Homework 6 Section 2.2

Mark Petersen

Exercises 2,4,5,6,7

06/26/2020

06/26/2020

Exercise 1. (Q2): Prove, using the definition of convergence of a sequence, that the following sequences converge to the proposed limit.

1) $\lim \frac{2n+1}{5n+4} = \frac{2}{5}$ Proof: Given $\epsilon > 0$, $N \in \mathbb{N}$ such that $N = \left(\frac{3}{25\epsilon} - \frac{4}{5}\right)$ and $n \in \mathbb{N} > N$, then

$$\left| \frac{2n+1}{5n+4} - \frac{2}{5} \right| = \left| \frac{5(2n+1) - 2(5n+4)}{5(5n+4)} \right|$$

$$= \left| \frac{-3}{25n+20} \right|$$

$$< \left| \frac{-3}{25N+20} \right|$$

$$= \left| \frac{-3}{25\left(\frac{3}{25\epsilon} - \frac{4}{5}\right) + 20} \right|$$

$$= \left| \frac{-3}{\frac{3}{\epsilon} - 20 + 20} \right|$$

$$= \epsilon,$$

thus $\left|\frac{2n+1}{5n+4}-\frac{2}{5}\right|<\epsilon$. Therefore, $\lim\frac{2n+1}{5n+4}=\frac{2}{5}$.

2) $\lim\frac{2n^2}{n^3+3}=0$.

a) Given $\epsilon>0$, $N\in\mathbb{N}$ such that $N=\frac{2}{\epsilon}$ and $n\in\mathbb{N}>N$, then

$$\left| \frac{2n^2}{n^3 + 3} \right| < \left| \frac{2n^2}{n^3} \right|$$

$$= \frac{2}{n}$$

$$< \frac{2}{\frac{2}{\epsilon}}$$

$$= \epsilon,$$

thus $\left|\frac{2n^2}{3n^3+3}\right|<\epsilon$. Therefore, $\lim\frac{2n^2}{n^3+3}=0$.

a) Given $\epsilon>0,\ N\in\mathbb{N}$ such that $N=\frac{1}{\epsilon^3}$ and $n\in\mathbb{N}>N,$ then

$$\left| \frac{\sin(n^2)}{\sqrt[3]{n}} \right| \le \left| \frac{1}{\sqrt[3]{n}} \right|$$

$$< \frac{1}{\sqrt[3]{N}}$$

$$= \frac{1}{\frac{1}{\sqrt[3]{\epsilon^3}}}$$

$$= \epsilon,$$

thus
$$\left|\frac{\sin(n^2)}{\sqrt[3]{n}}\right| < \epsilon$$
. Therefore, $\lim \frac{\sin(n^2)}{\sqrt[3]{n}} = 0$.

Exercise 2. (Q4): Give an example of each or state that the request is impossible. For any that are impossible, give a compelling argument for why that is the case.

- 1) A sequence with an infinite number of ones that does not converge to one.
 - a) Let a_n be the infinite sequence $(1,0,1,0,1,0,\cdots)$. If $a_m=1$, then $a_{m+1}=0$, for all $m \in \mathbb{N}$. Thus for $\epsilon=0.5$, there does exists a $k>N\in\mathbb{N}$ for any N such that

$$|a_k - 1| > \epsilon$$
.

- 2) A sequence with an infinite number of ones that converges to a limit not equal to one.
 - a) This sequence is impossible. Suppose, by contrary, that a_n is a converging sequence with an infinite number of ones and converges to $a \neq 1$. Then for any $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that whenever $n \in \mathbb{N} > N$, $|a_n a| < \epsilon$. Since there are an infinite number of ones, for any n, which is finite, there is an $a_m = 1$ such that m > 1. This means that |1 a| must be less than ϵ as well for all N. But since limits are unique, this in only possible if 1 = a. This is a contradiction, therefore the sequence a_n is impossible.
- 3) A divergent sequence such that for every $n \in \mathbb{N}$ it is possible to find n consecutive ones somewhere in the sequence.
 - a) Let a_n be the sequence

$$(1,0,1,1,0,1,1,1,0,1,1,1,1,0,\cdots)$$
,

where there are k consecutive ones followed by a zero for every $k \in \mathbb{N}$. Since the sequence is infinite, for any $m \in \mathbb{N}$, there is an a_ℓ and a_j such that $\ell > j > m$ and $|a_\ell - a_j| = 1$. Thus the sequence doesn't converge.

Exercise 3. (Q5): Let [[x]] be the greatest integer less than or equal to x. For example, $[[\pi]] = 3$ and [[3]] = 3, find $\lim a_n$ and verify it with the definition of convergence.

1) $a_n = [[5/n]].$

Proof: We want to show that $\lim a_n = 0$. Given $\epsilon > 0$, let $N \in \mathbb{N} > 10$ and $n \in \mathbb{N} > N$. Then [[5/n]] = [[0.5]] = 0, thus

$$|[[5/n]] - 0| = 0 < \epsilon.$$

2) $a_n = [[(12+4n)/3n]].$

Proof: We want to show that $\lim a_n = 1$. We do this by first considering the sequence $b_n = (12 + 4n)/3n$ and show that $\lim b_n = \frac{4}{3}$. Given $\epsilon > 0$, $N \in \mathbb{N} > \frac{4}{\epsilon}$, and $n \in \mathbb{N} > N$, then

$$\left| \frac{12+4n}{3n} - \frac{4}{3} \right| = \left| \frac{12+4n-4n}{3n} \right|$$

$$= \frac{12}{3n}$$

$$= \frac{4}{n}$$

$$< \frac{4}{\frac{4}{\epsilon}}$$

$$= \epsilon,$$

thus $\lim b_n = \frac{4}{3}$. Since $\lim b_n = \frac{4}{3}$,

$$\lim a_n = \left[\left[\lim b_n \right] \right]$$
$$= \left[\left[\frac{4}{3} \right] \right]$$
$$= 1$$

Exercise 4. (Q6): Prove theorem 2.2.7. To get started, assume $(a_n) \to a$ and also that $(a_n) \to b$. Now argue a = b.

Proof: Let a_n be a sequence. We suppose, by contradiction, that $(a_n) \to a$ and $(a_n) \to b$ such that $a \neq b$. Then |a-b| > 0. Let $A = \left\{x \in a_n : |x-a| < \frac{|a-b|}{2}\right\}$, and $B = \left\{x \in a_n : |x-b| < \frac{|a-b|}{2}\right\}$, then $A \cap B = \emptyset$, in other words, the open sets A and B are disjoint. This means that there are some elements of a_n that cannot be arbitrarily close to both a and b. In other words, given an $\epsilon > 0$, there doesn't exists an $N \in \mathbb{N}$ that such whenever $n \in \mathbb{N} > N$

$$|a_n - a| < \epsilon$$

and

$$|a_n - b| < \epsilon$$

since the neighborhood around a and b are disjoint. The simple counterexample is when $\epsilon < \frac{|a-b|}{2}$.

Exercise 5. (Q7): Here are two useful definitions:

- (i) A sequence (a_n) is eventually in a set $A \subseteq \mathbb{R}$ if there exists an $N \in \mathbb{N}$ such that $a_n \in A$ for all $n \geq N$.
- (ii) A sequence (a_n) is frequently in a set $A \subseteq \mathbb{R}$ if, for every $N \in \mathbb{N}$, there exists an $n \geq N$ such that $a_n \in A$.
- 1) Is the sequence $(-1)^n$ eventually or frequently in the set $\{1\}$.
 - a) The sequence is frequently in the set, since if $(-1)^m \in \{1\}$, then $(-1)^{m+1} \notin \{1\}$.
- 2) Which definition is stronger? Does frequently imply eventually or does eventually imply frequently?
 - a) The definition eventually is stronger, since eventually means that the sequence stays in the a set A after some $n \in \mathbb{N}$, and if it stays in the set A after some n, then for all $m \ge n$, $a_m \in A$. Thus it is frequently in the set A as well. The converse, however is not true. For example, consider the sequence mentioned in part a). It is frequently in the set $\{1\}$, but not eventually in the set since it keeps leaving.
- 3) Give an alternate rephrasing of Definition 2.2.3B using either frequently or eventually. Which is the term we want?
 - a) A sequence (a_n) converges to a if, given any ϵ -neighborhood $V_{\epsilon}(a)$ of a, there exists a point in the sequence m, such that (a_n) is eventually in the neighborhood $V_{\epsilon}(a)$.
- 4) Suppose an infinite number of terms of a sequence (x_n) are equal to 2. Is (x_n) necessarily eventually in the interval (1.9, 2.1)? Is it frequently in (1.9, 2.1).
 - a) It is not eventually in the interval. Consider the counterexample

$$(x_n) = \{2, 0, 2, 0, 2, 0, 2, 0, \cdots\},\$$

that contains an infinite number of 2's but alternates with 0. Thus it will always leave the interval (1.9, 2.1).

b) (x_n) is frequently in the interval (1.9, 2.1). Proof: Suppose that an infinite number of terms of a sequence (x_n) are equal to 2, then for every $N \in \mathbb{N}, N < \infty$. Since there are an infinite number of 2s in the sequence, and $N < \infty$, there must be an $a_m = 2$, where $m \in \mathbb{N} > N$. Thus (x_n) is frequently in the interval (1.9, 2.1)