bases et codage

rappels

decimale	binaire	octal	hexa
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

rappels logique

x	y	x + y	xy	\tilde{x}
0	0	0	0	1
0	1	1	0	1
1	0	1	0	0
1	1	1	1	0

Arithmetique tronque a gauche:

logique combinatoire

Définition 1: tableau de Karnaugh il sert a representer l'ensemble des arguments d'une fonction booleenne, a la meme facon qu'un tableau de valeur. cette forme est efficace pour trouver:

- la FND d'une fonction
- trouver l fonction booleenne ayant le moins de variable et d'operateurs possible: simplification des fonctions booleennes

un tableau de karnaugh a pour argument n, qui signifie n nombre d'arguments d'une fonction booleenne

exemple pour un tableau n=3:

ху	00	01	11	10
z				
0	f(0, 0, 0)	f(0, 1, 0)	f(1, 1, 0)	f(1,0,0)

	0(0 0 1)	0(0 4 4)	0/4 4 4)	0/4 0 4)
1	f(0,0,1)	f(0, 1, 1)	f(1, 1, 1)	f(1,0,1)

Définition 2: forme nominal disjonctive (FND) let n variabless, $x_1...x_n$, on appelle monome d'ordre n le produit $y_1,y_2...y_n$ avec $y_i=x_i$ ou $y_i=\widetilde{x_i}$ pour chaque $i\in\{1,...,n\}$. une fonction est dite sous forme nominal disjonctive si la fonction est une somme de monomes d'ordre n. toute fonctions non nulle de n variables peut s'ecrire de facon unique sous forme nominale disjonctive.

exemple: soit une fonction f boolenne de 2 arguments dont son tableau de karnaugh est

xy	00	01	11	10
z				
0	1	0	1	1
1	0	1	0	0

La FND de f est $f(x,y,z)=\tilde{x}\tilde{y}\tilde{z}+xy\tilde{z}+x\tilde{y}\tilde{z}+\tilde{x}+yz$ on peut donc simplifier la fonction a

$$xy+x\tilde{y}=x$$

en effet $xy + x\tilde{y} = x(y + \tilde{y}) = x1 = x$

logique sequentielle