + a_{n2}w_2 + \dots + a_{nn}w_n. \end{cases}$$

Перенесем $\alpha w_1, \alpha w_2, \dots, \alpha w_n$ вправо. Получаем систему, которая должна иметь ненулевое решение. Тогда

$$d = \begin{vmatrix} a_{11} - \alpha & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \alpha & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \alpha \end{vmatrix}$$

аннулирует M, т.е. dM=0. Поскольку M — точный мотуль, то d=0. Тогда

$$f(x) = \begin{vmatrix} a_{11} - x & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - x & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - x \end{vmatrix}$$

задает (с точностью до знака) целое уравнение для α .

Элемент α , удовлетворяющий этим условиям называется *целым* над A.

УТВЕРЖДЕНИЕ 3.54. Пусть A — целостное кольцо, K — его поле частных, и α — алгебраический элемент над K. Тогда существует $d \in A$ такой, что $d\alpha$ — целый элемент над A.

ДОКАЗАТЕЛЬСТВО. Пусть f(x) — минимальный многочлен элемента α . Умножая f(x) на наименьшее общее кратное знаменателей его коэффициентов, получаем

$$a_n \alpha^n + a_{n-1} \alpha^{n-1} + \dots + a_1 \alpha + a_0 = 0,$$

где $a_i \in A, a_n \neq 0$. Умножим это уравнение на a_n^{n-1} , получим

$$(a_n\alpha)^n + a_{n-1}(a_n\alpha)^{n-1} + \dots + a_n^{n-2}a_1(a_n\alpha) + a_n^{n-1}a_0 = 0.$$

Таким образом, $a_n \alpha$ — целый элемент над A.

Пусть кольцо A содержится в кольце B. Мы говорим, что B — иелое кольцо над A (иелое расширение кольца A), если любой элемент из B является целым над A.

Утверждение 3.55. Пусть B — целое расширение кольца A, конечнопорожденное, как A-алгебра. Тогда B — конечнопорожденный A-модуль.

Доказательство. Докажем по индукции. Пусть

$$A \subset A[\alpha_1] \subset A[\alpha_1, \alpha_2] \subset \cdots \subset A[\alpha_1, \alpha_2, \ldots, \alpha_n] = B,$$

где каждый α_i — целый элемент над A, а следовательно и над $A[\alpha_1,\alpha_2,\ldots,\alpha_{i-1}].$ Исходя из определения, $A[\alpha_1,\alpha_2,\ldots,\alpha_{i-1}][\alpha_i]$ —

конечно порожденный $A[\alpha_1,\alpha_2,\ldots,\alpha_{i-1}]$ -модуль. Отсюда, B — конечнопорожденный A-модуль.

ТЕОРЕМА 3.56. Пусть B — целое расширение кольца A, C — целое расширение кольца B. Тогда C — целое расширение кольца A. Обратно, если C — целое расширение кольца A, то B — целое расширение кольца B.

ДОКАЗАТЕЛЬСТВО. Если C — целое кольцо над A, то ясно, что B — целое кольцо над A, и C — целое кольцо над B. Предположим, что B — целое расширение кольца A, C — целое расширение кольца B. Пусть $\alpha \in C$. Тогда

$$\alpha^n + b_{n-1}\alpha^{n-1} + \dots + b_1\alpha + b_0 = 0,$$

где $b_i \in B$. Положим $B_1 = A[b_0, b_1, \cdots, b_{n-1}]$. Тогда, согласно утверждению 3.55, B_1 — конечнопорожденный A-модуль. Следовательно, $B_1[\alpha]$ — конечнопорожденный A-модуль. С другой стороны, поскольку $A[\alpha] \subset B_1[\alpha]$, то $B_1[\alpha]$ — точный $A[\alpha]$ -модуль. Отсюда, C — целое расширение кольца A.

ТЕОРЕМА 3.57. Пусть A- подкольцо кольца B. Тогда элементы B, целые над A, образуют подкольцо в B.

ДОКАЗАТЕЛЬСТВО. Если $\alpha \in B$ — целый над A, то $A[\alpha]$ — целое расширение кольца A. Действительно, для любого $\alpha' \in A[\alpha]$, $A[\alpha]$ является точным $A[\alpha']$ -модулем. С другой стороны, $A[\alpha]$ — конечно порожденный A-модуль. Пусть $\alpha, \beta \in B$ — целые элементы над A. Рассмотрим башню $A \subset A[\alpha] \subset A[\alpha, \beta]$. Каждый этаж этой башни является целым расширением. Тогда, по теореме $3.56, A[\alpha, \beta]$ — целое расширение A. Таким образом, $\alpha \pm \beta, \alpha\beta$ — целые элементы над A.

ТЕОРЕМА 3.58. Пусть A — целостное кольцо, k — его поле частных, E — конечное расширение над k и $\alpha \in E$ — целый элемент над A. Тогда коэффициенты минимального многочлена α являются целыми над A. B частности целыми будут норма и след.

ДОКАЗАТЕЛЬСТВО. Для всякого вложения σ поля E над k. \square

Пусть $A \subset B$. Множество элементов из B, целых над A, называется *целым замыканием* кольца A в B. Будем говорить, что целостное кольцо A *целозамкнуто*, если целое замыкание A в своем поле частных совпадает с A.

Литература

- [1] Ван-дер-Варден Б.Л. Современная алгебра.
- [2] Зарисский О., Самюэль П. Комутативная алгебра.
- [3] Каргополов М.И., Мерзляков Ю.И. Основы теории групп.
- [4] Кострикин А.И. Основы алгебры.
- [5] Курош А.Г., Курс высшей алгебры.
- [6] Ленг С. Алгебра.
- [7] Постников М. М. Теория Галуа.