3.20 Theorem. Let $a, b, n \in \mathbb{Z}$ with n > 0. The equation $ax \equiv b \pmod{n}$ has a solution if and only if (a, n)|b.

Proof. Let $ax \equiv b \pmod{n}$ be given such that it has a solution. By Theorem 3.19, there exists $x, y \in \mathbb{Z}$ such that ax + ny = b. By Theorem 1.48, (a, n)|b.

Let (a, n)|b be given. By Theorem 1.48, there exists integers x, y such that ax + ny = b. By Theorem 3.19, $ax \equiv b \pmod{n}$.