

Mark Scheme (Results) Summer 2009

GCE

GCE Mathematics (6679/01)

June 2009 6679 Mechanics M3 Mark Scheme

Question Number		Scheme		Marks	
Q1	(a)	6	Resolving vertically: $2T \cos \theta = W$		M1A2,1,0
		4.5 7.5 W	Hooke's Law:	$T = \frac{80 \times 3.5}{4}$ $W = 84$ N	M1A1 A1
	(b)	EPE = $2 \times \frac{80 \times 3.5^2}{2 \times 4}$, = 245 (or awrt 245) (alternative $\frac{80 \times 7^2}{16}$ = 245)			M1A1ft,A1
00	(-)				D1/matia
Q2	(a)	Object Mass c of m above base Cone m $2h+3h$ Base $3m$ h Marker $4m$ d			B1(ratio masses) B1(distances)
		$m \times 5h + 3m \times h = 4m \times d$			M1A1ft
		d = 2h			A1
	(b)	2h	$\frac{r}{d} = \frac{1}{12}$		M1A1ft
			6r = h		A1
					[8]

Questio Numbe	Scheme	
Q3 (a	$R \times \frac{x}{r} = mx \times \frac{3g}{2r}$ $R = \frac{3mg}{2}$	M1 A1 M1 A1 M1 A1 M1 A1 M1 [8]
Q4 (a	Volume = $\int_{\frac{1}{4}}^{1} \pi y^{2} dx = \int_{\frac{1}{4}}^{1} \pi \frac{1}{x^{4}} dx$ = $\left[\pi \times \frac{-1}{3x^{3}}\right]_{\frac{1}{4}}^{1}$ = $\pi \left(\frac{-1}{3} + \frac{64}{3}\right) = 21\pi$	M1A1 A1ft A1 M1A1 A1ft A1ft A1 F1 F1 F9]

Question Number	Scheme	
Q5 (a)	Energy: $(\frac{1}{2}mu^{2} +)mgl(\cos\theta - \frac{1}{4}) = \frac{1}{2}mv^{2}$ Resolving: $T - mg\cos\theta = \frac{mv^{2}}{l}$ Eliminate v^{2} : $T = mg\cos\theta + \frac{1}{l}(2mgl(\cos\theta - \frac{1}{4}))$ $T = 3mg\cos\theta - \frac{mg}{2}$	M1A1 M1A1 M1
(b)	$\theta = 60^{\circ} \Rightarrow mv^{2} = 2mgl(\frac{1}{2} - \frac{1}{4})$ $\Rightarrow v^{2} = \frac{gl}{2}$ vertical motion under gravity: 16 $0 = (v \cos 30^{\circ})^{2} - 2gs$ $0 = \frac{gl}{2} \times \frac{3}{4} - 2gs \Rightarrow s = \frac{3l}{16}$	M1 M1 A1
Alternative for end of (b) using energy	Distance below $A = \frac{l}{2} - \frac{3l}{16} = \frac{5l}{16}$ $\frac{1}{2}mv^2 - mgl\cos 60 = \frac{1}{2}m(v\cos 60)^2 - mgd$ $\frac{gl}{4} - \frac{gl}{2} = \frac{gl}{4} \times \frac{1}{4} - gd$ $d = \frac{1 - 4 + 8}{16}l = \frac{5l}{16}$	M1A1 [11] M1A1 M1 A1

Questio Numbe		Scheme	Marks
Q6 ((a)	At max v, driving force = resistance $Driving force = \frac{80}{v}$	B1
		$\Rightarrow \frac{80}{20} = k \times 20^2 \Rightarrow k = \frac{1}{100}$ $F = \text{ma} \Rightarrow 100a = \frac{80}{v} - kv^2 (= \frac{8000 - v^3}{100v})$	M1A1 M1
((b)	$v = \frac{100v}{1000}$ $\Rightarrow v \frac{dv}{dx} = \frac{8000 - v^3}{10000v}$ $\int_4^8 \frac{10000v^2}{8000 - v^3} dv = \int_0^D 1 dx$	A1
		$\int_{4}^{4} \frac{10000 - v^{3}}{8000 - v^{3}} dv = \int_{0}^{8} 1 dx$ $D = \left[-\frac{10000}{3} \ln \left 8000 - v^{3} \right \right]_{4}^{8}$	M1A1 A1
		$= \left(-\frac{10000}{3} \ln \frac{7488}{7936}\right) = 193.7 \approx 194 \text{m} \text{(accept 190)}$	M1 A1
	(c)	$\frac{dv}{dt} = \frac{8000 - v^3}{10000v} \Rightarrow \int_0^T 1 dt = \int_4^8 \frac{10000v}{8000 - v^3} dv$ $\Rightarrow T \approx \frac{1}{2} \times 2 \times 10000 \times \left\{ \frac{4}{7936} + \frac{2 \times 6}{7784} + \frac{8}{7488} \right\}$	M1A1
		2 [7936 7784 7488] ⇒ T (= 31.1409) ≈ 31	A1 [14]

Question Number	Scheme	Marks
Q7 (a)	m od=16 a=2 mod=12 a=1 A 5m 5m d 5-d	
	Hooke's law: Equilibrium $\Rightarrow \frac{16(d-2)}{2} = \frac{12(4-d)}{1}$ $\Rightarrow d = 3.2$ so extensions are 1.2m and 0.8m.	M1A1A1
(b)	If the particle is displaced distance x towards \mathbf{B} then $-m\ddot{x} = \frac{16(1.2+x)}{2} - \frac{12(0.8-x)}{1} (=20x)$ $\Rightarrow \ddot{x} = -40x \text{ or } \ddot{x} = -\frac{20}{m} (\Rightarrow \text{SHM})$	M1A1ft A1ft
(c)	$T = \frac{2\pi}{\sqrt{40}}$ $a = \frac{\sqrt{10}}{\sqrt{10}}$	B1ft B1ft
	their ω $x = a \sin \omega t$ their a , their ω $\frac{1}{4} = \frac{1}{2} \sin \sqrt{40}t$	M1 A1
	$\sqrt{40}t = \frac{\pi}{6} (\Rightarrow t = \frac{\pi}{6\sqrt{40}})$ Proportion $\frac{4t}{T} = \frac{4\pi}{6\sqrt{40}} \times \frac{\sqrt{40}}{2\pi} = \frac{1}{3}$	M1 M1A1
	1 0V4U 271 3	[16]