MTH 411, Fall 2018, Quiz 4 (Thursday Long Quiz/12 pts)

Choose any one of the following two results to prove. Make your proof as precise as possible.

- 1. Let G be a group. Fix two elements a and b in G. Prove that $(ab)^2 = a^2b^2$ if and only if ab = ba.
- 2. Let $G := GL(2,\mathbb{R})$, and define $H := \{A \in G : \det(A) = 1\}$ Prove that $H \leq G$.

Precisely state and number any theorems/results that you need to call (or, refer to) in your proof.

Theorem 1 Let G be a group G $H \subseteq G$. Then $H \leq G \iff 0$, H is closed under mult.; G, $e \in H$; and G, H is closed under inverses.

Theorem 2 If $A, B \in M(2, R)$, then det(AB) = det(A) det(B)Theorem 3 If $A \in GL(2, R)$, then $det(A) = \frac{1}{det(A)}$.

(1) let 9 be a group, and let a, b & 9.

(\Rightarrow) Suppose $(ab)^2 = a^2b^2$. Then abab = aabbMultiplying on left by a^{-1} and on the right by b^{-1} we get $a^{-1}ababb^{-1} = a^{-1}aabbb^{-1}$ $a^{-1}ababb^{-1} = a^{-1}aabbb^{-1}$ $a^{-1}ababb^{-1} = a^{-1}aabbb^{-1}$

(€) suppose ab = ba.
Then multiplying on the left by a and on
the right by b gives

and b = abab. Notice this may rewritten as $a^2b^2 = (ab)^2$.

Thus we proved $ab = ba \Rightarrow a^2b^2 = (ab)^2$.

Therefore we have shown that $ab = ba \iff a^2b^2 = (ab)^2.$

(2) Let $G := GL(2, IR) = \{A \in M_2(IR) \mid det(A) \neq 0\}$ $H := \{A \in G \mid det(A) = 1\}$

WTS: H < G

proof: We will prove that $H \leq G$ using Theorem 1.

Notice by def. of H we know $H \subseteq G$.

OWTS: $\forall x,y \in H$, $xy \in H$. Then $\det(xy) = \det(x) \det(y)$ since $= 1 \cdot 1 \qquad x,y \in H$

Your xy E H; and we proved that H is closed under mult.

② WD: $e \in H$. $e = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in G$ and det(e) = 1, and so $e \in H$.

(3) WP: V XEH, X'EH. "hes 3. Shee XEH

Let XEH. Then det (X') = 1 det (X) = 1 = 1,

and so X'EH. We prove that H is done

under inverses.

Therefore, using Theorem I we can conclude that $H \leq G$.