Drivers of tree species richness in **New Caledonian rainforests:** Beta- but not alpha-diversity makes them exceptional Thomas Ibanez (ibanez@iac.nc) E. Blanchard, V. Hequet, R. Pouteau, H. Vandrot & P. Birnbaum Laboratory of botany and applied ecology (NOUméa herbarium)

ATBC2015: Resilience of island systems Biological diversity and climate change

Climate change in tropical islands

Lots of uncertainty in the nature and extent of changes « Small » and « medium » islands do not exist in global mod High elevation islands influence local climate (e.g. New Caledonia)

Mont Panié (1628 m), New Caledonia archipelago (SW

Climate change in New Caledonia What do we expect?

Climate change in New Caledonia How to better manage & conserve diversity?

Let's start from the beginning, We have to understand present diversity patterns

Patterns between diversity and elevation gradients Powerful « natural experiments » for testing the response to environnemental changes (Köner 2007)

New Caledonia (a biodiversity hotspot)
An insightful lab to study ecological patterns

The environmental heterogeneity esis

Biodiversity Letters (1993) 1, 82-87

BIODIVERSITY RESEARCH

The relationship between ecological diversity and floristic diversity in New Caledonia

T. JAFFRÉ Centre ORSTOM, B.P. A 5, Nouméa, New Caledonia

The environmental heterogeneity hypothesis

Biodiversity Letters (1993) 1, 82–87

BIODIVERSITY RESEARCH

T. JAFFRÉ Centre ORSTOM, B.P. A 5, Nouméa, New Caledonia

The environmental heterogeneity hypothesis

Biodiversity Letters (1993) 1, 82–87

BIODIVERSITY RESEARCH

The relationship between ecological diversity and floristic diversity in New Caledonia

T. JAFFRÉ Centre ORSTOM, B.P. A 5, Nouméa, New Caledonia

 $\approx 1/3$ of the main island

à Low levels of macronutrients (P, Ca, K)

à High levels of potentially phytotoxic elements (Ni, Cr, Mn)

The environmental heterogeneity hypothesis

Biodiversity Letters (1993) 1, 82-87

BIODIVERSITY RESEARCH

T. JAFFRÉ Centre ORSTOM, B.P. A 5, Nouméa, New Caledonia

"Need for standardized plant survey to better understand these drivers" (T. Jaffré 1993)

« Small » and « large » plots to explore large-scale variability

Geographical and environmental distribution of plots

- « Small » vs « Large » plots
- « Small » plots = faster species accumulation (x2)
- « Large » plots = more reliable species communities


```
« Small » + « large plots »
≈ 20 000 trees (DBH ≥ 10 cm)
```

~ 20 000 trees (DBH ≥ 10 CH

= 636 tree species

Species abundance A usual oligarchic dominance

Plant inventory

Compilation of tree occurrence for each tree species inventoried in the plot network

New Caledonia vs. Tropics An unusual tree density per hectare, a relatively low richness

Islands vs. continents
High density and low richness vs. low density and high richness?

Species richness standardization: Plot area or number of stems?

Species richness standardization: Plot area or number of stems?

Standardized by area

Standardized by area vs. by the number of individuals

High species turnover between ultramafic and non-ultramafic Species turnover decreases with elevation

Gamma diversity decrease at higher elevation / rainfalls

Drivers of tree species diversity Synthesis and perspectives

Alpha diversity relatively low despite an unusual tree density (<100 species for about 1000 individuals)

High beta-diversity (inter-plot dissimilarities > 70 %)

Alpha and gamma diversity decrease at higher elevation But beta diversity increase

- à Less rich but specific high elevation flora
- à Response of communities to warming?

Alternative hypothesis

Spacial constrainst, not climatic constraints drive diversity patterns?

Alternative hypothesis

Spatial constraints correlated to elevation Forest area, connectivity, fragmentation, habitat loss

