Cycle structures of autotopisms of the Latin squares of order up to 11.

Falcón, R. M.

Department of Geometry and Topology. Faculty of Mathematics. University of Seville. 41080 - Seville (Spain). E-mail: rafalqan@us.es

Abstract

The cycle structure of a Latin square autotopism $\Theta = (\alpha, \beta, \gamma)$ is the triple $(\mathbf{l}_{\alpha}, \mathbf{l}_{\beta}, \mathbf{l}_{\gamma})$, where \mathbf{l}_{δ} is the cycle structure of δ , for all $\delta \in \{\alpha, \beta, \gamma\}$. In this paper we study some properties of these cycle structures and, as a consequence, we give a classification of all autotopisms of the Latin squares of order up to 11.

MSC 2000: 05B15, 20N05.

Keywords: Latin Square, Autotopism Group.

1 Introduction

A quasigroup [1] is a nonempty set G endowed with a product \cdot , such that if any two of the three symbols a,b,c in the equation $a \cdot b = c$ are given as elements of G, the third is uniquely determined as an element of G. It is equivalent to say that G is endowed with left and right division. Two quasigroups (G,\cdot) and (H,\circ) are isotopic [2] if there are three bijections α,β,γ from H to G, such that $\gamma(a\circ b)=\alpha(a)\cdot\beta(b)$, for all $a,b\in H$. The triple $\Theta=(\alpha,\beta,\gamma)$ is called an isotopism from (H,\circ) to (G,\cdot) . The multiplication table of a quasigroup is a Latin square. A $indepthalfont{Latin square } L$ of order $indepthalfont{n}$ is a $indepthalfont{n}$ and $indepthalfont{n}$ and each column. The set of Latin squares of order $indepthalfont{n}$ is denoted by $indepthalfont{n}$. The calculus of the number of Latin squares of order $indepthalfont{n}$ is an open problem. However, this number is known up to order 11 [7]. A general overview of Latin squares and their applications can be seen in [3] or [5].

Throughout this paper, we will consider $N = \{0, 1, ..., n-1\}$ and S_n will denote the symmetric group on N. The cycle structure of a permutation $\delta \in S_n$ is the sequence $(\mathbf{l}_1, \mathbf{l}_2, ..., \mathbf{l}_n)$, where \mathbf{l}_i is the number of cycles of length i in δ . For a given $\delta \in S_n$, define the set of its fixed points by $Fix(\delta) = \{i \in N : \delta(i) = i\}$. If $L = (l_{i,j}) \in LS(n)$, the orthogonal array representation of L is the set of n^2 triples $\{(i, j, l_{i,j}) : i, j \in N\}$. The

previous set is identified with L and so, it is written $(i, j, l_{i,j}) \in L$, for all $i, j \in N$. Moreover, since L is the multiplication table of a quasigroup, then distinct triples of L never agree in more than one element.

An isotopism of a Latin square $L \in LS(n)$ is a triple $\Theta = (\alpha, \beta, \gamma) \in$ $\mathcal{I}_n = S_n \times S_n \times S_n$. So, α, β and γ are permutations of rows, columns and symbols of L, respectively. The resulting square L^{Θ} is also a Latin square and it is said to be isotopic to L. In particular, if $L = (l_{i,j})$, then $L^{\Theta} =$ $\{(i,j,\gamma^{-1}(l_{\alpha(i),\beta(j)}): i,j\in N\}.$ If L_1 and L_2 are two distinct Latin squares of order n, then $L_1^{\Theta}\neq L_2^{\Theta}$. If $\alpha=\beta=\gamma$, the isotopism is an isomorphism. If $\gamma = \epsilon$, the identity map on N, Θ is called a principal isotopism. An isotopism which maps L to itself is an autotopism. Moreover, if it is an isomorphism, then it is called an automorphism. If its permutations are n cycles, then L is said to be diagonally cyclic. Indeed, diagonally cyclic Latin squares of even order do not exist [8]. $(\epsilon, \epsilon, \epsilon)$ is called the *trivial* autotopism. The stabilizer subgroup of L in \mathcal{I}_n is its autotopism group, $\mathcal{U}(L) = \{\Theta \in \mathcal{I}_n : L^{\Theta} = L\}.$ For a given $L \in LS(n), \Theta = (\alpha, \beta, \gamma) \in \mathcal{U}(L)$ and $\sigma \in S_3$, it is verified that $(\pi_{\sigma(0)}(\Theta), \pi_{\sigma(1)}(\Theta), \pi_{\sigma(2)}(\Theta)) \in \mathcal{U}(L^{\sigma})$, where π_i gives the $(i+1)^{th}$ component of Θ , for all $i \in \{0,1,2\}$. For a given $\Theta \in \mathcal{I}_n$, the set of all Latin squares L such that $\Theta \in \mathcal{U}(L)$ is denoted by $LS(\Theta)$. The cardinality of $LS(\Theta)$ is denoted by $\Delta(\Theta)$. Specifically, the computation of $\Delta(\Theta)$ for any isotopism $\Theta \in \mathcal{I}_n$ is at the moment an open problem having relevance in secret sharing schemes related to Latin squares **[4]**.

$$\begin{cases}
L_1 = \begin{pmatrix}
0 & 1 & 2 & 3 \\
1 & 0 & 3 & 2 \\
2 & 3 & 0 & 1 \\
3 & 2 & 1 & 0
\end{pmatrix}
\Rightarrow L_1^{\Theta} = \begin{pmatrix}
1 & 3 & 0 & 2 \\
0 & 2 & 1 & 3 \\
3 & 1 & 2 & 0 \\
2 & 0 & 3 & 1
\end{pmatrix}$$

$$\Theta = ((0\ 1)(2\ 3), (1\ 2), \epsilon)$$

Figure 1: Isotopism permuting 1^{st} with 2^{nd} and 3^{rd} with 4^{th} rows and 2^{nd} with 3^{rd} columns.

The following result gives some necessary conditions of the possible non-trivial Latin square autotopisms:

Theorem 1 (McKay, Meynert and Myrvold [6]). Let $L \in LS(n)$. Every non-trivial $\Theta = (\alpha, \beta, \gamma) \in \mathcal{U}(L)$ verifies one of the following assertions:

- a) α, β, γ have the same cycle structure with at least one and at most $\lfloor \frac{n}{2} \rfloor$ fixed points.
- b) One of α, β, γ has at least one fixed point and the other two have the same cycle structure without fixed points.

The classification given in the previous theorem depends on the cycle structures of the permutations of each Latin square autotopism and on their fixed points. In this paper, we are interested in giving a complete catalogue with all the possible cycles structures of any autotopism of a Latin square of order up to 11. This catalogue seems to be useful to study the open problem of the calculus of the number $\Delta(\Theta)$. Specifically, we prove in Section 3 that the number of Latin squares having a given isotopism $\Theta \in \mathcal{I}_n$ in its autotopism group only depends on the cycle structure of Θ .

The structure of the paper is the following: in Section 2, some general results about Latin square autotopisms are reviewed. In Section 3, we define the cycle structure of a Latin square autotopism and we study several of its properties. All these properties have been implemented in a computer program to give in Section 4 the classification of all autotopisms of the Latin squares of order up to 11.

2 Some general results

Every permutation of S_n can be written as the composition of pairwise disjoint cycles. So, from now on, for a given $\Theta = (\alpha, \beta, \gamma) \in \mathcal{I}_n$, we will consider that, for all $\delta \in \{\alpha, \beta, \gamma\}$:

$$\delta = C_0^{\delta} \circ C_1^{\delta} \circ \dots \circ C_{k_{\delta}-1}^{\delta}, \tag{1}$$

where:

- i) For all $i \in \{0, 1, ..., k_{\delta} 1\}$, one has $C_i^{\delta} = \left(c_{i,0}^{\delta} \ c_{i,1}^{\delta} \ ... \ c_{i, \lambda_i^{\delta} 1}^{\delta}\right)$, with $\lambda_i^{\delta} \leq n$ and $c_{i,0}^{\delta} = \min_j \{c_{i,j}^{\delta}\}$.
- ii) $\sum_{i} \lambda_{i}^{\delta} = n$.
- iii) For all $i, j \in \{0, 1, ..., k_{\delta} 1\}$, one has $\lambda_i^{\delta} \geq \lambda_j^{\delta}$, whenever $i \leq j$.
- iv) Given $i, j \in \{0, 1, ..., k_{\delta} 1\}$, with i < j and $\lambda_i^{\delta} = \lambda_j^{\delta}$, one has $c_{i,0}^{\delta} < c_{j,0}^{\delta}$.

Specifically, the following result is verified:

Proposition 1. Let $\Theta = (\alpha, \beta, \gamma) \in \mathcal{I}_n$ be a non-trivial isotopism. If one of the permutations α, β or γ is equal to ϵ , then $\Delta(\Theta) > 0$ only if the other two permutations have the same cycle structure with all their cycles of the same length and without fixed points.

Proof. Let $\Theta = (\alpha, \beta, \gamma) \in \mathcal{I}_n$ be such that $\Delta(\Theta) > 0$ and let us consider $L = (l_{i,j}) \in LS(\Theta)$. If one of the permutations α, β or γ is equal to ϵ , then we are in case (b) of Theorem 1 and, therefore, the other two permutations must have the same cycle structure without fixed points. Now, we must prove that all the cycles of these two permutations have the same length. To do it, since rows, columns and symbols have an interchangeable role in the study of Latin squares, it is enough to study the case $\alpha = \epsilon$, being equivalent the proof when $\beta = \epsilon$ or $\gamma = \epsilon$. Thus, β and γ have the same cycle structure without fixed points. Specifically, $k_{\beta} = k_{\gamma}$. Let us suppose that there exist $r, s \in \{0, 1, ..., k_{\beta} - 1\}$ such that $\lambda_r^{\beta} \neq \lambda_s^{\gamma}$. Now, let $a \in N$ be such that $l_a, c_{r,0}^{\beta} = c_{s,0}^{\gamma}$. If $\lambda_r^{\beta} > \lambda_s^{\gamma}$, then:

$$l_{a,\ c_{r,0}^\beta} = c_{s,0}^\gamma = c_{s,\lambda_s^\gamma\ (mod\ \lambda_s^\gamma)}^\gamma = l_{a,\ c_{r,\lambda_s^\gamma}^\beta},$$

which is a contradiction with being L a Latin square. Otherwise, if $\lambda_r^{\beta} < \lambda_s^{\gamma}$, then:

$$c_{s,0}^{\gamma} = l_{a,\ c_{r,0}^{\beta}} = l_{a,\ c_{s,\lambda_r^{\beta}\ (mod\ \lambda_r^{\beta})}^{\beta}} = c_{s,\lambda_r^{\beta}}^{\gamma},$$

which is a contradiction with the conditions (1) imposed at the beginning of this section. Therefore, it must be that $\lambda_r^{\beta} = \lambda_s^{\gamma}$, for all $r, s \in \{0, 1, ..., k_{\beta} - 1\}$.

From now on, for a given $\delta \in \{\alpha, \beta, \gamma\}$ and $i \in \{0, 1, ..., k_{\delta} - 1\}$, we will write $a \in C_i^{\delta}$ if there exists $j \in \{0, 1, ..., \lambda_i^{\delta} - 1\}$ such that $a = c_{i,j}^{\delta}$. The following result is verified:

Theorem 2. Let $L = (l_{i,j}) \in LS(n)$ and $\Theta = (\alpha, \beta, \gamma) \in \mathcal{U}(L)$ and let us consider $r \in \{0, 1, ..., k_{\alpha} - 1\}$ and $s \in \{0, 1, ..., k_{\beta} - 1\}$. Let us denote $m = l.c.m.(\lambda_r^{\alpha}, \lambda_s^{\beta})$. Now, for a given $a \in C_r^{\alpha}$ and $b \in C_s^{\beta}$, let $t \in \{0, 1, ..., k_{\gamma} - 1\}$ be such that $l_{a,b} \in C_t^{\gamma}$. Then, it is verified that:

- i) λ_t^{γ} divides m.
- ii) λ_t^{γ} does not divide any multiple of λ_r^{α} smaller than m.
- iii) λ_t^{γ} does not divide any multiple of λ_s^{β} smaller than m.
- iv) If $g.c.d.(\lambda_r^{\alpha}, \lambda_s^{\beta}) = 1$, then $\lambda_t^{\gamma} = m$.

Proof. Let $u \in \{0, 1, ..., \lambda_r^{\alpha} - 1\}$, $v \in \{0, 1, ..., \lambda_s^{\beta} - 1\}$ and $w \in \{0, 1, ..., \lambda_t^{\gamma} - 1\}$ be such that $a = c_{r,u}^{\alpha}$, $b = c_{s,v}^{\beta}$ and $l_{a,b} = c_{t,w}^{\gamma}$, respectively. Since $\Theta \in \mathcal{U}(L)$, we obtain that λ_t^{γ} divides m, because it must be that:

$$c_{t,w}^{\gamma} = l_{a,b} = l_{c_{r,u}^{\alpha},\ c_{s,v}^{\beta}} = l_{c_{r,u+m\ (mod\ \lambda_{r}^{\alpha})}^{\alpha},\ c_{s,v+m\ (mod\ \lambda_{s}^{\beta})}^{\beta}} = c_{t,w+m\ (mod\ \lambda_{t}^{\gamma})}^{\gamma}.$$

Now, let us suppose that $\lambda_r^{\alpha} \neq \lambda_s^{\beta}$. Then, we see that λ_t^{γ} does not divide any multiple h of λ_r^{α} smaller than m:

$$\begin{split} c_{t,w}^{\gamma} &= l_{c_{r,u}^{\alpha},\ c_{s,v}^{\beta}} = l_{c_{r,u+h\ (mod\ \lambda_{r}^{\alpha})}^{\alpha},\ c_{s,v}^{\beta}} \neq l_{c_{r,u+h\ (mod\ \lambda_{r}^{\alpha})}^{\alpha},\ c_{s,v+h\ (mod\ \lambda_{s}^{\beta})}^{\beta}} = \\ &= c_{t,w+h\ (mod\ \lambda_{t}^{\gamma})}^{\gamma}. \end{split}$$

In a similar way, it can be obtained that λ_t^{γ} does not divide any multiple of λ_s^{β} smaller than m.

Finally, if $g.c.d.(\lambda_r^{\alpha}, \lambda_s^{\beta}) = 1$, then $m = \lambda_r^{\alpha} \cdot \lambda_s^{\beta}$. Let us suppose that $\lambda_t^{\gamma} < m$. By keeping in mind assertions (ii) and (iii), since $g.c.d.(\lambda_r^{\alpha}, \lambda_s^{\beta}) = 1$, there must exist two distinct primes $p, q \in [m]$ such that p divides λ_r^{α} , q divides λ_s^{β} and λ_t^{γ} divides $\frac{m}{p \cdot q}$. Specifically, λ_t^{γ} divides $\frac{m}{p}$, which is a multiple of λ_s^{β} . It is a contradiction with assertion (iii) and, therefore, it must be that $\lambda_t^{\gamma} = m$.

3 Cycle structures of Latin square autotopisms

From now on, for a given $n \in \mathbb{N}$, we will denote the set $\{1, 2, ..., n\}$ by [n]. So, let $\Theta = (\alpha, \beta, \gamma) \in \mathcal{I}_n$ and let us define, for all $\delta \in \{\alpha, \beta, \gamma\}$ and $r \in [n]$:

$$\mathbf{l}_r^{\delta} = \sharp \{ i \in \{0, 1, ..., k_{\delta} - 1\} : \lambda_i^{\delta} = r \},$$

where \sharp denotes the cardinality of the corresponding set. Then, let us consider, for all $\delta \in \{\alpha, \beta, \gamma\}$:

$$\mathbf{l}_{\delta}=(\mathbf{l}_{1}^{\delta},\mathbf{l}_{2}^{\delta},...,\mathbf{l}_{n}^{\delta}).$$

The triple $(\mathbf{l}_{\alpha}, \mathbf{l}_{\beta}, \mathbf{l}_{\gamma})$ will be called the *cycle structure of* Θ . The set of all autotopisms of the Latin squares of order n having the cycle structure $(\mathbf{l}_{\alpha}, \mathbf{l}_{\beta}, \mathbf{l}_{\gamma})$ will be denoted by $\mathcal{I}_n(\mathbf{l}_{\alpha}, \mathbf{l}_{\beta}, \mathbf{l}_{\gamma})$.

Some immediate properties of the cycle structure of an isotopism are given in the following:

Lemma 1. Let $\Theta \in \mathcal{I}_n(\mathbf{l}_{\alpha}, \mathbf{l}_{\beta}, \mathbf{l}_{\gamma})$. Then, for all $\delta \in \{\alpha, \beta, \gamma\}$, it must be that:

- a) $\sum_{r \in [n]} \mathbf{l}_r^{\delta} = k_{\delta}$.
- b) $\sum_{r \in [n]} r \cdot \mathbf{l}_r^{\delta} = n$.
- c) $\mathbf{l}_r^{\delta} \leq \min\{k_{\delta} \sum_{i < r} \mathbf{l}_i^{\delta}, \frac{1}{r} \cdot (n \sum_{i < r} i \cdot \mathbf{l}_i^{\delta})\}$, for all $r \in [n]$.

- d) If $k_{\delta} = 1$, then $\mathbf{l}_{n}^{\delta} = 1$ and $\mathbf{l}_{r}^{\delta} = 0$, for all $r \in [n-1]$.
- e) If $k_{\delta} = n$, then $\mathbf{l}_{1}^{\delta} = n$ and $\mathbf{l}_{r}^{\delta} = 0$, for all $r \in [n] \setminus \{1\}$. Specifically, $\delta = \epsilon$.

Proof. Assertions (a) and (b) are immediate from definitions. Then, assertions (c), (d) and (e) are consequences of the previous ones. \Box

Now, let us see that the number of Latin squares having a given isotopism $\Theta \in \mathcal{I}_n$ in its autotopism group only depends on the cycle structure of Θ :

Theorem 3. Let $(\mathbf{l}_{\alpha}, \mathbf{l}_{\beta}, \mathbf{l}_{\gamma})$ be the cycle structure of a Latin square isotopism and let us consider $\Theta_1 = (\alpha_1, \beta_1, \gamma_1), \Theta_2 = (\alpha_2, \beta_2, \gamma_2) \in \mathcal{I}_n(\mathbf{l}_{\alpha}, \mathbf{l}_{\beta}, \mathbf{l}_{\gamma})$. Then, $\Delta(\Theta_1) = \Delta(\Theta_2)$.

Proof. Since Θ_1 and Θ_2 have the same cycle structure, we can consider the isotopism $\Theta = (\sigma_1, \sigma_2, \sigma_3) \in \mathcal{I}_n$, where:

i)
$$\sigma_1(c_{i,j}^{\alpha_1}) = c_{i,j}^{\alpha_2}$$
, for all $i \in \{0, 1, ..., k_{\alpha_1}\}$ and $j \in \{0, 1, ..., \lambda_i^{\alpha_1}\}$,

ii)
$$\sigma_2(c_{i,j}^{\beta_1}) = c_{i,j}^{\beta_2}$$
, for all $i \in \{0, 1, ..., k_{\beta_1}\}$ and $j \in \{0, 1, ..., \lambda_i^{\beta_1}\}$,

iii)
$$\sigma_3(c_{i,j}^{\gamma_1}) = c_{i,j}^{\gamma_2}$$
, for all $i \in \{0,1,...,k_{\gamma_1}\}$ and $j \in \{0,1,...,\lambda_i^{\gamma_1}\}$.

Now, let us see that $\Delta(\Theta_1) \leq \Delta(\Theta_2)$. If $\Delta(\Theta_1) = 0$, the result is immediate. Otherwise, let $L_1 = (l_{i,j}) \in LS(\Theta_1)$ and let us see that $L_1^{\Theta} = (l'_{i,j}) \in LS(\Theta_2)$. Specifically, we must prove that $(\alpha_2(i), \beta_2(j), \gamma_2(l'_{i,j})) \in L_1^{\Theta}$, for all $(i, j, l'_{i,j}) \in L_1^{\Theta}$. So, let us consider $(i_0, j_0, l'_{i_0, j_0}) \in L_1^{\Theta}$ and let $r_0 \in \{0, 1, ..., k_{\alpha_2}\}, u_0 \in \{0, 1, ..., \lambda_{r_0}^{\alpha_2}\}, s_0 \in \{0, 1, ..., k_{\beta_2}\}, v_0 \in \{0, 1, ..., \lambda_{s_0}^{\beta_2}\}, t_0 \in \{0, 1, ..., k_{\gamma_2}\}$ and $w_0 \in \{0, 1, ..., \lambda_{t_0}^{\gamma_2}\}$ be such that $c_{r_0, u_0}^{\alpha_2} = i_0, c_{s_0, v_0}^{\beta_2} = j_0$ and $c_{t_0, w_0}^{\gamma_2} = l'_{i_0, j_0}$. Thus:

$$(c^{\alpha_1}_{r_0,u_0},c^{\beta_1}_{s_0,v_0},c^{\gamma_1}_{t_0,w_0})=(\sigma_1^{-1}(i_0),\sigma_2^{-1}(j_0),\sigma_3^{-1}(l'_{i_0,j_0}))\in L_1.$$

Next, since $L_1 \in LS(\Theta)$, we have that:

$$(c_{r_0,u_0+1 \pmod{\lambda_{r_0}^{\alpha_1}}}^{\alpha_1}, c_{s_0,v_0+1 \pmod{\lambda_{s_0}^{\beta_1}}}^{\beta_1}, c_{t_0,w_0+1 \pmod{\lambda_{t_0}^{\gamma_1}}}^{\gamma_1}) = (\alpha_1(c_{r_0,u_0}^{\alpha_1}), \beta_1(c_{s_0,v_0}^{\beta_1}), \gamma_1(c_{t_0,w_0}^{\gamma_1})) \in L_1.$$

Therefore, $(\alpha_2(i_0), \beta_2(j_0), \gamma_2(l'_{i_0, j_0})) \in L_1^{\Theta}$, because:

$$(c^{\alpha_2}_{r_0,u_0+1\ (mod\ \lambda^{\alpha_2}_{r_0})},c^{\beta_2}_{s_0,v_0+1\ (mod\ \lambda^{\beta_2}_{s_0})},c^{\gamma_2}_{t_0,w_0+1\ (mod\ \lambda^{\gamma_2}_{t_0})}) =$$

$$=(\sigma_1(c^{\alpha_1}_{r_0,u_0+1\ (mod\ \lambda^{\alpha_1}_{r_0})}),\sigma_2(c^{\beta_1}_{s_0,v_0+1\ (mod\ \lambda^{\beta_1}_{s_0})}),\sigma_3(c^{\gamma_1}_{t_0,w_0+1\ (mod\ \lambda^{\gamma_1}_{t_0})})).$$

Analogously, it is verified that $L_2^{(\sigma_1^{-1},\sigma_2^{-1},\sigma_3^{-1})} \in LS(\Theta_1)$, for all $L_2 \in LS(\Theta_2)$, and hence, the result follows.

From Theorem 3, a catalogue of the cycle structures of all possible autotopisms of a Latin square, which is the goal of the present paper, seems to be useful, because it would simplify the general calculus of the number $\Delta(\Theta)$, which is at the moment an open problem. Now, in order to obtain the mentioned catalogue, let us see some previous results.

Proposition 2. Let $\Theta = (\alpha, \beta, \gamma) \in \mathcal{I}_n$ be such that $\Delta(\Theta) > 0$. If $\mathbf{l}_n^{\alpha} = \mathbf{l}_n^{\beta} = \mathbf{l}_n^{\gamma} = 1$, then n must be odd.

Proof. From Lemma 1, α, β and γ consist of a single n cycle. Let $\Theta' = (\alpha, \alpha, \alpha) \in \mathcal{I}_n$. The cycle structure of Θ' is the same as that of Θ and, therefore, from Theorem 3, $\Delta(\Theta') = \Delta(\Theta) > 0$. Let $L \in LS(\Theta')$. By definition, L is a diagonally cyclic Latin square, which is possible only if n is odd (Theorem 6, [8]).

The following results are consequences of Theorems 1 and 2:

Proposition 3. Let $\Theta \in \mathcal{I}_n(\mathbf{l}_{\alpha}, \mathbf{l}_{\beta}, \mathbf{l}_{\gamma})$ be such that $\Delta(\Theta) > 0$. If there exist $\delta \in \{\alpha, \beta, \gamma\}$ such that $\mathbf{l}_1^{\delta} > 0$, then it must be that $\mathbf{l}_r^{\delta_1} = \mathbf{l}_r^{\delta_2}$, for all $r \in [n]$, where δ_1 and δ_2 are the two permutations in $\{\alpha, \beta, \gamma\} \setminus \{\delta\}$. Specifically, if $\mathbf{l}_1^{\delta} > \lfloor \frac{n}{2} \rfloor$, then $\mathbf{l}_1^{\delta_1} = \mathbf{l}_1^{\delta_2} = 0$.

Proof. For a given δ , δ_1 and δ_2 in the hypothesis, we will be in case (a) of Theorem 1, if $\mathbf{l}_1^{\delta_1} > 0$, or in case (b) of such a result, if $\mathbf{l}_1^{\delta_1} = 0$. In both cases, the two permutations δ_1 and δ_2 must have the same cycle structure and, therefore, it must be that $\mathbf{l}_r^{\delta_1} = \mathbf{l}_r^{\delta_2}$, for all $r \in [n]$. Specifically, if $\mathbf{l}_1^{\delta} > \lfloor \frac{n}{2} \rfloor$, we are in case (b) of Theorem 1 and so, it must be that $\mathbf{l}_1^{\delta_1} = \mathbf{l}_1^{\delta_2} = 0$.

Proposition 4. Let $n \geq 2$ and let $\Theta \in \mathcal{I}_n(\mathbf{l}_{\alpha}, \mathbf{l}_{\beta}, \mathbf{l}_{\gamma})$ be such that $\Delta(\Theta) > 0$. If there exist $\delta_1 \in \{\alpha, \beta, \gamma\}$ and $\delta_2 \in \{\alpha, \beta, \gamma\} \setminus \{\delta_1\}$ such that $\mathbf{l}_1^{\delta_1} \cdot \mathbf{l}_1^{\delta_2} > 0$, then the three permutations α , β and γ have the same cycle structure with at least one and at most $\lfloor \frac{n}{2} \rfloor$ fixed points. Specifically, it must be that $1 \leq \mathbf{l}_1^{\alpha} = \mathbf{l}_1^{\beta} = \mathbf{l}_1^{\gamma} \leq \lfloor \frac{n}{2} \rfloor$ and $2 \leq k_{\alpha} = k_{\beta} = k_{\gamma} \leq \lfloor \frac{n}{2} \rfloor + \lfloor \frac{\lceil \frac{n}{2} \rceil}{2} \rfloor$.

Proof. The first part of the lemma is immediate from Theorem 1, because we would be in case (a) of that result. Specifically, that theorem assures that $1 \leq \mathbf{l}_1^{\alpha} = \mathbf{l}_1^{\beta} = \mathbf{l}_1^{\gamma} \leq \lfloor \frac{n}{2} \rfloor$ and that $k_{\alpha} = k_{\beta} = k_{\gamma}$. Now, since

 α, β and γ all have at least one fixed point, then they must have at least two cycles, because $n \geq 2$. The upper bound of this number of cycles is obtained when $\mathbf{l}_1^{\alpha} = \mathbf{l}_1^{\beta} = \mathbf{l}_1^{\gamma} = \lfloor \frac{n}{2} \rfloor$ and the rest of the cycles have all of them length 2.

Proposition 5. Let $\Theta \in \mathcal{I}_n(\mathbf{l}_{\alpha}, \mathbf{l}_{\beta}, \mathbf{l}_{\gamma})$ be such that $\Delta(\Theta) > 0$. If there exists $t \in [n]$ such that $\mathbf{l}_t^{\gamma} > 0$, then there must exist $r, s \in [n]$ such that $\mathbf{l}_t^{\alpha} \cdot \mathbf{l}_s^{\beta} > 0$ and t divides l.c.m.(r, s).

Proof. Let $L=(l_{i,j})\in LS(\Theta)$ and let us consider $t_0\in\{1,2,...,k_\gamma-1\}$ such that $\lambda_{t_0}^{\gamma}=t$. Then, let $r_0\in\{0,1,...,k_\alpha-1\}, s_0\in\{0,1,...,k_\beta-1\}, u_0\in\{0,1,...,\lambda_{r_0}^{\alpha}-1\}$ and $v_0\in\{0,1,...,\lambda_{s_0}^{\beta}-1\}$ be such that $l_{c_{r_0,u_0}^{\alpha},c_{s_0,v_0}^{\beta}}=c_{t_0,0}^{\gamma}$. Thus, from Theorem $2,t=\lambda_{t_0}^{\gamma}$ must divide $l.c.m.(\lambda_{r_0}^{\alpha},\lambda_{s_0}^{\beta})$. Moreover, it is verified that $\mathbf{l}_{\lambda_{r_0}^{\alpha}}^{\alpha}\geq 1\leq \mathbf{l}_{\lambda_{s_0}^{\beta}}^{\beta}$ and, therefore, $\mathbf{l}_{\lambda_{r_0}^{\alpha}}^{\alpha}\cdot \mathbf{l}_{\lambda_{s_0}^{\beta}}^{\beta}>0$. So, it is enough to take $r=\lambda_{r_0}^{\alpha}$ and $s=\lambda_{s_0}^{\beta}$.

Proposition 6. Let $\Theta \in \mathcal{I}_n(\mathbf{l}_{\alpha}, \mathbf{l}_{\beta}, \mathbf{l}_{\gamma})$ be such that $\Delta(\Theta) > 0$. Let $r, s \in [n]$ be such that $\mathbf{l}_r^{\alpha} \cdot \mathbf{l}_s^{\beta} > 0$ and let m = l.c.m.(r, s). Then, there must exist $t \in [m]$ such that:

- i) $\mathbf{l}_{t}^{\gamma} > 0$,
- ii) t divides m.
- iii) t does not divide any multiple of r smaller than m,
- iv) t does not divide any multiple of s smaller than m.

Indeed, if g.c.d.(r,s) = 1, then it must be that $m \leq n$ and $\mathbf{l}_m^{\gamma} > 0$.

Proof. The result is an immediate consequence from Theorem 2.

Let $r, s \in [n]$ such that $\mathbf{l}_r^{\alpha} \cdot \mathbf{l}_s^{\beta} > 0$ and let us denote by $S_{r,s}^{\gamma}$ the set of t's satisfying the four assertions of Proposition 6. Finally, let us define the following sets:

$$S_{r,t}^{\beta} = \{u \in [n]: \mathbf{l}_{u}^{\beta} > 0 \text{ and } S_{r,u}^{\gamma} = \{t\}\},$$

$$S_{s,t}^{\alpha} = \{ u \in [n] : \mathbf{l}_{u}^{\alpha} > 0 \text{ and } S_{u,s}^{\gamma} = \{t\} \}.$$

Then, the following result is verified:

Theorem 4. Let $\Theta \in \mathcal{I}_n(\mathbf{l}_{\alpha}, \mathbf{l}_{\beta}, \mathbf{l}_{\gamma})$ be such that $\Delta(\Theta) > 0$. Let $t \in [n]$ be such that $\mathbf{l}_t^{\gamma} > 0$. Then, if $r, s \in [t]$ are such that $\mathbf{l}_r^{\alpha} > 0$ and $\mathbf{l}_s^{\beta} > 0$, then it is verified that:

$$\sum_{u \in S_{r,t}^{\beta}} u \cdot \mathbf{l}_{u}^{\beta} \leq t \cdot \mathbf{l}_{t}^{\gamma} \qquad and \qquad \sum_{u \in S_{s,t}^{\alpha}} u \cdot \mathbf{l}_{u}^{\alpha} \leq t \cdot \mathbf{l}_{t}^{\gamma}.$$

Proof. Let $L=(l_{i,j})\in LS(\Theta)$ and let us consider $t_0\in\{0,1,...,k_{\gamma}-1\}$ such that $\lambda_{t_0}^{\gamma}=t$. We will prove the result with the set $S_{r,t}^{\beta}$, being analogous the proof with the set $S_{s,t}^{\alpha}$. If $S_{r,t}^{\beta}=\emptyset$, then the result is immediate. So, we can suppose that $S_{r,t}^{\beta}\neq\emptyset$. Let $u\in S_{r,t}^{\beta}$ and let us consider $r_0\in\{0,1,...,k_{\alpha}-1\}$ and $u_0\in\{0,1,...,k_{\beta}-1\}$ such that $\lambda_{r_0}^{\alpha}=r$ and $\lambda_{u_0}^{\beta}=u$. Since $S_{r,u}^{\gamma}=\{t\}$, we have that, for all $v\in\{0,1,...,u-1\}$, there must exist $t_v\in\{0,1,...,k_{\gamma}-1\}$ such that $\lambda_{t_v}^{\gamma}=t$ and $l_{c_{r_0,0}^{\alpha},c_{u_0,v}^{\beta}}\in C_{t_v}^{\gamma}$. Therefore, as L is a Latin square, it must be that $u\cdot \mathbf{l}_u^{\beta}\leq t\cdot \mathbf{l}_t^{\gamma}$. Since u has been arbitrarily taken in $S_{r,t}^{\beta}$, then, by working in the same $(c_{r_0,0}^{\alpha}+1)^{th}$ row of L, it must be that $\sum_{u\in S_{r,t}^{\beta}}u\cdot \mathbf{l}_u^{\beta}\leq t\cdot \mathbf{l}_t^{\gamma}$, because L is a Latin square and so, L cannot have any repeated element in the mentioned row. \square

Let us see an example:

Example 1. Let $\Theta \in \mathcal{I}_6((0,1,0,1,0,0),(6,0,0,0,0,0),(0,1,0,1,0,0))$ and let us consider r=t=4. In this case, $S_{4,4}^{\beta}=\{1\}$ and $\sum_{u\in S_{4,4}^{\beta}}u\cdot \mathbf{l}_u^{\beta}=1\cdot 6=6>4=4\cdot \mathbf{l}_4^{\gamma}$. Therefore, from Theorem 4, it must be $\Delta(\Theta)=0$.

Let us observe that Theorem 4 can be stated in a conjugacy invariant way, by interchanging the role of rows, columns and symbols. So, from Example 1, it can be deduced that any isotopism with cycle structure ((0,1,0,1,0,0),(0,1,0,1,0,0),(6,0,0,0,0,0)) or ((6,0,0,0,0,0),(0,1,0,1,0,0),(0,1,0,1,0,0)) cannot be a Latin square autotopism.

Let us finish this section with a result corresponding to autotopisms having cycles of prime lengths:

Theorem 5. Let $\Theta \in \mathcal{I}_n(\mathbf{l}_{\alpha}, \mathbf{l}_{\beta}, \mathbf{l}_{\gamma})$ be such that $\mathbf{l}_p^{\alpha} \cdot \mathbf{l}_p^{\beta} > 0$, for some prime $p \in [n]$. If $\mathbf{l}_1^{\gamma} and <math>\mathbf{l}_p^{\gamma} = 0$, then $\Delta(\Theta) = 0$. Moreover, if $\mathbf{l}_1^{\gamma} = 0$ and $\mathbf{l}_p^{\gamma} < \max\{\mathbf{l}_p^{\alpha}, \mathbf{l}_p^{\beta}\}$, then $\Delta(\Theta) = 0$. Finally, if p = 2, $\mathbf{l}_1^{\gamma} = 0$ and $\mathbf{l}_2^{\gamma} = 1$, then $\Delta(\Theta) = 0$.

Proof. Let us suppose that $\Delta(\Theta) > 0$ and let us consider $L = (l_{i,j}) \in LS(\Theta)$. We can suppose that $\mathbf{l}_p^{\alpha} \leq \mathbf{l}_p^{\beta}$ (the reasoning is similar in the other case). Let $p_0 \in \{0, 1, ..., k_{\alpha} - 1\}$ be such that $\lambda_{p_0}^{\alpha} = p$. Now, let us study each part of the hypothesis:

- a) Let us suppose that $\mathbf{l}_1^{\gamma} and <math>\mathbf{l}_p^{\gamma} = 0$. From Theorem 2, since $\mathbf{l}_p^{\gamma} = 0$, we have that, for all $p_1 \in \{0, 1, ..., k_{\beta} 1\}$ such that $\lambda_{p_1}^{\beta} = p$ and for all $v \in \{0, 1, ..., p 1\}$, it must be that $l_{c_{p_0,0}^{\alpha}, c_{p_1,v}^{\beta}} \in Fix(\gamma)$. So, γ must have at least $p \cdot \mathbf{l}_p^{\beta}$ fixed points, because L is a Latin square. But then, we obtain a contradiction with being $\mathbf{l}_1^{\gamma} . So, it must be that <math>\Delta(\Theta) = 0$.
- b) Let us suppose that $\mathbf{l}_1^{\gamma}=0$ and $\mathbf{l}_p^{\gamma}<\max\{\mathbf{l}_p^{\alpha},\mathbf{l}_p^{\beta}\}=\mathbf{l}_p^{\beta}$. From Theorem 2, since $\mathbf{l}_1^{\gamma}=0$, we have that, for all $p_1\in\{0,1,...,k_{\beta}-1\}$ such that $\lambda_{p_1}^{\beta}=p$ and for all $v\in\{0,1,...,p-1\}$, there must exist $t_{p_1,v}\in\{0,1,...,k_{\gamma}-1\}$ such that $\lambda_{t_{p_1},v}^{\gamma}=p$ and $l_{c_{p_0,0}^{\alpha},c_{p_1,v}^{\beta}}\in C_{t_{p_1,v}}^{\gamma}$. So, γ must have at least $p\cdot\mathbf{l}_p^{\beta}$ different elements in cycles of length p, because L is a Latin square. Specifically, γ must have at least \mathbf{l}_p^{β} cycles of length p. But then, we obtain a contradiction with being $\mathbf{l}_p^{\gamma}<\max\{\mathbf{l}_p^{\alpha},\mathbf{l}_p^{\beta}\}$. So, it must be that $\Delta(\Theta)=0$.
- c) Let us suppose that p=2 and let us consider $\mathbf{l}_1^{\gamma}=0$ and $\mathbf{l}_2^{\gamma}=1$. Let $p_1\in\{0,1,...,k_{\beta}-1\}$ be such that $\lambda_{p_1}^{\beta}=2$ and let $t\in\{0,1,...,k_{\gamma}-1\}$ be such that $l_{c_{p_0,0}^{\alpha},c_{p_1,0}^{\beta}}\in C_t^{\gamma}$. From Theorem 2, t must divide $l.c.m.(\lambda_{p_0}^{\alpha},\lambda_{p_1}^{\beta})=2$. Then, it must be that t=2, because $\mathbf{l}_1^{\gamma}=0$. Indeed, let us observe that the four elements $l_{c_{p_0,0}^{\alpha},c_{p_1,0}^{\beta}}, l_{c_{p_0,0}^{\alpha},c_{p_1,1}^{\beta}}, l_{c_{p_0,1}^{\alpha},c_{p_1,0}^{\beta}}$ and $l_{c_{p_0,1}^{\alpha},c_{p_1,1}^{\beta}}$, must be in C_t^{γ} , because $\mathbf{l}_2^{\gamma}=1$. Now, let $w\in\{0,1\}$ be such that $l_{c_{p_0,0}^{\alpha},c_{p_1,0}^{\beta}}=c_{t,w}^{\gamma}$. Then, it must be that $l_{c_{p_0,1}^{\alpha},c_{p_1,1}^{\beta}}=c_{t,w+1\pmod{2}}^{\gamma}$. Therefore, let us observe that $l_{c_{p_0,0}^{\alpha},c_{p_1,1}^{\beta}}$ cannot be in C_t^{γ} , because L is a Latin square. So, we have a contradiction and thus, it must be that $\Delta(\Theta)=0$.

4 Cycle structures of autotopisms of the Latin squares of order up to 11.

All the results of the previous section have been implemented in a computer program to generate all the possible cycle structures of the set of non-trivial autotopisms of the Latin squares of order up to 11. We can see all these cycle structures in the below tables. Let us observe that it is enough to show those autotopisms $\Theta = (\alpha, \beta, \gamma)$ in which $k_{\alpha} \leq k_{\beta} \leq k_{\gamma}$, because of the conjugacy of rows, columns and symbols in Latin squares. Otherwise, $(\mathbf{l}_{\alpha}, \mathbf{l}_{\beta}, \mathbf{l}_{\gamma})$ is a cycle structure of a Latin square autotopism if and only if it can be found a permutation $\sigma \in S_3$ such that $k_{\pi_{\sigma(0)}(\Theta)} \leq k_{\pi_{\sigma(1)}(\Theta)} \leq$

 $k_{\pi_{\sigma(2)}(\Theta)}$ and $(\mathbf{l}_{\pi_{\sigma(0)}(\Theta)}, \ \mathbf{l}_{\pi_{\sigma(1)}(\Theta)}, \ \mathbf{l}_{\pi_{\sigma(2)}(\Theta)})$ is a cycle structure of a Latin square autotopism, where π_i gives the $(i+1)^{th}$ component of Θ , for all $i \in \{0,1,2\}$.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	n	\mathbf{l}_{lpha}	\mathbf{l}_{eta}	\mathbf{l}_{γ}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	(0,1)	(0,1)	(2,0)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	(0,0,1)	(0,0,1)	(0,0,1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				(3,0,0)
$ \begin{pmatrix} (0,2,0,0) & (0,2,0,0) & (2,1,0,0) \\ & (0,2,0,0) & (0,2,0,0) & (0,2,0,0) \\ & & (2,1,0,0) & (2,1,0,0) \\ & & (2,1,0,0) & (2,1,0,0) & (2,1,0,0) \\ & (2,1,0,0) & (2,1,0,0) & (2,1,0,0) & (2,1,0,0) \\ & (0,0,0,0,1) & (0,0,0,0,1) & (0,0,0,0,1) \\ & (1,0,0,1,0) & (1,0,0,1,0) & (1,0,0,1,0) & (1,2,0,0,0) \\ & (1,2,0,0,0) & (1,2,0,0,0) & (1,2,0,0,0) & (2,0,1,0,0) \\ & (2,0,1,0,0) & (2,0,1,0,0) & (2,0,1,0,0) & (0,0,2,0,0,0) \\ & & (0,0,0,0,0,1) & (0,0,0,0,0,1) & (2,2,0,0,0,0) & (4,1,0,0,0,0) \\ & & (0,0,2,0,0,0) & (0,0,2,0,0,0) & (0,0,2,0,0,0) & (0,0,2,0,0,0) \\ & & (0,0,2,0,0,0) & (0,0,2,0,0,0) & (3,0,1,0,0,0) & (6,0,0,0,0,0) \\ & & (0,3,0,0,0,0) & (0,3,0,0,0,0) & (4,1,0,0,0,0) & (2,2,0,0,0,0) \\ & & (0,3,0,0,0,0) & (0,3,0,0,0,0) & (4,1,0,0,0,0) & (6,0,0,0,0,0) \\ & & (0,3,0,0,0,0) & (0,3,0,0,0,0) & (4,1,0,0,0,0) & (6,0,0,0,0,0) \\ & & (0,0,0,0,0,0,0) & (0,0,0,0,0,0,0) & (0,0,0,0,0,0) & (0,0,0,0,0,0) \\ & & (0,0,0,0,0,0) & (0,0,0,0,0,0,0) & (0,0,0,0,0,0) & (0,0,0,0,0,0) \\ & & (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,$		(1,1,0)	(1,1,0)	(1,1,0)
$ \begin{pmatrix} (0,2,0,0) & (0,2,0,0) & (0,2,0,0) \\ (0,2,0,0) & (0,2,0,0) & (0,2,0,0) \\ (2,1,0,0) & (2,1,0,0) & (4,0,0,0) \\ (2,1,0,0) & (2,1,0,0) & (2,1,0,0) \\ (2,1,0,0) & (2,1,0,0) & (2,1,0,0) \\ (2,1,0,0) & (0,0,0,0,1) & (0,0,0,0,1) \\ (0,0,0,0,0) & (1,0,0,1,0) & (1,0,0,1,0) \\ (1,2,0,0,0) & (1,2,0,0,0) & (1,2,0,0,0) \\ (2,0,1,0,0) & (2,0,1,0,0) & (2,0,1,0,0) \\ (2,0,1,0,0) & (2,0,1,0,0) & (2,0,1,0,0) \\ (0,0,0,0,0,1) & (0,0,0,0,0,1) & (2,2,0,0,0,0) \\ (0,0,0,0,0,0) & (0,0,0,0,0,0) & (0,0,0,0,0,0) \\ (0,0,0,0,0,0) & (0,0,0,0,0,0) & (0,0,0,0,0,0) \\ (0,0,0,0,0,0) & (0,0,0,0,0,0) & (0,0,0,0,0,0) \\ (0,0,0,0,0,0) & (0,0,0,0,0,0) & (0,0,0,0,0,0) \\ (0,0,0,0,0,0) & (0,0,0,0,0,0) & (0,0,0,0,0,0) \\ (0,0,0,0,0,0) & (0,0,0,0,0,0) & (4,1,0,0,0,0) \\ (0,0,0,0,0,0) & (0,0,0,0,0,0) & (4,1,0,0,0,0) \\ (0,0,0,0,0,0,0) & (0,0,0,0,0,0) & (4,1,0,0,0,0) \\ (0,0,0,0,0,0,0) & (0,0,0,0,0,0) & (0,0,0,0,0,0) \\ (0,0,0,0,0,0,0) & (0,0,0,0,0,0) & (0,0,0,0,0,0) \\ (0,0,0,0,0,0,0) & (0,0,0,0,0,0) & (0,0,0,0,0,0) \\ (0,0,0,0,0,0,0) & (0,0,0,0,0,0) & (0,0,0,0,0,0) \\ (0,0,0,0,0,0,0) & (0,0,0,0,0,0) & (0,0,0,0,0,0) \\ (0,0,0,0,0,0,0,0) & (0,0,0,0,0,0) & (0,0,0,0,0,0) \\ (0,0,0,0,0,0,0,0) & (0,0,0,0,0,0) & (0,0,0,0,0,0) \\ (0,0,0,0,0,0,0) & (0,0,0,0,0,0) & (0,0,0,0,0,0) \\ (0,0,0,0,0,0,0) & (0,0,0,0,0,0) & (0,0,0,0,0,0) \\ (0,0,0,0,0,0,0) & (0,0,0,0,0,0,0) & (0,0,0,0,0,0) \\ (0,0,0,0,0,0,0,0) & (0,0,0,0,0,0,0) & (0,0,0,0,0,0) \\ (0,0,0,0,0,0,0,0,0) & (0,0,0,0,0,0) & (0,0,0,0,0,0) \\ (0,0,0,0,0,0,0,0,0,0,0,0,0) & (0,0,0,0,0,0,0) \\ (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,$	4	(0,0,0,1)	(0,0,0,1)	(0,2,0,0)
$ \begin{pmatrix} (0,2,0,0) & (0,2,0,0) & (0,2,0,0) \\ & & & & & & & & & \\ & & & & & & & & $				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0,2,0,0)	(0,2,0,0)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(,	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	(0,0,0,0,1)	(0,0,0,0,1)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(1.0.0.1.0)	(1.0.0.1.0)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			(, , , , ,	
$ (0,0,0,0,0,1) \\ (0,0,0,0,0,1) \\ (0,0,0,0,0,1) \\ (0,0,0,0,0,0,1) \\ (0,0,0,0,0,0) \\ (0,0,0,0,0,0) \\ (0,0,0,0,0,0) \\ (0,0,0,0,0,0) \\ (0,0,0,0,0,0) \\ (0,0,0,0,0,0) \\ (0,0,0,0,0,0) \\ (0,0,0,0,0,0) \\ (0,0,0,0,0,0) \\ (0,0,0,0,0,0) \\ (0,0,0,0,0,0) \\ (0,0,0,0,0,0) \\ (0,0,0,0,0,0) \\ (0,0,0,0,0,0) \\ (0,0,0,0,0,0) \\ (0,0,0,0,0,0) \\ (0,0,0,0,0,0,0) \\ (0,0,0,0,0,0,0) \\ (0,0,0,0,0,0,0,0) \\ (0,0,0,0,0,0,0,0) \\ (0,0,0,0,0,0,0,0,0,0) \\ (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,$	0	(2,0,1,0,0)	(2,0,1,0,0)	
$ \begin{pmatrix} (0,0,0,0,0,1) & (2,2,0,0,0,0) \\ & (3,0,1,0,0,0) \\ & (4,1,0,0,0,0) \\ & (6,0,0,0,0,0) \\ & (0,0,2,0,0,0) & (0,3,0,0,0,0) \\ & & (0,0,2,0,0,0) & (0,0,2,0,0,0) \\ & & (0,0,2,0,0,0) & (3,0,1,0,0,0) \\ & & (6,0,0,0,0,0) \\ & & (6,0,0,0,0,0) \\ & & (2,2,0,0,0,0) \\ & & (2,2,0,0,0,0) \\ & & (4,1,0,0,0,0,0) \\ & & (6,0,0,0,0,0) \\ & & (6,0,0,0,0,0) \\ & & (6,0,0,0,0,0) \\ & & (6,0,0,0,0,0) \\ \end{pmatrix} $	6			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			(0,0,0,0,0,1)	
$ \begin{array}{c ccccc} & & & & & & & & & & & \\ & & & & & & & $		(0,0,0,0,0,1)	(0,0,0,0,0,1)	
$ \begin{array}{c cccc} & & & & & & & & & \\ & & & & & & & & & $		(0,0,0,0,0,1)		
$ \begin{array}{c cccc} & (0,0,2,0,0,0) & (0,3,0,0,0,0) \\ \hline & (0,0,2,0,0,0) & (0,0,2,0,0,0) & \\ \hline & (0,0,2,0,0,0) & (0,0,2,0,0,0) & \\ \hline & (1,0,0,0,1,0) & (1,0,0,0,1,0) & (1,0,0,0,1,0) \\ \hline & (0,3,0,0,0,0) & (0,3,0,0,0,0) & (4,1,0,0,0,0) \\ \hline & (6,0,0,0,0,0) & (6,0,0,0,0,0) & \\ \hline \end{array} $				
$ \begin{array}{c ccccc} & & & & & & & & & & & & & & \\ (0,0,2,0,0,0) & & & & & & & & & & & \\ (0,0,2,0,0,0) & & & & & & & & & \\ (0,0,2,0,0,0) & & & & & & & & \\ (3,0,1,0,0,0) & & & & & & & \\ (6,0,0,0,0,0) & & & & & & & \\ (1,0,0,0,1,0) & & & & & & & \\ (1,0,0,0,1,0) & & & & & & \\ (0,3,0,0,0,0) & & & & & & \\ (0,3,0,0,0,0) & & & & & & \\ \end{array} $			(0.0.2.0.0.0)	
$ \begin{array}{c cccc} (0,0,2,0,0,0) & (0,0,2,0,0,0) & \hline (3,0,1,0,0,0) \\ \hline (1,0,0,0,1,0) & (1,0,0,0,1,0) & (1,0,0,0,1,0) \\ \hline (0,3,0,0,0,0) & (0,3,0,0,0,0) & (4,1,0,0,0,0) \\ \hline (6,0,0,0,0,0) & (6,0,0,0,0,0) & \hline \end{array} $			(0,0,2,0,0,0)	
$ \begin{array}{c cccc} & & & & & & & & & & \\ \hline (6,0,0,0,0,0) & & & & & & & \\ \hline (1,0,0,0,1,0) & & & & & & & \\ \hline (0,3,0,0,0,0) & & & & & & & \\ \hline (0,3,0,0,0,0) & & & & & & \\ \hline (0,3,0,0,0,0) & & & & & & \\ \hline (0,3,0,0,0,0) & & & \\ \hline (0,3,0,0,0,0) & & & \\ \hline (0,3,0,0,0,0) & & & \\ \hline (0,3,0,0,0,0) & & & & \\ \hline (0,3,0,0,0,0) & & & \\ \hline (0,$		(0.0.2.0.00)	(0.0.2.0.0.0)	
$ \begin{array}{c cccc} (1,0,0,0,1,0) & (1,0,0,0,1,0) & (1,0,0,0,1,0) \\ \hline (0,3,0,0,0,0) & (0,3,0,0,0,0) & (2,2,0,0,0,0) \\ \hline (0,3,0,0,0,0) & (4,1,0,0,0,0) & (6,0,0,0,0,0) \\ \hline \end{array} $		(0,0,2,0,0,0)	(0,0,2,0,0,0)	
$ (0,3,0,0,0,0) (0,3,0,0,0,0) \begin{array}{c} (2,2,0,0,0,0) \\ (4,1,0,0,0,0) \\ (6,0,0,0,0,0) \end{array} $		(1.0.0.0.1.0)	(1.0.0.0.1.0)	
$ \begin{array}{c c} (0,3,0,0,0,0) & (0,3,0,0,0,0) & \hline (4,1,0,0,0,0) \\ \hline (6,0,0,0,0,0) & (6,0,0,0,0,0) \\ \end{array} $		(1,0,0,0,1,0)	(1,0,0,0,1,0)	
(6,0,0,0,0,0)		(0.3, 0.0, 0.0)	(0.3.0.0.0.0)	
		()-)-)-)-)	()-)-)-)-)	
(2,0,0,1,0,0) $(2,0,0,1,0,0)$ $(2,0,0,1,0,0)$		(2,0,0,1,0,0)	(2,0,0,1,0,0)	(2,0,0,1,0,0)
(2,2,0,0,0,0) $(2,2,0,0,0,0)$ $(2,2,0,0,0,0)$				
(3,0,1,0,0,0) $(3,0,1,0,0,0)$ $(3,0,1,0,0,0)$				

Table 1: Cycle structures of non-trivial autotopisms of LS(n), for $2 \le n \le 6$.

n	\mathbf{l}_{lpha}	\mathbf{l}_{eta}	\mathbf{l}_{γ}
7	(0,0,0,0,0,0,1)	(0,0,0,0,0,0,1)	(0,0,0,0,0,0,1)
			(7,0,0,0,0,0,0)
	(1,0,0,0,0,1,0)	(1,0,0,0,0,1,0)	(1,0,0,0,0,1,0)
	(1,0,2,0,0,0,0)	(1,0,2,0,0,0,0)	(1,0,2,0,0,0,0)
	(1,1,0,1,0,0,0)	(1,1,0,1,0,0,0)	(1,1,0,1,0,0,0)
	(2,0,0,0,1,0,0)	(2,0,0,0,1,0,0)	(2,0,0,0,1,0,0)
	(1,3,0,0,0,0,0)	(1,3,0,0,0,0,0)	(1,3,0,0,0,0,0)
	(3,0,0,1,0,0,0)	(3,0,0,1,0,0,0)	(3,0,0,1,0,0,0)
	(3,2,0,0,0,0,0)	(3,2,0,0,0,0,0)	(3,2,0,0,0,0,0)

Table 2: Cycle structures of non-trivial autotopisms of LS(7).

Example 2. Let us consider $\Theta = ((012345), (012)(345), (01)(23)(45)) \in \mathcal{I}_6((0,0,0,0,0,1), (0,0,2,0,0,0), (0,3,0,0,0,0))$. The following one is a Latin square of $LS(\Theta)$:

$$\left(\begin{array}{ccccccccc}
0 & 2 & 4 & 1 & 3 & 5 \\
5 & 1 & 3 & 4 & 0 & 2 \\
2 & 4 & 0 & 3 & 5 & 1 \\
1 & 3 & 5 & 0 & 2 & 4 \\
4 & 0 & 2 & 5 & 1 & 3 \\
3 & 5 & 1 & 2 & 4 & 0
\end{array}\right)$$

Example 3. Let us consider $\Theta = ((01)(23)(45), (01)(23)(45), (01)(23)(45))$ $\in \mathcal{I}_7((1,3,0,0,0,0,0), (1,3,0,0,0,0), (1,3,0,0,0,0,0))$. The following one is a Latin square of $LS(\Theta)$:

n	\mathbf{l}_{lpha}	\mathbf{l}_{eta}	\mathbf{l}_{γ}
8			(0,0,0,2,0,0,0,0)
			(0,2,0,1,0,0,0,0)
			(0,4,0,0,0,0,0,0)
			(2,1,0,1,0,0,0,0)
	(0,0,0,0,0,0,0,1)	(0,0,0,0,0,0,0,1)	(2,3,0,0,0,0,0,0)
			(4,0,0,1,0,0,0,0)
			(4,2,0,0,0,0,0,0)
			(6,1,0,0,0,0,0,0)
			(8,0,0,0,0,0,0,0)
			(0,0,0,2,0,0,0,0)
			(0,2,0,1,0,0,0,0)
			(0,4,0,0,0,0,0,0)
	(/	(2,1,0,1,0,0,0,0)
	(0,0,0,2,0,0,0,0)	(0,0,0,2,0,0,0,0)	(2,3,0,0,0,0,0,0)
			(4,0,0,1,0,0,0,0)
			(4,2,0,0,0,0,0,0)
			(6,1,0,0,0,0,0,0)
	(0.1.0.0.0.1.0.0)	(0.1.0.0.0.1.0.0)	(8,0,0,0,0,0,0,0)
	(0,1,0,0,0,1,0,0)	(0,1,0,0,0,1,0,0)	(2,0,0,0,0,1,0,0)
	(1.0.0.0.0.1.0)	(1.0.0.0.0.1.0)	(2,0,2,0,0,0,0,0)
	(1,0,0,0,0,0,1,0)	(1,0,0,0,0,0,1,0)	(1,0,0,0,0,0,1,0)
	(0.0.0.1.0.0.0.0)	(0.0.0.1.0.0.0.0)	(0,2,0,1,0,0,0,0)
	(0,2,0,1,0,0,0,0)	(0,2,0,1,0,0,0,0)	(2,1,0,1,0,0,0,0)
	(20000100)	(20000100)	(4,0,0,1,0,0,0,0)
	(2,0,0,0,0,1,0,0)	(2,0,0,0,0,1,0,0)	(2,0,0,0,0,1,0,0)
			(0,4,0,0,0,0,0,0)
	(0,4,0,0,0,0,0,0)	(0,4,0,0,0,0,0,0)	(2,3,0,0,0,0,0,0)
	(0,4,0,0,0,0,0,0)	(0,4,0,0,0,0,0,0)	(4,2,0,0,0,0,0,0)
			$\begin{array}{c} (6,1,0,0,0,0,0,0) \\ \hline (8,0,0,0,0,0,0,0) \end{array}$
	(2,0,2,0,0,0,0,0)	(2,0,2,0,0,0,0,0)	(2,0,2,0,0,0,0,0,0)
	(2,0,2,0,0,0,0,0) (2,1,0,1,0,0,0,0)	(2,0,2,0,0,0,0,0) (2,1,0,1,0,0,0,0)	(2,0,2,0,0,0,0,0) (2,1,0,1,0,0,0,0))
	(3,0,0,0,1,0,0,0,0)	(3,0,0,0,1,0,0,0,0)	(3,0,0,0,1,0,0,0)
	(2,3,0,0,0,0,0,0,0)	(2,3,0,0,0,0,0,0,0)	(2,3,0,0,0,0,0,0,0)
	(4,0,0,1,0,0,0,0)	(4,0,0,1,0,0,0,0)	(4,0,0,1,0,0,0,0)
	(4,2,0,0,0,0,0,0)	(4,2,0,0,0,0,0,0)	(4,2,0,0,0,0,0,0)
	(2,2,0,0,0,0,0,0)	(2,2,0,0,0,0,0,0)	(2,2,0,0,0,0,0,0)

Table 3: Cycle structures of non-trivial autotopisms of LS(8).

Example 4. Let us consider $\Theta = ((01)(23)(45)(67), (01)(23)(45)(67), (01)(23)(45)) \in \mathcal{I}_8((0,4,0,0,0,0,0,0), (0,4,0,0,0,0,0,0), (2,3,0,0,0,0,0,0)).$

The following one is a Latin square of $LS(\Theta)$:

n	\mathbf{l}_{lpha}	\mathbf{l}_{eta}	\mathbf{l}_{γ}
9	(0,0,0,0,0,0,0,0,1)	(0,0,0,0,0,0,0,0,1)	$ \begin{array}{c} (0,0,0,0,0,0,0,0,1) \\ (0,0,3,0,0,0,0,0,0) \\ (3,0,2,0,0,0,0,0,0) \\ (6,0,1,0,0,0,0,0,0) \end{array} $
	(0,0,1,0,0,1,0,0,0)	(0,0,1,0,0,1,0,0,0)	$\begin{array}{c} (9,0,0,0,0,0,0,0,0) \\ (0,0,1,0,0,1,0,0,0) \\ (0,3,1,0,0,0,0,0,0) \end{array}$
			(3,0,0,0,0,1,0,0,0) (3,3,0,0,0,0,0,0,0)
	(1,0,0,0,0,0,0,1,0) $(0,0,3,0,0,0,0,0,0,0)$	(1,0,0,0,0,0,0,1,0) $(0,0,3,0,0,0,0,0,0)$	$\begin{array}{c} (1,0,0,0,0,0,0,1,0) \\ (0,0,3,0,0,0,0,0,0) \\ (3,0,2,0,0,0,0,0) \end{array}$
	(-1-1-1-1-1-1-1-1	(-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,	$ \begin{array}{c} (6,0,1,0,0,0,0,0,0,0) \\ (9,0,0,0,0,0,0,0,0,0) \end{array} $
	$\begin{array}{c} (1,0,0,2,0,0,0,0,0) \\ \hline (1,1,0,0,0,1,0,0,0) \end{array}$	(1,0,0,2,0,0,0,0,0) (1,1,0,0,0,1,0,0,0)	(1,0,0,2,0,0,0,0,0) (1,1,0,0,0,1,0,0,0)
	$ \begin{array}{c} (2,0,0,0,0,0,1,0,0) \\ (3,0,0,0,0,1,0,0,0) \end{array} $	(2,0,0,0,0,0,1,0,0) (3,0,0,0,0,1,0,0,0)	(2,0,0,0,0,0,1,0,0) (3,0,0,0,0,1,0,0,0)
	(1,4,0,0,0,0,0,0,0)	(1,4,0,0,0,0,0,0,0)	(1,4,0,0,0,0,0,0,0)
	(3,0,2,0,0,0,0,0) (4,0,0,0,1,0,0,0,0)	$ \begin{array}{c} (3,0,2,0,0,0,0,0,0) \\ (4,0,0,0,1,0,0,0,0) \end{array} $	$ \begin{array}{c} (3,0,2,0,0,0,0,0,0) \\ (4,0,0,0,1,0,0,0,0) \end{array} $
	(3,3,0,0,0,0,0,0,0)	(3,3,0,0,0,0,0,0,0)	(3,3,0,0,0,0,0,0,0)

Table 4: Cycle structures of non-trivial autotopisms of LS(9).

n	l_{lpha}	\mathbf{l}_{eta}	l_{γ}
10		,	(0,0,0,0,2,0,0,0,0,0)
			(1,2,0,0,1,0,0,0,0,0)
			(3,1,0,0,1,0,0,0,0,0)
			(2,4,0,0,0,0,0,0,0,0)
	(0,0,0,0,0,0,0,0,0,1)	(0,0,0,0,0,0,0,0,0,1)	(5,0,0,0,1,0,0,0,0,0)
			(4,3,0,0,0,0,0,0,0,0)
			(6,2,0,0,0,0,0,0,0,0)
			(8,1,0,0,0,0,0,0,0,0)
			(10,0,0,0,0,0,0,0,0,0)
		(0,0,0,0,2,0,0,0,0,0)	(0,5,0,0,0,0,0,0,0,0)
			(0,0,0,0,2,0,0,0,0,0)
	(0,0,0,0,2,0,0,0,0,0)	(0,0,0,0,2,0,0,0,0,0)	(5,0,0,0,1,0,0,0,0,0)
		,	(10,0,0,0,0,0,0,0,0,0)
	(0,1,0,0,0,0,0,1,0,0)	(0,1,0,0,0,0,0,1,0,0)	(2,0,0,0,0,0,0,1,0,0)
	(1,0,0,0,0,0,0,0,1,0)	(1,0,0,0,0,0,0,0,1,0)	(1,0,0,0,0,0,0,0,1,0)
	(0,1,0,2,0,0,0,0,0,0)	(0,1,0,2,0,0,0,0,0,0)	(2,0,0,2,0,0,0,0,0,0)
			(0,2,2,0,0,0,0,0,0,0)
	(0.0.0.0.1.0.0.0.0)	(0.0.0.0.1.0.0.0.0)	(2,1,0,0,0,1,0,0,0,0)
	(0,2,0,0,0,1,0,0,0,0)	(0,2,0,0,0,1,0,0,0,0)	(2,1,2,0,0,0,0,0,0,0)
			(4,0,0,0,0,1,0,0,0,0)
	(1.0.1.0.0.1.0.0.0.0)	(1 0 1 0 0 1 0 0 0 0)	(4,0,2,0,0,0,0,0,0,0)
	(1,0,1,0,0,1,0,0,0,0)	(1,0,1,0,0,1,0,0,0,0)	(1,0,1,0,0,1,0,0,0,0)
	$\begin{array}{c} (2,0,0,0,0,0,0,1,0,0) \\ \hline (1,0,3,0,0,0,0,0,0,0) \end{array}$	(2,0,0,0,0,0,0,1,0,0) (1,0,3,0,0,0,0,0,0,0)	$\begin{array}{c} (2,0,0,0,0,0,0,1,0,0) \\ (1,0,3,0,0,0,0,0,0,0) \end{array}$
	(2,0,0,2,0,0,0,0,0,0,0)	(2,0,0,2,0,0,0,0,0,0,0)	(2,0,0,2,0,0,0,0,0,0,0)
	(2,0,0,2,0,0,0,0,0,0,0) (2,1,0,0,0,1,0,0,0,0)	(2,0,0,2,0,0,0,0,0,0,0) (2,1,0,0,0,1,0,0,0,0)	(2,1,0,0,2,0,0,0,0,0,0,0)
	(3,0,0,0,0,1,0,0,0)	(3,0,0,0,0,0,1,0,0,0)	(3,0,0,0,0,0,1,0,0,0,0)
	(3,0,0,0,0,0,1,0,0,0)	(3,0,0,0,0,0,1,0,0,0)	(2,4,0,0,0,0,0,0,0,0,0)
			(4,3,0,0,0,0,0,0,0,0,0)
	(0,5,0,0,0,0,0,0,0,0)	(0,5,0,0,0,0,0,0,0,0)	(6,2,0,0,0,0,0,0,0,0,0)
	(0,0,0,0,0,0,0,0,0,0,0)	(0,0,0,0,0,0,0,0,0,0,0)	(8,1,0,0,0,0,0,0,0,0)
			(10,0,0,0,0,0,0,0,0,0,0)
	(4,0,0,0,0,1,0,0,0,0)	(4,0,0,0,0,1,0,0,0,0)	(4,0,0,0,0,1,0,0,0,0)
	(2,4,0,0,0,0,0,0,0,0)	(2,4,0,0,0,0,0,0,0,0)	(2,4,0,0,0,0,0,0,0,0)
	(4,0,2,0,0,0,0,0,0,0)	(4,0,2,0,0,0,0,0,0,0)	(4,0,2,0,0,0,0,0,0,0)
	(5,0,0,0,1,0,0,0,0,0)	(5,0,0,0,1,0,0,0,0,0)	(5,0,0,0,1,0,0,0,0,0)
	(4,3,0,0,0,0,0,0,0,0)	(4,3,0,0,0,0,0,0,0,0)	(4,3,0,0,0,0,0,0,0,0)

Table 5: Cycle structures of non-trivial autotopisms of LS(10).

n	l_{lpha}	l_{eta}	\mathbf{l}_{γ}
11	(0,0,0,0,0,0,0,0,0,0,0,1)	(0,0,0,0,0,0,0,0,0,0,0,1)	(0,0,0,0,0,0,0,0,0,0,1)
			(11,0,0,0,0,0,0,0,0,0,0)
	(1,0,0,0,0,0,0,0,0,1,0)	(1,0,0,0,0,0,0,0,0,1,0)	(1,0,0,0,0,0,0,0,0,1,0)
	(1,0,0,0,2,0,0,0,0,0,0)	(1,0,0,0,2,0,0,0,0,0,0)	(1,0,0,0,2,0,0,0,0,0,0)
	(1,1,0,0,0,0,0,1,0,0,0)	(1,1,0,0,0,0,0,1,0,0,0)	(1,1,0,0,0,0,0,1,0,0,0)
	(2,0,0,0,0,0,0,0,1,0,0)	(2,0,0,0,0,0,0,0,1,0,0)	(2,0,0,0,0,0,0,0,1,0,0)
	(1,1,0,2,0,0,0,0,0,0,0)	(1,1,0,2,0,0,0,0,0,0,0)	(1,1,0,2,0,0,0,0,0,0,0)
	(1,2,0,0,0,1,0,0,0,0,0)	(1,2,0,0,0,1,0,0,0,0,0)	(1,2,0,0,0,1,0,0,0,0,0)
	(2,0,1,0,0,1,0,0,0,0,0)	(2,0,1,0,0,1,0,0,0,0,0)	(2,0,1,0,0,1,0,0,0,0,0)
	(3,0,0,0,0,0,0,1,0,0,0)	(3,0,0,0,0,0,0,1,0,0,0)	(3,0,0,0,0,0,0,1,0,0,0)
	(2,0,3,0,0,0,0,0,0,0,0)	(2,0,3,0,0,0,0,0,0,0,0)	(2,0,3,0,0,0,0,0,0,0,0)
	(3,0,0,2,0,0,0,0,0,0,0)	(3,0,0,2,0,0,0,0,0,0,0)	(3,0,0,2,0,0,0,0,0,0,0)
	(4,0,0,0,0,0,1,0,0,0,0)	(4,0,0,0,0,0,1,0,0,0,0)	(4,0,0,0,0,0,1,0,0,0,0)
	(1,5,0,0,0,0,0,0,0,0,0)	(1,5,0,0,0,0,0,0,0,0,0)	(1,5,0,0,0,0,0,0,0,0,0)
	(5,0,0,0,0,1,0,0,0,0,0)	(5,0,0,0,0,1,0,0,0,0,0)	(5,0,0,0,0,1,0,0,0,0,0)
	(3,4,0,0,0,0,0,0,0,0,0)	(3,4,0,0,0,0,0,0,0,0,0)	(3,4,0,0,0,0,0,0,0,0,0)
	(5,0,2,0,0,0,0,0,0,0,0)	(5,0,2,0,0,0,0,0,0,0,0)	(5,0,2,0,0,0,0,0,0,0,0)
	(5,3,0,0,0,0,0,0,0,0,0)	(5,3,0,0,0,0,0,0,0,0,0)	(5,3,0,0,0,0,0,0,0,0,0)

Table 6: Cycle structures of non-trivial autotopisms of LS(11).

Example 5. Let us consider $\Theta = ((012345)(678), (012345)(678), (012)(34)(56)(78)) \in \mathcal{I}_9((0,0,1,0,0,1,0,0,0), (0,0,1,0,0,1,0,0,0), (0,3,1,0,0,0,0,0,0))$. The following one is a Latin square of $LS(\Theta)$:

Example 6. Let us consider $\Theta = ((012345)(678), (012345)(678), (012345)(678)) \in \mathcal{I}_{10}((1,0,1,0,0,1,0,0,0), (1,0,1,0,0,1,0,0,0), (1,0,1,0,0,1,0,0,0))$. The following one is a Latin square of $LS(\Theta)$:

```
\begin{pmatrix} 10 & 0 & 4 & 6 & 8 & 2 & 9 & 3 & 7 & 5 & 1 \\ 1 & 10 & 7 & 5 & 3 & 8 & 2 & 9 & 6 & 4 & 0 \\ 9 & 5 & 10 & 2 & 0 & 6 & 8 & 4 & 3 & 1 & 7 \\ 4 & 9 & 3 & 10 & 7 & 1 & 5 & 8 & 2 & 0 & 6 \\ 8 & 7 & 9 & 1 & 10 & 4 & 0 & 2 & 5 & 6 & 3 \\ 6 & 8 & 0 & 9 & 5 & 10 & 3 & 1 & 4 & 7 & 2 \\ 5 & 1 & 8 & 3 & 9 & 7 & 10 & 6 & 0 & 2 & 4 \\ 0 & 4 & 2 & 8 & 6 & 9 & 7 & 10 & 1 & 3 & 5 \\ 2 & 3 & 1 & 0 & 4 & 5 & 6 & 7 & 10 & 9 & 8 \\ 7 & 6 & 5 & 4 & 2 & 3 & 1 & 0 & 8 & 10 & 9 \\ 3 & 2 & 6 & 7 & 1 & 0 & 4 & 5 & 9 & 8 & 10 \end{pmatrix}
```

5 Final remarks

Apart from the previous cycles structures, the following ones verify all the results of Section 3, although an exhaustive computation proves that they do not correspond to any Latin square autotopism:

n	l_{lpha}	l_{eta}	\mathbf{l}_{γ}
6	(0,0,0,0,0,1)	(0,0,0,0,0,1)	(0,3,0,0,0,0)
	(0,1,0,1,0,0)	(0,1,0,1,0,0)	(2,0,0,1,0,0)
	(0,3,0,0,0,0)	(0,3,0,0,0,0)	(0,3,0,0,0,0)
10	(0,0,0,0,0,0,0,0,0,1)	(0,0,0,0,0,0,0,0,0,1)	(0,5,0,0,0,0,0,0,0,0)
	(0, 2, 0, 0, 0, 1, 0, 0, 0, 0)	(0, 2, 0, 0, 0, 1, 0, 0, 0, 0)	(0, 2, 0, 0, 0, 1, 0, 0, 0, 0)
	(0,5,0,0,0,0,0,0,0,0)	(0,5,0,0,0,0,0,0,0,0)	(0,5,0,0,0,0,0,0,0,0)

Although in Section 4 we give all the cycle structures of autotopisms of the Latin squares of order up to 11, let us remark that the properties

of Section 3 can be implemented in an algorithm to obtain all the cycle structures of autotopisms of the Latin squares of greater orders.

References

- [1] A. A. Albert, Quasigroups I, Transactions of the American Mathematical Society 54 (1943) 507-519.
- [2] R. H. Bruck, Some results in the theory of quasigroups, Transactions of the American Mathematical Society 55 (1944) 19-54.
- [3] J. Dénes and A. D. Keedwell, Latin Squares: New Developments in the Theory and Applications. Annals of Discrete Mathematics, Vol. 46, North-Holland, Amsterdam, 1991.
- [4] R. M. Falcón, Latin squares associated to principal autotopisms of long cycles. Application in Cryptography, Proc. Transgressive Computing 2006: a conference in honor of Jean Della Dora, 2006, pp. 213-230.
- [5] C. F. Laywine and G. L. Mullen, Discrete mathematics using Latin Squares, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., New York, United States of America, 1998.
- [6] B. D. McKay, A. Meynert and W. Myrvold, Small Latin Squares, Quasigroups and Loops, Journal of Combinatorial Designs 15 (2007) 98-119.
- [7] B. D. McKay and I. M. Wanless, On the number of Latin squares, Ann. Combin. 9 (2005) 335-344.
- [8] I. M. Wanless, Diagonally cyclic latin squares, European Journal of Combinatorics 25 (2004) 393-413.