U SEVIL

Programación Matemática. Relación 5 Curso 2016/17.

Problema 1

Se considera el problema de optimización

donde

$$X = \left\{ \begin{array}{rrrr} -x_1 & +3x_2 & \leq & 3\\ 2x_1 & +x_2 & \leq & 8\\ x_1, & x_2 & \geq & 0 \end{array} \right\}.$$

- 1. Representa gráficamente el conjunto poliédrico X y determina sus puntos extremos.
- 2. Determina el conjunto de vectores de coeficientes de la función objetivo, c, tales que el problema (P) tiene solución única en $(x_1, x_2) = (3, 2)$.
- 3. Indica si el vector $(c_1, c_2) = (1, 1)$ es uno de los vectores en las condiciones del apartado anterior. En caso afirmativo escribe la tabla del símplex óptima, (T).
- 4. Calcula los precios sombra correspondientes a la tabla (T). Formula el problema dual de (P) y comprueba que el vector de precios sombra es su solución óptima.
- 5. Supongamos que ahora la segunda restricción de X es $2x_1 + x_2 \le 8 \Delta$. Determina Δ_0 , el máximo valor de Δ para el que la base B óptima en (T), sigue siendo óptima. Justifica el valor obtenido usando la representación gráfica.
- 6. Determina la solución óptima para $\Delta = \frac{15}{2}$.

Problema 2

Se considera el problema de optimización P,

donde ϑ es un número real. Sea la tabla T,

Determina los valores de ϑ para los que el problema P tiene a la tabla T como tabla óptima; tiene solución ilimitada; tiene más de una solución básica factible óptima o es infactible.

Problema 3

Se considera el problema de optimización P,

donde ϑ es un escalar fijo.

- 1. Resuelve P para $\vartheta = 1$.
- 2. Determina los valores de ϑ para los que el problema P . . .
 - (a) tiene una única solución óptima
 - (b) tiene solución ilimitada
 - (c) tiene más de una solución óptima
 - (d) es infactible

Problema 4

Consideremos el problema:

$$\begin{array}{ll} \max & 2x_1+x_2+x_3\\ \mathrm{s.a:} & x_1+0x_2+x_3 & \leq 1\\ & 0x_1+x_2+x_3 & \leq 2\\ & x_1+x_2+0x_3 & \leq 3\\ & x_i \geq 0 & i=1,2,3 \end{array}$$

- 1. Prueba que la solución básica x_1, x_2, x_3 es óptima y halla el valor de la variables en el óptimo.
- 2. Escribe explícitamente el problema dual y halla su solución óptima.
- 3. ¿Cual será la solución óptima si el valor del lado derecho de la tercera restricción se aumenta a $b_3=3.5$?
- 4. Halla la solución óptima si se añade al problema original la restricción $x_1 + x_2 + x_3 \le 2.5$

Problema 5

Considérese el problema de Programación Lineal y su tabla óptima:

- 1. Escribir el dual de (P).
- 2. Hallar la nueva solución óptima si c_2 se cambia a 5. Hallar la solución si el coeficiente de x_3 en la segunda restricción se cambia a 1.
- 3. Hallar la nueva solución si se añade la nueva restricción $x_2 + x_3 \ge 2$. Igualmente si se añade una nueva variable x_6 con coeficiente en la función objetivo $c_6 = 4$ y vector de restricción $a_6^t = (1, 2)$.

Problema 6

Un móvil puede desplazarse en la dirección de los vectores $v_1 = (0,1)$, $v_2 = (1,-1)$ y $v_3 = (-1,-1)$, tardando 1 segundo en alcanzar, respectivamente v_1, v_2 y v_3 .

- 1. Formula como un problema de Programación Lineal el problema de encontrar el tiempo mínimo $T(p_1, p_2)$ necesario para desplazarse desde el origen a un punto (p_1, p_2) del plano.
- 2. Formula el dual del problema anterior.
- 3. Describe la función $\vartheta \mapsto T(\vartheta, 1)$.

Solución del problema 1

Figure 1: Conjunto factible X

1.

2. El conjunto C^* de vectores de coeficientes pedido es

$$C^* = \left\{ \begin{array}{rrr} -c_1 & +2c_2 & > & 0\\ 3c_1 & +c_2 & > & 0\\ 3c_1 & +2c_2 & > & 0 \end{array} \right\}.$$

3.

4. El vector u^* de precios sombra asociado a B es

$$c_B B^{-1} = -\frac{1}{7} [1, 1] \begin{bmatrix} 1 & -3 \\ -2 & -1 \end{bmatrix} = \begin{bmatrix} \frac{1}{7}, \frac{4}{7} \end{bmatrix}$$

Por otro lado, el problema (D) dual de (P) tiene la siguiente formulación

5. Al modificar el vector b de términos independientes, la columna del lado derecho de la tabla (T) se modifica del modo siguiente

$$B^{-1}\hat{b} = -\frac{1}{7} \left[\begin{array}{cc} 1 & -3 \\ -2 & -1 \end{array} \right] \left[\begin{array}{c} 3 \\ 8 - \Delta \end{array} \right] = \left[\begin{array}{c} 3 - \frac{3\Delta}{\underline{\lambda}} \\ 2 - \underline{\frac{\lambda}{7}} \end{array} \right] \geq 0.$$

Por tanto $\Delta \leq 7$ y $\Delta \leq 14$, es decir, $\Delta_0 = 7$. Si representamos el conjunto \hat{X} dado por

$$\hat{X} = \left\{ \begin{array}{rrr} -x_1 & +3x_2 & \leq & 3\\ 2x_1 & +x_2 & \leq & 8 - \Delta_0 = 1\\ x_1, & x_2 & \geq & 0 \end{array} \right\}.$$

queda

Figure 2: Conjunto factible (\hat{X})

6.

	1	1	0	0	
	x_1	x_2	x_3	x_4	LD
$\overline{x_1}$	1	0	$-\frac{1}{7}$	$\frac{3}{7}$	$-\frac{3}{14}$
x_2	0	1	$\frac{2}{7}$	$\frac{1}{7}$	$\frac{13}{14}$
-z	0	0	$-\frac{1}{7}$	$-\frac{4}{7}$	$-\frac{10}{14}$

Haciendo un pivotaje dual...

Solución del problema 3

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	LD
x_6	1	1	-1	1	-1	1	0	0	2
x_8	0	1	1	1	-1	0	-1	1	1
-z	0	1	1	1	-1	0	-1	0	1

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	LD
x_6	1	0	-2	0	0	1	1	-1	1
x_2	0	1	1	1	-1	0	-1	1	1
-z	0	0	0	0	0	0	0	-1	0

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	LD
x_6	1	0	-2	0	0	1	1	1
x_2	0	1	-2 1	1	-1	0	-1	1
-z	1	0	-6	-1	1	0	1	-1

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	LD
x_1	1	0	-2	0	0	1	1	1
x_2	0	1	1	1	-1	0	-1	1
-z	0	0	-4	-1	1	-1	0	-2