1. (currently amended) A compound of formula I

wherein

R1 and R2 are each independently F or H or one of said radicals R1 and R2 may be OH;

R3 is OH or F, with the proviso that at least one of the radicals R1, R2 and R3

must be F;

R4 is OH;

A is O, NH, CH₂, S or a bond;

X is C, O, S or N, with the proviso that X is C when Y is O or S;

Y is N, O or S;

m is 1 or 2:

is hydrogen, F, Cl, Br, I, OH, CF₃, NO₂, CN, COOH, CO(C₁-C₆)-alkyl, COO(C₁-C₆)-alkyl, CONH₂, CONH(C₁-C₆)-alkyl, CON[(C₁-C₆)-alkyl]₂, (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₂-C₆)-alkynyl, (C₁-C₆)-alkoxy, HO-(C₁-C₆)-alkyl[[,]] or (C₁-C₆)-alkyl-O-(C₁-C₆)-alkyl, phenyl, benzyl, (C₁-C₆)-alkoxycarboxyl,

wherein said $CO(C_1-C_6)$ -alkyl, $COO(C_1-C_6)$ -alkyl, $CONH(C_1-C_6)$ -alkyl, and $CONH(C_1-C_6)$ -alkoxycarboxyl-radicals are optionally substituted with one or more fluorine atoms[[,]];

 $SO_2-NH_2, SO_2NH(C_1-C_6)-alkyl, SO_2N[(C_1-C_6)-alkyl]_2, S-(C_1-C_6)-alkyl, SO-(CH_2)_6-phenyl, SO_2-(C_1-C_6)-alkyl, SO-(CH_2)_6-phenyl, SO_2-(C_1-C_6)-alkyl, SO_2-(CH_2)_6-phenyl,$

wherein said SO₂NH(C₁-C₆) alkyl, SO₂N[(C₁-C₆) alkyl]₂, S (C₁-C₆) alkyl, SO (C₁-C₆) alkyl and SO₂-(C₁-C₆) alkyl radicals are optionally substituted with one or more fluorine atoms, and wherein the phenyl ring of said S (CH₂)₀-phenyl, SO (CH₂)₀-phenyl and SO₂-(CH₂)₀-phenyl radicals is optionally mono- or disubstituted with F, Cl, Br, OH, CF₃, NO₂, CN, OCF₃, O (C₁-C₆) alkyl, (C₁-C₆) alkyl or NH₂ and wherein o is 0, 1, 2, 3, 4, 5, or 6,

NH₂, NH-(C₁-C₆)-alkyl, N((C₁-C₆)-alkyl)₂, NH(C₁-C₇)-acyl, phenyl or O-(CH₂)₀-phenyl,

wherein the phenyl ring of said phenyl and O-(CH₂)₀-phenyl radicals is optionally mono-, di-, or trisubstituted with F, Cl, Br, I, OH, CF₃, NO₂, CN, OCF₃, O-(C₁-C₆)-alkyl, (C₁-C₆)-alkyl, NH₂, NH(C₁-C₆)-alkyl, N((C₁-C₆)-alkyl)₂, SO₂-CH₃, COOH, COO-(C₁-C₆)-alkyl or CONH₂, and wherein o is as hereinabove defined;

or, when Y is S, R5 and R6 taken together with the carbon atoms to which they are attached may form a phenyl ring;

R6 is H[[,]] or (C₁-C₆)-alkyl, (C₁-C₆)-alkenyl, (C₃-C₆)-cycloalkyl, or phenyl wherein said phenyl radical is optionally substituted with halogen or (C₁-C₄)-alkyl;

B is (C_0 - C_{15})-alkanediyl, wherein one or more of the carbon atoms in said alkanediyl radical may be replaced, independently of one another, with -O-, -(C=O)-, -CH=CH-, -C=C-, -S-, -CH(OH)-, -CHF-, $-CF_2$ -, -(S=O)-, $-(SO_2)$ -, $-N((C_1-C_6)$ -alkyl)-, $-N((C_1-C_6)$ -alkyl-phenyl)- or -NH- $-CH_2$ - or -CO--NH- $-CH_2$ -;

n is **[[**0, 1,**]]** 2**[[**,**]]** <u>or</u> 3 **[[**or 4**]]**;

Cyc1 is a [[3-, 4-,]] 5-[[,]] or 6- [[or 7-]]membered saturated, partially saturated or unsaturated ring, wherein one carbon atom of said ring may be replaced by [[O, N or]] S;

R7, R8, and R9 are each independently hydrogen, F, Cl, Br, I, OH, CF₃, NO₂, CN, COOH, COO(C₁-C₆)-alkyl, CO(C₁-C₄)-alkyl, CONH₂, CONH(C₁-C₆)-alkyl, CON[(C₁-C₆)-alkyl]₂, (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₂-C₆)-alkynyl, (C₁-C₈)-alkyl, HO-(C₁-C₆)-alkyl[[,]] or (C₁-C₆)-alkyl-O-(C₁-C₆)-alkyl, CONH(C₁-C₆)-alkyl, wherein said COO(C₁-C₆)-alkyl, CO(C₁-C₄)-alkyl, CONH(C₁-C₆)-alkyl, CON[(C₁-C₆)-alkyl]₂, (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₂-C₆)-alkylyl, (C₁-C₆)-alkyl, HO-(C₁-C₆)-alkyl and (C₁-C₆)-alkyl-O-(C₁-C₆)-alkyl

radicals are optionally substituted with one or more fluorine atoms,

 SO_2-NH_2 , $SO_2NH(C_1-C_6)$ -alkyl, $SO_2N[(C_1-C_6)$ -alkyl, SO_2-NH_2 , SO_2-

wherein said SO₂NH(C₁-C₆) alkyl, SO₂N[(C₁-C₆) alkyl]₂, S (C₁-C₆) alkyl, SO (C₁-C₆) alkyl and SO₂-(C₁-C₆) alkyl radicals are optionally substituted with one or more fluorine atoms, and wherein the phenyl ring of said S (CH₂)₆-phenyl, SO (CH₂)₆-phenyl and SO₂-(CH₂)₆-phenyl radicals is optionally mono- or disubstituted with F, Cl, Br, OH, CF₃, NO₂, CN, OCF₃, O (C₁-C₆) alkyl, (C₁-C₆) alkyl or NH₂, and wherein o is as hereinabove defined,

 NH_2 , NH- $(C_1$ - C_6)-alkyl, $N((C_1$ - C_6)-alkyl)₂, $NH(C_1$ - C_7)-acyl, phenyl or O- $(CH_2)_0$ -phenyl,

wherein the phenyl ring of said phenyl and O-(CH₂)₀-phenyl radicals is optionally mono-, di-, or trisubstituted with F, Cl, Br, I, OH, CF₃, NO₂, CN, OCF₃, (C₁-C₈)-alkoxy, (C₁-C₆)-alkyl, NH₂, NH(C₁-C₆)-alkyl, NH₂, NH(C₁-C₆)-alkyl, NH₂, NH(C₁-C₆)-alkyl or CONH₂, and wherein o is as hereinabove defined;

or R8 and R9 taken together with the carbon atoms to which they are attached form a 5-[[,]] or 6- or 7- membered, saturated, partially saturated or completely unsaturated ring herein referred to as Cyc2,

wherein one or two carbon atom[[(s)]] in said Cyc2 ring [[are]] is optionally replaced by [[N,]] O or S, and wherein said Cyc2 ring is optionally substituted with (C₁-C₆)-alkyl, (C_2 - C_5)-alkenyl,

wherein said (C₁-C₆) alkyl, (C₂-C₅) alkenyl and (C₂-C₅) alkynyl radicals are optionally substituted with F, Cl, OH, CF₃, NO₂, CN, COO(C₁-C₄) alkyl, CONH₂, CONH(C₁-C₄) alkyl or OCF₃, and wherein a -CH₂- group contained in said (C₁-C₆) alkyl, (C₂-C₅) alkenyl and (C₂-C₅) alkynyl radical[[s]] is optionally replaced by -O-;

and pharmaceutically acceptable salts thereof.

2. (currently amended) The compound of Claim 1 wherein:

R1 and R2 are each independently F or H or one of said radicals R1 and R2 may be OH, with the proviso that at least one of said radicals R1 and R2 is F;

R3 is OH:

R4 is OH;

A is O [[or NH]];

Υ is N or S: is 1 or 2; m R5 is hydrogen, F, Cl, Br, I, OH, CF₃, NO₂, CN, COOH, CO(C₁-C₆) alkyl, COO(C1-C6) alkyl, CONH2, CONH(C1-C6) alkyl, CONI(C1-C6) alkyl)2, (C_1-C_6) -alkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -alkynyl, (C_1-C_6) -alkoxy, $(C_$ alkyl[[,]] or (C₁-C₆)-alkyl-O-(C₁-C₆)-alkyl, phenyl, benzyl or (C1-C₆)alkoxycarboxyl, wherein said CO(C1-C6) alkyl, COO(C1-C6) alkyl, CONH(C1-C6) alkyl, $CON[(C_1-C_6)-alkyl]_2$, $(C_1-C_6)-alkyl$, $(C_2-C_6)-alkenyl$, $(C_2-C_6)-alkynyl$, (C_1-C_6) -alkoxy, $HO-(C_1-C_6)$ -alkyl[[,]]and (C_1-C_6) -alkyl $-O-(C_1-C_6)$ -alkyl[,](C1-C6) alkoxycarboxyl and SO (C₁-C₆) alkyl radicals are optionally substituted with one or more fluorine atoms. or when Y is S, R5 and R6 taken together with the carbon atoms to which they are attached may form a phenyl ring; R6 is H[[,]] or (C_1-C_6) -alkyl, (C_4-C_6) -alkenyl, (C_3-C_6) -cycloalkyl, or phenyl wherein said phenyl radical is optionally substituted with halogen or (C₄-C₄) alkyl; В is (C₀-C₁₅) alkanediyl, wherein one or more of the carbon atoms in said alkanediyl radical may be replaced, independently of one another, with -O-, (C-O), CH-CH, C=C, S, CH(OH), CHF, CF₂, (S-O), (SO₂), -N((C₁-C₆)-alkyl)-, -N((C₁-C₆)-alkyl-phenyl)- or -NH- -CH₂- or -CO-NH-CH₂-; is [[0, 1,]] 2[[,]] or 3 [[or 4]]; n Cyc1 is a [[3-, 4-,]] 5-[[,]] or 6- [[or 7]]-membered saturated, partially saturated or unsaturated ring, wherein one carbon atom of said ring may be replaced by [[O or]] S; R7, R8, and R9 are each independently hydrogen, F, Cl, Br, I, OH, CF₃, NO₂, CN, COOH, COO(C1-C6)-alkyl, CO(C1-C4)-alkyl, CONH2, CONH(C1-C6)-alkyl, $CON[(C_1-C_6)-alkyl]_{27}$, $(C_1-C_6)-alkyl$, $(C_2-C_6)-alkynyl$, $(C_1-C_8)-alkynyl$, (alkoxy, HO-(C₁-C₆)-alkyl[[,]] or (C₁-C₆)-alkyl-O-(C₁-C₆)-alkyl, $\frac{S-(C_1-C_6)}{alkyl}$ CF₃ or SO-(C₁-C₆)-alkyl, wherein said COO(C₁-C₆) alkyl, CO(C₁-C₄) alkyl, CONH(C₁-C₆) alkyl,

is C, O or N, with the proviso that X is C when Y is S;

X

substituted with one or more fluorine atoms,

CON[(C_1 - C_6)-alkyl]₂, (C_1 - C_6)-alkyl, (C_2 - C_6)-alkenyl, (C_2 - C_6)-alkynyl, (C_1 - C_8)-alkoxy, HO-(C_1 - C_6)-alkyl[[,]] and (C_1 - C_6)-alkyl-O-(C_1 - C_6)-alkyl, S-(C_1 - C_6) alkyl and SO-(C_1 - C_6)-alkyl radicals are optionally

or R8 and R9 taken together with the carbon atoms to which they are attached form a 5-[[,]] or 6- [[or 7-]] membered, saturated, partially saturated or completely unsaturated ring herein referred to as Cyc2,

wherein one or two-carbon atom[[(s)]] in said Cyc2 ring is optionally replaced by [[N,]] O or S, and wherein said Cyc2 ring is optionally substituted with (C₁-C₆)-alkyl, (C₂-C₅)-alkenyl or (C₂-C₅)-alkynyl, wherein said (C₁-C₆)-alkyl, (C₂-C₅)-alkenyl and (C₂-C₅)-alkynyl radicals are is optionally substituted with F, Cl, OH, CF₃, NO₂, CN, COO(C₁-C₄)-alkyl, CONH₂, CONH(C₁-C₄)-alkyl or OCF₃, and wherein a -CH₂- group contained in said (C₁-C₆)-alkyl, (C₂-C₅)-alkenyl and (C₂-C₅)-alkynyl-radical[[s]] is optionally replaced by -O-.

- 3. (original) The compound of Claim 1 wherein the sugar residues are beta(β)-linked and the stereochemistry in the 2, 3 and 5 position of the sugar residue has the D-gluco configuration.
- 4. (currently amended) The compound of Claim 1 wherein:

R1 and R2 are each independently F or H or one of said radicals R1 and R2 may be OH, with the proviso that at least one of said radicals R1 and R2 is F;

R3 is OH;

R4 is OH;

A is O:

X is C, O or N, with the proviso that X is C when Y is S;

Y is N or S;

m is 1;

R5 is hydrogen, F, CI, CF_3 , $COO(C_1-C_4)$ -alkyl, (C_1-C_5) -alkyl, (C_2-C_4) -alkenyl, (C_2-C_4) -alkynyl, (C_1-C_4) -alkoxy, C_1-C_4 -alkyl C_1-C_4 -alkyl, C_1-C_4 -alkyl, C_1-C_4 -alkyl, C_1-C_4 -alkoxycarboxyl, C_1-C_4 -alkyl- $C_1-C_$

or when Y is S, R5 and R6 taken together with the carbon atoms to which they are attached may form a phenyl ring;

- R6 is H[[,]] or (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₃-C₆)-cycloalkyl, or phenyl wherein said phenyl radical is optionally substituted with halogen or (C₄-C₄)-alkyl;
- B is (C₁-C₄)-alkanediyl, wherein one carbon atom in said alkanediyl radical may be replaced with -O-, -(C=O)-, -CH(OH)-, -CHF-, -CF₂-, <u>-CH₂- or -CO-NH-CH₂-;</u>
- n is 2 or 3;

Cyc1 is an unsaturated 5- or 6-membered ring, wherein one carbon atom of said ring may be replaced by [[O or]] S;

R7, R8, and R9 are each independently hydrogen, F, Cl, Br, I, OH, (C₁-C₄)-alkyl, OCH₂CF₃, (C₁-C₈)-alkoxy, HO-(C₁-C₆)-alkyl, (C₁-C₄)-alkyl-O-(C₁-C₄)-alkyl, SCF₃-or OCF₃,

or R8 and R9 taken together form the radicals -C=CH-O-,

-CH=CH-S- or -CH=CH-CH=CH- and, with the carbon atoms to which they are attached, form an unsaturated or partially saturated 5- or 6-membered ring, said ring being optionally substituted by (C_1-C_4) -alkoxy or -O (CH₂)-O- wherein p is 1 or 2.

5. (currently amended) The compound of Claim 1 wherein:

R1 and R2 are each independently F or H, with the proviso that at least one of said radicals R1 and R2 is F;

R3 is OH;

R4 is OH:

A is O;

X is C and Y is S, or is O and Y is N, or is N and Y is N;

m is 1;

R5 is hydrogen, CF₃, (C₁-C₆)-alkyl, or when Y is S, R5 and R6 taken together with the carbon atoms to which they are attached may form a phenyl ring,

R6 is $H[[,]] \underline{or} (C_1-C_4)$ -alkyl $\underline{or} \underline{or} \underline{or} (C_1-C_4)$ -alkyl $\underline{or} \underline{or} \underline{o$

B is $-CH_2$ -, $-C_3H_6$ -, or -CO-NH- $-CH_2$ - or -CO-CH₂-CH₂-;

n is 2 or 3:

Cyc1 is an unsaturated 5- or 6-membered ring, wherein one carbon atom of said ring may be replaced by S;

R7, R8, and R9 are each independently hydrogen, F, Cl, Br, I, (C₁-C₆)-alkyl, (C₁-C₄)-alkyl, SCF3 or OCF3,

or R8 and R9 taken together form the radicals –C=CH-O- or –CH=CH-CH=CH- and, with the carbon atoms to which they are attached, form an unsaturated or partially saturated 5- or 6-membered ring, said ring being optionally substituted by (C1-C4)-alkoxy.

6. (original) The compound of Claim 1 wherein:

R1 and R2 are each independently F or H, with the proviso that at least one of said radicals R1 and R2 is F;

R3 is OH;

R4 is OH;

A is O;

X is C and Y is S, or is N and Y is N;

m is 1;

R5 is hydrogen, CF₃, (C₁-C₆)-alkyl, or when Y is S, R5 and R6 taken together with the carbon atoms to which they are attached may form a phenyl ring,

R6 is H or (C_1-C_4) -alkyl;

B is $-CH_2$ - or -CO-NH- CH_2 -;

n is 2 or 3;

Cyc1 is phenyl or thiophene;

R7, R8, and R9 are each independently hydrogen or Cl,

or R8 and R9 taken together with the carbon atoms to which they are attached, form a furan ring or a phenyl ring optionally substituted with methoxy.

- 7. (original) A pharmaceutical composition comprising a compound of Claim 1 and a pharmaceutically acceptable carrier.
- 8. (canceled).
- 9. (withdrawn) A method of treating type 1 or type 2 diabetes which comprises administering to a patient in need thereof a therapeutically effective amount of a compound of Claim 1.
- 10. (withdrawn) A method of lowering blood glucose which comprises administering to a patient in need thereof a therapeutically effective amount of a compound of Claim 1.
- 11. (withdrawn) A method of treating type 1 or type 2 diabetes which comprises administering to a patient in need thereof a therapeutically effective amount of a compound of Claim 1 with at least one other blood glucose-lowering active ingredient.

