Combinational Circuit Verification using Strong Nullstellensatz

Overcoming the Complexity of Gröbner Bases for Efficient Verification over \mathbb{F}_{2^k}

Priyank Kalla

Associate Professor
Electrical and Computer Engineering, University of Utah
kalla@ece.utah.edu
http://www.ece.utah.edu/~kalla

Nov 17-19, 2014

What we have learnt so far...

Theorem (Weak NullStellensatz)

Let $\overline{\mathbb{F}}$ be an algebraically closed field. Given ideal $J \subset \overline{\mathbb{F}}[x_1, \dots, x_n], V_{\overline{\mathbb{F}}}(J) = \emptyset \iff J = \overline{\mathbb{F}}[x_1, \dots, x_n] \iff 1 \in J \iff reducedGB(J) = \{1\}.$

Theorem (Regular Nullstellensatz)

Let $\overline{\mathbb{F}}$ be an algebraically closed field. Let $J=\langle f_1,\ldots,f_5\rangle\subset\overline{\mathbb{F}}[x_1,\ldots,x_n]$. Let another polynomial f vanish on $V_{\overline{\mathbb{F}}}(J)$, so $f\in I(V_{\overline{\mathbb{F}}}(J))$. Then, $\exists m\in\mathbb{Z}_{\geq 1}$ s.t.

$$f^m \in J$$
,

and conversely.

Theorem (The Strong Nullstellensatz)

Over an algebraically closed field $I(V(J)) = \sqrt{J}$

Nullstellensatz over \mathbb{F}_q

Theorem (Weak Nullstellensatz over \mathbb{F}_{2^k})

Let ideal $J=\langle f_1,\ldots,f_s\rangle\subset \mathbb{F}_{2^k}[x_1,\ldots,x_n]$ be an ideal. Let $J_0=\langle x_1^{2^k}-x_1,\ldots,x_n^{2^k}-x_n\rangle$ be the ideal of all vanishing polynomials. Then:

$$V_{\mathbb{F}_{2^k}}(J) = \emptyset \iff V_{\overline{\mathbb{F}_{2^k}}}(J+J_0) = \emptyset \iff reducedGB(J+J_0) = \{1\}$$

Theorem $(J + J_0 \text{ is radical})$

Over Galois fields $\sqrt{J+J_0}=J+J_0$, i.e. $J+J_0$ is a radical ideal.

Theorem (Strong Nullstellensatz over \mathbb{F}_q)

$$I(V_{\mathbb{F}_q}(J)) = I(V_{\overline{\mathbb{F}_q}}(J+J_0)) = \sqrt{J+J_0} = J+J_0$$

Radical Membership....

- Given J, we cannot easily find generators of \sqrt{J}
- ullet But we can test for membership in \sqrt{J}
 - $f \in \sqrt{J} \iff \mathsf{reducedGB}(J + \langle 1 y \cdot f \rangle) = \{1\}$

Verification Formulation: The Mathematical Problem

- Given specification polynomial: $f: Z = A \cdot B \pmod{P(x)}$ over \mathbb{F}_{2^k} , for given k, and given P(x), s.t. $P(\alpha) = 0$
- Given circuit implementation C
 - Primary inputs: $A = \{a_0, \dots, a_{k-1}\}, B = \{b_0, \dots, b_{k-1}\}$
 - Primary Output $Z = \{z_0, \ldots, z_{k-1}\}$
 - $A = a_0 + a_1 \alpha + a_2 \alpha^2 + \cdots + a_{k-1} \alpha^{k-1}$
 - $B = b_0 + b_1 \alpha + \dots + b_{k-1} \alpha^{k-1}, \ Z = z_0 + z_1 \alpha + \dots + z_{k-1} \alpha^{k-1}$
- Does the circuit *C* implement *f*?

Mathematically:

- Model the circuit (gates) as polynomials: f_1, \ldots, f_s $J = \langle f_1, \ldots, f_s \rangle \subset \mathbb{F}_{2^k}[x_1, \ldots, x_n]$
- Does f agree with solutions to $f_1 = f_2 = \cdots = f_s = 0$?
- Does f vanish on the Variety $V_{\mathbb{F}_q}(J)$?
- Is $f \in I(V_{\mathbb{F}_q}(J)) = J + J_0$ or is $f \xrightarrow{GB(J+J_0)}_+ 0$?

Example Formulation

Gates as polynomials

$$\mathbb{F}_2\subset \mathbb{F}_{2^k}$$
:

Ideal J:

$$z_0 = s_0 + s_3$$
; $\mapsto f_1 : z_0 + s_0 + s_3$
 $s_0 = a_0 \cdot b_0$; $\mapsto f_2 : s_0 + a_0 \cdot b_0$
:

$$A + a_0 + a_1\alpha$$
; $B + b_0 + b_1\alpha$; $Z + z_0 + z_1\alpha$

Ideal
$$J_0$$
:
 $z_0^2 - z_0, s_0^2 - s_0,$

$$A^{2^k} - A, B^{2^k} - B,$$
 $A^{2^k} - B$

Complexity of Gröbner Basis

- Complexity of Gröbner basis
 - Degree of polynomials in G is bounded by $2(\frac{1}{2}d^2+d)^{2^{n-1}}$ [1]
 - ullet Doubly-exponential in n and polynomial in the degree d
- This is the complexity of the GB problem, not of Buchberger's algorithm – that's still a mystery
- For $J \subset \mathbb{F}_q[x_1, \dots, x_n]$, Complexity $GB(J + J_0) : q^{O(n)}$ (Single exponential)
- Improving Buchberger's algorithm:
 - Improve term ordering (heuristics)
 - Get to all $S(f,g) \xrightarrow{G}_+ 0$ quickly; i.e. arrive at a GB quickly (hard to predict)
 - Improve the implementation of polynomial division; ideas proposed by $Faug\acute{e}re$ in the F_4 algorithm

Complexity of Gröbner Basis and Term Orderings

- For $J \subset \mathbb{F}_q[x_1, \dots, x_n]$, Complexity $GB(J + J_0) : q^{O(n)}$
- GB complexity very sensitive to term ordering
- A term order has to be imposed for systematic polynomial computation

Let
$$f = 2x^2yz + 3xy^3 - 2x^3$$

- LEX x > y > z: $f = -2x^3 + 2x^2yz + 3xy^3$
- DEGLEX x > y > z: $f = 2x^2yz + 3xy^3 2x^3$
- DEGREVLEX x > y > z: $f = 3xy^3 + 2x^2yz 2x^3$

Recall, S-polynomial depends on term ordering:

$$S(f,g) = \frac{L}{lt(f)} \cdot f - \frac{L}{lt(g)} \cdot g;$$
 $L = LCM(lm(f), lm(g))$

Effect of Term Orderings on Buchberger's Algorithm

The Product Criteria

If
$$Im(f) \cdot Im(g) = LCM(Im(f), Im(g))$$
, then $S(f,g) \xrightarrow{G'} 0$.

LEX:
$$x_0 > x_1 > x_2 > x_3$$

- $f = x_0x_1 + x_2$, $g = x_1x_2 + x_3$
- $Im(f) = x_0x_1$; $Im(g) = x_1x_2$
- $S(f,g) \xrightarrow{G'} x_0x_3 + x_2^2$

LEX:
$$x_3 > x_2 > x_1 > x_0$$

- $f = x_2 + x_0x_1$, $g = x_3 + x_1x_2$
- $Im(f) = x_2$; $Im(g) = x_3$, $S(f,g) \xrightarrow{G'} 0$

"Obviate" Buchberger's algorithm... really?

Find a "term order" that makes ALL $\{Im(f), Im(g)\}$ relatively prime.

Product Criteria and Gröbner Bases

Recall Buchberger's theorem

The set $G = \{g_1, \dots, g_t\}$ is a Gröbner basis **iff** for all pairs $(f,g) \in G$, $S(f,g) \xrightarrow{G}_{+} 0$

- If we can make leading monomials of all pairs Im(f), Im(g) relatively prime, then all Spoly(f,g) reduce to 0
- This would imply that the polynomials already constitute a Gröbner basis
- No need to compute a GB, may be able to circumvent the GB complexity issues
- Can a term order be derived that makes leading monomials of all polynomials relatively prime?
 - For an "acyclic" circuit, make the gate output variable x_i greater than all variables x_i that are inputs to the gate

For Circuits, such an order can be derived

$$f_1: s_0 + a_0 \cdot b_0;$$
 $f_2: s_1 + a_0 \cdot b_1;$ $f_3: s_2 + a_1 \cdot b_0;$ $f_4: s_3 + a_1 \cdot b_1;$ $f_5: r_0 + s_1 + s_2;$ $f_6: z_0 + s_0 + s_3$ $f_7: z_1 + r_0 + s_3;$ $f_8: A + a_0 + a_1\alpha;$ $f_9: B + b_0 + b_1\alpha$ $f_{10}: Z + z_0 + z_1\alpha;$

- Perform a Reverse Topological Traversal of the circuit, order the variables according to their reverse topological levels
- LEX with $Z > \{A > B\} > \{z_0 > z_1\} > \{r_0 > s_0 > s_3\} > \{s_1 > s_2\} > \{a_0 > a_1 > b_0 > b_1\}$
- This makes every gate output a leading term, and $\{f_1, \dots, f_{10}\}$ is a Gröbner basis

This term order also renders a Gröbner Basis of $J + J_0$

Using the Topological Term Order:

- ullet $F=\{f_1,\ldots,f_s\}$ is a Gröbner Basis of $J=\langle f_1,\ldots,f_s
 angle$
- $F_0 = \{x_1^q x_1, \dots, x_n^q x_n\}$ is also a Gröbner basis of J_0 (these polynomials also have relatively prime leading terms)
- But we have to compute a Gröbner Basis of $J + J_0 = \langle f_1, f_2 \dots, f_s, x_1^q x_1, \dots, x_n^q x_n \rangle$
- It turns out that $\{f_1, f_2, \dots, f_s, x_1^q x_1, \dots, x_n^q x_n\}$ is a Gröbner basis!!
- From our circuit: $f_i = x_i + tail(f_i) = x_i + P$
- Vanishing polynomials $x_i^q x_i$ with same variable x_i
- Only pairs to consider: $S(f_i, x_i^q x_i)$ in Buchberger's Algorithm
- All other pairs will have relatively prime leading terms, which will reduce to 0 modulo G

This term order renders a Gröbner basis by construction

So, let us compute $S(f_i = x_i + P, x_i^q - x_i)$:

$$S(f_i = x_i + P, x_i^q - x_i) = x_i^{q-1}P + x_i$$

$$x_i^{q-1}P + x_i \xrightarrow{x_i+P} x_i^{q-2}P^2 + x_i \xrightarrow{x_i+P} \dots \xrightarrow{x_i+P} P^q - P \xrightarrow{J_0} + 0$$

Since P^q-P is a vanishing polynomial, $P^q-P\in J_0$ and $P^q-P\xrightarrow{J_0}_+0$

Conclusion: The set of polynomials

 $F \cup F_0 = \{f_1, \dots, f_s, x_i^q - x_i, \dots, x_n^q - x_n\}$ is itself a Gröbner basis due to the reverse topological term order derived from the circuit!

Our Minimal Gröbner Basis

Conclusion:

- Our term order makes $G = \{f_1, \dots, f_s, x_1^q x_1, \dots, x_n^q x_n\}$ a Gröbner Basis
- This $GB(J + J_0)$ can be further simplified (made minimal)
 - Two types of polynomials: $f_i = x_i + P$, $g_i = x_i^q x_i$
 - Primary inputs bits are never a leading term of any polynomial
 - Primary inputs are not the output of any gate
- For $x_i \notin \text{primary inputs}$, $f_i = x_i + P$ divides $x_i^q x_i$; remove $x_i^q x_i$
- Keep $J_0 = \langle x_i^2 x_i : x_i \in \text{primary input bits} \rangle$

Our term order makes $G = \{f_1, \dots, f_s, x_{PI}^2 - x_{PI}\}$ a minimal Gröbner basis by construction!

Verify the circuit only by a reduction: $f \xrightarrow{G}_+ 0$?

Our Overall Approach

- Given the circuit, perform reverse topological traversal
- Derive the term order to represent the polynomials for every gate
- The set: $\{F, F_0\} = \{f_1, \dots, f_s, x_i^2 x_i : x_i \in X_{PI}\}$ is a minimal Gröbner Basis
- Obtain: $f \xrightarrow{F,F_0} r$
- If r = 0, the circuit is verified correct
- If $r \neq 0$, then r contains only the primary input variables
- ullet Any SAT assignment to r
 eq 0 generates a counter-example
- Counter-example found in no time as r is simplified by Gröbner basis reduction

Move the complexity to that of Polynomial Division

Is this Magic? Or have I told you the full story?

- Reduce x^n modulo $\langle x + P \rangle$, how many cancellations?
 - Requires raising P to the n^{th} power
 - P is the $tail(f_i)$
 - Depending upon n, this can become complicated
- **Reduce** this **minimal** GB $G = \{F, F_0\}$, what does it look like?
 - $f_i = x_i + tail(f_i)$, where $tail(f_i) = P(x_j), x_i > x_j$
 - There exists $f_j = x_j + tail(f_j)$, where $f_j \mid P(x_j)$
 - ullet All non-PI variables x_j can be canceled in this reduction
 - Reduction results in GB G with only primary input variables, potentially explosive

This approach should work for specification polynomials f with low degree terms

Experiments: Correctness Proof, Miter Mastrovito v/s Montgomery Multipliers

Table: Verification Results of SAT, SMT, BDD, ABC.

	Word size of the operands k -bits							
Solver	8	12	16					
MiniSAT	22.55 <i>TO</i>		TO					
CryptoMiniSAT	7.17	16082.40	TO					
PrecoSAT	7.94	TO	TO					
PicoSAT	14.85	TO	TO					
Yices	10.48	TO	TO					
Beaver	6.31	TO	TO					
CVC	TO	TO	TO					
Z3	85.46	TO	TO					
Boolector	5.03	TO	TO					
SimplifyingSTP	14.66	TO	TO					
ABC	242.78	TO	TO					
BDD	0.10	14.14	1899.69					

Experimental Results: Correctness Proof

Verify a specification polynomial f against a circuit C by performing the test $f \xrightarrow{J+J_0} + 0$?

Table: Verify bug-free and buggy Mastrovito multipliers. SINGULAR computer algebra tool used for division.

Size k-bits	32	64	96	128	160	163
#variables	1155	4355	9603	16899	26243	27224
#polynomials	1091	4227	9411	16643	25923	26989
#terms	7169	28673	64513	114689	179201	185984
Compute-GB:	93.80	МО	МО	МО	МО	МО
Ours: Bug-free	1.41	112.13	758.82	3054	9361	16170
Ours: Bugs	1.43	114.86	788.65	3061	9384	16368

Why does Compute-GB ($\operatorname{SINGULAR}$) run out of memory?

Improve GB-reduction: F_4 -style reduction

New algorithm to compute a Gröbner basis by J.C. Faugère: F_4

- Buchberger's algorithm $S(f,g) \xrightarrow{G}_+ r$
- Instead, compute a "set" of S(f,g) in one-go
- Reduces them "simultaneously"
- Significant speed-up in computing a Gröbner basis
- Models the problem using sparse linear algebra
- Gaussian elimination on a matrix representation of the problem

Our term order: already a Gröbner basis. We only need F_4 -style reduction: $f \xrightarrow{F,F_0} r$

F_4 -style reduction on a Matrix

- Objective: $f: Z + A \cdot B$, compute $f \xrightarrow{f_1, \dots, f_s} + r$
- Find a polynomial f_i that divides f, or "cancels" LT(f)
- Construct a matrix: rows = polynomials, columns = monomials, entries = coefficient of monomial present in the polynomial
 - This matrix is constructed iteratively
 - The specification polynomial *f* is inserted into the first row
 - Maintain the specified term order in the matrix
 - Iterate over i, the list of monomials generated/utilized in the division process
 - Find a polynomial f_j s.t. $It(f_j)$ cancels the i^{th} monomial (column) of the matrix
 - Insert $\frac{X_i}{Im(f_i)} \cdot f_j$ as the new row in the matrix
 - Update the entries in the matrix subject to the term order

Matrix Construction with an Example

Given
$$f: Z + AB$$
 over \mathbb{F}_{2^2} with $P(\alpha) = \alpha^2 + \alpha + 1 = 0$.

Polynomials of the circuit, corresponding to ideal J:

$$f_1: A + a_0 + a_1\alpha, \ f_2: B + b_0 + b_1\alpha, \ f_3: Z + z_0 + z_1\alpha,$$

$$f_4: r_0 + a_0b_1 + a_1b_0, \ f_5: z_0 + a_0b_0 + a_1b_1, \ f_6: z_1 + r_0 + a_1b_1$$

Compute
$$f \xrightarrow{f_1,...,f_6} r$$

Term order: LEX with $Z > A > B > z_0 > z_1 > r_0 > a_0 > a_1 > b_0 > b_1$

Matrix Construction (Contd.)

Problem setup:

- Insert f: Z + AB as the first row of the matrix M
- Note that Z > AB in our monomial order
- Let M_L denote the list of monomials; these will correspond to the columns of the matrix M
- Matrix *M* at the first step:

$$Z AB$$
 $f (1 1)$

Matrix Construction (Contd.)

- Set i=1
- Find a polynomial f_j from f_1, \ldots, f_6 s.t. $Im(f_j) \mid \text{monomial}[i]$ represented in the i^{th} column
- Clearly, $f_j = f_3 = Z + z_0 + z_1 \alpha$
- Division: $f \xrightarrow{f_j}_+ r = f \frac{lt(f)}{lt(f_j)} \cdot f_j = f \frac{lc(f)}{lc(f_j)} \frac{lm(f)}{lm(f_j)} \cdot f_j$
- ullet Ignore the coefficients, they will be resolved/computed as coefficients in the matrix M
- Compute: $f \xrightarrow{f_j}_+ r = f \frac{Im(f)}{Im(f_j)} \cdot f_j$
 - The computation $(Z + AB) \frac{Z}{Z} \cdot (Z + z_0 + z_1 \alpha)$ gives the monomial list as AB, z_0, z_1
 - These monomials will correspond to the columns of the matrix
 - List of monomials $M_L = M_L \cup \frac{Im(f)}{Im(f_j)} \cdot f_j$

Matrix Construction (Contd.)

- Set i = i + 1 = 2
- Find a polynomial f_j from f_1, \ldots, f_6 s.t. $Im(f_j) \mid \text{monomial}[i]$ represented in the i^{th} column
- monomial[2] = AB
- Clearly, $f_j = f_1 = A + a_0 + a_1 \alpha$
- Monomials required in cancellation (division) of AB

$$\bullet AB - \frac{AB}{Im(f_j)} \cdot f_j = (AB) - B(A + a_0 + a_1\alpha)$$

- Only interested in the monomials utilized in this division process
- Update $M_L = M_L \cup \{\text{monomials of } \frac{AB}{A} \cdot f_1\}$

Continue in this fashion: F_4 -style reduction

- Construct the whole matrix M
- *M* is completed when monomial ordering reaches primary inputs
- Rows = $\frac{\text{monomials}}{\text{Im}(f_j)} \cdot f_j$; Columns = M_L , M(i,j) = coefficients

	Z	AB	Ba_0	Ba_1	z_0	z_1	r_0	a_0b_0	a_0b_1	a_1b_0	a_1b_1
f	/ 1	1	0	0	0	0	0	0	0	0	0 \
f_3	1	0	0	0	1	α	0	0	0	0	0
Bf_1	0	1	1	α	0	0	0	0	0	0	0
$a_0 f_2$	0	0	1	0	0	0	0	1	α	0	0
a_1f_2	0	0	0	1	0	0	0	0	0	1	α
f_5	0	0	0	0	1	0	0	1	0	0	1
f_6	0	0	0	0	0	1	1	0	0	0	1
f_4	0 /	0	0	0	0	0	1	0	1	1	0 /

F_4 -style reduction

- Construct the matrix *M* for polynomial reduction
- Apply Gaussian elimination on M
- Last row = remainder r = result of reduction = $\alpha^2 + \alpha + 1 = 0$

Z	AB	Ba_0	Ba_1	<i>z</i> ₀	z_1	r_0	a_0b_0	a_0b_1	a_1b_0	a_1b_1
/ 1	1	0	0	0	0	0	0	0	0	0 \
0	1	0	0	1	α	0	0	0	0	0
0	0	1	α	1	α	0	0	0	0	0
0	0	0	α	1	α	0	1	α	0	0
0	0	0	0	1	α	0	1	α	α	α^2
0	0	0	0	0	α	0	0	α	α	$\alpha^2 + 1$
0	0	0	0	0	0	α	0	α	α	$\alpha^2 + \alpha + 1$
0 /	0	0	0	0	0	0	0	0	0	$\alpha^2 + \alpha + 1$

Algorithm for this reduction [2]

```
Input: f, F = \{f_1, \dots, f_s\}, term order >
Output: A matrix M representing f \xrightarrow{f_1, \dots, f_s} r
/*L = \text{set of polynomials}, rows of M*/;
L:=\{f\}; i:=1;
M_L:={ monomials of f}; //M_L = the set of monomials, columns of M;
mon:= the i^{th} monomial of M_l:
while mon ∉ PrimaryInputs do
    Identify f_k \in F satisfying: Im(f_k) can divide mon;
    /*add polynomial f_k to L as a new row in M */;
    L := L \cup \frac{mon}{lm(f_k)} \cdot f_k;
   /*Add monomials to M_L as new columns in M */;
  M_L := M_L \cup \{\text{monomials of } \frac{mon}{lm(f_L)} \cdot f_k\};
   i := i + 1;
mon:= the i^{th} monomial of M_L;
end
Gaussian Elimination on M:
return r = last row of M;
       Algorithm 1: Generating the Matrix for Polynomial Reduction
```

Results

Table: Runtime for verifying bug-free and buggy Montgomery multipliers. TO = timeout of 10hrs. Time is given in seconds. * denotes SINGULAR's capacity exceeded.

Operand size k	32	48	64	96	128	163
#variables	1194	2280	4395	6562	14122	91246
#polynomials	1130	2184	4267	6370	13866	89917
#terms	10741	18199	40021	55512	134887	484738
Bug-free (Singular)	1.50	11.03	27.70	1802.75	10919	*
Bug-free (F ₄)	0.86	4.47	10.11	700.59	4539	18374
Bugs (Singular)	1.52	11.10	28.18	1812.15	11047	*
Bugs (F_4)	0.88	4.49	10.12	709.03	4564	17803

 F_4 -style reduction 2.5X faster than use of Singular

Faugére's motivation

- In practical GB computation, problems have sparsity
 - Look at our matrix M, it is full of 0s
- Such matrices usually have block-triangularity
- Rows of M are often monomial multiples of the same polynomials
- Use "sparse linear algebra"

Further improvements possible: Certainly a MS thesis project

- Matrix based reduction can be parallelized: General Purpose GPU (GP-GPU) computing
- Complexity = construction of M, use of a symbol/hash table to search for f_j s.t. $Im(f_j) \mid \text{monomial}[i]$

In Conclusion

The Key to Success in Design Automation

- Build algorithms and techniques on solid theoretical foundations
- Use all of the mathematical tools at your disposal
- Make sure to exploit circuit structure
- Develop domain-specific implementations
- That's what SAT, BDDs, AIGs do too!

- T. W. Dube, "The Structure of Polynomial Ideals and Gröbner bases," *SIAM Journal of Computing*, vol. 19, no. 4, pp. 750–773, 1990.
- J. Lv, P. Kalla, and F. Enescu, "Efficient Gröbner Basis Reductions for Formal Verification of Galois Field Arithmetic Circuits," in *IEEE Trans. on CAD*, vol. 32, no. 9, 2013, pp. 1409–1420.
- T. Pruss, P. Kalla, and F. Enescu, "Equivalence verification of large galois field arithmetic circuits using word-level abstraction via gröbner bases," in *Proc. Design Automation Conference (DAC)*, 2014.
- J. Lv, P. Kalla, and F. Enescu, "Efficient Groebner Basis Reductions for Formal Verification of Galois Field Multipliers," in *IEEE Design*, *Automation and Test in Europe*, 2012.