Results

Repeated Measurements

You have entered two related numeric variables. Hence, the <u>paired sample t test</u> seems to be a good option for you! In order to run this test in jamovi, go to: T-Tests > Paired Samples T-Test

- Drop the two paired variables in the box below Paired Variables, one on the left side of the vertical line and one on the right side of the vertical line
- Under Hypothesis, select your alternative hypothesis

If the normality assumption is violated, you could use the non-parametric Wilcoxon signed rank test. Click on the links to learn more about these tests!

Scatter Plot

Paired Samples T-Test

Paired Samples T-Test

									Confi	5% dence rval			Confi	5% dence erval
			Statistic	±%	df	р	Mean difference	SE difference	Lower	Upper	-	Effect Size	Lower	Upper
No_Cloak	Cloak	Student's t Bayes	-3.80 16.3	4.03e- 8	11.0	0.003	-1.25	0.329	-1.97	-0.527	Cohen's d	-1.10	-1.81	-0.358
		factor ₁₀ Wilcoxon W	2.50 ^a	o		0.011	-1.50	0.329	-2.00	-0.500	Rank biserial correlation	-0.909		

Note. $H_a \mu_{Measure 1}$ - Measure 2 \neq 0

[3] [4] [5]

Normality Test (Shapiro-Wilk)

		W	р
No_Cloak	- Cloak	0.912	0.228

Note. A low p-value suggests a violation of the assumption of normality

Descriptives

	N	Mean	Median	SD	SE
No_Cloak	12	3.75	4.00	1.91	0.552
Cloak	12	5.00	5.00	1.65	0.477

Plots

No_Cloak - Cloak

a 2 pair(s) of values were tied

Robust Paired Samples T-Test

Robust Paired Samples T-Test

							95% Confidence Interval			
		t	df	р	Mean difference	SE	Lower	Upper	Cohen's d	
No_Cloak	Cloak	-2.70	7.00	0.031	-1.00	0.370	-1.87	-0.125	0.398	

Robust Paired Samples T-Test

Robust Paired Samples T-Test

							95% Confide		
		t	df	р	Mean difference	SE	Lower	Upper	Cohen's d
No_Cloak	Cloak	-2.70	7.00	0.031	-1.00	0.370	-1.87	-0.125	0.398

Box & Violin Plots Robust Descriptives

Robust Descriptives

SE

Robust Independent Samples T-Test

Robust Independent Samples T-Test

t	df	р

Robust ANOVA

Robust ANOVA

Robust Paired Samples T-Test

Robust Paired Samples T-Test

							95% Confide		
		t	df	р	Mean difference	SE	Lower	Upper	Cohen's d
No_Cloak	Cloak	-2.70	7.00	0.031	-1.00	0.370	-1.87	-0.125	0.398

Bayesian Paired Samples T-Test

Bayesian Paired Samples T-Test

			BF ₁₀	error %
No_Cloak	-	Cloak	16.3	4.03e-6

[6] [3] [4]

Descriptives

Descriptives

					95% Credible Interval		
	N	Mean	SD	SE	Lower	Upper	
No_Cloak Cloak	12 12	3.75 5.00	1.91 1.65	0.552 0.477	2.53 3.95	4.97 6.05	

Descriptives Plot

No_Cloak - Cloak

Inferential Plots

No_Cloak - Cloak

Prior and Posterior

Bayes Factor Robustness Check

max BF₁₀: 16.738 at r = 0.9288
 wide prior: BF₁₀ = 16.705

• user prior: $BF_{10} = 16.289$ • ultrawide prior: $BF_{10} = 15.664$

[6]

Robust Paired Samples T-Test

Robust Paired Samples T-Test

							95% Confiden		
		t	df	р	Mean difference	SE	Lower	Upper	Cohen's d
Cloak	No_Cloak	2.70	7.00	0.031	1.00	0.370	0.125	1.87	0.398

Scatterplot

References

[1] The jamovi project (2022). jamovi. (Version 2.3) [Computer Software]. Retrieved from https://www.jamovi.org.

[2] R Core Team (2021). R: A Language and environment for statistical computing. (Version 4.1) [Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved from MRAN snapshot 2022-01-01).

[3] Morey, R. D., & Rouder, J. N. (2018). BayesFactor: Computation of Bayes Factors for Common Designs. [R package]. Retrieved from https://cran.r-project.org/package=BayesFactor.

[4] Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. *Psychonomic Bulletin & Review, 16*, 225-237.

- [5] Kerby, D. S. (2014). The simple difference formula: An approach to teaching nonparametric correlation. Comprehensive Psychology, 3, 2165–2228.
- [6] JASP Team (2018). JASP. [Computer software]. Retrieved from https://jasp-stats.org.