# Statistical Analysis of the New USPSA Classifier High Hit Factor Calculation Method

Alex Acosta, Kirt McKenna, Stepan Generalov, Jay Slater, Terrence Tsang, Douglas Peters, Timothy Dunderi, Rick Brotzel, and Billy Barton

March 23, 2025

#### Abstract

This paper presents a statistical analysis of the new USPSA Classifier High Hit Factor (HHF) calculation method, which employs Weibull statistical distribution with Percentile Targeting. We analyze data from the 22-, 23-, and 24-series classifiers to demonstrate the improvements over the previous methodology. Our findings show that the new approach provides more consistent, stable, and statistically robust benchmarks across all divisions while addressing several critical issues with the previous system, including the "shot out" classifier problem and division calibration inconsistencies. The analysis confirms that the new methodology requires fewer scores to achieve reliable HHFs and creates more equitable classification standards across all divisions and classifier stages.

## 1 Introduction

The USPSA Classification System serves as a standardized framework for measuring shooting performance across more than 39,000 members. The accuracy of this system relies heavily on properly calibrated High Hit Factors (HHFs), which serve as the benchmarks against which shooter performance is evaluated. Recent issues with the 23- and 24-series classifiers highlighted significant problems with the existing HHF calculation methodology, particularly evident at the 2024 USPSA Open & PCC National Championship, where no competitors, not even podium finishers, could achieve Grandmaster scores in Open.

The USPSA Classification Committee developed a new approach to calculating HHFs using Weibull statistical distribution with Percentile Targeting to address these issues. This paper analyzes the new methodology's effectiveness based on data from the 22-, 23-, and 24-series classifiers across all divisions.

## 2 Methodology Overview

The new HHF calculation methodology follows a standardized algorithm:

- 1. Fit a Weibull Distribution to the classifier score data using Negative Log Likelihood (NLL) error function and Nelder-Mead optimization.
- 2. Use the Cumulative Distribution Function (CDF) of the fitted Weibull Distribution to find the hit factor at the 97th percentile.
- 3. Calculate the final HHF by dividing that hit factor by 0.9.

This approach was selected after extensive analysis showed that:

- The Weibull distribution closely matches the actual distribution of shooter performance
- The method stabilizes quickly with relatively few scores
- It eliminates the "shot out" classifier problem by tracking with the skill distribution of the membership
- It provides consistent calibration across all divisions and stages

## 3 Statistical Analysis and Findings

#### 3.1 Data Overview

Our analysis examines data from three classifier series:

- 22-series: Provisional period June 1, 2022, to November 30, 2022
- 23-series: Data from the 2023 Sig Sauer Handgun National Championships
- 24-series: Provisional period April 1, 2024, to May 30, 2024

For each classifier-division combination, we have data on:

- Number of scores during the provisional period
- Provisional Recommended HHF
- Error percentage between provisional and final recommended HHF
- Final Recommended HHF using all available scores
- Original HHF calculated using previous methodology
- Total number of scores available as of March 3, 2025

#### 3.2 Statistical Stability with Smaller Sample Sizes

One of the key advantages of the new methodology is its ability to produce stable HHF values even with relatively small sample sizes. Table 1 shows the average error between provisional and final HHF calculations by division.

This confirms the theoretical prediction that the Weibull method converges quickly on stable HHF values. Even with the smallest sample sizes (Revolver division), the average error remains within acceptable limits.

#### 3.3 Correction of Systematic Biases in Previous HHFs

The data reveals systematic patterns of correction across different classifier series, as shown in Table 2.

The substantial corrections in the 24-series directly address the issue where competitors at the 2024 USPSA Open & PCC National Championship could not achieve Grandmaster scores.

Table 1: Statistical Stability by Division

| Division     | Avg. Sample Size | Avg. Error % |
|--------------|------------------|--------------|
| Carry Optics | $\sim 500$       | $\pm 2\%$    |
| Open         | $\sim \! 175$    | $\pm 2.5\%$  |
| Limited      | $\sim 100$       | $\pm 3.5\%$  |
| Production   | $\sim 60$        | $\pm 3\%$    |
| PCC          | $\sim 110$       | $\pm 3\%$    |
| Single Stack | $\sim 35$        | $\pm 4\%$    |
| Revolver     | $\sim 25$        | $\pm 5.5\%$  |

Table 2: HHF Corrections by Classifier Series

| Classifier Series | Average Adjustment Range                              |  |  |  |  |  |
|-------------------|-------------------------------------------------------|--|--|--|--|--|
| 22-series         | Moderate corrections $(\pm 5\%)$                      |  |  |  |  |  |
| 23-series         | Slight upward adjustments $(+0.5\% \text{ to } +8\%)$ |  |  |  |  |  |
| 24-series         | Significant downward corrections (-10% to -25%)       |  |  |  |  |  |



Figure 1: HHF Changes by Classifier Series (Median with Error Bars representing range)

Table 3: Average HHF Changes by Division

| Division       | Average $\%$ Change from Original HHF |
|----------------|---------------------------------------|
| Open           | -8.1%                                 |
| Carry Optics   | -8.8%                                 |
| Limited        | -10.2%                                |
| Production     | -7.3%                                 |
| PCC            | -4.1%                                 |
| Revolver       | +1.7%                                 |
| Single Stack   | -5.6%                                 |
| Limited Optics | -10.5%                                |

## 3.4 Cross-Division Consistency

The new methodology produces more consistent calibration across divisions. Table 3 shows the average percentage change from original HHFs by division.

The relative consistency of these adjustments (except for Revolver, which had the smallest sample sizes) indicates the new method standardizes difficulty across divisions. The slight positive adjustment for Revolver suggests the previous methodology may have systematically underestimated appropriate HHFs for this division.



Figure 2: Average Percentage Change from Original HHF by Division

#### 3.5 Notable Statistical Corrections

Several classifiers show significant corrections that highlight issues with the previous methodology. Table 4 presents some of the most notable examples.

| Table 4: Notable HHF Corrections |              |          |              |          |  |  |  |
|----------------------------------|--------------|----------|--------------|----------|--|--|--|
| Classifier                       | Division     | Rec. HHF | Original HHF | % Change |  |  |  |
| 24-02                            | Carry Optics | 9.6515   | 13.0890      | -26.3%   |  |  |  |
| 24-04                            | Carry Optics | 9.4176   | 12.2000      | -22.8%   |  |  |  |
| 24-06                            | Single Stack | 7.5102   | 9.9905       | -24.8%   |  |  |  |
| 24-02                            | Open         | 10.5066  | 13.7435      | -23.6%   |  |  |  |
| 24-04                            | Limited      | 9.1569   | 11.3568      | -19.4%   |  |  |  |
| 24-06                            | Production   | 8.5693   | 9.3090       | -7.9%    |  |  |  |

These substantial corrections represent improved statistical alignment with actual shooter per-

formance distribution. The 24-series classifiers, in particular, show the most significant adjustments, suggesting that the previous methodology had systematically overestimated appropriate HHFs for these stages.



Figure 3: Error vs. Sample Size Scatter Plot by Division

## 3.6 Convergence with Limited Data

Figure 4 illustrates how quickly the Weibull method converges on stable HHF values even with limited data, using 24-08 "And now for something completely different" as an example. With as few as 120 scores, the method produces an HHF within 5% of the value calculated with nearly 10 times as many scores.



Figure 4: Weibull Accuracy Analysis with Limited Data (24-08 Classifier)

## 3.7 Correlation with Major Match Performance

A key objective of the new methodology was to improve the correlation between classification percentages and Major Match Elo ratings. Figure 5 illustrates the improved correlation achieved with the new system compared to the previous approach.



Figure 5: Improved Correlation between Elo Rating and Classification Percentage

## 4 Key Strengths of the New Methodology

#### 4.1 Mathematical Robustness

The Weibull distribution provides a mathematically sound foundation for HHF calculation. Unlike ad-hoc approaches, this statistical method properly accounts for the natural distribution of shooting performance across the membership. The mathematical properties of the Weibull distribution, particularly its ability to model right-skewed data with a long tail, make it ideally suited for practical shooting performance distribution.

#### 4.2 Percentile Standardization

Using the 97th percentile as 90% of HHF creates a consistent benchmark across all classifier stages. This standardized approach ensures that each classifier represents the same relative challenge, regardless of the specific stage design or division.

#### 4.3 Data-Driven Calibration

The method automatically adjusts for classifier difficulty, making all stages comparable skill measures. By fitting the statistical distribution to actual performance data, the system naturally accounts for the inherent difficulty differences between stages and provides appropriate scaling.

## 4.4 Prevention of "Shot Out" Classifiers

One of the new methodology's most significant advantages is its inherent ability to prevent the "shot out" classifier problem. Since the method uses percentile targeting rather than absolute score targeting, it naturally tracks the evolving skill distribution of the membership. As shooters improve overall, the HHF adjusts accordingly, maintaining the appropriate difficulty level.

#### 4.5 Division-Specific Calibration

The new methodology calculates HHFs separately for each division based on its own statistical distribution. This ensures fair comparisons within divisions while acknowledging the inherent performance differences between equipment types.

#### 4.6 Rapid Convergence with Limited Data

As demonstrated in Section 4.5, the Weibull method can produce reliable HHF values with relatively few scores. This is particularly valuable for new classifiers or less popular divisions where large sample sizes may not be immediately available.

## 5 Conclusion

The statistical analysis presented in this paper strongly supports the adoption of the new HHF calculation methodology based on Weibull distribution with Percentile Targeting. The data demonstrates that this approach provides more consistent, stable, and statistically robust benchmarks across all divisions while addressing several critical issues with the previous system.

Key advantages of the new system include:

- Statistical stability with smaller sample sizes
- Correction of systematic biases in previous HHFs
- Consistent calibration across divisions
- Prevention of "shot out" classifiers
- Improved correlation with Major Match performance
- Mathematical robustness and objectivity

The consistent pattern of corrections across different classifier series and divisions demonstrates that the Weibull statistical approach provides more accurate, stable, and fair benchmarks for USPSA's classification system. The method's ability to produce reliable results even with limited data makes it particularly valuable for ongoing maintenance of the classification system.

By implementing this methodology, USPSA will establish a more equitable and statistically sound framework for comparing shooter performance, ultimately enhancing the sport's competitive integrity and ensuring that classifications truly reflect consistent skill levels rather than isolated peak performances.

## A Classifier High Hit Factor Data Tables

This appendix presents the detailed data tables for the various classifier series analyzed in this paper, including provisional and final recommended High Hit Factors, error percentages, and comparison to original values.

## A.1 22-series Classifiers

Table 5 shows the data for 22-series classifiers during the provisional period from June 1, 2022, to November 30, 2022.

Table 5: 22-series Classifiers High Hit Factors with data only from the Provisional Period (June 1, 2022 to November 30, 2022)

| Stage | Division     | Scores | Prov. HHF | Error  | Rec. HHF | Orig. HHF | Total* |
|-------|--------------|--------|-----------|--------|----------|-----------|--------|
| 22-01 | Open         | 399    | 9.0468    | -3.44% | 9.3689   | 9.340     | 1,470  |
| 22-01 | Carry Optics | 1,048  | 8.2743    | -2.0%  | 8.4433   | 8.6663    | 4,417  |
| 22-01 | Limited      | 366    | 8.259     | 1.75%  | 8.1166   | 8.4942    | 1,160  |
| 22-01 | PCC          | 287    | 9.6339    | -2.52% | 9.8826   | 9.052     | 1,093  |
| 22-01 | Production   | 217    | 7.5107    | -4.71% | 7.8822   | 7.7656    | 657    |
| 22-01 | Single Stack | 261    | 8.1161    | 1.14%  | 8.0243   | 7.8926    | 491    |
| 22-01 | Revolver     | 66     | 6.7914    | 1.97%  | 6.66     | 6.271     | 138    |
| 22-02 | Open         | 286    | 8.7162    | 2.79%  | 8.4795   | 8.6822    | 1,073  |
| 22-02 | Carry Optics | 750    | 7.4352    | -2.43% | 7.6202   | 8.000     | 2,994  |
| 22-02 | Limited      | 277    | 7.2345    | -0.57% | 7.2761   | 8.000     | 880    |
| 22-02 | PCC          | 225    | 9.0168    | -0.68% | 9.0787   | 8.6137    | 786    |
| 22-02 | Production   | 153    | 6.8733    | -5.78% | 7.2952   | 7.25      | 437    |
| 22-02 | Single Stack | 222    | 7.9028    | 1.87%  | 7.7577   | 7.6899    | 352    |
| 22-02 | Revolver     | 59     | 6.6753    | 4.94%  | 6.3608   | 6.0784    | 114    |
| 22-04 | Open         | 391    | 11.8074   | -1.97% | 12.0442  | 11.3231   | 2,829  |
| 22-04 | Carry Optics | 1,031  | 10.0249   | -3.66% | 10.4061  | 10.75     | 8,293  |
| 22-04 | Limited      | 353    | 9.8661    | -3.28% | 10.2002  | 10.5      | 2,071  |
| 22-04 | PCC          | 308    | 11.0741   | -3.63% | 11.4915  | 10.6399   | 1,972  |
| 22-04 | Production   | 208    | 9.7662    | 0.76%  | 9.6929   | 9.75      | 1,241  |
| 22-04 | Single Stack | 239    | 10.9456   | 7.89%  | 10.1448  | 10.2434   | 751    |
| 22-04 | Revolver     | 64     | 8.8917    | 8.43%  | 8.2006   | 7.8844    | 253    |

<sup>\*</sup>Total number of scores as of March 3, 2025.

## A.2 23-series Classifiers

Table 6 presents data for 23-series classifiers with data from the 2023 Sig Sauer Handgun National Championships.

Table 6: 23-series Classifiers High Hit Factors with data only from the 2023 Sig Sauer Handgun National Championships

| Stage | Division     | Scores | Prov. HHF | Error  | Rec. HHF | Orig. HHF | Total* |
|-------|--------------|--------|-----------|--------|----------|-----------|--------|
| 23-01 | Limited      | 135    | 10.1259   | 4.33%  | 9.706    | 9.9141    | 732    |
| 23-01 | Production   | 101    | 9.343     | -1.64% | 9.4988   | 9.2307    | 560    |
| 23-01 | Single Stack | 59     | 9.0156    | 4.94%  | 8.5915   | 8.2758    | 256    |
| 23-01 | Revolver     | 29     | 7.9903    | 11.81% | 7.1461   | 6.9995    | 87     |
| 23-02 | Limited      | 135    | 10.8858   | 5.41%  | 10.3271  | 10.4348   | 888    |
| 23-02 | Production   | 101    | 10.3769   | 0%     | 10.3769  | 9.8554    | 691    |
| 23-02 | Single Stack | 59     | 10.3408   | 1.76%  | 10.1621  | 9.2764    | 323    |
| 23-02 | Revolver     | 29     | 9.3989    | 8.11%  | 9.0787   | 8.1721    | 117    |

<sup>\*</sup>Total number of scores as of March 3, 2025.

#### A.3 24-series Classifiers

Table 7 shows the data for 24-series classifiers during the provisional period from April 1, 2024, to May 30, 2024. These classifiers show the most significant adjustments under the new methodology, with substantial downward corrections from the original HHF values.

**Note:** The following table is presented in a smaller font to fit within page margins. "Prov. HHF" refers to Provisional Recommended HHF, and "Total\*" refers to the total number of scores as of March 3, 2025.

Table 7: 24-series Classifiers High Hit Factors with data only from the Provisional Period (April 1, 2024 to May 30, 2024)

| Stage | Division       | Scores | Prov. HHF | Error   | Rec. HHF | Current HHF     | Total*   |
|-------|----------------|--------|-----------|---------|----------|-----------------|----------|
| 24-01 | Open           | 199    | 11.466    | -1.85%  | 11.6816  | 12.5416         | 730      |
| 24-01 | Limited Optics | 327    | 10.9392   | 0.38%   | 10.8972  | 12.252          | 1,330    |
| 24-01 | Carry Optics   | 556    | 10.7967   | -0.57%  | 10.8586  | 12.25           | 2,023    |
| 24-01 | Limited        | 89     | 10.3856   | -4.68%  | 10.8953  | 12.5018         | 289      |
| 24-01 | PCC            | 109    | 11.3001   | -3.57%  | 11.7189  | 11.4152         | 492      |
| 24-01 | Production     | 62     | 10.8648   | 2.2%    | 10.631   | 11.4687         | 261      |
| 24-01 | Single Stack   | 35     | 9.7442    | -1.99%  | 9.9424   | 8.9329          | 121      |
| 24-01 | Revolver       | 13     | 8.2442    | 0.49%   | 8.2044   | 8.4377          | 49       |
| 24-02 | Open           | 129    | 10.4005   | -1.01%  | 10.5066  | 13.7435         | 368      |
| 24-02 | Limited Optics | 163    | 9.5116    | -1.45%  | 9.6515   | 13.1            | 700      |
| 24-02 | Carry Optics   | 301    | 9.7862    | 1.4%    | 9.6515   | 13.089          | 974      |
| 24-02 | Limited        | 59     | 9.48      | 8.8%    | 8.7133   | 9.736           | 178      |
| 24-02 | PCC            | 65     | 10.4587   | 2.72%   | 10.1819  | 10.0883         | 204      |
| 24-02 | Production     | 34     | 8.7816    | 5.17%   | 8.3501   | 9.583           | 134      |
| 24-02 | Single Stack   | 26     | 6.8907    | -10.16% | 7.6699   | 8.035           | 75       |
| 24-02 | Revolver       | 15     | 6.4778    | -4.16%  | 6.759    | 6.2526          | 40       |
| 24-04 | Open           | 195    | 10.3548   | 0.91%   | 10.2616  | 12.8598         | 697      |
| 24-04 | Limited Optics | 336    | 9.4413    | 0.25%   | 9.4176   | 12.2474         | 1,335    |
| 24-04 | Carry Optics   | 538    | 9.6087    | 2.03%   | 9.4176   | 12.2            | 1,983    |
| 24-04 | Limited        | 97     | 9.2152    | 0.64%   | 9.1569   | 11.3568         | 325      |
| 24-04 | PCC            | 116    | 11.2828   | -2.06%  | 11.52    | 14.3542         | 463      |
|       |                |        |           |         |          | Continued on no | ext page |

Table 7 – continued from previous page

| Stage | Division       | Scores | Prov. HHF | Error   | Rec. HHF | Current HHF | Total* |
|-------|----------------|--------|-----------|---------|----------|-------------|--------|
| 24-04 | Production     | 88     | 10.1757   | 6.67%   | 9.5393   | 10.6235     | 287    |
| 24-04 | Single Stack   | 44     | 9.479     | 3.34%   | 9.173    | 10.2326     | 145    |
| 24-04 | Revolver       | 12     | 7.7065    | 2.93%   | 7.4871   | 7.9594      | 52     |
| 24-06 | Open           | 184    | 12.3067   | -1.89%  | 12.5441  | 14.7299     | 546    |
| 24-06 | Limited Optics | 274    | 10.5976   | -4.49%  | 11.0953  | 13.6038     | 917    |
| 24-06 | Carry Optics   | 448    | 10.9335   | -1.46%  | 11.0953  | 13.4883     | 1,397  |
| 24-06 | Limited        | 105    | 11.0943   | -2.42%  | 9.5424   | 11.9884     | 238    |
| 24-06 | PCC            | 103    | 11.3368   | -4.43%  | 11.8618  | 11.0688     | 312    |
| 24-06 | Production     | 63     | 8.3565    | -2.48%  | 8.5693   | 9.309       | 214    |
| 24-06 | Single Stack   | 43     | 7.6448    | 1.79%   | 7.5102   | 9.9905      | 100    |
| 24-06 | Revolver       | 14     | 6.1552    | 3.64%   | 5.9393   | 6.7121      | 50     |
| 24-08 | Open           | 177    | 12.0812   | -10.92% | 13.5619  | 14.2959     | 667    |
| 24-08 | Limited Optics | 253    | 10.7872   | 0.9%    | 10.6907  | 12.3529     | 764    |
| 24-08 | Carry Optics   | 516    | 10.8872   | 1.84%   | 10.6907  | 12.4033     | 1,198  |
| 24-08 | Limited        | 91     | 9.9564    | 4.82%   | 9.4982   | 11.3115     | 193    |
| 24-08 | PCC            | 132    | 12.4561   | -4.35%  | 13.0223  | 13.4093     | 464    |
| 24-08 | Production     | 66     | 9.0252    | -3.15%  | 9.3193   | 9.8406      | 159    |
| 24-08 | Single Stack   | 23     | 9.421     | 6.05%   | 8.8833   | 10.3078     | 66     |
| 24-08 | Revolver       | 11     | 7.6994    | 13.97%  | 6.7558   | 7.7138      | 47     |
| 24-09 | Open           | 192    | 11.4253   | -0.04%  | 11.4304  | 12.7441     | 777    |
| 24-09 | Limited Optics | 348    | 10.2673   | -1.88%  | 10.4636  | 12.3214     | 1,461  |
| 24-09 | Carry Optics   | 559    | 10.4736   | 0.1%    | 10.4636  | 12.1488     | 2,118  |
| 24-09 | Limited        | 117    | 10.4302   | 5.29%   | 9.9065   | 11.7694     | 402    |
| 24-09 | PCC            | 143    | 11.4261   | -1.21%  | 11.5656  | 12.2027     | 544    |
| 24-09 | Production     | 71     | 9.144     | -2.02%  | 9.3329   | 10.0625     | 314    |
| 24-09 | Single Stack   | 29     | 9.5023    | 4.61%   | 9.0835   | 9.5797      | 140    |
| 24-09 | Revolver       | 12     | 7.0422    | 3.34%   | 6.8147   | 7.0448      | 56     |

<sup>\*</sup>Total number of scores as of March 3, 2025.