Automated Image Colorization

Revathi Bhuvaneswari

Tianying Luo

Yue Zeng

Dataset

TRAIN	70 %
VAL	20 %
TEST	10 %

Colorspace

Evaluation Metrics

L1 (OR) MAE LOSS

$$\frac{1}{n}\sum_{i=1}^{n}|y_i-\widehat{y}_i|$$

$$\frac{1}{n}\sum_{i=1}^{n}(y_i-\widehat{y}_i)^2$$

Baseline CNN

Original

Left - Original(output)

Grayscale

Right - Grayscale(input)

Baseline CNN

Input: 224 x 224 x 1	
3 x 3 Conv, 64, S = 2	224x 224x 64
3 x 3 Conv, 64, S = 2	112x 112 x 64
3 x 3 Conv, 128, S = 2	112x112 x128
3 x 3 Conv, 128, S = 2	56 x 56 x128
3 x 3 Conv, 256, S = 2	56 x 56 x256
3 x 3 Conv, 256, S = 2	28 x 28 x 256
3 x 3 Conv, 512, S = 2	28 x28x1512
3 x 3 Conv, 512, S = 2	14x214x 512
3 x 3 Conv, 512, S = 2	28 x28x512
3 x 3 Conv, 256, S = 2	56 x56x256
3 x 3 Conv, 128, S = 2	112x112x 128
3 x 3 Conv, 64, S = 2	224 x224x 64
3 x 3 Conv, 256, S = 2	224 x224x2
Output: 224 x 224 x 2	

- L2 Loss
- ReLU / TanH
- Batch Normalization
- No Dropout
- He Normal Weights
- Transpose Layers

Results (Failure)

Grayscale

Ground Truth

Grayscale

Prediction

Ground Truth

Grayscale

Prediction

Ground Truth

- L2 Loss

- ReLU / TanH
- Batch Normalization
- Dropout
- He Normal Weights

Results(Success)

Epochs = 500

Epochs = 1000

Baseline Autoencoder

Baseline Autoencoder

Colorization Autoencoder using RGB 2. Colorization Autoencoder using LAB

Input: 224 x 224 x 1		
3 x 3 Conv, 64, S = 2	112 x112 x 64	
3 x 3 Conv, 128, S = 2	56 x 56 x 128	
3 x 3 Conv, 256, S = 2	28 x 28 x 256	
3 x 3 Conv, 512, S = 2	14 x 14 x512	
Flatten	FC: 100352	
Dense, 512	FC: 512	
+		
Dense, 512	FC: 512	
Reshape	FC: 100352	
3 x 3 Conv, 512, S = 2	28 x 28 x512	
3 x 3 Conv, 256, S = 2	56 x 56 x 256	
3 x 3 Conv, 128, S = 2	112 x112x128	
3 x 3 Conv, 64, S = 2	224 x224x 64	
Input: 224 x 224 x 3		

Baseline Autoencoder

- L2 Loss
- ReLU / TanH
- Batch Normalization
- Transpose Layers
- Upsampling Layers
- Callbacks=[ReduceLROnPlateau, ModelCheckpoint]

1. Colorization Autoencoder using RGB

2. Colorization Autoencoder using LAB

Transfer Learning: VGG-16

1. VGG16 Model Architecture

2. Custom Decoder Layers

ENCODER

Input: 7 x 7 x 512

Output: 7 x 7 x 512

DECODER

Input: 7 x 7 x 512	
3 x 3 Conv, 256	7 x 7 x 256
3 x 3 Conv, 128	7 x 7 x 128
2 x 2, Upsampling	14 x 14 x 128
3 x 3 Conv, 64	14 x 14 x 64
2 x 2, Upsampling	28 x 28 x 64
3 x 3 Conv, 32	28 x 28 x 32
2 x 2, Upsampling	56 x 56 x 32
3 x 3 Conv, 64, S = 1	56 x 56 x 16
2 x 2, Upsampling	112 x 112 x 16
3 x 3 Conv, 32, S = 1	112 x 112 x 2
2 x 2, Upsampling	224 x 224 x 2

FOLIAGE

MANMADE

Prediction

Ground Truth

Prediction

Ground Truth

Prediction

Ground Truth

FLOWER

Prediction

Ground Truth

Prediction

Ground Truth

Prediction

Ground Truth

ANIMAL

Prediction

Ground Truth

Prediction

Ground Truth

Prediction

Ground Truth

DATASET: 10K

EPOCH: 100

Grayscale

DATASET: 10K

Prediction

Ground Truth

Prediction

Ground Truth

EPOCH: 500

Prediction

Ground Truth

Grayscale

Prediction

Ground Truth

DATASET: 16K

EPOCH: 200

Transfer Learning: Inception-ResNet-V2

128 x 128 x 32

256 x 256 x 32

256 x 256 x 2

3 x 3 Conv. 32, S = 1

2 x 2, Upsampling

3 x 3 Conv, 2, S = 1

- L2 Loss
- ReLU / TanH
- Batch Normalization
- No Dropout
- He Normal Weights

Results - Nature (1 K)

MAE

0.0908

0.1701

0.0938

Results (Success) - VG (10 K)

Prediction

Ground Truth

Results (Success) – VG (10 K)

Prediction

Ground Truth

Results (Failure) - VG (10 K)

Prediction

Ground Truth

Takeaways

- Size and type of Dataset important
- Regression Sepia Tones for Multi-Color options

Expansion - Classification and GAN models

Thank You! Questions?