Day 9

Factor completely, if possible.

1. $x^2 - 25$

2. $x^2 + 25$

Factor completely.

1. $49m^2 - 81n^2$

2. $32x^5y^2 - 8x^5$

3. $x^2 - 64x$

Factor completely.

 $16x^4 - 1$

Perfect	Perfect
Squares	Squares
$1^2 = 1$	$(\mathbf{x}^1)^2 = \mathbf{x}^2$
$2^2 = 4$	$(\mathbf{x}^2)^2 = \mathbf{x}^4$
$3^2 = 9$	$(\mathbf{x}^3)^2 = \mathbf{x}^6$
$4^2 = 16$	$(\mathbf{x}^4)^2 = \mathbf{x}^8$
$5^2 = 25$	
$6^2 = 36$	
$7^2 = 49$	
$8^2 = 64$	
$9^2 = 81$	
$10^2 = 100$	
$11^2 = 121$	
$12^2 = 144$	
$13^2 = 169$	

Factoring the Sum or Difference of Cubes

Difference of Cubes: $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

Sum of Cubes: $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$

SOAP = Same Opposite Always Positive

Difference of Cubes: $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

Sum of Cubes: $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$

SOAP = Same Opposite Always Positive

Factor completely. $8x^3 - 27$

Perfect	Perfect
Cubes	Cubes
$1^3 = 1$	$(\mathbf{x}^1)^3 = \mathbf{x}^3$
$2^3 = 8$	$(\mathbf{x}^2)^3 = \mathbf{x}^6$
$3^3 = 27$	$(\mathbf{x}^3)^3 = \mathbf{x}^9$
$4^3 = 64$	$(x^4)^3 = x^{12}$
$5^3 = 125$	$(x^5)^3 = x^{15}$

Factor completely.

1.
$$x^3 - y^6$$

2.
$$98 - 2t^2$$

1.
$$a^2 - b^2 = (a + b)(a - b)$$

2.
$$a^2 + b^2$$
 is prime

3.
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

3.
$$p^4 + p$$

SUMMARY Factoring Binomials

1.
$$a^2 - b^2 = (a + b)(a - b)$$
 Difference of squares

2. $a^2 + b^2$ is prime Sum of squares

3. $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$ Difference of cubes

4. $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$ Sum of cubes

4.
$$81y^4 - 16$$

SUMMARY Factoring Strategy

- 1. Factor out the GCF.
- 2. If the polynomial has 4 terms,

Factor by grouping 2 terms with 2 terms Factor by grouping 3 terms with 1 term

3. If the polynomial has 3 terms,

Determine if the trinomial is a perfect square trinomial.

$$a^2 + 2ab + b^2 = (a + b)^2$$

 $a^2 - 2ab + b^2 = (a - b)^2$

Otherwise factor by

the trial-and-error method

the ac-method

4. If the polynomial has 2 terms, determine if it fits one of these patterns:

Difference of squares: $a^2 - b^2 = (a + b)(a - b)$

Sum of squares: $a^2 + b^2$ is prime

Difference of cubes: $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$ Sum of cubes: $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$

*With any of the above techniques, sometimes substitution can also be used.