

TECHNICAL FIELD
2000

CLAIMS:

Claim 1

A rotor of an electric motor to be arranged inside a stator for generating a revolving magnetic field, comprising: a permanent magnet formed in a ring shape; a rotating shaft arranged at a center of said permanent magnet; and a cushioning member made of rubber material having predetermined hardness, vulcanized and molded between said permanent magnet and said rotating shaft, characterized in that said permanent magnet and said rotating shaft are integrally coupled through said cushioning member.

Claim 2

The rotor of an electric motor according to claim 1, characterized in that on an inner peripheral surface of said permanent magnet, there is formed a protruded portion which enters said cushioning member as an anchor.

Claim 3

The rotor of an electric motor according to claim 2, characterized in that said plurality of protruded portions are provided at predetermined intervals circumferentially on an inner peripheral surface of said permanent magnet.

Claim 4

The rotor of an electric motor according to claim 2,
characterized in that said protruded portions are formed in a
series of flange shape circumferentially on an inner peripheral
5 surface of said permanent magnet.

Claim 5

(Amended) The rotor of an electric motor according to claim
1, characterized in that joining of said permanent magnet and
10 said rotating shaft to said cushioning member is further
reinforced with adhesive.

Claim 6

(Amended) The rotor of an electric motor according to claim
15 1, characterized in that joining of said rotating shaft and said
cushioning member is further reinforced by baking means.

Claim 7

(Amended) The rotor of an electric motor according to claim
20 1, characterized in that said cushioning member is provided with
displacement absorbing means for absorbing displacement of said
cushioning member.

Claim 8

The rotor of an electric motor according to claim 7,
characterized in that said displacement absorbing means consists
of a plurality of through-holes formed in said cushioning member
5 in parallel to said rotating shaft.

Claim 9

The rotor of an electric motor according to claim 7,
characterized in that said displacement absorbing means consists
10 of a plurality of recesses formed on both surfaces of said
cushioning member.

Claim 10

(Amended) The rotor of an electric motor according to claim
15 1, characterized in that said cushioning member is chloroprene
rubber.

Claim 11

A method for manufacturing a rotor of an electric motor to
20 be arranged inside a stator for generating a revolving magnetic
field, comprising the steps of: after a permanent magnet formed
in a ring-shape in advance and a rotating shaft are
concentrically arranged within a metal mold, pouring rubber

material in fluid state into space between said permanent magnet
and said rotating shaft to vulcanize and mold a cushioning
member having predetermined hardness, and integrally coupling
said permanent magnet and said rotating shaft through said
cushioning member.

5

Claim 12

The method for manufacturing a rotor of an electric motor
according to claim 11, characterized in that said permanent
10 magnet is made of plastic magnet, and when said cushioning
member is vulcanized and molded within space between said
permanent magnet and said rotating shaft, the molding
temperature is controlled to be equal to or less than
temperature at which said plastic magnet does not become
15 deformed.

Claim 13

(Amended) The method for manufacturing a rotor of an
electric motor according to claim 11, characterized in that
prior to vulcanizing and molding of said cushioning member, both
20 an inner peripheral surface of said permanent magnet and said
rotating shaft, or either of them is coated with adhesive.

Claim 14

(Amended) The method for manufacturing a rotor of an electric motor according to claim 11, characterized in that after vulcanizing and molding of said cushioning member, a 5 joined portion between said rotating shaft and said cushioning member is further baked.