1. Пределы. Непрерывность

1. Дана функция
$$y = \frac{2x}{x-1}$$
. Найти $y(0), y(2), y(-x), y(x + \Delta x)$.

Существует ли y(1)? Найти область определения; множество значений функции; интервалы знакопостоянства; нули функции; интервалы возрастания и убывания; указать, является ли функция ограниченной.

2. Дана функция
$$f(x) = \frac{3x+1}{3-2x^2}$$
. Найти $f(1), f(-1), f(-x), f(\frac{1}{x})$.

3. По графику функции найти: область определения; множество значений; интервалы знакопостоянства; интервалы возрастания и убывания; нули функции; указать, является ли функция ограниченной; охарактеризовать поведение функции при $x \to 2, x \to \pm \infty$.

ნ)

4. Найти точки пересечения графика с осями абсцисс и ординат, интервалы знакопостоянства функций:

a)
$$y = 4x - x^3$$

6)
$$y = \frac{1+x}{1-x}$$

B)
$$y = \lg(x^2 - 9);$$

a)
$$y = 4x - x^3;$$
 6) $y = \frac{1+x}{1-x};$ **B)** $y = \lg(x^2 - 9);$ **r)** $y = \sqrt{x^2 + 2x - 8}.$

5. Исследовать на четность и нечетность фунции:

a)
$$y = x^4 + 2\cos x$$
;

6)
$$y = x^2 - 4x + 3$$
;

$$\mathbf{B)} \ \ y = x - \sin x;$$

$$\mathbf{r)} \ \ y = \frac{3^x + 3^{-x}}{2};$$

д)
$$y = x2^{-x^2}$$
;

e)
$$y = \frac{2^x}{2^x + 1}$$
;

$$\mathbf{w)} \ \ y = \frac{\sin x}{x};$$

3)
$$y = x^2 \operatorname{tg} x - 3x$$
;

u)
$$y = \frac{e^x - e^{-x}}{2}$$
;

K)
$$y = \sqrt[3]{(1+x)^2} + \sqrt[3]{(1-x)^2}$$
.

6. Продолжить график функции до четной, нечетной функции на промежутке [-a;a]:

ნ)

7. Определить, какие из данных функций являются периодическими и найти их наименьший период:

$$a) y = \sin x + \sin 2x;$$

6)
$$y = x^2 \cos x$$
;

B)
$$y = 2 \operatorname{tg} \frac{x}{2} - 3 \operatorname{tg} \frac{x}{3};$$

$$\mathbf{r)} \ \ y = \cos^2 x.$$

8. Найти область определения функций:

a)
$$y = \frac{x^2}{4+x}$$
;

6)
$$y = \sqrt{3x - x^2}$$
;

B)
$$y = \lg(x^2 - 4);$$

r)
$$y = \frac{1}{\sqrt{9-x^2}}$$
;

д)
$$y = \log_2 |x|$$
;

e)
$$y = \arcsin \frac{x}{5}$$
.

ж)
$$y = \arccos \frac{2x}{1+x}$$
;

$$3) \quad y = \sqrt{\lg \sin x};$$

u)
$$y = \sqrt{3-x} + \arcsin \frac{3-2x}{5}$$
;

K)
$$y = \sqrt{\lg \frac{5x - x^2}{4}}$$
.

9. Построить графики функций:

a)
$$y = x^2 - 6x + 5$$
, $y = |x^2 - 6x + 5|$;

6)
$$y = -3x^2 - 5x + 2$$
, $y = -3x^2 - 5|x| + 2$;

B)
$$y = 5^x$$
, $y = 5^{x+2} - 1$;

2)
$$y = \left(\frac{1}{2}\right)^x + 1$$
, $y = \left(\frac{1}{2}\right)^{x-3}$;

a)
$$y = \log_5 x$$
, $y = \log_5 (x - 4)$;

e)
$$y = \log_{1/2} x$$
, $y = \log_{1/2} x + 4$;

ж)
$$y = 5x - 2$$
, $y = 5|x| - 2$, $y = |5x - 2|$, $y = |5|x| - 2|$;

3)
$$y = x^2 - 8x + 12$$
, $y = x^2 - 8|x| + 12$, $y = |x^2 - 8|x| + 12|$;

u)
$$y = \log_5 x$$
, $y = |\log_5 x|$, $y = \log_5 |x|$;

K)
$$y = \log_{1/5} x$$
, $y = \log_{1/5} (x-1)$, $y = \log_{1/5} x + 2$;

$$\mathbf{J}$$
) $y = \sin x$, $y = |\sin x|$, $y = \operatorname{tg} x$.

10. Построить графики и найти указанные значения функций:

$$\underline{\mathbf{a}} \ f(x) = \begin{cases} 1 + x, & -\infty < x \le 0, \\ 2^x, & 0 < x < +\infty; \end{cases} f(-2), f(0), f(1) - 2$$

a)
$$f(x) = \begin{cases} 1+x, & -\infty < x \le 0, \\ 2^x, & 0 < x < +\infty; \end{cases}$$
 $f(-2), f(0), f(1) - ?$
a) $f(x) = \begin{cases} -x, & -\infty < x \le -2, \\ 2, & -2 < x \le 1, \\ x^2 + 2, & 1 < x < +\infty; \end{cases}$ $f(-3), f(1), f(5) - ?$
a) $f(x) = \begin{cases} 1-x^2, & x \le 0, \\ 4^x, & x > 0; \end{cases}$ $f(-1), f(0), f(2) - ?$

$$\underline{\boldsymbol{g}} f(x) = \begin{cases} 1 - x^2, & x \le 0, \\ 4^x, & x > 0; \end{cases} f(-1), f(0), f(2) - ?$$

11. Найти u = u(x), если

a)
$$y = x^2$$
, $z = \sin y$, $u = \lg z$; **6)** $y = \lg x$, $z = 2^y$, $u = \sqrt{z+1}$.

12. Функция y(x) задана в неявном виде. Записать функцию в явном виде y = f(x); найти область определения и множество значений функции; построить ее график:

a)
$$xy - y - 1 = 0$$
;

6)
$$x^2 + y^2 - 4x = 0$$
, $y \ge 0$;

B)
$$10^{xy} = 0.001$$
;

$$\Gamma$$
) $\lg x + \lg (y+3) = 1$.

13. Функция y(x) задана в параметрическом виде. Исключить параметр *t* и построить график функции:

$$\mathbf{a)} \begin{cases} x = 3t - 3, \\ y = 2t + 4; \end{cases}$$

$$\begin{cases} x = 2t, \\ y = 6t - t^2; \end{cases}$$
 B)
$$\begin{cases} x = t^2, \\ y = 3t^2; \end{cases}$$

$$\mathbf{B} \begin{cases} x = t^2, \\ v = 3t^2; \end{cases}$$

$$\Gamma) \begin{cases} x = 4\cos t, \\ y = 4\sin t, \end{cases} \quad t \in [0; \pi];$$

$$(y = 3t)$$
; $(y = 3t)$; $(y$

14. Построить график периодической с периодом T=2 функции, которая задается формулой:

a)
$$y = x^3 - 1$$
, $x \in [0; 2]$;

6)
$$y = 1 - x^2$$
, $x \in [-1;1]$.

15. Доказать, что f(x) + f(-x) - четная функция, а f(x) - f(-x) - нечетная. Представить $y = a^x$ в виде суммы четной и нечетной функций.

16. Построить график функции $y = \frac{1}{2}(|f(x)| - f(x))$, если известен график функции y = f(x).

17. Написать параметрические уравнения:

- **a)** линии $x^{2/3} + y^{2/3} = a^{2/3}$;
- **б)** окружности радиуса R с центром в точке (a;b).

18. По виду графика найти указанные пределы:

$$\lim_{x \to 3-0} f(x) = ?$$

$$\lim_{x \to 3+0} f(x) = ?$$

$$\lim_{x \to 3} f(x) = ?$$

$$\lim_{x \to 3} f(x) = ?$$

19. Привести пример графика функции, для которого выполняются следующие условия:

a)
$$\lim_{x \to 1} f(x) = 0$$
, $\lim_{x \to \pm \infty} f(x) = +\infty$;

6)
$$\lim_{x \to -\infty} f(x) = -3$$
, $\lim_{x \to 2} f(x) = -\infty$, $\lim_{x \to +\infty} f(x) = -\infty$;

$$\mathbf{B}) \lim_{x \to -\infty} f(x) = -\infty, \lim_{x \to 0} f(x) = \infty, \lim_{x \to +\infty} f(x) = 0;$$

$$\Gamma) \lim_{x \to -\infty} f(x) = 4, \lim_{x \to 1-0} f(x) = 2, \lim_{x \to 1+0} f(x) = 5, \lim_{x \to +\infty} f(x) = +\infty;$$

д)
$$\lim_{x \to -\infty} f(x) = 0$$
, $\lim_{x \to 1-0} f(x) = -3$, $\lim_{x \to 1+0} f(x) = +\infty$, $\lim_{x \to +\infty} f(x) = 2$;

e)
$$\lim_{x \to \pm \infty} f(x) = 2$$
, $\lim_{x \to 1} f(x) = 0$, $f(1) = 3$.

В задачах 20 – 45 найти предел функции.

20.
$$\lim_{x\to 3} (3x^2 - 2x + 1)$$
.

21.
$$\lim_{x \to 1} (5x^2 + 2x + 3)$$
.

22.
$$\lim_{x \to -1} (x+1)^3 (x+2)$$
.

23.
$$\lim_{x \to -2} (x+1)^5 (x+2)$$
.

24.
$$\lim_{x\to\infty} (3x^2 + 4x - 1)$$
.

25.
$$\lim_{x\to\infty} (4x^2 - 2x - 3)$$
.

26.
$$\lim_{x \to 9} \frac{2x^2 + 1}{\sqrt{x} - 3}.$$

27.
$$\lim_{x\to 4} \frac{\sqrt{x}+1}{\sqrt{x}-2}$$
.

28.
$$\lim_{x\to\infty} \frac{3}{x^2+5}$$
.

29.
$$\lim_{x\to\infty} \frac{5}{2x^2+5x-1}$$
.

30.
$$\lim_{x \to 1 \pm 0} \frac{x}{x-1}$$
.

31.
$$\lim_{x \to -2 \pm 0} \frac{x}{(x+2)^2}$$
.

32.
$$\lim_{x\to 0} f(x)$$
, если $f(x) = \begin{cases} 3^x, & x \le 0, \\ 2x+1, & x > 0. \end{cases}$

33.
$$\lim_{x \to 1} f(x)$$
, если $f(x) = \begin{cases} x^2 - 1, & x \le 1, \\ \lg x, & x > 1. \end{cases}$

34.
$$\lim_{x\to\infty} \frac{x^3-2x+3}{2x^3+5x^2+1}$$
.

35.
$$\lim_{x \to \infty} \frac{x^3 + 2x}{x^2 - 3x + 4}.$$

36.
$$\lim_{x \to \infty} \frac{1 - 3x^2}{2x^2 + x - 4}.$$

$$\underline{37.} \lim_{x \to \infty} \frac{3x^2 - 2x + 3}{x^3 + x + 4}.$$

38.
$$\lim_{x\to\infty} \frac{x^5-2x}{2x^4+x^2+1}$$
.

39.
$$\lim_{x \to \infty} \frac{x^3 + 2x}{x^4 - 3x^2 + 4}.$$

40.
$$\lim_{x \to \infty} \frac{x^3 - 3x + 1}{2x^3 + x^2 - 2}.$$

$$\underline{41.} \lim_{x \to \infty} \frac{5x^3 + 2}{x^3 - x^2 + x}.$$

$$\underline{42.} \lim_{x \to \infty} \frac{x-2}{x^2 + 4x - 7}.$$

43.
$$\lim_{x \to \infty} \frac{x^3 + 2x - 3}{x - 4}.$$

44.
$$\lim_{x \to \infty} \frac{x^2 + 3}{x^3 - 27}.$$

$$45. \lim_{x \to \infty} \frac{x^4 - x^2 + 3}{3x + 2}$$

$$\underline{46.} \lim_{x \to \infty} \frac{\sqrt{1 + 4x^4} + x^2}{2x^2 + 1}.$$

$$47. \lim_{x \to \infty} \frac{\sqrt[3]{3x^5 + 2} + 3x}{x + 1}.$$

$$\underline{48.} \lim_{x \to \infty} \frac{3x^2 + \sqrt[3]{x^5 - 10}}{4x^2 - \sqrt{9x^4 - 3}}.$$

$$49. \lim_{x \to \pm \infty} \frac{5x + \sqrt{x^2 - 10}}{\sqrt[3]{x^3 + 2x + 6}}.$$

$$\underline{50.} \lim_{x \to \pm \infty} \frac{7^x + 2^x}{7^x - 5^x}$$

$$\underline{51.} \lim_{x \to \pm \infty} \frac{4^x - 3^x}{2^x + 5^x}.$$

<u>52.</u> При каких значениях a и b предел $A = \lim_{x \to \infty} \frac{ax^3 - 2x^2 + 3}{bx^3 + 5x + 1}$ равен:

a) A = 1; **6)** $A = \infty$; **B)** A = 0?

53. При каких значениях a и b предел $A = \lim_{x \to \infty} \frac{ax^3 + bx^2 + 3}{2x^2 + 5x + 1}$ равен:

a) A = 3; **6)** $A = \infty$; **B)** A = 0?

54. При каких значениях a и b предел $A = \lim_{x \to \infty} \frac{ax^3 + 3x - 2}{bx^2 + x - 5}$ равен:

a) A = 3; **6)** $A = \infty$; **B)** A = 0?

<u>55.</u> При каких значениях a и b предел $A = \lim_{x \to \infty} \frac{x^2 + 4x - 1}{ax^3 + bx^2 + 8}$ равен:

a) A = -1; б) $A = \infty$; в) A = 0?

В задачах 56 – 177 найти предел функции.

$$\underline{\mathbf{56.}} \lim_{x \to 1} \frac{x^2 + 2x - 3}{x^2 + x - 2}.$$

58.
$$\lim_{x \to 3} \frac{x^2 - 7x + 12}{x^2 - 8x + 15}.$$

60.
$$\lim_{x\to -2} \frac{2x^2+3x-2}{3x^2+5x-2}$$
.

$$\underline{62.} \lim_{x \to 2} \frac{8 - 2x - x^2}{3x^2 - 2x - 8}.$$

64.
$$\lim_{x\to 2} \frac{x^3-8}{4-x^2}$$
.

66.
$$\lim_{x\to 1} \frac{x^2-4x+3}{x^3-1}$$
.

68.
$$\lim_{x \to -5} \frac{x^2 - x - 30}{x^3 + 125}$$
.

70.
$$\lim_{x \to 2} \frac{x^4 - 16}{x^4 - 3x^2 - 4}.$$

72.
$$\lim_{x\to 3} \frac{x^3 - 3x^2 + 2x - 6}{x^2 - 5x + 6}$$
.

74.
$$\lim_{x \to 1} \frac{7x^4 - 2x - 5}{x^5 + 2x^2 - 3}.$$

76.
$$\lim_{x \to 5} \frac{25 - x^2}{\sqrt{x + 4} - 3}$$
.

$$\underline{78.} \lim_{x \to 3} \frac{x^2 - 9}{\sqrt{x + 13} - 4}.$$

80.
$$\lim_{x \to 4} \frac{\sqrt{5+x} - 3}{16 - x^2}.$$

82.
$$\lim_{x \to -2} \frac{x^2 - 4}{\sqrt{1 - 4x} - 3}$$
.

84.
$$\lim_{x\to 4} \frac{3x^2 - 5x - 28}{\sqrt{x+2} - \sqrt{2x-2}}$$
.

86.
$$\lim_{x\to 9} \frac{\sqrt{2x+7}-5}{\sqrt{x}-3}$$
.

88.
$$\lim_{x\to 1} \frac{\sqrt{3x+1}-2}{\sqrt{x}-1}$$
.

90.
$$\lim_{x\to 0} \frac{\sqrt[3]{1+x^2}-1}{x^2}$$
.

57.
$$\lim_{x\to 3} \frac{x^2-9}{x^2-7x+12}$$
.

$$\underline{\mathbf{59.}} \lim_{x \to 1} \frac{(x-1)^2}{4x^2 + x - 5}.$$

$$\underline{61.} \lim_{x \to 2} \frac{2x^2 - 7x + 6}{3x^2 - 8x + 4}.$$

$$\underline{63.} \lim_{x \to -3} \frac{3x^2 + x - 24}{12 + x - x^2}.$$

65.
$$\lim_{x \to 3} \frac{3x^3 - 9x^2}{x^4 - 81}.$$

67.
$$\lim_{x \to 1} \frac{x^3 - 1}{5x^2 - 4x - 1}.$$

69.
$$\lim_{x \to 1} \frac{x^4 - 4x^2 + 3}{x^3 - 1}.$$

71.
$$\lim_{x\to 2} \frac{x^2 + x - 6}{x^3 - 8}$$
.

73.
$$\lim_{x\to 2} \frac{x^3 - 6x^2 + 5x + 6}{x - 2}$$
...

75.
$$\lim_{x\to 2} \frac{3x^4 - 5x^3 - 8}{x^5 - x^4 - 7x - 2}$$

$$\frac{77.}{\sin \frac{16-x^2}{4-\sqrt{x+12}}}$$

79.
$$\lim_{x\to 0} \frac{\sqrt{x^2+1}-1}{x^2}.$$

81.
$$\lim_{x\to 0} \frac{\sqrt{1+3x}-\sqrt{1+2x}}{x^2-2x}$$
.

83.
$$\lim_{x\to 2} \frac{x^2-x-2}{\sqrt{4x+1}-3}$$

85.
$$\lim_{x \to 1} \frac{1 - \sqrt{2 - x^2}}{x^2 - 3x + 2}$$

87.
$$\lim_{x\to 4} \frac{\sqrt{x}-2}{\sqrt{6x+1}-5}$$

89.
$$\lim_{x\to 2} \frac{3-\sqrt{2x^2+1}}{\sqrt{8x}-4}$$

91.
$$\lim_{x\to 0} \frac{\sqrt[3]{1+x}-\sqrt[3]{1-x}}{x}$$
.

92.
$$\lim_{x \to 3} \frac{\sqrt[3]{3x-1} - 2}{3 + 5x - 2x^2}.$$

94.
$$\lim_{x \to \pm \infty} \left(\sqrt{x^2 + 3} - x \right)$$
.

96.
$$\lim_{x \to \pm \infty} \left(\sqrt{x^2 + 4x + 1} + x \right)$$
.

98.
$$\lim_{x \to \infty} x (\sqrt[3]{x+5} - \sqrt[3]{x}).$$

100.
$$\lim_{x\to\infty} \left(\frac{x^3 + 2x}{x^2 - 3x + 4} - x \right)$$
.

102.
$$\lim_{x \to \infty} \left(\frac{x^3 + x^2 + 3}{x^2 + 4} - \frac{x^3 - x^2 - 4}{x^2 - 3} \right)$$
. **103.** $\lim_{x \to \infty} \left(\frac{x^4 - x^2 + 3}{3x^2 + 2} - \frac{x^3 - x^2 + 3}{3x + 2} \right)$.

104.
$$\lim_{x \to \infty} \left(\frac{x^5 - 3x^3 + 1}{2x^3 + x^2 - 2} - \frac{x^3}{2x + 1} \right).$$

$$\underline{106.} \lim_{x \to 2} \left(\frac{x^2 + 4x}{x^3 - 8} - \frac{1}{x - 2} \right).$$

$$\underline{108.} \lim_{x \to 1} \left(\frac{2}{x^2 - 4x + 3} - \frac{1}{x^2 - 3x + 2} \right). \quad \mathbf{109.} \lim_{x \to 1} \left(\frac{3}{1 - \sqrt{x}} - \frac{2}{1 - \sqrt[3]{x}} \right).$$

110.
$$\lim_{x\to 0} \frac{\sin\frac{x}{5}}{3x}$$
.

$$\underline{112.} \lim_{x \to 0} \frac{\operatorname{tg} 6x}{\sin 4x}.$$

114.
$$\lim_{x\to 0} \frac{\sin^2 2x}{\tan^2 5x}$$
.

$$\underline{116.} \lim_{x \to 0} \frac{1 - \cos x}{x^2}.$$

118.
$$\lim_{x\to 0} \frac{1-\cos^3 2x}{x^2}$$
.

120.
$$\lim_{x\to 0} \frac{x + gx}{1 - \cos 4x}$$
.

122.
$$\lim_{x\to 0} \frac{1-\cos 8x}{\arcsin x^2}$$
.

124.
$$\lim_{x\to 0} \frac{\arctan^2 2x}{\cos 3x \sin x^2}.$$

$$\underline{126.} \lim_{x \to 0} \operatorname{tg} 3x \operatorname{ctg} \frac{x}{4}.$$

93.
$$\lim_{x \to -1} \frac{\sqrt[3]{9+x} - 2}{3x^4 + x^3 + 6x + 4}.$$

95.
$$\lim_{x \to \pm \infty} \left(\sqrt{x^2 + 2x - 1} - x \right)$$
.

97.
$$\lim_{x \to \pm \infty} \left(\sqrt{x^2 + 4x + 1} - \sqrt{x^2 - 2x - 3} \right)$$
.

99.
$$\lim_{x\to\infty} (\sqrt[3]{x^2+3x} - \sqrt[3]{x^2-2}).$$

$$\underline{101.} \lim_{x \to \infty} \left(\frac{x^5 - 2x}{2x^4 + x^2 + 1} - \frac{x}{2} \right).$$

103.
$$\lim_{x\to\infty} \left(\frac{x^4 - x^2 + 3}{3x^2 + 2} - \frac{x^3 - x^2 + 3}{3x + 2} \right)$$

105.
$$\lim_{x \to \infty} \left(\frac{5x^4 + 2}{x^3 - x^2 + x} - \frac{5x^3 + 2}{x^2 - 1} \right).$$

$$\underline{107.} \lim_{x \to 2} \left(\frac{1}{x^2 - 4x + 3} - \frac{1}{x^2 - 1} \right).$$

109.
$$\lim_{x\to 1} \left(\frac{3}{1-\sqrt{x}} - \frac{2}{1-\sqrt[3]{x}} \right)$$

111.
$$\lim_{x\to 0} \frac{2x}{\sin 3x}$$
.

$$\underline{113.} \lim_{x \to 0} \frac{\operatorname{tg}^2 2x}{x \sin 5x}$$

$$\underline{\mathbf{115.}} \lim_{x \to 0} \frac{x \sin 3x}{\operatorname{tg}^2 x \cos 2x}.$$

117.
$$\lim_{x\to 0} \frac{1-\cos^2 3x}{x^2}$$

119.
$$\lim_{x\to 0} \frac{1-\cos^2 x}{x \text{ tg } x}$$
.

$$121. \lim_{x\to 0} \frac{1-\cos 6x}{1-\cos 4x}$$
.

123.
$$\lim_{x \to 0} \frac{\cos 2x - \cos^3 2x}{\sin 3x}.$$

$$\underline{125.} \lim_{x \to 0} \frac{1 - \cos^3 4x}{x \sin 5x}.$$

$$127. \lim_{x\to\infty} x\sin^2\frac{5}{x}.$$

128.
$$\lim_{x\to\infty} \frac{\sin\frac{1}{x^2}}{\frac{3}{x^2}}$$
.

$$\underline{130.} \lim_{x \to 0} \frac{\text{tg} 2x - \sin 2x}{x^3}.$$

132.
$$\lim_{x\to 0} \frac{1}{x} \left(\frac{1}{\lg 2x} - \frac{1}{\sin 2x} \right)$$
.

134.
$$\lim_{x\to 0} \frac{\operatorname{tg} 3x - \sin 3x}{\operatorname{tg}^3 5x \cos 2x}$$
.

136.
$$\lim_{x \to \frac{\pi}{2}} \left(\frac{\pi}{2} - x \right) \operatorname{tg} x$$
.

138.
$$\lim_{x \to \frac{\pi}{4}} \operatorname{tg} 2x \cdot \operatorname{tg} \left(\frac{\pi}{4} - x \right)$$
.

140.
$$\lim_{x\to 1} \frac{\sin \pi x}{\sin 3\pi x}$$
.

142.
$$\lim_{x \to 0} \frac{\cos 2x - \cos 3x}{\sqrt{4 - x^2} - 2}.$$

$$\underline{144.} \lim_{x \to 0} (1 + 2x)^{\frac{3}{x}}.$$

146.
$$\lim_{x\to 1} (6-5x)^{\frac{2}{x^2-1}}$$
.

$$\underbrace{\mathbf{148.}}_{x \to -1} \lim_{x \to -1} (6 + 3x - 2x^2)^{\frac{2}{x^2 + 3x + 2}}.$$

150.
$$\lim_{x\to 0} (1+\sin 2x^2)^{\frac{3}{1-\cos x}}$$
.

152.
$$\lim_{x \to \infty} \left(\frac{x-2}{x+1} \right)^{x+2}$$
.

154.
$$\lim_{x\to\infty} \left(\frac{2x-3}{2x}\right)^{-5x}$$
.

156.
$$\lim_{x \to \infty} \left(\frac{2x+5}{2x+4} \right)^{3x}$$
.

158.
$$\lim_{x\to\infty} \left(\frac{5x+2}{5x-1}\right)^{3x}$$
.

129.
$$\lim_{x\to -3} \frac{\sin(x+3)}{x^3+27}$$
.

$$\underline{131.} \lim_{x \to 0} \left(\frac{1}{\sin x} - \operatorname{ctg} x \right)$$

133.
$$\lim_{x\to 0} \left(\frac{1}{\sin x} - \frac{2}{\sin 2x} \right)$$
.

135.
$$\lim_{x \to +0} \frac{1 - \sqrt{\cos x}}{x - x \cdot \cos \sqrt{x}}.$$

$$\frac{137.}{\sin \frac{1-\sin 2x}{4}} \cdot \left(\frac{\pi}{4} - x\right)^{2}.$$

$$139. \lim_{x\to 0} \frac{\sin 5x - \sin 3x}{\operatorname{tg} x}.$$

141.
$$\lim_{x\to 0} \frac{1+\sin x - \cos x}{1+\sin \rho x - \cos \rho x}$$
.

143.
$$\lim_{x \to \frac{\pi}{3}} \frac{\sin\left(x - \frac{\pi}{3}\right)}{1 - 2\cos x}$$

145.
$$\lim_{x\to 0} (1-5x)^{\frac{x+1}{x}}$$
.

147.
$$\lim_{x\to 3} (x^2 - 2x - 2)^{\frac{x}{x-3}}$$
.

149.
$$\lim_{x \to -2} (x^2 - 2x - 7)^{\frac{x}{x^2 - x - 6}}$$
.

151.
$$\lim_{x\to 0} (1-\operatorname{tg} 3x)^{\frac{2}{\sin 4x}}$$
.

153.
$$\lim_{x \to \infty} \left(\frac{x-1}{x+2} \right)^x$$
.

$$\underline{155}$$
. $\lim_{x\to\infty} \left(\frac{2x+3}{2x+5}\right)^{x-1}$.

157.
$$\lim_{x\to\infty} \left(\frac{x}{x-1}\right)^{1-3x}$$
.

159.
$$\lim_{x\to\infty} \left(\frac{3x-4}{3x+2}\right)^{\frac{x+1}{3}}$$
.

160.
$$\lim_{x\to\infty} \left(\frac{3x^2+7}{3x^2+5}\right)^{2x^2}$$
.

161.
$$\lim_{x \to \pm \infty} \left(\frac{3 - 2x}{5 - 2x} \right)^{2x^2}$$
.

$$\underline{162.} \lim_{x \to \pm \infty} \left(\frac{3x+1}{6x-3} \right)^{x+5}.$$

163.
$$\lim_{x \to \infty} \left(\frac{3x+4}{x+1} \right)^{x^2}$$
.

164.
$$\lim_{x\to 0} \left(\frac{3x+2}{6x+2}\right)^{\frac{5}{x}}$$
.

$$165. \lim_{x \to 0} \left(\frac{3x+4}{x+4} \right)^{\frac{2}{x^2-x}}.$$

166.
$$\lim_{x\to 0} x\sqrt[2]{1+\frac{x^2}{3}}$$
.

167.
$$\lim_{x\to 0} \sqrt[x]{1+5x}$$
.

168.
$$\lim_{x \to \frac{\pi}{4}} (\operatorname{tg} x)^{\operatorname{tg} 2x}$$
.

169.
$$\lim_{x\to 0} (\cos x)^{1/x^2}$$
.

170.
$$\lim_{x \to +\infty} x (\ln x - \ln(x+1)).$$

$$\underline{171.} \lim_{x \to +\infty} x (\ln (x+2) - \ln (x-1)).$$

172.
$$\lim_{x \to +\infty} x (\ln (2x-3) - \ln (2x+3)).$$

173.
$$\lim_{x \to a} \frac{\ln x - \ln a}{x - a}.$$

$$\underline{174.} \lim_{x \to 2} \frac{\ln(x-1)}{x^2 - 4}.$$

175.
$$\lim_{x\to 0} \frac{\ln(1+6x)}{3x}$$

176.
$$\lim_{x\to 0} \frac{\log_4 (1+3x)}{x}$$
.

177.
$$\lim_{x\to 0} \frac{3x}{\log_3(1+7x)}$$
.

В задачах **178–185** найти предел, пользуясь эквивалентными бесконечно малыми.

178.
$$\lim_{x\to 0} \frac{e^{4x}-1}{\arctan\frac{x}{3}}$$
.

179.
$$\lim_{x\to 2} \frac{\operatorname{tg}(x^3-8)}{\sqrt{x-1}-1}$$
.

180.
$$\lim_{x\to 0} \frac{\sqrt{1+x^2}-1}{\ln(1+\sin x)}$$
.

181.
$$\lim_{x\to 0} \frac{e^{\sin x} - 1}{\tan 3x}$$
.

$$\mathbf{182.} \lim_{x \to \infty} x \left(\sqrt{1 + \sin \frac{3}{x}} - 1 \right).$$

183.
$$\lim_{x \to 0} \frac{e^{3x^2} - 1}{\sin^2 4x}.$$

184.
$$\lim_{x\to 0} \frac{\arctan 3x}{\sqrt{1+x}-1}$$
.

$$\frac{185.}{\lim_{x\to 0}} \frac{\arcsin^2 \frac{x}{2}}{\ln(1+\lg x^2)}.$$

186. Сравнить бесконечно малые функции $\alpha(x)$ и $\beta(x)$:

а)
$$\alpha(x) = e^{2x} - 1$$
, $\beta(x) = x$ при $x \to 0$;

б)
$$\alpha(x) = \sin \frac{3}{x}$$
, $\beta(x) = \ln \left(1 + \frac{1}{x^2} \right)$ при $x \to \infty$;

в)
$$\alpha(x) = tg\frac{x}{2}$$
, $\beta(x) = \sqrt{1+x} - 1$ при $x \to 0$;

$$\Gamma$$
) $\alpha(x) = \frac{1}{x^2}$, $\beta(x) = tg\frac{1}{x}$ при $x \to \infty$;

д)
$$\alpha(x) = \ln(1+x^6)$$
, $\beta(x) = \sin^2 4x^3$ при $x \to 0$;

e)
$$\alpha(x) = \frac{1}{x}$$
, $\beta(x) = \frac{\cos x}{x}$ при $x \to \infty$.

В задачах 187 - 202 исследовать на непрерывность функцию, в случае существования точек разрыва установить их характер, схематически график функции в окрестности точек разрыва.

187.
$$f(x) = \frac{x+3}{x+1}$$
.

188.
$$f(x) = \frac{x+3}{x-2}$$
.

189.
$$f(x) = \frac{3x+2}{x^2-4}$$
.

190.
$$f(x) = \frac{x-2}{x^2-3x+2}$$
.

191.
$$f(x) = 2^{\frac{1}{x+1}} - 1$$
.

192.
$$f(x) = 2^{\frac{1}{x-4}} + 3$$
.

193.
$$f(x) = \frac{x-1}{x^2-1}$$
.

194.
$$f(x) = \frac{x-1}{|x-1|}$$
.

195.
$$f(x) = \frac{3}{1 + 2^{1/(x-1)}}$$
.

196.
$$f(x) = \frac{1+x^3}{1+x}$$
.

197.
$$f(x) = \frac{x^2 - 3x + 2}{x - 2}$$
.

198.
$$f(x) = \frac{x^2 - 4x + 3}{x^2 + 3x - 4}$$
.

199.
$$f(x) = \frac{2^{\frac{1}{x}} - 1}{2^{\frac{1}{x}} + 1}$$
.

200.
$$f(x) = \lg |\sin x|$$
.

201.
$$f(x) = \frac{1}{\cos x}$$
.

202.
$$f(x) = \arctan \frac{1}{x-3}$$
.

В задачах 203 – 220 исследовать функцию на непрерывность, в случае существования точек разрыва установить их характер, построить график функции.

203.
$$f(x) = \begin{cases} 10 - x, & \text{если } x < 2, \\ 3, & \text{если } x = 2, \\ x^3, & \text{если } x > 2. \end{cases}$$
 204. $f(x) = \begin{cases} x^2, & \text{если } x < 1, \\ 3, & \text{если } x = 1, \\ x, & \text{если } x > 1. \end{cases}$

204.
$$f(x) = \begin{cases} x^2, & \text{если } x < 1, \\ 3, & \text{если } x = 1, \\ x, & \text{если } x > 1. \end{cases}$$

205.
$$f(x) = \begin{cases} x^2 - 4, & \text{если } x < -3, \\ 5, & \text{если } x = -3, \\ 2 - x, & \text{если } x > -3. \end{cases}$$
 206. $f(x) = \begin{cases} 1 - 2x, & \text{если } x < -3, \\ 7, & \text{если } x = -3, \\ x^2 - 2, & \text{если } x > -3. \end{cases}$

206.
$$f(x) = \begin{cases} 1-2x, & \text{если } x < -3, \\ 7, & \text{если } x = -3, \\ x^2 - 2, & \text{если } x > -3. \end{cases}$$

207.
$$f(x) = \begin{cases} x-2, & \text{если } x < 1, \\ -1, & \text{если } x = 1, \\ 3x^2, & \text{если } x > 1. \end{cases}$$
 208. $f(x) = \begin{cases} x^2 - 1, & \text{если } x < 1, \\ 1, & \text{если } x = 1, \\ 3x^3, & \text{если } x > 1. \end{cases}$

207.
$$f(x) = \begin{cases} x-2, & \text{если } x < 1, \\ -1, & \text{если } x = 1, \\ 3x^2, & \text{если } x > 1. \end{cases}$$
 208. $f(x) = \begin{cases} x^2 - 1, & \text{если } x < 1, \\ 1, & \text{если } x = 1, \\ 3x^3, & \text{если } x > 1. \end{cases}$ **209.** $f(x) = \begin{cases} \frac{2}{x-2}, & \text{если } x < 2, \\ 2, & \text{если } 2 \le x \le 4, \\ \sqrt{x}, & \text{если } x > 4. \end{cases}$ **210.** $f(x) = \begin{cases} \sqrt{1-x}, & \text{если } x \le 0, \\ x^2 + 1, & \text{если } 0 < x \le 2, \\ x - 3, & \text{если } x > 2. \end{cases}$

211.
$$f(x) = \begin{cases} e^x, & \text{если } x \le 0, \\ 2-x, & \text{если } 0 < x \le 1, \\ \frac{1}{x-1}, & \text{если } x > 1. \end{cases}$$
 212. $f(x) = \begin{cases} 2x^2, & \text{если } x < -1, \\ 1-x, & \text{если } -1 < x \le 0, \\ \ln x, & \text{если } x > 0. \end{cases}$

213.
$$f(x) = \begin{cases} -1, & \text{если } x < 0, \\ \cos x, & \text{если } 0 \le x \le \pi, \text{ 214.} \ f(x) = \begin{cases} x^3, & \text{если } x < -1, \\ 2 - x, & \text{если } -1 \le x \le 1, \\ 3^x, & \text{если } x > 1. \end{cases}$$

215.
$$f(x) = \begin{cases} 2 - x^2, & \text{если } x \le -1, \\ |x|, & \text{если } -1 < x \le 1, \\ 2 - x^2, & \text{если } x > 1. \end{cases}$$
 $f(x) = \begin{cases} 2 - x, & \text{если } x < -1, \\ \frac{1}{x}, & \text{если } -1 < x \le 1, \\ x^3, & \text{если } x > 1. \end{cases}$

217.
$$f(x) = \begin{cases} |x-1|, & \text{если } x < 2, \\ 3-x, & \text{если } x > 2. \end{cases}$$
 218. $f(x) = \begin{cases} \frac{1}{x}, & \text{если } x < 2, \\ \frac{3-x}{2}, & \text{если } x > 2. \end{cases}$

Ответы. 1. y(0) = 0, y(2) = 4, $y(-x) = \frac{2x}{x+1}$, $y(x+\Delta x) = \frac{2(x+\Delta x)}{x+\Delta x-1}$, y(1)не существует; $D(y) = (-\infty; 1) \cup (1; +\infty); E(y) = (-\infty; 2) \cup (2; +\infty); y(x) > 0$ при $x \in (-\infty, 0) \cup (1, +\infty);$ y(x) < 0 при $x \in (0, 1);$ y(x) = 0 при x = 0; y(x) убывает

при $x \in (-\infty; 1) \cup (1; +\infty);$ функция не ограничена. **2.** f(1) = 4, f(-1) = -2, $f(-x) = \frac{1-3x}{3-2x^2}, f\left(\frac{1}{x}\right) = \frac{x^2+3x}{3x^2-2}.$ 3. a) $D(f) = (-\infty; +\infty), E(f) = [-1; 4];$ f(x) > 0 при $x \in (-\infty;3) \cup (5;+\infty);$ f(x) < 0 при $x \in (3;5);$ f(x) = 0 $x \in \{-1,3,5\};$ f(x) возрастает при $x \in (-1,2) \cup (4,+\infty)$ и убывает $x \in (-\infty, -1) \cup (2, 4);$ функция ограничена; при $x \to 2$ $f(x) \to 4$, при $x \to \infty$ $f(x) \to 2;$ **6)** $D(f) = (-\infty; 2) \cup (2; +\infty), E(f) = (-\infty; +\infty);$ f(x) > 0 $x \in (0;2) \cup (3;+\infty);$ f(x) < 0 при $x \in (-\infty;0) \cup (2;3);$ f(x) = 0 при $x \in \{0;3\};$ f(x) возрастает при $x \in (-1,2) \cup (2,+\infty)$ и убывает для $x \in (-\infty,-1)$; функция не является ограниченной; при $x \to 2$ $f(x) \to \infty$, при $x \to +\infty$ $f(x) \to 3$, при $x \to -\infty$ $f(x) \to 0$. **4. a)** $(\pm 2;0),(0;0), y(x) > 0$ при $x \in (-\infty;-2) \cup (0;2)$, y(x) < 0 при $x \in (-2;0) \cup (2;+\infty);$ **б)** (-1;0),(0;1), y(x) > 0 при $x \in (-1;1),$ y(x) < 0 при $x \in (-\infty; -1) \cup (1; +\infty);$ **в**) $(\pm \sqrt{10}; 0), y(x) > 0$ $x \in (-\infty; -\sqrt{10}) \cup (\sqrt{10}; +\infty), \quad y(x) < 0$ при $x \in (-\sqrt{10}; -3) \cup (3; \sqrt{10});$ г) (-4;0), (2;0), y(x) > 0 при $x \in (-\infty; -4) \cup (2; +\infty)$. **5. а)** четная; б) общего в) нечетная; г) четная; д) нечетная; е) общего вида; ж) четная; з) нечетная; **и)** нечетная; **к)** четная. **7. а)** периодическая, $T = 2\pi$; **б)** непериодическая; в) периодическая, $T = 6\pi$; г) периодическая $T = \pi$. 8. а) $(-\infty; -4) \cup (4; +\infty)$; б) [0;3]; в) $(-\infty;-2) \cup (2;+\infty)$; г) (-3;3); д) $(-\infty;0) \cup (0;+\infty)$; е) [-5;5]; ж) $D(y) = \left| -\frac{1}{3};1 \right|$; 3) $D(y) = \left\{ x : x = \frac{\pi}{2} + 2\pi n, n \in \mathbb{Z} \right\}$; и) [-1;3]; к) D(y) = [1;4]. **10. a)** f(-2) = -1, f(0) = 1, f(1) = 2; **6)** f(-3) = 3, f(1) = 1, f(5) = 27; r) f(-1) = 0, f(0) = 1, f(2) = 16. 11. a) $u = \lg(\sin x^2)$; 6) $u = \sqrt{2^{\lg x} + 1}$. **12. a)** $y = \frac{1}{x-1}$, $D(f) = (-\infty; 1) \cup (1; +\infty)$, $E(f) = (-\infty; 0) \cup (0; +\infty)$; **6)** $y = \sqrt{4x - x^2}$, D(f) = [0;4], E(f) = [0;2]; **B)** $y = \frac{-3}{x}$, $D(f) = (-\infty; 0) \cup (0; +\infty)$, $E(f) = (-\infty; 0) \cup (0; +\infty)$; r) $y = \frac{10}{x} - 3$, $D(f) = (0; +\infty)$, $E(f) = (-3; +\infty)$. 13. a) $y = \frac{2x}{3} + 6$; 6) $y = 3x - \frac{x^2}{4}$; г) $x^2 + y^2 = 16$, $y \ge 0$; д) $\frac{x^2}{4} + y^2 = 1$, $y \le 0$. **B)** $y = 3x, x \ge 0;$ **15.** $a^x = \frac{a^x + a^{-x}}{2} + \frac{a^x - a^{-x}}{2}$. **17.** a) $\begin{cases} x = a\cos^3 t, \\ v = a\sin^3 t \end{cases} \quad t \in [0; 2\pi]; \quad \textbf{6}) \begin{cases} x = a + R\cos t, \\ v = a + R\sin t. \end{cases}$

 $t \in [0; 2\pi].$ **18.** a) $\lim_{x \to 1} f(x) = 1;$ 6) $\lim_{x \to +\infty} f(x) = 2;$ B) $\lim_{x \to 2-0} f(x) = -\infty;$ $\lim_{x \to 2+0} f(x) = +\infty; \ \mathbf{\Gamma} \lim_{x \to +\infty} f(x) = 3; \ \mathbf{Д} \lim_{x \to 2-0} f(x) = 2; \ \lim_{x \to 2+0} f(x) = 3; \ \lim_{x \to 2} f(x) = 1$ не существует; **e**) $\lim_{x \to +\infty} f(x) = 1$; **ж**) $\lim_{x \to 0} f(x) = 2$; **3**) $\lim_{x \to +0} f(x) = +\infty$; $\lim_{x \to +\infty} f(x) = 0$; **и**) $\lim_{x \to 3-0} f(x) = -1$; $\lim_{x \to 3+0} f(x) = 1$; $\lim_{x \to 3} f(x)$ не существует; **к**) $\lim_{x \to -\infty} f(x) = +\infty$; $\lim_{x \to +\infty} f(x) = +\infty. \ \mathbf{20.} \ 22. \ \mathbf{21.} \ 10. \ \mathbf{22.} \ 0. \ \mathbf{23.} \ 0. \ \mathbf{24.} \ +\infty. \ \mathbf{25.} \ +\infty. \ \mathbf{26.} \ \infty. \ \mathbf{27.} \ \infty. \ \mathbf{28.} \ 0.$ **29.** 0. **30.** $\pm \infty$. **31.** $-\infty$. **32.** 1. **33.** 0. **34.** $\frac{1}{2}$. **35.** ∞ . **36.** $-\frac{3}{2}$. **37.** 0. **38.** ∞ . **39.** 0. **40.** $\frac{3}{2}$. **41.** 5. **42.** 0. **43.** ∞ . **44.** 0. **45.** ∞ . **46.** $\frac{3}{2}$. **47.** ∞ . **48.** 3. **49.** 6 при $x \to +\infty$; 4 при $x \to -\infty$. **50.** 1 при $x \to +\infty$; $-\infty$ при $x \to -\infty$. **51.** 0. **52. a)** $a = b \neq 0$; **б)** $a \neq 0, b = 0$ или a = b = 0; **в)** $a = 0, b \neq 0.$ **53. a)** a = 0, b = 6; **б) B)** a = b = 0. **54. a)** a = b = 0; **6)** $a \neq 0$; **B)** $a = 0, b \neq 0$. **55. a)** a = 0, b = -1; **6)** a = b = 0; **B)** $a \neq 0$. **56.** $\frac{4}{3}$. **57.** -6. **58.** $\frac{1}{2}$. **59.** 0. **60.** $\frac{5}{7}$. **61.** $\frac{3}{4}$. **62.** -0, 6. **63.** $-\frac{17}{7}$. **64.** -3. **65.** $\frac{1}{4}$. **66.** $-\frac{2}{3}$. **67.** $\frac{1}{2}$. **68.** $-\frac{11}{75}$. **69.** $-\frac{4}{3}$. **70.** $\frac{8}{5}$. **71.** $\frac{5}{12}$. **72.** 11. **73.** -7. 74. $\frac{26}{9}$. 75. $\frac{36}{41}$. 76. -60. 77. 64. 78. 48. 79. $\frac{1}{2}$. 80. $-\frac{1}{48}$. 81. $-\frac{1}{4}$. 82. 6. 83. 4,5. **84.** -40. **85.** -1. **86.** 0,3. **87.** $\frac{5}{12}$. **88.** $\frac{3}{2}$. **89.** $-\frac{4}{3}$. **90.** $\frac{1}{3}$. **91.** $\frac{2}{3}$. **92.** $-\frac{1}{28}$. **93.** $-\frac{1}{36}$. **94.** $+\infty$ при $x \to -\infty$; 0 при $x \to +\infty$. **95.** $+\infty$ при $x \to -\infty$; 1 при $x \to +\infty$. **96.** -2при $x \to -\infty$; $+\infty$ при $x \to +\infty$. 97. ± 3 . 98. ∞ . 99. 0. 100. 3. 101. 0. 102. 2. 103. ∞ . **104.** -1,5. **105.** 5. **106.** $\frac{1}{6}$. **107.** ∞ . **108.** $\frac{1}{2}$. **109.** $\frac{1}{2}$. **110.** $\frac{1}{15}$. **111.** $\frac{2}{3}$. **112.** $\frac{3}{2}$. 113. $\frac{4}{5}$. 114. $\frac{4}{25}$. 115. 3. 116. $\frac{1}{2}$. 117. 9. 118. 3. 119. 1. 120. $\frac{1}{8}$. 121. $\frac{9}{4}$. 122. 32. 123. $\frac{4}{9}$. 124. 4. 125. $\frac{24}{5}$. 126. 12. 127. 0. 128. $\frac{1}{3}$. 129. $\frac{1}{9}$. 130. 4. 131. 0. 132. 2. **133.** 0. **134.** $\frac{27}{250}$. **135.** $\frac{1}{2}$. **136.** 1. **137.** 2. **138.** $\frac{1}{2}$. **139.** 2. **140.** $-\frac{1}{4}$. **141.** $\frac{1}{0}$. **142.** -10. **143.** $\frac{1}{\sqrt{3}}$. **144.** e^6 . **145.** e^{-5} . **146.** e^{-5} . **147.** e^{12} . **148.** e^{14} . **149.** $e^{-\frac{12}{5}}$. **150.** e^{-3} . **151.** $e^{-\frac{3}{2}}$. **152.** e^{-3} . **153.** e^{-3} . **154.** $e^{7,5}$. **155.** e^{-1} . **156.** $e^{\frac{3}{2}}$. **157.** e^{-3} . **158.** $e^{\frac{2}{5}}$. **159.** $e^{-\frac{2}{3}}$. **160.** $e^{\frac{\pi}{3}}$. **161.** $+\infty$ при $x \to +\infty$; 0 при $x \to -\infty$. **162.** 0 при $x \to +\infty$; $+ \infty$ при $x \to -\infty$. **163.** $+\infty$. **164.** $e^{-\frac{15}{2}}$. **165.** e^{-4} . **166.** $e^{\frac{1}{3}}$. **167.** e^{5} .

168. e^{-1} . **169.** $e^{-\frac{1}{2}}$. **170.** -1. **171.** 3. **172.** -3. **173.** $\frac{1}{a}$. **174.** $\frac{1}{4}$. **175.** 2. **176.** $\log_4 e^3$. 177. $\frac{3}{\log_{10} e^{7}}$. 178. 12. 179. 24. 180. 0. 181. $\frac{1}{3}$. 182. $\frac{3}{2}$. 183. $-\frac{3}{16}$. 184. 6. 185. $\frac{1}{4}$. **186. а)** $\alpha(x)$ и $\beta(x)$ б.м.ф.одного порядка малости при $x \to 0$; **б)** $\beta(x) = o(\alpha(x))$ при $x \to \infty$; **в)** $\alpha(x) \sim \beta(x)$ при $x \to 0$; **г)** $\alpha(x) = o(\beta(x))$ при $x \to \infty$; д) $\alpha(x)$ и $\beta(x)$ б.м.ф.одного порядка малости при $x \to 0$; е) $\alpha(x)$ и $\beta(x)$ не сравнимы при $x \to \infty$. **187.** x = -1 — точка бесконечного разрыва. **188** x = 2 — точка бесконечного разрыва. **189.** $x = \pm 2$ — точки бесконечного разрыва. **190.** x = 1, x = 2 — точки бесконечного разрыва. **191.** x = -1 — точка бесконечного разрыва. **192.** x = 4 — точка бесконечного разрыва. **193.** x = -1 точка устранимого разрыва; x = 1 — точка бесконечного разрыва. **194.** x = 1 точка конечного разрыва. **195.** x = 1 — точка конечного разрыва. **196.** x = -1 точка устранимого разрыва. **197.** x = 2 – точка устранимого разрыва. **198.** x = -4 — точка бесконечного разрыва; x = 1 — точка устранимого разрыва. **199.** x = 0 — точка конечного разрыва. **200.** $x = \pi \kappa, \kappa \in \mathbb{Z}$ — точки бесконечного разрыва. **201.** $x = \frac{\pi}{2} + \pi \kappa, \kappa \in \mathbb{Z}$ — точки бесконечного разрыва. **202.** x = 3 точка конечного разрыва. **203.** x = 2 — точка устранимого разрыва. **204.** x = 1 точка устранимого разрыва. **205.** Функция непрерывна на \mathbb{R} . **206.** Функция непрерывна на \mathbb{R} . **207.** x=1 – точка конечного разрыва. **208.** x=1 – точка конечного разрыва. **209.** x = 2 — точка бесконечного разрыва. **210.** x = 2 точка конечного разрыва. **211.** x = 0 — точка конечного разрыва; x = 1 — точка бесконечного разрыва. **212.** x = -1 — точка устранимого разрыва; x = 0 — точка бесконечного разрыва. **213.** x = 0 – точка конечного разрыва; $x = 2\pi$ – точка бесконечного разрыва. **214.** x = -1, x = 1 – точки конечного разрыва. **215.** Функция непрерывна на \mathbb{R} . **216.** x = -1 – точка конечного разрыва. **217.** x = 2 — точка устранимого разрыва. **218.** x = 0 — точка бесконечного разрыва; x = 2 — точка устранимого разрыва. **219.** x = 0 — точка устранимого разрыва; $x = \frac{\pi}{2}$ — точка бесконечного разрыва; $x = \pi$ — точка конечного разрыва. **220.** x = -2 — точка конечного разрыва; x = 0 — точка бесконечного

разрыва; x = 2 — точка устранимого разрыва.