## Elementary Linear Algebra - MATH 2250 - Exam 2

Please read and sign (papers without printed name and signature will not be graded):
"On my honor, I have neither given nor received unauthorized aid in doing this assignment."

| Print name: | Sign: |  |
|-------------|-------|--|
|             |       |  |

- 1. Which of the following (if any) are subspaces. For any that are **not** subspaces give an example of how they violate a property of subspaces.
  - (a) Given a  $3 \times 5$  matrix with full row rank, the set of all solutions to  $Ax = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ .
  - (b) All  $3 \times 5$  matrices with  $\begin{bmatrix} -3 \\ 2 \\ 1 \end{bmatrix}$  in their column space.
  - (c) All  $5 \times 3$  matrices with (2,1,3) in their column space.
  - (d) All vectors  $\boldsymbol{x}$  with  $||\boldsymbol{x}-\boldsymbol{y}||=||\boldsymbol{y}||,$  for some given fixed vector  $\boldsymbol{y}\neq \boldsymbol{0}.$

- 2. (a) Find the matrix P that projects every vector  $\boldsymbol{b}$  in  $\mathbb{R}^3$  onto the line in the direction of (1,2,3).
  - (b) Describe the Four fundamental subspaces of P by providing a basis for each of them.

3. Write down the  $6 \times 4$  incidence matrix A of this graph. What is the dimension of the column space C(A)? Describe the null space N(A).



4. (a) Consider the following data:

| Year | US Population (million) |
|------|-------------------------|
| 1900 | 70                      |
| 1920 | 100                     |
| 1940 | 130                     |
| 1980 | 230                     |

Suppose the population growth is linear, and you want to fit the best line y = Cx + D to these values, where x = 0 represents the year 1900. What is the matrix A in the system  $A \begin{bmatrix} C \\ D \end{bmatrix} = \mathbf{b}$ ? Find the best  $\hat{C}, \hat{D}$ , and the heights  $p_1, p_2, p_3, p_4$  of that line  $y = \hat{C}x + \hat{D}$  at years 1900, 1920, 1940, and 1980. What is the error vector  $\mathbf{e}$ ? Show by numbers that  $\mathbf{e}$  is perpendicular to C(A).

(b) What is your estimate for the population in year 1960? 2000? 2020? 3000?

5. Start with the two vectors (columns of A):

$$a_1 = \begin{bmatrix} \sin \theta \\ 0 \\ \cos \theta \end{bmatrix}$$
 and  $a_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ .

- (a) With  $q_1 = a_1$  find an orthonormal basis  $q_1, q_2$  for the space spanned by  $a_1$  and  $a_2$  (column space of A).
- (b) What shape is the matrix R in A = QR and why is  $R = Q^T A$  (Here Q has columns  $q_1, q_2$ )? Compute R.
- (c) Find the projection matrices  $P_A$  and  $P_Q$  onto the column spaces of A and Q.