Appunti Reti2

Brendon Mendicino

November 20, 2022

CONTENTS CONTENTS

Contents

1 Introduzione

...

2 Multicast

Gli indirizzi che identificano dei gruppi multicast sono quelli di tipo D, iniziano con 1110 (224.0.0.0 - 239.255.255.255).

Si prendono i 23 bit bassi dell'IP e vengono assegnati ai 23 bit bassi dell'indirizzo MAC multicast, questa operazione si chiama di **join** ad un gruppo multicast. Questo approccio potrebbe portare a dei conflitti, la probalità che una collisione avvenga è molto bassa ma non è zero, i conflitti comportano ricevere il traffico di un altro gruppo multicast anche se non abbiamo fatto un join con quello.

Esempio: viene usato l'indirizzo 224.0.0.0 come un gruppo multicast, gli host che vogliono connettersi a questo gruppo dovranno fare il join, e quindi impostare la loro scheda di rete (solitamente una scheda di rete virtuale, in cui viene aggiunto il MAC multicast) con il MAC multicast, in questo caso gli ultimi 23 bit saranno a 0.

3 IPv6

Gli indirizzi ipv6 sono rappresentati su 128, quindi si hanno 2¹²⁸ combinazioni. Per rappresentarli si divide l'indirizzo in 8 gruppi di 2 byte, separati da un ":". Ci sono delle strategie per rendere più leggibile l'indirizzo:

- 1. gli zeri in fronte possono essere omessi;
- 2. gli zeri (":0:") posso essere sostituiti con un "::" solo una volta;

Per rappresentare l'indirizzo di rete si usano 64 bit. Il concetto di aggregazione gerarchico viene mentenuto del prefix length e dalla netmask, dunque il prefix viene usato per il subnetting.

I principi di assegnamento sono:

- **subnetwork**: set of host with the same prefix;
- link: physical network;
- on-link: comunicazioni tra host con lo stesso prefisso;
- off-link: comunicazioni tra host con prefisso diverso;

3.1 Tipologie di Indirizzi

Figure 1: Ipv6 Spazio Di Indirizzamento

3.1.1 Indirizzi Multicast

Il multicast ha una rappresentazione simile ad IPv4, infatti hanno un range di FF00::/8 (1111 1111 ...), che si dividono in tre sottocategorie:

- well-known multicast FF00::/12 (1111 1111 0000 ...) : questo range di indirizzi è assegnato dalla IANA, utilizzato dalgi ISP per scopi di comunicazione;
- transient FF10::/12 (1111 1111 0001 ...): assegnati dinamicamente;
- solicited-node multicast FF02:0:0:0:0:1:FF00::/104: simile al broadcast address in ARP;

Un indirizzo multicast è formato da:

- I primi 8 bit mi identificano un indirizzo multicast, tutti settati ad 1;
- 4 bit assegnati a dei flag: l'unico utilizzabile è il campo T che specifica se l'indirizzo è permanente (0), ovvero assegnato dalla IANA, oppure non-permanente (1), gli altri campi non hanno un'assegnazione;
- 4 bit per stabilire lo **scope**, definisce il range di indirizzi multicast;
- gli ultimi 112 rappresentano il **group id**;

Figure 2: Indirizzo Multicast

3.1.2 Indirizzi Global Unicast

Sono l'equivalte degli indirizzi publici IPv4. Quando un nuovo host si collega alla rete, sa automaticamente il suo indirizzo, infatti gli indirizzi unicast sono plug and play. Gli indirizzi sono composti da tutto la spazio 2000::/3, l'indirizzo si divede in:

- 3 bit: 001;
- n bit: global routing prefix;
- m bit: subnet ID;
- 128 m n 3 bit: interface ID;

Il prefisso moderno è stato assegnato formalmente da entità multi-livello:

• 3 bit: 001;

- 13 bit: TLA ID, Top Level Authority (Large ISP);
- 32 bit: NLA ID, Next Level Authority (Organizzazione);
- 16 bit: SLA ID, Subnet Level Authority;
- 64 bit: Interface ID;

Figure 3: Indirizzo Global Unicast

3.1.3 Link Local/Site Local

Gli indirizzi link/site local sono assegnati automaticamente, fanno parte del gruppo fe80::/9 (1111 1110 1...), e si distinguono in:

- link-local fe80::/10 (1111 1110 10...): vengono generati automaticamente, ogni host in una rete ipv6 deve avare un link-local address utilizzato per comunicazioni di neighbor discovery;
- site-local: fec0::/10 (1111 1110 11...), indirizzi deprecati, utilizzati per assegnare degli indirizzi privati univoci;

3.1.4 Unique Local Address

Gli ULA sono univoci rimanendo comunque privati, quindi non devono essre esposti alla rete. Gli Unique Local sono stati pensati per accedere a macchine che non devono essere esposte alla rete pubblica. Gli Unique Local usano un range è di fc00::/7. La particolarità è che l'ottavo bit è il **local flag** (L), se questo bit è settato ad 1 l'indirizzo è assegnato localmente, se invece è a 0 potrebbe essere assegnato in futuro. I successivi 40 bit sono asseganti casualmente, per cercare di mantenere l'univocità.

Figure 4: Indirizzo Unique Local

3.1.5 IPv4 Embedded Address

Sono usati per rappresentare gli indirizzi ipv4 sugli indirizzi ipv6 e vengono messi nello spazion ::ff:0:0/80. Sono composti da:

- i primi 80 bit a 0;
- 16 bit a 1;
- gli ultimi 32 bit rappreesntano l'indirizzo ipv4;

3.1.6 Loopback Address

L'indirizzo ::1 ha lo stesso scopo dell'indirizzo di loopback 127.0.0.1 di ipv4.

3.1.7 Unspecified Address

È un indirizzo unicast non specificato ::0, anche in questo caso il suo comportamento è lo stesso di ipv4.

3.1.8 Indirizzi Anycast

Ho degli indirizzi assegnati a dei nodi nelle rete e quando mando un pacche voglio che esso arrivi ad uno di essi (inizialmento pensato per i DNS server). Gli indirizzi anycast non sono utilizzati.

3.2 Protocolli IPv6 3 IPV6

3.2 Protocolli IPv6

In ipv6 alcuni protocolli sono stati integrati o rimossi rispetto ad ipv4, infatti ARP ed IGMP sono stati integrati in ICMP, la maggior parte degli altri protoccolli è stata fatta una modifica per supportare gli indirizzi a 128 ma le modifiche rimangono minime.

3.2.1 IP

L'header in ipv6 contiene molte meno dati che in ipv4, il motivo è che le informazioni sono presenti nel padding, tutto ciò è possibile grazie al campo next header. Si crea così una catena di header. Se non ho bisogno di estensioni allora il campo next header punterà all'header tcp.

Figure 5: Ipv6 Header

I campi rimasti sono:

- ver: la versione del protocollo;
- traffic class: definisce delle classi di pacchetti per determinare delle priorità tra i traffici degli utenti;
- flow label: etichetta associata al flusso, sarà possibile fare routing grazie a questo campo;
- payload lenght: lunghezza del payload;
- hop limit: time to live del ipv4;
- source address: indirizzo sorgente;
- destinatoin address: indirizzo destinazione;

Headers extensions Il protocollo utilizza dei codici per specificare quale sarà il campo dell prossima estensione.

Figure 6: Header Chaining

I diversi extension header hanno tutti gli stessi attributi:

- next header code;
- lunghezza;
- extension data: dati relativi all'extension header;

Un estensione molto usata è la Routing Extension Header, dove viene specificata una lista di indirizzi su cui il pacchetto deve passare.

3.3 Interfaccia con i livelli più bassi

Nel livello 3 si è deciso di differenziare il protocllo ipv4 e ipv6 (approccio dual stack), infatti nel livello 2 esiste un campo che specifica il protocollo a livello superiore. Il **type** per ipv6 è 86DD.

3.3.1 IPv6 Mutlicast Transmission

Quando si deve mandare un messaggio in multicast con ipv6 si utilizza una tecnica di mapping per creare un indirizzo MAC multicast appositamente per quetsto scambio di messaggi, il motivo è che si cerca di evitare l'utilizzo di un MAC broadcast address. I 32 bit bassi dell'indirizzo ipv6 multicast vengono mappati ai 32 bit bassi dell'indirizzo MAC, questo mapping viene specificato quando i primi 2 byte del MAC sono settati a 33:33, dunque un indirizzo MAC mappato sarà del tipo 33:33:xx:xx:xx:xx. Quando si manda un pacchetto all'indirizzo di broadcast ff0c::89:aabb:ccdd l'indirizzo MAC corrispondente sarà 33:33:aa:bb:cc:dd.

3.3.2 Neighbor Discovery

Il protocollo ARP sarà sostituito dalla nuova version del protocollo ICMPv6. Quando si vuole mandare un pacchetto ad un host nella stessa sottorete e non si è a conoscenza del MAC, si utilizza il protocollo di neighbor discovery.

3.4 ICMPv6 3 IPV6

Il meccanismo di neighbor discovery avviene nel seguente modo: partendo da un indirizzo unicast si prendono i 24 bit bassi dell'indirizzo e si crea un indirizzo multicast solicited-node con i 24 bit bassi corrispondenti a quelli dell'unicast, questo permette quando si fa il mapping, di avere degli indirizzi MAC multicast che iniziano con 33:33:ff, grazie a come sono composti gli indirizzi solicited-node. In questo modo viene limitato il numero di pacchetti mandati nelle rete, la probabilità che il pacchetto venga spedito all'host di destinazione è molto probabile, invece in ARP si mandava un pacchetto in broadcast a tutti gli host della sottorete.

Figure 7: Solicited Node Multicast Address

ARP:

• manda un trama in broadcast;

Multicast:

- manda a tutti;
- manda solo a chi fa parte di un gruppo: il MAC di multicast permette di mandare messaggi solo a chi appartiene a chi potenzialmente fa parte di quel gruppo;

3.4 ICMPv6

Il protocollo mantiene le opzioni di quello usato in ipv4 aggiungnendo delle funzionalità per sostituire ARP e IGMP, ICMP è usato per:

10

- diagnostica;
- neighbor discovery;
- multicast group;
- issue notification;

3.4 ICMPv6 3 IPV6

3.4.1 Formato del messagio

ICMP è incapsulto nel pacchetto ip.

Figure 8: Icmp Format

Messaggi di errore:

- 1: destination unreachable;
- 2: packet too big;
- 3: time exceeded;
- 4: parameter problem;

Echo:

- 128: echo request;
- 129: echo reply;

3.4.2 Error Message

Figure 9: Icmpv6 Error Message

Echo I messaggi di echo sono: echo request ed echo reply.

3.4 ICMPv6 3 IPV6

3.4.3 Neighbor Solicitation

Mandato da un host nella sotto rete.

Figure 10: Neighbor Solicitation

3.4.4 Neighbor Advertisement

Vengono aggiunti 3 flag nel campo reserved:

- router: indica se il pacchetto arrivo da un router;
- solicited: specifica se il nodo è stato sollicitato o meno;
- override: specifice se l'host cache deve essere sovrascritta;

L'indirizzo MAC viene messo nel campo options, mentre l'ip di sorgente viene messo nel campo target address.

3.4.5 Group Management

Per gestire le comunicazioni multicast in un link local (sottorete) non si utilizza più il protocollo IGMP ma si usa ICMPv6, per gestire il join ai diversi gruppi si utilizzano tre tipi di messaggi:

- Mutlicast Listener Query;
- Mutlicast Listener Report;
- Mutlicast Listener Done;

Un router inizia mandando un query a tutti gli host collegati utilizzando l'indirizzo ff02::1 (all host multicast address, solo host e non router), in questo modo vengono esposti i nodi che vogliono partecipare ad uno specifico gruppo. In teoria ha senso che tutti quanti gli host non appena ricevono la Query rispondano con la relativa Report, perché in questo modo il router può avere la lista completa di tutti gli interessati.

Ma nel tentativo di ottimizzare le trasmissioni, si è pensato che il router non dovesse possedere l'intera lista delle query con tutti i gruppi multicast, questo perché il router dovrà semplicemente forwardare nella rete il pacchetto multicast quando è presente almeno 1 host nel gruppo multicast. È stato dunque inserito un timer randomico sugli host, che viene fatto partire quando viene ricevuta una query. Il primo host che manda un report viene registrato sia dal router che da tutti gli interessati al gruppo broadcast bloccando i loro timer.

Quando uno degli host si disconnette invia un Done. I router tengono un timeout per ogni entry nella loro tabella in caso un host si disconnetta senza inviare un done.

3.5 Configurazione

Le informazioni necessarie sono:

- address prefix;
- interface id;
- default gateway;
- dns server;
- host name;
- domain name:
- MTU maximux transmission unit;

Per creare queste informazioni:

- stateful config: informazioni date da un DHCP;
- stateless config: generate automaticamente;
- ibrida (stateless DHCP);

3.5.1 Interface ID

Si può configurare manualmente, ottenere dal DHCP oppure generati automaticamente. Nel modo di configurare i 64 bit bassi non si hanno garanzie che siano univoci, esiste un protocollo che permette il controllo e l'univocità.

EUI-48 to EUI-64 Mapping

- EUI = Extended Unique Id
- OUI = Organization Unique Id

Per creare l'interface ID in modo automatico si può sfruttare la tecnica del mapping, si prende il MAC del interfaccia e viene mappato nel seguente modo:

Figure 11: Mac To Id Mapping

Il settimo bit viene settato a 0 il MAC è universale (la scheda di rete è configurata da un'organizzazione), mentre viene settato a 1 se il MAC è stato assegnato manualmente (quidni l'indirizzo sarà necessariamente univoco nella sottorete), questa è una convenzione ma non la regola.

Privacy Extension Algorithm Per evitare che l'interface Id possa essere calcolato da qualcun'altro ch conosca il MAC del mio dispositivo si usa un approccio per garantire maggior privacy ed aumentare la sicurezza.

Per generare l'interface Id si prendono 64 bit random e 64 bit generati del MAC mapping e poi viene fatto un hash. In fine il settimo bit viene settato a 0 perché non si ha comunque la certezza che l'interface Id sia univoco.

Figure 12: Privacy Extension Alogorithm

3.5.2 Address Prefix

Anche in questo caso è possibile configurare la parte alta dell'indirizzo ip in modo manuale oppure in modo automatico. Per ottenere queste informazioni in modo automatico esistono due messaggi:

• Router Solicitation: mandato a tutti i router con indirizzo multicast ff01::2.

Figure 13: Router Solicitation

• Router Advertisement: può essere una risposa ad una solicitaion, M (Managed Address Configuration): se settato ad 1 indica che l'indirizzo è disponibile via DHCP; O (Other Configuration): parametri come il DNS server; Reachable Time: tempo in cui il router è disponibile; Retrans Timer: tempo in cui l'indirizzo è disponibile; solitamente l'indirizzo viene messo nel campo options;

Figure 14: Router Advertisement

Quando un host si collega ad una rete potrà fare una solicitation e ricevere una advertisement oppure i router periodicamente mandano una advertisement.

Options Le opzioni hanno un loro formato particolare:

Figure 15: Options Format

Le informazioni sul prefisso sono:

- L: ad 1 se il prefisso può essere on-link;
- A: ad 1 se il prefisso può essere usato con una configurazione autonoma;

Figure 16: Prefix Information Options

Un'altra opzione è il **Link Layer Address Option**, si mette il MAC del default gateway.

Un messaggio molto importante è l'**ICMP Redirect**, in una rete ci sono più router, l'host manda i pacchetti al suo default gateway, se per raggiungere un altro host un altro è router è più vicinino allora i pacchetti vengono rediretti in quel router.

3.5.3 Duplicate Address Detection (DAD)

L'host manda un messaggio di DAD ogni volta che viene effettuata una configurazione. Per verificare che non esistano indirizzi duplicati viene mandato una neghbor solicitation con l'indirizzo appena configurato, se un host ripsonde a questa richesta l'indirizzo viene cambiato.

3.6 Stateless Config

- Il link local address viene generato automaticamente;
- successivamente viene fatta una DAD;
- l'host si iscrive al Solicited Node Multicast Address (configurando il MAC multicast e inviando una ICMP mutlicast listener report);
- abilità le comunicazioni on-link;

3.7 Stateful Config

- viene inviata un router solicitation;
- si ascolta la router advertisement;
- si crea un indirizzo col prefisso annunciato;
- si prova la sua uncità con la DAD;
- ci si iscrivi al solicitated node mutlicast address (configurando il MAC multicast e inviando una ICMP mutlicast listener report);

Un altra grosso vantaggio è il **Renumbering**, tramite l'advertisement si riassegnano gli indirizzi in modo automatico.

17

3.8 Scope **3 IPV6**

3.8 Scope

Qunado un dispositivo ha più interfaccie, gli indirizzi generati automaticamente saranno gli stessi, per distinguere le due interfacce l'host tiene conto a quale interfaccia mandare un messaggio. Per distinguere le due interfaccie si mette %x, dove x è l'id dell'interfaccia.

Figure 17: Ipv6 Scope

4 IPv6 Transitioning

IPv6 è ancora in via di utilizzo parziale, perciò si devono capire i problemi che sorgono nell'utilizzo di questo nuovo protocollo, si possono identificare 4 fasi di transizione, in cui IPv6 deventa incrementalmente più utilizzato fino a diventare lo standard:

• **Network ipv6 isolati**: host di interfaccia dual stack, con ipv6 in ipv4 tunneling;

Figure 18: Isolated Ipv6

• ipv6 island grow: le isole diventano più grandi con soli host ipv6 all'interno, gli host di interfaccia sono dul stack translating devices;

Figure 19: Ipv6 Island Grow

• natice ipv6 connectivity;

Figure 20: Native Ipv6 Connectivity

• ipv6 takes over: ipv4 isolati, ipv4 in ipv6 tunneling;

Figure 21: Ipv6 Takes Over

4.1 Isolated IPv6 networks

Si fa del **Tunneling**, partendo da un paccheto ipv6 che si interfaccia ad una rete ipv4, il router crea un header ipv4 e incapsula il pacchetto ipv6, il ricevitore con un indirizzo ipv4 dovrà poi riprendere il pacchetto ipv6 originale, per far in modo che questo avvenga i router devono essere necessariamente dual stack. Esistono dei vari protocolli che permettono di avere un mapping delgi indirizzi ipv6 algi indirizzi ipv4 automatico o manule.

Una di queste soluzioni è avare entrambi gli host in dual stack (host-centered solutions):

• IPv4-compatible addresses: assegno solo degli indirizzi ipv6 compatibili con ipv4, quando devo inviare un messaggio a destinazione gli ultimi 32 bit dell'indirizzo ipv6 (::/96) sono i bit dell'indirizzo ipv4, dunque non ho conflitti;

Figure 22: Ipv4 Compatible Addresses

- **6over4**: sfrutta il multicast dell'ipv4 e dell'ipv6, però anche se in ipv4 è presente il multicast i provider non lo abilitano all'interno delle loro reti;
- ISATAP: l'ipv6 avrà su un prefisso comune (fe80::5efe) e gli ultimi 32 bit saranno dell'indirizzo ipv4;
- neighbor discovery: viene distribuita un lista dal DNS dove esistono i mapping tra indirizzi ipv4 e indirizzi ipv6, una delle limitazione è che ad ogni indirizzo ipv6 deve essere associato un hostname;

Posso avare anche delle soluzioni **network-centered**, dove esistono host nativi in ipv6 e degli host dual stack:

• 6to4: una delle principali limatazioni del mapping era il basso numero di bit utilizzati, allora una possibile soluzione è quella di andare a mettere l'indirizzo ipv4 nella parte alta dell'ipv6,

Figure 23: 6To4

• tunnel broker: esiste un entità nel mezzo che fa da broker per gli indirizzi da andare ad utilizzare per il tunnel;

Soluzioni **scalabili, carrier-grade solutions**, quando le isole ipv6 continuano a crescere si avranno anche scambi di pacchetti ipv4 attraverso reti native ipv6. Questo tipo di setup dovrà supportare ancora ipv4 clients e connessioni di host ipv6 a server in ipv4.

Il mapping di un indirizzo IP era proprio del NAT (map da ipv4 a ipv4), un dispositivo in grado di fare sia routing che natting viene detto Customer Permises Equipment (CPE). Alcune varienti del NAT è quello nelle reti cellulari, dove le antenne a cui si connettono il nat assegna un indirizzo publico all'host, per questo viene detta Large Scale NAT (LSN). Esiste anche un soluzione con entrambi gli approcci dove un LSN mappa delle reti private, in cui è presente il NAT per la traduzione. Alcune soluzioni di mapping tra indirizzi dipendono da dove viene inserito il NAT.

- AFTR (address family transmission router): grantisce agli host ipv4 di parlare con host ipv4 attraverso infrastrutture nel mezzo ipv6, l'AFTR tipicamente ha due funzionalità: accalleratori hardware del nat e del tunneling;
- Dual Stack Lite (DS lite): con questa soluzione si gestiscono tutti i casi in cui l'ISP abbia un backbone in ipv6, ds lite prevede che l'indirizzo ipv4 arrivi al CPE e che poi venga fatto un tunneling verso il Large Scale NAT (AFTR) e poi viene fatto il natting, lo svantaggio è che il piano di indirizzamento deve essere pubblico altrimente si potrebbero creare delle collisioni, le principali limitazioni sono: il NAT non è sotto il controllo del consumatore perché un unico NAT gestisce tutti i clienti, il port forwarding non può essere abilitato nel CPR;

Figure 24: Ds Lite

• A+P (address plus port): in questa soluzione rispetto a ds lite il NAT viene spostato dall'AFTR al CPR diventando sotto il controllo del consumatore, auemtando la scalabilità, quando si manda un pacchetto in ipv4 passo da un indirizzo privato ad uno nattato e poi si fa un tenneling verso il AFTR, questo comporta l'assegnazione di un indirizzo ipv4 pubblico al CPR, il motivo è che quando si farà il natting è necessario avere un ip pubblico che si interfacci con la rete e che poi viene tunnelato. Se però l'ISP ha scarsità di indirizzi ipv4 si più utenti avrenno gli stessi indirizzi ip con dei range di porte diversi assegnati;

Figure 25: A+P

• MAP (mapping address and port): è un mix tra ds lite e a+p, in cui si tenta di avere una configurazione stateless, dove non si allocano dei range di porte al CPE, ma un set di porte, il vantaggio è che un border relay (AFTR) è in grado di ricostruire le informazioni a partire dall'indirizzo. Le caratteristiche sono:

- un client ipv4 viene mappato su un indirizzo univoco ipv6 caratterizzato dal prefisso del router CPE;
- l'indirizzo pubblico dell'host di destinazione viene mappato nel border relay;
- map-e: map con incapsulamento, il pacchetto ipv6 viene messo nel payload di un pacchetto ipv4;
- map-t: map con traduzione, in un pacchetto ipv6 l'header viene sostituito con un uno ipv4;

Figure 26: Map

- Port set: per generare i set di porte si utilizzano i 16 bit delle porte, ad ogni CPE veiene assegnato un PSID (Port Set ID) e un indirizzo ipv4 pubblico, ogni set di porte sono rappresetntate da: a bit maggiori di 0 (altrimenti si andrebbero a toccare le well-known ports), k bit di PSID, m bit (fino a 16 bit totali);
- CPE ipv6 address: si basa sul fatto che l'indirizzo ipv6 del CPE contiene delle informazioni sul CPE stesso e legate in qualche modo all'host ipv4 che ci vuole raggiungere, in modo che il border relay possa ricostruirsi l'indirizzo ipv6 a partire dall'indirizzo ipv4 da cui arrivano le risposte, perciò l'indirizzo si compone di:
 - * ruole ipv6 prefix: prefisso che indentifica l'istanza di map;
 - * EA bits: parte dell'indirizzo ipv4 pubblico e una porzione del port set;
 - * subnet id: compatibilità con gli indirizzi ipv6 (sempre messi a 0);
 - * inteface id: informazioni dell'indirizzo ipv4;

Figure 27: Cpe Ipv6 Address

– map-e:

Figure 28: Map E

- map-t:

Figure 29: Map T

• NAT64 + DNS64: lo scenario è quando un client ipv6 vuole parlare con un indirizzo ipv4, questa operazione andrà fatta con un NAT64, l'indirizzo però

viene mappato dal DNS64. Per effettuare una risoluzione del nome, il DNS64 chiede a cui arriva una richiesta AAAA (ipv6) la inoltra al DNS del server ipv4 che risponde con un errore, allora il DNS64 manda una richiesta A (ipv4), il DNS6 mappa l'indirizzo ipv4 ricevuto ad un indirizzo ipv6 che inoltra al client, l'indirzzo ha un prefisso conusciuto (usato per le risoluzioni tradotte da ipv4) e la parte finale con l'indirizzo ipv4 del server, la richiesta che poi viene fatta passando per il NAT64 effettuerà una traduzione, creando l'header ipv4 a partire dall'indirizzo ipv4 dagli ultimi bit nell'indirizzo ipv6;

5 Wireless and Cellular Networks

5.1 Wireless LAN

Le caratterisiche del link wireless sono:

- un link Wireless ha un degrado maggiore del segnale, rispetta ad una fibra ottica;
- è soggetto a interferenze;
- problema del **fading**, causato dai rimbalzi del segnale su ostacoli;

Esistono vari standard dello IEEE 802.11 wireless LAN, i più moderni arrivano fino a 5GHz, il problema con le alte frequenze è

Tutte le implementazioni utilizzano il protocollo di accesso CSMA/CA.

Un access point o una base station serve una Basic Service Set (BSS), dentro la BSS si trovano sia gli access point che gli host.

Figure 30: BSS

Un dispositivo fa il **sensing** per cercare un canale operativo, che provengono di vari access point, ascoltando per il **beacon frame** che serve ad agganciarsi ad un access point, ci sono diversi beacon fram ed il dispositivo si collega all'access point con il segnale più forte, il beacon frame contiene:

• il nome dell'AP (SSID);

• l'indirizzo MAC;

Per poter accedere ad una rete wifi, oggigiorno, hanno tutte bisogno di autenticazione, e tipicamente sarà presente un DHCP per ottenere una configurazione IP.

5.2 CSMA/CA

Il protocollo fa il sensing del canale (CSMA = carrier sense multiple access), ed la collision avoidance (CA), il motivo è che in una rete wireless il mezzo di trasmissione è l'aria che è un mezzo condiviso. Il sender:

- si fa il sense del canale, si aspetta un tempo di DIFS e si trasmettono i dati;
- se si fa il sense ed il canale è occupato si aspetta, per applicare la CA parte un randon exponential backoff timer quando sento il canele occupato (in ethernet il timer partiva solo quando avveniva una collisione!);

Per evitare le collisione gli hots mandano un piccolo pacchetto , per sprecare la minor banda possibile, detti RTS (ready to send) usando CSMA, l'AP rispondono in broadcast agli host con un CTS (clear to send) per un degli host che ha mandato l'RTS, dopichè l'host a cui l'AP ha mandato il CTS che inizia a trasmettere una trama e l'AP manda sempre in broadcast un ACK all'host che ha trasmesso la trama.

Figure 31: Collision Avoidance

Una trama 802.11 è fatta da:

- frame control: è composto da:
 - protocal version;

- type: RTS, CTS, ACK, data;power mgt;...;
- duration: la durata che ci mette la trama per essere trasfertita;
- address 1: indirizzo dell'interfaccia MAC dell'AP, il motivo per cui è presente questo indirizzo è che nelle reti wireless bisogna prima passare dell'AP (violando in qualche modo il principio su cui si basa il livello link nelle reti ethernet, dove se uno swith è presente il pacchetto viene direttamente inoltrato al mac di destinazione, senza passare dal router);
- address 2: indirizzo sorgente;
- address 3: indirizzo dell'interfaccia del router a cui l'AP è collegato;

Figure 32: 802.11 Frame

In una rete wireless va gestita anche la mobilità, questo è improbabile in una rete wifi, solitamente il movimento è fatto in una subnet, ovvero in una rete in cui sono presenti più AP collegati allo stesso router di una sottorete.

Un'altra capacità dei dispositivi è il poter entrare in **sleep mode**, un nodo manda all'AP questa richiesta, se l'AP riceve delle trame da mandare al nodo li bufferizza finché il nodo non si svelgia, un nodo si riattiva quando un beacon frame viene mandato, nel beacon frame vengono anche segnalati gli host per cui ci sono dei messagi in coda, allora il nodo capisce che deve svegliarsi e colleziona le trame, oppure continua a dormire.

5.3 Cellular Networks

Una rete cellulare è una rete che cerca di coprire un'area geografica molto vasta attraverso le **celle**, dove il terminale utente si muove anche su lunghe distanze, gestendo il cambiamento du una cella all'altra, detto **handover**.

La forma e le dimsioni di una cella sono determinate da:

- potenza emessa;
- altezza;
- il guadagno dell'antenna: indica quanto un'antenna è buona nella trasmissione;
- morfologia del territorio;
- condizioni di propagazione: se nevica il segnale sarà più attenuato;

Le celle utilizzate in pratica sono:

• Una macrocella viene relizzata con un'antenna posizionata molto in alto;

Figure 33: Macrocella

• Microcella realizzata con antenne non molto posta in alto,

Figure 34: Microcella

Nelle reti cellulari non si usa CSMA/CD, le tecniche di condivisione sono: fdma, tdma, cdma, sdma. Per quasi tutte le reti cellulari si usa FDMA con riutilizzo dell

29

frequenze, sfruttando la distanza fisica che separe le celle. Vengono creati dei **cluster** di celle in cui vengono usate tutte le frequenze disponibili, al di fuori di questo cluster si possono riutilizzare le frequenze, il numero di celle presenti in un cluster si indica con G=x. Nei cluster le celle che hanno le stesse frequenze si chimano **co-channel**.

Figure 35: 7 Cell Cluster (G=7)

Per soddisfare più utenti si possono diminuire le dimensioni delle celle, soddisfando meno utenti per area ma incrementando l'ottimizzazoine di utilizzo delle frequenze, se però si inzia a diminuire troppo la dimensione sorgono dei problemi:

- aumento dei costi per creare le maggiori celle;
- diminuendo il numero di celle in un cluster aumento l'interferenza, la distanza tra i co-channel diventa più piccola, creando interferenze maggiori nella stessa frequenza;

Tecniche di fregency reuse:

- **Splitting**: coesistenza di microcelle e macrocelle, esempio: in campagna sarebbe meglio gestita con macrocelle più copertura e meno persone da gestire, in città ha più senso usare delle micro celle, meno copurtura per più utenti da gestire e più ostacoli da evitare;
- Cell Shaping: per evitare degli handover mette le micro celle in posti dove le persone so che rimarranno ferme, e per le persone che si muvono avrò delle macrocelle che caoprono un area più ampia;
- Power Control: è una tecnica per evitare di sprecare più batteria del necessario, per decidere la potenza da utilizzare; le strategia sono: open loop, closed loop, ...; nell'open loop
- Sectoring: si vanno a considerare delle antenne con capacità di trasmissioni non omnidirezionali, diminuendo le interferenze in una certa direzione;

- **Tilting**: non usare un angolo di 90 gradi per le trasmissioni, limitando le interferenze;
- Creating femtocell: si creano delle celle al volo quando ne ho bisogno dove ne ho bisogno, esempio: uno stadio non avrebbe senso di essere gestito ogni giorno della settimana, se non quando lo stadio si riempe di gente per un evento;

jArchittura ...

5.4 Basi Procedures

- Registrazione: fornire un associazione ad un rete cellulare, la registrazione viene fatta ogni qual volta un utente voglia accedere ad un servizione;
- Mobilità: le procedure legate alla mobilità sono:
 - Roaming: il roaming è la capacità di un terminale di essere tracciabile in una rete, tenendo i log su ogni cella in cui è stato attaccato. Per effettuare il roaming la rete ricorda in quale location area il terminale si trova, più celle adiacenti formano una lacation area, non è detto che una location area sia fatta da celle di un solo opertatore. Ognuna di queste lacation area ha un ID detto Location Area Id (LAI);
 - Location updating: è l'operazione che un utente deve fare ogni qual volta si muove e cambia location area, un treminale si accorge di aver cambiato LA quando visualizza un LAI diverso;
 - Paging: come si fa ed essere tracciabili? La rete conosce la LA in cui il terminale si trova, ma non la specifica cella, allora quando arriva un messagio per host x, il sistema manda un paging message in broadcast in tutta la LA (simile ad un ARP request), il motivo per cui si manda un messaggio in broadcast in una location area è limitare il numero delle laction updating;
 - Handover: procedura molto complessa per continuare a mantenere la connessione passando da una cella all'altra, si classificano in: intra-cella vs inter-cella, (soft vs hard) sono collegato ad entrambe le base station, sono collegato prima ad una e poi ad un altra, (MT vs BS) inizializzata da MT a dalla BS (tipicamente), (Backward vs Forward) procedure gestite dalla cella di arrivo o dalla cella di partenza;

5.5 Evoluzione delle reti cellulari

La prima generazione (1G) era una tecnologia completamente in analogico in FDMA, sostitutita dal **GSM (Europa) 2G**, in europa adottato con FDMA/TDMA, il passo

in avanti è stato il passaggio dall'analogico al digitale e l'avvento degli sms, con il **2.5G GPRS/EDGE** è la prima tecnologia di fornire srevizi a pacchetti.

3G dove il focus è improntato al miglioramento dello scambio di contenuti multimediali, che adotta il CDMA in USA, UMTS in Europa. L'estensione del **3.5G**, va a migliorare l'UMTS che diventa HSPA aumentando di fatto la grandezza dei dati scambiati.

4G conosciuto comee LTE, ha un focus sul creare un'architettura ben integrata con i servici TPC/IP forniti da internet, vengono create delle antenne MIMO in cui si riesce a trasmettere su più canali in contemporanea, aumentando di molto il bitrate. Per la volta la rete è interamente in IP, anche per chiamate vocali.

5G cerca di unificare diverse tecnologie di accesso wireless, di fatto annullando le diversità tra rete cellulare e wifi. Il 5G utilizza delle mmWave (micro onde) permettono di avere un throughput maggiore. Si cerca di offrire dei servigi aggiuntivi come l'edge computing, spostando le computazione da un server ad dei nodi vicini alla BS, cercando di fornire dei servizi personalizzati attraverso la virtualizzazione dei servizi di rete (come ad esempio un firewall), detto NFV (Network Function Visualization). Queste funzioni di rete vengono combinate in una catena di rete, utilizzando anche il source routing di ipv6. Esiste anche l'SDN (Software Define Networking), serve per eseguire tutte queste funzioni ho bisogno di un disallineamento tra piano di controllo e piano dati, il router avrà bisogno di un sitema general purpose per poter gestire questi due servizi in modo differente, gestendo in maniera opportuna la catena di servizi.

5.6 GSM

Offre servizi come:

- voce a (13 kbit/s o 6.5 kbit/s);
- sms;
- servizi supplementari;

L'architettura GSM è fatta da:

- Mobile Station: si tratta di dispositivi in grado di connettersi;
- Subsrciber Identity Module (SIM): per connetersi alla rete, il dispositivo ha bisogno di una sim, che contiene dei parametri per autenticazione e di altri dati, uno di questi è l'IMSI che è molto simile ad un MAC, il dispositivo + sim formano un mobile terminale (MT);
- Base Station Subsystem (BSS): la BS è formata da una Basa Transceiver Station BTS che è in grado di modulare su più frequenze i diversi canali di accesso, e da una Base Station Controller BSC, che gestisce tutta la logica delle

rete, come ad esempio la gestione dall'handover, manda inoltra il segnale di paging per localizzare un utente, e converte i 13kbit per la voce a 64kbit/s (il motivo è percheé la rete cellulaure usa PCM64);

• Network and Switching Subsystem (NSS): la BSS è collegata a:

Figure 36: Nss

- MSC (Mobile Switching Center): gestisce l'autenticazione, il routing tra il GSM ed altri network;
- HLR (Home Location Register): è il database della rete a cui appartiene il dispositivo home, nella quale vengono registrati i parametri dell'utente, come le chiavi crittografiche, dati di mobilità, è unico per tutta la rete;
- VLS (Visitor Location Register): contiene le informazioni legati ad un MT presente in quel momento nella rete, mantiene i valori quando l'utente si è spostato;
- AuC (Authentication Center): tramite una tecnologia challange and response, l'utente si può autenticare;
- EIR (Equipmente Identity Register): mantiene un registro di tutti i dispositivi rubati;
- GMS Frequenze: le frequenze allocate al GMS sono: 850, 900, 1800, 1900 MHz. Le frequenze in uplink sono diverse da quelle in downling;
- Canali: si usa un approccio FDMA/TDMA, la divisione è in 32 frequenze portanti, inoltre ogni canale viene diviso in 8 slot temporali. All'interno degli slot le informazioni vengono arganizzate in burst:

Figure 37: Up Down Link

- Timing Advance: ci sono dei ritardi di propagazione, comportando dei problemi con la trasmissione negli slot assegnati, per questo viene usato il timing advance, misurando i ritardi di propagazione si inizia a trasmette con un anticipo temporale pari a al ritardo di propagazione, infatti all'inizio e alla fine del burst sono presenti dei bit inutili, detti di guardia, per evitare sovrapposizioni con gli altri cananli, anche per problemi di disallineamento;
- Struttura burst:

Figure 38: Struttura Burst

• Canali Logici: i canali logici sono mappati sui canali fisici che identificano cosa viene trasmesso all'interno dei canali, divisi in traffic channel e control channel.

5.7 LTE

Una delle caratterisiche principali è il rimpiazzamento del CDMA con l'FDMA (OFDMA: FDM dove le frequenze portanti sono più vicine tra di loro ed ortogonali tra di loro).

L'LTE è composto da:

- LTE utilizza 3 diverse bande di frequenza:
 - 2600 MHz per città;
 - 1800 MHz medio gittata;
 - 800 MHz lunghe gittate, pochi utenti, pochi ostacoli;
- Terminologia:
 - downling (DL):
 - upling (UL):
 - User plane:
 - control plane:

• Architettura: è formata da RAN Radio Access Network, ..., le BSS vengono chiamate eNodeB,

Figure 39: Architettura Lte

- ECP: l'EPC è stato ridefinito da zero (clean-slate), gestisce anche le risorse radio;
- Bearers: i bearer sono dei tunnel che trasportano il traffico dall'UE ad altri elementi dell'architettura, questi tunnel vengono creati per inviare il traffico attraverso alcuni nodi ritenuti i migliori per gestire il servizio dell'utente, si possono creare dei bearer per dei servizi specifici. I bearer hanno dei nomi specifici:
 - radio bearer: connessione tra UE e eNodeB;
 - s1 bearer: connessione tra eNodeB e l'S-GW (Service Gateway);
 - s5 bearer: connette il S-GW al P-GW.
- E-UTRAN: consistono per la maggior parte di eNodeB, la loro funzione principale è la gestione delle risorse, compressione degli header per migliorare le prestazioni, sicurezza, connessione all'EPC;
- Control/Data Plane: controllo: protocolli per la mobilita, sicurezza, autenticazione, dati: nuovi protocolli per per livello link e livello fisico,

In LTE c'è una separazione, esistono Control/Data Plane:

• Link Layer Protocol: formato da:

Figure 40: Link Layer

- packet data convergence: compressione e encryption;
- radio link control (RLC): potrebbe essere necessario frammentare i pacchetti e la ricomposizione, inoltre permette un reliable data transfer che permette una verifica dei dati, come nel wifi;
- medium access: richiesta di accesso, uso di slot radio;
- First Hop: per accedere ai canali si utilizza un approccio OFDM con TDM, gli slot sono molto piccoli, grazie a questi slot piccoli gli algoritmi di assegnamento potranno asseganre più slot ad un singolo utente, tutti allocati in maniera dinamica;
- Canali Fisici: la divisione fatta da OFDM/TDM vengono detti canali, in alcuni canali vengono riservati degli slot specifici per segnali di controllo, esiste dunque un divisione tra canali di controllo e canali di dato;
- Associazione di un nodo: la BS fa un broadcast di un primary sync signal ogni 5ms su ogni frequenza, il terminale che riceve questo signal ne sceglio uno basandosi sulla pontenza del seganle e aspetta il second sync signal che contiene delle informazioni sulla BS, il primary da solo il seganle di aggancio, scelta la BS si inizia l'autenticazione e si inizializza il data plane;
- Sleep Mode: dopo 100ms di inattività il terminale entra il light sleep e viene periodicamente svegliato ogni 100ms per controllare se ci sono dei messaggi

pending, se i secondi di inattività diventano 5-10s, il terminale va in deep sleep, in cui la connessione va riassociata ad una BS, se il terminale deve ricevere dei messaggi la BS può sevgliare il terminale dal deep sleep;

6 5G

Lo scopo è creare una rete wireless unificata (nuovo ordine mondiale), insieme ad altri servizi.

Per offrire tutti questi servizi bisogna disclocare i calcoli vicino all'utente (edge della rete), si ha bisogno di **network slice**, ovvero porzioni di rete dedicate ad un utente, ho bisogno di un controllore centralizzato (SDN) per assegnare le risorse.

Alcuni use cases:

- eMBB (enhanced mobile brodband): definisce come in una rete si possono creare delle ditribuzioni di servizi streaming per utenti mobili;
- mMTC (massive machine type comunication): comunicazioni tra macchine industriali;
- URLLC (ultra relieable low latency comunication): comunicazioni con latenze di 1ms;

Le tecnologie usate:

- forme d'onda avanzate;
- MIMO avanzate, con un throught maggiore di quelle di LTE;
- uso delle micro onde;

Core network:

- SDN: controller centralizzato;
- NFV: funzioni virtuali eseguite;

7 VPN (Virtual Private Network)

Si utilizzano le VPN quando ci si vuole connettere in una rete privata passando dalla rete, per questo motivo stabilire un tipo di comuncazione va protetta. Gli elementi chiave di queste connessioni sono:

• tunnel: incapsulamento del traffico su un canale condiviso, che in alcune situazione non potrebbe essere disponibile;

• VPN gateway: dispositivo ad-hoc per aprire e terminare dei tunnel, che dovrà supportare un protocollo specifico (non sempre il VPN gateway non supporta tutti i protocolli);

Il motivo per cui esistono le VPN è che l'alternativa sarebbe quella di posare un cavo direttamente collegato alla rete, dunque è comodo avere un modo di connersi ad una rete privata su una rete condivisa. Un altro motivo è l'utilizzo di un indirizzo IP locato in un altro paese.

In base al livello dello stack ISO/OSI è possibile implementare una VPN.

Gli scenari di attuazione di VPN può essere fatta in una azienda solo internamente (**Intranet VPN**) oppure può essere condivisa con più azionde o vari clienti, quindi dovranno essere presi in considerazione aspetti di sicurezza e privacy, entrando in gioco anche diversi livelli di firewall e varie autorizzazioni che vengono assegnate, si deve tenere in considerazione anche il problema dell'overlapping, ovvero avere più host con lo stesso indirizzo privato.

Quando si parla di connessione ad internet attraverso la VPN esistono due tipi di accesso:

- Centralized Internet Access: si ha accesso alla sottorete ed a internet;
- Distributed Internet Access: solo il traffico indirizzato alla sottorete passo per la VPN, mentre il traffico verso internet passa normalmente dal default gateway;

7.1 Deployment Model

Con deployment model ci si focolizza sull'infrastruttura che permette di utilizzare una VPN. Le VPN devono garantire autenticazione dei peer, integrità dei dati e confidenzialità. Quando si fa il deploy possono essere possibili diversi tipi di tunneling.

- s2s (site 2 site) VPN tunneling: una sottorete 1 comunica con una sottorete 2 con un tunnel;
- e2e (end 2 end) VPN tunneling: due computer in due sottoreti separate vengono connessi con un tunnel;
- remote VPN tunneling: un singolo host si collega con un border gateway delle sottorete;

Adoperare un s2s ha dei costi maggiori, infatti i due border gateway (che sono ai bordi delle sottoreti) devono gestire costi di overhead, tunnel miltipli e quelli della crittografia, mentre col e2e non si ha questo problema di gestione. Solitamente una buona soluzione implementativa è l'utilizzo in contemporanea di e2e e s2s.

Quando si parla di tunnel esistono diversi metodi di creazione, a differenza della soluzione si avrà una differenza tra performance e sicurezza, queste ultime sono inversamente proporzionali:

- Overlay Model: nell'overlay model i tunnel vengono creati tra i due endpoint, non preccopandosi del routing.
- Peer Model: in una soluzione peer model viene creato un tunnel spezzato tra i vari router in cui si passa, quindi esisteranno tanti tunnel quanti sono i router da cui si deve passare per raggiungere la destinazione, il vantaggio di questa soluzione è che si può indirizzare il traffico per un percorso specifico, lo svantaggio è che ad ogni hop il pacchetto viene decapsulato per poi essere reincapsulato in un nuovo pacchetto quando si fa il forward.

Il tunneling in una VPN non è altro che l'incapsulamento di un pacchetto IP (header e payload) in un altro pacchetto IP (nel caso diVPN a livello IP), questo nouvo payload viene criptato con i protocolli GRE o IPsec.

7.2 Livelli delle VPN

Esisistono anche le VPNs di livello 2, vengono dette **Virtual Private LAN Service**, viene usata per emulare le funzionalità delle LAN, serve anche per connettere parti della sottorete. Il tunnel viene fatto attraverso l'incapsulamento di una trama di livello 2 in pacchetto IP, per questo motivo è necessario avere una rete locale con una tecnologia di livello 3.

Le VPN di livello 3, hanno un routing basato su Peer o Overlay, mentre i CE possono essere connessi con e2e, s2s, remote. L'impacchettamento può essere fatto in GRE o IPsec.

Le VPN di livello 4, hanno una encapsulazione basata su TCP che ottiene un alto livello di sicurezza attraverso SSL.

7.3 Protocolli per VPN

Il protocollo **GRE** (Generic Routing Encapsulation) è uno standard per l'encapsulazione, il suo fromato è fatto da:

- Flags: presenza di campi addizionali;
- s: se la destinazione non è raggiunta quando si è percorsa la lista dei router il pacchetto viene distrutto;
- recur: massimo numero di encapsulazioni successive;
- route: è possibile specificare un indirizzo per fare del routing, viene usato insieme al flag s;

Del protocollo GRE esiste anche una versione 1 che migliora gli acknowledge.

I protocolli di tunneling di livello sono **L2TP** (Layer 2 Tunneling Protocol), che la caratteristica di essere indipendente dal livello 2, non viene utilizzato in pratica

perchè richiede un ulteriore encapsulamento in IPsec, ed il **PPTP** (Point To Point Tunneling) che è Customer provisioner, ma anche esso ha una cifratura debole oltre ad avere un sistema di chiavi proprietario.

L2TP utilizza due dispositivi per creare un tunnel, il LAC (L2TP Access Concentrator) a cui gli utenti si collegano, poi questo crea un tunnel verso il LNS (L2TP Network Server), che poi si collega alla rete locale dell'azienda.