Topology

Jakob Schneider

April 15, 2014

Contents

Definition 0.1. Let $X \in \text{Top.}$ A cover of X is a set $\mathcal{U} \subseteq \text{Sub}(X)$ having the following properties

- (I) U covers X, i.e. $\bigvee \mathcal{U} = X$.
- (II) For each $x \in X$ there exists an element $U \in \mathcal{U}$ such that $U \in \mathbb{N}|_x$, or alternatively, for all $x \in X$ we have $\mathbb{N}|_x X \cap \mathcal{U} \neq \emptyset$.

Definition 0.2. A space X is called *compact* if for any cover \mathcal{U} of X there is a finite subcover $\mathcal{F} \in \operatorname{Sub}_{\operatorname{fin}}(\mathcal{U})$.

Remark 1. An equivalent formulation is that any *open* cover has the above property.

Definition 0.3. Let X be a topological space. Define $\operatorname{Sub}_{\operatorname{cpt}}(X)$ as the topological space having as underlying set the compact subspaces of X and as topology the sets $\langle \{\operatorname{Sub}(U) \cap \operatorname{Sub}_{\operatorname{cpt}}(X) : U \in \tau \} \rangle$ where τ is the topology of X.

Remark 2. In the above system $\{\operatorname{Sub}(U) \cap \operatorname{Sub}_{\operatorname{cpt}}(X) : U \in \tau\}$ is a basis of the topology since it is obviously closed under finite intersections.

FALSE?

Lemma 0.1. Let \mathcal{X} be locally compact, then $Sub_{cpt} X$ is locally compact.

Proof. Let $C \in \operatorname{Sub}_{\operatorname{cpt}}(\mathcal{X})$ be compact. Choose compact neighboorhoods $C_c \in \mathbb{N}|_c \mathcal{X}$ for each point of $c \in C$. Then by compactness of C there is a finite subcover $\{C_c : c \in F\}$ $(F \in \operatorname{Sub}_{\operatorname{fin}}(C))$. Define $D := \bigcup_{c \in F} C_c$ — then D is compact. We claim that $\operatorname{Sub}_{\operatorname{cpt}}(D)$ is a compact neighboorhood of C in $\operatorname{Sub}_{\operatorname{cpt}}(\mathcal{X})$. It is clear that $\operatorname{Sub}_{\operatorname{cpt}}(D) \in \mathbb{N}|_C \operatorname{Sub}_{\operatorname{cpt}}(\mathcal{X})$ (by definition of the topology for $\operatorname{Sub}_{\operatorname{cpt}}(\mathcal{X})$). We are left to show that it is compact. To do this, choose an open cover \mathcal{U} of $\operatorname{Sub}_{\operatorname{cpt}}(D)$. By definition, for each $U \in \mathcal{U}$ there exist open sets $V \in \tau$ such that $U = \operatorname{Sub}_{\operatorname{cpt}}(V)$. Collect these V in set $V \subseteq \tau$. As \mathcal{U} is an open cover of $\operatorname{Sub}_{\operatorname{cpt}}(D)$, for each compact subset $F \subseteq D$ there must exist a set $V \in \mathcal{V}$ such that $F \subseteq V$. As the one-element subset of D are compact, since D is compact and \mathcal{X} is HAUSDORFF we have that \mathcal{V} is an open cover of D. ...

Lemma 0.2. Let X be a locally compact space, then X is a BAIRE space.

Proof. Let $\{U_n:n\in\mathbb{N}\}$ be dense open subspaces of X and V be an open subspace of X. Then we define $V_0:=V$ and choose inductively V_n as a non-empty relatively compact open subspace of X such that $V_n\subseteq\operatorname{cl} V_{n-1}\cap U_{n-1}$ for $n\geq 1$. This is possible since U_n is dense in X for all n. We thus obtain $V:=\bigcap_{n\in\mathbb{N}}V_n=\bigcap_{n\in\mathbb{N}}V_n\neq\emptyset$ as a compact set such that $V\subseteq\bigcap_{n\in\mathbb{N}}U_n\cap V$. This shows that $\bigcap_{n\in\mathbb{N}}U_n$ is dense in X.

Lemma 0.3. The following are equivalent

- (I) Axiom of choice.
- (II) Zorn's lemma.
- (III) Wellordering theorem.

Proof.

first to second Let P be preordered and for any subset $Q \subseteq P$ define Q^{\vee} as the set of upper bounds. We then have by axiom of choice a function $F: \{Q^{\vee}: Q \subseteq P\} \setminus \{\emptyset\} \to P \text{ with } F(X) \in X.$