Abstract Algebra Homework 8

Huize(Jack) Shi - A92122910 March 15, 2018

Section 10

34.

A proper subgroup can conly be of cardinality p, q and 1. Since p and q are primes, groups of prime order is syclic and groups of order 1 contains only the identity which is cyclic. This means every proper subgroup of a group of order pq must be cyclic.

35.

Define a bijection $\phi(aH) = Ha^{-1}$:

Well defined: Show that $aH = bH \Rightarrow Ha^{-1} = Hb^{-1}$ Let $\phi(aH) = a^{-1}$, $\phi(bH) = b^{-1}$, aH = bH. Wants to show $Ha^{-1} = Hb^{-1}$.

Let $a \in aH$. Since aH = bH, $a \in bH$, which implies $\exists h \in H \mid a = bh$. If we take the inverse of both sides, we have $a^{-1} = h^{-1}b^{-1}$ Since H is a subgroup $h^{-1} \in H$. This implies $a^{-1} \in Hb^{-1}$. Since $a = ah \mid h = e \in H$, $a^{-1} = h^{-1}a^{-1}$, $a^{-1} \in Ha^{-1}$, this means that $Ha^{-1} = Hb^{-1}$.

Bijective: $\phi^{-1}(Ha^{-1}) = aH$

39.

The left cosets partition G into two cells: aH, eH = H. Since cells form a partition of G, $aH = G \setminus H$. The right cosets partition G also into two cells Ha, eH = H. These cells also form a partition of G which means $Ha = G \setminus H$. This means aH = Ha.

41.

Identity: identity of (R, +) is 0. The left coset of $(\mathbb{Z}, +)$ containing identity holds this property because it is simply \mathbb{Z} and only $0 \in \mathbb{Z} \mid 0 \le 0 < 1$.

Consider $r \in \mathbb{R}$, $z_i \in \mathbb{Z} = \{\cdots z_{-1}, z_0, z_1 \cdots\}$ in increasing order, let $r + z_i$ satisfy the condition $0 \le r + z_i < 1$. Consider $r + z_{i\pm 1}$, since $z_{i\pm 1} - z_1 = \pm 1$. This means $r + z_{i\pm 1}$ will add or subtract 1 from $r + z_i$ which position them out of the interval. Since \mathbb{Z} is ordered as shown above and it monotolically increase, this means only z_i is in the interval.

43.

a.

Reflexive:

$$a = a$$
$$eae = eae$$
$$a \sim a$$

Symmetric:

$$a \sim b$$

$$a = hbk$$

$$hbk = b$$

$$h^{-1}hbkk^{-1} = h^{-1}bk^{-1}$$

$$b = h^{-1}bk^{-1}$$

Since $h^{-1} \in H \wedge k^{-1} \in K$, $b \sim a$.

Transitive:

$$a \sim b \wedge b \sim c$$

 $a = hbkwedgeb = h'ck'$
 $a = hh'ck'k$

Since H and K are sub groups, $hh' \in H \wedge kk' \in K$ therefore $a \sim c$.

b. The equivalence class contains HaK. This set contains all right coset of H on a, and left coset of K on a.

Section 11

1.

element: order

(0,0): 1 (1,0): 2 (0,1): 4 (1,1): 6 (0,2): 2 (1,2): 4 (0,3): 4(1,3): 6

The group is cyclic because the highest order is 6.

2.

element: order

$$(0,0): 1$$

 $(0,1): 4$
 $(0,2): 2$
 $(0,3): 4$
 $(1,0): 3$
 $(1,1): 12$
 $(1,2): 6$
 $(1,3): 12$
 $(2,0): 3$
 $(2,1): 12$
 $(2,2): 6$
 $(2,3): 12$

3.

order of (2,6) in $\mathbb{Z}_4 \times \mathbb{Z}_{12}$ is lcm(2,2) = 2.

4.

order of (2,3) in $\mathbb{Z}_6 \times \mathbb{Z}_{15}$ is lcm(3,5) = 15.

7.

order of (3, 6, 12, 16) in $\mathbb{Z}_4 \times \mathbb{Z}_{12} \times \mathbb{Z}_{20} \times \mathbb{Z}_{24}$ is lcm(4, 2, 5, 3) = 60.

46.

Proof. Given abelian groups G_1, G_2, \dots, G_n . Let their cartesian product $G_1 \times G_2 \times \dots \times G_n = (g_1, g_2, \dots, g_n)$. Consider the direct product $(g_1, g_2, \dots, g_n)(g_1', g_2', \dots, g_n') = (g_1g_1', g_2g_2', \dots, g_ng_n')$. Since each group $G_i \mid i \in \mathbb{Z}, 1 \leq i \leq n$ is Abelian, the following is true:

$$(g_1, g_2, \cdots, g_n)(g'_1, g'_2, \cdots, g'_n) = (g_1 g'_1, g_2 g'_2, \cdots, g_n g'_n)$$

$$= (g'_1 g_1, g'_2 g_2, \cdots, g'_n g_n)$$

$$= (g'_1, g'_2, \cdots, g'_n)(g_1, g_2, \cdots, g_n)$$

Hence shown a direct product of abelian group is abelian.