Методы оптимизации. Семинар 10. Двойственность.

Александр Катруца

Московский физико-технический институт, Факультет Управления и Прикладной Математики

14 октября 2016 г.

Напоминание

- Существование решения оптимизационной задачи
- Условия оптимальности для
 - общей задачи оптимизации
 - задачи безусловной оптимизации
 - задачи оптимизации с ограничениями типа равенств
 - задачи оптимизации с ограничениями типа равенств и неравенств

Обозначения

Задача

$$\min_{x \in \mathcal{D}} f(x) = p^*$$
s.t. $g_i(x) = 0, i = 1, ..., m$

$$h_j(x) \le 0, j = 1, ..., p$$

Лагранжиан

$$L(x, \lambda, \mu) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{i=1}^{p} \mu_i h_j(x)$$

Двойственные переменные

Вектора μ и λ называются двойственными переменными.

Двойственная функция

Функция $g(\mu, \lambda) = \inf_{x \in \mathcal{D}} L(x, \lambda, \mu)$ называется двойственной функцией Лагранжа.

Свойства двойственной функции

Вогнутость

Двойственная функция является вогнутой как инфимум аффинных функций по (μ, λ) в независимости от того, является ли исходная задача выпуклой.

Нижняя граница

Для любого $oldsymbol{\lambda}$ и для $oldsymbol{\mu} \geq 0$ выполнено $g(oldsymbol{\mu}, oldsymbol{\lambda}) \leq oldsymbol{p}^*.$

Двойственная задача

$$\max g(oldsymbol{\mu},oldsymbol{\lambda})=d^*$$
 s.t. $oldsymbol{\mu}\geq 0$

Зачем?

- Двойственная задача выпукла независимо от того, выпукла ли прямая
- Нижняя оценка может достигаться

Примеры

Найти двойственную функцию:

• Решение СЛУ минимальной нормы

$$\min \|\mathbf{x}\|_2^2$$
s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$

• Линейное программирование

$$min c^T x$$

s.t.
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

$$x \ge 0$$

• Задача разбиения

$$min x^T W x$$

s.t.
$$x_i^2 = 1, i = 1, ..., n$$

Слабая и сильная двойственность

Определение

Оптимальные значения целевой функции в прямой и двойственной задаче связаны соотношением

$$d^* \leq p^*$$
.

Если $d^* < p^*$, то свойство называют слабой двойственностью. Если $d^* = p^*$, то — сильной двойственностью.

Замечание

Слабая двойственность есть всегда по построению двойственной задачи.

Вопросы

- При каких условиях выполняется сильная двойственность?
- Как использовать двойственность для проверки оптимальности?

Условия Слейтера

Теорема

Если задача выпуклая и существует x, лежащий внутри допустимой области, т.е. ограничения типа неравенств выполнены как строгие неравенства, то выполнено свойство сильной двойственности.

- Решение СЛАУ наименьшей нормы
- Линейное программирование
- Квадратичное программирование с квадратичными огранчиениями
- Невыпуклая задача с сильной двойственностью

Геометрическая интерпретация

Условия дополняющей нежёсткости

Пусть \mathbf{x}^* и $(\boldsymbol{\mu}^*, \boldsymbol{\lambda}^*)$ решения прямой и двойственной задачи. То есть

$$f(\mathbf{x}^*) = g(\boldsymbol{\mu}^*, \boldsymbol{\lambda}^*) = \inf_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \le$$

$$f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* g_i(\mathbf{x}^*) + \sum_{j=1}^p \mu_j^* h_j(\mathbf{x}^*) \le$$

$$f(\mathbf{x}^*), \qquad \boldsymbol{\mu} > 0$$

Условия дополняющей нежёсткости

$$\mu_i^* h_i(\mathbf{x}^*) = 0, \qquad j = 1, \dots, p$$

Для каждого неравенства либо множитель Лагранжа равен нулю, либо оно активно.

Условия Каруша-Куна-Таккера

Механическая интерпретация

Примеры

$$\min_{\mathbf{x} \in \mathbb{R}^n} \sum_{i=1}^n x_i \log x_i$$
s.t. $\mathbf{A}\mathbf{x} \leq \mathbf{b}$
 $\mathbf{1}^\mathsf{T}\mathbf{x} = 1$

- •
- •