

BAZY DANYCH teoria

dimon.work/kurs.html

Podstawowe pojęcia

- -> **Dane** wartości określonego typu
- -> Informacje przyporządkowanie danych do obiektów (za pomocą atrybutów).

Informacja musi być związana z rzeczywistym światem.

Inne przyporządkowanie - inna informacja o obiektach: gdzie są dane i w jaki sposób one są przyporządkowane,

(Ex. pogoda - We Wrocławiu deszczowo) |stan pogody| -----> |Wrocław| |02.10.2024|

-> **Wiedza** - mechanizm wnioskowania na podstawie informacji

mechanizm - logika

(jeśli A ==> to B, z warunkiem niepewności - nie wiemy czy napewno A zachodzi), (Ex. każdy ma własny mechanizm => nie rozumiem czemu człowiek tak się zachował) wnioskowanie - podstawa podejmowanie decyzij (Ex. rozkład zajęć)

Podstawowe pojęcia

Baza danych (BD) — zbiór powiązanych ze sobą danych

 System zarządzania bazą danych (SZBD) — zestaw narzędzi programowych do zarządzania danymi

Database Management System,
DBMS

odpowiada za:

- obsługę języka bazy danych
- przechowywanie i pobieranie danych
- optymalizację BD

Podstawowe pojęcia

Rodzaje BD

- --> 1. Tabela relacyjna BD
- ->2. Graph grafowa BD, NoSQL
- 3. Drzewo hierarchiczna BD
- 4. Obiekt obiektowa BD
- 5. Logiczna struktura logiczna BD (ex. wiek(x, 30), waga(x, 20))

```
| System BD:
| Użytkownik <------> Interfejs <----> |
| (formularze, (SQL) | System Zarządzania Bazami danych + Baza Danych
| jeżyk naturalny)
```

Rodzaje SZBD

Plik – Serwer: MS Access

Pliki danych są centralnie przechowywane na serwerze plików, natomiast SZBD jest zainstalowany na każdym komputerze klienckim.

Klient – Serwer: MySQL, PostgreSQL...

Zarówno SZBD, jak i sama baza danych znajdują się na serwerze i są dostępne zdalnie z komputerów klienckich

Wbudowane: SQLite

lżejsza wersja SZBD często używana jako część aplikacji mobilnej.

Klient-Serwerowe SZBD

- MySQL
- PostgreSQL
- Oracle
- Ms SQL
- Maria DB (~ MysQL)

Wszystkie są relacyjne.

Wszystkie obsługują SQL

NIE relacyjne modele

HIERARCHICZNY

Hierarchiczny model - W tym modelu przechowywane dane są zorganizowane w postaci odwróconego drzewa. Informacja jest zawarta w dokumentach oraz w strukturze drzewa

NoSQL, mongoDB opierają się na hierarchiczne modele

NIE relacyjne modele

SIECIOWY

Zmodyfikowana wersja modelu hierarchicznego, pozwalająca na definiowanie relacji wiele-do-wielu w postaci struktury drzewiastej bez powtarzania poszczególnych wartości w ramach obiektu danych.... Rekordy zawierają pola przechowujące dane.

Relacyjne Modele

- Podstawą relacyjnych modeli jest algebra relacji.
- Algebra relacyjna definiuje system operacji na relacjach (tabelach):przecięcie, odejmowanie, łączenie itp.
- Wszystkie te operacje są wyrażone przez SQL (Structured Query Language)

Relacyjna Baza Danych

Relacyjna baza danych – to opisany i zorganizowany zbiór tabel połączonych relacjami – związkami między sobą. Ten sposób przechowywania informacji pozwala na uniknięcie redundancji (powtarzania się danych) oraz przeprowadzanie analiz na podstawie wielu tabel. Każda tabela składa się z rekordów (tak nazywamy pojedyncze wiersze). Poszczególne rekordy składają się z pól (komórek), przechowujących jedną daną.

Tabela

- Relacja tabela
- Krotka wiersz-

	contact_name character varying (30)	address character varying (60)	city character varying (15)
1	Maria Anders	Obere Str. 57	Berlin
2	Ana Trujillo	Avda. de la Constitución 2222	México D.F.
3	Antonio Moreno	Mataderos 2312	México D.F.
4	Thomas Hardy	120 Hanover Sq.	London
5	Christina Berglund	Berguvsvägen 8	Luleå
6	Hanna Moos	Forsterstr. 57	Mannheim
7	Frédérique Citeaux	24, place Kléber	Strasbourg
8	Martín Sommer	C/ Araquil, 67	Madrid
9	Laurence Lebihan	12, rue des Bouchers	Marseille
10	Elizabeth Lincoln	23 Tsawassen Blvd.	Tsawassen
11	Victoria Ashworth	Fauntleroy Circus	London
12	Patricio Simpson	Cerrito 333	Buenos Aires
13	Francisco Chang	Sierras de Granada 9993	México D.F.

Klucz obcy

Klucz obcy (ang. foreing key) – to kolumna w tabeli, która ustanawia powiązanie między danymi w dwóch różnych tabelach. Tworzy relację między tabelami, odwołując się do kolumny (kolumn) klucza podstawowego innej tabeli.

Customer Table

Customer ID	Name	Address	Phone#
	Primary Key	Py Key DatabaseTown.com Foreign Key	
Order Table			
Order No.	Customer ID	Item ID	Order Detail

jeden do jednego

• Relacja jeden do jednego - oznacza, że dla wiersza w tabeli A może istnieć <u>maksymalnie jeden</u> zgodny wiersz w tabeli B i odwrotnie

PrzewodniczącyKlas					
PrzewodniczacyID	Imie	Nazwisko	Telefon		
1 \	Zbigniew	Pracowity	693456945		
2	Andrzej	Sumienny	705763497		
3	Paweł	Cichy	623094886		
Klasy					

Klasy				
KlasalD	Nazwa	PrzewodniczacyID	LiczbaUczniów	
1	ILO	2	30	
2	III TI	1	25	
3	IV TM	3	27	

jeden do wielu

Relacja jeden do wielu - jest najbardziej powszechnym rodzajem relacji. W przypadku relacji tego typu dla wiersza w tabeli A może istnieć wiele zgodnych wierszy w tabeli B. Natomiast dla wiersza w tabeli B może istnieć tylko jeden zgodny wiersz w tabeli A.

WychowawcyKlas					
WychowawcalD	Imie	Nazwisko	Telefon		
1 \	Jan	Mądry	693456945		
2	Jadwiga	Mentor	705567497		
3	Anna	Wesoła	689194886		

Klasy			
KlasalD	Nazwa	WychowawcalD	LiczbaUczniów
1	ILO	\ 1	30
2	III TI	\ 1	25
3	IV TM	3	27

wiele do wielu

Relacja wiele do wielu - dla wiersza w tabeli A <u>może istnieć wiele</u> <u>zgodnych</u> wierszy w tabeli B i odwrotnie. Taka relacja jest tworzona przez zdefiniowanie <u>trzeciej tabeli</u>, nazywanej tabelą łączącą. Klucz podstawowy tabeli skrzyżowań składa się z <u>kluczy obcych</u> zarówno z tabeli A, jak i z tabeli B.

Tabela łącząca

Relacja wiele do wielu i tabela łacząca.

Normalizacja baz danych

Normalizacja baz danych - modyfikacja struktury bazy danych w celu zlikwidowania nadmiarowości danych, oraz ułatwić dostęp do danych. Wyróżniamy 3 podstawowe "standardy" poprawnego tworzenia bazy danych, czyli <u>3 postacie normalne</u>.

Atomowość – 1NF

Relacja jest w pierwszej postaci normalnej, jeśli wartości pól są atomowe, czyli zawierają pojedyńczą informacje.

Tabela nie normalizowana

Kod przedmiotu	Przedmiot	Nauczyciel	Kod ucznia	Nazwisko ucznia	lmię ucznia
A01	Projektowanie	Lind	S01	Rooväli	Marek
			S02	Peterson	Maria
			S03	Martson	Ella
A02	Budowanie	Sepp	S02	Peterson	Maria
			S03	Martson	Ella

INF

Każde zajęcia są powiązane z więcej niż jednym uczniem, co można przedstawić jako wektor uczniów (grupę uczniów) dla każdego przedmiotu. Aby przekształcić tabelę do pierwszej postaci normalnej (1NF), należy oddzielić dane o uczniach i zajęciach, tworząc osobną tabelę uczniów.

Tabela zajęć zawiera tyle wierszy, ile jest różnych przedmiotów. Tabela uczniów zapisanych na dany przedmiot ma tyle wierszy, ile jest rejestracji. Każdy uczeń pojawia się w niej więcej niż raz i ma przypisany kod zajęć, na które jest zapisany.

Zajęcia

Przedmiot	Nauczyciel
Projektowanie	Lind
Budowanie	Sepp

Zarejestrowani uczniowie

Kod przedmiotu	Kod ucznia	Nazwisko ucznia	lmię ucznia
A01	S01	Rooväli	Marek
A01	S02	Peterson	Maria
A01	S03	Martson	Ella
A02	S02	Peterson	Maria
A02	S03	Martson	Ella

Klasy — 2NF

Relacja jest w drugiej postaci normalnej, wtedy kiedy jest w pierwszej oraz każda tabela powinna przechowywać dane dotyczące tylko konkretnej klasy obiektów.

Kod przedmiotu	Kod ucznia
A01	S01
A01	S02
A01	S03
A02	S02
A02	S03

Kod ucznia	Nazwisko ucznia	lmię ucznia
S01	Rooväli	Marek
S02	Peterson	Maria
S03	Martson	Ella

Tabele po normalizacji — **2NF**

1. Tabela Studenci (przechowuje dane o studentach):

StudentID	Imię	Nazwisko	Kierunek Studiów
1	Jan	Kowalski	Informatyka
2	Anna	Nowak	Matematyka

2. Tabela Oceny (przechowuje dane o ocenach studentów):

StudentID	Przedmiot	Ocena
1	Matematyka	4.0
1	Fizyka	3.5
2	Matematyka	5.0

3NF

Relacja jest w trzeciej postaci normalnej, wtedy kiedy jest w <u>drugiej postaci</u> <u>normalnej</u> oraz kolumna informacyjna <u>nie należąca do klucza nie zależy też od innej kolumny informacyjnej</u>, nie należącej do klucza. Każdy niekluczowy argument jest zależny tylko od klucza głównego a nie od innej kolumny.

Kod	Nazwisko	lmię	Data urodzenia	Wiek	Ostatnia aktualizacja
S01	Rooväli	Marek	11.09.1955	50	12.11.2001
S02	Peterson	Maria	01.02.1990	14	15.12.2004
S03	Martson	Ella	09.06.1978	26	26.01.2005

Wiek w tej tabeli można obliczyć na podstawie daty urodzenia, więc ta informacja jest zbędna. Tę wadę można łatwo wyeliminować poprzez przekształcenie tabeli studenta do trzeciej postaci normalnej.

3NF

Kod przedmiotu	Przedmiot	Nauczyciel	Miejsca siedzące	Wolne miejsca
A01	Projektowanie	Lind	5	2
A02	Budowanie	Sepp	6	4

Czasami uzależnienie nie jest takie łatwe do wykrycia. Przyjrzyjmy się tabeli "Zajęcia", która rejestruje możliwą liczbę miejsc w każdej klasie. Liczbę dostępnych miejsc można obliczyć odejmując liczbę zarejestrowanych studentów od liczby dostępnych miejsc. Kolumnę "Dostępne miejsca" należy wykluczyć z tabeli. Doprowadzenie tabeli do trzeciej postaci normalnej.