CONCURSO **IBERDAMERICANO** DE SÁTELITES ENLATADOS 2023

Etapa-02

Fecha límite para subir su documento: 03 de marzo del 2023 a las 23:59:59, tiempo de la Ciudad de México.

Etapa-02

Concurso Iberoamericano de Satélites Enlatados

ETAPA 02

Contenido del documento

- 1. Revisión de Diseño Conceptual; descripción general.
- 2. Integrantes del equipo.
- 3. Insignia del equipo.
- 4. Distribución de trabajo.
- 5. Consideraciones generales.
- 6. Electrónica.
- Mecánica.
- 8. Control y programación.
- 9. Integración.
- 10. Pruebas.
- 11. Ingeniería de sistemas.
- 12. Gestión de la misión.
- 13. Instrucciones de envío.

Concurso Iberoamericano de Satélites Enlatados

ETAPA 02

Revisión de Diseño Conceptual: descripción general.

Este archivo deberá ser entregado con el nombre PEU_Satélite_Enlatado_2023_CDR_(NOMBRE_DEL_EQUIPO) antes de la fecha límite indicada, con los cálculos y las propuestas conceptuales de los diferentes sistemas que conformarán su satélite enlatado.

El documento deberá estar orientado a resolver las especificaciones y requerimientos descritos, con el fin de comenzar a realizar el planteamiento de su propuesta para cumplir la misión.

El resultado obtenido en esta etapa determinará si el equipo participante podrá pasar a la Etapa 03 del concurso.

1. Escriba el nombre del equipo, los nombres de los integrantes, la institución en la que estudian y un correo electrónico de contacto en los campos especificados. En caso de que haya nuevos integrantes en el equipo, marque con rojo sus nombres. Nombre del equipo:

Nombre(s) de los integrantes:	Apellido paterno:	Apellido materno:	Correo electrónico
(Líder) Miguel Alejandro	Martínez	Ayala	A01734990@TEC.MX
Lilian Scarlett	Díaz	Romero	A01734788@TEC.MX
Israel	Lezama	López	A01734758@tec.mx
Alejandro Uriel	Bolaños	Baez	A01732264@tec.mx
Luis Enrique	Camaños	Rebollo	A01732055@tec.mx

Hugo Gustavo González Hernández hgonztec.mx

2. Inserte en el recuadro de esta página la insignia de su equipo:

I N S I G N I A

I N S I G N I A

3. De cada integrante del equipo, marque con una X el área de trabajo en la que participará:

Nombre del integrante:	1	2	3	4	5	6	7
(Líder)Miguel Alejandro Martínez Ayala	X		X			X	X
Lilian Scarlett Díaz Romero		Χ	Χ	X			
Alejandro Uriel Bolaños Baez	Χ	Χ			Χ	X	Χ
Israel Lezama López	Χ		Χ	Χ	Χ		
Luis Enrique Camaños Rebollo	Χ		Χ		Χ	Χ	
Nota: Un mismo integrante puede realizar múltiples tareas.							

- 2. Mecánica
- 3. Control y programación
- 4. Integración
- 5. Pruebas
- 6. Ingeniería de sistemas
- 7. Gestión de la Misión

DISEÑO CONCEPTUAL DEL SATÉLITE ENLATADO. CONSIDERACIONES GENERALES.

En las siguientes diapositivas debe responder las preguntas, **DESDE LA PERSPECTIVA DE DISEÑO CONCEPTUAL**, con **al menos una propuesta y máximo tres** que cumplan con las especificaciones y requerimientos para satisfacer los objetivos de la misión espacial en los rubros: Mecánica, Electrónica, Control y Programación e Integración.

Es necesario el uso de diagramas simples que apoyen la explicación de la distribución geométrica, configuración y los principios de operación de cada sistema.

En el caso de la descripción electrónica y control, se debe incluir el modelo de los componentes que se van a utilizar y una descripción de por qué están siendo considerados.

Para los rubros: Pruebas, Ingeniería de Sistemas y Gestión de la Misión, únicamente se debe desarrollar una propuesta por cada elemento solicitado.

Pueden ser agregadas las diapositivas que el equipo considere necesario para describir detalladamente el diseño conceptual de su satélite enlatado.

Las restricciones de diseño, especificaciones y requerimientos, así como todos lo que debe ser considerado al momento de realizar el diseño conceptual del satélite enlatado, se encuentran en los siguientes apartados de la Guía de Misión:

Meteoro racers

- 5. ESPECIFICACIONES DEL SATÉLITE ENLATADO
- 6. REQUERIMIENTOS GENERALES
- 7. COMPONENTES DEL SATÉLITE ENLATADO
- 9. CRITERIOS DE EVALUACIÓN

Respetando los criterios establecidos en los puntos anteriores, elabore las respuestas de las preguntas contenidas en las siguientes diapositivas.

Figura 1. Dimensiones máximas del satélite enlatado.

ELÉCTRÓNICA

Sensor de presión

Modelo del sensor	Voltaje de operación (V)	Rango (hPa)	Precisión (hPa)	Interfaces	Precio en dolares (\$)	Link del producto
BMP180	1.8 – 3.6	300 - 1100	±1	I2C	2.40	BMP180
BMP280	1.8 – 3.6	300 - 1100	±1	I2C, SPI	3.20	BMP280

Sensor seleccionado	Razones
BMP180	 Más barato Incluye sensor de temperatura Librería fácil de implementar Experiencia previa usando el sensor

ELÉCTRÓNICA

Sensor de temperatura

Modelo del sensor	Voltaje de operación (V)	Rango (°C)	Precisión (°C)	Interfaces	Precio en dolares (\$)	Link del producto
BMP180	1.8 – 3.6	-40 - 85	±1	I2C	2.40	BMP180
BMP280	1.8 – 3.6	-40 - 85	±1	I2C, SPI	3.20	BMP280
LM35	4-30V	-55 - 150	±0.5	Analógico	2	<u>LM35</u>

Sensor seleccionado	Razones
BMP180	 Más barato Ya viene incluido con el sesor de presión Librería fácil de implementar Experiencia previa usando el sensor

ELÉCTRÓNICA

Giroscopio y acelerómetro

Modelo del sensor	Voltaje de operación (V)	Rango aceleración (g)	Rango orientación (°/s)	Interfaces	Precio en dolares (\$)	Link del producto
MPU6050	2.3 – 3.46	±2	±250	I2C	4.75	MPU6050
BMX055	2.4 – 3.6	±2	±125	I2C, SPI	14	BMX055
MPU9250	4-30V	±2	±250	I2C, SPI	15	MPU9250

Sensor seleccionado	Razones	
MPU6050	- Más barato - Más ligero - Experiencia previa usando el sensor	

Coordinación de la Investigación Científica

ELÉCTRÓNICA

Comunicación

Modelo del sensor	Voltaje de operación (V)	Rango distancia (km)	Velocidad de transmisión (kbps)	Frecuencia	Interfaces	Precio en dolares (\$)	Link del producto	Meteoro racers
Digi Xbee Pro S2 60 Mw 2.4g Serie2 Antena Wire	3.3V	1.6	250	2.4GHz	UART, SPI	30	<u>Xbee</u>	
1278 LORA	3.3V	4.5	300	433MHz	UART, SPI	4	LORA	

Razones
 Más barato Mayor alcance Buena velocidad de transmission

ELÉCTRÓNICA

Control

Modelo	Voltaje de operación (V)	Masa (g)	Dimensiones (largo x ancho mm)	Interfaces	Precio en dolares (\$)	Link del producto
Arduino micro	7-12V	13	48 x18	UART, SPI, I2C	25	<u>Micro</u>
Arduino nano	7-12V	7	45x18	UART, SPI, I2C	25	<u>Nano</u>
Esp32	3.3V-5V	23	47x20	UART, SPI, I2C	18	Esp32

Sensor seleccionado	Razones
Arduino nano	- Experiencia previa - Más ligero - Mayor disponibilidad en México - "Clones" más baratos

ELÉCTRÓNICA

Desacoplamiento

M	odelo	Voltaje de operación (V)	Masa (g)	Dimensiones (largo x ancho mm x alto mm)	Torque (kg- cm)	Interfaces	Precio en dolares (\$)	Link del producto
М	G90S	4.8-6V	13.4	32.5x12x35.5	1.8/2.2	PWM	3.92	MG90S
S	SG90	4.8-6V	14.7	32x12x32	2.5	PWM	2.39	<u>SG90</u>
М	G995	4.8-7.2V	55	54x20x47.2	8.5 / 10	PWM	24.94	MG995

MODAL RUDGE REPORT REPORT

Sensor seleccionado	Razones
SG90	 Experiencia previa Mayor torque Disponibilidad en el mercado

ELÉCTRÓNICA

Localización

Modelo	Voltaje de operación (V)	Masa (g)	Dimensiones (largo x ancho mm x alto mm)	Interfaces	Precio en dolares (\$)	Link del producto
GPS NEO	O- 3-5V	13.4	25 x 35	UART	8.5	<u>GPS</u>
A9G GSM/GPR GPS	3.8-4.2V RS/	14.7	41 x 22	UART, SPI, I2C	27.5	<u>A9G</u>

|--|

Sensor seleccionado	Razones
GPS NEO-6M	 Más barato No necesitas un muestreo más veloz Disponibilidad en el mercado
Investigación Científica	

ELECTRÓNICA Esquema general carga primaria

MECÁNICA

- 3. A continuación, realice una descripción general de su sistema de autogiro que incluya al menos lo siguiente:
- Cantidad de hélices (justificar con memoria de cálculo)

tificar con memoria de cálculo)
$$m=500 g$$

Se consideraron los parámetros: $g=9.81 m/s^2$

$$f(x) = 25,7 \tanh(0,3 x)$$

- Pasos de ensamblaje
- Una vez finalizada la tarea de colocar el huevo y los sistemas de amortiguamiento y eléctricos dentro de la lata, se procederá a armar el soporte del autogiro. La base del soporte está dividida por la mitad para que se pueda colocar el resorte y la base de las hélices dentro de él.

Cd=1.14

 $\rho = 1.29 \, kg/m^3$ $A = 0.009960m^2$

- 2. Se embona la otra mitad asegurar los elementos dentro de él.
- Se unen las hélices interiores por medio de ejes para darles movilidad y de la misma manera las hélices de los extremos se unen a las hélices interiores.
- Se atornilla la base con todos los elementos integrados a las paredes de la lata.
- Diagrama general de la configuración
- Descripción del despliegue (incluya diagramas)

MECÁNICA

4. Para que el huevo de gallina sobreviva el impacto dentro del Satélite Enlatado, ¿qué sistema o sistemas de amortiguamiento se propone utilizar?

El sistema de amortiguamiento que se propone utilizar para soportar el impacto del satélite, se trata de un sistema en donde se utiliza como material popotes en forma de columnas, las cuales tendrán la función de dar soporte a la estructura principal. También se pretende utilizar material de goma espuma en la parte superior e inferior con el objetivo de tener una mejor protección a la hora de recibir el impacto.

Además, se propone utilizar rosetas de maíz en el interior del sistema con el objetivo de rellenar los espacios vacíos que tendrá el sistema, lo que brindará una mayor protección a la hora de recibir el impacto.

A continuación, se muestra el modelo de como seria el sistema de amortiguamiento.

MECÁNICA

5. ¿Cómo se va a realizar la tarea de colocar el huevo dentro del satélite enlatado? La respuesta debe incluir una descripción dividida en pasos, diagramas de cuerpo libre e imágenes simples y descriptivas.

En el caso de la colocación del huevo en el satélite, el primer paso será la colocación de la batería en la parte inferior del satélite, esta será la primera pieza que estará hasta abajo.

En segundo lugar, se colocará la primera pieza de goma espuma, la cual tendrá la función de ser la base del soporte del huevo, posterior a esto se colocará el huevo en la parte central de la base cuidando que quede centrado en el orificio con el que contará.

Al colocar el huevo, lo siguiente a colocar serán los popotes en cada uno de los orificios de la base, los cuales funcionarán como las columnas que darán soporte a el huevo para que no se mueva, por último, se colocará en la parte superior del huevo la segunda pieza de goma espuma para proteger al huevo de los componentes de la parte superior.

MECÁNICA

Componente	Peso (gramos)	Centro de masa (X) (mm)	Centro de masa (Y) (mm)
Huevo	65	0	0
Placa de espuma superior	0.3675	0	0
Placa de espuma inferior	0.3675	0	0
Popote 1	0.00083	0	31.7
Popote 2	0.00083	0	-31.7
Popote 3	0.00083	27.5	15.87
Popote 4	0.00083	27.5	-15.87
Popote 5	0.00083	-27.5	-15.87
Popote 6	0.00083	-27.5	15.87
Total	65.74	0	0

MECÁNICA

Componente	Peso (gramos)	Centro de masa (X) (mm)	Centro de masa (Y) (mm)	
Arduino Nano	7	0	-13	oro racers
Bornera KF128 A	3	15	-27.5	
Bornera KF128 B	3	-18.5	-24	
Lora DRF1278F	3.6	24.5	-3.5	
MPU6050	2.1	-23	-4.5	
BMP180	1.2	0	29	
Placa de cobre	67.6	0	0	
TOTAL	87.5	0.336	-2.26	

MECÁNICA

Componente	Peso (gramos)	Centro de masa (X) (mm)	Centro de masa (Y) (mm)	
Arduino Nano	7	-24.532	0.741	oro racers
Servo SG90	13	8.75	10.55	
Batería 9V	40	26.505	-2.028	
Ublox GPS Module	15	14.404	0.375	
TOTAL	75	16.2438	0.8912	

MECÁNICA

Componente	Peso (gramos)	Centro de masa (X) (mm)	Centro de masa (Y) (mm)	
Eje verde	15	0	0	oro racers
Hélices	24	0	0	
Resorte	3	0	0	
Eje vertical	4.85	0	0	
Base	7.2	0	0	
TOTAL	54.05	0	0	

MECÁNICA

Componente	Peso (gramos)	Centro de masa (X) (mm)	Centro de masa (Y) (mm)
Componentes electrónicos (PCB)	87.9	0	10.77
Sistema de amortiguación del huevo	65.74	0	-26.435
Fuente de alimentación	40	0	-78.5
Sistema de bloqueo	75	16.2438	0.8912
Sistema de autogiro	54.05	0	0
Total	322.69	3.775	-12.18

MECÁNICA

7. ¿De qué materiales se propone fabricar la envolvente del satélite enlatado, su estructura interna y los componentes del autogiro? Enliste los componentes y describa los materiales de los que estarán conformados. Justifique sus respuestas.

Se propone para la construcción de la estructura externa del satélite enlatado, así como para la construcción del cuerpo de las hélices del autogiro, el uso de Ácido Poliláctico (PLA) inyectado con filamentos de fibras de carbono. Se sustenta tal elección en el origen orgánico de este polímero (almidones vegetales), en su alta dureza (comparado con otros elastómeros termoplásticos como ABS, potencializando además su resistencia con la adición de fibra de carbono) y la facilidad de maquinado/manufactura de piezas complejas a partir de la implementación de impresión 3D.

Por otro lado, se propone el uso de aluminio (con relación resistencia-peso favorable) para la construcción de almas para cada hélice y su estructura principal de agarre, así como el uso de rodamientos de acero inoxidable para mejor movilidad de hélice.

2023

MECÁNICA

8. ¿De qué métodos de manufactura se auxiliará para fabricar sus componentes? Descríbalos y justifíquelos.

El método de manufactura a utilizar para la fabricación de cada uno de los componentes será por medio del proceso de impresión 3D, esto debió a que, gracias a su proceso de superposición de capas sucesivas del material, nos permite el poder realizar piezas de una forma más fácil y barata en comparación con otro tipo de procesos.

En este, se podrá imprimir diferentes piezas con el objetivo de realizar pruebas para verificar si el material, el espesor, la forma de la pieza, entre otras, es el adecuado para la realización del satélite enlatado o si se debe de cambiar algo, este tipo de proceso nos da esta ventaja de poder realizar cambios rápidos.

En el caso del material a utilizar, será por medio de un filamento de PLA, esto debido a que este tipo de filamento es muy accesible además de ser rígido y fuerte a la hora de utilizarse, lo que lo hace adecuado para el uso que se requiere.

2023

MECÁNICA

9. Calcular el tiempo que tarda el Satélite Enlatado en descender 400 metros sin paracaídas, si tiene una masa de 500 gramos y si sus dimensiones son las máximas especificadas en la Guía de la Misión. La altura inicial desde donde comienza el descenso el satélite es de 2600 metros sobre el nivel del mar. Incluir una breve descripción del cálculo y las suposiciones realizadas.

Considerando los datos:

MECÁNICA

$$\frac{1}{2}\rho C_L A v^2 = m\dot{v}$$
$$(\frac{1}{2}\rho C_L A v^2) dt = m(dv)$$

$$v(t) = 58.28 tanh(0.1683t)$$
 Ecuación 1 $y(t) = 346.22 log(cosh(0.1683t))$ Ecuación 2

MECÁNICA

Y despejando para y(t) = 400 m

t = 10.828256s

Lo anterior se puede verificar con las gráficas de altura y velocidad con respecto al tiempo:

MECÁNICA

10. ¿Cuánta energía cinética tiene el satélite antes del impacto? Incluir una breve descripción del cálculo y las suposiciones realizadas.

Tomando en cuenta la <u>ecuación 1</u>, y considerando que el tiempo máximo que tarda el satélite en caer desde una altura de 400 metros, es de 10.83s.

Entonces, podemos sustituir el tiempo en la ecuación, y obtener la velocidad máxima, justo antes del impacto.

$$v(10.83s) = 55.32m/s$$

PROGRAMA ESPACIAL UNIVERSITARIO

MECÁNICA

10. ¿Cuánta energía cinética tiene el satélite antes del impacto? Incluir una breve descripción del cálculo y las suposiciones realizadas.

Con éste dato, podemos calcular la energía cinética mediante la fórmula:

$$K = \frac{1}{2}mv^2$$

Y suponiendo una masa máxima de 500 gramos, obtenemos que:

$$K = 765.08J$$

MECÁNICA

11. Suponiendo los parámetros del cálculo anterior y una caída de 400 metros del satélite, calcule la aceleración que tiene el satélite al momento del impacto (presente el resultado en unidades de gravedad). Estime también cuál es la aceleración máxima que puede soportar un huevo de gallina antes de romperse (incluir una breve descripción del cálculo realizado y su justificación).

Tomando como base la <u>ecuación 1</u>, la cual expresa la velocidad en términos del tiempo, podemos derivar la misma para obtener la aceleración, lo cuál nos da la ecuación 3.

$$a(t) = 9.81 - 9.81 tanh(0.1683t^2)$$

Por lo tanto, al sustituir el tiempo de caída, t = 10.83, obtenemos una aceleración justo al momento del impacto de:

$$a(10.83s) = 0.973m/s^2$$

MECÁNICA

11. Suponiendo los parámetros del cálculo anterior y una caída de 400 metros del satélite, calcule la aceleración que tiene el satélite al momento del impacto (presente el resultado en unidades de gravedad). Estime también cuál es la aceleración máxima que puede soportar un huevo de gallina antes de romperse (incluir una breve descripción del cálculo realizado y su justificación).

$$a = \frac{v_f - v_0}{\Delta t} = \frac{0m/s - 55.32m/s}{0.01}$$

Por lo tanto, la desaceleración que sufriría sería de:

$$a = -5532m/s^2$$

MECÁNICA

11. Suponiendo los parámetros del cálculo anterior y una caída de 400 metros del satélite, calcule la aceleración que tiene el satélite al momento del impacto (presente el resultado en unidades de gravedad). Estime también cuál es la aceleración máxima que puede soportar un huevo de gallina antes de romperse (incluir una breve descripción del cálculo realizado y su justificación).

Así mismo, un huevo de gallina promedio, soporta 2.5 kilos aproximadamente (Ouellette, 2012). O, una fuerza de 24.53 N. Y, si suponemos que el huevo tiene una masa de 65g, entonces, un huevo soporta una aceleración de:

$$a = 377.38m/s^2$$

CONTROL Y PROGRAMACIÓN

12. ¿Qué lenguajes se utilizarán para programar los componentes del satélite enlatado? Enlístelos y justifíquelos

Lenguajes de programación

Existen diferentes lenguajes de programación con los que es posible desarrollar proyectos que involucren componentes eléctricos, mecánicos y microcontroladores; además cada uno cuenta con ventajas que resultan útiles al trabajar con ellos, como compatibilidad de componentes o practicidad, es por esto que se han seleccionado los siguientes lenguajes para este proyecto.

- C++: Este lenguaje de programación tiene la ventaja de que está incorporado en el entorno de desarrollo diseñado para las placas de Arduino (Arduino IDE), el cual cuenta con una gran variedad de librerías con las que se pueden controlar y programar actuadores y sensores de una forma más rápida y eficiente. Además, C++ tiene la ventaja de tener un buen manejo de memoria que adicional a su compatibilidad con hardware de bajo nivel, hace que la conjunción de sistemas con microcontroladores sea una tarea sencilla.
- Python: Debido a la facilidad que tiene este lenguaje de ser aprendido y de ser interpretado se tiene una gran flexibilidad para programación, además existen librerías como PySerial que permiten el control de componentes y microcontroladores.

CONTROL Y PROGRAMACIÓN

13. Describa detalladamente la interfaz humano-máquina de su estación terrena. Incluya un diagrama de interfaces entre su segmento en tierra y el segmento de vuelo.

CONTROL Y PROGRAMACIÓN

13. Describa detalladamente la interfaz humano-máquina de su estación terrena. Incluya un diagrama de interfaces entre su segmento en tierra y el segmento de vuelo.

Diagrama de interfaces

INTEGRACIÓN

14. Describa detalladamente el sistema de desacoplamiento entre etapas. Incluya diagramas descriptivos de su sistema.

El sistema de desacoplamiento consistirá en un servomotor que actuará como seguro, impidiendo que la carga secundaria, se desacople de la primaria. Así mismo, después de que el satélite sea liberado, y descienda a una altura menor a los 250 metros, el servomotor rotará, liberando el seguro, desacoplando así, la etapa secundaria.

INTEGRACIÓN

14. Describa detalladamente el sistema de desacoplamiento entre etapas. Incluya diagramas descriptivos de su sistema.

A continuación, se puede observar como el servomotor, en la primera posición, actúa como sistema de bloqueo, y, en la segunda, después de que rotó, ya nada impide que la carga secundaria se desacople.

Sistema de acoplamiento bloqueado

INTEGRACIÓN

15. Retome el diagrama de la pregunta 6 e integre **todos** los componentes que conformarán el satélite enlatado, indique la distribución de masa de los componentes y los pasos de ensamblado de todo el segmento de vuelo.

Componente	Peso (gramos)	Centro de masa (X) (mm)	Centro de masa (Y) (mm)	
Arduino Nano	7	0	-13	acers
Bornera KF128 A	3	15	-27.5	
Bornera KF128 B	3	-18.5	-24	
Lora DRF1278F	3.6	24.5	-3.5	
MPU6050	2.1	-23	-4.5	
BMP180	1.2	0	29	
Transistor 2n2222	0.4	21	-20	
Placa de cobre	67.6	0	0	
TOTAL	87.9	0.2627	-2.74	

PRUEBAS

16. Enliste y describa de manera general, cada una de las pruebas que serán realizadas a los componentes del satélite enlatado. Describa brevemente en cada una de ellas por qué considera importante realizarla.

Protección del huevo: El objetivo de esta prueba es la verificación del correcto funcionamiento del sistema de protección del huevo, en donde este será lanzado en diferentes alturas y se verificará que el huevo no se rompa, también se evaluarán los aspectos a mejorar del sistema.

Verificación del sistema de transmisión: El objetivo de esta prueba es lograr que el sistema de trasmisión logre enviar los diferentes datos de velocidad a pesar de estar a una distancia mayor a 400 metros y verificar que no se tenga ninguna interferencia a la hora de enviarlos.

Pruebas de Resistencia de Material: Se realizará esta prueba con el objetivo de poder determinar la durabilidad y resistencia del material que se propone utilizar para la lata, en esta prueba se logrará determinar si el espesor es el adecuado o si se requiere cambiarlo.

Sistema de despliegue: El objetivo de esta prueba es poder comprobar que el sistema de despliegue para el autogiro funcione correctamente, y verificar que no exista ningún problema a la hora de accionarlo.

PRUEBAS

16. Enliste y describa de manera general, cada una de las pruebas que serán realizadas a los componentes del satélite enlatado. Describa brevemente en cada una de ellas por qué considera importante realizarla.

Pruebas de componentes electrónicos: El objetivo de realizar esta prueba es el de poder comprobar el correcto funcionamiento de cada uno de los componentes electrónicos que se utilizarán para el satélite, en este caso todos estos componentes deberán estar integrados a la placa PCB para realizar las pruebas.

Pruebas de condiciones reales: El objetivo de esto es poder realizar una prueba de simulación del despliegue del satelite, en donde se tengan las suficientes condiciones reales para comprobar el correcto funcionamiento de cada uno de los subsistemas, en este caso para realizar esta prueba final es necesario que las pruebas anteriores se realicen de manera correcta.

PRUEBAS

17. Realice un calendario tentativo de realización de las pruebas.

Se realizo un calendario con el objetivo de fijar fechas tentativas para la realización de pruebas previas a la fase de aceptación final

15 de Marzo de 2023	22 de Marzo de 2023	29 de Marzo de 2023	31 de Marzo de 2023
Inicio de pruebas experimentales para verificar el funcionamiento de la protección del huevo	Inicio de prueba para verificación del sistema de transmisión.	Realización de pruebas de durabilidad y resistencia de los materiales a utilizar.	Realización de pruebas para el correcto funcionamiento de los componentes eléctricos.
5 de Abril de 2023	12 de Mayo de 2023	19 de Mayo de 2023	26 de Mayo de 2023
Inicio de pruebas para el mecanismo de despliegue y autogiro	Prueba final 1	Prueba Final 2	Prueba Final
Coordinación de la			

Coordinación de la Investigación Científica

INGENIERÍA DE SISTEMAS

Ventajas	Desventajas	
Un sistema modular, fácil de reparar	Se sacrifica un poco la velocidad de transmisión	
Precios reducidos sin sacrificar calidad	Posibilidad de que esté agotado por la demanda	
Al tener experiencia trabajando con los componentes, su aplicación será relativamente sencilla	La precisión de los componentes puede fluctuar en efectividad	

Propuesta 2: Esquema general eléctrico		
Ventajas	Desventajas	
Es conciso	Faltaría agregar imágenes de los componentes	
Incluye las interfaces de los componentes	Falta colocar pines de conexión	
Las relaciones entre elementos se representan a través de líneas	Falta considerar los broches de las baterías	

INGENIERÍA DE SISTEMAS

Propuesta 3: Sistema de autogiro		
Ventajas	Desventajas	
El tamaño de las hélices permite su integración dentro de la estructura	Falta realizar pruebas para verificar la teoría de que sí funcione	
Se despliega con un mecanismo sencillo una vez que la carga secundaria se desacopla	El bloqueo de la posición de las hélices debe ser probado para asegurar el buen funcionamiento	

Propuesta 4: Sistema de amortiguamiento	
Ventajas	Desventajas
Variaciones del sistema se han probado con éxito	El ensamblarlo incorrectamente puede reducir la efectividad
Respaldo de investigaciones	Los espacios vacíos pueden permitir la entrada de fragmentos de la lata
Es barato de producir	Revisar la estabilidad

INGENIERÍA DE SISTEMAS

Propuesta 5: Colocación del huevo		
Ventajas	Desventajas	
Se asegura de que la distribución no afecta al huevo	El espacio restante limita mucho el espacio para el autogiro	
Los componentes electrónicos no quedan compactados contra alguna superficie	Las hélices pueden resultar dañadas por la tensión	
Es ligero, no representa una carga extra significativa	La batería puede tener riesgo de desconectarse por la tensión final	

Ventajas	Desventajas
Ayuda a visualizar la distribución interna	Solo se consideran los ejes x y y
Ayuda a identificar el centro de masa de la lata	Se podrían pesar los elementos
Permite hacer mejoras de la distribución final	Realizar un promedio de características de un huevo para definir un rango en el que pueda ser funcional sin problemas

INGENIERÍA DE SISTEMAS

Propuesta 7: Materiales		
Ventajas	Desventajas	
Fácil manufactura de la estructura	El aluminio podría interferir en la comunicación del sistema	
Económico	Hace falta hacer pruebas de resistencia para el impacto que recibirá	
Se cuenta con las herramientas necesarias para construirla	El peso de las hélices podrían afectar el peso total del sistema	

Propuesta 8: Manufactura		
Ventajas	Desventajas	
La impresión 3D permite la creación de estructuras rígidas por las capas	El costo podría aumentar por el número de pruebas	
Hay disponibilidad de filamento e impresoras 3D	Hace falta realizar pruebas de resistencia	

INGENIERÍA DE SISTEMAS

Propuesta 12: Lenguajes de programación		
Ventajas	Desventajas	
Compatibilidad con componentes	Con Python podría haber cierto retraso de envío de información	
Fácil de interpretar	La combinación de dos lenguajes diferentes podría generar confusión	

Propuesta 13: Interfaz humano-máquina		
Ventajas	Desventajas	
Describe gráficamente las relaciones entre los componentes	Las imágenes podrían ayudar a mejorar el entendimiento del diagrama	
Los elementos que los relacionan son presentados enncima de los indicadores	Diferentes colores ayudarían a identificar mejor los elementos	

INGENIERÍA DE SISTEMAS

18. Identifique y enliste los pros y contras de cada una de las propuestas de elementos y diseños que hizo en las preguntas 1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14 y 15.

Propuesta 14: Sistema de desacoplamiento	
Ventajas	Desventajas
Al incluir un actuador compacto permite un correcto acoplamiento con la carga principal	La batería podría moverse de su posición original y afectar el centro de masa de la lata
El seguro permite sostener firmemente la carga secundaria	Hacen falta pruebas para asegurarse que el sistema de bloqueo no quede trabado e impida la separación de las fases

Propuesta 15: Distribución de masas

Ventajas	Desventajas
Mejora la visualización de la distribucion de los centros de masas.	Realizar un promedio de características de un huevo para definir un rango en el que pueda ser funcional sin problemas
Ayuda a tener un mejor equlibrio en la lata al tener los centros de masas alineados.	No se considera el eje z en los centros de masas
Permite hacer cambios en la distribucion final.	No se considera la pila fija por lo que puede cambiar el centro de masa

NGENIERÍA DE SISTEMAS

Pregunta 1	
Elementos de diseño	Optimización y mejoras
Elección de componentes electrónicos	Considerar el cambio del microcontrolador para poner en lugar de un Arduino nano un ATMEGA 328P con el objetivo de reducir el peso.
	Considerar el cambio del servomotor a un MG995 con el fin de tener una segunda opción en caso de que no se encuentre el otro componente.
	Optimizar la distribucion de los componentes con el objetivo de que el centro de masa este alineado con el de la lata y se tenga un equilibrio.

|--|

Pregunta 2	
Elementos de diseño	Optimización y mejoras
Esquema de los componentes	Optimzar la implementación de cada componente para que se tenga un correcto funcionamiento.

INGENIERÍA DE SISTEMAS

Pregunta 3	
Elementos de diseño	Optimización y mejoras
Sistema de autogiro	Mejorar la implementación de la cantidad de aspas a utilizar con el objetivo de reducirlas sin perder velocidad a la hora del descenso.
	Optimización de la geometría a utilizar en las aspas.
	Optimizar el sistema de despliegue del autogiro con el objetivo de que el funcionamiento sea correcto.

STATE OF THE PARTY

0	
Coordinación de la	
Investigación Científica	
2023	

Pregunta 4	
Elementos de diseño	Optimización y mejoras
Sistema de	Aumentar el número de popotes para tener un mejor soporte en el huevo.
amortiguamiento	Probar cambiar el material de relleno para saber si hay mejores opciones que nos den un mejor amortiguamiento.
	Utilización de ligas con el objetivo de tener una mejor fijación del huevo al sistema de amortiguamiento y que pueda resistir mejor al impacto.

INGENIERÍA DE SISTEMAS

Pregunta 5	
Elementos de diseño	Optimización y mejoras
Colocación del sistema de amortiguamiento	Cambiar la posición de la pila con el objetivo de tener una mejor distribución de los componentes.
	Colocación del huevo de forma horizontal para reducir el espacio.
	Aumento del espesor de la base con el fin de tener más soporte a la hora del impacto.

Pregunta 6	
Elementos de diseño	Optimización y mejoras
Diagrama de cuerpo libre	Cambiar la posición de los componentes para tener una mejor distribución de los componentes en el satélite.
	Cambiar la posición de la batería con el objetivo de tener un mejor centro de masa.
	Buscar alternativas de componentes con el objetivo de reducir el peso total del satélite enlatado.

INGENIERÍA DE SISTEMAS

19. Identifique y enliste al menos 3 elementos de diseño que son susceptibles de ser optimizados, y en qué podría consistir cada optimización, en cada una de las propuestas que realizó en las preguntas 1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14 y 15.

Pregunta 7		
Elementos de diseño	ňo Optimización y mejoras	
Distribución de los elementos seleccionados	Pruebas con diferentes materiales con el objetivo de hacer dieferentes pruebas de resistencia para ver que material es mejor.	
	Prueba con otros componenetes electrónicos con el objetivo de reducir el peso del satélite.	
	Mejora en la distribución de la posición del huevo con le objetivo que tenga una mejor resistencia a la hora de recibir el impacto.	

ricguilla o			
Elementos de diseño	Optimización y mejoras		
Métodos de manufactura.	Realizar pruebas de resistencia con material de ABS para la realización de la lata por medio de impresión 3D		
	Cambiar el tipo de material seleccionado para la lata con el objetivo de tener una mejor resistencia a la hora del impacto.		
	Cambiar el espesor seleccionado para la lata con el objetivo de tener una mejor resistencia.		

Pregunta 8

Concurso Ib

NGENIERÍA DE SISTEMAS

Pregunta 12		
Elementos de diseño	Optimización y mejoras	
Lenguajes de programación	Implementación de librerías en la realización del código con el objetivo de que sea más fácil su uso y la implementación de esta misma.	
	Utilización de funciones en la implementación del código con el objetivo de que la implementación sea más fácil de utilizarlo.	
	Documentación de cada parte del código con el objetivo de que la persona que lo lee pueda entenderlo lo mejor posible.	

Pregunta 13		
Optimización y mejoras		
Mejora en el diseño de la interfaz de humano máquina con el objetivo de que la lectura de los datos sea más amigable y entendible para las personas.		
Implementación de una antena con el objetivo tener una mejor señal para la recepción de los datos.		
Incorporación de diferentes gráficas con el objetivo de poder ver de una mejor manera el comportamiento de la velocidad y de la altura a la que cae el satlite.		

INGENIERÍA DE SISTEMAS

Pregunta 14			
Elementos de diseño	Optimización y mejoras		
Sistema de desacoplamiento	Considerar el cambio del microcontrolador para poner en lugar de un Arduino nano un ATMEGA 328P con el objetivo de reducir el peso.		
	Mejora del diseño de la PCB con el objetivo de tener una mejor distribución de los componentes a la hora de implementar el satélite.		
	Mejora de la posición del efector final del servomotor con el objetivo de tener un mejor movimiento a la hora de abrir la carga secundaria y activar el sistema de autogiro.		

INVESTIN NATIONAL ATTINOMA & MERCH
Ser Gunt Control

Pregunta 15		
Elementos de diseño	Optimización y mejoras	
Diagrama de cuerpo libre	Cambiar la posición de los componentes para tener una mejor distribución de los componentes en el satélite.	
	Cambiar la posición de la batería con el objetivo de tener un mejor centro de masa.	
	Buscar alternativas de componentes con el objetivo de reducir el peso total del satélite enlatado.	

INGENIERÍA DE SISTEMAS

20. Proponga una división de subsistemas del satélite enlatado. A continuación enlístelos junto con una breve descripción y justifique por qué consideró importante dividirlos de acuerdo a su propuesta.

- Sistema de amortiguación del huevo: Este susbsistema está comprendido por la estructura de popotes y goma espuma que brindan de protección al huevo. Dichos elementos son los que desempeñarán esta función, por lo que se agruparon en este sistema.
- Sistema de alimentación: Este sistema está formado por las fuentes de alimentación que proporcionan energía a los compoenntes electrónicos, además, otra característica que distingue a este subsistema es la ubicación del mismo respecto al sistema electrónico, por lo cual se separó.
- Sistema de bloqueo de fases: Contiene el mecanismo basado en el servomotor el cual permitirá la separación de la carga secundaria. La función, además de la posición de este sistema hace necesaria la creación de este substistema.
- Sistema de autogiro: Está comprendido por las hélices que se despliegan en la fase de caída, el eje y el resorte que posibilita su salida. Al igual que los subsistemas antetriores, su ubicación como su función hace necesaria su diferenciación del resto de componentes.

Investigación Científica

Meteoro racers

INGENIERÍA DE SISTEMAS

21. Realice un diagrama de interfaces tentativo entre los subsistemas propuestos, indicando claramente los tipos de interfaces entre ellos.

GESTIÓN DE LA MISIÓN

22. Realice una lista de los procesos a realizar en todo el proyecto, junto con una breve descripción de cada uno.

A fin de facilitar la estructura del plan de trabajo a implementar, se optó por el uso de la plataforma de acceso gratuito para gestión de proyectos Click Up; generando allí un listado dividido por clases de tareas y etapas, indicando fechas límite, descripciones de tarea y asignaciones. Puede accederse a tal información en el siguiente URL:

https://sharing.clickup.com/24583868/l/h/4-90080148479-1/21fc70742e13b48

GESTIÓN DE LA MISIÓN

23. Esquematice en diagramas de flujo los procesos descritos en la pregunta anterior.

GESTIÓN DE LA MISIÓN

24. Cronologice sus procesos mediante un diagrama de Gantt.

A fin de facilitar la estructura del plan de trabajo a implementar, se optó por el uso de la plataforma de acceso gratuito para gestión de proyectos Click Up; generando allí un diagrama de Gannt de la planeación desarrollada. Puede accederse a tal información en el siguiente URL:

https://sharing.clickup.com/24583868/g/h/qe7nw-205/aa4fa73e4719e0c

GESTIÓN DE LA MISIÓN

25. Realice una estimación de los costos (en dólares), de los componentes del satélite enlatado. Justifique su estimación con referencias.

Componentes	Costo en dolares	Cantidad	Justificación	
Sensor BMP 180	\$1	1	El costo aproximado de este componente, se obtuvo mediante la búsqueda de precios en varias tiendas de electrónica, como por ejermplo Unit electronics: https://uelectronics.com/producto/sensor-de-presion-barometrica-bmp180/	
MPU 650	\$12.51	1	Costo aproximado obtenido de diferentes tiendas electrónicas: https://uelectronics.com/producto/mpu-9250-imu-de-9dof-9250/	
SG90	\$2.43	1	Precio obtenido a partir de diferentes busquedas en tiendas electrónicas en donde encontramos este componente: https://uelectronics.com/producto/servomotor-sg90-rc-9g/	
1278 LORA	\$7.35	3	Precio aproximado a partir de la búsqueda en diferentes tiendas electrónicas: https://www.aliexpress.com/p/trade/confirm.html?objectId=4000108314005&from=aliexpress&countryCode=MX&shippingCompany=CAINIAO_STANDARD&provinceCode=&cityCode=&promiseld=&aeOrderFrom=main_detail&skuAttr=&skuId=10000000280689608&skucustomAttr=&quantity=2&spm=a2g0o.detail.0.0&curPageLogUid=1676863543232_hKY51z&curPagePriceUid=1676863543232_hKY51z	
Arduino Nano	\$9.92	3	Costo aproximado obtenido en Mercado libre: https://articulo.mercadolibre.com.mx/MLM-731066807-arduino-nano-30-atmega328p-iva-incluido- JM?matt_tool=28238160&utm_source=google_shopping&utm_medium=organic	

GESTIÓN DE LA MISIÓN

Componentes	Costo en dolares	Cantidad	Justificación	
Batería de 9V	\$3.31	2	Precio promedio obtenido al buscar en diferentes tiendas de electrónica. https://uelectronics.com/producto/pila-cuadrada-9v/	
Pieza de Goma espuma	\$1.65	1	Costo aproximado de un flotador cilíndrico para alberca: https://www.soriana.com/tubo-flotador-110cm-foamy-sunny/11021363.html	
Popotes	\$0.09	10	Costo aproximado del valor de 10 popotes apartir del precio de un paquete de 150: https://joinet.com/product/paquete-de-150-popotes-tamano-jumbo-desechables-de-plastico-color-blanco-26cm-popotes-g/?srsltid=Ad5pg_Gy-BrywMqRzrb_KDC4NY7hqBFCkmN8tx75IMLm2dzQ0yX2bch1e5E	
Placa PCB para componentes	\$3.86	1	Precio aproximado de una placa PCB con medidas de 60 mm X 60 mm, siendo una placa de agujero pasante con un espesor de 1.6 mm, la cual la podemos calcular en: https://www.pcbway.es/HighQualityOrderOnline.aspx	
Filamento de impresión para la lata	\$8.62	1	Precio aproximado obtenido apartir del precio de un rollo de filamento para impresión, a partir de ello se calculó el precio aproximado por metro y se realizo el cálculo de la cantidad de metros a utilizar para la impresión, con esto en cuenta se calculó el precio considerando un uso extra de filamento para los soportes.	

GESTIÓN DE LA MISIÓN

Componentes	Costo en dolares	Cantidad	Justificación
Aspas para sistema de autogiro	\$8.27	6	Precio aproximado obtenido de la búsqueda de diferentes precios en tiendas, cuidando que las medidas sean similares a las que se busca en el sistema de autogiro. https://n9.cl/dvmas
Resortes	\$0.55	1	El costo de este resorte se obtuvo a partir de al búsqueda en diferentes tiendas fisicas, en donde el costo individual de cada uno es de \$0.14 aproximadamente, considerando que en este caso se tendrán en cuenta 5 resortes.
Modulo GPS Neo 6M	\$7.35	1	Precio aproximado obtenido de la busqueda de varias tiendas electrónicas en internet: https://uelectronics.com/producto/mdulo-gps-neo6m-v2/
Rodamiento	\$0.38	2	Precio aproximado obtenido de un paquete de 20 rodamientos encontrados en amazon: https://n9.cl/57tvs
Huevos	\$0.19	5	Costo aproximado obtenido del precio actual del valor del mercado de un cono de huevo de 18 piezas : https://www.informador.mx/economia/Precio-del-huevo-2023-Donde-comprar-los-blanquillos-mas-baratos-20230209-0080.html

GESTIÓN DE LA MISIÓN

Componentes	Costo en dolares	Cantidad	Justificación
Portapilas	\$0.31	2	Precio obtenido en la búsqueda de diferentes precios en diferetnes tiendas: https://n9.cl/9usvw
Cables calibre 50	\$2.78	1	Precio obtenido en tienda Amazon: https://n9.cl/cvjub

Al haber realizado la búsqueda de los diferentes costos de cada uno de los componentes a utilizar en la elaboración del satélite, el costo aproximado que se estima para este proyecto es de: \$108.73.

Este costo puede variar dependiendo a la hora de la realización física del satélite espacial.

GESTIÓN DE LA MISIÓN

26. Describa el Concepto de Operación de su misión. Realice un diagrama para ilustrarlo.

La misión de este proyecto es el poder generar la realización de un sistema de satélite enlatado, en donde al ser liberado a una altura de 400 metros, se busca tener un aterrizaje seguro en donde la velocidad del satélite disminuya hasta 12 m/s.

En primer paso para lograr este objetivo, será la realización del satélite como diseño conceptual, en donde para este paso fue necesario definir los componentes a utilizar, el sistema de protección para el huevo, el sistema de autogiro y el mecanismo para abrir el autogiro, en este caso es necesario realizar los diferentes cálculos requeridos para los diferentes sistemas mecanismos.

Una vez teniendo definido el diseño conceptual se procederá a armar el satélite, en donde para esta etapa es necesario realizar diferentes pruebas experimentales con el objetivo de verificar el correcto funcionamiento de cada uno de los componentes y evitar algún imprevisto.

Teniendo las 2 etapas anteriores definidas, se puede proceder a realizar la operación para el lanzamiento del satélite enlatado, en donde se realizará de la siguiente manera:

GESTIÓN DE LA MISIÓN

El primer paso para la realización de la misión será la colocación del satélite enlatado al dron, posterior a esto el dron se elevará a una altura de 400 metros en donde al llegar a esta altura el satélite será liberado.

En el momento en el que el satélite empiece a caer, este debe de monitorear en todo momento del descenso los datos de la velocidad y de la altura máxima que se logre.

En el momento en el satélite llegue a una altitud de 250 metros el sistema de autogiro debe de desplegarse quitando la carga secundaria del satélite, este se encargará de reducir la velocidad de caída hasta una velocidad de 12 m/s.

Por último, el satélite impactará con el suelo, en donde este debe de seguir transmitiendo los datos por lo menos 15 segundos después del impacto, y se deberá de verificar que el huevo resista el impacto.

IMPORTANTE

 Guardar el archivo adjunto como: PEU_Satélite_Enlatado_2023_CDR_(NOMBRE_DEL_EQUIPO), con la información solicitada.

- Enviar a más tardar el día viernes 03 de marzo de 2023 antes de las 23:59:59 hora local de la Ciudad de México.
- En el nombre del archivo deberá sustituir la palabra EQUIPO por el nombre de su equipo.
- Subir el archivo a la liga que se envió por correo electrónico.

Referencias

- Arduino Nano. (2022). Arduino Official Store. https://store.arduino.cc/products/arduino-nano
- Efecto de la resistencia del aire en la caída de los cuerpos. (2013.). http://www.sc.ehu.es/sbweb/fisica_/dinamica/fluidos/stokes1/stokes1_3.html
- *Módulo Sensor Giroscopio Triple Axial Breakout GY-521 MPU-6050*. (s. f.). Carrod. https://www.carrod.mx/products/sensor-gy-521-mpu-6050-giroscopio-triple-axial-breakout
- *Ouellette*, *J.* (2012). https://www.tribdem.com/slate-the-physics-of-cracking-an-egg/article_87700162-5bad-5e44-8d42-42f3c713866d.html
- *SANDOROBOTICS*. (2022). *Módulo GPS Ublox Neo-6m V2 SANDOROBOTICS*. SANDOROBOTICS Desarrollo de Robots e Ingeniería, Productos de Robótica, Partes Para Robots y Sensores Para Robots en Venustiano Carranza Ciudad de México. https://sandorobotics.com/producto/hr0326/
- Semtech LoRa SX1278 RF Front-end Module DRF1278F. (s. f.). http://www.dorji.com/products-detail.php?ProId=14
- *SparkFun Barometric Pressure Sensor Breakout BMP180*. (2016, 6 mayo). SEN-11824 SparkFun Electronics. https://www.sparkfun.com/products/retired/11824
- UNIT ELECTRONICS(s. f.). https://uelectronics.com/producto/servomotor-sg90-rc-9g/

