2020届考研数学全真模拟卷(数学二)

命题人 向禹

考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分 姓名:

题号	选择题 1~8	填空题 9 ~ 14	解答题 15 ~ 23	总 分
满分	32	24	94	150
得分				

一、	选择题,	1 -	\sim	8	题,	每题	4	分,	共	32	分.
----	------	-----	--------	---	----	----	---	----	---	----	----

1. 已知常数 $a > 1$, 则当 $x \rightarrow$	0 时, $f(x) = a^x + a^{-x} - 2$ 是 x 的	()
(A) 低阶无穷小	(B) 高阶无穷小	

(C) 等价无穷小

(D) 同阶但非等价的无穷小

3. 设在区间 [a,b] 上有 f(x) > 0, f'(x) > 0, f''(x) > 0, 令

$$M = \int_{a}^{b} f(x) dx$$
, $N = \frac{f(b) + f(a)}{2}(b - a)$, $P = (b - a)f\left(\frac{a + b}{2}\right)$,

则

(A)
$$M < N < P$$
 (B) $P < M < N$ (C) $P < N < M$ (D) $M < P < N$

(B)
$$P < M < N$$

(C)
$$P < N < N$$

(D)
$$M < P < N$$

4. 设
$$0 < a \le b \le c$$
, 则反常积分 $\int_0^{+\infty} \frac{\mathrm{d}x}{x^a + x^b + x^c}$ 收敛的充要条件是
(A) $a < 1 < c$ (B) $a \le 1 \le c$ (C) $a < 1 < b$ (D) $b < 1 < c$

5. 已知微分方程
$$y'' + ay' + by = ce^x$$
 的通解为 $y = (C_1 + C_2 x + x^2)e^x$, 则 a, b, c 依次为 (A) $1, -2, 1$ (B) $1, 0, \frac{1}{2}$ (C) $2, 1, \frac{1}{2}$ (D) $-2, 1, 2$

6. 设函数
$$f(x,y)$$
 连续,则累次积分 $\int_{\frac{\pi}{2}}^{\pi} d\theta \int_{0}^{-\cos\theta} f(r\cos\theta, r\sin\theta) r dr$ 可以写为 ()

(A)
$$\int_0^1 dy \int_0^{\sqrt{-y-y^2}} f(x, y) dx$$
 (B) $\int_0^1 dy \int_0^{\sqrt{1-y^2}} f(x, y) dx$ (C) $\int_{-1}^0 dx \int_0^1 f(x, y) dy$ (D) $\int_{-1}^0 dx \int_0^{\sqrt{-x-x^2}} f(x, y) dy$

- 7. 设 A 为 n 阶矩阵, α_1 , α_2 , β_1 , β_2 为 n 维列向量, 满足 $A\alpha_1 = \beta_1$, $A\alpha_2 = \beta_2$, 则 ()
 - (A) 向量组 $\alpha_1, \alpha_2, \beta_1, \beta_2$ 一定线性无关
 - (B) 向量组 $\alpha_1, \alpha_2, \beta_1, \beta_2$ 一定线性相关
 - (C) 如果向量组 α_1, α_2 线性无关,则向量组 β_1, β_2 线性无关
 - (D) 如果向量组 β_1 , β_2 线性无关,则向量组 α_1 , α_2 线性无关
- 8. 设 A 为 $m \times n$ 矩阵, $\mathbf{x} = (x_1, x_2, \dots, x_n)^{\mathrm{T}}$, 则 $A\mathbf{x} = \mathbf{0}$ 只有零解是 $A^{\mathrm{T}}A$ 正定的
 - (A) 充分而非必要条件

(B) 必要而非充分条件

(C) 充要条件

- (D) 既非充分也非必要条件
- 二、填空题,9~14题,每题4分,共24分.

$$9. \lim_{x \to 0} \frac{\sin\left(\pi\sqrt{\cos x}\right)}{x^2} = \underline{\qquad}.$$

- 10. 设连续函数 f(x) 满足 $f(x) = \ln x 2x^2 \int_1^e \frac{f(x)}{x} dx$, 则 f(x) =______.
- 11. $\int \frac{x \ln x}{(1+x^2)^2} \, \mathrm{d}x = \underline{\qquad}.$
- 12. 微分方程 $y'' \frac{1}{x}y' = xe^x$ 的通解为_____.

13.
$$\int_{\frac{1}{4}}^{\frac{1}{2}} dy \int_{\frac{1}{2}}^{\sqrt{y}} e^{\frac{y}{x}} dx + \int_{\frac{1}{2}}^{1} dy \int_{y}^{\sqrt{y}} e^{\frac{y}{x}} dx = \underline{\qquad}.$$

- 14. 设 \boldsymbol{A} 为三阶矩阵, $|\lambda \boldsymbol{E} \boldsymbol{A}| = \lambda^3 + 2\lambda + 1$, λ_1 , λ_2 , λ_3 为 \boldsymbol{A} 的特征值, 则 $\begin{vmatrix} \lambda_1 & \lambda_2 & \lambda_3 \\ \lambda_3 & \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 & \lambda_1 \end{vmatrix} = \underline{\qquad}$.
- 三、解答题, 15~23题, 共94分.
- 15. (本题满分 10 分) 设函数 f(x) 具有连续的导数,且 f(0) = 0, f'(0) = 1, 求 $\lim_{x \to 0} \frac{\int_{x}^{e^{x}-1} f(t) dt}{x^{3}}$.
- 16. (本题满分 10 分) 设不定积分 $\int \frac{2x^2+ax+1}{(x+1)(x^2+1)} \, \mathrm{d}x$ 的结果中不含反正切函数, 求 a 的值并计算此不定积分.
- 17. (本题满分 10 分) 设函数 $u = f\left(\ln\sqrt{x^2 + y^2}\right)$ 满足 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = (x^2 + y^2)^{\frac{3}{2}}$, 且 f(0) = f'(0) = 0, 求 f(v) 的表达式.
- 18. (本题满分10分)

设函数 y = f(x) ($x \ge 0$) 连续可导, 且 f(0) = 1. 现已知曲线 y = f(x)、x 轴、y 轴及过点 x 且垂直于 x 轴的直线所围成的图形的面积与曲线 y = f(x) 在 [0, x] 上的一段弧长值相等, 求 f(x).

19. (本题满分 10 分)

设区域
$$D = \{(x,y)|x+y \le 1, x \ge 0, y \ge 0\}$$
, 计算积分 $\iint\limits_{D} \cos \frac{x-y}{x+y} \, \mathrm{d}\sigma$.

- 20. (本题满分11分)
 - (1) 设函数 f(x) 在 $[0, +\infty)$ 上可导, 如果 $\lim_{x \to +\infty} f(x) = f(0)$, 证明: 存在 $\xi \in (0, +\infty)$, 使得 $f'(\xi) = 0$.
 - (2) 设函数 f(x) 在 $[0, +\infty)$ 上可导, 且 $0 \le f(x) \le \frac{x}{1+x^2}$, 证明: 存在 $\xi \in (0, +\infty)$, 使得 $f'(\xi) = \frac{1-\xi^2}{(1+\xi^2)^2}$.
- 21. (本题满分11分)

设
$$m, n$$
 为正整数, 令 $B(m, n) = \sum_{k=0}^{n} C_{n}^{k} \frac{(-1)^{k}}{m+k+1}$.

(1) 利用
$$\int_0^1 x^{m+k} dx = \frac{1}{m+k+1}$$
 证明 $B(m,n) = \int_0^1 x^m (1-x)^n dx = B(n,m)$;

(2) 证明:
$$B(m,n) = \frac{n}{m+1}B(m+1,n-1)$$
, 进一步证明 $B(m,n) = \frac{m!n!}{(m+n+1)!}$.

22. (本题满分 11 分)

设 A 为三阶矩阵, $\lambda_1, \lambda_2, \lambda_3$ 是 A 的三个不同特征值, 对应的特征向量为 $\alpha_1, \alpha_2, \alpha_3$, 令 $\beta = \alpha_1 + \alpha_2 + \alpha_3$.

- (1) 证明: β , $A\beta$, $A^2\beta$ 线性无关;
- (2) 若 $A^3\beta = A\beta$, 求秩 r(A E) 及行列式 |A + 2E|.
- 23. (本题满分 11 分)

已知三元二次型 $x^T A x$ 经过正交变换化为 $2y_1^2 - y_2^2 - y_3^2$, 又知矩阵 B 满足矩阵方程

$$\left[\left(\frac{1}{2}A\right)^*\right]^{-1}\boldsymbol{B}A^{-1}=2A\boldsymbol{B}+4\boldsymbol{E},$$

且 $A^*\alpha = \alpha$, 其中 $\alpha = (1, 1, -1)^T$, A^* 为 A 的伴随矩阵, 求二次型 x^TBx 的表达式.