Digital Circuit, Logic, Boolean Algebra, and Truth Table

교재 2장 1절 ~ 5절

Switches

Electronic switches are the basis of binary digital circuits

- > Electrical terminology
 - Voltage: Difference in electric potential between two points (volts, V)
 - Analogous to water pressure
 - **Resistance**: Tendency of wire to resist current flow (ohms, Ω)
 - Analogous to water pipe diameter
 - Current: Flow of charged particles (amps, A)
 - Analogous to water flow
 - -V = I * R (Ohm's Law)
 - -9 V = I * 2 ohms
 - 1 = 4.5 A

If a 9V potential difference is applied across a 2 ohm resistor, then 4.5 A of current will flow.

Switches

A switch has three parts

- Source input, and output
 - Current tries to flow from source input to output
- Control input
 - Voltage that controls whether that current can flow

The amazing shrinking switch

- > 1930s: Relays
- > 1940s: Vacuum tubes
- > 1950s: Discrete transistor
- > 1960s: Integrated circuits (ICs)
 - Initially just a few transistors on IC
 - Then tens, hundreds, thousands...

The CMOS Transistor

CMOS transistor

> Basic switch in modern ICs

Boolean Logic Gates Building Blocks for Digital Circuits

(Because Switches are Hard to Work With)

- "Logic gates" are better digital circuit building blocks than switches (transistors)
 - > Why?...

Boolean Algebra and its Relation to Digital Circuits

- To understand the benefits of "logic gates" vs. switches, we should first understand Boolean algebra
- "Traditional" algebra
 - Variables represent real numbers (x, y)
 - > Operators operate on variables, return real numbers (2.5*x + y 3)
- Boolean Algebra
 - Variables represent 0 or 1 only
 - Operators return 0 or 1 only
 - Basic operators
 - AND: a AND b returns 1 only when both a=1 and b=1
 - OR: a OR b returns 1 if either (or both) a=1 or b=1
 - NOT: NOT a returns the opposite of a (1 if a=0, 0 if a=1)

a	b	AND
0	0	0
0	1	0
1	0	0
1	1	1

a	b	OR
0	0	0
0	1	1
1	0	1
1	1	1

a	NOT
0	1
1	0

Boolean Algebra and its Relation to Digital Circuits

- Developed mid-1800's by George Boole to formalize human thought
 - Ex: "I'll go to lunch if Mary goes OR John goes, AND Sally does not go."

 a b AND
 - Let F represent my going to lunch (1 means I go, 0 I don't go)
 - Likewise, m for Mary going, j for John, and s for Sally
 - Then F = (m OR j) AND NOT(s)
 - Nice features
 - Formally evaluate
 - m=1, j=0, s=1 --> F = (1 OR 0) AND NOT(1) = 1 AND 0 = $\underline{0}$
 - Formally transform
 - F = (m and NOT(s)) OR (j and NOT(s))
 - » Looks different, but same function
 - » We'll show transformation techniques soon
 - Formally prove
 - Prove that if Sally goes to lunch (s=1), then I don't go (F=0)
 - F = (m OR j) AND NOT(1) = (m OR j) AND 0 = 0

a	b	OR
0	0	0
0	1	1
1	0	1
1	1	1

 $0 \quad 0 \quad 0$

0 1 0

Relating Boolean Algebra to Digital Design

- Implement Boolean operators using transistors
 - Call those implementations logic gates.
 - Lets us build circuits by doing math -
 - powerful concept

Next slides show how these circuits work. Note: The above OR/AND implementations are inefficient; we'll show why, and show better ones, later.

1 and 0 each actually corresponds to a voltage range

NOT gate

X	F
0	1
1	0

When the input is 0

When the input is 1

OR gate

X	y	F	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

When an input is 1

When both inputs are 0

AND gate

When both inputs are 1

When an input is 0

Building Circuits Using Gates

- Recall Chapter 1 motion-in-dark example
 - Turn on lamp (F=1) when motion sensed (a=1) and no light (b=0)
 - F = a AND NOT(b)
 - > Build using logic gates, AND and NOT, as shown
 - > We just built our first digital circuit!

Example: Converting a Boolean Equation to a Circuit of Logic Gates

Start from the output, work back towards the inputs

Q: Convert the following equation to logic gates:
F = a AND NOT(b OR NOT(c))

More examples

Start from the output, work back towards the inputs

Using gates with more than 2 inputs

Can think of as AND(a,b,c)

Some Gate-Based Circuit Drawing Conventions

Example that Applies Boolean Algebra Properties

- Want automatic door opener circuit (e.g., for grocery store)
 - Output: f=1 opens door
 - > Inputs:
 - p=1: person detected
 - h=1: switch forcing hold open
 - c=1: key forcing closed
 - Want open door when
 - h=1 and c=0, or
 - h=0 and p=1 and c=0
 - Equation: f = hc' + h'pc'

Can the circuit be simplified?

$$f = hc' + h'pc'$$

 $f = c'h + c'h'p$ (by the commutative property)
 $f = c'(h + h'p)$ (by the first distrib. property)
 $f = c'((h+h')*(h+p))$ (2nd distrib. prop.; tricky one)
 $f = c'((1)*(h+p))$ (by the complement property)
 $f = c'(h+p)$ (by the identity property)

Simplification of circuits is covered in Sec. 2.11 / Sec 6.2.

Boolean Algebra

- By defining logic gates based on Boolean algebra, we can use algebraic methods to manipulate circuits
- Notation: Writing a AND b, a OR b, NOT(a) is cumbersome
 - ➤ Use symbols: a * b (or just ab), a + b, and a'
 - Original: w = (p AND NOT(s) AND k) OR t
 - New: w = ps'k + t
 - Spoken as "w equals p and s prime and k, or t"
 - Or just "w equals p s prime k, or t"
 - s' known as "complement of s"
 - While symbols come from regular algebra, don't say "times" or "plus"
 - product and sum are OK and commonly used Boolean algebra precedence, highest precedence first.

Symbol	Name	Description
()	Parentheses	Evaluate expressions nested in parentheses first
,	NOT	Evaluate from left to right
*	AND	Evaluate from left to right
+	OR	Evaluate from left to right

Example that Applies Boolean Algebra Properties

Found inexpensive chip that computes:

$$- f = c'hp + c'hp' + c'h'p$$

- Can we use it for the door opener?
 - Is it the same as f = hc' + h'pc'?

Commutative

$$\rightarrow$$
 a + b = b + a

$$\rightarrow$$
 a * b = b * a

Apply Boolean algebra:

Distributive

$$\rightarrow$$
 a * (b + c) = a * b + a * c

$$a + (b * c) = (a + b) * (a + c)$$

Associative

$$\rightarrow$$
 (a + b) + c = a + (b + c)

$$\rightarrow$$
 (a * b) * c = a * (b * c)

Identity

$$\rightarrow$$
 0 + a = a + 0 = a

$$\rightarrow$$
 1 * a = a * 1 = a

Complement

$$\rightarrow$$
 a + a' = 1

$$\rightarrow$$
 a * a' = 0

$$f = c'hp + c'hp' + c'h'p$$

$$f = c'h(p + p') + c'h'p$$
 (by the distributive property)

$$f = c'h(1) + c'h'p$$
 (by the complement property)

$$f = c'h + c'h'p$$
 (by the identity property)

$$f = hc' + h'pc'$$
 (by the commutative property)

Same! Yes, we can use it.

Boolean Algebra: Additional Properties

Null elements

$$>$$
 a + 1 = 1

$$> a * 0 = 0$$

Idempotent Law

$$\triangleright$$
 a + a = a

$$\triangleright$$
 a * a = a

Involution Law

$$(a')' = a$$

DeMorgan's Law

$$(a + b)' = a'b'$$

$$\rightarrow$$
 (ab)' = a' + b'

- > Very useful!
- To prove, just evaluate all possibilities

Representations of Boolean Functions

English 1: F outputs 1 when a is 0 and b is 0, or when a is 0 and b is 1.

- A function can be represented in different ways
 - Above shows seven representations of the same functions F(a,b), using four different methods: English, Equation, Circuit, and Truth Table

Truth Table Representation of Boolean Functions

 Define value of F for each possible combination of input values

a	b	F
0	0	
0	1	
1	0	
1	1	
	(a)	

a	b	c	F
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	
		(b)	

a	b	c	d	F
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	
		(c))	

- > 2-input function: 4 rows
- > 3-input function: 8 rows
- ➤ 4-input function: 16 rows
- Q: Use truth table to define function F(a,b,c) that is 1 when abc is 5 or greater in binary

a	b	c	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Converting among Representations

- Can convert from any representation to another
- Common conversions
 - Equation to circuit (we did this earlier)
 - Circuit to equation
 - Start at inputs, write expression of each gate output

Converting among Representations

Equations Circuits

2

Truth tables

More common conversions

- Truth table to equation (which we can then convert to circuit)
 - Easy-just OR each input term that should output 1
- > Equation to truth table
 - Easy—just evaluate equation for each input combination (row)
 - Creating intermediate columns helps

Inp	outs	Outputs	Term
a	b	F	F = sum of
0	0	1	a'b'
0	1	1	a'b' a'b
1	0	0	
1	1	0	

$$F = a'b' + a'b$$

Q: Convert to equation

a	b	c	F	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	0	
1	0	0	0	
1	0	1	1	ab'c
1	1	0	1	abc'
1	1	1	1	abc

$$F = ab'c + abc' + abc$$

Q: Convert to truth table: F = a'b' + a'b

Inputs				Output
a	b	a' b'	a' b	F
0	0	1	0	1
0	1	0	1	1
1	0	0	0	0
1	1	0	0	0

Example: Converting from Truth Table to Equation

- Parity bit: Extra bit added to data, intended to enable detection of error (a bit changed unintentionally)
 - > e.g., errors can occur on wires due to electrical interference
- Even parity: Set parity bit so total number of 1s (data + parity) is even
 - ➤ e.g., if data is 001, parity bit is 1 → 0011 has even number of 1s
- Want equation, but easiest to start from truth table for this example

$$P = a'b'c + a'bc' + ab'c' + abc$$

Example: Converting from Circuit to Truth Table

First convert to circuit to equation, then equation to table

Inp	uts					Outputs
a	b	С	ab	(ab)'	C'	F
0	0	0	0	1	1	1
0	0	1	0	1	0	0
0	1	0	0	1	1	1
0	1	1	0	1	0	0
1	0	0	0	1	1	1
1	0	1	0	1	0	0
1	1	0	1	0	1	0
1	1	1	1	0	0	0