Lineare Algebra II (Vogel)

Robin Heinemann

21. April 2017

Inhaltsverzeichnis

18 Eigenwerte

18 Eigenwerte

In diesem Abschnitt sei $n\in\mathbb{N}$, V ein K-VR und $\varphi\in\operatorname{End}_K(V)$.

Frage: V endlichdim. Existiet eine Basis $\mathcal{B}=(v_1,\dots,v_n)$ von V, sodass $M_{\mathcal{B}}(\varphi)$ eine Diagonalmatrix ist, das heißt

$$M_{\mathcal{B}}(\varphi) = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots \\ 0 & \lambda_n \end{pmatrix}$$

 $\begin{array}{l} \text{mit } \lambda_1,\ldots,\lambda_n \in K? \\ \text{Für } i=1,\ldots,n \text{ wäre dann } \varphi(v_i)=\lambda_i v_i \end{array}$

Definition 18.1 $\lambda \in K, v \in V$

- λ heißt Eigenwert von $\varphi \overset{\mathrm{Def}}{\Longleftrightarrow} \exists v \in V, v \neq 0 : \varphi(v) = \lambda v$
- v heißt Eigenvektor zum Eigenwert $\lambda \stackrel{\mathrm{Def}}{\Longleftrightarrow} v \neq 0 \wedge \varphi(v) = \lambda v$
- φ heißt diagonalisierbar $\stackrel{\mathrm{Def}}{\Longleftrightarrow} V$ besitzt eine Basis aus EV von φ

(Falls V endlichdimensional, ist die äquivalent zu: Es gibt eine Basis $\mathcal B$ von V und $\lambda_1,\dots,\lambda_n\in K$ mit

$$M_{\mathcal{B}}(\varphi) = \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$$

Eigenwerte, Eigenvektoren, Diagonalisiebarkeit einer Matrix $A \in M(n \times n, K)$ sind über den Endomorphismus $\tilde{A}: K^n \to K^n$ definiet.

Bemerkung 18.2 $A \in M(n \times n, K)$. Dann sind äquivalent:

- 1. A ist diagonalisiebar.
- 2. Es gibt eine Basis von K^n aus Eigenvektoren von A

$$\text{3. Es gibt ein } S \in \operatorname{GL}(n,K), \lambda_1, \dots, \lambda_n \in K \text{ mit } SAS^{-1} = \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$$

4. A ist ähnlich zu einer Diagonalmatrix

In diesem Fall steht in den Spalten von S^{-1} eine Basis des K^n aus EU von A, und für jede Matrix $A \in M(n \times n, K)$ mit der Eigenschaft, dass die Spalten von S^{-1} eine Basis des K^n aus EV von Abilden, dann ist SAS^{-1} eine Diagonalmatrix (mit den EW auf der Diagonalen.)

Beweis Äquivalenz: \setminus 1. \iff 2. Definition, 2. \iff 3. aus Basiswechselsatz (16.6), 3. \iff 4. aus Definition Ähnlichkeit (16.12)

$$\operatorname{Zusatz:Sei} S \in \operatorname{GL}(n,K) \operatorname{mit} SAS^{-1} = \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} \implies A \big(S^{-1} e_j \big) = S^{-1} \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} e_j.$$

Wegen $S^{-1}\in \mathrm{GL}(n,K)$ ist $S^{-1}e_j\neq 0$, das heißt S^{-1} ist EV von A zum EW λ_j Wegen $S^{-1}\in \mathrm{GL}(n,K)$ ist $\left(S^{-1}e_1,\ldots,S^{-1}e_n\right)$ eine Basis des K^n aus EV von A. Sei $S\in \mathrm{GL}(n,K)$, das heißt die Spalten von S^{-1} eine Basis des K^n aus EV von A bilden, das heißt für alle $j\in\{1,\dots,n\}$ ist $AS^{-1}e_j=\lambda_jS^{-1}e_j$ für ein $\lambda_j\in K$.

$$\implies AS^{-1}e_j = S^{-1}\lambda_j e_j = S^{-1}\begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} e_j \implies SAS^{-1}e_j = \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} e_j, j = 1, \dots, n$$

$$\implies SAS^{-1} = \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$$

Beispiel 18.3 $K = \mathbb{R}, V = \mathbb{R}^2$

$$\begin{array}{l} \text{1. } \varphi:\mathbb{R}^2\to\mathbb{R}^2, \begin{pmatrix} x_1\\x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_2\\x_1 \end{pmatrix} = \begin{pmatrix} 1 & 0\\0 & 1 \end{pmatrix} \begin{pmatrix} x_1\\x_2 \end{pmatrix} \text{ Es ist } \varphi\left(\begin{pmatrix} 1\\1 \end{pmatrix}\right) = \begin{pmatrix} 1\\1 \end{pmatrix} = 1\cdot\begin{pmatrix} 1\\1 \end{pmatrix},\\\\ \text{das heißt } \begin{pmatrix} 1\\1 \end{pmatrix} \text{ ist EV von } \varphi \text{ zum EW 1.}\\\\ \varphi\left(\begin{pmatrix} 1\\-1 \end{pmatrix}\right) = \begin{pmatrix} -1\\1 \end{pmatrix} = (-1)\begin{pmatrix} 1\\-1 \end{pmatrix}, \text{ also ist } \begin{pmatrix} 1\\-1 \end{pmatrix} \text{ EV von } \varphi \text{ zum EW -1. Somit:}\\\\ \left(\begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1 \end{pmatrix}\right) \text{ ist eine Basis des } \mathbb{R}^2 \text{ aus EV von } \varphi, \text{ das heißt } \varphi \text{ ist diagonalisierbar.}\\\\ \text{In Termen von Matrizen: } A = \begin{pmatrix} 0 & 1\\1 & 0 \end{pmatrix} \in M(2\times 2,\mathbb{R}) \text{ ist diagonalisiebar, und mit } S = \begin{pmatrix} 0 & 1\\1 & 0 \end{pmatrix} \in M(2\times 2,\mathbb{R}) \text{ ist diagonalisiebar, und mit } S = \begin{pmatrix} 0 & 1\\1 & 0 \end{pmatrix} \in M(2\times 2,\mathbb{R}) \text{ ist diagonalisiebar, und mit } S = \begin{pmatrix} 0 & 1\\1 & 0 \end{pmatrix} \in M(2\times 2,\mathbb{R}) \text{ ist diagonalisiebar, und mit } S = \begin{pmatrix} 0 & 1\\1 & 0 \end{pmatrix} \in M(2\times 2,\mathbb{R}) \text{ ist diagonalisiebar, und mit } S = \begin{pmatrix} 0 & 1\\1 & 0 \end{pmatrix} \in M(2\times 2,\mathbb{R}) \text{ ist diagonalisiebar, und mit } S = \begin{pmatrix} 0 & 1\\1 & 0 \end{pmatrix} \text{ ist diagonalisiebar, und mit } S = \begin{pmatrix} 0 & 1\\1 & 0 \end{pmatrix} \text{ ist diagonalisiebar, und mit } S = \begin{pmatrix} 0 & 1\\1 & 0 \end{pmatrix} \text{ ist diagonalisiebar, und mit } S = \begin{pmatrix} 0 & 1\\1 & 0 \end{pmatrix} \text{ ist diagonalisiebar, und mit } S = \begin{pmatrix} 0 & 1\\1 & 0 \end{pmatrix} \text{ ist diagonalisiebar, und mit } S = \begin{pmatrix} 0 & 1\\1 & 0 \end{pmatrix} \text{ ist diagonalisiebar, und mit } S = \begin{pmatrix} 0 & 1\\1 & 0 \end{pmatrix} \text{ ist diagonalisiebar, und mit } S = \begin{pmatrix} 0 & 1\\1 & 0 \end{pmatrix} \text{ ist diagonalisiebar.}$$

 $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ ist dann ist $SAS^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ Achtung: Das φ diagonalisiebar ist, heißt nicht, dass jeder Vektor aus $V = \mathbb{R}^2$ ein EV von φ ist, zum Beispiel ist $\varphi\left(\begin{pmatrix}1\\2\end{pmatrix}\right) = \begin{pmatrix}2\\1\end{pmatrix} \neq$ $\lambda \begin{pmatrix} 1 \\ 2 \end{pmatrix} \forall \lambda \in \mathbb{R}.$

2.
$$\varphi:\mathbb{R}^2\to\mathbb{R}^2, \begin{pmatrix} x_1\\x_2 \end{pmatrix}\mapsto \begin{pmatrix} 0 & -1\\1 & 0 \end{pmatrix}\begin{pmatrix} x_1\\x_2 \end{pmatrix}=\begin{pmatrix} -x_2\\x_1 \end{pmatrix}$$
 (= Drehung um $\frac{\pi}{2}$). hat keinen EW. Beweig dafür: später.

Ziel: Suche Kriterien für Diagonalisiebarkeit.

Bemerkung 18.4 v_1,\dots,v_m EV von φ zu paarweise verschiedenen EW $\lambda_1,\dots,\lambda_m\in K$. Dann ist (v_1,\dots,v_m) linear unabhängig, insbesondere ist $m \leq \dim V$. Insbesondere gilt: ist V endlichdimesional, dann hat φ höchstens $\dim(v)$ Eigenwerte.

Beweis per Induktion nach *m*:

IA: $m=1:v_1\neq 0$, da v_1 EV $\implies (v_1)$ linear unabhängig.

IS: sei $m \geq 2$, und die Aussage für m-1 bewiesen.

Seien $\alpha_1,\dots,\alpha_m\in K$ mit $\alpha_1\lambda_1v_1+\dots+\alpha_m\lambda_mv_m=0$ Außerdem: $\alpha_1\lambda_1v_1+\dots+\alpha_m\lambda_1v_m=0$

$$\begin{split} & \Rightarrow \ \alpha_2(\lambda_2-\lambda_1)v_2+\cdots+\alpha_m(\lambda_m-\lambda_1)v_m=0 \\ & \alpha_2\lambda_2-\lambda_1=\cdots=\alpha_m(\lambda_m-\lambda_1)=0 \\ & \Rightarrow \ \alpha_2=\cdots=\alpha_m=0 \\ & \Rightarrow \ \alpha_1v_1=0 \ \Rightarrow \ \alpha_1=0 \ \Rightarrow \ (v_1,\ldots,v_w) \ \text{linear unabhängig} \end{split}$$

Folgerung 18.5 V endlichdemensional, φ hage n paarweise verschiedene EW, wobei $n=\dim V$ Dann ist φ diagonalisiebar.

Beweis Für $i=1,\ldots,n$ sei v_i ein EV von φ zum EW $\lambda_i \implies (v_1,\ldots,v_n)$ linear unabhängig, wegen $n=\dim V$ ist (v_1,\dots,v_n) eine Basis von V aus EV von φ

Definition 18.6 $\lambda \in K$

 $\mathrm{Eig}(\varphi,\lambda):=\{v\in V\mid \varphi(v)=\lambda v\}$ heißt der Eigenraum von φ bezüglich λ . $\mu_{geo}(\varphi, \lambda) := \dim \operatorname{Eig}(\varphi, \lambda)$ heißt die geometrische Vielfachheit von λ . Für $A \in M(n \times n, K)$ setzen vir $\operatorname{Eig}(A, \lambda) := \operatorname{Eig}(\tilde{A}, \lambda), \mu_{qeo}(A, \lambda) := \mu_{qeo}(\tilde{A}, \lambda).$

Bemerkung 18.7 $\lambda \in K$. Dann gilt:

- 1. $\operatorname{Eig}(\varphi, \lambda)$ ist ein UVR von V.
- 2. λ ist EW von $\varphi \iff \text{Eig}(\varphi, \lambda) \neq \{0\}$.
- 3. $\mathrm{Eig}(\varphi,\lambda)$ {0} ist die Menge der zu λ gehörenden EV von φ .

5. Sind
$$\lambda_1, \lambda_2 \in Kmit \lambda_1 \neq \lambda_2$$
, dann $\operatorname{Eig}(\varphi, \lambda_1) \cap \operatorname{Eig}(\varphi, \lambda_2) = \{0\}$

 $\begin{array}{ll} \textbf{Beweis} & \text{ 4. Es ist } v \in \operatorname{Eig}(\varphi,\lambda) \iff \varphi(v) = \lambda v \iff \lambda v - \varphi(v) = 0 \iff (\lambda \operatorname{id}_V - \varphi)(v) = 0 \\ 0 \iff v \in \ker(\lambda \operatorname{id}_V - \varphi) \text{ Es ist } \operatorname{Eig}(A,\lambda) = \ker\left(\lambda \operatorname{id}_{K^n} - \tilde{A}\right) = \ker\left(\lambda E_n - A\right) = \ker\left(\lambda E_n - A\right) = \ker\left(\lambda E_n - A\right) = \operatorname{Lös}(\lambda E_n - A,0)$

- 1. aus 4.
- 2. $\lambda \text{ EW von } \varphi \Leftrightarrow \exists v \in V, v \neq 0 \text{ mit } \varphi(v) = \lambda v \Leftrightarrow \text{Eig}(\varphi, \lambda) \neq \{0\}.$
- 3. klar.

5. Sei
$$\lambda_1 \neq \lambda_2, v \in \text{Eig}(\varphi, \lambda_1) \cap \text{Eig}(\varphi, \lambda_2) \Rightarrow \lambda_1 v = \varphi(v) = \lambda_2 v \Rightarrow \underbrace{(\lambda_1 - \lambda_2)}_{\neq 0} v = 0$$

Bemerkung 18.8 V endlichdimesional, $\lambda \in K$. Dann sind äquivalent:

- 1. λ ist EW von φ
- 2. $\det(\lambda \operatorname{id}_V \varphi) = 0$

$$\begin{array}{ll} \textbf{Beweis} & 1. \Leftrightarrow \operatorname{Eig}(\varphi,\lambda) \neq \{0\} \Rightarrow \ker(\lambda\operatorname{id}_V - \varphi) \neq \{0\} \Rightarrow \lambda\operatorname{id}_V - \varphi \text{ nicht injektiv } \Rightarrow \\ & \lambda\operatorname{id}_V - \varphi \text{ kein Isomorphismus } \Rightarrow \det(\lambda\operatorname{id}_V - \varphi) = 0. \end{array}$$

Definition 18.9 K Körper, $A = (a_{ij}) \in M(n \times n, K)$

$$\chi_A^{char} := \det(tE_n - A) = \det\begin{pmatrix} t - a_{11} & -a_{12} & -a_{1n} \\ -a_{21} & t - a_{22} & \\ & & \ddots & \\ -a_{n1} & \dots & t - a_{nn} \end{pmatrix} \in K[t]$$

heißt das *charakteristische Polynom von A.

Anmerkung Hiefür nötig: Determinanten von Matrizen mit Einträgen in einem kommutativen Ring.

In manchen Büchern
$$\chi_A^{char} = \det(A - tE_n)$$
 (schlecht)

Beispiel 18.10

$$\begin{split} A &= \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \in M(2 \times 2, \mathbb{R}) \\ \Rightarrow A\chi_a^{char} &= \det \begin{pmatrix} t-1 & -1 \\ -3 & t-4 \end{pmatrix} = (t-1)(t-4) - 6 = t^2 - 5t - 2 \end{split}$$

Bemerkung 18.11 $A,B\in M(n\times n,K), A\approx B.$ Dann ist $\chi_A^{char}=\chi_B^{char}.$

Beweis $A \approx B \Rightarrow \exists S \in \mathrm{GL}(n,K) : B = SAS^{-1}$

$$\Rightarrow tE_n - B = tE_n - SAS^{-1} = SS^{-1}tE_n - SAS^{-1} = StE_nS_{-1} - SAS^{-1} = S(tE_n - A)S^{-1}$$

$$\Rightarrow \chi_B^{char} = \det(tE_n - B) = \det(S(tE_n - A)S^{-1}) = \det(S)\det(tE_n - A)\det(S^{-1}) = \underbrace{\det(S)\det(S)^{-1}}_{=1}\det(tE_n - A) = \chi_A^{char} \qquad \Box$$

Definition 18.12 V endlichdim, $n=\dim V, \mathcal{B}$ Basis von $V, \varphi \in \operatorname{End}(V), A=M_{\mathcal{B}}(\varphi)$

$$\chi_{\varphi}^{char} := \chi_{A}^{char} = \det(tE_n - A) \in K[t]$$

heißt das charakteristische Polynom von φ .

Anmerkung χ_{φ}^{char} ist wohldefiniert, dann: Ist \mathcal{B}' eine weitere Basis von $V,A'=M_{\mathcal{B}'}\varphi$, dann ist $A \approx A'$ und deshalb nach 18.11: $\chi_A^{char} = \chi_{A'}^{char}$.

Satz 18.13 V endlichdimensional, $n = \dim V$. Dann gilt:

1. χ_{φ}^{char} ist ein normiertes Polynom von Grad n:

$$\chi_{\varphi}^{char}=t^n+c_{n-1}t^{n-1}+\cdots+c_0$$

mit $c_0 = (-1)^n \det \varphi, c_{n-1} = -^{(\varphi)}$ (vgl. Übung zur Spur)

2. Die Nullstellet von χ_{φ}^{char} sind genau die EW von φ :

$$\lambda \in K$$
ist EW von $\varphi \Leftrightarrow \chi_{\varphi}^{char} \lambda = 0$

Beweis Sei \mathcal{B} eine Basis von $V, A := M_{\mathcal{B}}(\varphi) \in M(n \times n, K)$

1.

$$\begin{split} \chi_{\varphi}^{char} &= \chi_A^{char} = \det \underbrace{(tE_n - A)}_{=:B = (B_{ij})} = \sum_{\sigma \in S_n} \mathrm{sgn}(\sigma) B_{1,\sigma(1)} \cdot \dots \cdot B_{n,\sigma(n)} \\ &= (t - a_{11} \cdot \dots \cdot (t - a_{nn})) + \sum_{\sigma \in S_n \, \{\mathrm{id}\}} \mathrm{sgn}(\sigma) B_{1,\sigma(1)} \cdot \dots \cdot B_{n,\sigma(n)} \\ &\xrightarrow{:=g} \end{split}$$

Für $\sigma \in S_n \quad \{\mathrm{id}\}$ treten in $B_{1,\sigma(1)}, \dots, B_{n,\sigma(n)}$ höchstens n-2 Diagonalelemente auf, also $\deg(g) \le n-2$.

$$\Rightarrow \chi_{\varphi}^{char} = t^n - (a_{11} + \cdots + a_{nn})t^{n-1} + \mbox{ Terme kleineren Grades}$$

insbesondere:

$$c_{n-1} = -(a_{1\,1} + \dots + a_{n\,n}) = -^A = -^\varphi$$

Es ist

$$c_0 = \chi_{\varphi}^{char}(0) = (\det(tE_n - A))(0) = \det(0E_n - A) = \det(-A) = (-1)^n \det A$$

$$\begin{split} \chi_{\varphi}^{char}(\lambda) &= 0 \Leftrightarrow (\det(tE_n - A))(\lambda) = 0 \Rightarrow \det(\lambda E_n - A) = 0 \Leftrightarrow \det(M_{\mathcal{B}}(\lambda \operatorname{id}_V - \varphi)) = 0 \\ &\Rightarrow \det(\lambda \operatorname{id}_V - \varphi) = 0 \Leftrightarrow \lambda \operatorname{ist} \operatorname{EW} \operatorname{von} \varphi \end{split}$$

Definition 18.14 $\lambda \in K$

$$\mu_{alg}(\varphi,\lambda) := \mu \big(\chi_\varphi^{char}, \lambda \big)$$

heißt die algebraische Vielfachheit

Beispiel 18.15 1.
$$\varphi: \mathbb{R}^2 \to \mathbb{R}^2, \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}_{r:A} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
. Es ist $\chi_{\varphi}^{char} = \chi_{\varphi}^{char} = \chi_{\varphi}^{char}$

$$\det\begin{pmatrix} t & -1 \\ -1 & t \end{pmatrix} = t^2 - 1 = (t-1)(t+1) \in \mathbb{R}[t] \ \square \ \mathrm{EW} \ \mathrm{von} \ \varphi : 1, -1.$$

Es ist
$$\mu_{alg}(\varphi,1)=1, \mu_{alg}(\varphi,-1)=1$$

$$\mathrm{Eig}(\varphi,1)=\mathrm{Eig}(A,1)=\mathrm{L\ddot{o}s}(E_2-A,0)=\mathrm{L\ddot{o}s}\bigg(\begin{pmatrix}1&-1\\-1&1\end{pmatrix},0\bigg)=\mathrm{Lin}\bigg(\begin{pmatrix}1\\1\end{pmatrix}\bigg)$$

also
$$\mu_{geo}(\varphi,1) = \dim \mathrm{Eig}(\varphi,1) = 1$$

$$\operatorname{Eig}(\varphi,-1) = \operatorname{Eig}(A,-1) = \operatorname{L\"os}((-1) \cdot E_2 - A,0) = \operatorname{L\"os}\left(\begin{pmatrix} -1 & -1 \\ -1 & -1 \end{pmatrix},0\right) = \operatorname{Lin}\left(\begin{pmatrix} 1 \\ -1 \end{pmatrix}\right)$$

also
$$\mu_{qeo}(\varphi, -1) = 1$$
.

$$2. \ \varphi: \mathbb{R}^2 \to \mathbb{R}^2, \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \underbrace{\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}}_{t} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}. \text{ Es ist } \chi_{\varphi}^{char} = \chi_A^{char} = \det \begin{pmatrix} t & 1 \\ -1 & t \end{pmatrix} = \frac{1}{2} \left(\frac{t}{2} - \frac{t}{2} \right) \left(\frac{t}{2} - \frac{t}{2$$

 $t^2+1, \chi_{\varphi}^{char}$ hat keine NS in $\mathbb{R} \Rightarrow \varphi$ hat keine EW.

$$3. \ \varphi: \mathbb{R}^2 \to \mathbb{R}^2, \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \underbrace{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}}_{A} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}. \text{ Es ist } \chi_{\varphi}^{char} = \chi_A^{char} = \det \begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} t-1$$

$$\left(t-1\right)^2\Rightarrow 1$$
ist einziger EW von φ , es ist $\mu_{alg}(\varphi,1)=2$

$$\mathrm{Eig}(\varphi,1) = \mathrm{Eig}(A,1) = \mathrm{L\ddot{o}s}(1E_2 - A,0) \, \mathrm{L\ddot{o}s} \left(\begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix}, 0 \right) = \mathrm{Lin} \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix} \right)$$

 $\Rightarrow \mu_{geo}(\varphi,1) = 1. \Rightarrow \varphi$ ist nicht diagonalisierbar.

Satz 18.16 V endlichdimensional, $n = \dim V$

1. Ist φ diagonalisierbar, dann ist $\chi_{\varphi}^{char}=(t-\lambda_1)\cdot\cdots\cdot(t-\lambda_n)$ mit $\lambda_1,\ldots,\lambda_n\in K$, nicht notwendig verschieden, das heißt χ_{φ}^{char} zerfällt in Linearfaktoren.

2. Ist $\chi_{\varphi}^{char}=(t-\lambda_1)\cdot\cdots\cdot(t-\lambda_n)$ mit paarweise verschiedene $\lambda_1,\ldots,\lambda_n\in K$, dann ist φ diagonalisierbar.

Beweis 1. Sei φ diagonalisierbar $\to V$ besitzt Basis $\mathcal{B} = (v_1, \dots, v_n)$ aus EV zu EW $\lambda_i \in K$.

$$\Rightarrow M_{\mathcal{B}}(\varphi) = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots \\ 0 & \lambda_n \end{pmatrix} \Rightarrow \chi_{\varphi}^{char} = \det \begin{pmatrix} t - \lambda_1 & 0 \\ & \ddots \\ 0 & t - \lambda_n \end{pmatrix} = (t - \lambda_1) \cdot \cdot \cdot \cdot (t - \lambda_n)$$

2. Aus $\chi_{\varphi}^{char}=(t-\lambda_1)\cdot\cdots\cdot(t-\lambda_n)$ wit $\lambda_1,\ldots,\lambda_n$ paarweise verschieden $\Rightarrow \lambda_1,\ldots,\lambda_n$ sind paarweise verschiedene EW von $\varphi \Rightarrow \varphi$ diagonalisierbar.

Bemerkung 18.17 V endlichdimensional, $n = \dim V$, λ EW von φ . Dann gilt:

$$1 \leq \mu_{qeo}(\varphi, \lambda) \leq \mu_{alg}(\varphi, \lambda)$$

Beweis Sei (v_1,\dots,v_s) eine Basis von $\mathrm{Eig}(\varphi,\lambda)\Rightarrow s=\mu_{geo}(\varphi,\lambda)\geq 1$, da λ EW von φ . Nach Basiserweiterungssatz $\exists v_{s+1}, \dots, v_n \in V$, sodass $\mathcal{B} := (v_1, \dots, v_s, v_{s+1}, \dots, v_n)$ eine Basis von V ist.

$$\Rightarrow A := A_{\mathcal{B}}(\varphi) = \begin{pmatrix} \lambda & 0 & \\ & \ddots & * \\ \hline 0 & \lambda & \\ \hline & 0 & A' \end{pmatrix}, A' \in M((n-s) \times (n-s), K)$$

$$\begin{split} \Rightarrow \chi_{\varphi}^{char} &= \chi_{A}^{char} = \det \begin{pmatrix} t - \lambda & 0 \\ & \ddots & * \\ 0 & t - \lambda \\ \hline & 0 & | tE_{n-s} - A' \\ \end{pmatrix} = (t - \lambda)^{s} \det(tE_{n-s} - A') = (t - \lambda)^{s} \chi_{A'}^{char} \\ \Rightarrow \mu_{geo}(\varphi, \lambda) = s \leq \mu(\chi_{\varphi}^{char}, \lambda) = \mu_{alg}(\varphi, \lambda) \end{split}$$

Bemerkung 18.18 $\lambda_1, \dots, \lambda_r$ paarweise verschiedene EW von φ . Dann gilt:

$$\operatorname{Eig}(\varphi,\lambda_i)\cap \sum_{\substack{j=1\\j\neq i}}^r\operatorname{Eig}\!\left(\varphi,\lambda_j\right)=\{0\}\forall i\in\{1,\ldots,r\}$$

Beweis Sei $i\in\{1,\dots,r\}$. Annahme: $\exists v_i\in\mathrm{Eig}(\varphi,\lambda_i)\cap\sum_{\substack{j=1\\j\neq i}}^r\mathrm{Eig}\big(\varphi,\lambda_j\big):v_i\neq 0$.

$$\Rightarrow \exists v_j \in \mathrm{Eig}\big(\varphi, \lambda_j\big), j = 1, \ldots, r, j \neq i : v_i = v_1 + \cdots + v_{i-1} + v_{i+1} + \cdots + v_r$$

Setze
$$J:=\{j\in\{1,\dots r\}, j\neq i\mid v_j\neq 0\}=\{j_1,\dots,j_s\}$$

$$\Rightarrow v_i = v_{j_1} + \dots + v_{j_s} \Rightarrow v_{j_1} + \dots + v_{j_s} + (-1)v_i = 0 \Rightarrow \left(v_{j_1}, \dots, v_{j_s}, v_i\right) \text{ linear abhängig 4}$$

Satz 18.19 V endlichdimensional. Dann sind äquivalent:

- 1. φ diagonalisierbar
- 2. χ_{φ}^{char} zerfällt in Linearfaktoren und $\mu_{alg}(\varphi,\lambda)=\mu_{geo}(\varphi,\lambda) \forall$ EW von φ .
- 3. Sind $\lambda_1,\dots,\lambda_k$ die paarweise verschiedenen EW von φ , dann ist

$$V = \mathrm{Eig}(\varphi, \lambda_1) \oplus \cdots \oplus \mathrm{Eig}(\varphi, \lambda_k)$$

In diesem Fall erhält man eine Basis von V aus EV von φ , indem man Basen von $\mathrm{Eig}(\varphi,\lambda_i), i=1$ $1, \dots, k$ zusammenfügt.

- 1. \Rightarrow 2. Sei φ diagonalisierbar. \Rightarrow \exists Basis $\mathcal B$ von V aus EV von φ . Wir ordnen die EV **Beweis** in \mathcal{B} den verschiedenen EW von φ zu und gelangen so zu Familien $\mathcal{B}_i := \left(v_1^{(i)}, \dots, v_{s_i}^{(i)}\right)$ von linear unabhängigen im $\mathrm{Eig}(\varphi,\lambda), i=1,\ldots,k$
 - a) Behauptung: \mathcal{B}_i ist eine Basis von $\mathrm{Eig}(\varphi,\lambda_i)$, denn gezeigt: \mathcal{B}_i ist ein ES von $\mathrm{Eig}(\varphi,\lambda_i)$. Sei $v \in \text{Eig}(\varphi, \lambda_i) \leq V$

$$\begin{split} & \Rightarrow \exists \lambda^{(j)} \in K : v = \sum_{j=1}^k \Bigl(\lambda_1^{(j)} v_1^{(j)} + \dots + \lambda_{s_j}^{(j)} v_{s_j}^{(j)}\Bigr) \\ & \Rightarrow \underbrace{v - \Bigl(\lambda_1^{(i)} v_1^{(i)} + \dots + \lambda_{s_i}^{(i)} v_{s_i}^{(i)}\Bigr)}_{\in \operatorname{Eig}(\varphi, \lambda_i)} = \sum_{\substack{j=1 \\ j \neq i}}^k \Bigl(\lambda_1^{(j)} v_1^{(j)} + \dots + \lambda_{s_j}^{(j)} v_{s_j}^{(j)}\Bigr) \in \sum_{\substack{j=1 \\ j \neq i}}^k \operatorname{Eig}(\varphi, \lambda_j) \\ & \Rightarrow v = \lambda_1^{(i)} v_1^{(i)} + \dots + \lambda_{s_i}^{(i)} v_{s_i}^{(i)} \\ & & \Box \end{split}$$