- PARTE 1

INFORMAÇÕES INICIAIS
INSTALA BIBLIOTECAS
IMPORTA BIBLIOTECAS
DEFINE VARIÁVEIS

import datetime as dt

```
#
  Informações
# Os dados recuperados serão desde 01-dezembro-2016 até 31-março-2022
  Base de treinamento: 01-jan-2017 a 31-dez-2020 (4 anos, 80% dos dados)
  Base de teste: 01-jan-2021 a 31-dez-2021 (1 ano, 20% dos dados)
  Base de validação: 01-jan-2022 a 31-mar-2022 (3 meses)
# Colocar com os dados em percentual de variação diária (normalização dos dados)
# Testar para ver se vai funcionar melhor
#
# Os dados de índices e da base de Dólar serão extraídos do Yahoo Finance
# Os dados de médias móveis, RSL, volatilidade e variação % serão calculados no código.
# Titulo Brasil de 10 anos será extraído do Investing.com
  instalando as bibliotecas
#
!pip install investpy
                              ## Biblioteca para recuperar dados do site Investing.com
!pip install yfinance
                                ## Biblioteca para recuperar dados do site Yahoo Finance
!pip install pandas_datareader ## Biblioteca para coletar dados da web , sites diversos, yaho
!pip install pmdarima
#
#
#
    Importando as bibliotecas
#
#
import pandas as pd
import pandas_datareader.data as web
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
```

```
# Biblioteca para obter dados do Investing.com
import investpy as inv
# Biblioteca para obter dados do Yahoo Finance
import yfinance as yf
yf.pdr_override()
import math
from sklearn.metrics import mean squared error
# Bibiotecas para mmodelo LSTM
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import Dense, LSTM, Dropout
from sklearn.feature_selection import SelectKBest
# Bibliotecas para modelo ARIMA
import pmdarima as pm
from statsmodels.tsa.arima.model import ARIMA
from statsmodels.graphics.tsaplots import plot_acf
from statsmodels.graphics.tsaplots import plot_pacf
from statsmodels.tsa.stattools import adfuller
from pmdarima.arima.utils import ndiffs
from pmdarima.metrics import smape
import seaborn as sns
```

- PARTE 2

COLETA DE DADOS NA WEB

```
#
    Os dados históricos estarão no timeframe diário
#
#
    Os seguintes dados serão recuperados do site Yahoo Finance:
#
        1) Dolar,
#
        2) Ibovespa,
#
        3) Titulo Publico Norteamericano de 10 anos (USBond 10Y),
#
        4) Índice S&P500,
#
        5) Índice de Volatilidade do SP500 (Índice VIX),
#
        6) Dollar Index (paridade entre o dolar e uma cesta de moedas),
#
        7) Futuro do Ouro,
#
        8) Petróleo WTI
#
#
    Os seguintes dados serão recuperados do site Investing.com:
#
        1) Título Público Brasil 10 anos
#
    Os indicadores de Média Móvel, Volatilidade, Variação % e RSL do Dolar
#
#
    serão calculados no código e inseridos como colunas no dataframe relativo ao Dolar
#
#
    A base de treinamento tem início em 01/01/2017, porem o histórico de cotação
    do dólar será recuperado a partir do dia 01/12/2016 para que possamos ter
```

```
pelo menos 17 dias de dados antes do início do treinamento para fazer o cálculo
#
#
    da média móvel de 17 dias a partir do dia 01/01/2017.
#
#
   Os dados da base de validação são de 01/01/2022 até 31/03/2022, a extração busca o dado até
#
#
data_inicio = dt.datetime(2016,12,1)
data fim = dt.datetime(2022,4,1)
#
#
       Recupera os dados do Yahoo Finance
# DOLAR
df_dolar = web.DataReader('BRL=x', data_source='yahoo', start=data_inicio, end=data_fim)
# IBOVESPA
df_ibovespa = web.get_data_yahoo('^BVSP', start=data_inicio, end=data_fim)
# US BOND 10Y (Título Publico norteamericano 10 anos)
df_bondUS = web.get_data_yahoo('^TNX', start=data_inicio, end=data_fim)
# ÍNDICE S&P500
df_sp500 = web.get_data_yahoo('^GSPC', start=data_inicio, end=data_fim)
# ÍNDICE VIX
df_vix = web.get_data_yahoo('^VIX', start=data_inicio, end=data_fim)
# DOLLAR INDEX
df_index = web.get_data_yahoo('DX-Y.NYB', start=data_inicio, end=data_fim)
# OURO FUTURO
df_gold = web.get_data_yahoo('GC=F', start=data_inicio, end=data_fim)
# PETROLEO BRENT
df_brent = web.get_data_yahoo('BZ=F', start=data_inicio, end=data_fim)
# TODOS OS TICKERS MENOS O DOLAR
#tickers = ['^BVSP', '^TNX', '^GSPC', '^VIX', 'DX-Y.NYB', 'GC=F', 'BZ=F']
#df_dados = web.get_data_yahoo(tickers, start=data_inicio, end=data_fim)
#
#
       Recupera os dados do Investing.com
# Título Público Brasil 10 anos
df_bondBR = inv.get_bond_historical_data('Brazil 10Y', from_date='01/12/2016', to_date='01/04/20
```

PARTE 3

TRATAMENTO DOS DADOS RECUPERADOS CRIAÇÃO DO DATASET

- # a) Primeira verificação dos dados retornados e quantidade de linhas, datas inicial e final dataset
 # b) Verificar se o tipo do campo está correto e na formatação correta, como pontos e vigulas para valores decimais, formato de data, e tipo de campo numérico, inteiro, float, string, etc.; dataset.info()
- # c) Verificar se os dados foram obtidos integralmente, ou seja, se todos os dados
 # foram recuperados com valores numéricos e se há campos em branco ou nulos;
 # dataset.isna().any()
- # d) Calcular e incluir as colunas com os indicadores técnicos do Dolar: Média Móvel, Volatili
- # e) Montar o dataset que será utilizado pelos modelos de Machine Learning com os dados dos ou
- # f) Tratamento das celulas com valores nulos ou branco em função das datas em que não houve n # (diferenças de feriados e dias úteis entre Brasil e Estados Unidos, por exemplo)
- # g) Primeira visualização gráfica dos dados do Dolar (preço de fechamento) e indicadores

Seção 3.1 - Verificação dos dados carregados (itens a, b, c)

Verificação dos dados carregados [] Ь, 30 células ocultas

Seção 3.2 - Montagem do dataset modelo (itens d, e, f, g)

Criação dos parâmetros técnicos MM7, MM17, Volatilidade, Variação % e RSL

Inclusão no dataset da coluna ALVO que é o preço alvo do Dolar a ser previsto para o dia seguinte

Montar o dataset agrupando os dados dos ativos

Trata as celulas com valores branco e/ou nulo

Plota o gráfico de dados históricos do Dolar

[] L 22 células ocultas

- PARTE 4

ANÁLISE E EXPLORAÇÃO

PRÉ PROCESSAMENTO DOS DADOS

```
Definição do tamanho dos dados de teste, treinamento e validação
#
   Base de treinamento = anos 2017 a 2020 (4 anos = 80%)
    Base de testes = ano 2021 (1 ano = 20%)
    Base de validação = janeiro de 2022 (1 mês)
   Separação dos dados
ds_dados = ds_modelo.loc['2017-01-01':'2021-12-31']
ds_treino = ds_dados.loc['2017-01-01':'2020-12-31']
ds teste = ds dados.loc['2021-01-01':'2021-12-31']
ds_validacao = ds_modelo.loc['2022-01-01':'2022-03-31']
print (len(ds_modelo))
print(len(ds_dados))
print(len(ds_treino))
print(len(ds_teste))
print(len(ds_validacao))
sns.heatmap(ds_dados.drop(['MM7', 'MM17', 'Variação', 'Volatilidade', 'RSL', 'Alvo'], 1).corr(),
#sns.heatmap(ds_dados.drop(['MM7', 'MM17', 'Variação', 'Volatilidade', 'RSL', 'Alvo'], 1).corr()
    Plota o gráfico dos dados de Volatilidade
    dados de treinamento e teste (2017-2021)
plt.figure(figsize=(16,8))
plt.plot(ds_dados['Volatilidade'])
    Plota o gráfico dos dados de Variação %
    dados de treinamento e teste (2017-2021)
plt.figure(figsize=(16,8))
plt.plot(ds_dados['Variação']*100)
    Plota o histograma da volatilidade do Dolar durante o período dos
    dados de treinamento e teste (2017-2021)
plt.figure(figsize=(16,8))
plt.hist(ds_dados['Volatilidade'], bins=100)
    Plota o histograma da variação percentual do Dolar durante o período dos
    dados de treinamento e teste (2017-2021)
plt.figure(figsize=(16,8))
plt.hist(ds_dados['Variação'], bins=100)
    Plota o histograma do valor do Dolar durante o período dos
    dados de treinamento e teste (2017-2021)
```

```
plt.figure(figsize=(16,8))
plt.hist(ds_dados['Dolar'], bins=100)
# Separando as features e labels para escolha das melhores
# Escolhendo as melhores features com Kbest
features = ds_dados
labels = ds_dados.Alvo
features_list = ('Dolar', 'MM7', 'MM17', 'Volatilidade', 'Variação', 'RSL', 'Ibovespa', 'Brent', 'Bond
k_best_features = SelectKBest(k='all')
k_best_features.fit_transform(features, labels)
k_best_features_scores = k_best_features.scores_
raw_pairs = zip(features_list[1:], k_best_features_scores)
ordered_pairs = list(reversed(sorted(raw_pairs, key=lambda x: x[1])))
k_best_features_final = dict(ordered_pairs[:15])
best_features = k_best_features_final.keys()
print ('')
print ("Melhores features:")
print (k_best_features_final)
# Separando as features escolhidas
#features = ds_dados.loc[:,['Volatilidade','Brent','Variação']] ## label=Dolar, Feature com Al
features = ds_dados.loc[:,['MM17','MM7','Volatilidade']] ## label=Alvo, Feature com Dolar fech
features
```

PARTE 5

CRIAÇÃO DOS MODELOS DE MACHINE LEARNING

- a) LSTM
- b) ARIMA

▼ 5.a) LSTM

```
sc_treino = sc.fit_transform(ds_treino['Dolar'].values.reshape(-1,1))
sc_teste = sc.fit_transform(ds_teste['Dolar'].values.reshape(-1,1))
print(sc_treino.shape)
print(sc_teste.shape)
        Dados de treinamento
#
       X = valor Dolar no dia
        Y = alvo da previsão
X_treino=[]
Y_treino=[]
for i in range(len(sc_treino)-dias_previsao):
        X_treino.append(sc_treino[i:i+dias_previsao, 0])
        Y_treino.append(sc_treino[i+dias_previsao, 0])
X_treino, Y_treino = np.array(X_treino), np.array(Y_treino)
#
        Dados de teste
X_teste = []
Y_{teste} = []
for i in range(len(sc teste)-dias previsao):
        X_teste.append(sc_teste[i:i+dias_previsao, 0])
        Y_teste.append(sc_teste[i+dias_previsao, 0])
X_teste, Y_teste = np.array(X_teste), np.array(Y_teste)
# Reshape input para ser [dados, time steps, features] que é requerido pelo LSTM
X_treino = X_treino.reshape(X_treino.shape[0],X_treino.shape[1] , 1)
X_teste = X_teste.reshape(X_teste.shape[0],X_teste.shape[1] , 1)
X_treino.shape[1]
    Criação do modelo LSTM
modelo = Sequential()
modelo.add(LSTM(units = 50, return_sequences=True, input_shape=(X_treino.shape[1],1)))
modelo.add(Dropout(0.2))
modelo.add(LSTM(units = 50, return_sequences=True))
modelo.add(Dropout(0.2))
modelo.add(LSTM(units = 50))
modelo.add(Dropout(0.2))
modelo.add(Dense(units=1, activation='relu'))
modelo.summary()
```

Treinar o modelo com otimizador "adam" e a função de perda "mean squared error" modelo.compile(optimizer='adam', loss='mean squared error') modelo.fit(X_treino, Y_treino, validation_data=(X_teste,Y_teste), epochs=50, batch_size=64) perda = modelo.history.history['loss'] plt.plot(perda) plt.xlabel('Epoch') plt.ylabel('Perda') plt.title('Perda do Modelo de Treino') plt.show() Faz a previsão e verifica métricas de performance previsao_treino=modelo.predict(X_treino) previsao_teste=modelo.predict(X_teste) Transformação de volta ao formato original previsao_treino = sc.inverse_transform(previsao_treino) previsao_teste = sc.inverse_transform(previsao_teste) Calculate a métrica de performance RMSE para dados de treino e de teste print(math.sqrt(mean squared error(Y treino, previsao treino))) print(math.sqrt(mean_squared_error(Y_teste, previsao_teste)))

#Testes com modelo LSTM:

#units #50,60,80,120	dropout 2,3,4,5	activation relu	Layers	epoc	hs bat 100	ch_size	MSE_trei 64	no MSE_tes 4.88	te
#50,60,80,120	2,3,4,5	relu	4	50		64			
#50,50,50	2,2,2	relu		3	50		64	4.74	
#50,50,50	2,2,2	linear	3		25	32		4.90	
#50,50	2,2	linear		2	25		32	4.73	}
#50,50	2,2	relu	2		25	32		4.76	
#50,50	2,2	relu	2		25	64		4.72	
#50,50,50	2,2,2	relu		3	25		64	4.73	}
#50,50	2,2	relu	2		50	64		4.74	
#50,50	2,2	relu	2		25	128		4.74	4.
#50,50	3,3	relu	2		25	64		4.72	
#50,50,50	2,2,2	relu		3	25		32	4.90)
#50,50,50	2,2,2	relu		3	100		64	4.73	

```
#optimizer=Adam
#dropout = 0.2
#units = 50
#layers = 3
#activ = relu
#batch = 64
#epoch = 50 (25 e 100 variou pouco)

plt.plot(ds_teste['Dolar'][len(ds_teste)-len(previsao_teste):].values, color='blue')
plt.plot(previsao_teste, color='red')
```

```
plt.title('Previsão Dólar')
plt.xlabel('Dias')
plt.ylabel('Preço')
plt.legend()
plt.show()
    Faz previsão no dataset de validação, dados ainda desconhecidos do modelo
#ds_validacao
dados_validacao = pd.concat((ds_dados['Dolar'].tail(dias_previsao), ds_validacao['Dolar']), axis
dados_validacao
sc validacao = sc.fit transform(dados validacao.values.reshape(-1,1))
X_valida = []
for i in range (dias_previsao, len(sc_validacao)):
    X_valida.append(sc_validacao[i-dias_previsao:i, 0])
X_valida = np.array(X_valida)
X_valida = X_valida.reshape(X_valida.shape[0], X_valida.shape[1] , 1)
previsao_validacao = modelo.predict(X_valida)
previsao validacao = sc.inverse transform(previsao validacao)
dados_validacao
plt.plot(previsao_validacao, color='red', label='Previsão')
plt.plot(np.array(dados_validacao.tail(len(previsao_validacao))), color='blue', label='Valor Dol
plt.title('Previsão Dólar')
plt.xlabel('Dias')
plt.ylabel('Preço')
plt.legend()
plt.show()
    Fazer previsão para ao longo de 60 dias ao invés de 1 dia de cada vez
   Validar na base de validação (01/01/2022 a 31/03/2022)
print(len(ds_validacao))
    Usar os últimos 100 dias da base de testes (timestep=100), pois base de validação começa a p
   Usar 100 desta vez no timesetp para não confundir com os 60 dias de previsão
fut_inp = sc_teste[len(ds_teste)-100:]
fut_inp = fut_inp.reshape(1,-1)
tmp_inp = list(fut_inp)
fut_inp.shape
```

```
Cria lista dos últimos 100 dados -> é o timestep
tmp_inp = tmp_inp[0].tolist()
    Previsão para os próximos 60 dias usando os dados correntes (gerados pela previsão)
lst output=[]
n_steps=100
i=0
                   # este 60 aqui é a qtde de dia para frente que quero prever
while(i<60):
    if(len(tmp_inp)>100):
        fut_inp = np.array(tmp_inp[1:])
        fut_inp=fut_inp.reshape(1,-1)
        fut_inp = fut_inp.reshape((1, n_steps, 1))
        yhat = modelo.predict(fut_inp, verbose=0)
        tmp_inp.extend(yhat[0].tolist())
        tmp_inp = tmp_inp[1:]
        lst_output.extend(yhat.tolist())
        i=i+1
    else:
        fut_inp = fut_inp.reshape((1, n_steps,1))
        yhat = modelo.predict(fut_inp, verbose=0)
        tmp_inp.extend(yhat[0].tolist())
        lst_output.extend(yhat.tolist())
        i=i+1
print(lst_output)
len(sc_teste)
    Plota a previsão ao longo de 60 dias como continuação dos preços
plot real=np.arange(1,60)
plot_pred=np.arange(60,120)
dado_real= sc.inverse_transform(sc_validacao[1:60])
dado_previsto = sc.inverse_transform(lst_output)
plt.plot(plot_real, dado_real, label='Real')
plt.plot(plot_pred, dado_previsto, label='Previsto')
plt.xlabel('Dias')
plt.ylabel('Preço')
plt.legend()
plt.show()
    Plota a previsão com a continuidade do preço real
plot real=np.arange(1,120)
plot_pred=np.arange(60,120)
dado_real= sc.inverse_transform(sc_validacao[:119])
dado_previsto = sc.inverse_transform(lst_output)
plt.plot(plot_real, dado_real, label='Real')
plt.plot(plot_pred, dado_previsto, label='Previsto')
plt.xlabel('Dias')
```

```
plt.ylabel('Preço')
plt.legend()
plt.show()

# Plotar o gráfico um sobre o outro
# Plota somente a previsão ao longo de 60 dias sobre o preço real
# Comparando com a base de validação (jan a mar de 2022)

dado_real= sc.inverse_transform(sc_validacao[60:])
dado_previsto = sc.inverse_transform(lst_output)
plt.plot(dado_real, label='Real')
plt.plot(dado_previsto, label='Previsto')
plt.xlabel('Dias')
plt.ylabel('Preço')
plt.legend()
plt.show()
```

→ 5.b) ARIMA

O modelo ARIMA é caracterizado pelos 3 termos (p, d, q):

p = número de time lags do modelo auto-regressivo (AR)

d = grau de diferenciação, número de diferenciações requeridas para tornar o modelo estacionário;

q = ordem do modelo de média-móvel (MA)

Como podemos ver pelos parâmetros requeridos pelo modelo, qualquer série temporal estacionária pode ser modelada com ARIMA.

Estacionariedade

Subtrair os valores anteriores do valor atual (diferença). Se apenas diferenciarmos uma vez, podemos não obter uma série estacionária, então fazemos isso várias vezes. E o número mínimo de operações de diferenciação necessárias para tornar a série estacionária será inserida em nosso modelo ARIMA.

ADF test

Usaremos o Augumented Dickey Fuller (ADF) para testar se a série de preços é estacionária. A hipótese nula do teste ADF diz que a série não é estacionária. Então, se o p-level do teste for menor que o nível de significância (0.05) podemos rejeitar a hipótese nula e inferir que a série é de fato estacionária.

Neste caso, se o p-value > 0.05 precisaremos encontrar seu valor d.

```
x_treino = ds_treino.Dolar
y_treino = ds_treino.Alvo
x_teste = ds_teste.Dolar
y_teste = ds_teste.Alvo
```

```
x_valida = ds_validacao.Dolar
y_valida = ds_validacao.Alvo
      Primeira forma de obter valor de 'd'
    Verifica se a série é estacionária
resultado = adfuller(ds_dados.Dolar.dropna())
print(f"Estatística ADF: {resultado[0]}")
print(f"p-value: {resultado[1]}")
Autocorrelation Function (ACF)
fig, (ax1,ax2) = plt.subplots(1, 2, figsize=(16, 4))
ax1.plot(ds_modelo.Dolar)
ax1.set_title("Dados Originais")
    acrescentar o ; ao final da linha para não plotar duplicado
plot_acf(ds_dados.Dolar, ax=ax2);
    Uma forma de obter o valor de 'd' é fazer as diferenciações
diff = ds_dados.Dolar.diff().dropna()
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 4))
ax1.plot(diff)
ax1.set_title("Difference once")
plot_acf(diff, ax=ax2);
diff = ds_dados.Dolar.diff().dropna()
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 4))
ax1.plot(diff)
ax1.set_title("Difference twice")
plot_acf(diff, ax=ax2);
Como praticamente não há diferença entre o "difference once" e o "difference twice", necessitou de
apenas 1 diferenciação.
    confirmação do valor de 'd'
ndiffs(x_treino, test="adf")
diff.values
    Autocorrelação parcial
diff = ds_dados.Dolar.diff().dropna()
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 4))
```

```
ax1.plot(diff)
ax1.set_title("Difference once")
ax2.set_ylim(0, 1)
plot_pacf(diff, ax=ax2);
# O método auto_arima trabalha com multiplas combinações de p, d e q
# para encontrar os melhores valores
modelo = auto arima(
                     ds_dados.Dolar, start_p=1, start_q=1,
   test="adf", max_p=6, max_q=6, m=1, # frequencia da serie
   d=None, # determina 'd'
   seasonal=False, trace=True, stepwise=True,
)
   ARIMA Model
modelo = ARIMA(diff, order=(1, 1, 0))
result = modelo.fit()
print(result.summary())
result.plot_diagnostics(figsize=(16, 8));
Documentação do site oficial do pacote ARIMA
Estimador do valor de 'd'
kpss_diffs = ndiffs(y_treino, alpha=0.05, test='kpss', max_d=6)
adf_diffs = ndiffs(y_treino, alpha=0.05, test='adf', max_d=6)
n_diffs = max(adf_diffs, kpss_diffs)
print(f"Valor de d estimado: {n_diffs}")
# O método auto_arima trabalha com multiplas combinações de p, d e q
# para encontrar os melhores valores
modelo_arima = pm.auto_arima(y_treino, d=n_diffs, seasonal=False, stepwise=True,
                   suppress_warnings=True, error_action="ignore", max_p=6,
                   max_order=None, trace=True)
print(modelo_arima.order)
def previsao_um_dia():
   fc, conf_int = modelo_arima.predict(n_periods=1, return_conf_int=True)
   return (
       fc.tolist()[0],
       np.asarray(conf_int).tolist()[0])
forecasts = []
intervalo_confianca = []
for nova_obs in y_teste:
```

```
fc, conf = previsao_um_dia()
   forecasts.append(fc)
   intervalo_confianca.append(conf)
   # Atualiza o modelo com um pequena quantidade de 'MLE steps'
   modelo_arima.update(nova_obs)
print(f"Mean squared error: {mean squared error(y teste, forecasts)}")
print(f"SMAPE: {smape(y_teste, forecasts)}")
fig, axes = plt.subplots(2, 1, figsize=(12, 12))
axes[0].plot(x_treino, color='blue', label='Dados de Treino')
axes[0].plot(x_teste.index, forecasts, color='green', marker='o',
            label='Preço Previsto')
axes[0].plot(y_teste.index, y_teste, color='red', label='Preço Atual')
axes[0].set_xlabel('Datas')
axes[0].set_ylabel('Preços')
axes[0].legend()
# ------ Predicted with confidence intervals ------
axes[1].plot(y_treino, color='blue', label='Dados de Treino')
axes[1].plot(x_teste.index, forecasts, color='green',
            label='Preço Previsto')
axes[1].set_title('Preços Previstos & Intervalos de Confiança')
axes[1].set_xlabel('Datas')
axes[1].set_ylabel('Preço')
conf_int = np.asarray(intervalo_confianca)
axes[1].fill_between(x_teste.index,
                   conf_int[:, 0], conf_int[:, 1],
                   alpha=0.9, color='orange',
                   label="Intervalo de Confiança")
axes[1].legend()
fig, axes = plt.subplots(2, 1, figsize=(12, 12))
# ------ # ----- Actual vs. Predicted
#axes[0].plot(x_treino, color='blue', label='Dados de Treino')
axes[0].plot(x_teste.index, forecasts, color='green', marker='o',
            label='Preço Previsto')
axes[0].plot(y_teste.index, y_teste, color='red', label='Preço Atual')
axes[0].set_xlabel('Datas')
axes[0].set_ylabel('Preços')
axes[0].legend()
# ------ Predicted with confidence intervals ----------
#axes[1].plot(y_treino, color='blue', label='Dados de Treino')
```

×