2-0 Intro

선형대수학이란?

대수학(algebra)은 직관적인 개념을 공식화할 때 일반적인 접근 방법은 객체(symbols)의 집합과 이러한 객체들을 조작하는 규칙들을 구성하는 것으로 알려져 있습니다.

선형대수학(linear algebra)은 벡터와 벡터를 조작하기 위한 특정 규칙에 대해 연구합니다.

벡터의 표현

대부분 사람들이 알고 있는 벡터는 '기하학적(geometric) 벡터'이며 일반적으로 \vec{x}, \vec{y} 와 같은 문자 위 작은 화살표 표시됩니다.

하지만 해당 책에서는 와 같이 x,y bold체로 이를 표현합니다.

다양한 벡터들

그림 2.0.1 다양한 벡터들

Geometric vectors

기하학적 벡터는 그림 2.0.1 (a)와 같습니다. 방향이 있으며, 적어도 2차원으로 구성되어 있습니다.

2-0 Intro

두 벡터 \vec{x}, \vec{y} 는 더 할 수 있으며, $\vec{x} + \vec{y} = \vec{z}$ 와 같이 새로운 기하하적 벡터를 생성합니다.

또한 $\lambda \vec{x}, \lambda \in \mathbb{R}$ 과 같이 스칼라로 곱한(scaling) 결과 역시 기하하적 벡터입니다.

Polynominals

그림 2.0.1 (b)와 같은 다항식도 벡터입니다.

두 다항식을 더할 수 있고, 이는 새로운 다항식을 생성합니다.

또한 스칼라 값 λ 을 곱한 결과 역시 새로운 다항식입니다.

Audio signals

오디오 신호도 벡터입니다. 오디오 신호는 일련의 숫자로 표현할 수 있으며, 오디오 신호 끼리 서로 더할 수 있습니다. 더한 결과는 새로운 오디오 신호를 생성합니다. 또한 scaling 하면 새로운 오디오 신호를 얻을 수 있습니다.

Elements of \mathbb{R}^n

$$a = egin{bmatrix} 1 \ 2 \ 3 \end{bmatrix} \in \mathbb{R}^3$$

n 차원의 튜플(tuple)도 벡터입니다. 이 책에서 포커스를 맞추는 개념입니다.

두 벡터 $a,b\in\mathbb{R}^n$ component-wise(각 성분별로) 더하면 새로운 벡터 $c=a+b,c\in\mathbb{R}^n$ 을 얻습니다.

또한 $a \in \mathbb{R}^n$ 에 스칼라 $\lambda \in \mathbb{R}$ 을 곱한 결과 역시 스케일된 $\lambda a \in \mathbb{R}^n$ 이 됩니다.

정리

다양한 벡터들의 설명을 보면 공통점이 하나 있습니다.

서로 더하거나 스칼라로 곱할 수 있다는 것입니다.

이는 벡터의 기본 연산으로서 벡터 공간이라는 개념의 핵심을 이루는 중요한 성질입니다. 따라서 어떠한 집합이 벡터 공간임을 증명할 때는 이 두 가지 연산이 항상 성립하는지 확 인하는 과정이 필요합니다. 다시 말해, 벡터 공간이라는 구조가 성립하려면 <mark>덧셈과 스칼라 곱셈 연산</mark>이 <mark>집합 안에서 닫혀 있어야 하며</mark>, 관련된 공리들을 모두 만족해야 합니다.

이러한 성질은 다양한 분야에서 벡터 공간 개념이 널리 활용될 수 있게 하는 근본적인 이유가 됩니다.

• [닫힘이란 연산을 수행한 결과가 항상 원래 집합 안에 포함되는 것을 의미합니다. 즉, 집합 내 두 원소를 연산했을 때 결과도 반드시 그 집합 내에 있어합니다.]

그림 2.0.2 MML 로드맵

출처

- Mathmatics for Machine Learning (https://github.com/mml-book/mml-book.github.io)
- MML Study Note

2-0 Intro 3