

Developments and Applications 6-7 April, Guimarães, Portugal

Very High Order Finite Volume Approximation for the 1D Biharmonic Operator

Hélder C. Barbosa, Ricardo Costa, Gaspar J. Machado

Centre of Mathematics, University of Minho, Guimarães, Portugal

Financed by National Funds and by FCT within the Project FCT - UID/MAT/00013/2013

Outline

- Biharmonic Operator
 Formulation
 Discretization
- Polynomial Reconstructions Left Boundary First Cell Interior Cells
- 3 PRO Scheme Fluxes
- 4 Numerical Tests

Biharmonic Operator

Formulation

$$\begin{split} -\mu \psi^{(4)} &= f & \text{in } \Omega =]x_{\frac{1}{2}}, x_{I+\frac{1}{2}}[\\ \psi &= \psi_{\mathsf{lf},0} & \text{at } x = x_{\frac{1}{2}} \\ \psi^{(1)} &= \psi_{\mathsf{lf},1} & \text{at } x = x_{\frac{1}{2}} \\ \psi &= \psi_{\mathsf{rg},0} & \text{at } x = x_{I+\frac{1}{2}} \\ \psi^{(1)} &= \psi_{\mathsf{rg},1} & \text{at } x = x_{I+\frac{1}{2}} \end{split}$$

where,

• if μ is constant $\to -\mu \psi^{\rm (4)} = f$ in $\Omega =]x_{\frac{1}{2}}, x_{I+\frac{1}{2}}[$

• Integrating the equation in the cells of the mesh c_i , $i = 1, \ldots, I$

$$-\mu\psi^{(4)} = f \Rightarrow -\int_{c_{i}} \mu\psi^{(4)} dx = \int_{c_{i}} f dx \Leftrightarrow$$

$$-\underbrace{(\mu\psi^{(3)}|_{x_{i+\frac{1}{2}}}}_{\mathcal{T}_{i+\frac{1}{2}}} - \underbrace{\mu\psi^{(3)}|_{x_{i-\frac{1}{2}}}}_{\mathcal{T}_{i-\frac{1}{2}}}) = \int_{c_{i}} f dx \Leftrightarrow$$

$$-(\mathcal{T}_{i+\frac{1}{2}}-\mathcal{T}_{i-\frac{1}{2}})=h_if_i, \quad i=1,\ldots,I$$

- Goal: approximate $\psi^{(3)}\left(x_{i+\frac{1}{2}}\right)$, $i=0,\,\ldots,\,I$
- PRO method (Polynomial Reconstruction Operator)

4/15

Left Boundary (i)

• Conservation of $\psi(x_{\frac{1}{2}})=\psi_{{\rm lf},0}$

$$\psi_{\mathsf{d},\frac{1}{2}}(x) = \sum_{\alpha=0}^{\mathsf{d}} \widehat{\mathcal{R}}_{\frac{1}{2},\alpha}(x - x_{\frac{1}{2}})^{\alpha}$$

• Coefficients $\widehat{\mathcal{R}}_{\frac{1}{2}}=(\widehat{\mathcal{R}}_{\frac{1}{2},0},\ldots,\widehat{\mathcal{R}}_{\frac{1}{2},d})^T$ is the solution of the constrained linear least squares problem

$$\begin{bmatrix} \min \limits_{\widehat{\mathcal{R}}_{\frac{1}{2},0},...,\widehat{\mathcal{R}}_{\frac{1}{2},\mathsf{d}}} & \sum \limits_{j \in \widehat{\mathcal{S}}_{\frac{1}{2}}} \omega_{j} \left[\frac{1}{h_{j}} \int_{c_{j}} \psi_{\mathsf{d},\frac{1}{2}}(x) \mathrm{d}x - \psi_{j} \right]^{2} \\ \text{s.t.} & \psi_{\mathsf{d},\frac{1}{2}}(x_{\frac{1}{2}}) = \psi_{\mathsf{H},0} \\ \\ \hline \\ \widehat{\mathcal{R}}_{\frac{1}{2},0},...,\widehat{\mathcal{R}}_{\frac{1}{2},\mathsf{d}} & \|A_{\frac{1}{2}}\widehat{\mathcal{R}}_{\frac{1}{2}} - B_{\frac{1}{2}}\|_{2}^{2} \\ \text{s.t.} & C_{\frac{1}{2}}\widehat{\mathcal{R}}_{\frac{1}{2}} = D_{\frac{1}{2}} \end{aligned}$$

5/15

• Where the matrices,

$$\begin{split} A_{\frac{1}{2}} &= [A_{\frac{1}{2},j\alpha}] \in \mathcal{M}_{n_{\mathcal{S}} \times (\mathsf{d}+1)}(\mathbb{R}), A_{\frac{1}{2},j\alpha} = \omega_{j} \frac{1}{h_{j}} \int_{c_{j}} (x - x_{\frac{1}{2}})^{\alpha - 1} \mathsf{d}x \\ B_{\frac{1}{2}} &= [B_{\frac{1}{2},j}] \in \mathcal{M}_{n_{\mathcal{S}} \times 1}(\mathbb{R}), B_{\frac{1}{2},j} = \omega_{j} \psi_{j} \\ C_{\frac{1}{2}} &= [C_{\frac{1}{2},j\alpha}] \in \mathcal{M}_{1 \times (\mathsf{d}+1)}(\mathbb{R}), C_{\frac{1}{2},j\alpha} = \begin{cases} 1 & \text{if } \alpha = 1 \\ 0 & \text{if } \alpha = 2, \dots, \mathsf{d}+1 \end{cases} \\ D_{\frac{1}{2}} &= [D_{\frac{1}{2},j}] \in \mathcal{M}_{1 \times 1}(\mathbb{R}), D_{\frac{1}{2},j} = \psi_{\mathsf{lf},0} \end{split}$$

The procedure for the right boundary is similar

First Cell c_1 (i)

• Conservation of ψ_1 and "strong" conservation of $\psi^{(1)}(x_{1\over 2})=\psi_{{\rm lf},1}$

$$\psi_{\mathsf{d},1}(x) = \sum_{\alpha=0}^{\mathsf{d}} \widehat{\mathcal{R}}_{1,\alpha}(x-m_1)^{\alpha}$$

• Coefficients $\widehat{\mathcal{R}}_1 = (\widehat{\mathcal{R}}_{1,0}, \dots, \widehat{\mathcal{R}}_{1,d})^T$ is the solution of the constrained linear least squares problem

$$\begin{bmatrix} \min_{\widehat{\mathcal{R}}_{1,0},...,\widehat{\mathcal{R}}_{1,\mathrm{d}}} & \sum_{j \in \widehat{\mathcal{S}}_1} \omega_j \left[\frac{1}{h_j} \int_{c_j} \psi_{\mathrm{d},1}(x) \mathrm{d}x - \psi_j \right]^2 \\ \text{s.t.} & \frac{1}{h_1} \int_{c_1} \psi_{\mathrm{d},1}(x) \mathrm{d}x = \psi_1 \\ & \psi_{\mathrm{d},1}^{(1)}(x_{\frac{1}{2}}) = \psi_{\mathrm{lf},1} \\ \end{bmatrix}$$

$$\begin{array}{ccc} \min & \|A_1\widehat{\mathcal{R}}_1 - B_1\|_2^2 \\ \widehat{\mathcal{R}}_{1,0}, \dots, \widehat{\mathcal{R}}_{1,\mathsf{d}} & \text{s.t.} & C_1\widehat{\mathcal{R}}_1 = D_1 \end{array}$$

• Where the matrices,

$$\begin{split} A_1 &= [A_{1,j\alpha}] \in \mathcal{M}_{n_S \times (\mathsf{d}+1)}(\mathbb{R}), A_{1,j\alpha} = \omega_j \frac{1}{h_j} \int_{c_j} (x-m_1)^{\alpha-1} \mathsf{d}x \\ B_1 &= [B_{1,j}] \in \mathcal{M}_{n_S \times 1}(\mathbb{R}), B_{1,j} = \omega_j \psi_j \\ C_1 &= [C_{1,j\alpha}] \in \mathcal{M}_{2 \times (\mathsf{d}+1)}(\mathbb{R}), C_{1,j\alpha} = \begin{cases} \frac{1}{h_1} \int_{c_1} (x-m_1)^{\alpha-1} \mathsf{d}x & \text{if } j = 1 \\ 0 & \text{if } j = 2 \text{ and } \alpha = 1 \\ (\alpha-1)(x_{\frac{1}{2}}-m_1)^{\alpha-2} & \text{if } j = 2 \text{ and } \alpha = 2, \dots, d+1 \end{cases} \\ D_1 &= [D_{1,j}] \in \mathcal{M}_{2 \times 1}(\mathbb{R}), D_{1,j} = \begin{cases} \psi_1 & \text{if } j = 1 \\ \psi_{\mathsf{lf},1} & \text{if } j = 2 \end{cases} \end{split}$$

The procedure for the last cell is similar

Interior Cells
$$c_i$$
 $(i=2,\ldots,I-1)$ (i)

• Conservation of ψ_i

$$\psi_{\mathsf{d},i}(x) = \sum_{\alpha=0}^{\mathsf{d}} \widehat{\mathcal{R}}_{i,\alpha}(x - m_i)^{\alpha}$$

• Coefficients $\widehat{\mathcal{R}}_i = (\widehat{\mathcal{R}}_{i,0}, \dots, \widehat{\mathcal{R}}_{i,d})^T$ is the solution of the constrained linear least squares problem

$$\begin{bmatrix} \min_{\widehat{\mathcal{R}}_{i,0},...,\widehat{\mathcal{R}}_{i,d}} & \sum_{j \in \widehat{S}_i} \omega_j \left[\frac{1}{h_j} \int_{c_j} \psi_{\mathsf{d},i}(x) \mathsf{d}x - \psi_j \right]^2 \\ \text{s.t.} & \frac{1}{h_i} \int_{c_i} \psi_{\mathsf{d},i}(x) \mathsf{d}x = \psi_i \end{bmatrix}$$

Interior Cells c_i $(i=2,\ldots,I-1)$ (ii)

· Where the matrices,

$$\begin{split} A_i &= [A_{i,j\alpha}] \in \mathcal{M}_{n_S \times (\mathsf{d}+1)}(\mathbb{R}), A_{i,j\alpha} = \omega_j \frac{1}{h_j} \int_{c_j} (x - m_i)^{\alpha - 1} \mathsf{d}x \\ B_i &= [B_{i,j}] \in \mathcal{M}_{n_S \times 1}(\mathbb{R}), B_{i,j} = \omega_j \psi_j \\ C_i &= [C_{i,j\alpha}] \in \mathcal{M}_{1 \times (\mathsf{d}+1)}(\mathbb{R}), C_{i,j\alpha} = \frac{1}{h_i} \int_{c_i} (x - m_i)^{\alpha - 1} \mathsf{d}x \\ D_i &= [D_{i,j}] \in \mathcal{M}_{1 \times 1}(\mathbb{R}), D_{i,j} = \psi_i \end{split}$$

PRO Scheme

Fluxes

$$\mathcal{T}_{i+\frac{1}{2}} = \begin{cases} \mu \widehat{\psi}_{\mathsf{d},\frac{1}{2}}^{(3)}(x_{\frac{1}{2}}) & \text{if } i = 0 \\ \\ \mu \frac{\widehat{\psi}_{\mathsf{d},i}^{(3)}(x_{i+\frac{1}{2}}) + \widehat{\psi}_{\mathsf{d},i+1}^{(3)}(x_{i+\frac{1}{2}})}{2} & \text{if } i = 1, \dots, I-1 \\ \\ \mu \widehat{\psi}_{\mathsf{d},I+\frac{1}{2}}^{(3)}(x_{I+\frac{1}{2}}) & \text{if } i = I \end{cases}$$

Numerical Tests (i)

- $\psi(x) = \exp(x)$
- $\psi_l = 1$
- $\psi_{ll} = 1$
- $\psi_r = \exp(1)$
- $\psi_{rr} = \exp(1)$
- $\bullet \ f(x) = -\exp(x)$
- $\bullet \ \Omega \in [0,1]$

Numerical Tests (ii)

		$\omega = 1 1$				$\omega = 1 3$				
	I	E _{1,0}	O _{1,0}	$E_{\infty,0}$	$O_{\infty,0}$	E _{1,0}	O _{1,0}	$E_{\infty,0}$	$O_{\infty,0}$	
$\mathbb{P}_3(d)$	80	2.64E-06	_	4.14E-06	_	2.03E-06	_	3.27E-06	_	
	160	3.14E-07	3.07	4.90E-07	3.08	2.38E-07	3.09	3.82E-07	3.10	
	240	8.79E-08	3.14	1.36E-07	3.16	6.53E-08	3.19	1.05E-07	3.19	
	320	3.48E-08	3.22	5.37E-08	3.24	2.52E-08	3.30	4.08E-08	3.28	

Numerical Tests (ii)

	$\omega = 1 1$					$\omega = 1 3$				
	I	E _{1,0}	$O_{1,0}$	$E_{\infty,0}$	$O_{\infty,0}$	E _{1,0}	$O_{1,0}$	$E_{\infty,0}$	$O_{\infty,0}$	
II) (4)	80	2.64E-06	_	4.14E-06	_	2.03E-06	_	3.27E-06	_	
	160	3.14E-07	3.07	4.90E-07	3.08	2.38E-07	3.09	3.82E-07	3.10	
$\mathbb{P}_3(d)$	240	8.79E-08	3.14	1.36E-07	3.16	6.53E-08	3.19	1.05E-07	3.19	
	320	3.48E-08	3.22	5.37E-08	3.24	2.52E-08	3.30	4.08E-08	3.28	
-	80	5.39E-07	_	8.53E-07	_	3.39E-07	_	4.91E-07	_	
$\mathbb{P}_3(d+1)$	160	4.71E-08	3.52	7.67E-08	3.48	2.52E-08	3.75	3.66E-08	3.74	
F3(U+1)	240	8.15E-09	4.33	1.71E-08	3.70	3.24E-09	5.06	7.45E-09	3.93	
	320	2.13E-09	4.66	5.75E-09	3.79	2.56E-09	0.82	5.69E-09	0.94	

Numerical Tests (iii)

•
$$\psi(x) = -\exp(x) + (3 - e)x^3 + (2e - 5)x^2 + x + 1$$

- $\psi_l = 0$
- $\psi_{ll}=0$
- $\psi_r = 0$
- $\psi_{rr}=0$
- $f(x) = \exp(x)$
- $\bullet \ \Omega \in [0,1]$

Numerical Tests (iv)

		$\omega = 1 1$				$\omega = 1 3$				
	I	E _{1,0}	O _{1,0}	$E_{\infty,0}$	$O_{\infty,0}$	E _{1,0}	O _{1,0}	$E_{\infty,0}$	$O_{\infty,0}$	
$\mathbb{P}_3(d)$	80	2.64E-06	_	4.14E-06	_	2.03E-06	_	3.27E-06		
	160	3.14E-07	3.07	4.90E-07	3.08	2.38E-07	3.09	3.82E-07	3.10	
	240	8.79E-08	3.14	1.36E-07	3.16	6.53E-08	3.19	1.05E-07	3.19	
	320	3.48E-08	3.22	5.37E-08	3.23	2.52E-08	3.30	4.08E-08	3.28	

Numerical Tests (iv)

			= 1 1	$\omega = 1 3$					
	I	E _{1,0}	$O_{1,0}$	$E_{\infty,0}$	$O_{\infty,0}$	E _{1,0}	O _{1,0}	$E_{\infty,0}$	$O_{\infty,0}$
II) (4)	80	2.64E-06	_	4.14E-06	_	2.03E-06	_	3.27E-06	_
	160	3.14E-07	3.07	4.90E-07	3.08	2.38E-07	3.09	3.82E-07	3.10
$\mathbb{P}_3(d)$	240	8.79E-08	3.14	1.36E-07	3.16	6.53E-08	3.19	1.05E-07	3.19
	320	3.48E-08	3.22	5.37E-08	3.23	2.52E-08	3.30	4.08E-08	3.28
	80	5.39E-07	_	8.53E-07	_	3.39E-07	_	4.91E-07	_
$\mathbb{P}_3(d+1)$	160	4.71E-08	3.52	7.67E-08	3.48	2.52E-08	3.75	3.66E-08	3.74
F3(U+1)	240	8.14E-09	4.33	1.71E-08	3.70	3.24E-09	5.06	7.45E-09	3.93
	320	2.14E-09	4.64	5.73E-09	3.81	2.55E-09	0.83	5.68E-09	0.94

Conclusions and Further Work