Graph Algorithms

Weighted Graphs

Weighted Graphs

Recall the graph

Weighted Graphs

- Recall the graph
 - G = (V, E)
 - *V*: Set of vertices
 - *E*: Set of edges
 - E is a subset of pairs (v, v'): $E \subseteq V \times V$
 - Undirected graph: (v, v') and (v', v) are same edge
 - Directed graph:
 - (v, v') is an edge from v to v'
 - Does not guarantee that (v', v) is also an edge

Adding edge weights

- Adding edge weights
 - Label each edge with a number cost

- Adding edge weights
 - Label each edge with a number cost
 - Ticket price on a flight sector
 - Tolls on highway segment
 - Distance travelled between two stations
 - Typical time between two location during peak hour traffic

- Weighted graph
 - G = (V, E)
 - Weight function, $w: E \rightarrow Reals$

Weighted Graphs ... (Shortest paths)

- Weighted graph
 - G = (V, E)
 - Weight function, $w: E \rightarrow Reals$
- Let $e_1=(v_0,v_1)$, $e_2=(v_1,v_2)$, ... , $e_n=(v_{n-1},v_n)$ be a path from v_0 to v_n
- Cost of the path is $w(e_1) + w(e_2) + \cdots + w(e_n)$
- Shortest path from v_0 to v_n : minimum cost

- Single source
 - Find shortest paths from some fixed vertex, say 1, to every other vertex

Single source

- Find shortest paths from some fixed vertex, say 1, to every other vertex
 - Transport finished product from factory (single source) to all retail outlets

Single source

- Find shortest paths from some fixed vertex, say 1, to every other vertex
 - Transport finished product from factory (single source) to all retail outlets
 - Courier company delivers items from distribution center (single source) to addresses

- All pairs
 - Find shortest paths between every pair of vertices i and j

All pairs

- Find shortest paths between every pair of vertices i and j
 - Railway routes, shortest way to travel between any pair of cities

• For instance, shortest path from 1 to 2,3, ..., 7

- Imagine vertices are oil depots, edges are pipelines
- Set fire to oil depot at vertex 1
 - Fire travels at uniform speed along each pipeline
- First oil depot to catch fire after 1 is nearest vertex
- Next oil depot is second nearest vertex

• ...

- Compute expected time to burn of each vertex
- Update this each time a new vertex burns

- Algorithmically
- Maintain two arrays
 - BurnVertices[], initially False for all i
 - ExpectedBurnTime[], initially ∞ for all i

- Algorithmically
- Maintain two arrays
 - BurnVertices[], initially False for all i
 - ExpectedBurnTime[], initially ∞ for all i
 - For ∞ , use sum of all edge weights +1

- Algorithmically
- Maintain two arrays
 - BurnVertices[], initially False for all i
 - ExpectedBurnTime[], initially ∞ for all i
 - For ∞ , use sum of all edge weights +1
 - Set ExpectedBurnTime[1] = 0
 - Repeat, until all vertices are burnt
 - Find *j* with minimum *ExpectedBurnTime*
 - Set BurnVertices[j] = True
 - Recompute ExpectedBurnTime[k] for each neighbor k of j

Dijkstra's algorithm

```
function ShortestPaths(s){ // assume source is s
      for i = 1 to n
            BV[i] = False; EBT[i] = infinity
      EBT[s] = 0
      for i = 1 to n
      Choose u such that BV[u] == False and EBT[u] is minimum
            BV[u] = True
            for each edge (u, v) with BV[v] == False
                  if EBT[v] > EBT[u] + weight(u, v)
                        EBT[v] = EBT[u] + weight(u, v)
```

Dijkstra's algorithm ...

```
function ShortestPaths(s){ // assume source is s
      for i = 1 to n
            Visited[i] = False; Distance[i] = infinity
      Distance[s] = 0
      for i = 1 to n
      Choose u such that Visited[u] == False and Distance[u] is
minimum
            Visited[u] = True
            for each edge (u, v) with Visited[v] == False
                  if Distance[v] > Distance[u] + weight(u, v)
                        Distance[v] = Distance[u] + weight(u, v)
```

- Dijkstra's algorithm is greedy
 - Select vertex with minimum expected burn time

- Dijkstra's algorithm is greedy
 - Select vertex with minimum expected burn time
- Need to prove that greedy strategy is optimal
- Most times, greedy approach fails
 - Current best may not be globally optimal

- Correctness
- Each new shortest path we discover extends an earlier one

• By induction, assume we have identified shortest paths to all vertices

already burnt

- Next vertex to burn is v, via x
- Can't later find a shorter path from y to w to v

• Complexity: ?

- Complexity
- Outer loop runs *n* times
 - In each iteration, we burn one vertex
 - O(n) scan to find minimum burn time vertex
- Each time we burn a vertex v, we have to scan all its neighbors to update burn times
 - O(n) scan of adjacency matrix to find all neighbors
- Overall $O(n^2)$

- Complexity
- Does adjacency list help?

- Complexity
- Does adjacency list help?
 - Scan neighbors to update burn times
 - O(m) across all iterations
- However, identifying minimum burn time vertex still takes $\mathcal{O}(n)$ in each iteration
- Still $O(n^2)$

- Complexity
- Can maintain ExpectedBurnTime in a more sophisticated data structure?

- Complexity
- Can maintain ExpectedBurnTime in a more sophisticated data structure?
 - Different types of trees (heaps, red-black trees) allow both the following in $O(\log n)$ time
 - Find and delete minimum
 - Insert or update value

- Complexity
- Can maintain ExpectedBurnTime in a more sophisticated data structure?
 - Different types of trees (heaps, red-black trees) allow both the following in $O(\log n)$ time
 - Find and delete minimum
 - Insert or update value
- With such a tree
 - Finding minimum burn time vertex takes $O(\log n)$
 - With adjacency list, updating burn times take $O(\log n)$ each, total O(m) edges
- Overall $O(n \log n + m \log n) = O((n + m) \log n)$

Dijkstra's algorithm: Limitations

What if edge weights can be negative?

Dijkstra's algorithm: Limitations

- What if edge weights can be negative?
- Our correctness argument is no longer valid

Dijkstra's algorithm: Limitations ...

• Why negative weights?

Dijkstra's algorithm: Limitations ...

- Why negative weights?
- Weight represent money
 - Taxi driver earns money from airport to city, travels empty to next pick-up point
 - Some segment earn money. Some lose money
- Chemistry
 - Nodes are compounds, edges are reactions
 - Weights are energy absorbed/released by reaction

Negative weights ...

- Negative cycle: loop with a negative weight
 - Problem is not well defined with negative cycles
 - Repeatedly traversing cycle pushes down cost
- With negative edges, but no negative cycles, shortest paths do exist

About shortest paths

- Shortest paths will never loop
 - Never visit the same vertex twice
 - At most length n-1

About shortest paths

- Shortest paths will never loop
 - Never visit the same vertex twice
 - At most length n-1
- Every prefix of a shortest path is itself a shortest path
 - Suppose the shortest path from s to t is

$$s \rightarrow v_1 \rightarrow v_2 \rightarrow v_3 \dots \rightarrow v_m \rightarrow t$$

• Every prefix $s \to v_1 \to v_2 \to v_3 \dots \to v_r$ is a shortest path to v_r

Updating Distance()

- When vertex j is "burnt", for each (j, k) update
 - Distance(k) = min(Distance(k), Distance(j) + weight(j, k))
- Refer to this as update(j,k)
- Dijkstra's algorithm
 - When we compute update(j,k), Distance(j) is always guaranteed to be correct distance to j
- What we can say in general?

Properties of update(j, k)

- update(j,k):
 - Distance(k) = min(Distance(k), Distance(j) + weight(j, k))
- Distance(k) is no more than Distance(j) + weight(j, k)
- If Distance(j) is correct and j is the second-last node on shortest path to k, Distance(k) is correct
- Update is safe
 - *Distance(k)* never becomes "too small"
 - Redundant updates cannot hurt

Updating distance() ...

- update(j,k)
 - Distance(k) = min(Distance(k), Distance(j) + weight(j,k))
- Dijkstra's algorithm performs a particular "greedy" sequence of updates
 - Computes shortest paths without negative weights
- With negative edges, this sequence does not work
- Is there some sequence that dose work?

Updating distance() ...

Suppose the shortest path from s to t is

$$s \rightarrow v_1 \rightarrow v_2 \rightarrow v_3 \dots \rightarrow v_m \rightarrow t$$

- If our update sequence includes ..., $update(s, v_1), ..., update(v_1, v_2), ..., update(v_2, v_3), ..., update(v_m, t), ..., in that order, <math>Distance(t)$ will be computer correctly
- If Distance(j) is correct and j is second-last node on shortest path to k, Distance(k) is correct after update(j,k)

- Initialize distance(s) = 0, $distance(u) = \infty$ for all other vertices
- Update all edges n-1 times!

- Initialize distance(s) = 0, $distance(u) = \infty$ for all other vertices
- Update all edges n-1 times!

```
update(s,v1)
...
update(v1,v2)
...
update(v2,v3)
...
update(vm,t)
```

- Initialize distance(s) = 0, $distance(u) = \infty$ for all other vertices
- Update all edges n-1 times!

Iteration 1	Iteration 2

update(s,v1)	update(s,v1)
update(v ₁ ,v ₂)	update(v ₁ ,v ₂)
***	***
update(v2,v3)	update(v2,v3)
update(v _m ,t)	update(v _m ,t)
•••	

- Initialize distance(s) = 0, $distance(u) = \infty$ for all other vertices
- Update all edges n-1 times!

Iteration 1	Iteration 2	

update(s,v ₁)	update(s,v1)	
update(v ₁ ,v ₂)	update(v ₁ ,v ₂)	

update(v2,v3)	update(v2,v3)	
update(v _m ,t)	update(v _m ,t)	

- Initialize distance(s) = 0, $distance(u) = \infty$ for all other vertices
- Update all edges n-1 times!

Iteration 1	Iteration 2		Iteration n-1
***		***	
update(s,v ₁)	update(s,v1)		update(s,v1)
update(v ₁ ,v ₂)	update(v ₁ ,v ₂)	***	update(v ₁ ,v ₂)
***		***	***
update(v2,v3)	update(v2,v3)		update(v2,v3)
update(v _m ,t)	update(v _m ,t)		update(v _m ,t)

- Initialize distance(s) = 0, $distance(u) = \infty$ for all other vertices
- Update all edges n-1 times!

Iteration 1	Iteration 2		Iteration n-1

update(s,v1)	update(s,v ₁)	***	update(s,v ₁)

update(v ₁ ,v ₂)	update(v ₁ ,v ₂)		update(v ₁ ,v ₂)

update(v2,v3)	update(v2,v3)	***	update(v ₂ ,v ₃)
***		***	
update(v _m ,t)	update(v _m ,t)		update(v _m ,t)

- Initialize distance(s) = 0, $distance(u) = \infty$ for all other vertices
- Update all edges n-1 times!

Iteration 1	Iteration 2	 Iteration n-1
update(s,v ₁)	update(s,v1)	 update(s,v ₁)
***		 ***
update(v ₁ ,v ₂)	update(v ₁ ,v ₂)	 update(v ₁ ,v ₂)
***	***	
update(v2,v3)	update(v2,v3)	 update(v ₂ ,v ₃)
update(v _m ,t)	update(v _m ,t)	 update(v _m ,t)

- Initialize distance(s) = 0, $distance(u) = \infty$ for all other vertices
- Update all edges n-1 times!

Iteration 1	Iteration 2		Iteration n-1
	***	***	
update(s,v1)	update(s,v ₁)		update(s,v ₁)
update(v ₁ ,v ₂)	update(v ₁ ,v ₂)	***	update(v ₁ ,v ₂)
***	***		
update(v2,v3)	update(v2,v3)		update(v2,v3)

update(v _m ,t)	update(v _m ,t)		update(vm,t)

```
function BellmanFord(s)//source s, with -ve weights
for i = 1 to n
     Distance[i] = infinity
Distance[s] = 0
for i = 1 to n - 1 //repeat n-1 times
     for each edge(j,k) in E
       Distance(k) = min(Distance(k), Distance(j) +
weight(j,k)
```


Bellman-Ford algorithm (Complexity)

- Outer loop runs *n* times
- In each loop, for each edge(j,k), we run update(j,k)
 - Adjacency matrix- $O(n^2)$ to identify all edges
 - Adjacency list O(m)
- Overall
 - Adjacency matrix- $O(n^3)$
 - Adjacency list O(mn)

Weighted graphs

- Negative weights are allowed, but not negative cycles
- Shortest paths are still well defined
- Bellman-Ford algorithm computes single-source shortest paths
- Can we compute shortest paths between all pairs of vertices?

About shortest paths

- Shortest paths will never loop
 - Never visit the same vertex twice
 - At most length n-1
- Use this to inductively explore all possible shortest paths efficiently

Inductively exploring shortest paths

- Simplest shortest path from i to j is a direct edge(i, j)
- General case:
 - $i \rightarrow v_1 \rightarrow v_2 \rightarrow v_3 \dots \rightarrow v_m \rightarrow j$
 - All of $\{v_1, v_2, v_3 \dots, v_m\}$ are distinct, and different from i and j
 - Restrict what vertices can appear in this set

Inductively exploring shortest paths ...

- Recall that $V = \{1, 2, ..., n\}$
- $W^k(i,j)$: weight of shortest path from i to j among paths that only go via $\{1,2,\ldots,k\}$
 - {k+1,...,n} cannot appear on the path
 - i, j themselves need not be in $\{1, 2, ..., k\}$
- $W^0(i,j)$: direct edges
 - $\{1,2,\ldots,n\}$ cannot appear between i and j

Inductively exploring shortest paths ...

- From $W^{k-1}(i,j)$ to $W^k(i,j)$
- Case 1: Shortest path via $\{1,2,\ldots,k\}$ does not use vertex k
 - $W^{k}(i,j) = W^{k-1}(i,j)$
- Case 2: Shortest path via $\{1,2,\ldots,k\}$ does go via k
 - k can appear only once along this path
 - Break up as paths i to k and k to j, each via $\{1,2,\ldots,k-1\}$
 - $W^{k}(i,j) = W^{k-1}(i,k) + W^{k-1}(k,j)$
- Conclusion: $W^{k}(i,j) = \min(W^{k}(i,j), W^{k-1}(i,k) + W^{k-1}(k,j))$

- W^0 is adjacency matrix with edge weights
 - $W^0[i][j]$ = weight (i,j) if there is an edge (i,j), = ∞ , otherwise
- For k in 1,2,...,n
 - Compute $W^k(i,j)$ from $W^{k-1}(i,j)$ using $W^k(i,j) = \min(W^k(i,j), W^{k-1}(i,k) + W^{k-1}(k,j))$
- W^n contains weights of shortest paths for all pairs

```
function FloydWarshall
for i = 1 to n
  for j = 1 to n
     W[i][j][0] = infinity
for each edge (i, j) in E
  W[i][j][0] = weight(i, j)
for k = 1 to n
  for i = 1 to n
     for j = 1 to n
        W[i][j][k] = \min(W[i][j][k-1], W[i][k][k-1] + W[k][j][k-1]
1])
```


Complexity

Complexity

- Easy to see that the complexity is $O(n^3)$
 - *n* iterations
 - In each iteration, we update n^2 entries