لطرية ذات الحديق Canon Marie $(a+b)^n = a^n + na^n b + n(n-1) a^{n-2} b^2$ $+\frac{(n)(n-1)(n-2)}{3!}$ a^{-3} b^{3} +Julay Jail للقانوسروص: $(1+Z)'=1+nZ+(n)(n-1)Z^{2}$ n(n-1)(n-2) n résumpre revel révollies (n)عدد صحير حوص t me se who to tum t فإمها لمظرة تطبقه بدوس ما ركم تطبيق لبظية تعو { [] [] n+1 = 120 / 200 0000 و و ماله عدد لد نطائل مردود وأ مز در صو (Zn) .

$$= \frac{\sum x_{0}^{2} n_{0}^{2} + \sum x_{0}^{2} n_{0}^{2} +$$

(2)

 $= 8 \left[1 - \frac{9}{2} x + \frac{27}{4} x^2 - \frac{27}{5} x^3 \right]$ $-8 - 36 \times +54 \times^{2} - 27 \times^{3}$ (3) $(2+4x)^{-4}$ W/26 M=-4 $=(2)(/+(2x))^{-4}$ Z=2X bot rill veu ا رياد رق و لغا 12X/<1 $=\frac{1}{24}\left[1+\frac{(-4)}{11}(2x)\right]$ $|X| < \frac{1}{2}$ $x < \frac{1}{2}$ $x > \frac{1}{2}$ $+\frac{(-4)(-5)}{21}(2x)^{2}+\cdots$ الفترة الذيون فيل $=\frac{1}{10}$ [-8x+49x](0 750 J Let]-1/2/2[* Find The Expansion of (1+x) and from it Deduce The Expansion of (1-X)

Solution. $(/+X)^{-1} = (1+X)$ 1=-1 adelbe $+\frac{1+\frac{1}{1!}}{3!}$ 1x1<1 X<1 ×>-1 J-151[$(-1 - X + X^2 - X^3 + X^4 - ... + bio)$ $\frac{1}{2}$ $\frac{1}$ * Expand (1+X)-2 and from it

Deduce The Expansion of (1-X)-2 1-X1<1 & Solution: - [n=-2] 1×1<1 $(1+X)=/+\frac{(-2)}{11}\times+\frac{(-2)(-3)}{2!}\times$ J-1,1[نرى اللىفىعدكم $+\frac{(-2)(-3)(-4)}{3!}\chi^{3}+$

 $\frac{(1+x)^{-2}}{(1+x)^{-2}} = 1 - 2x + 3x^{2} - 4x^{3} + \cdots$ $\frac{1}{(1+x)^{-2}} = 1 - 2x + 3x^{2} - 4x^{3} + \cdots$ July X-9(-X) V 2 X+3 X 2+4 X 3+----* Find The EXPansion of VX Solution (X-1) - Jean Si Z J WS Fill $\frac{1}{\sqrt{X}} = (X)^2 = (1 - X)^2 = Z$ $\frac{1}{\sqrt{X}} = (X)^2 = (1 - X)^2 = Z$ n = 1/2, solction of the solution of the s $+\frac{(1/2)(-1/2)}{21}(\chi_{-1})^2+\frac{(1/2)(-1/2)(-3/2)}{31}(\chi_{-1})+\cdots$ $=1+\frac{1}{2}(X-1)-\frac{1}{8}(X-1)^{2}+--$

* find the Expansion of Solution: $\frac{1}{(1+X)^2} = (1+X)^2$ 1) /X1>1 bio 1) (zecés men):

(X1>1 bio 1) |Z|<1

(Z|<1) Técnis de l'Alige de 15 eliex motoristis of le cub oréel or help es sime ble の司亡」。 Selotelein jão 6) spot X $(1+x)^{-2} = (x)^{-2} \left(\frac{1}{x} + 1\right)^{-2}$ $=\frac{1}{X^2}\left(1+\frac{1}{X}\right)^{-1}\Rightarrow \left(\frac{-1X1}{11}\right)^{-1}$ $=\frac{1}{X^{2}}\left[\frac{1}{1!}+\frac{(-2)(-3)}{1!}+\frac{1}{2!$ $+\frac{(-2)(-3)(-4)(-1)^3}{3!}$

2) /X/</ - 30 dept sesse bilise $(1+x)^{2} = 1 + \frac{1}{(-2)}x + \frac{2!}{(-2)(-3)}x^{2} + \frac{1}{(-2)(-3)}x^{2}$ $=1-2\times +3\times^{2}--$ séphoniers dals ousla os Mation: "I'm on X" X >>>> dis so 2>cle Let elime dels sist · ejeur jul de réésu EX: EXPand $\sqrt[3]{2x+7}$ (1) XXXX orace X >>> "Logod"

 $\sqrt[3]{2X+7} = (2X+7)^{1/3}$ solution: Coller Share X <<< $=(7)^{1/3}(1+(2x)^{1/3}),n$ $=\sqrt[3]{7}\left[1+\frac{(1/3)}{11}\left(\frac{2x}{7}\right)\right]$ $\frac{1}{7}\left(\frac{1}{3}\right)\left(\frac{-2}{3}$ خذ آلیر Xعامل مشر ك (algiente globa loipt $= (2x+7)^{1/3} = (2x)^3 \left(1 + \frac{7}{9x}\right)^{1/3}$ $=\sqrt[3]{2} \left[1 + \frac{1}{11} \left(\frac{7}{2} \right) \right]$ $+\frac{(1/3)(-2/3)}{21}(\frac{7}{2x})+\cdots$

* الليب الثلاث حرود الأولى عاملا د أو جد الفترة الت يلوب $\frac{3X-1}{(2X-1)^3}$ فرح للفلول موتيا. Center Share $= (3X-1)(2X-1)^{-3}$ $=(3X-1)(-1)^{-3}(1+(-2X))$ $\frac{(2x)^{1/2}(3x-1)}{(2x)^{1/2}(-2x)^{1/2}} \left(-2x\right)^{1/2} \left(-2x\right)^{1/2}$ $-(3X-1)[1+6X+24X^2+\cdots]$ العدة الله تدر فيرك الفلول عميماً |-2X|XEL-5/5] $\frac{2}{\sqrt{\frac{1}{2}}}$ $\frac{1}{\sqrt{9+X^2}}$ * ichcale report $\frac{(X-5)^2}{X}$

3/x3/h EXPand: X>>> "rogung m Fiptie Center Share $= \left(\frac{\chi^{3} + 6}{T} \right)^{1/3} - \left(\frac{\chi^{3} + 3}{T} \right)^{1/3}$ $= (\chi^3)^{1/3} \left(1 + \frac{3}{\sqrt{3}} \right)^{1/3} - (\chi^3)^{1/3} \left(1 + \frac{3}{\sqrt{3}} \right)^{1/3}$ $X \left[1 + \frac{1}{3} \left(\frac{6}{x^3} \right) + \frac{1}{3} \left(\frac{-2}{3} \right) \left(\frac{6}{x^3} \right) + \cdots \right]$ En X cup vich del ser à Terre billier

* EX. Expand (b) (1+x2) = according to the Increasing. Power of X (Josefénix X) merinkieu), then Prove that $\sqrt{3} = 2 - (\frac{1}{3}) + \frac{3}{4} (\frac{1}{3})^2 - (\frac{5}{8}) (\frac{1}{3})^3 + \cdots$ $(1+\chi^{2})^{-1/2} = 1 - \frac{1}{2}\chi^{2} + \frac{(-1/2)(-\frac{3}{2})}{2!}(\chi^{2})^{2} + \frac{(-1/2)(-\frac{3}{2})(-\frac{5}{2})}{2!}(\chi^{2})^{3} + \cdots$ $(1+X^{2})^{\frac{1}{2}} = 1 - \frac{1}{2}(X^{2}) + \frac{3}{48}(X^{2})^{\frac{3}{4}} + \cdots$ نفىع X= غ الغر $= (1+\frac{1}{3})^{\frac{1}{2}} = 1 - \frac{1}{2}(\frac{1}{3}) + \frac{3}{2}(\frac{1}{3})^{\frac{2}{48}}(\frac{1}{3})^{\frac{3}{48}} + \cdots$ $\frac{1}{3} \left(\frac{4}{3} \right)^{-\frac{1}{2}} = 1 - \frac{1}{2} \left(\frac{1}{3} \right) + \frac{3}{8} \left(\frac{1}{3} \right)^2 - \frac{15}{48} \left(\frac{1}{3} \right)^3 + \cdots$ $(\frac{3}{4})^{\frac{1}{2}} = \frac{13}{2} = 1 - \frac{1}{2}(\frac{1}{3}) + \frac{3}{8}(\frac{1}{3})^2 - \frac{(\frac{1}{3})^3}{(\frac{1}{3})^3} + \dots$ $\sqrt{3} = 2 - \frac{1}{3} + \frac{3}{4} (\frac{1}{3})^2 - (\frac{5}{8})(\frac{1}{3})^3 + \cdots$ Senter Share

المومنوم المومنوم () دایا د فیم نظریس القار میسن :-(1+ E) 3! det faite siare). Seud files siare) EX: find an approximat Value(amés-co) for the following and Calculate The max. Value for the error list family (11) \$\square\$ 150 Solution: (50) = (1+49)2 $= (49)^{2} \left(\frac{1}{49} + 1\right)^{2}$ = 7 (1+ \frac{1}{49})/2 \frac{1}{600} \frac{1}{49} \frac{1}{49} \frac{1}{49} $= 7\left(1/(2)\left(\frac{1}{49}\right) + \frac{1/(2)(-1/2)}{2!}\left(\frac{1}{49}\right)^{2} + \frac{1}{2!}\right)$ = 7.071

in it will as tel an ialis. $max \ error = 7 \left[\frac{1}{2} (-1/2) (-3/2) ($ $\sqrt{60} = (60)^{1/2} = ($ 1/2 0/10/5/2000 2000 1/2 2/5/2000 2000 1/2 2/5/2000 2000 1001 1/2 2/5/2000 2000 1001 1/2 2/5/2000 2000 1001 1/2 2/5/2000 2000 1001 1/2 2/5/2000 2000 1001 1/2 2/5/2000 2000 1001 1/2 2/5/2000 2000 1001 1/2 2/5/2000 2000 1001 1/2 2/5/2000 2000 1001 $8 \left[1 + \frac{1}{2} \left(\frac{-4}{64} \right) + \frac{(1/2)(-1/2)}{2!} \left(\frac{-4}{64} \right) + \frac{1}{2!} \left(\frac{-4}{64} \right) + \frac$ T.746 $max error = \left| 8 \left[\frac{(1/2)(-1/2)(-3/2)}{3!} \left(\frac{-4}{64} \right)^3 \right] \right|$ ~ 1.5×10-5

$$= \left[1 + \frac{-23}{27}\right]^{1/6}, \quad \left|\frac{-23}{27}\right| < 1$$

$$= 1 + \frac{1}{6} \left(\frac{-23}{27}\right) + \frac{(1/6)(-5/6)}{2!} \left(\frac{-23}{27}\right)^{2}$$

$$= 0.808$$

$$= 0.808$$

$$= \frac{1}{27} = \frac{1}{2} =$$

PENCYNOSEY "Lée rés colons ad 131: Les Il and if is being and Eyr det assi for (2) Phapapanay It as as all represented $\frac{3\sqrt{41}}{\sqrt{25}} = \left(\frac{41}{25}\right)^{1/3} = \left(\frac{25+16}{25}\right)^{1/3}$ $= (1 + \frac{16}{25})^{1/3}$ 116/25/</ 4/3 $\left(\frac{16}{25}\right) + \left(\frac{1}{3}\right)\left(\frac{2}{3}\right) \left(\frac{16}{25}\right)^2 \simeq 1.168$ $= \left(\left(\frac{(2)^{1/3}}{(3)^{1/2}} \right)^6 \right)^{1/6}$

12

Very Important الم عاد مفكل فوسونة الشر من مرين: Center Share EXPand: -Xample:-1) XK Jusep at 2) X>>> $x^{2} + 3x + 3$ $=(x^2+3x+3)$ Solution: X2+3X+3 محمومة سنتر شدر للخدمات الطلاسة المن إدر الحلقر عامل مسترك الذة كالم $= (3) \left(\left/ + \left(\frac{x^2 + 3x}{3} \right) \right) \right) \left(\frac{x^2 + 3x}{3} \right) \left(\frac{x^2 + 3x}{3} \right) \right)$ $=\frac{1}{3}\left[1+\frac{(-1)}{11}\left(\frac{x^{2}+3x}{3}\right)\right]$ $+\left(\frac{-1)(-2)}{2!}\left(\frac{x^2+3x}{3}\right)+\cdots$ also dolex MP is ?

$$(x^{2}+3x+3) = (x^{2})^{2} \left(1 + \frac{3x+3}{x^{2}}\right)^{2}$$

$$= \frac{1}{x^{2}} \left[1 + \frac{(-1)}{1!} \left(\frac{3x+3}{x^{2}}\right)^{2} + \frac{(-1)(-2)}{1!} \left(\frac{3x+3}{x^{2}}\right)^{2} + \frac{(-1)(-2)}{x^{2}} \left(\frac{3x+3}{x^{2}}\right)^{2} + \frac{(-1)(-2)(-2)(-2)(-2)(-2)}{x^{2}} \left(\frac{3x+3}{x^{2}}\right)^{2} + \frac{(-1)(-2)(-2)(-2)(-2)(-2)}{x^{2}} \left(\frac{6x+2}{x^{2}}\right)^{2} + \frac{(-1)(-2)(-2)(-2)(-2)(-2)(-2)}{x^{2}} \left(\frac{6x+2}{x^{2}}\right)^{2} + \frac{(-1)(-2)(-2)(-2)(-2)(-2)(-2)}{x^{2}} \left(\frac{6x+2}{x^{2}}\right)^{2} + \frac{(-1)(-2)(-2)(-2)(-2)(-2)(-2)}{x^{2}} \left(\frac{6x+2}{x^{2}}\right)^{2} + \frac{(-1)(-2)(-2)(-2)(-2)(-2)(-2)}{x^{2}} \left(\frac{6x+2}{x^{2}}\right)^{2} + \frac{(-1)(-2)(-2)(-2)(-2)(-2)}{x^{2}} \left(\frac{6x+2}{x^{2}}\right)^{2} + \frac{(-1)(-2)(-2)(-2)(-2)}{x^{2}} \left(\frac{6x+2}{x^{2}}\right)^{2} + \frac{(-1)(-2)(-2)(-2)(-2)}{x^{2}} \left(\frac{6x+2}{x^{2}}\right)^{2} + \frac{(-1)(-2)(-2)(-2)(-2)(-2)}{x^{2}} \left(\frac{6x+2}{x^{2}}\right)^{2} + \frac{(-1)(-2)(-2)(-2)(-2)}{x^{2}} \left(\frac{6x+2}{x^{2}}\right)^{2} + \frac{(-1)(-2)(-2)(-2)}{x^{2}} \left(\frac{6x+2}{x^{2}}\right)^{2} + \frac{(-1)(-2)(-2)(-2)(-2)}{x^{2}} \left(\frac{6x+2}{x^{2}}\right)^{2} + \frac{(-1)(-2)(-2)(-2)(-2)}{x^{2}} \left(\frac{6x+2}{x^{2}}\right)^{2} + \frac{(-1)(-2)(-2)(-2)(-2)}{x^{2}} \left(\frac{6x+2}{x^{2}}\right)^{2} + \frac{(-1)(-2)(-2)(-2)(-2)}{x^{2}} \left(\frac{6x+2}{x$$

XX(3, 200) Jole (2) Feld of 20 [7]

 $\Rightarrow (x^{2}+6x+2) = (2) \left(1+\frac{x^{2}+6x}{2}\right)^{-4}$ Center share 1/2/46x/<1 $=\frac{16}{16}\left[1+\frac{(-4)}{1!}\left(\frac{x^2+6x}{2}\right)\right]$ $+\frac{(-4)(-5)}{21}\left(\frac{x^2+6x}{2}\right)^{4---}$ IXPans $(\chi^3 + 3\chi^2 + \chi + 1)$ Center share Center share

very very ... Important: Tilit X = 500 5 John 3/5/3 (3.) * Calculation of Coeffecient share In General Tolet X 1 is usual por so collet ()[$(1+Z)=1+c_1^2Z+c_2^2Z+\cdots+(c_r)Z^r$ n = Zt John -- Coeffecient $\frac{n!}{r!} = \frac{n!}{r!(n-r)!}$ $(1+Z) = 1-2Z+\cdots$ Ist Zuzup Preinter li coeff. $Z' = (-1)^r n+r-1$

=Xamples: find coeffecient of Expansion of: (1+x)Johntion: (1+X) = 1+C, X+--- +C, X : Geff X = C ade v adab ۲ - أس لفوس Courer chare $(3-5 \times^2)^{10}$ Solution $(3)^{10}(1+\frac{-5}{3}x^{2})=3[---+c_{r}(\frac{-5}{3}x^{2})]$ +(3) (-5)

+ Find The Expansion of College (1+X)2 Then Find Coeff. of 1/2 $\frac{\text{Solution:}}{\text{Solution:}} \left(\frac{1+x}{1-x}\right)^2 = \left(\frac{1+x}{1-x}\right)^2 = \left(\frac{1+x}{1-x}\right)^2$ $= \frac{(1+2x+x^2)(1+2x+3x^2+-+(1+1)x^2)}{(1+2x+3x^2+--+(1+1)x^2)}$ + 2 X+4 X2+6 x3+ 21X+2(r+1) Xr+1 $+ \chi^{2} + 2\chi^{3} + - - - (r-1)\chi + r\chi^{+1} + r\chi^{+1} \chi^{-1} \chi^{-1}$ A Geff X' = (r+1)+(r-1) + 2r47 Put r=8 = X plesupd 4+8-32

Find coefficient of Xn in the Expansion of, Conter Share $\frac{(1+2x)^5}{(1-x)^2}$ Solution $= \frac{(1+2x)^{5} \cdot (1-x)^{-2}}{4}$ $= \left[1 + 5(2x) + \frac{(5)(4)}{2!}(2x) + \frac{5 + 4 + 3}{3!}(2x) + \frac{5 + 3 + 4 + 2}{4!}(2x) \right]$ + (2x) [----+ (1+r) x + --] $= [1+10x + 40x^{2} + 80x^{3} + 80x^{4} + 32x^{3}]$ $\neq [--+(1+r)x^r+-J$ Center Share (Prese) Y John -(1) (1+r) +10(r) +40(r-1) +80(r-2) +8(r-3) +32 (r-4) مجمع وعدة المنشر الله Juin 1 (Pleas) Xn John للغدميات العلابية خليسة العلابية 5. 11-> r = 1+n+1 on + 4 o(n-1) + 80(n-3) + 32(n-4) + 32(n-4)report find colf of an for: م ارمداک ورایزی الدول $x^{3} - x^{2} - x + 1$

Solve the following Inequalities. Solution $\frac{3x-4}{2} > 5x-7$ 3X-4>10X-14 X<10 = 7x<10 7 X - 10 < 0 Conter share Solution 1 X-11 نقلب الطعلم رتفيم Conforda, 1X-11 < x - 1 > -1X-1-X - X < 2 X>o X €]0,2[

$$|X| - 3 > 1$$

$$|X| - 3 < -1$$

$$|X| < 2$$

$$|X| < 3$$

$$|X| < 4$$

$$|X| <$$

$$= (1+2x) (1-4x^{2}) \Rightarrow n = (2) \Rightarrow 2 = -4x^{2}$$

$$= (1+2x) \left[(1-4x^{2}) + (-1) +$$

$$= \left[1 + 10 \times + 40 \times^{2} + 30 \times^{3} + 30 \times^{4} + 32 \times^{5} \right] \left[- + (r+1) \times^{7} \right]$$

$$= ceff \times = [r+1] + [10 r] + [40(r-1)] + [80(r-2)] +$$

+ find Geffeceint of x" for (x2+x3+x4+x5)5, find Geffecient of X. Solution : $(x^2 + x^3 + x^4 + x^5)^5 = (x^2)^5 [/+x + x^2 + x^3]^5$ govive gli is elli $= \chi^{10} \left[\frac{(1+\chi+\chi^2+\chi^3)(1-\chi)}{(1-\chi)} \right]^5 -$ 1-X * 1000 0 $= x^{0} \left[\frac{(1+x+x^{2})(1-x)}{(1-x)} \right]^{5}$ $= X \cdot \left[1 - 5X + \frac{(5)(4)}{2!} X^{8} - \frac{5(4)(3)}{3!} X^{12} + \frac{5 \cdot 4 \cdot 3 \cdot 2}{4!} X - X^{9} \right] \cdot \left[\dots + (-1) C_{r}^{r} Z^{r} \right]$ $= [X^{10} - 5X + 10X - 10X + 5X - X^{0}] \cdot [-1744]$ or Geff. of $X = \begin{bmatrix} r-10 \\ X \\ T+4-10 \\ C \\ T-10 \end{bmatrix} + \begin{bmatrix} r-14 \\ T-14 \\ T-14 \end{bmatrix} (-5)$ $+\frac{1}{10} + \frac{18}{10} + \frac{18$ Center char المسات الطلابية And benefit to

= X [1-X+X-X2]7 (1-x2)7 لَقِكَةَ عادى 36 48 60 72 84 35X+35X-21X+7X-X 7* [---+ (-1) c 7] $= Coeff \times (1) \left(\frac{r-8_{4}}{r-14} + (-7) \left(\frac{r-20_{2}}{r-26} \right) + (21) \left(\frac{r-32_{2}}{r-38} \right) \right)$ +(35)(r-56) - 21(r-68)Beller Share 27 # Eupo's op the constitution of the Xy file of fill of the sound of the file of the sound of the file of the sound of the sound of the file of the sound of the so