A

 f_i 表示只管前 i 个彩灯的答案,最后输出 f_n 。有 DP:

$$f_i = \sum_{j=1}^i f_{j-1} \cdot \operatorname{mex}_{k=j}^i a_k$$

容易发现i固定时 $\max_{k=j}^{i} a_k$ 关于j一定是不增的,考虑维护每个 \max 的值对应的j的区间和 f_i 的前缀和来快速转移。

当在序列末尾增加了一个数 a_{i+1} 时,只有 $\max = a_{i+1}$ 的区间 [l,r] 的值会改变。先计算出 [r,i] 的 \max 值 w,那么区间 $[\max(l,las_w+1),r]$ 的 \max 就是 w,其中 las_w 表示 w 在 [1,i] 中最后一次出现的位置,然后接着处理剩下的区间。

计算区间的 \max 值,用权值线段树维护 las,然后在线段树上二分第一个 las 小于询问位置的地方。

每次会删除一个区间,增加一些区间,但增加的区间除了最后一个区间外, \max 值原来是不存在的。由于只可能有 n 个不同的 \max 值,每次只会删除一个 \max 值,所以总共只有 O(n) 次询问 \max 值和找对应的区间。

mex 值对应的区间变化后,记得维护一下对转移的贡献。

时间复杂度 $O(n \log n)$ 。

B

发现 1:

若 $a \leq b \leq c$ 一定有 $a \oplus c \geq \min(a \oplus b, b \oplus c)$,那么集合 S 中只有相邻的 (i,j) 才会对答案有影响。证明考虑 $a \oplus c$ 中第一位不为 0 的地方, $a \oplus b$ 或 $b \oplus c$ 中一定有一个这一位为 0。

发现 2:

若 $a \leq b$ 一定有 $b \oplus a \geq b - a$ 。

发现 3:

对于一对相邻的 (i,j),枚举 x,只保留有用的 x,即异或值是前缀 \min ,发现只有 O(V) 个。且一定是让 i+x 或 j+x 的二进制下后 $k,0 \le k \le V$ 位全是 0 的时候。证明考虑 i+x 的后 k 位是 0,继续让 x 变大。若 j+x 向 k+1 位进位了,那么情况变成 j+x 的后一些位为 0 了;否则不进位的情况下,只考虑后 k 位,根据发现 2 肯定不可能更优。

有前两个发现后,设 k 为 $2^k \ge |i-j|$ 的最小值,那么 $x \ge k$ 时一定可以让较小数后 k 位位变成 0,达到异或的最小值 |i-j|。记 $mn = \min(|i-j|)$ 即所有相邻对差的最小值,那么 $x \ge mn$ 时 ans = mn,否则枚举答案。由于 $mn \le \frac{2^V}{|S|}$,所以 sub2 时间复杂度 $O(2^V)$,sub3 时间复杂度为调和级数 $O(V2^V)$ 。

有前三个发现后,用 set 维护一下有用的二元组 $(x,(x+i)\oplus(x+j))$ 即可。时间复杂度 $O(nV\log n)$ 。

C

先考虑 $\operatorname{sub4}$,分别维护一下节点 [l,0] 和 [k+1,r] 连出去的所有边形成的 生成树(此生成树可能包含 [1,k] 的点),再维护一下边的两个端点全在 [1,k] 的生成树(此生成树只包含 [1,k] 的点且不会改变)。求答案时将 3 棵 生成树的边拿出来重新求最小生成树即可。

容易发现 [l,0] 的生成树中只有 [1,k] 路径上的最大的边才可能最终不在答案的生成树上,由于需要插入,所以维护 $[l,l+k-1]\cup [1,k]$ 点集的虚树,边权为缩掉的边的 \max 。这样插入时就对新增的 k-1 条边和原来虚树上的O(k) 条边一起建最小生成树然后建虚树,把所有后缀的生成树 $[i,0],l\leq i\leq 0$ 全部记录下来,这样方便删除。

[k+1,r] 的生成树也同理维护,这样求答案时只需对 O(k) 条边求最小生成树,时间复杂度 $O(nk\log k)$ 。

正解的话,还是一样的维护,只是中间的k个点就不一定是[1,k]了。当点数 $\leq k$ 时就 prim 暴力,否则一样维护 3 棵生成树,若最左或者最右的生成树被 删除完了,并且开始删中间k个点时就重构这个结构。重新选现在区间中中间的k个点[ol,or],然后两边重建生成树。

将势能设置为 $\max(ol-L,R-or)$,插入会让势能 +1,重构会让势能减半,但重构复杂度为O(势能 $\cdot k \log k)$ 。

因为有 prim, 时间复杂度 $O(nk^2)$, 但运行时瓶颈在插入的 $O(nk\log k)$ 。