

CASE STUDY

- In recent years, Alberta and the broader regions of Canada have experienced increasingly severe wildfires, significantly impacting residents and the environment.
- The increasing frequency and intensity of wildfires in Alberta underscores the urgent need for adaptive strategies and robust emergency responses to mitigate their impact on communities and the environment. By understanding trends and identifying relevant elements, we can develop effective management strategies that may include fire forecasts, preventive measures, and emergency response tools, and provide insights into policy options that can facilitate the implementation of wildfire management and mitigation programs.

Wildfire management in Alberta - Open Government

Alberta wildfire's seasonal statistics - Open Government

MISSION AND STAKEHOLDER

- ❖ To enhance wildfire prevention and response strategies by leveraging comprehensive data analysis, enabling the Alberta Wildfire Management to better assess risks, allocate resources efficiently, and protect Alberta's communities and natural resources.
 - ✓ Alberta Wildfire Management Branch Primary beneficiary and decision-maker

 Improved wildfire prevention and response strategies, effective

 policy development and resource allocation for wildfire

 management.
 - Local Communities Residents and businesses in wildfire-prone areas

 Increased safety and reduced risk of wildfires.
 - Environmental Organizations

 Protection of ecosystems and wildlife from wildfire damage.

DATASET

- The dataset includes 25000+ records of wildfire incidents in Alberta over the past 18 years, offering a detailed and representative sample of the period.
- It comprises comprehensive information on various variables, including fire types, fire origin, size, general cause, specific reasons, activities, reaction timings of each incident, and the initial actions taken.
- The dataset is sourced from Alberta's wildfire management systems and weather monitoring agencies, ensuring a high level of accuracy and comprehensiveness.
- The data is openly accessible from Alberta open data - <u>Historical wildfire</u> data: 2006 to 2023 - <u>Open</u> <u>Government (alberta.ca)</u>

BUSINESS QUESTIONS

- 1. What are the most common causes of wildfires in Alberta over the 5 years?
- 2. Which *areas* are most susceptible to wildfires and why?
- 3. What are the *main causes* of wildfires in *different* areas, and do they vary significantly?
- 4. What are the trends in *response times* and their effectiveness in mitigating *wildfire damage*?
- 5. How do weather conditions, temperature and humidity influence the frequency and severity of wildfires?

DATA DICTIONARY

• There is 53 columns in the dataset.

Classification	Field Name	Explanation				
Location	fire_location_latitude	Latitude of the ignition area.				
Location	fire_location_longitude	Longitude of the ignition area.				
Location	fire_position_on_slope	Position of the wildfire relative to the slope.				
Basic	fire_origin	Ownership or administration of the land where the wildfire ignited.				
Basic	fire_number	Unique identifier for each wildfire.				
Basic	fire_name	Geographic name assigned to significant wildfires.				
Basic	fire_type	Predominant fire behavior at initial assessment.				
Cause	general_cause_desc	Classification of the wildfire cause.				
Cause	industry_identifier_desc	Further detail of the industry involved in causing the wildfire.				
Cause	responsible_group_desc	Recreational group responsible for causing the wildfire.				
Cause	activity_class	Specific activity ongoing when the wildfire started.				
Cause	true_cause	Specific reason for the wildfire start.				
Weather	weather_conditions_over_fire	Weather conditions over the wildfire at initial assessment.				
Weather	Temperature	Temperature at the wildfire site.				
Weather	relative_humidity	Relative humidity at the wildfire site.				
Weather	wind_direction	Wind direction at the wildfire site.				
Weather	wind_speed	Wind speed at the wildfire site.				
Time	fire_year	The wildfire year from April 1 to March 31 of the following year.				
Time	fire_start_date	Date and time the wildfire started.				
Time	discovered_date	Time the wildfire was first discovered.				
Time	reported_date	Date and time the wildfire was first reported.				
Time	dispatched_date	Date and time the first resource was dispatched.				
Time	start_for_fire_date	Time and date the first resource started for the wildfire.				
Time	assessment_datetime	Date and time the wildfire was initially assessed.				
Time	ia_arrival_at_fire_date	Date and time the initial action resource arrived.				
Time	fire_fighting_start_date	Date and time initial suppression began.				
Time	first_bucket_drop_date	Date and time of the first bucket drop.				

Classification	Field Name	Explanation
Time	bh_fs_date	Date and time the wildfire was determined to be at 'Being Held' status.
Time	uc_fs_date	Date and time the wildfire was determined to be 'Under Control'.
Time	to_fs_date	Date and time the wildfire was turned over to another agency.
Time	ex_fs_date	Date and time the wildfire was extinguished.
Time	uc_fs_date	Date and time the wildfire was determined to be 'Under Control'.
Time	to_fs_date	Date and time the wildfire was turned over to another agency.
Time	ex_fs_date	Date and time the wildfire was extinguished.
Burn Area	size_class	Grouping of wildfires based on final area burned.
Burn Area	current_size	Final area burned by the wildfire.
Burn Area	discovered_size	Size of the wildfire when first discovered.
Burn Area	assessment_hectares	Size of the wildfire at the time of assessment.
Burn Area	fire_fighting_start_size	Size of the wildfire at the start of suppression.
Burn Area	bh_hectares	Size of the wildfire at 'Being Held' status.
Burn Area	uc_hectares	Size of the wildfire at 'Under Control' status.
Burn Area	to_hectares	Size of the wildfire at turn over.
Burn Area	ex_hectares	Size of the wildfire at extinguishment.
Resource	det_agent	Detection agent that discovered the wildfire.
Resource	det_agent_type	General type of detection agent responsible for discovering the wildfire.
Resource	dispatched_resources	First Wildfire Management resource dispatched.
Resource	assesment_resource	Name of the person who first assessed the wildfire.
Resource	fuel_type	Predominant fuel type at initial assessment.
Resource	initial_action_by	Resource that took the first physical suppressive action.
Resource	ia_access	Method of access by the initial action resource.
Resource	bucketing_on_fire	Whether a helicopter with a bucket was used.
Resource	distance_from_water_source	Distance from water source for helicopter bucket.
Other	fire_spread_rate	Rate of spread of the wildfire at initial assessment.

DATA CLEANSING

- Due to the large number of fields, combined with the need to solve the problem, keep 16 variables required for modeling as below.
- Variables with blue backgrounds are derived variables created to solve problems.

Classification	Field Name	Explanation					
Location	fire_location_latitude	Latitude of the ignition area.					
Location	fire_location_longitude	Longitude of the ignition area.					
Location	Forest_area	The first letter from Fire_number and link to the area where the fire happened.					
Basic	fire_origin	Ownership or administration of the land where the wildfire ignited.					
Basic	Fire_ID	Fire_number is repeated in different year, combing fire_year and fire number to get the unique ID.					
Cause	general_cause_desc	Classification of the wildfire cause.					
Weather	weather_conditions_over_fire	Weather conditions over the wildfire at initial assessment.					
Weather	temperature	Temperature at the wildfire site.					
Weather	relative_humidity	Relative humidity at the wildfire site.					
Weather	wind_direction	Wind direction at the wildfire site.					
Weather	wind_speed	Wind speed at the wildfire site.					
Time	fire_year	The wildfire year from April 1 to March 31 of the following year.					
Time	reported_date	Date and time the wildfire was first reported.					
Time	Response_time	Response_time = IF(NOT(ISBLANK(Fact_Wildfire_2006_2023[start_for_fire_date])) NOT(ISBLANK(Fact_Wildfire_2006_2023[ia_arrival_at_fire_date])), DATEDIFF(Fact_Wildfire_2006_2023[reported_date], MIN(Fact_Wildfire_2006_2023[start_for_fire_date], Fact_Wildfire_2006_2023[ia_arrival_at_fire_date]), MINUTE), BLANK())					
Burn Area	size_class	Grouping of wildfires based on final area burned.					
Burn Area	current_size	Final area burned by the wildfire.					

4 DATA MODELING

Create Fact and Dimensions for the dataset

Manage the relationship of these tables

DATA DIAGRAM

CONCEPTUAL MODEL

Location

Forest Area

Latitude

Longitude

Fire position

Weather Condition

Weather

Temperature

Humidity

Wind direction

Wind speed

Time Point

Fire Start Date

Reported Date

Fire year

Fire month

Fire Fighting Start Date

Fire reasons

Lightning

Recreation

Resident

Forest, Agriculture, Oil and other industries

Arson

•••••

<u>Wildfire</u> Management

Risk Alert

Fire forecast

Resource allocation

Damage projections

Damage Assessment

Burn area

Size class

DASHBOARD

Max of

41K

Response t

0.24%

2.25%

2.47%

3.02%

5.12%

> REPORT FOR QUESTION 1

1. What are the most common causes of wildfires in Alberta over the 5 years?

general_cause_desc	Count of Fire_ID
Lightning	1673
Recreation	993
Resident	780
Incendiary	623
Power Line Industry	422
Undetermined	327
Agriculture Industry	247
Forest Industry	113
Oil & Gas Industry	85
Other Industry	73
Total	5336

general_cause_desc	Sum of current_size
Lightning	2,500,330.58
Under Investigation	404,106.24
Incendiary	223,984.41
Power Line Industry	49,983.13
Oil & Gas Industry	5,215.94
Recreation	3,885.74
Undetermined	2,554.01
Resident	1,081.23
Agriculture Industry	920.72
Railroad	90.24
Total	3,192,152.24

Conclusion

In the last 5 years, the most common reason to cause the wildfire is

'Ligthning', 'Recreation', 'Resident', 'Incendiary', and 'Power Line Industry'.

These reasons cause the most biggest burn area in the last 5 years, is 'Lightning', 'Under Investigation' (Unknown),

'Incendiary', 'Power Line Industry', and 'Oil & Gas Industry', 'Recreation' perspectively.

Overall, 'Lightning' casued the biggest number and burn area in AB.

> REPORT FOR QUESTION 2 & 3

2. Which areas are most susceptible to wildfires and why?

3. What are the main causes of wildfires in different areas, and do they vary significantly?

			a
otai	Count of Fire	ID	

forest_area_detai I	Count of Fire_ID
Calgary	4275
High Level	3657
Slave Lake	3367
Lac La Biche	3057
Peace River	2251
Edson	2100
Fort McMurray	1902
Rocky Mountain House	1816
Granda Drairia	1652
Total	25321

Conclusion

Question 2:

Calgary have the most serious wilfdire situation (* most wildfire numbers) caused by 'Recreation' and 'Resident'.

High Level is the second rank of wildfire numbers in AB but totally different with Calgary, the top 1 reason of wildfire is 'Ligtning' caused. 'Resident' and 'Incendiary' are in the top 3 reasons.

Slave Lake is similar with High level, the main reason of wildfire is 'Lightning'

Lac La Biche is interesting. The top 1 reason of wildfire is 'Incendiary', over the numbers of Lightning

Question 3:

Calgary forest ares is the most susceptible to wildfires because of the recreation need. Lightning caused wildfires are easiler to happen in the high altitude area. Resident caused wildfires are average in the differnt foreat areas in Alberta. Incendiary is gather in Lac La Biche and High Level.

> REPORT FOR QUESTION 4

0.3M

0.2M

0.1M

-0.1M

current_size

4. What are the trends in response times and their effectiveness in mitigating wildfire damage?

= -0.1754 * X + 1211.5662

30K

20K

Response time

10K

40K

Conclusion

The scatterplot and the regression coefficients show that the slope is negative, then it proves that the response coefficients are very weakly related to the final area burned by the wildfire.

At the same time, there is still public demand for rapid response to wildfires. Therefore, by looking at response times in different forested areas, we found some differences between regions.

Comparing response times in different regions, the average response time in the Calgary region was 12 minutes, while the longest response time was 155.5 minutes, about 10 times that of the shortest region.

Calgary 12.04

> REPORT FOR QUESTION 5

TIME SERIES FORECAST

- 1) Through the analysis, we learned that wildfires occur seasonally, with a high incidence in the summer, so predicting the number of fires does not have a greater significance.
- 2) Through the prediction results of the time series model, although the actual number of fires on the test dataset is still within the 95% confidence interval of the predicted number, there is still some difference in the trend.
- In summary, we therefore believe that the time series model does not have a large significance in predicting the number of wildland fire occurrences.

CLASSIFICATION MODEL

- In solving the business questions, we found that many factors have a greater relationship to the final damage caused by the fire, such as the cause of the fire and the weather conditions at the time of the fire.
- Therefore, if at the early stage of a fire, we can predict the extent of the damage caused by the fire based on the available information, we can help the relevant departments to adjust their response strategies, such as resource preparation, equipment investment (e.g. helicopters, drones, etc.), and firefighters.
- Set "size_class" as the Y variable. This variable contains five classes by dividing the burned area of the fire, with A being the smallest and E being the largest, making the classification model well suited for this study.

A class = 0 to 0.1 ha

B class > 0.1 ha to 4.0 ha

C class > 4.0 ha to 40.0 ha

D class > 40.0 ha to 200 ha

E class > 200 ha

 Select Top 9 features based on the business understanding.

• Using *Random Forest* to get the importance of features.

Rank of Features:

- 1. Feature fire_location_latitude (0.18383832155888782)
- 2. Feature fire location longitude (0.150362033488555)
- 3. Feature relative_humidity (0.12239827194180786)
- 4. Feature temperature (0.11009873984066249)
- 5. Feature wind speed (0.08656205803791009)
- Feature wind direction (0.07687606207326275)
- 7. Feature forest_cause combined (0.06109546976918299)
- 8. Feature reported month (0.05841920878427568)
- 9. Feature weather conditions over fire (0.04689692617491824)
- 10. Feature general cause desc (0.04588915061354143)
- 11. Feature forest_area (0.03417944365277759)
- 12. Feature fire_origin (0.02338431406421805)

 Combined two features together to improve the importance

BEST MODEL FOR PREDICTION

 Use the tools provided by *Pycaret* to find the classification algorithms that work best.

 Based on the better performance of the first two algorithm results, the best model parameters were measured for subsequent modeling.

	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	мсс
lightgbm	Light Gradient Boosting Machine	0.6848	0.7816	0.6848	0.6297	0.6425	0.2440	0.2605
xgboost	Extreme Gradient Boosting	0.6784	0.7773	0.6784	0.6295	0.6441	0.2502	0.2600
rf	Random Forest Classifier	0.6779	0.7696	0.6779	0.6193	0.6313	0.2161	0.2334
gbc	Gradient Boosting Classifier	0.6768	0.0000	0.6768	0.6032	0.6191	0.1896	0.2147
ada	Ada Boost Classifier	0.6690	0.0000	0.6690	0.5878	0.6000	0.1458	0.1760
ridge	Ridge Classifier	0.6681	0.0000	0.6681	0.5613	0.5830	0.1036	0.1401
et	Extra Trees Classifier	0.6676	0.7487	0.6676	0.6093	0.6249	0.2019	0.2157
lr	Logistic Regression	0.6662	0.0000	0.6662	0.5739	0.5958	0.1315	0.1590
dummy	Dummy Classifier	0.6635	0.5000	0.6635	0.4402	0.5293	0.0000	0.0000
lda	Linear Discriminant Analysis	0.6619	0.0000	0.6619	0.5713	0.5969	0.1378	0.1608
knn	K Neighbors Classifier	0.6533	0.7069	0.6533	0.6030	0.6177	0.1876	0.1953
dt	Decision Tree Classifier	0.5982	0.6074	0.5982	0.6007	0.5994	0.1850	0.1850
svm	SVM - Linear Kernel	0.5908	0.0000	0.5908	0.6145	0.5344	0.1317	0.1750
nb	Naive Bayes	0.2839	0.6726	0.2839	0.6713	0.3815	0.0825	0.1159
qda	Quadratic Discriminant Analysis	0.1611	0.0000	0.1611	0.1169	0.0909	-0.0025	-0.0107

		precision	recall	f1-score	support	
	0	0.74	0.91	0.81	3365	
	1	0.43	0.29	0.35	1282	
	2	0.36	0.02	0.03	261	
		0.30	0.04	0.08	69	
	4	0.40	0.19	0.26	88	
accura	ісу			0.68	5065	
macro a	ıvg	0.45	0.29	0.31	5065	
weighted a	ıvg	0.63	0.68	0.64	5065	
				1		
Best para	ıete	rs for lighgt	om found:	{'colsam	ole_bytree':	: 1.0, 'learning_rate': 0.1, 'max_depth': 7, 'n_estimators': 50, 'subsample': 0.8}

	precision	recall	f1-score	support	
9	0.74	0.91	0.82	3365	
1	0.45	0.32	0.37	1282	
2	0.18	0.02	0.03	261	
3	0.33	0.03	0.05	69	
4	0.46	0.15	0.22	88	
accuracy			0.69	5065	
macro avg	0.43	0.28	0.30	5065	
weighted avg	0.63	0.69	0.64	5065	
			-		
Best paramete	ers for xgboo	st found:	{'colsam	ple_bytree'	: 0.9, 'learning_rate': 0.1, 'max_depth': 7, 'n_estimators': 100, 'subsample': 0.9}

EVALUATE MODEL

- In the model generated by *lightgbm*, we can see that the geographic location of the fire (latitude and longitude information) is ranked higher in importance and that the weather factor is relatively less important. Whereas in the model generated by *Xgboost*, the influence of weather is more valued and there is no one item that is particularly weakened in the characteristics. We also concluded from our previous analysis that latitude has a correlation with fire severity, while there is no particularly significant relationship in longitude.
- Therefore, we believe that the predictive model generated by *Xgboost* is more in line with our knowledge of fire severity classifications in our study.

LightGBM

XGBoost

	precision	recall	f1-score	support	
0	0.77	0.80	0.79	3365	
1	0.42	0.32	0.36	1282	
2	0.15	0.14	0.14	261	
3	0.08	0.17	0.11	69	
4	0.18	0.35	0.24	88	
accuracy			0.63	5065	
macro avg	0.32	0.36	0.33	5065	
weighted avg	0.63	0.63	0.63	5065	

Feature importances:

- 1. Feature wind_speed (0.16743145883083344)
- 2. Feature weather_conditions_over_fire (0.15818674862384796)
- Feature reported_month (0.12257900089025497)
- 4. Feature fire_location_latitude (0.11092520505189896)
- 5. Feature forest cause combined (0.09450942277908325)
- 6. Feature temperature (0.09324748069047928)
- 7. Feature wind_direction (0.09277991205453873)
- 8. Feature relative_humidity (0.08365174382925034)
- 9. Feature fire_location_longitude (0.07668904960155487)

PREDICTION SYSTEM

Create a python to read the excel file with input features and output the results, also save a result excel file.

PS	C:\SAIT\2024 S	pring - DA\PROJ406 - Da	ata Analytics Capstone P	roject\model> & C:/Users/	Kai_Benzi/AppData/Loca	al/Programs/Python/Python312/	python.exe "c	:/SAIT/2024 Spring	- DA/PROJ406 -	Data Analytic	s Capstone Project/mod
el/	el/3.wildfire_size_forecast_xgboost.py"										
r	eported_month	forest_area	fire_location_latitude	fire_location_longitude	general_cause_desc w	weather_conditions_over_fire	temperature	relative_humidity	wind_direction	wind_speed p	redicted_size_class
0	August	High Level	58.576545	-117.339872	Lightning	Clear	28.0	15.0	NE	40.0	D
1	September	Calgary	51.523369	-115.049229	Recreation	CB Dry	19.0	30.0	S	10.0	Α
2	June	Lac La Biche	54.868917	-111.568655	Incendiary	Cloudy	21.0	22.0	missing	6.0	Α
3	July	Rocky Mountain House	52.368423	-115.178479	Oil & Gas Industry	Cloudy	12.0	33.0	SE	25.0	Α
4	May	Peace River	56.281744	-117.168802	Forest Industry	CB Wet	30.0	5.0	SE	80.0	E
5	June	Whitecourt	54.199491	-115.613844	Under Investigation	CB Dry	22.0	15.0	S	5.0	A
6	February	Edson	53.589251	-116.472135	Undetermined	Cloudy	24.0	7.0	NW	9.0	В
Pre	dicted results	have been saved to pro-	ediction results xghoost	xlsx							

> To better understand and use the predictive model, we built a simple page that makes it easier for interested parties to use the predictive model.

A class = 0 to 0.1 ha

B class > 0.1 ha to 4.0 ha

C class > 4.0 ha to 40.0 ha

D class > 40.0 ha to 200 ha

E class > 200 ha

- 1) Using Html file to create a website as input.
- 2) Using Flask to read the information we input from the website and output the predictive result from the model.

WILDFIRE MANAGEMENT RECOMMENDATIONS

Based on predictive model

- ☐ Relevant departments can adjust their wildfire response strategies more effectively.
- ☐ Provide advance warning of the impact that fires that occur are expected to have on people's lives.

Based on analytical findings

- Wildfire response times and ultimate fire losses, while not strongly correlated, are still a topic of public concern, so further efficiency improvements are still needed for wildfire response in some areas.
- During the wildfire season, more frequent wildfire monitoring and warning is needed for weather conditions with low humidity, high temperatures, and no rainfall.
- There is a need for better management of the different causes of fires in different areas.

THANK YOU

