Theorems and Definitions

Kyle Champley

Abstract

The following theorems and definitions were taken from lectures and textbooks on Real Analysis¹, Linear Algebra², Complex Analysis³, Topology⁴, and Probability⁵

¹Lecture by Bob Higdon; Textbook by Royden

²Lecture by Tom Schmidt; Textbook by Friedberg, Insel, and Spence

³Lecture by Bent Petersen; Textbook by Bak and Newman

⁴Lecture by Bill Bogley; Textbook by Munkres

⁵Lecture by Ossiander; Textbook by Billingsley

Contents

 1.1 Set Theory and B 1.2 Lebesgue Measure 1.3 Lebesgue Integrat 1.4 Differentiation of 1.5 L^p Spaces 	the Integral			 			 					$\frac{3}{4}$
 1.3 Lebesgue Integrat 1.4 Differentiation of 1.5 L^p Spaces 	the Integral											4
1.4 Differentiation of 1.5 L^p Spaces	the Integral											- 1
1.5 L ^{p} Spaces					•		 					6
*				 			 					7
1 C D l C				 			 					8
1.6 Banach Spaces .				 			 					8
1.7 Metric Spaces				 			 					9
1.8 Measure and Inte	gration			 			 					12
1.9 Hilbert Spaces .				 			 					13
2 Linear Algebra												14
2.1 Vector Spaces				 			 					14
2.2 Linear Transform	ations and M	Matrice	s .	 			 					14
2.3 Diagonalization .				 			 					16
2.4 Inner Product Sp.	aces			 			 					17
2.5 Canonical Forms				 			 					20
3 Complex Analysis												21
3.1 Topology and Bas	sics			 			 					21
3.2 Line Integrals												22
3.3 Properties of Ana												
3.4 Singularities												23
3.5 Residue Theorem												24
3.6 Conformal Mappi												25
3.7 Other Useful Form	_											26
4 Topology												27
4.1 Set Theory				 			 					27
4.2 Topological Space												27
4.3 Topological Prope	erties			 			 					28
4.4 Quotient Spaces				 			 					29
4.5 Product Topology	7			 			 					30
4.6 Compactness												
5 Probability												33
5.1 Basic Measure Th	neory			 			 					33
5.2 Independence	-											34
5.3 Random Variable												34
5.4 Convergence in P												36
5.5 Weak and Distrib												38
5.6 Tightness and We												39
5.7 Characteristic Fu												40
5.8 Central Limit The												41
5.9 Infinitely Divisible												42

1 Real Analysis

1.1 Set Theory and Basics

Completeness Axiom: Every nonempty set S of real numbers which has an upper bound has a least upper bound (but not necessarily in S).

Axiom of Archimedes: Given any real number x, there is an integer such that x < n.

Algebra: A collection of sets \mathcal{A} of subsets of a space X is called an algebra of sets if (i) $A \cup B \in \mathcal{A}$, whenever $A, B \in \mathcal{A}$ and (ii) $A^c \in \mathcal{A}$, whenever $A \in \mathcal{A}$.

 σ -algebra: An algebra \mathcal{A} is a σ -algebra if every union of a countable collection of sets in \mathcal{A} is again in \mathcal{A} . Note that from De Morgan's laws countable intersections of elements in \mathcal{A} are also in \mathcal{A} .

Limits: L is a limit of $\langle x_n \rangle$ iff $\forall \varepsilon > 0 \ \exists N \in \mathbb{N}$ such that $|x_n - L| < \varepsilon \ \forall n \geq N$.

Cauchy Sequence: Given $\varepsilon > 0 \ \exists N \in \mathbb{N}$ such that $\forall n \geq N$ and $\forall m \geq N \ |x_n - x_m| < \varepsilon$.

Cauchy Criterion: A sequence of real numbers converges iff it is a Cauchy Sequence.

Supremum (least upper bound): The supremum of a set S is $\sup_{x \in S} = \sup\{x : x \in S\}$.

Infinum (greatest lower bound): The infinum of a set S is $\inf_{x \in S} = \inf\{x : x \in S\}$. Note that $\inf_{x \in S} \{x\} = -\sup_{x \in S} \{-x\}$.

Limit Superior: $\overline{\lim} x_n = \lim_{n \to \infty} \sup\{x_k : k \ge n\} = \inf_n \sup_{k \ge n} x_k$.

Limit Inferior: $\lim x_n = \lim_{n \to \infty} \inf\{x_k : k \ge n\} = \sup_n \inf_{k \ge n} x_k$.

Open Set: A set O of real numbers is open iff $\forall x \in O \ \exists \delta > 0$ such that $\forall y$ with $|x - y| < \delta$ belongs to O.

Point of Closure: A real number x is a point of closure of a set E if $\forall \delta > 0 \ \exists y \in E$ such that $|x - y| < \delta$. The set of points of closure of E is denoted \overline{E} and $E \subset \overline{E}$. If $E = \overline{E}$, then E is a closed set.

Open Covering: A collection of open sets C is an open covering of a set F if $F \subset \cup \{O : O \in C \text{ and } O \text{ is an open set}\}.$

Compact Set: A set K is compact iff every open covering of K has a finite subcovering. Also, $K \subset \mathbb{R}^n$ is compact iff K is closed and bounded.

Continuity: Suppose $E \subset \mathbb{R}$ and $f: E \to \mathbb{R}$. Then f is continuous at a point $x \in E$ iff $\forall \varepsilon > 0$ $\exists \delta > 0$ such that $|f(x) - f(y)| < \varepsilon \ \forall y \in E$ such that $|x - y| < \delta$.

Uniform Continuity: Suppose $E \subset \mathbb{R}$ and $f : E \to \mathbb{R}$. Then f is uniformly continuous iff $\forall \varepsilon > 0 \ \exists \delta > 0$ such that $\forall x, y \in E$ with $|x - y| < \delta$ implies that $|f(x) - f(y)| < \varepsilon$.

Pointwise Convergence: The sequence $\langle f_n(x) \rangle$ converges pointwise to f(x) on E iff $\forall x \in E$ and $\forall \varepsilon > 0 \ \exists N \in \mathbb{N}$ such that $|f_n(x) - f(x)| < \varepsilon \ \forall n \geq N$.

Uniform Convergence: The sequence $< f_n(x) >$ converges uniformly to f(x) on E iff $\forall \varepsilon > 0$ $\exists N \in \mathbb{N}$ such that $|f_n(x) - f(x)| < \varepsilon \ \forall n \ge N$ and $\forall x \in E$.

Borel Set: The collection \mathcal{B} of Borel sets is the smallest σ -algebra which contains all the open sets.

Proposition 18: Let $f : \mathbb{R} \to \mathbb{R}$. Then f is continuous iff for each open set $O \subset \mathbb{R}$, $f^{-1}[O]$ is an open set.

Proposition 20: If a real-valued function f is defined and continuous on a compact set, F, of real numbers, then it is uniformly continuous on F.

Theorem: Every open set of real numbers is the union of a countable collection of disjoint of open intervals.

1.2 Lebesgue Measure

Measurability Axioms:

- 1) For an interval, I, mI = l(I).
- 2) If $\langle E_n \rangle$ is a sequence of disjoint sets (for which m is defined), then $m(\cup E_n) = \sum E_n$.
- 3) The measure is translation invariant, that is, m(E + y) = m(E).

Outer Measure: Let $\{I_n\}$ be a countable collection of open intervals such that $A \subset \cup I_n$. Then the outer measure of A, denoted m^*A is: $m^*A = \inf_{A \subset \cup I_n} \sum l(I_n)$.

Properties of Outer Measure:

- 1) $m^*\emptyset = 0$
- 2) If $A \subset B$, then $m^*A \leq m^*B$.
- 3) If $\{A_n\}$ is a countable collection of sets of real numbers, then $m^*(\cup A_n) \leq \sum m^* A_n$.
- 4) If A is countable, then $m^*A = 0$.

Measurable: A set E is said to be measurable if for each set A we have $m^*A = m^*(A \cap E) + m^*(A \cap E^c)$. Note that we always have $m^*A \leq m^*(A \cap E) + m^*(A \cap E^c)$.

Properties of Measurable Sets:

- 1) If E_1 and E_2 are measurable, then so is $E_1 \cup E_2$ and E_i^c .
- 2) The family \mathcal{M} of measurable sets is a σ -algebra.
- 3) The interval (a, ∞) is measurable.
- 4) Every Borel set is measurable. In particular each open set and each closed set is measurable.
- 5) Let $\langle E_i \rangle$ be a sequence of measurable sets. Then $m(\cup E_i) \leq \sum mE_i$. If each E_i are disjoint, then $m(\cup E_i) = \sum m(E_i)$.
- 6) If a set E is measurable, then $m^*E = mE$.

Theorem: Suppose $E \subset F$ and E, F are measurable sets with finite measure. Then m(F - E) = mF - mE.

Proposition 14: Let $\langle E_n \rangle$ be an infinite decreasing sequence of measurable sets, that is, a sequence with $E_{n+1} \subset E_n \ \forall n$. Let $mE_1 < \infty$. Then $m(\cap E_i) = \lim_{n \to \infty} mE_n$.

Proposition 15: Let E be a given set, then the following are equivalent:

- 1) E is measurable.
- 2) Given $\varepsilon > 0$, there is an open set $O \supset E$ with $m^*(O E) < \varepsilon$.
- 3) Given $\varepsilon > 0$, there is a closed set $F \subset E$ with $m^*(E F) < \varepsilon$.
- 4) There is a G in G_{δ} with $E \subset G$ and $m^*(G E) = 0$.
- 5) There is a F is F_{σ} with $F \subset E$ and $m^*(E F) = 0$.
- 6) If $m^*E < \infty$, then the above are equivalent to: Given $\varepsilon > 0$, \exists a finite union U of open intervals such that $m^*(U\Delta E) < \varepsilon$.

Proposition 18: Let f be an extended real-valued function whose domain is measurable. Then the following a equivalent.

- 1) $\forall \alpha \in \mathbb{R}, \{x : f(x) > \alpha\}$ is measurable.
- 2) $\forall \alpha \in \mathbb{R}, \{x : f(x) \geq \alpha\}$ is measurable.
- 3) $\forall \alpha \in \mathbb{R}, \{x : f(x) < \alpha\}$ is measurable.
- 4) $\forall \alpha \in \mathbb{R}, \{x : f(x) \leq \alpha\}$ is measurable.

If any of the above hold, then f is said to be measurable.

Proposition 19: Let $c \in \mathbb{R}$ and f and g be two measurable real-valued functions defined on the same domain. Then f + c, cf, f + g, g - f, and fg are also measurable.

Almost Everywhere: A property is said to hold almost everywhere, denoted a.e., if the set of points where it fails to hold is a set of measure zero.

Characteristic Function: If A is any set, we define the characteristic function χ_A of the set A to be the function given by $\chi_A(x) = \begin{cases} 1, & \text{if } x \in A \\ 0, & \text{if } x \notin A. \end{cases}$

Simple Function: A real-valued function φ , is called a simple if it is measurable and assumes only a finite number of values $\{\alpha_1, \ldots, \alpha_n\}$ i.e. $\varphi = \sum \alpha_i \chi_{A_i}$, where $A_i = \{x : \varphi(x) = \alpha_i\}$.

Theorem 20: Let $< f_n >$ be a sequence of measurable functions. Then the functions $\sup_n f_n$, $\inf_n f_n$, $\lim_n f_n$, and $\overline{\lim} f_n$ are all measurable.

Proposition 21: If f is a measurable function and f = g a.e., then g is measurable.

Proposition 22: Let f be a measurable function on [a,b] and $m\{x: f(x) = \pm \infty\} = 0$. Then given $\varepsilon > 0$ we can find a step function φ and a continuous function h such that $|f - \varphi| < \varepsilon$ and $|f - h| < \varepsilon$ expect on a set of measure less than ε i.e. $m\{x: |f - h| \ge \varepsilon\} < \varepsilon$.

Egoroff's Theorem: If $\langle f_n \rangle$ is a sequence of measurable functions such that $f_n \to f$ a.e. on a measurable set E of finite measure, then $\forall \delta > 0 \ \exists A \subset E$ with $mA < \delta$ such that f_n converges uniformly to f on E - A.

1.3 Lebesgue Integration

Riemann Integral: $R \int_a^b f(x) dx = \sup \sum_{i=1}^n (\xi_i - \xi_{i-1}) m_i = \inf \sum_{i=1}^n (\xi_i - \xi_{i-1}) M_i$, where $m_i = \inf_{\xi_{i-1} < x < \xi_i} f(x)$ and $M_i = \sup_{\xi_{i-1} < x < \xi_i} f(x)$

Proposition 3: Let f be defined and bounded on a measurable set E and $mE < \infty$. Let ψ and φ be simple functions. Then $\inf_{f \le \psi} \int_E \psi(x) \, dx = \sup_{f \ge \varphi} \int_E \varphi(x) \, dx$ iff f is measurable.

Lebesgue Integral(1): If f is a bounded measurable function defined on a measurable set E with $mE < \infty$, we define the Lebesgue integral of f over E by $\int_E f = \inf \int_E \psi$, where ψ is simple and $\psi \geq f$.

Proposition 4: Let f be bounded and defined on [a, b]. If f is Riemann integrable on [a, b], then it is measurable and $R \int_a^b f = \int_a^b f$.

Proposition 5: If f and g are bounded, measurable, and defined on a measurable set E and $mE < \infty$, then

- 1) $\int_E af + bg = a \int_E f + b \int_E g$
- 2) If f = g a.e., then $\int_E f = \int_E g$.
- 3) If $f \leq g$ a.e., then $\int_E f \leq \int_E g$.
- 4) If $A \leq f(x) \leq B$, then $AmE \leq \int_E f \leq BmE$.
- 5) If $A \cap B = \emptyset$ and $mA < \infty$, $mB < \infty$, then $\int_{A \cup B} f = \int_A f + \int_B f$.

Bounded Convergence Theorem: Let $\langle f_n \rangle$ be a sequence of measurable functions defined on E where $mE < \infty$ and suppose $\exists M$ such that $|f_n(x)| \leq M \ \forall n, \ \forall x \in E$. If $\lim f_n(x) = f(x) \ \forall x \in E$, then $\int_E f = \lim \int_E f_n$.

Proposition 7: A bounded function f on [a, b] is Riemann integrable iff the set of points at which f is discontinuous has measure zero.

Lebesgue Integral(2): If $f \ge 0$ and is defined on a measurable set E, we define $\int_E f = \sup_{h \le f} \int_E h$, where h is a bounded measurable function such that $m\{x : h(x) \ne 0\} < \infty$.

Proposition 8: If f and g are nonnegative, measurable functions and a,b are nonnegative constants, then (1) $\int_E af + bg = a \int_E f + b \int_E g$ and (2) If $f \leq g$, then $\int_E f \leq \int_E g$.

Fatou's Lemma: If $f_n > 1$ is a sequence of nonnegative measurable functions and $\lim_{n \to \infty} f_n = 1$ is a sequence of nonnegative measurable functions and $\lim_{n \to \infty} f_n = 1$ is a sequence of nonnegative measurable functions and $\lim_{n \to \infty} f_n = 1$.

Monotone Convergence Theorem: Let $\langle f_n \rangle$ be a sequence of nonnegative measurable functions such that $\lim f_n(x) = f(x)$ and $f_n(x) \leq f(x)$ a.e., then $\int f = \lim \int f_n$.

Corollary 11: Let u_n be a sequence of nonnegative measurable functions, and let $f = \sum_{n=1}^{\infty} u_n$. Then $\int f = \sum_{n=1}^{\infty} \int u_n$.

Proposition 12: Let f be a nonnegative function and $\langle E_i \rangle$ be a disjoint sequence of measurable sets. Let $E = \bigcup E_i$. Then $\int_E f = \sum \int_{E_i} f$.

Integrable: A nonnegative measurable function f is called integrable over the measurable set

 $E \text{ if } \int_E f < \infty.$

Proposition 14: Let f be a nonnegative measurable function which is integrable over a set E. Then given $\varepsilon > 0 \; \exists \delta > 0$ such that for every set $A \subset E$ with $mA < \delta$ we have $\int_A f < \epsilon$.

Lebesgue Dominated Convergence Theorem: Let g be integrable over E and $f_n > be$ a measurable sequence such that $|f_n| \leq g$ and $f_n \to f$ a.e. on E. Then $\int_E f = \lim_{n \to \infty} f_n$.

Theorem 17: Let $\langle g_n \rangle$ be integrable functions that converge to an integrable function g. Let $\langle f_n \rangle$ be a measurable sequence such that $|f_n| \leq g_n$ and $f_n \to f$ a.e. If $\int g = \lim \int g_n$, then $\int f = \lim \int f_n$.

Convergence in Measure: A sequence $< f_n >$ of measurable functions is said to converge to f in measure if, given $\varepsilon > 0$, there is an N such that for all $n \geq N$ we have $m\{x : |f(x) - f_n(x)| \geq \varepsilon\} < \varepsilon$.

Proposition 18: Let $\langle f_n \rangle$ be a sequence of measurable functions that converges in measure to f. Then there is a subsequence $\langle f_{n_k} \rangle$ that converges to f almost everywhere.

Corollary 19: Let $\langle f_n \rangle$ be a sequence of measurable functions defined on a measurable set E of finite measure. Then $\langle f_n \rangle$ converges to f in measure iff every subsequence of $\langle f_n \rangle$ has in turn a subsequence that converges almost everywhere to f.

Proposition 20: Fatou's Lemma and the Monotone and Lebesgue Convergence Theorem's remain valid if 'convergence a.e.' is replaced by 'convergence in measure'.

1.4 Differentiation of the Integral

Theorem 3: Let f be an increasing function on [a, b]. Then f is differentiable a.e., the derivative f' is measurable, and $\int_a^b f' \leq f(b) - f(a)$.

Bounded Variation: Let f be a function defined on [a,b] and let $a=x_0 < x_1 < \cdots < x_k = b$ be any finite subdivision of [a,b]. Define $p=\sum_{i=1}^k [f(x_i)-f(x_{i-1})]^+$, $n=\sum_{i=1}^k [f(x_i)-f(x_{i-1})]^-$, and $t=n+p=\sum_{i=1}^k |f(x_i)-f(x_{i-1})|$. Also let $P=\sup p$, $N=\sup n$, and $T=\sup t$. If $T<\infty$, then we say that f is of bounded variation, denoted $f\in BV$.

Lemma 4: If $f \in BV([a,b])$, then $T_a^b = P_a^b + N_a^b$ and $f(b) - f(a) = P_a^b - N_a^b$.

Theorem 5: A function $f \in BV([a,b])$ iff f is the difference of two monotone increasing real-valued functions on [a,b].

Corollary 6: If $f \in BV([a,b])$, then f'(x) exists a.e. on [a,b].

Absolute Continuity: A function f is absolutely continuous if $\forall \varepsilon > 0 \ \exists \delta > 0$ such that $\sum_{i=1}^{n} |f(x_i') - f(x_i)| < \varepsilon$ for every finite collection $\{(x_i, x_i')\}$ of non-overlapping intervals with $\sum_{i=1}^{n} |x_i' - x_i| < \delta$.

Lemma 7: If f is integrable on [a,b], then F, defined by $F(x) = \int_a^x f(t) dt$ is a continuous function of bounded variation on [a,b].

Lemma 8: If f is integrable on [a, b] and $\int_a^x f(t) dt = 0 \ \forall x \in [a, b]$, then f(t) = 0 a.e. on [a, b].

Lemma 9: If f is bounded and measurable on [a, b] and $F(x) = \int_a^x f(t) dt + F(a)$, then F' = f a.e. on [a, b].

Theorem 10: Let f be an integrable function on [a,b], and suppose that $F(x) = \int_a^x f(t) dt + F(a)$. Then F' = f a.e. on [a,b].

Lemma 11: If f is absolutely continuous on [a, b], then $f \in BV([a, b])$.

Lemma 13: If f is absolutely continuous on [a, b] and f' = 0 a.e., then f is constant.

Theorem 14: A function F is an indefinite integral iff it is absolutely continuous.

Corollary 15: Every absolutely continuous function is the indefinite integral of its derivative.

Convex Function: Let $0 \le \lambda \le 1$. Then $\varphi(\lambda x + (1 - \lambda)y) \le \lambda \varphi(x) + (1 - \lambda)\varphi(y) \ \forall x, y \in (a, b)$ iff φ is convex.

Jensen's Inequality: Let φ be a convex function on \mathbb{R} and f be an integrable function on [0,1]. Then $\int \varphi(f(t)) dt \geq \varphi[\int f]$.

1.5 L^p Spaces

L^p Norms: Let E be a measurable set. Then $||f||_{L^p(E)} = (\int_E |f|^p)^{1/p}$, for $0 and <math>||f||_{L^{\infty}(E)} = \inf\{M : m\{t : f(t) > M\} = 0\}$.

Properties of L^p **Norms:** Let $0 . If <math>\alpha \in \mathbb{R}$, then $||\alpha f|| = |\alpha| \cdot ||f||$, $||f|| \ge 0$, and ||f|| = 0 iff f = 0 a.e.

Minkowski Inequality: If $f, g \in L^p$ for $1 \le p \le \infty$, then $||f + g|| \le ||f|| + ||g||$.

Holder Inequality: Let $0 \le p, q$, $\frac{1}{p} + \frac{1}{q} = 1$, and $f \in L^p$, $g \in L^q$, then $fg \in L^1$ and $\int |fg| \le ||f||_{L^p} \cdot ||g||_{L^q}$.

1.6 Banach Spaces

Linear Space: A set of elements, X, is a linear space iff $\forall f, g \in X$ and $\forall \alpha, \beta \in \mathbb{R}$ we have $\alpha f + \beta g \in X$.

Normed Linear Space: A linear space, X, is a normed linear space iff \exists a norm $||\cdot||: X \to \mathbb{R}$ such that $\forall f \in X$ (1) $||f|| \ge 0$, (2) ||f|| = 0 iff f = 0, (3) $||\alpha f|| = |\alpha| \cdot ||f|| \ \forall \alpha \in \mathbb{R}$, and (4) $||f + g|| \le ||f|| + ||g||$.

Convergence in a Normed Linear Space: A sequence $\langle f_n \rangle$ in a normed linear space is said to converge to an element f in the space if $\forall \varepsilon > 0 \ \exists N \in \mathbb{N}$ such that $\forall n \geq N$ we have $||f - f_n|| < \varepsilon$.

Completeness: A normed linear space is complete if every Cauchy Sequence in the space converges.

Banach Space: A Banach Space is a complete normed linear space.

Proposition 5: A normed linear space X is complete iff every absolutely summable series is summable $(f_n \text{ is absolutely summable iff } \sum_{n=0}^{\infty} ||f_n|| < \infty).$

Riesz-Fischer Theorem: The L^p spaces are complete.

Compact Support: The support of a function is the set $\{x: f(x) \neq 0\}$, denoted supp f. We say that f has compact support if the closure of supp f is a compact set.

Density in L^p : Functions that are bounded, bounded with compact support, simple with compact support, step with compact support, continuous, smooth, and smooth with compact support are all dense in $L^p(\mathbb{R})$ for $1 \le p < \infty$.

Linear Functional: A linear functional on a normed linear space X is a function $F: X \to \mathbb{R}$ such that $F(\alpha f + \beta g) = \alpha F(f) + \beta F(g) \ \forall f, g \in X \ \text{and} \ \forall \alpha, \beta \in \mathbb{R}$.

Bounded Linear Functional: A linear functional $F: X \to \mathbb{R}$ is bounded iff $\exists M \in \mathbb{R}$ such that $|F(f)| \leq M||f|| \ \forall f \in X$.

Norm of a Linear Functional: We define a norm on $\mathcal{L}(X,\mathbb{R})$ by $||F|| = \sup_{f \neq 0} \frac{|F(f)|}{||f||} = \sup_{||f||=1} |F(f)|$. Note that ||F|| and ||f|| are different norms and ||F|| exists only if F is a bounded linear functional.

Proposition 11: Let $p, q \ge 0$ and $\frac{1}{p} + \frac{1}{q} = 1$. Each $g \in L^q$ defines a bounded linear functional, F, on L^p by $F(f) = \int fg$. We also have $||F|| = ||g||_{L^q}$.

Lemma 12: Let $g \in L^1$ and suppose that $\exists M$ such that $|\int fg| \leq M||f||_p$ for all bounded measurable functions f. Then $g \in L^q$ and $||g||_{L^q} \leq M$.

Riesz Representation Theorem: Let F be a bounded linear functional on L^p for $1 \le p < \infty$. Then $\exists g \in L^q$ such that $F(f) = \int fg$. We also have $||F|| = ||g||_{L^q}$.

1.7 Metric Spaces

Metric Space: A metric space (X, ρ) is a nonempty set X of elements with a real-valued function, $\rho: X \times X \to \mathbb{R}$ such that $\forall x, y, z \in X$ (1) $\rho(x, y) \geq 0$, (2) $\rho(x, y) = 0$ iff x = y, (3) $\rho(x, y) = \rho(y, x)$, and (4) $\rho(x, y) \leq \rho(x, z) + \rho(z, y)$.

Open Sets: A set O is open iff $\forall x \in O \ \exists \delta > 0$ such that $\rho(x,y) < \delta$ implies that $y \in O$.

Point of Closure: A point $x \in X$ is called a point of closure of the set E iff $\forall \delta > 0 \ \exists y \in E$ such that $\rho(x,y) < \delta$.

Proposition 2: If $A \subset B$, then $\overline{A} \subset \overline{B}$. Also, $\overline{(A \cup B)} = \overline{A} \cup \overline{B}$ and $\overline{(A \cap B)} \subset \overline{A} \cap \overline{B}$.

Dense: A subset S of a metric space (X, ρ) is dense in X iff $\overline{S} = X$ iff $\forall x \in X \ \forall \varepsilon > 0 \ \exists s \in S$ such that $\rho(x, s) < \varepsilon$ iff $S \cap O \neq \emptyset$ for all open sets $O \subset X$.

Separable: A metric space is separable if it has a subset D which has a countable number of points and is dense in X.

Proposition 6: A metric space X is separable iff $\exists \{O_i\}_{i=1}^{\infty}$ of open sets such that for any open set $O \subset X$, $O = \bigcup_{O_i \subset O} O_i$.

Proposition 8: If $f: X \to Y$ and $g: Y \to Z$ are continuous, then $g \circ f: X \to Z$ is continuous.

Homeomorphism: Suppose that (X, ρ) and (Y, σ) are metric spaces. A homeomorphism between X and Y is a function $f: X \to Y$ such that (1) f is a bijection, (2) f is continuous on X, and (3) f^{-1} is continuous on Y.

Isometry: With f as above, if we also have $\sigma[f(x_1), f(x_2)] = \rho(x_1, x_2) \ \forall x_1, x_2 \in X$, then f is an isometry between X and Y.

Equivalent Metrics: Metrics ρ and σ on a set X are equivalent iff ρ and σ define the same open sets.

Equivalent Norms: Norms $||\cdot||$ and $||\cdot||^*$ on a normed linear space X are equivalent iff $\exists c_1, c_2 > 0$ such that $c_1||x|| \le ||x||^* \le c_2||x|| \ \forall x \in X$.

Theorem 9: If (X, ρ) is an incomplete metric space, it is possible to find a complete metric space X^* in which X is isometrically embedded as a dense subset. If X is contained in an arbitrary complete metric space Y, then X^* is isometric with the closure of X in Y.

Proposition 12: Let X be a metric space and S a subspace of it. Then the closure of E relative to S is $\overline{E} \cap S$, where \overline{E} denotes the closure of E in X. A set $A \subset S$ is closed relative to S iff $A = S \cap F$ with F closed in X. A set $A \subset S$ is open relative to S iff $A = S \cap O$ with O open in X.

Proposition 13: Every subspace of a separable metric space is separable.

Proposition 14: If a subset A of a metric space X is complete, then it is closed. Also, a closed subset of a complete metric space is itself complete.

Sequentially Compact: A space X is sequentially compact iff every sequence $\langle x_n \rangle$ in X has a subsequence $\langle x_{n_k} \rangle$ which converges to an element of X.

Bolzano-Weierstrauss Property: A space X is said to have the Bolzano-Weierstrauss property if every infinite sequence $\langle x_n \rangle$ in X has at least one cluster point.

Theorem 18: Let f be a continuous real-valued function on a compact space. Then f is

bounded and assumes its maximum and minimum.

Totally Bounded: A metric space is totally bounded if, for each $\varepsilon > 0$, there is a finite collection of points $\{x_1, \ldots, x_n\}$ such that each $x \in X$ is within a distance of ε of one of the x_k .

Lemma 19: A sequentially compact metric space is totally bounded.

Theorem 21 (Borel-Lebesgue): Let X be a metric space. Then the following are equivalent: (1) X is compact, (2) X has the Bolzano-Weierstrauss property, and (3) X is sequentially compact.

Proposition 22: A closed subset of a compact space is compact. A compact subset of a metric space is closed and bounded.

Proposition 24: The continuous image of a compact set is compact.

Proposition 25: A metric space X is compact iff it is both complete and totally bounded.

Proposition 26: Let f be a continuous mapping of a compact metric space X into a metric space Y. Then f is uniformly continuous.

Theorem 27 (Baire): Let X be a complete metric space and $\{O_k\}$ a countable collection of dense open subsets of X. Then $\cap O_n$ is dense.

Corollary: Suppose (X, ρ) is a complete metric space and $X = \bigcup F_n$, where F_n is closed $\forall n$. Then $\exists N$ such that F_N contains a nonempty open set.

Nowhere Dense: Suppose (X, ρ) is a complete metric space. A set $E \subset X$ is nowhere dense in X iff $X - \overline{E}$ is dense in X.

Proposition: A subset E of a complete metric space is nowhere dense iff \overline{E} contains no nonempty open sets.

Baire Category: A subset E of a complete metric space X is of first category (or meager) iff E is the union of countable many nowhere dense sets, otherwise E is said to be of second category.

Baire Category Theory: Let (X, ρ) be a complete metric space. Then every nonempty open subset of X is of second category.

Theorem 32 (Uniform Boundedness Principle): Let (X, ρ) be a complete metric space and \mathcal{F} a family of continuous real-valued functions on X. Suppose $\forall x \in X \exists M_x \in \mathbb{R}$ such that $|f(x)| \leq M_x \ \forall f \in \mathcal{F}$. Then there exists a nonempty open subset O of X and $\exists M \in \mathbb{R}$ such that $|f(x)| \leq M \ \forall x \in O$ and $\forall f \in \mathcal{F}$.

Theorem: Suppose X is a Banach space and \mathcal{F} a family of bounded linear functionals on X. Suppose $\forall x \in X \ \exists M_x \in R \ \text{such that} \ |F(x)| \leq M_x \ \forall F \in \mathcal{F}$. Then the functionals in \mathcal{F} are uniformly bounded i.e. $\exists M \in \mathbb{R} \ \text{such that} \ ||F|| \leq M \ \forall F \in \mathcal{F}$.

Equicontinuity: Suppose that (X, ρ) and (Y, σ) are metric spaces and \mathcal{F} is a family of functions from X into Y. Then \mathcal{F} is equicontinuous at a point $x \in X$ iff $\forall \varepsilon > 0 \; \exists \delta > 0$ such that $\forall y \in X$ with $\rho(x, y) < \delta$ and $\forall f \in \mathcal{F}$, $\sigma(f(x), f(y)) < \varepsilon$.

Ascoli-Arzelá Theorem: Let \mathcal{F} be an equicontinuous family of functions from X into Y, where (X, ρ) is a separable metric space and (Y, σ) is a metric space. Let $\langle f_n \rangle$ be a sequence in \mathcal{F} such that $\forall x \in X$ the closure of $\{f_n(x) : n \geq 1\}$ is compact. Then there exists a subsequence $\langle f_{n_k} \rangle$ which converges pointwise to a continuous function f on X and $f_n \to f$ uniformly on any compact subset of X.

Contraction Mapping: Let (X, ρ) be a metric space. A function $g: X \to X$ is a contraction mapping iff $\exists \lambda$ with $0 < \lambda < 1$ such that $\rho(g(x), g(y)) \le \lambda \rho(x, y) \ \forall x, y \in X$.

Fixed Point Theorem: Let (X, ρ) be a complete metric space and let $g: X \to X$ be a contraction mapping. Then (1) exists a unique $\alpha \in X$ such that $g(\alpha) = \alpha$ and (2) let $\langle x_n \rangle$ be a sequence in X such that $x_{n+1} = g(x_n) \ \forall n \geq 1$, then $x_n \to \alpha$.

1.8 Measure and Integration

Measure Space: A measure space is a pair (X, \mathcal{B}) , where X is a set and \mathcal{B} is a σ -algebra of subsets of X. A set $A \subset X$ is measurable iff $A \in \mathcal{B}$.

Measure: A measure is a nonnegative extended real-valued function on \mathcal{B} , μ , such that $\mu(\emptyset) = 0$ and $\mu(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \mu(E_i)$ for all collections $\{E_i\}$ of disjoint sets in \mathcal{B} . The triple (X, \mathcal{B}, μ) is a measure space.

Proposition 1: If $A \in \mathcal{B}$, $B \in \mathcal{B}$, and $A \subset B$, then $\mu A \leq \mu B$.

Proposition 2: If $E_i \in \mathcal{B}$, $\mu E_1 < \infty$, and $E_i \supset E_{i+1}$, then $\mu \cap_{i=1}^{\infty} E_i = \lim_{n \to \infty} \mu E_n$.

Proposition 3: If $E_i \in \mathcal{B}$, then $\mu(\bigcup_{i=1}^{\infty} E_i) \leq \sum_{i=1}^{\infty} \mu E_i$.

Finite Measure Space: The triple (X, \mathcal{B}, μ) is a finite measure space if $\mu(X) < \infty$.

σ-Finite Measure Space: Let the triple (X, \mathcal{B}, μ) be a measure space. If $\exists < E_n >$ with $E_n \in \mathcal{B}$ such that $X = \bigcup_{i=1}^{\infty} E_n$ and $\mu E_n < \infty \ \forall n$, then (X, \mathcal{B}, μ) is a σ-finite measure space.

Semifinite Measure: If each measurable set of infinite measure contains measurable sets of arbitrarily large finite measure, then the measure is said to be a semifinite measure.

Complete Measure Space: Let (X, \mathcal{B}, μ) be a measure space. If \mathcal{B} contains all subsets of sets of measure zero, then (X, \mathcal{B}, μ) is a complete measure space.

Proposition: Let (X, \mathcal{B}, μ) be a measure space. A function $f: X \to X$ is a measurable function iff $f^{-1}(I) \in \mathcal{B}$ for all intervals $I \subset X$.

Product Measure: Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be measure spaces. We define the product measure on $X \times Y$ as follows. If $A \in \mathcal{A}$ and $B \in \mathcal{B}$, then $\lambda(A \times B) = \mu A \cdot \nu B$.

Fubini's Theorem: Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be complete measure spaces. Suppose $f: X \times Y \to \mathbb{R}$ is integrable. Then

- (1) for any $x \in X$, define $f_x : Y \to \mathbb{R}$ by $f_x(y) = f(x,y) \ \forall y \in Y$. Then for a.e. $x \in X$, f_x is integrable on Y.
- (2) The function defined a.e. in X by $\int_{Y} f(x,y) d\nu(y)$ is integrable on X.
- (3) We have $\int_{X\times Y} f d(\mu \times \nu) = \int_X \left[\int_Y f(x,y) d\nu(y) \right] d\mu(x) = \int_Y \left[\int_X f(x,y) d\mu(x) \right] d\nu(y)$. Note that in (1) and (2) we may interchange the roles of x and y.

Tonelli's Theorem: If we replace complete with σ -finite and integrable with nonnegative and measurable in Fubini's Theorem, then we have Tonelli's Theorem.

1.9 Hilbert Spaces

Inner Product Space: An inner product space H is a vector space with a function (\cdot, \cdot) : $H \times H \to \mathbb{C}$ such that:

- (1) $(x, x) \ge 0 \ \forall x \in H \ \text{and} \ (x, x) = 0 \ \text{iff} \ x = 0_H$
- (2) $(\alpha_1 x_1 + \alpha_2 x_2, y) = \alpha_1(x_1, y) + \alpha_2(x_2, y) \ \forall x_1, x_2, y \in H \text{ and } \forall \alpha_1, \alpha_2 \in \mathbb{C}$
- (3) $(x,y) = \overline{(y,x)} \ \forall x,y \in H$ Define $||x|| = \sqrt{(x,x)} \ \forall x \in H$.

Cauchy-Schwarz Inequality: $|(x,y)| \le ||x|| \cdot ||y|| \ \forall x,y \in H$

Hilbert Space: An inner product space which is complete with respect to the norm induced by the inner product is called a Hilbert Space.

Orthogonal: Elements $x, y \in H$ are orthogonal iff (x, y) = 0.

Orthonormal System: A subset S of H is called an orthonormal system iff $(\varphi, \psi) = 0$ and $||\varphi|| = ||\psi|| = 1 \ \forall \varphi, \psi \in S$ with $\varphi \neq \psi$.

Proposition: Let H be an inner product space and S an orthonormal system in H. Then any two distinct elements of S are a distance $\sqrt{2}$ from each other. Also, if H is separable, then S is countable.

Complete Orthonormal System: An orthonormal system S in an inner product space H is complete if $(z, \varphi) = 0 \ \forall \varphi \in S$ implies $z \equiv 0 \in H$.

Proposition: Let $S = \{\varphi_{\nu}\}$ be an orthonormal system in an inner product space H, and let $S_N = \text{span}\{\varphi_1, \dots, \varphi_N\}$. Let $x \in H$. Let $y = \sum_{i=1}^N (x, \varphi_{\nu}) \varphi_{\nu}$. Then $||x - y|| < ||x - z|| \forall z \in S_N \setminus \{y\}$.

Bessel's Inequality: Let $S = \{\varphi_{\nu}\}$ be an countably infinite orthonormal system in an inner product space $H, x \in H$, and $a_{\nu} = (x, \varphi_{\nu}) \ \forall \nu$. Then $\sum_{\nu=1}^{\infty} |a_{\nu}|^2 \le ||x||^2$.

Parseval's Theorem: Suppose H is a Hilbert Space and $S = \{\varphi_{\nu}\}$ is a complete orthonormal system in H. Then $\forall x \in H$, $x = \sum_{i=1}^{\infty} a_{\nu} \varphi_{\nu}$, where $a_{\nu} = (x, \varphi_{\nu}) \ \forall \nu$ and $||x||^2 = \sum_{i=1}^{\infty} |a_{\nu}|^2$.

Complex Fourier Series in $L^2([-\pi,\pi])$: $f(x) = \sum_{-\infty}^{\infty} \widehat{f}(n)e^{inx}$, where $\widehat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} dx$ $\forall n \in \mathbb{Z}$.

2 Linear Algebra

2.1 Vector Spaces

Vector Space (linear space): A set V is a vector space over a field \mathbb{F} if

- (1) V is an abelian group under +
- (2) $1 \cdot x = x$ for $1 \in \mathbb{F}$ and $x \in V$
- (3) (ab)x = a(bx) for $a, b \in \mathbb{F}$ and $x \in V$
- (4) a(x+y) = ax + ay for $a \in \mathbb{F}$ and $x, y \in V$
- (5) (a+b)x = ax + bx for $a, b \in \mathbb{F}$ and $x \in V$

Subspace: A subset W of a vector space V over of field \mathbb{F} is called a subspace of V if (1) $0 \in W$ (2) $x + y \in W$, whenever $x, y \in W$, and (3) $cx \in W$ whenever $c \in \mathbb{F}$ and $x \in W$.

Proposition: Let $W \subset V$ as vector spaces. If $\dim(W) = \dim(V)$, then W = V.

2.2 Linear Transformations and Matrices

Linear Transformation: Let V be a vector space over \mathbb{F} and let W be vector space. Then a function $T:V\to W$ is a linear transformation if $T(ax+by)=aT(x)+bT(y) \ \forall a,b\in\mathbb{F}$ and $\forall x,y\in V$.

Null Space: Let V and W be vector spaces, and let $T:V\to W$ be linear. We define the null space (or kernel) of T by $N_T=\{x\in V:T(x)=0\}$.

Range Space: Let V and W be vector spaces, and let $T: V \to W$ be linear. We define the range space of T by $R_T = \{T(x) : x \in V\}$.

Theorem 2.2: Let V and W be vector spaces and let $T: V \to W$ be linear. If $\beta = \{v_1, \ldots, v_n\}$ is a basis for V, then $R_T = \text{span}(\{T(v_1), \ldots, T(v_n)\})$.

Rank-Nullity Theorem: Let V and W be vector spaces and let $T: V \to W$ be linear. If V is finite-dimensional, then $\operatorname{nullity}(T) + \operatorname{rank}(T) = \dim(V)$.

Theorem 2.4: Let V and W be vector spaces, and let $T: V \to W$ be linear. Then T is one-to-one iff $N_T = \{0\}$ iff T(x) = T(y) implies x = y.

Theorem 2.5: Let V and W be vector spaces of equal (finite) dimension, and let $T: V \to W$ be linear. Then T is one-to-one iff T is onto.

Space of Linear Transformations: Let V and W be vector spaces. We denote the vector space of all linear transformations from V into W by $\mathcal{L}(V,W)$. Then $\dim(\mathcal{L}(V,W)) = \dim(V) \cdot \dim(W)$.

Theorem 2.11: Let V, W, Z be finite-dimensional vector spaces with ordered bases α, β, γ , respectively. Let $T: V \to W$ and $U: W \to Z$ be linear. Then $[UT]^{\gamma}_{\alpha} = [U]^{\gamma}_{\beta}[T]^{\beta}_{\alpha}$.

Theorem 2.14: Let V and W be finite-dimensional vector spaces with ordered bases β and γ , respectively and let $T: V \to W$ be linear. Then for each $u \in V$ we have $[T(u)]_{\gamma} = [T]_{\beta}^{\gamma}[u]_{\beta}$.

Left-Multiplication Transformation: Let A be an $m \times n$ matrix with entries from a field \mathbb{F} . We denote L_A the mapping $L_A : \mathbb{F}^n \to \mathbb{F}^m$ defined by $L_A(x) = Ax$ for each $x \in \mathbb{F}^n$. We call L_A a left-multiplication transformation. Let β, γ be the standard ordered basis for \mathbb{F}^n and \mathbb{F}^m respectively. Then (1) $[L_A]_{\beta}^{\gamma} = A$, (2) $L_A = L_B$ iff A = B, (3) $L_{A+B} = L_A + L_B$ and $L_{aA} = aL_A$, $a \in \mathbb{F}$, and (4) $L_{AB} = L_A L_B$.

Inverses: Let V and W be vector spaces and let $T: V \to W$ be linear. A function $U: W \to V$ is said to be an inverse of T if $TU = I_W$ and $UT = I_V$. If T has an inverse, then T is invertible. If T and U are invertible functions, then $(TU)^{-1} = U^{-1}T^{-1}$.

Lemma: Let $T: V \to W$ be linear, where V and W are finite-dimensional vector spaces. If T is invertible, then $\dim(V) = \dim(W)$.

Lemma: Let $T: V \to W$ be linear, where V and W are finite-dimensional vector spaces. Then T is invertible iff T is one-to-one and onto.

Isomorphisms: Let V and W be vector spaces. We say that V is isomorphic to W if there exists a linear transformation $T:V\to W$ that is invertible. Here, T is an isomorphism from V to W.

Theorem 2.22: Let β and β' be two ordered bases for a finite-dimensional vector space V, and let $Q = [I_V]_{\beta'}^{\beta}$. Then (1) Q is invertible and (2) $[v]_{\beta} = Q[v]_{\beta'} \ \forall v \in V$. Here, Q is called the change of coordinates matrix.

Linear Operator: A linear transformation that maps a vector space V into itself is called a linear operator on V.

Theorem 2.23: Let T be a linear operator on a finite-dimensional vector space V, and let β and β' be ordered basis for V. Let $Q = [I_V]^{\beta}_{\beta'}$. Then $[T]_{\beta'} = Q^{-1}[T]_{\beta}Q$.

Similar Matricies: Let $A, B \in \mathcal{M}_{n \times n}(\mathbb{F})$. We say that B is similar to A if there exsits an invertible matrix Q such that $B = Q^{-1}AQ$.

Linear Functional: A linear transformation from a vector space V into its field of scalars \mathbb{F} , which is itself a vector space of dimension 1 over itself, is called a linear functional on V.

Dual Space: For a vector space V over \mathbb{F} , we define the dual space of V to be the vector space $\mathcal{L}(V,\mathbb{F})$ denoted V^* . Note that $\dim(V) = \dim(V^*)$.

Theorem 2.24: Suppose that V is a finite-dimensional vector space with ordered basis $\beta = \{x_1, \ldots, x_n\}$. Let f_i for $1 \leq i \leq n$ be the i-th coordinate function with respect to β i.e. $f_i(x_j) = \delta_{ij}$. Let $\beta^* = \{f_1, \ldots, f_n\}$. Then β^* is an ordered basis for V^* , and $\forall f \in V^*$ we have $f = \sum_i f(x_i) f_i$. We call β^* the dual basis of β .

Theorem 2.25: Let V and W be finite-dimensional vector spaces over \mathbb{F} with ordered bases β, γ , respectively. For any linear transformation $T: V \to W$, the mapping $T^t: W^* \to V^*$ defined by $T^t(g) = gT \ \forall g \in W^*$ is a linear transformation with the property $[T^t]_{\gamma^*}^{\beta^*} = ([T]_{\beta}^{\gamma})^t$.

Double Dual: For a vector $x \in V$, we define $\widehat{x}: V^* \to \mathbb{F}$ by $\widehat{x}(f) = f(x), \forall f \in V^*$. Then \widehat{x} is a linear functional on V^* , so $\widehat{x} \in V^{**}$, the double dual of V.

Lemma: Let V be a finite-dimensional vector space, and let $x \in V$. If $\widehat{x}(f) = 0 \ \forall f \in V^*$, then x = 0.

Theorem 2.26: Let V be a finite-dimensional vector space and define $\psi: V \to V^{**}$ by $\psi(x) = \widehat{x}$. Then ψ is an isomorphism.

Corollary: Let V be a finite-dimensional vector space with dual space V^* . Then every ordered basis of V^* is the dual basis for some basis for V.

2.3 Diagonalization

Properties of Determinants: If E is an elementary matrix obtained by interchanging two rows of I, then $\det(E) = -1$. If E is an elementary matrix obtained by scalar multiplication (by k) of a row, then $\det(E) = k$. If E is an elementary matrix obtained by adding a multiple of one row to another, then $\det(E) = 1$. For $A \in \mathcal{M}_{n \times n}$ we have $\det(A^{-1}) = [\det(A)]^{-1}$, $\det(A^t) = \det(A)$, and $\det(A) = (-1)^n p(x)$, where $A \in \mathcal{M}_{n \times n}$ and p(x) is monic. We also have that A is invertible iff $\det(A) \neq 0$.

Diagonalizable: If a linear operator T on a finite-dimensional vector space V is diagonalizable if there exists a basis β for V such that $[T]_{\beta}$ is a diagonal matrix.

Eigenvectors and Eigenvalues: Let $T: V \to V$ be linear, where V is a vector space over \mathbb{F} . Suppose that there exists $v \in V \setminus \{0\}$ such that $Tv = \lambda v$, where $\lambda \in \mathbb{F}$. Then v is called an eigenvector of T with associated eigenvalue λ .

Theorem 5.4: A linear operator T on a finite dimensional vector space V is diagonalizable iff there exists an ordered basis β for V consisting of eigenvectors of T. Furthermore, if T is diagonalizable, $\beta = \{v_1, \ldots, v_n\}$ is an ordered basis of eigenvectors of T, and $D = [T]_{\beta}$, then D is a diagonal matrix and D_{ii} is the eigenvalue corresponding to v_i for $1 \le i \le n$.

Theorem 5.11: The characteristic polynomial of any diagonalizable linear operator splits.

Eigenspace: The eigenspace of a linear operator: $E_{\lambda} = \{x \in V : T(x) = \lambda x\} = N(T - \lambda I)$. Note that $E_{\lambda_i} \cap E_{\lambda_j} = \{0\}$ for $i \neq j$.

Diagonalization Criteria: Let T be a linear operator on V over \mathbb{F} . If $c_T(x)$ splits over \mathbb{F} and for each eigenvalue, λ , of T the algebraic multiplicity of λ is equal to the dimension of $E_{\lambda} = n - \text{rank}(T - \lambda I)$, then T is diagonalizable.

T-invariant Subspace: Let V be a vector space and let $T: V \to V$ be linear. Then W is a T-invariant subspace iff W is a subspace of V and $T(W) \subseteq W$. Note that $\{0\}, V, R_T, N_T, E_{\lambda}$ are all T-invariant subspaces.

Smallest T-invariant Subspace: Let $x \in V \setminus \{0\}$ and $W = \text{span}(\{x, Tx, T^2x, \dots\})$. Then W is the T-cyclic subspace of V generated by x. Here, $W \subset V$ and W is the "smallest" T-invariant

subspace of V containing x.

Theorem 5.26: Let V be a finite-dimensional vector space, $T: V \to V$ be linear, and W be a T-invariant subspace of V. Then the characteristic polynomial of $T_W \equiv T|_W$ divides $c_T(x)$.

Theorem 5.27: Let V be a finite dimensional vector space, $T: V \to V$ be linear, and W be a T-invariant subspace of V generated by some $x \in V \setminus \{0\}$. Let $k = \dim(W)$. Then $\{x, Tx, \ldots, T^{k-1}x\}$ is a basis for W and if $a_0x + a_1Tx + \cdots + a_{k-1}T^{k-1}x + T^kx = 0$, then $c_{T_W}(t) = (-1)^k(a_0 + \cdots + a_{k-1}t^{k-1} + t^k)$.

Cayley-Hamilton Theorem: Let V be a finite-dimensional vector space and let $T: V \to V$ be linear. Then $c_T(T) = T_0$, the zero operator.

Theorem 5.29: Let V be a finite-dimensional vector space and let $T: V \to V$ be linear. Suppose that $V = W_1 \oplus \cdots \oplus W_k$, where W_i is a T-invariant subspace of V. Let f be the characteristic polynomial of T and f_i be the characteristic polynomials of T_{W_i} . Then $f(x) = f_1(x) \cdots f_k(x)$.

2.4 Inner Product Spaces

Inner Product: Let V be a vector space over \mathbb{F} ($\mathbb{F} = \mathbb{R}$ or \mathbb{C}). An inner product on V is a function that assigns to every ordered pair of vectors $x, y \in V$ a scalar in \mathbb{F} , denoted $\langle x, y \rangle$. We also define $\sqrt{\langle x, x \rangle} = ||x||$. Then $\forall x, y, z \in V$ and $\forall c \in \mathbb{F}$ we have

- (1) < cx + z, y > = c < x, y > + < z, y >
- $(2) \overline{\langle x, y \rangle} = \langle y, x \rangle$
- $(3) < x, x > > 0 \text{ if } x \neq 0$
- (4) if $\langle x, y \rangle = \langle x, z \rangle \forall x \in V$, then y = z
- $(5) \sqrt{\langle x, x \rangle} = ||x||$
- (6) $||x+y|| \le ||x|| + ||y||$ and $|\langle x,y \rangle| \le ||x|| \cdot ||y||$

Inner Product Space: An inner product space is a vector space equipped with an inner product.

Orthogonal: Let V be an inner product space. Vectors $x, y \in V$ are orthogonal if $\langle x, y \rangle = 0$. A subset S of V is orthogonal if any two distinct elements of S are orthogonal.

Theorem 6.3: Let V be an inner product space, and let $S = \{v_1, \ldots, v_k\}$ be an orthogonal set of nonzero vectors. If $y = \sum_i a_i v_i$, then $a_j = \langle y, v_j \rangle / ||v_j||^2$ $1 \le j \le k$.

Corollary: Let V be an inner product space, and let S be an orthogonal set of nonzero vectors. Then S is linearly independent.

Gram-Schmidt Orthogonalization Process: Let V be an inner product space, and let $S = \{w_1, \ldots, w_n\}$ be a linearly independent subset of V. Define $S' = \{v_1, \ldots, v_n\}$, where $v_1 = w_1$ and $v_k = w_k - \sum_{j=1}^{k-1} \frac{\langle w_k, v_j \rangle}{||v_j||^2} v_j$ for $2 \le k \le n$. Then S' is an orthogonal set such that $\operatorname{span}(S') = \operatorname{span}(S)$.

Corollary: Let V be a finite-dimensional inner product space with an orthonormal basis $\beta = \{v_1, \ldots, v_n\}$. Let T be a linear operator on V, and let $A = [T]_{\beta}$. Then $(A)_{ij} = \langle T(v_j), v_i \rangle$ and $T(v_j) = \sum_i \langle T(v_j), v_i \rangle v_i$.

Orthogonal Complement: Let S be a subset of a vector space V. Then the orthogonal complement of S is the set of all vectors that are orthogonal to every element in S, that is, $S^{\perp} = \{x \in V : \langle x, y \rangle = 0 \, \forall y \in S\}.$

Proposition 6.6: Let W be a finite-dimensional subspace of an inner product space V, and let $y \in V$. Then there exists a unique $u \in W$ and $z \in W^{\perp}$ such that y = u + z. Furthermore, if $\{v_i\}$ is an orthonormal basis of W, then $u = \sum_{i=1}^k \langle y, v_i \rangle v_i$.

Theorem 6.7: Suppose that $S = \{v_1, \ldots, v_k\}$ is an orthonormal set in an n-dimensional inner product space V. Then (1) S can be extended to an orthonormal basis $\{v_1, \ldots, v_k, v_{k+1}, \ldots, v_n\}$ for V, (2) if $W = \operatorname{span}(S)$, then $\operatorname{span}(\{v_{k+1}, \ldots, v_n\}) = W^{\perp}$, and (3) $V = W \oplus W^{\perp}$.

Corollary: In the notation above, the vector u is the unique vector in W that is "closest" to y, that is, $\forall x \in W$, $||y - x|| \ge ||y - u||$ (with equality iff x = u). This vector u is called the orthogonal projection of y on W.

Theorem 6.8: Let V be a finite-dimensional inner product space over \mathbb{F} , and let $g: V \to \mathbb{F}$ be linear. Then there exists a unique $y \in V$ such that $g(x) = \langle x, y \rangle \ \forall x \in V$. Moreover, $y = \sum_{i=1}^{n} \overline{g(v_i)}v_i$, where $\{v_1, \ldots, v_n\}$ is an orthonormal basis for V.

Theorem 6.9: Let V be a finite-dimensional inner product space, and let T be a linear operator on V. Then there exists a unique function $T^*: V \to V$ such that $\langle T(x), y \rangle = \langle x, T^*(y) \rangle$ $\forall x, y \in V$. Furthermore T^* is linear and $[T^*]_{\beta} = [T]_{\beta}^*$, where β is an orthonormal basis. We also have $(AB)^* = B^*A^*$ and $\operatorname{rank}(A^*A) = \operatorname{rank}(A)$ for matricies A and B.

Theorem 6.13: Let $A \in \mathcal{M}_{m \times n}(\mathbb{F})$ and $y \in \mathbb{F}^m$. Then $\exists x_0 \in \mathbb{F}^n$ such that $(A^*A)x_0 = A^*y$ and $||Ax_0 - y|| \le ||Ax - y|| \ \forall x \in \mathbb{F}^n$. Furthermore, if $\operatorname{rank}(A) = n$, then $x_0 = (A^*A)^{-1}A^*y$.

Theorem 6.14: Let T be a linear operator on a finite-dimensional inner product space. Suppose that the characteristic polynomial splits. Then there exists an orthonormal basis β for V such that $[T]_{\beta}$ is upper triangular.

Normal Operator: Let V be an inner product space, and let T be a linear operator on V. We say that T is normal if $TT^* = T^*T$.

Theorem 6.15: Let V be an inner product space, and let T be a normal operator on V. Then

- $(1) ||T(x)|| = ||T^*(x)|| \ \forall x \in V$
- (2) T cI is normal $\forall c \in \mathbb{F}$
- (3) if $Tx = \lambda x$, then $T^*x = \overline{\lambda}x$
- (4) if $x_1 \in E_{\lambda_1}$, $x_2 \in E_{\lambda_2}$, and $\lambda_1 \neq \lambda_2$, then $x_1 \perp x_2$

Theorem 6.16: Let T be a linear operator on a finite-dimensional complex inner product space V. Then T is normal iff there exists an orthonormal basis for V consisting of eigenvectors of T.

Self-Adjoint: Let T be a linear operator on an inner product space V. We say that T is self-adjoint (or Hermitian) if $T^* = T$.

Lemma: Let T be a self-adjoint operator on a finite dimensional inner product space V. Then every eigenvalue of T is real. If in addition $\mathbb{F} = \mathbb{R}$, then the characteristic polynomial splits.

Theorem 6.17: Let T be a linear operator on a finite-dimensional real inner product space V. Then T is self-adjoint iff there exists an orthonormal basis for V consisting of eigenvectors of T.

Unitary and Orthogonal Operators: Let T be a linear operator on an inner product space V (over \mathbb{F}). If $||T(x)|| = ||x|| \ \forall x \in V$, we call T a unitary operator for $\mathbb{F} = \mathbb{C}$ and an orthogonal operator for $\mathbb{F} = \mathbb{R}$. If V is infinite dimensional, we call T is isometry.

Theorem 6.18: Let T be a linear operator on a finite-dimensional inner product space V. Then the following are equivalent: (1) $TT^* = T^*T = I$, (2) $< T(x), T(y) > = < x, y > \forall x, y \in V$, (3) if β is an orthonormal basis for V, then so is $T(\beta)$, and (4) $||T(x)|| = ||x|| \forall x \in V$.

Lemma: Let U be a self-adjoint operator on a finite-dimensional inner product space V. If $\langle x, U(x) \rangle = 0 \ \forall x \in V$, then $U(x) = 0 \ \forall x \in V$.

Corollary 1: Let T be a linear operator on a finite-dimensional real inner product space V. Then V has an orthonormal basis of eigenvectors of T with corresponding eigenvalues ± 1 iff T is both self-adjoint and orthogonal.

Theorem 6.19: Let $A \in \mathcal{M}_{n \times n}(\mathbb{C})$. Then A is normal iff A is unitarily equivalent to a diagonal matrix i.e. there exists a diagonal matrix D and a unitary matrix P such that $A = P^*DP$.

Theorem 6.20: Let $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. Then A is symmetric iff A is orthogonally equivalent to a real diagonal matrix.

Theorem 6.21 (Shur): Let $A \in \mathcal{M}_{n \times n}(\mathbb{F})$ be a matrix whose characteristic polynomial splits over \mathbb{F} . If $\mathbb{F} = \mathbb{C}$, then A is unitarily equivalent to a complex upper triangular matrix. If $\mathbb{F} = \mathbb{R}$, then A is orthogonally equivalent to a real upper triangular matrix.

Orthogonal Projection: Let V be an inner product space and let $T: V \to V$ be a projection. We say that T is an orthogonal projection if $R_T^{\perp} = N_T$ and $N_T^{\perp} = R_T$.

Theorem 6.23: Let V be an inner product space and let T be a linear operator on V. Then T is an orthogonal projection iff T has an adjoint T^* and $T^2 = T = T^*$.

Theorem 6.24 (Spectral Theorem): Suppose that T is a linear operator on a finite-dimensional inner product space V over \mathbb{F} with distinct eigenvalues $\lambda_1, \ldots, \lambda_k$. Assume that T is normal if $\mathbb{F} = \mathbb{C}$ and self-adjoint if $\mathbb{F} = \mathbb{R}$. For each i $(1 \le i \le k)$ let W_i be the eigenspace of T corresponding to the eigenvalue λ_i and let T_i be the orthogonal projection onto W_i . Then the following are true.

- (1) $V = W_1 \oplus \cdots \oplus W_k$
- (2) if W'_i denotes the direct sum of W_j , $j \neq i$, then $W_i^{\perp} = W'_i$
- (3) $T_i T_j = \delta_{ij} T_i$ for $1 \le i, j \le k$

(4)
$$I = T_1 + \cdots + T_k$$
 and $T = \lambda_1 T_1 + \cdots + \lambda_k T_k$

Corollary 1: If $\mathbb{F} = \mathbb{C}$, then T is normal iff $T^* = g(T)$ for some polynomial g.

Corollary 2: If $\mathbb{F} = \mathbb{C}$, then T is unitary iff T is normal and $|\lambda| = 1$ for every eigenvalue λ of T.

Corollary 3: If $\mathbb{F} = \mathbb{C}$ and T is normal, then T is self-adjoint iff every eigenvalue of T is real.

2.5 Canonical Forms

Generalized Eigenvectors: Let V be a finite-dimensional vector space and $T: V \to V$ be linear. Then $x \in V \setminus \{0\}$ is a generalized eigenvector of T corresponding to $\lambda \in \mathbb{R}$ if $(T - \lambda I)^p x = 0$ for some p > 0.

Generalized Eigenspace: Let V be a finite-dimensional vector space, $T: V \to V$ be linear, and λ be an eigenvalue of T. The generalized eigenspace of T corresponding to λ , denoted $K_{\lambda}(T)$, is the subset of V defined by $K_{\lambda}(T) = \{x \in V : (T - \lambda I)^p x = 0 \text{ for some } p > 0\}.$

Theorem 7.4: Let V be a finite-dimensional vector space and $T: V \to V$ be linear. Suppose that $c_T(x)$ splits over \mathbb{F} . Let $\lambda_1, \ldots, \lambda_k$ be distinct eigenvalues of T with algebraic multiplicities m_1, \ldots, m_k and β_i be bases for K_{λ_i} . Then $\beta_i \cap \beta_j = \emptyset$ for $i \neq j$, $\beta = \bigcup_{i=1}^k \beta_i$ is a basis for V, $\dim(K_{\lambda_i}(T)) = m_i$, and $E_{\lambda_i} = K_{\lambda_i}$ iff T is diagonalizable.

Cycle of Generalized Eigenvectors: The set $\{(T - \lambda I)^{p-1}x, \dots, (T - \lambda I)x, x\}$ is a cycle of generalized eigenvectors, also known as a Jordan Chain. If two cycles use different λ 's, then their union is linearly independent.

Theorem 7.7: Let V be a finite-dimensional vector space, $T: V \to V$ be linear, and λ be an eigenvalue of T. Then $K_{\lambda}(T)$ has an ordered basis consisting of a union of disjoint cycles of generalized eigenvectors corresponding to λ .

Corollary: Let V be a finite-dimensional vector space and $T: V \to V$ be linear. Then $c_T(x)$ splits over \mathbb{F} iff T has a Jordan Canonical Form.

Minimal Polynomial: Let V be a finite-dimensional vector space and $T: V \to V$ be linear. A polynomial p(t) is called the minimal polynomial of T if p(t) is the monic polynomial of least degree for which $p(T) = T_0$.

Theorem 7.12: Let V be a finite-dimensional vector space, $T: V \to V$ be linear, and $m_T(x)$ be the minimal polynomial of T. Then for any polynomial g(t) such that $g(T) = T_0$, then $m_T(x) | g(x)$; in particular $m_T(x) | c_T(x)$. The minimal polynomial is unique. If β is an ordered basis for V and $A = [T]_{\beta}$, then $m_T(A) = 0$.

Theorem 7.14: Let T, V be as usual. Then $\lambda \in \mathbb{R}$ is an eigenvalue of T iff $m_T(\lambda) = 0$ i.e. $c_T(x)$ and $m_T(x)$ have the same roots.

Corollary: Let T, V be as usual. If $c_T(t) = (\lambda_1 - t)^{n_1} (\lambda_2 - t)^{n_2} \cdots (\lambda_k - t)^{n_k}$ where λ_i are distinct, then $m_T(t) = (\lambda_1 - t)^{m_1} (\lambda_2 - t)^{m_2} \cdots (\lambda_k - t)^{m_k}$, where $1 \le m_i \le n_i$. If V is a T-cyclic subspace of itself, then $c_T(x) = (-1)^n m_T(x)$. Also, $m_i = 1 \ \forall i$ iff T is diagonalizable.

3 Complex Analysis

3.1 Topology and Basics

Fundamental Theorem of Algebra: Every non-constant polynomial with complex coefficients has a zero in \mathbb{C} .

Region: An open connected set.

Simply Connected: A region D is simply connected if its complement is "connected within ε to ∞ ". That is, if for any $z_0 \in D^c$ and $\varepsilon > 0$, there exists a continuous curve $\gamma(t)$ for $0 \le t < \infty$ such that $d(\gamma(t), D^c) < \varepsilon \ \forall t \le 0, \ \gamma(0) = z_0$, and $\lim \gamma(t) = \infty$.

Star-like Region: A set S is called star-like if $\exists \alpha \in S$ such that the line segment connecting α and z is contained in $S \ \forall z \in S$.

Proposition: We have convex \subset star-like \subset simply connected.

Theorem: Suppose that $\overline{\lim}|c_k|^{1/k} = 1/R$. Then $\sum_{k=0}^{\infty} c_k z^k$ converges uniformly for $\forall z \in \mathbb{C}$ such that |z| < R and diverges for |z| > R. Note that if $\lim_{k \to \infty} \frac{c_{k+1}}{c_k}$ exists, then $\overline{\lim}|c_k|^{1/k} = \lim_{k \to \infty} \frac{c_{k+1}}{c_k}$.

Cauchy-Riemann Equations: Let f(z) = u(z) + iv(z). Then the Cauchy-Riemann equations are: $u_x = v_y$ and $u_y = -v_x$ i.e. $f_y = if_x$, where z = x + iy.

Complex Differentiable: A function f(z) is complex differentiable if f_x and f_y exist in a neighborhood of z, are continuous at z, and satisfy the Cauchy-Riemann equations there.

Analytic: A function f is analytic at z if f is differentiable in a neighborhood of z. Similarly, f is analytic on a set S if f is differentiable at all points of some open set containing S. Also f is analytic iff f has a power series expansion.

Entire: A function which is analytic in the whole complex plane is entire.

Differentiability of Power Series: Suppose that $f(z) = \sum_{k=0}^{\infty} c_k z^k$ converges for |z| < R. Then f is infinitely differentiable for |z| < R.

Uniqueness Theorem for Power Series: Suppose $f(z) = \sum_{k=0}^{\infty} c_k z^k$ is zero at all points of a nonzero sequence $\{z_n\}$ which converges to zero. Then the power series is identically zero.

Theorem: Suppose Ω is a region, $f:\Omega\to\mathbb{C}$ is analytic, and f=u+iv, where u,v are real valued. Then f is constant iff u is constant iff v is constant iff f^2 is constant iff f is constant.

Properties of the Exponential: We have $|e^z| = e^x$, $e^{iy} = \cos y + i \sin y$, $e^z = \alpha$ has infinitely many solutions for $\alpha \neq 0$, and $e^z = e^x e^{iy}$.

Properties of sin and cos: We have $\sin z = \frac{1}{2i}(e^{iz} - e^{-iz})$, $\cos z = \frac{1}{2}(e^{iz} + e^{-iz})$.

Analytic Branch of the Logorithm: The function f is an analytic branch of $\log z$ in a

domain D if f is analytic in D and f is an inverse of the exponential function there i.e. $e^{f(z)} = z$. Also if $g(z) = f(z) + 2\pi ki$ for some k, then g is also an analytic branch of $\log z$.

Theorem: Suppose D is simply connected and $0 \notin D$. Choose $z_0 \in D$, fix a value of $\log z_0$, and set $f(z) = \int_{z_0}^z \frac{dw}{w} + \log z_0$. Then f is an analytic branch of $\log z$ in D.

3.2 Line Integrals

Piecewise Differentiable and Smooth Curves: Let z(t) = x(t) + iy(t) for $a \le t \le b$. The curve determined by z(t) is called piecewise differentiable and we set $\dot{z}(t) = x'(t) + iy'(t)$ if x and y are continuous on [a,b] and continuously differentiable on each subinterval $[a,x_1],[x_1,x_2],\ldots,[x_{n-1},b]$ for some partition of [a,b]. The curve is said to be smooth if, in addition, $\dot{z}(t) \ne 0$ except at a finite number of points.

Line Integrals: Let C be a smooth curve given by z(t) for $a \le t \le b$, and suppose f is continuous at all points z(t). Then the integral of f along C is $\int_C f(z) dz = \int_a^b f(z(t)) \dot{z}(t) dt$.

Properties of Line Integrals: Let C be a smooth curve given by z(t) for $a \le t \le b$, and suppose f is continuous at all points z(t). Let $\alpha \in \mathbb{C}$. Then $\int_{-C} f = -\int_{C} f$, $\int_{C} f + g = \int_{C} f + \int_{C} g$, and $\int_{C} \alpha f = \alpha \int_{C} f$.

M-L Formula: Suppose that C is a smooth curve of length L, f is continuous on C, and $|f| \leq M$ throughout C. Then $|\int_C f| \leq ML$.

3.3 Properties of Analytic Functions

Lemma: Suppose a is contained in the circle C_{ρ} , that is, C_{ρ} has center α , radius ρ , and $|a - \alpha| < \rho$. Then $\int_{C_{\rho}} \frac{dz}{z-a} = 2\pi i$.

Liouville's Theorem: A bounded entire function is constant.

Extended Liouville Theorem: If f is entire and if, for some integer $k \ge 0$, there exists positive constants A and B such that $|f(z)| \le A + B|z|^k$, then f is a polynomial of degree at most k.

Theorem: Suppose f is analytic in $D(\alpha, r)$. If the closed curve C and the point a are both contained in $D(\alpha, r)$, then $\int_C f \, dz = \int_C \frac{f(z) - f(a)}{z - a} \, dz = 0$.

Theorem: If f is analytic in $D(\alpha, r)$ and $a \in D(\alpha, r)$, then there exists F and G analytic in $D(\alpha, r)$ such that F'(z) = f(z) and $G'(z) = \frac{f(z) - f(a)}{z - a}$.

Cauchy Integral Formula: Suppose f is analytic in $D(\alpha, r)$, $0 < \rho < r$, and $|a - \alpha| < \rho$. Then $f(a) = \frac{1}{2\pi i} \int_{C_{\rho}} \frac{f(z)}{z-a} dz$, where $C_{\rho} = \alpha + \rho e^{i\theta}$ for $0 \le \theta \le 2\pi$.

Cauchy Inequalities: Let f be analytic in D(0,r). Then $\exists c_k$ such that $f(z) = \sum_{k=0}^{\infty} c_k z^k$ $\forall z \in D$ and $|c_k| \leq \frac{M(r)}{r^k}$, where $M(r) = \max_{|z|=r} |f(z)|$.

Theorem: If f is analytic in $D(\alpha, r)$, then $\exists c_k$ such that $f(z) = \sum_{k=0}^{\infty} c_k (z - \alpha)^k \ \forall z \in D(\alpha, r)$ and $c_k = \frac{f^{(k)}(\alpha)}{k!} = \frac{1}{2\pi i} \int_{C_o} \frac{f(z)}{(z-\alpha)^{k+1}} dz$.

Maximum-Modulus Theorem: A non-constant analytic function in a region D does not have any interior maximum points. For each $z \in D$ and $\delta > 0$ $\exists w \in D(z, \delta) \cap D$ such that |f(w)| > |f(z)|. If D is compact, then f assumes its max on the boundary of D.

Minimum-Modulus Theorem: If f is a non-constant analytic function in a region D, then no point $z \in D$ can be a relative minimum of f unless f(z) = 0.

Anti-Calculus Proposition: Suppose that f is analytic throughout a closed disk and assumes its max modulus at a boundary point α . Then $f(\alpha) \neq 0$ unless f is constant.

Open Mapping Theorem: The image of an open set under a nonconstant analytic mapping is an open set.

Schwarz Lemma: Suppose f is analytic in D(0,R) and $|f(z)| \leq M \ \forall z \in D(0,R)$ and f(0) = 0. Then $|f(z)| \leq \frac{M}{R}|z|$ and $|f'(0)| \leq \frac{M}{R}$ with equality only if $f(z) = e^{i\theta} \frac{M}{R} z$ for some $\theta \in \mathbb{R}$.

Morera's Theorem: Let f be a continuous function on a open set D. If $\int_{\Gamma} f(z) dz = 0$ whenever Γ is the boundary of a closed rectangle in D, then f is analytic on D.

Uniformly on Compacta: The sequence f_n converges uniformly on compacta if $f_n \to f$ uniformly $\forall K \subset D$, where K is compact and f_n , f are analytic in D.

Theorem: Suppose $\{f_n\}$ represents a sequence of functions analytic in an open domain D such that $f_n \to f$ uniformly on compacta, then f is analytic in D.

Theorem: Suppose f is continuous in an open set D and analytic there except (possibly) at the points of a line segment L. Then f is analytic throughout D.

Schwarz Reflection Principle: Suppose f is C-analytic in a region D that is contained in either the upper or lower half plane and whose boundary contains a segment L on the real axis, and suppose f is real for real z. Let $D^* = \{z : \overline{z} \in D\}$. Then we can define an analytic extension g of f to the region $D \cup L \cup D^*$ that is symmetric with respect to the real axis by setting

$$g(z) = \begin{cases} f(z), & z \in D \cup L, \\ \overline{f(\overline{z})}, & z \in D^*. \end{cases}$$

Corollary: If f is analytic in a region symmetric with respect to the real axis and if f is real-valued for all real z, then $f(z) = \overline{f(\overline{z})}$.

3.4 Singularities

Isolated Singularity: A function f is said to have an isolated singularity at z_0 if f is analytic in a deleted neighborhood D of z_0 , but not analytic at z_0 .

Removable Singularity: Suppose Suppose that f has an isolated singularity at z_0 . If there exists g analytic at z_0 such that f(z) = g(z) for all z in a deleted neighborhood of z_0 , then the singularity at z_0 is removable. Also, z_0 is a removable singularity of f iff $\lim_{z\to z_0}(z-z_0)f(z)=0$ iff f is bounded in a deleted neighborhood of z_0 .

Pole: Suppose that for $z \neq z_0$ f can be written in the form $f(z) = \frac{A(z)}{B(z)}$ where A and B are analytic at z_0 , $A(z_0) \neq 0$, and $B(z_0) = 0$. If B has a zero of order k at z_0 , then f has a pole of order k at z_0 . Also, f has a pole at z_0 iff $\lim_{z\to z_0} |f(z)| = \infty$ iff there exists k such that $\lim_{z\to z_0} (z-z_0)^k f(z) \neq 0$, but $\lim_{z\to z_0} (z-z_0)^{k+1} f(z) = 0$.

Essential Singularity: Suppose that f has an isolated singularity at z_0 . If the singularity is neither a removable singularity nor a pole, then the singularity is an essential singularity. Also, f has an essential singularity at z_0 iff $c_n \neq 0$ for some sequence $n \to -\infty$ where the c_n are the coefficients of the Laurent expansion of f centered at z_0 .

Casorati-Weierstrass Theorem: If f has an essential singularity at z_0 and if D is a deleted neighborhood of z_0 , then the range of f for $z \in D$ is dense in \mathbb{C} .

Theorem: Let $f(z) = \sum_{-\infty}^{\infty} a_k z^k$ be convergent in $D = \{z : R_1 < |z| < R_2\}$, where $R_2 = 1/\overline{\lim} |a_k|^{1/k}$ and $R_1 = \overline{\lim} |a_{-k}|^{1/k}$. If $R_1 < R_2$, D is an annulus and f is analytic in D.

Theorem (Laurent): If f is analytic in the annulus $A = \{z : R_1 < |z| < R_2\}$, then f has a Laurent expansion, $f(z) = \sum_{-\infty}^{\infty} a_k z^k$ in A i.e. there exists f_1 analytic in $D(0, R_2)$ and f_2 analytic in $D(0, 1/R_1)$ with $f_2(0) = 0$ and $f(z) = f_1(z) + f_2(z^{-1})$. Note that $f_1(z)$ is called the regular part and $f_2(z^{-1})$ is called the principle part. Also, $a_k = \frac{1}{2\pi i} \int_C \frac{f(w)}{w^{k+1}} dw$ with $C \subset A$.

3.5 Residue Theorem

Residue: If $f(z) = \sum_{-\infty}^{\infty} c_k (z - z_0)^k$ in a deleted neighborhood of z_0 , c_{-1} is called the residue of f at z_0 , denoted $c_{-1} = \text{Res}(f; z_0)$. Also, $\int_{\gamma} f = 2\pi i c_{-1}$.

Evaluation of Reidues I: If f has a pole of order k at z_0 , then $c_{-1} = \frac{1}{(k-1)!} \frac{d^{k-1}}{dz^{k-1}} [(z-z_0)^k f(z)]\Big|_{z=z_0}$. If f and g are analytic in D(a,r), f has a root of multiplicity n at a and g with multiplicity m at a and m > n, then f/g has a pole of order m-n at a and $Res(f/g;a) = \lim_{z\to a} \frac{1}{(m-n-1)!} \left(\frac{d}{dz}\right)^{m-n-1} \left[(z-a)^{m-n} \frac{f(z)}{g(z)}\right]$.

Evaluation of Reidues II: Let f have a simple pole at z_0 , and let g be analytic at z_0 . Then $Res_{z_0}(fg) = g(z_0)Res_{z_0}(f)$. Suppose $f(z_0) = 0$, but $f'(z_0) \neq 0$. Then 1/f has a pole of order 1 at z_0 and $Res_{z_0}(1/f) = 1/f'(z_0)$.

Winding Number: Let γ be a simple smooth closed curve and $a \in \mathbb{C}$ and $a \notin \gamma$. Then the winding number $\eta(\gamma, a) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z-a}$. Then if a is outside γ , $\eta(\gamma, a) = 0$. Otherwise the winding number is the number of times the curve γ circles around a in the counter-clockwise direction.

Cauchy's Residue Theorem: Suppose f is analytic in a simply connected domain except for isolated singularities at z_1, \ldots, z_m . Let γ be a simple closed curve not intersecting any of the z_i . Then $\int_{\gamma} f = 2\pi i \sum_{k=1}^{m} \eta(\gamma, z_k) Res(f; z_k)$.

Meromorphic: A function f is meromorphic in a domain D if f is analytic there except at isolated poles.

Principle of the Argument Theorem: Let Ω be a simply connected open set and f be meromorphic in Ω . Let γ be a regular simple closed contour in Ω . Let $n_z(\gamma, f) =$ the number of zeros of f inside γ and $n_p(\gamma, f) =$ the number of poles of f inside γ . Then $\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = n_z(\gamma, f) - n_p(\gamma, f).$

Rouche's Theorem: Suppose that f and g are meromorphic inside and on a regular closed curve and $|f(z)| > |g(z)| \ \forall z \in \gamma$. Then $n_z(\gamma, f) - n_p(\gamma, f) = n_z(\gamma, f + g) - n_p(\gamma, f + g)$.

Hurwitz's Theorem: Let $\{f_n\}$ be a sequence of non-vanishing analytic functions in a region D and suppose $f_n \to f$ uniformly on compact of D. Then either $f \equiv 0$ in D or $f(z) \neq 0 \ \forall z \in D$.

Theorem: Suppose $f_n \to f$ uniformly on compacta in a region D. If f_n is 1-1 in $D \ \forall n \ge 1$, then either f is constant or f is 1-1 in D.

Residue Application to Real Integrals I: Let P and Q be polynomials such that $Q(x) \neq 0$ and $\deg(Q) - \deg(P) \geq 2$. Let z_k be poles of P(z)/Q(z) such that $\operatorname{Im}(z_k) \geq 0$. Then $\int_{-\infty}^{\infty} \frac{P(z)}{Q(z)} dz = 2\pi i \sum_k \operatorname{Res}\left(\frac{P}{Q}; z_k\right)$.

Residue Application to Real Integrals II: Let $R(x) = \frac{P(x)}{Q(x)}$, where P and Q are polynomials and $Q(x) \neq 0$ (except perhaps at a zero of $\cos(x)$ or $\sin(x)$) and $\deg(Q) > \deg(P)$. Let z_k be poles of R(z) such that $\operatorname{Im}(z_k) \geq 0$. Then $\int_{-\infty}^{\infty} R(x) \cos(x) \, dx = \operatorname{Re}[2\pi i \sum_k \operatorname{Res}(R(z)e^{iz}; z_k)]$ and $\int_{-\infty}^{\infty} R(x) \sin(x) \, dx = \operatorname{Im}[2\pi i \sum_k \operatorname{Res}(R(z)e^{iz}; z_k)]$.

Residue Application to Real Integrals III: Let P and Q be polynomials such that $Q(x) \neq 0$ for $x \geq 0$ and $\deg(Q) - \deg(P) \geq 2$. Then $\int_0^\infty \frac{P(x)}{Q(x)} dx = -\sum_k Res\left(\frac{P}{Q}\log z; z_k\right)$, where the sum is over all poles of P(z)/Q(z).

3.6 Conformal Mappings

Möbius Transform: The Möbius Transform is given by $f(z) = \frac{az+b}{cz+d}$, where $ad - bc \neq 0$. These functions are also called fractional linear transformations.

Theorem: Every fractional linear transformation is a composition of dilations, translations, and inversions. Moreover, every fractional linear transformation maps circles and lines to circles and lines.

Locally 1-1: A function f is locally 1-1 at z_0 if for some $\delta > 0$ any any distinct $z_1, z_2 \in D_{\delta}(z_0)$, $f(z_1) \neq f(z_2)$. Also, f is locally 1-1 throughout a region D if f is locally 1-1 at every $z \in D$.

Conformal: A function is conformal if it preserves angles. More precisely, we say that a smooth complex-valued function is conformal at z_0 if whenever γ_0 and γ_1 are two curves terminating at z_0 with nonzero tangents, then the curves $f \circ \gamma_0$ and $f \circ \gamma_1$ have nonzero tangents at $f(z_0)$ and the angle from $(f \circ \gamma_0)'(z_0)$ to $(f \circ \gamma_1)'(z_0)$ is the same as the angle from $\gamma'_0(z_0)$ to $\gamma'_1(z_0)$.

Conformal Mapping: A conformal mapping of one domain D onto another V is a continuously differentiable function that is conformal at each point of D and that maps D one-to-one onto V.

Theorem: If f(z) is analytic at z_0 and $f'(z_0) \neq 0$, then f(z) is conformal and locally one-to-one at z_0 .

Bilinear Transformations: The class of bilinear transformations that are analytic in the unit disk and bounded there by one and is given by $B_{\alpha}(z) = \frac{z-\alpha}{1-\overline{\alpha}z}$ for $|\alpha| < 1$.

Lemma: The only automorphisms of the unit disk with f(0) = 0 are given by $f(z) = e^{i\theta}z$.

Theorem: The automorphisms of the unit disk are of the form $g(z) = e^{i\theta} \left(\frac{z - \alpha}{1 - \overline{\alpha}z} \right), |\alpha| < 1.$

Theorem: The conformal mappings h of the upper half-plane onto the unit disk are of the form $h(z) = e^{i\theta} \left(\frac{z-\alpha}{z-\overline{\alpha}}\right)$, $\operatorname{Im}(\alpha) > 0$.

Theorem: The automorphisms of the upper half-plane are of the form $f(z) = \frac{az+b}{cz+d}$ with $a, b, c, d \in \mathbb{R}$ and ad-bc>0.

Proposition: A bilinear transformation (other than the identity mapping) has at most two fixed points.

3.7 Other Useful Formulas

Calculations in \mathbb{C} :

$$\begin{split} \log z &= \ln|z| + i \mathrm{arg}(z) \\ a^z &= \exp(z \log a) \text{ if } a \in \mathbb{C} \setminus (-\infty, 0] \\ \text{if } \sqrt{a + bi} &= x + iy \text{, then } x = \pm \sqrt{\frac{a + \sqrt{a^2 + b^2}}{2}} \text{ and } y = \pm \sqrt{\frac{-a + \sqrt{a^2 + b^2}}{2}} \mathrm{sgn}(b) \end{split}$$

Binomial Formula: $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^n b^{n-k}$

Power Series Expansions:

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad \text{for } x \in (-1,1)$$

$$\sin(x) = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} \quad \text{for } x \in \mathbb{R}$$

$$\cos(x) = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n}}{(2n)!} \quad \text{for } x \in \mathbb{R}$$

$$\arctan(x) = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{2n+1} \quad \text{for } x \in [-1,1]$$

4 Topology

4.1 Set Theory

Images and Preimages: Let $f: X \to Y$, $A \subseteq X$, and $B \subseteq Y$. Then $f(A) = \{y \in Y : \exists a \in A \text{ s.t. } f(a) = y\} = \{f(a) : a \in A\}$ and $f^{-1}(B) = \{x \in X : f(x) \in B\}$.

Properties of Images: Let $f: X \to Y$ and $\{A_{\lambda}\} \subseteq \mathcal{P}(X)$. Then $f(\cup A_{\lambda}) = \cup f(A_{\lambda})$. If f is injective, then $f(\cup A_{\lambda}) = \cup f(A_{\lambda})$. If f is surjective, then $f(X - A_0) = Y - f(A_0)$.

Properties of Preimages: Let $f: X \to Y$ and $\{B_{\lambda}\} \subseteq \mathcal{P}(Y)$. Then $f^{-1}(\cup B_{\lambda}) = \cup f^{-1}(B_{\lambda})$, $f^{-1}(\cap B_{\lambda}) = \cap f^{-1}(B_{\lambda})$, and $f^{-1}(Y - B_0) = X - f^{-1}(B_0)$. Also, $f(f^{-1}(V)) \subseteq V$ with equality if f is surjective and $f^{-1}(f(U)) \supseteq U$ with equality if f is injective.

Equinumerous: Sets X and Y are equinumerous iff there exists a bijection from X to Y.

Inverse Function: When $f: X \to Y$ and $g: Y \to X$ satisfy $g \circ f = 1_X$ and $f \circ g = 1_Y$, then f and g are inverses functions. Also, f has an inverse only if f is a bijection. Note that if $V \subseteq Y$, then $f^{-1}(V) = g(V)$.

Finite Set: A set X is finite iff $\exists n \in \mathbb{N}$ and an injective function $X \to \{1, \dots, n\}$.

Countable Set: A set X is countable iff there exists an injective function $X \to \mathbb{N}$. A set X is countable iff there exists a surjective function $\mathbb{N} \to X$.

4.2 Topological Spaces and Continuous Functions

Topological Space: A topological space is a pair (X, \mathcal{J}) where X is a set and \mathcal{J} is a topology i.e. $\mathcal{J} \subseteq \mathcal{P}(X)$, $\emptyset, X \in \mathcal{J}$, if $A_{\lambda} \in \mathcal{J}$ then $\cup A_{\lambda} \in \mathcal{J}$, and if $A, B \in \mathcal{J}$ then $A \cap B \in \mathcal{J}$.

Interior: Let X be a space. For $A \subseteq X$, $\operatorname{Int}_X(A) = \bigcup \{U \subseteq^{op} X : U \subseteq A\}$.

Properties of the Interior: (1) $\operatorname{Int}_X(A) \subseteq^{op} X$, (2) $\operatorname{Int}_X(A) \subseteq A$, (3) if $U \subseteq^{op} X$ and $U \subseteq A$ then $U \subseteq \operatorname{Int}_X(A)$, (4) if $x \in X$ then $x \in \operatorname{Int}_X(A)$ iff $\exists U \subseteq^{op} X$ s.t. $x \in U \subseteq A$, (5) $A \subseteq^{op} X$ iff $\operatorname{Int}_X(A) = A$, (6) $\operatorname{Int}_X(\operatorname{Int}_X(A)) = \operatorname{Int}_X(A)$, and (7) $\operatorname{Int}_X(A \cap B) = \operatorname{Int}_X(A) \cap \operatorname{Int}_X(B)$.

Closure: Let $A \subseteq X$. Then $\operatorname{Cl}_X(A) = \bar{A} = \bigcap \{ F \subseteq^{cl} X : A \subseteq F \}$.

Properties of the Closure: (1) $\operatorname{Cl}_X(A) \subseteq^{cl} X$ and $A \subseteq \operatorname{Cl}_X(A)$, (2) if $A \subseteq F \subseteq^{cl} X$ then $\operatorname{Cl}_X(A) \subseteq F$, (3) given $x \in X$ $x \in \operatorname{Cl}_X(A)$ iff $U \cap A \neq \emptyset \ \forall U \subseteq^{op} X$ s.t. $x \in U$, (4) $A \subseteq^{cl} X$ iff $\operatorname{Cl}_X(A) = A$, (5) $\operatorname{Cl}_X(\operatorname{Cl}_X(A)) = \operatorname{Cl}_X(A)$, and (6) $\operatorname{Cl}_X(A \cup B) = \operatorname{Cl}_X(A) \cup \operatorname{Cl}_X(B)$.

Dense: A set D is dense in X iff $Cl_X(D) = X$ iff $D \cap U \neq \emptyset \ \forall U \subseteq^{op} X$.

Subspace Topology: Let $A \subseteq X$. Then the subspace topology on A is $\mathcal{J}_A = \{U \cap A : U \subseteq^{op} X\}$.

Metric Topology: The metric topology is the set of all subsets of X that are unions of open balls, usually denoted \mathcal{J}_d .

Proposition: For $U \subseteq X$, $U \in \mathcal{J}_d$ iff $\forall x \in U \exists \varepsilon > 0$ s.t. $B_{\varepsilon}^d(x) \subseteq U$.

Proposition: Let (X, d) be a metric space. Then $\{x \in X : d(x, A) = 0\} = \operatorname{Cl}_X(A)$, where $d(x, A) = \inf\{d(x, a) : a \in A\}$.

Subspace-Metric Topology: Let (X,d) be a metric space and $A \subseteq X$. Then $d_A = d|_{A \times A}$ and thus (A,d_A) is a metric space and $B^d_{\varepsilon}(x) \cap A = B^{d_A}_{\varepsilon}(x), x \in A$.

Equivalence of Metrics: Let d, d' be metrics on X, where $\mathcal{J}_d = \mathcal{J}_{d'}$, then d and d' are equivalent metrics. We then say that d and d' are topologically equivalent.

Proposition: Every metric space is topologically equivalent to a bounded metric space.

Continuity: A function $f: X \to Y$ is continuous iff $f(\operatorname{Cl}_X(A)) \subseteq \operatorname{Cl}_Y(f(A))$ for all $A \subseteq X$. The following are equivalent definitions of continuity: (1) whenever $x \in X$ and $f(x) \in V \subseteq^{op} Y$ then $\exists U \subseteq^{op} X$ s.t. $x \in U$ and $f(U) \subseteq V$, (2) whenever $V \subseteq^{op} Y$ then $f^{-1}(V) \subseteq^{op} X$, (3) whenever $k \subseteq^{cl} Y$ then $f^{-1}(K) \subseteq^{cl} X$, (4) whenever $x_n \to x$ in X then $f(x_n) \to f(x)$ in Y, and (5) if X, Y are metric spaces then $\forall x \in X, \forall \varepsilon > 0 \ \exists \delta > 0 \ \text{s.t.} \ f(B_{\delta}(x) \subseteq B_{\varepsilon}(f(x))$.

Convergence: Then $x_n \to x$ iff $\forall U \subseteq^{op} X$ s.t. $x \in U$ and $\exists N \in \mathbb{N}$ s.t. $x_n \in U \ \forall n \geq N$. If $x \in A, A \subseteq X$, then $x \in \operatorname{Cl}_X(A)$ iff $\exists \{a_n\} \subseteq A$ s.t. $a_n \to x$ in X.

4.3 Topological Properties

Homeomorphism: A homeomorphism is a continuous bijection with a continuous inverse. If $f: X \to Y$ is a homeomorphism, then X is homeomorphic to Y, denoted $X \approx Y$.

Topological Property: A property P of a space is a topological property if whenever X has P and $X \approx Y$, then Y has P. Some examples: metrizability, Hausdorffness, finiteness, countability, and second countability.

Hausdorff Space: Any two distinct elements have disjoint open neighborhoods in a Hausdorff space.

Theorem: (1) Metrizable spaces are Hausdorff. (2) A finite metric space is decrete. (3) A finite space that is not Hausdorff is not metrizable.

Theorem: The following are equivalent for a continuous bijection $f: X \to Y$: (1) f is a homeomorphism, (2) f is an open function, and (3) f is a closed function.

Basis for a Topology: A collection C is a basis for a topology on a space X if every open set in X is the union of elements of C.

Theorem: Let β be a collection of subsets of a set X. Then β is a basis for a topology on X iff (1) $\forall x \in X \exists B \in \beta$ s.t. $x \in B$ and (2) whenever $x \in B_1 \cap B_2$, where $B_1, B_2 \in \beta \exists B \in \beta$ s.t. $x \in B \subseteq B_1 \cap B_2$.

Second Countable: A space is second countable if it has a countable base, denoted 2°.

Separable Space: A space is separable if it has a countable, dense subset.

Theorem: Every 2° space is separable. Every separable metric space is 2° . Thus any separable space that is not 2° is not metrizable.

Theorem: Open subspaces of separable spaces and separable. The continuous image of a separable space is separable.

Theorem: Every subspace of 2° space is 2°. Second countability is invariant under continuous open surjections i.e. 2° is a topoloogical property.

Hereditary: A topological property is hereditary if it is inherited by all subspaces. Metrizability, 2°, Hausdorffness are all hereditary, but separability is not.

4.4 Quotient Spaces

Theorem: The collection $\mathcal{J} = \{V \subseteq Y : q^{-1}(V) \subseteq^{op} X\}$ is a topology on Y. If \mathcal{J}' is any topology on Y, then $q: X(Y, \mathcal{J}')$ is continuous iff $\mathcal{J}' \subseteq \mathcal{J}$.

Quotient Map: A function $q: X \to Y$ is a quotient map if q is surjective and $V \subseteq^{op} Y$ iff $q^{-1}(V) \subseteq^{op} X$ or for all $V \subseteq Y$, $q^{-1}(V) \subseteq^{op} X$ implies $V \subseteq^{op} Y$.

Quotient Space: In the case above, the topology on Y is the largest (finest) topology that makes q continuous. Then space Y is a quotient space of X.

Theorem: Let $q: X \to Y$ be a continuous surjection. Then q is a quotient map if any of the following conditions hold: (1) q is an open map, (2) q is a closed map, and (3) $\forall F \subseteq Y$, $q^{-1}(F) \subseteq^{cl} X$ implies $F \subseteq clY$.

Respects the Identifications: Let $q: X \to Y$, $f: X \to Z$ be functions. The function f respects the identifications of q if for $x, x' \in X$, q(x) = q(x') implies that f(x) = f(x').

Universal Mapping Property (UMP) for Quotient Spaces: Let $q: X \to Y$ be a quotient map and let $f: X \to Z$ be continuous. Then there exists a unique continuous function $F: Y \to Z$ s.t. $F \circ q = f$ iff f respects the identifications of q.

Theorem: If X is a closed subset of \mathbb{R}^n (euclidean topology) and X is bounded in the euclidean metric, then any continuous function from X to a Hausdorff space is a closed map.

Relation: Let X be a set. A relation on X is a subset, R, of $X \times X$. We write xRy whenever $(x,y) \in R$.

Equivalence Relation: An equivalence relation of X is a relation, \sim , on X that is reflexive, symmetric, and transitive.

Equivalence Class: Let \sim be an equivalence relation on X. Given $x \in X$, $[x]_{\sim} = \{y \in X : x \sim y\}$ is the equivalence class of x under \sim . We set $X/\sim = \{[x]_{\sim} : x \in X\} \subseteq \mathcal{P}(X)$.

Partition: A partition on a set X is a set Π of subsets of X such that $\forall x \in X \ \exists A \in \Pi$ such that $x \in A$ and if $A, B \in \Pi$ and $A \cap B \neq \emptyset$ then A = B.

Fundamental Theorem of Equivalence Relations: If \sim is an equivalence relation of X, then $X \sim$ is a partition of X. Conversely if Π is a partition of X, then by defining $x \sim_{\Pi} y$ iff $\exists A \in \Pi$ such that $x, y \in A$, we obtain an equivalence relation on X for which $X/\sim_{\Pi} = \Pi$.

4.5 Product Topology

Product Topology (on $X_1 \times X_2$): The product topology on $X_1 \times X_2$ is given by $\{U_1 \times U_2 : U_1 \subseteq^{op} X_1, U_2 \subseteq^{op} X_2\}$.

Product Set: Let \mathcal{A} be a set. Then $\prod_{\alpha \in \mathcal{A}} X_{\alpha} = \{ \sigma : \mathcal{A} \to \cup_{\alpha \in \mathcal{A}} X_{\alpha} : \sigma(\alpha) \in X_{\alpha} \, \forall \alpha \in \mathcal{A} \}.$

Projection Stuff: Let $\{X_{\alpha} : \alpha \in \mathcal{A}\}$ be given. Given $\beta \in \mathcal{A}$, we define $\rho_{\beta} : \Pi X_{\alpha} \to X_{\beta}$ by $\rho_{\beta}(\sigma) = \sigma(\beta)$. Then ρ_{β} is the β -projection on the product set. Given $\sigma \in \Pi X_{\alpha}$, $\rho_{\beta}(\sigma) = \sigma(\beta)$ is the β -coordinate of σ . The set X_{β} is the β -factor of ΠX_{α} .

Setup for UMP for Product Spaces: Let $\{X_{\alpha} : \alpha \in \mathcal{A}\}$ be an indexed set of nonempty sets. Let Y be a set. If $F: Y \to \Pi X_{\alpha}$ is a function, then for each $\beta \in \mathcal{A}$, $\rho_{\beta} \circ F$ is a function $Y \to X_{\beta}$. If we are given functions $f_{\beta}: Y \to X_{\beta} \ \forall \beta \in \mathcal{A}$, then there exists a unique function $F: Y \to \Pi X_{\alpha}$ such that $\rho_{\beta} \circ F = f_{\beta} \ \forall \beta \in \mathcal{A}$. The composites $\rho_{\beta} \circ F$ are called the coordinate functions of F.

Theorem: Let Σ be a family of subsets of a set X. Then $\mathcal{B}(\Sigma) = \{ \cap_n S_i : n \geq 0, S_i \in \Sigma \}$ is a basis for a topology $\mathcal{J}(\Sigma)$ on X such that (1) $\Sigma \subseteq \mathcal{J}(\Sigma)$, (2) $\Sigma \subseteq \mathcal{J}' =$ topology on X, then $\mathcal{J}(\Sigma) \subseteq \mathcal{J}'$. Then we say Σ is a sub-basis for $\mathcal{J}(\Sigma)$ and $\mathcal{J}(\Sigma)$ is the topology generated by Σ .

Product Topology: Let $\{X_{\alpha} : \alpha \in \mathcal{A}\}$ be an indexed family of nonempty spaces and $\rho_{\beta} : \Pi X_{\alpha} \to X_{\beta}, \ \beta \in \mathcal{A}$. The product topology on ΠX_{α} is the topology generated by $\{\rho_{\beta}^{-1}(U_{\beta}) : \beta \in \mathcal{A}, U_{\beta} \subseteq^{op} X_{\beta}\}$ with the basis $\{\cap^{n} \rho_{\beta_{i}}^{-1}(U_{\beta_{i}}) : n \geq 0, \beta_{i} \in \mathcal{A}, U_{\beta_{i}} \subseteq^{op} X_{\beta_{i}}\}$.

Theorem: With the above topology on ΠX_{α} , $\rho_{\beta} : \Pi X_{\alpha} \to X_{\beta}$ are continuous $\forall \beta \in \mathcal{A}$.

Theorem (UMP for product spaces): If Y is a space and we are given functions f_{β} : $Y \to X_{\beta} \ \forall \beta \in \mathcal{A}$, then there exists a unique continuous map $F = \{f_{\beta}\}: Y \to \Pi X_{\alpha}$ such that $\rho_{\beta} \circ F = f_{\beta} \ \forall \beta \in \mathcal{A}$ iff each f_{β} is continuous.

Continuity: A function is continuous iff pre-images of sub-basis open sets are open.

Proposition: Let $\sigma \in \Pi X_{\alpha}$ be fixed. Let $\alpha_0 \in \mathcal{A}$. Define $\lambda_{\alpha_0}^{\sigma} : X_{\alpha} \to \Pi X_{\alpha}$ by $\lambda_{\alpha_0}^{\sigma}(x)(\alpha) = x$ if $\alpha = \alpha_0$, $\sigma(\alpha)$ otherwise. Then $\lambda_{\alpha_0}^{\sigma}$ is a continuous injection. Moreover, it is a homeomorphism onto its image i.e. $X_{\alpha} \approx \lambda_{\alpha_0}^{\sigma}(X_{\alpha_0})$. We say $\lambda_{\alpha_0}^{\sigma}$ is an embedding.

Restricted in the β -coordinate: Let $G \subseteq \Pi X_{\alpha}$. The subset G is restricted in the β -coordinate if $\rho_{\beta}(G) \subsetneq X_{\beta}$.

Proposition: In the product topology on ΠX_{α} , an open set U can be restricted in at most finitely many coordinates.

Proposition: A product space ΠX_{α} is Hausdorff iff each factor is Hausdorff.

Proposition: If \mathcal{A} is countable and X_{α} is 2° (respectively separable) $\forall \alpha \in \mathcal{A}$, then ΠX_{α} is 2° (respectively separable).

Proposition: Assume that each X_{α} is metrizable and has more than one point and ΠX_{α} is metrizable, then \mathcal{A} is countable.

Theorem: Every separable metric space can be embedded in the Hilbert Cube. The Hilbert Cube is denote H and $H = \prod_{n=1}^{\infty} [0,1] = I^{\omega}$ with metric $d(x,y) = \sup_{n} \{\frac{|x_n - y_n|}{n} : n \in \mathbb{N}\}.$

Theorem: Consider $\prod_{n=1}^{\infty} X_n$. Let d_n be the metric on X_n . Define $\overline{d}_n(x,y) = \min\{d_n(x,y), 1\}$. Then define a metric d on $\prod_{n=1}^{\infty} X_n$ by $d(\sigma,\tau) = \sup\{\overline{d}_n(\sigma_n,\tau_n)/n : n \in \mathbb{N}\}$. This is a metric that determines the product metric.

Theorem: The metric topology and the product topology agree.

Corollary: A countable product of metrizable spaces is metrizable.

Lemma: For any metric space, (X, d), and any $x_0 \in X$, the function $d(\cdot, x_0) : X \to \mathbb{R}^{euclid}$ is continuous.

Properties of the Product Topology: 1) Countable products of 2° / separable / metrizable spaces are 2° / separable / metrizable. 2) UMP applies. 3) Every separable metric space embeds in I^{ω} .

Box Topology: The Box Topology is $\{\prod_{\alpha\in\mathcal{A}}U_{\alpha}:U_{\alpha}\subseteq^{op}X_{\alpha}\ \forall\alpha\in\mathcal{A}\}$. Note that the UMP does not apply and this topology is not metrizable.

4.6 Compactness

Open Cover: An open cover of a topological space X is a family \mathcal{U} of open subsets of X such that $X = \bigcup_{U \in \mathcal{U}} U$.

Compactness: A topological space is compact if every open cover of X has a finite subcover.

Finite Intersection Property (FIP): A family \mathcal{F} of subsets of X has this property if whenever $F_1, \ldots, F_n \in \mathcal{F}$, then $\bigcap_{i=1}^n F_i \neq \emptyset$.

Proposition: A space X is compact iff whenever \mathcal{F} is a family of closed sets of X have the FIP, then $\cap \mathcal{F} \neq \emptyset$.

Theorem: If $A \subseteq I$ is infinite, then A has an accumulation point in I.

Theorem: The continuous image of a compact space is compact.

Corollary: Compactness is topologically invariant.

Theorem: 1) A closed subspace of a compact space is compact. 2) A compact subspace of a Hausdorff space is closed.

Corollary: If $A \subseteq X$, and X is compact and Hausdorff, then A is compact iff $A \subseteq^{cl} X$.

Theorem: If $f: X \to Y$ is continuous, X is compact, and Y is Hausdorff, then f is a closed map.

Corollary: If $f: X \to Y$ is a continuous surjection from a compact space to a Hausdorff space, then f is an identification map i.e. $V \subseteq^{op} Y$ iff $f^{-1}(V) \subseteq^{op} X$.

Theorem: Suppose that X is a compact Hausdorff space. 1) If $A \subseteq^{cl} X$ and $x \in X - A$, then $\exists U, V \subseteq^{op} X$ such that $A \subseteq A$, $x \in V$, and $U \cap V = \emptyset$. 2) If $A, B \subseteq^{cl} X$ with $A \cap B = \emptyset$, then $\exists U, V \subseteq^{op} X$ such that $A \subseteq U$, $B \subseteq V$, and $U \cap V = \emptyset$.

Tychonoff's Theorem: Any product of compact spaces is compact.

Theorem: Let X be compact and Y be any space, then $\rho: X \times Y \to Y$ is a closed map.

Corollary (Tube Lemma): Let $A \subseteq Y$ and X be compact. If $X \times A \subseteq U \subseteq^{op} X \times Y$, then $\exists V \subseteq^{op} Y$ such that $X \times A \subseteq X \times V \subseteq U$.

Theorem: $X \times Y$ is compact iff X and Y are compact $(X, Y \neq \emptyset)$.

Heine-Borel Theorem: A subset A of euclidean n-space \mathbb{R}^n is compact iff $A \subseteq^{cl} \mathbb{R}^N$ and A is bounded in the euclidean metric.

Proposition: If two quotient maps make the same identifications, then the resulting quotient spaces are homeomorphic.

Sequentially Compact: If every equence in X has a convergent subsequence, then X is sequentially compact.

Limit Point: Let $A \subseteq X$. We say that $x \in X$ is a limit point (or accumulation point) of A if $x \in U \subseteq^{op} X$ implies that $U \cap (A - \{x\}) \neq \emptyset$. We denote the set of limit points of A by A', A' is also called the derived set of A.

5 Probability

5.1 Basic Measure Theory

Field: \mathcal{F}_0 is a field if (1) $\Omega \in \mathcal{F}_0$, (2) $A \in \mathcal{F}_0$ implies that $A^c \in \mathcal{F}_0$, and (3₀) $A, B \in \mathcal{F}_0$ implies that $A \cap B \in \mathcal{F}_0$.

 σ -field: \mathcal{F} is a σ -field if it satisfies (1) and (2) above and (3) $\{A_k\}_1^\infty \subseteq \mathcal{F}$ implies that $\cap A_k \in \mathcal{F}$.

Probability Measure: P is a probability measure if (1) $P(\Omega) = 1$, (2) $0 \le P(A) \le 1$ for all $A \in \mathcal{F}$, and (3) if $\{D_k\}_1^{\infty} \subseteq \mathcal{F}$ is a disjoint collection, then $P(\cup D_k) = \sum P(D_k)$.

Theorem: If P_0 is a probability measure on \mathcal{F}_0 , then

- i) For $A_n \nearrow A$, $\lim P_0(A_n) = P_0(A)$ (inner continuity).
- ii) For $B_n \setminus B$, $\lim P_0(B_n) = P_0(B)$ (outer continuity).
- iii) For $\{C_n : n \geq 1\} \subseteq \mathcal{F}_0$ with $\bigcup_{n \geq 1} C_n = C \in \mathcal{F}_0$, $P_0(C) \leq \sum P_0(C_n)$ (countable subadditivity).

Lemma: If P_0 satisfies (1), (2), and (3_0) on \mathcal{F}_0 then inner and outer continuity is equivalent to (3), countable additivity.

Caratheodory Extension Theorem: Suppose that P_0 is a probability measure on the field \mathcal{F}_0 over Ω . There exists a unique probability measure P on (Ω, \mathcal{F}) where $\mathcal{F} = \sigma(\mathcal{F}_0)$ with $P(A) = P_0(A)$ for all $A \in \mathcal{F}_0$.

 Π -System: \mathcal{P} is a π -system if $A, B \in \mathcal{P}$ imply that $A \cap B \in \mathcal{P}$.

Λ-System: \mathcal{L} is a λ-system if (i) $\Omega \in \mathcal{L}$, (ii) $A \in \mathcal{L}$ implies that $A^c \in \mathcal{L}$, (iii_λ) if $\{A_n : n \geq 1\} \subseteq \mathcal{L}$ with $A_k \cap A_j = \emptyset$ for $k \neq j$, then $\cup A_n \in \mathcal{L}$.

Theorem: Suppose that P and Q are both probability measures on $\sigma(P)$ with P being a π -system. If P(A) = Q(A) for all $A \in \mathcal{P}$, then P(A) = Q(A) for all $A \in \sigma(P)$.

Π-Λ **Theorem:** If \mathcal{P} is a π -system and \mathcal{L} is a λ -system, then $\mathcal{P} \subseteq \mathcal{L}$ implies that $\sigma(\mathcal{P}) \subseteq \mathcal{L}$.

Completeness of Probability Spaces: (Ω, \mathcal{F}, P) is a complete probability space iff for $A \in \mathcal{F}$ with P(A) = 0, then for $B \subseteq A$ we have $B \in \mathcal{F}$.

Limit Infinum: $\lim \inf E_n = \bigcup_{n=1}^{\infty} \cap_{k \geq n} E_k = \{ \omega \in \Omega : w \in E_k \text{ for all but finitely many } k \}$

Limit Supremum: $\limsup E_n = \bigcap_{n=1}^{\infty} \bigcup_{k \geq n} E_k = \{\omega \in \Omega : w \in E_k \text{ for infinitely many } k\} = [E_k \ i.o.]$

Proposition: We always have $\liminf E_n \subseteq \limsup E_n$. If $\liminf E_n = \limsup E_n$, then $\lim E_n = \liminf E_n = \limsup E_n$.

Theorem: $P(\liminf E_n) \le \liminf P(E_n) \le \limsup P(E_n) \le P(\limsup E_n)$.

First Borel-Cantelli Lemma: If $\sum_{n>1} P(A_n) < \infty$, then $P([A_n \ i.o.]) = 0$.

5.2 Independence

Independence of Two Sets: If $P(A \cap B) = P(A)P(B)$, then the sets A and B are independent.

Lemma: If A and B are independent, then $\sigma(A)$ and $\sigma(B)$ are independent.

Independence of Two Collections of Sets: Two collections of sets A_1 and A_2 are independent if any $A_1 \in A_1$ and $A_2 \in A_2$ are independent.

Independence of a Finite Collection of Sets: We have that A_1, A_2, \ldots, A_n are independent if $P(\bigcap_{j=1}^m A_{k_j}) = \prod_{j=1}^m P(A_{k_j})$ for any $1 \le k_1 < k_2 < \cdots < k_m \le n$ for $m \ge 2$.

Independence of a Finite Collection of Classes of Sets: We have that A_1, \ldots, A_n are independent if any $A_1 \in A_1, \ldots, A_n \in A_n$ are independent.

Independence of an Arbitrary Collection of Classes: Then $\{A_{\theta} : \theta \in \Theta\}$ is a collection of independent families of sets if $A_{\theta_i}, \dots, A_{\theta_n}$ is an independent list of families of sets for any distinct $\{\theta_1, \dots, \theta_n\} \subseteq \Theta$.

Theorem: If A_1, \ldots, A_n are independent π -systems, then $\sigma(A_1), \ldots, \sigma(A_n)$ are independent as well.

Corollary: If $\{A_{\theta} : \theta \in \Theta\}$ is a collection of independent π -systems, then $\{\sigma(A_{\theta}) : \theta \in \Theta\}$ is an independent collection as well.

Second Borel-Cantelli Lemma: If $\{A_n : n \ge 1\}$ are independent and $\sum_{n \ge 1} P(A_n) = \infty$, then $P([A_n \ i.o.]) = 1$.

Borel's Normal Number Theorem (Strong Law of Large Numbers): $\lambda(\{\omega : \lim \frac{1}{n} \sum_{k=1}^{n} d_k(\omega) = 1/2\}) = 1.$

5.3 Random Variables and Distributions

Random Variables: Let (Ω, \mathcal{F}, P) and (S, \mathcal{S}, P) be probability measure spaces. Then $X : \Omega \to S$ is a random variable if it is measurable i.e. if $X^{-1}(B) \in \mathcal{F}$ for all $B \in \mathcal{S}$.

Theorem: We have (Ω, \mathcal{F}, P) and (S, \mathcal{S}) . Suppose $X : \Omega \to S$ and for all $A \in \mathcal{A}, X^{-1}(A) \in \mathcal{F}$. If $\mathcal{S} = \sigma(\mathcal{A})$, then X is measurable \mathcal{F}/\mathcal{S} .

Sigma Field Generated by a Random Variable: If X is a r.v. then $\sigma(X)$ is the smallest sub- σ -field of \mathcal{F} that X is measurable. Then $\sigma(X) = \{X^{-1}(A) : A \in \mathcal{S}\}.$

Distribution Function: The distribution function of a real-valued r.v. X is $F_X(x) \equiv P(\{\omega : X(\omega) \leq x\}) = P(X^{-1}((-\infty, x]))$.

Proposition: If F be a distribution, then $\lim_{x\to-\infty} F(x) = 0$, $\lim_{x\to\infty} F(x) = 1$, and F is nondecreasing.

Simple Random Variable: Then X is a simple random variable if $X: \Omega \to \{a_1, \ldots, a_n\}$, $k < \infty$. Let $A_j = X^{-1}(\{a_j\})$. Then $X(x) = \sum_{j=1}^k a_j \mathbf{1}_{A_j}(x)$, so $\sigma(X) = \sigma(\{A_1, \ldots, A_k\})$.

Construction of a Convergent Sequence of Random Variables: Define a sequence of simple r.v.'s X_n as follows. For n = 1, 2, ... and $0 \le k \le 2^{2n} - 1$, let

$$E_n^k = X^{-1}((k2^{-n}, (k+1)2^{-n}))$$
 , $\tilde{E}_n^k = X^{-1}((-(k+1)2^{-n}, -k2^{-n}))$

and

$$G_n = X^{-1}((2^n, \infty])$$
 and $\tilde{G}_n = X^{-1}((-\infty, -2^n])$

and define

$$X_n = \sum_{k=0}^{2^{2n}-1} k 2^{-n} \chi_{E_n^k} - k 2^{-n} \chi_{\tilde{E}_n^k} + 2^n \chi_{F_n} - 2^n \chi_{\tilde{F}_n}.$$

Then X_n is a sequence of simple r.v.'s such that $X_n \to X$ pointwise and $0 \le |X_1| \le |X_2| \le \cdots \le |X|$.

Theorem: Let Y be a \mathbb{R}^d valued r.v. on (Ω, \mathcal{F}, P) . A real-valued r.v. X is measurable with respect to $\sigma(Y)$ iff there exists a measurable function $g : \mathbb{R}^d \to \mathbb{R}$ with X = g(Y).

Proposition: Then F is a distribution iff (i) $\lim_{x\to\infty} F(x) = 1$, $\lim_{x\to-\infty} F(x) = 0$, (ii) F is non-decreasing, and (iii) F is a cadlag function.

Theorem A: If G is a distribution function on \mathbb{R} , then there exists, on some probability space, a r.v. with distribution function G.

Theorem B: If G is a distribution function on \mathbb{R} , then there exists on $(\mathbb{R}, \mathcal{B})$ a probability measure Q such that $Q((-\infty, x]) = G(x)$. Then the r.v. $X : \mathbb{R} \to \mathbb{R}$, given by X(x) = x has distribution function G.

Theorem C: There exists a r.v. X defined on $(\Omega, \mathcal{F}, P) = ((0, 1], \mathcal{B}, \lambda)$ which has distribution function G.

Levy Distance: The Levy distance d(F,G) between two distribution functions is given by $d(F,G) = \inf\{\varepsilon : G(x-\varepsilon) - \varepsilon \le F(x) \le G(x+\varepsilon) + \varepsilon \text{ for all } x \in \mathbb{R}\}.$

Theorem: Suppose that $F: \mathbb{R}^n \to [0,1]$ satisfies (i) $\lim_{\vec{x} \nearrow \infty} F(\vec{x}) = 1$, $\lim_{\vec{x} \searrow -\infty} F(\vec{x}) = 0$, (ii) $\Delta F(\vec{x}, \vec{y}) = \sum_{2^n \text{ verticies, } \vec{v}} F(\vec{v}) (-1)^{\sum_{k=1}^n \mathbf{1}_{[v_k = x_k]}}$, and (iii) $\lim_{y_k \searrow x_k} F(\vec{y}) = F(\vec{x})$, $\lim_{y \nearrow x} F(\vec{y})$ exists. Then there exists a unique measure μ on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ with $\mu((x_1, y_1] \times \cdots \times (x_n, y_n]) = \Delta F(\vec{x}, \vec{y})$.

Corollary: If f is a distribution function on \mathbb{R}^n , then there exists a probability measure P on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ and a r.v. $\vec{X} : \mathbb{R}^n \to \mathbb{R}^n$ such that $P(\vec{x} \in (-\infty, x_1] \times \cdots \times (-\infty, x_n]) = F_X(\vec{x})$.

Probability Measure Induced by a Distribution: Let $X: \Omega \to \mathbb{R}$ be a real-valued r.v. measurable \mathcal{F}/\mathcal{B} . This map induces a probability measure μ on \mathbb{R} where $\mu((-\infty, x]) = \mu_F((-\infty, x]) = F_X(x) = P(X \le x)$. Note that $\mu(B) = P(X^{-1}(B)) = PX^{-1}(B) = P_{X^{-1}}(B)$.

Extension Theorem: Suppose that the sequence of probability spaces $\{(\mathbb{R}^n, \mathcal{B}_n, P_n) : n \geq 1\}$ satisfies $P_{n+1}(B_n \times \mathbb{R}) = P_n(B_n)$ for any $B_n \in \mathcal{B}_n$, $n \geq 1$. Then there exists a unique probability measure P on $(\mathbb{R}^{\infty}, \mathcal{B}_{\infty})$ with $P(\{x : (x_1, \dots, x_n) \in B_n\}) = P_n(B_n)$ for any $B_n \in \mathcal{B}_n$, $n \geq 1$.

Independent Random Variables: Random variables X and Y defined on a common probability space (Ω, \mathcal{F}, P) are independent iff $\sigma(X)$ and $\sigma(Y)$ are independent i.e. $P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$.

Independence of an Arbitrary Collection of Random Variables: The collection $\{X_{\theta}: \theta \in \Theta\}$ (defined on (Ω, \mathcal{F}, P)) is a collection of independent r.v.'s iff $\{\sigma(X_{\theta}): \theta \in \Theta\}$ is a collection of independent σ -fields.

Corollary: A sequence of real-valued r.v.'s defined on a common probability space (Ω, \mathcal{F}, P) are independent iff $P(\cap_{k=1}^n X_k^{-1}(B_k)) = \prod_{k=1}^n P(X_k^{-1}(B_k))$ for $B_k \in \mathcal{B}$, $1 \le k \le n$, $n \ge 1$.

Theorem 20.2: Suppose that $\{X_{ij}: i, j \geq 1\}$ is an array of independent r.v.'s. Define $\mathcal{F}_i = \sigma(\{X_{ij}: j \geq 1\})$ for $i \geq 1$. Then $\{\mathcal{F}_i: i \geq 1\}$ is an independent list of σ -fields.

Theorem 20.4: For any sequence $\{\mu_n : n \geq 1\}$ of probability measures on $(\mathbb{R}, \mathcal{B})$, there exists on some probability space (Ω, \mathcal{F}, P) a sequence of independent r.v.'s $\{X_n : n \geq 1\}$ such that X_n has distribution μ_n .

5.4 Convergence in Probability and Mean

Almost Surely Convergence: $X_n \to X$ almost surely iff $\lim X_n(\omega) = X(\omega)$ for all $\omega \in \Lambda$ where $P(\Lambda) = 1$.

Proposition: Let $\{X_n : n \geq 1\}$, X be defined on (Ω, \mathcal{F}, P) and for $\varepsilon > 0$, set $B_n(\varepsilon) = [\omega : |X_k - X| \geq \varepsilon \text{ for some } k \geq n]$. Then $X_n \to X$ a.s. P iff $\lim P(B_n(\varepsilon)) = 0$ for all $\varepsilon > 0$.

Proposition: $X_n \to X$ a.s. iff $P([B_n(\varepsilon) i.o.]) = 0$ for all $\varepsilon > 0$.

Convergence in Probability: X_n converges in probability to X iff for all $\varepsilon > 0$, $\lim P(|X_n - X| \ge \varepsilon) = 0$.

Theorem 20.5: Almost surely convergence implies convergence in probability. If $X_n \to X$ in probability, then there exists a subsequence $\{X_{n_k}\}_1^{\infty}$ such that $X_{n_k} \to X$ a.s.

Relate to Real Analysis: Almost surely convergence is convergence a.e. and convergence in probability is convergence in measure.

Expectation of a Random Variable: The expectation of a real-valued r.v. is $EX = \int_{\Omega} X(\omega) dP(\omega)$.

Fatou's Lemma: If $P(X_n \ge 0) = 1$, then $E \liminf X_n \le \liminf E X_n$.

Monotone Convergence Theorem: If $P(X_n \ge 0) = 1$ and $X_n \le X_{n+1}$ a.s. P with $X_n \nearrow X$ a.s., then $\lim EX_n = EX$, provided that $X \in L^1$.

Dominated Convergence Theorem: If $X_n \to X$ a.s. and $|X_n| \le Y$ a.s. P with $Y \in L^1$, then $\lim EX_n = EX$. Can replace $X_n \to X$ a.s. with convergence in probability.

Change of Variable: $(\Omega, \mathcal{F}, P), T: \Omega \to S$ is (S, \mathcal{S}) measurable gives $(S, \mathcal{S}, PT^{-1})$ where $PT^{-1}(C) = P(T^{-1}(C))$. Let $X: S \to \mathbb{R}$. Then $E(X \circ T) = \int_{\Omega} X(T(\omega)) dP(\omega) = \int_{S} X(s) dPT^{-1}(s)$.

Convergence in Mean: X_n converges to X in r-th mean (in L^r) if $E|X_n-X|^r\to 0$.

Proposition: If $X_n \to X$ in L^r for r > 0, then $X_n \to X$ in probability.

Markov's Inequality: If $P(Y \ge 0) = 1$, then for all a > 0, $P(Y \ge a) \le EY/a$.

Product Measure: Measures are σ -finite, $(\Omega, \mathcal{F}, \pi)$, $\Omega = \mathbb{X} \times \mathbb{Y}$, $\omega = (x, y)$, and $\pi = \mu \times \nu$ where $(\mathbb{X}, \mathcal{X}, \mu)$ and $(\mathbb{Y}, \mathcal{Y}, \nu)$ are both measure spaces. Then π is a product measure if $\pi(A \times B) = \mu(A)\nu(B)$ for $A \in \mathcal{X}$ and $B \in \mathcal{Y}$.

Fubini-Tonelli Theorem: If $f \in L^1$, then $\int_{\Omega} f(x,y) d\pi(x,y) = \int_{\mathbb{X}} \int_{\mathbb{Y}} f(x,y) d\nu(y) d\mu(x) = \int_{\mathbb{Y}} \int_{\mathbb{X}} f(x,y) d\mu(x) d\nu(y)$ and each inner integral is finite a.e.

Proposition: If $P(Y \ge 0) = 1$, then $EY = \int_0^\infty 1 - F_Y(y) d\lambda(y)$.

Density Measures: Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, $f: X \to [0, \infty)$ be measurable, integrable, then $\nu(A) \equiv \int_A f(\omega) d\mu(\omega)$ is a finite measure and f is called the density of ν with respect to μ .

Theorem: With notation as above. For all ν -integrable g, $\int_{\Omega} g(\omega) d\nu(\omega) = \int_{\Omega} g(\omega) f(\omega) d\mu(\omega)$.

Variance: The variance of X is $Var(X) = E[(X - EX)^2]$.

Covariance: The covariance of X and Y is $Cov(X,Y) = E((X-EX)(Y-EY)) = E(XY) - \mu\nu$ where $\mu = EX$ and $\nu = EY$.

Cauchy-Schwartz Estimates: $E|XY| \leq \sqrt{EX^2}\sqrt{EY^2}$ and $|Cov(X,Y)| \leq \sqrt{Var(X)}\sqrt{Var(Y)}$ provided the right sides are finite.

Proposition: If X and Y are independent L^1 r.v.'s, then $E(XY) = EX \cdot EY$ and Cov(X, Y) = 0.

Proposition 2: X and Y are independent iff for all $g, h : \mathbb{R} \to \mathbb{R}$ in L^1 , $E(g(X)h(Y)) = E(g(X)) \cdot E(h(Y))$.

Proposition ∞ : $\{X_k : k \geq 1\}$ is a sequence of independent r.v.'s iff $E(\prod_{k=1}^N g_k(X_{i_k})) = \prod_{k=1}^N E(g_k(X_{i_k}))$ for all $N < \infty$, $i_1 < i_2 < \cdots < i_N$.

Corollary 2: If X and Y are independent L^2 r.v.'s, then Var(X+Y) = Var(X) + 2Cov(X,Y) + Var(Y) = Var(X) + Var(Y). This generalizes to a finite sum of r.v's.

Corollary (Weak Law of Large Numbers): Suppose $\{X_k : k \geq 1\}$ are independent L^2 r.v.'s with $EX_k = \mu$ and $Var(X_k) \leq \sigma^2 < \infty$ for all $k \geq 1$. Then $P(|\frac{1}{n}\sum^n X_k - \mu| \geq \varepsilon) \to 0$ i.e. $\frac{1}{n}\sum^n X_k \to \mu$ in probability.

Chebyshev's Inequality: If Z is such that $EZ = \mu$, $Var(Z) = \sigma^2$, then for all b > 0, $P(|Z - \mu| \ge b) \le Var(Z)/b^2 = (\sigma/b)^2$.

Strong Law of Large Numbers: Suppose $\{X_n\}_1^{\infty} \subseteq L^1$ is a sequence of iid random variables such that $EX_n = \mu$. Then $\bar{X}_n = \frac{1}{n} \sum_{k=1}^n X_k \to \mu$ a.s.

Kolmogorov's Maximal Inequality: Let $\{X_1, \ldots, X_n\}$ be independent r.v.'s with $EX_k = 0$, $Var(X_k) < \infty$ for $1 \le k \le n$. Then for all $\alpha > 0$, $P(\max_{1 \le m \le n} |\sum_{1}^{m} X_k| \ge \alpha) \le Var(\sum_{1}^{n} X_k)/\alpha^2$.

Convergence of Random Series (Thm 22.6): If $\{X_k\}_1^{\infty}$ are independent with $EX_k = 0$ and $VarX_k < \infty$ for $k \ge 1$ and $\sum_{k \ge 1} VarX_k < \infty$, then S_n converges a.s. to $S = \sum_{k \ge 1} X_k$.

Theorem: If $\{X_k\}_{1}^{\infty}$ is a sequence of independent r.v.'s and $S_n = \sum_{k=1}^{n} X_k$ converges in probability, then $S_n \to S$ a.s..

Maximal Inequality: Suppose that $\{X_k\}_1^n$ is a sequence of independent r.v.'s. Then for any $\alpha > 0$, $P(\max_{1 \le k \le n} S_n \ge 3\alpha) \le 3\max_{1 \le k \le n} P(|S_k| \ge \alpha) \le 3Var(S_n)/\alpha_2$.

Kronecker's Lemma: Let $\{x_k\}_1^{\infty}$ be a sequence of real numbers and $\{a_k\}_1^{\infty}$ be an increasing sequence of positive real numbers such that $a_k \nearrow \infty$. If $\sum_{n\geq 1} x_n/a_n$ converges, then $\frac{1}{a_n} \sum_{k=1}^n x_k \to 0$.

Corollary: Let $\{Y_k\}_1^{\infty}$ be iid r.v.'s with mean zero and a common variance σ^2 , then $\frac{1}{n^{1/2+\varepsilon}}\sum_{k=1}^n Y_k \to 0$ a.s.

Corollary: If $\sum 1/a_k^2 < \infty$, then $1/a_n \sum_{k=1}^n Y_k \to 0$ a.s. Let $a_k = \sqrt{k} \ln(k)$, $k \ge 2$, then $\sum 1/a_k^2 < \infty$ and $1/a_n \sum_{k=1}^n Y_k \to 0$ a.s.

Law of Iterated Logarithms (LIL): We have that $P(\limsup_n 1/(\sigma\sqrt{2n\ln(\ln n)})\sum_{k=1}^n Y_k = 1) = 1$, $P(\limsup_n 1/(\sigma\sqrt{2n\ln(\ln n)})\sum_{k=1}^n Y_k = -1) = 1$, so the limit points of $1/(\sigma\sqrt{2n\ln(\ln n)})\sum_{k=1}^n Y_k \in [-1,1]$.

5.5 Weak and Distribution Convergence

Convergence in Distribution: We say Y_n converges in distribution to Y, write $Y_n \to^d Y$, if $F_{Y_n}(y) \to F_Y(y)$ for all y such that P(Y = y) = 0. Note that $F_{Y_n} \to F_Y$ iff $d(F_{Y_n}, F) \to 0$, where $d(\cdot, \cdot)$ is the Levy distance.

Theorem: Probability measures μ and ν on (S, \mathcal{S}) are the same iff $\int_S f(s) d\mu(s) = \int_S f(s) d\nu(s)$ for all bounded and continuous $f: S \to \mathbb{R}$.

Weak Convergence of Probability Measures: Let $\{\mu_n\}_1^{\infty}$, μ be probability measures on (S, \mathcal{S}) . We say that μ_n converges weakly to μ , write $\mu_n \to^w \mu$, if $\int f d\mu_n \to \int f d\mu$ for all bounded and continuous $f: S \to \mathbb{R}$.

Theorem: Let $S = \mathbb{R}$, $S = \mathcal{B}(\mathbb{R})$. Then $X_n \to^d X$ iff $P_{X_n^{-1}} \to P_{X^{-1}}$, where $P_{Y^{-1}}(A) = P(Y \in A)$.

Theorem: $X_n \to^d X$ iff $E[g(X_n)] \to E[g(X)]$ for all bounded and continuous $g: \mathbb{R} \to \mathbb{R}$.

Lemma: For all $\varepsilon > 0$ there exists M_{ε} and N_{ε} such that for all $n \geq N_{\varepsilon}$, $P(|X_n| > M_{\varepsilon}) < \varepsilon$.

Theorem: $X_n \to^p X$ implies that $X_n \to^d X$.

Skorohod's Theorem: If $X_n \to^d X$, then there exists some probability space with \tilde{X}_n , \tilde{X} defined on it with $\tilde{X}_n =^d X_n$, $\tilde{X} =^d X$ and $\tilde{X}_n \to \tilde{X}$ a.s..

Continuous Mapping Theorem: Suppose $h : \mathbb{R} \to \mathbb{R}$ is measurable. Let $D_h = \{x \in \mathbb{R} : h \text{ is not continuous at } x\}$. If $X_n \to^d X$ and $P(X \in D_h) = 0$, then $h(X_n) \to^d h(X)$.

Corollary: If $X_n \to^d a$ and h is continuous at x = a, then $h(X_n) \to^p h(a)$.

Portmanteau Theorem: Let $\{X_n\}_1^{\infty}$, X be real valued r.v.'s with induced probability measures $\{\mu_n\}_1^{\infty}$, μ . The following are equivalent. (1) $\mu_n \to^w \mu$, (2) $\mu_n(A) \to \mu(A)$ for all A such that $\mu(\partial A) = 0$, and (3) $X_n \to^d X$.

Theorem: Let $M_n = \max\{X_1, \dots, X_n\}$. Suppose that for some $\alpha > 0 \lim_{x \to \infty} x^{\alpha}(1 - F(x)) = c > 0$, then $Y_n = \frac{M_n}{c_n^{1/\alpha}} \to^d Y$ with distribution function H i.e. $H(y) = e^{-y^{-\alpha}}$ for y > 0 and 0 for $y \ge 0$.

Portmanteau Theorem II: The following are equivalent. (1) $\mu_n \to^w \mu$, (2) $\mu_n(A) \to \mu(A)$ for all A such that $\mu(\partial A) = 0$, (3) $\limsup_n \mu_n(F) \leq \mu(F)$ for all $F \in \mathcal{S}$ closed, and (4) $\liminf_n \mu_n(G) \geq \mu(G)$ for all $G \in \mathcal{S}$ open.

5.6 Tightness and Weak Convergence

Tightness: A sequence of probability measures $\{\mu_n\}_1^{\infty}$ on the metric space (S, ρ) is said to be tight if for each $\varepsilon > 0$ there exists a compact set M_{ε} such that $\mu_n(M_{\varepsilon}) > 1 - \varepsilon$ for all $n \ge 1$.

Lemma: If $\mu_n \to^w \mu_0$, then $\{\mu_n\}_1^\infty$ is tight.

Vague Convergence: We say that ν_n converges vaguely to ν , write $\nu_n \to^{\nu} \nu$, if $\int g \, d\nu_n \to \int g \, d\nu$ for all continuous and bounded g that vanish at $\pm \infty$.

Lemma: If $\{\mu_n\}_1^{\infty}$ is tight and $\lim \mu_n((-\infty, x]) = G(x)$ at all continuity points of G, where G is nondecreasing and cadlag, then there exists a probability measure μ such that $\mu_n \to^w \mu$.

Theorem: If $\{\mu_n\}_1^{\infty}$ is tight, then there exists a probability measure μ and a subsequence $\mu_{n_k} \to^w \mu$.

Prohorov's Theorem: $\{\mu_{\alpha} : \alpha \in A\}$ is tight iff each subsequence has a weakly convergent subsequence.

Helly's Selection Theorem: For any sequence of distribution functions there exists a function F that is nondecreasing and cadlag with $F_{n_i}(x) \to F(x)$ for all continuity points of F.

Corollary: If $\{\mu_n\}_1^{\infty}$ is tight, and each weakly convergent subsequence converges weakly to a given μ , then $\mu_n \to^w \mu$.

5.7 Characteristic Functions

Characteristic Functions: We define $\varphi_X(t) = E[e^{itX}] = \int e^{itx} d\mu(x)$. Note that $\varphi(0) = 1$, $|\varphi(t)| \leq 1$, φ is uniformly continuous, $\varphi(-t) = \overline{\varphi(t)}$, $\varphi_{aX+b}(t) = e^{itb}\varphi_X(at)$, and $\varphi_{X+Y}(t) = \varphi_X(t)\varphi_Y(t)$ for X,Y independent.

Theorem: $\varphi_X(t) = \varphi_Y(t)$ for all $t \in \mathbb{R}$ iff $X = {}^d Y$ and $\int e^{itx} d\mu(x) = \int e^{itx} d\nu(x)$ for all $t \in \mathbb{R}$ iff $\mu = \nu$.

Theorem: There is a unique correspondence between a probability measure μ and it characteristic function.

Uniqueness Theorem: The characteristic function, $\varphi_X(t)$, of X uniquely determines the distribution of X.

Inversion Theorem: If P(X = a) = P(X = b) = 0 and $\varphi_X \in L^1$, then

$$F_X(b) - F_X(a) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{i}{s} (e^{-isb} - e^{-isa}) \varphi_X(s) ds.$$

Corollary: If $\varphi \in L^1$, then F_X is differentiable and

$$F_X'(x) = f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \varphi_X(t) dt.$$

Lemma: For r > 0 and take X to be a r.v. with characteristic function φ , then $\frac{1}{r} \int_{-r}^{r} 1 - \varphi(t) dt \ge P(|X| > \frac{2}{r})$.

Continuity Theorem: $X_n \to^d X$ iff $\varphi_{X_n}(t) \to \varphi_X(t)$ for all $t \in \mathbb{R}$.

Binomial Central Limit Theorem: Let $\{Y_k : k \ge 1\}$ be 0,1 symmetric Bernoulli r.v.'s and $P(Y_k = 0) = P(Y_k = 1) = \frac{1}{2}$. Let $\{S_n : n \ge 1\}$ be a sequence of binomial r.v.'s defined by $S_n \sum_{k=1}^n Y_k$. Then $P(S_n = k) = \binom{n}{k} 2^{-n}$, $E[S_n] = \frac{n}{2}$, and $Var(S_n) = n(\frac{1}{2})^2$.

Corollary: If $\{\varphi_n : n \geq 1\}$ is a sequence of characteristic functions with $\varphi_n(t) \to \theta(t)$ for all $t \in \mathbb{R}$ with θ being continuous at t = 0, then θ is a characteristic function and $X_n \to {}^d Y$ where

 $\varphi_Y(t) = \theta(t).$

Corollary: Suppose $\{\mu_n : n \geq 1\}$ is tight and $\varphi_{X_n}(t) \to \psi(t)$. Then $\psi(t) = \varphi_Y(t)$ for some Y with $X_n \to^d Y$.

5.8 Central Limit Theorem

Lemma p: If $X \in L^p$, then $\varphi_X^{(p)}(t)$ exists for all $t \in \mathbb{R}$ and $\varphi_X^{(p)}(t) = i^p E[X^p e^{itX}]$.

Corollary: If $X \in L^p$ for all $p \ge 1$, then $\varphi_X(t) = \sum_{k \ge 0} \frac{i^k t^k E[X^K]}{k!}$.

Lemma: If $X \in L^2$, then $|\varphi_X(t) - (1 + itE[X] - \frac{t^2 E[X^2]}{2}| \le E[\min(t^2 X^2, \frac{|tX|^3}{3!})]$.

Corollary: If Z is a standard normal r.v., then $|e^{-t^2/2} - (1 - t^2/2)| \le \frac{\sqrt{2}}{3\sqrt{\pi}}|t|^3$.

Lemma: If $\{w_k : 1 \le k \le m\}$ and $\{z_k : 1 \le k \le m\}$ are complex numbers such that $|w_k| leq 1$ and $|z_k| \le 1$ for k = 1, ..., m, then $|\prod_{k=1}^m z_k - \prod_{k=1}^m w_k| \le \sum_{k=1}^m |z_k - w_k|$.

Lemma: If $\{\sigma_{n,k}: 1 \leq k \leq k_n\}$ are nonnegative with $\sum_{k=1}^{k_n} \sigma_{n,k}^2 = 1$, then

$$\left| e^{-t^2/2} - \prod_{k=1}^{k_n} \left(1 - \frac{t^2 \sigma_{n,k}^2}{2} \right) \right| \le \frac{\sqrt{2}|t|^3}{3\sqrt{\pi}} \max_{1 \le k \le k_n} \sigma_{n,k}.$$

Lindeberg's CLT: For each n let $\{X_{n,k}: 1 \le k \le k_n\}$ be a sequence of independent r.v.'s with $EX_{n,k} = 0$, $Var(X_{n,k}) = \sigma_{n,k}^2$. Let $s_n^2 = \sum_{k=1}^{k_n} \sigma_{n,k}^2$ and assume that for any $\varepsilon > 0$ Lindeberg's condition is satisfied:

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{k_n} X_{n,k}^2 \mathbf{1}_{[|X_{n,k}| > \varepsilon s_n]}}{s_n^2} = 0.$$

Then $\frac{1}{s_n} \sum_{k=1}^{k_n} X_{n,k} \to^d Z$.

Feller's Theorem: Suppose that $\{X_{n,k}: 1 \leq k \leq k_n\}$ are independent with $E[X_{n,k}] = 0$, $Var(X_{n,k}) = \sigma_{n,k}^2 < \infty$. Let $s_n^2 = \sum_{k=1}^{k_n} \sigma_{n,k}^2$. If $\frac{1}{s_n} \sum_{k=1}^{k_n} X_{n,k} \to^d Z$ and $\max_{1 \leq k \leq k_n} P(|X_{n,k}| > \varepsilon s_n) \to 0$, then the Lindeberg Condition holds.

Same Type: If Y = aX + b for a > 0, $b \in \mathbb{R}$ (equivalently $F_Y(y) = F_X(\frac{y-b}{a})$ or $\varphi_Y(t) = e^{itb}\varphi_X(at)$) then we say that X and Y are of the same type.

Stable Distribution: Let $\{X_k : k \ge 1\}$ be iid. If $S_n = \sum_{k=1}^n X_k$ is of the same type as X_1 for all $n \ge 1$, then we say that X_1 has a stable distribution.

Theorem: If X is a symmetric, stable, nondegenerate r.v., then $\varphi_X(t) = e^{-c|t|^{\alpha}}$ for some c > 0 and $\alpha \in (0, 2]$.

Lemma: If $\alpha > 2$, then $e^{-c|t|^{\alpha}}$ is not a characteristic function.

Levy's Theorem: If $\{X_k : k \ge 1\}$ is iid and there exists $a_n > 0$, $b_n \in \mathbb{R}$ such that $\frac{S_n - b_n}{a_n} \to^d Y$, then Y is a stable r.v..

Corollary 1: If X is a symmetric standard r.v., then $\frac{S_n}{n^{1/\alpha}} = dX$.

Corollary 2: If X is stable, then $a_n = n^{1/\alpha}$.

Lemma 1: If $\{(X_n, Y_n) : n \ge 1\}$ with X_n , Y_n independent for each n, $X_n \to^d X$, $Y_n \to^d Y$, then $X_n + Y_n \to^d Z$, where $Z =^d X + Y$ and X, Y are independent.

Corollary: If for j = 1, ..., k (k fixed), $X_{j,n} \to^d X_j$ and $\{X_{1,n}, ..., X_{k,n}\}$ are independent, then $\sum_{j=1}^k X_{j,n} \to^d \sum_{j=1}^k X_j$, where $\{X_1, ..., X_k\}$ are independent.

Lemma 2: If for $a_n > 0$, $b_n \in \mathbb{R}$, $\frac{X_n - b_n}{a_n} \to^d X$ and $\alpha_n/a_n \to 1$, $(\beta_n - b_n)/a_n \to 0$, then $\frac{X_n - \beta_n}{\alpha_n} \to^d X$.

Lemma 3: Suppose that $X_n \to^d X$ and $\frac{X_n - b_n}{a_n} \to^d Y$ for some $a_n > 0$, $b_n \in \mathbb{R}$. If neither X nor Y is degenerate, then X and Y are of the same type.

5.9 Infinitely Divisible

Infinitely Divisible: X (or F_X , $P_{X^{-1}}$, φ_X) is infinitely divisible if for each $n \geq 1$, X = d $\sum_{k=1}^{n} X_{n,k}$, where $\{X_{n,k} : 1 \leq k \leq n\}$ are iid.

Lemma: Let $\{Y_k : k \ge 1\}$ be iid r.v.'s and N an independent Poisson r.v. with parameter λ . Then $S_N = \sum_{k=1}^N Y_k$ is an infinitely divisible r.v..

Compound Poisson Random Variable: The r.v. S_N above is a compound Poisson r.v..

Theorem 1: Suppose for each $n \ge 1$ $\{Y_{n,k} : 1 \le k \le n\}$ are iid. If $S_n = \sum_{k=1}^n Y_{n,k} \to^d X$, then X is infinitely divisible.

Theorem 2: X is infinitely divisible iff $\varphi_X(t) = \exp\left[i\beta t - \frac{\sigma^2 t^2}{2} + \int_{\mathbb{R}} \left(e^{itx} - 1 - \frac{itx}{1+x^2}\right) d\mu(x)\right]$ for some finite measure μ on $(\mathbb{R}, \mathcal{B})$ with $\mu(\{0\}) = 0$.

Theorem 3: X is infinitely divisible iff there exists a sequence of compound Poisson r.v.'s converging in distribution to X.