CE 3354 Engineering Hydrology Exercise Set 7

Exercises

1. Figure 1 The following data represent gage height and annual peak discharge for some gaging station in Oklahoma. The stage is in feet and the discharge is in cubic feet per second. The data are sequential from 1923 through 1971.

Use the data to:

- (a) Plot year versus stage (x-axis is year).
- (b) Plot year versus discharge (x-axis is year).
- (c) Plot the discharge versus stage.
- (d) Using the Weibull plotting position formula, determine the distribution parameters that fit the data for a log-normal distribution.
- (e) Using the Weibull plotting position formula, determine the distribution parameters that fit the data for a Gumbell distribution.
- (f) Using the Weibull plotting position formula, determine the distribution parameters that fit the data for a Gamma distribution.
- (g) Estimate the discharge associated with a 25-percent chance exceedence probability (i.e. the value that is equal to or exceeded with a 1 in 4 chance).
- (h) A resident claims that in the early 1900?s a flood corresponding to a stage of 30 feet occurred at the gage location. Estimate the exceedence probability (return period) of the flow associated with this event.

ES7 Page 1 of 28

Stage	Discharge	Stage	Discharge
23.0	200,000	18.50	114,000
11.8	42,000	14.93	70,200
6.4	11,300	15.30	70,700
10.4	32,400	17.60	92,800
18.7	108,000	21.45	135,000
15.0	73,000	10.48	25,800
15.3	76,500	8.80	17,500
12.1	47,800	9.07	18,700
9.5	28,200	12.71	36,300
10.6	33,700	14.64	49,200
9.3	25,700	21.41	120,000
6.4	11,700	14.86	56,800
16.0	77,800	14.65	54,800
9.9	26,600	21.62	158,000
13.0	47,500	21.22	165,000
16.44	75,600	17.83	103,000
8.48	19,200	8.76	19,700
10.26	27,800	9.00	21,100
13.59	51,000	22.60	171,000
18.54	94,000	6.74	10,400
18.12	97,200	12.54	42,000
22.82	179,000	14.10	52,800
19.55	124,000	16.42	77,000
19.48	110,000	18.33	101,000
		8.14	17,100

Figure 1: Data from Oklahoma Gaging Station

ES7 Page 2 of 28

Solution(s) attached next page

ES7 Page 3 of 28

Problem 1-WS

August 1, 2025

0.1 Problem 1

Figure 1 The following data represent gage height and annual peak discharge for some gaging station in Oklahoma. The stage is in feet and the discharge is in cubic feet per second. The data are sequential from 1923 through 1971. Use the data to: 1. Plot year versus stage (x-axis is year). 2. Plot year versus discharge (x-axis is year). 3. Plot the discharge versus stage. 4. Using the Weibull plotting position formula, determine the distribution parameters that fit the data for a log-normal distribution. 5. Using the Weibull plotting position formula, determine the distribution parameters that fit the data for a Gumbell distribution. 6. Using the Weibull plotting position formula, determine the distribution parameters that fit the data for a Gamma distribution. 7. Estimate the discharge associated with a 25-percent chance exceedence probability (i.e. the value that is equal to or exceeded with a 1 in 4 chance). 8. A resident claims that in the early 1900?s a flood corresponding to a stage of 30 feet occurred at the gage location. Estimate the exceedence probability (return period) of the flow associated with this event.

0.2 Solution(s) using ENGR-1330 methods

```
[235]: #=== Import Libraries ====#
       import matplotlib.pyplot # the python plotting library
       import math
                          # import math package
       import numpy
                          # import numpy package
       import pandas
                          # import pandas package
       import scipy.stats # import scipy stats package
       #=== Prototype Functions ====#
       def weibull_sorted(sample_length):
           # generate weibull plotting positions - sample is assumed already sorted
        ⇔(small to large)
           weibull_pp = [] # built a relative frequency approximation to probability,
        →assume each pick is equally likely
           for i in range(0,sample_length,1):
               weibull_pp.append((i+1)/(sample_length+1))
           return weibull_pp
       def loggit(x): # A prototype function to log transform x
           return(math.log(x))
       def \ antiloggit(logx): \# A \ prototype \ function \ to \ transformed \ log(x)
           return(math.exp(logx))
```

```
def normdist(x,mu,sigma): # A prototype function to return density from normal ⊔
 \hookrightarrow distribution(s)
    argument = (x - mu)/(math.sqrt(2.0)*sigma)
    normdist = (1.0 + math.erf(argument))/2.0
    return normdist
def ev1dist(x,alpha,beta):
    argument = (x - alpha)/beta
    constant = 1.0/beta
    ev1dist = math.exp(-1.0*math.exp(-1.0*argument))
    return ev1dist
def gammacdf(x,tau,alpha,beta): # Gamma Cumulative Density function - with⊔
 →three parameter to one parameter convert
    xhat = x-tau
    lamda = 1.0/beta
    gammacdf = 1.0 - scipy.stats.gamma.cdf(lamda*xhat, alpha)
    return gammacdf
#==== Input Data ====#
database =[[1923,23,200000],
[1924,11.8,42000],
[1925, 6.4, 11300],
[1926,10.4,32400],
[1927,18.7,108000],
[1928, 15, 73000],
[1929, 15.3, 76500],
[1930,12.1,47800],
[1931,9.5,28200],
[1932,10.6,33700],
[1933,9.3,25700],
[1934,6.4,11700],
[1935,16,77800],
[1936,9.9,26600],
[1937,13,47500],
[1938,16.44,75600],
[1939,8.48,19200],
[1940,10.26,27800],
[1941,13.59,51000],
[1942,18.54,94000],
[1943,18.12,97200],
[1944,22.82,179000],
[1945,19.55,124000],
[1946,19.48,110000],
[1947,18.5,114000],
[1948,14.93,70200],
```

```
[1949,15.3,70700],
[1950,17.6,92800],
[1951,21.45,135000],
[1952,10.48,25800],
[1953,8.8,17500],
[1954,9.07,18700],
[1955,12.71,36300],
[1956,14.64,49200],
[1957,21.41,120000],
[1958,14.86,56800],
[1959,14.65,54800],
[1960,21.62,158000],
[1961,21.22,165000],
[1962,17.83,103000],
[1963,8.76,19700],
[1964,9,21100],
[1965,22.6,171000],
[1966,6.74,10400],
[1967,12.54,42000],
[1968,14.1,52800],
[1969,16.42,77000],
[1970,18.33,101000],
[1971,8.14,17100],
# extract annual peaks and stage
howmanyrows = len(database)
years=[0 for i in range(howmanyrows)]
stage=[0 for i in range(howmanyrows)]
peaks=[0 for i in range(howmanyrows)]
for i in range(howmanyrows):
    years[i]=database[i][0], #extract first entry each row of list database
    stage[i]=database[i][1] #extract second entry each row of list database
    peaks[i]=database[i][2] #extract third entry each row of list database
peaks_copy = list(peaks) # Copy the peaks list for making a rating curve later_
 \hookrightarrow on
```



```
myfigure = matplotlib.pyplot.figure(figsize = (9,7)) # generate a object from the figure class, set aspect ratio
matplotlib.pyplot.plot(years, peaks ,color ='blue',marker='o',linewidth=1)
matplotlib.pyplot.xlabel("Year")
matplotlib.pyplot.ylabel("Peak Discharge (cfs)")
mytitle = "Peak Discharge versus Year"
matplotlib.pyplot.title(mytitle)
matplotlib.pyplot.grid() # Adjust rotation as needed
matplotlib.pyplot.ylim(bottom=0)# Set y-axis to start at zero and auto-scale_
upper bound
matplotlib.pyplot.tight_layout() # Prevent label/title clipping
matplotlib.pyplot.show()
```



```
sample_length = len(peaks)
       weibull_pp = weibull_sorted(sample_length)
       peaks.sort() #sort in place
[239]: # Fit and plot lognormal
       peaks_array=pandas.Series(peaks)
       logsample = peaks_array.apply(loggit).tolist() # put the peaks into a list
       sample_mean = numpy.array(logsample).mean()
       sample_variance = numpy.array(logsample).std()**2
       logsample.sort() # sort the logsample in place!
       mu = sample_mean # Fitted Model in Log Space
       sigma = math.sqrt(sample_variance)
       x = []; ycdf = []
       xlow = 1; xhigh = 1.05*max(logsample) ; howMany = 100
       xstep = (xhigh - xlow)/howMany
       for i in range(0,howMany+1,1):
           x.append(antiloggit(xlow + i*xstep))
           yvalue = normdist(xlow + i*xstep,mu,sigma)
           ycdf.append(yvalue)
```

[238]: # generate plotting positions

Log Normal Data Model

Mean =: 52844.19 Standard Deviation =: 1.864

10.875102965825535 0.7890880443300708

```
[240]: from scipy.optimize import newton def f(x):
```

Log-Normal Fit 0.25 AEP (4-Year ARI): 89979.29 cfs

```
[241]: # Fit and plot qumbell
       peaks_array=pandas.Series(peaks)
       sample mean = numpy.array(peaks array).mean()
       sample_variance = numpy.array(peaks_array).std()**2
       alpha_mom = sample_mean*math.sqrt(6)/math.pi
       beta_mom = math.sqrt(sample_variance) *0.45
       mu = sample_mean # Fitted Model
       sigma = math.sqrt(sample_variance)
       x = []; ycdf = []
       xlow = 0; xhigh = 1.2*max(peaks); howMany = 100
       xstep = (xhigh - xlow)/howMany
       for i in range(0,howMany+1,1):
           x.append(xlow + i*xstep)
           yvalue = ev1dist(xlow + i*xstep,alpha_mom,beta_mom)
           ycdf.append(yvalue)
       # Now plot the sample values and plotting position
       peaks.sort() #sort in place
       myfigure = matplotlib.pyplot.figure(figsize = (7,9)) # generate a object from
        →the figure class, set aspect ratio
       matplotlib.pyplot.scatter(weibull_pp, peaks ,color ='blue')
       matplotlib.pyplot.plot(ycdf, x, color ='red')
       matplotlib.pyplot.xlabel("Non-Exceedence Probability")
       matplotlib.pyplot.ylabel("Value of RV")
       mytitle = "Gumbell Data Model \n \n " + r"$\alpha$ =: " +11
        ⇒str(round((alpha_mom),2))+ r"
                                          $\beta$ =: " + str(round((beta_mom),3))
       matplotlib.pyplot.title(mytitle)
       matplotlib.pyplot.grid()
       matplotlib.pyplot.show()
       print(alpha_mom, beta_mom)
```

Gumbell Data Model

54418.063072225494 22063.243768147015

```
[242]: from scipy.optimize import newton
```

```
def f(x):
          alpha = 54418.063072225494
          beta = 22063.243768147015
          quantile = 0.75
          argument = (x - alpha)/beta
          constant = 1.0/beta
          ev1dist = math.exp(-1.0*math.exp(-1.0*argument))
          return ev1dist - quantile
      print("Gumbell Fit \n 0.25 AEP (4-Year ARI) :", round(newton(f, 70000),2),"cfs")
      Gumbell Fit
       0.25 AEP (4-Year ARI) : 81906.64 cfs
 []:
[243]: # Fit and plot Log-Pearson Type III (Gamma)
      logsample = peaks_array.apply(loggit).tolist() # put the peaks into a list
      sample_mean = numpy.array(logsample).mean()
      sample stdev = numpy.array(logsample).std()
      sample_skew = scipy.stats.skew(logsample)
      sample_alpha = 4.0/(sample_skew**2)
      sample beta = numpy.sign(sample skew)*math.sqrt(sample stdev**2/sample alpha)
      sample_tau = sample_mean - sample_alpha*sample_beta
      #==== Build Plot Data ====
      x = []; ycdf = []
      xlow = (0.9*min(logsample)); xhigh = (1.1*max(logsample)) ; howMany = 100
      xstep = (xhigh - xlow)/howMany
      for i in range(0,howMany+1,1):
          x.append(xlow + i*xstep)
          yvalue = gammacdf(xlow + i*xstep,sample_tau,sample_alpha,sample_beta)
          ycdf.append(yvalue)
       #=== Reverse Transform x ===
      for i in range(len(x)):
```

```
matplotlib.pyplot.title(mytitle)
matplotlib.pyplot.show()
print(sample_tau,sample_alpha,sample_beta)
```

Log Pearson Type III Distribution Data Model Mean = 52844.18547363883 SD = 2.20138794235525 Skew = 0.7573470348048779

16.55334964841315 51.78185270767057 -0.10965707841014505

```
[244]: from scipy.optimize import newton
       def f(x):
          sample_tau = 16.55334964841315
          sample_alpha = 51.78185270767057
          sample_beta = -0.10965707841014505
          quantile = 0.75
          argument = loggit(x)
          gammavalue = gammacdf(argument,sample_tau,sample_alpha,sample_beta)
          return gammavalue - quantile
       print("Log-Pearson (Gamma) Fit \n 0.25 AEP (4-Year ARI) :", round(newton(f, )
        →70000),2),"cfs")
      Log-Pearson (Gamma) Fit
       0.25 AEP (4-Year ARI) : 91615.5 cfs
[245]: # Plot Stage versus Q
       myfigure = matplotlib.pyplot.figure(figsize = (9,7)) # generate a object from_
       ⇔the figure class, set aspect ratio
       matplotlib.pyplot.plot(peaks_copy, stage ,color ='blue',marker='o',linewidth=1)
       matplotlib.pyplot.xlabel("Year")
       matplotlib.pyplot.ylabel("Stage (feet)")
       mytitle = "Stage versus Year"
       matplotlib.pyplot.title(mytitle)
       matplotlib.pyplot.grid() # Adjust rotation as needed
       matplotlib.pyplot.ylim(bottom=0) # Set y-axis to start at zero and auto-scale_u
       ⇔upper bound
       matplotlib.pyplot.tight_layout() # Prevent label/title clipping
       matplotlib.pyplot.show()
```



```
# Generate a rating curve Power-law should work OK

# Convert lists to arrays
x = np.array(peaks_copy)
y = np.array(stage)

# Transform to log-log space
log_x = np.log(x)
log_y = np.log(y)

# Linear fit in log space
b, log_a = np.polyfit(log_x, log_y, deg=1)
a = np.exp(log_a)

# Power-law function: y = a * x^b
y_power = a * x_fit**b

# Plot
plt.figure(figsize=(7, 5))
plt.plot(x, y, 'o', label='Data')
```

```
plt.plot(x_fit, y_power, '-', label=fr'Power Fit: $y = {a:.2f}x^{{{b:.2f}}}$')
plt.xlabel("Peaks")
plt.ylabel("Stage")
plt.title("Power-Law Fit")
plt.legend()
plt.ylim(bottom=0)
plt.grid(True)
plt.show()
```



```
[247]: # Use newtons method to find Q for a given Stage
from scipy.optimize import newton

def f(x):
    stage = 30.0 #reported stage from old-timer
    constant=0.11
    exponent=0.45
    f=constant*(x**exponent)-stage
    return f

print("Estimated Discharge for Stage :", round(newton(f, 300000),0),"cfs")
```

Estimated Discharge for Stage : 258661.0 cfs

```
[248]: from scipy.optimize import newton

def f(x):
    sample_tau = 16.55334964841315
    sample_alpha = 51.78185270767057
    sample_beta = -0.10965707841014505
    quantile = 0.985765
    argument = loggit(x)
    gammavalue = gammacdf(argument,sample_tau,sample_alpha,sample_beta)
    return gammavalue - quantile

print("Log-Pearson (Gamma) Fit \n 0.014 AEP (71.4-Year ARI) :", round(newton(f, \u00bfru))
    \u00e92000000),2),"cfs")
```

```
Log-Pearson (Gamma) Fit 0.014 AEP (71.4-Year ARI) : 258622.37 cfs
```

2. Use the Oklahoma data you just prepared and analyze using the Bulletin 17C procedure (using the HEC-SSP software tool - use station skew option).

Solution(s) below

Figure 2: Interface and Data from Oklahoma Gaging Station

The 0.25 AEP (4-year ARI) value falls between 104,273 CFS at 0.20 AEP and 54,894 CFS at 0.50 AEP. Logarithmic interpolation produces an estimate of 89,189 CFS which is close to our homebrew result of 91,615 CFS for the same AEP value.

ES7 Page 19 of 28

Figure 3: Probability Plot from Oklahoma Gaging Station

ES7 Page 20 of 28

Figure 4: Probability Tabulation from Oklahoma Gaging Station

ES7 Page 21 of 28

3. Locate USGS Station 08144800 Brady Creek near Eden, TX. and analyze the historical peaks using the Bulletin 17C procedures (use the PeakFQ software tool use station skew option). Determine the median discharge predicted for this station by PeakFQ. Also determine the discharge per square mile of contributing drainage area.¹

Solution(s) below

Figure 5: NWIS Inventory Page for 08144800, choose peak streamflow link

ES7 Page 22 of 28

¹Download the annual peaks from NWIS in the tab-delimited format for use in peakFQ; The example in the instructor notes is this particular site.

Figure 6: Download Page for 08144800 (Note drainage area is shown here; about 101 square miles.

ES7 Page 23 of 28

Figure 7: Data file excerpt - verify non-empty file

ES7 Page 24 of 28

Figure 8: PeakFQ Landing Page - uploaded

ES7 Page 25 of 28

Figure 9: PeakFQ run completed. Had to select station skew and urban peaks

ES7 Page 26 of 28

Figure 10: Tabulated output

ES7 Page 27 of 28

From the tabulated output we can determine the discharge per square mile as

$$\frac{Q_{50\%}}{mi^2} = \frac{205.9 \ cfs}{101 \ mi^2} = 2.04 \frac{cfs}{mi^2} \tag{1}$$

ES7 Page 28 of 28