TEAM QUARK

Week 1

Presented by: Aditya Sakhare

WEEK 1: Introduction to ROS

Basics of Robotics

- designing, building, programming machines to perform autonomously or semi-autonomously
 - Sensors, Actuators, Control Systems
 - Applications
 - o Industrial automation.
 - Healthcare (surgical robots).
 - Autonomous vehicles.

What is ROS 2?

- ROS: A middleware for developing robot applications.
- ◆ Why ROS2:
 - Modernized for multi-platform support.
 - Enhanced real-time capabilities with DDS.
 - Improved security and scalability.

What is ROS 2?

Communication

Visualization

Perception

Motion Planning

Robot Operating System

Robot Control

Computer Vision

Hardware Drivers

Simulation

Data Logging

Machine Learning

Manually handling message serialization

Reinventing a
Pub/Sub
system with
REST APIs

Creating custom multi-threading logic for robots

Why struggle? I've got a whole ecosystem for you!

Wait, ROS handles this for me?! Sign me up!

ROS1 vs ROS2?

Feature	ROS 1	ROS 2
Middleware	Custom XML-RPC	Data Distribution Service (DDS)
Communication Model	Master-Slave architecture	Distributed, no central master
Network Reliability	Less robust in unreliable networks (TCP based)	Better performance in unreliable networks (DDS with QoS)
Platform Support	Primarily Linux	Cross-platform (Linux, Windows, macOS)
Security	Limited security features	Built-in security support
Build System	Less flexible build system	Supports multiple build systems (including plain Python packages)
Nodelet Functionality	Separate feature requiring additional implementation	Integrated directly into core as "Components"
Development Status	Mostly deprecated, limited active development	Actively developed and maintained
Key Advantages	Large existing community and legacy code base	Modern architecture, improved reliability, better network support, security features

again...ROS

ITS NOT A OS

Its a framework for COMMUNICATION

Core concepts

- Nodes: Small units of computation.
- Topics: Channels for communication.
- Messages: Data structures exchanged between nodes.
- DDS: Handles communication, replacing ROS Master.
- Publishers and subscribers

one more ...

ROS 2 Architecture

Now

lets install..... some stuff (vbox, ubuntu 22.04, ros2 humble tobespecific)

Installation (we'll be using VM):

- Vbox:
 - https://www.virtualbox.org/wiki/Downloads
- Get the ubuntu 22.04 desktop image (iso):
 - o https://releases.ubuntu.com/jammy/
- Install ubuntu on vbox (give ~30gb disk space and 4cores)
 - Tip: keep the password small and easy (cuz you'll have to type that so many times)
 - https://ubuntu.com/tutorials/how-to-run-ubuntu-desktop-on-avirtual-machine-using-virtualbox#1-overview

go to this link and paste all the commands one by one

https://docs.ros.org/en/humble/Installation/Ubuntu-Install-Debs.html

Set locale

Make sure you have a locale which supports UTF-8. If you are in a minimal environment (such as a docker container), the locale may be something minimal like Posix. We test with the following settings. However, it should be fine if you're using a different UTF-8 supported locale.

```
locale # check for UTF-8
sudo apt update && sudo apt install locales
sudo locale-gen en_US en_US.UTF-8
sudo update-locale LC_ALL=en_US.UTF-8 LANG=en_US.UTF-8
export LANG=en_US.UTF-8
locale # verify settings
```


https://docs.ros.org/en/humble/Installation/Ubuntu-Install-Debs.html

Set locale

Make sure you have a locale which supports UTF-8. If you are in a minimal environment (such as a docker container), the locale may be something minimal like Posix. We test with the following settings. However, it should be fine if you're using a different UTF-8 supported locale.

```
locale # check for UTF-8

sudo apt update && sudo apt install locales
sudo locale-gen en_US en_US.UTF-8
sudo update-locale LC_ALL=en_US.UTF-8 LANG=en_US.UTF-8
export LANG=en_US.UTF-8

locale # verify settings
```

(if you get any error change the service provider (jio,vi etc) for this step)

https://docs.ros.org/en/humble/Installation/Ubuntu-Install-Debs.html

https://docs.ros.org/en/humble/Installation/Ubuntu-Install-Debs.html

Desktop Install (Recommended): ROS, RViz, demos, tutorials.

sudo apt install ros-humble-desktop

ROS-Base Install (Bare Bones): Communication libraries, message packages, command line tools.

No GUI tools.

sudo apt install ros-humble-ros-base

Development tools: Compilers and other tools to build ROS packages

sudo apt install ros-dev-tools

Environment setup

Sourcing the setup script

Set up your environment by sourcing the following file.

Replace ".bash" with your shell if you're not using bash # Possible values are: setup.bash, setup.sh, setup.zsh source /opt/ros/humble/setup.bash

TEAM QUARK


```
string says= {"Thank", "You"};
```

