Port Numbering Model

Graph problems

Matching

Vertex Cover

Coloring

Examples

Please do not confuse

Maximal

- not a subset of another solution
- very easy to find: add greedily

Maximum

- largest possible solution
- often hard to find

Please do not confuse

Minimal

- not a superset of another solution
- very easy to find: remove greedily

Minimum

- smallest possible solution
- often hard to find

Algorithms for computer networks

Algorithms for computer networks

Algorithms for computer networks

- Algorithms for computer networks
- Synchronous communication model

o Initially: each node only aware of itself

One communication round:

 each node sends messages to its own neighbors

One communication round:

 each node receives messages from its neighbors

One communication round:

each node does some (deterministic) local computation

 Finally: each node knows its own part of the solution

Examples

Port-numbered networks

Non-empty matching

Bipartite maximal matching

Input: proper 2-coloring

Output: maximal matching

Model of computing: PN model

Algorithm

- Orange nodes send proposals to their neighbors, one by one
 - order by port numbers
- Blue nodes accept the first proposal they get, reject everything else
 - break ties by port numbers

Examples

Minimum vertex cover approximation

α-approximation of a minimum vertex cover = vertex cover that is at most α times as large as the smallest vertex cover

Input: nothing

Output: 4-approximation of minimum vertex cover

Model of computing: PN model

Examples

Algorithm

- Construct bipartite double cover G'
 - one node in G: two virtual copies in G'
 - one edge in G: two virtual copies in G'
- Find a maximal matching M' in G'
- Take all original nodes of G whose virtual copies are matched in M'

Graph G

Graph G'

Graph G'

Orange nodes send proposals

Blue nodes accept/reject proposal

Maximal Matching

on G'

Virtual matching edges on *G*

Vertex cover on G

This algorithm

- terminates...
 - because the maximal matching algorithm terminates in 2∆ rounds.
- o computes a vertex cover.
 - Idea: endpoints of any maximal matching form a vertex cover
- returns at most a 4-approximation of the minimum vertex cover.
 - Idea: any maximal matching is a 2approximation of the minimum vertex cover

Learning goals

• Graph problems:

(bipartite) matching, vertex cover, coloring

Distributed models:

- Synchronous communication model
- Port numbering model

O Algorithms:

- Bipartite maximal matching
- 4-Approximation of the minimum vertex cover