Suites récurrentes et preuves formelles

Calcul formel – TP 3

Toutes les questions peuvent être traitées avec l'aide de Sage, sauf lorsque l'on vous demande de faire une preuve « à la main »!

1. Nombres bis de Fibonacci

La suite bis de Fibonacci est définie par les relations suivantes :

$$P_0 = 3$$
, $P_1 = 0$, $P_2 = 2$ et $P_n = P_{n-2} + P_{n-3}$ pour $n \geqslant 3$.

- 1. Écrire une fonction qui calcule P_n en fonction de n. Calculer les 20 premiers termes de la suite bis de Fibonacci.
- 2. Résoudre l'équation $x^3-x-1=0$. On note α,β et γ les solutions (réelle et complexes) de cette équation.
- 3. On note $Q_n = \alpha^n + \beta^n + \gamma^n$ pour $n \ge 0$.
 - (a) Vérifier que $P_n = Q_n$ pour les premières valeurs de n.
 - (b) Montrer à l'aide du calcul formel que $Q_n = Q_{n-2} + Q_{n-3}$. Conclure.
- 4. Cette suite a la propriété étonnante suivante : « si n est premier et supérieur ou égal à 3 alors n divise P_n ».
 - (a) Modifier la fonction qui calcule P_n en une fonction qui calcule seulement P_n (mod n) (tous les calculs intermédiaires étant aussi effectués modulo n). Vérifier la propriété pour quelques nombres premiers.
 - (b) **Énigme.** Pour le plus petit entier non premier n supérieur ou égal à 2 tel que n divise P_n , donner le nombre de chiffres de P_n .

Indication : commencer à n = 270000 et patienter!

2. Une suite récurrente

On considère la suite définie par récurrence :

$$u_0 = 1$$
, $u_1 = 1$ et $u_n = \frac{u_{n-2}u_{n-1}}{3u_{n-2} + 4u_{n-1}}$ pour $n \geqslant 2$.

1. Écrire une fonction qui calcule u_n en fonction de n. Donner les premières valeurs de la suite (u_n) et proposer une conjecture.

2. Méthode 1.

- (a) Poser $v_n = \frac{1}{u_n}$. Trouver à la main une relation de récurrence simple liant v_n à v_{n-1} et v_{n-2} .
- (b) Trouver une formule directe qui donne v_n en fonction de n. Indication. Suivre pas à pas la méthode du cours utilisée pour la suite de Fibonacci.

3. Méthode 2.

Prouver formellement que la formule directe pour $\left(\frac{1}{v_n}\right)$ (ou la formule conjecturée en 1.) vérifie la même relation de récurrence que (u_n) .

Fonction utile: full_simplify()

4. **Énigme.** Quel est le plus petit entier n tel que u_n soit strictement inférieur à 10^{-20} ?

3. La méthode de Halley

Le but est ici de calculer une approximation d'une solution de l'équation f(x) = 0 par des méthodes itératives. On appliquera ces méthodes pour approcher $\sqrt[3]{5}$ par des rationnels.

1. Méthode de Newton.

On pose $\phi(x) = x - \frac{f(x)}{f'(x)}$. Pour un certain choix de u_0 , on définit la suite de Newton (u_n) par récurrence : $u_{n+1} = \phi(u_n)$. Sous certaines conditions la suite (u_n) converge vers une solution c de f(x) = 0. De plus, la convergence est très rapide, en effet elle est « quadratique » : $|u_{n+1}-c| \le k|u_n-c|^2$ (pour une constante $k \in \mathbb{R}$).

En posant $f(x) = x^3 - 5$, calculer ϕ ainsi que les premiers termes de la suite récurrente définie par $u_0 = 2$ et $u_{n+1} = \phi(u_n)$. Vérifier que $u_2 = \frac{503}{294}$.

2. Méthode de Halley.

On cherche une méthode encore plus rapide pour approcher une solution de l'équation f(x) = 0. On suppose f croissante, on pose $g(x) = \frac{f(x)}{\sqrt{f'(x)}}$ et on applique la méthode de Newton à g(x) (qui s'annule quand f(x) s'annule). On pose donc $\psi(x) = x - \frac{g(x)}{g'(x)}$.

Montrer par un calcul à la main que

$$\psi(x) = x - \frac{2f(x)f'(x)}{2(f'(x))^2 - f(x)f''(x)}.$$

Pour un choix de v_0 , la suite de Halley est définie par récurrence : $v_{n+1} = \psi(v_n)$. La convergence est « cubique » donc plus rapide : $|v_{n+1}-c| \le k' |v_n-c|^3$ (pour une constante $k' \in \mathbb{R}$).

3. Application.

En posant $f(x) = x^3 - 5$, calculer ψ ainsi que les premiers termes de la suite récurrente définie par $v_0 = 2$ et $v_{n+1} = \psi(v_n)$.

Énigme. Le terme $v_2 = \frac{a}{b}$ écrit sous la forme d'une fraction irréductible est déjà une bonne approximation de $\sqrt[3]{5}$ par un rationnel. Combien vaut a?

4. Factorielle

Soit p un nombre premier. Il existe des formules directes pour calculer la plus grande puissance de p divisant n!. On note $v_p(n!)$ l'exposant correspondant.

Par exemple
$$7! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 = 2^4 \cdot 3^2 \cdot 5 \cdot 7$$
, donc $v_2(7!) = 4$, $v_3(7!) = 2$, $v_5(7!) = 1$ et $v_7(7!) = 1$.

1. Première formule de Legendre:

$$v_p(n!) = \sum_{k>1} E\left(\frac{n}{p^k}\right).$$

E(x) désigne la partie entière d'un réel x. Noter que la somme est en fait une somme finie. Prouver cette formule à la main en comptant d'abord les multiples de p, puis les multiples de $p^2...$

Implémenter le calcul de cette formule en une fonction legendre1(n,p).

2. Décomposition de n en base p.

L'écriture de *n* en base *p* est

$$n = a_{\ell} p^{\ell} + \dots + a_{k} p^{k} + \dots + a_{1} p + a_{0}$$
 avec $0 \leqslant a_{k} < p$ et $a_{\ell} \neq 0$.

On obtient par exemple a_0 en calculant n modulo p; on obtient a_1 en divisant d'abord $n-a_0$ par p puis en prenant le reste modulo p...

Écrire une fonction qui calcule a_k pour k fixé (ou encore mieux tous les a_k).

Tester votre fonction avec p = 2 en comparant vos résultats avec l'écriture binaire de n obtenue par bin(n).

3. Seconde formule de Legendre:

$$v_p(n!) = \frac{n - (a_0 + a_1 + \dots + a_\ell)}{p - 1}.$$

Implémenter le calcul de cette formule en une fonction legendre2(n,p).

4. **Énigme.** Par combien de zéros se termine n! pour n = 123456789?

Indication: 10 n'est pas un nombre premier!