Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного

образовательного учреждения высшего образования Московский государственный технический университет имени Н.З

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИУК «Информатика и управление»

КАФЕДРА <u>ИУК4 «Программное обеспечение ЭВМ, информационные</u> технологии»

ЛАБОРАТОРНАЯ РАБОТА №2

«Метрические методы классификации многомерных объектов пересекающихся классов»

ДИСЦИПЛИНА: «Методы машинного обучения»

Выполнил: студент гр. ИУК4-62Б	(Подпись)	(Ф.И.О.)
Проверил:	(Подпись)	<u>Кручинин И.И.</u>) (Ф.И.О.)
Дата сдачи (защиты): Результаты сдачи (защиты):		
- Балльная	я оценка:	
- Оценка:		

Цель: сформировать практические навыки разработки программ с использованием метрических методов классификации многомерных объектов пересекающихся классов на языке R.

Вариант 4

Задание:

№ 1. Определим уровень финансовой устойчивости предприятия, как составной части общей устойчивости предприятия (при этом соблюдаются сбалансированность финансовых потоков, наличие средств, позволяющих организации поддерживать свою деятельность в течение определенного периода времени, в том числе обслуживая полученные кредиты и производя продукцию).

Исходные данные следует организовать в виде таблицы:

RES	K1	K2	K3	K4	K5	 KN
T	0.252	0.301				0.539
F	0.327	0.240		0.671		
T	0.458			0.683		

В первом столбце заносится значение бинарной классификации — финансовой состояние предприятия - устойчиво или нет (True, False). В данном варианте признаками финансовой устойчивости будут: Коэффициент мобильности имущества, Коэффициент мобильности оборотных средств, Коэффициент обеспеченности запасов, Коэффициент краткосрочной задолженности. Строк в таблице должно быть 120 (каждая строка - сведения по проверенному предприятию).

Листинг программы:

```
N = 120
RES <- c(T,F)
Kosos <- round(runif(N, 200, 900)) * 10^-3
Kpi <- round(runif(N, 200, 900)) * 10^-3
Kmsk <- round(runif(N, 200, 900)) * 10^-3
Kmi <- round(runif(N, 200, 900)) * 10^-3
frame = data.frame(RES, Kosos, Kpi, Kmsk, Kmi)
print(frame)

frame = data.frame(RES, Kosos, Kpi, Kmsk, Kmi)
print(frame)</pre>
```

Демонстрация работы:

RES Kosos Kpi Kmsk Kmi	
1 TRUE 0.546 0.648 0.497 0.505 51 TRUE 0.498 0.342 0.203 0.279	
2 FALSE 0.411 0.286 0.421 0.224 52 FALSE 0.513 0.599 0.574 0.882	
3 TRUE 0.611 0.803 0.408 0.561 53 TRUE 0.467 0.604 0.796 0.214	
4 FALSE 0.546 0.440 0.761 0.731 54 FALSE 0.391 0.551 0.348 0.276	
5 TRUE 0.552 0.588 0.567 0.484 55 TRUE 0.211 0.885 0.538 0.885	
6 FALSE 0.690 0.489 0.726 0.292 56 FALSE 0.757 0.536 0.228 0.687	
7 TRUE 0.449 0.841 0.847 0.238 57 TRUE 0.280 0.296 0.462 0.296	
8 FALSE 0.600 0.839 0.530 0.201 58 FALSE 0.784 0.579 0.761 0.303	
9 TRUE 0.271 0.215 0.799 0.586 59 TRUE 0.532 0.496 0.606 0.390	
10 FALSE 0.409 0.832 0.226 0.684 60 FALSE 0.387 0.542 0.202 0.303	
11 TRUE 0.766 0.432 0.585 0.284 61 TRUE 0.891 0.303 0.329 0.256	
12 FALSE 0.878 0.518 0.623 0.766 62 FALSE 0.365 0.842 0.381 0.318	
13 TRUE 0.468 0.469 0.550 0.899 63 TRUE 0.455 0.779 0.471 0.292	
14 FALSE 0.717 0.304 0.739 0.600 64 FALSE 0.881 0.566 0.384 0.249	
15 TRUE 0.451 0.439 0.775 0.230 65 TRUE 0.314 0.303 0.694 0.680	
16 FALSE 0.429 0.489 0.719 0.839 66 FALSE 0.646 0.575 0.530 0.346	
17 TRUE 0.597 0.211 0.211 0.898 67 TRUE 0.282 0.414 0.671 0.211	
18 FALSE 0.644 0.616 0.741 0.569 68 FALSE 0.386 0.815 0.369 0.481	
19 TRUE 0.220 0.349 0.530 0.752 69 TRUE 0.786 0.472 0.598 0.548	
20 FALSE 0.725 0.489 0.351 0.722 70 FALSE 0.807 0.321 0.630 0.345	
21 TRUE 0.816 0.834 0.377 0.376 71 TRUE 0.638 0.792 0.608 0.880	
22 FALSE 0.378 0.838 0.601 0.536 72 FALSE 0.631 0.584 0.346 0.433	
23 TRUE 0.325 0.628 0.838 0.695 73 TRUE 0.353 0.619 0.435 0.348	
24 FALSE 0.254 0.783 0.378 0.482 74 FALSE 0.683 0.344 0.261 0.427	
25 TRUE 0.734 0.417 0.549 0.680 75 TRUE 0.384 0.857 0.866 0.777	
26 FALSE 0.315 0.572 0.596 0.339 76 FALSE 0.438 0.284 0.892 0.581	
27 TRUE 0.316 0.479 0.756 0.783 77 TRUE 0.261 0.566 0.299 0.292	
28 FALSE 0.872 0.499 0.492 0.368 78 FALSE 0.716 0.706 0.243 0.762	
29 TRUE 0.485 0.730 0.618 0.297 79 TRUE 0.402 0.636 0.762 0.209	
30 FALSE 0.756 0.304 0.845 0.349 80 FALSE 0.866 0.422 0.897 0.872	
31 TRUE 0.268 0.510 0.517 0.598 81 TRUE 0.236 0.580 0.703 0.298	101 TRUE 0.662 0.446 0.573 0.271
32 FALSE 0.768 0.852 0.773 0.667 82 FALSE 0.685 0.223 0.490 0.759	102 FALSE 0.781 0.224 0.477 0.476
33 TRUE 0.504 0.552 0.835 0.870 83 TRUE 0.754 0.831 0.739 0.449	103 TRUE 0.681 0.348 0.277 0.288
34 FALSE 0.743 0.563 0.807 0.749 84 FALSE 0.396 0.620 0.595 0.796	104 FALSE 0.802 0.673 0.457 0.362
35 TRUE 0.626 0.342 0.451 0.761 85 TRUE 0.288 0.229 0.752 0.526	105 TRUE 0.353 0.406 0.330 0.265
36 FALSE 0.591 0.707 0.618 0.412 86 FALSE 0.335 0.301 0.631 0.222	106 FALSE 0.652 0.241 0.412 0.796
37 TRUE 0.389 0.440 0.661 0.855 87 TRUE 0.753 0.559 0.366 0.777	107 TRUE 0.391 0.341 0.740 0.440
38 FALSE 0.698 0.506 0.574 0.753 88 FALSE 0.796 0.415 0.681 0.464	108 FALSE 0.578 0.662 0.889 0.258
39 TRUE 0.258 0.661 0.320 0.413 89 TRUE 0.464 0.778 0.780 0.710	109 TRUE 0.897 0.500 0.853 0.261
40 FALSE 0.683 0.608 0.384 0.493 90 FALSE 0.601 0.244 0.268 0.535	110 FALSE 0.325 0.674 0.897 0.555
41 TRUE 0.281 0.227 0.636 0.326 91 TRUE 0.383 0.482 0.871 0.243	111 TRUE 0.855 0.239 0.566 0.579
42 FALSE 0.418 0.825 0.853 0.645 92 FALSE 0.393 0.250 0.702 0.417	112 FALSE 0.679 0.806 0.221 0.503
43 TRUE 0.896 0.553 0.276 0.339 93 TRUE 0.412 0.578 0.899 0.261	113 TRUE 0.241 0.389 0.301 0.639
44 FALSE 0.759 0.859 0.898 0.815 94 FALSE 0.882 0.643 0.448 0.270	114 FALSE 0.308 0.375 0.800 0.563
45 TRUE 0.885 0.336 0.365 0.680 95 TRUE 0.576 0.202 0.711 0.524	115 TRUE 0.708 0.235 0.480 0.293
46 FALSE 0.767 0.749 0.836 0.312 96 FALSE 0.887 0.209 0.467 0.715	116 FALSE 0.530 0.665 0.566 0.758
47 TRUE 0.771 0.433 0.558 0.562 97 TRUE 0.342 0.828 0.349 0.563	117 TRUE 0.640 0.374 0.249 0.622
48 FALSE 0.787 0.823 0.310 0.860 98 FALSE 0.202 0.412 0.281 0.594	118 FALSE 0.856 0.601 0.446 0.355
49 TRUE 0.341 0.590 0.249 0.425 99 TRUE 0.484 0.784 0.350 0.723	119 TRUE 0.623 0.646 0.684 0.795
50 FALSE 0.465 0.301 0.362 0.712 100 FALSE 0.299 0.219 0.603 0.480	120 FALSE 0.756 0.793 0.625 0.816

Рис.1. Демонстрация созданного фрейма

№ 2. Используем метод К-ближайших соседей и метод Парзена. Сформировать обучающие и тестовые выборки. Полученные результаты визуализировать и сравнить. Представить значения параметров с минимальным уровнем ошибки. Для метода К соседей параметр К =20, для метода Парзена тип ядра выбрать "epanechnikov", "uniform", а параметр optim. method ="Nelder-Mead", "BFGS". Проверить точность прогнозов.

Листинг алгоритма классификации:

```
rm_test <- rm_n[61:120,]
rm_train_labels <- ramFo2[1:60, 1]
rm_test_labels <- ramFo2[61:120, 1]
library("class")
rm_test_pred<-knn(train = rm_train, test = rm_test, cl = rm_train_labels, k=20)
library("gmodels")
CrossTable(x = rm_test_labels, y = rm_test_pred, prop.chisq=FALSE)</pre>
```

Демонстрация работы:

Total Observations in Table: 60				
rm_test_labels	rm_test_pre Stable		Row Total	
Stable	19 0.633 0.528 0.317	11 0.367 0.458 0.183	30 0.500 	
Unstable	17 0.567 0.472 0.283	13 0.433 0.542 0.217	30 0.500	
Column Total	36 0.600	0.400	60	

Рис.2. Демонстрация результата работы

Вывод: в ходе выполнения лабораторной работы были приобретены практические навыки разработки программ с использованием метрических методов классификации многомерных объектов пересекающихся классов на языке R.