

Sílabo

170338 - Machine Learning

I. Información general

Nombre del Curso: Machine Learning

Código del curso: 170338

Departamento Académico: Ingeniería

Créditos: 4 Horas Teoría: 4 Horas Práctica: 0

Periodo Académico: 2023-01-PRE

Sección: A

Modalidad: Presencial Idioma: Español

Docente: SOLEDAD ESPEZUA LLERENA Email docente: s.espezual@up.edu.pe

II. Introducción

El objetivo de este curso es estudiar los principios del Machine Learning, así como distintas técnicas que permitan realizar en la práctica tareas principales, como: análisis, modelamiento descriptivo, modelamiento predictivo e interpretación de resultados.

El curso cubre métodos básicos de preprocesamiento de datos; estrategias de aprendizaje automático como regresión, clasificación, aprendizaje por ensambles, redes neuronales, fundamentos de aprendizaje profundo y casos avanzados de modelamiento para visualización y pronóstico. El alumno obtendrá los conocimientos necesarios para analizar e interpretar resultados, así como aplicar de manera efectiva lo aprendido en problemas desafiantes.

III. Logro de aprendizaje final del curso

Entender las técnicas de Machine Learning y cómo están relacionadas a estadística y análisis de datos.

Aplicar técnicas de aprendizaje supervisado y no supervisado en el reconocimiento de patrones y realización de decisiones y predicciones con ejemplos prácticos.

Evaluar los distintos clasificadores a través de técnicas que no sólo evalúen la precisión, sino también, el desempeño del clasificador.

Comprender los conceptos fundamentales de Redes Neuronales.

Proponer, justificar propuestas de modelos de Machine Learning, interpretar resultados, formular conclusiones y recomendaciones pertinentes a partir de resultados de un proyecto propuesto de fin de curso.

IV. Unidades de aprendizaje

Unidad 1: Conceptos base

Logro de Aprendizaje / propósito de la unidad:

Conocer los principios y procesos de un ciclo de desarrollo en Machine Learning (ML), aplicar los principales algoritmos de ingeniería de atributos y transformación de datos.

Contenidos:

- Presentación y descripción del curso
- · Ciclo de vida de un proyecto de ML
- Industria y aplicaciones de ML
- Ingeniería de atributos y Reducción dimensional
- Estrategias de partición de datos y construcción del modelo

Unidad 2: Regresión

Logro de Aprendizaje / propósito de la unidad:

Al término de la unidad, el estudiante será capaz de resolver y aplicar en casos reales soluciones a problemas de regresión.

Contenidos:

- Algoritmos de Regresión y Regularizadores
- · Métricas de evaluación para regresión

Unidad 3: Clasificación

Logro de Aprendizaje / propósito de la unidad:

Al término de la unidad, el estudiante será capaz de resolver y aplicar en casos reales soluciones a problemas de clasificación.

Contenidos:

- Algoritmos de Clasificación
- Métricas de evaluación para clasificación
- · Modelos ensamblados

Unidad 4: Redes Neuronales

Logro de Aprendizaje / propósito de la unidad:

Al término de la unidad, el estudiante será capaz de resolver y aplicar en casos reales soluciones a problemas de clasificación y regresión con Redes neuronales

Contenidos:

- Fundamentos de las Redes Neuronales
- Unidades Perceptrons
- · Funciones de activación
- Multilayer Perceptrons (MLP)
- Algoritmo BackPropagation
- Introducción a modelos Deep Learning (DL)
- Fundamentos de Convolutional Neural Network (CNN)

Unidad 5: Clustering

Logro de Aprendizaje / propósito de la unidad:

Conocer técnicas avanzadas de Clustering

Contenidos:

- Mapas auto-organizados (SOM)
- · Redes Autoencoder
- Afinamiento del modelo y despliegue
- Optimización de hiperparametros

V. Estrategias Didácticas

Exposición de conceptos teóricos por parte del docente, explicando la utilidad de los conceptos aprendidos a situaciones reales.

Participación activa de los estudiantes mediante la solución compartida de problemas

Análisis y desarrollo de ejercicios prácticos, implementados en Python.

VI. Sistemas de evaluación

Consideraciones para las evaluaciones

Cálculo de la Nota de **Trabajo**:

Nota de Trabajo

= [0.4 PC1 + 0.4 PC2 + 0.20 Otras_Actividades] * Factor_ProyectoIntegrador

Otras_actividades

: Comprende tareas, controles de lectura, participación, laboratorios y similares

Factor_ProyectoIntegrador:

Calculado según los valores de equivalencia y en función de la Nota Proyecto Integrador

Nota ProvectoIntegrador

= (40% Nota Primera Entrega + 60% Nota Segunda Entrega + Modificador_Exposicion) * Factor_EvaluacionPares

Modificador Exposicion:

Acorde a la sustentación_individual puede adquirir los valores

• Sobresaliente: +1

• Suficiente: 0

• Insuficiente: Desde -1 hasta -10 según el criterio docente

• Nota: La ausencia injustificada a la exposición convierte la Nota_ProyectoIntegrador en cero

Factor_EvaluacionPares:

Refleja la nota de contribución (en cantidad y calidad) dada por el resto del grupo

• Aporte sobresaliente: 1.05

Aportante suficiente: 1

• Aporte regular: 0.9

• Aporte insuficiente: 0.8

Nota: No hay puntos extras en prácticas calificadas ni en exámenes parcial o final bajo ningún motivo. Cualquier punto extra seráconsiderado en "Otras actividades".

VALORES DE EQUIVALENCIA:

Rango nota vigesimal: factor equivalente

0:0.3

1-2:0.5

3-5:0.6

6-8:0.7

9-11:0.8

12-14:0.9

15-17:1.0

18-20: 1.05

DISPOSICIONES PARA LA EVALUACIÓN DE REZAGADOS

- 1. En caso de ausencia justificada de alguna práctica calificada o examen parcial el estudiante podrá solicitar que le tomen una única Evaluación de rezagados justificando su inasistencia.
- 2. Según el tipo de evaluación se procederá:
- a. En el caso de examen parcial, el estudiante seguirá el procedimiento regular a través de Servicios Académicos quien comunicará al docente la procedencia del caso.
- b. En el caso de una práctica se justificará por correo electrónico al docente. En el caso de problemas de salud adjuntar el certificado médico y en otras emergencias (por ejemplo, accidentes, robos, fallecimiento de un familiar) se detallará en el correo la naturaleza de la emergencia. El correo deberá ser presentado dentro de un plazo máximo de tres días útiles contados a partir de la fecha original programada de la práctica.
- 3. Esta Evaluación de rezagados:
- a. Se tomará luego de la última práctica calificada en la fecha establecida por el docente y no habrá una reprogramación de esta.
- b. Se evaluará todo el contenido del curso
- c. El reemplazo de notas se realizará según lo siguiente:
- i. En el caso de tener una nota justificada, sea práctica o examen parcial, se reemplazará por la nota de la Evaluación de rezagados
- ii. En el caso de tener dos notas justificadas, ambas notas se reemplazarán por la nota de la Evaluación de rezagados.

iii. En el caso de tener tres notas justificadas, las notas del examen parcial y una práctica se reemplazarán por la nota de la Evaluación de rezagados. La otra práctica tendrá una nota de cero.

Nombre evaluación	%	Fecha	Criterios	Comentarios
1. Exámen parcial	25		Conocimientos de los conceptos aprendidos durante la primera parte del curso. Se valorará precisión en las respuestas.	
2. Exámen final	35		Conocimientos de los conceptos aprendidos durante la segunda parte del curso.	
3. Trabajo	40			

VII. Cronograma referencial de actividades

Unidades de aprendizaje	Contenidos y actividades a realizar	Recursos y materiales	Evaluaciones			
Semana 1: del 20/03/2023 al 25/03/2023						
Unidad 1: Conceptos base	 Presentación y descripción del curso Historia y conceptos básicos de ML Ciclo de vida de un proyecto de ML Industria y aplicaciones de ML 	Diapositivas PPT, Google Colab				
Semana 2: del 27/03/2023 al 01/04/2023	3					
Unidad 1: Conceptos base	 Recolección y exploración de datos Pre-procesamiento básico Transformación de atributos 	Diapositivas PPT, Google Colab, videos, lecturas o casos				
Semana 3 con feriados el jueves 06, v	Semana 3 con feriados el jueves 06, viernes 07 y sábado 08: del 03/04/2023 al 08/04/2023					
Unidad 1: Conceptos base	 Reducción dimensional Selección y transformación de atributos 	Diapositivas PPT, Google Colab				
Semana 4: del 10/04/2023 al 15/04/202	3					
• Unidad 2: Regresión	 Fundamentos de Analítica supervisada Estrategias de partición de datos Regresión lineal Propuestas de Proyecto (alumnos) 	Diapositivas PPT, Google Colab, videos, lecturas o casos				
Semana 5: del 17/04/2023 al 22/04/2023						
Unidad 2: Regresión	 Modelos de Regresión Regresión múltiple y regularización Métricas de evaluación para regresión 	Diapositivas PPT, Google Colab, videos, lecturas o casos				
Semana 6: del 24/04/2023 al 29/04/2023						
Unidad 3: Clasificación	 Modelos de Clasificación Métricas de evaluación para	Diapositivas PPT, Google Colab, videos, lecturas o casos	Práctica calificada			

Unidades de aprendizaje	Contenidos y actividades a realizar	Recursos y materiales	Evaluaciones
	clasificación • Práctica calificada 1		
Semana 7: del 01/05/2023 al 06/05/202	3		
Unidad 3: Clasificación	 Modelos ensamblados Bagging y Boosting Métodos de agregación Afinamiento del modelo: pipelines 	Diapositivas PPT, Google Colab, videos, lecturas o casos	
Semana 8 de exámenes parciales: del	08/05/2023 al 13/05/2023		
Unidad 1: Conceptos baseUnidad 2: RegresiónUnidad 3: Clasificación	Exámen Parcial		Exámen parcial
Semana 9: del 15/05/2023 al 20/05/202	3		
Unidad 4: Redes Neuronales	 Fundamentos de las Redes Neuronales Unidades Perceptrons Funciones de activación Algoritmo BackPropagation 	Diapositivas PPT, Google Colab, videos, lecturas o casos	
Semana 10: del 22/05/2023 al 27/05/20	23		
Unidad 4: Redes Neuronales	 Multilayer Perceptrons (MLP) Introducción a modelos Deep Learning (DL) Arquitectura MLP DL Optimización: gradiente, mini-batch 	Diapositivas PPT, Google Colab, videos, lecturas o casos	Primera entrega
Semana 11: del 29/05/2023 al 03/06/20	23		
Unidad 4: Redes Neuronales	 Fundamentos de Convolutional Neural Network (CNN) Modelos CNN: Convolution, Pooling, Fully Connected Aplicaciones 	Diapositivas PPT, Google Colab, videos, lecturas o casos	
Semana 12: del 05/06/2023 al 10/06/20	23		

Unidades de aprendizaje	Contenidos y actividades a realizar	Recursos y materiales	Evaluaciones			
Unidad 4: Redes Neuronales	Modelos MLP-CNN para forecastingAvance de Proyecto		Práctica calificada			
Semana 13: del 12/06/2023 al 17/06/2023						
Unidad 5: Clustering	Clustering: algoritmos básicosMapas auto-organizados (SOM)	Diapositivas PPT, Google Colab, videos, lecturas o casos				
Semana 14: del 19/06/2023 al 24/06/2023						
Unidad 5: Clustering	Clustering con DL: AutoencodersSalvar y desplegar el modeloPráctica Calificada 2	Diapositivas PPT, Google Colab				
Semana 15 con feriado jueves 29: del 26/06/2023 al 01/07/2023						
Unidad 5: Clustering	•Presentación de los proyectos de fin de curso	Diapositivas PPT, Google Colab	Segunda entrega			
Semana 16 de exámenes finales: del 03/07/2023 al 08/07/2023						
Unidad 4: Redes NeuronalesUnidad 5: Clustering	Exámen Final		Exámen final			

VIII. Indicaciones para el desarrollo del curso

Las sesiones son de carácter teórico-practico, con lectura de artículos, discusión de casos de estudio, presentación de videos y herramientas computacionales.

Al final del curso habrá una presentación de un proyecto implementado por los alumnos

IX. Referencias bibliográficas

Obligatoria

- C. Bishop (2006). Pattern Recognition and Machine Learning. New York: Springer.
- Flach, P (2015). Machine Learning: The Art and Science of Algorithms that Make Sense of Data. Cambridge: Cambridge University Press..
- I. Goodfellow, Y. Bengio & A. Courville (2016). Deep Learning.: MIT Press.
- J. Watt , R. Borhani & A. Katsaggelos (2020). *Machine Learning Refined: Foundations, Algorithms, and Applications. 2nd Edition*. Cambridge University Press: Cambridge.

Recomendada

- A. Géron (2019). Hands-on Machine Learning with Scikit-Learn, Keras yTensorFlow. California: O'Reilly Media.
- S. Raschka & V. Mirjalili (2019). Python Machine Learning. Third Edition. California: O'Reilly Media.
- Documentación Oficial de Python. (2020). Recuperado el jueves 4 de agosto del 2020. Recuperado de https://docs.python.org .
- Notes for Professionals in Python . (2020). Recuperado el jueves 4 de agosto del 2020. Recuperado de https://goalkicker.com/PythonBook/.