Limites de fonctions

Exercice 1 (Factorisation)

Déterminer les limites suivantes :

(a)
$$\lim_{x \to a} \frac{3x^2 - x + 1}{5x^3 + x^2 - 7}$$
 pour $a = -\infty$ et $a = 0$

(b)
$$\lim_{x\to a} \frac{e^x + 3x - 1}{x^2 + 1}$$
 pour $a = +\infty$ et $a = -\infty$

(c)
$$\lim_{x\to a} \frac{\sqrt{x^2+1}}{x}$$
 pour $a=+\infty$ et $a=-\infty$

Exercice 2 (Se ramener à des limites usuelles)

Déterminer les limites suivantes :

(a)
$$\lim_{x \to +\infty} \frac{e^{\sqrt{x}}}{x}$$

(b)
$$\lim_{x \to 1} \frac{\ln(x)}{x - 1}$$

(c)
$$\lim_{x \to +\infty} x^2 \tan\left(\frac{1}{x}\right)$$

(d)
$$\lim_{x \to 1} \frac{x^{1/3} - 1}{x - 1}$$

(e)
$$\lim_{x \to -\infty} x \left(e^{\frac{1}{x^2}} - 1 \right)$$

(f)
$$\lim_{x \to 0} \frac{\sqrt{1+2x}-1}{x}$$

(a)
$$\lim_{x \to +\infty} \frac{e^{\sqrt{x}}}{x}$$
 (b) $\lim_{x \to 1} \frac{\ln(x)}{x-1}$ (c) $\lim_{x \to +\infty} x^2 \tan\left(\frac{1}{x}\right)$ (d) $\lim_{x \to 1} \frac{x^{1/3} - 1}{x-1}$ (e) $\lim_{x \to -\infty} x \left(e^{\frac{1}{x^2}} - 1\right)$ (f) $\lim_{x \to 0} \frac{\sqrt{1+2x} - 1}{x}$ (g) $\lim_{x \to +\infty} x \left(\ln(1+x) - \ln(x)\right)$

Exercice 3 (Un peu de tout)

Déterminer les limites suivantes :

(a)
$$\lim_{x \to 0} x \ln \left(1 + \frac{x}{2} \right)$$
 (b) $\lim_{x \to 0} \frac{\ln(1+x)}{\tan(x)}$

$$(b)\lim_{x\to 0} \frac{\ln(1+x)}{\tan(x)}$$

(c)
$$\lim_{x \to +\infty} \sqrt{x^2 + 1} - x$$
 (d) $\lim_{x \to 0} x^x$

(d)
$$\lim_{x \to 0} x^x$$

(f)
$$\lim_{x \to +\infty} \left(\frac{\ln(x)}{x} \right)^{\frac{1}{x}}$$

Exercice 4 (Encadrements et limite)

1. Déterminer
$$\lim_{x \to +\infty} \frac{1 - \cos(x)}{x}$$
 et $\lim_{x \to +\infty} \frac{\lfloor x \rfloor}{x^2}$.

2. Soit $\alpha > 0$.

À l'aide d'une étude de fonction appropriée, montrer que pour tout $x \ge 1$, $\ln x \le \frac{2}{\alpha} x^{\alpha/2}$. Retrouver ainsi $\lim_{x \to +\infty} \frac{\ln x}{x^{\alpha}}$.

3. À l'aide d'études de fonctions, montrer que :

$$\forall x \in \mathbb{R}, \ 1 + x \leqslant e^x \leqslant 1 + xe^x.$$

Retrouver ainsi $\lim_{x\to 0} \frac{e^x-1}{x}$.

Exercice 5 (Une autre définition de exp...)

Montrer que pour tout $x \in \mathbb{R}$,

$$e^x = \lim_{n \to +\infty} \left(1 + \frac{x}{n}\right)^n.$$

Exercice 6 (Limite à gauche/droite)

Les fonctions suivantes admettent-elles une limite à gauche/à droite/tout court en x_0 ?

(a)
$$\forall x \in \mathbb{R}^*, \ f(x) = \frac{|x|}{x}$$
 en $x_0 = 0$

(b)
$$\forall x \in \mathbb{R}, \ g(x) = x \lfloor x \rfloor$$
 en $x_0 = 0$

(c)
$$h(x) = \begin{cases} x^2 \ln x & \text{si } x > 0 \\ 0 & \text{si } x \leqslant 0 \end{cases}$$
 en $x_0 = 0$

(d)
$$\varphi(x) = \begin{cases} (x+1)^x & \text{si } x > -1 \\ e^{-1} & \text{si } x \leq -1 \end{cases}$$
 en $x_0 = -1$

(e)
$$\psi(x) = \begin{cases} \exp\left(-\frac{1}{|x-2|}\right) & \text{si} \quad x \neq 2 \\ 1 & \text{si} \quad x = 2 \end{cases}$$
 en $x_0 = 2$

Exercice 7 (Sortez les ε !)

Soit I un intervalle ouvert, $x_0 \in I$ et f une fonction définie sur I.

(a) On suppose que $\ell = \lim_{x \to x_0} f(x) \in \mathbb{R}$ existe.

Montrer que f est bornée au voisinage de x_0 , (i.e il existe un intervalle J contenant x_0 , dont x_0 n'est pas une extrémité, tel que f est bornée sur J.)

(b) On suppose que $\ell > 0$. Montrer que f est strictement positive au voisinage de x_0 .

(i.e il existe un intervalle J contenant x_0 , dont x_0 n'est pas une extrémité, tel que f est strictement positive sur J.)