ASSIGNMENT- 4 CUSTOMER SEGMENTATION ANALYSIS

Assignment Date	28 October 2022
Student Name	M.NIRANJAN
Student Roll Number	820419104043
Maximum Marks	2 Marks

Importing the libraries

import pandas as pd import numpy as np

import matplotlib.pyplot **as** plt

import seaborn as sns

Loading the dataset:

Input:

df = pd.read_csv('Mall_Customers.csv')
df

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40
195	196	Female	35	120	79
196	197	Female	45	126	28
197	198	Male	32	126	74
198	199	Male	32	137	18
199	200	Male	30	137	83
$200 \text{ rows} \times 5 \text{ columns}$					

Encoding Categorical Columns

Input:

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['Gender'] = le.fit_transform(df['Gender'])
df

Output:

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Cluster
0	1	1	19	15.00	39	2
1	2	1	21	15.00	81	2
2	3	0	20	16.00	6	2
3	4	0	23	16.00	77	2
4	5	0	31	17.00	40	2
•••						
195	196	0	35	120.00	79	3
196	197	0	45	126.00	28	1
197	198	1	32	126.00	74	3
198	199	1	32	60.55	18	1
199	200	1	30	60.55	83	3

 $200 \text{ rows} \times 6 \text{ columns}$

Visualizations Univariate Analysis

Input:

```
plt.hist(df['Age'])
```

```
(array([31., 19., 34., 29., 16., 26., 15., 10., 6., 14.]),
array([18., 23.2, 28.4, 33.6, 38.8, 44., 49.2, 54.4, 59.6, 64.8, 70.]),
```


plt.hist(df['Annual Income (k\$)'])

Output:

Input:

plt.hist(df['Spending Score (1-100)'])

```
(array([16., 20., 10., 17., 35., 37., 11., 24., 14., 16.]),
array([ 1. , 10.8, 20.6, 30.4, 40.2, 50. , 59.8, 69.6, 79.4, 89.2, 99. ]),
```


sns.countplot(df['Gender'])

Output:

Bi-Variate Analysis

Input:

sns.barplot(df['Gender'], df['Age'])

Output:

Input:

sns.heatmap(df.corr(), annot = True)

Output:

Multi-variate Analysis

Input:

sns.pairplot(df)

output:

Descriptive Statistics

Input:

df.info()

Output:

RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):

π	Column	Non-Null Count	Dtype
0	CustomerID	200 non-null	int64
1	Gender	200 non-null	int64
2	Age	200 non-null	int64
3	Annual Income (k\$)	200 non-null	int64
4	Spending Score (1-100)	200 non-null	int64

dtypes: int64(5)
memory usage: 7.9 KB

Input:

df.describe()

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000	200.000000	200.000000
mean	100.500000	0.440000	38.850000	60.560000	50.200000
std	57.879185	0.497633	13.969007	26.264721	25.823522
min	1.000000	0.000000	18.000000	15.000000	1.000000
25%	50.750000	0.000000	28.750000	41.500000	34.750000
50%	100.500000	0.000000	36.000000	61.500000	50.000000
75%	150.250000	1.000000	49.000000	78.000000	73.000000
max	200.000000	1.000000	70.000000	137.000000	99.000000

df.skew()

Output:

 CustomerID
 0.000000

 Gender
 0.243578

 Age
 0.485569

 Annual Income (k\$)
 0.321843

 Spending Score (1-100)
 -0.047220

dtype: float64

Input:

df.kurt()

Output:

 CustomerID
 -1.200000

 Gender
 -1.960375

 Age
 -0.671573

 Annual Income (k\$)
 -0.098487

 Spending Score (1-100)
 -0.826629

dtype: float64

df.corr()

Output:

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
CustomerID	1.000000	0.057400	-0.026763	0.977548	0.013835
Gender	0.057400	1.000000	0.060867	0.056410	-0.058109
Age	-0.026763	0.060867	1.000000	-0.012398	-0.327227
Annual Income (k\$)	0.977548	0.056410	-0.012398	1.000000	0.009903
Spending Score (1-100)	0.013835	-0.058109	-0.327227	0.009903	1.000000

Input:

df.var()

Output:

CustomerID	3350.000000
Gender	0.247638
Age	195.133166
Annual Income (k\$)	689.835578
Spending Score (1-100)	666.854271

dtype: float64

Input:
df.std()

Output:

o a cp a cc	
CustomerID	57.879185
Gender	0.497633
Age	13.969007
Annual Income (k\$)	26.264721
Spending Score (1-100)	25.823522

dtype: float64

Checking for missing values

Input:

df.isna().sum()

Output:

CustomerID 0
Gender 0
Age 0
Annual Income (k\$) 0
Spending Score (1-100) 0

dtype: int64

Input:

df.isna().sum().sum()

Output:

0

Input:

df.duplicated().sum()

Output:

0

Finding & Handling Ouliers

Input:

quantile = df.quantile(q = [0.25, 0.75])quantile

Output:

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0.25	50.75	0.0	28.75	41.5	34.75
0.75	150.25	1.0	49.00	78.0	73.00

Input:

IQR = quantile.iloc[1] - quantile.iloc[0]
IQR

Output:

CustomerID	99.50
Gender	1.00
Age	20.25
Annual Income (k\$)	36.50
Spending Score (1-100)	38.25

dtype: float64

Input:

```
upper = quantile.iloc[1] + (1.5 *IQR)
upper
```

Output:

CustomerID	299.500
Gender	2.500
Age	79.375
Annual Income (k\$)	132.750
Spending Score (1-100)	130.375
1	

dtype: float64

Input:

lower = quantile.iloc[0] - (1.5* IQR)
lower

Output:

CustomerID	-98.500
Gender	-1.500
Age	-1.625
Annual Income (k\$)	-13.250
Spending Score (1-100)	-22.625
dtype: float64	

Input:

df.mean()

Output:

CustomerID	100.50
Gender	0.44
Age	38.85
Annual Income (k\$)	60.56
Spending Score (1-100)	50.20
d+;mo. floa+61	

dtype: float64

Input:

df['Annual Income (k\$)'].max()

Output:

137

Input:

sns.boxplot(df['CustomerID'])

Input:
sns.boxplot(df['Gender'])

Output:

Input:
sns.boxplot(df['Age'])

sns.boxplot(df['Annual Income (k\$)'])

Output:

Input:

df['Annual Income (k\$)'] = np.where(df['Annual Income (k\$)'] > 132.750, 60.55, df['Annual Income (k\$)']) sns.boxplot(df['Annual Income (k\$)'])

Output:

Input:

df['Annual Income (k\$)'].max()

Output: 126.0

Input:

sns.boxplot(df['Spending Score (1-100)'])

Scaling the data

Input:

```
from sklearn.preprocessing import StandardScaler
ss = StandardScaler().fit_transform(df)
```

```
array([[-1.7234121 , 1.12815215, -1.42456879, -1.78843062, -0.43480148],
       [-1.70609137, 1.12815215, -1.28103541, -1.78843062, 1.19570407],
       [-1.68877065, -0.88640526, -1.3528021, -1.74850629, -1.71591298],
       [-1.67144992, -0.88640526, -1.13750203, -1.74850629, 1.04041783],
       [-1.6541292, -0.88640526, -0.56336851, -1.70858195, -0.39597992],
       [-1.63680847, -0.88640526, -1.20926872, -1.70858195, 1.00159627],
        [-1.61948775, \ -0.88640526, \ -0.27630176, \ -1.66865761, \ -1.71591298] \, , \\
       [-1.60216702, -0.88640526, -1.13750203, -1.66865761, 1.70038436],
       [-1.5848463 , 1.12815215, 1.80493225, -1.62873328, -1.83237767],
       [-1.56752558, -0.88640526, -0.6351352, -1.62873328, 0.84631002],
       [-1.55020485, 1.12815215, 2.02023231, -1.62873328, -1.4053405],
       [-1.53288413, -0.88640526, -0.27630176, -1.62873328, 1.89449216],
       \hbox{\tt [-1.5155634\ ,\ -0.88640526,\ 1.37433211,\ -1.58880894,\ -1.36651894],}
       [-1.49824268, -0.88640526, -1.06573534, -1.58880894, 1.04041783],
       [-1.48092195, 1.12815215, -0.13276838, -1.58880894, -1.44416206],
       [-1.46360123, 1.12815215, -1.20926872, -1.58880894, 1.11806095],
       [-1.4462805, -0.88640526, -0.27630176, -1.5488846, -0.59008772],
       [-1.42895978, 1.12815215, -1.3528021, -1.5488846, 0.61338066],
       [-1.41163905, 1.12815215, 0.94373197, -1.46903593, -0.82301709],
       [-1.39431833, -0.88640526, -0.27630176, -1.46903593, 1.8556706],
       [-1.3769976 , 1.12815215, -0.27630176, -1.42911159, -0.59008772],
       [-1.35967688, 1.12815215, -0.99396865, -1.42911159, 0.88513158],
       [-1.34235616, -0.88640526, 0.51313183, -1.38918726, -1.75473454],
       [-1.32503543, 1.12815215, -0.56336851, -1.38918726, 0.88513158],
       \hbox{\tt [-1.30771471, -0.88640526, 1.08726535, -1.26941425, -1.4053405],}
        [-1.29039398, \quad 1.12815215, \quad -0.70690189, \quad -1.26941425, \quad 1.23452563], 
       [-1.27307326, -0.88640526, 0.44136514, -1.26941425, -0.7065524],
       [-1.25575253, 1.12815215, -0.27630176, -1.26941425, 0.41927286],
       [-1.23843181, -0.88640526, 0.08253169, -1.22948991, -0.74537397],
       [-1.22111108, -0.88640526, -1.13750203, -1.22948991, 1.42863343],
[-1.20379036, 1.12815215, 1.51786549, -1.18956557, -1.7935561],
       [-1.18646963, -0.88640526, -1.28103541, -1.18956557, 0.88513158],
       [-1.16914891, 1.12815215, 1.01549866, -1.06979256, -1.7935561],
       [-1.15182818, 1.12815215, -1.49633548, -1.06979256, 1.62274124],
       [-1.13450746, -0.88640526, 0.7284319, -1.06979256, -1.4053405],
       \hbox{\tt [-1.11718674, -0.88640526, -1.28103541, -1.06979256, 1.19570407],}
       [-1.09986601, -0.88640526, 0.22606507, -1.02986823, -1.28887582],
       [-1.08254529, -0.88640526, -0.6351352, -1.02986823, 0.88513158],
       [-1.06522456, -0.88640526, -0.20453507, -0.91009522, -0.93948177],
       [-1.04790384, -0.88640526, -1.3528021, -0.91009522, 0.96277471],
       [-1.03058311, -0.88640526, 1.87669894, -0.87017088, -0.59008772],
        [-1.01326239, \quad 1.12815215, \quad -1.06573534, \quad -0.87017088, \quad 1.62274124], 
       [-0.99594166, 1.12815215, 0.65666521, -0.83024654, -0.55126616],
       [-0.97862094, -0.88640526, -0.56336851, -0.83024654, 0.41927286],
       [-0.96130021, -0.88640526, 0.7284319, -0.83024654, -0.86183865],
       [-0.94397949, -0.88640526, -1.06573534, -0.83024654, 0.5745591],
       [-0.92665877, -0.88640526, 0.80019859, -0.79032221, 0.18634349],
```

```
[-0.90933804, -0.88640526, -0.85043527, -0.79032221, -0.12422899],
[-0.89201732, -0.88640526, -0.70690189, -0.79032221, -0.3183368],
[-0.87469659, -0.88640526, -0.56336851, -0.79032221, -0.3183368],
[-0.85737587, -0.88640526, 0.7284319, -0.71047353, 0.06987881],
[-0.84005514, 1.12815215, -0.41983513, -0.71047353, 0.38045129],
[-0.82273442, -0.88640526, -0.56336851, -0.6705492, 0.14752193],
[-0.80541369, 1.12815215, 1.4460988, -0.6705492, 0.38045129],
[-0.78809297, -0.88640526, 0.80019859, -0.6705492, -0.20187212],
[-0.77077224, 1.12815215, 0.58489852, -0.6705492, -0.35715836],
[-0.75345152, -0.88640526, 0.87196528, -0.63062486, -0.00776431],
[-0.73613079, 1.12815215, 2.16376569, -0.63062486, -0.16305055],
\hbox{$[-0.71881007, -0.88640526, -0.85043527, -0.55077619, 0.03105725],}
[-0.70148935, 1.12815215, 1.01549866, -0.55077619, -0.16305055],
[-0.68416862, 1.12815215, 2.23553238, -0.55077619, 0.22516505],
[-0.6668479, 1.12815215, -1.42456879, -0.55077619, 0.18634349],
[-0.64952717, -0.88640526, 2.02023231, -0.51085185, 0.06987881],
[-0.63220645, -0.88640526, 1.08726535, -0.51085185, 0.34162973],
[-0.61488572, 1.12815215, 1.73316556, -0.47092751, 0.03105725],
[-0.597565 , 1.12815215 , -1.49633548 , -0.47092751 , 0.34162973],
[-0.58024427, -0.88640526, 0.29783176, -0.47092751, -0.00776431],
[-0.56292355, -0.88640526, 2.091999, -0.47092751, -0.08540743],
[-0.54560282, 1.12815215, -1.42456879, -0.47092751, 0.34162973],
[-0.5282821 , -0.88640526 , -0.49160182 , -0.47092751 , -0.12422899],
[-0.51096138, 1.12815215, 2.23553238, -0.43100318, 0.18634349],
[-0.49364065, -0.88640526, 0.58489852, -0.43100318, -0.3183368],
[-0.47631993, -0.88640526, 1.51786549, -0.39107884, -0.04658587],
[-0.4589992, -0.88640526, 1.51786549, -0.39107884, 0.22516505],
[-0.44167848, 1.12815215, 1.4460988, -0.23138149, -0.12422899],
[-0.42435775, 1.12815215, -0.92220196, -0.23138149, 0.14752193],
 [-0.40703703, \ -0.88640526, \ \ 0.44136514, \ -0.23138149, \ \ 0.10870037], 
[-0.3897163, 1.12815215, 0.08253169, -0.23138149, -0.08540743],
[-0.37239558, -0.88640526, -1.13750203, -0.23138149, 0.06987881],
[-0.35507485, -0.88640526, 0.7284319, -0.23138149, -0.3183368],
[-0.33775413, 1.12815215, 1.30256542, -0.23138149, 0.03105725],
[-0.3204334 , 1.12815215, -0.06100169, -0.23138149, 0.18634349],
 [-0.30311268, \quad 1.12815215, \quad 2.02023231, \quad -0.23138149, \quad -0.35715836], 
[-0.28579196, -0.88640526, 0.51313183, -0.23138149, -0.24069368],
[-0.26847123, -0.88640526, -1.28103541, -0.23138149, 0.26398661],
[-0.25115051, 1.12815215, 0.65666521, -0.23138149, -0.16305055],
[-0.23382978, -0.88640526, 1.15903204, -0.11160848, 0.30280817],
[-0.21650906, -0.88640526, -1.20926872, -0.11160848, 0.18634349],
[-0.19918833, -0.88640526, -0.34806844, -0.07168415, 0.38045129],
[-0.18186761, -0.88640526, 0.80019859, -0.07168415, -0.16305055],
[-0.16454688, -0.88640526, 2.091999, -0.03175981, 0.18634349],
[-0.14722616, 1.12815215, -1.49633548, -0.03175981, -0.35715836],
[-0.12990543, 1.12815215, 0.65666521, 0.00816453, -0.04658587],
[-0.11258471, -0.88640526, 0.08253169, 0.00816453, -0.39597992],
[-0.09526399, -0.88640526, -0.49160182, 0.00816453, -0.3183368],
[-0.07794326, 1.12815215, -1.06573534, 0.00816453, 0.06987881],
[-0.06062254, -0.88640526, 0.58489852, 0.00816453, -0.12422899],
[-0.04330181, -0.88640526, -0.85043527, 0.00816453, -0.00776431],
[-0.02598109, 1.12815215, 0.65666521, 0.04808886, -0.3183368],
[-0.00866036, 1.12815215, -1.3528021, 0.04808886, -0.04658587],
[0.00866036, -0.88640526, -1.13750203, 0.0880132, -0.35715836],
[0.02598109, -0.88640526, 0.7284319, 0.0880132, -0.08540743],
 \hbox{\tt [0.04330181, 1.12815215, 2.02023231, 0.0880132, 0.34162973], } 
[ 0.06062254, 1.12815215, -0.92220196, 0.0880132 , 0.18634349],
```

```
[ 0.07794326, 1.12815215, 0.7284319 , 0.0880132 , 0.22516505],
[0.09526399, -0.88640526, -1.28103541, 0.0880132, -0.3183368],
[0.11258471, -0.88640526, 1.94846562, 0.12793754, -0.00776431],
[0.12990543, 1.12815215, 1.08726535, 0.12793754, -0.16305055],
[0.14722616, 1.12815215, 2.091999, 0.12793754, -0.27951524],
[ 0.16454688, 1.12815215, 1.94846562, 0.12793754, -0.08540743],
             1.12815215, 1.87669894,
[ 0.18186761,
                                       0.12793754, 0.06987881],
[0.19918833, -0.88640526, -1.42456879, 0.12793754, 0.14752193],
[0.21650906, -0.88640526, -0.06100169, 0.16786187, -0.3183368],
[0.23382978, 1.12815215, -1.42456879, 0.16786187, -0.16305055],
[0.25115051, -0.88640526, -1.49633548, 0.20778621, -0.08540743],
[ 0.26847123, -0.88640526, -1.42456879,
                                       0.20778621, -0.00776431],
[0.28579196, -0.88640526, 1.73316556, 0.20778621, -0.27951524],
[0.30311268, -0.88640526, 0.7284319, 0.20778621, 0.34162973],
[0.3204334, -0.88640526, 0.87196528, 0.28763488, -0.27951524],
[0.33775413, -0.88640526, 0.80019859, 0.28763488, 0.26398661],
[0.35507485, 1.12815215, -0.85043527, 0.28763488, 0.22516505],
[0.37239558, -0.88640526, -0.06100169, 0.28763488, -0.39597992],
[ 0.3897163 , -0.88640526, 0.08253169, 0.36748356, 0.30280817],
[ 0.40703703, 1.12815215, 0.010765 , 0.36748356, 1.58391968],
[0.42435775, -0.88640526, -1.13750203, 0.40740789, -0.82301709],
[0.44167848, -0.88640526, -0.56336851, 0.40740789, 1.04041783],
             1.12815215, 0.29783176, 0.44733223, -0.59008772],
[ 0.4589992 ,
             1.12815215, 0.08253169, 0.44733223, 1.73920592],
[ 0.47631993,
[0.49364065, 1.12815215, 1.4460988, 0.44733223, -1.52180518],
[0.51096138, 1.12815215, -0.06100169, 0.44733223, 0.96277471],
[ 0.5282821 , 1.12815215, 0.58489852, 0.44733223, -1.5994483 ],
 [ \ 0.54560282, \ \ 1.12815215, \ \ 0.010765 \ \ , \ \ 0.44733223, \ \ 0.96277471], 
[0.56292355, -0.88640526, -0.99396865, 0.48725657, -0.62890928],
 \hbox{\tt [0.58024427, -0.88640526, -0.56336851, 0.48725657, 0.80748846],} 
[\ 0.597565\ ,\ 1.12815215,\ -1.3528021\ ,\ 0.5271809\ ,\ -1.75473454],
[0.61488572, -0.88640526, -0.70690189, 0.5271809, 1.46745499],
[\ 0.63220645,\ -0.88640526,\ 0.36959845,\ 0.5271809,\ -1.67709142],
[ 0.64952717, 1.12815215, -0.49160182, 0.5271809 , 0.88513158],
             1.12815215, -1.42456879, 0.56710524, -1.56062674],
[ 0.6668479 ,
[ 0.68416862, -0.88640526, -0.27630176, 0.56710524, 0.84631002],
[0.70148935, -0.88640526, 1.30256542, 0.60702958, -1.75473454],
[ 0.71881007, 1.12815215, -0.49160182, 0.60702958, 1.6615628 ],
[0.73613079, -0.88640526, -0.77866858, 0.64695391, -0.39597992],
[0.75345152, -0.88640526, -0.49160182, 0.64695391, 1.42863343],
[ 0.77077224, 1.12815215, -0.99396865, 0.68687825, -1.48298362],
[0.78809297, 1.12815215, -0.77866858, 0.68687825, 1.81684904],
[ 0.80541369, 1.12815215, 0.65666521, 0.68687825, -0.55126616],
[0.82273442, -0.88640526, -0.49160182, 0.68687825, 0.92395314],
[0.84005514, -0.88640526, -0.34806844, 0.72680259, -1.09476801],
[0.85737587, 1.12815215, -0.34806844, 0.72680259, 1.54509812],
                                       0.72680259, -1.28887582],
             1.12815215, 0.29783176,
[ 0.87469659,
[ 0.89201732, 1.12815215, 0.010765 , 0.72680259, 1.46745499],
[0.90933804, -0.88640526, 0.36959845, 0.72680259, -1.17241113],
[0.92665877, -0.88640526, -0.06100169, 0.72680259, 1.00159627],
[0.94397949, -0.88640526, 0.58489852, 0.72680259, -1.32769738],
[0.96130021, -0.88640526, -0.85043527, 0.72680259, 1.50627656],
[\ 0.97862094,\ 1.12815215,\ -0.13276838,\ 0.72680259,\ -1.91002079],
[0.99594166, -0.88640526, -0.6351352, 0.72680259, 1.07923939],
[1.01326239, 1.12815215, -0.34806844, 0.72680259, -1.91002079],
[ 1.03058311, -0.88640526, -0.6351352 , 0.72680259, 0.88513158],
[ 1.04790384, -0.88640526, 1.23079873, 0.76672692, -0.59008772],
```

```
[1.06522456, -0.88640526, -0.70690189, 0.76672692, 1.27334719],
[ 1.08254529, 1.12815215, -1.42456879, 0.8465756 , -1.75473454],
[ 1.09986601, -0.88640526, -0.56336851, 0.8465756 , 1.6615628 ],
[ 1.11718674, 1.12815215, 0.80019859, 1.00627294, -0.93948177],
[ 1.13450746, -0.88640526, -0.20453507, 1.00627294, 0.96277471],
[ 1.15182818, 1.12815215, 0.22606507, 1.04619728, -1.17241113],
 \hbox{\tt [ 1.16914891, -0.88640526, -0.41983513, 1.04619728, 1.73920592], } 
[ 1.18646963, -0.88640526, -0.20453507, 1.08612162, -0.90066021],
[ 1.22111108, 1.12815215, 0.08253169, 1.08612162, -1.44416206],
[ 1.23843181, 1.12815215, -0.77866858, 1.08612162, 0.96277471],
[ 1.25575253, 1.12815215, -0.20453507, 1.08612162, -1.56062674],
[ 1.27307326,
             1.12815215, -0.20453507, 1.08612162, 1.62274124],
[1.29039398, -0.88640526, 0.94373197, 1.12604595, -1.44416206],
[1.30771471, -0.88640526, -0.6351352, 1.12604595, 1.38981187],
[1.32503543, 1.12815215, 1.37433211, 1.12604595, -1.36651894],
[ 1.34235616, 1.12815215, -0.85043527, 1.12604595, 0.72984534],
             1.12815215, 1.4460988, 1.32566764, -1.4053405],
[ 1.35967688,
[ 1.3769976 , 1.12815215, -0.27630176, 1.32566764, 1.54509812],
[ 1.39431833, -0.88640526, -0.13276838, 1.48536498, -0.7065524 ],
[1.41163905, -0.88640526, -0.49160182, 1.48536498, 1.38981187],
[ 1.42895978, 1.12815215, 0.51313183, 1.52528932, -1.36651894],
[ 1.4462805 , -0.88640526, -0.70690189, 1.52528932, 1.46745499],
 [ \ 1.46360123, \ -0.88640526, \ \ 0.15429838, \ \ 1.56521366, \ -0.43480148], 
[ 1.48092195, 1.12815215, -0.6351352 , 1.56521366, 1.81684904],
[ 1.49824268, -0.88640526, 1.08726535, 1.64506233, -1.01712489],
[ 1.5155634 , 1.12815215, -0.77866858, 1.64506233, 0.69102378],
[ 1.53288413, -0.88640526, 0.15429838, 1.724911 , -1.28887582],
[\ 1.55020485,\ -0.88640526,\ -0.20453507,\ 1.724911\ ,\ 1.35099031],
[ 1.56752558, -0.88640526, -0.34806844, 1.724911 , -1.05594645],
[ 1.5848463 , -0.88640526, -0.49160182, 1.724911 , 0.72984534],
[ 1.60216702, 1.12815215, -0.41983513, 2.12415437, -1.63826986],
[ 1.61948775, -0.88640526, -0.06100169, 2.12415437, 1.58391968],
[ 1.63680847, -0.88640526, 0.58489852, 2.40362473, -1.32769738],
[ 1.6541292 , -0.88640526, -0.27630176, 2.40362473, 1.11806095],
[ 1.67144992, -0.88640526, 0.44136514, 2.64317075, -0.86183865],
[ 1.68877065, 1.12815215, -0.49160182, 2.64317075, 0.92395314],
[1.70609137, 1.12815215, -0.49160182, 0.03012291, -1.25005425],
[ 1.7234121 , 1.12815215, -0.6351352 , 0.03012291, 1.27334719]])
```

Clustering Algorithm

Input:

```
from sklearn.cluster import KMeans
TWSS = []
k = list(range(2,9))
for i in k:
   kmeans = KMeans(n_clusters = i , init = 'k-means++')
   kmeans.fit(df)
   TWSS.append(kmeans.inertia_)
```

```
[381507.64738523855, 268062.55433747417, 191550.08627670942,
```

```
153777.55391034693,
119166.15727643928,
101239.32626154403,
85744.90139221892]
```

plt.plot(k,TWSS, 'ro--')

Output:

model = KMeans(n_clusters = 4)

Input:

model.fit(df)

Output:

KMeans(n_clusters=4)

Input:

mb = pd.Series(model.labels_)
df['Cluster'] = mb

df

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Cluster
0	1	1	19	15.00	39	2
1	2	1	21	15.00	81	2

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Cluster
2	3	0	20	16.00	6	2
3	4	0	23	16.00	77	2
4	5	0	31	17.00	40	2
•••						
195	196	0	35	120.00	79	3
196	197	0	45	126.00	28	1
197	198	1	32	126.00	74	3
198	199	1	32	60.55	18	1
199	200	1	30	60.55	83	3

 $200 \; rows \times 6 \; columns$