1

MULTIVARIATE ANALYSIS AND PRELIMINARIES

1 Aspects of Multivariate Analysis

Reference: Johnson & Wichern (2002) Applied Multivariate Statistical Analysis Chapter 1.

- (a) Multivariate analysis is concerned with two or more random variables.
- (b) Many multivariate methods are based on an underling probability model known as the multivariate normal distribution.
- (c) The objectives of the investigation for multivariate analysis include:
 - **★**Data reduction
 - Sorting and grouping
 - Investigation of the dependence among variables
 - Prediction
 - Hypothesis construction and testing
- (d) The multivariate statistical methods are:
 - Principal component analysis (PCA)
 - Factor analysis (FA)
 - Discrimination and classification analysis (DCA)
 - Cluster analysis (CA)
 - Multivariate linear regression model (LRM)
- (e) Applications: Multivariate methods have been widely applied to many practical problems arising in
 - Medicine science : (discrimination)
 - ullet Physics : (linear regression model)
 - Sociology
 - Business and Economics

MATH2142/MATH1309: Lecture Note 1

- 2
- Environmental study
- Meteorology
- Geology
- Psychology

1.1 Multivariate Graphical Techniques

Reference: Johnson & Wichern (2002) Applied Multivariate Statistical Analysis Fifth Edition, Chapter 1, pages 11-49.

- muniple scatter riots
- Multiple Scatter and/or boxplots.
- Three-dimensional scatter plot for trivariate data.
- Three-dimensional scatter plots with rotation.
- Three-dimensional perspectives.
- Growth curves
- Chernoff faces
- Distances between the data points.

2 Matrix Algebra

Reference: Johnson & Wichern (2002) Applied Multivariate Statistical Analysis, Chapter 2.

2.1 Vectors

An array of \boldsymbol{x} of n real numbers $x_1,\,x_2,\,\dots\,,\,x_n$ is called a vector of dimension n and it is written as

$$\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}_{n} \text{ or } \boldsymbol{x}^T = (x_1 \ x_2 \ \dots \ x_n)_{1 \times n}$$

MATH2142/MATH1309: Lecture Note 1

(a) A vector can be multiply by a constant. Multiplying vector \boldsymbol{x} by constant (a)s given by

3

$$a\mathbf{x} = \begin{pmatrix} ax_1 \\ ax_2 \\ \vdots \\ ax_n \end{pmatrix}_{n \times 1}$$

(b) Two vectors may be added. Addition of \boldsymbol{x} and \boldsymbol{y} :

$$\boldsymbol{x} + \boldsymbol{y} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}_{n \times 1} + \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}_{n \times 1} = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{pmatrix}_{n \times 1}$$

- (c) The length of a vector ${\bf x}$ is defined by $L_x = |{\bf x}| = \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2}$
- (d) Multiplication of Two Vectors:
 - (1) Multiplication of \boldsymbol{x}^T by \boldsymbol{y} gives a single number. Note $L_x = \sqrt{\boldsymbol{x}^T x} = |\boldsymbol{x}|$

$$\boldsymbol{x}^T \boldsymbol{y} = (x_1 \ x_2 \ \dots \ x_n)_{1 \times n} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}_{n \times 1} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$

(2) Multiplication of x by y^T gives a $n \times n$ matrix.

$$\boldsymbol{x}\boldsymbol{y}^T = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}_{\substack{n \times 1}} (y_1 \ y_2 \ \dots \ y_n)_{1 \times n} = \begin{pmatrix} x_1y_1 & x_1y_2 & \dots & x_1y_n \\ x_2y_1 & x_2y_2 & \dots & x_2y_n \\ \vdots & \vdots & \ddots & \vdots \\ x_ny_1 & x_ny_2 & \dots & x_ny_n \end{pmatrix}_{n \times n}$$

MATH2142/MATH1309: Lecture Note 1

2.2 Matrices

4

(a) A matrix is a rectangular array of real numbers. A matrix with m rows

- (b) Transpose of A is matrix of $n \times m$ and denoted by A^T That is, $A^T =$ $(a_{ji})_{n \times m}$.
- (c) Multiplication of Two Matrices: $\mathcal{A}_{m\times n}=(a_{ij})_{m\times n}$ and $\mathcal{B}_{n\times p}=(b_{ij})_{n\times p}$ give matrix $C_{m \times p} = (c_{ij})_{m \times p}$ where $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$.
- (d) Square Matrix: If the number of rows and number of columns of a matrix are equal, then it is called a square matrix (e.g. m = n).

$$\mathcal{A} = \mathcal{A}_{n \times n}$$

$$\begin{array}{c} a_{11} \quad a_{12} \quad \dots \quad a_{1n} \\ a_{21} \quad a_{22} \quad \dots \quad a_{2n} \\ \vdots \quad \vdots \quad \vdots \\ a_{n1} \quad a_{n2} \quad \dots \quad a_{nn} \end{array}$$

(e) Symmetric Matrix: If A is a square matrix of order n and the elements $a_{ij} = a_{ji}$ for all i and j, then A is called a symmetric matrix.

Note : A is a symmetric matrix iff $A^T = A$.

(f) Identity matrix: A square matrix with ones on the diagonal and zeros elsewhere is called an identity matrix. The identity matrix of order n is given by given by

$$\mathcal{I}_n = \begin{pmatrix} 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots \end{pmatrix} = \operatorname{diag}(1 \ 1 \ \dots \ 1)$$

(g) Inverse of a Matrix: If there exists a matrix \mathcal{B} for a given square matrix A such that AB = BA = I then B is called the inverse of A and is denoted by A^{-1} .

(h) Orthogonal Matrix: A square matrix Q is said to be orthogonal if

$$Q^TQ = QQ^T = I$$
.

Note : $Q^{-1} = Q^T$.

(i) The Trace of a Matrix: Let $A = (a_{ij})_{n \times n}$, a square matrix of order n. The trace of the matrix A is the sum of the diagonal elements of A and it is denoted by tr(A). That is,

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}.$$

(j) If ${\mathcal B}$ and ${\mathcal C}$ are square matrices, then

$$tr(BC) = tr(CB)$$
.

(k) For a quadratic form $\boldsymbol{x}^T \mathcal{A} \boldsymbol{x}$, we have

$$x^T A x = \operatorname{tr}(x^T A x) = \operatorname{tr}(x x^T A) = \operatorname{tr}(A x x^T)$$

(l) Determinant: The determinant of a square matrix \mathcal{A} is denoted by $|\mathcal{A}|$ or det(A) and it is a numerical value computed from

s a numerical value computed from
$$|A| = \det(A) = \sum_{i=1}^{n} (-1)^{i+1} a_{1i} |A_{1i}|$$

$$= ad - bc$$

$$|A| = \det(A) = \sum_{i=1}^{n} (-1)^{i+1} a_{1i} |A_{1i}|$$

$$= ad - bc$$

where A_{1i} is the square matrix of order (n-1) obtained by deleting the first row and i^{th} column of A.

(m) Eigenvalues and Eigenvectors: Let ${\mathcal A}$ be a square matrix of order n and e be a n dimensional vector. The values of λ and e which satisfy the equation $\mathcal{A}e = \lambda e$

$$e = \lambda e$$
 the adenship $e = \lambda e$

are respectively called the eigenvalues and eigenvectors of A.

Note:

- (2) There are n eigenvalues for a matrix of order n. λ not weakly

= a(ei-fh) -b(di-fg) + ((dh-eg)

MATH2142/MATH1309: Lecture Note 1

(n) Let (λ_i, e_i) , i = 1, 2, ..., n, be the eigenvalue-eigenvector pairs of A. Then

$$Ae_i = \lambda_i e_i$$
 charactershic

for i = 1, 2, ...n. If we chose e_i such that $e_i^T e_i = 1$, then e_i is called the normalized eigenvector corresponding to λ_i .

(o) Spectral Decomposition: If (λ_i, e_i) , i = 1, 2, ..., n, be the eigenvalue, normalized eigenvector pairs of the square matrix A, then

$$A = \lambda_1 e_1 e_1^T + \lambda_2 e_2 e_2^T + \ldots + \lambda_n e_n e_n^T.$$

This is known as the spectral decomposition of A.

(p) The determinant of A can be expressed as the product of its eigenvalues. That is,

$$|A| = \prod_{i=1}^{n} \lambda_i$$

(q) Positive Definite Matrix: The symmetric matrix A is called a positive definite matrix provided

If $x^T A x \ge 0$ then A is called nonnegative (or semipositive) definite.

- (r) The symmetric matrix A is positive definite iff the eigenvalues of A, λ_i > 0 for all i.
- (s) If A is nonnegative definite then $\lambda_i \geq 0$ for all i.
- (t) If A is positive definite, then the special decomposition of the inverse

$$A^{-1} = \lambda_1^{-1} e_1 e_1^T + \lambda_2^{-1} e_2 e_2^T + ... + \lambda_n^{-1} e_n e_n^T$$

(u) Square Root of a Positive Definite Matrix: Using the special decomposition, the square root of a positive matrix is given by

$$\mathcal{A}^{\frac{1}{2}} = \lambda_1^{\frac{1}{2}} e_1 e_1^T + \lambda_2^{\frac{1}{2}} e_2 e_2^T + \ldots + \lambda_n^{\frac{1}{2}} e_n e_n^T.$$

MATH2142/MATH1309: Lecture Note 1

3 Random Vectors

7

Reference: Johnson & Wichern (2002) Applied Multivariate Statistical Analusis. Chapter 2.

3.1 Moments of Random Vectors

A random vector is a vector whose elements are random variables. Let $\boldsymbol{X}^T = (X_1 \ X_2 \ \dots \ X_p)_{1 \times p}$ be a random vector. Then $X_i \ (i=1,2,...p)$ are random variables.

(a) Population Mean Vector, μ is

$$(\mathbf{p}) = \mathbf{p}_{p \times 1} = \mathbf{E}(\mathbf{X}_{p \times 1}) = \begin{pmatrix} \mathbf{E}(X_1) \\ \mathbf{E}(X_2) \\ \vdots \\ \mathbf{E}(X_p) \end{pmatrix}_{p \times 1} = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_p \end{pmatrix}_{p \times 1}$$

where $\mu_i = \mathbf{E}(X_i)$ for $i = 1, 2, \dots, p$.

(b) Population covariance matrix, Σ is given by

$$\Sigma = \Sigma_{p \times p} = \mathbf{Cov}(\boldsymbol{X}_{p \times 1}) = \mathbf{E}[(\boldsymbol{X} - \boldsymbol{\mu})(\boldsymbol{X} - \boldsymbol{\mu})^T].$$
 This gives

where $\sigma_{ij} = \mathbf{Cov}(X_i, X_j) = \mathbf{E}[(X_i - \mu_i)(X_j - \mu_j)]$ and $\sigma_{ij} = \sigma_{ji}$. Note when i = j, $\sigma_{ii} = \sigma_i^2 = \mathbf{E}(X_i - \mu_i)^2 = \mathbf{Var}(X_i)$.

Note : Covariance matrix is a symmetric matrix, that is, $\Sigma^T = \Sigma$.

(c) Generalized Variance: The determinant of a covariance matrix is called the generalized variance, hence

Generalized Variance =
$$det(\Sigma)$$
. \Rightarrow \mathbb{Z}

(d) Population Correlation Matrix ρ : The correlation matrix of a random vector \boldsymbol{X} is given by

$$\rho = \begin{pmatrix} 1 & \rho_{12} & \dots & \rho_{1p} \\ \rho_{21} & 1 & \dots & \rho_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{p1} & \rho_{p2} & \dots & 1 \end{pmatrix}_{p \times p}$$

where

$$\rho_{ij} = \frac{\sigma_{ij}}{\sqrt{\sigma_{ii}}\sqrt{\sigma_{ij}}} \quad \text{for} \quad i \neq j$$

(e) Let
$$V = \begin{pmatrix} \sigma_{11} & 0 & \dots & 0 \\ 0 & \sigma_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_{pp} \end{pmatrix}_{p \times p} = \operatorname{diag}(\sigma_{11} \ \sigma_{22} \ \dots \ \sigma_{pp}) \text{ then, it}$$

$$\rho = V^{-\frac{1}{2}} \Sigma V^{-\frac{1}{2}}$$
.

Note that $V^{-\frac{1}{2}} = \text{diag}(1/\sqrt{\sigma_{11}} \ 1/\sqrt{\sigma_{22}} \ \dots 1/\sqrt{\sigma_{pp}})$ and $\Sigma = V^{\frac{1}{2}} \rho V^{\frac{1}{2}}$

3.2 Properties of Random Vectors

Let \boldsymbol{X} and \boldsymbol{Y} be two p-variate random vectors (not necessarily normal) such

$$\begin{aligned} \mathbf{E}(\boldsymbol{X}) = & \underbrace{\boldsymbol{\mu}_{\boldsymbol{x}},}_{\mathbf{Cov}(\boldsymbol{X})} & \mathbf{E}(\boldsymbol{Y}) = \boldsymbol{\mu}_{\boldsymbol{y}}, \\ & \mathbf{Cov}(\boldsymbol{Y}) = \boldsymbol{\Sigma}_{\boldsymbol{x}}, & \mathbf{Cov}(\boldsymbol{Y}) = \boldsymbol{\Sigma}_{\boldsymbol{y}}, \end{aligned}$$

and $Cov(X, Y) = \Gamma$. Consider a, b and c are vector constant and, A, B and $\mathcal C$ are constant matrices. We can prove the following properties.

- (a) $\mathbf{E}(\mathbf{a}^T \mathbf{X}) = \mathbf{a}^T \mathbf{\mu}_x$
- (b) $\mathbf{E}(A^TX + c) = A^T\mu_x + c$
- (c) $\mathbf{Cov}(\boldsymbol{a}^T\boldsymbol{X}, \boldsymbol{b}^T\boldsymbol{X}) = \boldsymbol{a}^T \Sigma_x \boldsymbol{b} = \boldsymbol{b}^T \Sigma_x \boldsymbol{a}$
- (d) $Cov(a^TX) = a^T\Sigma_x a$
- (e) $Cov(DX) = D\Sigma_xD^T$
- (f) $Cov(X, Y) = E\{(X E(X))(Y E(Y)^T\} = Cov(Y, X)^T\}$

MATH2142/MATH1309: Lecture Note 1

(g)
$$Cov(A^TX, B^TX) = A^T\Sigma_xB$$

$$\begin{split} \text{(h)} & \ \mathbf{Cov}(\boldsymbol{a}^T\boldsymbol{X}, \boldsymbol{b}^T\boldsymbol{Y}) = \boldsymbol{a}^T\mathbf{Cov}(\boldsymbol{X}, \boldsymbol{Y})\boldsymbol{b} \\ \text{(i)} & \ \mathbf{Cov}(\boldsymbol{\mathcal{A}}^T\boldsymbol{X}, \boldsymbol{\mathcal{B}}^T\boldsymbol{Y}) = \boldsymbol{\mathcal{A}}^T\mathbf{Cov}(\boldsymbol{X}, \boldsymbol{Y})\boldsymbol{\mathcal{B}} \end{split}$$

(i)
$$\mathbf{Cov}(\mathcal{A}^T \mathbf{X}, \mathcal{B}^T \mathbf{Y}) = \mathcal{A}^T \mathbf{Cov}(\mathbf{X}, \mathbf{Y}) \mathcal{B}$$

9

Consider random variables X_1 and X_2 and a and b are constants, then

$$\mathbf{E}(aX_1 + bX_2) = a\mathbf{E}(X_1) + b\mathbf{E}(X_2) = a\mu_1 + b\mu_2$$

using additional properties, covariance of aX_1 and bX_2 is

$$Cov(aX_1, bX_2) = \mathbf{E}[(aX_1 - a\mu_1)(bX_2 - b\mu_2)] = abCov(X_1, X_2) = ab\sigma_{12}$$

and

$$\begin{aligned} \mathbf{Var}(aX_1 + bX_2) &= a^2 \mathbf{Var}(X_1) + b^2 \mathbf{Var}(X_2) + 2ab \mathbf{Cov}(X_1, X_2) \\ &= a^2 \sigma_{11} + b^2 \sigma_{22} + 2ab \sigma_{12} = a^2 \sigma_1^2 + b^2 \sigma_2^2 + 2ab \sigma_1 \sigma_2 \rho_{12} \end{aligned}$$

(a) If X_1 and X_2 are independent random variable, then $\rho_{12} = 0$, hence

$$\mathbf{Var}(aX_1+bX_2)=a^2\sigma_1^2+b^2\sigma_2^2$$

(b) Let $c^T = (a \ b)$, $\mu^T = (\mu_1 \ \mu_2)$ and $\boldsymbol{X}^T = (X_1 \ X_2)$ then

$$\mathbf{E}(\boldsymbol{c}^T\boldsymbol{X}) = \mathbf{E}(ab) \left(\begin{array}{c} X_1 \\ X_2 \end{array} \right) = (ab) \left(\begin{array}{c} \mathbf{E}(X_1) \\ \mathbf{E}(X_2) \end{array} \right) = \mathbf{E}(ab) \left(\begin{array}{c} \mu_1 \\ \mu_2 \end{array} \right) = \boldsymbol{c}^T \boldsymbol{\mu}$$

Note that $\mathbf{E}(\mathbf{c}^T \mathbf{X}) = \mathbf{E}(aX_1 + bX_2) = a\mu_1 + b\mu_2 = \mathbf{c}^T \boldsymbol{\mu}$.

(c) Let

$$\Sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{pmatrix}$$

then

$$\mathbf{Var}(\boldsymbol{c}^T\boldsymbol{X}) = \begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \boldsymbol{c}^T \boldsymbol{\Sigma} \boldsymbol{c}$$

Note that $Var(c^T X) = Var(aX_1 + bX_2) = a^2 \sigma_{11} + 2ab\sigma_{12} + b^2 \sigma_{22} = c^T \Sigma c$.

MATH2142/MATH1309: Lecture Note 1

10

(d) The linear combination $c^T \mathbf{X} = c_1 X_1 + c_2 X_2 + \cdots + c_p X_p$ has

$$\begin{aligned} \text{Mean} &&= \mathbf{E}(\boldsymbol{c}^T\boldsymbol{X}) = \boldsymbol{c}^T\boldsymbol{\mu} \quad \text{and} \\ \text{Variance} &&= \mathbf{Var}(\boldsymbol{c}^T\boldsymbol{X}) = \boldsymbol{c}^T\boldsymbol{\Sigma}\boldsymbol{c} \end{aligned}$$

where $\mu = \mathbf{E}(X)$ and $\Sigma = \mathbf{Cov}(X)$.

(e) In general consider the q linear combinations of the p random variables X_1, X_2, \dots, X_p .

$$\begin{split} Z_1 &= a_{11}X_1 + a_{12}X_2 + \ldots + a_{1p}X_p \\ Z_2 &= a_{21}X_1 + a_{22}X_2 + \ldots + a_{2p}X_p \\ \vdots & &\vdots \\ Z_q &= a_{q1}X_1 + a_{q2}X_2 + \ldots + a_{qp}X_p \end{split}$$

This linear combinations can be rewritten as $Z_{q\times 1} = A_{q\times p}X_{p\times 1}$, therefore we obtain

$$\mu_z = \mathbf{E}(Z) = \mathbf{E}(AX) = A\mu_x$$

and

$$\Sigma_z = \mathbf{Cov}(\mathbf{Z}) = \mathbf{Cov}(A\mathbf{X}) = A\Sigma_x A^T$$

where $\boldsymbol{\mu}_x$ and $\boldsymbol{\Sigma}_x$ are respectively the mean vector and covariance matrix of $\boldsymbol{X}.$