Characters and Character Tables

WDRP - Representation Theory

- 1. For each of the following groups determine their character tables. This involves
 - Finding the conjugacy classes (if they are not provided)
 - Determining some representations of the group
 - Determining the irreducible representations
 - Verifying that the irreducible representations are indeed irreducible (using the orthogonality relations of character)
 - It may be helpful to think of a representation or two and then use either the dual, tensor, or Hom representations to come up with some new ones!
 - (a) The symmetric/dihedral group $S_3 \cong D_3$.
 - (b) The Dihedral group D_4 .
 - (c) The cyclic groups \mathbb{Z}_2 , \mathbb{Z}_3 and \mathbb{Z}_6 . Then compare their character tables.
 - (d) The cyclic group \mathbb{Z}_n where $n \in \mathbb{Z}$.
 - (e) The Quaternion group Q.
 - (f) The alternation group A_4 with conjugacy classes

$$\{\iota\}, \{(1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3))\}, \{(1\ 2\ 3), (2\ 4\ 3), (1\ 3\ 4)(1\ 4\ 2)\},\\ \{(1\ 3\ 2), (2\ 3\ 4), (1\ 4\ 3), (1\ 2\ 4)\}$$

- (g) The symmetric group S_4 (recall the conjugacy classes of S_n correspond to the cycle types)
- (h) The
- 2. * These problems give a way of determining the normal subgroups of a group using the character table, and therefore whether a group is simple based on it's irreducible representations.
 - a) Let H be a subgroup of G and let kH = G/H be the vector space with basis corresponding to to the cosets of H. Moreover, let (ρ_H, kH) be the representation of G on kH defined by left multiplication of $g \in G$ on the cosets of H. Show that the kernel of ρ_H is H if and only if H is normal.
 - b) Let χ_i be an irreducible character of a representation (ρ, V) and define $\ker \chi_i = \{g \in G : \rho(g) = \rho(1_G)\}$. Show that the normal subgroups of G are of the form $\ker \chi_{k_1} \cap ... \cap \ker \chi_{k_n}$ where $\chi_1, ..., \chi_i$ are the irreducible characters of G.
 - c) Deduce that the normal subgroups of G are determined by the character table of G
 - d) Show that G is a simple group of and only if for every non-trivial irreducible character χ and every non-identity element of $g \in G$, $\chi(g) \neq \chi(1)$.
 - e) Determine for which n the groups \mathbb{Z}_n are normal.