3ª Prova de F 502 – Turma A	1
Primeiro Semestre de 2008	2.
26/06/2008	3
	4.
	Nota:
Nome:	RA:

Questão 1: Considere um meio magnético na forma de um cilindro circular longo, de magnetização uniforme \vec{M}_0 paralela ao eixo do cilindro, contendo uma cavidade cilíndrica também <u>infinita</u> e coaxial. O raio da cavidade é a e o do cilindro magnético é b. Adote o eixo do cilindro com sendo o eixo z.

- a) Encontre os vetores densidade de corrente de magnetização volumétrica e superficial.
- b) Escreva os campos \vec{H} , \vec{M} e \vec{B} para todos os pontos do espaço.
- c) Considere agora que a cavidade seja $\underline{\text{finita}}$ e de comprimento L. Encontre as densidades de pólo magnético, volumétrica e superficial, em todos os pontos do espaço.
- d) Escreva os campos \vec{H} , \vec{M} e \vec{B} para o centro da cavidade em duas situações limites: L>>a e L<<a.

Questão 2: Num acelerador Bétatron, um íon de carga q e massa m move-se numa órbita circular a uma distância R do eixo de simetria da máquina. O campo magnético tem simetria cilíndrica, isto é, no plano da órbita sua componente z é $B_z = B_z(r)$, onde r é a distância ao eixo de simetria.

- a) Para um dado $B_z(R)$, encontre a velocidade do íon.
- b) Se o campo magnético for aumentado vagarosamente, demonstre que a fem induzida ao longo da órbita do íon é tal que o acelera.
- c) Demonstre que a variação radial do campo \vec{B} dentro da órbita deve satisfazer à seguinte condição para que o íon permaneça em sua órbita: a média espacial do aumento de $B_z(r)$ (média tomada sobre a área compreendida pela órbita) deve ser igual ao dobro do aumento de $B_z(R)$ durante um dado intervalo de tempo.

Questão 3: São dados dois circuitos: um fio reto muito comprido e um quadrado de lado a. O quadrado está num plano que passa pelo fio, sendo que dois dos seus lados são paralelos ao fio, e a distância do lado mais próximo é r. Calcule a indutância mútua entre os dois circuitos.

Questão 4: Considere um solenóide longo, com N espiras e de comprimento L, percorrido por uma corrente constante I. Uma barra de ferro, de permeabilidade μ e área de seção reta A, é parcialmente introduzida no solenóide, conforme a figura. Calcule a força que o solenóide exerce sobre a barra. A força é atrativa ou repulsiva?

Dados: $F_x = \left(\frac{\partial U}{\partial x}\right)_I$; $F_x = -\left(\frac{\partial U}{\partial x}\right)_{\Phi}$

