MAT361 – Introduction à l'analyse réelle

Devoir personnel obligatoire à rendre en PC le vendredi 16 juin

Exercice 1. On fixe une norme $\|\cdot\|$ sur \mathbf{R}^N . Pour $X \in \mathbf{R}^N$ et $r \geq 0$, on note $B_f(X, r)$ la boule fermée de centre X et de rayon r pour la norme $\|\cdot\|$.

Considérons l'équation différentielle $\dot{X} = f(X)$, où $f: \mathbf{R}^N \to \mathbf{R}^N$ est de classe \mathcal{C}^1 .

Pour tout $Z_0 \in \mathbf{R}^N$, on note $T_{\text{max}}(Z_0) > 0$ le temps d'existence maximal de la solution Z(t) de l'équation différentielle $\dot{Z} = f(Z)$ de donnée initiale $Z(0) = Z_0$.

On fixe $X_0 \in \mathbf{R}^N$.

Le but de l'exercice est de montrer que pour tout T tel que $0 < T < T_{\text{max}}(X_0)$, il existe un réel $\epsilon > 0$ tel que, si Y_0 est au plus à distance ϵ de X_0 , alors $T_{\text{max}}(Y_0) > T$.

Soit donc $T \in \mathbf{R}$ tel que $0 < T < T_{\text{max}}(X_0)$.

- (a) Montrer l'existence de R > 1 tel que $X(t) \in B_f(X_0, R)$ pour tout $t \leq T$. L'intervale [0, T] est compact et X est continue sur cet intervalle donc son image est aussi compacte donc bornée ce qui donne le résultat.
- (b) Montrer l'existence de $k_R > 0$ telle que f soit k_R -lipschitzienne sur $B_f(X_0, 2R)$. La boule $B_f(X_0, 2R)$ est compacte et f est de classe \mathcal{C}^1 . En particulier l'application qui à $X \in \mathbf{R}^N$ associe la matrice Jacobienne $J_f(X)$ de f en X est continue. Il existe donc $k_R \in \mathbf{R}$ tel que $||J_f(X)|| \le k_R$ pour tout $X \in B_f(X_0, 2R)$. Par l'inégalité des accroisements finis, on a $||f(X) - f(X_0)|| \le k_R ||X - X_0||$ ce qui donne le résultat.

Soit $\epsilon > 0$ tel que $\epsilon < R$ et soit $Y_0 \in B_f(X_0, \epsilon)$. On note Y(t) la solution maximale de l'équation $\dot{X} = f(X)$ telle que $Y(0) = Y_0$. Son temps maximal d'existence est $T_{\max}(Y_0)$.

- (c) Montrer qu'il existe $T' \in]0,T]$ tel que $Y(t) \in B_f(X_0,2R)$ pour tout $t \leq T'$. Comme Y est continue, il existe T' > 0 tel que $||Y(t) - Y_0|| < R$ pour tout $t \in [0,T']$. De plus, on a $Y_0 \in B_f(X_0,\epsilon)$ donc $||Y(t) - X_0|| \leq ||Y(t) - Y_0|| + ||Y_0 - X_0|| \leq R + \epsilon \leq 2R$.
- (d) Montrer que pour un tel T', on a $||X(t) Y(t)|| \le \epsilon e^{k_R t}$ pour tout $t \in [0, T']$. Pour $t \in [0, T']$, on a $Y(t) \in B_f(X_0, 2R)$ et pour $t \in [0, T]$, on a $X(t) \in B_f(X_R) \subset B_f(X_0, 2R)$. On déduit de (b) que l'on a $||\dot{X}(t) - \dot{Y}(t)|| = ||f(X(t)) - f(Y(t))|| \le k_R ||X(t) - Y(t)||$ pour tout $t \in [0, T']$. Par le Lemme de Grönwall, on obtient que pour $t \in [0, T']$, on a $||X(t) - Y(t)|| \le e^{k_R t} ||X_0 - Y_0|| \le \epsilon e^{k_R t}$.
- (e) Montrer qu'il existe $\epsilon > 0$ tel que $T_{\text{max}}(Y_0) > T$ (on pourra raisonner par l'absurde en supposant que $T_{\text{max}}(Y_0) \leq T$ et que donc Y explose en temps fini).

Par Cauchy-Lipschitz, on sait que si Y est définie pour un temps t alors elle est définie au voisinage de t. En particulier, pour les temps positifs, Y est définie sur l'intervalle $[0, T_{\max}(Y_0)[$. Supposons que $T_{\max}(Y_0) \leq T$, alors Y n'est pas globale et on doit avoir $\lim_{t \to T_{\max}(Y_0)} \|Y(t)\| = +\infty$. On va obtenir une contradiction.

On pose $\epsilon = Re^{-k_RT}$. Soit $\mathcal{T} = \{T' \in [0, T_{\max}(Y_0)[\mid Y(t) \in B_f(X_0, 2R) \text{ pour tout } t \in [0, T'] \}$. On sait par (c) que \mathcal{T} est non vide. Pour $T' \in \mathcal{T}$, on sait par (d) (on utilise ici l'hypothèse $T_{\max}(Y_0) \leq T$) que l'on a $\|Y(t) - X_0\| \leq \|Y(t) - X(t)\| + \|X(t) - X_0\| \leq \epsilon e^{k_R t} + R = Re^{k_R (t-T)} + R < 2R$ pour tout $t \in [0, T']$. En particulier, par continuité

de Y, on voit qu'il existe $\delta > 0$ tel que $[0, T' + \delta[\subset \mathcal{T} \text{ donc } \mathcal{T} \text{ est ouvert. Montrons } \text{que } \mathcal{T} \text{ est fermé. Soit } (T_n)_{n \in \mathbb{N}} \in \mathcal{T}^{\mathbb{N}} \text{ une suite qui converge vers } T' \in \mathbf{R}. \text{ Pour chaque } T_n, \text{ on a } Y(t) \in B_f(X_0, 2R) \text{ pour tout } t \in [0, T_n] \text{ donc par passage à la limite, on a } Y(t) \in B_f(X_0, 2R) \text{ pour tout } t \in [0, T'[.] \text{ Par l'alternative d'explosion, on a que } Y \text{ est définie en } T' \text{ donc } T' < T_{\text{max}}(Y_0) \text{ et par passage à la limite } Y(T') \in B_f(X_0, 2R). \text{ On a donc } T' \in \mathcal{T} \text{ qui est fermé. Par connexité de } [0, T_{\text{max}}(Y_0)[, \text{ on a } \mathcal{T} = [0, T_{\text{max}}(Y_0)[] \text{ et on a vu que pour tout } t \in \mathcal{T}, \text{ on a } ||Y(t)|| \leq ||Y(t) - X_0|| + ||X_0|| < 2R + ||X_0|| \text{ est bornée donc } T_{\text{max}}(Y_0) = +\infty \text{ par l'alternative d'explosion, une contradiction.}$

Définition 1. Soit $\varphi: \mathbf{R}^N \to \mathbf{R}$ une fonction. On définit $\liminf_{X \to X_0} \varphi$ par la formule suivante :

$$\liminf_{X \to X_0} \varphi = \sup_{\epsilon > 0} \left(\inf_{\|X - X_0\| < \epsilon} \varphi(X) \right).$$

(f) Montrer que $\liminf_{X\to X_0} T_{\max}(X) \ge T_{\max}(X_0)$.

Soit $T < T_{\max}(X_0)$. Il existe $\epsilon > 0$ tel que pour $\|X - X_0\| < \epsilon$, on ait $T_{\max}(X) > T$. En particulier, on a $\inf_{\|X - X_0\| < \epsilon} T_{\max}(X) \ge T$ et donc $\liminf_{X \to X_0} T_{\max}(X) \ge T$. Ceci étant vrai pour tout $T < T_{\max}(X_0)$, on obtient le résultat.

(g) On considère $f(x,y) = (x^2y,0)$. Pour une condition initiale $X_0 = (x_0,y_0)$, donner $T_{\max}(X_0)$. En particulier déterminer les conditions initiales X_0 pour lesquelles la solution X(t), telle que $X(0) = X_0$, est globale. Tracer le portrait de phase de cette équation.

Soit X(t) = (x(t), y(t)) la solution de condition initiale $X_0 = X(0) = (x_0, y_0)$. Un calcul montre que

$$X(t) = \left(\frac{x_0}{1 - x_0 y_0 t}, y_0\right)$$

est solution. On a $T_{\max}(X_0) = +\infty$ pour $x_0y_0 = 0$ (dans ce cas X(t) est constante), on a $T_{\max}(X_0) = +\infty$ si $x_0y_0 < 0$ (X(t) est globale en temps positif mais pas en temps négatif) et on a $T_{\max}(X_0) = \frac{1}{x_0y_0}$ pour $x_0y_0 > 0$ (X(t) est globale en temps négatif mais pas en temps positif).

Le portrait de phase est le suivant.

(h) On considère maintenant $f(x,y)=(x^2-yx^4,0)$. Soit a>0, montrer que l'on a $T_{\max}(a,0)<+\infty$ alors que pour tout ϵ tel que $\epsilon a^2<1$, on a $T_{\max}(a,\epsilon)=+\infty$ (ceci peut s'écrire $\lim_{\epsilon\to 0}T_{\max}(a,\epsilon)\neq T_{\max}(a,0)$).

Fixons a > 0. On commence par le cas $X_0 = (x_0, 0)$ avec $x_0 = a > 0$. Si X(t) = (x(t), y(t)) est la solution telle que $X(0) = X_0$, alors on a y(t) = 0 et $x(t) = \frac{x_0}{1 - x_0 t}$ donc $T_{\max}(X_0) = \frac{1}{a} < +\infty$.

Soit maintenant $Y_{0,\epsilon}=(x_0,\epsilon)$ avec $x_0=a>0$ et $\epsilon>0$ tel que $\epsilon a^2<1$. Soit $Y_\epsilon(t)=(x(t),y(t))$ la solution telle que $Y_\epsilon(0)=Y_{0,\epsilon}$. On a $y(t)=\epsilon$ pour tout t. Montrons que $x(t)\in[0,a]$ pour tout t. Soit $\mathcal{T}=\{t\in[0,T_{\max}(Y_{0,\epsilon})[\mid x(t)\in[0,1+1/\sqrt{\epsilon}]\}\}$. On a $x(0)=a\in[0,1+1/\sqrt{\epsilon}]$. On a $\mathcal{T}=x^{-1}([0,1+1/\sqrt{\epsilon}])$ qui est fermé dans $[0,T_{\max}(Y_{0,\epsilon})[$ comme image réciproque d'un fermé par une application continue. Notons que s'il existe t_0 tel que $x(t_0)=0$, alors x=0 est une solution ayant la même condition en t_0 donc x(t)=0 pour tout t ce qui contredit x(0)=a>0. Ainsi x n'est jamais nulle donc x(t)>0 pour tout t. Pour $t\in\mathcal{T}$, si $x(t)<1+1/\sqrt{\epsilon}$, alors par continuité de x, la même chose est vraie au voisinage de t donc un voisinage de t est encore dans \mathcal{T} . Si $x(t)=1+1/\sqrt{\epsilon}$, alors $\dot{x}=x^2-\epsilon x^4=x^2(1-\epsilon x^2)<0$ donc x est strictement décroissante au voisinage de t donc \mathcal{T} contient encore un voisinage de t (on voit même que x(t) ne peut être égal à $1+1/\sqrt{\epsilon}$). L'ensemble \mathcal{T} est donc aussi ouvert. On déduit de la connexité de $[0,T_{\max}(Y_{0,\epsilon})[$ que $\mathcal{T}=[0,T_{\max}(Y_{0,\epsilon})[$ et donc $x(t)\in[0,1+1/\sqrt{\epsilon}]$ pour tout t. Par l'alternative d'explosion, ceci implique que $T_{\max}(Y_{0,\epsilon})=+\infty$ pour tout $\epsilon>0$ tel que $\epsilon a^2<1$ (on peut donc écrire $\lim_{\epsilon\to 0}T_{\max}(Y_{0,\epsilon})=+\infty\neq \frac{1}{a}=T_{\max}(X_0)$).

Exercice 2. On rappelle quelques résultats obtenus à l'exercice 35 (feuille d'exercices 3). Pour $A \in M_n(\mathbf{R})$, la suite $\sum_{k=0}^N \frac{A^k}{k!}$ (avec $A^0 = I_n$ la matrice identité) est une suite de Cauchy et converge vers une matrice notée e^A . Si de plus A et B dans $M_n(\mathbf{R})$ commutent, alors on a $e^A e^B = e^{A+B} = e^B e^A$.

(a) Soit $A \in M_n(\mathbf{R})$ et $f : \mathbf{R} \to M_n(\mathbf{R})$ définie par $f(t) = e^{tA}$. Montrer que f est de classe \mathcal{C}^1 et calculer sa dérivée.

On calcule le taux d'acroissement de f. On a

$$\frac{f(t+h) - f(t)}{h} = \frac{e^{(t+h)A} - e^{tA}}{h} = \frac{e^{hA} - I_n}{h}e^{tA} = Ae^{hA}e^{tA}$$

et par passage à la limite lorsque h tend vers 0, on a bien que f est dérivable. Sa dérivée est donnée par $f'(t) = Ae^{tA} = Af(t)$ qui est elle même dérivable et donc continue.

(b) Soit $f: \mathbf{R} \to M_n(\mathbf{R})$ une application de classe \mathcal{C}^1 telle que f(s+t) = f(s)f(t) pour tous $s, t \in R$ et telle que f(0) est inversible. Montrer qu'il existe une matrice $A \in M_n(\mathbf{R})$ telle que $f(t) = e^{tA}$ pour tout $t \in \mathbf{R}$.

On commence par déterminer f(0). On a $f(0) = f(0+0) = f(0)^2$ et comme f(0) est inversible, on en déduit $f(0) = I_n$ où $I_n \in M_n(\mathbf{R})$ est la matrice identité.

On remarque que f(s)f(t) = f(s+t) = f(t+s) = f(t)f(s) donc ces matrices commutent deux à deux. Par ailleurs, on a f(0) = f(s-s) = f(s)f(-s) = f(-s)f(s) donc f(s) est inversible d'inverse f(-s).

On montre maintenant que f est solution d'une équation différentielle. On a $\frac{1}{h}(f(t+h)-f(t))=\frac{1}{h}(f(h)-f(0))f(t)$ et par passage à la limite quand h tend vers 0, on a f'(t)=f'(0)f(t).

On pose A = f'(0). On voit alors que e^{At} est solution de l'équation différentielle. Le résultat découle de l'unicité des solutions.