

SIR Models

- SIR models are designed for epidemic outbreaks, but their framework can be applied to many other scenarios
- S Susceptible, I Infected, R Recovered
- Assumptions:
 - fixed population
 - each individual interacts with fixed number of people
 - an infected individual is contagious immediately
- Limitations:
 - More simplistic → more limitations
 - Doesn't account for incubation periods
 - Immunity may expire

Structure for Rumor Spreading SIR Model

Rumor Spreading SIR Model Assumptions

- Fixed Population: S(t) + R(t) + I(t) = N
- Each individual interacts with a fixed number of people (k)
- Once someone becomes a Stifler they cannot regain interest
- A Spreader who forgets/loses interest becomes a Stifler
- All individuals start off as either a Spreader or Ignorant
- An Ignorant can only become a Spreader/Stifler through contact with a Spreader & any contact with a Spreader results in an Ignorant becoming a Stifler or Spreader

Framework/Initial Conditions

Variables:

Parameters:

- λ : probability I \rightarrow S, when ignorant contacts spreader
- 1- λ : probability I \rightarrow R, when ignorant contacts spreader
- η : probability S \rightarrow R, when spreader contacts stifler
- γ : probability S \rightarrow R, when spreader contacts another spreader
- δ : probability S \rightarrow R, when spreader loses interest/forgets on their own
- **k**: average degree of the network (each individual interacts with k other individuals

Initial Conditions:

$$I\left(0
ight) = rac{N-1}{N}, \qquad S\left(0
ight) = rac{1}{N}, \qquad R\left(0
ight) = 0.$$

where $N = 10^6$

Creating the Equations:

Rate of Change of Number of Spreaders \rightarrow dS(t)/dt

=

Number of Ignorants that become Spreaders when contacting a Spreader $\rightarrow \lambda$ k I(t) S(t)

_

Number of Spreaders that become Stifler when contacting Spreader $\rightarrow k \gamma S(t) S(t)$

_

Number of Spreaders that become Stifler when contacting Stifler \rightarrow k η S(t) R(t)

_

Number of Spreaders that forget/lose interest $\rightarrow \delta$ **S(t)**

$$\Rightarrow \frac{\mathrm{d}S(t)}{\mathrm{d}t} = \lambda \bar{k}I(t)S(t) - \bar{k}S(t)(\gamma S(t) + \eta R(t)) - \delta S(t)$$

Creating the Equations:

Rate of Change of Number of Stiflers→ dR(t)/dt

=

Number of Ignorant that become Stifler when contacting Spreader \rightarrow (1- λ) k I(t) S(t)

t

Number of Spreaders that become Stifler when contacting Spreader $\rightarrow y k S(t) S(t)$

+

Number of Spreaders that become Stifler when contacting Stifler $\rightarrow \eta$ k S(t) R(t)

F

Number of Spreaders that forget/lose interest $\rightarrow \delta$ **S(t)**

$$\Rightarrow \frac{\mathrm{d}R(t)}{\mathrm{d}t} = (1-\lambda)\bar{k}I(t)S(t) + \bar{k}S(t)(\gamma S(t) + \eta R(t)) + \delta S(t)$$

Creating the Equations:

Rate of Change of Number of Ignorants → dI(t)/dt

Number of Spreaders/ Stiflers that become Ignorant \rightarrow 0

_

Number of Ignorant that become Spreader when Interacting with Spreader $\rightarrow k \lambda$ I(t) S(t)

_

Number of Ignorant that become Stifler when interacting with Spreader \rightarrow (1- λ) k I(t) S(t)

$$\Rightarrow \frac{\mathrm{d}I(t)}{\mathrm{d}t} = -\bar{k}I(t)S(t)$$

Fixed Points And Stability

Fixed points of the model occur where the number of spreaders is equal to O.

This results in two possible fixed points:

- 1. (O, I*, R*):
- the eigenvalues of the Jacobian are x = 0, 0, $k\lambda I^* k\eta R^* \delta$
- 2. (O, O R*):
- The eigenvalues of the Jacobian are x = 0, 0, $k\eta R^* + \delta$

$$-kS$$
 $-kI$ 0
 λkS $\lambda kI - 2k\gamma S - k\eta R - \delta$ $-k\eta S$
 $(1 - \lambda)kS$ $(1 - \lambda)kI + 2k\gamma S + k\eta R + \delta$ $k\eta S$

Jacobian Matrix for the Original Model

Steady State Analysis:

1. I(t) is always decreasing.

$$rac{\mathrm{d}I\left(t
ight) }{\mathrm{d}t}=-ar{k}I\left(t
ight) S\left(t
ight) ,$$

2. S(t) increases only while

$$rac{\mathrm{d}S(t)}{\mathrm{d}t} = \lambda ar{k}I\left(t
ight)S\left(t
ight) - ar{k}S\left(t
ight)\left(\gamma S\left(t
ight) + \eta R\left(t
ight)
ight) - \delta S\left(t
ight), \ rac{\mathrm{d}R(t)}{\mathrm{d}t} = \left(1-\lambda
ight)ar{k}I\left(t
ight)S\left(t
ight) + ar{k}S\left(t
ight)\left(\gamma S\left(t
ight) + \eta R\left(t
ight)
ight) + \delta S\left(t
ight).$$

⇒ Only stiflers and ignorants left in steady state.

Let R =the density of stiflers in steady state. $R \in [0,1]$

We can solve for R:

 $\lambda kI > k(\gamma S + \eta R) + \delta$

$$R = rac{A}{C+1}(1-R) - \left(rac{A}{C+1} - rac{B}{C}
ight)(1-R)^{-C} - rac{B}{C} = rac{A}{C+1} - rac{A}{C+1}R$$
 $-rac{A}{C+1}(1-R)^{-C} + rac{B}{C}(1-R)^{-C} - rac{B}{C} = \left(rac{B}{C} - rac{A}{C+1}
ight)(1-R)^{-C} - rac{A}{C+1}R$
 $+rac{A}{C+1} - rac{B}{C}.$

Steady State Analysis:

Let $z \in [0,1)$. Let

$$egin{align} f(z) &= z - \left(rac{B}{C} - rac{A}{C+1}
ight) (1-z)^{-C} + rac{A}{C+1}z - rac{A}{C+1} + rac{B}{C} = \left(rac{A}{C+1} + 1
ight)z \ &+ \left(rac{A}{C+1} - rac{B}{C}
ight) (1-z)^{-C} - rac{A}{C+1} + rac{B}{C}, \end{aligned}$$

- Can prove that when $\frac{\lambda}{\delta} > \frac{1}{\bar{k}}$ then $\exists v \in (0,1)$ s.t f(v) = 0.
- l.e: when $\frac{\lambda}{\delta} > \frac{1}{k}$, there exists a realistic density v that satisfies the equation for the steady state density of the stiflers (v = R(v)), and thus equilibrium can be reached.

Proposed Models

- Stochastic Model:
 - Introduces individual choice and randomness into the rumor spread
- Model with More Probabilities
 - Introduces new probabilities that affects the rumor spread

Assumptions for Stochastic Model

- We had to assume that an interaction between two individuals is only one-way
- Of course, with every stochastic model, we had to assume Δt to be very small to ensure that everyone interacts with other people at the exact same time
- Instead of treating the population as a network, we had to assume a probability of meeting a certain type (ignorant, spreader, stifler) by calculating the proportion each time step

```
spreaders_prob = S[i] / N / K_BAR
stiflers_prob = R[i] / N / K_BAR
```

Stochastic Model

- The base model viewed the rumor spreading through a group view rather than individual choice among the individuals
- For our stochastic simulation, we made use of random number generators to provide randomness in individual's choices about the rumor
- Involving randomness makes it more realistic since each individual has their own probabilities in the model, however, it lacks some realism in other aspects

other aspects

Simulation Results

Original Model

Simulation Results

Improvements

- The original model did not consider the possibility that a Stifler can regain interest and return to being a Spreader
 - If an individual could lose interest/forget a rumor, we want to consider the possibilities:
 - an individual regains interest or remembers on their own
 - an individual talks to another spreader, turning the stifler back into a spreader

Structure for Improved Rumor Model

Assumptions for Improved Model

- Most assumptions from original model are the same:
 - Fixed Population: S(t) + R(t) + I(t) = N
 - Each individual interacts with a fixed number of people (k)
 - A Spreader who forgets/loses interest becomes a Stifler
 - All individuals start off as either a Spreader or Ignorant
 - An Ignorant can only become a Spreader/Stifler through contact with a Spreader & any contact with a Spreader results in an Ignorant becoming a Stifler or Spreader

Except:

 A Stifler can now regain interest and become a Spreader either on their own or by interacting with a Spreader

Improved Framework/Initial Conditions

Variables:

Parameters:

- λ : probability I \rightarrow S, when ignorant contacts spreader
- η : probability S \rightarrow R, when spreader contacts stifler
- γ : probability S \rightarrow R, when spreader contacts another spreader
- δ : probability S \rightarrow R, when spreader loses interest/forgets independently
- ϵ : probability R \rightarrow S, when stifler contacts spreader
- a: probability R \rightarrow S, when stifler regains interest/remembers independently

Initial Conditions:

$$I\left(0
ight)=rac{N-1}{N}, \qquad S\left(0
ight)=rac{1}{N}, \qquad R\left(0
ight)=0.$$
 where N= 10 6

Creating the Equations for Improved Model:

Rate of Change of Number of Ignorants → dl(t)/dt

=

Number of Spreaders that become Ignorant \rightarrow 0

_

Number of Ignorant that become Spreader when Interacting with Spreader $\rightarrow k \lambda$ I(t) S(t)

_

Number of Ignorant that become Stifler when interacting with Spreader \rightarrow (1- λ) k I(t) S(t)

$$\frac{\mathrm{d}I(t)}{\mathrm{d}t} = -\bar{k}I(t)S(t)$$

**Remains the same as original model

Creating the Equations for Improved Model:

Rate of Change of Number of Spreaders \rightarrow dS(t)/dt

Number of Ignorant that become spreaders $\rightarrow \lambda$ k I(t) S(t)

-

Number of Spreaders that become Stifler when contacting Spreader $\rightarrow k \gamma S(t) S(t)$

-

Number of Spreaders that become Stifler when contacting Stifler $\rightarrow k \eta$ S(t) R(t)

-

Number of Spreaders that forget/lose interest $\rightarrow \delta$ S(t)

+

Number of Stiflers that become Spreader when contacting Spreader \rightarrow k ϵ R(t) S(t)

+

Number of Stiflers that regain interest $\rightarrow a$ R(t)

$$\frac{dS(t)}{dt} = \lambda kI(t)S(t) - kS(t)[\gamma S(t) + \eta R(t)] - \delta S(t) + \varepsilon kR(t)S(t) + \alpha R(t)$$

Creating the Equations for Improved Model:

Rate of Change of Number of Stiflers→ dR(t)/dt

Number of Ignorant that become Stifler when contacting Spreader \rightarrow (1- λ) k I(t) S(t)

+

Number of Spreaders that become Stifler when contacting Spreader $\rightarrow \gamma k S(t) S(t)$

+

Number of Spreaders that become Stifler when contacting Stifler $\rightarrow \eta$ k S(t) R(t)

+

Number of Spreaders that forget/lose interest $\rightarrow \delta$ S(t)

-

Number of Stiflers that become Spreader when contacting Spreader $\to k \, \epsilon \, R(t) \, S(t)$

Number of Stiflers that regain interest $\rightarrow a$ R(t)

$$\Rightarrow \frac{dR(t)}{dt} = (1 - \lambda)kI(t)S(t) + kS(t)[\gamma S(t) + \eta R(t)] + \delta S(t) - \varepsilon kR(t)S(t) - \alpha R(t)$$

Fixed Points And Stability

There are two possible fixed points:
$$\begin{vmatrix} -kS & -kI & 0 \\ \lambda kS & \lambda kI - 2k\gamma S - k\eta R - \delta + k\epsilon R & -k\eta S + k\epsilon R + \alpha \\ (1 - \lambda)kS & (1 - \lambda)kI + 2k\gamma S + k\eta R + \delta - k\epsilon R & k\eta S - k\epsilon R - \alpha \end{vmatrix}$$

1. (O, I*, O):

Jacobian Matrix for the Improved Model

the eigenvalues of the Jacobian are

x = 0 and x =
$$\frac{1}{2} [\lambda kI - \delta - \alpha \pm \sqrt{(k\lambda I - \delta - \alpha)^2 + 4k\alpha I}]$$

There is always 1 positive and 1 negative eigenvalue

Fixed Points And Stability

The second fixed point occurs where

$$I^* = 0 \text{ and } S^* = \frac{\frac{1}{2k\gamma}}{[Rk(\epsilon - \eta) - \delta + \sqrt{(Rk(\eta - \epsilon) + \delta)^2 + 4k\gamma\alpha R}]}$$

- This is always real and nonnegative for all realistic values of our parameters.
- At this fixed point, the Jacobian has one zero eigenvalue and two nonzero eigenvalues.

2	3
0	0
-(4*R*a + (d - R*e*k + R*k*n)^2)^(1/2)	a - (e*(d - (4*R*a + (d - R*e*k + R*k*n)^2)^(1/2) - R*e*k + R*k*n))/(2*g) + (n*(d - (4*R*a + (d
(4*R*a + (d - R*e*k + R*k*n)^2)^(1/2)	(e*(d - (4*R*a + (d - R*e*k + R*k*n)^2)^(1/2) - R*e*k + R*k*n))/(2*g) - a - (n*(d - (4*R*a + (d
(4**R*a + (a - R*e**k + R**R*n)*2)*(1/2)	(0~(0~(4~R~a+(0~R~6~k+R~K~n)/~2)~(1/2)~R~6~k+R~K~n))/(2~g)~a~(n~(0~(4~R~

Jacobian Matrix Evaluated at the Fixed Point

Numerical Simulation - default values

N : size 10⁶

• k : size 10

λ : probability 0.5

• η: probability 0.2

γ: probability 0.1

• **δ**: probability 0.2

• **\(\epsilon\)**: probability 0.1

• **a**: probability 0.1

```
def rumor func 2(S 0=10e-6,k=10,l=0.5,g=0.1,n=0.2,d=0.2,a=0.1,ep=0.1,
                 t=10,dt=0.0001,I=True,S=True,R=True,
                lab i="ignorant",lab s="spreader",lab r="stifler"):
    gen=math.floor(t/dt)
    rumors= np.zeros([gen,3])
   rumors[0]=[1-S 0,S 0,0]
    for i in np.arange(gen-1):
        dI=(-1)*k*rumors[i][0]*rumors[i][1]
        #formula for rate of change of ignorants
        dS=1*k*rumors[i][0]*rumors[i][1]
        -k*rumors[i][1]*(g*rumors[i][1]+n*rumors[i][2])
        -d*rumors[i][1]+ep*k*rumors[i][1]*rumors[i][2]+a*rumors[i][2]
        #formula for rate of change of spreaders
        dR=-dI-dS
        #formula for rate of change of stiflers
        change=np.array([dI,dS,dR])
        #derivatives for each subpopulations
        rumors[i+1]=rumors[i]+change*dt
        #subpopulations for next generation using Euler's method
    #loops t/dt times
        x 0=np.arange(gen)*dt
    if I==True:
        sns.lineplot(y=rumors.transpose()[0],x=x 0,label=lab i)
    if S==True:
        sns.lineplot(y=rumors.transpose()[1],x=x 0,label=lab s)
    if R==True:
        sns.lineplot(y=rumors.transpose()[2],x=x 0,label=lab r)
```

*dS is split into 3 lines to fit on slide. Code for dS is only one line.

Numerical Simulation - original model

Numerical Simulation - improvements

Numerical Simulation - endemic rumor

Limitations and Future Questions:

Future Questions for the SIR Model:

- Network connectivity: Our model only considered a homogeneous network, which is unrealistic. It would be
 interesting to consider heterogeneous networks, and, particularly, the effect that the out-degree of the original
 spreader has on the spread of the network.
- 2. <u>Vary initial conditions</u>: It might be unrealistic to initially have only one spreader. Future projects could consider multiple initial spreaders.

Limitations of Our Models:

- Ignores the individuality of nodes: Nodes may have different levels of susceptibility to becoming a spreader or stifler. Different nodes may also have different levels of activity in the system. Further, whether a node becomes a spreader or stifler after an interaction might depend on the individual relationship between the nodes.
- 2. <u>Treats the rumor as a static object</u>: Rumors generally change as the rumour is passed along.

Works Cited

https://www.sciencedirect.com/science/article/pii/S037843711200934X

https://maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model

https://www.hindawi.com/journals/jmath/2022/5700374/

