# State Space Representations

David N. DeJong University of Pittsburgh

Spring 2008

#### State Space Reps

DND

Votation

Evaluation and Filtering

Schematic

Examples

RBC Model Generic Linear State Space Representation

### **Notation**

State Space Reps DND

Notation

state variables

 $y_t$ : observed variables

 $Y_t: \{y_j\}_{j=1}^t$ 

Note: variables are expressed in levels (detrended when appropriate)

# State Space Representations

State-transition equation:

$$s_t = \gamma(s_{t-1}, Y_{t-1}, v_t)$$

Associated density:

$$f(s_t|s_{t-1}, Y_{t-1})$$

Measurement equation:

$$y_t = \delta\left(s_t, Y_{t-1}, u_t\right)$$

Associated density:

$$f(y_t|s_t, Y_{t-1})$$

Initialization:

$$f(s_0)$$

### State Space Reps

DND

#### Notation

ikelihood valuation and iltering

Schematic

camples

One-Tree Model
RBC Model
Generic Linear State

# Likelihood Evaluation and Filtering

▶ **Filtering objective:** construct  $f(s_t|Y_t)$ , which can then be used to approximate  $E_t(h(s_t)|Y_t)$ .

Likelihood evaluation obtains as a by-product of the filtering process. State Space Reps

DND

Notation

Likelihood Evaluation and Filtering

ochematic

One-Tree Model
RBC Model
Generic Linear State
Space Representation

ples

RBC Model

Generic Linear State
Space Representation

The Kalman Filter

▶ From Bayes' theorem,  $f(s_t|Y_t)$  is given by

$$f(s_t|Y_t) = \frac{f(y_t, s_t|Y_{t-1})}{f(y_t|Y_{t-1})} = \frac{f(y_t|s_t, Y_{t-1}) f(s_t|Y_{t-1})}{f(y_t|Y_{t-1})},$$

• where  $f(s_t|Y_{t-1})$  is given by

$$f(s_t|Y_{t-1}) = \int f(s_t|s_{t-1}, Y_{t-1}) f(s_{t-1}|Y_{t-1}) ds_{t-1},$$

▶ and  $f(y_t|Y_{t-1})$  is given by

$$f(y_t|Y_{t-1}) = \int f(y_t|s_t, Y_{t-1}) f(s_t|Y_{t-1}) ds_t.$$

One-Tree Model
RBC Model

The Kalman Filter

Taking  $f(s_{t-1}|Y_{t-1})$  as given, initialized with  $f(s_0|Y_0) \equiv f(s_0)$ , filtering and likelihood evaluation proceed recursively:

▶ Prediction:  $f(s_{t-1}|Y_{t-1})$  combines with  $f(s_t|s_{t-1}, Y_{t-1})$  to yield

$$f(s_t|Y_{t-1}) = \int f\left(s_t|s_{t-1},Y_{t-1}
ight) f\left(s_{t-1}|Y_{t-1}
ight) ds_{t-1} o \left(4
ight)^{rac{\mathsf{RBC} \; \mathsf{Model}}{\mathsf{Space} \; \mathsf{Representation}}}$$

► Forecasting:  $f(s_t|Y_{t-1})$  combines with  $f(y_t|s_t, Y_{t-1})$  to yield

$$f(y_t|Y_{t-1}) = \int f(y_t|s_t, Y_{t-1}) f(s_t|Y_{t-1}) ds_t. \to (5)$$

Updating: Bayes' Rule yields

$$f(s_t|Y_t) = \frac{f(y_t|s_t, Y_{t-1}) f(s_t|Y_{t-1})}{f(y_t|Y_{t-1})} \to (3)$$

# Schematic, cont.

### State Space Reps

DND

#### Schematic



Schematic

One-Tree Model

RBC Model Generic Linear State Space Representation

The Kalman Filter

Recall that with  $p_t$  representing  $\frac{p_t}{e^{gt}}$ , etc., the model is

$$p_t = \beta e^{(1-\gamma)g} E_t \left[ \left( \frac{c_{t+1}}{c_t} \right)^{-\gamma} (d_{t+1} + p_{t+1}) \right]$$
 (1)

$$c_t = d_t + q_t (2)$$

$$d_t = \overline{d}e^{\omega_{dt}}, \quad \omega_{dt} = \rho_d\omega_{dt-1} + \varepsilon_{dt},$$
 (3)

$$q_t = \overline{q}e^{\omega_{qt}}, \quad \omega_{qt} = \rho_q \omega_{qt-1} + \varepsilon_{qt}.$$
 (4)

One-Tree Model

State-transition equations:

$$\begin{array}{ll} \ln d_t &=& (1-\rho_d) \ln \overline{d} + \rho_d \ln d_{t-1} + \varepsilon_{dt,} \\ \ln q_t &=& (1-\rho_q) \ln \overline{q} + \rho_q \ln q_{t-1} + \varepsilon_{qt,} \end{array}$$

$$v_t \equiv \begin{bmatrix} \varepsilon_{dt} & \varepsilon_{qt} \end{bmatrix}' \sim iidN(0, \Sigma_v)$$
.

- ▶ Thus the state-transition density  $f(s_t|s_{t-1}, Y_{t-1})$  is  $N(0, \Sigma_v)$ .
- Measurement equations:

$$c_t = d_t + q_t + u_{ct}$$
  
 $p_t = p(d_t, q_t) + u_{pt}$   
 $d_t = d_t$ ,

$$u_t \equiv \begin{bmatrix} u_{ct} & u_{pt} \end{bmatrix}' \sim iidN(0, \Sigma_u)$$
.

Note that the measurement density  $f(y_t|s_t, Y_{t-1})$  is partially degenerate.

RRC Model

$$\left(\frac{1-\varphi}{\varphi}\right)\frac{c_t}{l_t} = (1-\alpha)z_t\left(\frac{k_t}{n_t}\right)^{\alpha} \tag{5}$$

$$c_t^{\kappa} l_t^{\lambda} = \beta E_t \{*\}$$
 (6)

$$y_t = z_t k_t^{\alpha} n_t^{1-\alpha} \tag{7}$$

$$y_t = c_t + i_t (8)$$

$$\left(1+\frac{g}{1-\alpha}\right)k_{t+1} = i_t + (1-\delta)k_t \tag{9}$$

$$1 = n_t + l_t \tag{10}$$

$$\log z_t = (1-\rho)\log(z_0) + \rho\log z_{t-1} + \{1,1\}$$

where  $\kappa = \varphi(1-\phi)-1$  and  $\lambda = (1-\varphi)(1-\phi)$ .

RBC Model

$$\{*\} = \left\{ \left(1 + rac{\mathcal{g}}{1-lpha}
ight)^{\kappa} c_{t+}^{\kappa} 
ight.$$

$$\{*\} = \left\{ \left(1 + rac{\mathcal{E}}{1-lpha}
ight)^{\kappa} c_{t+1}^{\kappa} I_{t+1}^{\lambda} \left[ lpha z_{t+1} \left(rac{n_{t+1}}{k_{t+1}}
ight)^{1-lpha} + (1-\delta) 
ight]^{ ext{Generic Linear State pace Representation}}$$

Jenemati

kamples

RBC Model

Generic Linear State
Space Popresentation

The Kalman Filter

A policy function c(k,z) can be obtained by combining (5), (6) and (10) to eliminate (I,n). Given c(k,z), policy functions for (I,n,y,i) obtain from simple algebra. The state-transition equations are then

$$\left(1 + \frac{g}{1-\alpha}\right)k_{t+1} = i(k_t, z_t) + (1-\delta)k_t$$

$$\log z_t = (1-\rho)\log(z_0) + \rho\log z_{t-1} + \varepsilon_t.$$

▶ Note that the transition density is partially degenerate.

## RBC Model, cont.

### Observation equations:

$$y_{t} = z_{t}k_{t}^{\alpha}n(k_{t}, z_{t})^{1-\alpha} + u_{yt}$$

$$c_{t} = c(k_{t}, z_{t}) + u_{ct}$$

$$i_{t} = i(k_{t}, z_{t}) + u_{it}$$

$$n_{t} = n(k_{t}, z_{t}) + u_{nt},$$

$$u_t \sim N(0, \Sigma_u)$$
.

#### State Space Reps

DND

Notation

Likelihood Evaluation and Filtering

Schematic

Examples

One-Tree Model

RBC Model Canario Linaar 9

----

# Generic Linear State Space Rep.

► State-transition equations:

$$egin{array}{lcl} x_t &=& Fx_{t-1} + e_t, \ e_t &=& Gv_t, \ E(e_te_t') &=& GE\left(v_tv_t'\right)G' = Q. \end{array}$$

► Measurement equations:

$$X_t = H'x_t + u_t, \qquad Eu_tu_t' = \Sigma_u$$

Note: x<sub>t</sub> in general contains state variables s<sub>t</sub> and control variables; X<sub>t</sub> is directly analogous to y<sub>t</sub>. State Space Reps

DND

Notation

ikelihood valuation and iltering

chematic

Examples

RBC Model

Generic Linear State
Space Representation

### The Kalman Filter.

Likelihood evaluation and filtering is achieved in the linear-normal case via the Kalman filter. Given linearity/normality, targeted densities are fully characterized by means and covariance matricies.

### **Notation:**

$$x_{t|t-j} = E[x_t | \{X_1, ..., X_{t-j}\}],$$
  
 $P_{t|t-j} = E[(x_t - x_{t|t-j})(x_t - x_{t|t-j})'],$   
 $j = 0, 1.$ 

State Space Reps

DND

Notation

Likelihood Evaluation and Filtering

ocnematic

nples

One-Tree Model
RBC Model
Generic Linear State
Space Representation

## **Background I: Linear Projections**

$$P\left(\underbrace{x}_{n\times 1}|\underbrace{X}_{m\times 1}\right) = \underbrace{a}_{n\times m}'\underbrace{X}_{m\times 1}$$

$$= E[x|X] \text{ given lin/norm,}$$

where

$$a = \arg\min E\left[\left(x - a'X\right)^2\right]$$

#### State Space Reps

DND

Notation

Likelihood Evaluation and Filtering

chematic

Examp

RBC Model

Generic Linear State
Space Representation

FONC for a (Normal Equations/Orthogonality Conditions):

$$E\left[\left(x-a'X\right)X'\right]=0$$

$$\rightarrow E(xX') = a'E(XX') 
\rightarrow a' = (ExX')(E(XX'))^{-1} 
\rightarrow \hat{x} = (ExX')(E(XX'))^{-1}x$$

 ${\sf State\ Space\ Reps}$ 

DND

Notation

ikelihood valuation and iltering

chematic

One-Tree Model
RBC Model
Generic Linear State

### **Background II: Updating**

$$P\left(x | \left\{X_{t}, X_{t-1}, ... 
ight\}
ight) = \underbrace{P\left(x | \left\{X_{t-1}, ... 
ight\}
ight)}_{ ext{old forecast}} +$$

$$P\left(\underbrace{x - P\left(x | \left\{X_{t-1}, \ldots\right\}\right)}_{\text{forecast error}} | \underbrace{X_{t} - P\left(X_{t} | \left\{X_{t-1}, \ldots\right\}\right)}_{\text{new information}}\right)\right)$$

#### State Space Reps

DND

Notation

Likelihood Evaluation and Filtering

chematic

One-Tree Model
RBC Model
Generic Linear State

Kalman Filter I: Initialization  $(f(s_0))$ Unconditional mean:

$$Ex_{t} = FEx_{t-1} = FEx_{t}$$

$$\rightarrow (I - F) Ex_{t} = 0$$

$$\rightarrow Ex_{t} \equiv x_{1|0} = 0$$

#### State Space Reps

DND

Notation

Evaluation and Filtering

Schematic

camples

One-Tree Model
RBC Model
Generic Linear State

### Unconditional VCV:

$$E(x_{1|0}x'_{1|0}) \equiv P_{1|0}$$

$$= E[(Fx_{t-1} + e_t)(Fx_{t-1} + e_t)']$$

$$= F(E(x_{t-1}x'_{t-1}))F' + E(e_te'_t)$$

$$= FP_{1|0}F' + Q$$

Thus

$$vec(P_{1|0}) = (I - F \otimes F')^{-1} vec(Q)$$

### State Space Reps

DND

Notation

likelihood Evaluation and Filtering

chematic

One-Tree Model
RBC Model

The Kalman Filter

Kalman Filter II: Forecasting  $(f(y_t|Y_{t-1}))$ Given  $(x_{t|t-1}, P_{t|t-1})$  (initially  $(x_{1|0}, P_{1|0})$ ):

$$X_{t|t-1} = H' X_{t|t-1}$$

MSF:

$$\Omega_{t|t-1} = E \left[ \left( H' \left( x_t - x_{t|t-1} \right) + u_t \right) \left( H' \left( x_t - x_{t|t-1} \right) + u_t \right)' \right] \\
= E \left[ H' \left( x_t - x_{t|t-1} \right) \left( x_t - x_{t|t-1} \right)' H + u_t u_t' \right] \\
= H' P_{t|t-1} H + \Sigma_u$$

Kalman Filter III: Updating  $(f(s_t|Y_t))$ 

The Kalman Filter

Using the Normal Equations from Background I:

Using the updating equation from Background II:

$$E\left[\left(x_{t}-x_{t|t-1}\right) \mid \left(X_{t}-X_{t|t-1}\right)\right] = E\left(x_{t}-x_{t|t-1}\right) \left(X_{t}-X_{t|t-1}\right)' \times C_{t}^{-1}$$

$$\left( E\left( X_{t} - X_{t|t-1} \right) \left( X_{t} - X_{t|t-1} \right)' \right)^{-1} E\left( X_{t} - X_{t|t-1} \right)$$

 $X_{t|t} = X_{t|t-1} + E\left[\left(X_t - X_{t|t-1}\right) \mid \left(X_t - X_{t|t-1}\right)\right]$ 

## Kalman Filter III: Updating $(f(s_t|Y_t))$

► Thus

$$x_{t|t} = x_{t|t-1} + P_{t|t-1}H\Omega_{t|t-1}^{-1} \times (X_t - H'x_{t|t-1})$$

► MSE:

$$P_{t|t} = E\left[ (x_t - x_{t|t}) (x_t - x_{t|t})' \right]$$

$$= E\left[ (x_t - x_{t|t-1}) (x_t - x_{t|t-1})' \right] -$$

$$E(x_t - x_{t|t-1}) (X_t - X_{t|t-1})' \times$$

$$\left( E(X_t - X_{t|t-1}) (X_t - X_{t|t-1})' \right)^{-1} \times$$

$$E(X_t - X_{t|t-1}) (x_t - x_{t|t-1})'$$

$$= P_{t|t-1} - P_{t|t-1} H\Omega_{t|t-1}^{-1} H' P_{t|t-1}$$

### State Space Reps

DND

Notation

Likelihood Evaluation and Filtering

Schematic

amples

RBC Model

Generic Linear State
Space Representation

chematic

Examples
One-Tree Model
RBC Model

The Kalman Filter

## Kalman Filter IV: Prediction $(f(s_{t+1}|Y_t))$

▶ Plugging  $x_{t|t}$  into the state equation:

$$egin{array}{lcl} x_{t+1|t} & = & Fx_{t|t} \ & = & Fx_{t|t-1} + FP_{t|t-1}H\Omega_{t|t-1}^{-1} imes \ & \left( X_t - H'x_{t|t-1} 
ight) \end{array}$$

► MSE:

$$P_{t+1|t} = E \left[ (x_{t+1} - x_{t+1|t})(x_{t+1} - x_{t+1|t})' \right]$$

$$= E \left[ (Fx_t + e_{t+1} - Fx_{t|t}) (Fx_t + e_{t+1} - Fx_{t|t})' \right]$$

$$= FE \left[ (x_t - x_{t|t}) (x_t - x_{t|t})' \right] F' + E (e_{t+1}e'_{t+1})$$

$$= FP_{t|t}F' + Q$$

## Summary (means and covariances)

Initialization:

$$x_{1|0} = 0$$
,  $vec(P_{1|0}) = (I - F \otimes F')^{-1} vec(Q)$ 

- ▶ Forecasting:  $X_{t|t-1} = H'x_{t|t-1}$ ,  $H'P_{t|t-1}H + \Sigma_u$
- Updating:

$$x_{t|t} = x_{t|t-1} + P_{t|t-1}H\Omega_{t|t-1}^{-1} \times (X_t - H'x_{t|t-1}),$$

$$P_{t|t} = P_{t|t-1} - P_{t|t-1} H \Omega_{t|t-1}^{-1} H' P_{t|t-1}$$

#### State Space Reps

DND

Notation

Likelihood Evaluation and Filtering

Schematic

amples

RBC Model Generic Linear State

Prediction:

$$\begin{array}{rcl} x_{t+1|t} & = & Fx_{t|t} \\ & = & Fx_{t|t-1} + FP_{t|t-1}H\Omega_{t|t-1}^{-1} \times \\ & & \left(X_t - H'x_{t|t-1}\right), \\ P_{t+1|t} & = & FP_{t|t}F' + Q \end{array}$$

#### State Space Reps

DND

Notation

likelihood Evaluation and Filtering

Schematic

Examples

RBC Model
Generic Linear State

### Code:

- kalman.prc
- $egin{aligned} (\Sigma_u = 0) \ (\Sigma_u 
  eq 0) \end{aligned}$ kalmanm.prc

State Space Reps

DND

### Exercise:

Consider the AR(p) representation for a generic variable  $y_t$ :

$$y_t = \rho_1 y_{t-1} + \rho_2 y_{t-2} + \dots + \rho_p y_{t-p} + \varepsilon_t.$$

- Map this into the form of a state-space representation.
- Generate artificial data using the model as a DGP.
- ▶ Show that OLS estimates and ML estimates of  $\rho(L)$  coincide.

 ${\sf State\ Space\ Reps}$ 

DND

Notation

ikelihood valuation and iltering

chematic

kamples

One-Tree Model
RBC Model
Generic Linear State
Space Representation