Implementacja algorytmu Nearest Neighbours

Projekt wykonali: Jakub Płoskonka, Rafał Nowicki

Prowadzący: dr inż. Marcin Pietroń

Data wykonania: 10.01.2025r.

Spis treści

Algorytm Nearest Neighbours (NN)	3
Cel projektu	4
Funkcje programu	4
Wyniki testów	5
Własna implementacja:	5
- czas działania: 0.8 sekundy	5
- jakość działania: 94%	5
Implementacja oryginalnej biblioteki:	5
- czas działania: 0.008 sekundy	5
- jakość działania: 93%	5
Kod programu	7

Algorytm Nearest Neighbours (NN)

Rys 1 Wykres klasyfikacji nowej danej wg algorytmu k-NN

Zasada działania:

1. Zbiór danych:

Mamy zbiór danych treningowych, w którym każdy element posiada cechy (wektor cech) oraz klasę lub wartość docelową.

2. Nowy element:

Ola nowego elementu algorytm oblicza odległość między nim a wszystkimi elementami zbioru treningowego.

3. Znajdowanie najbliższych sąsiadów:

 Algorytm wybiera k najbliższych sąsiadów (najczęściej według metryki euklidesowej lub innych miar odległości).

4. Decyzja o klasyfikacji lub wartości:

- ° Klasyfikacja: Nowemu elementowi przypisuje się klasę, która najczęściej występuje wśród sasiadów.
- Regresja: Wynik dla nowego elementu jest średnią wartości jego sąsiadów.

Cel projektu

Implementacja algorytmu Nearest Neighbours oraz przedstawienie wyników działania algorytmu na danych testowych w postaci wizualizacji graficznych za pomocą biblioteki matplotlib. W ramach realizacji celu projekt obejmie również analizę porównawczą skuteczności i czasu działania własnej implementacji w odniesieniu do wersji dostępnej w standardowych bibliotekach.

Funkcje programu

Wczytywanie danych

Program umożliwia wczytanie danych wejściowych z pliku CSV lub bezpośrednio z kodu. Dane te są następnie przetwarzane do odpowiedniego formatu dla algorytmu.

Implementacja algorytmu Nearest Neighbours

Program zawiera własną implementację algorytmu k najbliższych sąsiadów (KNN). Główne kroki algorytmu:

- Obliczanie odległości (np. euklidesowej) między punktami.
- Znajdowanie najbliższych sąsiadów dla każdego punktu testowego.
- Klasyfikacja lub przewidywanie na podstawie sąsiadów.

Wykorzystanie wersji bibliotecznej algorytmu

Program porównuje własną implementację z wersją dostępną w popularnych bibliotekach, takich jak **scikit-learn**.

Wizualizacja wyników

Wyniki działania algorytmu (np. dokładność klasyfikacji, rozkład danych) są przedstawiane w postaci wykresów przy użyciu **matplotlib**.

- Wykresy rozkładu danych i ich klasyfikacji.
- Wykres porównujący czas działania implementacji własnej i bibliotecznej.
- Wykresy analizy jakości działania algorytmu (np. macierz pomyłek).

Analiza czasowa i jakościowa

Program mierzy czas działania obu wersji algorytmu oraz dokładność ich wyników. Dane te są następnie prezentowane na wykresach porównawczych.

Obsługa parametrów algorytmu

Program umożliwia użytkownikowi zmianę parametrów, takich jak:

- Liczba sąsiadów (k).
- Euklidesowa metryka odległości.
- Podział danych na zbiór treningowy i testowy.

Wyniki testów

Rys 2 Porównanie czasu oraz jakości działania algorytmu

Własna implementacja:

- czas działania: 0.8 sekundy

- jakość działania: 94%

Implementacja oryginalnej biblioteki:

- czas działania: 0.008 sekundy

- jakość działania: 93%

Rys 3 Klasyfikacja punktów testowych

Rys 4 Przypisanie punktów do klas

Kod programu

Klasa **NearestNeighbours** implementuje algorytm k najbliższych sąsiadów (k-NN) do klasyfikacji danych. Konstruktor inicjalizuje wartość k, określającą liczbę najbliższych sąsiadów, oraz pola do przechowywania danych treningowych i ich etykiet.

- Metoda fit zapisuje dane treningowe i odpowiadające im etykiety w postaci tablic NumPy.
- Metoda euclidean distance oblicza odległość euklidesową między dwoma punktami.
- Metoda predict klasyfikuje dane testowe, iterując przez każdy punkt testowy, obliczając jego odległości do wszystkich punktów treningowych, a następnie wybierając k najbliższych sąsiadów.
- Najczęściej występująca etykieta wśród tych sąsiadów jest przypisywana jako wynik dla danego punktu testowego.

Funkcja **compare_algorithms()** porównuje działanie własnej implementacji algorytmu najbliższych sąsiadów (**Nearest Neighbours**) z wersją biblioteczną z scikit-learn. Najpierw generuje dane treningowe i testowe za pomocą funkcji generate_data(). Następnie mierzy czas wykonania i dokładność klasyfikacji dla obu wersji algorytmu. Własna implementacja wykorzystuje obiekt klasy NearestNeighbours, natomiast wersja biblioteczna – KNeighborsClassifier. Po uzyskaniu wyników funkcja wypisuje dokładność oraz czas wykonania dla obu wersji. Na końcu wizualizuje wyniki za pomocą wykresów porównujących czas wykonania i dokładność oraz wykresów przedstawiających najbliższych sąsiadów oraz klasyfikację punktów testowych.

Funkcja **generate_data()** generuje sztuczne dane klasyfikacyjne, a następnie dzieli je na zbiór treningowy i testowy. Oto szczegóły jej działania:

1. Generowanie danych:

Używana jest funkcja make_classification(), która tworzy zbiór danych do klasyfikacji. Parametry:

- o n samples=1000: liczba próbek wynosi 1000,
- o n_features=2: dane maja 2 cechy (feature),
- o n informative=2: wszystkie cechy są istotne dla klasyfikacji,
- o n redundant=0: brak cech redundantnych,
- ° n clusters per class=1: każda klasa jest skupiona w jednym klastrze,
- o random state=42: ustawienie ziarna losowości dla powtarzalności.

2. Podział danych:

Funkcja train test split() dzieli dane na zbiór treningowy i testowy:

- test_size=0.3: 30% danych trafi do zbioru testowego, a 70% do treningowego,
- o random state=42: ponownie ustawiane jest ziarno losowości.

3. Zwracanie wyników:

Funkcja zwraca dane podzielone na cztery części: X_train, X_test, y_train, y test.

Funkcja **plot_nearest_neighbors()** tworzy wizualizację danych treningowych i testowych, przedstawiając klasyfikację najbliższych sąsiadów.

- 1. Inicjalizacja wykresu Ustawiany jest rozmiar wykresu (8x8).
- **2. Rysowanie danych treningowych** Funkcja iteruje przez unikalne etykiety (y_train). Dla każdej klasy wybiera odpowiednie punkty z X_train i rysuje je na wykresie jako punkty o różnym kolorze z etykietą klasy.
- **3.** Rysowanie danych testowych Model dokonuje predykcji dla danych testowych X test. Następnie każdy punkt testowy jest rysowany na wykresie:
 - Jeśli predykcja dla danego punktu jest poprawna (zgodna z y_test), punkt jest zaznaczony na czerwono ('red').
 - Jeśli predykcja jest błędna, punkt jest zaznaczony na czarno ('black').
- **4. Stylizacja wykresu** Funkcja dodaje tytuł, opisy osi (**Feature 1** i **Feature 2**), legendę oraz siatkę, a następnie wyświetla wykres za pomocą plt.show().

Wizualizacja ta pozwala łatwo zauważyć, jak model klasyfikuje punkty testowe w odniesieniu do danych treningowych.

Funkcja **plot_test_classification()** wizualizuje klasyfikację punktów testowych w porównaniu do danych treningowych.

- 1. Inicjalizacja wykresu Tworzony jest wykres o rozmiarze 8x8.
- 2. Rysowanie danych testowych Model wykonuje predykcję dla danych X_test. Następnie funkcja iteruje przez unikalne etykiety klas (y_train), wybiera punkty testowe sklasyfikowane jako dana klasa i rysuje je na wykresie jako punkty o wyższym poziomie przezroczystości (alpha=0.6) i z obramowaniem (edgecolor='k').
- 3. Rysowanie danych treningowych Funkcja iteruje przez klasy i wybiera odpowiadające im punkty z danych treningowych X_train. Punkty te są rysowane z niższym poziomem przezroczystości (alpha=0.3), aby nie dominowały nad punktami testowymi.

4. Stylizacja wykresu – Dodawany jest tytuł, opisy osi (**Feature** 1 i **Feature** 2), legenda oraz siatka. Na końcu wykres jest wyświetlany przy użyciu plt.show().

Wizualizacja pozwala zobaczyć, jak model klasyfikuje dane testowe i jak te punkty są rozmieszczone względem danych treningowych.