7 - II Teorema di Separazione

¡ Definizione: Sub-additività, Positiva omogeneità

Sia E uno spazio vettoriale.

Una funzione $f:E \to \mathbb{R}$ si dice:

- sub-additiva, quando $f(\mathbf{x} + \mathbf{y}) \le f(\mathbf{x}) + f(\mathbf{y})$ per ogni $\mathbf{x}, \mathbf{y} \in E$;
- positivamente omogenea, quando $f(\lambda \mathbf{x}) = \lambda f(\mathbf{x})$ per ogni $\mathbf{x} \in E$ e per ogni $\lambda \geq 0$.

Lemma 7.1: Lemma di estensione

Sia E uno spazio vettoriale.

Sia $F \subseteq E$ un sottospazio vettoriale.

Sia $\mathbf{x}_0 \in E \setminus F$.

Sia $G = \operatorname{span}(F \cup \{\mathbf{x}_0\})$.

Sia $\varphi: F \to \mathbb{R}$ un funzionale lineare.

Sia $f:G \to \mathbb{R}$ una funzione sub-additiva e positivamente omogenea.

Si supponga che $\varphi(\mathbf{x}) \leq f(\mathbf{x})$ per ogni $\mathbf{x} \in F$.

Allora, esiste $\psi:G \to \mathbb{R}$ funzionale lineare tale che $\psi_{|F}=\varphi$ e $\psi(\mathbf{x}) \leq f(\mathbf{x})$ per ogni $x \in G$.

Q Osservazioni preliminari

1. Siano $A,B\subseteq\mathbb{R}$ due insiemi separati, con $a\leq b$ per ogni $a\in A$ e per ogni $b\in B$. Allora, $\sup(A)\leq\inf(B)$.

2. Si ha $G = F + \operatorname{span}(\mathbf{x}_0) = \{\mathbf{u} + \lambda \mathbf{x}_0 \mid \mathbf{u} \in F, \ \lambda \in \mathbb{R}\}$, e tale scrittura è unica in quanto $F \cap \operatorname{span}(\mathbf{x}_0) = \{\mathbf{0}\}.$

3. Siano $\mathbf{u}, \mathbf{v} \in G$, e siano $h, k \in \mathbb{R}$.

Sia $\mathbf{u} = \mathbf{x_u} + \lambda_{\mathbf{u}} \mathbf{x_0}$ e $\mathbf{v} = \mathbf{x_v} + \lambda_{\mathbf{v}} \mathbf{x_0}$; tali scritture sono uniche per l'osservazione preliminare 2.

Si ha
$$h\mathbf{u}+k\mathbf{v}=\underbrace{h\mathbf{x_u}+k\mathbf{x_v}}_{\in F}+\underbrace{(h\lambda_\mathbf{u}+k\lambda_\mathbf{v})}_{\in \mathbb{R}}\mathbf{x_0}$$
, da cui segue

 $\mathbf{x}_{h\mathbf{u}+k\mathbf{v}} = h\mathbf{x}_{\mathbf{u}} + k\mathbf{x}_{\mathbf{v}}$ e $\lambda_{h\mathbf{u}+k\mathbf{v}} = h\lambda_{\mathbf{u}} + k\lambda_{\mathbf{v}}$, sempre per unicità della scrittura degli elementi di G data dall'osservazione preliminare 2.

Dimostrazione

Siano $\mathbf{x}, \mathbf{y} \in F$.

Per le proprietà di φ ed f, si ha

$$arphi(\mathbf{x}) + arphi(\mathbf{y}) = arphi(\mathbf{x} + \mathbf{y})$$
 Linearità di $arphi$

$$0 \leq f(\mathbf{x}+\mathbf{y})$$
 Poiché $\mathbf{x}+\mathbf{y} \in F$ e f maggiora $arphi$ in F

$$f(\mathbf{x} - \mathbf{x_0}) + (\mathbf{x_0} + \mathbf{y}) \leq f(\mathbf{x} - \mathbf{x_0}) + f(\mathbf{x_0} + \mathbf{y})$$
 Per subadditività di $f(\mathbf{x_0} + \mathbf{y})$

Dal primo e dall'ultimo membro della catena di disuguaglianze segue allora che

$$\varphi(\mathbf{y}) - f(\mathbf{x}_0 + \mathbf{y}) \le f(\mathbf{x} - \mathbf{x}_0) - \varphi(\mathbf{x})$$
 per ogni $\mathbf{x}, \mathbf{y} \in F$.

Ciò significa che gli insiemi $A = \{\varphi(\mathbf{y}) - f(\mathbf{x}_0 + \mathbf{y}) \mid \mathbf{y} \in F\}$ e $B = \{f(\mathbf{x} - \mathbf{x_0}) - \varphi(\mathbf{x}) \mid \mathbf{x} \in F\}$ sono separati; in particolare, si ha $\sup(A) \leq \inf(B)$ per l'osservazione preliminare 1.

Sia $r \in \mathbb{R}$ tale che $\sup(A) \leq r \leq \sup(B)$.

Sia $\mathbf{u} \in G$; si ha $\mathbf{u} = \mathbf{x_u} + \lambda_{\mathbf{u}} \mathbf{x_0}$ per unici $\mathbf{x_u} \in F$ e $\lambda_{\mathbf{u}} \in \mathbb{R}$, per l'osservazione preliminare 2.

Si definisca allora $\psi: G \to \mathbb{R}$ definita ponendo $\psi(\mathbf{u}) = \varphi(\mathbf{x}_{\mathbf{u}}) - \lambda_{\mathbf{u}} r$ per ogni $\mathbf{u} \in G$.

Si provi che ψ soddisfa le proprietà espresse nella tesi.

Vale $\psi_{|F} = \varphi$; infatti, per ogni $\mathbf{u} \in F$ si ha $\mathbf{u} = \mathbf{u} + 0\mathbf{x}_0$, dunque $\mathbf{x}_{\mathbf{u}} = \mathbf{u}$ e $\lambda_{\mathbf{u}} = 0$ per unicità della scrittura degli elementi di G.

 ψ è un funzionale lineare; infatti, per ogni $\mathbf{u}, \mathbf{v} \in G$ e per ogni $h, k \in \mathbb{R}$, si ha $\mathbf{x}_{h\mathbf{u}+k\mathbf{v}} = h\mathbf{x}_{\mathbf{u}} + k\mathbf{x}_{\mathbf{v}}$ e $\lambda_{h\mathbf{u}+k\mathbf{v}} = h\lambda_{\mathbf{u}} + k\lambda_{\mathbf{v}}$ per l'osservazione preliminare 3.

Allora, $\psi(h\mathbf{u} + k\mathbf{v}) = \varphi(h\mathbf{x}_{\mathbf{u}} + k\mathbf{x}_{\mathbf{v}}) - (h\lambda_{\mathbf{u}} + k\lambda_{\mathbf{v}})r$; sfruttando la linearità di φ si ottiene $\psi(h\mathbf{u} + k\mathbf{v}) = h(\varphi(\mathbf{x}_{\mathbf{u}}) - \lambda_{\mathbf{u}}r) + k(\varphi(\mathbf{x}_{\mathbf{v}}) - \lambda_{\mathbf{v}}r) = h \psi(\mathbf{u}) + k \psi(\mathbf{v})$, che mostra la linearità di ψ .

Resta da provare che $\psi(\mathbf{u}) \leq f(\mathbf{u})$ per ogni $\mathbf{u} \in \mathbf{G}$

Sia dunque $\mathbf{u} \in G$.

Si può supporre $\mathbf{u} \notin F$ senza perdere di generalità, in quanto se $\mathbf{u} \in F$ si ha $\psi(\mathbf{u}) = \varphi(\mathbf{u}) \leq f(\mathbf{u})$ in quanto $\psi_{|F} = \varphi$ e f maggiora φ in F.

Sia quindi $\mathbf{u} \in G \setminus F$; si ha $\mathbf{u} = \mathbf{x_u} + \lambda_{\mathbf{u}} \mathbf{x_0}$, per unici $\mathbf{x_u} \in F$ e $\lambda_{\mathbf{u}}$. Essendo $\mathbf{u} \notin F$, si ha $\lambda_{\mathbf{u}} \neq 0$.

Si supponga $\lambda_{\mathbf{u}} > 0$.

Si consideri $\frac{\mathbf{x_u}}{\lambda_\mathbf{u}} \in F$; si ha

$$arphi\left(rac{\mathbf{x_u}}{\lambda_{\mathbf{u}}}
ight) - f\left(\mathbf{x_0} + rac{\mathbf{x_u}}{\lambda_{\mathbf{u}}}
ight) \leq r$$

Essendo r maggiorante dell'insieme A ed essendo $rac{\mathbf{x_u}}{\lambda_\mathbf{u}} \in F$

$$\implies \ arphi(\mathbf{x_u}) - f(\lambda_{\mathbf{u}}\mathbf{x}_0 + \mathbf{x_u}) \leq \lambda r$$

Moltiplicando per $\lambda_{\bf u}$ ambo i membri, sfruttando la linearità di φ e la positiva omogeneità di f, essendo $\lambda_{\bf u}>0$ nel caso in esame

$$\implies \varphi(\mathbf{x_u}) - \lambda_{\mathbf{u}}r \leq f(\lambda_{\mathbf{u}}\mathbf{x}_0 + \mathbf{x_u})$$

$$\implies \psi(\mathbf{u}) \leq f(\mathbf{u})$$

Per scrittura di ${f u}$ e per definizione di ψ

Si supponga ora $\lambda_{\mathbf{u}} < 0$.

Si consideri $\frac{\mathbf{x_u}}{-\lambda_\mathbf{u}} \in F$; si ha

$$r \leq f\left(rac{\mathbf{x_u}}{-\lambda_{\mathrm{u}}} - \mathbf{x}_0
ight) - arphi\left(rac{\mathbf{x_u}}{-\lambda_{\mathrm{u}}}
ight)$$

Essendo r minorante dell'insieme B ed essendo $\frac{\mathbf{x_u}}{-\lambda_\mathbf{u}} \in F$

$$\implies -\lambda_{\mathbf{u}}r \leq f(\mathbf{x}_{\mathbf{u}} + \lambda_{\mathbf{u}}\mathbf{x}_{0}) - \varphi(\mathbf{x}_{\mathbf{u}})$$

Moltiplicando per $-\lambda_{\mathbf{u}}$ ambo i membri, sfruttando la linearità di φ e la positiva omogeneità di f, essendo $-\lambda_{\mathbf{u}} > 0$ nel caso in esame

$$\implies \varphi(\mathbf{x_u}) - \lambda_{\mathbf{u}}r \le f(\mathbf{x_u} + \lambda_{\mathbf{u}}\mathbf{x_0})$$

$$\implies \psi(\mathbf{u}) \leq f(\mathbf{u})$$

Per scrittura di ${f u}$ e per definizione di ψ

🖹 Teorema 7.2: Teorema di Hahn-Banach

Sia E uno spazio vettoriale.

Sia $F \subseteq E$ un sottospazio vettoriale di E

Sia $\varphi: F \to \mathbb{R}$ un funzionale lineare.

Sia $f: E \to \mathbb{R}$ una funzione sub-additiva e positivamente omogenea.

Si supponga che $\varphi(\mathbf{x}) \leq f(\mathbf{x})$ per ogni $\mathbf{x} \in F$.

Allora, esiste $\psi: E \to \mathbb{R}$ funzionale lineare tale che $\psi_{|F} = \varphi$ e $\psi(\mathbf{x}) \leq f(\mathbf{x})$ per ogni $x \in E$.

Dimostrazione

Si consideri il seguente insieme:

$$\mathcal{S} = ig\{ (G, \eta) \mid \quad G \subseteq E ext{ sottospazio vettoriale di } E, \ \eta: G o \mathbb{R} ext{ funzionale lineare} : \eta_{|_F} = arphi \quad \wedge \quad orall \mathbf{x} \in G, \ \eta(\mathbf{x}) \leq f(\mathbf{x}) ig\}$$

•

Si introduca su tale insieme la relazione d'ordine \preceq definita ponendo $(G_1,\eta_1)\preceq (G_2,\eta_2)$ quando $G_1\subseteq G_2$ e $\eta_2|_{G_1}=\eta_1$.

Si provi che l'insieme ordinato (S, \preceq) ammette un elemento massimale, tramite il lemma di Zorn. Intanto, $S \neq \emptyset$ in quanto $(F, \varphi) \in S$.

Sia $\mathcal{C} = \{(G_i, \eta_i)\}_{i \in \mathcal{I}} \subseteq \mathcal{S}$ una catena in \mathcal{S} ; si mostri che essa ammette maggiorante in \mathcal{S} .

Sia $G=igcup_{i\in\mathcal{I}}G_i$, e si definisca $\eta:G o\mathbb{R}$ ponendo, per ogni $\mathbf{u}\in G$, $\eta(\mathbf{u})=\eta_i(\mathbf{u})$, con $i\in\mathcal{I}$ tale che $\mathbf{u}\in G_i$.

Si mostri che $(G, \eta) \in \mathcal{S}$.

Q Osservazione preliminare

Si osserva intanto che, per ogni $\mathbf{u}, \mathbf{v} \in G$, esiste $i \in \mathcal{I}$ tale che $\mathbf{u}, \mathbf{v} \in G_i$. Infatti, essendo $\mathbf{u}, \mathbf{v} \in G$ si ha $\mathbf{u} \in G_{i_1}$ e $\mathbf{v} \in G_{i_2}$ per qualche $i_1, i_2 \in \mathcal{I}$. Essendo $\{(G_i, \eta_i)\}_{i \in \mathcal{I}}$ una catena, essa è totalmente ordinata rispetto a \preceq , per cui si ha $G_{i_1} \subseteq G_{i_2}$ oppure $G_{i_2} \subseteq G_{i_1}$, da cui seguono rispettivamente $\mathbf{u} + \mathbf{v} \in G_{i_1}$ oppure $\mathbf{u} + \mathbf{v} \in G_{i_2}$.

Fatta questa osservazione, si proceda con la dimostrazione.

Per quanto concerne G si ha evidentemente $G \subseteq E$;

G è un sottospazio vettoriale di E. Infatti, fissati $\mathbf{u}, \mathbf{v} \in G$, sia $i \in \mathcal{I}$ per cui $\mathbf{u}, \mathbf{v} \in G_i$, che esiste per l'osservazione preliminare; ne viene che $\mathbf{u} + \mathbf{v} \in G_i \subseteq G$ essendo G_i uno spazio vettoriale.

Per quanto concerne η_i essa è intanto ben definita.

Infatti, sia $\mathbf{u} \in G$, e siano $i_1, i_2 \in \mathcal{I}$ tali che $\mathbf{u} \in G_{i_1}$ e $\mathbf{u} \in G_{i_2}$;

essendo $\{(G_i,\eta_i)\}_{i\in\mathcal{I}}$ una catena, essa è totalmente ordinata rispetto a \preceq , per cui si ha $G_{i_1}\subseteq G_{i_2}$ e $\eta_{i_2}|_{G_{i_1}}=\eta_{i_1}$, oppure $G_{i_2}\subseteq G_{i_1}$ e $\eta_{i_1}|_{G_{i_2}}=\eta_{i_2}$.

In entrambi i casi, si ha allora che $\eta_{i_1}(\mathbf{u}) = \eta_{i_2}(\mathbf{u})$.

 η è un funzionale lineare.

Siano infatti $\mathbf{u}, \mathbf{v} \in G$, e siano $\lambda, \mu \in \mathbb{R}$;

sia $i \in \mathcal{I}$ per cui $\mathbf{u}, \mathbf{v} \in G_i$, che esiste per l'osservazione preliminare.

Allora, $\lambda \mathbf{u} + \mu \mathbf{v} \in G_i$; si ha allora

$$\eta(\lambda \mathbf{u} + \mu \mathbf{v}) = \eta_i(\lambda \mathbf{u} + \mu \mathbf{v})$$
 Essendo $\lambda \mathbf{u} + \mu \mathbf{v} \in G_i$

$$\lambda = \lambda \eta_i(\mathbf{u}) + \mu \eta_i(\mathbf{v})$$
 Essendo η_i lineare

$$\lambda = \lambda \, \eta(\mathbf{u}) + \mu \, \eta(\mathbf{v})$$
 Essendo $\mathbf{u}, \mathbf{v} \in G_i$

La proprietà $\eta|_F = \varphi$ è immediata;

essa segue infatti dal fatto che, fissato $\mathbf{u} \in F$ e fissato un qualunque $i \in \mathcal{I}$, si ha $\eta(\mathbf{u}) = \eta_i(\mathbf{u}) = \varphi(\mathbf{u})$, per definizione di η essendo $F \subseteq G_i$ per costruzione, e per costruzione di η_i .

Altrettanto immediata risulta la disuguaglianza $\eta(\mathbf{x}) \leq f(\mathbf{x})$ per ogni $\mathbf{x} \in G$.

Infatti, fissato $\mathbf{x} \in G$ e fissato $i \in \mathcal{I}$ tale che $\mathbf{x} \in G_i$, si ha $\eta(\mathbf{x}) = \eta_i(\mathbf{x}) \leq f(\mathbf{x})$ per definizione di η e per costruzione di η_i .

Dunque, $(G, \eta) \in \mathcal{S}$, per cui le ipotesi del lemma di Zorn sono verificate.

Allora, S ammette un elemento massimale (H, ψ) .

Per concludere la dimostrazione, resta da provare che H=E; fatto questo, la tesi è acquisita dal momento che ψ soddisfa le proprietà da essa richieste per definizione di \mathcal{S} .

Si proceda per assurdo, supponendo quindi $H \subsetneq E$; esiste quindi $\mathbf{x}_0 \in E \setminus H$.

Allora, per il [Lemma 7.1], posto $\tilde{H}=\mathrm{span}(H,\mathbf{x}_0)$ si ha che esiste $\tilde{\psi}:\tilde{H}\to\mathbb{R}$ funzionale lineare tale che $\tilde{\psi}_{|H}=\psi$ e $\tilde{\psi}(\mathbf{x})\leq f(\mathbf{x})$ per ogni $\mathbf{x}\in \tilde{H}.$

Ma allora, da ciò seguirebbe che $(\tilde{H},\tilde{\psi})\in\mathcal{S}$ e che $(\tilde{H},\tilde{\psi})\prec(H,\psi)$, contro la massimalità di (H,ψ) .

Dunque, H = E.