```
#Name: Himanshu Vijay Kapse
In [33]:
          #Class: TE-A Roll no: COTA62
          #AI LAB ASSIGNMENT 06
          import pandas as pd
 In [1]:
          import seaborn as sns
          import matplotlib.pyplot as plt
          from sklearn.preprocessing import LabelEncoder, StandardScaler
          from sklearn.model_selection import train_test_split, GridSearchCV
          from sklearn.metrics import accuracy score, classification report, confusion matrix
          import warnings
          warnings.filterwarnings('ignore')
          %matplotlib inline
          data = pd.read_csv('Hr.csv')
 In [2]:
          data.shape
 In [3]:
          (1200, 28)
 Out[3]:
          data.columns
 In [4]:
          Index(['EmpNumber', 'Age', 'Gender', 'EducationBackground', 'MaritalStatus',
 Out[4]:
                  'EmpDepartment', 'EmpJobRole', 'BusinessTravelFrequency',
                  'DistanceFromHome', 'EmpEducationLevel', 'EmpEnvironmentSatisfaction',
                  'EmpHourlyRate', 'EmpJobInvolvement', 'EmpJobLevel',
                  'EmpJobSatisfaction', 'NumCompaniesWorked', 'OverTime',
                  'EmpLastSalaryHikePercent', 'EmpRelationshipSatisfaction',
                  'TotalWorkExperienceInYears', 'TrainingTimesLastYear',
                  'EmpWorkLifeBalance', 'ExperienceYearsAtThisCompany',
                  'ExperienceYearsInCurrentRole', 'YearsSinceLastPromotion',
                  'YearsWithCurrManager', 'Attrition', 'PerformanceRating'],
                dtype='object')
 In [5]:
          data.head()
             EmpNumber Age Gender EducationBackground MaritalStatus EmpDepartment EmpJobRole Bu
 Out[5]:
                                                                                             Sales
          0
                E1001000
                          32
                                Male
                                                Marketing
                                                                 Single
                                                                                 Sales
                                                                                          Executive
                                                                                             Sales
          1
                E1001006
                          47
                                Male
                                                Marketing
                                                                 Single
                                                                                 Sales
                                                                                          Executive
                                                                                             Sales
          2
                E1001007
                          40
                                Male
                                               Life Sciences
                                                                Married
                                                                                 Sales
                                                                                          Executive
                                                                               Human
          3
                E1001009
                          41
                                Male
                                           Human Resources
                                                               Divorced
                                                                                          Manager
                                                                             Resources
                                                                                             Sales
                E1001010
          4
                          60
                                Male
                                                Marketing
                                                                 Single
                                                                                 Sales
                                                                                          Executive
         5 rows × 28 columns
```

In [6]: # Looking for missing data
data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1200 entries, 0 to 1199
Data columns (total 28 columns):

Jucu	cordinis (cocar 20 cordinis).		
#	Column	Non-Null Count	Dtype
0	EmpNumber	1200 non-null	object
1	Age	1200 non-null	int64
2	Gender	1200 non-null	object
3	EducationBackground	1200 non-null	object
4	MaritalStatus	1200 non-null	object
5	EmpDepartment	1200 non-null	object
6	EmpJobRole	1200 non-null	object
7	BusinessTravelFrequency	1200 non-null	object
8	DistanceFromHome	1200 non-null	int64
9	EmpEducationLevel	1200 non-null	int64
10	EmpEnvironmentSatisfaction	1200 non-null	int64
11	EmpHourlyRate	1200 non-null	int64
12	EmpJobInvolvement	1200 non-null	int64
13	EmpJobLevel	1200 non-null	int64
14	EmpJobSatisfaction	1200 non-null	int64
15	NumCompaniesWorked	1200 non-null	int64
16	OverTime	1200 non-null	object
17	EmpLastSalaryHikePercent	1200 non-null	int64
18	EmpRelationshipSatisfaction	1200 non-null	int64
19	TotalWorkExperienceInYears	1200 non-null	int64
20	TrainingTimesLastYear	1200 non-null	int64
21	EmpWorkLifeBalance	1200 non-null	int64
22	ExperienceYearsAtThisCompany	1200 non-null	int64
23	ExperienceYearsInCurrentRole	1200 non-null	int64
24	YearsSinceLastPromotion	1200 non-null	int64
25	YearsWithCurrManager	1200 non-null	int64
26	Attrition	1200 non-null	object
27	PerformanceRating	1200 non-null	int64
ttvn4	es: int64(19) object(9)		

dtypes: int64(19), object(9)
memory usage: 262.6+ KB

#Data Visualisation

Name: PerformanceRating, dtype: float64

```
In [8]: # A new pandas Dataframe is created to analyze department wise performance as asked.
        dept = data.iloc[:,[5,27]].copy()
        dept_per = dept.copy()
In [9]: # Finding out the mean performance of all the departments and plotting its bar graph \iota
        dept_per.groupby(by='EmpDepartment')['PerformanceRating'].mean()
        EmpDepartment
Out[9]:
        Data Science
                                  3.050000
        Development
                                  3.085873
        Finance
                                 2.775510
        Human Resources
                                2.925926
        Research & Development 2.921283
        Sales
                                  2.860590
```

```
plt.figure(figsize=(10,4.5))
In [10]:
          sns.barplot(dept_per['EmpDepartment'],dept_per['PerformanceRating'])
          <AxesSubplot:xlabel='EmpDepartment', ylabel='PerformanceRating'>
Out[10]:
            3.0
            2.5
          PerformanceRating
            2.0
            1.5
            1.0
            0.5
            0.0
                     Sales
                              Human Resources Development
                                                            Data ScienceResearch & Development Finance
                                                    EmpDepartment
          # Analyze each department separately
In [11]:
          dept_per.groupby(by='EmpDepartment')['PerformanceRating'].value_counts()
          EmpDepartment
                                   PerformanceRating
Out[11]:
          Data Science
                                                           17
                                   3
                                   4
                                                            2
                                    2
                                                            1
          Development
                                    3
                                                          304
                                   4
                                                           44
                                    2
                                                           13
          Finance
                                   3
                                                           30
                                    2
                                                           15
                                                            4
                                   4
                                                           38
          Human Resources
                                   3
                                    2
                                                           10
                                   4
                                                            6
          Research & Development
                                   3
                                                          234
                                    2
                                                           68
                                   4
                                                           41
          Sales
                                   3
                                                          251
                                    2
                                                           87
                                                           35
          Name: PerformanceRating, dtype: int64
In [12]:
          # Creating a new dataframe to analyze each department separately
          department = pd.get_dummies(dept_per['EmpDepartment'])
          performance = pd.DataFrame(dept_per['PerformanceRating'])
          dept_rating = pd.concat([department,performance],axis=1)
In [14]:
          # Plotting a separate bar graph for performance of each department using seaborn
          plt.figure(figsize=(15,10))
          plt.subplot(2,3,1)
          sns.barplot(dept_rating['PerformanceRating'],dept_rating['Sales'])
```

sns.barplot(dept_rating['PerformanceRating'],dept_rating['Development'])

plt.subplot(2,3,2)

```
plt.subplot(2,3,3)
sns.barplot(dept_rating['PerformanceRating'],dept_rating['Research & Development'])
plt.subplot(2,3,4)
sns.barplot(dept_rating['PerformanceRating'],dept_rating['Human Resources'])
plt.subplot(2,3,5)
sns.barplot(dept_rating['PerformanceRating'],dept_rating['Finance'])
plt.subplot(2,3,6)
sns.barplot(dept_rating['PerformanceRating'],dept_rating['Data Science'])
plt.show()
                                        0.40
  0.5
                                                                               0.40
                                        0.35
                                                                              0.35
   0.4
                                        0.30
                                                                               0.30
es.o
                                        0.25
                                                                              0.25
                                        0.20
                                                                              0.20
  0.2
                                        0.15
                                                                              0.15
                                        0.10
                                                                              0.10
  0.1
                                        0.05
  0.0
                                        0.00
                                                                              0.00
               PerformanceRating
                                                      PerformanceRating
                                                                                            PerformanceRating
  0.08
                                                                              0.035
                                        0.10
  0.07
                                                                              0.030
Human Resources
0.05
0.04
0.03
  0.06
                                        0.08
                                                                              0.025
                                                                            Data Science
                                        0.06
                                                                              0.020
                                                                              0.015
                                        0.04
                                                                              0.010
  0.02
                                        0.02
                                                                              0.005
  0.01
  0.00
                                        0.00
                                                                              0.000
          2
               PerformanceRating
                                                      PerformanceRating
                                                                                            PerformanceRating
```

Data Processing

```
In [15]: # Encoding all the ordinal columns and creating a dummy variable for them to see if the
    enc = LabelEncoder()
    for i in (2,3,4,5,6,7,16,26):
        data.iloc[:,i] = enc.fit_transform(data.iloc[:,i])
        data.head()
```

Out[15]:		EmpNumber	Age	Gender	EducationBackground	MaritalStatus	EmpDepartment	EmpJobRole	Bu
	0	E1001000	32	1	2	2	5	13	
	1	E1001006	47	1	2	2	5	13	
	2	E1001007	40	1	1	1	5	13	
	3	E1001009	41	1	0	0	3	8	
	4	E1001010	60	1	2	2	5	13	

5 rows × 28 columns

In [16]: # Finding out the correlation coeffecient to find out which predictors are significant
data.corr()

Out[16]:

	Age	Gender	EducationBackground	MaritalStatus	EmpDepartr
Age	1.000000	-0.040107	-0.055905	-0.098368	-0.00
Gender	-0.040107	1.000000	0.009922	-0.042169	-0.01
EducationBackground	-0.055905	0.009922	1.000000	-0.001097	-0.02
MaritalStatus	-0.098368	-0.042169	-0.001097	1.000000	0.06
EmpDepartment	-0.000104	-0.010925	-0.026874	0.067272	1.00
EmpJobRole	-0.037665	0.011332	-0.012325	0.038023	0.56
BusinessTravelFrequency	0.040579	-0.043608	0.012382	0.028520	-0.04
DistanceFromHome	0.020937	-0.001507	-0.013919	-0.019148	0.00
EmpEducationLevel	0.207313	-0.022960	-0.047978	0.026737	0.01
EmpEnvironmentSatisfaction	0.013814	0.000033	0.045028	-0.032467	-0.01
EmpHourlyRate	0.062867	0.002218	-0.030234	-0.013540	0.00
EmpJobInvolvement	0.027216	0.010949	-0.025505	-0.043355	-0.07
EmpJobLevel	0.509139	-0.050685	-0.056338	-0.087359	0.10
EmpJobSatisfaction	-0.002436	0.024680	-0.030977	0.044593	0.00
NumCompaniesWorked	0.284408	-0.036675	-0.032879	-0.030095	-0.03
OverTime	0.051910	-0.038410	0.007046	-0.022833	-0.02
EmpLastSalaryHikePercent	-0.006105	-0.005319	-0.009788	0.010128	-0.01
${\bf EmpRelations hip Satisfaction}$	0.049749	0.030707	0.005652	0.026410	-0.05
TotalWorkExperienceInYears	0.680886	-0.061055	-0.027929	-0.093537	0.01
TrainingTimesLastYear	-0.016053	-0.057654	0.051596	0.026045	0.01
EmpWorkLifeBalance	-0.019563	0.015793	0.022890	0.014154	0.06
ExperienceYearsAtThisCompany	0.318852	-0.030392	-0.009887	-0.075728	0.04
Experience Years In Current Role	0.217163	-0.031823	-0.003215	-0.076663	0.06
YearsSinceLastPromotion	0.228199	-0.021575	0.014277	-0.052951	0.05
YearsWithCurrManager	0.205098	-0.036643	0.002767	-0.061908	0.03
Attrition	-0.189317	0.035758	0.027161	0.162969	0.04
PerformanceRating	-0.040164	-0.001780	0.005607	0.024172	-0.16

27 rows × 27 columns

In [17]: # Dropping the first columns as it is of no use for analysis.
data.drop(['EmpNumber'],inplace=True,axis=1)

In [18]: data.head()

	0	32	1		2	2	5	13			
	1	47	1		2	2	5	13			
	2	40	1		1	1	5	13			
	3	41	1		0	0	3	8			
	4	60	1		2	2	5	13			
	5 ro	ws × 27 c	olumns	;							
1									•		
<pre>In [19]: # Here we have selected only the important columns y = data.PerformanceRating #X = data.iloc[:,0:-1] All predictors were selected it resulted in dropping of accurac X = data.iloc[:,[4,5,9,16,20,21,22,23,24]] # Taking only variables with correlation co X.head()</pre>											
Out[19]:		EmpDepar	tment	EmpJobRole	EmpEnviro	nmentSatisfaction	EmpLastSalar	yHikePercent	EmpWorkLif		
	0		5	13		4		12			
	1		5	13		4		12			
	2		5	13		4		21			
	3		3	8		2		15			
	4		5	13		1		14			
1			_						•		
In [20]:	<pre># Splitting into train and test for calculating the accuracy X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3,random_state=10)</pre>										
In [21]:	<pre># Standardization technique is used sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test)</pre>										
In [22]:	X_t	X_train.shape									
Out[22]:	(840, 9)										
In [23]:	X_test.shape										
Out[23]:	(360, 9)										

Out[18]: Age Gender EducationBackground MaritalStatus EmpDepartment EmpJobRole BusinessTravelFre

Model: Random Forest with GridSearchCV

```
In [28]: # Training the model
    from sklearn.ensemble import RandomForestClassifier
    classifier_rfg=RandomForestClassifier(random_state=33,n_estimators=23)
    parameters=[{'min_samples_split':[2,3,4,5],'criterion':['gini','entropy'],'min_samples
```

```
model gridrf=GridSearchCV(estimator=classifier rfg, param grid=parameters, scoring='ac
         model_gridrf.fit(X_train,y_train)
         GridSearchCV(estimator=RandomForestClassifier(n_estimators=23, random_state=33),
Out[28]:
                      param_grid=[{'criterion': ['gini', 'entropy'],
                                   'min_samples_leaf': [1, 2, 3],
                                   'min_samples_split': [2, 3, 4, 5]}],
                      scoring='accuracy')
In [29]:
         model_gridrf.best_params_
         {'criterion': 'entropy', 'min_samples_leaf': 1, 'min_samples_split': 4}
Out[29]:
In [30]:
         # Predicting the model
         y_predict_rf = model_gridrf.predict(X_test)
         # Finding accuracy, precision, recall and confusion matrix
In [31]:
         print(accuracy_score(y_test,y_predict_rf))
         print(classification_report(y_test,y_predict_rf))
         0.9333333333333333
                       precision recall f1-score
                                                       support
                    2
                            0.90
                                      0.89
                                                0.90
                                                           63
                                      0.97
                    3
                            0.95
                                                0.96
                                                           264
                            0.83
                                      0.76
                                                0.79
                                                            33
                                                0.93
                                                           360
             accuracy
                            0.90
                                      0.87
            macro avg
                                                0.88
                                                           360
         weighted avg
                            0.93
                                      0.93
                                                0.93
                                                           360
         confusion_matrix(y_test,y_predict_rf)
In [32]:
         array([[ 56,
                        7,
                             0],
Out[32]:
                [ 4, 255,
                             5],
                  2, 6, 25]], dtype=int64)
```

You can see the model has 93.05% Accuracy.

The features that are positively correlated are:

- 1. Environment Satisfaction
- 2. Last Salary Hike Percent
- 3. Worklife Balance. This means that if these factors increases, Performance Rating will increase. On the other hand, the features that are negatively correlated are:
- 4. Years Since Last Promotion
- 5. Experience Years at this Company
- 6. Experience years in Current Role
- 7. Years with Current Manager. This means that if these factors increases, Performance Rating will go down.

Conclusion: The company should provide a better environment as it increases the performance drastically. The company should increase the salary of the employee from time to time and help

them maintain a worklife balance, shuffling the manager from time to time will also affect performance.

In []: