Prellberg

Introductio

Function

Composition of functions

Revision

MTH4100 Calculus I

Taster Lecture

Thomas Prellberg

School of Mathematical Sciences Queen Mary, University of London

1 July 2013

What is Calculus I

Introduction

- Study of functions of real variables
 - one real variable
 - many variables (Calculus II)

What is Calculus I

Introduction

- Study of functions of real variables
 - one real variable
 - many variables (Calculus II)
- Fundamental: real numbers
- Geometric view: graph of a function
 - slope ↔ derivative
 - area ↔ integral

What is Calculus I

Introduction

- Study of functions of real variables
 - one real variable
 - many variables (Calculus II)
- Fundamental: real numbers
- Geometric view: graph of a function
 - slope ↔ derivative
 - area ↔ integral
- many techniques
- many applications

Functions and Their Graphs

Functions

of function

Revisior

What do we mean when we say

"y is a function of x"?

Functions

of function

Revisic

What do we mean when we say

"y is a function of x"?

$$y = f(x)$$

Functions and Their Graphs

....

Functions

of functions

Revisi

What do we mean when we say

"y is a function of x"?

Symbolically, we write

$$y = f(x)$$

• x independent variable (input value)

minodaci

Functions

of function

Revisio

What do we mean when we say

"y is a function of x"?

$$y = f(x)$$

- x independent variable (input value)
- y dependent variable (output value)

minoducti

Functions

of function

Revisio

What do we mean when we say

"y is a function of x"?

$$y = f(x)$$

- x independent variable (input value)
- y dependent variable (output value)
- f function (rule that assigns)

Functions and Their Graphs

muodacti

Functions

of function

Revisio

What do we mean when we say

"y is a function of x"?

$$y = f(x)$$

- x independent variable (input value)
- y dependent variable (output value)
- f function (rule that assigns)

Functions and Their Graphs

Introduct

Functions

of function

Revisi

What do we mean when we say

"y is a function of x"?

Symbolically, we write

$$y = f(x)$$

- x independent variable (input value)
- y dependent variable (output value)
- f function (rule that assigns)

• Important: rule is unique, only one value f(x) for every x

Definition of a function

Functions

Definition

A function from a set D to a set Y is a rule that assigns a unique (single) element $f(x) \in Y$ to each element $x \in D$.

Definition of a function

Introducti

Functions

C----iti-

of function

Revision

Definition

A function from a set D to a set Y is a rule that assigns a unique (single) element $f(x) \in Y$ to each element $x \in D$.

D = domain set

Y = set containing the range

Further definitions and notations

Functions

Functions

• The set D of all possible input values is called the domain of f

.

Functions

of functions

Revisio

- The set D of all possible input values is called the domain of f
- The set R of all values of f(x) as x varies throughout D is called the *range* of f (a subset of Y)

Further definitions and notations

Fielibei

Functions

of functions

Revisio

- The set D of all possible input values is called the domain of f
- The set R of all values of f(x) as x varies throughout D is called the *range* of f (a subset of Y)
- We write "f maps D to Y" symbolically as

$$f:D\to Y$$

Functions

- The set D of all possible input values is called the domain of *f*
- The set R of all values of f(x) as x varies throughout D is called the range of f (a subset of Y)
- We write "f maps D to Y" symbolically as

$$f:D\to Y$$

• We write "f maps x to y = f(x)" symbolically as

$$f: x \mapsto y = f(x)$$

Revision

- The set *D* of all possible input values is called the *domain* of *f*
- The set R of all values of f(x) as x varies throughout D is called the *range* of f (a subset of Y)
- We write "f maps D to Y" symbolically as

$$f: D \rightarrow Y$$

• We write "f maps x to y = f(x)" symbolically as

$$f: x \mapsto y = f(x)$$

Note the different arrow symbols used

Natural domain

Introduction The *natural domain* is the largest set of real x which the rule f can be applied to.

Composition of function

Revisio

Functions

The natural domain is the largest set of real x which the rule fcan be applied to.

Function	Domain (x)	Range (y)
$y = x^2$	$(-\infty, \infty)$	[0, ∞)
y = 1/x	$(-\infty,0)\cup(0,\infty)$	$(-\infty,0) \cup (0,\infty)$
$y = \sqrt{x}$	$[0,\infty)$	$[0,\infty)$
$y = \sqrt{4 - x}$	$(-\infty, 4]$	$[0,\infty)$
$y = \sqrt{1 - x^2}$	[-1, 1]	[0, 1]

Natural domain

Functions

Compositio

Revisior

The *natural domain* is the largest set of real x which the rule f can be applied to.

Function	Domain (x)	Range (y)
$y = x^2$	$(-\infty, \infty)$	[0, ∞)
y = 1/x	$(-\infty,0)\cup(0,\infty)$	$(-\infty,0) \cup (0,\infty)$
$y = \sqrt{x}$	$[0,\infty)$	$[0,\infty)$
$y = \sqrt{4-x}$	$(-\infty, 4]$	$[0,\infty)$
$y = \sqrt{1 - x^2}$	[-1, 1]	[0, 1]

Note: a function is specified by the rule f and the domain D

Functions

The natural domain is the largest set of real x which the rule f can be applied to.

Function	Domain (x)	Range (y)	
$y = x^2$	$(-\infty, \infty)$	[0, ∞)	
y = 1/x	$(-\infty,0)\cup(0,\infty)$	$(-\infty,0) \cup (0,\infty)$	
$y = \sqrt{x}$	$[0,\infty)$	$[0,\infty)$	
$y = \sqrt{4 - x}$	$(-\infty, 4]$	$[0,\infty)$	
$y = \sqrt{1 - x^2}$	[-1, 1]	[0, 1]	

Note: a function is specified by the rule f and the domain D

$$f: x \mapsto x^2$$
, $D(f) = [0, \infty)$

and

$$f: x \mapsto x^2$$
, $D(f) = (-\infty, \infty)$

are different functions

Graphs of functions

miroducti

Functions

Composition of function

Revisior

Definition

If f is a function with domain D, its graph consists of the points (x, y) whose coordinates are the input-output pairs for f:

$$\{(x, f(x))|x\in D\}$$

_ .

Functions

of function

Revision

Definition

If f is a function with domain D, its graph consists of the points (x, y) whose coordinates are the input-output pairs for f:

$$\{(x, f(x))|x \in D\}$$

Curves that are graphs of functions

Functions

of function

Revision

The vertical line test

Functions

$$f(x) = |x| = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$$

$$y = -x \xrightarrow{3} y = |x|$$

$$y = x$$

Functions

$$f(x) = |x| = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$$

$$f(x) = \begin{cases} -x & x < 0 \\ x^2 & 0 \le x \le 1 \\ 1 & x > 1 \end{cases}$$
 $y = -x$

Revision so far: Functions and their Graphs

Functions

of function

Revisio

- Definition of a function
- Domain and range of a function
- Graph of a function
- Piecewise defined functions

Composition of functions

Definition

If f and g are functions, the composite function $f \circ g$ ("f composed with g'') is defined by

$$(f\circ g)(x)=f(g(x))$$

Introduction

IIItroductio

<u>Composition</u>

of functions

Revisio

Definition

If f and g are functions, the composite function $f \circ g$ ("f composed with g") is defined by

$$(f\circ g)(x)=f(g(x))$$

$$x \longrightarrow g \qquad g(x) \longrightarrow f \qquad f(g(x))$$

Compositions of functions

miroductio

- ..

Composition of functions

Revisio

Definition

If f and g are functions, the composite function $f \circ g$ ("f composed with g") is defined by

$$(f\circ g)(x)=f(g(x))$$

$$x \longrightarrow g \longrightarrow f(g(x))$$

The domain of $f \circ g$ consists of the numbers x in the domain of g for which g(x) lies in the domain of f, i.e.

$$D(f \circ g) = \{x | x \in D(g) \text{ and } g(x) \in D(f)\}$$

Introductio

F

Composition of functions

Revision

$$D(f \circ g) = \{x | x \in D(g) \text{ and } g(x) \in D(f)\}$$

$$f \circ g$$

$$g$$

$$g(x)$$

Composition of functions

$$f(x) = \sqrt{x}$$
 with $D(f) = [0, \infty)$
 $g(x) = 1 + x$ with $D(g) = (-\infty, \infty)$

Composition of functions

$$f(x) = \sqrt{x}$$
 with $D(f) = [0, \infty)$
 $g(x) = 1 + x$ with $D(g) = (-\infty, \infty)$

$$\bullet (f \circ g)(x) = f(g(x)) =$$

Preliberg

_ .

Function

Composition of functions

Revisio

$$f(x) = \sqrt{x}$$
 with $D(f) = [0, \infty)$
 $g(x) = 1 + x$ with $D(g) = (-\infty, \infty)$

•
$$(f \circ g)(x) = f(g(x)) = \sqrt{x+1}$$
, Domain $[-1, \infty)$

•
$$(g \circ f)(x) = g(f(x)) =$$

$$f(x) = \sqrt{x}$$
 with $D(f) = [0, \infty)$
 $g(x) = 1 + x$ with $D(g) = (-\infty, \infty)$

•
$$(f \circ g)(x) = f(g(x)) = \sqrt{x+1}$$
, Domain $[-1, \infty)$

•
$$(g \circ f)(x) = g(f(x)) = \sqrt{x} + 1$$
, Domain $[0, \infty)$

•
$$(f \circ f)(x) = f(f(x)) =$$

$$f(x) = \sqrt{x}$$
 with $D(f) = [0, \infty)$
 $g(x) = 1 + x$ with $D(g) = (-\infty, \infty)$

•
$$(f \circ g)(x) = f(g(x)) = \sqrt{x+1}$$
, Domain $[-1, \infty)$

•
$$(g \circ f)(x) = g(f(x)) = \sqrt{x} + 1$$
, Domain $[0, \infty)$

•
$$(f \circ f)(x) = f(f(x)) = x^{1/4}$$
, Domain $[0, \infty)$

•
$$(g \circ g)(x) = g(g(x)) =$$

Prellberg

$$f(x) = \sqrt{x}$$
 with $D(f) = [0, \infty)$
 $g(x) = 1 + x$ with $D(g) = (-\infty, \infty)$

•
$$(f \circ g)(x) = f(g(x)) = \sqrt{x+1}$$
, Domain $[-1, \infty)$

•
$$(g \circ f)(x) = g(f(x)) = \sqrt{x} + 1$$
, Domain $[0, \infty)$

•
$$(f \circ f)(x) = f(f(x)) = x^{1/4}$$
, Domain $[0, \infty)$

•
$$(g \circ g)(x) = g(g(x)) = x + 2$$
, Domain $(-\infty, \infty)$

$$f(x) = \sqrt{x}$$
 with $D(f) = [0, \infty)$
 $g(x) = x^2$ with $D(g) = (-\infty, \infty)$

$$f(x) = \sqrt{x}$$
 with $D(f) = [0, \infty)$
 $g(x) = x^2$ with $D(g) = (-\infty, \infty)$

$$\bullet (f \circ g)(x) = f(g(x)) =$$

$$f(x) = \sqrt{x}$$
 with $D(f) = [0, \infty)$
 $g(x) = x^2$ with $D(g) = (-\infty, \infty)$

•
$$(f \circ g)(x) = f(g(x)) = |x|$$
, Domain $(-\infty, \infty)$

•
$$(g \circ f)(x) = g(f(x)) =$$

$$f(x) = \sqrt{x}$$
 with $D(f) = [0, \infty)$
 $g(x) = x^2$ with $D(g) = (-\infty, \infty)$

•
$$(f \circ g)(x) = f(g(x)) = |x|$$
, Domain $(-\infty, \infty)$

•
$$(g \circ f)(x) = g(f(x)) = x$$
, Domain $[0, \infty)$

$$f(x) = \sqrt{x}$$
 with $D(f) = [0, \infty)$
 $g(x) = x^2$ with $D(g) = (-\infty, \infty)$

•
$$(f \circ g)(x) = f(g(x)) = |x|$$
, Domain $(-\infty, \infty)$

•
$$(g \circ f)(x) = g(f(x)) = x$$
, Domain $[0, \infty)$

$$f(x) = 1/x$$
 with $D(f) = (-\infty, 0) \cup (0, \infty)$

$$f(x) = \sqrt{x}$$
 with $D(f) = [0, \infty)$
 $g(x) = x^2$ with $D(g) = (-\infty, \infty)$

•
$$(f \circ g)(x) = f(g(x)) = |x|$$
, Domain $(-\infty, \infty)$

•
$$(g \circ f)(x) = g(f(x)) = x$$
, Domain $[0, \infty)$

$$f(x) = 1/x$$
 with $D(f) = (-\infty, 0) \cup (0, \infty)$

$$\bullet (f \circ f)(x) = f(f(x)) =$$

$$f(x) = \sqrt{x}$$
 with $D(f) = [0, \infty)$
 $g(x) = x^2$ with $D(g) = (-\infty, \infty)$

•
$$(f \circ g)(x) = f(g(x)) = |x|$$
, Domain $(-\infty, \infty)$

•
$$(g \circ f)(x) = g(f(x)) = x$$
, Domain $[0, \infty)$

$$f(x) = 1/x$$
 with $D(f) = (-\infty, 0) \cup (0, \infty)$

•
$$(f \circ f)(x) = f(f(x)) = x$$
, Domain $(-\infty, 0) \cup (0, \infty)$

Revision

Revision

- Functions and their graphs
- Composition of functions

MTH4100

Prellberg

Introduction

Function

of functions

Revision

Thank you for coming today!