5

1. Find the center of mass of a thin plate covering the region enclosed by the parabola $y = 2x^2$ and the line y = 2 if the density function is $\delta(x) = 3x^2$.

Solution. Note that, the mass distribution is symmetric about the y-axis,

so $\bar{x} = 0$. The typical vertical strip has

center of mass : $(\tilde{x}, \tilde{y}) = (x, 1 + x^2)$

width: dx

area : $dA = (2 - 2x^2)dx$

mass: $dm = (3x^2)(2 - 2x^2)dx = 6(x^2 - x^4)dx$

The moment of the strip about the x-axis is

$$\tilde{y} \, dm = 6(1+x^2)(x^2 - x^4) dx$$

The moment of the region about the x-axis is

$$M_x = \int \tilde{y} \, dm = \int_{-1}^{1} 6(1+x^2)(x^2-x^4) \, dx = \frac{16}{7}$$

Also,

$$M = \int dm = \int_{-1}^{1} (3x^2)(2x^2 - 2x^4) dx = \frac{8}{5}$$

Therefore,

$$\bar{y} = \frac{M_x}{M} = \frac{16}{7} \cdot \frac{8}{5} = \frac{10}{7}$$

Hence, the plate's center of mass is $(\bar{x}, \bar{y}) = (0, \frac{10}{7})$

2. Determine if $a_n = \frac{\sin(n)}{n^2}$ converges or diverges. If it converges, find its limit.

Solution. Note that

$$\frac{-1}{n^2} \le \frac{\sin(n)}{n^2} \le \frac{1}{n^2}$$

for every natural number n and

$$\lim_{n\to\infty} \frac{-1}{n^2} = \lim_{n\to\infty} \frac{1}{n^2} = 0.$$

Therefore, by the Sandwich Theorem, $\lim_{n\to\infty} \frac{\sin(n)}{n^2} = 0$ as well.