Формальные языки

Домашнее задание 12 Дмитрий Орехов

1

Мы можем на каждом шаге генерировать либо 1 а и 4 b, либо 3 а и 2 b. Соответсвенно в итоговой строке соотношение а к b будет n+3m к 4n+2m. Описываемый язык:

$$\{a^n a^{3m} c b^{2m} b^{4n}\} \tag{1}$$

Поскольку тут не важно, в каком порядке применялись правила, а лишь суммарное число символов в итоговой цепочке, можно задать жесткий порядок для двух правил и ввести, например, такую грамматику:

 $S \rightarrow aSbbbb \mid C$

 $C \rightarrow aaaSbb \mid T$

 $T \rightarrow c$

Однозначность данной грамматики следует из единственности решения системы, где q_a и q_b - число символов a и b:

$$\begin{cases} n + 3m = q_a \\ 4n + 2m = q_b \end{cases} \tag{2}$$

Решение:

$$\begin{cases}
 n = n_a + 3\frac{q_b - 4q_a}{10} \\
 m = -\frac{q_b - 4q_a}{10}
\end{cases}$$
(3)

То есть по цепочке мы знаем, сколько раз какое правило прогонять.

2

Данный язык не описать компкактно как некоторое множество с символами в степенях или как регулярное выражение. Кажется, без рекурсии не обойтись.

Поэтому вот некоторые его простые свойства, которые получилось найти:

- 1. Язык является подязыком замыкния клини на алфавите $\{a,b\}$
- 2. Соотношение букв a к b всегда 2 к 1.
- 3. Число букв a всегда четное, четность числа букв b равна четности числа применений правила $F \to aFaFb$.

1. Рассмотрим слово:

 $a^{n}b^{m}c^{n}d^{m}$, m=n, n - константа леммы о накачке.

Докажем, что накачка этого слова выкидывает из языка:

- $yzv=a^i$. Рассмотрим накачку k=0, получаем слово: $a^{n-|yv|}b^mc^nd^m$, число a не сходится с числом c, выпали из языка. Аналогично для $yzv=b^i,c^i,d^i$.
- $yzv = a^i b^j, i > 0, j > 0.$

Если y лежит полностью в a, а v полностью в b, то получим при накачке k=2 $a^{n+|y|}b^{m+|v|}c^nd^m$. Так как $|yv|\geq 1$, то либо a не сойдутся по числу с c, либо b не соудуйтся с d. В любом случае, выпадаем из языка.

Если
$$y = a^i b^p$$
, $v = b^l$, $p > 0$, $l \ge 0$, $p + l \le j$

Накачка k=2 дает следующее слово:

 $a^{n+i}b^{m+p+l}c^nd^m$, тогда a точно не сойдется с c по количеству символов. Аналогично для зеркального случая $y=a^l,\,v=a^pb^j.$

Наконец, все стыки двух различных символов можно доказать аналогичным способом. Хотя бы по какому-то из двух символов на стыке не сойдемся его новым количеством с количеством символа, который ему должен соответствовать. При этом соответсвующий символ 1 никогда не попадает на рассматриваемый отрезок и его накачать мы не сможем (так как yzv < n).

2. Язык описывается как конкатенация строки, принадлежащей замыканию Клини, с самой собой.

Давайте возьмем слово $a^n b^n a^n b^n$, где n - константа леммы о накачке.

- $yzv=a^i$, не теряя общности, пусть это a из первой половины. Тогда при накачке k=2 получим слово $a^{n+|yv|}b^na^nb^n$. Такую строку не разбить на две равные половинки (ее серединка внути b, а начинается строка с a), а значит мы не в исходном языке. Аналогичные рассуждения для b^i и для второй половины.
- $yzv=a^ib^j$, не теряя общности, пусть это стык a и b из первой половины. Если y полностью лежит в a, а v полностью в b, то при накачке k=2 получим $a^{n+|y|}b^{n+|v|}a^nb^n$, такую строку не разобьем на половинки. Если y лежит на a^ib^m , а v на b^l , то при накачке k=2 получим слово $a^{n+i}b^{n+m+l}a^nb^n$. Так как все i+m+l>0, то мы опять не разобьем на две половинки. Схожим образом можно рассмотреть зеркальную ситуация, когда $y=a^l$, $v=a^mb^j$ Аналогичные рассуждения, для накачки правой половины.
- Наконец, предположим, что $yzv=b^ia^j$, то есть лежит на стыке строк. Если y полностью лежит в b, а v полностью в a, то при k=2 получим $a^nb^{n+|y|}a^{n+|v|}b^n$, такую строку не раздилить пополам, хотя бы из-за того, что число букв разное в двух потенциальных половинках.

Если $y=b^ia^l$, а $v=a^m$, то при накачке k=2 получим $a^{bn+i}a^{n+l+m}b^n$. Так как i+l+m>0, опять получим несимметричную строку.

Аналогично для зеркального случая.

 $^{^{1}}$ Под соответсвующим имею в виду пары $a-c,\,b-d$

3. Язык конекстно-свободный:

$$\{a^k b^m b^{(k+l)} a^m\} = \{a^k b^l b^k b^m a^m\}$$
(4)

Грамматика:

 $S \to LR$

 $L \to aLb \mid B$

 $R \rightarrow bRa \mid \epsilon$

 $B \rightarrow bB \mid \epsilon$