Coordinación de Cálculo III y Cálculo Avanzado para el Módulo Básico de Ingeniería

Control 2 Cálculo III Forma A 27 de octubre de 2022

Problema 1. Sea $\alpha = f(u, v)$, donde f es una función diferenciable y $u = \frac{x}{y}$, $v = \frac{z}{x}$. Dada la función w = w(x, y, z) = yf(u, v), calcular w_{xz} .

Solución.

$$u_x = y \frac{\partial f(u, v)}{\partial x} = y \left(f_u \frac{1}{y} + f_v \left(-\frac{z}{x^2} \right) \right)$$
$$= f_u - \frac{yz}{x^2} f_v$$

Se tiene que

$$\begin{split} \frac{\partial u_x}{\partial z} &= \frac{\partial}{\partial z} (f_u) - \frac{\partial}{\partial z} \left(\frac{yz}{x^2} f_v \right) \\ &= f_{uu} \cdot 0 + f_{uv} \frac{1}{x} - \frac{yz}{x^2} \left(f_{vu} \cdot 0 + f_{vv} \frac{1}{x} \right) - \frac{y}{x^2} f_v \\ &= \frac{1}{x} f_{uv} - \frac{yz}{x^3} f_{vv} - \frac{y}{x^2} f_v \end{split}$$

Problema 2. ¿En cuáles puntos la recta normal a través del punto (1, 2, 1) en el elipsoide $4x^2 + y^2 + 4z^2 = 12$ intersecta la esfera $x^2 + y^2 + z^2 = 102$?

Solución. Si $f(x,y,z) = 4x^2 + y^2 + 4z^2 - 12$, entonces $\nabla f(x,y,z) = (8x,2y,8z)$ y el vector normal al elipsoide es $\nabla f(1,2,1) = (8,4,8)$ paralelo a (2,1,2). Las ecuaciones paramétricas de la recta normal son

$$x = 1 + 2t$$
, $y = 2 + t$, $z = 1 + 2t$.

Esta recta intersecta la esfera para los valores de t tales que

$$(1+2t)^{2} + (2+t)^{2} + (1+2t)^{2} = 102$$

$$\Leftrightarrow 1+4t+4t^{2}+4+4t+t^{2}+1+4t+4t^{2} = 102$$

$$\Leftrightarrow 9t^{2}+12t-96=0$$

$$\Leftrightarrow (3t-8)(3t+12)=0$$

$$\Leftrightarrow (3t-8)(3t+12)=0$$

$$t = \frac{8}{3} \quad \lor \quad t = -4,$$

de donde los puntos son (x, y, z) = (19/3, 14/3, 19/3), (x, y, z) = (-7, -2, -7).

Problema 3. Considere el siguiente sistema de ecuaciones:

$$u = x^2 - xy$$
$$v = y - x.$$

- a) Si queremos expresar (x, y) como una función diferenciable en términos de (u, v) entorno al punto $(a, b) \in \mathbb{R}^2$, ¿que condiciones deben cumplir a y b?
- b) Calcule $\frac{\partial y}{\partial u}(a,b)$.

Solución.

a) Sea $F: \mathbb{R}^2 \to \mathbb{R}^2$, dada por $F(x,y) = (x^2 - xy, y - x)$. Como $\frac{\partial u}{\partial x} = 2x - y$, $\frac{\partial u}{\partial y} = -x$, $\frac{\partial v}{\partial x} = -1$ y $\frac{\partial v}{\partial y} = 1$ existen y además son continuas, entonces F es de clase C^1 , en particular cerca del punto (a,b).

Ahora calculemos el Jacobiano de la función F, o sea:

$$DF(x,y) = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{bmatrix} = \begin{bmatrix} 2x - y & -x \\ -1 & 1 \end{bmatrix},$$

entonces el determinante del Jacobiano es det (DF(x,y)) = 2x - y - x = x - y, por lo que det (DF(a,b)) = a - b.

Para usar el teorema de la función implícita, necesitamos que det $(DF(a,b)) = a - b \neq 0$, o sea $a \neq b$, entonces existe $F^{-1}(u,v) = (x,y)$ y (x,y) puede ser expresada por una función diferenciable en términos de (u,v).

b) Como $DF^{-1}(F(x,y)) = (DF(x,y))^{-1}$, entonces:

$$\begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial y} & \frac{\partial y}{\partial v} \end{bmatrix} = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{bmatrix}^{-1} = \begin{bmatrix} 2x - y & -x \\ -1 & 1 \end{bmatrix}^{-1} = \frac{1}{x - y} \begin{bmatrix} 1 & x \\ 1 & 2x - y \end{bmatrix},$$

entonces $\frac{\partial y}{\partial u}(x,y) = \frac{1}{x-y}$, por lo que $\frac{\partial y}{\partial u}(a,b) = \frac{1}{a-b}$.

Tiempo: 90 minutos.

Justifique todas sus respuestas.