Optical Flow Sensor module

FR5811-A:智能光流传感器模组(Anker)

整体描述

FR5811-A 是一款使用了基于 CMOS 传感技术的高性能,高精度的光流传感模组。设备主控可以通过 SPI 通讯接口,读取模组 XY 寄存器的信息,从而换算出设备运动方向,速度,以及轨迹和位移信息。该模组采用了 LED 和 Laser双光源混合技术,可适应从高亮的瓷砖面到地毯广泛的表面,并通过透镜较大的景深的设计,使模组能在一定的凹凸不平的面,也保持数据的可靠。

主要特征

- 精确的机器视觉算法技术
- 计算速度小于 8ms
- 较大景深(2cm)
- 自适应亮度调节
- 通过 MCU 切换光源
- 操作电压: 2.7~3.6V
- 3 线标准 SPI 通讯接口
- 16 位 XY 数据格式
- 符合 LASER Eye Safety Class 1 (IEC/EN 60825-1:2014)
- 低耗电流

应用

- 扫地机器人导航
- 仓库分拣机器人导航
- 需要导航的工业应用

关键规格

参数	规格值
操作电压	2.7~3.6V
通讯接口	3-wire SPI@2M
焦距/景深	5.0cm±1cm
最大速度	~100 英寸/每秒
连接器	6 脚
	间距:1.5mm
操作电流(经典)	正常工作: <50mA
注意:包含 LED	
尺寸	33.35mm*20.20mm*15.8
), (1)	3mm

下单信息

料号	描述
FR5811-A	光流传感器模组
FL02	防尘套筒(样品)

Optical Flow Sensor module

目录

FR58	311-A: 智能光流传感器模组	1
整	体描述	1
主	要特征	
应	.用	
关	··· · 键规格	1
下	单信息	1
1.0	介绍	3
1.1	1 模组介绍	3
1.2	2 模组尺寸	3
2. 0	操作规格	4
2.1	1 最大的限定规格	4
2.2	2 建议规格	4
2.3	3 连接器定义	4
2.4	4 模组组成及丝印图面	5
3.0	串行接口通讯说明	6
3.1	1 片选(NCS)操作	6
3.2	2 写操作	6
3.3	3 读操作	7
3.4	4 串行通讯时序限制	7
表	5.通讯时序延迟限制	7
3.5	5 读取数据流程说明	8
4.0	寄存器说明	9
4.1	1 寄存器列表	9
4.2	2 寄存器功能说明	9
5.0	文件历史	14

1.0 介绍

1.1 模组介绍

FR5811-A 是一款使用了基于 CMOS 传感技术的高性能,高精度的光流传感模组。设备主控可以通过 SPI 通讯接口,读取模组 XY 寄存器的信息,从而换算出设备运动方向,速度,以及轨迹和位移信息。该模组采用了 LED 和 Laser 双光源混合技术,可适应从高亮的瓷砖面到地毯广泛的表面,并通过透镜较大的景深的设计,使模组能在一定的凹凸不平的面,也保持数据的可靠。

1.2 模组尺寸

图1. 模组PCB尺寸

单位: mm 公差: +-0.1mm

图2. 模组组装示意图

2.0 操作规格

2.1 最大的限定规格

表 1. 最大限定规格

参数	符号	最小值	最大值	单位	说明
直流电压输入	V_{DC}	-0.3	3.6	V	
I/O 电压	V _{IO}	-0.3	V_{DC}	V	所有 PIN 脚
ESD	ESD _{HBM}		2	kV	

2.2 建议规格

表 2.建议规格

参数	符号	最小值	经典值	最大值	单位	说明
操作温度	T _A	0	25	40	°C	
存储温度	T _{STG}	-40	-	85	°C	
直流电压输入	V_{DD}	2.7	3.3	3.6	V	
电源噪声(峰峰值)	\/			100	mV	峰峰值频率范围
电/你休户(哔哔诅/	V_{pp}	-	-	100	IIIV	100KHz – 80MHz
模组耗电流	I _{DD}		40		mA	
串行通讯频率	SCLK	-	-	2	MHz	
光流跟踪速度	SP			45	IPS	在高亮面上
儿伽峨峤还没	34	-	1	100	1173	在白纸上
工作高度	Z	40	50	60	mm	Sensor 焊接面到表面距离
LED 发光波长	λ		850		nm	

2.3 连接器定义

FR5811-A 光流模组为缩小模组体积,使用 7 脚位,间距为 1.5mm 的连接器,连接器脚位如下表:

表 3.连接器脚位定义

脚位#	名字	类型	定义
1	LDP_ENL	输入	LD 控制开关
2	NCS	输入	片选脚
3	SCLK	输入	串行数据时钟信号
4	GND	电源	接地
5	SDIO	数据	数据输出输入脚
6	VSEN	电源	电源输入脚 2.7~3.6V

Optical Flow Sensor module

2.4 模组组成及丝印图面

表 4.物料组成如下:

物料名称	物料型号或料件
芯片	PAA5101
LED	亿光(everlight)HIR333C
透镜	lst0-217
连接器	6PIN 1.5 间距 卧式贴片
PCBA	电子料; PCB

模组背面丝印如下:

模组正面丝印如下:

3.0串行接口通讯说明

FR5811-A 支持三线 SPI 串行接口,包含 NCS,SDIO,SCLK 三线。设备主控可以通过 SPI 读写信息。

图3: 通讯数据示意图

3.1 片选 (NCS) 操作

串行通讯在 NCS 拉低有效之后,如果在通讯过程中,NCS 被拉高,整个通讯将被终止,串行接口将被重置。在通讯被打断之后,正常的数据和操作延迟到下一次通讯。为了保证通讯的可靠性,建议每笔数据及操作由 NCS 控制。换句话说,为了 ESD/EFT 防护,NCS 不建议一直保持低电平。

图4: 片选信号示意图

3.2 写操作

写操作,定义为主控到 FR5811-A,总是由主控发起,由两个字节组成。第一个字节包含低 7 位地址和最高位,最高位务必是"1",表明是写操作,第二字节是数据。FR5811-A 在 SCLK 上升沿开始接受你输入脚(SDIO)数据。

图5: 写操作时序

图6: MOSI保持时间

读操作 3.3

读操作,定义为数据从FR5811-A到主控,总是由主控发起,由两个字节组成。第一个字节包含低7位地址, 最高位务必是"0",表明是读操作,由主控发送,第二个字节是数据,FR5811-A通过SDIO发出。FR5811-A 输入脚 SDIO 在 CLK 下降沿读取数据,输出脚 SDIO 在每个 CLK 上升沿发送数据。

图7: 读操作时序

图8: MISO保持时间

注意: SCLK 保持的最小时间跟 SDIO 保持的时间一致。自从 SCLK 下降沿开始下一个读或写命令,FR5811-A 输 出脚将保持住当前数据状态直到 SCLK 下降沿。

串行通讯时序限制 3.4

FR5811-A 使用标准四线串行通讯接口,由于内核运算要求,对通讯时序做了如下限制。

表5.通讯时序延迟限制

参数	符号	最小值	经典值	最大值	单位	说明
SCLK frequency	F _{SCLK}	-	-	2	MHz	SPI max. operation frequency
SCLK High Time	t _{SCLK-HI}	250	-	-	ns	SCLK min. high time
SCLK Low Time	t _{SCLK-LO}	250	-	-	ns	SCLK min. low time
NCS Enable Lead Time	t _{NCS-LEAD}	1	-	-	us	From NCS falling to first SCLK falling
NCS Enable Lag Time	t _{NCS-LAG}	1	-	-	us	From Last SCLK rising to NCS rising
NCS min. High Time	t _{NCS-HI}	2	-	-	us	From previous NCS rising to next NCS falling
SDIO Write Setup Time	t _{SETUP-WR}	250	-	-	ns	SDIO data valid before SCLK rising
SDIO Write Hold Time	t _{HOLD-WR}	250	-	-	ns	SDIO data valid after SCLK rising

SDIO delay after SCLK	t _{DLY-RD}	-	-	50		From SCLK falling to SDIO data valid, no load conditions
SCLK delay for Data Preparation	T _{PREP-RD}	250	-	-		The min. time between the falling of 8 th SCLK and the rising of 9 th SCLK
SDIO Read Hold Time	t _{HOLD-RD}	250	-	-	ns	SDIO data valid after SCLK rising
SDIO Rise Time	t _{SDIO-R}	-	30	-	ns	@C _L = 30 pF
SDIO Fall Time	t _{SDIO-F}	-	30	-	ns	@C _L = 30 pF

3.5 读取数据流程说明

通常在检测运动状态时,设备主控需要通过轮询的方式取得模组状态。如果中断被置 1,则可以读出 XY 数据的高低位,但是注意的是一定要在读取 XY 数据高低位之前读中断状态寄存器。请注意,下图 8ms 延时只做参考。

此外,为了适应更广泛宽材料表面,必须在激光和 LED 之间切换照明用光源。设备主控应该监视图像品质值,并且如果图像品质值太低(低于预定义值),则主机控制器必须将现有的光源切换到另一个光源,并且改变其他相关的寄存器设置。

注意:下面的流程图显示了在 LED 模式和激光模式之间切换的方法之一。不同的应用可能需要不同的方法来实现这个开关功能。

4.0寄存器说明

FR5811-A可以通过串行接口读到XY的数据,图像品质等,并可写入配置参数。

4.1 寄存器列表

	4 13 HH > 3 P C			
地址	名字	读/写	默认值	寄存器说明
0x00	芯片 ID	只读	0x31	
0x01	版本信息	只读	0x61	
0x02	中断寄存器	读/写	0x00	高电平有效
0x03	x 数据低位	只读	0x00	
0x04	Y 数据低位	只读	0x00	
0x06	配置寄存器	读/写	0x10	待机或复位使能
0x09	写保护	读/写	0x00	
OxOD	x 数据解析度	读/写	0x00	
OxOE	Y 数据解析度	读/写	0x00	
Ox11	x 数据高位	只读	0x00	
0x12	Y 数据高位	读/写	0x00	
0x15	快门值	只读	N/A	
0x17	平均帧率	只读	N/A	
0x51	激光电流控制	读/写	0x0E	
0x75	图像品质高位	只读	N/A	
0x76	图像品质低位	只读	N/A	
	1	1		

4.2 寄存器功能说明

寄存器	芯片 ID1							
页面	0			地	址	0x00		
属性	只读			默讠	人值	0x31		
	7	6	5	4	3	2	1	0
11/4				PID[1	1:4]			
描述	此值为芯片	十唯一的 ID,	默认值不	会被改变,i	通常用来验	证串行通讯是	是否正常。	

_				
Fas	hini	า-พลง	y Inc	
. 43			,	۰

寄存器	芯片 ID2									
页面	0			地	址	0x01				
地址	只读			默认值		0x61				
	7	6	5	4	3	2	1	0		
<u>177</u> .		PID	[3:0]			VID[3:0]			
描述	此寄存器』	北寄存器显示当前芯片版本信息。								

寄存器	中断状况							
页面	0			地址		0x02		
属性	只读			默证	人值	NA		
位	7	6	5	4	3	2	1	0
<u>177</u>	中断	保留	保留	保留	保留	保留	保留	保留
描述			时,设备主排 内高低位,但					

	寄存器	X 数据低位							
	页面	0			地址		0x03		
	属性	只读			默证	人值	NA		
	位	7	6	5	4 3 2 1				
_	<u> </u>				Delta_	X[7:0]			
	描述	此寄存器是清掉此寄存		8 位 X 数扫	居,真实位私	多数据需要依	求分辨率大小	、 换算。读此	上寄存器即

寄存器	Y数据低位	Y 数据低位										
页面	0			地址		0x04						
属性	只读			默证	人值	NA						
位	7	6	5	4	3	2	1	0				
<u> 177</u>				Delta_	Y[7:0]							
描述		此寄存器是最新的低 8 位 Y 数据,真实位移数据需要依分辨率大小换算。读此寄存器即清掉此寄存器。										

寄存器	配置寄存器	尼置寄存器										
页面	0			地址 0x06								
属性	读/写			默认值		0x10						
	_	_	_		•		_	_				
<u> </u>	7	6	5	4	3	2	1	0				
位	7 复位	6 保留	5 保留	4 保留		保留	1 保留	 保留				

Fashion-way Inc.

位	默认值	描述
复位	0	0 = 正常操作模式 1 = 重置整个模组
掉电	0	掉电模式是最省电的模式 0 = 正常状况 1 = 掉电模式 (保留芯片设定)

寄存器	写保护											
页面	0			地	址	0x09						
属性	读/写			默证	人值	0x00	0x00					
	7	6	5	4 3 2 1				0				
<u> 197</u> .				WP[7:0]							
描述	0x00 =使能	写保护寄存器用来防止被设备主控误写数据。 Dx00 =使能(默认), 当前状况只读 Dx5A = 关掉,关掉写保护才能对模组进行写入动作										

寄存器	X 轴分辨率	X 轴分辨率											
页面	0			地址		0x0D							
属性	读/写			默认值		0x27							
	7	6	5	4	3	2	1	0					
位	保留				RES_X[6:0]								
	X 轴的分辨	•											
描述		分辨率=当前设定* 50											
	注意: 在不	「同表面,	分辨率可能嘅	各有差异。									

寄存器	Y轴分辨率	(轴分辨率										
页面	0			地址		0x0E						
属性	读/写			默计	默认值							
<i>₽</i>	7	6	5	4	3	2	1	0				
位	保留											
描述	Y轴的分辨实际分辨系	•	率 =当前设定* 50									
1四次			分辨率可能 	各有差异。								

寄存器	x 数据高位	X 数据高位															
页面	0			地	地址 0x11												
属性	只读			默证	人值	NA											
	7	6	5	4	3	2	1	0									
1111				Delta_>	⟨[15:8]												
描述	此寄存器是	比寄存器是最新的高 8 位 X 数据,															
1田人工	X 数据[15:0	O] = {X 数据	居高位[7:0],X 刻	数据低位[7:C)]}		叱奇仔裔是取新的局 8 位 X 数据, X 数据[15:0] = {X 数据高位[7:0],X 数据低位[7:0]}										

Fashion-way Inc.

寄存器	Y 数据高位	数据高位											
页面	0	地址 0x12											
属性	只读			默讠	人值	NA							
位	7	6	5	4	3	2	1	0					
11/4		Delta_Y[15:8]											
	11 A A H HH E	67 HI I I I W W Z											

描述 此寄存器是最新的高 8 位 Y 数据, Y 数据[15:0] = {Y 数据高位[7:0],Y 数据低位[7:0]}

寄存器	快门											
页面	0			地址 0x15								
属性	只读			默认值		NA						
位	7	6	5	4	3	2	1	0				
<u>11/1.</u>		Shutter[7:0]										
描述	快门值越高	央门值越高表示表面亮度越低。										

寄存器	激光电流控制							
页面	0			地址		0x51		
属性	读/写			默认值		0x0E		
位	7	6	5	4	3	2	1	0
<u>177</u>	保留	保留	保留			LD_SRC[4:0]		
描述	激光电流控制							
位	默认值	描述						
LD_SRC[4:0]	14	该寄存器是在激光驱动器中设置激光驱动电流(在直流模式中)以调节光强度以适应不同的表面。 注意,操作激光驱动电流的最大额定值为 8mA。推荐的操作条件,设备主控必须设置小于 LDH-SRC[4:0]=0x06,这可能驱动大于 8Ma的电流,在最坏的情况下可能被损坏。						

Fashion-way Inc.

寄存器	平均帧率	平均帧率							
页面	0			地	址	0x17			
属性	只读	只读			默认值		NA		
位	7	6	5	4	3	2	1	0	
		FA[7:0]							
描述	帧率反应当	帧率反应当前亮度,数字越大,亮度越大。范围 0-255							

寄存器	图像品质高位								
页面	0			地	址	0x75	0x75		
属性	只读			默认值		NA	NA		
	7	6	5	4	3	2	1	0	
位	IQH[7:0]						_		
描述	图像品质高位。								

寄存器	图像品质低位								
页面	0			地	址	0x76)x76		
属性	只读			默认值		NA	NA		
	7	6	5	4	3	2	1	0	
位	IQL[7:0]								
描述	图像品质低位。								

5.0 文件历史

Fashion-way Inc.

版本	YYYY/MM/DD	修改描述
V1.0	2019/06/03	初版