第一章 电路分析方法

1.3 电路定律

电路定律

- 基尔霍夫定理
- 叠加原理
- 戴维宁定理与诺顿定理

- 节点
 - 2个或更多元件的连接点
 - 12345
- 基本节点
 - 3个或更多元件的连接点
 - 1234
- 4个 (基本) 节点
 - "节点"一般就指基本节点

- 支路
 - 1个或更多元件串联形成的分支
- 电阻 R_s 与电压源 V_s 串联支路
- 电阻R_x支路
- 6条支路

- 回路
 - 若干支路形成的闭合路径
- 回路A:包含R_s、V_s、R₀、R_x
- 回路B: 包含 R_x 、 R_0 、 R_2 、 R_1

- 网孔
 - 平面结构电路中,没有包围其它回路的回路
- 回路A, 是网孔

- 网孔
 - 平面结构电路中,没有包围其它回路的回路
- 回路B, 不是网孔
 - 包围了回路C和回路D
- 回路C和回路D,是网孔
- 3个网孔
 - 支路数- (节点数-1)

基尔霍夫电流定律KCL

对于电路节点O

$$\sum_{i=1}^{N} \boldsymbol{I}_{i} = 0$$

$$I_1 - I_2 - I_3 + I_4 + I_5 = 0$$

KCL: 流出任一节点的所有 支路电流的代数和为零

体积V内包含电荷数不随时间变化时,流出曲面S的净电流为零

基尔霍夫电流定律KCL

• 对于节点①

$$I_{1\to 4} + I_{1\to 2} + I_{1\to 3} = 0$$

基尔霍夫电流定律KCL

• 对于节点③

$$-I_{1\to 3} - I_{2\to 3} + I_{3\to 4} = 0$$

$$I_{1\to 3} + I_{2\to 3} - I_{3\to 4} = 0$$

对于具有n个节点的电路:

围绕n-1个节点,可以写出n-1个独立的KCL方程

基尔霍夫电压定律KVL

对于电路回路L

$$\sum_{i=1}^{N} V_i = 0$$

沿任一回路一周的电压降总和为零

当各元件电压、各电压源电动势 的参考方向与回路绕行方向一致 时取正号,相反时取负号

电荷沿回路一周作功等于零

$$\sum q V_i = 0 \to \sum V_i = 0$$

基尔霍夫电压定律KVL

• 对于回路B

$$V_{R_{x}} + V_{R_{0}} - V_{R_{2}} - V_{R_{1}} = 0$$

$$-V_{R_x} - V_{R_0} + V_{R_2} + V_{R_1} = 0$$

基尔霍夫电压定律KVL

• 对于回路C

$$V_{R_x} + V_{R_G} - V_{R_1} = 0$$

对于具有n个节点、b条支路的电路:

存在b-(n-1)个网孔,可以写出b-(n-1)个独立的KVL方程

电路拓扑约束关系

• 基尔霍夫电流定律KCL

$$\sum_{i=1}^{N} \boldsymbol{I}_{i} = 0$$

• 基尔霍夫电压定律KVL

$$\sum_{i=1}^{N} V_i = 0$$

线性电路的叠加原理

在一个具有唯一解的线性电路中,各独立电源共同作用时,在任一支路中产生的电流(任意两节点的电压差)等于各独立电源单独作用时在该支路中产生的电流(该两节点的电压差)的代数和。

线性电路的叠加原理

按叠加定理,上述电路的解等于:

 V_s 电压源单独作用(I_s =0电流源开路)的解与 I_s 电流源单独作用(V_s =0电压源短路)的解的和。

戴维宁等效电压源定理

戴维宁定理:

任意一个由线性电阻、线性受控源和独立电源组成的一端口电路,都可以用一个理想电压源 V_{oc} 与电阻 R_{o} 的串联电路来等效

Voc等于一端口电路在端口处的开路电压

R_o等于内部所有独立电源不起作用时端口处的等效电阻

求戴维宁等效电路参数举例

$$V_s = 10V, I_s = 0.5A, R_1 = 5\Omega, R_2 = 10\Omega$$

解: 节点①KCL方程, 求得端口开路电压

$$\frac{V_{oc} - V_s}{R_1} + \frac{V_{oc}}{R_2} - I_s = 0 \qquad \to V_{oc} = 25 / 3V$$

将电压源、电流源失效:

端口等效电阻两个电阻的并联
$$R_o = \frac{R_1 R_2}{R_1 + R_2} = \frac{10 \times 5}{10 + 5} = 10 / 3\Omega$$

诺顿等效电流源定理

诺顿定理:

任意一个由线性电阻、线性受控源和 独立电源组成的一端口电路,都可以 用一个理想电流源 I_{sc} 与电阻 R_o 的并 联电路来等效 I_{sc}等于一端口电路在端口处的短路电流

R_o等于内部所有独立电源不起作用时端口处的等效电阻

求诺顿等效电路参数举例

$$V_s = 10V, I_s = 0.5A, R_1 = 5\Omega, R_2 = 10\Omega$$

解: 节点①KCL方程, 求得端口短路电流

$$-\frac{V_s}{R_1} - I_s + I_{sc} = 0$$

$$\rightarrow I_{sc} = 2.5A$$

$$I_{sc} = \frac{V_{oc}}{R_o}$$

将电压源、电流源失效:

同戴维宁等效

端口等效电阻两个电阻的并联
$$R_o = \frac{R_1 R_2}{R_1 + R_2} = \frac{10 \times 5}{10 + 5} = 10 / 3\Omega$$

小结

- 基尔霍夫定理
- 叠加原理
- 戴维宁定理与诺顿定理