

(19) Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) EP 0 531 019 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention

of the grant of the patent:

15.11.2000 Bulletin 2000/46

(51) Int. Cl.⁷: G03F 7/037, G03F 7/038

(21) Application number: 92307576.6

(22) Date of filing: 19.08.1992

(54) Photosensitive polyimide precursor compositions and process for preparing same

Photoempfindliche Zusammensetzungen mit Polyimidvorstufen und Verfahren zu ihrer Herstellung

Compositions photosensibles à base de précurseurs de polyimide et méthode de préparation de ces compositions

(84) Designated Contracting States:

DE FR GB

• Asano, Masaya

Otsu, Shiga 520-21 (JP)

(30) Priority: 20.08.1991 JP 20831291

14.10.1991 JP 26483691

(74) Representative:

Coleiro, Raymond et al

MEWBURN ELLIS

York House

23 Kingsway

London WC2B 6HP (GB)

(43) Date of publication of application:

10.03.1993 Bulletin 1993/10

(56) References cited:

EP-A- 0 418 870

EP-A- 0 430 221

DE-A- 2 914 619

(73) Proprietor:

TORAY INDUSTRIES, INC.

Tokyo 103-8666 (JP)

Remarks:

The file contains technical information submitted after the application was filed and not included in this specification

(72) Inventors:

• Nomura, Hideshi

Otsu, Shiga 520 (JP)

• Eguchi, Masulchi

Minamiku, Kyoto (JP)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

- [0001] The present invention relates to a novel photosensitive polyimide precursor composition. More particularly, the present invention is concerned with a novel photosensitive polyimide precursor composition which can be used in forming protective films for semiconductor devices and insulating films for multilayer interconnection substrates.
- [0002] Recently, in the field of the electronics industry, polyimides prepared by heat-treating poly(amic acid)s as polyimide precursors have been used as protective films and interlayer insulating films because of their superior heat resistance and dielectric characteristics. When using a poly(amic acid) of a conventional structure, however, a complicated process using a photoresist is required for forming a pattern on a polyimide film obtained from such poly(amic acid). In order to solve this problem there has been proposed the use of a photosensitive polyimide precursor which permits direct formation of a pattern through exposure and development.
- [0003] In such a photosensitive polyimide precursor disclosed in US-A-3957512 a photosensitive group is ester-linked to the carboxyl group in a poly(amic acid) molecule. This photosensitive polyimide precursor is prepared by reacting a tetracarboxylic acid dianhydride with an alcohol containing carbon-carbon unsaturation having photoreactivity to form a tetracarboxylic diester, then converting free carboxyl groups in the diester into acid chloride groups, and polycondensing the resulting diester-bis-acid chloride with a diamine. However, in the photosensitive polyimide precursor obtained by this process there eventually remains a chloride as a by-product because a dehydrochlorination reaction is included in the manufacturing process. For removing this residual by-product chloride which is harmful, it is necessary to conduct a purification treatment which is expensive.
- [0004] US-A-4654415 discloses a photosensitive polyimide precursor wherein a photosensitive group is ester-linked to the carboxyl group in a poly(amic acid) molecule, using a process different from the process just referred to above. This photosensitive polyimide precursor is prepared by reacting a tetracarboxylic dianhydride with an alcohol containing carbon-carbon unsaturation having photoreactivity to form a tetracarboxylic diester and then reacting the diester with a diamine in the presence of carbodiimide. Also in this process, however, there remains a urea derivative as a by-product and a purifying treatment for separating the urea derivative is required in preparing a coating solution of the photosensitive polyimide precursor.
- [0005] US-A-4243743 discloses a photosensitive polyimide precursor prepared by incorporating in a poly(amic acid) a compound containing carbon-carbon unsaturation having photoreactivity and also containing an amino group or a quaternized salt thereof, allowing a photosensitive group to be salt-linked to the carboxyl group or a salt thereof contained in the poly(amic acid) molecule. This photosensitive polyimide precursor can be prepared without the formation of any harmful by-product. For example, however, when using a polyimide film as a semiconductor protecting film, the larger the film thickness, the greater the α -ray shielding effect. When the surface of film formed from the said photosensitive polyimide precursor is masked for patterning, followed by exposure and development using a developing solution and subsequent heat-treatment to obtain a pattern of the polyimide film, it is very difficult to obtain a polyimide film pattern having a thickness of 10 μ m or more. This is for the following reason. In the photosensitive polyimide precursor, usually a photosensitive group is introduced into the poly(amic acid) which has a high molecular weight and it is introduced by a relatively weak linkage such as salt linkage. Thus, when developing a thick film, the dissolving speed of an unexposed portion into the developing solution is low, and until a complete dissolution of the unexposed portion into the developing solution has taken place, the exposed portion also continues to dissolve in a considerable amount in the developing solution, resulting in the thickness of the residual exposed portion becoming smaller.
- [0006] EP-A-0430221 discloses a photosensitive polyimide precursor composition comprising (A) a poly(amic acid), (B) a photoreactive compound and (C) an initiator. The photoreactive compound (B) is an acrylamide or methacrylamide compound.
- [0007] EP-A-0418870 discloses a photosensitive polyimide precursor composition comprising (A) a polyimide of the formula

wherein R₁ is a trivalent organic residue having at least two carbon atoms, R₂ is a divalent organic residue having at least two carbon atoms, R₃ is hydrogen or an alkali metal and n is 1 or 2, (B) a photoreactive compound and (C) an initiator. The photoreactive compound (B) may be a dialkylaminoalkyl (meth)acrylate.

[0008] Surprisingly, we have found that the abovementioned drawbacks may be minimized or overcome by a photosensitive polyimide precursor composition of the invention which can be prepared without the formation of any harmful by-product requiring the application of a purifying treatment and in which, at the time of development after exposure,

the amount of an exposed portion dissolved into a developing solution during complete dissolution of an unexposed portion in the same solution is small, thus affording a pattern of a polyimide film having a large thickness.

[0009] A first (composition) aspect of the present invention provides a photosensitive polyimide precursor composition comprising (a) a poly(amic acid) wherein at least one molecular end is an acid ester of an alcohol not containing an unsaturated bond, (b) a photoreactive compound of the formula

where R₉ is hydrogen or phenyl, R₁₀ is hydrogen or a lower alkyl group having 1 to 6 carbon atoms, R₁₁ is a substituted or unsubstituted hydrocarbon radical having 2 to 12 carbon atoms, and R₁₂ and R₁₃ are each an alkyl group having 1 to 6 carbon atoms, or the formula

where R₁₄ is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, or the formula

30 where R₁₅ is hydrogen or methyl, k = 1 to 3, L = 1 to 3 and k+L = 3 or 4, which may be present in a proportion of 0.05 to 2 mole equivalents relative to the carboxyl group in the poly(amic acid) molecule (a), (c) a photopolymerization initiator and (d), as solvent, a compound selected from N-methyl-2-pyrrolidone, N,N-dimethylacetamide and N,N-dimethyl-formamide.

[0010] In the above composition the component (a) may be a poly(amic acid) wherein at least one molecular end is an acid ester of an alcohol, which poly(amic acid) (a) is represented by the general formula

45 where X is represented by the general formula

55 Z is represented by the general formula

10 or the general formula

20

or NH_2 ; R_1 is a tetravalent organic group having 2 to 22 carbon atoms; R_2 is a monovalent organic group having 1 to 15 carbon atoms and not containing an unsaturated bond; R_3 is a divalent organic group having 1 to 22 carbon atoms, n is from 0 to 99 inclusive and there may be 0.01 to 1 mole equivalents of the group R_2 per mole equivalent of the group R_1 .

25 [0011] According to a further (composition) aspect of the present invention, there is provided a photosensitive polyamide precursor composition comprising:

(a) a poly(amic acid) wherein at least one molecular end is an acid ester of an unsaturated alcohol;

30 (b) as a photosensitive compound, a monomer containing carbon-carbon unsaturation and containing neither an amino group nor an amide group; and

(c) a photopolymerization initiator.

35 [0012] According to another aspect of the present invention there is provided a process for preparing a photosensitive polyimide precursor composition in accordance with the above first aspect of the invention, which process comprises adding a alcohol not containing an unsaturated bond to a tetracarboxylic dianhydride to form a tetracarboxylic monoester monoanhydride, then reacting the tetracarboxylic monoester monoanhydride or a mixture of the tetracarboxylic monoester monoanhydride and a tetracarboxylic dianhydride with a diamine to form a solution of a poly(amic acid) (a) wherein at least one molecular end is an acid ester of the alcohol, in the saturated amide, and thereafter mixing a photoreactive compound (b) containing carbon-carbon unsaturation having photoreactivity and a photopolymerization initiator (c) in a compound (d), as solvent, selected from N-methyl-2-pyrrolidone, N,N-dimethylacetamide and N,N-dimethylformamide, with the solution of poly(amic acid) (a).

40 [0013] According to the first (composition) aspect of the invention, the photoreactive compound (b) has the formula (9), (10) or (11) and may be present in a proportion of 0.05 to 2 mole equivalents relative to the carboxyl group in the poly(amic acid) molecule (a).

[0014] The poly(amic acid) of the formula (1) may be prepared as later described.

45 [0015] As explained more fully below, the composition may comprise the abovementioned components (a)-(d) as the main ingredients and may additionally contain other additive(s) and solvent(s).

[0016] According to embodiments of the first (composition) aspect of the invention the poly(amic acid) wherein at least one molecular end is an acid ester of alcohol not containing an unsaturated bond, as referred to herein, may be represented by the following general formula (1):

10 wherein X is represented by the general formula (2)

20

Z is represented usually by the general formula (3)

30

or the general formula (4)

45 or NH₂, provided that, in accordance with the first composition aspect, these are not restrictive and Z may be of another structure; R₁ is a tetravalent organic group having 2 to 22 carbon atoms; R₂ is a monovalent organic group of 1 to 15 carbon atoms not containing an unsaturated bond; R₃ is a divalent organic group having 1 to 22 carbon atoms; and n is O or larger. In embodiments according to the second (composition) aspect of the invention, it is desirable that R₂ be a monovalent organic group of 3 to 15 carbon atoms containing carbon-carbon unsaturation having photoreactivity, because there will be obtained a better photosensitive characteristic. As to the solubility of an unexposed portion of the poly(amic acid) wherein at least one molecular end is an acid ester of alcohol, the smaller the molecular weight, the higher the solubility. Conversely, if the molecular weight is too small, the amount of an exposed portion dissolved in the developing solution becomes larger, and when the amount of the exposed portion dissolved therein is to be decreased, it is in many cases required to increase the exposure dose to a greater extent. Therefore, it is desired that n be 0 to 99 (and may be any integer up to and including 99), more preferably 2 to 69, still more preferably 4 to 49, and yet more preferably 6 to 29. So examples of the poly(amic acid) as referred to herein include oligomers such as dimers and trimers. Actually, since there are variations in the degree of polymerization of the poly(amic acid) wherein at least one molecular end is an acid ester of alcohol, a preferred range of n means that 50 mole% or more, more preferably 70

mole% or more, and still more preferably 90 mole% or more, of the entire poly(amic acid) is included therein.

[0017] The poly(amic acid) wherein at least one molecular end is an acid ester of alcohol used in the present invention can be obtained, for example, by adding a diamine to a tetracarboxylic monoester monoanhydride which is prepared by adding an alcohol to a tetracarboxylic dianhydride, or to a mixture of the said tetracarboxylic monoester 5 monoanhydride and a tetracarboxylic dianhydride.

[0018] The tetracarboxylic dianhydride may be one represented by the general formula (5)

wherein R₁ is a tetravalent organic group having 2 to 22 carbon atoms as referred to above. For example, aliphatic or alicyclic tetracarboxylic dianhydrides are employable. Concrete examples are butanetetracarboxylic dianhydride, pentanetetracarboxylic dianhydride, hexanetetracarboxylic dianhydride, cyclobutanetetracarboxylic dianhydride, cyclopentanetetracarboxylic dianhydride, bicyclohexanetetracarboxylic dianhydride, cyclopropanetetracarboxylic dianhydride, and methylcyclohexanetetracarboxylic dianhydride. The use of an aromatic tetracarboxylic dianhydride can afford a photosensitive polyimide precursor composition capable of being converted to a polyimide superior in heat resistance. Examples are 3,3',4,4'-benzophenonetetracarboxylic dianhydride, pyromellitic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 4, 4'-sulfonyldiphtalic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, and 2,3,5,6-pyridinetetracarboxylic dianhydride. These are not restrictive. In the present invention, one or more of tetracarboxylic dianhydrides, including those just exemplified above, are used.

[0019] The alcohol used in embodiments of the first (composition) aspect of the present invention may be an alcohol 30 represented by the general formula (6)

wherein R₂ is a monovalent organic group of 1 to 15 carbon atoms not containing an unsaturated bond. Example of the 35 alcohol not containing an unsaturated bond are monohydric aliphatic alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol and isobutyl alcohol; polyhydric alcohols such as ethylene glycol, propylene glycol, glycerin and trimethylolpropane; and cellosolves such as methyl cellosolve, ethyl cellosolve and butyl cellosolve. Also, in the second (composition) aspect of the invention, an alcohol may be employed in which R₂ is a monovalent organic group of 3 to 15 carbon atoms containing unsaturated bonding, as referred to previously, provided phenyl is not directly attached to 40 the hydroxyl group.

[0020] Examples of the alcohol containing unsaturated bonding are aliphatic alcohols having carbon-carbon double bond such as allyl alcohol and 2-allyloxyethanol. But the use of a (meth)acrylic acid ester wherein the ester has an alcoholic hydroxyl group can afford a photosensitive polyimide precursor superior in photosensitivity. Examples are 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, glycerol acrylate, polyethylene glycol acrylate, EO-modified phthalic 45 acid acrylate, and compounds resulting from replacement of these acrylates with methacrylates.

[0021] In the present invention, one or more of alcohols containing an unsaturated bond, including those just exemplified above, may be used.

[0022] The diamine used in the present invention may be a diamine represented by the general formula (7)

wherein R₃ is a divalent organic group having 1 to 22 carbon atoms, as referred to previously. Examples are 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfone, 4,4'-diaminodiphenyl sulfide, m-phenylenediamine, p-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, 2,6-diaminotoluene, benzidine, 3,3'-55 dimethylbenzidine, 3,3'-dimethoxybenzidine, o-tolidine, 4,4'-diaminotetraphenyl, 1,5-diaminonaphthalene, 2,5-diaminopyridine, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 4,4'-bis(p-aminophenoxy)biphenyl, 2,2-bis[4-(p-aminophenoxy) phenyl]propane, and hexahydro-4,7-methanoindanylene dimethylene diamine.

[0023] The use of a siloxanediamine represented by the following general formula (8) can improve the adhesion to

an organic substrate:

wherein R₄ is a divalent organic group having 1 to 10 carbon atoms, R₅, R₆, R₇ and R₈, which may be the same or different, are each a monovalent organic group having 1 to 10 carbon atoms, and m is an integer of 1 to 10. The siloxane diamine is used usually in an amount of 1 to 20 mole% of the whole diamine. If the amount of the siloxanediamine used is too small, there will not be attained an improvement of adhesion, and if it is too large, the heat resistance will deteriorate. An example of the siloxanediamine is bis-3-(aminopropyl)tetramethylsiloxane. One or more of such diamines may be used in the present invention.

[0024] The poly(amic acid) wherein at least one molecular end is an acid ester of alcohol, used in the present invention, may be prepared in the following manner for example. First, a reaction of an alcohol with a tetra-carboxylic dianhydride, for example by adding the alcohol to the tetracarboxylic dianhydride to obtain a tetracarboxylic monoester monoanhydride is carried out in an inert organic solvent at a temperature in the range of 20 ° to 150°C, preferably 50° to 100°C. If the temperature is too low, the reaction will not proceed smoothly, and for setting the temperature high, a great deal of energy is required, which is expensive. In the case where an unsaturated alcohol is added to the tetracarboxylic dianhydride, or the addition of alcohol to the tetracarboxylic dianhydride is performed in an organic solvent containing carbon-carbon unsaturation having photoreactivity, e.g. acrylamide, the reaction is conducted at a temperature in the range of 20° to 100°C, preferably 50° to 80°C. Higher temperatures may cause cleavage of the carbon-carbon unsaturation.

[0025] Usually, the alcohol is reacted with the tetracarboxylic dianhydride substantially in a proportion of 0.010 to 1, preferably 0.014 to 0.333, more preferably 0.020 to 0.200, still more preferably 0.033 to 0.143, mole equivalent. If the amount of the alcohol reacted is too large, the molecular weight of the resulting end-esterified poly(amic acid) will become too small and the amount of exposed portion dissolved in a developing solution will increase. An attempt to decrease the amount of the exposed portion dissolved requires a larger exposure dose in many cases. On the other hand, if the amount of the alcohol reacted is too small, the molecular weight of the resulting end-esterified poly(amic acid) will become too large, resulting in deterioration of the solubility of an unexposed portion in the developing solution. According to the above process there usually are obtained tetracarboxylic diester and unreacted tetracarboxylic dianhydride in addition to the tetracarboxylic monoester monoanhydride. The tetracarboxylic dianhydride is employable effectively in the subsequent reaction with diamine. On the other hand, the tetracarboxylic diester is substantially not necessary in the subsequent reaction, so it is desirable that the proportion thereof be smaller than 0.5, more preferably smaller than 0.1, still more preferably smaller than 0.056, yet more preferably smaller than 0.038, mole equivalent based on the amount of the tetracarboxylic monoester monoanhydride.

[0026] Next, the above tetracarboxylic monoester monoanhydride, or mixture thereof with any unremoved reaction products such as tetracarboxylic dianhydride and tetracarboxylic diester is reacted with a diamine preferably by adding the diamine to the tetracarboxylic monoester monoanhydride (or mixture thereof containing it) in an organic solvent, thus allowing the diamine to react with the tetracarboxylic monoester monoanhydride and any tetracarboxylic dianhydride present, to afford a poly(amic acid) wherein at least one molecular end is an acid ester of the alcohol. In this case, the diamine is used usually in a proportion of 0.9 to 1.1, preferably 0.95 to 1.05, more preferably 0.99 to 1.01, mole equivalent, still more preferably equimolar equivalent, based on the total mole equivalent of the tetracarboxylic monoester monoanhydride, tetracarboxylic dianhydride and tetracarboxylic diester. The smaller the difference in mole equivalent in the above, the smaller the difference in mole equivalent between amine end and ester end in a polyimide precursor composition obtained by a polymerization reaction which takes place after the mixing and comprising end-esterified poly(amic acid), amine-ended poly(amic acid) and unreacted tetracarboxylic diester. The smaller the difference in mole equivalent between amine end and ester end in the polyimide precursor composition, the higher the degree of polymerization of polyimide obtained by heat-treating the polyimide precursor, and hence there can be obtained a film superior in mechanical characteristics. Therefore, it is desired to equalize the amine end-ester end mole equivalent. The reaction with diamine is carried out usually at a temperature in the range of 0° to 100°C, preferably 50° to 80°C. If the temperature is too low, the reaction will not proceed smoothly, and a too high temperature may cause the imidization of poly(amic acid).

[0027] Diamine and additional tetracarboxylic dianhydride may be incorporated into the organic solvent containing the tetracarboxylic monoester monoanhydride, tetracarboxylic dianhydride and tetracarboxylic diester, allowing a

polymerization reaction to take place. In this case, it is desired that the mixing ratio of the tetracarboxylic monoester monoanhydride, tetracarboxylic dianhydride, tetracarboxylic diester and diamine be adjusted so as to afford an end-esterified poly(amic acid) having a desirable polymerization degree and minimize the difference in mole equivalent between amine end and ester end in the resulting polyimide precursor composition comprising the end-esterified poly(amic acid), amine-ended poly(amic acid) and unreacted tetracarboxylic diester.

[0028] The compound (d) used as solvent in the above process is preferably capable of dissolving the poly(amic acid) wherein at least one of the molecular ends formed is an acid ester of an alcohol. It is selected from N-methyl-2-pyrrolidone, N,N-dimethylacetamide and N,N-dimethylformamide.

[0029] In the first (composition) aspect of the present invention, The photoreactive compound (b) of the formula (9), (10) or (11) contains carbon-carbon unsaturation having photoreactivity and has incorporated in it an amino group. This is desirable because it will be salt-linked to the carboxyl group in the poly(amic acid) molecule and the amount of an exposed portion of the resulting photosensitive polyimide precursor composition dissolved in a developing solution becomes smaller than that in the use of a photoreactive compound not containing an amino group.

[0030] The compounds(b) containing both carbon-carbon unsaturation having photoreactivity and an amino group are those represented by the general formula (9)

wherein R₉ is hydrogen or phenyl, R₁₀ is hydrogen or a lower alkyl group having 1 to 6 carbon atoms, R₁₁ is a substituted or unsubstituted hydrocarbon group having 1 to 12 carbon atoms, R₁₂ and R₁₃ are each a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms; those represented by the general formula (10)

wherein R₁₄ is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms; and those represented by the general formula (11)

wherein R₁₅ is hydrogen or methyl, k= 1 to 3, L= 1 to 3 and k+L= 3 or 4 concrete examples include N,N-dimethylaminoethyl acrylate, N,N-diethylaminoethyl acrylate, N,N-dimethylaminopropyl acrylate, N,N-diethylaminopropyl acrylate, N,N-dimethylaminobutyl acrylate, N,N-diethylaminobutyl acrylate, and compounds resulting from replacement of these acrylates with methacrylates, as well as 2-vinylpyridine, 4-vinylpyridine, allylamine, 2-methylallylamine, and diallylamine. But these are not restrictive. From the standpoint of photoreactivity, however, amino compounds having acryl or methacryl group as an unsaturated group are desirable.

[0031] It is desirable that the compound (b) containing both carbon-carbon unsaturation having photoreactivity and an amino group be mixed with the poly(amic acid) in a proportion of 0.05 to 2, more preferably 0.1 to 1, mole equivalent relative to the carboxyl group in the poly(amic acid) molecule. If its proportion is too low, photosensitivity will be deteriorated, and if it is too high, the decrease of film thickness will be to an excess degree at the time of forming a polyimide film by heat-treating the polyimide precursor film.

[0032] In the present invention, a compound containing carbon-carbon unsaturation having photoreactivity but not containing an amino group is employable, and it may be used together with the compound containing both carbon-carbon unsaturation having photoreactivity and an amino group. According to the second (composition) aspect, the photo-sensitive compound (b) includes a monomer containing carbon-carbon unsaturation and containing neither an amino group nor an amide group. Examples of the compound containing carbon-carbon unsaturation having photoreactivity and not containing amino group are allyl acrylate, benzyl acrylate, butoxyethyl acrylate, butoxytriethylene glycol acr-

ylate, cyclohexyl acrylate, dicyclopentanyl acrylate, dicyclopentenyl acrylate, 2-ethylhexyl acrylate, glycerol acrylate, glycidyl acrylate, heptadecafluorodecyl acrylate, 2-hydroxyethyl acrylate, isobornyl acrylate, 2-hydroxypropyl acrylate, isodecyl acrylate, isoocetyl acrylate, lauryl acrylate, 2-methoxyethyl acrylate, methoxyethylene glycol acrylate, methoxydiethylene acrylate, methoxytriethylene glycol acrylate, methoxydipropylene glycol acrylate, octafluoropentyl acrylate, phenoxyethyl acrylate, stearyl acrylate, trifluoroethyl acrylate, allylated cyclohexyl diacrylate, bisphenol A diacrylate, 1,4-butanediol acrylate, 1,3-butylene glycol diacrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, polyethylene glycol diacrylate, dipentaerythritol hexaacrylate, dipentaerythritol monohydroxy pentaacrylate, ditrimethylolpropane tetraacrylate, glycerol diacrylate, methoxylated cyclohexyl diacrylate, neopentyl glycol diacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, propylene glycol diacrylate, polypropylene glycol diacrylate, triglycerol diacrylate, trimethylolpropane triacrylate, and compounds resulting from replacement of these acrylates with methacrylates, as well as γ -methacryloxypropyl trimethoxy silane.

[0033] The foregoing amide compound containing carbon-carbon unsaturation having photoreactivity such as N-methylacrylamide, N-methylmethacrylamide, N-ethylmethacrylamide, N,N-dimethylacrylamide, N,N-diethylacrylamide, N-acryloylmorpholine, or N-vinylpyrrolidone, may also be used in embodiments of the first (composition) aspect of the present invention. One or more of these compounds may be used in the present invention.

[0034] In the case where the compound containing carbon-carbon unsaturation having photoreactivity and not containing an amino group is used in combination with the compound containing both carbon-carbon unsaturation having photoreactivity and an amino-group, it is desirable that the amount of the former compound used be in the range of 1 to 100%, more preferably 5 to 50%, still more preferably 10 to 25%, by weight based on the weight of the poly(amic acid). When the former compound is not used together with the compound containing both carbon-carbon unsaturation having photoreactivity and an amino group, it is desirable to use it in an amount of 5 to 200%, more preferably 10 to 100%, still more preferably 20 to 50%, by weight based on the weight of the poly(amic acid). If the amount of the former compound, i.e., a compound containing carbon-carbon unsaturation and not containing an amino group, is too large, there will occur phase separation between it and the poly(amic acid) at the time of forming a polyimide precursor film, or the decrease of film thickness will be to an excess degree at the time of forming a polyimide film by heat-treating the polyimide precursor film. And if the amount of the said compound is too small, the photosensitivity of the photosensitive composition obtained will be poor.

[0035] The photopolymerization initiator used in the present invention may be a known compound. Examples are benzophenone, methyl o-benzoylbenzoate, 4,4'-bis(dimethylamino)benzophenone, 4,4'-bis(diethylamino)benzophenone, 4,4'-dichlorobenzophenone, 4-benzoyl-4'-methyl diphenyl ketone, dibenzyl ketone, fluorenone, 2,2'-diethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2-hydroxy-2-methylpropiophenone, p-t-butyl dichloroacetophenone, thioxanthone, 2-methylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, diethylthioxanthone, benzil, benzyl dimethyl ketal, benzyl- β -methoxyethyl acetal, benzoin, benzoin methyl ether, benzoin butyl ether, anthraquinone, 2-t-butylanthraquinone, 2-aminanthraquinone, β -chloroanthraquinone, anthrone, benzanthrone, dibenzosuberone, methyleneanthrone, 4-azidobenzalacetophenone, 2,6-bis(p-azidobenzylidene)cyclohexanone, 2,6-bis(p-azidobenzylidene)-4-methylcyclohexanone, 1-phenyl-1,2-butanedione-2-(o-methoxycarbonyl)oxime, 1-phenyl-propanedione-2-(o-ethoxycarbonyl)oxime, 1-phenyl-propanedione-2-(o-benzoyl)oxime, 1,3-diphenyl-propanetrione-2-(o-ethoxycarbonyl)oxime, 1-phenyl-3-ethoxy-propanetrione-2-(o-benzoyl)oxime, Michler's ketone, N-phenylglycine, 3-phenyl-5-isoxazolone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-[4-(methylthio)phenyl]-2-morpholino-1-propanone, naphthalenesulfonyl chloride, quinolinesulfonyl chloride, N-phenylthioacridone, 4,4'-azobisisobutyronitrile, diphenyl disulfide, benzthiazole disulfide, triphenylphosphine, camphorquinone, carbon tetrabromide, tribromophenylsulfone, benzoyl peroxide, as well as combinations of photo-reducing dyes such as Eosine and methylene blue with reducing agents such as ascorbic acid and triethanolamine.

[0036] One or more of these compounds may be used in the present invention.

[0037] The amount of the photopolymerization initiator contained in the photosensitive polyimide precursor composition of the present invention is preferably 0.1 to 30 wt%, more preferably 2 to 15 wt%, based on the weight of, the poly(amic acid). If the amount of the photopolymerization initiator is too small, the photosensitivity of the composition will be unsatisfactory, and if it is too large, the decrease of film thickness will be to an excess degree at the time of forming a polyimide film by heat-treating the polyimide precursor film.

[0038] A sensitizer for improving the photosensitivity may be incorporated in the photosensitive polyimide precursor composition of the present invention. Examples of such sensitizer are 2,5-bis(4'-diethylaminobenzal)cyclopentanone, 2,6-bis(4'-dimethylaminobenzal)cyclohexanone, 2,6-bis(4'-dimethylaminobenzal)-4-methylcyclohexanone, 2,6-bis(4'-diethylaminobenzal)-4-methylcyclohexanone, Michler's ketone, 4,4'-bis(diethylamino)-benzophenone, 4,4'-bis(dimethylamino)chalcone, 4,4'-bis(diethylamino)chalcone, p-dimethylaminocinnamylideneindanone, p-dimethylaminobenzylideneindanone, 2-(p-dimethylaminophenylvinylene)benzothiazole, 2-(p-dimethylaminophenylvinylene)-isonaphthothiazole, 1,3-bis(4'-dimethylaminobenzal)acetone, 1,3-bis(4'-diethylaminobenzal)acetone, 3,3'-carbonyl-bis(7-diethylaminocoumarin), N-phenyl-N'-ethylethanolamine, N-phenyldiethanolamine, N-tolyldiethanolamine, N-phenylethanolamine, dimethylaminobenzoic acid isoamyl, 3-phenyl-5-isoxazolone, 1-phenyl-5-benzoylthio-tetrazole, and 1-

phenyl-5-ethoxycarbonylthio-tetrazole.

[0039] One or more of these sensitizers may be used in the present invention. Among the sensitizers exemplified above are included those which function also as photopolymerization initiators.

[0040] In the case where a sensitizer(s) is to be incorporated in the photosensitive polyimide precursor composition of the present invention, the amount thereof is preferably 0.1 to 30 wt%, more preferably 0.5 to 15 wt%, based on the weight of the poly(amic acid). If its amount is too large, the film thickness will be decreased to an excess degree at the time of forming a polyimide film by heat-treating the polyimide precursor film, and if the amount thereof is too small, the effect of improving the photosensitivity will not be exhibited.

[0041] For improving the thermal stability during preservation of the photosensitive polyimide precursor composition of the present invention, there may be added a thermal polymerization inhibitor. Examples are hydroquinone, N-nitrosodiphenylamine, phenothiazine, p-t-butylcatechol, N-phenylnaphthylamine, 2,6-di-t-butyl-p-methylphenol, chloranil, and pyrogallol.

In the case where a thermal polymerization inhibitor is used, the amount thereof is preferably 0.1 to 20 wt%, more preferably 0.5 to 10 wt%, based on the weight of the poly(amic acid). If its amount is too large, the film thickness will be decreased to an excess degree at the time of forming a polyimide film by heat-treating the polyimide precursor film, and if the amount thereof is too small, the effect of improving the thermal stability during preservation will not be exhibited.

[0042] For improving the hardness of the polyimide film formed, inorganic fine particles in colloidal form may be incorporated in the photosensitive polyimide precursor composition of the present invention. Examples are silica sol, titania sol and zirconia sol. In the case where such inorganic fine particles in colloidal form are used, the amount thereof is preferably 1 to 50 wt%, more preferably 2 to 30 wt%, based on the weight of the poly(amic acid). If the amount thereof is too large, the pattern processing property of the polyimide precursor film will deteriorate, and if it is too small, the effect of improving the hardness of the polyimide film will not be exhibited.

[0043] By dissolving the photosensitive polyimide precursor composition of the present invention in an organic solvent capable of dissolving all the ingredients constituting the composition, or when incorporating additives in the composition, capable of dissolving all the ingredients including additives other than those basically insoluble in organic solvents such as inorganic fine particles in colloidal form, there can be obtained a coating varnish. As such organic solvent there may be used the same organic solvent as the organic solvent which is suitably used in preparing the poly(amic acid) with at least one molecular end being an acid ester of an alcohol and which can dissolve the said poly(amic acid).

[0044] The varnish may be applied to a substrate using spin coater, bar coater, blade coater, or screen printing technique, by dipping the substrate into the varnish or by spraying the varnish onto the substrate. The material of the substrate may be a semiconductor such as silicon or gallium-arsenic, an inorganic insulator such as alumina ceramic or glass ceramic, a metal such as aluminum or steel, or an organic insulator such as a polyester film.

[0045] When applying the varnish onto a substrate formed of a semiconductor, an inorganic insulator or a metal for example, the substrate surface may be treated with a bonding assistant such as a silane coupling agent, aluminum chelating agent or titanium chelating agent, whereby the adhesion between the polyimide and the substrate can be improved.

[0046] After the varnish comprising the composition of the present invention is applied onto the substrate, a photosensitive polyimide precursor film may be formed by air drying, heat drying, or vacuum drying. The film thus obtained may be exposed to light using a conventional photo mask. As an actinic radiation to be used in the exposure there may be adopted ultraviolet ray, electron ray, or X-ray, with ultraviolet ray being preferred. Examples of a light source for the actinic radiation are a low pressure mercury vapor lamp, high pressure mercury vapor lamp, ultra-high pressure mercury vapor lamp, halogen lamp and sterilizing lamp, with ultra-high pressure mercury vapor lamp being particularly suitable. It is preferable that the exposure be conducted in a nitrogen atmosphere or in vacuum.

[0047] After the exposure, development may be performed using a developing solution. In this case, there may be adopted a dipping method or a spray method. As the developing solution there usually is employed the same organic solvent as the organic solvent which is suitably used in the preparation of the poly(amic acid) with at least one molecular end being an acid ester of alcohol and which can dissolve the said poly(amic acid). For improving the developability, water may be added to the organic solvent.

[0048] If water is added, the amount thereof is usually 1 to 100 wt%, preferably 5 to 50 wt%, based on the weight of the organic solvent. If the amount of water added is too large, there may occur phase separation between it and the organic solvent, and if the amount thereof is too small, the effect of improving the developability will not be exhibited. Just after the development it is desirable to perform rinsing using an organic solvent, for example, ethyl alcohol, isopropyl alcohol, isobutyl alcohol, hexane, or pentane.

[0049] The pattern of the polyimide precursor obtained by the development is then converted into a pattern of polyimide by heat treatment. The heat treatment is usually conducted continuously or stepwise in a nitrogen atmosphere or in vacuum, at a temperature of 150° to 450°C, for 0.5 to 5 hours. At this stage, the poly(amic acid) which is relatively low in molecular weight is converted to polyimide of a high molecular weight.

[0050] The invention will now be described in more detail with reference to the following Examples of preferred embodiments.

Example 1

5

[0051] 147.11 g (0.5 mole) of 3,3',4,4'-biphenyltetracarboxylic dianhydride, 65.07 g (0.5 mole) of 2-hydroxyethyl methacrylate and 300 g of N-methyl-2-pyrrolidone were charged into a four-necked 1,000 ml flask equipped with a thermometer, a dry air inlet and a stirrer, and stirred at 70°C for 4 hours while dry air was introduced, followed by cooling to room temperature. Then, 75.09 g (0.375 mole) of 4,4'-diaminodiphenyl ether, 10.81 g (0.1 mole) of p-phenylenediamine, 6.21 g (0.025 mole) of bis-3-(aminopropyl)tetramethylsiloxane and 193.11 g of N-methyl-2-pyrrolidone were added and stirring continued at 60°C for 3 hours while dry air was introduced to afford a viscous polyimide precursor solution. A small amount of the solution was withdrawn and diluted with N-methyl-2-pyrrolidone, followed by reprecipitation to obtain a poly(amic acid). As a result of analysis using NMR, the esterification degree of this poly(amic acid) was found to be 7.8 mole%, from which an average polymerization degree of the end-esterified poly(amic acid) is estimated at 12.8.

10

[0052] Next, 4.78 g of Michler's ketone, 2.39 g of 4-azidobenzalacetophenone, 7.18 g of 3-phenyl-5-isoxazolone, 1.20 g of 3,3'-carbonyl-bis(7-diethylaminocoumarin), 35.88 g of ethylene glycol dimethacrylate and 157.21 g (1 mole) of N,N-dimethylaminoethyl methacrylate were added at room temperature under a light-shielded condition. After stirring and mixing, the resultant mixture was filtered using a filter to obtain a solution of a photosensitive polyimide precursor composition.

15

[0053] The solution was spin-coated onto a 4-inch silicon wafer and dried under heating at 80°C for 30 minutes to form a 30 µm thick film. The film surface was masked for patterning and exposed to light in a nitrogen atmosphere for 5 minutes, using a 7 mW/cm² ultra-high pressure mercury vapor lamp. Then, the silicon wafer thus coated was immersed in a mixed solution (7:2:1, weight ratio) of N-methyl-2-pyrrolidone, xylene and water and development was allowed to proceed until the unexposed portion was dissolved and removed, followed by rinsing with isobutyl alcohol, to obtain a 28 µm thick pattern of the polyimide precursor. The pattern was then heat-treated in steps of 200°C 30 minutes, 300°C 30 minutes and 400°C 30 minutes in a nitrogen atmosphere to afford a 14 µm thick polyimide pattern.

20

Example 2

25

[0054] A solution of a photosensitive polyimide precursor composition was prepared in the same way as in Example 1 except that 58.06g (0.5 mole) of 2-hydroxyethyl acrylate was used in place of 65.07g (0.5 mole) of 2-hydroxyethyl methacrylate.

30

[0055] Using this solution, a 28 µm thick pattern of the polyimide precursor was obtained in the same manner as in Example 1. Further, heat treatment was performed in the same manner as in Example 1 to afford a 14 µm thick polyimide pattern.

Example 3

35

[0056] A solution of a photosensitive polyimide precursor composition was prepared in the same way as in Example 1 except that 29.04 g (0.5 mole) of allyl alcohol was used in place of 65.07 g (0.5 mole) of 2-hydroxyethyl methacrylate.

[0057] Using this solution, a 26 µm pattern of the polyimide precursor was obtained in the same manner as in Example 1. Further, heat treatment was performed in the same manner as in Example 1 to afford a 13 µm thick polyimide pattern.

40

Example 4

45

[0058] A solution of a photosensitive polyimide precursor composition was prepared in the same way as in Example 1 except that 11.52 g (0.25 mole) of ethyl alcohol was used in place of 65.07 g (0.5 mole) of 2-hydroxyethyl methacrylate.

50

[0059] Using this solution, a 26 µm thick pattern of the polyimide precursor was obtained in the same manner as in Example 1. Further, heat treatment was performed in the same manner as in Example 1 to afford a 13 µm thick polyimide pattern.

55

Example 5

[0060] A solution of a photosensitive polyimide precursor composition was prepared in the same way as in Example 1 except that 17.03 g (0.25 mole) of isopropyl alcohol was used in place of 65.07 g (0.5 mole) of 2-hydroxyethyl meth-

acrylate.

[0061] Using this solution, a 26 μm thick pattern of the polyimide precursor was obtained in the same manner as in Example 1. Further, heat treatment was performed in the same manner as in Example 1 to afford a 13 μm thick polyimide film.

5

Comparative Example 1

[0062] 147.11 g (0.5 mole) of 3,3',4,4'-biphenyltetracarboxylic dianhydride, 75.09 g (0.375 mole) of 4,4'-diaminodiphenyl ether, 10.81 g (0.1 mole) of p-phenylenediamine, 6.21 g (0.025 mole) of bis-3-(aminopropyl) tetramethylsiloxane and 1,355.58 g of N-methyl-2-pyrrolidone were charged into a four-necked 2,000 ml flask equipped with a thermometer, a dry nitrogen inlet and a stirrer, and stirred at 60 °C for 3 hours while dry nitrogen was introduced, to prepare a viscous polyimide precursor solution.

10

[0063] Next, 4.78 g of Michler's ketone, 2.39 g of 4-azidobenzalacetophenone, 7.18 g of 3-phenyl-5-isoxazolone, 1.20 g of 3,3'-carbonyl-bis(7-diethylaminocoumarin), 35.88 g of ethylene glycol dimethacrylate and 157.21 g (1 mole) of N,N-dimethylaminoethyl methacrylate were added at room temperature under a light-shielded condition. After stirring and mixing, the resultant mixture was filtered using a filter to obtain a solution of a photosensitive polyimide precursor composition.

15

[0064] The solution was spin-coated onto a 4-inch silicon wafer and then dried under heating at 80 °C for 30 minutes to form a 30 μm thick film. The film surface was masked for patterning and exposed to light in a nitrogen atmosphere for 5 minutes, using a 7 mW/cm² ultra-high pressure mercury vapor lamp. The silicon wafer thus coated was then immersed in a mixed solution (7:2:1, weight ratio) of N-methyl-2-pyrrolidone, xylene and water and development was allowed to proceed until the unexposed portion was dissolved and removed, followed by rinsing using isobutyl alcohol, to afford a 18 μm thick pattern of the polyimide precursor. The pattern was heat-treated in steps of 200 °C 30 minutes, 300°C 30 minutes and 400°C 30 minutes in a nitrogen atmosphere to obtain a 9 μm thick polyimide pattern.

20

Example 6

[0065] 80.56 g (0.25 mole) 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 54.53 g (0.25 mole) of pyromellitic dianhydride, 13.01 g (0.1 mole) of 2-hydroxyethyl methacrylate and 300 g of N-methyl-2-pyrrolidone were charged into a four-necked 1,000 ml flask equipped with a thermometer, a dry air inlet and a stirrer, and stirred at 60°C for 5 hours while dry air was introduced. Then, after cooling to room temperature, 95.11 g (0.475 mole) of 4,4'-diaminodiphenyl ether, 6.21 g (0.025 mole) of bis-3-(aminopropyl)tetramethylsiloxane and 238.61 g of N-methyl-2-pyrrolidone were added and stirring was continued at 60 °C for 3 hours while dry air was introduced, to prepare a viscous polyimide precursor solution. Next, 4.72 g of Michler's ketone, 7.09 g of N-phenylglycine, 0.71 g of 3,3'-carbonyl-bis(7-diethylamino-coumarin), 23.64 g of pentaerythritol triacrylate and 78.61 g (0.5 mole) of N,N-dimethylaminoethyl methacrylate were added at room temperature under a light-shielded condition. After stirring and mixing, the resultant mixture was filtered using a filter to obtain a solution of a photosensitive polyimide precursor composition.

25

[0066] The solution was spin-coated onto a 4-inch silicon wafer and dried under heating at 100 °C for 10 minutes to form a 25 μm thick film. The film surface was then masked for patterning and exposed to light in a nitrogen atmosphere, using a 7 mW/cm² ultra-high pressure mercury vapor lamp. Then, the silicon wafer thus coated was immersed in a mixed solution (7:2:1, weight ratio) of N-methyl-2-pyrrolidone, xylene and water and development was allowed to proceed until the unexposed portion was dissolved and removed, followed by rinsing using isobutyl alcohol, to afford a 22 μm thick pattern of the polyimide precursor. The pattern was heat-treated in steps of 150°C minutes, 250°C 30 minutes and 350°C 30 minutes in a nitrogen atmosphere to obtain a 11 μm thick polyimide pattern.

30

Example 7

[0067] A solution of a photosensitive polyimide precursor composition was prepared in the same way as in Example 6 except that 71.60 g (0.5 mole) of N,N-dimethylaminoethyl acrylate was used in place of 78.61 g (0.5 mole) of N,N-dimethylaminoethyl methacrylate.

35

[0068] Using this solution, a 22 μm thick polyimide precursor pattern was obtained from a 25 μm thick polyimide precursor film in the same manner as in Example 6. Then, heat treatment was conducted in the same manner as in Example 6 to afford a 11 μm thick polyimide pattern.

40

[0069] As explained above, compositions embodying the present invention are advantageous in that when exposure and development using a developer are performed for the compositions, the dissolving speed of unexposed portion is high and the amount of exposed portion dissolved in the developer until the unexposed portion is dissolved off by the developer is small, thus ensuring the formation of a thick pattern of the polyimide precursor.

45

[0070] Moreover photosensitive polyimide precursor compositions of a high quality level can be obtained stably,

efficiently and inexpensively without the formation of any harmful by-product which must be removed. Such outstanding effects are attainable using embodiments of the present invention.

[0071] In the above, Examples 4 and 5 are compositions comprising a poly(amic acid) (a) wherein at least one molecular end is an acid ester of an alcohol not containing an unsaturated bond. Composition of Examples 1 to 3, 6 and 5 7 comprise a poly (amic acid) (a) wherein at least one molecular end is an acid ester of an unsaturated alcohol.

Claims

1. A photosensitive polyimide precursor composition comprising (a) a poly(amic acid) wherein at least one molecular 10 end is an acid ester of an alcohol not containing an unsaturated bond, (b) a photoreactive compound of the formula

20 where R_9 is hydrogen or phenyl, R_{10} is hydrogen or a lower alkyl group having 1 to 6 carbon atoms, R_{11} is a substituted or unsubstituted hydrocarbon radical having 2 to 12 carbon atoms, and R_{12} and R_{13} are each an alkyl group having 1 to 6 carbon atoms, or the formula

30 where R_{14} is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, or the formula

where R_{15} is hydrogen or methyl,
 $k = 1$ to 3, $L = 1$ to 3 and $k+L = 3$ or 4,
40 (c) a photopolymerization initiator and (d), as solvent, a compound selected from N-methyl-2-pyrrolidoné, N,N-dimethylacetamide and N,N-dimethylformamide.

- 45 2. A photosensitive polyimide precursor composition according to claim 1, wherein said poly(amic acid) is represented by the general formula

55 where X is represented by the general formula

10 Z is represented by the general formula

20 or the general formula

35 or NH₂; R₁ is a tetravalent organic group having 2 to 22 carbon atoms; R₂ is a monovalent organic group having 1 to 15 carbon atoms and not containing an unsaturated bond; R₃ is a divalent organic group having 1 to 22 carbon atoms; and n is from 0 to 99 inclusive.

- 40
3. A photosensitive polyimide precursor composition according to claim 2, wherein the poly(amic acid) (a) has 0.01 to 1 mole equivalent of the group R₂ per mole equivalent of the group R₁.
 4. A photosensitive polyimide precursor composition according to claim 2 or claim 3, wherein the photoreactive compound (b) is used in a proportion of 0.05 to 2 mole equivalents relative to the carboxyl group in the poly(amic acid) molecule.

45

 5. A process for preparing a photosensitive polyimide precursor composition, which process comprises reacting an alcohol not containing an unsaturated bond with a tetracarboxylic dianhydride in a compound (d), as solvent, selected from N-methyl-2-pyrrolidone, N,N-dimethylacetamide and N,N-dimethylformamide, to form a tetracarboxylic monoester monoanhydride, then reacting the tetracarboxylic acid monoester monoanhydride or a mixture of the tetracarboxylic monoester monoanhydride and a tetracarboxylic dianhydride with a diamine to form a solution of a poly(amic acid) (a), wherein at least one molecular end is an acid ester of the alcohol, in the saturated amide and thereafter mixing with the solution of the poly(amic acid) (a) a photoreactive compound (b) of the formula

10 where R_9 is hydrogen or phenyl, R_{10} is hydrogen or a lower alkyl group having 1 to 6 carbon atoms, R_{11} is a substituted or unsubstituted hydrocarbon radical having 2 to 12 carbon atoms, and R_{12} and R_{13} are each an alkyl group having 1 to 6 carbon atoms, or the formula

20 where R_{14} is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, or the formula

where R_{15} is hydrogen or methyl, $k = 1$ to 3, $L = 1$ to 3 and $k+L = 3$ or 4; and (c) a photopolymerization initiator.

- 30 6. A process according to claim 5, wherein the photoreactive compound (b) is present in a proportion of 0.05 to 2 mole equivalents relative to the carboxyl group in the poly(amic acid) molecule (a).
7. A process according to claim 5 or claim 6, wherein the poly(amic acid) (a) is represented by the general formula

where X is represented by the general formula

55 Z is represented by the general formula

10 or the general formula

20

or NH_2 ; R_1 is a tetravalent organic group having 2 to 22 carbon atoms; R_2 is a monovalent organic group having 1 to 15 carbon atoms and not containing an unsaturated bond; R_3 is a divalent organic group having 1 to 22 carbon atoms and n is from 0 to 99 inclusive; which process includes the preliminary step of preparing the poly(amic acid)

25 (a) by reacting an alcohol of the formula

30 wherein R_2 is as defined in claim 2, with a tetracarboxylic dianhydride of the formula

(5)

40 wherein R_1 is as defined in claim 2, to form a tetracarboxylic monoester monoanhydride, then reacting the tetracarboxylic acid monoester monoanhydride or a mixture of the tetracarboxylic monoester monoanhydride and a tetracarboxylic dianhydride with a diamine of the formula

wherein R_3 is as defined in claim 2.

8. A process according to claim 7, wherein the addition reaction of the tetracarboxylic dianhydride and the alcohol is carried out in a proportion of 0.01 to 1 mole equivalent of the alcohol relative to the tetracarboxylic dianhydride.
- 50 9. A process according to claim 8, wherein the acid addition reaction is carried out at a temperature of 20° to 100°C, for a period of time sufficient for the formation of a product which contains the tetracarboxylic monoester monoanhydride as a main component.
- 55 10. A process according to claim 9, wherein the alcohol is used in a proportion of 0.014 to 0.333 mole equivalent relative to the tetracarboxylic dianhydride.

11. A process according to any one of claims 7 to 10, wherein the diamine is used in an approximately equimolar amount relative to the whole of the tetracarboxylic acid component.
12. A process according to any one of claims 7 to 11, wherein the diamine is reacted directly with the addition reaction product of the tetracarboxylic dianhydride and the alcohol.
13. A photosensitive polyamide precursor composition comprising:
- (a) a poly (amic acid) wherein at least one molecular end is an acid ester of an unsaturated alcohol;
- (b) as a photosensitive compound, a monomer containing carbon - carbon unsaturation and containing neither an amino group nor an amide group; and
- (c) a photopolymerization initiator.
14. A photosensitive polyamide precursor composition according to claim 13, which additionally comprises
- as another photosensitive compound, a monomer containing both carbon-carbon unsaturation and an amino group.
15. A photosensitive polyamide precursor composition according to claim 13, which is free from monomer containing both carbon-carbon unsaturation and an amino group.

Patentansprüche

1. Lichempfindliche Polyimidvorläufer-Zusammensetzung, umfassend (a) eine Poly(amidsäure), worin zumindest ein Molekülende ein Säureester eines Alkohols ist, der keine ungesättigte Bindung enthält, (b) eine photoreaktive Verbindung der Formel

35

worin R₉ Wasserstoff oder Phenyl ist, R₁₀ Wasserstoff oder eine Niederalkylgruppe mit 1 bis 6 Kohlenstoffatomen ist, R₁₁ ein substituierter oder unsubstituierter Kohlenwasserstoffrest mit 2 bis 12 Kohlenstoffatomen ist, und R₁₂ und R₁₃ jeweils eine Alkylgruppe mit 1 bis 6 Kohlenstoffatomen sind, oder der Formel:

45

worin R₁₄ eine substituierte oder unsubstituierte Alkylgruppe mit 1 bis 6 Kohlenstoffatomen ist, oder der Formel

55

worin R₁₅ Wasserstoff oder Methyl ist,
 k = 1 bis 3 ist, L = 1 bis 3 ist und k+L = 3 oder 4 ist,
 (c) einen Photopolymerisationsinitiator und (d) eine Verbindung, ausgewählt aus N-Methyl-2-pyrrolidon, N,N-Dimethylacetamid und N,N-Dimethylformamid, als Lösungsmittel.

2. Lichtempfindliche Polyimidvorläufer-Zusammensetzung nach Anspruch 1, worin die Poly(amidsäure) durch die allgemeine Formel:

dargestellt ist worin X durch die allgemeine Formel:

dargestellt ist, Z durch die allgemeine Formel:

oder die allgemeine Formel

oder NH_2 dargestellt ist; R_1 eine vierwertige organische Gruppe mit 2 bis 22 Kohlenstoffatomen ist; R_2 eine einwertige organische Gruppe mit 1 bis 15 Kohlenstoffatome ist, die keine ungesättigte Bindung enthält; R_3 eine zweiwertige organische Gruppe mit 1 bis 22 Kohlenstoffatomen ist; und $n = 0$ bis 99 (Grenzen eingeschlossen) ist.

- 50 3. Lichtempfindliche Polyimidvorläufer-Zusammensetzung nach Anspruch 2, worin die Poly(amidsäure) (a) 0,01 bis 1 Moläquivalente der Gruppen R₂ pro Moläquivalent der Gruppen R₁ aufweist.

4. Lichtempfindliche Polyimidvorläufer-Zusammensetzung nach Anspruch 2 oder 3, worin die photoreaktive Verbindung (b) in einem Verhältnis von 0,05 bis 2 Moläquivalenten, bezogen auf die Carboxylgruppen im Poly(amidsäure)molekül eingesetzt wird.

55 5. Verfahren zur Herstellung einer lichtempfindlichen Polyimidvorläufer-Zusammensetzung, welches Verfahren Folgendes umfasst: das Umsetzen eines Alkohols, der keine ungesättigte Bindung enthält, mit einem Tetracarbonsäu-

redianhydrid in einer Verbindung (d), ausgewählt aus N-Methyl-2-pyrrolidon, N,N-Dimethylacetamid und N,N-Dimethylformamid, als Lösungsmittel, um ein Tetracarbonsäuremonoestermonoanhydrid zu bilden, das anschließende Umsetzen des Tetracarbonsäuremonoestermonoanhydrids oder eines Gemischs des Tetracarbonsäuremonoestermonoanhydrids und eines Tetracarbonsäuredianhydrids mit einem Diamin, um eine Lösung einer Poly(amidsäure) (a) zu bilden, worin im gesättigten Amid zumindest ein Molekülende ein Säureester des Alkohols ist, und das darauf folgende Vermischen einer photoreaktiven Verbindung (b) der Formel

worin R_9 Wasserstoff oder Phenyl ist, R_{10} Wasserstoff oder eine Niederalkylgruppe mit 1 bis 6 Kohlenstoffatomen ist, R_{11} ein substituierter oder unsubstituierter Kohlenwasserstoffrest mit 2 bis 12 Kohlenstoffatomen ist, und R_2 und R_{13} jeweils eine Alkylgruppe mit 1 bis 6 Kohlenstoffatomen sind, oder der Formel:

worin R_{14} eine substituierte oder unsubstituierte Alkylgruppe mit 1 bis 6 Kohlenstoffatomen ist, oder der Formel

worin R_{15} Wasserstoff oder Methyl ist,
 $k = 1$ bis 3 ist, $L = 1$ bis 3 ist und $k+L = 3$ oder 4 ist;
mit der Lösung der Poly(amidsäure) (a) und einem Photopolymerisationsinitiator (c).

6. Verfahren nach Anspruch 5, worin die photoreaktive Verbindung (b) in einem Verhältnis von 0,05 bis 2 Moläquivalente, bezogen auf die Carboxylgruppen im Poly(amidsäure)molekül (a) vorliegt.
7. Verfahren nach Anspruch 5 oder 6, worin die Poly(amidsäure) (a) durch die allgemeine Formel

dargestellt ist, worin X durch die allgemeine Formel

10 dargestellt ist, Z durch die allgemeine Formel

20 oder die allgemeine Formel

30 oder NH_2 dargestellt ist; R_1 eine vierwertige organische Gruppe mit 2 bis 22 Kohlenstoffatomen ist; R_2 eine einwertige organische Gruppe mit 1 bis 15 Kohlenstoffatomen ist und keine ungesättigte Bindung enthält; R_3 eine zweiwertige organische Gruppe mit 1 bis 22 Kohlenstoffatomen ist und $n = 0$ bis 99 (Grenzen eingeschlossen) ist; welches Verfahren den vorbereitenden Schritt des Herstellens der Poly(amidsäure) (a) durch Umsetzen eines Alkohols der Formel

worin R_2 wie in Anspruch 2 definiert ist, mit einem Tetracarbonsäuredianhydrid der Formel

worin R_1 wie in Anspruch 2 definiert ist, umfasst, um ein Tetracarbonsäuremonoestermonoanhydrid zu bilden, das anschließende Umsetzen des Tetracarbonsäuremonoestermonoanhydrids oder eines Gemisches aus dem Tetracarbonsäuremonoestermonoanhydrid und einem Tetracarbonsäuredianhydrid mit einem Diamin der Formel

55

$$\text{H}_2\text{N}-\text{R}_3-\text{NH}_2,$$

worin R_3 wie in Anspruch 2 definiert ist.

8. Verfahren nach Anspruch 7, worin die Additionsreaktion des Tetracarbonsäuredianhydrids und des Alkohols in einem Verhältnis von 0,01 bis 1 Moläquivalent des Alkohols, bezogen auf das Tetracarbonsäuredianhydrid, durchgeführt wird.
- 5 9. Verfahren nach Anspruch 8, worin die Säureadditionsreaktion bei einer Temperatur von 20 bis 100 °C für einen Zeitraum durchgeführt wird, der für die Bildung eines Produkts ausreicht, welches das Tetracarbonsäuremonoestermonoanhydrid als Hauptkomponente enthält.
- 10 10. Verfahren nach Anspruch 9, worin der Alkohol in einen Verhältnis von 0,014 bis 0,333 Moläquivalente, bezogen auf das Tetracarbonsäuredianhydrid, eingesetzt wird.
11. Verfahren nach einem der Ansprüche 7 bis 10, worin das Diamin in einer etwa äquimolaren Menge, bezogen auf die gesamte Tetracarbonsäurekomponente, eingesetzt wird.
- 15 12. Verfahren nach einem der Ansprüche 7 bis 11, worin das Diamin direkt mit dem Additionsreaktionsprodukt des Tetracarbonsäuredianhydrids und des Alkohols umgesetzt wird.
13. Lichtempfindliche Polyamidvorläufer-Zusammensetzung, umfassend:
- 20 (a) eine Poly(amidsäure), worin zumindest ein Molekülende ein Säureester eines ungesättigten Alkohols ist;
- (b) ein Monomer, das Kohlenstoff-Kohlenstoff-Unsättigung enthält und weder eine Aminogruppe noch eine Amidgruppe enthält, als lichtempfindliche Verbindung; und
- (c) einen Photopolymerisationsinitiator.
- 25 14. Lichtempfindliche Polyamidvorläufer-Zusammensetzung nach Anspruch 13, die zusätzlich ein Monomer als weitere lichtempfindliche Verbindung umfasst, das sowohl Kohlenstoff-Kohlenstoff-Unsättigung als auch eine Aminogruppe enthält.
- 30 15. Lichtempfindliche Polyamidvorläufer-Zusammensetzung nach Anspruch 13, die frei von Monomer ist, das sowohl Kohlenstoff-Kohlenstoff-Unsättigung als auch eine Aminogruppe enthält.

Revendications

- 35 1. Composition d'un précurseur de polyimide photosensible comprenant (a) un poly(acide amique) où au moins une extrémité moléculaire est un ester d'acide d'un alcool ne contenant pas de liaison insaturée, (b) un composé photoréactif de la formule

45

où R₉ est hydrogène ou phényle, R₁₀ est hydrogène ou un groupe alkyle intérieur ayant 1 à 6 atomes de carbone, R₁₁ est un radical hydrocarbure substitué ou non substitué ayant 2 à 12 atomes de carbone, et R₁₂ et R₁₃ sont chacun un groupe alkyle ayant 1 à 6 atomes de carbone ou bien la formule

50

55

où R₁₄ est un groupe alkyle substitué ou non substitué ayant 1 à 6 atomes de carbone, ou bien la formule

(11)

où R₁₅ est hydrogène ou méthyle,
 $k = 1 \text{ à } 3$, $L = 1 \text{ à } 3$ et $k+L = 3 \text{ ou } 4$,
(c) un initiateur de photopolymérisation et (d), comme solvant, un composé sélectionné parmi la N-méthyl-2 pyrrolidone, le N,N-diméthylacétamide et le N,N-diméthylformamide.

- 15 2. Composition d'un précurseur de polyimide photosensible selon la revendication 1, où l'édit poly(acide imique) est représenté par la formule générale

(1)

où X est représenté par la formule générale

(2)

Z est représenté par la formule générale

(3)

ou la formule générale

10

ou bien NH_2 ; R_1 est un groupe organique tétravalent ayant 2 à 22 atomes de carbone; R_2 est un groupe organique monovalent ayant 1 à 15 atomes de carbone et ne contenant pas de liaison insaturée; R_3 est un groupe organique divalent ayant 1 à 22 atomes de carbone; et n est de 0 à 99 inclus.

15

3. Composition d'un précurseur de polyimide photosensible selon la revendication 2, où le poly(acide amique) (a) a 0,01 à 1 équivalent en moles du groupe R_2 par équivalent en mole du groupe R_1 .

20

4. Composition d'un précurseur de polyimide photosensible selon la revendication 2 ou la revendication 3, où le composé photoréactif (b) est utilisé à une proportion de 0,05 à 2 équivalents en moles relativement au groupe carboxyle dans la molécule de poly(acide amique).

25

5. Procédé de préparation d'une composition d'un précurseur de polyimide photosensible, lequel procédé comprend la réaction d'un alcool ne contenant pas de liaison insaturée avec un dianhydride tétracarboxylique dans un composé (d), comme solvant, sélectionné parmi la N-méthyl-2-pyrrolidone, le N,N-diméthylacétamide et le N,N-diméthylformamide, pour former un monoanhydride d'un monoester tétracarboxylique puis la réaction du monoanhydride d'un monoester d'acide tétracarboxylique ou d'un mélange du monoanhydride d'un monoester tétracarboxylique et d'un dianhydride tétracarboxylique avec une diamine pour former une solution d'un poly(acide antique) (a), où au moins une extrémité moléculaire est un ester d'acide de l'alcool, dans l'amide saturé et ensuite le mélange avec la solution du poly(acide amique) (a) d'un composé photoréactif (b) de la formule

30

35

40

où R_9 est hydrogène ou phényle, R_{10} est hydrogène ou un groupe alkyle inférieur ayant 1 à 6 atomes de carbone, R_{11} est un radical hydrocarbure substitué ou non substitué ayant 2 à 12 atomes de carbone, et chacun de R_{12} et R_{13} est un groupe alkyle ayant 1 à 6 atomes de carbone, ou bien la formule

50

55

où R_{14} est un groupe alkyle substitué ou non substitué ayant 1 à 6 atomes de carbone, ou bien la formule

où R_{15} est hydrogène ou méthyle,
 $k = 1$ à 3, $L = 1$ à 3 et $k+L = 3$ ou 4; et (c) un initiateur de photopolymérisation.

6. Procédé selon la revendication 5, où le compose photoractif (b) est présent en une proportion de 0,05 à 2 équivalents en moles relativement au groupe carboxyle dans la molécule (a) de poly(acide amique).

7. Procédé selon la revendication 5 ou la revendication 6, où le poly(acide amique) (a) est représenté par la formule générale

15

où X est représenté par la formule générale

Z est représenté par la formule générale

30

35

ou bien la formule générale

50

ou bien NH_2 ; R_1 est un groupe organique tétravalent ayant 2 à 22 atomes de carbone; R_2 est un groupe organique monovalent ayant 1 à 15 atomes de carbone et ne contenant pas de liaison insaturée; R_3 est un groupe organique divalent ayant 1 à 22 atomes de carbone et n est de 0 à 99 inclus; lequel procédé comprend l'étape préliminaire de préparer le poly(acide amique) (a) par réaction d'un alcool de la formule

$$\text{R}_3\text{-OH}$$

où R₂ est tel que défini à la revendication 2, avec un dianhydride tétracarboxylique de la formule

où R₁ est tel que défini à la revendication 2, pour former un monoanhydride d'un monoester tétracarboxylique, puis de faire réagir le monoanhydride d'un monoester tétracarboxylique ou un mélange du monoanhydride de monoester tétracarboxylique et d'un dianhydride tétracarboxylique avec un diamine de la formule

où R₃ est tel que défini à la revendication 2.

20 8. Procédé selon la revendication 7, où la réaction d'addition du dianhydride tétracarboxylique et de l'alcool est effectuée à une proportion de 0,01 à 1 équivalent en mole de l'alcool relativement au dianhydride tétracarboxylique.

25 9. Procédé selon la revendication 8, où la réaction d'addition d'acide est effectuée à une température de 20° à 100°C, pendant une période de temps suffisante pour la formation d'un produit qui contient le monoanhydride de monoester tétracarboxylique comme composant principal.

10. Procédé selon la revendication 9, où l'alcool est utilisé à une proportion de 0,014 à 0,333 équivalent en moles relativement au dianhydride tétracarboxylique.

30 11. Procédé selon l'une quelconque des revendications 7 à 10, où la diamine est utilisée en une quantité approximativement équimolaire relativement à la totalité du composant d'acide tétracarboxylique.

35 12. Procédé selon l'une quelconque des revendications 7 à 11, où la diamine est mise à réagir directement avec le produit de réaction d'addition du dianhydride tétracarboxylique et de l'alcool.

13. Composition d'un précurseur de polyamide photosensible comprenant:

- 40 (a) un poly(acide amique) où au moins une extrémité moléculaire est un ester d'acide d'un alcool insaturé;
 (b) comme composé photosensible, un monomère contenant une insaturation carbone - carbone et ne contenant ni groupe amine ni groupe amide; et
 (c) un initiateur de photopolymérisation.

45 14. Composition d'un précurseur de polyamide photosensible selon la revendication 13, qui comprend additionnellement

comme autre composé photosensible, un monomère contenant à la fois une insaturation carbone-carbone et un groupe amino.

50 15. Composition d'un précurseur de polyamide photosensible selon la revendication 13, qui est exempt d'un monomère contenant à la fois une insaturation carbone-carbone et un groupe amino.