计算机组成原理

PRINCIPLES OF COMPUTER ORGANIZATION

第6次课: 33.1 定点一位乘法

杜国栋

信息科学与工程学院计算机科学与工程系gddu@ysu.edu.cn

课程目标

- ▶ 掌握定点原码一位乘;
- ▶ 熟悉补码一位乘;
- > 了解乘法器的结构。

设 A=0.1101, B=0.1011, 求 A×B。

笔算时, 乘积的符号由心算而得, 正正为正。其数值部分的运算如下:

0.1101

 \times 0.1011

1101	$A*2^{0}$	A 不移位
1101	$A*2^{1}$	A 左移 1 位
0000	$0*2^2$	0左移2位
1101	$A*2^{3}$	A 左移 3 位

0.10001111

显然,这里包含着被乘数的多次左移,以及4个位积的相加运算。

两大问题:

- ① 将 4 个位积一次相加, 机器很难实现;
- ② 乘积位数增长一倍(需要 2N 位的加法器),将造成存储空间和运算时间浪

费。

读
$$A=0.1101$$
, $B=0.1011$, 求 $A\times B$ 。
$$A\times B=A\times 0.1011$$

$$=A\times 0.1+A\times 0.00+A\times 0.001+A\times 0.0001$$

$$=A\times 0.1+A\times 0.00+0.001(A+0.1\ A)$$

$$=A\times 0.1+0.01(0A+0.1(A+0.1\ A))$$

$$=0.1(A+0.1(0A+0.1(A+0.1\ A)))$$

$$=2^{-1}(A+2^{-1}\ (0A+2^{-1}\ (A+2^{-1}A)))$$

$$=2^{-1}(A+2^{-1}\ (0A+2^{-1}\ (A+2^{-1}(A+0))))$$

$$\begin{cases} z_0=0\\ z_1=2^{-1}(x^*y_4+z_0)\\ z_2=2^{-1}(x^*y_3+z_1) \end{cases}$$
其中, $y_0.y_1y_2y_3y_4=0.1011$

$$z_3=2^{-1}(x^*y_2+z_2)$$

$$z_4=2^{-1}(x^*y_1+z_3)$$

由此可得,两个数相乘的过程,可视为加法和移位(相当于右移)两种运算, 这对于计算机而言,非常容易实现。

部分积	乘数(٧,٧2,٧3,٧4)
0.0000	
+0.1101	101 <u>1</u>
0.1101	
0.0110	
+0.1101	
1.0011	<u>į</u> ,10 <u>1</u>
0.1001	
+0.0000	
0.1001	11.10
0.0100	
+0.1101	
1.0001	
0.1000	1111
	最终结果: 0.10001111

上述运算步骤可归纳如下:

- ① 乘法运算可用移位和加法来实现,两个 4 位数相乘,总共需要进行 4 次加法和 4 次移位。
- ② 由乘数的末位决定被乘数是否与原部分积相加,然后右移一位,形成新的部分积。与此同时,乘数右移一位,空出的最高位存放新的部分积的最低位。
- ③ 每次做加法时,被乘数仅仅与部分积的高位进行相加,其低位被移至乘数所 空出高位位置。

例题: 已知 x= - 0.1110, y= - 0.1101, 求[x·y]_原?

按照原码一位乘的公式 $[x \cdot y]_{\mathbb{R}} = (x_0 \oplus y_0).(0.x_1...x_n)(0.y_1...y_n)$ 可得数值部分为:

例题:	己知 x=-0.1110,	y= - 0.1101,	求[x · y]₅?
[x] _{\%} =1	.1110		
[y] _{\(\beta\)} =1	.1101		
$x_0 = 1,$	$y_0 = 1$		
$x^* = 0$	$.1110 \; , y^* = 0.110$	1	

み 照原妈一位来的公式 [x·y] _原 = (部分积	乘数(V1V2V3V4)
0.0000	
+0.1110	110 <u>1</u>
0.1110	
0.0111	
+0.0000	
0.0111	<u>0</u> 11 <u>0</u>
0.0011	
+0.1110	
1.0001	<u>10</u> 1 <u>1</u>
0.1000	
+0.1110	1101
1.0110	1101
0.1011	0110
_	$[x^* \cdot y^*]_{\bar{\mathbb{R}}} = 0.10110110$
	最终结果: $[x \cdot y]_{\mathbb{R}} = 0.10110110$
	$x \cdot y = +0.10110110$

例3-6 已知X=-0.1011, Y=0.1001, 求[X×Y]_原

解: [X]_原=1.1011,[Y]_原=0.1001

|X| = 0.1011, |Y| = 0.1001

按原码一位乘法运算规则,求[X×Y]原的数值部分。

 $|X| \times |Y| = 0.01100011$, $\overline{m}Zs = Xs \oplus Ys = 1 \oplus 0 = 1$

最后求得[X×Y]原 = 1.01100011

_		
	部分积	乘 数
	0. 0 0 0 0 +) 0. 1 0 1 1	1 0 0 <u>1</u>
-	0. 1 0 1 1 0. 0 1 0 1 +) 0. 0 0 0 0	1 1 0 0
Ī	0. 0 1 0 1 0. 0 0 1 0 +) 0. 0 0 0 0	1 1 1 0
	0. 0 0 1 0 0. 0 0 0 1 +) 0. 1 0 1 1	0 1 1 1
	0. 1 1 0 0 0. 0 1 1 0	0 0 1 1
	高 位 积	低位积

定点数的乘法 补码一位乘(校正法)

已知
$$[x]_{\stackrel{?}{\Rightarrow}} = x_0.x_1...x_n$$
,求 $[x \cdot y]_{\stackrel{?}{\Rightarrow}}$?

$$[z_0]_{\frac{1}{N}} = 0$$

$$[z_1]_{\frac{1}{N}} = 2^{-1} (y_n[x]_{\frac{1}{N}} + [z_0]_{\frac{1}{N}})$$

$$[z_2]_{\frac{1}{N}} = 2^{-1} (y_{n-1}[x]_{\frac{1}{N}} + [z_1]_{\frac{1}{N}})$$

$$\vdots$$

$$[z_i]_{\frac{1}{N}} = 2^{-1} (y_{n-i+1}[x]_{\frac{1}{N}} + [z_{i-1}]_{\frac{1}{N}})$$

$$\vdots$$

$$[x \cdot y]_{\frac{1}{N}} = [z_n]_{\frac{1}{N}} = 2^{-1} (y_1[x]_{\frac{1}{N}} + [z_{n-1}]_{\frac{1}{N}})$$

1) 被乘数 x 符号任意,乘数 y 符号为正

$$[x]_{\frac{1}{14}} = x_0, x_1 x_2 \cdots x_n = 2 + x = 2^{n+1} + x \pmod{2}$$

$$[y]_{\frac{1}{14}} = 0, y_1 y_2 \cdots y_n = y$$

则 $[x]_{*} \cdot [y]_{*} = [x]_{*} \cdot y = (2^{n+1} + x) \cdot y = 2^{n+1} \cdot y + xy$

由于 y = 0. $y_1 y_2 \cdots y_n = \sum_{i=1}^n y_i 2^{-i}$,则 $2^{n+1} \cdot y = 2 \sum_{i=1}^n y_i 2^{n-i}$,且 $\sum_{i=1}^n y_i 2^{n-i}$ 是一个大于或等于 1

的正整数,根据模运算的性质,有 $2^{i+1} \cdot y = 2 \pmod{2}$,故

$$[x]_{**} \cdot [y]_{**} = 2^{n+1} \cdot y + xy = 2 + xy = [x \cdot y]_{**} \pmod{2}$$
$$[x \cdot y]_{**} = [x]_{**} \cdot [y]_{**} = [x]_{**} \cdot y$$

对照原码乘法式(6.9)和式(6.10)可见,当乘数y为正数时,不管被乘数x符号如何,都可按原码乘法的规则运算,即

即

定点数的乘法 朴码一位乘(校正法)

例题 1: 已知[x]*=1.0101, [y]*=0.1101, 求[x·y]*?

定点数的乘法 朴码一位乘(校正法)

例题 1: 已知 $[x]_{i+1.0101}$, $[y]_{i+0.1101}$, 求 $[x \cdot y]_{i+2}$?

因为 y>0, 所以利用公式 $[x \cdot y]_{i} = [x]_{i} \cdot [y]_{i} = [x]_{i} \cdot (0.y_{1}...y_{n})$ 可得结果, 此时与原码一位乘类似。

考虑到运算部分积可能出现绝对值大于1的情况,注意此时并不是溢出,可通过后续右移解决,故部分积和被乘数取双符号位。

部分积	乘数(v1v2v3v4)	
00.0000		
+11.0101	110 <u>1</u>	
11.0101		
11.1010		
11.1101	<u>1</u> 11 <u>0</u>	
+11.0101		
11.0010	0111	
11.1001		
+11.0101	0011	
10.1110	0011	
11.0111	0001	
	最终结果: 1.01110001	

总结

- ▶ 原码一位乘;
- ▶ 补码─位乘 (校正法);
- ▶ 补码一位乘 (Booth算法)。

课后习题: P68 3.17 3.18

有问题欢迎随时跟我讨论

办公地点: 西校区信息馆423

邮 箱: gddu@ysu.edu.cn