CORRIGÉ: LOCALISATION DES RACINES D'UN POLYNÔME (extrait de ENS, PC, 2009)

A - Fonction d'exclusion associée à un polynôme

A.1
$$x \in \mathbb{R}$$
 est fixé. $M(x, t) = |P(x)| - \sum_{k=1}^{n} \frac{|P^{(k)}(x)|}{k!} t^{k}$

P est un polynôme de degré n, $P^{(n)}$ est donc un polynôme constant égal à $a_n n!$.

La fonction F: $t \mapsto M(x, t)$ est une fonction polynôme de degré n, de coefficient dominant $-|a_n|$.

Sa dérivée est F': $t \mapsto -\sum_{k=1}^n k \frac{\left|\mathbf{P}^{(k)}(x)\right|}{k!} t^{k-1}$. Si t>0, $\mathbf{F}'(t)\leqslant -n|a_n|t^{n-1}<0$, donc F est strictement décroissante sur $[0,+\infty[$.

La fonction F est continue, strictement monotone sur l'intervalle $I = [0, +\infty[$ donc réalise une bijection de I sur F(I).

Mais $F(t) \sim -|a_n|t^n$ et donc $\lim_{t\to +\infty} F(t) = -\infty$. De plus $F(0) = |P(x)| \ge 0$. $0 \in F(I)$ et possède donc un antécédent unique par F, c'est m(x).

- **A.2** $P(x) = x^2 1$. $M(x, t) = |x^2 1| |2x|t t^2 = -((t + |x|)^2 |x|^2 |x^2 1|)$. L'unique racine positive est $m(x) = -|x| + \sqrt{x^2 + |x^2 - 1|}$.
- **A.3** La fonction $t \to M(x, t)$ est strictement décroissante sur \mathbb{R}^+ et s'annule de manière unique en t = m(x). Donc pour $t \ge 0$, $t = m(x) \Leftrightarrow M(x, t) = 0$. Or M(x,0) = |P(x)|. Donc $m(x) = 0 \Leftrightarrow |P(x)| = 0 \Leftrightarrow P(x) = 0$.
- **A.4** Soit x, y deux réels. Appliquons la formule de Taylor pour le polynôme P entre x et y:

$$P(y) = \sum_{k=0}^{n} \frac{P^{(k)}(x)}{k!} (y - x)^{k} \text{ et } P(x) = P(y) - \sum_{k=0}^{n} \frac{P^{(k)}(x)}{k!} (y - x)^{k}.$$

On a, d'après l'inégalité triangulaire,

$$|P(x)| \le |P(y)| + \sum_{k=1}^{n} \frac{|P^{(k)}(x)|}{k!} |y - x|^{k} \text{ d'où } |P(y)| \ge |P(x)| - \sum_{k=1}^{n} \frac{|P^{(k)}(x)|}{k!} |y - x|^{k} = M(x, |y - x|).$$

Si $P(x) \neq 0$, le réel m(x) est strictement positif. Vu la stricte décroissance sur \mathbb{R}^+ de la fonction $t \mapsto M(x,t)$ la condition |y - x| < m(x) implique M(x, |y - x|) > 0.

L'inégalité précédente permet alors de conclure que |P(y)| > 0 et en particulier $P(y) \neq 0$.

A.5 Soit $x \in \mathbb{R}$ avec $P(x) \neq 0$. D'après la question précédente, l'intervalle |x - m(x)|, x + m(x)| ne contient pas de racine de P. Donc $d(x,Z) \ge m(x)$.

Si P(x) = 0, m(x) = 0 et $x \in \mathbb{Z}$ donc $d(x, \mathbb{Z}) = 0$. Dans tous les cas: $m(x) \le d(x, \mathbb{Z})$.

B - Détermination d'un intervalle de $\mathbb R$ contenant toutes les racines de $\mathbb P$.

B.1
$$Q(x) = x^n - \sum_{k=0}^{n-1} |a_k| x^k$$
.

Pour
$$x \neq 0$$
, $Q(x) = x^n \left(1 - \sum_{k=0}^{n-1} |a_k| x^{k-n} \right) = x^n F(x)$.

La fonction F est dérivable sur \mathbb{R}_+^* , de dérivée strictement positive car l'un au moins des a_k est non nul. $\lim_{x\to 0^+} F(x) = -\infty$ et $\lim_{x\to +\infty} F(x) = 1$. F réalise une bijection de \mathbb{R}_+^* dans $]-\infty,1[$.

Il existe donc un unique $r_0 > 0$ tel que $F(r_0) = 0$. Or pour $x \neq 0$, $Q(x) = 0 \Leftrightarrow F(x) = 0$ d'où r_0 est l'unique réel strictement positif pour lequel Q s'annule.

B.2 Si $x_0 = 0$, toutes les égalités à démontrer sont vérifiées. On supposera donc dans la suite $x_0 > 0$.

Il existe un élément $x_i \in \mathbb{Z}$ tel que $x_0 = |x_i|$. Mais $P(x_i) = 0$ donc

$$x_i^n = -\sum_{k=1}^{n-1} a_k x_i^k \Rightarrow |x_i|^n = x_0^n = \left| \sum_{k=1}^{n-1} a_k x_i^k \right| \le \sum_{k=0}^{n-1} |a_k| |x_i|^k \le \sum_{k=0}^{n-1} |a_k| |x_0|^k.$$

On obtient $Q(x_0) \le 0$, d'où $F(x_0) \le 0$ et donc $x_0 \le r_0$.

Si r > 0 vérifie, Q(r) > 0 alors F(r) > 0 et d'après les variations de F, $r > r_0$.

Donc en résumé si r > 0 vérifie Q(r) > 0 alors on a $x_0 \le r$.

- **B.3** ou bien $x_0 \le 1$ et l'inégalité demandée est vraie
 - ou bien $x_0 > 1$ et pour tout k avec $0 \le k \le n-1$, $x_0^k \le x_0^{n-1}$.

L'inégalité de **B.2** donne :
$$x_0^n \le \left(\sum_{k=0}^{n-1} |a_k|\right) x_0^{n-1}$$
.

Comme
$$x_0 > 0$$
 on a: $x_0 \le \sum_{k=0}^{n-1} |a_k|$.

On a donc toujours:
$$x_0 \le \max\left(1, \sum_{k=0}^{n-1} |a_k|\right)$$
.

B.4 Si P(x) = 0, $P_1(x) = (x-1)P(x) = 0$.

En développant on obtient :
$$P_1(x) = x^{n+1} + \sum_{k=1}^{n} (a_{k-1} - a_k)x^k - a_0$$
.

Soit alors Z_1 l'ensemble des racines de P_1 . $Z_1 = Z \cup \{1\}$.

Notons $x_0' = \sup_{x \in Z_1} |x|$. On a : $x_0 \le x_0'$ et $x_0' \ge 1$. En appliquant le résultat de la question précédente à x_0' et P_1 on obtient :

$$x_0 \le x_0' \le |a_{n-1} - 1| + \sum_{k=1}^{n-1} |a_k - a_{k-1}| + |a_0|.$$

B.5 Supposons par l'absurde que $x_0 > 2|a_{n-1}|$, $x_0 > 2\frac{|a_{n-2}|}{|a_{n-1}|}$,..., $x_0 > 2\frac{|a_1|}{|a_2|}$ et $x_0 > \frac{|a_0|}{|a_1|}$.

On a alors:
$$|a_{n-1}| < \frac{x_0}{2}, |a_{n-2}| < \frac{x_0^2}{2^2}, ..., |a_1| < \frac{x_0^{n-1}}{2^{n-1}}, |a_0| < \frac{x_0^n}{2^{n-1}}.$$

Mais:
$$x_0^n \le \sum_{k=0}^{n-1} |a_k| x_0^k \le \left(\sum_{k=1}^n \frac{x_0^n}{2^{n-k}} + \frac{x_0^n}{2^{n-1}}\right).$$

Comme
$$x_0 > 0$$
, $1 < \frac{1}{2^n} \left(\sum_{k=1}^n 2^k + 2 \right) = \frac{1}{2^n} \left(\frac{2^n - 1}{2 - 1} - 1 + 2 \right) = 1$.

Contradiction. Donc x_0 est inférieur à au moins l'un des réels utilisés plus haut et :

$$x_0 \le \max\left(2|a_{n-1}|, 2\frac{|a_{n-2}|}{|a_{n-1}|}, ..., 2\frac{|a_1|}{|a_2|}, \frac{|a_0|}{|a_1|}\right)$$

- **B.6** $P(x) = 1 + x + x^2 + x^3$ (P possède bien une racine réelle puisqu'il est de degré impair) Par **B.4**, $x_0 \le 1$ et par **B.5** $x_0 \le 2$.
 - $P(x) = x^3 + 2x^2 + x + 2$. Par **B.4**, $x_0 \le 5$ et par **B.5** $x_0 \le 4$.

