МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа фотоники, электроники и молекулярной физики

Отчёт о выполнении лабораторной работы 2.3.1

Полчение и измерение вакуума

Автор: Макаров Лев Евгеньевич Б04-306

1 Введение

Цель работы:

- 1. измерение объемов форвакуумной и высоковакуумной частей установки
- 2. определение скорости откачки системы в стационарном режиме, а также по ухудшению и по улучшению вакуума

В работе используются:

- вакуумная установка
- масляной манометр
- термопарный манометр
- ионизационный манометр

2 Теоретические сведения

Экспериментальная установка

В данной работе используются традиционные методы откачки механическим форвакуумным насосом до давления 10^{-2} торр и диффузионным масляным насосом до давления 10^{-4} торр. Установка изготовлена из стекла, и состоит из форвакуумного баллона (ФБ), высоковакуумного диффузионного насоса (ВН), высоковакуумного баллона (ВБ), масляного (М) и ионизационного (И) манометров, термопарных манометров (М₁ и М₂), форвакуумного насоса (ФН) и соединительных кранов ($K_1, K_2, ..., K_6$) (рис. 1). Кроме того, в состав установки входят: вариатор (автотрансформатор с регулируемым выходным напряжением), или реостат и амперметр для регулирования тока нагревателя диффузионного насоса.

Рис. 1: Схема установки

Все краны вакуумной установки стеклянные. Стенки кранов тонкие, пробки кранов полые и составляют одно целое с рукоятками. Пробки кранов притерты к корпусам. Для герметизации используется вакуумная смазка.

Устройство и принцип действия ϕ орважуумного насоса схематически, но довольно ясно изображены на рис 2. В положениях «а» и «б» пластина «А» засасывает разреженный воздух из откачиваемого объёма, а пластина «Б» вытесняет ранее захваченный воздух в атмосферу. В положениях «в» и «г» пластины поменялись ролями.

Рис. 2: Схема действия ротационного двухпластинчатого форвакуумного насоса

Устройство и принцип действия $\partial u \phi \phi y з u o h h o coa coa coa coa coa coa uзображены на рис 2. Такой насос работает в тысячи раз быстрее форвакуумного. Его действие основано на диффузии. Масло, налитое в сосуд A, подогревается электрической печкой. Пары масла поднимаются по трубке Б и вырываются из сопла В. Струя паров увлекает молекулы газа, которые поступают из откачиваемого сосуда через трубку ВВ. В трубке <math>\Gamma$ мало осаждается и стекает вниз. Оставшийся газ, выходя в трубку Φ B, откачивается форвакуумным насосом.

Диффузионный насос работает наиболее эффективно, когда длина свободного пробега молекул примерно равна ширине кольцевого зазора между соплом В и стенками трубки ВВ. Давление насыщенных паров масла при рабочей температуре, создаваемой обогревателем сосуда A, много больше $5 \cdot 10^{-2}$ торр, поэтому пары масла создают плотную струю, увлекающую с собой молекулы газа.

Рис. 3: Схема работы диффузионного насоса

Диффузионный насос, используемый в нашей установке (см. рис 1) имеет две ступени и соответственно два сопла. Одно сопло вертикальное (первая ступень), второе горизонтальное (вторая ступень). За второй ступенью имеется ещё одна печь, но пар из этой печи поступает не в сопло, а по тонкой трубке подводится ближе к печке первой ступени. Эта печь осуществляет фракционирование масла. Легколетучие фракции масла, испаряясь, поступают в первую

ступень, обогащая её. По этой причине плотность струи первой ступени выше, и эта ступень начинает откачивать при более высоком давлении в форвакуумной части. Вторая ступень обогащается малолетучими фракциями масла. Плотность струи второй ступени меньше, но меньше и давление насыщенных паров. Соответственно, в откачиваемый объем поступает меньше паров масла, и его удаётся откачать до более высокого вакуума.

Термопарный манометр. Чувствительным элементом манометра является платиново-родиевая термопара, спаянная с никелевой нитью накала и заключённая в стеклянный баллон. Устройство термопары пояснено на рис. 4. По нити накала НН пропускается ток постоянной величины. Для установки тока служит потенциометр R, расположенный на передней панели вакуумметра. Термопара ТТ присоединяется к милливольтметру, показания которого определяются температурой нити накала и зависят от отдачи тепла в окружающее пространство.

Потери тепла определяются теплопроводностью нити и термопары, теплопроводностью газа, переносом тепла конвективными потоками газа внутри лампы, и теплоизлучением нити (инфракрасное тепловое излучение). В обычном режиме лампы основную роль играет теплопроводность газа. При давлениях, не меньших 1 торр, теплопроводность газа, а вместе с ней и ЭДС термопары практически не зависят от давления газа, и прибор не работает.

При улучшении вакуума средний свободный пробег молекул становится сравнимым с диаметром нити, теплоотвод падает, и температура спая возрастает. При вакууме порядка 10^{-3} торр теплоотвод, осуществляемый газом, становится сравнимым с другими потерями тепла, и температура становится практически постоянной. Градуировочная кривая термопары приведена на рис. 5.

Рис. 4: Схема термопарного манометра с лампой ЛТ-2

Рис. 5: Градуировочная кривая термопары ЛТ-2

Ионизационный манометр. Схема ионизационного манометра изображения на рисунке 6. Он представляет собой трехэлектродную лампу. Электроны испускаются раскалённым катодом и увлекаются электрическим полем к аноду, имеющему вид редкой спирали. Проскакивая за её витки, электроны замедляются полем коллектора и возвращаются к аноду. Прежде чем осесть на аноде, они успевают много раз пересечь пространство между катодом и коллектором. На своём пути электроны ионизуют молекулы газа. Ионы, образовавшиеся между анодом и коллектором, притягиваются полем коллектора и определяют его ток.

Накалённый катод ионизационного манометра перегорает, если давление в системе превышает 10^{-3} торр, поэтому перед его включением необходимо проверить давление термопарным манометром.

Рис. 6: Схема ионизационной лампы ЛТ-2

Процесс откачки

Опишем процесс откачки математически: Пусть W — объем газа, удаляемого из сосуда при данном давлении за единицу времени, Q_i для различных значений і обозначим различные притоки газа в сосуд (в единицах PV), такие как течи извне $Q_{\rm u}$, десорбция с поверхностей внутри сосуда $Q_{\rm d}$, обратный ток через насос $Q_{\rm h}$. Тогда, приравнивая убыль газа из сосуда (с точностью до RT/μ) в единицу времени -VdP и сумму перечисленных токов? имеем:

$$-VdP = (PW - \sum_{i} Q_{i})dt \tag{1}$$

При достижении предельного вакуума устанавливается давление $P_{\rm np}$, и dP=0. Тогда

$$W = (\sum_{i} Q_i)/P_{\rm np} \tag{2}$$

Поскольку обычно $Q_{\rm u}$ постоянно, а $Q_{\rm h}$ и $Q_{\rm d}$ слабо зависят от времени, также считая постоянной W, можем проинтегрировать (1) и получить:

$$P - P_{\text{np}} = (P_0 - P_{\text{np}}) \exp(-\frac{W}{V}t)$$
 (3)

Полная скорость откачки W, собственная скорость откачки насоса $W_{\rm H}$ и проводимости элементов системы C_1, C_2, \ldots соотносятся согласно формуле (4), и это учтено в конструкции установки.

$$\frac{1}{W} = \frac{1}{W} + \frac{1}{C_1} + \frac{1}{C_2} + \dots \tag{4}$$

Течение газа через трубу

Характер течения газа существенно зависит от соотношения между размерами системы и длиной свободного пробега молекул. При атмосферном и форвакуумном давлениях длина свободного пробега меньше диаметра трубок, и течение газа определяется его вязкостью, т.е. взаимодействием молекул. При высоком вакууме течение существеннее определяется взаимодействием со стенками

Для количества газа, протекающего через трубу длины l и радиуса r в условиях высокого вакуума, справедлива формула:

$$\frac{d(PV)}{dt} = \frac{4}{3}r^3\sqrt{\frac{2\pi RT}{\mu}}\frac{P_2 - P_1}{l} \tag{5}$$

Если труба соединяет насос установку, то давлением P_1 у насоса можно пренебречь. Давление в сосуде $P = P_2$. Тогда имеем:

$$C_{\rm Tp} = \left(\frac{dV}{dt}\right)_{\rm Tp} = \frac{4r^3}{3l} \sqrt{\frac{2\pi RT}{\mu}} \tag{6}$$

Для пропускной способности отверстий имеется формула

$$C_{\text{\tiny OTB}} = \left(\frac{dV}{dt}\right)_{\text{\tiny OTB}} = S\frac{\bar{\upsilon}}{4} \tag{7}$$

Для воздуха при комнатной температуре $\bar{v}/4=110~{\rm m/c}=11~{\rm \pi/c\cdot cm^2}.$

3 Результаты измерений и обработка данных

Определение объема форвакуумной и высоковакуумной частей установки

3.1 Подготовка установки

Проверим, что все краны кроме К2 открыты.

3.2 Запуск воздуха

Откроем К2, чтобы запустить воздух, подождём 2 минуты, чтобы воздух успел заполнить установку и давление установилось.

3.3 Измерение объёма и дваления

Закроем краны K5 и K6, в трубке между ними зажат воздух объёмом $V=(50.0\pm0.5)~{\rm cm}^3$ при атмосферном давлении $P_A=(968.1\pm0.3)\cdot10^2~{\rm Ha}$.

3.4 Откачка установки

Закроем кран К2 и включим форвакуумный насос. Подождём 2 минуты, пока насос откачивает сам себя, после откроем К2, чтобы началась откчака установки.

3.5 Измерение давления

Измерим давление в форвакуумной части установки с помощью манаметра М1.

$$P_{\Phi^{\mathrm{B}}} = 1.6 \cdot 10^{-2}$$

3.6 Измерения масляным манометром

Закроем кран К2, отсоединив тем самым установку от форфакуумного насоса.

Закроем кран К3, отсоединив тем самым высоковакуумную часть установки от форфакуумной части.

Закроем кран К4 для подготовки маслянного манометра М к измерениям.

Откроем кран К5, чтобы воздух в нём расширился на весь доступный объём. Подождём пока показания манометра установятся и запишем их.

$$h_1 = (383 \pm 1) \text{ MM}, \quad h_2 = (123 \pm 1) \text{ MM}$$

3.7 Вычисление объёма форвакуумной части установки

Так как расширение можно считать изотермическим, то справедливо равенство:

$$P_A V = P_1 V_{\Phi^B}$$

Давление можно вычислить зная плотность масла, то есть из этой формулы можем получить выражение для вычисления объёма форвакуумной части ($\rho = 0.885 \text{ г/см}^3$):

$$V_{\Phi^{\rm B}} = \frac{P_A V}{\rho g(h_1 - h_2)} = \frac{968.1 \cdot 10^2 \cdot 50 \cdot 10^{-6}}{0.885 \cdot 10^3 \cdot (383 - 123) \cdot 10^{-3}} \approx 2144 \text{ cm}^3$$
 (8)

Погрешность измерения объёма можно вычислить по формуле:

$$\sigma_{V_{\Phi B}} = V_{\Phi B} \sqrt{\varepsilon_V^2 + \varepsilon_{\Delta h}^2} = 2144 \sqrt{\left(\frac{0.5}{50}\right)^2 + \left(\frac{2}{260}\right)^2} \approx 27 \text{ cm}^3$$
 (9)

3.8 Измерение объёма высоковакуумной части установки

Проведём аналогичные измерения, при этом открыв кран К3. Полученный таким образом объём будет являтся объёмом всей рабочей части установки.

$$h_3 = (336 \pm 1) \text{ MM} \quad h_4 = (171 \pm 1) \text{ MM}$$

$$V_{\text{ycr}} = \frac{P_A V}{\rho g(h_1 - h_2)} = \frac{968.1 \cdot 10^2 \cdot 50 \cdot 10^{-6}}{0.885 \cdot 10^3 \cdot (336 - 171) \cdot 10^{-3}} \approx 3379 \text{ cm}^3$$
 (10)

$$\sigma_{V_{\text{yct}}} = V_{\text{yct}} \sqrt{\varepsilon_V^2 + \varepsilon_{\Delta h}^2} = 3379 \sqrt{\left(\frac{0.5}{50}\right)^2 + \left(\frac{2}{260}\right)^2} \approx 53 \text{ cm}^3$$
 (11)

Тогда объём высоковакуумной части:

$$V_{\text{вак}} = V_{\text{уст}} - V_{\text{фв}} = (1235 \pm 25) \text{ cm}^3$$
 (12)

Получение высокого вакуума и измерение скорости откачки

3.1 Получение высокого вакуума

Откроем кран K2 и продолжим откачку установки для выполнения второй части работы. Краны K2, K3, K4, K5, K6 должны быть открыты.

Откачаем всю систему до давления 10^{-2} торр.

Закроем кран K6 и включим диффузионный насос. Выставим 0,6 ампер, подождём 5 минут и установим максимальный ток в 1,27 ампер.

Подождём пока M2 не будет показывать $3 \cdot 10^{-4}$ торр.

При достигнутом давлении начнется инициализация манометра, которая продлится 80 сек (нагрев анода). После, когда показания давления опустятся до 10^{-4} торр и ниже, включим дегазацию, которая продлится 400 сек (нагрев катода).

Запишем предельное дваление:

$$P_{\rm np} = (8.7 \pm 0.3) \cdot 10^{-5} \text{ Topp}$$

3.2 Измерение скорости откачки

Закроем кран K3, отключив тем самым откачку BБ, и получим ухудшение вакуума во времени по изменению показаний ионизационного манометра, пока вакуум ухудшится до предела не более, чем $8 \cdot 10^{-4}$ торр.

Откроем кран K3 и проведём аналогичные измерения для улучшения вакуума. Эти измерения повторим ещё раз и результаты ихзмерений запишем в таблицы 1-4.

В этих таблицах сразу посчитаем промежуточные значения МНК.

Посчитаем коэффициенты наилучших прямых по формуле:

$$k = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2}, \text{ a } b = \langle y \rangle - k \langle x \rangle$$
(13)

Погрешности для k и b рассчитываются по формулам:

$$\sigma_k = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2} - k^2}$$
(14)

$$\sigma_b = \sigma_k \sqrt{\langle x^2 \rangle - \langle x \rangle^2} \tag{15}$$

$$k_1 = \frac{39,27144 - 29 \cdot 0,74128}{1131,0 - 29^2} \approx 0,016 \text{ c}^{-1}$$

$$\sigma_{k2} = \frac{1}{\sqrt{59}} \sqrt{\frac{1,96183 - 0,74128^2}{1131,0 - 29^2} - 0,0157^2} \approx 0,009 \text{ c}^{-1}$$

$$k_2 = \frac{-93,06325 - 23,5 \cdot (-2,39799)}{744,2 - 23,5^2} \approx -0,050 \text{ c}^{-1}$$

$$\sigma_{k2} = \frac{1}{\sqrt{47}} \sqrt{\frac{12,91747 - (-2,39799)^2}{744,2 - 23,5^2} - (-0,0497)^2} \approx 0,03 \text{ c}^{-1}$$

$$k_3 = \frac{43,66710 - 30,5 \cdot 0,82115}{1250,5 - 30,5^2} \approx 0,015 \text{ c}^{-1}$$

$$\sigma_{k3} = \frac{1}{\sqrt{62}} \sqrt{\frac{2,13926 - 0,82115^2}{1250,5 - 30,5^2} - 0,0149^2} \approx 0,008 \text{ c}^{-1}$$

$$k_4 = \frac{-24.27376 - 14,5 \cdot (-0,69614)}{285,2 - 14,5^2} \approx -0,05 \text{ c}^{-1}$$

$$\sigma_{k4} = \frac{1}{\sqrt{30}} \sqrt{\frac{3,17793 - (-0,69614)^2}{285,2 - 14,5^2} - (-0,050)^2} \approx 0,03 \text{ c}^{-1}$$

Изобразим графики на рисунках 7 и 8.

N	t, c	$p, \text{ ropp } \cdot 10^{-4}$	y	x^2	y^2	$x \cdot y$
1	0	0,9	-2,97593	0	8,85616	0,00000
2	1	0,9	-2,79688	1	7,82255	-2,79688
3	2	1,0	-2,39690	4	5,74511	-4,79379
4	3	1,0	-2,03256	9	4,13129	-6,09767
5	4	1,1	-1,46534	16	2,14721	-5,86135
6	5	1,2	-1,10564	25	1,22243	-5,52818
7	6	1,3	-0,84165	36	0,70837	-5,04988
8	7	1,4	-0,63299	49	0,40068	-4,43095
9	8	1,5	-0,46045	64	0,21201	-3,68360
10	9	1,7	-0,18513	81	0,03427	-1,66613
11	10	1,8	-0,07150	100	0,00511	-0,71496
12	11	1,9	0,03053	121	0,00093	0,33582
13	12	2,0	0,12310	144	0,01515	1,47723
14	13	2,1	0,20783	169	0,04319	2,70175
15	14	2,2	0,28593	196	0,08176	4,00303
16	15	2,4	0,42592	225	0,18141	6,38882
17	16	2,5	0,48919	256	0,23931	7,82709
18	17	2,6	0,54870	289	0,30107	9,32789
19	18	2,7	0,60486	324	0,36586	10,88752
20	19	2,8	0,65804	361	0,43301	12,50272
21	20	3,0	0,75659	400	0,57243	15,13183
22	21	3,1	0,80245	441	0,64393	16,85145
23	22	3,2	0,84630	484	0,71622	18,61854
24	23	3,3	0,88830	529	0,78908	20,43096
25	24	3,4	0,92861	576	0,86232	22,28675
26	25	3,5	0,96736	625	0,93579	24,18410
27	26	3,7	1,04063	676	1,08291	27,05638
28	27	3,8	1,07534	729	1,15636	29,03428
29	28	3,9	1,10889	784	1,22964	31,04899
30	29	4,0	1,14135	841	1,30269	33,09922
31	30	4,1	1,17279	900	1,37544	35,18375
32	31	4,3	1,23285	961	1,51992	38,21840
33	32	4,4	1,26158	1024	1,59159	40,37060
34	33	4,5	1,28951	1089	1,66283	42,55377
35	34	4,6	1,31668	1156	1,73364	44,76699
36	35	4,7	1,34313	1225	1,80399	47,00941
37	36	4,9	1,39401	1296	1,94328	50,18452
38	37	5,0	1,41852	1369	2,01220	52,48522
39	38	5,1	1,44244	1444	2,08063	54,81266
40	39	5,2	1,46580	1521	2,14857	57,16614
41	40	5,3	1,48863	1600	2,21601	59,54501
42	41	5,5	1,53277	1681	2,34939	65,27274
43	42	5,6	1,55414	1764	2,41534	65,27374
44	43	5,7	1,57505	1849	2,48079	67,72730
45	44	5,8	1,59554	1936	2,54575	70,20384
$\frac{46}{47}$	45	5,9	1,61562	2025	2,61022	72,70284
	46	6,1	1,65460	2116	2,73771	76,11171
48	47	6,2	1,67354	2209	2,80073	78,65633

N	t, c	$p, \text{ ropp } \cdot 10^{-4}$	y	x^2	y^2	$x \cdot y$
49	48	6,3	1,69212	2304	2,86328	81,22192
50	49	6,4	1,71037	2401	2,92536	83,80806
51	50	6,5	1,72829	2500	2,98698	86,41435
52	51	6,7	1,76319	2601	3,10883	89,92261
53	52	6,8	1,78019	2704	3,16909	92,57003
54	53	6,9	1,79691	2809	3,22890	95,23638
55	54	7,0	1,81336	2916	3,28827	97,92132
56	55	7,1	1,82954	3025	3,34721	100,62453
57	56	7,3	1,86113	3136	3,46381	104,22328
58	57	7,4	1,87656	3249	3,52148	106,96392
59	58	7,5	1,89176	3364	3,57874	109,72183
cp	29		0,74128	1131,0	1,96183	39,27144

Таблица 1: Измерение зависимости зависимости p от t для ухудшения 1

N	t, c	$p, \text{ ropp } \cdot 10^{-4}$	y	x^2	y^2	$x \cdot y$
1	0	7,50	1,89176	0	3,57874	0,00000
2	1	7,20	1,84546	1	3,40572	1,84546
3	2	6,50	1,72829	4	2,98698	3,45657
4	3	5,70	1,57505	9	2,48079	4,72516
5	4	4,90	1,39401	16	1,94328	5,57606
6	5	4,10	1,17279	25	1,37544	5,86396
7	6	3,50	0,96736	36	0,93579	5,80418
8	7	3,00	0,75659	49	0,57243	5,29614
9	8	2,60	0,54870	64	0,30107	4,38959
10	9	2,20	0,28593	81	0,08176	2,57337
11	10	2,00	0,12310	100	0,01515	1,23102
12	11	1,80	-0,07150	121	0,00511	-0,78646
13	12	1,60	-0,31334	144	0,09818	-3,76010
14	13	1,50	-0,46045	169	0,21201	-5,98584
15	14	1,40	-0,63299	196	0,40068	-8,86191
16	15	1,30	-0,84165	225	0,70837	-12,62471
17	16	1,20	-1,10564	256	1,22243	-17,69019
18	17	1,20	-1,10564	289	1,22243	-18,79583
19	18	1,10	-1,46534	324	2,14721	-26,37608
20	19	1,10	-1,46534	361	2,14721	-27,84141
21	20	1,00	-2,03256	400	4,13129	-40,65116
22	21	1,00	-2,03256	441	4,13129	-42,68372
23	22	0,98	-2,19823	484	4,83219	-48,36095
24	23	0,96	-2,39690	529	5,74511	-55,12860
25	24	0,95	-2,51331	576	6,31671	-60,31935
26	25	0,94	-2,64508	625	6,99642	-66,12689
27	26	0,93	-2,79688	676	7,82255	-72,71892
28	27	0,92	-2,97593	729	8,85616	-80,35010
29	28	0,91	-3,19418	784	10,20281	-89,43713
30	29	0,91	-3,19418	841	10,20281	-92,63131
31	30	0,90	-3,47377	900	12,06706	-104,21304
32	31	0,90	-3,47377	961	12,06706	-107,68681
33	32	0,89	-3,86323	1024	14,92457	-123,62345
34	33	0,89	-3,86323	1089	14,92457	-127,48668
35	34	0,89	-3,86323	1156	14,92457	-131,34992
36	35	0,88	-4,50986	1225	20,33884	-157,84510
37	36	0,88	-4,50986	1296	20,33884	-162,35496
38	37	0,88	-4,50986	1369	20,33884	-166,86482
39	38	0,88	-4,50986	1444	20,33884	-171,37468
40	39	0,88	-4,50986	1521	20,33884	-175,88454
41	40	0,88	-4,50986	1600	20,33884	-180,39440
42	41	0,87	-6,90776	1681	47,71708	-283,21797
43	42	0,87	-6,90776	1764	47,71708	-290,12572
44	43	0,87	-6,90776	1849	47,71708	-297,03348
45	44	0,87	-6,90776	1936	47,71708	-303,94123
46	45	0,87	-6,90776	2025	47,71708	-310,84899
47	46	0,87	-6,90776	2116	47,71708	-317,75674
48	47	0,87	-6,90776	2209	47,71708	-324,66450
cp	23,5		-2,39799	744,2	12,91747	-93,06325

Таблица 2: Измерение зависимости зависимости p от t для улучшения 1

N	t, c	$p, \text{ ropp } \cdot 10^{-4}$	y	x^2	y^2	$x \cdot y$
1	0	0,9	-3,47377	0	12,06706	0,00000
2	1	0,9	-2,97593	1	8,85616	-2,97593
3	2	1,0	-2,39690	4	5,74511	-4,79379
4	3	1,0	-2,03256	9	4,13129	-6,09767
5	4	1,1	-1,46534	16	2,14721	-5,86135
6	5	1,3	-0,84165	25	0,70837	-4,20824
7	6	1,4	-0,63299	36	0,40068	-3,79796
8	7	1,5	-0,46045	49	0,21201	-3,22315
9	8	1,6	-0,31334	64	0,09818	-2,50673
10	9	1,7	-0,18513	81	0,03427	-1,66613
11	10	1,8	-0,07150	100	0,00511	-0,71496
12	11	2,0	0,12310	121	0,01515	1,35412
13	12	2,1	0,20783	144	0,04319	2,49392
14	13	2,2	0,28593	169	0,08176	3,71710
15	14	2,3	0,35837	196	0,12843	5,01723
16	15	2,4	0,42592	225	0,18141	6,38882
17	16	2,5	0,48919	256	0,23931	7,82709
18	17	2,7	0,60486	289	0,36586	10,28266
19	18	2,8	0,65804	324	0,43301	11,84468
20	19	2,9	0,70853	361	0,50201	13,46204
21	20	3,0	0,75659	400	0,57243	15,13183
22	21	3,1	0,80245	441	0,64393	16,85145
23	22	3,3	0,88830	484	0,78908	19,54266
24	23	3,4	0,92861	529	0,86232	21,35813
25	24	3,5	0,96736	576	0,93579	23,21674
26	25	3,6	1,00467	625	1,00936	25,11670
27	26	3,7	1,04063	676	1,08291	27,05638
28	27	3,8	1,07534	729	1,15636	29,03428
29	28	4,0	1,14135	784	1,30269	31,95787
30	29	4,1	1,17279	841	1,37544	34,01096
31	30	4,2	1,20327	900	1,44786	36,09818
32	31	4,3	1,23285	961	1,51992	38,21840
33	32	4,4	1,26158	1024	1,59159	40,37060
34	33	4,6	1,31668	1089	1,73364	43,45032
35	34	4,7	1,34313	1156	1,80399	45,66628
36	35	4,8	1,36889	1225	1,87387	47,91128
37	36	4,9	1,39401	1296	1,94328	50,18452
38	37	5,1	1,44244	1369	2,08063	53,37022
39	38	5,2	1,46580	1444	2,14857	55,70034
40	39	5,3	1,48863	1521	2,21601	58,05639
41	40	5,4	1,51094	1600	2,28295	60,43771
42	41	5,5	1,53277	1681	2,34939	62,84369
43	42	5,7	1,57505	1764	2,48079	66,15225
44	43	5,8	1,59554	1849	2,54575	68,60830
45	44	5,9	1,61562	1936	2,61022	71,08723
46	45	6,0	1,63530	2025	2,67421	73,58853
47	46	6,1	1,65460	2116	2,73771	76,11171

N	t, c	$p, \text{ ropp } \cdot 10^{-4}$	y	x^2	y^2	$x \cdot y$
48	47	6,3	1,69212	2209	2,86328	79,52979
49	48	6,4	1,71037	2304	2,92536	82,09769
50	49	6,5	1,72829	2401	2,98698	84,68607
51	50	6,6	1,74589	2500	3,04813	87,29450
52	51	6,8	1,78019	2601	3,16909	90,78983
53	52	6,9	1,79691	2704	3,22890	93,43947
54	53	7,0	1,81336	2809	3,28827	96,10797
55	54	7,1	1,82954	2916	3,34721	98,79499
56	55	7,3	1,86113	3025	3,46381	102,36215
57	56	7,4	1,87656	3136	3,52148	105,08736
58	57	7,5	1,89176	3249	3,57874	107,83007
59	58	7,6	1,90672	3364	3,63560	110,58998
60	59	7,8	1,93600	3481	3,74811	114,22424
61	60	7,9	1,95033	3600	3,80378	117,01974
62	61	8,0	1,96445	3721	3,85907	119,83154
cp	30,5		0,82115	1250,5	2,13926	43,66710

Таблица 3: Измерение зависимости зависимости p от t для ухудшения 2

1	0	7,80	1,93600	0	3,74811	0,00000
2	1	7,40	1,87656	1	3,52148	1,87656
3	2	6,60	1,74589	4	3,04813	3,49178
4	3	5,70	1,57505	9	2,48079	4,72516
5	4	4,80	1,36889	16	1,87387	5,47558
6	5	4,10	1,17279	25	1,37544	5,86396
7	6	3,50	0,96736	36	0,93579	5,80418
8	7	3,00	0,75659	49	0,57243	5,29614
9	8	2,60	0,54870	64	0,30107	4,38959
10	9	2,30	0,35837	81	0,12843	3,22536
11	10	2,00	0,12310	100	0,01515	1,23102
12	11	1,80	-0,07150	121	0,00511	-0,78646
13	12	1,70	-0,18513	144	0,03427	-2,22151
14	13	1,50	-0,46045	169	0,21201	-5,98584
15	14	1,40	-0,63299	196	0,40068	-8,86191
16	15	1,30	-0,84165	225	0,70837	-12,62471
17	16	1,20	-1,10564	256	1,22243	-17,69019
18	17	1,20	-1,10564	289	1,22243	-18,79583
19	18	1,10	-1,46534	324	2,14721	-26,37608
20	19	1,10	-1,46534	361	2,14721	-27,84141
21	20	1,00	-2,03256	400	4,13129	-40,65116
22	21	1,00	-2,03256	441	4,13129	-42,68372
23	22	0,98	-2,19823	484	4,83219	-48,36095
24	23	0,96	-2,39690	529	5,74511	-55,12860
25	24	0,95	-2,51331	576	6,31671	-60,31935
26	25	0,94	-2,64508	625	6,99642	-66,12689
27	26	0,93	-2,79688	676	7,82255	-72,71892
28	27	0,92	-2,97593	729	8,85616	-80,35010
29	28	0,91	-3,19418	784	10,20281	-89,43713
30	29	0,91	-3,19418	841	10,20281	-92,63131
cp	14,5		-0,69614	285,2	3,17793	-24,27376

Таблица 4: Измерение зависимости зависимости p от t для улучшение 2

Таким образом, коэффициенты при ухудшении и улучшении:

$$k^{\text{yr}} = -(0.05 \pm 0.03) \text{ c}^{-1}$$

 $k^{\text{yx}} = (0.015 \pm 0.008) \text{ c}^{-1}$

Тогда W и его погрешность можно вычислить по формуле:

$$W = -kV, \quad \sigma_W = W\sqrt{\varepsilon_k^2 + \varepsilon_V^2} \tag{16}$$

ВЫчислим значения W для улучшения и ухудшения:

$$W^{\mathrm{yn}} = 0.05 \cdot 50 \approx -2.5 \; \mathrm{мл/c}$$

$$\sigma_{W^{\mathrm{yn}}} = 2.5 \sqrt{\left(\frac{0.03}{0.05}\right)^2 + \left(\frac{0.5}{50}\right)^2} \approx 1.5 \; \mathrm{мл/c}$$

$$W^{\mathrm{yx}} = -0.015 \cdot 50 \approx 0.75 \; \mathrm{мл/c}$$

$$\sigma_{W^{\mathrm{yx}}} = 0.75 \sqrt{\left(\frac{0.008}{0.015}\right)^2 + \left(\frac{0.5}{50}\right)^2} \approx 0.4 \; \mathrm{мл/c}$$

Таким образом

$$W^{
m yn}=(2.5\pm1.5)\ {
m мл/c}$$
 $W^{
m yx}=-(0.75\pm0.4)\ {
m мл/c}$

3.3 Вычисление потока воздуха из насоса

Поток воздуха, поступающий из насоса можно оценить по формуле:

$$V_{\text{\tiny BB}}dP = (Q_{\text{\tiny A}} + Q_{\text{\tiny H}})dt, \quad Q_{\text{\tiny A}} + Q_{\text{\tiny H}} = kV_{\text{\tiny BB}},$$

$$P_{\text{\tiny \Pi P}}W = Q_{\text{\tiny A}} + Q_{\text{\tiny H}} + Q_{\text{\tiny H}} \implies Q_{\text{\tiny H}} = P_{\text{\tiny \Pi P}}W - kV_{\text{\tiny BB}}$$
(17)

$$Q_{\text{\tiny H}} = 133, 3 \cdot 0, 87 \cdot 10^{-4} \cdot 2, 5 \cdot 10^{-6} + 0, 05 \cdot 10^{-6} \cdot 1235 \cdot 10^{-6} \approx 29 \text{ мл/c}$$

Погрешность можно вычислить по формуле:

$$\sigma_{Q_{\rm H}} = \sqrt{\left(P_{\rm IIp}W\right)^2 \left(\varepsilon_{P_{\rm IIp}}^2 + \varepsilon_W^2\right) + \left(kV_{\rm BB}\right)^2 \left(\varepsilon_k^2 + \varepsilon_{V_{\rm BB}}^2\right)} \tag{18}$$

$$\sigma_{Q_{\mathrm{H}}} = \sqrt{\left(133, 3 \cdot 0.87 \cdot 10^{-4} \cdot 2.5 \cdot 10^{-6}\right)^{2} \left(\left(\frac{0.3}{8.7}\right)^{2} + \left(\frac{1.5}{2.5}\right)^{2}\right) + \frac{1}{\left(0.05 \cdot 10^{-6} \cdot 1235 \cdot 10^{-6}\right)^{2} \left(\left(\frac{0.03}{0.05}\right)^{2} + \left(\frac{25}{1235}\right)^{2}\right)}} \approx 17 \text{ мл/с}$$

Таким образом:

$$Q_{\rm H} = (29 \pm 17) \ {\rm мл/c}$$

Рис. 7: $\Gamma pa\phiи\kappa$ зависимости $\ln p$ от t ухудшения

Рис. 8: Γ рафик зависимости $\ln p$ от t улучшения