

Examen 2012/13-2

Assignatura	Codi	Data	Hora inici
Lògica	05.570	22/06/2013	09:00

Enganxeu en aquest espai una etiqueta identificativa amb el vostre codi personal Examen

Fitxa tècnica de l'examen

- Comprova que el codi i el nom de l'assignatura corresponen a l'assignatura en la qual estàs matriculat.
- · Només has d'enganxar una etiqueta d'estudiant a l'espai corresponent d'aquest full.
- No es poden adjuntar fulls addicionals.
- · No es pot realitzar la prova en llapis ni en retolador gruixut.
- Temps total: 2 h.
- En cas que els estudiants puguin consultar algun material durant l'examen, quin o quins materials poden consultar?

No es pot consultar cap material

- Valor de cada pregunta: Problema 1: 30%, problema 2: 25%, problema 3: 25%, problema 4: 20%
- En cas que hi hagi preguntes tipus test: Descompten les respostes errònies? NO Quant?
- Indicacions específiques per a la realització d'aquest examen:

Enunciats

Examen 2012/13-2

Assignatura	Codi	Data	Hora inici
Lògica	05.570	22/06/2013	09:00

Problema 1

- a) Respon les següents preguntes utilitzant els àtoms proposats:
 - R: Tenir pressupost
 - O: Tenir un ordinador potent
 - P: Poder programar en PHP
 - S: Poder instal·lar un servidor
 - 1) Formalitza la frase "Quan no tens pressupost, no és necessari tenir un ordinador potent per a poder programar en PHP".

$$R \rightarrow \neg (P \rightarrow O)$$

- 2) Quin dels següents enunciats és una formalització correcte de la frase "Si no tens un ordinador potent, cal tenir pressupost per a poder instal·lar un servidor web"?
 - a. $\neg O \rightarrow (S \rightarrow R)$
 - b. $(S \rightarrow P) \rightarrow \neg O$
 - c. $\neg O \rightarrow (P \rightarrow S)$
- 3) Quin dels següents enunciats és una formalització correcte de la frase "Per a poder programar en PHP cal poder instal·lar un servidor web, si tens un ordinador potent o tens pressupost."?
 - a. $(P \rightarrow S) \rightarrow O \lor R$
 - b. $O \lor R \rightarrow (P \rightarrow S)$
 - c. $O \lor R \rightarrow P \rightarrow S$
- b) Respon les següents preguntes utilitzant els predicats proposats:

Domini: un conjunt no buit

R(x): x és ric

B(x): x és banquer

H(x): x és honrat

E(x): x és emprenedor

F(x,y): x vol finançar a y

1) Formalitza la frase "Tots els banquers són rics, però alguns no són honrats."

$$\forall x (B(x) \rightarrow R(x)) \land \exists x (B(x) \land \neg H(x))$$

- 2) Quina de les següents fórmules és una formalització correcte de la frase "Hi ha emprenedors honrats a qui ningun banquer vol finançar."?
 - a. $\exists x \{ E(x) \land H(x) \land \forall y [B(y) \rightarrow \neg F(y,x)] \}$
 - b. $\exists x \{ E(x) \land H(x) \land \neg \forall y [B(y) \rightarrow F(y,x)] \}$
 - c. $\exists x \{ E(x) \land H(x) \land \exists y [B(y) \land \neg F(y,x)] \}$
- 3) Digueu quina frase formalitza la fórmula $\exists x [E(x) \land R(x) \land \neg H(x)]$
 - a. Hi ha emprenedors rics i honrats.
 - b. No hi ha emprenedors rics que siguin honrats.
 - c. No tots els emprenedors rics són honrats.

Assignatura	Codi	Data	Hora inici
Lògica	05.570	22/06/2013	09:00

Problema 2

Demostra la validesa del raonament següent utilitzant les 9 regles primitives de la deducció natural (és a dir, no pots utilitzar ni regles derivades ni equivalents deductius ni teoremes):

$$S \wedge \neg T \rightarrow Q$$
, $P \vee Q \rightarrow (R \rightarrow \neg T)$, $R \rightarrow P \wedge R : S \rightarrow (R \rightarrow Q)$

1.	S∧¬T → Q			P
2.	$P \lor Q \rightarrow (R \rightarrow \neg T)$			Р
3.	$R \rightarrow P \wedge R$			P
4.		S		Н
5.			R	Н
6.			P ^ R	E→ 3, 5
7.			Р	E^ 6
8.			PvQ	Iv 7
9.			R → ¬T	E→2,8
10.			¬T	E→ 5,9
11.			SA¬T	I _A 4,10
12.			Q	E→ 1, 11
13.		$R \rightarrow Q$		l→ 5, 12
14.	$S \rightarrow (R \rightarrow Q)$			l→ 4, 13

Assignatura	Codi	Data	Hora inici
Lògica	05.570	22/06/2013	09:00

Problema 3

Analitza la validesa o la invalidesa del següent raonament utilitzant el mètode de resolució. Comprova la consistència de les premisses.

$$A \land B \rightarrow C, \neg C \rightarrow A, C \rightarrow B, A \rightarrow C \lor B \therefore C \lor D$$

Busquem la FNC de les premisses i de la negació de la conclusió:

$$A \land B \rightarrow C = \neg A \lor \neg B \lor C$$
 $\neg C \rightarrow A = C \lor A$
 $C \rightarrow B = \neg C \lor B$
 $A \rightarrow C \lor B = \neg A \lor B \lor C$
 $\neg (C \lor D) = \neg C \land \neg D$

Conjunt de clàusules resultants (amb negreta, el conjunt de suport):

$$\{\neg A \lor \neg B \lor C, C \lor A, \neg C \lor B, \neg A \lor B \lor C, \neg C, \neg D\}$$

Aplicant la regla del literal pur, eliminem totes les clàusules amb $\neg D$ ja que no hi ha D. Ens queda: $\{\neg A \lor \neg B \lor C, C \lor A, \neg C \lor B, \neg A \lor B \lor C, \neg C\}$

Resolució:

¬C	C v A
Α	¬A v B v C
Bv C	¬C
В	¬A v ¬B v C
¬A v C	¬C
¬A	Α

Hem arribat a la clàusula buida, per tant el raonament és vàlid.

A continuació comprovem la consistència de les premisses: {¬A v ¬B v C, C v A, ¬C v B, ¬A v B v C}

Comencem per la darrera clàusula

¬A v B v C	¬C v B
¬A v B	¬A v ¬B v C
¬A v C	¬C v B
¬A v B	
Bucle	

No podem arribar a la clàusula buida amb la darrera clàusula, per tant, la eliminem:

$$\{\neg A \lor \neg B \lor C, C \lor A, \neg C \lor B\}$$

Amb la darrera clàusula, resolent amb el literal B arribem a un teorema. Si eliminem aquesta clàusula, veiem que a les clàusules que queden C es un literal pur, de manera que podem eliminar aquestes clàusules i ens quedem amb un conjunt buit. Així doncs, queda demostrat que no és possible construir un arbre de resolució amb les clàusules de les premisses que ens porti a la clàusula buida. Per tant, **les premisses són consistents.**

Examen 2012/13-2

Assignatura	Codi	Data	Hora inici
Lògica	05.570	22/06/2013	09:00

Problema 4

Demostra per resolució la validesa del següent raonament

```
\forall x (A(x) \rightarrow B(x))
   \forall x [ C(x) \rightarrow \exists y (A(y) \land T(x, y)) ]
           \neg \exists x [ C(x) \land \exists y (A(y) \land B(y) \land T(x,y) ) ]
       ∴¬∃xC(x)
FNS(\forall x (A(x) \rightarrow B(x))) = \forall x (\neg A(x) \lor B(x)) = \neg A(x) \lor B(x)
   \mathsf{FNS}(\forall x \ [\ \mathsf{C}(x) \to \exists y \ (\mathsf{A}(y) \land \mathsf{T}(x,\,y)\ )\ ]) = \forall x \ [\ \neg \mathsf{C}(x) \lor \exists y \ (\mathsf{A}(y) \land \mathsf{T}(x,\,y)\ )\ ] = \forall x \ [\ \neg \mathsf{C}(x) \lor \exists y \ (\mathsf{A}(y) \land \mathsf{T}(x,\,y)\ )\ ] = \forall x \ [\ \neg \mathsf{C}(x) \lor \exists y \ (\mathsf{A}(y) \land \mathsf{T}(x,\,y)\ )\ ] = \forall x \ [\ \neg \mathsf{C}(x) \lor \exists y \ (\mathsf{A}(y) \land \mathsf{T}(x,\,y)\ )\ ] = \forall x \ [\ \neg \mathsf{C}(x) \lor \exists y \ (\mathsf{A}(y) \land \mathsf{T}(x,\,y)\ )\ ] = \forall x \ [\ \neg \mathsf{C}(x) \lor \exists y \ (\mathsf{A}(y) \land \mathsf{T}(x,\,y)\ )\ ] = \forall x \ [\ \neg \mathsf{C}(x) \lor \exists y \ (\mathsf{A}(y) \land \mathsf{T}(x,\,y)\ )\ ] = \forall x \ [\ \neg \mathsf{C}(x) \lor \exists y \ (\mathsf{A}(y) \land \mathsf{T}(x,\,y)\ )\ ] = \forall x \ [\ \neg \mathsf{C}(x) \lor \exists y \ (\mathsf{A}(y) \land \mathsf{T}(x,\,y)\ )\ ] = \forall x \ [\ \neg \mathsf{C}(x) \lor \exists y \ (\mathsf{A}(y) \land \mathsf{T}(x,\,y)\ )\ ] = \forall x \ [\ \neg \mathsf{C}(x) \lor \exists y \ (\mathsf{A}(y) \land \mathsf{T}(x,\,y)\ )\ ] = \forall x \ [\ \neg \mathsf{C}(x) \lor \exists y \ (\mathsf{A}(y) \land \mathsf{T}(x,\,y)\ )\ ] = \forall x \ [\ \neg \mathsf{C}(x) \lor \exists y \ (\mathsf{A}(y) \land \mathsf{T}(x,\,y)\ )\ ] = \forall x \ [\ \neg \mathsf{C}(x) \lor \exists y \ (\mathsf{A}(y) \land \mathsf{T}(x,\,y)\ )\ ] = \forall x \ [\ \neg \mathsf{C}(x) \lor \exists y \ (\mathsf{A}(y) \land \mathsf{T}(x,\,y)\ )\ ] = \forall x \ [\ \neg \mathsf{C}(x) \lor \exists y \ (\mathsf{A}(y) \land \mathsf{T}(x,\,y)\ )\ ] = \forall x \ [\ \neg \mathsf{C}(x) \lor \exists y \ (\mathsf{A}(y) \land \mathsf{T}(x,\,y)\ )\ ] = \forall x \ [\ \neg \mathsf{C}(x) \lor \exists y \ (\mathsf{A}(y) \land \mathsf{T}(x,\,y)\ )\ ] = \forall x \ [\ \neg \mathsf{C}(x) \lor \exists y \ (\mathsf{A}(y) \land \mathsf{T}(x,\,y)\ )\ ] = \forall x \ [\ \neg \mathsf{C}(x) \lor \exists y \ (\mathsf{A}(y) \land \mathsf{T}(x,\,y)\ )\ ] = \forall x \ [\ \neg \mathsf{C}(x) \lor \exists y \ (\mathsf{A}(y) \land \mathsf{T}(x,\,y)\ )\ ] = \forall x \ [\ \neg \mathsf{C}(x) \lor \exists y \ (\mathsf{A}(y) \land \mathsf{T}(x,\,y)\ )\ ] = \forall x \ [\ \neg \mathsf{C}(x) \lor \exists y \ (\mathsf{A}(y) \land \mathsf{T}(x,\,y)\ )\ ] = \forall x \ [\ \neg \mathsf{C}(x) \lor \exists y \ (\mathsf{A}(y) \land \mathsf{T}(x,\,y)\ )\ ] = \forall x \ [\ \neg \mathsf{C}(x) \lor \exists y \ (\mathsf{A}(y) \land \mathsf{T}(x,\,y)\ )\ ] = \forall x \ [\ \neg \mathsf{C}(x) \lor \exists y \ (\mathsf{A}(y) \land \mathsf{T}(x,\,y)\ )\ ] = \forall x \ [\ \neg \mathsf{C}(x) \lor \exists y \ (\mathsf{A}(y) \land \mathsf{T}(x,\,y)\ )\ ] = \forall x \ [\ \neg \mathsf{C}(x) \lor \exists y \ (\mathsf{A}(x) \lor \mathsf{C}(x)\ )\ ] = \forall x \ [\ \neg \mathsf{C}(x) \lor \exists y \ (\mathsf{A}(x) \lor \mathsf{C}(x)\ )\ ] = \forall x \ [\ \neg \mathsf{C}(x) \lor \exists y \ (\mathsf{A}(x) \lor \mathsf{C}(x)\ )\ ] = \forall x \ [\ \neg \mathsf{C}(x) \lor \mathsf{C}(x) \lor \mathsf{C}(x)\ )\ ] = \forall x \ [\ \neg \mathsf{C}(x) \lor \mathsf{C}(x) \lor \mathsf{C}(x) \lor \mathsf{C}(x)\ )\ ] = \forall x \ [\ \neg \mathsf{C}(x) \lor \mathsf{C}(x) \lor \mathsf{C}(x) \lor \mathsf{C}(x)\ )\ ] = \forall x \ [\ \neg \mathsf{C}(x) \lor \mathsf{C}(x) \lor \mathsf{C}(x) \lor \mathsf{C}(x)\ )\ ] = \forall x \ [\ \neg \mathsf{C}(x) \lor \mathsf{C}(x) \lor \mathsf{C}(x) \lor \mathsf{C}(x)\ )\ ] = \forall x \
       \forall x [\neg C(x) \lor (A(f(x)) \land T(x, f(x)))] = \forall x [(\neg C(x) \lor A(f(x))) \land ((\neg C(x) \lor T(x, f(x)))] = (\neg C(x) \lor A(f(x))) \land ((\neg C(x) \lor T(x, f(x)))) = (\neg C(x) \lor A(f(x))) \land ((\neg C(x) \lor T(x, f(x)))) = (\neg C(x) \lor A(f(x))) \land ((\neg C(x) \lor T(x, f(x)))) = (\neg C(x) \lor A(f(x))) \land ((\neg C(x) \lor T(x, f(x)))) = (\neg C(x) \lor A(f(x))) \land ((\neg C(x) \lor T(x, f(x)))) = (\neg C(x) \lor A(f(x))) \land ((\neg C(x) \lor T(x, f(x)))) = (\neg C(x) \lor A(f(x))) \land ((\neg C(x) \lor T(x, f(x)))) = (\neg C(x) \lor A(f(x))) \land ((\neg C(x) \lor T(x, f(x)))) = (\neg C(x) \lor A(f(x))) \land ((\neg C(x) \lor T(x, f(x)))) = (\neg C(x) \lor A(f(x))) \land ((\neg C(x) \lor T(x, f(x)))) = (\neg C(x) \lor A(f(x))) \land ((\neg C(x) \lor T(x, f(x)))) = (\neg C(x) \lor T(x, f(x))) \land ((\neg C(x) \lor T(x, f(x)))) = (\neg C(x) \lor T(x, f(x))) \land ((\neg C(x) \lor T(x, f(x)))) = (\neg C(x) \lor T(x, f(x))) \land ((\neg C(x) \lor T(x, f(x)))) = (\neg C(x) \lor T(x, f(x))) \land ((\neg C(x) \lor T(x, f(x)))) = (\neg C(x) \lor T(x, f(x))) \land ((\neg C(x) \lor T(x, f(x)))) = (\neg C(x) \lor T(x, f(x))) \land ((\neg C(x) \lor T(x, f(x)))) = (\neg C(x) \lor T(x, f(x))) \land ((\neg C(x) \lor T(x, f(x)))) = (\neg C(x) \lor T(x, f(x))) \land ((\neg C(x) \lor T(x, f(x)))) = (\neg C(x) \lor T(x, f(x))) \land ((\neg C(x) \lor T(x, f(x)))) = (\neg C(x) \lor T(x, f(x))) \land ((\neg C(x) \lor T(x, f(x)))) = (\neg C(x) \lor T(x, f(x))) \land ((\neg C(x) \lor T(x, f(x)))) = (\neg C(x) \lor T(x, f(x))) \land ((\neg C(x) \lor T(x, f(x)))) = (\neg C(x) \lor T(x, f(x))) \land ((\neg C(x) \lor T(x, f(x)))) = (\neg C(x) \lor T(x, f(x))) \land ((\neg C(x) \lor T(x, f(x)))) = (\neg C(x) \lor T(x, f(x))) \land ((\neg C(x) \lor T(x, f(x)))) = (\neg C(x) \lor T(x, f(x))) \land ((\neg C(x) \lor T(x, f(x)))) = (\neg C(x) \lor T(x, f(x))) \land ((\neg C(x) \lor T(x, f(x)))) = (\neg C(x) \lor T(x, f(x))) \land ((\neg C(x) \lor T(x, f(x)))) = (\neg C(x) \lor T(x, f(x))) \land ((\neg C(x) \lor T(x, f(x)))) = (\neg C(x) \lor T(x, f(x))) \land ((\neg C(x) \lor T(x, f(x)))) = (\neg C(x) \lor T(x, f(x))) \land ((\neg C(x) \lor T(x, f(x)))) = (\neg C(x) \lor T(x, f(x))) \land ((\neg C(x) \lor T(x, f(x)))) = (\neg C(x) \lor T(x, f(x))) \land ((\neg C(x) \lor T(x, f(x)))) = (\neg C(x) \lor T(x, f(x))) \land ((\neg C(x) \lor T(x, f(x)))) = (\neg C(x) \lor T(x, f(x))) \land ((\neg C(x) \lor T(x, f(x)))) = (\neg C(x) \lor T(x, f(x))) \land ((\neg C(x) \lor T(x, f(x))) \land ((\neg C(x) \lor T(x, f(x)))) = (\neg C(x) \lor T(x, f(x))) \land ((\neg C(x) \lor T(x))) = (\neg C(x) \lor T(x, f(x))) \land ((\neg C(x) \lor T(x))) = (\neg C(x) \lor T(x)) \land ((\neg 
   (\neg C(x) \lor A(f(x))) \land ((\neg C(x) \lor T(x, f(x)))
\mathsf{FNS}(\neg\exists x[\ \mathsf{C}(x) \land \exists y(\ \mathsf{A}(y) \land \mathsf{B}(y) \land \mathsf{T}(x,y)\ )\ ]) = (\forall x[\ \neg(\mathsf{C}(x) \land \exists y(\ \mathsf{A}(y) \land \mathsf{B}(y) \land \mathsf{T}(x,y)\ )] = (\forall x[\ \neg(\mathsf{C}(x) \land \exists y(\ \mathsf{A}(y) \land \mathsf{B}(y) \land \mathsf{T}(x,y)\ )] = (\forall x[\ \neg(\mathsf{C}(x) \land \exists y(\ \mathsf{A}(y) \land \mathsf{B}(y) \land \mathsf{T}(x,y)\ )] = (\forall x[\ \neg(\mathsf{C}(x) \land \exists y(\ \mathsf{A}(y) \land \mathsf{B}(y) \land \mathsf{T}(x,y)\ )] = (\forall x[\ \neg(\mathsf{C}(x) \land \exists y(\ \mathsf{A}(y) \land \mathsf{B}(y) \land \mathsf{T}(x,y)\ )] = (\forall x[\ \neg(\mathsf{C}(x) \land \exists y(\ \mathsf{A}(y) \land \mathsf{B}(y) \land \mathsf{T}(x,y)\ )] = (\forall x[\ \mathsf{C}(x) \land \exists y(\ \mathsf{A}(y) \land \mathsf{B}(y) \land \mathsf{T}(x,y)\ )] = (\forall x[\ \mathsf{C}(x) \land \exists y(\ \mathsf{A}(y) \land \mathsf{B}(y) \land \mathsf{T}(x,y)\ )] = (\forall x[\ \mathsf{C}(x) \land \exists y(\ \mathsf{A}(y) \land \mathsf{B}(y) \land \mathsf{T}(x,y)\ )] = (\forall x[\ \mathsf{C}(x) \land \exists y(\ \mathsf{A}(y) \land \mathsf{B}(y) \land \mathsf{T}(x,y)\ )] = (\forall x[\ \mathsf{C}(x) \land \exists y(\ \mathsf{A}(y) \land \mathsf{B}(y) \land \mathsf{T}(x,y)\ )] = (\forall x[\ \mathsf{C}(x) \land \exists y(\ \mathsf{C}(x) \land \exists
   (\forall x[\ \neg C(x) \lor \neg \exists y(\ A(y) \land \ B(y) \land \ T(x,y)\ )) = (\forall x[\ \neg C(x) \lor \ \forall y \neg (\ A(y) \land \ B(y) \land \ T(x,y)\ )] = (\forall x[\ \neg C(x) \lor \ \forall y \neg (\ A(y) \land \ B(y) \land \ T(x,y)\ )] = (\forall x[\ \neg C(x) \lor \ \forall y \neg (\ A(y) \land \ B(y) \land \ T(x,y)\ )] = (\forall x[\ \neg C(x) \lor \ \forall y \neg (\ A(y) \land \ B(y) \land \ T(x,y)\ )] = (\forall x[\ \neg C(x) \lor \ \forall y \neg (\ A(y) \land \ B(y) \land \ T(x,y)\ )] = (\forall x[\ \neg C(x) \lor \ \forall y \neg (\ A(y) \land \ B(y) \land \ T(x,y)\ )] = (\forall x[\ \neg C(x) \lor \ \forall y \neg (\ A(y) \land \ B(y) \land \ T(x,y)\ )] = (\forall x[\ \neg C(x) \lor \ \forall y \neg (\ A(y) \land \ B(y) \land \ T(x,y)\ )] = (\forall x[\ \neg C(x) \lor \ \forall y \neg (\ A(y) \land \ B(y) \land \ T(x,y)\ )] = (\forall x[\ \neg C(x) \lor \ \forall y \neg (\ A(y) \land \ B(y) \land \ T(x,y)\ )] = (\forall x[\ \neg C(x) \lor \ \forall y \neg (\ A(y) \land \ B(y) \land \ T(x,y)\ )] = (\forall x[\ \neg C(x) \lor \ \forall y \neg (\ A(y) \land \ B(y) \land \ T(x,y)\ )] = (\forall x[\ \neg C(x) \lor \ \forall y \neg (\ A(y) \land \ B(y) \land \ T(x,y)\ )] = (\forall x[\ \neg C(x) \lor \ \forall y \neg (\ A(y) \land \ B(y) \land \ T(x,y)\ )] = (\forall x[\ \neg C(x) \lor \ \neg (\ A(y) \land \ B(y) \land \ T(x,y)\ )] = (\forall x[\ \neg C(x) \lor \ \neg (\ A(y) \land \ B(y) \land \ T(x,y)\ )] = (\forall x[\ \neg C(x) \lor \ \neg (\ A(y) \land \ B(y) \land \ T(x,y)\ )] = (\forall x[\ \neg C(x) \lor \ T(x,y) \land \ T(x,y)\ )] = (\forall x[\ \neg C(x) \lor \ T(x,y) \land \ T(x,y)\ )] = (\forall x[\ \neg C(x) \lor \ T(x,y) \land \ T(x,y)\ )] = (\forall x[\ \neg C(x) \lor \ T(x,y) \land \ T(x,y)\ )] = (\forall x[\ \neg C(x) \lor \ T(x,y) \land \ T(x,y)\ )] = (\forall x[\ \neg C(x) \lor \ T(x,y) \land \ T(x,y)\ )] = (\forall x[\ \neg C(x) \lor \ T(x,y) \land \ T(x,y)\ )] = (\forall x[\ \neg C(x) \lor \ T(x,y) \land \ T(x,y) \land \ T(x,y)\ )] = (\forall x[\ \neg C(x) \lor \ T(x,y) \land \ T
   = (\forall x [ \neg C(x) \lor \forall y (\neg A(y) \lor \neg B(y) \lor \neg T(x,y))] = \neg C(x) \lor \neg A(y) \lor \neg B(y) \lor \neg T(x,y)
FNS(\exists xC(x))=C(a)
```

El conjunt de clàusules resultants és (amb negreta, el conjunt de suport):

$$\neg A(x) \lor B(x)$$
, $\neg C(x) \lor A(f(x))$, $\neg C(x) \lor T(x, f(x))$, $\neg C(x) \lor \neg A(y) \lor \neg B(y) \lor \neg T(x,y)$, $\textbf{C(a)}$

C(a)	$\neg C(x) \lor A(f(x))$	x=a
A(f(a))	$\neg A(x) \lor B(x)$	x=f(a)
B(f(a))	$\neg C(x) \lor \neg A(y) \lor \neg B(y) \lor \neg T(x,y)$	y=f(a)
$\neg C(x) \lor \neg A(f(a)) \lor \neg T(x,f(a))$	C(a)	x=a
$\neg A(f(a)) \lor \neg T(x,f(a))$	A(f(a))	
$\neg T(x,f(a))$	$\neg C(x) \lor T(x, f(x))$	x=a
¬C(a)	C(a)	

Hem arribat a la clàusula buida, per tant el raonament és vàlid.