Off-Campus Centre of Nitte (Deemed to be University)

I Sem B. Tech. (CBCS) Mid Semester Examinations - I, September 2022

EE1001-1 - BASIC ELECTRICAL EN

LE 1001-1 - BASIC ELECTRICAL ENGINEERING	;				
Note: Answer any One full question from each Unit.			Max. Marks: 20		
Init I	Unit.				
Unit – I Using mesh analysis, find voltage drop across 3 Ω resistor.	Marks	BT*	CO*	P0*	
9 V 1					
b) Define (i) Power Factor (ii) form factor (iii) peak factor	5	L*1	1	1,2	
(iv) frequency (v) phase.	5	L1	1	1,2	
2. a) Using Nodal analysis, find V_{bc} . $ \begin{array}{c} 7.5 \Omega \\ 0 \end{array} $ $ \begin{array}{c} 10 \Omega \end{array} $ $ \begin{array}{c} 15 \Omega \end{array} $ $ \begin{array}{c} 15 \Omega \end{array} $ $ \begin{array}{c} 15 \Omega \end{array} $	7.5	7			
b) Define RMS value of an alternating quantity and derive the	5	L1	1	1,2	
expression for the same.	5	L1	1	1,2	
 3. a) Show that the power consumed in pure inductance circuit is zero. Draw the current, voltage and power waveform. b) A 318 μF capacitor is connected across a 230 V, 50 Hz system. 	5	L1	2	1,2	
Find (i) the capacitive reactance (ii) RMS value of current and (iii) equations for voltage and current.	5	L1	2	1,2	
 4. a) Show that the power consumed in pure capacitance circuit is zero. Draw the current, voltage and power waveform. b) A coil having a resistance of 10 Ω and an inductance of 35 mH 	5	L1	2	1,2	
Calculate (i) the impedance and the circuit current (ii) phase angle (iii) power factor (iv) power consumed.	5	L1	2	1,2	
ST* Bloom	utcome				

BT* Bloom's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outcome
