FAST School of Computing

Fall-2022

Islamabad Campus

CS-1002: Programming Fundamentals (BS-CY)

Monday, 26th September, 2022

Course Instructor

Dr. Mudassar Aslam, Mr. Jawad Hassan

Serial No:
Sessional Exam-I
Total Time: 1 Hour
Total Marks: 52

Signature of Invigilator

Student Name Roll No. Section Signature

DO NOT OPEN THE QUESTION BOOK OR START UNTIL INSTRUCTED. Instructions:

- 1. Attempt on question paper. Attempt all of them. Read the question carefully, understand the question, and then attempt it.
- 2. No additional sheet will be provided for rough work. Use the back of the last page for rough work.
- 3. After asked to commence the exam, please verify that you have \underline{SIX} (06) different printed pages including this title page. There are a total of $\underline{2}$ questions.
- 4. Calculator sharing is strictly prohibited.
- 5. Use permanent ink pens only. Any part done using soft pencil will not be marked and cannot be claimed for rechecking.

	Q-1	Q-2	Total
Marks Obtained			
Total Marks	42	10	52

FAST School of Computing

Fall-2022

Islamabad Campus

Question 1 [16+10+10+06 = 42 Marks]

a) For each of the following expressions, write the output value. You can do your working in the rough work column. ZERO marks for answers without rough work. Consider no syntax errors. [8*2=16]

Expression	Value	Rough work
170 % 12 % 5 / 2		
!(7/7 < 1) 7*7 && 10 + 19.5 < 30		
7 2/5*5.70/5		
7 == 2 / 5 * 5 + 7 % 5		
(5 > 7) * 10 + 5 * 2		
!5 && 50 13 &&10-10		
static cost (flood) (C) / 40 + static cost (show) (C5)		
static_cast <float>(6) / 40 + static_cast<char>(65) [Note: ASCII value of 'A' is 65 and 'a' is 97]</char></float>		
(b' >= A') + (F'-A')		
static_cast <float>(7/3)</float>		
()		

FAST School of Computing

Fall-2022

Islamabad Campus

b) Write the output that is produced by following codes. [2+2+3+3=10]

Code	Output	Rough Work
double d = 44.8888;	Output	Trough Horix
int $x = 22$;		
cout << d / x << endl;		
$\cot x < d / x < \cot x$ $\cot x < \cot x < \cot x$ $\cot x < \cot x < \cot x$		
cout << setprecision(4) << d / x << endl;		
cout \ setprecision(o) \ ince \ u \ A \ chai,		
short var1 = 100;		
long $a = 100;$		
cout << sizeof(var1) < <endl;< td=""><td></td><td></td></endl;<>		
cout << sizeof(&var1)< <endl;< td=""><td></td><td></td></endl;<>		
cout << sizeof(a)< <endl;< td=""><td></td><td></td></endl;<>		
cout << sizeof(2.5)< <endl;< td=""><td></td><td></td></endl;<>		
int alpha = 28, beta = 16;		
alpha -= alpha / beta;		
beta += beta - alpha;		
beta = beta + (2 && alpha);		
alpha = alpha - (beta && alpha);		
cout << "\n First Modified value : " << alpha;		
cout << "\n Second Modified value: " << beta;		
int $x = 24$;		
int $y = 16$;		
double $z = 40$;		
int num2 = $z / (y * (x / 2 * 10)) + (y * x + 2) / z$;		
cout << num2 << endl;		
double num3 = $(y * (x + y) + z) / 16$;		
cout << num3 << endl;		
,		
ROUGH WORK (extra space)		

FAST School of Computing

Fall-2022

Islamabad Campus

c) Identify and correct the errors in the following code. Rewrite only the line number where error is found, write the correct statement. Then write code output in the second column. First code is for SAMPLE. [2.5 + 2.5 + 5 = 10]

Code	Corrected Line number wise + Output
1. integer a;	1. int a; //integer type does not exist
2. a = 100;	3. cout< <a; coutttt="" is="" td="" wrong<=""></a;>
3. coutttt< <a;< td=""><td>Output:</td></a;<>	Output:
	100
 int return = 2000; cout << "Loan returned =" << return << endl; 	
3. int length = 200.5;	
4. cout << "Length = " << length;	
5. char initial = 'a';	
6. char newchar = initial - 32;	
7. cout << newchar << endl; 8. int ch = 100;	
9. cout << (char)ch << endl;	
1. Float const PI = 3.7;	
2. cout << PI + 0.3 << endl; 3. PI = 3.4;	
4. cout << "new value \n" << PI << endl;	
1. short 1_var;	
2. Short var_2;	
3. int Total = 0	
4. cout >> "Enter First value = "; 5. cin << 1_var;	
6. Cout << "Enter Second value = ";	
7. cin >> var_2;	
8. 1_Value + var_2 = Total;	
9. cout << "\n Total is : " << total;	

FAST School of Computing

Fall-2022

Islamabad Campus

d) Write C++ statements or expressions to perform the desired operation. [2+2+2=6]

Required Operation	C++ expression
float f;	-
cin>>f;	
bool b;	
/*write a statement to assign 1 to variable b if user entered	
a real number; 0 if user enters a whole number*/	
cout< <b;< td=""><td></td></b;<>	
char ch;	
cin.get(ch);	
bool b;	
/*write a statement to assign 0 to variable b if user entered	
a non-printable character; 1 if user entered a printable	
character. First 32 characters in the ASCII table are non-	
printable and values start from 0*/	
De Morgan's Law of Union -> $(A \cup B)' = A' \cap B'$	
bool A, B, c;	
/*Write a C++ statement to assign 1 (i.e. true) to variable	
c to indicate that the left hand side is equal to the right	
hand side of the De Morgan's Law equation. Please note	
that U is same as OR gate; ∩ is same as AND gate; and	
the apostrophe represents NOT operation.*/	

FAST School of Computing Fall-2022 Islamabad Campus

The remove of compating	1 un 2022	Islamasaa Campas
	Question 2 [10 Marks]	
777.	Question = [10 Marile]	11 1 1 2
Write a C++ program that asks user to e	enter a four-digit number. Your program sho	ould calculate average of
all the digits of that number. For examp	ole, if user enters 1234 your program will pri	nt 2.5. and if user enters
an the digits of that number. For examp	ne, ii user enters 1234 your program win pri	in 2.5, and it does enters
1481, your program will print 3.5. [10]		
1		