Special Report 122

DIGITAL SOLUTION OF MODIFIED BERGGREN EQUATION TO CALCULATE DEPTHS OF FREEZE OR THAW IN MULTILAYERED SYSTEMS

George W. Aitken and Richard L. Berg

October 1968

CORPS OF ENGINEERS, U.S. ARMY

U.S. ARMY MATERIEL COMMAND
TERRESTRIAL SCIENCES CENTER

COLD REGIONS RESEARCH & ENGINEERING LABORATORY

HANOVER, NEW HAMPSHIRE

THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Destroy this report when no longer needed. Do not return it to the originator.

DIGITAL SOLUTION OF MODIFIED BERGGREN EQUATION TO CALCULATE DEPTHS OF FREEZE OR THAW IN MULTILAYERED SYSTEMS

George W. Aitken and Richard L. Berg

October 1968

Deligio de la colonia de la compansión de la colonia de la

CORPS OF ENGINEERS, U.S. ARMY

ВΥ

U.S. ARMY MATERIEL COMMAND

TERRESTRIAL SCIENCES CENTER

COLD REGIONS RESEARCH & ENGINEERING LABORATORY

HANOVER, NEW HAMPSHIRE

THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE

PREFACE

Authority for the investigation reported herein is contained in FY 1967 Instructions and Outline, Military Construction Investigations, Engineering Criteria and Investigations and Studies, Investigation of Arctic Construction: Thermal Calculation Techniques.

The Military Construction Investigations program is conducted for the Engineering Division, Directorate of Military Construction, Office, Chief of Engineers and is administered by the Civil Engineering Branch (Mr. T.B. Pringle, Chief). This study was conducted by the Cold Regions Research and Engineering Laboratory (CRREL) of the U.S. Army Terrestrial Sciences Center.

Investigations were performed under the general supervision of Mr. K.A. Linell, Chief, Experimental Engineering Division, CRREL, and the direct supervision of Mr. E.F. Lobacz, Chief, Construction Engineering Branch, CRREL. The report was prepared by Messrs. G.W. Aitken and R.L. Berg, Research Civil Engineers, Construction Engineering Branch.

Lieutenant Colonel John E. Wagner was Commanding Officer/Director of the U.S. Army Terrestrial Sciences Center during the publication of this report, and Mr. W.K. Boyd was Chief Engineer.

The U.S. Army Terrestrial Sciences Center is a research activity of the Army Materiel Command.

CONTENTS

	Pag
Preface	ii
Abstract	iv
Nomenclature	v
Introduction	. 1
General.	1
Program details	. 3
Input data preparation	3
Comments on computer solution	10
Literature cited	10
Appendix A. Program listing and flow diagram	11
Appendix B. Sample solutions	17
ILLUSTRATIONS	
D.	
Figure	
1. Relationship between wind speed and n-factor during thawing season	4
2. Average thermal conductivity, sandy soils, frozen	5
3. Average thermal conductivity, sandy soils, unfrozen	5
4. Average thermal conductivity, silt and clay soils, frozen	6
5. Average thermal conductivity, silt and clay soils, unfrozen	6
6. Average thermal conductivity, peat, frozen	7
7. Average thermal conductivity, peat, unfrozen	. 7
8. Average volumetric heat capacity for soils	8
9. Volumetric latent heat for soils	8
	N .
TABLES	•
Table	
I. n-factor for freezing conditions	3
II. Thermal properties of construction materials	9
III. Material types	10

ABSTRACT

This report presents a method for a digital computer solution, using the FORTRAN language, of the modified Berggren equation for computing depths of frost and thaw penetration in non-homogeneous (multilayered) soil systems. A program source listing, sample solutions, and tables of thermal properties of soils and construction materials are presented.

NOMENCLATURE

Item	Symbol	Program	<u>Units</u>	Multiply by	To obtain
Index (freeze or thaw)	I	DEGREE	degree-days F	5/9	degree-days C
n-factor	n	EN			3
Length of season	t	${f T}$	days		•
Average surface temp differential	$v_{\rm s}$	VS	°F	5/9	$^{\circ}\mathrm{C}$
Initial temp difference	v_0	ΛŌ	°F	5/9	°C
Thermal ratio	α	ALPHA			
Mean annual temp	M.A.T.	ATM	○ F ·	5/(°F-32)	∘C .
Dry unit weight	$\gamma_{\rm d}$	GAMMA	lb/cu ft	16.0185	kg/cu m
Moisture content	W	WC	% dry wt		
Thickness	d \cdot	D	ft -	0.3048	m
Volumetric heat capacity	C	C .	Btu∕cu ft °F	16 _c 018	kg cal/cu m °C
Thermal conductivity	K	THERM	Btu/ft hr °F	1.488	kg cal/m hr °C
Volumetric latent heat of fusion	L	FUSION	Btu/cu ft	8.899	kg cal/cu m
Thermal diffusivity	a	A	sq ft/hr	0.2581	sq cm/sec
Fusion parameter	μ	U			
Lambda coefficient	λ	\mathbf{F}°			
Thermal resistance		RES	sq ft hr °F/Btu	2045	sq cm hr °C/kg cal
Material type	,	KIND			
Thickness summation		SUMD	ft	0.3048	m ·
Total latent heat		SUMFD	Btu/sq ft	2.71	kg cal/sq m
Average latent heat		BARL	Btu/cu ft	8.899	kg cal/cu m
Total volumetric heat		SUMCD	Btu/sq ft °F	4.892	kg cal/sq m °C
Average volumetric heat		BARC	Btu/cu ft °F	16.018	kg cal/cu m °C
Thermal resistance above layer		SUMRES	sq ft hr °F/Btu	2045	sqcm hr °C/kg cal
Total thermal resistance		TOTALR	sq ft hr °F/Btu	2045.	sq cm hr °C/kg cal
Index used in layer		AYERI	degree-days F	5/9	degree-days C
Summation of index		SI	degree-days F	5/9	degree-days C
Layer counter		N	-	-	-
Program branch control		NNN			
$SUMD_{(n-1)}$. *	CON	ft	0.3048	m
$SI_{(n-1)}$	•	SIN	degree-days F	5/9	degree-days C
Error function .		ERF ·			
Complementary error function		ERFC			-
Exponential function		EXP	•		
Computed variable	Z_{\cdot}	R			
(Defined by Aldrich and			**		•
Paynter (1953), eq A-13,					
n A-4.)					

DIGITAL SOLUTION OF MODIFIED BERGGREN EQUATION TO CALCULATE DEPTHS OF FREEZE OR THAW IN MULTILAYERED SYSTEMS

by

George W. Aitken and Richard L. Berg

Introduction

This report details the procedures used to prepare a computer program for solution of the modified Berggren equation for calculating the depth of freeze or thaw in a multilayered soil system and presents the information the reader needs to use this program.

Some of the more important data used to prepare the modified Berggren solution, together with thermal conductivity curves after Kersten (1949), are included to minimize the need for additional reference material. A description of the more important computation techniques and a discussion of the limitations of this particular solution are also included.

Appendix A contains a complete FORTRAN II program with operating instructions and Appendix B contains input and output data for two typical solutions.

General

The method of solution reported here is presently used by the Departments of the Army and the Air Force (1966) and others (see Sanger, 1963) to determine one of the factors relating to the design depths of granular materials beneath roadways and airfields. Solution of the modified Berggren equation for a multilayered system is very laborious by hand while the general case is readily adapted to computer solution.

The modified Berggren equation (eq 1) was developed by Aldrich and Paynter (1953) under a contract with the former Arctic Construction and Frost Effects Laboratory (ACFEL).*

$$x = \lambda \sqrt{\frac{48 K n I}{L}} \tag{1}$$

where x = depth of frost or thaw penetration

 λ = lambda coefficient

K = average thermal conductivity

n = n-factor to convert an air index to a surface index

I = air freezing or thawing index

L = volumetric latent heat of fusion.

A complete development of this equation and a discussion of the necessary assumptions and simplifications made during its development are contained in Aldrich and Paynter (1953). A few of the more important assumptions and some of the limitations of the equation and of this particular solution are discussed below. The assumptions and limitations apply regardless of whether the equation is used to determine the depth of freeze or the depth of thaw, so only the freezing model is discussed.

^{*}ACFEL was merged with the former Snow, Ice and Permafrost Research Establishment (SIPRE) in 1961 to form the U.S. Army Cold Regions Research and Engineering Laboratory.

Assumptions. The mathematical model assumes one-dimensional heat flow with the entire soil mass at its mean annual temperature prior to the start of the freezing season. It is assumed that when the freezing season starts, the surface temperature changes suddenly (as a step function) from the mean annual temperature to a temperature \mathbf{v}_{s} degrees below freezing and remains at this new temperature throughout the entire freezing season. The effect of latent heat is considered as a heat sink at the moving frost line, and it is assumed that the soil freezes at a temperature of 32.0F.

Limitations. The model on which the modified Berggren equation is based further assumes an isothermal system at the beginning of the season and therefore cannot normally be used to calculate thaw depths in seasonal frost areas or frost depths in permafrost areas. The equation cannot successfully be used to calculate penetration over part of the season. Aldrich and Paynter (1953) state, "Attempts to calculate the depth-time curves based on partial freezing indices are likely to encounter substantial errors." Experience has shown this to be true.

The Lambda coefficient (Aldrich and Paynter, 1953) used in this solution is obtained from eq 2:

$$\lambda = \sqrt{2Z^2/\mu} \tag{2}$$

where Z is obtained from the following transcendental equation. The subscripts t and f indicate thawed and frozen values respectively.

$$\frac{\exp(-Z^2)}{\operatorname{erf}(Z)} - \left(\frac{a_f}{a_t}\right)^{1/2} \left(\frac{K_t}{K_f}\right)^{1/2} \frac{v_0}{v_s} - \frac{\exp\left(-\frac{a_f}{a_t} - Z^2\right)}{\operatorname{erfc}\left(\frac{a_f}{a_t}\right)^{1/2} Z} = \frac{Z L \pi^{1/2}}{C v_s}$$
(3)

and $\mu = v_s C_t / L$.

Aldrich and Paynter averaged the thawed and frozen soil thermal properties in their solutions and the same assumption is made herein. Therefore we assume that

$$a_f = a_f$$

$$K_{\rm f} = K_{\rm f}$$

and using the relationships

$$a = v_0/v_s$$

$$\operatorname{erfc}(x) = 1 - \operatorname{erf}(x)$$

equation 3 may be reduced to

$$\frac{\exp(-Z^2)}{\operatorname{erf}(Z)} = \frac{\alpha \exp(-Z^2)}{1 - \operatorname{erf}(Z)} = \frac{Z L \pi^{\frac{1}{2}}}{C v_{s}}.$$
(4)

This transcendental equation is solved by iteration with the error function, computed accurate to the sixth place after the decimal, obtained from the following equation (Hastings, 1955):

where
$$a_1 = .0705230784$$
 $a_2 = .0422820123$ $a_3 = .0092705272$ $a_4 = .00001520143$ $a_6 = .0000430638$. (5)

Program details

The program uses 5000 words of memory and was written for a standard Honeywell DDP-24 computer using the input-output typewriter, paper tape reader and high speed printer. Major data input to the program is by perforated tape with provision for typewriter entry of volumetric heat capacity (C), thermal conductivity (THERM) and latent heat (FUSION) for any layer.

Input data preparation

For all solutions certain basic data are required by the program. These data, on perforated paper tape, are the first information entered into the computer for each solution:

Freezing or thawing index (DEGREE)

n-factor (EN)

Length of season (T)

Mean annual temperature (ATM).

All data are in real notation terminated with an end-of-word character.

The n-factors for air freezing conditions are given in Table I and the relationship between wind speed and the n-factor for pavements during the thawing season is contained in Figure 1. n-factors of 1.0 and 2.0 are suggested for turf and gravel surfaces, respectively, under thawing conditions. If the surface index is used as input data, an n-factor of 1.0 should be used.

Table I. n-factor for freezing conditions.

(Dept. of the Army and the Air Force, 1966)

Surface type	n-factor
Snow	1.0
Pavements free of snow and ice	0.9
Sand and gravel	0.9
Turf	0.5

Figure 1. Relationship between wind speed and n-factor during thawing season (after Sanger, 1963).

The data for each layer in the problem may be entered in one of two forms:

1. All data on perforated tape in the sequence shown, and in either of the following formats:

A. Material type (KIND) = 1 or 2.

Density (GAMMA)

Water content (WC)

Layer thickness (D)

B. Material type (KIND) = 10.

Density (GAMMA)

Water content (WC)

Layer thickness (D)

Volumetric heat capacity (C)

Thermal conductivity (THERM)

Latent heat (FUSION)

2. Certain thermal parameters for type 10. materials (see Table III for material types) may be entered on the typewriter in which case the tape format for the layer would be as follows:

Material type (KIND) = 10.

Density (GAMMA)

Water content (WC)

Layer thickness (D)

Table II and Figures 2-9 will aid in choosing thermal properties for type 10. materials.

Figure 2. Average thermal conductivity, sandy soils, frozen (after Kersten, 1949).

Figure 3. Average thermal conductivity, sandy soils, unfrozen (after Kersten, 1949).

Figure 4. Average thermal conductivity, silt and clay soils, frozen (after Kersten, 1949).

Figure 5. Average thermal conductivity, silt and clay soils, unfrozen (after Kersten, 1949).

Figure 6. Average thermal conductivity, peat, frozen (after Kersten, 1949).

Figure 7. Average thermal conductivity, peat, unfrozen (after Kersten, 1949).

Figure 8. Average volumetric heat capacity for soils (after Aldrich and Paynter, 1953).

Figure 9. Volumetric latent heat for soils (after Aldrich and Paynter, 1953).

Table II. Thermal properties of construction materials (from Dept. of the Army and the Air Force, 1966).

Type of material	Description	Unit weight lb./ cu. ft.	k Conductivity B.t.u./ sq. ft. hr. OF./ in.	K Conductivity B.t.u./ft. hr. °F.
	3.6	. •		
Asphalt paving mixture	Mix with 6% by weight cut- back asphalt	138	10.3	0.86
Concrete	With sand and gravel or stone aggregate (oven-	140	9.0	0.75
1	dried) With sand and gravel or stone aggregate (not	140	9.0	
	dried)	140	12.0	1.00
	With lightweight aggregates	120	5.2	0.43
-	including expanded shale,	100	3.6	0.30
	clay, or slate; expanded	80	2.5	0.21
•	slags; cinders; pumice;	60	1.7	0.14
•	perlite; vermiculite; also	40 30	1.15 0.90	0.096 0.075
	cellular concretes.	30 20	0.70	0.075
•				
Wood ¹	Maple, oak, and similar hardwoods	45	1.10	0.092
	Fir, pine, and similar softwoods	. 32	0.80	0.067
	soitwoods	. 32	0.80	0.007
Building boards 1	Asbestos-cement board Plywood	120 34	4.0 0.80	0.33 0.067
	Wood fiberboard, laminated	3/ 44		
	or homogeneous Wood fiberhardboard type	26, 33 65	0.42, 0.55 1.40	0.035, 0.046 0.12
	" dod 11501 maraboara type			0.10
Insulating materials Blanket and batt l	Mineral wool, fibrous form, processed from rock,			
• • •	slag, or glass	1.5-4.0	0.27	0.022
	Wood fiber	3.2-3.6	0.25	0.021
Board and slabs	Cellular glass Corkboard (without added	9.0	² 0.39	- 0.032
	binder)	6.5-8.0	² 0.27	0.022
	Glass fiber Wood or cane fiberinte- rior finish (plank, tile,	9.5-11.0	0.25	0.021
	lath)	15.0	0.35	0.029
	Expanded polystyrene Mineral wool with resin	1.6	0.29	0.024
	binder	15	² 0.28	0.023
	Mineral wool with asphalt binder	15	20.31	0.026
•	binder	. 13	0.31	0.020
Loose fill	Mineral wool (glass, slag,			
	or rock)	2.0-5.0	0.30	0.025
the state of	Sawdust or shavings Vermiculite (expanded) Wood fiber: redwood, hem-	8.015.0 7.0-8.2	0.45 - 0.48	0.037
	lock, or fir	2.0-3.5	0.30	0.025
Miscellaneous	Water, average	62.4	3 4.2	0.35
A STATE OF THE STA	Ice	. 57	315.4	1.28
	the second of the second of the second of		and the second s	

Values extracted from ASHRAE Guide and Data Book, 1963, by permission. Values for k are for dry building materials at a mean temperature of 75° F. except as noted; wet conditions will adversely affect values of many of these materials.

Mean temperature of 60° F.

Mean temperature of 32° F.

Table III. Material types.

Kind	Description
. 1.	Granular soils (gravels and sands)
2.	Fine-grained soils (silts and clays)
10.	Other (pavements, insulations, organic soils, etc.)

The average volumetric heat capacity and latent heat for materials other than granular or finegrained soils may be obtained from Figures 8 and 9, respectively, or from eq 6 and 7:

Average volumetric heat capacity

$$C = \gamma_{d}[0.17 + 0.75(w)]. \tag{6}$$

Latent heat

$$L = 144(\gamma_d)(w). \tag{7}$$

Appendix B contains the input data and the typewriter and printer output for two typical solutions.

Note that the same basic input data give slightly different results in the two sample solutions because of a difference in computational method. This difference is insignificant, about 1.5%, and is caused by the difference in the thermal conductivity (THERM) values calculated in the program (SOLN, 2) versus those entered manually (SOLN, 1).

Comments on computer solution

This program cannot be used for solution of the modified Berggren equation for a homogeneous case. Equation 1 should be used for this type of solution.

The index printed by the program is the surface index. To obtain the air index, the surface index must be divided by the n-factor.

Literature cited

- Aldrich, H.P. and Paynter, H.M. (1953) Analytical studies of freezing and thawing of soils, First interim report.

 U.S. Army Corps of Engineers, New England Division, Arctic Construction and Frost Effects Laboratory (ACFEL) Technical Report 42.
- Hastings, C., Jr. (1955) Approximation for digital computers. Princeton, N.J.: Princeton University Press.
- Kersten, M.S. (1949) Laboratory research for the determination of the thermal properties of soils, Final report. U.S. Army Corps of Engineers, New England Division, ACFEL Technical Report 23.
- Departments of the Army and Air Force (1966) Arctic and subarctic construction, Calculation methods for determination of depths of freeze and thaw in soils. Department of the Army Technical Manual TM-5-852-6. Department of the Air Force Manual AFM 88-19, Chap. 6.
- Sanger, F.J. (1963) Degree-days and heat conduction in soils. Proceedings of the Permafrost International Conference, National Academy of Science-National Research Council Publication No. 1287.

APPENDIX A. PROGRAM LISTING AND FLOW DIAGRAM

```
C
      MODIFIED RERGGREN SOLUTION FOR MULTILAYERED SYSTEMS
                                                                                  0001
      G. AITKEN/R. BERG, MARCH, 1966
LATEST UPDATE 5/9/68, GWA
                                                                                  0002
                                                                                  0003
       EDITING REVISIONS FOR SR-122
                                                                                  0004
                                                                                  0005
                             OPERATING INSTRUCTIONS
                                                                                  0006
                                                                                  0007
          PLACE DATA TAPE PREPARED IN ACCORDANCE WITH INSTRUCTION
                                                                                  0008
      MANUAL IN PHOTOREADER.

B. SET SENSE SWITCH 1 ON FOR FROST DEPTH SOLUTION. OFF
                                                                                  0009
                                                                                  0010
      FOR THAN DEPTH SOLUTION.
                                                                                  0011
           SET SENSE SWITCH 2 ON FOR TAPE INPUT OF C. THERM AND
                                                                                  0012
      FUSION. OFF FOR KEYBOARD INPUT.
                                                                                  0013
      REAL KIND
                                                                                  0014
       A1=.07,05230784
                                                                                  0015
       A2=.0422820123
                                                                                  0016
      A3= .0092705272
                                                                                  0017
      A4=.0001520143 ·
                                                                                  0018
       A5=.0002765672
                                                                                  0019
       A6=.0000430638
                                                                                  0020
       TYPE 510
                                                                                  0021
510
      FORMAT(1H .53HSENSE SWITCH SETTINGS FOR THIS PROGRAM ARE AS
                                                                                  0022
     1. FOLLOWS./.
                                                                                  0023
     21H .49H1 ON FOR FROST DEPTH SOLUTION. OFF FOR THAN DEPTH./.
                                                                                  0024
     11H .66H2 ON FOR TAPE INPUT OF C. THERM AND FUSION. OFF FOR
                                                                                  0025
     2 KEYROARD INPUT./.
                                                                                  0026
     31H -74HPLACE DATA TAPE IN PHOTOREADER AND PRESS START
4 TO INITIATE FIRST SOLUTION.)
                                                                                  0027
                                                                                  0028
      PAUSE 1
PRINT 200
                                                                                  0029
101
                                                                                  0030
200
       FORMAT(1H1,25X,53HMULTILAYER SOLUTION OF THE MODIFIED
                                                                                  0031
      IRERGGREN EQUATION///)
      PRINT 201
                                                                                  0033
      FORMAT(1H -11X-3HDRY-4X-5HVATER-4X-5HLAYFR-4X-4HHEAT-4X-7HTHERMAL-0034
201
     12X.6HLATENT.7H FUSION.7H LAMADA.2X.5HLAYER.3X.4HCUM..5X.5HLAYER.4X0035
     2.4HCUM../,10x,7HDENSITY.8H CONTENT,3x,4HSIZE.3x,8HCAPACITY.3x,5HCOUOJ6
      3ND..4X.4HH5AT.3X.4HPAR..11X.4HRES..3X.4HRES..5X.5HINDEX.3X.5HINDEX.0037
      4./.10x.7H(GAMM4).2X.4H(WC).6X.3H(D).5X.3H(C).5X.7H(THERM).9H (FUS)0038
     50N),2X,3H(U),3X,3H(F),4X,5H(RFS),9H (SUMRES),2X,7H(AYERI),3X,4H(S10039
     61./1
                                                                                  0040
      DFPTH∩≖0.
                                                                                  0041
      DEPTH=0.
                                                                                  0042
       SUMB=0.
                                                                                  0043
       SUMF D=0.
      SUMCD=0.
                                                                                  0045
      SUMIND=0.
                                                                                  0046
       RES=0.
                                                                                  0047
      SUMRES=0.
                                                                                  004H
      NNN = 10
                                                                                  0044
      N = 0
                                                                                  0050
      SI=0
                                                                                  0051
       READ PAPER TAPE 1. DEGREESENSTSATM
                                                                                  0052
      FORMAT (4E20.8)
                                                                                  0053
       DEGREE=ABSF (DEGREE)
                                                                                  0054
       VO=ARSF(ATM-32.)
                                                                                  0055
       VS=FN+DFGREE/T
                                                                                  0056
       DEGREE = DEGREE + EN
                                                                                  0051
       ALPHA=VO/VS
                                                                                  0055
      FLAG=-100.
FLAGA=-100.
2
                                                                                  0059
                                                                                  0060
       READ PAPER TAPE 1. KIND.GAMMA.WC.D
                                                                                  0061
       IF(KIND-10.)4.5.5
                                                                                  0062
       IF (KIND-02.16.7.7
      THERM = (.7*FLOG10F(UC)+.4)*(10.**(.01*GAMMA))
THERMF=.076*(1C.**(.013*GAMMA))+.032*(10.**(.0146*GAMMA))*UC
-6
                                                                                  0064
                                                                                  0065
       THERM= (THERMT+THERME)/24.
                                                                                  0066
       GO TO 20
                                                                                  0067
7
      THERMT=:.9*FLOG10F(WC)-.2)*(10.**(.01*GAMMA))
THERMF=.01*(10.**(.022*GAMMA))+.085*(10.**(.008*GAMMA))*WC
                                                                                  0058
                                                                                  Unna
       THERM= (THERME+THERMT)/24.
                                                                                  0979
      #C=GAMMA + (.17+(.75+WC/100.))
                                                                                  00/1
      EUSION=144. + GAMM 4 + (NC/100.)
                                                                                  0072
      60 10 SI
                                                                                  0073
       IF(SENSE SWITCH 21220,217
                                                                                  0074
217
       TYPE 208
                                                                                  0075
      FORMATCIH . 36HTYPE C. TAB. THERM. TAR. FUSION. CR.)
208
                                                                                  0076
       ACCEPT 9. C. THERM, FUSION
209
                                                                                  0027
       FORMAT (3E20.8)
                                                                                  0078
       GO TO 21
                                                                                  0079
220
       READ PAPER TAPE 9. C. THERM. FUSION
                                                                                  0080
21
       A=THERM/C
                                                                                  0001
       SHMD=SUMD+D
                                                                                  0082
       DEPTH=SUMD
                                                                                  0063
       SUMFD=SUMED+(FUSION+D)
10
                                                                                  0084
       BARL=SUMFN/SUMD
                                                                                  0045
       SUMCD=SUMCD+(C+D)
                                                                                  UDMS
       BARC=SUMCD/SUMD
                                                                                  0047
       IF(PARL)37.37.36
                                                                                  0088
36
       U=VS+(BARC/BARL)
                                                                                  0089
```

•	GARB=1.77245/U			
	R=.15			
0	ERF=11./((1.+A1+R+A2+R++2+A3+R++3+A4+R++4+A5	*R**5		
•	1 +46+R++61++16)			
	EXP=EXPF(-(R++2))			
	ERFC=1ERF			
	CHECK=EXP/ERF-((ALPHA)*EXP/ERFC)			
	CHECKA*R*GARB			
	IF(FLAG) 1002,1002,1003			
0,02	FLAG=+100.			
	IF (CHECK-CHECKA)1004.1000.1000			
004	FLAGA=+100.			
	GO TO 1001	4	•	
003	IF(FLAGA)1000,1000,1001			
00	IF (CHECK-CHECKA) 35.35.34			
0 Í	IF (CHECK-CHECKA) 1007, 35, 35			
07	R=R001			
	GO TO 30			
	R=R+.001		•	
	GO TO 30			
	F=((2,*(R**2))/U)**.5		•	
	GO TO 38	•		
	F=0.	•		
	U=0.			
	RES=ABSF(D)/THERM	• •		
	TOTALR=SUMRES+RES/2.			
	AYERI=(FUSION+(ABSF(D))/(24.+(F++2)))+TOTALR		*	
	SI=SI+AYERI			
	N = N + 1			
	PRINT 11.N. GAMMA. WC. D. C. THERM. FUSION. U.F. RES. S	SUMRES . A YER	1.51	
	FORMAT(3x, 13, 2x, 2F8, 2, 2x, F7, 3, 2x, F6, 2; 2x, F8, 4,			
	1 2X.F4.2.2X.F6.2.2X.F6.2.2X.F7.0.2X.F7.0)			
	IF(NNN)15,12,12			
	IF(DEGREE-SI)13,100,14			
	IF((DEGREE-SI)-10.)100.100.501			
i	SUMRES=SUMRES+RES			
	GO TO 2			
	CON#SUMD-D			
	DEPTHO=DEPTH-D			
	SIN=SI-AYFRI			
	NNN=-10			
	IF(DEGREE-SI)17.100.16			
	IF (DEGREE-(SI+10.))100.100.18			
	SUMFD=SUMFD-(FUSION+D)			
	SUMCD=SUMCD=(C+D)			
	D=D+((DEGREE-SIN)/AYERI)			
	SUMD=CON+D			
	SI=SIN			
	GO TO 10			
	IF((DEGREF+10.)-SI)18.100.100			÷
)	PRINT 701. DEGREE			
		(•13HDEGREE	DAYS	F)
	PRINT 702. EN	•		
į	FORMAT(1H .4X.11HN FACTOR = .F5.2)			
	PRINT 703. T		5	
3	FORMAT(1H .4x.19HLENGTH OF SEASON = .F5.0.1x.4	HDAYS)		
	PRINT 704, ATM			
1	FORMAT(1H .4X,19HMFAN ANNUAL TEMP = .F5.1.0X.1	HF/).		
	IF (SENSE SWITCH 1)32.33			
	PRINT 202. SUMD			
	FORMAT(1H .4X.47HDEPTH OF FROST PENETRATION FO	OR THIS SOL	HTION.	
•	$1 = F4.1 \cdot 1 \times 5 \text{HFEET}$	mra 30L		
	GO TO 500			
_	PRINT 203, SUMD			
3	FORMAT(1H .4X.46HDEPTH OF THAW PENETRATION FOR	K THIS SOLU	LION	
-	1 = F4.1.1x.5HFEET.)			
7	TYPE 204			
4	FORMAT(IH .95HSCHUTION COMPLETE. PLACE NEW DATE	TA TAPE IN		•
	1 PHOTOREADER AND PRESS START TO INITIATE NEW S			
	PAUSE 7			
	60 70 101			
	FND			

APPENDIX A

SIMPLIFIED FLOW DIAGRAM, BERGGREN MULTILAYER SOLUTION

NOTES:

- 1. Method of computing F is described in text.
- 2. Sense Switch 1 is used only for output format control and is not shown on diagram.

SOLUTION 1

Tape input of all data

INDEX	=	780.
EN	=	2.
\mathbf{T}	==	105.
ATM		12.

LAYER	1	2	. 3	4	5
KIND	11.	12.	13.	14.	15.
GAMMA	138.	156.	151.	130.	122.
WC	0.	2.1	2.8	6.5	4.6
D	.4	1.6	3.0	1.0	2.0
C	28.	29.	29.	28.	₎ 25.
THERM	.86	1.85	2.0	1.65	.64
FUSION	0.	470.	610.	1220.	808.

SOLUTION 2 Tape and typewriter data input

			n.	and the second second	
LAYER	. 1	. 2	3	4	5
KIND	11.	1.	1.	1.	2.
GAMMA	138.	156.	151.	130.	122.
WC	0.	2.1	2.8	6.5	4.6
D	.4	1.6	3.0	1.0	2.0
С	28. ^T	,			
THERM	.86 ^T	•			
FUSION	0. ^T				

T = Typewriter input

Sample Solution No. 1

Typewriter output:

SENSE SWITCH SETTINGS FOR THIS PROGRAM ARE AS FOLLOWS

1 ON FOR FROST DEPTH SCLUTION, OFF FOR THAW DEPTH

2 ON FOR TAPE INPUT OF C, THERM AND FUSION, OFF FOR KEYBOARD INPUT PLACE DATA TAPE IN PHOTOREADER AND PRESS START TO INITIATE FIRST SOLUTION.

SOLUTION COMPLETE, PLACE NEW DATA TAPE IN PHOTOREADER AND PRESS START TO INITIATE NEW SOLUTION.

MULTILAYER SOLUTION OF THE MODIFIED BERGGREN EQUATION

•		:										
	Ù₩Y	WATER .	LAYER	HEAT	THERMAL	LATENT	FUSION	LAMBDA	LAYER	CUM.	LAYER	num.
	DENSITY	CONTENT	SIZE	CAPACITY	CUND.	HFAT	PAR.		PES.	RES.	INDEX	INDLA
	(GAMMA)	(MC)	(n)	(C)	(THERM)	(FUSION)	(0)	(F)	(RES)	(SUMRES)	(AYERI)	(51)
	. 70 00							• •				
1	138.00	.00	.400	28.00	.8600	•	.00	.00	. 47	•00	•	•
>	156.00	2.10	1.600	29.00	1.8500	470.	1.14	.45	.86	. 47	139.	139.
1	151.00	2.80	3.000	24.00	2.0000	610.	.83	• 50	1.50	1.33	632.	772.
-1	130.00	6.50	1.000	28.00	1.6500	1220.	.67	.54	.61	2.83	552.	1323.
5	122.00	4.60	1.000	25.00	.6400	808.	.64	•55	1.56	3.44	477.	1800.
` 6	122.00	. 4.60	.496	25.00	.6400	808.	.65	.54	.78	3.44	217.	1541.
7	122.00	4.60	.540	25.00	.6400	808.	.65	.54	.84	3.44	238.	1502.

SURFACE INDEX = 1560. DEGREE DAYS F N FACTOR = 2.00 LENGTH OF SFASON = 105. DAYS MEAN ANNUAL TEMP = 12.0 F

DEPTH OF THAW PENETRATION FOR THIS SOLUTION = 6.5 FEET.

Sample Solution No. 2

Typewriter output:

TYPE C, TAB, THERM, TAB, FUSION, CR. 28. .86 \emptyset .

MULTILAYER SOLUTION OF THE MODIFIED BERGGREN EQUATION

	DRY DENSITY (GAMMA)	WATER CONTENT (.WC)	LAYER SIZE (D)	HEAT CAPACITY (C)	THERMAL COND. (THERM)	LATENT HEAT (FUSION)	PAR.	LAMBDA (F)	LAYER RES. (RES)	CUM. RES. (SUMRES.)	LAYER INDEX (AYERI)	CUM. INDEX (S1)
1	138.00	.00	.400	28.00	.8600		.00	.00	. 47	•00		
2	156.00	2.10	1.600	28.98	1.8147	472.	1.13	. 45	.88	. 47	140.	140.
3	151.00	2.80	3.000	28.84	1.8502	609.	.83	.50	1.62	1.35	653.	793.
4	130.00	6.50	1.000	28.44	1.6460	1217.	.67	.54	.61	2.97	575.	1368.
5	122.00	4.60	2.000	24.95	.6296	808.	.61	.55	3.13	3.58	1133.	2502.
6	122.00	4.60	.339	24.95	.6296	808.	.66	.54	.54	3.58	151.	1519.
7	122.00	4.60	.431	24.95	.6296	808.	.66	.54	.69	3.58	194.	1563.

SURFACE INDFX = 1560. DEGREE DAYS F N FACTOR = 2.00 LENGTH OF SEASON = 105. DAYS MEAN ANNUAL TEMP = 12.0 F

DEPTH OF THAN PENETRATION FOR THIS SOLUTION = 6.4 FEET.

Unclassified Security Classification		•		
DOCUMENT CONT	POL DATA P	. D		
(Security classification of title, body of abstract and indexing			overall report is classified	,
1. ORIGINATING ACTIVITY (Corporate author)	an.iotation indst be e		CURITY CLASSIFICATION	
Cold Regions Research & Engineering La	boratorv	Unclas	The second secon	
U.S. Army Terrestrial Sciences Center,		2b. GROUP	·	
New Hampshire	ID. GROOF			
3. REPORT TITLE		<u> </u>		*.
DIGITAL SOLUTION OF MODIFIED BEI	CCDEN FO	HATTON	TO CALCIII ATE	. ·
· · · · · · · · · · · · · · · · · · ·				-
DEPTHS OF FREEZE OR THAW IN MUL	TILAIENE.	D SISLEM	13	
				
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)	•	•		
Special Report				
5. AUTHOR(5) (First name, middle initial, last name)				
				′ '
George W. Aitken and Richard L. Berg			•	3
		•		
6. REPORT DATE	74. TOTAL NO. O	F PAGES	7b. NO. OF REFS	
October 1968	22		4	
SA. CONTRACT OR GRANT NO.	98. ORIGINATOR"	S REPORT NUM	BER(5)	
i .				
b. PROJECT NO.	Special Re	nort 122	•	
) opecial ite	Port 122		
c.	SA OTHER REPO	PT NO(5) (Any of	ther numbers that may be as	elanad
-	this report)	A HOUS (Any O	inci numbere diet may be es	o i garo u
, :				,
10. DISTRIBUTION STATEMENT				
This document has been approved for pub.	lia malabaa s	ن مامه المحاد	ta diatmilution	
is unlimited.	iic rerease a	inu sare, i	is distribution	
is unimited.				
	T		· · · · · · · · · · · · · · · · · · ·	
11 SUPPLEMENTARY NOTES	Office, Ch	ief of Eng	vity \ ineers	
	Directorat	e of Milita	ary Construction	. ·
	Engineerir	ng Division	n '	
	Civil Engir	neering Bi	ranch	
13. ABSTRACT				•
This report presents a method for a digital	al computer	solution,	using the FORT	RAN
language, of the modified Berggren equat:	ion for comp	outing dept	ths of trost and t	thaw
penetration in non-homogeneous (multilay				
listing, sample solutions, and tables of the				
materials are presented.	1 - 1		00110	
marorials and processing.				
•		*		
		,		
		•	•	
				÷ 1
*	_		•	
	•			:
		•		

Unclassified
Security Classification LINK C LINK A LINK B KEY WORDS RCLE ROLE ROLE Computer Heat flow Soil freezing

Unclassified