

Deutschstraße 10 A-1230 Vienna Tel.: +43(0)1 610 91-0 pzw@tuv.at

Division:Medical Technology/
Communication
Technology/ EMC

Department: Testing Body for Communication Technology/ EMC

TÜV®

PIZ

Testing Laboratory, Inspection Body, Certification Body, Calibration Laboratory

Notified Body 0408 IC 2932K-1

Chairman of the Supervisory Board: KR Dipl.-Ing. Johann MARIHART

Management: Dipl.-Ing. Dr. Hugo EBERHARDT Mag. Christoph WENNINGER

Registered Office: Krugerstrasse 16 1015 Vienna/Austria

Branch Office: Dornbirn, Graz, Innsbruck, Klagenfurt, Linz, Salzburg, St. Pöll Weis, Wien 1, Wien 20 Wien 23, Brixen (I) und Filderstadt (D)

Company Register Court / - Number: Vienna / FN 288476 f

Banking Connections BA CA 52949 001 066 IBAN AT1312000529490010 BIC BKAUATWW RBI 001-04.093.282 IBAN AT1531000001040932 BIC RZBAATWW

UID ATU63240488 DVR 3002476

TEST REPORT

of the accredited test laboratory

TÜV Nr.:M/FG-11/103

Applicant:

AKG Acoustics GmbH

Lemböckgasse 21-25

A - 1230 Wien

Tested Product:

wireless microphone transmitter

FCC-ID:

V3THT40M

Manufacturer:

AKG Acoustics GmbH

Lemböckgasse 21-25

A - 1230 Wien

Output power /

10mW erp

power supply:

1.5 VDC

field strength:

Frequency range:

660,7 - 662,3

Channel separation:

1 channel

MHz

equipment

Standard:

FCC: 47 CFR Part 74 (October 1, 2009 edition)

RSS-123 Issue 1, Rev. 2 - November 6, 1999

TUV Austria Services GmbH
Test laboratory for EMC

Supervisor of EMC-laboratory:

1

Ing. Withelm Seier

Form: FCC15.DOT/1. 1. 2002

Rundslegel G

14.03.2011

1/ 1/-

checked by:

Ing. Michael Emminger

Copy Nbr.: 4

A publication of this test report is only permitted literally.

Copying or reproduction of partial sections needs a written permission of TUV Austria Services GmbH.

The results of this test report only refer to the provided equipment.

Page 1 of 64 File: 11-103/14.03.2011

Relative humidity: 9%

LIST OF MEASUREMENTS

The complete list of measurements called for in 47 CFR 74 and RSS-123 is given below.

SUBCLAUSE	PARAMETER TO BE MEASURED	PAGE
	Intentional Radiators	
	Test object data	3
74.861(e)(1) (6.2)	RF Power Output (erp)	4
74.861(e)(4) (7)	Frequency tolerance	5-6
74.861(e)(5) (6.3)	Operating bandwidth	7-18
74.861(e)(6) (6.3)	Emission mask	19-55
74.861(e)(6)(iii) (6.3)	Spurious emissions	56-64

Form: FCC15.DOT/1. 1. 2002 Page 2 of 64 File: 11-103.doc/14.03.2011

Relative humidity: 9%

TEST OBJECT DATA

General EUT Description

This audio transmitter will be used as a handheld wireless microphone. It has no antenna connector, so all technical data were measured radiated.

- 2.1033 (c) Technical description
- 2.1033 (4) Type of emission: 132KF3E 1 Channel equipment.
- 2.1033 (5) Frequency range selectable: 660,7 662,3 MHz
- 2.1033 (6) Power range and Controls: The output power is fixed to 10 mW.
- 2.1033 (7) Maximum output power rating: 10mW erp.
- 2.1033 (8) DC Voltage and Current: 1,5 V nominal 1V minimum (1 AA Cell) maximum current consumption: 90 mA
- RSS-135 This standard does not apply to:
 - 1.1 (a) a receiver that scans radio frequencies for the purpose of enabling its associated transmitter to avoid transmitting in an occupied frequency but which does not have the capability of decoding the message (e.g. converting it to audio voice) contained in the radio signal

Form: FCC15.DOT/1. 1. 2002 Page 3 of 64 File: 11-103.doc/14.03.2011

Ambient temperature: 24°C

Relative humidity: 9%

Power Output

§ 74.261(e)(1) (6.2)

Radiated Measurement

Rated output power: 10 mW

Test conditions		Transmitter power (mW) (erp)				
		660,7 MHz	661,1 MHz	662,3 MHz		
T _{nom} (24)°C	V _{nom} (1,5)V	9,04	7,10	10,14		
Maximum deviation from rated output power under normal test conditions (dB)		-0,44	-1,49	+0,06		
Measurement uncertainty			<u>+</u> 0,75 dB			

LIMIT

SUBCLAUSE 74.261 (e)(1)(ii) (Table 1 of RSS-123)

Under normal test conditons	250 mW (1W RSS-123)
0.120. 1.0.1.1.0 100.1.0	

Test Equipment used: NT-100; NT-110; NT-111; NT-112; NT-125; NT-126; NT-150; NT-207; NT-500; NT-520; NT-550

Form: FCC15.DOT/1. 1. 2002 Page 4 of 64 File: 11-103.doc/14.03.2011

Relative humidity: 9%

Frequency tolerance

§ 74.261 (e)(4) (7)

Frequency error vs. Supply voltage

DC-Voltage	Frequency Error kHz		Frequency Error ppm			
	660,7 MHz	661,1 MHz	662,3 MHz	660,7 MHz	661,1 MHz	662,3 MHz
1,5 V	-0,64	0,29	0,57	-0,97	0,44	0,86
1 V	-0,36	0,64	0,96	-0,54	0,97	1,45

Frequency error vs. Temperature

Temperature °C	Frequency Error kHz			Frequency Error ppm		
	660,7 MHz	661,1 MHz	662,3 MHz	660,7 MHz	661,1 MHz	662,3 MHz
-30	-5,75	-7,36	-1,54	-8,70	-11,13	-2,33
-20	-3,89	-4,75	0,93	-5,89	-7,18	1,40
-10	-2,25	-2,57	2,54	-3,41	-3,89	3,84
<u>+</u> 0	-2,61	1,54	2,68	-3,95	2,33	4,05
+10	-3,93	1,07	2	-5,95	1,62	3,02
+20	-0,64	0,29	0,57	-0,97	0,44	0,86
+30	-2,46	-0,79	-1,04	-3,72	-1,19	-1,57
+40	-3,82	-1,29	-2,54	-5,78	-1,95	-3,84
+50	-6,59	-1,46	-3,46	-9,97	-2,21	-5,22

LIMIT

SUBCLAUSE 74.261 (e)(4) (Table 1 of RSS-123)

The frequency tolerance of the transmitter shall be 0.005 percent. = 50 ppm

Form: FCC15.DOT/1. 1. 2002 Page 5 of 64 File: 11-103.doc/14.03.2011

Ambient temperature: 24°C Relative humidity: 9%

Frequency tolerance

§ 74.261 (e)(4) (7)

Frequency tolerance vs. Temperature

Test Equipment used: NT-207, M-1200

Form: FCC15.DOT/1. 1. 2002 Page 6 of 64 File: 11-103.doc/14.03.2011

Relative humidity: 9%

OPERATING BANDWIDTH

§ 74.261 (e)(5) (6.3)

The operating Bandwidth was measured at an acoustic input level 16 dB higher than that required for half of the maximum linear input level.

Measurement with audio frequency 1 kHz @ 660,7 MHz

Date: 16.FEB.2011 19:24:19

Measured 99% power Bandwidth: 86,2kHz

LIMIT SUBCLAUSE 74.261 (e)(5) (Table 1 RSS-123)

The operating bandwidth shall not exceed 200 kHz.

TEST EQUIPMENT USED: NT-207

Form: FCC15.DOT/1. 1. 2002 Page 7 of 64 File: 11-103.doc/14.03.2011

Relative humidity: 9%

OPERATING BANDWIDTH

§ 74.261 (e)(5) (6.3)

The operating Bandwidth was measured at an acoustic input level 16 dB higher than that required for half of the maximum linear input level.

Measurement with audio frequency 7,5 kHz @ 660,7 MHz

Date:

16.FEB.2011 19:24:47

Measured 99% power Bandwidth: 116,2kHz

LIMIT SUBCLAUSE 74.261 (e)(5) (Table 1 RSS-123)

The operating bandwidth shall not exceed 200 kHz.

TEST EQUIPMENT USED: NT-207

Form: FCC15.DOT/1. 1. 2002 Page 8 of 64 File: 11-103.doc/14.03.2011

Ambient temperature: 24°C Relative humidity:

OPERATING BANDWIDTH

§ 74.261 (e)(5) (6.3)

The operating Bandwidth was measured at an acoustic input level 16 dB higher than that required for half of the maximum linear input level.

Measurement with audio frequency 15 kHz @ 660,7 MHz

Date: 16.FEB.2011 19:25:05

Measured 99% power Bandwidth: 126,3 kHz

LIMIT SUBCLAUSE 74.261 (e)(5) (Table 1 RSS-123)

The operating bandwidth shall not exceed 200 kHz.

TEST EQUIPMENT USED: NT-207

Form: FCC15.DOT/1, 1, 2002 Page 9 of 64 File: 11-103.doc/14.03.2011

Relative humidity: 9%

OPERATING BANDWIDTH

§ 74.261 (e)(5) (6.3)

The operating Bandwidth was measured at an acoustic input level 16 dB higher than that required for half of the maximum linear input level.

Measurement with audio frequency 20 kHz @ 660,7 MHz

Date: 16.FEB.2011 19:25:28 Measured 99% power Bandwidth: 130,3 kHz

LIMIT SUBCLAUSE 74.261 (e)(5) (Table 1 RSS-123)

The operating bandwidth shall not exceed 200 kHz.

TEST EQUIPMENT USED: NT-207

Form: FCC15.DOT/1. 1. 2002 Page 10 of 64 File: 11-103.doc/14.03.2011

Relative humidity: 9%

OPERATING BANDWIDTH

§ 74.261 (e)(5) (6.3)

The operating Bandwidth was measured at an acoustic input level 16 dB higher than that required for half of the maximum linear input level.

Measurement with audio frequency 1 kHz @ 661,1 MHz

Date:

18.FEB.2011 13:56:11

Measured 99% power Bandwidth: 86,2kHz

LIMIT SUBCLAUSE 74.261 (e)(5) (Table 1 RSS-123)

The operating bandwidth shall not exceed 200 kHz.

TEST EQUIPMENT USED: NT-207

Form: FCC15.DOT/1. 1. 2002 Page 11 of 64 File: 11-103.doc/14.03.2011

Relative humidity: 9%

OPERATING BANDWIDTH

§ 74.261 (e)(5) (6.3)

The operating Bandwidth was measured at an acoustic input level 16 dB higher than that required for half of the maximum linear input level.

Measurement with audio frequency 7,5 kHz @ 661,1 MHz

Date: 18.FEB.2011 13:55:49 Measured 99% power Bandwidth: 114,2kHz

LIMIT SUBCLAUSE 74.261 (e)(5) (Table 1 RSS-123)

The operating bandwidth shall not exceed 200 kHz.

TEST EQUIPMENT USED: NT-207

Form: FCC15.DOT/1. 1. 2002 Page 12 of 64 File: 11-103.doc/14.03.2011

Ambient temperature: 24°C Relative humidity: 9%

OPERATING BANDWIDTH

§ 74.261 (e)(5) (6.3)

The operating Bandwidth was measured at an acoustic input level 16 dB higher than that required for half of the maximum linear input level.

Measurement with audio frequency 15 kHz @ 661,1 MHz

Date: 18.FEB.2011 13:55:26 Measured 99% power Bandwidth: 128,3kHz

LIMIT SUBCLAUSE 74.261 (e)(5) (Table 1 RSS-123)

The operating bandwidth shall not exceed 200 kHz.

TEST EQUIPMENT USED: NT-207

Form; FCC15.DOT/1. 1, 2002 Page 13 of 64 File: 11-103.doc/14.03.2011

Relative humidity: 9%

OPERATING BANDWIDTH

§ 74.261 (e)(5) (6.3)

The operating Bandwidth was measured at an acoustic input level 16 dB higher than that required for half of the maximum linear input level.

Measurement with audio frequency 20 kHz @ 661,1 MHz

Date: 18.FEB.2011 13:54:53

Measured 99% power Bandwidth: 132,3kHz

LIMIT SUBCLAUSE 74.261 (e)(5) (Table 1 RSS-123)

The operating bandwidth shall not exceed 200 kHz.

TEST EQUIPMENT USED: NT-207

Form: FCC15.DOT/1, 1, 2002 Page 14 of 64 File: 11-103.doc/14.03.2011

Relative humidity: 9%

OPERATING BANDWIDTH

§ 74.261 (e)(5) (6.3)

The operating Bandwidth was measured at an acoustic input level 16 dB higher than that required for half of the maximum linear input level.

Measurement with audio frequency 1 kHz @ 662,3 MHz

Date: 16.FEB.2011 19:35:34

Measured 99% power Bandwidth: 94,2kHz

LIMIT SUBCLAUSE 74.261 (e)(5) (Table 1 RSS-123)

The operating bandwidth shall not exceed 200 kHz.

TEST EQUIPMENT USED: NT-207

Form: FCC15.DOT/1. 1. 2002 Page 15 of 64 File: 11-103.doc/14.03.2011

Relative humidity: 9%

OPERATING BANDWIDTH

§ 74.261 (e)(5) (6.3)

The operating Bandwidth was measured at an acoustic input level 16 dB higher than that required for half of the maximum linear input level.

Measurement with audio frequency 7,5 kHz @ 662,3 MHz

Date:

16.FEB.2011 19:35:59

Measured 99% power Bandwidth: 120,2kHz

LIMIT SUBCLAUSE 74.261 (e)(5) (Table 1 RSS-123)

The operating bandwidth shall not exceed 200 kHz.

TEST EQUIPMENT USED: NT-207

Form: FCC15.DOT/1. 1. 2002 Page 16 of 64 File: 11-103.doc/14.03.2011

Relative humidity: 9%

OPERATING BANDWIDTH

§ 74.261 (e)(5) (6.3)

The operating Bandwidth was measured at an acoustic input level 16 dB higher than that required for half of the maximum linear input level.

Measurement with audio frequency 15 kHz @ 662,3 MHz

Date: 16.FEB.2011 19:36:25 Measured 99% power Bandwidth: 130,3kHz

LIMIT SUBCLAUSE 74.261 (e)(5) (Table 1 RSS-123)

The operating bandwidth shall not exceed 200 kHz.

TEST EQUIPMENT USED: NT-207

Form: FCC15.DOT/1. 1. 2002 Page 17 of 64 File: 11-103.doc/14.03.2011

Relative humidity: 9%

OPERATING BANDWIDTH

§ 74.261 (e)(5) (6.3)

The operating Bandwidth was measured at an acoustic input level 16 dB higher than that required for half of the maximum linear input level.

Measurement with audio frequency 20 kHz @ 662,3 MHz

Date:

16.FEB.2011 19:36:52

Measured 99% power Bandwidth: 132,3kHz

LIMIT SUBCLAUSE 74.261 (e)(5) (Table 1 RSS-123)

The operating bandwidth shall not exceed 200 kHz.

TEST EQUIPMENT USED: NT-207

Form: FCC15.DOT/1. 1. 2002 Page 18 of 64 File: 11-103.doc/14.03.2011

Ambient temperature: 24°C

Relative humidity: 9%

Emissions Mask

§ 74.261 (e)(6) (6.3)

LIMIT

74.261(e)(6)

The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the following schedule:

- (i) On any frequency removed from the operating frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: at least 25dB;
- (ii) On any frequency removed from the operating frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: at least 35dB;
- (iii) On any frequency removed from the operating frequency by more than 250 percent of the authorized bandwidth: at least 43+10log₁₀ (mean output power in watts) dB.

In deviation to above (iii) RSS-123 6.3.1 (3) requires: at least 55 + 10 Log10(TP) dB, in any 30 kHz band removed from the centre of the authorized bandwidth by more than 250% of the authorized bandwidth. The search for unwanted emissions shall be from the lowest frequency internally generated or used in the device (local oscillator, intermediate or carrier frequency), or 500 kHz below its lowest assignable frequency, whichever is the lowest frequency, to the 5th harmonic of the

highest frequency generated or used, without exceeding 23 GHz.

All plots were normalised so that 0 dB is equal to the mean output power measured in a bandwidth equal to 5 times the nominal bandwidth of the emission.

Form: FCC15.DOT/1, 1, 2002 Page 19 of 64 File: 11-103.doc/14.03.2011

Relative humidity: 9%

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 660,7 MHz

Modulation: acoustic input level to achieve half of maximum linear input level, audio frequency 1 kHz

DC Voltage: 1,5 V

Date:

16.FEB.2011 19:26:20

Ambient temperature: 24°C Relative humidity: 9%

TŪV

Emissions Mask § 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 660,7 MHz

Modulation: acoustic input level to achieve half of maximum linear input level, audio frequency 1 kHz

DC Voltage: 1 V

Ambient temperature: 24°C

Relative humidity: 9%

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 660,7 MHz

Modulation: acoustic input level equal to the maximum linear input level, audio frequency 1 kHz

DC Voltage: 1,5 V

Ambient temperature: 24°C Relative humidity: 9%

§ 74.261 (e)(6) **Emissions Mask** (6.3)

Operating mode:

Frequency: 660,7 MHz

Modulation: acoustic input level equal to the maximum linear input level, audio frequency 1 kHz

DC Voltage: 1 V

Date:

Relative humidity: 9%

TŪV

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 660,7 MHz

Modulation: acoustic input level to achieve half of maximum linear input level, audio frequency 15 kHz

DC Voltage: 1,5 V

Date:

16.FEB.2011 19:28:24

Ambient temperature: 24°C Relative humidity: 9%

Emissions Mask § 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 660,7 MHz

Modulation: acoustic input level to achieve half of maximum linear input level, audio frequency 15 kHz

DC Voltage: 1 V

Date: 16.FEB.2011 19:28:39

Ambient temperature: 24°C

Relative humidity: 9%

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 660,7 MHz

Modulation: acoustic input level equal to the maximum linear input level, audio frequency 15 kHz

DC Voltage: 1,5 V

Date:

16.FEB.2011 19:29:18

Ambient temperature: 24°C Relative humidity: 9%

Emissions Mask § 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 660,7 MHz

Modulation: acoustic input level equal to the maximum linear input level, audio frequency 15 kHz

DC Voltage: 1 V

Relative humidity: 9% Ambient temperature: 24°C

§ 74.261 (e)(6) **Emissions Mask** (6.3)

Operating mode:

Frequency: 660,7 MHz

Modulation: acoustic input level to achieve half of maximum linear input level, audio frequency 20 kHz

DC Voltage: 1,5 V

Date:

Ambient temperature: 24°C Relative humidity: 9%

Emissions Mask § 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 660,7 MHz

Modulation: acoustic input level to achieve half of maximum linear input level, audio frequency 20 kHz

DC Voltage: 1 V

Date: 16.FEB.2011 19:29:56

Ambient temperature: 24°C

Relative humidity: 9%

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 660,7 MHz

Modulation: acoustic input level equal to the maximum linear input level, audio frequency 20 kHz

DC Voltage: 1,5 V

10.1111.0011

Ambient temperature: 24°C Relative humidity:

§ 74.261 (e)(6)

(6.3)

Emissions Mask

Operating mode:

Frequency: 660,7 MHz

Modulation: acoustic input level equal to the maximum linear input level, audio frequency 20 kHz

DC Voltage: 1 V

Ambient temperature: 24°C

Relative humidity: 9%

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 661,1 MHz

Modulation: acoustic input level to achieve half of maximum linear input level, audio frequency 1 kHz

DC Voltage: 1,5 V

Ambient temperature: 24°C Relative humidity: 9%

Emissions Mask § 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 661,1 MHz

Modulation: acoustic input level to achieve half of maximum linear input level, audio frequency 1 kHz

DC Voltage: 1 V

Date: 18.FEB.2011 13:57:50

Ambient temperature: 24°C Relative humidity: 9%

Emissions Mask § 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 661,1 MHz

Modulation: acoustic input level equal to the maximum linear input level, audio frequency 1 kHz

DC Voltage: 1,5 V

Ambient temperature: 24°C Relative humidity: 9%

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 661,1 MHz

Modulation: acoustic input level equal to the maximum linear input level, audio frequency 1 kHz

DC Voltage: 1 V

Ambient temperature: 24°C Relative humidity: 9%

Emissions Mask § 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 661,1 MHz

Modulation: acoustic input level to achieve half of maximum linear input level, audio frequency 15 kHz

DC Voltage: 1,5 V

18.FEB.2011 13:59:17 Date:

Ambient temperature: 24°C Relative humidity: 9%

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 661,1 MHz

Modulation: acoustic input level to achieve half of maximum linear input level, audio frequency 15 kHz

DC Voltage: 1 V

Date: 18.FEB.2011 13:59:32

Ambient temperature: 24°C

Relative humidity: 9%

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 661,1 MHz

Modulation: acoustic input level equal to the maximum linear input level, audio frequency 15 kHz

DC Voltage: 1,5 V

Date:

18.FEB.2011 14:00:30

Relative humidity: 9%

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 661,1 MHz

Modulation: acoustic input level equal to the maximum linear input level, audio frequency 15 kHz

DC Voltage: 1 V

Date:

18.FEB.2011 14:00:12

Relative humidity: 9%

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 661,1 MHz

Modulation: acoustic input level to achieve half of maximum linear input level, audio frequency 20 kHz

DC Voltage: 1,5 V

Date:

18.FEB.2011 14:00:55

Ambient temperature: 24°C

Relative humidity: 9%

Emissions Mask § 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 661,1 MHz

Modulation: acoustic input level to achieve half of maximum linear input level, audio frequency 20 kHz

DC Voltage: 1 V

Test Equipment used: NT-207

Form: FCC15.DOT/1. 1. 2002 Page 41 of 64 File: 11-103.doc/14.03.2011

Relative humidity: 9%

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 661,1 MHz

Modulation: acoustic input level equal to the maximum linear input level, audio frequency 20 kHz

DC Voltage: 1,5 V

Ambient temperature: 24°C Relative humidity: 9%

Emissions Mask § 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 661,1 MHz

Modulation: acoustic input level equal to the maximum linear input level, audio frequency 20 kHz

DC Voltage: 1 V

Date: 18.FEB.2011 14:01:43

Relative humidity: 9%

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 662,3 MHz

Modulation: acoustic input level to achieve half of maximum linear input level, audio frequency 1 kHz

DC Voltage: 1,5 V

Date:

16.FEB.2011 19:37:49

Ambient temperature: 24°C Relative humidity: 9%

Emissions Mask § 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 662,3 MHz

Modulation: acoustic input level to achieve half of maximum linear input level, audio frequency 1 kHz

DC Voltage: 1 V

Date: 16.FEB.2011 19:38:34

Relative humidity: 9%

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 662,3 MHz

Modulation: acoustic input level equal to the maximum linear input level, audio frequency 1 kHz

DC Voltage: 1,5 V

Date:

16.FEB.2011 19:39:23

Ambient temperature: 24°C

Relative humidity: 9%

TŪV

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 662,3 MHz

Modulation: acoustic input level equal to the maximum linear input level, audio frequency 1 kHz

DC Voltage: 1 V

Date:

16.FEB.2011 19:38:56

Ambient temperature: 24°C

Relative humidity: 9%

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 662,3 MHz

Modulation: acoustic input level to achieve half of maximum linear input level, audio frequency 15 kHz

DC Voltage: 1,5 V

Date: 16.FEB.2011 19:39:40

Ambient temperature: 24°C

Relative humidity: 9%

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 662,3 MHz

Modulation: acoustic input level to achieve half of maximum linear input level, audio frequency 15 kHz

DC Voltage: 1 V

Date:

16.FEB.2011 19:40:17

Ambient temperature: 24°C

Relative humidity: 9%

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 662,3 MHz

Modulation: acoustic input level equal to the maximum linear input level, audio frequency 15 kHz

DC Voltage: 1,5 V

Ambient temperature: 24°C Relative humidity: 9%

TŪV

Emissions Mask § 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 662,3 MHz

Modulation: acoustic input level equal to the maximum linear input level, audio frequency 15 kHz

DC Voltage: 1 V

Ambient temperature: 24°C

Relative humidity: 9%

TŪV

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 662,3 MHz

Modulation: acoustic input level to achieve half of maximum linear input level, audio frequency 20 kHz

DC Voltage: 1,5 V

Date:

16.FEB.2011 19:41:07

Relative humidity: 9%

TŪ✓

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 662,3 MHz

Modulation: acoustic input level to achieve half of maximum linear input level, audio frequency 20 kHz

DC Voltage: 1 V

Date:

16.FEB.2011 19:41:28

Ambient temperature: 24°C

Relative humidity: 9%

TŪV

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 662,3 MHz

Modulation: acoustic input level equal to the maximum linear input level, audio frequency 20 kHz

DC Voltage: 1,5 V

Date:

16.FEB.2011 19:42:04

Test Equipment used: NT-207

Form: FCC15.DOT/1. 1. 2002 Page 54 of 64 File: 11-103.doc/14.03.2011

Ambient temperature: 24°C Relative humidity: 9%

Emissions Mask

§ 74.261 (e)(6) (6.3)

Operating mode:

Frequency: 662,3 MHz

Modulation: acoustic input level equal to the maximum linear input level, audio frequency 20 kHz

DC Voltage: 1 V

Relative humidity: 9%

Field strength of spurious emissions of the transmitter

§ 74.261 (e)(6)(iii) (6.3)

Operating mode:

Frequency: 660,7 MHz

Modulation: unmodulated carrier

Seite 1 15.02.2011 21:40

Relative humidity: 9%

Field strength of spurious emissions of the transmitter

§ 74.261 (e)(6)(iii) (6.3)

Operating mode:

Frequency: 660,7 MHz

Modulation: unmodulated carrier

Seite 1 15.02.2011 17:24

Relative humidity: 9%

Field strength of spurious emissions of the transmitter

§ 74.261 (e)(6)(iii) (6.3)

Operating mode:

Frequency: 660,7 MHz

Modulation: unmodulated carrier

Seite 1 15.02,2011 21:37

Relative humidity: 9%

Field strength of spurious emissions of the transmitter

§ 74.261 (e)(6)(iii) (6.3)

Operating mode:

Frequency: 661,1 MHz

Modulation: unmodulated carrier

Seite 1 15.02.2011 21:43

Relative humidity: 9%

Field strength of spurious emissions of the transmitter

§ 74.261 (e)(6)(iii) (6.3)

Operating mode:

Frequency: 661,1 MHz

Modulation: unmodulated carrier

Seite 1 15.02.2011 17:31

Relative humidity: 9%

Field strength of spurious emissions of the transmitter

§ 74.261 (e)(6)(iii) (6.3)

Operating mode:

Frequency: 661,1 MHz

Modulation: unmodulated carrier

Seite 1 15.02.2011 21:34

Form: FCC15.DOT/1. 1. 2002

Relative humidity: 9%

Field strength of spurious emissions of the transmitter

§ 74.261 (e)(6)(iii) (6.3)

Operating mode:

Frequency: 662,3 MHz

Modulation: unmodulated carrier

Seite 1 15.02.2011 21:44

Relative humidity: 9%

Field strength of spurious emissions of the transmitter

§ 74.261 (e)(6)(iii) (6.3)

Operating mode:

Frequency: 662,3 MHz

Modulation: unmodulated carrier

Seite 1 15.02.2011 17:39

Relative humidity: 9%

Field strength of spurious emissions of the transmitter

§ 74.261 (e)(6)(iii) (6.3)

Operating mode:

Frequency: 662,3 MHz

Modulation: unmodulated carrier

Seite 1 15.02.2011 21:31

Appendix 1 Test equipment used

Anechoic Chamber with 3m measurement distance	NT-100	Spectrumanalyzer – FSP7 9 kHz – 7 GHz	NT-200
Stripline according to ISO 11452-5	NT-108	ESVP - Test receiver 20 - 1000 MHz	NT-201
MA 240 - Antenna mast 1 - 4 m height	NT-110	ESPC - Test receiver 9 kHz - 2,5 GHz	NT-203
DS 412 - Turntable 0 - 400 ° Azimuth	NT-111	ESI26 – Test receiver 20 Hz – 26,5 GHz	NT-207
HD 100 Controller Mast+Turntable	NT-112	Digital Radio Tester CTS55	NT-208
HUF-Z2 - Bicon. Antennna 20 - 300 MHz	NT-120	Noise-gen., ITU-R 559-2 20 Hz – 20 kHz	NT-209
HUF-Z3 - Log. Per. Antenna 200 - 1000 MHz	NT-121	CMTA - Radiocommunication analyzer; 0,1 - 1000 MHz	NT-210
HFH-Z2 - Loop Antenna 9 kHz - 30 MHz	NT-122	3271 - Spectrum analyzer 100 Hz - 26,5 GHz	NT-211
HFH-Z6 - Rod Antenna 9 kHz - 30 MHz	NT-123	Digital Radio Tester Aeroflex 3920	NT-212/1
3121C - Dipole Antenna 28 - 1000 MHz	NT-124	2855S - Communication analyzer	NT-213
3115 - Horn Antenna 1 - 18 GHz (immunity)	NT-125	Mixer M28HW 26,5 GHz - 40 GHz	NT-214
3116 - Horn Antenna 18 - 40 GHz	NT-126	Diode Detector 0,01 GHz - 26,5 GHz	NT-215
SAS-200/543 - Bicon. Antenna 20 MHz - 300 MHz	NT-127	RubiSource T&M Timing reference	NT-216
AT-1080 - Log. Per. Antenna 80 - 1000 MHz	NT-128	Radiocommunicationanalyzer SWR 1180 MD	NT-217
HK-116 - bicon. Antenna 20 MHz - 300 MHz	NT-129	Mixer M19HWD 40 GHz – 60 GHz	NT-218
HK-116 - bicon. Antenna 20 MHz - 300 MHz	NT-130	Mixer M12HWD 60 GHz – 90 GHz	NT-219
3146 - Log. Per. Antenna 200 – 1000 MHz	NT-131	TDS - 540 DSO Digital scope	NT-220
Loop Antenna H-Field	NT-132	DSO9104 Digital scope	NT-220/1
Horn Antenna 500 MHz - 2900 MHz	NT-133	TPS 2014 Digital scope	NT-222
Horn Antenna 500 MHz - 6000 MHz	NT-133/1	Artificial Ear according to IEC 60318	NT-224
Log. per. Antenna 800 MHz - 2500 MHz	NT-134	1 kHz Sound calibrator	NT-225
Log. per. Antenna 800 MHz - 2500 MHz	NT-135	B10 - Harmonics and flicker analyzer	NT-232
BiConiLog Antenna 26 MHz – 2000 MHz	NT-137	SRM-3000 Spectrumanalyzer	NT-233
Conical Dipol Antenna PCD8250	NT-138	E-field probe SRM 75 MHz – 3 GHz	NT-234
HF 906 - Horn Antenna 1 - 18 GHz (emission)	NT-139	Field Meter NBM-500 incl. E- and H-Field probes	NT-240a-d
HZ-1 Antenna tripod	NT-150	Hall-Teslameter ETM-1	NT-241
BN 1500 Antenna tripod	NT-151	EFA-3 H-field- / E-field probe	NT-243
Ant. tripod for EN61000-4-3 Model TP1000A	NT-156	Field Meter EMR-200 100 kHz – 3 GHz	NT-244
Power quality analyzer Fluke 1760 (complete set)	NT-160 - NT-172	E-field probe 100 kHz – 3 GHz	NT-245

Division Medical Technology/ Communication Technology/ EMC

Department: FG

Test report number: M/FG-11/103

Page: 1 of 3

Date: 14.03.2011

Checked by: __

Appendix 1 (continued) Test equipment used

Division Medical Technology/
Communication Technology/ EMC
Department: FG
Test report number: M/FG-11/103
Page: 2 of 3
Date: 14.03.2011
Checked by:

H-field probe 300 kHz – 30 MHz	NT-246	PSURGE 4.1 Surge generator	NT-324
E-field probe 3 MHz – 18 GHz	NT-247	TRANSIENT 1000 Immunity test system	NT-325
H-field probe 27 MHz – 1 GHz	NT-248	VCS 500-M6 Surge-Generator	NT-326
ELT-400 1 Hz – 400 kHz	NT-249	BTA-250 - RF-Amplifier 9 kHz - 220 MHz / 250 W	NT-330
MDS 21 - Absorbing clamp 30 - 1000 MHz	NT-250	T82-50 RF-Amplifier 2 GHz – 8 GHz	NT-331
FCC-203I EM Injection clamp	NT-251	500W1000M7 - RF-Amplifier 80 - 1000 MHz / 500 W	NT-332
FCC-203I-DCN Ferrite decoupling network	NT-252	AS0102-65R - RF-Amplifier 1 GHz - 2 GHz	NT-333
PR50 Current Probe	NT-253	APA01 – RF-Amplifier 0,5 GHz – 2,5 GHz	NT-334
PR630 Current Probe	NT-254	Preamplifier 1 GHz - 4 GHz	NT-335
Fluke 87 V True RMS Multimeter	NT-260	Preamplifier for GPS MKU 152 A	NT-336
Model 2000 Digital Multimeter	NT-261	Preamplifier 100 MHz – 23 GHz	NT-337
Fluke 87 V Digital Multimeter	NT-262/1	DC Block 10 MHz – 18 GHz Model 8048	NT-338
ESH2-Z5-U1 Artificial mains network 4x25A	NT-300	2-97201 Electronic load	NT-341
ESH3-Z5-U1 Artificial mains network 2x10A	NT-301	TSX3510P - Power supply 0-30 V / 0 - 10 A	NT-344
ESH3-Z6-U1 Artificial mains network 1x100A	NT-302	TSX3510P - Power supply 0-30 V / 0 - 10 A	NT-345
ESH3-Z4 T-Artificial network	NT-303	VDS 200 Mobil-impuls-generator	NT-350
PHE 4500/B Power amplifier	NT-304	LD 200 Mobil-impuls-generator	NT-351
EZ10 T-Artificial Network	NT-305	MPG 200 Mobil-Impuls-Generators	NT-352
ENY22 Artificial Network	NT-308	EFT 200 Mobil-impuls-generator	NT-353
ENY41 Artificial Network	NT-309	AN 200 S1 Artificial Network	NT-354
SMG - Signal generator 0,1 - 1000 MHz	NT-310	FP-EFT 32M 3 ph. Coupling filter (Burst)	NT-400/1
SMA100A - Signal generator 9 kHz - 6 GHz	NT-310/1	PHE 4500 - Mains impedance network	NT-401
PM 5518 TXVPS Video generator	NT-311	IP 6.2 Coupling filter for data lines (Surge)	NT-403
RefRad Reference generator	NT-312	TK 9421 High Power Volt. Probe 150 kHz - 30 MHz	NT-409
SMP 02 Signal generator 10 MHz - 20 GHz	NT-313	ESH2-Z3 - Probe 9 kHz - 30 MHz	NT-410
40 MHz Arbitrary Generator TGA1241	NT-315	IP 4 - Capacitive clamp (Burst)	NT-411
Artificial mains network NSLK 8127-PLC	NT-316	Highpass-Filter 100 MHz – 3 GHz	NT-412
PEFT - Burst generator up to 4 kV	NT-320	Highpass-Filter 600 MHz – 4 GHz	NT-413
ESD 30 System up to 25 kV	NT-321	Highpass-Filter 1250 MHz – 4 GHz	NT-414

Appendix 1 (continued) Test equipment used

Highness Filter	NT 445		ECC 804 AE40	NIT 464
Highpass-Filter 1800 MHz – 16 GHz	NT-415	П	FCC-801-AF10 Coupling decoupling network	NT-461
Highpass-Filter 3500 MHz – 18 GHz	NT-416		FCC-801-S25 Coupling decoupling network	NT-462
RF-Attenuator 10 dB DC – 18 GHz / 50 W	NT-417		FCC-801-T4 Coupling decoupling network	NT-463
RF-Attenuator 6 dB DC – 18 GHz / 50 W	NT-418		FCC-801-C1 Coupling decoupling network	NT-464
RF-Attenuator 3 dB DC – 18 GHz / 50 W	NT-419		F-16A - Current probe 1kHz - 70MHz	NT-465
RF-Attenuator 20 dB DC - 1000 MHz / 25 W	NT-421		95242-1 – Current probe 10 MHz – 400 MHz	NT-468
RF-Attenuator 30 dB DC - 1000 MHz / 1 W	NT-423		94106-1L-1 – Current probe 20 Hz – 450 MHz	NT-471
RF-Attenuator 30 dB	NT-424		GA 1240 Power amplifier according to EN 61000-4-16	NT-480
RF-Attenuator 6 dB DC - 1000 MHz / 1 W	NT-425		Coupling networks according to EN 61000-4-16	NT-481 - NT-483
RF-Attenuator 6 dB DC - 1000 MHz / 1 W	NT-426		PC P4 3 GHz Test computer	NT-500
RF-Attenuator 6 dB	NT-428		PC P4 1700 MHz Notebook	NT-505
RF-Attenuator 0 dB - 81 dB	NT-429		PC Intel Centrino 1600 MHz Notebook	NT-506
WRU 27 - Band blocking 27 MHz	NT-430		Monitoring camera with Monitor	NT-511
WHJ450C9 AA - High pass 450 MHz	NT-431		ES-K1 Version 1.71 SP2 Test software	NT-520
WHJ250C9 AA - High pass 250 MHz	NT-432		SRM-TS Version 1.3 software for SRM-3000	NT-522
RF-Load 150 W	NT-433		SPS-PHE Test software V2.5 voltage fluctuations/harmonics	NT-525
Impedance transducer 1:4; 1:9; 1:16	NT-435		SPS-EM Test software V4.0 EN61000-4-11	NT-527
RF-Attenuator DC – 18 GHz 6 dB	NT-436		Noise power test apparatus according to EN 55014	NT-530
RF-Attenuator DC – 18 GHz 6 dB	NT-437		Vertical coupling plane (ESD)	NT-531
RF-Attenuator DC – 18 GHz 10 dB	NT-438		Test cable #4 for EN 61000-4-6	NT-553
RF-Attenuator DC – 18 GHz 20 dB	NT-439		Test cable #3 for conducted emission	NT-554
I+P 7780 Directional coupler 100 - 2000 MHz	NT-440		Test cable #5 ESD-cable (2x470k)	NT-555
ESH3-Z2 - Pulse limiter 9 kHz - 30 MHz	NT-441		Test cable #6 ESD-cable (2x470k)	NT-556
Power Divider 6 dB/1 W/50 Ohm	NT-443		Test cable #8 Sucoflex 104EA	NT-559
Directional coupler 0,1 MHz – 70 MHz	NT-444		Test cable #9 (for outdoor measurements)	NT-580
Directional coupler 0,1 MHz – 70 MHz	NT-445		Test cable #10 (for outdoor measurements)	NT-581
Tube imitations according to EN 55015	NT-450		Test cable #13 Sucoflex 104PE	NT-584
FCC-801-M3-16A Coupling decoupling network	NT-458		Test cable #21 for SRM-3000	NT-592
FCC-801-M2-50A Coupling decoupling network	NT-459		Shield chamber	NT-600
FCC-801-M5-25 Coupling decoupling network	NT-460		Climatic chamber	M-1200

Division Medical Technology/ Communication Technology/ EMC

Department: FG

Test report number: M/FG-11/103

Page: 3 of 3

Date: 14.03.2011

Checked by: _