Eliminação Gaussiana sem troca física de linhas com pivoteamento parcial

Alexandre Maros & Nadyan S. Pscheidt

Programação Paralela - OPRP

Prof. Guilherme Koslovski

Universidade do Estado de Santa Catarina

Problema

- Resolver sistemas lineares;
- Formar uma matriz triangular superior;
 - Operações elementares;
 - Somar uma linha com múltiplo de outra;
 - Trocar linhas entre si;
 - Multiplicar linha por constante não-nula;
- Após matriz triangular formada:
 - Resolver equações a partir da última até a primeira;

Problema

```
\begin{cases} x_{11} + x_{12} + x_{13} + \dots + x_{1n} = b_1 \\ x_{21} + x_{22} + x_{23} + \dots + x_{2n} = b_2 \\ x_{31} + x_{32} + x_{33} + \dots + x_{3n} = b_3 \end{cases}
    x_{n1} + x_{n2} + x_{n3} + \dots + x_{nn} = b_n
```

Problema

$\lceil x_{11} \rceil$	x_{12}	x_{13}		x_{1n}	b_1	$\lceil x_{11} \rceil$	x_{12}	x_{13}		x_{1n}	b_1
x_{21}	x_{22}	x_{23}		x_{2n}	b_2	0	x_{22}	x_{23}		x_{2n}	b_2
x_{31}	x_{32}	x_{33}		x_{3n}	b_3	0	x_{32}	x_{33}		x_{3n}	b_3
:	:	:		:		1:	•	:		:	
$\lfloor x_{n1} \rfloor$	x_{n2}	x_{n3}		x_{nn}	b_n		x_{n2}	x_{n3}		x_{nn}	b_n
$\lceil x_{11} \rceil$	x_{12}	x_{13}		x_{1n}	$ b_1 $	$\lceil x_{11} \rceil$	x_{12}	x_{13}		x_{1n}	$ b_1 $
0	x_{22}	x_{23}		x_{2n}	b_2	0	x_{22}	x_{23}		x_{2n}	b_2
0	0	x_{33}		x_{3n}	b_3	0	0	x_{33}		x_{3n}	b_3
	÷	:		:	:	:	:	:		:	
	0	x_{n3}		x_{nn}	b_n		0	0		x_{nn}	b_n

PCAM Particionamento

Duas partes do problema foram paralelizadas:

1. Encontrar o maior elemento de cada linha

```
#pragma omp paralel for private(i, j, smax) shared(L, s) num_threads(nthreads)
for (i = 0; i < n; i++) {
    L[i] = i;
    smax = 0;
    for (j = 0; j < n; j++) {
        smax = dmax(smax, abs(matriz[i][j]));
    }
    s[i] = smax;
}</pre>
```

PCAM Particionamento

PCAM Particionamento

2. Efetivamente zerar a coluna.

```
#pragma omp parallel for private(i, j, m) shared(k, matriz) num_threads(nthreads)
for (i = k+1; i < n; i++) {
    m = matriz[L[ i ]][k] / matriz[L[k]][k];
    matriz[L[ i ]][k] = 0;
    for (j = k+1; j < n+1; j++) {
        matriz[L[ i ]][ j ] = matriz[L[ i ]][ j ] - (m * matriz[L[k]][ j ]);
    }
}</pre>
```

PCAM

Particionamento

PCAM Comunicação

- Operações estão sendo aplicadas sobre um mesmo vetor em áreas distintas.
- Não há uma comunicação entre threads

PCAM Aglomeração

- As threads não precisam comunicar entre si ja que elas são independentes.
- Não há dados replicados (operam sobre um mesmo vetor)

PCAM Mapeamento

- Todas as threads são independentes logo não é necessário se preocupar como elas estão mapeadas.
- Há um mapeamento estático já que cada thread recebe uma área de operação.
 - Schedule (guided)

OpenMP x pthreads

- Como os dados foram medidos:
 - Sistema com 4500 variáveis.
 - Shell script para rodar o programa 7 vezes com 2 Threads, 7 vezes com 3 threads e assim por diante, e tirar a média desses valores.

OpenMP x pthreads

Aceleração Eliminação Gaussiana

OpenMP x pthreads

Aceleração Eliminação Gaussiana

