Case study Ebola outbreak

- Population is assumed homogeneous and infinite
- Simulation begins with 1 infected
- Each infected individual is in one of the four possible states
 - latent $\sim \Gamma(2,5)$
 - infectious $\sim \Gamma(1,5)$ [new infections with rate $R_0 f_G(s)$]
 - recovered p=0.3, time_{reco} $\sim \Gamma(4,3)$
 - perished p=0.7, time_{die} $\sim \Gamma(4/9,9)$

Case study Ebola

- Why we'd be interested in R_0 ?
- Why inference & prediction pipeline is important?

