Cluster Establishment in Vehicular Networks Connectivity Enhancement

Pham Thi Ngoc Mai, Supervisors: Dr. Nguyen Minh Huong August 12th, 2018

University of Science and Technology of Hanoi

Overview

- I. Introduction
- II. Methodologies
- III. Tools and Implementation
- IV. Results
 - V. Conclusion and Future Works

I. Introduction

1 - Introduction to VANETs

- emergency

Vehicular Ad-hoc Networks (VANETs)

the special type of Mobile Ad-hoc Networks that aims at providing communication among vehicles on roads.

- parking

2 - Connectivity Problem & Solution

• Problems: Communication overhead/failures

• Solution: Cluster Establishment

3 - Objectives

- Constructing the protocol in each **process**.
- Implementing the protocol on NS-3 simulator.
- Running the simulation and analysing the **results**.

II. Methodologies

1 - Protocol Description

Construct:

- NodeState
- Time Cycle
- Algorithms

2 - Protocol Description

Figure 1: Processes in a Time Cycle

3 - BEACON_EXCHANGE Process

Nodes:

- broadcast beacon messages
- update their table of stable neighbors
- keep track with the closest RSU

4 - CLUSTER_FORMATION Process

Node:

- · waits to become a CH
- joins other cluster if it receives FormClusterMessage
- otherwise, declares itself as CH.

5 - DATA_EXCHANGE Process

- Intra-cluster communication
 - Direct transmission
 - · Indirect transmission
- Inter-cluster communication
 - CH roles: forward packet to nearest RSU
 - RSU roles: forward packet to the destination cluster
 - · Core network

III. Tools and Implementations

1 - NS-3 Network Simulator

NS-3 simulator is a discrete-event network simulator targeted primarily for research and educational use.

• Simulates the real world network on computer

- C++, Python
- Maintains an implementation for WAVE

2 - Implementation

• Applications: for vehicles and for RSUs

• **Headers**: for different packet types

2 - Implementation

Figure 2: Class designs for VApplication and RsuApplication

2 - Implementation

Figure 3: Designs for headers

IV. Results

1 - Scenarios Descriptions

- Scenarios:
 - Stable
 - Non-stable
- Metrics:
 - PDR: Packet Delivery Ratio

1 - Scenarios Descriptions

Table 1: Common configuration parameters of the clustering scenarios

Parameter	Value
Position range	[0m, 100m]
Mobility Model	Constant Velocity
Simulation Time	33s
Number of Vehicles	5/10/15/20/25/30/35/40/45
Distance between two adjacent RSUs	100m

2 - Stable Scenario

Figure 4: Stable Scenario

3 - Non-stable Scenario

Figure 5: Non-stable Scenario

4 - Analysis on Cycle Time Value

Figure 6: Number of clusters created in the first 100 seconds with cycle time equals 33 seconds

4 - Analysis on Cycle Time Value

Figure 7: Number of clusters created in the first 100 seconds of simulation with cycle time is (a) 13 seconds and (b) 23 seconds

V. Conclusion and Future Work

- Inter-cluster communication implementations
- More practical scenarios
- Proper values for algorithm specific **parameters**

