OED - Iowa Gambling Task

Anish Haluvani Sundresh, Jennifer Kempkens, Hannah Köster, Rowan Mohamed, Jessica Simon

Introduction - Experimental Framework

- Data from 617 healthy participants performing the Iowa Gambling Task
- Characteristics
 - o a psychological task thought to simulate real-life decision making
 - Variables
 - current reward
 - choice
 - differences in papers,
 - number of trials.
 - payoff scheme

Introduction - Experimental Framework

• Existing dataset: Iowa Gambling Task

Study	Number of participants	Number of trials	Payoff	Demographics ^a
Fridberg et al. [3]	15	95	1	M = 29.6 years (SD = 7.6)
Horstmann ^b	162	100	2	M = 25.6 years (SD = 4.9), 82 female
Kjome et al. [5]	19	100	3	M = 33.9 years (SD = 11.2), 6 female
Maia & McClelland [6]	40	100	1	Undergraduate students
Premkumar et al. [7]	25	100	3	M = 35.4 years (SD = 11.9), 9 female
Steingroever et al. [8]	70	100	2	M = 24.9 years (SD = 5.8), 49 female
Steingroever et al. [9]	57	150	2	M = 19.9 years (SD = 2.7), 42 female
Wetzels et al. [15] ^c	41	150	2	Students
Wood et al. [16]	153	100	3	$M = 45.25 \text{ years } (SD = 27.21)^d$
Worthy et al. [17]	35	100	1	Undergraduate students, 22 female

Introduction - Experimental Framework

- Payoff Scheme:
- 1) uses variable loss in deck C + has fixed wins and losses

- 2) uses constant loss in deck C + within each deck a random repetition of the payoff
- 3) uses variable losses and wins + has fixed wins and losses
 - + changes rewards and losses \rightarrow net outcome of bad decks becomes increasingly negative every 10 trials and vice versa

Procedure

- Experimental Framework
- Experimental Designs/ Sampling Strategies:
 - o Full Factorial
 - Random Sampling
 - Active Learning:
- 1) More risky choices but >threshold score in the end
- 2) Less risky choices but >threshold score in the end
- 3) More risky choices but <threshold score in the end
- 4) Less risky choices but <threshold score in the end
- sklearn estimator:
- 1. DecisionTreeRegressor
- 2. RandomForestRegressor
- 3. GradientBoostingRegressor
- KNeighborsRegressor

Results

Estimators with the dependent variable 'Choice':

- DecisionTreeRegressor: 0.8042019639192353
- RandomForestRegressor: 0.8041715941535984
- GradientBoostingRegressor: 0.7996251807103818
- KNeighborsRegressor: 0.797787051892027

Comparison of 4 different estimators

Estimator: Decision Tree

Mean Squared Error: 0.21726034944776285

Estimator: Random Forest

Mean Squared Error: 0.21728410819980187

Estimator: Gradient Boosting

Mean Squared Error: 0.22233881468268482

Estimator: K Neighbour Regression

Mean Squared Error: 0.22437842916196918

Full Factorial Design

- Set up experimental design using sweetpea
- Payoff & number of trials as factors -> otherwise no fitting samples
- Found samples according to synthesized experiment
- Sampling strategies: IterateGen, CMSGen

Full Factorial Design - Results

The initial variable pattern:

Active Learning:

Proposition of Risky vs. Safe Choices

x-axis: Block

y-axis: Proportion (in %)

Interpretation - Comparison

Active Learning:

- XGB Committee
- Random Forest Committee

- + Using the estimators directly on the entire training without AL and querying
 - XBG Committee: rmse=21.41, mae=14.67
 - Random Forest Committee: rmse=21.41, mae=14.67
 - AL modeling passive_profit: rmse=21.41, mae=14.67

Conclusion

Did particular estimator outperform the others or did they perform equally well?

- 4 Estimators perform rather equally
 - → Decision Tree Regression performs best
 - → Gradient is boosting slightly worse
- In Full Factorial Design (sampled data)
 - → Decision Tree Regression and Random Forest perform best
- Random Forest works better than XGB or Gaussian due to the types of variables.