Concurrent Tree Traversals in Binary Search Trees

Robert Bland

College of Engineering and Computer Science University of Central Florida Orlando, FL

Tyler Townsend

College of Engineering and Computer Science University of Central Florida Orlando, FL

Abstract—This document is a model and instructions for LaTeX. This and the IEEEtran.cls file define the components of your paper [title, text, heads, etc.]. *CRITICAL: Do Not Use Symbols, Special Characters, Footnotes, or Math in Paper Title or Abstract. Present what we are doing.

We introduce our reimplementation of what is considered a practical and concurrent binary search tree that maintains logical ordering information within the data structure, but our implementation will be transformed and compared against a transactional data structure. A transactional data structure will be implemented using software transactional memory which provides a system for executing atomic sections of code instead of using locks. This will allow for users to monitor memory locations that threads read and write to. Describe progress and correctness conditions of the data structure here.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

Introduction should state the problem at hand and give some background information and more about the progress and correctness. Define and explain our topic as well the transactional data structure. Transactional data structure are

II. RESEARCH

The research in this area, so compare to other papers?

III. IMPLEMENTATION

MENTIONS WHAT EACH FUNCTION DOES. In this section we will be going over what each function does and describe the linearization points of each function (excluding TraverseNLock). We will also mention progress guarantee, correctness condition and synchronization techniques (NOTE: Maybe move this technique idea to design). The functions to be described are Contains(), Insert(), Remove(), UpdateSnaps() and TraverseNLock(). We will also describe how we initialize our tree and our sentinel nodes. Contains(). Our implementation has a lock-free contains and a deadlock-free insert and removes. Our contains() is lock-free because it only uses compare-and-swap, which has a consensus number of infinity, so by only using that atomic operation in that function we can say that even if it fails at least one other operation managed to succeed.

Identify applicable funding agency here. If none, delete this.

IV. DESIGN DECISIONS

We designed our implementation to mirror the pseudocode of the paper in [1]. This came with benefits of being able to efficiently program and recreate most of what the authors intended for us to implement. However, there were also some challenges as well since they intentionally left out where to include some locks in the pseudocode and omitted some parts of the code for updating our snapshots. They did mention the potential location of each lock or where certain critical sections are with respect to the pseudocode and presented some locations for putting locks in the insert and removal implementations. By leaving out some locations this give us enough leeway to interpret when we should use locks in our UpdateSnaps() function, but we have to implement to maintain correctness for our algorithm.

V. TESTING

Our testing is comprised of two parts for increased clarity. Our first part consists of the technical details of how we created our experiments and what we tested it on and compare the tests to. The second part focuses on what our results were and what it means.

A. Set-Up For Experiments

Before we begin testing we must first realize that we use C++ while they use Java, so ours should theoretically perform faster than the original implementation due to Java overhead. Our tests thread count will be smaller in our testing when compared to the original tests because our requirements for testing have to be smaller in scale, so it is possible for our reimplementation to not perform as well as the original for higher thread counts. With that in mind we evaluated our internal BST and internal AVL tree and compared them to other recent implementations and our transactional data structure. We compared our BST to the results given to us by [1 (The Paper)] as well as LO-BST, which is a lock-based internal BST, and the transactional data BST implementation. We then compared our internal AVL tree to the results given to us by [1 (The Paper)] and to LO-AVL, which is a lockbased internal AVL tree, and our transactional data AVL implementation. We ran these experiments on a [INSERT PROCESSOR, RAM, Cores, Processors with how many cores, and whether it allows for hyperthreading, OS that it ran on(Probably Linux) with version, What IDE and environment that we ran it on as well]. We try to keep consistency with

the original implementation with our experiments, so we directly copied their experiments for accurate comparisons by following a standard empirical evaluation [1] (Put 7,8,12 from their paper since that is referenced). Our experiments will be executing a series of five-second trials and will be comparing the number of operations each one executes within that time frame. The trials will be ran ten times for our two implementations and averaged out and compared to the results given in Table 1 (from paper [1]). There will be 3 different test scenarios for every implementation with each scenario having its own unique workload. The three scenarios are:

- (i) 90% contains, 9% insert, 1% remove
- (ii) 70% contains, 20% insert, 10% remove
- (iii) 0% contains, 50% inserts, 10% removes

B. Results

Results go here and compare what we got to what they got Also put 9 graphs up for each distribution of operations and transaction size

VI. APPENDIX VII. DICTIONARY

- * Concurrency
- * Logical ordering information
- * Binary Search Tree
- * Transactional Data Structure
- * Software Transactional Memory
- * Snapshots

VIII. EASE OF USE

A. Maintaining the Integrity of the Specifications

The IEEEtran class file is used to format your paper and style the text. All margins, column widths, line spaces, and text fonts are prescribed; please do not alter them. You may note peculiarities. For example, the head margin measures proportionately more than is customary. This measurement and others are deliberate, using specifications that anticipate your paper as one part of the entire proceedings, and not as an independent document. Please do not revise any of the current designations.

IX. PREPARE YOUR PAPER BEFORE STYLING

Before you begin to format your paper, first write and save the content as a separate text file. Complete all content and organizational editing before formatting. Please note sections III-A–III-E below for more information on proofreading, spelling and grammar.

Keep your text and graphic files separate until after the text has been formatted and styled. Do not number text heads— LATEX will do that for you.

A. Abbreviations and Acronyms

Define abbreviations and acronyms the first time they are used in the text, even after they have been defined in the abstract. Abbreviations such as IEEE, SI, MKS, CGS, ac, dc, and rms do not have to be defined. Do not use abbreviations in the title or heads unless they are unavoidable.

B. Units

- Use either SI (MKS) or CGS as primary units. (SI units are encouraged.) English units may be used as secondary units (in parentheses). An exception would be the use of English units as identifiers in trade, such as "3.5-inch disk drive".
- Avoid combining SI and CGS units, such as current in amperes and magnetic field in oersteds. This often leads to confusion because equations do not balance dimensionally. If you must use mixed units, clearly state the units for each quantity that you use in an equation.
- Do not mix complete spellings and abbreviations of units: "Wb/m²" or "webers per square meter", not "webers/m²".
 Spell out units when they appear in text: ". . . a few henries", not ". . . a few H".
- Use a zero before decimal points: "0.25", not ".25". Use "cm³", not "cc".)

C. Equations

Number equations consecutively. To make your equations more compact, you may use the solidus (/), the exp function, or appropriate exponents. Italicize Roman symbols for quantities and variables, but not Greek symbols. Use a long dash rather than a hyphen for a minus sign. Punctuate equations with commas or periods when they are part of a sentence, as in:

$$a + b = \gamma \tag{1}$$

Be sure that the symbols in your equation have been defined before or immediately following the equation. Use "(1)", not "Eq. (1)" or "equation (1)", except at the beginning of a sentence: "Equation (1) is . . ."

D. ET_EX-Specific Advice

Please use "soft" (e.g., \eqref{Eq}) cross references instead of "hard" references (e.g., (1)). That will make it possible to combine sections, add equations, or change the order of figures or citations without having to go through the file line by line.

Please don't use the {eqnarray} equation environment. Use {align} or {IEEEeqnarray} instead. The {eqnarray} environment leaves unsightly spaces around relation symbols.

Please note that the {subequations} environment in LATEX will increment the main equation counter even when there are no equation numbers displayed. If you forget that, you might write an article in which the equation numbers skip from (17) to (20), causing the copy editors to wonder if you've discovered a new method of counting.

BIBT_EX does not work by magic. It doesn't get the bibliographic data from thin air but from .bib files. If you use BIBT_EX to produce a bibliography you must send the .bib files.

LATEX can't read your mind. If you assign the same label to a subsubsection and a table, you might find that Table I has been cross referenced as Table IV-B3.

LATEX does not have precognitive abilities. If you put a \label command before the command that updates the counter it's supposed to be using, the label will pick up the last counter to be cross referenced instead. In particular, a \label command should not go before the caption of a figure or a table.

Do not use \nonumber inside the {array} environment. It will not stop equation numbers inside {array} (there won't be any anyway) and it might stop a wanted equation number in the surrounding equation.

E. Some Common Mistakes

- The word "data" is plural, not singular.
- The subscript for the permeability of vacuum μ_0 , and other common scientific constants, is zero with subscript formatting, not a lowercase letter "o".
- In American English, commas, semicolons, periods, question and exclamation marks are located within quotation marks only when a complete thought or name is cited, such as a title or full quotation. When quotation marks are used, instead of a bold or italic typeface, to highlight a word or phrase, punctuation should appear outside of the quotation marks. A parenthetical phrase or statement at the end of a sentence is punctuated outside of the closing parenthesis (like this). (A parenthetical sentence is punctuated within the parentheses.)
- A graph within a graph is an "inset", not an "insert". The word alternatively is preferred to the word "alternately" (unless you really mean something that alternates).
- Do not use the word "essentially" to mean "approximately" or "effectively".
- In your paper title, if the words "that uses" can accurately replace the word "using", capitalize the "u"; if not, keep using lower-cased.
- Be aware of the different meanings of the homophones "affect" and "effect", "complement" and "compliment", "discreet" and "discrete", "principal" and "principle".
- Do not confuse "imply" and "infer".
- The prefix "non" is not a word; it should be joined to the word it modifies, usually without a hyphen.
- There is no period after the "et" in the Latin abbreviation "et al.".
- The abbreviation "i.e." means "that is", and the abbreviation "e.g." means "for example".

An excellent style manual for science writers is [7].

F. Authors and Affiliations

The class file is designed for, but not limited to, six authors. A minimum of one author is required for all conference articles. Author names should be listed starting from left to right and then moving down to the next line. This is the author sequence that will be used in future citations and by indexing services. Names should not be listed in columns nor group by affiliation. Please keep your affiliations as succinct as possible (for example, do not differentiate among departments of the same organization).

G. Identify the Headings

Headings, or heads, are organizational devices that guide the reader through your paper. There are two types: component heads and text heads.

Component heads identify the different components of your paper and are not topically subordinate to each other. Examples include Acknowledgments and References and, for these, the correct style to use is "Heading 5". Use "figure caption" for your Figure captions, and "table head" for your table title. Run-in heads, such as "Abstract", will require you to apply a style (in this case, italic) in addition to the style provided by the drop down menu to differentiate the head from the text.

Text heads organize the topics on a relational, hierarchical basis. For example, the paper title is the primary text head because all subsequent material relates and elaborates on this one topic. If there are two or more sub-topics, the next level head (uppercase Roman numerals) should be used and, conversely, if there are not at least two sub-topics, then no subheads should be introduced.

H. Figures and Tables

a) Positioning Figures and Tables: Place figures and tables at the top and bottom of columns. Avoid placing them in the middle of columns. Large figures and tables may span across both columns. Figure captions should be below the figures; table heads should appear above the tables. Insert figures and tables after they are cited in the text. Use the abbreviation "Fig. ??", even at the beginning of a sentence.

TABLE I
TABLE TYPE STYLES

Table Column Head		
Table column subhead	Subhead	Subhead
More table copy ^a		
	Table column subhead	Table column subhead Subhead

^aSample of a Table footnote.

Figure Labels: Use 8 point Times New Roman for Figure labels. Use words rather than symbols or abbreviations when writing Figure axis labels to avoid confusing the reader. As an example, write the quantity "Magnetization", or "Magnetization, M", not just "M". If including units in the label, present them within parentheses. Do not label axes only with units. In the example, write "Magnetization $\{A[m(1)]\}$ ", not just "A/m". Do not label axes with a ratio of quantities and units. For example, write "Temperature (K)", not "Temperature/K".

ACKNOWLEDGMENT

The preferred spelling of the word "acknowledgment" in America is without an "e" after the "g". Avoid the stilted expression "one of us (R. B. G.) thanks ...". Instead, try "R. B. G. thanks...". Put sponsor acknowledgments in the unnumbered footnote on the first page.

REFERENCES

Please number citations consecutively within brackets [1]. The sentence punctuation follows the bracket [2]. Refer simply to the reference number, as in [3]—do not use "Ref. [3]" or "reference [3]" except at the beginning of a sentence: "Reference [3] was the first ..."

Number footnotes separately in superscripts. Place the actual footnote at the bottom of the column in which it was cited. Do not put footnotes in the abstract or reference list. Use letters for table footnotes.

Unless there are six authors or more give all authors' names; do not use "et al.". Papers that have not been published, even if they have been submitted for publication, should be cited as "unpublished" [4]. Papers that have been accepted for publication should be cited as "in press" [5]. Capitalize only the first word in a paper title, except for proper nouns and element symbols.

For papers published in translation journals, please give the English citation first, followed by the original foreign-language citation [6].

REFERENCES

- G. Eason, B. Noble, and I. N. Sneddon, "On certain integrals of Lipschitz-Hankel type involving products of Bessel functions," Phil. Trans. Roy. Soc. London, vol. A247, pp. 529–551, April 1955.
- [2] J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68–73.
- [3] I. S. Jacobs and C. P. Bean, "Fine particles, thin films and exchange anisotropy," in Magnetism, vol. III, G. T. Rado and H. Suhl, Eds. New York: Academic, 1963, pp. 271–350.
- [4] K. Elissa, "Title of paper if known," unpublished.
- [5] R. Nicole, "Title of paper with only first word capitalized," J. Name Stand. Abbrev., in press.
- [6] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, "Electron spectroscopy studies on magneto-optical media and plastic substrate interface," IEEE Transl. J. Magn. Japan, vol. 2, pp. 740–741, August 1987 [Digests 9th Annual Conf. Magnetics Japan, p. 301, 1982].
- [7] M. Young, The Technical Writer's Handbook. Mill Valley, CA: University Science, 1989.

[8]

IEEE conference templates contain guidance text for composing and formatting conference papers. Please ensure that all template text is removed from your conference paper prior to submission to the conference. Failure to remove the template text from your paper may result in your paper not being published.