Homework 2, MATH 9010

Due on Thursday, September 8

Problem 1 Suppose \mathcal{C} is a collection of subsets of Ω that satisfies the following properties: (i) $\Omega \in \mathcal{C}$; (ii) if $A \in \mathcal{C}$, then $A^c \in \mathcal{C}$; (iii) If $\{A_i\}_{i=1}^{\infty}$ is a collection of disjoint subsets in \mathcal{C} , then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{C}$.

Show that \mathcal{C} is a λ -system.

Problem 2 Consider the semialgebra $S := \{(a, b]; 0 \le a \le b \le 1\}$ of $\Omega = (0, 1]$. Show that if $\{a_k\}_{k \ge 1}$ and $\{b_k\}_{k \ge 1}$ satisfy

$$0 \le a_n < b_n = a_{n+1} < b_{n+1} < 1$$

for each $n \geq 1$, then

$$\bigcup_{n=1}^{\infty} (a_n, b_n]$$

cannot be a member of S. **Note:** This will be much more instructive after you read the construction of Lebesgue measure on (0,1] in Section 2.5 of Resnick's text.

Problem 3 (Jacod and Protter, pg. 46 Problem 7.17) Suppose a distribution function F is given by

$$F(x) = \frac{1}{4} \mathbf{1}_{[0,\infty)}(x) + \frac{1}{2} \mathbf{1}_{[1,\infty)}(x) + \frac{1}{4} \mathbf{1}_{[2,\infty)}(x).$$

Let \mathbb{P} be given by

$$\mathbb{P}((-\infty, x]) = F(x), \qquad x \in \mathbb{R}.$$

Find the probabilities of the following events: A = (-1/2, 1/2); B = (-1/2, 3/2); C = (2/3, 5/2); D = [0, 2); $E = (3, \infty)$.

Problem 4 (Jacod and Protter, page 45 Problem 7.14) Let $\{A_k\}_{k\geq 1}$ be a sequence of null events, i.e. events where $\mathbb{P}(A_k) = 0$ for each $k \geq 1$. Show that $\bigcup_{k=1}^{\infty} A_k$ is also a null event.

Problem 5 (Resnick, pg. 63 Problem 1) Let Ω be a nonempty set, and let \mathcal{F}_0 be the collection of all subsets such that either A or A^c is finite.

Define, for each $A \in \mathcal{F}_0$, the set function \mathbb{P} , where

$$\mathbb{P}(A) = \left\{ \begin{array}{ll} 0, & \text{if } A \text{ is finite;} \\ 1, & \text{if } A^c \text{ is finite.} \end{array} \right.$$

- (a) If Ω is countably infinite, show \mathbb{P} is additive on \mathcal{F}_0 , but not countably additive.
- (b) If Ω is uncountable, show \mathbb{P} is countably additive on \mathcal{F}_0 .

Problem 6 (Resnick, page 25 Problem 34) Suppose \mathcal{B} is a σ -algebra of subsets of Ω , and suppose $A \notin B$. Show that $\sigma(\mathcal{B} \cup \{A\})$, the smallest σ -algebra containing both \mathcal{B} and A,, consists of sets of the form

$$(A \cap B) \cup (A^{c} \cap B^{'}), \qquad B, B^{'} \in \mathcal{B}.$$

Problem 7 (Resnick, page 63 Problem 4) Suppose \mathbb{P} is a probability measure on a σ -algebra \mathcal{B} and suppose $A \notin \mathcal{B}$. Let $\mathcal{B}_1 := \sigma(\mathcal{B} \cup \{A\})$ and show that \mathbb{P} has an extension to a probability measure \mathbb{P}_1 on \mathcal{B}_1 (Do this without applying an extension theorem).