Introdução à Física Experimental

2022/23

(Lic. Física, Lic. Eng. Física)

Exercícios sobre incerteza padrão tipo A

- **1.** Um estudante mediu o período (*T*) de um pêndulo três vezes, tendo obtido os resultados, expressos em segundo (s): 1.6, 1.8 e 1.7.
- a) Calcule o valor médio (\bar{T}) , a incerteza padrão da amostra (leituras experimentais u_{T_i}) e a incerteza padrão da média $(u_{\bar{T}})$. (Sol.: $\bar{T} = 1.70 \text{ s}$; $u_{\bar{T}} = 0.1 \text{ s}$; $u_{\bar{T}} = 0.06 \text{ s}$;).
- b) Que tipo de FDP é suposta no procedimento que executou na alínea a)? Há alguma forma experimental de testar se essa FDP é a correta? (Sol.: Gaussiana; Sim: fazer um número muito elevado de medições e representar o histograma)
- c) Se o estudante decidir fazer uma quarta medida, qual é a probabilidade de que essa medida esteja fora do intervalo 1.6 1.8 s? (Sol.: 32%)
- **2.** a) Calcule a média e a incerteza padrão das seguintes 30 medidas do tempo (*t*, em segundo):

8.16	8.14	8.12	8.16	8.18	8.10	8.18	8.18	8.18	8.24
8.16	8.14	8.17	8.18	8.21	8.12	8.12	8.17	8.06	8.10
8.12	8.10	8.14	8.09	8.16	8.16	8.21	8.14	8.16	8.13

Sugere-se a utilização das funções pré-definidas da máquina de calcular ou uma folha de cálculo.

(Sol.:
$$\bar{t} = 8.149 \text{ s}$$
; $u_t = 0.039 \text{ s}$. Nota: $u_{\bar{t}} = \frac{u_t}{\sqrt{N}} = 0.007 \text{ s}$)

- b) Espera-se que 68% dos valores estejam no intervalo $\bar{t} \pm u_t$. Das 30 medidas quantas espera que se situem fora do intervalo $\bar{t} \pm u_t$? Em quantas medidas isso acontece? (Sol.: 32% de 30 são 9.6 e observa-se que 8 medidas se situam fora do referido intervalo.)
- **3.** Na tabela seguinte apresentam-se medidas dos comprimentos dos lados p e q de um retângulo.

p (mm)	24.25	24.26	24.22	24.28	24.24	24.25	24.22	24.26	24.23	24.24
q (mm)	50.36	50.35	50.41	50.37	50.36	50.32	50.39	50.38	50.36	50.38

- a) Determine a área do retângulo A=pq, começando por calcular os valores médios \overline{p} e \overline{q} e, depois, $\overline{A}=\overline{p}\overline{q}$. Determine a incerteza associada à área utilizando a propagação da incerteza. (Sol.: $A=(1221.2\pm0.4)~\text{mm}^2$. Nota: devem usar a incerteza das médias de p e q, não a incerteza dos pontos experimentais)
- b) Faça agora a análise admitindo que as medidas foram realizadas aos pares, isto é, em cada ensaio realizou-se uma medida de p e uma medida de q. Determine o valor da área multiplicando cada par (o primeiro p vezes o primeiro q, e assim por diante), sendo o resultado final obtido através do valor médio dos 10 valores de área. Estime a incerteza calculando o desvio padrão da média das 10 áreas. Compare com o resultado da alínea anterior. (Sol.: $A = 1221.2 \pm 0.3 \text{ mm}^2$; Nota: a área dá o mesmo resultado pelos dois métodos, como seria de esperar; a incerteza é semelhante, mas ligeiramente diferente; essa diferença resulta da função não ser linear mas quadrática, e a diferença diminui se as incertezas relativas de p e q tenderem para zero. Aumentar o número e pontos experimentais não afeta o resultado, para além das flutuações estatísticas.)