1

Def-clear path (another example)

Q1: Find def-clear paths for defs and uses of x and z.

Q2: Which definitions are live at node 4?

```
Def-clear Path
Variable x:
         d_1(x) and u_2(x):
                            1->2
         d_1(x) and u_5(x):
                            1->2->5 or 1->2->5->6->2->5
         d_1(x) and u_6(x):
                            1->2->3->6
                            1->2->3->4->6
                            1->2->5>6
Variable z:
         d_1(z) and u_4(z):
                            1->2->3->4
         d_1(z) and u_6(z):
                            1->2->3->6
         d_4(z) and u_6(z):
                            4->6
         d_5(z) and u_6(z):
                            5->6
         d_4(z) and u_4(z):
                            4->6->2->3->4
         d_5(z) and u_4(z):
                            5->6->2->3->4
         d_4(z) and u_7(z):
                            4->6->7 or 4->6->2->3->6->7
         d_5(z) and u_7(z):
                            5->6->7
         d_1(z) and u_7(z):
                            1->2->3->6->7
If loops are considered, there can be more def-clear paths.
                                                                           3
```


19

Variable (v)	Defined in node (n)	dcu (v, n)	dpu (v, n)
х	1	{5, 6}	{(2, 3), (2, 5)}
у	1	{4, 6}	{(3, 4), (3, 6)}
У	6	{4, 6}	{(3, 4), (3, 6)}
z	1	$\{4, 6, 7\}$	{}
z	4	{4, 6, 7}	{}
z	5	$\{4, 6, 7\}$	{}
count	1	{6}	{(6, 2), (6, 7)}
count	6	{6}	{(6, 2), (6, 7) }

Variable z: (5, 4)

Variable count: (1, (6,2)), and (1, (6,7))

are infeasible.

29

Def-use pairs: Minimal set (2)

What will be also covered if we have a test case which covers $(d_1(z), u_4(z))$?

How about $(d_4(z), u_4(z))$?

- Select an execution path that covers the specific def-use pair
- Identify all the def-use pairs in the selected path
- For each recognized def-use pair $(d_i(x), u_i(x))$
 - Try to find a path from node I to node j that is not defclear path for variable x
 - If so, remove the def-use pair $(d_i(x), u_i(x))$
 - If not, keep it

- Consider execution path 1->2->3->4->6->7, its covered def-use pairs are
 - Variable x: (1, (2, 3)) (1, 6)
 - Variable y: (1, 4) (1, 6) (1, (3, 4))
 - Variable z: (1, 4) (4, 6) (4, 7)
 - > Variable *count*: (1, 6) (6, (6, 7))
 - > Def-use pairs for variable y, (1, 4) and (1, (3, 4)) can be removed because variable y is re-defined at node 6 in an alternative execution path 1->2->3->6->2->3->4->6->7

35

C-use coverage

C-use coverage:

The c-use coverage of T with respect to (P,R) is computed as

$$\frac{CU_c}{(CU-CU_f)}$$

where CU_C is the number of c-uses covered and CU_f the number of infeasible c-uses. T is considered adequate with respect to the c-use coverage criterion if its c-use coverage is 1.

C-use coverage: path traversed

Path (Start, ... q, k, ..., z, .. End) covers the c-use at node z of x defined at node q given that (k ..., z) is def clear with respect to x

Exercise: Find the c-use coverage when program P14.16 (refer to slide 101) is executed against the following test:

 t_1 : <x=5, y=-1, count=1>

- lacktriangle covered def-c-use pairs with respect to t_1
 - Variable *x*: (1, 5) (1, 6)
 - Variable *y*: (1, 6)
 - Variable *z*: (5, 6) (5, 7)
 - Variable count: (1, 6)

Exercise 5

p-use coverage

P-use coverage:

The p-use coverage of T with respect to (P,R) is computed as

$$\frac{PU_c}{(PU - PU_f)}$$

where PU_C is the number of p-uses covered and PU_f the number of infeasible p-uses. T is considered adequate with respect to the p-use coverage criterion if its p-use coverage is 1.

41

p-use coverage: paths traversed

Exercise: Find the p-use coverage when program P14.16 (refer to slide 101) is executed against test t_2 : $\langle x = -2, y = -1, \text{ count} = 3 \rangle$

- covered def-p-use pairs with respect to t₂
 - Variable *x*: (1, (2, 3))
 - Variable *y*: (1, (3, 6)) (6, (3, 4)) (6, (3, 6))
 - Variable *count*: (6, (6, 2)) (6, (6, 7))

47

All-uses coverage

All-uses coverage:

The all-uses coverage of T with respect to (P,R) is computed as

$$\frac{\left(CU_c + PU_c\right)}{\left(\left(CU + PU\right) - \left(CU_f + PU_f\right)\right)}$$

where CU is the total c-uses, CU_C is the number of c-uses covered, PU_C is the number of p-uses covered, CU_f the number of infeasible c-uses and PU_f the number of infeasible p-uses. T is considered adequate with respect to the all-uses coverage criterion if its c-use coverage is 1.

Exercise: Is $T=\{t_1, t_2\}$ adequate w.r.t. to all-uses coverage for P14.16?

- covered def-use pairs with respect to t₁
 - Variable *x*: (1, 5) (1, 6) (1, (2, 5))
 - Variable *y*: (1, 6)
 - Variable *z*: (5, 6) (5, 7)
 - Variable *count*: (1, 6) (6, (6, 7))

- covered def-use pairs with respect to t₂
 - Variable *x*: (1, 6)
 - (1, (2, 3))
 - Variable *y*: (1, 6) (6, 4) (6, 6)
 - (1, (3, 6)) (6, (3, 4)) (6, (3, 6))
 - Variable *z*: (1, 4) (1, 6) (4, 6) (4, 7)
 - Variable *count*: (1, 6) (6, 6)
 - (6, (6, 2)) (6, (6, 7))

- No, four def-use pairs are not covered with respect to t₁ and t₂, i.e.,
 - Variable y: (1, 4) and (1, (3, 4))
 - Variable *z*: (1, 7) and (4, 4)
- In addition, there are three infeasible defuse pairs. That is,
 - Variable *z*: (5, 4)
 - Variable count: (1, (6, 2)) (1, (6, 7))
- All use coverage is $\frac{20}{27-3} = 0.833$