第一章 朴素集合论

点集拓扑学(Point-set Topology)现称一般拓扑学(General Topology),它的起源与出发点都是集合论。作为基本的点集拓扑学知识,所需的只是一些朴素集合论的预备知识。 本章介绍本书中要用到的一些集合论内容,主要涉及集合及集族的运算、等价关系、映射、可数集、选择公理等,作为一教材,讲义对各部分内容均有较系统的论述, 作为授课,我们只强调一些基本内容, 而已有过了解的知识不提或少提。

记号: Z,Z+,R,Q分别表示整数集, 正整数集,实数集和有理数集。

一. 集合的运算

幂集 $\mathcal{P}(X)$, 交 \cap 、并 \cup 、差-(补, <math>A c , A^{f}).

运算律: De Morgan 律: $A - (B \cup C) = (A-B) \cap (A-C)$.

利用集合的包含关系证明

类似可定义任意有限个集的交或并, 如记

 $A_1 \cup A_2 \cup ... \cup A_n = (A_1 \cup ... \cup A_{n-1}) \cup A_n = \bigcup_{i \le n} A_i = \bigcup_{i = 1}^n A_i \text{ A}_i$. 规定 0 个集之并是 ϕ ,不用 0 个集之交.

二. 关系

R是集合X的 个关系,即 $R \subset X \times X, (x, y) \in R$,记为xRy,称x与y是R相关的。

R称为门反的, 若 $\forall x \in X$, xRx;

R 称为对称的, 若 xRv, 则 vRx;

R 称为传递的, 若 xRv, vRz, 则 xRz.

等价关系: 门反、对称、传递的关系.

设 R 是 X 上等价关系, $\forall x \in X$, x 的 R 等价类或等价类 $[x]_R$ 或[x]为 $\{y \in X \mid xRy\}$, $[x]_R$ 的元称为 $[x]_R$ 的代表元;商集 $X/R = \{[x]_R \mid x \in X\}$.

定理 1.4.1 设 R 是非空集合 X 的等价关系, 则

- (1) $\forall x \in X, x \in [x]_{R}$;
- (2) $\forall x,y \in X$,或者[x]R =[y]R,或者[x]R \cap [y]R = ϕ

三. 映射

原像: $\forall B \subset Y, f_{-1}(B) = \{x \in X \mid f(x) \in B\}$

满射、单射、一一映射(双射)、可逆映射、常值映射、恒同映射 i_X 、限制 $f_{|A}$ 、扩张、内射 $i_{X|A}$ \to X 。

集合 X_i , $i \le n$, 笛卡儿积

 $X_1 \times X_2 \times ... \times X_n = \prod_{1 \le i \le n} X_i = \prod_{i=1}^n X_i = \{(x_1, x_2 ... x_n) | x_i \in X_i, i \le n\}$ 到第 i 个坐标集 X_i 的投射 $p_i : X \to X_i$ 定义为 $p(x) = x_i$, 其中 $x = (x_1, ..., x_n)$.

对等价关系 R, 集合 X 到商集 X/R 的自然投射 $p: X \to X/R$ 定义为 $p(x) = [x]_n$.

四. 集族

数列 $\{\mathbf{x}_n\} = \{\mathbf{x}_n\}_{n \in \mathbb{Z}_+}$,有标集族 $\{\mathbf{A}_\gamma\}_{\gamma \in \Gamma}$,指标集 Γ ,与 $\{A_\gamma|\gamma \in \tau\}$ 不同,可记有标集族 $\mathbf{A} = \{A_\gamma\}_{\gamma \in A}$;类似地,定义其并 $\bigcup_{\gamma \in \Gamma} A_\lambda$ (或 \cup \mathbf{A})、交 $\bigcap_{\gamma \in \Gamma} A_\lambda$ (或 \cap \mathbf{A}),不定义 0 个集的交. 与有限集族有相同的运 算律,如 De Morgan 律

$$A - \bigcup_{\gamma \in \tau} A_{\gamma} = \bigcap_{\gamma \in \tau} (A - A_{\gamma}), A - \bigcap_{\gamma \in \tau} A_{\gamma} = \bigcup_{\gamma \in \tau} A_{\gamma} \;,$$

映射对应的集族性质: $f(\bigcup_{\gamma \in \Gamma} A_{\gamma}) = \bigcup_{\gamma \in \Gamma} f(A_{\gamma}), f(\bigcap_{\gamma \in \Gamma} A_{\gamma}) = \bigcap_{\gamma \in \Gamma} f(A_{\gamma})$

$$f^{-1}(\bigcup\nolimits_{\gamma\in\tau}B_{\gamma})=\bigcup\nolimits_{\gamma\in\tau}f^{-1}(B_{\gamma}), f^{-1}(\bigcap\nolimits_{\gamma\in\tau}B_{\gamma})=\bigcap\nolimits_{\gamma\in\tau}f^{-1}(B_{\gamma})$$

五. 无限集

通过 映射来确定两集合的个数的多少.

有限集(ϕ 或与某 $\{1,2,\ldots,n\}$ 有一 映射),无限集,可数集(ϕ 或存在X到 Z 的单射),不可数集.

易验证: 有限集是可数集, 可数集的子集是可数集, 可数集的映像是可数集.

定理: X 是可数集 $\Leftrightarrow X$ 是 \mathbb{Z} +的映像.

由此, ♥ 是可数集, 两可数集的笛卡儿积集是可数集, 可数个可数集之并集是可数集.

R是不可数集.

直观上,集合 A中元素的个数称为该集合的基数,记为card A, 或|A|. $|Z_+|=a$,|R|=c. 若存在从集合 A 到集合 B 的单射,则定义|A| |B|.

连续统假设: 不存在基数 α , 使得 $\alpha < \alpha < c$

选择公理: 若 \mathcal{A} 是由非空集构成的集族,则 $\forall A \in \mathcal{A}$,可取定 $\varepsilon(A) \in A$...

由选择公理可证则,若 α , β 是基数,则下述三式中有且仅有一成立: $\alpha < \beta$, $\alpha = \beta$, $\alpha > \beta$