

Agenda

- 1. What is Bivariate analysis and why is it so important?
- 2. Recap Covariance and Correlations
- 3. Quantitative vs Quantitative
- 4. Quantitative vs Qualitative
- 5. Qualitative vs Qualitative Analysis
- 7. Statistical analysis using t-tests and anova

What is Bivariate Analysis?

- It involves the analysis of two variables
- purpose of determining the empirical relationship between the two variables
- Want to test a hypothesis of association or relationship?
- The results from bivariate analysis can be stored in a two-column data table.

Statistics to represent relationships

- Covariance is a statistic that measures the size of the relationship between two variables.
- Correlation is a measure that determines the strength of the relationship between two variables.
- A myth: correlation = causation.

The Scatterplot

- Relationship between numerical or continuous variables.
- · The graphic representation of the relationship between the two variables coming from a bivariate data set.
- Think of them as the graphic representation of two data sets which have been put into place by dedicating each axis in **the plot to a different** variable.
- · Here, majorly we look into plotting data points without connectivity

The Line plot

- Relationship between numerical or continuous variables.
- The graphic representation of the relationship between the two variables coming from a bivariate data set.
- Here, majorly we look into plotting data points with connectivity, but we can't see the points themselves.
- · More of trend line plots

Bar Charts

9 Month average academic salary

By Professor Level

Trip duration

By Station

Average Trip Duration (Seconds)

Box plots

Boxplot –Two variable example

- What? I want to know how the distribution of heart rate differs for people resting, walking and running.
- Assumption that with more exercise activity, the median heart rate increases.

ld	Diet	Pulse	Time	Kind
5	Low fat	91	30 min	Rest
21	Low fat	93	1 min	Running
27	No fat	100	1 min	Running
21	Low fat	110	30 min	Running
4	Low fat	80	1 min	Rest

Cross Tabulations

- Both variables are categorical
- It is used to count between categories, or get summaries between two categories.

			<u> </u>	/3	
Cust	Categ_X	Categ_y	Categ_y		
1	а	а	Categ_X		
 1	а	b	а		
 1	b	а	b		
1	b	b	All		
2	а	а			
3	а	а			
3	а	b			
3	b	а			
 3	b	b =			
4	b	b			
 5	b	b			

Heat Maps in contingency tables

Contingency table with colors showing strength in counts/frequencies

Bar Charts with two variables

Distribution of population in South Africa

By Provinces

App Publishing trend

2012 - 2016

Pivot tables

- Wrangle the data around the pivot to analyze better.
- Derived from Excel.
- Shift the data and aggregate it around the pivot.
- Explains better than normal dataframes

