

Rapport Projet 2020-2021 Equations aux Dérivéees Partielles

ROUX Thibault SADURNI Thomas FAN Yanghai NEJI Mariem

Département Sciences du Numérique - Filière Image et Multimédia 2020-2021

Contents

1	Par	tie Théorique	3	
2	Mise en pratique			
	2.1	Triangle	5	
	2.2	Quadrilatères	5	
	2.3	Résolution du système par une méthode directe	7	
L	ıst	of Figures		
	1	Solution du problème : triangle		
	2	Solution du problème : quadrangle	6	
	3	Comparaison avec la solution exacte (à droite)	6	
	4	Ordre de discrétisation dans le cas des éléments triangles	7	
	5	Tracé de l'évolution du nombre d'éléments non nuls de R en fonction de la taille de la matrice	7	

1 Partie Théorique

• Montrons qu'en supposant $u \in H^1(\Omega)$ en se plaçant sur l'espace

$$H_0^1(\Omega) := \{ w \in H^1(\Omega) \mid \gamma_0(w) = 0 \text{ sur } \partial \Omega_d \}$$

et en considerant $v = u - u_d \in H_0^1(\Omega)$, la formulation variationnelle du problème s'écrit :

$$\int_{\Omega} \nabla v \cdot \nabla w \, dx = \int_{\Omega} f w \, dx + \int_{\partial \Omega_n} g \gamma_0(w) \, dx - \int_{\Omega} \nabla u_d \nabla w \, dx$$

Preuve:

Ecriture du problème en une forme variationelle (PFv)

Reprenons les équations de l'énoncé et multiplions les par $w \in H_0^1(\Omega)$. On obtient :

$$-\Delta uw = fw$$

En intégrant sur Ω :

$$-\int_{\Omega} \Delta u w \ dx = \int_{\Omega} f w \ dx$$

En utilisant la formule de Green:

$$-\int_{\Omega} \Delta u w \, dx = \int_{\Omega} \nabla u \nabla w \, dx - \int_{\partial \Omega} \gamma_1(u) \gamma_0(w) \, dx$$

Or on a $\partial \Omega = \partial \Omega_n \bigcup \partial \Omega_d$ et $w \in H_0^1$ donc $\gamma_0(w) = 0$ sur $\partial \Omega_d$:

$$\int_{\Omega} fw \ dx = \int_{\Omega} \nabla u \nabla w \ dx - \int_{\partial \Omega_n} \gamma_1(u) \gamma_0(w) \ dx$$

Avec $v = u - u_d$:

$$\int_{\Omega} fw \ dx = \int_{\Omega} \nabla v \nabla w \ dx + \int_{\Omega} \nabla u_d \nabla w \ dx - \int_{\partial \Omega_n} \gamma_1(u) \gamma_0(w) \ dx$$

Ainsi:

$$\int_{\Omega} \nabla v \nabla w \ dx = \int_{\Omega} f w \ dx + \int_{\Omega} \nabla u_d \nabla w \ dx - \int_{\partial \Omega_n} \gamma_1(u) \gamma_0(w) \ dx$$

Or $\gamma_1(u) = g$ sur $\partial \Omega_n$ donc on obtient bien :

$$\int_{\Omega} \nabla v \cdot \nabla w \, dx = \int_{\Omega} f w \, dx + \int_{\partial \Omega_n} g \gamma_0(w) \, dx - \int_{\Omega} \nabla u_d \nabla w \, dx$$

• Montrons maitenant que le problème admet une unique solution.

Preuve: On va utiliser les propriétés du théorème de Lax Milgram.

On pose $a: H_0^1(\Omega) \times H_0^1(\Omega) \longrightarrow R$ une forme bilinéaire telle que

$$a(u, v) = \int_{\Omega} \nabla v \cdot \nabla w \ dx = \langle u, v \rangle_{1,\Omega}$$

Continuité de a

Montrons que a est continue, c'est à dire montrons que $\forall (u,v) \in H_0^1(\Omega) \times H_0^1(\Omega), |a(u,v)| \leq \alpha |u|_{1,\Omega} |v|_{1,\Omega}$ avec $\alpha \geq 0$.

On a:

$$|a(u,v)| = |\int_{\Omega} \nabla v \cdot \nabla w \, dx| = |\langle u,v \rangle_{1,\Omega}| \leq |u|_{1,\Omega} |v|_{1,\Omega}$$
 (D'après Cauchy Schwartez)

avec $||_{1,\Omega}$ définit la norme issue du produit scalaire sur $H_0^1(\Omega)$. D'ou a est continue sur $H_0^1(\Omega)$

Coercivité de a

Montrons maintenant que a est coervice : $a(v,v) = \int_{\Omega} \nabla v \cdot \nabla v \ dx = \langle v,v \rangle_{1,\Omega} = |v|_{1,\Omega} \geq 0$

Ainsi, a est bilinéaire, continue et coercive (on vérifie bien que a est un produit scalaire sur $H_0^1(\Omega)$).

Continuité de l

Posons maintenant $l: H_0^1(\Omega) \longrightarrow R$ linéaire par linéarité de l'intégrale et telle que

$$l(w) = \int_{\Omega} f w \, dx + \int_{\partial \Omega_n} g \gamma_0(w) \, dx - \int_{\Omega} \nabla u_d \nabla w \, dx$$
$$l_1(w) = \int_{\Omega} f w \, dx$$
$$l_2(w) = \int_{\partial \Omega_n} g \gamma_0(w) \, dx$$
$$l_3(w) = \int_{\Omega} \nabla u_d \nabla w \, dx$$

Montrons que ces trois fonctions l_1, l_2, l_3 sont continues :

Continuité de l_1 f et w sont continues sur $L^2(\Omega)$

$$|l_1(w)| \le ||f||_{L^2(\Omega)} |||w||_{L^2(\Omega)}$$

par inégalité de Poincarré (Ω est borné) :

$$\exists C_0 \ge 0; \forall w \in H_0^1$$

$$||w||_{L^2(\partial\Omega_n)} \le C_0 |w|_{1,\Omega}$$

$$|l1(w)| \le C_0 ||f||_{L^2(\Omega)} |w|_{1,\Omega}$$

Continuité de l_2 g et γ_0 sont continues sur $L^2(\partial \Omega_n)$

$$|l_{2}(w)| \leq ||g||_{L^{2}(\partial\Omega_{n})} ||\gamma_{0}(w)||_{L^{2}(\partial\Omega_{n})}$$

$$||\gamma_{0}(w)||_{L_{2}(\partial\Omega_{n})} \leq M_{\gamma} ||w||_{H_{1}(\Omega)}$$

$$||w||_{H_{1}(\Omega)} \leq \sqrt{1 + C_{0}^{2}} |w|_{1,\Omega}$$

$$|l_{2}(w)| \leq C_{2} ||g||_{L^{2}(\partial\Omega_{n})} |w|_{1,\Omega}$$

avec
$$C_2 = M_{\gamma} \sqrt{1 + C_0^2}$$

Continuité de l₃

 $<,>_{1,\Omega}$ est un produit scalaire sur $H^1_0(\Omega)$ d'après l'inégalité de Cauchy-Schwartez on a

$$|l_3(w)| \le |u_d|_{1,\Omega} |w|_{1,\Omega}$$

Ainsi, l_1, l_2, l_3 sont continues et par composition de fonctions continues, l est continue.

D'apères le théorème de Lax Milgram avec $H_0^1(\Omega)$ Hilbert, a une forme bilinéaire, continue et coercive et l linéaire et continue, \exists ! $u \in H_0^1(\Omega)$ tel que $\forall w \in H_0^1(\Omega)$ a(u,w) = l(w).

• Enfin, montrons que la forme variationnelle discrète aboutit au système linéaire d'équations Ax = b avec $A \in \mathbf{R^{n*n}}$ et $x, b \in \mathbf{R^n}$.

Preuve

Soit (P_{FVn}) le problème variationnel discret, et $V_n \subset H_0^1$ un s.e.v de dimension finie n. Alors le problème (P_{FVn}) trouver $u_k \in V_n$ et $v_k \in V_n$ tels que $a(u_k, v_k) = l(v_k)$ admet une solution unique.

Soit
$$(\eta_i)_{i=0}^n$$
 une base de (P_{FVn}) . $\iff \forall u_n \in V_n, \exists ! (U_k)_{i=0}^n; u_n = \sum_{i=1}^n U_k \eta_k u_n$ est une solution de $(P_{FVn}) \iff \forall v_n \in V_n \ a(u_n, v_n) = l(v_n)$ $\iff \forall i \in [|1, n|] \ a(\sum_{j=1}^n u_j \eta_j, \eta_i) = l(\eta_i)$ $\iff \forall i \in [|1, n|] \ \sum_{j=1}^n a(\eta_j, \eta_i) u_j = l(\eta_i)$ $\iff Ax = b$

avec $A_{ij} = a(\eta_j, \eta_i) = \int_{\Omega} \nabla \eta_i^T \nabla \eta_i \ dx$

et $b_i = l(\eta_i) = \int_{\Omega} f \eta_i \ dx + \int_{\partial \Omega_n} g \eta_i \ dx - \sum_{i=1}^n U_k \int_{\Omega} \nabla \eta_i^T \nabla \eta_k \ dx$ (la décomposition nodale de la condition limite $u_d = \sum_{i=1}^n U_k \eta_k$).

En plus, A est définie positive (a est un produit scalaire sur H_0^1) donc le problème (P_{FVn}) admet une unique solution.

2 Mise en pratique

2.1 Triangle

Nous considérons dans cette partie les fonctions de bases données dans le sujet sur les triangles. Nous construisons d'abord la matrice de raideur élementaire M_T^A , puis nous l'assemblons dans le cas d'un maillage constitué uniquement d'éléments triangles. Pour cela, nous avons implanter la fonction raideurTriangle à l'aide de la formule 10 ainsi que $b_dirichlet_t$ assemblant le second membre avec les conditions de Dirichlet. Pour plus d'information sur le code, veuillez vous référer à celui-ci.

Voici, pour les triangles, les résultats que nous obtenons :

Figure 1: Solution du problème : triangle

2.2 Quadrilatères

Ici, nous devions établir les formules donnant la matrice de raideur associée à un élément de type quadrangle.

• En posant
$$\Phi_q$$
 on a : $\Phi_Q(\xi,\zeta) = \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} = \begin{pmatrix} \mathbf{x}_2 - x_1 & \mathbf{x}_4 - x_1 \\ \mathbf{y}_2 - y_1 & \mathbf{y}_4 - y_1 \end{pmatrix} \begin{pmatrix} \xi \\ \zeta \end{pmatrix} + \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{y}_1 \end{pmatrix}$
Notons $J_Q = \begin{pmatrix} \mathbf{x}_2 - x_1 & \mathbf{x}_4 - x_1 \\ \mathbf{y}_2 - y_1 & \mathbf{y}_4 - y_1 \end{pmatrix}$, on en déduit que $\begin{pmatrix} \xi \\ \zeta \end{pmatrix} = J_Q^{-1} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} - J_Q^{-1} \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{y}_1 \end{pmatrix}$.

De plus, sachant que $\eta_j(x,y)=\phi_j(\Phi_Q^{-1}(x,y))$ on a :

$$M_{ij} = \int_{Q} \nabla \eta_{i}(x, y)^{T} \nabla_{j}(x, y) d(x, y)$$
$$= \int_{Q} \nabla (\phi_{i} \circ \Phi_{Q})(x, y)^{T} \nabla (\phi_{j} \circ \Phi_{Q})(x, y) d(x, y)$$

En utilisant la formule du changement de variable :

$$M_{ij} = |J_Q| \int_Q \nabla \phi_i(\xi, \zeta)^T J \nabla \phi_j(\xi, \zeta)$$

Avec
$$J = (J_Q^T J_Q)^{-1} = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$$

En calculant les 10 intégrales, on obtient la matrice suivante :

$$\mathbf{M} = \frac{|J_Q|}{6} \begin{pmatrix} 2(a+c) + 3b & -2a+c & -((a+c) + 3b) & a-2c \\ -2a+c & 2(a+c) - 3b & a-2c & -(a+c) + 3b \\ -((a+c) + 3b) & a-2c & 2(a+c) + 3b & -2a+c \\ a-2c & -(a+c) + 3b & -2a+c & 2(a+c) - 3b \end{pmatrix}$$

Vous pouvez retrouver dans le code Matlab la fonction raideurQuadrangle qui correspond à ces calculs. Nous assemblons la matrice A avec la fonction $A_quadrangle$ qui fait appel à $A_triangle$ utilisée pour les triangles.

Dans notre script Matlab, incluons maintenant le traitement des élements de type quadrangle ainsi que les conditions de Neumann. Ceci se trouve dans la fonction $b_quadrangle$, qui fait appel à b dirichlet t utilisée pour les triangles. Voici nos résultats :

Figure 2: Solution du problème : quadrangle

Figure 3: Comparaison avec la solution exacte (à droite)

• Voici ce que nous obtenons pour l'anaylse de l'ordre de la discrétisation dans le cas d'éléments triangles : un ordre de 2 (cf figure 4

Figure 4: Ordre de discrétisation dans le cas des éléments triangles

2.3 Résolution du système par une méthode directe

Voici le tracé obtenu :

Figure 5: Tracé de l'évolution du nombre d'éléments non nuls de R en fonction de la taille de la matrice

- On remarque que plus la matrice est importante, plus le nombre d'éléments non nuls augmente, ainsi, plus le temps de calcul est important.
- Pour réduire le cout mémoire de la factorisation, on peut essayer de réduire l'espace occupé par les matrices sans pour autant perdre l'information ou utiliser une méthode de différentiation.