Студент: Бакулевский М. В. ИУ4-52Б

Семинар №5

Выбранная технология изготовления ДПП: комбинированный позитивный метод

Заданный материал основания ПП СФ 2-18-1,5

Эскизы этапов производства ПП:

Расчет ширины печатного проводника:

Заданные параметры работы ячейки:

Imax = 1A; Uдоп = 15B; 1 = 85мм; Класс точности 4

Imax — максимальный постоянный ток, протекающий в печатных проводниках

Uдоп – допустимое падение напряжения на проводнике

 $\mathbf{l}-\mathbf{\underline{m}}$ аксимально допустимая длина проводника

 $ho -
m \underline{y}$ дельное сопротивление слоя меди

 \mathbf{t}_{minD} -минимально допустимая ширина проводника

$$t_{minD} = \frac{I_{max} l \sum_{i=1}^{k} \frac{\rho_i}{h_i}}{U_{\text{доп}}}$$

для медной фольги — $h_1 = 18$ мкм, $\rho_1 = 1,72 \cdot 10^{-5}$ Ом · мм; для гальванической меди — $h_2 = 25$ мкм, $\rho_2 = 1,9 \cdot 10^{-5}$ Ом · мм; для сплава олово—свинца — $h_3 = 15$ мкм, $\rho_3 = 12 \cdot 10^{-5}$ Ом · мм.

$$t_{minD} = \frac{{}^{1A*85\text{mm}*(\frac{1.72*10^{-5}0\text{m}*\text{mm}}{0.018\text{mm}} + \frac{1.9*10^{-5}0\text{m}*\text{mm}}{0.025\text{mm}} + \frac{12*10^{-5}0\text{m}*\text{mm}}{0.015\text{mm}})}}{0.5B}} = 1.65\text{mm}$$

$$t = t_{minD} + |\Delta \ t_{{\scriptscriptstyle H.o.}}| = \underline{1.7} \ {\scriptscriptstyle MM}, \qquad$$
 где $|\Delta \ t_{{\scriptscriptstyle H.o.}}| = 0.05$ (для 4 класса точности ПП)