Министерство образования Республики Беларусь

Учреждение образования

«Брестский Государственный технический университет»

Кафедра ИИТ

Лабораторная работа №6

По дисциплине «Криптографические методы защиты информации»

Тема: «Контроль целостности (биты четности, CRC и ECC)»

Выполнил:

Студент 2 курса

Группы ИИ-23

Макаревич Н.Р.

Проверил:

Хацкевич А. С.

- В лабораторной работе необходимо определить контрольные данные с использованием следующих способов:
- шифруемое сообщение в символьном и битовом представлении в соответствии с кодировкой Windows 1251
 - синхропосылку в битовом представлении;
 - результат сложения по модулю 2 шифруемого сообщения и синхропосылки;
- ключ (7 букв фамилии) в символьном и битовом представлении в соответствии с кодировкой Windows 1251;
 - ключ в битовом представлении с учетом битов контроля четности;
 - ключевые элементы $k_{i;}$
 - <u>битов четности</u>. В качестве исходных данных принять битовое представление букв фамилии в соответствии с кодировкой Windows 1251
- контрольных сумм (CRC). В качестве исходных данных принять коды 1-ой, 2-ой и 3-ей буквы своей фамилии согласно их положению в алфавите; порождающего полинома $G(x) = x^4 + x^1 + x^0$.
- кода коррекции ошибок (ECC). В качестве исходных данных принять первые 11 битов первых двух буквы своей фамилии в соответствии с кодировкой Windows 1251 Рассчитать вектор контрольных битов и вектора синдромов при отсутствии ошибки, одиночной и двойной ошибке.

Ход работы:

Буква	Битовая строка	Паритетный бит									
	·	четный (odd)	нечетный (even								
М	1100 1100	1	0								
А	1100 0000	1	0								
К	1100 1010	1	0								
А	1100 0000	1	0								
Р	1101 0000	0	1								
E	1100 0101	1	0								
В	1100 0010	0	1								

Использование контрольных сумм

Делимое P(x) (входные данные)	1100 1100		1100 0000		1100 1010			
P(x) * x ^N	1100 1100 000	00	1100 0000 0	000	1100 1010	0000		
Деление P(x) * x ^N mod G(x)	110011000000 10011 10101 10011 01100 00000 11000 10011 10110 10011 01010 00000 10100 10110	1 0 1 0	11000000000 10011 10110 10011 01010 00000 10100 10011 01110 00000 11100 10011 11110 10011 1101	1 0 1 0 1	11001010000 10011 10100 10011 01111 00000 11110 10011 10011 10010 10011 00010 00000 0010	1 1 0 1 1 0 0 0 0 0		
Частное	1101101		1101011		1101110			
Остаток R(x) (контрольная сумма)	0111		1101		0010			
Входные данные с контрольной суммой	110011000111		11000000110	1	1100101000	10		

Использование ЕСС

$M + A = 1100 \ 1100 \ 110$

Номер позиции бита		2	3	4	5	6	7	8	9	10	11	12	13	14	15		
Обозначение бита		r ₂	X1	r ₃	X 2	X 3	X 4	r ₄	X 5	X 6	X 7	X 8	X 9	X 10	X ₁₁		
Значение бита, XR		0	1	0	1	0	0	0	1	1	0	0	1	1	0		
Двоичное представление	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	r ₁	0
номера позиции бита, N	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	r ₂	1
	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	r ₃	1
	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	r ₄	0

Проверка целостности:

Номер позиции бита		2	3	4	5	6	7	8	9	10	11	12	13	14	15		
Обозначение бита		r ₂	X1	r ₃	X 2	X 3	X 4	r ₄	X 5	X 6	X 7	X 8	X 9	X10	X ₁₁		
Значение бита, XR'	1	1	1	0	1	0	0	0	1	1	0	0	1	1	0	pb	0
Двоичное представление	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	S ₁	0
номера позиции бита, N	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	S ₂	0
	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	S 3	0
	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	S4	0

Вектор синдромов состоит из нулей, паритетный бит равен 0.

Вывод: в ходе лабораторной работы научился проводить контроль целостности данных с помощью битов четности, CRC, ECC.