CHAPTER 8 PROGRAMMABLE LOGIC DEVICES

8.1 Introduction

Programmable Logic Devices (PLD):

Read-only memory (ROM)

Programmable logic array (PLA)

Programmable array logic (PAL)

Each of the PLDs comprises of two arrays of gates: an AND gate array and an OR gate array.

8.2 Notations Programmable Programmable Non-programmable connection connection connection (connected) (not connected) (hard-wired) 4-input AND gate 4-input OR gate Phase splitter

Figure 8.1 PLD notations

Figure 8.2 Structure of ROM.

Example 8.1

$$\begin{split} f_1(A, B, C) &= \Sigma \ m(0, 2, 3, 4) \\ f_2(A, B, C) &= \Sigma \ m(1, 2, 3, 5, 6) \\ f_3(A, B, C) &= \Sigma \ m(2, 6, 7) \\ f_4(A, B, C) &= \Sigma \ m(2, 3, 5) \end{split}$$

Figure 8.3 Implementation of functions by ROM.

Example 8.2 Seven-segment display

Figure 8.4 (a) Structure of 7-segment display. (b) Bock diagram for a 7-segment display circuit.

Figure 8.5 Seven-segment display of decimal digits and the letter E.

0 1234567898

Table 8.1 Truth table for 7-segment display circuit.

Decimal digit	$b_3 b_2 b_1 b_0$	$E x_6 x_5 x_4 x_3 x_2 x_1 x_0$
0	0 0 0 0	$0\ 1\ 0\ 1\ 1\ 1\ 1\ 1$
1	0 0 0 1	$0\ 0\ 0\ 1\ 1\ 0\ 0\ 0$
2	0 0 1 0	0 1 1 0 1 1 0 1
3	0 0 1 1	$0\ 1\ 1\ 1\ 1\ 1\ 0\ 0$
4	0 1 0 0	$0\ 0\ 1\ 1\ 1\ 0\ 1\ 0$
5	0 1 0 1	0 1 1 1 0 1 1 0
6	0 1 1 0	0 1 1 1 0 1 1 1
7	0 1 1 1	$0\ 0\ 0\ 1\ 1\ 1\ 0\ 0$
8	1 0 0 0	0 1 1 1 1 1 1 1
9	1 0 0 1	0 1 1 1 1 1 1 0
Invalid	1010	1 1 1 0 0 1 1 1
Invalid	1 0 1 1	1 1 1 0 0 1 1 1
Invalid	1 1 0 0	1 1 1 0 0 1 1 1
Invalid	1 1 0 1	1 1 1 0 0 1 1 1
Invalid	1 1 1 0	1 1 1 0 0 1 1 1
Invalid	1 1 1 1	1 1 1 0 0 1 1 1

Table 8.1 Truth table for 7-segment display circuit.

Decimal digit	$b_3 b_2 b_1 b_0$	$E x_6 x_5 x_4 x_3 x_2 x_1 x_0$	
0	0 0 0 0	0 1 0 1 1 1 1 1	
1	0 0 0 1	0 0 0 1 1 0 0 0	
2	0 0 1 0	0 1 1 0 1 1 0 1	P4 1 1 1) P (40 15)
3	0 0 1 1	0 1 1 1 1 1 0 0	$E(b_3, b_2, b_1, b_0) = \sum m(10 - 15)$
4	0 1 0 0	0 0 1 1 1 0 1 0	$x_6(b_3, b_2, b_1, b_0) = \sum_{n=0}^{\infty} m(0, 2, 3, 5, 6, 8 - 15)$
5	0 1 0 1	0 1 1 1 0 1 1 0	$x_5(b_3, b_2, b_1, b_0) = \Sigma m(2 - 6, 8 - 15)$ $x_4(b_3, b_2, b_1, b_0) = \Sigma m(0, 1, 3 - 9)$
6	0 1 1 0	0 1 1 1 0 1 1 1	$x_4(b_3, b_2, b_1, b_0) = \sum m(0, 1, 3 - 9)$ $x_3(b_3, b_2, b_1, b_0) = \sum m(0 - 4, 7 - 9)$
7	0 1 1 1	0 0 0 1 1 1 0 0	$x_2(b_3, b_2, b_1, b_0) = \sum m(0, 2, 3, 5 - 15)$
8	1 0 0 0	0 1 1 1 1 1 1 1	$x_1(b_3, b_2, b_1, b_0) = \sum m(0, 4 - 6, 8 - 15)$
9	1 0 0 1	0 1 1 1 1 1 1 0	$x_0(b_3, b_2, b_1, b_0) = \sum m(0, 2, 6, 8, 10 - 15)$
Invalid	1010	1 1 1 0 0 1 1 1	
Invalid	1 0 1 1	1 1 1 0 0 1 1 1	
Invalid	1 1 0 0	1 1 1 0 0 1 1 1	
Invalid	1 1 0 1	1 1 1 0 0 1 1 1	
Invalid	1 1 1 0	1 1 1 0 0 1 1 1	
Invalid	1 1 1 1	1 1 1 0 0 1 1 1	

Figure 8.6 Implementation of a 7-segment display circuit using ROM.

8.4 Programmable Logic Array (PLA)

Figure 8.7 Structure of PLA.

Example 8.3

$$\begin{split} f_1(A,\,B,\,C) &= \Sigma \; m(0,\,2,\,3,\,4) = B'C' + A'B \\ f_2(A,\,B,\,C) &= \Sigma \; m(1,\,2,\,3,\,5,\,6) = BC' + B'C + A'B \\ f_3(A,\,B,\,C) &= \Sigma \; m(2,\,6,\,7) = BC' + AB \\ f_4(A,\,B,\,C) &= \Sigma \; m(2,\,3,\,5) = A'B + AB'C \end{split}$$

Figure 8.8 Implementation of functions by PLA.

8.5 Programmable Array Logic (PAL)

Figure 8.9 Structure of PAL.

Figure 8.10

Example 8.4

$$X = A'C + C'D$$

 $Y = A'C'D' + AD + AB'C$

$$Z = BD + A'C + A'B'D' + ABC' + ACD$$

Figure 8.10 Implementation of functions using PAL.