# Laser micromachining



### Content

- LASER
- Types of machinable materials
- Types of lasers
- Mechanism of interaction ablation in different types of lasers
- Where to use
- Industrial applications

### **LASER**

"Light Amplification by Stimulated Emission of Radiation"



Laser beam is a coherent and focussed beam of photons; coherent means its all one wavelength, unlike ordinary light having many wavelengths.

### **Characteristics of Laser Light**

- <u>Coherent</u>. Different parts of the laser beam are related to each other in phase. These phase relationships are maintained over long enough time.
- Monochromatic. Laser light consists of essentially one wavelength, having its origin in stimulated emission from one set of atomic energy levels.
- <u>Collimated</u>. Divergence negligible- Because of bouncing back between mirrored ends of a laser cavity, those paths which sustain amplification must pass between the mirrors many times and very nearly perpendicular to the mirrors. As a result, laser beams are very narrow and do not spread very much.

### Basic design to produce laser

- ☐ Gain medium/active laser medium- gain refers to amount of amplification; A laser gain medium is a medium which can amplify the power of light (typically in the form of a light beam)
- Resonator-the laser radiation can circulate and pass again medium which compensates the optical losses. resonator typically contains multiple laser mirrors, one of them being an output coupler, a laser gain medium, and possibly additional optical elements.
- Pumping energy- optical or electronically;



## Types of Laser

#### (A) By active media

- Solid state laser crystal, or glass, doped with impurities, e.g. ruby laser, Ti:sapphire laser, semiconductor laser.
- Gas laser e.g. He-Ne laser, Ar<sup>+</sup> laser, CO<sub>2</sub> laser, N<sub>2</sub> laser,
  HCN laser.
- <u>Dye laser</u> active medium: dye molecules in liquid solvent (sometimes in solids also).

#### (B) By mode of operation

- CW
- Pulsed

#### (C) By pumping and laser levels

- 3-level laser
- 4-level laser

### Machinable materials

- Materials
  - Metals
  - Non-metals
  - Dielectric materials
  - Ceramics



✓ Depends- laser absorptivity

### Laser produces different wavelengths



## Laser parameters and its effects

| Process<br>Parameters               | Effect                     |  |  |
|-------------------------------------|----------------------------|--|--|
| Wavelength,<br>Focal length of lens | Feature size               |  |  |
| Beam shape                          | Feature shape              |  |  |
| Beam energy,<br>Pulse width         | Size of heat affected zone |  |  |
| Depth of focus                      | Aspect ratio               |  |  |

|                  | Practical<br>Resolution<br>Limit | Attainable<br>Aspect<br>Ratio* | Taper | Undesirable<br>Side Effects          | Status of<br>Technology<br>Development |
|------------------|----------------------------------|--------------------------------|-------|--------------------------------------|----------------------------------------|
| Excimer<br>Laser | 5 mm                             | >100:1                         | yes   | Recast Layer                         | low                                    |
| CO2 Laser        | 200 mm                           | 100:1                          | yes   | Recast Layer,<br>Burring,<br>Thermal | high                                   |
| Nd:YAG           | 50 mm                            | 100:1                          | yes   | Recast Layer,<br>Burring,<br>Thermal | high                                   |
| EDM              | 100 mm                           | 20:1                           | No    | Surface finish                       | moderate                               |
| Chemical Etch    | 250 mm                           | 1:1.5                          | Yes   | Undercutting                         | moderate                               |
| Mechanical       | Ø 100 mm                         | 10:1                           | No    | Burring                              | moderate                               |

## Working principle

• When light strikes the surface of a material, a portion will be reflected from the interface due to the discontinuity in the real index of refraction and the rest will be transmitted into the material.

$$R = R_s = R_p = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2$$

• Inside the material, absorption causes the intensity of the light to decay withdepth at a rate determined by the material's absorption coefficient  $\alpha$ .



• Intensity decay: Beer lamberts law

$$I(z) = I_0 e^{-\alpha z}$$



• The material response will depend on the particular material system and the laser processing conditions.

### **Advantages**

- Easy capability of being automated
- Straightforward process monitoring
- Forceless and contactless machining
- Minor heat-affected zone
- Marginal modifications to the microstructure
- Machining free of burr and bulging
- High flexibility regarding design of tiny structures
- ·High machining speed
- High precision
- Constant machining quality
- No additional tooling costs by wear
- No solvent chemicals used
- Material removal rate controllable down to the nanometer scale

### Disadvantages

- The equipment required for micro machining is very costly than other cutting processes.
- Need highly skilled persons to operate micro machining systems.
- Material limitations (including crystalline and reflective materials)
- Reflected laser light can present a safety hazard

### Industrial applications

 Solid-state lasers are used in materials processing, spectroscopy, ultrashort pulse research, multiphoton microscopy, and medical applications.

https://youtu.be/a qg4jC-HXM

## Industrial applications



Laser testing of metals



Laser scanners



Surveying



Optical communication



Medical surgery



Holography