Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)»

Физтех-школа аэрокосмических технологий

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ – 2 Численное решение задачи Коши

Выполнил: Алиев Артем Эльдарович Группа Б03-907

Долгопрудный

2021 г.

Содержание

1 Условие	3
2 Теория	
3 Решение	4
3.1 Поиск шага h	4
3.2 Поиск решения ЗК на отрезке методом Эйлера с пересчетом	5
4 Результаты	6
5 Итог	-

1 Условие

Найти значение задачи Коши: $(xy - x^2)y' + y^2 - 3xy - 2x^2 = 0$, y(0) = 0 на отрезке (a, b), где $\mathbf{a} = \mathbf{0}$, $\mathbf{b} = \mathbf{1}$ с заданной точностью $\mathbf{E} = \mathbf{10}^{-4}$, используя метод Эйлера с пересчетом:

2 Теория

Метод Эйлера

Рассмотрим дифференциальное уравнение

$$y' = f(x, y) \tag{4.1}$$

с начальным условием

$$y(x_0) = y_0. (4.2)$$

Выбрав достаточно малый шаг h, построим систему равноотстоящих точек $x_i = x_0 + ih$ (i = 0, 1, 2, ...).

В методе Эйлера приближенные значения $y(x_i) \approx y_i$ вычисляются последовательно по формулам

$$y_{i+1} = y_i + hf(x_i, y_i)$$
 $(i = 0, 1, 2, ...).$ (4.3)

При этом искомая интегральная кривая y=y(x), проходящая через точку $M_0(x_0, y_0)$, заменяется ломаной $M_0M_1M_2\ldots$ с вершинами $M_i(x_i, y_i)$ $(i=0,1,2,\ldots)$; каждое звено M_iM_{i+1} этой ломаной, называемой ломаной Эйлера, имеет направление, совпадающее с направлением той интегральной кривой уравнения (4.1), которая проходит через точку M_i .

Если правая часть уравнения (4.1) в некотором прямоугольнике $R\{|x-x_0|\leqslant a, |y-y_0|\leqslant b\}$ удовлетворяет условиям

$$|f(x, y_1) - f(x, y_2)| \le N|y_1 - y_2|$$
 (N = const), (4.4)

$$\left| \frac{df}{dx} \right| = \left| \frac{\partial f}{\partial x} + f \frac{\partial f}{\partial y} \right| \le M \quad (M = \text{const}),$$
 (4.5)

то имеет место следующая оценка погрешности:

$$|y(x_n)-y_n| \leq \frac{hM}{2N} [(1+hN)^n-1],$$
 (4.6)

где $y(x_n)$ — значение точного решения уравнения при $x=x_n$, а y_n — приближенное значение, полученное на n-м шаге.

Метод Эйлера с пересчетом

Метод Эйлера — Коши решения задачи (4.1), (4.2) можно еще более уточнить, применяя итерационную обработку (см. [45]) каждого значения y_i . А именно, исходя из грубого приближения

$$y_{i+1}^{(0)} = y_i + hf(x_i, y_i), (6.1)$$

построим итерационный процесс

$$y_{i+1}^{(k)} = y_i + \frac{h}{2} \left[f(x_i, y_i) + f(x_{i+1}, y_{i+1}^{(k-1)}) \right]. \tag{6.2}$$

Итерации продолжаем до тех пор, пока в двух последовательных приближениях $y_{i+1}^{(k)}$, $y_{i+1}^{(k+1)}$ не совпадут соответствующие десятичные знаки. После этого полагаем

$$y_{i+1} \approx y_{i+1}^{(k+1)}.$$

Как правило, при достаточно малом h итерации быстро сходятся. Если после трех-четырех итераций не произошло совпадения нужного числа десятичных знаков, то следует уменьшить шаг расчета h.

3 Решение

3.1 Поиск шага h

```
while True:

N += 1 # число разбиений

h = (b - a) / N # шаг

res_1 = euler_recalculation(h / 2)

res_2 = euler_recalculation(h)

#print(res_1, res_2)

delta = abs((res_1 - res_2))

if delta < e:

print(h)

break
```

h = 0.0016835016835016834

3.2 Поиск решения ЗК на отрезке методом Эйлера с пересчетом

```
while x < xn:

# Считаем значение функции методом Эйлера
Y = y + h * func(x, y)
euler.append(Y)

# Пересчитываем полученное значение
y += 0.5 * h * (func(x, y) + func(x + h, Y))
euler_recal.append(y)
x += h
x value.append(x)
```

Выбрал 20 значений с шагом кратному h:

Euler recalculation	h:	Exact value:	Error
x =	y =	y =	Formula - Euler(h)
0,0016835016835	-0,0016835016755	-0,0016835016918	0,0000000000
0,0521885521886	-0,0521848397363	-0,0521848435947	0,000000039
0,1026936026936	-0,1026380391235	-0,1026380540315	0,000000149
0,1531986531987	-0,1529241896561	-0,1529242226448	0,000000330
0,2037037037037	-0,2028499214278	-0,2028499791157	0,000000577
0,2542087542088	-0,2521542708614	-0,2521543591123	0,0000000883
0,3047138047138	-0,3005208832302	-0,3005210067645	0,0000001235
0,3552188552189	-0,3475959406451	-0,3475961026717	0,0000001620
0,4057239057239	-0,3930109139349	-0,3930111158801	0,0000002019
0,4562289562290	-0,4364079050319	-0,4364081464296	0,0000002414
0,5067340067340	-0,4774644089865	-0,4774646875637	0,0000002786
0,5572390572391	-0,5159141584501	-0,5159144703971	0,0000003119
0,6077441077441	-0,5515614269170	-0,5515617672927	0,0000003404
0,6582491582492	-0,5842875200181	-0,5842878832162	0,0000003632
0,7087542087542	-0,6140497035409	-0,6140500837431	0,0000003802
0,7592592592593	-0,6408740315988	-0,6408744231583	0,0000003916
0,8097643097643	-0,6648441783647	-0,6648445760891	0,000003977
0,8602693602694	-0,6860884296580	-0,6860888289855	0,0000003993
0,9107744107744	-0,7047666263047	-0,7047670233860	0,0000003971
0,9612794612795	-0,7210582968784	-0,7210586885857	0,0000003917

Max Error	0,0000003993

И то же самое для 2h:

Euler recalculation 2	2h:	Exact value:	Error
x =	y =	y =	Formula - Euler(2h)
0,0033670033670	-0,0033670032385	-0,0033670033053	0,000000001
0,0538720538721	-0,0538678267081	-0,0538678431532	0,000000164
0,1043771043771	-0,1043177642322	-0,1043178258304	0,000000616
0,1548821548822	-0,1545953604696	-0,1545954953160	0,000001348
0,2053872053872	-0,2045048562556	-0,2045050907622	0,0000002345
0,2558922558923	-0,2537832153348	-0,2537835728537	0,0000003575
0,3063973063973	-0,3021125180490	-0,3021130173157	0,0000004993
0,3569023569024	-0,3491380723015	-0,3491387259675	0,0000006537
0,4074074074074	-0,3944912942594	-0,3944921078196	0,0000008136
0,4579124579125	-0,4378150853257	-0,4378160566993	0,0000009714
0,5084175084175	-0,4787885151100	-0,4787896350028	0,0000011199
0,5589225589226	-0,5171474833771	-0,5171487363815	0,0000012530
0,6094276094276	-0,5526987744018	-0,5527001406294	0,0000013662
0,6599326599327	-0,5853262839534	-0,5853277409046	0,0000014570
0,7104377104377	-0,6149897151851	-0,6149912395594	0,0000015244
0,7609427609428	-0,6417172381358	-0,6417188073574	0,0000015692
0,8114478114478	-0,6655942268226	-0,6655958201612	0,0000015933
0,8619528619529	-0,6867502234742	-0,6867518227403	0,0000015993
0,9124579124579	-0,7053459051286	-0,7053474949917	0,0000015899
0,9629629629630	-0,7215612708339	-0,7215628388500	0,0000015680

Max Error	0,0000015993
-----------	--------------

4 Результаты

Сравним метод Эйлера с пересчетом с точными значением решения, посчитанный мною с теми же x c помощью Excel

Точное решение:

$$y(x) = \frac{1 - \sqrt{2\,x^3 + 1}}{x^2}$$

5 Вывод

В данной задаче мы воспользовались методом Эйлера с пересчетом для нахождения решения задачи Коши с заданной точностью. У нас получилось не выйти за рамки заданной точности, что можно считать успешным выполнением данной работы. И как мы видим поиск решение с шагом 2h имеет почти на пол порядка большую ошибку, чем с шагом h.

Ссылка на GitHub кода