Processing Google Takeout Fitbit Data

Genevieve Roberts

2025-08-25

Load Packages and Setup Functions and Constants

```
library(here)
library(tidyverse)
library(scales)

source(here::here("fitbit/takeout_fitbit_processing_functions.R"))

#current path
data_path <- here::here("fitbit/sample_fitbit_takeout_data/9Aug25_groberts_fitbit_takeout/Fitbit")
print(data_path)</pre>
```

 $\verb| ## [1] "/Users/gen-omix/Documents/umass/VIGOR-surveys/fitbit/sample_fitbit_takeout_data/9Aug25_groberts_newers_fitbit/sample_fitbit_takeout_data/9Aug25_groberts_newers_fitbit/sample_fitbit_takeout_data/9Aug25_groberts_newers_fitbit/sample_fitbit_takeout_data/9Aug25_groberts_newers_fitbit/sample_fitbit_takeout_data/9Aug25_groberts_newers_fitbit/sample_fitbit_takeout_data/9Aug25_groberts_newers_fitbit/sample_fitbit_takeout_data/9Aug25_groberts_newers_fitbit/sample_fitbit_takeout_data/9Aug25_groberts_newers_fitbit/sample_fitbit_takeout_data/9Aug25_groberts_newers_fitbit/sample_fitbit_takeout_data/9Aug25_groberts_newers_fitbit/sample_fitbit_takeout_data/9Aug25_groberts_newers_fitbit/sample_fitbit_takeout_data/9Aug25_groberts_newers_fitbit/sample_f$

Explore some FitBit data

```
#define some constants for the nb
start_date="2025-07-07"
end_date="2025-08-09"
```

Heart Rate Variablility

Table 1: Table continues below

timestamp_detail	rmssd_detail	coverage	low_frequency	high_frequency
2025-08-03 04:50:00	15.76	1.002	182	53.02
2025-08-07 02:15:00	18.16	1.004	498.4	113.6
2025-07-19 04:30:00	31.78	0.926	1264	202.1
2025-08-05 06:45:00	28.65	0.976	1505	479.7
2025-08-03 04:05:00	22.71	1.005	144.6	62.6

$file_date$	$timestamp_summary$	$rmssd_summary$	nremhr	entropy
2025-08-03	NA	NA	NA	NA
2025-08-07	NA	NA	NA	NA
2025-07-19	2025-07-19	33.05	72.56	2.614
2025-08-05	NA	NA	NA	NA
2025-08-03	NA	NA	NA	NA

Here, I want to know if the rmssd_summary from the summary HRV files is simply the mean across all of the "detail" datapoints for that day. The plot below suggests they are not the same, but they are closely related.

```
check_if_mean_equals_summary <- hrv_data %>%
  group by(file date) %>%
  summarize(
   mean_rmssd_detail = mean(rmssd_detail, na.rm = TRUE),
   rmssd_summary = first(rmssd_summary) # summary has one value per date
 ungroup()
# Prepare data in long format for plotting
mean_detail_compare_plot_df <- check_if_mean_equals_summary %>%
  pivot_longer(cols = c(mean_rmssd_detail, rmssd_summary),
               names_to = "Type",
               values_to = "RMSSD")
ggplot(mean_detail_compare_plot_df, aes(x = file_date, y = RMSSD, color = Type)) +
  geom_line(size = 1) +
  geom_point(size = 2) +
  labs(
   title = "Comparison of RMSSD: Detail Mean vs. Summary",
   x = "Date",
   y = "RMSSD",
   color = "Measure"
  theme_bw()
```

Comparison of RMSSD: Detail Mean vs. Summary

The plot below shows how we can highlight a period of interest

```
# Example dates to highlight
highlight_start <- as.Date("2025-07-29")</pre>
highlight_end <- as.Date("2025-08-02")
#add the mean rmssd from the detailed HRV information
hrv_data <- hrv_data %>%
  group_by(file_date) %>%
 mutate(mean_rmssd_detail = mean(rmssd_detail)) %>%
  ungroup()
ggplot(hrv_data, aes(x = file_date, y = mean_rmssd_detail)) +
  geom_line(color = "blue", size = 1) +
  geom_point(color = "blue", size = 2) +
  # Highlight date range with a transparent rectangle
  annotate(
    "rect",
   xmin = highlight_start, xmax = highlight_end,
   ymin = -Inf, ymax = Inf,
   alpha = 0.2, fill = "orange"
  ) +
  labs(
   title = "HRV Over Time with Highlighted Date Range",
   x = "Date",
   y = "HRV (Mean RMSSD Detail)"
  ) +
 theme_bw()
```


Add Resting Heart Rate Data

Table 3: Table continues below

file_date	timestamp_detail	rmssd_detail	coverage	low_frequency
2025-07-13	2025-07-13 04:40:00	57.24	0.888	1915
2025-08-04	2025-08-04 22:50:00	33.25	0.803	498.7
2025-07-22	2025-07-22 23:20:00	26.63	0.929	209.9
2025-07-22	2025-07-22 00:40:00	35.34	1	850.4
2025-08-05	2025-08-05 04:45:00	28.32	0.951	682.9

Table 4: Table continues below

$high_frequency$	$timestamp_summary$	$rmssd_summary$	nremhr	entropy
882	2025-07-13	36.18	73.27	2.75
408.2	NA	NA	NA	NA
251.3	2025-07-22	31.4	68.38	2.606
478.6	2025-07-22	31.4	68.38	2.606
295.8	NA	NA	NA	NA

mean_rmssd_detail	${\rm resting_hr}$
44.72	78.34
31.08	78.33
35.46	78.29
35.46	78.29
33.15	75.82

The plot below compares heart rate variability to resting heart rate. You can see there is a rough inverse correlation.

```
# Data prep
compare_rhr_hrv <- combined %>%
  group_by(file_date) %>%
  summarize(
    mean_rmssd_detail = mean(rmssd_detail, na.rm = TRUE),
    resting_hr = first(resting_hr)
  ) %>%
  ungroup()
# observed HR range
min_hr <- min(compare_rhr_hrv$resting_hr, na.rm = TRUE)</pre>
max_hr <- max(compare_rhr_hrv$resting_hr, na.rm = TRUE)</pre>
# scaling factor using observed ranges
scale_factor <- (max(compare_rhr_hrv$mean_rmssd_detail, na.rm = TRUE) -</pre>
                 min(compare_rhr_hrv$mean_rmssd_detail, na.rm = TRUE)) /
                 (max_hr - min_hr)
# means
mean_hrv <- mean(compare_rhr_hrv$mean_rmssd_detail, na.rm = TRUE)</pre>
mean_rhr <- mean(compare_rhr_hrv$resting_hr, na.rm = TRUE)</pre>
# get default ggplot colors (2-category hue palette)
plot_colors <- hue_pal()(2)</pre>
# Assign colors to measures consistently
measure_colors <- c("HRV (RMSSD)" = plot_colors[1],</pre>
                    "Resting HR" = plot_colors[2])
ggplot(compare_rhr_hrv, aes(x = file_date)) +
  geom_line(aes(y = mean_rmssd_detail, color = "HRV (RMSSD)"), size = 1) +
  geom_point(aes(y = mean_rmssd_detail, color = "HRV (RMSSD)"), size = 2) +
  geom_line(aes(
    y = (resting_hr - min_hr) * scale_factor +
        min(compare_rhr_hrv$mean_rmssd_detail, na.rm = TRUE),
    color = "Resting HR"
  ), size = 1) +
  geom_point(aes(
    y = (resting_hr - min_hr) * scale_factor +
        min(compare_rhr_hrv$mean_rmssd_detail, na.rm = TRUE),
    color = "Resting HR"
  ), size = 2) +
  # mean lines matching legend colors
  geom_hline(yintercept = mean_hrv, linetype = "dashed", color = measure_colors["HRV (RMSSD)"]) +
  geom_hline(
    yintercept = (mean_rhr - min_hr) * scale_factor +
                 min(compare_rhr_hrv$mean_rmssd_detail, na.rm = TRUE),
    linetype = "dashed", color = measure_colors["Resting HR"]
  ) +
```

```
scale_color_manual(values = measure_colors) +
scale_y_continuous(
  name = "Heart Rate Variability (Higher is Better)",
  sec.axis = sec_axis(
    ~ (. - min(compare_rhr_hrv$mean_rmssd_detail, na.rm = TRUE)) / scale_factor + min_hr,
    name = "Resting Heart Rate (bpm)"
) +
labs(
  title = "Comparison of Heart Rate Variability and Resting Heart Rate",
  x = "Date",
  color = "Measure"
) +
annotate(
  "rect",
  xmin = highlight_start, xmax = highlight_end,
  ymin = -Inf, ymax = Inf,
  alpha = 0.2, fill = "orange"
) +
theme_bw()
```

Comparison of Heart Rate Variability and Resting Heart Rate

