ECE 586: Vector Space Methods Chapter 2: Metric Spaces and Topology

Henry D. Pfister Duke University

September 4th – 16th, 2019

Introduction

- What is topology and why do we study it?
 - Study of geometric properties preserved by continuous deformations

Introduction

- What is topology and why do we study it?
 - Study of geometric properties preserved by continuous deformations
 - Why? Engineers approximate real things by mathematical objects
 - Q1: Can a matrix be approximated well by a lower rank matrix?
 - Q2: Can a function be approximated well by a degree-2 polynomial?
 - In engineering, a topology is typically defined using a metric

Introduction

- What is topology and why do we study it?
 - Study of geometric properties preserved by continuous deformations
 - Why? Engineers approximate real things by mathematical objects
 - Q1: Can a matrix be approximated well by a lower rank matrix?
 - Q2: Can a function be approximated well by a degree-2 polynomial?
 - In engineering, a topology is typically defined using a metric
- Metric Spaces
 - A metric space (X, d) is a set X along with a well-defined metric d
 - A metric on a set X is a function $d: X \times X \to \mathbb{R}$ that satisfies:
 - $d(x,y) \ge 0$ $\forall x,y \in X$; with equality if and only if x = y
 - $d(x, y) = d(y, x) \quad \forall x, y \in X$
 - $d(x,y) + d(y,z) \ge d(x,z) \quad \forall x,y,z \in X$.
 - d(x, y) is called the distance between points x and y
 - Whiteboard Examples

Useful Abstractions

- Consider a metric space (X, d)
- "Set of points within distance ϵ from a point x"
 - The open ball of radius ϵ centered at x is

adius
$$\epsilon$$
 centered at x is
$$B_d(x,\epsilon) \triangleq \{y \in X | d(x,y) < \epsilon \}$$

• P = "For all $a \in B_d(x, \epsilon)$, there is $\delta > 0$ s.t. $B_d(a, \delta) \subset B_d(x, \epsilon)$ "

Useful Abstractions

- Consider a metric space (X, d)
- "Set of points within distance ϵ from a point x'
 - ullet The open ball of radius ϵ centered at x is

$$(E(x,\epsilon))$$

$$B_d(x,\epsilon) \triangleq \{y \in X | d(x,y) < \epsilon\}$$

- $P = \text{``For all } a \in B_d(x, \epsilon)$, there is $\delta > 0$ s.t. $B_d(a, \delta) \subset B_d(x, \epsilon)$ ''
- "Infinite list x_1, x_2, x_3, \ldots of points in X"
 - A sequence $x_i \in X$ for $i \in \mathbb{N}$ equivalent to $x_i = f(i)$ for $f : \mathbb{N} \to X$
 - Ex. For $X = \mathbb{R}$ and d(x,y) = |x-y|, let $x_n = \left(1 + \frac{1}{n}\right)^n$ for $n \in \mathbb{N}$

Useful Abstractions

- Consider a metric space (X, d)
- "Set of points within distance ϵ from a point x'
 - \bullet The open ball of radius ϵ centered at x is

$$(\underbrace{B(x,\epsilon)}_{B(x,\epsilon)})^{X}$$

$$B_d(x,\epsilon) \triangleq \{y \in X | d(x,y) < \epsilon\}$$

- $P = \text{``For all } a \in B_d(x, \epsilon)$, there is $\delta > 0$ s.t. $B_d(a, \delta) \subset B_d(x, \epsilon)$ ''
- "Infinite list x_1, x_2, x_3, \ldots of points in X"
 - A sequence $x_i \in X$ for $i \in \mathbb{N}$ equivalent to $x_i = f(i)$ for $f : \mathbb{N} \to X$
 - Ex. For $X = \mathbb{R}$ and d(x,y) = |x-y|, let $x_n = \left(1 + \frac{1}{n}\right)^n$ for $n \in \mathbb{N}$
- "A sequence of points approaches another point"
 - A sequence x_n converges to $x \in X$ (denoted $x_n \to x$) if, for any $\epsilon > 0$, there is natural number N such that $d(x, x_n) < \epsilon$ for all n > N

Definition

A sequence x_1, x_2, \ldots in (X, d) is a Cauchy sequence if, for any $\epsilon > 0$, there is a natural number N (depending on ϵ) such that, for all m, n > N, $d(x_m, x_n) < \epsilon$

$$d(x_m,x_n)<\epsilon$$

- Theorem: Every convergent sequence is a Cauchy sequence
 - Prove on board

Definition

A sequence x_1, x_2, \ldots in (X, d) is a Cauchy sequence if, for any $\epsilon > 0$, there is a natural number N (depending on ϵ) such that, for all m, n > N,

$$d(x_m,x_n)<\epsilon$$

- Theorem: Every convergent sequence is a Cauchy sequence
 - Prove on board
- Converse?

Definition

A sequence x_1, x_2, \ldots in (X, d) is a Cauchy sequence if, for any $\epsilon > 0$, there is a natural number N (depending on ϵ) such that, for all m, n > N,

$$d(x_m, x_n) < \epsilon$$

- Theorem: Every convergent sequence is a Cauchy sequence
 - Prove on board
- Converse? No, there is a counterexample
 - Metric space (X, d) with $X = \mathbb{Q}$ and d(x, y) = |x y|
 - Sequence $x_1=2$ and $x_{n+1}=f(x_n)\triangleq \frac{1}{2}x_n+1/x_n\in\mathbb{Q}$
 - One can show x_n is a Cauchy sequence and $|x_n \sqrt{2}| \to 0$

Definition

A sequence x_1, x_2, \ldots in (X, d) is a Cauchy sequence if, for any $\epsilon > 0$, there is a natural number N (depending on ϵ) such that, for all m, n > N,

$$d(x_m,x_n)<\epsilon$$

- Theorem: Every convergent sequence is a Cauchy sequence
 - Prove on board
- Converse? No, there is a counterexample
 - Metric space (X, d) with $X = \mathbb{Q}$ and d(x, y) = |x y|
 - Sequence $x_1=2$ and $x_{n+1}=f(x_n)\triangleq \frac{1}{2}x_n+1/x_n\in\mathbb{Q}$
 - One can show x_n is a Cauchy sequence and $|x_n \sqrt{2}| \to 0$
- But, according to definition sequence does not converge!
 - Convergence requires limit lives in X but $\sqrt{2} \notin \mathbb{Q}$

Metric Topology

A topology is a collection of "open" sets satisfying certain properties

Definition

Let W be a subset of a metric space (X, d). The set W is called open if, for every $w \in W$, there is an $\epsilon > 0$ such that $B_d(w, \epsilon) \subseteq W$.

Definition

Subset W of (X, d) is closed if its complement $W^c = X - W$ is open.

$\mathsf{Theorem}$

- Ø and X are open
- 2 any union of open sets is open
- any finite intersection of open sets is open

Interior, Limit points, and Closure

For a metric space (X, d) and subset $W \subseteq X$:

Definition

A point $w \in W$ is in the interior of W (denoted W°) if there is a $\delta > 0$ such that, for all $x \in X$ with $d(x, w) < \delta$, it follows that $x \in W$.

Definition

A point $w \in W$ is a limit point of W if there is a sequence of distinct elements, $w_1, w_2, \ldots \in W$, that converges to w.

Definition

A point $x \in X$ is in the closure of W (denoted \overline{W}) if, for all $\delta > 0$, there is a $w \in W$ such that $d(x, w) < \delta$.

- Properties
 - The interior W° is open (see definition)
 - W is closed if and only if it contains all of its limit points
 - Closure \overline{W} equals union of W and all its limit points (thus is closed)

Let $f: X \to Y$ be a function between metric spaces (X, d_X) and (Y, d_Y) :

Definition

The function f is continuous at $x_0 \in X$ if, for any $\epsilon > 0$, there exists a $\delta > 0$ such that, for all $x \in X$ satisfying $d_X(x_0, x) < \delta$,

$$d_Y(f(x_0), f(x)) < \epsilon.$$

Let $f: X \to Y$ be a function between metric spaces (X, d_X) and (Y, d_Y) :

Definition

The function f is continuous at $x_0 \in X$ if, for any $\epsilon > 0$, there exists a $\delta > 0$ such that, for all $x \in X$ satisfying $d_X(x_0, x) < \delta$,

$$d_Y(f(x_0), f(x)) < \epsilon.$$

Theorem

If f is continuous at x_0 , then $f(x_n) \to f(x_0)$ for all sequences $x_1, x_2, \ldots \in X$ such that $x_n \to x_0$. Conversely, if $f(x_n) \to f(x_0)$ for all sequences $x_1, x_2, \ldots \in X$ such that $x_n \to x_0$, then f is continuous at x_0 .

Let $f: X \to Y$ be a function between metric spaces (X, d_X) and (Y, d_Y) :

Definition

The function f is continuous at $x_0 \in X$ if, for any $\epsilon > 0$, there exists a $\delta > 0$ such that, for all $x \in X$ satisfying $d_X(x_0, x) < \delta$,

$$d_Y(f(x_0), f(x)) < \epsilon.$$

$\mathsf{Theorem}$

If f is continuous at x_0 , then $f(x_n) \to f(x_0)$ for all sequences $x_1, x_2, \ldots \in X$ such that $x_n \to x_0$. Conversely, if $f(x_n) \to f(x_0)$ for all sequences $x_1, x_2, \ldots \in X$ such that $x_n \to x_0$, then f is continuous at x_0 .

- f is called continuous if it is continuous at all $x_0 \in X$
- f is uniformly continuous if δ can be chosen independently of x_0

Let $f: X \to Y$ be a function between metric spaces (X, d_X) and (Y, d_Y) :

Definition

The function f is continuous at $x_0 \in X$ if, for any $\epsilon > 0$, there exists a $\delta > 0$ such that, for all $x \in X$ satisfying $d_X(x_0, x) < \delta$,

$$d_Y(f(x_0), f(x)) < \epsilon.$$

Theorem

If f is continuous at x_0 , then $f(x_n) \to f(x_0)$ for all sequences $x_1, x_2, \ldots \in X$ such that $x_n \to x_0$. Conversely, if $f(x_n) \to f(x_0)$ for all sequences $x_1, x_2, \ldots \in X$ such that $x_n \to x_0$, then f is continuous at x_0 .

- f is called continuous if it is continuous at all $x_0 \in X$
- f is uniformly continuous if δ can be chosen independently of x_0

Definition

A function $f: X \to Y$ is called Lipschitz continuous on $A \subseteq X$ if there is a constant $L \in \mathbb{R}$ such that $d_Y(f(x), f(y)) \leq Ld_X(x, y)$ for all $x, y \in A$.

Completeness

Definition

A metric space (X, d) is said to be complete if every Cauchy sequence in (X, d) converges to a limit $x \in X$.

Example

Consider the sequence $x_n \in \mathbb{Q}$ defined by $x_1 = 2$ and $x_{n+1} = \frac{1}{2}x_n + 1/x_n$. We have seen that this sequence satisfies $|x_n - \sqrt{2}| \to 0$ but $\sqrt{2}$ is not rational. Thus, the standard metric space of rationals is not complete.

Completeness

Definition

A metric space (X, d) is said to be complete if every Cauchy sequence in (X, d) converges to a limit $x \in X$.

Example

Consider the sequence $x_n \in \mathbb{Q}$ defined by $x_1 = 2$ and $x_{n+1} = \frac{1}{2}x_n + 1/x_n$. We have seen that this sequence satisfies $|x_n - \sqrt{2}| \to 0$ but $\sqrt{2}$ is not rational. Thus, the standard metric space of rationals is not complete.

Definition

A subset A of a metric space (X, d) is dense in X if every $x \in X$ is a limit point of the set A. This is equivalent to the closure \overline{A} being equal to X.

Completeness

Definition

A metric space (X, d) is said to be complete if every Cauchy sequence in (X, d) converges to a limit $x \in X$.

Example

Consider the sequence $x_n \in \mathbb{Q}$ defined by $x_1 = 2$ and $x_{n+1} = \frac{1}{2}x_n + 1/x_n$. We have seen that this sequence satisfies $|x_n - \sqrt{2}| \to 0$ but $\sqrt{2}$ is not rational. Thus, the standard metric space of rationals is not complete.

Definition

A subset A of a metric space (X, d) is dense in X if every $x \in X$ is a limit point of the set A. This is equivalent to the closure \overline{A} being equal to X.

Key Point

The standard metric space of real numbers is a complete metric space. This can be shown using Cauchy sequences of rational numbers because $\mathbb Q$ is dense in $\mathbb R$. Note: proof not discussed but available on website.

Contraction Mapping Theorem

Definition

Let A be a subset of a metric space (X,d) and $f\colon X\to X$ be a function. Then, f is a contraction on A if $f(A)\subseteq A$ and there exists a constant $\gamma<1$ such that $d\left(f(x),f(y)\right)\leq \gamma d(x,y)$ for all $x,y\in A$.

Example

Consider metric space X=[0,1] with absolute distance. Define $f:X\to X$ by $f(x)=1-\frac{1}{2}x$ and observe $|f(x)-f(y)|=\frac{1}{2}|x-y|$.

Contraction Mapping Theorem

Definition

Let A be a subset of a metric space (X,d) and $f\colon X\to X$ be a function. Then, f is a contraction on A if $f(A)\subseteq A$ and there exists a constant $\gamma<1$ such that $d\left(f(x),f(y)\right)\leq \gamma d(x,y)$ for all $x,y\in A$.

Example

Consider metric space X = [0,1] with absolute distance. Define $f: X \to X$ by $f(x) = 1 - \frac{1}{2}x$ and observe $|f(x) - f(y)| = \frac{1}{2}|x - y|$.

Theorem (Contraction Mapping Theorem)

Let (X,d) be a complete metric space and f be contraction on a closed subset $A \subseteq X$. Then, f has a unique fixed point x^* in A such that $f(x^*) = x^*$ and $x_{n+1} = f(x_n)$ converges to x^* from any initial $x_1 \in A$. Moreover, x_n satisfies the error bounds:

$$d(x^*, x_n) \le \gamma^{n-1} d(x^*, x_1)$$
 and $d(x^*, x_{n+1}) \le d(x_n, x_{n+1}) \gamma/(1 - \gamma)$.

Applications of the Contraction Mapping Theorem

The following important results in applied mathematics have relatively simple proofs based on the contraction mapping theorem.

- Picard's uniqueness theorem for differential equations
 - Differential equation y'(t) = f(t, y(t)) for $t \in [a, b]$ with $y(a) = y_0$
 - Assume f(t, y) is Lipschitz continuous in y for $t \in [a, b]$
 - Then, solution y(t) exists and is unique for $t \in [a, b]$

Applications of the Contraction Mapping Theorem

The following important results in applied mathematics have relatively simple proofs based on the contraction mapping theorem.

- Picard's uniqueness theorem for differential equations
 - Differential equation y'(t) = f(t, y(t)) for $t \in [a, b]$ with $y(a) = y_0$
 - Assume f(t, y) is Lipschitz continuous in y for $t \in [a, b]$
 - Then, solution y(t) exists and is unique for $t \in [a, b]$
- Implicit function theorem
 - Let $f\colon \mathbb{R}^n imes \mathbb{R}^m o \mathbb{R}^m$ be continuously differentiable on open A
 - Let $g: \mathbb{R}^n \to \mathbb{R}^m$ be defined implicitly by f(x, g(x)) = 0
 - For $x_0 \in A$, assume $f(x_0, y_0) = 0$ and y-Jacobian invertible at (x_0, y_0)
 - Then, g(x) exists and is unique in some neighborhood of x_0

Applications of the Contraction Mapping Theorem

The following important results in applied mathematics have relatively simple proofs based on the contraction mapping theorem.

- Picard's uniqueness theorem for differential equations
 - Differential equation y'(t) = f(t, y(t)) for $t \in [a, b]$ with $y(a) = y_0$
 - Assume f(t, y) is Lipschitz continuous in y for $t \in [a, b]$
 - Then, solution y(t) exists and is unique for $t \in [a, b]$
- Implicit function theorem
 - Let $f\colon \mathbb{R}^n imes \mathbb{R}^m o \mathbb{R}^m$ be continuously differentiable on open A
 - Let $g: \mathbb{R}^n \to \mathbb{R}^m$ be defined implicitly by f(x, g(x)) = 0
 - For $x_0 \in A$, assume $f(x_0, y_0) = 0$ and y-Jacobian invertible at (x_0, y_0)
 - Then, g(x) exists and is unique in some neighborhood of x_0
- Dynamic Programming for a Markov Decision Process (MDP)
 - State-action (s, a) defines probability p(s'|s, a) and reward R(s, a)
 - Finite state + discounted reward ⇒ stationary optimal policy

Starting from $x_1=0.2$, define $x_{n+1}=\cos(x_n)$ and plot the points (x_n,x_{n+1}) . Each point is connected to the slope-1 line to emphasize the path taken.

• Let X = [0,1] and define $f: X \to X$ via $f(x) = \cos(x)$

- Let X = [0,1] and define $f: X \to X$ via $f(x) = \cos(x)$
- cos([0,1]) = [cos(1),1] because cos(x) decreasing on $[0,\pi]$

- Let X = [0,1] and define $f: X \to X$ via $f(x) = \cos(x)$
- cos([0,1]) = [cos(1),1] because cos(x) decreasing on $[0,\pi]$
- Mean value theorem: f(y) f(x) = f'(t)(y x) for some $t \in [x, y]$

- Let X = [0,1] and define $f: X \to X$ via $f(x) = \cos(x)$
- cos([0,1]) = [cos(1),1] because cos(x) decreasing on $[0,\pi]$
- Mean value theorem: f(y) f(x) = f'(t)(y x) for some $t \in [x, y]$
- $f'(t) = -\sin(t)$ and $\sin([0,1]) = [0,\sin(1)]$ with $\sin(1) \approx 0.84$

- Let X = [0,1] and define $f: X \to X$ via $f(x) = \cos(x)$
- cos([0,1]) = [cos(1),1] because cos(x) decreasing on $[0,\pi]$
- Mean value theorem: f(y) f(x) = f'(t)(y x) for some $t \in [x, y]$
- $f'(t) = -\sin(t)$ and $\sin([0,1]) = [0,\sin(1)]$ with $\sin(1) \approx 0.84$
- $|\cos(y) \cos(x)| \le 0.85 |y x| \Rightarrow f(x)$ is a contraction on [0, 1]

- Let X = [0,1] and define $f: X \to X$ via $f(x) = \cos(x)$
- cos([0,1]) = [cos(1),1] because cos(x) decreasing on $[0,\pi]$
- Mean value theorem: f(y) f(x) = f'(t)(y x) for some $t \in [x, y]$
- $f'(t) = -\sin(t)$ and $\sin([0,1]) = [0,\sin(1)]$ with $\sin(1) \approx 0.84$
- $|\cos(y) \cos(x)| \le 0.85 |y x| \Rightarrow f(x)$ is a contraction on [0, 1]
- $x_{n+1} = \cos(x_n)$ converges to unique fixed point $x^* = \cos(x^*) \approx 0.739$

Definition

A metric space (X, d) is totally bounded if, for any $\epsilon > 0$, there exists a finite set of $B_d(x, \epsilon)$ balls that cover (i.e., whose union equals) X.

Definition

A metric space (X, d) is totally bounded if, for any $\epsilon > 0$, there exists a finite set of $B_d(x, \epsilon)$ balls that cover (i.e., whose union equals) X.

Definition

A metric space is compact if it is complete and totally bounded.

Definition

A metric space (X, d) is totally bounded if, for any $\epsilon > 0$, there exists a finite set of $B_d(x, \epsilon)$ balls that cover (i.e., whose union equals) X.

Definition

A metric space is compact if it is complete and totally bounded.

- Examples
 - ullet The closed interval $[0,1]\subset\mathbb{R}$ is compact
 - A subset of Euclidean \mathbb{R}^n is compact iff it is closed and bounded
 - But, the standard metric space of real numbers is not compact because it is not totally bounded.

Definition

A metric space (X, d) is totally bounded if, for any $\epsilon > 0$, there exists a finite set of $B_d(x, \epsilon)$ balls that cover (i.e., whose union equals) X.

Definition

A metric space is compact if it is complete and totally bounded.

- Examples
 - ullet The closed interval $[0,1]\subset\mathbb{R}$ is compact
 - ullet A subset of Euclidean \mathbb{R}^n is compact iff it is closed and bounded
 - But, the standard metric space of real numbers is not compact because it is not totally bounded.

Theorem

A closed subset A of a compact space X is itself a compact space.

Compactness and Sequences

Definition

Let $x_1, x_2, \ldots \in X$ be a sequence and $n_1, n_2, \ldots \in \mathbb{N}$ be a strictly increasing sequence. Then, x_{n_1}, x_{n_2}, \ldots is called subsequence.

Compactness and Sequences

Definition

Let $x_1, x_2, \ldots \in X$ be a sequence and $n_1, n_2, \ldots \in \mathbb{N}$ be a strictly increasing sequence. Then, x_{n_1}, x_{n_2}, \ldots is called subsequence.

Theorem

A sequence in a compact metric space has a subsequence that converges.

Compactness and Sequences

Definition

Let $x_1, x_2, \ldots \in X$ be a sequence and $n_1, n_2, \ldots \in \mathbb{N}$ be a strictly increasing sequence. Then, x_{n_1}, x_{n_2}, \ldots is called subsequence.

Theorem

A sequence in a compact metric space has a subsequence that converges.

Example

For the compact metric space $X=[-2,2]\subset\mathbb{R}$ with absolute distance, let $x_n=(-1)^n+\frac{1}{n}$. Then, subsequence x_2,x_4,x_6,\ldots converges to 1.

• Sketch proof on whiteboard in pictures

- Let us consider extreme values for sets of real numbers
 - Extended Real Numbers: $\overline{\mathbb{R}} \triangleq \mathbb{R} \cup \{\infty, -\infty\}$
 - Compact metric space with metric $d_{\mathbb{R}}(x,y) \triangleq \left| \frac{x}{1+|x|} \frac{y}{1+|y|} \right|$
 - " $x_n \to \infty$ " equivalent to " $\forall M>0, \, \exists N \in \mathbb{N}, \, \forall n>N, \, x_n>M$ "

- Let us consider extreme values for sets of real numbers
 - Extended Real Numbers: $\overline{\mathbb{R}} \triangleq \mathbb{R} \cup \{\infty, -\infty\}$
 - Compact metric space with metric $d_{\mathbb{R}}(x,y) \triangleq |\frac{x}{1+|x|} \frac{y}{1+|y|}|$
 - " $x_n \to \infty$ " equivalent to " $\forall M>0, \ \exists N \in \mathbb{N}, \ \forall n>N, \ x_n>M$ "

Definition

The supremum (or least upper bound) of $X \subseteq \mathbb{R}$, denoted sup X, is the smallest extended real number $M \in \overline{\mathbb{R}}$ such that $x \leq M$ for all $x \in X$.

- Let us consider extreme values for sets of real numbers
 - Extended Real Numbers: $\overline{\mathbb{R}} \triangleq \mathbb{R} \cup \{\infty, -\infty\}$
 - Compact metric space with metric $d_{\mathbb{R}}(x,y) \triangleq |\frac{x}{1+|x|} \frac{y}{1+|y|}|$
 - " $x_n \to \infty$ " equivalent to " $\forall M>0, \, \exists N \in \mathbb{N}, \, \forall n>N, \, x_n>M$ "

Definition

The supremum (or least upper bound) of $X \subseteq \mathbb{R}$, denoted sup X, is the smallest extended real number $M \in \overline{\mathbb{R}}$ such that $x \leq M$ for all $x \in X$.

Lemma (supremum sequence)

Let X be a metric space and $f: X \to \mathbb{R}$ be a function from X to the real numbers. Let $M = \sup f(A)$ for some non-empty $A \subseteq X$. Then, there exists a sequence $x_1, x_2, \ldots \in A$ such that $\lim_n f(x_n) = M$.

- Let us consider extreme values for sets of real numbers
 - Extended Real Numbers: $\overline{\mathbb{R}} \triangleq \mathbb{R} \cup \{\infty, -\infty\}$
 - Compact metric space with metric $d_{\mathbb{R}}(x,y) \triangleq |\frac{x}{1+|x|} \frac{y}{1+|y|}|$
 - " $x_n \to \infty$ " equivalent to " $\forall M > 0, \ \exists N \in \mathbb{N}, \ \forall n > N, \ x_n > M$ "

Definition

The supremum (or least upper bound) of $X \subseteq \mathbb{R}$, denoted $\sup X$, is the smallest extended real number $M \in \overline{\mathbb{R}}$ such that $x \leq M$ for all $x \in X$.

Lemma (supremum sequence)

Let X be a metric space and $f: X \to \mathbb{R}$ be a function from X to the real numbers. Let $M = \sup f(A)$ for some non-empty $A \subseteq X$. Then, there exists a sequence $x_1, x_2, \ldots \in A$ such that $\lim_n f(x_n) = M$.

Sketch proof on whiteboard

Definition

The maximum of $X \subseteq \mathbb{R}$, denoted max X, is the largest value achieved by the set. It equals the supremum if $\sup X \in X$ and is undefined otherwise.

Definition

The maximum of $X \subseteq \mathbb{R}$, denoted max X, is the largest value achieved by the set. It equals the supremum if $\sup X \in X$ and is undefined otherwise.

Example

 $X = [1,2) \subset \mathbb{R}$ has sup X = 2 and max X undefined.

For
$$f(x) = \frac{1}{2-x}$$
, $f(X) = [1, \infty)$ and sup $f(X) = \infty$.

Definition

The maximum of $X \subseteq \mathbb{R}$, denoted max X, is the largest value achieved by the set. It equals the supremum if $\sup X \in X$ and is undefined otherwise.

Example

 $X = [1,2) \subset \mathbb{R}$ has sup X = 2 and max X undefined.

For
$$f(x) = \frac{1}{2-x}$$
, $f(X) = [1, \infty)$ and sup $f(X) = \infty$.

- Infimum: inf $X = -(\sup -X)$, where $-X = \{x \in \mathbb{R} \mid -x \in X\}$
- Minimum: $\min X = -(\max -X)$, if it exists
- ullet supremum and infimum always well-defined but may equal $\pm\infty$

Definition

The maximum of $X \subseteq \mathbb{R}$, denoted max X, is the largest value achieved by the set. It equals the supremum if $\sup X \in X$ and is undefined otherwise.

Example

 $X = [1,2) \subset \mathbb{R}$ has sup X = 2 and max X undefined.

For
$$f(x) = \frac{1}{2-x}$$
, $f(X) = [1, \infty)$ and sup $f(X) = \infty$.

- Infimum: inf $X = -(\sup -X)$, where $-X = \{x \in \mathbb{R} \mid -x \in X\}$
- Minimum: $\min X = -(\max -X)$, if it exists
- ullet supremum and infimum always well-defined but may equal $\pm\infty$

Theorem

Any bounded non-decreasing sequence of real numbers converges to its supremum.

Sequences of Functions

Let (X, d_X) and (Y, d_Y) be metric spaces and $f_n: X \to Y$ for $n \in \mathbb{N}$ be a sequence of functions mapping X to Y.

Definition

The sequence f_n converges pointwise to $f: X \to Y$ if, for all $x \in X$,

$$\lim_{n\to\infty}f_n(x)=f(x)$$

Definition

The sequence f_n converges uniformly to $f: X \to Y$ if

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n > N, \forall x \in X, d_Y(f_n(x), f(x)) < \epsilon.$$

Theorem

If each f_n is continuous and f_n converges uniformly to $f: X \to Y$, then f is continuous.

Two Important Results

Theorem

Let X be a metric space and $f: X \to \mathbb{R}$ be a continuous function from X to \mathbb{R} . If A is a compact subset of X, then there exists $x \in A$ such that $f(x) = \sup f(A)$ (i.e., f achieves a maximum on A).

Theorem

Let (X, d) be a compact metric space and $C_b(X)$ be the set of bounded continuous functions mapping X to \mathbb{R} . If we define the metric

$$d_{\infty}(f,g) = \max_{x \in X} |f(x) - g(x)|$$

on $C_b(X)$, then it becomes a complete metric space.