TICS-411 Minería de Datos

Clase 7: Algoritmo Apriori

Alfonso Tobar-Arancibia

alfonso.tobar.a@edu.uai.cl

Market Basket Analysis

Introducción

Gracias a los planes de fidelización (juntar puntos, dar RUT, acumular millas, etc.) las empresas son capaces de detectar patrones:

- Qué nos gusta,
- Qué compramos,
- Con qué frecuencia lo compramos,
- Junto con qué lo compramos
- etc.

\widehat{i}

Market Basket Analysis

Corresponde al estudio de nuestra canasta de compras. De modo que podamos entender qué cosas son las que como clientes preferimos y una empresa pueda *Recomendar* de manera más apropiadas.

Definiciones

Patrón

Predicado (output True/False) para verificar si una estructura buscada ocurre o no.

Tarea

Encontrar reglas de asociación basado en patrones.

Ejemplos

- Datasets de supermercados:
 - 10% de los clientes totales compran vino y quedo (patrón: si compro vino, también llevo queso).
- Datasets de Alarmas:
 - Si la alarma A y B suenan en un intervalo de 30 segundos, entonces la alarma C sonará dentro de un intervalo de 60 segundos con 50% de probabilidad.

Ejemplo: Datos Supermercado

Datos Transaccionales

Una transacción involucra un conjunto de elementos. Una boleta de supermercado muestra el conjunto de elementos comprados por un cliente. Los productos involucrados en una transacción se denominan items.

ID	Items Comprados
1	Pan, Leche, Pañales
2	Pan, Pavo, Manzanas
3	Huevo, Pan, Cerveza
4	Leche, Arroz, Bebida
5	Pan, Huevo, Mayonesa
6	Pañales, Huevos, Cerveza
7	Zanahoria, Manjar, Leche

Ejemplo: Datos Supermercado

ID	Items Comprados
1	Pan, Leche, Pañales
2	Pan, Pavo, Manzanas
3	Huevo, Pan, Cerveza
4	Leche, Arroz, Bebida
5	Pan, Huevo, Mayonesa
6	Pañales, Huevos, Cerveza
7	Zanahoria, Manjar, Leche

Reglas de Asociación

{Pañales} ⇒ {Cerveza}

{Leche, Pan} ⇒ {Cerveza}

 $\{Huevos\} \Rightarrow \{Pan\}$

{Cerveza, Pañales} ⇒ {Leche}

Si compro unos o varios artículos (LHS) entonces también compro otros artículos (RHS).

Objetivo y Aplicaciones

Objetivo

Encontrar asociaciones entre elementos u objetos de bases de datos transaccionesles.

(i) Aplicaciones

- Apoyo a toma de decisiones.
- Análisis de Información de Ventas.
- Distribución y ubicación de Mercaderías.
- Segmentación de Clientes en base de patrones de compra.
- Diágnostico y predicción de alarmas.

Definiciones: Medidas

Support (Soporte)

Fracción de Transacciones que contienen a X. Probabilidad de que una transacción contenga a X.

$$Supp(X) = P(X)$$

Support Count

Número de Transacciones que contienen a X.

$$SuppCount(X) = Count(X)$$

Confidence (Confianza o Eficiencia)

Fracción de las Transacciones en las que aparece X que también incluyen Z.

$$Conf(X \implies Z) = rac{Supp(X \cup Z)}{Supp(X)}$$

$$Conf(X \implies Z) = rac{SuppCount(X \cup Z)}{SuppCount(X)}$$

Les Ojo con la Notación ∪. En este caso significa que tanto el producto X como el Producto Z sean parte de la transacción.

Ejemplos: Support y Confidence

$$Supp(Pan) = 4/7$$
 $Supp(Leche) = 3/7$
 $Supp(Pan, Huevo) = 2/7$
 $Conf(Pan \implies Huevo) = \frac{Supp(Pan, Huevo)}{Supp(Pan)} = \frac{2}{4}$
 $Conf(Pan \implies Leche) = \frac{Supp(Pan, Leche)}{Supp(Pan)} = \frac{1/4}{4}$
 $Conf(Leche \implies Pan) = \frac{Supp(Pan, Leche)}{Supp(Leche)} = \frac{1/4}{3}$

Problema

En un dataset transaccional de n productos totales y $\left|U_i\right|$ elementos para la Transacción i.

Se pueden generar un total de N_{reglas} de asociación:

[Math Processing Error]

<u>^</u>

Si suponemos un supermercado que tiene 1000 productos, y transacciones que pueden ir entre 1 y 50 productos. El problema es muy costoso, y se podrían eventualmente generar demasiadas combinaciones.

Algoritmo Apriori

Apriori

Es un algoritmo para aprender reglas de asociación que utiliza el principio Apriori para buscar de forma eficiente las reglas que satisfacen los límites de soporte y confianza.

Algoritmo

- 1. Fijar k=1 y determinar lista de candidatos de tamaño k.
 - a. Calcular la frecuencia del conjunto.
 - b. Eliminar conjuntos con baja frecuencia (utilizando un umbral de soporte).
 - c. Unir los conjuntos frecuentes para generar conjuntos de tamaño k+1.
 - d. Si existe la posibilidad de seguir creando combinaciones volver al paso a y repetir.
- 2. Usar todos los conjuntos frecuentes para generar reglas.

Ejemplo Apriori

Supongamos el siguiente dataset transaccional:

Supongamos que queremos calcular las reglas de asociación que tengan un MinSupp=40% y un MinConf=70%.

Ejemplo Apriori: Iteración 1

Transacciones TID Pan, Mantequilla, Leche Pan, Mantequilla Cerveza, Galletas, Pañales Leche, Pañales, Pan, Mantequilla 4 Cerveza, Pañales

1-Itemset	Supp Count	Supp
Pan	3	0.6
Mantequilla	3	0.6
Leche	2	0.4
Cerveza	2	0.4
Galletas	1	0.2
Pañales	3	0.6

^(!) Galletas NO CUMPLE con el Soporte Mínimo solicitado. Por lo tanto, lo elimino y genero relaciones de 2 productos sin considerar Galletas.

Ejemplo Apriori: Iteración 2

TID	Transacciones	
1	Pan, Mantequilla, Leche	
2	Pan, Mantequilla	
3	Cerveza, Galletas, Pañales	
4	Leche, Pañales, Pan, Mantequilla	
5	Cerveza, Pañales	

Acá **NO SE ELIMINA** ningún producto, ya que en los itemsets que sobrevivieron hay Pan, Mantequilla, Leche, Pañales y Cerveza.

2-Itemset	Supp Count	Supp
Pan, Mantequilla	3	0.6
Pan, Pañales	1	0.2
Pan, Leche	2	0.4
Pan, Cerveza	0	0
Mantequilla, Pañales	1	0.2
Mantequilla, Leche	2	0.4
Mantequilla, Cerveza	0	0
Pañales, Leche	1	0.2
Pañales, Cerveza	2	0.4
Leche, Cerveza	0	0

Ejemplo Apriori: Iteración 3

TID	Transacciones
1	Pan, Mantequilla, Leche
2	Pan, Mantequilla
3	Cerveza, Galletas, Pañales
4	Leche, Pañales, Pan, Mantequilla
5	Cerveza, Pañales

3-Itemset	Supp Count	Supp Count
Pan, Mantequilla, Leche	2	0.4
Pan, Mantequilla, Pañales	1	0.2
Pan, Mantequilla, Cerveza	0	0
Pan, Leche, Pañales	1	0.2
Pan, Leche, Cerveza	0	0
Pan, Pañales, Cerveza	0	0
Mantequilla, Leche, Pañales	1	0.2
Mantequilla, Leche, Cerveza	0	0
Mantequilla, Pañales, Cerveza	0	0
Leche, Pañales, Cerveza	0	0

Se puede apreciar que los únicos 3 productos que sobreviven son Pan, Mantequilla y Leche. Por lo tanto, NO ES POSIBLE generar reglas con 4 productos.

Ejemplo Apriori: Generación de Reglas

1-Itemset	Supp Count	Supp
Pan	3	0.6
Mantequilla	3	0.6
Leche	2	0.4
Cerveza	2	0.4
Pañales	3	0.6
2-Itemset	Supp Count	Supp
Pan, Mantequilla	3	0.6
Pan, Leche	2	0.4
Mantequilla, Leche	2	0.4
Pañales, Cerveza	2	0.4
3-Itemset	Supp Count	Supp Count
Pan, Mantequilla, Leche	2	0.4

• Para {Pan, Mantequilla}:

$$Conf(Pan \implies Mantequilla) = rac{Supp(Pan,Mantequilla)}{Supp(Pan)} = rac{3}{3}$$
 $Conf(Mantequilla \implies Pan) = rac{Supp(Pan,Mantequilla)}{Supp(Mantequilla)} = rac{3}{3}$

• Para {Pan, Leche}:

$$egin{aligned} Conf(Pan \implies Leche) &= rac{Supp(Pan,Leche)}{Supp(Pan)} = rac{2}{3} igotimes \ Conf(Leche \implies Pan) &= rac{Supp(Pan,Leche)}{Supp(Leche)} = rac{2}{2} igotimes \end{aligned}$$

• Para {Mantequilla, Leche}:

$$Conf(Mantequilla \implies Leche) = rac{Supp(Mantequilla, Leche)}{Supp(Mantequilla)} = rac{2}{3} imes Conf(Leche \implies Mantequilla) = rac{Supp(Mantequilla, Leche)}{Supp(Leche)} = rac{2}{2} imes Conf(Leche)$$

Ejemplo Apriori: Generación de Reglas

1-Itemset	Supp Count	Supp
Pan	3	0.6
Mantequilla	3	0.6
Leche	2	0.4
Cerveza	2	0.4
Pañales	3	0.6
2-Itemset	Supp Count	Supp
Pan, Mantequilla	3	0.6
Pan, Leche	2	0.4
Mantequilla, Leche	2	0.4
Pañales, Cerveza	2	0.4
3-Itemset	Supp Count	Supp Count
Pan, Mantequilla, Leche	2	0.4

• Para {Pañales, Cerveza}:

$$egin{align*} Conf(Pa\~nales \implies Cerveza) &= rac{Supp(Pa\~nales,Cerveza)}{Supp(Pa\~nales)} &= rac{2}{3} imes \ Conf(Cerveza \implies Pa\~nales) &= rac{Supp(Pa\~nales,Cerveza)}{Supp(Cerveza)} &= rac{2}{2} imes \ \hline \end{array}$$

• Para {Pan, Mantequilla, Leche}:

$$Conf(Pan, Mantequilla \implies Leche) = rac{Supp(Pan, Mantequilla, Leche)}{Supp(Pan, Mantequilla)} = rac{2}{3} imes Conf(Pan, Leche \implies Mantequilla) = rac{Supp(Pan, Mantequilla, Leche)}{Supp(Pan, Leche)} = rac{2}{2} imes Conf(Mantequilla, Leche \implies Pan) = rac{Supp(Pan, Mantequilla, Leche)}{Supp(Mantequilla, Leche)} = rac{2}{2} imes Conf(Mantequilla, Leche) = Conf(Mantequilla, Leche)$$

$$Conf(Leche \implies Pan, Mantequilla) = rac{Supp(Pan, Mantequilla, Leche)}{Supp(Leche)} = rac{2}{2}$$
 $\begin{tabular}{c} Conf(Mantequilla \implies Pan, Leche) = rac{Supp(Pan, Mantequilla, Leche)}{Supp(Mantequilla)} = rac{2}{3} \begin{tabular}{c} X \ Conf(Pan \implies Mantequilla, Leche) = rac{Supp(Pan, Mantequilla, Leche)}{Supp(Pan)} = rac{2}{3} \begin{tabular}{c} X \ Conf(Pan \implies Mantequilla, Leche) = rac{Supp(Pan, Mantequilla, Leche)}{Supp(Pan)} = rac{2}{3} \begin{tabular}{c} X \ Conf(Pan \implies Mantequilla, Leche) = rac{1}{3} \begin{tabular}{c} X \ Conf(Pan \implies Mantequilla, Leche) = rac{1}{3} \begin{tabular}{c} X \ Conf(Pan \implies Mantequilla, Leche) = rac{1}{3} \begin{tabular}{c} X \ Conf(Pan \implies Mantequilla, Leche) = rac{1}{3} \begin{tabular}{c} X \ Conf(Pan \implies Mantequilla, Leche) = rac{1}{3} \begin{tabular}{c} X \ Conf(Pan \implies Mantequilla, Leche) = rac{1}{3} \begin{tabular}{c} X \ Conf(Pan \implies Mantequilla, Leche) = rac{1}{3} \begin{tabular}{c} X \ Conf(Pan \implies Mantequilla, Leche) = rac{1}{3} \begin{tabular}{c} X \ Conf(Pan \implies Mantequilla, Leche) = rac{1}{3} \begin{tabular}{c} X \ Conf(Pan \implies Mantequilla, Leche) = rac{1}{3} \begin{tabular}{c} X \ Conf(Pan \implies Mantequilla, Leche) = rac{1}{3} \begin{tabular}{c} X \ Conf(Pan \implies Mantequilla, Leche) = rac{1}{3} \begin{tabular}{c} X \ Conf(Pan \implies Mantequilla, Leche) = rac{1}{3} \begin{tabular}{c} X \ Conf(Pan \implies Mantequilla, Leche) = rac{1}{3} \begin{tabular}{c} X \ Conf(Pan \implies Mantequilla, Leche) = rac{1}{3} \begin{tabular}{c} X \ Conf(Pan \implies Mantequilla, Leche) = rac{1}{3} \begin{tabular}{c} X \ Conf(Pan \implies Mantequilla, Leche) = rac{1}{3} \begin{tabular}{c} X \ Conf(Pan \implies Mantequilla, Leche) = rac{1}{3} \begin{tabular}{c} X \ Conf(Pan \implies Mantequilla, Leche) = rac{1}{3} \begin{tabular}{c} X \ Conf(Pan \implies Mantequilla, Leche) = rac{1}{3} \begin{tabular}{c} X \ Conf(Pan \implies Mantequilla, Leche) = Reche \end{tabular}$

Resultado Final

Itemset MinSupp = 40%

1-Itemset	Supp Count	Supp
Pan	3	0.6
Mantequilla	3	0.6
Leche	2	0.4
Cerveza	2	0.4
Pañales	3	0.6
2-Itemset	Supp Count	Supp
Pan, Mantequilla	3	0.6
Pan, Leche	2	0.4
Mantequilla, Leche	2	0.4
Pañales, Cerveza	2	0.4
3-Itemset	Supp Count	Supp Count
Pan, Mantequilla, Leche	2	0.4

Reglas Finales MinConf = 70%

$$Pan \Longrightarrow Mantequilla$$
 $Mantequilla \Longrightarrow Pan$
 $Leche \Longrightarrow Pan$
 $Leche \Longrightarrow Mantequilla$
 $Cerveza \Longrightarrow Pa\~nales$
 $\{Pan, Leche\} \Longrightarrow Mantequilla$
 $\{Mantequilla, Leche\} \Longrightarrow Pan$
 $Leche \Longrightarrow \{Pan, Mantequilla\}$

(i) Insights:

- El Pan, la Leche y la Mantequilla están relacionados.
- Parece ser que si llevo Cervezas también llevo Pañales.

Evaluación de Reglas de Asociación

Lift

Mide qué tan lejos de la independencia están X e Y. Lift varía entre 0 y ∞ .

$$Lift(X,Y) = rac{Conf(X \implies Y)}{s(Y)}$$

- $Lift(X,Y) \sim 1$ implica independencia y la regla no es importante.
- Lift(X,Y) < 1 implica una asociación negativa de la regla.
- Lift(X,Y) > 1 implica una asociativa de la regla. Un mayor Lift implica que la regla es potencialmente útil para el futuro.

Ejemplo:

$$Lift(Cerveza, Pa$$
ñ $ales) = rac{Conf(Cerveza \implies Pa$ ñ $ales)}{Supp(Pa$ ñ $ales)} = rac{1}{0.6} = 1.67$

Una persona que compra Cerveza tiene 1.67 más chances de comprar Pañales.

Implementación en Python: Preprocesamiento

Pre-procesamiento

```
import pandas as pd
from mlxtend.preprocessing import TransactionEncoder

tre = TransactionEncoder()
fd = tre.fit_transform(transactions)
fd_encoded = pd.DataFrame(df, columns = tre.columns_)
```

L4: transactions debe ser una lista de listas. Cada fila, son distintas transacciones. Cada transaccion puede tener distinto número de elementos. L5: tre.columns_ extrae los nombres de los productos para que el DataFrame sea más entendible.

① df_encoded es un DataFrame tipo OneHotEncoder pero con valores Booleanos (Esto es solicitado por la documentación).

Implementación en Python: Itemsets

```
1 from mlxtend.frequent_patterns import apriori
2
3 itemset = apriori(df_encoded, min_support=0.5, use_colnames = True)
```

L3: df_encoded es el DataFrame preprocesado.

- min_support: Corresponde al Soporte Mínimo para generar itemsets. Por defecto 0.5.
- **use_colnames**: Permite que las reglas usen los nombres de las columnas para referirse a los productos. Por defecto es **False**, pero conviene usarlo como True.
- itemset será un DataFrame con los itemsets generados.

Implementación en Python: Reglas

```
1 from mlxtend.frequent_patterns import association_rules
2
3 rules = association_rules(itemsets, metric="confidence", min_threshold=0.8)
```

L3: itemset es el dataframe generado en el paso anterior.

- **metric**: Métrica para definir reglas, puede ser "confidence" y otras definidas acá
- min_threshold: Corresponde al umbral de la métrica a utilizar. Por defecto 0.8.
- rules corresponde a un Dataset que tiene las Reglas de Asociación detectadas y muchas métricas asociadas.

