Parameter	TaAs	TaP	NbAs	NbP
a (Å)	3.466 (3.437)	3.339 (3.318)	3.477 (3.452)	3.350 (3.334)
c (Å)	11.750 (11.656)	11.486 (11.363)	11.752 (11.679)	11.424 (11.376)
и	0.417 (0.417)	0.414 (0.416)	0.422 (0.417)	0.416 (0.416)
B (GPa)	84.38	102.31	87.47	95.99
B'	4.14	4.05	4.05	3.85
E _{coh} (eV/pair)	14.27	16.00	15.09	16.69

Table 1. Calculated lattice parameters a, c, and u of transition metal monopnictides. Experimental values (adapted from collection in 26) are given in parenthesis. In addition, elastic and energetic parameters, the bulk modulus B, its pressure derivative B', and the cohesive energy $E_{\rm coh}$, are listed.

Figure 2. Band structure with SOI (red solid lines) and without SOI (black solid lines) of (a) TaAs, (b) TaP, (c) NbAs, and (d) NbP along high-symmetry lines in the bct BZ in Fig. 1b. The Fermi energy ε_F (black horizontal line) is chosen as energy zero. In addition, the DOS (black lines) and the orbital-symmetry-resolved DOS (Ta6s and Nb5s: red lines, Ta5d and Nb4d: blue lines, and As4p and P3p: green lines) are plotted.

definition of Wyckhoff positions. The internal cell parameters u agree well with measured values and with the rule $u \sim 5/12$ found experimentally 30 . The calculated a and c lattice constants slightly overestimate the experimental ones by 0.4–0.8%. Only in the case of the c lattice constant of TaP the deviation is slightly larger with 1.1%. The reason for the general overestimation is the used PBE XC functional with gradient corrections 34 . There are also other experimental values a=3.4348 Å and c=11.641 Å for TaAs 30 , which are, also, close to our computed results.

Band structures. The band structures of the four transition metal monopnictides TaAs, TaP, NbAs, and NbP are plotted in Fig. 2 along several high-symmetry lines in the bct BZ (see Fig. 1b). Since the bonds are highly ionic, the cations (anions) approach +3 (-3) charged ions, suggesting completely filled p^6 shells of the anions and partially filled d^2 shells of the cations, which build the upper valence bands. The orbital-resolved density of states (DOS) of the four compounds given also in Fig. 2 shows that Ta6s and Nb5s states are not visible in the presented energy range around the Fermi level.