

High voltage gain requires high load impedance

p-MOSFET to replace Load resistor

Rule of thumb selection of matched impedances of nMOS (pull down) and pMOS (pull up) networks:

$$ron = rop = ro = Rout = ro/2$$

Matched Early voltages of nMOS and PMOS devices

$$Van = Vap$$

$$L_p = 2 \times L_n$$

pMOSFET gate length doubled compared to that for nMOSFET

A good current source has large R_{out} , it can be obtained with large V_{DD} and large R

Target: generation of 200 uA DC Possible solution: large V_{DD} (20V DC) in series (ideally independent from output voltage) with large R (100 kOhm) Current Vdd 3Vdc M1 **CMOSN Vbias** 1Vdc Vsiq 10mVac 0Vdc

n-MOSFET stage loaded with a large R = 100 kOhm would have large AC voltage gain: $A_v = g_m R = 1.2 \text{ mA/V} \times 100 \text{ kOhm} = 120$

n-MOS stage loaded with p-MOS current source

$$Vbias = |Vtp| + |Vovp| = const$$

$$suppose$$

$$Vbias = 1.1V$$

$$|Vtp| = 0.8V$$

$$|Vovp| = 0.3V$$

$$|Vovp| = 0.3V$$

$$Vovp = 0.3V$$

The voltage gain for AC signal is limited by the equivalent output resistance (R_{out}) defined by connected in parallel r_{on} and r_{op} Why in parallel? V_{DD} is a constant voltage source, in small signal equivalent circuit V_{DD} represents a short circuit. For AC signal DC source V_{DD} is equivalent to ground.

Selection of gate length L for p-MOSFET

since Rout = $ron | | rop_{,}$ ideally, we would like to see $rop_{,} >> ron_{,}$ The latter would require a pMOSFET with a long gate length Lp and a very wide pMOSFET Wp, respectively (for given overdrive voltage Vovp) One can select $r_{on}_{,} = r_{op}_{,}$ for a reasonable width Wp.

Both nMOS and pMOS have the same DC current $I_{Dn} = I_{Dp} = I_{Dp}$, therefore

The gate length of p-MOS in the current source is selected to be $^{\sim}$ twice greater than L for the amplifying n-MOS transistor to compensate for relatively small Early voltage parameter of p-MOS $V'_{Ap} = 10 \text{ V/um}$ compared to that for n-MOS $V'_{An} = 20 \text{ V/um}$.

Selection of $r_{op} = r_{on}$ is a good compromise which combines a respectfully-high voltage gain of $A_0/2$ with a not-too-wide p-MOSFET

In the case of Γ op << Γ on, the voltage gain would be limited by a small Γ op , not good. Meeting condition Γ op >> Γ on implies large Lp which leads to large W for the given drain current and overdrive voltage. This would be a too expensive solution due to large p-MOSFET size. Selection of the design parameters for matching output resistances (Γ op = Γ on) is a reasonable compromise which achieves both moderate voltage gain (only twice smaller than Ao) and moderate W of the p-MOSFET load. 5

p-MOSFET current source as n-MOSFET load in the voltage gain stage

The LOAD LINE represents an output characteristic of p-MOSFET with high load resistance for AC signal

Operating point or quiescent (Q)-point): $V^*D = 1.5V$, $ID^* = 200 \text{ uA}$

The maximum output voltage (peak) Vout max is smaller than $V_{\rm DD}$ by the p-MOSFET overdrive voltage $V_{\rm ovp}$

Vout $_{max} = Vdd - Vovp = 3 - 0.3 = 2.7 V$

The voltage scale reflects V_D measured with respect to ground V_D increases to the right from 0 to V_{DD} = +3V DC.

DC Operating point and selection of the pMOSFET bias (Vgs and Vov, respectively)

The stage operating point (V_D^* , Id^*) is defined by intersection of the output characteristics of n-MOS and p-MOS devices. The optimal position of the operating point is $V_D^* = V_{DD}/2$ for the maximum amplitude of undistorted output voltage.

With small slopes of the output characteristics, the operating point is very sensitive to selection of MOSFET design parameters: Vovn, Vovp, as well as W and L.

Selection of the aspect ratio for p-MOS

by default IDn=Idp

Requesting symmetrical clipping of the output voltage implies $V_{ovn} = V_{ovp}$ It would lead to a very wide p-MOSFET

$$W_p = (k'n/k'p)*(V'_{An}/V'_{Ap})*W_n = 6 W_n$$

$$\frac{Kn}{Kp} = 3 \qquad \frac{V_{Ap}}{V_{Ap}} = 2$$

A wide p-MOSFET current source would take too much area, and would create a large capacitive load for n-MOSFET stage

For given DC current, W changes as a square of Vov. V_{ovp} can be moderately increased (x1.4 times) for significant (x2 times) decrease of Wp.

The width of p-MOSFET would be reasonably wider than that of n-MOSFET: $W_p = 3 W_n$ realized with matched output resistances of n-MOS and p-MOS transistors ($L_p = 2*L_n$)

Summary of (most important) expressions

Selection of overdrive voltage and DC bias voltage:

$$Vov = V_{GS} - Vt \rightarrow V_{GS}$$

Transconductance and selection of DC bias current:

$$g_m = 2I_D/Vov \rightarrow I_D$$

Output resistance and gate length:

$$r_o = V_A/I_D = (V_A^*L)/I_D \rightarrow L$$

Aspect ratio and MOSFET width:

$$(W/L) = (2I_D)/(k'*Vov^2) \rightarrow W$$

High output resistance r_o can be realized with a long gate length L The long gate length L implies a large mosfet width W

K'p < k'n → for moderate width of p-MOSFET (and other reasons TBD) one selects Vovp > Vovn

Summary of (most important) process and design parameters

Process parameters

Design parameters

1. Threshold voltages

$$V_{tn} = 0.7 \text{ V}, V_{tp} = -0.8 \text{ V}$$

2. Process transconductance parameters

$$k_n' = 200 \text{ uA/V}^2$$
, $k_p' = 70 \text{ uA/V}^2$

3. Early voltage parameters

$$V_{An}' = 20 \text{ V/um}, V_{Ap}' = 10 \text{ V/um}$$

$$V_{ovn} = 0.2 \text{ V}, |V_{ovp}| = 0.3 \text{ V}$$

DC bias current: I_D

Gate lengths: L_n, L_p

Gate widths: W_n, W_p