相対論的量子力学

Toshiya Tanaka

May 3, 2022

1 Klein-Gordon 方程式

Klein-Gordon 方程式は

$$(\partial_{\mu}\partial^{\mu} + m^2)\phi(t, \vec{x}) = 0 \tag{1}$$

で、電荷 q をもつときは共変微分 $D_{\mu} \coloneqq \partial_{\mu} + iqA_{\mu}$ を用いて

$$(D_{\mu}D^{\mu} + m^2)\phi(t, \vec{x}) = 0 \tag{2}$$

である.

1.1 非相対論極限

Eq.(2) の非相対論極限をとると Schrödinger 方程式が出ることを議論する。非相対論極限では静止エネルギーよりもポテンシャルや運動などのエネルギーが小さいことをいう。 $m\gg qA^0, \mathrm{d}\phi/\mathrm{d}t$.相対論特有の静止エネルギー項を消すため,Klein-Gordon 方程式の解 $\phi(t,\vec{x})$ と Schrödinger 方程式の解 $\psi(t,\vec{x})$ は $\phi(t,\vec{x})=e^{-imt}\psi(t,\vec{x})$ と細工をしなければならない.

 $\psi(t, \vec{x})$ を Eq. (2) に代入して,

$$\left(\frac{\partial}{\partial t} + iqA^0\right)^2 \phi = \left((\vec{\nabla} - iq\vec{A})^2 - m^2\right)\phi \tag{3}$$

となる. 左辺を計算すると*1,

$$\left(\frac{\partial}{\partial t} + iqA^{0}\right)^{2}\phi = \left(\frac{\partial}{\partial t} + iqA^{0}\right)e^{-imt}\left(-im\psi + \frac{\mathrm{d}\psi}{\mathrm{d}t} + iqA^{0}\psi\right) \tag{4}$$

$$=e^{-imt}\biggl(-m^2\psi-2im\frac{\partial\psi}{\partial t}+\frac{\partial^2\psi}{\partial t^2}+iq\frac{\partial A^0}{\partial t}\psi+iqA^0\frac{\partial\psi}{\partial t}+2mqA^0\psi+iqA^0\frac{\partial\psi}{\partial t}-q^2\bigl(A^0\bigr)^2\psi\biggr) \eqno(5)$$

である. 非相対論極限ではmが支配的で他のエネルギーは小さいので、小さい量が単独で存在する項 *2 を無視して

$$\rightarrow e^{-imt} \left(-m^2 \psi - 2im \frac{\mathrm{d}\psi}{\mathrm{d}t} + 2mq A^0 \psi iq A^0 \frac{\mathrm{d}\psi}{\mathrm{d}t} - q^2 (A^0)^2 \psi \right)$$
 (6)

となり,

$$i\frac{\partial}{\partial t}\psi = \left(-\frac{1}{2m}\left(\vec{\nabla} - iq\vec{A}\right)^2 + qA^0\right)\psi\tag{7}$$

のように Schrödinger 方程式に帰着する.

References

[坂本 14] 坂本眞人. 場の量子論: 不変性と自由場を中心にして. 量子力学選書 / 坂井典佑, 筒井泉監修. 裳華房, 2014.

$$\left(\frac{\partial}{\partial t}\right)^n e^{-imt} f(t) = e^{-imt} \left(\frac{\partial}{\partial t} - im\right)^n f(t)$$

 $^{*^{1}}$ [坂本 14, p.55] では、関数 f(t) に対して成り立つ公式

を用いる,と書いてあるが,微分と関数の和の冪 $\left(\partial/\partial t + A^0(t)\right)^n$ に対しても成り立つのだろうか. *2 -2im $\partial\psi/\partial t$ などは m がかかっているので残すが,iq $\partial A^0/\partial t$ は落とす.