OBOE Space And Time

- Ontology extensions need consistent classes for spatial and temporal concepts
- International standards provide low-level building blocks of these concepts
 - ISO, OGC, FGDC, etc.
- Domains are expected to create application schemas that incorporate these concepts into higher level concepts
- None provide OWL-based implementations
- NASA SWEET provides both, although less comprehensively

Example: Modeling Salmonid ESUs

 Evolutionarily Significant Units: subspecies populations from given geographic locations and seasonal runs designated as genetically distinct

Comparison Of Standards

- The following slides provide a high-level look at spatial and temporal concepts in GML and SWEET
 - What level of abstraction is needed for OBOE extensions?
 - Pros and Cons for SWEET vs GML concept adoption

GML Spatial Components

- Underlying Models: Profile of ISO 19107, 19111
 - Spatial Geometry
 - Spatial Topology
 - Spatial Reference Systems
 - Spatial Datums
 - Spatial characteristics of geographic data

GML Spatial Geometry

is-a

is-a — AbstractGeometricPrimitive

GeometricComplex

AbstractGeometricAggregate

AbstractImplicitGeometry

 Provides primitive and composite classes for describing geometries

 Used in application schema profiles to build higher level entities

AbstractGeometry

OrientableSurface

GML Features

 Real world phenomena perceived in the context of a geographic application and classified into types that define instances

GML Spatial Topology

- Allows characterization of the spatial relationships between objects using simple algorithms
- Allows a mechanism for expressing shared geometry among geographic features

GML Spatial Reference Systems

- Provide a framework for interpreting features in relation to an Earth geoid approximation
- Each single Coordinate Reference System includes one datum and one coordinate system

VerticalCS

GML Temporal Components

- Underlying Model: Profile of ISO 19108
 - Temporal Geometry
 - Temporal Topology
 - Temporal Reference Systems
 - Temporal characteristics of geographic data

GML Time

 Time is measured on two types of scale: interval and ordinal. An interval scale offers a basis for measuring duration, an ordinal scale provides information only about relative position in time.

GML Temporal Geometry & Topology

- Temporal geometry is described in terms of time instants, periods, positions and lengths.
- Temporal topology is described in terms of time complexes, nodes, and edges, and the connectivity between these

GML Temporal Reference Systems

- A value in the time domain is measured relative to a temporal reference system.
- Common types of reference system include calendars, ordinal temporal reference systems, and temporal coordinate systems

GML Temporal Characteristics

- Values based on calendars and clocks use lexical formats that are based on ISO 8601
- A decimal value may be used with coordinate systems such as GPS time or UNIX time
- A URI may be used to provide a reference to some era in an ordinal

SWEET Ontologies

- Organized into faceted and integrative ontologies
- Faceted ontologies take a reductionist approach, hierarchichally providing more detail with depth (Numerics, Time, Space, Units, Physical Properties ...)
- Integrative ontologies take a synthesis approach by using elements from the faceted ontologies (phenomena, human activities)
- Results in a highly connected ontology (can be difficult to interpret)
- Modeling of space and time is less consistent than GML/ISO

SWEET Spatial Components

Space is a multidimensional numerical scale with terminology specific to

SWEET Temporal Components

- Time is a numerical scale with terminology specific to the temporal domain
- Temporal extents and relations are special cases of numeric extents and relations
- Temporal extents include: duration, season, century, 1996, etc. Temporal relations include: after, before, etc.

SWEET Domain Concepts

- Provide higher-level environmental concepts
- WRT the ESU example, concepts of season (time), drainage basin (space), organism (species) are all provided

Questions

Which is more appropriate for integration into OBOE extensions?

- SWEET
 - More domain relevant
 - More complex relationships
 - Less consistent modeling
 - OWL syntax

- ISO/GML
 - Less domain relevant
 - Less complex relationships
 - More consistent modeling
 - XML Schema syntax