信号处理原理 第七次作业. 11.15

1. 解: 根据"波峰可分辨"条件:

寸人

ム > fs / △f. 其中 fs = 104 Hz △f。

其中 $f_s = 10^4$ Hz $\Delta f \leq 10$ Hz 故采样於 时间

+= ロノfs = st > 0.1s. 由于采样频率限制,根据 Nyquist 采样足理. fmax < 立fs = 5kHz.

2 ff: (1) $t = \frac{128}{40 \text{ kHz}} = 3.2 \text{ ms}$.

0) 先将原频普归一化为数导频普

f=5kHz fs=40kHz 故w=2xf/fs=4.

对教与信号 $\chi(n) = \sin(\omega n)$. 其帧谱 $\chi(\omega)$.

基谱为基频为 年, 故冲激所在位置为

 $\omega_1 = \frac{7}{4}$ $\omega_2 = 2\pi - \frac{7}{4} = \frac{7}{4}\pi$.

再在频域抽样, 有冲舰的 DFT 点所在位置为

 $n_1 = \frac{7}{4} / 2\pi \times 128 = 16$ $n_2 = \frac{7}{4} / 2\pi \times 128 = 112$

3解: 采样个数 L= +fs=100 根据"波峰可分辨"条件. △f> = 100 Hz.

即
$$f_1$$
, f_2 , f_3 两两之间的间隔 2 起过 0.1 kHz.

由于 f_1 < f_3 < f_3 . $f_1 = 1$ kHz $f_3 = 2$ kHz.

故 f_2 , $max = 1.9$ kHz f_3 , $min = 1.1$ kHz.

故 f_2 , $max = 1.9$ kHz f_3 , $min = 1.1$ kHz.

4 解: $\chi(n)$ 的 $\chi(n)$ 的 $\chi(n)$ χ

(a) DFT_k[
$$\frac{\chi'(n)}{M}$$
] = $\sum_{n=0}^{MN-1} \chi'(n) W_{MN}$, $k = 0, 1, \dots MN^{-1}$.

$$= \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \chi(m) W_{MN} = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \chi(n) W_{NN}$$

$$= \sum_{n=0}^{N-1} \chi(n) \sum_{m=0}^{M-1} W_{NN} = \sum_{n=0}^{M-1} \chi(n) W_{NN} \sum_{m=0}^{M-1} W_{NN}$$

后项使用率比数列求和,mk mod M = 0 时,原式= M×(点). $k \mod M \neq 0$ 时,原式 = $\sum_{n=0}^{N-1} \chi(n) W_N^{\frac{1}{N}} \frac{1-W_N^{\frac{1}{N}}}{1-W_N^{\frac{1}{N}}} = 0$. 故 DFT[主读]_(k) = $\begin{cases} M \cdot X(\frac{k}{M}), k \mod M = D \\ 0, k \mod M \neq D. \end{cases}$

(c) DFT
$$\Gamma y(n) \Gamma(k) = \sum_{n=0}^{N-1} y(n) W_{NN}^{nk}, k=0,1,...M-1.$$

$$= \sum_{n=0}^{N-1} \chi(n) W_{NN}^{nk} = \sum_{n=0}^{N-1} \chi(n) W_{NN}^{nk} = \chi(\frac{k}{N})$$

H) 权当 $\xi \in \mathbb{Z}$ 时 $\chi(\xi)$ 才有 $\xi \chi$,故 ξ mod $M \neq 0$ 时
$$DFT \Gamma y(n) \Gamma(k) \Lambda \ell = \chi(k) \xi \Lambda$$