

# PVRP

## Aaron Rockburn and Joshua Sarver

Advisor: Dr. Sam Thangiah Slippery Rock University



### What is PVRP?

Periodic Vehicle Routing, or PVRP, is the routing of various vehicles to various nodes over a specified time period. Each node has a frequency it needs to be visited over a time period and which day sets can be visited. PVRP takes this information, determines what is a good valid day combination for each node and then routes trucks to each day — attempting to minimize distance travelled.

#### Abstract

A municipality removes trash from various properties throughout a six-day period. This service can include residents, restaurants, and retail stores – all of which have different needs. For example, a popular restaurant may need daily visits, whereas a resident may need visited once per week. This problem is referred to as a Periodic Vehicle Routing Problem (PVRP), an extension of the vehicle routing problem (VRP). In the vehicle routing problem, multiple trucks are used to visit customers no more than once. In PVRP, multiple vehicles are used to visit a set of customers over a defined period while minimizing time, distance, and fleet size. Our research describes research conducted on implementing heuristics for solving PVRP.



# Bridging the Gap

While PVRP is built atop routing program *Zeus* and alongside a different vehicle routing problem (VRP), there was still much work to be done in terms of properly creating a hierarchy and routing shipments efficiently. Essentially PVRP is VRP (Vehicle Routing Program) spread over multiple days.

Initially we had to decide how to best choose which valid day combination to choose for each node. After some tinkering we noticed that random assignment usually resulted in evenly distributed demand for each day. This was a very simple heuristic which simply chose a random number between specified values, where each number represented a day combination. Also, this saved processing time compared to a heuristic which would critically analyze each node and day.

After assigning days to each node we were able to, more or less, run VRP heuristics on each day to determine the route. Of course, these all had to be implemented with PVRP classes. The routing heuristic find the nearest polar angle from the current point and adds that to the next point in the route. Then the heuristic looks for the next closest polar angle from the most recently added node until the truck is full or the maximum distance allowed to travel is reached. Then each truck must be routed back to its depot (of which PVRP only has one depot).

Sample Results

(528.0, 6.0)

To picture the problem: This could be applied to high school bus routing.

% Difference Best

82.18470583

CPSC 464

955.7409668

| 2524.661133 | 90.84725882 |
|-------------|-------------|
| 1019.079346 | 94.25835793 |
| 1816.675537 | 117.4982086 |
| 4053.724365 | 99.88877486 |
| 1863.075928 | 123.0026845 |
| 1914.021606 | 131.6824759 |
| 4867.53418  | 139.2908183 |
| 1810.455688 | 119.1463539 |
| 3822.382324 | 139.8809077 |
| 1751.253052 | 124.7905234 |
| 2247.251221 | 87.91611372 |
|             |             |
| 1205.459229 | 26.25253755 |
| 2364.046875 | 26.92187668 |
| 3778.918945 | 31.43151591 |
| 2429.003418 | 52.02650089 |
| 4763.019043 | 51.70348165 |
| 7178.02832  | 48.48000596 |
| 12313.84668 | 47.16455147 |
| 3904.508301 | 79.88069256 |
| 8104.248047 | 93.23663961 |
| 13368.42969 | 108.2079659 |
| 7532.790039 | 104.2812678 |
| 7290.933594 | 93.02737762 |
| 7532.790039 | 98.47575538 |
| 45300.49219 | 106.3239761 |
| 47717.36328 | 113.9279799 |
| 45300.49219 | 100.0918389 |
| 183209.2344 | 146.0364669 |
| 176749.0469 | 130.8868085 |
| 180581.6719 | 131.2988478 |
| 3458.402344 | 56.55821784 |
|             |             |

#### Future Work

To achieve optimal results we need to include heuristics for local optimization. This may include moving customers within the current route or moving to new routes to see if it may decrease the distance travelled.

Some local optimization was written but for some of the tougher problems a more aggressive approach is needed

Customers with a frequency of one are a primary target for revaluation because they often have the most flexible day combination options.

Most papers regarding this topic have several local optimization algorithms. Some are expensive, needless, or simply redundant. Local optimization itself may not improve the solution as the combination of optimizations used also have a large impact.

## Bibliography

Gaudioso, M., and G. Paletta. "A Heuristic for the Periodic Vehicle Routing Problem." *Transportation Science* 26.2 (1992): 86-92. Print.

Coene, S., A. Arnout, and F. C R Spieksma. "On a Periodic Vehicle Routing Problem\*." *Department of Decision Sciences and Information Management* (2008): 1-15. Print.

Hemmelmayr, Vera C., Karl F. Doerner, and Richard F. Hartl. "A Variable Neighborhood Search Heuristic for Periodic Routing Problems." *European Journal of Operational Research* 195.3 (2009): 1-40. Print.

"Pictograms-nps-misc-trucks-2" by NPS Graphics, converted by User:ZyMOS - http://www.nps.gov/hfc/carto/map-symbols.htm, Converted from PDF to SVG for the Open Icon Library. Licensed under Public domain via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Pictograms-nps-misc-trucks-2.svg#mediaviewer/File:Pictograms-nps-misc-trucks-2.svg

"Chineesepostman 1.png" by User: Chin tin tin - http://commons.wikimedia.org/wiki/
File:Chinespostman\_1.png#globalusage. Licensed under Creative Commons Attribution 3.0