Programme de colle n°11

Primitives, intégrales et équations différentielles

- 1) Définition et formules pour les primitives usuelles.
- 2) Primitives de $x \mapsto e^{ax} \cos bx$ et $x \mapsto \frac{1}{ax^2 + bx + c}$.
- 3) Calcul d'intégrales : intégration par parties, changement de variable (de classe C^1).
- 4) Équation différentielle linéaire du premier ordre :
 - (a) résolution de l'équation homogène;
 - (b) méthode de la variation de la constante;
 - (c) second membre particulier : polynôme, $A\cos(\theta x) + B\sin(\theta x)$, e^{kx} ;
 - (d) principe de superposition.
- 5) Équation différentielle linéaire du second ordre à coefficient constant :
 - (a) résolution de l'équation homogène (distinguer les cas solutions réelles/complexes);
 - (b) second membre particulier: polynôme, $A\cos(\theta x) + B\sin(\theta x)$, e^{kx} .

Questions de cours

- 1) Déterminer toutes les primitives de $x \mapsto \frac{1}{x}$ sur \mathbb{R}^* puis une primitive sur \mathbb{R}^*_+ des fonctions définies par $f(x) = \frac{\ln x}{x}$ et $g(x) = \frac{1}{x \ln x}$.
- 2) Déterminer une primitive de $f: x \mapsto \frac{1}{x^2 + 3x 10}$ puis de $g: x \mapsto \frac{1}{x^2 4x + 10}$. On précisera le domaine de validité.
- 3) Déterminer une primitive de $\arccos x$.
- 4) Calculer l'intégrale suivante : $I = \int_0^1 t e^t \, dt$.
- 5) Calculer $I = \int_1^e \frac{\ln t}{t + t(\ln t)^2} dt$ en posant : $x = \ln t$.
- 6) Résoudre : $ty' y = t^2 \cos t$
- 7) Résoudre : $y'' + y' + y = \cos 2t$.