LÝ THUYẾT TÍNH TOÁN

BÀI 8: Máy Turing

Phạm Xuân Cường Khoa Công nghệ thông tin cuongpx@tlu.edu.vn

Nội dung bài giảng

1. Khái niệm

2. Định nghĩa hình thức

3. Ngôn ngữ của TM

Khái niệm

Khái niệm

- Máy Turing = Turing Machine (TM)
- TM:
 - Được đề xuất đầu tiên vào năm 1936 bởi Alan Turing
 - Là một mô hình tính toán manh hơn PDA và FSM
 - Là một mô hình chính xác hơn rất nhiều của máy tính đa năng
 - Tương tự như DFA nhưng có một bộ nhớ vô hạn và không hạn định

Cấu trúc dữ liệu của TM

- FSM: Lưu trữ hữu hạn các trạng từ dữ liệu vào
- PDA: Chuỗi đầu vào và ngăn xếp
- TM: Băng nhớ

Sự khác biệt giữa TM và FSM

- 1. TM có thể đọc, ghi ký tự lên ô mà đầu đọc đang nằm trên nó
- 2. Đầu đọc có thể di chuyển sang trái hoặc phải
- 3. Dải băng (tape) là dài vô tận
- Những trạng thái đặc biệt cho việc bác bỏ và chấp thuận có hiệu lực tức thì

Thành phần của TM

- Bộ chữ của băng (tape alphabet): $\Sigma = \{0,1\}$ hoặc thông thường là $\Sigma = \{0,1,a,b,x,\#,\$\}$
- Ký hiệu dấu trắng $_{\sqcup}$ là một ký hiệu đặc biệt và $_{\sqcup} \in \Sigma$
- Cấu hình ban đầu chỉ có xâu vào và phần còn lại là ký hiệu 🗆

TM hoạt động như thế nào?

Tại mỗi bước tính toán:

- Đọc ký hiệu của ô hiện tại trên băng mà con trỏ trỏ tới
- Có thể cập nhật ký hiệu trên ô đang được trỏ tới đó
- Dịch chuyển từng ô một theo chiều chỉ định (trái hoặc phải)

Biểu diễn hình học:

- a là ký hiệu được đọc, thuộc ô hiện tại trên băng
- b là ký hiệu sẽ được ghi vào ô hiện tại trên băng
- R là chiều dịch chuyển (L: left, R: right)

TM hoạt động như thế nào?

Thao tác chỉ đọc ký hiệu

Các trường hợp của sự tính toán (computation):

- Tam dừng và chấp thuận (Halt and accept): Nếu đạt được trạng thái chấp thuận thì dừng ngay lập tức
- Tạm dừng và bác bỏ (Halt and reject): Nếu đạt được trạng thái bác bỏ thì dừng ngay lập tức
- Lặp (loop): Máy sẽ chạy liên tục không dừng

 \rightarrow TM là đơn định

TM sau đoán nhận ngôn ngữ L=01*0

Đưa ra TM đoán nhận ngôn ngữ L = 0^n1^n Thuật toán để xây dựng TM cho ngôn ngữ trên

- Bước 1: Đọc được 0 thì đổi thành x trên băng nhớ và di chuyển sang phải cho đến khi gặp số 1 đầu tiên thì thay 1 bằng y. Nếu không gặp số 1 nào \rightarrow Chuyển sang trạng thái Reject
- Lặp lại bước 1 cho đến khi không còn ký tự 0 nào nữa
- Kiểm tra để đảm bảo rằng không còn số 1 nào nữa

Định nghĩa hình thức

Định nghĩa hình thức

Máy Turing ≡ bộ 7 (hay 7 chiều)

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$$

Trong đó:

- Q: Tập trạng thái (hữu hạn)
- Σ : Bộ chữ đầu vào, $\varepsilon \not\in \Sigma$
- Γ : Bộ chữ được phép viết trên băng, $\varepsilon \in \Gamma$ và $\Sigma \subset \Gamma$
- δ: Hàm dịch chuyển

$$\delta \colon Q \ x \ \Gamma \to Q \ x \ \Gamma \ x \ \{L,R\}$$

- $\mathbf{q_0} \in \mathsf{Q}$: Trạng thái bắt đầu
- $\mathbf{q}_{accept} \in \mathsf{Q}$: Là tập các trạng thái chấp thuận
- $\mathbf{q}_{\text{reject}} \in \mathsf{Q}$: Là tập các trạng thái bác bỏ, $\mathbf{q}_{\text{accept}} \neq \mathbf{q}_{\text{reject}}$

Ý nghĩa cấu hình

Cấu hình của TM có ý nghĩa:

- Đưa ra hình ảnh hiện tại của máy
- Đưa ra hình ảnh tại mỗi bước tính toán của máy

ightarrow tương ứng với cấu hình $011q_101101$

Ngôn ngữ của TM

Ngôn ngữ của TM

Tập hợp các xâu được TM đoán nhận = ngôn ngữ của TM

- Ngôn ngữ quyết định được (Decidable): Khi đọc một xâu đầu vào
 - TM sẽ luôn luôn đạt được trạng thái dừng
 - TM sẽ chấp thuận xâu đó khi nó ∈ ngôn ngữ của TM
 - TM sẽ bác bỏ xâu đó khi nó ∉ ngôn ngữ của TM
- Ngôn ngữ được đoán nhận bởi máy Turing (Recursivly Enumerable):
 - TM sẽ luôn dừng và chấp thuận (halt and accept) một xâu \in ngôn ngữ của TM
 - Nếu xâu đó ∉ ngôn ngữ của TM, thì máy sẽ rơi vào trạng thái dừng và bác bỏ hoặc lặp

Ngôn ngữ của TM

Định nghĩa 1

Gọi một ngôn ngữ là **có thể được đoán nhận bởi máy Turing** (TRL) nếu tồn tại một máy Turing đoán nhận ngôn ngữ đó

Định nghĩa 2

Gọi một ngôn ngữ là **Turing-có thể quyết định được** hay đơn giản **có thể quyết định** nếu tồn tại một máy Turing quyết định ngôn ngữ đó

 \rightarrow Tất cả ngôn ngữ có thể quyết định đều là Turing có thể đoán nhận

Tập ngôn ngữ

Ví dụ TM

Mô tả máy Turing M quyết định ngôn ngữ A = $\{0^{2^n} \mid n \geq 0\}$ Thuật toán của TM quyết định A:

- Đảo từ trái qua phải dọc theo băng, xóa đi tất cả các ký hiệu
 0
- 2. Nếu ở bước 1, băng chỉ chứa 1 ký hiệu 0 thì **chấp thuận**
- Nếu ở bước 1, băng chứa nhiều hơn 1 ký hiệu 0 và số lượng ký hiệu 0 là 1 số lẻ thì bác bỏ
- 4. Đưa đầu đọc trở về đầu bên trái của băng
- Lặp lại bước 1

Biểu đồ trạng thái

Mô tả hình thức

- $Q = \{q_1, q_2, q_3, q_4, q_5, q_{accept}, q_{reject}\}$
- $\bullet \ \Sigma = \{0\}$
- $\Gamma = \{0,x,\sqcup\}$
- ullet δ Minh họa như trên biểu đồ trạng thái

Lịch sử tính toán

Lịch sử tính toán với xâu 0000. Cấu hình ban đầu q_10000

~ 0000	m > 10> 1	$_{\sqcup}$ X q_5 XX $_{\sqcup}$
q_10000	$_{\sqcup}q_{5}$ x 0 x $_{\sqcup}$	$_{\sqcup}q_{5}$ XXX $_{\sqcup}$
$_{\sqcup}q_{2}000$	q_5 ப $ imes$ 0 $ imes$ ப	$q_{5\sqcup}$ XXX $_{\sqcup}$
⊔× <i>q</i> ₃ 00	$_{\sqcup}q_{2}$ x 0 x $_{\sqcup}$	
· ·	·	$\Box q_2$ XXX \Box
⊔×0 <i>q</i> ₄ 0	$_{\sqcup} \times q_2 0 \times_{\sqcup}$	⊔x <i>q</i> 2XX⊔
$_{\sqcup}$ x 0 x q_{3} $_{\sqcup}$	\sqcup XX q_3 X \sqcup	$_{\sqcup}$ xx q_2 x $_{\sqcup}$
$_{\sqcup}$ x $0q_{5}$ x $_{\sqcup}$	⊔xxx <i>q</i> 3⊔	
	•	$_{\sqcup}$ XXX q_{2}_{\sqcup}
$_{\sqcup}$ × q_5 0× $_{\sqcup}$	$_{\sqcup}$ XX q_{5} X $_{\sqcup}$	$_{\sqcup}$ XXX $_{\sqcup}q_{accept}$

