TOSHIBA TA8164P

TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA8164P

3V MONAURAL RADIO IC

The TA8164P is AM/FM Tuner (FM F/E+AM/FM IF) IC, which is designed for AM/FM monaural radio. Combining with the TA7368P (Mono PW IC), a suitable monaural AM/FM radio system is able to be constituted.

FEATURES

- Common output for AM/FM
- Switch over between AM/FM mode is possible with onewake switch.
- Operating supply voltage range : $V_{CC(opr)} = 1.8 \sim 7V \text{ (Ta} = 25^{\circ}\text{C)}$

Weight: 1.00g (Typ.)

BLOCK DIAGRAM

■ TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

■ The products described in this document are subject to foreign exchange and foreign trade control laws.

■ The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

■ The information contained herein is subject to change without notice.

EXPLANATION OF TERMINAL

	ANATION OF TERMINAL		D6 1/0:-	TAGE 44
PIN No.	SYMBOL	INTERNAL CIRCUIT	(AT NO	TAGE (V) SIGNAL)
140.			AM	FM
1	FM-RF IN	FM-RF OUT 13	0	0.7
2	GND1 (GND for AM RF, OSC, MIX, FM RF, OSC, MIX)	_	0	0
3	FM MIX	AM/FM SW 13	3.0	3.0
4	AM MIX	VCC 6 MIX	3.0	3.0
5	AGC (AM AGC)	IF AGC S RF AGC GND2 GND2 GND2 GND2 GND2 GND2 GND2 GND2 GND2 GND2 GND2 GND2 G	0	0
6	Vcc	-	3.0	3.0
7	AM IF IN	Vcc 6 G G G G G G G G G G G G G G G G G G	3.0	3.0
8	FM IF IN	V _{CC} 6	3.0	3.0

PIN No.	SYMBOL	INTERNAL CIRCUIT	DC VOLTAGE (V) (AT NO SIGNAL)		
	CNID2 (CNID for ANALIS and ENLIS)		AM	FM	
9	GND2 (GND for AM IF and FM IF)		0	0	
10	QUAD (FM QUAD, Detector)	10	3.0	3.0	
11	DET OUT	VCC (6 (B) (B) (C) (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	1.4	1.4	
12	AM OSC	VCC 6 MIX	3.0	3.0	
13	FM OSC	AM/FM SW 14 13 MIX - 11	3.0	3.0	
14	AM / FM SW PIN∰ V _{CC} → FM PIN∰ OPEN → AM	AM IF FM F/E C WOZ C S W W W W W W W W W W W W W W W W W W	_	3.0	
15	FM RF OUT	cf. pin①	3.0	3.0	
16	AM RF IN	VCC 6 GND1 2	3.0	3.0	

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	Vcc	8	V
Power Dissipation	P _D (Note)	750	mW
Operating Temperature	T _{opr}	- 25∼75	°C
Storage Temperature	T _{stg}	- 55∼150	°C

(Note) Derated above $Ta = 25^{\circ}C$ in the proportion of $6mW/^{\circ}C$.

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, Ta = 25°C, V_{CC} = 3V, F/E : f = 98MHz, f_m = 1kHz FM IF : f = 10.7MHz, Δf = \pm 22.5kHz, f_m = 1kHz AM : f = 1MHz, MOD = 30%, f_m = 1kHz

				•					
CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT	
Summits Comment		I _{CC} (FM)	1	FM Mode V _{in} = 0	_	10.5	15.5	0	
Supp	oly Current	ICC (AM)	1	AM Mode V _{in} = 0	_	4.5	7.0	mA	
	Input Limiting Voltage	V _{in} (lim)	1	-3dB limiting point	_	12	_	dBμV EMF	
FM F/E	Quiescent Sensitivity	QS	1	S / N = 30dB	_	12	_	dBμV EMF	
' -	Local OSC Voltage	Vosc	2	f _{OSC} = 108MHz	150	205	280	mV_{rms}	
	Local OSC Stop Supply Voltage	V _{stop} (FM)	2	V _{in} = 0	_	1.2	_	٧	
	Input Limiting Voltage	V _{in} (lim) IF	1	-3dB limiting point	44	50	56	dBμV EMF	
FM	Recovered Output Voltage	V _{OD}	1	V _{in} = 80dBμV EMF	20	35	55	mV _{rms}	
IF	Signal To Noise Ratio	S/N	1	$V_{in} = 80 dB \mu V EMF$	_	62	_	dB	
	Total Harmonic Distortion	THD	1	V _{in} = 80dBμV EMF	_	0.4	_	%	
	AM Rejection Ratio	AMR	1	$V_{in} = 80 dB \mu V EMF$	_	33	_	dB	
	Gain	Gγ	1	$V_{in} = 30 dB \mu V EMF$	15	30	45	mV_{rms}	
	Recovered Output Voltage	V _{OD}	1	$V_{in} = 60 dB \mu V EMF$	20	35	55	mV _{rms}	
AM	Signal To Noise Ratio	S/N	1	$V_{in} = 60 dB \mu V EMF$	_	43	_	dB	
	Total Harmonic Distortion	THD	1	V _{in} = 60dBμV EMF		1.0	_	%	
	Local OSC Stop Supply Voltage	V _{stop} (AM)	1	V _{in} = 0	_	1.6	_	٧	

TEST CIRCUIT 1

TEST CIRCUIT 2

COIL DATA

COIL No.	f	L	C _O (pF)	Qo	TURNS					WIRE	REF.	
COIL NO.	(Hz)	(μH)			1-2	2-3	1-3	1-4	4-6	$(mm\phi)$	ILLI.	
L ₁ FM RF	100M	_	ı	100	_	_		2 1 4		0.5UEW	© 0258-000-021	
L ₂ FM OSC	100M	_		100	_	_	1 3	_	_	0.5UEW	© 0258-000-020	
L ₃ AM OSC	796k	268	_	125	14	86	_	_	_	0.06UEW	© 2157-2239-213A	
T ₁ FM MIX	10.7M	_	75	100	_	_	13	_	2		© 2153-414-041A	
T ₂ AM MIX	455k	_	330	100	65	45	110	_	6	0.08UEW	S 4140-1289-311	
T ₃ FM DET	10.7M	_	100	95	_	_	12	_	_	0.12UEW	© 2153-4095-189	

 $\ensuremath{\mathbb{S}}$: SUMIDA ELECTRIC Co., Ltd.

OUTLINE DRAWING DIP16-P-300-2.54A

Unit: mm

Weight: 1.0g (Typ.)