

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : C08G 69/44, 63/685, 63/91, D01F 6/82, D06P 3/04, 3/34		A1	(11) International Publication Number: WO 00/58388 (43) International Publication Date: 5 October 2000 (05.10.00)		
(21) International Application Number: PCT/NL00/00197		(81) Designated States: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).			
(22) International Filing Date: 23 March 2000 (23.03.00)					
(30) Priority Data: 99200929.0 26 March 1999 (26.03.99) EP					
(71) Applicant (<i>for all designated States except US</i>): DSM N.V. [NL/NL]; Ilet Overloon 1, NL-6411 TE Heerlen (NL).					
(72) Inventors; and					
(75) Inventors/Applicants (<i>for US only</i>): VAN BENTHEM, Rudolfus, Antonius, Theodorus, Maria [NL/NL]; Sportlaan 9, NL-6141 BR Sittard (NL). FROEHLING, Peter, Ernst [NL/NL]; Halderstraat 5, NL-6136 BH Sittard (NL).		Published <i>With international search report.</i>			
(74) Agent: VAN BORM, Werner, August, Hendrik, Maria; DSM Patents & Trademarks, P.O. Box 9, NL-6160 MA Geleen (NL).					
(54) Title: CONDENSATION POLYMER CONTAINING DIALKYLMIDE ENDGROUPS, PROCESS FOR PRODUCING SAID CONDENSATION POLYMERS AND APPLICATIONS THEREOF					
(57) Abstract					
<p>The invention relates to a condensation polymer, as well as to a process for preparation said polymers, having at least one dialkylamide endgroup connected through the polymer backbone to a unit derived from an alkylamide, the connection comprising at least one ester linkage. The polymer according to the invention can be linear or branched. The condensation polymers can be very widely used in technically different fields, both in thermosetting and in thermoplastic applications. The invention also relates to a composition comprising the condensation polymer according to the invention, an active substance and a polymer, as well as to a process for incorporating an active substance in an object comprising at least of a polymer composition, by bringing the object into contact with the active substance. More in particular, the invention relates to the dying of polymer fibres.</p>					

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon			PT	Portugal		
CN	China	KR	Republic of Korea	RO	Romania		
CU	Cuba	KZ	Kazakhstan	RU	Russian Federation		
CZ	Czech Republic	LC	Saint Lucia	SD	Sudan		
DE	Germany	LI	Liechtenstein	SE	Sweden		
DK	Denmark	LK	Sri Lanka	SG	Singapore		
EE	Estonia	LR	Liberia				

CONDENSATION POLYMER CONTAINING DIALKYLAMIDE ENDGROUPS,
PROCESS FOR PRODUCING SAID CONDENSATION POLYMERS AND
APPLICATIONS THEREOF

5 The invention relates to a condensation polymer having at least one dialkylamide endgroup connected through the polymer backbone to a unit derived from an alkylamide, the connection comprising at least one ester linkage.

10 According to a preferred embodiment, the polymer according to the invention contains at least two groups according to formula (I).

20 in which

H, a (C_1-C_{20}) alkylgroup or a (C_6-C_{10}) arylgroup;

B = a (C_6 - C_{24}) aryldiradical or a (C_2 - C_{24})

30 alkyldiradical;

R^1 , R^2 , R^3 , R^4 , R^5 and R^6 may, independently of one another, be chosen from the group of H, (C_6-C_{10}) arylgroups or (C_1-C_8) alkylgroups;

R⁷ and R⁸ may, independently of one another, be chosen from the group of optionally heteroatom substituted (C₆-C₁₀) arylgroups or optionally heteroatom substituted (C₁-C₂₈) alkylgroups and n = 1-4. Preferably, n = 1.

According to a further preferred embodiment, the polymer according to the invention is a polymer according to formula (II):

10

in which:

H, a (C_1-C_{20}) alkylgroup or a (C_6-C_{10}) arylgroup;

20

B = a (C_6 - C_{24}) aryldiradical or a (C_2 - C_{24}) alkylidiradical;

35

R¹, R², R³, R⁴, R⁵ and R⁶ may, independently of one another, be chosen from the group of H, (C₆-C₁₀) arylgroups, (C₁-C₈) alkylgroups or -CH₂-OX² ; R⁷ and R⁸ may, independently of one another, be chosen from the group of optionally heteroatom substituted (C₆-C₁₀) arylgroups or optionally heteroatom substituted (C₁-C₂₈) alkylgroups.

5 Preferably, R₁ and R₂ are both equal to H.

According to a further preferred 10 embodiment, the polymer according to the invention has a number of dialkylamide endgroups ≥ 3 and the polymer is represented by formula (III) :

in which

B = a (C₆-C₂₄) aryldiradical or a (C₂-C₂₄) alkyldiradical;

R^3 and R^6 are chosen from the group of H, (C_6-C_{10}) arylgroups and (C_1-C_8) alkylgroups ;

20 R^7 and R^8 may, independently of one another, be chosen from the group of optionally heteroatom substituted (C_6-C_{10}) arylgroups or optionally heteroatom substituted (C_1-C_{28}) alkylgroups.

In all above embodiments, preferably, R^3 and
 25 R^6 are (C_1-C_4) alkyl groups, more preferably a methyl- or ethylgroup. In all above embodiments, preferably, R^7 and R^8 are optionally hetero-atom substituted (C_1-C_{20}) alkyl groups, more preferably, R^7 and R^8 are hetero-atom substituted C_2 -, C_3 - or C_6 - alkylgroups. R^7 and R^8 may be
 30 substituted with a group selected from the group of alcohol, ether, ester, cyanide, carbonate, urethane, urea, amide, imide, amine, imine, imidazole, oxime, sulfide, thiol, thiourea, sulfon, sulfoxide, sulfate, fosfate, fosfine, fosfinoxide, silane, silicone, silicate, fluoro, chloro, bromo or iodo groups.

Suitable choices for R^7 and R^8 are di(m)ethylaminoethyl, di(m)ethylaminopropyl, di(m)ethylaminohexyl, tri(m)ethylsilylpropyl, tri(m)ethoxysilylpropyl, perfluoro-octyl, perfluoro-octyl-(m)ethyl, (m)ethoxy-

ethyl, (m)ethoxy-2-propyl, maleimido-propyl, maleimido-hexyl, octenylsuccinimido-hexyl, hexahydrophthalimido-hexyl, 2-(benz)imidazole-ethyl, difenylfosfino-ethyl, furfuryl, cyanoethyl, or cyanopropyl groups. R⁷ and R⁸ can also be part of the same optionally substituted cyclic group, such as a morfoline, thiomorfoline, piperidine, pyrrolidine, oxazolidine, thiazolidine or piperazine group.

In all formulas in this application in which R-groups are present, the R groups may together or with neighbouring carbon atoms form part of a cycloalkyl group.

Depending on the starting monomers chosen, B, R¹, R², R³, R⁴, R⁵, R⁶, R⁷ and R⁸ in the molecule or mixture of molecules can be selected to be the same or different.

B is optionally substituted, preferably with a (C₁-C₂₆) alkyl group. Preferably, the alkylgroup is chosen from the group of methyl, octenyl, nonenyl, decenyl, undecenyl or dodecenyl. Suitable choices for B are (alkyl-)1,2-ethylene, where the alkyl is defined as above, (methyl-)1,2-ethylidene, 1,3-propylene, (methyl-)1,2-cyclohexyl, (methyl-)1,2-phenylene, 1,3-phenylene, 1,4-phenylene, 2,3-norbornyl, 2,3-norbornen-5-yl or (methyl-)1,2 cyclohex-4-enyl radical.

Preferably, the weight average molecular mass of the polymer according to the invention is between 600 g/mol and 50,000 g/mol, more preferably between 800 g/mol and 25,000 g/mol.

Preferably, the number average molecular mass is between 500 g/mol and 15,000 g/mol, more preferably between 700 g/mol and 4,000 g/mol.

Preferably, the average number of dialkylamide endgroups per molecule is between 2 and 35 250, more preferably between 3 and 50.

The polymer according to the invention can be linear or branched. The linear polymer according to the invention generally comprises amide and ester units alternating along a chain as follows:

5

wherein a diamide (A-A) unit is coupled with alternating ester (E) and amide (A) units.

10 A branched polymer according to the invention generally comprises amide and the ester units alternating along the main and side chains as follows:

wherein a diamide (A-A) is coupled with alternating ester (E) and amide (A) units.

25 Preferably, in the branched polymer according to the invention a (β)-hydroxyalkylamide group is present, which can be both present as a bis- (β)-hydroxyalkylamide endgroup, such as

40 or as a pendant side chain group, such as

Preferably, the molar amount of amide units in the chain is higher than the molar amount of ester units.

The invention also relates to a process for 20 the production of the polymer according to the invention.

According to a preferred embodiment, the polymer according to the invention can be obtained through polycondensation of a mono- and/or bis- 25 hydroxyalkylamide of a dicarboxylic acid in the presence of a mono-dialkylamide of a dicarboxylic acid.

Preferably, the mono-hydroxyalkylamide of the dicarboxylic acid is a compound according to formula (IV) :

30

Preferably, the mono-dialkylamide of the dicarboxylic acid is a compound according to formula (V) :

40

Preferably, the bis-hydroxyalkylamide of the dicarboxylic acid is a compound according to formula (VI) :

10

wherein (in formula's IV, V and VI)

20 R^1 , R^2 , R^3 and R^4 may, independently of one another, be chosen from the group of H, ($\text{C}_6\text{-C}_{10}$) arylgroups or ($\text{C}_1\text{-C}_8$) alkylgroups ;

R^7 and R^8 may, independently of one another, be chosen from the group of optionally heteroatom substituted ($\text{C}_6\text{-C}_{10}$) arylgroups or optionally heteroatom substituted ($\text{C}_1\text{-C}_{28}$) alkylgroups and

B may be a ($\text{C}_6\text{-C}_{24}$) aryldiradical or a ($\text{C}_2\text{-C}_{24}$) alkylidiradical.

According to a further preferred

30 embodiment, the polymer according to the invention can be obtained in a one-step procedure by reacting a cyclic anhydride, a dialkylamine and an alkanolamine, at room temperature or at an elevated temperature, preferably between about 20°C and about 120°C , to form

35 hydroxyalkylamide and dialkylamides, after which, at an elevated temperature, preferably between 120°C and 250°C , a polyesteramide is obtained through polycondensation with water being removed, preferably through distillation.

The one-step procedure can take place with or without a solvent. Suitable solvents are water or an organic solvents, such as methyl-isobutylketon, butylacetate, toluene or xylene.

5 The removal of water through distillation can take place at either reduced or elevated pressure, such as at a pressure higher than 1.10^5 Pa, in a vacuum ($< 1.10^5$ Pa) or azeotropically.

10 Preferably, the cyclic anhydride is an anhydride according to formula (VII):

in which B has the meaning as specified above.

Examples of suitable cyclic anhydrides include phthalic anhydride, tetrahydrophthalic anhydride, naphtalenic dicarboxylic anhydride, hexahydrophthalic anhydride, 5-norbornene-2,3-dicarboxylic anhydride, naphtalenic dicarboxylic anhydride, 2-octene-1-yl-succinic anhydride, 2-nonene-1-yl-succinic anhydride, 2-decene-1-yl-succinic anhydride, 2-undecene-1-yl-succinic anhydride 2-dodecene-1-yl-succinic anhydride, maleic anhydride, (methyl)succinic anhydride, glutaric anhydride, 4-methylphthalic anhydride, 4-methylhexahydrophthalic anhydride, 4-methyltetrahydrophthalic anhydride, maleinised polyisobutane, maleinised polybutadiene and the maleinised alkylester of an unsaturated fatty acid.

Preferably the alkanolamine is compound

according to formula (VIII):

in which:

10

R^1 , R^2 , R^3 , R^4 , R^5 and R^6 may, independently of one another, be chosen from the group of H, (C_6-C_{10}) arylgroups, (C_1-C_8) alkylgroups or CH_2OH and n = 1-4.

20 More preferably, $n = 1$.

The alkanolamine may be a monoalkanolamine, a dialkanolamine, a trialkanolamine or a mixture hereof.

If monoalkanolamines are used in the process according to the invention, linear polymers with a functionality of 2 can be obtained. Depending on the application desired, a linear or an entirely or partly branched polymer can be chosen, in which case the degree of branching can be set by choosing the type of alkanolamine.

If a highly branched structure with a high functionality is desired, di- or trialkanolamines are used as the starting compound.

Examples of suitable mono- β -alkanolamines include ethanamine, 1-(m)ethyl ethanamine, n-butyl ethanamine, 1-(m)ethyl isopropanolamine, isobutanolamine, β -cyclohexanolamine,

n-butyl isopropanolamine and n-propanolamine.

Examples of suitable di- β -alkanolamines are 3-amino-1,2-propanediol, 2-amino-1,3-propanediol diisobutanolamine (bis-2-hydroxy-1-butyl)amine), di- β -cyclohexanolamine and diisopropanolamine (bis-2-hydroxy-1-propyl)amine).

A suitable trialkanolamine is, for example, tris(hydroxymethyl)aminomethane.

Preferably a β -alkyl-substituted β -hydroxyalkylamide is used. Examples are (di)isopropanolamine, cyclohexyl isopropanolamine, 1-(m)ethyl isopropanolamine, (di)isobutanolamine, di- β -cyclohexanolamine and/or n-butyl isopropanolamine. Most preferably, diisopropanolamine and diisobutanolamine are used. The choice of a β -alkyl-substituted β -hydroxyalkylamide results in a polymer with improved resistance to hydrolysis.

Preferably, the dialkylamine is an amine according to formula (IX)

20

in which R⁷ and R⁸ may, independently of one another, be chosen from the group of optionally heteroatom substituted (C₆-C₁₀) arylgroups or optionally heteroatom substituted (C₁-C₂₈) alkylgroups.

Examples of suitable dialkylamines include: di(m)ethylamine, dibutylamine, dioctylamine, di-2-ethylhexyl-di(m)ethylamine, dibutylamine, dioctylamine, di-2-ethylhexyl-amine, distearylamine, diallylamine, dicrotylamine, N-(m)ethylallylamine, bis(aminopropyl)amine, bis(aminohexyl)amine, N-

(m) ethyl-aminopropylamine,
bis(di(m)ethylaminopropyl)amine,
bis(di(m)ethylaminohexyl)amine,
bis(di(m)ethylaminoethyl)amine,
5 bis(trimethylsilylpropyl)amine,
bis(tri(m)ethoxysilylpropyl)amine,
bis(perfluoroctyl)amine, bis(perfluoroctyl-
(m)ethyl)amine, bis(methoxyethyl)amine, N-
(m)ethylmethoxypethylamine, bis(methoxy-2-propyl)amine,
10 bis(maleimidohexyl)amine,
bis(octenylsuccinimidopropyl)amine,
bis(hexahydrophthalimidohexyl)amine, difurfurylamine,
dicyano(m)ethylamine, bis(difenylfosfinoethyl)amine,
morpholine, thiormorpholine, piperidine, pyrrolidine, (2-
15 fenyl)oxazolidine, thiazolidine, piperazine,
2,2,6,6,tetramethylpiperidine, iminodibenzyl,
imidazole.

The anhydride : [alkanolamine +
dialkylamine] equivalent ratio is generally between
20 1.5:1.0 and 1.0:2.0, preferably, between 1.0:1.0 and
1.0:1.8, more preferably, between 1:1.05 and 1:1.5.

The alkanolamine: dialkylamine equivalent
ratio can be chosen according to the molecular weight
and the number of β -hydroxyalkylamide and dialkylamide
25 groups desired and is generally between 100:1 and 1:3,
preferably between 10:1 and 1:2.

If only dialkylamide endgroups are desired
in a highly branched structure, molar equivalent
ratio's of dialkanol amine: dialkylamide: anhydride can
30 be chosen as for example 1:3:3, 2:4:5, 3:5:7, 4:6:9, or
generally as n:n+2:2n+1, in which n is an integer,
larger than or equal to 1.

According to a further preferred
embodiment, the polymer according to the invention can
35 be obtained by a reaction between a dialkylamide and an

alkanolamine and a compound containing an acid group and an activated acid group, after which a polyesteramide is obtained through polycondensation.

Preferred dialkylamide and alkanolamine
5 have been described above.

The compound containing an acid group and an activated acid group is preferably a compound according to formula (X) :

10

15

in which

B = a (C_6-C_{24}) aryldiradical or a (C_2-C_{24}) alkylidiradical
and

25

30

35

in which R^7 is a (C_1-C_{12}) branched or linear alkyl group.

40

Examples of suitable compounds containing an acid group and an activated acid group

are alkyl esters, such as, for example, mono(m)ethyl adipate and mono(m)ethyl sebacate, anhydrides and thioesters.

According to a further preferred 5 embodiment, the polymer according to the invention can be obtained by a reaction between a cyclic anhydride, as for example described above, and an alcohol, after which the reaction product obtained reacts in situ with an alkanolamine and a polyesteramide is subsequently 10 obtained through polycondensation.

Examples of suitable alcohols are (C₁-C₁₀) alcohols. Preferably, methanol or ethanol is used.

In addition to dialkylamide groups, the 15 polymer may also contain carboxyl groups and/or β-hydroxyalkylamide groups, carboxyl groups can be present in, for example, amounts of between 0.01 and 2.0 mg equivalent/gram of polymer. The number of carboxylic acids present in the polymer can be controlled via the anhydride/amine ratio and via the 20 degree of conversion. If an amine excess is used and the polycondensation reaction is (almost) complete, less than 0.2 mg equivalent acid/gram of polymer is usually present. If carboxyl groups are present, they may in a subsequent step react with compounds 25 containing one or more groups that can react with carboxylic acid, such as for example epoxy groups or β-hydroxyalkylamide groups. The amount of carboxylic acid is preferably as low as possible, for example between 0.01 and 0.2 mg equivalent/gram of polymer.

30 β-hydroxyalkylamide groups may be present in amounts of between 0.01 and 5.0 mg equivalent/gram polymer. The amount of β-hydroxyalkylamide groups can be controlled via the alkanolamine/dialkylamine ratio and via the degree of conversion. If a dialkylamine

excess is used and the polycondensation reaction is (almost) complete, less than 0.5 mg equivalent/gram of polymer is usually present. If β -hydroxyalkylamide groups are present they may in a subsequent step react 5 with compounds containing one or more groups that can react with β -hydroxyalkylamides, such as for example carboxyl acids, carboxylic anhydrides, isocyanates, activated esters or carboxylic halides.

The degree of branching and the 10 functionality of the polymer are dependent on the starting materials and the molecular weight of the polymer. A molecular weight higher than 2,000 and the use of di- and/or trialkanolamines generally lead to highly branched structures with a functionality of ≥ 6 .

15 Due to the presence in amounts of less than 10% by weight (of the total amount of anhydrides) of bis- and dianhydrides instead of the anhydrides according to formula (VII), it is possible that the polymer does not comprise only of units according to 20 formulas (II) and (III).

Due to side reactions during the preparation of the polymer it is possible that the reaction mixture comprising the condensation polymer according to the invention comprises also secondary 25 amine groups, for example according to the formula (XI):

wherein R^1 , R^2 , R^3 , R^4 and B are defined as above.

10 The invention also relates to entirely or partly modified polymers.

The modification can for example take place via a reaction between the polymer according the invention with a monomer, oligomer or polymer containing reactive groups that can react with the β -hydroxyalkylamides.

20 Examples of suitable reactive groups include carboxyl groups, carboxylic esters, carboxylic anhydrides, epoxy groups, alkoxysilane groups, isocyanate groups, acid chloride groups, epoxychlorohydrine groups, amine groups, phenolic groups, methyolated amidegroups and combinations hereof.

25 Preferably the monomer, oligomer or polymer contains only one group that can react with hydroxylalkylamide, as a result of which no crosslinking takes place during the modification.

The polymer according to the invention can be modified preferably with a compound containing a carboxylic acid group.

30 A modified polymer can for example be represented by one of the formulas (II) or (III) in which

Suitable carboxylic acids are, for example, saturated aliphatic (C_1-C_{26}) acids, unsaturated (C_1-C_{20}) fatty acids, aromatic acids and α,β -unsaturated acids.

15 Examples of suitable α,β -unsaturated acids are (meth)acrylic acid, crotonic acid and monoesters or monoamides of itaconic acid, maleic acid, 12-hydroxystearic acid, polyether carboxylic acid, and fumaric acid.

20 Suitable saturated aliphatic acids are for example acetic acid, propionic acid, butyric acid, 2-ethyl hexanoic acid, laurylic acid and stearic acid.

Suitable aromatic acid are for example benzoic acid and tertiary butyl benzoic acid.

25 Z can be chosen from, for example, a saturated or unsaturated (C_1-C_{40}) alkyl or aromatic group, a polymer or an oligomer. Examples of suitable polymers are polyesters, polyethers and poly(capro)lactones.

30 Z can be substituted with for example ester groups, ether groups, amide groups and alcohol groups.

The modified polymer may consist of the same or different Z groups.

35 The branched polymer according to the invention can also react with a diisocyanate, after which the isocyanate-functional polymer obtained reacts

with a compound capable of reacting with isocyanates. As the diisocyanate use is preferably made of a compound containing two or more isocyanate groups with different reactivities. This is preferably an aliphatic 5 diisocyanate with one sterically more accessible isocyanate group bound to a primary carbon atom and one sterically less accessible isocyanate group bound to a tertiary carbon atom.

Examples of suitable diisocyanates are 1,4-10 diisocyanato-4-methyl-pentane, 1,5-diisocyanato-5-methylhexane, 3(4)-isocyanatomethyl-1-methylcyclohexylisocyanate, 1,6-diisocyanato-6-methyl-heptane, 1,5-diisocyanato-2,2,5-trimethylhexane and 1,7-diisocyanato-3,7-dimethyloctane, and 1-isocyanato-15 1-methyl-4-(4-isocyanatobut-2-yl)-cyclohexane, 1-isocyanato-1,2,2-trimethyl-3-(2-isocyanato-ethyl)-cyclopentane, 1-isocyanato-1,4-dimethyl-4-isocyanatomethyl-cyclohexane, 1-isocyanato-1,3-dimethyl-3-isocyanatomethyl-cyclohexane, 1-isocyanatol-20 n-butyl-3-(4-isocyanatobut-1-yl)-cyclopentane and 1-isocyanato-1,2-dimethyl-3-ethyl-3-isocyanatomethyl-cyclopentane, respectively.

The preferred isocyanates are 3(4)-isocyanato-methyl-1-methylcyclohexylisocyanate (IMCI) 25 and isophorone diisocyanate.

Monomers, oligomers and polymers can all be used as the compounds that can react with isocyanate groups. Such compounds contain reactive groups that can form a chemical bond with isocyanate groups.

30 Examples of suitable reactive groups are alcohols and amine groups.

Examples of suitable compounds are hydroxyethyl(meth)acrylate, hydroxy(C₂-C₁₂)alkyl vinyl ether, 4-hydroxybutyl(meth)acrylate, aminopropyl vinyl 35 ethers, aminoalkyl vinyl ether, aminopropyl-

tri(m)ethoxysilane and aminoalkyltrialkoxysilane.

Preferably the diisocyanate, for example IMCI, is combined with a selective catalyst, as a result of which no chain lengthening or crosslinking 5 will take place.

As the catalyst use can be made of an ionogenic metal complex based on a metallic element from any one of groups III, IV or VII of the Periodic System with exchangeable counterions. Examples of 10 suitable catalysts are titanium (IV) butoxide, zirconium (IV) acetylacetone, zirconium (IV) butoxide, tin (IV) acetate, manganese (III) acetylacetone, titanium (IV) isopropoxide, zirconium (IV) 2-ethylhexanoate and tin (IV) chloride.

15 The unmodified and modified polymers according to the invention can be very widely used in technically different fields, both in thermosetting and in thermoplastic applications.

The invention also relates to a composition 20 comprising the condensation polymer and/or the modified condensation polymer according to the invention, an active substance and a polymer, as well as to a process for incorporating an active substance in an object comprising at least a polymer composition, by bringing 25 the object into contact with the active substance. More in particular, the invention relates to the dyeing of polymer fibres in a bath containing a solution of a dye, in which the dye, in this case the active substance, penetrates the fibre.

30 A drawback of the currently applied processes is that the active substance is with difficulty absorbed into the polymer object. It is for example not really possible to dye polypropylene fibres because the dye does not, or only with great difficulty, penetrate 35 the polypropylene fibre. Surprisingly, it has now been

found that the active substance is very well absorbed if the object consists of a polymer composition comprising the condensation polymer according the invention with terminal or pendant groups that are
5 compatible with the polymer.

A further advantage is that new combinations of active substances and polymers have become possible, because active substances that are not or not at all absorbed into the plastic itself are absorbed into the
10 plastic composition containing the (modified) condensation polymer according to the invention.

The invention creates new, surprising possibilities. It is for example possible for a highly effective active substance that cannot endure the
15 processing of the plastic composition into the part - for example because the active substance degrades at the temperatures prevailing during the processing - to be incorporated in the composition after the processing.

20 To establish compatibility of the terminal or pendant groups of the condensation polymer according to the invention, the groups may be modified as described previously in this application.

Active substances that can be used in the
25 process according to the invention are for example antistatic agents, adhesives, odorous substances, fireproofing agents, flame retardants, antioxidants, UV-stabilisers and dyes. Preferably use is made of dyes. Examples of suitable types of dyes are azo,
30 azine, perinone, anthraquinone, xanthene, phthalocyanine, triaryl methane, indophenol, coumarin and diazomethane dyes. Mixtures of dyes are also suitable. Criteria in the selection of the dye are for example the desired colour and the dye's thermal and UV
35 resistance.

By using the process according to the invention the active substances can be incorporated in parts of many kinds of plastics. Thermoplastics, thermosetting plastics as well as rubbers are suitable.

- 5 The invention is suitable for both homo- and copolymers. Mixtures of plastics can also be used. Examples of suitable plastics are polyolefines, such as low-density polyethylene (LDPE), high-density polyethylene (HDPE), vLDPE, LLDPE, polypropylene (PP),
10 which is understood to include PP homopolymers and PP copolymers such as random ethylene/propylene copolymers and PP block copolymers with an ethylene/propylene phase, vinyl polymers, styrene polymers, acrylic polymers, fluorine-containing polymers, polyamides,
15 polycarbonates, polyoxyalkylenes, polyimides, polybenzimidazoles, polyphenylene oxides, polyacrylonitriles, polyesters, phenol-formaldehydes, aminoplastics, epoxy resins, polyurethanes, styrene-butadiene rubber, butyl rubber, chlorobutyl rubber,
20 chloroprene rubber, nitrile rubber, butadiene rubber, isoprene rubber, ethylene-propylene rubbers (EPM, ethylene-propylene monomer, and EPDM, ethylene-propylene-diene monomer), silicone rubbers, urethane rubbers, acrylate rubbers, fluorine-containing rubbers
25 and/or cyclopentene rubbers.

Preferably, the condensation polymer according to the invention is used in an amount of 10 weight % or less, more preferably is an amount of 5 weight % or less, with respect to total weight of the
30 composition.

In the process according to the invention the moulded plastic part can in several ways be brought into contact with the active substance. It is for example possible to immerse the part or coat it with a
35 liquid active substance or to treat the moulded part in

this manner with a solution, a melt, a slurry or an emulsion of an active substance. It is also conceivable that a part is brought into contact with a gaseous active substance or with an active substance in the 5 solid phase.

In a preferred embodiment the invention relates to a process in which a polyolefine, more preferably polypropylene, is used as the polymer in the polymer composition of the part.

10 Such parts can very well be printed with the aid of the process according to the invention, without having to subject the surface of the part to a special treatment, such as a corona treatment. Such parts can also very well be dyed, by immersing them in a bath 15 containing a solution of a dye. In this way parts of a polyolefine with very deep, intense colours can be obtained, whereas this is not achievable, or achievable with great difficulty, with the known processes.

The advantages of the invention become 20 particularly evident if the process according to the invention is used in dyeing fibres, in particular polypropylene fibres.

In particular, dyeing fibres, especially 25 polypropylene fibres, according to the known processes involves problems, in connection with the poor absorption of the dyes into the fibres. It is not possible to modify the fibres' surface to improve the absorption of dye, such as etching the fibre surface, because these modifications of the fibres generally 30 adversely affect the fibres' mechanical properties, such as tensile strength and stiffness.

Fibres that have been dyed with the aid of 35 the process according to the invention can have bright, deep colours and there are no problems with the fibres' mechanical properties.

C L A I M S

1. Condensation polymer having at least one dialkylamide endgroup connected through the
5 polymer backbone to a unit derived from an alkylamide, the connection comprising at least one ester linkage.
2. Condensation polymer according to Claim 1,
characterized in that the polymer contains at
10 least two groups according to formula (I)

in which

- H, a ($\text{C}_1\text{-}\text{C}_{20}$) alkylgroup or a ($\text{C}_6\text{-}\text{C}_{10}$) arylgroup ;
- B = a ($\text{C}_6\text{-}\text{C}_{24}$) aryldiradical or a ($\text{C}_2\text{-}\text{C}_{24}$) alkyldiradical ;
- R^1 , R^2 , R^3 , R^4 , R^5 and R^6 may, independently of one another, be chosen from the group of H, ($\text{C}_6\text{-}\text{C}_{10}$) arylgroups or ($\text{C}_1\text{-}\text{C}_8$) alkylgroups ;
- R^7 and R^8 may, independently of one another, be chosen from the group of optionally heteroatom substituted ($\text{C}_6\text{-}\text{C}_{10}$) arylgroups or optionally heteroatom substituted ($\text{C}_1\text{-}\text{C}_{28}$) alkylgroups and n = 1-4 .
3. Condensation polymer according to Claim 2, charac-

terized in that n = 1.

4. Condensation polymer according to any one of Claims 1-3, characterized in that the polymer is a polymer according to formula (II) :

5

in which:

20 H, a ($\text{C}_1\text{-}\text{C}_{20}$) alkylgroup or a ($\text{C}_6\text{-}\text{C}_{10}$) arylgroup ;

B = a ($\text{C}_6\text{-}\text{C}_{24}$) aryldiradical or a ($\text{C}_2\text{-}\text{C}_{24}$) alkyldiradical;

30

5

10

R^1, R^2, R^3, R^4, R^5 and R^6 may, independently of one another, be chosen from the group of H, (C_6-C_{10}) arylgroups, (C_1-C_8) alkylgroups or $-CH_2-OX^2$; R^7 and R^8 may, independently of one another, be chosen from the group of optionally heteroatom substituted (C_6-C_{10}) arylgroups or optionally heteroatom substituted (C_1-C_{28}) alkylgroups.

15

5. Condensation polymer according to Claim 4, characterized in that $n = 1$.
6. Condensation polymer according any one of Claims 1-5, characterized in that the polymer has a number of dialkylamide endgroups ≥ 3 and the polymer is represented by formula (III) :

20

25

30 in which

B = a (C_6-C_{24}) aryldiradical or a (C_2-C_{24}) alkyldiradical;

15

25

30

R^3 and R^6 are chosen from the group of H, (C_6-C_{10}) arylgroups and (C_1-C_8) alkylgroups ;

R^7 and R^8 may, independently of one another, be chosen from the group of optionally heteroatom substituted (C_6-C_{10}) arylgroups or optionally heteroatom substituted (C_1-C_{28}) alkylgroups.

7. Condensation polymer according to any one of Claims 1-6, characterized in that R³ and R⁶ are (C₁-C₄) alkyl groups.
8. Condensation polymer according to Claim 7, characterized in that the alkyl group is a methyl- or ethylgroup.
9. Condensation polymer according to any one of claims 1-8, characterized in that R⁷ and R⁸ are hetero-atom substituted (C₁-C₂₀) alkyl groups.
10. Condensation polymer according to any one of Claims 1-9, characterized in that B is chosen from the group of (alkyl-)1,2-ethylene in which the alkyl is chosen from the group of methyl, octenyl, nonenyl, decenyl, undecenyl or dodecenyl, (methyl)-1,2-ethylidene, 1,3-propylene, (methyl-)1,2-cyclohexyl, (methyl-)1,2-phenylene, 1,3-phenylene, 1,4-phenylene, 2,3-norbornyl, 2,3-norbornen-5-yl or (methyl-)1,2 cyclohex-4-enyl radicals.
11. Condensation polymer according to any one of Claims 1-10, characterized in that the weight average molecular mass of the polymer is between 600 g/mol and 50,000 g/mol, more preferably between 800 g/mol and 25,000 g/mol.
12. Condensation polymer according to any one of Claims 1-11, characterized in that the number average molecular mass is between 500 g/mol and 15,000 g/mol, more preferably between 700 g/mol and 4,000 g/mol.
13. Condensation polymer according to any one of Claims 1-12, characterized in that the average number of dialkylamide endgroups per molecule is between 2 and 250, more preferably between 3 and 50.
14. Process for the preparation of a condensation

- polymer according to any one of claims 1-13, characterized in that the polymer is obtained through polycondensation of a mono- and/or bis-hydroxyalkylamide of a dicarboxylic acid in the presence of a mono-dialkylamide of a dicarboxylic acid.
- 5
15. Process for the preparation of a condensation polymer according to any one of claims 1-13, characterized in that the polymer is obtained in a 10 one-step procedure by reacting a cyclic anhydride, a dialkylamine and an alkanolamine to form hydroxyalkylamide and dialkylamides, after which a polyesteramide is obtained through polycondensation.
- 15 16. Process for the preparation of a condensation polymer according to any one of claims 1-13, characterized in that the polymer is obtained by a reaction between a dialkylamide and an alkanolamine and a compound containing an acid 20 group and an activated acid group, after which a polyesteramide is obtained through polycondensation.
- 25 17. Process for the preparation of a condensation polymer according to any one of claims 1-13, characterized in that the polymer is obtained by a reaction between a cyclic anhydride and an alcohol, after which the reaction product obtained reacts in situ with an alkanolamine and a 30 polyesteramide is subsequently obtained through polycondensation.
- 35 18. Modified condensation polymer characterized in that the polymer according to any one of Claims 1-13 or obtained by a process according to any one of Claims 14-17, is obtained through reaction with a monomer, oligomer or polymer containing reactive

groups that can react with the β -hydroxyalkyl-amides.

19. Composition comprising the condensation polymer according to any one of Claims 1-13 or obtained by
5 a process according to any one of Claims 14-17 or the modified condensation according to Claim 18, an active substance and a polymer.
20. Process for incorporating an active substance in an object comprising at least a polymer
10 composition, by bringing the object into contact with the active substance, characterised in that the object consists of a polymer composition comprising the condensation polymer according to any one of Claims 1-13 or obtained by a process
15 according to any one of Claims 14-17 or the modified condensation polymer according to Claim 18, with terminal or pendant groups that are compatible with the plastic.
21. Fibre, comprising a composition according to Claim
20 19 or obtained by a process according to Claim 20.

INTERNATIONAL SEARCH REPORT

Inte	onal Application No
PCT/NL 00/00197	

A. CLASSIFICATION OF SUBJECT MATTER					
IPC 7	C08G69/44	C08G63/685	C08G63/91	D01F6/82	D06P3/04
D06P3/34					

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7	C08G	D01F	D06P
-------	------	------	------

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 3 709 858 A (BLOOD A ET AL) 9 January 1973 (1973-01-09) -----	

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the International search report
22 May 2000	02/06/2000
Name and mailing address of the ISA European Patent Office, P.B. 5618 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Leroy, A

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/NL 00/00197

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 3709858 A	09-01-1973	US 3833529 A US 3817932 A	03-09-1974 18-06-1974