AS205:Ocean Dynamics(Assignment 5)

Parag Shende

April 13, 2024

Introduction

We describe the seasonal mean stratification in the Bay of Bengal and Arabian sea.

Datasets

The datasets used in this analysis is as follows:

• Density: World Ocean Atlas(WOA18)

Methodology

The datasets are choosen for the domain of $40^{\circ}E$ to $100^{\circ}E$ and $0^{\circ}N$ to $25^{\circ}N$. This covers the North Indian ocean. We then calculate the seasonal mean with the following seasons:

The density data was chosen for the transect at $70^{\circ}E$ for the Arabian sea and $88^{\circ}E$ for the Bay of Bengal. Both the transect extend from $10^{\circ}N$ to $20^{\circ}N$. We choose seasonal means were as follows

- Summer Monsoon: June, July, August, September(JJAS)
- Winter Monsoon : December, January, February(DJF)

The stratification is measured by the Brunt-Vaisale frequency calculated as:

$$N^2 = -\frac{g}{\rho_0} \frac{\partial \rho}{\partial z}$$

where,

 ρ_0 is the reference density.

 ρ is the density of the water at different levels.

Bay of Bengal

- The seasonal mean stratification for the Bay of Bengal is plotted in Figure 1(Summer) and Figure 2(Winter).
- We observe the pycnocline is deeper in the post-monsoon DJF period(around 100m) as compared to the pre-monsoon period(around 30m).
- Overall the stratification is higher in the post-monsoon period in the bay.

Arabian Sea

- The seasonal mean stratification for the Arabian sea is plotted in Figure 3(Summer) and Figure 2(Winter).
- The stratification is nearly constant in both the periods.
- The pycnocline in both the periods is around 100m.

Figure 1: stratification of Bay of Bengal in summer (s^{-1})

Figure 2: stratification of Bay of Bengal in winter $(s^{-1})\,$

Figure 3: stratification of Arabian sea in summer $\left(s^{-1}\right)$

Figure 4: stratification of Arabian sea in winter (s^{-1})