Tema 7. Integración de funciones de varias variables

Departamento de Análisis Matemático
Universidad de Granada

Integrales dobles

Integración en rectángulos

Sea $A=\{(x,y)\in\mathbb{R}^2:a\leqslant x\leqslant b,c\leqslant y\leqslant b\}$ y $f:A\to\mathbb{R}$ una función continua. La integral de f en el rectángulo A viene dada por

$$\iint_{A} f(x,y)d(x,y) = \int_{x=a}^{x=b} \left(\int_{y=c}^{y=d} f(x,y)dy \right) dx$$
$$= \int_{y=c}^{y=d} \left(\int_{x=a}^{x=b} f(x,y)dx \right) dy$$

Ejemplo

Calcular el volumen encerrado por la función f(x,y) = 2x + 4y en el rectángulo $A = [0,2] \times [0,1]$.

Sea $f:A\subset\mathbb{R}^2\to\mathbb{R}$. Trabajaremos en tres casos distintos

Caso 1: A está limitado por dos rectas y dos funciones de la variable x

Es decir, existen funciones $g_1,g_2:[a,b] o\mathbb{R}$ de modo que

$$A = \{(x,y) \in \mathbb{R}^2 : a \leqslant x \leqslant b, g_1(x) \leqslant y \leqslant g_2(x)\}.$$

Entonces podemos calcular la integral de f mediante la fórmula

$$\iint_A f(x,y)d(x,y) = \int_{x=a}^{x=b} \left(\int_{y=g_1(x)}^{y=g_2(x)} f(x,y)dy \right) dx$$

Ejemplo

Calcular $\iint_A x^2 d(x, y)$ donde A es el triángulo de vértices (0, 0), (1, 1) y (0, 1)

Sea $f:A\subset\mathbb{R}^2\to\mathbb{R}$. Trabajaremos en tres casos distintos

Caso 2: A está limitado por dos rectas y dos funciones de la variable y

Es decir, existen funciones $g_1,g_2:[c,d] o\mathbb{R}$ de modo que

$$A = \{(x,y) \in \mathbb{R}^2 : g_1(y) \leqslant x \leqslant g_2(y), \ c \leqslant y \leqslant d\}.$$

Entonces podemos calcular la integral de f mediante la fórmula

$$\iint_A f(x,y)d(x,y) = \int_{y=c}^{y=d} \left(\int_{x=g_1(x)}^{x=g_2(x)} f(x,y)dx \right) dy$$

Ejemplos

- Calcular $\iint_A x^2 d(x, y)$ si A es el triángulo de vértices (0, 0), (1, 1) y (0, 1)
- Calcular $\iint_A \frac{\text{sen}(y)}{y} d(x, y)$ para el mismo A

Sea $f:A\subset\mathbb{R}^2\to\mathbb{R}$. Trabajaremos en tres casos distintos

Caso 3: A es unión finita de conjuntos de los tipos anteriores

Es decir, existen conjuntos A_1, \ldots, A_n de los tipos 1 y 2 de modo que

$$A = A_1 \cup \cdots \cup A_n$$
.

Entonces podemos calcular la integral de f mediante la fórmula

$$\iint_A f(x,y)d(x,y) = \iint_{A_1} f(x,y)d(x,y) + \cdots + \iint_{A_n} f(x,y)d(x,y)$$

Ejemplo

Calcular $\iint_A (x + e^y) d(x, y)$ donde A es el cuadrado de vértices (0, 1), (1, 0), (-1, 0) y (0, -1)

Cambio a coordenadas polares

Un punto cualquiera $(x, y) \in \mathbb{R}^2$ lo podemos describir mediante una longitud (la norma de (x, y)) y un ángulo (el argumento o fase de (x, y)):

$$x = \rho \cos(\theta)$$
 e $y = \rho \sin(\theta)$ con $\rho \geqslant 0, \theta \in [-\pi, \pi]$

Si definimos $\Phi:]0, +\infty[\times] - \pi, \pi[\to \mathbb{R}^2 \text{ por } \Phi(\rho, \theta) = (\rho \cos(\theta), \rho \sin(\theta)),$ podemos calcular la integral de $f: A \to \mathbb{R}$ como

$$\iint_{A} f(x,y)d(x,y) = \iint_{\Phi^{-1}(A)} (f \circ \Phi)(\rho,\theta)|J|d(\rho,\theta)$$

$$donde |J| = \left| \det \left(Jac(\Phi(\rho,\theta)) \right) \right| = \rho$$

Cambio a cooordenadas polares

Ejemplos

Integrales triples

Integración en ortoedros

Sea $A=\{(x,y,z)\in\mathbb{R}^3: a_1\leqslant x\leqslant b_1, a_2\leqslant y\leqslant b_2, a_3\leqslant z\leqslant b_3\}$ y $f:A\to\mathbb{R}$ una función continua. La integral de f en A viene dada por

$$\iiint_A f(x,y,z)d(x,y,z) = \int_{a_1}^{b_1} \left(\int_{a_2}^{b_2} \left(\int_{a_3}^{b_3} f(x,y,z)dz \right) dy \right) dx$$

Ejemplo

Calcular $\iiint_A (2x + 4y + 8z)d(x, y, z)$ donde $A = [0, 1] \times [0, 1] \times [0, 1]$

Sea $A=\{(x,y,z)\in\mathbb{R}^3: (x,y)\in B\subset\mathbb{R}^2,\ g_1(x,y)\leqslant z\leqslant g_2(x,y)\}$ y $f:A\to\mathbb{R}$ una función continua. La integral de f en A viene dada por

$$\iiint_A f(x,y,z)d(x,y,z) = \iint_B \left(\int_{g_1(x,y)}^{g_2(x,y)} f(x,y,z)dz \right) d(x,y)$$

Ejemplo

Calcular
$$\iiint_A d(x, y, z)$$
 donde $A = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \leqslant 1, \ 0 \leqslant z \leqslant x^2 + y^2\}$

Aplicaciones de la integral

Área Sea
$$A\subset\mathbb{R}^2$$
, el área de A viene dada por
$$\iint_A 1d(x,y)$$

Volumen Sea $B \subset \mathbb{R}^3$, el volumen de B viene dado por

$$\iiint_B 1d(x,y,z)$$

Masa Supongamos que $f: B \to \mathbb{R}$ proporciona la densidad en cada punto de B. Entonces la masa de B viene dada por

$$\iiint_B f(x,y,z)d(x,y,z)$$

Cambio a coordenadas esféricas

Un punto cualquiera $(x, y, z) \in \mathbb{R}^3$ lo podemos describir mediante una longitud (la norma de (x, y, z)) y dos ángulos:

$$x = \rho \cos(\theta) \sin(\phi)$$
 $y = \rho \sin(\theta) \sin(\phi)$ $z = \rho \cos(\phi)$

con
$$\rho\geqslant$$
 0, $\theta\in[-\pi,\pi]$, $\phi\in[0,\pi]$

Si definimos $\Psi:]0, +\infty[\times] - \pi, \pi[\times]0, \pi[\to \mathbb{R}^3$ por $\Psi(\rho, \theta, \phi) = (\rho \cos(\theta) \sin(\phi), \rho \sin(\theta) \sin(\phi), \rho \cos(\phi))$, podemos calcular la integral de $f: A \to \mathbb{R}$ como

$$\iiint_A f(x,y,z)d(x,y,z) = \iiint_{\Psi^{-1}(A)} (f \circ \Psi)(\rho,\theta,\phi) |J| d(\rho,\theta,\phi)$$

donde
$$|J| = \left| \det \left(Jac(\Psi(\rho, \theta, \phi)) \right) \right| = \rho^2 \operatorname{sen}(\phi)$$