

Machine Learning CS342

Lecture 1: Introduction to ML

Dr. Theo Damoulas

T.Damoulas@warwick.ac.uk

Office hours (CS 307): Mon 10-11am Fri 10-11am

Module Organisation

- TAs/Tutors:
 - Helen McKay: <u>H.McKay@warwick.ac.uk</u>
 - Shan Lin: <u>Shan.Lin@warwick.ac.uk</u>

- Module website:
 - https://www2.warwick.ac.uk/fac/sci/dcs/teaching/ modules/cs342/
 - Check Syllabus and Online Material
- Assessment:
 - 60% Final exam (Lecture material & PPs)
 - 40% Coursework:
 - 15% First assignment
 - 25% Second assignment
- Help? Questions? Contact me directly or the TAs

Module Organisation

- Lectures:
 - Monday, 11:00-12:00, MS.05
 - Tuesday, 14:00-15:00, CS1.04
 - Friday, 11:00-12:00, CS1.04
- Labs:
 - Thursday, 11:00-12:00, CS0.06
 - Friday, 1400-1500, CS0.01

Necessary to understand material and practise Lab components in final exam and assignment

TA + Instructor

Python (Weka/Matlab/R)

- Background:
 - Linear Algebra, Probability Theory, Programming
 - Work and help each other do not copy codes or assignments, we run Plagiarism detection software.
 - Come at office hours, ask me or your TAs!

Learning Outcomes & Goals of CS342

- What is Machine Learning?
 - Main areas, subfields, applications
- Learning models from data basic principles
- Understand a wide variety of learning algorithms
- Understand how to fit and evaluate learning algorithms
- Apply various learning algorithms to real problems
- Have fun while teaching your computer how to learn from data!

Syllabus

- A First Course in Machine Learning, S. Rogers & M. Girolami
 [Allowed to give you 1st Chapter] http://www.dcs.gla.ac.uk/
 ~srogers/firstcourseml/
- Machine Learning, T. Mitchell
- Pattern Recognition and Machine Learning, C. Bishop
- Pattern Classification, Duda, Hart and Stork, Wileyinterscience
- Machine Learning: A Probabilistic Perspective, K. P. Murphy
- Bayesian Reasoning and Machine Learning, D. Barber

What fields make up Machine Learning?

- Computer Science?
- Statistics?
- Mathematics?
- Physics?
- Computational Neuroscience?
- Computational Psychology?

What fields make up Machine Learning?

CS342: Machine Learning 2015-2016 — Term 2

Some AI/ML History

Human vs Machine Learning

- Supervisory role?
- Unsupervised [grouping, similarity, patterns]
- Internal reward system [dopamine]
- Neural structure [Hebbian learning]
- Classical Conditioning (Pavlov's dog)

What is the common basis/goal?

- Study of systems and algorithms that "learn from data"
- A computer program is said to learn from experience E (data) with respect to some class of tasks T and performance measure P, if its performance at tasks in [Tom Mitchell, 1998]

Learning Process T: Find Sarah

P: % Correct recognitions

Lets try

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E

You are given an algorithm that watches which phone-calls you mark as "noise complaints" or not and learns how to automatically mark calls. What is T?

- A. Watching you mark calls
- B. Classifying phone-calls as noise complaints or not
- C. Number of calls correctly classified as noise complaints or not
- D. This is not a ML problem

Examples of deployed ML systems

Recommendation Systems

Recognition Systems

Pattern Analysis

and many more.. pretty much whenever we want to learn from data

Main subfields of Machine Learning

What are these symbols??

$$\mathcal{D} = \{\mathbf{X}, \mathbf{t}\}$$

Here is a dataset D

Student reg. no.	ML grade	P. Skills grade	final degree
1	92%	84%	78%
2	54%	100%	62%
3	58%	50%	52%
4	85%	96%	72%
5	67%	98%	68%
6	75%	86%	72%
7	52%	100%	61%
8	82%	90%	85%

Choose a task T. What is the data/experience E you will use to predict T? Why? What is the input **X** and what is the target **t**? their dimensions?

Supervised learning intro: when t is continuous

From Rogers & Girolami book

Predict electricity consumption given number of people

Predict winning men's 100m time given the year

Data and terminology (hell!)

INPUTS

Attributes, Dimensions, Independent variables, Predictor variables, Covariates, Features

 D

 $\mathbf{X} \in \mathbb{R}^{N imes}$

Observations

Samples
Objects
Instances

Ν

OUTPUTS

Target, Response, Label Dependent variable

1

CS342: Machine Learning 2015-2016 — Term 2

University of Warwick : DCS

Convention of notation

- x is a scalar = small letter and regular font
- x is a vector = small letter and **bold** font
- X is a matrix = large letter and **bold** font
- \mathbf{x}_n is a row vector of $\mathbf{X} = \text{small letter}$, index, and **bold** font

 $f(\mathbf{x}_n; \mathbf{w})$ implies function f is acting on \mathbf{x}_n with parameters \mathbf{w}

bold symbols indicate multiple dimensions

Supervised learning

$$D_{\text{training}} = \{\mathbf{X}, \mathbf{t}\} = \{\mathbf{x}_n, t_n\}_{n=1}^N$$

$$D_{\text{testing}} = \{\mathbf{X}_*\}$$

A supervised learning example: Regression

Regression: t is continuous

Hypothesis: The relationship between X and t is linear

$$\hat{t} = f(x; w_0, w_1) = w_0 + w_1 x$$

Which line is "better"?

Hypothesis Space: All lines in this 2-D space

What can we "tune"? What do we learn?

$$\hat{t} = f(x; w_0, w_1) = w_0 + w_1 x$$

Components of a (supervised) learning system

Learning as parameter (hypothesis) inference

What should X be for our program to have a chance of recognising Sarah? this is a focus area of the Computer Vision field...

Some questions you should be already asking

- What is the appropriate task T we should be addressing?
- How do I choose the input data X and how do I encode it?
- What hypothesis space or function f(x;w) should I fit?
- How do I choose the model complexity / hypothesis space?
- What should be my performance metric?
- How much training data is needed?
- What do I do if training data is too small/big? ("big data")
- What prior knowledge can I exploit?

Next lecture we dive in some of these questions within a linear regression setting (R&G Ch1)