VERILOG DESIGN OF SEQUENTIAL CIRCUITS FOR SIMPLE ARITHMETIC OPERATIONS

Schematic Diagrams:

Two's Complement Converter

Multiple of Three Detector

Sequential GCD Calculator

Hardware Requirements and Critical Path Delay

Board Used: Nexys4 DDR

CIRCUIT	HARDWARE REQUIREMENTS	CRITICAL PATH DELAY
Two's Complement Converter	3 Slice LUTs, 2 Slice Registers, 4 Bonded IOB, 1 BUFGCTRL	4.090 ns
Multiple of Three Detector	4 Slice LUTs, 3 Slice Registers, 4 Bonded IOB, 1 BUFGCTRL	4.090 ns
Sequential GCD Calculator	Datapath: 27 Slice LUTs, 24 Slice Registers Control Path: 5 Slice LUTs, 4 Slice Registers Total: 32 Slice LUTs, 28 Slice Registers, 30 Bonded IOB, 1 BUFGCTRL	6.498 ns

Maximum Usable Clock Frequency

We know, maximum usable clock frequency is the reciprocal of the critical path delay. The maximum usable clock frequencies of the 3 circuits are as follows:

• Two's Complement Converter: **244.499 MHz**

• Multiple of Three Detector: **244.499 MHz**

• Sequential GCD Calculator: 153.894 MHz