Choosing an appropriate scalar transformation to normalise wpd

Sayani Gupta

28/01/2021

• Data presented

Observations are generated from a N(0,1) distribution for each combination of nx and nfacet from the following sets: $nx = nfacet = \{2, 3, 5, 7, 14, 20, 31, 50\}$ to cover a wide range of levels from very low to moderately high. Each combination is being referred to as a panel. That is, data is being generated for each of the panels $\{nx = 2, nfacet = 2\}, \{nx = 2, nfacet = 3\}, \{nx = 2, nfacet = 5\}, \dots, \{nx = 50, nfacet = 31\}, \{nx = 50, nfacet = 50\}$. For each of the 64 panels, ntimes = 500 observations are drawn for each combination of the categories. That is, if we consider the panel $\{nx = 2, nfacet = 2\}, 500$ observations are generated for each of the combination of categories from the panel, namely, $\{(1,1), (1,2), (2,1), (2,2)\}$. The values of λ is set to 0.67 and values of raw wpd is obtained.

• How the distribution of the raw wpd looks across nfacets and nx?

Both shape and scale of the distribution changes for different nx and nfacet categories.

• Plot the values of wpd against nx*nfacet to see the rough relationship

- Plot the values of wpd against $nx^*nfacet$ to see if the same relationship holds for different nx and nfacet relationships

Looks like for all the variations, there is a quadratic relationship between wpd values and nx*nfacet

• Attempt to linearize it with sqrt, sqrt(sqrt) and log (sqrt(sqrt))

The transformation $\log (\operatorname{sqrt}(\operatorname{sqrt}()))$ on nx^* nfacet finally makes it approximately linear.

• Distribution after linearizing it

The distribution of $wpd_{norm} = log(sqrt(sqrt(nx*nfacet)))/wpd$ is plotted. The shape and spread look similar but location is shifting to the right.

(If we define wpd_{norm} as the inverse of it, the values become too small and the distribution too skewed. Hence the inverse of it is considered.)

What we want is a transformation which will be constant and not linear to obtain similar locations for all panels.