Week 3: Large Language Models and In-context Learning

Generative Al
Saarland University – Winter Semester 2024/25

Adish Singla

genai-w24-tutors@mpi-sws.org

Outline of the Lecture

- Organizational updates
- Week 2 recap and assignment
- From Simple Ff Neural LM to Transformer-based LM
 - Single attention head
 - Multiple attention heads
 - Transformer block
 - Transformer architecture
- GPT-1/2/3 models and in-context learning capabilities
- Week 3 assignment

Outline of the Lecture

- Organizational updates
- Week 2 recap and assignment
- From Simple Ff Neural LM to Transformer-based LM
 - Single attention head
 - Multiple attention heads
 - Transformer block
 - Transformer architecture
- GPT-1/2/3 models and in-context learning capabilities
- Week 3 assignment

Organizational Updates

Assignments

- Deadlines are strict and enforced based on submission timesteps
- You should verify your submitted files from the personal link
- In case you are on sick leave:
 - Request an extension before the deadline
 - Send us a sick note from the doctor

Mailing lists and communication

- genai-w24-tutors@mpi-sws.org
 - Use this to contact tutors; CC this with any tutor for course-related discussions
 - Send email from your "official" email id
- genai-w24-announcements@sympa.mpi-sws.org
 - Tutors will use this to send course-related announcements
- There is no mailing list for group discussions
 - Students are welcome to clarify their questions with us via email or during office hours
 - For questions and clarifications of general interest, we will let everyone know

Outline of the Lecture

- Organizational updates
- Week 2 recap and assignment
- From Simple Ff Neural LM to Transformer-based LM
 - Single attention head
 - Multiple attention heads
 - Transformer block
 - Transformer architecture
- GPT-1/2/3 models and in-context learning capabilities
- Week 3 assignment

Simple Feedforward Neural LM: Detailed Architecture

Week 2 Assignment: E.1

E.1 Steps to find number of parameters for general N

- Parameters for embedding matrix E: |V|d
- Parameters for d_h neural units:
 - each weight vector: (N-1)d
 - each bias term: 1
- Parameters for unembedding matrix $U: |V|d_h$
- The number of parameters for this architecture is

$$|V|(d+d_h) + ((N-1)d+1)d_h$$

Attention Mechanism with Single Head: Actual Version

Input vectors

• N-1 vectors of size d denoted by $e_{t-N+1}, \dots, e_{t-2}, e_{t-1}$

Output vector

• 1 vector of size d_v denoted by a

Parameters

- query matrix W^q of size $d_k \times d$
- key matrix W^k of size $d_k \times d$
- value matrix W^{v} of size $d_{v} \times d$

$\begin{array}{c|c} \mathbf{a} \\ W^q, W^k, \\ W^v \\ & e_{t-N+1} \\ & e_{t-2} \end{array}$

Computation of vector a

- Given scalar values α_i , attention vector is $\mathbf{a} = \sum_{i=t-N+1}^{t-1} \alpha_i W^{v} \mathbf{e}_i$
 - Compute similarity scores for e_{t-1} with e_i for i=t-N+1,...,t-2,t-1 using vector dot prodct similarity $\text{score}(e_{t-1},e_i) = \frac{W^q e_{t-1} \cdot W^k e_i}{\text{sqrt}(d_k)}$
 - Compute α_i using softmax over scores: $\alpha_i = \operatorname{softmax}(\operatorname{score}(\boldsymbol{e}_{t-1}, \boldsymbol{e}_i))$

Week 2 Assignment: E.2 and E.3

E.2 Steps to compute the attention vector

Steps are mentioned in the previous slide

E.3 Steps to find number of parameters in one attention head

- Parameters for query matrix W^q : $d_k d$
- Parameters for key matrix W^k : $d_k d$
- Parameters for value matrix W^{v} : $d_{v}d$
- The number of parameters in one attention head is

$$2d_kd + d_vd$$

Incorporating Attention Mechanism in Simple Ff Neural LM

Week 2 Assignment: E.4

E.4 Steps to find number of parameters in the architecture

- Parameters for embedding matrix E: |V|d
- Parameters for one attention head: $2d_kd + d_vd$
- Parameters for d_h neural units:
 - each weight vector: d_v
 - each bias term: 1
- Parameters for unembedding matrix $U: |V|d_h$
- The number of parameters for this architecture is

$$|V|(d+d_h) + (2d_kd+d_vd) + (d_v+1)d_h$$

Week 2 Assignment: I.1 and I.2

I.2 Number of parameters

	Layers = 2	Layers = 4
N = 3	9,721,596	14,980,860
N = 5	9,721,596	14,980,860

- Number of parameters do not depend on N
- Number of parameters increased with number of layers

I.1 Perplexity

	Layers = 2	Layers = 4
N=3	8.32	8.15
N = 5	10.63	6.65

- Fix Layers: Simply increasing N without enough parameters increased perplexity
- Fix N: Fix Increasing the number of layers helped in reducing perplexity

Outline of the Lecture

- Organizational updates
- Week 2 recap and assignment
- From Simple Ff Neural LM to Transformer-based LM
 - Single attention head
 - Multiple attention heads
 - Transformer block
 - Transformer architecture
- GPT-1/2/3 models and in-context learning capabilities
- Week 3 assignment

How to Deal with Large Contexts?

The water of Walden Pond is beautifully ...

The chicken did not cross the road because it ...

A woman is throwing a ...

By Attending to Relevant Parts and Integrating Information

The water of Walden Pond is beautifully blue

The chicken did not cross the road because it was

A woman is throwing a **frisbee**

By Attending and Integrating Different Types of Information

The water of Walden Pond is beautifully blue

The chicken did not cross the road because it was

A woman is throwing a frisbee

Incorporating Multi-head Attention in Simple Ff Neural LM

Layer of Attention Heads: Computing Attention Vector

- η_a number of attention heads
- For each attention head indexed i:
 - compute single attention vector \mathbf{a}_i of size d_v using W_i^q , W_i^k , W_i^v
- Concatenate single vectors to obtain attention vector a of size $\eta_a d_v$

Multi-head Attention in Simple Ff Neural LM

Multi-head Attention in Simple Ff Neural LM | Same as #19

Outline of the Lecture

- Organizational updates
- Week 2 recap and assignment
- From Simple Ff Neural LM to Transformer-based LM
 - Single attention head
 - Multiple attention heads
 - Transformer block
 - Transformer architecture
- GPT-1/2/3 models and in-context learning capabilities
- Week 3 assignment

Transformer Block: Overview of Input-Output Interface

Transformer Block: Detailed Processing Steps

Transformer Block: [Attention Layer]

Input

• N-1 vectors of size d denoted by $e_{t-N+1}, \dots, e_{t-2}, e_{t-1}$

Output

• 1 vector of size $\eta_a d_v$ denoted by a

Parameters for η_a attention heads

- For each attention head indexed i:
 - each query matrix W_i^q of size $d_k \times d$
 - each key matrix W_i^k of size $d_k \times d$
 - each value matrix W_i^v of size $d_v \times d$

Computation of output vector a

See earlier slide #18: Layer of Attention Heads: Computing Attention Vector

Transformer Block: [Attention Projection, Sum, Norm]

Input

- 1 vector of size $\eta_a d_v$ denoted by attention vector a
- 1 vector of size d denoted by residual connection e_{t-1}

Output vector

1 vector of size d denoted by p

Parameters

- attention layer projection matrix $W^{ ext{AProj}}$ of size $d imes \eta_{ ext{a}} d_v$
- two parameters for attention layer normalization denoted by γ^{ANorm} , β^{ANorm}

$m{co}$ mputation of output vector $m{p}$

- Project a to a vector of size $d: W^{AProj}$ a
- Add residual connection: $(W^{AProj}a) + e_{t-1}$
- Normalize vector: LayerNorm $((W^{AProj}\mathbf{a}) + e_{t-1}; \gamma^{ANorm}, \beta^{ANorm})$
 - Optional reading: Chapters 9.2 provide details about this normalization step

Transformer Block: [Feedforward Layer]

Input

1 vector of size d denoted by p

Output

• 1 vector of size d_h denoted by q

Parameters for d_h neural units

- For neural unit i:
 - each weight vector w_i of size d
 - each bias term b_i of size 1

Computation of output vector q

See earlier slide #6: Simple Feedforward Neural LM: Detailed Architecture

Transformer Block: [Feedforward Projection, Sum, Norm]

Input

- 1 vector of size d_h denoted by feedforward layer vector q
- 1 vector of size d denoted by residual connection e_{t-1}

Output vector

1 vector of size d denoted by h

Parameters

- feedforward layer projection matrix W^{FfProj} of size $d \times d_h$
- feedforward layer bias term vector b^{FfProj} of size d
- two parameters for feedforward layer normalization denoted by $\gamma^{\rm FfNorm}$, $\beta^{\rm FfNorm}$

Computation of output vector *h*

- Project q to a vector of size d and add bias term vector: $W^{\rm FfProj}q + b^{\rm FfProj}$
- Add residual connection: $(W^{\text{FfProj}}q + b^{\text{FfProj}}) + e_{t-1}$
- Normalize vector: LayerNorm $((W^{\text{FfProj}}q + b^{\text{FfProj}}) + e_{t-1}; \gamma^{\text{FfNorm}}, \beta^{\text{FfNorm}})$

Transformer Block: Interface and Processing

Transformer Block: Interface and Processing | Same as #28

Outline of the Lecture

- Organizational updates
- Week 2 recap and assignment
- From Simple Ff Neural LM to Transformer-based LM
 - Single attention head
 - Multiple attention heads
 - Transformer block
 - Transformer architecture
- GPT-1/2/3 models and in-context learning capabilities
- Week 3 assignment

Transformer Architecture: One Layer (Row) of Blocks

Transformer Architecture: Layers of Transformer Blocks

Transformer Architecture: Number of parameters

Parameters in *L* transformer layers

• The number of parameters in a transformer block, henceforth referred as B, is

$$B = (2d_k d + d_v d)\eta_a + (d_v d\eta_a + 2) + (d+1)d_h + (dd_h + d + 2)$$

The number of parameters in L layers of transformer blocks is LB

Parameters in transformer architecture

- Consider weights of unembedding matrix U shared with that of E
 - U could be set as transpose of E
- The number of parameters in this architecture is |V|d + LB

Part of Week 3 assignment

In the assignment, you will compute the number of parameters step by step

Transformer Architecture: Additional Remarks

Positional Information of Tokens: Chapter 9.4 of SLP book

- For a token e_{t-1} , two types of embeddings vectors are combined by addition:
 - Embedding vector based on embedding matrix: Ee_{t-1}
 - Embedding vector based on position index: t-1

Parallelization of computation: Chapter 9.3 of SLP book

- During training, we can easily parallelize the entire computation
- During inference, tokens get generated one by one left to right
 - not parallelizable; attention embeddings get reused from previous time steps

Optional reading material

- Additional reading resources are provided as optional in assignments:
 - Week 3: Chapter 9 of SLP book; GPT-1 paper [Radford et al., '18]
 - Week 2: Transformer [Vaswani et al., NeurIPS'17]
- Slightly different design, notation, and terminology across resources

Outline of the Lecture

- Organizational updates
- Week 2 recap and assignment
- From Simple Ff Neural LM to Transformer-based LM
 - Single attention head
 - Multiple attention heads
 - Transformer block
 - Transformer architecture
- GPT-1/2/3 models and in-context learning capabilities
- Week 3 assignment

How to build the GPT-1 Model?

- Let's instantiate the transformer architecture in slides #31—34 with following:
 - Context N = 512
 - Vocabulary |V| = 40,478
 - Transformer layers L = 12
 - Embedding dimension d = 768
 - Number of attention heads $\eta_a = 12$
 - Dimension for key and value vectors in attention head as $d_k=d_v=64$
 - Number of neural units $d_h = 3072$
- That's 116,067,888 parameters → That's what is inside the GPT-1 model!

Optional reading material

- Week 3: GPT-1 paper [Radford et al., '18]
- Vocabulary: https://huggingface.co/docs/transformers/en/tokenizer_summary
- Andrej Karpathy's implementation: https://github.com/karpathy/minGPT/

"...GPT is not a complicated model and this implementation is appropriately about 300 lines of code..."

Quick Evolution from GPT-1 to GPT-3

- 2018: OpenAl's GPT-1 [Radford et al., '18]
 - Size: 117 million parameters
 - Context length: 512

- 2019: OpenAl's GPT-2 [Radford et al.,'19]
 - Size: 1.5 billion parameters
 - Context length: 1024

- 2020: OpenAl's GPT-3 [Brown et al., NeurIPS'20]
 - Size: 175 billion parameters
 - Context length: 2048

Quick Evolution from GPT-1 to GPT-3

	Model Name	$n_{ m params}$	$n_{ m layers}$	$d_{ m model}$	$n_{ m heads}$	$d_{ m head}$	Batch Size	Learning Rate
≈size GPT-1	GPT-3 Small	125M	12	768	12	64	0.5M	6.0×10^{-4}
	GPT-3 Medium	350M	24	1024	16	64	0.5M	3.0×10^{-4}
	GPT-3 Large	760M	24	1536	16	96	0.5M	2.5×10^{-4}
≈size GPT-2	GPT-3 XL	1.3B	24	2048	24	128	1M	2.0×10^{-4}
	GPT-3 2.7B	2.7B	32	2560	32	80	1 M	1.6×10^{-4}
	GPT-3 6.7B	6.7B	32	4096	32	128	2M	1.2×10^{-4}
	GPT-3 13B	13.0B	40	5140	40	128	2M	1.0×10^{-4}
GPT-3	GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	0.6×10^{-4}

Table 2.1: Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models which we trained. All models were trained for a total of 300 billion tokens.

Dataset	Quantity (tokens)	Weight in training mix	Epochs elapsed when training for 300B tokens
Common Crawl (filtered)	410 billion	60%	0.44
WebText2	19 billion	22%	2.9
Books1	12 billion	8%	1.9
Books2	55 billion	8%	0.43
Wikipedia	3 billion	3%	3.4

Table 2.2: Datasets used to train GPT-3. "Weight in training mix" refers to the fraction of examples during training that are drawn from a given dataset, which we intentionally do not make proportional to the size of the dataset. As a result, when we train for 300 billion tokens, some datasets are seen up to 3.4 times during training while other datasets are seen less than once.

GPT-3 as a Few Shot Learner: In-context Learning Settings

The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

```
Translate English to French: ← task description

cheese => ← prompt
```

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

```
Translate English to French: ← task description

sea otter => loutre de mer ← example

cheese => ← prompt
```

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

```
Translate English to French: 

task description

sea otter => loutre de mer examples

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt
```

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a large corpus of example tasks.

GPT-3 as a Few Shot Learner: In-context Learning Gains

Figure 1.2: Larger models make increasingly efficient use of in-context information. We show in-context learning performance on a simple task requiring the model to remove random symbols from a word, both with and without a natural language task description (see Sec. 3.9.2). The steeper "in-context learning curves" for large models demonstrate improved ability to learn a task from contextual information. We see qualitatively similar behavior across a wide range of tasks.

GPT-3 as a Few Shot Learner: Results on Translation

Figure 3.4: Few-shot translation performance on 6 language pairs as model capacity increases. There is a consistent trend of improvement across all datasets as the model scales, and as well as tendency for translation into English to be stronger than translation from English.

GPT-3 as a Few Shot Learner: Results on TriviaQA

Figure 3.3: On TriviaQA GPT3's performance grows smoothly with model size, suggesting that language models continue to absorb knowledge as their capacity increases. One-shot and few-shot performance make significant gains over zero-shot behavior, matching and exceeding the performance of the SOTA fine-tuned open-domain model, RAG [LPP+20]

In-Context Learning and Prompting Strategies

Few-shot prompting

- Interesting questions: How many examples? How to select examples?
- Resources
 - Week 3 reading: Chapter 12.1 of SLP book; GPT-3 paper [Brown et al., NeurIPS'20]
 - Week 3 exercise: E.5

Retrieval augmented generation (RAG)

- Basic idea: Augment the prompt with documents relevant to a user's question
- Resources
 - Week 3 reading: Chapter 14.3 of SLP book

Chain-of-thought (CoT) prompting

- Basic idea: Ask the model to write detailed reasoning steps before final answer
- Resources
 - Week 3 reading: Chapter 12.4 of SLP book; CoT paper [Wei et al., NeurIPS'22]
 - Week 3 exercise: E.6

Outline of the Lecture

- Organizational updates
- Week 2 recap and assignment
- From Simple Ff Neural LM to Transformer-based LM
 - Single attention head
 - Multiple attention heads
 - Transformer block
 - Transformer architecture
- GPT-1/2/3 models and in-context learning capabilities
- Week 3 assignment

https://owncloud.mpi-sws.org/index.php/s/9YYZkDAeb58qiT2

From N-gram LMs to GPT-3

- 1970s: Resurgence of N-gram LMs in speech recognition, e.g., [Jelinek et al. '75] ...
- 2000: Simple Ff Neural LM [Bengio et al., NeurIPS'00] ...
- 2014: Recurrent networks (RNN) for translation, e.g., [Sutskever et al., NeurIPS'14]
 - Encoder-decoder architectures with Long Short-Term Memory (LSTM) hidden units
- 2015: Attention mechanisms, e.g., [Bahdanau et al., ICLR'15] ...
- 2017: Transformer [Vaswani et al., NeurIPS'17]
- 2018: OpenAl's GPT-1 (~100 million parameters) [Radford et al., '18]
- 2020: OpenAl's GPT-3 (175 billion parameters) [Brown et al., NeurIPS'20]

From 2021 onwards: Life after GPT-3

Course Timeline

[15 Oct] Week 1: Introduction [22 Oct] Week 2: Background on Language Models and Transformers [29 Oct] Week 3: Large Language Models and In-context Learning	From 1970's to 2020
[05 Nov] Week 4: Pre-training and Supervised Fine-tuning [12 Nov] Week 5: Preference-based Fine-tuning for Alignment	
[26 Nov] Week 6: Multi-modal Foundation Models[03 Dec] Week 7: Trustworthiness Aspects I[10 Dec] Week 8: Trustworthiness Aspects II	From 2021
[07 Jan] Week 9: GenAl-powered Programming Education I [14 Jan] Week 10: GenAl-powered Programming Education II	onwards
[28 Jan] Week 11: Project Discussion [04 Feb] Week 12: Examination Preparation	