第一章 基本概念和基本定律 Basic Concepts and Principles

本章内容

- □基本概念
- 口热力学第一定律
- 口热力学第二定律

1.1 热力系统

Thermodynamic system

1.1.1系统、环境和边界

热力系统(热力系、系统) 人为的研究对象 system

外界 系统以外的所有物质

surroundings

边界(界面) 系统与外界的分界面

boundary

系统与外界的作用都通过边界

1.1.2 热力系统选取的人为性

1.1.3 边界特性

固定、活动

真实、虚构 fixed, movable real, imaginary

1.1.4 热力系统分类

以系统与外界关系划分:

无 开口系 闭口系 是否传质 非绝热系 绝热系 是否传热 是否传功 非绝功系 绝功系 孤立系 是否传热、功、质

1.1.5 热力系统其他分类方式

均匀系 物理化学性质 非均匀系 其它分类方式

1.2 状态和状态参数

State and state properties

状态: 某一瞬间热力系所呈现的宏观状况

状态参数: 描述热力系状态的物理量

状态参数的特征:

- 1、状态确定,则状态参数也确定,反之亦然
- 2、<u>状态参数的积分特征</u>: 状态参数的变化量 与路径无关,只与初终态有关
- 3、状态参数的微分特征:全微分

状态参数的积分特征

状态参数变化量与路径无关,只与

初终态有关。

数学上:

point function 点函数、态函数

$$\int_{1}^{2} dz = \int_{1,a}^{2} dz = \int_{1,b}^{2} dz = z_{2} - z_{1}$$

$$\iint dz = 0$$

例:温度变化 山高度变化

状态参数的微分特征

设
$$z = z(x,y)$$

$$dz = \left(\frac{\partial z}{\partial x}\right)_{y} dx + \left(\frac{\partial z}{\partial y}\right)_{x} dy$$

dz是全微分 Total differentials

充要条件:

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}$$

可判断是否是状态参数

强度参数与广延参数 Intensive properties Extensive properties

强度参数: 与物质的量无关的参数

如压力p、温度T

广延参数: 与物质的量有关的参数——可加性

如 质量m、容积 V、内能 U、焓 H、熵S

比参数:
$$v = \frac{V}{m} \qquad u = \frac{U}{m} \qquad h = \frac{H}{m} \qquad s = \frac{S}{m}$$

比容 比内能 比焓 比熵

单位:/kg /kmol 具有强度参数的性质

1.3 基本状态参数

Basic state properties

压力p、温度T、比容 ν (容易测量)

1.3.1 压力

物理中压强,单位: Pa (Pascal), N/m²

```
常用单位Units:

1 kPa = 10<sup>3</sup> Pa
1 bar = 10<sup>5</sup> Pa
1 MPa = 10<sup>6</sup> Pa
1 atm = 760 mmHg = 1.013×10<sup>5</sup> Pa
1 mmHg = 133.3 Pa
```

1 at = $1 \text{ kgf/cm}^2 = 9.80665 \times 10^4 \text{ Pa}$

1.3.2 温度 **T**

传统:冷热程度的度量。感觉,导热,热容量

微观: 衡量分子平均动能的量度

 $T \propto 0.5 m w^2$

- 1) 同T, $0.5mw^2$ 不同,如碳固体和碳蒸气
- 2) 0.5mw²>0, T>0, 1951年核磁共振法对 氟化锂晶体的实验发现负的开尔文温度
- 3) $T=0 \Rightarrow 0.5mw^2=0 \Rightarrow 分子一切运动停止,$ 零点能

温度的热力学定义

<u>热力学第零定律</u> (R.W. Fowler in 1931)

如果两个系统分别与第三个系统处于热平衡,则两个系统彼此必然处于热平衡。

温度测量的理论基础

B温度计

为什么叫做热力学第零定律

热力学第零定律 1931年 *T* 热力学第一定律 1840~1850年 *E* 热力学第二定律 1854~1855年 *S* 热力学第三定律 1906年 *S*基准

温标Temperature scale

- 热力学温标(绝对温标) Kelvin scale (Britisher, L. Kelvin, 1824-1907)
- 摄氏温标Celsius scale (Swedish, A. Celsius, 1701-1744)
- 华氏温标Fahrenheit scale (German,
 G. Fahrenheit, 1686-1736)
- 朗肯温标Rankine scale (W. Rankine, 1820-1872)

温标的换算

$$T[K] = t[^{\circ}C] + 273.15$$

$$t[^{O}C] = \frac{5}{9}(t[F] - 32)$$

$$t[F] = t[R] - 459.67$$

1.3.3 比容 v

$$v = \frac{V}{m} \quad [m^3/kg]$$

$$\mathbf{v} = \frac{1}{\rho}$$

工质聚集的疏密程度 物理上常用密度density ρ [kg/m³]

1.4 平衡状态

Equilibrium state

1、定义:

在不受外界影响的条件下(重力场除外),如果系统的状态参数不随时间变化,则该系统处于平衡状态。

A system in equilibrium experiences no changes when it is isolated from it surroundings.

Many types of Equilibrium

1、热平衡Thermal equilibrium

If the temperature is the same throughout the entire

Many types of Equilibrium

2、力平衡Mechanical equilibrium

If there is no change in pressure at any point of the system with time

The variation of pressure as a result of gravity in most thermodynamic system is relatively small and usually disregarded

压差 Pressure differential

力不平衡势Unbalanced potentials

Many types of Equilibrium

- 3、相平衡Phase equilibrium When the mass of each phase reaches an equilibrium level and stays there
- 4、化学平衡Chemical equilibrium If its chemical composition does not change with time. That is, no chemical reactions occur.

(温差— 热不平衡势 压差— 力不平衡势 相变— 相不平衡势 化学反应— 化学不平衡势

平衡的本质: 不存在不平衡势 In an equilibrium state there are no unbalanced potentials

平衡Equilibrium与稳定Steady

稳定:参数不随时间变化

稳定但存在不平衡势差

去掉外界影响,

则状态变化

若以(热源+铜棒+冷源)为系统,又如何?

稳定不一定平衡,但平衡一定稳定

平衡Equilibrium与均匀Even

平衡: 时间上

均匀:空间上

平衡不一定均匀,单相平衡态则一定是均匀的

1.5 座标图

平衡状态可用一组状态参数描述其状态 简单可压缩系统 N=2,平面坐标图

容积变化功 Moving Boundary Work

以汽缸中mkg工质为系统

初始: $p \times A = p_{\text{sh}} \times A + f$

如果 p_{h} 微小↓

dl 很小,近似认为p 不变

mkg工质发生容积变化对外界作的功

$$\delta W = p \times A \times dl = p dV$$

1kg工质

$$\delta w = p dv$$

容积变化功

mkg工质: $\delta W = p dV$

$$W = \int_{1}^{2} p dV$$

1kg工质: $\delta w = p dv$

$$w = \int_{1}^{2} p dv$$

p

示功图indicator (p-V) diagram

mkg工质:

$$\delta W = p dV$$

$$W = \int_{1}^{2} p dV$$

1kg工质:

$$\delta w = p dv$$

$$w = \int_{1}^{2} p dv$$

容积2

容积变化功的说明

- | W | W | W | 1 | 单位为 [kJ] 或 [kJ/kg]
- 2) p-V 图上用面积表示
- 3) 功的大小与路径有关, 过程量Path function
- 4) 统一规定: dV>0,膨胀 对外作功(正) dV<0,压缩 外内作功(负)
- 5) 适于任何工质(一般为流体)
- 6) 外力无限制,功的表达式只是系统内部参数

1.6 功量

- 1、力学定义: 力 × 在力方向上的位移
- 2、热力学定义

功的热力学定义

功是系统与外界相互作用的一种方式,在力的推动下,通过宏观有序运动方式传递的能量。

Work is an energy interaction between a system and its surroundings, if the energy crossing the boundary of a closed system is not heat, it must be work.

功的表达式

功的一般表达式

$$\delta w = F dx$$

$$w = \int F dx$$

热力学最常见的功 — 容积变化功

$$\delta w = p dv$$

$$w = \int p dv$$

其他准静态功:拉伸功,表面张力功,电功等

1.7 热量与熵

热量定义: 热量是热力系与外界相互作用的另一种方式,在温度的推动下,以微观无序运动方式传递的能量。

Heat is defined as the form of energy that is transferred between two systems (or its surroundings) by virtue of a temperature difference.

热量如何表达?

热量是否可以用类似于功的式子 表示?

热量与容积变化功

能量传递方式

容积变化功

传热量

性质

过程量

过程量

推动力

压力p

温度T

标志

dV, dv

dS, ds

公式

$$\delta w = p dv$$
$$w = \int p dv$$
可逆

$$\delta q = Tds$$

$$q = \int Tds$$
可逆

条件

熵 (Entropy) 的定义

reversible

$$dS = \frac{\partial Q_{rev}}{T}$$
 广延量 [kJ/K]

$$ds = \frac{\partial q_{rev}}{T}$$
 比参数 [kJ/kg.K]

ds: 可逆过程 δq_{rev} 除以传热时的T所得的商

熵的说明

- 1、熵是状态参数
- 2、符号规定

```
系统吸热时为正 Q > 0 dS > 0 系统放热时为负 Q < 0 dS < 0
```

- 3、熵的物理意义:熵体现了可逆过程 传热的大小与方向
- 4、用途: 判断热量方向 计算可逆过程的传热量

示功图与示热图

1.8 热力循环

要实现连续作功,必须构成循环定义:

热力系统经过一系列变化回到初态,这一系列变化过程称为热力循环。

A system is said to have undergone a cycle if it returns to its initial state at the end of the process

循环和过程Cycle and process

循环由过程构成

过程 不可逆 不可逆 循环 看环 不可逆循环

正循环—动力循环Power cycle

顺时针方向

逆循环 — 制冷循环 Refrigeration cycle

逆时针方向

热力循环的评价指标

正循环: 净效应(对外作功,吸热)

动力循环: 热效率

$$\eta = \frac{收益}{代价} = \frac{净功}{吸热} = \frac{W}{Q_1}$$

热力循环的评价指标

逆循环: 净效应(对内作功,放热)

制冷循环: 制冷系数

$$\varepsilon = \frac{\mathbf{\Psi} \stackrel{\cdot}{\Delta}}{\mathbf{H} \stackrel{\cdot}{\mathbf{H}}} = \frac{\mathbf{Q}_2}{\mathbf{W}}$$

制热循环: 制热系数

$$\varepsilon = \frac{\mathbf{\psi} \stackrel{.}{\underline{\Delta}}}{\mathbf{\text{ fth}}} = \frac{\mathbf{Q}_1}{\mathbf{W}}$$

1.9 热力学第一定律的实质

- 一、第一定律的实质 能量守恒与转换定律在热现象中的应用。
- 二、第一定律的表述

热是能的一种,机械能变热能,或热能变机械能的时候,他们之间的比值是一定的。

或:

热可以变为功,功也可以变为热;一定量的热 消失时必定产生相应量的功;消耗一定量的功时, 必出现与之相应量的热。

1.10 热力学能(内能)和总能

一、热力学能(internal energy)

$$U \begin{cases} U_{\text{ch}} \\ U_{\text{nu}} \\ U_{\text{th}} \end{cases} \begin{cases} \text{平移动能} \\ \text{转动动能} \\ \text{振动动能} \end{cases} f_1(T) \\ U_{\text{p}} - f_2(T, v) \end{cases} U = U(T, v)$$

二、总(储存)能(total stored energy of system) 热力学能,内部储存能

$$E=U+E_{\rm k}+E_{\rm p}$$
 $e=u+e_{\rm k}+e_{\rm p}$ 宏观动能 宏观位能

外部储存能

宏观动能与内动能的区别

三、热力学能是状态参数

$$\iint dU = 0$$

$$dU = \left(\frac{\partial U}{\partial T}\right)_{V} dT + \left(\frac{\partial U}{\partial V}\right)_{T} dV$$

测量p、V、T 可求出

 ΔU

四、热力学能单位 J

kJ

五、工程中关心 ΔU

1.11 热力学第一定律基本表达式

加入系统的能量总和一热力系统输出的能量总和= 热力系统总储存能的变化量

流入: $\delta Q + \sum \delta m_i e_i$

流出: $\delta W + \sum \delta m_j e_j$

内部贮能的增量: dE

$$\delta m_{i}e_{i} \longrightarrow \mathcal{E} \longrightarrow \delta m_{j}e_{j} \longrightarrow \mathcal{E}+d\mathcal{E}$$

$$\delta Q = d\mathcal{E} + \left[\Sigma(e_{j}\delta m_{j}) - \Sigma(e_{i}\delta m_{i})\right] + \delta W_{\text{tot}}$$

$$Q = \Delta \mathcal{E} + \int_{\tau_{1}}^{\tau_{2}} \left[\Sigma(e_{j}\delta m_{j}) - \Sigma(e_{i}\delta m_{i})\right] + W_{\text{tot}}$$

$$\Phi = \frac{\mathrm{d}E}{\mathrm{d}\tau} + \left[\Sigma(e_j q_{mj}) - \Sigma(e_i q_{mi})\right] + P_{\text{tot}}$$

或

1.12 闭口系基本能量方程式

$$Q = \Delta E + \int_{ au_1}^{ au_2} \left[\Sigma \left(e_j \delta m_j \right) - \Sigma \left(e_i \delta m_i \right) \right] + W_{ ext{tot}}$$
闭口系, $\delta m_i = 0$ $\delta m_j = 0$ 忽略宏观动能 $U_{ ext{k}}$ 和位能 $U_{ ext{p}}$, $\Delta E = \Delta U$ $Q = \Delta U + W$ $\delta Q = \mathrm{d}U + \delta W$ $q = \Delta u + W$ $\delta q = \mathrm{d}u + \delta w$

第一定律第一解析式─ 热 → 功的基本表达式

讨论:

$$Q = \Delta U + W$$
 $\delta Q = dU + \delta W$
 $q = \Delta u + w$ $\delta q = du + \delta w$

1) 对于可逆过程
$$\delta Q = dU + pdV$$

2) 对于循环
$$\oint \delta Q = \oint dU + \oint \delta W \Rightarrow Q_{net} = W_{net}$$

3)对于定量工质吸热与升温关系,还取决于W的"+"、"-"、数值大小。

例 自由膨胀

如图, 抽去隔板,求 ΔU 解:取气体为热力系 —闭口系?开口系?

$$Q = \Delta U + W$$

$$Q = 0$$
 $W \stackrel{?}{=} 0$

$$\Delta U = 0 \qquad \mathbb{R} U_1 = U_2$$

强调: 功是通过边界传递的能量。

1.13 开口系基本能量方程式

推动功和流动功

推动功:系统引进或排除工质传递的功量。

$$pA\Delta H = pv$$

流动功:系统维持流动 所花费的代价。

$$p_2v_2 - p_1v_1 (= \Delta[pv])$$

推动功在p-v图上:

稳定流动能量方程(steady-flow energy equation)

稳定流动特征: 1

1) 各截面上参数不随时间变化。

2)
$$\Delta E_{\text{CV}} = 0$$
, $\Delta S_{\text{CV}} = 0$, $\Delta m_{\text{CV}} = 0 \cdots$

注意:区分各截面间参数可不同。

流入系统的能量:
$$Q+q_{m1}\left(u_1+p_1v_1+\frac{c_{f1}^2}{2}+gz_1\right)$$

- 流出系统的能量:
$$W_s + q_{m2} \left(u_2 + p_2 v_2 + \frac{1}{2} c_{f2}^2 + g z_2 \right)$$

= 系统内部储能增量: ΔE_{CV}

考虑到稳流特征: $\Delta E_{\text{CV}} = 0$ $q_{m1} = q_{m2} = q_m$; Dh = u + pv 焓 (enthalpy)

$$Q = (H_2 - H_1) + q_m \left(\frac{c_{f2}^2}{2} - \frac{c_{f1}^2}{2}\right) + q_m g(z_2 - z_1) + W_S$$
 (A)

$$q = h_2 - h_1 + \frac{1}{2} \left(c_{f2}^2 - c_{f1}^2 \right) + g \left(z_2 - z_1 \right) + w_s$$
 (B)

$$Q = (H_2 - H_1) + q_m \left(\frac{c_{f2}^2}{2} - \frac{c_{f1}^2}{2}\right) + q_m g(z_2 - z_1) + W_S$$

$$q = h_2 - h_1 + \frac{1}{2}(c_{f2}^2 - c_{f1}^2) + g(z_2 - z_1) + W_S$$
(B)

$$q = h_2 - h_1 + \frac{1}{2} \left(c_{f2}^2 - c_{f1}^2 \right) + g \left(z_2 - z_1 \right) + w_s$$
 (B)

讨论:

1) 改写式(B) 为式(C)

2) 技术功(technical work)—

技术上可资利用的功 wt

曲式 (C)
$$w_{t} = w_{s} + \frac{1}{2}\Delta c_{f}^{2} + g\Delta z$$

$$q - \Delta u = w_{s} + (p_{2}v_{2} - p_{1}v_{1}) + \frac{1}{2}(c_{f2}^{2} - c_{f1}^{2}) + g(z_{2} - z_{1})$$

$$q - \Delta u = w_t + p_2 v_2 - p_1 v_1 \qquad (D)$$

$$w_t = w - p_2 v_2 + p_1 v_1$$

$$\delta w_t = \delta w - d(pv)$$

可逆过程

$$\delta w_t = p dv - d(pv) = -v dp$$

3)第一定律第二解析式

$$w_{\rm t} = w_{\rm s} + \frac{1}{2}\Delta c_{\rm f}^2 + g\Delta z$$

$$q = h_2 - h_1 + \frac{1}{2} \left(c_{f2}^2 - c_{f1}^2 \right) + g \left(z_2 - z_1 \right) + w_s \tag{B}$$

$$q = \Delta h + w_{t}$$
$$\delta q = dh + \delta w_{t}$$

可逆

$$q = \Delta h - \int_{1}^{2} v \, \mathrm{d}p$$

$$\delta q = \mathrm{d}h - v\mathrm{d}p$$

4)两个解析式的关系

$$\delta q = dh - vdp = d(u + pv) - vdp$$
$$= du + pdv = du + \delta w_{\parallel}$$

总之:

- 1)通过膨胀,由热能 \longrightarrow 功, $w = q \Delta u$
- 2)第一定律两解析式可相互导出,但只有在开系中能量方程才用焓。

p8

Solution:

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \sum_{i} m_{i} \left(H_{m,i} + gz_{i} + \frac{1}{2}u_{i}^{2} \right) + \sum_{i} \frac{\mathrm{d}Q_{i}}{\mathrm{d}t} + \sum_{i} \frac{\mathrm{d}W_{si}}{\mathrm{d}t}$$

dW/dt=0; without power supply, dQ/dt=0; potential and kinetic energy are negligible: $M \frac{dU_{m}}{dt} = m_{1}H_{m1} + m_{2}H_{m2} + 0 + 0$

dH = dU = CdTFor liquid water:

$$m_1 = m = 0.2kg/s; \quad m_2 = -m$$

$$M \frac{dU_{m}}{dt} = m(H_{m1} - H_{m2}) + 0 + 0$$

进出口焓差

$$H_1 - H_2 = mC(T_1 - T_2)$$

$$M \frac{CdT}{dt} = mC(T_1 - T)$$

$$\int_{0}^{t} dt = -\frac{M}{m} \frac{dT}{(T - T_{1})} \qquad \int_{0}^{t} dt = -\frac{M}{m} \int_{T_{0}}^{T} \frac{dT}{T - T_{1}} \qquad t = -\frac{M}{m} \ln \left(\frac{T - T_{1}}{T_{0} - T_{1}} \right)$$

$$M = 190 \, kg$$
 $m = 0.2 kg / s$ $T_0 = 60 + 273.15 = 333.15 \, K$
 $T_1 = 10 + 273.15 = 283.15 \, K$ $T = 35 + 273.15 = 308.15 \, K$

$$t = -\frac{190}{0.2} \ln \left(\frac{308.15 - 283.15}{333.15 - 283.15} \right) = 658.5s \approx 11 \,\text{min}$$

Ex. dW/dt=2kW, $T_1=95^{\circ}C$, m=3.5kg/s, dQ/dt=-698kW, $z_1=0$, $z_2=15m$, $T_2=?$

Solution:

 ΔE_k is negligible small.

$$C_{Pm} = 4.208 \text{kJ/(kg.K)} (95^{\circ}C)$$

$$m_1 H_{m1} + m_2 (H_{m2} + gz_2) + \sum_i \frac{dQ_i}{dt} + \sum_i \frac{dW_{si}}{dt} = 0$$

$$m_1 = 3.5kg/s; \quad m_2 = -3.5kg/s$$

$$3.5H_{m1} - 3.5(H_{m2} + 9.81 \times 15/1000) - 698 + 2 = 0$$

 $\Delta H_m = (-698 + 2)/3.5 - 9.81 \times 15/1000 = -199.00kJ/kg$
 $\Delta H = C_P(T_2 - T_1)$ $T_2 = T_1 + \Delta H/C_P = 47.7^{\circ}C$

Home Work

• 6-1, 6-3, 6-5

1.14 热力学第二定律

一、自发过程的方向性

只要Q'不大于Q,并不违反第一定律

重物下落,水温升高;水温下降,重物升高?

只要重物位能增加小于等于水降内能减少,不违反第一定律。

电流通过电阻,产生热量

对电阻加热,电阻内产生反向电流?

只要电能不大于加入热能,不 违反第一定律。 归纳: 1) 自发过程有方向性;

- 2) 自发过程的反方向过程并非不可进行,而是 要有附加条件;
- 3) 并非所有不违反第一定律的过程均可进行。

能量转换方向性的实质是能质有差异

无限可转换能—机械能,电能

部分可转换能—热能 $T \neq T_0$

不可转换能—环境介质的热力学能

能质降低的过程可自发进行,反之需一定条件—补偿过程,其总效果是总体能质降低。

$$T_1 \xrightarrow{q_2} T_2$$

$$q_2$$
 $T_2 \longrightarrow T_1$
代价

$$w_{\rm net} \rightarrow q_1 - q_2$$

二、第二定律的两种典型表述

- 1.克劳修斯叙述——热量不可能自发地不花代价地从低温 物体传向高温物体。
- 2.开尔文-普朗克叙述——不可能制造循环热机,只从一个热源吸热,将之全部转化为功,而不在外界留下任何影响。
- 3.第二定律各种表述的等效性

 T_1 失去 Q_1 - Q_2

 T_2 无得失

热机净输出功 $W_{\text{net}} = Q_1 - Q_2$

1.15 卡诺循环与卡诺定理

- 一、卡诺循环及其热效率
 - 1. 卡诺循环

是两个热源的可逆循环

2. 卡诺循环热效率

$$\eta_{\rm t} = \frac{w_{\rm net}}{q_{\rm l}}$$

$$q_2 \left(= q_{jx} \right) = q_{4-1} = T_L \left(s_1 - s_4 \right)$$

$$q_1 = (= q_{\text{M}}) = q_{2-3} = T_{\text{H}}(s_3 - s_2)$$

$$q_{\text{net}} = q_1 - q_2$$

$$= (T_{\rm H} - T_{\rm L}) \Delta s_{23} = w_{\rm net}$$

$$\eta_{\rm c} = \frac{\left(T_{\rm H} - T_{\rm L}\right) \Delta s_{23}}{T_{\rm H} \Delta s_{23}} = 1 - \frac{T_{\rm L}}{T_{\rm H}}$$

讨论:

$$\eta_{\rm c} = f\left(T_{\rm H}, T_{\rm L}\right) \left[T_{\rm H} \uparrow, T_{\rm L} \downarrow\right] \Rightarrow \eta_{\rm c} \uparrow$$

$$T_{\rm L} \neq 0, T_{\rm H} \neq \infty$$

 $\eta_{\rm c}$ < 1

$$\eta_{\rm c} = 1 - \frac{T_{\rm L}}{T_{\rm H}}$$

即 N

 $w_{\rm net} < q_1$

循环净功小于吸热量,必有放热 q_2 。

- 4) 实际循环不可能实现卡诺循环,原因:
 - a) 一切过程不可逆;
 - b) 气体实施等温吸热,等温放热困难;
 - \mathbf{c})气体卡诺循环 w_{net} 太小,若考虑摩擦,输出净功极微。
 - 5)卡诺循环指明了一切热机提高热效率的方向。

四、卡诺定理

定理1: 在相同温度的高温热源和相同的低温热源 之间工作的一切可逆循环,其热效率都相 等,与可逆循环的种类无关,与采用哪种 工质也无关。

定理2:在同为温度T₁的热源和同为温度T₂的冷源 间工作的一切不可逆循环,其热效率必小 于可逆循环热效率。

理论意义:

- 1) 提高热机效率的途径: 可逆、提高 T_1 , 降低 T_2 .
- 2) 提高热机效率的极限。

1.16 熵和热力学第二定律的数学表达式

一、熵是状态参数 熵参数的导出

$$\eta_{\mathrm{t},i} = 1 - \frac{T_{\mathrm{L},i}}{T_{\mathrm{H},i}} = 1 - \frac{\delta q_{2i}}{\delta q_{1i}}$$

$$\frac{\delta q_{2i}}{T_{\mathrm{L},i}} = \frac{\delta q_{1i}}{T_{\mathrm{H},i}}$$

$$\frac{\delta q_{1i}}{T_{\mathrm{H},i}} - \frac{\delta q_{2i}}{T_{\mathrm{L},i}} = 0$$

$$\Rightarrow \sum \frac{\delta q_i}{T_{r,i}} = 0 \qquad \Rightarrow \sum \frac{q}{T_r} = 0$$

令分割循环的可逆绝热线→无穷大,且任意两线间距离→0 则

$$\iint \frac{\delta q}{T_{\rm r}} = 0 \qquad \to \iint \frac{\delta q}{T} = 0$$

令
$$ds = \frac{\delta q}{T} \Big|_{R} \longrightarrow s 是 状态 参数$$

讨论:

- 1)因证明中仅利用卡诺循环,故与工质性质无关;
- 2) 因s是状态参数,故 $\Delta s_{12} = s_2 s_1$ 与过程无关;
- 3) 克劳修斯积分等式, $\int \frac{\delta q}{T_r} = 0$ (T_r -热源温度)

二、克劳修斯积分不等式

用一组等熵线分割循环

可逆小循环部分:
$$\Sigma \frac{q}{T_r} = 0$$

不可逆小循环部分:

$$1 - \frac{q_{2,i}}{q_{1,i}} < 1 - \frac{T_{\mathrm{L},i}}{T_{\mathrm{H},i}}$$

$$\frac{q_{2,i}}{q_{1,i}} > \frac{T_{\mathrm{L},i}}{T_{\mathrm{H},i}} \Longrightarrow \frac{q_{1,i}}{T_{\mathrm{H},i}} - \frac{q_{2,i}}{T_{\mathrm{L},i}} < 0$$

$$\Rightarrow \Sigma \frac{q}{T_{\rm r}} < 0$$

可逆部分+不可逆部分

$$\Sigma \frac{q}{T_{\rm r}} < 0$$
 $\Rightarrow \int \frac{\delta q}{T_{\rm r}} < 0$ 克劳修斯不等式

结合克氏等式,有

$$\Rightarrow \int \frac{\delta q}{T_{\rm r}} \le 0 \begin{cases} \overline{\text{可逆 "="}} \\ \overline{\text{不可逆 "<"}} \end{cases}$$

注意: 1) T_r 是热源温度;

2) 工质循环,故q的符号以工质考虑。

三、热力学第二定律的数学表达式

$$\iint \frac{\delta q}{T_{\rm r}} < 0 \implies \int_{1A2} \frac{\delta q}{T_{\rm r}} + \int_{2B1} \frac{\delta q}{T_{\rm r}} < 0$$

$$\Rightarrow \int_{1A2} \frac{\delta q}{T_{\rm r}} < -\int_{2B1} \frac{\delta q}{T_{\rm r}} \Rightarrow \int_{1A2} \frac{\delta q}{T_{\rm r}} < \int_{1B2} \frac{\delta q}{T_{\rm r}} \, o^{-1}$$

$$\Rightarrow \int_{1A2} \frac{\delta q}{T_{\rm r}} < \int_{1B2} \frac{\delta q}{T} \Big|_{R} = s_2 - s_1$$

$$\Delta s_{12} = \int_1^2 \mathrm{d}s > \int_1^2 \frac{\delta q}{T_r} \qquad \longrightarrow \qquad \mathrm{d}s > \frac{\delta q}{T_r}$$

所以
$$\begin{cases} s_2 - s_1 \ge \int_1^2 \frac{\delta q}{T_r} \\ ds \ge \frac{\delta q}{T_r} \\ \int \frac{\delta q}{T_r} \le 0 \end{cases}$$
 可逆 "=" 不可逆,不等号

第二定律数学表达式

- 讨论: 1) 违反上述任一表达式就可导出违反第二定律;
 - 2) 热力学第二定律数学表达式给出了热过程的方向判据。

Considering both the reversible and irreversible process:

$$s_2 - s_1 \ge \int_1^2 \frac{\delta q}{T_{\rm r}}$$

Clausius inequality 克劳修斯不等式

For a small change: $dS - \frac{dQ}{dS} \ge 0$ or $dS \ge \frac{dQ}{dS}$

$$dS - \frac{dQ}{T} \ge 0$$

$$dS \ge \frac{dQ}{T}$$

For adiabatic process, dQ=0, then:

$$dS \ge 0$$
 or $\Delta S \ge 0$ The Principle of entropy increasing 嫡增原理

For a isolated system:

$$\Delta S_{iso} = \Delta S_{sys} + \Delta S_{sur} \ge 0$$

Ex. A 40 kg steel casting, Cp=0.5kJ/kg.K, 450°C Quenched into 150kg oil, C_p =2.5kJ/kg.K, 25°C. No heat losses. ΔS_{steel} =? ΔS_{oil} =? ΔS_t =?

Solution: heat balance:

$$40 \times 0.5(450 - t) = 150 \times 2.5(t - 25)$$
$$t = 46.52^{\circ} C$$

Then

$$\Delta S_{steel} = M_{steel} \int \frac{C_{p,steel} dT}{T} = 40 \times 0.5 \ln \frac{46.52 + 273.15}{450 + 273.15} = -16.33 kJ / K$$

$$\Delta S_{oil} = M_{oil} \int \frac{C_{p,oil} dT}{T} = 150 \times 2.5 \ln \frac{46.52 + 273.15}{25 + 273.15} = 26.13 kJ / K$$

$$\Delta S_t = \Delta S_{steel} + \Delta S_{oil} = -16.33 + 26.13 = 9.80 \, kJ / K$$
 Irreversible!

Home Work

• 6-23, 6-25, 6-27