Linear and Quadratic Order of convergence

DEFINITION Suppose $\{p_n\}_{n=1}^{\infty}$ is a sequence that converges to p with $p_n \neq p$ for all n. If positive constants λ and α exist with

$$\lim_{n\to\infty}\frac{|p_{n+1}-p|}{|p_n-p|^{\alpha}}=\lambda,$$

then $\{p_n\}_{n=1}^{\infty}$ converges to p of order α , with asymptotic error constant λ .

- ▶ If $\alpha = 2$, then $\{p_n\}_{n=1}^{\infty}$ converges quadratically.
- ▶ If $\alpha = 1$ and $\lambda < 1$, $\{p_n\}_{n=1}^{\infty}$ converges linearly.
- ▶ If $\alpha = 1$ and $\lambda = 0$, $\{p_n\}_{n=1}^{\infty}$ converges super-linearly.

Linear and Quadratic Order of convergence

DEFINITION Suppose $\{p_n\}_{n=1}^{\infty}$ is a sequence that converges to p with $p_n \neq p$ for all n. If positive constants λ and α exist with

$$\lim_{n\to\infty}\frac{|p_{n+1}-p|}{|p_n-p|^{\alpha}}=\lambda,$$

then $\{p_n\}_{n=1}^{\infty}$ converges to p of order α , with asymptotic error constant λ .

- ▶ If $\alpha = 2$, then $\{p_n\}_{n=1}^{\infty}$ converges quadratically.
- ▶ If $\alpha = 1$ and $\lambda < 1$, $\{p_n\}_{n=1}^{\infty}$ converges linearly.
- ▶ If $\alpha = 1$ and $\lambda = 0$, $\{p_n\}_{n=1}^{\infty}$ converges super-linearly.

 $\alpha \geq$ 3 or higher does not typically work better than quadratic

Recall and contrast: rate of convergence, the Big O

Suppose $\{\beta_n\}_{n=1}^{\infty}$ is a sequence known to converge to zero, and $\{\alpha_n\}_{n=1}^{\infty}$ converges to a number α . If a positive constant K exists with

$$|\alpha_n - \alpha| \le K|\beta_n|$$
, for large n ,

then we say that $\{\alpha_n\}_{n=1}^{\infty}$ converges to α with **rate, or order, of convergence** $O(\beta_n)$. (This expression is read "big oh of β_n ".) It is indicated by writing $\alpha_n = \alpha + O(\beta_n)$.

the Big O() = rate of convergence

Linear and Quadratic Order of convergence (I)

▶ Suppose that $\{p_n\}_{n=1}^{\infty}$ is linearly convergent to 0,

$$\lim_{n\to\infty}\frac{|p_{n+1}|}{|p_n|}=0.5,\quad\text{or roughly}\quad\frac{|p_{n+1}|}{|p_n|}\approx0.5,$$

hence $p_n \approx (0.5)^n |p_0|$.

Suppose that $\{\tilde{p}_n\}_{n=1}^{\infty}$ is quadratically convergent to 0,

$$\lim_{n\to\infty}\frac{|\tilde{p}_{n+1}|}{|\tilde{p}_n|^2}=0.5,\quad\text{or roughly}\quad\frac{|\tilde{p}_{n+1}|}{|\tilde{p}_n|^2}\approx0.5.$$

But
$$0.5 |\tilde{p}_{n+1}| \approx (0.5 |\tilde{p}_n|)^2 \approx (0.5 |\tilde{p}_{n-1}|)^{2^2} \approx \cdots \approx (0.5 |\tilde{p}_1|)^{2^n}$$

 $|\tilde{p}_{n+1}| \approx 2 (0.5 |\tilde{p}_1|)^{2^n}$

Given initial approximation p_0 , Fixed Point Iteration (FPI) is

$$p_n = g(p_{n-1}), \quad n = 1, 2, \cdots,$$

Assume that

- ► FPI converges to fixed point *p*.
- g(x) is continuously differentiable with 0 < |g'(p)| < 1.

Theorem: FPI converges linearly,

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|} = |g'(p)|. \tag{1}$$

Given initial approximation p_0 , Fixed Point Iteration (FPI) is

$$p_n = g(p_{n-1}), \quad n = 1, 2, \cdots,$$

Assume that

- ► FPI converges to fixed point *p*.
- ightharpoonup g(x) is continuously differentiable with 0 < |g'(p)| < 1.

Theorem: FPI converges linearly,

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|} = |g'(p)|. \tag{1}$$

PROOF:

$$p_{n+1} - p = g(p_n) - g(p) = g'(\xi_n)(p_n - p),$$

where ξ_n is between p_n and p, and therefore converges to p. (1) follows immediately.

Theorem 2.4 (Fixed-Point Theorem)

Let $g \in C[a,b]$ be such that $g(x) \in [a,b]$, for all x in [a,b]. Suppose, in addition, that g' exists on (a,b) and that a constant 0 < k < 1 exists with

$$|g'(x)| \le k$$
, for all $x \in (a, b)$.

Then for any number p_0 in [a, b], the sequence defined by

$$p_n=g(p_{n-1}), \quad n\geq 1,$$

converges to the unique fixed point p in [a, b].

In FPI,
$$|p_n - p| \le k|p_{n-1} - p| \le k^2|p_{n-2} - p| \le \dots \le k^n|p_0 - p|$$
.

Theorem 2.4 (Fixed-Point Theorem)

Let $g \in C[a,b]$ be such that $g(x) \in [a,b]$, for all x in [a,b]. Suppose, in addition, that g' exists on (a,b) and that a constant 0 < k < 1 exists with

$$|g'(x)| \le k$$
, for all $x \in (a, b)$.

Then for any number p_0 in [a, b], the sequence defined by

$$p_n=g(p_{n-1}), \quad n\geq 1,$$

converges to the unique fixed point p in [a, b].

In FPI,
$$|p_n - p| \le k|p_{n-1} - p| \le k^2|p_{n-2} - p| \le \dots \le k^n|p_0 - p|$$
.

recall Bisection convergence

Theorem 2.1 Suppose that $f \in C[a, b]$ and $f(a) \cdot f(b) < 0$. The Bisection method generates a sequence $\{p_n\}_{n=1}^{\infty}$ approximating a zero p of f with

$$|p_n-p|\leq \frac{b-a}{2^n}$$
, when $n\geq 1$.

Bisection Method is "considered" linearly convergent.

Assume f(p) = 0. Newton = fixed point iteration

$$p_{k+1} = g(p_k), \quad k = 0, 1, \dots, \quad \text{where } g(x) = x - \frac{f(x)}{f'(x)}$$

Assume f(p) = 0. Newton = fixed point iteration

$$p_{k+1} = g(p_k), \quad k = 0, 1, \dots, \quad \text{where } g(x) = x - \frac{f(x)}{f'(x)}$$

$$g'(x) = -f(x) \left(\frac{1}{f'(x)}\right)' \approx 0$$
 for x "close" to p, and

Newton's Method satisfies g'(p) = 0

Assume f(p) = 0. Newton = fixed point iteration

$$p_{k+1} = g(p_k), \quad k = 0, 1, \cdots, \quad \text{ where } g(x) = x - \frac{f(x)}{f'(x)}$$

$$g'(x) = -f(x) \left(\frac{1}{f'(x)}\right)' \approx 0$$
 for x "close" to p , and Newton's Method satisfies $g'(p) = 0$

(Review) Assume that Fixed Point Iteration (FPI) converges to fixed point p.

$$p_n = g(p_{n-1}), \quad n = 1, 2, \cdots,$$

Theorem: FPI converges linearly,

$$\lim_{n\to\infty}\frac{|p_{n+1}-p|}{|p_n-p|}=|g'(p)|$$

Assume f(p) = 0. Newton = fixed point iteration

$$p_{k+1}=g(p_k), \quad k=0,1,\cdots, \quad ext{ where } g(x)=x-rac{f(x)}{f'(x)}$$

$$g'(x) = -f(x) \left(\frac{1}{f'(x)}\right)' \approx 0$$
 for x "close" to p, and

Newton's Method satisfies g'(p) = 0

(Review) Assume that Fixed Point Iteration (FPI) converges to fixed point p.

$$p_n = g(p_{n-1}), \quad n = 1, 2, \cdots,$$

Theorem: FPI converges linearly,

$$\lim_{n\to\infty}\frac{|p_{n+1}-p|}{|p_n-p|}=|g'(p)|$$

superlinear convergence if
$$g'(p) = 0$$

Given initial approximation p_0 , Fixed Point Iteration (FPI) is

$$p_n=g(p_{n-1}), \quad n=1,2,\cdots,$$

Assume that

- FPI converges to fixed point p.
- ightharpoonup g''(x) is continuously differentiable with g'(p)=0.

Theorem: FPI converges at least quadratically,

$$\lim_{n\to\infty} \frac{|p_{n+1}-p|}{|p_n-p|^2} = \frac{1}{2} |g''(p)|. \tag{1}$$

Given initial approximation p_0 , Fixed Point Iteration (FPI) is

$$p_n=g(p_{n-1}), \quad n=1,2,\cdots,$$

Assume that

- FPI converges to fixed point p.
- ightharpoonup g''(x) is continuously differentiable with g'(p)=0.

Theorem: FPI converges at least quadratically,

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^2} = \frac{1}{2} |g''(p)|. \tag{1}$$

PROOF: By second order Taylor expansion,

$$g(p_n) = g(p) + g'(p)(p_n - p) + \frac{1}{2}g''(\xi_n)(p_n - p)^2,$$

where ξ_n is between p_n and p, and converges to p. So

$$p_{n+1}-p = g(p_n)-g(p) = \frac{1}{2}g''(\xi_n)(p_n-p)^2,$$

(1) follows immediately.

Given initial approximation p_0 , Fixed Point Iteration (FPI) is

$$p_n = g(p_{n-1}), \quad n = 1, 2, \cdots,$$

Assume that

- ► FPI converges to fixed point *p*.
- g''(x) is continuously differentiable with g'(p) = 0.

Theorem: FPI converges at least quadratically,

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^2} = \frac{1}{2} |g''(p)|. \tag{1}$$

PROOF: By second order Taylor expansion,

$$g(p_n) = g(p) + g'(p)(p_n - p) + \frac{1}{2}g''(\xi_n)(p_n - p)^2,$$

where ξ_n is between p_n and p, and converges to p. So

$$p_{n+1}-p = g(p_n)-g(p) = \frac{1}{2}g''(\xi_n)(p_n-p)^2,$$

(1) follows immediately. Newton's method satisfies g'(p) = 0.

Order of convergence: Newton Method (again)

Given initial approximation p_0 , Newton Method is

$$p_{n+1} = p_n - \frac{f(p_n)}{f'(p_n)}, \quad n = 0, 1, 2, \cdots,$$

Assume that

- ▶ Newton Method converges to root *p*.
- f''(x) is continuous with $f'(p) \neq 0$.

Theorem: Newton Method converges at least quadratically,

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^2} = \frac{|f''(p)|}{2|f'(p)|}.$$
 (2)

Order of convergence: Newton Method (again)

Given initial approximation p_0 , Newton Method is

$$p_{n+1} = p_n - \frac{f(p_n)}{f'(p_n)}, \quad n = 0, 1, 2, \cdots,$$

Assume that

•
$$f''(x)$$
 is continuous with $f'(p) \neq 0$.

Theorem: Newton Method converges at least quadratically,

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^2} = \frac{|f''(p)|}{2|f'(p)|}.$$

PROOF: By second order Taylor expansion,

$$f(p) = f(p_n) + f'(p_n)(p - p_n) + \frac{1}{2}f''(\xi_n)(p - p_n)^2,$$

where C is between a and a and converges to a C

where
$$\xi_n$$
 is between p_n and p , and converges to p . So
$$p_{n+1} - p = p_n - p - \frac{f(p_n)}{f'(p_n)} = \frac{(p_n - p) f'(p_n) - f(p_n)}{f'(p_n)} = \frac{f''(\xi_n)}{2 f'(p_n)} (p - p_n)^2,$$

and therefore (2) follows immediately.

Order of convergence: Secant Method (I)

Given initial approximations p_0 , p_1 , Secant Method is

$$p_{n+1} = p_n - \frac{f(p_n)(p_n - p_{n-1})}{f(p_n) - f(p_{n-1})}, n = 1, 2, \cdots.$$

Assume that

- Secant Method converges to root p.
- f''(x) is continuous with $f'(p) \neq 0$.

Order of convergence: Secant Method (I)

Given initial approximations p_0 , p_1 , Secant Method is

$$p_{n+1} = p_n - \frac{f(p_n)(p_n - p_{n-1})}{f(p_n) - f(p_{n-1})}, n = 1, 2, \cdots$$

Assume that

- ► Secant Method converges to root p.
- ightharpoonup f''(x) is continuous with $f'(p) \neq 0$.

By Secant Method,

$$p_{n+1} - p = p_n - p - \frac{f(p_n)(p_n - p_{n-1})}{f(p_n) - f(p_{n-1})}$$

$$= \frac{(p_n - p)(f(p_n) - f(p_{n-1})) - f(p_n)(p_n - p_{n-1})}{f(p_n) - f(p_{n-1})}$$

$$= \frac{F(p_n) - F(p_{n-1})}{f(p_n) - f(p_{n-1})}(p_n - p)(p_{n-1} - p),$$

where $F(x) \stackrel{def}{=} \frac{f(x) - f(p)}{x - p}$ is differentiable with $F(p) \stackrel{def}{=} f'(p)$.

Order of convergence: Secant Method (II)

Assume that

- Secant Method converges to root p.
- f''(x) is continuous with $f'(p) \neq 0$.

Theorem: Secant Method converges at order $\alpha = \frac{1+\sqrt{5}}{2}$,

$$\lim_{n\to\infty} \frac{|p_{n+1}-p|}{|p_n-p|^{\alpha}} = \text{constant.}$$
 (3)

Order of convergence: Secant Method (II)

Assume that

- Secant Method converges to root p.
- f''(x) is continuous with $f'(p) \neq 0$.

Theorem: Secant Method converges at order $\alpha = \frac{1+\sqrt{5}}{2}$,

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^{\alpha}} = \text{constant.}$$
 (3)

PROOF: With $F(x) \stackrel{\text{def}}{=} \frac{f(x) - f(p)}{x - p}$,

$$p_{n+1} - p = \frac{F(p_n) - F(p_{n-1})}{f(p_n) - f(p_{n-1})} (p_n - p) (p_{n-1} - p),$$

we can show that ratio converges to $\frac{f''(p)}{2f'(p)}$ and that α satisfies α ($\alpha-1$) = 1, therefore

$$\frac{|p_{n+1}-p|}{|p_n-p|^{\alpha}} = \left| \frac{F(p_n)-F(p_{n-1})}{f(p_n)-f(p_{n-1})} \right| \left(\frac{|p_n-p|}{|p_{n-1}-p|^{\alpha}} \right)^{-(\alpha-1)}$$

$$\frac{|p_{n+1} - p|}{|p_n - p|^{\alpha}} = \left| \frac{F(p_n) - F(p_{n-1})}{f(p_n) - f(p_{n-1})} \right| \left(\frac{|p_n - p|}{|p_{n-1} - p|^{\alpha}} \right)^{-(\alpha - 1)}$$

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO."

CLAIM: $\lim_{n\to\infty} \frac{|p_{n+1}-p|}{|p_n-p|^{\alpha}}$ exists $\implies \lim_{n\to\infty} \frac{|p_{n+1}-p|}{|p_n-p|^{\alpha}} = \left|\frac{f''(p)}{2f'(p)}\right|^{\frac{1}{\alpha}}$

Example I:
$$f(x) = e^x - x - 1$$
, $f(0) = f'(0) = 0$, $f''(0) = 1$

Newton's Method

n	p_n
0	1.0
1	0.58198
2	0.31906
3	0.16800
4	0.08635
5	0.04380
6	0.02206
7	0.01107
8	0.005545
9	2.7750×10^{-3}
10	1.3881×10^{-3}
11	6.9411×10^{-4}
12	3.4703×10^{-4}
13	1.7416×10^{-4}
14	8.8041×10^{-5}
15	4.2610×10^{-5}
16	1.9142×10^{-6}

Much worse than typical Newton method convergence behavior

Simple root: $f(p) = 0, f'(p) \neq 0$

- **Definition**: A solution p of f(x) = 0 is a *simple root* if f(p) = 0 and $f'(p) \neq 0$.
- ▶ **Theorem**: The function $f \in C^1[a, b]$ has a simple root at p in (a, b) if and only if

$$f(x) = (x - p) q(x)$$
, where $\lim_{x \to p} q(x) \neq 0$.

Simple root: $f(p) = 0, f'(p) \neq 0$

- **Definition**: A solution *p* of f(x) = 0 is a *simple root* if f(p) = 0 and $f'(p) \neq 0$.
- ▶ **Theorem**: The function $f \in C^1[a, b]$ has a simple root at p in (a, b) if and only if

$$f(x) = (x - p) q(x)$$
, where $\lim_{x \to p} q(x) \neq 0$.

PROOF of "only if": Assume f(p) = 0 and $f'(p) \neq 0$. Define for $x \neq p$,

$$q(x) = \frac{f(x) - f(p)}{x - p} = \frac{f(x)}{x - p},$$

$$\lim_{x \to p} q(x) = \lim_{x \to p} \frac{f(x) - f(p)}{x - p} = f'(p) \neq 0.$$

Simple root: $f(p) = 0, f'(p) \neq 0$

- ▶ **Definition**: A solution p of f(x) = 0 is a *simple root* if f(p) = 0 and $f'(p) \neq 0$.
- ▶ **Theorem**: The function $f \in C^1[a, b]$ has a simple root at p in (a, b) if and only if

$$f(x) = (x - p) q(x)$$
, where $\lim_{x \to p} q(x) \neq 0$.

PROOF of "only if": Assume f(p) = 0 and $f'(p) \neq 0$. Define for $x \neq p$,

$$q(x) = \frac{f(x) - f(p)}{x - p} = \frac{f(x)}{x - p},$$

then
$$\lim_{x\to p} q(x) = \lim_{x\to p} \frac{f(x)-f(p)}{x-p} = f'(p) \neq 0.$$

PROOF of "if": Assume f(x) = (x - p) q(x). Then f(p) = 0 and

$$f'(p) = \lim_{x \to p} \frac{f(x) - f(p)}{x - p} = \lim_{x \to p} q(x) \neq 0.$$

Multiple roots: f(p) = 0, f'(p) = 0

Definition: A solution p of f(x) = 0 is a root of multiplicity m (with integer m) of f if for $x \neq p$, we can write

$$f(x) = (x - p)^m q(x)$$
, where $\lim_{x \to p} q(x) \neq 0$.

▶ **Theorem**: The function $f \in C^m[a, b]$ has a root of multiplicity m at p in (a, b) if and only if

$$0 = f(p) = f'(p) = f''(p) = \cdots = f^{(m-1)}(p)$$
, but $f^{(m)}(p) \neq 0$.

simple root (m = 1): f satisfies f(p) = 0, but $f'(p) \neq 0$.

Multiple roots: f(p) = 0, f'(p) = 0

Definition: A solution p of f(x) = 0 is a root of multiplicity m (with integer m) of f if for $x \neq p$, we can write

$$f(x) = (x - p)^m q(x)$$
, where $\lim_{x \to p} q(x) \neq 0$.

▶ **Theorem**: The function $f \in C^m[a, b]$ has a root of multiplicity m at p in (a, b) if and only if

$$0 = f(p) = f'(p) = f''(p) = \cdots = f^{(m-1)}(p)$$
, but $f^{(m)}(p) \neq 0$.

simple root (m = 1): f satisfies f(p) = 0, but $f'(p) \neq 0$.

(Recall) Quadratic Convergence for Newton Method

Given initial approximation p_0 , Newton Method is

$$p_{n+1} = p_n - \frac{f(p_n)}{f'(p_n)}, \quad n = 0, 1, 2, \cdots,$$

Assume that

- ▶ Newton Method converges to root *p*.
- f''(x) is continuous with $f'(p) \neq 0$.

Theorem: Newton Method converges at least quadratically,

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^2} = \frac{|f''(p)|}{2|f'(p)|}.$$
 (1)

(Recall) Quadratic Convergence for Newton Method

Given initial approximation p_0 , Newton Method is

$$p_{n+1} = p_n - \frac{f(p_n)}{f'(p_n)}, \quad n = 0, 1, 2, \cdots,$$

Assume that

- ▶ Newton Method converges to root *p*.
- f''(x) is continuous with $f'(p) \neq 0$.

Theorem: Newton Method converges at least quadratically,

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^2} = \frac{|f''(p)|}{2|f'(p)|}.$$
 (1)

Right hand side in (1) not defined if f'(p) = 0.

Example II: $f(x) = 1 - \cos x$, f(0) = f'(0) = 0, f''(0) = 1Number of iterations vs. Magnitude in function values

Example II: $f(x) = 1 - \cos x$, f(0) = f'(0) = 0, f''(0) = 1Number of iterations vs. Magnitude in function values

Example II: $f(x) = 1 - \cos x$, f(0) = f'(0) = 0, f''(0) = 1Number of iterations vs. Magnitude in function values

If $|x| \le 10^{-8}$, then $|f(x)| = 1 - \cos x = 2\sin^2 \frac{x}{2} \le 10^{-16}$.

Modified Newton Method

$$p_{k+1} = p_k - \frac{m f(p_k)}{f'(p_k)}$$
, for $k = 1, 2, \dots$, (must know multiplicity m of root)

ightharpoonup m = 2 for function $f(x) = e^x - x - 1$,

▶ $|f(p_k)|$ drops to $O(10^{-9})$ only, far from machine precision $O(10^{-16})$.

Modified Newton Method is Quadratically Convergent

$$p_{k+1} = g(p_k), \quad g(x) = x - \frac{m f(x)}{f'(x)}, \text{ for } k = 1, 2, \dots,$$

PROOF of quadratic convergence:

- ► Let $f(x) = (x p)^m q(x)$, $q(p) \neq 0$.
- ▶ Write g(x) in terms of q(x):

$$g(x) = x - \frac{m f(x)}{f'(x)} = x - \frac{m (x - p)q(x)}{mq(x) + (x - p)q'(x)}.$$

Modified Newton Method is Quadratically Convergent

$$p_{k+1} = g(p_k), \quad g(x) = x - \frac{m f(x)}{f'(x)}, \text{ for } k = 1, 2, \dots,$$

PROOF of quadratic convergence:

- ► Let $f(x) = (x p)^m q(x)$, $q(p) \neq 0$.
- ▶ Write g(x) in terms of q(x):

$$g(x) = x - \frac{m f(x)}{f'(x)} = x - \frac{m (x - p)q(x)}{mq(x) + (x - p)q'(x)}.$$

▶ Terms cancel in g'(x):

$$g'(x) = 1 - \frac{m \ q(x)}{mq(x) + (x - p)q'(x)} - m \ (x - p) \left(\frac{q(x)}{mq(x) + (x - p)q'(x)}\right)'$$
$$= \frac{(x - p)q'(x)}{mq(x) + (x - p)q'(x)} - m(x - p) \left(\frac{q(x)}{mq(x) + (x - p)q'(x)}\right)'$$

Modified Newton Method is Quadratically Convergent

$$p_{k+1} = g(p_k), \quad g(x) = x - \frac{m f(x)}{f'(x)}, \text{ for } k = 1, 2, \dots,$$

PROOF of quadratic convergence:

► Let
$$f(x) = (x - p)^m q(x)$$
, $q(p) \neq 0$.

• Write g(x) in terms of q(x):

$$g(x) = x - \frac{m f(x)}{f'(x)} = x - \frac{m (x - p)q(x)}{mq(x) + (x - p)q'(x)}.$$

▶ Terms cancel in g'(x):

$$g'(x) = 1 - \frac{m \ q(x)}{mq(x) + (x - p)q'(x)} - m \ (x - p) \left(\frac{q(x)}{mq(x) + (x - p)q'(x)}\right)'$$

$$= \frac{(x-p)q'(x)}{mq(x) + (x-p)q'(x)} - m(x-p) \left(\frac{q(x)}{mq(x) + (x-p)q'(x)}\right)'$$

g'(p) = 0, hence quadratic convergence (by fixed point iteration convergence theorem.)

Modified Newton Method in textbook

$$p_{k+1} = g(p_k), \quad g(x) = x - \frac{f(x) f'(x)}{(f'(x))^2 - f(x) f''(x)}, \text{ for } k = 1, 2, \dots,$$

- Also quadratic convergence.
- ▶ Even less practical since second order derivative is involved.

§2.5 Accelerating Convergence: Aitken's Δ^2 Method

▶ **Suppose** $\{p_k\}_{k=1}^{\infty}$ linearly converges to limit p,

$$\lim_{k\to\infty}\frac{p_{k+1}-p}{p_k-p}=\lambda,\quad |\lambda|<1.$$

Define

$$\frac{p_{k+1}-p}{p_k-p}\stackrel{def}{=}\lambda_k,$$

so that $\{\lambda_k\}_{k=1}^{\infty}$ converges to λ .

► It follows that

$$0 \approx \lambda_{k+1} - \lambda_k = \frac{p_{k+2} - p}{p_{k+1} - p} - \frac{p_{k+1} - p}{p_k - p}.$$

► Solve for *p*:

$$p = \frac{p_{k+1}^2 - p_k p_{k+2}}{2p_{k+1} - p_k - p_{k+2}} + \frac{(\lambda_{k+1} - \lambda_k)(p_{k+1} - p)(p_k - p)}{2(p_{k+1} - p) - (p_k - p) - (p_{k+2} - p)}.$$

Accelerating Convergence: Aitken's Δ^2 Method

$$\widehat{p}_{k} \stackrel{\text{def}}{=} \frac{p_{k+1}^{2} - p_{k}p_{k+2}}{2p_{k+1} - p_{k} - p_{k+2}} \\
= p_{k} - \frac{(p_{k+1} - p_{k})^{2}}{p_{k+2} - 2p_{k+1} + p_{k}} \stackrel{\text{def}}{=} \{\Delta^{2}\}(p_{k}).$$

Approximation Error

$$|\widehat{p}_{k} - p| = \left| \frac{(\lambda_{k+1} - \lambda_{k})(p_{k+1} - p)(p_{k} - p)}{2(p_{k+1} - p) - (p_{k} - p) - (p_{k+2} - p)} \right|$$

$$= \left| \frac{(\lambda_{k+1} - \lambda_{k})(p_{k} - p)}{2 - \left(\frac{p_{k+1} - p}{p_{k} - p}\right)^{-1} - \frac{p_{k+2} - p}{p_{k+1} - p}} \right|$$

$$\approx \left| \frac{(\lambda_{k+1} - \lambda_{k})(p_{k} - p)}{2 - \lambda^{-1} - \lambda} \right| \ll O(|p_{k} - p|),$$

since $\lambda_{k+1} - \lambda_k \approx 0$.

Accelerating Convergence: Aitken's Δ^2 Method

$$p_n = \cos(1/n)$$

n	p_n	\hat{p}_n
1	0.54030	0.96178
2	0.87758	0.98213
3	0.94496	0.98979
4	0.96891	0.99342
5	0.98007	0.99541
6	0.98614	
7	0.98981	

Accelerating Convergence: Aitken's Δ^2 Method

n	p_n	\hat{p}_n
1	0.54030	0.96178
2	0.87758	0.98213
3	0.94496	0.98979
4	0.96891	0.99342
5	0.98007	0.99541
6	0.98614	
7	0.98981	

Error decays more quickly, but not quick enough.

- ▶ Big data scientist well before big data. Ph.D. thesis (1925) Smoothing of Data.
- ▶ Remembered the first 1000 digits of π .

► (Recall) fixed point iteration (FPI)

$$p_{k+1} = q(p_k), \quad k = 0, 1, \cdots$$
 (1)

► (Recall) fixed point iteration (FPI)

$$p_{k+1} = q(p_k), \quad k = 0, 1, \cdots$$
 (1)

• (Recall) Aitken's Acceleration for a given $\{p_k\}_{k=1}^{\infty}$:

$$\{\Delta^2\}(p_k) = p_k - \frac{(p_{k+1} - p_k)^2}{p_{k+2} - 2p_{k+1} + p_k}.$$
 (2)

► (Recall) fixed point iteration (FPI)

$$p_{k+1} = q(p_k), \quad k = 0, 1, \cdots$$
 (1)

• (Recall) Aitken's Acceleration for a given $\{p_k\}_{k=1}^{\infty}$:

$$\{\Delta^2\}(p_k) = p_k - \frac{(p_{k+1} - p_k)^2}{p_{k+2} - 2p_{k+1} + p_k}.$$
 (2)

Steffensen's Dilemma

Aitken (2) can accelerate FPI (1)

► (Recall) fixed point iteration (FPI)

$$p_{k+1} = q(p_k), \quad k = 0, 1, \cdots$$
 (1)

▶ (Recall) Aitken's Acceleration for a given $\{p_k\}_{k=1}^{\infty}$:

$$\{\Delta^2\}(p_k) = p_k - \frac{(p_{k+1} - p_k)^2}{p_{k+2} - 2p_{k+1} + p_k}.$$
 (2)

Steffensen's Dilemma

Aitken (2) can accelerate Won't need Aitken (2) given $\{p_k\}$ from (1)

▶ Given $p_0^{(0)}$, do two fixed point iterations:

$$p_1^{(0)} = g(p_0^{(0)}), \ p_2^{(0)} = g(p_1^{(0)}).$$

Let Aitken compute a better approximation:

$$p_0^{(1)} = \{\Delta^2\}(p_0^{(0)}),$$

 $p_0^{(1)}$ also comes for "free" since it does not involve g function.

Resume with two fixed point iterations on $p_0^{(1)}$.

$$p_1^{(1)} = g(p_0^{(1)}), \quad p_2^{(1)} = g(p_1^{(1)}).$$

Again let Aitken compute a better approximation:

$$p_0^{(2)} = {\Delta^2}(p_0^{(1)}).$$

• Repeat with two fixed point iterations on $p_0^{(2)}$.

- ➤ Steffensen's Method: use one Aitken's Acceleration after every two fixed point iterations:
 - Given $p_0^{(0)}$, repeat:

$$p_1^{(0)} \ = \ g(p_0^{(0)}), \ p_2^{(0)} = g(p_1^{(k)}), \ p_0^{(1)} = \{\Delta^2\}(p_0^{(0)})$$

- ➤ Steffensen's Method: use one Aitken's Acceleration after every two fixed point iterations:
 - Given $p_0^{(0)}$, repeat:

$$\begin{array}{lcl} p_1^{(0)} & = & g(p_0^{(0)}), & p_2^{(0)} = g(p_1^{(k)}), & p_0^{(1)} = \{\Delta^2\}(p_0^{(0)}) \\ p_1^{(1)} & = & g(p_0^{(1)}), & p_2^{(1)} = g(p_1^{(1)}), & p_0^{(2)} = \{\Delta^2\}(p_0^{(1)}) \end{array}$$

- Steffensen's Method: use one Aitken's Acceleration after every two fixed point iterations:
 - Given $p_0^{(0)}$, repeat:

$$\begin{array}{lll} \rho_{1}^{(0)} & = & g(\rho_{0}^{(0)}), & \rho_{2}^{(0)} = g(\rho_{1}^{(k)}), & \rho_{0}^{(1)} = \{\Delta^{2}\}(\rho_{0}^{(0)}) \\ \rho_{1}^{(1)} & = & g(\rho_{0}^{(1)}), & \rho_{2}^{(1)} = g(\rho_{1}^{(1)}), & \rho_{0}^{(2)} = \{\Delta^{2}\}(\rho_{0}^{(1)}) \\ \vdots & = & \vdots \\ \rho_{1}^{(k)} & = & g(\rho_{0}^{(k)}), & \rho_{2}^{(k)} = g(\rho_{1}^{(k)}), & \rho_{0}^{(k+1)} = \{\Delta^{2}\}(\rho_{0}^{(k)}) \end{array}$$

lacktriangle Method converges when $\left|p_0^{(k+1)}-p_0^{(k)}
ight|<$ tolerance

Steffensen's

To find a solution to p = g(p) given an initial approximation p_0 :

INPUT initial approximation p_0 ; tolerance TOL; maximum number of iterations N_0 .

OUTPUT approximate solution p or message of failure.

- Step 1 Set i = 1.
- Step 2 While $i \le N_0$ do Steps 3–6.

Step 3 Set
$$p_1 = g(p_0)$$
; (Compute $p_1^{(i-1)}$.)
$$p_2 = g(p_1)$$
; (Compute $p_2^{(i-1)}$.)
$$p = p_0 - (p_1 - p_0)^2 / (p_2 - 2p_1 + p_0)$$
. (Compute $p_0^{(i)}$.)

- Step 4 If $|p-p_0| < TOL$ then OUTPUT (p); (Procedure completed successfully.) STOP.
- **Step 5** Set i = i + 1.
- Step 6 Set $p_0 = p$. (Update p_0 .)
- Step 7 OUTPUT ('Method failed after N_0 iterations, $N_0 =$ ', N_0); (Procedure completed unsuccessfully.) STOP.

Fixed point for $g(x) = log(2 + 2x^2)$

► FPI Linear Convergence

Fixed point for $g(x) = log(2 + 2x^2)$

► FPI Linear Convergence

► Aitken's Method on FPI

Steffenson: Quadratic Convergence

Given initial approximation p_0 , convergent FPI map g(x) with

$$g'(p)
eq 1$$
 , Steffenson's Method is

$$p_n = G(p_{n-1}), \quad n = 1, 2, \dots, \quad G(x) = x - \frac{(g(x) - x)^2}{g(g(x)) - 2g(x) + x}.$$
 Assume

- Steffenson's Method converges to fixed point p.
- ightharpoonup g''(x) is continuously differentiable, and $g'(p)-1\neq 0$.

Theorem: Steffenson's Method converges at least quadratically.

Given initial approximation p_0 , convergent FPI map g(x) with

$$\left| \mathsf{g}'(\mathsf{p})
eq 1
ight|$$
 , Steffenson's Method is

$$p_n = G(p_{n-1}), \quad n = 1, 2, \dots, \quad G(x) = x - \frac{(g(x) - x)^2}{g(g(x)) - 2g(x) + x}.$$
 Assume

- Steffenson's Method converges to fixed point p.
- g''(x) is continuously differentiable, and $g'(p) 1 \neq 0$.

Theorem: Steffenson's Method converges at least quadratically.

PROOF:
$$G'(x) = 1 - (g'(x) - 1) \cdot \left(\frac{g(x) - x}{g(g(x)) - 2g(x) + x}\right)$$

$$- (g(x) - x) \cdot \left(\frac{g(x) - x}{g(g(x)) - 2g(x) + x}\right)'$$

$$G'(p) = 1 - (g'(p) - 1) \cdot \frac{(g(x) - x)'_{x=p}}{(g(g(x)) - 2g(x) + x)'_{x=p}}$$

Given initial approximation p_0 , convergent FPI map g(x) with

$$g'(p)
eq 1$$
 , Steffenson's Method is

$$p_n = G(p_{n-1}), \quad n = 1, 2, \dots, \quad G(x) = x - \frac{(g(x) - x)^2}{g(g(x)) - 2g(x) + x}.$$
 Assume

- Steffenson's Method converges to fixed point p.
- g''(x) is continuously differentiable, and $g'(p) 1 \neq 0$.

Theorem: Steffenson's Method converges at least quadratically.

PROOF:
$$G'(x) = 1 - (g'(x) - 1) \cdot \left(\frac{g(x) - x}{g(g(x)) - 2g(x) + x}\right)$$

$$- (g(x) - x) \cdot \left(\frac{g(x) - x}{g(g(x)) - 2g(x) + x}\right)'$$

$$G'(p) = 1 - (g'(p) - 1) \cdot \frac{(g(x) - x)'_{x=p}}{(g(g(x)) - 2g(x) + x)'_{x=p}}$$

Hence G'(p) = 0, implying quadratic convergence.

Given initial approximation p_0 , convergent FPI map g(x) with

$$g'(p) \neq 1$$
, Steffenson's Method is $p_n = G(p_{n-1}), \quad n = 1, 2, \cdots, \quad G(x) = x - \frac{(g(x) - x)^2}{g(g(x)) - 2g(x) + x}.$

Steffenson's Method converges to fixed point p.

▶
$$g''(x)$$
 is continuously differentiable, and $g'(p) - 1 \neq 0$.

Theorem: Steffenson's Method converges at least quadratically.

PROOF:
$$G'(x) = 1 - \left(g'(x) - 1\right) \cdot \left(\frac{g(x) - x}{g(g(x)) - 2g(x) + x}\right)$$
$$- \left(g(x) - x\right) \cdot \left(\frac{g(x) - x}{g(g(x)) - 2g(x) + x}\right)'$$

$$G'(p) = 1 - \left(g'(p) - 1\right) \cdot \frac{\left(g(x) - x\right)'_{x=p}}{\left(g(g(x)) - 2g(x) + x\right)'_{x=p}}$$
 Hence $G'(p) = 0$, implying quadratic convergence.

What would be a good g(x)?

 $Steffenson \,+\, Newton \,\, on \,\, multiple \,\, root = quadratically \,\, convergent$

Given initial approximation p_0 , convergent FPI map g(x) with $g'(p) \neq 1$, Steffenson's Method is

$$p_n = G(p_{n-1}), \quad n = 1, 2, \dots, \quad G(x) = x - \frac{(g(x) - x)^2}{g(g(x)) - 2g(x) + x}$$

Choose
$$g(x) = x - \frac{f(x)}{f'(x)}$$
, for $f(x) = (x - p)^m \ q(x)$, $q(p) \neq 0$

PROOF of quadratic convergence:

▶ Write g(x) in terms of q(x):

$$g(x) = x - \frac{f(x)}{f'(x)} = x - \frac{(x-p)q(x)}{mq(x) + (x-p)q'(x)}.$$

Steffenson + Newton on multiple root = quadratically convergent

Given initial approximation p_0 , convergent FPI map g(x) with g'(p)
eq 1, Steffenson's Method is

$$p_n = G(p_{n-1}), \quad n = 1, 2, \dots, \quad G(x) = x - \frac{(g(x) - x)^2}{g(g(x)) - 2g(x) + x}$$

$$p_n = G(p_{n-1}), \quad n = 1, 2, \cdots, \quad G(x) = x - \frac{1}{g(g(x)) - 2g(x) + 2g(x)}$$

Choose
$$g(x) = x - \frac{f(x)}{f'(x)}$$
, for $f(x) = (x - p)^m q(x)$, $q(p) \neq 0$

$$g(x) = x - \frac{f(x)}{f'(x)} = x - \frac{(x-p)q(x)}{mq(x) + (x-p)q'(x)}.$$

$$g(x) = x - \frac{(x)}{f'(x)} = x - \frac{(x)}{mq(x) + (x - p)q'(x)}.$$

$$g'(x) = 1 - \frac{q(x)}{mq(x) + (x - p)q'(x)} - (x - p) \left(\frac{q(x)}{mq(x) + (x - p)q'(x)}\right)'$$

$$g'(p) = 1 - \frac{1}{m} \neq 1$$

PROOF of quadratic convergence:

Write
$$g(x)$$
 in terms of $q(x)$:

$$f(x) = x \qquad (x-p)q(x)$$

(Review) Horner's Method for nested arithmetic

Evaluate function P(x) for given x:

$$P(x) = a_0 + a_1 x + \dots + a_n x^n$$

= $a_0 + x \cdot (a_1 + x \cdot (\dots + x \cdot (a_{n-1} + x \cdot a_n) \dots))$

§2.6 Newton's Method on Polynomials (Horner's Method)

Let
$$P(x) = a_0 + a_1 x + \dots + a_n x^n$$

= $a_0 + x \cdot (a_1 + x \cdot (\dots + x \cdot (a_{n-1} + x \cdot a_n) \dots))$

Horner's Method computes $P(x_0)$

- **define** $b_n = a_n$
- ▶ for $k = n 1, n 2, \dots, 1, 0$

$$b_k = a_k + b_{k+1} x_0, (1)$$

▶ then $b_0 = P(x_0)$.

§2.6 Newton's Method on Polynomials (Horner's Method)

Let
$$P(x) = a_0 + a_1 x + \dots + a_n x^n$$

= $a_0 + x \cdot (a_1 + x \cdot (\dots + x \cdot (a_{n-1} + x \cdot a_n) \dots))$

Horner's Method computes $P(x_0)$

- ightharpoonup define $b_n = a_n$
- ▶ for $k = n 1, n 2, \dots, 1, 0$

$$b_k = a_k + b_{k+1} x_0, (1)$$

▶ then $b_0 = P(x_0)$.

Theorem: Horner's Method further computes

$$P(x) = (x-x_0) Q(x) + b_0$$
, with $Q(x) = b_n x^{n-1} + b_{n-1} x^{n-2} + \dots + b_2 x + b_1$.

Newton's Method on Polynomials (Horner's Method) (II)

- **define** $b_n = a_n$
- ▶ **for** $k = n 1, n 2, \dots, 1, 0$

$$b_k = a_k + b_{k+1} x_0,$$
 (1)

Newton's Method on Polynomials (Horner's Method) (II)

- **define** $b_n = a_n$
- ▶ for $k = n 1, n 2, \dots, 1, 0$

$$b_k = a_k + b_{k+1}x_0,$$
 (1)

Theorem: Horner's Method further computes

$$P(x) = (x-x_0) Q(x) + b_0$$
, with $Q(x) = b_n x^{n-1} + b_{n-1} x^{n-2} + \dots + b_2 x + b_1$.

Newton's Method on Polynomials (Horner's Method) (II)

- **define** $b_n = a_n$
- ▶ **for** $k = n 1, n 2, \dots, 1, 0$

$$b_k = a_k + b_{k+1} x_0, (1)$$

Theorem: Horner's Method further computes

$$P(x) = (x-x_0) Q(x) + b_0$$
, with $Q(x) = b_n x^{n-1} + b_{n-1} x^{n-2} + \dots + b_2 x + b_1$.

PROOF: From (1), $b_k - b_{k+1}x_0 = a_k$, for $k = n - 1, \dots, 0$.

$$(x - x_0) Q(x) + b_0 = b_n x^n + b_{n-1} x^{n-1} + \dots + b_2 x^2 + b_1 x + b_0$$
$$- (x_0 b_n x^{n-1} + x_0 b_{n-1} x^{n-2} + \dots + x_0 b_2 x + x_0 b_1)$$
$$= b_n x^n + (b_{n-1} - x_0 b_n) x^{n-1} + \dots + (b_0 - x_0 b_1)$$

= P(x)

Newton's Method on Polynomials (Horner's Method) (III)

- **b** define $b_n = a_n$
- ▶ **for** $k = n 1, n 2, \dots, 1, \boxed{0}$

$$b_k = a_k + b_{k+1}x_0,$$
 (1)

Theorem: Horner's Method further computes

$$P(x) = (x-x_0) Q(x) + b_0$$
, with $Q(x) = b_n x^{n-1} + b_{n-1} x^{n-2} + \dots + b_2 x + b_1$.

Newton's Method on Polynomials (Horner's Method) (III)

define
$$b_n = a_n$$

▶ for
$$k = n - 1, n - 2, \dots, 1, \boxed{0}$$

$$b_k = a_k + b_{k+1}x_0, \qquad (1$$

Theorem: Horner's Method further computes

$$P(x) = (x-x_0) Q(x) + b_0$$
, with $Q(x) = b_n x^{n-1} + b_{n-1} x^{n-2} + \dots + b_2 x + b_1$.

Since
$$P'(x) = Q(x) + (x - x_0) Q'(x)$$
, we have $P'(x_0) = Q(x_0)$.

Single **for** loop for $P(x_0)$ and $Q(x_0) = P'(x_0)$ (Newton Method):

▶ **define**
$$c_n = b_n = a_n$$

▶ **for** $k = n - 1, n - 2, \dots, \boxed{1}$

$$b_{k} = a_{k} + b_{k+1}x_{0}, c_{k} = b_{k} + c_{k+1}x_{0},$$

$$extbf{ iny} Q(x_0) = c_1 \text{ and } P(x_0) = a_0 + b_1 x_0.$$

Horner's Method

```
INPUT degree n; coefficients a_0, a_1, \ldots, a_n; x_0.
OUTPUT y = P(x_0); z = P'(x_0).
Step 1 Set y = a_n; (Compute b_n for P.)
             z = a_n. (Compute b_{n-1} for O.)
Step 2 For i = n - 1, n - 2, \dots, 1
              set y = x_0y + a_i; (Compute b_i for P.)
                 z = x_0 z + y. (Compute b_{i-1} for Q.)
Step 3 Set y = x_0y + a_0. (Compute b_0 for P.)
Step 4 OUTPUT (y,z);
         STOP
```

Deflation Procedure for finding all roots of a Polynomial

(1) Given polynomial P(x) of degree n

$$P(x) = a_n x^n + b_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$
 with $a_n \neq 0$.

Would like to find <u>all</u> n roots in P(x) = 0.

Deflation Procedure for finding all roots of a Polynomial

 \bigcirc Given polynomial P(x) of degree n

$$P(x) = a_n x^n + b_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$
 with $a_n \neq 0$.

Would like to find all *n* roots in P(x) = 0.

(2) Let Horner's Method compute

$$P(x) = (x-x_0) \ Q(x) + b_0, \text{ with } Q(x) = b_n \, x^{n-1} + b_{n-1} \, x^{n-2} + \dots + b_2 \, x + b_1,$$
 after N steps of a root-finder (i.e. Newton iteration or bisection.)

Deflation Procedure for finding all roots of a Polynomial

(1) Given polynomial P(x) of degree n

$$P(x) = a_n x^n + b_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$
 with $a_n \neq 0$.

Would like to find all n roots in P(x) = 0.

(2) Let Horner's Method compute

$$P(x) = (x-x_0) Q(x) + b_0$$
, with $Q(x) = b_n x^{n-1} + b_{n-1} x^{n-2} + \cdots + b_2 x + b_1$, after N steps of a root-finder (*i.e.* Newton iteration or bisection.)

3 An approximate root $x \approx x_0$ of P(x) = 0 is found if

$$|b_0| \le$$
tol for tolerance tol. (1)

 \bigcirc Given polynomial P(x) of degree n

$$P(x) = a_n x^n + b_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$
 with $a_n \neq 0$.

Would like to find all n roots in P(x) = 0.

(2) Let Horner's Method compute

$$P(x) = (x-x_0) Q(x) + b_0$$
, with $Q(x) = b_n x^{n-1} + b_{n-1} x^{n-2} + \cdots + b_2 x + b_1$, after N steps of a root-finder (*i.e.* Newton iteration or bisection.)

(3) An approximate root $x \approx x_0$ of P(x) = 0 is found if

$$|b_0| \leq ext{tol}$$
 for tolerance tol. (1) $\implies P(x) \approx (x - x_0) \, Q(x)$

 \bigcirc Given polynomial P(x) of degree n

$$P(x) = a_n x^n + b_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$
 with $a_n \neq 0$.

Would like to find all n roots in P(x) = 0.

(2) Let Horner's Method compute

$$P(x) = (x-x_0) Q(x) + b_0$$
, with $Q(x) = b_n x^{n-1} + b_{n-1} x^{n-2} + \cdots + b_2 x + b_1$, after N steps of a root-finder (*i.e.* Newton iteration or bisection.)

(3) An approximate root $x \approx x_0$ of P(x) = 0 is found if

$$|b_0| \leq exttt{tol}$$
 for tolerance tol. (1) $\implies P(x) pprox (x-x_0) \, Q(x)$

4 Find all other
$$n-1$$
 roots in $P(x)=0$ by recursively solving $Q(x)=0$.

(1) Given polynomial P(x) of degree n

$$P(x) = a_n x^n + b_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$
 with $a_n \neq 0$.

Would like to find all n roots in P(x) = 0.

(2) Let Horner's Method compute

$$P(x) = (x-x_0) Q(x) + b_0$$
, with $Q(x) = b_n x^{n-1} + b_{n-1} x^{n-2} + \cdots + b_2 x + b_1$, after N steps of a root-finder (*i.e.* Newton iteration or bisection.)
 3) An approximate root $x \approx x_0$ of $P(x) = 0$ is found if

$$|b_0| \leq ext{tol}$$
 for tolerance tol. (1) $\implies P(x) \approx (x - x_0) Q(x)$

4 Find all other
$$n-1$$
 roots in $P(x)=0$ by recursively solving $Q(x)=0$.

CATCH: Do not yet know how to compute complex roots

Muller's Method: finding complex roots

- **Given** three points $(p_0, f(p_0)), (p_1, f(p_1)), \text{ and } (p_2, f(p_2)).$
- Construct a parabola through them,
- $ightharpoonup p_3$ is the intersection with x-axis <u>closest</u> to p_2 .

Secant Method vs. Muller's Method

- Secant Method requires two points $(p_0, f(p_0)), (p_1, f(p_1)),$ with one x-axis intercept in green.
- ▶ Muller's Method requires three points $(p_0, f(p_0)), (p_1, f(p_1)),$ and $(p_2, f(p_2))$, with <u>two</u> REAL (or COMPLEX) x-axis intercepts in red.

Muller's Method: derivation

1 Choose parabola $P(x) = a(x-p_2)^2 + b(x-p_2) + c$

where
$$a, b, c$$
 satisfy $f(p_0) = a(p_0 - p_2)^2 + b(p_0 - p_2) + c$, $f(p_1) = a(p_1 - p_2)^2 + b(p_1 - p_2) + c$, $f(p_2) = c$.

Muller's Method: derivation

1 Choose parabola
$$P(x) = a(x - p_2)^2 + b(x - p_2) + c$$
,

where
$$a, b, c$$
 satisfy $f(p_0) = a(p_0 - p_2)^2 + b(p_0 - p_2) + c$, $f(p_1) = a(p_1 - p_2)^2 + b(p_1 - p_2) + c$, $f(p_2) = c$.

(2) So
$$c = f(p_2)$$
, and $\frac{f(p_0) - f(p_2)}{p_0 - p_2} = a(p_0 - p_2) + b$, $\frac{f(p_1) - f(p_2)}{p_1 - p_2} = a(p_1 - p_2) + b$.

Muller's Method: derivation

(1) Choose parabola
$$P(x) = a(x - p_2)^2 + b(x - p_2) + c$$
,

where
$$a, b, c$$
 satisfy $f(p_0) = a(p_0 - p_2)^2 + b(p_0 - p_2) + c$, $f(p_1) = a(p_1 - p_2)^2 + b(p_1 - p_2) + c$, $f(p_2) = c$.

② So
$$c = f(p_2)$$
, and $\frac{f(p_0) - f(p_2)}{p_0 - p_2} = a(p_0 - p_2) + b$, $\frac{f(p_1) - f(p_2)}{p_1 - p_2} = a(p_1 - p_2) + b$.

(3) Therefore
$$a = \frac{1}{p_0 - p_1} \left(\frac{f(p_0) - f(p_2)}{p_0 - p_2} - \frac{f(p_1) - f(p_2)}{p_1 - p_2} \right),$$

$$b = \frac{f(p_0) - f(p_2)}{p_0 - p_2} - a(p_0 - p_2).$$

1 Muller's parabola
$$P(x) = a(x - p_2)^2 + b(x - p_2) + c$$
,

with roots of
$$P(x) = 0$$
 satisfy $p_3 = p_2 + \frac{-b \pm \sqrt{b^2 - 4 a c}}{2 a}$.

1 Muller's parabola
$$P(x) = a(x - p_2)^2 + b(x - p_2) + c$$

with roots of
$$P(x) = 0$$
 satisfy $p_3 = p_2 + \frac{-b \pm \sqrt{b^2 - 4 a c}}{2 a}$.

(2) Choose sign in \pm so p_3 is closest to p_2 :

$$p_3 = p_2 + \frac{-b + \text{sign}(b) \sqrt{b^2 - 4 a c}}{2 a}$$

(1) Muller's parabola
$$P(x) = a(x - p_2)^2 + b(x - p_2) + c$$
,

with roots of
$$P(x) = 0$$
 satisfy $p_3 = p_2 + \frac{-b \pm \sqrt{b^2 - 4 a c}}{2 a}$.

(2) Choose sign in \pm so p_3 is closest to p_2 :

$$p_{3} = p_{2} + \frac{-b + \operatorname{sign}(b) \sqrt{b^{2} - 4 a c}}{2 a}$$

$$= p_{2} + \frac{\left(-b + \operatorname{sign}(b) \sqrt{b^{2} - 4 a c}\right) \left(b + \operatorname{sign}(b) \sqrt{b^{2} - 4 a c}\right)}{2 a \left(b + \operatorname{sign}(b) \sqrt{b^{2} - 4 a c}\right)}$$

$$= p_{2} - \frac{2 c}{b + \operatorname{sign}(b) \sqrt{b^{2} - 4 a c}}, \quad (numerically more stable)$$

(1) Muller's parabola
$$P(x) = a(x - p_2)^2 + b(x - p_2) + c$$
,

with roots of P(x)=0 satisfy $p_3=p_2+\frac{-b\pm\sqrt{b^2-4\,a\,c}}{2\,a}$.

(2) Choose sign in \pm so p_3 is closest to p_2 :

$$p_{3} = p_{2} + \frac{-b + \operatorname{sign}(b) \sqrt{b^{2} - 4ac}}{2a}$$

$$= p_{2} + \frac{\left(-b + \operatorname{sign}(b) \sqrt{b^{2} - 4ac}\right) \left(b + \operatorname{sign}(b) \sqrt{b^{2} - 4ac}\right)}{2a \left(b + \operatorname{sign}(b) \sqrt{b^{2} - 4ac}\right)}$$

$$= p_{2} - \frac{2c}{b + \operatorname{sign}(b) \sqrt{b^{2} - 4ac}}, \quad (numerically more stable)$$

3 Notational convention

$$\operatorname{\mathsf{sign}}(b) = \operatorname{\mathsf{sign}}(\operatorname{\mathsf{real}}(b)), \quad \operatorname{\mathsf{real}}\left(\sqrt{b^2 - 4\,a\,c}\right) \geq 0.$$

Muller's Method: $p_0 = 0.5, p_1 = -0.5, p_2 = 0, \text{ root } p \approx -0.339 + 0.447i$

• Function has real & complex roots.

Muller's Method: $p_0 = 0.5, p_1 = -0.5, p_2 = 0, \text{ root } p \approx -0.339 + 0.447i$

• Function has real & complex roots.

• Muller's method converges to complex root in 9 iterations.

Given three approximations p_{n-2} , p_{n-1} , p_n , Muller's parabola

$$P(x) = a(x - p_n)^2 + b(x - p_n) + c$$
 satisfies $f(p_j) = P(p_j), \quad j = n - 2, n - 1, n, \text{ and } P(p_{n+1}) = 0.$

Assume that

- Muller's converges to root p.
- f'''(x) is continuous with $f'(p) \neq 0$.

Given three approximations p_{n-2} , p_{n-1} , p_n , Muller's parabola

$$P(x) = a(x - p_n)^2 + b(x - p_n) + c$$
 satisfies $f(p_j) = P(p_j), \quad j = n - 2, n - 1, n, \text{ and } P(p_{n+1}) = 0.$

Assume that

- ► Muller's converges to root *p*.
- f'''(x) is continuous with $f'(p) \neq 0$.
- ① By def, $F(x) \stackrel{def}{=} f(x) P(x)$ must have roots at $x = p_{n-2}$, p_{n-1} , p_n . Therefore there is differentiable function $Q_1(x)$ so

$$f(x) - P(x) = F(x) = (x - p_{n-2}) (x - p_{n-1}) (x - p_n) Q_1(x).$$

Given three approximations p_{n-2} , p_{n-1} , p_n , Muller's parabola

$$P(x) = a(x - p_n)^2 + b(x - p_n) + c$$
 satisfies $f(p_j) = P(p_j), \quad j = n - 2, n - 1, n, \text{ and } P(p_{n+1}) = 0.$

Assume that

- ▶ Muller's converges to root *p*.
- f'''(x) is continuous with $f'(p) \neq 0$.
- ① By def, $F(x) \stackrel{def}{=} f(x) P(x)$ must have roots at $x = p_{n-2}$, p_{n-1} , p_n . Therefore there is differentiable function $Q_1(x)$ so

$$f(x) - P(x) = F(x) = (x - p_{n-2}) (x - p_{n-1}) (x - p_n) Q_1(x).$$

2 Similarly $P(x) = (x - p_{n+1}) Q_2(x)$ for some function $Q_2(x)$.

Given three approximations p_{n-2} , p_{n-1} , p_n , Muller's parabola

$$P(x) = a(x - p_n)^2 + b(x - p_n) + c$$
 satisfies
 $f(p_i) = P(p_i), \quad j = n - 2, n - 1, n, \text{ and } P(p_{n+1}) = 0.$

Assume that

- Muller's converges to root p.
- f'''(x) is continuous with $f'(p) \neq 0$.
- (1) By def, $F(x) \stackrel{\text{def}}{=} f(x) P(x)$ must have roots at $x = p_{n-2}$,
- p_{n-1} , p_n . Therefore there is differentiable function $Q_1(x)$ so
- $f(x) P(x) = F(x) = (x p_{n-2})(x p_{n-1})(x p_n)Q_1(x).$
- (2) Similarly $P(x) = (x p_{n+1}) Q_2(x)$ for some function $Q_2(x)$.
- 3 Together: $p p_{n+1} = \frac{P(p)}{Q_2(p)} = -\frac{f(p) P(p)}{Q_2(p)}$

 $= -\frac{Q_1(p)}{Q_2(p)} (p-p_{n-2}) (p-p_{n-1}) (p-p_n),$

where ratio converges to f'''(p)/(6f'(p)).

43/51

Assume that

- Muller's Method converges to root p.
- f'''(x) is continuous with $f'(p) \neq 0$.

Theorem: Muller's Method converges at order $\mu \approx 1.84$, with $\mu^3 = \mu^2 + \mu + 1$.

$$\lim_{n\to\infty}\frac{|p_{n+1}-p|}{|p_n-p|^{\mu}}=\text{constant}.$$

Assume that

- ▶ Muller's Method converges to root *p*.
- ▶ f'''(x) is continuous with $f'(p) \neq 0$.

Theorem: Muller's Method converges at order $\mu \approx 1.84$, with $\mu^3 = \mu^2 + \mu + 1$.

$$\lim_{n\to\infty}\frac{|p_{n+1}-p|}{|p_n-p|^{\mu}}=\text{constant}.$$

PROOF:
$$p_{n+1} - p = \frac{Q_1(p)}{Q_2(p)} (p - p_{n-2}) (p - p_{n-1}) (p - p_n),$$

therefore $\frac{|p_{n+1} - p|}{|p_n - p|^{\mu}} = \left| \frac{Q_1(p)}{Q_2(p)} \right| \left(\frac{|p_n - p|}{|p_{n-1} - p|^{\mu}} \right)^{1-\mu} \left(\frac{|p_{n-1} - p|}{|p_{n-2} - p|^{\mu}} \right)^{1+\mu-\mu^2}.$

$$\frac{|p_{n+1}-p|}{|p_n-p|^{\mu}} = \left|\frac{Q_1(p)}{Q_2(p)}\right| \left(\frac{|p_n-p|}{|p_{n-1}-p|^{\mu}}\right)^{1-\mu} \left(\frac{|p_{n-1}-p|}{|p_{n-2}-p|^{\mu}}\right)^{1+\mu-\mu^2}.$$

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO."

$$\text{CLAIM: } \lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^{\mu}} \text{ exists. } \longrightarrow \lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^{\mu}} = \left| \frac{f'''(p)}{6 \, f'(p)} \right|^{\frac{1}{\mu^2 - 1}}.$$

45/51

(1) Given polynomial P(x) of degree n

$$P(x) = a_n x^n + b_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$
 with $a_n \neq 0$.

Would like to find <u>all</u> n roots in P(x) = 0.

(1) Given polynomial P(x) of degree n

$$P(x) = a_n x^n + b_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$
 with $a_n \neq 0$.

Would like to find all n roots in P(x) = 0.

(2) Let Horner's Method compute

$$P(x) = (x-x_0) Q(x) + b_0$$
, with $Q(x) = b_n x^{n-1} + b_{n-1} x^{n-2} + \cdots + b_2 x + b_1$, after finding x_0 with a root-finder (*i.e.* Newton, bisection, or Muller.)

(1) Given polynomial P(x) of degree n

$$P(x) = a_n x^n + b_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$
 with $a_n \neq 0$.

Would like to find all n roots in P(x) = 0.

(2) Let Horner's Method compute

$$P(x) = (x-x_0) Q(x) + b_0$$
, with $Q(x) = b_n x^{n-1} + b_{n-1} x^{n-2} + \cdots + b_2 x + b_1$, after finding x_0 with a root-finder (*i.e.* Newton, bisection, or Muller.)

3 An approximate root
$$x \approx x_0$$
 of $P(x) = 0$ is found if $|b_0| \le \text{tol}$ for tolerance tol. (1)

 \bigcirc Given polynomial P(x) of degree n

$$P(x) = a_n x^n + b_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$
 with $a_n \neq 0$.

Would like to find all n roots in P(x) = 0.

(2) Let Horner's Method compute

$$P(x) = (x-x_0) Q(x) + b_0$$
, with $Q(x) = b_n x^{n-1} + b_{n-1} x^{n-2} + \cdots + b_2 x + b_1$, after finding x_0 with a root-finder (*i.e.* Newton, bisection, or Muller.)

(3) An approximate root $x \approx x_0$ of P(x) = 0 is found if

$$|b_0| \le ext{tol}$$
 for tolerance tol. (1) $\Longrightarrow P(x) pprox (x-x_0) \, Q(x)$

(1) Given polynomial P(x) of degree n

$$P(x) = a_n x^n + b_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$
 with $a_n \neq 0$.

Would like to find all n roots in P(x) = 0.

(2) Let Horner's Method compute

$$P(x) = (x-x_0) Q(x) + b_0$$
, with $Q(x) = b_n x^{n-1} + b_{n-1} x^{n-2} + \cdots + b_2 x + b_1$, after finding x_0 with a root-finder (*i.e.* Newton, bisection, or Muller.)

- (3) An approximate root $x \approx x_0$ of P(x) = 0 is found if $|b_0| \le \text{tol}$ for tolerance tol. (1) $\Longrightarrow P(x) \approx (x x_0) Q(x)$
- 4 Find all other n-1 roots in P(x)=0 by recursively solving Q(x)=0.

(1) Given polynomial P(x) of degree n

$$P(x) = a_n x^n + b_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$
 with $a_n \neq 0$.

Would like to find all n roots in P(x) = 0.

(2) Let Horner's Method compute

$$P(x) = (x-x_0) Q(x) + b_0$$
, with $Q(x) = b_n x^{n-1} + b_{n-1} x^{n-2} + \cdots + b_2 x + b_1$, after finding x_0 with a root-finder (*i.e.* Newton, bisection, or Muller.)

(3) An approximate root $x \approx x_0$ of P(x) = 0 is found if $|b_0| \le \text{tol}$ for tolerance tol. (1) $\Longrightarrow P(x) \approx (x - x_0) Q(x)$

4) Find all other
$$n-1$$
 roots in $P(x) = 0$ by recursively solving $Q(x) = 0$.

QUESTION: Can we find all polynomial roots now?

Deflation: $f(x) = x^4 - 3x^3 + x^2 + x + 1$, root $p \approx -0.339093 + 0.446630i$

• root *p* is accurate to about 7 digits.

```
>> aa = [1 -3 1 1 1];

>> a = fliplr(aa);

>> x = -0.33903*0.4466301;

>> b = horner2(a,x); abs(b)

ans =

8.1011e-07 1.7833e+00 2.5366e+00 3.3688e+00 1.0000e+00
```

Deflation: $f(x) = x^4 - 3x^3 + x^2 + x + 1$, root $p \approx -0.339093 + 0.446630i$

• root *p* is accurate to about 7 digits.

 Real roots become complex after deflation.

```
>> bb = fliplr(b(2:5));

>> rb = roots(bb); [rb;x]

ans =

2.2888e+00 - 1.2568e-07i

1.3894e+00 + 2.8019e-07i

-3.3909e-01 + 4.4663e-01i

>> roots(aa)

ans =

2.2888e+00 + 0.0000e+00i

1.3894e+00 + 0.0000e+00i

-3.3909e-01 + 4.4663e-01i
```

Stressed by choice and selection

Bisection? Fixed Point Iteration? Newton's Method? Secant Method? Steffensen's Method? Muller's Method?

Choice and selection

- ► Bisection Method:
 - <u>slow</u> (linearly convergent);
 - ▶ always works for given interval [a, b] with $f(a) \cdot f(b) < 0$.
- Fixed Point Iteration:
 - slow (linearly convergent);
 - need not work.
- Newton's Method:
 - fast (quadratically convergent);
 - needs derivatives; could get burnt (need not converge.)
- Secant Method:
 - between Bisection and Newton in speed;
 - need not converge.
- Steffensen's Method:
 - faster than Secant (quadratically convergent);
 - hard to stop; need not converge.
- Muller's Method:
 - handles complex roots;
 - need not converge.

Brent's Method (a.k.a. zeroin): Motivation

- Does not need derivatives.
- (Mostly) speed of Muller's Method
- (Mostly) reliability of Bisection Method
- ► Real roots only

Brent's Method (a.k.a. zeroin): Motivation

- Does not need derivatives.
- (Mostly) speed of Muller's Method
- ► (Mostly) reliability of Bisection Method
- ► Real roots only

Brent's method

From Wikipedia, the free encyclopedia

In numerical analysis, **Brent's method** is a root-finding algorithm combining the bisection method, the secant method and inverse quadratic interpolation. It has the reliability of bisection but it can be as quick as some of the less-reliable methods. The algorithm

Brent's method

From Wikipedia, the free encyclopedia

In numerical analysis, **Brent's method** is a root-finding algorithm combining the bisection method, the secant method and inverse quadratic interpolation. It has the reliability of bisection but it can be as quick as some of the less-reliable methods. The algorithm

- Worst case cost
 - Number of iterations = $O(n^2)(\approx 3000)$, where n is number of Bisection iterations for a given tolerance
- Strategy
 - Performs fast iteration with INVERSE QUADRATIC INTERPOLATION or SECANT METHOD when fast convergence is possible.
 - Otherwise performs
 BISECTION.
- ► A variant of Brent's Method will be programming project.