VOLUME 3 / ISSUE 3 / UIF:8.2 / MODERNSCIENCE.UZ

TRIGONOMETRIK FUNKSIYALARNI VA FORMULALARNI KOMPLEKS SONLAR YORDAMIDA ISBOTLASH.

Ergashov Ozodbek Hotamovich

Buxoro davlat universiteti

https://doi.org/10.5281/zenodo.10774975

Annotatsiya. Mazkur maqolada trigonometrik funksiyalarni aniqlashda va turli trigonometrik formulalarni isbotlashda kompleks sonlar yordamida qanday isbotlash yo'llari ko'rsatilgan.

Kalit so'zlar: kompleks son, argument, Nyuton binomi, Muavr formulasi, ayniyat.

PROOF OF TRIGONOMETRIC FUNCTIONS AND FORMULAS USING COMPLEX NUMBERS.

Abstract. This article shows how to prove trigonometric functions using complex numbers and proving various trigonometric formulas.

Key words: complex number, argument, Newton's binomial, Muavr's formula, equation. ДОКАЗАТЕЛЬСТВО ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ И ФОРМУЛ С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСНЫХ ЧИСЕЛ.

Аннотация. В данной статье показано, как доказывать тригонометрические функции с помощью комплексных чисел и доказывать различные тригонометрические формулы.

Ключевые слова: комплексное число, аргумент, бином Ньютона, формула Муавра, уравнение.

Maqolada keltirilgan ma'lumotlardan iqtidorli oʻquvchilar oʻz bilimlarini mustahkamlashda foydalanishlari mumkin. Ma'lumotlar asosan sinus va kosinus uchun keltirilgan. Tangens va kotangenslarning xossalari quyidagi $tg\alpha=\frac{\sin\alpha}{\cos\alpha}$ va $ctg\alpha=\frac{\cos\alpha}{\sin\alpha}$ munosabatlar yordamida sinus va kosinuslarning mos xossalaridan osongina keltirib chiqarilishi mumkin.

1. Kompleks sonlar. Asosiy ta'rif va tushunchalar. **1-ta'rif**. z kompleks son deb z = x + iy ko'rinishdagi ifodaga aytiladi, bunda x va y - haqiqiy sonlar i esa

$$i = yoki i^2 = -1 \tag{1}$$

tenglik bilan aniqlanuvchi mavhum birlik deb ataluvchi birlik.

x va y ni z kompleks sonning haqiqiy va mavhum qismlari deyiladi va bunday belgilanadi:

$$Rez = x$$
, $Imz = y$

Xususiy holda, agar x=0 boʻlsa, u holda z=0+iy=iy sonni sof mavhum son, agar y=0 boʻlsa, u holda $z=x+i\cdot 0=x$, ya'ni haqiqiy son 2 hosil boʻladi. Shunday qilib, haqiqiy va mavhum sonlar z kompleks sonning xususiy holidir.

2 - ta'rif. Agar ikkita $z_1 = x_1 + iy_1$ va $z_1 = x_1 + iy_1$ kompleks sonlarning haqiqiy qismi alohida, mavhum qismi alohida teng bo'lsa, bu kompleks sonlar teng, ya'ni z_1

VOLUME 3 / ISSUE 3 / UIF:8.2 / MODERNSCIENCE.UZ

 $= z_2$ bo'ladi, boshqacha aytganda $Rez_1 = Rez_2$ va

 $Imz_1 = Imz_2$ bo'lsa, $z_1 =$

l-chizma.

z₂ hisoblanadi.

3-ta'rif. z = x + iy kompleks sonning haqiqiy va mavhum qismi nolga teng bo'lsagina, u nolga teng bo'ladi, ya'ni agar x = 0 va y = 0 bo'lsagina, z = 0 va aksincha. 1-chizma.

4- ta'rif. Mavhum qismlari bilan farq qiluvchi ikkita z = x + iy va $\overline{z} = x - iy$ (2) kompleks son qo'shma kompleks sonlar deyiladi. 5- ta'rif. Haqiqiy va mavhum qismlarning ishoralari bilan farq qiluvchi ikkita

$$z_1 = x + iy$$
 va $z_2 = -x - iy$ (3)

kompleks son qarama-qarshi kompleks sonlar deyiladi.

2. Kompleks sonning geometrik ta'sviri va trigonometrik shakli

Har qanday z = x + iy kompleks sonni OXY tekislikda X va Y koordinatali A(x, y) nuqta shaklida tasvirlash mumkin va, aksincha, tekislikning har bir nuqtasiga kompleks son mos keladi.

Kompleks sonlar tasvirlanadigan tekislik z kompleks oʻzgaruvchining tekisligi deyiladi.

Kompleks tekislikda z sonni tasvirlovchi nuqtani z nuqta deb ataymiz (1- chizma). OX oʻqda yotuvchi nuqtalarga haqiqiy sonlar mos keladi (bunda y=0), OY oʻqda yotuvchi nuqtalar sof mavhum sonlarni tasvirlaydi (bu holda x=0). Shu sababli OX oʻq haqiqiy oʻq.

OY o'q mavhum o'q deyiladi. A(x, y) nuqtani 3 koordinatalar boshi bilan birlashtirib OA vektorni hosil qilamiz, bu ham z = x + iy kompleks sonning geometrik tasviri deyiladi.

Koordinatalar boshini qutb deb, OX oʻqning musbat yoʻnalishini qutb oʻqi deb kompleks tekislikda koordinatalarning qutb sistemasini kiritamiz. ϕ va r larni A (x,y) nuqtaning qutb koordinatalari deymiz.

A nuqtaning qutb radiusi r , ya'ni A nuqtadan qutbgacha bo'lgan masofa z kompleks sonning moduli deyiladi va z kabi belgilanadi.

$$\mathbf{r} = \mathbf{z} = \tag{4}$$

ekani ravshan.

VOLUME 3 / ISSUE 3 / UIF:8.2 / MODERNSCIENCE.UZ

A nuqtaning qutb burchagi φ ni z kompleks sonning argumenti deyiladi va \mathbf{Argz} kabi belgilanadi. Argument bir qiymatli aniqlanmay, balki $2\pi k$ qoʻshiluvchi qadar aniqlikda aniqlanadi, bunda k –butun son. Argumentning hamma qiymatlari orasidan $0 \le \varphi < 2\pi$ tengsizliklarni qanoatlantiruvchi bittasini tanlaymiz. Bu qiymat bosh qiymat deyiladi va bunday belgilanadi:

$$\varphi = argz \tag{5}$$

Ushbu (6)

tengliklarni hisobga olib, z kompleks sonni bunday ifodalash mumkin:

$$z = x + i \cdot y = r \cdot (\cos \varphi + i \sin \varphi), \tag{7}$$

Yozuvning (7) shakli kompleks sonning trigonometrik shakli deyiladi. z = x + iy koʻrinishdagi yozuv kompleks sonning algebraik shakli deyiladi.

4. Kompleks sonni darajaga koʻtarish va ildizdan chiqarish

Koʻpaytirish qoidasidan darajaga koʻtarish qoidasi kelib chiqali.

$$z = r \cdot (\cos \varphi + i \cdot \sin \varphi)$$

uchun natural n da

$$z^{n} = r^{n} \cdot (\cos n\varphi + i \cdot \sin n\varphi)$$

ekani kelib chiqadi. Bu formula Muavr formulasi deyiladi. Bu formula kompleks sonni natural darajaga koʻtarishda modul shu darajaga koʻtarilishi, argument esa daraja koʻrsatkichiga koʻpaytirilishi kerakligini koʻrsatadi.

1-misol. Mavhum birlik i ning natural darajasi uchun formula toping.

Yechish.
$$i^{1} = i$$
, $i^{2} = -1$, $i^{3} = i \cdot i^{2} = -i$,

$$i^4 = i^2 \cdot i^2 =$$
 , $i^5 = i \cdot i^4 = i$, $i^6 = i \cdot i^5 = i^2 = -1$,

$$i^7 = i \cdot i^6 = -i$$
, $i^8 = i^7 \cdot i = -i^2 = 1$.

Umuman,

$$i^{4k} = 1$$
 , $i^{4k+1} = i$, $i^{4k+2} = -1$, $i^{4k+3} = -i$

2-misol sin va cos2 larni isbotlang

Yechish. Isbotlashimiz uchun z² topish yetarli

$$Z^2=(r)^2$$
 va bu

$$Z^2 = (r^2(\cos^2 + 2i\cos\sin + i^2\sin^2)) \ \ yoki \ (1) \ dan \ kelib \ chiqib \ Z^2 = (r^2(\cos^2 + 2i\cos\sin - \sin^2))$$

Muavr formulasiga ko'ra esa

 $Z^2=r^2$ teng bo'ladi.

Haqiqiy va mavhum qismlarni tenglasak

$$=\cos^2-\sin^2$$

=cossin

kabi formulani olishimiz mumkin

3-misol z^3 darajasiga ko'tarish.

Yechish.

$$Z^3=(r)^3$$
 va bu

$$Z^3=r^3(\cos^3+3i\cos^2\sin+3i^2\cos^2++i^3\sin^3)$$

(1), 5- misoldan va Muavr formulasidan kelib chiqib

$$Z^3=r^3(\cos 3+i\sin 3)$$
 ko'ra

VOLUME 3 / ISSUE 3 / UIF:8.2 / MODERNSCIENCE.UZ

Sin3 va cos3 formula isbotini ko'rishimiz mumkin.

4-misol sin4n va cos4n ni isbotlash.

Yechish. ⁴ⁿdarajaga ko'tarish kerak. Buning uchun bizga Nyuton binomi formulasini keltiramiz.

$$(a+b)^{4n}=a^{4n}+a^{4n-1}b+a^{4n-2}b^2+\\ a^{4n-3}b^3+a^{4n-4}b^4+\\ +b^{4n}\\ shu ko'rinishda ochib chiqilsa\\ (cos+isin)^{4n}=cos^{4n}+icos^{4n-1}sin+\\ +i^2cos^{4n-2}sin^2+i^3cos^{4n-3}sin^3+\\ +i^4cos^{4n-4}sin^4+\\ cossin^{4n-1}+i^{4n}sin^{4n}$$

Kabi holatga keldi.

5-misolga keltirilganidek i ning qiymatlari qo'ysak

$$(\cos + i\sin)^{4n} = \cos^{4n} + i\cos^{4n-1}\sin - \cos^{4n-2}\sin^2 - i\cos^{4n-3}\sin^3 + \cos^{4n-4}\sin^4 + \dots - i\cos^{4n-1} + \sin^{4n}$$

Muavr formulasiga ko'ra esa cosn+isinn.

Demak

$$\text{Cosn=cos}^{4n} - \text{cos}^{4n-2} \sin^2 + \dots \\
 \dots - \text{cos}^2 \sin^{4n} + \sin^{4n} \\
 \text{Sinn=cos}^{4n-1} \sin - \cos^{4n-3} \sin^3 + \dots \\
 \dots + \cos^3 \sin^{4n-3} - \cos^{4n-1}$$

Formula isbotlandi.

O'quvchilar mustaqil yechishlari uchun quyidagi masalalarni tavsiya qilishimiz mumkin.

- 1. Trigonometriyaning asosiy ayniyatidan foydalanib cos2 va cos3 bir xil nomli formulasini ko'rsating.
- 2. Trigonometriyaning asosiy ayniyatidan foydalanib sin2 va sin3 bir xil nomli formulasini ko'rsating.
 - 3. kompleks sonlar yordamida sin4 va sin5 formulasini aniqlang.
 - 4. $\cos^5 = \cos 5 + \cos 3 + \cos ni$ is botlang

REFERENCES

- 1. Г.Худойберганов, А.Ворисов, Х.Мансуров КОМПЛЕКС АНАЛИЗ, Toshkent «УНИВЕРСИТЕТ» 1998
- 2. А. САЪДУЛЛАЕВ, Г. ХУДОЙБЕРГАНОВ, Х. МАНСУРОВ, А.БОРИСОВ, Т.ТУЙЧИЕВ МАТЕМАТИК АНАЛИЗ КУРСИДАН МИСОЛ ВА МАСАЛАЛАР ТУПЛАМИ 3 Тoshkent «УНИВЕРСИТЕТ» 2000
- 3. https://azkurs.org/pars_docs/refs/53/52775/52775.pdf

ISSN: 2181-3906 2024

International scientific journal «MODERN SCIENCE AND RESEARCH»

VOLUME 3 / ISSUE 3 / UIF:8.2 / MODERNSCIENCE.UZ

- 4. http://iht.uz/download/slides/2kurs/algebra/015_II%20KURS%20Algebra-17.pdf
- $5. \ https://arxiv.uz/uz/documents/referatlar/adabiyot/kompleks-sonlar-nazariyasi$