LAPORAN

- 1. Masing-masing bagian tersusun atas:
 - a) Deskripsi permasalahan pokok bahasan tersebut
 - b) Teori singkat mengenai pokok bahasan tersebut
 - c) Penjelasan tentang struktur data yang digunakan pada topik tersebut dan cara penanganan kasus-kasus khusus atau yang dianggap penting
 - d) Hasil eksekusi program berikut analisis hasil eksekusi tersebut
- 2. Listing program ataupun algoritma tidak perlu disertakan pada laporan

1. Deskripsi Permasalahan

POKOK BAHASAN: SOLUSI SISTEM PERSAMAAN LANJAR

UMUM

1. Tentukan solusi untuk sistem Ax = b di bawah ini dengan menggunakan metode eliminasi Gauss, Gauss-Jordan, dan dekomposisi LU, dan lelaran Jacob.

Ī										1	_ ¬	
	0.707	1 0	0	-1	-0.8660	0	0	0	0		0	
	0.707	1 0	1	0	0.5	0	0	0	0		-1000	
	0	1	0	0	0	-1	0	0	0		0	
	0	0	-1	0	0	0	0	0	0		0	
	0	0	0	0	0	0	1	0	0.7071	x =	500	
	0	0	0	1	0	0	0	0	-0.7071		0	
	0	0	0	0	0.8660	1	0	-1	0		0	
	0	0	0	0	-0.5	0	-1	0	0		-500	
I	0	0	0	0	0	0	0	0	0.7071		0	
-												

2. Matriks Hilbert merupakan contoh dari matriks yang berkondisi buruk. Untuk matriks Hilbert orde n (dengan n masukan user), tentukanlah solusi sistem persamaan lanjar yang dibentuk oleh matriks Hilbert tersebut (Hx = b), dengan nilai $b = (1 \ 1 \ 1 \ \ 1)^T$. Nilai n dibatasi sampai 6.

$$A = \begin{bmatrix} 1 & 1/2 & \dots & 1/n \\ 1/2 & 1/3 & \dots & 1/(n+1) \\ \dots & \dots & \dots & \dots \\ 1/n & 1/(n+1) & \dots & 1/(2n-1) \end{bmatrix} \quad b = \begin{bmatrix} 1 \\ 1 \\ \dots \\ 1 \end{bmatrix}$$

BIDANG TEKNIK SIPIL

Misalkan seorang insinyur Teknik Sipil merancang sebuah rangka statis yang berbentuk segitiga (Gambar 1). Ujung segitiga yang bersudut 30° bertumpu pada sebuah penyangga statis, sedangkan ujung segitiga yang lain bertumpu pada penyangga beroda.

Rangka mendapat gaya eksternal sebesar 1000 pon. Gaya ini disebar ke seluruh bagian rangka. Gaya F menyatakan tegangan atau kompresi pada anggota rangka. Reaksi eksternal (H_2 , V_2 , dan V_3) adalah gaya yang mencirikan bagaimana rangka berinteraksi dengan permukaan pendukung. Engsel pada simpul 2 dapat menjangkitkan gaya mendatar dan tegak pada permukaan, sedangkan gelinding pada simpul 3 hanya menjangkitkan gaya tegak.

Gambar 1 Gaya-gaya pada rangka statis tertentu

Struktur jenis ini dapat diuraikan sebagai sistem persamaan aljabar lanjar simultan. Diagram gaya-benda-bebas diperlihatkan untuk tiap simpul dalam Gambar 4.2.

Gambar 2 Diagram gaya-benda-bebas untuk simpul-simpul rangka statis

Menurut hukum Newton, resultan gaya dalam arah mendatar maupun tegak harus nol pada tiap simpul, karena sistem dalam keadaan diam (statis). Oleh karena itu, untuk simpul 1,

$$\sum F_H = 0 = -F_1 \cos 30^\circ + F_3 \cos 60^\circ + F_{1,h}$$

$$\sum F_V = 0 = -F_1 \sin 30^\circ - F_3 \sin 60^\circ + F_{1,V}$$

untuk simpul 2,

$$\sum F_H = 0 = F_2 + F_1 \cos 30^\circ + F_{2, h} + H_2$$

$$\sum F_V = 0 = F_1 \sin 30^\circ - F_{2, v} + V_2$$

dan untuk simpul 3,

$$\sum F_H = 0 = -F_2 - F_3 \cos 60^\circ + F_{3, h}$$
$$\sum F_V = 0 = F_3 \sin 60^\circ + F_{3, v} + V_3$$

Gaya 1000 pon ke bawah pada simpul 1 berpadanan dengan $F_{1, \nu}$ = -1000, sedangkan semua $F_{i, \nu}$ dan $F_{i, h}$ lainnya adalah nol. Persoalan rangka statis ini dapat dituliskan sebagai sistem yang disusun oleh enam persamaan lanjar dengan 6 peubah yang tidak diketahui:

$$\sum F_H = 0 = -F_1 \cos 30^\circ + F_3 \cos 60^\circ + F_{1, h} = -0.866F_1 + 0.5 F_3$$

$$\sum F_V = 0 = -F_1 \sin 30^\circ - F_3 \sin 60^\circ + F_{1, v} = -0.5F_1 - 0.866 F_3 + 1000$$

$$\sum F_H = 0 = F_2 + F_1 \cos 30^\circ + F_{2, h} + H_2 = F_2 + 0.866F_1 + 0 + H_2$$

$$\sum F_V = 0 = F_1 \sin 30^\circ - F_{2, v} + V_2 = 0.5 F_1 + V_2$$

$$\sum F_H = 0 = -F_2 - F_3 \cos 60^\circ + F_{3, h} = -F_2 - 0.5 F_3$$

$$\sum F_V = 0 = F_3 \sin 60^\circ + F_{3, v} + V_3 = 0.866 F_3 + V_3$$

Keenam persamaan di atas ditulis ulang kembali dalam susunan yang teratur berdasarkan urutan peubah F_1 , F_2 , F_3 , H_2 , V_2 , V_3 :

atau dalam bentuk matriks:

$$\begin{bmatrix} 0.866 & 0 & -0.5 & 0 & 0 & 0 \\ 0.5 & 0 & 0.866 & 0 & 0 & 0 \\ -0.866 & -1 & 0 & -1 & 0 & 0 \\ -0.5 & 0 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0.5 & 0 & 0 & 0 \\ 0 & 0 & -0.866 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} F_1 \\ F_2 \\ F_3 \\ H_2 \\ V_2 \\ V_3 \end{bmatrix} = \begin{bmatrix} 0 \\ -1000 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Tentukan nilai F_1 , F_2 , F_3 , H_2 , V_2 , dan V_3 dengan metode dekomposisi LU (L dan U diperoleh dengan pemfaktoran menggunakan metode Crout).

2. Teori Singkat

2.1. Solusi Persamaan Lanjar

Persamaan lanjar adalah persamaan yang memiliki grafik fungsi yang berbentuk garis lurus. Solusi sistem persamaan lanjar ialah mencari vektor x pada persamaan sehingga memenuhi sistem Ax = b, dimana A merupakan matriks berukuran n x n, x dan b (vektor kolom) merupakan matriks berukuran n x 1. Pada tugas besar ini, ada empat buah solusi sistem persamaan lanjar yang digunakan, yaitu metode eliminasi Gauss, metode eliminasi Gauss Jordan, metode dekomposisi LU, dan metode lelaran Jacobi.

$$\begin{bmatrix} a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n = b_1 \\ a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n = b_2 \\ \vdots & \vdots & \vdots \\ a_{n1} x_1 + a_{n2} x_2 + \dots + a_{nn} x_n = b_n \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & & & & & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{bmatrix}$$

2.2. Metode Eliminasi Gauss

Metode ini berawal dari fakta bahwa apabila matriks berbentuk segitiga atas (liat gambar dibawah) dapat dihitung solusinya dengan teknik penyulihan mundur.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2n} \\ 0 & 0 & a_{33} & \dots & a_{3n} \\ \vdots & & & & & \vdots \\ 0 & 0 & 0 & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{bmatrix}$$

$$a_{nn}x_n = b_n \to x_n = \frac{b_n}{a_{nn}}$$

$$a_{n-1,n-1}x_{n-1} + a_{n-1,n}x_n = b_{n-1} \to x_n = \frac{b_{n-1} - a_{n-1,n}x_n}{a_{n-1,n-1}x_{n-1}}$$

Dan seterusnya sehingga diperoleh nilai x_n , x_{n-1} , ..., x_{k+1} . Apabila nilai-nilai tersebut telah diketahui, nilai x_k dapat dihitung dengan

$$x_k = \frac{b_k - \sum_{j=k+1}^n a_{kj} x_j}{a_{kk}}, \ k = n - 1, n - 2, \dots, 1 \ dan \ a_{kk} \neq 0$$

2.3. Metode Eliminasi Gauss Jordan

Metode ini merupakan variasi dari metode eliminasi Gauss. Dalam hal ini, matriks A dieliminasi menjadi matriks identitas I.

$$Ax = b \rightarrow Ix = b'$$

Metode ini tidak membutuhkan teknik penyulihan mundur. Solusi bisa langsung diperoleh dari vektor kolom b.

Metode eliminasi Gauss Jordan merupakan dasar pembentukan matriks balikan.

2.4. Metode Dekomposisi LU

Apabila matriks A non-singular maka dapat difaktorkan menjadi matriks segitiga atas U dan matriks segitiga bawah L. A = LU.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ l_{21} & 1 & 0 & \dots & 0 \\ l_{31} & l_{32} & 1 & \dots & 0 \\ \vdots & & & & \vdots \\ l_{n1} & l_{n2} & l_{n3} & \dots & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} & \dots & u_{1n} \\ 0 & u_{22} & u_{23} & \dots & u_{2n} \\ 0 & 0 & u_{33} & \dots & u_{3n} \\ \vdots & & & & \vdots \\ 0 & 0 & 0 & \dots & u_{nn} \end{bmatrix}$$

Ada dua metode untuk memfaktorkan A menjadi L dan U, yaitu metode LU Gauss dan metode dekomposisi Crout.

Langkah-langkah menghitung solusi SPL dengan metode dekomposisi LU adalah sebagai berikut:

- 1. Pecahkan matriks A menjadi L dan U.
- 2. Pecahkan Ly = b dan hitung y dengan teknik sulih maju.
- 3. Pecahkan Ux = y dan hitung x dengan teknik sulih mundur.

2.5. Metode Lelaran Jacobi

Metode lelaran dapat juga digunakan untuk memecahkan solusi persamaan lanjar. Metode lelaran disebut juga metode tidak langsung Perhatikan sistem persamaan lanjar berikut:

Dengan syarat $a_{kk} \neq 0$, k = 1, 2, ..., n, maka persamaan lelarannya dapat ditulis sebagai

$$x_1^{(k+1)} = \frac{b_1 - a_{12} x_2^k \dots - a_{1n} x_n^{(k)}}{a_{11}}$$

$$x_2^{(k+1)} = \frac{b_2 - a_{21}x_1^{(k)} - a_{23}x_3^{(k)} - \dots a_{2n}x_n^{(k)}}{a_{22}}$$

÷

$$x_n^{(k+1)} = \frac{b_n - a_{n1} x_1^{(k)} - a_{n2} x_2^{(k)} - \dots - a_{nn-1} x_{n-1}^{(k)}}{a_{nn}}$$

Dengan k = 0, 1, 2, ...

Lelaran dimulai dengan memberi tebakan awal untuk x

$$x_0 = \begin{bmatrix} x_1^{(0)} \\ x_2^{(0)} \\ \vdots \\ x_n^{(0)} \end{bmatrix}$$

Untuk kondisi berhenti, digunakan pendekatan galat relatif

$$\left| \frac{x_i^{(k+1)} - x_i^{(k)}}{x_i^{(k+1)}} \right| < \varepsilon$$

Untuk semua i = 1, 2, 3, ..., n

Syarat cukup agar lelaran bersifat konvergen ialah

$$|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|$$

Dengan i = 1, 2, 3, ..., n

Pada lelaran jacobi, rumus umum prosedur lelarannya ialah:

$$x_i^{(k+1)} = \frac{b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)}}{a_{ii}}, k = 0, 1, 2, \dots$$

3. Struktur Data

Nama Atribut	Visibility	Tipe
X	public	Real[,]
A	public	Real[,]
В	public	Real[,]
Nama Operasi	Visibility	Keterangan
Sulih_Mundur(a,b,n,x)	public	Menyelesaikan SPL Ux=y
Eliminasi_Gauss(a,b,n,x)	public	Menyelesaikan SPL Ax=b dengan metode eliminasi gauss
Eliminasi_Gauss_Jordan(a,b,n,x)	public	Menyelesaikan SPL Ax=b dengan metode eliminasi gauss jordan
Dekomposisi_LU(a,b,n,x)	public	Memecah matrix berukuran n*n menjadi matriks L dan U
Lelaran_Jacobi(a,b,n,x)	public	Menyelesaikan SPL Ax=b dengan metode lelaran jacobi
Sulih_Maju(a,b,n,x)	public	Menyelesaikan persamaan Ly=b
Dekomposisi_Crout(a,b,n,x)	public	Memecah matrix berukuran n*n menjadi matriks L dan U dengan metode Crout
Tukar_Baris(a,b,x,y)	public	Menukar baris x dan baris y pada matriks tertentu