Question 1-1.4-9p

EE24BTECH11041 - Mohit

1) Let $\mathbf{A} \begin{pmatrix} 4 \\ 2 \end{pmatrix}$, $\mathbf{B} \begin{pmatrix} 6 \\ 5 \end{pmatrix}$ and $\mathbf{C} \begin{pmatrix} 1 \\ 4 \end{pmatrix}$ be the vertices of Δ *ABC*. Find the coordinates of points \mathbf{Q} and \mathbf{R} on medians *BE* and *CF* respectively such that *BQ*: QE = 2:1 and CR: RF = 2:1.

Variable	Description	Values
A	Points on triangle $\triangle ABC$	$\binom{4}{2}$
В	Points on triangle $\triangle ABC$	$\binom{6}{5}$
С	Points on triangle $\triangle ABC$	$\begin{pmatrix} 1 \\ 4 \end{pmatrix}$
F	Mid point of AC	
E	Mid point of AB	

TABLE 1: Variables Used

Solution:-

 \mathbf{F} is the mid point of AB

$$\mathbf{F} = \frac{\mathbf{A} + \mathbf{B}}{2} = \frac{\binom{4}{2} + \binom{6}{5}}{2} = \binom{5}{\frac{7}{2}}$$
 (1.1)

E is the mid point of AC

$$\mathbf{E} = \frac{\mathbf{A} + \mathbf{C}}{2} = \frac{\binom{4}{2} + \binom{1}{4}}{2} = \binom{\frac{5}{2}}{3}$$
 (1.2)

By section formula,

$$\mathbf{R} = \frac{\mathbf{B} + K\mathbf{A}}{1 + K} \tag{1.3}$$

It is given that $\frac{BQ}{QE} = \frac{2}{1}$ So,

$$\mathbf{Q} = \frac{\mathbf{B} + 2\mathbf{E}}{1+2} = \frac{\binom{6}{5} + 2\binom{\frac{5}{2}}{3}}{3} = \binom{\frac{11}{3}}{\frac{11}{3}}$$
 (1.4)

It is given that $\frac{CR}{RF} = \frac{2}{1}$ So.

$$\mathbf{R} = \frac{\mathbf{C} + 2\mathbf{F}}{1+2} = \frac{\begin{pmatrix} 1\\4 \end{pmatrix} + 2\begin{pmatrix} 5\\\frac{7}{2} \end{pmatrix}}{3} = \begin{pmatrix} \frac{11}{3}\\\frac{11}{3} \end{pmatrix}$$
(1.5)

Hence, Co-ordinates of Q and R are

$$\mathbf{Q}\left(\frac{11}{3}\atop \frac{11}{3}\right)$$
 and $\mathbf{R}\left(\frac{11}{3}\atop \frac{11}{3}\right)$ (1.6)

Fig. 1.1: Plot of Triangle ABC