Impact of habitat type and fragmentation on green turtle space use

Michael D Taylor^{1,2}, Takahiro Shimada³, Matthew W Fraser^{2,4}, Graeme C Hays⁵, Ana MM Sequeira^{2,6}

Background

- Marine habitats are being lost and fragmented as anthropogenic pressure increases. This has cascading effects on communities, species, and individuals.
- > We aimed to investigate how movements of marine species respond to variable habitat availability and fragmentation (change in configuration).
- > Satellite tracks of 20 green turtles in Shark Bay, Western Australia, were used to define foraging ranges.
- Range extent was investigated in association with amount of high- vs low-quality and fragmentation of high-quality habitat within them.

Space use increases in low-quality and fragmented habitats Results

▲ High-quality = ▼ Core Area

▲ Low-quality = ▲ Core Area

Greater availability of high-quality dense seagrass and decreasing presence of lowquality sparse seagrass associated with reduced core areas ($r^2 = 0.31$). Influence on overall extent of foraging ranges was limited.

Dense seagrass fragmentation explained greater variability in core space use (r² = 0.77) and led to larger core areas. Fragmentation thresholds may influence relationship with patch density.

▲ Shape Complexity = ▲ Core Area ▲ Patch Density = ▼ Core Area

Implications

- ✓ Green turtles likely to expand movements when habitat quality reduces, and fragmentation occurs enabling continued access to resources and the ability to persist if their local environment is degraded.
- **x** Expanded movement will have negative impacts on fitness of individuals as they expend additional energy and are exposed to threats.
- * Competition for limited resources is liable to pressure degraded systems, potentially leading to further environmental collapse.
- ? Impacts of fragmentation on movement of marine taxa are likely to be species- and environment-specific. Investigation of fragmentation thresholds and any scaling of negative impacts of expanded movements to populations will determine conservation implications and management response.

