

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО»

Факультет ПИ и КТ

BT

OptMethods edition

Лабораторная работа №2

по дисциплине: <u>«Методы оптимизации»</u> «Одномерная оптимизация» Вариант 1

Выполнил:

Болорболд Аригуун,

группа Р3211

Преподаватель:

Селина Елена Георгиевна

Санкт-Петербург

2024

Задание:

Решить задачу четырьмя методами: методом половинного деления, методом золотого сечения, методом хорд и методом Ньютона. По 5 шагов каждого метода выполнить вручную + написать программу по каждому методу на одном из языков программирования.

1.
$$f(x) = x^2 - 3x + x \ln x$$
, $[a, b] = [1, 2]$, $\varepsilon = 0.05$

Решение:

1. Метод половинного деления:

Nº	а	b	X ₁	X ₂	y ₁	y ₂	b – a
1	10	o 2 Methods ed	1,475	1,525	-1,6761	-1,6058	1
2	1	1,525	1,2375	1,2875	-1,9174	-1,8795	0,525
3	1	1,2875	1,11875	1,16875	-1,9791	-1,9580	0,2875
4	1	1,16875	1,059375	1,109375	-1,9947	-1,9822	0,16875
5	1	1,109375	1,0296875	1,0796875	-1,9987	-1,9905	0,109375

2. Метод золотого сечения:

Nº	а	b	X ₁	X ₂	y ₁	y ₂	b - a
1	1	2	1,382	1,618	-1,7889	-1,4575	1
2	1	1,618	1,236	1,382	-1,9184	-1,7889	0,618
3	1	1,382	1,146	1,236	21	-1,9184	0,382
					1,9685		
4	1	1,236	1,09	1,146	-1,9879	-1,9685	0,23608
5	1	1,146	1,056	1,09	-1,9953	-1,9879	0,146
	3. Метод хорд:						
					20		

3. Метод хорд:

Nº	а	b	f'(a)	f'(b)	~X	f'(~x)
1	1	2	-1	1,69314	1,371313	0,058394
2	1	1,371313	-1	0,058394	1,350826	0,0023698

4. Метод Ньютона:

Nº	Х	f'(x)	f''(x)	f'(x)
1	1,5	1,40547	2,666665	1,40547
2	0,97295	-0,08152	3,0278014	0,08152
3	0,9998746	-0,000376	3,0001253	0,0003759

Исходный код решения:

```
return 2*x - 2 + \log(x)
def derivative2(x: float) -> float:
def bisection method(function, a, b, epsilon):
epsilon) / 2, ndigits=i)
def golden ratio method(function, a, b, epsilon):
    while abs(b - a) > epsilon:
def chord method(function, a, b, epsilon):
    d a = derivative(a)
    d b = derivative(b)
    while abs(derivative(x)) > epsilon:
```

```
def newton method(function, a, b, epsilon):
    while abs(derivative(x)) > epsilon:
    function = lambda x: x**2 - 3 * x + x * log(x)
    golden_ratio_method(function, a, b, epsilon)
    result_list = [bisection_method(function, a, b, epsilon),
golden_ratio_method(function, a, b, epsilon), chord_method(function, a, b,
epsilon), newton method(function, a, b, epsilon)]
получения значений всех методов):n" + "\033[0m"):
    main()
```