BME3321:Introduction to Microcontroller Programming

Introduction

Assist. Prof. Dr. İsmail Cantürk

The Definitive Guide to ARM® Cortex®-M0 and Cortex-M0+ Processors (ch1,2,3,4,7)

Course overview

What is a Microcontroller?

- A microcontroller is a small computer which has
 - processor,
 - memory,
 - programmable peripherals (i.e., input/output)

Course overview

What is a Microcontroller?

• Used for specific (embedded) applications like...

Course overview

We are going to learn about ARM- Cortex Microcontrollers

Architecture, peripherials (General purpose I/O (GPIO), Interrupts, Timers, USART...), and programming

References:

- 1. The Definitive Guide to ARM® Cortex®-M0 and Cortex-M0+ Processors, Joseph Yiu, Second edition-2015 (Ch 1,2,3,4,7,8)
- 2. Mastering STM32, Carmine Noviello, 2016 (II Diving into the HAL)
- 3. C How to Program, Paul Deitel Harvey Deitel, Sixth edition (Ch 2-10, Especially program control, pointers, structures)
- 4. STM32F407-reference manual and user manual
- 5. https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html

Grading policy

- 5 Labs \rightarrow 25%
- 2 HWs → 10%
- 1 Midterm → 25%
- Final → 40%

Revision of some fundamental concepts- Logic gates

			INPUT	OUTPUT
			AB	Q
	$A \rightarrow B$	$A \cdot B$	0 0	0
AND			0 1	0
			1 0	0
			1 1	1
			INPUT	OUTPUT
	АQ		A B	Q
		A + B	0 0	0
OR			0 1	1
			1 0	1
			1 1	1
	^ Q		INPUT	OUTPUT
			A B	Q
			0 0	1
NAND		$\overline{A \cdot B}$	0 1	1
			1 0	1
			1 1	0

	Ĭ.		INPUT OUTPUT
	AQ		A B Q
		<u> </u>	0 0 1
NOR		$\overline{A+B}$	0 1 0
			1 0 0
			1 1 0
	A	$A\oplus B$	INPUT OUTPUT
			A B Q
			0 0 0
XOR			0 1 1
			1 0 1
			1 1 0
	^Q	$\overline{A\oplus B}$	INPUT OUTPUT
			A B Q
			0 0 1
XNOR			0 1 0
			1 0 0
			1 1 1

Number systems

- Digital systems are binary based
 - Each data is represented using bits
 - A bit can be 1 or 0 (on or off)

Digital data can also be represented in: Binary (base 2), Decimal (base 10), Hex (base 16)

		<u> </u>	→	Mos
Decimal	Binary	Hex —	─	ones
0	0000	0x0		
1	0001	0x1		micr
2	0010	0x2		prog
3	0011	0x3		
4	0100	0x4		
5	0101	0x5		
6	0110	0x6		
7	0111	0x7		
8	1000	0x8		
9	1001	0x9		
10	1010	0xA		
11	1011	0xB		
12	1100	0xC		
13	1101	0xD		
14	1110	0xE		
15	1111	0xF		

sed troller ning

for readability

Binary to decimal conversions

General formula for decimal conversions:

b: base (for binary 2, for hex 16)

Hex to Binary - Binary to Hex conversions

- Hex numbers are denoted with 0x...
- Each hex value* is represented with 4 binary bits.

Examples:

• Decimal numbering system can be used as a tool for binary to hex and hex to binary conversions.

Microcontroller programming with Hex numbering system

Use conversion table

Decimal	Binary	Hex
0	0000	0x0
1	0001	0x1
2	0010	0x2
3	0011	0x3
4	0100	0x4
5	0101	0x5
6	0110	0x6
7	0111	0x7
8	1000	0x8
9	1001	0x9
10	1010	0xA
11	1011	0xB
12	1100	0xC
13	1101	0xD
14	1110	0xE
15	1111	0xF

Windows calculator for conversions

• After typing the number, conversion can be done by selecting desired numbering system

Counting in different numbering systems

Decimal

Binary

Hexadecimal

Counting in microcontrollers

• Generally, hex numbering is used in debug menu and reference manuals.

Terminologies

Prefixes

Prefixes	Value	Standard form	Symbol
Tera	1 000 000 000 000	10 ¹²	Т
Giga	1 000 000 000	10 ⁹	G
Mega	1 000 000	10 ⁶	М
Kilo	1 000	10³	k
deci	0.1	10-1	d
centi	0.01	10 ⁻²	C
milli	0.001	10-3	m
micro	0.000 001	10-6	μ
nano	0.000 000 001	10 ⁻⁹	n
pico	0.000 000 000 001	10-12	р

Example:

4 GigaByte memory

$$=4*10^9*8$$
 bits

$$=32 * 10^9$$
 bits

Data types

- char, short, integer...
- signed, unsigned

	ТУРЕ	BITS	MINIMUM	MAXIMUM	DECIMAL FORMAT
	Unsigned char	8	0	255	Integer
	Signed char	8	-128	127	Integer
One Word	Unsigned short	16	0	65535	Integer
	Signed short	16	-32768	32767	Integer
	Unsigned int	32	0	4294967295	Integer
uble-Word	Signed int	32	-2147483648	2147483647	Integer
	Float (IEEE754)	32	-3.4028E+38	3.4028E+38	Real number
	Double (IEEE754)	- 64	-1.7977E+308	1.7977E+308	Real number

Some analog electronic terminologies

Push-Pull

Push Phase

Push phase

Internal signal is low NMOS OFF, PMOS ON

Pull Phase

Pull phase

Internal signal is high NMOS ON, PMOS OFF

STM32 microcontroller family

• ST microelectronics produces different types of 32-bit microcontrollers based on the Arm® Cortex®-M processor.

The obtained discovery card should have user button and user leds

STM32F4 discovery card

USB-mini USB cable ST-Link part to program/debug MCU These jumpers must be on CN3: to program MCU JP1: for power MCU Green, User button orange, red, blue user leds are in this region Female-female jumpers • Check out STMF4 user manual for interconnection between pins 19

Development toolchains and driver

- STM32 ST-link Utility is driver so that computer recognize ST-Link
- STM32CubeMX is for initialization and code generation as template
- Keil uVision (MDK-ARM) is development environment for ARM- Cortex MCU

Development toolchains and driver

- While installing STM32CubeMX, you may be prompted to install java
- After installation, Help-> Manage embedded software packages

Development toolchains and driver

• After installation MDK-ARM, click on pack installer

STM32 MCUs in industry

Fitbit Flex Teardown

STMicroelectronics 32L151C6
Ultra Low Power ARM Cortex
M3 Microcontroller

STM32 MCUs in industry

Samsung Galaxy Gear

source: ifixit.com