AIL 722: Reinforcement Learning

Lecture 11: Fitted Value Iteration

Raunak Bhattacharyya

Outline

Approximating the value function

Fitted value iteration

Fitted Q iteration

Policy Iteration: Using Q-values

1.
$$V^{\pi}(s) = r\left(s, \pi(s)\right) + \gamma \cdot \mathbb{E}_{p(s'|s,\pi(s))}\left[V^{\pi}(s')\right]$$

2. Set $\pi \leftarrow \pi_{\text{new}}$

$$\pi_{\text{new}} = \begin{cases} 1 & \text{if } a = \arg \max_{a} Q^{\pi}(s, a) \\ 0 & \text{otherwise} \end{cases}$$

Workflow

Start with some policy

Find corresponding value (iterative policy evaluation until convergence)

From the converged V, Find corresponding Q-values for each action

Construct policy through argmax

a _?	V(s ₁)	Q(s ₁ ,a ₁)	Q(s ₁ ,a ₂)	Q(s ₁ ,a ₃)			a ₂
a _?	V(s ₂)	Q(s ₂ ,a ₁)	Q(s ₂ ,a ₂)	Q(s ₂ ,a ₃)			a ₁
a _?	V(s ₃)	Q(s ₃ ,a ₁)	Q(s ₃ ,a ₂)	Q(s ₃ ,a ₃)			a_3
a _?	V(s ₄)	Q(s ₄ ,a ₁)	Q(s ₄ ,a ₂)	Q(s ₄ ,a ₃)			a_3
a _?	V(s ₅)	Q(s ₅ ,a ₁)	Q(s ₅ ,a ₂)	Q(s ₅ ,a ₃)			a ₁

a _?	V(s ₁)	Q(s ₁ ,a ₁)	Q(s ₁ ,a ₂)	Q(s ₁ ,a ₃)	
a _?	V(s ₂)	$Q(s_2,a_1)$	Q(s ₂ ,a ₂)	Q(s ₂ ,a ₃)	
1 ?	V(s ₃)	Q(s ₃ ,a ₁)	Q(s ₃ ,a ₂)	Q(s ₃ ,a ₃)	
?	V(s ₄)	$Q(s_4,a_1)$	Q(s ₄ ,a ₂)	Q(s ₄ ,a ₃)	
	V(s ₅)	$Q(s_5,a_1)$	$Q(s_5,a_2)$	Q(s ₅ ,a ₃)	
)		Q(s ₁ ,a ₁)	Q(s ₁ ,a ₂)	Q(s ₁ ,a ₃)	
s ₂)		$Q(s_2,a_1)$	Q(s ₂ ,a ₂)	Q(s ₂ ,a ₃)	
(3)		Q(s ₃ ,a ₁)	Q(s ₃ ,a ₂)	Q(s ₃ ,a ₃)	
S ₄)		Q(s ₄ ,a ₁)	Q(s ₄ ,a ₂)	Q(s ₄ ,a ₃)	
5)		Q(s ₅ ,a ₁)	Q(s ₅ ,a ₂)	Q(s ₅ ,a ₃)	

Start with a random value function V(s)

- 1. Set $Q(s, a) \leftarrow r(s, a) + \gamma . \mathbb{E}_{p(s'|s,a)} \left[V^{\pi}(s') \right]$ 2. Set $V(s) \leftarrow \max_{a} Q(s, a)$

Value Iteration Demo

GridWorld: Dynamic Programming Demo

y Evaluatior	(one swee	ep)	Policy	Update		Toggle Val	ue Iteratio	n	Reset
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00					0.00				0.00
0.00	0.00	0.00	0.00 A		0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00		0.00 R-1.0	0.00 A	0.00	0.00	0.00
0.00	0.00	0.00	0.00		0.00 +	0.00 A	0.00	0.00 +	0.00
0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00 ♠ R-1.0	0.00
0.00	0.00	0.00	0.00 ♠ R-1.0		0.00 A	0.00 ★ R-1.0	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Toy Domains to Reality

GridWorld: Dynamic Programming Demo

Evaluation (or	ne swee	ep)	Policy	Update		Toggle Val	ue Iteratio	n	Rese
0.00	0.00 *	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00					0.00				0.00
0.00	0.00	0.00	0.00 +		0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00		0.00 +	0.00 A	0.00	0.00	0.00
0.00	0.00	0.00	0.00		0.00 +	0.00 +	0.00	0.00 +	0.00
0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00 +	0.00
0.00	0.00	0.00	0.00 + R-1.0		0.00 +	0.00 +	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Toy Domains to Reality

How do we represent V?

Toy Domains to Reality

Curse of dimensionality

$$|\mathcal{S}| = (255^3)^{600 \times 600}$$

Approximating the Value Function

Approximating V

$$V: \mathcal{S} \to \mathbb{R}$$
 Input: s Ouput: $V(s)$ Parameters: ϕ

What should we train it on?

Start with a random value function V(s)

- 1. Set $Q(s, a) \leftarrow r(s, a) + \gamma . \mathbb{E}_{p(s'|s,a)} \left[V^{\pi}(s') \right]$ 2. Set $V(s) \leftarrow \max_{a} Q(s, a)$

1. Set $Q(s, a) \longleftarrow r(s, a) + \gamma . \mathbb{E}_{p(s'|s,a)} \left[V^{\pi}(s') \right]$ 2. Set $V(s) \longleftarrow \max_{a} Q(s, a)$

Q(s ₁ ,a ₁)	Q(s ₁ ,a ₂)	Q(s ₁ ,a ₃)
Q(s ₂ ,a ₁)	Q(s ₂ ,a ₂)	Q(s ₂ ,a ₃)
Q(s ₃ ,a ₁)	Q(s ₃ ,a ₂)	Q(s ₃ ,a ₃)
Q(s ₄ ,a ₁)	Q(s ₄ ,a ₂)	Q(s ₄ ,a ₃)
Q(s ₅ ,a ₁)	Q(s ₅ ,a ₂)	Q(s ₅ ,a ₃)

V(s ₁)	
V(s ₂)	
V(s ₃)	
V(s ₄)	
V(s ₅)	

Loss Function

Input: s

Ouput: V(s)

Parameters: ϕ

$$L(\phi) = \frac{1}{2} \|V_{\phi}(s) - \max_{a} Q^{\pi}(s, a)\|^{2}$$

How do we instantiate this?

1. Set
$$y_i \leftarrow \max_a \left(r(s_i, a_i) + \gamma . \mathbb{E} \left| V_{\phi}(s_i') \right| \right)$$

2. Set
$$\phi \leftarrow \arg\min_{\phi} \sum_{i=1}^{\infty} \|V_{\phi}(s_i) - y_i\|^2$$

- 1. Set $y_i \leftarrow \max_a \left(r(s_i, a_i) + \gamma . \mathbb{E} \left[V_{\phi}(s_i') \right] \right)$
- 2. Set $\phi \leftarrow \arg\min_{\phi} \sum_{i=1}^{\infty} \|V_{\phi}(s_i) y_i\|^2$

We will work with samples

Why did we not need samples in PI and VI?

- We have a (finite) sampled set of states
- At each state, we compute the Q values corresp to each action, then take the max over those to create our target y_i
- Compute NN parameters through linear regression to make V close to maxQ

Dataset:
$$\left\{ (s_i, a_i, s'_i, r_i) \right\}$$

1. Set
$$y_i \leftarrow \max_a \left(r(s_i, a_i) + \gamma . \mathbb{E} \left[V_{\phi}(s_i') \right] \right)$$

2. Set
$$\phi \longleftarrow \arg\min_{\phi} \sum_{i=1}^{\infty} \|V_{\phi}(s_i) - y_i\|^2$$

Announcements

Pytorch tutorial tomorrow

Course webpage