DUR - LINEÁRNE ROVNICE S NEZNÁMOU V MENOVATELI

TEÓRIA:

Pri riešení lineárnych rovníc s neznámou v menovateli postupujeme nasledovne:

- určíme podmienky riešiteľ nosti (menovatele všetkých lomených výrazov musia byť rôzne od nuly),
- vykonáme DUR vynásobíme ju spoločným menovateľom všetkých lomených výrazov, čím odstránime z rovnice zlomky,
- rovnicu riešime pomocou ekvivalentných úprav,
- koreň (riešenie rovnice) porovnáme s podmienkami riešiteľ nosti:
 - o ak riešenie vyhovuje daným podmienkam, urobíme skúšku správnosti,
 - o ak riešenie nevyhovuje daným podmienkam, rovnica nemá riešenie.

PRAKTICKÁ ČASŤ:

Úloha 1: Riešte rovnicu a urobte skúšku správnosti $\frac{2x+12}{3x} = 2$

riešenie:

$$\frac{2x+12}{3x} = 2 \qquad \text{(určíme podmienky: } 3x \neq 0 \implies P: x \neq 0 \implies \underline{D=R-\{0\}}\text{)}$$

$$\frac{2x+12}{3x} = 2$$
 /.3x (celú rovnicu vynásobíme 3x, čím odstránime z rovnice zlomok)

$$2x + 12 = 2.3x$$

$$2x + 12 = 6x$$
 /-12; -6x (riešime lineárnu rovnicu pomocou ekvivalentných úprav)

$$2x - 6x = -12$$

 $-4x = -12 /: (-4)$

$$x = 3$$
 (riešenie vyhovuje podmienke riešiteľnosti, vykonáme skúšku správnosti)

skúška správnosti:

$$L = \frac{2x + 12}{3x} = \frac{2.3 + 12}{3.3} = \frac{6 + 12}{9} = \frac{18}{9} = 2$$

$$P=2$$

$$L' = P$$
 skúška nám vychádza => $K = \{3\}$

Úloha 2: Riešte rovnicu a urobte skúšku správnosti $\frac{4-3x}{4x} = \frac{1}{2} + \frac{1}{x}$

riešenie:

$$\frac{4-3x}{4x} = \frac{1}{2} + \frac{1}{x}$$
 (určíme podmienky riešiteľnosti: $P: 4x \neq 0$; $P: x \neq 0$)

DUR - LINEÁRNE ROVNICE S NEZNÁMOU V MENOVATELI

 $\frac{4-3x}{4x} = \frac{1}{2} + \frac{1}{x}$ /.4x (celú rovnicu vynásobíme 4x, čím odstránime z rovnice zlomky)

$$4 - 3x = 1.2x + 1.4$$

4-3x=2x+4 /-4; -2x (riešime lineárnu rovnicu pomocou ekvivalentných úprav)

$$-3x - 2x = 4 - 4$$

$$-5x = 0$$
 /: (-5)

x = 0 (riešenie nevyhovuje podmienke riešiteľnosti, rovnica nemá riešenie) Skúšku je už preto zbytočné robiť. $K = \{ \}$

ÚLOHY:

1. Riešte v R:
$$\frac{7m}{3m-8} = 1\frac{4}{5}$$
 $P: 3m-8 \neq 0 => m \neq \frac{8}{3}$
$$\frac{7m}{3m-8} = \frac{9}{5}$$
 $/.5. (3m-8)$ $Sk: L = \frac{7(-9)}{3(-9)-8} = \frac{-63:7}{-35:7} = \frac{9}{5}$
$$5.7m = 9. (3m-8)$$
 $P = \frac{9}{5}$ $L = P$ $M = -72$ $M = -9$ $M = -9$ $M = -9$

2. Riešte v R:
$$\frac{2x+4}{x-4} = 5$$
 (D.ú)

3. Riešte v R:
$$\frac{x^2-1}{x-1} = x + 3$$

4. Riešte v R:
$$\frac{x+3}{x+2} = \frac{x+2}{x+3}$$

5. Riešte v R:
$$\frac{4}{2x-3} = \frac{6}{4x-5}$$

DUR - LINEÁRNE ROVNICE S NEZNÁMOU V MENOVATELI

6. Riešte v R:
$$\frac{x+7}{2x+2} = 1 + \frac{x+4}{4x+4}$$

P1: 4x+4≠0 P2: 2x+2 ≠0

$$\frac{x+7}{2(x+1)} = 1 + \frac{x+4}{4(x+1)}$$
 /.4. $(x+1)$

<u>P: x≠-1</u>

$$2(x+7) = 4(x+1) + (x+4)$$

Sk.: $L' = \frac{2+7}{2(2+1)} = \frac{9}{6} = \frac{3}{2}$

$$2x + 14 = 4x + 4 + x + 4$$

 $P = 1 + \frac{2+4}{4(2+1)} = 1 + \frac{6}{12} = 1 + \frac{1}{2} = \frac{3}{2}$

$$2x + 14 = 5x + 8$$
 $/-5x$ $/-14$

Ľ=P

$$-3x = -6$$

x = 2

$$K = \{2\}$$

7. Riešte v R:
$$\frac{1}{x-2} = \frac{1}{x-3} + \frac{3x-13}{(x-2).(x-3)}$$
 (D.ú)

8. Riešte v R:
$$\frac{2x+3}{2x-1} - \frac{2x+1}{2x-3} = 0$$

9. Riešte v R:
$$\frac{4y+12}{7y-3.(2y-1)} = 5$$

10. Riešte v R:
$$\frac{2x+1}{x^2-1} = \frac{5}{x+1}$$

11. Riešte v R:
$$\frac{3}{(x-4).(x+1)} = \frac{4}{(x-5).(x+1)}$$