1 Wyznacz przedziały monotoniczności i ekstrema lo-

kalne funkcji $y=x^4-8x^3+20x^2-16x$. 2 (a) Oblicz granicę $\lim_{x\to 2}\frac{x^4-4x^3+6x^2-8x+8}{x^4-3x^3-2x^2+12x-8}$ w oparciu o regułę de l'Hospitala, (b) W oparciu o własności całki oznaczonej oszacuj wartość całki $\int (4x - x^2)dx$.

3 Oblicz całki nieoznaczone:

(a) $\int \left(4x^3 - \frac{2}{x^3} + \frac{1}{\sin^2 x}\right) dx$, $\int x \cos(5x) dx$.

1 Wyznacz przedziały monotoniczności i ekstrema lo-

kalne funkcji $y=x^4-8x^3+20x^2-16x$. **2** (a) Oblicz granicę $\lim_{x\to 2} \frac{x^4-4x^3+6x^2-8x+8}{x^4-3x^3-2x^2+12x-8}$ w oparciu o regułę de l'Hospitala, (b) W oparciu o własności całki oznaczonej oszacuj wartość całki $\int (4x - x^2) dx$.

3 Oblicz całki nieoznaczone: (a) $\int \left(4x^3 - \frac{2}{x^3} + \frac{1}{\sin^2 x}\right) dx$, (b) $\int \frac{xdx}{(2-4x^2)^3}$, $\int x \cos(5x) dx$.

1 Wyznacz przedziały monotoniczności i ekstrema lo-

kalne funkcji $y=x^4-8x^3+20x^2-16x$. 2 (a) Oblicz granicę $\lim_{x\to 2}\frac{x^4-4x^3+6x^2-8x+8}{x^4-3x^3-2x^2+12x-8}$ w oparciu o regułę de l'Hospitala, (b) W oparciu o własności całki oznaczonej oszacuj wartość całki $\int (4x - x^2) dx$.

3 Oblicz całki nieoznaczone:

 $\int \left(4x^3 - \frac{2}{x^3} + \frac{1}{\sin^2 x}\right) dx,$ (b) $\int \frac{xdx}{(2-4x^2)^3}$, $\int x \cos(5x) dx$.

Ι

1 Wyznacz przedziały monotoniczności i ekstrema lo-

kalne funkcji $y=x^4-8x^3+20x^2-16x$. **2** (a) Oblicz granicę $\lim_{x\to 2}\frac{x^4-4x^3+6x^2-8x+8}{x^4-3x^3-2x^2+12x-8}$ w oparciu o regułę de l'Hospitala, (b) W oparciu o własności całki oznaczonej oszacuj wartość całki $\int (4x - x^2) dx$.

3 Oblicz całki nieoznaczone:

(a) $\int \left(4x^3 - \frac{2}{x^3} + \frac{1}{\sin^2 x}\right) dx$, (b) $\int \frac{x dx}{(2-4x^2)^3}$, $\int x \cos(5x) dx$.

1 Wyznacz przedziały monotoniczności i ekstrema lo-

kalne funkcji $y=x^4-8x^3+20x^2-16x$. **2** (a) Oblicz granicę $\lim_{x\to 2}\frac{x^4-4x^3+6x^2-8x+8}{x^4-3x^3-2x^2+12x-8}$ w oparciu o regułę de l'Hospitala, (b) W oparciu o własności całki oznaczonej oszacuj wartość całki $\int\limits_{\cdot}^{\cdot} (4x-x^2) dx.$

3 Oblicz całki nieoznaczone:

(a) $\int \left(4x^3 - \frac{2}{x^3} + \frac{1}{\sin^2 x}\right) dx$, (b) $\int \frac{xdx}{(2-4x^2)^3}$, $\int x \cos(5x) dx$.

 \mathbf{II}

1 Wyznacz przedziały monotoniczności i ekstrema lo-

kalne funkcji $y=x^5-10x^3+40x$. **2** (a) Oblicz granicę $\lim_{x\to 0} \frac{x\cos(4x)}{e^{10x}-1}$ w oparciu o regułę de l'Hospitala, (b) W oparciu o własności całki oznaczonej oszacuj wartość całki $\int \frac{dx}{x}$

3 Oblicz całki nieoznaczone: (a) $\int \left(\frac{10}{x^2+1} - \frac{3}{x^6} + \frac{2}{\sqrt[3]{x^2}}\right) dx$, (b) $\int \frac{\cos x dx}{\sqrt{2+3\sin x}}$, $\int \sqrt{x} \ln x dx$.

1 Wyznacz przedziały monotoniczności i ekstrema lo-

kalne funkcji $y = x^5 - 10x^3 + 40x$. **2** (a) Oblicz granicę $\lim_{x\to 0} \frac{x\cos(4x)}{e^{10x}-1}$ w oparciu o regulę de l'Hospitala, (b) W oparciu o własności całki oznaczonej oszacuj wartość całki $\int \frac{dx}{x}$

3 Oblicz całki nieoznaczone:

(a) $\int \left(\frac{10}{x^2+1} - \frac{3}{x^6} + \frac{2}{\sqrt[3]{x^2}}\right) dx$, (b) $\int \frac{\cos x dx}{\sqrt{2+3\sin x}}$,

1 Wyznacz przedziały monotoniczności i ekstrema lokalne funkcji $y = x^5 - 10x^3 + 40x$.

2 (a) Oblicz granicę $\lim_{x\to 0} \frac{x\cos(4x)}{e^{10x}-1}$ w oparciu o regułę de l'Hospitala, (b) W oparciu o własności całki oznaczonej oszacuj wartość całki

3 Oblicz całki nieoznaczone:

(a) $\int \left(\frac{10}{x^2+1} - \frac{3}{x^6} + \frac{2}{\sqrt[3]{x^2}}\right) dx$, (b) $\int \frac{\cos x dx}{\sqrt{2+3\sin x}}$,

\mathbf{II}

1 Wyznacz przedziały monotoniczności i ekstrema lo-

kalne funkcji $y=x^5-10x^3+40x$. **2** (a) Oblicz granicę $\lim_{x\to 0} \frac{x\cos(4x)}{e^{10x}-1}$ w oparciu o regułę de l'Hospitala, (b) W oparciu o własności całki oznaczonej oszacuj wartość całki $\int_{1}^{2} \frac{dx}{x}$

3 Oblicz całki nieoznaczone: (a) $\int \left(\frac{10}{x^2+1} - \frac{3}{x^6} + \frac{2}{\sqrt[3]{x^2}}\right) dx$, (b) $\int \frac{\cos x dx}{\sqrt{2+3\sin x}}$, $\int \sqrt{x} \ln x dx$.

\mathbf{II}

1 Wyznacz przedziały monotoniczności i ekstrema lokalne funkcji $y = x^5 - 10x^3 + 40x$.

2 (a) Oblicz granicę $\lim_{x\to 0} \frac{x\cos(4x)}{e^{10x}-1}$ w oparciu o regułę de l'Hospitala, (b) W oparciu o własności całki oznaczonej oszacuj wartość całki $\int \frac{dx}{x}$.

3 Oblicz całki nieoznaczone:

(a) $\int \left(\frac{10}{x^2+1} - \frac{3}{x^6} + \frac{2}{\sqrt[3]{x^2}}\right) dx$, (b) $\int \frac{\cos x dx}{\sqrt{2+3\sin x}}$, $\int \sqrt{x} \ln x dx$.