NPN EPITAXIAL PLANAR TYPE

DESCRIPTION

2SC1945 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers on HF band mobile radio applications.

FEATURES

- High power gain: $G_{pe} \ge 14.5 dB$ $@V_{CC} = 12V, P_0 = 14W, f = 27MHz$
- Emitter ballasted construction for high reliability and good performances.
- TO-220 package similarly is combinient for mounting.
- Ability of withstanding infinite load VSWR when operated at V_{CC} = 16V, P_0 = 18W, f = 27MHz.

APPLICATION

10 to 14 watts output power class AB amplifiers applications in HF band.

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		80	V
VEBO	Emitter to base voltage		5	V
V _{CEO}	Collector to emitter voltage	R _{BE} = ∞	40	V
1c	Collector current		6	Α
Pc	Collector dissipation	Ta = 25°C	1.5	w
		T _C = 25°C	20	W
Τj	Junction temperature		150	°C
Tstg	Storage temperature		-55 to 150	°C
Rth-a	-	Junction to ambient	83.3	.c/M
Rth-c	Thermal resistance	Junction to case	6.25	*c/w

Note. Above parameters are guaranteed independently.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise specified)

Symbol	Parameter	Test conditions	Limits			11-14
		est conditions	Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	I _E =5mA, I _C =0	5			٧
V(BR)CBO	Collector to base breakdown voltage	$I_C = 1 \text{mA}$, $I_E = 0$	80			٧
V(BR)CEO	Collector to emitter breakdown voltage	$I_C = 10 \text{mA}$, $R_{BE} = \infty$	- 40			٧
¹ CBO	Collector cutoff current	V _{CB} = 30V, I _E = 0			100	μА
EBO	Emitter cutoff current	V _{EB} =4V, I _C =0			100	μА
hFE	DC forward current gain *	V _{CE} = 10 V , I _C = 0.1A	10	50	180	_
P ₀	Output power	V _{CC} =12V, P _{IN} =0.5W, f=27MHz	14	16		W
$\eta_{\rm C}$	Collector efficiency		60	70		%

Note. *Pulse test, $P_W = 150 \mu s$, duty=5%

Above parameters, ratings, limits and conditions are subject to change.

TEST CIRCUIT

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

COLLECTOR CURRENT VS. COLLECTOR TO EMITTER VOLTAGE

COLLECTOR TO EMITTER VOLTAGE VCE (V)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (A)

COLLECTOR TO EMITTER BREAKDOWN VOLTAGE VS.

BASE TO EMITTER RESISTANCE R_{BE} (Ω)

NPN EPITAXIAL PLANAR TYPE

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

INPUT POWER Pin (W)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE V_{CC} (V)