Total No. of Questions: 4]

P-5341

SEAT No. :		
[Total	No. of Pages :	3

[6187]-426A

T.E. (Computer Engineering) (Insem.)

THEORY OF COMPUTATION (Theory)

(2019 Pattern) (Semester - I) (310242)

Time: 1 Hour] [Max. Marks: 30

Instructions to the candidates:

- 1) Answer the question of 1 or 2, 3 or 4.
- 2) Neat diagrams must be drawn whenever necessary.
- 3) Figures to the right indicate full marks.
- 4) Assume suitable data, if necessary.
- Q1) a) Draw FA for the following language over $\{0,1\}$

[8]

- i) Number of 1's is multiple of 3
- ii) Number of 1's is not multiple of 3
- b) Covert following NFA into equivalent DFA and perform DFA minimization

Q/Σ	0 %	1
\rightarrow P	{P, Q}.	{P}
Q	{ R }	{R}
R	\{S}	
S*		{S}

OR

- Q2) a) Construct DFA for checking "whether a string over alphabet $\{a, b\}$ contains a substring aba". [5]
 - b) i) Differentiate between Moore machine and Mealy machine.
 - ii) Construct Moore machine equivalent to the following Mealy machine. (Show it in transition Diagram)

 $M = (Q, \Sigma, \Delta, \delta, q0)$ where $Q = \{q0, p0, p1\}$, $\Sigma = \{0, 1\}$, $\Delta = \{y, n\}$ and δ is shown as given below.

P.T.O.

	Input / Output	
States	0	1
q0	p0/n	p1/n
P0	p0/y	p1/n
P1	p0/n	p1/y

[5]

c) Convert the following DFA to its Minimized form (Minimization of DFA).

Q3) a) Prove that LHS RE is equivalent to RHS RE

(1+00*1)+(1+00*1)(0+10*1)*(0+10*1)=0*1(0+10*1)* [5]

- b) Find a regular expression corresponding to each of the following subsets of $\{0,1\}^*$
 - i) The language of all strings containing exactly two zeros
 - ii) The language of all strings containing at least two zeros
 - iii) The language of all strings that do not end with 01.
- c) Write a note on Myhill Nerode theorem.

-[4

OR

Q4) a) Construct Regular expression for following DFA using Ardens theorem.[7]

[6187]-426A

- b) i) Write regular expression for a set of strings of 0s and 1s with even number of 0s.
 - ii) Write regular expression for a set of strings of 0s and 1s containing odd number of 1s.

[4]

- c) Choose any one option given below and give the justification "The regular expression 0*(10*)* denotes the same set as" [4]
 - i) (1*0)*1*
 - ii) 0+(0+10)*
 - iii) (0+1)* 10(0+1)*
 - iv) none of these

 $\nabla \nabla \nabla \nabla$