ER

Relationships can have attributes Relationship end without arrows: many. With arrows: one Can label relationship lines ("edges")

Only root ISA has a key attribute

Logical Design

Informal Terms	Formal Terms
Table	Relation
Column	Attribute
Row	Tuple
Possible values in a column	Domain
Table Definition	Schema of a Relation
Populated Table	Instances

name	(coach) (Number) (nam
Entity	Relation
Weak-entity	Relation, including the primary key from the parent entity as an attribute
1:1 relationship	Merged relation, Foreign key, Relationship relation
1:N relationship	Foreign key, Relationship relation

Relationship relation

Atomic attribute Attribute
Key attribute Primary key
Composite attributes A set of attributes
Multi-valued attributes Relation and foreign key

M:N relationship

Super key # no two distinct tuples can have the same values in all fields Candidate key # Super key where the above condition is not true for any subset If |Candidate key|>1, one of them is chosen to be a Primary key Referential integrity for foreign keys

Normalization

 $X \subset Y$ # Trivial functional dependency

 $X \cap Y = \emptyset$ # Completely non-trivial

1NF: table

2NF: non-prime (not members of candidate key) attributes are dependent on candidate key

3NF: 2NF + non-transitively dependent

BCNF: for all $X \rightarrow Y$, X is a super key (key->other attrs)

Decomposition to BCNF

- 1. Identify the candidate keys
- 2. Find a BCNF violation
 - That is, a non-trivial FD $X \rightarrow Y$ in R where X is not a super key of R
- 3. "Grow" *Y* to include all the attributes determined by *X*.
- 4. Decompose R into R_1 and R_2 , where
 - $-R_1$ has attributes $X \cup Y$
 - $-R_2$ has attributes $X \cup Z$, where Z contains all attributes of R that are in neither X nor Y (i.e. Z = attr(R) X Y)
- 5. Repeat until all relations are in BCNF

- R(A, B, C, D):
 - AB**→**C
 - C**→**D
 - D**→**A
- 1. Identify the candidate keys

 $AB \rightarrow C$ and $C \rightarrow D$: $AB \rightarrow D$ Hence, $AB \rightarrow ABCD$. AB is a key $D \rightarrow A$: $DB \rightarrow AB$. DB is a key $C \rightarrow D$: $CB \rightarrow DB \rightarrow AB$. CB is a key

- 2. Find a BCNF violation X→Y
 - C→D is a violation since C is not a key
- "Grow" Y to include all the attributes determined by X
 C→D, D→A, hence, C→DA
- 4. Decompose R into R_1 and R_2 : $R_1(\underline{\mathbb{C}}, \mathbb{D}, \mathbb{A})$, $R_2(\underline{\mathbb{B}}, \underline{\mathbb{C}})$
- 5. Repeat this
 - D→A is a violation since D is not a key
 - Eventually, we have: $R_2(\underline{B}, \underline{C}), R_3(\underline{C}, \underline{D}), R_4(\underline{D}, \underline{A})$