Tema 4 (I) - Aplicaciones lineales (1^a parte)

- 1. Razonar cuáles de las siguientes aplicaciones son lineales.
 - a) $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ definida por T(x,y) = (x-y,3y,2y)
 - b) $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definida por T(x, y, z) = (2xy, x y, -2z)
 - c) $D: \mathbb{P}[x] \longrightarrow \mathbb{P}[x]$ definida por D(p(x)) = p'(x) (la derivada de p(x)).
 - $d)\ G:\mathbb{R}^2\longmapsto\mathbb{R}^2\ \text{donde}\ G(v)$ es el resultado de girar $30^\circ,$ en sentido positivo, el vector v.
 - e) $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ definida por $T(x,y) = ((x+y)^2, x-y)$
 - f) $T: \mathbb{P}^3[x] \longrightarrow \mathbb{R}^3$ definida por $T(ax^3 + bx^2 + cx + d) = (a b, b c, c d)$
- $\mathbf{2}$. En los casos siguientes, T es una aplicación lineal.
 - a) Si T(1,3)=(2,1) y T(3,1)=(1,2), hallar (rápidamente) T(1,1).
 - b) Si $\ker(T) = \langle (0,1) \rangle$ e $\operatorname{Im}(\mathbb{R}^2) = \langle (1,1) \rangle$, hallar T(1,0) [hay much soluciones].
 - c) T(2,1) = T(1,2) + T(u). Hallar u si:
 - (1) T es inyectiva.
 - (2) $\ker(T) = \langle (-2, 1) \rangle$.
- **3.** Dada la aplicación $T: \mathbb{R}^2 \longmapsto \mathbb{R}^2$ definida por T(x,y) = (x+y, -2x+4y) se pide:
 - a) Probar que T es lineal y hallar su matriz en la base canónica.
 - b) Probar que T es inyectiva.
 - c) Hallar la matriz de T en la base $\mathcal{B} = \{(1,1), (1,2)\}$
- **4.** Dada la aplicación $D: \mathbb{P}^3[x] \longmapsto \mathbb{P}^2[x]$ definida por D(p(x)) = p'(x) (derivada de p(x)) y las bases, $\mathcal{B} = \{x^3, x^2, x, 1\}$ (de $\mathbb{P}^3[x]$) y $\mathcal{B}' = \{x^2, x, 1\}$ (de $\mathbb{P}^2[x]$) se pide:
 - a) Probar que D es lineal (si no se ha probado antes) y hallar su matriz en las bases dadas.
 - b) Hallar, usando la matriz hallada, $D((x-1)^3)$.
 - c) Probar que D no es inyectiva y hallar una base de $\ker(D).$
 - d) Hallar $D^{-1}(2x^2 x + 2)$.
- 5. Sea $G: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ tal que G(v) es el resultado de girar 30° , en sentido positivo, el vector v se pide:
 - a) Probar que G es lineal (si no se ha probado antes) y hallar su matriz en la base canónica.
 - b) Hallar la matriz de $G \circ G$ ¿Cuál es su significado geométrico?
 - c) Hallar G(2,3) y $G^{-1}(1,1)$.

- n veces
- d) Probar que para algún valor de n se verifica que $\overbrace{G\circ G\circ \cdots \circ G}=I$. Hallar todas los valores posibles.
- **6.** De la aplicación lineal $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ se sabe que T(1,0)=(2,0) y T(0,1)=(0,1).
 - a) Probar que la información proporcionada determina T y hallar la matriz de T en la base canónica.
 - b) ¿En qué figura se transforma el cuadrado de vértices (0,0),(1,0),(1,1) y (0,1) al aplicar T a todos los vectores que tienen su origen en (0,0) y su extremo dentro del cuadrado?
 - c) (*) ¿En qué figura se transforma el círculo de centro en (0,0) y radio 1?
- 7. Sea r la recta y=x y $P_r:\mathbb{R}^2\longmapsto\mathbb{R}^2$ la aplicación definida por $P_r(v)=$ proyección de v sobre r.
 - a) Usar argumentos geométricos para probar que P_r es lineal y que $P_r \circ P_r = P_r$.
 - b) Probar que P_r no es inyectiva y hallar una base de $\ker(P_r)$.
 - c) Hallar la matriz M de P_r en la base canónica y comprobar que $M^2 = I_2$.
 - d) Hallar una base de \mathbb{R}^2 de modo que la matriz de P_r en esa base sea $M_B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$