

Group and Surface

Ziang Wang

April 25, 2023

Path \Rightarrow Loop \Rightarrow Surface

Homotopy

Figure 1: Path function

Group and Surface

Homotopy

Definition

f and f^{\prime} are two continuous maps. If there is a continuous function H that

$$H: X \times [0,1] \rightarrow Y$$

$$H(x,0) = f(x)$$
 and $H(x,1) = f'(x)$

f is then homotopic to f', denoted as $f \simeq f'$

Figure 2: Straight line homotopy

Homotopy

Figure 3: Homotopy equivalent class

Equivalence class: [f]

Group

Definition

Group is a set G with an operation * that satisfies:

- There exists an identity element $e \in G$.
- If $\alpha \in G$, then its inverse $\alpha^{-1} \in G$.
- Associativity

e.g

 ${\bf N}$ is not a group under +, but ${\bf Z}$ is.

Homotopy group

Now we generate a free group using homotopy equivalence class under the operation \ast

$$[a] * [b] = [a * b]$$

$$\mathit{G} = \prod^* \mathit{G}_{\alpha}$$

$$G_{\alpha} = \prod [a_{\alpha}] \quad \text{or} \quad G_{\alpha} \ \supseteq \ \{x * y \mid x, y \in [\alpha_i]\}$$

Figure 4: f * f'

Fundamental Group

The easiest homotopy group:

$$\pi_1(X,x_0)$$

Figure 5: Fundamental Group

Polygonal region scheme

Assign each edge with a label. Default direction is set as from p_{k-1} to p_k . Labelling scheme:

$$w = (a_1)^{\epsilon_1} * (a_2)^{\epsilon_2} * (a_3)^{\epsilon_3} * (a_4)^{\epsilon_4} * ... * (a_n)^{\epsilon_n}$$

where $\epsilon = \pm 1$

Note: This is an element of the free group generated by homoptopic equivalence class!

Figure 6: torus

$$w = a_1 \cdot b_1^{-1} \cdot a_2^{-1} \cdot b_2$$
 and $a_1 \sim a_2, b_1 \sim b_2$

Group and Surface

Figure 7: Klein Bottle

$$w = a_1^{-1} \cdot b_1 \cdot a_2^{-1} \cdot b_2^{-1}$$
 and $a_1 \sim a_2, b_1 \sim b_2$

Group and Surface

References

James R. Munkres.

Topology. Second Edition.

Massachusetts Institute of Technology, Prentice Hall, 2000.