

$$\begin{array}{c|c}
\hline
R_{TH} = R_3 R_4 \\
\hline
R_{TH} = R_3 + R_4 \\
\hline
R_3 + R_4 \\
\hline
R_4 + R_5 + R_4
\end{array}$$

$$\begin{array}{c|c}
R_{TH} = R_3 R_4 \\
\hline
R_3 + R_4 \\
\hline
R_4 + R_5 + R_4
\end{array}$$

$$\begin{array}{c|c}
R_{TH} = R_4 V_{CC} \\
\hline
R_3 + R_4 \\
\hline
R_4 + R_5 + R_4
\end{array}$$

$$\begin{array}{c|c}
R_{TH} = R_5 R_5 \\
\hline
R_5 + R_4 \\
\hline
R_5 + R_4 \\
\hline
R_5 + R_5 \\
R_5 + R_5 \\
\hline
R_5 + R_5 \\
R_5 + R_5 \\
\hline
R_5 + R_5 \\
R_5 + R_5 \\
\hline
R_5 + R_5 \\
R_5 + R$$

$$I_{Z} + \frac{V_{IN}}{\sqrt{\mu}C_{Z}} + \frac{V_{IN} - V_{BI}}{\sqrt{\mu}C_{Z}} + (V_{ZN} - V_{BI})(-g_{m}) + \frac{V_{ZN} - V_{out}}{R_{u}} = \emptyset$$

$$I_{H} + \frac{1}{\sqrt{\mu}C_{Z}} + \frac{V_{ZN} - V_{BI}}{\sqrt{\mu}C_{Z}} + \frac{1}{\sqrt{\mu}C_{Z}} + \frac{1}{\sqrt{\mu}C_{Z}} = I_{H} + \frac{1}{\sqrt{\mu}C_{Z}} + \frac{1}{\sqrt{\mu}C_{Z}} = I_{H} + \frac{1}{\sqrt{\mu}C_{Z}} + \frac{1}{\sqrt{\mu}C$$

XCL at the base be;

$$\frac{V_{BI}-V_{TN}}{\left(juc_{j}+f_{TI}\right)}+\frac{V_{OI}}{R_{TH}}+\frac{V_{BI}-V_{OUT}}{\left(juc_{jc}\right)}=\emptyset$$

Intentionally design Rosa such that the Wo term is negligible:

Then the design equation simplifies to RTH = 10 FT (1+(Wo/w)2 RTH & TH (Wolu) = Ic VI+(Ic) VICEBW) [5] But equation [5] is no larger valid of the resulting Box does not satisfy the relation: 1 2 16 w Ge [6] RTH = 10wCic Loing buch to the base cerrent analysis ... VIN [-e]/ten-1 Wolw] + VBI [] + VOUT [-) WGe] = B [2] For the last independent equation, XCL at the collecter output: Vour - VRI + (VBI - VIN)(gm) + Vour - VIN + Vour = 0 VIN -gm - 1 + VBI gm - jug + Vout Ro + 1 + jwg = 0 3 Next we make the following swittituding into [1], [2], [2'], and [3] to get a system in terms of two design parameters Ideat and Rc. Fr = PVI gm = I Ro = VA Ic VIN [145] = TE = 1/50 - VI + TE + VBI [TE Je 1/4 - VA] = TE VI [TE VA] = TE

adding 3 to 2"

Sothety the simplified, gymorameted 2" back from 3:

Equetion I' can actually be simplified by itself, now that all terms are given in Ic.

adding 2" to 1" and chopping Ro:
$$V_{IN}[j\omega C_{Z}] + V_{BI}[\frac{1}{R_{TH}}] + V_{OUT}[\frac{1}{R_{TH}}] = I_{Z}$$

Scaling I" in preparation for addition to 2".

-jwCz > Ic

-jwCz > Ic

VrjwCz

VrjwCz

VrwCz Zeg - 1 = +jIcIz

VrwCz

Combing I" and 2" into 2" and obyging to again

V_{BI} $\begin{bmatrix} -\frac{1}{R_{TH}} + \frac{1}{V_T} + \frac{1}{V_T} \frac{1}{W_Cz} \end{bmatrix} + \frac{1}{V_{OUT}} \begin{bmatrix} -\frac{1}{V_T} \frac{1}{W_Cz} \end{bmatrix} = \frac{1}{V_T} \frac{1}{V_T} \frac{1}{W_Cz}$ V_{DI} $\begin{bmatrix} -\frac{1}{V_T} \frac{1}{W_Cz} + -\frac{1}{J_W_Cz} + \frac{1}{V_T} \frac{1}{V_T} \end{bmatrix} + V_{OUT} \begin{bmatrix} -\frac{1}{V_T} \frac{1}{W_Cz} + 1 \end{bmatrix} = \frac{1}{I_Z}$ V_{BI} $\begin{bmatrix} -\frac{1}{V_T} - \frac{1}{J_W_Cz} + \frac{1}{V_T} \frac{1}{V_T} \frac{1}{V_T} \end{bmatrix} + V_{OUT} \begin{bmatrix} -\frac{1}{V_T} \frac{1}{V_T} \frac{1}{V_T} \frac{1}{V_T} \end{bmatrix} = -\frac{1}{I_Z}$ Making a fairly conservative assumption that

R_{TH} ≥ 10 $\frac{V_T}{I_C}$

then we have

1210

VBI [RTH (1- jWRTH CZ)] + Vot [Zeg (1-) VTWCE)] = IE

To repeat, at this point we have

 $V_{IN}[j\omega C_{Z}] + V_{BI}[\frac{1}{R_{TH}}] - + V_{OVT}[\frac{1}{2e_{q}}] = I_{Z}$ $V_{BI}[\frac{1}{R_{TH}}(/-j\omega R_{TH}C_{Z})] + V_{OVT}[\frac{1}{2e_{q}}(/-j\frac{V_{T}\omega C_{E}}{I_{e}})] = -I_{Z}$ $V_{BI}[\frac{-1}{R_{TH}}(/+j\omega R_{TH}C_{e})] + V_{OVT}[j\omega C_{e}] = \emptyset$

2N3904

THERMAL DATA

Thermal Resistance Junctic Thermal Resistance Junctic	200 83.3	°C/W

ELECTRICAL CHARACTERISTICS (Tcase = 25 °C unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
ICEX	Collector Cut-off Current (Vss = -3 V)	Vce - 30 V			50	пА
BEX	Base Cut-off Current (VBE = -3 V)	V _{CE} * 30 V			50	nA
V _{(BR)CEO*}	Collector-Emitter Breakdown Vollage (le = 0)	Ic = 1 mA	40			٧
V _{(BR)CBO}	Collector-Base Breakdown Voltage (I _E = 0)	ic = 10 μA	60			٧
V _{(BR)ESO}	Emitter-Base Breakdown Voltage (I _C = 0)	l _E = 10 μA	6			>
VCE(sat)*	Collector-Emitter Saturation Voltage	Ic = 10 mA Is = 1 mA Ic = 50 mA Is = 5 mA			0.2 0.2	>>
V _{BE(set)*}	Base-Emitter Saturation Voltage	ic = 10 mA is = 1 mA ic = 50 mA is = 5 mA	0.65		0.85 0.95	>>
h≠E•	DC Current Gain	Ic = 0.1 mA	60 80 100 60 30		300	
fī	Transition Frequency	Ic = 10 mA VcE = 20 V f = 100 MHz	250	270		MHz
Ссво	Collector-Base Capacitance	le # 0 Vcs = 10 V f = 1 MHz		4		рF
Сево	Emitter-Base Capacitance	Ic = 0 VER = 0.5 V f = 1 MHz		18		рF
NF	Noise Figure	VcE = 5 V lc = 0.1 mA f = 10 Hz to 15.7 KHz Rg = 1 KΩ		5		d₿
tø tr	Delay Time Rise Time	I _C = 10 mA I _B = 1 mA Vcc = 30 V			35 35	113 115
ts tr	Storage Time	ic = 10 mA I _{B1} = -I _{B2} = 1 mA V _{CC} = 30 V			200 50	ns ns

Photo Diode

Product No. MTD3010PM

TO-92 TO-82 Bulk Ammopaci

INTERNAL SCHEMATIC DIAGRAM C C (3) B (2) E (1)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage (I _E = 0)	60	٧
VCEO	Collector-Emitter Voltage (Is = 0)	40	V
VEBO	Emitter-Base Voltage (I _C = 0)	6	V
lc	Collector Current	200	mA
Ptot	Total Dissipation at T _C = 25 °C	625	mW
Tatg	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

From the datachests for the photocliode and transister, it is fairly safe to assume that Ge << Cz = N.Cps So the new equation for 2° com be approximated by VBI FIW CZ] + Vout / Zeg + jwGz - jwCz(VT) = IZ Med to scale 2" for combination with 3"

-jwCz \ \rightarrow \frac{1}{Rru} + jwGje VBI [RTH + jwGe] + Vour [(RTH + jwGe) + (ATH + jwGe) (VT) = -IE. RTH + jwGe) (VT) = -IE. RTH +jwGe] = I (/+jwRTH Ge) = jwGe (/- WRTHGE) = 1- (WRING) = iten wring = white 1/+ (WRING) = - iten white The six Gol Legue Ge West The Example of the Contraction Vgi [RTH + JWGe] + Vour [Wiz + Kerrice) & jten (artice) (VT) (ATH + JWGe) = Iz | -i + Gir | VBI RTH +jwGe + Vor Tola (+ (while) = e i (this (while) + (this) (RTH +jwGe)] = Tz Ge (7 - in White Cie)

Combring 2" into equation 3"

Ver [-1 juck] + Vout [jucce] + (3") V81 [Ary + jwGc] + Voor [Fry + jwGic + (+ jwGic) \frac{\sq}{200}] = Iz \frac{\hat{RTH} + jwGic}{\hat{j}wCz} Vour [- Zegjus = + VT + jusic VT + jusic Vz - Zeg Ic RTH + jusic Zeg Ic + jusic Zeg Ic Pour (z [+jwGe] = W(jc(wRmGe+j) = W(jc(w+j) = W(j-1/+(w)) = if 1/+(w)) = if 1/+(w)) $\int_{\omega} \int_{\omega} \int_{\omega} d\omega = t_{\alpha} \int_{\omega} \left(\frac{1}{\omega_{\alpha}} \right) = t_{\alpha} \left(\frac{\omega}{\omega_{\alpha}} \right)$ = = = (1+jwRTHGE) = = = (1+jw) = = 1/(1+(w)) = itan (w) Bending through by [RTH + jw Ge]... Vous WZeg (= + VT = e-jten-(W/L) + (jw/je+ jw/ge) e-jten-(W/L) = -IE

Vous = VT = (W/L) = + (Jw/je+ jw/ge) w/j-1/4(W/L) = -IE

Vous = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vous = VT = VT = (W/L) = -IE

Vou

4= 20, IC+1

but [whofe + (Ze, Ie e d'horled) [Transition + + I - (1+(w/w)^2)] = -IE Veur [= + jw Cz VT. e-jth (() . (- [] + j -] = - Is Vour (= =) [1 - jw(ztr. e itan (whi). (| 1/4 (whi)) =] = I_{Z}

[7] Zgan = (Zg) [1 - july tr. eita (w). (-1-(-1/2) + + A - 11-(w/w)]2+

13]

 $A = 1 + \frac{Zes}{VT}$, $W_1 = \frac{1}{R_THG_C}$, and $W_2 = \frac{I_C}{C_2VT}$ If the localing from the subsequent stage is insignificant relative to RC, then the frequency response of the first stage can be adjusted by changing T_C RC, R_{TH} , and T_C .

[9]

$$R_{TH} = \frac{1}{2\pi f_{c}C_{jc}}$$

$$I_{c} = 2\pi f_{c}C_{z}V_{T}$$

Lastly the DC operating point design, lased on the chosen Re, Pott, and Ic.

Fa but, assure target, assure Icz MIc

Ica = ToIc, Ica = Ic - Vout + Ie

where Is in the DX current locating

$$R_{1} = \frac{I_{\text{consec}} - I_{\text{OB}}}{I_{\text{co}}} = \frac{I_{\text{CR}} + I_{\text{DB}}}{I_{\text{C}}} = I_{\text{O}} R_{\text{E}} = I_{\text{O}} R_{\text{E}}$$

$$R_{1} = \frac{I_{\text{CC}} - I_{\text{OB}}}{I_{\text{C}}} = \frac{I_{\text{O}} I_{\text{C}}}{I_{\text{C}}} + \frac{I_{\text{DB}}}{I_{\text{C}}} = \frac{I_{\text{O}} I_{\text{C}}}{I_{\text{C}}} + \frac{I_{\text{DB}}}{I_{\text{C}}} = \frac{I_{\text{O}} I_{\text{C}}}{I_{\text{C}}} + \frac{I_{\text{DB}}}{I_{\text{C}}} = \frac{I_{\text{O}} I_{\text{C}}}{I_{\text{C}}} = \frac{I_{\text{O}} I_{\text$$