Last update: Oct. 28, 2020

電磁學 (一) Electromagnetics (I)

7. 電容

Capacitance

授課老師:國立清華大學 電機工程學系 黃衍介 教授

Yen-Chieh Huang, National Tsing Hua University, Taiwan

In this lecture, we will introduce a charge-storage device, called capacitor.

- 7.1 Charge storage 電荷儲存
- 7.2 Parallel-plate capacitor 平板電容器
- 7.3 Cylindrical and spherical capacitors 圓柱及 球形電容器
- 7.4 Capacitor circuit 電容電路
- 7.5 Review 單元回顧

電容 Capacitance

7.1 電荷儲存 Charge Storage

Observation 1

Faraday's law of electrostatics $\nabla \times E = 0$

 $\vec{E} \equiv -\nabla V$ defines electric potential

Gauss Law
$$\nabla \cdot \vec{D} = \rho \Rightarrow \nabla \cdot \vec{E} = \frac{\rho}{\varepsilon}$$

$$-\nabla \cdot \nabla V = \frac{\rho}{\mathcal{E}} \quad \text{or} \quad \nabla^2 V = -\frac{\rho}{\mathcal{E}}$$
 (Poisson's equation)

 $V \propto
ho$: electric potential V is linearly proportional to charge ho

Observation 2

•
$$q' = +1$$

$$\vec{E} = E_R \hat{a}_R = \frac{q}{4\pi\varepsilon_0 R^2} \hat{a}_R$$

$$V(R_0) = -\int_{\infty}^{R_0} \vec{E} \cdot \hat{a}_R dR = \frac{q}{4\pi\varepsilon_0 R_0}$$

electric potential V is linearly proportional to charge q

Capacitance

From previous calculations

$$V \propto Q$$

define capacitance as

$$C \equiv \frac{Q}{V}$$
 (positive value only),

which is the stored charge per unit voltage (a function of device geometry and relative permittivity ε_r).

7.1 電荷儲存

Charge Storage

- Electric potential V is linearly proportional to the amount of charges q generating it.
- Connecting a battery (applying a voltage V) to a pair of conductors (electrodes) stores charges into the system.
- Capacitance is the amount of stored charge per unit voltage, depending on the potential difference or voltage between electrodes, nearby material, and geometry of the system.

電容 Capacitance

7.2 平板電容器 Parallel-plate Capacitor

Parallel-plate Capacitance

Assumptions: $L_x, L_z >> d$

⇒ fields are more or less uniform between plates (fringe fields are ignored during calculation)

Total enclosed charge = $0 \Rightarrow$ no field outside the two plates

Apply Gauss law to the surface defined by red dashed line

$$\varepsilon \vec{E} \cdot \vec{S} = Q \implies (-\varepsilon E_y \hat{a}_y) \cdot (-S \hat{a}_y) = Q \implies E_y = \frac{Q}{\varepsilon S} = \frac{\rho_s}{\varepsilon}$$

where S is the total area of the plate, $\varepsilon = \varepsilon_0 \varepsilon_r$ is permittivity of the dielectric, and Q is the total charge on S.

$$\vec{E} = -\frac{\rho_s}{\varepsilon} \hat{a}_y \qquad \vec{D} = \varepsilon \vec{E} = -\rho_s \hat{a}_y$$
 0 in conductor Recall the B.C. $\hat{a}_{n2} \cdot (\vec{D}_1 - \vec{P}_2) = \rho_s \qquad \hat{a}_{n,conductor} \cdot \vec{D}_{dielectric} = \rho_s$

Recall the B.C.
$$\hat{a}_{n2} \cdot (\vec{D}_1 - \vec{D}_2) = \rho_s$$
 $\hat{a}_{n,conductor} \cdot \hat{D}_{dielectric} = \rho$

Upper conducting plate: $-\hat{a}_v \cdot (-\rho_s \hat{a}_v) = \rho_s$

Lower conducting plate: $\hat{a}_{v} \cdot (-\rho_{s} \hat{a}_{v}) = -\rho_{s}$

The voltage across the two electrodes is $V = E_y d = \frac{dQ}{cS}$

The capacitance of this parallel plate capacitor is $C = \frac{Q}{V} = \frac{\varepsilon S}{d}$

A large area S, a high permittivity ε_r , and a small electrode gap d help to store charges under a voltage.

Why does large ε_r give large C?

E=V/d is fixed for a given V, but a large ε_r results in a large $D=\varepsilon E. \to Q$ becomes larger due to $D \propto \rho$ in $\nabla \cdot \vec{D} = \rho$.

Therefore, $C = \frac{Q}{V}$ becomes larger when $\varepsilon_r \uparrow \to Q \uparrow$ for fixed V.

Physically, large $\stackrel{v}{\varepsilon_{\rm r}}$ = 1+ χ_e \rightarrow large χ_e , but $\vec{P} = \varepsilon_0 \chi_e \vec{E}$.

Recall $\vec{P} \cdot \hat{a}_n = \rho_{ps}$ | large P means large ρ_{ps}

 \implies large ρ_{ps} holds a large Q for a fixed V.

7.2 平板電容器

Parallel-plate Capacitor

 Ignoring fringe fields, the capacitance of a parallelplate capacitor is given by

$$C \equiv \frac{Q}{V} = \frac{\varepsilon S}{d},$$

where S is the area of the electrode plate, d is the separation of the electrodes, and ε is the permittivity of the dielectric between the electrodes.

電容 Capacitance

7.3 圓柱及球形電容 Cylindrical and Spherical Capacitors

Cylindrical Capacitor (1)

Again, ignore the fringe fields at the edges.

Apply Gauss's law to the cylindrical Gaussian surface at

a constant
$$r$$
 $\varepsilon \oint_{S} \vec{E} \cdot d\vec{s} = Q$

$$\hat{a}_r E_r = \hat{a}_r \frac{Q/\varepsilon}{2\pi rL}$$

The electric potential across the two electrodes is

$$V_{ab} = -\int_{r=b}^{r=a} \vec{E}_r \cdot d\vec{r} = \frac{Q}{2\pi \varepsilon L} \ln \frac{b}{a}$$

Cylindrical Capacitor (2)

Take the ratio of Q and V to obtain the **capacitance** for a cylindrical capacitor

$$C \equiv \frac{Q}{V} = \frac{2\pi \varepsilon L}{\ln(b/a)}$$

For a transmission line, what we care is the capacitance

per unit length

$$C_l \equiv \frac{\rho_l}{V} = \frac{2\pi\varepsilon}{\ln(b/a)}$$

Coaxial-cable transmission line

Spherical Capacitor

Again, apply the Gauss law to the Gaussian surface at a constant $R \Rightarrow \varepsilon \oint_{S} \vec{E} \cdot d\vec{s} = Q$

to obtain $E_R = \frac{Q}{4\pi \varepsilon R^2}$

Calculate the electric potential between

$$R = a$$
 and $R = b$

$$V_{ab} = -\int_{R=b}^{R=a} \vec{E}_R \cdot d\vec{R} = \frac{Q}{4\pi\varepsilon} (\frac{1}{a} - \frac{1}{b})$$
 conductors

Take the ratio of charge to voltage to obtain the capacitance

dielectric

$$C \equiv \frac{Q}{V} = \frac{4\pi\varepsilon}{(1/a - 1/b)}$$

7.3 圆柱及球形電容器

Cylindrical and spherical capacitors

- A cylindrical capacitor consists of concentric electrodes filled with dielectric in between.
- The capacitance per unit length for a coaxial cable is given by $C_l = \frac{2\pi\varepsilon}{\ln(b/a)}$

 A spherical capacitor consists of two concentric spherical electrodes filled with dielectric in between.

電容 Capacitance

7.4 電容電路 Capacitor Circuit

Serial Capacitors

Circuit expression

$$V = \frac{Q}{C_{sr}} = \sum_{i} V_{i} = \frac{Q}{C_{1}} + \frac{Q}{C_{2}} + \frac{Q}{C_{3}} \dots + \frac{Q}{C_{n}} \implies \frac{1}{C_{sr}} = \frac{1}{C_{1}} + \frac{1}{C_{2}} + \frac{1}{C_{3}} \dots + \frac{1}{C_{n}}$$

Equivalent capacitance – inverse of the inverse sum of C_i

$$C_{sr} = \left(\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} \dots + \frac{1}{C_n}\right)^{-1}$$
 Dominant term is the small C in
$$\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} \dots + \frac{1}{C_n}$$

Parallel Capacitors

parallel connected capacitors - equivalent circuit

Circuit expression

$$C_pV = Q = Q_1 + Q_2 + Q_3 + ... + Q_n$$
 sum of individual capacitances
= $C_1V + C_2V + C_3V ... + C_nV$ $\Rightarrow C_p = C_1 + C_2 + C_3... + C_n$

Dominant term is the large C in $C_1 + C_2 + C_3 ... + C_n$ The capacitance becomes larger as the areas for storing Q are added up.

RC Discharging Circuit

capacitor discharging current

= current entering the resistor

$$\frac{dQ_c}{dt} + \frac{V_c(t)}{R} = 0$$

Recall C = -

capacitor

$$C \frac{dV_c}{dt} + \frac{V_c(t)}{R} = 0$$

Capacitor voltage drops exponentially V_{α} with a time constant $\tau = RC$

resistor

$$C\frac{dV_c}{dt} + \frac{V_c(t)}{R} = 0$$
 $V_c(t) = V_0 e^{-t/RC} = V_0 e^{-t/\tau}$

7.4 電容電路

Capacitor circuit

The inverse of the equivalent capacitance of serial capacitors is the inverse sum of all the individual capacitances.

$$C_{sr} = \left(\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} \dots + \frac{1}{C_n}\right)^{-1}$$

 The equivalent capacitance of parallel capacitors is the sum of all the individual capacitances.

$$C_p = C_1 + C_2 + C_3 \dots + C_n$$

• An RC circuit charges/discharges with a time constant equal to $\tau = RC$

電容 Capacitance

7.5 單元回顧 Review

1. A capacitor is a charge storage device.

2. Capacitance is defined as the amount of charges stored in a capacitor per unit voltage.

$$C \equiv \frac{Q}{V}$$

3. A parallel-plate capacitor has a capacitance of

4. In general, a large area S, a high permittivity ε_r , and a small electrode gap d give a high capacitance.

5. Calculation of a cylindrical capacitor leads to a formula for the capacitance per unit length of a coaxial cable

$$C_l \equiv \frac{\rho_l}{V} = \frac{2\pi\varepsilon}{\ln(b/a)}$$

Coaxial-cable transmission line

Cylindrical capacitor

6. The equivalent capacitance of serially connected capacitors is the inverse of the inverse sum of individual capacitances.

$$\frac{1}{C_{sr}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} \dots + \frac{1}{C_n}$$

7. The equivalent capacitance of parallel connected capacitors is the sum of individual capacitances.

$$C_p = C_1 + C_2 + C_3 \dots + C_n$$

$$+Q_1 \qquad +Q_2 \qquad +Q_3 \qquad +Q_4 \qquad +Q_n \qquad +Q_n \qquad V \qquad \equiv \qquad +Q_1 \qquad +Q$$

equivalent circuit parallel connected capacitors

8. The characteristic charging/discharging time of an RC circuit is $\ensuremath{\tau} = RC$.

THANK YOU FOR YOUR ATTENTION

Review Questions

1. When you design a capacitor, what are the key parameters to increase its capacitance?

Ans: From the formula of a parallel-plate capacitor,

$$C = \frac{\varepsilon S}{d}$$

one could in general increase the capacitance of a capacitor by increasing the electrode areas and the permittivity of the dielectric between the electrodes, and decreasing the separation of the electrodes.

2. If you have a few capacitors in your hands and you want to connect them together to have a high capacitance for your circuit, would you choose serial or parallel connections for your capacitors?

Ans: To solve this problem, one could of course prove from the following two formulas for serial and parallel capacitons s_{sr}

$$\frac{1}{C_{sr}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} \dots + \frac{1}{C_n}$$

$$C_p = C_1 + C_2 + C_3 \dots + C_n.$$

However, from the circuit diagrams shown in Sec. 7.4, one can already see that the parallel capacitors store more charges from a increased area. Therefore, to increase the capacitance, parallel connection is the choice.

3. For a high-speed circuit containing R and C, if you would like to have a signal bandwidth > 1 GHz, what is the requirement on the RC time constant of the circuit?

Ans: Consider a sinusoidal signal of 1 GHz in the circuit. Since the charging and discharging time in the circuit has to be less than 1/1 GHz ~ 1 ns to support the 1 GHz signal, the RC time constant of the circuit has to be less than 1 ns.