

Nota: a) d) à frequência de ressonância (f_c), a impedância (Z) **do circ**uito LC á máxima, pelo que a corrente [é minima.

Então, se f < f $_{\rm r}$, Z diminui e I aumenta.

b) Comp
$$I_C = \frac{V}{X_C} = \frac{1}{2 \pi fC}$$
, se f diminut,

 x_{C} aumenta e I_{C} diminui

c) a tensão aplicada sos terminais de L é sempre V

3.2.12.2

Se a frequência da tensão aplicada a um circuito paralelo EC aumenta, em relação à frequência de ressonância, a corrente que atravessa o circuito

a)	diminul			• • •	•••••	• •			• • • •	• • •	··	
b)	não se alt	era				٠.		• • • • • • • • •	• • • •	• • •	·· (
c)	fica exfas	ada em	atraso	em	relação	à	tensão	aplicada	• • • •		[
a)	, 4		avanto	#	н	ц	11	н			·· •	X

Nota: a)b) so f > f_r, Z diminui e I aumenta (ver "Nota" da pergunta nº, 3,2.12.c)d) à frequência de respondancia (f_r), o circuito paralelo LC comportanse como uma resistência, pelo que a corrente I e a tensão V estão em fase (ver figura da pergunta nº, 3,2.12.1) Se f > f_r, então $X_L = 2 \pi$ fL aumenta e $X_C = \frac{1}{2 \pi}$ fC diminui, pelo que a corrente passa mais facilmenta pelo ramo que contém o condensador, e o circuito comportanse como um condensador, o que leva a corrente I a ficar exfasada em avanço em relação a V.