2024年7月23日

第一阶段任务:

分析并总结现有 ML 修复模型的具体原理和机制,以及它们在下游 ML 聚类应用中的性能。

	理论部分	实验部分	
1	分析 ML 清洗算法的相关参考文	整理和补充实现这些算法的代码	
	献,确定每种算法具体采取了哪种		
	ML 类型,以及具体的过程和原理		
	是什么。		
2	对每种错误类型,从理论角度分析	整理面向聚类任务相关的数据集,为实验	
	它们在 ML 算法的哪个步骤中被引	做准备	
	入或者被放大,并探讨可能的原		
	因。		
3	针对6种不同的聚类算法,进一步	针对这些数据集对相关 ML 清洗算法进行	
	从理论角度分析这些 ML 算法是如	评测,比较它们在不同聚类算法上的性	
	何作用和影响下游任务的。	能,并于理论结果比较	

清洗算法列表	文献链接
Scare	https://dl.acm.org/doi/abs/10.1145/2463676.2463706
Baran	https://dl.acm.org/doi/abs/10.14778/3407790.3407801
Holoclean	https://arxiv.org/abs/1702.00820
Metadata-Driven	https://dl.acm.org/doi/abs/10.1145/3221269.3223028
RAHA	https://dl.acm.org/doi/abs/10.1145/3299869.3324956
ED2	https://dl.acm.org/doi/abs/10.1145/3357384.3358129
Picket	https://link.springer.com/article/10.1007/s00778-021-00699-w
ActiveClean	https://dl.acm.org/doi/abs/10.14778/2994509.2994514
Boostclean	https://arxiv.org/abs/1711.01299
CPClean	https://arxiv.org/abs/2005.05117

聚类算法

Gaussian Mixture (GMM)

K-Means

Affinity Propagation (AP)

Hierarchical Clustering (HC)

OPTICS

BIRCH