Codebook

Pitoni++

Žiga Gosar, Maks Kolman, Jure Slak

Kazalo

1	Teo	rija števil	3
	1.1	Evklidov algoritem	3
	1.2	Razširjen Evklidov algoritem	3
	1.3	Kitajski izrek o ostankih	3
	1.4	Hitro potenciranje	4

1 Teorija števil

1.1 Evklidov algoritem

Vhod: $a, b \in \mathbb{Z}$

Izhod: Največji skupni delitelj *a* in *b*. Za pozitivna števila je pozitiven, če je eno število 0, je rezultat drugo število, pri negativnih je predznak odvisen od števila iteracij.

Časovna zahtevnost: $O(\log(\max\{a,b\}))$

Prostorska zahtevnost: O(1)

```
int gcd(int a, int b) {
   int t;
   while (b != 0) {
       t = a % b;
       a = b;
       b = t;
   }
   return a;
}
```

1.2 Razširjen Evklidov algoritem

Vhod: $a, b \in \mathbb{Z}$,. Števili retx, rety sta parametra samo za vračanje vrednosti.

Izhod: Števila x, y, d, pri čemer $d = \gcd(a, b)$, ki rešijo Diofantsko enačbo ax + by = d. V posebnem primeru, da je b tuj a, je x inverz števila a v multiplikativni grupi Z_b^* .

Časovna zahtevnost: $O(\log(\max\{a,b\}))$

Prostorska zahtevnost: O(1)Testiranje na terenu: UVa 756

```
int ext_gcd(int a, int b, int& retx, int& rety) {
    int x = 0, px = 1, y = 1, py = 0, r, q;
    while (b != 0) {
        r = a % b; q = a / b; // quotient and reminder
        a = b; b = r; // gcd swap
        r = px - q * x; // x swap
        px = x; x = r;
        r = py - q * y; // y swap
        py = y; y = r;
    }
    retx = px; rety = py; // return
    return a;
}
```

1.3 Kitajski izrek o ostankih

Vhod: Sistem n kongruenc $x \equiv a_i \pmod{m_i}$, m_i so paroma tuji.

Izhod: Število x, ki reši ta sistem dobimo po formuli

$$x = \left[\sum_{i=1}^{n} a_i \frac{M}{m_i} \left[\left(\frac{M}{m_i} \right)^{-1} \right]_{m_i} \right]_{M}, \qquad M = \prod_{i=1}^{n} m_i,$$

kjer $[x^{-1}]_m$ označuje inverz x po modulu m. Vrnjeni x je med 0 in M.

Časovna zahtevnost: $O(n \log(\max\{m_i, a_i\}))$

Prostorska zahtevnost: O(n)

Potrebuje: Evklidov algoritem (str. 3)

Testiranje na terenu: UVa 756

Opomba: Pogosto potrebujemo unsigned long long namesto int.

```
int mul_inverse(int a, int m) {
1
         int x, y;
ext_gcd(a, m, x, y);
return (x + m) % m;
2
3
5
6
    int chinese_reminder_theorem(const vector<pair<int, int>>& cong) {
         int M = 1;
8
         for (size_t i = 0; i < cong.size(); ++i) {</pre>
9
             M *= cong[i].second;
10
11
         int x = 0, a, m;
12
        for (const auto& p : cong) {
13
             tie(a, m) = p;
x += a * M / m * mul_inverse(M/m, m);
x %= M;
14
15
16
         return (x + M) \% M;
18
   }
```

1.4 Hitro potenciranje

Vhod: Število g iz splošne grupe in $n \in \mathbb{N}_0$.

Izhod: Število g^n .

Časovna zahtevnost: $O(\log(n))$

Prostorska zahtevnost: O(1)

Testiranje na terenu: http://putka.upm.si/tasks/2010/2010_3kolo/nicle

```
int fast_power(int g, int n) {
   int r = 1;
   while (n > 0) {
      if ((n & 1) == 1) {
        r *= g;
      }
      g *= g;
      n >>= 1;
   }
   return r;
}
```