Workshop Basic Arduino Class 1 – Arduino Fundamentals

MSc. David Velásquez Rendón

Contents

- 1. Introduction.
- 2. Arduino MEGA 2560 Pinout.
- 3. Variables in Arduino Programming.
- 4. Typical Operators for Arduino Programming.
- 5. Arduino Program Structure.
- 6. Arduino common used commands.
- 7. Arduino common statements.

Arduino

DIGITAL OUT

PWM OUT

¿What is?

- Open source electronics platform.
- Allows creation of electronics prototipes.
- Based on open source software.
- Ease of use.
- Allows to do sequences and mathematics operations.
- Used for automation.

Tipos de Arduino

Arduino Leonardo

DIGITAL IN

ANALOG IN

COMMUNICATION (SERIAL)

CPU

Arduino Robot

Arduino Uno

Arduino Due

Arduino Yún

Arduino Micro

Arduino Mega 2560

Arduino Ethernet

Arduino Mini

LilyPad Arduino

Arduino Nano

Arduino Esplora

SUPPLY (7V - 12V)

Arduino MEGA 2560 Pinout

- Based on the microcontroller ATMEGA 2560.
- **Supply:** Using Jack connecter with voltaje range from **7V to 12V**. Also it can be powered via USB but with low consumption.
- Maximum current per I/O digital pin: 40 mA.
- Maximum current for 3.3V supply pin: 50 mA.
- Digital Inputs and Outputs: 54 pins (OV or 5V).
- **Analog Inputs:** 16 pins (from **0V to 5V** of analog voltage).
- **PWM Outputs:** 15 pins (Considered in the 54 digital I/O pins).
- Oscilator frequency/Flash Memory/RAM/ROM: 16 MHz / Flash 256 Kb/ SRAM 8 Kb / EEPROM 4 Kb.
- Communications: USB CDC (Serial) + I2C + SPI.

Variables

NAME	SINTAX	SIZE	RANGE		EXAMPLE
NAME			WITHOUT SIGN	WITH SIGN	EXAMPLE
Boolean	boolean	1 bit	false True	N/A	boolean state = false;
Char ¹	char unsigned char	8 bits (1 byte)	0 a 255	-128 a 127	<pre>char myChar = 'A'; char myChar = 65; Both examples are equivalent</pre>
Byte	byte	8 bits (1 byte)	0 a 255	N/A	byte hello = B00000111; byte hello = 7; B indicates binary notation B00000111 is equal to 7 in decimal.
Integer	int unsigned int	16 bit (2 bytes)	0 a 65535	-32768 a 32767	unsigned int counter = 0;
Long	long unsigned long	32 bit	0 a 4,294,967,295	-2,147,483,648 a 2,147,483,647	unsigned long number = 20000;
Float ²	float	32 bit	N/A	-3.4028235E+38 a 3.4028235E+38	<pre>float temperature = 88.5;</pre>

EQUIVALENCIAS				
word	unsigned int			
short	int			

¹Check ASCII table (http://www.asciitable.com/index/asciifull.gif)

²Check Arduino documentation for more info (http://arduino.cc/en/Reference/Float#.UxOT7_I5Njl)

Typical Operators

	SYMBOL	DESCRIPTION
	=	Assignment
ARITHMETIC	+	Addition
	-	Subtraction
	*	Multiplication
AF	/	Division
	%	Module
	==	Equal to: $x == y$ is equivalent to: x is equal to y ?
COMPARATIVE	<u>:</u>	Not equal to: $x! = y$ is equivalent: x is not equal to y ?
RAT	<	Less than
MPA	^	Greater than
CO	 	Less than or equal to
	 	Greater than or equal to
NS	&&	AND
BOOLEANS		OR
BO		Negation (NOT)
	++	Increment: $y = x + +$ is equivalent to: $y = x + 1$
ORS		Decrement: $y = x$ is equivalent to: $y = x - 1$
LAT	+=	Addition assignment: $y += x$ is equivalent to: $y = y + x$
JMU	-=	Subtraction assignment: $y = x$ is equivalent to: $y = y - x$
ACCUMULATORS	*=	Multiplication assignment: $y *= x$ is equivalent to: $y = y * x$
4	/=	Division assignment: $y/=x$ is equivalent to: $y=y/x$

Arduino Program Structure

```
Library declaration(e.g: #include <SFEMP3Shield.h>)
I/O Pin Labeling (e.g. #define LEDPIN 13)
Constant declaration (e.g. const unsigned int contMax = 10;)
Variable declaration (e.g: float temperature = 0;)
Subroutines or functions declaration:
Example for subroutine:
void readSens() {
                                  //Example of a subroutine that reads the analog value from 0 to 1023 and converts it
                                   //from 0 to 100 degrees storing it in the float variable named temperature.
     y = analogRead(1); //Analog read from pin A1
     temperature = y*100.0/1023.0; //Float to degree celcius conversion
Example for function:
int sum(int x, int y) { //Example of a function that sums two numbers "x" y "y" and returns the result as int
     return x + y;
Pin configuration and cleaning:
void setup() {
     //CONFIGURATION: Indicate which pins are inputs and which are outputs "pinMode(PIN,OUTPUT o INPUT);" without quotes.
     //CLEANING: For safety, it is important to clean used outputs with the purpose that they are turned off at the
     //beginning of the program. Use the function "digitalWrite(PIN, LOW);" without quotes.
     //COMMUNICATIONS: For example, for communications with the computer, use the function "Serial.begin(BAUDIOS);"
     //without quotes.
Infinite loop (Main program - Execution):
void loop() {
     //Main program
```

Arduino IDE

Software download: http://arduino.cc

UNIVERSIDAD

Arduino common used commands

pinMode

- Configures the specified pin as input or output
- Sintax: pinMode (pin, mode);
 - pin: The pin # that will be configured
 - mode: Determines if the pin is an input or an output. Receives INPUT or OUTPUT

digitalWrite

- Writes a logical state to an output pin: a HIGH logic state (5V) or a LOW logic state (0V)
- Sintax: digitalWrite (pin, value);
 - pin: The pin # that will be written
 - value: HIGH or LOW

digitalRead

- Reads and returns the logic state value of a digital input pin
- Sintax: digitalRead (pin)
 - pin: The input pin # that will be read
 - Returns HIGH or LOW depending on the logic state value of the input pin that was read

delay

- Pauses the program execution for a desired time (in miliseconds)
- Not recommended to use because it pauses the whole program execution for the input time
- Sintax: delay (ms);
 - ms: The number of miliseconds that is desired to pause the program (var type: unsigned long)

10

Example 1.1 – Arduino common used commands

Example: In PIN 13 there is a LED (L1) connected. Blink the LED $\frac{1}{2}$ second ON and $\frac{1}{2}$ second OFF.

```
//I/O pin labeling
#define L1 13 //Label LED connected in pin 13 as "L1"
//Constant declaration
unsigned long TBLINK = 500; //Blink constant TBLINK initialized on
                            //500 \text{ ms}
void setup() {
 //I/O Pin Configuration
 pinMode(L1, OUTPUT); //Set pin L1 as Output
 //Output cleaning
 digitalWrite(L1, LOW); //Turn OFF L1
void loop() {
 digitalWrite(L1, HIGH); //Turn ON L1
 delay(TBLINK); //Delay of TBLINK miliseconds(500 ms)
 digitalWrite(L1, LOW); //Turn OFF L1
 delay(TBLINK); //Delay of TBLINK miliseconds(500 ms)
```

11 If statement

- Used in conjunction with a comparison operator.
- Tests if a condition is met, and in the positive case, executes desired actions and then it continues with the program.
- Sintax:

```
if (condition) {
    //Do something here
}
else if (othercondition) {
    //Do something else if the first condition wasn't met but the othercondition was met
}
else {
    //Do something here in other case
}
```

Example with digital input pins

```
if (digitalRead(pin) == HIGH) {
    //Do something here if the current pin
    //logic state is HIGH
}
```

Example with internal variables

```
if (temperature > 25) {
    //Do something here if temperature is
    //greater than 25 degree Celcius
}
```

Example 1.2 – If statement with digital input

Example: In the PIN 2 there is a switch (SW) and in the PIN 13 there is a LED (L1). Turn ON the LED if the switch is activated, in other case, turn off the LED

```
//I/O pin labeling
#define SW 2 //Switch "SW" connected on pin 2
#define L1 13 //LED "L1" connected on pin 13
void setup() {
 //I/O Pin Configuration
 pinMode(SW, INPUT); //SW as INPUT
 pinMode(L1, OUTPUT); //L1 as OUTPUT
 //Output cleaning
 digitalWrite(L1, LOW); //Turn OFF L1
void loop() {
 if (digitalRead(SW) == HIGH) { //Check if SW is in logic state HIGH
   digitalWrite(L1, HIGH); //If it is, turn ON L1
 else { //In other case
   digitalWrite(L1, LOW); //If the SW is OFF, turn OFF L1
```

Switch statement

- Allows to do different actions depending of different variable values.
- Similar to do multiple if..else if statements for the same var but with different values.
- Each case is the posible value that the variable can have and it's ended with a break;
- Sintax:

It is posible to check the case with labels instead of raw numbers predefined at the beginning of the program with #define.

```
switch (var) {
   case label1:
        //Do something here if var is equal to the label1
   break;
   case label2:
        //Do something here if var is equal to the label2
   break;
}
```

Example 1.3 – Traffic light

Write a program that controls a traffic light with 2 maintenance switches. If both switches are activated, the Red light will blink. In other case the traffic light will work normally (Red, Green, Yellow).

```
//I/O pin labeling
                                                                               void loop() {
#define LR 4 //Red LED "LR" connected on digital pin 4
                                                                                if (digitalRead(S1) == HIGH && digitalRead(S2) == HIGH) { //If both
#define LY 3 //Yellow LED "LY" connected on digital pin 3
                                                                               maintenance switchs are ON, blink
#define LG 2 //Green LED "LG" connected on digital pin 2
                                                                                  //Turn OFF all LEDs
#define S1 7 //Switch "S1" connected on digital pin 7
                                                                                   digitalWrite(LR, LOW);
#define S2 8 //Switch "S2" connected on digital pin 8
                                                                                   digitalWrite(LY, LOW);
                                                                                   digitalWrite(LG, LOW);
//Constant declaration
                                                                                   delay(TIT); //Delay of TIT msegs (5000msecs)
const unsigned long TRV = 5000; //Time constant from Red to Green
initialized on 5000 ms
                                                                                   //Turn ON red led
const unsigned long TVA = 2500; //Time constant from Green to Yellow
                                                                                   digitalWrite(LR, HIGH);
initialized on 2500 ms
                                                                                   digitalWrite(LY, LOW);
const unsigned long TAR = 1000; //Time constant from Yellow to Red
                                                                                   digitalWrite(LG, LOW);
initialized on 1000 ms
                                                                                   delay(TIT); //Delay of TIT msegs (5000msecs)
const unsigned long TIT = 5000; //Time constant for blinking initialized on
                                                                                 else {//In other case
5000 ms
                                                                                   //Normal traffic light secuence
                                                                                   digitalWrite(LR, HIGH);
void setup() {
                                                                                   digitalWrite(LY, LOW);
 //Pin configuration
                                                                                   digitalWrite(LG, LOW);
 pinMode(LR, OUTPUT); //LR as output
                                                                                   delay(TRV); //Delay of TRV msecs (5000msecs)
 pinMode(LY, OUTPUT); //LY as output
 pinMode(LG, OUTPUT); //LG as output
                                                                                   digitalWrite(LR, LOW);
 pinMode(S1, INPUT); //S1 as intput
                                                                                   digitalWrite(LY, LOW);
 pinMode(S2, INPUT); //S2 as intput
                                                                                   digitalWrite(LG, HIGH);
                                                                                   delay(TVA); //Delay of TVA msegs (2500msecs)
 //Physical Output Cleaning
 digitalWrite(LR, LOW); //Turn off LR
                                                                                   digitalWrite(LR, LOW);
 digitalWrite(LY, LOW); //Turn off LY
                                                                                   digitalWrite(LY, HIGH);
  digitalWrite(LG, LOW); //Turn off LG
                                                                                   digitalWrite(LG, LOW);
                                                                                   delay(TAR); //Delay of TAR msegs (1000msecs)
```


Thanks!