Section 7.8: Improper integrals

Previously: in $\int f(x) dx$ $\begin{cases} a, b - finite \\ f(x) - finite \end{cases}$

Now: in an improper integral: either range or f(x) is intimite.

Type I: Infinite interval Type II: infinite function

Ex. consider over under $\frac{1}{3}$, $\frac{1}{2}$, $\frac{1}{3}$ $\frac{1}{3}$

We define $\int \frac{1}{z^{2}} dz = \lim_{t \to \infty} A(t)$ $= \lim_{t \to \infty} \int \frac{1}{z^{2}} dz$ $= \lim_{t \to \infty} \left(1 - \frac{1}{t}\right) = 1.$

We say that on improper integral is convergent, if the corresponding limit exists and is finite, and divergent otherwise.

summarize: $\int \frac{1}{x^p} dx \qquad is \begin{cases} convergent, p > 1 \\ divergent, p \leq 1. \end{cases}$ £x. 3 Jxexdx= lim xerdx= t->-00 + lim (xex | 0 - lex dx) = = lim (-tet-ex)

 $\int_{\infty}^{\infty} \left(-\frac{t}{e^t} - \left(1 - e^t \right) \right) = -1.$

 $\lim_{\to -\infty} \frac{t}{t} = \lim_{t \to -\infty} \frac{t}{e^{-t}} = \lim_{t \to -\infty} \frac{1}{-e^{-t}}$ $\lim_{t \to \infty} -e^{t} = 0$

$$\begin{aligned}
& = \lim_{z \to 2+} \int_{|z|}^{5} (x-z)^{-1/2} dx = \int_{|z|}^{5} \int_{|z|-2}^{5} dx \\
& = \lim_{z \to 2+} \int_{|z|}^{5} (x-z)^{-1/2} dx \\
& = \lim_{z \to 2+} \int_{|z|}^{5} \int_{|z|-2}^{5} dx \\
& = \lim_{z \to 2+} \int_{|z|-2}^{5} \int_{|z|-2}^{5} dx \\
& = \lim_{z \to 2+} \int_{|z|-2}^{5} \int_{|z|-2}^{5} dx \\
& = \lim_{z \to 2+} \int_{|z|-2}^{5} \int_{|z|-2}^{5} dx \\
& = \lim_{z \to 2+} \int_{|z|-2}^{5} \int_{|z|-2}^{5} dx \\
& = \lim_{z \to 2+} \int_{|z|-2}^{5} \int_{|z|-2}^{5} dx \\
& = \lim_{z \to 2+} \int_{|z|-2}^{5} \int_{|z|-2}^{5} dx \\
& = \lim_{z \to 2+} \int_{|z|-2}^{5} \int_{|z|-2}^{5} dx \\
& = \lim_{z \to 2+} \int_{|z|-2}^{5} \int_{|z|-2}^{5} dx \\
& = \lim_{z \to 2+} \int_{|z|-2}^{5} \int_{|z|-2}^{5} dx \\
& = \lim_{z \to 2+} \int_{|z|-2}^{5} \int_{|z|-2}^{5} dx \\
& = \lim_{z \to 2+} \int_{|z|-2}^{5} \int_{|z|-2}^{5} dx \\
& = \lim_{z \to 2+} \int_{|z|-2}^{5} \int_{|z|-2}^{5} dx \\
& = \lim_{z \to 2+} \int_{|z|-2}^{5} \int_{|z|-2}^{5} dx \\
& = \lim_{z \to 2+} \int_{|z|-2}^{5} \int_{|z|-2}^{5} dx \\
& = \lim_{z \to 2+} \int_{|z|-2}^{5} \int_{|z|-2}^{5} dx \\
& = \lim_{z \to 2+} \int_{|z|-2}^{5} \int_{|z|-2}^{5} dx \\
& = \lim_{z \to 2+} \int_{|z|-2}^{5} \int_{|z|-2}^{5} dx \\
& = \lim_{z \to 2+} \int_{|z|-2}^{5} \int_{|z|-2}^{5} dx \\
& = \lim_{z \to 2+} \int_{|z|-2}^{5} \int_{|z|-2}^{5} dx \\
& = \lim_{z \to 2}^{5} \int_{|z|-2}^{5} \int_{|z|-2}^{5} dx \\
& = \lim_{z \to 2}^{5} \int_{|z|-2}^{5} dx$$

Comparison theorem

Suppose
$$f(x) \ge g(x) \ge 0$$
, continuous for $x \ge 0$

Then

a). If $\int f(x) dx$ is convergent,

so is $\int g(x) dx$

b). If $\int g(x) dx$ is divergent,

so is $\int f(x) dx$

Exercise: Show that

Je-22 du is convergent

Hint: use that e = e = 12 1 = 1