Using Speech Community Data as Phonological **Evidence**

Josef Fruehwald

University of Pennsylvania

September 16, 2011 Penn State, The Center for Language Science

Outline

Introduction

Motivations

Goals

Data

Phonology-Phonetic Interface

Universal Phonetic Implementation

Exemplar Theory

Language Specific Phonetics

Identifying Phonological Processes

Utilizing Data on Phonetic Change

Philadelphia /ey/

The Unique View of Diachrony

Conclusion

Motivations

Phonological Context

"Classic" Evidence

- Alternations / Static Distributions.
- Drawn from introspection / Small number of informants.

LabPhon

- Experimental Measures (acoustic, articulatory, judgments).
- Drawn from standard pools of experimental subjects.
- Frequently expressing concerns about the validity of Classic phonological evidence.

Motivations

Sociolinguistic Context

Linguistic Theory

- Variable Rules
- Lexical Phonology (Guy, 1991a;b)
- Exemplar Theory (Bybee, 2002)

Variation Theory

- What is changing where, and how?
- What can influence variation?

Social Theory

How does one construct and project their identity?

Motivations

Using Variation for Phonological Argument

Andries Coetzee

- \sim Frequency biases in phonological variation, *NLLT* (w/ Shigeto Kawahara)
- The place of variation in phonological theory, The Handbook of Phonological Theory. 2nd Edition (w/ Joe Pater)

 \sim . . .

Ricardo Bermúdez-Otero

- \sim Cycles and continua: on unidirectionality and gradualness in language change $\it Handbook$ on the history of English (w/ Graeme Trousdale)
- 2007 Diachronic phonology The Cambridge handbook of phonology

Goals

- Identify how sociolinguistic data can be used for phonological theory building.
- Identify how sociolinguistic data can be used for identifying and specifying phonological phenomena.
- Identify the ways in which sociolinguistic data achieves these goals uniquely.

Data Sources

Philadelphia Corpus

Automatically extracted vowel measurements from 272 Philadelphia speakers interviewed between 1973 and 2010. Dates of birth ranging from 1888 to 1991.

Atlas of North American English

Acoustic vowel measurements from survey respondents in the Atlas of North American English.

Sociolinguistic Literature

Various accounts of sound change in progress from the sociolinguistic literature.

Philadelphia Corpus FAAV Project

Forced Alignment and Automatic Vowel analysis

Labov & Rosenfender (2011) NSF# 921643

Outline

Phonology-Phonetic Interface

Universal Phonetic Implementation

Exemplar Theory

Language Specific Phonetics

Options

- Universal Phonetic Implementation
- Langauge Specific Phonetic Implementation
- Exemplar Theory

Linking Hypothesis

All I have to work with is phonetic measurements, so settling on a PH-interface model is crucial in order to make any connection to phonological theory at all.

•00 000000 000

Phonology-Phonetic Interface Continuous Change

Phonology-Phonetic Interface Continuous Change

Options

- Universal Phonetic Implementation
- Langauge Specific Phonetic Implementation
- Exemplar Theory

Phonology-Phonetic Interface Category Shifts

The parallel fronting of /uw/, /ow/ and /aw/ in North America,

Labov, Ash & Boberg (2006)

Phonology-Phonetic Interface **Category Shifts**

Canadian Shift

Boberg (2005) Durian (2009)

Phonology-Phonetic Interface **Category Correlation**

Correlation of Philadelphia Vowels

- For the vowel means for each speaker, I calculated the correlations for every pairwise vowel comparison across speakers, once for F1, once for F2.
- For each pairwise comparison, I also coded for whether the two vowels also shared phonological specifications for height (3 degrees) or backness (2 degrees).

Category Correlation

Phonology-Phonetic Interface Category Correlation

Correlation of Philadelphia Vowels

- This result is suggestive that inter-speaker phonetic variation (due to change or any other reason) is relatable to phonological features, not just atomic phonemes.
- May also be used as a phonological diagnostic.
 - The above analysis categorized /ow/ and /uw/ as [-back], since they are undergoing a change of fronting.
 - What would it look like of they were categorized as [+back]?

000000000

Phonology-Phonetic Interface Category Correlation

Options

- Universal Phonetic Implementation
- Langauge Specific Phonetic Implementation
- Exemplar Theory

Cohn, 1993; Zsiga, 2000

In phonetic change...

- The phonological representation remains stable (ish).
- The phonetic implementation of the phonological representation changes.

Outline

Introduction

Motivations

Goals

Data

Phonology-Phonetic Interface

Universal Phonetic Implementation

Exemplar Theory

Language Specific Phonetics

Identifying Phonological Processes

Utilizing Data on Phonetic Change Philadelphia /ey/

The Unique View of Diachrony

Conclusion

Identifying Phonological Processes

Identifying Phonological Processes

Follow

- Phonological Unity → Phonetic Unity
- ¬Phonetic Unity → ¬Phonological Unity

Don't follow (but likely)

- * Phonetic Unity → Phonological Unity
- * ¬Phonological Unity → ¬Phonetic Unity

Philadelphia /ey/

- The peripheralization of /ey/ in non-word-final contexts was identified as a new and vigorous change in progress (Labov, 2001).
- The primary distinction that has been made is word final /ey/ versus other.
 - pay [pει]
 - make [meik]

Philadelphia /ey/

Questions

- Are any other syllabic structures relevant?
- Are there any other phonological effects?
- How does it interact with morphology? (i.e. How does pays behave?)

Philadelphia /ey/

Questions

- Are any other syllabic structures relevant?
- Are there any other phonological effects?
- How does it interact with morphology? (i.e. How does pays behave?)

0000000000000

Philadelphia /ey/

- 4 syllable types
 - 1. Open
 - 2. Closed
 - 3. Final
 - 4. Hiatus
- Surface and "Underlying" Syllabification
- 5 Morphological Contexts
 - 1. Null pay
 - 2. Inflectional pays
 - 3. Derivational payment
 - 4. Compounding paycheck
 - 5. Contraction they'd

Philadelphia /ey/

		Underlying			
		Closed	Open	Hiatus	Final
Surface	Closed Open Hiatus Final	came later –	– neighborhood – –	– – mayor –	days playground saying they

Philadelphia /ey/ Syllabic Context

First, only words with the same surface and "underlying" syllabification.

Philadelphia /ey/ Syllable Results

formula: Diag \sim (DOB/10) * Syllable + (Syllable | Speaker)

reference level: closed

	Estimate	t-value
Intercept	0.57	11.1
DOB	0.11	12.6
open	-0.14	-2.9
final	-0.04	-0.7
hiatus	-0.21	-0.6
$\begin{array}{c} DOB \times \ open \\ DOB \times \ final \\ DOB \times \ hiatus \end{array}$	0.02 -0.08 -0.16	2.9 -9.1 -2.6

Slope Estimates closed 0.11=0.11 open 0.13=(0.11+0.02) final 0.03=(0.11-0.08) hiatus -0.05=(0.11-0.16)

Segmental Context

Following segment for closed and open syllables.

Philadelphia /ey/

Manner Results

formula: Diag \sim (DOB/10) * Manner + (Manner | Speaker)

reference level: stop

	Estimate	t-value
Intercept	0.56	10.9
DOB	0.11	13.2
fricative	-0.08	-1.3
nasal	-0.03	-0.5
lateral	0.38	2.8
$DOB{ imes}fricative$	0.02	1.5
$DOB{ imes}nasal$	0.00	0.2
$DOB{\times}lateral$	-0.09	-3.8

Slope Estimates

Slope Estillates				
stop	0.11 = 0.11			
fricative	0.13 = (0.11 + 0.02)			
nasal	0.11 = (0.11 + 0.00)			
lateral	0.02 = (0.11 - 0.09)			

Philadelphia /ey/ Interim Description

Non-undergoers	Undergoers
Word-final Pre-hiatus Pre-/I/	Everything Else

Options

- Undergoers and Non-undergoers are phonemically distinct.
- There is an active phonological process which differentiates undergoes and non-undergoers.

Philadelphia /ey/ Morphological Interaction

What effect does inflectional morphology have on otherwise word final /ey/?

Philadelphia /ey/

Morphological Results

formula: Diag \sim (DOB/10) * Morphology + (Morphology |

Speaker)

reference level: Null

	Estimate	t-value
Intercept	0.52	12.2
DOB	0.03	4.2
-ed	-0.09	-0.8
-S	-0.12	-1.3
-ing	-0.46	-3.7
DOB imes-ed	0.05	2.7
$DOB{ imes}-s$	0.11	6.8
$DOB \times -ing$	-0.04	-2.2

Slope Estimates

final	0.03 = 0.03
-ed	0.08 = (0.03 + 0.05)
-S	0.15 = (0.03 + 0.02)

-ing
$$-0.01 = (0.03 - 0.04)$$

Philadelphia /ey/

All unaffixed, or affixed inflectional morphology in 4 contexts: Word-final, Pre-hiatus, Pre-l, and elsewhere.

Philadelphia /ey/ Phonological Description

Phonological Process

$$\mathsf{ey} \to [+\mathsf{peripheral}]/__C.\mathinner\ldotp\ldotp]_{\mathit{word}}$$

Phonetic Change

- 1. $ey_{+periph} \rightarrow 0.1$ peripherality
- 2. $ey_{+periph} \rightarrow 0.2$ peripherality
- 3. . . .

Phonetic Alignment

- [eyl] → more peripheral
- $[ey#] \rightarrow less peripheral$

Philadelphia /ey/ Phonological Description

Phonological Process

$$\mathsf{ey} \to [+\mathsf{peripheral}]/__C...]_{\mathit{word}}$$

/I/ is not a C?

- /I/ undergoes extreme vocalization in Philadelphia. (Ash, 1982)
 - Intervocalically (balance)
 - Initial Clusters (floor)
- Triggers offglide deletion in /aw/.
 - Powel = pal

The Unique View of Diachrony

Would a study without a view of the changing state of the speech community have come to the same conclusions?

The Unique View of Diachrony

If you had done a study of college aged Philadelphians in 2002, this is what you would have seen.

The onique view of Diacinony

If you had done a study of Philadelphians aged 18 to 70 in 2002, this is what you would have seen.

Outline

Introduction

Motivations

Goals

Data

Phonology-Phonetic Interface

Universal Phonetic Implementation

Exemplar Theory

Language Specific Phonetics

Identifying Phonological Processes

Utilizing Data on Phonetic Change

Philadelphia /ey/

The Unique View of Diachrony

Conclusion

Conclusion

Details

- The data on phonetic variation and change support a model of language specific phonetic implementation along with fairly abstract phonological categories.
- There is a process of peripheralization of /ey/ in Philadelphia which is triggered by a following segment within the same word.
- /I/ does not act as a trigger to this process.

Conclusions

- Sociolinguistic data can be used for phonological theory building.
- Sociolinguistic data can be used for identifying and specifying phonological phenomena.
- Sociolinguistic data can achieves these goals uniquely.

Thanks

Special thanks to...

William Labov, Ingrid Rosenfelder, Gene Buckley, Mark Liberman, Meredith Tamminga, Ricardo Bermúdez-Otero, Andries Coetzee, the denizens of the Upenn Sociolab, regular attendees of Splunch and the Common Ground seminars, and the audiences at NAPhC and MFM.

This work supported by...

A Benjamin Franklin Fellowship
An NSF IGERT Trainee Fellowship (#0504487)

References

Durian, D., 2009. Purely a chain shift?: An exploration of OCanadian ShiftO in the US Midland. Paper presented at NWAV 38.

Boberg, C., 2005. The Canadian shift in Montreal, Language Variation and Change, 17:133-154

Boersma, P. & Hamann, S., 2008. The evolution of auditory dispersion in bidirectional constraint grammars. Phonology, 25(2):217-270

Bybee, J., 2002. Word frequency and context of use in the lexical diffusion of phonetically conditioned sound change. Language Variation and Change, 14:261-290

Cohn, A., 1993. Nasalisation in English: Phonology or Phonetics. Phonology, 10(1):43-81

Guy, G., 1991. Explanation in variable phonology: An exponential model of morphological constraints. Language Variation and Change, 3(1):1-22

Kingston, J. & Diehl, R. L., 1994. Phonetic knowledge. Language, 70(3):419-454

Labov, W., 2001. Principles of linguistic change. Volume 2: Social Factors. Language in Society. Blackwell, Oxford

Labov, W., Ash, S., & Boberg, C., 2006. The Atlas of North American English. Phonetics, Phonology and Sound Change. Mouton de Gruyter, Berlin

Labov, W. & Rosenfelder, I., New tools and methods for very large scale measurements of very large corpora. Paper presented at the New Tools and Methods for Very-Large-Scale Phonetics Research Workshop.

Zsiga, E., 2000. Phonetic alignment constraints: consonant overlap and palatalization in english and russian. Journal of Phonetics, 28:69-102