Probability Theory & Statistics

Innopolis University, BS-I,II
Spring Semester 2016-17

Lecturer: Nikolay Shilov

Part I

INTRO TO MATHEMATICAL STATISTICS

What is Mathematical Statistics?

 Mathematical Statistics is a branch of Probability Theory that studies infinite series of independent identically distributed (IID) random variables.

Non-probability sampling

Accidental (or convenience) sampling of size n is a sample drawn from that part of the population that is close to hand.

Mathematical random sampling

A random sample of length/size n for a (fixed) distribution F is a set of n IID random variables with distribution F.

Sample statistic

- A (sample) statistic is a single numeric measure of some attribute of a sample (e.g., its arithmetic mean value).
- More formally: a statistic is a function of a sample where the function is independent of the sample's distribution.
- The term statistic is used both for the function and for the value of the function on a given sample.

Statistics as Estimators

- An estimator is a rule to calculate an estimate a parameter (e.g. mean, variance) based on observed data.
- Estimator examples: estimate
 - -the mean as the arithmetic mean in a random point $[X_1(r) + ... + X_n(r)]/n$;
 - -the second moment as the mean squared in a random point $[(X_1(r))^2 + ... + (X_n(r))^2]/n$.

Consistent estimator

- An estimator of parameter is *consistent* if it *converges in probability* (due to use of a random population point) the true value.
- According to the week Law of Large Numbers (LLN, see lecture for 11)
 - the arithmetic mean is a consistent estimator for the mean,
 - the mean squared is a consistent estimator the for the second moment.

Exercise

 Explain (prove) that the mean squared is a consistent estimator the for the second moment.

Bias of a consistent estimator

- The *bias* of an estimator $T(X_1,...X_n)$ of a parameter θ is the difference $E[T(X_1,...X_n)] \theta$.
- The bias of
 - the arithmetic mean estimation for the mean,
 - the mean squared estimation for the second moment

is 0.

Biased and Unbiased Estimators

- An estimator is *unbiased* if it has 0 bias. (Referthe the previous slide for examples.)
- Any unbiased estimator + 1/n is a biased one,
 e.g.: the arithmetic mean + 1/n is a consistent biased estimator for the mean.
- An unbiased estimator may be non-consistent, e.g. (exercise): let estimator $T(X_1,...X_n)$ be equal to the value of X1 in a random point.

Example a biased and unbiased estimations for the variance

An intuitive estimator

$$\underline{\mathbf{D}}_{n} = \sum_{1 \le k \le n} (\mathbf{X}_{k} - \underline{\mathbf{X}}_{n})^{2} / n = \sum_{1 \le k \le n} \mathbf{X}_{k}^{2} / n - \underline{\mathbf{X}}_{n}^{2}$$

is consistent but bias:

$$E(\underline{\mathbf{D}}_n) = \sigma^2 - \sigma^2/n = [(n-1)/n] \sigma^2;$$

in contrast estimator

$$\underline{\mathbf{D}}'_{n} = \sum_{1 \le k \le n} (X_{k} - \underline{\mathbf{X}}_{n})^{2} / (n-1)$$

is unbiased and consistent.

Part II

CONFIDENCE

Confidence interval and level

- A confidence interval of a confidence level p $(0 \le p \le 1)$ for a parameter θ is an interval [L,U] such that $P(L \le \theta \le U) = p$.
- Example 68–95–99.7 rule (lecture for week 13): for μ
 - $-[\mu-\sigma, \mu+\sigma]$ has level 68.27%;
 - $-[\mu-2\sigma, \mu+2\sigma]$ has level 95.45%;
 - $-[\mu-3\sigma, \mu+3\sigma]$ has level 99.73%.

Exercises

- Build confidence intervals for μ with levels σ , 2σ and 3σ for
 - uniform distribution on [0,1];
 - -Bernoulli distribution with p=2/3.

Using Chebyshev's inequality

• Recall from lecture for week 11: if X is a random variable with a finite expectation μ and finite non-zero deviation σ , then

$$P(|X - \mu| \ge k\sigma) \le 1/k^2$$

for any real number k>0.

Using Chebyshev's inequality (cont.)

- It implies (see proof of the weak LLN in lecture for week 11)
 - -that $P(|\underline{\mathbf{X}}_n \mu| \ge \varepsilon) \le \sigma^2/(n\varepsilon^2)$
 - -and P($|\underline{\mathbf{X}}_n \mu| < \epsilon$) $\geq 1 D(\underline{\mathbf{X}}_n)/\epsilon^2$ any $\epsilon > 0$.

Using Chebyshev's inequality (cont.)

- For a given confidence level p
 - -compute the arithmetic mean m_n and variance d_n in a random point for X_1 , ... X_n ;
 - -compute
 - $\varepsilon = [d_n/(1-p)]^{1/2}$ and
 - the confidence interval $[m_n$ ϵ , m_n + $\epsilon]$ for the mean μ .

Bernoulli trials

- Recall that if X₁,...X_n=Bernoulli(p) then
 - $-E(\underline{X}_n)=p$ and
 - $-D(\underline{X}_n)=p*q/n;$
- according to Moivre-Laplace / Central Limit theorem (for big n)

$$P(|p-\underline{X}_n| < \varepsilon \sqrt{pq/n}) \approx 2\Phi_0(\varepsilon)$$

Bernoulli trials (cont.)

- For a given confidence level t
 - -compute the arithmetic mean p_n , its compliment $q_n = 1$ p_n , and "diviation" $d_n = [p_n * q_n / n]^{1/2}$ in a random point for X_n ;
 - -compute ε such that $2\Phi_0(\varepsilon)$ =t and the confidence interval $[p_n \varepsilon^* d_n, p_n + \varepsilon^* d_n]$ for the mean p.

Part III

PROBABILISTIC INEQUALITIES

Less than by probability

- Let P be the probability of joint distribution of random variables X and Y; let X<Y by probability, if P(X<Y) > P(X≥Y) (i.e. P(X<Y) > ½).
- Exercises:
 - give example(s) of X<Y by probability;</p>
 - is "less than by probability" a transitive relation?

Stochastically less than

- Let X and Y be random variables; let X<Y stochastically, if
- $P_X(X < z) \ge P_Y(Y < z)$ for all $z \in R$,
- and $P_X(X < z) > P_Y(Y < z)$ for some $z \in R$.
- Exercises:
 - -give example(s) of X<Y stochastically;</p>
 - is "stochastically less than" a transitive relation?

Exercise

 Let X be a random variable uniformly distributed on [0,1], and let Y be

```
\int \epsilon^{2*} X with probability \epsilon; X + \epsilon^{2*} (1 - X) with probability 1-\epsilon for some fixed small 1>\epsilon>0.
```

 Show that Y>X with some probability p, but Y<X stochastically. (What exactly is this probability p?)

Confidence and inequalities

 Question: What type of probabilistic inequalities can/may be used to evaluate confidence level?