Прикладная Криптография: Симметричные криптосистемы Абсолютная и Семантическая стойкость

Макаров Артём МИФИ 2025

Структура курса

• Лекции: 16 недель

- Сдача разделов: 3 блока
 - Для каждого блока жёсткий дедлайн (без переносов)
 - https://github.com/CryptoCourse/CryptoLectures/wiki/Список-домашних-работ-и-лекций
 - https://github.com/CryptoCourse/CryptoLabs/wiki/список-лабораторных-работ
 - Штраф за пропуск дедлайна: для дз -5/100 к итоговой оценке за семестр за каждый дедлайн в неделю; лабы после дедлайна не сдаются (и -5 к итоговой оценке за каждую пропущенную лабу)
- Для сдачи каждого блока:
 - Сдача лабораторных работ для данного блока
 - Сдача домашних работ
 - Сдача теории по лабораторным и домашним

Структура курса (2)

- Тест в начале каждой пары
 - 3-5 минут
 - 1 вопрос
 - Ответ на листке не больше половины а4 и не меньше четверти а4
 - Нельзя пользоваться телефонами и конспектами, а также соседями
 - При опоздании ждём в коридоре
- Лекция
- Лабораторная/семинар
 - Сдача и защита дз
 - Разбор заданий
 - Сдача лабораторных работ

Структура курса (3)

- Сдача лабораторных работ
 - ДО начала пары необходимо загрузить их на Github по ссылке
 - Написать в tg о загруженной работе, включить в текст сообщения фамилию
 - На паре во время сдачи лабораторных работ заявить о желании сдать лабораторную работу
 - При сдаче лабораторной работы необходимо продемонстрировать работу программы и ответить на теоретические вопросы, если иное не было указано в личных сообщениях после отправки работы.

Структура курса (4)

• Формирование оценки:

$$T = \frac{N_1 + N_2 + N_3}{3} * 0.9 + B * 0.1 + E - P$$

- N_i , i=1,2,3 нормированная на 1 сумма оценок по дз за i-й блок
- В нормированная на 1 сумма оценок по тестам в начале пары
- *E* дополнительные «плюшки»
- Р штрафы за дедлайны

Связь

https://t.me/f1589 t.me (∀вопросы)

Лабораторные работы

• REST API служба (dotnet, self-hosted).

• Задача — продемонстрировать атаку на криптосистему систему с уязвимостью.

• Допустимые языки программирования: C++, C#, Python, Java, другие?

• Подробнее на лабораторной работе.

Сдача теории

- Сдаётся в формате вопрос ответ
 - Задаётся набор различных вопросов по пройденному материалу
 - Если на какой то вопрос ответ не получен, или получен не верный ответ даётся время подумать или поискать ответ
 - Количество попыток не ограничено внутри блока
- Несправедливости:
 - Разное количество вопросов разным людям
 - Максимальное количество вопросов не ограничено
 - Возможность не сдать теорию, даже если в гугле были найдены все ответы

Материалы прошлого года

- Курс обновляется в момент чтения. Материалы прошлого года доступны, но еженедельно обновляются.
- Доверять и использовать нужно только текущие материалы, т.е. материалы всех прошедших в семестре лекций и лабораторных заданий текущего блока.
- Не рекомендуется выполнять задания «наперёд», так как материал может измениться

Материалы прошлого года

Название	Описание	Блок	Сроки сдачи
Атака при многократном использовании одноразового блокнота	link	1	07.09.19 - 21.09.19(06:00)
Атака на аутентичность при использовании поточных шифров	link	1	07.09.19 - 21.09.19(06:00)
X Атака на аутентичность блочного шифра в режиме CBC	meh	2	20.09.18 - 01.11.18(06:00)

Лекция	Описание	Блок	Сроки сдачи домашней работы
1	Абсолютная и семантическая стойкость (лекция, задание)	1	14.09.19
2	Поточные шифры (лекция, задание)	1	XXXX
3	Практические аспекты (лекция)	1	null

Использование нейронок

- **Нельзя** использовать выход нейронок для выполнения ДЗ и лабораторных работ, даже для написания README.
 - Если вы всё же использовали нейронку, и по какой то причине, считаете, что это допустимое использование необходимо явно в материале, где вы её использовали указать это в начале данного материала.
- Можно использовать нейронки для генерации смешных картинок с котиками в тематике курса.

Обратная связь и пожелания по курсу

Историческая задача криптографической защите информации

- Передача зашифрованного сообщения по открытому каналу
- При перехвате зашифрованного сообщения открытый текст должен остаться неизвестным для злоумышленника

Способы построения и анализа криптосистем

- Досистемный подход— построение и анализ криптосистем, которые выглядят «сложными» для создателя;
- Предположении о стойкости исходит «из очевидной сложности взлома» для создателя схемы
- Примеры шифр Цезаря, шифр простой замены, шифр Вижинера

Современная задача криптографической защиты информации

- Передача сообщения по открытому каналу
- Возможен активный злоумышленник

• Обеспечение конфиденциальности, аутентичности, целостности,

Понятие стойкости

Нужно как то оценивать **стойкость** шифров, желательно в виде некоторой величины. Численное значение оценки стойкости называется **параметром стойкости**.

При оценке стойкости криптографического примитива он рассматривается в некоторой **модели**. Каждая такая модель должна давать возможность оценивать стойкость примитивов в ней.

Все примитивы, имеющие стойкость ниже пороговой будем считать нестойкими.

Оценка стойкости криптографического примитива

- Определение примитива
 - Что делает алгоритм примитива, чем он является?
 - Какие параметры примитива?
- Определение модели
 - Каковы возможности противника?
 - Какой целевой параметр стойкости?
 - Как определена стойкость? Как она зависит от параметров?
- 555
- Сравнение стойкости с целевым параметром

Способы построения и анализа криптосистем

- Системный подход построение и анализ криптосистем на основе конкретных криптографических примитивов
- Возможно наличие не только средств обеспечения секретности, но и аутентичности, целостности и других
- Предположении о стойкости исходит из анализа системы в целом, через сведение стойкости к сложности вычислительно сложной задачи
- При замене части системы или примитива необходимо произвести анализ заново

Криптосистема Шифр* Хэш-функция* Код аутентичности*

Принцип Керкгоффса

При построении и анализе криптосистем предполагаем, что противник знает ВСЁ, кроме секретных ключей.

Предполагается, что противник знает

- Функции зашифрования/расшифрования (подписи/проверки/...)
- Слабые ключи (при наличии)
- «Плохие» значения шифртекстов/открытых текстов
- Любые особенности примитивов
- Любые существующие атаки на примитивы

Способы построения и анализа криптосистем

- Современный подход построение и анализ криптосистем на основе абстрактных моделей криптографических примитивов
- Вместо анализа частных свойств примитивов и их взаимодействия производится анализ самой конструкции, вне зависимости от используемых примитивов и их стойкости
- Предположении о стойкости исходит из анализа системы в предположении об априорной стойкости примитивов
- При замене части системы нет необходимости проводить повторных анализ

Слишком сложно

Прикладное мостостроение

Стойкость мостов через сведение к стойкости составных элементов*

Макаров Артём МИФИ 2025

^{* –} исключительно с целью демонстрации на пальцах, автор не имеет понятия, как на самом деле оценивается прочность мостов

Историческая задача построения мостов

- Отправка товаров на другой берег, используя некоторый транспорт
- Обеспечение целостности грузов, используемого транспорта

Оценка стойкости моста

- Определение типа моста
 - Арочный? Подвесной?
- Определение модели
 - Какова предполагаемая нагрузка на мост? Какого она типа?
 - Какое количество транспорта, какая нагрузка, если ли «пики» нагрузки...
 - Какая целевая «стойкость» моста? Как она зависит от параметров
- 555
- Сравнение стойкости с целевым параметром

Сведение стойкости моста к стойкости составных элементов

Хотим показать, что мост является стойким от некоторых параметров, если стойкими являются её составные части.

$$S_{\text{моста}} = F(S_{\text{опоры}}, S_{\text{пролёта}}, S_{\text{арки}})$$

Для простоты рассмотрим только сведение до стойкости опоры, т.е. предположим, что пролёт и арка «безусловно стойкие».

$$S_{\text{моста}} = F(S_{\text{опоры}})$$

Доказательство стойкости мостов показывается сведением её к стойкости составных элементов.

Мост стойкий => составные элементы стойкие

<=> (отрицание обоих частей)

Составные элементы не стойкие => Мост нестойкий

Составные элементы не стойкие => Мост нестойкий

• Если можем показать, что в предположении «Мост сломался» у нас всегда ломается опора, значит мост всегда будет стойким, если будет стойкой опора.

Ах да, криптография

Наиболее распространённый способ доказательства практической стойкости криптографического примитива является сведение атаки на него к вычислительно сложной задаче. Иными словами показывается, что произвести атаку на примитив так же сложно как решить вычислительно сложную задачу.

Доказательство стойкости криптосистемы показывается сведением её к стойкости криптографических примитив. При современном подходе описание системы использует только абстрактные модели примитивов (PRF, PRP, и другие).

Пусть A — стойкая система. Показать что система B стойкая. $(A \to B)$. (Показать сведение стойкости системы B к стойкости системы A.

 \triangleright От противного. Пусть существует атака на систему B. Попробуем использовать эту атаку для построения атаки на систему A.

(Строим атаку на систему A).

Следовательно, из предположения нестойкости системы B (предположения о наличии атаки) мы построили атаку на систему A, $\overline{B} \to \overline{A}$.

Но система A — стойкая, следовательно предположение не верно и B — стойкая. \lhd

Показывается теоретическая стойкость, при предположении о стойкости абстрактных примитивов.

Сведение стойкости криптографический примитивов

- Для симметричных криптосистем стойкость сводится к задаче 3SAT:
 - Пусть дана булевая функция от N переменных. Найти вектор решений, при котором значение булевой функции равно 1.
 - NP полная задача
 - Как правило не показывается явное сведение, а доказывается стойкость к существующим атакам
- Для асимметричных криптосистем стойкость может сводится:
 - Задача дискретного логарифмирования в конечных группах
 - Задача факторизации больших целых чисел
 - Задача нахождения кратчайшего вектора решётки
 - Задача декодирования линейных кодов
 - Задача решения многомерных квадратичных многочленов

•

Вопросов больше, чем ответов

Рассмотрим Шифр.

- Как определить модель Шифра?
- Как в рамках модели определить стойкость?
 - Каков смысл числового значения стойкости?
- Как связана стойкость и практические атаки?
- Какой параметр стойкости считать допустимым?

Шифр Шеннона

Шифр Шеннона - пара функций E = (E, D), таких что:

• (1) Функция E (функция зашифрования) принимает на вход ключ k и сообщение m (называемой открытым текстом, РТ) и даёт на выходе шифртекст c (СТ), такой что

$$c = E(k, m)$$
.

Говорят, что c есть **зашифрование** m на ключе k.

• (2) Функция D (функция расшифрования) принимает на вход ключ k и шифртекст c и даёт на выходе сообщение m, такое что

$$m = D(k, c)$$

Говорят, что m это расшифрование c на ключе k.

Шифр Шеннона

• (3) Функция D обращает функцию E (свойство корректности): $\forall k, \forall m \ D(k, E(k, m)) = m.$

Пусть K — множество ключей, M — множество сообщений, C — множество шифртекстов.

Тогда шифром Шеннона, определённым над (K, M, C) называют пару функций E = (E, D):

$$E: K \times M \to C$$

$$D: K \times C \rightarrow M$$
,

для которых выполняются свойства (1) – (3).

Нотация

 $v \in V_n = \{0,1\}^n$ - двоичный вектор длины $n \ (|v| = n)$

 0^n - двоичный вектор $(000 \dots 00) \in V_n$ 1^n - двоичный вектор $(111 \dots 11) \in V_n$ $0^k 1^l$ - двоичный вектор $\underbrace{(000 \dots 00111 \dots 11)}_{k} \in V_{k+l}$

 $v'\in\{0,1\}^*=igcup_{k=0}^\infty\{0,1\}^k$ - двоичный вектор произвольной длины $v''\in\{0,1\}^{\le L}=igcup_{k=0}^L\{0,1\}^k$ - двоичный вектор, длины не больше L

Нотация

 $v \in V_n = \{0,1\}^n$ - двоичный вектор длины $n \ (|v| = n)$

Пусть $a \in V_n$: $a = (a_0, a_1, \dots, a_{n-1}), b \in V_n$: $b = (b_0, b_1, \dots, b_{n-1})$ $ab = (a||b) \in V_{2n}$: $(a||b) = (a_0, a_1, \dots, a_{n-1}, b_0, b_1, \dots, b_{n-1})$ - конкатенация векторов a и b

v[q] - q-я координата вектора $v,\ q < n$ $v[q,q+1,...w] \in V_{w-q+1}$ - подвектор, полученный из координат вектора $v,\ q < w < n$.

Нотация

 $x \in_R X - x \in X$, выбранный случайно равновероятно (если не указано явно иное распределение)

 $x \leftarrow_R X$ — выбор случайного равновероятного $x \in X$ (если не указано явно иное распределение)

 $\Pr[W]$ – вероятность события W

О.Т. (Р.Т.) – Открытый текст (Plain Text)

Ш.Т (С.Т.) – Шифртекст (Cipher Text)

Пример: Одноразовый блокнот

Пусть E = (E, D) – **шифр Шеннона**, для которого $K = M = C = \{0,1\}^L$, где L – фиксированный параметр.

Для ключа $k \in K$ и сообщения $m \in M$ функция **зашифрования** определена как:

$$E(k,m)=k\oplus m$$
.

Для ключа $k \in K$ и шифртекста $c \in C$ функция **расшифрования** определена как:

$$D(k,c)=k\oplus c.$$

⊕ - побитное сложение по модулю 2 (XOR).

Корректность: $D(k, E(k, m)) = D(k, k \oplus m) = k \oplus (k \oplus m) = (k \oplus k) \oplus m = 0^L \oplus m = m.$

Пример: Одноразовый блокнот переменной длины

Пусть E = (E, D) – **шифр Шеннона**, для которого $K = \{0,1\}^L$, $M = C = \{0,1\}^{\le L}$, где L – фиксированный параметр.

Для ключа $k \in K$ и сообщения $m \in M$: |m| = l функция **зашифрования** определена как:

$$E(k,m) = k[0..l-1] \oplus m.$$

Для ключа $k \in K$ и шифртекста $c \in C$: |c| = l функция **расшифрования** определена как:

$$D(k,c) = k[0..l-1] \oplus c.$$

⊕ - побитное сложение по модулю 2 (XOR).

Корректность:
$$D(k, E(k, m)) = D(k, k \oplus m) = k \oplus (k \oplus m) = (k \oplus k) \oplus m = 0^L \oplus m = m.$$

Пример: Шифр подстановки

Пусть Σ – конечный алфавит. Пусть E = (E, D) – **шифр Шеннона**. для которого $M = C = \Sigma^L$, где L – фиксированный параметр. $K = S(\Sigma)$ – множество всех подстановок над Σ .

Для ключа $k \in K$ и сообщения $m \in M$: |m| = L функция **зашифрования** определена как:

$$E(k,m) = (k(m[0]), k(m[1]), ..., k(m[L-1])).$$

Для ключа $k \in K$ и шифртекста $c \in C$: |c| = l функция **расшифрования** определена как:

$$D(k,c) = (k^{-1}(c[0]), k^{-1}(c[1]), \dots, k^{-1}(c[L-1])).$$

Корректность:
$$D(k, E(k, m)) = (k^{-1}(k(m[0])), ..., k^{-1}(k(m[L-1])) = (m[0], ..., m[L-1]) = m$$

Пример: Аддитивный одноразовый блокнот

Пусть E = (E, D) — **шифр Шеннона**, для которого $K = M = C = \{0, ..., n-1\}^L$, где n — фиксированный параметр.

Для ключа $k \in K$ и сообщения $m \in M$ функция **зашифрования** определена как:

$$E(k,m) = (m+k) \operatorname{mod} n$$
, покоординатно

Для ключа $k \in K$ и шифртекста $c \in C$ функция **расшифрования** определена как:

$$D(k,c) = (c-k) \text{mod } n$$
, покоординатно

Корректность:
$$D(k, E(k, m)) = D(k, m + k) = (m + k) - k = m$$
.

Цель шифра Шеннона

- Цель шифра Шеннона обеспечение секретности передаваемых сообщений по открытому каналу
- Для обеспечения секретности необходим общий секретный ключ $k \in K$, неизвестный для злоумышленника

Понятие стойкости

Очевидный вопрос – что понимать под стойкостью шифра?

Стойкость – метрика «качества» шифра.

- Попытка 1: размер ключа
 - Чем больше ключ, тем сложнее перебрать все возможные варианты. Длина ключа как параметр стойкости.
 - Но возможны и другие атаки, кроме перебора, например частотный анализ
 - Пример шифр подстановки, $|\Sigma|=27$, $K=S(\Sigma)$: $|K|{\sim}10^{28}$, но возможна полиномиальная частотная атака

Понятие стойкости

- Попытка 2: малая вероятность расшифрования
 - Чем меньше вероятность расшифрования для злоумышленника, тем более стойкий шифр. Вероятность расшифрования как параметр стойкости.
 - Но тогда шифр определённый на коротких сообщениях, например 1 бит, менее стойкий чем шифр, определённый на длинных сообщениях, так как велика возможность «угадать» сообщение.
 - Иными словами, невозможно обеспечить стойкость при шифровании однобитного сообщения

Понятие стойкости

- Попытка 3: равная вероятность расшифрования
 - При данном шифртексте вероятность расшифрованы его в любой открытый текст одинакова
 - Пример нестойкого шифра: $M = \{0,1\}^n$, E = (E,D) шифр Шеннона над (K,M,C):

$$K_0 \subset K : E(k_0, m_0) = c$$
,
 $K_1 \subset K : E(k_1, m_1) = c$,
 $|K_0| > |K_1|$

 $m_0, m_1 \in M$: $m_0 \neq m_1$; $(k_0, k_1) \in (K_0 \times K_1)$ Вероятность расшифровать c как m_0 ($|K_0| = 800, |K_1| = 600$):

$$\frac{|K_0|}{|K_0| + |K_1|} \approx 57\% > 50\%$$

Абсолютная стойкость

Определение 1.1. Пусть E = (E, D) – шифр шеннона над (K, M, C). Рассмотрим вероятностный эксперимент, в котором случайная величина \mathbf{k} равномерна распределена на K ($\mathbf{k} \in_R K$).

Если
$$\forall m_0, m_1 \in M$$
 и $c \in C$ имеем: $\Pr[E(\mathbf{k}, m_0) = c] = \Pr[E(\mathbf{k}, m_1) = c]$

То шифр Е называется абсолютно стойким шифром Шеннона.

Абсолютная стойкость защищает против **любых** (не только эффективных*) противников.

Теорема 1.1. Пусть E = (E, D) – шифр Шеннона над (K, M, C). Тогда следующие определения эквивалентны:

- (1) *E* абсолютно стойкий
- (2) $\forall c \in C \exists N_c(c) : \forall m \in M | \{k \in K : E(k, m) = c\}| = N_c$
- (3) Если $\mathbf{k} \in_R K$ тогда все случайные величины $E(\mathbf{k}, m)$ имеют одинаковое распределение

ho (2) <=> (3) Переформулируем (2): для каждого $c \in C$ существует число $P_c(c)$, такое что $\forall m \in M \Pr[E(\mathbf{k},m)=c]=P_c$, $\mathbf{k} \in_R K$. $P_c=\frac{N_c}{|K|}$. \lhd

Теорема 1.1. Пусть E = (E, D) – шифр Шеннона над (K, M, C). Тогда следующие определения эквивалентны:

- (1) *E* абсолютно стойкий
- (2) $\forall c \in C \exists N_c(c) : \forall m \in M | \{k \in K : E(k, m) = c\}| = N_c$
- (3) Если $\mathbf{k} \in_R K$ тогда все случайные величины $E(\mathbf{k},m)$ имеют одинаковое распределение

ho (1) \Rightarrow (2) Пусть $c \in C$ фиксированный шифртекст. Выберем произвольное сообщение $m_0 \in M$. Пусть $P_c = \Pr[E(\mathbf{k}, m_0) = c]$. (1) \Rightarrow $\forall m \in M \Pr[E(\mathbf{k}, m) = c] = \Pr[E(\mathbf{k}, m_0) = c] = P_c$, $N_c = P_c * |K| \lhd$

Теорема 1.1. Пусть E = (E, D) — шифр Шеннона над (K, M, C). Тогда следующие определения эквивалентны:

- (1) *E* абсолютно стойкий
- (2) $\forall c \in C \exists N_c(c) : \forall m \in M | \{k \in K : E(k, m) = c\}| = N_c$
- (3) Если $\mathbf{k} \in_R K$ тогда все случайные величины $E(\mathbf{k}, m)$ имеют одинаковое распределение

$$ho(2) \Rightarrow (1)$$
. Фиксируем $m_0, m_1 \in M, c \in C$ (2) $\Rightarrow \Pr[E(\mathbf{k}, m_0) = c] = P_c = \frac{N_c}{|K|} = \Pr[E(\mathbf{k}, m_1) = c]$. \lhd

Одноразовый блокнот — абсолютно стойкий шифр

Теорема 1.2. Пусть E = (E, D) – одноразовый блокнот при $K = M = C = \{0,1\}^L$ для параметра L. Тогда E – абсолютно стойкий шифр.

ightharpoonup Для фиксированного сообщения $m \in M$, шифртекста $c \in C$ и ключа $k \in K$, уникального для сообщения $m : k = m \oplus c$ имеем определение (2) из **Теоремы 1.1** \lhd

Одноразовый блокнот переменной длины – не абсолютно стойкий шифр

Теорема 1.3. Пусть E = (E, D) – одноразовый блокнот переменной длины при $K = \{0,1\}^L$, $M = C = \{0,1\}^{\le L}$ для параметра L. Тогда E – **не** абсолютно стойкий шифр.

$$ightharpoonup$$
 Пусть $m_0 \in M$: $|m_0| = 1$, $m_1 \in M$: $|m_1| > 1$, $c \in C$: $|c| = 1$

$$a = \Pr[E(k, m_0) = c] = 0.5$$

 $b = \Pr[E(k, m_1) = c] = 0$
 $a \neq b$.

(Шифртекст размера 1 бит не может иметь открытый текст длины > 1) Иными словами не выполняется **Определение 1.1**. (Абсолютная стойкость). ⊲

Предикат

Пусть имеется некоторый элемент $s \in S$.

Пусть мы хотим получить некоторую информацию обладая s. Пусть функция F(s) — есть функция «получения» некоторой информации из s.

Предикатом на множестве S назовём булеву функцию $\phi: S \to \{0,1\}$.

Тогда вычисление предиката $F(s) = \phi(s)$ есть минимальная функция «получения» информации из s (функция получения информации, с выходом 1 бит).

Альтернативная трактовка предиката — бинарная различимость элементов множества.

Теорема 1.4. Пусть E = (E, D) – шифр Шеннона на (K, M, C). Рассмотрим вероятностный эксперимент для равномерно распределённой $\mathbf{k} \in_R K$.

Тогда E — абсолютно стойкий тогда и только тогда, когда для произвольного предиката $\phi\colon \mathcal{C} \to \{0,1\}$ и $\forall m_0, m_1 \in M$ $\Pr[\phi(E(\mathbf{k}, m_0) = 1] = \Pr[\phi(E(\mathbf{k}, m_1)) = 1]$

$$ho$$
Пусть $S = \{c \in \mathcal{C} : \phi(c) = 1\}$. Так как E – абсолютно стойкий имеем

$$S$$

$$\phi = 1$$

$$\phi = 0$$

$$C$$

$$\Pr[\phi(E(\mathbf{k}, m_0)) = 1] = \sum_{c \in S} \Pr[E(\mathbf{k}, m_0) = c] =$$

$$\sum_{c \in S} \Pr[E(\mathbf{k}, m_1) = c] = \Pr[\phi(E(\mathbf{k}, m_1)) = 1]$$

Теорема 1.4. Пусть E = (E, D) - шифр Шеннона на (K, M, C). Рассмотрим вероятностный эксперимент для равномерно распределённой $\mathbf{k} \in_R K$.

Тогда E — абсолютно стойкий тогда и только тогда, когда для произвольного предиката $\phi\colon \mathcal{C} \to \{0,1\}$ и $\forall m_0, m_1 \in M$ $\Pr[\phi(E(\mathbf{k}, m_0) = 1] = \Pr[\phi(E(\mathbf{k}, m_1)) = 1]$

Пусть $E - \mathbf{he}$ абсолютно стойкий. То есть $\exists c_0 \in C$:

$$\Pr[E(\mathbf{k}, m_0) = c_0] \neq \Pr[E(\mathbf{k}, m_1) = c_0].$$

Пусть
$$\phi$$
: $\phi(c_0) = 1$, $\phi(c') = 0$, $\forall c' \neq c_0$

$$\Pr[\phi(E(\mathbf{k}, m_0) = 1] = \Pr[E(\mathbf{k}, m_0) = c_0] \neq$$

 $\Pr[E(\mathbf{k}, m_1) = c_0] = \Pr[\phi(E(\mathbf{k}, m_1) = 1]$

Теорема 1.4. Пусть E = (E, D) - шифр Шеннона на (K, M, C). Рассмотрим вероятностный эксперимент для равномерно распределённой $\mathbf{k} \in_R K$.

Тогда E — абсолютно стойкий тогда и только тогда, когда для произвольного предиката $\phi\colon C \to \{0,1\}$ и $\forall m_0, m_1 \in M$ $\Pr[\phi(E(\pmb{k},m_0)=1]=\Pr[\phi(E(\pmb{k},m_1))=1]$

Иными словами: при использовании произвольного предиката на шифртекстах абсолютно стойкого шифра злоумышленник не получает информации об открытом тексте.

Теорема 1.5. Пусть E = (E, D) - шифр Шеннона на (K, M, C). Рассмотрим вероятностный эксперимент для $\mathbf{k} \in_R K$, $\mathbf{m} \in_R M$. \mathbf{m} и \mathbf{k} — независимы. Введём случайную величину $\mathbf{c} = E(\mathbf{k}, \mathbf{m})$ Тогда:

- Если E абсолютно стойкий, тогда $m{c}$ и $m{m}$ независимы:
- Если \boldsymbol{c} и \boldsymbol{m} независимы, и каждое сообщение из M выберется с вероятностью, отличной от 0, то E абсолютно стойкий.

Иными словами, для абсолютно стойкого шифра верно равенство: $\Pr[m{m} = m | m{c} = c] = \Pr[m{m} = m]$

То есть наличие шифртекста не даёт злоумышленнику никаких преимуществ.

Энтропия

Мера неопределённости в поведении сигнала, количество информации передаваемое сигналом, величина измерения – бит.

$$H(x) = -\sum_{x \in X} \Pr[x = x] \log_2 \Pr[x = x]$$
 - энтропия **случайной величины** $x \in_R X$.

Пусть $x \in_R \{0,1\}^n$, тогда $H(x) \le n$. H(x) = n если x – равномерно распределённая

 $H(x|y=x) = -\sum_{x \in X} \sum_{y \in Y} \Pr[x=x|y=y] \log_2 \Pr[x=x|y=y]$ - условная энтропия случайной величины x. $H(x|y) \leq H(x)$, H(x|y) = H(x), если x и y независимы.

Энтропия

Простыми словами – сколько в данной величине случайности в битах.

```
H(0 ... 0) =
          H(1...0) =
          H(1001) =
          H(0110) =
        H(00*001) =
           H(**) =
          H(1 **) =
    H(бросок монетки) =
H(бросок кубика с 4 гранями) =
H(бросок кубика с 3 гранями) =
```

Энтропия

Энтропия аддитивна для независимых событий

$$H(**) + H(1*) =$$
 $H(бросок кубика с 4 гранями) + $H(бросок монетки) =$$

Энтропия максимальна при случайном равновероятном выборе H(бросок "честной" монетки)

 $\geq H$ (бросок монетки, одна из сторон которой тяжелее)

Эквивалентные определения идеального шифра

Теорема 1.6. Пусть E = (E, D) - шифр Шеннона на (K, M, C). Пусть $m \in_R M, c \in_R C$. Тогда шифр E – абсолютно стойкий, если H(m) = H(m|c)

Иными словами шифртекст не даёт никакой информации об открытом тексте.

Принцип действия абсолютно стойкого шифра — «применить» энтропию (неопределённость) равномерно распределённого ключа к сообщению для получения равномерно распределённого шифртекста.

Плохие новости

Теорема 1.7 (Шеннона). Пусть E = (E, D) шифр Шеннона на (K, M, C). Если E — абсолютно стойкий, то

- $|K| \ge |M|$
- $H(\mathbf{k}) \geq H(\mathbf{m}), \mathbf{k} \in_{R} K, \mathbf{m} \in_{R} M$

Простое объяснение — невозможно получить равномерно распределённую случайную величину длины m, используя детерминированный алгоритм над равномерно распределённой случайной величиной длины n < m.

Иными словами, для шифрования 1 Gb данных **любым** абсолютно стойким шифром потребуется ключ размера как минимум 1 Gb.

Семантическая стойкость

Продолжение следует...