

Course <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Wiki</u>

☆ Course / 3. Residue theory. Application to computation of complex integrals. Jordan's lemma. / Exercises

Previous				Next >

Problem 3.1

☐ Bookmark this page

Problem 3.1

3 points possible (ungraded) Evaluate the integrals (use pi for π ans sqrt(#) for $\sqrt{\#}$)

1)
$$\int_{-\infty}^{\infty} rac{x^4}{1+x^6} dx$$

2)
$$\int_0^{2\pi} \frac{\cos 2\theta}{2 + \cos \theta} d\theta$$

				r = - 1	F
					21
r^{∞}	$d_{\mathcal{M}}$				4
1	ax	for rool a	h _	· · · · · · · · · · · · · · · · · · ·	L
1 7	$\frac{ax}{(x^2+a^2)(x^2+b^2)^2}$	$\frac{1}{2}$ for real a ,	o =		
$J_{-\infty}$	$(x^{-} + a^{-})(x^{-} + b^{-})$	-54			1

$ a $ $ b $ $ a ^2$ $ b ^2$ $ a ^3$	$ b ^3$	
-------------------------------------	---------	--

Submit You have used 0 of 6 attempts

© All Rights Reserved

Course Progre

<u>Progress</u>

<u>Dates</u>

Discussion

<u>Wiki</u>

* Course / 3. Residue theory. Application to computation of complex integrals. Jordan's lemma. / Exercises

Previous		ď					Next >
Problem 3. ☐ Bookmark this							
Problem 1 point possible Evaluate res	ole (ungraded)	∞ of $f(z)=$	$z^3\cosrac{1}{z-2}.$				
Submit	You have us	ed 0 of 6 attemp	ots				
	< Pr	revious		N	Vext >		

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

Course

<u>Progress</u>

<u>Dates</u>

Discussion

<u>Wiki</u>

Previous			Next 2
Problem 3.3			
Bookmark this page			
, ,			
Homework due Problem 3.3	Nov 11, 2020 19:00 EST		
4 points possible (g Evaluate residue			
		f(~) _ 1	
		$f(z)=\frac{1}{z^3-z^5}$	
at $z=-1,\;z=$	$z=0,\;z=1$ and $z=\infty$. W	hat is the sum of the residues?	
$\mathrm{Res}_{z=-1}f(z)$			
$\mathrm{Res}_{z=0}f(z)$			
$\mathbf{p}_{aa} = \mathbf{f}(a)$			
$\mathrm{Res}_{z=1}f\left(z\right)$			
$\mathrm{Res}_{z=\infty}f\left(z\right)$			
Submit Yo	u have used 0 of 6 attempts		
Submit			
١	/ Draviava	NI and A	
	< Previous	Next >	

Course

<u>Progress</u>

<u>Dates</u>

Discussion

<u>Wiki</u>

☆ Course / 3. Residue theory. Application to computation of complex integrals. Jordan's lemma. / Exercises

Previous								Next >
Problem 3.								
Problem	3.4							
		the contour (${\mathcal C}$, which is a ci	rcle of radius 2	2 centered at ℓ	z=0 (use pi t	for π and i for	
Submit	You have us	ed 0 of 6 attem _l	ots					
	< Pr	evious		N	Next >			

© All Rights Reserved

edX

<u>About</u>

Affiliates

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

Course <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Wiki</u>

☆ Course / 3. Residue theory. Application to computation of complex integrals. Jordan's lemma. / Exercises

Previous		ď		ď	ď	ď	ď	Next >
Problem 3.5 ☐ Bookmark this p								
Problem	o E							
1 point possib Evaluate the	le (ungraded) integral (use	exp for expon	ential functio	on and pi for π)				
$\int_{-\infty}^{\infty} rac{\sin^2 x dx}{x^2(x^2+1)}$;)							
Submit	You have use	ed 0 of 6 attemp	ts					
	< Pr	evious		N	lext >			

© All Rights Reserved

edX

<u>About</u>

<u>Affiliates</u>

edX for Business

Open edX

<u>Careers</u>

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

Course <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Wiki</u>

☆ Course / 3. Residue theory. Application to computation of complex integrals. Jordan's lemma. / Exercises

					ď	ď	ď	Next >
roblem 3	.6							
Bookmark this	page							
Problem	3.6							
Do the limit			e of radius $ z $	$=R$ in the ${\sf u}$	pper half-plar	e		
yes	\mathcal{G}_R	- 11			,			
no								
$\lim_{R o\infty}\int_{\mathcal{C}}$	$_{C_R}e^{iz^2}$, where	C_R - the arc ϵ	$z=Re^{i\phi}$ wit	h $0 \leq \phi \leq \pi$ /	['] 4?			
$\lim_{R o\infty}\int_{\mathcal{C}}$ yes	$_{C_R}e^{iz^2}$, where	C_R - the arc ϵ	$z=Re^{i\phi}$ wit	h $0 \le \phi \le \pi$ /	′4?			
	$_{C_R}e^{iz^2}$, where	C_R - the arc z	$z=Re^{i\phi}$ with	h $0 \le \phi \le \pi$ /	4?			
yes	$g_{\!R}e^{iz^2}$, where	C_R - the arc ϵ	$z=Re^{i\phi}$ wit	h $0 \leq \phi \leq \pi$ /	'4?			
yes		C_R - the arc $ au$		h $0 \leq \phi \leq \pi$ /	'4?			
yes				$0 \le \phi \le \pi/2$	'4?			
yes				h $0 \le \phi \le \pi/$	4?			
yes	You have use				'4? √42			

© All Rights Reserved

edX

<u>About</u>

<u>Affiliates</u>

edX for Business

Open edX

Careers

News

Course <u>F</u>

Progress

<u>Dates</u>

Discussion

<u>Wiki</u>

☆ Course / 3. Residue theory. Application to computation of complex integrals. Jordan's lemma. / Dedicated problems

Previous			Next >
Problem 3	.7		
☐ Bookmark this			
Homework Problem	due Nov 11, 2020 19:00 EST		
2 points poss			
	e integrals (use pi for π and exp $\mathfrak l$	for exponential function).	
30 x ³			
$\int_{-\infty}^{\infty} rac{e^{-iz}dz}{z^2+9}$			
	Variables and Olaf Catternate		
Submit	You have used 0 of 6 attempts		
	< Previous	Next >	

© All Rights Reserved

edX

<u>About</u>

<u>Affiliates</u>

edX for Business

Open edX

Careers

News

Legal

Course <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Wiki</u>

* Course / 3. Residue theory. Application to computation of complex integrals. Jordan's lemma. / Exercises

© All Rights Reserved

edX

<u>About</u>

Affiliates

edX for Business

Open edX

Careers

<u>News</u>

Course

<u>Progress</u>

<u>Dates</u>

Discussion

<u>Wiki</u>

* Course / 3. Residue theory. Application to computation of complex integrals. Jordan's lemma. / Dedicated problems

Previous			Next >
Problem 3. □ Bookmark this			
Homework Problem	due Nov 11, 2020 19:00 EST 3.9		
1 point possi Evaluate the $\int_{-\infty}^{\infty} rac{\cos\left(x-\frac{1}{1+x}\right)}{x}$	e integral (use pi for π and exp fo	or exponential function):	
Submit	You have used 0 of 6 attempts		
	< Previous	Next >	

© All Rights Reserved

edX

<u>About</u>

Affiliates

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Course

Progress

<u>Dates</u>

Discussion

<u>Wiki</u>

* Course / 3. Residue theory. Application to computation of complex integrals. Jordan's lemma. / Exercises

<pre>< Previous [</pre>	C C						Next >
----------------------------	-----	--	--	--	--	--	--------

Problem 3.10

☐ Bookmark this page

Problem 3.10

2 points possible (ungraded)

Evaluate the principal value of the following integrals.

$$ext{PV} \int_0^\infty rac{x^{a-1}}{1-x^b} dx ext{ for } b>a>0$$

$$\frac{\left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right]}{\left[\begin{array}{c} 1 \\ 1 \end{array}\right]} \left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right] \left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right]$$

	a	b	π	2π	cot	cos	

$$ext{PV} \int_0^\infty rac{x dx}{(x^2 + a^2) \sin bx} ext{ for } a > 0, b > 0$$

	π	2	a	b	ab	sh	

Submit

You have used 0 of 6 attempts

Previous
Next >