Лабораторная работа 3.5.1

Изучение плазмы газового разряда в неоне

Выполнил: Тимонин Андрей

1 Цель работы

Изучение вольт-амперной характеристики тлеющего разряда; изучение свойств плазмы методом зондовых характеристик;

2 В работе используются:

- стеклянная газоразрядная трубка, наполненная неоном;
- высоковольтный источник питания;
- источник питания постоянного тока;
- делитель напряжения;
- потенциометр;
- амперметры;
- вольтметры;
- переключатели;

3 Ход работы

3.1 BAX

$N_{\overline{0}}$	I, мА	V, B
1	0.5073 ± 0.0001	34.350 ± 0.001
2	1.0063 ± 0.0001	32.394 ± 0.001
3	1.5088 ± 0.0001	31.526 ± 0.001
4	2.0090 ± 0.0001	26.864 ± 0.001
5	2.5017 ± 0.0001	21.608 ± 0.001
6	3.0003 ± 0.0001	18.850 ± 0.001
7	3.5057 ± 0.0001	16.873 ± 0.001
8	4.0023 ± 0.0001	16.085 ± 0.001
9	4.5049 ± 0.0001	15.425 ± 0.001
10	5.0013 ± 0.0001	14.715 ± 0.001

Таблица 1: Повышение тока разряда

Nº	І, мА	V, B
1	4.9995 ± 0.0001	14.696 ± 0.001
2	4.5084 ± 0.0001	15.367 ± 0.001
3	4.0085 ± 0.0001	15.956 ± 0.001
4	3.508 ± 0.0001	16.739 ± 0.001
5	2.996 ± 0.0001	18.795 ± 0.001
6	2.5028 ± 0.0001	21.492 ± 0.001
7	2.0073 ± 0.0001	26.418 ± 0.001
8	1.5054 ± 0.0001	31.496 ± 0.001
9	1.0007 ± 0.0001	32.413 ± 0.001
10	0.501 ± 0.0001	34.408 ± 0.001

Таблица 2: Понижение тока разряда

№	І, мкА	V, B
1	-61.85 ± 0.01	25.041 ± 0.001
2	-59.77 ± 0.01	22.045 ± 0.001
3	-57.05 ± 0.01	19.010 ± 0.001
4	-53.19 ± 0.01	16.031 ± 0.001
5	-45.80 ± 0.01	13.012 ± 0.001
6	-34.79 ± 0.01	10.031 ± 0.001
7	-24.78 ± 0.01	8.006 ± 0.001
8	-13.06 ± 0.01	6.003 ± 0.001
9	-0.47 ± 0.01	4.013 ± 0.001
10	14.70 ± 0.01	2.027 ± 0.001
11	24.36 ± 0.01	0.5146 ± 0.001

Таблица 3: Зондовые характеристики при $I_p = 5.0262$ мА и Π_2 +

$N_{\overline{0}}$	І, мкА	V, B
1	-80.97 ± 0.01	25.009 ± 0.001
2	-78.87 ± 0.01	22.014 ± 0.001
3	-76.15 ± 0.01	19.092 ± 0.001
4	-71.99 ± 0.01	16.094 ± 0.001
5	-65.51 ± 0.01	13.090 ± 0.001
6	-55.29 ± 0.01	10.059 ± 0.001
7	-46.03 ± 0.01	8.040 ± 0.001
8	-35.11 ± 0.01	6.072 ± 0.001
9	-21.91 ± 0.01	4.018 ± 0.001
10	-8.78 ± 0.01	2.013 ± 0.001
11	1.01 ± 0.01	0.576 ± 0.001

Таблица 4: Зондовые характеристики при $I_p = 5.0262$ мА и Π_2 -

3.2 Зондовые характеристики

Вольт-амперная характеристика разряда

Nº	І, мкА	V, B
1	-45.04 ± 0.01	25.009 ± 0.001
2	-43.65 ± 0.01	22.097 ± 0.001
3	-42.13 ± 0.01	19.061 ± 0.001
4	-40.41 ± 0.01	16.085 ± 0.001
5	-37.59 ± 0.01	13.010 ± 0.001
6	-32.59 ± 0.01	10.033 ± 0.001
7	-27.23 ± 0.01	8.027 ± 0.001
8	-20.18 ± 0.01	6.035 ± 0.001
9	-10.91 ± 0.01	4.019 ± 0.001
10	-0.32 ± 0.01	2.053 ± 0.001
11	8.83 ± 0.01	0.474 ± 0.001

 Таблица 5: Зондовые характеристики при $I_p = 3.0094$ м А и Π_2 +

$N_{\overline{0}}$	І, мкА	V, B
1	-61.12 ± 0.01	25.010 ± 0.001
2	-59.45 ± 0.01	22.050 ± 0.001
3	-57.73 ± 0.01	19.185 ± 0.001
4	-55.71 ± 0.01	16.103 ± 0.001
5	-52.96 ± 0.01	13.026 ± 0.001
6	-48.43 ± 0.01	10.019 ± 0.001
7	-43.83 ± 0.01	8.042 ± 0.001
8	-37.56 ± 0.01	6.084 ± 0.001
9	-28.82 ± 0.01	3.999 ± 0.001
10	-18.84 ± 0.01	2.048 ± 0.001
11	-10.47 ± 0.01	0.577 ± 0.001

Таблица 6: Зондовые характеристики при $I_p = 3.0094$ мА и Π_2 -

Вольт-амперная характеристика разряда

Участок соответствует участку $\Gamma Д$ на рисунке 6 приложения к разделу V - поднормальный тлеющий разряд

Nº	І, мкА	V, B
1	-24.02 ± 0.01	25.010 ± 0.001
2	-23.40 ± 0.01	22.012 ± 0.001
3	-22.67 ± 0.01	19.143 ± 0.001
4	-21.88 ± 0.01	16.127 ± 0.001
5	-20.79 ± 0.01	13.064 ± 0.001
6	-18.56 ± 0.01	10.106 ± 0.001
7	-15.85 ± 0.01	8.066 ± 0.001
8	-11.95 ± 0.01	6.025 ± 0.001
9	-6.92 ± 0.01	4.0373 ± 0.001
10	-0.65 ± 0.01	2.016 ± 0.001
11	4.70 ± 0.01	0.444 ± 0.001

Таблица 7: Зондовые характеристики при $I_p = 1.5014$ м А и Π_2 +

Nº	І, мкА	V, B
1	-35.36 ± 0.01	25.011 ± 0.001
2	-34.11 ± 0.01	22.057 ± 0.001
3	-32.89 ± 0.01	19.136 ± 0.001
4	-31.60 ± 0.01	16.017 ± 0.001
5	-30.28 ± 0.01	13.143 ± 0.001
6	-28.21 ± 0.01	10.167 ± 0.001
7	-25.91 ± 0.01	8.092 ± 0.001
8	-22.55 ± 0.01	6.002 ± 0.001
9	-18.15 ± 0.01	4.030 ± 0.001
10	-12.35 ± 0.01	2.015 ± 0.001
11	-7.62 ± 0.01	0.589 ± 0.001

Таблица 8: Зондовые характеристики при $I_p=1.5014$ мА и Π_2 -

Зондовые характеристики при $I_p = 5.0262~\mathrm{mA}$

Зондовые характеристики при $I_p = 3.0094 \ \mathrm{mA}$

Зондовые характеристики при $I_p = 1.5014~\mathrm{mA}$

Зондовые характеристики

I_p , мА	Ветвь	$R_{\text{дифф}}$, МОм
5.0262	Правая	1.440 ± 0.015
5.0262	Левая	1.426 ± 0.023
3.0094	Правая	2.095 ± 0.045
3.0094	Левая	1.772 ± 0.022
1.5014	Правая	4.835 ± 0.159
1.5014	Левая	2.394 ± 0.041

Таблица 9: Дифференциальные сопротивления ветвей

I_p , мА	$I_{i{\scriptscriptstyle { m H}}},{\scriptscriptstyle { m M}}$ к ${ m A}$
5.0262	38.3702 ± 1.9865
3.0094	32.1754 ± 0.3381
1.5014	18.0096 ± 0.1938

Таблица 10: Токи насыщения

I_p , мА	$\frac{dI}{dU}$, 10^{-6} Om ⁻¹
5.0262	1.535 ± 0.004
3.0094	4.102 ± 0.011
1.5014	3.175 ± 0.010

Таблица 11: $\frac{dI}{dU}$ при
 $\mathbf{U}=0$

I_p , мА	T_e , K
5.0262	145090.5 ± 7889.7
3.0094	45528.3 ± 600.5
1.5014	32924.1 ± 457.9

Таблица 12: Температуры электронов при соответствующих ${\cal I}_p$

I_p , мА	n_e, M^{-3}
5.0262	$1.75 \cdot 10^{1}6$
3.0094	$2.62 \cdot 10^{1}6$
1.5014	$1.73 \cdot 10^{1}6$

Таблица 13: Концентрации n_e при соответствующих I_p

I_p , мА	$\omega_e, 10^{16} \frac{\text{рад}}{\text{сек}}$
5.0262	7.41
3.0094	9.06
1.5014	7.37

Таблица 14: Частоты колебаний ω_e при соответствующих I_p

I_p , мА	r_{D_e} , cm
5.0262	18.86
3.0094	8.63
1.5014	9.03

Таблица 15: Радиус дебаевского слоя r_{D_e} при соответствующих I_p

I_p , мА	r_D , cm
5.0262	0.86
3.0094	0.70
1.5014	0.86

Таблица 16: Радиус экранирования r_D при соответствующих ${\cal I}_p$

I_p , мА	$N_D, 10^{10}$
5.0262	4.66
3.0094	3.76
1.5014	4.61

Таблица 17: Среднее число и
онов в дебаевском слое при соответствующих ${\cal I}_p$