University of Toronto Scarborough Department of Computer & Mathematical Sciences

MAT B41H 2013/2014

Assignment #5

The Midterm Test will be written on Monday, October 28, 5:00 pm - 7:00 pm.

This assignment is due at the start of your tutorial in the period October 21 – October 25, 2013.

- A. Suggested reading: 1. Marsden & Tromba, Chapter 2, sections 2.5 and 2.6.
 - 2. Marsden & Tromba, Chapter 3, sections 3.1 and 3.2.

B. Problems:

- 1. Find the point(s) on the graph of the function $f(x,y) = x^2 + y^2 1$ where the tangent plane is parallel to the plane 4x 8y z = 3. What is the equation of the tangent plane at this point.
- 2. Let $f(x,y) = x^{\frac{1}{3}} y^{\frac{1}{3}}$.
 - (a) Evaluate $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$.
 - (b) Show that f is not differentiable at (0,0).
- 3. The surface of back-yard water garden can be represented by a region in the xy-plane such that the depth (in centimeters) at the point (x, y) is given by $100 3x^2y^2$. A rubber duck is in the water at the point (1, -2). In which direction should the rubber duck swim
 - (a) so that the depth increases most rapidly?
 - (b) so that the depth remains constant?
- 4. (a) If $g(u,v) = f(u^2 v^2, v^2 u^2)$ and f is differentiable, show that g satisfies $v \frac{\partial g}{\partial u} + u \frac{\partial g}{\partial v} = 0$.
 - (b) Let w = f(x, y) be a C^2 function of two variables and let x = u + v, y = u v. Show that $\frac{\partial^2 w}{\partial u \, \partial v} = \frac{\partial^2 w}{\partial x^2} - \frac{\partial^2 w}{\partial y^2}$. (cf page 157, # 22).

5. Marsden & Tromba, page 134, #22.

(This question is an example of the fact that the chain rule is not applicable if f is not differentiable.)

- 6. Let $g:[0,1] \subset \mathbb{R} \to \mathbb{R}^2$ be given by g(t)=(x(t),y(t)), and let $f:\mathbb{R}^2 \to \mathbb{R}$ be a C^1 function (all partial derivatives exist and are continuous). Assume that $\left(\frac{dx}{dt}\right)f_x+\left(\frac{dy}{dt}\right)f_y\leq 0$. Show that $f(x(1),y(1))\leq f(x(0),y(0))$. (cf page 145, #28)
- 7. Let $f: \mathbb{R}^3 \to \mathbb{R}^3$ be given by $f(x,y,z) = (x+y+z,x^3-e^{yz},xz)$ and $g: \mathbb{R}^3 \to \mathbb{R}^3$ be given by g(x,y,z) = (xy,yz,zx). Find Df and Dg. Use the chain rule to find $D(g \circ f)$ and $D(f \circ g)$. Compute $f \circ g$ and $D(f \circ g)$ directly.
- 8. A function $u = u(x_1, x_2, \dots, x_n)$ with continuous second partial derivatives satisfying Laplace's equation

$$\sum_{i=1}^{n} \frac{\partial^2 u}{\partial x_i^2} = 0$$

is called a harmonic function.

Determine whether or not the following functions are harmonic.

- (a) $f(x,y) = x^2 + xy y^2$.
- (b) $f(x,y) = x^3 + 3xy^2$.

(c)
$$f(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$$
.

9. A function $f: U \subset \mathbb{R}^n \to \mathbb{R}$ is said to be homogeneous of degree p if, for all $\mathbf{x} \in U$ and all $t \in \mathbb{R}$ such that $t \mathbf{x} \in U$, we have $f(t \mathbf{x}) = t^p f(\mathbf{x})$.

Determine whether or not the following functions are homogeneous. For those that are, indicate the degree of homogeneity.

- (a) $f(x,y) = x^3 x^2y^2 + y^3$.
- (b) $f(x, y, z) = 3x^3y + 5x^2z^2 xyz^2 + z^4$.
- 10. Find the 3rd degree Taylor polynomial about the origin of the following.
 - (a) $f(x,y) = (\sin x) \ln(1+y)$
 - (b) $f(x,y) = \frac{e^{xy}}{1+x}$