Grundbegriffe der Informatik Aufgabenblatt 9

Matr.nr.:	
Nachname:	
Vorname:	
Tutorium:	Nr. Name des Tutors:
Ausgabe:	18. Dezember 2013
Abgabe: 10. Januar 2014, 12:30 Uhr im GBI-Briefkasten im Untergeschoss von Gebäude 50.34 Lösungen werden nur korrigiert, wenn sie • rechtzeitig, • in Ihrer eigenen Handschrift, • mit dieser Seite als Deckblatt und • in der oberen linken Ecke zusammengetackert abgegeben werden.	
Vom Tutor au	szufüllen:
erreichte Punkte	
Blatt 9:	/ 19
Blätter 1 – 9:	/ 167

Aufgabe 9.1 (3 Punkte)

Gegeben sei der folgende Algorithmus:

```
x \leftarrow 0

for i \leftarrow 0 to n-1 do

for j \leftarrow 0 to i-1 do

for k \leftarrow j to n-1 do

x \leftarrow x+1

od

od
```

Es bezeichne f(n) den Wert der Variablen x nach Beendigung der Schleife in Abhängigkeit von n.

- a) Beweisen Sie, dass $f(n) \in O(n^3)$ ist.
- b) Beweisen Sie, dass $f(n) \in \Omega(n^3)$ ist.

Aufgabe 9.2 (4 Punkte)

Betrachten Sie folgende kleine Variante des Algorithmus von Warshall, der eine Folge von Matrizen W_0 , W_1 , usw. bis W_n berechnet:

```
\begin{aligned} &\text{for } i \leftarrow 0 \ \ \text{to } n-1 \ \ \text{do} \\ &\text{for } j \leftarrow 0 \ \ \text{to } n-1 \ \ \text{do} \\ &W_0[i,j] \leftarrow \begin{cases} 1 & \text{falls } i=j \\ A[i,j] & \text{falls } i \neq j \end{cases} \\ &\text{od} \\ &\text{od} \end{aligned} \\ &\text{for } k \leftarrow 0 \ \ \text{to } n-1 \ \ \text{do} \\ &\text{for } i \leftarrow 0 \ \ \text{to } n-1 \ \ \text{do} \\ &\text{for } j \leftarrow 0 \ \ \text{to } n-1 \ \ \text{do} \\ &W_{k+1}[i,j] \leftarrow \max(W_k[i,j], \min(W_k[i,k],W_k[k,j])) \\ &\text{od} \\ &\text{od} \end{aligned}
```

Der Algorithmus soll angewendet werden auf den Graphen $G = (\mathbb{G}_6, E)$ mit Kantenmenge $E = \{(0,1), (0,3), (1,2), (1,4), (2,0), (2,5)\}$

- a) Geben Sie W_0 nach Ausführung des Algorithmus an.
- b) Geben Sie W_1 nach Ausführung des Algorithmus an.
- c) Für welchen Wert m der Laufvariable k ergibt sich im Algorithmus für den Beispielgraphen G zum letzten Mal eine Matrix W_m , die sich von der "vorhergehenden" Matrix M_{m-1} unterscheidet?
- d) Geben Sie alle weiteren Matrizen W_2 bis W_m an (für den Wert m aus der vorangegangenen Teilaufgabe).

Aufgabe 9.3 (5 Punkte)

Geben Sie für jede der nachfolgend definierten Funktionen $f_i \colon \mathbb{N}_0 \to \mathbb{N}_0$ jeweils explizit eine Funktion $g_i \colon \mathbb{N}_0 \to \mathbb{N}_0$ an, so dass $f_i(n) \in \Theta(g_i(n))$ ist.

Die Funktionen g_i müssen explizit angegeben werden und dürfen nicht rekursiv definiert sein. Antworten der Form " $g_1 = f_1$ " sind also unzulässig.

- a) $f_1(0) = 1$ und für alle $n \in \mathbb{N}_0$ sei $f_1(n+1) = \frac{(n+2)^{n+2}}{(n+1)^{n+1}} f_1(n)$.
- b) $f_2(0) = 2$ und für alle $n \in \mathbb{N}_0$ sei $f_2(n+1) = 1 + (-1)^{f_2(n)/2}$.
- c) $f_3(0) = 4711$ und für alle $n \in \mathbb{N}_0$ sei $f_3(n+1) = \lceil \log_2(1 + f_3(n)) \rceil$.
- d) $f_4(0) = 0$ und für alle $n \in \mathbb{N}_0$ sei $f_4(n+1) = f_4(n) + 2n + 1$.
- e) $f_5(0) = 1$ und für alle $n \in \mathbb{N}_0$ sei $f_5(n+1) = f_5(n) + \lceil \log_2(n+1) \rceil$.

Hinweis: $\lceil x \rceil$ bedeute "aufrunden" von x auf die nächstgrößere ganze Zahl; für $x \in \mathbb{N}_0$ sei $\lceil x \rceil = x$.

Aufgabe 9.4 (3 Punkte)

Alle nachfolgend benutzten Funktionen seien von der Form $\mathbb{N}_0 \to \mathbb{N}_0$. Beweisen Sie: Wenn $g_1 \leq f_1$ ist, und wenn $g_1 \approx g_2$ und $f_1 \approx f_2$, dann gilt auch $g_2 \leq f_2$.

Aufgabe 9.5 (4 Punkte)

Die Funktion $log_2^* \colon \mathbb{R}_0^+ \to \mathbb{R}_0^+$ ist wie folgt definiert:

$$\log_2^* n = \begin{cases} 0 & \text{falls } n \le 1\\ 1 + \log_2^* (\log_2 n) & \text{sonst} \end{cases}$$

- a) Berechnen Sie $\log_2^*(65536)$ und geben Sie $\log_2^*(65537)$ an.
- b) Wieviele Ziffern hat die Dezimaldarstellung der kleinsten Zahl $m \in \mathbb{N}_0$ mit $\log_2^*(m) = 6$?
- c) Definieren Sie eine Funktion $\exp_2^* \colon \mathbb{N}_0 \to \mathbb{N}_0$, so dass für alle $n \in \mathbb{N}_0$ gilt: $\log_2^*(\exp_2^*(n)) = n$.
- d) Beweisen Sie, dass $\log_2^* n \notin O(1)$ ist.