

Bachelor in Computer Science and Engineering
Artificial Intelligence 2024-2025
Grupo 89

Final practice

"Heuristic Search in Radars"

Jorge Adrian Saghin Dudulea – 100522257 Denis Loren Moldovan – 100522240 Ignacio Cortina de Antonio – 100522372

Índice

I	Introduction	2
II	Explanation of the system	3
1.	Modeling of the search problem	3
1.1	1. Heuristics designed	3
Ш	Experiments	5
IV	Use of AI	6
V	Conclusion	7

Parte I

Introduction

Parte II

Explanation of the system

uwu

1. Modeling of the search problem

The modeling consist of multiple parts which help us to mathematically understand the problem we are facing, it is composed by:

• Space state: Set of all the states composing the problem

$$S = \{(i, j) | i \in [0, W - 1], j \in [0, H - 1], \Psi^* \le \text{Tolerance}\}$$

• Initial state: It is a definition of the starting point of our situation

$$S_0 = \{(i_0, j_0) | \Psi^*(i, j) \le \text{Tolerance} \}$$

 Operator/Action function: Inside a search problem, these are functions describing how the subject can move from one state to another inside the space state

$$A(s) = \{s' \in S | (s'(i) = s(i \pm 1)) \lor (s'(j) = s(j \pm 1)), \Psi^*(s') <= \text{Tolerance} \}$$

• Goal state: Particular state representing the objective of the problem, it is the state we want to reach

$$G = \{\{p_1, p_2, p_3, ..., p_n\} | n \in \mathbb{N}, s_{\text{goal}} = p_{i+1} = (i_{\text{goal}}, j_{\text{goal}}) \in S\}$$

■ Path cost: Each action requires a cost to pay, the objective of the search problem is to reach the goal state from the initial state having the smallest possible cost

$$C(s,s') = \Psi^*(s')$$

1.1. Heuristics designed

• Euclidean distance (h_1) :

Given a grid of size W imes H with states composed by tuples of the form $(i,j) \in \mathbb{Z}^2$

$$h_1 = \sqrt{(i - i_{\text{goal}})^2 + (j - j_{\text{goal}})^2}$$

And whose properties are:

- $h_1(s) \ge 0, \forall s \in S$
- $h_1(s) = 0$ iff $s = s_{\text{goal}}$
- $h_1(s) \le h_1^*(s)$ where $h_1^*(s)$ is the real optimum cost from s to s_{goal}
- Manhattan distance (h_2) :

Given a grid of size $W \times H$ with states composed by tuples of the form $(i, j) \in \mathbb{Z}^2$

$$h(s) = |i - i_{\text{goal}}| + |j - j_{\text{goal}}|$$

Parte III

Experiments

Parte IV

Use of AI

Parte V

Conclusion