

Modèles de régression linéaire

TD 2

Exercice 1

On examine l'évolution d'une variable Y en fonction de deux variables explicatives x et z. On dispose de n observations de ces variables. On note $\mathbf{X} = (\mathbf{1} \ \mathbf{x} \ \mathbf{z})$ où $\mathbf{1}$ est le vecteur constant de 1 et \mathbf{x}, \mathbf{z} sont les vecteurs des variables explicatives (de taille n).

1. Nous avons obtenu les résultats suivants :

$$\boldsymbol{X}^T \boldsymbol{X} = \begin{pmatrix} 30 & 0 & 0 \\ ? & 10 & 7 \\ ? & ? & 15 \end{pmatrix}$$

- (a) Donner les valeurs manquantes.
- (b) Que vaut n?
- (c) Calculer le coefficent de corrélation linéaire entre \mathbf{x} et \mathbf{z} .
- 2. La régression linéaire de Y sur 1, x, z donne

$$\mathbf{y} = -2\mathbf{1} + \mathbf{x} + 2\mathbf{z} + \hat{\boldsymbol{\varepsilon}},$$
 $SCR = ||\hat{\boldsymbol{\varepsilon}}||^2 = 12$

- (a) Déterminer la moyenne arithmétique \bar{y} .
- (b) Calculer la somme des carrés expliquée (SCE), la somme des carrés totale (SCT) et le coefficient de détermination.

Exercice 2

On a calculé l'équation de régression suivante à partir des données relatives à une classe de 66 élèves infirmières:

$$\hat{y} = 3.1 + 0.021x_1 + 0.075x_2 + 0.043x_3$$

où Y = note de l'examen théorique de l'étudiante,

 x_1 = classement (à partir du bas de l'échelle) de l'étudiante dans le secondaire,

 x_2 note d'expression orale de l'étudiante,

 $x_3 {=}$ mesure psychométrique du caractère de l'étudiante.

D'autre part, les écart-types estimés associés aux estimations $\hat{\beta}_j$, j=1,2,3, sont respectivement de 0.019, 0.034 et 0.018.

- 1. Donner l'intervalle de confiance à 95% pour chacun des paramètres β_j , j=1,2,3.
- 2. Donner la valeur t_j de la statistique du test de Student pour chacun des paramètres β_j .

- 3. Quelle hypothèse sur la loi des erreurs faites-vous en répondant aux 2 questions précédentes?
- 4. Quel régresseur vous semble-t-il pouvoir conduire aux conclusions statistiquement les plus sûrs (c'est aussi le régresseur susceptible d'influer le plus possible sur la note de l'étudiante)?
- 5. Si vous aviez à écrire un rapport final, garderiez-vous le premier régresseur ou le supprimeriez-vous? Pourquoi?

Exercice 3

Dans un pays européen, on a mesuré la perte de de voix du parti au pouvoir (variable Y) lors de 6 élections intermédiaires, ayant eu lieu au cours des 30 dernières années. Y dépend de plusieurs variables explicatives dont deux semblent particulièrement importantes et faciles à mesurer : x_1 = résultats des sondages favorables au dirigeant du gouvernement (issu du parti au pouvoir) au moment de l'élection (pourcentage d'électeurs approuvant la manière dont le dirigeant mène sa politique) et x_2 = modification du revenu par tête (en euros) l'année précédant l'élection.

$oldsymbol{y}$	\boldsymbol{x}_1	$oldsymbol{x}_2$
6.3%	35%	-30
2.5	44	90
1.3	62	-10
4.9	53	-10
-0.8	65	50
1.5	47	90

- 1. A partir des données ci-dessus, calculer l'équation de la régression multiple de Y en x_1 et x_2 en indiquant bien toutes les étapes intermédaires du calcul (utiliser le logiciel R pour calculer $\hat{\beta}$ à l'aide des commandes de produit et d'inversion de matrices).
- 2. Estimer la perte de voix y pour un sondage d'élection donnant 50% de satisfaits et pour une augmentation du revenu par tête de 60 euros.
- 3. Tester la nullité des paramètres β_1 et β_2 simultanément au seuil de 5%.
- 4. Donner les bornes de l'intervalle de confiance à 90% du paramètre β_1 du modèle.

Exercice 4

En reprenant l'exemple 4.4 du cours :

- 1. Tester l'hypothèse $\beta_1 = \beta_2 = 0$.
- 2. Calculer un intervalle de confiance des prévisions du sentiment de bien-être à partir des valeurs des régresseurs données à la page 19 du cours.