L-23 First come First Serve EPU Scheduling (19)

Algorithm

Criteria: "Arrival time"

Process which arrives first is executed first

Mode: " Non - preemptive"

> frocess will get fully executed before another process is taken in.

grun

Process Number	Arrival	Burst	Completion Line	TAT	WT	RT
-	5	× /	2	2	0	0
P1	0	2	4		1.1.	1
P2	1 = 11	2 .	4	3		
P3	~ 5 , *	3	8	3	0	0
P4	6	4	12	6	2_	2

Gontt Uaut		ρ,	P2 //	P3) P4		-
	0	2	4	5	8	12	_

- For non preemptive case, waiting time to equal to response time

- Average TAT = 2+3+3+6 = 3.5- Average WT = 6+1+0+2 = 1

Shortest Job First Scheduling Algorithm

Criteria: "Burst time",

process with lowest burit time is taken first. after arrival times checked.

Mode: "Non-preemphive"

TAT = CT - BT

Process	Arrival	R wat three	Completion	TAT	ωτ	IRT (2
Pi	1	3	6	6 5	2	2
P	2	4	10	, 8 ,	4	4
P		2.	8 3	2	0	6
Py	4	. 4-	- ,	1.0	6	6
é		i	7	.a	,	;
2			· ·	en de s		
			>	- ;		. ?
		1		,	71:	. 1

Gantt P_3 P_1 P_2 P_4 duet.

O 1 3 6 10 14 \rightarrow Time

When there is some avrival finer, process with lower but time is selected.

At time 3, P, and P, are heady quere, now we select process with lower burst time.

At time 6, f2 and p4 have some burst time, select one with earlier arrival fine.

Avg TAT = $\frac{25}{4}$ = $\frac{12}{4}$ = 3

#	L-2.5	Shortest	Remaining with Preempt	Tine	First	,
					, ,	10 04
		(CTE	with Preempt	im)	saeduling	argorito

Outeria: Burst time

Mode: freemptive.

TAT = CT - AT $\omega T = TAT - BT$

RT = { crufint AT}

Process No.	Amval	Burst	Completion time	TAT	ωπ	RT
Pi	6	34	9	9	4	0
P ₂	t	ZZ Yo	4	3	0	0
P ₂	2	4	13	l ₁	7	7
Py	4		5		. 0	0
			, 27 j	, Ť	. 7	

· .	w.g.	-,				1 , 4	,
Gantt	P1 P2 P2	Pz	Py		P, P1	P1 71	P ₃
chert !	1 2	3	4	5	6	7 89	13
E.	Pitz Pitzp3	HP2P3	Ti (3,74	P1 P3	, t,	4	

Algorithm checks of there is a shorter brust time process on ready queue at every time.

For ex. at t=1, 12 has remaining time = 4 but P2 has burst time = 3, so it will start executing P2.

Avg $TA7 = \frac{24}{4} = 6$ Avg $\omega T = \frac{11}{4} = 2.75$ Avg $RT = \frac{7}{4} = 1.75$

L-2.6, gustien on SJF with Preemplion

Process Arrival Burst
Time time

P1 0 A 6

P2 1 A 3

P2 2 8

(8) Gantl chart for Preemptive SJF sheeduling is?

(C) P1 P2 P1 P3 (D) P2 P3 P1 O 1 S 11 19