

Actuators

Lab 5.
DC drive PWM converters

Asc. Prof. Nikolai Poliakov

Asc. Prof. Sergei Lovlin

Asc. Prof. Dmitry Lukichev

Efficiency analysis of DC drive with PWM converter

https://clck.ru/34SRNH

Deadline is the 9th of April (Beijing 23:59 GMT+8)

09/04/2024

Lab 3. Research on DC drive PWM converters

Student name:	 Date of submission
HDU ID	Student ITMO ID

Part 1. Evaluate missing parameters

Open Actuators Lab3 PWM R202 .slx model and Actuators Lab3 R202 .mlx **Drive parameters**

-	
$U_{s_rated} =$	- Rated source voltage, \underline{V} ;
$n_{rated} =$	- Rated rotating speed, rpm;
$f_{sw}=$	- PWM frequency, Hz;
$R_a =$	- Resistance of DC machine winding, Ω ;
$L_a=$	- Armature inductance, H;
$J_{\mathcal{S}}=$	- Moment of inertia, $kg \cdot m^2$;
$I_{a_rated} =$	- Anchor rated current of DC machine, A;
$k_{lim} = \frac{T_{e_max}}{T} =$	- Maximum current limit, A.

$$I_{a_rated} = - \text{Anchor rated current of DC machine, } \underline{A};$$

$$k_{lim} = \frac{T_{e_max}}{T_{e_rated}} = - \text{Maximum current limit, A.}$$

$$Evaluations:$$

$$P = U_{s_rated} \cdot I_{a_rated} = - \text{Power, } \underline{W};$$

$$I_{a_sc} = \frac{U_{s_rated}}{R_a} = - \text{Short circuit current, A:}$$

$$w_{m_rated} = \frac{2 \cdot \pi \cdot n_{rated}}{60} = - \text{Rated rotating speed, rad/s:}$$

$$k_e = \frac{(U_{s_rated} - R_{a_l} \cdot I_{a_rated})}{w_{m_rated}} = - \text{EMF constant, V*s/rad:}$$

$$k_m = k_e - \text{Electromechanical constant, N · m /A:}$$

$$T_{e_rated} = k_m \cdot I_{a_rated} = - \text{Rated Torque of the DC machine, N · m:}$$

$$I_{lim} = k_{lim} \cdot I_{a_rated} = - \text{Maximum torque, N · m:}$$

$$I_{lim} = k_{lim} \cdot I_{a_rated} = - \text{Maximum current, N · m:}$$

$$T_{e_st} = k_m \cdot I_{a_sc} = - \text{Starting torque, N · m:}$$

$$K_{eff_rated} = \frac{w_{m_rated} \cdot T_{e_rated}}{p} \cdot 100\% = - \text{Rated efficiency, \%:}$$

$$T_e = \frac{L_a}{R_a} = - \text{Electromagnetic time constant, s:}$$

$$V_0 = \frac{U_{s_rated}}{p} = - \text{Idle speed, rad/s:}$$

- Idle speed, rad/s;

Step 1.

HDU ID XXXXXXXX. Lab 5. Research on DC drive PWM converters Please unsure yourself that XXXXXXXX is your HDU ID number Use the Actuators_Lab_5_R20XX.mlx to evaluate missing parameters.

Drive data should be used from your variant in

Actuators - Bachelor - Automation - Lab 5.xlsx

		Automa	tion (bac	helor 2021)						ſ	Orive paran	neters				Transistor switch parameters							
Semester 2, Year (2023/2024)						Source rated voltage	Rated rotating speed,	PWM frequency	Resistance of DC machine winding,	Armature inductance,	Moment of inertia,	Anchor rated current of DC machine,	Duty cycles	Maximum current limit coefficient	Forward voltage	Forward voltage Vat current I_a=I_lim	Snubber capacitance	Snubberresistance	Internal (antiparallel) diode forward voltage Vr	Internal (antiparallet) diode forward voltage Vrat current I_lim,	switch-on (rise) time of the transistor	switch-off (fall) time of the transistor	
Course name Actuators				[V]	[rpm]	[Hz]	[Ω]	[mH]	[kg*m²]	[A]			[V]	[V]	[nF]	[kΩ]	[V]	[V]	[µs]	[µs]			
	No. In ITMO	Surname, First name in Russian	No. In HDU	Surname, First name in English	Surname, First name in Chinese	Gender	U _{s_rated}	n _{rated}	f _{sw}	R_{σ}	L_a	Js	I a_rated	gamma	k _{i_lim}	V_{f_{1} ut	V _{f_ve_la}	C _s	R _s	V _{f_rd}	V _{f_rd_la}	t.	t.

= 220;	<pre>% - Rated source voltage, V;</pre>
= 750;	<pre>% - Rated rotating speed, rpm;</pre>
= 5000;	% - PWM frequency, Hz;
= 27.20;	% - ResistanCe of DC machine winding (armature), $Ω$;
= 0.128;	<pre>% - Anchor inductance, H, %tau_e=La/Ra;</pre>
= 0.004;	<pre>% - Moment of inertia, kg*m^2;</pre>
= 170/220;	% - Anchor rated current of DC machine, A;
= 3.5;	% - Maximum current limit coefficient
	= 750; = 5000; = 27.20; = 0.128; = 0.004; = 170/220;

Part 2. Evaluate parameters of the system with PWM

Transistor switched on circuit parameters

$V_{f_{vt}} =$	0	- IGBT Forward voltage V_f at current $I_a \approx 0$, V (For MOSFET
		may be considered equal to 0);
$V_{f_{vt_{Ia}}} =$	1.3	- Forward voltage V_f at current $I_a = I_{lim} = I_{a_rated} \cdot k_{lim}$, \underline{V} ;
$R_{on_{vt}} =$	$\frac{(V_{f_{vt_{Ia}}} - V_{f_{vt}})}{I} =$	- MOSFET / IGBT resistance R_{on} , Ω ;

Snubber circuit parameters

C_S	=	330e-9	- Snubber capacitance, <u>F</u> ;
R_S	=	1e6	- Snubber resistance, Ω ;

Reverse (antiparallel) diode parameters									
$V_{frd} =$	0.65	- Internal (antiparallel) diode forward voltage V_f at current							
		$I_a \approx 0, \underline{V};$							
$V_{frd_{Ia}} =$	0.75	- Internal (antiparallel) diode forward voltage at current							
Tu		$I_{lim}, \underline{\mathbf{V}};$							
$R_{on_{rd}} =$	$\frac{V_{f_{rd_{Ia}}}-V_{f_{rd}}}{I_{rd}}=$	- Internal (antiparallel) diode resistance R_d , Ω :							

Figure 1 – DC drive system under test

Step 2.

Change the transistor parameters in the section to the new ones from your variant data

Transistor parameters

Transistor switched on circuit parameters

Vf_vt = 0; Vf_vt_Ia = 1.3; R_on_vt = (Vf_	; % - Forwa	rd voltage Vf (V) (For MOSFET may be considered equal to 0) rd voltage Vf at rated current I_lim (V) T / IGBT resistance R_on (Ω)
---	-------------	--

Snubber circuit parameters

Cs_vt	= 330e-9;	$%$ - Snubber resistance Rs (Ω)
Rs_vt	= 1e6;	<pre>% - Snubber capacitance Cs (F)</pre>

Reverse (antiparallel) diode parameters

Vf_rd	=	0.65;	% -	Internal	(antiparallel)	diode	forward v	voltage	Vf(V)
Vf_rd_Ia		0.75;	% -	Internal	(antiparallel)	diode	forward v	voltage	at rated current I_lim (V)
R_on_rd	=	(Vf_rd_Ia-Vf_rd)/I_lim;	% -	Internal	(antiparallel)	diode	resistan	ce Rd(Ω))


```
syms T e
for i
             = i*1/n;
   gamma
                                                           % - set up duty cycle
   sim Actuators_Lab3_PWM_R2022b.slx
                                                           % - this file should be in the same folder with Lab3.mlx
             = (gamma)*(U_s_rated)/k_e;
              = w_0-(T_e*(R_a))/(k_e*k_m);
   w_0 = (gamma)*(U_s-2*Vf_vt)/k_e;
   T_{load_var} = 0 : 0.1 : T_e_st;
   w_idle = double(subs(w_ref, T_e, T_Load_var));
   w_idle_conv = double(subs(w_ref_conv, T_e, T_Load_var));
   plot(T_Load_var/T_e_rated, w_idle/w_m_rated, 'Color', 'g', 'LineWidth', 2)
   plot(T_Load_var/T_e_rated,w_idle_conv/w_m_rated,'Color','b','LineWidth',2)
   plot(Current_speed.signals(3).values*k_m/T_e_rated, Current_speed.signals(2).values/w_m_rated ,'Color','r','LineWidth',0.5);
   hold on;
   end
if f_sw==f_sw_opt_s_sw
   SW_type='Symmetric'
elseif f_sw==f_sw_opt_n_sw
   SW_type='Asymmetric';
xlim([0 T_e_st/T_e_rated])
ylim([0 1.15])
xlabel('T_e / T_e_ _r_a_t_e_d')
ylabel('\omega / \omega_m_ r_a_t_e_d')
legend('DC Drive theoretical characteristic','DC Drive with power converter','DC Drive with PWM simulation', 'Location', 'northoutside')
text(T_e_st/T_e_rated-4, 0.7, { strcat('U_s__r_a_t_e_d=',
                                                              num2str(U_s_rated,
                              strcat('U_s=',
                                                                                     '%3.2f'), ' [V] ' );...
                                                              num2str(U_s,
                                                               num2str(f_sw,
                                                                                      '%3.2f'), ' [Hz]' );...
                              strcat('Switching type: ',
                                                              SW type
                              strcat('f_s_w_ _o_p_t_ _s_ _s_w=', num2str(f_sw_opt_s_sw, '%3.2f'),
                                       f_s_w_ _o_p_t_ _n_ _s_w=', num2str(f_sw_opt_n_sw, '%3.2f'),
                                                                                     '%3.1f'), '[A] ');...
                              strcat('I_a_ _r_a_t_e_d=',
                                                              num2str(I_a_rated,
                                                              num2str(T_e_rated,
                                                                                    '%3.1f'), ' [N*m]');...
                              strcat('T_e_ _r_a_t_e_d=',
                              strcat('k l i m=',
                                                              num2str(k lim,
                                                                                     '%3.1f'),
                                                                                                   ')},...
      'BackgroundColor', [1 1 1])
% hold off;
```

Step 3

Pay attention to this settings. To obtain a group of characteristics it is recommended to select appropriate switching method. In this case you will get results as 4 characteristics, one of them will be for duty cycle gamma= 0.5

But after this experiment it recommended to setup gamma = gamma_all(n) to perform correct efficiency analysis

Step 3

Step 4


```
% figure
% syms T_e
                     = 1 : 1 : n
                                                                 % - set up duty cycle
                     = gamma_all(i)
     gamma
      sim (ModelName)
                                                                 % - this file should be in the same folder with Lab3.mlx
                     = (gamma)*(U_s_rated)/k_e;
      w 0
      w_ref
                     = w_0-(T_e*(R_a))/(k_e*k_m);
                     = (gamma)*(U_s-2*Vf_vt)/k_e;
      w_0_conv
                     = w_0_conv-(T_e*(R_a+2*R_on_vt))/(k_e*k_m);
                     = 0 : 0.1 : T_e_st;
      T_Load_var
     w_idle
                     = double(subs(w_ref, T_e, T_Load_var));
      w_idle_conv = double(subs(w_ref_conv, T_e, T_Load_var));
      plot(T Load var/T e rated, w idle/w m rated, 'Color', 'g', 'LineWidth',2)
      plot(T_Load_var/T_e_rated,w_idle_conv/w_m_rated,'Color','b','LineWidth',2)
      plot(Current_speed.signals(3).values*k_m/T_e_rated, Current_speed.signals(2).values/w_m_rated ,'Color','r','LineWidth',0.5);
% end
% R_a
                 = R_a-2*R_on_vt
                                                        % - Full active resistance of armature cirquit (Ohm)
% grid on;
% if f_sw==f_sw_opt_s_sw
% SW type='Symmetric';
% elseif f_sw==f_sw_opt_n_sw
% SW_type='Asymmetric';
% else
% SW_type='Not set'
% xlim([0 T_e_st/T_e_rated])
% ylim([0 1.15])
% xlabel('T_e / T_e_ _r_a_t_e_d')
% ylabel('\omega / \omega_m_ _r_a_t_e_d')
% legend('DC Drive theoretical characteristic','DC Drive with power converter','DC Drive with PWM simulation', 'Location', 'northoutside')
% v=axis;
                                                                   num2str(U_s_rated,
                                                                                          '%3.2f'), ' [V] ' );...
% text(T_e_st/T_e_rated-4, 0.7, { strcat('U_s_ _r_a_t_e_d=',
                                  strcat('U_s=',
                                                                   num2str(U_s,
                                                                                           '%3.2f'), '[V]');...
                                 strcat('f_s_w=',
                                                                                          '%3.2f'), ' [Hz]' );...
                                                                   num2str(f_sw,
                                  strcat('Switching type: ',
                                                                   SW_type
                                  strcat('f_s_w__o_p_t__s__s_w=', num2str(f_sw_opt_s_sw, '%3.2f'), ' [Hz]' );...
                                  \label{eq:strcat} strcat('f\_s\_w\_\_o\_p\_t\_\_n\_\_s\_w=', num2str(f\_sw\_opt\_n\_sw,
                                                                                          '%3.2f'), ' [Hz]' );...
                                  strcat('I_a_ _r_a_t_e_d=',
                                                                   num2str(I_a_rated,
                                                                                          '%3.1f'), '[A] ');...
                                  strcat('T_e_ _r_a_t_e_d=',
                                                                   num2str(T_e_rated,
                                                                                          '%3.1f'), ' [N*m]');...
                                  strcat('k_l_i_m=',
                                                                   num2str(k_i_lim,
                                                                                            '%3.1f'), '
        'BackgroundColor', [1 1 1])
```

Pay attention to this settings. You may comment lines 64-107 and run selection 108-113

Do not forget to switch T_load to constant block

Fulfill the template and upload it: https://clck.ru/34SRNH

1st Deadline is the 9th of April (Beijing 23:59 GMT+8) 09/04/2025

