Please write down your solutions on a separate sheet of paper and submit it to your TA or instructor.

Submit your solutions to Problems (1) \sim (2) on 30th November, 2018.

Submit your solutions to Problems (3) \sim (6) on 12th December, 2018.

1. Evaluate the integral.

(a)
$$(4 \text{ pts}) \int (\cos x + \sin x)^2 \cos 2x \, dx$$

(b) (5 pts)
$$\int \frac{x^2}{\sqrt{9-x^2}} dx$$
, $|x| < 3$

(c) (5 pts)
$$\int \frac{dx}{\sqrt{x^2+a^2}}$$

(d) (5 pts)
$$\int \frac{x^2+8x-3}{x^3+3x^2} dx$$

(e) (6 pts)
$$\int_0^a \frac{dx}{(x^2+a^2)^{3/2}}, a > 0$$

(f) (6 pts)
$$\int_0^x \sqrt{a^2 - t^2} dt$$
, $0 \le x \le a$

(g) (7 pts)
$$\int e^{\sqrt[3]{x}} dx$$

$$\int (\cos x + \sin x)^2 \cos 2x \, dx = \int (\cos x + \sin x)^2 (\cos^2 x - \sin^2 x) \, dx$$
$$= \int (\cos x + \sin x)^3 (\cos x - \sin x) \, dx$$

Let $u = \cos x + \sin x$, then $du = (-\sin x + \cos x) dx$, so

(Substitution rule: 2 points)

$$\int (\cos x + \sin x)^2 \cos 2x \, dx = \int (\cos x + \sin x)^3 (\cos x - \sin x) \, dx$$

$$= \int u^3 \, du$$

$$= \frac{1}{4} u^4 + C$$

$$= \frac{1}{4} (\cos x + \sin x)^4 + C, \text{ where } C \text{ is a constant}$$

(Answer: 2 points)

(ii) (alternative solution)

$$\int (\cos x + \sin x)^2 \cos 2x \, dx = \int (\cos^2 x + 2\cos x \sin x + \sin^2 x) \cos 2x \, dx$$

$$= \int (1 + \sin 2x) \cos 2x \, dx$$

$$= \int \cos 2x \, dx + \int \sin 2x \cos 2x \, dx$$

$$= \frac{\sin 2x}{2} + C_1 + \int \frac{1}{2} \sin 4x \, dx$$

$$= \frac{\sin 2x}{2} + C_1 + \frac{1}{2} \cdot \frac{-1}{4} \cos 4x + C_2$$

$$= \frac{\sin 2x}{2} - \frac{1}{8} \cos 4x + C$$

where C_1 and C_2 are constants, $C = C_1 + C_2$.

(Computing the integral + Answer : 2 + 2 points)

(b) Let $x = 3\sin\theta$, where $-\pi/2 \le \theta \le \pi/2$, then $dx = 3\cos\theta d\theta$ and $\sqrt{9-x^2} = \sqrt{9-9\sin^2\theta} = 1$ $\sqrt{9\cos^2\theta} = 3|\cos\theta| = 3\cos\theta.$

(Trigonometric substitution: 2 points)

Thus,

$$\int \frac{x^2}{\sqrt{9-x^2}} \, dx = \int \frac{9\sin^2\theta}{3\cos\theta} 3\cos\theta \, d\theta$$

$$= 9 \int \sin^2\theta \, d\theta$$

$$= 9 \int \frac{1}{2} (1 - \cos 2\theta) \, d\theta$$

$$= \frac{9}{2} \left(\theta - \frac{1}{2}\sin 2\theta\right) + C$$

$$= \frac{9}{2}\theta - \frac{9}{4} (2\sin\theta\cos\theta) + C$$

$$= \frac{9}{2}\sin^{-1}\left(\frac{x}{3}\right) - \frac{9}{2} \cdot \frac{x}{3} \cdot \frac{\sqrt{9-x^2}}{3} + C$$

$$= \frac{9}{2}\sin^{-1}\left(\frac{x}{3}\right) - \frac{1}{2}x\sqrt{9-x^2} + C, \text{ where } C \text{ is a constant}$$

(Computing the integral + Answer : 2 + 1 points)

(c) (i) Let $x = a \tan \theta$, where $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$, then $\sqrt{x^2 + a^2} = a \sec \theta$. (Trigonometric substitution: 2 points)

Thus,

$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \int \frac{a \sec^2 \theta}{a \sec \theta} d\theta$$

$$= \int \sec \theta d\theta$$

$$= \ln|\sec \theta + \tan \theta| + C'$$

$$= \ln\left|\frac{\sqrt{x^2 + a^2}}{a} + \frac{x}{a}\right| + C'$$

$$= \ln(x + \sqrt{x^2 + a^2}) + C, \text{ where } C = C' - \ln|a| \text{ and } C' \text{ is a constant}$$
(Computing the integral + Answer : 2 + 1 points)

(ii) Let $x=a\sinh t$, so that $dx=a\cosh t\ dt$ and $\sqrt{x^2+a^2}=a\cosh t$. (Trigonometric substitution: 2 points)

Thus,

$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \int \frac{a \cosh t}{a \cosh t} dt = t + C = \sinh^{-1} \left(\frac{x}{a}\right) + C, \text{ where } C \text{ is a constant}$$

(Computing the integral + Answer : 2 + 1 points)

Note: The hyperbolic trigonometric functions are given by $\sinh x = \frac{e^x - e^{-x}}{2}$, $\cosh x = \frac{e^x + e^{-x}}{2}$.

(d)
$$\frac{x^2 + 8x - 3}{x^3 + 3x^2} = \frac{x^2 + 8x - 3}{x^2(x+3)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+3}$$

$$\Rightarrow x^{2} + 8x - 3 = Ax(x+3) + B(x+3) + Cx^{2}$$

Taking x = 0, we get -3 = 3B, so B = -1.

Taking x = -3, we get -18 = 9C, so C = -2.

Taking x = 1, we get 6 = 4A + 4B + C = 4A - 4 - 2, so 4A = 12 and A = 3.

(Partial fraction: 3 points)

Now

$$\int \frac{x^2 + 8x - 3}{x^3 + 3x^2} dx = \int \left(\frac{3}{x} - \frac{1}{x^2} - \frac{2}{x+3}\right) dx$$
$$= 3\ln|x| + \frac{1}{x} - 2\ln|x+3| + C, C \text{ is a constant}$$

(Answer: 2 points)

(e) Let $x = a \tan \theta$, where a > 0 and $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$, then $dx = a \sec^2 \theta \ d\theta$.

(Trigonometric substitution : 2 points)

When $x = 0 \Rightarrow \theta = 0$, when $x = a \Rightarrow \theta = \frac{\pi}{4}$. (Change of limits of integration: 1 point)

Thus,

$$\int_0^a \frac{dx}{(x^2 + a^2)^{3/2}} = \int_0^{\pi/4} \frac{a \sec^2 \theta}{[a^2 (1 + \tan^2 \theta)]^{3/2}} d\theta$$

$$= \int_0^{\pi/4} \frac{a \sec^2 \theta}{a^3 \sec^3 \theta} d\theta$$

$$= \frac{1}{a^2} \int_0^{\pi/4} \cos \theta d\theta$$

$$= \frac{1}{a^2} [\sin \theta]_0^{\pi/4}$$

$$= \frac{1}{\sqrt{2}a^2}$$

(Computing the integral + Answer : 2 + 1 points)

(f) Let $t = a \sin \theta$, $dt = a \cos \theta \ d\theta$.

(Trigonometric substitution: 2 points)

When $t = 0 \Rightarrow \theta = 0$, when $t = x \Rightarrow \theta = \sin^{-1}(x/a)$.

(Changed of limits of integration: 1 point)

Thus,

$$\int_{0}^{x} \sqrt{a^{2} - t^{2}} dt = \int_{0}^{\sin^{-1}(x/a)} a \cos \theta (a \cos \theta d\theta)$$

$$= a^{2} \int_{0}^{\sin^{-1}(x/a)} \cos^{2} \theta d\theta$$

$$= \frac{a^{2}}{2} \int_{0}^{\sin^{-1}(x/a)} (1 + \cos 2\theta) d\theta$$

$$= \frac{a^{2}}{2} \left[\theta + \frac{1}{2} \sin 2\theta \right]_{0}^{\sin^{-1}(x/a)}$$

$$= \frac{a^{2}}{2} \left[\theta + \sin \theta \cos \theta \right]_{0}^{\sin^{-1}(x/a)}$$

$$= \frac{a^{2}}{2} \left[\left(\sin^{-1} \left(\frac{x}{a} \right) + \frac{x}{a} \cdot \frac{\sqrt{a^{2} - x^{2}}}{a} \right) - 0 \right]$$

$$= \frac{1}{2} a^{2} \sin^{-1} \left(\frac{x}{a} \right) + \frac{1}{2} x \sqrt{a^{2} - x^{2}}$$

(Computing the integral + Answer : 2 + 1 points)

(g) Let $w = \sqrt[3]{x}$, then $w^3 = x$ and $3w^2 dw = dx$, so

$$\int e^{\sqrt[3]{x}} dx = \int e^w \cdot 3w^2 \ dw = 3I$$

(Substitution rule: 1 point)

To evaluate I, let $u = w^2$ and $dv = e^w dw$, then du = 2w dw and $v = e^w$, so

$$I = \int w^2 e^w \ dw = w^2 e^w - \int 2w e^w \ dw$$

(Integration by parts: 2 points)

Now let U = w, $dV = e^w dw$, then dU = dw, $V = e^w$. Thus,

$$I = w^2 e^w - 2 \left[w e^w - \int e^w dw \right] = w^2 e^w - 2w e^w + 2e^w + C'$$
, where C' is a constant.

(Integration by parts: 2 points)

Hence

$$\int e^{\sqrt[3]{x}} dx = 3I$$

$$= 3e^{w}(w^{2} - 2w + 2) + 3C'$$

$$= 3e^{\sqrt[3]{x}}(x^{2/3} - 2x^{1/3} + 2) + C, \text{ where } C = 3C'$$

(Answer: 2 points)

2. (7 pts) If 0 < a < b, find

$$\lim_{t \to 0} \left\{ \int_0^1 [bx + a(1-x)]^t \, dx \right\}^{1/t}$$

Let u = bx + a(1 - x), then du = (b - a)dx, since 0 < a < b, we have

$$\int_0^1 [bx + a(1-x)]^t dx = \int_a^b \frac{u^t}{(b-a)} du = \left[\frac{u^{t+1}}{(t+1)(b-a)} \right]_a^b = \frac{b^{t+1} - a^{t+1}}{(t+1)(b-a)}$$

(Substitution rule: 2 points)

Now let $y = \lim_{t\to 0} \left[\frac{b^{t+1} - a^{t+1}}{(t+1)(b-a)} \right]^{1/t}$, then

$$\ln y = \lim_{t \to 0} \frac{\ln \frac{b^{t+1} - a^{t+1}}{(t+1)(b-a)}}{t}$$

This limit is of the form 0/0, so we can apply l'Hospital's Rule to get

$$\begin{split} \ln y & \overset{\left(\begin{array}{c} 0 \\ \end{array} \right)}{\underset{l'H}{=}} \lim_{t \to 0} \left[\frac{b^{t+1} \ln b - a^{t+1} \ln a}{b^{t+1} - a^{t+1}} - \frac{1}{t+1} \right] \\ & = \frac{b \ln b - a \ln a}{b - a} - 1 \\ & = \frac{b \ln b}{b - a} - \frac{a \ln a}{b - a} - \ln e \\ & = \ln \frac{b^{b/(b-a)}}{ea^{a/(b-a)}} \end{split}$$

(L'Hospital's rule : 3 points)

(Answer: 2 points)

Therefore, $y = e^{-1} \left(\frac{b^b}{a^a}\right)^{1/(b-a)}$.

- 3. Evaluate the integral or show that it is divergent.
 - (a) $(4 \text{ pts}) \int_{-3}^{3} \frac{x}{1+|x|} dx$
 - (b) (5 pts) $\int_{1}^{\infty} \frac{\tan^{-1} x}{x^2} dx$
 - (c) (7 pts) $\int_{-1}^{1} \frac{dx}{x^2 2x}$
 - (d) (7 pts) $\int_{-1}^{\infty} \left(\frac{x^4}{1+x^6}\right)^2 dx$ (Hint: $\left(\frac{x^4}{1+x^6}\right)^2$ can be writen as $x^3 \cdot f(x)$)
 - (a) The integrand is an odd function, so

(Odd function: 2 points)

$$\int_{-3}^{3} \frac{x}{1+|x|} \, dx = 0$$

(Answer: 2 points)

(b) $\int_{1}^{\infty} \frac{\tan^{-1} x}{x^2} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{\tan^{-1} x}{x^2} dx$ (Improper integral : 1 point)

Let $u=\tan^{-1}x$ and $dv=\frac{1}{x^2}dx$, then $du=\frac{1}{1+x^2}dx$ and $v=-\frac{1}{x}$. Using integration by parts,

$$\int_{1}^{\infty} \frac{\tan^{-1} x}{x^{2}} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{\tan^{-1} x}{x^{2}} dx$$

$$= \lim_{t \to \infty} \left\{ \left[-\frac{\tan^{-1} x}{x} \right]_{1}^{t} + \int_{1}^{t} \frac{1}{x} \cdot \frac{1}{1 + x^{2}} dx \right\}$$

(Integration by parts: 2 points)

٠

$$\begin{split} &= \lim_{t \to \infty} \left\{ -\frac{\tan^{-1}t}{t} + \frac{\tan^{-1}1}{1} + \int_{1}^{t} \frac{1}{x} - \frac{x}{x^2 + 1} \, dx \right\} \\ &= 0 + \frac{\pi}{4} + \lim_{t \to \infty} \left[\ln|x| - \frac{1}{2} \ln|x^2 + 1| \right]_{1}^{t} \\ &= \frac{\pi}{4} + \lim_{t \to \infty} \left[\ln|t| - \frac{1}{2} \ln|t^2 + 1| - \ln|1| + \frac{1}{2} \ln|2| \right] \\ &= \frac{\pi}{4} + \frac{1}{2} \ln 2 + \frac{1}{2} \lim_{t \to \infty} \ln \frac{t^2}{t^2 + 1} \\ &= \frac{\pi}{4} + \frac{1}{2} \ln 2 \end{split}$$

(Answer: 2 points)

(c)
$$I = \int_{-1}^{1} \frac{dx}{x^2 - 2x} = \int_{-1}^{1} \frac{dx}{x(x - 2)} = \int_{-1}^{0} \frac{dx}{x(x - 2)} + \int_{0}^{1} \frac{dx}{x(x - 2)} = I_1 + I_2$$
(Improper integral : 2 points)

Now

$$\frac{dx}{x(x-2)} = \frac{A}{x} + \frac{B}{x-2} \Rightarrow 1 + A(x-2) + Bx$$

Set x = 2 to get 1 = 2B, so $B = \frac{1}{2}$. Set x = 0 to get 1 = -2A, so $A = -\frac{1}{2}$.

(Partial fraction: 2 points)

Thus,

$$I_1 = \lim_{t \to 0-} \int_{-1}^{t} \left(\frac{-\frac{1}{2}}{x} + \frac{\frac{1}{2}}{x-2} \right) dx$$

and

$$I_2 = \lim_{t \to 0+} \int_t^1 \left(\frac{-\frac{1}{2}}{x} + \frac{\frac{1}{2}}{x-2} \right) dx$$

$$= \lim_{t \to 0+} \left[-\frac{1}{2} \ln|x| + \frac{1}{2} \ln|x-2| \right]_t^1$$

$$= \lim_{t \to 0+} \left[(0+0) - \left(-\frac{1}{2} \ln t + \frac{1}{2} \ln|t-2| \right) \right]$$

$$= -\frac{1}{2} \ln 2 + \lim_{t \to 0+} \frac{1}{2} \ln t$$

$$= -\infty$$

(Computing the limit: 2 points)

Since I_2 diverges, I is divergent.

(Answer: 1 point)

(d) Let

$$I = \int \frac{x^8}{(1+x^6)^2} dx = \int x^3 \cdot \frac{x^5}{(1+x^6)^2} dx$$

(Correct f(x): 1 point)

Let $u = x^3$ and $dv = \frac{x^5}{(1+x^6)^2} dx$, then $du = 3x^2 dx$ and $v = -\frac{1}{6(1+x^6)}$, so

$$I = -\frac{x^3}{6(1+x^6)} + \frac{1}{2} \int \frac{x^2}{1+x^6} dx$$
$$= -\frac{x^3}{6(1+x^6)} + \frac{1}{6} \tan^{-1}(x^3) + C, \text{ where } C \text{ is a constant}$$

(Integration by parts: 4 points)

Hence

$$\begin{split} \int_{-1}^{\infty} \left(\frac{x^4}{1+x^6} \right)^2 dx &= \lim_{t \to \infty} \left[-\frac{x^3}{6(1+x^6)} + \frac{1}{6} \tan^{-1}(x^3) \right]_{-1}^t \\ &= \lim_{t \to \infty} \left(-\frac{t^3}{6(1+t^6)} + \frac{1}{6} \tan^{-1}(t^3) + \frac{(-1)^3}{6(1+(-1)^6)} - \frac{1}{6} \tan^{-1}((-1)^3) \right) \\ &= 0 + \frac{1}{6} \cdot \frac{\pi}{2} - \frac{1}{12} - \frac{1}{6} \left(-\frac{\pi}{4} \right) \\ &= \frac{\pi}{8} - \frac{1}{12} \end{split}$$

(Answer: 2 points)

4. We can extend our definition of average value of a continuous function to an infinite interval by defining the average value of f on the interval $[a, \infty)$ to be

$$\lim_{t \to \infty} \frac{1}{t - a} \int_{a}^{t} f(x) dx$$

- (a) (6 pts) Find the average value of $f(x) = \tan^{-1} x$ on the interval $[0, \infty)$.
- (b) (5 pts) If $f(x) \ge 0$ and $\int_a^\infty f(x) dx$ is divergent, show that the average value of f on the interval $[a, \infty)$ is $\lim_{x \to \infty} f(x)$, if this limit exists.
- (c) (5 pts) If $\int_a^\infty f(x)dx$ is convergent, what is the average value of f on the interval $[a,\infty)$?
- (d) (3 pts) Find the average value of $f(x) = \sin x$ on the interval $[0, \infty)$.

(a)

$$f_{ave} = \lim_{t \to \infty} \frac{1}{t - 0} \int_0^t \tan^{-1} x \, dx$$

(Definition of average function : 1 point)

Let $u = \tan^{-1} x$ and dv = dx, then $du = \frac{1}{1+x^2} dx$ and v = x, so (Substitution rule : 2 points)

$$f_{ave} = \lim_{t \to \infty} \frac{1}{t} \int_0^t \tan^{-1} x \, dx$$

$$= \lim_{t \to \infty} \left\{ \frac{1}{t} \left[x \tan^{-1} x \right]_0^t - \frac{1}{t} \int_0^t \frac{x}{1 + x^2} \, dx \right\}$$

$$= \lim_{t \to \infty} \left[\tan^{-1} t - \frac{\ln(1 + t^2)}{2t} \right]$$

$$= \frac{\pi}{2} - \lim_{t \to \infty} \frac{\ln(1 + t^2)}{2t}$$

$$= \frac{\pi}{2} - \lim_{t \to \infty} \frac{2t/(1 + t^2)}{2}$$

$$= \frac{\pi}{2} - 0$$

$$= \frac{\pi}{2}$$

(L'Hospital's rule + Answer : 1 + 2 points)

(b) $f(x) \ge 0$ and $\int_a^\infty f(x) dx$ is divergent, then $\lim_{t\to\infty} \int_a^t f(x) dx = \infty$. (Computing the limit : 2 points)

$$f_{ave} = \lim_{t \to \infty} \frac{\int_a^t f(x) \, dx}{t - a} \stackrel{(\stackrel{\infty}{=})}{\underset{t \to \infty}{=}} \lim_{t \to \infty} \frac{f(t)}{1} = \lim_{t \to \infty} f(t), \text{ if this limit exists.}$$

$$\text{(L'Hospital's rule + Answer : 1 + 2 points)}$$

(c) Suppose $\int_a^\infty f(x) dx$ converges; that is

$$\lim_{t \to \infty} \int_{a}^{t} f(x) \ dx = L \neq \infty$$

(Improper intergal: 1 point)

Then

$$f_{ave} = \lim_{t \to \infty} \left[\frac{1}{t-a} \int_a^t f(x) \ dx \right] = \lim_{t \to \infty} \frac{1}{t-a} \cdot \lim_{t \to \infty} \int_a^t f(x) \ dx = 0 \cdot L = 0$$

(Limit laws + Answer : 2 + 2 points)

(d)

$$f_{ave} = \lim_{t \to \infty} \frac{1}{t} \int_0^t \sin x \ dx = \lim_{t \to \infty} \left(\frac{1}{t} [-\cos x]_0^t \right) = \lim_{t \to \infty} \left(-\frac{\cos t}{t} + \frac{1}{t} \right) = \lim_{t \to \infty} \frac{1 - \cos t}{t} = 0$$

(Improper integral + Answer : 1 + 2 points)

- 5. Find the exact length of the curve.
 - (a) (5 pts) $y = 1 + 6x^{3/2}$, $0 \le x \le 1$.
 - (b) (5 pts) $y = \ln(\sec x), 0 \le x \le \pi/4.$
 - (c) (7 pts) $y = \sqrt{x x^2} + \sin^{-1}(\sqrt{x})$ on the whole domain.
 - (d) (7 pts) $y = \int_1^x \sqrt{t^3 1} dt$, $1 \le x \le 4$.

(a) $y = 1 + 6x^{3/2} \Rightarrow dy/dx = 9x^{1/2} \Rightarrow 1 + (\frac{dy}{dx})^2 = 1 + 81x$

(Computing the integrand : 2 points)

So

$$L = \int_0^1 \sqrt{1 + 81x} \, dx = \left[\frac{2}{3} \cdot \frac{1}{81} \cdot (1 + 81x)^{3/2} \right]_0^1 = \frac{2}{243} \cdot (82\sqrt{82} - 1)$$

(Computing the length L +Answer : 2 + 1 points)

(b)

$$y = \ln(\sec x) \Rightarrow \frac{dy}{dx} = \frac{\sec x \cdot \tan x}{\sec x} = \tan x \Rightarrow 1 + \left(\frac{dy}{dx}\right)^2 = 1 + \tan^2 x = \sec^2 x$$

(Computing the integrand: 2 points)

So

$$L = \int_0^{\pi/4} \sqrt{\sec^2 x} \, dx$$

$$= \int_0^{\pi/4} |\sec x| \, dx$$

$$= \int_0^{\pi/4} \sec x \, dx$$

$$= [\ln(\sec x + \tan x)]_0^{\pi/4}$$

$$= \ln(\sqrt{2} + 1) - \ln(1 + 0)$$

$$= \ln(\sqrt{2} + 1)$$

(Computing the length L +Answer : 2 + 1 points)

(c) The curve has endpoints (0,0) and $(1,\frac{\pi}{2})$.

(Endpoints : 2 points)

$$y = \sqrt{x - x^2} + \sin^{-1}(\sqrt{x}) \Rightarrow \frac{dy}{dx} = \frac{1 - 2x}{2\sqrt{x - x^2}} + \frac{1}{2\sqrt{x}\sqrt{1 - x}} = \frac{2 - 2x}{2\sqrt{x}\sqrt{1 - x}} = \sqrt{\frac{1 - x}{x}}$$
$$\Rightarrow 1 + \left(\frac{dy}{dx}\right)^2 = 1 + \frac{1 - x}{x} = \frac{1}{x}$$

(Computing the integrand: 2 points)

Thus

$$L = \int_0^1 \sqrt{1/x} \, dx = \lim_{t \to 0+} \int_t^1 \sqrt{1/x} \, dx = \lim_{t \to 0+} \left[2\sqrt{x} \right]_t^1 = \lim_{t \to 0+} \left[2\sqrt{1} - 2\sqrt{t} \right] = 2 - 0 = 2$$
(Computing the length $L + \text{Answer} : 2 + 1 \text{ points}$)

(d)
$$y = \int_1^x \sqrt{t^3 - 1} dt \Rightarrow dy/dx = \sqrt{x^3 - 1}$$

$$\Rightarrow 1 + (dy/dx)^2 = 1 + \left(\sqrt{x^3 - 1}\right)^2 = x^3$$

(The Fundamental Theorem of Calculus + Computing the integrand : 2 + 2 points)

Hence,

$$L = \int_1^4 \sqrt{x^3} \, dx = \frac{2}{5} \left[x^{5/2} \right]_1^4 = \frac{2}{5} (32 - 1) = \frac{62}{5}$$
 (Computing the length L + Answer : 2 + 1 points)

- 6. Find the exact area of the surface of revolution.
 - (a) (5 pts) The curve $y = x^3$, $0 \le x \le 2$, rotated about the x-axis.
 - (b) (9 pts) The curve $y = e^{-x}$, $x \ge 0$, rotated about the x-axis.

- (c) (5 pts) The curve $x = \sqrt{a^2 y^2}$, $0 \le y \le a/2$, rotated about the y-axis.
- (d) (9 pts) The curve $x^2 + y^2 = r^2$, rotated about the line y = r.

(a)
$$y = x^3 \Rightarrow y' = 3x^2$$
 So
$$S = \int_0^2 2\pi y \sqrt{1 + (y')^2} \, dx = 2\pi \int_0^2 x^3 \sqrt{1 + 9x^4} \, dx$$

$$= 2\pi \left[\frac{1}{36} \cdot \frac{2}{3} (1 + 9x^4)^{3/2} \right]_0^2 = \frac{\pi}{27} \cdot (145\sqrt{145} - 1)$$
 (Computing the surface S + Answer : 3 + 2 points)

(b)
$$S = \int_0^\infty 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx = 2\pi \int_0^\infty e^{-x} \sqrt{1 + (-e^{-x})^2} \, dx$$
 (The function of the surface $S: 2$ points)

Evaluate $I = \int e^{-x} \sqrt{1 + (-e^{-x})^2} dx$ by using the substitution $u = -e^{-x}$, $du = e^{-x} dx$. (Substitution rule : 1 point)

Then let $u = \tan \theta$, $du = \sec^2 \theta \ d\theta$, so

$$\begin{split} I &= \int \sqrt{1 + \tan^2 \theta} \cdot \sec^2 \theta \; d\theta \\ &= \int \sec^3 \theta \; d\theta \\ &= \frac{1}{2} \sec \theta \tan \theta + \frac{1}{2} \ln |\sec \theta + \tan \theta| + C \\ &= \frac{1}{2} \tan \theta \sqrt{1 + \tan^2 \theta} + \frac{1}{2} \ln \left| \tan \theta + \sqrt{1 + \tan^2 \theta} \right| + C \\ &= \frac{1}{2} u \sqrt{1 + u^2} + \frac{1}{2} \ln |u + \sqrt{1 + u^2}| + C \\ &= \frac{1}{2} (-e^{-x}) \sqrt{1 + e^{-2x}} + \frac{1}{2} \ln |-e^{-x}| + \sqrt{1 + e^{-2x}}| + C, \text{ where } C \text{ is a constant} \end{split}$$

(Computing I: 2 points)

Returning to the surface area integral, we have

$$\begin{split} S &= 2\pi \lim_{t \to \infty} \int_0^t e^{-x} \sqrt{1 + (-e^{-x})^2} \, dx \\ &= 2\pi \lim_{t \to \infty} \left[\frac{1}{2} (-e^{-x}) \sqrt{1 + e^{-2x}} + \frac{1}{2} \ln \left| (-e^{-x}) + \sqrt{1 + e^{-2x}} \right| \right]_0^t \\ &= 2\pi \lim_{t \to \infty} \left\{ \left[\frac{1}{2} (-e^{-t}) \sqrt{1 + e^{-2t}} + \frac{1}{2} \ln \left| -e^{-t} + \sqrt{1 + e^{-2t}} \right| \right] - \left[\frac{1}{2} (-1) \sqrt{1 + 1} + \frac{1}{2} \ln (-1 + \sqrt{1 + 1}) \right] \right\} \\ &= 2\pi \left\{ \left[\frac{1}{2} (0) \sqrt{1} + \frac{1}{2} \ln (0 + \sqrt{1}) \right] - \left[-\frac{1}{2} \sqrt{2} + \frac{1}{2} \ln (-1 + \sqrt{2}) \right] \right\} \\ &= \pi \left[\sqrt{2} - \ln(\sqrt{2} - 1) \right] \end{split}$$

(Computing the surface S +Answer : 3 + 1 points)

(c)
$$x = \sqrt{a^2 - y^2} \Rightarrow \frac{dx}{dy} = \frac{1}{2} (a^2 - y^2)^{-1/2} \cdot (-2y) = \frac{-y}{\sqrt{a^2 - y^2}}$$

$$\Rightarrow 1 + \left(\frac{dx}{dy}\right)^2 = 1 + \frac{y^2}{a^2 - y^2} = \frac{a^2}{a^2 - y^2}$$
 (Computing the integrand : 2 points)

Hence,

$$S = \int_0^{a/2} 2\pi \cdot \sqrt{a^2 - y^2} \cdot \frac{a}{\sqrt{a^2 - y^2}} \, dy = 2\pi \int_0^{a/2} a \, dy = \pi a^2$$

(Note: this is $\frac{1}{4}$ the surface area of a sphere of radius a, and the length of the interval y=0 to y=a/2 is $\frac{1}{4}$ the length of the interval y=-a to y=a.)

(Computing the surface S+Answer: 2+1 points)

(d) For the upper semicircle, $f(x) = \sqrt{r^2 - x^2}$, $f'(x) = -\frac{x}{\sqrt{r^2 - x^2}}$. The surface area generated is

$$S_{1} = \int_{-r}^{r} 2\pi \cdot \left(r - \sqrt{r^{2} - x^{2}}\right) \cdot \sqrt{1 + \frac{x^{2}}{r^{2} - x^{2}}} dx$$

$$= 4\pi \int_{0}^{r} \left(r - \sqrt{r^{2} - x^{2}}\right) \cdot \frac{r}{\sqrt{r^{2} - x^{2}}} dx$$

$$= 4\pi \int_{0}^{r} \left(\frac{r^{2}}{\sqrt{r^{2} - x^{2}}} - r\right) dx$$

$$= 4\pi \cdot \lim_{t \to r} \int_{0}^{t} \left(\frac{r^{2}}{\sqrt{r^{2} - x^{2}}}\right) dx - 4\pi \int_{0}^{r} r dx$$

(Upper semicircle: 3 points)

For the lower semicircle, $f(x) = -\sqrt{r^2 - x^2}$ and $f'(x) = \frac{x}{\sqrt{r^2 - x^2}}$, so

$$S_2 = 4\pi \cdot \lim_{t \to r} \int_0^t \left(\frac{r^2}{\sqrt{r^2 - x^2}} \right) dx + 4\pi \int_0^r r dx$$

(Lower semicircle: 3 points)

Thus, the total area is

$$S = S_1 + S_2 = 8\pi \cdot \lim_{t \to r} \int_0^t \left(\frac{r^2}{\sqrt{r^2 - x^2}} \right) dx = 8\pi \cdot \lim_{t \to r} \left[r^2 \sin^{-1} \left(\frac{x}{r} \right) \right]_0^t = 4\pi^2 r^2$$

(Computing the surface S +Answer : 2 + 1 points)

Note: No matter whether the curve is rotated about the line y = r > 0 or the line y = r < 0, the surface generated will be of the same size. If r = 0, then $x^2 + y^2 = 0$ is just a point (the origin) and thus no surface is generated.