Why model?

Cornell STSCI / INFO / ILRST 3900 Fall 2024 causal3900.github.io

03 Oct 2024

Logistics

- ► Task 1 due today
- ► Problem Set 3 posted today; due Oct 10
- ► Task 2 posted today; due Oct 17

Arc of the course

We began by asking causal questions

- ▶ Defining counterfactuals
- ▶ Defining a causal effect

Then we discussed causal assumptions

- ► Exchangeability and experiments
- ► Conditional exchangeability
- ► Consistency, positivity, interference
- ▶ Directed Acyclic Graphs

Arc of the course

We began by asking causal questions

- ▶ Defining counterfactuals
- ▶ Defining a causal effect

Then we discussed causal assumptions

- ► Exchangeability and experiments
- ► Conditional exchangeability
- ► Consistency, positivity, interference
- ▶ Directed Acyclic Graphs

5.5 weeks

Arc of the course

We began by asking causal questions

- ▶ Defining counterfactuals
- ▶ Defining a causal effect

Then we discussed causal assumptions

- ► Exchangeability and experiments
- ► Conditional exchangeability
- ► Consistency, positivity, interference
- ▶ Directed Acyclic Graphs

5.5 weeks

0 statistical models

Learning goals for today

At the end of class, you will be able to

- explain the curse of dimensionality
- recognize the possible futility of nonparametric estimation

Motivating a research question²

Income inequality across households depends on

- 1. inequality across individuals¹
- 2. how individuals pool into households

A college degree affects (1) and (2)

¹WSJ College Rankings

²Mare 1991, Schwartz 2013

To what degree does finishing college increase the probability of having a spouse who finished college?

Data. National Longitudinal Survey of Youth 1997

- ► Probability sample of U.S. non-institutional civilian youth age 12–16 on Dec 31 1996
- ► Surveyed annually 1997–2011, then biennially
- n = 8,984

- ightharpoonup Treatment A: Finished BA by age 25
- lackbox Outcome Y: Spouse or partner at age 30–40 holds a BA
 - ▶ 0 if no spouse or partner, or partner with no BA
 - ▶ 1 if spouse or partner holds a BA

- ightharpoonup Treatment A: Finished BA by age 25
- ▶ Outcome Y: Spouse or partner at age 30–40 holds a BA
 - ▶ 0 if no spouse or partner, or partner with no BA
 - ▶ 1 if spouse or partner holds a BA

To what degree does finishing college increase the probability of having a spouse who finished college?

- ightharpoonup Treatment A: Finished BA by age 25
- ▶ Outcome Y: Spouse or partner at age 30–40 holds a BA
 - ▶ 0 if no spouse or partner, or partner with no BA
 - ▶ 1 if spouse or partner holds a BA

Adjustment procedure

- 1) Estimate within subgroups defined by {sex}
- 2) Aggregate over the subgroups

Data

```
d %>%
  select(sex, a, y) %>%
 print(n = 8)
# A tibble: 7,771 x 3
  sex
     a
  <chr> <chr> <chr> <lgl>
1 Female college FALSE
2 Male no_college FALSE
3 Female no_college FALSE
4 Male no_college TRUE
5 Female no_college FALSE
6 Male no_college FALSE
7 Female college FALSE
8 Male college TRUE
# i 7,763 more rows
```

```
ybar_in_subgroups <- d %>%
 # Group by confounders and treatment
 group_by(sex, a) %>%
 # Summarize mean outcomes and nber of cases
 summarize(ybar = mean(y),
           n = n()) \% \%
 print()
# A tibble: 4 \times 4
# Groups: sex [2]
 sex
     a
                  ybar
 <chr> <chr> <dbl> <int>
1 Female college 0.467 896
2 Female no_college 0.102 2953
3 Male college 0.614 637
4 Male no_college 0.174 3285
```

```
# A tibble: 4 x 4
# Groups: sex [2]
 sex
        a
                  ybar
                           n
 <chr> <chr> <dbl> <int>
1 Female college 0.467 896
2 Female no_college 0.102 2953
3 Male college 0.614 637
4 Male no_college 0.174 3285
pivoted <- ybar_in_subgroups %>%
 pivot_wider(names_from = a,
             values_from = c("ybar","n")) %>%
 print()
# A tibble: 2 x 5
# Groups: sex [2]
        ybar_college ybar_no_college n_college n_no_college
 sex
              <dbl>
                              <dbl>
 <chr>
                                       <int>
                                                    <int>
1 Female
             0.467
                              0.102
                                         896
                                                     2953
2 Male
              0.614
                              0.174
                                         637
                                                     3285
```

A tibble: 2×5 # Groups: sex [2] ybar_college ybar_no_college n_college n_no_college sex <chr>> <dbl> <dbl> <int> <int> 1 Female 0.467 0.102 896 2953 2 Male 0.614 0.174 637 3285

```
# A tibble: 2 \times 5
# Groups: sex [2]
         ybar_college ybar_no_college n_college n_no_college
  sex
  <chr>>
               <dbl>
                                <dbl>
                                           <int>
                                                        <int>
1 Female
                                0.102
                                            896
                                                         2953
               0.467
2 Male
                0.614
                                0.174
                                                         3285
                                            637
cate <- pivoted %>%
 mutate(conditional_effect = ybar_college - ybar_no_college,
         n in stratum = n college + n no college) %>%
  select(sex, conditional_effect, n_in_stratum) %>%
 print()
# A tibble: 2 x 3
```

2) Aggregate over subgroups

2) Aggregate over subgroups

```
# A tibble: 2 x 3
# Groups: sex [2]
  sex
         conditional_effect n_in_stratum
  <chr>>
                       dbl>
                                    <int>
1 Female
                       0.365
                                     3849
2 Male
                       0.440
                                     3922
cate %>%
  summarize(population_average_effect = weighted.mean(
    conditional_effect,
    w = n in stratum
  ))
# A tibble: 2 \times 2
         population_average_effect
  sex
  <chr>>
                              <dbl>
1 Female
                              0.365
2 Male
                              0.440
```

Recap: Intuition

College	College
No College	No College

Female Male

Recap: In code

```
d %>%
  # Group by confounders and treatment
  group_by(sex, a) %>%
  # Estimate within subgroups
  summarize(ybar = mean(y),
            n = n()
            .groups = "drop") %>%
 pivot_wider(names_from = a,
              values from = c("ybar", "n")) %>%
 mutate(conditional_effect = ybar_college - ybar_no_college,
         n_in_stratum = n_college + n_no_college) %>%
  # Aggregate over subgroups
  summarize(population_average_effect = weighted.mean(
    conditional_effect,
    w = n_in_stratum
  ))
```


- 1) Estimate effects within subgroups defined by {sex, race}
- 2) Aggregate over subgroups

Hispanic

College College College College College College No College No College No College No College No College No College Female Male Female Male Female Male

Non-Hispanic Black

Non-Hispanic Non-Black

Adjust for sex, race, mom education

- Estimate effects within subgroups defined by {race,sex, mom education}
- 2) Aggregate over subgroups

Adjust for sex, race, mom education

	c Non-Black	Non-Hispanic Black Non-Hispanic Non-Black		panic		
1	Callege	College	College	College	College	Gollege
No mom	No College	No College	No College	No College	No College	No College
]	Male	Female	Male	Female	Male	Female
1	College	College	Gollege	 Gollege	Gollege	Callege
< HS	No College	No College	No College	No College	No College	No College
]	Male	Female	Male	Female	Male	Female
1	College	College	College	Callege	College	College
High school	No College	No College	No College	No College	No College	No College
]	Male	Female	Male	Female	Male	Female
]	College	College	Callege	College	College	College
Some college	No College	No College	No College	No College	No College	No College
]	Male	Female	Male	Female	Male	Female
]	College	College	College	College -	College	College -
College	No College	No College	No College	No College	No College	No College
1	Male	Female	Male	Female	Male	Female

Adjust for sex, race, mom education

Adjust for sex, race, mom education, dad education

- 1) Estimate effects within subgroups defined by {race,sex, mom education, dad education}
- 2) Aggregate over subgroups

Adjust for sex, race, mom education, dad education

His	panic	_ Non-Hisp	anic Black	Non-Hispanic	Non-Black		
No College	No College	No College	No College	No College	No College	No dad	No mom
No College	No College	No College	Callege No College	No College	No College	< HS	No mom
No College	No College	No College	No College	No College	No College	High school	No mom
No College	No Coffege	No College	No College	No College	No College	Some college	No mom
No College	No College	No College	No College	No College	College No College	College	No mom
No College	No College	No College	No College	No College	No College	No dad	< HS
No College	No College	No College	No College	No College	No College	< HS	< HS
No College	No College	No College	No College	No College	No College	High school	< HS
No College	No College	No College	No College	No College	No College	Some college	< HS
No College	No College			No College	- No College	College	< HS
No College	- College No College	No College	No College	No College	No College	No dad	High school
No College	No College	No College	No College	No College	No College	< HS	High school
No Coffege	No College	No College	No College	No Coffege	No College	High school	High school
No College	No College	No College	No Coffege	No College	No College	Some college	High school
No College	No College	No College	No College	College	- College	College	High school
No College	No College	No College	No College	No College	No College	No dad	Some college
No College	No College	No College	No College	No College	No College	< HS 5	Some college
No College	No College	No College	Politige No College	No College	No Coffege	High school S	Some college
No College	No College	No College	No College	No College	No College	Some colleges	Some college
College	No College	No College	No College	<u>N</u> E College	- College	College	Some college
No College	No College	- No College	No College	Callege	No College	No dad	College
No i	ollege College	No College	No College	No College	No College	< HS	College
College	- No College	No College	No Coffege	No College	No College	High school	College
No Coffege	No College	No College	No College	College	C/Nege No College	Some college	College
College	No College	College	- Lollege No College	College	College	College	College

Adjust for sex, race, mom education, dad education

Curse of dimensionality: Unpopulated cells

# A tibbl	e: 147 x	6			
sex	race	mom_educ	dad_educ	n_college	n_no_college
<chr></chr>	<chr></chr>	<fct></fct>	<fct></fct>	<int></int>	<int></int>
1 Female	H	No mom	No dad	NA	32
2 Female	H	No mom	< HS	NA	6
3 Female	H	No mom	High school	NA	5
4 Female	H	No mom	Some college	NA	13
5 Female	H	< HS	College	NA	1
6 Female	H	High school	< HS	NA	34
7 Female	Non-H B	No mom	< HS	NA	2
8 Female	Non-H B	No mom	High school	NA	12
9 Female	Non-H B	No mom	College	NA	4
10 Female	Non-H B	< HS	High school	NA	24
# i 137 m	ore rows				

Curse of dimensionality

4.2% of the sample

is in a subgroup with either 0 treated or 0 untreated units

Curse of dimensionality

Curse of dimensionality

100% of the sample

is in a subgroup with either 0 treated or 0 untreated units

Linear Regression

We will make assumptions about how the conditional expectation depends on covariates

Parent's Education - No HS: 0 - HS: 1 - College: 2 - Graduate School: 3

...

$$[\mathsf{E}(\mathsf{Y}\ \mathsf{A}=\mathsf{a},\,\mathsf{L}=\)=\mathsf{Avg}\ \mathsf{of}\ \mathsf{sub\text{-}group}\]$$

...

Linear Model [E(Y
$$A = a, L =) = _0 + _1 a + _2$$
]

Learning goals for today

At the end of class, you will be able to

- explain the curse of dimensionality
- recognize the possible futility of nonparametric estimation

After class, you should

read Hernán & Robins Ch 11