Analyse avancée II Mathématiques 1^{ère} année Enseignant : Fabio Nobile

Série 22 du mercredi 12 mai 2021

Exercice 1.

Définissons le triangle $T\coloneqq \{(x,y)\in \mathbb{R}\times [0,1]: -2y\leqslant x\leqslant y\}.$ Calculer

$$\iint_{T} x^{3} y^{2} \, \mathrm{d}x \, \mathrm{d}y. \tag{1}$$

Exercice 2.

On considère le parallélogramme $P \subset \mathbb{R}^2$ de sommets $(0,0),\,(0,-1),\,(1,0)$ et (1,1). Calculer

$$\iint_{P} x^2 \sin y \, \mathrm{d}x \, \mathrm{d}y. \tag{2}$$

Exercice 3.

Définissons

- $D := \{(x, y) \in \mathbb{R} \times \mathbb{R}_+ : x^2 + y^2 \leqslant 1\};$
- P le parallélogramme de sommets $A\coloneqq (0,2),\, B\coloneqq (1,1),\, C\coloneqq (3,2)$ et $D\coloneqq (2,3)$;
- f la fonction « ordonnée » définie pour tout $(x,y) \in \mathbb{R}^2$ par $f(x,y) \coloneqq y$.

Pour $X \in \{D, P\}$, calculer

$$\int_{X} f. \tag{3}$$

Exercice 4.

Notons T le tétraèdre de \mathbb{R}^3 de sommets $(0,0,0),\,(1,0,0),\,(0,1,0)$ et (0,0,1). Calculer

$$\iiint_T \frac{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z}{(x+y+z+1)^2}.\tag{4}$$