Раздел 5 Булевы функции

Напечатано:: Арбакова Анастасия Вячеславовна

Понедельник, 7 Июнь 2021, 04:34

Дата:

Сайт: Электронное обучение ИРНИТУ

Дискретная математика для студентов специальностей

Курс: АСУ,ЭВМ

Книга: Раздел 5 Булевы функции

Оглавление

- §1.Основные понятия и определения.
- §2.Представление функций формулами. Равносильные формулы.
- §3. Принцип двойственности
- §4. Дизъюнктивные и конъюнктивные нормальные формы.
- §5. Совершенные ДНФ и КНФ.

§1.Основные понятия и определения.

Определение1. Функцию f, принимающую одно из двух значений, 0 или 1, от n переменных, каждая из которых принимает одно из двух значений, 0 или 1, называется булевой функцией $f(x_1, x_2, ..., x_n)$ от n переменных.

Иначе говоря, булевой называется функция вида:

$$f: \{0,1\}^n \rightarrow \{0,1\}.$$

Множество булевых функций от ${\bf n}$ переменных будем обозначать ${\bf P}_n$.

Любая <u>булева</u> <u>функция</u> может быть задана в виде **таблицы истинности**. Если значение функции f зависит от n переменных то таблица истинности содержит 2^n строк, соответствующих всем различным комбинациям значений этих переменных.

Пример 1.1.

Рассмотрим, например, устройство, фиксирующее принятие некоторой резолюции комитетом <трех>. Каждый член комитета при одобрении резолюции нажимает свою кнопку; если большинство членов согласны, то резолюция принимается, что фиксируется регистрирующим прибором. Устройство реализует функцию $f(x_1, x_2, x_3)$, таблица истинности которой имеет вид таблицы1.

Таблица 1. $x_3 \mid f(x_1, x_2, x_3)$ $x_3 \mid f(x_1, x_2, x_3)$ x_1 x_2 x_1 x_2 0 0 0 1 0 0 0 1 0 1 0 1 1 1 0 1 1 1 1

Число булевых функций от ${\it n}$ переменных равно числу столбцов, которые можно сопоставить строкам таблиц истинности и равно , т.е. 2^{2^n} , т.е. $|{\it P}_{\it n}|=2^{2^n}$.

<u>Булевы функции</u> от одной переменной приведены в таблицах 2,3 от двух переменных в таблицах 4,5.

			Í	ľаблица 2.
x	f_{θ}	f_1	f_2	f_3
0	0	0	1	1
1	0	1	0	1

Таблииа 3.

функция	обозначение	название
f_{θ}	0	Конст.0
f_{I}	x	x
f_2	$\neg x, \overline{x}$	Отрицание х
f_3	1	Конст.1

Loading [MathJax]/jax/output/CommonHTML/jax.js

Таблица 4.

Перем	енные		Булевы функции														
x_1	<i>X</i> 2	f_{θ}	f_1	f	f	f_4	f_5	f_6	f_7	f_8	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}	f_{15}
				2	3												
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Таблица 5.

обозначение <i>0</i>	название		
0			
	константа нуль.		
$x_1 \wedge x_2$; $x_1 x_2$	конъюнкция		
$\overline{x_1 \rightarrow x_2}$	левая коимпликация		
x_1			
$\overline{x_1 \leftarrow x_2}$	правая коимпликация.		
x_2			
$x_1 \oplus x_2$	сложение по модулю два		
$x_1 \vee x_2$	дизъюнкция		
$x_1 \circ x_2; x_1 \downarrow x_2$	функция <u>Вебба</u> , стрелка Пирса		
$x_1 \equiv x_2$	функция эквивалентности		
\overline{x}_{2} , $\neg x_{2}$	отрицание.		
$x_1 \leftarrow x_2$	правая импликация		
\overline{x}_{1} , $\neg x_{1}$	отрицание.		
$x_1 \rightarrow x_2$	левая импликация, импликация		
$x_1 \mid x_2$	функция Шеффера.		
1	константа единица.		
	x_{1} $x_{1} \leftarrow x_{2}$ $x_{1} \oplus x_{2}$ $x_{1} \vee x_{2}$ $x_{1} \vee x_{2}$ $x_{1} = x_{2}$ $x_{1} = x_{2}$ $x_{1} \leftarrow x_{2}$ $x_{1} \leftarrow x_{2}$ $x_{1} \rightarrow x_{2}$ $x_{1} \rightarrow x_{2}$ $x_{1} \rightarrow x_{2}$		

Условимся называть булевы функции от одной и двух переменных **элементарными булевыми** функциями.

<u>Булевы функции</u> от одной и двух переменных являются *операциями* на множестве булевых функций.

§2.Представление функций формулами. Равносильные формулы.

Пусть $F = \{f_1, f_2, ..., f_m\}$ - множество булевых функций. Φ ормулой над F называется выражение вида $f(t_1, t_2, ..., t_n)$, где и t_i либо переменная, либо формула над F.

Всякой формуле однозначно соответствует некоторая <u>булева функция</u>. Зная таблицы истинности для функций множества \boldsymbol{F} можно вычислить таблицу истинности той функции, которую реализует данная формула.

Пример 2.1.

§3. Принцип двойственности

Пусть $f(x_1, x_2, ..., x_n) \in P_n$ - булева функция. Тогда функция $f^*(x_1, x_2, ..., x_n)$ определенная следующим образом:

$$f^*(x_1,...,x_n) = \overline{f}(\overline{x}_1,...,\overline{x}_n)$$

называется двойственной к функции $f(x_1, x_2, ..., x_n)$.

Из определения видно, что двойственность инволютивна: $f^{**} = f$.

Пример

Двойственные функции:

\overline{f}	1	0	$x_1 \lor x_2$	$x_1 \wedge x_2$	\boldsymbol{x}	\overline{x}
f^*	0	1	$x_1 \wedge x_2$	$x_1 \vee x_2$	æ	\overline{x}

Функция называется **самодвойственной**, если $f^* = f$.

Пример

Тождественная функция и отрицание *самодвойственны*, а дизъюнкция и конъюнкция — нет.

Принцип двойственности. Если

$$\varphi(x_1,...,x_n) = f(f_1(x_{11},...,x_{1n_1}),...,f_m(x_{m1},...,x_{mn_m})), \text{ To}$$

$$\varphi^*(x_1,...,x_n) = f^*(f_1^*(x_{11},...,x_{1n_1}),...,f_m^*(x_{m1},...,x_{mn_m})).$$

Таким образом, функция, двойственная суперпозиции функций, есть соответствующая суперпозиция двойственных функций.

Принцип двойственности удобен при нахождении двойственных функций, представленных формулами, содержащими лишь конъюнкции, дизъюнкции и отрицания. В этом случае в исходной формуле конъюнкции заменяются на дизъюнкции, а дизъюнкции — на конъюнкции. В следующем пара<u>граф</u>е будут рассмотрены особые функции так.

§4. Дизъюнктивные и конъюнктивные нормальные формы.

Если X - логическая переменная, {0,1}, то выражение

$$x^{\delta} = \begin{cases} x, & ecnu \ \delta = 1, \\ \overline{x}, & ecnu \ \delta = 0 \end{cases}$$

называется литерой. Литеры x и \bar{x} называются контрарными.

Элементарной конъюнкцией или **конъюнктом** называется конъюнкция литер. **Элементарной дизъюнкцией** или **дизъюнктом** называется дизъюнкция литер.

Примерз.1. Формулы $x \vee \overline{y} \vee \overline{z}$ и $x \vee y \vee x \vee \overline{x}$ - дизъюнкты, формулы $\overline{x}_1 x_2 x_3$ и $x_1 x_2 \overline{x}_3$ - конъюнкты, а x является одновременно и дизъюнктом, и конъюнктом.

Дизъюнкция конъюнктов называется **дизъюнктивной нормальной формой (ДНФ)**; конъюнкция дизъюнктов называется **конъюнктивной нормальной формой (КНФ)**.

Примерз.2. Формула $x\overline{y} \lor yz$ — ДНФ, формула ($x \lor z \lor \overline{y}$)($x \lor z$)y — КНФ, а формула $x\overline{y}$ является одновременно КНФ и ДНФ.

Теорема3.1. 1) Любая формула эквивалентна некоторой ДНФ.

2) Любая формула эквивалентна некоторой КНФ.

Алгоритм приведения формулы к ДНФ.

- 1. Выражаем все логические операции, участвующие в построении формулы, через дизъюнкции, конъюнкции и отрицания, используя эквивалентности 11-15 предыдущего пара<u>граф</u>а.
- 2. Используя законы де Моргана, переносим все отрицания к переменным и сокращаем двойные отрицания по правилу $\neg \neg \chi \sim \chi$.
- 3. Используя закон дистрибутивности, преобразуем формулу так, чтобы все конъюнкции выполнялись раньше дизъюнкций.

В результате применения пп. 1-3 получается ДНФ данной формулы.

Пример 3.3. Приведем к ДНФ формулу
$$\varphi = ((x \to y) \lor \neg (y \to z))$$
.

Выразим логические операции $\rightarrow u \downarrow$ через $\land, \lor u \neg$:

$$\varphi \sim (((\overline{x} \vee y) \downarrow \neg (\overline{y} \vee z)) \sim ((\overline{x} \vee y) \vee \neg (\overline{y} \vee z))) .$$

В полученной формуле перенесем отрицание к переменным и сократим двойные отрицания:

Loading [MathJax]/jax/output/CommonHTML/jax.js

$$\varphi \sim (\neg(\overline{x} \vee y) \wedge \neg \neg(\overline{y} \vee z)) \sim ((\overline{\overline{x}} \wedge \overline{y}) \vee \neg(\overline{y} \vee z))$$

Используя закон дистрибутивности, приводим формулу к ДНФ: .

$$\varphi \sim (x \wedge \bar{y} \wedge \bar{y}) \vee (x \wedge \bar{y} \wedge z)$$

Приведение формулы к КН Φ производится аналогично приведению ее к ДН Φ , только вместо п. 3 применяется

3'. Используя закон дистрибутивности преобразуем формулу так, чтобы все дизъюнкции выполнялись раньше, чем конъюнкции.

Пример 3.4. Приведем к КНФ формулу
$$\varphi = (x \to y) \land ((\overline{y} \to z) \to \overline{x})$$
 .

Преобразуем формулу $\,arphi\,$ к формуле, не содержащей

$$\varphi \sim (\overline{x} \vee y) \wedge (\neg(\overline{y} \to z) \vee \overline{x}) \sim (\overline{x} \vee y) \wedge (\neg(\overline{\overline{y}} \vee z) \vee \overline{x})$$

В полученной формуле перенесем отрицание к переменным и сократим двойные отрицания:

$$\varphi \sim (\overline{x} \vee y) \wedge ((\overline{\overline{y}} \wedge \overline{z}) \vee \overline{x}) \sim (\overline{x} \vee y) \wedge (\neg(\overline{y} \wedge \overline{z}) \vee \overline{x})$$

По закону дистрибутивности получаем, что формула эквивалентна формуле $(\bar{x}\vee y)\wedge(\bar{x}\vee\bar{y})\wedge(\bar{x}\vee\bar{z})$, являющейся КНФ.

Упростим полученную формулу:

$$(\bar{x}\vee y)\wedge(\bar{x}\vee\bar{y})\wedge(\bar{x}\vee\bar{z})^{(1)}\sim(\bar{x}\vee(y\wedge\bar{y}))\wedge(\bar{x}\vee\bar{z})^{(2)}\sim(\bar{x}\vee\bar{z})^{(3)}\sim\bar{x}$$

(для преобразования (1) использовался закон дистрибутивности, для (2) — эквивалентность 10, для (3) — закон поглощения).

Таким образом, формула φ эквивалентными преобразованиями приводится к формуле $\overline{\chi}$ (являющейся одновременно <u>ДНФ и КНФ</u> формулы).

§5. Совершенные ДНФ и КНФ.

Любая <u>булева функция</u> может иметь бесконечно много представлений в виде <u>ДНФ и КНФ</u>. Особое место среди этих представлений занимают *совершенные ДНФ (СДНФ)* и *совершенные КНФ (СКНФ)*.

Пусть ($x_1,...,x_n$) — набор логических переменных, $\Delta = (\delta_1,...,\delta_n)$ - набор нулей и единиц.

Конституентой единицы набора называется конъюнкт $K^1(\delta_1,...,\delta_n) = x_1^{\delta_1} x_2^{\delta_2} ... x_n^{\delta_n}$.

Конституентой нуля набора называется дизъюнкт $K^{0}(\delta_{1},...,\delta_{n}) = x_{1}^{1-\delta_{1}} \vee x_{2}^{1-\delta_{2}} \vee ... \vee x_{n}^{1-\delta_{n}}$

Отметим, что $\mathbf{K}^1(\delta_1,...,\delta_n)=1$, $(\mathbf{K}^0(\delta_1,\delta_2,...,\delta_n)=0)$ тогда и только тогда, когда $x_1=\delta_1,\,x_2=\delta_2,...,x_n=\delta_n$.

Пример 4.1 - Формула $X_1 \overline{X}_2 X_3$ есть конституента единицы K^1 (1,0,1), формула $x \lor y \lor \overline{z}$ есть конституента нуля K^0 (0,0,1).

Совершенной ДНФ называется дизъюнкция всех конституент единицы, а **совершенной КНФ** называется конъюнкция всех конституент нуля, среди которых нет одинаковых.

Таким образом; СДНФ (СКНФ) есть ДНФ (КНФ), в которой в каждый конъюнкт (дизъюнкт) каждая переменная x_i из набора $\{x_i,...,x_n\}$ входит ровно один раз, причем входит либо сама x_i ,либо ее отрицание .

Пример 4.2 формула $x_1 \overline{x}_2 x_3 \vee \overline{x}_1 x_2 x_3$ - СДНФ, формула $(x \vee y \vee \overline{z}) \wedge (\overline{x} \vee \overline{y} \vee z) \wedge (\overline{x} \vee y \vee z)$ - СКНФ, а формула $x_1 \overline{x}_2 x_3 \vee \overline{x}_1 x_2 x_3 \vee x_1 \overline{x}_2 x_3$ не является СДНФ.

Для решения задачи нахождения СДНФ и СКНФ, эквивалентных исходной формуле φ , предварительно рассмотрим разложения булевой функции $f(x_1, x_2, ..., x_n)$ по m переменным (для определенности по $x_1, x_2, ..., x_m$) - разложения Шеннона.

ТЕОРЕМА (О разложении булевой функции по переменным)

$$f(x_1, \ldots, x_m, x_{m+1}, \ldots, x_n) = \bigvee_{(\sigma_1, \ldots, \sigma_m)} x_1^{\sigma_1} \wedge \cdots \wedge x_m^{\sigma_m} \wedge f(\sigma_1, \ldots, \sigma_m, x_{m+1}, \ldots, x_m)$$

по всем возможным наборам $(\sigma_1,\dots,\sigma_m)$

Доказательство.

$$(\bigvee_{(\sigma_1,\ldots,\sigma_n)} x_1^{\sigma_1} \wedge \cdots \wedge x_m^{\sigma_m} \wedge f(\sigma_1,\ldots,\sigma_m,x_{m+1},\ldots,x_n))(a_1,\ldots,a_n) =$$

$$= \bigvee_{(\sigma_1,\ldots,\sigma_n)} a_1^{\sigma_1} \wedge \cdots \wedge a_m^{\sigma_m} \wedge f(\sigma_1,\ldots,\sigma_m,a_{m+1},\ldots,a_n) =$$

$$= a_1^{a_1} \wedge \cdots \wedge a_n^{a_n} \wedge f(a_1,\ldots,a_m,a_{m+1},\ldots,a_n) = f(a_1,\ldots,a_n).$$

ЗАМЕЧАНИЕ. Здесь доказывается, что некоторая формула реализует заданную функцию. Для этого достаточно взять произвольный набор значений аргументов функции, вычислить на этом наборе значение формулы, и если оно окажется равным значению функции на этом наборе аргументов, то из этого следует доказываемое утверждение.

следствие 1.

$$f(x_1,\ldots,x_{n-1},x_n)=x_n \wedge f(x_1,\ldots,x_{n-1},1) \vee \overline{x}_n \wedge f(x_1,\ldots,x_{n-1},0).$$

следствие 2.

$$f(x_1,\ldots,x_n) = \bigvee_{f(\sigma_1,\ldots,\sigma_n)=1} x_1^{\sigma_1} \wedge \cdots \wedge x_n^{\sigma_n} \wedge f(\sigma_1,\ldots,\sigma_n).$$

Предельное представление (т.е. когда n=m) булевой функции $f(x_1,x_2,...,x_n)$ в виде

$$\bigvee x_1^{\sigma_1} \wedge \cdots \wedge x_n^{\sigma_n}$$

называется совершенной дизъюнктивной нормальной формой (СДНФ).

ЗАМЕЧАНИЕ. СДНФ называется совершенной, потому что каждое слагаемое в дизъюнкции включает все переменные; дизъюнктивной, потому что главная операция — дизъюнкция, а почему она называется нормальной, объяснено в следующем отступлении.

ТЕОРЕМА. Всякая <u>булева функция</u> (кроме 0) имеет единственную СДНФ.

Доказательство.

$$f(x_1, \dots, x_n) = \bigvee_{\substack{\sigma_1, \dots, \sigma_n \\ \\ \\ \\ \\ f(\sigma_1, \dots, \sigma_n) = 1}} x_1^{\sigma_1} \wedge \dots \wedge x_n^{\sigma_n} \wedge f(\sigma_1, \dots, \sigma_n) =$$

$$= \bigvee_{\substack{f(\sigma_1, \dots, \sigma_n) = 1 \\ \\ \\ f(\sigma_1, \dots, \sigma_n) = 1}} x_1^{\sigma_1} \wedge \dots \wedge x_n^{\sigma_n} \wedge f(\sigma_1, \dots, \sigma_n) =$$

TEOPEMA. Всякая булева функция может быть выражена через дизъюнкцию, конъюнкцию и отрицание:

$$\forall f \in P_n \ \exists \mathcal{F}[\{\vee, \wedge, \neg\}] \ f = \operatorname{func} \mathcal{F}.$$

Доказательство

Если f=0, то $0=x\wedge \overline{x}$. Если $f\neq 0$, то см. предыдущую теорему.

ТЕОРЕМА. Всякая <u>булева функция</u> (кроме 1) может быть единственным образом выражена в виде совершенной конъюнктивной нормальной формы (СКНФ):

$$f(x_1,\ldots,x_n)=\bigwedge_{f^*(\sigma_1,\ldots,\sigma_n)=1}x_1^{\sigma_1}\vee\ldots\vee x_n^{\sigma_n}.$$

Доказательство.

По принципу двойственности из предыдущей теоремы.

Построим совершенные ДНФ и КНФ булевой функции $f(x_1, x_2, x_3)$, заданной таблицей истинности (табл. 4.1).

Таблица 4.1

x_1	x_2	x_3	$f(x_1, x_2, x_3)$	Пример
				▶ СДНФ
0	0	0	0	$\bar{x}_1 x_2 x_3 \vee x_1 \bar{x}_2 x_3 \vee x_1 x_2 \bar{x}_1 \vee x_1 x_2 x_1$
0	0	1	0	
0	1	0	0	▶ СКНФ
0	1	1	1	$(x_1 \lor x_2 \lor x_3) (x_1 \lor x_2 \lor \bar{x}_3)$
1	0	0	0	$(x_1 \vee \bar{x}_2 \vee x_3) (x_1 \vee \bar{x}_2 \vee \bar{x}_3)$
1	0	1	1	_ _ _ _ _ _
1	1	0	1	
1	1	1	1	

Loading [MathJax]/jax/output/CommonHTML/jax.js

Описанный способ нахождения СДНФ и СКНФ по таблице истинности бывает часто более трудоемким, чем следующий алгоритм.

Алгоритм нахождения СДНФ функции, заданной таблицей истинности.

Для нахождения СДН Φ данную формулу приводим сначала к ДН Φ , а затем преобразовываем ее конъюнкты в конституенты единицы с помощью следующих действий:

- а) если в конъюнкт входит некоторая переменная вместе со своим отрицанием, то мы удаляем этот конъюнкт из $ДН\Phi$;
- б) если в конъюнкт одна и та же <u>литера</u> χ^{δ} входит несколько раз, то удаляем все литеры χ^{δ} , кроме одной;
- в) если в некоторый конъюнкт $X_1^{\delta_1}X_2^{\delta_2}...X_n^{\delta_n}$ не входит переменная у, то этот конъюнкт заменяем на эквивалентную формулу $X_1^{\delta_1}X_2^{\delta_2}...X_k^{\delta_k} \wedge (y \vee \overline{y})$ и, применяя закон дистрибутивности, приводим полученную формулу к ДНФ; если недостающих переменных несколько, то для каждой из них к конъюнкту добавляем соответствующую формулу вида $(y \vee \overline{y})$;
- Γ) если в полученной ДНФ имеется несколько одинаковых конституент единицы, то оставляем только одну из них. В результате получается СДНФ.