Conditional Expected Shortfall

Nonparametric Estimation

Young-geun Kim ygeunkim.github.io

2019711358, Department of Statistics

09 Dec, 2019

Expected Shortfall

Nonparametric Estimation

Statistical Properties

Simulation for Asymptotic Normality

Future Study

Reviewed Paper

[1] Z. Cai and X. Wang. "Nonparametric estimation of conditional VaR and expected shortfall". In: *Journal of Econometrics* 147.1 (2008), pp. 120-130. ISSN: 0304-4076. DOI: 10.1016/j.jeconom.2008.09.005.

Expected Shortfall

Value at Risk

Tsay (2010) says that

Measure of loss under *normal* market conditions Minimal loss under *extraordinary* market circumstances

Value at Risk

p: Right tail probability

1: Time horizon

L(I): loss function of the asset

F: CDF of the loss

$$p = P[L(I) \ge VaR]$$

Subadditivity

Coherent risk measure

Homogeneity

Monotonicity

Translation invariance (risk-free condition)

Subadditivity

VaR

does not satisfy subadditivity

When two portfolios are merged, the risk measure should not be greater than the sum of each.

VaR underestimates the actual loss.

Conditional VaR

Stationary log-return
$$\{Y_t: t=1,\ldots n\}$$

Exogenous variable $\{X_t: t=1,\ldots n\}$
Conditional VaR (CVaR) or Expected Shortfall (ES)

$$\nu_p(x) = S^{-1}(p \mid x)$$

where

$$S(y \mid x) := 1 - F(y \mid x)$$

F: conditional CDF of Y_t given $X_t = x$.

Conditional Expected Shortfall

We are interested in Expected Shortfall given exogenous variable values

Conditional Expected Shortfall (CES)

$$\mu_p(x) = E[Y_t \mid Y_t \ge \nu_p(x), X_t = x]$$

Formulating CES

Let
$$B \equiv \{\omega \colon Y_t(\omega) \mid X_t = x \ge \nu_p(x)\} \in \mathcal{B}$$
. Then

$$\mu_{p}(x) = E[Y_{t} \mid Y_{t} \geq \nu_{p}(x), X_{t} = x]$$

$$= \frac{1}{P(B)} \int_{B} Y_{t} dP$$

$$= \frac{1}{P(Y_{t} \geq \nu_{p}(x) \mid X_{t} = x)} \int_{\nu_{p}(x)}^{\infty} yf(y \mid x) dy$$

$$= \frac{1}{p} \int_{\nu_{p}(x)}^{\infty} yf(y \mid x) dy$$

Nonparametric Estimation

Workflow of Estimation

Plugging-in Method

$$\hat{\mu}_p(x) = \frac{1}{p} \int_{\hat{\nu}_p(x)}^{\infty} y \hat{f}(y \mid x) dy$$

What to estimate

Conditional PDF: $\hat{f}(y \mid x)$

CVaR: $\hat{\nu}_p(x) = \hat{S}^{-1}(p \mid x)$ by inverting the conditional CDF

Conditional Disribution

Taylor expansion

Consider any symmetric kernel $K_h(\cdot)$. Then

$$E[K_h(y - Y_t) \mid X_t = x] = K_h * f_{y|x}(y)$$

$$= f(y \mid x) + \frac{h^2}{2} \mu_2(K) f^{(2)}(y \mid x) + o(h^2)$$

where $\mu_j(K) = \int_{\mathbb{R}} u^j K(u) du$.

Smoothing

$$f(y \mid x) \approx E[K_h(y - Y_t) \mid X_t = x]$$

Methods

Local Linear Weighted Nadaraya Watson WDKLL (Cai and Wang 2008)

Double Kernel Local Linear

Denote
$$Y_t^*(y) \equiv K_h(y - Y_t)$$
.

$$\hat{f}(y \mid x) = \underset{\alpha(x), \beta(x)}{\operatorname{argmin}} \sum_{t=1}^{n} W_{\lambda}(x - X_{t}) \left[Y_{t}^{*}(y) - \alpha(x) - \beta(x)(X_{t} - x) \right]^{2}$$

Since this is involved in the two kernel $(K_h(\cdot), W_{\lambda}(\cdot))$, Cai and Wang (2008) names this as double kernel.

Local Linear Solution

Note that the local linear estimate is equivalent to WLS.

$$\begin{aligned} \mathbf{Y}_{y}^{*} &= \left(Y_{1}(y), \dots, Y_{n}(y)\right)^{T} \in \mathbb{R}^{n} \\ \mathbf{b}_{x}(x_{t}) &:= \left(1, x_{t} - x\right)^{T} \in \mathbb{R}^{2} \text{ and } \mathbf{b}_{x}(x) = \mathbf{e}_{1} := \left(1, 0\right)^{T} \\ X_{x} &:= \left(\mathbf{b}_{x}(x_{i})^{T}\right) \in \mathbb{R}^{n \times 2} \\ W_{x} &:= diag(W_{\lambda}(x - X_{j})) \in \mathbb{R}^{n \times n} \end{aligned}$$

Then $\hat{f}_{II} = \hat{\alpha}$:

$$\hat{f}_{II}(y \mid x) = \mathbf{e}_{1}^{T} (X_{x}^{T} W_{x} X_{x})^{-1} X_{x}^{T} W_{x} \mathbf{Y}_{y}^{*}$$

$$= \mathbf{I}(x)^{T} \mathbf{Y}_{y}^{*}$$

$$\equiv \sum_{t=1}^{n} I_{t}(x) Y_{t}^{*}(y)$$

Linear Smoother

$$\mathbf{I}(x)^T = \mathbf{e}_1^T (X_x^T W_x X_x)^{-1} X_x^T W_x$$

By annoying arithmetic,

$$I_t(x) = \frac{S_2(x) - (X_t - x)S_1(x)}{S_0(x)S_2(x) - [S_1(x)]^2} W_{\lambda}(x - X_t)$$

where
$$S_{j}(x) := \sum_{t=1}^{n} W_{\lambda}(x - X_{t})(X_{t} - x)^{j}$$
.

Matrix computations

Let $w_t \equiv W_{\lambda}(x - X_t)$

$$(X_x^T W_x X_x) = \begin{bmatrix} \sum_t w_t & \sum_t w_t (x_t - x) \\ \sum_t w_t (x_t - x) & \sum_t w_t (x_t - x)^2 \end{bmatrix} \equiv \begin{bmatrix} S_0 & S_1 \\ S_1 & S_2 \end{bmatrix}$$
$$X_x^T W_x = \begin{bmatrix} w_1 & \cdots & w_n \\ w_1 (x_1 - x) & \cdots & w_n (x_n - x) \end{bmatrix}$$

Thus,

$$\mathbf{I}(x)^{T} = \frac{1}{S_{0}S_{2} - S_{1}^{2}} \left[S_{2}w_{1} - S_{1}w_{1}(x_{1} - x) \cdots S_{2}w_{n} - S_{1}w_{n}(x_{n} - x) \right]$$

Discrete Moments Conditions

$$S_j(x) := \sum_{t=1}^n W_{\lambda}(x - X_t)(X_t - x)^j = \delta_{0,j} = \begin{cases} 1 & j = 0 \\ 0 & \text{o/w} \end{cases}$$

will be used when showing the asymptotic properties

CVaR

Invert $\hat{F}_{II}(y \mid x)$

Conditional CDF

$$\hat{F}_{II}(y \mid x) = \int_{\infty}^{y} \hat{f}_{II}(y \mid x) dy$$
$$= \sum_{t=1}^{n} I_{t}(x) G_{h}(y - Y_{t})$$

where $G(\cdot)$ is the cdf of $K(\cdot)$.

Problem

It must be $\hat{F}_{II} \in [0,1]$ and monotone increasing However, LL does not guarantee these properties.

Weighted Nadaraya Watson

To get the right shape of CDF

$$\hat{F}_{NW}(y \mid x) = \sum_{t=1}^{n} H_t(x, \lambda) I(Y_t \le y)$$

where

$$H_t(x,\lambda) = \frac{p_t(x)W_\lambda(x-X_t)}{\sum\limits_{i=1}^n p_i(x)W_\lambda(x-X_i)}$$

 $p_t(x)$ is weighted for each NW weight. Cai (2001) finds the best weights $\{p_t\}_1^n$ by maximizing the empirical likelihood.

Choosing weights

Constraints

$$p_t(x) \ge 0$$
$$\sum_t p_t(x) = 1$$

Discrete moments conditions $\sum_{t=1}^{n} H_t(x,\lambda)(X_t-x)^j = \delta_{0,j}, \ 0 \le j < 1$

Empirical likelihood

Maximize $\sum_{t} \ln p_t(x)$. Lagrangian multiplier gives that

$$p_t(x) = \frac{1}{n\left[1 + \gamma(X_t - x)W_\lambda(x - X_i)\right]} \ge 0$$

and γ uniquely maximizing the log of the empirical likelihood

$$L_n(\gamma) = -\sum_{i=1}^{n} \ln \left[1 + \gamma (X_t - x) W_{\lambda}(x - X_i) \right]$$

Weighted Double Kernel Local Linear

In a local linear scheme, replace linear smoother with WNW weight

$$\hat{f}_{cai}(y \mid x) = \sum_{t=1}^{n} H_t(x, \lambda) Y_t^*(y)$$

and hence,

$$\hat{F}_{cai}(y \mid x) = \int_{\infty}^{y} \hat{f}_{cai}(y \mid x) dy$$
$$= \sum_{t=1}^{n} H_{t}(x, \lambda) G_{h}(y - Y_{t})$$

Inverting and Plugging-in

CVaR

$$\hat{\nu}_p^{(cai)}(x) = \hat{S}_{cai}^{-1}(p \mid x)$$

where $\hat{S}_{cai}(y \mid x) = 1 - \hat{F}_{cai}(y \mid x)$

CES

$$\hat{\mu}_{p}(x) = \frac{1}{p} \sum_{t=1}^{n} H_{t}(x, \lambda) \left[Y_{t} \bar{G}_{h}(\hat{\nu}_{p}(x) - Y_{t}) + hG_{1,h}(\hat{\nu}_{p}(x) - Y_{t}) \right]$$

where
$$\bar{G}(u) = 1 - G(u)$$
 and $G_1(u) = \int_u^{\infty} vK(v)dv$.

Statistical Properties

Asymptotic Normality

Investigate

$$\hat{f}_{cai}(y \mid x)$$
 $\hat{S}_{cai}(y \mid x) = 1 - \hat{F}_{cai}(y \mid x)$
 $\hat{\nu}_p(x)$
 $\hat{\mu}_p(x)$

at both

Interior	Boundary
X	$x = c\lambda$

Interior

$$\sqrt{n\lambda}\left[\hat{\mu}_{p}(x) - \mu(x) - B_{\mu}(x)\right] \stackrel{\mathcal{D}}{\longrightarrow} N\left(0, \sigma_{\mu}^{2}(x)\right)$$

If some condition is added, Bias becomes smaller:

$$\sqrt{n\lambda}\left[\hat{\mu}_p(x) - \mu(x) - B_{\mu,0}(x)\right] \stackrel{\mathcal{D}}{\longrightarrow} N\left(0, \sigma_{\mu}^2(x)\right)$$

AMSE

Bias

Note that

$$\hat{\mu}_p(x) - \mu(x) = O_p\left(\lambda^2 + h^2 + (n\lambda)^{-\frac{1}{2}}\right)$$

and hence, $\hat{\mu}_p(x)$ is a *consistent* with a convergent rate $\sqrt{n\lambda}$

Optimal Bandwidth

$$n^{-\frac{4}{5}}$$

Boundary

W.L.O.G. the left boundary point $x = c\lambda$ s.t.

$$\begin{array}{l} \textit{sptK} = [-1,1] \\ \textit{c} \in (0,1) \end{array}$$

$$\sqrt{n\lambda}\left[\hat{\mu}_{p}(c\lambda) - \mu(c\lambda) - B_{\mu,c}\right] \stackrel{\mathcal{D}}{\longrightarrow} N\left(0, \sigma_{\mu,c}^{2}\right)$$

Simulation for Asymptotic Normality

Main Packages

```
# devtools::install_github("ygeunkim/ceshat")
library(ceshat)
# devtools::install_github("ygeunkim/youngtool")
library(youngtool)
# GARCH
library(fGarch)
```

For details, see my Github package repositories¹

 $^{^{1}\}mathrm{github.com/ygeunkim/ceshat}$ and $\mathrm{github.com/ygeunkim/youngtool}$

Models

AR(1)-GARCH(1, 0)

$$\begin{cases} X_t = Y_{t-1} \\ Y_t = 0.01 + 0.62X_t + \sigma_t \epsilon_t \\ \sigma_t^2 = -0.15 + 0.65\sigma_{t-1}^2 \\ \epsilon_t \sim N(0, 1) \end{cases}$$

Random number generation

Monte Carlo Samples:

For fixed
$$x_t$$

Generate GARCH(1, 0): (σ_t, ϵ_t)
 $X_t = Y_{t-1}$
AR(1): $Y_t = 0.01 + 0.62Y_{t-1} + \sigma_t \epsilon_t$

```
garch sim \leftarrow function(n, cond, ar mu = .01, ar = .62) {
  garch spec <-
    garchSpec(
      cond.dist = "norm",
      model = list(
        omega = .15, alpha = 0, beta = .65
  tibble(garch = garchSim(garch_spec, n = n) %>% as.numeric
    mutate(
      x = cond.
      y = ar mu + ar * x + garch
    ) %>%
    select(y) %>% # to use youngtool (experimental stage)
    pull()
```

Monte Carlo Simulation

Empirical Distribution

```
x <- runif(1)
mc <- cond_sim(200, 500, x)
```

Interior

Empirical distribution of $\hat{\mu}_p(0.266)$ Shape of Normal distribution

Boundary

```
bound c \leftarrow runif(1) * 200^(-4/5)
mc2 \leftarrow cond sim(200, 500, bound c)
At x = 0.009.
CES2 <-
  mc2[.
       .(mu =
           wdkll ces(x ~ xcond, .SD) %>%
           predict(newx = unique(xcond))),
       by = mc
```


Empricial distribution of $\hat{\mu}_p(x)$ at the left boundary point Shape of Normal distribution

Future Study

Bandwidth Selection

Two bandwidths

Initial bandwidth h: insensitive to the final estimation WNW bandwith λ

Strategy

```
Use linear estimators WNW estimator: select one \tilde{h} h \leq 0.1 \tilde{h}: take small initial bandwidth Given h Use \hat{F}_{col}
```

Criterion

```
Nonparametric AIC (Cai and Tiwari 2000) GCV?
```

Monte Carlo Simulation

More sophiscated design Various x values Integrating with bandwidth selection

Real Data

Cai and Wang (2008) used Dow Jones index with daily return defined by y_t : = $-100 \ln \frac{P_t}{P_{t-1}}$

Related contents

Project repository

https://github.com/ygeunkim/nonparam-cvar

Package repository

https://github.com/ygeunkim/ceshat

References

Cai, Zongwu. 2001. "Weighted Nadaraya—Watson Regression Estimation." *Statistics & Probability Letters* 51 (3): 307–18.

Cai, Zongwu, and Ram C Tiwari. 2000. "Application of a Local Linear Autoregressive Model to Bod Time Series." *Environmetrics: The Official Journal of the International Environmetrics Society* 11 (3): 341–50.

Cai, Zongwu, and Xian Wang. 2008. "Nonparametric estimation of conditional VaR and expected shortfall." *Journal of Econometrics* 147 (1): 120–30. https://doi.org/10.1016/j.jeconom.2008.09.005.

Tsay, Ruey S. 2010. *Analysis of Financial Time Series*. John Wiley & Sons.