IN THE MATTER OF an Australian Application corresponding to PCT Application PCT/EP97/05318

I, Dethard LAMPE Dipl.-Chem., PhD CChem MRSC, c/o Europa House, Marsham Way, Gerrards Cross, Buckinghamshire, England, do solemnly and sincerely declare that I am conversant with the English and German languages and am a competent translator thereof, and that to the best of my knowledge and belief the following is a true and correct translation of the PCT Application filed under No. PCT/EP97/05318.

Date: 26 March 1999

D. LAMPE

For and on behalf of RWS Group plc

PCT WORLD ORGANISATION FOR INTELLECTUAL PROPERTY International Office INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International patent classification⁶: (11) International publication number: WO 98/15537 A1 [stamp] CO7D 251/18, A01N 43/68, C07D 401/12. (43) International 409/12 publication date: 16 April 1998 (16.04.98) (81) Designated States: AL. AM. AT. AU. AZ. BA. BB. BG. BR. BY. CA. CH. CN. CU. CZ. DE. DK. EE. ES. FI. GB. GE. GH. HU. IL. IS. JP. KE. KG. KP. KR. KZ. (21) International application number: PCT/EP97/05318 International filing date: 29 September 1997 (29.09.97)LC. LK. LR. LS. LT. LU. LV. MD. MG. MK. MN. MW. MX. NO. NZ. PL. PT. RO. RU. SD. SE. SG. SI. SK. SK. TJ. TM. TR. TT. UA. UG. US. UZ. VN. YU. ARIPO Patent (GH. KE. LS. MW. SD. SZ. UG. ZW). Eurasian Patent (AM. AZ. BY. KG. KZ. MD. RU. TJ. TM). European Patent (AT. BE. CH. DE. DK. ES. FI. FR. GB. GR. IE. IT. LU. MC. NL. PT. SE). OAPI Patent (BF. BJ. CF. CG. CI. CM. GA. GN. ML. MR. NE. SN. TD. TG). (30) Data relating to the priority: 196 41 691.4 10 October 1996 (10.10.96) DE (71) Applicant (for all designated States except US): BAYER AKTIENGESELLSCHAFT [DE/DE]: D-51368 Leverkusen (DE). (72)Inventors: and Inventors: and
Inventors/Applicants (US only): Hans-Jochem RIEBEL
[DE/DE]: In der Beek 92. D-42113 Wuppertal (DE).
Stefan LEHR [DE/DE]: Am Benthal 54. D-51381
Leverkusen (DE). Uwe STELZER [DE/DE]: AdolfKolping-Strasse 22a. D-51399 Burscheid (DE).
Yukiyoshi WATANABE [JP/JP]: 2-8-24, Hanagaki-cho.
Oyama-shi. Tochigi 323 (JP). Markus DOLLINGER
[DE/DE]: Burscheider Strasse 154b. D-51381 Lever-Published: With the International Search Report. Before expiry of the period provided for amending the claims. Further publication will made if such amendments are received. [DE/DE]: Burscheider Strasse 154b, D-51381 Leverkusen (DE). (74) Joint Representative: BAYER AKTIENGESELLSCHAFT: D-51368 Leverkusen (DE).

As printed

- (54) Title: SUBSTITUTED 2-AMINO-4-ALKYLAMINO-1,3,5-TRIAZINES AS HERBICIDES
- (54) Bezeichnung: SUBSTITUIERTE 2-AMINO-4-ALKYLAMINO-1,3,5-TRIAZINE ALS HERBIZIDE

$$Z \xrightarrow{NH_2} N \xrightarrow{R^1} A \xrightarrow{A} A$$

(57) Abstract

The invention relates to novel substituted 2-amino-4-alkylamino-1,3,5-triazines of formula (I), in which R¹ stands for respectively optionally substituted alkyl with 2 to 6 carbon atoms or cycloalkyl with 3 to 6 carbon atoms, R² stands for hydrogen or alkyl with 1 to 4 carbon atoms. A for oxygen or methylene, Ar for respectively optionally substituted phenyl, naphthyl or heterocycyl, and Z for hydrogen, for halogen or for respectively optionally substituted alkyl, alkoxy, alkylcarbonyl, alkoxycarbonyl, alkylthio, alkylsulfinyl, alkylsulfonyl, alkenyl or alkinyl, methods and new intermediate products for their production and their use as herbicides.

(57) Zusammenfassung

Die Erfindung betrifft neue substituierte 2-Amino-4-alkylamino-1,3,5-triazine der Formel (I), in welcher R¹ für jeweils gegebenenfalls substituiertes Alkyl mit 2 bis 6 Kohlenstoffatomen oder Cycloalkyl mit 3 bis 6 Kohlenstoffatomen steht, R² für Wasserstoff oder für Alkyl mit I bis 4 Kohlenstoffatomen steht, A für Sauerstoff oder Methylen steht, Ar für jeweils gegebenenfalls substituiertes Phenyl, Naphthyl oder Heterocyclyl steht, und Z für Wasserstoff, für Halogen oder für jeweils gegebenenfalls substituiertes Alkyl, Alkoxy, Alkylcarbonyl, Alkoxycarbonyl, Alkylthio, Alkylsulfinyl, Alkylsulfonyl, Alkenyl oder Alkinyl steht, Verfahren und neue Zwischenprodukte zu ihrer Herstellung und ihre Verwendung als Herbizide.

ONLY FOR INFORMATION

Codes used to identify the PCT member States on the flyleaves of the brochures in which international applications made under the PCT are published.

AL	Albania	LI	Liechtenstein
AM	Armenia	ĹŔ	Sri Lanka
		LR	
AT	Austria		Liberia
AU	Australia	LS	Lesotho
ΑZ	Azerbaidjan	LT	Lithuania
BA	Bosnia-Herzegovina	ĹŪ	Luxembourg
		ĹŸ	Latvia
B8	Barbados		
BE	Belgium	MC	Monaco
BF	Burkina Fasso	MD	Republic of Moldova
BG.	Bulgaria	MG	Madagascar
		MK	Former Yugoslav Republic
BJ	Benin	FIK	
BR	Brazil		of Macedonia
BY	Belarus	ML	Mali
ČÁ	Canada	MN	Mongolia
ČF	Central African Republic	MR	Mauritania
		MW	Malawi
CG	Congo		
CH	Switzerland	MX	Mexico
CI	Ivory Coast	NE	Niger
ČM	Cameroon	NL	Netherlands
		NO	
CN	China		Norway
CU	Cuba	NZ	New Zealand
CZ	Czech Republic	PL	Poland
DE	Germany	PT	Portugal
DK	Denmark	RO	Romania
			Russian Federation
£Ε	Estonia	RU	
ES	.Spain	SD	Sudan
FI	Finland	SE	Sweden
FR	France	SG	Singapore
ĠĀ	* * = * * * * * * * * * * * * * * * * *	ĬŽ	Slovenia
	Gabon		
GB	United Kingdom	SK	Slovakia
GE	Georgia	SN	Senegal
ĞH	Ghana	SZ	Swaziland
GN	Guinea	ΤĎ	Chad
	= · · · - ·		
GR	Greece	TG	Togo
HU	Hungary	TJ	Tajikistan
ΙE	Ireland	TM	Turkmenistan
ĪĹ	Israel	TR	Turkey
		π	Trinidad and Tobago
IS	Iceland		
ΙT	Italy	UA	Ukraine
JP	Japan	UG	Uganda
KE	Kenya	ŬŠ	United States of America
KG		UZ	Uzbekistan
	Kyrghyzstan		
KP	Democratic People's	VN	Vietnam
	Republic of Korea	YU	Yugoslavia
KR	Republic of Korea	ŻW	Zimbabwe
KZ	Kazakhstan	~~	
LC	Saint Lucia		

SUBSTITUTED 2-AMINO-4-ALKYLAMINO-1,3,5-TRIAZINES AS HERBICIDES

The invention relates to novel substituted 2-amino-4-alkylamino-1,3,5-triazines, to processes and to novel intermediates for their preparation and to their use as herbicides.

A number of substituted 2,4-diamino-triazines is already known from the (patent) literature (cf. US 3816419, US 3932167, EP 191496, EP 273328, EP 411153 / WO 90/09378, WO 97/00254, WO 97/08156). However, these compounds have hitherto not attained any particular importance.

This invention, accordingly, provides the novel substituted 2-amino-4-alkylamino-1,3,5-triazines of the general formula (I)

15

$$\begin{array}{c|c}
NH_2 \\
NNN \\
N$$

in which

- 20 R¹ represents in each case optionally substituted alkyl having 2 to 6 carbon atoms or cycloalkyl having 3 to 6 carbon atoms,
 - R² represents hydrogen or represents alkyl having 1 to 4 carbon atoms,
- 25 A represents oxygen or methylene
 - Ar represents in each case optionally substituted phenyl, naphthyl or heterocyclyl, and

Z represents hydrogen, represents halogen or represents in each case optionally substituted alkyl, alkoxy, alkylcarbonyl, alkoxycarbonyl, alkylthio, alkylsulphinyl, alkylsulphonyl, alkenyl or alkinyl.

5

The novel 2-amino-4-alkylamino-1,3,5-triazines of the general formula (I) are obtained when

(a) substituted biguanides of the general formula (II),

10

in which

15 R¹, R², A and Ar are each as defined above

- and/or acid adducts of compounds of the general formula (II) -

are reacted with alkoxycarbonyl compounds of the general formula (III)

20

in which

25 Z is as defined above and

R' represents alkyl,

if appropriate in the presence of a reaction auxiliary and if appropriate in the presence of a diluent,

or when

5 (b) substituted triazines of the general formula (IV)

$$Z \xrightarrow{X^{1}} N \xrightarrow{R^{1}} A \xrightarrow{Ar} Ar$$

$$Z \xrightarrow{N} N \xrightarrow{N} R^{1} \xrightarrow{R^{2}} A \xrightarrow{Ar} Ar$$

in which

10

 R^1 , R^2 , A, Ar and Z are each as defined above and

 $\mathbf{x}^{\mathbf{1}}$

represents halogen or alkoxy

are reacted with ammonia, if appropriate in the presence of a reaction auxiliary and if appropriate in the presence of a diluent,

or when

20 (c) substituted triazines of the general formula (V),

$$Z \xrightarrow{NH_{2}} N \qquad (V)$$

in which

- Z is as defined above and
- X² represents halogen or alkoxy
- 5 are reacted with substituted alkylamines of the general formula (VI),

in which

10

R¹, R², A and Ar are each as defined above,

if appropriate in the presence of a reaction auxiliary and if appropriate in the presence of a diluent,

15

25

and, if appropriate, further conversions within the scope of the above definition of substituents are carried out by customary methods on the compounds of the general formula (I) obtained by the processes described under (a), (b) or (c).

The novel substituted 2-amino-4-alkylamino-1,3,5-triazines of the general formula

(I) have strong and selective herbicidal activity.

The compounds of the general formula (I) according to the invention contain at least one asymmetrically substituted carbon atom and can therefore be present in different enantiomeric (R- and S-configured forms) or diastereomeric forms. The invention relates both to the different possible individual enantiomeric or stereoisomeric forms of the compounds of the general formula (I), and to the mixtures of these isomeric compounds.

In the definitions, the hydrocarbon chains, such as alkyl - also in combination with heteroatoms, such as in alkoxy or alkylthio - are in each case straight-chain or branched.

Halogen generally represents fluorine, chlorine, bromine or iodine, preferably represents fluorine, chlorine or bromine, and in particular represents fluorine or chlorine.

The invention preferably provides compounds of the formula (I) in which

- 10 R¹ represents optionally hydroxyl-, cyano-, halogen- or C₁-C₄-alkoxy-substituted alkyl having 2 to 4 carbon atoms or represents optionally cyano-, halogen- or C₁-C₄-alkyl-substituted cycloalkyl having 3 to 6 carbon atoms,
 - R² represents hydrogen, methyl or ethyl,

15

- A represents oxygen or methylene,
- Ar represents in each case optionally substituted phenyl, naphthyl or heterocyclyl,

20

where the possible heterocyclyl groupings are preferably selected from the group below:

furyl, benzofuryl, dihydrobenzofuryl, tetrahydrofuryl, thienyl, benzothienyl, thiazolyl, benzothiazolyl, oxazolyl, benzoxazolyl, thiadiazolyl, oxadiazolyl, pyrazolyl, pyrrolyl, quinolinyl, isoquinolinyl, pyridinyl and pyrimidinyl,

and where the possible substituents are in each case preferably selected from the group below: hydroxyl, cyano, nitro, halogen, in each case optionally hydroxyl-, cyano- or halogen-substituted alkyl or alkoxy having in each case 1 to 6 carbon atoms, in each case optionally halogen-substituted alkylcarbonyl, alkoxycarbonyl, alkylthio, alkylsulphinyl or alkylsulphonyl having in each case 1 to 6 carbon atoms in the alkyl groups, in each case optionally hydroxyl-, cyano-, nitro-, halogen-, C₁-C₄-alkyl, C₁-C₄-halogenoalkyl-, C₁-C₄-alkoxy- or C₁-C₄-halogenoalkoxy-substituted phenyl or phenoxy, and also in each case optionally halogen-substituted methylenedioxy or ethylenedioxy,

10 and

5

15

25

- z represents hydrogen, represents halogen, represents in each case optionally hydroxyl-, cyano-, nitro-, halogen-, C₁-C₄-alkoxy-, C₁-C₄-alkyl-carbonyl-, C₁-C₄-alkoxy-carbonyl-, C₁-C₄-alkylthio-, C₁-C₄-alkylsulphinyl- or C₁-C₄-alkylsulphonyl-substituted alkyl, alkoxy, alkylcarbonyl, alkoxycarbonyl, alkylthio, alkylsulphinyl or alkylsulphonyl having in each case 1 to 6 carbon atoms in the alkyl groups, or represents in each case optionally halogen-substituted alkenyl or alkinyl having in each case 2 to 6 carbon atoms.
- From among the compounds of the formula (I) defined above as preferred ("preferably"), particular emphasis is given to the following groups:
 - (A) the compounds of the formula (I) in which A, R¹, R² and Z are each as defined above and Ar represents in each case optionally substituted phenyl or naphthyl, the possible substituents being as defined above;
 - (B) the compounds of the formula (I) in which A, R¹, R² and Z are each as defined above and Ar represents in each case optionally substituted heterocyclyl, the possible heterocyclyl groupings and the possible substituents being as defined above.

The invention in particular relates to compounds of the formula (I) in which

- represents in each case optionally hydroxyl-, cyano-, fluorine-, chlorine-, methoxy- or ethoxy-substituted ethyl, n- or i-propyl, n-, i-, s- or t-butyl or represents in each case optionally cyano-, fluorine-, chlorine-, methyl- or ethyl-substituted cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl,
- R² represents hydrogen or methyl,
- A represents oxygen or methylene,

10

5

- Ar represents in each case optionally substituted phenyl, naphthyl or heterocyclyl,
 - where the possible heterocyclyl groups are preferably selected from the group below:

furyl, benzofuryl, dihydrobenzofuryl, tetrahydrofuryl, thienyl, benzothienyl, thiazolyl, benzothiazolyl, oxazolyl, benzoxazolyl, thiadiazolyl, oxadiazolyl, pyrazolyl, pyrrolyl, quinolinyl, isoquinolinyl, pyridinyl and pyrimidinyl,

20

25

15

and where the possible substituents are in each case preferably selected from the group below:

hydroxyl, cyano, nitro, fluorine, chlorine, bromine, in each case optionally hydroxyl- cyano-, fluorine- or chlorine-substituted methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, methoxy, ethoxy, n- or i-propoxy, n-, i-, s- or t-butoxy, in each case optionally fluorine- or chlorine-substituted acetyl, propionyl, n- or i-butyroyl, methoxycarbonyl, ethoxycarbonyl, n- or i-propoxycarbonyl, methylthio, ethylthio, n- or i-propylthio, methylsulphinyl, ethylsulphinyl, n- or i-propylsulphinyl, methylsulphonyl, ethylsulphonyl, n- or i-propylsulphonyl, in each case optionally hydroxyl-, cyano-, nitro-,

30

fluorine-, chlorine-, bromine-, methyl-, ethyl-, n- or i-propyl-, n-, i-, s- or t-butyl-, trifluoromethyl-, methoxy-, ethoxy-, n- or i-propoxy-, n-, i-, s- or tbutoxy-, difluoromethoxy- or trifluoromethoxy-substituted phenyl or phenoxy, and also in each case optionally fluorine- or chlorine-substituted methylenedioxy or ethylenedioxy,

represents hydrogen, fluorine, chlorine, bromine, represents in each case

optionally hydroxyl-, cyano-. nitro-. fluorine-, chlorine-, methoxy-, ethoxy-,

methylsulphinyl, ethylsulphinyl, n- or i-propylsulphinyl, methylsulphonyl,

ethylsulphonyl, n- or i-propylsulphonyl, or represents in each case optionally

fluorine-, chlorine- or bromine-substituted ethenyl, propenyl, butenyl, ethinyl,

5

and

10

n- or i-propoxy-, n-, i-, s- or t-butoxy-, methylthio-ethylthio-, n- or ipropylthio-, methylsulphinyl-, ethylsulphinyl-, n- or i-propylsulphinyl-, methylsulphonyl-, ethylsulphonyl-, n- or i-propylsulphonyl-substituted methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, methoxy, ethoxy, n- or ipropoxy, n-, i-, s- or t-butoxy, methylthio, ethylthio, n- or i-propylthio,

Z

15

propinyl or butinyl.

20

From among the compounds of the formula (I) defined above as being particularly preferred, particular emphasis is given to the following groups:

(AA) the compounds of the formula (I) in which A, R¹, R² and Z are each as defined 25 above and Ar represents in each case optionally substituted phenyl or naphthyl, the

possible substituents being as defined above, with the proviso that the substituents of the carbon atom to which R¹ is attached are arranged in the R configuration;

(BB) the compounds of the formula (I) in which A, R¹, R² and Z are each as defined 30

above and Ar represents in each case optionally substituted phenyl or naphthyl, the

possible substituents being as defined above, with the proviso that the substituents of the carbon atom to which R¹ is attached are arranged in the S configuration;

(CC) the compounds of the formula (I) in which A, R¹, R² and Z are each as defined above and Ar represents in each case optionally substituted furyl, thienyl, pyridinyl or pyrimidinyl, the possible substituents being as defined above, with the proviso that these compounds are present as racemic mixtures;

(DD) the compounds of the formula (I) in which A, R¹, R² and Z are each as defined above and Ar represents in each case optionally substituted furyl, thienyl, pyridinyl or pyrimidinyl, the possible substituents being as defined above, with the proviso that the substituents of the carbon atom to which R¹ is attached are arranged in the R configuration;

15 (EE) the compounds of the formula (I), in which A, R¹, R² and Z are each as defined above and Ar represents in each case optionally substituted furyl, thienyl, pyridinyl or pyrimidinyl, the possible substituents being as defined above, with the proviso that the substituents of the carbon atom to which R¹ is attached are arranged in the S configuration;

20

25

5

10

The abovementioned general or preferred radical definitions apply both to the end products of the formula (I) and also, correspondingly, to the starting materials or intermediates required in each case for the preparation. These radical definitions can be combined with each other at will, i.e. including combinations between the abovementioned preferred ranges.

Examples of the compounds of the formula (I) according to the invention are listed in the groups below. The general formulae here represent in each case the R enantiomers, the S enantiomers and the racemates.

$$Z = N + N + C_2H_5$$

$$Z = N + N + C_2H_5$$

$$(I-1)$$

5 Here, Z has, for example, the meanings given below:

Hydrogen, methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, chlorofluoromethyl, chlorobromomethyl, chlorodifluoromethyl, fluorodichloromethyl, bromodifluoromethyl, trichloromethyl, 1-fluoro-ethyl, 2-fluoro-ethyl, 1-chloro-ethyl, 10 2-chloro-ethyl, 1-chloro-1-fluoro-ethyl, 1-fluoro-propyl, 2-fluoro-propyl, 3-fluoropropyl, 1-fluoro-1-methyl-ethyl, 2-fluoro-1-methyl-ethyl, 1-chloro-1-methyl-ethyl, 1fluoro-1-methyl-propyl, 1-chloro-1-ethyl-propyl, 1-fluoro-1-ethyl-propyl, 1-chloro-1ethyl-propyl, 1-fluoro-2-methyl-propyl, 1-chloro-2-methyl-propyl, 1-chloro-propyl, 2-chloro-propyl, 3-chloro-propyl, 1-chloro-1-methyl-ethyl, 2-chloro-1-methyl-ethyl, 15 1,1-difluoro-ethyl, 1,2-difluoro-ethyl, 1,1-dichloro-ethyl, 2,2,2-trifluoro-ethyl, 1,2,2,2-tetrafluoro-ethyl, perfluoroethyl, 1,1-difluoro-propyl, 1,1-dichloro-propyl, perfluoropropyl, 1-fluoro-butyl, 1-chloro-butyl, perfluoropentyl, perfluorohexyl, 1hydroxyl-ethyl, acetyl, 1,1-bis-acetyl-methyl, 1-acetyl-1-methoxycarbonyl-methyl, 1-20 acetyl-1-ethoxycarbonyl-methyl, methoxymethyl, 1,1-dimethoxy-methyl, methoxyethyl, 2-methoxy-ethyl, 1,1-dimethoxy-ethyl, ethoxymethyl, 1-ethoxyethyl, 2-ethoxy-ethyl, 2-methoxy-1-methyl-ethyl, 2-methoxy-1-ethyl-ethyl, 2-ethoxy-1methyl-ethyl, 2-ethoxy-1-ethyl-ethyl, methylthiomethyl, ethylthiomethyl, 1-ethylthio-ethyl, 2-ethylthioethyl, methylthio-ethyl, 2-methylthioethyl, 25 methylsulphonylmethyl, methylsulphinylmethyl, ethylsulphinylmethyl, ethylsulphonylmethyl, methoxy, ethoxy, n- or i- propoxy, methylthio, ethylthio, n- or i-propylthio, methylsulphinyl, ethylsulphinyl, methylsulphonyl, ethylsulphonyl, fluoromethoxy, difluoromethoxy, trifluoromethoxy, fluoroethoxy, difluoroethoxy, trifluoroethoxy, difluoromethylthio, trifluoromethylthio, vinyl, 1-chloro-vinyl, 2-chloro-vinyl, 1-fluoro-vinyl, 2-fluoro-vinyl, 1-bromo-vinyl, 2-bromo-vinyl, 1,2-dichloro-vinyl, 1,2-dichloro-vinyl, 1,2-difluoro-vinyl, 2,2-dichloro-vinyl, 2,2-difluoro-vinyl, 2,2-dichloro-vinyl, 2,2-difluoro-vinyl, 2,2-dibromo-vinyl, 1-chloro-2-fluoro-vinyl, 2-bromo-2-chloro-vinyl, trichlorovinyl, allyl, 2-chloro-allyl, 3-chloro-allyl, 3,3-dichloro-allyl, 1-propenyl, isopropenyl, 1-chloro-2-propenyl, 1-fluoro-2-propenyl, 1-bromo-2-propenyl, 1,2-dichloro-1-propenyl, 1,2-dibromo-1-propenyl, 1,2-difluoro-1-propenyl, 1,1-dichloro-2-propenyl, 1,1-dibromo-2-propenyl, 1,1-difluoro-2-propenyl, 3,3,3-pentafluoro-2-butenyl, 2-buten-1-yl, 2-buten-2-yl, 3-chloro-2-butenyl, 3-bromo-2-butenyl, 3,3,3-trifluoro-2-butenyl, ethinyl, 2-chloro-ethinyl, 2-bromo-ethinyl, 1-propinyl, 2-propinyl, 3,3,3-trifluoro-1-propinyl.

Group 2

$$Z \xrightarrow{NH_2} R \xrightarrow{C_2H_5} F$$

$$(I-2)$$

15

5

10

Here, Z has, for example, the meanings given above in group 1.

Group 3

20

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{2}H_{5}} CI$$

$$Z \xrightarrow{N} N \xrightarrow{I} H$$

$$(I-3)$$

$$Z \xrightarrow{NH_2} N \xrightarrow{C_2H_5} Br$$

$$Z \xrightarrow{N} N \xrightarrow{N} N \xrightarrow{I} (I-4)$$

5 Here, Z has, for example, the meanings given above in group 1.

Group 5

$$Z \xrightarrow{NH_2} N \xrightarrow{C_2H_5} NO_2$$

$$(I-5)$$

10

Here, Z has, for example, the meanings given above in group 1.

Group 6

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{2}H_{5}} CH_{3}$$

$$\downarrow N \qquad \downarrow N \qquad \downarrow$$

15

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{2}H_{5}} CF_{3}$$

$$(I-7)$$

5 Here, Z has, for example, the meanings given above in group 1.

Group 8

$$Z$$
 N
 N
 C_2H_5
 C_2H_3
 C_3H_3
 C_3H_3

10

Here, Z has, for example, the meanings given above in group 1.

Group 9

$$Z$$
 N
 N
 C_2H_5
 C_2H_5
 $OCHF_2$
 $OCHF_2$

15

5 Here, Z has, for example, the meanings given above in group 1.

Group 11

$$Z$$
 N
 N
 C_2H_5
 $COOCH_3$
 $(I-11)$

10

Here, Z has, for example, the meanings given above in group 1.

Group 12

$$Z$$
 N
 N
 C_2H_5
 $COOC_2H_5$
 $(I-12)$

15

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{2}H_{5}} SCH_{3}$$

$$(I-13)$$

5 Here, Z has, for example, the meanings given above in group 1.

Group 14

$$Z$$
 N
 N
 C_2H_5
 C_2H_5
 C_2H_3
 C_3H_3
 C_3H_3

10

Here, Z has, for example, the meanings given above in group 1.

Group 15

$$Z \xrightarrow{NH_2} N \xrightarrow{C_2H_5} SO_2CH_3$$

$$(I-15)$$

15

$$Z = \begin{bmatrix} NH_2 \\ N \\ N \end{bmatrix} = \begin{bmatrix} C_2H_5 \\ H \end{bmatrix}$$

$$(I-16)$$

5 Here, Z has, for example, the meanings given above in group 1.

Group 17

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{2}H_{5}} CI$$

$$(I-17)$$

10

Here, Z has, for example, the meanings given above in group 1.

Group 18

$$Z \xrightarrow{NH_2} N \xrightarrow{C_2H_5} Br$$

$$I \xrightarrow{H} Br$$

15

5 Here, Z has, for example, the meanings given above in group 1.

Group 20

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{2}H_{5}} CH_{3}$$

10

Here, Z has, for example, the meanings given above in group 1.

Group 21

$$Z$$
 N
 N
 C_2H_5
 CF_3
 CF_3
 CF_3

15

$$Z$$
 N
 N
 C_2H_5
 C_2H_5
 OCH_3
 OCH_3

5 Here, Z has, for example, the meanings given above in group 1.

Group 23

$$Z \xrightarrow{NH_2} N \xrightarrow{C_2H_5} (I-23)$$

10

Here, Z has, for example, the meanings given above in group 1.

Group 24

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{2}H_{5}} CI$$
(I-24)

15

5 Here, Z has, for example, the meanings given above in group 1.

Group 26

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{2}H_{5}} (I-26)$$

10

Here, Z has, for example, the meanings given above in group 1.

Group 27

$$Z$$
 N
 N
 C_2H_5
 CH_3
 CH_3

15

$$Z$$
 N
 N
 C_2H_5
 C_5
 CF_3
 C_2H_5

5 Here, Z has, for example, the meanings given above in group 1.

Group 29

$$Z$$
 N
 N
 C_2H_5
 OCH_3
 OCH_3

Here, Z has, for example, the meanings given above in group 1.

10

Group 30

$$Z$$
 N
 N
 C_2H_5
 $OCHF_2$
 $OCHF_2$

$$Z$$
 N
 N
 C_2H_5
 C_2H_5
 OCF_3
 OCF_3

5 Here, Z has, for example, the meanings given above in group 1.

Group 32

$$Z$$
 N
 N
 C_2H_5
 $COOCH_3$
 $(I-32)$

10

Here, Z has, for example, the meanings given above in group 1.

Group 33

$$Z$$
 N
 N
 C_2H_5
 $COOC_2H_5$
 $COOC_2H_5$

15

$$Z$$
 N
 N
 C_2H_5
 C_2H_5

5 Here, Z has, for example, the meanings given above in group 1.

Group 35

$$Z$$
 N
 N
 C_2H_5
 C_2H_5
 C_2H_5
 C_2H_5
 C_2H_5
 C_2H_5
 C_2H_5
 C_2H_5

10

Here, Z has, for example, the meanings given above in group 1.

Group 36

$$Z \xrightarrow{NH_2} N \xrightarrow{C_2H_5} (I-36)$$

15

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{2}H_{5}} CI$$

$$CI$$

$$CI$$

5 Here, Z has, for example, the meanings given above in group 1.

Group 38

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{2}H_{5}} CI$$

$$CI$$

$$CI$$

$$CI$$

10

Here, Z has, for example, the meanings given above in group 1.

Group 39

$$Z \xrightarrow{NH_2} N \xrightarrow{C_2H_5} CI$$

$$Z \xrightarrow{N} N \xrightarrow{N} C_2H_5 CI$$

$$CI$$

15

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{2}H_{5}} CI$$

$$CI$$

$$CI$$

$$CI$$

5 Here, Z has, for example, the meanings given above in group 1.

Group 41

$$Z \xrightarrow{NH_2} N \xrightarrow{C_2H_5} CI$$

$$Z \xrightarrow{N} N \xrightarrow{I} N \xrightarrow{C_2H_5} CI$$

$$CI$$

$$CI$$

$$CI$$

10

Here, Z has, for example, the meanings given above in group 1.

Group 42

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{2}H_{5}} F$$

$$\downarrow N \qquad \downarrow N \qquad \downarrow$$

15

5 Here, Z has, for example, the meanings given above in group 1.

Group 44

$$Z \xrightarrow{NH_2} N \xrightarrow{C_2H_5} F$$

$$(1-44)$$

10

Here, Z has, for example, the meanings given above in group 1.

Group 45

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{2}H_{5}} F$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$$

15.

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{2}H_{5}} F$$

$$\downarrow N \xrightarrow{N} N \xrightarrow{I} H$$

$$\downarrow N \xrightarrow{I} F$$

$$\downarrow F$$

$$\downarrow F$$

$$\downarrow F$$

$$\downarrow I$$

5 Here, Z has, for example, the meanings given above in group 1.

Group 47

10

Here, Z has, for example, the meanings given above in group 1.

Group 48

$$Z \xrightarrow{NH_2} N \xrightarrow{C_2H_5} CI$$

$$Z \xrightarrow{N} N \xrightarrow{I} H \xrightarrow{I} F$$

$$(I-48)$$

15

$$Z$$
 N
 N
 C_2H_5
 CH_3
 CH_3
 CH_3

5 Here, Z has, for example, the meanings given above in group 1.

Group 50

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{2}H_{5}} CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

10

Here, Z has, for example, the meanings given above in group 1.

Group 51

$$Z$$
 N
 N
 C_2H_5
 CH_3
 CH_3

15

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{2}H_{5}} CH_{3}$$

$$C_{2}H_{5} CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

5 Here, Z has, for example, the meanings given above in group 1.

Group 53

$$Z \xrightarrow{NH_2} N \xrightarrow{C_2H_5} CH_3$$

$$Z \xrightarrow{N} N \xrightarrow{N} C_2H_5 CI$$

$$Z \xrightarrow{N} N \xrightarrow{N} C_2H_5 CI$$

$$Z \xrightarrow{N} N \xrightarrow{N} N \xrightarrow{N} C_2H_5 CI$$

10

Here, Z has, for example, the meanings given above in group 1.

Group 54

$$Z \xrightarrow{NH_2} N \xrightarrow{C_2H_5} CH_3$$

$$\downarrow N \qquad \downarrow N$$

15

$$Z$$
 N
 N
 C_2H_5
 F
 CH_3
 CH_3

5 Here, Z has, for example, the meanings given above in group 1.

Group 56

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{2}H_{5}} F$$

$$C_{2}H_{5} F$$

$$C_{1-56}$$

$$C_{1-56}$$

10

Here, Z has, for example, the meanings given above in group 1.

Group 57

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{2}H_{5}} CH_{3}$$

$$\downarrow N \qquad \downarrow N$$

15

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{2}H_{5}} S$$

$$X \xrightarrow{I} H \xrightarrow{I} S$$

$$X \xrightarrow$$

5 Here, Z has, for example, the meanings given above in group 1.

Group 59

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{2}H_{5}} S$$

$$(I-59)$$

10

Here, Z has, for example, the meanings given above in group 1.

Group 60

$$Z \xrightarrow{NH_2} N \xrightarrow{C_2H_5} N$$

$$X \xrightarrow{N} N \xrightarrow{N} N$$

$$X \xrightarrow{N} N X$$

$$X \xrightarrow{N} N$$

15

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{2}H_{5}} N \xrightarrow{(I-61)}$$

5 Here, Z has, for example, the meanings given above in group 1.

Group 62

$$Z \xrightarrow{NH_2} N \xrightarrow{C_2H_5} N \xrightarrow{(I-62)}$$

10

Here, Z has, for example, the meanings given above in group 1.

Group 63

$$Z \xrightarrow{NH_2} N \xrightarrow{C_2H_5} (I-63)$$

15

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{3}H_{7}-n} (I-64)$$

5 Here, Z has, for example, the meanings given above in group 1.

Group 65

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{3}H_{7}-i} (I-65)$$

10

Here, Z has, for example, the meanings given above in group 1.

Group 66

$$Z \xrightarrow{NH_2} N \xrightarrow{C_2H_5} O$$

$$Z \xrightarrow{N} N \xrightarrow{I} N \xrightarrow{I} O$$

$$I = 66$$

15

Here, Z has, for example, the meanings given above in group 1.

Group 67

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{3}H_{7}-n} O$$

$$(I-67)$$

20

Here, Z has, for example, the meanings given above in group 1.

Group 68

Here, Z has, for example, the meanings given above in group 1.

Group 69

10

5

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{2}H_{5}} (I-69)$$

Here, Z has, for example, the meanings given above in group 1.

15 <u>Group 70</u>

$$Z \xrightarrow{NH_2} N \xrightarrow{C_2H_5} (I-70)$$

5 Here, Z has, for example, the meanings given above in group 1.

Group 72

$$Z \xrightarrow{NH_2} N \xrightarrow{N} N \xrightarrow{I} H$$

$$(1-72)$$

10

Here, Z has, for example, the meanings given above in group 1.

Group 73

$$Z \xrightarrow{NH_{2}} N \xrightarrow{N} C_{2}H_{5} CF_{3}$$

$$Z \xrightarrow{N} N \xrightarrow{N} N \xrightarrow{I} O$$

$$(I-73)$$

15

$$Z \xrightarrow{NH_{2}} N \xrightarrow{N} C_{2}H_{5} CF_{3}$$

$$CF_{3}$$

$$CF_{3}$$

5 Here, Z has, for example, the meanings given above in group 1.

Group 75

$$Z \xrightarrow{NH_{2}} N \xrightarrow{N} C_{2}H_{5}$$

$$Z \xrightarrow{N} N \xrightarrow{N} C_{2}H_{5}$$

$$CF_{3}$$

$$CF_{3}$$

10

Here, Z has, for example, the meanings given above in group 1.

Group 76

$$Z \xrightarrow{NH_{2}} N \xrightarrow{N} C_{2}H_{5}$$

$$Z \xrightarrow{N} N \xrightarrow{N} N \xrightarrow{I} O \xrightarrow{I} F$$

$$(I-76)$$

15

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{2}H_{5}} O \xrightarrow{F} F$$

5 Here, Z has, for example, the meanings given above in group 1.

Group 78

$$Z \xrightarrow{NH_{2}} N \xrightarrow{N} C_{2}H_{5} F$$

$$(1-78)$$

10

Here, Z has, for example, the meanings given above in group 1.

Group 79

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{2}H_{5}} CH_{3}$$

$$(I-79)$$

15

$$Z$$
 N
 N
 C_2H_5
 CH_3
 CH_3

5 Here, Z has, for example, the meanings given above in group 1.

Group 81

$$Z \xrightarrow{NH_2} N \xrightarrow{C_2H_5} O \xrightarrow{CH_3} CH_3$$

Here, Z has, for example, the meanings given above in group 1.

Group 82

$$Z \xrightarrow{NH_2} N \xrightarrow{C_2H_5} O \xrightarrow{C_2H_5} C_2H_5$$

15

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{2}H_{5}} O \xrightarrow{C_{2}H_{5}} C_{2}H_{5}$$

Here, Z has, for example, the meanings given above in group 1.

Group 84

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{2}H_{5}} O \xrightarrow{C_{2}H_{5}} O \xrightarrow{(I-84)}$$

10

Here, Z has, for example, the meanings given above in group 1.

Group 85

$$Z \xrightarrow{NH_2} N \xrightarrow{C_2H_5} O \xrightarrow{CH_3} CH_3$$

15

$$Z \xrightarrow{NH_2} N \xrightarrow{C_2H_5} O \xrightarrow{CH_3} CH_3$$

5 Here, Z has, for example, the meanings given above in group 1.

Group 87

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{2}H_{5}} CH_{3} CH_{3}$$

$$C_{2}H_{5} CH_{3}$$

$$CH_{3}$$

10

Here, Z has, for example, the meanings given above in group 1.

Group 88

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{2}H_{5}} O \xrightarrow{N} N \xrightarrow{C_{1-88}} CH_{3}$$

15

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{2}H_{5}} O \xrightarrow{N} CF_{3}$$

$$(I-89)$$

5 Here, Z has, for example, the meanings given above in group 1.

Group 90

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{2}H_{5}} O \xrightarrow{S} (I-90)$$

10

Here, Z has, for example, the meanings given above in group 1.

Group 91

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{2}H_{5}} O \xrightarrow{N} N$$

$$\downarrow N \qquad \downarrow N \qquad \downarrow$$

15

5 Here, Z has, for example, the meanings given above in group 1.

Group 93

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{2}H_{5}} O$$

$$(I-93)$$

10

Here, Z has, for example, the meanings given above in group 1.

Group 94

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{2}H_{5}} N \xrightarrow{C_{1}-94} CH_{3}$$

15

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{2}H_{5}} C \xrightarrow{N} CF_{3}$$
(I-95)

5 Here, Z has, for example, the meanings given above in group 1.

Group 96

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{2}H_{5}} O \xrightarrow{S} S$$

10

Here, Z has, for example, the meanings given above in group 1.

Group 97

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{2}H_{5}} O \xrightarrow{N} C(CH_{3})_{3}$$

15

$$Z \xrightarrow{NH_{2}} N \xrightarrow{C_{2}H_{5}} O \xrightarrow{N} CH(CH_{3})_{2}$$
(I-98)

Using, for example, 1-(1-ethyl-3-phenyl-propyl)-biguanide and methyl trifluoroacetate as starting materials, the course of the reaction in the process (a) according to the invention can be illustrated by the following equation:

5

10

15

20

Using, for example, 2-chloro-4-(1-ethyl-3-phenyl-propylamino)-6-trifluoromethyl-1,3,5-triazine and ammonia as starting materials, the course of the reaction in the process (b) according to the invention can be illustrated by the following equation:

$$F_{3}C$$

$$N$$

$$N$$

$$C_{2}H_{5}$$

$$-HCI$$

$$F_{3}C$$

$$N$$

$$N$$

$$N$$

$$C_{2}H_{5}$$

$$+ NH_{3}$$

$$-HCI$$

$$F_{3}C$$

Using, for example, 2-amino-4-methoxy-6-trifluoromethyl-1,3,5-triazine and 3-phenyl-1-ethyl-propylamine as starting materials, the course of the reaction in the process (c) according to the invention can be illustrated by the following equation:

The formula (II) provides a general definition of the substituted biguanides to be used as starting materials in the process (a) according to the invention for preparing compounds of the formula (I). In the formula (II), R¹, R², A and Ar each preferably or in particular have those meanings which have already been mentioned above, in

connection with the description of the compounds of the formula (I) according to the invention, as being preferred or as being particularly preferred for R¹, R², A and Ar. Examples of the substituted biguanides of the formula (II) which may be mentioned are:

5

10

15

20

25

30

```
1-(1-ethyl-3-phenyl-propyl)-,
                                1-(1-n-propyl-3-phenyl-propyl)-,
                                                                     1-(1-i-propyl-3-
phenyl-propyl)-, 1-(1-cyclopropyl-3-phenyl-propyl)-, 1-(1-ethyl-3-(2-fluoro-phenyl)-
propyl)-,
           1-(1-ethyl-3-(3-fluoro-phenyl)-propyl)-,
                                                     1-(1-ethyl-3-(4-fluoro-phenyl)-
           1-(1-ethyl-3-(2-chloro-phenyl)-propyl)-,
propyl)-,
                                                     1-(1-ethyl-3-(3-chloro-phenyl)-
           1-(1-ethyl-3-(4-chloro-phenyl)-propyl)-,
                                                     1-(1-ethyl-3-(2-bromo-phenyl)-
propyl)-,
propyl)-,
           1-(1-ethyl-3-(3-bromo-phenyl)-propyl)-,
                                                     1-(1-ethyl-3-(4-bromo-phenyl)-
propyl)-,
            1-(1-ethyl-3-(2-nitro-phenyl)-propyl)-,
                                                       1-(1-ethyl-3-(3-nitro-phenyl)-
           1-(1-ethyl-3-(4-nitro-phenyl)-propyl)-,
propyl)-,
                                                     1-(1-ethyl-3-(2-methyl-phenyl)-
propyl)-, 1-(1-ethyl-3-(3-methyl-phenyl)-propyl)-, 1-(1-ethyl-3-(4-methyl-phenyl)-
propyl)-, 1-(1-ethyl-3-(2-trifluoromethyl-phenyl)-propyl)-, 1-(1-ethyl-3-(3-trifluoro-
methyl-phenyl)-propyl)-, 1-(1-ethyl-3-(4-trifluoromethyl-phenyl)-propyl)-, 1-(1-ethyl-
3-(2-methoxy-phenyl)-propyl)-, 1-(1-ethyl-3-(3-methoxy-phenyl)-propyl)-,
ethyl-3-(4-methoxy-phenyl)-propyl)-,
                                           1-(1-ethyl-3-(2-difluoromethoxy-phenyl)-
            1-(1-ethyl-3-(2-difluoromethoxy-phenyl)-propyl)-,
                                                                  1-(1-ethyl-3-(2-di-
propyl)-,
fluoromethoxy-phenyl)-propyl)-, 1-(1-ethyl-3-(2-trifluoromethoxy-phenyl)-propyl)-,
1-(1-ethyl-3-(3-trifluoromethoxy-phenyl)-propyl), 1-(1-ethyl-3-(4-trifluoromethoxy-
phenyl)-propyl)-, 1-(1-ethyl-3-(2-methoxycarbonyl-phenyl)-propyl)-, 1-(1-ethyl-3-(2-
ethoxycarbonyl-phenyl)-propyl)-, 1-(1-ethyl-3-(4-methoxycarbonyl-phenyl)-propyl)-,
1-(1-ethyl-3-(4-ethoxycarbonyl-phenyl)-propyl)-, 1-(1-ethyl-3-(2-methylthio-phenyl)-
propyl)-,
             1-(1-ethyl-3-(4-methylthio-phenyl)-propyl)-,
                                                             1-(1-ethyl-3-(2-methyl-
sulphinyl-phenyl)-propyl)-, 1-(1-ethyl-3-(4-methylsulphinyl-phenyl)-propyl)-, 1-(1-
ethyl-3-(2-methylsulphonyl-phenyl)-propyl)-,
                                                   1-(1-ethyl-3-(4-methylsulphonyl-
phenyl)-propyl)-, 1-(1-ethyl-3-(3,4-dichloro-phenyl)-propyl)-, 1-(1-ethyl-3-(2,4-di-
chloro-phenyl)-propyl)-, 1-(1-ethyl-3-(2,5-dichloro-phenyl)-propyl)-, 1-(1-ethyl-3-
(2,6-dichloro-phenyl)-propyl)-, 1-(1-ethyl-3-(2,6-difluoro-phenyl)-propyl)-, 1-(1-
ethyl-3-(2,5-difluoro-phenyl)-propyl)-,
                                         1-(1-ethyl-3-(2,4-difluoro-phenyl)-propyl)-,
```

1-(1-ethyl-3-(3,4-difluoro-phenyl)-propyl)-, 1-(1-ethyl-3-(3,5-difluoro-phenyl)-propyl)-, 1-(1-ethyl-3-(2-fluoro-4-chloro-phenyl)-propyl)-, 1-(1-ethyl-3-(4-fluoro-2-chloro-phenyl)-propyl)-, 1-(1-ethyl-3-(2,4-dimethyl-phenyl)-propyl)-, 1-(1-ethyl-3-(3,5-dimethyl-phenyl)-propyl)-, 1-(1-ethyl-3-(3,5-dimethyl-phenyl)-propyl)-, 1-(1-ethyl-3-(2-chloro-6-methyl-phenyl)-propyl)-, 1-(1-ethyl-3-(2-chloro-6-methyl-phenyl)-propyl)-, 1-(1-ethyl-3-(2-fluoro-4-methyl-phenyl)-propyl)-, 1-(1-ethyl-3-(2-fluoro-5-methyl-phenyl)-propyl)-, 1-(1-ethyl-3-(5-fluoro-2-methyl-phenyl)-propyl)-, 1-(1-ethyl-3-thien-2-yl-propyl)-, 1-(1-ethyl-3-thien-3-yl-propyl)-, 1-(1-ethyl-3-pyridin-2-yl-propyl)-, 1-(1-ethyl-3-pyridin-3-yl-propyl)- and 1-(1-ethyl-3-pyridin-4-yl-propyl)-biguanide.

Suitable acid adducts of compounds of the formula (II) are their addition products with protic acids, such as, for example with hydrogen chloride, hydrogen bromide, sulphuric acid, methanesulphonic acid, benzenesulphonic acid and ptoluenesulphonic acid.

The starting materials of the general formula (II) have hitherto not been disclosed in the literature; as novel substances, they also form part of the subject matter of the present application.

20

5

10

15

The novel substituted biguanides of the general formula (II) are obtained when substituted alkylamines of the general formula (VI),

$$H_2N$$
 A
 A
 A
 A
 A
 A

25

in which

R¹, R², A and Ar are each as defined above

- and/or acid adducts of compounds of the general formula (VI), such as, for example, the hydrochlorides -

are reacted with cyanoguanidine ("dicyanodiamide") of the formula (VII)

5

if appropriate in the presence of a reaction auxiliary, such as, for example, hydrogen chloride, and if appropriate in the presence of a diluent, such as, for example, n-decane or 1,2-dichloro-benzene, at temperatures between 100°C and 200°C (cf. EP 492615, Preparation Examples).

15

10

The substituted alkylamino compounds of the general formula (VI) required as precursors for this purpose are known and/or can be prepared by processes known per se (cf. J. Med. Chem. 10 (1967); 717-724; J. Am. Chem. Soc. 97 (1975), 6900-6901; Tetrahedron Lett. 35 (1994), 3745-3746; DE 3222152; DE 3221540; EP 355351; EP 601486; Preparation Examples).

20

The formula (III) provides a general definition of the alkoxycarbonyl compounds further to be used as starting materials in the process (a) according to the invention for preparing compounds of the formula (I). In the formula (III), Z preferably or in particular has that meaning which has already been mentioned above, in connection with the description of the compounds of the formula (I) according to the invention, as being preferred or as being particularly preferred for Z; R' preferably represents alkyl having 1 to 4 carbon atoms, and in particular represents methyl or ethyl.

25

The starting materials of the formula (III) are known chemicals for synthesis.

The formula (IV) provides a general definition of the substituted triazines to be used as starting materials in the process (b) according to the invention for preparing

compounds of the formula (I). In the formula (IV), R^1 , R^2 , A, Ar and Z each preferably or in particular have those meanings which have already been mentioned above, in connection with the description of the compounds of the formula (I) according to the invention, as being preferred or as being particularly preferred for R^1 , R^2 , A, Ar and Z; X^1 preferably represents fluorine, chlorine, bromine, methoxy or ethoxy, and in particular represents chlorine or methoxy.

Examples of the substituted triazines of the formula (IV) which may be mentioned are:

10

15

20

25

30

5

2-(1-ethyl-3-phenyl-propylamino)-, 2-(1-ethyl-3-(2-fluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-fluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-fluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-chloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-chlorophenyl)-propylamino)-, 2-(1-ethyl-3-(4-chloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-bromo-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-bromo-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-bromo-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-nitro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-nitro-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-nitro-phenyl)propylamino)-, 2-(1-ethyl-3-(2-methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methyl-phenyl)-propylamino)-, 2-(1ethyl-3-(2-trifluoromethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-trifluoromethylphenyl)-propylamino)-, 2-(1-ethyl-3-(4-trifluoromethyl-phenyl)-propylamino)-, 2-(1ethyl-3-(2-methoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-methoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-difluoromethoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-difluoromethoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-difluoromethoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-trifluoromethoxy-phenyl)-propylamino)-, 1-(1-ethyl-3-(3-trifluoromethoxy-phenyl)propylamino)-, 2-(1-ethyl-3-(4-trifluoromethoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-methoxycarbonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-ethoxycarbonylphenyl)-propylamino)-, 2-(1-ethyl-3-(4-methoxycarbonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-ethoxycarbonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-methylthiophenyl)-propylamino)-, 2-(1-ethyl-3-(4-methylthio-phenyl)-propylamino)-,

ethyl-3-(2-methylsulphinyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methylsulphinylphenyl)-propylamino)-, 2-(1-ethyl-3-(2-methylsulphonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methylsulphonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,4-dichlorophenyl)-propylamino)-, 2-(1-ethyl-3-(2,4-dichloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,5-dichloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,6-dichloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,6-difluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,5-difluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,4-difluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,4-difluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,5-difluoro-phenyl)propylamino)-, 2-(1-ethyl-3-(2-fluoro-4-chloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-fluoro-2-chloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,4-dimethyl-phenyl)propylamino)-, 2-(1-ethyl-3-(3,4-dimethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,5dimethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,5-dimethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-chloro-6-methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-fluoro-2-2-(1-ethyl-3-(2-fluoro-4-methyl-phenyl)-propylmethyl-phenyl)-propylamino)-, amino)-, 2-(1-ethyl-3-(2-fluoro-5-methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(5fluoro-2-methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-thien-2-yl-propylamino)-, 2-(1-2-(1-ethyl-3-pyridin-2-yl-propylamino)-, ethyl-3-thien-3-yl-propylamino)-, ethyl-3-pyridin-3-yl-propylamino)- and 2-(1-ethyl-3-pyridin-4-yl-propylamino)-4,6-dichloro-1,3,5-triazine;

20

25

30

5

10

15

2-(1-ethyl-3-phenyl-propylamino)-, 2-(1-ethyl-3-(2-fluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-fluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-fluoro-phenyl)-propyl-2-(1-ethyl-3-(2-chloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-chloroamino)-, phenyl)-propylamino)-, 2-(1-ethyl-3-(4-chloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-bromo-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-bromo-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-bromo-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-nitro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-nitro-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-nitro-phenyl)propylamino)-, 2-(1-ethyl-3-(2-methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methyl-phenyl)-propylamino)-, 2-(1ethyl-3-(2-trifluoromethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-trifluoromethylphenyl)-propylamino)-, 2-(1-ethyl-3-(4-trifluoromethyl-phenyl)-propylamino)-, 2-(1-

ethyl-3-(2-methoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-methoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-difluoromethoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-difluoromethoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-difluoromethoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-tri-5 fluoromethoxy-phenyl)-propylamino)-, 1-(1-ethyl-3-(3-trifluoromethoxy-phenyl)propylamino)-, 2-(1-ethyl-3-(4-trifluoromethoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-methoxycarbonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-ethoxycarbonylphenyl)-propylamino)-, 2-(1-ethyl-3-(4-methoxycarbonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-ethoxycarbonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-methylthiophenyl)-propylamino)-, 2-(1-ethyl-3-(4-methylthio-phenyl)-propylamino)-, ethyl-3-(2-methylsulphinyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methylsulphinylphenyl)-propylamino)-, 2-(1-ethyl-3-(2-methylsulphonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methylsulphonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,4-dichlorophenyl)-propylamino)-, 2-(1-ethyl-3-(2,4-dichloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,5-dichloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,6-dichloro-phenyl)-propyl-2-(1-ethyl-3-(2,6-difluoro-phenyl)-propylamino)-, amino)-, 2-(1-ethyl-3-(2,5-difluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,4-difluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,4-difluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,5-difluoro-phenyl)propylamino)-, 2-(1-ethyl-3-(2-fluoro-4-chloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-fluoro-2-chloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,4-dimethyl-phenyl)propylamino)-, 2-(1-ethyl-3-(3,4-dimethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,5dimethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,5-dimethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-chloro-6-methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-fluoro-2methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-fluoro-4-methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-fluoro-5-methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(5fluoro-2-methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-thien-2-yl-propylamino)-, 2-(1ethyl-3-thien-3-yl-propylamino)-, 2-(1-ethyl-3-pyridin-2-yl-propylamino)-, ethyl-3-pyridin-3-yl-propylamino)- and 2-(1-ethyl-3-pyridin-4-yl-propylamino)- -4chloro-6-methyl-1,3,5-triazine;

25

10

15

20

5

10

. 15

20

25

30

2-(1-ethyl-3-phenyl-propylamino)-, 2-(1-ethyl-3-(2-fluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-fluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-fluoro-phenyl)-propyl-2-(1-ethyl-3-(2-chloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-chlorophenyl)-propylamino)-, 2-(1-ethyl-3-(4-chloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-bromo-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-bromo-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-bromo-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-nitro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-nitro-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-nitro-phenyl)-2-(1-ethyl-3-(2-methyl-phenyl)-propylamino)-, propylamino)-, 2-(1-ethyl-3-(3methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methyl-phenyl)-propylamino)-, 2-(1ethyl-3-(2-trifluoromethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-trifluoromethylphenyl)-propylamino)-, 2-(1-ethyl-3-(4-trifluoromethyl-phenyl)-propylamino)-, 2-(1ethyl-3-(2-methoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-methoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-difluoro-2-(1-ethyl-3-(2-difluoromethoxy-phenyl)-propylmethoxy-phenyl)-propylamino)-, amino)-, 2-(1-ethyl-3-(2-difluoromethoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-trifluoromethoxy-phenyl)-propylamino)-, 1-(1-ethyl-3-(3-trifluoromethoxy-phenyl)propylamino)-, 2-(1-ethyl-3-(4-trifluoromethoxy-phenyl)-propylamino)-, 2-(1-ethyl-2-(1-ethyl-3-(2-ethoxycarbonyl-3-(2-methoxycarbonyl-phenyl)-propylamino)-, phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methoxycarbonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-ethoxycarbonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-methylthiophenyl)-propylamino)-, 2-(1-ethyl-3-(4-methylthio-phenyl)-propylamino)-, ethyl-3-(2-methylsulphinyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methylsulphinylphenyl)-propylamino)-, 2-(1-ethyl-3-(2-methylsulphonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methylsulphonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,4-dichlorophenyl)-propylamino)-, 2-(1-ethyl-3-(2,4-dichloro-phenyl)-propylamino)-, 2-(1-ethyl-2-(1-ethyl-3-(2,6-dichloro-phenyl)-propyl-3-(2,5-dichloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,6-difluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,5-diamino)-. fluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,4-difluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,4-difluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,5-difluoro-phenyl)propylamino)-, 2-(1-ethyl-3-(2-fluoro-4-chloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-fluoro-2-chloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,4-dimethyl-phenyl)-

propylamino)-, 2-(1-ethyl-3-(3,4-dimethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,5-dimethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,5-dimethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-chloro-6-methylphenyl)-propylamino)-, 2-(1-ethyl-3-(4-fluoro-2-methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-fluoro-4-methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-fluoro-5-methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-thien-2-yl-propylamino)-, 2-(1-ethyl-3-thien-2-yl-propylamino)-, 2-(1-ethyl-3-thien-3-yl-propylamino)-, 2-(1-ethyl-3-pyridin-2-yl-propylamino)-, 2-(1-ethyl-3-pyridin-3-yl-propylamino)- and 2-(1-ethyl-3-pyridin-4-yl-propylamino)- -4-chloro-6-trifluoromethyl-1,3,5-triazine;

10

15

20

25

30

5

2-(1-ethyl-3-phenyl-propylamino)-, 2-(1-ethyl-3-(2-fluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-fluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-fluoro-phenyl)-propyl-2-(1-ethyl-3-(2-chloro-phenyl)-propylamino)-, amino)-, 2-(1-ethyl-3-(3-chlorophenyl)-propylamino)-, 2-(1-ethyl-3-(4-chloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-bromo-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-bromo-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-bromo-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-nitro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-nitro-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-nitro-phenyl)-2-(1-ethyl-3-(2-methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3propylamino)-, methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methyl-phenyl)-propylamino)-, 2-(1ethyl-3-(2-trifluoromethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-trifluoromethylphenyl)-propylamino)-, 2-(1-ethyl-3-(4-trifluoromethyl-phenyl)-propylamino)-, 2-(1ethyl-3-(2-methoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-methoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-difluoromethoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-difluoromethoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-difluoromethoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-trifluoromethoxy-phenyl)-propylamino)-, 1-(1-ethyl-3-(3-trifluoromethoxy-phenyl)propylamino)-, 2-(1-ethyl-3-(4-trifluoromethoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-methoxycarbonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-ethoxycarbonylphenyl)-propylamino)-, 2-(1-ethyl-3-(4-methoxycarbonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-ethoxycarbonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-methylthiophenyl)-propylamino)-, 2-(1-ethyl-3-(4-methylthio-phenyl)-propylamino)-,

ethyl-3-(2-methylsulphinyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methylsulphinylphenyl)-propylamino)-, 2-(1-ethyl-3-(2-methylsulphonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methylsulphonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,4-dichlorophenyl)-propylamino)-, 2-(1-ethyl-3-(2,4-dichloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,5-dichloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,6-dichloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,6-difluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,5-difluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,4-difluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,4-difluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,5-difluoro-phenyl)propylamino)-, 2-(1-ethyl-3-(2-fluoro-4-chloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-fluoro-2-chloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,4-dimethyl-phenyl)propylamino)-, 2-(1-ethyl-3-(3,4-dimethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,5dimethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,5-dimethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-chloro-6-methylphenyl)-propylamino)-, 2-(1-ethyl-3-(4-fluoro-2methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-fluoro-4-methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-fluoro-5-methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(5fluoro-2-methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-thien-2-yl-propylamino)-, 2-(1ethyl-3-thien-3-yl-propylamino)-, 2-(1-ethyl-3-pyridin-2-yl-propylamino)-, ethyl-3-pyridin-3-yl-propylamino)- and 2-(1-ethyl-3-pyridin-4-yl-propylamino)- -4chloro-6-(1-fluoro-ethyl)-1,3,5-triazine;

20

25

30

5

10

15

2-(1-ethyl-3-phenyl-propylamino)-, 2-(1-ethyl-3-(2-fluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-fluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-fluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-chloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-chlorophenyl)-propylamino)-, 2-(1-ethyl-3-(4-chloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-bromo-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-bromo-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-bromo-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-nitro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-nitro-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-nitro-phenyl)propylamino)-, 2-(1-ethyl-3-(2-methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methyl-phenyl)-propylamino)-, 2-(1ethyl-3-(2-trifluoromethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-trifluoromethylphenyl)-propylamino)-, 2-(1-ethyl-3-(4-trifluoromethyl-phenyl)-propylamino)-, 2-(1-

ethyl-3-(2-methoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-methoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-difluoromethoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-difluoromethoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-difluoromethoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-tri-5 fluoromethoxy-phenyl)-propylamino)-, 1-(1-ethyl-3-(3-trifluoromethoxy-phenyl)propylamino)-, 2-(1-ethyl-3-(4-trifluoromethoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-methoxycarbonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-ethoxycarbonylphenyl)-propylamino)-, 2-(1-ethyl-3-(4-methoxycarbonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-ethoxycarbonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-methylthio-10 2-(1-ethyl-3-(4-methylthio-phenyl)-propylamino)-, phenyl)-propylamino)-, 2-(1ethyl-3-(2-methylsulphinyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methylsulphinylphenyl)-propylamino)-, 2-(1-ethyl-3-(2-methylsulphonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methylsulphonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,4-dichlorophenyl)-propylamino)-, 2-(1-ethyl-3-(2,4-dichloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,5-dichloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,6-dichloro-phenyl)-propyl-15 2-(1-ethyl-3-(2,6-difluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,5-diamino)-, fluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,4-difluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,4-difluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,5-difluoro-phenyl)propylamino)-, 2-(1-ethyl-3-(2-fluoro-4-chloro-phenyl)-propylamino)-, 2-(1-ethyl-3-20 (4-fluoro-2-chloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,4-dimethyl-phenyl)propylamino)-, 2-(1-ethyl-3-(3,4-dimethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,5dimethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,5-dimethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-fluoro-2-2-(1-ethyl-3-(2-chloro-6-methyl-phenyl)-propylamino)-, methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-fluoro-4-methyl-phenyl)-propyl-25 amino)-, 2-(1-ethyl-3-(2-fluoro-5-methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(5fluoro-2-methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-thien-2-yl-propylamino)-, 2-(1ethyl-3-thien-3-yl-propylamino)-, 2-(1-ethyl-3-pyridin-2-yl-propylamino)-, ethyl-3-pyridin-3-yl-propylamino)- and 2-(1-ethyl-3-pyridin-4-yl-propylamino)-4-chloro-6-(1-fluoro-1-methyl-ethyl)-1,3,5-triazine;

2-(1-ethyl-3-phenyl-propylamino)-, 2-(1-ethyl-3-(2-fluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-fluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-fluoro-phenyl)-propylamino)-. 2-(1-ethyl-3-(2-chloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-chlorophenyl)-propylamino)-, 2-(1-ethyl-3-(4-chloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-bromo-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-bromo-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-bromo-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-nitro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-nitro-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-nitro-phenyl)propylamino)-, 2-(1-ethyl-3-(2-methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methyl-phenyl)-propylamino)-, 2-(1ethyl-3-(2-trifluoromethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-trifluoromethylphenyl)-propylamino)-, 2-(1-ethyl-3-(4-trifluoromethyl-phenyl)-propylamino)-, 2-(1ethyl-3-(2-methoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-methoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-difluoromethoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-difluoromethoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-difluoromethoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-trifluoromethoxy-phenyl)-propylamino)-, 1-(1-ethyl-3-(3-trifluoromethoxy-phenyl)propylamino)-, 2-(1-ethyl-3-(4-trifluoromethoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-methoxycarbonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-ethoxycarbonylphenyl)-propylamino)-, 2-(1-ethyl-3-(4-methoxycarbonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-ethoxycarbonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-methylthiophenyl)-propylamino)-, 2-(1-ethyl-3-(4-methylthio-phenyl)-propylamino)-, ethyl-3-(2-methylsulphinyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methylsulphinylphenyl)-propylamino)-, 2-(1-ethyl-3-(2-methylsulphonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methylsulphonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,4-dichlorophenyl)-propylamino)-, 2-(1-ethyl-3-(2,4-dichloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,5-dichloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,6-dichloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,6-difluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,5-difluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,4-difluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,4-difluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,5-difluoro-phenyl)propylamino)-, 2-(1-ethyl-3-(2-fluoro-4-chloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-fluoro-2-chloro-phenyl)-propylamino)-. 2-(1-ethyl-3-(2,4-dimethyl-phenyl)-

5

10

15

20

25

30

propylamino)-, 2-(1-ethyl-3-(3,4-dimethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,5-dimethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,5-dimethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-chloro-6-methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-fluoro-2-methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-fluoro-4-methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(5-fluoro-2-methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-thien-2-yl-propylamino)-, 2-(1-ethyl-3-thien-2-yl-propylamino)-, 2-(1-ethyl-3-thien-3-yl-propylamino)-, 2-(1-ethyl-3-pyridin-2-yl-propylamino)-, 2-(1-ethyl-3-pyridin-3-yl-propylamino)- and 2-(1-ethyl-3-pyridin-4-yl-propylamino)- -4-chloro-6-methoxy-1,3,5-triazine;

10

15

20

25

30

5

2-(1-ethyl-3-phenyl-propylamino)-, 2-(1-ethyl-3-(2-fluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-fluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-fluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-chloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-chlorophenyl)-propylamino)-, 2-(1-ethyl-3-(4-chloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-bromo-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-bromo-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-bromo-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-nitro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-nitro-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-nitro-phenyl)propylamino)-, 2-(1-ethyl-3-(2-methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methyl-phenyl)-propylamino)-, 2-(1ethyl-3-(2-trifluoromethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-trifluoromethylphenyl)-propylamino)-, 2-(1-ethyl-3-(4-trifluoromethyl-phenyl)-propylamino)-, 2-(1ethyl-3-(2-methoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-methoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-difluoromethoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-difluoromethoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-difluoromethoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-trifluoromethoxy-phenyl)-propylamino)-, 1-(1-ethyl-3-(3-trifluoromethoxy-phenyl)propylamino)-, 2-(1-ethyl-3-(4-trifluoromethoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-methoxycarbonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-ethoxycarbonylphenyl)-propylamino)-, 2-(1-ethyl-3-(4-methoxycarbonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-ethoxycarbonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-methylthiophenyl)-propylamino)-, 2-(1-ethyl-3-(4-methylthio-phenyl)-propylamino)-,

ethyl-3-(2-methylsulphinyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methylsulphinylphenyl)-propylamino)-, 2-(1-ethyl-3-(2-methylsulphonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methylsulphonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,4-dichlorophenyl)-propylamino)-, 2-(1-ethyl-3-(2,4-dichloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,5-dichloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,6-dichloro-phenyl)-propyl-2-(1-ethyl-3-(2,6-difluoro-phenyl)-propylamino)-, amino)-, 2-(1-ethyl-3-(2,5-difluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,4-difluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,4-difluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,5-difluoro-phenyl)propylamino)-, 2-(1-ethyl-3-(2-fluoro-4-chloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-fluoro-2-chloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,4-dimethyl-phenyl)propylamino)-, 2-(1-ethyl-3-(3,4-dimethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,5dimethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,5-dimethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-chloro-6-methylphenyl)-propylamino)-, 2-(1-ethyl-3-(4-fluoro-2-2-(1-ethyl-3-(2-fluoro-4-methyl-phenyl)-propylmethyl-phenyl)-propylamino)-, amino)-, 2-(1-ethyl-3-(2-fluoro-5-methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(5fluoro-2-methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-thien-2-yl-propylamino)-, 2-(1ethyl-3-thien-3-yl-propylamino)-, 2-(1-ethyl-3-pyridin-2-yl-propylamino)-, ethyl-3-pyridin-3-yl-propylamino)- and 2-(1-ethyl-3-pyridin-4-yl-propylamino)- -4chloro-6-(2,2,2-trifluoro-ethoxy)-1,3,5-triazine;

20

25

30

5

10

15

2-(1-ethyl-3-phenyl-propylamino)-, 2-(1-ethyl-3-(2-fluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-fluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-fluoro-phenyl)-propyl-2-(1-ethyl-3-(2-chloro-phenyl)-propylamino)-, amino)-, 2-(1-ethyl-3-(3-chlorophenyl)-propylamino)-, 2-(1-ethyl-3-(4-chloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-bromo-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-bromo-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-bromo-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-nitro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-nitro-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-nitro-phenyl)propylamino)-, 2-(1-ethyl-3-(2-methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methyl-phenyl)-propylamino)-, 2-(1ethyl-3-(2-trifluoromethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-trifluoromethylphenyl)-propylamino)-, 2-(1-ethyl-3-(4-trifluoromethyl-phenyl)-propylamino)-, 2-(1ethyl-3-(2-methoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-methoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-difluoromethoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-difluoromethoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-difluoromethoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-trifluoromethoxy-phenyl)-propylamino)-, 1-(1-ethyl-3-(3-trifluoromethoxy-phenyl)propylamino)-, 2-(1-ethyl-3-(4-trifluoromethoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-methoxycarbonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-ethoxycarbonylphenyl)-propylamino)-, 2-(1-ethyl-3-(4-methoxycarbonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-ethoxycarbonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-methylthiophenyl)-propylamino)-, 2-(1-ethyl-3-(4-methylthio-phenyl)-propylamino)-, 2-(1ethyl-3-(2-methylsulphinyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methylsulphinylphenyl)-propylamino)-, 2-(1-ethyl-3-(2-methylsulphonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methylsulphonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,4-dichlorophenyl)-propylamino)-, 2-(1-ethyl-3-(2,4-dichloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2.5-dichloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,6-dichloro-phenyl)-propyl-2-(1-ethyl-3-(2,6-difluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,5-diamino)-. fluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,4-difluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,4-difluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,5-difluoro-phenyl)propylamino)-, 2-(1-ethyl-3-(2-fluoro-4-chloro-phenyl)-propylamino)-, 2-(1-ethyl-3-2-(1-ethyl-3-(2,4-dimethyl-phenyl)-(4-fluoro-2-chloro-phenyl)-propylamino)-, propylamino)-, 2-(1-ethyl-3-(3,4-dimethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,5dimethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,5-dimethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-chloro-6-methylphenyl)-propylamino)-, 2-(1-ethyl-3-(4-fluoro-2-2-(1-ethyl-3-(2-fluoro-4-methyl-phenyl)-propylmethyl-phenyl)-propylamino)-, amino)-, 2-(1-ethyl-3-(2-fluoro-5-methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(5fluoro-2-methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-thien-2-yl-propylamino)-, 2-(1ethyl-3-thien-3-yl-propylamino)-, 2-(1-ethyl-3-pyridin-2-yl-propylamino)-, ethyl-3-pyridin-3-yl-propylamino)- and 2-(1-ethyl-3-pyridin-4-yl-propylamino)- -4chloro-6-methylthio-1,3,5-triazine;

5

10

15

20

25

5

10

15

20

25

30

2-(1-ethyl-3-phenyl-propylamino)-, 2-(1-ethyl-3-(2-fluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-fluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-fluoro-phenyl)-propyl-2-(1-ethyl-3-(2-chloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-chloroamino)-. phenyl)-propylamino)-, 2-(1-ethyl-3-(4-chloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-bromo-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-bromo-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-bromo-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-nitro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-nitro-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-nitro-phenyl)propylamino)-, 2-(1-ethyl-3-(2-methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methyl-phenyl)-propylamino)-, 2-(1ethyl-3-(2-trifluoromethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-trifluoromethylphenyl)-propylamino)-, 2-(1-ethyl-3-(4-trifluoromethyl-phenyl)-propylamino)-, 2-(1ethyl-3-(2-methoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-methoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-difluoro-2-(1-ethyl-3-(2-difluoromethoxy-phenyl)-propylmethoxy-phenyl)-propylamino)-, amino)-, 2-(1-ethyl-3-(2-difluoromethoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-trifluoromethoxy-phenyl)-propylamino)-, 1-(1-ethyl-3-(3-trifluoromethoxy-phenyl)propylamino)-, 2-(1-ethyl-3-(4-trifluoromethoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-methoxycarbonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-ethoxycarbonylphenyl)-propylamino)-, 2-(1-ethyl-3-(4-methoxycarbonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-ethoxycarbonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-methylthiophenyl)-propylamino)-, 2-(1-ethyl-3-(4-methylthio-phenyl)-propylamino)-, ethyl-3-(2-methylsulphinyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methylsulphinylphenyl)-propylamino)-, 2-(1-ethyl-3-(2-methylsulphonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methylsulphonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,4-dichlorophenyl)-propylamino)-, 2-(1-ethyl-3-(2,4-dichloro-phenyl)-propylamino)-, 2-(1-ethyl-2-(1-ethyl-3-(2,6-dichloro-phenyl)-propyl-3-(2,5-dichloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,6-difluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,5-diamino)-, fluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,4-difluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,4-difluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,5-difluoro-phenyl)propylamino)-, 2-(1-ethyl-3-(2-fluoro-4-chloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-fluoro-2-chloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,4-dimethyl-phenyl)-

propylamino)-, 2-(1-ethyl-3-(3,4-dimethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,5-dimethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,5-dimethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-chloro-6-methylphenyl)-propylamino)-, 2-(1-ethyl-3-(4-fluoro-2-methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-fluoro-4-methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-fluoro-5-methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-thien-2-yl-propylamino)-, 2-(1-ethyl-3-thien-2-yl-propylamino)-, 2-(1-ethyl-3-thien-3-yl-propylamino)-, 2-(1-ethyl-3-pyridin-2-yl-propylamino)-, 2-(1-ethyl-3-pyridin-3-yl-propylamino)- and 2-(1-ethyl-3-pyridin-4-yl-propylamino)- -4-chloro-6-methylsulphinyl-1,3,5-triazine;

10

15

20

25

30

5

2-(1-ethyl-3-phenyl-propylamino)-, 2-(1-ethyl-3-(2-fluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-fluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-fluoro-phenyl)-propyl-2-(1-ethyl-3-(2-chloro-phenyl)-propylamino)-, amino)-, 2-(1-ethyl-3-(3-chlorophenyl)-propylamino)-, 2-(1-ethyl-3-(4-chloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-bromo-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-bromo-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-bromo-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-nitro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-nitro-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-nitro-phenyl)propylamino)-, 2-(1-ethyl-3-(2-methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methyl-phenyl)-propylamino)-, 2-(1ethyl-3-(2-trifluoromethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-trifluoromethylphenyl)-propylamino)-, 2-(1-ethyl-3-(4-trifluoromethyl-phenyl)-propylamino)-, 2-(1ethyl-3-(2-methoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(3-methoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-difluoromethoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-difluoromethoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-difluoromethoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-trifluoromethoxy-phenyl)-propylamino)-, 1-(1-ethyl-3-(3-trifluoromethoxy-phenyl)propylamino)-, 2-(1-ethyl-3-(4-trifluoromethoxy-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-methoxycarbonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-ethoxycarbonylphenyl)-propylamino)-, 2-(1-ethyl-3-(4-methoxycarbonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-ethoxycarbonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-methylthiophenyl)-propylamino)-, 2-(1-ethyl-3-(4-methylthio-phenyl)-propylamino)-, 2-(1ethyl-3-(2-methylsulphinyl-propylamino)-, 2-(1-ethyl-3-(4-methylsulphinylphenyl)-propylamino)-, 2-(1-ethyl-3-(2-methylsulphonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(4-methylsulphonyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,4-dichlorophenyl)-propylamino)-, 2-(1-ethyl-3-(2,4-dichloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,5-dichloro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,6-dichloro-phenyl)-propyl-2-(1-ethyl-3-(2,6-difluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,5-diamino)-, fluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,4-difluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,4-difluoro-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,5-difluoro-phenyl)propylamino)-, 2-(1-ethyl-3-(2-fluoro-4-chloro-phenyl)-propylamino)-, 2-(1-ethyl-3-2-(1-ethyl-3-(2,4-dimethyl-phenyl)-(4-fluoro-2-chloro-phenyl)-propylamino)-, propylamino)-, 2-(1-ethyl-3-(3,4-dimethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(3,5dimethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2,5-dimethyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-chloro-6-methylphenyl)-propylamino)-, 2-(1-ethyl-3-(4-fluoro-2methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-fluoro-4-methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-(2-fluoro-5-methyl-phenyl)-propylamino)-, fluoro-2-methyl-phenyl)-propylamino)-, 2-(1-ethyl-3-thien-2-yl-propylamino)-, 2-(1ethyl-3-thien-3-yl-propylamino)-, 2-(1-ethyl-3-pyridin-2-yl-propylamino)-, ethyl-3-pyridin-3-yl-propylamino)- and 2-(1-ethyl-3-pyridin-4-yl-propylamino)- -4chloro-6-methylsulphonyl-1,3,5-triazine.

20

5

10

15

The starting materials of the general formula (IV) have hitherto not been disclosed in the literature; as novel substances, they also form part of the subject-matter of the present application.

The novel substituted triazines of the general formula (IV) are obtained when triazines of the general formula (VIII)

$$\begin{array}{c|c}
x^1 \\
N & N \\
Z & N & X^3
\end{array}$$
(VIII)

in which

 X^1 and Z

are each as defined above and

 X^3

represents halogen

5

15

20

25

are reacted with substituted alkylamines of the general formula (VI)

$$H_2N$$
 A
 Ar
 (VI)

in which

R1, R2, A and Ar are each as defined above,

if appropriate in the presence of an acid acceptor, such as, for example, ethyldiisopropylamine, and if appropriate in the presence of a diluent, such as, for example, tetrahydrofuran or dioxane, at temperatures between -50°C and +50°C (cf. the Preparation Examples).

The formula (V) provides a general definition of the substituted triazines to be used as starting materials in the process (c) according to the invention for preparing compounds of the formula (I). In the formula (V), Z preferably or in particular has that meaning which has already been mentioned above, in connection with the description of the compounds of the formula (I) according to the invention, as being preferred or as being particularly preferred for that; X² preferably represents fluorine, chlorine, bromine, methoxy or ethoxy, and in particular represents chlorine or methoxy.

The starting materials of the general formula (V) are known and/or can be prepared by processes known per se (cf. WO 95/11237).

The formula (VI) provides a general definition of the substituted alkylamines further to be used as starting materials in the process (c) according to the invention. In the formula (VI), R¹, R², A and Ar each preferably or in particular have those meanings which have already been mentioned above, in connection with the description of the compounds of the formula (IV) according to the invention, as being preferred or as being particularly preferred for R¹, R², A and Ar.

5

10

15

20

25

30

The starting materials of the general formula (VI) are known and/or can be prepared by processes known per se (cf. DE 3426919; DE 4000610; DE 4332738, EP 320898; EP 443606; Tetrahedron: Asymmetry 5 (1994), 817-820; Tetrahedron Lett. 29 (1988), 223-224; loc. cit. 36 (1995), 3917-3920; Preparation Examples).

If appropriate, the processes according to the invention for preparing the compounds of the formula (I) are carried out using a reaction auxiliary. Suitable reaction auxiliaries for the processes (a), (b) and (c) are, in general, the customary inorganic or organic bases or acid acceptors. These preferably include alkali metal or alkaline earth metal acetates, amides, carbonates, bicarbonates, hydrides, hydroxides or alkoxides, such as, for example, sodium acetate, potassium acetate or calcium acetate, lithium amide, sodium amide, potassium amide or calcium amide, sodium carbonate, potassium carbonate or calcium carbonate, sodium bicarbonate, potassium bicarbonate or calcium bicarbonate, lithium hydride, sodium hydride, potassium hydride or calcium hydride, lithium hydroxide, sodium hydroxide, potassium hydroxide or calcium hydroxide, sodium methoxide, ethoxide, n- or i-propoxide, n-, i-, s- or t-butoxide or potassium methoxide, ethoxide, n- or i-propoxide, n-, i-, s- or tbutoxide; furthermore also basic organic nitrogen compounds, such as, for example, trimethylamine, triethylamine, tripropylamine, tributylamine, ethyl-diisopropylmine, N,N-dimethyl-cyclohexylamine, dicyclohexylamine, ethyl-dicyclohexylamine, N,Ndimethylaniline, N,N-dimethyl-benzylamine, pyridine, 2-methyl-, 3-methyl-, 4-ethyl-, 2,4-dimethyl-, 2,6-dimethyl-, 3,4-dimethyl- and 3,5-dimethyl-pyridine, 5-ethyl-2methyl-pyridine, 4-dimethylamino-pyridine, N-methyl-piperidine, 1,4-diazabicyclo[2,2,2]-octane (DABCO), 1,5-diazabicyclo[4,3,0]-non-5-ene (DBN), or 1,8-diazabicyclo[5,4,0]-undec-7-ene (DBU).

5

10

15

20

25

30

Suitable diluents for carrying out the processes (a), (b) and (c) according to the invention are especially inert organic solvents. These include in particular aliphatic, alicyclic or aromatic, optionally halogenated hydrocarbons, such as, for example, benzine, benzene, toluene, xylene, chlorobenzene, dichlorobenzene, petroleum ether, hexane, cyclohexane, dichloromethane, chloroform, carbon tetrachloride; ethers, such as diethyl ether, diisopropyl ether, dioxane, tetrahydrofuran or ethylene glycol dimethyl or diethyl ether; ketones, such as methyl isopropyl ketone or methyl isobutyl ketone; nitriles, such as acetonitrile, propionitrile or butyronitrile; amides, such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-formanilide, N-methyl-pyrrolidone or hexamethylphosphoric triamide; esters, such as methyl acetate or ethyl acetate, sulphoxides, such as dimethyl sulphoxide; alcohols, such as methanol, ethanol, n- or i-propanol, ethylene glycol monomethyl ether, ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, diethylene glycol monomethyl ether, mixtures thereof with water or pure water.

In the practice of the processes (a), (b) and (c) according to the invention, the reaction temperatures can be varied over a relatively wide range. Generally, the reaction is carried out at temperatures between 0°C and 300°C, preferably between 10°C and 250°C.

The processes (a), (b) and (c) according to the invention are generally carried out at atmospheric pressure. However, it is also possible to carry out the processes according to the invention under elevated or reduced pressure - generally between 0.1 bar and 10 bar.

In the practice of the processes according to the invention, the starting materials are generally employed in approximately equimolar amounts. However, it is also possible to use a relatively large excess of one of the components. The reaction is generally carried out in a suitable diluent in the presence of a reaction auxiliary, and the reaction mixture is generally stirred for several hours at the temperature required. Work-up is carried out by conventional methods (cf. the Preparation Examples).

The active compounds according to the invention can be used as defoliants, desiccants, haulm killers and, especially, as weed-killers. By weeds in the broadest sense, there are to be understood all plants which grow in locations where they are undesirable. Whether the substances according to the invention act as total or selective herbicides depends essentially on the amount used.

10

15

25

The active compounds according to the invention can be used, for example, in connection with the following plants:

<u>Dicotyledonous weeds of the genera:</u> Sinapis, Lepidium, Galium, Stellaria, Matricaria, Anthemis, Galinsoga, Chenopodium, Urtica, Senecio, Amaranthus, Portulaca, Xanthium, Convolvulus, Ipomoea, Polygonum, Sesbania, Ambrosia, Cirsium, Carduus, Sonchus, Solanum, Rorippa, Rotala, Lindernia, Lamium, Veronica, Abutilon, Emex, Datura, Viola, Galeopsis, Papaver, Centaurea, Trifolium, Ranunculus and Taraxacum.

Dicotyledonous crops of the genera: Gossypium, Glycine, Beta, Daucus, Phaseolus, Pisum, Solanum, Linum, Ipomoea, Vicia, Nicotiana, Lycopersicon, Arachis, Brassica, Lactuca, Cucumis and Cucurbita.

Monocotyledonous weeds of the genera: Echinochloa, Setaria, Panicum, Digitaria, Phleum, Poa, Festuca, Eleusine, Brachiaria, Lolium, Bromus, Avena, Cyperus, Sorghum, Agropyron, Cynodon, Monochoria, Fimbristylis, Sagittaria, Eleocharis, Scirpus, Paspalum, Ischaemum, Sphenoclea, Dactyloctenium, Agrostis, Alopecurus, Apera and Phalaris.

Monocotyledonous crops of the genera: Oryza, Zea, Triticum, Hordeum, Avena, Secale, Sorghum, Panicum, Saccharum, Ananas, Asparagus and Allium.

However, the use of the active compounds according to the invention is in no way restricted to these genera, but also extends in the same manner to other plants.

5

10

15

20

25

30

The compounds are suitable, depending on the concentration, for the total control of weeds, for example on industrial terrain and railway tracks, and on paths and squares with or without tree plantings. Equally, the compounds can be employed for controlling weeds in perennial cultures, for example forests, decorative tree plantings, orchards, vineyards, citrus groves, nut orchards, banana plantations, coffee plantations, tea plantations, rubber plantations, oil palm plantations, cocoa plantations, soft fruit plantings and hopfields, on lawns, turf and pasture land, and for the selective control of weeds in annual cultures.

The compounds of the formula (I) according to the invention are suitable in particular for selectively controlling monocotyledonous and dicotyledonous weeds in monocotyledonous and dikotyledonous crops, both pre-emergence and post-emergence. The active compounds can be converted into the customary formulations, such as solutions, emulsions, wettable powders, suspensions, powders, dusting agents, pastes, soluble powders, granules, suspo-emulsion concentrates, natural and synthetic materials impregnated with active compound, and very fine capsules in polymeric substances.

These formulations are produced in a known manner, for example by mixing the active compounds with extenders, that is liquid solvents and/or solid carriers, optionally with the use of surfactants, that is emulsifiers and/or dispersing agents and/or foam-forming agents.

If the extender used is water, it is also possible to employ for example organic solvents as auxiliary solvents. Essentially, suitable liquid solvents are: aromatics, such as xylene, toluene or alkylnaphthalenes, chlorinated aromatics and chlorinated aliphatic hydrocarbons, such as chlorobenzenes, chloroethylenes or methylene chloride, aliphatic hydrocarbons, such as cyclohexane or paraffins, for example petroleum fractions,

mineral and vegetable oils, alcohols, such as butanol or glycol and also their ethers and esters, ketones, such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents, such as dimethylformamide and dimethyl sulphoxide, and also water.

5

Suitable solid carriers are: for example ammonium salts and ground natural minerals, such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, and ground synthetic minerals, such as finely divided silica, alumina and silicates; suitable solid carriers for granules are: for example crushed and fractionated natural rocks such as calcite, marble, pumice, sepiolite and dolomite, and also synthetic granules of inorganic and organic meals, and granules of organic material such as sawdust, coconut shells, maize cobs and tobacco stalks; suitable emulsifiers and/or foam-forming agents are: for example nonionic and anionic emulsifiers, such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, for example alkylaryl polyglycol ethers, alkylsulphonates, alkyl sulphates, arylsulphonates and also protein hydrolysates; suitable dispersing agents are: for example lignin-sulphite waste

15

20

liquors and methylcellulose.

10

Tackifiers such as carboxymethylcellulose and natural and synthetic polymers in the form of powders, granules or latexes, such as gum arabic, polyvinyl alcohol and polyvinyl acetate, as well as natural phospholipids, such as cephalins and lecithins, and synthetic phospholipids, can be used in the formulations. Other possible additives are mineral and vegetable oils.

25

It is possible to use colorants such as inorganic pigments, for example iron oxide, titanium oxide and Prussian Blue, and organic dyes, such as alizarin dyes, azo dyes and metal phthalocyanine dyes, and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.

30

The formulations in general contain between 0.1 and 95 per cent by weight of active compound, preferably between 0.5 and 90%.

For controlling weeds, the active compounds according to the invention, as such or in the form of their formulations, can also be used as mixtures with known herbicides, finished formulations or tank mixes being possible.

5

10

15

20

25

30

Possible components for the mixtures are known herbicides, for example acetochlor, acifluorfen(-sodium), aclonifen, alachlor, alloxydim(-sodium), ametryne, amidochlor, amidosulfuron, asulam, atrazine, azimsulfuron, benazolin, benfuresate, bensulfuron(methyl), bentazon, benzofenap, benzoylprop(-ethyl), bialaphos, bifenox, bromobutide, bromofenoxim, bromoxynil, butachlor. butylate. cafenstrole. carbetamide. chlomethoxyfen, chloramben, chloridazon, chlorimuron(-ethyl), chlornitrofen, chlorsulfuron, chlortoluron, cinmethylin, cinosulfuron, clethodim, clodinafop(propargyl), clomazone, clopyralid, clopyrasulfuron, cloransulam(-methyl), cumyluron, cyanazine, cycloate, cyclosulfamuron, cycloxydim, cyhalofop(-butyl), 2,4-D, 2,4-DB, 2,4-DP, desmedipham, diallate, dicamba, diclofop(-methyl), difenzoquat, diflufenican, dimefuron, dimepiperate, dimethachlor, dimethametryn, dimethenamid, dinitramine, diphenamid, diquat, dithiopyr, diuron, dymron, EPTC, esprocarb, ethalfluralin, ethametsulfuron(-methyl), ethofumesate, ethoxyfen, etobenzanid, fenoxaprop-ethyl, flamprop(-isopropyl), flamprop(-isopropyl-L), flamprop(-methyl), flazasulfuron, fluazifop(-butyl), flumetsulam, flumiclorac(-pentyl), flumioxazin, flumipropyn, fluometuron, fluorochloridone, fluoroglycofen(-ethyl), flupoxam, flupropacil, flurenol, fluridone, fluroxypyr, flurprimidol, flurtamone, fomesafen, glufosinate(-ammonium), glyphosate(-isopropylammonium), halosafen, haloxyfop(-ethoxyethyl), hexazinone, imazamethabenz(-methyl), imazamethapyr, imazamox, imazapyr, imazaquin, imazethapyr, imazosulfuron, ioxynil, isopropalin, isoproturon, isoxaben, isoxaflutole, isoxapyrifop, lactofen, lenacil, linuron, MCPA, MCPP, mefenacet, metamitron, methabenzthiazuron, metobenzuron, metobromuron, metazachlor. metolachlor, metosulam, metoxuron, metribuzin, metsulfuron-(-methyl), molinate, monolinuron, naproanilide, napropamide, neburon, nicosulfuron, norflurazon orbencarb, oryzalin, oxadiazon, oxyfluorfen, paraquat, pendimethalin, phenmedipham, piperophos, pretilachlor, primisulfuron(-methyl), prometryn,

propachlor, propanil, propaguizafop, propyzamide, prosulfocarb, prosulfuron, pyrazosulfuron(-ethyl), pyrazoxyfen, pyrazolate, pyributicarb, pyridate, pyrithiobac(-sodium) quinchlorac, quinmerac, quizalofop(-ethyl), quizalofop(-ptefuryl), rimsulfuron, sethoxydim, simazine, simetryn, sulcotrione, sulfentrazone, sulfometuron(-methyl), sulfosate, tebutam, tebuthiuron, terbuthylazine, terbutryn, thenylchlor, thiafluamide, thiazopyr, thidiazimin, thifensulfuron(-methyl), thiobencarb, tiocarbazil, tralkoxydim, triallate, triasulfuron, tribenuron(-methyl), tridiphane, trifluralin and triflusulfuron.

Mixtures with other known active compounds, such as fungicides, insecticides, acaricides, nematicides, bird repellents, plant nutrients and agents which improve soil structure, are also possible.

5

15

20

25

The active compounds can be used as such, in the form of their formulations or in the use forms prepared therefrom by further dilution, such as ready-to-use solutions, suspensions, emulsions, powders, pastes and granules. They are used in the customary manner, for example by watering, spraying, atomizing or scattering.

The active compounds according to the invention can be applied either before or after emergence of the plants. They can also be incorporated into the soil before sowing.

The amount of active compound used can vary within a substantial range. It depends essentially on the nature of the desired effect. In general, the amounts used are between 1 g and 10 kg of active compound per hectare of soil surface, preferably between 5 g and 5 kg per ha.

The preparation and use of the active compounds according to the invention can be seen from the Examples below.

Preparation Examples:

Example 1

5 (Process (a))

At approximately 22°C, a mixture of 2.0 g (7 mmol) of (R/S)-1-(1-ethyl-3-phenyl-propyl)-biguanide hydrochloride (racemic), 1.89 g (14 mmol) of ethyl 2-fluoro-isobutyrate, 0.76 g (14 mmol) of sodium methoxide and 12 ml of methanol is stirred for about 15 hours. The mixture is then diluted to about 3 times its original volume using water and shaken with ethyl acetate, and the organic phase is separated off washed with water, dried with sodium sulphate and filtered. The solvent is carefully distilled off from the filtrate under water pump vacuum. The residue is purified by column chromatography (silica gel, ethyl acetate).

15

10

This gives 1.44 g (64% of theory) of (R/S)-2-amino-4-(1-fluoro-1-methyl-ethyl)-6-(1-ethyl-3-phenyl-propylamino)-1,3,5-triazine (racemate).

20

By the method of Example 1 and in accordance with the general description of preparation processes according to the invention, it is also possible to prepare, for example, the compounds of the formula (I) listed in Table 1 below.

$$\begin{array}{c|c}
NH_2 \\
N & R^1 \\
N & R^2
\end{array}$$
(I)

<u>Table 1:</u> Examples of compounds of the formula (I)

Ex. No.	R ¹	R ²	A	Ar	Z	Physical data and stereochemical specification
2	C ₂ H ₅	Н	О		CF ₃	m.p.: 100°C (racemate)
3	C ₂ H ₅	Н	О		CF ₃	(amorphous) (R enantiomer)
4	C ₂ H ₅	Н	О		CF ₃	(amorphous) (S enantiomer)
5	C ₂ H ₅	H	CH ₂	осн,	CF ₃	(racemate)
6	C ₂ H ₅	H	CH ₂	осн,	CF ₃	(R enantiomer)
7	C ₂ H ₅	H	CH ₂	осн,	CF ₃	(S enantiomer)
8	C ₂ H ₅	Н	CH ₂	SCH ₃	CF(CH ₃) ₂	(amorphous) (racemate)

Table 1 (continued)

Ex. No.	R ¹	R ²		Az	Z	Physical data and stereochemical specifications
9	C ₂ H ₅	H	CH ₂	SCH,	CF(CH ₃) ₂	(R enantiomer)
10	C ₂ H ₅	Н	CH ₂	scн,	CF(CH ₃) ₂	(S enantiomer)
11	C ₂ H ₅	Н	CH ₂	s	CF ₃	(amorphous) (racemate)
12	C ₂ H ₅	Н	CH ₂	s	CF ₃	(racemate)
13	C ₂ H ₅	Н	CH ₂	Z CI	CF ₃	m.p.: 74°C (racemate)
14	C ₂ H ₅	Н	CH ₂	N	CF ₃	(amorphous) (racemate)
15	C ₂ H ₅	Н	CH ₂	Z	CF ₃	(amorphous) (racemate)
16	C ₂ H ₅	Н	CH ₂		CF ₃	(amorphous) (racemate)

Table 1 (continued)

Ex. No.	R ¹	R ²		Az	Z	Physical data and stereochemical
17	C ₂ H ₅	Н	0	z=	CF ₃	specifications (amorphous)
				N C(CH ₃) ₃		(racemate)
18	C ₂ H ₅	Н	CH ₂	Z II	CHFCH ₃	(amorphous)
				CI		(racemate)
19	C ₂ H ₅	Н	CH ₂		CHFCH ₃	(amorphous)
				\ \(\lambda_s \rangle \)		(racemate)
20	C ₂ H ₅	Н	CH ₂	N N	CHFCH ₃	(amorphous)
						(racemate)
21	C ₂ H ₅	Н	CH ₂	N	CHFCH ₃	(amorphous)
						(racemate)
22	C ₂ H ₅	H	CH ₂	N	CF(CH ₃) ₂	(amorphous)
						(racemate)
23	C ₂ H ₅	Н	CH ₂	s >	CHFCH ₃	(amorphous)
						(racemate)
24	C ₂ H ₅	Н	CH ₂	s _y	CF(CH ₃) ₂	(amorphous)
				\ <u>\</u>		(racemate)

Table 1 (continued)

Ex. No.	R ¹	R ²		Az	Z	Physical data and stereochemical specifications
41	C ₂ H ₅	Н	CH ₂		CF ₃	(amorphous) (racemate)
42	C ₂ H ₅	Н	0	CI	CF ₃	(amorphous)
43	C ₂ H ₅	H	CH ₂		CF ₃	(amorphous) (S enantiomer)
44	C ₂ H ₅	Н	0	CI	CF ₃	(amorphous) (S enantiomer)
45	C ₂ H ₅	Н	CH ₂		CF ₃	(amorphous) (R enantiomer)
46	C ₂ H ₅	Н	0	CI	CF ₃	(amorphous) (R enantiomer)
47	C ₂ H ₅	Н	CH ₂	Z	CF(CH ₃) ₂	(amorphous) (racemate)
48	C ₂ H ₅	Н	CH ₂	s	C ₂ H ₅	(amorphous) (racemate)

Table 1 (continued)

					12	Physical data
x.	R ¹	R ²		Az	Z	and
۱o.						stereochemical
		ļ				specifications
	СЧ	H	CH ₂		CH ₂ OCH ₃	(amorphous)
19	C ₂ H ₅		CII2	s		(racemate)
50	C ₂ H ₅	Н	CH ₂		CH ₂ SCH ₃	(amorphous)
				\(\lambda_s\)		(racemate)
51	C ₂ H ₅	H	CH ₂		CHClCH ₃	(amorphous)
-				s		(racemate)
52	C ₂ H ₅	H	CH ₂	-	CHCl ₂	(amorphous)
				s		(racemate)
53	C ₂ H ₅	H	CH ₂		C ₂ H ₄ OCH ₃	(amorphous)
				s		(racemate)
54	C ₂ H ₅	Н	CH ₂	-	CH ₂ CH(OCH ₃)	(amorphous)
				s		(racemate)
55	C ₂ H ₅	H	CH ₂	\ s\	C ₂ H ₄ OCH ₃	(amorphous)
						(racemate)
56	C ₂ H ₅	H	CH ₂	\\s_\	CH ₂ CH(OCH ₃)	(amorphous)
						(racemate)

Table 1 (continued)

Ex. No.	R ¹	R ²		Az	Z	Physical data and stereochemical specifications
57	C ₂ H ₅	Н	CH ₂	s	C ₂ H ₅	(amorphous) (racemate)
58	C ₂ H ₅	Н	CH ₂	s	CH ₂ OCH ₃	(amorphous)
59	C ₂ H ₅	Н	CH ₂	S	CH ₂ SCH ₃	(racemate)
60	C ₂ H ₅	Н	CH ₂	s	CHCICH ₃	(amorphous) (racemate)
61	C ₂ H ₅	Н	CH ₂	s	CHCl ₂	(amorphous) (racemate)

Starting materials of the formula (II):

Example (II-1)

5

A mixture of 2.9 g (14.5 mmol) of 1-ethyl-3-phenyl-propylamine hydrochloride (racemic), 1.22 g (14.5 mmol) of cyanoguanidine (dicyandiamide) and 30 ml of 1,2-dichloro-benzene is heated at 140°C to 150°C for 8 hours. The crystalline product which is obtained after cooling is isolated by filtration with suction.

10

This gives 3.6 g (87% of theory) of 1-(1-ethyl-3-phenyl-propyl)-biguanide hydrochloride (racemate).

The reaction can be carried out at the same temperature even without solvent - i.e. in the melt.

15

By the method of Example (II-1), it is also possible to prepare, for example, the compounds of the formula (II) and their hydrochlorides listed in Table 2 below.

<u>Table 2:</u> Examples of compounds of the formula (II) - (hydrochlorides)

Ex. No.	R ¹	R ²	A	Ar	Physical data and stereochemical specifications
(II-2)	C ₂ H ₅	Н	0		(racemate)
(II-3)	C ₂ H ₅	Н	CH ₂	осн ₃	(racemate)
(II-4)	C ₂ H ₅	Н	CH ₂	SCH ₃	(racemate)
(II-5)	C ₂ H ₅	Н	CH ₂	SOCH ₃	(racemate)
(II-6)	C ₂ H ₅	Н	CH ₂	SO ₂ CH ₃	(racemate)
(II-7)	C ₂ H ₅	Н	CH ₂	s /	(racemate)
(II-8)	C ₂ H ₅	Н	CH ₂	S	(racemate)
(II-9)	C ₂ H ₅	Н	CH ₂	Z C	(racemate)

Table 2 (continued)

Ex. No.	R ¹	R ²	A	Ar	Physical data and stereochemical specifications
(II-10)	C ₂ H ₅	Н	CH ₂	N	(racemate)
(II-11)	C ₂ H ₅	H	CH ₂	Z	(racemate)
(II-12)	C ₂ H ₅	Н	CH ₂	Z	(racemate)
(II-13)	C ₂ H ₅	Н	0	N C(CH ₃) ₃	(amorphous) (hydrochloride) (racemate)

Starting materials of the formula (V):

Example (V-1)

Step 1

5

10

15

20

25

A mixture of 19.3 g (0.134 mol) of ethyl propionyl acetate, 7.5 g (0.11 mol) of sodium methoxide, 60 ml of ethanol and 50 ml of 10% strength aqueous sodium hydroxide solution is initially charged at room temperature (approximately 20°C) and the reaction mixture is, after dropwise addition of 12.6 g (0.10 mol) of benzyl chloride, stirred at approximately 60°C for about 5 hours. The mixture is subsequently concentrated under water pump vacuum and the residue is stirred with 50 ml of 10% strength sodium hydroxide solution at approximately 60°C for 3 hours. The pH is then adjusted to 4 using 10% strength aqueous hydrochloric acid, and the mixture is shaken with diethyl ether. The organic phase is dried with sodium sulphate and filtered. The filtrate is concentrated under water pump vacuum and the residue is purified by column chromatography (silica gel/ethyl acetate).

This gives 13.9 g (85% of theory) of 1-phenyl-pentan-3-one.

Step 2

A mixture of 13.9 g (86 mmol) of 1-phenyl-pentan-3-one, 8.9 g (128 mmol) of hydroxylamine hydrochloride and 10.1 g (128 mmol) of pyridine is stirred at

approximately 75°C for 2 hours. After cooling, the mixture is shaken with water/ethyl acetate and the organic phase is separated off, dried with sodium sulphate and filtered. The solvent is carefully distilled off from the filtrate under water pump vacuum. The residue, which essentially contains the compound 1-phenyl-pentan-3-one oxime of the above formula, is employed for the next step without any further purification.

Step 3

5

10

With stirring, 6.5 g (0.17 mol) of lithium aluminium hydride in 130 ml of tetrahydrofuran are added to a mixture of the product obtained in accordance with the description of step 2 and 130 ml of tetrahydrofuran, and the reaction mixture is stirred at approximately 60°C for 30 minutes. After cooling, the mixture is admixed with a solution of 1 g of sodium hydroxide in 30 ml of water, and the mixture is stirred at approximately 60°C for 30 minutes. After cooling, the mixture is filtered 15 and the filtrate is concentrated under water pump vacuum. The residue is purified by column chromatography (silica gel, ethyl acetate).

This gives 6.3 g (45% of theory) of (R/S)-1-ethyl-3-phenyl-propylamine (racemate).

Use Examples:

Example A

5

Pre-emergence-test

Solvent:

5 parts by weight of acetone

Emulsifier:

1 part by weight of alkylaryl polyglycol ether

10

To produce a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amount of solvent, the stated amount of emulsifier is added and the concentrate is diluted with water to the desired concentration.

15

Seeds of the test plants are sown in normal soil. After about 24 hours, the soil is watered with the preparation of active compound. The amount of water per unit area is advantageously kept constant. The concentration of active compound in the preparation is immaterial, only the application rate of active compound per unit area matters.

20

After three weeks, the degree of damage to the plants is scored visually in % damage in comparison to the development of the untreated control.

The figures denote:

0 % = no effect (like untreated control)

100 % = total destruction

30

In this test, the compounds of Preparation Examples 1, 2, 12, 19, 21, 22, 29, 33, 41 and 45, for example, show strong activity against weeds, and some of them are tolerated well by crop plants, such as, for example, maize, wheat and cotton (cf. Table A).

In the tables below, "ai" means "active ingredient".

<u>Table A:</u> Pre-emergence test/greenhouse

· :	.g
Matri	caria
Galium	
Abu-	tilon
Digi-	taria
Alope-	curus
Cotton	
Maize	
Application rate	(g of ai./ha)
Active compound of	Preparation Ex. No.

ō
Ξ
-=
Ξ
≍
(conti
\leq
-
V
A
le A
ble A
able A
Table A
O.

Active compound of

Preparation Ex. No.

Application rate Wheat Cotton Cheno- Solanum Veronica Viola

(g of ai./ha)

podium

0 200

(22)

100

100

100

100 100

(12)

Table A (continued)

Table A (continued)

Poly. Vero-	gonurn nica
Da- P	tura go
Amaran-	thus
Abu-	tilon
Echi-	nochloa
Digi-	taria
Wheat	
Application rate	(g of ai./ha)
Active compound of	Preparation Ex. No.

Table A (continued)

Active compound of	Application rate	Maize	Abuti-	Amaran-	Sinapis	
Preparation Ex. No.	(g of ai./ha)		lon	thus		

\sim
-
•
ഠ
~
\supset
_
-=
=
_
\sim
\sim
\subseteq
۳
ر ا
<u>~</u>
<u>∨</u>
) <u>A</u>
e A (
) A (0
ble A (0
ble A (c
able A (
Table A (

Galium	
Ama-	ranthus
Abuti-	lon
Setaria	
Alope-	curus
Application rate	(g of ai./ha)
Active compound of	Preparation Ex. No.

Galium		001
Ama- ranthus		95
Abuti- Ion		100
Setaria		70
Alope- curus		06
Application rate Alope- Setaria (g of ai./ha) curus		1000
Active compound of Preparation Ex. No.	H N N N N N N N N N N N N N	(22)

•

_
-
=
-
_
•
4
V
A
e A
e A
le A
le A
ole A
ble A
ble A
ble A
able A
able A
Table A
Table A
Table A
Table A

ctive compound of	Application rate	Alope-	Setaria	Abuti-	Ama-	Galium
reparation Ex. No.	(g of ai./ha)	curus		lon	ranthus	

Ũ
=
-=
Ξ
=
્ર
\mathbf{c}
_
4
Ā
e A
le A
ble A
able A
Table A

Active compound of	Application rate	Alope-	Setaria	Abuti-	Ama-	Galium	
reparation Ex. No.	(g of ai./ha)	curus		lon	ranthus		

70
Õ
\simeq
_
.=
_
=
0
()
_
¥
A (
e A (
le A
ole A
ble A
able A
able A
Table A

ate Alo- Setaria Abu-			
tilon	tilon ranthus	ırus	(g of al./ha) pecurus

Example B

Post-emergence-test

5

10

Solvent:

5 parts by weight of acetone

Emulsifier:

1 part by weight of alkylaryl polyglycol ether

To produce a suitable preparation of active compound, 1 part by weight of active compound is mixed with the stated amount of solvent, the stated amount of emulsifier is added and the concentrate is diluted with water to the desired concentration.

Test plants which have a height of 5-15 cm are sprayed with the preparation of active compound such that the particular amounts of active compounds desired are applied per unit area. The concentration of the spray liquor is chosen so that the particular amounts of active compound desired are applied in 1000 l of water/ha.

After three weeks, the degree of damage to the plants is scored visually in % damage in comparison to the untreated control.

20

15

The figures denote:

0 % = no effect (like untreated control)

100 % = total destruction

25

In this test, the compounds of Preparation Examples 1, 2, 4, 11, 12, 19, 22, 23, 24, 33, 41, 43, 44, 45 and 46, for example, show strong activity against weeds, and some of them are tolerated well by crop plants, such as, for example, maize and wheat (cf. Table B).

<u>Table B:</u> Post-emergence test/greenhouse

ıra İpomoea Veronica	
n Datura	
Abutilor	
Echino-	chloa
Wheat	
Application rate	(g of ai./ha)
Active compound of	Preparation Ex. No.

continued)
B (
ە
ab ab
\vdash

Ama- Xanthium ranthus		70
, Xi		
Ama- ranthus		100
Setaria		100
Maize		0
Application rate Maize (g of ai./ha)		1000
Active compound of Preparation Ex. No.	CH ₃ CH ₃	(46)

(continued)
Table B

John	- 01y-
Ama- Ino-	<u> </u>
Ama-	
Setaria	
Echino-	:
Wheat	
Application rate	(a) of oi Ala)
Active compound of	Preparation Ex. No.

(12)

_
4.3
_
_
_
-
_
_
\sim
\sim
2.3
$\overline{}$
_
\sim 1
النا
വ
\sim
الت
1

Active compound of Application Preparation Ex. No.

Application rate Wheat Echino- Setaria Ama- Ipo- Poly- Sola- (g of ai./ha) chloa ranthus moea gonum num

H₃C N H N H

(19)

THO NH OH

 (Ξ)

ontinued
ပ
$\overline{}$
\square
<u>e</u>
0
폡

Application rate Wheat Echino- Setaria Ama- Ipo- Poly- Sola-Active compound of Preparation Ex. No.

(g of ai./ha)

mnu mnuog

ranthus moea

chloa

95

100

100

80

100

200

(24)

95

100

100

100

100

06

10

200

(43)

- 101 -

inued	
conti	
_	
B	
able B	

Xan-	thium
Galium	
Ama-	ranthus
Abu-	tilon
Seta-	ria
Alope-	curus
Application rate	(g of ai./ha)
Active compound of	Preparation Ex. No.

(41)

Table B (continued)

Xan- thium	
Abu- Ama- Galium Xan- tilon ranthus thium	
Ama- ranthus	
Abu- tilon	
Seta- ria	
Alope- curus	
Application rate Alope- (g of ai./ha) curus	
Active compound of Preparation Ex. No.	T N N N N N N N N N N N N N N N N N N N

(continued)
\mathbf{m}
<u>e</u>
Tab

Xan- thium	
Abu- Ama- Galium tilon ranthus	
Ama- ranthus	
Abu-	
Seta-	
Alope-	·
Application rate Alope- (g of ai./ha) curus	
Active compound of Preparation Ex. No.	H N N N N N N N N N N N N

ته
_
_
_
.=
=
\sim
\sim
<i>(</i>)
_
<u> </u>
<u>~</u>
B
B
e B (
ble
ble

Xan-	thium
Galium	
Ama-	ranthus
Abu-	tilon
Seta-	ria
Alope-	cnrus
Application rate	(g of ai./ha)
ctive compound of	eparation Ex. No.

(43)

ued)
contin
3
- o
ap

	Xan-	thium
	Galium	
	ı- Ama- (ranthus
	Abu-	tilon
	Seta-	ria
	Alope-	curus
	Application rate	(g of ai./ha)
Table B (continued)	Active compound of	Preparation Ex. No.

paration Ex. 100.	(g of al., iid)	Si in	<u> </u>		
	1000	80	100	100	100
z- // z=					
H NH2					
~					
-0 -0					

		2
	đ	j
	-	
	2	
	Σ	-
•	-	1
	Ξ	
	Ξ	
	C	כ
	ج	,
•	_	-
ì	~	
ì	Y	1
í	٩)
	٩)
	٩)
	٩)
	٩	

Xan-	thium
Galium	
Ama-	ranthus
Abu-	tilon
Seta-	ria
Alope-	curus
Application rate	(g of ai./ha)
Active compound of	Preparation Ex. No.

$\overline{}$
$\overline{}$
\sim
•
=
=
-
ntin
=
$\overline{}$
ರ
ည
ಲ
3) Si
B (c
B (c
e B (c
le B (c
ble B (c
ble B (
able B (c
ble B (

Xan-	thium
Galium	
Ama-	ranthus
Abu-	tilon
Seta-	ria
Alope-	cnrus
Application rate	(g of ai./ha)
Active compound of	Preparation Ex. No.

901

100

100

100

Table B (continued)

Se- Abu- Ama- Sina-Application rate Alope- Avena Cy-Active compound of Preparation Ex. No.

thium Xanperus taria tilon ranthus pis curus fatua (g of ai./ha)

ĊH,

100 90 1000

(23)

100

(33)

Patent Claims

1. Substituted 2-amino-4-alkylamino-1,3,5-triazines of the general formula (I),

$$\begin{array}{c|c}
NH_2 \\
NNN \\
N$$

in which

- R¹ represents in each case optionally substituted alkyl having 2 to 6 carbon atoms or cycloalkyl having 3 to 6 carbon atoms,
- R² represents hydrogen or represents alkyl having 1 to 4 carbon atoms,
- A represents oxygen or methylene,
- Ar represents in each case optionally substituted phenyl, naphthyl or heterocyclyl, and
- Z represents hydrogen, represents halogen or represents in each case optionally substituted alkyl, alkoxy, alkylcarbonyl, alkoxycarbonyl, alkylthio, alkylsulphinyl, alkylsulphonyl, alkenyl or alkinyl.
- 2. Compounds of the formula (I) according to Claim 1, characterized in that
 - R¹ represents optionally hydroxyl-, cyano-, halogen- or C₁-C₄-alkoxy-substituted alkyl having 2 to 4 carbon atoms or represents optionally

cyano-, halogen- or C_1 - C_4 -alkyl-substituted cycloalkyl having 3 to 6 carbon atoms,

- R² represents hydrogen, methyl or ethyl,
- A represents oxygen or methylene,
- Ar represents in each case optionally substituted phenyl, naphthyl or heterocyclyl,

where the possible heterocyclyl groupings are selected from the group below:

furyl, benzofuryl, dihydrobenzofuryl, tetrahydrofuryl, thienyl, benzothienyl, thiazolyl, benzothiazolyl, oxazolyl, benzoxazolyl, thiadiazolyl, oxadiazolyl, pyrazolyl, pyrrolyl, quinolinyl, isoquinolinyl, pyridinyl and pyrimidinyl,

and where the possible substituents are in each case selected from the group below:

hydroxyl, cyano, nitro, halogen, in each case optionally hydroxy-, cyano- or halogen-substituted alkyl or alkoxy having in each case 1 to 6 carbon atoms, in each case optionally halogen-substituted alkylcarbonyl, alkoxycarbonyl, alkylthio, alkylsulphinyl or alkylsulphonyl having in each case 1 to 6 carbon atoms in the alkyl groups, in each case optionally hydroxyl-, cyano-, nitro-, halogen-, C1-C4-alkyl, C1-C4-halogenoalkyl-, C1-C4-alkoxy- or C1-C4-halogenoalkyl-substituted phenyl or phenoxy, and also in each case optionally halogen-substituted methylenedioxy or ethylenedioxy,

z represents hydrogen, represents halogen, represents in each case optionally hydroxyl-, cyano-, nitro-, halogen-, C₁-C₄-alkoxy-, C₁-C₄-alkylcarbonyl-, C₁-C₄-alkoxycarbonyl-, C₁-C₄-alkylsulphinyl- or C₁-C₄-alkylsulphonyl-substituted alkyl, alkoxy, alkylcarbonyl, alkoxycarbonyl, alkylthio, alkylsulphinyl or alkylsulphonyl having in each case 1 to 6 carbon atoms in the alkyl groups, or represents in each case optionally halogen-substituted alkenyl or alkinyl having in each case 2 to 6 carbon atoms.

3. Compounds of the formula (I) according to Claim 1, characterized in that

- R1 represents in each case optionally hydroxyl-, cyano-, fluorine-, chlorine-, methoxy- or ethoxy-substituted ethyl, n- or i-propyl, n-, i-, s- or t-butyl or represents in each case optionally cyano-, fluorine-, chlorine-, methyl- or ethyl-substituted cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl,
- R² represents hydrogen or methyl,
- A represents oxygen or methylene,
- Ar represents in each case optionally substituted phenyl, naphthyl or heterocyclyl,

where the possible heterocyclyl groups are selected from the group below:

furyl, benzofuryl, dihydrobenzofuryl, tetrahydrofuryl, thienyl, benzothienyl, thiazolyl, benzothiazolyl, oxazolyl, benzoxazolyl, thiadiazolyl, oxadiazolyl, pyrazolyl, pyrrolyl, quinolinyl, isoquinolinyl, pyridinyl and pyrimidinyl,

and where the possible substituents are in each case selected from the group below:

hydroxy, cyano, nitro, fluorine, chlorine, bromine, in each case optionally hydroxyl- cyano-, fluorine- or chlorine-substituted methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, methoxy, ethoxy, n- or i-propoxy, n-, i-, s- or t-butoxy, in each case optionally fluorine- or chlorine-substituted acetyl, propionyl, n- or i-butyroyl, methoxycarbonyl, ethoxycarbonyl, n- or i-propoxycarbonyl, methylthio, ethylthio, n- or i-propylthio, methylsulphinyl, ethylsulphinyl, n- or i-propylsulphinyl, methylsulphonyl, ethylsulphonyl, i-propylsulphonyl, in each case optionally hydroxyl-, cyano-, nitro-, fluorine-, chlorine-, bromine-, methyl-, ethyl-, n- or i-propyl-, n-, i-, sor t-butyl-, trifluoromethyl-, methoxy-, ethoxy-, n- or i-propoxy-, n-, i-, s- or t-butoxy-, difluoromethoxy- or trifluoromethoxy-substituted phenyl or phenoxy, and also in each case optionally fluorine- or chlorine-substituted methylenedioxy or ethylenedioxy,

and

represents hydrogen, fluorine, chlorine, bromine, represents in each case optionally hydroxyl-, cyano-. nitro-. fluorine-, chlorine-, methoxy-, ethoxy-, n- or i-propoxy-, n-, i-, s- or t-butoxy-, methylthio-ethylthio-, n- or i-propylthio-, methylsulphinyl-, ethylsulphinyl-, n- or i-propylsulphinyl-, methylsulphonyl-, ethylsulphonyl-, n- or i-propylsulphonyl-substituted methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butoxy, methylthio, ethylthio, n- or i-propylthio, methylsulphinyl, ethylsulphinyl, n- or i-propylsulphinyl, methylsulphonyl, ethylsulphonyl, n- or i-propylsulphonyl, methylsulphonyl, ethylsulphonyl, n- or i-propylsulphonyl, or represents in each case optionally fluorine-, chlorine- or bromine-substituted ethenyl, propenyl, butenyl, ethinyl, propinyl or butinyl.

- 4. Process for preparing compounds of the formula (I) according to Claim 1, characterized in that
 - (a) substituted biguanides of the general formula (II),

in which

R¹, R², A and Ar are each as defined in Claim 1

- and/or acid adducts of compounds of the general formula (II) -

are reacted with alkoxycarbonyl compounds of the general formula (III)

in which

- Z is as defined in Claim 1 and
- R' represents alkyl,

if appropriate in the presence of a reaction auxiliary and if appropriate in the presence of a diluent,

or that

(b) substituted triazines of the general formula (IV)

$$Z \xrightarrow{N} N \xrightarrow{R^1} A \xrightarrow{Ar} Ar$$

in which

R¹, R², A, Ar and Z are each as defined above and

X¹ represents halogen or alkoxy

are reacted with ammonia, if appropriate in the presence of a reaction auxiliary and if appropriate in the presence of a diluent,

or that

(c) substituted triazines of the general formula (V),

$$Z \xrightarrow{NH_2} N \qquad (V)$$

in which

Z is as defined above and

X² represents halogen or alkoxy

are reacted with substituted alkylamines of the general formula (VI),

in which

R¹, R², A and Ar are each as defined above,

if appropriate in the presence of a reaction auxiliary and if appropriate in the presence of a diluent,

and, if appropriate, further conversions within the scope of the above definition of substituents are carried out by customary methods on the compounds of the general formula (I) obtained by the processes described under (a), (b) or (c).

- 5. Herbicidal compositions, characterized in that they comprise at least one compound of the formula (I) according to Claim 1.
- 6. The use of compounds of the formula (I) according to Claim 1 for controlling undesirable vegetation.
- 7. Method for controlling weeds, characterized in that compounds of the formula

 (I) according to Claim 1 are allowed to act on weeds or their habitat.

- 8. Process for preparing herbicidal compositions, characterized in that compounds of the formula (I) according to Claim 1 are mixed with extenders and/or surfactants.
- 9. Substituted triazines of the general formula (IV)

$$Z \xrightarrow{X^{1}} N \xrightarrow{R^{1}} A \xrightarrow{Ar} Ar$$

$$Z \xrightarrow{N} N \xrightarrow{N} R^{1} \xrightarrow{A} Ar$$

in which

R¹, R², A, Ar and Z are each as defined in Claim 1 and

X¹ represents halogen or alkoxy.

10. Substituted biguanides of the general formula (II)

$$\begin{array}{c|c} H & H & N & R^1 \\ H & N & H & N & R^2 \\ H & H & H & H & R^2 \end{array}$$
 (II)

-,1

in which

R¹, R², A and Ar are each as defined in Claim 1,

and/or acid adducts of compounds of the general formula (II).