

Arduino 101

Creative Commons

A Maker Space for Loveland.

A Maker Space for Loveland.

Special thanks to SparkFun, Ferguson Highschool, and E3 Learning

You've been lied to!

You've been lied to!

This class will use the RedBoard platform from

SIK GUIDE

Your guide to the SparkFun Inventor's Kit for the SparkFun RedBoard

http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Kits/SFE-SIK-RedBoard-Guide-Version3.0-Online.pdf

A programmable micro-controller.

But the best way to explain the Arduino is with some examples:

https://www.youtube.com/watch?v=6mXM-oGggrM http://www.youtube.com/watch?v=yuKcLG1tqks

http://www.instructables.com/id/20-Unbelievable-Arduino-Projects/

Programmable Circuits

Programmable Circuits

Build a simple circuit
 (electronics)

Image attributed to SparkFun Electronics

Programmable Circuits

Build a simple circuit (electronics)

Image attributed to SparkFun Electronics

Write a control program (software)

Arduino 101

Installation:

Windows and Mac users:

Download the installer from:

http://arduino.cc

Linux users (specifically Debian):

In a terminal:

- sudo apt-get install arduino
- sudo usermod -aG dialout <user>
- Logout, and log back in for changes to take effect.

Inside your kit, you'll find:

Short Leg

Testing the Circuit

Getting ready to program the Circuit

First, we need to connect to a pin we can control (instead of the 5V power pin)

Programming Primer

```
// single-line comments look like this.
/* Multi-line comments
   Look like this */

// variable declarations look like this
int variable_name = 42;

// function declarations look like this
void func_name(args...)
{
   // function body
}
```


1. "verify" - check that your code is valid.

2. "upload" - loads program onto the Arduino

3. "New" - creates a new sketch

5. "Save" - save the current sketch

6. "Serial Monitor" - communicate with the Arduino

7- "Sketch Name" - Name of the current sketch

8. "Editing Window" - edit your program here.

Anatomy of an Arduino Sketch

```
// Global constants and state data
const int LED = 9;
// setup function that is called once at power on
void setup()
   pinMode(LED, OUTPUT);
// loop function gets called in a loop
void loop()
   // do exciting stuff!
   DigitalWrite(LED, HIGH);
   Delay(500);
   DigitalWrite(LED, LOW);
   Delay(500);
```

Anatomy of an Arduino Sketch

```
Global
             // Global constants and state data
Data
             Const int LED = 9;
             // setup function that is called once at power on
             void setup()
One-time
                 pinMode(LED, OUTPUT);
Setup
             // loop function gets called in a loop
             void loop()
                 // do exciting stuff!
Loop
                 DigitalWrite(LED, HIGH);
                 Delay(500);
                 DigitalWrite(LED, LOW);
                 Delay(500);
```