Distributionally Robust Optimization under Moment Uncertainty with Application to Data-Driven Problems

Erick Delage, edelage@stanford.edu
Yinyu Ye, yinyu-ye@stanford.edu
Stanford University

October 2008

Uncertainty in Optimization

Consider an optimization problem:

$$\underset{x \in \mathcal{X}}{\text{minimize}} \quad h(x, \xi)$$

- \bullet x is the variable
- \bullet ξ is a vector of parameters

We often cannot assume to know ξ exactly and need ways to account for uncertainty:

- ullet deterministic ξ estimated from noisy measurements
- \bullet ξ is actually a random parameter

Stochastic Programming

Assume $\xi \sim f_{\xi}$, solve :

$$\underset{x \in \mathcal{X}}{\text{minimize}} \quad \mathbb{E}_{f_{\xi}}[h(x,\xi)]$$

- Somewhat tractable (sample average approx.)
- Science goes into formulating distribution f_{ξ}

What if I don't know f_{ξ} ?

- Access to limited information about f_{ξ} (e.g. samples)
- Future might not be distributed like the past
- Solution might be sensitive to my choice of f_{\xi}

Distributionally Robust Optimization

Describe uncertainty in f_{ξ} through a set \mathcal{D} and consider worst case distribution:

$$(DRSP)$$
 minimize $\max_{x \in \mathcal{X}} \mathbb{E}_{f_{\xi}}[h(x,\xi)]$,

In this talk, we consider that one can often describe his uncertainty in f_{ε} through:

$$\mathcal{D}(\gamma) = \begin{cases} f_{\xi} & \mathbb{P}(\xi \in \mathcal{S}) = 1\\ (\mathbb{E}[\xi] - \hat{\mu})^{\mathsf{T}} \hat{\Sigma}^{-1} (\mathbb{E}[\xi] - \hat{\mu}) \leq \gamma_{1}\\ \mathbb{E}[(\xi - \hat{\mu})(\xi - \hat{\mu})^{\mathsf{T}}] \leq (1 + \gamma_{2}) \hat{\Sigma} \end{cases},$$

for some $\gamma_1, \gamma_2 \geq 0$.

Related Work

- DRSP is related to the moment problem [Bertsimas & Popescu, 2005]
- If only support is known, then reduces to robust optimization [Ben-Tal & Nemirovski,1998]
- If mean & variance are known, special cases have been studied: e.g., newsvendor, portfolio selection, linear chance constraints, etc.

[Scarf, 1958; Popescu, 2007; Calafiore & El Ghaoui, 2006]

• Prior to this work, little was known about how practical the DRSP is with $\mathcal{D}(\gamma)$

Outline

- Solving the Dist. Robust Stochastic Program
 - Conditions on $h(x, \xi)$ for existence of a tractable solution
- Using the DRSP in data-driven problems
 - Modeling the DRSP to get high confidence solutions
- Dist. Robust Portfolio Optimization
 - Empirical evaluation with real stock market data

Conditions on $h(x, \xi)$

Let $h(x,\xi) = \max_{k \in \{1,2,...,K\}} h_k(x,\xi)$ such that for all k:

- $h_k(x,\xi)$ is convex in x
- $h_k(x,\xi)$ is concave in ξ
- $h_k(x,\xi)$'s value and gradient are easily obtained

Examples:

- $h(x,\xi) = -u(x^{\mathsf{T}}\xi)$ with $u(\cdot)$ piecewise linear concave
- Many $h(x,\xi)$ for which simpler robust form is tractable: i.e., $\min z_{x \in \mathcal{X}} \max_{\xi \in \mathcal{S}} h(x,\xi)$.

Solving Distrib. Robust Problems

Theorem 1.: In the case that $h(x, \xi)$ satisfies our conditions, the following distributionally robust problem:

$$\underset{x \in \mathcal{X}}{\text{minimize}} \quad \underset{f_{\xi} \in \mathcal{D}}{\text{max}} \quad \mathbb{E}_{f_{\xi}}[h(x,\xi)]$$

- 1. is NP-hard for general \mathcal{D} (Bertsimas 2005)
- 2. can be solved in polynomial time for $\mathcal{D}(\gamma)$
- 3. stands with $\mathcal{D}(0)$ as a valuable relaxation of some NP-hard forms

Solution Method

The following problem can be solved in polynomial time:

$$\underset{x \in \mathcal{X}}{\text{minimize}} \quad \underset{f_{\xi} \in \mathcal{D}(\gamma)}{\text{max}} \quad \mathbb{E}_{f_{\xi}}[h(x,\xi)]$$

After replacing $\max_{f_{\xi} \in \mathcal{D}(\gamma)} \mathbb{E}_{f_{\xi}}[h(x,\xi)]$ with its dual form,

minimize
$$x, \mathbf{Q}, \mathbf{q}, r$$
 $r + \left(\gamma_2 \hat{\Sigma} + \hat{\mu} \hat{\mu}^\mathsf{T}\right) \bullet \mathbf{Q} + \hat{\mu}^\mathsf{T} \mathbf{q} + \sqrt{\gamma_1} \|\hat{\Sigma}^{1/2} (\mathbf{q} + 2\mathbf{Q}\hat{\mu})\|$ subject to $r \ge \max_{\xi \in \mathcal{S}} \left(h_k(x, \xi) - \xi^\mathsf{T} \mathbf{Q} \xi - \xi^\mathsf{T} \mathbf{q}\right)$, $\forall k \in \{1, ..., K\}$ $\mathbf{Q} \succeq 0$, $x \in \mathcal{X}$

and applying the ellipsoid method.

Outline

- Solving the Dist. Robust Stochastic Program
 - Conditions on $h(x, \xi)$ for existence of a tractable solution
- Using the DRSP in data-driven problems
 - Modeling the DRSP to get high confidence solutions
- Dist. Robust Portfolio Optimization
 - Empirical evaluation with real stock market data

Confidence region for f_{ξ}

Given that:

- I have M i.i.d. samples drawn from f_{ξ}
- I let $\hat{\mu}$ and $\hat{\Sigma}$ be empirical estimates
- I know that ξ lies in a ball of radius R

Then, based on concentration of f_{ξ} [McDiarmid, 1998], for some $\bar{\gamma}_1 = O\left(\frac{R^2}{M}\log(1/\delta)\right)$ and $\bar{\gamma}_2 = O\left(\frac{R^2}{\sqrt{M}}\sqrt{\log(1/\delta)}\right)$, we show that:

$$\mathbb{P}(f_{\xi} \in \mathcal{D}(\bar{\gamma})) \ge 1 - \delta .$$

Solutions to Data-driven Problems

Given a set of samples $\{\xi_i\}_{i=1}^M$, build the distributional set $\mathcal{D}(\bar{\gamma})$ then, solve:

$$\underset{x \in \mathcal{X}}{\text{minimize}} \quad \underset{f_{\xi} \in \mathcal{D}(\bar{\gamma})}{\text{max}} \quad \mathbb{E}_{f_{\xi}}[h(x,\xi)] \quad ,$$

Conclude that, with high probability, the solution has best worst case expected performance over a set of distributions that contains f_{ξ} .

Outline

- Solving the Dist. Robust Stochastic Program
 - Conditions on $h(x, \xi)$ for existence of a tractable solution
- Using the DRSP in data-driven problems
 - Modeling the DRSP to get high confidence solutions
- Dist. Robust Portfolio Optimization
 - Empirical evaluation with real stock market data

Portfolio Optimization

Stochastic Program form:

$$\underset{x \in \mathcal{X}}{\text{maximize}} \quad \mathbb{E}_{f_{\xi}}[u(\xi^T x)]$$

- ullet x^j is how much do I invest in stock j
- Stock j returns in one day ξ^j for each dollar invested
- ullet $u(\cdot)$ is a piecewise linear concave utility function

Distributionally Robust Portfolio Optimization form:

$$(DRPO)$$
 maximize $\min_{x \in \mathcal{X}} \mathbb{E}_{f_{\xi} \in \mathcal{D}(\gamma)} \mathbb{E}_{f_{\xi}}[u(\xi^T x)]$

Experiments with Historical Data

30 stocks were tracked over horizon (1992-2007)

Experiments with Historical Data

An experiment consists of trading 4 stocks over (2001-07).

- Use (1992-2001) to choose γ_1 and γ_2
- Update portfolio on daily basis
- ullet Estimate $\hat{\mu}$ and $\hat{\Sigma}$ based on a 30 days period
- **DRPO** with $\mathcal{D}(\gamma)$ is compared to :
 - DRPO without moment uncertainty
 - Stochastic Program using empirical distribution over last 30 days

Experimental Results

Comparison of wealth evolution in 300 experiments conducted over the years 2001-2007. For each model, the periodical 10% and 90% percentiles of wealth are indicated.

Summary

- Presented a DRSP model that accounts for uncertainty in the parameters of an optimization model
- Showed that this DRSP model is a natural one to use in data-driven problems
- Provided insights on how to formulate/recognize problems that are tractable
- Justified empirically the need to account for both distribution & moment uncertainty
- We encourage using a distributionally robust criterion as an objective or a constraint; hence, account for risks related to model ambiguity

Questions & Comments ...

... Thank you!

Experimental Results II

In finer details:

Method	2001-2004		2004-2007	
	Avg. yearly return	10-perc.	Avg. yearly return	10-perc.
DRPO model	0.944	0.846	1.1017	1.025
Popescu's DRPO model	0.700	0.334	1.047	0.9364
SP model	0.908	0.694	1.045	0.923

- 79% of the time, our DRPO outperformed both models
- On average accounting for moment uncertainty led to a relative gain of 1.67