Elements of statistical learning: Chapter 3

July 21, 2020

Content

- Linear models
 - ullet Sampling properties of \hat{eta}
 - Gauss-Markov Theorem

LS estimator

Let \pmb{X} be an $N \times (p+1)$ matrix of explanatory variables and \pmb{y} an $N \times 1$ vector of outputs. Then we know the LS estimator $\hat{\beta}$

$$\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y},$$

[see lecture slides "ESL1" for recap and proof].

The "hat" matrix

As such for the fitted linear model

$$\hat{y} = X\hat{\beta}
= X(X'X)^{-1}X'y
= Hy$$

where \boldsymbol{H} is commonly referred to as the hat matrix.

H the projection matrix

Let us denote the column vectors of \mathbf{X} by $\mathbf{x}_0, \mathbf{x}_1, \cdots, \mathbf{x}_p$ with $\mathbf{x}_0 \equiv 1$.

- These vectors span a subspace of \mathbb{R}^N , also referred to as a column vector of X.
- We minimize $RSS(\beta) = ||\mathbf{y} \mathbf{X}\beta||^2$ by choosing $\hat{\beta}$, so that the residual vector $\mathbf{y} \hat{\mathbf{y}}$ is orthogonal to this subspace.
- the hat matrix **H** computes the orthogonal projection, and hence it is also known as the projection matrix.

Variance-covariance matrix

Assumptions

- **1** Observations y_i are uncorrelated have constant variance σ^2

$$var(\hat{\beta}) = var \left[(X'X)^{-1}(X'X)\beta + (X'X)^{-1}\epsilon \right]$$

$$= var \left[(X'X)^{-1}\epsilon \right]$$

$$= \mathbb{E} \left\{ (X'X)^{-1}X'\epsilon \left[(X'X)^{-1}X'\epsilon \right]' \right\}$$

$$= \mathbb{E} \left\{ (X'X)^{-1}X'\epsilon\epsilon'X(X'X)^{-1} \right\}$$

$$= \mathbb{E} \left\{ (X'X)^{-1}(X'X)\epsilon\epsilon'(X'X)^{-1} \right\}$$

Note that ϵ is the error term and has zero mean and also remember that ${\pmb X}$ is fixed, and thus

$$\mathbb{E}[aZ] = a\mathbb{E}[Z]$$

where Z is a random variable and a is a constant. Therefore,

$$var(\hat{\beta}) = \mathbb{E} \left\{ \epsilon \epsilon' (\mathbf{X}'\mathbf{X})^{-1} \right\}$$
$$= (\mathbf{X}'\mathbf{X})^{-1} E \left\{ \epsilon \epsilon' \right\}$$
$$= (\mathbf{X}'\mathbf{X})^{-1} \sigma^{2}$$

where σ^2 can be calculated by

$$\sigma^2 = \frac{1}{N - p - 1} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

thus, assuming the errors are further Gaussian

$$\hat{\beta} \sim N(\beta, (\boldsymbol{X}'\boldsymbol{X})^{-1}\sigma^2)$$

Gauss-Markov Theorem

Least squares estimator of parameter β has the smallest variance among all linear unbiased estimators. Why is the LS estimator unbiased?

Proof.

$$\hat{\beta} = \mathbb{E}[\hat{\beta}]
= \mathbb{E}[(X'X)^{-1}X'y]
= \mathbb{E}[(X'X)^{-1}X'(X\beta + \epsilon)]
= \mathbb{E}[\beta + (X'X)^{-1}\epsilon]
= \beta + (X'X)^{-1}X'X\mathbb{E}[\epsilon]
= \beta$$