The multivariate Gaussian

POPULAR & POWERFUL PROBABILITY
DISTRIBUTE FOR DATA OF
ANGITMANY DIMENSION

Topics we'll cover

- Functional form of the density
- 2 Special case: diagonal Gaussian
- 3 Special case: spherical Gaussian
- 4 Fitting a Gaussian to data

Recall: the bivariate Gaussian

Bivariate Gaussian, parametrized by:

mean
$$\mu = \begin{pmatrix} 13.7 \\ 3.0 \end{pmatrix}$$

$$= \begin{pmatrix} 0.20 & 0.06 \\ 0.06 & 0.12 \end{pmatrix}$$

The multivariate Gaussian

 $N(\mu, \Sigma)$: Gaussian in \mathbb{R}^d

• mean: $\mu \in \mathbb{R}^d$

• covariance: $d \times d$ matrix Σ

Generates points $X = (X_1, X_2, \dots, X_d)$.

 $m{\mu}$ is the vector of coordinate-wise means:

$$\mu_1 = \mathbb{E}X_1, \ \mu_2 = \mathbb{E}X_2, \ldots, \ \mu_d = \mathbb{E}X_d.$$

Σ is a matrix containing all pairwise covariances:

Interest t.f. uncorrelate so Gor = 0 Cor (x; xg) = 0

Special case: independent features

Suppose the X_i are independent, and $var(X_i) = \sigma_i^2$.

What is the covariance matrix Σ , and what is its inverse Σ^{-1} ?

$$\leq = \begin{bmatrix} Var(x_1) & & & \\ & &$$

= diag (
$$\sigma_{11}^{2}$$
) = diag (σ_{11}^{2})

The graph of the inverse of diagnost least all Gaussian: the X_{i} are independent, with variances σ_{i}^{2} . Thus

No correlate

Diagonal Gaussian

Diagonal Gaussian: the X_i are independent, with variances σ_i^2 . Thus

 $\Sigma = \mathsf{diag}(\sigma_1^2, \dots, \sigma_d^2)$ (off-diagonal elements zero)

Each X_i is an independent one-dimensional Gaussian $N(\mu_i, \sigma_i^2)$:

$$\Pr(x) = \Pr(x_1) \Pr(x_2) \cdots \Pr(x_d) = \frac{1}{(2\pi)^{d/2} \sigma_1 \cdots \sigma_d} \exp\left(-\sum_{i=1}^d \frac{(x_i - \mu_i)^2}{2\sigma_i^2}\right)$$

Contours of equal density are axisaligned ellipsoids centered at μ :

Even more special case: spherical Gaussian

The X_i are independent and all have the same variance σ^2 .

 $\Sigma = \sigma^2 I_d = \text{diag}(\sigma^2, \sigma^2, \dots, \sigma^2)$ (diagonal elements σ^2 , rest zero)

Each X_i is an independent univariate Gaussian $N(\mu_i, \sigma^2)$:

$$\Pr(x) = \Pr(x_1) \Pr(x_2) \cdots \Pr(x_d) = \frac{1}{(2\pi)^{d/2} \sigma^d} \exp\left(-\frac{\|x - \mu\|^2}{2\sigma^2}\right)$$

Density at a point depends only on its distance from μ :

popular gaussen

AXX Concrete & Fractical

- Compute the mean and covariance of these data How to fit a Gaussian to data

Fit a Gaussian to data points $x^{(1)}, \ldots, x^{(m)} \in \mathbb{R}^d$. It and $\mathbb{Z}(\widehat{sigm_k})$ are parameter of Gaussian

Empirical mean

$$\mu = \frac{1}{m} \left(x^{(1)} + \dots + x^{(m)} \right) \rightarrow \text{add the data part } k$$
dink by m

Notation: Empirical covariance matrix has i, j entry: apply formula for covariance

$$\Sigma_{ij} = \left(\frac{1}{m}\sum_{k=1}^{m} x_i^{(k)}x_j^{(k)}\right) - \mu_i\mu_j \qquad \sharp \left[x_ix_j\right] = \frac{1}{m}\sum_{k=1}^{m} x_i^{(k)}x_j^{(k)} - \mu_i\mu_j$$