

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

FACULTAD DE CIENCIAS FÍSICO MATEMÁTICAS

MAESTRÍA EN CIENCAS DE DATOS

BASES DE DATOS RELACIONALES

MAESTRO: JOSÉ ALBERTO BENAVIDES VÁZQUEZ

TAREA #1

ALUMNO: EDWIN MARTÍN ROMERO SILVA

MATRICULA: 1731276

Tarea 1

Crear un repositorio público de Github

• Compartir el repositorio en el Teams correspondiente.

8 1731276 https://github.com/edwin9978/BDR

• Describir una base de datos y sus relaciones de manera no estructurada. Agregar el tipo de dato que tendrá cada uno de los atributos.

Elegí un Dataset de Kaggle llamado **Credit Card Transactions**, contiene 3 archivos:

1) credit card transactions-ibm v2:

Contiene más de 4 millones de transacciones desde el 2015 al 2020, realizadas con tarjetas de crédito y débito de residentes de Estados Unidos, cada registro es único y tiene una etiqueta que indica si la transacción es Fraudulenta o no.

Las variables User y Card, indican cual cliente realizó la transacción y con cual tarjeta (Cada cliente puede tener más de 1 tarjeta). Estas 2 variables nos servirán para relacionar esta tabla con la tabla 2).

Estas son las variables que contiene la tabla y el tipo de dato que tendrá cada atributo:

Variable	Tipo	
Is Fraud?	String	
User	Int	
Card	Int	
Year	Int	
Month	Int	
Day	Int	
Time	String	
Amount	Float	
Use Chip	String	
Merchant Name	String	
Merchant City	String	
Merchant State	String	
Zip	Float	
MCC	Int	
Errors?	String	

2) sd254_cards:

Contiene más de 6 mil registros de tarjetas de débito y crédito, podríamos decir que el ID único de esta tabla es 'Card Number', pero luego de explorar las tablas, noté que para relacionar esta tabla con la tabla 1) se deben utilizar las variables User y CARD_INDEX, ambas.

Estas son las variables que contiene la base y el tipo de dato que tendrá cada atributo:

Variable	Tipo	
User	Int	
CARD INDEX	Int	
Card Brand	String	
Card Type	String	
Card Number	Int	
Expires	Date	
CVV	Int	
Has Chip	String	
Cards Issued	Int	
Credit Limit	Float	
Acct Open Date	Date	
Year PIN last Changed	Int	
Card on Dark Web	String	

3) sd254 users:

Contiene 2 mil registros de usuarios. Contiene variables como fecha de nacimiento, edad, dirección, genero, ingresos anuales, etc.

Luego de explorar la base noté que el ID único es la variable Person (Es el nombre del cliente o usuario), pero desafortunadamente esta base no puede relacionarse con las 2 anteriores ya que no contiene la variable User y la variable Person no está presente en las bases 1 y 2.

Estas son las variables que contiene la base y el tipo de dato que tendrá cada atributo:

Variable	Tipo
Person	String
Current Age	Int
Retirement Age	Int
Birth Year	Int
Birth Month	Int
Gender	String
Address	String
Apartment	String
City	String
State	String
Zipcode	Int
Latitude	float
Longitude	float
Per Capita Income - Zipcode	float
Yearly Income - Person	float
Total Debt	float
FICO Score	Int
Num Credit Cards	Int

La relación entre las bases 1 y 2 se puede representar de la siguiente forma:

Cards		Transactions		
Variable	Tipo		Variable	Tipo
User	Int	*	Is Fraud?	String
CARD INDEX	Int	*	User	Int
Card Brand	String	_	Card	Int
Card Type	String		Year	Int
Card Number	Int		Month	Int
Expires	Date		Day	Int
CVV	Int		Time	String
Has Chip	String		Amount	Float
Cards Issued	Int		Use Chip	String
Credit Limit	Float		Merchant Name	String
Acct Open Date	Date		Merchant City	String
Year PIN last Changed	Int		Merchant State	String
Card on Dark Web	String		Zip	Float
			MCC	Int
			Errors?	String

Para relacionar ambas tablas se necesitan 2 condiciones en el join. Por ejemplo:

SELECT A.*, B.*

FROM CARDS A INNER JOIN TRANSACTIONS B

ON A.User = B.User AND A.CARD_INDEX = B.Card

Investigar diferentes SGBD, elegir uno y describirlo.

Un gestor de base de datos (SGBD) es un software utilizado para crear, gestionar y administrar la información contenida en una base de datos. Es decir, un SGBD funciona como interfaz entre el usuario y la información almacenada en una base de datos.

Las principales funciones de los SGBD son almacenar los datos, acceder a ellos, generar informes y, además, poder manipularlos. $\underline{1}$

MySQL

Elegí MySQL ya que actualmente es uno de los más utilizados, esto hace que haya muchos foros que hablen al respecto, lo cual facilita buscar en internet cuando me surge alguna duda. 2

MySQL es el sistema de gestión de bases de datos relacional de código abierto más popular actualmente, fue desarrollado por Oracle y al igual que muchos otros SGBD, está basado en lenguaje SQL.

Otras características relevantes:

- Al ser de código abierto, se puede descargar, utilizar y modificar a voluntad.
- Funciona con Windows, Mac y la mayoría de las distribuciones de Linux.
- Soporta más de 40 millones de registros, más de 150,000 tablas y 5,000 millones de filas.
- Soporta una amplia gama de tipos de datos, lo que permite tener una gran versatilidad en cuanto a las situaciones.
- Permite una interacción más sencilla a través de diversas herramientas como PHPMyAdmin y MySQL Workbench.
- Es un sistema relacional, lo que significa que interconecta las tablas entre sí para organizar la información. 3

Referencias

- 1) AYUWARE. Qué es un gestor de base de datos SGBD y qué funciones tiene https://www.ayuware.es/blog/que-es-un-sgbd/
- 2) DocPath. (22 de febrero de 2022). 5 gestores de bases de datos para diversas aplicaciones. https://www.docpath.com/5-gestores-de-bases-de-datos-para-diversas-aplicaciones/?lang=es
- 3) HubSpot. (17 de enero de 2023). Qué es MySQL, para qué sirve y características principales https://blog.hubspot.es/website/que-es-mysql