Parallel scalability

Victor Eijkhout

PCSE 2016

High performance linear algebra

Justification

Bringing architecture-awareness to linear algebra, we discuss how high performance results from using the right formulation and implementation of algorithms.

Table of Contents

- Collectives as building blocks; complexity
- Scalability analysis of dense matrix-vector product
- Sparse matrix-vector product
- 4 Latency hiding / communication minimizing
- Multicore block algorithms

Simple model of parallel computation

- α: message latency
- β: time per word (inverse of bandwidth)
- \bullet γ : time per floating point operation

Send *n* items and do *m* operations:

$$cost = \alpha + \beta \cdot n + \gamma \cdot m$$

Pure sends: no γ term, pure computation: no α, β terms, sometimes mixed: reduction

Model for collectives

- One simultaneous send and receive:
- doubling of active processors
- collectives have a αlog₂ p cost component

Broadcast

	t = 0	<i>t</i> = 1	<i>t</i> = 2
p_0	$x_0\downarrow,x_1\downarrow,x_2\downarrow,x_3\downarrow$	$x_0\downarrow,x_1\downarrow,x_2\downarrow,x_3\downarrow$	x_0, x_1, x_2, x_3
p_1		$x_0 \downarrow, x_1 \downarrow, x_2 \downarrow, x_3 \downarrow$	x_0, x_1, x_2, x_3
p_2			x_0, x_1, x_2, x_3
<i>p</i> ₃			x_0, x_1, x_2, x_3

On t = 0, p_0 sends to p_1 ; on t = 1 p_0 , p_1 send to p_2 , p_3 .

Optimal complexity:

$$\lceil \log_2 p \rceil \alpha + n\beta$$
.

Actual complexity:

$$\lceil \log_2 p \rceil (\alpha + n\beta).$$

Good enough for short vectors.

Reduce

Optimal complexity:

$$\lceil \log_2 p \rceil \alpha + n\beta + \frac{p-1}{p} \gamma n.$$

Spanning tree algorithm:

$$\begin{array}{|c|c|c|c|c|c|}\hline & t=1 & t=2 & t=3 \\ \hline \rho_0 & x_0^{(0)}, x_1^{(0)}, x_2^{(0)}, x_3^{(0)} & x_0^{(0:1)}, x_1^{(0:1)}, x_2^{(0:1)}, x_3^{(0:1)} & x_0^{(0:3)}, x_1^{(0:3)}, x_2^{(0:3)}, x_3^{(0)} \\ \rho_1 & x_0^{(1)} \uparrow, x_1^{(1)} \uparrow, x_2^{(1)} \uparrow, x_3^{(1)} \uparrow \\ \rho_2 & x_0^{(2)}, x_1^{(2)}, x_2^{(2)}, x_3^{(2)} & x_0^{(2:3)} \uparrow, x_1^{(2:3)} \uparrow, x_2^{(2:3)} \uparrow, x_3^{(2:3)} \uparrow \\ \rho_3 & x_0^{(3)} \uparrow, x_1^{(3)} \uparrow, x_2^{(3)} \uparrow, x_3^{(3)} \uparrow \end{array}$$

Running time

$$\lceil \log_2 p \rceil (\alpha + n\beta + \frac{p-1}{p} \gamma n).$$

Good enough for short vectors.

Long vector broadcast

Combine scatter and bucket-allgather:

	t = 0	t = 1		etcetera
p_0	$x_0 \downarrow$	<i>x</i> ₀	<i>x</i> ₃ ↓	x_0, x_2, x_3
p_1	$x_1 \downarrow$	$x_0\downarrow,x_1$		x_0, x_1, x_3
p_2	<i>x</i> ₂ ↓	$x_1\downarrow,x_2$		x_0, x_1, x_2
p_3	<i>x</i> ₃ ↓	<i>X</i> ₂	\downarrow , x_3	x_1, x_2, x_3

Complexity becomes

$$p\alpha + \beta n(p-1)/p$$

better if *n* large

Allgather

Gather n elements: each processor owns n/p; optimal running time

$$\lceil \log_2 p \rceil \alpha + \frac{p-1}{p} n \beta.$$

	t=1	t = 2	t = 3
p_0	<i>x</i> ₀ ↓	$x_0x_1\downarrow$	$x_0x_1x_2x_3$
p_1	$x_1 \uparrow$	$x_0x_1\downarrow$	$x_0x_1x_2x_3$
p_2	<i>x</i> ₂ ↓	$x_2x_3\uparrow$	$x_0x_1x_2x_3$
<i>p</i> ₃	<i>X</i> ₃ ↑	<i>x</i> ₂ <i>x</i> ₃ ↑	$X_0X_1X_2X_3$

Same time as gather, half of gather-and-broadcast.

Reduce-scatter

$$\begin{array}{|c|c|c|c|c|c|} \hline & t=1 & t=2 & t=3 \\ \hline p_0 & x_0^{(0)}, x_1^{(0)}, x_2^{(0)} \downarrow, x_3^{(0)} \downarrow & x_0^{(0:2:2)}, x_1^{(0:2:2)} \downarrow & x_0^{(0:3)} \\ p_1 & x_0^{(1)}, x_1^{(1)}, x_2^{(1)} \downarrow, x_3^{(1)} \downarrow & x_0^{(1:3:2)} \uparrow, x_1^{(1:3:2)} & x_1^{(0:3)} \\ \hline p_2 & x_0^{(2)} \uparrow, x_1^{(2)} \uparrow, x_2^{(2)}, x_3^{(2)} & x_2^{(0:2:2)}, x_3^{(0:2:2)} \downarrow & x_2^{(0:3)} \\ \hline p_3 & x_0^{(3)} \uparrow, x_1^{(3)} \uparrow, x_2^{(3)}, x_3^{(3)} & x_0^{(1:3:2)} \uparrow, x_1^{(1:3:2)} & x_3^{(0:3)} \\ \hline \end{array}$$

$$\lceil \log_2 p \rceil \alpha + \frac{p-1}{p} n(\beta + \gamma).$$

Table of Contents

- Collectives as building blocks; complexity
- Scalability analysis of dense matrix-vector product
- Sparse matrix-vector product
- Latency hiding / communication minimizing
- Multicore block algorithms

Parallel matrix-vector product; general

- Assume a division by block rows
- ullet Every processor p has a set of row indices I_p

Mvp on processor p:

$$\forall_i : y_i = \sum_j a_{ij} x_j$$

$$\forall_i : y_i = \sum_q \sum_{j \in I_q} a_{ij} x_j$$

Local and remote operations

Local and remote parts:

$$\forall_i \colon y_i = \sum_{j \in I_p} a_{ij} x_j + \sum_{q \neq p} \sum_{j \in I_q} a_{ij} x_j$$

Local part I_p can be executed right away, I_q requires communication.

Combine:

communication and computation; only used in the sparse case

Note possible overlap

Exercise

How much can overlap help you?

Dense MVP

- Separate communication and computation:
- first allgather
- then matrix-vector product

Cost computation 1.

Algorithm:

Step	Cost (lower bound)
Allgather x_i so that x is available	
on all nodes	
Locally compute $y_i = A_i x$	$lphapprox 2rac{n^2}{P}\gamma$

Allgather

Assume that data arrives over a binary tree:

- latency α log₂ P
- transmission time, receiving n/P elements from P-1 processors

Algorithm with cost:

Step	Cost (lower bound)
Allgather x_i so that x is available	$\lceil \log_2(P) \rceil \alpha + \frac{P-1}{P} n \beta \approx \rceil$
on all nodes	$\log_2(P)\alpha + n\beta$
Locally compute $y_i = A_i x$	$pprox 2rac{n^2}{P}\gamma$

Parallel efficiency

$$E_{\rho}^{1\text{D-row}}(n) = \frac{S_{\rho}^{1\text{D-row}}(n)}{\rho} = \frac{1}{1 + \frac{\rho \log_2(\rho)}{2n^2} \frac{\alpha}{\gamma} + \frac{\rho}{2n} \frac{\beta}{\gamma}}.$$

Strong scaling, weak scaling?

Optimistic scaling

Processors fixed, problem grows:

$$E_p^{1 \text{D-row}}(n) = \frac{1}{1 + \frac{p \log_2(p)}{2n^2} \frac{\alpha}{\gamma} + \frac{p}{2n} \frac{\beta}{\gamma}}.$$

Roughly $E_p \sim 1 - n^{-1}$

Strong scaling

Problem fixed, $p \rightarrow \infty$

$$E_p^{1 \text{ D-row}}(n) = \frac{1}{1 + \frac{p \log_2(p)}{2n^2} \frac{\alpha}{\gamma} + \frac{p}{2n} \frac{\beta}{\gamma}}.$$

Strong scaling

Problem fixed, $p \rightarrow \infty$

$$E_{p}^{1\text{D-row}}(n) = \frac{1}{1 + \frac{p\log_{2}(p)}{2n^{2}} \frac{\alpha}{\gamma} + \frac{p}{2n} \frac{\beta}{\gamma}}.$$

Roughly $E_p \sim p^{-1}$

Weak scaling

Memory fixed:

$$M = n^2/p$$

$$E_p^{1D\text{-row}}(n) = \frac{1}{1 + \frac{p\log_2(p)}{2n^2} \frac{\alpha}{\gamma} + \frac{p}{2n} \frac{\beta}{\gamma}} = \frac{1}{1 + \frac{\log_2(p)}{2M} \frac{\alpha}{\gamma} + \frac{\sqrt{p}}{2\sqrt{M}} \frac{\beta}{\gamma}}$$

Weak scaling

Memory fixed:

$$H = \frac{M}{\rho} = \frac{1}{1 + \frac{\rho \log_2(\rho)}{2n^2} \frac{\alpha}{\gamma} + \frac{\rho}{2n} \frac{\beta}{\gamma}} = \frac{1}{1 + \frac{\log_2(\rho)}{2M} \frac{\alpha}{\gamma} + \frac{\sqrt{\rho}}{2\sqrt{M}} \frac{\beta}{\gamma}}$$

Does not scale: $E_p \sim 1/\sqrt{p}$ problem in β term: too much communication

Two-dimensional partitioning

<i>x</i> ₀				<i>x</i> ₃				<i>x</i> ₆				X ₉			
a ₀₀	a ₀₁	a ₀₂	У0	a ₀₃	a ₀₄	a ₀₅	,	a ₀₆	a ₀₇	a ₀₈	ļ	a ₀₉	a _{0,10}	a _{0,11}	1
a ₁₀	a ₁₁	a ₁₂	,	a ₁₃	a ₁₄	a ₁₅	<i>y</i> ₁	a ₁₆	a ₁₇	a ₁₈	ļ	a ₁₉	a _{1,10}	a _{1,11}	1
a ₂₀	a ₂₁	a ₂₂	,	a ₂₃	a ₂₄	a ₂₅	,	a ₂₆	a ₂₇	a ₂₈	<i>y</i> ₂	a ₂₉	a _{2,10}	a _{2,11}	1
a ₃₀	<i>a</i> ₃₁	a ₃₂	'	a ₃₃	a ₃₄	a ₃₅	'	a ₃₇	a ₃₇	a ₃₈	!	a 39	a _{3,10}	a _{3,11}	<i>У</i> 3
i	<i>x</i> ₁		,	1	<i>x</i> ₄		,	1	<i>x</i> ₇		ļ	1	<i>x</i> ₁₀		1
<i>a</i> ₄₀	<i>a</i> 41	<i>a</i> ₄₂	<i>y</i> 4	a43	a 44	a 45	,	a46	a 47	<i>a</i> 48	ļ	a 49	a4,10	a4,11	I
a ₅₀	a ₅₁	a ₅₂	,	a ₅₃	a ₅₄	a ₅₅	<i>y</i> ₅	a ₅₆	a ₅₇	a ₅₈	ļ	a ₅₉	a _{5,10}	a _{5,11}	1
a ₆₀	a ₆₁	a ₆₂	,	a ₆₃	a ₆₄	a ₆₅	,	a ₆₆	a ₆₇	a ₆₈	<i>y</i> ₆	a ₆₉	a _{6,10}	a _{6,11}	
a ₇₀	a ₇₁	a ₇₂	'	a ₇₃	a ₇₄	a ₇₅		a ₇₇	a ₇₇	a ₇₈	!	a ₇₉	a _{7,10}	a _{7,11}	<i>y</i> 7
1		<i>x</i> ₂				<i>x</i> ₅				<i>x</i> ₈				<i>x</i> ₁₁	
<i>a</i> 80	<i>a</i> 81	<i>a</i> 82	<i>y</i> 8	a ₈₃	<i>a</i> 84	<i>a</i> 85	,	<i>a</i> 86	a 87	<i>a</i> 88	ļ	a 89	a 8,10	<i>a</i> 8,11	
a ₉₀	a ₉₁	<i>a</i> ₉₂	,	a ₉₃	a ₉₄	a ₉₅	<i>y</i> 9	a ₉₆	a ₉₇	a ₉₈	ļ	<i>a</i> 99	a _{9,10}	a _{9,11}	
a _{10,0}	a _{10,1}	a _{10,2}	,	a _{10,3}	a _{10,4}	a _{10,5}	,	a _{10,6}	a _{10,7}	a _{10,8}	<i>y</i> 10	a _{10,9}	a _{10,10}	a _{10,11}	
a _{11,0}	a _{11,1}	a _{11,2}	,	a _{11,3}	a _{11,4}	a _{11,5}		a _{11,7}	a _{11,7}	a _{11,8}	!	a _{11,9}	a _{11,10}	a _{11,11}	<i>y</i> 11

Two-dimensional partitioning

<i>x</i> ₀				<i>x</i> ₃	<i>x</i> ₆	Xg
a ₀₀	a ₀₁	a ₀₂	<i>y</i> ₀			
a ₁₀	a ₁₁	a ₁₂		<i>y</i> ₁		
a ₂₀	a ₂₁	a ₂₂			У2	
<i>a</i> ₃₀	a ₃₁	<i>a</i> 32				уз
	<i>x</i> ₁ ↑			X ₄	<i>x</i> ₇	x ₁₀
			<i>y</i> ₄			
				<i>y</i> ₅		
					У6	
						У 7
		<i>x</i> ₂ ↑		<i>x</i> ₅	х ₈	<i>x</i> ₁₁
			<i>y</i> 8			
				<i>y</i> 9		
					<i>y</i> ₁₀	
						У11

Key to the algorithm

- Consider block (i,j)
- it needs to multiple by the xs in column j
- it produces part of the result of row i

Algorithm

- Collecting x_j on each processor p_{ij} by an *allgather* inside the processor columns.
- Each processor p_{ij} then computes $y_{ij} = A_{ij}x_j$.
- Gathering together the pieces y_{ij} in each processor row to form y_i,
 distribute this over the processor row: combine to form a reduce-scatter.
- Setup for the next A or A^t product

Analysis 1.

Step	Cost (lower bound)
Allgather x _i 's within columns	$\lceil \log_2(r) \rceil \alpha + \frac{r-1}{\rho} n \beta$
	$pprox \log_2(r)\alpha + \frac{n}{c}\beta$
Perform local matrix-vector multi-	$\approx 2\frac{n^2}{n}\gamma$
ply	۲
Reduce-scatter y_i 's within rows	

Reduce-scatter

Time:

$$\lceil \log_2 p \rceil \alpha + \frac{p-1}{p} n(\beta + \gamma).$$

Step	Cost (lower bound)
Allgather x_i 's within columns	$\lceil \log_2(r) \rceil \alpha + \frac{r-1}{p} n \beta$
	$\lceil \log_2(r) \rceil \alpha + \frac{r-1}{\rho} n\beta$ $\approx \log_2(r) \alpha + \frac{r}{c} \beta$
Perform local matrix-vector multiply	$\approx 2\frac{n^2}{p}\gamma$
Reduce-scatter y_i 's within rows	$\lceil \log_2(c) \rceil \alpha + \frac{c-1}{p} n\beta + \frac{c-1}{p} n\gamma$ $\approx \log_2(r) \alpha + \frac{n}{c} \beta + \frac{n}{c} \gamma$

Efficiency

Let
$$r = c = \sqrt{n}$$
, then

$$E_p^{\sqrt{p}\times\sqrt{p}}(n) = \frac{1}{1 + \frac{p\log_2(p)}{2n^2}\frac{\alpha}{\gamma} + \frac{\sqrt{p}}{2n}\frac{(2\beta + \gamma)}{\gamma}}$$

Strong scaling

Same story as before for $p \to \infty$:

$$E_p^{\sqrt{p}\times\sqrt{p}}(n) = \frac{1}{1 + \frac{p\log_2(p)}{2n^2}\frac{\alpha}{\gamma} + \frac{\sqrt{p}}{2n}\frac{(2\beta + \gamma)}{\gamma}} \sim p^{-1}$$

No strong scaling

Weak scaling

Constant memory $M = n^2/p$:

$$E_p^{\sqrt{p} \times \sqrt{p}}(n) = \frac{1}{1 + \frac{p \log_2(p)}{2n^2} \frac{\alpha}{\gamma} + \frac{\sqrt{p}}{2n} \frac{(2\beta + \gamma)}{\gamma}}$$

Weak scaling

Constant memory $M = n^2/p$:

$$E_p^{\sqrt{p}\times\sqrt{p}}(n) = \frac{1}{1 + \frac{p\log_2(p)}{2n^2}\frac{\alpha}{\gamma} + \frac{\sqrt{p}}{2n}\frac{(2\beta + \gamma)}{\gamma}} = \frac{1}{1 + \frac{\log_2(p)}{2M}\frac{\alpha}{\gamma} + \frac{1}{2\sqrt{M}}\frac{(2\beta + \gamma)}{\gamma}}$$

Weak scaling

Constant memory $M = n^2/p$:

$$E_p^{\sqrt{p}\times\sqrt{p}}(n) = \frac{1}{1 + \frac{p\log_2(p)}{2n^2}\frac{\alpha}{\gamma} + \frac{\sqrt{p}}{2n}\frac{(2\beta + \gamma)}{\gamma}} = \frac{1}{1 + \frac{\log_2(p)}{2M}\frac{\alpha}{\gamma} + \frac{1}{2\sqrt{M}}\frac{(2\beta + \gamma)}{\gamma}}$$

Weak scaling: for $p \to \infty$ this is $\approx 1/\log_2 P$: only slowly decreasing.

MPI: parallel scaling

LU factorizations

- Needs a cyclic distribution
- This is very hard to program, so:
- Scalapack, 1990s product, not extendible, impossible interface
- Elemental: 2010s product, extendible, nice user interface (and it is way faster)

Table of Contents

- Collectives as building blocks; complexity
- Scalability analysis of dense matrix-vector product
- Sparse matrix-vector product
- 4 Latency hiding / communication minimizing
- Multicore block algorithms

Local and remote operations

Local and remote parts:

$$\forall_i : y_i = \sum_{j \in local} a_{ij} x_j + \sum_{j \in remote} a_{ij} x_j$$

Local part I_p can be executed right away, I_q requires communication.

Combine:

Note possible overlap communication and computation; only used in the sparse case

Sparse matrix operations

- Traditional: PDE, discussed next
- New: graph algorithms and big data, discussed later

Operator view of spmvp

Difference stencil

Parallel operator view

induces ghost region:

Limited number of neighbours, limited buffer space

Matrix vs operator view

- Domain partitioning: processor 'owns' variable i
- owns all connections from i to other js
- ⇒ processor owns whole matrix row
- ⇒ 1D partitioning of the matrix, always

MPI: parallel scaling

Scaling

- Same phenomenon as with dense matrix:
- n^2 variables, memory needed is cn^2/p
- 1D partitioning of domain does not weakly scale
 - Message size is one line: n
 - is $\sqrt{p}\sqrt{M}$, goes up with processors
- 2D partitioning of domain scales weakly.
 - message size $n/\sqrt{p} = \sqrt{M}$
 - constant in M

MPI implementation

- Assume general communication structure: neighbour processors can not statically be determined
- Assume no structural symmetry
- For matrix-vector product: each processor issues send and receive requests
- Problem: receives are easy, sends are hard
- Inspector-executor: one-time discovery of structure, followed by many executions

Asymmetry in reasoning

Say

• Processor owns row i, $a_{ij} \neq 0$, processor does not own j

- Needed: message from *j* to *i*
- Processor i can discover this
- Processor j not in general

Reduce-scatter

Make $p \times p$ matrix C:

$$C_{ij} = \begin{cases} 1 & i \text{ receives from } j \\ 0 & \text{otherwise} \end{cases}$$

Then

$$s_j = \sum_i C_{ij}$$

number of messages sent by j

Reduce-scatter, proc i has C_{i*}

Reason for more cleverness

- The above is collective, implies synchronization
- temp space O(P)
- can we get this down to O(#neighbours)?
- can we detect that we have received all requests without knowing how many to expect?

MPI 3 non-blocking barrier

- Barrier: test that every process has reached this point blocking
- Ibarrier: non-blocking test
- Ibarrier calls does not block, yields MPI_Request pointer
- Use Wait or Test on the request

```
int MPI_Ibarrier(MPI_Comm comm, MPI_Request *request)
```

DTD algorithms

'Distributed Termination Detection' used to be (extremely) tricky, now easy with MPI 3

Establish sparse neighbours:

- Send all your own requests (Isend)
- Loop:
 - Test on send requests; if all done, enter non-blocking barrier
 - Probe for request messages, receive if there is something
 - If you're in the barrier, also test for the barrier to complete
- \Rightarrow if the barrier completes, you have received all your requests

(For safety, use MPI_Issend)

Table of Contents

- Collectives as building blocks; complexity
- Scalability analysis of dense matrix-vector product
- Sparse matrix-vector product
- 4 Latency hiding / communication minimizing
- Multicore block algorithms

Sparse matrix vector product induces ghost region;

Is this important?

- No: surface/volume argument
- Yes: communication is much slower than computation
- Case of multiple products is considerably more interesting

Optimization of multiple products

Recursive closure of the halo:

- Only one latency
- On-node code can be optimized (caching or cache-oblivious)

Latency hiding

Overlap halo transfer with local computation: programming complication

Communication minimizing

Optimal solution ('communication avoiding'):

- Half the communication
- half the redundant work
- Complication: local work done in two stages

Table of Contents

- Collectives as building blocks; complexity
- Scalability analysis of dense matrix-vector product
- Sparse matrix-vector product
- 4 Latency hiding / communication minimizing
- Multicore block algorithms

Cholesky algorithm

$$\operatorname{Chol}\begin{pmatrix} A_{11} & A_{21}^t \\ A_{21} & A_{22} \end{pmatrix} = LL^t \quad \text{where} \quad L = \begin{pmatrix} L_{11} & 0 \\ \tilde{A}_{21} & \operatorname{Chol}(A_{22} - \tilde{A}_{21}\tilde{A}_{21}^t) \end{pmatrix}$$

and where $\tilde{A}_{21} = A_{21}L_{11}^{-t}$, $A_{11} = L_{11}L_{11}^{t}$.

MPI: parallel scaling

Implementation

```
for k = 1, nblocks:
```

Chol: factor $L_k L_k^t \leftarrow A_{kk}$

Trsm: solve $\tilde{A}_{>k,k} \leftarrow A_{>k,k} L_k^{-t}$

Gemm: form the product $\tilde{A}_{>k,k}\tilde{A}^t_{>k,k}$

Syrk: symmetric rank-k update $A_{>k,>k} \leftarrow A_{>k,>k} - \tilde{A}_{>k,k} \tilde{A}^t_{>k,k}$

Blocked implementation

1	finished			١
	A_{kk}	$A_{k,k+1}$	$A_{k,k+2}\cdots$	_
	$A_{k+1,k}$	$A_{k+1,k+1}$	$A_{k+1,k+2}\cdots$	_
l	$\begin{vmatrix} A_{k+1,k} \\ A_{k+2,k} \end{vmatrix}$	$A_{k+2,k+2}$		
	:	:		
\				/

Extra level of inner loops:

for
$$k=1,$$
 nblocks:
Chol: factor $L_kL_k^t \leftarrow A_{kk}$
for $\ell > k$:
Trsm: solve $\tilde{A}_{\ell,k} \leftarrow A_{\ell,k}L_k^{-t}$
for $\ell_1, \ell_2 > k$:
Gemm: form the product $\tilde{A}_{\ell_1,k}\tilde{A}_{\ell_2,k}^t$
for $\ell_1, \ell_2 > k, \ell_1 \leq \ell_2$:
Syrk:symmmetric rank- k update $A_{\ell_1,\ell_2} \leftarrow A_{\ell_1,\ell_2} - \tilde{A}_{\ell_1,k}\tilde{A}_{\ell_2,k}^t$

You can graph this

Sometimes...

DAG schedulers

- Directed Acyclic Graph (dataflow)
- Each node has dependence on other nodes, can execute when dependencies available
- Quark/DaGue (TN): dependence on memory area written pretty much limited to dense linear algebra
- OpenMP has a pretty good scheduler
- Distributed memory scheduling is pretty hard