

Mathematics Specialist

Year 11

Student name:	Teacher name:	
Date: Monday 10 August 2020		
Task type:	Response + Investigation	
Time allowed:	45 minutes (for the entire booklet)	
Number of questions:	5	
Materials required:	Calculator with CAS capability (to be provided by the student)	
Standard items:	Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters	
Special items:	Drawing instruments, templates, notes on two unfolded sheets of A4 paper, and up to three calculators approved for use in the WACE examinations	
Marks available:	40 marks	
Task weighting:	14% combined (8% for Test 2 and 6% for investigation 2)	
Formula sheet provided: Yes		
Note: All part questions worth more than 2 marks require working to obtain full marks.		

Question 1 {1.3.4, 1.3.5}

(4 marks)

(a) Let $x \in R$. Prove that that $x^2 > x$ is false by giving a counterexample. (1 mark)

(b) Disprove the following statement: There exists $x \in R$ such that $5+x^2=1-x^2$ (3 marks)

Question 2 {2.1.1}

(5 marks)

Solve $2\cos\left(2(x+\frac{\pi}{3})\right)=-1$ given that $x\in[0,2\pi]$. Show your working.

Question 3 {2.3.4, 2.3.6}

(7 marks)

Use mathematical induction to prove that that 4^n+6n-1 is divisible by 3 for all $n \in \mathbb{N}$

Question 4 {2.1.2} (8 marks)

(a) The function $f(x) = a \tan(b(x-c))$ has been graphed below. Determine the values of the constants a, b and c. (4 marks)

(b) Sketch the graph of
$$y = 6\cos\left(\frac{1}{2}x + \frac{\pi}{4}\right)$$
. (4 marks)

Investigation Validation {2.1.3, 2.3.4, 2.3.5}

(16 marks)

a) Use the identity

$$2 sinAcosB = sin(A+B) + sin(A-B)$$

(or otherwise) to show that

$$2\sin[x]\cos[(2k+1)x] = \sin[2(k+1)x] - \sin[2kx]$$

b) Given that $\sin(x) \neq 0$ prove, by mathematical induction, that for all positive integers n,

$$\cos(x) + \cos(3x) + \dots + \cos[(2n-1)x] = \frac{\sin(2nx)}{2\sin(x)}$$

You may find the identity $\sin(2A) = 2\sin A \cos A$ useful.

Mathematics D	epartment
---------------	-----------

Perth Modern School

(additional working space)