Week 4

Friday, June 26, 2020 2:26 PM

Supervised Learning

Def:

Given a data set of input-output pairs, Learn a function to map input to output

Supervised learning tasks:

- Classification:
 - Supervised learning task of learning a function mapping an input point to a discrete category
 - o We use a hypothesis function :
 - h(
- Nearest-neighbor classification:
 - Algorithm that, given an input chooses
 The class of the nearest data point to the input
 - K-nearest-neighbor classification :
 - Algorithm that, given an input chooses the most common class of the nearest K data point to the input
- the hypothesis function:

we have :

- $\circ \quad \text{Weight vector (w_0, w_1, w_2,....)}$
- o Input vector (1, x₁, x₂,....)

 $h_w(X) = 1$ if : W . X >= 0 0 otherwise

- Calculating the weight W:
 - Perceptron learning rule :
 - Given data input(x, y), update each weight according to :
 - \square $W_i = W_i + \alpha(y h_w(x)) * X_i$
 - ◆ Y: actual value
 - h_w(x): estimated value
 - α: learning rate
 - We end up with a threshold function:
 - □ Threshold type:
 - ◆ Hard threshold :
 - ♦ 1 or 0 and there is no notion of how strong the prediction is
 - Soft thresholder :
 - ♦ By taking advantage of logistic regression We can use a logistic function
 - ♦ Prediction between 0 : 1
 - **•** ------

Support vector Machine

Design to try to find the maximum margin separator

- Maximum margin separator :
 - Boundary that maximize the distance between any of the data points

Regression

Def

Supervised learning task of learning a function that map an input point to a continuous value

Evaluating Hypotheses

Loss function

Function that express how poorly our hypothesis perform

- Examples:

	0	<pre>0-1 loss function : L(actual, predicted) =</pre>
	0	◆ 1 otherwise L ₁ Loss function:
		L(actual, prediction) = actual - prediction
	0	L ₂ Loss function:
	_	 L(actual - prediction) = (actual - prediction)²
	0	
D-f		Overfitting
Def :	A mo	odel that fit too closely to a particular data set therefor May fail to generalize to future data
-		<mark>roid this :</mark> Use <mark>regularization</mark> :
	ŭ	
		 Penalizing hypothesis that are more complex to favor sampler, more general hypothesis
	0	■ Cost(h) = Loss(h) + \(\lambda\) complexity(h)
	0	Use Handout cross-validation:
		Splitting data into two sets:
		☐ Training set☐ Test set☐
		Such that learning happen on the training set
		And is evaluated on the test set
	0	Use K-fold cross-validation:
		 Splitting data into k sets,
		And experiment k times, using each set as
		Test set once, and using reaming data as a training set
		2. 2. 4.0

Reinforcement learning

Def:

Given a set of rewards and punishment, Learn which action to take in the future

- Markov Decision Process:
 - Model for decision-making, representing

States, actions and their rewards

- Set of states (s)
- Set of actions Actions(s)
- Transition model P(s` | s, a)
- Reward function R(s, a, s`)
- .
- Example:
 - Q-learning:
 - Method for learning a function Q(s, a)

Estimate of the value of preforming action a

In state s

- Overview :
 - □ Start with Q(s, a) = 0 for all s, a
 - □ When taken an action and receive a reward :
 - Estimate the value of Q(s, a) based on

current reward and expected future rewards

• Update Q(s, a) to take in account our old estimate as well as

Our new estimate

Sudo code :

- \Box Start with Q(s, a) = 0 for all s, a
- Every time we take an action a in state s and observe a reward r,

We update :

 $Q(s, a) = Q(s, a) + \alpha$ (new value estimate - old value estimate)

- Old estimate: Q(s, a)

New estimate : {r + future reward estimate}
 Future reward estimate : max_a (s`, a`)

So:

Q(s, a) =

 $Q(s, a) + \alpha ([r + \gamma \max_a (s', a')] - Q(s, a))$

- Greedy decision-making:
 - □ When in a state s, choose the action that give the highest Q(s, a)
 - _ -----
- ε greedy:
 - \Box Set ε equal to how often we want to make a randome move
 - \Box With P-->(1 ε) choose the best move
 - \Box With p-->(ε) choose a randome move
- Function approximation :

Approximating Q(s, a), often by combing various features, Rather than storing one value for every state action pair

Unsupervised learning

Def:

Given input without any additional feedback, learn patterns

- Clustering:
 - Organizing a set of objects into groups in such a way that similar
 Objects tend to be in the same group
- K-means clustering:
 - Algorithm for clustering data based on repeatedly assigning points to clusters
 And updating those clusters center