Lecture 11: Center of Gravity, Ellipsoid Method

Niao He

7th April 2019

Niao He

Complexity vs Convergence

Methods

Method

zilipsola ivietno

Outline

Complexity vs Convergence

Cutting Plane Methods

Center of Gravity Method

Ellipsoid Method

Niao He

Complexity vs Convergence

Cutting Plane Methods

Center of Gravity Method

Ellipsoid Method

Complexity

Given an input $\epsilon > 0$, a problem instance P,

- Oracle complexity: number of oracles required to solve the problem (P) up to accuracy $\epsilon > 0$
- Arithmetic complexity: number of arithmetic operation (bit-wise operation) requirement to solve the problem (P) up to accuracy $\epsilon > 0$

Niao He

Complexity vs Convergence

Cutting Plane Methods

Center of Gravi Method

Ellipsoid Method

Convergence

Given solutions $\{x_t\}$ and accuracy measure $\mathcal{E}(x_t)$

$$\lim_{t\to\infty}\frac{\mathcal{E}(x_{t+1})}{\mathcal{E}(x_t)^p}=q$$

- ▶ Linear convergence: $p = 1, q \in (0, 1)$
 - ▶ E.g., $\mathcal{E}(x_t) = O(e^{-\alpha t})$, where $\alpha > 0$
- ▶ Sublinear convergence: p = 1, q = 1

▶ E.g.,
$$\mathcal{E}(x_t) = \frac{1}{t^{\beta}}$$
, where $\beta > 0$

▶ Superlinear convergence: p = 1, q = 0

▶ E.g.,
$$\mathcal{E}(x_t) = O(e^{-\alpha t^2})$$
, where $\alpha > 0$

- ► Convergence of order p: p > 1, q > 0
 - When p = 2, called quadratic convergence.
 - ▶ E.g., $\mathcal{E}(x_t) = O(e^{-\alpha p^t})$, where $\alpha > 0$

Niao He

Complexity vs Convergence

Cutting Plan Methods

Center of Gravit

Ellipsoid Method

Illustration: Convergence

Figure: sublinear, linear, quadratic convergence

Niao He

Complexity vs Convergence

Cutting Plan Methods

Center of Gravi Method

Ellipsoid Method

Solving Convex Program

We focus on the following general convex problem

$$\min_{x \in X} f(x)$$

Problem Setting:

- ▶ *f* is convex and admits *zero- and first-order oracles*;
- ▶ $X \subset \mathbb{R}^n$ is a convex body (convex, compact, with nonempty interior) and admits *separation oracle*.

Niao He

Complexity vs Convergence

Cutting Plane Methods

Center of Gravit Method

Ellipsoid Method

Cutting Plane Methods

(a) Separation oracle

- (b) First-order oracle
- (a) $X \subseteq \{y : a^T(y-x) \le 0\}$ if $x \notin X$;
- (b) $X^* \subseteq \{y : g^T(y x) \le 0\}$ if x is not optimal.

Figures from Boyd and Vandenberghe notes (2008)

Niao He

Complexity vs Convergence

Cutting Plane Methods

Center of Gravi

Ellipsoid Method

Cutting Plane Methods

Figure: Localization Polyhedron

$$\mathcal{P}_1 \supseteq \cdots \supseteq \mathcal{P}_k \supseteq X^*$$

Q. How to choose the query point to cut the most off?

Niao He

Complexity vs Convergence

Cutting Plane Methods

Center of Gravity Method

Ellipsoid Method

Cutting Plane Methods

- ▶ Center of gravity method: choose the query to be the center of the gravity of \mathcal{P}_k .
- Maximum volume ellipsoid cutting plane method: choose the query to be the center of the maximum volume ellipsoid contained in \mathcal{P}_k .
- ▶ Chebyshev center cutting-plane method: choose the query point to be the Chebyshev center of \mathcal{P}_k , i.e., the center of the largest Euclidean ball that lies in \mathcal{P}_k .

Niao He

Complexity vs Convergence

Methods

Center of Gravity Method

Ilipsoid Method

Center of Gravity Method

(Levin, 1965; Newman, 1965)

- ▶ Initialize $G_0 = X$
- ▶ At iteration t = 1, 2, ..., T, do
 - Compute the center of gravity: $x_t = \frac{1}{Vol(G_{t-1})} \int_{x \in G_{t-1}} x dx$
 - ▶ Call the first order oracle and obtain $g_t \in \partial f(x_t)$
 - ▶ Set $G_t = G_{t-1} \cap \{y : g_t^T (y x_t) \leq 0\}$
- ▶ Output $\hat{x}_T \in \operatorname{arg\,min}_{x \in \{x_1, \dots, x_T\}} f(x)$

Niao He

Complexity vs Convergence

Cutting Plane Methods

Center of Gravity Method

Ellipsoid Method

Center of Gravity Method

Lemma (Grünbaum [1960]). Let $C \subset \mathbb{R}^n$ be a convex body with $\int_X x dx = 0$. Then $\forall a \neq 0$

$$Vol(C \cap \{x : a^T x \le 0\}) \le \left(1 - \left(\frac{n}{n+1}\right)^n\right) Vol(C)$$
$$\le \left(1 - \frac{1}{e}\right) Vol(C) \approx 0.63 Vol(C)$$

Remark. It follows that

$$\mathsf{Vol}(\mathit{G}_t) \leq (1 - \frac{1}{e})^t \mathsf{Vol}(\mathit{X}), t \geq 1$$

Niao He

Complexity vs Convergence

Cutting Plan Methods

Center of Gravity Method

Ellipsoid Method

Convergence of Center of Gravity Method

Theorem. The center of gravity method return $\hat{x}_T \in X$:

$$f(\hat{x}_T) - f^* \leq \left(1 - \frac{1}{e}\right)^{\frac{T}{n}} \cdot \mathsf{Var}_X(f)$$

where $Var_X(f) = \max_{x \in X} f(x) - \min_{x \in X} f(x)$.

- Linear convergence rate
- ▶ Oracle complexity: $N(\epsilon) = \mathcal{O}\left(n\log(\frac{\operatorname{Var}_X(f)}{\epsilon})\right)$
- Main disadvantage: computing the center of gravity is extremely difficult, even for polytopes.

Niao He

Complexity vs Convergence

Cutting Plane Methods

Center of Gravity Method

Ellipsoid Method

Proof of Convergence

- Note $x^* \in G_t, \forall t \geq 1$ and $Vol(G_t) \leq (1 \frac{1}{e})^t Vol(X)$.
- Consider the neighborhood of x^* : $X_{\delta} = \{x^* + \delta(x x^*) : x \in X\}$, where $\delta \in ((1 \frac{1}{e})^{\frac{T}{n}}, 1)$.
- ▶ Observe that $X_\delta/G_T \neq 0$.

$$\operatorname{Vol}(X_{\delta}) = \delta^n \operatorname{Vol}(X) > (1 - \frac{1}{e})^T \operatorname{Vol}(X) \ge \operatorname{Vol}(G_T)$$

- Let $y = x^* + \delta(z x^*) \in X_\delta/G_T$ for some $z \in X$. Thus, for certain $t^* \le T$, we have $y \in G_{t^*-1}/G_{t^*}$.
- ▶ Since $y \notin G_{t^*}$, we have $g_{t^*}^T(y x_{t^*}) > 0$, so $f(y) > f(x_{t^*})$.
- ▶ Since $y = x^* + \delta(z x^*)$, by convexity of f,

$$f(y) = f(\delta z + (1 - \delta)x^*) \le \delta f(z) + (1 - \delta)f(x^*)$$

= $f(x^*) + \delta[f(z) - f(x^*)]$
 $\le f(x^*) + \delta Var_X(f)$

Hence $f(\hat{x}_T) \leq f(x_{t^*}) \leq f^* + \delta Var_X(f)$.

Niao He

Complexity vs Convergence

Cutting Plan Methods

Center of Gravit

Ellipsoid Method

Ellipsoid as Localizer

Definition. Let $Q \succ 0$ be symmetric, and c be the center, an <u>ellipsoid</u> is uniquely characterized by (c, Q):

$$E(c, Q) = \left\{ x \in \mathbb{R}^n : (x - c)^T Q^{-1} (x - c) \le 1 \right\}$$
$$= \left\{ x = c + Q^{\frac{1}{2}} u : u^T u \le 1 \right\}$$

▶ Vol(E(c,Q)) = Det($Q^{\frac{1}{2}}$)Vol(B_n), where B_n is a unit Euclidean ball in \mathbb{R}^n with Vol(B_n) = $\frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2}+1)}$.

Niao He

Complexity vs Convergence

Methods

Center of Gravit Method

Ellipsoid Method

Half Ellipsoid

Let $H_+ = \{x : \omega^T x \le \omega^T c\}$ be a half space with $\omega \ne 0$ that pass through the center c of the ellipsoid E(c, Q).

Niao He

Complexity vs Convergence

Cutting Plan Methods

Center of Gravit Method

Ellipsoid Method

Half Ellipsoid

Let $H_+ = \{x : \omega^T x \le \omega^T c\}$ be a half space with $\omega \ne 0$ that pass through the center c of the ellipsoid E(c, Q).

►
$$E \cap H_+ \subseteq E^+ = E(c^+, Q^+)$$
 with $c^+ = c - \frac{1}{n+1}q$, where $q = \frac{Q\omega}{\sqrt{\omega^T Q\omega}}$, $Q^+ = \frac{n^2}{n^2+1}(Q - \frac{2}{n+1}qq^T)$.

Volume decrease:

$$\operatorname{Vol}(E^+) \leq \exp\left\{-\frac{1}{2n}\right\} \operatorname{Vol}(E)$$

Niao He

Complexity vs Convergence

Methods

Center of Gravit Method

Ellipsoid Method

Ellipsoid Method

(Shor; Nemirovsky, Yudin, 1970s)

- ▶ Initialize $E(c_0, Q_0)$ with $c_0 = 0, Q_0 = R^2I$
- ▶ At iteration t = 1, 2, ..., T, do
 - ▶ Call separation oracle with the input c_{t-1}
 - ▶ If $c_{t-1} \notin X$, call separation oracle and obtain $\omega \neq 0$
 - ▶ If $c_{t-1} \in X$, call first order oracle and obtain $\omega \in \partial f(c_t)$
 - ▶ Set the new ellipsoid $E(c_t, Q_t)$ with

$$c_{t} = c_{t-1} - \frac{1}{n+1} \frac{Q_{t-1}\omega}{\sqrt{\omega^{T}Q_{t-1}\omega}}$$

$$Q_{t} = \frac{n^{2}}{n^{2}-1} (Q_{t-1} - \frac{2}{n+1} \frac{Q_{t-1}\omega\omega^{T}Q_{t-1}}{\omega^{T}Q_{t-1}\omega})$$

• Output $\hat{x}_T = \arg\min_{c \in \{c_1, \dots, c_T\} \cap X} f(c)$

Niao He

Complexity vs Convergence

Cutting Plan Methods

Center of Gravi Method

Ellipsoid Method

Illustration of Ellipsoid Method

Figure: Illustration

Figure from Boyd, EE364b lecture notes

Niao He

Complexity vs Convergence

Cutting Plan Methods

Center of Gravin Method

Ellipsoid Method

Convergence of Ellipsoid Method

Theorem. Assume $B(\bar{x}, r^2I) \subseteq X \subseteq B(0, R^2I)$. The Ellipsoid method after T steps satisfies:

$$f(\hat{x}_T) - f^* \le \frac{R}{r} \cdot \mathsf{Var}_X(f) \exp\left\{-\frac{T}{2n^2}\right\}$$

- Linear convergence rate
- ▶ Oracle complexity: $N(\epsilon) = \mathcal{O}\left(n^2 \log(\frac{\mathsf{Var}_X(f)}{\epsilon})\right)$
- ▶ Modest per iteration computation cost: $O(n^2)$
- Polynomial solvability: as long as it takes polynomial time to call the separation and first-order oracles

Niao He

Complexity vs Convergence

Methods

Center of Gravit Method

Ellipsoid Method

Proof of Convergence

- Similar as the proof for the center of gravity method.
- Consider the neighborhood of x^* : $X_{\delta} = \{x^* + \delta(x x^*) : x \in X\}, \ \delta \in (\frac{R}{r} \exp\{-\frac{T}{2n^2}\}, 1).$
- ▶ Note $X_{\delta}/E(c_T,Q_T) \neq \emptyset$, because

$$Vol(X_{\delta}) = \delta^{n} Vol(X)$$

$$\geq \delta^{n} r^{n} Vol(B_{n})$$

$$> R^{n} \exp\left\{-\frac{T}{2n}\right\} Vol(B_{n})$$

$$\geq Vol(E(c_{T}, Q_{T}))$$

Rest is the same as proof of center of gravity method.

Niao He

Complexity vs Convergence

Cutting Plan Methods

Center of Gravity Method

Ellipsoid Method

Stopping Criterion

- ▶ In practice, f^* is often unknown and it is impossible to compute $f(x_t) f^*$.
- ▶ Construct online lower bounds for f^* : $\ell_t \leq f^*$

$$f^* \ge f(x_t) + \omega_t^T (x^* - x_t), \qquad \omega_t \in \partial f(x_t)$$

$$\ge f(x_t) + \inf_{x \in E(c_t, Q_t)} \omega_t^T (x - x_t)$$

$$= f(x_t) - \sqrt{\omega_t Q_t \omega_t}$$

- ▶ Hence, $\sqrt{\omega_t Q_t \omega_t} \le \epsilon \Longrightarrow f(x_t) f^* \le \epsilon$
- ► Tighter lower bound:

$$\ell_t = \max_{1 \le \tau \le t} \left(f(x_\tau) - \sqrt{\omega_\tau Q_\tau \omega_\tau} \right)$$

Niao He

Complexity vs Convergence

Cutting Plar Methods

Center of Gravi Method

Ellipsoid Method

Discussion

Advantages and disadvantages of the Ellipsoid method:

+ : universal

 $+\,:\,\mathsf{simple}\;\mathsf{to}\;\mathsf{implement}$

+ : steady for small size problems

+ : low order dependence on the number of constraints

- : quadratic growth on the size of problem

: inefficient for large-scale problems

Niao He

Complexity vs Convergence

Cutting Plan Methods

Center of Grav Method

Ellipsoid Method

Experiment on SVM

$$\min_{w,b} \quad \frac{1}{m} \sum_{i=1}^{m} \max(1 - y_i(w^T x_i + b), 0) + \lambda ||w||_2^2$$

Figure: Ellipsoid Method for SVM on WBDC dataset (n=30)

Niao He

Complexity vs Convergence

Cutting Plan Methods

Center of Gravi Method

Ellipsoid Method

References

► Ben-Tal & Nemirovski, Chapter 7