

# SV-DA200 Series AC Servo Drive EtherCAT Technical Guide



# **Change history**

| Release date | Version | Description                                                                                                                                                                                        |
|--------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| May 2021     | V1.00   | First release.                                                                                                                                                                                     |
|              |         | 1) Added unbiased control function with related parameters P2.91, P2.92;                                                                                                                           |
|              |         | 2) Upated section 1.1. DA260-N version V2.66 has a built-in hardware dynamic brake (set via. P4.30);                                                                                               |
| June 2022    | V1.10   | 3) Added P2.86–P2.92, P3.42, P4.77 (Detection time for motor phase loss), updated P4.78 (Temperature protection threshold of medium-power motor) and P4.79 (Quick stop method), and deleted P4.45; |
|              |         | 4) Added the description of P0.15 (set to 23) and updated the function definition of P4.43 in section 2.1;                                                                                         |
|              |         | 5) Updated the Default PDO mapping in section 2.2.4;                                                                                                                                               |
|              |         | 6) Added fault Er01-2, Er01-3, Er01-4, Er01-5, Er17-1, Er18-2, Er18-3.                                                                                                                             |

# **Contents**

| Contents                                                  |    |
|-----------------------------------------------------------|----|
| 1 Hardware configuration                                  | 1  |
| 1.1 Hardware overview                                     | 1  |
| 1.2 Drive wiring                                          |    |
| 1.3 CN1 terminal definition                               |    |
| 2 Software configuration                                  | 5  |
| 2.1 Basic settings of EtherCAT application                |    |
| 2.2 EtherCAT communication                                |    |
| 2.2.1 CoE reference model                                 |    |
| 2.2.2 EtherCAT slave information                          |    |
| 2.2.3 EtherCAT state machine                              |    |
| 2.2.4 PDO process data mapping                            |    |
| 2.2.5 Network synchronization based on distributed clocks |    |
| 2.2.6 Emergency messages                                  |    |
| 2.3 Compatible communication specifications               |    |
| 3 CiA402 device protocol                                  |    |
| 3.1 CoE state machine                                     |    |
| 3.1.1 Detail of CW 0x6040                                 |    |
| 3.1.2 Detail of SW 0x6041                                 |    |
| 3.2 Profile position mode                                 |    |
| 3.2.1 Basic description                                   |    |
| 3.2.2 Operating method                                    |    |
| 3.2.3 Other objects                                       |    |
| 3.2.4 Mode-related objects                                |    |
| 3.2.5 CW 0x6040of profile position mode                   |    |
| 3.2.6 SW 0x6041 of profile position mode                  |    |
| 3.2.7 Application examples                                |    |
| 3.3 Cyclic synchronous position mode                      |    |
| 3.3.1 Basic description                                   |    |
| 3.3.2 Operating method                                    |    |
| 3.3.3 Mode-related objects                                |    |
| 3.3.4 Application examples                                |    |
| 3.4 Homing Mode                                           |    |
| 3.4.1 Basic description                                   |    |
| 3.4.2 Operating method                                    |    |
| 3.4.3 Mode-related objects                                |    |
| 3.4.4 Application examples                                |    |
| 3.4.5 Homing mode SW                                      |    |
| 3.4.6 Homing mode description                             |    |
| 3.5 Profile velocity mode                                 |    |
| 3.5.1 Basic description                                   |    |
| 3.5.2 Operating method                                    |    |
| 3.5.3 Other objects                                       |    |
| 3.5.4 Mode-related objects                                |    |
| 3.5.5 Application examples                                |    |
| 3.6 Cyclic synchronous velocity mode                      |    |
| 3.6.1 Basic description                                   | 28 |

i

| INVT SV-DA200&DA260 AC Servo Drive EtherCAT Technical Guide | Contents |
|-------------------------------------------------------------|----------|
| 3.6.2 Operating method                                      | 28       |
| 3.6.3 Other objects                                         | 28       |
| 3.6.4 Mode-related objects                                  | 28       |
| 3.6.5 Application examples                                  | 28       |
| 3.7 Cyclic synchronous torque mode                          | 29       |
| 3.7.1 Basic description                                     | 29       |
| 3.7.2 Operating method                                      | 29       |
| 3.7.3 Other objects                                         |          |
| 3.7.4 Mode-related objects                                  | 29       |
| 3.7.5 Application examples                                  | 30       |
| 3.8 Touch probe function                                    |          |
| 3.8.1 Basic description                                     | 30       |
| 3.8.2 Mode-related objects                                  | 30       |
| 3.8.3 CW and SW description                                 | 31       |
| 3.8.4 Application examples (Z signal single trigger mode)   |          |
| 4 Object dictionary                                         |          |
| 4.1 Object specifications                                   |          |
| 4.1.1 Object type                                           | 32       |
| 4.1.2 Data type                                             | 32       |
| 4.2 Overview of object group 1000h                          | 32       |
| 4.3 Overview of object group 6000h                          |          |
| 4.4 Overview of object groups 2000h–4000h                   |          |
| 4.5 Encoder feedback                                        |          |
| 4.6 Digital input                                           |          |
| 4.7 Digital output control                                  |          |
| 4.8 Analog output control                                   |          |

# 1 Hardware configuration

#### 1.1 Hardware overview

With a built-in EtherCAT communication card, SV-DA200&DA260 EtherCAT servo drive has similar external appearance with standard SV-DA200, but different from SV-DA200 in CN1 terminal pins, which are described in section 1.3. CN3 is the EtherCAT communication wiring terminal that adopts RJ45 interface, of which the upper is for wire inlet and the lower is for wire outlet. The entire machine diagram is as follows.



Main differences between DA200-N and DA260-N:

| No. | Function                        | DA200-N    | DA260-N          |
|-----|---------------------------------|------------|------------------|
| 1   | CN5                             | Available  | Unavailable      |
| 2   | Incremental encoder             | Available  | Unavailable      |
| 3   | Digital input                   | 7 channels | First 4 channels |
| 4   | Digital output                  | 4 channels | First 3 channels |
| 5   | Analog input/output             | Available  | Unavailable      |
| 6   | Frequency-divided output        | Available  | Unavailable      |
| 7   | Main circuit terminals L1C, L2C | Required   | Not required     |
| 8   | Dimension of 2R0-2 servo        | Volume D   | Volume B         |

## 1.2 Drive wiring

An EtherCAT network often consists of a master (IPC or CNC) and multiple slaves (servo drives or bus expansion terminals). Each EtherCAT slave has two standard Ethernet interfaces. The following figure shows the wiring.



## 1.3 CN1 terminal definition

The inputs and outputs of SV-DA200 EtherCAT model have differences with those of the standard model. The following table lists the pins of the CN1 terminal (DB44) of the medium power range (7.5kW and higher), marking the differences from the standard model in red. Except that pin 1 of the CN1 terminal of the small power range (0.1kW–5.5kW) is reserved, all the others are the same as those of the medium power range.

| Pin | Symbol | Function                         | Pin | Symbol | Function                      |
|-----|--------|----------------------------------|-----|--------|-------------------------------|
| 1   | AD1    | Analog input 1<br>(Medium power) | 23  | -      | Reserved                      |
| 2   | COM+   | Common terminal of digital input | 24  | -      | Reserved                      |
| 3   | DO1+   | Digital output 1 +               | 25  | AO2    | Analog output 2               |
| 4   | DO1-   | Digital output 1 -               | 26  | OCZ    | Z-phase open collector output |
| 5   | GND    | Analog signal ground             | 27  | OZ-    | Z-phase differential output - |
| 6   | GND    | Analog signal ground             | 28  | OZ+    | Z-phase differential output + |
| 7   | AD3    | Analog input 3                   | 29  | -      | Reserved                      |
| 8   | GND    | Analog signal ground             | 30  | ОСВ    | B-phase open collector output |
| 9   | DO3+   | Digital output 3 +               | 31  | -      | Reserved                      |
| 10  | DO3-   | Digital output 3 -               | 32  | -      | Reserved                      |
| 11  | DO4+   | Digital output 4 +               | 33  | -      | Reserved                      |

| Pin | Symbol | Function                        | Pin | Symbol | Function                      |
|-----|--------|---------------------------------|-----|--------|-------------------------------|
| 12  | COM-   | Common ground of digital output | 34  | DI5    | Digital input 5               |
| 13  | DO2-   | Digital output 2 -              | 35  | GND    | Analog signal ground          |
| 14  | DO2+   | Digital output 2 +              | 36  | OCA    | A-phase open collector output |
| 15  | DO4-   | Digital output 4 -              | 37  | DI2    | Digital input 2               |
| 16  | DI1    | Digital input 1                 | 38  | -      | Reserved                      |
| 17  | DI6    | Digital input 6                 | 39  | DI4    | Digital input 4               |
| 18  | DI3    | Digital input 3                 | 40  | +24V   | Internal 24V                  |
| 19  | GND    | Analog signal ground            | 41  | OB+    | B-phase differential output + |
| 20  | AD2    | Analog input 2                  | 42  | OB-    | B-phase differential output - |
| 21  | AO1    | Analog output 1                 | 43  | OA-    | A-phase differential output - |
| 22  | DI7    | Digital input 7                 | 44  | OA+    | A-phase differential output + |





CN1 plug signal layout

The EtherCAT servo drive model has three analog inputs (AD1 is 16-bit analog input, but it is unavailable to the small power range, and therefore pin1 of CN1 is not used), two analog outputs, seven digital inputs, and four digital differential outputs. This servo drive model and the standard model are similar in the external wiring of analog input, analog output, and digital input. For details, see section 4.5 in SV-DA200 Series AC Servo Drive.

The following shows the external wiring of digital differential output, using DO1 as an example.

Wiring when using the user-provided power supply:





① connect to relay coil

2 connect to optical coupler

#### Alternative wiring:



① connect to relay coil



② connect to optical coupler

Wiring when using the local-provided power supply:



① connect to relay coil



② connect to optical coupler

#### Alternative wiring:



① connect to relay coil



2 connect to optical coupler

# 2 Software configuration

## 2.1 Basic settings of EtherCAT application

Set the following parameters through the LED panel or ServoPlorer software before using SV-DA200 for EtherCAT communication.

- Set parameter <u>P0.03</u> [Control mode] to <u>8 (EtherCAT)</u>.
- 2. In most cases, you do not need to set the node number parameter since you can use the default physical node sequence addressing, such as Twincat. If you need to set the node number (such as for Omron PLC), set P4.00 [EtherCAT communication node] through the LED panel or ServoPlorer software. The default value -1 indicates not setting the parameter.
- 3. Set parameter **P4.08** [EtherCAT synchronization type]. (0: Free-Run; 2: DC Sync0)
- 4. Set parameter **P4.07** [EtherCAT synchronization cycle]. (0: 250μs; 1: 500μs; 2: 1ms; 3: 2ms; 4: 4ms; 5: 8ms)
- 5. Set P4.09 [EtherCAT fault detection time]. (Set the detection time of offline fault or PDO data loss fault as needed.)
- 6. Set parameter <a href="P4.25">P4.25</a> [EtherCAT control unit type]. (0: Manufacturer unit; 1:CIA402 Unit; 2:CIA402 OMRON; 3:CIA402 Standard)
- 7. Set parameter P4.26 [EtherCAT PDO input offset]. (Range: 0–63. Unit: 125µs)
- 8. Set parameter <a href="P4.27">P4.27</a> [Compensation value of EtherCAT position interpolation mode]. (Range: 0–10)
- The digital output is servo controlled by default. If you want to enable the master to control the digital output through EtherCAT communication, set <u>P4.28</u> [Enabling EtherCAT based control on digital output] to 1 (Enable); control the digital output through 0x60FE in TPDO.

#### Note:

- 1. You need to re-power on the drive or reset the drive in soft manner for the changes of the first five parameters and P4.28 to take effect. The changes of P4.25–4.27 take effect immediately.
- 2. When the control mode (0x6040) is set to position interpolation mode (8), P4.07 [EtherCAT synchronization cycle] is the same as CNC interpolation cycle.
- 3. The options of P4.25 [EtherCAT control unit type] are as follows:
  - 0: Manufacturer unit, supporting the NC function of Beckhoff TwinCAT.

The position unit is pulse, speed unit is rpm, acceleration unit is ms (the time needed for accelerating from zero speed to rated motor speed).

The touch probe of z signal is supported. The captured values of external IO are stored in manufacturer parameters. For details, refer to the following text.

1: CIA402 unit, supporting most of motion controllers, such as CodeSys, BaoYuan and ACS EtherCAT master.

The position unit is pulse, speed unit is pulse/s, and acceleration unit is pulse/s².

The touch probe of z signal and the IO capture of standard touch probe are supported.

2: CIA402 OMRON, supporting OMRON NJ controller.

The content is basically the same as that for option 0, 1.

Change 0x6041 status feedback to satisfy OMRON NJ state machine requirement.

3: CIA402 standard, supporting minor motion controllers.

The capture of only standard IO is supported.

- 4. The default number of pulses per revolution of SV-DA200 is 10000, which can be changed through P0.22 [Pulse per revolution of motor]. The change takes effect after reset. The number can also be changed by modifying P0.25 [Numerator of electronic gear ratio] and P0.26 [Denominator of electronic gear ratio] after setting P0.22 to 0. Note that the setting of P0.22 cannot be greater than the actual revolution rate of encoder.
- 5. P4.26 and P4.27 need to be modified only when the master cycle is unstable or packet loss or other problems occurred to communication.
- 6. P4.26 [EtherCAT PDO input offset] is used to adjust the time from receiving DC signal to processing PDO so that PDO input time can be changed in the middle of the master cycle, reducing the data loss caused by the unstable master clock. This parameter needs to be set according to the cycle setting of P4.07. If P4.07 is 1ms, the range of P4.26 is 0–7. The value 0 indicates no offset while the value 7 indicates the offset of 7\*125µs. The actual setting depends on actual conditions for the purpose of stable data receiving.
- 7. P4.27 [Compensation value of EtherCAT position interpolation mode] is effective only in DC mode and position interpolation mode (8). This is to ensure that position command smoothing effect can be achieved if one or multiple cycle position commands are lost when P4.26 is set properly. If it is set to a non-zero value, compensation is made based on previous position increment when position command loss occurred, and the compensation cycle is equal to the value specified by P4.27.
- 8. **P4.43** [EtherCAT related control and run cycle selection] is 0x0003 by default. It is controlled by bit. The definition is as follows.

| Bit | Description                                                                                                             | Other                                                                                                           |
|-----|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 0   | Indicates whether to screen out torque limit (60E0h, 60E1h) commands.                                                   | Default: 1, screening out.                                                                                      |
| 1   | Indicates whether to screen out the speed limit (607Fh) command.                                                        | Default: 1, screening out. 607Fh is always valid in torque mode.                                                |
| 2–3 | Reserved                                                                                                                |                                                                                                                 |
| 4   | Indicates whether to use 60B1h as the speed feedforward. Default: 0, using the servo internal speed as the feedforward. | When 60B1h is used as the speed feedforward, the unit is puu/s, and P2.10 and P2.11 are still valid.            |
| 5   | Indicates whether to use 60B0h as the position offset.  Default: 0, not using 60B0h as the position offset.             | Unit: puu                                                                                                       |
| 6   | Indicates the range of software limit (607Dh).                                                                          | Default: 0. Only valid in position mode.                                                                        |
| 7   | Indicates the position command processing mode after limit.                                                             | Default: 0. The position command is discarded after limit.                                                      |
| 8   | Changing EtherCAT run cycle Default: 0, indicating servo controls the cycle.                                            | 1: reducing the load rate of the main interrupt task. Set the bit to 1 when the servo reports the fault Er11-0. |

| Bit   | Description                                                                                      | Other                                           |
|-------|--------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 9–11  | Reserved                                                                                         |                                                 |
| 12    | Indicating the parsing mode of the software limit (607Dh). Default: 0, standard CiA402 protocol. | 1: the mode used in V2.61 and earlier versions. |
| 13–15 | Reserved                                                                                         |                                                 |

- 9. If the PDO parameter list in EtherCAT xml configuration file of SV-DA200 includes torque limit parameters and P4.43 indicates no torque limit screening, a non-zero value needs to be given; otherwise, the servo torque is limited to 0, which causes no acting or alarm reporting. For example, the units of **Positive torque limit and Negtive torque limit** are 1‰ of the rated torque. The setting 1000 indicates 100% of the rated torque. Parameters about torque limit are valid in any control mode.
- 10. If the EtherCAT xml configuration file of SV-DA200 includes **Max profile velocity** (607Fh), which indicates the max. speed limit in the torque loop, the unit is related to P4.25. If P4.25 is the manufacturer unit mode, the unit is rpm; if P4.25 is another value, the unit is puu/s. If the torque loop needs to be run, set this parameter to a non-zero value.
- 11. Sending and receiving PDO can be configured dynamically by the master, however, the max. number of each PDO parameter is 10. If the max. number is exceeded, the slave cannot enter the Op status.
- 12. When P4.08 is set to the DC mode, you can check the clock synchronization calibration status through R0.27.
- 13. You can view the CANopen state machine information through R0.28. The following table lists the mapping between states and values.

| State       | Init | Pre-Op | Safe-Op | Ор |
|-------------|------|--------|---------|----|
| R0.28 value | 11   | 12     | 14      | 18 |

- 14. View the EtherCAT configuration file version number through R0.50.
- 15. View the control word (6040h) from the master through R0.64.
- 16. View the status word (6041h) from the slave through R0.65.
- 17. View the run mode (6060h) from the slave through R0.66.
- 18. When P0.15 is set to 23, The LED pannel displays the EtherCAT communication-related status.

| Sign |  | Name                                                                                              | Definition                                                                                                                                                  |
|------|--|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |  | EtherCAT communication monitoring mode                                                            | Indicates the initial entry into EtherCAT communication monitoring mode. "ECAT" is displayed.                                                               |
|      |  | EtherCAT communication monitoring status                                                          | Displays the physical layer link state of upper and lower network ports, EtherCAT state machine, CiA402 control mode, and servo system status respectively. |
| 1)   |  | Physical layer link state of<br>EtherCAT communication<br>interface Port1 (upstream<br>interface) | On: Port1 is connected Off: Port1 is not connected                                                                                                          |

|   | Sign | Name                                                                                                | Definition                                                                                                                                                                                                                                                     |
|---|------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |      | Physical layer link state of<br>EtherCAT communication<br>interface Port2 (downstream<br>interface) | On: Port2 is connected Off: Port2 is not connected                                                                                                                                                                                                             |
| 2 |      | EtherCAT communication state machine                                                                | 1: Init<br>2: Pre-Op<br>4: Safe-Op<br>8: Op                                                                                                                                                                                                                    |
| 3 | 888  | CiA402 control mode                                                                                 | 1: Profile position control mode (pp) 3: Profile speed control mode (pv) 6: Homing control mode (hm) 8: Cycle synchronization position control mode (csp) 9: Cycle synchronization speed control mode (csv) A: Cycle synchronization torque control mode (cst) |
|   |      | Servo initialization                                                                                | Strong electricity is not connected or the bus voltage does not reach the main relay switching-on voltage.                                                                                                                                                     |
|   |      | Servo connected with strong electricity                                                             | The main relay is switched on but not ready.                                                                                                                                                                                                                   |
|   |      | Servo ready<br>(with alarm)                                                                         | Wait for enabling signal.                                                                                                                                                                                                                                      |
| 4 | 888  | Servo running<br>(with alarm)                                                                       | <ol> <li>"run" is blinking at non-zero speed.</li> <li>"ALM" is displayed when an alarm occurred, but the servo is still running.</li> </ol>                                                                                                                   |
|   |      | Servo fault                                                                                         | Servo is faulty.                                                                                                                                                                                                                                               |
|   | 888  | STO-In                                                                                              | STO acts.                                                                                                                                                                                                                                                      |

19. You can check the PDO parameters configured on the master through the ServoPlorer software.



- 20. The network cable connection must follow up the top-in and bottom-out rule; otherwise, some nodes may be unable to enter the Op state.
- 21. This manual is applicable to V2.60/XML V1.70 or later. Some functions are not imported into earlier versions.

## 2.2 EtherCAT communication

#### 2.2.1 CoE reference model

Figure 2-1shows the CANopen over EtherCAT (CoE) network model inside SV-DA200.



Figure 2-1 CoE model reference

The CoE network reference model consists of data link layer and application layer. Data link layer is in charge of EtherCAT communication protocol while application layer is embedded with CANopen drive profile (DS402) communication protocol. The object dictionary in CoE contains parameters, application data, and process data object (PDO) mapping configuration information.

PDOs are constituted by objects which can conduct PDO mapping in object dictionary. The content in PDO data is defined by PDO mapping. The R/W of PDO data is cyclic, thus removing the need to look up the object dictionary while service data object (SDO) is acyclic communication, and requires a look-up in object dictionary during R/W.

Note: It is necessary to configure FMMU and Sync Manager to ensure SDO and PDO data can be properly analyzed in EtherCAT data link layer, as shown in the following table:

| Sync Manager   | Assignment(Fixed)            | Size         | Start Address(Fixed) |
|----------------|------------------------------|--------------|----------------------|
| Sync Manager 0 | Assigned to Receive Mailbox  | 40 – 512Byte | 0x1000               |
| Sync Manager 1 | Assigned to Transmit Mailbox | 40 – 512Byte | 0x1200               |
| Sync Manager 2 | Assigned to Receive PDO      | 1 – 128Byte  | 0x1400               |
| Sync Manager 3 | Assigned to Transmit PDO     | 1 – 128Byte  | 0x1480               |

#### **FMMU** settings

| FMMU   | Settings               |
|--------|------------------------|
| FMMU 0 | Mapped to Receive PDO  |
| FMMU 1 | Mapped to Transmit PDO |

| FMMU   | Settings                                  |
|--------|-------------------------------------------|
| FMMU 2 | Mapped to Fill Status of Transmit Mailbox |

#### 2.2.2 EtherCAT slave information

EtherCAT slave information file (in XML format) is used for master reading and building the configuration between the master and slave. The XML file contains information required by EtherCAT communication setup. INVT provides "INVT\_DA200\_EtherCAT\_V###.xml" file for SV-DA200.

#### 2.2.3 EtherCAT state machine

EtherCAT state machine is used to describe the state and state change of slave application. The request of state change is usually initiated by the master and responded by the slave. The state transition mode is shown as follows:



Figure 2-2 Slave state machine diagram

Table 2-1 State description

| State            | Description                                                                                                                                                                                                                |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Init             | Mail communication is unavailable.                                                                                                                                                                                         |
|                  | PDO communication is unavailable.                                                                                                                                                                                          |
|                  | <ul> <li>The master configures link layer address and SM channel, and<br/>initiates mail communication.</li> </ul>                                                                                                         |
| 1 11 2 5 6       | The master initializes DC clock synchronization.                                                                                                                                                                           |
| Init → Pre-Op    | The master requests for the change to the Pre-Op state.                                                                                                                                                                    |
|                  | The master sets the AL control register.                                                                                                                                                                                   |
|                  | The slave determines whether the mail is initialized normally.                                                                                                                                                             |
| Pre-Operation    | Mail communication is activated.                                                                                                                                                                                           |
| (Pre-Op)         | PDO communication is unavailable.                                                                                                                                                                                          |
|                  | <ul> <li>The master serves as the channel for process data configuration<br/>sync manager channel and FMMU.</li> </ul>                                                                                                     |
|                  | <ul> <li>The master configures PDO data mapping and Sync Manager<br/>PDO parameters through SOD.</li> </ul>                                                                                                                |
| Pre-Op → Safe-Op | The master requests for the Safe-Op state change.                                                                                                                                                                          |
|                  | <ul> <li>The slave checks whether the configuration of Sync Manager<br/>that is in charge of PDO data is correct. If the slave sends the<br/>request to initiate synchronization, check whether the distributed</li> </ul> |

| State                       | Description                                                                                                                                       |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | clocks are set correctly.                                                                                                                         |
| Safe-Operation<br>(Safe-Op) | <ul> <li>The slave application program transmits actual input data, without output operations.</li> <li>Output is set to "safe state".</li> </ul> |
| Safe-Op → Op                | <ul> <li>The master sends valid output data.</li> <li>The master requests for the change to the Op state.</li> </ul>                              |
| Operational<br>(Op)         | <ul><li>Mail communication is available.</li><li>PDO communication is available.</li></ul>                                                        |

## 2.2.4 PDO process data mapping

Process data of EtherCAT slave is constituted by Sync Manager channel objects, with each object describing the uniform region of EtherCAT process data and containing multiple process data objects. The EtherCAT slave equipped with application control function should support PDO mapping and R/W of SM PDOs Assign objects.

#### **PDO** mapping

PDO mapping designs the mapping relation between the object dictionary to PDOs application object. Index 0x1600 and 0x1A00 in the object dictionary are stored in RxPDO and TxPDO mapping table respectively. The following shows an example of PDO mapping.



Figure 2-3 PDO mapping example

#### **PDO allocation**

In order to realize process data interaction of EtherCAT communication, it is necessary to distribute PDOs to Sync Manager. Sync Manager PDO distributes objects (Sync Manager PDO Assign objects: 0x1C12 and 0x1C13) to establish the relationship between PDOs and Sync Manager.

The following shows an example of Sync Manager PDO allocation.



Figure 2-4 PDO allocation example

#### Note:

PDO mapping objects (0x1600–0x1603 and 0x1A00–0x1A03) and SM PDO Assign objects (0x1C12 and 0x1C13) can only be effective in write operation under Pre-Op state.

#### PDO mapping procedure

- 1. Stop PDO allocation function (Set sub-index 0 of 0x1C12 and 0x1C13 to 0).
- 2. Stop PDO mapping function (Set sub-index 0 of 0x1600-0x1603 and 0x1A00-0x1A03 to 0).
- 3. Set the mapping entry of PDO mapping objects (0x1600–0x1603 and 0x1A00–0x1A03).
- 4. Set the mapping entry value of PDO mapping objects (0x1600-0x1603 and 0x1A00-0x1A03).
- 5. Set PDO allocation objects (set sub-index 1 of 0x1C12 and 0x1C13).
- 6. Re-open PDO allocation function (set sub-index 0 of 0x1C12 and 0x1C13 to 1).

#### **Default PDO mapping**

| RxPDO<br>(0x1600) | CW<br>(0x6040) | Target<br>Position<br>(0x607A)          | Target<br>Velocity<br>(0x60FF)       | Mode of<br>Operation<br>(0x6060)      | Target<br>torque<br>(0x6071)             | Touch probe control (0x60B8) | Max<br>profile<br>velocity<br>(0x607F) |
|-------------------|----------------|-----------------------------------------|--------------------------------------|---------------------------------------|------------------------------------------|------------------------------|----------------------------------------|
| TxPDO<br>(0x1A00) | SW<br>(0x6041) | Position<br>Actual<br>Value<br>(0x6064) | Speed<br>Actual<br>Value<br>(0x606C) | Torque<br>Actual<br>Value<br>(0x6077) | Operation<br>Mode<br>Display<br>(0x6061) | Digital inputs (0x60FD)      | Touch<br>Probe<br>Value<br>(0x60BA)    |

Note: For detailed PDO mapping information, see the xml file.

## 2.2.5 Network synchronization based on distributed clocks

Distributed clocks can make all EtherCAT devices use the same system time, thus controlling the synchronous execution of each device task. Among the slave clocks connected to the master, EtherCAT network takes the first slave clock equipped with distributed clock function as the reference clock for the whole network, and the remaining slaves and masters take the reference clock as their basis for synchronization.

SV-DA200 EtherCAT communication card adopts the following synchronization modes, which can be switched through synchronization control registers (ESC 0x980 and 0x981).

• Free-Run (ESC\*register: 0x980 = 0x0000, P4.08 = 0)

In this mode, the local application program cycle, communication cycle, and master cycle of the servo drive are independent of each other.

DC mode (ESC register: 0x980 = 0x0300, P4.08 = 2)

In this mode, the local application program is in synchronization with Sync0 time.

Note: ESC is the abbreviation of EtherCAT Slave Controller.

| Index        | Sub                                                         | Name                                                         | Access | PDO<br>mapping | Туре  | Value                                                                                                 |  |  |  |  |  |
|--------------|-------------------------------------------------------------|--------------------------------------------------------------|--------|----------------|-------|-------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|              | Sync                                                        | Sync Manager channel 2 (process data output) Synchronization |        |                |       |                                                                                                       |  |  |  |  |  |
| 0x1C32       | 1                                                           | Synchronization type                                         | RO     | No             | UINT  | Current status of DC mode<br>0:Free-run<br>2:DC Mode(Synchronous<br>with Sync0)                       |  |  |  |  |  |
|              | 2                                                           | Cycle time                                                   | RO     | No             | UDINT | Sync0 event cycle[ns](This value is set by master via ESC register) range:12500 * n(n = 2,4,8,16)[ns] |  |  |  |  |  |
|              | Sync Manager channel 2 (process data input) Synchronization |                                                              |        |                |       |                                                                                                       |  |  |  |  |  |
| 0x1C33       | 3                                                           | Shift time                                                   | RO     | No             | UINT  | -                                                                                                     |  |  |  |  |  |
| - CA 1 C G G | 6                                                           | Calc and copy time                                           | RO     | No             | UINT  | -                                                                                                     |  |  |  |  |  |

The timing diagram of the DC mode is as follows.



Figure 2-5 Timing diagram of the DC mode

## 2.2.6 Emergency messages

When the drive generates an alarm, CoE initiates an Emergency message, informing you of the error information of the present drive.

## Emergency object:

| Byte    | 0                       | 1 | 2                 | 3        | 4        | 5 | 6   | 7 |  |
|---------|-------------------------|---|-------------------|----------|----------|---|-----|---|--|
| Content | Emergency Error<br>Code |   | Error<br>register | Panel Er | ror Code |   | N/A |   |  |

# 2.3 Compatible communication specifications

| ·        | Applicable communication standard | IEC 61158 Type12, IEC 61800-7 CiA402 Drive Profile                                                                                                                                                                                                                      |  |  |  |  |  |
|----------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|          | Physical layer                    | 100BASE-TX (IEEE802.3)                                                                                                                                                                                                                                                  |  |  |  |  |  |
|          | Bus connection                    | CN7 (RJ45): EtherCAT Signal IN<br>CN8 (RJ45): EtherCAT Signal OUT                                                                                                                                                                                                       |  |  |  |  |  |
|          | Cable                             | CAT5                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|          | SyncManager                       | SM0: output mail, SM1: input valid<br>SM2: output process data, SM3: input process data                                                                                                                                                                                 |  |  |  |  |  |
| EtherCAT | FMMU                              | FMMU0: mapping to process data (RxPDO) output area FMMU1: mapping to process data (RxPDO) output area FMMU2: mapping to mail state                                                                                                                                      |  |  |  |  |  |
|          | PDO data                          | Dynamic PDO mapping                                                                                                                                                                                                                                                     |  |  |  |  |  |
|          | Mailbox (CoE)                     | Emergency, SDO request, response, and SDO information  Note: TxPDO/RxPDO and remote TxPDO/TxPDO are not supported.                                                                                                                                                      |  |  |  |  |  |
|          | Distributed clock (DC)            | Free-run, DC mode (activate via parameters) Supported DC cycle: 250 us-2 ms                                                                                                                                                                                             |  |  |  |  |  |
|          | Slave Information IF              | 256Bytes (read-only)                                                                                                                                                                                                                                                    |  |  |  |  |  |
|          | LED indicator                     | EtherCAT Link/Activity indicator(L/A) × 2 EtherCAT Status indicator × 1 EtherCAT Error indicator × 1                                                                                                                                                                    |  |  |  |  |  |
| CiA40    | 2 Drive Profile                   | <ul> <li>Homing mode(6)</li> <li>Profile position mode(1)</li> <li>Profile velocity mode(3)</li> <li>Cyclic synchronous position mode(8)</li> <li>Cyclic synchronous speed mode(9)</li> <li>Cyclic synchronous torque mode(10)</li> <li>Touch probe function</li> </ul> |  |  |  |  |  |

# 3 CiA402 device protocol

The master controls SV-DA200 servo drive through the control word (CW, 0x6040), and acquires present drive status by reading the status word (SW, 0x6041). The servo drive achieves motor control according to master control commands.

## 3.1 CoE state machine



Figure 3-1 CoE state machine

| State                  | Description                                                                                                |  |  |  |  |
|------------------------|------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Not Ready to Switch On | The drive is being initialized.                                                                            |  |  |  |  |
| Switch On Disabled     | Drive initialization is completed.                                                                         |  |  |  |  |
| Ready to Switch On     | The drive is waiting to enter Switch On state, and the motor is unexcited.                                 |  |  |  |  |
| Switched On            | The drive is ready, and the main circuit power is normal.                                                  |  |  |  |  |
| Operation Enable       | The drive is enabled, and the motor is controlled based on the control mode.                               |  |  |  |  |
| Quick Stop Active      | The drive stops based on the set mode.                                                                     |  |  |  |  |
| Fault Reaction Active  | The drive detects an alarm, stops according to the set mode, and the motor still has an excitation signal. |  |  |  |  |
| Fault                  | The drive in the fault state, and the motor has no excitation signal.                                      |  |  |  |  |

## 3.1.1 Detail of CW 0x6040

CW 6040h contains the following content:

- Bits used for status control.
- Bits related to the control mode.
- Control bits defined by the manufacturer.

Each bit of 6040h is described as follows.

| 15 | 11               | 10   | 9     | 8    | 7           | 6 4                  | 3                | 2             | 1              | 0         |
|----|------------------|------|-------|------|-------------|----------------------|------------------|---------------|----------------|-----------|
|    | acturer<br>cific | rese | erved | halt | Fault reset | Operation mode speci | Enable operation | Quick<br>stop | Enable voltage | Switch on |
| (  | C                |      | 0     | 0    | М           | 0                    | М                | М             | M              | М         |

MSB LSB

#### Note:

MSB: Most significant bit; LSB: Least significant bit; O: Optional; M; Mandatory.

Bits 0-3 and 7 (used for status control)

|                   |             | Bit of the controlword |               |                   |           |                  |  |  |  |
|-------------------|-------------|------------------------|---------------|-------------------|-----------|------------------|--|--|--|
| Command           | Fault reset | Enable operation       | Quick<br>stop | Enable<br>voltage | Switch on | Transitions      |  |  |  |
| Shutdown          | 0           | Х                      | 1             | 1                 | 0         | 2,6,8            |  |  |  |
| Switch on         | 0           | 0                      | 1             | 1                 | 1         | 3*               |  |  |  |
| Switch on         | n on 0      | 1<br>X                 | 1             | 1                 | 1         | 3**<br>7,9,10,12 |  |  |  |
| Disable voltage   | 0           |                        | X             | 0                 | Х         |                  |  |  |  |
| Quick stop        | 0           | Х                      | 0             | 1                 | Х         | 7,10,11          |  |  |  |
| Disable operation | 0           | 0                      | 1             | 1                 | 1         | 5                |  |  |  |
| Enable operation  | 0           | 1                      | 1             | 1                 | 1         | 4,16             |  |  |  |
| Fault reset       |             | Х                      | Х             | Х                 | Х         | 15               |  |  |  |

#### Note:

X is irrelevant; is a rising edge jump.

Bits 4, 5, 6, and 8 (bits related to control mode)

| D:4 | Operation mode         |                       |                        |  |  |  |  |
|-----|------------------------|-----------------------|------------------------|--|--|--|--|
| Bit | Profile position mode  | Profile velocity mode | Homing mode            |  |  |  |  |
| 4   | New set-point          | reserved              | Homing operation start |  |  |  |  |
| 5   | Change set immediately | reserved              | reserved               |  |  |  |  |
| 6   | abs/rel                | reserved              | reserved               |  |  |  |  |
| 8   | Halt                   | Halt                  | Halt                   |  |  |  |  |

Bits 9 and 10: Reserved.

Bits 11–15: Defined by the manufacturer.

## 3.1.2 Detail of SW 0x6041

SW 6041<sub>h</sub> contains the following content:

- Present status bit of the drive.
- Status bits related to the control mode.
- Status bits defined by the manufacturer.

Each bit of 6041<sub>h</sub> is described as follows.

| Bit     | Description             | M/O |
|---------|-------------------------|-----|
| 0       | Ready to switch on      | M   |
| 1       | Switched on             | М   |
| 2       | Operation enabled       | М   |
| 3       | Fault                   | М   |
| 4       | Voltage enabled         | М   |
| 5       | Quick stop              | М   |
| 6       | Switch on disabled      | М   |
| 7       | Warning                 | 0   |
| 8       | Manufacture specific    | 0   |
| 9       | Remote                  | М   |
| 10      | Target reached          | М   |
| 11      | Internal limit active   | М   |
| 12 – 13 | Operation mode specific | 0   |
| 14 – 15 | Manufacturer specific   | 0   |

Bits 0-3, 5, and 6

| Value (binary)      | State                  |
|---------------------|------------------------|
| xxxx xxxx x0xx 0000 | Not ready to switch on |
| xxxx xxxx x1xx 0000 | Switch on disabled     |
| xxxx xxxx x01x 0001 | Ready to switch on     |
| xxxx xxxx x01x 0011 | Switched on            |
| xxxx xxxx x01x 0111 | Operation enabled      |
| xxxx xxxx x00x 0111 | Quick stop active      |
| xxxx xxxx x0xx 1111 | Fault reaction active  |
| xxxx xxxx x0xx 1000 | Fault                  |

Note: X indicates irrelevant.

Bit 4: Voltage enabled, when this bit is 1, it indicates the main circuit power is normal.

Bit 7: Warning, when this bit is 1, it indicates the drive generates an alarm.

Bit 8: DC calibration status. When this bit is 1, it indicates the drive clock is synchronized with DC Sync0.

Bit 9: Remote, when this bit is 1, it indicates the slave is in OP state, and the master can control the drive via PDO remotely.

BIT 10: Target reached, this bit differs in meaning in different control modes. When this bit is 1: in position mode, it indicates target position is reached; in speed mode, it indicates the reference speed is reached; in torque mode, it indicates the torque reaches the reference torque; in homing mode, it indicates homing is completed; when Halt is started, it indicates the motor is in zero-speed state.

BIT 11: Internal limit active. When this bit is 1: in position mode, it indicates the position limit is reached; in speed mode, it indicates the speed limit is reached; in torque mode, it indicates the torque limit is reached.

Bits 12 and 13: The values vary depending on the control mode.

| Bit | Operation mode        |                    |                 |  |  |  |
|-----|-----------------------|--------------------|-----------------|--|--|--|
| DIL | рр ру                 |                    | hm              |  |  |  |
| 12  | Set-point Acknowledge | Speed zero state   | Homing attained |  |  |  |
| 13  | Following error       | Max slippage error | Homing error    |  |  |  |

BIT 14: motor zero-speed status.

BIT 15: STO status

## 3.2 Profile position mode

## 3.2.1 Basic description

The servo driver (slave node) receives a position command from the upper computer (master node). After electronic gear ratio conversion, the command is used as the target position for internal position control. In this way, position control is implemented.

Position command encoder unit = Position command user unit x Numerator of actual gear ratio / Denominator of actual gear ratio

For detailed gear ratio setting, see section 2.1.

## 3.2.2 Operating method

- 1. Set [6060<sub>h</sub>: Mode of operations] to 1 (Profile position mode).
- 2. Set [6081<sub>h</sub>: Profile velocity] to the scheduled speed (the unit is relative to P4.25). The corresponding parameter of the drive is P5.21 (in user unit).
- 3. Set [6083<sub>h</sub>: Profile acceleration] to the scheduled ACC/DEC time (the unit is relative to P4.25). Note: In this mode, both 6083<sub>h</sub> and 6084<sub>h</sub> correspond to P5.37 in the drive (in user unit).
- 4. Set [607A<sub>h</sub>: Target position] to the target position (unit: user unit). It corresponds to PtP0.01 in the drive.
- 5. Set [6040<sub>h</sub>: Control word] to enable the servo drive and trigger the target position to be effective (set to 0x0F for enabling. See section 4.5 for details).
- 6. Query [6064<sub>h</sub>: Position actual value] to acquire the actual motor position feedback.
- 7. Query [6041<sub>h</sub>: Status word] to acquire servo drive status feedback (following error, set-point acknowledge, target reached and internal limt active).

## 3.2.3 Other objects

1. Query [6064<sub>h</sub>: Position actual value] to acquire the actual position feedback of the motor (unit: user

unit).

- 2. Query [6063<sub>h</sub>: Position actual value\*] to acquire the actual position feedback increment of the motor (unit: user unit).
- 3. Set [6065<sub>h</sub>: Following error window] to modify position out-of-tolerance range (unit: user unit).
- Query [60F4<sub>h</sub>: Following error actual value] to acquire the actual motor position deviation (unit: user unit).



#### Reference position



Position reached

## 3.2.4 Mode-related objects

| Index             | Name                         | Туре       | Attr. |
|-------------------|------------------------------|------------|-------|
| 6040 <sub>h</sub> | Control word                 | UNSIGNED16 | RW    |
| 6041 <sub>h</sub> | Status word                  | UNSIGNED16 | RO    |
| 6060 <sub>h</sub> | Modes of operation           | INTEGER8   | RW    |
| 6061 <sub>h</sub> | Modes of operation display   | INTEGER8   | RO    |
| 6063 <sub>h</sub> | Position actual value*       | INTEGER32  | RO    |
| 6064 <sub>h</sub> | Position actual value        | INTEGER32  | RO    |
| 6065 <sub>h</sub> | Following error window       | UNSIGNED32 | RW    |
| 6067 <sub>h</sub> | Position window              | UNSIGNED32 | RW    |
| 607A <sub>h</sub> | Target position              | INTEGER32  | RW    |
| 6081 <sub>h</sub> | Profile velocity             | UNSIGNED32 | RW    |
| 6083 <sub>h</sub> | Profile acceleration         | UNSIGNED32 | RW    |
| 6093 <sub>h</sub> | Position factor              | UNSIGNED32 | RW    |
| 60F4 <sub>h</sub> | Following error actual value | INTEGER32  | RO    |

Note: For detailed description of each object, see CiADS402 standards.

## 3.2.5 CW 0x6040of profile position mode

| 15   | 9       | 8    | 7            | 6         | 5                      | 4             | 3    | 0       |
|------|---------|------|--------------|-----------|------------------------|---------------|------|---------|
| (see | 3.1.1 ) | Halt | (see 3.1.1 ) | abs / rel | Change set immediately | New set-point | (see | 3.1.1 ) |
| MSB  |         |      |              |           |                        |               |      | LSB     |

| Name        | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Description                         |  |  |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--|--|--|
| New         | The state of the s |                                     |  |  |  |
| set-point   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Assume target position              |  |  |  |
| Change set  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |  |
| immediately | Interrupt the actual positioning and start the next positioning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |  |
| abs / rel   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | arget position is an absolute value |  |  |  |
|             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Target position is a relative value |  |  |  |
| Halt        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Execute positioning                 |  |  |  |
|             | Stop axle with profile deceleration (if not supported with profile acceleration)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |  |  |  |

## 3.2.6 SW 0x6041 of profile position mode



| Name                           | Value                             | Description                                                       |  |  |
|--------------------------------|-----------------------------------|-------------------------------------------------------------------|--|--|
| Target                         | 0                                 | Halt = 0: Target position not reached                             |  |  |
| reached                        |                                   | Halt = 1: Axle decelerates                                        |  |  |
| l                              | Halt = 0: Target position reached |                                                                   |  |  |
|                                | Halt = 1: Velocity of axle is 0   |                                                                   |  |  |
| acknowledge                    |                                   | Trajectory generator has not assumed the positioning values (yet) |  |  |
|                                |                                   | Trajectory generator has assumed the positioning values           |  |  |
| Following 0 No following error |                                   | No following error                                                |  |  |
| error                          | 1                                 | Following error                                                   |  |  |

## 3.2.7 Application examples

- 1. Set 6060<sub>h</sub> to 1 to select Profile Position Mode.
- 2. Set  $6040_h$  to enable the drive and trigger the position command to be effective.
- ♦ Single set-point



Figure 3-2 Single set-point diagram

Perform the following steps if the target position transmitted is in the increment mode:

- (1) Set 6040<sub>h</sub> to 0x4F (in which bit 6 is to set increment mode, bits 3–0 are to enable the drive).
- (2) Set 607A<sub>h</sub> as the target position command.
- (3) Set 6040<sub>h</sub> to 0x5F, and trigger the position command to be effective (the 0->1 jump edge of bit 4 is to trigger target position command to be effective).
- (4) The drive sets 6041h.bit12 to 1 after receiving 6040h.bit4 = 1, and the master clears bit 4 of 6040h to be ready for sending a next target position command.

Perform the following steps if the target position transmitted is in the absolute mode:

- (1) Set 6040<sub>h</sub> to 0x0F.
- (2) Set 607A<sub>h</sub> as the target position command.
- (3) Set 6040<sub>h</sub> to 0x1F to trigger the position command to be effective.
- (4) The drive sets  $6041_h$ .bit12 to 1 after receiving  $6040_h$ .bit4 = 1, and the master clears bit 4 of  $6040_h$  to be ready for sending a next target position command.

#### 



Figure 3-3 "Change set immediately" mode

Perform the following steps it the target position transmitted is in the increment mode:

- (1) Set 6040<sub>h</sub> to 0x6F (in which bit 6 is for setting the increment mode, bit 5 is for setting the immediate effective mode, and bits 3–0 are for enabling the drive).
- (2) Set 607A<sub>h</sub> as the target position command.
- (3) Set 6040<sub>h</sub> to 0x7F, and trigger the position command to be effective (in which 0->1 jump edge of bit 4 is for triggering the target position command to be effective).
- (4) The drive sets 6041<sub>h</sub>.bit12 to 1 after receiving 6040<sub>h</sub>.bit4 = 1, and the master clears bit 4 of 6040<sub>h</sub> to be ready for sending a next target position command.

Perform the following steps if the target position transmitted is in the absolute mode:

- (1) Set  $6040_h$  to 0x2F (in which bit 5 is for setting the immediate effective mode, and bits 3–0 are for enabling the drive).
- (2) Set 607A<sub>h</sub> as the target position command.
- (3) Set 6040<sub>h</sub> to 0x3F to trigger the position command to be effective.
- (4) The drive sets  $6041_h$ .bit12 to 1 after receiving  $6040_h$ .bit4 = 1, and the master clears bit 4 of  $6040_h$  to be ready for sending a next target position command.

Repeat step (2) if multiple targets need to be transmitted.

#### Note: SV-DA200 supports 8-level target position buffering.

♦ PTP stop

There are two stop modes during PTP run.

- a. Stop through quickstop bit of CW, that is, the CW sends 0XB, then the servo is switched from emergency stop to zero speed clamp.
- b. Stop through halt bit of CW, which is related to 402 parameter 0x605D.

When 0x605D stop mode is -1, enabling is kept and direct stop is performed. That is, when 0x605D stop mode is -1 and CW sends 0x10F, the servo stops at the current position and keeps enabling.

When 0x605D stop mode is 0, CW sends 0x10F, and the servo coasts to stop.

If the servo needs to continue to run, PTP needs to be triggered again.

## 3.3 Cyclic synchronous position mode

## 3.3.1 Basic description

The theory of cyclic synchronous position mode is similar to that of position interpolation mode. Interpolation of the position command is achieved by the master while the master also offers additional speed feedforward commands and torque feedforward commands.

Interpolation cycle defines the update interval of the target position. Under this mode, the interpolation cycle is the same with EtherCAT synchronization cycle.

## 3.3.2 Operating method

- 1. Set [6060<sub>h</sub>: Mode of operations] to **8** (Cyclic synchronous position mode).
- 2. Set [P4.07: EtherCAT **sync cycle**] to the same position interpolation cycle with that of the master and **re-power on**.
- 3. Set P0.37 [Position command mode] to 0 (Incremental) or 1 (Absolute).
- 4. Set [6040<sub>h</sub>: Control word] to enable the servo drive (set to 0x0F for enabling. Refer to section 3.1 for other bits).
- 5. Set [607A<sub>h</sub>: Target position] to the target position (unit: user unit); the corresponding parameter of the drive is P4.12.
- 6. Query [6064<sub>h</sub>: Position actual value] to acquire the actual motor position feedback.
- 7. Query [6041<sub>h</sub>: Status word] to acquire servo drive status feedback (following error, target reached, and internal limit active).

#### 3.3.3 Mode-related objects

| Index             | Name                         | Туре       | Attr. |
|-------------------|------------------------------|------------|-------|
| 6040 <sub>h</sub> | Control word                 | UNSIGNED16 | RW    |
| 6041 <sub>h</sub> | Status word                  | UNSIGNED16 | RO    |
| 6060 <sub>h</sub> | Modes of operation           | INTEGER8   | RW    |
| 6061 <sub>h</sub> | Modes of operation display   | INTEGER8   | RO    |
| 6064 <sub>h</sub> | Position actual value        | INTEGER32  | RO    |
| 6065 <sub>h</sub> | Following error window       | UNSIGNED32 | RW    |
| 6067 <sub>h</sub> | Position window              | UNSIGNED32 | RW    |
| 6093 <sub>h</sub> | Position factor              | UNSIGNED32 | RW    |
| 60F4 <sub>h</sub> | Following error actual value | INTEGER32  | RO    |

Note: For detailed description of each object, see CiADS402 standards.

## 3.3.4 Application examples

- 1. Set 6060 h to 8 to select Cyclic Synchronous Position Mode.
- 2. Set 6040 h to enable the drive, and send **0x0F**.
- Set 607A h to the target position and then absolute position to conduct the position control.

## 3.4 Homing Mode

## 3.4.1 Basic description

In homing mode, the drive finds the origin position by itself. You can set the running speed of homing mode.

#### Note:

In this mode, it is required to connect the limit switch and origin switch signal to digital input terminal CN1 of the drive. If the limit switch signal is connected to the upper PC or PLC, it is necessary to apply the homing process conducted by the upper PC.

## 3.4.2 Operating method

- 1. Set [6060<sub>h</sub>: Mode of operations] to **6** (Homing mode).
- 2. Set [ $6098_h$ : Homing method], which can range from 1 to 35 (refer to DS402 standard for details).
- 3. Set [607C<sub>h</sub>: Homing offset] to set the origin offset, corresponding to P5.14 of the drive.
- 4. Set [6099<sub>h</sub> Sub-1: Homing speeds] to modify the speed in finding limit switch during homing (the unit is related to P4.25), corresponding to P5.12 of the drive.
- 5. Set [6099<sub>h</sub> Sub-2: Homing speeds] to modify the speed in finding zero position during homing (the unit is related to P4.25), corresponding to P5.13 of the drive.
- 6. Set [609A<sub>h</sub>: Homing acceleration] to set the ACC/DEC time of homing, corresponding to P5.09 of the drive (the unit is related to P4.25).
- 7. Set [6040<sub>h</sub>: Control word] to enable the servo drive. The homing operation starts (bit 4) from the change of **0->1** and interrupts homing process from the change of **1->0**.
- 8. Monitor the limit switch and home switch to complete homing.
- 9. Query [6041<sub>h</sub>: Status word] to acquire servo drive status feedback (Homing error, Homing attained, and Target reached).

3.4.3 Mode-related objects

| Index             | Name                       | Туре       | Attr. |
|-------------------|----------------------------|------------|-------|
| 6040 <sub>h</sub> | Control word               | UNSIGNED16 | RW    |
| 6041 <sub>h</sub> | Status word                | UNSIGNED16 | RO    |
| 6060 <sub>h</sub> | Modes of operation         | INTEGER8   | RW    |
| 6061 <sub>h</sub> | Modes of operation display | INTEGER8   | RO    |
| 607C <sub>h</sub> | Homing offset              | INTEGER32  | RW    |
| 6098 <sub>h</sub> | Homing method              | UNSIGNED32 | RW    |
| 6099 <sub>h</sub> | Homing speeds              | ARRAY      | RW    |
| 609A <sub>h</sub> | Homing acceleration        | UNSIGNED32 | RW    |

Note: For detailed description of each object, see CiADS402 standards.

## 3.4.4 Application examples

Perform the following steps when the homing mode is applied:

- 1. Set 6060<sub>h</sub> to **6** to select the homing mode.
- 2. Set 6098<sub>h</sub> to select the homing mode to be used.
- 3. Set 6040<sub>h</sub> to enable the drive and trigger homing action: send **0x0F** first, and then send **0x1F** to trigger homing.
- 4. Homing will be interrupted if **0x0F** is sent, and the drive will be disabled if **0x0** is sent.
- 5. Check whether homing is completed according to bit 12 of 6041<sub>h</sub>, and check whether a fault occurs during homing according to bit 13.

## 3.4.5 Homing mode SW



| Name     | Value                                     | Description                                        |  |  |
|----------|-------------------------------------------|----------------------------------------------------|--|--|
| Target   | 0                                         | Halt = 0: Home position not reached                |  |  |
| reached  |                                           | Halt = 1: Axle decelerates                         |  |  |
|          | 1                                         | Halt = 0: Home position reached                    |  |  |
|          |                                           | Halt = 1: Axle has velocity 0                      |  |  |
| Homing   | 0                                         | Homing mode not yet completed                      |  |  |
| attained | 1                                         | Homing mode carried out successfully               |  |  |
| Homing   | 0                                         | No homing error                                    |  |  |
| error 1  |                                           | Homing error occurred;                             |  |  |
|          | Homing mode carried out not successfully; |                                                    |  |  |
|          |                                           | The error cause is found by reading the error code |  |  |

## 3.4.6 Homing mode description

There are four types of signals related to homing mode, they are: positive limit switch (POT), negative limit switch (NOT), reference point switch (Index) and encoder Z signal (C-phase).

Definition of homing mode:

| Homing method (DS402) | Start<br>direction | Target position | Reference<br>point<br>position | Homing method (P5.10) | Description                                                                                                                                                                                                                                      |
|-----------------------|--------------------|-----------------|--------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                     | Negative           | NOT             | Z pulse                        | 1                     | Using Z pulse and negative limit switch: The drive moves towards negative limit switch at high speed, then returns at low speed and searches for target zero position (the first encoder Z pulse position after leaving NOT) after reaching NOT. |

| Homing method (DS402) | Start<br>direction | Target position        | Reference<br>point<br>position | Homing method (P5.10) | Description                                                                                                                                                                                                                                                                                    |  |
|-----------------------|--------------------|------------------------|--------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 2                     | Positive           | POT                    | Z pulse                        | 0                     | Using Z pulse and positive limit switch: The drive moves towards positive limit switch at high speed, then returns at low speed and searches for target zero position (the first encoder Z pulse position after leaving NOT) after reaching POT.  Z signal pulse  Positive limit switch (P-OT) |  |
| 3                     | Positive           | Index                  | Z pulse                        | 2                     | The initial direction movement of the                                                                                                                                                                                                                                                          |  |
| 4                     | Positive           | Index                  | Z pulse                        | 12                    | drive depends on the switch state of the reference point. The target zero position is the first Z pulse position on the left or right side of the Index.  Z signal Pulse Index switch                                                                                                          |  |
| 17                    | Negative           | NOT                    | NOT                            | 21                    | These four types of homing                                                                                                                                                                                                                                                                     |  |
| 18                    | Positive           | POT                    | POT                            | 20                    | methods are similar to 1–4 phases except that the target zero position                                                                                                                                                                                                                         |  |
| 19                    | Negative           | Index                  | Index                          | 23                    | is related to the change of limit                                                                                                                                                                                                                                                              |  |
| 20                    | Positive           | Index                  | Index                          | 22                    | switch or Index switch rather than using Z pulse. The following figure is diagram for 19 and 20, which are similar to method 3 and 4.                                                                                                                                                          |  |
| 35                    | -                  | Present position value | Present position value         | 8                     | The present position is the system zero point.                                                                                                                                                                                                                                                 |  |

## 3.5 Profile velocity mode

## 3.5.1 Basic description

In the profile velocity mode, the drive receives the speed command sent by the master, and conducts speed planning according to the acceleration planning parameters.

## 3.5.2 Operating method

- 1. Set [6060<sub>h</sub>: Mode of operations] to **3** (Profile velocity mode).
- 2. Set [6083<sub>n</sub>: Profile acceleration] to modify acceleration curve (the unit is related to P4.25). It corresponds to P0.54 of the drive.
- 3. Set [6084<sub>h</sub>: Profile deceleration] to modify deceleration curve (the unit is related to P4.25). It corresponds to P0.55 of the drive.
- 4. Set [6040<sub>h</sub>: Control word] to enable the servo drive and start the motor.
- 5. Set [60FF<sub>h</sub>: Target velocity] to set the target speed (the unit is related to P4.25). It corresponds to P4.13 of the drive.
- 6. Query [6041<sub>h</sub>: Status word] to acquire servo drive status feedback (Speed zero, Max slippage error, Target reached, and Internal limit active).

## 3.5.3 Other objects

Query [606C<sub>h</sub>: Velocity actual value] to acquire actual speed feedback (the unit is related to P4.25).

## 3.5.4 Mode-related objects

| Index             | Name                       | Туре       | Attr. |
|-------------------|----------------------------|------------|-------|
| 6040 <sub>h</sub> | Control word               | UNSIGNED16 | RW    |
| 6041 <sub>h</sub> | Status word                | UNSIGNED16 | RO    |
| 6060 <sub>h</sub> | Modes of operation         | INTEGER8   | RW    |
| 6061 <sub>h</sub> | Modes of operation display | INTEGER8   | RO    |
| 606C <sub>h</sub> | Velocity actual value      | INTEGER32  | RO    |
| 6083 <sub>h</sub> | Profile acceleration       | UNSIGNED32 | RW    |
| 6084 <sub>h</sub> | Profile deceleration       | UNSIGNED32 | RW    |
| 60FF <sub>h</sub> | Target velocity            | INTEGER32  | RW    |

Note: For detailed description of each object, see CiADS402 standards.

## 3.5.5 Application examples

Perform the following steps when profile velocity is used:

- 1. Set 6060<sub>h</sub> to 3 to select Profile Speed Mode.
- 2. Set 6040<sub>h</sub> to enable the drive. Send 0x0F to enable or 0x0 to disable.
- 3. Set 60FF<sub>h</sub> to modify the target speed command.
- 4. Set 6083<sub>h</sub> and 6084<sub>h</sub> to modify ACC/DEC time.

## 3.6 Cyclic synchronous velocity mode

## 3.6.1 Basic description

The cyclic synchronous speed mode is basically the same as the profile velocity mode except that the speed command interpolation of the former is completed by the master, and the master can provide additional torque feedforward command.

Interpolation cycle defines update interval of target speed. In this mode, the interpolation cycle is the same as EtherCAT synchronization cycle.

## 3.6.2 Operating method

- 1. Set [6060<sub>h</sub>: Mode of operations] to **9** (Cyclic synchronous speed mode).
- 2. Set [6083<sub>h</sub>: Profile acceleration] to modify ACC curve (the unit is related to P4.25), corresponding to P0.54 of the drive.
- 3. Set  $[6084_h$ : Profile deceleration] to modify DEC curve (the unit is related to P4.25), corresponding to P0.55 of the drive.
- 4. Set [6040<sub>h</sub>: Control word] to enable the servo drive and start the motor.
- 5. Set [60FF<sub>h</sub>: Target velocity] to set the target speed (the unit is related to P4.25), corresponding to P4.13 of the drive.
- 6. Query [6041<sub>h</sub>: Status word] to acquire servo drive status feedback (Speed zero, Max slippage error, Target reached, and Internal limit active).

## 3.6.3 Other objects

Query [606C<sub>h</sub>: Velocity actual value] to acquire actual speed feedback (the unit is related to P4.25).

## 3.6.4 Mode-related objects

| Index             | Name                       | Туре       | Attr. |
|-------------------|----------------------------|------------|-------|
| 6040 <sub>h</sub> | Control word               | UNSIGNED16 | RW    |
| 6041 <sub>h</sub> | Status word                | UNSIGNED16 | RO    |
| 6060 <sub>h</sub> | Modes of operation         | INTEGER8   | RW    |
| 6061 <sub>h</sub> | Modes of operation display | INTEGER8   | RO    |
| 606C <sub>h</sub> | Velocity actual value      | INTEGER32  | RO    |
| 6083 <sub>h</sub> | Profile acceleration       | UNSIGNED32 | RW    |
| 6084 <sub>h</sub> | Profile deceleration       | UNSIGNED32 | RW    |
| 60FF <sub>h</sub> | Target velocity            | INTEGER32  | RW    |

Note: For detailed description of each object, see CiADS402 standards.

## 3.6.5 Application examples

Perform the following steps when profile velocity mode is used:

- 1. Set 6060<sub>h</sub> to 9 to select Cyclic synchronous velocity mode.
- 2. Set 6040<sub>h</sub> to enable drive. Send 0x0F to enable or 0x0 to disable.
- 3. Set 60FF<sub>h</sub> to modify the target speed command.
- 4. Set 6083<sub>h</sub> and 6084<sub>h</sub> to modify ACC/DEC time.

## 3.7 Cyclic synchronous torque mode

## 3.7.1 Basic description

Cyclic synchronous torque mode is basically the same as profile torque mode except that the torque command interpolation is completed by the master. The interpolation cycle defines the update interval of target torque. In this mode, the interpolation cycle is the same as EtherCAT sync cycle.

## 3.7.2 Operating method

- 1. Set [6060<sub>h</sub>: Mode of operations] to 10 (Cyclic synchronous torque mode).
- 2. Set [6040<sub>h</sub>: Control word] to enable servo drive to start the motor.
- 3. Set [6071<sub>h</sub>: Target torque] to set the target torque (unit: 0.1% of rated torque), corresponding to P4.14 of the drive.
- 4. Set [607F<sub>h</sub>: Max Profile Velocity] to set the max. speed (the unit is related to P4.25).
- 5. Set [60E0<sub>h</sub>: Positive torque limit] to set the positive torque limit (unit: 0.1% of the rated torque).
- 6. Set [60E1<sub>h</sub>: Negative torque limit] to set the reverse torque limit (unit: 0.1% of the rated torque).
- 7. Set [6072<sub>h</sub>: Max torque] to set the max torque limit (unit: 0.1% of the rated torque).
- 8. Query [6041<sub>h</sub>: Status word] to acquire servo drive status feedback (target reached).

## 3.7.3 Other objects

- 1. Set [6072h: Max torque] to modify the max. torque limit (unit: 0.1% of the rated torque).
- Query [6074h: Torque demand value] to acquire actual internal torque command (unit: 0.1% of the rated torque).
- Query [6076h: Motor rated torque] to acquire rated motor torque (unit: mNm).
- 4. Query [6077h: Torque actual value] to acquire actual torque feedback (unit: 0.1% of the rated torque).
- 5. Query [6078h: Current actual value] to acquire actual output current (unit: mA).

## 3.7.4 Mode-related objects

| Index             | Name                       | Туре       | Attr. |
|-------------------|----------------------------|------------|-------|
| 6040 <sub>h</sub> | Control word               | UNSIGNED16 | RW    |
| 6041 <sub>h</sub> | Status word                | UNSIGNED16 | RO    |
| 6060 <sub>h</sub> | Modes of operation         | INTEGER8   | RW    |
| 6061 <sub>h</sub> | Modes of operation display | INTEGER8   | RO    |
| 6071 <sub>h</sub> | Target torque              | INTEGER16  | RO    |
| 6072 <sub>h</sub> | Max torque                 | UNSIGNED16 | RW    |
| 6073 <sub>h</sub> | Max current                | UNSIGNED16 | RO    |
| 6075 <sub>h</sub> | Motor rated current        | UNSIGNED32 | RO    |
| 6076 <sub>h</sub> | Motor rated torque         | UNSIGNED32 | RO    |
| 6077 <sub>h</sub> | Torque actual value        | INTEGER16  | RO    |
| 6078 <sub>h</sub> | Current actual value       | INTEGER16  | RO    |
| 6079 <sub>h</sub> | DC link circuit voltage    | UNSIGNED32 | RO    |
| 607F <sub>h</sub> | Max Profile Velocity       | UNSIGNED32 | RW    |

Note: For detailed description of each object, see CiADS402 standards.

## 3.7.5 Application examples

Perform the following steps when Cyclic synchronous Torque is used:

- 1. Set 6060<sub>h</sub> to **10** to select Cyclic synchronous Torque Mode.
- 2. Set 6040<sub>h</sub> to enable the drive. Send **0x0F** to enable or **0x0** to disable.
- 3. Set 6071<sub>h</sub> to modify the target torque command.
- 4. Set 6087<sub>h</sub> to modify the torque slope time.

## 3.8 Touch probe function

## 3.8.1 Basic description

The touch probe function is used to latch the position feedback when a trigger signal or an event occurs. For SV-DA200, only the encoder Z signal (C-phase), and touch probe1 and touch probe2 signals can be used as trigger signals.

When the encoder Z signal is used as a trigger signal, only the rising edge of Z signal can be captured, and the captured results are stored in 60BA<sub>h</sub> and 60BC<sub>h</sub>.

Both rising edge capture and falling edge capture are supported when touch probe1 is used. The capture results for the rising edge are stored in  $60BA_h$  or  $60BC_h$ , while the capture result for the falling edge are stored in  $60BB_h$  or  $60BD_h$ .

By default, digital input 1 of CN1 is used as a trigger input port of touch probe1, and digital input 2 of CN1 is used as a trigger input port of touch probe2.

Taking digital input 1 as an example, if you want to use touch probe1, you need to make the digital input function invalid or set P3.00 to 0 through the ServoPlorer software. Then restart the system for the change to take effect.



## 3.8.2 Mode-related objects

| Index             | Name                                             | Туре       | Attr. |
|-------------------|--------------------------------------------------|------------|-------|
| 60B8 <sub>h</sub> | Touch Probe Control word                         | UNSIGNED16 | RW    |
| 60B9 <sub>h</sub> | Touch Probe Status word                          | UNSIGNED16 | RO    |
| 60BA <sub>h</sub> | Probe 1 positive edge value(Encoder zero signal) | INTEGER32  | RO    |
| 60BB <sub>h</sub> | Probe 1 negative edge value                      | INTEGER32  | RO    |
| 60BC <sub>h</sub> | Probe 2 positive edge value(Encoder zero signal) | INTEGER32  | RO    |
| 60BD <sub>h</sub> | Probe 2 negative edge value                      | INTEGER32  | RO    |

# 3.8.3 CW and SW description

| Bit | 60B8 <sub>h</sub>                                                        | 60B9 <sub>h</sub>                                                                              |
|-----|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| 0   | Probe 1 enable (0:Disable;1:Enable)                                      | Probe 1 enabled                                                                                |
| 1   | Probe 1 continuous mode (0:Single; 1: continuous)                        | Probe 1 positive edge (or encode zero signal) value stored                                     |
| 2   | Probe 1 zero pulse (0:I/O1;1:Z)                                          | Probe 1 negative edge value stored                                                             |
| 3   | -                                                                        | -                                                                                              |
| 4   | Probe 1 enable latch on positive edge (used also for encode zero signal) | -                                                                                              |
| 5   | Probe 1 enable latch on negative edge                                    | -                                                                                              |
| 6   | -                                                                        | Probe 1 positive edge value stored (continuous mode only, bit toggles if latch status changed) |
| 7   | -                                                                        | Probe 1 negative edge value stored (continuous mode only, bit toggles if latch status changed) |
| 8   | Probe 2 enable (0:Disable;1:Enable)                                      | Probe 2 enabled                                                                                |
| 9   | Probe 2 continuous mode (0:Single; 1: continuous)                        | Probe 2 positive edge (or encode zero signal) value stored                                     |
| 10  | Probe 2 zero pulse (0:I/O1;1:Z)                                          | Probe 2 negative edge value stored                                                             |
| 11  | -                                                                        | -                                                                                              |
| 12  | Probe 2 enable latch on positive edge (used also for encode zero signal) | -                                                                                              |
| 13  | Probe 2 enable latch on negative edge                                    | -                                                                                              |
| 14  | -                                                                        | Probe 2 positive edge value stored (continuous mode only, bit toggles if latch status changed) |
| 15  | -                                                                        | Probe 2 negative edge value stored (continuous mode only, bit toggles if latch status changed) |

# 3.8.4 Application examples (Z signal single trigger mode)



# 4 Object dictionary

# 4.1 Object specifications

4.1.1 Object type

| Object name | Definition                                                                                                                                                                                                 |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 VAR       | Individual variable value such as UNSIGNED8, Boolean, Float, INTEGER16, and so on                                                                                                                          |
| ARRAY       | Array of multiple data that consists of basic variables of the same type. Sub-index 0 is UNSIGNED8 type which indicates the number of data in the array. Sub-index is not taken as part of the ARRAY data. |
|             | Structure that consists of basic variables of the same or differing types. Sub-index 0 is UNSIGNED8 type which indicates the number of data in the array, and is not taken as part of the RECORD data.     |

#### 4.1.2 Data type

See CANopen Standard 301.

4.2 Overview of object group 1000h

| Index                              | Object type | Name                          | Data type  | Access | Mappable |
|------------------------------------|-------------|-------------------------------|------------|--------|----------|
| CANopen D                          | S301        |                               |            |        |          |
| 1000 <sub>h</sub>                  | VAR         | Device type                   | UNSIGNED32 | RO     | N        |
| 1001 <sub>h</sub>                  | VAR         | Error register                | UNSIGNED8  | RO     | Υ        |
| 1008 <sub>h</sub>                  | VAR         | Manufacturer device name      | STRING     | RO     | N        |
| 1009 <sub>h</sub>                  | VAR         | Manufacturer hardware version | STRING     | RO     | N        |
| 100A <sub>h</sub>                  | VAR         | Manufacturer software version | STRING     | RO     | N        |
| 1018 <sub>h</sub>                  | RECORD      | Identity Object               | IDENTITY   | RO     | N        |
| 1600 <sub>h</sub> –03 <sub>h</sub> | RECORD      | Receive PDO mapping           | PDOMAPPING | RW     | N        |
| 1A00 <sub>h</sub> -03 <sub>h</sub> | RECORD      | Transmit PDO mapping          | PDOMAPPING | RW     | N        |
| 1C00 <sub>h</sub>                  | RECORD      | Sync manager type             | UNSIGNED8  | RW     | N        |
| 1C12 <sub>h</sub>                  | ARRAY       | Receive PDO assign            | UNSIGNED16 | RW     | N        |
| 1C13 <sub>h</sub>                  | ARRAY       | Transmit PDO assign           | UNSIGNED16 | RW     | N        |
| 1C32 <sub>h</sub>                  | RECORD      | Sync manager output para.     | SMPAR      | RW     | N        |
| 1C33 <sub>h</sub>                  | RECORD      | Sync manager input para.      | SMPAR      | RW     | N        |

4.3 Overview of object group 6000h

| <del></del>       | stortion or object group cootin |            |            |        |          |  |
|-------------------|---------------------------------|------------|------------|--------|----------|--|
| Index             | Object type                     | Name       | Data type  | Access | Mappable |  |
| CANopen DS402     |                                 |            |            |        |          |  |
| 603F <sub>h</sub> | VAR                             | Error code | UNSIGNED16 | RO     | Y        |  |

| Index             | Object type | Name                         | Data type  | Access | Mappable |
|-------------------|-------------|------------------------------|------------|--------|----------|
| 6040 <sub>h</sub> | VAR         | Control word                 | UNSIGNED16 | RW     | Υ        |
| 6041 <sub>h</sub> | VAR         | Status word                  | UNSIGNED16 | RO     | Y        |
| 605D <sub>h</sub> | VAR         | Halt option code             | INTEGER16  | RW     | N        |
| 6060 <sub>h</sub> | VAR         | Mode of operation            | INTEGER8   | RW     | Y        |
| 6061 <sub>h</sub> | VAR         | Mode of operation display    | INTEGER8   | RO     | Y        |
| 6063 <sub>h</sub> | VAR         | Position actual value*       | INTEGER32  | RO     | N        |
| 6064 <sub>h</sub> | VAR         | Position actual value        | INTEGER32  | RO     | Y        |
| 6065 <sub>h</sub> | VAR         | Following error window       | UNSIGNED32 | RW     | N        |
| 6066 <sub>h</sub> | VAR         | Following error time out     | UNSIGNED16 | RW     | N        |
| 606C <sub>h</sub> | VAR         | Velocity actual value        | INTEGER32  | RO     | Υ        |
| 6071 <sub>h</sub> | VAR         | Target torque                | INTEGER16  | RW     | Υ        |
| 6072 <sub>h</sub> | VAR         | Max torque                   | UNSIGNED16 | RW     | Υ        |
| 6073 <sub>h</sub> | VAR         | Max current                  | UNSIGNED16 | RO     | N        |
| 6075 <sub>h</sub> | VAR         | Motor rated current          | UNSIGNED32 | RO     | N        |
| 6076 <sub>h</sub> | VAR         | Motor rated torque           | UNSIGNED32 | RO     | N        |
| 6077 <sub>h</sub> | VAR         | Torque actual value          | INTEGER16  | RO     | Y        |
| 6079 <sub>h</sub> | VAR         | DC link circuit voltage      | UNSIGNED32 | RO     | N        |
| 607A <sub>h</sub> | VAR         | Target position              | INTEGER32  | RW     | Y        |
| 607B <sub>h</sub> | ARRAY       | Position range limit         | INTEGER32  | RW     | N        |
| 607C <sub>h</sub> | VAR         | Home offset                  | INTEGER32  | RW     | N        |
| 607F <sub>h</sub> | VAR         | Max profile velocity         | UNSIGNED32 | RW     | Y        |
| 6081 <sub>h</sub> | VAR         | Profile velocity             | UNSIGNED32 | RW     | Y        |
| 6083 <sub>h</sub> | VAR         | Profile acceleration         | UNSIGNED32 | RW     | Y        |
| 6084 <sub>h</sub> | VAR         | Profile deceleration         | UNSIGNED32 | RW     | Y        |
| 6091 <sub>h</sub> | ARRAY       | Gear ratio                   | UNSIGNED32 | RW     | N        |
| 6093 <sub>h</sub> | ARRAY       | Position factor              | UNSIGNED32 | RW     | N        |
| 6098 <sub>h</sub> | VAR         | Homing method                | INTEGER8   | RW     | N        |
| 6099 <sub>h</sub> | ARRAY       | Homing speeds                | UNSIGNED32 | RW     | N        |
| 609A <sub>h</sub> | VAR         | Homing acceleration          | UNSIGNED32 | RW     | N        |
| 60B0 <sub>h</sub> | VAR         | Position offset              | INTEGER32  | RW     | Y        |
| 60B1 <sub>h</sub> | VAR         | Velocity offset              | INTEGER32  | RW     | Y        |
| 60B2 <sub>h</sub> | VAR         | Torque offset                | INTEGER16  | RW     | Y        |
| 60B8 <sub>h</sub> | VAR         | Touch probe control value    | UNSIGNED16 | RW     | Y        |
| 60B9 <sub>h</sub> | VAR         | Touch probe status value     | UNSIGNED16 | RO     | Y        |
| 60BA <sub>h</sub> | VAR         | Touch probe 1 positive value | INTEGER32  | RO     | Y        |

| Index             | Object type | Name                         | Data type  | Access | Mappable |
|-------------------|-------------|------------------------------|------------|--------|----------|
| 60BB <sub>h</sub> | VAR         | Touch probe 1negative value  | INTEGER32  | RO     | Υ        |
| 60BC <sub>h</sub> | VAR         | Touch probe 2 positive value | INTEGER32  | RO     | Υ        |
| 60BD <sub>h</sub> | VAR         | Touch probe 2negative value  | INTEGER32  | RO     | Υ        |
| 60E0 <sub>h</sub> | VAR         | Positive Torge Limit         | UNSIGNED16 | RW     | Y        |
| 60E1 <sub>h</sub> | VAR         | Negative Torge Limit         | UNSIGNED16 | RW     | Υ        |
| 60F4 <sub>h</sub> | VAR         | Following error actual value | INTEGER32  | RO     | Υ        |
| 60FD <sub>h</sub> | ARRAY       | Digital inputs               | UNSIGNED32 | RO     | Υ        |
| 60FE <sub>h</sub> | ARRAY       | Digital outputs              | UNSIGNED32 | RW     | Y        |
| 60FF <sub>h</sub> | VAR         | Target velocity              | INTEGER32  | RW     | Y        |
| 6502 <sub>h</sub> | VAR         | Support drive mode           | UNSIGNED32 | RO     | N        |

# 4.4 Overview of object groups 2000h-4000h

0x2000-0x3000 manufacturer parameter list (applicable to SV-DA200 V2.60/XML V1.70 or later):

| Index    | Data type    | Name                                                           | Access | Mappable |
|----------|--------------|----------------------------------------------------------------|--------|----------|
| SV-DA200 | ) manufactur | e parameters                                                   |        |          |
| 0x2000   | int32        | P0.00 Motor model (1)                                          | RW     | N        |
| 0x2001   | int16        | P0.01 Encoder type (1)                                         | RW     | N        |
| 0x2002   | int16        | P0.02 Forward rotation of motor (1)                            | RW     | N        |
| 0x2003   | int16        | P0.03 Control mode (1)                                         | RW     | N        |
| 0x2004   | int16        | P0.04 Internal servo enabling (1)                              | RW     | N        |
| 0x2005   | int16        | P0.05 JOG speed (1)                                            | RW     | N        |
| 0x2006   | int32        | P0.06 Numerator of frequency division output coefficient (1)   | RW     | N        |
| 0x2007   | int32        | P0.07 Denominator of frequency division output coefficient (1) | RW     | N        |
| 0x2008   | int16        | P0.08 Reversal of frequency division output (1)                | RW     | N        |
| 0x2009   | int16        | P0.09 Torque limit mode setting (1)                            | RW     | N        |
| 0x200A   | int16        | P0.10 Max. torque limit 1 (0.1)                                | RW     | N        |
| 0x200B   | int16        | P0.11 Max. torque limit 2 (0.1)                                | RW     | N        |
| 0x200D   | int16        | P0.13 Power of the external braking resistor (1)               | RW     | N        |
| 0x200E   | int16        | P0.14 Resistance of the external braking resistor (1)          | RW     | N        |
| 0x200F   | int16        | P0.15 Default monitoring parameters (1)                        | RW     | N        |
| 0x2010   | int16        | P0.16 Parameter modification operation locked (1)              | RW     | N        |

| Index  | Data type | Name                                                         | Access | Mappable |
|--------|-----------|--------------------------------------------------------------|--------|----------|
| 0x2011 | int16     | P0.17 EEPROM write mode (1)                                  | RW     | N        |
| 0x2012 | uint16    | P0.18 Factory password (1)                                   | RW     | N        |
| 0x2014 | int16     | P0.20 Position command selection (1)                         | RW     | N        |
| 0x2016 | int32     | P0.22 Pulse per revolution of motor (1)                      | RW     | N        |
| 0x2017 | int16     | P0.23 Pulse input form (1)                                   | RW     | N        |
| 0x2018 | int16     | P0.24 Reversal of pulse input direction (1)                  | RW     | N        |
| 0x2019 | int32     | P0.25 Numerator of 1 <sup>st</sup> electronic gear ratio (1) | RW     | N        |
| 0x201A | int32     | P0.26 Denominator of electronic gear ratio (1)               | RW     | N        |
| 0x201B | int32     | P0.27 Numerator of 2 <sup>nd</sup> electronic gear ratio (1) | RW     | N        |
| 0x201C | int32     | P0.28 Numerator of 3 <sup>rd</sup> electronic gear ratio(1)  | RW     | N        |
| 0x201D | int32     | P0.29 Numerator of 4 <sup>th</sup> electronic gear ratio(1)  | RW     | N        |
| 0x2021 | int16     | P0.33 Smooth filtering of position command (0.1)             | RW     | N        |
| 0x2022 | int16     | P0.34 FIR filtering of position command (0.1)                | RW     | N        |
| 0x2023 | int32     | P0.35 Software limit of forward position control (1)         | RW     | N        |
| 0x2024 | int32     | P0.36 Software limit of reverse position control             | RW     | N        |
| 0x2025 | int16     | P0.37 Position command mode (1)                              | RW     | N        |
| 0x2026 | int16     | P0.38 Fully-closed loop enable (1)                           | RW     | N        |
| 0x2028 | int16     | P0.40 Speed command selection (1)                            | RW     | N        |
| 0x2029 | int16     | P0.41 Setting of speed command direction (1)                 | RW     | N        |
| 0x202A | int32     | P0.42 Gain of analog input 1 (1)                             | RW     | N        |
| 0x202B | int16     | P0.43 Reversal of analog input 1 (1)                         | RW     | N        |
| 0x202D | int16     | P0.45 Dead zone of analog input 1 (0.001)                    | RW     | N        |
| 0x202E | int16     | P0.46 Internal speed 1/Speed limit 1 (1)                     | RW     | N        |
| 0x202F | int16     | P0.47 Internal speed 2/Speed limit 2 (1)                     | RW     | N        |
| 0x2030 | int16     | P0.48 Internal speed 3/Speed limit 3 (1)                     | RW     | N        |
| 0x2031 | int16     | P0.49 Internal speed 4/Speed limit 4 (1)                     | RW     | N        |
| 0x2032 | int16     | P0.50 Internal speed 5 (1)                                   | RW     | N        |
| 0x2033 | int16     | P0.51 Internal speed 6 (1)                                   | RW     | N        |
| 0x2034 | int16     | P0.52 Internal speed 7 (1)                                   | RW     | N        |
| 0x2035 | int16     | P0.53 Internal speed 8 (1)                                   | RW     | N        |
| 0x2036 | int32     | P0.54 ACC time (1)                                           | RW     | N        |
| 0x2037 | int32     | P0.55 DEC time (1)                                           | RW     | N        |
| 0x2038 | int16     | P0.56 ACC time of S curve (1)                                | RW     | N        |

| Index  | Data type | Name                                                      | Access | Mappable |
|--------|-----------|-----------------------------------------------------------|--------|----------|
| 0x2039 | int16     | P0.57 DEC time of S curve (1)                             | RW     | N        |
| 0x203A | int16     | P0.58 Zero speed clamp mode (1)                           | RW     | N        |
| 0x203B | int16     | P0.59 Speed threshold of zero speed clamp (1)             | RW     | N        |
| 0x203C | int16     | P0.60 Torque command selection (1)                        | RW     | N        |
| 0x203D | int16     | P0.61 Torque command direction setting (1)                | RW     | N        |
| 0x203E | int32     | P0.62 Gain of analog input 2 (1)                          | RW     | N        |
| 0x203F | int16     | P0.63 Reversal of analog input 2 (1)                      | RW     | N        |
| 0x2041 | int16     | P0.65 Dead zone of analog input 2 (0.001)                 | RW     | N        |
| 0x2042 | int16     | P0.66 Internal torque command (0.1)                       | RW     | N        |
| 0x2043 | int16     | P0.67 Speed limit mode setting (1)                        | RW     | N        |
| 0x2044 | int16     | P0.68 RAMP time of torque command (1)                     | RW     | N        |
| 0x2045 | int16     | P0.69 DEC time of fast stop (1)                           | RW     | N        |
| 0x2046 | int16     | P0.70 Absolute encoder mode setting (1)                   | RW     | N        |
| 0x2047 | int16     | P0.71 Absolute encoder multi-turn zeroing (1)             | RW     | N        |
| 0x205A | int16     | P0.90 Max. speed limit of control mode switching (1)      | RW     | N        |
| 0x205B | int32     | P0.91 Positioning reference of control mode switching (1) | RW     | N        |
| 0x205C | int16     | P0.92 Exit mode of position mode switching (1)            | RW     | N        |
| 0x205D | int16     | P0.93 Exit mode of switching speed to position (1)        | RW     | N        |
| 0x2063 | int16     | P0.99 Speed detection FIR filter level (1)                | RW     | N        |
| 0x2100 | int16     | P1.00 Inertia online automatic estimation (1)             | RW     | N        |
| 0x2101 | int16     | P1.01 1 <sup>st</sup> inertia ratio (1)                   | RW     | N        |
| 0x2102 | int16     | P1.02 2 <sup>nd</sup> inertia ratio (1)                   | RW     | N        |
| 0x2103 | int16     | P1.03 1 <sup>st</sup> Machine rigidity setting (1)        | RW     | N        |
| 0x2104 | int32     | P1.04 Inertia offline automatic estimation (1)            | RW     | N        |
| 0x2105 | int16     | P1.05 Operation mode of inertia identification (1)        | RW     | N        |
| 0x2106 | int16     | P1.06 Movable range of inertia Identification (0.1)       | RW     | N        |
| 0x2107 | int16     | P1.07 ACC time constant of inertia Identification (1)     | RW     | N        |
| 0x2108 | int16     | P1.08 Speed level of inertia identification (1)           | RW     | N        |
| 0x2113 | int16     | P1.19 Valid resonance detection bit (0.1)                 | RW     | N        |

| Index  | Data type | Name                                                         | Access | Mappable |
|--------|-----------|--------------------------------------------------------------|--------|----------|
| 0x2114 | int16     | P1.20 Resonance detection mode (1)                           | RW     | N        |
| 0x2115 | int16     | P1.21 1 <sup>st</sup> mechanical resonance frequency (1)     | RW     | N        |
| 0x2116 | int16     | P1.22 2 <sup>nd</sup> mechanical resonance frequency (1)     | RW     | N        |
| 0x2117 | int16     | P1.23 1 <sup>st</sup> notch filter frequency (1)             | RW     | Ν        |
| 0x2118 | int16     | P1.24 1 <sup>st</sup> notch filter Q value (0.01)            | RW     | Ν        |
| 0x2119 | int16     | P1.25 1 <sup>st</sup> notch filter depth selection (1)       | RW     | Ν        |
| 0x211A | int16     | P1.26 2 <sup>nd</sup> notch filter frequency (1)             | RW     | Ν        |
| 0x211B | int16     | P1.27 2 <sup>nd</sup> notch filter Q value (0.01)            | RW     | N        |
| 0x211C | int16     | P1.28 2 <sup>nd</sup> notch filter depth selection (1)       | RW     | N        |
| 0x211D | int16     | P1.29 3 <sup>rd</sup> notch filter frequency (1)             | RW     | N        |
| 0x211E | int16     | P1.30 3 <sup>rd</sup> notch filter Q value (0.01)            | RW     | N        |
| 0x211F | int16     | P1.31 3 <sup>rd</sup> notch filter depth selection (1)       | RW     | N        |
| 0x2120 | int16     | P1.32 4 <sup>th</sup> notch filter frequency (1)             | RW     | N        |
| 0x2121 | int16     | P1.33 4 <sup>th</sup> notch filter Q value (0.01)            | RW     | N        |
| 0x2122 | int16     | P1.34 4 <sup>th</sup> notch filter depth selection (1)       | RW     | N        |
| 0x2123 | int16     | P1.35 Vibration control mode of position command (1)         | RW     | N        |
| 0x2124 | int16     | P1.36 1 <sup>st</sup> vibration control frequency (0.1)      | RW     | N        |
| 0x2125 | int16     | P1.37 1 <sup>st</sup> vibration control filter factor (0.01) | RW     | Ν        |
| 0x2126 | int16     | P1.38 2 <sup>nd</sup> vibration control frequency (0.1)      | RW     | Ν        |
| 0x2127 | int16     | P1.39 2 <sup>nd</sup> vibration control filter factor (0.01) | RW     | Ν        |
| 0x2200 | int16     | P2.00 1 <sup>st</sup> speed gain (0.1)                       | RW     | Ν        |
| 0x2201 | int16     | P2.01 1 <sup>st</sup> speed integration time constant (0.1)  | RW     | Ν        |
| 0x2202 | int16     | P2.02 1 <sup>st</sup> position gain (0.1)                    | RW     | N        |
| 0x2203 | int16     | P2.03 1 <sup>st</sup> speed detection filter (1)             | RW     | N        |
| 0x2204 | int16     | P2.04 1 <sup>st</sup> torque filter (0.01)                   | RW     | N        |
| 0x2205 | int16     | P2.05 2 <sup>nd</sup> speed gain (0.1)                       | RW     | N        |
| 0x2206 | int16     | P2.06 2 <sup>nd</sup> speed integration time constant (0.1)  | RW     | N        |
| 0x2207 | int16     | P2.07 2 <sup>nd</sup> position gain (0.1)                    | RW     | N        |
| 0x2208 | int16     | P2.08 2 <sup>nd</sup> speed detection filter (1)             | RW     | N        |
| 0x2209 | int16     | P2.09 2 <sup>nd</sup> torque filter (0.01)                   | RW     | N        |
| 0x220A | int16     | P2.10 Speed feed-forward gain (0.1)                          | RW     | N        |
| 0x220B | int16     | P2.11 Speed feed-forward filter time (0.01)                  | RW     | N        |
| 0x220C | int16     | P2.12 Torque feed-forward gain (0.1)                         | RW     | N        |
| 0x220D | int16     | P2.13 Torque feed-forward filter time (0.01)                 | RW     | N        |

| Index  | Data type | Name                                                                 | Access | Mappable |
|--------|-----------|----------------------------------------------------------------------|--------|----------|
| 0x220E | int16     | P2.14 1 <sup>st</sup> IPPI coefficient (1)                           | RW     | N        |
| 0x220F | int16     | P2.15 2 <sup>nd</sup> IPPI coefficient (1)                           | RW     | N        |
| 0x2214 | int16     | P2.20 2 <sup>nd</sup> gain setting (1)                               | RW     | N        |
| 0x2216 | int16     | P2.22 Position control switching mode (1)                            | RW     | N        |
| 0x2217 | int16     | P2.23 Delay time of position control switching (1)                   | RW     | N        |
| 0x2218 | int16     | P2.24 Switching level of position control (1)                        | RW     | N        |
| 0x2219 | int16     | P2.25 Switching delay of position control (1)                        | RW     | N        |
| 0x221A | int16     | P2.26 Switching time of position gain (1)                            | RW     | N        |
| 0x221B | int16     | P2.27 Switching mode of speed control (1)                            | RW     | N        |
| 0x221C | int16     | P2.28 Delay time of speed control switching (1)                      | RW     | N        |
| 0x221D | int16     | P2.29 Switching level of speed control (1)                           | RW     | N        |
| 0x221E | int16     | P2.30 Switching delay of speed control (1)                           | RW     | N        |
| 0x221F | int16     | P2.31 Switching mode of torque control (1)                           | RW     | N        |
| 0x2220 | int16     | P2.32 Delay time of torque control switching (1)                     | RW     | N        |
| 0x2221 | int16     | P2.33 Switching level of torque control (1)                          | RW     | N        |
| 0x2222 | int16     | P2.34 Switching delay of torque control (1)                          | RW     | N        |
| 0x2229 | int16     | P2.41 Disturbance observer valid (1)                                 | RW     | N        |
| 0x222A | int16     | P2.42 Compensation gain of disturbance observer (1)                  | RW     | N        |
| 0x222B | int16     | P2.43 Cut-off frequency of disturbance observer (1)                  | RW     | N        |
| 0x222C | int16     | P2.44 Torque command offset (0.1)                                    | RW     | N        |
| 0x2232 | int16     | P2.50 Fully-closed loop vibration suppressor valid (1)               | RW     | N        |
| 0x2233 | int16     | P2.51 Fully-closed loop vibration suppressor cut-off frequency (0.1) | RW     | N        |
| 0x2234 | int16     | P2.52 Fully-closed loop vibration suppressor compensation gain (1)   | RW     | N        |
| 0x2235 | uint16    | P2.53 Medium-frequency vibration control switch (1)                  | RW     | N        |
| 0x2236 | uint16    | P2.54 Medium-frequency vibration control frequency (1)               | RW     | N        |
| 0x2237 | uint16    | P2.55 Fine tuning of medium-frequency vibration control inertia (1)  | RW     | N        |
| 0x2238 | uint16    | P2.56 Medium-frequency vibration control attenuation gain (1)        | RW     | N        |

| Index  | Data type | Name                                                                                   | Access | Mappable |
|--------|-----------|----------------------------------------------------------------------------------------|--------|----------|
| 0x2239 | int16     | P2.57 Fine tuning of medium-frequency vibration control filter time parameter 1 (1)    | RW     | N        |
| 0x223A | int16     | P2.58 Fine tuning of medium-frequency vibration control filter time parameter 2 (0.01) | RW     | Ν        |
| 0x223C | int16     | P2.60 Speed observer valid (1)                                                         | RW     | N        |
| 0x223D | int16     | P2.61 Speed observer gain (1)                                                          | RW     | N        |
| 0x2246 | int16     | P2.70 Friction compensation max-speed (1)                                              | RW     | N        |
| 0x2247 | int16     | P2.71 Positive torque coefficient of friction compensation (0.1)                       | RW     | N        |
| 0x2248 | int16     | P2.72 Negative torque coefficient of friction compensation (0.1)                       | RW     | N        |
| 0x2249 | int16     | P2.73 Friction compensation valid (1)                                                  | RW     | N        |
| 0x224A | int16     | P2.74 Automatic mode switch (1)                                                        | RW     | N        |
| 0x224B | int16     | P2.75 Automatic mode gain (0.1)                                                        | RW     | N        |
| 0x224C | int16     | P2.76 Fine tuning of automatic mode inertia (1)                                        | RW     | N        |
| 0x224D | int16     | P2.77 Filter in disturbance observer of automatic mode 1 (0.1)                         | RW     | N        |
| 0x224E | int16     | P2.78 Filter in disturbance observer of automatic mode 2 (0.1)                         | RW     | N        |
| 0x224F | int16     | P2.79 Phase compensation of automatic mode speed command (1)                           | RW     | N        |
| 0x2250 | int16     | P2.80 Speed observer gain of automatic mode (1)                                        | RW     | N        |
| 0x2251 | int32     | P2.81 Speed command filtering of automatic mode (0.1)                                  | RW     | N        |
| 0x2252 | int32     | P2.82 Phase advance correction of automatic mode speed command (0.1)                   | RW     | N        |
| 0x2253 | int32     | P2.83 Disturbance compensation torque filtering time of automatic mode (0.01)          | RW     | N        |
| 0x2254 | int32     | P2.84 Speed feedback input filtering time of automatic mode speed observer (0.01)      | RW     | N        |
| 0x2255 | int16     | P2.85 Torque feedforward selection (1)                                                 | RW     | N        |
| 0x2256 | int32     | P2.86 Flux-weakening control switch                                                    | RW     | N        |
| 0x2257 | int32     | P2.87 Voltage utilization in flux-weakening control                                    | RW     | N        |
| 0x2258 | int32     | P2.88 Open-loop flux-weakening bandwidth                                               | RW     | N        |
| 0x2259 | int32     | P2.89 Closed-loop flux-weakening bandwidth                                             | RW     | N        |
| 0x225A | int32     | P2.90 Max. flux-weakening current of closed-loop flux-weakening                        | RW     | N        |

| Index  | Data type | Name                                                   | Access | Mappable |
|--------|-----------|--------------------------------------------------------|--------|----------|
| 0x225B | int16     | P2.91 Unbiased control gain                            | RW     | N        |
| 0x225C | int16     | P2.92 Unbiased control decay coefficient               | RW     | N        |
| 0x2300 | uint16    | P3.00 Input configuration of digital 1 (1)             | RW     | N        |
| 0x2301 | uint16    | P3.01 Input configuration of digital 2 (1)             | RW     | N        |
| 0x2302 | uint16    | P3.02 Input configuration of digital 3 (1)             | RW     | N        |
| 0x2303 | uint16    | P3.03 Input configuration of digital 4 (1)             | RW     | N        |
| 0x2304 | uint16    | P3.04 Input configuration of digital 5 (1)             | RW     | N        |
| 0x2305 | uint16    | P3.05 Input configuration of digital 6 (1)             | RW     | N        |
| 0x2306 | uint16    | P3.06 Input configuration of digital 7 (1)             | RW     | Ν        |
| 0x2307 | uint16    | P3.07 Input configuration of digital 8 (1)             | RW     | Ν        |
| 0x2308 | uint16    | P3.08 Input configuration of digital 9 (1)             | RW     | N        |
| 0x2309 | uint16    | P3.09 Input configuration of digital 10 (1)            | RW     | Ν        |
| 0x230A | uint16    | P3.10 Output configuration of digital 1 (1)            | RW     | Ν        |
| 0x230B | uint16    | P3.11 Output configuration of digital 2 (1)            | RW     | Ν        |
| 0x230C | uint16    | P3.12 Output configuration of digital 3 (1)            | RW     | Ν        |
| 0x230D | uint16    | P3.13 Output configuration of digital 4 (1)            | RW     | Ν        |
| 0x230E | uint16    | P3.14 Output configuration of digital 5 (1)            | RW     | Ν        |
| 0x230F | uint16    | P3.15 Output configuration of digital 6 (1)            | RW     | Ν        |
| 0x2310 | uint16    | P3.16 Function configuration of DI capture encoder (1) | RW     | N        |
| 0x2314 | int32     | P3.20 Offset of analog input 1 (0.001)                 | RW     | N        |
| 0x2315 | int16     | P3.21 Filter of analog input 1 (0.1)                   | RW     | N        |
| 0x2316 | int32     | P3.22 Voltage protection of analog input 1 (0.001)     | RW     | N        |
| 0x2317 | int32     | P3.23 Offset of analog input 2 (0.001)                 | RW     | Ν        |
| 0x2318 | int16     | P3.24 Filter of analog input 2 (0.1)                   | RW     | Ν        |
| 0x2319 | int32     | P3.25 Voltage protection of analog input 2 (0.001)     | RW     | N        |
| 0x231A | int16     | P3.26 Function selection of analog input 1 (1)         | RW     | N        |
| 0x231B | int16     | P3.27 Function selection of analog input 2 (1)         | RW     | N        |
| 0x231C | int16     | P3.28 Analog speed compensation gain (0.1)             | RW     | N        |
| 0x231D | int16     | P3.29 Analog torque compensation gain (0.1)            | RW     | N        |
| 0x231E | int16     | P3.30 Analog output 1 selection (1)                    | RW     | N        |
| 0x231F | int32     | P3.31 Voltage gain of analog output 1 (1)              | RW     | N        |
| 0x2320 | int16     | P3.32 Analog output 2 selection (1)                    | RW     | N        |
| 0x2321 | int32     | P3.33 Voltage gain of analog output 2 (1)              | RW     | N        |

| Index  | Data type | Name                                                    | Access | Mappable |
|--------|-----------|---------------------------------------------------------|--------|----------|
| 0x2322 | int32     | P3.34 Offset voltage of analog output 1 (0.001)         | RW     | N        |
| 0x2323 | int32     | P3.35 Offset voltage of analog output 2 (0.001)         | RW     | N        |
| 0x2324 | int16     | P3.36 Analog output monitor setting (1)                 | RW     | N        |
| 0x2328 | int16     | P3.40 Travel limit switch setting(1)                    | RW     | N        |
| 0x2329 | int16     | P3.41 Emergency stop switch shield (1)                  | RW     | N        |
| 0x232A | int16     | P3.42 Safe speed limit                                  | RW     | N        |
| 0x232B | int16     | P3.43 Digital input filter (1)                          | RW     | N        |
| 0x232C | int16     | P3.44 Command pulse input invalid setting disabled (1)  | RW     | N        |
| 0x232D | int16     | P3.45 Clearing mode of retention pulse (1)              | RW     | N        |
| 0x2332 | int32     | P3.50 Range of position arrival (1)                     | RW     | N        |
| 0x2333 | int16     | P3.51 Output mode of position arrival (1)               | RW     | N        |
| 0x2334 | int16     | P3.52 Hold time of position arrival output terminal (1) | RW     | N        |
| 0x2335 | int16     | P3.53 Speed matching range (1)                          | RW     | N        |
| 0x2336 | int16     | P3.54 Speed reaching range (1)                          | RW     | N        |
| 0x2337 | int16     | P3.55 Zero speed range (1)                              | RW     | N        |
| 0x2338 | int16     | P3.56 Locked time of servo after braking (1)            | RW     | N        |
| 0x2339 | int16     | P3.57 Braking delay of electromagnetic brake (1)        | RW     | N        |
| 0x233A | int16     | P3.58 Motor speed of brake release (1)                  | RW     | N        |
| 0x233B | int16     | P3.59 Torque reaching range (0.1)                       | RW     | N        |
| 0x2346 | int16     | P3.70 Analog input 3 function selection (1)             | RW     | N        |
| 0x2347 | int32     | P3.71 Zero offset of analog input 3 (0.001)             | RW     | N        |
| 0x2348 | int16     | P3.72 Dead zone of analog input 3 (0.001)               | RW     | N        |
| 0x2349 | int32     | P3.73 Gain of analog input 3 (1)                        | RW     | N        |
| 0x234A | int16     | P3.74 Reversal of analog input 3 (1)                    | RW     | N        |
| 0x234B | int32     | P3.75 Voltage protection of analog input 3 (0.001)      |        | N        |
| 0x234C | int16     | P3.76 Analog input 3 filter (0.1)                       | RW     | N        |
| 0x234D | int16     | P3.77 Deadzone mode of analog input (1)                 | RW     | N        |
| 0x235A | int16     | P3.90 Pulse input filter (1)                            | RW     | N        |
| 0x235B | int16     | P3.91 1 <sup>st</sup> encoder filter (1)                | RW     | N        |
| 0x235C | int16     | P3.92 2 <sup>nd</sup> encoder filter (1)                | RW     | N        |
| 0x2400 | int16     | P4.00 EtherCAT communication address (1)                | RW     | N        |
| 0x2401 | int16     | P4.01 RS485 local communication address (1)             | RW     | N        |

| Index  | Data type | Name                                                                 | Access | Mappable |
|--------|-----------|----------------------------------------------------------------------|--------|----------|
| 0x2402 | int16     | P4.02 CAN communication baud rate (1)                                | RW     | N        |
| 0x2403 | int16     | P4.03 RS485 communication baud rate (1)                              | RW     | N        |
| 0x2404 | int16     | P4.04 RS485 communication parity mode (1)                            | RW     | N        |
| 0x2405 | int16     | P4.05 CAN communication node (1)                                     | RW     | N        |
| 0x2406 | int16     | P4.06 RS485 communication fault clearing mode (1)                    | RW     | N        |
| 0x2407 | int16     | P4.07 EtherCAT synchronous cycle                                     | RW     | Ν        |
| 0x2408 | int16     | P4.08 EtherCAT synchronous type (1)                                  | RW     | Ν        |
| 0x2409 | int16     | P4.09 EtherCAT fault detection time (1)                              | RW     | Ν        |
| 0x240A | int16     | P4.10 Upper PC type (1)                                              | RW     | N        |
| 0x240B | int16     | P4.11 Bus servo enabling (1)                                         | RW     | N        |
| 0x240C | int32     | P4.12 Bus position command (1)                                       | RW     | N        |
| 0x240D | int32     | P4.13 Bus speed command (0.1)                                        | RW     | N        |
| 0x240E | int16     | P4.14 Bus torque command (0.1)                                       | RW     | N        |
| 0x240F | int16     | P4.15 Switching command of control mode (1)                          | RW     | N        |
| 0x2410 | int16     | P4.16 Gain switching command (1)                                     | RW     | N        |
| 0x2411 | int16     | P4.17 Switching command of electronic gear ratio (1)                 | RW     | N        |
| 0x2412 | int16     | P4.18 Inertia ratio switching command (1)                            |        | N        |
| 0x2413 | int16     | P4.19 Zero speed clamp command (1)                                   | RW     | N        |
| 0x2414 | int16     | P4.20 Retention pulse clearing (1)                                   | RW     | N        |
| 0x2415 | int16     | P4.21 Torque limit switching command (1)                             | RW     | N        |
| 0x2416 | int16     | P4.22 External fault command (1)                                     | RW     | N        |
| 0x2417 | int16     | P4.23 Emergency stop command (1)                                     | RW     | N        |
| 0x2418 | int16     | P4.24 Input command of vibration control switching (1)               | RW     | N        |
| 0x2419 | int16     | P4.25 EtherCAT control unit type (1)                                 | RW     | N        |
| 0x241A | int16     | P4.26 EtherCAT PDO input offset (1)                                  | RW     | N        |
| 0x241B | int16     | P4.27 Compensation value of EtherCAT position interpolation mode (1) | RW     | N        |
| 0x241C | int16     | P4.28 Digital output control enabling of EtherCAT (1)                | RW     | N        |
| 0x241D | int16     | P4.29 Main cycle period of EtherCAT (1)                              | RW     | N        |
| 0x241E | int16     | P4.30 Stop mode (1)                                                  | RW     | N        |
| 0x241F | int16     | P4.31 Max speed limit (1)                                            | RW     | N        |
| 0x2420 | int16     | P4.32 Overspeed level (1)                                            | RW     | N        |
| 0x2421 | int32     | P4.33 Pulse range of position deviation (1)                          | RW     | N        |

| Index  | Data type | Name                                                                   | Access | Mappable |
|--------|-----------|------------------------------------------------------------------------|--------|----------|
| 0x2422 | int16     | P4.34 Brake overload detection selection (1)                           | RW     | N        |
| 0x2424 | int16     | P4.36 Undervoltage protection of main power supply (1)                 | RW     | N        |
| 0x2425 | int16     | P4.37 Undervoltage detection time of main power supply (1)             | RW     | N        |
| 0x2427 | int16     | P4.39 Speed deviation setting (1)                                      | RW     | N        |
| 0x2428 | int16     | P4.40 Forward speed limit (1)                                          | RW     | N        |
| 0x2429 | int16     | P4.41 Reverse speed limit (1)                                          | RW     | N        |
| 0x242A | int32     | P4.42 Internal speed of high resolution (0.1)                          | RW     | N        |
| 0x242B | uint16    | P4.43 Torque limit screening and run cycle selection                   | RW     | N        |
| 0x242C | int16     | P4.44 Runaway speed threshold                                          | RW     | N        |
| 0x2432 | int32     | P4.50 Offset of encoder Z phase (1)                                    | RW     | N        |
| 0x2433 | int16     | P4.51 Switching time 1 of torque limit (1)                             | RW     | N        |
| 0x2434 | int16     | P4.52 Switching time 2 of torque limit (1)                             | RW     | N        |
| 0x2435 | int16     | P4.53 Current loop response adjustment (0.1)                           | RW     | N        |
| 0x2436 | int32     | P4.54 Initialization time after power on (1)                           | RW     | N        |
| 0x2437 | int16     | P4.55 Communication baud rate of the encoder (1)                       | RW     | N        |
| 0x243A | int16     | P4.58 Z pulse width of frequency-division output (1)                   | RW     | N        |
| 0x243B | int32     | P4.59 Z pulse offset of frequency-division output (1)                  | RW     | N        |
| 0x243C | int32     | P4.60 Frequency division molecular of external linear encoder (1)      | RW     | N        |
| 0x243D | int32     | P4.61 Frequency division denominator of external linear encoder (1)    | RW     | N        |
| 0x243E | int16     | P4.62 Direction reversal of external linear encoder (1)                | RW     | N        |
| 0x243F | int16     | P4.63 External linear encoder Z phase break detection disabling (1)    |        | N        |
| 0x2440 | int32     | P4.64 Large mixed deviation setting (1)                                | RW     | N        |
| 0x2441 | int16     | P4.65 Mixed deviation clearing (1)                                     | RW     | N        |
| 0x2442 | int16     | P4.66 Z phase of external linear encoder (1)                           | RW     | N        |
| 0x2443 | int16     | P4.67 External linear encoder pulse output mode of AB phase (1)        | RW     | N        |
| 0x2444 | int32     | P4.68 External linear encoder (2 <sup>nd</sup> encoder) resolution (1) | RW     | N        |

| Index  | Data type | Name                                                                      | Access | Mappable |
|--------|-----------|---------------------------------------------------------------------------|--------|----------|
| 0x2445 | int16     | P4.69 Frequency division output source (1)                                | RW     | N        |
| 0x2446 | int16     | P4.70 External linear encoder (2 <sup>nd</sup> encoder) Z signal type (1) | RW     | N        |
| 0x244D | int16     | P4.77 Detection time for motor phase loss                                 | RW     | N        |
| 0x244E | int16     | P4.78 Temperature protection threshold of medium-power motor (1)          | RW     | N        |
| 0x244F | int16     | P4.79 Quick stop method(1)                                                | RW     | N        |
| 0x2450 | uint16    | P4.80 Configuration of PZD setting parameter 1 (1)                        | RW     | N        |
| 0x2451 | uint16    | P4.81 Configuration of PZD setting parameter 2 (1)                        | RW     | N        |
| 0x2452 | uint16    | P4.82 Configuration of PZD setting parameter 3 (1)                        | RW     | N        |
| 0x2453 | uint16    | P4.83 Configuration of PZD feedback parameter 1 (1)                       | RW     | N        |
| 0x2454 | uint16    | P4.84 Configuration of PZD feedback parameter 2 (1)                       | RW     | N        |
| 0x2455 | uint16    | P4.85 Configuration of PZD feedback parameter 3 (1)                       | I RW I |          |
| 0x2456 | uint16    | P4.86 PPO type of DP communication (1)                                    | RW     | Ν        |
| 0x2457 | int32     | P4.87 CANopen communication cycle (1)                                     | RW     | Ν        |
| 0x2458 | int16     | P4.88 CANopen heartbeat cycle (1)                                         | RW     | Ν        |
| 0x2459 | int16     | P4.89 Automatic stop at CANopen disconnection (1)                         | RW     | N        |
| 0x245A | int16     | P4.90 Fault restore (1)                                                   | RW     | N        |
| 0x245B | int16     | P4.91 Parameters saving (1)                                               | RW     | N        |
| 0x245C | int16     | P4.92 Restore to the factory value (1)                                    | RW     | N        |
| 0x245D | int16     | P4.93 Reading enable of fault record (1)                                  | RW     | Ν        |
| 0x245E | int16     | P4.94 Clearing enable of fault record (1)                                 | RW     | N        |
| 0x245F | int16     | P4.95 Group number of fault record (1)                                    | RW     | N        |
| 0x2460 | int16     | P4.96 Initial angle test of the encoder (1)                               |        | N        |
| 0x2461 | int16     | P4.97 EEPROM operation of absolute encoder (1)                            |        | N        |
| 0x2462 | int16     | P4.98 EEPROM block of absolute encoder (1)                                |        | N        |
| 0x2463 | int32     | P4.99 Reserved (1) RW                                                     |        | N        |
| 0x2500 | int16     | P5.00 Program JOG mode selection (1) RW                                   |        | N        |
| 0x2501 | int32     | P5.01 JOG movement (1)                                                    | RW     | N        |
| 0x2502 | int16     | P5.02 JOG speed setting (1)                                               | RW     | N        |

| Index  | Data type | Name                                                         | Access | Mappable |
|--------|-----------|--------------------------------------------------------------|--------|----------|
| 0x2503 | int16     | P5.03 JOG ACC/DEC time (1)                                   | RW     | N        |
| 0x2504 | int16     | P5.04 JOG waiting time (1)                                   | RW     | N        |
| 0x2505 | int16     | P5.05 JOG cycle times (1)                                    | RW     | N        |
| 0x2509 | int32     | P5.09 Homing ACC/DEC time (1)                                | RW     | N        |
| 0x250A | int16     | P5.10 Homing mode (1)                                        | RW     | Ν        |
| 0x250B | int16     | P5.11 Automatic homing after power on (1)                    | RW     | Ν        |
| 0x250C | int16     | P5.12 1 <sup>st</sup> speed setting of high speed homing (1) | RW     | N        |
| 0x250D | int16     | P5.13 2 <sup>nd</sup> speed setting of high speed homing (1) | RW     | N        |
| 0x250E | int32     | P5.14 Home setting (1)                                       | RW     | N        |
| 0x250F | int16     | P5.15 Homing trigger command (1)                             | RW     | N        |
| 0x2510 | int16     | P5.16 Correlated action of homing (1)                        | RW     | N        |
| 0x2511 | int16     | P5.17 Speed to designated target after homing (1)            | RW     | N        |
| 0x2512 | int16     | P5.18 ACC/DEC time to designated target after homing (1)     | RW     | N        |
| 0x2513 | int32     | P5.19 Position to designated target after homing (1)         | RW     | N        |
| 0x2514 | int16     | P5.20 PTP trigger command (1)                                | RW     | N        |
| 0x2515 | int16     | P5.21 00 Target speed (1)                                    | RW     | N        |
| 0x2516 | int16     | P5.23 02 target speed (1)                                    | RW     | N        |
| 0x2517 | int16     | P5.24 03 target speed (1)                                    | RW     | N        |
| 0x2518 | int16     | P5.25 04 target speed (1)                                    | RW     | N        |
| 0x2519 | int16     | P5.26 05 target speed (1)                                    | RW     | N        |
| 0x251A | int16     | P5.27 06 target speed (1)                                    | RW     | N        |
| 0x251B | int16     | P5.28 07 target speed (1)                                    | RW     | N        |
| 0x251C | int16     | P5.29 08 target speed (1)                                    | RW     | N        |
| 0x251D | int16     | P5.30 09 target speed (1)                                    | RW     | N        |
| 0x251E | int16     | P5.31 10 target speed (1)                                    | RW     | N        |
| 0x251F | int16     | P5.32 11 target speed (1)                                    | RW     | N        |
| 0x2520 | int16     | P5.33 12 target speed (1)                                    | RW     | N        |
| 0x2521 | int16     | P5.34 13 target speed (1)                                    | RW     | N        |
| 0x2522 | int16     | P5.35 14 target speed (1)                                    | RW     | N        |
| 0x2523 | int16     | P5.36 15 target speed (1)                                    | RW     | N        |
| 0x2524 | int16     | P5.37 00 ACC/DEC time (1)                                    | RW     | N        |
| 0x2525 | int16     | P5.23 02 target speed (1)                                    | RW     | N        |

| Index  | Data type | Name                                     | Access | Mappable |
|--------|-----------|------------------------------------------|--------|----------|
| 0x2526 | int16     | P5.38 01 ACC/DEC time (1)                | RW     | Ν        |
| 0x2527 | int16     | P5.39 02 ACC/DEC time (1)                | RW     | Ν        |
| 0x2528 | int16     | P5.40 03 ACC/DEC time (1)                | RW     | N        |
| 0x2529 | int16     | P5.41 04 ACC/DEC time (1)                | RW     | Ν        |
| 0x252A | int16     | P5.42 05 ACC/DEC time (1)                | RW     | N        |
| 0x252B | int16     | P5.43 06 ACC/DEC time (1)                | RW     | N        |
| 0x252C | int16     | P5.44 07 ACC/DEC time (1)                | RW     | N        |
| 0x252D | int16     | P5.45 08 ACC/DEC time (1)                | RW     | N        |
| 0x252E | int16     | P5.46 09 ACC/DEC time (1)                | RW     | N        |
| 0x252F | int16     | P5.37 10 ACC/DEC time (1)                | RW     | N        |
| 0x2530 | int16     | P5.48 11 ACC/DEC time (1)                | RW     | N        |
| 0x2531 | int16     | P5.49 12 ACC/DEC time (1)                | RW     | N        |
| 0x2532 | int16     | P5.50 13 ACC/DEC time (1)                | RW     | N        |
| 0x2533 | int16     | P5.51 14 ACC/DEC time (1)                | RW     | N        |
| 0x2534 | int16     | P5.52 15 ACC/DEC time (1)                | RW     | N        |
| 0x2535 | uint16    | P5.53 00 delay time (1)                  | RW     | N        |
| 0x2536 | uint16    | P5.54 01 delay time (1)                  | RW     | N        |
| 0x2537 | uint16    | P5.55 02 delay time (1)                  | RW     | N        |
| 0x2538 | uint16    | P5.56 03 delay time (1)                  | RW     | N        |
| 0x2539 | uint16    | P5.57 04 delay time (1)                  | RW     | N        |
| 0x253A | uint16    | P5.58 05 delay time (1)                  | RW     | N        |
| 0x253B | uint16    | P5.59 06 delay time (1)                  | RW     | Ν        |
| 0x253C | uint16    | P5.60 07 delay time (1)                  | RW     | N        |
| 0x253D | uint16    | P5.61 08 delay time (1)                  | RW     | Ν        |
| 0x253E | uint16    | P5.62 09 delay time (1)                  | RW     | Ν        |
| 0x253F | uint16    | P5.63 10 delay time (1)                  | RW     | Ν        |
| 0x2540 | uint16    | P5.64 11 delay time (1)                  | RW     | N        |
| 0x2541 | uint16    | P5.65 12 delay time (1)                  | RW     | Ν        |
| 0x2542 | uint16    | P5.66 13 delay time (1)                  | RW     | N        |
| 0x2543 | uint16    | P5.67 14 delay time (1)                  | RW     | Ν        |
| 0x2544 | uint16    | P5.68 15 delay time (1)                  | RW     | N        |
| 0x2545 | uint16    | P5.69 PTP trigger buffer switch (1)      | RW     | N        |
| 0x2546 | int32     | P5.70 Single-turn resolution of disk (1) | RW     | N        |
| 0x2547 | uint16    | P5.71 Zero-returning switch of disk (1)  | RW     | N        |
| 0x2548 | uint16    | P5.72 Multi-turn mode (1)                | RW     | N        |

| Index  | Data type | Name                                                | Access | Mappable |
|--------|-----------|-----------------------------------------------------|--------|----------|
| 0x2549 | uint16    | P5.73 Digital trigger mode of PTP (1)               | RW     | N        |
| 0x254A | uint16    | P5.74 Digital output mode of PTP (1)                | RW     | N        |
| 0x254B | uint16    | P5.75 Enable interruption pause of the PTP (1)      | RW     | N        |
| 0x2600 | int16     | P6.00 Forward low JOG speed (1)                     | RW     | N        |
| 0x2601 | int16     | P6.01 Reverse low JOG speed (1)                     | RW     | N        |
| 0x2602 | int16     | P6.02 Position latch function switch (1)            | RW     | N        |
| 0x2603 | int16     | P6.03 Position latch save mode (1)                  | RW     | N        |
| 0x2604 | int16     | P6.04 Forward high JOG speed (1)                    | RW     | N        |
| 0x2605 | int16     | P6.05 Reverse high JOG speed (1)                    | RW     | N        |
| 0x2606 | int16     | P6.06 Terminal JOG valid (1)                        | RW     | N        |
| 0x3000 | int32     | R0.00 Motor speed (0.1)                             | RO     | N        |
| 0x3001 | int32     | R0.01 Speed command (0.1)                           | RO     | N        |
| 0x3002 | int64     | R0.02 Feedback pulse accumulation (1)               | RO     | N        |
| 0x3003 | int64     | R0.03 Command pulse accumulation (1)                | RO     | N        |
| 0x3004 | int32     | R0.04 Retention pulse (1)                           | RO     | N        |
| 0x3005 | int32     | R0.05 Hybrid control deviation (1)                  | RO     | N        |
| 0x3006 | int32     | R0.06 Current torque (0.1)                          | RO     | N        |
| 0x3007 | int32     | R0.07 DC voltage of main circuit (0.1)              | RO     | N        |
| 0x3008 | int32     | R0.08 Voltage of control power (0.1)                | RO     | N        |
| 0x3009 | int32     | R0.09 Output voltage (0.1)                          | RO     | N        |
| 0x300A | int32     | R0.10 Output current (0.01)                         | RO     | N        |
| 0x300B | int32     | R0.11 Drive temperature (0.1)                       | RO     | N        |
| 0x300C | int32     | R0.12 Torque limit (0.1)                            | RO     | N        |
| 0x300D | int32     | R0.13 Feedback value of the encoder (1)             | RO     | Y        |
| 0x300E | int32     | R0.14 Rotor position relative to Z pulse (1)        | RO     | N        |
| 0x300F | int16     | R0.15 Inertia ratio of load (1)                     | RO     | N        |
| 0x3010 | int32     | R0.16 Output power (0.1)                            | RO     | N        |
| 0x3011 | int32     | R0.17 Motor load ratio (0.1)                        | RO     | N        |
| 0x3012 | int32     | R0.18 Molecule of actual electric gear ratio (1)    | RO     | N        |
| 0x3013 | int32     | R0.19 Denominator of actual electric gear ratio (1) | RO     | N        |
| 0x3014 | int32     | R0.20 Position command speed (0.1)                  | RO     | N        |
| 0x3015 | int32     | R0.21 Motor speed (filtering) (0.1)                 | RO     | N        |
| 0x3016 | int16     | R0.22 PTP state (1)                                 | RO     | N        |
| 0x3017 | int32     | R0.23 Absolute position feedback of encoder (1)     | RO     | N        |

| Index  | Data type | Name                                                                      | Access | Mappable |
|--------|-----------|---------------------------------------------------------------------------|--------|----------|
| 0x3018 | int16     | R0.24 EEPROM data state of the encoder (1)                                | RO     | N        |
| 0x3019 | int16     | R0.25 Turns of multi-circle encoder (1)                                   | RO     | Y        |
| 0x301A | int16     | R0.26 Available encoder type (1)                                          | RO     | N        |
| 0x301B | int16     | R0.27 Synchronous correction state of EtherCAT clock (1)                  | RO     | N        |
| 0x301C | int16     | R0.28 State of CANopen state machine (1)                                  | RO     | N        |
| 0x301D | int16     | R0.29 Node no. of PROFIBUS-DP slave station (1)                           | RO     | N        |
| 0x301E | int16     | R0.30 System state (1)                                                    | RO     | N        |
| 0x301F | uint16    | R0.31 IGBT state (1)                                                      | RO     | N        |
| 0x3020 | int16     | R0.32 Current mode (1)                                                    | RO     | N        |
| 0x3021 | uint32    | R0.33 Power-on time (1)                                                   | RO     | N        |
| 0x3022 | uint32    | R0.34 Operation time (1)                                                  | RO     | N        |
| 0x3023 | int16     | R0.35 DSP software version (0.01)                                         | RO     | N        |
| 0x3024 | int16     | R0.36 FPGA software version (0.01)                                        | RO     | N        |
| 0x3025 | int16     | R0.37 Communication card software version (0.01)                          | RO     | N        |
| 0x3026 | int32     | R0.38 Drive serial No.1 (1)                                               | RO     | N        |
| 0x3027 | int32     | R0.39 Drive serial No.2 (1)                                               | RO     | N        |
| 0x3028 | int32     | R0.40 Drive serial No.3 (1)                                               | RO     | N        |
| 0x3029 | int32     | R0.41 Drive serial No.4 (1)                                               | RO     | N        |
| 0x302A | int32     | R0.42 Drive serial No.5 (1)                                               | RO     | N        |
| 0x302B | int32     | R0.43 Drive serial No.6 (1)                                               | RO     | N        |
| 0x302C | int32     | R0.44 Linear encoder position relative to Z (2 <sup>nd</sup> encoder) (1) | RO     | N        |
| 0x302D | int32     | R0.45 Speed feedback of 2 <sup>nd</sup> encoder (0.1)                     | RO     | N        |
| 0x302E | int32     | R0.46 Observing speed of speed observer (0.1)                             | RO     | N        |
| 0x302F | int32     | R0.47 Feedback speed of speed observer (0.1)                              |        | N        |
| 0x3030 | int32     | R0.48 Observing disturbance torque via disturbance observer (0.1)         |        | N        |
| 0x3031 | int32     | R0.49 Compensation value of fully-closed vibration suppressor (0.1)       | RO     | N        |
| 0x3032 | int16     | P0.50 EtherCAT configuration file version no. (0.01)                      | RO     | N        |
| 0x3033 | int16     | R0.51 Observe load inertia ratio in real time (1)                         | RO     | N        |

| Index  | Data type | Name                                                                       | Access | Mappable |
|--------|-----------|----------------------------------------------------------------------------|--------|----------|
| 0x3034 | int32     | R0.52 Position feedback accumulation of linear encoder (1)                 | RO     | N        |
| 0x3035 | int32     | R0.53 Gantry synchronization position deviation (1)                        | RO     | N        |
| 0x3036 | int32     | R0.54 Linear encoder (2nd encoder) position feedback value (1)             | RO     | N        |
| 0x3037 | int32     | R0.55 Encoder turn number offset after clearing multi-turn position (1)    | RO     | N        |
| 0x3038 | int32     | R0.56 Encoder feedback value offset after clearing multi-turn position (1) | RO     | N        |
| 0x3039 | int64     | R0.57 Position feedback accumulation of 2 <sup>nd</sup> encoder (1)        | RO     | N        |
| 0x303A | int32     | R0.58 Position inside the single-turn of the disk (1)                      | RO     | N        |
| 0x303C | int32     | R0.60 Temperature of medium-power motor (1)                                | RO     | N        |
| 0x3063 | int16     | R0.99 Fault code (1)                                                       | RO     | N        |
| 0x3100 | uint16    | R1.00 Current state of digital input (1)                                   | RO     | N        |
| 0x3101 | uint16    | R1.01 Current state of digital output (1)                                  | RO     | N        |
| 0x3102 | int32     | R1.02 Original voltage of analog input 1 (0.001)                           | RO     | N        |
| 0x3103 | int32     | R1.03 Original voltage of analog input 2 (0.001)                           | RO     | N        |
| 0x3104 | int32     | R1.04 Original voltage of analog input 3 (0.001)                           | RO     | N        |
| 0x3105 | int32     | R1.05 Voltage of analog input 1 (0.001)                                    | RO     | N        |
| 0x3106 | int32     | R1.06 Voltage of analog input 2 (0.001)                                    | RO     | N        |
| 0x3107 | int32     | R1.07 Voltage of analog input 3 (0.001)                                    | RO     | N        |
| 0x3108 | int32     | R1.08 Voltage of analog output 1 (0.001)                                   | RO     | N        |
| 0x3109 | int32     | R1.09 Voltage of analog output 2 (0.001)                                   | RO     | N        |
| 0x310A | int32     | R1.10 Voltage of analog output 3 (0.001)                                   | RO     | N        |
| 0x310B | int32     | R1.11 Cumulative value of pulse input (1)                                  | RO     | N        |
| 0x310C | int32     | R1.12 Pulse position command (1)                                           | RO     | N        |
| 0x310D | int32     | R1.13 Pulse speed command (0.1)                                            |        | N        |
| 0x310E | int32     | R1.14 Analog compensation speed (0.1)                                      | RO     | N        |
| 0x310F | int32     | R1.15 Analog compensation torque (0.1)                                     | RO     | N        |
| 0x3110 | int32     | R1.16 One-loop value of DI capture encoder                                 | RO     | N        |
| 0x3111 | int32     | R1.17 Cumulative value of DI capture encoder                               | RO     | N        |

| Index  | Data type | Name                                                                    | Access | Mappable |
|--------|-----------|-------------------------------------------------------------------------|--------|----------|
| 0x3112 | int32     | R1.18 One-loop value of DI capture encoder of $2^{nd}$ encoder          | RO     | N        |
| 0x3113 |           | R1.19 Cumulative value of DI capture encoder of 2 <sup>nd</sup> encoder | RO     | N        |
| 0x3114 | uint32    | R1.20 Display of drive state bit                                        | RO     | N        |

#### 0x4000 manufacture parameter list:

| Index             | Object<br>Type | Name                        | Data Type  | Access | Mappable |
|-------------------|----------------|-----------------------------|------------|--------|----------|
| SV-DA20           | 0 manufactur   | e parameters                |            |        |          |
| 4000 <sub>h</sub> | VAR            | Error code                  | UNSIGNED16 | RO     | Y        |
| 4001 <sub>h</sub> | VAR            | Driver temperature          | INTEGER16  | RO     | N        |
| 4002 <sub>h</sub> | VAR            | Parameter save              | INTEGER16  | RW     | N        |
| 4003 <sub>h</sub> | VAR            | Parameter restore           | INTEGER16  | RW     | N        |
| 4020 <sub>h</sub> | VAR            | Encoder Feedback Cap 1      | INTEGER32  | RW     | N        |
| 4021 <sub>h</sub> | VAR            | multi number of turns Cap 1 | INTEGER16  | RW     | N        |
| 4022 <sub>h</sub> | VAR            | multi number of turns Cap 2 | INTEGER16  | RW     | N        |
| 4100 <sub>h</sub> | VAR            | Analog outoput 1 value      | INTEGER32  | RW     | Υ        |
| 4101 <sub>h</sub> | VAR            | Analog outoput 2 value      | INTEGER32  | RW     | Υ        |
| 4300h             | ARRAY          | driver paramets             | UNSIGNED32 | RW     | N        |

#### 4.5 Encoder feedback

300D h Encoder feedback, corresponding to R0.31.

3019 h Number of turns of multi-turn encoder, corresponding to R0.25.

The preceding two parameters can be read from both SDO and PDO (applicable only to SV-DA200 V2.60/XML V1.70 and later).

The following three parameters store capture values only when touch probe1/2 is configured for capture:

 $4020_h$  Encoder Feedback Cap, used to store encoder positions during touch probe1 for touch probe1 capturing.

4021 <sub>h</sub> multi number of turns Cap1: used to store the multi-turn value of encoder during touch probe1 capturing.

4022 h multi number of turns Cap2: used to store the multi-turn value of encoder during touch probe2 capturing.

### 4.6 Digital input

The EtherCAT servo has only seven digital inputs. For details, see the CN1 terminal definition table.

In the default xml file, the digital input parameter 0x60FD is stored in the PDO reading parameter list.

The bit12 of P4.43 is 0 (Standard CiA402 protocol) by default. Each bit is described in the following table.

| Bit   | P4.25=2 (CIA402 OMRON)              | Bit   | P4.25≠2                             |
|-------|-------------------------------------|-------|-------------------------------------|
| 0     | Disabling reverse driving is valid. | 0     | Disabling reverse driving is valid. |
| 1     | Disabling forward driving is valid. | 1     | Disabling forward driving is valid. |
| 2     | The home switch is valid.           | 2     | The home switch is valid.           |
| 3–15  | Reserved                            | 3–15  | Reserved                            |
| 16    | Z signal                            | 16–22 | DI1-DI7                             |
| 17–23 | DI1-DI7                             | 23–31 | Reserved                            |
| 24    | Reserved                            |       |                                     |
| 25    | Stop in emergency manner.           |       |                                     |
| 26–31 | Reserved                            |       |                                     |

#### Note:

The low-order 16 bits are the function bits, without fixed digital inputs. If you want to make "Disabling forward/reverse driving" valid, set **P3.40 to 0.** 

Set the Bit12 of P4.43 to 1. Each bit is described in the following table:

| Bit  | Mapping  |
|------|----------|
| 0–6  | DI1-DI7  |
| 7–31 | Reserved |

To ensure quick response to data transfer, the PDO read/write list can contain a maximum of 10 parameters; otherwise, communication exceptions may occur. This function is applicable only to SV-DA200 V2.60/XML V1.70 and later.

### 4.7 Digital output control

The EtherCAT servo has only four differential outputs. For details, see the CN1 terminal definition table.

The digital output is servo controlled by default. If you want to enable the master to control the digital output through EtherCAT communication, set P4.28 [Enabling EtherCAT based control on digital output] to 1 (Enable); the digital output is controlled by writing 0x60FE through SDO or PDO.

The default xml digital output control parameters are stored in the PDO writing parameter list. The parameters have been deleted from XML V2.62 and later. If you need to use PDO control, configure 0x60FE in the PDO writing list on the master.

Each bit is described in the following table.

|       | Sub-index 1 (Output)                                                                                            | Sub-index 2 (Bit mask) |                                            |  |
|-------|-----------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------|--|
| Bit   | Description                                                                                                     | Bit                    | Description                                |  |
| 0     | Brake status. 0: Closed. 1: Opened. It can be read only through the SDO. It is controlled by bit 0 of bit mask. | 0                      | Brake status switch. 0: Closed. 1: Opened. |  |
| 1–15  | Reserved                                                                                                        | 1–31                   | Reserved                                   |  |
| 16–19 | DO1-DO4                                                                                                         |                        |                                            |  |
| 20–31 | Reserved                                                                                                        |                        |                                            |  |

To ensure quick response to data transfer, the PDO read/write list can contain a maximum of 10 parameters; otherwise, communication exceptions may occur. This function is applicable only to SV-DA200 V2.60/XML V1.70 and later.

#### 4.8 Analog output control

EtherCAT servo is configured with two analog outputs, corresponding to EtherCAT parameters 0x4100 and 0x4101.

The analog output is servo controlled by default. If it is controlled by the master through EtherCAT communication, set P3.30 [Analog output 1 selection] to 0 (disabled), P3.32 [Analog output 2 selection] to 0 (enabled), or write 0x4100 and 0x4101 through SDO or PDO.

The xml analog output control parameters (factory default) are not put in the PDO parameter list. If you need to use the PDO control, 0x4100 and 0x4101 need to be configured to the PDO writting list in the master.



The units of 0x4100 and 0x4101 are related to P3.31 and P3.33.

The EtherCAT reference value divided by the corresponding voltage gain is going to be the actual output voltage.

For example, 0x4100 is set to 1, voltage gain is set to 10, and the output analog voltage is 0.1V.

To ensure quick response to data transfer, the PDO read/write list can contain a maximum of 10 parameters; otherwise, communication exceptions may occur. This function is applicable only to SV-DA200 V2.60/XML V1.70 and later.

### 4.9 Drive parameters

Drive parameter 0x4300 carries three indices. This object can be used to set and read factory parameters.

Subindex 1 is the parameter address, 32-bit unsigned data.

Subindex 2 is the parameter value, 32-bit unsigned data.

Subindex 3 is the operation result, 32-bit unsigned data.

#### Reading:

- a. Write subindex 1 to the data address to be read.
- b. Read subindex 2 to obtain the parameter value.
- c. Read subindex3 to obtain the reading result, which should be 0.

#### Setting:

- a. Write subindex 1 to the parameter address to be set.
- b. Write the value to subindex 2.
- c. Read subindex 3 to obtain the set result, which should be 4.

For the parameter address, see SV-DA200 CANOpen address. Taking P0.05 (Jog speed) as example, the index of CANOpen is 0x2005, the subindex is 0, and therefore the address parameter is 0x200500.

The result of TwinCAT reading is shown as follows:

| ⊟ 4300∶0 | driver paramets | RO | > 3 <                |
|----------|-----------------|----|----------------------|
| 4300:01  | index           | RW | 0x00200500 (2098432) |
| 4300:02  | value           | RW | 0x000000C8 (200)     |
| 4300:03  | status          | RO | 0x00000000 (0)       |

### 4.10 Torque compensation

Torque compensation parameter 0x60B2, corresponding to P2.44 torque offset, can be set through PDO and SDO.

It is used to set the compensation value that is added to the variable load of the torque command. It is applicable to the vertical axis scenarios, and it is valid in all control modes except torque control mode.

The default xml analog output control parameters are not included in the PDO parameter list. If PDO based control is requried, add the 0x60B2 torque compensation parameter to the PDO writing list. This function is applicable only to SV-DA200 V2.60/XML V1.70 and later.

# 5 Troubleshooting

## 5.1 EtherCAT communication fault code obtaining interface

- 1. Obtain fault codes through Emergency of EtherCAT.
- 2. Access 0x4000 (16-bit) through SDO or PDO to read the current fault code informattion. The format of fault codes are as follows.

| Bits | Bits Definition   |  |  |
|------|-------------------|--|--|
| 15–8 | Main fault code * |  |  |
| 7–4  | Reserved          |  |  |
| 3–0  | Sub fault code    |  |  |

<sup>\*:</sup> For details about main and sub codes, refer to the following table.

3. Access 0x603F (402 standard protocol fault code, 16-bit) through SDO or PDO to read the present fault.

For details about the mapping between 0x603F and servo factory code, refer to the following fault code table.

#### 5.2 EtherCAT communication faults and solutions

| Fault code | 0x603F | Fault name                                      | Fault cause                                                                                               | Solution                                                                                                                                                               |
|------------|--------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Er24-8     | 0x8100 | EtherCAT<br>fault–Initialization<br>fault       | Poor contact of<br>EtherCAT chip                                                                          | Replace the servo.                                                                                                                                                     |
| Er24-9     | 0x8100 | EtherCATfault–<br>EEPROM fault                  | EtherCAT EEPROM has no data or data reading failed                                                        | Download xml file to EtherCAT EEPROM with TwinCAT or other tools.                                                                                                      |
| Er24-a     | 0x8100 | EtherCATfault–DC<br>Sync0 signal is<br>abnormal | Set to DC sync operation mode, and DC Sync0 interruption signal is not detected during a period of time.  | Check whether data loss occurred due to interference. Check whether EtherCAT master works normally.                                                                    |
| Er24-b     | 0x8100 | EtherCAT<br>fault–Offline fault                 | Network cable is inserted improperly or EtherCAT master operation is abnormal after the drive is enabled. | Check whether network cable is connected properly which should be top-in and bottom-out. Check whether there is interference. Check EtherCAT master operates normally. |
| Er24-c     | 0x8100 | EtherCATfault-PD<br>O data loss fault           | No PDO data is received after the drive is enabled for a period of time.                                  | Check EtherCAT master operates normally; Check if data loss is caused by interference.                                                                                 |

# **5.3 SV-DA200 faults and solutions**

| Fault code | 0x603F | Fault name                                          | Fault cause                                                                                                                                                                                                                            | Solution                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------|--------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Er01-0     | 0x2320 | IGBT fault                                          | W are short connected, or motor cables are grounded or contacted improperly.  3. The motor breaks down.  4. The motor cables U, V, and W are connected in reverse phases.  5. Improper parameter settings cause systematic divergence. | 1. Remove the motor cables and then enable the drive. If the fault persists, replace the drive.  2. Check whether motor cables and wiring are in good condition.  3. Decrease P0.10 and P0.11 to lower the max. output torque.  4. Adjust the loop parameter to stabilize the system, and reduce the value of P0.12.  5. Prolong ACC/DEC time properly.  6. Replace with a drive with larger power.  7. Replace the motor. |
| Er01-1     | 0x7110 | Braking pipe fault (7.5kW and higher)               | Braking unit is faulty.                                                                                                                                                                                                                | Replace the drive.                                                                                                                                                                                                                                                                                                                                                                                                         |
| Er01-2     | 0x2331 | U-phase driving<br>pipe fault<br>(7.5kW and higher) | U-phase driving pipe is faulty.                                                                                                                                                                                                        | Replace the drive.                                                                                                                                                                                                                                                                                                                                                                                                         |
| Er01-3     | 0x2332 | V-phase driving<br>pipe fault<br>(7.5kW and higher) | V-phase driving pipe is faulty.                                                                                                                                                                                                        | Replace the drive.                                                                                                                                                                                                                                                                                                                                                                                                         |
| Er01-4     | 0x2333 | W-phase driving<br>pipe fault<br>(7.5kW and higher) | W-phase driving pipe is faulty.                                                                                                                                                                                                        | Replace the drive.                                                                                                                                                                                                                                                                                                                                                                                                         |
| Er01-5     | 0xFF00 | IPM fault                                           | IPM module is faulty.                                                                                                                                                                                                                  | Replace the drive.                                                                                                                                                                                                                                                                                                                                                                                                         |
| Er02-0     | 0x7301 | Encoder<br>fault–Encoder<br>disconnection           | The encoder is not connected.     The encoder plug                                                                                                                                                                                     | Connect the encoder according to the correct wiring method. Ensure the                                                                                                                                                                                                                                                                                                                                                     |
| Er02-1     | 0x7300 | Encoder fault-Encoder                               | contact is loose.  3. One of encoder signal                                                                                                                                                                                            | encoder plug contact is<br>proper. Replace the encoder                                                                                                                                                                                                                                                                                                                                                                     |

| Fault code | 0x603F | Fault name                                                | Fault cause                                                                                                   | Solution                                                                                                                                                                                                                                                                                                       |
|------------|--------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |        | feedback deviation too large                              | cables U, V, W, A, B, and cable if the cable is broken. Z is disconnected. 2. Check whether the               |                                                                                                                                                                                                                                                                                                                |
| Er02-2     | 0x7300 | Encoder fault–<br>Parity error                            | 4. Encoder phases A and B are reverse.                                                                        | encoder power voltage is normal.                                                                                                                                                                                                                                                                               |
| Er02-3     | 0x7300 | Encoder fault–CRC<br>error                                | 5. Noise causes communication interruption or data                                                            | 3. Reduce the interference source of encoder cable to the minimum extent. Route                                                                                                                                                                                                                                |
| Er02-4     | 0x7300 | Encoder fault-Frame error                                 | exceptions.  6. The encoder                                                                                   | the encoder cables and motor cables separately,                                                                                                                                                                                                                                                                |
| Er02-5     | 0x7300 | Encoder<br>fault–Short frame<br>error                     | communicates properly but with data exceptions. 7. The FPGA that                                              | and connect the shielded wire of encoder cable to FG. 4. Check whether the                                                                                                                                                                                                                                     |
| Er02-6     | 0x7305 | Encoder<br>fault-Encoder<br>timeout                       | 8. The drive does not                                                                                         | encoder type supported by<br>the drive is consistent with<br>the motor encoder type<br>according to P0.01 if an                                                                                                                                                                                                |
| Er02-7     | 0x7306 | Encoder<br>fault-Multi-turn<br>absolute value loss        | type.                                                                                                         | encoder disconnection fault is reported upon power-on.                                                                                                                                                                                                                                                         |
| Er02-8     | 0x5114 | Encoder<br>fault-Encoder<br>battery low-voltage<br>alarm  | When a multi-turn absolute encoder is used, the external battery voltage of the encoder is between 3.0V–3.2V. | <ol> <li>Ensure the encoder battery cable is connected properly.</li> <li>Use the multimeter to check whether the external battery voltage is lower than 3.2V. If yes, replace the battery.</li> <li>Replace the battery when the drive power is on.</li> <li>Otherwise, encoder data will be lost.</li> </ol> |
| Er02-9     | 0x5115 | Encoder<br>fault–Encoder<br>battery<br>undervoltage fault | When a multi-turn absolute encoder is used, the external battery voltage of the encoder is between 2.5V–3.2V. | <ol> <li>Ensure the encoder battery cable is connected properly.</li> <li>Use the multimeter to check whether the external battery voltage is lower than 3.0V. If yes, replace the battery.</li> <li>Replace the battery when the drive power is on.</li> <li>Otherwise, encoder data will be lost.</li> </ol> |

| Fault code | 0x603F | Fault name                                             | Fault cause                                                                                                                                                   | Solution                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------|--------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Er02-a     | 0x7300 | Encoder<br>fault-Encoder<br>overheating                | The encoder feedback temperature is higher than the temperature threshold for protection against overheating.                                                 | 1. Ensure the temperature threshold for protection against overheating is correct.  2. Stop the motor to lower the encoder temperature.                                                                                                                                                                                                                                                                            |
| Er02-b     | 0x7300 | Encoder<br>fault–Encoder<br>EEPROM writing<br>error    | If the motor is used with a communication encoder, a communication transmission or data check error occurs when the drive updates data to the encoder EEPROM. | <ol> <li>Ensure encoder cables are connected properly and eliminate the conditions that disturb encoder communication.</li> <li>Make multiple writing attempts. If the fault is reported repeatedly, replace the motor.</li> </ol>                                                                                                                                                                                 |
| Er02-c     | 0x7300 | Encoder fault–No<br>data in encoder<br>EEPROM          | If the motor is used with a communication encoder, no data is found in the encoder EEPROM when the motor attempts to read data from it during power-on.       | 1. Select the present motor model through P0.00, and execute the write operation on the encoder EEPROM parameter through P4.97.  2. Mask this fault by setting P4.98. The motor parameters in the drive EEPROM are used for initialization.                                                                                                                                                                        |
| Er02-d     | 0x7300 | Encoder<br>fault–Encoder<br>EEPROM data<br>check error | If the motor is used with a communication encoder, a data check error occurs when the motor attempts to read data from the encoder EEPROM during power-on.    | 1. Ensure encoder cables are connected properly and eliminate the conditions that disturb encoder communication.  2. Select the motor model based on the setting of P0.00 and execute the operation of writing data to the encoder EEPROM through P4.97 so that data in the encoder EEPROM is updated.  3. Mask this fault by setting P4.98. The motor parameters in the drive EEPROM are used for initialization. |

| Fault code | 0x603F | Fault name                                              | Fault cause                                                                                                                                                                                                                                                                                                   | Solution                                                                                                                                                                                                                                                                     |
|------------|--------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Er03-0     | 0x7200 | Current sensor<br>fault–Phase-U<br>current sensor fault |                                                                                                                                                                                                                                                                                                               | Re-power on when the                                                                                                                                                                                                                                                         |
| Er03-1     | 0x7200 | Current sensor<br>fault–Phase-V<br>current sensor fault | detection circuit is abnormal.  2. Power-on is made when the motor shaft is                                                                                                                                                                                                                                   | motor shaft in static state. If<br>the fault is reported<br>repeatedly, replace the                                                                                                                                                                                          |
| Er03-2     | 0x7200 | Current sensor<br>fault-Phase-W<br>current sensor fault | in non-static state.                                                                                                                                                                                                                                                                                          | drive.                                                                                                                                                                                                                                                                       |
| Er04-0     | 0x6100 | System initialization fault                             | There are failed self-check items after power-on initialization is complete.                                                                                                                                                                                                                                  | Repower on.     If the fault occurs repeatedly, replace the drive.                                                                                                                                                                                                           |
| Er05-1     | 0x6320 | Setting fault–Motor model not exist                     |                                                                                                                                                                                                                                                                                                               | Ensure the motor model is correct.                                                                                                                                                                                                                                           |
| Er05-2     | 0x6320 | Setting fault–Motor and drive model not match           | ·                                                                                                                                                                                                                                                                                                             | 2. Ensure the motor parameter model matches the drive power class.                                                                                                                                                                                                           |
| Er05-3     | 0x6320 | Setting<br>fault–Incorrect<br>software limits           | Software limits are set incorrectly. The setting of P0.35 is equal to or less than that of P0.36.                                                                                                                                                                                                             | Set P0.35 and P0.36 correctly.                                                                                                                                                                                                                                               |
| Er05-4     | 0x6320 | Setting<br>fault-Incorrect<br>homing mode               | P5.10 is set incorrectly.                                                                                                                                                                                                                                                                                     | Set P5.10 correctly based on the descrption.                                                                                                                                                                                                                                 |
| Er05-5     | 0x6320 | Setting<br>fault–PTP-control<br>travel overflow         | The single increment of a PTP idle travel exceeds (2 <sup>31</sup> - 1).                                                                                                                                                                                                                                      | Single travel cannot exceed (2 <sup>31</sup> -1) in the absolute position mode.                                                                                                                                                                                              |
| Er07-0     | 0x7112 | Regenerative<br>discharge overload<br>fault             | <ol> <li>The braking resistor power is low.</li> <li>The motor speed is too high or the deceleration is too quick, which causes the failure to absorb the regenerate energy within specified time.</li> <li>The action limit of the external braking resistor is restricted to the duty ratio 10%.</li> </ol> | <ol> <li>Change the internal brake resistor to the external brake resistor, and enlarge the power.</li> <li>Modify DEC time, and lower the regenerative discharge action rate.</li> <li>Reduce motor speed.</li> <li>Improve the capacity of the motor and drive.</li> </ol> |

| Fault code | 0x603F | Fault name                                         | Fault cause                                                                                                                                                               | Solution                                                                                                   |
|------------|--------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Er08-0     | 0x7200 | Al overvoltage<br>fault-Al 1                       | The voltage inputted to the analog input 1 port exceeds the value defined with P3.22.                                                                                     | 1. Set P3.22, P3.25, and P3.75 properly.                                                                   |
| Er08-1     | 0x7200 | Al overvoltage<br>fault-Al 2                       | The voltage inputted to the analog input 2 port exceeds the value defined with P3.25.                                                                                     | <ol> <li>Check whether the terminal wiring is in good condition.</li> <li>Set P3.22, P3.25, and</li> </ol> |
| Er08-2     | 0x7200 | Al overvoltage<br>fault-Al 3                       | The voltage inputted to the analog input 3 port exceeds the value defined with P3.75.                                                                                     | P3.75 to 0 to disable protection.                                                                          |
| Er09-0     | 0x5520 | EEPROM<br>fault–Read/write<br>error                | <ol> <li>Data is damaged in<br/>the data storage area<br/>when the drive reads<br/>data from the EEPROM.</li> <li>Writing data to the<br/>EEPROM is disturbed.</li> </ol> | Re-try after re-power on.     If the fault occurs repeatedly, replace the drive.                           |
| Er09-1     | 0x5530 | EEPROM<br>fault-Data check<br>error                | <ol> <li>The data read from<br/>EEPROM differs from<br/>data being written.</li> <li>The drive DSP<br/>software version is<br/>updated.</li> </ol>                        | Reset all the parameters.     If the fault occurs repeatedly, replace the drive.                           |
| Er10-0     | 0x7400 | Hardware<br>fault–FPGA fault                       | The FPGA on the control board reports a fault.                                                                                                                            | Re-power on.     If the fault occurs repeatedly, replace the drive.                                        |
| Er10-1     | 0x7500 | Hardware<br>fault–Communicati<br>on card fault     | The external communication card is faulty.                                                                                                                                | Re-power on.     If the fault occurs repeatedly, replace the communication card.                           |
| Er10-2     | 0x2300 | Hardware<br>fault–To-ground<br>short circuit fault | One of the motor cables V and W is short connected to the ground, which is found in to-ground short circuit detection during drive power-on.                              | 1. Ensure motor cables are connected properly. 2. Replace motor cables or check for ageing of insulation.  |
| Er10-3     | 0x5430 | Hardware<br>fault–External input<br>fault          | This fault occurs when the digital terminal configured with the external fault input function acts.                                                                       | Remove the external fault input to clear the enabling fault.     Re-power on the drive.                    |

| Fault code | 0x603F | Fault name                                        | Fault cause                                                                                                                                                                                                                | Solution                                                                                                                                     |
|------------|--------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Er10-4     | 0x5430 | Hardware<br>fault–Emergency<br>stop fault         | This fault occurs when the digital terminal configured with the emergency stop function acts.                                                                                                                              | Remove the emergency stop input to clear the enabling fault.     Re-power on the drive.                                                      |
| Er10-5     | 0x7500 | Hardware<br>fault–RS485<br>communication<br>fault | Strong EMI of RS485 communication circuit causes the serial communication alarm of the drive.                                                                                                                              | Use twisted shielded pairs for RS485 communication.     Route communication cables and motor power cables separately.                        |
| Er11-0     | 0x6100 | Software<br>fault–Motor control<br>task re-entry  |                                                                                                                                                                                                                            | Remove unnecessary                                                                                                                           |
| Er11-1     | 0x6100 | Software<br>fault–Periodic task<br>re-entry       | 1. The DSP CPU utilization is too high. 2. The DSP has bugs.                                                                                                                                                               | software functions.  2. Contact the customer service personnel to update                                                                     |
| Er11-2     | 0x6100 | Software<br>fault–Illegal<br>operation            |                                                                                                                                                                                                                            | the DSP.                                                                                                                                     |
| Er12-0     | 0x6320 | I/O fault–Duplicate<br>DI assignment              | Two or more digital inputs are configured with the same function.                                                                                                                                                          | Set P3.00–P3.09 and ensure each setting is unique.                                                                                           |
| Er12-1     | 0x6320 | I/O fault–Duplicate<br>Al assignment              | When the drive is a standard model, the function of Al3 is set to speed command.                                                                                                                                           | Set parameter P3.70 (AI3 function) to another value.                                                                                         |
| Er12-2     | 0x5430 | I/O fault–Pulse<br>input frequency too<br>high    | The pulse input frequency detected by the drive is higher than the specified frequency.  1. External input pulse signal frequency is too high.  2. The internal pulse frequency detection circuit of the drive is damaged. | 1. Reduce the external input pulse signal frequency. 2. If the fault persists though the external input signal is normal, replace the drive. |
| Er13-0     | 0x3110 | Main circuit<br>overvoltage fault                 |                                                                                                                                                                                                                            | 2. Check whether the                                                                                                                         |

| Fault code | 0x603F | Fault name                         | Fault cause                                                                                                                                                                                                                                                                | Solution                                                                                                                                                                                                                                                                             |
|------------|--------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |        |                                    | <ol> <li>Under the braking condition, no braking resistor or pipe is connected, or the braking resistor is damaged.</li> <li>The DEC time in the stop process is too short.</li> <li>The internal DC voltage detection circuit of the drive is damaged.</li> </ol>         | damaged. 3. Prolong the DEC time. 4. Check R0.07 when the drive is disabled. If it is abnormal and does not match the grid input voltage, replace the drive.                                                                                                                         |
| Er13-1     | 0x3120 | Main circuit<br>undervoltage fault | The detected DC voltage of the drive main circuit is lower than the specified voltage.  1. The grid voltage is too low.  2. The buffer relay is not closed.  3. The drive output power is too high.  4. The internal DC voltage detection circuit of the drive is damaged. | 1. Check whether the grid input voltage exceeds the allowed value. 2. Re-power on, and check whether there is pull-in noise of the power-on buffer relay. 3. Check R0.07 when the drive is disabled. If it is abnormal and does not match the grid input voltage, replace the drive. |
| Er14-0     | 0x5115 | Control power undervoltage fault   |                                                                                                                                                                                                                                                                            | 1. Check whether the grid input voltage is lower than the allowed value.  2. Check R0.08 when the drive is disabled. If it is abnormal and does not match the grid input voltage, replace the drive.                                                                                 |
| Er17-0     | 0x3230 | Drive overload fault               | Short-time load of the drive is too heavy.                                                                                                                                                                                                                                 | <ol> <li>The load is too heavy which causes the drive overload.</li> <li>Check whether phase dislocation or phase loss occurred to UVW wiring of the motor, and check whether the encoder is correct.</li> <li>Check whether the motor is compatible with the drive.</li> </ol>      |

| Fault code | 0x603F  | Fault name                        | Fault cause                                                                                                                                                                                                                                                                                                                                              | Solution                                                                                                                                                                                                         |
|------------|---------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Er17-1     | 0xFF00  | Drive overload fault              | The drive load is too heavy (during low speed running).                                                                                                                                                                                                                                                                                                  | <ol> <li>The load is too heavy which causes the drive overload.</li> <li>Check whether phase dislocation or phase loss occurred to UVW wiring of the motor, and check whether the encoder is correct.</li> </ol> |
| Er18-0     | 0x3230  | Motor overload<br>fault           | <ol> <li>Long-term overload<br/>running.</li> <li>The load is too heavy<br/>during the short time.</li> </ol>                                                                                                                                                                                                                                            | Replace with the drive and motor of larger power.                                                                                                                                                                |
| Er18-1     | 0x FF00 | Motor<br>overtemperature<br>fault | Motor temperature exceeds the protection value                                                                                                                                                                                                                                                                                                           | <ol> <li>Replace with the motor of<br/>larger power.</li> <li>Check whether UVW<br/>phase sequence is correct.</li> </ol>                                                                                        |
| Er18-2     | 0xFF00  | Motor power cable fault           | Motor power cable is not connected or loose.                                                                                                                                                                                                                                                                                                             | Check the UVW wiring of the motor.                                                                                                                                                                               |
| Er18-3     | 0xFF00  | Motor phase loss fault            | Phase loss occurred to the motor.                                                                                                                                                                                                                                                                                                                        | Check the UVW wiring of the motor for phase loss.                                                                                                                                                                |
| Er19-0     | 0x8400  | Speed<br>fault-Overspeed<br>fault | The motor speed absolute value exceeds the setting of P4.32.  1. The motor stalls or motor phases U, V, and W are in reverse sequence.  2. The electronic gear ratio or motor speed loop control parameters are not set properly.  3. The setting of P4.32 is less than that of P4.31 [Max. speed limit].  4. The encoder feedback signal is interfered. | correct. 4. Check whether the motor encoder is wired properly. 5. Replace the motor with a new one with a higher                                                                                                 |
| Er19-1     | 0x8400  | Speed fault–FWD overspeed fault   | The speed feedback exceeds the setting of P4.40 by more than 20ms.                                                                                                                                                                                                                                                                                       | 1. Ensure the encoder is normal. 2. Set P4.40 properly.                                                                                                                                                          |
| Er19-2     | 0x8400  | Speed fault–REV overspeed fault   | The speed feedback exceeds the setting of P4.41 by more than 20ms.                                                                                                                                                                                                                                                                                       | Ensure the encoder is normal.     Set P4.41 properly.                                                                                                                                                            |

| Fault code | 0x603F | Fault name                                                 | Fault cause                                                                                                                                                                                                                                                                                                                                                                                                                            | Solution                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------|--------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Er19-3     | 0x6320 | Speed<br>fault–Incorrect<br>overspeed<br>parameter setting | The setting of P4.40 is less than 0 or that of P4.41 is greater than 0.                                                                                                                                                                                                                                                                                                                                                                | 1. Ensure the encoder is connected properly. 2. Set P4.40 or P4.41 properly.                                                                                                                                                                                                                                                                                                                                                 |
| Er19-4     | 0xFF00 | Runaway fault                                              | The motor phase sequence is incorrect or the initial angle is incorrect.                                                                                                                                                                                                                                                                                                                                                               | <ol> <li>Ensure the motor phases are in correct sequence.</li> <li>Set P4.96.</li> <li>Check whether P4.44 is set correctly.</li> </ol>                                                                                                                                                                                                                                                                                      |
| Er20-0     | 0x8400 | nge fault                                                  | In non-torque mode, the deviation between the motor speed and speed command exceeds the setting of P4.39.  1. The motor phases U, V, and W are in reverse sequence or motor cables are not connected.  2. The motor load is too heavy, which causes motor stalling.  3. The drive force is insufficient, which causes motor stalling.  4. The speed loop control parameters are not set properly.  5. The setting of P4.39 is too low. | 1. Check motor cable phase sequence and ensure the wiring is correct. 2. Check whether the transmission belt or chain is too tight, or the workbench reaches edges or encounters obstacles. 3. Check whether the loop control parameters are set properly or the drive has been damaged, or the servo system model is appropriate. 4. Increase the value of P4.39. 5. Set P4.39 to 0 to disable speed out-of-tolerance fault |
| Er21-0     | 0x8500 | Position<br>overtravel–Forward                             | In position mode or fully-closed loop mode, the FWD limit switch is touched or the accumulated feedback pulse exceeds P0.35.                                                                                                                                                                                                                                                                                                           | 1.Check whether FWD limit switch signal is correct. 2. Check whether P0.35 is set properly.                                                                                                                                                                                                                                                                                                                                  |
| Er21-1     | 0x8500 | Position<br>overtravel–Revers                              | In position mode or fully-closed loop mode, the FWD limit switch is touched or the accumulated feedback pulse exceeds P0.36.                                                                                                                                                                                                                                                                                                           | 1.Check whether REV limit switch signal is correct. 2.Check whether P0.36 is set properly.                                                                                                                                                                                                                                                                                                                                   |

| Fault code | 0x603F | Fault name                                                      | Fault cause                                                                                                                                                                                                                                               | Solution                                                                                                                                                                                                                                   |
|------------|--------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Er22-0     | 0x8611 | Out-of-tolerance<br>fault–Position out<br>of tolerance          | residual pulses exceed the setting of P4.33.  2. The motor load is too heavy, which causes motor stalling.  3. Pulse input frequency is too high, exceeding the max. motor speed.  4. The step variable in the position command input exceeds the setting | •                                                                                                                                                                                                                                          |
| Er22-1     | 0x8611 | Out-of-tolerance<br>fault–Hybrid control<br>deviation too large | of P4.33.  In fully-closed loop control, the feedback position deviation between the grating ruler and encoder exceeds the setting of P4.64.                                                                                                              | input.  1. Check the connection between the motor and load.  2. Check the connection between the grating ruler and drive.  3. Ensure P4.60, P4.61, and P4.62 are set properly.                                                             |
| Er22-2     | 0x8611 | Position increment overflow fault                               | Position command's single variation after being converted by the electric gear ratio exceeds 2 <sup>31</sup> -1.                                                                                                                                          | <ol> <li>Reduce the single variable in the position command.</li> <li>Modify the electric gear ratio to appropriate range.</li> </ol>                                                                                                      |
| Er23-0     | 0x4210 | Drive<br>overtemperature<br>fault                               | 1. The ambient temperature of the drive exceeds the specified temperature.  2. The drive is overloaded.                                                                                                                                                   | <ol> <li>Reduce the ambient<br/>temperature and improve<br/>the ventilation condition.</li> <li>Replace the servo system<br/>with a new one with greater<br/>power.</li> <li>Increase the ACC/DEC<br/>time and reduce the load.</li> </ol> |
| Er24-0     | 0x6320 | PROFIBUS-DP communication fault–PWK ID error                    | The PWK parameter ID is incorrect.                                                                                                                                                                                                                        | View the manual and ensure that the PWK parameter ID is the same as the corresponding parameter ID.                                                                                                                                        |
| Er24-1     | 0x6320 | PROFIBUS-DP<br>communication<br>fault–PWK out of<br>range       | The PWK parameter value is out of the allowed range.                                                                                                                                                                                                      | View the manual and ensure that the PWK parameter value is within the allowed range.                                                                                                                                                       |

| Fault code | 0x603F | Fault name                                                               | Fault cause                                                                                                                                                                                                                                    | Solution                                                                                                                                      |
|------------|--------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Er24-2     | 0x6320 | PROFIBUS-DP communication fault–PWK parameter read-only                  | The PWK parameter is read only                                                                                                                                                                                                                 | View the manual and ensure that the PWK parameter can be read and written.                                                                    |
| Er24-3     | 0x6320 | PROFIBUS-DP<br>communication<br>fault–PZD<br>parameter does not<br>exist | The PZD setting parameter ID is incorrect.                                                                                                                                                                                                     | View the manual and ensure that the PZD setting parameter ID is the same as the corresponding parameter ID.                                   |
| Er24-4     | 0x6320 | PROFIBUS- DP communication fault–PZD parameter attribute does not match  | The PZD setting parameter property is not instant effective.                                                                                                                                                                                   | View the manual and ensure that the PZD setting parameter property is instant effective.                                                      |
| Er25-4     | 0xFF00 | Application fault–encoder offset angle test timeout                      | Abnormity occurs during the encoder offset angle test.                                                                                                                                                                                         | Check whether the motor shaft can rotate freely, and execute again after re-power on.                                                         |
| Er25-5     | 0xFF00 | Application<br>fault–encoder<br>offset angle test<br>failed              | The current feedback wave fluctuates violently during the encoder offset angle test.                                                                                                                                                           | Reduce P4.53 parameter setting, and execute again after repower-on.                                                                           |
| Er25-6     | 0xFF00 | Application<br>fault–Homing<br>offside                                   | The limit switch or software limit is enabled during homing.                                                                                                                                                                                   | Modify the setting of P5.10 and then execute homing after re-power on.                                                                        |
| Er25-7     | 0xFF00 | Application<br>fault–Inertia<br>identifying failed                       | <ol> <li>During inertia identifying, the motor stops rotating with vibration of longer than 3.5s.</li> <li>The actual ACC time for inertia identifying is too short.</li> <li>The inertia identifying speed is lower than 150r/min.</li> </ol> | <ol> <li>Improve the mechanical rigidity properly.</li> <li>Increase the setting of P1.07.</li> <li>Increase the setting of P1.06.</li> </ol> |

# **6 References**

- Hardware Data Sheet ET1100 EtherCAT Slave Controller V1.8 (May 3, 2010)
- Design and Application of Industrial Ethernet Fieldbus EtherCAT Drive Program First edition (Xunji and Liu yanqiang, Beihang University Press, March 2010)
- CANopen Application Layer and Communication Profile, CiA Draft Standard 301 Version 4.02 (February 13, 2002)
- CANopen Device Profile Drives and Motion Control, CiA Draft Standard Proposal 402 Version 2.0 (July 26, 2002)



Service line: 400-700-9997; 86-21-34637660 Website: www.invt-tech.com

Motor & Electric Spindle

INVT INDUSTRIAL TECHNOLOGY (SHANGHAI) CO.,LTD.

Building 1, 188 Xinjunhuan Road, Pujiang Town, Minhang District, Shanghai

Industrial Automation: ■ VFD ■ Servo & Motion Control

HMI Elevator Intelligent Control System Rail Transit Traction System

\_ \_ \_

Energy & Power: SVG Solar Inverter Online Energy Management System



Copyright© INVT.

Manual information may be subject to change without prior notice.

PLC