Chapter 6

6. Mechanical Properties

- stress and strain
- elastic deformation
- plastic deformation
- Hardness

Stress-Strain Test

FIGURE 6.1 (a) Schematic illustration of how a tensile load produces an elongation and positive linear strain. Dashed lines represent the shape before deformation; solid lines, after deformation. (b) Schematic illustration of how a compressive load produces contraction and a negative linear strain. (c) Schematic representation of shear strain γ , where $\gamma = \tan \theta$. (d) Schematic representation of torsional deformation (i.e., angle of twist ϕ) produced by an applied torque T.

Engineering Stress

• Tensile stress, σ:

• Shear stress, τ:

stress has units: N/m² or lb/in²

Engineering Strain

• Tensile strain:

$$\varepsilon = \frac{\delta}{L_o}$$

• Lateral strain:

$$\varepsilon_{\rm L} = \frac{-\delta_{\rm L}}{W_{\rm o}}$$

• Shear strain:

strain is always dimensionless.

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix} \qquad \boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ \varepsilon_{12} & \varepsilon_{22} & \varepsilon_{23} \\ \varepsilon_{13} & \varepsilon_{23} & \varepsilon_{33} \end{bmatrix}$$

$$\mathbf{\varepsilon} = \begin{bmatrix} \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ \varepsilon_{12} & \varepsilon_{22} & \varepsilon_{23} \\ \varepsilon_{13} & \varepsilon_{23} & \varepsilon_{33} \end{bmatrix}$$

Stress-Strain Testing

• typical tensile specimen

• typical tensile test machine

Linear Elastic Properties

- Modulus of Elasticity, E: (also known as Young's modulus)
- Hooke's Law:

$$\sigma = \mathbf{E} \, \epsilon$$

• Poisson's ratio, v:

$$v = -\frac{\varepsilon_L}{\varepsilon}$$

metals: $v \sim 0.33$

ceramics: ~0.25

polymers: ~0.40

Units:

E: [GPa] or [psi]

v: dimensionless

Other Elastic Properties

Elastic Shear modulus, G:

$$\tau = \mathbf{G} \gamma$$

Elastic Bulk modulus, K:

$$P = -K \frac{\Delta V}{V_O}$$

 $= \Delta V$

Special relations for isotropic materials:

$$G = \frac{E}{2(1+v)}$$
 $K = \frac{E}{3(1-2v)}$

Table 6.1 Room-Temperature Elastic and Shear Moduli, and Poisson's Ratio for Various Metal Alloys

	Modulus of Elasticity		Shear Modulus		Poisson's
Metal Alloy	GPa	10 ⁶ psi	GPa	10 ⁶ psi	Ratio
Aluminum	69	10	25	3.6	0.33
Brass	97	14	37	5.4	0.34
Copper	110	16	46	6.7	0.34
Magnesium	45	6.5	17	2.5	0.29
Nickel	207	30	76	11.0	0.31
Steel	207	30	83	12.0	0.30
Titanium	107	15.5	45	6.5	0.34
Tungsten	407	59	160	23.2	0.28

FIGURE 6.7 Force versus interatomic separation for weakly and strongly bonded atoms. The magnitude of the modulus of elasticity is proportional to the slope of each curve at the equilibrium interatomic separation r_0 .

The Elastic Constants of Isotropic Elements at Room Temperature.

The Elastic Constants of Isotropic Elements at Room Temperature.					
Element	Bulk modulus	Young's modulus	Shear modulus	Poisson's Ratio	
	В	E	G	ν	
Li	13.6	11.5	4.2	0.36	
Be	125.5	309.0	146.8	0.05	
B(fibres)		379			
C(graphite fibres)		475		0.16	
Na	8.16	8.92	3.38	0.32	
Mg	33.25	44.3	17.35	0.29	
A1	73.1	70.5	26.7	0.34	
Si	316	113	39.7		
K	3.98	3.53	1.27	0.35	
a -Ti	123.5	106	39.8	0.34	
V	162	127	46.7	0.36	
Cr	162	286			
a-Fe	166.0	208.2	80.65	0.29	
Co	183	200	74.8		
Ni	192	213	81.3	0.31	
Cu	137	122.5	45.5	0.34	
Zn	60.5	92.2	37.2	0.29	
Ge	69.7	99.0	39	0.28	
Y	46.8	65.0	25.7	0.27	
a -Zr	89.7	95.6	36.1	0.33	
Νb	173	104	36.6	0.38	
M∘	275	340	120	0.30	
Pd	187	125.5	45.2	0.39	
Ag	100	79	28.8	0.38	
Cd	47.5	64.7	24.1	0.30	
$_{ m Hf}$	109.5	138	53		
Ta	207	184.5	68.7	0.35	
W	313	388	148.5	0.29	
Re		452			
Ir	371	527	210	0.26	
Pt	275	171	61	0.39	
Au	171	78.37	27.7	0.42	
T1	36.5	7.95	2.75		
Pb	41.4	16.2	5.6	0.44	
	I	l	I	I	

Ref: Texture and Related Phenomena, D. N. Lee, 2006

Unit: GPa

proportional limit

yield point phenomenon

$$\%EL = \frac{L_f - L_o}{L_o} \times 100$$

$$AR = \frac{A_o - A_f}{A_o} \times 100$$

Table 6.2 Typical Mechanical Properties of Several Metals and Alloys in an Annealed State

Metal Alloy	Yield Strength MPa (ksi)	Tensile Strength MPa (ksi)	Ductility, %EL [in 50 mm (2 in.)]
Aluminum	35 (5)	90 (13)	40
Copper	69 (10)	200 (29)	45
Brass (70Cu-30Zn)	75 (11)	300 (44)	68
Iron	130 (19)	262 (38)	45
Nickel	138 (20)	480 (70)	40
Steel (1020)	180 (26)	380 (55)	25
Titanium	450 (65)	520 (75)	25
Molybdenum	565 (82)	655 (95)	35

Tensile Test

- modulus of elasticity, E
- 2. yield strength, Y.S.
- 3. tensile strength, T.S.
- 4. ductility, $100x \, \epsilon_{failure}$

5. toughness =
$$\int \sigma d\varepsilon$$

True Stress and True Strain

true stress σ_{t}

$$\sigma_{t} = \frac{F}{A_{i}}$$

true strain ε_{t}

$$\varepsilon_{t} = \int_{l_{o}}^{l_{i}} \frac{dl}{l} = \ln \left(\frac{l_{i}}{l_{o}} \right)$$

$$A_0 l_0 = A_i l_i$$

$$\sigma_{t} = \sigma(1+\varepsilon)$$

$$\sigma_t = \sigma(1+\varepsilon)$$
 $\varepsilon_t = \ln(1+\varepsilon)$

Hardness

(b)

- a measure of a material's resistance to plastic deformation
- indentation/indentor

Hardness vs. Tensile Properties

Shape of indentation

Top view

Load

Side view

Test

Indenter

Formula for

hardness number

Source: H. W. Hayden, W. G. Moffatt, and J. Wulff, The Structure and Properties of Materials, Vol. 3: Mechanical Behavior, John Wiley & Sons, Inc., NY, 1965.

