MATH 136: Linear Algebra 1 Example Sheets

M. Sachin Kumar

Fall 2022

- 1. (a) Given that $\begin{bmatrix} a \\ 2 \\ 3 \end{bmatrix} + 2 \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 8 \\ b \\ 12 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ c \end{bmatrix}$, determine the values of a, b, and c.
 - (b) Let $\vec{v} = \begin{bmatrix} 2+i \\ 2 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 3+6i \\ -3-3i \end{bmatrix}$. Determine $\vec{u} \in \mathbb{C}^2$ such that $9\vec{v} 3i\vec{u} = -i\vec{w}$.
- 2. Given two unit vectors in \mathbb{R}^3 that are orthogonal to both $\vec{v} = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$ and
 - $\vec{w} = \begin{bmatrix} -1\\1\\3 \end{bmatrix}$. Prove that these are the only two unit vectors in \mathbb{R}^3 that are orthogonal to both \vec{v} and \vec{w} .
- 3. Let $n \in \mathbb{N}$. Prove or disprove the following statements.
 - (a) $\forall \vec{v}, \vec{w} \in \mathbb{R}^n$ with $\vec{v} \neq \vec{0}$ and $\vec{w} \neq \vec{0}$, $\text{proj}_{\vec{w}}(\text{perp}_{\vec{v}}(\vec{w})) = \vec{0}$.
 - (b) $\forall \vec{v}, \vec{w} \in \mathbb{R}^n$ with $\vec{w} \neq \vec{0}$, $\text{proj}_{\vec{w}}(\text{perp}_{\vec{w}}(\vec{v})) = \vec{0}$.
- 4. Let $\vec{v}, \vec{w} \in \mathbb{R}^3$. Prove that $||\vec{v} \times \vec{w}||^2 = ||\vec{v}||^2 ||\vec{w}||^2 (\vec{v} \cdot \vec{w})^2$.
- 5. (a) Disprove the following statement,

$$\forall c \in \mathbb{C} \text{ and all } \vec{u}, \vec{v} \in \mathbb{C}^2, \langle \vec{u}, c\vec{v} \rangle = c \langle \vec{u}, \vec{v} \rangle$$

(b) Prove the Conjugate Linearity property,

$$\forall c \in \mathbb{C} \text{ and all } \vec{u}, \vec{v}, \vec{w} \in \mathbb{C}^n, \langle \vec{u}, \vec{v} + c \vec{w} \rangle = \langle \vec{u}, \vec{v} \rangle + c \langle \vec{u}, \vec{w} \rangle$$

- 1. Let (-1,2) and (2,-3) be two points on a line \mathcal{L} in \mathbb{R}^2 .
 - (a) Find a vector equation for \mathcal{L}
 - (b) find a parametric equation for \mathcal{L}
 - (c) Determine whether the point (3, -4) is on \mathcal{L} .
- 2. Prove that span $\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\} = \operatorname{span} \left\{ \begin{bmatrix} 2\\1\\2 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\} \in \mathbb{R}^3$

(**Hint**: to prove two sets are equal, you must show that they are subsets of each other.)

3. Let \mathcal{L}_1 and \mathcal{L}_2 be two line in \mathbb{R}^3 with respect to vector equations:

$$\vec{\ell}_1 = \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix} + t \begin{bmatrix} 2 \\ 4 \\ -3 \end{bmatrix} \text{ and } \vec{\ell}_2 = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} + t \begin{bmatrix} 2 \\ -3 \\ 4 \end{bmatrix}, t \in \mathbb{R}$$

Prove that \mathcal{L}_1 and \mathcal{L}_2 do not intersect.

- 4. The points A = (3, -2, 1) and B = (-2, 4, 3) lie on a plane \mathcal{P} .
 - (a) Prove that the point C = (-7, 10, 5) must also lie on \mathcal{P} .
 - (b) Given that the line with vector equation $\vec{\ell} = t \begin{bmatrix} \frac{5}{2} \\ -3 \\ -1 \end{bmatrix}$, $t \in \mathbb{R}$ also lies on \mathcal{P} , find a scalar equation of \mathcal{P} .
- 5. (a) Find a and b such that $\begin{bmatrix} 2a \\ 4 \end{bmatrix} \notin \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ b \end{bmatrix} \right\} \in \mathbb{R}^2, \forall a,b \in \mathbb{R}$
 - (b) Determine the solution set, S, to the following system of linear equations.

$$x_1 + 3x_2 + 4x_4 = 0$$
$$x_1 + 3x_2 - x_3 + 3x_4 = 0$$

Express S as the span of one or more vectors.

1. Consider the following systems of linear equations:

$$-3x_1 - 6x_2 - 3x_3 = 3$$

$$2x_1 + 4x_2 + 3x_3 = -4$$

$$-4x_1 - 8x_2 - 3x_3 = 2$$

- (a) Give the coefficient matrix and the augmented matrix of this system.
- (b) Determine the reduced row echelon form of the augmented matrix.
- (c) State the rank of the coefficient matrix and the rank of the augmented matrix. State the nullity of the coefficient matrix.
- (d) Determine the solution set for the system.
- 2. Solve the following system of linear equations.

$$iz_1 + (1+i)z_2 = -5 - 3i$$

$$2iz_1 + (3+2i)z_2 + 2iz_3 = -15$$

$$3z_1 + (3-3i)z_2 + z_3 = -6 + 16i$$

$$3iz_1 + (4+3i)z_2 + 2iz_3 = -20 - 3i$$

3. A system of linear equations has the following augmented matrix.

$$\begin{bmatrix} 1 & -3 & 4 & 7 \\ 0 & 2a & -4a & 6a \\ 0 & 0 & b^2 - 25 & b + 5 \end{bmatrix}$$

 $\forall a, b \in \mathbb{R}$. Determine all values of a and b.

- (a) is inconsistent
- (b) has a unique solution
- (c) has infinitely many solutions.
- 4. Let $\vec{v}_1, \ldots, \vec{v}_k \in \mathbb{R}^n$. Assume that $\operatorname{Span}\{\vec{v}_1, \ldots, \vec{v}_k\} = \mathbb{R}^n$. Prove that $n \leq k$, i.e., \mathbb{R}^n cannot be spanned by fewer than n vectors.

(a) Let
$$\vec{v}_1 = \begin{bmatrix} v_{11} \\ v_{12} \\ \vdots \\ v_{1n} \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} v_{21} \\ v_{22} \\ \vdots \\ v_{2n} \end{bmatrix}$, ..., $\vec{v}_k = \begin{bmatrix} v_{k1} \\ v_{k2} \\ \vdots \\ v_{kn} \end{bmatrix}$, then
$$\begin{aligned} v_{11}x_1 + v_{21}x_2 + \dots + v_{k1}x_k &= b_1 \\ v_{12}x_1 + v_{22}x_2 + \dots + v_{k2}x_k &= b_2 \\ \vdots \\ v_{1n}x_1 + v_{2n}x_2 + \dots + v_{kn}x_k &= b_n \end{aligned}$$

Prove that the system of LE's is consistent, $\forall b_1, b_2, \dots, b_n \in \mathbb{R}$.

- (b) Using part (a), prove that $n \leq k$.
- 5. Let $\vec{v}_1, \vec{v}_2, \vec{v}_3 \in \mathbb{R}^2$ be distinct vectors. Prove or disprove the following statements.
 - (a) If $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is a spanning set for \mathbb{R}^2 , then every vector in \mathbb{R}^2 can be expressed as a linear combination of \vec{v}_1, \vec{v}_2 and \vec{v}_3 in a unique way.
 - (b) If $\{\vec{v}_1, \vec{v}_2\}$ is a spanning set of \mathbb{R}^2 , then every vector in \mathbb{R}^2 can be expressed as a linear combination of \vec{v}_1 and \vec{v}_2 in a unique way.

- 1. Consider $A = \begin{bmatrix} 2 & -1 & 3 & s \\ 0 & 2 & -3 & 1 \\ -3 & 4 & 1 & 2 \end{bmatrix}, \vec{b} = \begin{bmatrix} 2 \\ t \\ 0 \\ -2 \end{bmatrix}$ and $\vec{c} = \begin{bmatrix} -7 \\ 0 \\ u \end{bmatrix}$
 - (a) Given that $A\vec{b} = \vec{c}$, determine the value of s, t and u.
 - (b) Use your answer from part (a) to write \vec{c} as a linear combination of the columns of A.
- 2. Consider the system of linear systems

$$x_1 - x_2 - x_3 + 3x_4 = 2$$
$$2x_1 - x_2 - 3x_3 + 4x_4 = 6$$
$$x_1 - 2x_3 + x_4 = 4$$

The solution set of this system of equations is,

$$\left\{ \begin{bmatrix} 4\\2\\0\\0 \end{bmatrix} + s \begin{bmatrix} 4\\2\\2\\0 \end{bmatrix} + t \begin{bmatrix} -2\\4\\0\\2 \end{bmatrix} : \forall s, t \in \mathbb{F} \right\}$$

3. Prove that, $\forall n \in \mathbb{N}$

$$\begin{bmatrix} 3 & 2 \\ -1 & 0 \end{bmatrix}^2 = \begin{bmatrix} 2^{n+1} & 2^{n+1} \\ 1 & 2 \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ 2^n & 2^n \end{bmatrix}$$

Hint: Use proof by induction

- 4. (a) Let $A \in M_{n \times n}(\mathbb{F})$ be such that $A^2 = \mathcal{O}_{n \times n}$. Prove that $\operatorname{Col}(A) \subseteq \operatorname{Null}(A)$
 - (b) Let $Q \in M_{n \times n}(\mathbb{R})$ be such that $Q^T Q = I_n$, and let $\vec{u}, \vec{v} \in \mathbb{R}^n$. Prove that \vec{u} is orthogonal to \vec{v} if and only if $Q\vec{u}$ is orthogonal to $Q\vec{v}$.

 Hint: Consider the product $\vec{u}^T \vec{v}$ of the $1 \times n$ and $n \times 1$ matrices \vec{u}^T and \vec{v} .
- 5. Let $A \in M_{m \times n}$ and let $\vec{b} \in \mathbb{R}^m$. prove that consistent system of linear equations $A\vec{x} = \vec{b}$ has a unique solution if and only if $\text{Null}(A) = {\vec{0}}$.

1. (a) Determine the kernel of the linear transformation $T_1:\mathbb{R}^3\to\mathbb{R}^3$ defined by

$$T_1\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_1 + 2x_2 + 3x_3\\x_1 + 2x_2\\x_1\end{bmatrix}$$

- (b) Is T_1 one-to-one?
- (c) Determine the range of the linear transformation $T_2:\mathbb{R}^3\to\mathbb{R}^2$ defined by,

$$T_1\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_1 + x_2\\x_3\end{bmatrix}$$

- (d) Is T_2 onto?
- 2. Let $T:\mathbb{R}^2\to\mathbb{R}^2$ be the linear transformation defined by a projection onto the line with vector equation $\vec{\ell}=t\begin{bmatrix}1\\1\end{bmatrix}$, $t\in\mathbb{R}$ followed by a counterclockwise rotation about the origin by an angle of $\frac{\pi}{6}$.
 - (a) Determine the standard matrix of T
 - (b) Use the standard matrix to find the image of $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$ under the transformation T.
- 3. Prove or Disprove the following statements
 - (a) The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x^2 \\ y^2 \end{bmatrix}$ is linear
 - (b) Let $A, B \in M_{n \times n}(\mathbb{F})$. If A and B are invertible, then AB is invertible and

$$(AB)^{-1} = B^{-1}A^{-1}$$

- 4. Let $\vec{a} = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}, \vec{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} \in \mathbb{R}^n$ (two fixed vectors). Let $T : \mathbb{R}^n \to \mathbb{R}^2$ be defined as $T(\vec{x}) = \begin{bmatrix} \vec{a} \cdot \vec{x} \\ \vec{b} \cdot \vec{x} \end{bmatrix}$
 - (a) Prove that T is linear
 - (b) Find all choices of \vec{a} and \vec{b} such that T is onto. (show proof)
 - (c) Prove that if $n \geq 3$, then for all choices of \vec{a} and \vec{b} , T is not one-to-one.
- 5. Let $T: \mathbb{F}^n \to \mathbb{F}^m$ be a transformation. We say that T is invertible if there exists a transformation $S: \mathbb{F}^m \to \mathbb{F}^n$ such that

$$\forall \vec{x} \in \mathbb{F}^n, (S \circ T)(\vec{x}) = \vec{x}$$

and

$$\forall \vec{x} \in \mathbb{F}^m, (T \circ S)(\vec{x}) = \vec{x}$$

- (a) Prove that if S exists as defined above, then S is unique.
- (b) Assume now that T is a linear transformation. Prove that if S exists as defined above, then S must be a linear transformation.