

SME0803 Visualização e Exploração de Dados

Associação entre variável quantitativa e qualitativa

Prof. Cibele Russo

cibele@icmc.usp.br

Baseado em

Murteira, B. J. F., Análise Exploratória de Dados. McGraw-Hill, Lisboa, 1993. Notas de aula de Análise Exploratória de Dados do Mário de Castro, ICMC-USP, 2010.

Seja $x \in x_1, ..., x_k, 1 < k \le n$, uma variável qualitativa e y uma variável quantitativa.

Dados observados: n pares de valores (x_i, y_i) , sendo que

$$x_j \in x_1, ..., x_k, j = 1, ..., n.$$

É muito comum o interesse na relação causal unilateral x o y.

Seja $x \in x_1,...,x_k, 1 < k \le n$, uma variável qualitativa e y uma variável quantitativa.

Dados observados: n pares de valores (x_j, y_j) , sendo que $x_j \in x_1, ..., x_k, j = 1, ..., n$.

É muito comum o interesse na relação causal unilateral x o y.

Representação dos dados:

- medidas resumo e gráficos de y para cada nível de x,
- gráficos de médias,
- boxplots y para cada nível de x,
- gráficos de violino de y para cada nível de x.

Cada nível x_i ocorre f_i vezes (frequência). Para cada nível x_i calculamos a variância s_i^2 dos valores y_j para os quais $x_j = x_i$, j = 1, ..., n e i = 1, ..., k.

Média ponderada das variâncias:

$$\overline{s}^{2} = \frac{\sum_{i=1}^{k} f_{i} s_{i}^{2}}{\sum_{i=1}^{k} f_{i}} = \frac{\sum_{i=1}^{k} f_{i} s_{i}^{2}}{n}$$

Variância de y:
$$s^2 = \frac{1}{n-1} \sum_{j=1}^{n} (y_j - \overline{y})^2$$

Obs: podemos ter $s_i = 0$ mas $s^2 > 0$.

Ganho na variância: $s^2 - \overline{s}^2$

Ganho relativo na variância:

$$R^2 = \frac{s^2 - \overline{s}^2}{s^2} = 1 - \frac{\overline{s}^2}{s^2}, 0 \le R^2 \le 1.$$

Quanto maior R^2 , mais forte a associação entre x para y.

Quanto maior R^2 , maior o poder de explicação de x para y (em termos de variabilidade).

Considere novamente os dados da Companhia MB (Bussab & Morettin, 2009). Como investigar a associação entre salário e grau de instrução dos funcionários?

O cálculo de $R^2=0.37$ aponta para uma possível associação entre grau de instrução e salário.

Vamos considerar medidas descritivas e representações gráficas.

Tabela: Medidas-resumo para o salário em diferentes níveis de grau de instrução.

	Salário	
Grau de instrução	média	desvio-padrão
ensino fundamental	7.84	2.96
ensino médio	11.53	3.72
ensino superior	16.48	4.50

Figura: Gráfico de médias e desvios-padrão de salário em diferentes níveis de grau de instrução.

Figura: Gráfico de médias, mínimo e máximo de salário em diferentes níveis de grau de instrução.

Figura: Gráfico de médias e desvios-padrão de salário em diferentes níveis de grau de instrução.

Figura: Boxplots para salário em diferentes níveis de grau de instrução.

Figura: Gráficos de violino para salário em diferentes níveis de grau de instrução.

Figura: Gráficos de violino para salário em diferentes níveis de grau de instrução.

4 D > 4 A P > 4 B > 4 B >

Figura: Boxplots para salário em diferentes níveis de grau de instrução condicionado a região.