2A - L1 images as functions

2017/11/02 15:21

- Sum
- one image is a function
- manipulation of the image through the matrix
 - add, multiply, subtract, blend, crop
- display the image
 - imshow, plot
- Octave/matlab functions
 - imread, imshow, hist,
- noise
 - Gaussian noise
 - sigma
- <u>2. Images as Functions</u> mathematical view
 - \circ One image can be regarded as a function. I(x, y), the value of the light intensity
 - can be shown in matlab
 - function grey scaled
 - mapping: $R \times R \rightarrow R$
 - f: [a, b] x [c, d] \rightarrow [min, max]
 - each (x, y) corresponding to a value i

Images as functions

We think of an image as a *function*, f or I, from \mathbb{R}^2 to \mathbb{R} :

f(x, y) gives the intensity or value at position (x, y)

Practically define the image over a rectangle, with a finite range:

 $f: [a,b] \times [c,d] \rightarrow [min,max]$

- function colored
 - mapping: $R \times R \rightarrow R \times R \times R$
 - f: [a, b] x [c, d] \rightarrow [min, max] x [min, max] x [min, max]
 - each (x, y) corresponding to a vector (r, g, b)
 - ullet each channel can be taken out alone as a r/g/b plane to be processed

```
A color image is just three functions "stacked" together. We can write this as a "vector-valued" function: f(x,y) = \begin{bmatrix} r(x,y) \\ g(x,y) \\ \end{bmatrix}
```

• #we do in grey scale images, it's easier cuz it only has one channel

• <u>8. Digital Images</u>

- It's the discrete-valued image. so we require two discretions: Sample and Quantize
 - ATT: when computing, regard the value as floating point
 - # pixel : an image element

In computer vision we typically operate on digital (discrete) images:

Sample the 2D space on a regular grid

Quantize each sample (round to "nearest integer")

- Image thus represented as a matrix of integer values.
 - matlab typically with interger values
 - index
 - \bullet x, y used in math, x is along the column, y is along the row
 - i, j used in computation, i is along the row, j is along the column
 - 1 D signals are just represented as vectors
- 9. Quiz: Compute Image Size Quiz
 - image size = #row x #column x #channel #value size
- 10. Matlab Images are Matrices
 - Matlab Images are Matrices, (r, c, rgb), so that you can manipulate them as matrices.
- 12. Load and Display an Image
 - o imread('xx.xxx')
- 14. Quiz: Image Size and Data Type Quiz
 - size
 - size()

- class type
 - e.g. uint8
 - u: unsigned means only non-negative value
 - int: integer
 - 8: 8 bits, 1 byte

•

• <u>15. Inspect Image Values</u>

- as to access matrix
 - but to show a row/column, better to use plot(img(1, :))
- 18. Crop an Image
 - to take a big part of the image
 - for index, both the start and end row/column are included
- 21. Color Planes
 - im images, bright area represents higher values, while dark area represents lower values.
- 23. Add 2 Images Demo
 - img [0, 255], when the value exceeds, round to 255;
 - \circ Octave rounds the value to the nearest integer for uint8, 1.5 => 2
 - add
 - \circ average: $\langle 2 \rangle$ +; not + => $\langle 2 \rangle$
- 25. Multiply by a Scalar Demo
- <u>26. Quiz: Blend 2 Images</u>
 - Rule: keep the sum of the weights equal to 1; the bigger the weight, the more the effect of this image.
- <u>27. Common Types of Noise</u>
 - $\circ \eta (x, y)$
 - salt and pepper noise: random occurrences of black and white pixels
 - Impulse noise: random occurrences of white pixels
 - Gaussian noise -- most common
 - variations in intensity drawn from a Gaussian normal distribution
 - rand(size(img)) .* sigma
 - zero mean, sigma standard deviation
 - imgnew = img + noise
- <u>28. Image Difference Demo</u>
 - directly substract may lose some values, since unit8 is [0, 255];
 - so use imabsdiff(a, b) order doesn't matter

• 30. Generate Gaussian Noise

- o e.g.
 - noise = randn(1, 10000);
 - noise2 = noise .*2;
 - std(noise)
 - % noise2 has doubled standard deviation of noise
 - because the GD represents the distribution the number of values in certain bin rather than the values themselves.
- when add the noise to certain signal, what should be the concern is the noise magnitude compared to image magnitude. that's the effect of the sigma

• <u>35. Displaying Images in Matlab</u>

- determine how to show the image
 - imshow(im)
 - original range
 - imshow(im, [low, high])
 - rescaled, low represents the darkest black, high represents the whitest white
 - imshow(im, [])
 - rescaled, low is the min, high is the max in the original image

ATT

• only the display may require rescale, never the computation