

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings of claims in the application:

LISTING OF CLAIMS:

1. - 26. (CANCELLED)

27. (NEW) A method of producing a porous plastic film, the method comprising:

producing a stretchable preform from a raw material blend comprising a polymer-containing basic material and an additive,

stretching the blank so as to form a film comprising pores, charging the porous film by directing an electric field over it,

the additive comprising a POS(S) chemical.

28. (NEW) A method as claimed in claim 27, wherein the preform is stretched biaxially.

29. (NEW) A method as claimed in claim 27, stretching the preform within a draw ratio range of 2:1 to 8:1.

30. (NEW) A method as claimed in claim 27, wherein the POS(S) is in a solid state at room temperature.

31. (NEW) A method as claimed in claim 30, wherein the POS(S) is blended with the basic material at a temperature lower than the melting temperature of the POS(S).

32. (NEW) A method as claimed in claim 30, wherein the POS(S) is blended with the basic material at a temperature exceeding the melting temperature of the POS(S).

33. (NEW) A method as claimed in claim 27, wherein the POS(S)

is in a liquid state at room temperature.

34. (NEW) A method as claimed in claim 27, wherein the POS(S) comprises one or more of the following chemicals:

dodecaphenyl-POSS $C_{17}H_{60}O_{18}Si_{12}$, isoocetyl-POSS $[Me_3CCH_2CH(Me)CH_2]_nT_n$, wherein n = 8, 10 or 12, octacyclohexyl-POSS $C_{48}H_{88}O_{12}Si_8$, octacyclopentyl-POSS $C_{40}H_{72}O_{12}Si_8$, octaisobutyl-POSS $C_{32}H_{72}O_{12}Si_8$, octamethyl-POSS $C_8H_{24}O_{12}Si_8$, octaphenyl-POSS $C_{48}H_{40}O_{12}Si_8$, octa-TMA-POSS $C_{32}H_{96}O_{20}Si_8 \sim 60 H_2O$, dodecatrifluoropropyl-POSS $C_{36}H_{48}F_{36}O_{18}Si_{12}$, octatrimethylsiloxy-POSS $C_{24}H_{72}O_{20}Si_{16}$, phenetyl-POSS $(PhCH_2CH_2)_nT_n$, wherein n = 8, 10 or 12, phenetylisobutyl-POSS $C_{36}H_{72}O_{12}Si_8$.

35. (NEW) A method as claimed in claim 27, wherein the basic material comprises one or more of the following polymers: polypropylenes, cyclic olefin copolymers, cyclic olefin polymers, polymethylpentene, polyethylene terephthalate, polybutene terephthalate, polyethylene naphthalate, polyeterimide.

36. (NEW) A method as claimed in claim 27, wherein the thickness of the porous plastic film is 5 to 200 μm .

37. (NEW) A method as claimed in claim 27, wherein the amount of POS(S) is 0.1 to 50 percent by weight calculated from the weight of the basic material.

38. (NEW) A method as claimed in claim 27, wherein the pores comprised by the film are expanded with gas.

39. (NEW) A method as claimed in claim 27, wherein an electrically conductive element is prepared on at least one side of the porous film.

40. (NEW) A porous plastic film produced from a raw material blend containing a basic material and an additive mixed therewith, a plurality of pores being arranged in the structure of the plastic film, the pores being produced by

stretching a preform made from the raw material blend and the plastic film being electrically charged, the additive comprising a POSS(S) chemical.

41.(NEW) A plastic film as claimed in claim 40, wherein the pores are produced by stretching the preform biaxially.

42.(NEW) A plastic film as claimed in claim 40, wherein the draw ratio of the stretching is within a draw ratio range of 2:1 to 8:1.

43.(NEW) A plastic film as claimed in claim 40, wherein the pores are closed pores.

44.(NEW) A plastic film as claimed in claim 40, wherein the POSS(S) comprises one or more of the following chemicals:

dodecaphenyl-POSS $C_{17}H_{60}O_{18}Si_{12}$, isooctyl-POSS $[Me_3CCH_2CH(Me)CH_2]_nT_n$, wherein n = 8, 10 or 12, octacyclohexyl-POSS $C_{48}H_{88}O_{12}Si_8$, octacyclopentyl-POSS $C_{40}H_{72}O_{12}Si_8$, octaisobutyl-POSS $C_{32}H_{72}O_{12}Si_8$, octamethyl-POSS $C_8H_{24}O_{12}Si_8$, octaphenyl-POSS $C_{48}H_{40}O_{12}Si_8$, octa-TMA-POSS $C_{32}H_{96}O_{20}Si_8 \sim 60 H_2O$, dodecatrifluoropropyl-POSS $C_{36}H_{48}F_{36}O_{18}Si_{12}$, octatrimethylsiloxy-POSS $C_{24}H_{72}O_{20}Si_{16}$, phenetyl-POSS $(PhCH_2CH_2)_nT_n$, wherein n = 8, 10 or 12, phenetylisobutyl-POSS $C_{36}H_{72}O_{12}Si_8$.

45.(NEW) A plastic film as claimed in claim 40, wherein the basic material comprises one or more of the following polymers: polypropylenes, cyclic olefin copolymers, cyclic olefin polymers, polymethylpentene, polyethylene terephthalate, polybutene terephthalate, polyethylene naphthalate, polyetherimide.

46.(NEW) A plastic film as claimed in claim 40, wherein at least one of its surfaces is at least partly coated with an electrically conductive coating.

47.(NEW) A plastic film as claimed in claim 40, wherein it is an electromechanical film and/or an electret film.

48. (NEW) A plastic film as claimed in claim 47, wherein a change in electromechanical energy is arranged to take place through a change in the thickness of the film.

49. (NEW) A plastic film as claimed in claim 47, wherein a change in electromechanical energy is based on variation of the location of the film in an electric field.