Password-less Strong Authentication

OWASP, Dallas, TX, May 17th 2016 Be Secure with No Passwords

Girish Chiruvolu, Ph.D., MBA, CISSP, CISM Information Security and Risk Management

How Would You Choose Your Team?

Every member is a STRONG one to ride rough waters

Familiar?

Anthem healthcare system was breached by attackers software *February 19, 2014*

More than 2 million credit cards compromised Sept 2014

Sony pictures hacked – loss of revenue and disclosure of internal employee information *May 2014*

The entire Ashley-Madison business operations paralyzed *June 2015*

1.5million accounts compromised *June 2014*

Hackers in got credit and debit card numbers and sensitive information *April 2014*

Evolution of Cyber Security Threatscape

Authentication Jungle

Online Identity and Why So Important?

How do You Establish Online Identity?

User-ID

- Your user-id identifies who you are "potentially"
 - is established by a set of information identity attributes by which an individual is definitively distinguished within a context.

Password

• Your password confirms "potentially" you are the right person

Still unsure?

- Further risk assessment?
- Use additional mechanisms to have "more" confidence in the "trust" being established with the online ID

Information Security and Risk Management

Good Authentication is all about Balancing

Zero client footprint & easy to use

Security

Low cost of implementation & maintenance

Robust security with device-less disposable password; resilient to Man-in-Middle attacks, etc.

Good Characteristics of Online Authentication

Closer Look at Passwords!

English has a maximum entropy of 6 bits per character

Typical pure random password of 6 characters = 36 bits of entropy

Typical human generated passwords → Much less entropy

My password: letMe1in

- Strong Passwords hard to remember –
 l%&killer\$#144Pwd+
- "Social engineering"
- Finding written password : Post-It Notes
- Guessing password: Spouse/Kid DoBs etc.
- Shoulder surfing
- Keystroke logging
 - Virtual keyboards/mouse
- Screen scraping (with Keystroke logging)
- Brute force password crackers (Rainbow tables –hash tables, salts)
- Password explosion (SSO and Fed-SSO)

The SOS Signal on (1st Factor) Passwords

At least \$1B Online Fraud Annually

Average = \$120/online user*

Banks seek customers' help to stop online thieves

Updated 1d 16h ago

By Byron Acohido, USA TODAY

By Alejandro Gonzalez, USA TODAY

*Sources: RSA annual report 2014

Industry Quotes

"Passwords are like toothbrushes....

You don't lend them out and you change them often!"

Wayne Kissinger, Banking Professional

Multi-Factor Knight!

Method	Examples	Properties	
What you know	User Ids, PINs	Shared Easy to guess	
	Passwords	Usually forgotten	
What you have	Cards	Shared	
	Badges	Can be Duplicated Lost or Stolen	
	Keys		
Something unique about user	Fingerprint, face, voiceprint, iris scan	Not possible to share	
		Repudiation unlikely	
		Forging difficult	
		Cannot be lost or stolen	

Why Choose A Weak Factor (team member)?

Strengthen your MFA with <u>ALL Strong Factors</u>

The Multifactor Authentication Frenzy

 To support a weak foundation, need several props

MFA achieves the same goal

Biometrics

Face, Finger, Iris, Palm, Retina, Signature, Voice

FAR: False Acceptance Rate

FRR: False Rejection Rate

EER (also Cross-over): Equal

Error Rate

Comparison

Biometric Type	Accuracy	Ease of Use	User Acceptance
Fingerprint	High	Medium	High (if device local); Low
Hand Geometry	Medium	High	Medium
Voice	Medium	High	High
Retina	High	Low	Low
Iris	Medium	Medium	Medium
Signature	Medium	Medium	High
Face	Low	High	High

Fast Identity Online (FIDO): UAF and U2F

Universal Access Factor

- Local device authentication (agent)
- Cloud application needs to trust the result of UAF agent on local device

U2F

- Still needs a password
- Either USB Key chain or Bluetooth (others evolving)

How does FIDO UAF* work?

FIDO –Potential issues

- U2F is not zero footprint
- Transaction challenge is still cumbersome
- Even though there is provision on formulating policies over which devices and UAF/U2F, FIDO server accepts
 - Untrusted User Agent
 - Responsibility lies with server to determine unknown risks at user end
- If server is compromised, could replace the public keys for the users (denial of service)
 - No additional public key validation to trust beyond bootstrapped registration
- Device lost is painful; all keys are tied in
 - Similar to forgot password flow (traditionally the weakest link)

Can we Do better Than Passwords for 1st Factor?

Closer Look At First Factor Authentication

- First Factor only implies "What you know"
 - » Not necessarily ≠ "PASSWORD"
- User response <u>Can</u> be dynamic (changing)
- No additional gadgets needed! All in the brain
- Cannot be revealed until User chooses to
 - » Willingly or Otherwise
 - Independently and uniquely can be chosen by the User
 - Typically depends on other technologies for Mutual Authentication
 - Need not be!

Why First-Factor (knowledge) is indispensable?

- Knowledge-base cost \$0 capex
- Zero-footprint Nothing to carry around or maintain —all in the brain

- Convenient
- •Still do not have confidence in "what you have" and "what you are" –Absolutely not fool-proof

- Note: First factor always ≠ Password
- First factor merely says "What you know"
 - How you do
 - What you do

Optional

Simple Hybrid-Zero-Knowledge Processing (SHZKPP)

A zero-knowledge password proof (ZKPP) is an interactive method for one party (the prover) to prove to another party (the verifier) that it knows a value of a password, without revealing password to the verifier

ZKPP is defined in IEEE 1363.2 as "An interactive zero knowledge proof of knowledge of password-derived data shared between a prover and the corresponding verifier."

Why Simple & Hybrid (explicit and implicit secrets) ZKPP?

•Zero-footprint —Practically what humans can do

•Retain password user-experience

How does it work?

Font help: Zero:0, Hundred: 100; Oo: BoOk; LL: BelL

6 5b Bm GV 79 68 9G 5 1a 3 2m Bn

Red

Font help: Zero:0, Hundred: 100; Oo: BoOk; LL: BelL

Yellow

3X

Orange

Green

Cyan

Rv

Answer:

43 process

OTP: jjetw427\$2&dse+@

+ Shared secret1 (txt)

Answer: 48 process

OTP: dj,ey12c4r844#f

+Shared secret2 (txt)

Two different challenge instances of one user account

Reverse-Turing Test-based & Probability

Key Highlights of the SHZKPP schemes

Containing Credential Explosion: Single-Sign On (SSO)

- As number of protected applications increase ~ # Passwords also increase
- Average need of around 20 passwords in day-to-day life
- Humans can at best remember 6 secrets

Within
Enterprise SSO
and across
Enterprises
(Federated
SSO)

Major Mechanisms of SSO

	OpenID	OAuth	SAML	OpenID Connect
Dates from	2007	2006	2002	2010
Current version	OpenID 2.0	OAuth 2.0	SAML 2.0	OpenID Connect 1.0 (new)
Main purpose	Single sign-on for consumers	API authorization between applications	Single sign-on for enterprise users	Combine OpenID authentication identifcation and Oauth authorization
Protocols used	XRDS, HTTP	JSON, HTTP	SAM, XML, HTTP, SOAP	JSON, HTTP

Summary

- Passwords the frontline authentication mechanism is fragile
 - Many hacks and attacks almost a broken technology
- Second and Third factor authentication mechanisms depend either on carrying a gadget or susceptible to errors –technology advances improving

- Zero-footprint dynamic disposable passcodes can balance the complexity and scalability while retaining password experience
 - SSO further reduces the need to multiple credentials
- As ever, layered approach with compensating controls suggested

Q & A? Thank you!

FIDO: Universal Second Factor - U2F

U2F is an open 2-factor authentication standard enables

- keychain devices, mobile phones and other devices
- securely access any number of web-based services

The U2F specifications are today hosted by the FIDO Alliance (http://fidoalliance.org/specifications/download)

Quick Lingo

SAML

Assertion

 Data by vouching authority on authentication or any attribute of the user including authorization scope of a resource

Binding

 Mapping of elements from protocol1 to protocol2

Profiles

 A set of rules usage of assertions or protocol messages usage or mapping of attributes

Oauth

Tokens

 Access tokens are credentials used to access protected resources; similarly refresh tokens are credential used to get access token to access a resource

Authorization grant

 After verification of user credentials and consent of resource utilization issued authorization grant

Resource

A protected resource for which access it requested.

SAML 2.0 – Web SSO Protocol

- Service provider generates a SAML request and redirects to IDP
- IDP authenticates and asserts user profile and issues SAML token
- Service provider grants access to resource after verification

OAuth example

Sign in as a different user

Stackoverflow.com is asking for some information from your Google Account twmoore@gmail.com

Email address: twmoore@gmail.com

Allow

No thanks

Remember this approval

Logged in as Tyler Moore (Not You?)

Don't Allow

Oauth 2 Flow

- Resource request translates into authentication and authorization and access token
- Resource consumer can use the resource until token expires
- Can be refreshed or reissued depending on policy

