

Escola Prof. Reynaldo dos Santos

Vila Franca de Xira

Biologia e Geologia ● 11º ano ● Teste de Avaliação Novembro 2019

Biologia ● Domínio 7: Crescimento e Renovação Celular | Domínio 8: Reprodução

Leia atentamente os textos e as questões que se seguem e indique a resposta ou a letra da opção correta no local da folha de respostas no final.

1. Em fevereiro de 2019, um grupo de cientistas japoneses anunciou na revista *Science* que conseguiu aumentar o alfabeto genético para oito letras. Aos pares de bases nucleotídicas naturais complementares entre si (A-T e C-G), os investigadores acrescentaram mais dois pares sintéticos criados em laboratório, também eles complementares entre si (Z-P e S-B). Este sistema, representado na figura 1, foi apelidado de Hachimoji. Adicionalmente, o grupo desenvolveu uma enzima capaz de transcrever o DNA Hachimoji para uma molécula de RNA. O código genético baseado nos quatro nucleótidos naturais produz 64 combinações diferentes de codões (figura 2). Com oito bases, o número de combinações possíveis aumenta significativamente. Sendo assim, será expectável a produção de proteínas inexistentes na Natureza.

Figura 1: Pares de bases complementares do DNA Hachimoji.

1. ^a	2. ^a base				3. ^a
base	U	С	Α	G	base
	Fen	Ser	Tir	Cist	C
U	Fen	Ser	Tir	Cis	С
0	Leu	Ser			Α
	Leu	Ser		Trp	G
	Leu	Pro	His	Arg	U
С	Leu	Pro	His	Arg	С
	Leu	Pro	Gln	Arg	Α
	Leu	Pro	Gln	Arg	G
	lle	Tre	Asn	Ser	U
Α	lle	Tre	Asn	Ser	С
A	lle	Tre	Lis	Arg	Α
	Met	Tre	Lis	Arg	G
	Val	Ala	Asp	Gli	U
G	Val	Ala	Asp	Gli	С
9	Val	Ala	Glu	Gli	Α
	Val	Ala	Glu	Gli	G

Baseado em

https://science.sciencemag.org/content/363/6429/884 (consultado em 17 de outubro de 2019)

- Figura 2: Tabela de correspondência entre codões e aminoácidos.
- 1.1. A enzima produzida pelos investigadores para transcrever o DNA Hachimoji foi uma...
 - a) DNA polimerase que não poderá ser utilizada na replicação do DNA.
 - b) RNA polimerase que também será utilizada na replicação do DNA.
 - c) DNA polimerase que também será utilizada na replicação do DNA.
 - d) RNA polimerase que não poderá ser utilizada na replicação do DNA.
- **1.2.** Considere o seguinte fragmento de um gene do DNA Hachimoji 3'... CGA GTG CBZ TPA ... 5'. A sequência da cadeia de DNA Hachimoji complementar será ...
 - a) 3'... GCT CAC GSP AZT ... 5'.
 - **b)** 5'... GCU CAC GSP AZU ... 3'.
 - c) 5'... GCT CAC GSP AZT ... 3'.
 - **d)** 3'... CGA GTG CBZ TPA ... 5'.

- **1.3.** Utilizando a figura 2 e considerando o mesmo fragmento de um gene do DNA Hachimoji (3´... CGA GTG CBZ TPA ... 5´), os dois primeiros aminoácidos produzidos através desta sequência são ...
 - a) Ala-His.
 - **b)** Arg-Val.
 - c) Val-Gli.
 - d) Pro-Ser.
- **1.4.** Os processos de transcrição e de tradução da informação genética nos seres vivos eucariontes ocorrem...
 - a) respetivamente, no citoplasma e no núcleo.
 - **b)** respetivamente, no núcleo e no citoplasma.
 - c) ambos no núcleo.
 - d) ambos no citoplasma.
- 1.5. O DNA é uma molécula formada por duas cadeias polinucleotídicas, ao contrário do RNA, pois...
 - a) a pentose de um nucleótido está ligada ao grupo fosfato do nucleótido seguinte, na mesma cadeia.
 - b) ao longo da cadeia os nucleótidos estão ligados por ligações fosfodiéster.
 - c) as cadeias antiparalelas estabelecem ligações entre si por pontes de hidrogénio.
 - d) a pentose é a desoxirribose.
- **1.6.** A redundância do código genético significa que...
 - a) o codão de iniciação (AUG) tem dupla função.
 - b) o mesmo aminoácido é codificado por diferentes codões.
 - c) existem codões de finalização.
 - d) todos os codões são traduzidos em aminoácidos.
- **1.7.** Comparando a replicação do DNA e a síntese proteica que ocorrem numa célula procarionte e numa célula eucarionte, é correto afirmar que...
 - a) a replicação do DNA é semelhante, mas nas células procariontes não ocorre o processamento do RNA.
 - b) a replicação do DNA é semelhante, mas nas células eucariontes não ocorre o processamento
 - c) a replicação do DNA é diferente, mas as etapas da síntese proteica são as mesmas.
 - d) quer a replicação do DNA quer a síntese proteica ocorrem de forma diferente.
- **1.8.** Ordene as letras de A a E, de modo a reconstituir a sequência cronológica dos acontecimentos relacionados com a síntese proteica.
 - A. Maturação do RNA mensageiro.
 - **B.** Libertação de uma sequência peptídica.
 - **C.** Formação de uma molécula com ribose e uracilo, por complementaridade de bases azotadas à cadeia do DNA.
 - **D.** O ribossoma encontra um codão de finalização.
 - E. Ligação da subunidade menor do ribossoma à extremidade 5'do RNA mensageiro.

2. A doença de Alzheimer afeta 90 000 pessoas em Portugal e é responsável por 70% dos casos de demência existentes no mundo, uma vez que é uma doença neurodegenerativa, afetando o sistema nervoso central e levando à perda de capacidades cognitivas e da memória.

O primeiro indicador de que uma pessoa desenvolveu Alzheimer é a formação de depósitos de betaamiloide (ßA) na massa cinzenta do cérebro, formando uma estrutura designada por "placas senis". Posteriormente, assiste-se à perda de neurónios e à diminuição da capacidade de efetuar sinapses nervosas.

A transtirretina (TTR) é uma proteína que tem vindo a ser associada à doença de Alzheimer como uma molécula protetora, uma vez que interfere na formação de fibrilas ßA, impedindo que se constituam agregados deste composto e rompendo os agregados que eventualmente se tenham formado. É sabido que a estabilização da TTR é muito importante na correta interação com a ßA e admite-se a possibilidade de essa estabilização ser conseguida com recurso a um composto denominado lododiflunisal (IDIF). Nos doentes de Alzheimer, as quantidades de TTR são reduzidas e a proteína encontra-se desestabilizada.

Com o objetivo de perceber a influência da IDIF na estabilização da TTR, para que ocorra uma correta interação entre a TTR e a ßA, um grupo de investigadores do Instituto de Investigação e Inovação em Saúde (I3S) procedeu a tratamentos com IDIF em ratinhos afetados com a doença de Alzheimer.

Após o tratamento com IDIF, foi realizado o Teste do Labirinto Aquático de Morris, no qual os ratinhos têm de recorrer às suas capacidades de aprendizagem espacial e de memória para encontrarem, o mais rapidamente possível, uma plataforma estável escondida na água, mas sempre no mesmo local. O teste foi realizado durante 7 dias e os resultados encontram-se representados na figura 4. Paralelamente, após os 7 dias foram medidos os níveis de ßA e a quantidade de placas senis que existiam nesses ratinhos. Os resultados das medições estão representados nas figuras 3A e 3B.

Figura 3A: Quantidade de ßA no grupo de controlo e no grupo tratado com IDIF, após os 7 dias.

Figura 3B. Percentagem de placas senis na massa cinzenta do cérebro no grupo de controlo e no grupo tratado com IDIF, após 7 dias.

Figura 4. Resultados do Teste do Labirinto Aquático de Morris.

Baseado em:
Ribeiro, C. A. et al. (2014).
Transthyretin Stabilization by
Iododiflunisal Promotes AmyloidPeptide Clearance, decreases its
deposition, and Ameliorates
Cognitive Deficits in an Alzheimer's
Disease Mouse Model, Journal of
Alzheimer's Disease.

	a)	os níveis de ßA e a quantidade de placas senis
	b)	o tempo de duração da investigação
	c)	o tratamento de ratos com Iododiflunisal
	d)	a espécie de ratinhos utilizada
2.2.	Atr	avés da análise das figuras conclui-se que
	_	a TTR desestabilizada promove a diminuição da formação dos agregados de ßA.
	b)	ratinhos com níveis mais elevados de ßA realizam mais rapidamente o Teste do Labirinto
		Aquático de Morris.
		a TTR estabilizada conduz à formação de placas senis.
	d)	ratinhos onde ocorre uma interação correta entre a TTR e a ßA revelam maiores capacidades de aprendizagem espacial e de memória.
2.3.	No	decurso do processamento do pré-mRNA para formar a transtirretina (TTR), que se
	rea	liza do núcleo, ocorre a remoção das regiões não codificantes designadas por
	a)	dentro exões
	b)	dentro intrões
	c)	fora exões
	d)	fora intrões
2.4.		regeneração das células somáticas dos ratinhos verifica-se
	-	a descondensação dos cromossomas na prófase.
	-	a clivagem do centrómero na telófase.
		a reorganização do invólucro nuclear na anáfase.
	d)	o alinhamento dos centrómeros no plano equatorial na metáfase.
2.5.		que medida os resultados obtidos e expostos nas figuras 3 e 4 permitem responder ao objetivo
		estudo?
		Mostram que a IDIF estabiliza a TTR.
	b) c)	Mostram que a IDIF reduz a quantidade de TTR. Mostram que há uma relação entre a quantidade de ßA e de placas senis.
	d)	Mostram que a IDIF favorece o aparecimento de Alzheimer.
	uj	Mostrani que a ibir favorece o aparecimento de Aizhenner.
2.6.	Um	na alteração num nucleótido da sequência genética que é traduzida na TTR (transtirretina) é
	cor	nsiderada uma mutação e os resultados da experiência.
	a)	numéricamodificaria obrigatoriamente
	b)	génicapoderia modificar
	c)	numéricapoderia modificar
	d)	génicamodificaria obrigatoriamente

2.1. A variável independente utilizada nesta investigação foi...

3. A figura seguinte (Fig. 5) representa 4 fases de uma divisão equacional do núcleo de uma célula eucariótica. O gráfico (Fig.6) mostra a variação da quantidade de DNA existente no núcleo da mesma célula ao logo de todo o ciclo celular .

Figura 5

- 3.1. A ordem correcta dos acontecimentos da divisão celular ilustrada na figura do lado esquerdo é...
 - a) B,C,D,A
 - **b)** A,B,D,C
 - c) C,D,B,A
 - **d)** C,B,D,A
- 3.2. O número 3 do gráfico da direita marca o início da fase...
 - **a)** S
 - **b)** G1
 - c) G2
 - **d)** M
- **3.3.** A interfase corresponde ao tempo que decorre no gráfico entre...
 - a) 1 e 4
 - **b)** 2 e 3
 - c) 4 e 6
 - d) 2 e 5
- **3.4.** Durante a mitose, o número de cromossomas...
 - a) duplica no período S da interfase.
 - b) duplica na anáfase.
 - c) não varia.
 - d) reduz para metade na anáfase.
- **3.5.** Não são características da fase identificada pela letra D...
 - a) A ascensão polar dos cromatídeos
 - b) A formação do fuso mitótico
 - c) A divisão do centrómero
 - d) A desagregação da membrana nuclear
- 3.6. Os cromossomas das células em mitose atingem o máximo da sua condensação na...
 - a) prófase.
 - b) metáfase.
 - c) anáfase.
 - d) telófase.

- **3.7.** Os procedimentos metodológicos para efetuar uma preparação para observação de células em mitose na extremidade da raiz da cebola não incluem...
 - a) A utilização de HCl
 - b) A coloração pela técnica da irrigação com orceína acética
 - c) O esmagamento da extremidade da raiz
 - d) O aquecimento do corante
- **3.8.** Ordene as frases identificadas pelas letras de A a E, de modo a reconstituir a sequência cronológica de acontecimentos envolvidos na divisão celular.
 - **A.** A distância entre os cromatídios-irmãos é crescente.
 - **B.** Os cromossomas, unidos ao fuso acromático, deslocam-se em direção ao plano equatorial da célula.
 - **C.** Inicia-se a compactação e o enrolamento da cromatina, tornando-se os cromossomas mais curtos e densos.
 - **D.** O invólucro nuclear reorganiza-se e a cromatina descondensa.
 - E. Clivagem dos centrómeros.
- **4.** A figura 7 ao lado representa uma estrutura produtora de esporos dum bolor observado nas aulas.
 - **4.1.** Identifique o organismo a que pertence a estrutura da figura.
 - a) Penicillium sp.
 - b) Rhizopus sp.
 - c) Aspergillus sp.
 - d) Polypodium sp.
 - **4.2.** Os conídios identificados pela letra _____ são esporos produzidos de forma _____.
 - a) ...D...endógena.
 - b) ...D...exógena.
 - c) ...E...exógena.
 - d) ...E...endógena.
 - **4.3.** Qual a letra que identifica a fiálide?
 - a) A
 - **b)** B
 - **c)** C
 - **d)** D
 - **4.4.** Para além da esporulação, existem outras formas de reprodução assexuada. Algumas técnicas de propagação, como a da figura 8 são muito utilizadas na agricultura. Como se denomina esta técnica?
 - a) Alporquia
 - **b)** Estacaria
 - c) Mergulhia
 - d) Enxertia

- **5.** O esquema ao lado (Fig. 9) representa, de forma muito simplificada, o ciclo de vida de um feto (Polipódio).
 - **5.1.** Este ciclo pode ser considerado um ciclo______ como meiose _____.
 - a) ...diplonte...pré-espórica
 - b) ...diplonte....pré-gamética
 - c)haplodiplonte...pré-gamética
 - d) ...haplodiplonte...pré-espórica

Figura 9

- **5.2.** A geração esporófita, representada pela letra _____ é _____.
 - a) ...X...haploide.
 - b) ...Y...haploide.
 - c) ...X...diploide.
 - d) ...Y...diploid
- **5.3.** O número _____ da figura representa o protalo _____ dum Polipódio.
 - a) ...1...monoico...
 - **b)** ...2...monoico...
 - c) ...1...dioico...
 - d) ...2...dioico...
- **5.4.** A meiose ocorre na formação da estrutura com o número_____ e realiza-se dentro de estruturas denominadas______.
 - a) ...5...esporângios.
 - b) ...5...gametângios.
 - c) ...4...esporângios.
 - d) ...4...gametângios.
- 5.5. Indique os números que representam células ou estruturas multicelulares haploides.
- **5.6.** A separação dos cromatídeos durante a divisão meiótica dá-se durante a ...
 - a) Anáfase I
 - b) Metáfase I
 - c) Anáfase II
 - d) Metáfase II

6. A reprodução sexuada tem por base um processo de divisão nuclear reducional do qual estão representadas algumas fases nas imagens esquemáticas abaixo (Fig. 10). Considere estas células com um cariótipo 2n=4

- **6.1.** Coloque as letras na sequência correta dos acontecimentos começando pela letra C.
- **6.2.** A separação dos cromossomas homólogos ocorre na fase denominada ______ representada pela figura da letra _____.
 - a) ...Anáfase 1... B
 - b) ...Anáfase 2... E
 - c) ...Anáfase 2... B
 - d) ...Anáfase 1... E
- **7.** A figura abaixo (11) mostra 4 tipos de mutações cromossómicas que podem ocorrer no núcleo de uma célula com 2n=4 representada em A.

- **7.1.** As mutações representadas em B e E são, respetivamente...
 - a) Uma trissomia e uma translocação
 - b) Uma triploidia e uma translocação
 - c) Uma trissomia e uma substituição
 - d) Uma triploidia e uma substituição
- **7.2.** Indique as letras das figuras que representam mutações estruturais.
- **7.3.** Que letra de figura representa uma aneuploidia de A?

8. A maioria das algas da divisão *Clorophyta* possui ciclos de vida complexos, podendo apresentar reprodução assexuada e reprodução sexuada. *Chlamydomonas sp.* é uma alga unicelular, incluída na divisão *Clorophyta*, cujas células adultas são haploides e possuem um só cloroplasto em forma de taça. Em situações de stresse ambiental (falta de alimento, escassez de água, etc.), estas células podem-se diferenciar em gâmetas (designados + e -).

- **8.1.** Chlamydomonas apresenta um ciclo de vida...
 - a) haplodiplonte, quando efetua reprodução sexuada.
 - b) haplonte, quando efetua reprodução assexuada.
 - c) haplodiplonte, quando efetua reprodução assexuada.
 - d) haplonte, quando efetua reprodução sexuada.
- **8.2.** Imediatamente após uma alteração das condições ambientais favoráveis para condições de adversas, os gâmetas de *Chlamydomonas* resultam de...
 - a) meiose, possuindo 2n cromossomas.
 - **b)** mitose, possuindo 2n cromossomas.
 - c) meiose, possuindo n cromossomas.
 - d) mitose, possuindo n cromossomas.
- 8.3. Tendo em conta os dados fornecidos, é correto afirmar que em *Chlamydomonas sp.* a meiose é...
 - a) pré-espórica, originando zoósporos.
 - b) pós-zigótica, originando células haploides.
 - c) pré-espórica, originando células haploides.
 - d) pós-zigótica, originando zoósporos.

Escola Prof. Reynaldo dos Santos

Vila Franca de Xira

Biologia e Geologia • 11º ano • Teste de Avaliação Novembro 2019

Classificação:			
D1	D2		

Biologia ● Domínio 7: Crescimento e Renovação Celular | Domínio 8: Reprodução

NOME:	nº	turma

Cot.	D	Iten	Resposta	
0,5	D1	1.1.	D	
0,5	D1	1.2.	С	
0,5	D1	1.3.	Α	
0,5	D1	1.4.	В	
0,5	D1	1.5.	С	
0,5	D1	1.6.	В	
0,5	D1	1.7.	Α	
0,5	D1	1.8.	CAEDB	
0,5	D2	2.1.	С	
0,5	D2	2.2.	D	
0,5	D1	2.3.	В	
0,5	D1	2.4.	D	
0,5	D2	2.5.	Α	
0,5	D1	2.6.	В	
0,5	D1	3.1.	D	
0,5	D1	3.2.	С	
0,5	D1	3.3.	Α	
0,5	D1	3.4.	С	
0,5	D1	3.5.	B D	
0,5	D1	3.6.	В	
0,5	D2	3.7.	В	
0,5	D1	3.8.	CBEAD	

Cot.	D	Iten	Resposta	
0,5	D2	4.1.	Α	
0,5	D2	4.2.	С	
0,5	D2	4.3.	D	
0,5	D1	4.4.	С	
0,5	D1	5.1.	D	
0,5	D1	5.2.	С	
0,5	D1	5.3.	В	
0,5	D1	5.4.	Α	
0,5	D1	5.5.	5, 2, 4	
0,5	D1	5.6	С	
0,5	D1	6.1.	CDEAB	
0,5	D1	6.2.	D	
0,5	D1	7.1.	В	
0,5	D1	7.2.	D E	
0,5	D1	7.3.	С	
0,5	D1	8.1.	D	
0,5	D1	8.2.	D	
0,5	D1	8.3.	В	