Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Matemáticas Segundo semestre de 2016

$MAT1203 \star Algebra Lineal$

Solución a la Interrogación N° 3

- 1. Sea A una matriz de $m \times n$.
 - a) [2 pts.] Demuestre que $\dim(\operatorname{Col}(A)) + \dim(\operatorname{Nul}(A^T)) = m$.
 - b) [4 pts.] Demuestre que la ecuación $A\overrightarrow{\mathbf{x}} = \overrightarrow{\mathbf{b}}$ tiene solución para todo vector $\overrightarrow{\mathbf{b}} \in \mathbb{R}^m$ si y solo si la ecuación $A^T\overrightarrow{\mathbf{x}} = \overrightarrow{\mathbf{0}}$ tiene solamente la solución trivial.

Nota: Aquí puede usar la parte (a) aunque no la haya demostrado.

Solución:

- a) Claramente, $\dim(\operatorname{Col}(A)) + \dim(\operatorname{Nul}(A^T)) = \dim(\operatorname{Fila}(A^T)) + \dim(\operatorname{Nul}(A^T))$. Por el teorema del rango, sabemos que $\dim(\operatorname{Fila}(A^T)) = \dim(\operatorname{Col}(A^T)) = \operatorname{rango}(A^T)$, y también que $\operatorname{rango}(A^T) + \dim(\operatorname{Nul}(A^T)) = m$ (el número de columnas de A^T). Así, $\dim(\operatorname{Col}(A)) + \dim(\operatorname{Nul}(A^T)) = m$.
- b) Si la ecuación $A\overrightarrow{\mathbf{x}} = \overrightarrow{\mathbf{b}}$ tiene solución para todo vector $\overrightarrow{\mathbf{b}} \in \mathbb{R}^m$, entonces todo vector de \mathbb{R}^m es combinación lineal de las columnas de A, por lo que $\operatorname{Col}(A) = \mathbb{R}^m$ y por lo tanto $\dim(\operatorname{Col}(A)) = m$.

Pero entonces, por la parte (a), $\dim(\operatorname{Nul}(A^T)) = 0$, de donde $\operatorname{Nul}(A^T) = \{\overrightarrow{\mathbf{0}}\}$, por lo que la ecuación $A^T \overrightarrow{\mathbf{x}} = \overrightarrow{\mathbf{0}}$ tiene solamente la solución trivial.

Recíprocamente, si la ecuación $A^T \overrightarrow{\mathbf{x}} = \overrightarrow{\mathbf{0}}$ tiene solamente la solución trivial, entonces $\operatorname{Nul}(A^T) = \left\{ \overrightarrow{\mathbf{0}} \right\}$, de donde $\dim(\operatorname{Nul}(A^T)) = 0$.

Pero entonces, por la parte (a), $\dim(\operatorname{Col}(A)) = m$, por lo que $\operatorname{Col}(A) = \mathbb{R}^m$. Así, todo vector de \mathbb{R}^m es combinación lineal de las columnas de A, por lo que la ecuación $A\overrightarrow{\mathbf{x}} = \overrightarrow{\mathbf{b}}$ tiene solución para todo vector $\overrightarrow{\mathbf{b}} \in \mathbb{R}^m$.

Nota: En realidad esta demostración puede ser hecha en un si y solo si, sin recurrir a dos argumentos separados:

La ecuación $A^T\overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}$ tiene solamente la solución trivial si y solo si $\mathrm{Nul}(A^T)=\left\{\overrightarrow{\mathbf{0}}\right\}$, de donde $\dim(\mathrm{Nul}(A^T))=0$, lo que —por la parte (a)— es equivalente a $\dim(\mathrm{Col}(A))=m$, que a su vez es equivalente a $\mathrm{Col}(A)=\mathbb{R}^m$.

Pero esto último es equivalente a que todo vector de \mathbb{R}^m sea combinación lineal de las columnas de A, lo que finalmente es lo mismo que decir que la ecuación $A\overrightarrow{\mathbf{x}} = \overrightarrow{\mathbf{b}}$ tiene solución para todo vector $\overrightarrow{\mathbf{b}} \in \mathbb{R}^m$.

También podemos escribir esto como

La ecuación
$$A^T \overrightarrow{\mathbf{x}} = \overrightarrow{\mathbf{0}}$$
 tiene solamente la solución trivial \iff $\operatorname{Nul}(A^T) = \left\{ \overrightarrow{\mathbf{0}} \right\}$
 \iff $\dim(\operatorname{Nul}(A^T)) = 0$
 \iff $\dim(\operatorname{Col}(A)) = m$
 \iff $\operatorname{Col}(A) = \mathbb{R}^m$
 \iff todo vector de \mathbb{R}^m es combinación lineal de las columnas de A
 \iff la ecuación $A \overrightarrow{\mathbf{x}} = \overrightarrow{\mathbf{b}}$ tiene solución para todo $\overrightarrow{\mathbf{b}} \in \mathbb{R}^m$.

Puntaje:

- a) Por llegar a que $\dim(\operatorname{Col}(A)) = \operatorname{rango}(A^T)$, 1 punto.
 - Por ocupar el teorema del rango para argumentar que rango (A^T) + dim $(\text{Nul}(A^T))$ = m, 1 punto.
- b) Si hacen todo en un solo "si y solo si", 0,8 puntos por mencionar y justificar cada una de las equivalencias mostradas más arriba (excepto por la primera, que no recibe puntaje). Si lo hacen en dos partes separadas, 2 puntos por cada parte (dando 0,4 puntos cada condicional correspondiente a las equivalencias de arriba, salvo por las correspondientes a la primera equivalencia de más arriba.

2. Sean
$$P = \begin{bmatrix} 2 & 3 \\ -1 & 1 \end{bmatrix}$$
, $\overrightarrow{\mathbf{v}}_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$, $\overrightarrow{\mathbf{v}}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

Encuentre una base $\{\overrightarrow{\mathbf{u}}_1, \overrightarrow{\mathbf{u}}_2\}$ para \mathbb{R}^2 tal que P es la matriz de cambio de coordenadas de $\{\overrightarrow{\mathbf{u}}_1, \overrightarrow{\mathbf{u}}_2\}$ a la base $\{\overrightarrow{\mathbf{v}}_1, \overrightarrow{\mathbf{v}}_2\}$.

Ayuda: Pregúntese qué representan las columnas de $\mathcal{P}_{\mathcal{C}\leftarrow\mathcal{B}}$

Solución:

Sean
$$\mathcal{B} = \{\overrightarrow{\mathbf{u}}_1, \overrightarrow{\mathbf{u}}_2\} \text{ y } \mathcal{C} = \{\overrightarrow{\mathbf{v}}_1, \overrightarrow{\mathbf{v}}_2\}.$$

La matriz
$$P = \underset{\mathcal{C} \leftarrow \mathcal{B}}{\mathcal{P}} = \left[\begin{array}{cc} \overrightarrow{\mathbf{u}}_1 \end{array} \right]_{\mathcal{C}} \quad \left[\begin{array}{cc} \overrightarrow{\mathbf{u}}_2 \end{array} \right]_{\mathcal{C}} \right].$$

Pero dado cualquier
$$\overrightarrow{\mathbf{u}} \in \mathbb{R}^2$$
, se tiene $\begin{bmatrix} \overrightarrow{\mathbf{u}} \end{bmatrix}_{\mathcal{C}} = P_{\mathcal{C}}^{-1} \overrightarrow{\mathbf{u}}$, donde $P_{\mathcal{C}} = \begin{bmatrix} \overrightarrow{\mathbf{v}}_1 & \overrightarrow{\mathbf{v}}_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}$.

Así,
$$P = \mathcal{P}_{\mathcal{C} \leftarrow \mathcal{B}} = \begin{bmatrix} \begin{bmatrix} \overrightarrow{\mathbf{u}}_1 \end{bmatrix}_{\mathcal{C}} & \begin{bmatrix} \overrightarrow{\mathbf{u}}_2 \end{bmatrix}_{\mathcal{C}} \end{bmatrix} = \begin{bmatrix} P_{\mathcal{C}}^{-1} \overrightarrow{\mathbf{u}}_1 & P_{\mathcal{C}}^{-1} \overrightarrow{\mathbf{u}}_2 \end{bmatrix} = P_{\mathcal{C}}^{-1} \begin{bmatrix} \overrightarrow{\mathbf{u}}_1 & \overrightarrow{\mathbf{u}}_2 \end{bmatrix} = P_{\mathcal{C}}^{-1} P_{\mathcal{B}},$$
 por lo que $P_{\mathcal{B}} = P_{\mathcal{C}}P = \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 5 \\ 5 & 10 \end{bmatrix}.$

Puntaje:

- Por mencionar que $P = P_{\mathcal{C}}^{-1} P_{\mathcal{B}}$, 2 puntos.
- Por despejar $P_{\mathcal{B}}$ en lo anterior, 2 puntos.
- Por calcular correctamente $P_{\mathcal{B}} = P_{\mathcal{C}}P$, 2 puntos.

3. Sean V y W dos espacios vectoriales de dimensión finita, $T:V\to W$ una transformación lineal, y H un subespacio de V.

Demuestre que la dimensión de $T(H) = \{T(\mathbf{v}) : \mathbf{v} \in H\}$ (que es subespacio de W) es menor o igual a la dimensión de H. No es necesario que demuestre que T(H) es subespacio de W.

Solución:

Sea n la dimensión de H. Distinguiremos dos casos: n = 0, o n > 0.

Si n = 0, $H = \{0\}$, por lo que $T(H) = \{T(0)\} = \{0\}$, de donde $\dim(T(H)) = 0 = \dim(H)$.

Si n > 0, sea $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ una base de H.

Como \mathcal{B} genera H, $\{T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_n)\}$ genera T(H).

Si $\{T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_n)\}$ es l.i., entonces $\{T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_n)\}$ es una base de T(H), por lo que $\dim(T(H)) = n = \dim(H)$.

Si, por el contrario, $\{T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_n)\}$ es l.d., entonces $\{T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_n)\}$ contiene un subconjunto l.i. (con k < n vectores) que genera (y por lo tanto es base de) T(H).

Pero en este caso $\dim(T(H)) = k < n = \dim(H)$.

Puntaje:

En cualquiera de las soluciones (u otras *correctas* que se les ocurran a los alumnos):

- Por plantear una demostración correctamente estructurada, 1,5 puntos.
- Por llegar a la conclusión deseada, usando argumentos correctos, 2 puntos.
- Por justificar adecuadamente los argumentos, 2 puntos.
- Los 0,5 puntos restantes se dan si manejan correctamente el caso de que $H = \{0\}$ (donde dim H = 0).

Esto puede ser hecho explícitamente (como en la solución mostrada) o con una demostración más general, donde el caso $H = \{0\}$ sea uno más.

4. Sea A una matriz invertible, y sea λ un valor propio de A. Demuestre que $\lambda \neq 0$ y que $\frac{1}{\lambda}$ es un valor propio de A^{-1} .

Ayuda: Suponga que $\overrightarrow{\mathbf{x}} \neq \overrightarrow{\mathbf{0}}$ satisface $A\overrightarrow{\mathbf{x}} = \lambda \overrightarrow{\mathbf{x}}$.

Solución:

Sea a λ un valor propio de A, y sea $\overrightarrow{\mathbf{x}} \neq \overrightarrow{\mathbf{0}}$ un vector propio de A correspondiente al valor propio λ (o sea, $A\overrightarrow{\mathbf{x}} = \lambda \overrightarrow{\mathbf{x}}$).

Si $\lambda = 0$, entonces la ecuación $A\overrightarrow{\mathbf{u}} = \overrightarrow{\mathbf{0}}$ tiene una solución no trivial, lo que es imposible ya que A es invertible.

Además,
$$A^{-1}\overrightarrow{\mathbf{x}} = A^{-1}\left(\frac{1}{\lambda}(\lambda\overrightarrow{\mathbf{x}})\right) = \frac{1}{\lambda}A^{-1}(\lambda\overrightarrow{\mathbf{x}}) = \frac{1}{\lambda}A^{-1}(A\overrightarrow{\mathbf{x}}) = \frac{1}{\lambda}\left(A^{-1}(A\overrightarrow{\mathbf{x}})\right) = \frac{1}{\lambda}\overrightarrow{\mathbf{x}}$$
, por lo que $\frac{1}{\lambda}$ es valor propio de A^{-1} (con vector propio $\overrightarrow{\mathbf{x}}$).

Puntaje:

- Por demostrar que $\lambda \neq 0$, 2 puntos.
- Por darse cuenta de que un vector propio de A correspondiente al valor propio λ es también vector propio de A^{-1} , 2 puntos.
- Por mostrar que el valor propio de A^{-1} correspondiente al vector propio recién mencionado es $\frac{1}{\lambda}$, 2 puntos.

5. Diagonalice la matriz

$$A = \left[\begin{array}{ccc} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{array} \right],$$

sabiendo que $\lambda = 5$ es un valor propio de A.

Solución:

El polinomio característico de A es

$$\det(A - \lambda I) = \begin{vmatrix} 3 - \lambda & 1 & 1 \\ 1 & 3 - \lambda & 1 \\ 1 & 1 & 3 - \lambda \end{vmatrix} = 20 - 24\lambda + 9\lambda^2 - \lambda^3 = (5 - \lambda)(2 - \lambda)^2.$$

Así, $\lambda = 2$ (con multiplicidad 2) y $\lambda = 5$ (con multiplicidad 1) son los valores propios de A.

Para saber si A es o no diagonalizable, debemos verificar si la dimensión de cada espacio propio es igual a la multiplicidad algebraica del valor propio correspondiente.

Como la multiplicidad del valor propio $\lambda=5$ es 1, la única posibilidad de que A no sea diagonalizable es que la dimensión del espacio propio correspondiente a $\lambda=2$ sea 1.

Así, buscamos los vectores propios correspondientes a $\lambda=2$. Para ello, resolvemos la ecuación $A\overrightarrow{\mathbf{x}}=2\overrightarrow{\mathbf{x}}$ o —equivalentemente— $(A-2I)\overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}$, lo que es lo mismo que

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

La matriz ampliada escalonada reducida por filas es $\begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$, por lo que el sistema queda

equivalente a $x_1 = -x_2 - x_3$.

Así, una base para este espacio propio está dado por las elecciones $(x_2, x_3) = (1, 0)$ y $(x_2, x_3) = (0, 1)$, que corresponde a los vectores propios (-1, 1, 0) y (-1, 0, 1). Así, la dimensión de este espacio propio es 2, por lo que la matriz A es diagonalizable.

Para el valor propio $\lambda = 5$, debemos resolver el sistema

$$\begin{bmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

La matriz ampliada escalonada reducida por filas es $\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$, por lo que el sistema

queda equivalente a $x_1 = x_2 = x_3$.

Así, un vector propio correspondiente a $\lambda = 5$ es (1, 1, 1).

De todo lo anterior llegamos a que la matriz A puede ser diagonalizada como sigue:

$$A = \begin{bmatrix} -1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} -1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}^{-1}.$$

Puntaje:

- Por calcular y factorizar correctamente el polinomio característico: 1 punto.
- Por indicar que la condición para que A sea diagonalizable es que la dimensión del espacio propio correspondiente a $\lambda=2$ sea 2 (o, equivalentemente, que haya dos vectores propios l.i. correspondientes a $\lambda=2$): 1 punto.
- Por encontrar dos vectores propios l.i. correspondientes a $\lambda = 2$ (que no necesariamente deben ser los aquí mostrados): 2 puntos (1 por cada vector).
- Por encontrar un vector propio correspondiente a $\lambda = 5$: 1 punto.
- Por escribir A correctamente en la forma $A = PDP^{-1}$: 1 punto.

6. Sea
$$A = \begin{bmatrix} 5 & -6 \\ 2 & -2 \end{bmatrix}$$
, y defina $T : \mathbb{R}^2 \to \mathbb{R}^2$ por $T(\overrightarrow{\mathbf{x}}) = A\overrightarrow{\mathbf{x}}$.

Encuentre una base \mathcal{B} para \mathbb{R}^2 con la propiedad de que la matriz de T en la base \mathcal{B} (lo que el texto llama la \mathcal{B} -matriz para T) es una matriz diagonal.

Solución:

Buscamos una base de \mathbb{R}^2 formada por vectores propios de A. El polinomio característico de A es

$$\det(A - \lambda I) = \begin{vmatrix} 5 - \lambda & -6 \\ 2 & -2 - \lambda \end{vmatrix} = (\lambda - 5)(\lambda + 2) + 12 = \lambda^2 - 3\lambda + 2 = (\lambda - 2)(\lambda - 1).$$

Así. los valores propios son 1 y 2, por lo que buscamos vectores propios correspondientes a estos valores propios:

• Para
$$\lambda = 1$$
,

$$\left[\begin{array}{cc} 4 & -6 \\ 2 & -3 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right]$$

tiene por solución $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$.

• Para $\lambda = 2$,

$$\begin{bmatrix} 3 & -6 \\ 2 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

tiene por solución
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
.

Así, una posible base que cumple con las condiciones pedidas es $\mathcal{B} = \left\{ \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}$ (y en realidad cualquier base formada por ponderados de estos vectores).

Puntaje:

- Por calcular y factorizar correctamente el polinomio característico: 1 punto.
- \blacksquare Por encontrar un vector propio correspondiente a $\lambda=2$: 2 puntos.
- Por encontrar un vector propio correspondiente a $\lambda = 1$: 2 puntos.
- Por escribir la base encontrada (no es necesario diagonalizar la matriz): 1 punto.

7. La matriz $\begin{bmatrix} 1 & -2 \\ 1 & 3 \end{bmatrix}$ actúa sobre \mathbb{C}^2 . Determine los valores propios y una base para cada espacio propio en \mathbb{C}^2 .

Solución:

El polinomio característico de A es

$$\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & -2 \\ 1 & 3 - \lambda \end{vmatrix} = (\lambda - 1)(\lambda - 3) + 2 = \lambda^2 - 4\lambda + 5 = (\lambda - (2 + i))(\lambda - (2 - i)).$$

Así. los valores propios son 2 + i y 2 - i, por lo que buscamos vectores propios correspondientes a estos valores propios:

Para
$$\lambda=2+i,$$

$$\begin{bmatrix} -1-i & -2 \\ 1 & 1-i \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 tiene por solución
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1-i \\ -1 \end{bmatrix}.$$

Para
$$\lambda = 2 - i$$
,
$$\begin{bmatrix} -1 + i & -2 \\ 1 & 1 + i \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 tiene por solución $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 + i \\ -1 \end{bmatrix}$.

Así, las bases de los espacios propios son:

• Para
$$\lambda = 2 + i$$
, $\left\{ \begin{bmatrix} 1 - i \\ -1 \end{bmatrix} \right\}$.

• Para
$$\lambda = 2 - i$$
, $\left\{ \begin{bmatrix} 1+i \\ -1 \end{bmatrix} \right\}$.

Puntaje:

- Por calcular y factorizar correctamente el polinomio característico: 2 puntos.
- Por encontrar un vector propio correspondiente a $\lambda = 2 + i$ (y por ende la base del espacio propio respectivo): 2 puntos.
- Por encontrar un vector propio correspondiente a $\lambda = 2 i$ (y por ende la base del espacio propio respectivo): 2 puntos.

- 8. En cada caso, determine si la afirmación es VERDADERA o FALSA, y justifique su respuesta (el indicar correctamente si es V o F sin una justificación adecuada no tiene puntos):
 - a) La suma de dos vectores propios de una matriz A también es vector propio de esta.
 - b) Toda matriz de $n \times n$ con n vectores propios linealmente independientes es invertible.
 - c) Si A es diagonalizable, entonces A tiene n valores propios distintos.

Solución:

a) FALSO

Considere la matriz $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$.

Claramente, los vectores $\overrightarrow{\mathbf{u}} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ y $\overrightarrow{\mathbf{v}} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$ son vectores propios de A (con valores propios 1 y 2 respectivamente).

Sin embargo, $\overrightarrow{\mathbf{u}} + \overrightarrow{\mathbf{v}} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ no es vector propio de A, ya que

$$A(\overrightarrow{\mathbf{u}} + \overrightarrow{\mathbf{v}}) = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

que no es múltiplo de $\overrightarrow{\mathbf{u}} + \overrightarrow{\mathbf{v}}$.

b) FALSO

Sea 0_n la matriz de $n \times n$ con cero en todas sus entradas, y sea $\{\overrightarrow{\mathbf{v}}_1, \dots, \overrightarrow{\mathbf{v}}_n\}$ una base cualquiera de \mathbb{R}^n . Estos n vectores son linealmente independientes, y todos ellos son vectores propios de la matriz 0_n , con valor propio 0.

Pero claramente la matriz 0_n no es invertible.

Nota: en lugar de un contraejemplo "genérico" de $n \times n$, puede darse un contraejemplo concreto, v.g., los vectores (1,3) y (-2,5) (que forman un conjunto l.i.) son vectores propios de la matriz $A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, que no es invertible.

c) FALSO

La matriz identidad I_n que es claramente diagonalizable (y de hecho es diagonal) tiene solo un valor propio ($\lambda = 1$).

Nota: Aquí también puede darse un contraejemplo concreto, por ejemplo $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ que es diagonalizable y para la que todo vector $\neq \overrightarrow{\mathbf{0}}$ es vector propio con valor propio $\lambda = 1$.

Puntaje:

En cada parte, por dar un buen contraejemplo (específico o genérico, como los mostrados más arriba), 2 puntos.