

1. Simplify the following expressions using Boolean algebra:

a.
$$(B + \overline{C})(\overline{B} + C) + \overline{A} + B + \overline{C}$$

 $= B\overline{B} + BC + \overline{B}\overline{C} + C\overline{C} + \overline{A} + \overline{B} + \overline{C}$ [Dist. + DM]
 $= 0 + BC + \overline{B}\overline{C} + 0 + A + \overline{B} + C$ [R8, R9]
 $= A + \overline{B} + C$ [R1, R10]

b.
$$(\overline{A} + B + \overline{C})(A + B + \overline{C})(\overline{A} + B + C)(\overline{BC} + \overline{A}\overline{B}\overline{C})$$

$$= (\overline{A} + B + \overline{C}) + (\overline{A} + B + \overline{C}) + (\overline{A} + B + C) + (\overline{BC} + \overline{A}\overline{B}\overline{C})$$

$$= \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C} + BC + \overline{A}\overline{B}\overline{C}$$

$$= A\overline{B}C + \overline{A}\overline{B}C + A\overline{B}C + BC + \overline{A}\overline{B}\overline{C}$$

$$= A\overline{B}C + \overline{A}\overline{B}C + A\overline{B}\overline{C} + BC + \overline{A}\overline{B}\overline{C}$$

$$= A\overline{B}(C + \overline{C}) + \overline{A}\overline{B}(C + \overline{C}) + BC$$

$$= A\overline{B} + A\overline{B} + BC$$

$$= \overline{B}(A + \overline{A}) + BC$$

$$= \overline{B} + BC$$

$$= \overline{B} + BC$$

$$= \overline{B} + C$$
[R6, R4]
$$= \overline{B} + C$$
[R11]

- 2. Suppose a Boolean variable Z is described by the following Karnaugh map
 - a. Construct a minimum SOP expression for Z.

AB C	D 00	01	11	10
00	X	X	X	0
01	0	X	1	1
11	0	1	1	X
10	0	X	X	0

$$Z = D + BC$$

b. Construct a minimum POS expression for Z.

AB CI	00	01	11	10
00	X	X	X	0
01	0	X	1	1
11	0	1	1	X
10	0	X	X	0

$$Z = B(C + D)$$

c. Implement Z using NAND gates.

d. Implement Z using NOR gates.

3. For the following logic circuit, draw the output waveform ...

4. Design a logic circuit whose output Z is HIGH only when a majority of its inputs A, B, and C are LOW.

Inputs			Output
A	B	C	Z
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

