13/6/22, 14:14 TS2 - Nicolás Locatti

Tarea Semanal 2

Nicolás Locatti

Entrega 03/5. Entregado 03/5

Para la siguiente red se pide:

- **1.** Hallar la transferencia $T=rac{V_o}{V_i}$ en función de ω_o y Q.
- **2.** Obtener el valor de los componentes del circuito de forma tal que $\omega_o=1$ y Q=3
- **3.** Ajustar el valor de R_1 de forma tal que |T(0)|=20dB.

Bonus:

+10 Obtener los valores de la red normalizados en frecuencia e impedancia.

+10 $\ \ lacktriangledown$ Calcular las sensibilidades $S_C^{\omega_o}$, $S_{R_2}^Q$ y $S_{R_3}^Q$

+10 🔂 Recalcular los valores de la red para que cumpla con una transferencia Butterworth.

+10 Cómo podría obtener un circuito pasabanda con los mismos componentes originales y con qué parámetros quedaría diseñado (Ver ejemplo 4.6 en Schaumann).

+10 🔂 Simulación circuital de todos los experimentos.

+10 Presentación en jupyter notebook

1. Hallar la transferencia $T=rac{V_o}{V_i}$ en función de ω_o y Q.

Transferencia hallada:

$$T(S) = rac{V_o}{V_i} = -rac{R_3}{R_1}.rac{rac{1}{C^2R_3^2}}{S^2 + Srac{1}{CR_2} + rac{1}{C^2R_3^2}}$$

$$T(S)=rac{V_o}{V_i}=K$$
 . $rac{\omega_o^2}{S^2+Srac{\omega_o}{O}+\omega_o^2}$

$$\omega_o=rac{1}{CR_3}$$

$$K=-rac{R_3}{R_1}$$

$$Q = \frac{R_2}{R_3}$$

Desarrollo:

2. Obtener el valor de los componentes del circuito de forma tal que $\omega_o=1$ y Q=3

$$\omega_o=1=rac{1}{CR_3}$$

$$R_3 = \frac{1}{C}$$

Si adoptamos $R_3=10K\Omega$

$$C=100uF$$

$$Q=3=rac{R_2}{R_3}$$

$$R_2 = 3.10k\Omega$$

$$R_2 = 30k\Omega$$

3. Ajustar el valor de R_1 de forma tal que |T(0)|=20dB.

$$\left|T(0)\right|_{dB} = 20log(\left|T(0)\right|_{veces})$$

$$1 = \log(|T(0)|)$$

$$|T(0)| = 10 = K$$

$$K = \frac{R_3}{R_1}$$

$$R_1 = \frac{R_3}{K} = \frac{10k\Omega}{10}$$

$$R_1 = 1K\Omega$$

Bonus:

+10 ♥ Obtener los valores de la red normalizados en frecuencia e impedancia. ✔

+10 $\mbox{\ensuremath{\mbox{$\wp$}}}$ Calcular las sensibilidades $S_C^{\omega_o}$, $S_{R_2}^Q$ y $S_{R_3}^Q$

+10 😯 Recalcular los valores de la red para que cumpla con una transferencia Butterworth. 🗸

Simulación para Butter con ganancia 20dB

+10 € Cómo podría obtener un circuito pasabanda con los mismos componentes originales y con qué parámetros quedaría diseñado (Ver ejemplo 4.6 en Schaumann). ◆

- +10 Simulación circuital de todos los experimentos.
- +10 ⊌ Presentación en jupyter notebook ✔

In []: