Employee Turn-Over EDA and Predictive Models

```
In [1]:
           import numpy as np
           import pandas as pd
           import matplotlib.pyplot as plt
           import seaborn as sns
          from warnings import filterwarnings
           filterwarnings('ignore')
In [2]:
          df = pd.read csv('Employee-turnover.csv')
          df.head()
Out[2]:
             Employee
                       Employee
                                                                        Marital
                                                                                           Education
                                  Department
                                                 Job Role Gender Age
                                                                                 Education
                                                                                                       Business Travel ...
                                                                         Status
                                                                                                Field
                Count
                              ID
                                                    Sales
                                                                                                 Life
                               1
                                         Sales
                                                           Female
                                                                         Single
                                                                                   College
                                                                                                          Travel_Rarely
                                                 Executive
                                                                                             Sciences
                                    Research &
                                                 Research
                                                                                    Below
                                                                                                 Life
          1
                                                                                                      Travel_Frequently
                                                             Male
                                                                    49
                                                                        Married
                                  Development
                                                 Scientist
                                                                                   College
                                                                                             Sciences
                                    Research &
                                               Laboratory
          2
                    1
                                                             Male
                                                                    37
                                                                         Single
                                                                                   College
                                                                                               Other
                                                                                                          Travel_Rarely
                                  Development
                                               Technician
                                    Research &
                                                 Research
                                                                                                 Life
          3
                    1
                                                           Female
                                                                    33
                                                                                                      Travel_Frequently
                                                                        Married
                                                                                    Master
                                  Development
                                                 Scientist
                                                                                             Sciences
                                    Research &
                                               Laboratory
                                                                                    Below
                                                             Male
                                                                        Married
                                                                                             Medical
                                                                                                          Travel_Rarely
                                  Development
                                               Technician
                                                                                   College
         5 rows × 29 columns
In [3]:
          df.shape
          (1470, 29)
Out[3]:
In [4]:
          df.isnull().sum()
                                              0
         Employee Count
Out[4]:
         Employee ID
                                              0
          Department
                                              0
         Job Role
                                              0
         Gender
                                               0
                                               0
         Age
         Marital Status
                                               0
         Education
                                              0
         Education Field
                                               0
         Business Travel
                                               0
                                              0
         Distance From Home (kms)
         Job Involvement
                                               0
         Job Level
                                              0
         Job Satisfaction
                                              0
         Monthly Income (USD)
                                              0
```

0

0

Salary Hike (%)
Stock Option Level

```
Over Time
No. of Companies Worked
                             0
Total Working Years
Years At Company
                             0
Years In Current Role
                             0
Years Since Last Promotion 0
Years With Curr Manager
                             0
Environment Satisfaction
                             0
Training Times Last Year
                             0
Work Life Balance
                             0
Relationship Satisfaction
                             0
Attrition (Yes/No)
                             0
dtype: int64
```

In [5]: df['Employee Count'].describe()

Out[5]: count mean 1.0 std 0.0 min 1.0 25% 1.0 50% 1.0 75% 1.0 max 1.0

Name: Employee Count, dtype: float64

In [6]:

We can remove this column since it doesn't help us in any way, values are same for all
no deviation and doesn't make sense
df.drop('Employee Count',axis=1,inplace=True)

Out[6]:

	Employee ID	Department	Job Role	Gender	Age	Marital Status	Education	Education Field	Business Travel	Distanc From Hom (kms
0	1	Sales	Sales Executive	Female	41	Single	College	Life Sciences	Travel_Rarely	
1	2	Research & Development	Research Scientist	Male	49	Married	Below College	Life Sciences	Travel_Frequently	
2	4	Research & Development	Laboratory Technician	Male	37	Single	College	Other	Travel_Rarely	
3	5	Research & Development	Research Scientist	Female	33	Married	Master	Life Sciences	Travel_Frequently	
4	7	Research & Development	Laboratory Technician	Male	27	Married	Below College	Medical	Travel_Rarely	
•••										
1465	2061	Research & Development	Laboratory Technician	Male	36	Married	College	Medical	Travel_Frequently	2
1466	2062	Research & Development	Healthcare Representative	Male	39	Married	Below College	Medical	Travel_Rarely	
1467	2064	Research & Development	Manufacturing Director	Male	27	Married	Bachelor	Life Sciences	Travel_Rarely	
1468	2065	Sales	Sales Executive	Male	49	Married	Bachelor	Medical	Travel_Frequently	

```
Department
                                     Job Role Gender Age
                                                               Education
                                                                                  Business Travel
                  ID
                                                                            Field
                                                                                                 Hom
                                                         Status
                                                                                                 (km
                       Research &
                                    Laboratory
        1469
                 2068
                                               Male
                                                     34 Married
                                                                 Bachelor
                                                                          Medical
                                                                                    Travel Rarely
                      Development
                                    Technician
       1470 rows × 28 columns
In [7]:
        df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1470 entries, 0 to 1469
        Data columns (total 28 columns):
            Column
                                         Non-Null Count Dtype
        ___
            _____
                                         _____
                                                          ____
         0
            Employee ID
                                         1470 non-null
                                                          int64
         1
             Department
                                         1470 non-null
                                                          object
         2
            Job Role
                                         1470 non-null
                                                          object
         3
            Gender
                                         1470 non-null
                                                          object
         4
            Age
                                         1470 non-null
                                                          int64
         5
            Marital Status
                                         1470 non-null
                                                          object
         6
            Education
                                         1470 non-null
                                                          object
         7
            Education Field
                                        1470 non-null
                                                          object
            Business Travel
         8
                                         1470 non-null
                                                          object
            Distance From Home (kms) 1470 non-null
                                                          int64
         10 Job Involvement
                                        1470 non-null
                                                          object
         11
            Job Level
                                        1470 non-null
                                                          int64
            Job Satisfaction
                                         1470 non-null
                                                          object
        13 Monthly Income (USD)
                                        1470 non-null
                                                          int64
            Salary Hike (%)
                                        1470 non-null
                                                          int64
         15
            Stock Option Level
                                        1470 non-null
                                                          int64
        16 Over Time
                                         1470 non-null
                                                          object
        17 No. of Companies Worked
                                       1470 non-null
                                                          int64
         18 Total Working Years
                                        1470 non-null
                                                          int64
         19 Years At Company
                                         1470 non-null
                                                          int64
         20 Years In Current Role
                                         1470 non-null
                                                         int64
         21 Years Since Last Promotion 1470 non-null
                                                         int64
         22 Years With Curr Manager 1470 non-null
                                                         int64
         23 Environment Satisfaction
                                        1470 non-null
                                                          object
         24 Training Times Last Year
                                         1470 non-null
                                                          int64
         25 Work Life Balance
                                         1470 non-null
                                                          object
         26 Relationship Satisfaction 1470 non-null
                                                          object
            Attrition (Yes/No)
                                         1470 non-null
                                                          object
        dtypes: int64(14), object(14)
        memory usage: 321.7+ KB
        df['Attrition'] = df['Attrition (Yes/No)'].apply(lambda x: 1 if x=='Yes' else 0)
        print(df['Attrition'].value counts())
        print(df['Attrition (Yes/No)'].value counts())
        0
            1233
        1
              237
        Name: Attrition, dtype: int64
               1233
        No
        Yes
                237
        Name: Attrition (Yes/No), dtype: int64
In [9]:
        #Department Column
        plt.figure(figsize=(10,5))
```

Marital

Education

Employee

In [8]:

Distanc

Froi

df['Department'].value_counts(normalize=True).plot.pie(autopct='%1.f%%', shadow=True, exploo plt.show()

- 1. 65% of employees are from R&D Department
- 2. 30% of employees are from Sales Dept.
- 3. ~5% of employees are from HR Dept.

```
In [10]: #Checking Attrition Rate for each category, we can create a function for that.

def calculate_attrition_rate(df,col):
    temp_df = pd.DataFrame(columns=['Category','Attrition Rate'])
    for cat in df[col].unique():
        attrition_count = df[(df[col]==cat) & (df['Attrition']==1)].shape[0]
        total_count = df[df[col]==cat].shape[0]
        temp_df = temp_df.append({'Category':cat,'Attrition Rate':(attrition_count/total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count_total_count
```

```
        Out[10]:
        Category
        Attrition Rate

        0
        Sales
        20.627803

        2
        Human Resources
        19.047619

        1
        Research & Development
        13.839750
```

```
In [11]: #Job Role
df['Job Role'].value_counts()
```

```
Sales Executive
                                       326
Out[11]:
         Research Scientist
                                       292
         Laboratory Technician
                                       259
        Manufacturing Director
                                       145
         Healthcare Representative
                                      131
        Manager
                                       102
         Sales Representative
                                       83
         Research Director
                                        80
         Human Resources
                                        52
        Name: Job Role, dtype: int64
```

```
In [12]: plt.figure(figsize=(10,8))
    sns.countplot(x='Job Role', data=df, hue='Attrition')
```

plt.xticks(rotation=45)
plt.show()

In [13]: calculate_attrition_rate(df,'Job Role')

Out[13]:		Category	Attrition Rate
	6	Sales Representative	39.759036
	2	Laboratory Technician	23.938224
	8	Human Resources	23.076923
	0	Sales Executive	17.484663
	1	Research Scientist	16.095890
	3	Manufacturing Director	6.896552
	4	Healthcare Representative	6.870229
	5	Manager	4.901961
	7	Research Director	2.500000

```
In [14]: #Check Gender only Male and Female
     df['Gender'].value_counts()
```

882 Male Out[14]: 588 Female

Name: Gender, dtype: int64

In [15]: calculate attrition rate(df, 'Gender')

1.0

- 0.8

0.6

- 0.4

- 0.2

- 0.0

Out[15]: **Category Attrition Rate**

1 17.006803 Male 0 Female 14.795918

```
In [16]:
          corr = df.corr()
         plt.figure(figsize=(15,12))
         sns.heatmap(corr,annot=True,cmap='RdYlGn')
         plt.show()
```



```
In [17]:
          # We will study high correlations > 0.6 just to eliminate similar columns/ remove multi-co
          # For example, let's see the columns Monthly Income (USD) and Job Level with pearson coef
          plt.figure(figsize=(10,5))
          \verb|sns.scatterplot(data=df, x='Job Level', y='Monthly Income (USD)', \verb|hue='Attrition'|| \\
          plt.show()
```


We can clearly see as Job Level rises, monthly income will rise as well. That's why having both these 2 columns for our model would be harmful hence we should remove 1 of them.

```
In [18]: sns.countplot(data=df,x='Job Level',hue='Attrition (Yes/No)')
```

Out[18]: <AxesSubplot:xlabel='Job Level', ylabel='count'>

As job level increases, number of attritions decreases.

We can also see this from Heatmap that Job level and Attrition have negative correlation.

In [19]: df.head()

Out[19]: _		Employee ID	Department	Job Role	Gender	Age	Marital Status	Education	Education Field	Business Travel	From Home (kms)	•••
	0	1	Sales	Sales Executive	Female	41	Single	College	Life Sciences	Travel_Rarely	1	
	1	2	Research & Development	Research Scientist	Male	49	Married	Below College	Life Sciences	Travel_Frequently	8	

	Employee ID	Department	Job Role	Gender	Age	Marital Status	Education	Education Field	Business Travel	From Home (kms)	
2	4	Research & Development	Laboratory Technician	Male	37	Single	College	Other	Travel_Rarely	2	
3	5	Research & Development	Research Scientist	Female	33	Married	Master	Life Sciences	Travel_Frequently	3	
4	7	Research & Development	Laboratory Technician	Male	27	Married	Below College	Medical	Travel_Rarely	2	

5 rows × 29 columns

In [20]:

#We can either remove Job Level or Monthly Income (USD) column. I will remove income becau #better correlation with other independent variables which is required. #Even removing the total working years as it is highly correlated with job level. df.drop(columns=['Monthly Income (USD)','Total Working Years'],axis=1,inplace=True) df.head()

Out[20]:

	Employee ID	Department	Job Role	Gender	Age	Marital Status	Education	Education Field	Business Travel	Distance From Home (kms)	•••
0	1	Sales	Sales Executive	Female	41	Single	College	Life Sciences	Travel_Rarely	1	
1	2	Research & Development	Research Scientist	Male	49	Married	Below College	Life Sciences	Travel_Frequently	8	
2	4	Research & Development	Laboratory Technician	Male	37	Single	College	Other	Travel_Rarely	2	
3	5	Research & Development	Research Scientist	Female	33	Married	Master	Life Sciences	Travel_Frequently	3	
4	7	Research & Development	Laboratory Technician	Male	27	Married	Below College	Medical	Travel_Rarely	2	

5 rows × 27 columns

```
In [21]:
         #Let's see the heatmap once again
         corr = df.corr()
         plt.figure(figsize=(15,12))
         sns.heatmap(corr,annot=True,cmap='RdYlGn')
         plt.show()
```


1.0

-08

- 0.6

- 0.4

- 0.2

- 0.0

We see 'Years At Company' also has strong correlations with 'Years with Curr Manager' and 'Years in Current Role'. But I think these columns might be important so we won't remove them.

Also, we see that Attrition is most negatively correlated with Salary Hike %. It means, more the salary hike, less attrition.

Columns/Features which might be responsible for attrition:

- Salary Hike %

- 2. Yeas with current manager

- 3. Years in Current Role

- 4. Years at a Company

- 5. Job Level

- 6. Stock Option Level

- 7. Age

- 8. Years Since Last Promotion

```
Out[22]:
              631
              596
              158
               85
         Name: Stock Option Level, dtype: int64
```

In [23]: sns.countplot(data=df,x='Stock Option Level',hue='Attrition')

<AxesSubplot:xlabel='Stock Option Level', ylabel='count'> Out[23]:

In [24]: #Delete Attrition (Yes/No) column since we have our new Attrition column now. df.drop(columns=['Attrition (Yes/No)'],inplace=True,axis=1)

In [25]:

Out[25]:

df.head()

	Employee ID	Department	Job Role	Gender	Age	Marital Status	Education	Education Field	Business Travel	From Home (kms)	•••
0	1	Sales	Sales Executive	Female	41	Single	College	Life Sciences	Travel_Rarely	1	
1	2	Research & Development	Research Scientist	Male	49	Married	Below College	Life Sciences	Travel_Frequently	8	
2	4	Research & Development	Laboratory Technician	Male	37	Single	College	Other	Travel_Rarely	2	
3	5	Research & Development	Research Scientist	Female	33	Married	Master	Life Sciences	Travel_Frequently	3	
4	7	Research & Development	Laboratory Technician	Male	27	Married	Below College	Medical	Travel_Rarely	2	

Dictorco

5 rows × 26 columns

Now, let's come to our categorical columns

```
In [26]:
          #Create a separate df for categorical columns
         cat df = df.select dtypes(include='object').copy()
         cat df.head()
```

Ο.		г.	\neg	_	٦.	
Ol	JT.	Ι.	7	h		:
-		ь.	_	_		-

	Department	Job Role	Gender	Marital Status	Education	Education Field	Business Travel	Job Involvement	Job Satisfaction	Ove Tim
0	Sales	Sales Executive	Female	Single	College	Life Sciences	Travel_Rarely	High	Very High	Ye
1	Research & Development	Research Scientist	Male	Married	Below College	Life Sciences	Travel_Frequently	Medium	Medium	N
2	Research & Development	Laboratory Technician	Male	Single	College	Other	Travel_Rarely	Medium	High	Ye
3	Research & Development	Research Scientist	Female	Married	Master	Life Sciences	Travel_Frequently	High	High	Ye
4	Research & Development	Laboratory Technician	Male	Married	Below College	Medical	Travel_Rarely	High	Medium	N

```
In [27]: cat_df['Marital Status'].unique()
```

Out[27]: array(['Single', 'Married', 'Divorced'], dtype=object)

In [28]: sns.countplot(data=cat_df,x='Marital Status')

Out[28]: <AxesSubplot:xlabel='Marital Status', ylabel='count'>

Out[29]:

t[29]:		Department	Job Role	Gender	Marital Status	Education	Education Field	Business Travel	Job Involvement	Job Satisfaction	Ove Tim
	0	Sales	Sales Executive	Female	Single	College	Life Sciences	Travel_Rarely	High	Very High	Ye
	1	Research & Development	Research Scientist	Male	Married	Below College	Life Sciences	Travel_Frequently	Medium	Medium	N
	2	Research & Development	Laboratory Technician	Male	Single	College	Other	Travel_Rarely	Medium	High	Ye

	Department	Job Role	Gender	Marital Status	Education	Education Field	Business Travel	Job Involvement		Ove Tim
3	Research & Development	Research Scientist	Female	Married	Master	Life Sciences	Travel_Frequently	High	High	Ye
4	Research & Development	Laboratory Technician	Male	Married	Below College	Medical	Travel_Rarely	High	Medium	N

```
In [30]: sns.countplot(data=cat_df,x='Marital Status',hue='Attrition')
plt.show()
```



```
In [31]: calculate_attrition_rate(cat_df,'Marital Status')
```

Out[31]: Category Attrition Rate 0 Single 25.531915 1 Married 12.481426 2 Divorced 10.091743

Single Employees have the most attrition rate.

This could be one of the driving factors for attrition rate.

```
In [32]:
         cat df.columns
         Index(['Department', 'Job Role', 'Gender', 'Marital Status', 'Education',
Out[32]:
                'Education Field', 'Business Travel', 'Job Involvement',
                'Job Satisfaction', 'Over Time', 'Environment Satisfaction',
                'Work Life Balance', 'Relationship Satisfaction', 'Attrition'],
               dtype='object')
In [33]:
          #Education Field
         cat df['Education'].unique()
         array(['College', 'Below College', 'Master', 'Bachelor', 'Doctor'],
Out[33]:
               dtype=object)
In [34]:
         cat df['Education'].value counts()
```

```
Out[34]: Bachelor 572
Master 398
College 282
Below College 170
Doctor 48
```

Name: Education, dtype: int64

```
In [35]:
```

```
sns.countplot(data=cat_df,x='Education',hue='Attrition')
plt.show()
```


In [36]: calculate_attrition_rate(cat_df,'Education')

Out[36]:

	Category	Attrition Rate
1	Below College	18.235294
3	Bachelor	17.307692
0	College	15.602837
2	Master	14.572864
4	Doctor	10.416667

Attrition Rate is almost similar among categories of different Education, hence we can drop this column.

In [37]:

calculate_attrition_rate(cat_df,'Education Field')

Out[37]:

]:		Category	Attrition Rate
	5	Human Resources	25.925926
	4	Technical Degree	24.242424
	3	Marketing	22.012579
	0	Life Sciences	14.686469
	2	Medical	13.577586
	1	Other	13.414634

```
sns.countplot(data=cat_df,x='Education Field',hue='Attrition')
plt.show()
```


We can delete Education Field column as well

```
In [39]: #Checking Business Travel Column. This might be interesting.
sns.countplot(data=cat_df,x='Business Travel',hue='Attrition')
plt.show()
```



```
In [40]: calculate_attrition_rate(cat_df,'Business Travel')
```

Out[40]:		Category	Attrition Rate
	1	Travel_Frequently	24.909747
	0	Travel_Rarely	14.956855
	2	Non-Travel	8.000000

Huge Insight:

- 1. People who have to travel frequently have the highest attrition rate.
- 2. People who don't travel have the least attrition rate which is best for organization.

```
In [41]: cols_list = list(cat_df.columns)
```

```
'Marital Status',
           'Education',
           'Education Field',
           'Business Travel',
           'Job Involvement',
           'Job Satisfaction',
           'Over Time',
           'Environment Satisfaction',
           'Work Life Balance',
           'Relationship Satisfaction',
           'Attrition']
In [42]:
          fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6))
          sns.countplot(data=cat df,x='Job Involvement',hue='Attrition',ax=ax1)
          sns.countplot(data=cat df,x='Job Satisfaction',hue='Attrition',ax=ax2)
          plt.show()
                                                     Attrition
                                                                                                         Attrition
                                                                 400
            700
                                                                 350
            600
                                                                 300
            500
                                                                 250
                                                               5
200
            400
            300
                                                                 150
            200
                                                                 100
            100
                                                                  50
              0
                                                                   0
                             Medium
                                        Very High
                                                     Low
                                                                       Very High
                                                                                  Medium
                                                                                                          Low
                                Job Involvement
                                                                                     Job Satisfaction
In [43]:
          calculate attrition rate(cat df,'Job Involvement')
             Category Attrition Rate
Out[43]:
          3
                          33.734940
                 Low
          1
              Medium
                          18.933333
          0
                High
                          14.400922
          2 Very High
                          9.027778
In [44]:
           calculate attrition rate(cat df,'Job Satisfaction')
```

cols list

Out[41]:

Out[44]:

Category Attrition Rate

['Department',

'Job Role',
'Gender',

	Category	Attrition Rate
3	Low	22.837370
2	High	16.515837
1	Medium	16.428571
0	Very High	11.328976

Insights:

- 1. Employees like to get involved in their job. As the job involvement decreases, there is huge rise in attrition rate.
- 2. Employees with low job satisfaction have high attrition rate.

```
In [45]: plt.figure(figsize=(15,12))
    sns.countplot(data=cat_df,x='Job Satisfaction',hue='Job Involvement')
    plt.show()
```



```
In [46]: cat_df.head()
```

Out[46]:	Department	Job Role	Gender	Marital Status	Education	Education Field	Business Travel	Job Involvement		Ove Tim
				Julus		ricia		IIIVOIVEIIICIIC	Jacistaction	

	Department	Job Role	Gender	Marital Status	Education	Education Field	Business Travel	Job Involvement	Job Satisfaction	Ove Tim
0	Sales	Sales Executive	Female	Single	College	Life Sciences	Travel_Rarely	High	Very High	Ye
1	Research & Development	Research Scientist	Male	Married	Below College	Life Sciences	Travel_Frequently	Medium	Medium	N
2	Research & Development	Laboratory Technician	Male	Single	College	Other	Travel_Rarely	Medium	High	Ye
3	Research & Development	Research Scientist	Female	Married	Master	Life Sciences	Travel_Frequently	High	High	Ye
4	Research & Development	Laboratory Technician	Male	Married	Below College	Medical	Travel_Rarely	High	Medium	N

```
fig, (ax1,ax2,ax3,ax4) = plt.subplots(1,4,figsize=(16,6))
sns.countplot(data=cat_df,x='Over Time',hue='Attrition',ax=ax1)
sns.countplot(data=cat_df,x='Environment Satisfaction',hue='Attrition',ax=ax2)
sns.countplot(data=cat_df,x='Work Life Balance',hue='Attrition',ax=ax3)
sns.countplot(data=cat_df,x='Relationship Satisfaction',hue='Attrition',ax=ax4)
plt.show()
```



```
In [48]: calculate_attrition_rate(cat_df,'Over Time')
```

Out[48]: Category Attrition Rate 0 Yes 30.528846 1 No 10.436433

High Attrition Rate when employees have to do Over Time.

```
In [49]: calculate_attrition_rate(cat_df,'Environment Satisfaction')
```

Out[49]:		Category	Attrition Rate
	2	Low	26.388889
	0	Medium	14.982578

	Category	Attrition Rate
1	High	13.303769
3	Very High	13.063063

Employees don't want a very high satisfactory environment but it should be decent enough. A really bad environment could be a driver for attrition rates.

```
In [50]:
           calculate attrition rate(cat df,'Work Life Balance')
             Category Attrition Rate
Out[50]:
          0
                  Bad
                           66.666667
          2
                 Good
                           16.129032
          1
                Better
                            7.073171
          3
                  Best
                            4.545455
```

Huge Insight:

Bad Work Life Balance literally drives away the employee. Highest Attrition Rate in the data.

```
In [51]: calculate_attrition_rate(cat_df,'Relationship Satisfaction')
```

Out[51]: Category Attrition Rate 0 Low 36.705202 2 Medium 21.341463 3 High 8.920188 1 Very High 0.540541

Insights:

- 1. Low relationship satisfaction results in a high attrition rate.
- 2. Very High satisfaction has such low Attrition Rate.

Summary of Insights

- 1. Data is quite inconsistent because we have around 65% of employee from R&D Department, 30% from Sales and only 5% from HR Department.
- 2. We could clearly see as Job Level rises, monthly income will rise as well.

That's why having both these 2 columns for our model would be harmful hence we should remove 1 of them.

3. Single Employees have the most attrition rate.

This could be one of the driving factors for attrition rate.

- 4. Attrition Rate is almost similar among categories of different Education, hence we can drop this column. Similar for Education Field column.
- 5. People who have to travel frequently have the highest attrition rate
- 6. People who don't travel have the least attrition rate which is best for organization.
- 7. Employees like to get involved in their job. As the job involvement decreases, there is huge rise in

attrition rate.

- 8. Employees with low job satisfaction have high attrition rate.
- 9. High Attrition Rate when employees have to do Over Time.
- 10. Employees don't want a very high satisfactory environment but it should be decent enough. A really bad environment could be a driver for attrition rates.
- 11. Bad Work Life Balance literally drives away the employee. Highest Attrition Rate in the data.
- 12. Low relationship satisfaction results in a high attrition rate.

Very High satisfaction has such low Attrition Rate.

Key Driver Factors for Modeling

- 1. Salary Hike %
- 2. Years with current manager
- 3. Years in Current Role
- 4. Years at a Company
- 5. Job Level
- 6. Stock Option Level
- 7. Age
- 8. Marital Status
- 9. Business Travel
- 10. Job Satisfaction
- 11. Job Involvement
- 12. Over Time
- 13. Environment Satisfaction
- 14. Work Life Balance
- 15. Relationship Satisfaction
- 16. Department
- 17. Job Role
- 18. Gender
- 19. Years Since Last Promotion

Data Pre-Processing

In [52]:

df.head()

Out[52]:

	Employee ID	Department	Job Role	Gender	Age	Marital Status	Education	Education Field	Business Travel	Distance From Home (kms)	•••
0	1	Sales	Sales Executive	Female	41	Single	College	Life Sciences	Travel_Rarely	1	
1	2	Research & Development	Research Scientist	Male	49	Married	Below College	Life Sciences	Travel_Frequently	8	
2	4	Research & Development	Laboratory Technician	Male	37	Single	College	Other	Travel_Rarely	2	
3	5	Research & Development	Research Scientist	Female	33	Married	Master	Life Sciences	Travel_Frequently	3	

	Employee ID	Department	Job Role	Gender	Age	Marital Status	Education	= 1 · · ·		Distance From Home (kms)	•••
4	7	Research & Development		Male	27	Married	Below College	Medical	Travel_Rarely	2	

5 rows × 26 columns

In [53]:

df.select_dtypes(include='object')

Out[53]:

	Department	Job Role	Gender	Marital Status	Education	Education Field	Business Travel	Job Involvement	Jo Satisfactio
0	Sales	Sales Executive	Female	Single	College	Life Sciences	Travel_Rarely	High	Very Hig
1	Research & Development	Research Scientist	Male	Married	Below College	Life Sciences	Travel_Frequently	Medium	Mediur
2	Research & Development	Laboratory Technician	Male	Single	College	Other	Travel_Rarely	Medium	Hig
3	Research & Development	Research Scientist	Female	Married	Master	Life Sciences	Travel_Frequently	High	Hig
4	Research & Development	Laboratory Technician	Male	Married	Below College	Medical	Travel_Rarely	High	Mediur
•••									
1465	Research & Development	Laboratory Technician	Male	Married	College	Medical	Travel_Frequently	Very High	Very Hig
1466	Research & Development	Healthcare Representative	Male	Married	Below College	Medical	Travel_Rarely	Medium	Lo
1467	Research & Development	Manufacturing Director	Male	Married	Bachelor	Life Sciences	Travel_Rarely	Very High	Mediur
1468	Sales	Sales Executive	Male	Married	Bachelor	Medical	Travel_Frequently	Medium	Mediur
1469	Research & Development	Laboratory Technician	Male	Married	Bachelor	Medical	Travel_Rarely	Very High	Hig

1470 rows × 13 columns

In [54]:

df.select_dtypes(include='int')

Out[54]:		Employee		Distance From	Job	Salary	Stock	No. of	Years At	Years In	Years	Years With	Train Tin
		ID	Age	Home (kms)		Hike (%)	Option Level	Companies Worked	Company		Since Last Promotion	Curr Manager	L
_	0	1	41	1	2	11	0	2	6	4	0	5	
	1	2	49	8	2	23	1	1	10	7	1	7	
	2	4	37	2	1	15	0	6	0	0	0	0	
	3	5	33	3	1	11	0	1	8	7	3	0	

		Employee ID	Age	Distance From Home (kms)	Job Level	Salary Hike (%)	Stock Option Level	No. of Companies Worked	Years At Company	Years In Current Role	Years Since Last Promotion	Years With Curr Manager	Train Tin L Y
	4	7	27	2	1	12	1	9	2	2	2	2	
	•••												
1	1465	2061	36	23	2	17	1	4	5	2	0	3	
1	1466	2062	39	6	3	15	1	4	7	7	1	7	
1	1467	2064	27	4	2	20	1	1	6	2	0	3	
1	1468	2065	49	2	2	14	0	2	9	6	0	8	
1	1469	2068	34	8	2	12	0	2	4	3	1	2	

1470 rows × 13 columns

Out[55]:

	Department	Job Role	Gender	Marital Status	Business Travel	Job Involvement	Job Satisfaction	Over Time	Environment Satisfaction	Wo Li Balan
0	Sales	Sales Executive	Female	Single	Travel_Rarely	High	Very High	Yes	Medium	Ва
1	Research & Development	Research Scientist	Male	Married	Travel_Frequently	Medium	Medium	No	High	Bett
2	Research & Development	Laboratory Technician	Male	Single	Travel_Rarely	Medium	High	Yes	Low	Ba
3	Research & Development	Research Scientist	Female	Married	Travel_Frequently	High	High	Yes	Very High	Bett
4	Research & Development	Laboratory Technician	Male	Married	Travel_Rarely	High	Medium	No	Low	Bett

```
In [56]: ds.shape
```

Out[56]: (1470, 20)

In [57]:

#We have reduced the number of columns to 20. Great!

Setting Dependent and Independent variables

```
In [58]: X = ds.iloc[:,:-1].values
    y=ds.iloc[:,-1].values
    print(X)
    print(y)
```

[['Sales' 'Sales Executive' 'Female' ... 4 0 5]

```
['Research & Development' 'Research Scientist' 'Male' ... 7 1 7]
['Research & Development' 'Laboratory Technician' 'Male' ... 0 0 0]
...
['Research & Development' 'Manufacturing Director' 'Male' ... 2 0 3]
['Sales' 'Sales Executive' 'Male' ... 6 0 8]
['Research & Development' 'Laboratory Technician' 'Male' ... 3 1 2]]
[1 0 1 ... 0 0 0]
```

```
Encoding the Independent Variables
In [59]:
         from sklearn.compose import ColumnTransformer
         from sklearn.preprocessing import OneHotEncoder
In [60]:
         ct = ColumnTransformer(transformers=[('encoder',OneHotEncoder(),[0,1,2,3,4,5,6,7,8,9,10])]
         X = np.array(ct.fit transform(X))
In [61]:
         print(X)
         [[0.0 0.0 1.0 ... 4 0 5]
         [0.0 1.0 0.0 ... 7 1 7]
         [0.0 1.0 0.0 ... 0 0 0]
          [0.0 1.0 0.0 ... 2 0 3]
          [0.0 0.0 1.0 ... 6 0 8]
          [0.0 1.0 0.0 ... 3 1 2]]
In [62]:
         X.shape
        (1470, 50)
Out[62]:
        Splitting dataset into training and test set
In [63]:
         from sklearn.model selection import train test split
         X train, X test, y train, y test = train test split(X,y,test size=0.2,random state=0)
In [64]:
         print(X train[0,42:])
         #print(X train)
```

```
#Gives value between -3 to +3
#We do not standardize our dummy variables.

X_train[:,42:] = sc.fit_transform(X_train[:,42:])

X_test[:,42:] = sc.transform(X_test[:,42:])

In [70]: print(X_train[0,42:])

[2.3389367036100883 1.759027295888783 -0.5394871849927129
0.22505569171608666 -0.9820078512815037 -1.1568405801129382
-0.6738150570956313 -1.1504388612192216]

In [71]: print(X_test[0,42:])

[-0.08886551888941858 0.8545165394544985 -0.256887216372922
-0.9306888212014588 0.49540097572111685 -0.3303250745158451
2.132819560889478 0.8143770527966774]
```

Machine Learning Classification Models

- 1. Logistic Regression
- 2. KNN
- 3. SVM
- 4. Kernel SVM
- 5. Naive Bayes
- 6. Decision Tree Classification
- 7. Random Forest Classification

Logistic Regression

y_pred = classifier.predict(X test)

```
\verb|print(np.concatenate((y_pred.reshape(len(y_pred),1),y_test.reshape(len(y_test),1)),1)||
[[0 0]]
[0 0]
[1 1]
 [0 0]
 [0 1]
[0 0]
 [1 1]
 [0 0]
 [0 0]
 [1 1]
 [0 0]
 [1 1]
 [0 0]
 [1 1]
 [0 0]
 [0 0]
 [0 0]
 [0 1]
 [0 0]
 [0 0]
 [0 0]
 [0 0]
 [0 0]
 [0 0]
 [0 0]
 [0 0]
 [0 0]
 [0 0]
 [0 0]
 [0 0]
 [0 0]
 [0 0]
 [0 0]
 [0 1]
 [0 0]
 [0 0]
 [0 0]
 [0 0]
 [1 1]
 [0 0]
 [0 0]
 [0 0]
 [0 0]
 [0 0]
 [0 0]
 [1 1]
 [0 0]
 [0 0]
 [1 1]
 [0 1]
 [0 0]
 [0 1]
 [0 0]
 [0 0]
 [1 1]
 [0 0]
 [0 0]
 [1 1]
 [0 0]
 [0 0]
 [0 0]
 [0 0]
```

[0 0]

[0 0] [0 0] $[0\ 0]$ [1 1] [0 1] [0 0] [0 1] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [1 1] [0 0] [0 1] [0 1] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [1 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [1 1] [0 0] [0 0] [0 0]

[0 0] [0 0]

[0 0] [0 0] [1 1] [1 1] [0 0] [0 0] [1 0] [1 1] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 1] [1 0] [0 0] [0 1] [0 0] [0 0] [0 0] [0 0] [0 1] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [1 1] [0 0] [0 0] [1 1] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 1] [0 0] [0 0] [0 1] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [1 1] [0 0] [0 0] [0 0] [0 0] [0 1] [0 0] [1 0] [0 1] [0 0]

> [0 0] [0 0]

[0 0] [0 0] [0 0] [1 1] [0 0] [0 0] [0 0] [1 1] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 1] [0 1] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [1 1] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 1] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [1 1] [0 0] [0 0] [0 0] [0 0] [0 1] [0 0] [1 1]

[0 0]

```
[0 0]
          [0 0]
          [0 0]
          [1 1]
          [0 1]
          [0 0]
          [0 0]
          [0 0]
          [0 0]
          [0 0]
          [0 0]
          [0 0]
          [0 0]
          [1 0]
          [0 0]
          [0 0]
          [1 1]
          [0 0]
          [0 0]
          [0 0]
          [0 0]
          [0 0]
          [0 0]
          [0 1]
          [0 0]
          [0 0]
          [0 0]
          [0 1]
          [0 0]
          [0 0]]
In [74]:
          #### Confusion Matrix
          from sklearn.metrics import confusion matrix, accuracy score
          cm = confusion_matrix(y_test,y_pred)
          print(cm)
          accuracy score(y test, y pred)
         [[240
                  5]
          [ 23 26]]
         0.9047619047619048
Out[74]:
```

Logistic Regression Model - 90.5% accuracy.

KNN Classifier

[36 13]]

[0 0] [0 0] [0 0]

```
In [75]:
         from sklearn.neighbors import KNeighborsClassifier
         classifier = KNeighborsClassifier(n neighbors=7,metric='minkowski',p=2)
         classifier.fit(X train, y train)
         #Predicting test result
         y pred = classifier.predict(X test)
         \#print(np.concatenate((y pred.reshape(len(y pred),1),y test.reshape(len(y test),1)),1))
         #### Confusion Matrix
         from sklearn.metrics import confusion matrix,accuracy score
         cm = confusion_matrix(y_test,y_pred)
         accuracy score(y test, y pred)
         [[244
               1]
```

Out[75]: 0.8741496598639455

KNN Classifier Model - 87.4% accuracy.

SVM Classifier

```
In [76]:
         from sklearn.svm import SVC
         classifier = SVC(kernel = 'rbf', random state=0)
         classifier.fit(X train, y train)
         #Predicting test result
         y pred = classifier.predict(X test)
         #print(np.concatenate((y pred.reshape(len(y pred),1),y test.reshape(len(y test),1)),1))
         #### Confusion Matrix
         from sklearn.metrics import confusion matrix, accuracy score
         cm = confusion_matrix(y_test,y_pred)
         print(cm)
         accuracy score (y test, y pred)
         [[241 4]
         [ 30 19]]
        0.8843537414965986
Out[76]:
```

SVM Classifier Model - 88.4% accuracy.

Decision Tree Classification

```
In [77]:
         from sklearn.tree import DecisionTreeClassifier
         classifier = DecisionTreeClassifier(criterion='entropy', random state=0)
         classifier.fit(X train, y train)
         #Predicting test result
         y pred = classifier.predict(X test)
         \#print(np.concatenate((y pred.reshape(len(y pred),1),y test.reshape(len(y test),1)),1))
         #### Confusion Matrix
         from sklearn.metrics import confusion matrix, accuracy score
         cm = confusion matrix(y test, y pred)
         print(cm)
         accuracy score (y test, y pred)
         [[224 21]
          [ 22 27]]
        0.8537414965986394
Out[77]:
```

Decision Tree Classifier Model - 85.3% accuracy.

[30 19]]

```
In [78]: # Random Forest Classification
    from sklearn.ensemble import RandomForestClassifier
    classifier = RandomForestClassifier(n_estimators = 50, random_state=0)
    classifier.fit(X_train, y_train)
    #Predicting test result
    y_pred = classifier.predict(X_test)
    #print(np.concatenate((y_pred.reshape(len(y_pred),1),y_test.reshape(len(y_test),1)),1))
    #### Confusion Matrix
    from sklearn.metrics import confusion_matrix,accuracy_score
    cm = confusion_matrix(y_test,y_pred)
    print(cm)
    accuracy_score(y_test, y_pred)
```

Out[78]: 0.8843537414965986

Random Forest Classifier Model - 88.4% accuracy.

Result

We should use Logistic Regression Model (90.5% accuracy) since it gives us more than 90% accurate results.