

Luca Cabibbo Architettura dei Sistemi Software

Cloud Computing

dispensa asw640 ottobre 2024

There was a time when every household, town, farm or village had its own water well.

Today, shared public utilities give us access to clean water by simply turning on the tap; cloud computing works in a similar fashion.

Vivek Kundra
Luca Cabibbo ASW

Cloud Computing

1

- Riferimenti

- Luca Cabibbo. Architettura del Software: Strutture e Qualità.
 Edizioni Efesto, 2021.
 - Capitolo 37, Cloud Computing
- National Institute of Standards and Technology. The NIST Definition of Cloud Computing. NIST SP 800-145, 2011.
- Bass, L., Weber, I., and Zhu, L. DevOps: A Software Architect's Perspective. Addison-Wesley, 2015.
- □ Armbrust, M. et al. Above the Clouds: A Berkeley View of Cloud Computing. T.R. EECS-2009-28, EECS Department, University of California, Berkeley, 2009.
- Siti web di diversi fornitori di servizi cloud

- Obiettivi e argomenti

Obiettivi

- introdurre il cloud computing
- discutere alcuni aspetti tecnici, architetturali ed economici del cloud computing
- discutere il cloud come piattaforma per il rilascio del software

Argomenti

- introduzione al cloud computing
- esempi di servizi nel cloud
- cloud computing
- architettura del cloud
- economia del cloud computing
- sistemi software per il cloud
- discussione

3 Cloud Computing Luca Cabibbo ASW

* Introduzione al cloud computing

 Il cloud computing ha l'obiettivo di fornire il computing (risorse computazionali) come un servizio di utilità

Introduzione al cloud computing

 Il cloud computing ha l'obiettivo di fornire il computing (risorse computazionali) come un servizio di utilità

5 Cloud Computing Luca Cabibbo ASW

Cloud computing

Avete mai usato il cloud computing prima di ora?

Software per il cloud

- Oggi è sempre più comune rilasciare i propri sistemi software nel cloud – o in data center gestiti come cloud privati
 - è pertanto importante comprendere
 - che cos'è il cloud computing
 - il cloud come piattaforma per il rilascio del software
 - l'architettura dei sistemi software nel cloud
 - in contrapposizione, il rilascio di un sistema software in un proprio data center è detto *on premises*

7 Cloud Computing Luca Cabibbo ASW

Una definizione di cloud computing

- □ Il *cloud computing* è [NIST]
 - un modello di elaborazione
 - che abilita un accesso in rete, su richiesta, ubiquo e conveniente
 - a un pool di risorse di calcolo (CPU, storage, reti, sistemi operativi, servizi e/o applicazioni) condivise e configurabili
 - che possono essere acquisite e rilasciate rapidamente e in modo dinamico
 - con uno sforzo di gestione minimo, o comunque con un'interazione minima con il fornitore del servizio

- □ Tre *modelli di servizio* principali
 - Software as a Service SaaS
 - applicazioni software
 - Platform as a Service PaaS
 - piattaforme per lo sviluppo e l'esecuzione di applicazioni
 - Infrastructure as a Service laaS
 - servizi infrastrutturali come server (CPU e sistemi operativi), storage e connettività

9 Cloud Computing Luca Cabibbo ASW

Modelli di servizio

- Alcuni esempi
 - Software as a Service SaaS
 - Google Workspace (Gmail, Google Docs, Google Drive, ...)
 - Microsoft Office 365
 - Netflix
 - le applicazioni di Salesforce.com (ad es., CRM)
 - Platform as a Service PaaS
 - Google Cloud App Engine
 - Amazon Elastic Beanstalk
 - Microsoft Azure App Service
 - Infrastructure as a Service laaS
 - molti prodotti/servizi di Amazon Web Services (AWS) tra cui Amazon Elastic Compute Cloud (EC2) e Amazon Simple Storage Service (S3)

Cloud computing e servizi

Cloud Computing

11 Cloud Computing Luca Cabibbo ASW

Infrastrutture di cloud computing

- Le risorse di calcolo offerte nel cloud computing risiedono fisicamente nelle infrastrutture di cloud computing, gestite da fornitori di servizi cloud
 - un'infrastruttura di cloud computing (o semplicemente un cloud) comprende l'insieme degli elementi hardware e software necessari per abilitare il cloud computing
 - un insieme di risorse hardware fisiche con server, storage, reti
 - un insieme di strumenti software software di virtualizzazione, di gestione e di automazione degli ambienti – per offrire le risorse hardware fisiche come risorse computazionali virtuali
 - ed eventuale software di piattaforma e applicativo
 - un'interfaccia di programmazione (API) tramite cui gli utenti possono accedere alle risorse di calcolo e ai servizi di cloud computing

Cloud computing e servizi

- □ Nel cloud, per servizio si intende
 - è una ben precisa entità computazionale
 - è gestito da un'organizzazione il fornitore del servizio
 - può essere acceduto mediante Internet da un client che è l'utente (o consumatore) del servizio
 - è incapsulato ha un'interfaccia definita contrattualmente, e la sua implementazione è trasparente agli utenti

13 Cloud Computing Luca Cabibbo ASW

* Esempi di servizi nel cloud

 Presentiamo ora alcuni esempi rappresentativi di servizi di cloud computing

il panorama dei servizi sul cloud è molto molto più ampio

- Google Workspace

- Google Workspace (SaaS)
 - "fai crescere e gestisci la tua attività in modo più efficiente"
 - "strumenti che già conosci pensati per lavorare ovunque, su qualsiasi dispositivo"

 con versioni per le aziende, le scuole, le pubbliche amministrazioni, ...

15 Cloud Computing Luca Cabibbo ASW

- Google App Engine

□ Google App Engine (GAE) (PaaS)

- "per creare applicazioni web dinamiche ... App Engine supporta i più comuni linguaggi di sviluppo e offre una gamma di strumenti per sviluppatori" – per es., Java, PHP, Node.js, Python, C#, Ruby, Go, ...
- "grazie a deployment che non richiedono configurazione né gestione dei server, gli sviluppatori hanno più tempo per concentrarsi su altro" – aggiungi il codice, e le applicazioni saranno eseguite nel cloud di Google
- "App Engine offre un ambiente completamente gestito ... che gestisce i problemi dell'infrastruttura" – per es.,
 - scalabilità e bilanciamento del carico automatici
 - autenticazione e sicurezza (sandboxing)
 - amministrazione semplificata
 - inizialmente gratuito poi paghi solo quello che usi

- Amazon AWS

□ Amazon Web Services (AWS) (laaS e PaaS)

- "AWS è il cloud più completo e utilizzato nel mondo, offre più di 200 servizi – servizi di elaborazione, storage di database, distribuzione di contenuti e altre funzionalità – ideali per aiutarti a creare applicazioni sofisticate in modo flessibile, scalabile e affidabile"
- "per realizzare qualunque applicazione indipendentemente dal dominio di business"
- "per diminuire i costi, diventare più agili e innovarsi in modo più flessibile - senza compromettere scalabilità o sicurezza"
- AWS offre sia servizi laaS che PaaS

17 Luca Cabibbo ASW Cloud Computing

Amazon AWS

Alcune categorie rappresentative di servizi AWS

Analisi

ďħ

Applicazioni aziendali

Integrazione di applicazioni

Ø'Q

Game Tech

Calcolo

Realtà aumentata e realtà virtuale

Coinvolgimento dei clienti

Internet of Things

Database

Machine learning

Reti e distribuzione di

contenuti

Storage

9

Strumenti per sviluppatori

卣 Gestione e governance

Tecnologie quantum

Scopri tutti i prodotti

Elaborazione degli utenti

Servizi multimediali

Robotica

Satellite

Dispositivi mobili

Sicurezza, identità e conformità

Alcuni servizi di Amazon AWS

- servizi infrastrutturali (laaS)
 - risorse di calcolo Amazon EC2 (macchine virtuali), Elastic Container Service e Elastic Kubernetes Service (container)
 - storage Amazon S3 e EBS
 - basi di dati Amazon RDS e DynamoDB
 - reti Amazon Virtual Private Cloud e Elastic Load Balancing
- servizi di piattaforma (PaaS) e servizi applicativi
 - applicazioni web scalabili AWS Elastic Beanstalk e Lambda (serverless)
 - messaging e publish-subscribe Amazon SQS e SNS
 - per sviluppatori (Dev) e operatori (Ops) AWS CodeCommit, CodeDeploy e CodePipeline
- ma anche servizi di analisi, blockchain, Internet of Things,
 Machine Learning, Sicurezza e identità, ...

Cloud Computing

Luca Cabibbo ASW

19

Amazon EC2

- □ Amazon Elastic Compute Cloud (EC2) (laaS)
 - capacità di calcolo (macchine virtuali) nel cloud Amazon Machine Instance (AMI)
 - diversi tipi di AMI predefinite da 1 a 192 vCPU a 64 bit (ad es., Intel Xeon), da 0.5GB a 1024GB RAM, storage EBS (HD o SSD, fino a 8x7.5TB SSD) e anche istanze Bare Metal
 - le AMI possono essere preconfigurate con una varietà di sistemi operativi (ad es., Linux o Windows) e di software (ad es., IBM DB2 oppure Oracle Database)
 - nelle AMI acquisite è possibile installare il software che si vuole
 comprese le proprie applicazioni
 - è possibile acquisire più AMI in diverse regioni e zone di disponibilità (discusse dopo) – e collegarle in rete
 - si integra con la maggior parte dei servizi di AWS

- Amazon Simple Storage Service (S3) (laaS)
 - storage di file nel cloud
 - con una semplice interfaccia web (REST e SOAP) per memorizzare e ritrovare i propri dati
 - i dati sono "oggetti" persistenti da 1 byte a 5 GB
 - oggetti "opachi" con una chiave univoca
 - operazioni CRUD su un numero qualunque di oggetti
 - memorizzati in Europa o negli Stati Uniti
 - supporto per diverse qualità
 - sicurezza autenticazione, oggetti privati e pubblici, ACL
 - diversi livelli di affidabilità
 - può essere utilizzato come meccanismo di storage per EC2

21 Cloud Computing Luca Cabibbo ASW

Amazon EBS

- □ Amazon Elastic Block Storage (EBS) (laaS)
 - storage a blocchi
 - un'istanza EBS è un volume composto da blocchi che può essere montato su un'istanza EC2
 - un volume può essere usato come un qualunque hard disk con capacità da 0.5GB a diversi TB
 - supporto per diverse qualità
 - diversi livelli per prestazioni e affidabilità
 - selezione della zona in cui è allocata l'istanza

Amazon RDS e DynamoDB

- Amazon Relational Database Service (RDS) (laaS)
 - database relazionali nel cloud
 - consente l'accesso, con tutte le funzionalità, a database relazionali come MySQL, Oracle, PostgreSQL o Amazon Aurora
- Amazon DynamoDB (laaS)
 - un datastore NoSQL ovvero, database non relazionale
 - un servizio con prestazioni alte e prevedibili, scalabile e affidabile

23 Cloud Computing Luca Cabibbo ASW

Discussione sui servizi laaS di AWS

- I servizi infrastrutturali di AWS possono essere utilizzati in modo integrato per realizzare ambienti di esecuzione, anche complessi, in cui rilasciare le proprie applicazioni
 - il provisioning di queste risorse di calcolo può essere effettuato
 - in modo interattivo, mediante un'interfaccia web
 - in modo automatizzato, mediante l'uso di script e di ulteriori servizi AWS di supporto al provisioning di ambienti e al rilascio del software – o anche mediante l'uso di strumenti di terze parti
 - sono possibili ambienti di esecuzioni multipli
 - si paga per l'uso, senza spese iniziali
 - è "promessa" una disponibilità (uptime mensile) del 99.99%
 - ci sono degli sconti se la disponibilità in un periodo scende sotto il 99.99% (10% di sconto) o sotto il 99.0% (30%)

Amazon Elastic Beanstalk

Amazon Elastic Beanstalk (PaaS)

- piattaforma scalabile per applicazioni web
- "AWS Elastic Beanstalk è un servizio di semplice utilizzo per distribuire e ridimensionare applicazioni e servizi Web sviluppati con Java, .NET, PHP, Node.js, Python, Ruby, Go e Docker su server comuni come Apache, Nginx, Passenger e IIS"
- "caricando semplicemente il proprio codice, Elastic Beanstalk gestisce automaticamente l'implementazione, da provisioning di capacità e auto scaling al monitoraggio della salute dell'applicazione"
- "non vi è alcun costo aggiuntivo per Elastic Beanstalk: si paga solo per le risorse AWS necessarie per archiviare ed eseguire le proprie applicazioni"

25 Cloud Computing Luca Cabibbo ASW

Amazon ECS e EKS

Amazon Elastic Container Service (ECS) (laaS/PaaS)

- un servizio altamente scalabile per container
- "Amazon Elastic Container Service (Amazon ECS) è un servizio di orchestrazione dei container completamente gestito"
- consente di eseguire, in modo semplice, applicazioni a container in un cluster – gestito mediante un insieme di nodi Amazon EC2
- un servizio (in parte di piattaforma, in parte infrastrutturale) che evita di dover gestire (installare e dimensionare) un'infrastruttura per la gestione di un cluster per container

Amazon Elastic Kubernetes Service (EKS) (laaS/PaaS)

 un altro servizio gestito di orchestrazione per container, basato su Kubernetes

AWS Lambda (PaaS)

- un servizio di elaborazione serverless ("senza server") che in realtà vuol dire "completamente gestito"
- "AWS Lambda è un servizio di elaborazione serverless che ti permette di eseguire il codice senza effettuare il provisioning o gestire i server"
- consente di eseguire del codice applicativo (funzioni Lambda) in risposta a determinati eventi – ad es., richieste HTTP tramite Amazon API Gateway, modifiche a oggetti S3, aggiornamento di tabelle DynamoDB o ricezione di messaggi SNS
 - AWS Lambda si occupa di gestire automaticamente le risorse di calcolo necessarie per eseguire queste funzioni
- "con Lambda, puoi eseguire codice per qualsiasi tipo di applicazione o servizio di back-end" – "è possibile scrivere le funzioni Lambda nel linguaggio che preferisci" – "è sufficiente caricare il codice"

27 Cloud Computing Luca Cabibbo ASW

Discussione sui servizi PaaS di AWS

- □ I servizi di piattaforma di AWS consentono lo sviluppo e il rilascio di applicazioni basate su un'architettura software standardizzata in ambienti di esecuzione standardizzati (predefiniti) scalabili
 - quando viene rilasciata un'applicazione in un servizio PaaS, viene creato (automaticamente e in modo trasparente, e poi fatto evolvere) un ambiente di esecuzione per l'applicazione – realizzato come un insieme di risorse laaS
 - i servizi laaS e PaaS forniscono astrazioni a livelli differenti
 - i servizi PaaS sono implementati automaticamente mediante l'utilizzo e la composizione di servizi laaS
 - implicazioni nell'utilizzo dei servizi PaaS (rispetto a laaS) nella realizzazione di un'applicazione software
 - maggior focalizzazione sulle funzionalità dell'applicazione
 - cessione del controllo sull'architettura e sull'ambiente di esecuzione

- AWS fornisce anche un insieme di servizi per creare e rilasciare il software in modo rapido e affidabile nel cloud AWS tramite pratiche DevOps – ad esempio
 - provisioning e gestione dell'infrastruttura
 - gestione del codice delle applicazioni
 - automatizzazione del rilascio del software
 - monitoraggio

29 Cloud Computing Luca Cabibbo ASW

Regioni e zone di disponibilità

- Il cloud AWS opera in più di 102 zone di disponibilità distribuite su oltre 32 regioni geografiche in tutto il mondo
 - una regione è un luogo geografico in cui sono raggruppati i data center di AWS
 - ad es., EU (Ireland) (eu-west-1) e US East (Ohio) (us-east-2)
 - ogni regione è partizionata in zone di disponibilità
 - una zona di disponibilità (AZ, availability zone) è un insieme di uno o più data center provvisti di alimentazione, rete e connettività indipendenti (ridondanti) in una regione AWS
 - le regioni e le zone di disponibilità supportano elevata disponibilità, tolleranza ai guasti e scalabilità

Regioni e zone di disponibilità

31 Cloud Computing Luca Cabibbo ASW

- Microsoft Azure

Microsoft Azure

 una piattaforma per consentire l'uso di risorse nel cloud di Microsoft

32 Cloud Computing Luca Cabibbo ASW

Microsoft Azure

Microsoft Azure

- i servizi cloud di Microsoft
- "noi ti forniamo gli strumenti tu puoi cambiare il mondo"
- "in locale, ibride, per più cloud o nei dispositivi perimetrali crea soluzioni cloud sicure e pronte per il futuro in Azure"
- un'altra piattaforma cloud generica e flessibile
 - fornisce la versione cloud di molte soluzioni proprietarie Microsoft
 - fornisce oggi anche numerose soluzioni "aperte" e non necessariamente legate al mondo Microsoft – ad es., macchine virtuali Linux e orchestrazione di container Docker

33 Cloud Computing Luca Cabibbo ASW

Microsoft Azure

Alcune tecnologie di Microsoft Azure

- Virtual Machines macchine virtuali Windows oppure Linux per l'esecuzione di applicazioni e la memorizzazione di dati nei computer dei data center della Microsoft
- Azure App Service per lo sviluppo di applicazioni web avanzate, eseguite nel cloud di Microsoft, in una piattaforma completamente gestita
- Azure SQL Database un gestore di database relazionali, basato su SQL Server
- Azure Kubernetes Service (AKS) servizi infrastrutturali per l'orchestrazione di container
- Azure Functions elaborazione di eventi con codice serverless
- Visual Studio ambiente flessibile per lo sviluppo di applicazioni per il cloud

Microsoft Azure

Alcuni data center del cloud di Microsoft (in espansione)

- a Dublino, un data center tradizionale – 38500 m² (2013)
- a Chicago, un data center basato su container (2010) – 112 container, 1800-2500 server per container, 65000 m² (pari a 9 campi di calcio)

35 Cloud Computing Luca Cabibbo ASW

- Salesforce.com

Salesforce.com

- "con il cloud computing non è più necessario installare alcun software o hardware – otterrai un'operatività immediata e i primi risultati positivi in tempi molto più brevi"
- "leader nel mercato delle applicazioni SaaS tutto ciò che ti serve per gestire la tua attività sul cloud"
 - applicazioni (personalizzabili), ad es., per la vendita,
 l'assistenza clienti e la collaborazione
 - accessibili su internet sia da PC che da smartphone o tablet
- anche piattaforma per lo sviluppo di applicazioni personalizzate (PaaS)

- Cloud Foundry

- Cloud Foundry (www.cloudfoundry.org)
 - è una piattaforma (PaaS)
 open source di cloud computing

- rende più facile e più veloce costruire, testare, rilasciare e scalare applicazioni – offrendo la scelta tra diversi cloud, framework di sviluppo e servizi applicativi
- è un progetto open source, che è disponibile in una varietà di distribuzioni cloud private e istanze di cloud pubblici
- in pratica, ha un'architettura basata su container
 - in cui è possibile eseguire applicazioni in qualunque linguaggio di programmazione
 - che possono essere rilasciati in qualunque cloud, pubblico o privato – è anche possibile spostare i container tra cloud, senza modificare le applicazioni

37 Cloud Computing Luca Cabibbo ASW

- Netflix

Netflix (SaaS)

- un'applicazione software per la distribuzione via Internet di film, serie televisive e altri contenuti d'intrattenimento
 - un'applicazione a microservizi rilasciata in container nel cloud di Amazon
- in pratica, l'azienda Netflix Inc.
 - è il fornitore del servizio SaaS Netflix
 - è un consumatore di servizi cloud di Amazon AWS

* Cloud computing

- □ II cloud computing è [NIST]
 - un modello di elaborazione
 - che abilita un accesso in rete, su richiesta, ubiquo e conveniente
 - a un pool di risorse di calcolo (CPU, storage, reti, sistemi operativi, servizi e/o applicazioni) condivise e configurabili
 - che possono essere acquisite e rilasciate rapidamente e in modo dinamico
 - con uno sforzo di gestione minimo, o comunque con un'interazione minima con il fornitore del servizio
- Inoltre, questo modello di elaborazione prevede cinque caratteristiche essenziali, tre modelli di servizio e quattro modelli di deployment

39 Cloud Computing Luca Cabibbo ASW

- Caratteristiche essenziali

- Cinque caratteristiche essenziali per il cloud computing
 - servizi su richiesta
 - un consumatore può acquisire risorse di calcolo in modo unilaterale e automatico
 - accesso in rete
 - le risorse di calcolo sono accessibili in Internet
 - pooling di risorse
 - le risorse di calcolo di un fornitore sono riunite per servire molti consumatori, secondo un modello multi-tenant
 - elasticità rapida
 - le risorse di calcolo possono essere ottenute (e poi rilasciate) in modo rapido ed elastico
 - misura dei servizi
 - l'uso delle risorse è controllato in modo automatico, sulla base di misure appropriate

- Modelli di servizio

- Il cloud computing prevede tre modelli di servizio
 - Software as a Service SaaS
 - il servizio è un'applicazione in esecuzione nel cloud il consumatore è un utente finale dell'applicazione – il fornitore è chi l'ha realizzata
 - Platform as a Service PaaS
 - il servizio è una piattaforma il consumatore è uno sviluppatore di applicazioni per la piattaforma – il fornitore è chi gestisce la piattaforma
 - Infrastructure as a Service laaS
 - il servizio è relativo a risorse computazionali infrastrutturali virtuali – il consumatore è un operatore (Ops) per un ambiente virtuale – il fornitore è chi gestisce l'infrastruttura

41 Cloud Computing Luca Cabibbo ASW

II modello SPI

43 Cloud Computing Luca Cabibbo ASW

- Modelli di deployment

- Il cloud computing prevede quattro modelli di deployment
 - public cloud
 - l'infrastruttura di cloud computing è resa disponibile al pubblico
 - private cloud
 - l'infrastruttura di cloud è gestita per una singola organizzazione
 - hybrid cloud
 - l'infrastruttura di cloud è la composizione di due o più cloud
 - community cloud
 - l'infrastruttura di cloud è condivisa da più organizzazioni

- Alcune definizioni alternative

- Alcune definizioni alternative del cloud computing
- Il cloud computing è [Vaquero]
 - un grande insieme di risorse (come hardware, piattaforme di sviluppo e/o servizi)
 - che sono virtualizzate
 - e sono facilmente accessibili e usabili
 - queste risorse
 - possono essere dinamicamente riconfigurate per adattarle a un carico variabile (sono scalabili) – favorendo un utilizzo ottimale delle risorse
 - sono tipicamente utilizzate sulla base di un modello di pagamento a consumo
 - sono dotate di garanzie sulla base di SLA personalizzate offerte dal loro fornitore

45 Cloud Computing Luca Cabibbo ASW

Alcune definizioni alternative

- Alcune definizioni alternative del cloud computing
- Il cloud computing [Armbrust et al.]
 - si riferisce sia alle applicazioni erogate come servizi in Internet che all'hardware e al software nei data center che forniscono questi servizi
 - il termine cloud indica l'hardware e il software presente in questi data center
 - Software as a Service (SaaS) indica le applicazioni erogate da una cloud
 - utility computing indica l'insieme di servizi erogati da una cloud e resi disponibili al pubblico con modalità di pagamento a consumo
 - il cloud computing è dato dall'unione di SaaS e utility computing

- Ulteriori considerazioni

- Cloud vuol dire "nuvola"
 - così come nel cielo ci sono diversi tipi di nuvole così ci sono diversi tipi di servizi e funzionalità offerti nel cloud
 - la realizzazione interna di questi servizi è opaca
 - i confini tra servizi diversi sono spesso sfumati
 - le nuvole si possono sovrapporre
 - le nuvole possono cambiare dinamicamente di forma

47 Cloud Computing Luca Cabibbo ASW

Attori in gioco

- Un'organizzazione o una persona può svolgere uno (o più) dei seguenti ruoli
 - cloud provider fornitore di utility computing (laaS o PaaS)
 - cloud user utente (consumatore) di utility computing (laaS o PaaS)
 - SaaS provider fornitore di un'applicazione SaaS
 - un SaaS provider potrebbe anche essere un cloud user
 - SaaS user utente (consumatore) di un'applicazione SaaS

- Come esempio, consideriamo Mario Rossi, che è un client del servizio Netflix – il quale è realizzato dalla Netflix Inc. e rilasciato nel cloud di Amazon
 - Netflix è un servizio SaaS
 - Mario Rossi è un utente (consumatore) del servizio Netflix (SaaS user)
 - Netflix Inc. è la società che ha sviluppato il servizio Netflix dunque Netflix Inc. è il fornitore del servizio Netflix (SaaS provider)
 - Amazon è un fornitore di servizi cloud, di tipo laaS e PaaS (cloud provider)
 - Netflix Inc. è un consumatore dei servizi cloud laaS di Amazon (cloud user)

49 Cloud Computing Luca Cabibbo ASW

Campi di applicazione

- Alcuni possibili campi di applicazione del cloud computing
 - applicazioni web
 - estensione di software di tipo desktop ad es., Matlab e Mathematica
 - applicazioni con necessità momentanee di grandi risorse di calcolo
 - prototipazione
 - startup
 - compiti singoli
 - svolgimento di attività di ricerca

Quando è nato il cloud computing?

- Amazon è stata la prima azienda a offrire un insieme ricco di servizi nel cloud
 - presenza in Internet molto ampia
 - esperienza nella gestione automatizzata di un data center molto grande – configurato per il carico di picco
 - questa "necessità" viene convertita in un'opportunità lanciando AWS, nel 2002 – poi il servizio decollerà nel 2007

51 Cloud Computing Luca Cabibbo ASW

* Architettura del cloud

- Un'infrastruttura di cloud computing (o semplicemente cloud) è l'insieme degli elementi hardware e software necessari per abilitare il cloud computing
 - un insieme di risorse hardware fisiche con componenti come server, switch di rete, memoria e storage
 - un insieme di strumenti software
 - un software di virtualizzazione per trasformare le risorse fisiche in risorse computazionali virtuali
 - un insieme di strumenti software di gestione e di automazione degli ambienti e delle risorse
 - eventuale software di piattaforma e software applicativo
 - un'interfaccia di programmazione (API) che consente agli utenti di accedere alle risorse virtualizzate e ai servizi di cloud computing – mediante un'interfaccia web, REST e/o CLI

Architettura del cloud

 È possibile pensare al cloud computing – e ad un'infrastruttura di cloud computing – in termini di un'architettura a strati – facendo riferimento al modello SPI

Software as a Service (SaaS)

Platform as a Service (PaaS)

Infrastructure as a Service (laaS)

53 Cloud Computing Luca Cabibbo ASW

Architettura del cloud

Tecnologie abilitanti del cloud

Hardware

switch di rete che collegano i server tra di loro e con gli altri rack

server/nodi/blade

dispositivi di storage

55 Cloud Computing Luca Cabibbo ASW

Tecnologie abilitanti del cloud

Data center (co-location)

tanti rack in un

data center

tanti container in un data center

Tecnologie abilitanti del cloud

□ Altre tecnologie

energia elettrica

• condizionamento

57 Cloud Computing Luca Cabibbo ASW

Tecnologie abilitanti del cloud

Tanti data center

tanti data center in un'infrastruttura di **cloud**

Tecnologie abilitanti del cloud

 Virtualizzazione – e strumenti per la gestione e l'automazione di ambienti virtuali

59 Cloud Computing Luca Cabibbo ASW

- Spunti di riflessione

- Alla luce di quanto studiato finora, discutere come è possibile offrire dei semplici servizi cloud (accessibili mediante un semplice portale web) con le seguenti caratteristiche
 - un semplice servizio di tipo laaS per macchine virtuali che consente di scegliere
 - numero di vCPU, quantità di memoria e OS da installare
 - eventuali applicazioni pre-installate sulla VM da un elenco predefinito – ad es., Tomcat
 - un semplice servizio di tipo PaaS (scalabile, ma senza elasticità) per applicazioni web basate su Tomcat – che consente di scegliere
 - l'unità di rilascio per semplicità, un singolo file war
 - il numero di server Tomcat in cui eseguire l'applicazione

* Economia del cloud computing

- Il cloud computing è una soluzione tecnologica per i suoi potenziali consumatori
 - ma è economicamente conveniente per i consumatori di servizi cloud? e lo è per i fornitori di servizi cloud?
 - quali sono i casi in cui, per un consumatore, il cloud computing è preferibile rispetto alla gestione privata di un proprio data center?

61 Cloud Computing Luca Cabibbo ASW

Economia del cloud computing

- Punto di vista del consumatore aspetti da prendere in considerazione in una valutazione economica del cloud computing
 - modello di pagamento a consumo
 - consente il passaggio da un sistema di spesa in conto capitale (CAPEX) a un sistema di spesa corrente (OPEX)
 - elasticità
 - consente di mitigare i rischi legati a un dimensionamento non corretto dell'infrastruttura necessaria
 - economie di scala
 - i fornitori possono offrire prezzi vantaggiosi ai consumatori (e vantaggiosi anche per i fornitori stessi)

Economia del cc: elasticità

- Dimensionamento dell'infrastruttura quando la richiesta di risorse varia nel tempo
 - provisioning per il picco del carico

Unused resources

63 Cloud Computing Luca Cabibbo ASW

Economia del cc: elasticità

- Dimensionamento dell'infrastruttura quando la richiesta di risorse varia nel tempo
 - cloud computing ed elasticità

Data center in the cloud

Economia del cc: elasticità

- Dimensionamento dell'infrastruttura quando la richiesta di risorse varia nel tempo
 - over-provisioning

65 Cloud Computing Luca Cabibbo ASW

Economia del cc: elasticità

- Dimensionamento dell'infrastruttura quando la richiesta di risorse varia nel tempo
 - under-provisioning

Economia del cc: elasticità

- Un altro caso svolgimento di compiti intensivi da un punto di vista computazionale
 - ad es., analisi batch di grandi moli di dati
 - se il compito è "parallelizzabile", allora può avere senso usare per poco tempo un numero elevato di server – anziché un solo server per un tempo elevato
 - a parità di costo, è possibile ottenere i risultati richiesti in tempi molto più ridotti!

67 Cloud Computing Luca Cabibbo ASW

Economia del cloud computing

- Punto di vista del fornitore possibili benefici
 - realizzare profitti sfruttando le economia di scala
 - capitalizzare i propri investimenti
 - Amazon sfruttando la capacità di calcolo residua (al di fuori dei periodi di picco)
 - Google sfruttando le infrastrutture esistenti
 - difendere un marchio
 - Microsoft ad es., per vendere strumenti .NET
 - rafforzare le relazioni con i propri clienti
 - ad es., offrire ai propri clienti un servizio di disaster recovery nel cloud

Economia del cc: economie di scala

Economie di scala

- un grande data center può fruire di economie di scala significative rispetto a data center medio-piccoli – sia per le risorse tecnologiche che per altre infrastrutture (energia elettrica, riscaldamento, locali, ...)
- e può vendere queste risorse a costi inferiori di quelli tipici per un data center medio-piccolo

Risorsa	Costo per un DC medio	Costo per un DC molto grande	Rapporto
Rete	95\$ / Mbps / mese	13\$ / Mbps / mese	7.1x
Storage	2.20\$ / GB / mese	0.40\$ / GB / mese	5.7x
Amministrazione	≈140 server/admin	>1000 server/admin	7.1x

69 Cloud Computing Luca Cabibbo ASW

- Discussione

Alcune conseguenze economiche del cloud computing

- i fornitori di servizi nel cloud possono realizzare data center molto grandi, e vendere risorse e servizi computazionali in modo vantaggioso
- gli utenti di servizi nel cloud possono utilizzare o realizzare software (scalabile e disponibile) sulla base di un modello di pagamento a consumo – senza costi iniziali e senza costi aggiuntivi di gestione delle infrastrutture
- il cloud inoltre sostiene innovatività e competizione
 - i piccoli produttori di software possono avviare le loro attività con una dipendenza minore dagli investitori esterni
 - è possibile avviare un'attività milionaria possedendo solo un PC e una connessione a Internet e molto talento ©
 - gli investitori possono finalizzare i loro investimenti in modo più efficace

* Sistemi software per il cloud

- Oggi è sempre più comune rilasciare i propri sistemi software nel cloud – questo solleva un insieme di rischi, opportunità e sfide
 - esempi di rischi sono il rilascio in un ambiente di esecuzione condiviso (sicurezza) e l'utilizzo di piattaforme e servizi "non tradizionali" offerti nel cloud (ad es., i sistemi NoSQL)
 - un esempio di opportunità è il rilascio in piattaforme elastiche, scalabili e disponibili
 - una possibile sfida è rendere effettivamente scalabile, disponibile e modificabile un'applicazione o un servizio
 - questi rischi, opportunità e sfide sono spesso relative al raggiungimento di qualità – e quindi il software per il cloud richiede un cambiamento architetturale

71 Cloud Computing Luca Cabibbo ASW

Sistemi software per il cloud

- Il software per il cloud richiede un cambiamento architetturale
 - l'architettura del software per il cloud deve tenere in considerazione le caratteristiche del cloud e dei servizi di cloud che si intendono utilizzare nella progettazione, sviluppo, rilascio e gestione delle applicazioni
 - è importante comprendere
 - il cloud come piattaforma per il rilascio del software
 - l'architettura del software per il cloud il cloud-native software è il software progettato e sviluppato appositamente per il cloud
 - come rilasciare il software nel cloud

Sistemi software per il cloud

- Alcuni requisiti tipici per i sistemi software per il cloud
 - alta disponibilità: nessuna interruzione di servizio
 - scalabilità: accettare un numero di utenti o di richieste crescenti
 - modificabilità (agilità): cicli di sviluppo e feedback rapidi (continui)
 - supporto per client mobili e dispositivi di accesso multipli
 - supporto per IoT (Internet of Things)
 - supporto per Big Data

73 Cloud Computing Luca Cabibbo ASW

Sistemi software per il cloud

- Alcune caratteristiche del cloud che è necessario considerare
 - cambiamenti continui nell'ambiente di esecuzione
 - è possibile che nodi e servizi vengano arrestati e riavviati
 - la locazione in rete di questi nodi e servizi può cambiare nel tempo, così come il loro numero
 - è possibile che si verifichino dei guasti o che aumenti la latenza nella comunicazione tra i nodi distribuiti
 - bisogna far convivere i cambiamenti nell'ambiente con quelli nel software
 - uso di risorse condivise e controllo limitato sulla loro locazione
 - è in genere necessario usare i servizi specifici offerti dal fornitore di cloud – che potrebbero essere diversi da quelli usati tradizionalmente – e anche automatizzare la gestione dell'infrastruttura e dei rilasci
 - è spesso necessario applicare tattiche e pattern specifici

- □ È utile discutere il cloud computing nel contesto specifico della delivery del software
 - il cloud computing offre diversi modelli di servizio orientati al rilascio del software – che forniscono risorse infrastrutturali (laaS) e piattaforme (PaaS) – che supportano diverse opzioni per gli ambienti di esecuzione
 - inoltre, il cloud computing consente diversi modelli di deployment
 - il cloud computing fornisce anche servizi DevOps per gestire il rilascio del software in modo automatizzato