CS480: MOBILE NETWORKS

Wireless LANs

14th March 2017

Topics Covered

- Introduction
- Design goals for wireless LANs
- Infra red vs radio transmission
- Infrastructure and ad-hoc networks
- IEEE 802.11
- Bluetooth
- HIPERLAN

Introduction

Introduction

- Wireless LAN (WLAN) technologies constitute a fastgrowing market introducing the flexibility of wireless access into office, home, or production environments.
- WLANs are typically restricted to buildings, a campus, single rooms etc.
- WLANs are operated by individuals, not by large-scale network providers.
- The global goal of wireless LANs (WLANs) is to replace office cabling, to enable tetherless access to the Internet, and to introduce a higher flexibility for ad-hoc communication in, e.g. group meetings.

Advantages of WLANs (1)

Flexibility

- very flexible within the reception area.
- Radio waves can penetrate walls, senders and receivers can be placed anywhere.

Planning

- only ad-hoc networks allow for communication without previous planning.
- Any wired network needs wiring planning. For wired networks, additional cabling with the right plugs and probably interworking units (such as switches) have to be provided.

Design

- Wireless networks allow for the design of small, independent devices which for example can be put into a pocket.
- Cables not only restrict users but also designers of small PDAs, notepads, etc. (Almost) no wiring difficulties (e.g. historic buildings, firewalls)

Advantages of WLANs (2)

Robustness

- Wireless networks can survive disasters, e.g. earthquakes or users pulling a plug.
- Networks requiring a wired infrastructure will usually break down completely.

Cost

- After providing wireless access to the infrastructure via an access point for the first user, adding additional users to a wireless network will not increase cost.
 - Important in lecture halls, hotel lobbies or gate areas in airports where number of users using the network may vary significantly.

Disadvantages of WLANs (1)

Quality of service

- WLANs typically offer lower quality than their wired counterparts.
- This is because of lower bandwidth due to limitations in radio transmission (1-10 Mbit/s user data rate),
- higher error rates due to interference
- and higher delay/delay variation due to extensive error correction and detection mechanisms.

Proprietary solutions:

- Due to slow standardization procedures, many companies provide proprietary solutions offering standardized functionality plus many enhanced features (higher bit rates).
- These additional features only work in a homogeneous environment, i.e. adapters from the same vendors are used for all wireless nodes.
- Standards take time (e.g. IEEE 802.11n).

Disadvantages of WLANs (2)

Restrictions

- All wireless products have to comply with national regulations.
- These restrict frequencies to minimize interference.
- It takes a very long time to establish global solutions like e.g, IMT-2000.
- WLANs are limited to low-power senders and certain license-free frequency bands, which are not the same worldwide.

Safety and security

- Using radio waves for data transmission might interfere with other high-tech equipment in, e.g. hospitals.
- Senders and receivers are operated by laymen and radiation has to be low.
- Special precautions have to be taken to prevent safely hazards.
- The open radio interface makes eavesdropping much easier in WLANs.
- All standards must offer encryption, privacy mechanisms.

Design Goals of WLANs (1)

For WLANs to ensure their commercial success, the following design goals have to be taken into account:

Global operation

 WLAN products should sell in all countries. National and international frequency regulations have to be considered.

Low power

- Devices communicating via a WLAN are typically also wireless devices running on battery power.
- The LAN design should take this into account and implement special power-saving modes and power management functions.
- The future lies in small handheld devices with no restricting wire.

License-free operation

- LAN operators do not want to apply for a special license to be able to use the product.
- The equipment must operate in a license-free band.

Design Goals of WLANs (2)

Robust transmission technology

- Compared to their wired counterparts, WLANs operate under difficult conditions.
- If they use radio transmission, many other electrical devices can interfere with them (vacuum cleaners, hairdryers, train engines etc.).
- WLAN transceivers cannot be adjusted for perfect transmission in a standard office or production environment. Senders and receivers can move.

Simplified spontaneous cooperation

- To be useful in practice, WLANs should not require complicated setup routines but should operate spontaneously after power-up.
- These LANs would not be useful for supporting e.g., ad-hoc meetings.

Design Goals of WLANs (3)

Easy to use

- In contrast to huge and complex wireless WANs, wireless LANs are made for simple use.
- They should not require complex management, but rather work on a plug-and-play basis.

Protection of investment

- A lot of money has already been invested into wired LANs.
- These new WLANs should protect this investment by being interoperable with existing networks.
- This means that simple bridging between the different LANs should be enough to interoperate.

Safety and security

- WLANs should be safe to operate, especially regarding low radiation if used, e.g. in hospitals.
- Users cannot keep safety distances to antennas.

Design Goals of WLANs (4)

- The equipment has to be safe for pacemakers.
- Users should not be able to read personal data during transmission, i.e., encryption mechanisms should be integrated.
- The networks should also take into account user privacy, i.e., it should not be possible to collect roaming profiles for tracking persons if they do not agree.

Transparency for applications:

- Existing applications should continue to run over WLANs, the only difference being higher delay and lower bandwidth.
- The fact of wireless access and mobility should be hidden if it is not relevant, but the network should also support location aware applications, e.g., by providing location information.

Infra Red vs Radio Transmission

Infra Red vs Radio Transmission (1)

- Today, two basic transmission technologies can be used to set up WLANs.
- One technology is based on the transmission of infra red light (e.g at 900nm wavelength).
 - An example is the IrDA (Infrared Data Association) interface available everywhere.
- The other one, which is more popular, uses radio transmission in the GHz range.
 - Examples include WaveLAN, HIPERLAN (High-PERformance LAN) and Bluetooth.
- Both technologies can be used to
 - set up ad-hoc connections for workgroups,
 - connect, e.g. a desktop with a printer without a wire,
 - or to support mobility within a small area.

Infra red vs radio transmission (2)

- Infra red technology uses diffuse light reflected at walls, etc. or directed light if a line-of-sight (LOS) exists between sender and receiver.
 - Senders can be simple light emitting diodes (LEDs) or laser diodes.
 - Photodiodes act as receivers.

Advantages of infra red technology

- The main advantages are its simple and extremely cheap senders and receivers which are integrated into nearly all mobile devices available today.
 - PDAs, laptops, notebooks, mobile phones have an infra red data association (IrDA) interface.
- No licenses are needed for infra red technology
- Shielding is very simple
- Electrical devices do not interfere with infra red transmission

Disadvantages of infra red technology

- Infra red transmission is quite easily shielded
 - Cannot penetrate walls or other obstacles
- Interference by light, heat sources etc.
- Low bandwidth compared to other LAN technologies
 - Typically, IrDA devices are internally connected to a serial port limiting transfer rates to 115 kbit/s.

Advantages of radio transmission

- Long-term experiences made with radio transmission for wide area networks (e.g., microwave links) and mobile cellular phones.
- Can cover larger areas and can penetrate (thinner) walls, furniture.
- Additional coverage is gained by reflection.
- Radio typically does not need a LOS if the frequencies are not too high.
- Current radio-based products offer much higher transmission rates (e.g. 54 Mbits/s) than infra red.

Disadvantages of radio transmission

- Shielding is not so simple.
- Can interfere with other senders or electrical devices can destroy data transmitted via radio.
- Only permitted in certain frequency bands
 - Very limited ranges of license-free bands

Infrastructure and ad-hoc networks

Infrastructure and ad-hoc networks (1)

- Many WLANs of today need an infrastructure network.
- Infrastructure networks not only provide access to other networks, but also include forwarding functions.
- In infrastructure networks, communication typically takes place only between the wireless nodes and the access point (see Figure 1) but not directly between the wireless nodes.
- The access point does not just control medium access, but also acts as a bridge to other wireless or wired networks.
- Figure 1 shows three access points with their three wireless networks and a wired network.

Figure 1: Example of three infrastructure- based wireless networks

Infrastructure and ad-hoc networks (2)

- Design of infrastructure based wireless networks is simple
 - most of the network functionality lies within access point whereas wireless clients can remain quite simple
- Infrastructure-based networks lose some of the flexibility wireless networks can offer
 - e.g. they cannot be used for disaster relief in cases where no infrastructure is left.
- Examples of infrastructure-based networks for wide area include
 - cellular phone networks
 - and satellite-based cellular phones.

Infrastructure and ad-hoc networks (3)

- Ad-hoc wireless networks do not need any infrastructure to work
 - Each node can communicate directly with other nodes, no access point controlling medium access is necessary
- Figure 2 shows two ad-hoc networks with three nodes each.
 - Nodes within an ad-hoc network can only communicate if they can reach each other physically i.e. if they are within each other's radio range.
 - Nodes from the two networks cannot communicate if they are not within the same radio coverage.
- In ad-hoc networks, complexity of each node is higher
 - because every node implements medium access mechanisms, mechanisms to handle hidden or exposed terminal problems.

Figure 2: Example of two ad-hoc wireless networks

Infrastructure and ad-hoc networks (4)

- Ad-hoc networks exhibit the greatest possible flexibility
 - Needed for unexpected meetings
 - Quick replacements of infrastructure
- IEEE 802.11 and HiperLAN2 are infrastructure-based networks which additionally support ad-hoc networking
- Bluetooth is a typical wireless ad-hoc network

IEEE 802.11

IEEE 802.11 (1)

- The IEEE standard 802.11 specifies the most famous family of WLANs in which many products are available.
- The standard belongs to the group of 802.x LAN standards
 - E.g 802.3 Ethernet or 802.2.5 Token Ring
- The standard specifies the physical and medium access layer adapted to special requirements of wireless LANs
 - Offers the same interface as the others to higher layers to maintain interoperability
- The primary goal of the standard was the specification of a simple and robust WLAN which offers time-bounded and asynchronous services

IEEE 802.11 (2)

- The MAC layer should be able to operate with multiple physical layers, each of which exhibits a different medium sense and transmission characteristic.
 - Candidates for physical layers were infra red and spread spectrum radio transmission techniques
- Additional features of the WLAN should include
 - support of power management to save battery power,
 - the handling of hidden nodes,
 - and the ability to operate worldwide.

System architecture (1)

- Wireless networks can exhibit two different basic system architectures: infrastructure-based or ad-hoc
- Figure 3 shows the components of an infrastructure and wireless part as specified by IEEE 802.11
- Several nodes, called stations (STA_i), are connected to access points (AP).
- Stations are terminals with access mechanisms to the wireless medium and radio contact to the AP
- The stations and the AP which are within the same radio coverage form a basic service set (BSS_i)
- A distribution system connects several BSSs via the AP to form a single network and thereby extends the wireless coverage area
 - Such a network is called an extended service set (ESS) and has its own identifier, the ESSID.

Figure 3: Architecture of an infrastructure-based IEEE 802.11

System architecture (2)

- The distribution system connects the wireless networks via the APs with a portal, which forms the interworking unit to other LANs
- Stations can select an AP and associate with it.
- The APs support roaming (i.e. changing access points), power management and control medium access to support time—bounded service
- The distribution system handles data transfer between the different APs
- IEEE 802.11 allows the building of ad-hoc networks between stations, thus forming one or more independent BSSs (IBSS) as shown in Figure 4.

Figure 4: Architecture of IEEE 802.11 ad-hoc wireless LANs

System architecture (2)

- An IBSS comprises a group of stations using the same radio frequency
- Stations STA₁, STA₂ and STA₃ are in IBSS₁ whereas STA₄ and STA₅ are in IBSS₂.
- This means that STA₃ can communicate directly with STA₂ but not with STA₅

Protocol architecture (1)

- IEEE 802.11 fits seamlessly into the other 802.x standards for wired LANs.
- Figure 5 shows the protocol architecture of IEEE 802.11 wireless LAN
- Here the IEEE wireless LAN is connected to a switched IEEE 802.3 Ethernet via a bridge
- Applications should not notice any difference apart from the lower bandwidth and perhaps higher access time from the wireless LAN.
- The higher layers (application, TCP, IP) look the same for wireless nodes as for wired nodes

Figure 5: IEEE 802.11 protocol architecture and bridging

Protocol architecture (2)

- The upper part of the data link control layer, the logical link control (LLC), covers the differences of the medium access control layers needed for the different media.
- The IEEE 802.11 standard only covers the physical layer, PHY, and the medium access layer MAC like the 802.x LANs
- The physical layer is subdivided into the physical layer convergence protocol (PLCP) and the physical medium dependent sublayer, PMD (see Figure 6)
- The basic tasks of the MAC layer comprise medium access, fragmentation of user data, and encryption.
- The PLCP sublayer provides a carrier sense signal and provides common PHY service access point (SAP) independent of the transmission technology

Figure 6: Detailed IEEE 802.11 protocol architecture and management

Protocol architecture (3)

- The PMD sublayer handles modulation and encoding/decoding of signals
- Apart from protocol sublayers, the standard also specifies management layers and station management
 - The MAC management supports the association and reassociation of a station to an access point and roaming between different access points. It also controls authentication mechanisms, encryption etc.
 - The main tasks of the PHY management include channel tuning and PHY MIB (management information base) maintenance.
 - The station management interacts with both management layers and is responsible for additional higher layer functions
 - e.g. control of bridging and interaction with the distribution system in the case of an access point.

Physical layer (PHY) (1)

- IEEE 802.11 supports three different physical layers:
- One layer based on infra red
 - Uses near visible light at 850-950nm
 - Infra red light is not regulated apart from safety restrictions
 - The standard allows for point-to-multipoint communication
 - Maximum range is about 10 m if there is no interference
- Two layers based on radio transmission (primarily in the ISM band at 2.4 GHz)
 - Frequency hopping spread spectrum (FHSS)
 - Direct sequence spread spectrum (DSSS)

Frequency hopping spread spectrum (FHSS) (1)

- Spread spectrum techniques involve spreading the bandwidth needed to transmit data
- FHSS is a spread spectrum technique which allows for the coexistence of multiple networks in the same area by separating different networks using different hopping sequences
- In FHSS, the total available bandwidth is split into many channels of smaller bandwidth plus guard spaces between the channels
- Transmitter and receiver stay on one of these channels for a certain time and then hop to another channel
- The pattern of channel usage is called the hopping sequence and the time spent on a channel with a certain frequency is called the *dwell time*.

Frequency hopping spread spectrum (FHSS) (2)

- The selection of a particular pattern is achieved by using a pseudo-random hopping pattern
- The standard specifies Gaussian shaped frequency shift keying (GFSK) as a modulation for the FHSS PHY.
 - The simplest form of FSK assigns one frequency to the binary 1 and another frequency to the binary 0.
 - In GFSK the pulse is first passed through a Gaussian filter to make it smother so as to limit its spectral width before FSK is applied.
- Fig. 7 shows a frame of the physical layer used in FHSS.
- The frame consists of two basic parts, the PLCP part and the payload (actual data) part

Figure 7: Format of an IEEE 802.11 PHY frame using FHSS

Frequency hopping spread spectrum (FHSS) (3)

- Synchronization: the PLCP preamble starts with 80 bit synchronization, which is 010101... bit pattern.
 - This pattern is used for synchronization of potential receivers and signal detection by *clear channel assessment* signal (CCA)
- Start frame delimiter (SFD): the following 16 bits indicate the start of the frame and provide frame synchronization.
 - The SFD pattern is 0000110010111101.
- PLCP_PDU (Protocol Data Unit) length word (PLW):
 - indicates the length of the payload in bytes including the 32-bit
 CRC (Cyclic Redundancy Check) at the end of the payload
- PLCP signaling field (PSF):
 - This 4-bit field indicates the data rate of the payload following.
- Header error check (HEC):
 - The PLCP header is protected by a 16 bit checksum with the standard ITU-T generator polynomial $G(x) = x^{16} + x^{12} + x^5 + 1$

Direct sequence spread spectrum (DSSS) (1)

- DSSS systems take a user bit stream and performs an XOR with a chipping sequence
- The chipping sequence consists of smaller pulses, called chips whose duration is less than that of the bit
- DSSS is the alternative spread spectrum method separating by code and not by frequency
- IEEE 802.11 DSSS PHY uses differential binary phase shift keying (DBPSK) for 1Mbit/s transmission
 - and differential quadrature phase shift keying (DQPSK) (phase shift relative to phase of previous two bits) for 2Mbit/s as modulation schemes.
- Figure 8 shows a frame of the physical layer used in DSSS.

Figure 8: Format of an IEEE 802.11 PHY frame using DSSS

Direct sequence spread spectrum (DSSS) (2)

- Synchronization: The first 128 bits are not only used for synchronization,
 - but also gain setting, energy detection (for CCA) and frequency offset compensation
- Start frame delimiter (SFD): This 16 bit field is used for synchronization at the beginning of the frame
 - and consists of a pattern 1111001110100000.
- Signal: originally two values have been defined for this field to indicate the data rate of the payload.
 - 0x0A indicates 1Mbit/s, 0x14 indicates 2Mbit/s. other values have been reserved for future use, i.e. higher bit rates
- Service: This field is reserved for future use; 0x00 indicates an IEEE 802.11 compliant frame

Direct sequence spread spectrum (DSSS) (3)

- Length: 16 bits are used in this case for length indication of the payload in microseconds
- Header error check (HEC): signal, service and length fields are protected by this checksum
 - using the ITU-T CRC-16 standard polynomial
- All PHY variants include the provision of the clear channel assessment signal (CCA)
 - This is needed for the MAC mechanisms controlling medium access and indicates if the medium is currently idle
 - The transmission technology determines exactly how this signal is obtained
- The PHY layer offers a service access point (SAP) with 1 or 2 Mbit/s transfer rate to the MAC layer

IEEE 802.11b (1)

- Supplement to the original standard and the most successful version of IEEE 802.11
- Data rate
 - 1, 2, 5.5, 11 Mbit/s, depending on SNR
 - User data rate max. approx. 6 Mbit/s
- Transmission range
 - 300m outdoor, 30m indoor
 - Max. data rate ~10m indoor
- Frequency
 - Free 2.4 GHz ISM-band
- Security
 - Limited, WEP insecure, SSID

IEEE 802.11b (2)

- Cost
 - 100€ adapter, 250€ base station, dropping
- Availability
 - Many products, many vendors
- Connection set-up time
 - Connectionless/always on
- Quality of Service
 - Typ. Best effort, no guarantees (unless polling is used, limited support in products)
- Manageability
 - Limited (no automated key distribution, sym. Encryption)

IEEE 802.11b (3)

- Special Advantages/Disadvantages
 - Advantage: many installed systems, lot of experience, available worldwide, free ISM-band, many vendors, integrated in laptops, simple system
 - Disadvantage: heavy interference on ISM-band, no service guarantees, slow relative speed only
- The standard describes a new PHY layer
- All MAC schemes, management procedures described in IEEE 802.11 are still used
- IEEE 802.11b systems offer 11, 5.5, 2 or 1 Mbit/s
 - depending on current interference and distance between sender and receiver
- The standard defines several packet formats for the physical layer

IEEE 802.11a (1)

- Initially aimed at the US 5GHz UNII (Unlicensed National Information Infrastructure) bands
- Data rate
 - 6, 9, 12, 18, 24, 36, 48, 54 Mbit/s, depending on SNR
 - User throughput (1500 byte packets): 5.3 (6), 18 (24), 24 (36), 32(54)
 - 6, 12, 24 Mbit/s mandatory
- Transmission range
 - 100m outdoor, 10m indoor
 - E.g., 54 Mbit/s up to 5 m, 48 up to 12 m, 36 up to 25m, 24 up to 30m, 18 up to 40 m, 12 up to 60 m
- Frequency
 - Free 5.15-5.25, 5.25-5.35, 5.725-5.825 GHz ISM-band
- Security
 - Limited, WEP insecure, SSID

IEEE 802.11a (2)

- Cost
 - 280€ adapter, 500€ base station
- Availability
 - Some products, some vendors
- Connection set-up time
 - Connectionless/always on
- Quality of Service
 - Typ. best effort, no guarantees (same as all 802.11 products)
- Manageability
 - Limited (no automated key distribution, sym. Encryption)
- Special Advantages/Disadvantages
 - Advantage: fits into 802.x standards, free ISM-band, available, simple system, uses less crowded 5 GHz band
 - Disadvantage: stronger shading due to higher frequency, no QoS

+ Mobility
[802.20 (Mobile Broadband Wireless Access)]
802.16e (addition to .16 for mobile devices)

Figure 9: Mobile Communication Technology according to IEEE (examples)

Bluetooth

Introduction (1)

- Initiated by Ericsson, a Swedish company in 1994 on multi-communicator link.
- Bluetooth consortium founded in 1998 which involved Ericsson, Intel, IBM, Nokia, Toshiba.
- The goal was to develop a single-chip, low cost, radiobased wireless network technology.
- By the end of 1999, many other companies and research institutions joined the special interest group on Bluetooth
 - The goal was the development of mobile phones, laptops, notebooks, headsets etc which include Bluetooth technology.
- In 2001, first products hit the mass market,
 - and today many mobile phones, laptops, PDAs, video cameras are equipped with Bluetooth technology.

56

Introduction (2)

- Bluetooth is a short-range technology to set-up wireless personal area networks (WPANs) with gross data rates less than 1Mbit/s.
- Aims at so-called ad-hoc piconets, which are LANs with a very limited coverage and without the need for an infrastructure
- Ad-hoc piconets connect different small devices in close proximity (about 10m) without expensive wiring or the need for a wireless infrastructure.

User scenarios for wireless piconets or WPANs (1)

- Connection to peripheral devices:
 - Today, most devices are connected to a desktop computer via wires (e.g keyboard, mouse, joystick, headset, speakers).
 - Connection via wires has several disadvantages:
 - each device has its own type of cable, different plugs are needed, and wires block office space.
 - In a wireless network no wires are needed for data transmission
 - Batteries have to replace power supply, as the wires not only transfer data but also supply the peripheral devices with power
- Support of ad-hoc networking:
 - imagine several people coming together, discussing issues, exchanging data (schedules, sales figures etc.).
 - For instance, students might join a lecture, with the teacher distributing data to their personal digital assistants (PDAs).
 - Wireless networks can support this type of interaction.

User scenarios for wireless piconets or WPANs (2)

Bridging of networks:

- Using wireless piconets, a mobile phone can be connected to a PDA or laptop in a simple way.
- Mobile phones will not have full WLAN adapters built in, but could have a Bluetooth chip.
- The mobile phone can act as a bridge between the local piconet and e.g. the global GSM network.
 - For instance, on arrival at an airport, a person's mobile phone could receive e-mail via GSM, and forward it to the laptop which is still in a suitcase.
 - Via a piconet, a fileserver could update local information stored on a laptop or PDA while the person is walking into the office.

Architecture (1)

- Like the IEEE 802.11b, Bluetooth operates in the 2.4 GHz ISM (Industrial, Scientific, Medical) band.
- MAC and physical layer and the offered services are completely different
- Bluetooth operates on 79 channels in the 2.4 GHz band with 1MHz carrier spacing.
- Each device performs frequency hopping with 1,600 hops/s in a pseudo random fashion
 - For interference mitigation
- A piconet is a collection of Bluetooth devices which are synchronized to the same hopping sequence (Figure 10)
- One device can act as a master (M) and the others as slaves (S) for the lifetime of the piconet

M=Master P=Parked S=Slave SB=Standby

Figure 10: Simple Bluetooth piconet

Architecture (2)

- The master determines the hopping pattern in the piconet and the slaves synchronize to this pattern
- Each piconet has a unique hopping pattern
- If a device wants to participate, it has to synchronize to this
- Parked devices (P) cannot actively participate in the piconet (have no connection) but are known and can be reactivated within milliseconds
- Devices in stand-by (SB) do not participate in the piconet
- Each piconet has one master and up to 7 simultaneous slaves (> 200 could be parked)
 - Due to 3-bit addresses used in Bluetooth

Architecture (3)

- In order to form a piconet (see Figure 11) active devices must be synchronized
 - Master gives slaves its clock and device ID
 - The hopping pattern is determined by the device ID
 - The phase in hopping pattern is determined by the master's clock

Addressing

- All active devices are assigned a 3-bit active member address (AMA)
- All parked devices use an 8-bit parked member address (PMA).
- Devices in stand-by mode do not need an address

Figure 11: Forming a Bluetooth piconet

Architecture (4)

- As more users join the piconet, the throughput per user drops quickly.
- This led to the idea of forming groups of piconets called scatternet (see Figure 12)
 - This involves linking of multiple co-located piconets through the sharing of common master or slave devices.
 - Devices can be slave in one piconet and master of another
 - Communication between piconets involves devices jumping back and forth between the piconets

Figure 12: Bluetooth scatternet

Bluetooth protocol stack (1)

- The Bluetooth protocol stack (see Figure 13) can be divided into
 - core specification, which describes the protocols from physical layer to the data link control together with management functions
 - profile specifications which describes many protocols and functions needed to adapt the wireless Bluetooth technology to legacy and new applications
- The core protocols of Bluetooth comprise the following elements:
 - Radio: Specification of the air interface, i.e. frequencies, modulation, and transmit power
 - Baseband: Description of basic connection establishment, packet formats, timing and basic QoS parameters
 - Link manager protocol: Link set-up and management between devices including security functions and parameter negotiation

AT: attention sequence

OBEX: object exchange

TCS BIN: telephony control protocol specification – binary

BNEP: Bluetooth network encapsulation protocol

SDP: service discovery protocol RFCOMM: radio frequency comm.

Figure 13: Bluetooth protocol stack

Bluetooth protocol stack (2)

- Logical link control and adaptation protocol (L2CAP): Adaptation of higher layers to the baseband (connectionless and connection-oriented services)
- Service discovery protocol: Device discovery in close proximity plus querying of service characteristics.
- On top of L2CAP is the cable replacement protocol (RFCOMM)
 - this emulates a serial line interface following the EIA-232 (formally RS-232) standards.
- Telephony control protocol specification –binary (TCS BIN)
 - This describes a bit-oriented protocol that defines call control signaling for the establishment of voice and data calls between Bluetooth devices.
- Host controller interface (HCI)
 - Lies between the baseband and L2CAP

Bluetooth protocol stack (3)

- provides a command interface to the baseband controller and link manager, and access to the hardware status and control registers.
- The HCI can be seen as a hardware/software boundary.
- Many protocols have been adopted in the Bluetooth standard.
 - Classical Internet applications can still use the standard TCP/IP stack running over PPP (Point-to-Point Protocol) or use more efficient Bluetooth network encapsulation protocol (BNEP)
 - Telephony applications can use the AT modem commands as if they are using a standard modem.
 - Calendar and business card objects (vCalendar/vCard) can be exchanged using the object exchange protocol (OBEX) as common with IrDA interfaces.
- A real difference to other protocols is the support of audio. Audio applications directly use the baseband layer after encoding the audio signals.

HIPERLAN (High Performance LAN)

HIPERLAN (1)

- In 1996 ETSI standardized HIPERLAN 1 as a WLAN
 - allowing for node mobility and supporting ad-hoc and infrastructure based topologies.
- HIPERLAN stands for high performance local area network.
- It is a European alternative for IEEE 802.11 standards
- HIPERLAN 1 was originally one out of four HIPERLANs envisaged, as ETSI decided to have different types of networks for different purposes.
 - The key feature of all four networks is their integration of timesensitive data transfer services
 - Over time, names have changed and the former HIPERLANs 2,
 3, and 4 are now called HIPERLAN2, HIPERACCESS, and
 HIPERLINK.

HIPERLAN (2)

HIPERLAN 1:

- This high-speed WLAN supports mobility at data rates above 20Mbit/s.
- Range is 50m, connections are multi-point-to-multi-point using ad-hoc or infrastructure networks

HIPERLAN/2:

- This technology can be used for wireless access to ATM or IP networks and supports up to 25MBit/s user data rate in a pointto-multi-point configuration.
- Transmission range is 50m with support of slow (<10m/s) mobility.
- This standard has been modified over time and can now be considered as a high performance WLAN with QoS support.

HIPERLAN (3)

HIPERACCESS:

- This technology could be used to cover the 'last mile' to a customer via a fixed radio link, so could be an alternative to cable modems.
- Transmission range is 5km, data rates of up to 25Mbit/s are supported.
- However many proprietary products already offer 155Mbit/s and more, plus QoS.

HIPERLINK:

- To connect different HIPERLAN access points to HIPERACCESS nodes with a high-speed link, HIPERLINK technology can be chosen.
- HIPERLINK provides a fixed point-to-point connection with up to 155Mbits/s.

HIPERLAN (4)

- The current focus is on HiperLAN2,
 - a standard that comprises many elements from ETSI's BRAN (broadband radio access networks) and wireless ATM activities.
- HIPERLAN 1 was a wireless LAN supporting priorities and packet life for data transfer at 23.5 MBit/s,
 - including forward mechanisms, user data encryption, network identification and power conservation mechanisms.

Architecture of an infrastructure-based HiperLAN2 (1)

- Figure 14 shows the standard architecture of an infrastructure-based HiperLAN2 network.
- Two access points (AP) are attached to a core network.
- Core networks might be Ethernet LANs, firewire connections between audio and video equipment, ATM networks etc.
- Each AP consists of an access point controller (APC) and one or more access point transceivers (APT)
- An APT can comprise one or more sectors (shown as cells here)
- Four mobile terminals (MT) are also shown.
- MTs can move around in the cell area as shown.

Figure 14: HiperLAN2 basic structure and handover scenarios

Architecture of an infrastructure-based HiperLAN2 (2)

- The system automatically assigns the APT/AP with the best transmission quality.
- No frequency planning is necessary
 - as the APs automatically select the appropriate frequency via dynamic frequency selection.

Handover Scenarios (1)

Three handover situations may occur

- Sector handover (Inter sector):
 - If sector antennas are used for an AP, the AP shall support handover.
 - This type of handover is handled inside the DLC layer so is not visible outside the AP
- Radio handover (Inter-APT/Intra-AP):
 - This handover type is handled within the AP, no external interaction is needed.
 - In Figure 14, the terminal MT₃, moves from one APT to another of the same AP.
 - All context data for the connections are already in the AP (encryption keys, authentication and connection parameters) and does not have to be renegotiated.

Handover Scenarios (2)

- Network handover (Inter-AP/Intra-network):
 - This is the most complex situation: MT₂ moves from one AP to another.
 - In this case, the core network and higher layers are also involved.
 - This handover might be supported by the core network.

Modes of Operation (1)

HiperLAN2 networks can operate in two different modes which may be used simultaneously in same network

- Centralized mode (CM):
 - This infrastructure-based mode is shown in a more abstract way in Figure 15 (left).
 - All APs are connected to a core network and MTs are associated with APs.
 - Even if two MTs share the same cell, all data is transferred via the AP.
 - In this mandatory mode the AP takes complete control of everything.

Figure 15: HiperLAN2 centralized vs. direct mode

Modes of Operation (2)

- Direct mode (DM):
 - This optional ad-hoc mode of HiperLAN2 is illustrated in Figure 15 (right).
 - Data is directly exchanged between MTs if they can receive each other, but the network still has to be controlled.
 - This can be done via an AP that contains the central controller
 (CC) or via an MT that contains the CC functionality.

HiperLAN2 protocol stack (1)

- Figure 16 shows the HiperLAN2 protocol stack as used in access points.
- The physical layer handles all functions related to modulation, forward error correction, signal detection, synchronization etc.
- The data link control (DLC) layer contains the MAC functions, the radio link control (RLC) sublayer and error control functions.
 - If an AP comprises several APTs then each APT requires an own MAC instance.
- Above the MAC, DLC is divided into a control and a user part.
 - The user part contains error control mechanisms

Figure 16: HiperLAN2 protocol stack

HiperLAN2 protocol stack (2)

- The radio link control (RLC) sublayer comprises most control functions in the DLC layer.
 - The association control function (ACF) controls association and authentication of new MTs
 - The DLC user connection control (DDC or DUCC) service controls connection setup, modification, and release.
 - The radio resource control (RRC) handles handover between APs and within an MP. These functions control the dynamic frequency selection and power save mechanisms of the MTs.
- The convergence layer may comprise segmentation and reassembly functions and adaptations to fixed LANs, 3G networks, etc.