Sistemi di Calcolo 2 (A.A. 2019-2020 e successivi)

Prova congiunta Sistemi di calcolo 12 CFU - Seconda parte (A.A. 2017-2018 e precedenti)

Appello straordinario - 26 Gennaio 2021

Tempo a disposizione: 1h 45m.

<u>Attenzione</u>: assicurarsi di compilare il file **studente.txt** e che il codice prodotto non contenga **errori di compilazione**, pena una non correzione dell'elaborato.

Regole Esame

Domande ammesse

Le domande possono riguardare solo la specifica dell'esame e la struttura di alto livello del codice, nessuna domanda può riguardare singole istruzioni.

Oggetti vietati

I seguenti oggetti non devono essere presenti sulla scrivania, né tantomeno usati: smartphone, smartwatch, telefonini, tablet, portatili, dispositivi di archiviazione USB, copie cartacee della dispensa, astucci e qualsiasi forma di libri ed appunti. Chi verrà sorpreso ad usare uno di questi oggetti verrà automaticamente espulso dall'esame.

Modalità di risposta

Le risposte alle domande di teoria vanno fornite nei file txt indicati. Il professore fornisce fogli per appunti e dove fornire illustrazioni o codice utile ad integrazione delle risposte di teoria. Qualsiasi altro foglio portato dallo studente non può essere usato.

Azioni vietate

È assolutamente vietato comunicare in qualsiasi modo con gli altri studenti. Chi verrà sorpreso a comunicare con gli altri studenti per la prima volta verrà richiamato, la seconda volta verrà invece automaticamente espulso dall'esame.

Teoria 1 - Socket (rispondere nel file teoria1.txt)

Descrivere come si utilizza una datagram socket all'interno di un'applicazione client-server, avvalendosi di pseudo codice. Per quale protocollo di comunicazione si usa?

Teoria 2 - Algoritmi di concorrenza (rispondere nel file teoria2.txt)

Considerate il seguente algoritmo del panettiere "modificato":

```
Initially
/* global info */
boolean choosing[N] = {false, ..., false};
integer num[N] = \{0, ..., 0\};
/* local info */
int i = \langle entity \ ID \rangle; // \ i \in \{0, 1, ..., N-1\}
repeat
1
     NCS
2
      choosing[i] := true
3
      num[i] := 1 + max {num[j] : 0 <= j < N}
4
      choosing[i] := false
      for j := 0 to N-1 do begin
5
6
            while choosing[j] do skip
7
            while num[j] != 0 AND \{num[j], j\} < \{num[i], i\} do skip
8
      end
9
      CS
```

L'algoritmo del panettiere è stato modificato eliminando l'istruzione che dopo la CS azzera il num del processo (num[i] := 0)

A. Descrivere cosa comporta tale modifica nell'esecuzione del programma

forever

B. Quale o quali sono le problematiche che si creano legate alle proprietà di Mutua Esclusione, No-Deadlock e No-Starvation? Se e quali vengono violate? Motivare la risposta.

Programmazione - Realizzazione di un sistema multi-process

All'interno di un sistema uno o più processi producer generano degli input che devono poi essere elaborati da un solo processo elaborator. Ogni producer ha un bilancio iniziale in euro e ogni volta che trasmette un input all'elaborator fornisce anche una ricompensa (reward) per la sua elaborazione. Lo scambio dei dati tra i processi avviene tramite una memoria condivisa che contiene un buffer in cui i processi producer e il processo elaborator accedono secondo la modalità produttore/consumatore; gli indici per l'accesso alla memoria, i semafori unnamed di sincronizzazione. Memoria e semafori sono istanziati dall'elaborator, che deve pertanto essere avviato prima di qualsiasi producer. Ogni volta che un producer genera un task, memorizza input e reward all'interno di una struttura dati che viene inserita all'interno del buffer e decrementa il proprio bilancio, quando il bilancio non è sufficiente a pagare il task il producer termina la propria attività. L'elaborator preleva un input del task dopo l'altro insieme al reward, che viene sommato al proprio bilancio.

Si chiede di completare i file producer.c e elaborator.c Obiettivi

- 1. Gestione di una memoria condivisa
- 2. Paradigma produttore/consumatore tramite semafori unnamed inclusi nella memoria condivisa

Altro

- i commenti nel codice contengono molte informazioni utili per lo svolgimento della prova, si consiglia quindi di tenerli in debita considerazione
- il file dispensa.pdf contiene una copia della dispensa *Primitive C per UNIX*System Programming preparata dai tutor di questo corso
- il file raccomandazioni.pdf contiene una serie di considerazioni sugli errori riscontrati più di frequente