SIMULACIÓN DE CONTAGIO EN HOSPITALES

SIMULACIÓN BASADA EN AGENTES UTILIZANDO EL FRAMEWORK REPAST HPC

OBJETIVO DE LA SIMULACIÓN

- Observar el contagio de gripe en guardias hospitalarias, en épocas con alta tasa de transmisión del virus.
- Extraer información tal cómo la probabilidad de contraer una enfermedad intrahospitalaria.

AGENTES

- Médicos
- Pacientes
- Objetos

Agentes

- Médicos: Permanencia en su consultorio
- Pacientes: Llega, es atendido y se retira.
- Objetos: Se mantiene en un lugar fijo, puede ser contaminado y descontaminado

Mapa

El objetivo es presentar un hospital con arquitectura realista, basándonos en hospitales reales:

- Se observó que la sala de espera para guardia y para consultorios se encuentra separada.
- Todos los hospitales poseen una recepción.
- Los consultorios de guardia están separados de las especializaciones.

Lógica de Transmisión

Se optó por agregar un grado más de complejidad a la infección, tiene en cuenta dos factores:

- Nivel de enfermedad del portador
- Calidad del sistema inmunológico de la persona sana

Información Generada

```
[ TICK 1 ] 0;3;1;1;1;2;7;1;2;3;14;1;3;2;7;3;4;2;13;3;5;3;14;4;
[ TICK 2 ] 0;3;1;1;1;2;8;2;2;3;14;1;3;2;8;3;4;2;13;3;5;3;14;4;
[ TICK 3 ] 0;3;2;2;1;2;8;2;2;3;14;1;3;2;9;2;4;2;13;3;5;3;14;4;
[ TICK 4 ] 0;3;2;2;1;2;8;2;2;3;14;1;3;2;10;2;4;2;13;3;5;3;14;4;
[ TICK 5 ] 0;3;2;2;1;2;8;2;2;3;14;1;3;2;11;2;4;2;12;3;5;3;14;4;
[ TICK 6 ] 0;3;2;2;1;2;8;2;2;3;14;1;3;2;11;2;4;2;11;3;5;3;13;4;
[ TICK 7 ] 0;3;2;2;1;2;8;2;2;3;14;2;3;2;11;2;4;2;11;3;5;3;13;4;
[ TICK 8 ] 0;3;3;1;1;2;8;2;2;3;14;2;3;2;12;1;4;2;11;3;5;3;13;4;
[ TICK 9 ] 0;3;3;1;1;2;8;2;2;3;13;2;3;2;13;2;4;2;11;3;5;3;13;4;
[ TICK 10 ] 0;3;3;1;1;2;8;2;2;3;13;2;3;2;13;2;4;2;12;4;5;3;13;3;
[ TICK 11 ] 0;3;3;1;1;2;8;2;2;3;13;2;3;2;13;2;4;2;12;3;5;3;13;3;
[ TICK 12 ] 0;3;3;2;1;2;9;2;2;3;13;2;3;2;13;2;4;2;12;3;5;3;13;3;
[ TICK 13 ] 0;3;3;2;1;2;8;2;2;3;13;2;3;2;13;2;4;2;12;3;5;3;13;4;
[ TICK 14 ] 0;3;3;2;1;2;7;2;2;3;13;2;3;2;13;2;4;2;13;4;5;3;13;4;
[ TICK 15 ] 0;3;3;2;1;2;7;2;2;3;13;2;3;2;13;3;4;2;14;3;5;3;13;4;
[ TICK 16 ] 0;3;3;2;1;2;7;2;2;3;13;2;3;2;12;2;4;2;14;3;5;3;14;3;
[ TICK 17 ] 0;3;3;2;1;2;7;2;2;3;13;2;3;2;12;2;4;2;15;2;5;3;15;4;
[ TICK 18 ] 0;3;3;2;1;2;7;2;2;3;13;1;3;2;13;1;4;2;15;2;5;3;15;4;
[ TICK 19 ] 0;3;3;2;1;2;7;3;2;3;12;2;3;2;13;1;4;2;15;2;5;3;15;4;
[ TICK 20 ] 0;3;3;2;1;2;7;3;2;3;12;2;3;2;12;2;4;2;15;2;5;3;14;3;
```


Ejemplo basado en trabajo previo

Rendimiento

1 simulación	2 simulaciones	3 simulaciones	4 simulaciones
real 0m3.416s user 0m2.109s sys 0m5.510s	real 0m4.661s user 0m2.300s sys 0m4.802s	real 0m8.818s user 0m2.726s sys 0m8.097s	real 0m12.645s user 0m3.043s sys 0m8.642s
	real 0m4.946s user 0m2.132s sys 0m5.381s	real 0m9.064s user 0m2.735s sys 0m8.200s real 0m9.305s user 0m2.720s	real 0m12.788s user 0m2.774s sys 0m8.657s real 0m13.075s user 0m3.007s
		sys 0m7.688s	sys 0m8.665s real 0m13.577s user 0m2.924s sys 0m9.121s

A modo de prueba para verificar rendimiento en paralelismo, se ejecutan desde 1 a 4 simulaciones independientes en paralelo, cada una de 10.000 TICKS y 40 agentes en acción en simultáneo.

Rendimiento

Tiempo demorado en terminar la simulación [s]

Qué falta por hacer

- Maximizar paralelismo
- Utilizar probabilidades realistas
- Agregar más agentes
- Comportamiento realista de personas
- Mapa realista

Repast for High Performance Computing: análisis

- Información dispersa/no documentada
- Poca actividad (último commit en 2018)
- El código fuente no compila
- C++11 a medias
- Bajo nivel, lenguaje de propósito general, por lo tanto muchas opciones, lento desarrollo

