Matemáticas para las Ciencias Aplicadas I

Flores Morán Julieta Melina Zarco Romero José Antonio

8 de febrero de 2024

1. Un cohete

Flores Morán Julieta Melina

Un cohete es disparado verticalmente hacia arriba y el combustible que lo impulsa se quema durante 60 segundos. Se sabe que, a los Δt s de haber iniciado su desplazamiento, la altura h (en metros) a la que se encuentra el cohete es de

$$h(t) = 40t^2 \ m$$

1. ¿A qué altura se halla el cohete cuando se le agota el combustible?

$$h(60) = 40(60)^2 \ m = 144000m$$

2. ¿Cuál es la rapidez promedio del cohete durante los primeros 60s de su vuelo?

$$r = |v| = \frac{d}{t} = \frac{144000m}{60s} = 2400m/s$$

3. Haga una tabla con tres columnas: una para el tiempo t (donde t=0,10,20,...,60), otra para la posición h(t) y, una tercera para el incremento Δh entre un valor de t y el siguiente. Con base en ella, calcule la rapidez promedio del cohete para cada lapso de 10s desde t=0 hasta t=60.

t	h(t)	Δh	$v = \frac{\Delta h}{10}$
0	0	0	0
10	4000	4000	4000
20	16000	12000	1200
30	36000	20000	2000
40	64000	28000	2800
50	100000	36000	3600
60	144000	44000	4400

4. Haga ahora otra tabla en la que muestre el cálculo de la rapidez promedio del cohete Δt s antes y t s después de $\Delta t=3$ s, para los siguientes valores de t:

$$\frac{1}{10}, \frac{1}{10^2}, \frac{1}{10^3}, \frac{1}{10^4}, \frac{1}{10^5}$$

Δt	$h(3 - \Delta t)$	$h(3 + \Delta t)$	$\Delta h^{-} = h(3) - h(3 - \Delta t)$	$\Delta h^+ = h(3 + \Delta t) - h(3)$	$v^{-} = \frac{\Delta h^{-}}{\Delta t}$	$v^{+} = \frac{\Delta h^{+}}{\Delta t}$
$ \begin{array}{c c} 1 \\ \frac{1}{10} \\ \frac{1}{10^2} \\ \frac{1}{10^3} \\ \frac{1}{10^4} \\ \frac{1}{10^5} \end{array} $	h(2) = 160 h(2.9) = 336.4 h(2.99) = 357.604 h(2.999) = 359.76004 h(2.9999) = 359.9760004 h(2.9999) = 359.97600004	h(4) = 640 h(3.1) = 384.4 h(3.01) = 362.404 h(3.001) = 360.24004 h(3.0001) = 360.0240004 h(3.00001) = 360.002400004	360 - 160 = 200 336.4 - 160 = 23.6 360 - 357.604 = 2.396 360 - 359.76004 = 0.23996 360 - 359.9760004 = 0.0239996 360 - 359.97600004 = 0.002399996	640 - 360 = 280 640 - 384.4 = 24.4 362.404 - 360 = 2.404 360.24004 - 360 = 0.24004 360.0240004 - 360 = 0.0240004 360.0240004 - 360 = 0.002400004	$\frac{200}{1} = 200$ $\frac{23.6}{0.1} = 236$ $\frac{2.36}{0.1} = 239.6$ $\frac{2.396}{0.001} = 239.6$ $\frac{0.23996}{0.0001} = 239.996$ $\frac{0.0239996}{0.00001} = 239.996$ $\frac{0.02399996}{0.00001} = 239.9996$	$\frac{280}{0.0000000000000000000000000000000000$

5. Es razonable suponer que la rapidez instantánea del cohete exactamente a los t=3s, tome un valor intermedio entre la rapidez promedio t s antes y t s después de t=3. Si esto es cierto, según sus cálculos, ¿cuánto vale esa rapidez instantánea?

La tabla muestra que tanto por la izquierda como por la derecha el valor se acerca a 240, por lo que la velocidad instántanea en exactamente 3 segundos debe ser 240m/s. Este valor es el valor obtenido al acercarnos lo más posible a 3, por lo que podemos entender este como el límite cuando el tiempo tienda a 3.

$$\lim_{t \to 3} \frac{h(3) - h(t)}{3 - t} = \lim_{t \to 3} \frac{40(9) - 40t^2}{3 - t} = \lim_{t \to 3} \frac{40(9 - t^2)}{3 - t}$$

$$\lim_{t \to 3} \frac{40(3-t)(3+t)}{3-t} = \lim_{t \to 3} 40(3+t) = 40(3+3) = 40(6) = 240$$

2. La pirámide del sol

Zarco Romero José Antonio

Según la Wikipedia, si se supone que la base de la pirámide del sol de Teotihuacan es cuadrada y que sus caras son lisas, su volumen es de

$$1.184828 \times 10^6 m^3$$

La versión en español de la misma informa que la altura de la pirámide es de 65 m y el lado de su base mide 223m. A su vez, en la versión en inglés, se lee que la altura es de 71.17m y el lado de la base mide 223.48m. ¿Cuáles son los datos congruentes con el valor del volumen propuesto arriba si se sabe que el volumen V de una pirámide viene dado por la fórmula (1)

$$V = \frac{1}{3}Ah$$

donde A es el área de la base y h, la altura?

Versión en español:

$$V = \frac{1}{3}(223m^2)(65m) = 1.0774616666666 \times 10^6 m^3$$

Versión en inglés:

$$V = \frac{1}{3}(223.48m^2)(71.17m) = 1.1848218003893 \times 10^6 m^3$$

Entonces, las medidas de la versión en inglés se apegan más al volúmen.

Si bien la fórmula 1 se puede obtener mediante argumentos geométricos relativamente simples en los que no se aplica el método de *rebanar*, *aproximar* y pasar al límite de Arquímedes, este ejercicio está orientado a experimentar numéricamente para encontrar una cota inferior y una cota superior del volumen V de la pirámide del sol; para ello, desarrolle los siguientes pasos:

1. Imagine que hace 49 cortes paralelos a la base, a intervalos regulares de longitud $\Delta h = \frac{h}{50}$, donde h es la altura de la pirámide, y suponga que el volumen V_j de la j-ésima rebanada es aproximadamente igual

altura
ada y
lo del

y aplíquelo para calcular los volúmenes V_j de los prismas inscritos y cir-

cunscritos.

Para encontrar la fórmula que calcule los volúmenes V_j de los prismas inscritos y circunscritos, debemos realizar lo siguiente:

Primero, necesitamos hallar la medida del lado de cada uno de ellos; de acuerdo con la semejanza de triángulos, sabemos que

$$\frac{h_i}{h} = \frac{L_i/2}{L/2}$$

Por lo tanto

$$L_i = \frac{L}{h}h_i$$

donde

$$h_i = h - (n_{partes} \cdot \Delta h) = h - (n_{partes} \cdot \frac{h}{50}) = h(1 - \frac{n_{partes}}{50})$$

Al sustituir h_i en L_i , tenemos que

$$L_i = \frac{L}{h}h_i = \frac{L}{h} \cdot h(1 - \frac{n_{partes}}{50}) = L(1 - \frac{n_{partes}}{50})$$

donde L = 223.48m

$$L_i = 223.48(1 - \frac{n_{partes}}{50})m$$

Al sustituir L_i en la fórmula para el volumen de un prisma de base cuadrada $V = L^2 \cdot h$, obtenemos

$$V = (223.48(1 - \frac{n_{partes}}{50}))^2 \cdot h$$

donde $h = \frac{71.17}{50}m = 1.4234m$

$$V_p = (223.48m(1 - \frac{n_{partes}}{50}))^2 \cdot 1.4234m$$

Aplicándola para calcular el volúmen de cada parte:

Parte	Lado $L_i(m)$	Volumen $V_p(m^3)$
p0	223.48	71089.30802
p1	219.0104	68274.17143
p2	214.5408	65515.90627
p3	210.0712	62814.51257
p_4	205.6016	60169.99031
p_5	201.132	57582.3395
p6	196.6624	55051.56013
p7	192.1928	52577.65221
p8	187.7232	50160.61574
p9	183.2536	47800.45071
p10	178.784	45497.15713
p11	174.3144	43250.735
p12	169.8448	41061.18431
p13	165.3752	38928.50507
p14	160.9056	36852.69728
p15	156.436	34833.76093
p16	151.9664	32871.69603
p17	147.4968	30966.50257
p18	143.0272	29118.18057
p19	138.5576	27326.73
p20	134.088	25592.15089
p21	129.6184	23914.44322
p22	125.1488	22293.607
p23	120.6792	20729.64222

Parte	Lado $L_i(m)$	Volumen $V_p(m^3)$
p24	116.2096	19222.54889
p25	111.74	17772.32701
p26	107.2704	16378.97657
p27	102.8008	15042.49758
p28	98.3312	13762.89003
p29	93.8616	12540.15394
p30	89.392	11374.28928
p31	84.9224	10265.29608
p32	80.4528	9213.17432
p33	75.9832	8217.924008
p34	71.5136	7279.545142
p35	67.044	6398.037722
p36	62.5744	5573.401749
p37	58.1048	4805.637222
p38	53.6352	4094.744142
p39	49.1656	3440.722508
p40	44.696	2843.572321
p41	40.2264	2303.29358
p42	35.7568	1819.886285
p43	31.2872	1393.350437
p44	26.8176	1023.686036
p45	22.348	710.8930802
p46	17.8784	454.9715713
p47	13.4088	255.9215089
p48	8.9392	113.7428928
p49	4.4696	28.43572321
p50	0	0

3. Sume los volúmenes que obtuvo en el inciso anterior y explique por qué el volumen de la pirámide del sol debe ser menor que la suma de los volúmenes de los prismas circunscritos y mayor que la suma de los volúmenes de los prismas inscritos.

Volúmenes de los primas circunscritos:

$$\sum_{i=0}^{49} V_{pc} = 1.22060341876 \times 10^6 m^3$$

Debe ser mayor que el volumen real, ya que todas las partes en que se dividió la pirámide tienen un excedente de la figura real.

Volúmenes de los primas inscritos:

$$\sum_{i=1}^{50} V_{pi} = 1.14951411073 \times 10^6 m^3$$

Debe ser menor al volumen real, ya que a las piezas en que se dividió les faltaba una parte para completar la figura de la pirámide.

$$1.14951411073 \times 10^6 m^3 < V < 1.22060341876 \times 10^6 m^3$$

$$\therefore \sum_{i=1}^{50} V_{pi} < V < \sum_{i=0}^{49} V_{pc}$$

4. ¿Qué espera que suceda con estas cotas al hacer los mismos cálculos para un número de rebanadas más y más grande?

Al rebanar la pirámide entre más piezas, lo esperado es que la suma de los volúmenes de los prismas, tanto circunscritos como inscritos, se aproximen al mismo valor. De esta manera, se obtendría el valor del volumen real de la pirámide cuando el número de las piezas tienda a infinito.