Exercice 5

1. Etablir la fonction de transfert en fréquence dont le diagramme de

2. Soit : $y(t)=3.\sin(100t)\otimes \mathcal{F}^{-1}(G(j\omega))$ En négligeant le régime transitoire, quelle est la nature du signal y(t), donner les valeurs numériques de y(t) que vous pouvez estimer.

Solution

1. Il est d'usage de graduer l'axe horizontal des diagrammes de Bode en pulsation $\omega = 2\pi f$

2 ruptures de pente sur le diagramme de Bode en $\frac{1}{T_1}$ =0.1 et $\frac{1}{T_2}$ =10

Les pentes du diagramme sont de +2 et -2

$$G(j\omega)=1000(j\omega)^2\frac{1}{(1+jT_1\omega)^2(1+jT_2\omega)^2}$$

$$G(j\omega) = \frac{1000(j\omega)^{2}}{(1+10j\omega)^{2}(1+j0.1j\omega)^{2}}$$

2. $y(t)=a.\sin(100t+\varphi)$ A partir du graphique on estime $a\approx0.3$ On ne peut pas estimer φ sur le graphique en revanche il est possible de calculer à partir de $G(j\omega)$.