11. Elliptic curves.

A. Ushakov

MA503, April 13, 2022

Contents

Here we define elliptic curves. Elliptic-curve based cryptography (ECC) allows smaller keys compared to non-EC cryptography (based on plain Galois fields) to provide equivalent security.

- Elliptic curve.
- Addition on \mathcal{E} : geometric definition.
- Formula for $P \oplus Q$. Examples.
- $(\mathcal{E},+)$ is an abelian group.
- Elliptic curves over finite fields \mathbb{Z}_p .
- Example of an elliptic curve over \mathbb{Z}_{13} .
- Computing multiples in E.
- Primitive elements in E.

Elliptic curve

Definition

An elliptic curve \mathcal{E} is the set of solutions (with a special element \mathcal{O}) of an equation of the form $y^2 = x^3 + ax + b$, called a Weierstrass equation.

Proposition (no proof)

The curve is non-singular if it has no cusps or self-intersections $\Leftrightarrow 4a^3 + 27b^2 \neq 0$.

For any $a, b \in \mathbb{R}$ the curve contains infinitely many points.

The equation $(y^*)^2 = x^3 + ax + b$ has at least one solution for x for any $y^* \in \mathbb{R}$.

Addition on \mathcal{E} : geometric definition

Every elliptic curve is symmetric: $(x,y) \in \mathcal{E} \implies (x,-y) \in \mathcal{E}$.

For $P(x_1, y_1), Q(x_2, y_2) \in \mathcal{E}$ we define the point $P \oplus Q \in \mathcal{E}$ as follows.

Case-I: $x_1 \neq x_2$.

- consider the line α through
 P and Q,
- α intersects \mathcal{E} at three points $P, Q, R(x_3, y_3)$
- the point R'(x₃, -y₃) is called the sum of P and Q, denoted P + Q.

α and $\mathcal E$ have three points of intersection.

- The equation of the line α through P and Q is $y = y_1 + \frac{y_2 y_1}{x_2 x_1}(x x_1)$.
- Replacing y with $y_1 + \frac{y_2 y_1}{x_2 x_1}(x x_1)$ in $y^2 = x^3 + ax + b$ we get a qubic equation.
- That equation has two real zeros x_1, x_2 .
- Hence, it has another real zero x_3 .

Addition on \mathcal{E} : geometric definition

Case-II: If $x_1 = x_2$ and $y_1 = y_2 \neq 0$, then use the tangent line α at P.

Case-V: $P + \mathcal{O} = P$.

Case-III: If
$$x_1 = x_2$$
 and $y_1 = y_2 = 0$, then $P + P = \mathcal{O}$.

Case-IV: If $x_1 = x_2$ and $y_1 \neq y_2$, then α has only two intersections. In that case, $P + Q = \mathcal{O}$.

Formula for $P \oplus Q$

The line α has an equation $y = \lambda x + \nu$, where the slope is $\lambda = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} & \text{in Case-I}, \\ \frac{3x_1^2 + a}{2y_1} & \text{in Case-II}, \end{cases}$ for some $\nu \in \mathbb{R}$ that we don't need to find.

$$y^2 = x^3 + ax + b$$
 \Rightarrow $(\lambda x + \nu)^2 = x^3 + ax + b$ (replacing y with $\lambda x + \nu$)
 \Rightarrow $x^3 - \lambda^2 x^2 + (a - 2\lambda \nu)x + (b - \nu^2) = 0$.

Since x_1 and x_2 are its zeros, there should be $x_3 \in \mathbb{R}$ satisfying

$$x^{3} - \lambda^{2} x^{2} + (a - 2\lambda \nu)x + (b - \nu^{2}) = (x - x_{1})(x - x_{2})(x - x_{3})$$
$$= x^{3} - (x_{1} + x_{2} + x_{3})x^{2} + (x_{1}x_{2} + x_{2}x_{3} + x_{1}x_{3})x - x_{1}x_{2}x_{3}.$$

The coefficients in front of x^2 must be the same and, hence

$$\lambda^{2} = x_{1} + x_{2} + x_{3} \implies x_{3} = \lambda^{2} - x_{1} - x_{2}$$

$$\Rightarrow y_{3} = \lambda x_{3} + \nu = \lambda(\lambda^{2} - x_{1} - x_{2}) + \nu = y_{1} - \lambda(x_{1} - x_{3}).$$

$$P \oplus Q = (x_3, y_3)$$
, where $x_3 = \lambda^2 - x_1 - x_2$ and $y_3 = \lambda(x_1 - x_3) - y_1$.

Computing $P \oplus Q$: examples

For the curve $y^2 = x^3 - 15x + 18$ and points P(7, 16), Q(1, 2), and R(3, 0).

To compute $P \oplus Q$ we compute

•
$$\lambda = \frac{-14}{-6} = \frac{7}{3}$$
;

$$x_3 = \frac{49}{9} - 7 - 1 = \frac{-23}{9};$$

Thus, $P \oplus Q = (\frac{-23}{9}, \frac{-170}{27})$.

To compute $P \oplus P$ we compute

•
$$\lambda = \frac{3 \cdot 7^2 - 15}{2 \cdot 16} = \frac{33}{8}$$
.

•
$$x_3 = \left(\frac{33}{8}\right)^2 - 7 - 7 = \frac{193}{64}$$
.

•
$$y_3 = \frac{33}{8} \left(7 - \frac{193}{64}\right) - 16 = \frac{223}{512}$$
.

Thus,
$$P \oplus P = (\frac{193}{64}, \frac{223}{512})$$
.

$$-P = (7, -16), -Q = (1, -2), and -R = R.$$

Elliptic curve is an abelian group

Theorem

 $(\mathcal{E},+)$ is an abelian group.

By design, the following holds:

- P + Q = Q + P.
- $P + \mathcal{O} = \mathcal{O} + P = P$. Hence, \mathcal{O} is the identity.
- Q(x, -y) is the inverse of P(x, y).
- (P+Q)+R=P+(Q+R) hard to prove!

Mention some "geometric identities".

Elliptic curve over \mathbb{Z}_p

In general, we can use any finite field $GF(p^n)$.

Definition

For a prime $p \ge 3$ and an equation $y^2 = x^3 + ax + b$ satisfying $4a^3 + 27b^2 \ne 0$ the set

$$\mathcal{E} = \left\{ (x, y) \in \mathbb{Z}_p \mid y^2 = x^3 + ax + b \right\} \cup \{\mathcal{O}\}$$

is called an **elliptic curve** over \mathbb{Z}_p .

Addition on a \mathbb{Z}_p -curve \mathcal{E} is defined using the formulas for an \mathbb{R} -curve. (\mathcal{E}, \oplus) is a finite abelian group for a \mathbb{Z}_p -curve \mathcal{E} .

Theorem (Hasse)

Let $\mathcal E$ be an elliptic curve over $\mathbb Z_p$. Then $|\mathcal E|=p+1-t_p$, for some t_p satisfying $|t_p|\leq 2\sqrt{p}$.

 $t_p = p + 1 - |\mathcal{E}|$ is called the trace of Frobenius for \mathcal{E}/\mathbb{Z}_p .

Theorem (Schoof–Elkies–Atkin)

- There is a polynomial-time algorithm to compute $|\mathcal{E}|$.
- ullet There is a polynomial-time algorithm to compute |g| for any $g\in \mathcal{E}.$

Example of an elliptic curve over \mathbb{Z}_{13}

For instance, for $y^2=x^3+3x+8$ and p=13 we get all solutions by taking square root of x^3+3x+8 for $x=0,\ldots,12$

- For x = 0 we get $y^2 \equiv_{13} 8$ that has no solutions.
- For x=1 we get $y^2\equiv_{13}12$ that has solutions 5, 8. This contributes two points (1,5) and (1,8) to \mathcal{E} .
- For x=2 we get $y^2\equiv_{13}22$ that has solutions 3, 10. This contributes two points (2,3) and (2,10) to \mathcal{E} . Etc.

$$\mathcal{E} = \{\mathcal{O}, (1,5), (1,8), (2,3), (2,10), (9,6), (9,7), (12,2), (12,11)\}$$

To compute $(1,8) \oplus (1,8)$

$$\lambda = \frac{3 \cdot 1^2 + 3}{2 \cdot 8} = \frac{6}{16} \equiv \frac{6}{3} = 2$$
 and
$$\begin{cases} x_3 = 2^2 - 1 - 1 = 2 \\ y_3 = 2(1 - 2) - 8 = -10 = 3 \end{cases}$$

To compute $(2,3) \oplus (9,7)$

$$\lambda = \frac{7-3}{9-2} = \frac{4}{7} \equiv_{13} 8$$
 and
$$\begin{cases} x_3 = 8^2 - 2 - 9 = 53 \equiv_{13} 1 \\ y_3 = 8(2-1) - 3 = 5 \end{cases}$$

Example of an elliptic curve (cont)

For $\mathcal{E} = \{\mathcal{O}, (1,5), (1,8), (2,3), (2,10), (9,6), (9,7), (12,2), (12,11)\}$ we have the following addition table:

+	0	(1,5)	(1,8)	(2,3)	(2,10)	(9,6)	(9,7)	(12,2)	(12,11)
0	0	(1,5)	(1,8)	(2,3)	(2,10)	(9,6)	(9,7)	(12,2)	(12,11)
(1,5)	(1,5)	(2,10)	0	(1,8)	(9,7)	(2,3)	(12,2)	(12,11)	(9, 6)
(1,8)	(1,8)	0	(2,3)	(9,6)	(1,5)	(12,11)	(2,10)	(9,7)	(12, 2)
(2,3)	(2, 3)	(1, 8)	(9, 6)	(12, 11)	0	(12, 2)	(1, 5)	(2, 10)	(9, 7)
(2, 10)	(2, 10)	(9, 7)	(1, 5)	0	(12, 2)	(1, 8)	(12, 11)	(9, 6)	(2, 3)
(9, 6)	(9, 6)	(2, 3)	(12, 11)	(12, 2)	(1, 8)	(9, 7)	0	(1, 5)	(2, 10)
(9, 7)	(9, 7)	(12, 2)	(2, 10)	(1, 5)	(12, 11)	0	(9, 6)	(2, 3)	(1, 8)
(12, 2)	(12, 2)	(12, 11)	(9, 7)	(2, 10)	(9, 6)	(1, 5)	(2, 3)	(1, 8)	0
(12, 11)	(12, 11)	(9, 6)	(12, 2)	(9, 7)	(2, 3)	(2, 10)	(1, 8)	0	(1, 5)

Elliptic curve over \mathbb{Z}_p : computing multiples

Addition in \mathcal{E} is efficient (can be computed in time polynomial in $\log_2(p)$).

Because it requires basic operations modulo p to compute $(x_1, y_1) + (x_2, y_2)$.

An elliptic curve \mathcal{E} is an additive group, i.e., it uses addition as a group operation. Hence, if we compose n copies of $g \in \mathcal{E}$ we get a multiple of g

$$\mathbf{n} \cdot \mathbf{g} = \underbrace{\mathbf{g} + \ldots + \mathbf{g}}_{n \text{ times}}.$$

For $(x, y) \in \mathcal{E}$ and $n \in \mathbb{N}$ we can efficiently compute $n \cdot g$.

We can use binary-exponentiation-like method. We can compute sufficiently many multiples of the form $2 \cdot (x, y) = (x, y) + (x, y)$

$$2^{2} \cdot (x, y) = 2 \cdot (x, y) + 2 \cdot (x, y)$$

$$2^{3} \cdot (x, y) = 2^{2} \cdot (x, y) + 2^{2} \cdot (x, y)$$

$$2^{4} \cdot (x, y) = 2^{3} \cdot (x, y) + 2^{3} \cdot (x, y)$$

Then write n in binary $n = b_k 2^k + \ldots + b_1 2 + b_0$ (for $b_i = 0, 1$) and compute

$$n\cdot (x,y)=\sum_{i=0}^k b_i 2^i\cdot (x,y).$$

Multiples: example

For an elliptic curve $\mathcal E$ defined by $y^2=x^3+23x+13$ over $\mathbb Z_{83}$. A point (24,14) belongs to $\mathcal E$ because

$$14^2 \equiv_{83} 24^3 + 23 \cdot 24 + 13.$$

To compute 17(24, 14) we compute

$$2 \cdot (24, 14) = (30, 8)$$

$$4 \cdot (24, 14) = (24, 69)$$

$$8 \cdot (24, 14) = (30, 75)$$

$$16 \cdot (24, 14) = (24, 14).$$

Then
$$17 \cdot (24, 14) = 16 \cdot (24, 14) + (24, 14) = (24, 14) + (24, 14) = (30, 8)$$
.

Primitive elements

Definition

$$g \in \mathcal{E}$$
 is a primitive element $\Leftrightarrow \mathcal{E} = \langle g \rangle \Leftrightarrow |g| = |\mathcal{E}|$.

For instance, for $y^2 = x^3 + 3x + 8$ over \mathbb{Z}_{13} and g = (1, 5) we have

$$0(1,5) = \mathcal{O}$$
 $5(1,5) = (12,11)$
 $1(1,5) = (1,5)$ $6(1,5) = (9,6)$

$$2(1,5) = (2,10)$$
 $7(1,5) = (2,3)$

$$3(1,5) = (9,7)$$
 $8(1,5) = (1,8)$

$$4(1,5) = (12,2)$$
 $9(1,5) = \mathcal{O}.$

Hence,
$$|(1,5)| = 9$$
, $\mathcal{E} = \langle (1,5) \rangle$, and, $(1,5)$ is primitive in \mathcal{E} . Now, for $g = (9,6)$
 $0(9,6) = \mathcal{O}$ $2(9,6) = (9,7)$

$$1(9,6) = (9,6) 3(9,6) = \mathcal{O}.$$

Hence, |(9,6)| = 3 and (9,6) is not primitive in \mathcal{E} .

Proposition (How do we check if g is primitive in \mathcal{E} ?)

If
$$\mathsf{PPF}(|\mathcal{E}|) = p_1^{\mathsf{a}_1} \dots p_k^{\mathsf{a}_k}$$
, then

g is primitive
$$\Leftrightarrow$$
 $g^{|\mathcal{E}|/p_i} \neq \mathcal{O}$ for every i.

The numbers $|\mathcal{E}|/p_i$ are the greatest proper divisors of $|\mathcal{E}|$, $|\mathcal{E}|$, $|\mathcal{E}|$ $|\mathcal{E}|$ $|\mathcal{E}|$

Primitive elements: example

The elliptic curve \mathcal{E} defined by $y^2=x^3+2x+9$ over \mathbb{Z}_{67} contains 75 elements, i.e., $|\mathcal{E}|=75=3\cdot 5^2$. 75 has two greatest proper divisors: 15 and 25.

- $25(0,3) = \mathcal{O} \Rightarrow (0,3)$ is not primitive.
- $15(6,6) = \mathcal{O} \Rightarrow (6,6)$ is not primitive.
- $15(8,1) \neq \mathcal{O}$ and $25(8,1) \neq \mathcal{O}$ \Rightarrow (8,1) is primitive.