Classe: Nom:

Interro TD 3 Sujet A

Date:

Prénom :

On considère l'espace vectoriel $M_2(\mathbb{R})$ des matrices carrées de taille 2 à coefficients dans \mathbb{R} .

1) Expliciter la base canonique $\mathcal{B} = (e_1, e_2, e_3, e_4)$ de $M_2(\mathbb{R})$.

2) Soit
$$F = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(K) \quad ; \quad a+2b-2c+4d=0 \right\}$$

- a) Montrer que F est un sous-espace vectoriel de $M_2(\mathbb{R})$.
- b) Justifier qu'on peut prévoir $\dim(F) = 3$.
- c) Donner une base de F, qu'on notera $\mathcal{B}' = (w_1, w_2, w_3)$, en explicitant bien les coordonnées de ces vecteurs dans la base canonique \mathcal{B} .
- d) Proposer une méthode, en une phrase et sans faire les calculs, pour prouver que votre famille \mathcal{B}' est bien une base de F.
- 3) On pose $u_1 = (-4; 1; 1; 1)$, $u_2 = (2; 2; 7; 2)$, $u_3 = (-16; 9; -7; -4)$ et $u_4 = (-18; 12; 1; -1)$ dans la base \mathcal{B} .
 - a) En appliquant l'algorithme de calcul du rang, montrer que $\mathcal{B}'' = (u_1, u_2, u_3)$ est une base de $Vect(u_1, u_2, u_3, u_4)$. Quels sont les coordonnées de u_4 dans cette base?
 - b) Montrer que \mathcal{B}'' est une base de F.
 - c) Expliciter les coordonnées de u_1, u_2 et u_3 dans la base \mathcal{B}' .
 - d) Expliciter la matrice de passage P de la base \mathcal{B}'' à la base \mathcal{B}' . En déduire les coordonnées du vecteur w_2 dans la base \mathcal{B}''

Classe: Nom: Prénom:

Interro TD 3

Sujet B

Date:

On considère l'espace vectoriel $M_2(\mathbb{R})$ des matrices carrées de taille 2 à coefficients dans \mathbb{R} .

- 1) Expliciter la base canonique $\mathcal{B} = (e_1, e_2, e_3, e_4)$ de $M_2(\mathbb{R})$.
- 2) Soit $F = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(K) \quad ; \quad a+b-5c+4d=0 \right\}$
 - a) Montrer que F est un sous-espace vectoriel de $M_2(\mathbb{R})$.
 - b) Justifier qu'on peut prévoir $\dim(F) = 3$.
 - c) Donner une base de F, qu'on notera $\mathcal{B}' = (w_1, w_2, w_3)$, en explicitant bien les coordonnées de ces vecteurs dans la base canonique \mathcal{B} .
 - d) Proposer une méthode, en une phrase et sans faire les calculs, pour prouver que votre famille \mathcal{B}' est bien une base de F.
- 3) On pose $u_1 = (0; 1; 1; 1)$, $u_2 = (-5; 7; 2; 2)$, $u_3 = (1; 5; 2; 1)$ et $u_4 = (-4; 13; 5; 4)$ dans la base \mathcal{B} .
 - a) En appliquant l'algorithme de calcul du rang, montrer que $\mathcal{B}'' = (u_1, u_2, u_3)$ est une base de $Vect(u_1, u_2, u_3, u_4)$. Quels sont les coordonnées de u_4 dans cette base?
 - b) Montrer que \mathcal{B}'' est une base de F.
 - c) Expliciter les coordonnées de u_1, u_2 et u_3 dans la base \mathcal{B}' .
 - d) Expliciter la matrice de passage P de la base \mathcal{B}'' à la base \mathcal{B}' . En déduire les coordonnées du vecteur w_2 dans la base \mathcal{B}''