

EYP1113 - Probabilidad y Estadística

Pilar Tello Hernández pitello@uc.cl

Facultad de Matemáticas Departamento de Estadística Pontificia Universidad Católica de Chile

Segundo Semestre 2021

Actividad con .dta

- 1. Desde CANVAS descargue la base de datos 'RentasMunich.dta'
- 2. Guarde bajo el nombre de data la lectura de los datos ya descargados.

¿De qué trata la base de datos?

La data contiene 3082 observaciones correspondientes a rentas de apartamento en Munich durante 1999.

Sus variables son:

- ► rent = valor renta
- ► rentsqm = renta por metro cuadrado
- ▶ area = tamaño/superficie en metros cuadrados
- ▶ yearc = año de construcción
- ▶ location = localización: 1 Promedio; 2 Bueno; 3 Alta
- ▶ bath = tipo de baño: 0 Estándar; 1 Premium
- ▶ kitchen = tipo de cocina: 0 Estándar; 1 Premium
- ► cheating = presencia de calefacción: 0 No; 1 Sí
- ▶ district = distrito de Munich donde el apartamento está localizado.

Comando plot()

- ► Se usa el comando plot(x,y,...) para graficar un vector versus otro. ¿Qué ocurre al omitir el argumento y?
- ► Si a un gráfico se quiere agregar un punto (x1,y1) en particular, se usa el comando points(x1,y1,...) una vez ejecutado el comando plot().
- ► Si a un gráfico se quiere agregar una línea entre dos puntos (x1,y1), (x2,y2), se usa el comando lines(c(x1,x2), c(y1,y2), ...), luego de haber ejecutado el comando plot().
- ► Líneas horizontales o verticales pueden ser agregadas al gráfico mediante el comando abline(...) con argumentos h= o v=, respectivamente.
- ► Si se quiere agregar una linea con intercepto "a" y pendiente "b", se utiliza abline(a,b)
- ➤ Si se quiere dibujar un gráfico en blanco, al cual vamos a agregar otros gráficos, se usa el comando plot(x,y,type="n", ylim=, xlim=,...)

Ejemplo:

```
plot(x=data$rent,y=data$rentsqm)
points(x=1500,y=15)
points(x=1000,y=5)
lines(x=c(1000,1500),y=c(5,15))
abline(h=5)
abline(h=15)
abline(v=1500)
abline(v=1500)
abline(a=5,b=10/1500)
plot(x=data$rent,y=data$rentsqm,type="n")
points(x=c(1500,1000),y=c(15,5))
```

Argumentos opcionales de plot()

- ► xlab=, ylab=, main= etiquetan el eje X, eje Y y el título del gráfico, respectivamente.
- ▶ Puntos y líneas en el gráfico pueden tener distintos colores, agregando el argumento col=''...'' en la función. También se puede modificar su grosor usando lwd=.... Ejecute colors() ¿Qué aparece en la consola?
- Para agregar etiqueta en un punto (x,y) del gráfico usamos el comando text(x,y,label=).
- ► Para agregar título a un gráfico ya ejecutado, se usa el comando title()

Argumentos opcionales de plot()

Ejemplo:

```
plot(x=data$rent,y=data$rentsqm,
xlab="Renta", ylab="Renta por metro cuadrado",
main="Renta versus Renta por metro cuadrado",
col="darkblue",lwd=2)
points(x=1500,y=15,col="darkred",lwd=2)
text(x=1500,y=16,label="Etiqueta del punto")
plot(x=data$rent,y=data$rentsqm,
xlab="Renta", ylab="Renta por metro cuadrado",
col="darkblue",lwd=2)
points(x=1500,y=15,col="darkred",lwd=2)
text(x=1500,y=16,label="Etiqueta del punto")
title(main="Renta versus Renta por metro cuadrado")
```

Símbolos matemáticos y funciones en gráficos

- ► Podemos escribir símbolos matemáticos en R para los títulos, subtítulos, ejes X e Y, entre otros.
- ► Usaremos las funciones expression(), bquote() y paste()
- ► El comando curve nos permite graficar una función con respecto a x. Contiene los argumentos from y to que permiten indicar los límites de x en donde se quiere graficar la función. Si se quiere añadir esta curva encima de otro gráfico se debe añadir el argumento add=TRUE.

Símbolos matemáticos y funciones en gráficos

Ejemplo:

```
par(mar=c(5.1,5.1,4.1,2.1))
curve(expr=100*(x^3-x^2)+15, from=0, to=1,
xlab=expression(alpha),
ylab=expression(100%*%(alpha^3-alpha^2)+15),
main=expression(
paste("Función: ",
f(alpha)==100%*%(alpha^3-alpha^2)+15)))
sigma1=1.2
text(0.1,3,bquote(sigma[alpha]==.(sigma1)))
text(0.8,11,expression(sigma[alpha]==0.25))
```

Símbolos matemáticos en gráficos, Ejemplo

Actividad para la semana con plot()

1. Usando los datos data obtener el siguiente gráfico

Precio de renta por tamaño, Munich 1999

Comando boxplot()

Este comando sirve para graficar diagramas de cajas (representación de la distribución de una muestra a través de sus cuartiles, mínimo y máximo). El comando es el siguiente:

- boxplot(x=, main=, xlab=, ylab=, horizontal=, col=) En este caso el argumento x= será el vector de los datos y el comando horizontal= puede ser TRUE o FALSE si se quiere que las cajas vayan de manera horizontal o vertical, respectivamente. El resto de los comandos son análogos a la función plot().
- ▶ boxplot(x~y, main=, xlab=, ylab=, horizontal=, col=) A diferencia del comando anterior, éste lleva una variable adicional y que puede asignar los datos de x en distintos grupos.

Comando boxplot()

```
Ejemplo:
```

```
boxplot(x=data$rent,main="Boxplot de renta",xlab="",
ylab="Renta",horizontal=FALSE,
col="pink")
boxplot(x=data$rent,main="Boxplot de renta",ylab="",
xlab="Renta", horizontal=TRUE,
col="pink")
boxplot(data$rent~data$localizacion,
main="Boxplot de renta",
xlab="Localización",
ylab="Renta", horizontal=FALSE,
col="pink")
boxplot(data$rent~data$localizacion,
main="Boxplot de renta",
ylab="Localización",
xlab="Renta", horizontal=TRUE,
col="pink")
```

Comando hist()

El histograma de un conjunto de datos es un gráfico de barras que representan las frecuencias con que aparecen las mediciones agrupadas en ciertos rangos o intervalos. El comando es el siguiente:

- ► hist(x=, main=, breaks, freq = TRUE, xlab=, ylab=, col=)
- ► En este caso el argumento x será el vector de los datos.
- ► El comando breaks puede ser un valor con el cual se indica el número aproximado de clases o un vector cuyos elementos indican los puntos límites entre las clases o intervalos.
- ► El comando freq = argumento lógico, si se especifica como TRUE, el histograma representará las frecuencias absolutas o conteo de datos en cada clase, si se especifica como FALSE, se reprentarán las frecuencias relativas. Por defecto, este argumento toma el valor de TRUE.
- ► El resto de los comandos son análogos a la función plot().

Comando hist()

Ejemplo:

```
hist(x=data$rent,main="Histograma de renta",
freq=TRUE,xlab="Renta",ylab="Frecuencia",
col="vellow")
hist(x=data$rent,main="Histograma de renta",
freq=FALSE,xlab="Renta",ylab="Densidad",
col="yellow")
hist(x=data$rent,main="Histograma de renta",
freq=FALSE,xlab="Renta",ylab="Densidad",
col="yellow", breaks=10)
```

Comando barplot()

El gráfico de barras permite representar para cada una de las modalidades definidas para una variable cualitativa o los valores de una variable discreta en terminos de frecuencias relativas o absolutas. Para obtener este tipo de gráficos en R, la función base es barplot(), como se describe a continuación:

- ▶ barplot(height, legend.text = NULL, beside = FALSE, horiz = FALSE,col= ,...)
- ► En este caso el argumento height vector o matriz de valores que describen las barras. En el caso de variables categóricas, entregamos el table de la variable. Si es un vector, entonces el gráfico corresponde a un secuencia de barras rectangulares cuyas alturas corresponden a los valores del vector.
- ➤ Si realizamos una tabla de doble entrada entonces tendremos el conteo de dos variables categóricas. Con el argumento beside podemos decidir si queremos un gráfico de barras apilado o agrupado (beside=TRUE). Con legend.text=TRUE podemos activar la leyenda para este gráfico.

Comando barplot()

```
Eiemplo:
table(data$localizacion)
barplot(height=table(data$localizacion),
col="darkgreen")
barplot(height=table(data$localizacion),
col="darkgreen", horiz=TRUE)
table(data$localizacion,data$bano)
barplot(height=table(data$localizacion,
data$bano),
col=c("tomato", "violetred", "turquoise"),
beside=TRUE, legend.text=TRUE)
```

Más actividades con gráficos para la semana

- Realizar histograma y diagrama de caja (boxplot) de la Renta por metro cuadrado.
- Realizar boxplot de la Renta por metro cuadrado con respecto a la Calefacción.
- 3. Realizar gráfico de barra de la los tipos de Cocina según la Localización.
- Realizar gráfico de barra de la los tipos de Baño según el tipo de Cocina.
- Realizar el diagrama de caja de la Renta por metro cuadrado según la presencia de Calefacción.

Parámetros gráficos

- ► Hay que distinguir entre el gráfico y la ventana donde aparece el gráfico. Un gráfico siempre aparece en una ventana. En una ventana puede haber más de un gráfico.
- ► Se pueden cambiar los parámetros gráficos de la ventana. Usar la función par() en R para ver cuales son los parámetros por defecto. Para obtener mas información de todos los parámetros se puede usar la ayuda de R, ?par.

Guardando los gráficos

► Para guardar los gráficos generados en R en formato pdf se usan los siguientes comandos:

```
pdf(file="nombre.pdf", width= , height= )
plot(...)
dev.off()
```

- ► Si se grafica más de un plot aparecerá en el archivo pdf en mas de una página.
- ► Se pueden guardar los gráficos en formatos postscript, jpeg, png o bmp usando los comandos respectivos.
- ► Haciendo click derecho en el mismo gráfico, se puede guardar como imagen metafile o bmp.

Modelos de Probabilidad

Existen diversos modelos de probabilidad para estudiar. Los modelos más utilizados son

Modelo	Comando
Binomial	_binom()
Poisson	_pois()
Uniforme	_unif()
Normal	_norm()
Exponencial	_exp()
Gamma	_gamma()
Chi Cuadrado	_chisq()
t-Student	_t()
Fisher	_f()

Cada comando puede ser utilizado de 4 formas diferentes:

- ▶ dDISTR(x,...). En el caso de las variables discretas, entrega P(X = x), en el caso de las variables continuas entrega $f_X(x)$.
- ▶ pDISTR(q,...). Entrega $P(X \le q)$.
- ▶ qDISTR(p,...). Entrega el valor de x tal que $P(X \le x) = p$.
- ► rDISTR(n,...). Genera una muestra proveniente de un modelo de distribución.

Exponencial

Si $X \sim \text{Exp}(\nu), x > 0$, entonces:

- ▶ Para obtener la densidad $f_X(x)$ en el punto x se usa el comando dexp $(x, rate=\nu)$.
- Para calcular la probabilidad acumulada $P(X \le q)$ usamos el comando pexp(q, rate= ν).
- Para calcular cuantiles de la distribución se usa el comando qexp(p, rate=v).
- Para generar n variables aleatorias provenientes de la distribución se utiliza el comando rexp(n, rate=v).

Exponencial

Ejemplo:

Si
$$X \sim \text{Exp}(\nu = 3)$$
:

- ► Calcule $f_X(1)$ dexp(1,rate=3)
- ► Calcule $P(X \le 1.5) = F_X(1.5)$ pexp(1.5,rate=3)
- ► Si $P(X \le k) = 0.5$, obtenga el valor de k. qexp(0.5,rate=3)
- ▶ Genere una muestra de tamaño n = 1000. rexp(1000,rate=3)

Uniforme

Si $X \sim \text{Unif}(a, b), a < x < b$, entonces:

- ▶ Para obtener la densidad $f_X(x)$ en el punto x se usa el comando dunif(x, min=a, max=b).
- Para calcular la probabilidad acumulada P(X ≤ q) usamos el comando punif (q, min=a, max=b).
- ► Para calcular cuantiles de la distribución se usa el comando qunif(p, min=a, max=b).
- ▶ Para generar n variables aleatorias provenientes de la distribución se utiliza el comando runif (n, min=a, max=b).

Exponencial

Ejemplo:

Si $X \sim \text{Uniforme}(a = -2, b = 8)$:

- ► Calcule $f_X(0)$ dunif(0,min=-2,max=8)
- ► Calcule $P(X \le 0) = F_X(0)$ punif(0,min=-2,max=8)
- ► Si $P(X \le k) = 0.3$, obtenga el valor de k. qunif(0.3,min=-2,max=8)
- ► Genere una muestra de tamaño n = 1000. runif(1000,min=-2,max=8)

La distribución Normal

Si $X \sim \text{Normal}(\mu, \sigma^2), x \in \mathbb{R}$, entonces:

- ▶ Para obtener la densidad $f_X(x)$ en el punto x se usa el comando dnorm(x, mean= μ , sd= σ).
- Para calcular la probabilidad acumulada $P(X \le q)$ usamos el comando pnorm(q, mean= μ , sd= σ).
- ▶ Para calcular cuantiles de la distribución se usa el comando qnorm(p, mean= μ , sd= σ).
- Para generar n variables aleatorias provenientes de la distribución se utiliza el comando rnorm(n, mean=μ, sd=σ).

La distribución Log-Normal

Si $X \sim \text{Log-Normal}(\lambda, \zeta), x > 0$, entonces:

- ▶ Para obtener la densidad $f_X(x)$ en el punto x se usa el comando dlnorm(x, meanlog= λ , sdlog= ζ).
- Para calcular la probabilidad acumulada $P(X \le q)$ usamos el comando plnorm(q, meanlog= λ , sdlog= ζ).
- ▶ Para calcular cuantiles de la distribución se usa el comando qlnorm(p, meanlog= λ , sdlog= ζ).
- Para generar n variables aleatorias provenientes de la distribución se utiliza el comando rlnorm(n, meanlog= λ , sdlog= ζ).

La distribución Gamma

Si $X \sim \text{Gamma}(k, \nu), x > 0$, entonces:

- ▶ Para obtener la densidad $f_X(x)$ en el punto x se usa el comando dgamma(x, shape=k, rate= ν).
- Para calcular la probabilidad acumulada $P(X \le q)$ usamos el comando pgamma(q, shape=k, rate= ν).
- Para calcular cuantiles de la distribución se usa el comando qgamma(p, shape=k, rate=v).
- Para generar n variables aleatorias provenientes de la distribución se utiliza el comando rgamma(n, shape=k, rate=v).

La distribución Chi-cuadrado

Si $X \sim \chi_n^2, x > 0$, entonces:

- ▶ Para obtener la densidad $f_X(x)$ en el punto x se usa el comando dchisq(x, df=n).
- Para calcular la probabilidad acumulada $P(X \le q)$ usamos el comando pchisq(q, df=n).
- ▶ Para calcular cuantiles de la distribución se usa el comando qchisq(p, df=n).
- Para generar n variables aleatorias provenientes de la distribución se utiliza el comando rchisq(n, df=n).

Ejercicios para la semana

- Simule 100 variables aleatorias provenientes de una distribución exponencial con tasa 2. Grafique su función de densidad empírica junto con la curva de densidad teórica.
- Simule 100 variables aleatorias provenientes de una distribución log normal de parámetros 0.5 y 0.02. Grafique su función de densidad empírica junto con la curva de densidad teórica.
- 3. Simule 100 variables aleatorias provenientes de una distribución normal de parámetros $\mu=100$ y $\sigma=15$. Grafique su función de densidad empírica junto con la curva de densidad teórica.
- 4. Para n=10,100,1000,10000, genere muestras de una distribución normal μ =650 y σ =50 y grafique su función de densidad empírica junto con la curva de densidad teórica dentro de una misma ventana.