Smoothing Structured Decomposable Circuits

Andy Shih¹ Guy Van den Broeck² Paul Beame³ Antoine Amarilli⁴

¹Stanford University ²University of California, Los Angeles ³University of Washington ⁴LTCI, Télécom Paris, IP Paris

Dec 2019

Arithmetic Circuits

Tractable representation of probabilistic circuits

SOTA for:

- ► Inference algorithms for PGMs
- ► Inference algorithms for probabilistic programs
- ► Discrete density estimation

Check out:

Tractable Probabilistic Models: (UAI19 / AAAI20 tutorial)

Arithmetic Circuits

Can be thought of as a computation graph.

Why do we get tractability?

- ▶ Operations are sums and products \oplus , \otimes .
- ► Global / local structures of the computation graph are enforced.
 - Decomposability
 - Determinism
 - Smoothness

Tractability

Different combination of properties leads to different families of ACs

	AC	SPN	PSDD
Decomposability	1	1	√ (S)
Determinsim	1	X	✓
Smoothness	1	✓	✓
Pr(evid)	1	√	√
Marginal	1	1	✓
MPE	1	X	✓
Marginal MAP	X	X	/ *
Expectation	Х	X	√ *

...with different tractability properties.

Expressiveness

Source: Tractable Probabilistic Models tutorial

How expressive are probabilistic circuits?

density estimation benchmarks

dataset	best circuit	BN	MADE	VAE	dataset	best circuit	BN	MADE	VAE
nltcs	-5.99	-6.02	-6.04	-5.99	dna	-79.88	-80.65	-82.77	-94.56
msnbc	-6.04	-6.04	-6.06	-6.09	kosarek	-10.52	-10.83	-	-10.64
kdd	-2.12	-2.19	-2.07	-2.12	msweb	-9.62	-9.70	-9.59	-9.73
plants	-11.84	-12.65	-12.32	-12.34	book	-33.82	-36.41	-33.95	-33.19
audio	-39.39	-40.50	-38.95	-38.67	movie	-50.34	-54.37	-48.7	-47.43
jester	-51.29	-51.07	-52.23	-51.54	webkb	-149.20	-157.43	-149.59	-146.9
netflix	-55.71	-57.02	-55.16	-54.73	cr52	-81.87	-87.56	-82.80	-81.33
accidents	-26.89	-26.32	-26.42	-29.11	c20ng	-151.02	-158.95	-153.18	-146.9
retail	-10.72	-10.87	-10.81	-10.83	bbc	-229.21	-257.86	-242.40	-240.94
pumbs*	-22.15	-21.72	-22.3	-25.16	ad	-14.00	-18.35	-13.65	-18.81

71/147

Property 1: Structured Decomposability

Definition

A circuit is **structured decomposable** if each \otimes -gate decomposes according to a **vtree**.

(a) vtree v over $X_1X_2X_3$

(b) circuit decomposes according to v

Property 2: Determinism (aka Selectivity)

Definition

A circuit on variables X is **deterministic** if under any input x, at most one child of each \oplus -gate is nonzero.

Figure: deterministic circuit over X_1X_2 .

Property 3: Smoothness (aka Completeness)

Definition

A circuit is **smooth** if for every pair of children c_1 and c_2 of a \oplus -gate, $vars_{c_1} = vars_{c_2}$.

Figure: Two equivalent circuits computing $(x_0 \otimes x_1) \oplus x_2$. The left one is not smooth and the right one is smooth.

Enforcing Smoothness: Naive Quadratic Algorithm

- ▶ Go to each \oplus gate with children $c_1, ..., c_k$
- ▶ Fill in missing variables by attaching $\bigotimes_{x \in Y} (x \oplus -x)$, where $Y \subseteq X$
- ► Complexity *O*(*nm*)

Problematic when $n \ge 1,000$ and $m \ge 1,000,000$

Enforcing Smoothness: Missing Intervals

Key Insight: for structured decomposable circuits, the missing variables for each gate form two intervals (in the inorder traversal of vtree).

Figure: $A \setminus B$ forms two intervals

We need to fill in 2m intervals. Can we try to precompute subintervals and combine them in a smart way?

We can "merge" but we cannot "subtract/split" intervals.

Semigroup Range Sum

Theorem

Given n variables defined over a semigroup and m intervals, the sum of all intervals can be computed using $O(m \cdot \alpha(m, n))$ additions [Chazelle and Rosenberg 1989].

 $\alpha(m,n)$ is the inverse Ackermann function, which grows very slowly.

*The original theorem only bounds the number of additions. We bound the number of total operations.

Semigroup Range Sum: Near-Linear Algorithm

Double recursion.

Figure: Inner recursion

Figure: Outer recursion

Trace additions into circuit

$$a = w(x_2) + w(x_3)$$

 $b = a + w(x_1)$
 $c = a + w(x_4)$
output b, c

(a) Seq of additions to compute intervals (b) Tracing the additions into a circuit

Figure: Constructing smoothing gates for $\{x_1, x_2, x_3\}$ and $\{x_2, x_3, x_4\}$. Tracing is done by replacing $w(x_i)$ with $x_i \oplus -x_i$ and replacing each addition with a \otimes -gate.

More Results

Results on structured decomposable circuits: n is the number of variables and m is the size of the circuit

Task	Operations	Complexity		
Smoothing	\oplus, \otimes	$O(m \cdot \alpha(m, n))$		
${\sf Smoothing}^*$	\oplus, \otimes	$\Omega(m \cdot \alpha(m,n))^*$		
All-Marginal	$\oplus, \ominus, \otimes, \oslash$	$\Theta(m)$		

Matching lower bound* and linear All-Marginal algorithm!

^{*}For *smoothing-gate algorithms* on decomposable circuits.

Thanks!

Poster: East Exhibition Hall B+C #182, 10:45AM

Code: https://github.com/AndyShih12/SSDC

Contact: andyshih@cs.stanford.edu

For more:

- ► Tractable Probabilistic Models Tutorial at AAAI20
- "A Knowledge Compilation Map" [Darwiche and Marquis]