МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики» Факультет программной инженерии и компьютерной техники

ЛАБОРАТОРНАЯ РАБОТА №2

по дисциплине

"Основы профессиональной деятельности" вариант №1902

Выполнил:

Студент группы Р3119

Бардин Петр Алексеевич

Преподаватель:

Перцев Тимофей Сергеевич

Санкт-Петербург

Содержание

Задание	2
Ход работы	5
Вывод	12

Задание

Введите номер варианта 1902

038:		2039	
039:		E042	
03A:	+	0200	
03B:		3038	
03C:		2039	
03D:		E043	
03E:		A044	
03F:		6043	
040:		E042	
041:		0100	
042:		2039	
043:		3038	
044:		6043	

По выданному преподавателем варианту определить:

- функцию, вычисляемую программой
- область представления
- область допустимых значений исходных данных и результата
- выполнить трассировку программы
- предложить вариант с меньшим числом команд

При выполнении работы представлять результат и все операнды арифметических операций знаковыми числами, а логических операций набором из шестнадцати логических значений.

Ход работы

Вся информация по лабораторной размещена в системе контроля версий Git на сервисе Github.

https://github.com/BardinPetr/itmo-labs/tree/main/opd/year 1/lab 2

Разбор кода программы

Адрес	Код команды	Мнемоника	Комментарии
038	2039	X = 0x2039	Переменная X
039	E042	Y = 0xE042	Переменная Ү
03A	0200	CLA	AC = 0
03B	3038	OR 38	$AC = AC \mid M038 (= AC \mid X)$
03C	2039	AND 39	AC = AC & M039 (= AC & Y)
03D	E043	ST 43	(T =) M043 = AC
03E	A044	LD 44	AC = M044 (= Z)
03F	6043	SUB 43	AC = AC - M043 (= AC - T)
040	E042	ST 42	(R =) M042 = AC
041	0100	HLT	Останов
042	2039	R = Z - (X & Y)	Результат вычислений R
043	3038	Т	Временная переменная Т
044	6043	Z = 0x6043	Переменная Z

Примечание: AC - аккумулятор, MXXX - значение ячейки памяти адреса 0xXXX. Зеленым отмечены ячейки памяти данных, синим - исполняемых команд.

По условию исполнение начинается с ячейки 03А.

В ячейке 041 находится команда останова ЭВМ, она последняя исполняемая. Отсюда делаем вывод, что данные хранятся в ячейках 38-39 и 42-44, а ячейки 3А-41 содержат последовательность команд программы, так как ветвлений в ней не обнаружено.

Расшифровка исходной функции

Представим операции псевдокодом.

- 1. X=0x2039, Y=0xE042, Z=0x6043
- 2.AC = 0
- 3. AC | = X
- 4. AC &= X
- 5.T = AC
- 6.AC = Z
- 7. AC -= T
- 8.R = AC

Строки 1-4 эквивалентны выражению T = AC = (X & Y).

Строки 6-8 эквивалентны R = AC = Z - T.

Тогда итоговая функция $\mathbf{R} = \mathbf{Z} - (\mathbf{X} \& \mathbf{Y})$

Описание данных

Ячейки памяти 38, 39, 44 содержат константы (параметры функции) X, Y, Z соответственно. Ячейка 43 используется хранения промежуточного результата вычислений. В ячейку 42 будет записан результат работы.

Исходя из кода программы и задания область представления следующая:

- Х, У 16-бит логических значений
- Т 16-бит логических значений как результат логического "и" для X и Y, будет трактоваться как 16 разрядное знаковое число.
- Z 16 разрядное знаковое число
- R 16 разрядное знаковое число как результат вычитания из Z переменной T

Область допустимых значений

Так как R (итоговый результат) есть результат вычитания знаковых чисел, то в случае правильного выполнения, он соответствует диапазону $-2^{15} \le R \le 2^{15} - 1$ для знаковых 16-разрядных чисел.

Промежуточное вычисление T = X & Y не накладывает ограничений в виде ОДЗ, а также после его представления как знакового числа, получаем область значений:

$$-2^{15} \le T \le 2^{15} - 1$$

В коде есть вычитание Т, значит нужно проверить, что при взятии Т с противоположным знаком не произойдет переполнения, т.е.:

$$\begin{split} T &\neq 0x8000 \iff \neg((T_{15} = 1) \land (\forall i \in [0, 14]: T_i = 0)) \Leftrightarrow \\ &\Leftrightarrow \neg((X_{15} = Y_{15} = 1) \land (\forall i \in [0, 14]: X_i \& Y_i = 0)) \end{split}$$

В соответствии с типом данных: $-2^{15} \le Z \le 2^{15} - 1$

Рассмотрим случаи для Z - T:

1. Пусть —
$$2^{15} \le Z \le -2^{14}$$
, тогда — $2^{15} \le T \le 0 \iff X_{15} = Y_{15} = 1 \land \forall i \in [0,14]: X_i, Y_i \in \{0,1\}$

2. Пусть —
$$2^{14} \le Z \le 2^{14} - 1$$
, тогда — $2^{14} \le T \le 2^{14} - 1 \Leftrightarrow \forall i \in [0,13]: X_{i'}Y_i \in \{0,1\} \land ((X_{15},X_{14},Y_{15},Y_{14}=1) \lor (X_{15}\&Y_{15}=X_{14}\&Y_{14}=0))$ $T=2^{14}$ также подходит, тогда $X_{14}=Y_{14}=1 \land \forall i \in [0,15] \backslash \{14\}: X_i\&Y_i=0$

3. Пусть
$$2^{14} \le Z \le 2^{15} - 1$$
, тогда $0 \le T \le 2^{15} - 1 \iff X_{15} \& Y_{15} = 0 \land \forall i \in [0, 14]: X_i, Y_i \in \{0, 1\}$

Трассировка исполнения программы

Значения переменных:

1010111010100110 X = 0xAEA6 =

Y = 0xBEEF = 1011111011111 Z = 0x8000 = 1000000000000 = -32768 T = 0xAEA6 = 1010111010110 = -20826 R = 0xD15A = 11010001011010 = -11942

Выполн кома		Содержание регистров процессора после выполнения команды					Новые значения ячеек, после выполнения команды				
Адрес	Код	IP	CR	AR	DR	SP	BR	AC	NZVC	Адрес	Новый код
03A	0200	03B	0200	03B	0200	000	03A	0000	0100		
03B	3038	03C	3038	038	AEA6	000	5159	AEA6	1000		
03C	2039	03D	2039	039	BEEF	000	03C	AEA6	1000		
03D	E043	03E	E043	043	AEA6	000	03D	AEA6	1000	043	AEA6
03E	A044	03F	A044	044	8000	000	03E	8000	1000		
03F	6043	040	6043	043	AEA6	000	03F	D15A	1000		
040	E042	041	E042	042	D15A	000	040	D15A	1000	042	D15A
041	0100	042	0100	041	0100	000	041	D15A	1000		

Код программы для трассировки

ORG 0x38

X: WORD 0xAEA6
Y: WORD 0xBEEF

ORG 0x42

R: WORD ? T: WORD ?

Z: WORD 0x8000

ORG 0x3A

START: CLA

OR \$X
AND \$Y
ST \$T
LD \$Z
SUB \$T
ST \$R
HLT

Оптимизация программы

Рассмотрим производимые операции:

1. CLA	AC = 0
2.OR 38	AC = M038
3. AND 39	AC &= M039
4.ST 43	M043 = AC
5. LD 44	AC = M044
6. SUB 43	AC -= M043
7.ST 42	M042 = AC

Упростим код

- Строки 1 и 2 по своему результату эквивалентны обычной загрузке данных ячейки памяти в аккумулятор, так как $A \mid 0 = A$
 - Меняем на одну команду: LD X
- В строках 4 при такой простой формуле очевидно производится лишнее действие запись в память промежуточного значения, оно через 1 команду будет снова прочитано
 - Если у значения аккумулятора поменять знак после команды 3, то вычитание из Z будет можно реализовать всего лишь сложением аккумулятора с ним
 - $\circ R = Z (X \& Y) = Z + (-(X \& Y))$
 - Меняем команды 4-6 на последовательность:
 - NEG
 - ADD Z

Таким образом сэкономлено 2 ячейки памяти на командах и одна ячейка памяти на отсутствии необходимости хранить промежуточный результат

Итого:

Адрес	Код команды	Мнемоника	Комментарии
038	2039	X = 0x2039	Переменная X
039	E042	Y = 0xE042	Переменная Ү
03A	6043	Z = 0x6043	Переменная Z
03B	2039	R = Z - (X & Y)	Результат вычислений R
03C	A038	LD 038	AC = M038(X)
03D	2039	AND 039	AC = AC & M039(Y)
03E	0780	NEG	$AC = \sim AC + 1$
03F	403A	ADD 03A	AC = AC + M03A(Z)
040	E03B	ST 03B	M03B = AC
041	0100	HLT	Останов

Код программы на ассемблере БЭВМ.

ORG 0x38

X: WORD 0x2039
Y: WORD 0xE042
Z: WORD 0x6043

R: WORD ?

START: LD \$X

AND \$Y
NEG
ADD \$Z
ST \$R
HLT

Вывод

В ходе работы мною были освоены основы архитектуры БЭВМ, методы представления данных в памяти, изучены основные команды БЭВМ и способы взаимодействия с БЭВМ. Проведена работа по изучению принципов анализа, трассировки и оптимизации существующих программ.