

STP16CPP05

Low voltage 16-bit constant current LED sink driver

Features

- 16 constant current output channels
- Adjustable output current through external resistor
- Output current: 3-40 mA
- Serial data in/parallel data ouT
- 3.3 V or 5 V supply voltage
- Max clock frequency 30 MHz
- Schmitt-trigger input
- ESD protection 2 kV HBM
- Thermal shutdown

Description

The STP16CPP05 is a monolithic, low voltage, low current power 16-bit shift register designed for LED panel displays. The STP16CPP05 contains a 16-bit serial-in, parallel-out shift register that feeds a 16-bit, D-type storage register. In the output stage, sixteen regulated current sources provide from 3 mA to 40 mA constant current to drive the LEDs.

The output current setup time is 40 ns (typ), thus improving the system performance.

The LEDs' brightness can be controlled by using an external resistor to adjust the STP16CPP05 output current.

The STP16CPP05 guarantees a 20 V output driving capability, allowing users to connect more LEDs in series. The high clock frequency, 30 MHz, makes the device suitable for high data rate transmission. The 3.3 V voltage supply is useful in applications that interface with a 3.3 V micro controller.

Table 1. Device summary

Order codes	Package	Packaging
STP16CPP05MTR	SO-24	1000 parts per reel
STP16CPP05TTR	TSSOP24	2500 parts per reel
STP16CPP05XTTR	TSSOP24 exposed pad	2500 parts per reel
STP16CPP05PTR	QSOP-24	2500 parts per reel

Contents STP16CPP05

Contents

1	Sum	Summary description								
	1.1	Pin connection and description	3							
2	Elec	trical ratings 5	5							
	2.1	Absolute maximum ratings	5							
	2.2	Thermal data 5	5							
	2.3	Recommended operating conditions6	3							
3	Elec	trical characteristics	7							
4	Equi	ivalent circuit and outputs	9							
5	Timi	ng diagrams11	1							
6	Турі	cal characteristics14	4							
7	Test	circuit 17	7							
8	Pack	kage mechanical data	J							
9	Revi	sion history	8							

1 Summary description

Table 2. Typical current accuracy

Output voltage	Current a	accuracy	Output current	V _{DD}	Temperature	
	Between bits	Between ICs	Output current	טטי		
≥ 1.3 V	± 1.2%	±5%	≥ 5 to 40 mA	3.3 V to 5 V	25 °C	

1.1 Pin connection and description

Figure 1. Pin connection

Note:

The exposed pad should be electrically connected to a metal land electrically isolated or connected to ground.

Table 3. Pin description

Pin N°	Symbol	Name and function
1	GND	Ground terminal
2	SDI	Serial data input terminal
3	CLK	Clock input terminal
4	LE	Latch input terminal
5-20	OUT 0-15	Output terminal
21	ŌĒ	Input terminal of output enable (active low)
22	SDO	Serial data out terminal
23	R-EXT	Input terminal of an external resistor for constant current programing
24	V _{DD}	Supply voltage terminal

Electrical ratings STP16CPP05

2 Electrical ratings

2.1 Absolute maximum ratings

Stressing the device above the rating listed in the "absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 4. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{DD}	Supply voltage	0 to 7	V
V _O	Output voltage	-0.5 to 20	V
Io	Output current	50	mA
V _I	Input voltage	-0.4 to V _{DD} +0.4	V
I _{GND}	GND terminal current	800	mA
f _{CLK}	Clock frequency	50	MHz

2.2 Thermal data

Table 5. Thermal data

Symbol	Parameter	Value	Unit	
T _{OPR}	Operating temperature range	-40 to +125	°C	
T _{STG}	Storage temperature range	-55 to +150	°C	
	Thermal resistance junction-case	SO-24	60	°C/W
		TSSOP24	85	°C/W
R _{thJC}		TSSOP24 ⁽¹⁾ Exposed Pad	37.5	°C/W
		QSOP-24	72	°C/W

^{1.} The exposed pad should be soldered directly to the PCB to realize the thermal benefits.

STP16CPP05 Electrical ratings

2.3 Recommended operating conditions

Table 6. Recommended operating conditions at 25 °C

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V_{DD}	Supply voltage		3.0		5.5	V
Vo	Output voltage				20	V
I _O	Output current	OUTn	3		40	mA
I _{OH}	Output current	SERIAL-OUT			+1	mA
I _{OL}	Output current	SERIAL-OUT			-1	mA
V _{IH}	Input voltage		0.7 V _{DD}		V _{DD} +0.3	V
V _{IL}	Input voltage		-0.3		0.3 V _{DD}	V
t _{wLAT}	LE pulse width		20			ns
t _{wCLK}	CLK pulse width		16			ns
t _{wEN}	OE pulse width	V _{DD} = 3.3 V to 5.0 V	70			ns
t _{SETUP(D)}	Setup time for DATA	V _{DD} = 3.3 V to 3.0 V	5			ns
t _{HOLD(D)}	Hold time for DATA		5			ns
t _{SETUP(L)}	Setup time for LATCH		15			ns
f _{CLK}	Clock frequency	Cascade operation (1)			30	MHz

^{1.} If the device is connected in cascade, it may not be possible achieve the maximum data transfer. Please considered the timings carefully.

Electrical characteristics STP16CPP05

3 Electrical characteristics

 V_{DD} = 3.3 V to 5 V, T = 25 °C, unless otherwise specified.

Table 7. Electrical characteristics

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{IH}	Input voltage high level		0.7V _{DD}		V_{DD}	V
V _{IL}	Input voltage low level		GND		0.3V _{DD}	V
I _{OH}	Output leakage current	V _{OH} = 20 V		0.15	1	μА
V _{OL}	Output voltage (Serial-OUT)	I _{OL} = 1 mA			0.4	٧
V _{OH}	Output voltage (Serial-OUT)	I _{OH} = -1 mA	V _{DD} -0.4V			٧
I _{OL1}		$V_O = 0.3 \text{ V}, R_{ext} = 4 \text{ k}\Omega$	4.75	5	5.25	
I _{OL2}	Output current	$V_{O} = 0.3 \text{ V}, R_{ext} = 980 \Omega$	19	20	21	mA
I _{OL3}		$V_{O} = 1.3 \text{ V}, R_{ext} = 490 \Omega$	38	40	42	
Δl _{OL1}		$V_O = 0.3 \text{ V}, I_O = 5 \text{ mA}$ $R_{EXT} = 4 \text{ k}\Omega$		± 1.2	± 5	
Δl _{OL2}	Output current error between bit (All Output ON)	$V_{O} = 0.3 \text{ V}, I_{O} = 20 \text{ mA}$ $R_{EXT} = 980 \Omega$		± 0.5	± 3	%
Δl _{OL3}	()	$V_{O} = 1.3 \text{ V}, I_{O} = 40 \text{ mA}$ $R_{EXT} = 490 \Omega$		± 1.0	± 3	
R _{SIN(up)}	Pull-up resistor		150	300	600	kΩ
R _{SIN(down)}	Pull-down resistor		100	200	400	kΩ
I _{DD(OFF1)}	Supply current (OFF)	R _{EXT} = 980 OUT 0 to 15 = OFF		5.4	7.5	
I _{DD(OFF2)}	Зарріў сапені (ОГР)	R _{EXT} = 490 OUT 0 to 15 = OFF		8.0	9.5	A
I _{DD(ON1)}	Supply ourrent (ON)	R _{EXT} = 980 OUT 0 to 15 = ON		5.5	7.5	mA
I _{DD(ON2)}	Supply current (ON)	R _{EXT} = 490 OUT 0 to 15 = ON		8.1	9.5	
Thermal	Thermal protection			170		°C

 V_{DD} = 5 V, T = 25 °C, unless otherwise specified.

Table 8. Switching characteristics

Symbol	Parameter	Te	est conditions	3	Min	Тур	Max	Unit	
+	Propagation delay time,			$V_{DD} = 3.3 \text{ V}$	-	44	58	ns	
t _{PLH1}	CLK- \overline{OUTn} , LE = H, \overline{OE} = L			V _{DD} = 5 V	-	24	32	115	
+	Propagation delay time,			$V_{DD} = 3.3 \text{ V}$	ı	43	56	ns	
t _{PLH2}	$LE-\overline{OUTn}, \overline{OE} = L$			$V_{DD} = 5 V$	1	24	32	115	
t _{PLH3}	Propagation delay time,			$V_{DD} = 3.3 \text{ V}$	1	63	82	ns	
TPLH3	OE-OUTn, LE = H			$V_{DD} = 5 V$	ı	37	48	113	
t _{PLH}	Propagation delay time,			$V_{DD} = 3.3 \text{ V}$	-	17	22	ns	
PLH	CLK-SDO			$V_{DD} = 5 V$	1	11	14	113	
	Propagation delay time,			$V_{DD} = 3.3 \text{ V}$	-	22	28		
t _{PHL1}	CLK-OUTn, LE = H, OE = L	$V_{IH} = V_{DD}$ $V_{II} = GND$	C _L = 10 pF	$V_{DD} = 5 V$	-	16	21	ns	
+	Propagation delay time,	Propagation delay time,	I _O = 20 mA	$V_{L} = 3.0 \ V$	V _{DD} = 3.3 V	-	19	25	nc
t _{PHL2}	$LE-\overline{OUTn}, \overline{OE} = L$	$R_{EXT} = 1 \text{ K}\Omega$ $R_L = 60 \Omega$	$R_L = 60 \Omega$	V _{DD} = 5 V	-	15	20	ns	
+	Propagation delay time,			$V_{DD} = 3.3 \text{ V}$	ı	16	21	ns	
t _{PHL3}	OE-OUTn, LE = H			$V_{DD} = 5 V$	ı	13	17	115	
t	Propagation delay time,			$V_{DD} = 3.3 \text{ V}$	ı	21	27	ns	
t _{PHL}	CLK-SDO			$V_{DD} = 5 V$	ı	13	17	113	
	Output rise time			$V_{DD} = 3.3 \text{ V}$	ı	26	35		
t _{ON}	10~90% of current waveform			$V_{DD} = 5 V$	-	12	16	ns	
	Output fall time			V _{DD} = 3.3 V	-	4	6		
t _{OFF}	90~10% of current waveform			V _{DD} = 5 V	-	3	5	ns	
t _r	CLK rise time (1)				-		5000	ns	
t _f	CLK fall time (1)				-		5000	ns	

^{1.} In order to achieve high cascade data transfer, please consider tr/tf timings carefully.

4 Equivalent circuit and outputs

Figure 3. LE terminal

Figure 4. CLK, SDI terminal

Figure 5. SDO terminal

Figure 6. Block diagram

Timing diagrams STP16CPP05

5 Timing diagrams

Table 9. Truth table

CLOCK	LE	ŌĒ	SERIAL- IN	OUT0 OUT7 OUT15	SDO
	Н	L	Dn	Dn Dn - 7 Dn -15	Dn - 15
7	L	L	Dn + 1	No change	Dn - 14
	Н	L	Dn + 2	Dn + 2 Dn - 5 Dn -13	Dn - 13
7	Х	L	Dn + 3	Dn + 2 Dn - 5 Dn -13	Dn - 13
Z	Х	Н	Dn + 3	OFF	Dn - 13

Note: OUTn = ON when Dn = H OUTn = OFF when Dn = L

Figure 7. Timing diagram

Note: The latches circuit holds data when the LE terminal is Low.

- 1 When LE terminal is at high level, latch circuit does not hold the data it passes from the input to the output.
- When \overline{OE} terminal is at low level, output terminals OUT0 to OUT15 respond to the data, either ON or OFF.
- 3 When \overline{OE} terminal is at high level, it switches off all the data on the output terminal.

STP16CPP05 Timing diagrams

Figure 8. Clock, serial-in, serial-out

Timing diagrams STP16CPP05

50% CLK SDI †SETUP2 50% 50% LE t_{WLAT} ${\rm t_{WENA}}$ OE 50% 50% †_{SETUP3} OUTn 50% $t_{\rm PHL1}/t_{\rm PLH1}$ $t_{\rm PHL2}/t_{\rm PLH2}$ CS17060

Figure 9. Clock, serial-in, latch, enable, outputs

6 Typical characteristics

25000 20000 E 15000 10000 5000 0 10 20 30 40 50 60 70 Current (mA)

Figure 11. Output current vs Rext resistor

Table 10. Output current vs Rext resistor

Rext (Ω)	Output current (mA)
23700	1
11730	2
6930	3
4090	5
2025	10
1000	20
667	30
497	40
331	60

Figure 12. Output current vs $\pm \Delta I_{OL}$ (%) (temp. = 25 °C, Vdd = 5 V, pin = all outputs)

Table 11. I_{SET} vs drop out voltage (V_{drop})

Vdd (V)	Iset (mA)	Min (mV)	Max (mV)	Avg (mV)	Vdd (V)	Iset (mA)	Min (mV)	Max (mV)	Avg (mV)
	3	35	37	36		3	37	37	37
	5	71	72	71		5	72	73	72
3.3	10	162	165	163	5.0	10	162	164	163
3.3	20	347	348	347		20	345	347	346
	40	724	724	724		40	725	728	726
	60	1080	1090	1080		60	1090	1140	1110

Test circuit STP16CPP05

7 Test circuit

Figure 14. DC characteristic

Figure 15. AC characteristic

STP16CPP05 Test circuit

 $C = 10\mu F$ $V_{0} = 0.3 \text{ to } 1.5V$ $V_{0} = 0.3 \text{ to } 1.5V$

Figure 16. Typical application schematic

Note: V_L will be determined by the V_F of the LEDs

Test condition: Temp. = 25 °C, V_{DD} = 3.3 V, V_{IN} = V_{DD} , C_L = 10 pF, Freq. = 1 MHz, Ch1 = CLK, Ch2 = SDI, Ch3 = OUTn, Ch4 = V_{OUT}

Test circuit STP16CPP05

Figure 18. Turn OFF output current setup

8 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Table 12. QSOP-24 mechanical data

Dim.	mm.			inch		
Dim.	Min	Тур	Max	Min	Тур	Max
Α	1.54	1.62	1.73	0.061	0.064	0.068
A1	0.1	0.15	0.25	0.004	0.006	0.010
A2		1.47			0.058	
b	0.31	0.2		0.012	0.008	
С	0.254	0.17		0.010	0.007	
D	8.56	8.66	8.76	0.337	0.341	0.345
Е	5.8	6	6.2	0.228	0.236	0.244
E1	3.8	3.91	4.01	0.150	0.154	0.158
е		0.635			0.025	
L	0.4	0.635	0.89	0.016	0.025	0.035
h	0.25	0.33	0.41	0.010	0.013	0.016
<	8°	0°				

DIMENSIONS IN mm BOTTOM VIEW GAUGE PLANE // 0.1 C - C 0,25 A 1 b (24x) SEATING PLANE △ 0.1 C COPLANAR LEADS 13 Ė1 12 c TOP VIEW PIN 1 IDENTIFICATION

Figure 19. QSOP-24 package dimensions

Doc ID 15379 Rev 2

Table 13. TSSOP24 mechanical data

Dim	mm.			inch		
Dim.	Min	Тур	Max	Min	Тур	Max
Α			1.1			0.043
A1	0.05		0.15	0.002		0.006
A2		0.9			0.035	
b	0.19		0.30	0.0075		0.0118
С	0.09		0.20	0.0035		0.0079
D	7.7		7.9	0.303		0.311
E	4.3		4.5	0.169		0.177
е		0.65 BSC			0.0256 BSC	
Н	6.25		6.5	0.246		0.256
К	0°		8°	0°		8°
L	0.50		0.70	0.020		0.028

Figure 20. TSSOP24 package dimensions

Table 14. Tape and reel TSSOP24

Dim.	mm.			inch		
Dim.	Min	Тур	Max	Min	Тур	Max
Α			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			22.4			0.882
Ao	6.8		7	0.268		0.276
Во	8.2		8.4	0.323		0.331
Ko	1.7		1.9	0.067		0.075
Po	3.9		4.1	0.153		0.161
Р	11.9		12.1	0.468		0.476

Figure 21. Reel dimensions

Table 15. SO-24 mechanical data

Dim.	mm.			inch		
Dilli.	Min	Тур	Max	Min	Тур	Max
Α			2.65			0.104
a1	0.1		0.2	0.004		0.008
a2			2.45			0.096
b	0.35		0.49	0.014		0.019
b1	0.23		0.32	0.009		0.012
С		0.5			0.020	
c1		1	45°((typ.)	,	,
D	15.20		15.60	0.598		0.614
E	10.00		10.65	0.393		0.419
е		1.27			0.050	
e3		13.97			0.550	
F	7.40		7.60	0.291		0.300
L	0.50		1.27	0.020		0.050
S			°(ma	ax.) 8		

Figure 22. SO-24 package dimensions

Table 16. Tape and reel SO-24

Dim.	mm.			inch		
Dim.	Min	Тур	Max	Min	Тур	Max
Α		-	330		-	12.992
С	12.8	-	13.2	0.504	-	0.519
D	20.2	-		0.795	-	
N	60	-		2.362	-	
Т		-	30.4		-	1.197
Ao	10.8	-	11.0	0.425	-	0.433
Во	15.7	-	15.9	0.618	-	0.626
Ko	2.9	-	3.1	0.114	-	0.122
Ро	3.9	-	4.1	0.153	-	0.161
Р	11.9	-	12.1	0.468	-	0.476

Figure 23. Reel dimensions

Table 17. TSSOP24 mechanical data exposed pad

Dim.	mm			inch		
DIM.	Min	Тур	Max	Min	Тур	Max
Α			1.2			0.047
A1			0.15		0.004	0.006
A2	0.8	1	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
С	0.09		0.20	0.004		0.0089
D	7.7	7.8	7.9	0.303	0.307	0.311
D1	4.7	5.0	5.3	0.185	0.197	0.209
Е	6.2	6.4	6.6	0.244	0.252	0.260
E1	4.3	4.4	4.5	0.169	0.173	0.177
E2	2.9	3.2	3.5	0.114	0.126	0.138
е		0.65			0.0256	
K	0°		8°	0°		8°
L	0.45	0.60	0.75	0.018	0.024	0.030

26/28

0,25 mm .010 inch GAUGE PLANE SEATING PLANE E2 ь ш ш ш ш Ш \Box △ 000 C 1 💷 **____ 2**4 PN 1 IDENTIFICATION

Figure 24. TSSOP24 package dimensions

Doc ID 15379 Rev 2

STP16CPP05 Revision history

9 Revision history

Table 18. Document revision history

Date	Revision	Changes
11-Feb-2009	1	First release
22-Oct-2009	2	Updated Figure 11 on page 13 and Figure 10 on page 13.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

28/28 Doc ID 15379 Rev 2