使用NLTK进行Python文本分析

七月在线 加号

微博 @翻滚吧_加号

2016年 9月24日

NLTK

http://www.nltk.org/

Python上著名的自然语言处理库自带语料库,词性分类库自带分类,分词,等等功能强大的社区支持还有N多的简单版wrapper

NLTK安装

Mac/Unix

sudo pip install -U nltk # 顺便还可以装个Numpy sudo pip install -U numpy # 测试是否安装成功 >>> python >>> import nltk

Windows

装个 python3.4 先: http://www.python.org/downloads/

有空也可以装个Numpy: http://sourceforge.net/projects/numpy/files/NumPy/

安装NLTK: http://pypi.python.org/pypi/nltk

测试安装成功: 开始>Python34, 输入 import nltk

注意python版本号,操作系统位数一致

安装语料库

import nltk
nltk.download()

功能一览表

NLTK Modules	Functionality
nltk.corpus	Corpus
nltk.tokenize, nltk.stem	Tokenizers, stemmers
nltk.collocations	t-test, chi-squared, mutual-info
nltk.tag	n-gram, backoff,Brill, HMM, TnT
nltk.classify, nltk.cluster	Decision tree, Naive bayes, K-means
nltk.chunk	Regex,n-gram, named entity
nltk.parsing	Parsing
nltk.sem, nltk.interence	Semantic interpretation
nltk.metrics	Evaluation metrics
nltk.probability	Probability & Estimation
nltk.app, nltk.chat	Applications

NLTK自带语料库

```
>>> from nltk.corpus import brown
>>> brown.categories()
['adventure', 'belles_lettres', 'editorial',
'fiction', 'government', 'hobbies', 'humor',
'learned', 'lore', 'mystery', 'news', 'religion',
'reviews', 'romance', 'science_fiction']
>>> len(brown.sents())
57340
>>> len(brown.words())
1161192
```

Tokenize

把长句子拆成有"意义"的小部件

Tokenize

```
>>> import nltk
>>> sentence = "hello, world"
>>> tokens = nltk.word_tokenize(sentence)
>>> tokens
['hello', ',', 'world']
```

中英文NLP区别

今天 / 天气 / 不错 / !

What a nice weather today!

启发式 Heuristic

分词

机器学习/统计方法: HMM、CRF

W O R D 千言万语

中文分词的资料

结巴分词的github主页

https://github.com/fxsjy/jieba

基于python的中文分词的实现及应用

http://www.cnblogs.com/appler/archive/2012/02/02/2335834.html

对Python中文分词模块结巴分词算法过程的理解和分析 http://ddtcms.com/blog/archive/2013/2/4/69/jieba-fenci-suanfa-lijie/

Penn Chinese Treebank Tag Set

http://blog.csdn.net/neutblue/article/details/7375085

中文分词

['what', 'a', 'nice', 'weather', 'today']

['今天', '天气', '真', '不错']

拯救@某人,表情符号,URL,#话题符号

Dow Jones @DowJones · 5h

Strategies for slow growth. Discuss this and other topics at WSJ Pro's Private Equity Analyst Conference. 9/27, NY peac.wsj.com

.

Niantic @NianticLabs · 5h

Tatsuo Nomura, Product Manager for Pokémon GO, will be speaking at Spikes Asia on Friday, Sept. 23rd, in Singapore: spikes.asia/home

T

•••

Richard Nash @R Nash · 6h

Thanks, Kirsten! It's instructive to think through these issues with another civilization's publishers in mind.

Kirsten D Sandberg @kikisandberg

#ChinaPublishingGroup got glimpse of future of publishing thru eyes of @R_Nash If you've not heard him, read this thoughtcatalog.com/porter-anderso...

•••


```
from nltk.tokenize import word_tokenize

tweet = 'RT @angelababy: love you baby! :D http://ah.love #168cm'
print(word_tokenize(tweet))
# ['RT', '@', 'angelababy', ':', 'love', 'you', 'baby', '!', ':',
# 'D', 'http', ':', '//ah.love', '#', '168cm']
```

```
import re
emoticons str = r"""
   (?:
       [:=;] # 眼睛
       [00\-]? # 鼻子
       [D\)\]\(\]/\\OpP] # 嘴
regex str = [
   emoticons str,
   r'<[^>]+>', # HTML tags
   r'(?:@[\w ]+)', # @某人
   r"(?:\#+[\w ]+[\w\' \-]*[\w ]+)", # 话题标签
   r'http[s]?://(?:[a-z]|[0-9]|[$-@.&+]|[!*\(\),]|(?:%[0-9a-f][0-9a-f]))+',
                                    # URLs
   r'(?:(?:\d+,?)+(?:\.?\d+)?)', # 数字
   r"(?:[a-z][a-z'\-_]+[a-z])", # 含有 - 和 ' 的单词
   r'(?:[\w ]+)', # 其他
   r'(?:\S)' # 其他
```

正则表达式

对照表

http://www.regexlab.com/zh/regref.htm

```
tokens re = re.compile(r'('+'|'.join(regex str)+')', re.VERBOSE | re.IGNORECASE)
emoticon re = re.compile(r'^'+emoticons str+'$', re.VERBOSE | re.IGNORECASE)
def tokenize(s):
    return tokens re.findall(s)
def preprocess(s, lowercase=False):
    tokens = tokenize(s)
    if lowercase:
        tokens = [token if emotion re.search(token) else token.lower() for token in
tokens 1
    return tokens
tweet = 'RT @angelababy: love you baby! :D http://ah.love #168cm'
print(preprocess(tweet))
# ['RT', '@angelababy', ':', 'love', 'you', 'baby',
# '!', ':D', 'http://ah.love', '#168cm']
```

纷繁复杂的词形

Inflection变化: walk => walking => walked 不影响词性

derivation 引申: nation (noun) => national (adjective) => nationalize (verb) 影响词性

词形归一化

Stemming 词干提取:一般来说,就是把不影响词性的inflection的小尾巴砍掉

walking 砍ing = walk walked 砍ed = walk

Lemmatization 词形归一: 把各种类型的词的变形,都归为一个形式

went 归 \longrightarrow = go are 归 \longrightarrow = be

NLTK实现Stemming

```
>>> from nltk.stem.porter import PorterStemmer
                                                        >>> from nltk.stem.lancaster import LancasterStemmer
>>> porter stemmer = PorterStemmer()
                                                        >>> lancaster_stemmer = LancasterStemmer()
>>> porter_stemmer.stem('maximum')
                                                        >>> lancaster_stemmer.stem('maximum')
u'maximum'
                                                         'maxim'
>>> porter stemmer.stem('presumably')
                                                        >>> lancaster stemmer.stem('presumably')
u'presum'
                                                         'presum'
>>> porter_stemmer.stem('multiply')
                                                        >>> lancaster_stemmer.stem('presumably')
u'multipli'
                                                         'presum'
>>> porter stemmer.stem('provision')
u'provis'
>>> from nltk.stem import SnowballStemmer
                                                         >>> from nltk.stem.porter import PorterStemmer
>>> snowball stemmer = SnowballStemmer("english")
                                                         >>> p = PorterStemmer()
>>> snowball_stemmer.stem('maximum')
                                                         >>> p.stem('went')
u'maximum'
                                                         'went'
>>> snowball_stemmer.stem('presumably')
                                                        >>> p.stem('wenting')
                                                         'went'
u'presum'
```


NLTK实现Lemma

```
>>> from nltk.stem import WordNetLemmatizer
>>> wordnet_lemmatizer = WordNetLemmatizer()
>>> wordnet_lemmatizer.lemmatize('dogs')
u'dog'
>>> wordnet_lemmatizer.lemmatize('churches')
u'church'
>>> wordnet_lemmatizer.lemmatize('aardwolves')
u'aardwolf'
>>> wordnet_lemmatizer.lemmatize('abaci')
u'abacus'
>>> wordnet_lemmatizer.lemmatize('hardrock')
'hardrock'
```

Lemma的小问题

v. go的过去式

Went

n. 英文名: 温特

NLTK更好地实现Lemma

```
# 木有POS Tag, 默认是NN 名词
>>> wordnet_lemmatizer.lemmatize('are')
'are'
>>> wordnet_lemmatizer.lemmatize('is')
'is'

# 加上POS Tag
>>> wordnet_lemmatizer.lemmatize('is', pos='v')
u'be'
>>> wordnet_lemmatizer.lemmatize('are', pos='v')
u'be'
```

Part-Of-Speech

Tag	Meaning	Examples
ADJ	adjective	new, good, high, special, big, local
ADV	adverb	really, already, still, early, now
CNJ	conjunction	and, or, but, if, while, although
DET	determiner	the, a, some, most, every, no
EX	existential	there, there's
FW	foreign word	dolce, ersatz, esprit, quo, maitre
MOD	modal verb	will, can, would, may, must, should
N	noun	year, home, costs, time, education
NP	proper noun	Alison, Africa, April, Washington
NUM	number	twenty-four, fourth, 1991, 14:24
PRO	pronoun	he, their, her, its, my, I, us
P	preposition	on, of, at, with, by, into, under
TO	the word to	to
UH	interjection	ah, bang, ha, whee, hmpf, oops
v	verb	is, has, get, do, make, see, run
VD	past tense	said, took, told, made, asked
VG	present participle	making, going, playing, working
VN	past participle	given, taken, begun, sung
WH	wh determiner	who, which, when, what, where, how

NLTK标注POS Tag

```
>>> import nltk
>>> text = nltk.word_tokenize('what does the fox say')
>>> text
['what', 'does', 'the', 'fox', 'say']
>>> nltk.pos_tag(text)
[('what', 'WDT'), ('does', 'VBZ'), ('the', 'DT'), ('fox', 'NNS'), ('say', 'VBP')]
```

Stopwords

- 一千个HE有一千种指代
- 一千个THE有一千种指事

对于注重理解文本『意思』的应用场景来说歧义太多

全体stopwords列表 http://www.ranks.nl/stopwords

NLTK去除stopwords

首先记得在console里面下载一下词库 或者 nltk.download('stopwords')

```
from nltk.corpus import stopwords

# 先token一把,得到一个word_list

# ...

# 然后filter一把

filtered_words =

[word for word in word_list if word not in stopwords.words('english')]
```

一条typical的文本预处理流水线

什么是自然语言处理?

自然语言 ── 计算机数据

文本预处理让我们得到了什么?

"life is like a box of chocolate"

Text Preprocessing

["life", "like", "box", "chocolate"]

| □量化

NLTK在NLP上的经典应用

- >情感分析
- > 文本相似度
- > 文本分类

应用:情感分析

哪些是夸你?哪些是黑你?

应用:情感分析

最简单的 sentiment dictionary

like 1 good 2 bad -2 terrible -3

类似于关键词打分机制

比如: AFINN-111

http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6010

NLTK完成简单的情感分析

```
sentiment_dictionary = {}
for line in open('data/AFINN-111.txt')
    word, score = line.split('\t')
    sentiment_dictionary[word] = int(score)

# 把这个打分表记录在一个Dict上以后
# 跑一遍整个句子, 把对应的值相加
total_score = sum(sentiment_dictionary.get(word, 0) for word in words)
# 有值就是Dict中的值, 没有就是0

# 干是你就得到了一个 sentiment score
```

Too Young Too Simple

显然这个方法太Naive 新词怎么办? 特殊词汇怎么办? 更深层次的玩意儿怎么办?

配上ML的情感分析

```
from nltk.classify import NaiveBayesClassifier
# 随手造点训练集
s1 = 'this is a good book'
s2 = 'this is a awesome book'
s3 = 'this is a bad book'
s4 = 'this is a terrible book'
def preprocess(s):
   # Func: 句子处理
   # 这里简单的用了split(), 把句子中每个单词分开
   # 显然 还有更多的processing method可以用
   return {word: True for word in s.lower().split()}
   # return长这样:
   # {'this': True, 'is':True, 'a':True, 'good':True, 'book':True}
   # 其中, 前一个叫fname, 对应每个出现的文本单词;
   # 后一个叫fval, 指的是每个文本单词对应的值。
   # 这里我们用最简单的True,来表示,这个词『出现在当前的句子中』的意义。
   # 当然啦, 我们以后可以升级这个方程, 让它带有更加牛逼的fval, 比如 word2vec
```

配上ML的情感分析

真实的case:

http://www.cs.cornell.edu/people/pabo/movie-review-data/

5331 正面评价; 5331 负面评价

先把数据都读进来

```
pos_data = []
with open('PATH_TO_rt-polarity-pos.txt', encoding='latin-1') as f:
    for line in f:
        pos_data.append([preprocess(line), 'pos'])

neg_data = []
with open('PATH_TO_rt-polarity-neg.txt', encoding='latin-1') as f:
    for line in f:
        neg_data.append([preprocess(line), 'neg'])
```

把测试集和训练集分开

```
training_data = pos_data[:4000]+neg_data[:4000]
testing_data = pos_data[4000:]+neg_data[4000:]
```

```
# 引入model
model = NaiveBayesClassifier.train(training_data)

# 试试活儿
print(model.classify(preprocess('this is a bad movie')))
```

试试活儿

我们刚刚的preprocess func仅仅只是把句子断开。 根据我们讲的,这个方法显然不够准确。 那么,

课后作业:

使用如下流程处理原始文本:

(主要就是改改Preprocess这个Func)

- 1. Tokenize原始文本 (用正则表达式处理twitter的方法)
- 2. 带pos tag的lemma
- 3. 去除stopwords

套用进Movie-Review-Data的代码 看看测试集跑下来准确率的区别

应用: 文本相似度

七月在线

北京七月在线科技的微博 微博

weibo.com/julyedu ▼ Translate this page

北京<mark>七月在线</mark>科技,七月算法www.julyedu.com官方微博。北京<mark>七月在线</mark>科技的微博主页、个人资料、相册。新浪微博,随时随地分享身边的新鲜事儿。

七月在线问答的微博 微博

weibo.com/askjulyedu ▼ Translate this page

玩个游戏,转发本微博一句话证明你是<mark>七月在线</mark>的学员,后天晚上我选一人送《机器学习与量化交易项目班》: O网页链接 100元优惠券一张,或者你任选一本100元以内 ...

今15年创业,享受改变的过程-结构之法算法之道-博客频道-CSDN.NET

blog.csdn.net/v_july_v/article/details/47808607 ▼ Translate this page

20 Aug 2015 - 很快,1月27日,我们上线了自己的在线教育网站:七月算法在线学院(后更名为:七月 在线) http://www.julyedu.com/。目前专注5类在线课程:面试、...

七月题库 - 笔试面试刷题神器

www.julyapp.com/ ▼ Translate this page

七月题库APP,专为IT人打造的笔试面试刷题神器。每天10分钟10道选择 ... 详尽的错题解析。七月题库APP在手,offer从此不再愁。 ... 七月算法官网. © 七月在线科技.

七月在线招聘-北京七月在线科技有限公司招聘-拉勾网

www.lagou.com/gongsi/76553.html ▼ Translate this page

1 七月在线: julyedu.com ,专注数据领域的在线教育平台。 2 七月在线APP,配套官网的课程、视频,已经发布. 公司介绍. 专注算法、ml、dl、dm、nlp、cv等领域.

用元素频率表示文本特征

we	you	he	work	happy	are
1	0	3	0	1	1
1	0	2	0	1	1
0	1	0	1	0	0

余弦定理

$$\text{similarity} = \cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|}$$

```
# 借用NLTK的FregDist统计一下文字出现的频率
import nltk
                                    fdist = FreqDist(tokens)
from nltk import FreqDist
                                   # 它就类似于一个Dict
# 做个词库先
                                   # 带上某个单词, 可以看到它在整个文章中出现的次数
corpus = 'this is my sentence ' \
                                   print(fdist['is'])
          'this is my life ' \
          'this is the day'
                                   # 3
# 随便tokenize一下
# 显然, 正如上文提到,
# 这里可以根据需要做任何的preprocessing:
# stopwords, lemma, stemming, etc.
tokens = nltk.word tokenize(corpus)
print(tokens)
# 得到token好的word list
# ['this', 'is', 'my', 'sentence',
# 'this', 'is', 'my', 'life', 'this',
# 'is', 'the', 'day']
```

```
# 好,此刻,我们可以把最常用的50个单词拿出来

standard_freq_vector = fdist.most_common(50)

size = len(standard_freq_vector)

print(standard_freq_vector)

# [('is', 3), ('this', 3), ('my', 2),

# ('the', 1), ('day', 1), ('sentence', 1),

# ('life', 1)
```

```
# Func: 按照出现频率大小, 记录下每一个单词的位置

def position_lookup(v):
    res = {}
    counter = 0
    for word in v:
        res[word[0]] = counter
        counter += 1
    return res

# 把标准的单词位置记录下来
standard_position_dict = position_lookup(standard_freq_vector)
print(standard_position_dict)
# 得到一个位置对照表
# {'is': 0, 'the': 3, 'day': 4, 'this': 1,
# 'sentence': 5, 'my': 2, 'life': 6}
```

```
# 这时,如果我们有个新句子:
sentence = 'this is cool'
# 先新建一个跟我们的标准vector同样大小的向量
freq vector = [0] * size
# 简单的Preprocessing
tokens = nltk.word tokenize(sentence)
# 对干这个新句子里的每一个单词
for word in tokens:
   try:
       # 如果在我们的词库里出现过
       # 那么就在"标准位置"上+1
       freq vector[standard position dict[word]] += 1
   except KeyError:
       # 如果是个新词
       # 就pass掉
       continue
print(freq vector)
\# [1, 1, 0, 0, 0, 0, 0]
# 第一个位置代表 is, 出现了一次
# 第二个位置代表 this, 出现了一次
```

应用: 文本分类

TF-IDF

TF: Term Frequency, 衡量一个term在文档中出现得有多频繁。

TF(t) = (t出现在文档中的次数) / (文档中的term总数).

IDF: Inverse Document Frequency, 衡量一个term有多重要。

有些词出现的很多,但是明显不是很有卵用。比如'is', 'the', 'and'之类的。

为了平衡,我们把罕见的词的重要性(weight)搞高,把常见词的重要性搞低。

 $IDF(t) = log_e($ 文档总数 / 含有t的文档总数).

TF-IDF = TF * IDF

TF-IDF

举个栗子:

一个文档有100个单词,其中单词baby出现了3次。

那么,TF(baby) = (3/100) = 0.03.

好,现在我们如果有10M的文档,baby出现在其中的1000个文档中。那么,IDF(baby) = log(10,000,000 / 1,000) = 4

所以, TF-IDF(baby) = TF(baby) * IDF(baby) = 0.03 * 4 = 0.12

NLTK实现TF-IDF

```
from nltk.text import TextCollection
# 首先, 把所有的文档放到TextCollection类中。
# 这个类会自动帮你断句,做统计,做计算
corpus = TextCollection(['this is sentence one',
                     'this is sentence two',
                     'this is sentence three'])
# 直接就能算出tfidf
# (term: 一句话中的某个term, text: 这句话)
print(corpus.tf idf('this', 'this is sentence four'))
# 0.444342
# 同理, 怎么得到一个标准大小的vector来表示所有的句子?
# 对于每个新句子
new sentence = 'this is sentence five'
# 遍历一遍所有的vocabulary中的词:
for word in standard vocab:
   print(corpus.tf idf(word, new sentence))
   # 我们会得到一个巨长(=所有vocab长度)的向量
```


接下来?

ML

感谢大家!

恳请大家批评指正!