n°6 - Nombres complexes

Notes de Cours

I Le corps des complexes

Formes algébrique (cartesienne) : Tout complexe $z \in \mathbb{C}$ peut s'écrire de manière unique z = a + ib avec $a, b \in \mathbb{R}$. On note

$$Re(z) = a$$
 $Im(z) = b$

Unicité de l'écriture : Soient $a, a', b, b' \in \mathbb{R}$. Si a + ib = a' + ib', alors a = a' et b = b'.

Opérations sur les complexes (en forme algébrique) Soit $z_1 = x_1 + iy_1, z_2 = x_2 + iy_2 \in \mathbb{C}$ avec $z_2 \neq 0$.

$$z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$$
 $z_1 - z_2 = (x_1 - x_2) + i(y_1 - y_2)$

$$z_1 \times z_2 = (x_1 x_2 - y_1 y_2) + i (x_2 y_1 + x_1 y_2) \qquad \frac{z_1}{z_2} = \frac{z_1}{z_2} \frac{x_2 - i y_2}{x_2 - i y_2} = \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + i \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2}$$

Plan complexe : A tout nombre complexe $z=x+iy\in\mathbb{C}$ on associe le point du plan de coordonnées (x,y). Et réciproquement, à tout point du plan de coordonnées $(x,y)\in\mathbb{R}^2$, on associe le nombre complexe $z=x+iy\in\mathbb{C}$. On dit que le point a pour **affixe** z.

Conjugué, module : Si $z = x + iy \in \mathbb{C}$, on définit

$$\overline{z} = x - iy$$

$$|z| = \sqrt{z \times \overline{z}} = \sqrt{x^2 + y^2}$$

Interprétation géométrique du module : Pour $z_1, z_2 \in \mathbb{C}$, la quantité $|z_1 - z_2|$ représente la distance dans le plan complexe entre les points d'affixes z_1 et z_2 . En particulier, |z| est la distance du point d'affixe z à l'origine. Propriétés de la conjugaison : Pour tout $z_1, z_2 \in \mathbb{C}, z_2 \neq 0$

$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$

$$\overline{z_1 \times z_2} = \overline{z_1} \times \overline{z_2}$$

$$\overline{z_1 - z_2} = \overline{z_1} - \overline{z_2}$$

$$\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}$$

Propriétés du module : Pour tout $z_1, z_2 \in \mathbb{C}, z_2 \neq 0$

$$|z_1 \times z_2| = |z_1| \times |z_2|$$

$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$$

et l'inégalité triangulaire :

$$|z_1 + z_2| \le |z_1| + |z_2|$$

Exponentielle complexe : Pour tout $\theta \in \mathbb{R}$,

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

en particulier on a

$$e^{i\,\pi} = -1$$

$$e^{i\pi/2} = i$$

$$e^{i\pi/4} = \frac{1+i\pi}{\sqrt{2}}$$

$$e^{i\pi} = -1$$
 $e^{i\pi/2} = i$ $e^{i\pi/4} = \frac{1+i}{\sqrt{2}}$ $e^{i\pi/3} = \frac{1+i\sqrt{3}}{2}$

$$e^{i\,2\pi}=1$$

Propriétés de l'exponentielle : Pour tous $\theta_1, \theta_2 \in \mathbb{R}$ et $n \in \mathbb{Z}$, on a

$$e^{i\theta_1} \times e^{i\theta_2} = e^{i(\theta_1 + \theta_2)} \qquad \qquad \frac{e^{i\theta_1}}{e^{i\theta_2}} = e^{i(\theta_1 - \theta_2)} \qquad \qquad \left(e^{i\theta_1}\right)^n = e^{in\theta_1}$$

$$\overline{e^{i\theta_1}} = \frac{1}{e^{i\theta_1}} = e^{-i\theta_1} \qquad \qquad \left|e^{i\theta_1}\right| = 1$$

et

$$e^{i\theta_1} = e^{\theta_2} \iff \exists k \in \mathbb{Z}, \, \theta_1 - \theta_2 = 2k\pi$$

Forme exponentielle: Tout nombre complexe $z \in \mathbb{C}$ non nul peut s'écrire sous la forme $z = \rho e^{i\theta}$ avec $\rho > 0$ et $\theta \in \mathbb{R}$. Le réel positif ρ est appelé le **module** de z. Le réel θ est appelé **argument** de z. Plusieurs choix d'arguments sont possibles, on peut le choisir de manière unique dans $[0, 2\pi[$, tous les autres choix sont décalés d'un multiple de 2π .

Interpretation géométrique de l'argument : L'argument de z est l'angle orienté formé entre le vecteur d'affixe z et l'axe réel. Plus généralement, si les points A, B, C ont pour affixes respectives z_A , z_B , z_C , alors le complexe $\frac{z_B-z_A}{z_C-z_A}$ a pour argument l'angle orienté \widehat{BAC} .

Si x > 0, alors le complexe x + iy a pour argument $\left(\frac{x}{y}\right)$.

Polynôme dans \mathbb{C} : Soit $P(x) = a_n x^n + a_{n-1} x^{n-1} \dots a_1 x + a_0$ à coefficients dans \mathbb{C} , alors l'équation P(z) = 0 admet des solutions dans \mathbb{C} et on peut factoriser P sous la forme

$$P(x) = (x - z_1)(x - z_2) \dots (x - z_n)$$

où les z_i sont les solutions (pas forcément toutes distinctes) de l'équation.

II Exercices

II.A Forme algébrique

1. (SF 77, 78) (Aspect fondamental) Mettre chacun des nombres complexes suivants sous la forme algébrique (c'està-dire a+ib avec $a,b\in\mathbb{R}$):

$$z_{1} = (1+2i) - 2(3-4i)$$

$$z_{2} = (2+3i)(3-4i)$$

$$z_{3} = -\frac{5}{3-4i}$$

$$z_{4} = \left(\frac{1+i}{\sqrt{2}}\right)^{2}$$

$$z_{5} = (2+i)^{2} + (2-i)^{2}$$

$$z_{6} = \frac{2+5i}{1-i} + \frac{2-5i}{1+i}$$

2. (SF 77, 78) (Aspect fondamental) Mettre chacun des nombres complexes suivants sous la forme algébrique (c'est-à-dire a+ib avec $a,b\in\mathbb{R}$):

$$z_1 = -\frac{2}{1 - i\sqrt{3}}$$
 $z_2 = \frac{1}{(1 + 2i)(3 - i)}$ $z_3 = \frac{1 + 3i}{1 - 3i}$

$$z_4 = \left(\frac{1+2i}{1+i}\right)^2$$
 $z_5 = \left(\frac{-1+i\sqrt{3}}{2}\right)^3$ $z_6 = \left(\sqrt{2+\sqrt{2}}+i\sqrt{2-\sqrt{2}}\right)^2$

- 3. (SF 77, 78) Soit $z \in \mathbb{C}$.
 - (a) Montrer que z est réel si et seulement si $\overline{z}=z$.
 - (b) Montrer que z est imaginaire pur si et seulement si $\overline{z} = -z$.
- 4. (SF 77, 78) A quelle condition sur $z=x+iy\in\mathbb{C}$ le nombre z^2+z+1 est-il réel? A quoi correspond géométriquement l'ensemble des points d'affixe z tel que z^2+z+1 est réel?

 Indication: Mettre z^2+z+1 sous forme algébrique.

II.B Forme exponentielle

5. (SF 79) (Aspect fondamental) Calculer le module des nombres suivants :

$$z_1 = 3 - 4i z_2 = 2 + i z_3 = \frac{1}{2 + i}$$

$$z_4 = \frac{3-4i}{2+i} \qquad z_5 = (2+i)^6 \qquad z_6 = \frac{2}{1+i\sqrt{3}}$$

- 6. (SF 79) (Aspect fondamental) Mettre sous forme algébrique les nombres suivants :
 - (a) le nombre complexe de module 6 et d'argument $\frac{\pi}{3}$
 - (b) le nombre complexe de module $\frac{1}{\sqrt{2}}$ et d'argument $\frac{\pi}{4}$
 - (c) le nombre complexe de module 3 et d'argument 5π .
 - (d) le nombre complexe de module π et d'argument $\frac{\pi}{2}$
 - (e) le nombre complexe de module cos(2) et d'argument 1
- 7. (SF 79) (Aspect fondamental) Mettre les nombres complexes suivants sous forme exponentielle (c'est-à-dire sous la forme $\rho e^{i\theta}$ avec $\rho > 0$ et $\theta \in \mathbb{R}$).

$$z_1 = 3 - 3i$$
 $z_2 = 1 - i\sqrt{3}$ $z_3 = \frac{3 - 3i}{1 - i\sqrt{3}}$ $z_4 = \frac{\sqrt{6} - i\sqrt{2}}{2}$ $z_5 = -5$ $z_6 = (1 - i)^{100}$

8. (SF 31, 32, 33, 79) Mettre les nombres complexes suivants sous forme exponentielle (c'est-à-dire sous la forme $\rho e^{i\theta}$ avec $\rho > 0$ et $\theta \in \mathbb{R}$)

$$u = 1 + i$$
 $v = 3i + \sqrt{3}$ $w = -e^{\ln(3) + 5i}$ $z = \frac{-e^{\frac{2i\pi}{5}}}{1 + i}$

II.C Le plan complexe

9. (SF 1189) (Aspect fondamental)

(a) Placer les points A, B, C d'affixes respectives 1-2i, 4+2i et 5-5i dans le plan.

(b) Calculer les 3 longueurs AB, BC et CA. En déduire que le triangle ABC est isocèle en A.

10. (SF 1189) Soit M_0 le point d'affixe z = 5 + 2i.

(a) Placer M_0 dans le plan complexe.

(b) Placer sur le dessin, puis déterminer les affixes des points suivants :

i. M_1 : le symétrique de M_0 par rapport à 0

ii. M_2 : l'image de M_0 par la rotation de centre 0 et d'angle $\frac{\pi}{2}$.

iii. M_3 : le symétrique de M_0 par rapport à l'axe des abscisses

iv. M_4 : le symétrique de M_0 par rapport à l'axe des ordonnées

v. M_5 : le symétrique M_2 par rapport à l'axe des orddonnées

vi. M_6 : le point d'affixe $i\overline{z}$

vii. M_7 : le point d'affixe -iz

(c) L'octogone formé par ces 8 points est-il régulier?

11. (SF 1189, 77, 78, 79) Décrire géométriquement et dessiner dans le plan les ensembles suivants

$$E_1 = \{z \in \mathbb{C}, |z - 3 + 4i| = 5\}$$
 $E_2 = \{z \in \mathbb{C}, z + \overline{z} = 6\}$ $E_3 = \{z \in \mathbb{C}, |z - 1| = |z - i|\}$

12. (SF 1189, 79) Triangle équilatéraux

On se donne trois points distincts A, B, C dans le plan, d'affixes respectives z_A , z_B et z_C .

(a) Montrer que le triangle ABC est isocèle en A si et seulement si

$$\left| \frac{z_B - z_A}{z_C - z_A} \right| = 1$$

(b) Montrer que le triangle ABC est équilatéral si et seulement si

$$\frac{z_B - z_A}{z_C - z_A} = e^{\pm i\pi/3} = \frac{1}{2} \pm i \frac{\sqrt{3}}{2}$$

(c) En déduire que les points d'affixes $z_A = 2 - i$, $z_B = 6 - 7i$ et $z_C = (4 + 3\sqrt{3}) + i(2\sqrt{3} - 4)$ forment un triangle équilatéral.

13. (SF 77, 78, 79) Caractérisations des complexes de module 1

Soit $z=x+iy\in\mathbb{C}$ un nombre complexe non nul. Montrer l'équivalence des propositions suivantes :

- (a) $x^2 + y^2 = 1$
- (b) |z| = 1
- (c) il existe $\theta \in \mathbb{R}$ tel que $z = e^{i\theta}$
- (d) $\overline{z} = \frac{1}{z}$

14. Montrer que pour tout $z \neq 1$ de module 1, la quantité $u = \frac{z+1}{z-1}$ est imaginaire pure.

II.D Trigonométrie

15. (SF 77, 78, 79, 82) (Aspect fondamental)

(a) Soit $z \in \mathbb{C}$. Montrer que

$$\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$$
 $\operatorname{Im}(z) = \frac{z - \overline{z}}{2i}$

(b) Soit $\theta \in \mathbb{R}$. Montrer que

$$\cos(\theta) = \operatorname{Re}(e^{i\theta}) = \frac{e^{i\theta} + e^{-i\theta}}{2} \qquad \qquad \sin(\theta) = \operatorname{Im}(e^{i\theta}) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

16. (SF 77, 78, 79, 82, 213) La technique du demi-angle : Soient $\theta_1, \theta_2 \in \mathbb{R}$. Quel est le module et l'argument de $e^{i\theta_1} + e^{i\theta_2}$?

Indication: On pourra factoriser par $e^{i\frac{\theta_1+\theta_2}{2}}$ et discuter selon le signe de $\cos\left(\frac{\theta_1-\theta_2}{2}\right)$.

 $17. \ \ {\tiny (SF\ 77,\ 82,\ 83,\ 1256,\ 1257)} \ \textbf{D\'{e}montrer les formules de trigonom\'{e}trie avec les complexes:}$

Soit $\theta \in \mathbb{R}$ un réel. On note $z = e^{i\theta} \in \mathbb{C}$.

(a) Exprimer \overline{z} sous forme exponentielle et algébrique. En déduire les formules

$$cos(-\theta) = cos(\theta)$$
 $sin(-\theta) = -sin(\theta)$

(b) Exprimer -z sous forme exponentielle et algébrique. En déduire les formules

$$cos(\theta + \pi) = -cos(\theta)$$
 $sin(\theta + \pi) = -sin(\theta)$

(c) Exprimer iz sous forme exponentielle et algébrique. En déduire les formules

$$\cos\left(\theta + \frac{\pi}{2}\right) = -\sin(\theta) \qquad \sin\left(\theta + \frac{\pi}{2}\right) = \cos(\theta)$$

(d) Adapter la méthode pour montrer les formules

$$cos(\pi - \theta) = -cos(\theta)$$
 $sin(\pi - \theta) = sin(\theta)$

et

$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin(\theta)$$
 $\sin\left(\frac{\pi}{2} - \theta\right) = \cos(\theta)$

18. (SF 82, 83, 1256, 1257) En exprimant le produit $e^{ia} \times e^{ib}$ sous forme algébrique et exponentielle, retrouver les formules

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b), \qquad \sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$$

19. (SF 82, 83, 1256, 1257) Soient $a, b \in \mathbb{R}$ des réels. Montrer qu'il existe $\theta_{a,b} \in [0, 2\pi[$ tel que pour tout $x \in \mathbb{R}$ on ait

$$a\cos(x) + b\sin(x) = \sqrt{a^2 + b^2}\cos(x + \theta_{a,b})$$

 $Indication: On pourra considérer (a-ib)e^{ix} et l'exprimer sous forme algébrique et géométrique.$

1. Exercice 7 - Math101

II.E Equations polynomiales dans \mathbb{C}

20. (SF 1256) Racines carrées complexes : Caluler les racines carrées des nombres complexes suivants

$$z_1 = 7 + 24i$$
, $z_2 = -15 - 8i$, $z_3 = 5 - 12i$, $z_4 = i$,

Indication : Si z = x + iy est un racine carrée de a + ib, calculer z^2 et identifier. On pourra aussi se servir de la relation $|z|^2 = |a + ib|$.

21. (SF 1256) Equations quadratiques dans \mathbb{C} : Résoudre dans \mathbb{C} les équations suivantes

$$z^{2} + z + 1 = 0$$
 $z^{2} = 7 + 24i$ $z^{2} - (5 + 6i)z + 1 - 13i = 0$

 $Indication: Calculer \ les \ racines \ complexes \ du \ discriminant \ \Delta \ comme \ dans \ l'exercice \ pr\'ec\'edent. \ Puis \ utiliser \ la \ "formule \ du \ delta" \ qui \ exprime \ les \ racines \ d'un \ polyn\^ome \ en \ fonction \ de \ ses \ coefficients.$

22. (SF 1256) Racines cubique de l'unité

- (a) Montrer que $z^3 1 = (z 1)(z^2 + z + 1)$ pour tout $z \in \mathbb{C}$.
- (b) En déduire les solutions dans $\mathbb C$ de l'équation $z^3=1$ (on donnera les solutions sous forme algébrique et exponentielle).