目录

1	Mat	lab 基础人门											4
	1.1	基本小常识											4
	1.2	常用函数分类 .											4
		1.2.1 连接字符	丰函数										4
		1.2.2 数字转换等	字符串函数										4
		1.2.3 sum() 函数	女										4
		1.2.4 size() 函数											5
		1.2.5 repmat()	函数										5
		1.2.6 find() 函数	<u>t</u>										5
	1.3	矩阵运算											5
		1.3.1 矩阵自身的	内运算										5
		1.3.2 矩阵与常势	数大小的判	断运算	车 .								5
	1.4	特征值与特征向量	量的求解 .										6
2	层次	分析法											7
	2.1	权重表格											7
	2.2	计算权重											8
		2.2.1 方法一: 第	术平均法法	求权重									8
		2.2.2 方法二: 几	何平均法法	求权重									8
			征值法求村										8
	2.3	层次结构图											9
		2.3.1 画图软件	指南										9
3	TOI	PSIS 算法											10
	3.1	引入 TOPSIS 算	法的 reasor	ı									10
		3.1.1 计算评分	的公式										10
		3.1.2 统一指标	类型										10
	3.2	具体数学公式 .											10
		3.2.1 有 n 个评	价对象,m ′	个评价	指标	ŧ, t	算	得分	情	况			10
	3.3	指标转化公式 .											11
		3.3.1 极小型指	示转化为极	大型扌	旨标								11
		3.3.2 中间型指	示转化为极	大型扌	旨标								11

		3.3.3 区间型指标转化为极大型指标	11
	3.4	Matlab 相关代码	12
		3.4.1 unfinished	12
	3.5	基于熵权法对模型的修正	12
		3.5.1 依据的原理	12
		3.5.2 熵权法的计算步骤-未完全理解	12
4	插值	算法	13
	4.1	Lagrange 插值法	13
		4.1.1 局限性	13
	4.2	分段线性插值	13
	4.3	Newton 插值法	13
	4.4	Hermite 插值法	13
	4.5	Matlab 分段三次 Hermite 插值法	14
		4.5.1 unfinished	14
5	拟合	算法	15
6	相关	:系数	16
6	相关 6.1	•••	16
6		Pearson 相关系数	
6		Pearson 相关系数	16
6	6.1	Pearson 相关系数	16 18
6	6.1	Pearson 相关系数	16 18 18
6	6.1	Pearson 相关系数	16 18 18 18
6	6.16.26.3	Pearson 相关系数 6.1.1 Pearson 相关系数的注意事项 假设检验 6.2.1 P值 Pearson 相关系数的假设检验条件 正态分布检验(检验可以使用 python 完成)	16 18 18 18 19
6	6.1 6.2 6.3 6.4	Pearson 相关系数 6.1.1 Pearson 相关系数的注意事项 假设检验 6.2.1 P值 Pearson 相关系数的假设检验条件 正态分布检验(检验可以使用 python 完成) Spearman 相关系数	16 18 18 18 19
6	6.1 6.2 6.3 6.4 6.5	Pearson 相关系数. 6.1.1 Pearson 相关系数的注意事项. 假设检验. 6.2.1 P值. Pearson 相关系数的假设检验条件. 正态分布检验(检验可以使用 python 完成). Spearman 相关系数. 6.5.1 Spearman 与 Pearson 相关系数的选择.	16 18 18 19 19
	6.1 6.2 6.3 6.4 6.5	Pearson 相关系数. 6.1.1 Pearson 相关系数的注意事项. 假设检验. 6.2.1 P值. Pearson 相关系数的假设检验条件. 正态分布检验(检验可以使用 python 完成). Spearman 相关系数. 6.5.1 Spearman 与 Pearson 相关系数的选择.	16 18 18 19 19 19 20
	6.1 6.2 6.3 6.4 6.5	Pearson 相关系数 6.1.1 Pearson 相关系数的注意事项 假设检验 6.2.1 P值 Pearson 相关系数的假设检验条件 正态分布检验(检验可以使用 python 完成) Spearman 相关系数 6.5.1 Spearman 与 Pearson 相关系数的选择 !相关分析 定义	16 18 18 19 19 20 21
	6.1 6.2 6.3 6.4 6.5 典型 7.1	Pearson 相关系数 6.1.1 Pearson 相关系数的注意事项 假设检验 6.2.1 P值 Pearson 相关系数的假设检验条件 正态分布检验(检验可以使用 python 完成) Spearman 相关系数 6.5.1 Spearman 与 Pearson 相关系数的选择 ####################################	16 18 18 19 19 20 21
	6.1 6.2 6.3 6.4 6.5 典型 7.1 7.2	Pearson 相关系数 6.1.1 Pearson 相关系数的注意事项 假设检验 6.2.1 P值 Pearson 相关系数的假设检验条件 正态分布检验(检验可以使用 python 完成) Spearman 相关系数 6.5.1 Spearman 与 Pearson 相关系数的选择 Pearson 相关系数的选择	16 18 18 19 19 20 21 21 21
	6.1 6.2 6.3 6.4 6.5 典型 7.1 7.2	Pearson 相关系数 6.1.1 Pearson 相关系数的注意事项 假设检验 6.2.1 P值 Pearson 相关系数的假设检验条件 正态分布检验(检验可以使用 python 完成) Spearman 相关系数 6.5.1 Spearman 与 Pearson 相关系数的选择 P相关分析 定义 典型相关分析的思路 多元统计-unlearned 7.3.1 随机向量	16 18 18 19 19 20 21 21 21 22

		7.3.4	线性变换的协方差	23
		7.3.5	协方差矩阵的性质	23
		7.3.6	联合协方差	23
		7.3.7	补充知识点	23
	7.4	没学明	1白	24
8	数学	规划模	型	25
	8.1	线性规	. 划	25
		8.1.1	Matlab 中线性规划的标准型	25
		8.1.2	Matlab 求解线性规划的命令	25
	8.2	非线性	.规划	26
		8.2.1	Matlab 中非线性规划的标准型	26
		8.2.2	Matlab 求解非线性规划的函数	26
	8.3	整数规		28
		8.3.1	Matlab 整数规划求解	28
		8.3.2	Malab 线性 0-1 规划求解	28
	8.4	最大最	小化模型	29
		8.4.1	最大最小化问题的一般数学模型:	29
	8.5	多目标	规划模型	30
		8.5.1	求解思路	30
9	回归	分析		31
	9.1	线性回	归	31
		9.1.1	数据分类与对应的建模方法	31
		9.1.2	数据的收集	32
	9.2	0-1 回	·····································	32
	9.3	定序回	· · 归 · · · · · · · · · · · · · · · · · · ·	32
	9.4	计数回	·· 归	32
	9.5		· 归	32
10	引用			33

起玄匠摄提格尽强圉协洽

1 Matlab 基础人门

1.1 基本小常识

- 1. 每一行的语句后面加上分号; 后表示不显示运行结果
- 2. 注释多行注释快捷键 Ctrl+R 取消注释 Ctrl+T
- 3. 初始化工作区和命令窗口 clear;clc
- 4. 输出函数-disp()
- 5. 行向量 a=[1,2,3] 列向量 b=[1;2;3] 分号可用于分隔行
- 6. 输入函数-input()
- 7. M(i,:)-第 i 行所有元素; M(:;j)-第 j 列所有元素; M([a,b],:)-只取第 a 行和第 b 行 (共 2 行元素); M(a:b,:)-第 a 行到第 b 行 (共 b-a 行元素); M(a:i:b,:)-从第 a 行开始, 每次递增 i 个单位, 到第 b 行结束;

1.2 常用函数分类

1.2.1 连接字符串函数

• $strcat(str1, str2, \dots, strn) == [str1, str2, \dots, strn]$

1.2.2 数字转换字符串函数

• num2str(): 将' 数字' 转换为' 字符串'

1.2.3 sum() 函数

对矩阵求和: sum(M,1)-矩阵列求和;
 sum(M,2)-矩阵行求和; sum(M(:))-矩阵所有元素求和;

1.2.4 size() 函数

• [row, column] = size(M);r=size(M;1)-only return row; c=size(M;2)-only return column;

1.2.5 repmat() 函数

• B=repmat(A,m,n): 将 B 矩阵以 A 矩阵为元素按照 m×n 块复制

1.2.6 find() 函数

• 返回向量或者矩阵中不为 0 的元素的位置的索引.

dim A=1: ind=find(A,n)-返回前 n 个不为 0 的元素的位置;

 $\dim A>1$: $\inf = \operatorname{find}(A)$ -先将 A 矩阵按照列存储, 再找出所有不为 0 的元素的位置;

dim A>1: [r,c]=find(A)-给出非零元素的坐标.

1.3 矩阵运算

1.3.1 矩阵自身的运算

- $A \div B == A \times inv(B) \quad inv(B) = B^{-1}$;
- 两个形状相同的矩阵对应元素之间的乘除法需要使用 :* 和 :÷;
- 每个元素同时乘方时用 · ^;

1.3.2 矩阵与常数大小的判断运算

- 共有三种运算符: > < ==
- 返回的是 logic Matrix
- 判断语句格式:if else if else end(无: 和;)

1.4 特征值与特征向量的求解

• Matlab 中求解特征值与特征向量:

1.E=eig(A): 求出矩阵 A 的全部特征值, 构成向量 E.

2.[V,D]=eig(A): 求出矩阵 A 的特征值, 构成对角阵 D; 并且求出与特征值对应的特征向量构成的矩阵 V.

2 层次分析法

2.1 权重表格

- 判断矩阵:
 - 1. a(i,j) 表示与 j 指标相比,i 坐标的重要程度
 - 2. i=j means i 与 j 同等重要, 主对角元素为 1
 - 3. if a(i,j)>0 and $a(i,j)\times a(j,i)=1$,then A(i,j) is called 正互反矩阵
- 一致矩阵:

充要条件:

- 1. a(i,j) > 0
- 2. $a(i,i)=1 (i \in [1,n])$
- 3. $[a_{i1}, a_{i2}, \dots, a_{in}] = k_i[a_{11}, a_{12}, \dots, a_{1n}]$

lemma:

- 1. A 为 n 阶方阵, $\operatorname{rank}(A)=1$, 则 A 有一个特征值 $\operatorname{tr}(A)$, 其余特征 值为 0
- 2. 一致矩阵有一个特征值为 n, 其余特征值为 0
- 一致性检验:

步骤

- 1. 计算一致性指标 CI $CI = \frac{\lambda_{\max} n}{n-1}$
- 2. 查找对应的平均随机一致性指标 RI 在表格中根据 n 查找到对应的 RI (RI 通过随机方法构造样本矩阵, 定义得到)
- 3. 计算一致性比例 **CR**

 $CR = \frac{CI}{RI}$

4. if **CR** < 0.1, 则认为矩阵的一致性可以接受 否则需要对判断矩阵进行修正.

2.2 计算权重

while 判断矩阵的一致性可接受

2.2.1 方法一: 算术平均法求权重

- 1. 将判断矩阵按照列归一化 (每个元素除以其所在列的和)
- 2. 将归一化的各列相加(按行求和)
- 3. 将相加后得到的向量除以 n 即可得到权重向量
- 数学描述如下所示:

判断矩阵
$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}$$

算术平均法求得的权重向量 $\omega_i = \frac{1}{n}\sum_{j=1}^n \frac{a_{ij}}{\sum\limits_{i=1}^n a_{kj}} (i=1,2,\cdot\cdot\cdot,\mathbf{n})$

2.2.2 方法二: 几何平均法求权重

- 1. 将 A 的元素按照行相乘得到一个新的向量
- 2. 将向量的每个分量开 n 次方
- 3. 对该列向量进行归一化即可得到权重向量
- 数学描述如下所示:

判断矩阵
$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}$$

几何平均法求得的权重向量 $\omega_i = \frac{(\prod\limits_{j=1}^n a_{ij})^{\frac{1}{n}}}{\sum\limits_{k=1}^n (\prod\limits_{j=1}^n a_{kj})^{\frac{1}{n}}} (i=1,2,\cdot\cdot\cdot,n)$

2.2.3 方法三: 特征值法求权重

前提: 矩阵的一致性可以接受, 仿照一致矩阵权重求法

- 1. 求出矩阵 A 的最大特征值以及其对应的特征向量
- 2. 对求出的特征向量进行归一化即可得到权重
- 数学描述如下所示:

判断矩阵
$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}$$

几何平均法求得的权重向量 $\omega_i = \frac{\left(\prod\limits_{j=1}^n a_{ij}\right)^{\frac{1}{n}}}{\sum\limits_{k=1}^n \left(\prod\limits_{j=1}^n a_{kj}\right)^{\frac{1}{n}}} (i=1,2,\dots,n)$

注释: 以往论文利用层次分析法解决实际问题时, 都是采用其中某一种方法求解权重, 而不同的计算方法可能会导致结果有所偏差。为了保证结果的鲁棒性, 本文采用三种方法分别求出了权重, 再根据得到的权重矩阵计算各个方案的的得分, 并且进行排序和综合分析, 这样有效避免了采用单一方法所产生的偏差, 得到的结论更全面、有效。^[2]

2.3 层次结构图

2.3.1 画图软件指南

- 1. Echars
- 2. Matplotlib
- 3. 亿图示示

图 1: 层次结构图

3 TOPSIS 算法

3.1 引入 TOPSIS 算法的 reason

- 1. 充分利用原始数据的信息,并能更精确反映出各个状况/方案之间的优 劣与差距
- 2. 比较对象一般远大于 2 个
- 3. 比较指标有多个方面
- 4. 有很多指标不存在理论上的最大值和最小值

3.1.1 计算评分的公式

• $\frac{x-\min}{\max-\min}$

3.1.2 统一指标类型

• 指标正向化: 将所有的指标 (极大型 or 极小型指标) 全部转化为极大型指标

3.2 具体数学公式

3.2.1 有 n 个评价对象,m 个评价指标, 计算得分情况

1. 标准化矩阵 Z:

$$Z = \left(\begin{array}{ccc} z_{11} & \dots & z_{1m} \\ \vdots & \ddots & \vdots \\ z_{n1} & \dots & z_{nm} \end{array}\right)$$

2. 定义最大值 Z+:

$$\begin{split} Z^+ &= (Z_1^+, Z_2^+, \cdot \cdot \cdot, Z_m^+) = \\ &(\max\{z_{11}, z_{21}, \cdot \cdot \cdot, z_{n1}\}, \max\{z_{12}, z_{22}, \cdot \cdot \cdot, z_{n2}\}, \cdot \cdot \cdot, \max\{z_{1m}, z_{2m}, \cdot \cdot \cdot, z_{nm}\}) \end{split}$$

3. 定义最小值 Z-:

$$\begin{split} Z^- &= (Z_1^-, Z_2^-, \cdot \cdot \cdot, Z_m^-) = \\ &\left(\min\{z_{11}, z_{21}, \cdot \cdot \cdot, z_{n1}\}, \min\{z_{12}, z_{22}, \cdot \cdot \cdot, z_{n2}\}, \cdot \cdot \cdot, \min\{z_{1m}, z_{2m}, \cdot \cdot \cdot, z_{nm}\}\right) \end{split}$$

4. 定义第 i 个评价对象与最大值的距离 D_i^+ :

$$D_i^+ = \sqrt{\sum_{j=1}^m \omega_j (Z_j^+ - z_{ij})^2} \quad \omega_j \text{ 为指标权重}$$

5. 定义第 i 个评价对象与最小值的距离 D_i^- :

$$D_i^- = \sqrt{\sum\limits_{j=1}^m \omega_j (Z_j^- - z_{ij})^2}$$
 ω_j 为指标权重

6. 得出第 i 个评价对象未归一化的得分:

$$S_i = \frac{D_i^-}{D_i^- + D_i^+}$$

3.3 指标转化公式

3.3.1 极小型指标转化为极大型指标

• 极小型指标转化为极大型指标: max -x

3.3.2 中间型指标转化为极大型指标

中间型指标: 指标值既不要太大, 也不要太小, 取特定值最好 (例如 PH 值检验)

- $\{x_i\}$ 为一组中间型指标序列, 且最佳值为 x_{best} , 则正向化公式如下
- $M = \max\{|x_i x_{best}|\}, \tilde{x}_i = 1 \frac{|x_i x_{best}|}{M}$

3.3.3 区间型指标转化为极大型指标

区间型指标: 指标落在某个区间最好 (例如人体的体温范围)

- 1. $\{x_i\}$ 为一组中间型指标序列,且最佳区间为 [a,b],那么正向化公式如下:
- 2. $M = \max\{a \min\{x_i\}, \max\{x_i\} b\},\$

$$\tilde{x}_i = \begin{cases} 1 - \frac{a - x}{M} & \text{if } x < a \\ 1 & \text{if } a \le x \le b \\ 1 + \frac{x - b}{M} & \text{if } x > b \end{cases}$$

3.4 Matlab 相关代码

3.4.1 unfinished

• 详情参考 youtube.[清风数学建模].02-01TOPSIS 模型部分 [3]

3.5 基于熵权法对模型的修正

3.5.1 依据的原理

- 指标变异程度越小, 所反应的信息量也越少, 其对应的权重也越低
- 层次分析法的确定依赖专家, 主观性较强

3.5.2 熵权法的计算步骤-未完全理解

- x-可能发生的某种情况,p(x)-该情况发生的概率 $(0 \le p(x) \le 1)$
- 定义 $I(x) = -\ln(p(x))$
- 定义事件 X 的信息熵为: $H(X) = \sum_{i=1}^{n} [p(x_i)I(x_i)] = -\sum_{i=1}^{n} [p(x_i)\ln(p(x_i))]$
- while $p(x_i) = \frac{1}{n} \text{ ft}, H(X)_{\text{max}} = \ln n$
- 1. 判断输入矩阵中是否存在负数,if 存在则需要重新标准化到非负区间
- 2. 计算第 j 项指标下第 i 个样本所占的比重, 并将其看作相对熵计算中用 到的概率
- 3. 计算每个指标的信息熵,并且计算信息效用值,并且得到每个指标的熵 权

4 插值算法

4.1 Lagrange 插值法

- 拉格朗日插值多项式 P(x): $P(x) = \sum_{i=0}^{n} y_i \ell_i(x)$
- 拉格朗日基函数 $\ell_i(x)$: $\ell_i(x) = \prod_{\substack{0 \leq j \leq n \\ j \neq i}} \frac{x x_j}{x_i x_j}$
- $\ell_i(x) = \frac{(x-x_0)(x-x_1)\cdots(x-x_{i-1})(x-x_{i+1})\cdots(x-x_n)}{(x_i-x_0)(x_i-x_1)\cdots(x_i-x_{i-1})(x_i-x_{i+1})\cdots(x_i-x_n)}$

4.1.1 局限性

- 1. 插值多项式次数高, 精度未必提升
- 2. 多项式 dd 次数越高, 误差可能越大

4.2 分段线性插值

- 分段二次插值多项式 $P_i(x) = a_i(x x_i)^2 + b_i(x x_i) + c_i$
- 插值条件 $P_i(x_i) = y_i$ $P_i(x_{i+1}) = y_{i+1}$
- 连续可导条件(如果适用) $P'_i(x_{i+1}) = P'_{i+1}(x_{i+1})$

4.3 Newton 插值法

- 牛顿插值多项式 $P(x) = \sum_{i=0}^{n} a_i \prod_{j=0}^{i-1} (x x_j)$
- 一阶差商 $f[x_i, x_{i+1}] = \frac{f(x_{i+1}) f(x_i)}{x_{i+1} x_i}$
- 二阶差商 $f[x_i, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] f[x_i, x_{i+1}]}{x_{i+2} x_i}$
- 一般 k 阶差商 $f[x_i, x_{i+1}, \dots, x_{i+k}] = \frac{f[x_{i+1}, x_{i+2}, \dots, x_{i+k}] f[x_i, x_{i+1}, \dots, x_{i+k-1}]}{x_{i+k} x_i}$

4.4 Hermite 插值法

- Hermite 插值多项式 $H(x) = \sum_{i=0}^{n} \left[(1 2(x x_i)h_i'(x_i)) \left(\frac{(x x_i)^2}{h_i(x_i)^2} \right) y_i + (x x_i) \left(\frac{(x x_i)^2}{h_i(x_i)^2} \right) y_i' \right]$
- 基函数 $h_i(x) = \prod_{\substack{0 \le j \le n \\ j \ne i}} (x x_j)$
- 基函数在插值点的导数 $h_i'(x_i) = \frac{d}{dx} \left(\prod_{\substack{0 \le j \le n \\ j \ne i}} (x x_j) \right) \bigg|_{x = x_i}$

- 4.5 Matlab 分段三次 Hermite 插值法
- 4.5.1 unfinished

5 拟合算法

6 相关系数

6.1 Pearson 相关系数

1. **总体均值** (E(X)): 也称为数学期望或期望值,是随机变量 X 取值的加权平均值,权重是相应取值的概率。在实际中,总体均值反映了随机变量的中心趋势。公式表示:

$$E(X) = \sum_{i} x_i \cdot P(X = x_i) = \frac{\sum_{i=1}^{n} x_i}{n}$$

其中, x_i 是随机变量的取值, $P(X = x_i)$ 是随机变量取值为 x_i 的概率。

2. **总体协方差** *Cov*(*X*, *Y*): 用于衡量两个随机变量 *X* 和 *Y* 之间的线性 关系。如果协方差为正,说明两个变量趋向于同向变化; 如果协方差 为负,说明它们趋向于反向变化。协方差为零表示两个变量是线性不相关的。公式表示:

$$Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)] = \frac{\sum_{i=1}^{n} (x_i - \mu_X)(y_i - \mu_Y)}{n}$$

其中, $\mu_X = E(X)$ 和 $\mu_Y = E(Y)$ 分别是 X 和 Y 的均值。

3. **协方差的量纲与标准化**: 协方差的大小与变量的单位或量纲有关,因此不同量纲的协方差不适合直接比较。为了消除单位的影响,我们可以通过标准化将协方差转化为相关系数。

标准差:

$$\sigma_X = \sqrt{E[(X - \mu_X)^2]} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - E(X))^2}{n}}$$

 σ_X 是随机变量 X 的标准差,反映了随机变量值的离散程度。类似地, σ_Y 是随机变量 Y 的标准差。

Pearson 相关系数:

$$\rho_{XY} = \frac{\text{Cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{\sum_{i=1}^n \frac{(x_i - E(X))}{\sigma_X} \frac{(y_i - E(Y))}{\sigma_Y}}{n}$$

通过标准化协方差,我们得到两个变量的相关系数 ρ_{XY} ,它取值在 -1 和 1 之间,反映了变量之间的线性关系强度。由此可得 Pearson 相关系数公式。

- 4. **总体与样本关系**:通过样本统计量估计总体统计量,主要包括样本均值(平均水平)和样本标准差(偏离程度)。
- 5. **总体 Pearson 相关系数**: 对于随机变量 X 和 Y, 总体 Pearson 相关 系数定义为:

$$\rho_{XY} = \frac{\text{Cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{\sum_{i=1}^n \frac{(x_i - E(X))}{\sigma_X} \frac{(y_i - E(Y))}{\sigma_Y}}{n}$$

其中,Cov(X,Y) 表示 X 和 Y 的协方差, σ_X 和 σ_Y 分别是 X 和 Y 的标准差。

6. 样本 Pearson 相关系数: 样本的 Pearson 相关系数为:

$$r_{XY} = \frac{Cov(X,Y)}{S_X S_Y} = \frac{\sum\limits_{i=1}^n \big(x_i - \bar{x}\big) \big(y_i - \bar{y}\big)}{\sqrt{\sum\limits_{i=1}^n \big(x_i - \bar{x}\big)^2} \sqrt{\sum\limits_{i=1}^n \big(y_i - \bar{y}\big)^2}} = \frac{\sum\limits_{i=1}^n \big(x_i - \bar{x}\big) \big(y_i - \bar{y}\big)}{\sqrt{\sum\limits_{i=1}^n \big(x_i - \bar{x}\big)^2} \sqrt{\sum\limits_{i=1}^n \big(y_i - \bar{y}\big)^2}}$$

公式 = 表达式 1 (理论公式) = 表达式 2 (Google or chatGPT 给的)

= 表达式 3(建模课程教的)

其中, \bar{x} 和 \bar{y} 分别为 x 和 y 的样本均值, n 是样本大小, S_X 和 S_Y 是样本的标准差

- 7. 使用 Pearson 相关系数前应先确定两个变量是否线性相关(即先画散 点图,再算相关系数)。
- 8. **相关系数的范围**: Pearson 相关系数的取值范围为 [-1,1], 其中:
 - r=1 表示完全正线性相关;
 - r = −1 表示完全负线性相关;
 - r=0表示无线性相关。

6.1.1 Pearson 相关系数的注意事项

- 非线性相关性也可能导致高的线性相关系数,需谨慎解释。
- 离群点对相关系数的影响很大,可能会显著改变相关系数的值。
- 高相关系数并不一定表示两者具有因果关系。
- 相关系数为0只能说明没有线性相关性,但可能存在其他更复杂的关系(如非线性关系)。

6.2 假设检验

1. 确定原假设和备择假设:

 $H_0: \rho = 0$ (无相关性)

 $H_1: \rho \neq 0$ (有相关性)

2. 构造检验统计量: 在 H_0 成立的条件下,构造 t 检验统计量:

$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$$

其中, r 是样本的 Pearson 相关系数, n 是样本大小。

- 3. **确定临界值**: 在给定的显著性水平 α 下, t 统计量服从自由度为 n-2 的 t 分布。
- 4. **计算 P 值**: 通过计算得到的 t 值与临界值进行比较,或者计算 P 值 判断是否拒绝原假设。

6.2.1 P 值

- **P 值解释**: P 值表示在原假设为真时,观测到或更极端数据的概率。双侧检验的 P 值是单侧检验的两倍。
- 若 P 值小于显著性水平 α ,则拒绝原假设;否则无法拒绝原假设。

6.3 Pearson 相关系数的假设检验条件

- 实验数据通常是成对的来自正态分布的总体,因为 Pearson 相关系数 后通常会使用 t 检验进行检验,而 t 检验基于正态分布假设。
- 实验数据之间的差距不能太大,因为 Pearson 相关系数对异常值敏感。
- 每组样本之间应是独立抽样的, 这是构造 t 统计量的前提。

6.4 正态分布检验(检验可以使用 python 完成)

- JB 检验 (大样本 n > 30): 找出 H₀: 服从正态分布和 H₁: 不服从正态分布, 计算 JB 统计量的 P 值后, 与 0.05 比较, 判断是否拒绝原假设。
- Shapiro-Wilk 检验 (小样本 $n: 3 \sim 50$): 找出 H_0 : 服从正态分布和 H_1 : 不服从正态分布,计算 S-W 统计量的 P 值后,与 0.05 比较,判 断是否拒绝原假设。
- **Q-Q 图**: 通过 Q-Q 图判断样本数据是否近似于正态分布,只需观察 图上点是否接近直线。

6.5 Spearman 相关系数

• 定义: Spearman 相关系数用于衡量两个变量之间的单调关系,不要求数据服从正态分布。其公式为:

$$r_s = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

其中, d_i 是每对数据排名差的平方, n 是样本大小。

- 适用于非正态分布、非线性关系或定序数据的情况。
- 在小样本情况下,通过查表获得 Spearman 等级相关的临界值。
- 在大样本情况下, 计算检验值并求出 P 值与 0.05 比较, 判断是否拒绝 原假设。

6.5.1 Spearman 与 Pearson 相关系数的选择

- 当数据连续且服从正态分布并且线性相关时, Pearson 相关系数更合适。
- 当上述任一条件不满足时,选择 Spearman 相关系数。
- Spearman 相关系数可用于定序数据,而 Pearson 相关系数不可。
- Pearson 相关系数衡量线性相关性,而 Spearman 相关系数衡量单调相关性。

(单调关系,变量倾向于朝着相同的方向相对方向移动,但不一定以恒 定的速率移动)

(线性关系,变量沿着相同的方向以恒定的速率移动)

7 典型相关分析

7.1 定义

- 1. 在每组变量(每一组中有若干变量)中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数
- 2. 选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并且 选择相关系数最大的一对
- 3. 重复上述步骤, 直至两组变量之间的相关性提取完毕
- 4. 选出的线性组合配对称为典型变量,它们的相关系数被称为典型相关系数。典型相关系数度量了这两组变量之间的强度。

7.2 典型相关分析的思路

假设两组变量分别为:

$$X^{(1)} = \left(X_1^{(1)}, X_2^{(1)}, \dots, X_p^{(1)}\right), \quad X^{(2)} = \left(X_1^{(2)}, X_2^{(2)}, \dots, X_q^{(2)}\right)$$

分别在两组变量中选取若干有代表性的综合变量 U_i, V_i ,使得每一个综合变量是原变量的线性组合,即

$$U_i = a_1^{(i)} X_1^{(1)} + a_2^{(i)} X_2^{(1)} + \dots + a_p^{(i)} X_p^{(1)} \stackrel{\triangle}{=} \mathbf{a}^{(i')} \mathbf{X}^{(1)}$$

$$V_i = b_1^{(i)} X_1^{(2)} + b_2^{(i)} X_2^{(2)} + \dots + b_q^{(i)} X_q^{(2)} \stackrel{\Delta}{=} \mathbf{b}^{(i')} \mathbf{X}^{(2)}$$

注意:综合变量的组数是不确定的,如果第一组就能代表原样本数据大部分的信息,那么一组就足够了。假设第一组反映的信息不够,我们就需要找第二组了。并且为了让第二组的信息更有效,需要保证两组的信息不相关。

不相关:
$$cov(U_1, U_2) = cov(V_1, V_2) = 0$$

第一组满足的条件:

在 $var(U_1) = var(V_1) = 1$ 满足的条件下,找到 $a^{(1)}$ 和 $b^{(1)}$ 两组系数,使得 $\rho(U_1, V_1)$ 最大。

(为什么要固定这个条件:因为相关系数与量纲无关: $\rho(U_1, V_1) = \rho(aU_1, bV_1)$)

7.3 多元统计-unlearned

7.3.1 随机向量

假设 X 是一个 n 维随机向量,表示为

$$X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix},$$

其中 X_i (i = 1, 2, ..., n) 均为随机变量。随机向量可以用来描述多维数据或多元随机变量的集合。

7.3.2 随机向量的期望

随机向量 X 的期望(或均值)定义为每个分量的期望组成的向量:

$$E(X) = \begin{bmatrix} E(X_1) \\ E(X_2) \\ \vdots \\ E(X_n) \end{bmatrix},$$

其中 $E(X_i)$ 表示 X_i 的数学期望。

7.3.3 协方差矩阵

协方差矩阵 D(X) 是随机向量各分量之间的协方差的集合,定义为:

$$D(X) = \operatorname{Cov}(X, X) = E\left[(X - E(X))(X - E(X))^T\right],$$

它是一个 $n \times n$ 的对称矩阵,矩阵的每个元素 $D_{ij}(X)$ 表示 X_i 和 X_j 之间的协方差,即

$$D_{ij}(X) = \text{Cov}(X_i, X_j) = E[(X_i - E(X_i))(X_j - E(X_j))].$$

对角线元素 $D_{ii}(X)$ 是 X_i 的方差。

7.3.4 线性变换的协方差

假设 a 是一个 $n \times 1$ 的列向量 (常数向量), 则随机向量 X 经过线性变换后的方差为:

$$D(a^{T}X) = E\left[(a^{T}X - E(a^{T}X))(a^{T}X - E(a^{T}X))^{T}\right] = a^{T}E\left[(X - E(X))(X - E(X))^{T}\right]a = a^{T}D(X)a.$$

这表明线性变换后的方差可以表示为协方差矩阵 D(X) 与向量 a 的双线性形式。

7.3.5 协方差矩阵的性质

协方差矩阵 D(X) 具有以下重要性质:

- 对称性: D(X) 是对称矩阵, 即 $D(X)^T = D(X)$ 。
- 正定性: 对于任意非零向量 a, $a^TD(X)a \ge 0$, 即协方差矩阵是正定的。

7.3.6 联合协方差

如果 X 和 Y 均为 n 维随机向量, 那么 X 和 Y 的联合协方差矩阵为:

$$Cov(X,Y) = E\left[(X - E(X))(Y - E(Y))^T \right],$$

其中 Cov(X,Y) 是一个 $n \times n$ 的矩阵,表示 X 的各分量与 Y 的各分量之间的协方差。

此外,对于线性变换后的随机向量 a^TX 和 b^TY ,它们的协方差为:

$$Cov(a^{T}X, b^{T}Y) = E[(a^{T}X - E(a^{T}X))(b^{T}Y - E(b^{T}Y))^{T}] = a^{T}E[(X - E(X))(Y - E(Y))^{T}]b = a^{T}Cov(a^{T}X, b^{T}Y) = E[(a^{T}X - E(a^{T}X))(b^{T}Y - E(b^{T}Y))^{T}] = a^{T}E[(A - E(X))(A - E(Y))^{T}]b = a^{T}Cov(a^{T}X, b^{T}Y) = E[(a^{T}X - E(a^{T}X))(b^{T}Y - E(b^{T}Y))^{T}] = a^{T}E[(A - E(X))(A - E(Y))^{T}]b = a^{T}Cov(a^{T}X, b^{T}Y) = E[(a^{T}X - E(a^{T}X))(b^{T}Y - E(b^{T}Y))^{T}] = a^{T}E[(a^{T}X - E(X))(A - E(Y))^{T}]b = a^{T}Cov(a^{T}X, b^{T}Y) = E[(a^{T}X - E(a^{T}X))(b^{T}Y - E(b^{T}Y))^{T}] = a^{T}E[(a^{T}X - E(X))(A - E(X)(A - E(X))(A - E(X))(A - E(X)(A - E(X))(A - E(X)(A - E(X))(A - E(X)(A -$$

7.3.7 补充知识点

- 1. ** 随机向量的期望 **: 对于一个随机向量 X, 其期望是一个向量, 表示每个分量的期望值。这些期望值可以看作是随机变量的"中心位置"。
- 2. ** 协方差矩阵 **: 协方差矩阵不仅描述了单个变量的方差(即对角线元素),还描述了不同变量之间的线性相关性(即非对角线元素)。如果协方差为正,表示两个变量正相关;如果为负,表示负相关;如果为零,表示不相关。

- 3. ** 线性变换的协方差 **: 线性变换会改变随机向量的方差结构。通过 矩阵 $a^T D(X)a$,我们可以量化这种变换对方差的影响。
- 4. ** 协方差矩阵的应用 **: 协方差矩阵在数据分析、特征提取(如主成分分析)中起着关键作用,它反映了多维数据的分布结构和变量之间的相互关系。

7.4 没学明白

8 数学规划模型

8.1 线性规划

• 目标函数 f(x) 和约束条件均是决策变量的线性表达式

8.1.1 Matlab 中线性规划的标准型

数学表达式

$$\min C^{\mathsf{T}}X \quad (内积 \ C = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}, \quad X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad \text{n 为决策变量个数) S.T.}$$

$$\begin{cases} Ax \leq b & (不等式约束) \\ Aeq \cdot x = beq \quad (等式约束) \\ lb \leq x \leq ub & (上下界约束) \end{cases}$$

8.1.2 Matlab 求解线性规划的命令

- 1. [x, fval] = linprog[c, A, b, Aeq, beq, lb, ub, X0]
- 2. X0 代表给定 Matlab 迭代求解的初始数值, 可以不用给
- 3. [c, A, b, Aeq, beq, lb, ub] 的意义和标准型中的意义一致
- 4. if 不存在不等式或者等式约束, 可以用 [] 代替 [A, b, Aeq, beq]
- 5. if 某个 x_i 无上下界, 可以 set lb(i)=-inf ub(i)=+inf
- 6. retuen 的 x 表示取得最小值时候 x 的取值; fval 表示最优解得到的最小值
- 7. 不是所有的线性规划都有唯一解, 可能无解或无穷解
- 8. if 求解的是 max, 对 fval 求负值

8.2 非线性规划

• 目标函数 f(x) 或者约束条件有一个是决策变量的非线性表达式

8.2.1 Matlab 中非线性规划的标准型

数学表达式

min
$$f(x)$$

S.T.
$$\begin{cases} Ax \le b, & Aeq \cdot x = beq \quad (线性约束) \\ C(x) \le 0, & Ceq(x) = 0 \quad (非线性约束) \\ lb \le x \le ub \end{cases}$$

8.2.2 Matlab 求解非线性规划的函数

- 1. [x, fval] = fmincon(@fun, x0, A, b, Aeq, beq, lb, ub, @nonlfun, option)
- 2. 非线性规划中对于初始值 X0 的选取重要, 非线性规划求解的是局部 最优解
- 3. if 需要寻找"全局最优解",first-给定不同的初始值, 在其中寻找到最优解: second-先用蒙特卡洛模拟, 得到蒙特卡洛求解, 再将这个解作为初始值 求解最优解
- 4. "option"选项可以给定特定的求解算法:1.interior-point(内点法) 2.sqp(序列二次规划) 3.active-set(有效集法) 4.trust-region-reflective(信赖域反射算法)
- 5. 使用上述四种算法, 观测求解的结果是否有改变, 体现出模型的稳健性 [4]
- 6. "@fun" 表示目标函数, 我们需要编写一个独立的"m 文件" 存储目标函数:

function f = fun(x) 可以借助例题去理解

7. "@nonlfun" 表示非线性部分的约束, 我们同样需要编写一个独立的"m 文件" 存储约束条件:

function[c, ceq] = nonl fun(x) c = [非线性不等式约束 1; 非线性不等式约束 p;]ceq = [非线性等式约束 1; 非线性等式约束 q;]

8. 写人 matlab 时将 $f=x_1^2+3x_2$ 修改为 $f=x(1)^2+3*x(2)$

整数规划 8.3

• 要求变量取整数的数学规划 (线性整数规划/非线性整数规划)-目前针 对于线性整数规划

8.3.1 Matlab 整数规划求解

- 1. 线性规划函数-[x, fval] = linprog[c, A, b, Aeq, beq, lb, ub, X0]
- 2. 线性整数规划求解-[x, fval] = intlinprog[c, intcon, A, b, Aeq, beq, lb, ub]
- 3. intlinprog 不能只能初始值
- 4. 加入 incon 参数可以指定哪些决策变量是整数 example: 决策变量有 $3 \uparrow x_1, x_2, x_3 \quad x_1, x_3$ 是整数, 则 intcon = [1, 3]

8.3.2 Malab 线性 0-1 规划求解

- 1. 依旧使用 intlingrog 函数, 不过在 lb 和 ub 上做改变

2. example: 决策变量有
$$3$$
 个 x_1, x_2, x_3 x_1, x_3 是 $0/1$ 变量, 则 $intcon = [1,3], lb = \begin{bmatrix} 0 \\ -\inf \\ 0 \end{bmatrix} ub = \begin{bmatrix} 1 \\ +\inf \\ 1 \end{bmatrix}$

8.4 最大最小化模型

在最不利的条件下,寻求最有利的策略。对每一个 x_i 先求出目标 $f_i(x)$ 的最大值,再求出这些最大值中的最小值。

示例: 急救中心选址,规划急救中心到所有地点最大距离的最小值; 投资规划中最大风险的最低限度等。

8.4.1 最大最小化问题的一般数学模型:

$$\min \{ \max [f_1(x), f_2(x), \cdots, f_m(x)] \}$$

约束条件:

S.T.
$$\begin{cases} Ax \leq b \\ Aeq \cdot x = beq \\ C(x) \leq 0 \\ Ceq(x) = 0 \\ VLB \leq x \leq VUB \end{cases}$$

8.5 多目标规划模型

扩一个规划问题中有多个目标,例如企业在保证利润同时保证产生污染最少,这种情况下我们可以对多目标函数进行加权组合,使得问题转换为单目标规划

8.5.1 求解思路

- 1. 首先, 将多个目标函数统一为最大化 or 最小化问题后进行加权组合
- 2. if 目标函数的量纲不同,则需要对其进行标准化之后再进行加权,标准 化的方法是用目标函数除以一个常量,该常量是该目标函数的某个取 值
- 3. 对目标函数进行加权求和时,权重需要专家填写,实际建模过程中可以令权重相同

9 回归分析

回归分析的任务任务就是,通过研究自变量 X 和因变量 Y 的相关关系,尝试去解释 Y 的形成机制,进而达到通过 X 去预测 Y 的目的

回归分析的使命: 1. 识别重要变量; 2. 判断相关性方向; 3. 估计权重(回归系数)

而根据因变量 Y 的类型可以将回归分析分成以下 5 大类:

类型	模型	Y 的特点	例子				
线性回归	OLS、GLS(最小二乘)	连续数值型变量	GDP、产量、收入				
0-1 回归	logistic 回归	二值变量 (0-1)	是否违约、是否得病				
定序回归	probit 定序回归	定序变量	等级评定(优良差)				
计数回归	泊松回归 (泊松分布)	计数变量	每分钟车流量				
生存回归	Cox 等比例风险回归	生存变量(截断数据)	企业、产品的寿命				

表 1: 回归分析的分类

9.1 线性回归

9.1.1 数据分类与对应的建模方法

1. 横截面数据(多元线性回归): 在某一个时间点收集到的不同对象的数据

(example: 某一年 GDP 数据 or 今年的体测数据)

2. 时间序列的数据 (AR、MA、ARMA): 对同一个对象在不同时间连续 观察所得到的数据

(example: 每年的身高体重数据 or 中国历年来的 GDP 数据)

3. 面板数据(固定效应和随机效应): 横截面数据与时间需略数据综合起来的一种数据资源

(example: 2008-2018 年, 我国不同省份的 GDP 数值)

9.1.2 数据的收集

- 1. 宏观数据:【简道云汇总】、【虫部落数据搜索】、【数据平台】[5]
- 2. 微观数据:【人大经济论坛】[5]
- 9.2 0-1 回归
- 9.3 定序回归
- 9.4 计数回归
- 9.5 生存回归

10 引用

参考文献

- [1] 姜启源,谢金星,叶俊,数学模型 (第四版) [M]. 北京: 高等交易出版社, 2011.
- [2] [清风数学建模] 层次分析法
- [3] [清风数学建模] TOPSIS 算法 02-01.35min 处
- [4] [清风数学建模] 规划模型 24-11
- [5] [清风数学建模] 回归模型 07-02.8min 处