Technical Analysis Library in Python Documentation

Release 0.1.4

Dario Lopez Padial (Bukosabino)

CONTENTS

1	Installation (python \ge v3.6)	3	
2	Examples	5	
3	Motivation	7	
4	Contents 4.1 Documentation	9 9	
5 Indices and tables		61	
Ру	Python Module Index		
In	dex	65	

It is a Technical Analysis library to financial time series datasets (open, close, high, low, volume). You can use it to do feature engineering from financial datasets. It is builded on Python Pandas library.

CONTENTS 1

2 CONTENTS

ONE

INSTALLATION (PYTHON >= V3.6)

- > virtualenv -p python3 virtualenvironment
- > source virtualenvironment/bin/activate
- > pip install ta

Technical Analysis Library in Python Documentation, Release 0.1.4								

TWO

EXAMPLES

Example adding all features:

```
import pandas as pd
from ta import add_all_ta_features
from ta.utils import dropna

# Load datas
df = pd.read_csv('ta/tests/data/datas.csv', sep=',')

# Clean NaN values
df = dropna(df)

# Add ta features filling NaN values
df = add_all_ta_features(
    df, open="Open", high="High", low="Low", close="Close", volume="Volume_BTC",
    →fillna=True)
```

Example adding a particular feature:

```
import pandas as pd
from ta.utils import dropna
from ta.volatility import BollingerBands
# Load datas
df = pd.read_csv('ta/tests/data/datas.csv', sep=',')
# Clean NaN values
df = dropna(df)
# Initialize Bollinger Bands Indicator
indicator_bb = BollingerBands(close=df["Close"], window=20, window_dev=2)
# Add Bollinger Bands features
df['bb_bbm'] = indicator_bb.bollinger_mavg()
df['bb_bbh'] = indicator_bb.bollinger_hband()
df['bb_bbl'] = indicator_bb.bollinger_lband()
# Add Bollinger Band high indicator
df['bb_bbhi'] = indicator_bb.bollinger_hband_indicator()
# Add Bollinger Band low indicator
df['bb_bbli'] = indicator_bb.bollinger_lband_indicator()
```

THREE

MOTIVATION

- English: https://towardsdatascience.com/technical-analysis-library-to-financial-datasets-with-pandas-python-4b2b390d3543
- Spanish: https://medium.com/datos-y-ciencia/biblioteca-de-an%C3%A1lisis-t%C3% A9cnico-sobre-series-temporales-financieras-para-machine-learning-con-cb28f9427d0

FOUR

CONTENTS

4.1 Documentation

It is a Technical Analysis library useful to do feature engineering from financial time series datasets (Open, Close, High, Low, Volume). It is built on Pandas and Numpy.

4.1.1 Momentum Indicators

Momentum Indicators.

Awesome Oscillator

From: https://www.tradingview.com/wiki/Awesome_Oscillator_(AO)

The Awesome Oscillator is an indicator used to measure market momentum. AO calculates the difference of a 34 Period and 5 Period Simple Moving Averages. The Simple Moving Averages that are used are not calculated using closing price but rather each bar's midpoints. AO is generally used to affirm trends or to anticipate possible reversals.

From: https://www.ifcm.co.uk/ntx-indicators/awesome-oscillator

Awesome Oscillator is a 34-period simple moving average, plotted through the central points of the bars (H+L)/2, and subtracted from the 5-period simple moving average, graphed across the central points of the bars (H+L)/2.

MEDIAN PRICE = (HIGH+LOW)/2

AO = SMA(MEDIAN PRICE, 5)-SMA(MEDIAN PRICE, 34)

where

SMA — Simple Moving Average.

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- window1 (int) short period.
- window2 (int) long period.
- fillna (bool) if True, fill nan values with -50.

```
\begin{tabular}{ll} \textbf{awesome\_oscillator} () & \rightarrow pandas.core.series. Series \\ Awesome Oscillator \\ \end{tabular}
```

Return type pandas. Series

```
class ta.momentum. KAMAIndicator (close: pandas.core.series.Series, window: int = 10, pow1: int = 2, pow2: int = 30, fillna: bool = False)
```

Kaufman's Adaptive Moving Average (KAMA)

Moving average designed to account for market noise or volatility. KAMA will closely follow prices when the price swings are relatively small and the noise is low. KAMA will adjust when the price swings widen and follow prices from a greater distance. This trend-following indicator can be used to identify the overall trend, time turning points and filter price movements.

https://www.tradingview.com/ideas/kama/

Parameters

- **close** (pandas.Series) dataset 'Close' column.
- window (int) n period.
- **pow1** (*int*) number of periods for the fastest EMA constant.
- pow2 (int) number of periods for the slowest EMA constant.
- fillna (bool) if True, fill nan values.

kama () \rightarrow pandas.core.series.Series

Kaufman's Adaptive Moving Average (KAMA)

Returns New feature generated.

Return type pandas. Series

```
class ta.momentum.PercentagePriceOscillator(close: pandas.core.series.Series, window_slow: int = 26, window_fast: int = 12, window_sign: int = 9, fillna: bool = False)
```

The Percentage Price Oscillator (PPO) is a momentum oscillator that measures the difference between two moving averages as a percentage of the larger moving average.

https://school.stockcharts.com/doku.php?id=technical_indicators:price_oscillators_ppo

Parameters

- **close** (pandas.Series) dataset 'Price' column.
- window_slow (int) n period long-term.
- window_fast (int) n period short-term.
- window_sign (int) n period to signal.
- fillna (bool) if True, fill nan values.

ppo()

Percentage Price Oscillator Line

Returns New feature generated.

Return type pandas. Series

```
ppo_hist()
```

Percentage Price Oscillator Histogram

Returns New feature generated.

```
Return type pandas. Series
```

```
ppo_signal()
```

Percentage Price Oscillator Signal Line

Returns New feature generated.

Return type pandas. Series

The Percentage Volume Oscillator (PVO) is a momentum oscillator for volume. The PVO measures the difference between two volume-based moving averages as a percentage of the larger moving average.

https://school.stockcharts.com/doku.php?id=technical_indicators:percentage_volume_oscillator_pvo

Parameters

- volume (pandas.Series) dataset 'Volume' column.
- window_slow (int) n period long-term.
- window_fast (int) n period short-term.
- window_sign (int) n period to signal.
- fillna (bool) if True, fill nan values.

 $pvo() \rightarrow pandas.core.series.Series$ PVO Line

Returns New feature generated.

Return type pandas. Series

 $\begin{array}{c} \textbf{pvo_hist} \; (\,) \; \rightarrow \text{pandas.core.series.Series} \\ \text{Histgram} \end{array}$

Returns New feature generated.

Return type pandas. Series

 $\begin{tabular}{ll} \textbf{pvo_signal ()} & \rightarrow pandas.core.series. Series \\ & Signal Line \\ \end{tabular}$

Returns New feature generated.

Return type pandas. Series

class ta.momentum.ROCIndicator(close: pandas.core.series.Series, window: int = 12, fillna: bool = False)

Rate of Change (ROC)

The Rate-of-Change (ROC) indicator, which is also referred to as simply Momentum, is a pure momentum oscillator that measures the percent change in price from one period to the next. The ROC calculation compares the current price with the price "n" periods ago. The plot forms an oscillator that fluctuates above and below the zero line as the Rate-of-Change moves from positive to negative. As a momentum oscillator, ROC signals include centerline crossovers, divergences and overbought-oversold readings. Divergences fail to foreshadow reversals more often than not, so this article will forgo a detailed discussion on them. Even though centerline crossovers are prone to whipsaw, especially short-term, these crossovers can be used to identify the overall trend. Identifying overbought or oversold extremes comes naturally to the Rate-of-Change oscillator.

https://school.stockcharts.com/doku.php?id=technical_indicators:rate_of_change_roc_and_momentum

Parameters

- close (pandas. Series) dataset 'Close' column.
- window (int) n period.
- fillna (bool) if True, fill nan values.

 ${f roc}$ () \to pandas.core.series.Series

Rate of Change (ROC)

Returns New feature generated.

Return type pandas. Series

class ta.momentum.RSIIndicator(close: pandas.core.series.Series, window: int = 14, fillna: bool = False)

Relative Strength Index (RSI)

Compares the magnitude of recent gains and losses over a specified time period to measure speed and change of price movements of a security. It is primarily used to attempt to identify overbought or oversold conditions in the trading of an asset.

https://www.investopedia.com/terms/r/rsi.asp

Parameters

- close (pandas.Series) dataset 'Close' column.
- window (int) n period.
- **fillna** (bool) if True, fill nan values.

 $\textbf{rsi} \; (\,) \; \rightarrow pandas.core.series.Series$

Relative Strength Index (RSI)

Returns New feature generated.

Return type pandas. Series

class ta.momentum. StochRSIIndicator (close: pandas.core.series. Series, window: int = 14, smooth1: int = 3, smooth2: int = 3, fillna: bool = False)

Stochastic RSI

The StochRSI oscillator was developed to take advantage of both momentum indicators in order to create a more sensitive indicator that is attuned to a specific security's historical performance rather than a generalized analysis of price change.

https://school.stockcharts.com/doku.php?id=technical_indicators:stochrsi https://www.investopedia.com/terms/s/stochrsi.asp

Parameters

- **close** (pandas.Series) dataset 'Close' column.
- window (int) n period
- smooth1 (int) moving average of Stochastic RSI
- **smooth2** (*int*) moving average of %K
- fillna (bool) if True, fill nan values.

stochrsi()

Stochastic RSI

Returns New feature generated.

Return type pandas. Series

```
stochrsi d()
```

Stochastic RSI %d

Returns New feature generated.

Return type pandas. Series

stochrsi_k()

Stochastic RSI %k

Returns New feature generated.

Return type pandas. Series

```
class ta.momentum. StochasticOscillator (high: pandas.core.series. Series, low: pandas.core.series. Series, close: pandas.core.series. Series, window: int = 14, smooth_window: int = 3, fillna: bool = False)
```

Stochastic Oscillator

Developed in the late 1950s by George Lane. The stochastic oscillator presents the location of the closing price of a stock in relation to the high and low range of the price of a stock over a period of time, typically a 14-day period.

https://school.stockcharts.com/doku.php?id=technical_indicators:stochastic_oscillator_fast_slow_and_full

Parameters

- close (pandas. Series) dataset 'Close' column.
- **high** (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- window (int) n period.
- **smooth_window** (*int*) sma period over stoch_k.
- fillna (bool) if True, fill nan values.

```
stoch() \rightarrow pandas.core.series.Series
```

Stochastic Oscillator

Returns New feature generated.

Return type pandas. Series

```
\textbf{stoch\_signal} \; () \; \rightarrow pandas.core.series.Series
```

Signal Stochastic Oscillator

Returns New feature generated.

Return type pandas. Series

```
class ta.momentum. TSIIndicator (close: pandas.core.series.Series, window_slow: int = 25, window_fast: int = 13, fillna: bool = False)
```

True strength index (TSI)

Shows both trend direction and overbought/oversold conditions.

https://school.stockcharts.com/doku.php?id=technical_indicators:true_strength_index

Parameters

- close (pandas. Series) dataset 'Close' column.
- window_slow (int) high period.

- window_fast (int) low period.
- **fillna** (bool) if True, fill nan values.

 $tsi() \rightarrow pandas.core.series.Series$ True strength index (TSI)

Returns New feature generated.

Return type pandas. Series

```
class ta.momentum.UltimateOscillator (high: pandas.core.series.Series, low: pandas.core.series.Series, close: pandas.core.series.Series, window1: int = 7, window2: int = 14, window3: int = 28, weight1: float = 4.0, weight2: float = 2.0, weight3: float = 1.0, fillna: bool = False)
```

Ultimate Oscillator

Larry Williams' (1976) signal, a momentum oscillator designed to capture momentum across three different timeframes.

http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:ultimate_oscillator

BP = Close - Minimum(Low or Prior Close). TR = Maximum(High or Prior Close) - Minimum(Low or Prior Close) Average7 = (7-period BP Sum) / (7-period TR Sum) Average14 = (14-period BP Sum) / (14-period TR Sum) Average28 = (28-period BP Sum) / (28-period TR Sum)

UO = 100 x [(4 x Average7) + (2 x Average14) + Average28]/(4+2+1)

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- close (pandas.Series) dataset 'Close' column.
- window1 (int) short period.
- window2 (int) medium period.
- window3 (int) long period.
- weight1 (*float*) weight of short BP average for UO.
- weight2 (float) weight of medium BP average for UO.
- weight3 (*float*) weight of long BP average for UO.
- fillna (bool) if True, fill nan values with 50.

 $\begin{tabular}{ll} \textbf{ultimate_oscillator} () \to pandas.core.series. Series \\ Ultimate Oscillator \\ \end{tabular}$

Returns New feature generated.

Return type pandas. Series

```
class ta.momentum. Williams RIndicator (high: pandas.core.series. Series, low: pandas.core.series. Series, close: pandas.core.series. Series, lbp: int = 14, fillna: bool = False)
```

Williams %R

Developed by Larry Williams, Williams %R is a momentum indicator that is the inverse of the Fast Stochastic Oscillator. Also referred to as %R, Williams %R reflects the level of the close relative to the highest high for the look-back period. In contrast, the Stochastic Oscillator reflects the level of the close relative to the lowest low. %R corrects for the inversion by multiplying the raw value by -100. As a result, the Fast Stochastic Oscillator

and Williams %R produce the exact same lines, only the scaling is different. Williams %R oscillates from 0 to -100.

Readings from 0 to -20 are considered overbought. Readings from -80 to -100 are considered oversold.

Unsurprisingly, signals derived from the Stochastic Oscillator are also applicable to Williams %R.

```
%R = (Highest High - Close)/(Highest High - Lowest Low) * -100
```

Lowest Low = lowest low for the look-back period Highest High = highest high for the look-back period %R is multiplied by -100 correct the inversion and move the decimal.

https://school.stockcharts.com/doku.php?id=technical_indicators:williams_r

The Williams %R oscillates from 0 to -100. When the indicator produces readings from 0 to -20, this indicates overbought market conditions. When readings are -80 to -100, it indicates oversold market conditions.

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- close (pandas.Series) dataset 'Close' column.
- **lbp** (*int*) lookback period.
- **fillna** (bool) if True, fill nan values with -50.

```
\textbf{williams\_r} \ () \ \rightarrow pandas.core.series. Series
```

Williams %R

Returns New feature generated.

Return type pandas. Series

```
ta.momentum.awesome_oscillator(high, low, window1=5, window2=34, fillna=False) \rightarrow pandas.core.series.Series
```

Awesome Oscillator

From: https://www.tradingview.com/wiki/Awesome_Oscillator_(AO)

The Awesome Oscillator is an indicator used to measure market momentum. AO calculates the difference of a 34 Period and 5 Period Simple Moving Averages. The Simple Moving Averages that are used are not calculated using closing price but rather each bar's midpoints. AO is generally used to affirm trends or to anticipate possible reversals.

From: https://www.ifcm.co.uk/ntx-indicators/awesome-oscillator

Awesome Oscillator is a 34-period simple moving average, plotted through the central points of the bars (H+L)/2, and subtracted from the 5-period simple moving average, graphed across the central points of the bars (H+L)/2.

MEDIAN PRICE = (HIGH+LOW)/2

AO = SMA(MEDIAN PRICE, 5)-SMA(MEDIAN PRICE, 34)

where

SMA — Simple Moving Average.

Parameters

- **high** (pandas.Series) dataset 'High' column.
- **low** (pandas.Series) dataset 'Low' column.
- window1 (int) short period.

- window2 (int) long period.
- **fillna** (bool) if True, fill nan values with -50.

Return type pandas. Series

ta.momentum.kama (close, window=10, pow1=2, pow2=30, fillna=False) \rightarrow pandas.core.series.Series Kaufman's Adaptive Moving Average (KAMA)

Moving average designed to account for market noise or volatility. KAMA will closely follow prices when the price swings are relatively small and the noise is low. KAMA will adjust when the price swings widen and follow prices from a greater distance. This trend-following indicator can be used to identify the overall trend, time turning points and filter price movements.

https://www.tradingview.com/ideas/kama/

Parameters

- close (pandas. Series) dataset 'Close' column.
- window (int) n number of periods for the efficiency ratio.
- **pow1** (*int*) number of periods for the fastest EMA constant.
- pow2 (int) number of periods for the slowest EMA constant.
- **fillna** (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.momentum.ppo (close: pandas.core.series.Series, window_slow: int = 26, window_fast: int = 12, window_sign: int = 9, fillna: bool = False) \rightarrow pandas.core.series.Series

The Percentage Price Oscillator (PPO) is a momentum oscillator that measures the difference between two moving averages as a percentage of the larger moving average.

https://school.stockcharts.com/doku.php?id=technical_indicators:price_oscillators_ppo

Parameters

- close (pandas. Series) dataset 'Price' column.
- window_slow (int) n period long-term.
- window_fast (int) n period short-term.
- window_sign (int) n period to signal.
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.momentum.ppo_hist (close: pandas.core.series.Series, window_slow: int = 26, window_fast: int = 12, window_sign: int = 9, fillna: bool = False) \rightarrow pandas.core.series.Series

The Percentage Price Oscillator (PPO) is a momentum oscillator that measures the difference between

The Percentage Price Oscillator (PPO) is a momentum oscillator that measures the difference between two moving averages as a percentage of the larger moving average.

https://school.stockcharts.com/doku.php?id=technical_indicators:price_oscillators_ppo

Parameters

- **close** (pandas.Series) dataset 'Price' column.
- window_slow (int) n period long-term.

- window_fast (int) n period short-term.
- window sign (int) n period to signal.
- fillna (bool) if True, fill nan values.

Return type pandas. Series

ta.momentum.ppo_signal (close: pandas.core.series.Series, window_slow=26, window_fast=12, window_sign=9, fillna=False) \rightarrow pandas.core.series.Series

The Percentage Price Oscillator (PPO) is a momentum oscillator that measures the difference between two moving averages as a percentage of the larger moving average.

https://school.stockcharts.com/doku.php?id=technical_indicators:price_oscillators_ppo

Parameters

- close (pandas. Series) dataset 'Price' column.
- window_slow (int) n period long-term.
- window_fast (int) n period short-term.
- window_sign (int) n period to signal.
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.momentum.pvo (volume: pandas.core.series.Series, window_slow: int = 26, window_fast: int = 12, window_sign: int = 9, fillna: bool = False) \rightarrow pandas.core.series.Series

The Percentage Velume Oscillator (PVO) is a momentum assillator for volume. The PVO measures the different panels of the property of the

The Percentage Volume Oscillator (PVO) is a momentum oscillator for volume. The PVO measures the difference between two volume-based moving averages as a percentage of the larger moving average.

https://school.stockcharts.com/doku.php?id=technical indicators:percentage volume oscillator pvo

Parameters

- volume (pandas.Series) dataset 'Volume' column.
- window_slow (int) n period long-term.
- window_fast (int) n period short-term.
- window_sign (int) n period to signal.
- **fillna** (*bool*) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.momentum.pvo_hist (volume: pandas.core.series.Series, window_slow: int = 26, window_fast: int = 12, window_sign: int = 9, fillna: bool = False) \rightarrow pandas.core.series.Series

The Percentage Volume Oscillator (PVO) is a momentum oscillator for volume. The PVO measures the difference between two volume-based moving averages as a percentage of the larger moving average.

https://school.stockcharts.com/doku.php?id=technical_indicators:percentage_volume_oscillator_pvo

Parameters

- volume (pandas.Series) dataset 'Volume' column.
- window slow (int) n period long-term.

- window_fast (int) n period short-term.
- window sign (int) n period to signal.
- fillna (bool) if True, fill nan values.

Return type pandas. Series

```
ta.momentum.pvo_signal (volume: pandas.core.series.Series, window_slow: int = 26, window_fast: int = 12, window_sign: int = 9, fillna: bool = False) \rightarrow pandas.core.series.Series

The Percentage Volume Oscillator (PVO) is a momentum oscillator for volume. The PVO measures the differ-
```

The Percentage Volume Oscillator (PVO) is a momentum oscillator for volume. The PVO measures the difference between two volume-based moving averages as a percentage of the larger moving average.

https://school.stockcharts.com/doku.php?id=technical_indicators:percentage_volume_oscillator_pvo

Parameters

- volume (pandas.Series) dataset 'Volume' column.
- window_slow (int) n period long-term.
- window_fast (int) n period short-term.
- window_sign (int) n period to signal.
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

```
ta.momentum.roc(close: pandas.core.series.Series, window: int = 12, fillna: bool = False) \rightarrow pandas.core.series.Series Rate of Change (ROC)
```

The Rate-of-Change (ROC) indicator, which is also referred to as simply Momentum, is a pure momentum oscillator that measures the percent change in price from one period to the next. The ROC calculation compares the current price with the price "n" periods ago. The plot forms an oscillator that fluctuates above and below the zero line as the Rate-of-Change moves from positive to negative. As a momentum oscillator, ROC signals include centerline crossovers, divergences and overbought-oversold readings. Divergences fail to foreshadow reversals more often than not, so this article will forgo a detailed discussion on them. Even though centerline crossovers are prone to whipsaw, especially short-term, these crossovers can be used to identify the overall trend. Identifying overbought or oversold extremes comes naturally to the Rate-of-Change oscillator.

https://school.stockcharts.com/doku.php?id=technical indicators:rate of change roc and momentum

Parameters

- close (pandas.Series) dataset 'Close' column.
- window (int) n periods.
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

```
ta.momentum.rsi (close, window=14, fillna=False) \rightarrow pandas.core.series.Series Relative Strength Index (RSI)
```

Compares the magnitude of recent gains and losses over a specified time period to measure speed and change of price movements of a security. It is primarily used to attempt to identify overbought or oversold conditions in the trading of an asset.

https://www.investopedia.com/terms/r/rsi.asp

Parameters

- close (pandas. Series) dataset 'Close' column.
- window (int) n period.
- **fillna** (*bool*) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

 $\texttt{ta.momentum.stoch} \ (\textit{high}, \ low, \ \textit{close}, \ \textit{window=14}, \ \textit{smooth_window=3}, \ \textit{fillna=False}) \ \rightarrow \ \texttt{pandas.core.series}. \\ \texttt{Series}$

Stochastic Oscillator

Developed in the late 1950s by George Lane. The stochastic oscillator presents the location of the closing price of a stock in relation to the high and low range of the price of a stock over a period of time, typically a 14-day period.

https://www.investopedia.com/terms/s/stochasticoscillator.asp

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- **close** (pandas.Series) dataset 'Close' column.
- window (int) n period.
- smooth_window (int) sma period over stoch_k
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.momentum.stoch_signal (high, low, close, window=14, $smooth_window=3$, fillna=False) \rightarrow pandas.core.series.Series

Stochastic Oscillator Signal

Shows SMA of Stochastic Oscillator. Typically a 3 day SMA.

https://www.investopedia.com/terms/s/stochasticoscillator.asp

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- close (pandas. Series) dataset 'Close' column.
- window (*int*) n period.
- smooth_window (int) sma period over stoch_k
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

```
ta.momentum.stochrsi (close: pandas.core.series.Series, window: int = 14, smooth1: int = 3, smooth2: int = 3, fillna: bool = False) \rightarrow pandas.core.series.Series
```

Stochastic RSI

The StochRSI oscillator was developed to take advantage of both momentum indicators in order to create a more sensitive indicator that is attuned to a specific security's historical performance rather than a generalized analysis of price change.

https://www.investopedia.com/terms/s/stochrsi.asp

Parameters

- close (pandas. Series) dataset 'Close' column.
- window (int) n period
- smooth1 (int) moving average of Stochastic RSI
- smooth2 (int) moving average of %K
- **fillna** (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

```
ta.momentum.stochrsi_d(close: pandas.core.series.Series, window: int = 14, smooth1: int = 3, smooth2: int = 3, fillna: bool = False) \rightarrow pandas.core.series.Series Stochastic RSI %d
```

The StochRSI oscillator was developed to take advantage of both momentum indicators in order to create a more sensitive indicator that is attuned to a specific security's historical performance rather than a generalized analysis of price change.

https://www.investopedia.com/terms/s/stochrsi.asp

Parameters

- close (pandas. Series) dataset 'Close' column.
- window (int) n period
- smooth1 (int) moving average of Stochastic RSI
- smooth2 (int) moving average of %K
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

```
ta.momentum.stochrsi_k (close: pandas.core.series.Series, window: int = 14, smooth1: int = 3, smooth2: int = 3, fillna: bool = False) \rightarrow pandas.core.series.Series Stochastic RSI %k
```

The StochRSI oscillator was developed to take advantage of both momentum indicators in order to create a more sensitive indicator that is attuned to a specific security's historical performance rather than a generalized analysis of price change.

https://www.investopedia.com/terms/s/stochrsi.asp

Parameters

20

- close (pandas. Series) dataset 'Close' column.
- window (int) n period

- smooth1 (int) moving average of Stochastic RSI
- smooth2 (int) moving average of %K
- fillna (bool) if True, fill nan values.

Return type pandas. Series

 $\texttt{ta.momentum.tsi} \ (close, window_slow=25, window_fast=13, fillna=False) \ \rightarrow \texttt{pandas.core.series.Series} \\ True \ strength \ index \ (TSI)$

Shows both trend direction and overbought/oversold conditions.

https://en.wikipedia.org/wiki/True_strength_index

Parameters

- close (pandas. Series) dataset 'Close' column.
- window_slow (int) high period.
- window_fast (int) low period.
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.momentum.ultimate_oscillator(high, low, close, window1=7, window2=14, window3=28, weight1=4.0, weight2=2.0, weight3=1.0, fillna=False) \rightarrow pandas.core.series.Series

Ultimate Oscillator

Larry Williams' (1976) signal, a momentum oscillator designed to capture momentum across three different timeframes.

http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:ultimate_oscillator

BP = Close - Minimum(Low or Prior Close). TR = Maximum(High or Prior Close) - Minimum(Low or Prior Close) Average7 = (7-period BP Sum) / (7-period TR Sum) Average14 = (14-period BP Sum) / (14-period TR Sum) Average28 = (28-period BP Sum) / (28-period TR Sum)

UO = 100 x [(4 x Average7) + (2 x Average14) + Average28]/(4 + 2 + 1)

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- **close** (pandas.Series) dataset 'Close' column.
- window1 (int) short period.
- window2 (int) medium period.
- window3 (int) long period.
- weight1 (float) weight of short BP average for UO.
- weight2 (float) weight of medium BP average for UO.
- weight3 (*float*) weight of long BP average for UO.
- fillna (bool) if True, fill nan values with 50.

Returns New feature generated.

Return type pandas. Series

```
ta.momentum.williams_r (high, low, close, lbp=14, fillna=False) \rightarrow pandas.core.series.Series Williams %R
```

From: http://stockcharts.com/school/doku.php?id=chart school:technical indicators:williams r

Developed by Larry Williams, Williams %R is a momentum indicator that is the inverse of the Fast Stochastic Oscillator. Also referred to as %R, Williams %R reflects the level of the close relative to the highest high for the look-back period. In contrast, the Stochastic Oscillator reflects the level of the close relative to the lowest low. %R corrects for the inversion by multiplying the raw value by -100. As a result, the Fast Stochastic Oscillator and Williams %R produce the exact same lines, only the scaling is different. Williams %R oscillates from 0 to -100.

Readings from 0 to -20 are considered overbought. Readings from -80 to -100 are considered oversold.

Unsurprisingly, signals derived from the Stochastic Oscillator are also applicable to Williams %R.

```
%R = (Highest High - Close)/(Highest High - Lowest Low) * -100
```

Lowest Low = lowest low for the look-back period Highest High = highest high for the look-back period %R is multiplied by -100 correct the inversion and move the decimal.

From: https://www.investopedia.com/terms/w/williamsr.asp The Williams %R oscillates from 0 to -100. When the indicator produces readings from 0 to -20, this indicates overbought market conditions. When readings are -80 to -100, it indicates oversold market conditions.

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- close (pandas. Series) dataset 'Close' column.
- **lbp** (*int*) lookback period.
- fillna (bool) if True, fill nan values with -50.

Returns New feature generated.

Return type pandas. Series

4.1.2 Volume Indicators

Volume Indicators.

```
class ta.volume.AccDistIndexIndicator(high: pandas.core.series.Series, low: pandas.core.series.Series, close: pandas.core.series.Series, volume: pandas.core.series.Series, fillna: bool = False)
```

Accumulation/Distribution Index (ADI)

Acting as leading indicator of price movements.

https://school.stockcharts.com/doku.php?id=technical_indicators:accumulation_distribution_line

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- **close** (pandas.Series) dataset 'Close' column.

- volume (pandas.Series) dataset 'Volume' column.
- **fillna** (bool) if True, fill nan values.

 $\mathtt{acc_dist_index}() \rightarrow \mathtt{pandas.core.series}.$ Series

Accumulation/Distribution Index (ADI)

Returns New feature generated.

Return type pandas. Series

```
class ta.volume.ChaikinMoneyFlowIndicator (high: pandas.core.series.Series, low: pandas.core.series.Series, close: pandas.core.series.Series, volume: pandas.core.series.Series, window: int = 20, fillna: bool = False)
```

Chaikin Money Flow (CMF)

It measures the amount of Money Flow Volume over a specific period.

http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:chaikin_money_flow_cmf

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- close (pandas.Series) dataset 'Close' column.
- volume (pandas. Series) dataset 'Volume' column.
- window (int) n period.
- **fillna** (bool) if True, fill nan values.

```
\begin{tabular}{ll} \textbf{chaikin\_money\_flow} () &\rightarrow pandas.core.series. Series \\ Chaikin Money Flow (CMF) \\ \end{tabular}
```

Returns New feature generated.

Return type pandas. Series

```
class ta.volume. EaseOfMovementIndicator (high: pandas.core.series. Series, low: pandas.core.series. Series, volume: pandas.core.series. Series, window: int = 14, fillna: bool = False)
```

Ease of movement (EoM, EMV)

It relate an asset's price change to its volume and is particularly useful for assessing the strength of a trend.

https://en.wikipedia.org/wiki/Ease_of_movement

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas. Series) dataset 'Low' column.
- volume (pandas.Series) dataset 'Volume' column.
- window (int) n period.
- fillna (bool) if True, fill nan values.

```
ease_of_movement () \rightarrow pandas.core.series.Series Ease of movement (EoM, EMV)
```

Return type pandas. Series

 $sma_ease_of_movement() \rightarrow pandas.core.series.Series$

Signal Ease of movement (EoM, EMV)

Returns New feature generated.

Return type pandas. Series

Force Index (FI)

It illustrates how strong the actual buying or selling pressure is. High positive values mean there is a strong rising trend, and low values signify a strong downward trend.

http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:force_index

Parameters

- close (pandas.Series) dataset 'Close' column.
- volume (pandas.Series) dataset 'Volume' column.
- window (int) n period.
- **fillna** (bool) if True, fill nan values.

```
\begin{tabular}{ll} \textbf{force\_index}\,(\,) &\rightarrow pandas.core.series. Series \\ &\quad Force\,\,Index\,\,(FI) \end{tabular}
```

Returns New feature generated.

Return type pandas. Series

```
class ta.volume.MFIIndicator(high: pandas.core.series.Series, low: pandas.core.series.Series, close: pandas.core.series.Series, volume: pandas.core.series.Series, window: int = 14, fillna: bool = False)
```

Money Flow Index (MFI)

Uses both price and volume to measure buying and selling pressure. It is positive when the typical price rises (buying pressure) and negative when the typical price declines (selling pressure). A ratio of positive and negative money flow is then plugged into an RSI formula to create an oscillator that moves between zero and one hundred.

http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:money_flow_index_mfi

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- close (pandas. Series) dataset 'Close' column.
- volume (pandas.Series) dataset 'Volume' column.
- window (int) n period.
- fillna (bool) if True, fill nan values.

```
money_flow_index() → pandas.core.series.Series
Money Flow Index (MFI)
```

Returns New feature generated.

Return type pandas. Series

Negative Volume Index (NVI)

http://stockcharts.com/school/doku.php?id=chart school:technical indicators:negative volume inde

Parameters

- close (pandas. Series) dataset 'Close' column.
- volume (pandas.Series) dataset 'Volume' column.
- fillna (bool) if True, fill nan values with 1000.

 $\textbf{negative_volume_index} \ () \ \rightarrow pandas.core.series. Series$

Negative Volume Index (NVI)

Returns New feature generated.

Return type pandas. Series

On-balance volume (OBV)

It relates price and volume in the stock market. OBV is based on a cumulative total volume.

https://en.wikipedia.org/wiki/On-balance_volume

Parameters

- close (pandas. Series) dataset 'Close' column.
- **volume** (*pandas.Series*) dataset 'Volume' column.
- fillna (bool) if True, fill nan values.

 $\verb"on_balance_volume" () \rightarrow pandas.core.series. Series$

On-balance volume (OBV)

Returns New feature generated.

Return type pandas. Series

 $\textbf{class} \ \, \texttt{ta.volume.VolumePriceTrendIndicator} \, (\textit{close: pandas.core.series.Series, volume: pandas.core.series.Series, fillna: bool = False})$

Volume-price trend (VPT)

Is based on a running cumulative volume that adds or substracts a multiple of the percentage change in share price trend and current volume, depending upon the investment's upward or downward movements.

https://en.wikipedia.org/wiki/Volume%E2%80%93price_trend

Parameters

- close (pandas. Series) dataset 'Close' column.
- volume (pandas.Series) dataset 'Volume' column.
- fillna (bool) if True, fill nan values.

 $\begin{tabular}{ll} \textbf{volume_price_trend} () \to pandas.core.series. Series \\ Volume-price trend (VPT) \end{tabular}$

Returns New feature generated.

Return type pandas. Series

```
class ta.volume.VolumeWeightedAveragePrice (high: pandas.core.series.Series, low: pandas.core.series.Series, close: pandas.core.series.Series, volume: pandas.core.series.Series, window: int = 14, fillna: bool = False)
```

Volume Weighted Average Price (VWAP)

VWAP equals the dollar value of all trading periods divided by the total trading volume for the current day. The calculation starts when trading opens and ends when it closes. Because it is good for the current trading day only, intraday periods and data are used in the calculation.

https://school.stockcharts.com/doku.php?id=technical_indicators:vwap_intraday

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- close (pandas. Series) dataset 'Close' column.
- volume (pandas.Series) dataset 'Volume' column.
- window (int) n period.
- **fillna** (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

volume_weighted_average_price () → pandas.core.series.Series Volume Weighted Average Price (VWAP)

Returns New feature generated.

Return type pandas. Series

ta.volume.acc_dist_index (high, low, close, volume, fillna=False)
Accumulation/Distribution Index (ADI)

Acting as leading indicator of price movements.

https://en.wikipedia.org/wiki/Accumulation/distribution_index

Parameters

- high (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- **close** (pandas.Series) dataset 'Close' column.
- volume (pandas.Series) dataset 'Volume' column.
- **fillna** (*bool*) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.volume.chaikin_money_flow(high, low, close, volume, window=20, fillna=False)
Chaikin Money Flow(CMF)

It measures the amount of Money Flow Volume over a specific period.

http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:chaikin_money_flow_cmf

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- close (pandas. Series) dataset 'Close' column.
- volume (pandas.Series) dataset 'Volume' column.
- window (int) n period.
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

 $\verb|ta.volume.ease_of_movement| (\textit{high}, low, volume, window=14, \textit{fillna=False})|$

Ease of movement (EoM, EMV)

It relate an asset's price change to its volume and is particularly useful for assessing the strength of a trend.

https://en.wikipedia.org/wiki/Ease_of_movement

Parameters

- high (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- volume (pandas.Series) dataset 'Volume' column.
- window (int) n period.
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.volume.force_index(close, volume, window=13, fillna=False)
Force Index(FI)

It illustrates how strong the actual buying or selling pressure is. High positive values mean there is a strong rising trend, and low values signify a strong downward trend.

http://stockcharts.com/school/doku.php?id=chart school:technical indicators:force index

Parameters

- close (pandas. Series) dataset 'Close' column.
- volume (pandas.Series) dataset 'Volume' column.
- window (int) n period.
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.volume.money_flow_index (high, low, close, volume, window=14, fillna=False)
Money Flow Index (MFI)

Uses both price and volume to measure buying and selling pressure. It is positive when the typical price rises (buying pressure) and negative when the typical price declines (selling pressure). A ratio of positive and negative money flow is then plugged into an RSI formula to create an oscillator that moves between zero and one hundred.

http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:money_flow_index_mfi

Parameters

- high (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- close (pandas. Series) dataset 'Close' column.
- volume (pandas.Series) dataset 'Volume' column.
- window (int) n period.
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.volume.negative_volume_index(close, volume, fillna=False)

Negative Volume Index (NVI)

http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:negative_volume_inde

The Negative Volume Index (NVI) is a cumulative indicator that uses the change in volume to decide when the smart money is active. Paul Dysart first developed this indicator in the 1930s. [...] Dysart's Negative Volume Index works under the assumption that the smart money is active on days when volume decreases and the not-so-smart money is active on days when volume increases.

The cumulative NVI line was unchanged when volume increased from one period to the other. In other words, nothing was done. Norman Fosback, of Stock Market Logic, adjusted the indicator by substituting the percentage price change for Net Advances.

This implementation is the Fosback version.

If today's volume is less than yesterday's volume then: nvi(t) = nvi(t-1) * (1 + (close(t) - close(t-1)) / close(t-1))

Else nvi(t) = nvi(t-1)

Please note: the "stockcharts.com" example calculation just adds the percentange change of price to previous NVI when volumes decline; other sources indicate that the same percentage of the previous NVI value should be added, which is what is implemented here.

Parameters

- close (pandas.Series) dataset 'Close' column.
- volume (pandas.Series) dataset 'Volume' column.
- fillna (bool) if True, fill nan values with 1000.

Returns New feature generated.

Return type pandas. Series

See also:

https://en.wikipedia.org/wiki/Negative_volume_index

ta.volume.on_balance_volume(close, volume, fillna=False)

On-balance volume (OBV)

It relates price and volume in the stock market. OBV is based on a cumulative total volume.

https://en.wikipedia.org/wiki/On-balance volume

Parameters

- **close** (pandas.Series) dataset 'Close' column.
- volume (pandas.Series) dataset 'Volume' column.
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

```
ta.volume.sma_ease_of_movement(high, low, volume, window=14, fillna=False)
Ease of movement(EoM, EMV)
```

It relate an asset's price change to its volume and is particularly useful for assessing the strength of a trend.

https://en.wikipedia.org/wiki/Ease_of_movement

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- volume (pandas.Series) dataset 'Volume' column.
- window (int) n period.
- **fillna** (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

```
ta.volume.rolume_price_trend(close, volume, fillna=False)
Volume-price trend(VPT)
```

Is based on a running cumulative volume that adds or substracts a multiple of the percentage change in share price trend and current volume, depending upon the investment's upward or downward movements.

https://en.wikipedia.org/wiki/Volume%E2%80%93price_trend

Parameters

- **close** (pandas.Series) dataset 'Close' column.
- **volume** (*pandas.Series*) dataset 'Volume' column.
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

```
ta.volume.volume_weighted_average_price(high: pandas.core.series.Series, low: pandas.core.series.Series, close: pandas.core.series.Series, volume: pandas.core.series.Series, window: int = 14, fillna: bool = False)
```

Volume Weighted Average Price (VWAP)

VWAP equals the dollar value of all trading periods divided by the total trading volume for the current day. The calculation starts when trading opens and ends when it closes. Because it is good for the current trading day only, intraday periods and data are used in the calculation.

https://school.stockcharts.com/doku.php?id=technical indicators:vwap intraday

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- close (pandas.Series) dataset 'Close' column.
- volume (pandas.Series) dataset 'Volume' column.
- window (int) n period.
- **fillna** (bool) if True, fill nan values.

Return type pandas. Series

4.1.3 Volatility Indicators

Volatility Indicators.

```
class ta.volatility.AverageTrueRange(high: pandas.core.series.Series, low: pandas.core.series.Series, close: pandas.core.series.Series, window: int = 14, fillna: bool = False)
```

Average True Range (ATR)

The indicator provide an indication of the degree of price volatility. Strong moves, in either direction, are often accompanied by large ranges, or large True Ranges.

http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:average_true_range_atr

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- close (pandas. Series) dataset 'Close' column.
- window (int) n period.
- fillna (bool) if True, fill nan values.

```
average_true_range () → pandas.core.series.Series
Average True Range (ATR)
```

Returns New feature generated.

Return type pandas. Series

```
class ta.volatility.BollingerBands (close: pandas.core.series.Series, window: int = 20, window_dev: int = 2, fillna: bool = False)
```

Bollinger Bands

https://school.stockcharts.com/doku.php?id=technical_indicators:bollinger_bands

Parameters

- close (pandas. Series) dataset 'Close' column.
- window (int) n period.
- window_dev (int) n factor standard deviation
- fillna (bool) if True, fill nan values.

```
bollinger_hband () \rightarrow pandas.core.series.Series Bollinger Channel High Band
```

Return type pandas. Series

$\textbf{bollinger_hband_indicator} \ () \ \rightarrow pandas.core.series. Series$

Bollinger Channel Indicator Crossing High Band (binary).

It returns 1, if close is higher than bollinger_hband. Else, it returns 0.

Returns New feature generated.

Return type pandas. Series

$bollinger_lband() \rightarrow pandas.core.series.Series$

Bollinger Channel Low Band

Returns New feature generated.

Return type pandas. Series

bollinger_lband_indicator() → pandas.core.series.Series

Bollinger Channel Indicator Crossing Low Band (binary).

It returns 1, if close is lower than bollinger_lband. Else, it returns 0.

Returns New feature generated.

Return type pandas. Series

bollinger_mavg() \rightarrow pandas.core.series.Series

Bollinger Channel Middle Band

Returns New feature generated.

Return type pandas. Series

bollinger_pband() \rightarrow pandas.core.series.Series

Bollinger Channel Percentage Band

From: https://school.stockcharts.com/doku.php?id=technical_indicators:bollinger_band_perce

Returns New feature generated.

Return type pandas. Series

bollinger_wband() \rightarrow pandas.core.series.Series

Bollinger Channel Band Width

 $From: \ https://school.stockcharts.com/doku.php?id=technical_indicators:bollinger_band_width$

Returns New feature generated.

Return type pandas. Series

class ta.volatility.DonchianChannel (high: pandas.core.series.Series, low: pandas.core.series.Series, close: pandas.core.series.Series, window: int = 20, offset: int = 0, fillna: bool = False)

Donchian Channel

https://www.investopedia.com/terms/d/donchianchannels.asp

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- **close** (pandas.Series) dataset 'Close' column.

- window (int) n period.
- **fillna** (*bool*) if True, fill nan values.

 $\textbf{donchian_channel_hband} \ (\) \ \rightarrow pandas.core.series. Series$

Donchian Channel High Band

Returns New feature generated.

Return type pandas. Series

 $donchian_channel_lband() \rightarrow pandas.core.series.Series$

Donchian Channel Low Band

Returns New feature generated.

Return type pandas. Series

 $donchian_channel_mband() \rightarrow pandas.core.series.Series$

Donchian Channel Middle Band

Returns New feature generated.

Return type pandas. Series

 $donchian_channel_pband() \rightarrow pandas.core.series.Series$

Donchian Channel Percentage Band

Returns New feature generated.

Return type pandas. Series

 ${\tt donchian_channel_wband}~(~)~\rightarrow pandas.core.series. Series$

Donchian Channel Band Width

Returns New feature generated.

Return type pandas. Series

class ta.volatility.KeltnerChannel (high: pandas.core.series.Series, low: pandas.core.series.Series, close: pandas.core.series.Series, window: int = 20, window_atr: int = 10, fillna: bool = False, original_version: bool = True)

Keltner Channels are a trend following indicator used to identify reversals with channel breakouts and channel direction. Channels can also be used to identify overbought and oversold levels when the trend is flat.

https://school.stockcharts.com/doku.php?id=technical_indicators:keltner_channels

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- **close** (pandas.Series) dataset 'Close' column.
- window (int) n period.
- window_atr (int) n atr period. Only valid if original_version param is False.
- fillna (bool) if True, fill nan values.
- original_version (bool) if True, use original version as the centerline (SMA of typical price) if False, use EMA of close as the centerline. More info: https://school.stockcharts.com/doku.php?id=technical_indicators:keltner_channels

 $\textbf{keltner_channel_hband} \, (\,) \, \rightarrow pandas.core.series. Series$

Keltner Channel High Band

Return type pandas. Series

keltner_channel_hband_indicator() → pandas.core.series.Series

Keltner Channel Indicator Crossing High Band (binary)

It returns 1, if close is higher than keltner_channel_hband. Else, it returns 0.

Returns New feature generated.

Return type pandas. Series

$keltner_channel_lband() \rightarrow pandas.core.series.Series$

Keltner Channel Low Band

Returns New feature generated.

Return type pandas. Series

$keltner_channel_lband_indicator() \rightarrow pandas.core.series.Series$

Keltner Channel Indicator Crossing Low Band (binary)

It returns 1, if close is lower than keltner_channel_lband. Else, it returns 0.

Returns New feature generated.

Return type pandas. Series

keltner_channel_mband() → pandas.core.series.Series

Keltner Channel Middle Band

Returns New feature generated.

Return type pandas. Series

keltner_channel_pband() → pandas.core.series.Series

Keltner Channel Percentage Band

Returns New feature generated.

Return type pandas. Series

keltner_channel_wband() → pandas.core.series.Series

Keltner Channel Band Width

Returns New feature generated.

Return type pandas. Series

class ta.volatility.UlcerIndex(close: pandas.core.series.Series, window: int = 14, fillna: bool = False)

Ulcer Index

https://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:ulcer_index

Parameters

- close (pandas. Series) dataset 'Close' column.
- window (int) n period.
- fillna (bool) if True, fill nan values.

$ulcer_index() \rightarrow pandas.core.series.Series$

Ulcer Index (UI)

Returns New feature generated.

Return type pandas. Series

ta.volatility.average_true_range (high, low, close, window=14, fillna=False)
Average True Range (ATR)

The indicator provide an indication of the degree of price volatility. Strong moves, in either direction, are often accompanied by large ranges, or large True Ranges.

http://stockcharts.com/school/doku.php?id=chart school:technical indicators:average true range atr

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- close (pandas.Series) dataset 'Close' column.
- window (int) n period.
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.volatility.bollinger_hband(close, window=20, window_dev=2, fillna=False)
Bollinger Bands (BB)

Upper band at K times an N-period standard deviation above the moving average (MA + Kdeviation).

https://en.wikipedia.org/wiki/Bollinger Bands

Parameters

- close (pandas.Series) dataset 'Close' column.
- window (int) n period.
- window_dev (int) n factor standard deviation
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.volatility.bollinger_hband_indicator (close, window=20, window_dev=2, fillna=False)
Bollinger High Band Indicator

Returns 1, if close is higher than bollinger high band. Else, return 0.

https://en.wikipedia.org/wiki/Bollinger Bands

Parameters

- close (pandas. Series) dataset 'Close' column.
- window (int) n period.
- window_dev (int) n factor standard deviation
- **fillna** (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

```
ta.volatility.bollinger_lband(close, window=20, window_dev=2, fillna=False)
Bollinger Bands(BB)
```

Lower band at K times an N-period standard deviation below the moving average (MA Kdeviation).

https://en.wikipedia.org/wiki/Bollinger_Bands

Parameters

- close (pandas.Series) dataset 'Close' column.
- window (int) n period.
- window_dev (int) n factor standard deviation
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.volatility.bollinger_lband_indicator (close, window=20, window_dev=2, fillna=False)
Bollinger Low Band Indicator

Returns 1, if close is lower than bollinger low band. Else, return 0.

https://en.wikipedia.org/wiki/Bollinger_Bands

Parameters

- **close** (pandas.Series) dataset 'Close' column.
- window (int) n period.
- window_dev (int) n factor standard deviation
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.volatility.bollinger_mavg(close, window=20, fillna=False)
Bollinger Bands (BB)

N-period simple moving average (MA).

https://en.wikipedia.org/wiki/Bollinger_Bands

Parameters

- **close** (pandas.Series) dataset 'Close' column.
- window (int) n period.
- **fillna** (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.volatility.bollinger_pband(close, window=20, window_dev=2, fillna=False)
Bollinger Channel Percentage Band

From: https://school.stockcharts.com/doku.php?id=technical_indicators:bollinger_band_perce

Parameters

• close (pandas. Series) – dataset 'Close' column.

- window (int) n period.
- window_dev (int) n factor standard deviation
- fillna (bool) if True, fill nan values.

Return type pandas. Series

ta.volatility.bollinger_wband(close, window=20, window_dev=2, fillna=False)
Bollinger Channel Band Width

From: https://school.stockcharts.com/doku.php?id=technical_indicators:bollinger_band_width

Parameters

- close (pandas. Series) dataset 'Close' column.
- window (int) n period.
- window_dev (int) n factor standard deviation
- **fillna** (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.volatility.donchian_channel_hband (high, low, close, window=20, offset=0, fillna=False)

Donchian Channel High Band (DC)

The upper band marks the highest price of an issue for n periods.

https://www.investopedia.com/terms/d/donchianchannels.asp

Parameters

- high (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- close (pandas. Series) dataset 'Close' column.
- window (int) n period.
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.volatility.donchian_channel_lband (high, low, close, window=20, offset=0, fillna=False)
Donchian Channel Low Band (DC)

The lower band marks the lowest price for n periods.

https://www.investopedia.com/terms/d/donchianchannels.asp

Parameters

- **high** (pandas.Series) dataset 'High' column.
- **low** (pandas.Series) dataset 'Low' column.
- close (pandas.Series) dataset 'Close' column.
- window (int) n period.
- fillna (bool) if True, fill nan values.

Return type pandas. Series

ta.volatility.donchian_channel_mband(high, low, close, window=10, offset=0, fillna=False)
Donchian Channel Middle Band(DC)

https://www.investopedia.com/terms/d/donchianchannels.asp

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- close (pandas.Series) dataset 'Close' column.
- window (int) n period.
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.volatility.donchian_channel_pband (high, low, close, window=10, offset=0, fillna=False)
Donchian Channel Percentage Band (DC)

https://www.investopedia.com/terms/d/donchianchannels.asp

Parameters

- high (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- close (pandas. Series) dataset 'Close' column.
- window (int) n period.
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.volatility.donchian_channel_wband (high, low, close, window=10, offset=0, fillna=False)
Donchian Channel Band Width (DC)

https://www.investopedia.com/terms/d/donchianchannels.asp

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- close (pandas. Series) dataset 'Close' column.
- window (int) n period.
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.volatility.keltner_channel_hband(high, low, close, window=20, window_atr=10, fillna=False, original_version=True)

Keltner channel (KC)

Showing a simple moving average line (high) of typical price.

https://school.stockcharts.com/doku.php?id=technical_indicators:keltner_channels

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- close (pandas. Series) dataset 'Close' column.
- window (int) n period.
- window_atr (int) n atr period. Only valid if original_version param is False.
- fillna (bool) if True, fill nan values.
- original_version (bool) if True, use original version as the centerline (SMA of typical price) if False, use EMA of close as the centerline. More info: https://school.stockcharts.com/doku.php?id=technical_indicators:keltner_channels

Returns New feature generated.

Return type pandas. Series

ta.volatility.keltner_channel_hband_indicator(high, low, close, window=20, window_atr=10, fillna=False, original version=True)

Keltner Channel High Band Indicator (KC)

Returns 1, if close is higher than keltner high band channel. Else, return 0.

https://school.stockcharts.com/doku.php?id=technical_indicators:keltner_channels

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas. Series) dataset 'Low' column.
- **close** (pandas.Series) dataset 'Close' column.
- window (int) n period.
- window_atr (int) n atr period. Only valid if original_version param is False.
- **fillna** (bool) if True, fill nan values.
- original_version (bool) if True, use original version as the centerline (SMA of typical price) if False, use EMA of close as the centerline. More info: https://school.stockcharts.com/doku.php?id=technical_indicators:keltner_channels

Returns New feature generated.

Return type pandas. Series

ta.volatility.keltner_channel_lband(high, low, close, window=20, $window_atr=10$, fillna=False, $original_version=True$)

Keltner channel (KC)

Showing a simple moving average line (low) of typical price.

https://school.stockcharts.com/doku.php?id=technical_indicators:keltner_channels

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- close (pandas. Series) dataset 'Close' column.
- window (int) n period.
- window atr (int) n atr period. Only valid if original version param is False.
- fillna (bool) if True, fill nan values.
- original_version (bool) if True, use original version as the centerline (SMA of typical price) if False, use EMA of close as the centerline. More info: https://school.stockcharts.com/doku.php?id=technical_indicators:keltner_channels

Returns New feature generated.

Return type pandas. Series

ta.volatility.keltner_channel_lband_indicator(high, low, close, window=20, window_atr=10, fillna=False, original version=True)

Keltner Channel Low Band Indicator (KC)

Returns 1, if close is lower than keltner low band channel. Else, return 0.

https://school.stockcharts.com/doku.php?id=technical_indicators:keltner_channels

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- close (pandas. Series) dataset 'Close' column.
- window (int) n period.
- window_atr (int) n atr period. Only valid if original_version param is False.
- **fillna** (bool) if True, fill nan values.
- original_version (bool) if True, use original version as the centerline (SMA of typical price) if False, use EMA of close as the centerline. More info: https://school.stockcharts.com/doku.php?id=technical_indicators:keltner_channels

Returns New feature generated.

Return type pandas. Series

Keltner channel (KC)

Showing a simple moving average line (central) of typical price.

https://school.stockcharts.com/doku.php?id=technical_indicators:keltner_channels

Parameters

- **high** (pandas.Series) dataset 'High' column.
- **low** (pandas.Series) dataset 'Low' column.
- **close** (pandas.Series) dataset 'Close' column.

- window (int) n period.
- window_atr (int) n atr period. Only valid if original_version param is False.
- fillna (bool) if True, fill nan values.
- **original_version** (*bool*) if True, use original version as the centerline (SMA of typical price) if False, use EMA of close as the centerline. More info: https://school.stockcharts.com/doku.php?id=technical_indicators:keltner_channels

Return type pandas. Series

ta.volatility.keltner_channel_pband(high, low, close, window=20, window_atr=10, fillna=False, original_version=True)

Keltner Channel Percentage Band

https://school.stockcharts.com/doku.php?id=technical_indicators:keltner_channels

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- close (pandas. Series) dataset 'Close' column.
- window (int) n period.
- window_atr (int) n atr period. Only valid if original_version param is False.
- fillna (bool) if True, fill nan values.
- original_version (bool) if True, use original version as the centerline (SMA of typical price) if False, use EMA of close as the centerline. More info: https://school.stockcharts.com/doku.php?id=technical_indicators:keltner_channels

Returns New feature generated.

Return type pandas. Series

ta.volatility.keltner_channel_wband(high, low, close, window=20, window_atr=10, fillna=False, original_version=True)

Keltner Channel Band Width

https://school.stockcharts.com/doku.php?id=technical_indicators:keltner_channels

Parameters

- **high** (pandas.Series) dataset 'High' column.
- **low** (*pandas.Series*) dataset 'Low' column.
- close (pandas. Series) dataset 'Close' column.
- window (int) n period.
- window_atr (int) n atr period. Only valid if original_version param is False.
- **fillna** (*bool*) if True, fill nan values.
- **original_version** (*bool*) if True, use original version as the centerline (SMA of typical price) if False, use EMA of close as the centerline. More info: https://school.stockcharts.com/doku.php?id=technical indicators:keltner channels

Returns New feature generated.

Return type pandas. Series

```
ta.volatility.ulcer_index (close, window=14, fillna=False)
Ulcer Index
```

https://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:ulcer_index

Parameters

- close (pandas. Series) dataset 'Close' column.
- window (int) n period.
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

4.1.4 Trend Indicators

Trend Indicators.

```
class ta.trend.ADXIndicator (high: pandas.core.series.Series, low: pandas.core.series.Series, close: pandas.core.series.Series, window: int = 14, fillna: bool = False)
```

Average Directional Movement Index (ADX)

The Plus Directional Indicator (+DI) and Minus Directional Indicator (-DI) are derived from smoothed averages of these differences, and measure trend direction over time. These two indicators are often referred to collectively as the Directional Movement Indicator (DMI).

The Average Directional Index (ADX) is in turn derived from the smoothed averages of the difference between +DI and -DI, and measures the strength of the trend (regardless of direction) over time.

Using these three indicators together, chartists can determine both the direction and strength of the trend.

http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:average_directional_index_adx

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- close (pandas. Series) dataset 'Close' column.
- window (int) n period.
- fillna (bool) if True, fill nan values.

adx () \rightarrow pandas.core.series.Series Average Directional Index (ADX)

Returns New feature generated.tr

Return type pandas. Series

adx_neg () → pandas.core.series.Series Minus Directional Indicator (-DI)

Returns New feature generated.

Return type pandas. Series

adx_pos() → pandas.core.series.Series
Plus Directional Indicator (+DI)

Return type pandas. Series

class ta.trend.AroonIndicator (close: pandas.core.series.Series, window: int = 25, fillna: bool = False)

Aroon Indicator

Identify when trends are likely to change direction.

Aroon Up = $((N - Days Since N - day High) / N) \times 100 Aroon Down = ((N - Days Since N - day Low) / N) \times 100 Aroon Indicator = Aroon Up - Aroon Down$

https://www.investopedia.com/terms/a/aroon.asp

Parameters

- close (pandas. Series) dataset 'Close' column.
- window (int) n period.
- fillna (bool) if True, fill nan values.

 $\textbf{aroon_down} \ (\) \ \rightarrow pandas.core.series.Series$

Aroon Down Channel

Returns New feature generated.

Return type pandas. Series

 $\textbf{aroon_indicator} \ (\) \ \rightarrow pandas.core.series. Series$

Aroon Indicator

Returns New feature generated.

Return type pandas. Series

aroon_up () \rightarrow pandas.core.series.Series Aroon Up Channel

Returns New feature generated.

Return type pandas. Series

class ta.trend.CCIIndicator (high: pandas.core.series.Series, low: pandas.core.series.Series, close: pandas.core.series.Series, window: int = 20, constant: float = 0.015, fillna: bool = False)

Commodity Channel Index (CCI)

CCI measures the difference between a security's price change and its average price change. High positive readings indicate that prices are well above their average, which is a show of strength. Low negative readings indicate that prices are well below their average, which is a show of weakness.

http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:commodity_channel_index_cci

Parameters

- **high** (pandas.Series) dataset 'High' column.
- **low** (pandas.Series) dataset 'Low' column.
- close (pandas. Series) dataset 'Close' column.
- window (int) n period.
- **constant** (*int*) constant.
- fillna (bool) if True, fill nan values.

```
\mathtt{cci}() \rightarrow \mathtt{pandas.core.series.Series}
Commodity Channel Index (CCI)
```

Return type pandas. Series

class ta.trend.DPOIndicator (close: pandas.core.series.Series, window: int = 20, fillna: bool = False)

Detrended Price Oscillator (DPO)

Is an indicator designed to remove trend from price and make it easier to identify cycles.

http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:detrended_price_osci

Parameters

- close (pandas. Series) dataset 'Close' column.
- window (int) n period.
- fillna (bool) if True, fill nan values.

dpo () \rightarrow pandas.core.series.Series Detrended Price Oscillator (DPO)

Returns New feature generated.

Return type pandas. Series

class ta.trend.EMAIndicator(close: pandas.core.series.Series, window: int = 14, fillna: bool = False)

EMA - Exponential Moving Average

Parameters

- close (pandas.Series) dataset 'Close' column.
- window (int) n period.
- **fillna** (bool) if True, fill nan values.

ema_indicator() → pandas.core.series.Series Exponential Moving Average (EMA)

Returns New feature generated.

Return type pandas. Series

class ta.trend.IchimokuIndicator(high: pandas.core.series.Series, low: pandas.core.series.Series, window1: int = 9, window2: int = 26, window3: int = 52, visual: bool = False, fillna: bool = False)

Ichimoku Kinkō Hyō (Ichimoku)

http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:ichimoku_cloud

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- window1 (int) n1 low period.
- window2 (int) n2 medium period.
- window3 (int) n3 high period.

- **visual** (*bool*) if True, shift n2 values.
- fillna (bool) if True, fill nan values.

 $\verb|ichimoku_a|() \rightarrow pandas.core.series.Series$

Senkou Span A (Leading Span A)

Returns New feature generated.

Return type pandas. Series

ichimoku_b() → pandas.core.series.Series Senkou Span B (Leading Span B)

Returns New feature generated.

Return type pandas. Series

ichimoku_base_line() \rightarrow pandas.core.series.Series Kijun-sen (Base Line)

Returns New feature generated.

Return type pandas. Series

 $\verb|ichimoku_conversion_line|()| \rightarrow pandas.core.series.Series$

Tenkan-sen (Conversion Line)

Returns New feature generated.

Return type pandas. Series

```
class ta.trend.KSTIndicator (close: pandas.core.series.Series, roc1: int = 10, roc2: int = 15, roc3: int = 20, roc4: int = 30, window1: int = 10, window2: int = 10, window3: int = 10, window4: int = 15, nsig: int = 9, fillna: bool = False)
```

KST Oscillator (KST Signal)

It is useful to identify major stock market cycle junctures because its formula is weighed to be more greatly influenced by the longer and more dominant time spans, in order to better reflect the primary swings of stock market cycle.

http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:know_sure_thing_kst

Parameters

- close (pandas. Series) dataset 'Close' column.
- **roc1** (*int*) roc1 period.
- **roc2** (*int*) roc2 period.
- **roc3** (*int*) roc3 period.
- **roc4** (*int*) roc4 period.
- window1 (int) n1 smoothed period.
- window2 (int) n2 smoothed period.
- window3 (int) n3 smoothed period.
- window4 (int) n4 smoothed period.
- **nsig** (*int*) n period to signal.
- fillna (bool) if True, fill nan values.

```
kst() \rightarrow pandas.core.series.Series
Know Sure Thing (KST)
```

Return type pandas. Series

kst_diff() → pandas.core.series.Series Diff Know Sure Thing (KST)

KST - Signal_KST

Returns New feature generated.

Return type pandas. Series

kst_sig() → pandas.core.series.Series Signal Line Know Sure Thing (KST)

nsig-period SMA of KST

Returns New feature generated.

Return type pandas. Series

class ta.trend.MACD (close: pandas.core.series.Series, window_slow: int = 26, window_fast: int = 12, window_sign: int = 9, fillna: bool = False)

Moving Average Convergence Divergence (MACD)

Is a trend-following momentum indicator that shows the relationship between two moving averages of prices.

https://school.stockcharts.com/doku.php?id=technical_indicators:moving_average_convergence_divergence_macd

Parameters

- close (pandas. Series) dataset 'Close' column.
- window_fast (*int*) n period short-term.
- window_slow (int) n period long-term.
- window_sign (int) n period to signal.
- fillna (bool) if True, fill nan values.

 $\textbf{macd} \ (\) \ \rightarrow pandas.core.series.Series$

MACD Line

Returns New feature generated.

Return type pandas. Series

 $macd_diff() \rightarrow pandas.core.series.Series$ MACD Histogram

Returns New feature generated.

Return type pandas. Series

 $macd_signal() \rightarrow pandas.core.series.Series$ Signal Line

Returns New feature generated.

Return type pandas. Series

class ta.trend. **MassIndex** (high: pandas.core.series.Series, low: pandas.core.series.Series, window_slow: int = 25, fillna: bool = False)

Mass Index (MI)

It uses the high-low range to identify trend reversals based on range expansions. It identifies range bulges that can foreshadow a reversal of the current trend.

http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:mass_index

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- window_fast (int) fast period value.
- window_slow (int) slow period value.
- **fillna** (bool) if True, fill nan values.

 $mass_index() \rightarrow pandas.core.series.Series$ Mass Index (MI)

Returns New feature generated.

Return type pandas. Series

class ta.trend.PSARIndicator(high: pandas.core.series.Series, low: pandas.core.series.Series, close: pandas.core.series.Series, step: float = 0.02, max_step: float = 0.2, fillna: bool = False)

Parabolic Stop and Reverse (Parabolic SAR)

The Parabolic Stop and Reverse, more commonly known as the Parabolic SAR, is a trend-following indicator developed by J. Welles Wilder. The Parabolic SAR is displayed as a single parabolic line (or dots) underneath the price bars in an uptrend, and above the price bars in a downtrend.

https://school.stockcharts.com/doku.php?id=technical_indicators:parabolic_sar

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- close (pandas. Series) dataset 'Close' column.
- step (float) the Acceleration Factor used to compute the SAR.
- max_step (float) the maximum value allowed for the Acceleration Factor.
- fillna (bool) if True, fill nan values.

 $psar() \rightarrow pandas.core.series.Series$ PSAR value

Returns New feature generated.

Return type pandas. Series

 $psar_down() \rightarrow pandas.core.series.Series$ PSAR down trend value

Returns New feature generated.

Return type pandas. Series

```
psar_down_indicator() → pandas.core.series.Series PSAR down trend value indicator
```

Return type pandas. Series

 $psar_up() \rightarrow pandas.core.series.Series$ PSAR up trend value

Returns New feature generated.

Return type pandas. Series

 $\textbf{psar_up_indicator} \ () \ \rightarrow pandas.core.series. Series$

PSAR up trend value indicator

Returns New feature generated.

Return type pandas. Series

class ta.trend.**SMAIndicator** (close: pandas.core.series.Series, window: int, fillna: bool = False) SMA - Simple Moving Average

Parameters

- **close** (pandas.Series) dataset 'Close' column.
- window (int) n period.
- fillna (bool) if True, fill nan values.

 $\begin{tabular}{ll} \textbf{sma_indicator} () \to pandas.core.series. Series \\ Simple Moving Average (SMA) \\ \end{tabular}$

Returns New feature generated.

Return type pandas. Series

```
class ta.trend.STCIndicator (close: pandas.core.series.Series, window_slow: int = 50, window_fast: int = 23, cycle: int = 10, smooth1: int = 3, smooth2: int = 3, fillna: bool = False)
```

Schaff Trend Cycle (STC)

The Schaff Trend Cycle (STC) is a charting indicator that is commonly used to identify market trends and provide buy and sell signals to traders. Developed in 1999 by noted currency trader Doug Schaff, STC is a type of oscillator and is based on the assumption that, regardless of time frame, currency trends accelerate and decelerate in cyclical patterns.

https://www.investopedia.com/articles/forex/10/schaff-trend-cycle-indicator.asp

Parameters

- **close** (pandas.Series) dataset 'Close' column.
- window_fast (int) n period short-term.
- window_slow (int) n period long-term.
- cycle (int) cycle size
- smooth1 (int) ema period over stoch_k
- smooth2 (int) ema period over stoch_kd
- fillna (bool) if True, fill nan values.

```
stc()
           Schaff Trend Cycle
               Returns New feature generated.
               Return type pandas. Series
class ta.trend.TRIXIndicator(close: pandas.core.series.Series, window: int = 15, fillna: bool =
                                          False)
      Trix (TRIX)
      Shows the percent rate of change of a triple exponentially smoothed moving average.
      http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:trix
           Parameters
                  • close (pandas.Series) – dataset 'Close' column.
                  • window (int) – n period.
                  • fillna (bool) – if True, fill nan values.
      \texttt{trix}() \rightarrow \text{pandas.core.series.Series}
           Trix (TRIX)
               Returns New feature generated.
               Return type pandas. Series
class ta.trend.VortexIndicator(high: pandas.core.series.Series, low: pandas.core.series.Series,
                                             close: pandas.core.series.Series, window: int = 14, fillna: bool
                                             = False)
      Vortex Indicator (VI)
      It consists of two oscillators that capture positive and negative trend movement. A bullish signal triggers when
      the positive trend indicator crosses above the negative trend indicator or a key level.
      http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:vortex_indicator
           Parameters
                  • high (pandas.Series) – dataset 'High' column.
                  • low (pandas.Series) – dataset 'Low' column.
                 • close (pandas.Series) – dataset 'Close' column.
                  • window (int) – n period.
                 • fillna (bool) – if True, fill nan values.
      vortex_indicator_diff()
           Diff VI
               Returns New feature generated.
               Return type pandas. Series
      vortex indicator neg()
           -VI
               Returns New feature generated.
               Return type pandas. Series
```

vortex indicator pos()

+VI

Return type pandas. Series

class ta.trend.WMAIndicator(close: pandas.core.series.Series, window: int = 9, fillna: bool = False)

WMA - Weighted Moving Average

Parameters

- **close** (pandas.Series) dataset 'Close' column.
- window (int) n period.
- fillna (bool) if True, fill nan values.

 $\textbf{wma} \ (\) \ \rightarrow pandas.core.series.Series$

Weighted Moving Average (WMA)

Returns New feature generated.

Return type pandas. Series

ta.trend.adx (high, low, close, window=14, fillna=False)

Average Directional Movement Index (ADX)

The Plus Directional Indicator (+DI) and Minus Directional Indicator (-DI) are derived from smoothed averages of these differences, and measure trend direction over time. These two indicators are often referred to collectively as the Directional Movement Indicator (DMI).

The Average Directional Index (ADX) is in turn derived from the smoothed averages of the difference between +DI and -DI, and measures the strength of the trend (regardless of direction) over time.

Using these three indicators together, chartists can determine both the direction and strength of the trend.

http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:average_directional_index_adx

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- close (pandas. Series) dataset 'Close' column.
- window (int) n period.
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.trend.adx_neg(high, low, close, window=14, fillna=False)

Average Directional Movement Index Negative (ADX)

The Plus Directional Indicator (+DI) and Minus Directional Indicator (-DI) are derived from smoothed averages of these differences, and measure trend direction over time. These two indicators are often referred to collectively as the Directional Movement Indicator (DMI).

The Average Directional Index (ADX) is in turn derived from the smoothed averages of the difference between +DI and -DI, and measures the strength of the trend (regardless of direction) over time.

Using these three indicators together, chartists can determine both the direction and strength of the trend.

http://stockcharts.com/school/doku.php?id=chart school:technical indicators:average directional index adx

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- close (pandas.Series) dataset 'Close' column.
- window (int) n period.
- fillna (bool) if True, fill nan values.

Return type pandas. Series

 $\verb|ta.trend.adx_pos|(high, low, close, window=14, fillna=False)|$

Average Directional Movement Index Positive (ADX)

The Plus Directional Indicator (+DI) and Minus Directional Indicator (-DI) are derived from smoothed averages of these differences, and measure trend direction over time. These two indicators are often referred to collectively as the Directional Movement Indicator (DMI).

The Average Directional Index (ADX) is in turn derived from the smoothed averages of the difference between +DI and -DI, and measures the strength of the trend (regardless of direction) over time.

Using these three indicators together, chartists can determine both the direction and strength of the trend.

http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:average_directional_index_adx

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- close (pandas. Series) dataset 'Close' column.
- window (int) n period.
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.trend.aroon_down (close, window=25, fillna=False)
Aroon Indicator (AI)

Identify when trends are likely to change direction (downtrend).

Aroon Down - ((N - Days Since N-day Low) / N) x 100

https://www.investopedia.com/terms/a/aroon.asp

Parameters

- **close** (pandas.Series) dataset 'Close' column.
- window (int) n period.
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.trend.aroon_up(close, window=25, fillna=False)
Aroon Indicator (AI)

Identify when trends are likely to change direction (uptrend).

Aroon Up - ((N - Days Since N-day High) / N) x 100

https://www.investopedia.com/terms/a/aroon.asp

Parameters

- close (pandas. Series) dataset 'Close' column.
- window (int) n period.
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.trend.cci (high, low, close, window=20, constant=0.015, fillna=False)
Commodity Channel Index (CCI)

CCI measures the difference between a security's price change and its average price change. High positive readings indicate that prices are well above their average, which is a show of strength. Low negative readings indicate that prices are well below their average, which is a show of weakness.

http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:commodity_channel_index_cci

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- close (pandas.Series) dataset 'Close' column.
- window (int) n periods.
- **constant** (*int*) constant.
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.trend.dpo(close, window=20, fillna=False)

Detrended Price Oscillator (DPO)

Is an indicator designed to remove trend from price and make it easier to identify cycles.

http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:detrended_price_osci

Parameters

- **close** (pandas.Series) dataset 'Close' column.
- window (int) n period.
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.trend.ema_indicator(close, window=12, fillna=False)

Exponential Moving Average (EMA)

Returns New feature generated.

Return type pandas. Series

ta.trend.ichimoku_a (high, low, window1=9, window2=26, visual=False, fillna=False) Ichimoku Kinkō Hyō (Ichimoku)

It identifies the trend and look for potential signals within that trend.

http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:ichimoku_cloud

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- window1 (int) n1 low period.
- window2 (int) n2 medium period.
- **visual** (*bool*) if True, shift n2 values.
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.trend.ichimoku_b (high, low, window2=26, window3=52, visual=False, fillna=False) Ichimoku Kinkō Hyō (Ichimoku)

It identifies the trend and look for potential signals within that trend.

http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:ichimoku_cloud

Parameters

- high (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- window2 (int) n2 medium period.
- window3 (int) n3 high period.
- visual (bool) if True, shift n2 values.
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.trend.ichimoku_base_line (high, low, window1=9, window2=26, visual=False, fillna=False) \rightarrow pandas.core.series.Series

Kijun-sen (Base Line)

It identifies the trend and look for potential signals within that trend.

http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:ichimoku_cloud

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- **window1** (*int*) n1 low period.
- window2 (int) n2 medium period.
- **visual** (*bool*) if True, shift n2 values.
- fillna (bool) if True, fill nan values.

Return type pandas. Series

ta.trend.ichimoku_conversion_line (high, low, window1=9, window2=26, visual=False, $fillna=False) \rightarrow pandas.core.series.$

Tenkan-sen (Conversion Line)

It identifies the trend and look for potential signals within that trend.

http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:ichimoku_cloud

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- window1 (int) n1 low period.
- window2 (*int*) n2 medium period.
- **visual** (*bool*) if True, shift n2 values.
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.trend.kst (close, roc1=10, roc2=15, roc3=20, roc4=30, window1=10, window2=10, window3=10, window4=15, fillna=False)

KST Oscillator (KST)

It is useful to identify major stock market cycle junctures because its formula is weighed to be more greatly influenced by the longer and more dominant time spans, in order to better reflect the primary swings of stock market cycle.

https://en.wikipedia.org/wiki/KST_oscillator

Parameters

- close (pandas. Series) dataset 'Close' column.
- **roc1** (*int*) r1 period.
- **roc2** (*int*) r2 period.
- **roc3** (*int*) r3 period.
- **roc4** (*int*) r4 period.
- window1 (int) n1 smoothed period.
- window2 (*int*) n2 smoothed period.
- window3 (*int*) n3 smoothed period.
- window4 (int) n4 smoothed period.
- **fillna** (*bool*) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.trend.kst_sig(close, roc1=10, roc2=15, roc3=20, roc4=30, window1=10, window2=10, window3=10, window4=15, nsig=9, fillna=False)

KST Oscillator (KST Signal)

It is useful to identify major stock market cycle junctures because its formula is weighed to be more greatly influenced by the longer and more dominant time spans, in order to better reflect the primary swings of stock market cycle.

http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:know_sure_thing_kst

Parameters

- **close** (pandas.Series) dataset 'Close' column.
- **roc1** (*int*) roc1 period.
- **roc2** (*int*) roc2 period.
- **roc3** (*int*) roc3 period.
- **roc4** (*int*) roc4 period.
- window1 (int) n1 smoothed period.
- window2 (int) n2 smoothed period.
- window3 (int) n3 smoothed period.
- window4 (int) n4 smoothed period.
- **nsig** (*int*) n period to signal.
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

```
ta.trend.macd(close, window_slow=26, window_fast=12, fillna=False)
```

Moving Average Convergence Divergence (MACD)

Is a trend-following momentum indicator that shows the relationship between two moving averages of prices.

https://en.wikipedia.org/wiki/MACD

Parameters

- close (pandas. Series) dataset 'Close' column.
- window_fast (int) n period short-term.
- window_slow (int) n period long-term.
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.trend.macd_diff(close, window_slow=26, window_fast=12, window_sign=9, fillna=False)
Moving Average Convergence Divergence (MACD Diff)

Shows the relationship between MACD and MACD Signal.

https://en.wikipedia.org/wiki/MACD

Parameters

- **close** (pandas.Series) dataset 'Close' column.
- window_fast (*int*) n period short-term.
- window_slow (int) n period long-term.

- window_sign (int) n period to signal.
- fillna (bool) if True, fill nan values.

Return type pandas. Series

ta.trend.macd_signal (close, window_slow=26, window_fast=12, window_sign=9, fillna=False)
Moving Average Convergence Divergence (MACD Signal)

Shows EMA of MACD.

https://en.wikipedia.org/wiki/MACD

Parameters

- close (pandas. Series) dataset 'Close' column.
- window_fast (int) n period short-term.
- window_slow (int) n period long-term.
- window_sign (int) n period to signal.
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.trend.mass_index (high, low, window_fast=9, window_slow=25, fillna=False)
Mass Index (MI)

It uses the high-low range to identify trend reversals based on range expansions. It identifies range bulges that can foreshadow a reversal of the current trend.

http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:mass_index

Parameters

- high (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- window_fast (int) fast window value.
- window_slow (int) slow window value.
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.trend.**psar_down** (high, low, close, step=0.02, max_step=0.2, fillna=False)
Parabolic Stop and Reverse (Parabolic SAR)

Returns the PSAR series with non-N/A values for downward trends

https://school.stockcharts.com/doku.php?id=technical_indicators:parabolic_sar

Parameters

- high (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- close (pandas. Series) dataset 'Close' column.

- **step** (*float*) the Acceleration Factor used to compute the SAR.
- max_step (*float*) the maximum value allowed for the Acceleration Factor.
- fillna (bool) if True, fill nan values.

Return type pandas. Series

ta.trend.**psar_down_indicator** (high, low, close, step=0.02, max_step=0.2, fillna=False)
Parabolic Stop and Reverse (Parabolic SAR) Downward Trend Indicator

Returns 1, if there is a reversal towards an downward trend. Else, returns 0.

https://school.stockcharts.com/doku.php?id=technical_indicators:parabolic_sar

Parameters

- high (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- **close** (pandas.Series) dataset 'Close' column.
- **step** (*float*) the Acceleration Factor used to compute the SAR.
- max_step (float) the maximum value allowed for the Acceleration Factor.
- **fillna** (*bool*) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.trend.**psar_up** (*high*, *low*, *close*, *step=0.02*, *max_step=0.2*, *fillna=False*)
Parabolic Stop and Reverse (Parabolic SAR)

Returns the PSAR series with non-N/A values for upward trends

https://school.stockcharts.com/doku.php?id=technical_indicators:parabolic_sar

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- close (pandas.Series) dataset 'Close' column.
- **step** (*float*) the Acceleration Factor used to compute the SAR.
- max step (float) the maximum value allowed for the Acceleration Factor.
- **fillna** (*bool*) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.trend.psar_up_indicator (high, low, close, step=0.02, max_step=0.2, fillna=False)
Parabolic Stop and Reverse (Parabolic SAR) Upward Trend Indicator

Returns 1, if there is a reversal towards an upward trend. Else, returns 0.

https://school.stockcharts.com/doku.php?id=technical_indicators:parabolic_sar

Parameters

• **high** (pandas.Series) – dataset 'High' column.

- low (pandas.Series) dataset 'Low' column.
- **close** (pandas.Series) dataset 'Close' column.
- **step** (*float*) the Acceleration Factor used to compute the SAR.
- max_step (float) the maximum value allowed for the Acceleration Factor.
- **fillna** (bool) if True, fill nan values.

Return type pandas. Series

ta.trend.sma_indicator(close, window=12, fillna=False)
Simple Moving Average (SMA)

Returns New feature generated.

Return type pandas. Series

```
ta.trend.stc (close, window_slow=50, window_fast=23, cycle=10, smooth1=3, smooth2=3, fillna=False) Schaff Trend Cycle (STC)
```

The Schaff Trend Cycle (STC) is a charting indicator that is commonly used to identify market trends and provide buy and sell signals to traders. Developed in 1999 by noted currency trader Doug Schaff, STC is a type of oscillator and is based on the assumption that, regardless of time frame, currency trends accelerate and decelerate in cyclical patterns.

https://www.investopedia.com/articles/forex/10/schaff-trend-cycle-indicator.asp

Parameters

- **close** (pandas.Series) dataset 'Close' column.
- window_fast (int) n period short-term.
- window_slow (int) n period long-term.
- cycle (int) n period
- smooth1 (int) ema period over stoch_k
- smooth2 (int) ema period over stoch_kd
- **fillna** (*bool*) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

```
ta.trend.trix(close, window=15, fillna=False)
    Trix(TRIX)
```

Shows the percent rate of change of a triple exponentially smoothed moving average.

http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:trix

Parameters

- close (pandas.Series) dataset 'Close' column.
- window (int) n period.
- **fillna** (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.trend.vortex_indicator_neg (high, low, close, window=14, fillna=False)
Vortex Indicator (VI)

It consists of two oscillators that capture positive and negative trend movement. A bearish signal triggers when the negative trend indicator crosses above the positive trend indicator or a key level.

http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:vortex_indicator

Parameters

- high (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- close (pandas. Series) dataset 'Close' column.
- window (int) n period.
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.trend.vortex_indicator_pos (high, low, close, window=14, fillna=False)
Vortex Indicator (VI)

It consists of two oscillators that capture positive and negative trend movement. A bullish signal triggers when the positive trend indicator crosses above the negative trend indicator or a key level.

http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:vortex_indicator

Parameters

- **high** (pandas.Series) dataset 'High' column.
- low (pandas.Series) dataset 'Low' column.
- **close** (pandas.Series) dataset 'Close' column.
- window (int) n period.
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.trend.wma_indicator(close, window=9, fillna=False)

Weighted Moving Average (WMA)

Returns New feature generated.

Return type pandas. Series

4.1.5 Others Indicators

Others Indicators.

Cumulative Return (CR)

Parameters

• **close** (*pandas.Series*) – dataset 'Close' column.

• fillna (bool) – if True, fill nan values.

 $\textbf{cumulative_return} \; () \; \rightarrow pandas.core.series. Series$

Cumulative Return (CR)

Returns New feature generated.

Return type pandas. Series

class ta.others.DailyLogReturnIndicator(close: pandas.core.series.Series, fillna: bool = False)

Daily Log Return (DLR)

https://stackoverflow.com/questions/31287552/logarithmic-returns-in-pandas-dataframe

Parameters

- **close** (pandas.Series) dataset 'Close' column.
- **fillna** (*bool*) if True, fill nan values.

 $\mbox{\tt daily_log_return} \ (\) \ \rightarrow \mbox{pandas.core.series.} Series$

Daily Log Return (DLR)

Returns New feature generated.

Return type pandas. Series

class ta.others.DailyReturnIndicator(close: pandas.core.series.Series, fillna: bool = False)
 Daily Return(DR)

Parameters

- close (pandas. Series) dataset 'Close' column.
- fillna (bool) if True, fill nan values.

 $daily_return() \rightarrow pandas.core.series.Series$

Daily Return (DR)

Returns New feature generated.

Return type pandas. Series

ta.others.cumulative_return(close, fillna=False)

Cumulative Return (CR)

Parameters

- **close** (pandas.Series) dataset 'Close' column.
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.others.daily_log_return(close, fillna=False)

Daily Log Return (DLR)

https://stackoverflow.com/questions/31287552/logarithmic-returns-in-pandas-dataframe

Parameters

- close (pandas.Series) dataset 'Close' column.
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

ta.others.daily_return(close, fillna=False)
Daily Return(DR)

Parameters

60

- close (pandas.Series) dataset 'Close' column.
- fillna (bool) if True, fill nan values.

Returns New feature generated.

Return type pandas. Series

CHAPTER

FIVE

INDICES AND TABLES

- genindex
- modindex
- search

Technical Analysis Library in Python Documentation, Release 0.1.4		
Teomical Analysis Library in Fython Bootinemation, nelease 6.1.4		

PYTHON MODULE INDEX

m momentum, 9 O others, 58 t ta, 9 ta.momentum, 9 ta.others, 58 ta.trend, 41 ta.volatility, 30 ta.volume, 22 trend, 41 V volatility, 30 volume, 22

64 Python Module Index

INDEX

A	bollinger_lband() (ta.volatility.BollingerBands
acc_dist_index() (in module ta.volume), 26	method), 31
<pre>acc_dist_index() (ta.volume.AccDistIndexIndicator</pre>	bollinger_lband_indicator() (in module ta.volatility), 35
AccDistIndexIndicator (class in ta.volume), 22	<pre>bollinger_lband_indicator()</pre>
adx () (in module ta.trend), 49	(ta.volatility.BollingerBands method), 31
adx () (ta.trend.ADXIndicator method), 41	bollinger_mavg() (in module ta.volatility), 35
adx_neg() (in module ta.trend), 49	bollinger_mavg() (ta.volatility.BollingerBands
adx_neg() (ta.trend.ADXIndicator method), 41	method), 31
adx_pos() (in module ta.trend), 50	bollinger_pband() (in module ta.volatility), 35
adx_pos() (ta.trend.ADXIndicator method), 41	bollinger_pband() (ta.volatility.BollingerBands
ADXIndicator (class in ta.trend), 41	method), 31
aroon_down() (in module ta.trend), 50	bollinger_wband() (in module ta.volatility), 36
aroon_down() (ta.trend.AroonIndicator method), 42	bollinger_wband() (ta.volatility.BollingerBands
aroon_indicator() (ta.trend.AroonIndicator	method), 31
method), 42	BollingerBands (class in ta.volatility), 30
aroon_up() (in module ta.trend), 50	C
aroon_up() (ta.trend.AroonIndicator method), 42	
AroonIndicator (class in ta.trend), 42	cci () (in module ta.trend), 51
<pre>average_true_range() (in module ta.volatility),</pre>	cci () (ta.trend.CCIIndicator method), 42
34	CCIIndicator (class in ta.trend), 42
<pre>average_true_range()</pre>	chaikin_money_flow() (in module ta.volume), 26
(ta.volatility.AverageTrueRange method),	chaikin_money_flow()
30	(ta.volume.ChaikinMoneyFlowIndicator
AverageTrueRange (class in ta.volatility), 30	method), 23
<pre>awesome_oscillator() (in module ta.momentum), 15</pre>	ChaikinMoneyFlowIndicator (class in ta.volume), 23
<pre>awesome_oscillator()</pre>	cumulative_return() (in module ta.others), 59
(ta.momentum. A we some Oscillator Indicator	<pre>cumulative_return()</pre>
method), 9	$(ta. others. Cumulative Return Indicator\ method),$
AwesomeOscillatorIndicator (class in	59
ta.momentum), 9	CumulativeReturnIndicator (class in ta.others),
В	58
bollinger_hband() (in module ta.volatility), 34	D
bollinger_hband() (ta.volatility.BollingerBands	daily_log_return() (in module ta.others), 59
method), 30	daily_log_return()
<pre>bollinger_hband_indicator() (in module</pre>	(ta.others.DailyLogReturnIndicator method), 59
bollinger_hband_indicator()	daily_return() (in module ta.others), 60
(ta.volatility.BollingerBands method), 31	daily_return() (ta.others.DailyReturnIndicator
bollinger_lband() (in module ta.volatility), 34	method), 59

DailyLogReturnIndicator (<i>class in ta.others</i>), 59 DailyReturnIndicator (<i>class in ta.others</i>), 59	<pre>ichimoku_b() (in module ta.trend), 52 ichimoku_b() (ta.trend.IchimokuIndicator method),</pre>
<pre>donchian_channel_hband() (in module</pre>	44 ichimoku_base_line() (in module ta.trend), 52
donchian_channel_hband()	ichimoku_base_line()
(ta.volatility.DonchianChannel method),	
32	ichimoku_conversion_line() (in module
donchian_channel_lband() (in module	ta.trend), 53
ta.volatility), 36	<pre>ichimoku_conversion_line()</pre>
donchian_channel_lband()	(ta.trend.IchimokuIndicator method), 44
(ta.volatility.DonchianChannel method), 32	
<pre>donchian_channel_mband() (in module</pre>	Kama () (in module ta.momentum), 16
donchian_channel_mband()	kama () (ta.momentum.KAMAIndicator method), 10
(ta.volatility.DonchianChannel method),	
32	keltner_channel_hband() (in module
donchian_channel_pband() (in module	ta.volatility), 37
ta.volatility), 37	keltner_channel_hband()
donchian_channel_pband()	(ta.volatility.KeltnerChannel method), 32
(ta.volatility.DonchianChannel method), 32	<pre>keltner_channel_hband_indicator() (in</pre>
donchian_channel_wband() (in module	keltner_channel_hband_indicator()
ta.volatility), 37	(ta.volatility.KeltnerChannel method), 33
donchian_channel_wband()	keltner_channel_lband() (in module
(ta.volatility.DonchianChannel method),	, , , , , , , ,
32 Denobi an Channel (alors in to valetility) 31	keltner_channel_lband()
DonchianChannel (class in ta.volatility), 31 dpo () (in module ta.trend), 51	(ta.volatility.KeltnerChannel method), 33
dpo() (ta.trend.DPOIndicator method), 43	keltner_channel_lband_indicator() (in
DPOIndicator (class in ta.trend), 43	module ta.volatility), 39
	keltner_channel_lband_indicator() (ta.volatility.KeltnerChannel method), 33
E	keltner_channel_mband() (in module
ease_of_movement() (in module ta.volume), 27	ta.volatility), 39
ease_of_movement()	keltner_channel_mband()
(ta.volume.EaseOfMovementIndicator method), 23	(ta.volatility.KeltnerChannel method), 33
EaseOfMovementIndicator (class in ta.volume),	• • •
23	keltner_channel_pband()
ema_indicator() (in module ta.trend), 51	(ta.volatility.KeltnerChannel method), 33
ema_indicator() (ta.trend.EMAIndicator method), 43	ta.volatility), 40
EMAIndicator (class in ta.trend), 43	keltner_channel_wband() (ta.volatility.KeltnerChannel method), 33
F	KeltnerChannel (class in ta.volatility), 32
force_index() (in module ta.volume), 27	kst () (in module ta.trend), 53
force_index() (ta.volume.ForceIndexIndicator	
method), 24	kst_diff() (ta.trend.KSTIndicator method), 45
ForceIndexIndicator (class in ta.volume), 24	kst_sig() (in module ta.trend), 53
	kst_sig() (ta.trend.KSTIndicator method), 45
l	KSTIndicator (class in ta.trend), 44
ichimoku_a() (in module ta.trend), 51	
ichimoku_a() (ta.trend.IchimokuIndicator method),	M
44	MACD (class in ta.trend), 45

66 Index

macd() (in module ta.trend), 54	psar_up() (ta.trend.PSARIndicator method), 47
macd() (ta.trend.MACD method), 45	psar_up_indicator() (in module ta.trend), 56
<pre>macd_diff() (in module ta.trend), 54</pre>	<pre>psar_up_indicator() (ta.trend.PSARIndicator</pre>
<pre>macd_diff() (ta.trend.MACD method), 45</pre>	method), 47
macd_signal() (in module ta.trend), 55	PSARIndicator (class in ta.trend), 46
macd_signal() (ta.trend.MACD method), 45	pvo () (in module ta.momentum), 17
<pre>mass_index() (in module ta.trend), 55</pre>	pvo() (ta.momentum.PercentageVolumeOscillator
<pre>mass_index() (ta.trend.MassIndex method), 46</pre>	method), 11
MassIndex (class in ta.trend), 45	<pre>pvo_hist() (in module ta.momentum), 17</pre>
MFIIndicator (class in ta.volume), 24	<pre>pvo_hist() (ta.momentum.PercentageVolumeOscillator</pre>
momentum (module), 9	method), 11
money_flow_index() (in module ta.volume), 27	<pre>pvo_signal() (in module ta.momentum), 18</pre>
<pre>money_flow_index() (ta.volume.MFIIndicator</pre>	${\tt pvo_signal()} \ (\textit{ta.momentum.PercentageVolumeOscillator}$
method), 24	method), 11
N	R
<pre>negative_volume_index() (in module ta.volume),</pre>	
28	roc() (in module ta.momentum), 18 roc() (ta.momentum.ROCIndicator method), 12
negative_volume_index()	ROCIndicator (class in ta.momentum), 11
(ta.volume.NegativeVolumeIndexIndicator	rsi() (in module ta.momentum), 18
method), 25	rsi() (ta.momentum.RSIIndicator method), 12
NegativeVolumeIndexIndicator (class in	RSIIndicator (class in ta.momentum), 12
ta.volume), 25	Notificated (class in in.momentum), 12
	S
O	<pre>sma_ease_of_movement() (in module ta.volume),</pre>
on_balance_volume() (in module ta.volume), 28	29
on_balance_volume()	sma_ease_of_movement()
(ta.volume.OnBalanceVolumeIndicator	(ta.volume.EaseOfMovementIndicator
method), 25	method), 24
OnBalanceVolumeIndicator (class in ta.volume),	sma_indicator() (in module ta.trend), 57
25	sma_indicator() (ta.trend.SMAIndicator method),
others (module), 58	47
B	SMAIndicator (class in ta.trend), 47
P	stc() (in module ta.trend), 57
PercentagePriceOscillator (class in	stc() (ta.trend.STCIndicator method), 47
ta.momentum), 10	STCIndicator (class in ta.trend), 47
PercentageVolumeOscillator (class in	stoch() (in module ta.momentum), 19
ta.momentum), 11	stoch() (ta.momentum.StochasticOscillator method),
ppo () (in module ta.momentum), 16	13
ppo() (ta.momentum.PercentagePriceOscillator	stoch_signal() (in module ta.momentum), 19
method), 10	stoch_signal() (ta.momentum.StochasticOscillator
ppo_hist() (in module ta.momentum), 16	method), 13
<pre>ppo_hist() (ta.momentum.PercentagePriceOscillator</pre>	StochasticOscillator (class in ta.momentum), 13
method), 10	stochrsi() (in module ta.momentum), 19
ppo_signal() (in module ta.momentum), 17	stochrsi() (ta.momentum.StochRSIIndicator
ppo_signal() (ta.momentum.PercentagePriceOscillato	
method), 11	stochrsi_d() (in module ta.momentum), 20
psar () (ta.trend.PSARIndicator method), 46	stochrsi_d() (ta.momentum.StochRSIIndicator
psar_down() (in module ta.trend), 55	method), 12
psar_down() (ta.trend.PSARIndicator method), 46	stochrsi_k() (in module ta.momentum), 20
psar_down_indicator() (in module ta.trend), 56	stochrsi_k() (ta.momentum.StochRSIIndicator
psar_down_indicator() (ta.trend.PSARIndicator	method), 13
method), 46	StochRSIIndicator (class in ta.momentum), 12
psar_up() (in module ta.trend), 56	

Index 67

```
Т
                                                   williams r()
                                                                      (ta.momentum.WilliamsRIndicator
                                                           method), 15
ta (module), 9
                                                   WilliamsRIndicator (class in ta.momentum), 14
ta.momentum (module), 9
                                                   wma () (ta.trend.WMAIndicator method), 49
ta.others (module), 58
                                                   wma indicator() (in module ta.trend), 58
ta.trend (module), 41
                                                   WMAIndicator (class in ta.trend), 49
ta.volatility (module), 30
ta.volume (module), 22
trend (module), 41
trix() (in module ta.trend), 57
trix() (ta.trend.TRIXIndicator method), 48
TRIXIndicator (class in ta.trend), 48
tsi() (in module ta.momentum), 21
tsi() (ta.momentum.TSIIndicator method), 14
TSIIndicator (class in ta.momentum), 13
U
ulcer_index() (in module ta.volatility), 40
ulcer_index() (ta.volatility.UlcerIndex method), 33
UlcerIndex (class in ta.volatility), 33
ultimate_oscillator()
                                          module
                                 (in
        ta.momentum), 21
ultimate_oscillator()
        (ta.momentum. Ultimate Oscillator
                                         method),
UltimateOscillator (class in ta.momentum), 14
V
volatility (module), 30
volume (module), 22
volume_price_trend() (in module ta.volume), 29
volume_price_trend()
        (ta.volume.VolumePriceTrendIndicator
        method), 25
volume_weighted_average_price() (in mod-
        ule ta.volume), 29
volume_weighted_average_price()
        (ta.volume.VolumeWeightedAveragePrice
        method), 26
VolumePriceTrendIndicator
                                     (class
                                               in
        ta.volume), 25
VolumeWeightedAveragePrice
                                     (class
                                               in
        ta.volume), 26
vortex_indicator_diff()
        (ta.trend.VortexIndicator method), 48
vortex_indicator_neg() (in module ta.trend), 58
vortex_indicator_neg()
        (ta.trend.VortexIndicator method), 48
vortex_indicator_pos() (in module ta.trend), 58
vortex_indicator_pos()
        (ta.trend.VortexIndicator method), 48
VortexIndicator (class in ta.trend), 48
W
```

68 Index

williams r() (in module ta.momentum), 22