CSCI 210: Computer Architecture Lecture 38: Last Class!

Stephen Checkoway

Oberlin College

Jan. 14, 2022

Slides from Cynthia Taylor

Announcements

- Cache Lab (final project)
- Course Evals!
 - Extra credit for 90% response rate
 - Currently at 59%
- Office Hours today 13:30-14:30
 - Zoom only

Lab 8: Cache Simulator

Take in a trace of load/stores from a real program

Simulate running the program on a given cache

Calculate how well a given cache would perform for that trace

What do you need to do?

Create data structures that emulate a cache

 For each instruction, find where it would go in the cache, check if it's already there

 Calculate number of miss penalty cycles, load misses, store misses, instructions, etc

Cache Questions?

Previous Conceptions of How Computers Work

Actually Assembly

High Level:

$$x = 2 + 4$$

Assembly (assuming we have a mem address for x in \$s0):

```
li $t1, 2
addi $t1, $t1, 4
sw $t1, 0($s0)
```

Actually Machine Instructions

addi \$t1, \$t1 5

ор	rs	rt	constant or address
6 bits	5 bits	5 bits	16 bits

00100001001010010000000000001001

Actually The Datapath

Actually Registers

Actually Flip-flops

Actually Latches

Actually the ALU

Actually the ALU

Actually Memory

Actually Caches

Actually LOTS of Caches

But wait, what about?

- Negative Numbers
- Floating Point
- All that other stuff . . .

Computers are Complicated

• But now, you know how they work. Kinda.

• I appreciate all the work you've done for this class.

Have a great break!

...and fill out course evals!