PSYC 5301 - Week 1

Thomas J. Faulkenberry, Ph.D.

Jan 16, 2018

An example

Suppose you have a treatment that you suspect may alter performance on a certain task. The two groups were significantly different, $t(18)=2.7,\ p=0.01.$ Decide whether each of the following statements is true or false:

- 1. You have disproved the null hypothesis
- 2. You have found the probability of the null hypothesis being true
- 3. You have proved your experimental hypothesis
- 4. You can deduce the probability of the experimental hypothesis being true
- 5. If you decide to reject the null hypothesis, you know the probability that you are making the wrong decision
- 6. You have a reliable experimental finding in the sense that if, hypothetically, the experiment were repeated a

large number of times, you would obtain a significant result on 99% of the replications.

Some definitions

1. What is a p-value?

- p-values tell you how surprising the data is, assuming there is no effect.
- Benjamini (2016): "In some sense it offers a first line of defense against being fooled by randomness, separating signal from noise"
- from sample statistics (M, SD, n), we calculate a test statistic and compare against a distribution (e.g., z, t, F)
 - $-\ p < 0.05$ —> data is surprising
 - $-p > 0.05 \rightarrow data$ is not surprising
- $\bullet \ p$ -value is the probability of getting the observed (or more extreme) data, assuming the null hypothesis is true
 - Note: a p-value is the probability of the data, not the probability of a theory
 - $-p = P(D|H) \neq P(H|D)$

2. Decisions

action / truth	H0 false (effect)	H0 true (no effect)
reject H0	correct decision	Type 1 error
"accept" H0	Type II error	correct decision

• more definitions:

- $-\alpha = \text{probability of finding significant result when } H0 is true (Type I error rate)$
- $-\beta = \text{probability of finding nonsignificant result}$ when H0 is false (Type II error rate)
- $-1-\beta=$ probability of finding signficant result when H0 is false (statistical power)

Philosophical underpinnings

The goal of research is to find the **one truth**. . . however, the **paths are many**. Let's see how an ancient Hindu text can actually serve as a metaphor for how we do science.

Three paths to enlightenment (Bhagavad Gita, 500 BCE):

- 1. Karma yoga the path of action
- 2. Jnana yoga path of knowledge
- 3. Bhakti yoga path of devotion

These map nicely onto Royall's (1997) three questions one should ask regarding data:

- 1. What should I do?
- 2. What's the relative evidence?

3. What should I believe?

Paths for research:

- 1. Path of action: search for rules to govern our behavior such that, in the long run, we will not be wrong too often
 - $p < \alpha$: reject H_0 . Act as if data is not noise
 - $p > \alpha$: remain in doubt. Act as if data is just noise
 - A rule to govern our *behavior* in the *long run*. It tells us *nothing* about the *current test*.
- 2. Path of knowledge: compare the likelihood of different hypotheses, given the data.
 - suppose you flip a coin 10 times: you get 6 heads and 4 tails. Is the coin biased (unfair)?
 - Two hypotheses:
 - $-\ H_1$: the coin is biased (the true proportion of heads/tails is 0.6
 - H_2 : the coin is fair (true proportion of heads/tails is 0.5

— Question: given the data, how much more likely is H_1 than H_2

figures/coinFlip.png

- 3. Path of belief: do I really believe this coin will come up heads 60% of the time?
 - No. . . I have *prior* beliefs.
 - One "experiment" with 6 heads does not *change* my prior beliefs

These paths form the basis of three dominant statistical paradigms in the psychological literature:

- 1. Neyman-Pearson (the most common)
- 2. Likelihood
- 3. Bayesian
- 1. Neyman-Pearson method

Historically, our method of hypothesis testing (using p-values) is an amalgamation of two (quite different) ideas from a couple of early 20th century statisticians:

- Jerzy Neyman: p-value tells you what action to perform. If $p < \alpha$, then we reject null hypothesis
 - When we act as if there is an effect when p < 0.05, in the long run we won't be wrong more than 5% of the time
- ullet Ronald Fisher: $p ext{-value}$ measures evidence. . . the smaller the $p ext{-value}$, the greater the evidence (this is actually incorrect)

- Note: when I teach undergraduate statistics, I teach only the Neyman method.
 - define H_0
 - set α (usually 0.05) and find the critical test statistic
 - if test statistic exceeds critical, we we reject H_0 (action)
- However, most psychological literature (and many courses) implicitly tack on the incorrect Fisher ideas.
 - Example: I got p=0.03 for "Effect 1" and p=0.003 for "Effect 2"...which has "more evidence"?
 - Answer: neither, but Fisher thought Effect 2 would have more evidence
 - this understanding is implicit everywhere in psychology, but it is wrong!
- Goal of Neyman-Pearson method: error control
 - don't make a fool out of yourself in the long run