Nonparametric Statistics

Ch.2 One-sample (location) problem

Estimation associated with the sign statistic

Point estimation

$$\widehat{m} = median\{X_i : 1 \le i \le n\}$$

Confidence interval

Let
$$k_{\alpha}=b(n,1/2,\alpha/2)$$
 (Note that $P(S_n \geq k_{\alpha})=\alpha/2$), then
$$P(n-k_{\alpha} < S_n < k_{\alpha})=1-\alpha$$

And, $\{S_n < k_\alpha\} = \{X_{(n-k_\alpha+1)} < m\}$ and $\{S_n > n - k_\alpha\} = \{X_{(k_\alpha)} > m\}$. Therefore, $100(1-\alpha)\%$ confidence interval for m can be given as

$$(X_{(n-k_{\alpha}+1)}, X_{(k_{\alpha})})$$

where $X_{(r)}$ denotes r^{th} order statistic.

When n is large enough,

$$k_{\alpha} \approx \frac{n}{2} + z_{\alpha/2} \left(\frac{n}{4}\right)^{1/2}$$
.

Estimation associated with the signed rank statistic

Walsh average

$$W_{ij} = \frac{X_i + X_j}{2}, \qquad 1 \le i \le j \le n$$

• We have the following equivalent expression for W_n .

$$W_n = \sum_{i=1}^n R_i^+ I(X_i - m_0 > 0) = \sum_{i \le j} I(W_{ij} > m_0).$$

Therefore, the Wilcoxon signed rank statistic can be translated as the sign statistic based on the Walsh average.

Point estimation

$$\widehat{m} = median\{W_{ij} : 1 \le i \le j \le n\}$$

• Confidence interval : Let k_{α} be the integer satisfying $P(W_n \ge k_{\alpha}) = \alpha/2$, then $100(1-\alpha)\%$ confidence interval for m is given as

$$(W_{(M-k_{\alpha}+1)}, W_{(k_{\alpha})})$$

where $W_{(r)}$ denotes r^{th} order statistic based on the Walsh average and M = n(n+1)/2.

When n is large enough,

$$k_{\alpha} \approx \frac{n(n+1)}{4} + z_{\alpha/2} \left(\frac{n(n+1)(2n+1)}{24}\right)^{1/2}.$$

Asymptotic relative efficiency

- In this chapter, ARE shows how efficient the proposed nonparametric estimators (or tests) are compared to t-test or the sample mean.
- If ARE is larger than 1, it means that the nonparametric methods are preferable.
- The following tables represent AREs of the sign test and Wilcoxon signed rank test to the t-test for some selected probability distributions.

sign	Dist.	Normal	Uniform	Logistic	Double exponential	Cauchy	t(3)	t(5)
	ARE	0.637	0.333	0.822	2.000	∞	1.620	0.961
Wil cox on	Dist.	Normal	Uniform	Logistic	Double exponential	Cauchy	t(3)	t(5)
	ARE	0.955	1.000	1.097	1.500	∞	1.900	1.240