Лабораторная работа №4 «Цифровой осциллограф»

Модуль 2. Субдискретизация полосовых радиосигналов

- Введение. Понятие субдискретизации.
- Случай целочисленных полос.
- Случай нецелочисленных полос.
- Моделирование субдискретизации с помощью осциллографа PV6501

Введение. Понятие субдискретизации

Введение. Понятие субдискретизации.

Рассмотрим *действительный* полосовой сигнал со спектром, изображенным на рисунке.

- Характерна чётная симметрия амплитудного спектра относительно оси ординат
- Компонента $X_{+}(f)$ носит название прямого спектра, а компонента $X_{-}(f)$ инверсного.

- Для узкополосных радиосигналов ($f_0 \gg f_e$) существуют методы дискретизации с частотой $f_{\pi} < 2(f_0 + f_e)$, позволяющие сохранить информацию, необходимую для восстановления исходного сигнала.
- Одним из таких методов является субдискретизация. Субдискретизация заключается в том, что частота дискретизации $f_{_{\rm I\!\! I}}$ выбирается такой, что эффект наложения проявляется без перекрытия копий прямого и инверсного спектра исходного сигнала.

Пример.

Рассмотрим для субдискретизации ограничения на выбор частоты $f_\pi.$

Субдискретизация: случай целочисленных полос

Случай целочисленных полос

Если граничные частоты спектра $f_0-f_{\it e}$ и $f_0+f_{\it e}$ кратны его ширине $2f_{\it e}$, т. е. если

$$f_0 - f_e = m(2f_e), \quad m = 0, 1, 2, ...,$$
 (1)

то минимальную частоту дискретизации можно взять равной $f_{\mathrm{min}} = 4 f_e$.

Число m показывает, сколько переносов прямого спектра нужно совершить, чтобы точка $f_0-f_{\it e}$ попала в начало координат.

Такая плотная упаковка отображений спектров $X_+(f)$ и $X_-(f)$ практически может быть использована при условии, что компоненты $X_+(f)$ и $X_-(f)$ строго финитные функции. В этом случае эффект наложения частичных спектров друг на друга будет отсутствовать. Этот метод дискретизации называется ещё полосовой дискретизацией с недостаточной выборкой для целочисленных полос.

Пример. На рисунке a) показано устройство предварительной обработки данных приёмника многоканальной системы связи. $2f_e = f_\pi/2 = 50 \ \mathrm{k}\Gamma\mathrm{ц}$.

Спектр принимаемого сигнала показан на рисунке *б*) с указанием номеров каналов. Для выделения сигнала в нужном канале перед дискретизацией с наименьшей возможной частотой служит полосовой фильтр, АЧХ идеального фильтра представлена на рисунке ниже.

Случай нецелочисленных полос

- Плотная упаковка отображений спектров $X_+(f)$ и $X_-(f)$, если компоненты $X_+(f)$ и $X_-(f)$ строго финитные функции и выполняется условие (1) для целочисленных полос.
- В общем случае компоненты $X_+(f)$ и $X_-(f)$ имеют «хвосты» и нецелочисленные полосы.

Для нахождения частоты дискретизации $f_{\rm д}$ необходимо использовать условие, что m и m+1 переносов $X_{-}(f)$ не дают пересечений с $X_{+}(f)$:

$$-f_0 + f_e + mf_{\pi} < f_0 - f_e, -f_0 - f_e + (m+1)f_{\pi} > f_0 + f_e.$$
 (2)

Из (2) получаем

$$mf_{\pi} < 2(f_0 - f_e), \qquad (m+1)f_{\pi} > 2(f_0 + f_e)$$
 (3)

или

$$\frac{2(f_0 + f_e)}{m+1} < f_{\pi} < \frac{2(f_0 - f_e)}{m}. \tag{4}$$

Из (4) Субдискретизация возможна, если

$$\frac{\left(f_0+f_e\right)}{m+1} < \frac{f_0-f_e}{m},$$

т. е.

$$m < \frac{f_0 - f_g}{2f_g}.$$
(5)

Число m называется порядком субдискретизации. Поскольку общая протяженность спектра $X_-(f)$ и $X_+(f)$ равна $4f_{\it e}$, то при отсутствии перекрытий должно быть выполнено неравенство

$$f_{\mathrm{II}} > 4f_{\mathrm{e}}.\tag{6}$$

Пример. Спектр X(f) некоторого полосового сигнала x(t) изображен на рисунке ниже, f_0 — несущая частота, $f_0\gg 2f_e$, $2f_e=9.5$ к Γ ц.

Изобразить спектр сигнала после субдискретизации с наименьшей возможной частотой $f_{\rm д}$, обеспечивающей центрирование субдискретизуемого сигнала в полосе Найквиста для случаев: а) $f_0 = 45~{\rm k\Gamma L}$, б) $f_0 = 35~{\rm k\Gamma L}$.

Решение для случая a) $f_0=45~\mathrm{k}\Gamma\mathrm{ц}$.

Границы выбора частоты дискретизации определяются неравенством

$$\frac{2(f_0 + f_e)}{m+1} < f_{\pi} < \frac{2(f_0 - f_e)}{m}.$$

где m — порядок субдискретизации.

 $f_{\scriptscriptstyle
m I}$ может быть выбрана в соответствии с этим неравенством при условии

$$m < \frac{f_0 - f_e}{2f_e},$$

откуда m < 4,24.

Порядок субдискретизации является натуральным числом, а значит максимально возможный порядок субдискретизации равен m=4.

Для этого порядка субдискретизации условия выбора $f_{_{\rm I\! I}}$ 19,9 к Γ ц < $f_{_{\rm I\! I}}$ < 20,125 к Γ ц.

Отметим, что при дискретизации в соответствии с теоремой отсчетов потребовалось бы выбрать

$$f_{_{\rm I\!I}} \ge 2(f_0 + f_{_{\it G}}) = 99,5 \ {\rm к} \Gamma {\rm I}{\rm I}$$

Область допустимых значений $f_{\scriptscriptstyle
m I}$

$$\frac{2(f_0 + f_e)}{m+1} < f_{\mathrm{A}} < \frac{2(f_0 - f_e)}{m}.$$

для каждого порядка m может быть описана диаграммой, где случай центрирования субдискретизуемого сигнала в полосе Найквиста отвечает попаданием на биссектрису зоны выбора f_{π} :

$$f_{\text{д}} = \frac{4f_0}{2m+1} = 20 \text{ к}\Gamma$$
ц.

Цвета на диаграмме соответствуют разным значениям m.

Построим график спектра сигнала после его дискретизации с частотой $f_\pi = 20 \ \mathrm{k} \Gamma \mathrm{ц}.$

Правильный выбор частоты субдискретизации позволяет избежать (для реального сигнала — минимизировать) перекрытия отдельных копий спектра.

Порядок субдискретизации m=4 означает, что прямой спектр сигнала и его несущая частота находятся в пятой зоне Найквиста (на рисунке обозначен как канал 4).

На частотах от 0 до $f_{\scriptscriptstyle \rm I\!\! I}/2$ находится копия прямого спектра $X_{\scriptscriptstyle +}(f)$.

При $f_{\rm д} = 20~{\rm к}\Gamma{\rm ц}$ копии прямого и инверсного спектра оказываются центрованным в полосе Найквиста (между копиями одинаковые зазоры), что позволяет для реального сигнала минимизировать перекрытие неизбежно возникающих хвостов спектра вблизи границы полосы.

Решение для случая б) $f_0 = 35 \ {\rm k}\Gamma {\rm H}$.

В соответствии с условием

$$m < \frac{f_0 - f_e}{2f_e},$$

находим, что m < 3,19.

Наибольший возможный порядок субдискретизации m=3.

Наименьшая частота дискретизации, обеспечивающая центрирование субдискретизуемого сигнала в полосе Найквиста, равна

$$f_{_{\mathrm{I\!I}}} = \frac{4 f_0}{2m+1} = 20 \ \mathrm{K} \Gamma \mathrm{I\!I}.$$

То, что порядок субдискретизации m=3 является нечетным, означает, что частотах от 0 до $f_{_{\rm I\! I}}/2$ находится копия инверсного спектра $X_{_{\rm I\! I}}(f)$, а на частотах от $-f_{_{\rm I\! I}}/2$ до 0 — копия прямого спектра $X_{_{\rm I\! I}}(f)$.

Отметим, что при дискретизации в соответствии с теоремой отсчетов потребовалось бы выбрать

$$f_{_{\rm I\!I}} \ge 2(f_0 + f_{_{\it G}}) = 79,5 \,$$
к Γ ц.

Моделирование субдискретизации с помощью осциллографа PV6501

Моделирование субдискретизации с помощью осциллографа PV6501

Примером сигнала с полосовым спектром является сигнал с ГКЧ синусоидальной формы. Возьмём сигнал с диапазоном изменения мгновенной частоты от 200 до 250 кГц (соответствует каналу 4 на рисунке).

Минимальная частота дискретизации в соответствии с теоремой отсчетов $f_{\pi} = 500 \ \mathrm{k}\Gamma\mathrm{ц}$ (рис. a).

Минимальная частота при субдискретизации $f_{\rm д} = 100~{\rm k\Gamma L}$ (рис. б).

