Then B is the generator of a unitary group $(U(t))_{t \in \mathbb{R}}$. In particular, B is skew-adjoint, i.e. B' = -B .

Moreover, we claim that

(3.18) B' has a strictly positive subeigenvector ⋄ .

<u>Proof.</u> Let $\lambda > 0$ and $\phi \in C^3(\mathbb{R})$ such that $\phi(x) = e^{-\left|x\right|}$ for $\left|x\right| \ge 1$, $\phi(x) > 0$ for all $x \in \mathbb{R}$, $\phi(0) = 1$ and $\phi'(0) = \phi''(0) = 0$. Then $\phi \in D(B')$. Moreover, $-\phi^{\left(3\right)}(x) \le \phi(x)$ for $\left|x\right| \ge 1$. Hence there exists $\mu \ge 1$ such that $B'\phi = -\phi^{\left(3\right)} \le \mu\phi$.

But the semigroup $(U(t))_{t\geq 0}$ is not positive. In fact, we show that there exists $f\in D(B)$ such that

(3.19)
$$\langle (sign f)Bf, \phi \rangle \rangle \langle |f|, B' \phi \rangle$$
.

<u>Proof.</u> Let $f \in D(B)$ be such that $f(x) = e^{-x} \sin x$ in a neighborhood of 0, while f(x) > 0 for x > 0 and f(x) < 0 for x < 0. Then

<(sign f)Bf,
$$\phi$$
> = $-\int_{-\infty}^{O} f^{(3)}(x) \phi(x) dx + \int_{O}^{\infty} f^{(3)}(x) \phi(x) dx$.

Hence, $\langle |f|, B' \phi \rangle = \int_{-\infty}^{O} (-f(x)) (-\phi^{(3)}(x)) dx + \int_{O}^{\infty} f(x) (-\phi^{(3)}(x)) dx$

= $-\int_{-\infty}^{O} f^{(3)}(x) \phi(x) dx + \int_{O}^{\infty} f^{(3)}(x) \phi(x) dx$
+ $[f'' \phi]_{-\infty}^{O} - [f'' \phi]_{O}^{\infty}$ (since $\phi''(0) = \phi'(0) = 0$)

= $\langle (\text{sign f) Bf}, \phi \rangle + 2f''(0) \phi(0)$
 $\langle (\text{sign f) Bf}, \phi \rangle$ (since $f''(0) \phi(0) = f''(0) = -2$).

We now show that B satisfies Kato's inequality for positive elements, though; i.e.,

$$(3.20) P_f Bf \leq Bf for all f \in D(B)_+.$$

In fact, more is true. B is local, i.e.

(3.21)
$$f + g$$
 implies $Bf + g$ for all $f \in D(B)$, $g \in L^{2}(\mathbb{R})$.

<u>Proof.</u> Let A be the generator of the translation group which, in particular, is a lattice semigroup (see Section 5). We obtain from Proposition 5.4 below that A is local. Hence $B = A^3$ is local as well.