Digital Integrated Circuits

Lab 3 Logical Effort

Dr. Yanan Sun

Email: sunyanan@sjtu.edu.cn

Office: Rm 414, Building of Microelectronics

Outline

- □ Lab Contents
- □ Report Requirements

Outline

- □ Lab Contents
- □ Report Requirements

Device Models for Logical Effort Optimizaiton

- Use the Predictive Technology Model (PTM) to evaluate the DC characteristics of 10nm multi-gate (MG) FinFETs
 - PTM link: http://ptm.asu.edu/
 - Use the highperformance (HP) models
 - For both n-channel and p-channel devices

LATEST MODELS

Typical SPICE model files for each future generation are available here.

Attention: By using a PTM file, you agree to acknowledge both the URL

New!

June 01, 2012:

PTM releases a new set of models for multi-gate transistors (PTM-MG), for be Acknowledgement: PTM-MG is developed in co

- Please start from models and param.inc.
 - 7nm PTM-MG HP NMOS, HP PMOS, UST
 10nm PTM-MG HP NMOS, HP PMOS, LST
- 14 PTM MG III NMOS, III PMOS, LSTP NMOS, LSTP PMOS 16nm PTM-MG HP NMOS, HP PMOS, LSTP NMOS, LSTP PMOS
- 16nm PTM-MG <u>HP NMOS</u>, <u>HP PMOS</u>, <u>LSTP NMOS</u>, <u>LSTP PMOS</u>
 20nm PTM-MG <u>HP NMOS</u>, <u>HP PMOS</u>, <u>LSTP NMOS</u>, <u>LSTP PMOS</u>

The entire package is also available here: PTM-MG

November 15, 2008

PTM releases a new set of models for low-power applications (PTM LP), incor

- 16nm PTM LP model: <u>V2.1</u>
- 22nm PTM LP model: <u>V2.1</u>
 32nm PTM LP model: <u>V2.1</u>
- 45nm PTM LP model: <u>V2.1</u>

September 30, 2008:

PTM releases a new set of models for high-performance applications (PTM HP

- 16nm PTM HP model: V2.1
- 22nm PTM HP model: <u>V2.1</u>
 22nm PTM HP model: V2.1
- 32nm PTM HP model: V2.1
- 45nm PTM HP model: V2.1

FinFETs

Simulation Settings

- \Box L_g = 14 nm for FinFETs
- ☐ Supply voltage is 0.65V for FinFETs
- Simulation temperature
 - \rightarrow T = 25°C

Minimum sized INV for FinFET

minimum-sized un-skewed CMOS inverter

Minimum Sized Inv	PMOS	NMOS
Fin number	1	1
L	14n	14n
Design the fin number to ensure balanced driving current in pull-up and pull-down network		

Digital IC

Task1: Use Logical Effort to Size Gates

☐ Size each transistor in the circuit below properly to optimize the speed for FinFET, and construct the circuit with HSPICE

Value
0V
0.65v
1ns
50ps
50ps
1ns
2ns

Size the logic gates to minimize the propogation delay (a to e)

Task2: Use Logical Effort to Optimize 4x16 Decoder

■ Backgroud of decoder

- Logic function: convert N-bit coded input to 2^N unique outputs
- Can be used as address decoder in memory
 - Address line (input) has large fanout
 - Decoders typically have high electrical effort and branching effort
 - Decoder may have many stages, so the fastest design is the one that minimizes the logical effort

$$D_0 = \overline{A_{N-1}} \dots \overline{A_3} \overline{A_2} \overline{A_2} \overline{A_1} \overline{A_0}$$

$$D_1 = \overline{A_{N-1}} \dots \overline{A_3} \overline{A_2} \overline{A_1} \overline{A_1} A_0$$

$$\dots$$

$$D_{2^{N}-1} = A_{N-1} \dots A_3 A_2 A_1 A_0$$

Task2: Use Logical Effort to Optimize 4x16 Decoder

□ An example of 4x16 decoder design:

4-input AND function is built from a pair of 2-input NANDs followed by a 2-input NOR

Predecoding technique to reduce the area

But, many NAND gates share the same inputs and are redundant

Task2: Use Logical Effort to Optimize 4x16 Decoder

□ For a 4x16 decoder, optimize the critical path to minimize the propagration delay of decoder

- Use the logical effort method
- Assume that the input inverter/buffer is minimum sized
- Assume that each output of decoder has a load of 256X minimum sized Finfet inverter
- You can insert buffer at the output if necessary

Task3 (Optional): Use Logical Effort to Optimize 7x128 Decoder

- □ For a 7x128 decoder, first think about the scheme design. Then optimize the critical path to minimize the propagration delay of decoder
 - Use the logical effort method
 - Assume that the input inverter/buffer is minimum sized
 - Assume that each output of decoder has a load of 512X minimum sized Finfet inverter
 - You can insert buffer at the output if necessary

Outline

- □ Lab Contents
- □ Report Requirements

Report Requirement

- ☐ Write your lab report like writing a technical document (readable, comprehensive analysis, no typo...)
- You may include
 - ➤ Lab procedures (e.g., screenshots of the critical steps)
 - Lab results (e.g., schematic view, symbol of inverter, screenshots of the simulation waveforms)
 - Observations and conclusions

Submission

- ☐ You need to submit your report and code
 - Name of report (in PDF format): lab3_report_[Name]_[Student No.].pdf
 - Name of code (compressing the files):
 lab3_code__[Name]_[Student No.].zip
- □ Please upload your report to Canvas course website

■ Submission of Lab 3 report will be due on 19th December

Q & A

☐ If you have any technical problem, you can directly contact me

E-mail: yungsk@sjtu.edu.cn

Lab: Rm 208, Building of Microelectronics