

EC2x&AG35-Quecopen NAU8810 Codec Debugging Guidelines

LTE Standard/Automotive Module Series

Rev. EC2x&AG35-Quecopen_NAU8810 Codec Debugging Guidelines_V1.0

Date: 2018-02-22

Status: Preliminary

Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters:

Quectel Wireless Solutions Co., Ltd.

7th Floor, Hongye Building, No.1801 Hongmei Road, Xuhui District, Shanghai 200233, China

Tel: +86 21 5108 6236 Email: info@quectel.com

Or our local office. For more information, please visit:

http://www.quectel.com/support/sales.htm

For technical support, or to report documentation errors, please visit:

http://www.quectel.com/support/technical.htm

Or email to: support@quectel.com

GENERAL NOTES

QUECTEL OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION PROVIDED IS BASED UPON CUSTOMERS' REQUIREMENTS. QUECTEL MAKES EVERY EFFORT TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR RELIANCE UPON THE INFORMATION. ALL INFORMATION SUPPLIED HEREIN IS SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.

COPYRIGHT

THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF QUECTEL WIRELESS SOLUTIONS CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL OR DESIGN.

Copyright © Quectel Wireless Solutions Co., Ltd. 2019. All rights reserved.

About the Document

History

Revision	Date	Author	Description
1.0	2018-02-22	Thirty XU	Initial

Contents

		ument	
Ta	ble Index		4
Fig	jure Index		5
1	Introduction	on	6
2	Audio Path	hs Introduction	7
	2.1. NAU	J8810 Uplink Block Diagram	8
	2.2. NAU	J8810 Downlink Block Diagram	9
3	Introduction	on of Uplink and Downlink Register Configuration	10
	3.1. AT F	Format that NAU8810 Codec Reads and Writes Registers	10
	3.2. MIC	Gain Debugging	11
	3.2.1.	Input Signal Control Register 0x2C	11
	3.2.2.	PGA Gain Control Register	12
	3.2.3.	ADC Boost Control Register	13
	3.2.4.	Digital ADC Gain Control Register	13
	3.3. Deb	ugging Downlink Gain	14
	3.3.1.	Digital DAC Gain Control Register	14
	3.3.2.	Digital DAC Limiter Register	15
	3.3.3.	Speaker Gain Control Register	
	3.3.4.	Output Register	
4	Appendix.	<u> </u>	18

Table Index

TABLE 1: INPUT SIGNAL CONTROL REGISTER (ADDR 0X2C)	11
TABLE 2: PGA GAIN CONTROL REGISTER (ADDR 0X2D)	12
TABLE 3: ADC BOOST CONTROL REGISTER (ADDR 0X2F)	13
TABLE 4: ADC GAIN CONTROL REGISTER (ADDR 0X0F)	13
TABLE 5: DAC GAIN CONTROL REGISTER (ADDR 0X0B)	14
TABLE 6: DAC LIMITER REGISTER (ADDR 0X19)	15
TABLE 7: SPEAKER GAIN CONTROL REGISTER (ADDR 0X36)	16
TABLE 8: OUTPUT REGISTER (ADDR 0X31)	16

Figure Index

FIGURE 1: NAU8810 OVERALL BLOCK DIAGRAM	7
FIGURE 2: NAU8810 UPLINK BLOCK DIAGRAM	8
FIGURE 3: NAU8810 DOWNLINK BLOCK DIAGRAM	9
FIGURE 4: COMMAND RULES OF READING AND WRITING NAU8810 REGISTERS	11
FIGURE 5: RECOMMENDED VALUES OF NAU8810 SPKBOOST POWER SUPPLY	17

1 Introduction

This document mainly introduces the debugging methods of gain registers in ADC/DAC paths of NAU8810 referring to the datasheet of NAU8810 Codec, which applies for users to debug the volume of NAU8810 Codec.

2 Audio Paths Introduction

NAU8810 hardware block diagram that the software defaults to apply is illustrated by the arrows below.

Figure 1: NAU8810 Overall Block Diagram

2.1. NAU8810 Uplink Block Diagram

Figure 2: NAU8810 Uplink Block Diagram

NAU8810 defaults that uplink MIC goes through differential signals and merges at PGA into one path and then goes into ADC via ADC Boost. During the process, registers of 0x2D/0x2F can adjust the analog gain.

If the signal inputs from single-ended MIC, where it moves from MIC+ to ADC via ADC Boost directly, the switch from MIC- to PGA should be disconnected and the switch from PGA to MIC+ should be connected to reference electric level voltage VREF. Users can select the path via registers 0x2C/0x2F and adjust the analog gain via register 0x2F.

2.2. NAU8810 Downlink Block Diagram

Figure 3: NAU8810 Downlink Block Diagram

There is only mono DAC in downlink block, which is divided into two paths to output–MOUT single-ended output and SPKOUT+/- differential output.

3 Introduction of Uplink and Downlink Register Configuration

3.1. AT Command Format for NAU8810 Codec Reading and Writing Registers

Read register values

AT+QIIC=1,0x1A,0x58,2

In the command, the meaning of the four parameters are as follows:

1 means to read

0x1A stands for NAU8810 Codec

0x58 register address (Actual address is 0x2C, details show below.)

2 indicates the register length read is a 16-bit value.

Write register values

AT+QIIC=0,0x1A,0x58,1,0x03

In the command, the meaning of the five parameters are as follows:

0 means to write

0x1A stands for NAU8810 Codec

0x58 register address

1 means that the register length written is 8 bits.

0x03 indicates the value written to the register

The register's physical length of NAU8810 is 8 bits while the register values are 9 bits, so in actual use, the highest bit (D8) of the values is placed in the lowest bit (D0) of the address register and at the same time, all the addresses in the address register shift one bit to the left. When writing a register command, users only need to write one byte, and read two bytes when reading. For example, if the user writes 0x03, then he should read 0x003.

See the diagram as below:

Figure 4: Command Rules of Reading and Writing NAU8810 Registers

3.2. MIC Gain Debugging

3.2.1. Input Signal Control Register 0x2C

Table 1: Input Signal Control Register (Addr 0x2C)

BIT	DESCRIPTION (Default 0x003)
	Control the output voltage of MICBIASV (Affected by register 0x3A D4 at the same time)
	MICBIASM[4] = 0 Address (0x3A)
	00:VDDA*0.9
	01:VDDA*0.65
	10:VDDA*0.75
D7-D8	11:VDDA*0.5
	MICBIASM[4] = 1 Address (0x3A)
	00:VDDA*0.85
	01:VDDA*0.6
	10:VDDA*0.7
	11:VDDA*0.5
D0 D0	Reserved
D2-D6	00000
	NMICPGA control switch, controls the on/off from MIC- to PGA
D1	0: MICN not connected to input PGA.
	1: MICN to input PGA Negative terminal.
D0	PMICPGA control switch controls to select the paths from MIC+ to PGA
D0	0: Input PGA Positive terminal to VREF

1: Input PGA Positive terminal to MICP through variable resistor

Register name: Input Signal Control Register

Register function: Control MIC path selection of and MIC Bias output voltage

Register address: 0x2C Recommended value: 0x003

Command to read register: AT+QIIC=1,0x1A,0x58,2 Command to write register: AT+QIIC=0,0x1A,0x58,1,0x03

Register description: The register can control to select the paths from MIC to PGA. It is configured from differential MIC-/+ signals to PGA by default. If single-ended MIC (only MIC+) is applied, users need to

reconfigure registers 0x2C and 0x2F.

3.2.2. PGA Gain Control Register

Table 2: PGA Gain Control Register (Addr 0x2D)

BIT	DESCRIPTION (Default 0x010)
D8	Reserved
	0
	PGA Zero Cross Enable
D7	0: Update gain when gain register changes
	1: Update gain on 1st zero cross after gain register write
	Mute Control for PGA
D6	0: PGA not mute.
	1: PGA Mute.
	Programmable Gain Amplifier Gain (PGA Gain Range -12dB to +35.25dB @0.75 increment)
	000000: -12dB
	000001: -11.25dB
	000010:-10.50dB
D0-D5	
	010000:0dB
	111110:34.5dB
	111111:35.25dB

Register name: PGA Gain Control Register

Register function: Control gain of uplink differential signals passing through PGA

Register address: 0x2D

Recommended value: 0x014 (3dB)→The actual uplink volume of NAU8810 is a bit small. Users can turn it

up to 15dB.

Command to read register: AT+QIIC=1,0x1A,0x5A,2 Command to write register: AT+QIIC=0,0x1A,0x5A,1,0x14

Gain description: The gain range of the register is -12~35.25dB and the gain can be adjusted according to

actual needs. When ALC function is turned on (D8 of 0x20 register is set to 1), the gain size of input PGA will be controlled automatically by ALC, and the PGA gain set by 0x2D does not take effect.

3.2.3. ADC Boost Control Register

Table 3: ADC Boost Control Register (Addr 0x2F)

Table 3. /	able 3: ADC Boost Control Register (Addr UX2F)		
BIT	DESCRIPTION (Default 0x100)		
	PGABST Gain		
D8	0: PGA output has +0dB gain through input Boost stage		
	1: PGA output has +20dB gain through input Boost stage		
D7	Reserved		
וט	0		
	PMICBSTGAIN, control the switch on/off and gain size from MIC+ to ADC (PMICBSTGAIN		
	Gain Range -12dB to 6dB @3dB increment)		
	000: Path Disconnect		
	001: -12dB		
D4-D6	010:-9dB		
	101:0dB		
	110:3dB		
	111:6dB		
D0-D3	Reserved		
DU-D3	0000		

Register name: ADC Boost Control Register

Register function: Control the switch from uplink MIC+ signal to ADC Boost and the gain of the differential

signals passing through ADC Boost

Register address: 0x2F

Recommended value: 0x000 (0dB)

Command to read register: AT+QIIC=1,0x1A,0x5E (0x5F),2 Command to write register: AT+QIIC=0,0x1A,0x5E(0x5F),1,0x00

Register description: When using the differential MIC signals, one of the gain of 0dB/20dB can be controlled by D8 of 0x2F register after the signal passing PGA. However, the gain stepping is too much, please use it cautiously. When D8 is set to 1, the register address changes from 0x5E to 0x5F in **AT+QIIC** command because D8 is placed in the lowest bit of the address. When using single-ended MIC, users can control the on/off and the gain by D4-D6 of 0x2F if they need the signal pass directly from MIC+ to ADC Boost. When differential MIC signals are applied, D4-D6 should be disconnected. When single-end MIC+ is used, 20Db gain of D8 does not take effect.

3.2.4. Digital ADC Gain Control Register

Table 4: ADC Gain Control Register (Addr 0x0F)

BIT	DESCRIPTION (Default 0x0FF)
D8	Reserved
	0
	ADC Gain, control the gain size of uplink digital (ADC Gain Range -127dB to 0dB in 0.5dB
	increments)
	00000000: Unused
D0 D7	00000001: -127dB
D0-D7	00000010:-126.5dB
	11111110:-0.5dB
	11111111:0dB

Register name: Digital ADC Gain Control Register Register function: Control uplink ADC digital gain

Register address: 0x0F

Recommended value: 0x0FF (0dB)

Command to read register: AT+QIIC=1,0x1A,0x1E,2 Command to write register: AT+QIIC=0,0x1A,0x1E,1,0xff Register description: Default to configure based on 0dB.

3.3. Debugging Downlink Gain

3.3.1. Digital DAC Gain Control Register

Table 5: DAC Gain Control Register (Addr 0x0B)

BIT	DESCRIPTION (Default 0x0FF)
D8	Reserved
	0
	DAC Gain, control downlink digital gain size (DAC Gain Range -127dB to 0dB in 0.5dB
	increments
	0000000: Digital Mute
D0-D7	00000001: -127dB
D0-D7	00000010: -126.5dB
	11111110: -0.5dB
	11111111: 0dB

Register name: Digital DAC Gain Control Register Register function: Control downlink DAC digital gain

Register address: 0x0B

Recommended value: 0x0FF(0dB)

Command to read register: AT+QIIC=1,0x1A,0x16,2 Command to write register: AT+QIIC=0,0x1A,0x16,1,0xff

Register description: Select the gain size according to actual needs. When the configuration is 0x000, please make the downlink mute.

3.3.2. Digital DAC Limiter Register

Table 6: DAC Limiter Register (Addr 0x19)

BIT	DESCRIPTION (Default 0x000)
D7-D8	Reserved
D1-D0	0
	DAC Limiter Programmable signal threshold level, determines level at which the limiter starts
	to operate. (The limiter will take effect when the highest bit of 0x18 register DACLIMEN=0, or
	else the limiter volume boost will take effect.)
	000: -1dB
D4-D6	001: -2dB
	010: -3dB
	011: -4dB
	100: -5dB
	101 to 111: -6dB
	DAC Limiter volume Boost, can be used as a stand-alone volume Boost when DACLIMEN=0.
	(Limiter volume Boost Range is 0dB to 12dB in 1dB increments)
	0000: 0dB
	0001: 1dB
D0-D3	0010: 2dB
	1011: 11dB
	1100: 12dB
	1101 to 1111: Reserved

Register name: Digital DAC Limiter Register

Register function: Control downlink DAC limiter functions

Register address: 0x19
Recommended value: 0x000

Command to read register: **AT+QIIC=1,0x1A,0x32,2**Command to write register: AT+QIIC=0,0x1A,0x32,1,0x00

Register description: To increase the downlink volume without using the limiter, users can add up to the gain of 12dB to downlink DAC via limiter volume boost. Before this, please confirm that the highest bit of 0x18 register is 0. Checking method: Execute **AT+QIIC=1,0x1A,0x31,2**, then read 0x18 register bit.

Default value: 0x0032, D8 is 0.

3.3.3. Speaker Gain Control Register

Table 7: Speaker Gain Control Register (Addr 0x36)

BIT	DESCRIPTION (Default 0x039)
D8	Reserved
	0
	SPKZC (Speaker Gain Control Zero Cross)
D7	0: Change Gain on Zero Cross ONLY
	1: Change Gain Immediately
	Mute Control for SPK
D6	0: Speaker Enable
	1: Speaker Mute.
	Speaker Gain (SPK Gain Range -57dB to +6dB @1dB increment)
	000000: -57dB
	000001: -56dB
	000010:-55dB
D0-D5	
	111001:0dB
	111110:5dB
	111111:6dB

Register name: Speaker Gain Control Register

Register function: Control the analog gain of downlink differential signal analog gain

Register address: 0x36

Recommended value: 0x039 (0dB)

Command to read register: AT+QIIC=1,0x1A,0x6C,2 Command to write register: AT+QIIC=0,0x1A,0x6C,1,0x39

Gain description: The register gain range is -57~6dB and it can be adjusted according to actual needs.

When D6 is configured to 1, the downlink differential output is muted.

3.3.4. Output Register

Table 8: Output Register (Addr 0x31)

BIT	DESCRIPTION (Default 0x002)		
D4-D8	Reserved		
D4 D0	00000		
	MOUTBST (MONO Output Boost Stage)		
D3	0: (1.0 x VREF) Gain Boost		
	1: (1.5 x VREF) Gain Boost		
D2	SPKBST (Speaker Output Boost Stage)		
D2	0: (1.0 x VREF) Gain Boost		

	1: (1.5 x VREF) Gain Boost
	TSEN (Thermal Shutdown)
D1	0:Disabled
	1:Enabled
	AOUTIMP (Analog Output Resistance)
D0	0: ~1ΚΩ
	1: ~30ΚΩ

Register name: Output Register

Register function: Control the output gain of downlink differential/single-ended signals

Register address: 0x31 Recommended value: 0x002

Command to read register: **AT+QIIC=1,0x1A,0x62,2**Command to write register: AT+QIIC=0,0x1A,0x62,1,0x02

Gain description: The register can select the boost gain of downlink output. To make NAU8810 output maximum power, VDDSPK needs to be powered as shown below. In this mode, the output can directly push the speaker of $8\,\Omega$, 1W to phonate.

VDDC = 1.8V, VDDA = VDDB = VDDSPK = 3.3V (VDDSPK = 1.5*VDDA when Boost), T_A = +25°C, 1kHz signal, fs = 48kHz, 24-bit audio data unless otherwise stated.

PARAMETER	SYMBOL	TEST	CONDITIONS	MIN	TYP	MAX	UNIT				
BTL Speaker Output (SPKOUT+, SPKOUT- with 8Ω bridge tied load)											
7		SPKBST = 0 VDDSPK = VDD	A	VDDA / 3.3			V				
Full scale output '		SPKBST = 1 VDDSPK = 1.5*\	/DDA	(VDI	DA / 3.3)	* 1.5	V _{RMS}				

Figure 5: Recommended Values of NAU8810 SPKBOOST Power Supply

4 Appendix

This document mainly introduces registers controlled by NAU8810 gain. If the blocks need to be checked, please confirm the registers of power management are well configured and the path used for power supply is enabled. The software that supports NAU 8810 modules has enabled these registers by default.

All the registers are shown as follows. The functions of the registers are classified and can be found here.

	gister dress	Register Names	Register Bits									Default
DEC	HEX	Register Names	D8	D7	D6	D5	D4	D3	D2	D1	D0	Delauli
0	0	Software Reset	RESET (SOFTWARE)									000
			POWER MANAGEMENT									
1	01	Power Management 1	DCBUFEN	0	0	PLLEN	MICBIASEN ABIASEN		IOBUFEN	REFIMP		000
2	02	Power Management 2	0	0	0	0	BSTEN	0	PGAEN	0	ADCEN	000
3	03	Power Management 3	0	MOUTEN	NSPKEN	PSPKEN	0	MOUTMXEN	SPKMXEN	0	DACEN	000
			AUDIO CONTROL									
4	04	Audio Interface	BCLKP	FSP	WLEI	N[1:0]	AIFMT[1:0]		DACPHS	ADCPHS	0	050
5	05	Companding	0	0	0	0	DACC	CM[1:0]	ADCCM[1:0]		ADDAP	000
6	06	Clock Control 1	CLKM	N	MCLKSEL[2:0)]	Ville	BCLKSEL[2:0]	0		CLKIOEN	140
7	07	Clock Control 2	0	0	0	0	0 SMPLR[SMPLR[2:0]	(6)	SCLKEN	000
10	0A	DAC CTRL	0	0	DACMT	DEE	MP[1:0]	DACOS	AUTOMT	0	DACPL	000
11	0B	DAC Volume	0	DACGAIN							0) 1	0FF
14	0E	ADC CTRL	HPFEN	HPFAM	HPFAM HPF[2:0]				0	0	ADCPL	100
15	0F	ADC Volume	0		1		AD	CGAIN			450	0FF

							EQUALISE	:R					
18	0x12	EQ1-Low Cutoff	EQM	0	EQ10	F[1:0]			EQ1GC[4:0]			12C	
19	0x13	EQ2-Peak 1	EQ2BW	0	EQ20	F[1:0]		EQ2GC[4:0]					
20	0x14	EQ3-Peak 2	EQ3BW	0	EQ30	F[1:0]		EQ3GC[4:0]					
21	0x15	EQ4-Peak3	EQ4BW	0	EQ40	F[1:0]		EQ4GC[4:0]					
22	0x16	EQ5-High Cutoff	0	0	EQ5CF[1:0]			EQ5GC[4:0]					
				DIGITAL TO ANALOG (DAC) LIMITER									
24	18	DAC Limiter 1	DACLIMEN		DACLIMDCY[3:0] DACLIMATK[3:0]							032	
25	19	DAC Limiter 2	0	0	DACLIMTHL[2:0] DACLIMBST[3:0]							000	
					T		NOTCH FILT	TER					
27	1B	Notch Filter High	NFCU	NFCEN	NFCA0[13:7]							000	
28	1C	Notch Filter Low	NFCU	0				NFCA0[6:0]			000	
29	1D	Notch Filter High	NFCU	0				NFCA1[13:	7]			000	
30	1E	Notch Filter Low	NFCU	0				NFCA1[6:0]			000	
				1			ALC CONTR	ROL					
32	20	ALC CTRL 1	ALCEN	0	0 ALCMXGAIN[2:0] ALCMNGAIN[2:0]					0]	038		
33	21	ALC CTRL 2	ALCZC		ALCH	IT[3:0]			ALCS	SL[3:0]		00B	
34	22	ALC CTRL 3	ALCM		ALCD	CY[3:0]			ALCATK[3:0]			032	
35	23	Noise Gate	0	0	0	0 0 0 ALCNEN ALCNTH[2:0]						000	
							PLL CONTR	201					
20	24	DI L N CTDI	0	0	0	0			DILL	NICO-O1		008	
36	24	PLL N CTRL PLL K 1	0	0	0	U	PLLMCLK	DILL		N[3:0]		000 00C	
38	26	PLL K 2	U				DLI VI47-0		C[23:18]			093	
		PLL N Z		15.07		46/	PLLK[17:9	7]				093	
	ister Iress		Register Bits										
DEC		Register Names			-,16		Register B	its				Default	
	HEX	Register Names	D8	D7	D6	D5	Register B	its D3	D2	D1	D0	Default	
39	HEX 27	Register Names	D8	D7	D6	D5		D3	D2	D1	D0	Default 0E9	
39		-	D8	D7			D4 PLLK[8:0]	D3		D1	D0		
39 40		-	D8	D7 0			D4 PLLK[8:0]	D3		D1 SPKATT	0		
	27	PLL K 3		0		INPUT, OL	D4 PLLK[8:0]	D3 ER CONTROI				0E9	
40	27	PLL K 3 Attenuation CTRL	0	0	0	INPUT, OL	D4 PLLK[8:0] JTPUT & MIX	D3 ER CONTROL 0 0	MOUTATT	SPKATT	0	0E9 000	
40	27 28 2C 2D	PLL K 3 Attenuation CTRL Input CTRL	0 MICBI	0 ASV	0 0 PGAMT	INPUT, OL	D4 PLLK[8:0] DTPUT & MIX 0 0	D3 ER CONTROL 0 0	MOUTATT 0	SPKATT	0	0E9 000 003	
40 44 45	27 28 2C 2D	PLL K 3 Attenuation CTRL Input CTRL PGA Gain	0 MICBI	0 ASV PGAZC	0 0 PGAMT	0 0	D4 PLLK[8:0] DTPUT & MIX 0 0	D3 ER CONTROL 0 0 PGAG	MOUTATT 0 SAIN[5:0]	SPKATT NMICPGA	0 PMICPGA	0E9 000 003 010	
40 44 45 47	27 28 2C 2D 2F	PLL K 3 Attenuation CTRL Input CTRL PGA Gain ADC Boost	0 MICBI 0 PGABST	0 ASV PGAZC 0	0 0 PGAMT	INPUT, OU 0 0 PMICBSTGAI	D4 PLLK[8:0] PTPUT & MIX 0 0	D3 ER CONTROL 0 0 PGAG 0	MOUTATT 0 SAIN[5:0] 0	SPKATT NMICPGA	0 PMICPGA	0E9 000 003 010	
40 44 45 47 49	27 28 2C 2D 2F 31	PLL K 3 Attenuation CTRL Input CTRL PGA Gain ADC Boost Output CTRL	0 MICBI 0 PGABST	0 ASV PGAZC 0	0 0 PGAMT F	O O O O O O O O O O O O O O O O O O O	D4 PLLK[8:0 DTPUT & MIX 0 0 0	D3 ER CONTROL 0 0 PGAG 0 MOUTBST 0	MOUTATT 0 SAIN[5:0] 0 SPKBST	SPKATT NMICPGA 0 TSEN	0 PMICPGA 0 AOUTIMP	0E9 000 003 010 100	
40 44 45 47 49 50	27 28 2C 2D 2F 31 32	PLL K 3 Attenuation CTRL Input CTRL PGA Gain ADC Boost Output CTRL Mixer CTRL	0 MICBI 0 PGABST 0	0 ASV PGAZC 0 0	0 0 PGAMT F 0	O O O O O O O O O O O O O O O O O O O	D4 PLLK[8:0 DTPUT & MIX 0 0 0	D3 ER CONTROL 0 0 PGAG 0 MOUTBST 0	MOUTATT 0 SAIN[5:0] 0 SPKBST 0	SPKATT NMICPGA 0 TSEN	0 PMICPGA 0 AOUTIMP	0E9 000 003 010 100 002	
40 44 45 47 49 50	27 28 2C 2D 2F 31 32 36	PLL K 3 Attenuation CTRL Input CTRL PGA Gain ADC Boost Output CTRL Mixer CTRL SPKOUT Volume	0 MICBI 0 PGABST 0 0	0 ASV PGAZC 0 0 SPKZC	0 0 PGAMT F 0 0 SPKMT	INPUT, OU 0 0 PMICBSTGAI 0 0	D4 PLLK[8:0 DTPUT & MIX 0 0 0 N 0	D3 ER CONTROL 0 0 PGAG 0 MOUTBST 0 SPKG	MOUTATT 0 SAIN[5:0] 0 SPKBST 0 SAIN[5:0]	SPKATT NMICPGA 0 TSEN BYPSPK	0 PMICPGA 0 AOUTIMP DACSPK	0E9 000 003 010 100 002 001 039	
40 44 45 47 49 50	27 28 2C 2D 2F 31 32 36	PLL K 3 Attenuation CTRL Input CTRL PGA Gain ADC Boost Output CTRL Mixer CTRL SPKOUT Volume	0 MICBI 0 PGABST 0 0	0 ASV PGAZC 0 0 SPKZC	0 0 PGAMT F 0 0 SPKMT	INPUT, OU 0 0 PMICBSTGAI 0 0	D4 PLLK[8:0 O O N O O	D3 ER CONTROL 0 0 PGAG 0 MOUTBST 0 SPKG	MOUTATT 0 SAIN[5:0] 0 SPKBST 0 SAIN[5:0]	SPKATT NMICPGA 0 TSEN BYPSPK	0 PMICPGA 0 AOUTIMP DACSPK	0E9 000 003 010 100 002 001 039	
40 44 45 47 49 50 54	27 28 2C 2D 2F 31 32 36 38	PLL K 3 Attenuation CTRL Input CTRL PGA Gain ADC Boost Output CTRL Mixer CTRL SPKOUT Volume MONO Mixer Control	0 MICBI 0 PGABST 0 0	0 ASV PGAZC 0 0 SPKZC	0 0 PGAMT F 0 SPKMT MOUTMT	INPUT, OU 0 0 PMICBSTGAI 0 0 LOW	D4 PLLK[8:0 PTPUT & MIX 0 0 0 VPOWER CC	D3 ER CONTROL 0 0 PGAG 0 MOUTBST 0 SPKG 0 ONTROL	MOUTATT 0 SAIN[5:0] 0 SPKBST 0 SAIN[5:0] 0 REG	SPKATT NMICPGA 0 TSEN BYPSPK BYPMOUT	0 PMICPGA 0 AOUTIMP DACSPK	0E9 000 003 010 100 002 001 039 001	
40 44 45 47 49 50 54	27 28 2C 2D 2F 31 32 36 38	PLL K 3 Attenuation CTRL Input CTRL PGA Gain ADC Boost Output CTRL Mixer CTRL SPKOUT Volume MONO Mixer Control	0 MICBI 0 PGABST 0 0	0 ASV PGAZC 0 0 SPKZC	0 0 PGAMT F 0 SPKMT MOUTMT	INPUT, OU 0 0 PMICBSTGAI 0 0 LOW	D4 PLLK[8:0 PTPUT & MIX 0 0 0 VPOWER CC	D3 ER CONTROL 0 PGAG 0 MOUTBST 0 SPKG 0 DNTROL TRIM DANCE OPTIC	MOUTATT 0 SAIN[5:0] 0 SPKBST 0 SAIN[5:0] 0 REG	SPKATT NMICPGA 0 TSEN BYPSPK BYPMOUT	0 PMICPGA 0 AOUTIMP DACSPK	0E9 000 003 010 100 002 001 039 001	

			REGISTER ID									
62	3E	Silicon Revision	0	1	1	1	0	1	1	1	1	0EF
63	3F	2-Wire ID	0	0	0	0	1	1	0	1	0	01A
64	40	Additional ID	0	1	1	0	0	1	0	1	0	0CA
65	41	Reserved	1	0	0	1	0	0	1	0	0	124
69	45	High Voltage CTRL	0	0	0	0	MOUTMT	0	HVOPU	0	HVOP	001
70	46	ALC Enhancements 1	ALCTBLSEL	ALCPKSEL	ALCNGSEL	ALCGAINL (ONLY)						000
71	47	ALC Enhancements 2	PKLIMEN	0	0	1	1	1	0	0	1	039
73	49	Additional IF CTRL	0	FSERR'	VAL[1:0]	FSERFLSH FSERRENA NFDLY DACINMT PLLLOCKP DACOS2				DACOS256	000	
75	4B	Power/Tie-off CTRL	0	LPSPKA	0	0	0	0	MANVREFH	MANVREFM	MANVREFL	000
76	4C	AGC P2P Detector	P2PDET (ONLY)									000
77	4D	AGC Peak Detector		PDET (ONLY)								
78	4E	Control and Status	0	0	AMTCTRL	HVDET	NSGATE	AMUTE	DMUTE	0	FTDEC	000
79	4F	Output tie-off CTRL	MANOUTEN	SBUFH	SBUFL	SNSPK	SPSPK	SMOUT	0	0	0	000

