PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-184554

(43)Date of publication of application: 28.06.2002

(51)Int.CI.

G03G 15/20

G03G 21/14

G03G 21/00

(21)Application number: 2001-091553

(71)Applicant: RICOH CO LTD

(22)Date of filing:

28.03.2001

(72)Inventor: KISHI KAZUTO

CHIBA ERIKO

(30)Priority

Priority number : 2000304718

Priority date: 04.10.2000

Priority country: JP

(54) HEATING DEVICE AND FIXING DEVICE AS WELL AS IMAGE FORMING DEVICE USING IT

(57)Abstract:

PROBLEM TO BE SOLVED: To reduce noise due to surge current at the time of large power supply or an abrupt current change, shorten start-up time, and prevent excessive rise of temperature, as well as to heighten power-saving effect.

SOLUTION: A heating part 2 is provided with a main heating element 2a and a sub heating element 2b, to which former, power is supplied from a main power source device 3, and to the latter, from a sub power source device 4 having a capacitor. The heating part 2, when it starts to be heated, is supplied with high-capacity power from both the main power source device 3 and the sub power source device 4, to rise up to a given temperature in a short time, and at stand-by, is so arranged not get supplied with power.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-184554 (P2002-184554A)

(43)公開日 平成14年6月28日(2002.6.28)

			(,	4 1 Marri 0 /120 [2002: 0.20/
(51) Int.CL'		識別記号	FI	デーマコート*(参考)
H05B	3/00	310	H 0 5 B 3/00	310B 2H027
		3 3 5		335 2H033
G03G	15/20	102	G 0 3 G 15/20	102 3K058
	21/14		21/00	398
	21/00	398		3 7 2
			審査請求 未請求	諸求項の数13 OL (全 9 頁)
(21)出願番号		特顧2001-91553(P2001-91553)	(71)出顧人 000006 株式会	747 社リコー
(22)出顧日		平成13年3月28日(2001.3.28)		大田区中馬込1丁目3番6号
(31) 優先権主張番号 (32) 優先日		特願2000-304718(P2000-304718) 平成12年10月4日(2000,10,4)		大田区中馬込1丁目3番6号 株式
(33)優先権主張国		日本(JP)	(72)発明者 千葉 東京都 会社リ	大田区中馬込1丁目3番6号 株式
			(74)代理人 100093 弁理士	920 小島 俊郎
		·	,	最終頁に続く

(54) 【発明の名称】 加熱装置とそれを使用した定着装置及び画像形成装置

(57)【要約】

【課題】省電力効果を高めるとともに大電力を供給する際の突入電流や急激な電流変化によるノイズを低減し、かつ立上り時間を短縮し、温度が上がりすぎることを防止する。

【解決手段】加熱部2に主発熱体2aと補助発熱体2bを設け、主発熱体2aには主電源装置3から電力を供給し、補助発熱体2bにはコンデンサを有する補助電源装置4から電力を供給する。加熱部2の加熱を開始するときに、主電源装置3と補助電源装置4の両方から大容量の電力を供給して加熱部2を短時間で所定の温度に立ち上げ、待機時には加熱部2に電力を供給しないようにする。

【特許請求の範囲】

【請求項1】 加熱部と主電源装置と補助電源装置と充 電器と切替装置及び制御部を有し、

加熱部は主電源装置から供給される電力により発熱する 主発熱体と、補助電源装置から供給される電力により発 熱する補助発熱体を有し、

補助電源装置は充放電可能なコンデンサを有し、充電器 は主電源装置から供給される電力で補助電源装置のコン デンサを充電し、

切替装置は補助電源装置の充電と補助電源装置からの補 10 助発熱体に対する電力供給を切え替え、

制御部は補助電源装置から補助発熱体に供給する電力量 を調整することを特徴とする加熱装置。

【請求項2】 上記制御部は補助電源装置から補助発熱 体に電力の供給を開始した時からあらかじめ定めた一定 時間経過したときに補助電源装置から補助発熱体に供給 している電力を遮断する請求項 1 記載の加熱装置。

【請求項3】 上記切替装置は補助電源装置から補助発 熱体に供給している電力を遮断しているときに補助電源 装置を充電器に接続する請求項2記載の加熱装置。

【請求項4】 加熱部と主電源装置と補助電源装置と充 電器と切替装置と残電力検知装置及び制御部を有し、

加熱部は主電源装置から供給される電力により発熱する 主発熱体と、補助電源装置から供給される電力により発 熱する補助発熱体を有し、

補助電源装置は充放電可能なコンデンサを有し、充電器 は主電源装置から供給される電力で補助電源装置のコン デンサを充電し、

切替装置は補助電源装置の充電と補助電源装置からの補 助発熱体に対する電力供給を切え替え、

残電力検知装置は補助電源装置は保有する電力量を検出

制御部は残電力検知装置で検出している補助電源装置の 保有電力量に応じて補助電源装置から補助発熱体に供給 する電力量を調整することを特徴とする加熱装置。

【請求項5】 上記制御部は残電力検知装置で検出して いる補助電源装置の保有電力量があらかじめ定めた一定 値に低下したときに、補助電源装置から補助発熱体に供 給している電力を遮断する請求項4記載の加熱装置。

【請求項6】 加熱部と主電源装置と補助電源装置と充 40 関するものである。 電器と切替装置と温度検知装置及び制御部を有し、

加熱部は主電源装置から供給される電力により発熱する 主発熱体と、補助電源装置から供給される電力により発 熱する補助発熱体を有し、

補助電源装置は充放電可能なコンデンサを有し、充電器 は主電源装置から供給される電力で補助電源装置のコン デンサを充電し、

切替装置は補助電源装置の充電と補助電源装置からの補 助発熱体に対する電力供給を切え替え、

温度検知装置は加熱部の温度を検出し、

制御部は温度検知装置で検出している加熱部の温度に広 じて補助電源装置から補助発熱体に供給する電力量を調 整することを特徴とする加熱装置。

【請求項7】 加熱部と主電源装置と補助電源装置と充 電器と切替装置及び温度制御装置を有し

加熱部は主電源装置から供給される電力により発熱する 主発熱体と、補助電源装置から供給される電力により発 熱する補助発熱体を有し、

補助電源装置は充放電可能なコンデンサを有し、充電器 は主電源装置から供給される電力で補助電源装置のコン デンサを充電し、

切替装置は補助電源装置の充電と補助電源装置からの補 助発熱体に対する電力供給を切え替え、

温度制御装置は加熱部の温度変化により補助電源装置か ら補助発熱体に供給する電力量を調整することを特徴と する加熱装置。

【請求項8】 上記補助電源装置は複数のセルからなる 請求項1乃至7のいずれかに記載の加熱装置。

【請求項9】 上記補助電源装置の複数のセルを使用時 20 に直列に接続する接続切替装置を有する請求項8記載の 加熱装置。

【請求項10】 上記補助電源装置の複数のセルを充填 するときに各セルを順次充電する請求項9記載の加熱装

【請求項11】 上記補助電源装置の複数のセルを充電 するときに、接続切替装置で各セルを並列に接続して同 時に充電する請求項9記載の加熱装置。

【請求項12】 請求項1乃至11のいずれかに記載の 加熱装置を有し、定着ローラに加熱部を内蔵したことを 特徴とする定着装置。 30

【請求項13】 請求項12に記載の定着装置を有し、 電子写真方式で形成したトナー像を記録部材に加熱溶着 させることを特徴とする画像形成装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】との発明は、例えば各種材料 や装置を加熱する加熱装置とそれを使用した定着装置及 び電子写真方式を使用した複写機やプリンタ装置、ファ クシミリ装置等の画像形成装置、特に省電力の効率化に

[0002]

【従来の技術】複写機やブリンタ装置等の画像形成装置 は普通紙やOHP等の記録媒体上に画像を形成する。と の画像形成装置は、画像形成の高速性や画像品質、コス トなどから電子写真方式が採用されている。電子写真方 式は記録媒体上にトナー像を形成し、形成したトナー像 を熱と圧力で記録媒体に定着する方法であり、定着方式 としては安全性等の面からヒートローラ方式が現在最も 多く採用されている。ヒートローラ方式は、ハロゲンヒ 50 ータなどの発熱部材により加熱される加熱ローラと、加

熱ローラに対向配置される加圧ローラを圧接してニップ 部と呼ばれる相互圧接部を形成し、このニップ部にトナ ー像が転写された記録媒体を通して加熱する方法であ る。

【0003】近年、環境問題が重要となり、複写機やプ リンタ装置等の画像形成装置も省エネルギ化が進んでい る。この画像形成装置の省エネルギを考えるに当たって 無視できないのは、トナーを記録媒体に定着する定着装 置の省電力である。画像形成装置の待機時における定着 装置の消費電力の低減としては、待機時には加熱ローラ 10 の温度を定着温度よりやや低い一定の温度に保つことに より、使用時に直ちに使用可能温度まで立ち上げ、使用 者が定着ローラの昇温を待つことがないようにしてい る。この場合、定着装置を使用していないときにもある 程度の電力を供給して余分なエネルギを消費していた。 この待機時の消費エネルギは機器の消費エネルギの約7 割から8割に上がると言われている。

【0004】この待機時の消費エネルギを削減してより 省電力化を図ることが望まれ、未使用時には電力供給を ゼロにすることが求められてきている。しかしながら待 20 機時にエネルギ消費をゼロにすると、加熱ローラは鉄や アルミなどの金属ローラを主に使用しており熱容量が大 きいため、約180℃前後の使用可能温度にまで昇温する には数分から十数分など長い加熱時間が必要であり、使 用者の使い勝手が悪化してしまう。加熱ローラの昇温時 間を短くするためには、単位時間の投入エネルギすなわ ち定格電力を大きくすると良い。実際に、プリント速度 の速い高速機には電源電圧を200Vにして対応している 装置も多い。しかし、日本国内の一般的なオフィスで は、商用電源は100V15Aであり、200Vに対応させるに 30 は設置場所の電源関連に特別な工事を施す必要があり一 般的な解決法とはいえない。このため、加熱ローラを短 時間で昇温させようとしても、最大投入エネルギーが電 源により決まってしまっていた。

【0005】 これを改善するために例えば特開平10-10 913号公報に示されているように、定着装置が待機状態 になったときに一定レベルだけ低い電圧を加熱ローラに 供給して定着装置の温度が下がることを遅らせたり、特 開平10-282821号公報に示すように、定着装置の待機時 に補助電源である二次電池を充電し、定着装置を立ち上 げたときに主電源装置と二次電池や一次電池から電力を 供給して立上り時間を短縮するようにしたりしている。 [0006]

【発明が解決しようとする課題】しかしながら特開平10 -10913号公報に示された定着装置は待機時においても 定着装置に一定レベルだけ低い電圧を供給しているた め、十分な省電力とはいえない。また、立ち上げ時の最 大供給電力を主電源装置から供給する電力より高めると とを主にしたものではない。特開平10-282821号公報に

池や一次電池から電力を供給しているが、二次電源とし ては一般にカドニカ電池や鉛蓄電池が使用され、との二 次電池は充放電を何回も繰り返すと容量が劣化し低下し ていき、大電流で放電するほど寿命は短いという性質を 持つ。一般的に大電流で長寿命とされているカドニカ電 池でも充放電の繰り返し回数は約500~1000回程度であ り、一日に20回の充放電を繰り返すと一ヶ月程度で電池 の寿命が来てしまうことになり、交換の手間がかかり、 交換する電池代などのランニングコストも非常に高くつ くという短所がある。さらに鉛蓄電池は液体の硫酸を使 用するなどのオフィス用機器としては好ましくない。

【0007】また、大電力の供給を開始したり停止する 際の急激な電流変化や突入電力等により被加熱回路への 負荷が増大するとともに周辺回路にも投入電流が流れノ イズが発生するという問題がある。このため大容量の補 助電源からの電力供給は頻繁なオン/オフは好ましくな い。また、大容量の電力を一度に供給すると供給過剰に なり被加熱回路の温度が上昇しすぎる可能性もある。

【0008】この発明はかかる短所を改善し、省電力効 果を高めるとともに大電力を供給する際の突入電流や急 激な電流変化によるノイズを低減し、かつ立上り時間を 短縮し、温度が上がりすぎることを防止することができ る加熱装置とそれを使用した定着装置及び画像形成装置 を提供することを目的とするものである。

[0009]

【課題を解決するための手段】この発明に係る加熱装置 は、加熱部と主電源装置と補助電源装置と充電器と切替 装置及び制御部を有し、加熱部は主電源装置から供給さ れる電力により発熱する主発熱体と、補助電源装置から 供給される電力により発熱する補助発熱体を有し、補助 電源装置は充放電可能なコンデンサを有し、充電器は主 電源装置から供給される電力で補助電源装置のコンデン サを充電し、切替装置は補助電源装置の充電と補助電源 装置からの補助発熱体に対する電力供給を切え替え、制 御部は補助電源装置から補助発熱体に供給する電力量を 調整することを特徴とする。

【0010】上記制御部は補助電源装置から補助発熱体 に電力の供給を開始した時からあらかじめ定めた一定時 間経過したときに補助電源装置から補助発熱体に供給し ている電力を遮断すると良い。また、切替装置は補助電 源装置から補助発熱体に供給している電力を遮断してい るときに補助電源装置を充電器に接続して補助電源装置 をのコンデンサを充電すると良い。

【0011】この発明に係る第2の加熱装置は、加熱部 と主電源装置と補助電源装置と充電器と切替装置と残電 力検知装置及び制御部を有し、加熱部は主電源装置から 供給される電力により発熱する主発熱体と、補助電源装 置から供給される電力により発熱する補助発熱体を有 し、補助電源装置は充放電可能なコンデンサを有し、充 示された定着装置は、立ち上げ時に主電源装置と二次電 50 電器は主電源装置から供給される電力で補助電源装置の

コンデンサを充電し、切替装置は補助電源装置の充電と 補助電源装置からの補助発熱体に対する電力供給を切え 替え、残電力検知装置は補助電源装置は保有する電力量 を検出し、制御部は残電力検知装置で検出している補助 電源装置の保有電力量に応じて補助電源装置から補助発 熱体に供給する電力量を調整することを特徴とする。

【0012】上記制御部は残電力検知装置で検出してい る補助電源装置の保有電力量があらかじめ定めた一定値 に低下したときに、補助電源装置から補助発熱体に供給 している電力を遮断する

【0013】との発明に係る第3の加熱装置は、加熱部 と主電源装置と補助電源装置と充電器と切替装置と温度 検知装置及び制御部を有し、加熱部は主電源装置から供 給される電力により発熱する主発熱体と、補助電源装置 から供給される電力により発熱する補助発熱体を有し、 補助電源装置は充放電可能なコンデンサを有し、充電器 は主電源装置から供給される電力で補助電源装置のコン デンサを充電し、切替装置は補助電源装置の充電と補助 電源装置からの補助発熱体に対する電力供給を切え替 え、温度検知装置は加熱部の温度を検出し、制御部は温 20 度検知装置で検出している加熱部の温度に応じて補助電 源装置から補助発熱体に供給する電力量を調整すること

【0014】この発明に係る第4の加熱装置は、加熱部 と主電源装置と補助電源装置と充電器と切替装置及び温 度制御装置を有し、加熱部は主電源装置から供給される 電力により発熱する主発熱体と、補助電源装置から供給 される電力により発熱する補助発熱体を有し、補助電源 装置は充放電可能なコンデンサを有し、充電器は主電源 装置から供給される電力で補助電源装置のコンデンサを 充電し、切替装置は補助電源装置の充電と補助電源装置 からの補助発熱体に対する電力供給を切え替え、温度制 御装置は加熱部の温度変化により補助電源装置から補助 発熱体に供給する電力量を調整することを特徴とする。 【0015】上記補助電源装置は複数のセルで構成し、 使用時に接続切替装置で複数のセルを直列に接続すると 良い。

【0016】また、補助電源装置の複数のセルを充填す るときに、各セルを順次充電すると良い。

【0017】さらに、補助電源装置の複数のセルを充電 40 するときに、接続切替装置で各セルを並列に接続して同 時に充電しても良い。

【0018】この発明の定着装置は、上記いずれかの加 熱装置を有し、定着ローラに加熱部を内蔵したことを特 徴とする。

【0019】この発明に係る画像形成装置は、上記定着 装置を有し、電子写真方式で形成したトナー像を記録部 材に加熱浴着させることを特徴とする。

[0020]

を特徴とする。

主電源装置と補助電源装置とメインスイッチと充電器と 切替装置及び制御部を有する。加熱部は主電源装置から 供給される電力により発熱する主発熱体と、補助電源装 置から供給される電力により発熱する補助発熱体を有 し、被加熱体を加熱する。補助電源装置は充放電可能な コンデンサを有する。メインスイッチは主電源装置から 主発熱体に供給する電力をオン/オフする。充電器は主 電源装置から供給される電力でコンデンサを有する補助 電源装置を充電する。切替装置は補助電源装置の充電と 補助電源装置からの補助発熱体に対する電力供給を切え 替る。制御部はあらかじめ設定された条件で補助電源装 置4から補助発熱体に供給する電力をオン/オフ制御す る。

【0021】との加熱装置においては、待機時に切替装 置を切替て補助電源装置に充電器を接続し、補助電源装 置を充電しておく。この状態で加熱装置で加熱部を加熱 するときは、メインスイッチをオンにして主電源装置か ら主発熱体に電力を供給し、同時に切替装置を切替て補 助電源装置から補助発熱体に電力を供給して、加熱部に 大容量の電力を供給し、加熱部を短時間で所定の温度に 立ち上げる。このように補助電源装置で補助発熱体に電 力を供給して加熱を開始してから、あらかじめ定めた所 定の時間が経過したときに、制御部は補助電源装置から 補助発熱体に供給している電力を遮断して加熱部の過熱 を防止して所定の温度に維持させる。

[0022]

【実施例】図1はこの発明の一実施例の構成を示す回路 図である。図に示すように、加熱装置1は、加熱部2と 主電源装置3と補助電源装置4とメインスイッチ5と充 電器6と切替装置7及び制御部8を有する。加熱部2は 主電源装置3から供給される電力により発熱する主発熱 体2aと、補助電源装置4から供給される電力により発 熱する補助発熱体2 bを有し、被加熱体を加熱する。主 電源装置3は加熱装置1の設置場所に備えられているコ ンセントなどに接続され、加熱部2に応じた電圧の調整 及び交流と直流の整流などの機能を有しいる。補助電源 装置4は充放電可能なコンデンサを有する。この補助電 源装置4のコンデンサとしては、例えば日本ケミコン (株)で開発した電気二重層コンデンサ等の2000F程度 の静電容量を有し、数秒から数10秒の電力供給には十分 な容量を備えている物や、例えば日本電気(株)の商品 名「ハイパーキャパシタ」という80F 程度のコンデンサ を使用する。メインスイッチ5は主電源装置3から主発 熱体2aに供給する電力をオン/オフする。 充電器6は 主電源装置3から供給される電力でコンデンサを有する 補助電源装置4を充電する。切替装置7は補助電源装置 4の充電と補助電源装置4からの補助発熱体2 b に対す る電力供給を切え替る。制御部8はスイッチ9とCPU 10を有し、あらかじめ設定された条件で補助電源装置 【発明の実施の形態】この発明の加熱装置は、加熱部と 50 4から補助発熱体2bに供給する電力をオン/オフ制御

40

る。

する。

【0023】上記のように構成した加熱装置1においては、待機時に切替装置7を切替て補助電源装置4に充電器6を接続し、補助電源装置4を充電しておく。この状態で加熱装置1で加熱部2を加熱するときは、メインスイッチ5をオンにして主電源装置3から主発熱体2aに電力を供給し、同時に切替装置7を切替て補助電源装置4から補助発熱体2bに電力を供給して、加熱部2に大容量の電力を供給する。このように加熱部2の加熱を開始するときに、主電源装置3と補助電源装置4の両方か10ら大容量の電力を加熱部2に供給するから、加熱部2を短時間で所定の温度に立ち上げることができる。

【0024】補助電源装置4で加熱部2の補助発熱体2bに電力を供給して加熱を開始してからあらかじめ定めた所定の時間が経過したときに、制御部8は補助電源装置4から補助発熱体2bに供給している電力を遮断して加熱部2の過熱を防止して所定の温度に維持させる。補助電源装置4から補助発熱体2bに供給している電力は供給を開始してから時間が経過するにしたがって低減する。この供給電力の低減量に応じて補助電源装置4から2bに供給している電力を遮断する時間を定めて、供給している電力がある程度低減したときに補助電源装置4から補助発熱体2bに供給している電力を遮断することにより、大電力を供給している状態で遮断するときに発生する周囲回路の各部品の劣化や電磁ノイズを防止することができる。

【0025】このように補助電源装置4から補助発熱体2bに供給している電力を遮断したとき、補助電源装置4には十分に充電されていない状態となる。そこで加熱部2の温度が安定して比較的電力を消費しないときに、切替装置7を充電器6側に切替て補助電源装置4に充電器6を接続して主電源装置3から供給される電力で補助電源装置4を充電しておく。そして加熱部2に再度多量の電力を供給する必要があるとき、主電源装置3とともに補助電源装置4から電力を供給して加熱部2に多量のエネルギを供給する。

【0026】この補助電源装置4に有するコンデンサは二次電池と異なり、化学反応を伴わないため次ぎのような優れた特徴を有する。すなわち二次電池として一般的なニッケルーカドミウム電池を用いた補助電源装置では、急速充電を行っても数時間の時間を有するが、コンデンサを用いた補助電源装置4では数分程度の急速な充電が可能であり、同一時間内で待機状態と加熱状態を繰返した場合、コンデンサを用いた補助電源装置4を使用することにより、加熱立ち上げ時に確実に補助電源装置4から電力を供給することができ、加熱部2を短時間で所定の温度に立ち上げることができる。また、ニッケルーカドミウム電池は充放電の許容繰り返し回数が500回ち1000回程度であるため加熱時用の補助電源としては寿命が短く、交換の手間やコストが問題となる。これに対

してコンデンサを用いた補助電源装置4は充放電の許容 繰り返し回数が1万回以上であるとともに、充放電の繰 り返しによる劣化も少なく、さらに、鉛蓄電池のように 液交換や補充なども必要ないため、メンテナンスをほと んど必要とせず、長期間安定して使用することができ

【0027】上記実施例は加熱部2と切替装置7の間に 制御部8を設けた場合について説明したが、図2の回路 図に示すように、CPU10と切替装置7を有する充放 電切替装置11により補助電源装置4の充電と補助発熱 体2 b に対する電力の供給を切替るようにしても良い。 【0028】また、上記実施例は補助電源装置4で補助 発熱体2 b に電力を供給して加熱を開始してからあらか じめ定めた所定の時間が経過したときに、制御部8で補 助電源装置4から補助発熱体2bに供給している電力を 遮断する場合について説明したが、図3の回路図に示す ように、補助電源装置4の残電力を検出する残電力検知 部12を設け、補助電源装置4で補助発熱体2bに電力 を供給しているときに、残電力検知部12で検出してい る補助電源装置4の残電力があらかじめ定めた基準電力 まで低下した場合に制御部8により補助電源装置4から 補助発熱体2bに供給している電力を遮断したり、図4 の回路図に示すように、充放電切替装置11により補助 電源装置4から補助発熱体2bに供給している電力を遮 断するようにしても良い。

【0029】とのようにして補助電源装置4から補助発 熱体2bに供給している電力が一定値まで低減したとき に、補助電源装置4から供給している電力を遮断するこ とにより、大電力を供給している状態で遮断するときに 引き起こす周囲回路の各部品の劣化や電磁ノイズを確実 に防止することができる。

【0030】また、図5の回路図に示すように、加熱部2の温度を検出する例えばサーミスタや熱電対や放射温度計等の温度検知部13を設け、主電源装置3と補助電源装置4で加熱部2の主発熱体2aと補助発熱体2bに電力を供給しているときの加熱部2の温度を温度検知部13で測定している加熱部2の温度があらかじめ設定した所定の温度の上限値に達したときに、制御部8や充放電切替装置11により補助電源装置4から補助発熱体2bに供給している電力を遮断している間に補助電源装置4から補助発熱体2bに供給している電力を遮断している間に補助電源装置4を充電し、温度検知部13で測定している加熱部2の温度があらかじめ設定した所定の温度の下限値に達したときに、補助電源装置4から補助発熱体2bに再度電力を供給する。

所定の温度に立ち上げることができる。また、ニッケル 【0031】このように補助電源装置4から補助発熱体 - カドミウム電池は充放電の許容繰り返し回数が500回 2 b に供給している電力をオン/オフ制御することによ 51000回程度であるため加熱時用の補助電源としては寿 り、主電源装置3から主発熱体2 a に供給している電力 命が短く、交換の手間やコストが問題となる。これに対 50 をオン/オフせずに加熱部2の温度を一定に維持して温 度が上がりすぎることを防止できる。

【0032】上記実施例は加熱部2の温度を温度検知部 13で検出し、検出した温度により制御部8や充放電切 替装置12により補助電源装置4から補助発熱体2bに 供給している電力をオン/オフ制御する場合について説 明したが、図6の回路図に示すように、加熱部2の近傍 にサーモスタット等の温度調整部14を設け、加熱部2 の温度が設定温度まで上昇したときに温度調整部15で 補助電源装置4から補助発熱体2bに供給している電力 を遮断するようにして、温度調整部14で補助電源装置 10 4から供給している電力をオン/オフ制御するようにし ても良い。また、温度調整部14にサーモスタット等と ともに温度ヒューズ等の過熱防止部材を設けると、加熱 部2の過熱をより確実に防止することができる。

【0033】また、図7に示すように、補助電源装置4 を直列に接続された複数のコンデンサ4 a~4 nで構成 すると良い。このように補助電源装置4を複数のコンデ ンサ4a~4nで構成することにより、例えば、全体で 60 Vの補助電源装置4を作るときには12 Vのコンデ ンサを5個直列に接続することで実現できる。また、補 20 助電源装置4の直列に接続されたコンデンサ4a~4n の接続をオン、オフする切替スイッチ15a、15b と、各コンデンサ4a~4nと充電器6との接続を切り 換える充填切替スイッチ16,17を設けることによ り、各コンデンサ4a~4nを別々に充電することがで きる。すなわち、補助電源装置4の各コンデンサ4a~ 4nを充電するときは、切替装置7を充電器6がわに切 り替えて、切替スイッチ15a, 15bをオフにし、充 填切替スイッチ16, 17をコンデンサ4aに接続する ことによりコンデンサ4aを充電する。コンデンサ4a を完全に充電したら、充填切替スイッチ16,17をコ ンデンサ4 bに接続して充電する。このように充填切替・ スイッチ16.17を順次切り替えてコンデンサ4nま で順次充電し、全てのコンデンサ4a~4nを完全に充 電したら、切替スイッチ15a、15bをオンにしてコ ンデンサ4a~4nを直列に接続する。そして加熱装置 1で加熱部2を加熱するときは、切替装置7を補助発熱 体2 b側に切り替え、切替スイッチ16をコンデンサ4 aに接続して補助電源装置4のコンデンサ4a~4nか ら補助発熱体2 b に電力を供給する。 このように直列に 接続された複数のコンデンサ4 a ~ 4 n から補助発熱体 2 b に電力を供給することにより、高電圧の補助電源と して利用することができる。また、各コンデンサ4a~ 4 n を順次充電するから、低電圧の充電器6を使用して 各コンデンサ4a~4nを充電することができ、コスト ダウンを図るとともに、加熱装置1を小型化することが できる。

【0034】上記実施例はコンデンサ4a~4nを直列 に接続し、各コンデンサ4a~4nを個々に充電した場

に、補助発熱体2bに電力を供給するときは、直列に接 続した複数のコンデンサ4a~4dから補助発熱体2b に電力を供給し、各コンデンサ4a~4dを充電すると き、(a)に示すように、直列に接続した複数のコンデ ンサ4a. 4bと直列に接続した複数のコンデンサ4 c, 4 d を並列に接続して充電器6で充電するようにし ても良い。このように複数のコンデンサを同時に充電す ることにより、各コンデンサ4 a ~ 4 d の充電量のばら っきを低減することができる。また、各コンデンサ4 a ~4 dが完全に充電される前に補助発熱体2 bに電力を 供給する必要が生じたときに、各コンデンサ4a~4d の充電量のバランスを取ることができ、補助発熱体2 b に安定して電力を供給することができる。

【0035】また、図9に示すように、直列に接続した 複数のコンデンサ4a.4bと直列に接続した複数のコ ンデンサ4c,4dを並列に接続し、(b)に示すよう に、並列に接続されたコンデンサ群から補助発熱体2 b に電力を供給し、各コンデンサ4a~4dを充電すると き、(a)に示すように、直列に接続した複数のコンデ ンサ4a, 4bと直列に接続した複数のコンデンサ4 c. 4 dを別個に充電するようにしても良い。このよう にしても各コンデンサ4a~4dを充電する充電器6を 低電圧化することができる。

【0036】次ぎにこの加熱装置1を例えば電子写真方 式の複写機やブリンタ装置等の画像形成装置で記録媒体 に転写されたトナー像を加熱、加圧して記録媒体に固着 させる定着装置に適用した実施例について説明する。

【0037】電子写真方式の画像形成装置20は、図7 の構成図に示すように、感光体21と、感光体21に沿 って設けられた帯電装置22と、感光体21の回転方向 の帯電装置22より下流側に設けられ、書込装置の一部 を構成してレーザ光23を感光体21の表面に入射する ミラー24と、レーザ光23の入射する書込部の下流側 に設けられ、現像ローラ25aを有する現像装置25 と、現像装置25の下流側に設けられた転写装置26 と、転写装置26の下流側に設けられ、クリーニングブ レード27aを有するクリーニング装置27と、給紙装 置28及び定着装置29を有する。給紙装置28は給紙 トレイ30と給紙コロ31と記録紙搬送路32及びレジ 40 ストローラ対33を有し、給紙トレイ30に収納された 記録紙を転写装置26に搬送する。

【0038】定着装置29は、図8の断面図に示すよう に、定着ローラ34と加圧ローラ35を有する。定着ロ ーラ34には例えばハロゲンヒータからなる主発熱体2 aと補助発熱体2bからなる加熱部2を内蔵し、主電源 装置3と補助電源装置4から供給される電力により温度 が上昇し、補助電源装置4から供給される電力をオン/ オフ制御することにより一定温度に保たれている。

【0039】上記のように構成した画像形成装置20に 合について説明したが、例えば図9の(b)に示すよう 50 おいて画像を形成するとき、回転している感光体21の 表面を帯電装置22により均一に帯電し、帯電した感光 体21の表面に、書込装置から画像情報に応じて出射さ れるレーザ光23をミラー24で反射して入射して形成 する画像に応じた静電潜像を形成する。この感光体21 の表面に形成した静電潜像を現像装置25で現像してト ナー像を形成する。一方、給紙コロ31により給紙トレ イ30から給紙された記録紙は記録紙搬送路32を通り レジストローラ33の位置で一旦停止している。そして 感光体21に形成されたトナー像が転写装置26に達す るのと同じタイミングでレジストローラ対33から記録 10 紙を送りだして、感光体21に形成されたトナー像を転 写装置26で記録紙に転写する。転写装置26でトナー 像が転写された記録紙は、図7に示すように定着装置2 9に送られる。また、記録紙に転写されずに感光体21 に残留したトナーはクリーニング装置27で除去され

【0040】定着装置29に送られたトナー像36が転 写された記録紙37は定着ローラ34と加圧ローラ35 の間に搬送され、一定温度に加熱された定着ローラ34 によりトナーを加熱溶融して記録紙37にトナー像36 を定着する。このトナー像36を記録紙37に定着する 定着ローラ34の加熱部2は主発熱体2aと補助発熱体 2 b を有し、主電源装置3 と補助電源装置4 から供給さ れる電力により温度が上昇し、補助電源装置4から供給 される電力をオン/オフ制御することにより、定着ロー ラ34の温度が高くなりすぎることを防止して一定温度 に保つことができ、トナーを安定して加熱溶融すること ができ、良質なトナー像36を記録紙37に定着して形 成することができる。また、定着ローラ34に内蔵した 加熱部2の主発熱体2aと補助発熱体2bに主電源装置 30 3と補助電源装置4から電力を供給して定着ローラ34 の温度を上昇させるから、定着ローラ34の表面温度を 所定の定着温度に迅速に上昇させることができる。

[0041]

【発明の効果】との発明は以上説明したように、加熱部 に主発熱体と補助発熱体を設け、主発熱体には主電源装 置から電力を供給し、補助発熱体には補助電源装置から 電力を供給するから、加熱部の加熱を開始するときに、 主電源装置と補助電源装置の両方から大容量の電力を供 給して加熱部を短時間で所定の温度に立ち上げることが 40 各セルの充電量のバランスを取ることができ、補助発熱 でき、待機時に加熱部に電力を供給しないですむ。

【0042】また、補助電源装置から補助発熱体に供給 している電力量を調整しながら加熱部を加熱するから、 加熱部の温度を均一に保持することができる。

【0043】さらに、コンデンサを有する補助電源装置 から補助発熱体に電力の供給を開始した時からあらかじ め定めた一定時間経過したときに補助電源装置から補助 発熱体に供給している電力を遮断することにより、補助 電源装置から補助発熱体に供給している電力がある程度

いる電力を遮断することができ、大電力を供給している 状態で遮断するときに発生する周囲回路の各部品の劣化 や電磁ノイズを防止することができる。

【0044】また、補助電源装置から補助発熱体に供給 している電力を遮断しているときに補助電源装置を充電 器に接続して充電することにより、補助電源装置から補 助発熱体に供給する電力を確実に保持することができ

【0045】また、補助電源装置の保有電力量に応じて 補助電源装置から補助発熱体に供給する電力量を調整す ることにより、補助電源装置から補助発熱体に必要とす る電力を確実に供給することができる。

【0046】さらに、補助電源装置の保有電力量があら かじめ定めた一定値に低下したときに、補助電源装置か ら補助発熱体に供給している電力を遮断することによ り、大電力を供給している状態で遮断するときに発生す る周囲回路の各部品の劣化や電磁ノイズをより確実に防 止することができる。

【0047】また、加熱部の温度を検出し、検出した温 20 度が一定になるように補助電源装置から補助発熱体に供 給する電力量を調整することにより、加熱部の温度が高 くなりすぎることを防いで、加熱部を一定の温度に保つ ことができる。

【0048】また、加熱部の温度変化により補助電源装 置から補助発熱体に供給する電力量を調整することによ り、加熱部を一定の安定した温度に保つことができる。 【0049】さらに、補助電源装置は複数のセルで構成 し、使用時に接続切替装置で複数のセルを直列に接続す ることにより、高電圧で大電力を供給することができ

【0050】また、補助電源装置の複数のセルを充填す るときに、各セルを順次充電することにより、低電圧の 充電器を使用して充電することができ、充電器を小型化 してコストダウンを図ることができる。

【0051】また、補助電源装置の複数のセルを充填す るときに、接続切替装置で各セルを並列に接続して同時 に充電することにより、各セルの充電量のばらっきを低 滅することができる。また、各セルが完全に充電される 前に補助発熱体に電力を供給する必要が生じたときに

【0052】との加熱装置を定着装置に設け、定着ロー ラに加熱部を内蔵することにより、定着ローラの温度を 所定の温度に迅速に立ち上げて所定温度に保つことがで きるから、待機時に定着ローラに電力を供給しなくても 良く、省エネルギを図ることができる。

体に安定して電力を供給することができる。

【0053】また、画像形成装置に上記定着装置を設 け、電子写真方式で形成したトナー像を記録部材に加熱 浴着させることにより、トナーを安定して加熱溶融する 低減したときに補助電源装置から補助発熱体に供給して 50 ことができ、良質なトナー像を記録紙に定着して形成す るととができる。

【図面の簡単な説明】

【図1】この発明の実施例の加熱装置の構成を示す回路 図である。

【図2】この発明の第2の実施例の加熱装置の構成を示す回路図である。

【図3】との発明の第3の実施例の加熱装置の構成を示す回路図である。

【図4】との発明の第4の実施例の加熱装置の構成を示す回路図である。

【図5】との発明の第5の実施例の加熱装置の構成を示す回路図である。

【図6】との発明の第6の実施例の加熱装置の構成を示す回路図である。

【図7】この発明の第7の実施例の加熱装置の構成を示す回路図である。

*【図8】この発明の第8の実施例の補助電源装置の構成 を示す回路図である

【図9】この発明の第9の実施例の補助電源装置の構成を示す回路図である

【図10】この発明の実施例の画像形成装置の構成図である。

【図 I 1】上記画像形成装置の定着装置の構成を示す断面図である。

【符号の説明】

1:加熱装置、2:加熱部、2a;主発熱体、2b;補助発熱体、3;主電源装置、4;補助電源装置、5;メインスイッチ、6;充電器、7;切替装置、8;制御部、12;残電力検知部、13;温度検知部、14;温度調整部、20;画像形成装置、29;定着装置、34;定着ローラ、35;加圧ローラ。

【図1】

【図3】

【図5】

【図2】

【図4】

【図6】

フロントページの続き

F ターム (参考) 2H027 DA03 DA38 EA15 EC20 ED25 EE02 EE07 EF09 ZA01 2H033 AA32 AA41 BA25 BB18 BB21 CA01 CA23 CA48 3K058 AA02 AA73 AA81 BA18 CA12 CA23 CA61 CA69 CB02 DA02