Typical Challenges	Driving forces
--------------------	----------------

Volume	Where to store the data?How to store the data?Which data to store?	 Rapidly increasing market of connected cars More built-in sensors in cars lead to more measure points Generated data volume: autonomous car: 2 PB of data/car/year connected car: 130 TP of data/car/year
Variety	How to access various types/sources of data?How to store different types of data?	 Different Electronic Controlling Units (ECU) contain different information about car (velocity, usage, efficiency, pressure) Further data contain GPS, road network, road condition, vehicle to vehicle and vehicle to infrastructure communication, video,
Velocity	How to deal with differences depending on data?How to deal with time-consuming analytics?	 Data needs to be evaluated immediately, e.g.: for hazard detection or collision avoidance, but not necessarily transferred 25 GB of data/car/hour calls for scalable solution for efficient data handling
Veracity	 How to implement special steps for ensuring data quality, data anonymization, model validation and development? 	 To create good ML models to handle all the various situations for connected cars data needs to be transferred By context enrichment of IoT data (wear and tear monitoring, location analytics) analytics can be done better and more reliable
Value	 How does it support the objective and economic considerations? How to deal with legal frameworks, ethical/moral frameworks, result validations, data governances? 	 Increasing interest of consumers in connected cars due to new features like vehicle management, mobility management, safety, autonomous driving, well-being, entertainment Apart from consumers other sectors can profit of the generated data through predictive maintenance, insurance policy creation, advanced vehicle diagnostics,

Typical Challenges	Solutions
--------------------	-----------

Data Source Layer	 How to access the data? How to deal with Network Transmissions, Transfer Protocols, Data Provisions, Access Points, Interfaces, Data Formats? 	 Depending on the relevancy of the data streaming (real-time) with Apache spark or batch loading is applied Fair amount of data needs to be transferred via cloud to allow for further analytics Data of sensors are transmitted by predefined standards in a predefined structure (messaging bus e.g.: Kafka)
Data Storage Layer	 How to find the suitable storage format? What data is important? How to deal with data conversions and quality check prior and/or after storage? 	 Performant SQL-engine impala SQL to capture data for BI solutions Operations allows ease organization of clusters (e.g.: on premise, cloud, hybrid) Data Management comprises holistic security concept (data encryption, meta data management, data linage) Data is stored in hdfs, hbase, kudo,
Processing Layer	 What are the right tools, methods and algos? How to choose from the variety of analysis methods depending on data and/or objectives? How to apply proper feature selection? How to deal with computationally intensive ML? 	 Applying edge analytics (processing within the car) to ensure low latency for human response times Applied analytics tools (processing within the cloud) comprise time series analysis, machine learning (MLLib) or context enrichment Data is processed in spark, spark streaming,
Data Output Layer	 How to visualize results? Who is the target audience? Do we need to feedback the results? 	 Analytics can contain information regarding why collisions are happening, how cars perform in comparison, failure detection, driver description Creating a 360° View Important data can vary from car relevant information like the average speed, fuel used, but also customer relevant information driving behavior BI Solutions for end users with low latency Data is visualized with arcadia