

Professor David Harrison

OFFICE HOURS

Tuesday 4:00-5:00 PM

Wednesday 12:30-2:30 PM

.

HOMEWORK 2

Will be posted tonight (February 8)

Due February 15

DATES OF INTEREST

February 8 HW2 handed out

February 15 HW2 due, HW3 handed out

February 22 HW3 due

February 27 Review

February 29 Midterm (must be before progress reports)

March 4 Progress Reports

March 8 Deadline for Withdrawal

March 9-17 Spring Break

BLACKBOARD

Slides up through lecture 4 on blackboard.

GITHUB

Lecture slides and examples committed to GitHub also up through lecture 4.

The project is at

https://github.com/dosirrah/CSCI443_AdvancedDataScience

THINGS I WANT TO COVER THIS WEEK

- Types of Data
- Definition of a distribution
- Ex: Gaussian
- Visualizing using histograms.
- Samples from a distribution
- Variance
- Standard deviation
- Mean absolute deviation
- Range

- Order statistics/
- Percentile (quantile)
- Interquartile Range
- Box plots
- Correlaţion
- Correlation coefficient
- Correlation matrix
- Scatter plots

THINGS I WANT TO COVER THIS WEEK

- Types of Data
- Definition of a distribution
- Ex: Gaussian
- Visualizing using histograms.
- Samples from a distribution
- Variance
- Standard deviation
- Mean absolute deviation
- Range

- Order statistics/
- Percentile (quantile)
- Interquartile Range
- Box plots
- Correlaţion
- Correlation coefficient
- Correlation matrix
- Scatter plots

THINGS I WANT TO COVER TODAY

- Types of Data
- Definition of a distribution
- Ex: Gaussian
- Visualizing using histograms.
- Samples from a distribution
- Variance
- Standard deviation
- Mean absolute deviation
- Range

- Order statistics/
- Percentile (quantile)
- Interquartile Range
- Box plots
- Correlaţion
- Correlation coefficient
- Correlation matrix
- Scatter plots

READ ABOUT

- Weighted mean
- Weighted median
- Trimmed mean

Now add

- Modes
- Bar charts
- Pie charts

O'REILLY® Practical **Statistics** for Data Scientists 50+ Essential Concepts Using R and Python Peter Bruce, Andrew Bruce

& Peter Gedeck

LECUTRE 4 NOTES

I posted lecture notes covering things I wrote on the board in lecture 4.

Ended up with little more detail than given in class specifically on

- Nature vs. Models vs. Samples
- Why histograms work

So, I will review it today. Please look at the notes.

REVIEW OF LAST LECTURE

Central Limit Theorem says adding independent random variables tends towards Gaussian.

REVIEW OF LAST LECTURE: SUM OF DICE VERSUS GAUSSIAN

REVIEW OF LAST LECTURE: STANDARD DEVIATION AND GAUSSIAN DISTRIBUTION

Figure 2-10. Normal curve

ORDER STATISTICS

A random variable assign real values to outcomes. We order outcomes based on this real value. "Order statistics" are based on this order.

20XX

NOT ORDER STATISTICS

An order statistic is the value of a specific sample that arises from arranging the samples in ascending (or descending order).

• Special case. Median with even number of samples is average of two sample values, but still often called an order statistic

Range, mean, mean absolute deviation, standard deviation are NOT order statistics.

2077

HOW TO COMPUTE PERCENTILE OF A DISTRIBUTION

Computing p^{th} percentile (p%), find the x in which p% of the probability mass below x.

20XX

HOW TO COMPUTE PERCENTILE OF A DISTRIBUTION

Computing p^{th} percentile (p%), find the x in which p% of the probability mass below x.

,

$$P[X < a] = \int_{-\infty}^{x=a} f(x)dx = p$$

Solve for a such that the integral equals p where p is the desired percentile expressed as a fraction in [0,1].

Probability density function of an exponential distribution

20XX

ESTIMATE PERCENTILE FROM A SAMPLE

If looking for the pth percentile,

- 1. Order the samples on the real line
- 2. Count in ascending order until p% of the samples fall below your sample. This sample estimates your pth percentile for the underlying distribution.
- the estimate is likely slightly high especially with small sample sizes.

Example looking for 30th percentile.

MOST COMMON SOLUTION IS TO LINEARLY INTERPOLATE

See lecture notes

THANK YOU

David Harrison

Harrison@cs.olemiss.edu