Graphes sans circuits et applications

Les graphes sans circuits (DAG) sont essentiels en gestion de projets, ordonnancement et compilation.

Propriétés fondamentales

- Tout graphe fini sans circuits possède au moins un sommet sans prédécesseurs et un sans successeurs
- · Tout sous-graphe partiel d'un graphe sans circuits est sans circuits
- Permettent d'introduire une notion de rang : rang(u) < rang(v)

Tri topologique (Kahn) - O(n+m)

- But : Ordonner les sommets en respectant les relations d'ordre (indispensable pour ordonnancement)
- **Applications**: Compilation, gestion projets, détection cycles
- Principe : Répéter jusqu'à épuisement des sommets
- 1. Identifier un sommet sans prédécesseurs dans le
- graphe résiduel
 2. Le numéroter dans l'ordre croissant (rang topologique)
- 3. Le supprimer du graphe avec tous ses arcs sortants
- Propriété : Si le graphe contient un cycle, l'algorithme s'arrête avant d'avoir numéroté tous les

Plus court/long chemin - Équation de Bellman

- · Applications : Ordonnancement projets, optimisation, planification
- Avantage DAG: Traitement dans l'ordre topologique, pas d'itérations multiples comme Bellman-Ford classique
- · Plus court chemin :
 - $\label{eq:lambda_j} \lambda_j = \min\nolimits_{i \in \, \operatorname{Pred}[j]} \! \left(\lambda_i + c_{ij} \right) \operatorname{avec} \, \lambda_s = 0$
- Plus long chemin :
- Algorithme : Traiter sommets dans ordre
- topologique, appliquer équation
- Complexité : O(n+m) (une seule passe suffit grâce au DAG)

Graphes potentiels-tâches

Modélisation de projets

- · Sommets : tâches du projet
- Arcs : contraintes de précédence (i précède j)
- Poids : durée d_i de la tâche i
- Ajouts : sommet début a et fin w (poids 0)

	ט	Choix des stations	2	_
	В	Accord administratif	4	D
	С	Commande des décodeurs	3	В
	Α	Installation des antennes	2	В
	E	Installation des décodeurs	10	C,A
	F	Modification de la facturation	4	В
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				

Tâche Description Durée (sem.) Antériorités

Méthode du chemin critique

- But : Identifier les tâches critiques dont tout retard retarde le projet entier
- Applications : Gestion de projets, planification industrielle, optimisation

Phase 1 - Calcul dates au plus tôt (forward pass):

- $t_a = 0$ (début projet)
- $oldsymbol{\epsilon}_a$ o (det al. F-3)-1, $oldsymbol{\epsilon}_j$ o $t_j=\max_{i\in \operatorname{Pred}[j]}(t_i+d_i)$ pour chaque tâche j $oldsymbol{\epsilon}$ Traitement dans l'ordre topologique

Phase 2 - Calcul dates au plus tard (backward pass):

- $T_w = t_w$ (durée minimale projet)
- + $T_i = \min_{j \in \operatorname{Succ}[i]}(T_j) \hat{d_i}$ pour chaque tâche i

· Traitement dans l'ordre topologique inverse

- Tâche critique : $t_i = T_i$ (marge libre nulle)
- Chemin critique : Succession de tâches critiques de
- **Durée projet** : t_w (date plus tôt de fin)
- Marge libre tâche i : $T_i t_i$ (retard possible sans

Composition d'un nœud

Nom des tâches	Numéros topologiques	
Date de début au plus tôt	Date de début au plus tard	

Flots dans un réseau

Concepts fondamentaux

- Réseau : R = (V, E, c, u) avec capacités u_{ij} et coûts
- Flot compatible : Respecte capacités et conservation
- Loi de conservation : $\sum_{\text{entrant}} = \sum_{\text{sortant}}$ (sauf source/puits)

Réseau d'augmentation

Principe: Construire graphe permettant d'augmenter le flot

- Arcs directs : (i, j) si $x_{ij} < u_{ij}$, capacité résiduelle =
- $u_{ij} x_{ij}$ Arcs inverses : (j,i) si $x_{ij} > 0$, capacité = x_{ij} (annuler flot)

Algorithmes de flot maximum

Ford-Fulkerson - O(mf*)

- · But : Trouver flot de valeur maximale de source s vers puits t
- Applications : Réseau transport, affectation ressources, couplage
- Principe général :
- 1. Partir d'un flot initial (souvent flot nul)
- 2. Construire réseau d'augmentation du flot actuel
- 3. Chercher chemin augmentant de s à t (DFS par exemple)
- Si chemin existe : augmenter flot et retour étape 2
- Si aucun chemin : flot actuel est optimal
- **Terminaison**: Algorithme se termine quand aucun chemin augmentant
- Complexité : O(mf*) où f* = valeur flot maximum (non polynomial)

Edmonds-Karp - $O(m^2n)$

- · Amélioration de Ford-Fulkerson : Choix du chemin augmentant
- Stratégie : Choisir plus court chemin (nombre d'arcs) via BFS
- Avantages
- · Complexité polynomiale garantie
- Évite cas pathologiques de Ford-Fulkerson
- Plus efficace en pratique sur graphes denses

Coupe et théorème max-flow min-cut

Coupe (S, T): Partition de V avec $s \in S, t \in T$ Capacité coupe :

$$\sum_{(i,j):i\in S,j\in T} u_{ij}$$

Théorème Ford-Fulkerson: Valeur flot max = capacité coupe min

Flot maximum à coût minimum

Algorithme de Busacker-Gowen

- But : Flot de valeur maximale avec coût total
- · Principe : À chaque itération, saturer le plus court chemin (coût) dans réseau d'augmentation
- Problème : Arcs inverses ont coûts négatifs → impossibilité d'utiliser Dijkstra

Fonction de potentiel (Edmonds-Karp)

- Solution : Transformer les coûts pour éliminer les valeurs négatives

- Potentiel : λ_i = distance depuis s dans réseau actuel Coût réduit : $c'_{ij} = c_{ij} + \lambda_i \lambda_j$ Condition : Réseau de base sans circuits de coût

Applications des flots

Couplage maximum dans un graphe biparti

Transformation :

- 1. Orienter arêtes $A \rightarrow B$ (capacité 1)
- Ajouter source s reliée à A (capacité 1)
- Ajouter puits t relié depuis B (capacité 1)
- Flot max = taille couplage max

Problème d'affectation linéaire

- Contexte : n personnes, n tâches, coût \boldsymbol{c}_{ij} pour personne i sur tâche j
- Objectif: Affecter chaque personne à une tâche (coût minimum)
- Méthode : Couplage parfait de coût minimum → flot max-coût min

Problème de transbordement

Modélisation : Réseau R = (V, E, c, u)

- Sources : offre $b_i < 0$
- Puits : demande $b_i > 0$
- Transit : $b_i = 0$

Équation conservation : $\sum_{j \in \text{Pred}(i)} x_{ji} - \sum_{j \in \text{Succ}(i)} x_{ij} = b_i$

$$\begin{aligned} & j \in \overline{\mathrm{Pred}}(i) & j \in \overline{\mathrm{Succ}}(i) \\ & \mathbf{Condition \ \'equilibre} : & \\ & \sum_{i \in V} b_i = 0 \end{aligned}$$

Transformation en flot max-coût min :

- 1. Source artificielle s → sources (coût 0, capacité = |
- 2. Puits → puits artificiel t (coût 0, capacité = demande)

Cas particuliers:

- Transport : graphe biparti complet (sources vers puits)
- **Affectation**: transport avec offres = demandes = 1

imptant 2 sources (v_1 et v_2), 2 puits (v_4 et v_5) et un sommet de oûts et les capacités des arcs ne sont pas représentés, ils ne so

Autres types de graphes

Graphes complets et complémentaires

Graphe complet K_n : Graphe simple où toute paire sommets distincts reliée

• Nombre arêtes : $\binom{n}{2} = \frac{n(n-1)}{2}$

• Tous sommets ont degré n-1• Exemple : K_4 a 6 arêtes, K_5 a 10 arêtes

Graphe complémentaire \overline{G} de G=(V,E):

Mêmes sommets que G
 Arêtes = toutes arêtes possibles non présentes dans G

• $\overline{E} = \{\{u, v\} \mid \{u, v\} \notin E, u \neq v \text{ et } u, v \in V\}$

• Propriété : G et \overline{G} forment partition complète des arêtes

Tournois

· Définition : Graphe orienté simple où chaque paire sommets reliée par exactement un arc

· Construction : Orientation complète d'un graphe complet

· Propriétés fondamentales :

• Graphe sous-jacent = graphe complet K_n

• Nombre total d'arcs = $\binom{n}{2}$

• Au plus 1 sommet sans prédécesseurs (source)

• Au plus 1 sommet sans successeurs (puits)

Caractérisation acyclique : Tournoi sans circuits ⇔ matrice adjacence définit ordre strict total

Applications: Modélisation compétitions, classements,

Graphes bipartis

Définition : Graphe G = (V, E) avec $V = A \cup B$ (A,B disjoints) tel que toute arête relie sommet de A à sommet de B Notation : G = (A, B, E) ou $G = (A \cup A)$

Théorème caractérisation : Graphe biparti \iff ne contient aucun cycle de longueur impaire

Graphes bipartis complets $K_{r,s}$:

· r sommets dans A, s sommets dans B

• Toute paire (a∈A, b∈B) reliée par arête

Nombre arêtes = $r \times s$

Applications: modélisation relations complètes entre deux ensembles

Recouvrements et transversaux

• Recouvrement : Sous-ensemble $R \subseteq E$ d'arêtes tel que chaque sommet du graphe est extrémité d'au moins une arête de R

 Problème du recouvrement minimum : Trouver recouvrement R de cardinal minimal

- Transversal : Sous-ensemble $T\subseteq V$ de sommets tel que chaque arête du graphe est incidente avec au moins un sommet de T

· Problème du transversal minimum : Trouver transversal T de cardinal minimal

Complexité algorithmique :

• Recouvrement minimum : Polynomial (problème

· Transversal minimum : NP-difficile (problème "difficile")

Couplages et chaînes augmentantes

Couplage : Ensemble M ⊆ E d'arêtes sans extrémités communes

· Couplage parfait : Sature tous les sommets du graphe

Couplage maximum: Cardinal maximal parmi tous couplages possibles

Couplage maximal : Ne peut être étendu (≠ maximum)

· Sommet saturé : Incident à arête du couplage

Chaînes alternées (relativement à couplage M): Chaîne dont arêtes alternent : dans M, hors M, dans M, hors M, ...

Chaînes augmentantes (relativement à M): Chaîne alternée avec extrémités NON saturées par M Propriété clé: Permet augmenter taille couplage de 1

Théorème de Berge (1957) - Condition optimalité : Couplage M maximum ⇔ graphe ne contient aucune chaîne augmentante relative à M

Démonstration :

 (\Longrightarrow) Si C chaîne augmentante, alors $M'=M \triangle C$ (différence symétrique) est couplage de cardinal |M| + 1

• (Si M non maximum, 3 couplage M' avec |M'| > |M|. Dans $M \triangle M'$, il existe une chaîne alternée avec plus d'arêtes de M' que de $M \rightarrow$ chaîne augmentante

Algorithme général de recherche couplage maximum:

Partir d'un couplage M (souvent vide)

Tant qu'il existe une chaîne augmentante C : a) Trouver chaîne augmentante C b) Remplacer M par $M \triangle C$ (différence symétrique)

3. M est maximum

Cas graphes bipartis - Construction graphe orienté :

• Arêtes de M : orientées de B vers A

Arêtes hors M: orientées de A vers B

· Explorer depuis sommets non saturés de A vers sommets non saturés de B

• Complexité : O(mn) (Hopcroft-Karp : $O(m\sqrt{n})$)

Applications algorithmes: Base algorithmes hongrois, Blossom

Graphes planaires

Définitions et formule d'Euler

• Planaire : Représentable sur le plan sans croisements d'arêtes

• Faces : Régions délimitées par les arêtes (incluant face extérieure)

• Formule d'Euler : n - m + f = 2 (graphe connexe planaire)

Bornes et non-planarité

Inégalité générale (graphes simples connexes, $n \geq 3$) : m < 3n - 6

Démonstration :

• Chaque face bordée par ≥ 3 arêtes $\rightarrow 3f \leq 2m$

• Formule Euler : f = 2 - n + m

• Substitution : $3(2-n+m) \le 2m \to m \le 3n-6$

Inégalité bipartie (graphes bipartis simples connexes, $n \ge 4$): $m \le 2n - 4$

Démonstration :

 Graphe biparti : chaque face bordée par ≥ 4 arêtes → $4f \leq 2m$

• Même substitution $\rightarrow m \le 2n - 4$

Applications non-planarité :

• K_5 : n = 5, m = 10 mais $10 \neg \le 3(5) - 6 = 9 \rightarrow$ non planaire

• $K_{3,3}$: n = 6, m = 9 mais $9 \neg \le 2(6) - 4 = 8 \rightarrow \text{non}$ planaire

Théorème de Kuratowski (1930)

- Subdivision: Graphe obtenu en insérant sommets au milieu d'arêtes
- **Théorème** : Graphe planaire ← ne contient aucune subdivision de $\hat{K_5}$ ou $K_{3,3}$

Contraintes graphes potentiels-tâches

par \dot{q}_i sitôt la tâche i terminée » se modélise ΛΙ ΛΙ $-d_i$ car on a 1 (-) $t_i + d_i$ $t_i + d_i$ VI AI t; contrainte : « la tâche j doit 1

tâche j débute au plus tard x jours après le début de la tâche i » se

OU

 $c_{ji} = -x$ car

poids o

arc

ite: « la t(j,i) de 1

Lao

poids $c_{ij} = d_i$ et un arc (j, i) de poids La contra (i,j) de j

 $=t_{i}$