K-means vs Bisecting K-means

Sotiris Ftiakas: 3076

Grigoris Barmpas: 3108

K-means

Agglomerative – Bottom Up

Computationally expensive

Clusters of unbalanced size

Bisecting K-means

Divisive – Top Down

Computationally faster

Clusters of similar size

Datasets

- 1) 2-D Gaussian Data
- 2) Japan
- 3) World
- 4) 2-D MNIST Dataset

2-D Gaussian Data – 2 Centers

Representation

2-D Gaussian Data – 2 Centers

K-means

2-D Gaussian Data – 6 Centers

Representation

2-D Gaussian Data – 6 Centers

Japan

Representation

WSS Plot

Japan

K-Means 3-D

Bisecting K-Means 3-D

World

Representation

WSS Plot

World

K-means (1st try)

K-means (2nd try)

Bisecting K-means

2-D MNIST (extra)

K-means

Representation

Bisecting K-means

References

- https://ijeter.everscience.org/Manuscripts/Volume-4/Issue-8/Vol-4-issue-8-M-23.pdf
- https://smorbieu.gitlab.io/generate-datasets-to-understand-some-clustering-algorithms-behavior/
- https://www.datanovia.com/en/lessons/determining-the-optimal-number-of-clusters-3-must-know-methods/
- https://www.geeksforgeeks.org/bisecting-k-means-algorithm-introduction/

Thank you for your attention!

