

HARIKESH KUSHWAHA

ACADEMIC DETAILS			
Year	Degree / Board	Institute (GPA / Marks(%)
	M.Sc in Physics	Indian Institute of Technology Delhi	8.667
2021	B.Sc. (Hons) in Physics	Banaras Hindu University, Varanasi	8.41
2018	UP Board	Government Inter College, Deoria, UP	87.8
2016	UP Board	Navtappi Inter College, Deoria, UP	85.3

SCHOLASTIC ACHIEVEMENTS

- Machine Learning Specialization by Andrew NG: Certified after completing three course specialization offered by DeepLearning.Al
 - Learned linear and logistic regression, gradient descent, some regularization techniques and implemented them using numpy
 - Trained neural networks with TensorFlow and implemented a simple Decision Tree Classification algorithm from scratch
 - Learned unsupervised algorithms and some Recommender Systems. Got introduced to basics of Reinforcement Learning
- Deep Learning Specialization by Andrew NG: Certified after completing five course specialization offered by DeepLearning.Al
 - Implemented neural network from scratch using NumPy and Python with arbitrary number of layers and number of neurons
 - Implemented and applied a variety of optimization algorithms, such as **Gradient Descent**, **Momentum**, **RMSprop** and **Adam**
- Built NN architectures like CNN, LSTM, GRU and RNN and implemented regularization techniques like Batchnormalization, Dropout
- Achieved S grade in Geometry, Statics & Dynamics, Quantum Mechanics and Electronic Devices & Circuits during UG Course

PROJECTS

- House Prices Advanced Regression Techniques: Using 80 different features, trained models to predict the price of a house
 - Did data visualization, feature engineering and data imputation before training over a dozen of regression models
- Performed grid search for the best parameters. The best model secured a place in the top 15% on the Kaggle Leaderboard
- Natural Language Processing with Disaster Tweets: Using a tweet, predict whether it is about a real disaster or not
 - Used text vectorization and word embedding to transform the Tweets into a vector to be trained by Neural Network
 - Generated both character level and word level embeddings with the pretrained Universal Sentence Encoder (USE)
- Used them as inputs to create a Multivariate model with the functional API of TensorFlow getting test accuracy of 82%
- Digit Recognizer: Trained machine and deep learning models to recognize handwritten digits of the famous MNIST dataset
- Trained very deep Convolutional Neural Networks (CNNs) with Dropout and Batch Normalization to reduce overfiting
- The best performing model got a **test** accuracy of **99.48%**, securing a place in the **top 15%** on the **Kaggle Leaderboard**
- Food Vision: Using 101k images from 101 different categories of food, trained a model to recognize the food category
- Utilizing transfer learning, first used pretrained EfficientNet for feature extraction then fine tuned its last few layers
 To make training faster, used the tensorflow.data API to make a efficient data input pipeline and employed mixed precision
- The best model got an accuracy of **80%** on the test dataset. Deployed the model on **Heroku** using **Django** for the back end
- TensorFlow Speech Recognition Challenge: Trained a neural network to recognize 30 different voice commands
- As preprocessing steps, created waveforms from the raw audio file then used STFT to get a 2D spectrograms with TensorFlow
- Trained deep Convolutional Neural Networks using the spectrograms as inputs resulting in a test accuracy of 90%
- Book Gallery: A responsive website featuring various information and images of over 450 books using RESTful routes
- Used HTML, CSS, Bootstrap and JavaScript for the front end and Node.js, Express, ejs etc. for the back end
- Used Beautiful Soup along with Selenium to scrap all the required data and assets from Amazon and Goodreads
- Used MongoDB and mongoose as database, Heroku as deployment platform and Amazon S3 for storing the static files
- My Portfolio: Some of my projects and information about me is available on my portfolio hosted using Github Pages

TECHNICAL SKILLS

- Languages: Python (Proficient), JavaScript, LaTeX, MATLAB || Databases: SQL, MongoDB || OS: Windows, Ubuntu
- Major Frameworks: scikit-learn, TensorFlow, Keras, Django, Git, Selenium, Node.js, Express, Bootstrap
- Libraries: pandas, Matplotlib, seaborn, BeautifulSoup, SciPy, Plotly, OpenCV, ejs, jQuery | Other Tools: Github, Tableau, Excel

EXTRA CURRICULAR ACTIVITIES

Courses and Certifications

- TensorFlow Developer Certificate in 2022: Zero to Mastery on Udemy Instructed by Andrei Neagoie
 - Became familiar with both the sequential and functional API of Tensorflow as well as with efficient data pipelines
 - Built and trained a number of neural network architectures like Feed Forward Networks, CNN, LSTM, GRU and RNN
 - Used regularization techniques like Dropout, Batch Normalization etc. and created some models solving real world problems
- 3 Courses from SQL Fundamentals on DataCamp Instructed by Various Instructors
 - Learned basic SQL queries for selecting, filtering, aggregating and ordering. Used them to find relevant information from database
 - Used the JOIN keyword to work with various types of joins like inner, outer, self, full. Learned about various set operations
 - Learned about subqueries and used Common Table Expressions and window functions for complex and nested queries

HARIKESH KUSHWAHA

IIT COURSE

DegreeInstituteCGPAM.Sc in PhysicsIndian Institute of Technology Delhi8.667

COURSES DONE

Quantum Mechanics I, Classical Mechanics, Laboratory I, Electronics, Mathematical Physics, Applied Optics, Comp. Te. For Solid State Mat., Electrodynamics, Group Theory & Its Application, Quantum Mechanics Ii, Solid State Physics, Statistical Mechanics, Laboratory Ii