BE 562: Computational Biology: Genomes, Networks, Evolution

Course Instructors

Lecturer

- James Galagan
- -LSEB 1002
- jgalag@bu.edu

TA

- Yuan Yin
- yin@bu.edu

Logistics

Lectures

Tu/Th 1:30-3:00, Room LSE B03

Recitations

Fri 9:05-9:55, Room LSE B03

Course Website

Blackboard 8 at learn.bu.edu

You must be registered to access site and receive group

emails

Office Hours

Please contact us to make appointments

Goals of Course

Introduction to Computational Biology

- Understand how algorithms work Emphasize concepts over algebra
- Recognize connection between different concepts and applications
- Exposure to current research topics

Hands on experience

- Computational problem solving formulating biological questions as computational problems
- Programming implementing useable solutions
- Hands on experience with genomic datasets
- Research: Final Projects

Course Outline

- First Half: Foundations
 - Core computational problems and concepts
 - String matching, DB Searching, HMMs, Gene Prediction, Clustering, Classification, Molecular Evolution
- Midterm 1
- Second Half: Frontiers
 - Current Research Topics
 - CRFs, Comparative Genomics, Gene Regulation, Metabolic Modeling, Systems & Synthetic Biology
- Mini-Midterm 2
- Final Project
 - Your own research topic

Grading

Problem Sets	Midterms	Final Project	Scribing
(35%)	(25%)	(35%)	(5%)

- 3 Problem Sets
 - Each on 12-15% of grade
- Exams
 - One in-class midterm October 22
 - We will work through all the problems in the next two lectures
 - A mini-midterm, in class, November 26
- Final Project
 - Introduction to research in computational biology (7 weeks!)
 - Includes peer-reviewed NIH-style proposal and much feedback
 - Presentations December 5,10
- Collaboration Policy
 - Collaboration allowed (except on exams), but you must:
 - Work independently on each problem before discussing it
 - Write solutions on your own
 - Acknowledge sources and collaborators. No outsourcing.

Problem Sets

Due Mondays by 8 pm

- Email to TA
- Late Policy: Flexible +/- a few hours
- More than few hours requires prior arrangement (except special circumstances, etc)

3 Problem Sets (ea. 12-15% of grade)

- Typically 4-6 problems per assignment (except PS1)
- Both theoretical and programming problems

Programming

- You can program in any language you like as long as it works
- Recommend Python, Perl, or Matlab
- Example code will be in Python or Matlab
- Comment your code!
- There is a lot of coding required!
- First Homework out Today <u>Due September 16</u>

Final Project

 The goal of the final project is to help prepare you for original research in computational biology.

The Problem

- Frame a biological question computationally
- Gathering relevant literature and datasets
- Solving it using new algorithms and ML techniques
- Interpreting the results biologically

The Process

- Prepare a research proposal (fellowships/grants)
- Review peer proposals (peer-review)
- Receive feedback and revise your proposal (part of life)
- Present your research orally in scientific audience (the fun part)
- Writing up your results in a scientific paper (the other fun part)
- We will provide guidance on all these steps

Lecture Scribing

- Each lecture will have a dedicated scribe who will take notes on the lecture
 - Please sign up to scribe for lecture on the sheet being passed around
- Build on notes from previous years
 - Available on course website
 - Very mature for most lectures just needs continued polishing
- First draft of scribe notes due 2 days after lecture
 - We will review and provide feedback
- Final draft of scribe notes due 6 days after lecture
- Counts for 5% of your grade

Reference Books

Why Computational Biology?

15 years ago it was challenging to sequence a gene Now we are profiling genes, proteins, etc...

We are awash in data

Biology as Computation

- We can be engineers and computer scientist doing biology
- We can treat biology as a computational discipline information driven
- Computational analysis of raw data
- Computational understanding, modeling, & interpretation

Challenges in Computational Biology

Lec	Date	Topic	Homework	Week
1	Tuesday, September 03, 2019	Intro Part 1: Probability and Statistics		1
2	Thursday, September 05, 2019	Intro Part 2: Probability and Statistics	PS1 Due 9/16	1
3	Tuesday, September 10, 2019	Sequence Alignment		2
	Thursday, September 12, 2019	informatics Retreat - No lecture		
4	Tuesday, September 17, 2019	Sequence Alignment Part 2		3
5	Thursday, September 19, 2019	Clustering	PS2 Due 9/30	ა
6	Tuesday, September 24, 2019	Classification PS2 DC		4
7	Thursday, September 26, 2019	Regulatory Motifs/Gibbs Sampling/EM	1 4	
8	Tuesday, October 01, 2019	HMMs1 - Evaluation / Parsing		5
9	Thursday, October 03, 2019	HMMs2 - PosteriorDecoding/Learning	PS3 Due 10/13	
10	Tuesday, October 08, 2019	Phylogenetics	F 33 Due 10/13	6
11	Thursday, October 10, 2019	Molecular Evolution, and Measures of Selection (Tennessen)		O
	Tuesday, October 15, 2019	Substitute Monday		7
12	Thursday, October 17, 2019	Generalized HMMs and Gene Prediction	Project Proposal 8	
13	Tuesday, October 22, 2019	Midterm		
14	Thursday, October 24, 2019	Midterm Solutions Review Midterm Solutions Review 2		o
15	Tuesday, October 29, 2019			9
16	Thursday, October 31, 2019	Metabolic Modeling 1 - Introduction to FBA	1 9	
17	Tuesday, November 05, 2019	Metabolic Modeling 2 - Applications and Incorporation of Omics Data	Project Reviews	10
	Thursday, November 07, 2019	No Lecture	Due 11/8	10
18	Tuesday, November 12, 2019	Bayesian Networks	Revised Proposal	11
19	Thursday, November 14, 2019	Sampling Methods and Bayesian Networks	Due 11/18	
20	Tuesday, November 19, 2019	DREM		12
21	Thursday, November 21, 2019	Conditional Random Fields		12
22	Tuesday, November 26, 2019	Mini-Midterm	Final Drain at	13
	Thursday, November 28, 2019	Thanksgiving	Final Project Writeup Due 12/12	10
23	Tuesday, December 03, 2019	Guest Lecture (TBD) Final Presentations - Part I		
24	Thursday, December 05, 2019			14

Final Presentations - Part 2 (9am - Recitation Room)

25

Tuesday, December 10, 2019

But we have to start at the beginning.....

Probability and Statistics Review

Why Probability and Statistics?

- Biological data is noisy
- Probability provides a calculus for manipulating models
- Not limited to yes/no answers can provide "degrees of belief"
- Many common computational tools based on probabilistic models

Probability and Statistics

 Probability – a mathematical framework for calculating with uncertainties

 Statistics – applied probability: solutions to specific problems derived using probability calculus

What do probabilities *mean?*

Flipping a coin: what does P(H) = 0.5 mean?

Frequentist

 Relative frequency of occurrence given 100 coin tosses, ~50/100 will be heads

Bayesian

- Probability of event on the next coin toss, 50% chance of heads
- Belief in event given all available data, we have 50% belief in H on next toss

Sample Space and Events

Roll a dice:

Event A: get a 2

Event B: get < 3

Event C: get > 2

- Sample Space Ω : All conceivable outcomes.
- Sample Point: One conceivable outcome.
- Event: A subset of conceivable outcomes.

Set Theory Algebra

- Union: $D = A \cup B = \{1,2,3,4\}$
- Intersection: $D = A \cap B = \{2\}$
- Complement $A^{C} = \{1,5,6\}$
- Null Event: $D = A \cap C = \emptyset$, A and C *disjoint*

Probability Axioms

A probability measure assigns a real number to each subset of Ω such that:

- 1. $P(\Omega) = 1$
- 2. If $A \subset \Omega$, then $P(A) \ge 0$
- 3. If A and B disjoint, $P(A \cup B) = P(A) + P(B)$

The Addition Law

$$P(A \cup B) = ?$$

$$=P(A)+P(B)-P(A\cap B)$$

You will prove this using the axioms in your homework

Monty Hall Problem

Do You Switch Doors? Why/Why Not?

Random Variables

- A random variable, X, represent a set of events
- A probability distribution, P(X), maps each event in X to a real number between 0 and 1
- A joint probability distribution, P(A,B,...C), maps all possible conjunctions of events in {A,B,..C} to a real number between 0 and 1

Example: X1 and X2 are the outcomes of flipping two coins

$$P(X1) \qquad \qquad P(X1, X2) \\ \{X1\} = \{H,T\} \qquad \qquad \{X1,X2\} = \{HH,HT,TH,TT\} \\ \text{with p=.50 each} \qquad \qquad \text{with p=.25 each} \\ \label{eq:point}$$

If you only have P(X1,X2) can you calculate P(X1)?

Example

P(A,B) assigns a probability to joint event A,B.

Study 100 Patients

Pos = Positive Disease Test Neg = Negative Test Sick, Ok = Health Status

 A
 B
 Sick
 OK

 Pos
 35
 15

 Neg
 5
 45

How do we get P(A,B)?

Normalization

P(A,B) assigns a probability to joint event A,B.

Study 100 Patients

Pos = Positive Disease Test Neg = Negative Test Sick, Ok = Health Status

AB	Sick	ОК
Pos	.35	.15
Neg	.05	.45

How do we get P(A,B)?

Normalizing means simply dividing by the total so that $P(\Omega)=1$

Marginalization

P(A,B) assigns a probability to joint event A,B. But sometimes we just want P(A)

Study 100 Patients

Pos = Positive Disease Test Neg = Negative Test Sick, Ok = Health Status

AB	Sick	ОК
Pos	.35	.15
Neg	.05	.45

What are

P(Pos) P(Neg)

Marginalization

P(A,B) assigns a probability to joint event A,B. But sometimes we just want P(A)

Study 150 Patients

Pos = Positive Disease Test Neg = Negative Test Sick, Ok = Health Status

AB	Sick	ОК
Pos	.35	.15
Neg	.05	.45

What are

P(Pos) P(Neg)

P(Pos)=0.5P(Neg)=0.5

Marginalization

P(A,B) assigns a probability to joint event A,B. But sometimes we just want P(A)

For a discrete variable

$$P(A) = \sum_{\text{all B}} P(A, B)$$

We are often interested in the probability of one event (A) given another event (B)

This is called the *conditional probability* of A given B

P(A | B)

Study 100 Patients

Pos = Positive Disease Test Neg = Negative Test Sick, Ok = Health Status What is

P(SicklPos)?

AB	Sick	ОК
Pos	35	15
Neg	5	45

ways to be positive = 50 # ways to be positive and sick = 35 35/50=0.7

Study 100 Patients

Pos = Positive Disease Test Neg = Negative Test Sick, Ok = Health Status What is

P(SicklPos)?

АВ	Sick	ОК
Pos	.35	.15
Neg	.5	.45

Normalized P(Pos) = .50 P(Pos,Sick) = .35 P(SicklPos) = .35/.50=0.7

In general, if we are given P(A,B) how do we calculate the conditional probability of A given B, P(AIB)?

$$P(A \mid B) = \frac{P(A,B)}{P(B)}$$

The Chain Rule

$$P(A,B) = P(A | B)P(B)$$

You must know this!

But what if...

$$P(A|B) = P(A)$$

In this case the probability of A does not depend on B

A and B are independent variables

 $\mathsf{A} \perp \mathsf{B}$

Independence

If A
$$\perp$$
 B, then

$$P(AIB)=P(A)$$

$$P(B|A)=P(B)$$

$$P(A,B)=P(A)P(B)$$

All of this follows from the chain rule

Eugene...

Eugene...

P(DescriptionIDean)>P(DescriptionITruck Driver)
This is called the Likelihood of the data

P(Truck Driver)>>P(Dean)
These are the Prior Probabilities

What we want are P(DeanlDescription) & P(Truck DriverlDescription)

Prior

$$P(Class \mid Feature) = \frac{P(Feature \mid Class)P(Class)}{P(Feature)}$$

Posterior

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London, 53:370-418

$$P(Class \mid Feature) = \frac{P(Feature \mid Class)P(Class)}{P(Feature)}$$

Belief after evidence

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London, 53:370-418

London, 53:370-418

You should be able to see this follows from the chain rule...

$$P(Class | Feature) = \frac{P(Feature | Class)P(Class)}{P(Feature)}$$

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London, 53:370-418

Rules You Need to Know

$$P(\Omega) = 1$$

If $A \subset \Omega$, then $P(A) \ge 0$
 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

$$P(A \mid B) = \frac{P(A,B)}{P(B)}$$

$$P(A) = \sum_{\text{all } B} P(A,B)$$

If
$$A \perp B$$
, $P(A \mid B) = P(A)$

$$P(A,B) = P(A | B)P(B) = P(B | A)P(A)$$

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

