Algorithms Lab

October 3, 2012

Outline

- Hints
- 2 Templates
- Memory layout
- Performance

Outline

- Hints
- 2 Templates
- Memory layout
- Performance

Know standard techniques

- backtrack
- greedy
- divide & conquer
- dynamic programming ...

Exercise 1 - Longest Path

- Modify DFS/BFS for a given vertex v, find the longest path which starts in v
- Iterate over all $v \mathcal{O}(n^2)$ in total ... too slow
- Modify DFS further
- Challenge implement without a recursion

Exercise 1 - Longest Path

- Modify DFS/BFS for a given vertex v, find the longest path which starts in v
- Iterate over all $v \mathcal{O}(n^2)$ in total ... too slow
- Modify DFS further
- Challenge implement without a recursion

Exercise 1 - Longest Path

- Modify DFS/BFS for a given vertex v, find the longest path which starts in v
- Iterate over all $v \mathcal{O}(n^2)$ in total ... too slow
- Modify DFS further
- Challenge implement without a recursion

Exercise 2 - The Beasts

- 50 points backtrack
 - keep track of occupied columns/diagonals
- 100 points backtrack with randomization, ...
- Try not to look on wikipedia for a solution!

Exercise 2 - The Beasts

- 50 points backtrack
 - keep track of occupied columns/diagonals
- 100 points backtrack with randomization, ...
- Try not to look on wikipedia for a solution!

Exercise 2 - The Beasts

- 50 points backtrack
 - keep track of occupied columns/diagonals
- 100 points backtrack with randomization, ...
- Try not to look on wikipedia for a solution!

- 2 coins easy
- 3 coins still easy
- 4+ coins draw a tree of all possible game scenarios
- Straightforward recursive implementation 30 points
- Observation (left, right, left) and (left, left, right) give the same resulting sequence
- Challenge implement without a recursion

- 2 coins easy
- 3 coins still easy
- 4+ coins draw a tree of all possible game scenarios
- Straightforward recursive implementation 30 points
- Observation (left, right, left) and (left, left, right) give the same resulting sequence
- Challenge implement without a recursion

- 2 coins easy
- 3 coins still easy
- 4+ coins draw a tree of all possible game scenarios
- Straightforward recursive implementation 30 points
- Observation (left, right, left) and (left, left, right) give the same resulting sequence
- Challenge implement without a recursion

- 2 coins easy
- 3 coins still easy
- 4+ coins draw a tree of all possible game scenarios
- Straightforward recursive implementation 30 points
- Observation (left, right, left) and (left, left, right) give the same resulting sequence
- Challenge implement without a recursion

Exam question!

- \approx 110 students
- 31 100 points
- 16 30 points

In disguise

$$\max_{i < j} \left\{ \sum_{t=1}^{i-1} p_t + (j-i+1)p_j + \sum_{t=j+1}^{n} p_t \right\}$$

equivalently

$$\max_{i < j} \{S_n - (S_j - S_{i-1}) + (j - i + 1)p_j\}$$

• simple $\mathcal{O}(n^2)$ solution - iterate over all i, j-10 points

In disguise

$$\max_{i < j} \left\{ \sum_{t=1}^{i-1} p_t + (j-i+1)p_j + \sum_{t=j+1}^{n} p_t \right\}$$

equivalently

$$\max_{i < j} \{S_n - (S_j - S_{i-1}) + (j - i + 1)p_j\}$$

• simple $\mathcal{O}(n^2)$ solution - iterate over all i, j-10 points

In disguise

$$\max_{i < j} \left\{ \sum_{t=1}^{i-1} p_t + (j-i+1)p_j + \sum_{t=j+1}^{n} p_t \right\}$$

equivalently

$$\max_{i < j} \{ S_n - (S_j - S_{i-1}) + (j - i + 1)p_j \}$$

• simple $\mathcal{O}(n^2)$ solution - iterate over all i, j-10 points

For each j

- $f_i(i) := S_n (S_i S_{i-1}) + (j i + 1)p_i$
- \bullet m_j smallest i which maximizes f_j

- Consider $j_1 < j_2$
- Assume $p_{j'} \leq p_{j_2}$ for each $j' \in \{j_1, \dots, j_2 1\}$
- ullet then $f_{j_2}(m_{j_1}) \geq f_{j_1}(m_{j_1}) \Rightarrow f_{j_2}(m_{j_2}) \geq f_{j_1}(m_{j_1})$

For each j

- $f_i(i) := S_n (S_i S_{i-1}) + (j i + 1)p_i$
- m_j smallest i which maximizes f_j

- Consider $j_1 < j_2$
- Assume $p_{j'} \leq p_{j_2}$ for each $j' \in \{j_1, \ldots, j_2 1\}$
- ullet then $f_{j_2}(m_{j_1}) \geq f_{j_1}(m_{j_1}) \Rightarrow f_{j_2}(m_{j_2}) \geq f_{j_1}(m_{j_1})$

For each j

- $f_i(i) := S_n (S_i S_{i-1}) + (j i + 1)p_i$
- m_j smallest i which maximizes f_j

- Consider $j_1 < j_2$
- Assume $p_{j'} \leq p_{j_2}$ for each $j' \in \{j_1, \ldots, j_2 1\}$
- ullet then $f_{j_2}(m_{j_1}) \geq f_{j_1}(m_{j_1}) \Rightarrow f_{j_2}(m_{j_2}) \geq f_{j_1}(m_{j_1})$

For each j

- $f_i(i) := S_n (S_i S_{i-1}) + (j i + 1)p_i$
- m_j smallest i which maximizes f_j

- Consider $j_1 < j_2$
- Assume $p_{j'} \leq p_{j_2}$ for each $j' \in \{j_1, \ldots, j_2 1\}$
- ullet then $f_{j_2}(m_{j_1}) \geq f_{j_1}(m_{j_1}) \Rightarrow f_{j_2}(m_{j_2}) \geq f_{j_1}(m_{j_1})$

Instead of every j - set of candidates S for the right end of your obstacle

- go from right to left
- consider a hole only if it updates the current maximum
- for each $j \in S$ find m_j by iterating $i = 1, \ldots, j-1$
- S can be large ... still $\mathcal{O}(n^2)$ 30 points

Instead of every j - set of candidates S for the right end of your obstacle

- go from right to left
- consider a hole only if it updates the current maximum
- for each $j \in S$ find m_i by iterating $i = 1, \dots, j-1$
- S can be large ... still $\mathcal{O}(n^2)$ 30 points

Observation 2

- Consider $j_1, j_2 \in S$ and $j_1 < j_2$
- remember from the definition of S we have $p_{j_1} > p_{j_2}$
- then $m_{j_1} \leq m_{j_2}$

- ullet Consider some $j \in \mathcal{S}$ and m_j
- ullet for all $j_1 \in \mathcal{S}, \, j_1 < j \, : \, m_{j_1} \leq m_j$
- for all $j_2 \in S$, $j < j_2 : m_j \le m_{j_2}$
- what if j is the median of S?

Observation 2

- Consider $j_1, j_2 \in S$ and $j_1 < j_2$
- remember from the definition of S we have $p_{j_1} > p_{j_2}$
- then $m_{j_1} \leq m_{j_2}$

- ullet Consider some $j \in S$ and m_j
- ullet for all $j_1 \in \mathcal{S}, \, j_1 < j \, : \, m_{j_1} \leq m_j$
- for all $j_2 \in S$, $j < j_2 : m_j \le m_{j_2}$
- what if *j* is the median of *S*?

Observation 2

- Consider $j_1, j_2 \in S$ and $j_1 < j_2$
- remember from the definition of S we have $p_{j_1} > p_{j_2}$
- then $m_{j_1} \leq m_{j_2}$

- Consider some $j \in S$ and m_j
- ullet for all $j_1 \in S$, $j_1 < j$: $m_{j_1} \le m_j$
- for all $j_2 \in S$, $j < j_2 : m_j \le m_{j_2}$
- what if j is the median of S?

Observation 2

- Consider $j_1, j_2 \in S$ and $j_1 < j_2$
- remember from the definition of S we have $p_{j_1} > p_{j_2}$
- then $m_{j_1} \leq m_{j_2}$

- ullet Consider some $j \in S$ and m_j
- for all $j_1 \in S$, $j_1 < j$: $m_{j_1} \le m_j$
- for all $j_2 \in S$, $j < j_2 : m_j \le m_{j_2}$
- what if *j* is the median of *S*?

Observation 2

- Consider $j_1, j_2 \in S$ and $j_1 < j_2$
- remember from the definition of S we have $p_{j_1} > p_{j_2}$
- then $m_{j_1} \leq m_{j_2}$

- ullet Consider some $j \in \mathcal{S}$ and m_j
- for all $j_1 \in S$, $j_1 < j : m_{j_1} \le m_j$
- for all $j_2 \in S$, $j < j_2 : m_j \le m_{j_2}$
- what if j is the median of S?

- Write a slow solution easy to check if correct
- Handcraft testcases
 - whatever comes to your mind
 - trivial cases 5, 4, 3, 2, 1 for Pinball
- Generate testcases
 - random

- Write a slow solution easy to check if correct
- Handcraft testcases
 - whatever comes to your mind
 - trivial cases -5, 4, 3, 2, 1 for Pinball
- Generate testcases
 - random

- Write a slow solution easy to check if correct
- Handcraft testcases
 - whatever comes to your mind
 - \bullet trivial cases -5,4,3,2,1 for Pinball
- Generate testcases
 - random

Random testcases

- might miss border cases correctness
- might miss worse case runtime

Example

- Consider second solution for the Pinball problem
- Runtime $\mathcal{O}(|S| \cdot n)$
- Generate random testcase assume all points are distinct

$$Pr[\text{update of maximum at position } i] = \frac{1}{n-i+1}$$

$$\mathbb{E}[\# \text{ of updates}] = \sum_{i=1}^{n} 1/i \approx \log n$$

Random testcases

- might miss border cases correctness
- might miss worse case runtime

Example

- Consider second solution for the Pinball problem
- Runtime $\mathcal{O}(|S| \cdot n)$
- Generate random testcase assume all points are distinct

$$Pr[\text{update of maximum at position } i] = \frac{1}{n-i+1}$$

$$\mathbb{E}[\# \text{ of updates}] = \sum_{i=1}^{n} 1/i \approx \log n$$

Random testcases

- might miss border cases correctness
- might miss worse case runtime

Example

- Consider second solution for the Pinball problem
- Runtime $\mathcal{O}(|S| \cdot n)$
- Generate random testcase assume all points are distinct

$$Pr[\text{update of maximum at position } i] = \frac{1}{n-i+1}$$

$$\mathbb{E}[\# ext{ of updates}] = \sum_{i=1}^n 1/i pprox \log n$$

Random testcases

- might miss border cases correctness
- might miss worse case runtime

Example

- Consider second solution for the Pinball problem
- Runtime $\mathcal{O}(|S| \cdot n)$
- Generate random testcase assume all points are distinct

$$Pr[\text{update of maximum at position } i] = \frac{1}{n-i+1}$$

$$\mathbb{E}[\# \text{ of updates}] = \sum_{i=1}^{n} 1/i \approx \log n$$

Testing hints

Random testcases

- might miss border cases correctness
- might miss worse case runtime

Example

- Consider second solution for the Pinball problem
- Runtime $\mathcal{O}(|S| \cdot n)$
- Generate random testcase assume all points are distinct

$$Pr[\text{update of maximum at position } i] = \frac{1}{n-i+1}$$

$$\mathbb{E}[\# \text{ of updates}] = \sum_{i=1}^n 1/i \approx \log n$$

• $|S| \approx \log n \to \mathcal{O}(n \log n)$ running time in expectation

Testing hints

Random testcases

- might miss border cases correctness
- might miss worse case runtime

Example¹

- Consider second solution for the Pinball problem
- Runtime $\mathcal{O}(|S| \cdot n)$
- Generate random testcase assume all points are distinct

$$Pr[\text{update of maximum at position } i] = \frac{1}{n-i+1}$$

$$\mathbb{E}[\# \text{ of updates}] = \sum_{i=1}^n 1/i \approx \log n$$

• $|S| \approx \log n \rightarrow \mathcal{O}(n \log n)$ running time in expectation

Outline

- Hints
- 2 Templates
- Memory layout
- 4 Performance

Templates

Example

std::vector<int>

Templates – goal

Templates solve this problem:

```
void swap_int (int& a, int& b) {
int t = b;
b = a;
a = t;
}
```

Templates – goal

Templates solve this problem:

```
void swap_int (int& a, int& b) {
int t = b;
b = a;
a = t;
}

void swap_float (float& a, float& b) {
float t = b;
b = a;
a = t;
}
```

Function templates

How about if we could say

```
1 /* for any type T, define a function */
 void swap (T& a, T& b) {
   T t = b;
b = a;
a = t;
6 }
```

Instead of class, you can also use typename as a synonym

Function templates

How about if we could say

```
1 /* for any type T, define a function */
  void swap (T& a, T& b) {
     T t = b;
b = a;
a = t:
6 }
  It is that easy!
  template < class T>
  void swap (T& a, T& b) {
      T t = b:
3
   b = a;
    a = t;
 }
```

Instead of class, you can also use typename as a synonym

Class templates

```
template < class T, class U>
class pair {
public:
    T first;
    U second;
};

pair < int, float > p;
p.first = 1;
p.second = 2;
```

Class templates

```
template < class T, class U>
class pair {
public:
    T first;
    U second;
};

pair < int, float > p;
p.first = 1;
p.second = 2;
```

The same goes for struct

Special-casing types

Templates can special-case for certain types (or even values). Consider a simple vector:

```
1 template < class T>
2 class vector {
3    long _size;
4    long _capacity;
5    T *data;
6 public:
7    T operator[](int i) const {
8        return data[i];
9    }
10    /* rest of logic left as an exercise */
11 };
```

But if T is bool, shouldn't we implement a packed bitfield?

Special-casing types

Templates can special-case for certain types (or even values). Consider a simple vector:

```
template < class T>
class vector {
    T *data;
};
```

But if T is bool, shouldn't we implement a packed bitfield?

Special-cased bitfield vector

```
template <>
   class vector < bool > {
       long _size;
3
       long _capacity;
       char *data;
   public:
       bool operator[](int i) const {
7
            return (data[i/8] >> i%8) & 1;
8
9
       /* rest of logic left as an exercise */
10
   };
11
```

Outline

- Hints
- 2 Templates
- Memory layout
- Performance

Memory layout and variables

```
1 int a;
2 static int b;
3 extern int c;
4 std::vector<int> u(1);
5
  int f(int x) {
      int i;
7
      static int j;
    std::vector<int> v;
      for (int k = 0; k < 100; k++) {
10
           std::vector<int> w(1);
11
12
  }
13
```

Outline

- Hints
- 2 Templates
- Memory layout
- Performance

Performance – measures

Real time or wall time: Time elapsed on a clock until the task is finished

User time Time the kernel allocated for your program to run System time Time the kernel did work on your program's behalf

Note

Measurement is influenced by many things and variance usually about 20%.

Performance – measures

Real time or wall time: Time elapsed on a clock until the task is finished

User time Time the kernel allocated for your program to run System time Time the kernel did work on your program's behalf

Note

Measurement is influenced by many things and variance usually about 20%.

User/system time example

Consider

```
1 for (int i = 0; i < 1000000; i++)
2    std::cout << i << "\n";

VS.

1 for (int i = 0; i < 1000000; i++)
2    std::cout << i << std::endl;</pre>
```

	real [ms]	user [ms]	sys [ms]
	99	97	2
endl	241	123	117

User/system time example

Consider

```
1 for (int i = 0; i < 1000000; i++)
2    std::cout << i << "\n";

VS.

1 for (int i = 0; i < 1000000; i++)
2    std::cout << i << std::endl;</pre>
```

	real [ms]	user [ms]	sys [ms]
"\n"	99	97	2
endl	241	123	117

Speed

- For the purposes of this tutorial we call this unit *ticks* (t).
- The "actual" time measurements were done on my laptop.
 - Clock speed boosted 3.3 GHz
 - Length of one clock cycle thus 0.3 ns

Speed

- For the purposes of this tutorial we call this unit *ticks* (t).
- The "actual" time measurements were done on my laptop.
 - Clock speed boosted 3.3 GHz
 - Length of one clock cycle thus 0.3 ns

Speed

- For the purposes of this tutorial we call this unit ticks (t).
- The "actual" time measurements were done on my laptop.
 - Clock speed boosted 3.3 GHz
 - Length of one clock cycle thus 0.3 ns

Speed

- For the purposes of this tutorial we call this unit ticks (t).
- The "actual" time measurements were done on my laptop.
 - Clock speed boosted 3.3 GHz
 - Length of one clock cycle thus 0.3 ns

Performance: simple operations

X-ing up a 1000-element array takes (per element)...

ор	ns	nt
add	0.17	0.26
multiply	0.56	0.52
divide	6.0	1.2

Remember that one clock cycle is \$10.3ns

Performance: input/output

Doing I/O with int typed 1-3 digit numbers takes...

ор	ns	nt
cin sync	240	297
cin nosync	79	100
scanf	95	124
cout sync	84	118
cout nosync	90	107
cout sync endl	130	142
cout nosync endl	110	120
printf	81	106

Performance: function calls

Calling a simple function...

ор	ns	nt
directly	1.9	2.1
indirectly	2.2	2.3
inlined	0.23	0.28

Performance: memory allocations

Allocating a few bytes of memory on the heap...

ор	ns	nt
new	31	41
new, delete	35	52
malloc	27	38
malloc, free	32	48

Performance: vector

Storing elements in a vector of type...

type	ns	nt
int	0.23	0.20
char	0.28	0.35
bool	0.89	1.65

Performance: set

In a set, doing...

ор	ns	nt
insert	180	130
insert with many dups	90	31
insert, remove	280	65

Recall that new is about 30 ns

Performance: vector

Sum up the elements in a... (per element)

type	ns	nt
vector <int></int>	0.6	0.85
set <int></int>	5.9	4.2

Performance: vector

Sum up the elements in a... (per element)

type	ns	nt
vector <int></int>	0.6	0.85
set <int></int>	5.9	4.2

Performance: synchronization

Locking and then unlocking a mutex...

type	ns
only one user	4.7
heavily contended	140

Performance: summary

