一、选择题

1, C; 2, C; 3, C; 4, A;

二、填空题

1, 0.5A; 2, -10.125W; 3, n-1, b-n+1 4, n-1, b-n+1.

三、计算题

1*、对图 7 中的电路,用支路电流法求 i1, i2 和 i3。

$$i_1 + i_2 = i_3$$

M:
$$5i_1 + 20i_3 = 85$$

 $10i_2 + 20i_3 = 110$

解得
$$i_1 = 1 \text{ A}$$
, $i_2 = 3 \text{ A}$, $i_3 = 4 \text{ A}$

- 2^* 、电路如图 8 所示,用支路电流法求 i_1 , i_2 , i_3 ,及电压 u 和两电压源的功率。
- 解 选节点②为参考节点对独立的节点①列KCL方程

$$-i_1 - i_2 + i_3 = 0$$

假定以逆时针方向为绕行方向,对两个网孔列KVL方程

$$2i_1 - 2i_2 = 120 - 100$$

$$2i_2 + 54i_3 = 100$$

整理以上方程可得

$$-i_1 - i_2 + i_3 = 0$$

$$2i_1 - 2i_2 = 20$$

$$2i_2 + 54i_3 = 100$$

解得

$$i_1 = 6A$$
, $i_2 = -4A$, $i_3 = 2A$

因此
$$u = 54i_3 = (54 \times 2)V = 108V$$

120V电源发出的功率为 $P_1 = 120i_1 = 120 \times 6 = 720$ W

100V 电源吸收的功率为 $P_2 = 100i_2 = 100 \times 4 = 400 \text{W}$

- 3^* 、节点编号如图 9 所示,请用节点电压法求图中的电压 u_1 。
- 解 节点编号如图所示, 节点方程为

1(注:题目标题加星号的只期中考试要求,期末考试不再要求)

$$\begin{cases} U_{n1} = 3i_0 \\ (\frac{1}{6} + \frac{1}{4} + \frac{1}{2})U_{n2} - \frac{1}{6}U_{n1} = -9 + 17 \\ i_0 = \frac{U_{n2}}{2} \end{cases}$$

解出 $U_{n1} = 18V, U_{n2} = 12V$

所以
$$u_1 = U_{n_1} - U_{n_2} = 18 - 12 = 6 \text{ V}$$

- 4、结点编号如图 10 所示,请用结点电压法求支路电流 $I_{\scriptscriptstyle 1}$ 、 $I_{\scriptscriptstyle 2}$ 。
 - 列出结点电压方程如下 解

$$\left(\frac{1}{2} + \frac{1}{2}\right)u_{n1} - \frac{1}{2}u_{n2} = -4$$

$$u_{n2} = 4$$

$$-\frac{1}{2}u_{n2} + (\frac{1}{2} + \frac{1}{2})u_{n3} = 4$$

解上面的方程得 $u_{n1}=-2\,\mathrm{V}$, $u_{n2}=4\,\mathrm{V}$, $u_{n3}=6\,\mathrm{V}$

故可得
$$i_1 = \frac{-2-4}{2} = -3 \text{ A}$$
; $i_2 = -2 \text{ A}$

 5^* 、网孔编号如图 11 所示,用网孔电流法求图 11 电路中的电流 i_1 、 i_2 。

解:
$$4i_{m1} - 2i_{m2} - 2i_{m3} = 4$$
 $-2i_{m1} + 6i_{m2} - 2i_{m3} = 0$ $i_{m3} = 4$ A

解上面的方程得 $i_{m1} = 4.4 \text{ A}$, $i_{m2} = 2.8 \text{ A}$

故可得
$$i_1 = i_{m1} = 4.4 \text{ A}$$
; $i_2 = i_{m1} - i_{m3} = 0.4 \text{ A}$

2(注: 题目标题加星号的只期中考试要求,期末考试不再要求)

6、结点编号如图 12 所示,用结点电压法求电路中的 *i*₁、*i*₂。解:列结点电压方程如下

$$u_1 = 12 \text{ V}$$

$$-\frac{3}{4}u_1 + (\frac{3}{4} + \frac{1}{4})u_2 - \frac{1}{4}u_3 = -2$$

$$-\frac{1}{8}u_1 - \frac{1}{4}u_2 + (\frac{1}{4} + \frac{1}{8} + \frac{1}{2})u_3 = 0$$

解上面的方程得 $u_2 = 8 \text{ V}$, $u_3 = 4 \text{ V}$

故可得
$$i_1 = \frac{12-8}{\frac{4}{3}} = 3 \text{ A}$$
; $i_2 = \frac{8-4}{4} = 1 \text{ A}$

7、用网孔电流法求图 13 电路中的电流 i、i、i、i。

解: 由于此题中含有无伴电流源,且电流源不在电路外围,可先假设电流源两端电压为 U来列网孔电流方程,因增加了一个变量 U,故需增加一个方程,这可利用电流源所在支路电流等于电流源电流来列取。

设网孔电流如图 13 所示,列网孔方程如下

$$i_{m1} - i_{m2} + U = 10$$

$$-i_{m1} + (1+4+1)i_{m2} - i_{m3} = 0$$

$$-i_{m2} + (1+0.4)i_{m3} - U = 0$$

增补方程

$$i_{m1} - i_{m3} = 2$$

解上面的方程得 $i_{m1} = 7 \text{ A}$, $i_{m2} = 2 \text{ A}$, $i_{m3} = 5 \text{ A}$, U = 5 V

故可得
$$i_1 = i_{m1} = 7 \text{ A}$$
; $i_2 = 2 \text{ A}$; $i_3 = i_{m3} - i_{m2} = 3 \text{ A}$

8、 用网孔电流法求图 14 电路中的电流 i_1 、 i_2 、 i_3 。

解 设网孔电流如图所示,把受控电压源当为独立源列网孔方程如下

$$i_{m1} - i_{m2} + i_4 = 10$$

$$-i_{m1} + (1+4+1)i_{m2} - i_{m3} = 0$$

$$-i_{m2} + (1+0.4)i_{m3} - i_4 = 0$$

3(注: 题目标题加星号的只期中考试要求, 期末考试不再要求)

用网孔电流表示控制量的增补方程: $i_a = i_{max}$

解上面的方程得

$$i_{m1} = 7 \text{ A}$$
, $i_{m2} = 2 \text{ A}$, $i_{m3} = 5 \text{ A}$

故可得 $i_1 = i_{m1} = 7 \text{ A}$; $i_2 = i_{m1} - i_{m3} = 2 \text{ A}$; $i_3 = i_{m3} - i_{m2} = 3 \text{ A}$

- 9、电路如图 15 所示, 试用节点法求解 1V 电压源的功率, 并说明是提供还是消耗。
- 选择参考节点 $U_{\scriptscriptstyle 4}$ = 0 ,则 $U_{\scriptscriptstyle 1}$ = $1{
 m V}$ 。

$$-U_1 + 4U_2 - U_3 = 0$$
$$-U_2 + 2U_3 = 2U - 2$$
$$U = U_1 - U_2 = 1 - U_2$$

整理得
$$\begin{cases} 4U_2 - U_3 = 1 \\ U_2 + 2U_3 = 0 \end{cases}$$

解得
$$U_2 = \frac{2}{9} \text{ V}$$
, $U_3 = -\frac{1}{9} \text{ V}$

电流分布如图所示。

$$I_1 = \frac{U_1}{1} = 1 \text{ A}$$
, $I_2 = \frac{(U_1 - U_2)}{1} = \frac{7}{9} \text{ A}$
 $I = I_s - I_1 - I_2 = (2 - 1 - \frac{7}{9}) = \frac{2}{9} \text{ A}$

电压源功率: $P_v = IU_s = \frac{2}{9}$ W (消耗)

10*、电路如图 16 所示, 试用回路电流法求 i1 和 i2.

如图所示选取三个回路,列出 KVL 方程

$$\begin{cases} (2+3)I_{l1} + 2I_{l3} = 2\\ I_{l2} = 2\\ 2I_{l1} + (3+2) I_{l2} + (2+1+3+2) I_{l3} = 2 \end{cases}$$

解得:
$$\begin{cases} I_{I1} = \frac{8}{9} A \\ I_{I2} = 2A \\ I_{I3} = -\frac{11}{9} A \end{cases}$$
 所以
$$\begin{cases} i_1 = I_{I1} = \frac{8}{9} A \\ i_2 = I_{I2} + I_{I3} = 2A - \frac{11}{9} A = \frac{7}{9} A \end{cases}$$

11、试用回路电流法,求图 17 所示电路的电压u。

解 图 (b)是 (a)的拓扑图,图中粗线为树。回路电流有三个,分别为 6A、10A 和 i 。由于两个电流源电流被选作回路电流,故只需要列出 i 回路的 K V L 方程即可

$$2i + 3(i+10) - 12 = 0$$

解得 i = -3.6A 所以 u = 2i = -7.2V a = 2i = -7.2V a

 12^* 、图 18 所示直流电路,试用节点电压法求电压 u_1 和 u_2 。

解 节点方程为

$$\begin{cases} (\frac{1}{0.1} + \frac{1}{0.2})u_1 - \frac{1}{0.1}u_2 = 5 - 5i_1 - 10u \\ -\frac{1}{0.1}u_1 + (\frac{1}{0.1} + \frac{1}{0.2})u_2 = 5i_1 - 10 \end{cases}$$

增补方程:
$$u = u_1 - u_2$$
 $i_1 = \frac{u_2}{0.2}$

整理得
$$\begin{cases} 25u_1 + 5u_2 = 5 \\ -10u_1 - 10u_2 = -10 \end{cases}$$

解得
$$u_1 = 0$$
, $u_2 = 1$ V