The PSPMCM SAS® macro

A simulated example

1 - Description of the dataset

1.1 - General description

The dataset SIMULTEX is constituted with 500 individuals (one record per individual), with the following variables:

- IDENT: identification number;
- UNCURED: the TRUE (simulated) uncured status (0 for cured, 1 for uncured). This variable is unobserved in real datasets
- SURVTIME: failure or censoring time;.
- STATUS: censoring indicator (censored=0, uncensored=1);
- VARX: name of the first explanatory variable. Values are 0 or 1;
- VARY: name of the second explanatory variable, with values 0, 1 or 2.
- VARY1 and VARY2 are the dummy variables created for VARY such as:

If VARY=0 then VARY1=0 and VARY2=0,

If VARY=1 then VARY1=1 and VARY2=0,

If VARY=2 then VARY1=0 and VARY2=1.

Tables 1 gives the repartition of the different explanatory variables:

	Table	of varX	par varY		
Frequency Percent			varY		
Row percent Col percent	varX	0	1	2	Total
	0	91 18.20 30.33 65.94	86 17.20 28.67 58.11	123 24.60 41.00 57.48	300 60.00
	1	47 9.40 23.50 34.06	62 12.40 31.00 41.89	91 18.20 45.50 42.52	200 40.00
	Total	138 27.60	148 29.60	214 42.80	500 100.00

Table 1: repartition of VARX and VARY in the simulated dataset

Individuals are followed-up for a maximum of 25 years. Information about the following-up length is given below:

		Analysis	s Variable	: SURVTIME		
STATUS	Nb obs.	25e centile	Median	75e centile	90e centile	Maximum
0	221	3.26	8.65	16.22	20.94	23.91
1	279	2.58	4.34	6.33	8.33	17.95

Table 2: following-up length

Over the period, 279 event of interest are observed, so that the censoring is 44.20 %.

1.2 – Effects of explanatory variables on the cure fraction and on the survival of uncured individuals

The data are generated so that VARX has an effect on the cured fraction (higher cured fraction within individuals with VARX=0 than within those with VARX=1), but not on the survival of uncured individuals. Conversely VARY has no effect on the cured fraction, but influences the survival of uncured individuals. Compared to the baseline hazard (uncured individuals with VARY=0), the hazard of failure for uncured individuals with VARY=1 is reduced, and increased for uncured individuals with VARY=2.

The TRUE (simulated) proportion of cured individuals given VARX and VARY is as follows:

varX	varY	Nb obs.	Nb Cured	Cured Fraction (%)
0	0	91	35	38.46
	1	86	30	34.88
	2	123	41	33.33
1	0	47	9	19.15
	1	62	12	19.35
	2	91	25	27.47

Table 3: simulated cured fractions given VARX and VARY

The TRUE (Simulated) effect of VARX and VARX on the survival of uncured individuals can be estimated by fitting the standard Cox PH hazards model to (simulated) uncured individuals (after checking for proportional hazards assumption).

		Ana	llysis of Maxir	num Likelih	ood Estima	ites		
Variable	DF	Parameter Estimate	Standard Error	Chi- Square	Pr > ChiSq	Hazard Ratio	95% Hazar Confide Limit	nce
varX	1	0.14667	0.12257	1.4318	0.2315	1.158	0.911	1.472
varY1	1	-0.62591	0.16903	13.7116	0.0002	0.535	0.384	0.745
varY2	1	0.65052	0.14997	18.8141	<.0001	1.917	1.428	2.571

Table 4: parameter estimates for the latency part (uncured fraction).

The variable UNCURED in not observed in real datasets. Hence the only information we have is whether individuals have experienced the event of interest (STATUS=1) or if they are right censored (STATUS=0). Obviously, if STATUS=1 then individuals are uncured.

2 - Analysis of the simulated dataset

The Kaplan-Meier estimate of the survival function for time to failure for time to failure for the overall sample is shown in figure 1:

Figure 1: Kaplan-Meier estimates of the survival function for the overall sample.

From figure 1, it can be seen that the survival function estimates levels off at nonzero proportion (approximately 30%) after a long follow-up and that no further event of interest occurs after 18 years.

2.1 – Analysis with the standard Cox's proportional hazards model

The standard Cox's proportional hazards model is first applied to the dataset is first fitted with Proc PHREG.

The statement is:

```
proc phreg data=simultex;
model survtime*status(0) = varX varY1 varY2/r1;
run;
```

Results for parameters estimates are shown bellow.

			Analysis of	Maximum Like	lihood Estima	tes		
Variable	DF	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Hazard Ratio	95% Hazard Confide Limits	nce
varX	1	0.34035	0.12060	7.9640	0.0048	1.405	1.110	1.780
varY1	1	-0.18671	0.16390	1.2978	0.2546	0.830	0.602	1.144
varY2	1	0.27537	0.14617	3.5492	0.0596	1.317	0.989	1.754

Table 5: estimates from the standard Cox PH model.

From table 5, it is concluded that individuals with VARX=1 are about 1.4 time more likely to undergo the event of interest than individuals with VARX=0 (relative Risk= 1.405, p=0.0048). Or equivalently (taking the reciprocal), the hazard for those with VARX=0 is about 71 percent of the hazard for those with VARX=1.

The parameter for VARY1 is not significant at the 5% level (p=0.2546). This means that the failure rate is not increased for individuals with VARY=1, compared to the baseline group (VARY=0). There is however some evidence of higher hazard for individuals with VARY=2, compared to those with VARY=0, but the estimates for VARY2 does not reach the 5 % statistical significance level (p=0.0596).

By using the standard Cox PH model, we make the hypothesis that, if complete follow-up was possible for all individuals, each would eventually experience the event of interest. This hypothesis, however, may not hold for the present dataset. From the Kaplan Meier estimate of the survival (figure 1) there are strong evidences that some individuals may be cured, and the use of standard survival models is questionable.

2.2 - Analysis with mixture cure models.

2.2.1 - Notations

Let U be the indicator denoting an individual is susceptible (U=1) or non susceptible (U=0) to the event of interest and T is a nonnegative random variable denoting the failure time of interest, defined only when U=1. The mixture cure model is given as follows:

$$S(t,x,z) = \pi(z) S(t|U=1,x) + (1-\pi(z))$$

where S(t | x, z) is the unconditional survival function of T for the entire population.

 $S(t \mid U=1, \ x)=P(T>t \mid U=1, \ x)$ is the survival function for susceptible individuals given a covariate vector $\mathbf{x}=(\mathbf{x}_1,\ldots,\mathbf{x}_p)'$, and $\pi(\mathbf{z})=P(U=1|\mathbf{z})$ is the probability of being susceptible given a covariate vector $\mathbf{z}=(\mathbf{z}_1,\ldots,\mathbf{z}_p)'$ which may include the same covariates as \mathbf{x} . The survival function of cured individuals can be set to one for all finite values of t because they will never experience the event of interest.

2.2.2 - Analysis with the PSPMCM SAS macro

2.2.2.1 - The Cox PH mixture cure model

The PSPMCM SAS macro is invocated with the following statement:

• The dataset name is DATA=simultex;

- The identification number of individuals is ID=ident;
- The censoring indicator is CENSCOD=status, the time to failure (or censoring) is TIME=survtime.
- The name of the explanatory variables is specified in the VAR= parameter, with the information of whether is as to be included in the incidence (I) and/or latency (S) part of the mixture cure model. The values of explanatory variables for with the marginal and conditional survival functions estimates, i.e. S(t) and S(t|U=1) are plotted are specified after the comma. From the above statement VAR= varX(IS, 1) varY1(IS, 0) varY2(IS,0), means that VARX, VARY1 and VARY2 are included in both incidence and latency and that the estimates of the survival functions for uncured individuals and with VARX=1 and VARY1=0 and VARY2=0 will be plotted.
- The incidence part of the mixture cure model is modelled by a logistic regression model (INCPART=logit).
- The latency part of the mixture cure model is modelled by the use of semiparametric Cox's PH model (SURVPART=Cox).
- The default zero tail constraint (i.e. S(t|U=1)=0 for $t>\tau_k$ where τ_k is the last failure time) is imposed to the estimate of S(t|U=1), (TAIL=zero) and the product limit estimate is used to compute the estimate or S(t|U=1) (SU0MET=p1).
- The maximum number of iterations to perform is the default one (MAXITER=200). The convergence criterion is set to 10⁻⁵ (CONVCRIT= 1e-5) and the significance level used for the confidence limits is 5% (ALPHA= 0.05).
- Results are displayed in the output windows when convergence is attained (FAST=Y).
- The computation of bootstrap confidence intervals for parameters estimates is requested (BOOTSTRAP=Y) and 2000 replicates will be created by resampling with replacement from the original dataset (NSAMPLE=2000). All the bootstrap methods for confidence intervals computation, i.e. percentile, bias corrected, normalized bias corrected, hybrid, bias corrected accelerated CI, as well as jacknife after bootstrap are requested (BOOTMET= ALL).
- Q-Q plots and histograms of parameters estimates distribution will be plotted (BASELINE=Y).
- The estimates of the baseline survival function and of parameters estimates will be stored in a BASELINE dataset (BASELINE=Y).
- Finally the plot of the marginal and conditional survival functions are requested (SPLOT=Y). They will be displayed for values specified in the VAR= parameter.

Convergence is attained in 16 iterations.

Output datasets.

The following dataset are created by the macro:

- LIKELIHOOD stores information about convergence and likelihood.
- ESTIMATES contains the point estimates for parameters. The prefix 'L' indicates that the estimate is for the incidence part, while the prefix "S" indicates that the estimate is for the survival part.
- FAST_INCI_EST and FAST_INCI_OD are created if the parameter FAST=Y is specified. They store the estimates and standard errors and the corresponding odds ratios estimates that have been displayed when convergence was attained.
- FAST SURV EST does the same for the latency part.
- PROBCURE_SIMULTEX stores the estimated probability of been uncured which is 1 for uncensored individuals. For censored individuals it is given by:

$$P(U_i = 1 | x_i, z_i, t_i) = \frac{\pi_i(z_i) S(t_i | U = 1, x_i)}{1 - \pi_i(z_i) + \pi_i(z_i) S(t_i | U = 1, x_i)}$$

- BASELINE_SIMULTEX: is created if the parameter BASELINE=Y is specified. Stores the estimate for the conditional baseline survival function, as well as parameters estimates.
- BASELINE_T_SIMULTEX: is created if the parameters BASELINE=Y and BOOTSTRAP=Y are specified. Stores the estimates for parameters and the conditional baseline survival function from the bootstrap replicates.

- BOOTCI: is created if the parameter BOOTSTRAP=Y is specified. Stores the bootstrap confidence intervals for parameters estimates for the incidence. The BOOT_OR and BOOT_RR dataset store the corresponding bootstrap confidence intervals for the Odds Ratios and the Hazards Ratios.
- BOOTDIST_T_SIMULTEX is created if the parameter BOOTSTRAP=Y is specified. Stores the parameters estimates and some information about convergence for each bootstrap replicate.
- JACKDIST_T_SIMULTEX: is created if the parameter BOOTMET=JACK or BOOTMET=ALL is specified. Stores the parameters estimates and some information about convergence for each jackknife replicate.

Results for the Simultex dataset example are shown in output 1.

				RESULTS FOR	DATA oim	11+04				
				RESULIS FOR Convergence a			d			
				tail completi						
				SuO esti			'			
				ouo esti	macion .	'-				
						LogL_	L	.ogL_		
	N Obs	N fail	ed N it	er Co	nverg	LOGIT	=	oxPH	LogTo	tal
	_	_	_						Ū	
	500	279	16	4.5879	3E-06	-307.53	1 -13	300.68	- 1608	3.21
				ESULTS FOR TH		•				
			Analy	sis of Maximu	m Likeli	nood Est	ımates			
			1	Parameter	Standard	W	ald	Pr	_	
		Variable		Estimate	Error		Square	Chi-Sq		
		vai labic	Di 1	_ocima co	LITOI	OHI	oquui c	0111 04	luui c	
		Intercept	1	0.5477	0.1918		8.1584	0.00	143	
		varX .	1	0.4603	0.2032		5.1342	0.02	235	
		varY1	1	0.1545	0.2572		0.3607	0.54	81	
		varY2	1	0.0536	0.2349		0.0521	0.81	95	
				Odds Rat	io Estim	ates				
					Lower) E &	Upper 95	٠,		
					Confid		Confider			
				Odds Ratio	Limit		Limit fo			
			Effect	Estimate	Odds R		Odds Rat			
			varX	1.585	1.	064	2.36	60		
			varY1	1.167	0.	705	1.93	32		
			varY2	1.055	0.	666	1.67	'2		
			FAOT B=0:		OLIDA (T.)	DART (
				JLTS FOR THE		,				
			Analy	sis of Maximu	⊪ rikeil	ioou EST	ılla tes			
								95% Lo	wer	95% Upper
								Confid		Confidence
		Parameter	Standa	rd Wald	Pr	>	Hazard	Limit		Limit for
Variable	DF	Estimate	Erre	or Chi-Squar	e Chi-S	quare	Ratio	Hazard	Ratio	Hazard Ratio
varX	1	0.22329	0.122	45 3.325			1.250	0.	983	1.589
varY1	1	-0.60548	0.1699				0.546		391	0.762
varY2	1	0.67403	0.150	12 20.159	6 <.0	001	1.962	1.	462	2.633

Output 1 : parameters estimates for the Simultex dataset using the Logistic Cox PH mixture cure model (PSPMCM macro).

The standard errors of estimates and the corresponding confidence intervals are based on the inverted Hessian matrix computed on the last maximum likelihood iteration, when convergence is attained. They may be underestimated, especially for the survival part of the model.

From the results of the incidence part, it is concluded that the effect of VARX on the cured fraction is significant, and that VARY as no effect. From the results of the latency part it is concluded that VARX does not influence the survival of uncured individuals, and conversely, that the hazard of failure is increased for uncured individuals with VARY=2 and decreased for uncured individuals with VARY=1.

The cured fraction is computed using the PROBCURE_SIMULTEX dataset. Results are shown in table 6.

			Cured Fr	raction (%)
varX	varY	N Obs	estimates	true values
0	0	91	37.79	38.46
	1	86	34.34	34.88
	2	123	33.71	33.33
1	0	47	24.51	19.15
	1	62	22.15	19.35
	2	91	27.99	27.47

Table 6 : cured fraction estimates from the logistic/Cox PH mixture cure model for the Simultex dataset.

The estimated cured fractions are in close agreement with the true (simulated) values.

The marginal and conditional survival functions estimates from the logistic Cox PH mixture cure model are shown in figure 2 and figure 3.

Figure 2 : conditional survival function estimates (survival estimates for uncured individuals) from the logistic Cox PH mixture cure model for Simultex dataset

The bootstrap confidence interval for parameters estimates are given in output 2. The corresponding odds Ratios and Hazard Ratios are shown in output 3.

		BOOTSTF		NCE INTERV a set= sim	AL FOR PARAME	ETERS ESTIMA	ATES	
		(confide			bootstrap r	esamples)		
		(00111140	choc icvei .	0, 2000	boototi ap 1	coumpico,		
		Method=BC	Method=BC	Method=BC	A Method=BCA			
		Lower	Upper	Lower	Upper	Method=	Method=	Method=HYB
	Observed	${\tt Confidence}$	Confidence	Confidenc	e Confidence	PCTL Lower	PCTL Upper	Lower
Variable	Statistic	Limit	Limit	Limit	Limit	percentile	percentile	percentile
L_Int	0.54766	0.06588	0.97221	0.05815	0.96716	0.09028	1.01763	0.07769
L_VARX	0.46049	-0.01111	0.93934	-0.01375	0.93561	-0.00032	0.94835	-0.02738
L_VARY1	0.15428	-0.44614	0.84873	-0.44737	0.84873	-0.49847	0.80505	-0.49648
L_VARY2	0.05363	-0.45812	0.62285	-0.45647	0.63424	-0.50815	0.57347	-0.46621
S_VARX	0.22329	-0.04811	0.46969	-0.05453	0.46699	-0.04230	0.47233	-0.02575
S_VARY1	-0.60548	-0.96809	-0.25052	-0.96809	-0.25052	-0.97022	-0.25432	-0.95664
S_VARY2	0.67403	0.36079	0.99630	0.36079	0.99630	0.36501	1.00194	0.34612
			Method=I	BOOTN M	ethod=B00TN	Method=JA	ACK Meth	od=JACK
		Method=HYB	Lowe	er	Upper	Lower	Ul	pper
	Observed	Upper	Confide	ence	Confidence	Confider	nce Con	fidence
Variable	Statistic	percentile	Lim	it	Limit	Limit	L	imit
L_Int	0.54766	1.00505	0.079	978	0.98792	0.0845	58 0.9	99338
L_VARX	0.46049	0.92129	-0.013	319	0.91561	-0.0128	38 0.9	91455
L_VARY1	0.15428	0.80703	-0.48	157	0.81785	-0.4785	57 0.	79699
L_VARY2	0.05363	0.61541	-0.469	950	0.59261	-0.4743	35 0.	58873
S_VARX	0.22329	0.48888	-0.03	765	0.48096	-0.0370	0 80	. 47999
S_VARY1	-0.60548	-0.24074	-0.96	244	-0.24870	-0.9684	40 -0	.25181
S_VARY2	0.67403	0.98305	0.348	891	0.98793	0.3494	44 0	.98471

Output 2 : bootstrap confidence intervals for paramaters estimates from the logistic/ Cox PH mixture cure model for the Simultex dataset.

			Data set=	HE LOGISTIC simultex			
	(C	onfidence le	vel=95 %, 20	000 bootstra	p resamples)	
	Odds	PCTL	PCTL	BOOTN	BOOTN	НҮВ	НҮВ
Variable	Ratio	Lower OR	Upper OR	Lower OR	Upper OR	Lower OF	R Upper O
L_VARX	1.58485	0.99968	2.58146	0.98690	2.49829	0.97299	2.51253
L_VARY1	1.16682	0.60746	2.23680	0.61781	2.26563	0.60867	2.24124
L_VARY2	1.05509	0.60161	1.77441	0.62531	1.80870	0.62738	1.85042
	Odds	JACK	JACK	ВС	ВС	BCA	BCA
Variable	Ratio	Lower OR	Upper OR	Lower OR	Upper OR	Lower OR	Upper OR
L_VARX	1.58485	0.98720	2.49566	0.98895	2.55828	0.98634	2.54876
L_VARY1	1.16682	0.61967	2.21885	0.64010	2.33668	0.63931	2.33668
L_VARY2	1.05509	0.62229	1.80171	0.63247	1.86424	0.63352	1.88560

		HAZARD	RATIO FOR	THE SURVIVA	L PART		
			Data set=	simultex			
	(00	nfidence le	evel=95 %, 2	000 bootstr	ap resamples	;)	
	Hazard	PCTL	PCTL	BOOTN	BOOTN	НҮВ	НҮВ
Variable	Ratio	Lower RR	Upper RR	LowerRR	Upper RR	Lower RR	Upper RR
S_VARX	1.25018	0.95858	1.60372	0.96305	1.61763	0.97458	1.63049
S_VARY1	0.54581	0.37900	0.77544	0.38196	0.77981	0.38418	0.78604
S_VARY2	1.96213	1.44053	2.72355	1.41753	2.68566	1.41358	2.67260
	Hazard	JACK	JACK	ВС	ВС	BCA	BCA
Variable	Ratio	Lower RR	Upper RR	Lower RR	Upper RR	Lower RR	Upper RR
S_VARX	1.25018	0.96360	1.61607	0.95303	1.59950	0.94693	1.59518
S_VARY1	0.54581	0.37969	0.77739	0.37981	0.77840	0.37981	0.77840
S VARY2	1.96213	1.41828	2.67703	1.43447	2.70825	1.43447	2.70825

Output 3 : bootstrap confidence intervals for odds ratios and hazard ratios from the logistic/ Cox PH mixture cure model for the Simultex dataset.

2.2.2.2 - The Logistic Weibull mixture cure model

The Logistci/ Weibull mixture cure model is also applied to the Simultex dataset with the following statement :

Results are shown in output 4.

				Parameter	Estimates				
		Standard							
Parameter	Estimate	Error	DF	t Value	Pr > t	Alpha	Lower	Upper	Gradien
L_int	0.5474	0.2282	500	2.40	0.0168	0.05	0.09902	0.9958	-0.00009
L_VARX	0.4592	0.2348	500	1.96	0.0510	0.05	-0.00209	0.9204	-0.00003
L_VARY1	0.1568	0.3217	500	0.49	0.6262	0.05	-0.4752	0.7887	-0.00002
L_VARY2	0.05540	0.2690	500	0.21	0.8369	0.05	-0.4732	0.5840	-0.00002
_scale	1.8164	0.07236	500	25.10	<.0001	0.05	1.6743	1.9586	-0.00012
S_VARX	0.2176	0.1329	500	1.64	0.1023	0.05	-0.04358	0.4787	-9.94E-6
S_VARY1	-0.6115	0.1868	500	-3.27	0.0011	0.05	-0.9785	-0.2445	0.000047
S_VARY2	0.6427	0.1594	500	4.03	<.0001	0.05	0.3295	0.9560	-6.11E-6
shape	0.5215	0.02540	500	20.53	<.0001	0.05	0.4716	0.5714	-0.00052

Odo	l's ratio est	timates for o	data=simulte	×
	distribution	WEIBULL, al	pha=0.05	
				Pr >
Parameter	OR	Lower	Upper	t
L_VARX	1.58275	0.9979	2.5103	0.0510
L_VARY1	1.16973	0.6218	2.2006	0.6262
L_VARY2	1.05696	0.6230	1.7931	0.8369
		imates for d		x
				Pr >
Parameter	RR	Lower	Upper	t
S_VARX	1.24303	0.9574	1.6139	0.1023
S VARY1	0.54254	0.3759	0.7831	0.0011

Output 4 : Results from the Logistic/ Weibull mixture cure model for the Simultex dataset.

The marginal and conditional survival functions estimates from the logistic/ Weibull mixture cure model are shown in figure 4 and figure 5.

Figure 4: conditional survival function estimates (survival estimates for uncured individuals) from the logistic Weibull mixture cure model for the Simultex dataset.

Figure 5 : marginal survival function estimates from the logistic Weibull mixture cure model for the Simultex dataset

The cured fraction estimates from the logistic/ Weibull mixture cure model are shown in table 7.

			Cured Fraction (%)	
varX	varY	N Obs	Estimates	True values
0	0	91	36.65	38.46
	1	86	33.09	34.88
	2	123	35.37	33.33
1	0	47	26.76	19.15
	1	62	23.81	19.35
	2	91	25.69	27.47

Table 7 : cured fraction estimates for the Logistic / Weibull mixture cure model for the Simultex dataset.