# Modern Operating System Exercise 1

#### UNIkeEN

February 28, 2023

## Problem 1

a) The Gantt charts are drawn as follows.

|                        | 1                                                    | 2     | 3     | 4     | 5     | 6          | 7     | 8     | 9           | 10    | 11             | 12    | 13             | 14    | 15    | 16    | 17    | 18             | 19    |
|------------------------|------------------------------------------------------|-------|-------|-------|-------|------------|-------|-------|-------------|-------|----------------|-------|----------------|-------|-------|-------|-------|----------------|-------|
|                        |                                                      |       |       |       |       |            |       |       |             |       | :              |       | :              |       |       |       |       |                |       |
| FCFS                   | $P_1$                                                |       |       |       |       |            |       | $P_2$ | $P_3$ $P_4$ |       |                | $P_5$ |                |       |       |       |       |                |       |
|                        |                                                      |       |       |       |       |            |       |       |             |       |                |       |                |       |       |       |       |                |       |
| nonpreemptive SJF      |                                                      | $P_1$ |       |       |       |            |       | $P_2$ | $P_4$       | F     | ) <sub>3</sub> | $P_5$ |                |       |       |       |       |                |       |
|                        |                                                      |       |       |       |       |            |       |       |             |       |                |       |                |       |       |       |       |                |       |
| preemptive SJF         | $egin{array}{ c c c c c c c c c c c c c c c c c c c$ |       |       |       |       |            |       | $P_1$ |             |       |                |       |                |       |       |       |       |                |       |
|                        |                                                      |       |       |       |       |            |       |       |             |       |                |       |                |       |       |       |       |                |       |
| nonpreemptive priority |                                                      | $P_1$ |       |       |       |            |       | $P_2$ | $P_5$       |       |                | F     | D <sub>3</sub> | $P_4$ |       |       |       |                |       |
|                        |                                                      |       |       |       |       |            |       |       |             |       |                |       |                |       |       |       |       |                |       |
| preemptive priority    |                                                      | 2     | $P_2$ |       | $P_1$ |            |       |       | $P_5$       |       |                |       |                | $P_1$ |       |       | F     | ) <sub>3</sub> | $P_4$ |
|                        |                                                      |       |       |       |       |            |       |       |             |       |                |       |                |       |       |       |       |                |       |
| RR (quantum=1)         | $P_1$                                                | $P_1$ | $P_2$ | $P_1$ | $P_3$ | $P_4$      | $P_1$ | $P_3$ | $P_5$       | $P_1$ | $P_5$          | $P_1$ | $P_5$          | $P_1$ | $P_5$ | $P_1$ | $P_5$ | $P_1$          | $P_1$ |
|                        |                                                      |       |       |       |       |            |       |       |             |       |                |       |                |       |       |       |       |                |       |
| RR (quantum=3)         |                                                      | $P_1$ |       | $P_2$ | F     | <b>)</b> 3 |       | $P_1$ |             | $P_4$ |                | $P_5$ | :              |       | $P_1$ |       | F     | <b>)</b><br>5  | $P_1$ |
|                        |                                                      |       |       |       |       |            |       |       |             |       |                |       |                |       |       |       |       |                |       |

b) In this question, waiting time can be simplified as the difference between turnaround time and burst time.

Use  $(t_{w1}, t_{w2}, t_{w3}, t_{w4}, t_{w5})$  to indicate the waiting time from processes P1 to P5 respectively. Here are the calculation results for each case.

- FCFS:  $(t_{w1}, t_{w2}, t_{w3}, t_{w4}, t_{w5}) = (0, 8, 8, 9, 8)$ , the average waiting time is 6.6ms.
- nonpreemptive SJF:  $(t_{w1}, t_{w2}, t_{w3}, t_{w4}, t_{w5}) = (0, 8, 9, 7, 8)$ , the average waiting time is 6.4ms.
- preemptive SJF:  $(t_{w1}, t_{w2}, t_{w3}, t_{w4}, t_{w5}) = (9, 0, 1, 0, 0)$ , the average waiting time is 2ms.
- nonpreemptive priority:  $(t_{w1}, t_{w2}, t_{w3}, t_{w4}, t_{w5}) = (0, 8, 13, 14, 5)$ , the average waiting time is 8ms.
- preemptive priority:  $(t_{w1}, t_{w2}, t_{w3}, t_{w4}, t_{w5}) = (6, 0, 13, 14, 0)$ , the average waiting time is 6.6ms.
- RR (quantum=1):  $(t_{w1}, t_{w2}, t_{w3}, t_{w4}, t_{w5}) = (9, 0, 3, 1, 6)$ , the average waiting time is 3.8ms.
- RR (quantum=3):  $(t_{w1}, t_{w2}, t_{w3}, t_{w4}, t_{w5}) = (9, 1, 1, 5, 7)$ , the average waiting time is 4.6ms.

Table 1: the Average Waiting Time(AWT) of Different Algorithm

| Algorithm   F |     |     |   |   |     | RR(q=1) | RR(q=3) |
|---------------|-----|-----|---|---|-----|---------|---------|
| AWT(ms)       | 6.6 | 6.4 | 2 | 8 | 6.6 | 3.8     | 4.6     |

<sup>1</sup> np means nonpreemptive.

- c) Use  $(t_{t1}, t_{t2}, t_{t3}, t_{t4}, t_{t5})$  to indicate the turnaround time from processes P1 to P5 respectively. Here are the calculation results for each case.
  - FCFS:  $(t_{t1}, t_{t2}, t_{t3}, t_{t4}, t_{t5}) = (10, 9, 10, 10, 13)$ , the average turnaround time is 10.4ms.
  - nonpreemptive SJF:  $(t_{t1}, t_{t2}, t_{t3}, t_{t4}, t_{t5}) = (10, 9, 11, 8, 13)$ , the average turnaround time is 10.2ms.
  - preemptive SJF:  $(t_{t1}, t_{t2}, t_{t3}, t_{t4}, t_{t5}) = (19, 1, 2, 1, 5)$ , the average turnaround time is 5.8ms.
  - nonpreemptive priority:  $(t_{t1}, t_{t2}, t_{t3}, t_{t4}, t_{t5}) = (10, 9, 15, 15, 10)$ , the average turnaround time is 11.8ms.
  - preemptive priority:  $(t_{t1}, t_{t2}, t_{t3}, t_{t4}, t_{t5}) = (16, 1, 15, 15, 5)$ , the average turnaround time is 10.4ms.
  - RR (quantum=1):  $(t_{t1}, t_{t2}, t_{t3}, t_{t4}, t_{t5}) = (19, 1, 5, 2, 11)$ , the average turnaround time is 7.6ms.
  - RR (quantum=3):  $(t_{t1}, t_{t2}, t_{t3}, t_{t4}, t_{t5}) = (19, 2, 3, 6, 12)$ , the average turnaround time is 8.4ms.

Table 2: the Average Turnaround Time(ATT) of Different Algorithm

| Algorithm | FCFS | $\rm np^1SJF$ | $p^2SJF$ | $\mathrm{np^1}\mathrm{priority}$ | $p^2$ priority | RR(q=1) | RR(q=3) |
|-----------|------|---------------|----------|----------------------------------|----------------|---------|---------|
| ATT(ms)   | 10.4 | 10.2          | 5.8      | 11.8                             | 10.4           | 7.6     | 8.4     |

 $<sup>1 \</sup> np$  means nonpreemptive.

<sup>2</sup> p means preemptive

<sup>2</sup> p means preemptive

#### Problem 2

a) The Gantt chart is drawn as follows.



b) The turnaround time is equal to the difference between the completion bursting time and the arrival time, and the waiting time is equal to the difference between the turnaround time and the burst time.

Use  $(t_{w1}, t_{w2}, t_{w3}, t_{w4}, t_{w5})$  and  $(t_{t1}, t_{t2}, t_{t3}, t_{t4}, t_{t5})$  to indicate the waiting and burst time from processes P1 to P5 respectively.

- $(t_{w1}, t_{w2}, t_{w3}, t_{w4}, t_{w5}) = (8, 45, 0, 32, 28)$ , the average waiting time is 22.6ms.
- $(t_{t1}, t_{t2}, t_{t3}, t_{t4}, t_{t5}) = (25, 70, 8, 64, 46)$ , the average turnaround time is 42.6ms

### Problem 3

a) The Gantt chart is drawn as follows.

(The original answer is wrong, here are the solution from TA)



- b) The turnaround time is equal to the difference between the completion bursting time and the arrival time, and the waiting time is equal to the difference between the turnaround time and the burst time.
  - the average waiting time is 52.4ms.
  - the average turnaround time is 91.8ms

#### Problem 4

The (b). Shortest job first and (d). Priority algorithm could result in starvation.

In the preemptive SJF algorithm, if new processes with shorter burst time arrive continuously and gaplessly, The existing processes in the ready queue that have long burst time will be unable to excute for a long time or permanently.

In preemptive priority algorithm, if new processes with higher priority arrive continuously and gaplessly, The existing processes in the ready queue that have low priority will be unable to excute for a long time or permanently.

As for the FCFS and Round Robin algorithm, the number of processes that arrive earlier is finite. Because there is no preemption, the new process only needs to wait for the processes in front of the queue to finish their burst time or complete their allocated time quantums. So that the FCFS and Round Robin could't result in starvation.