Assignment:2 Due:15/08/18

Definitions

- **Resolution:** For a $Q_{n,m}$ format, $1/(2^m)$ is the resolution
- **Precision:** The length of the register/ size of the datatype is called pre-

cision

• Range: The range of a $Q_{n.m}$ for unsigned numbers is 0 to 2^n-2^{-m}

Learn Notation by an example

- **Example :** Denote Π in fixed point notation using 8 bit and 16 bit registers
- ullet Multiply the number by $2^{\scriptscriptstyle m}$, after deciding on the Q format that you want

to use.

• Quantize the number. Again to revert back, divide the rounded number

by 2^m

- Example: Denote $\pi/8$ in Fixed Point.
- $-\pi/8 = -0.392699081698724$

since the integer part is zero, and only one bit is required for signed rep-

resentation, choose $Q_{2.14}$ format , so fp=round($-\pi/8$ 2^{14}) =-**6434** Again to Floating Point domain, $-6434/2^{14}$ = -0.392700195312500 Error is 1.113613776027034 10^{-6}

Basic arithmetic operations: Addition/Subtraction

• To add two numbers in fixed point notation, both the numbers should be

in the same Q format.

• Exercise : Add $\pi/4$ and $\pi/8$ using 16 bit prec. Solution : $x=3\pi/8$ $X = \text{round}(x \quad 2^{14}) = 12868$ $y=\pi/8$

 $Y = round(y 2^{14}) = 6434$ Though we can proceed with $Q_{1.15}$ format, the addition introduces a carry/extra bit, because of which we choose $Q_{2.14}$

$$Z = X + Y = 19302$$

 $z = Z/2^{14} = 1.178100585937500$

• Adding $Q_{n,m}$ and $Q_{n,m}$ will result in a number that has $Q_{n+1,m}$

Assignment:

- Exercise: Repeat the above example with 8 bit prec
- Exercise: Add $\pi/6$ and $-\pi/8$ using 8 and 16 bit prec.
- Exercise: Write a fixed point c code for addition and subtraction