Μερικές ασκήσεις στην Αναλυτική Θεωρία Αριθμών

Αναστάσιος Φράγκος

Τρίτη, 31 Μαΐου 2022

Συμβολισμοί - Παρατηρήσεις

1. $[n] := [1, n] \cap \mathbb{N}$ **2.** Εάν A είναι ένα σύνολο, |A| είναι η πληθικότητά του **3.** χ_A είναι η δείκτρια συνάρτηση του συνόλου A **4.** $a \propto b$: Το a είναι ακέραιο πολλαπλάσιο του b

Περιεχόμενα

1

- 1 Αριθμητικές συναρτήσεις και γινόμενα Dirichlet
- 2 Μέσοι όροι αριθμητικών συναρτήσεων 8
- **3** Αποτελέσματα για την κατανομή των πρώτων και το Θεώρημα των πρώτων αριθμών **10**
- 4 Πρώτοι σε αριθμητικές προόδους

1 Αριθμητικές συναρτήσεις και γινόμενα Dirichlet

Άσκηση 1.1. Έστω d(n) το πλήθος των θετικών διαιρετών του n (με άλλα λόγια, $d(n) = \sum_{d|n} = (u*u)(n)$). Αποδείξτε ότι:

$$\prod_{t|n} t = n^{d(n)/2}$$

και ότι:

$$\sum_{k|n} d(k)^3 = \left(\sum_{k|n} d(k)\right)^2$$

Πρόταση (1.1.1): Έστω n ένας φυσικός αριθμός. Ισχύουν οι ακόβουθοι τύποι για τα αθροίσματα αριθμών, τετραγώνων και κύβων:

(α) Για τα αθροίσματα αριθμών:

$$\sum_{k \in [n]} k = \frac{n(n+1)}{2}$$

(β) Για τα αθροίσματα τετραγώνων:

$$\sum_{k \in [n]} k^2 = \frac{n(n+1)^2 - n(n+1)/2}{3}$$

(γ) Για τα αθροίσματα κύβων:

$$\sum_{k \in [n]} k^3 = \left(\frac{n(n+1)}{2}\right)^2$$

Η εν λόγω πρόταση δεν θα αποδειχθεί. Μια ιδέα πάντως της απόδειξης είναι η ακόλουθη: Έστω $A_s(n)$ η αριθμητική συνάρτηση του αθροίσματος των n πρώτων διαδοχικών s-δυνάμεων (δηλαδή $A_s(n)=\sum_{k\in [n]}k^s$). Επειδή:

$$(k+1)^{s+1} = \sum_{t=0}^{s+1} \binom{s+1}{t} k^t = k^{s+1} + \sum_{t=0}^{s} \binom{s+1}{t} k^t \Rightarrow (k+1)^{s+1} - k^{s+1} = \sum_{t=0}^{s} \binom{s+1}{t} k^t$$

αθροίζοντας για τα διάφορα $k \in [n]$, έπεται ότι:

$$\sum_{k \in [n]} \left[(k+1)^{s+1} - k^{s+1} \right] = \sum_{k \in [n]} \sum_{t=0}^{s} \binom{s+1}{t} k^{t} \Rightarrow (n+1)^{s+1} - 1 = \sum_{t=0}^{s} \binom{s+1}{t} A_{t}(n)$$

Οπότε κάθε κλειστός τύπος του $A_s(n)$ εξαρτάται αναδρομικά από τους τύπους των $A_t(n), t \in [s-1]$. Μια εναλλακτική, γεωμετρική απόδειξη για το (β) μπορεί να βρεθεί στο:

http://users.uoa.gr/~sma1900239/files/others/gnt.pdf, στη σελίδα 32.

Λήμμα (1.1.1): Οι αριθμητικές συναρτήσεις:

$$D(n) = \sum_{k|n} d(k)^3$$
 kai $\Delta(n) = \Big(\sum_{k|n} d(k)\Big)^2$

είναι πολλθαπλασιαστικές. Μάλιστα, εάν m,n είναι δύο φυσικοί αριθμοί για τους οποίους (m,n)=1, ισχύουν:

$$D(nm) = D(n)D(m) = \Delta(n)\Delta(m) = \Delta(nm)$$

Απόδειξη: Η μέθοδος που θα ακολουθήσουμε για την απόδειξη του συγκεκριμένου θα βασιστεί στο γεγονός ότι η πολλαπλασιαστικότητα σε δυνάμεις πρώτων συνεπάγεται την πολλαπλασιαστικότητα γενικά. Δηλαδή, εάν f είναι μια αριθμητική συνάρτηση και p^k, q^l είναι δύο δυνάμεις πρώτων με την f να παίρνει την τιμή $f(p^kq^l) = f(p^k)f(q^l)$ στο γινόμενό τους, τότε είναι πολλαπλασιαστική.

Έστω p,q δύο πρώτοι και p^k,q^l δύο δυνάμεις αυτών. Επειδή υπάρχουν ακριβώς s+1 διαιρέτες του p^s για τα διάφορα $0 \le s \le k$, από την **Πρόταση (1.1.1)** έπεται ότι:

$$D(p^k) = \sum_{s=0}^k (s+1)^3 = \left(\frac{(k+1)(k+2)}{2}\right)^2 \ \text{ for } \Delta(p^k) = \left(\sum_{s=0}^k (s+1)\right)^2 = \left(\frac{(k+1)(k+2)}{2}\right)^2$$

Αντίστοιχα, ισχύουν φυσικά και οι:

$$D(q^l) = \sum_{s=0}^k (s+1)^3 = \left(\frac{(l+1)(l+2)}{2}\right)^2 \ \text{ for } \Delta(q^k) = \left(\sum_{s=0}^k (s+1)\right)^2 = \left(\frac{(l+1)(l+2)}{2}\right)^2$$

Όσον αφορά τις τιμές των αριθμητικών συναρτήσεων στο γινόμενο p^kq^l , για χάρην εύκολης διατύπωσης εισάγουμε τον συμβολισμό:

Ορισμός 1 Έστω $A=\left(a_{i,j}\right)_{i,j}$ ένας πίνακας του $\mathbb{C}^{a,b}$. Ορίζουμε ως άθροισμα του πίνακα την ποσότητα:

$$\sum A := \sum_{i \in [a]} \sum_{j \in [b]} a_{i,j}$$

και παρατηρούμε ότι:

$$\Delta(p^k q^l) = \left(\sum \begin{pmatrix} d(1) & d(p) & \cdots & d(p^k) \\ d(q) & d(pq) & \cdots & d(p^kq) \\ \vdots & \vdots & \ddots & \vdots \\ d(q^l) & d(pq^l) & \cdots & d(p^kq^l) \end{pmatrix} \right)^2$$

Επειδή για τα διάφορα i, j έχουμε $d(p^j q^i) = (j+1)(i+1)$, έπεται

$$\Delta(p^k q^l) = \left(\sum \begin{pmatrix} 1 \cdot 1 & 2 \cdot 1 & \cdots & (k+1) \cdot 1 \\ 1 \cdot 2 & 2 \cdot 2 & \cdots & (k+1) \cdot 2 \\ \vdots & \vdots & \ddots & \vdots \\ 1(l+1) & 2(l+1) & \cdots & (k+1)(l+1) \end{pmatrix} \right)^2$$

κι αν αθροίσουμε πρώτα στις στήλες:

$$\Delta(p^k q^l) = \left(\sum_{s \in [k+1]} s \left(\sum_{t \in [l+1]} t\right)\right)^2 = \left(\frac{(k+1)(k+2)(l+1)(l+2)}{2 \cdot 2}\right)^2 = \Delta(p^k)\Delta(q^l)$$

το οποίο συνεπάγεται την πολλαπλασιαστικότητα της D.

Όσον αφορά την αριθμητική συνάρτηση Δ , ακολουθούμε διαδικασία ανάλογη - την εκτιμούμε σε γινόμενο δύο δυνάμεων πρώτων p^k, q^l και την παριστούμε με άθροισμα πίνακα:

$$D(p^k q^l) = \sum \begin{pmatrix} d(1)^3 & d(p)^3 & \cdots & d(p^k)^3 \\ d(q)^3 & d(pq)^3 & \cdots & d(p^k q)^3 \\ \vdots & \vdots & \ddots & \vdots \\ d(q^l)^3 & d(pq^l)^3 & \cdots & d(p^k q^l)^3 \end{pmatrix}$$

Επειδή για τα διάφορα i, j έχουμε $d(p^j q^i) = (j+1)(i+1)$, έπεται:

$$D(p^k q^l) = \sum \begin{pmatrix} 1^3 \cdot 1^3 & 2^3 \cdot 1^3 & \cdots & (k+1)^3 \cdot 1^3 \\ 1^3 \cdot 2^3 & 2^3 \cdot 2^3 & \cdots & (k+1)^3 \cdot 2^3 \\ \vdots & \vdots & \ddots & \vdots \\ 1^3 (l+1)^3 & 2^3 (l+1)^3 & \cdots & (k+1)^3 (l+1)^3 \end{pmatrix}$$

κι αν αθροίσουμε πρώτα στις στήλες:

$$D(p^kq^l) = \sum_{s \in [k+1]} s^3 \left(\sum_{t \in [l+1]} t^3\right) = \left(\frac{(k+1)(k+2)}{2}\right)^2 \cdot \left(\frac{(l+1)(l+2)}{2}\right)^2 = D(p^k)D(q^l)$$

το οποίο συνεπάγεται την πολλαπλασιαστικότητα της Δ . Από τη διαδικασία της απόδειξης μάλιστα προκύπτει ότι για κάθε δύο σχετικά πρώτους m,n:

$$D(mn) = D(m)D(n) = \Delta(m)\Delta(n) = \Delta(mn)$$

(Να σημειωθεί ότι η περίπτωση όπου κάποιο από τα m,n είναι 1 δεν καλύπτεται από την απόδειξη - είναι όμως κάτι τετριμμένο).

 $\underline{\mathit{Λύση:}}$ Όσον αφορά το πρώτο σκέλος, θεωρούμε το γινόμενο $\prod_{t|n} t$ και παρατηρούμε ότι ev γένει - όταν δηλαδή ο n δεν είναι τέλειο τετράγωνο - οι διαιρέτες του έρχονται σε ζεύγη $t, \frac{n}{t}$. Σε αυτήν την μη γενική περίπτωση, κανείς παρατηρεί ότι:

$$\prod_{t|n} t = \prod_{\substack{t|n \\ t < \sqrt{n} \\ t > \sqrt{n}}} t \cdot \prod_{\substack{t|n \\ t > \sqrt{n}}} \frac{n}{t} = n^{d(n)/2}$$

Το 'λεπτό' σημείο έγκειται στο τι συμβαίνει αν ο n είναι τέλειο τετράγωνο, αφού δεν είναι δυνατόν κανείς να πάρει d(n)/2 ζεύγη διαιρετών που πολλαπλασιαζόμενοι δίνουν n. Εάν ο n είναι τέλειο τετράγωνο, όλοι οι διαιρέτες t του n ορίζουν διακεκριμένο διαιρέτη $\frac{n}{t}$ εάν και μόνο αν $t \neq \sqrt{n}$. Κανείς λοιπόν μπορεί να κατασκευάσει $\left(d(n)-1\right)/2$ ζεύγη διαιρετών που πολλαπλασιαζόμενοι δίνουν n, και θα περισσεύει ένα \sqrt{n} . Η γενική περίπτωση έχει ως εξής:

$$\prod_{t|n} t = \left[\prod_{\substack{t|n\\t < \sqrt{n}}} t \right] \cdot \left[\prod_{\substack{t|n\\t > \sqrt{n}}} \frac{n}{t} \right] \cdot \left(\sqrt{n} - \sqrt{n} \chi_{T^c}(n) \right) = n^{(d(n) - \chi_T(n))/2 + \chi_T(n)/2} = n^{d(n)/2}$$

όπου T είναι το σύνολο $T=\{n\mid n=k^2$ με $k\in\mathbb{N}\}$ και χ_Σ είναι η δείκτρια συνάρτηση του συνόλου Σ .

Όσον αφορά το δεύτερο σκέλος, από το Λήμμα (1.1.1) προκύπτει ότι:

$$\forall n \in \mathbb{N}, \ D(n) = \Delta(n)$$

αφού οι αριθμοί n,1 είναι σχετικά πρώτοι. Επομένως:

$$\forall n \in \mathbb{N}, \ \sum_{k|n} d(k)^3 = \left(\sum_{k|n} d(k)\right)^2$$

Ουσιαστικά στην προηγούμενη λύση η δυσκολία βρίσκεται στην απόδειξη της πολλαπλασιαστικότητας των D, Δ . Κανείς θα μπορούσε να αποφύγει την 'επίπονη' διαδικασία παρατηρώντας ότι:

- \bullet Η $u \equiv 1$ είναι (πλήρως) πολλαπλασιατική συνάρτηση,
- Η d είναι πολλαπλασιαστική συνάρτηση ως γινόμενο Dirichlet πολλαπλασιαστικών συναρτήσεων (d=u*u),
- Κάθε δύναμη πολλαπλασιαστικής συνάρτησης είναι πολλαπλασιαστική συνάρτηση,
- Βάσει των παραπάνω, οι $D = d^3 * u$ και $\Delta = (d * u)^2$ είναι πολλαπλασιαστικές συναρτήσεις.

Άσκηση 1.2. Η συνάρτηση J_k του Jordan γενικεύει τη συνάρτηση arphi του Euler και ορίζεται από την:

$$J_k(n) = n^k \prod_{p|n} \left(1 - \frac{1}{p^k}\right)$$

Αποδείξτε ότι:

$$J_k(n) = \sum_{d|n} \mu(d) \left(rac{n}{d}
ight)^k$$
 kai $n^k = \sum_{d|n} J_k(d)$

Λύση: Οι δύο τύποι που ζητείται να βρεθούν είναι μεταξύ τους ισοδύναμοι, οπότε για την λύση της άσκησης αρκεί να αποδειχθεί ένας εξ αυτών.

$$J_k = \mu * N^k \Leftrightarrow J_k * u = N^k$$

(χρησιμοποιείται ότι $\mu^{-1} = u$).

Συγκεκριμένα, θα αποδείξουμε τη σχέση $J_k = \mu * N^k \Rightarrow J_k(n) = \sum_{d|n} \mu(d) \left(\frac{n}{d}\right)^k$, για την οποία θα χρειαστούμε το ακόλουθο λήμμα:

Λήμμα (1.2.1): Έστω P ένα μιγαδικό, μονικό πολυώνυμο βαθμού ν και $a_i,\ i\in [\nu]$ οι ρίζες του. Το P είναι της μορφής:

$$P(z) = \prod_{i \in [\nu]} (z - a_i) = \sum_{I \subseteq [\nu]} \left((-1)^{|I|} z^{\nu - |I|} \prod_{j \in I} a_j \right)$$

Απόδειξη: Πράγματι, κάνοντας τους πολλαπλασιασμούς στο γινόμενο $\prod_{i \in [\nu]} (z - a_i)$, προκύπτει ότι:

$$P(z) = 1 + \sum_{i_1 \in [\nu]} -1 \cdot z^{\nu - 1} a_{i_1} + 1 + \sum_{i_1, i_2 \in [\nu]} +1 \cdot z^{\nu - 2} a_{i_1} a_{i_2} + \dots = \sum_{I \subseteq [\nu]} \left((-1)^{|I|} z^{\nu - |I|} \prod_{j \in I} a_j \right)$$

Δεδομένου του λήμματος, το $J_k(n)$ παίρνει τη μορφή:

$$J_k(n) = \sum_{I \subseteq [s(n)]} \frac{(-1)^{|I|} z^{s(n)-|I|}}{\prod_{j \in I} p_j}, \text{ όπου } s(n)$$
 είναι το πλήθος των πρώτων διαιρετών του $n = \prod_{j \in [s(n)]} p_j^{\lambda_j}, \ \lambda_j \in \mathbb{N}$

Ειδικότερα, εξ ορισμού της μ:

$$J_k(n) = n^k \sum_{I \subseteq [s(n)]} \frac{\mu(\prod_{j \in I} p_j)}{\prod_{j \in I} (p_j)^k} = n^k \sum_{d \mid n} \frac{\mu(d)}{d^k}$$

αφού για διαιρέτες d του n οι οποίοι δεν είναι γινόμενο διακεκριμένων πρώτων (σε δύναμη 1) έχουν $\mu(d)=0$. Ισοδύναμα λοιπόν έχουμε ότι:

$$J_k(n) = n^k \sum_{d|n} \frac{\mu(d)}{d^k} = \sum_{d|n} \mu(d) \left(\frac{n}{d}\right)^k$$

Άσκηση 1.3. Ορίζουμε $\sigma(n)=\sum_{d\mid n}d$, το άθροισμα των διαιρετών του n. Αποδείξτε ότι η σ είναι πολλαπλασιαστική και βρείτε την Dirichlet αντίστροφή της. Επιπλέον, δείξτε ότι:

$$\sum_{k|n} \sigma(k) \varphi\left(\frac{n}{k}\right) = nd(n), \text{ για κάθε } n \in \mathbb{N}$$

 $\overline{N,u}$ είναι πλήρως πολλαπλασιαστικές συναρτήσεις (ειδικότερα πολλαπλασιαστικές), το γινόμενο Dirichlet αυτών είναι πολλαπλασιαστική συνάρτηση.

Όσον αφορά την αντίστροφη Dirichlet της σ , θα χρησιμοποιήσουμε ότι η αντίστροφη Dirichlet f^{-1} μιας πλήρους πολλαπλασιαστικής συνάρτησης είναι η μf . Συγκεκριμένα για την N, η N^{-1} είναι ακριβώς η μN .

Συνοπτικά, εάν η f είναι πλήρως πολλαπλασιαστική συνάρτηση:

$$N * \mu N = \sum_{k|n} k \cdot \mu\left(\frac{n}{k}\right) f\left(\frac{n}{k}\right) = f(n) \sum_{k|n} \mu\left(\frac{n}{k}\right) = f(n)I(n) = f(1)\chi_{\{1\}}(n) = 1\chi_{\{1\}}(n) = I(n)$$

κι επειδή $f*\mu f=\mu f*f$, έπεται ότι $f*\mu f=\mu f*f=I$, δηλαδή η μf είναι μια αντίστροφη Dirichlet της f. Η αντίστροφη όμως μιας αριθμητικής συνάρτησης είναι μοναδική, επομένως $\mu f=f^{-1}$.

Έχουμε λοιπόν με αυτά ότι:

$$\sigma = N * u \Rightarrow \sigma^{-1} = N^{-1} * u^{-1} = \mu N * \mu$$

Όσον αφορά το δεύτερο μέρος της άσκησης, ο ζητούμενος τύπος παρίσταται ισοδύναμα μέσω γινομένων Dirichlet στη μορφή $\sigma*\varphi=Nd$. Ξεκινώντας λοιπόν απο τη γνωστή σχέση $\varphi=\mu*N$, θα αποδείξουμε την ισοδύναμη Dirichlet μορφή της ζητούμενης σχέσης.

$$\varphi = \mu * N \Rightarrow \sigma * \varphi = (N * u) * (\mu * N) = N * (u * \mu) * N = N * N$$

Επειδή όμως η Ν είναι πλήρως πολλαπλασιαστική:

$$(N*N)(n) = \sum_{k|n} N(k)N\left(\frac{n}{k}\right) = N(n)\sum_{k|n} = N(n)d(n)$$

Το οποίο αποδεικνύει τον τύπο $\sigma * \varphi = Nd$.

Άσκηση 1.4. Αποδείξτε ότι:

$$\sum_{\substack{(k,n)=1\\k\in[n]}} k = \frac{n\varphi(n)}{2}$$

 $\frac{\mbox{Λύση:}}{n-k}$ Έστω k ένας φυσικός αριθμός μικρότερος του n. Εάν ο k είναι σχετικά πρώτος προς τον n, ο αριθμός $\overline{n-k} \in [n]$ είναι επίσης σχετικά πρώτος προς τον n. Αυτό διότι αν υπήρχε κοινός διαιρέτης d>1 των n-k και n, αυτός θα διαιρούσε τη διαφορά n-(n-k), η οποία είναι ο k.

Επειδή δεν είναι δυνατόν οι k, n-k να ταυτίζονται (αν ταυτιζόνταν, $k=n-k \Rightarrow 2k=n \Rightarrow k|n$), μπορούμε να εκφράσουμε ισοδύναμα το ζητούμενο άθροισμα στα $\varphi(n)/2$ ζεύγη σχετικά πρώτων φυσικών προς το n, την μορφής (k,n-k) με k< n-k, ως εξής:

$$\sum_{(k,n-k)\in\mathfrak{D}_n}\left(k+(n-k)\right)=\sum_{(k,n-k)\in\mathfrak{D}_n}n, \text{ frou }\mathfrak{D}_n=\left\{(k,\;n-k)\in\mathbb{N}^2\;|\;(k,n-k)=1\text{ kai }k< n-k\right\}$$

Επειδή το \mathfrak{D}_n έχει πληθικότητα $\varphi(n)/2$, έχουμε τη ζητούμενη σχέση:

$$\sum_{\substack{(k,n)=1\\k\in[n]}} k = \frac{n\varphi(n)}{2}$$

Κανείς θα μπορούσε να προσεγγίσει διαφορετικά το συγκεκριμένο πρόβλημα - κάπως γεωμετρικότερα. Έστω ένας κύκλος στην περιφέρεια του οποίου έχουν τοποθετηθεί ομοιόμορφα n σημεία. Στον κύκλο αυτόν κανείς μπορεί να δημιουργήσει «διαδρομές βήματος k», δηλαδή κλειστές πολυγωνικές γραμμές που διατρέχουν τα n σημεία ανά k.

Στο παρακάτω σχήμα εικονίζονται οι διαδρομές βημάτων 5 και 7 αντίστοιχα, στον κύκλο των 12 σημείων.

Η συνάρτηση φ στο n, γεωμετρικά αναπαριστά το πλήθος των βημάτων $k \leqslant n$ που κατασκευάζουν διαδρομές στον κύκλο των n σημείων, οι οποίες διατρέχουν και τα n σημεία του.

Θεωρούμε λοιπόν το ακόλουθο ερώτημα:

Ποιό είναι το άθροισμα των μηκών των διαδρομών που διατρέχουν όβια τα σημεία ενός κύκβου η σημείων;

το οποίο είναι ισοδύναμο με το αρχικό μας ερώτημα, και θα διερευνήσουμε αυτό αντί του αρχικού. Να σημειωθεί εδώ ότι το μήκος στην περίπτωσή μας νοείται με την εξής έννοια: εάν A και B είναι δύο σημεία στον κύκλο των n σημείων, η (ευθύγραμμη) διαδρομή από το A στο B έχει μήκος όσο το βήμα του χρειάζεται ώστε κανείς να μεταφερθεί από το A στο B.

Ας υποθέσουμε λοιπόν ότι διαθέτουμε μια διαδρομή βήματος k σε κύκλο n σημείων, η οποία διέρχεται από καθένα από τα n σημεία του κύκλου. Η φορά διαγραφής αυτής της διαδρομής μπορεί να είναι (χωρίς βλάβη της γενικότητας) αριστερόστροφη, οπότε εάν η ίδια τροχιά διαγραφεί δεξιόστροφα, προκύπτει μια νέα διαδρομή η οποία διέρχεται από καθένα από τα n σημεία. Η τελευταία είναι ουσιαστικά η διαδρομή βήματος n-k.

Για κάθε λοιπόν s < n, θεωρούμε δ_s τη διαδρομή βήματος s, η οποία ξεκινά από ένα συγκεκριμένο σημείο του κύκλου και διέρχεται από καθένα από τα n σημεία του. Παρατηρούμε ότι:

$$\sum_{\substack{k < n \\ (k,n) = 1}} nk = \sum_{\substack{k < n \\ (k,n) = 1}} \text{Mήκος}(\delta_k) = \sum_{\substack{k < n - k \\ (k,n) = 1}} \left[\text{Μήκος}(\delta_k) + \text{Μήκος}(\delta_{n-k}) \right] = \sum_{\substack{k < n - k \\ (k,n) = 1}} \left[nk + n(n-k) \right] = n^2 \frac{\varphi(n)}{2}$$

ή ισοδύναμα:

$$\sum_{\substack{(k,n)=1\\k\in[n]}} k = \frac{n\varphi(n)}{2}$$

Άσκηση 1.5. α. Έστω $f \not\equiv 0$ μία πλήρως πολλαπλασιαστική συνάρτηση. Αποδείξτε ότι:

$$(f \cdot g)^{-1} = f \cdot g^{-1}$$

για κάθε αριθμητική συνάρτηση g με $g(1) \neq 0$.

β. Αποδείξτε ότι αν η f είναι πολλαπλασιαστική και η (*) ισχύει για την $g=\mu^{-1}$, τότε η f είναι πλήρως πολλαπλασιαστική.

α. Δύση: Έστω $f \not\equiv 0$ μια πλήρως πολλαπλασιαστική συνάρτηση και g μια αριθμητική συνάρτηση με $g(1) \not\equiv 0$. Παρατηρούμε ότι:

$$\left[(f \cdot g^{-1}) * (f \cdot g) \right](n) = \sum_{d|n} \left[(f \cdot g^{-1})(d)(f \cdot g) \left(\frac{n}{d} \right) \right] = \sum_{d|n} f(d) f\left(\frac{n}{d} \right) g^{-1}(d) g\left(\frac{n}{d} \right)$$

Επειδή η f είναι πλήρως πολλαπλασιαστική, $f(d)f\left(\frac{n}{d}\right) = f(n)$:

$$\sum_{d|n} \left[(f \cdot g^{-1})(d)(f \cdot g) \left(\frac{n}{d} \right) \right] = \sum_{d|n} f(d) f\left(\frac{n}{d} \right) g^{-1}(d) g\left(\frac{n}{d} \right) = f(n) \sum_{d|n} g^{-1}(d) g\left(\frac{n}{d} \right) = f \cdot (g^{-1} * g)$$

κι επειδή η g^{-1} είναι η αντίστροφη Dirichlet της g:

$$\sum_{d|n} \left[(f \cdot g^{-1})(d)(f \cdot g) \left(\frac{n}{d} \right) \right] = f(n) \cdot (g^{-1} * g)(n) = f(n)I(n) = f(n)\chi_{\{1\}}(n) = \chi_{\{1\}}(n) = I(n)$$

Αυτό ουσιαστικά δείχνει ότι η $f\cdot g^{-1}$ είναι η αντόστροφη Dirichlet της $f\cdot g$, αφού ο πολλαπλασιασμός Dirichlet είναι αντιμεταθετικός.

β. Λύση: Ήδη γνωρίζουμε ότι η f είναι πολλαπλασιαστική συνάρτηση, οπότε εάν $n=\prod_i p_i^{a_i}$ είναι μία ανάλυση τυχόντος n σε πρώτους παράγοντες:

$$f(n) = f\left(\prod_{i} p_i^{a_i}\right) = \prod_{i} f(p_i^{a_i})$$

Για να αποδείξουμε λοιπόν την πλήρη πολλαπλασιαστικότητα, αρκεί να δείξουμε ότι για πρώτο p και για κάθε δύναμη αυτού p^a ισχύει $f(p^a) = \left(f(p)\right)^a$ και επιπλέον f(1) = 1. Το f(1) = 1 όμως έπεται σχετικά άμεσα, αφού διαφορετικά η f δεν θα διέθετε αντίστροφο Dirichlet ($f \equiv 0$).

Υπο την υπόθεση ότι η μf αποτελεί αντίστροφη Dirichlet της f, έχουμε ότι για κάθε δύναμη πρώτου p^a :

$$((\mu f)*f)(p^a)=I(p^a)=0$$
 (διότι $p^a>1$)

ή ισοδύναμα:

$$\sum_{d|p^a} \mu(d) f(d) f\left(\frac{p^a}{d}\right) = 0$$

Στο σημείο αυτό παρατηρούμε ότι κάθε διαιρέτης d του p^a είναι της μορφής p^k για τα διάφορα $k+1 \in [a+1]$, κι επομένως η συνάρτηση του Möbius μηδενίζεται σε κάθε $d=p^k,\ k\geqslant 2$. Έτσι το εν λόγω άθροισμα εκφυλίζεται σε 2 όρους:

$$0 = \sum_{d|p^a} \mu(d) f(d) f\left(\frac{p^a}{d}\right) = \mu(1) f(1) f(p^a) + \mu(p) f(p) f\left(\frac{p^a}{p}\right) = f(p^a) - f(p) f(p^{a-1})$$

κι επομένως $f(p^a)=f(p)f(p^{a-1})$, για κάθε πρώτο p και για κάθε δύναμη αυτού p^a . Επαγωγικά λοιπόν προκύπτει η σχέση $f(p^a)=\left(f(p)\right)^a$ και κατ' επέκταση το ζητούμενο.

Άσκηση 1.6. Ορίζουμε $\nu(1)=0$ και για n>1 ορίζουμε $\nu(n)$ να είναι το πλήθος των διακεκριμένων πρώτων παραγόντων του n. Αποδείξτε ότι αν $f=\mu*\nu$, τότε $f(n)\in\{0,1\}$ για κάθε $n\in\mathbb{N}$.

 $\overline{f=\mu}*\nu$ στη $\nu=f*u$.

Ορίζουμε τώρα συνάρτηση $g: \mathbb{N} \to \{0,1\}$ ως εξής:

και παρατηρούμε ότι:

$$(g*u)(n) = \sum_{\substack{d \text{ πρώτος} \\ d \mid n}} = \nu(n) \Rightarrow g*u = \nu$$

Επομένως, $g*u=f*u\Rightarrow g=f$, το οποίο αποδεικνύει ότι $f(n)\in\{0,1\}$ για κάθε $n\in\mathbb{N}.$

2 Μέσοι όροι αριθμητικών συναρτήσεων

Άσκηση 2.1. Εάν $x \geqslant 2$ και a > 1, αποδείξτε ότι:

$$\sum_{n \leqslant x} \frac{d(n)}{n^a} = \frac{x^{1-a} \log x}{1-a} + \zeta(a)^2 + O(x^{1-a})$$

όπου d = u * u.

Πρόταση (2.1.1): Για κάθε $1 \neq s > 0$ αβηθεύει:

$$\sum_{n \leqslant x} \frac{1}{n^s} = \frac{x^{1-s}}{1-s} + C(s) + O\left(\frac{1}{x^s}\right)$$

όπου:

$$C(s) = \begin{cases} \zeta(s), \text{ όταν } s>1\\ \lim_{x\to\infty} \left[\sum_{n\leqslant x} \frac{1}{n^s} - \frac{x^{1-s}}{1-s}\right], \text{ διαφορετικά} \end{cases}$$

 $E\dot{a}v\ s=1$, έχουμε τον αντίστοιχο τύπο της **Πρότασης (3.2.1)**

Λύση: Γράφουμε:

$$\sum_{n\leqslant x}\frac{d(n)}{n^a}=\sum_{n\leqslant x}\frac{1}{n^a}\sum_{d\mid n}$$

και παρατηρούμε ότι εναλλάσσοντας τα αθροίσματα προκύπτει:

$$\sum_{n \leqslant x} \frac{1}{n^a} \sum_{d|n} = \sum_{d \leqslant x} \sum_{q \leqslant x/d} \frac{1}{(dq)^a} = \sum_{d \leqslant x} \frac{1}{d^a} \sum_{q \leqslant x/d} \frac{1}{q^a}$$

Στο εσωτερικό άθροισμα τώρα χρησιμοποιούμε την Πρόταση (2.1.1) και έχουμε:

$$\sum_{d \leqslant x} \frac{1}{d^a} \sum_{q \leqslant x/d} \frac{1}{q^a} = \sum_{d \leqslant x} \frac{1}{d^a} \left[\frac{(x/d)^{1-a}}{1-a} + C(a) + O\left(\frac{1}{(x/d)^a}\right) \right]$$

$$= \sum_{d \leqslant x} \left[\frac{x^{1-a}}{(1-a)d} + \frac{C(a)}{d^a} + O\left(\frac{1}{x^a}\right) \right]$$

$$= \frac{x^{1-a}}{1-a} \sum_{d \leqslant x} \frac{1}{d} + C(a) \sum_{d \leqslant x} \frac{1}{d^a} + O\left(\frac{1}{x^a} \sum_{d \leqslant x} \frac{1}{d^a}\right)$$

Με χρήση και πάλι της Πρότασης (2.1.1) καθώς επίσης και της Πρότασης (3.2.1), έχουμε τελικά ότι:

$$\sum_{n \leqslant x} \frac{d(n)}{n^a} = \frac{x^{1-a}}{1-a} \left(\log x + \gamma + O\left(\frac{1}{x}\right) \right) + C(a) \left(\frac{x^{1-a}}{1-a} + C(a) + O\left(\frac{1}{x^a}\right) \right) + O\left(\frac{x^{1-2a}}{1-a} + \frac{C(a)}{d^a} \right)$$

$$= \frac{x^{1-a} \log x}{1-a} + C(a)^2 + O(x^{1-a})$$

Επειδή όμως a>1, θα έχουμε $C(a)=\zeta(a)$ και κατ' επέκταση το ζητούμενο.

$$\sum_{n \le x} \frac{d(n)}{n^a} = \frac{x^{1-a} \log x}{1-a} + \zeta(a)^2 + O(x^{1-a})$$

Άσκηση 2.2. Εάν $x \geqslant 2$, αποδείξτε ότι:

$$\sum_{n \le x} \frac{\varphi(n)}{n^2} = \frac{1}{\zeta(2)} \log x + \frac{\gamma}{\zeta(2)} - A + O\left(\frac{\log x}{x}\right)$$

όπου:

$$A = \sum_{n=1}^{\infty} \frac{\mu(n) \log n}{n^2}$$

Λύση: Επειδή $\varphi = \mu * N$, έχουμε ότι:

$$\sum_{n\leqslant x}\frac{\varphi(n)}{n^2}=\sum_{n\leqslant x}\frac{1}{n^2}\sum_{d|n}\mu(d)\frac{n}{d}$$

και με εναλλαγή της σειράς της άθροισης

$$\sum_{n \leqslant x} \frac{1}{n^2} \sum_{d|n} \mu(d) \frac{n}{d} = \sum_{d \leqslant x} \sum_{q \leqslant x/d} \mu(d) \frac{qd}{d} \cdot \frac{1}{(qd)^2}$$
$$= \sum_{d \leqslant x} \sum_{q \leqslant x/d} \frac{\mu(d)}{d^2} \cdot \frac{1}{q}$$
$$= \sum_{d \leqslant x} \frac{\mu(d)}{d^2} \sum_{q \leqslant x/d} \frac{1}{q}$$

Στο εσωτερικό άθροισμα χρησιμοποιούμε την Πρόταση (3.2.1) και έχουμε:

$$\begin{split} \sum_{d \leqslant x} \frac{\mu(d)}{d^2} \sum_{q \leqslant x/d} \frac{1}{q} &= \sum_{d \leqslant x} \frac{\mu(d)}{d^2} \left[\log \frac{x}{d} + \gamma + O\left(\frac{1}{x/d}\right) \right] \\ &= \sum_{d \leqslant x} \frac{\mu(d)}{d^2} \log x - \sum_{d \leqslant x} \frac{\mu(d)}{d^2} \log d + \gamma \sum_{d \leqslant x} \frac{\mu(d)}{d^2} + O\left(\frac{1}{x} \sum_{n \leqslant x} \frac{\mu(d)}{d^2}\right) \end{split}$$

Τώρα παρατηρούμε ότι:

$$\sum_{d \leqslant x} \frac{\mu(d)}{d^2} \log x = \sum_{d=1}^{\infty} \frac{\mu(d)}{d^2} \log x \qquad \underbrace{-\sum_{d>x} \frac{\mu(d)}{d^2}}_{d > x} \quad \log x = \sum_{d \leqslant x} \frac{\mu(d)}{d^2} \log x + O\left(\frac{\log x}{x}\right)$$

οπότε από την Πρόταση (3.4.1):

$$\sum_{d \le x} \frac{\mu(d)}{d^2} \log x = \frac{1}{\zeta(2)} \log x + O\left(\frac{\log x}{x}\right)$$

Επιπλέον:

$$\sum_{d \le x} \frac{\mu(d)}{d^2} = \sum_{d=1}^{\infty} \frac{\mu(d)}{d^2} \underbrace{-\sum_{d>x} \frac{\mu(d)}{d^2}}_{d>x} = \frac{1}{\zeta(2)} + O\left(\frac{1}{x}\right)$$

και:

$$\sum_{d \le x} \frac{\mu(d) \log d}{d^2} = \sum_{d=1}^{\infty} \frac{\mu(d) \log d}{d^2} - \sum_{d > x} \frac{\mu(d) \log d}{d^2}$$

Επειδή τώρα:

$$-\sum_{d > x} \frac{\mu(d) \log d}{d^2} \ll \int_x^\infty \frac{\log t}{t^2} dt = \frac{\log x}{x} + \frac{1}{x}$$

παίρνουμε τελικά ότι:

$$\sum_{d \leqslant x} \frac{\mu(d) \log d}{d^2} = \sum_{d=1}^{\infty} \frac{\mu(d) \log d}{d^2} + O\left(\frac{\log x}{x}\right)$$

και συμμαζεύοντας όλα αυτά, προκύπτει:

$$\sum_{n \leqslant x} \frac{\varphi(n)}{n^2} = \frac{1}{\zeta(2)} \log x + \frac{\gamma}{\zeta(2)} - \sum_{n=1}^{\infty} \frac{\mu(n) \log n}{n^2} + O\left(\frac{\log x}{x}\right)$$

το οποίο είναι το ζητούμενο.

$$\sum_{x \le x} \frac{\varphi(n)}{n^2} = \frac{1}{\zeta(2)} \log x + \frac{\gamma}{\zeta(2)} - A + O\left(\frac{\log x}{x}\right)$$

3 Αποτελέσματα για την κατανομή των πρώτων και το Θεώρημα των πρώτων αριθμών

Άσκηση 3.1. Ορίζουμε $P(x) = \prod_{p \leqslant x} p$. Αποδείξτε ότι το θεώρημα των πρώτων αριθμών είναι ισοδύναμο με τη συνθήκη:

 $\lim_{x \to \infty} P(x)^{1/x} = e$

Θεώρημα - Των πρώτων αριθμών: Υπευθυμίζουμε ότι, σύμφωνα με το Θεώρημα των πρώτων αριθμών, εάν $\pi(x)$ είναι η συνάρτηση του πβήθους των πρώτων αριθμών:

$$\pi(x) = \sum_{p \leqslant x}$$

ικανοποιείται η συνθήκη:

$$\pi(x) \sim \frac{x}{\log x}$$

Παρατήρηση (3.1.1) Το θεώρημα των πρώτων αριθμών είναι ισοδύναμο με το:

$$\theta(x) \sim x$$

όπου η συνάρτηση θ ορίζεται για κάθε μη αρνητικό x ως εξής:

$$\theta(n) = \sum_{p \leqslant x} \log p$$

Λύση: Δεδομένων των υπενθυμίσεων, δείχνουμε διαδοχικά τα εξής:

(⇒) Γράφουμε:

$$\left(\prod_{p \leqslant x} p\right)^{1/x} = \exp\left[\frac{1}{x} \sum_{p \leqslant x} \log p\right]$$

κι επειδή $\theta(x) = \sum_{p \leqslant x} \log p \sim x$, έπεται ότι:

$$\left(\prod_{p \leqslant x} p\right)^{1/x} \sim \exp\left[\frac{1}{x} \cdot x\right] = e$$

(⇐) Για την αντίστροφη κατεύθυνση, εάν:

$$\left(\prod_{p \leqslant x} p\right)^{1/x} = \exp\left[\frac{1}{x} \sum_{p \leqslant x} \log p\right] \sim e$$

τότε:

$$\frac{1}{x} \sum_{p \leqslant x} \log p \sim 1$$

Δηλαδή ισχύει η ισοδύναμη συνθήκη του θεωρήματος των πρώτων αριθμών, αυτή της Παρατήρησης (3.1.1).

$$\theta(x) = \sum_{p \leqslant x} \log p \sim 1 \cdot x = x$$

Άσκηση 3.2. Έστω S(x) και T(x) θετικές πραγματικές συναρτήσεις, με την T να ορίζεται μέσω της S, βάσει του εξής τύπου:

$$T(x) = \sum_{n \le x} S\left(\frac{x}{n}\right)$$

για κάθε $x\geqslant 1$. Εάν S(x)=O(x) και c είναι μια θετική σταθερά, δείξτε ότι η σχέση:

$$S(x) \sim x$$
, καθώς $x \to \infty$

συνεπάγεται την:

$$T(x) \sim cx \log x$$
, καθώς $x \to \infty$

Λήμμα (3.2.1): Για κάθε συνάρτηση $f(x) \sim g(x)$, υπάρχει συνάρτηση $\mathscr{E}(x)$ τέτοια ώστε:

$$f(x) = g(x) + \mathscr{E}(x)$$
 rai $\mathscr{E}(x) = o(g(x))$

Απόδειξη: Η σχέση ισχύει κάπως τετριμμένα, αν γράψουμε:

$$\frac{f(x)}{g(x)} = \frac{g(x)}{g(x)} + \frac{f(x) - g(x)}{g(x)} \xrightarrow{x \to \infty} 1$$

και θέσουμε $\mathscr{E}(x) = f(x) - g(x) \in o(g(x)).$

Πρόταση (3.2.1): Για κάθε μη αρνητικό αριθμό x αβηθεύει:

$$\sum_{n \le x} \frac{1}{n} = \log x + C + O\left(\frac{1}{x}\right)$$

για κάποια από β υτη σταθερά C. Μά β ιστα, μπορεί να δειχθεί ότι $C=\gamma$ - στην συγκεκριμένη άσκηση β έ β αια, η σταθερά δεν παίζει ρό β ο.

Απόδειξη: Στη γνωστή σχέση:

$$\sum_{n\leq x}f(n)=\int_1^xf(t)\;dt+\int_1^x\{t\}f'(t)\;dt+f(1)-f(x)\{x\}, \text{ για κάθε }f\in C^1$$

θέτουμε f(t) = 1/t και έχουμε:

$$\sum_{p \leqslant x} \frac{1}{n} = \int_{1}^{x} \frac{1}{t} dt + \int_{1}^{x} \{t\} \left(-\frac{1}{t^{2}}\right) dt + 1 - \frac{\{x\}}{x}$$

$$= \log x - \int_{1}^{x} \frac{\{t\}}{t^{2}} dt + \int_{x}^{\infty} \frac{1}{t^{2}} dt + 1 + O\left(\frac{1}{x}\right)$$

Επειδή επιπλέον:

$$\int_x^\infty \frac{\{t\}}{t^2} \ dt \ll \int_x^\infty \frac{1}{t^2} \ dt = \frac{1}{x} \ \mathrm{kai} \ \int_1^\infty \frac{\{t\}}{t^2} \ dt \ll \int_1^\infty \frac{1}{t^2} \ dt \in \mathbb{R}$$

έπεται ότι:

$$\sum_{n \leqslant x} \frac{1}{n} = \log x + C + O\left(\frac{1}{x}\right)$$

για κάποια σταθερά C.

Λύση: Ας υποθέσουμε τυχόν $k \in (0,1)$. Γράφουμε:

$$T(x) = \sum_{n \leqslant x} S\left(\frac{x}{n}\right) = \sum_{n \leqslant x^k} S\left(\frac{x}{n}\right) + \sum_{x^k < n \leqslant x} S\left(\frac{x}{n}\right)$$

και χρησιμοποιούμε το **Λήμμα (3.2.1)** στα «μεγάλα» x/n (δηλαδή στο πρώτο άθροισμα):

$$T(x) = \sum_{n \leqslant x^k} \left[\frac{x}{n} + \mathcal{E}\left(\frac{x}{n}\right) \right] + \sum_{x^k < n \leqslant x} \overbrace{S\left(\frac{x}{n}\right)}^{O(x)}$$
$$= \sum_{n \leqslant x^k} \frac{x}{n} + O\left(\sum_{n \leqslant x^k} \mathcal{E}\left(\frac{x}{n}\right)\right) + O(x^{2-k})$$

Τώρα, χρησιμοποιώντας την Πρόταση (3.2.1), έχουμε ότι:

$$\frac{T(x)}{x} = \sum_{n \leqslant x^k} \frac{1}{n} + O\left(\sum_{n \leqslant x^k} \left[\frac{1}{n} \mathscr{E}\left(\frac{x}{n}\right) \middle/ \frac{x}{n}\right]\right) + O(x^{1-k})$$

$$= \log x^k + C + O\left(\frac{1}{x}\right) + O\left(\sum_{n \leqslant x^k} \left[\frac{1}{n} \mathscr{E}\left(\frac{x}{n}\right) \middle/ \frac{x}{n}\right]\right) + O(x^{1-k})$$

Παρατηρούμε ότι η ποσότητα $\frac{\mathscr{E}\left(\frac{x}{n}\right)}{n}\Big/\frac{x}{n}$ είναι φραγμένη, οπότε:

$$\frac{T(x)}{x\log x} = k + \frac{C}{\log x} + O\left(\frac{1}{x\log x}\right) + O\left(\frac{1}{\log x}\sum_{n\leqslant x^k} \frac{1}{n}\right) + O\left(\frac{x^{1-k}}{\log x}\right)$$
$$= k + \frac{C}{\log x} + O\left(\frac{1}{x\log x}\right) + O\left(k + \frac{C}{\log x} + \frac{1}{x\log x}\right) + O\left(\frac{x^{1-k}}{\log x}\right)$$

Παίρνουμε όριο $k \to 1$ και έχουμε:

$$\frac{T(x)}{x\log x} = 1 + \frac{C}{\log x} + O\left(\frac{1}{x\log x}\right) + O\left(1 + \frac{C}{\log x} + \frac{1}{x\log x}\right) + O\left(\frac{1}{\log x}\right)$$
$$= O(1)$$

και κατ'επέκταση:

$$\lim_{x\to\infty}\frac{T(x)}{x\log x}=c, \text{ για κάποιο }c>0\Rightarrow\frac{T(x)}{cx\log x}\xrightarrow{x\to\infty}1\Rightarrow T(x)\sim cx\log x$$

Άσκηση 3.3. Έστω n ένας θετικός ακέραιος αριθμός. Συμβολίζουμε με $\omega(n)$ το πλήθος των διακεκριμένων πρώτων διαιρετών του n. Συγκεκριμένα ορίζουμε:

$$\omega(n) := \begin{cases} 0, \text{ ftan } n = 1 \\ k, \text{ ftan } n = \prod_{i=1}^k p_i^{\lambda_i} \end{cases}$$

Αποδείξτε ότι:

$$\sum_{n \le x} \omega(n) = x \log \log x + O(x)$$

Πρόταση (3.3.1): (Εκτιμίσεις του Mertens) Για κάθε μη αρνητικό x, αληθεύει η σχέση:

$$\sum_{p \le x} \frac{1}{p} = \log \log x + A + O\left(\frac{1}{\log x}\right)$$

για κάποια από β υτη σταθερά A.

Πρόταση (3.3.2): Για τη συνάρτηση $\sum_{n\leqslant x}\omega(n)$ αβηθεύει:

$$\sum_{n \leqslant x} \omega(n) = \sum_{p \leqslant x} \left\lfloor \frac{x}{p} \right\rfloor$$

Απόδειξη: Πράγματι, εάν $χ_{\mathbb{P}}$ είναι η δείκτρια συνάρτηση των πρώτων:

$$\sum_{n\leqslant x}\omega(n)=\sum_{n\leqslant x}\sum_{p\mid n}=\sum_{n\leqslant x}\sum_{d\mid n}\chi_{\mathbb{P}}(d)$$

Η μορφή αυτή του αθροίσματος είναι περισσότερο διαχειρίσιμη, αφού γνωρίζουμε πώς εναλλάσσονται τα αθροίσματα της μορφής $\sum_{n\leqslant x}\sum_{d\mid n}(\cdot)$. Συγκεκριμένα:

$$\sum_{n \leqslant x} \omega(n) = \sum_{d \leqslant x} \chi_{\mathbb{P}}(d) \left\lfloor \frac{x}{d} \right\rfloor = \sum_{p \leqslant x} \left\lfloor \frac{x}{p} \right\rfloor$$

Λύση: Δεδομένων των δύο προτάσεων, η λύση της άσκησης έχει ως ακολούθως: Γράφουμε:

$$\sum_{n \leqslant x} \omega(n) = \sum_{p \leqslant x} \frac{x}{p} - \sum_{p \leqslant x} \left\{ \frac{x}{p} \right\}$$

και παρατηρούμε ότι:

$$\sum_{x \le x} \left\{ \frac{x}{p} \right\} \ll x$$

Επομένως:

$$\sum_{n \leqslant x} \omega(n) = x \sum_{p \leqslant x} \frac{1}{p} + O(x)$$

Τώρα, χρησιμοποιώντας την Παρατήρηση (3.3.2), προκύπτει το ζητούμενο:

$$\sum_{n \leqslant x} \omega(n) = x \log \log x + \overbrace{Ax + O\left(\frac{x}{\log x}\right) + O(x)}^{O(x)}$$
$$= x \log \log x + O(x)$$

Άσκηση 3.4.

i. Έστω f, f_0, g αριθμητικές συναρτήσεις τέτοιες ώστε $f = f_0 * g$. Αν $F(x) = \sum_{n \leqslant x} f(n)$ και $F_0(x) = \sum_{n \leqslant x} f_0(n)$ αποδείξτε ότι:

$$F(x) = \sum_{d \le x} g(d) F_0\left(\frac{x}{d}\right)$$

ii. Γράφοντας $\mu^2 = u*(\mu^2*\mu)$ και χρησιμοποιώντας το i., δείξτε ότι:

$$\sum_{n \le x} \mu^2(n) = \frac{6}{\pi^2} x + O(\sqrt{x})$$

Επιπλέον, με την υπόθεση ότι το θεώρημα των πρώτων αριθμών ισχύει, αποδείξτε ότι:

$$\sum_{n \le x} \mu^2(n) = \frac{6}{\pi^2} x + o(\sqrt{x})$$

Θεώρημα (3.4.1): Δεδομένων δύο αριθμητικών συναρτήσεων f_0, g , ορίζουμε:

$$F_0(x) = \sum_{n \leqslant x} f_0(n)$$
 kai $G(x) = \sum_{n \leqslant x} g(n)$

Για κάθε $1 \leqslant y \leqslant x$ αβηθεύει:

$$\sum_{n \leqslant x} (f_0 * g)(n) = \sum_{d \leqslant y} g(d) F_0\left(\frac{x}{d}\right) + \sum_{m \leqslant x/y} f_0(m) G\left(\frac{x}{m}\right) - F_0\left(\frac{x}{y}\right) G(y)$$

Απόδειξη: Συνοπτικά αποδεικνύουμε την εν λόγω σχέση ως εξής:

$$\sum_{n \leqslant x} (f_0 * g)(n) = \sum_{md \leqslant x} f_0(m)g(d)$$

$$= \sum_{md \leqslant x} f_0(m)g(d) + \sum_{md \leqslant x} f_0(m)g(d)$$

$$= \sum_{d \leqslant y} g(d) \sum_{m \leqslant x/d} f_0(m) + \sum_{m \leqslant x/y} f_0(m) \sum_{y < d \leqslant x/m} g(d)$$

$$= \sum_{d \leqslant y} g(d)F_0\left(\frac{x}{d}\right) + \sum_{m \leqslant x/y} f_0(m) \left[G\left(\frac{x}{m}\right) - G(y)\right]$$

$$= \sum_{d \leqslant y} g(d)F_0\left(\frac{x}{d}\right) + \sum_{m \leqslant x/y} G\left(\frac{x}{m}\right) - G(y) \sum_{m \leqslant x/y} f_0(m)$$

$$= \sum_{d \leqslant y} g(d)F_0\left(\frac{x}{d}\right) + \sum_{m \leqslant x/y} f_0(m)G\left(\frac{x}{m}\right) - F_0\left(\frac{x}{y}\right)G(y)$$

Πόρισμα (3.4.1): Άμεσο πόρισμα του Θεωρήματος (3.4.1) είναι η σχέση:

$$F(x) = \sum_{n \leqslant x} (f_0 * g)(n) = \sum_{d \leqslant x} g(d) F_0\left(\frac{x}{d}\right)$$

η οποία είναι ειδική περίπτωση αυτού, εάν y = 1.

Πρόταση (3.4.1): Αληθεύει ότι:

$$\zeta(2)\sum_{n=1}^{\infty} \frac{\mu(n)}{n^2} = 1$$

Πρόταση (3.4.2): Υπευθυμίζουμε ότι το θεώρημα των πρώτων αριθμών προκύπτει από τη σχέση:

$$\sum_{n=1}^{\infty} \frac{\mu(n)}{n} = 0$$

Αυτήν την σχέση θα χρησιμοποιήσουμε για να αποδείξουμε την «ισχυρή» τάξη μεγέθους - κανείς βέβαια θα μπορούσε να χρησιμοποιήσει πιο άμεσα το Θεώρημα των πρώτων αριθμών, μέσω της ισοδύναμης σχέσης:

$$\lim_{x \to \infty} \frac{1}{x} \sum_{n \leqslant x} \mu(n) = 0$$

Λήμμα (3.4.1): Η συνάρτηση $(\mu^2 * \mu)(n)$ είναι ίση με την $\mu(\sqrt{n})$ όταν $n = k^2$ για κάποιον $k \in \mathbb{N}$. Επιπβέον, $(\mu^2 * \mu)(n) = 0$ όταν $n \neq k^2$.

 $\underline{Aπόδειξη}$: Η συνάρτηση $\mu^2 * \mu$ είναι πολλαπλασιαστική, αφού οι μ^2, μ είναι πολλαπλασιαστικές και το γινόμενο Dirichlet δύο πολλαπλασιαστικών συναρτήσεων είναι πολλαπλασιαστική συνάρτηση. Μελετούμε λοιπόν αυτή μόνο σε δυνάμεις πρώτων. Ισχύει λοιπόν:

$$(\mu^2*\mu)(p^s) = \sum_{t=0}^s \mu^2(p^t)\mu(p^{s-t}) = \begin{cases} -1, \text{ όταν } s=2\\ 0, \text{ διαφορετικά} \end{cases}$$

αφού για s=1:

$$(\mu^2 * \mu)(p) = \mu^2(1)\mu(p) + \mu^2(p)\mu(1) = -1 + 1 = 0$$

yια s=2:

$$\mu^{2}(1)\mu(p^{2}) + \mu^{2}(p)\mu(p) + \mu^{2}(p^{2})\mu(1) = 0 - 1 + 0 = -1$$

και για κάθε $s\geqslant 3$:

$$\mu(p^t)\mu(p^{s-t}) = 0, \ \forall t \in [s] \cup \{0\}$$

Έχοντας κάνει αυτήν την εισαγωγή, ξεκινάμε τη λύση.

i. Λύση: Από το **Πόρισμα (3.4.1)** προκύπτει το εν λόγω ερώτημα.

[ii.] Λύση: Γράφουμε $\mu^2=u*(\mu^2*\mu)$ και θέτουμε $f_0=u,\,g=\mu^2*\mu.$ Εφαρμόζοντας το i., έχουμε:

$$\sum_{n \leqslant x} \mu^2(n) = \sum_{d \leqslant x} \left(g(d) \sum_{s \leqslant x/d}^{\lfloor x/d \rfloor} \right) = \sum_{d \leqslant x} (\mu^2 * \mu)(d) \left\lfloor \frac{x}{d} \right\rfloor$$

Από το Λήμμα (3.4.1) παίρνουμε:

$$\begin{split} \sum_{n \leqslant x} \mu^2(n) &= \sum_{k \leqslant x} \mu(k) \left\lfloor \frac{x}{k^2} \right\rfloor \\ &= x \sum_{k \leqslant \sqrt{x}} \frac{\mu(k)}{k^2} - \sum_{k \leqslant \sqrt{x}} \mu(k) \left\{ \frac{x}{k^2} \right\} \\ &= x \sum_{k=1}^{\infty} \frac{\mu(k)}{k^2} - x \sum_{k > \sqrt{x}} \frac{\mu(k)}{k^2} - \sum_{k \leqslant \sqrt{x}} \mu(k) \left\{ \frac{x}{k^2} \right\} \end{split}$$

Σε αυτό το σημείο παρατηρούμε τα εξής δύο:

$$-\sum_{k>\sqrt{x}}\frac{\mu(k)}{k^2}\ll -\int_{\sqrt{x}}^{\infty}\frac{1}{t^2}\;dt\ll \frac{1}{\sqrt{x}}\; \mathrm{kal}\; \sum_{k\leqslant \sqrt{x}}\mu(k)\left\{\frac{x}{k^2}\right\}\ll \sum_{k\leqslant \sqrt{x}}\ll \sqrt{x}$$

επομένως:

$$\sum_{x \le x} \mu^2(n) = \frac{1}{\zeta(2)} x + O(\sqrt{x}) + O(\sqrt{x}) = \frac{6}{\pi^2} x + O(\sqrt{x})$$

Μάλιστα, με προσεκτικότερους υπολογισμούς μπορούμε να δείξουμε καλύτερη τάξη μεγέθους, συγκεκριμένα $o(\sqrt{x})$. Παρατηρούμε λοιπόν ότι:

$$0 \leqslant \left\lceil x \sum_{k > \sqrt{x}} \frac{\mu(k)}{k^2} \middle/ \sqrt{x} \right\rceil \leqslant \left\lceil \sqrt{x} \sum_{k > \sqrt{x}} \frac{\mu(k)}{k} \middle/ \sqrt{x} \right\rceil \xrightarrow{x \to \infty} 0$$

όπου η σύγκλιση αληθεύει διότι οι ουρές συγκλινουσών ακολουθιών τείνουν στο 0. Επιπλέον:

$$0 \leqslant \left[\sum_{k \leqslant \sqrt{x}} \mu(k) \left\{ \frac{x}{k^2} \right\} \middle/ \sqrt{x} \right] \leqslant \left[\sqrt{x} \sum_{k \leqslant \sqrt{x}} \frac{\mu(k)}{k} \middle/ \sqrt{x} \right] \xrightarrow{x \to \infty} 0$$

όπου η σύγκλιση δικαιολογείται από την Πρόταση (3.4.2). Κατ' επέκταση λοιπόν:

$$-x\sum_{k>\sqrt{x}}\frac{\mu(k)}{k^2} - \sum_{k\leqslant\sqrt{x}}\mu(k)\left\{\frac{x}{k^2}\right\} = o(\sqrt{x})$$

κι άρα:

$$\sum_{n \le x} \mu^2(n) = \frac{6}{\pi^2} x + o(\sqrt{x})$$

Άσκηση 3.5. Δείξτε ότι:

$$\sum_{n=1}^{\infty}\frac{d^2(n)}{n^s}=\frac{\zeta^4(s)}{\zeta(2s)}, \text{ όπου }\Re(s)>1$$

Πρόταση (3.5.1): Για κάθε $\varepsilon>0$, υπάρχει σταθερά $C(\varepsilon)$ τέτοια ώστε, ομοιόμορφα για ό β α τα n:

$$d(n) \leqslant C(\varepsilon)n^{\varepsilon}$$

Πρόταση (3.5.2) Για κάθε πολλαπλασιαστική συνάρτηση f για την οποία $\sum_{n=1}^{\infty}|f(n)|<\infty$ αληθεύει:

$$\sum_{n=1}^{\infty} f(n) = \prod_{p} \sum_{k=0}^{\infty} f(p^k)$$

Απόδειξη: Πράγματι, παρατηρούμε ότι:

$$\sum_{n=1}^{\infty} f(n) = \sum_{I,J \in \mathscr{P} \mathbb{N}} \prod_{(i,j) \in I \times J} f(p_i^j) = \sum_{1p} f(^1p) + \sum_{1p,2p} f(^1p) f(^2p) + \sum_{1p,2p,3p} f(^1p) f(^2p) f(^3p) + \cdots$$

Επομένως:

$$\sum_{n=1}^{\infty} f(n) = \prod_{p} \sum_{k=0}^{\infty} f(p^k)$$

Πόρισμα (3.5.1): Επειδή η $\frac{1}{n^s}$ είναι ποββαπβασιαστική συνάρτηση (μάβιστα πβήρως ποββαπβασιαστική):

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^2} = \prod_{p} \left. \frac{1}{1 - \frac{1}{p^s}} \right| = \left(\prod_{p} 1 - \frac{1}{p^s} \right)^{-1}$$

για κάθε $s\in\mathcal{H}_1:=\{s\in\mathbb{C}\mid\Re(s)>1\}$

Λύση: Βάσει της Πρότασης (3.5.1), η σειρά:

$$\sum_{n=1}^{\infty} \frac{d^2(n)}{n^s}$$

συγκλίνει απόλυτα στο ημιεπίπεδο $\mathcal{H}_1 := \{ s \in \mathbb{C} \mid \Re(s) > 1 \}.$

Η $d^2(n)/n^s$ είναι πολλαπλασιαστική, αφού οι $d(n), n^s$ είναι πολλαπλασιαστικές συναρτήσεις. Κατ' επέκταση, από την **Πρόταση (3.5.2)**:

$$\sum_{n=1}^{\infty} \frac{d^2(n)}{n^s} = \prod_{p} \sum_{k=0}^{\infty} \frac{d^2(p^k)}{p^{ks}}$$
$$= \prod_{p} \sum_{k=0}^{\infty} \frac{(k+1)^2}{(p^s)^k}$$

Σε αυτό το σημείο παρατηρούμε ότι, για $a=1/p^s$:

$$\sum_{k=0}^{\infty} (k+1)^2 a^k = \sum_{k=0}^{\infty} k(k-1)a^k + 3\sum_{k=0}^{\infty} ka^k + \sum_{k=0}^{\infty} a^k = \frac{1-a^2}{1-a^4}$$

κι επομένως:

$$\sum_{n=1}^{\infty} \frac{d^2(n)}{n^s} = \prod_{p} \frac{1 - \frac{1}{p^s}}{\left(1 - \frac{1}{p}\right)^4}$$
$$= \left[\prod_{p} 1 - \frac{1}{p^2}\right] \cdot \left[\prod_{p} 1 - \frac{1}{p}\right]^{-4}$$

Τέλος, από το Πόρισμα (3.5.1) προκύπτει το ζητούμενο.

$$\sum_{n=1}^{\infty} \frac{d^2(n)}{n^s} = \frac{\zeta^4(s)}{\zeta(2s)}$$

Άσκηση 3.6. Ορίζουμε την αριθμητική συνάρτηση:

$$C_q(n) = \sum_{d \mid (n,q)} d \cdot \mu \left(\frac{q}{d}\right)$$

Αποδείξτε ότι:

$$\frac{\sigma(n)}{n} = \frac{\pi^2}{6} \sum_{q=1}^{\infty} \frac{C_q(n)}{q^2}$$

όπου φυσικά $\sigma = N * u$.

Λύση: Γράφουμε ισοδύναμα:

$$\sum_{q=1}^{\infty} \frac{C_q(n)}{q^2} = \sum_{q=1}^{\infty} \sum_{d|(n,q)} \frac{1}{q^2} d \cdot \mu \left(\frac{q}{d}\right)$$
$$= \sum_{k=1}^{\infty} \sum_{d|n} \frac{1}{(dk)^2} d \cdot \mu \left(\frac{dk}{d}\right)$$
$$= \sum_{k=1}^{\infty} \sum_{d|n} \frac{1}{d} \cdot \frac{\mu(k)}{k^2}$$

και εναλλάσουμε τη σειρά των αθροισμάτων. Χρησιμοποιώντας επίσης την Πρόταση (3.4.1):

$$\begin{split} \sum_{q=1}^{\infty} \frac{C_q(n)}{q^2} &= \sum_{k=1}^{\infty} \sum_{d|n} \frac{1}{d} \cdot \frac{\mu(k)}{k^2} \\ &= \sum_{d|n} \frac{1}{d} \sum_{k=1}^{\infty} \frac{\mu(k)}{k^2} \\ &= \frac{6}{\pi^2} \sum_{d|n} \frac{1}{d} \\ &= \frac{6}{\pi^2} \cdot \frac{1}{n} \sum_{d|n} \frac{n}{d} \\ &= \frac{6}{\pi^2} \frac{\sigma(n)}{n} \end{split}$$

Το ζητούμενο λοιπόν αποδεικνύεται.

4 Πρώτοι σε αριθμητικές προόδους

Άσκηση 4.1. Έστω ${\mathscr X}$ πραγματικός χαρακτήρας $\mod m$. Ορίζουμε:

$$f(n) = \sum_{d|n} \mathscr{X}(d)$$

Δείξτε ότι $f(n) \geqslant 0$ και $f(n) \geqslant 1$ αν ο n είναι τέλειο τετράγωνο.

Λύση: Έστω $f=\mathscr{X}*u$. Η \mathscr{X} είναι πλήρως πολλαπλασιαστική, κι άρα και η f. Οπότε γράφοντας $n=\prod_{i=1}^k p_i^{a_i}$:

$$f(n) = \prod_{i=1}^{k} f(p_i^{a_i})$$

$$= \prod_{i=1}^{k} \left(\mathcal{X}(1) + \mathcal{X}(p_i) + \mathcal{X}(p_i^2) + \dots + \mathcal{X}(p_i)^{a_i} \right)$$

$$= \prod_{i=1}^{k} \left(1 + \mathcal{X}(p_i) + \mathcal{X}(p_i^2) + \dots + \mathcal{X}(p_i)^{a_i} \right)$$

Επειδή τώρα ο $\mathscr X$ είναι (πραγματικός) χαρακτήρας, $|\mathscr X(p_i)|=1\Rightarrow \mathscr X(p_i)=\pm 1$, κι άρα:

• Εάν $\mathscr{X}(p_i)=1$, τότε:

$$1 + \mathcal{X}(p_i) + \mathcal{X}(p_i^2) + \dots + \mathcal{X}(p_i)^{a_i} = 1 + a_i \geqslant 1$$

• Εάν $\mathscr{X}(p_i) = -1$, τότε:

$$1 + \mathcal{X}(p_i) + \mathcal{X}(p_i^2) + \dots + \mathcal{X}(p_i)^{a_i} = \chi_{2\mathbb{N}}(a_i)$$

Έπεται λοιπόν ότι $f(n) \geqslant 0$, και μάλιστα f(n) = 0 εάν και μόνο αν υπάρχει περιττό a_i . Οπότε, αν ο n είναι τέλειο τετράγωνο, τότε $f(n) \geqslant 1$.

Άσκηση 4.2. Δείξτε ότι κάθε αριθμητική συνάρτηση f(n) που είναι περιοδική $\operatorname{mod} k$ και ικανοποιεί την:

$$f(n) = 0, \gcd(n, k) = 1$$

εκφράζεται ως γραμμικός συνδυασμός χαρακτήρων $\operatorname{mod} k$.

Πρόταση (4.2.1): (Σχέσεις ορθογωνιότητας) Εάν \mathscr{X} , \mathscr{Y} είναι δύο χαρακτήρες $\operatorname{mod} k$, αληθεύει:

$$\sum_{a=1}^k \mathscr{X}(a)\overline{\mathscr{Y}(a)} = \begin{cases} \varphi(k), \text{ εάν } \mathscr{X} = \mathscr{Y} \\ 0, \text{ αλλιώς} \end{cases}$$

Επιπλέον, εάν a_1, a_2 είναι σχετικά πρώτοι προς τον k:

$$\sum_{\mathscr{X}}\mathscr{X}(a_1)\overline{\mathscr{X}(a_2)} = \begin{cases} \varphi(k), \text{ εάν } a_1 = a_2 \mod k \\ 0, \text{ αλλιώς} \end{cases}$$

Λύση: Ας υποθέσουμε ότι τέτοιος γραμμικός συνδυασμός χαρακτήρων υπάρχει και είναι ο:

$$f(n) = \sum_{\mathscr{Y}} t_{\mathscr{Y}} \mathscr{Y}(n)$$

Τότε γράφουμε (για κάποιον τυχαίο χαρακτήρα $\mathscr X$):

$$\sum_{n=1}^{k} f(n)\overline{\mathcal{X}(n)} = \sum_{n=1}^{k} \sum_{\mathcal{Y}} t_{\mathcal{Y}} \mathcal{Y}(n) \overline{\mathcal{X}(n)}$$
$$= \sum_{\mathcal{X}} t_{\mathcal{Y}} \sum_{n=1}^{k} \mathcal{Y}(n) \overline{\mathcal{X}(n)}$$

και χρησιμοποιώντας στο εσωτερικό άθροισμα την Πρόταση (4.2.1):

$$\sum_{n=1}^{k} f(n)\overline{\mathcal{X}(n)} = \varphi(k)t_{\mathcal{X}}$$

Οπότε αν τέτοιος γραμμικός συνδυασμός υπάρχει, υποχρεωτικά ικανοποιεί τη σχέση:

$$t_{\mathcal{X}} = \frac{1}{\varphi(k)} \sum_{n=1}^{k} f(n) \overline{\mathcal{X}(n)}$$

Για να ολοκληρώσουμε την απόδειξη, δείχνουμε ότι:

$$f(m) = \sum_{\mathscr{M}} \frac{1}{\varphi(k)} \sum_{n=1}^{k} f(n) \overline{\mathscr{Y}(n)} \mathscr{Y}(m)$$

Πράγματι, εάν $\gcd(m,k)>1$, τότε f(m)=0 (από την υπόθεση) και:

$$\sum_{n=1}^k f(n)\overline{\mathscr{Y}(n)}\mathscr{Y}(m) = \frac{1}{\varphi(k)}\sum_{n=1}^k f(n)\sum_{\mathscr{Y}}\overline{\mathscr{Y}(n)}\mathscr{Y}(m) = 0$$

(από την **Πρόταση (4.2.1)**). Εάν τώρα gcd(m, k) = 1:

$$\sum_{n=1}^{k} f(n)\overline{\mathscr{Y}(n)}\mathscr{Y}(m) = \frac{1}{\varphi(k)} \sum_{n=1}^{k} f(n) \sum_{\mathscr{Y}} \overline{\mathscr{Y}(n)}\mathscr{Y}(m)$$
$$= \frac{1}{\varphi(k)} \sum_{n=1}^{k} f(n)\varphi(k)\chi_{\{n=m \mod k\}}$$
$$= f(s), \ \mu\epsilon \ s \leqslant k, \ s = m \mod k$$

όπου στην δεύτερη ισότητα χρησιμοποιείται η **Πρόταση (4.2.1)**. Επειδή η f είναι k-περιοδική, έπεται f(s) = f(m) και και' επέκταση το ζητούμενο.

Άσκηση 4.3. Έστω f(x) πολυώνυμο βαθμού $n\geqslant 1$, με ακέραιους συντελεστές. Υποθέτουμε ότι για κάθε πρώτο p υπάρχει φυσικός $m\in\mathbb{N}$ και πρώτος q τέτοιοι ώστε:

$$f(p) = q^m$$

i. Δείξτε ότι αν $f(p)=q^m$, τότε για κάθε $\ell\in\mathbb{N}$:

$$q^{m+1} \mid f(p + \ell p^{m+1}) - f(p)$$

ii. Εάν $f(p)=q^m$ με $p \neq q > 1$, δείξτε ότι αν ο $p + \ell q^{m+1}$ είναι πρώτος, τότε:

$$f(p + \ell q^{m+1}) = q^m$$

- iii. Εάν $p \neq q > 1$, τότε η συνθήκη $\gcd(p,q^m) = 1$ εξασφαλίζει ότι υπάρχουν άπειροι πρώτοι της μορφής $p + \ell q^{m+1}$.
- iv. Συμπεράνετε ότι $f(x) = x^n$.

ί. Λύση: Εάν το πολυώνυμο παίρνει τη μορφή:

$$f(x) = \sum_{k=0}^{n} a_k x^k$$

τότε έχουμε:

$$f(p + \ell q^{m+1}) - f(p) = \sum_{k=1}^{n} a_k (p + \ell q^{m+1})^k$$

$$= \sum_{k=0}^{n} \sum_{t=0}^{k} \binom{k}{t} p^k (\ell q^{m+1})^{k-t} - \sum_{k=0}^{n} a_k p^k$$

$$= \sum_{k=0}^{n} a_k p^k + \sum_{k=0}^{n} \sum_{t=1}^{k} \binom{k}{t} p^k (\ell q^{m+1})^{k-t} - \sum_{k=0}^{n} a_k p^k$$

$$= \sum_{k=0}^{n} \sum_{t=1}^{k} \binom{k}{t} p^k (\ell q^{m+1})^{k-t} \propto q^{m+1}$$

 $\begin{tabular}{l} \hline {
m ii.} \hline \Lambda \dot{\it u} {
m \sigma} \eta \end{tabular}$ Εφόσον ο $p + \ell q^{m+1}$ είναι πρώτος, υπάρχει φυσικός s και πρώτος d ώστε:

$$f(p + \ell q^{m+1}) = d^s$$

Από το i. έχουμε:

$$q^{m+1} \mid f(p + \ell q^{m+1}) - f(p) = d^s - q^m$$

οπότε υπάρχει ακέραιος a τέτοιος ώστε $d^s-q^m=aq^{m+1}\Rightarrow d^s=q^m(aq+1)$. Επειδή τώρα ο d είναι πρώτος και ο q τον διαιρεί, ο τελευταίος θα είναι είτε d - οπότε είναι d. Έχουμε λοιπόν ότι:

$$q^s = q^m(aq+1) \Rightarrow s = m$$
 каз $a = 0$

κι άρα $f(p + \ell q^{m+1}) = q^m$.

iii. Λύση: Το ζητούμενο είναι άμεση συνέπεια του θεωρήματος του Dirichlet:

Θεώρημα (4.3.1): Εάν gcd(k, l) = 1, υπάρχουν άπειροι πρώτοι της μορφής km + l.

iv. Λύση: Από το iii. έπεται ότι υπάρχουν άπειροι πρώτοι της μορφής $p + \ell q^{m+1}$, κι από το ii., για όλους αυτούς τους πρώτους:

$$f(p + \ell q^{m+1}) = q^m$$

Αυτό οδηγεί σε αντίφαση, αφού το f ως πολώνυμο δεν μπορεί να παίρνει άπειρες φορές την ίδια τιμή. Μάλιστα το άτοπο προέκυψε επειδή υποθέσαμε ότι $p \neq q$, οπότε p = q.

Μέχρι τώρα λοιπόν έχουμε δείξει ότι για κάθε πρώτο p:

$$f(p) = p^{m_p}$$

για κάποια ακολουθία m_p φυσικών. Επειδή τώρα:

$$\frac{f(p)}{p^n} \xrightarrow{p \to \infty} a_n$$

τελικά για όλους τους πρώτους $f(p)=p^n$. Το f ως πολυώνυμο καθορίζεται από τις τιμές οποιασδήποτε άπειρης ακολουθίας που τείνει στο ∞ , οπότε έχουμε δείξει ότι $f(x)=x^n$.