CSED601 Dependable Computing Lecture 13

Jong Kim
Dept. of CSE
POSTECH

Copyright, 2018 © JKim POSTECH HPC

Review of Previous Lecture

- Reliability Evaluation Techniques
 - Markov modeling
 - Discrete Parameter Markov Chain
 - Continuous Parameter Markov Chain

- Concept
 - A dual of reliability block diagram
 - Logic failure diagram
 - Think in terms of logic where
 - O = operating, 1 = failed
- Diagram
 - AND gate
 - All inputs must fail for the gate to fail
 - OR gate
 - Any input failure causes the gate to fail
 - K-of-n gate
 - K or more input failures cause gate to fail

- Example
 - Triplex Bus Guardian
 - Three serially connected pass transistor
 - Two failure states
 - Failed Active : signal pass but does not function as a guardian
 - Failed Passive : signal cut
 - Modeling
 - Active mode
 - If three switches are failed active, then the system fail → AND gate of Failed Active
 - Passive mode
 - Cut off with any single unit failure → OR gate

- Example
 - Total failure of Bus guardian
 - Caused by either active or passive mode
 - Draw your diagram here

- K-of-N

- Refer the slide made by Dr. Axel Krings
 - http://www2.cs.uidaho.edu/~krings/CS449 /Notes.S13/449-13-11.pdf

GSPN

- General Stochastic Petri Net
- Refer the slide made by Dr. Axel Krings
 - http://www2.cs.uidaho.edu/~krings/CS449 /Notes.S13/449-13-12.pdf

- Fault Trees
 - dual of Reliability Block Diagram
 - logic failure diagram
 - think in terms of logic where
 - 0 = operating, 1 = failed
- AND Gate
 - all inputs must fail for the gate to fail
- OR Gate
 - any input failure causes the gate to fail
- k-of-n Gate
 - k or more input failures cause gate to fail

© 2013 A.W. Krings

Page: 1

CS449/549 Fault-Tolerant Systems

e.g. Triplex Bus Guardian

- Active mode
 - M₁ and M₂ and M₃ fail =>
 - AND

Gate

- Passive Mode
 - "cutoff" with any single unit failure =>
 - OR Gate

e.g. Triplex Bus Guardian

- Total Failure
 - caused by either active or passive mode

© 2013 A.W. Krings Page: 3 CS449/549 Fault-Tolerant Systems

e.g. Triplex Bus Guardian

• How can one use the fault tree effectively to isolate those parts of the system that need reliability considerations?

© 2013 A.W. Krings Page: 4 CS449/549 Fault-Tolerant Systems

e.g. Triplex Bus Guardian

Combined fault model

 $Q(1000h) = 0.295545 \cdot 10^{-1}$

© 2013 A.W. Krings Page: 5 CS449/549 Fault-Tolerant Systems

Examples

- Simple Passive TMR (no diagnosis)
 - RBD = (2 of 3): 2 operable => System operable
 - F-Tree = (2 of 3): 2 failed => System failed
- Simple TMR with *Benign* failures
 - RBD = (1 of 3): 1 operable => System operable
 - F-Tree = (3 of 3): 3 failed => System failed
- Summary
 - Parallel => AND
 - Series => OR
 - K-of-N => (n-k+1 of n)

- Part of this discussion is based on the paper
 - Petri Nets: Properties, Analysis and Applications
 - by Tadoa Murata, Proc. IEEE, Vol. 77, No. 4, April 1989.

Petri Nets

- graphical and mathematical modeling tool
- tool for describing systems characterized as being:
 - » concurrent, asynchronous, distributed, parallel, nondeterministic and/or stochastic

© 2011 A.W. Krings

Page: 1

CS449/549 Fault-Tolerant Systems Sequence 11

Petri Nets

History

- 1962: Carl Adam Petri's submitted his dissertation at the Uni.
 Darmstadt, Germany
- 1970: early development was published by A.W. Host and in the records of the 1970 Project MAC Conference on Concurrent Systems and Parallel Computation
- 1970-75: Computation Structure Group and MIT was most active
- 1975: conference on Petri Nets and Related Methods at MIT
- 1979: 135 researchers assembled in Hamburg, Germany, for 2-week advanced course on General Net Theory of Processes and Systems
- 1980: first European Workshop on Applications and Theory of Petri Nets, Strasbourg, France.
- check out Murata's paper for the extensive literature discussion

- General:
 - directed, weighted, bipartite graph
 - two kinds of notes (Places P, Transitions T)
 - arcs from P to T or from T to P
 - arcs have integer weights
 - non-negative Place weights are called tokens

© 2011 A.W. Krings

Page: 3

CS449/549 Fault-Tolerant Systems Sequence 11

Petri Nets

- ◆ A Petri Net is a 5-touple PN={P,T,A,W,M0}
- Place Set $P = \{p_1, p_2, ..., p_m\}$
 - finite set of places
 - condition = place
 - one condition or set of atomic conditions
 - symbol (
- Transition Set $T = \{t_1, t_2, ..., t_n\}$
 - finite set of transitions
 - action = transition
 - one action or set of atomic transitions
 - symbol —

- Arc Set $A \subseteq (P \times T) \cup (T \times P)$
 - set of directed arcs
 - edge of graph = arc
 - symbol →
- Weight Function $W = A \rightarrow \{1,2,3,...\}$
 - weights are associated with arcs
- Initial Marking $M_0 = P \rightarrow \{0,1,2,...\}$
 - the initial assignment of tokens to places

© 2011 A.W. Krings

Page: 5

CS449/549 Fault-Tolerant Systems Sequence 11

Petri Nets

example

© 2011 A.W. Krings

Page: 6

Dynamic Behavior

- during simulation of a petri net the state of the net may change
- change of state:
 - » transitions can be enabled
 - » enabled transitions may fire
 - » firing transition changes the marking of the net
 - » the marking is the "snap-shot" of all the tokens

© 2011 A.W. Krings

Page: 7

CS449/549 Fault-Tolerant Systems Sequence 11

Petri Nets

Firing rules

- A transition *T* is said to be *enabled* if each input place *P* is marked with at least *W*(*P*, *T*) tokens
 - » W(P,T) is the weight of the arc from P to T
- An enabled transition may or may not fire (depending on whether or not the event actually takes place).
- A firing of an enabled transition T removes W(P,T) tokens from each input place P of T, and adds W(T,P) tokens to each output place P of T
 - » W(T,P) is the weight of the arc from T to P
- Common misconception: When a transition fires, it does **not** move tokens
 - » i.e. the number of tokens in the system is not necessarily constant

- Example: assume the following initial marking
 - Only one transition is enabled, i.e. t₂

© 2011 A.W. Krings

Page: 9

CS449/549 Fault-Tolerant Systems Sequence 11

Petri Nets

- Now several transitions are enabled, i.e. $t_1 t_3$ and t_5
- if t₁ fires first

 t_1 t_2 t_3 t_4 t_5 t_5 t_6 t_7

© 2011 A.W. Krings

Page: 10

- if t₃ fires first

© 2011 A.W. Krings

Page: 11

CS449/549 Fault-Tolerant Systems Sequence 11

Petri Nets

- if t₅ fires first
- t₃ and t₅ are said to be in conflict

 t_1 t_2 t_3 t_4 t_5 t_5 t_6 t_7

© 2011 A.W. Krings

Page: 12

- what could this Petri net represent?

© 2011 A.W. Krings

Page: 13

CS449/549 Fault-Tolerant Systems Sequence 11

Petri Nets

- Marking: Number and placement of tokens
 - let $m_i = \#$ of tokens in place p_i
 - then marking

$$M = \{m_1, m_2, ..., m_n\}$$

- marking -- system state
- Advantage: economy of model
 - » e.g. assume net with 6 places
 - we limit each place to maximal 1 token
 - then there are 2⁶ possible markings
 - => 64 states
 - thus Petri Nets are a lot smaller than state diagrams, i.e. Markov chains

- Firing rules
 - transition 1,3 and 4 are enabled

© 2011 A.W. Krings

Page: 15

CS449/549 Fault-Tolerant Systems Sequence 11

Petri Nets

- Firing rules
 - transition 4 fires

© 2011 A.W. Krings

Page: 16

- Firing rules
 - transition 1 fires

Petri Nets

- Firing rules
 - transition 3 fires

© 2011 A.W. Krings

Page: 18