Artificial Intelligence

Taro Sekiyama

National Institute of Informatics (NII) sekiyama@nii.ac.jp

Unsupervised learning

Goal: learning patterns of datasets without knowing correct answers

https://www.geeksforgeeks.org/clustering-in-machine-learning/

Task

Cluster analysis

- Grouping similar data points
- Applications include:
 - Marketing
 - Helpful for advertisement to identify customer groups having different preferences
 - Medicine
 - Useful to find diseases from symptoms

Task

Feature transformation/extraction

- Finding (transformation to) the most informative features of data points
- Applications include:
 - Understanding and visualization of data
 - Dimensionality reduction
 - Reducing the number of features
 - Contributing to improvement of accuracy,
 speed-up of training, and efficient memory usage

Agenda

- Cluster analysis
 - □ K-means
 - Hierarchical clustering
- Feature transformation
 - □ Principal component analysis (PCA)

- Constructing dendrograms (tree diagrams)
- Input: $X = \{x_1, ..., x_m\} \subseteq \mathbb{R}^n$
- Output: a dendrogram where:
 - Leaf nodes are data points
 - Internal nodes are clusters containing data points below it

- Constructing dendrograms (tree diagrams)
- Input: $X = \{x_1, ..., x_m\} \subseteq \mathbb{R}^n$
- Output: a dendrogram where:
 - Leaf nodes are data points
 - Internal nodes are clusters containing data points below it

- Constructing dendrograms (tree diagrams)
- Input: $X = \{x_1, ..., x_m\} \subseteq \mathbb{R}^n$
- Output: a dendrogram where:
 - Leaf nodes are data points
 - Internal nodes are clusters containing data points below it

- Constructing dendrograms (tree diagrams)
- Input: $X = \{x_1, ..., x_m\} \subseteq \mathbb{R}^n$
- Output: a dendrogram where:
 - Leaf nodes are data points
 - Internal nodes are clusters containing data points below it

Algorithms

- Agglomerative (bottom-up) clustering
- Divisive (top-down) clustering
 - Not presented in this lecture

Let each data point be a single cluster

- Let each data point be a single cluster
- Repeat two steps until we get the cluster containing all the points
 - Find two clusters nearest to each other

- Let each data point be a single cluster
- Repeat two steps until we get the cluster containing all the points
 - Find two clusters nearest to each other
 - 2. Merge them and make a new cluster

- Let each data point be a single cluster
- Repeat two steps until we get the cluster containing all the points
 - Find two clusters nearest to each other
 - 2. Merge them and make a new cluster

- Let each data point be a single cluster
- Repeat two steps until we get the cluster containing all the points
 - Find two clusters nearest to each other
 - 2. Merge them and make a new cluster

- Let each data point be a single cluster
- Repeat two steps until we get the cluster containing all the points
 - Find two clusters nearest to each other
 - 2. Merge them and make a new cluster

- Let each data point be a single cluster
- Repeat two steps until we get the cluster containing all the points
 - Find two clusters nearest to each other
 - Merge them and make a new cluster

- Let each data point be a single cluster
- Repeat two steps until we get the cluster containing all the points
 - Find two clusters nearest to each other
 - 2. Merge them and make a new cluster

- Let each data point be a single cluster
- Repeat two steps until we get the cluster containing all the points
 - Find two clusters nearest to each other
 - Merge them and make a new cluster

- Let each data point be a single cluster
- Repeat two steps until we get the cluster containing all the points
 - Find two clusters nearest to each other
 - Merge them and make a new cluster

- Let each data point be a single cluster
- Repeat two steps until we get the cluster containing all the points
 - Find two clusters nearest to each other
 - 2. Merge them and make a new cluster

- Let each data point be a single cluster
- Repeat two steps until we get the cluster containing all the points
 - Find two clusters nearest to each other
 - 2. Merge them and make a new cluster

- Let each data point be a single cluster
- Repeat two steps until we get the cluster containing all the points
 - Find two clusters nearest to each other
 - 2. Merge them and make a new cluster

- Let each data point be a single cluster
- Repeat two steps until we get the cluster containing all the points
 - Find two clusters nearest to each other
 - 2. Merge them and make a new cluster

Importance of distance

- Distance determines which clusters are merged
- May be influential on the final clustering results

Cluster distance (linkage criterion)

Complete linkage

$$d(c_1, c_2) = \max_{\substack{x_1 \in c_1, x_2 \in c_2}} ||c_1 - c_2||$$

Cluster distance (linkage criterion)

Single linkage

$$d(c_1, c_2) = \min_{\substack{x_1 \in c_1, x_2 \in c_2}} ||c_1 - c_2||$$

Distance

■ Distance between data points $||x_1 - x_2||$ $(x_1 = (x_{11}, ..., x_{1m}), x_2 = (x_{21}, ..., x_{2m}) \in \mathbb{R}^m)$

Euclid distance

$$||x_1 - x_2|| = \sqrt{(x_{11} - x_{21})^2 + \dots + (x_{1m} - x_{2m})^2}$$

Manhattan distance

$$||x_1 - x_2|| = \sum |x_{1i} - x_{2i}|$$

□ etc.

Advantages

- Easy to implement (for the agglomerative version)
- Possible to make clusters flexibly
 - Specifying the number of clusters
 - Specifying the number of data points in a single cluster
 - □ etc.

Disadvantages

- Not scaling to huge datasets
 - □ Time complexity: $O(n^2)$
- Difficult to decide how to make clustering especially for huge datasets

Agenda

- Cluster analysis
 - □ Hierarchical clustering
 - □ K-means
- Feature transformation
 - □ Principal component analysis (PCA)

K-means

- Finding *K* clusters from given data points
- Input: $X = \{x_1, ..., x_m\} \subseteq \mathbb{R}^n$
- Output: $c_1, ..., c_K \subseteq X$ s.t.
 - 1. $c_i \cap c_j = \emptyset$ for any $i, j \ (i \neq j)$

K-means

- Finding *K* clusters from given data points
- Input: $X = \{x_1, ..., x_m\} \subseteq \mathbb{R}^n$
- Output: $c_1, ..., c_K \subseteq X$ s.t.
 - 1. $c_i \cap c_j = \emptyset$ for any $i, j \ (i \neq j)$
 - 2. $\sum_{i} \sum_{x_i \in c_i} ||x_i m_i||^2 \text{ is minimized}$

 $(m_i \text{ is the mean of } c_i)$

Problem

- Solving the problem is NP-hard
- We need a heuristic
 - □ Ex: Lloyd's algorithm

Idea of Lloyd's algorithm

Estimating center locations of each clusters

Idea of Lloyd's algorithm

Estimating center locations of each clusters

Idea of Lloyd's algorithm

Estimating center locations of each clusters

Idea of Lloyd's algorithm

- Estimating center locations of each clusters
 - □ The locations are called centroids

1. Select K centroids m_1, \ldots, m_K from given data points at random

1. Select K centroids m_1, \ldots, m_K from given data points at random

- 1. Select K centroids $m_1, ..., m_K$ from given data points at random
- 2. Construct clusters c_1, \ldots, c_K s.t. each c_i collects data points nearest to m_i

$$c_i = \{x \in X \mid \forall j \le k, \|x - m_i\| \le \|x - m_j\|\}$$

- 1. Select K centroids $m_1, ..., m_K$ from given data points at random
- 2. Construct clusters c_1, \ldots, c_K s.t. each c_i collects data points nearest to m_i

$$c_i = \{x \in X \mid \forall j \le k, \|x - m_i\| \le \|x - m_j\|\}$$

- 1. Select K centroids m_1, \ldots, m_K from given data points at random
- 2. Construct clusters c_1, \ldots, c_K s.t. each c_i collects data points nearest to m_i

$$c_i = \{x \in X \mid \forall j \le k, \|x - m_i\| \le \|x - m_j\|\}$$

- 1. Select K centroids m_1, \ldots, m_K from given data points at random
- 2. Construct clusters c_1, \ldots, c_K s.t. each c_i collects data points nearest to m_i

$$c_i = \{x \in X \mid \forall j \le k, \|x - m_i\| \le \|x - m_j\|\}$$

3. Update the centroids
$$m_i = \frac{1}{|c_i|} \sum_{x \in c_i} x$$

- 1. Select K centroids m_1, \ldots, m_K from given data points at random
- 2. Construct clusters c_1, \ldots, c_K s.t. each c_i collects data points nearest to m_i

$$c_i = \{x \in X \mid \forall j \le k, \|x - m_i\| \le \|x - m_j\|\}$$

- 3. Update the centroids $m_i = \frac{1}{|c_i|} \sum_{x \in c_i} x$
- 4. Repeat Steps 2 & 3 until the clusters are no longer updated

- 1. Select K centroids m_1, \ldots, m_K from given data points at random
- 2. Construct clusters c_1, \ldots, c_K s.t. each c_i collects data points nearest to m_i

$$c_i = \{x \in X \mid \forall j \le k, \|x - m_i\| \le \|x - m_j\|\}$$

- 3. Update the centroids $m_i = \frac{1}{|c_i|} \sum_{x \in c_i} x$
- 4. Repeat Steps 2 & 3 until the clusters are no longer updated

- 1. Select K centroids m_1, \ldots, m_K from given data points at random
- 2. Construct clusters c_1, \ldots, c_K s.t. each c_i collects data points nearest to m_i

$$c_i = \{x \in X \mid \forall j \le k, \|x - m_i\| \le \|x - m_j\|\}$$

- 3. Update the centroids $m_i = \frac{1}{|c_i|} \sum_{x \in c_i} x$
- 4. Repeat Steps 2 & 3 until the clusters are no longer updated

- 1. Select K centroids m_1, \ldots, m_K from given data points at random
- 2. Construct clusters c_1, \ldots, c_K s.t. each c_i collects data points nearest to m_i

$$c_i = \{x \in X \mid \forall j \le k, \|x - m_i\| \le \|x - m_j\|\}$$

- 3. Update the centroids $m_i = \frac{1}{|c_i|} \sum_{x \in c_i} x$
- 4. Repeat Steps 2 & 3 until the clusters are no longer updated

- 1. Select K centroids m_1, \ldots, m_K from given data points at random
- 2. Construct clusters c_1, \ldots, c_K s.t. each c_i collects data points nearest to m_i

$$c_i = \{x \in X \mid \forall j \le k, \|x - m_i\| \le \|x - m_j\|\}$$

- 3. Update the centroids $m_i = \frac{1}{|c_i|} \sum_{x \in c_i} x$
- 4. Repeat Steps 2 & 3 until the clusters are no longer updated

- 1. Select K centroids m_1, \ldots, m_K from given data points at random
- 2. Construct clusters c_1, \ldots, c_K s.t. each c_i collects data points nearest to m_i

$$c_i = \{x \in X \mid \forall j \le k, \|x - m_i\| \le \|x - m_j\|\}$$

- 3. Update the centroids $m_i = \frac{1}{|c_i|} \sum_{x \in c_i} x$
- 4. Repeat Steps 2 & 3 until the clusters are no longer updated

Advantages of Lloyd's algorithm

- Easy to implement
- Fast
 - \square Time complexity is $O(n^2)$
 - \square Empirically known that it works *as if* its time complexity is O(n)

Disadvantages of Lloyd's algorithm

- Difficult to choose *K*
 - Users have to decide the number of clusters in advance
- Dependence on initial centroids
 - Globally optimal clusters may not be found

Agenda

- Cluster analysis
 - □ Hierarchical clustering
 - □ K-means
- **■** Feature transformation
 - Principal component analysis (PCA)

Principal components analysis

- Transforming features into informative ones, called *principal components (PCs)*
- Transformation is performed by linear combination
 - \square Function F mapping m-dimensional points to PCs is expressed by

$$F(x_1, ..., x_m) = a_1 x_1 + a_2 x_2 + \cdots + a_m x_m$$

using parameters $a_1, ..., a_m$

Problem

What parameters $a_1, ..., a_m$ do make F return the most informative PCs?

- Q1. What does "informative" mean?
- Q2. How do we calculate the parameters?

Variance

- A statistical metric to measure how data points spread out
- The variance Var(X) of $X \subseteq \mathbb{R}$ is defined by

$$\frac{1}{|X|} \sum_{x \in X} (x - m)^2$$

where m is the mean of X (= $\frac{1}{|X|} \sum_{x \in Y} x$)

The variance of

Goal

Finding parameters a_1, \ldots, a_m s.t.

 $\mathbf{Var}(\{F(x) \mid x \in X \subseteq \mathbb{R}^m\})$ is maximized

(= the variance of the PCs F(x) for the data points x in X is maximized)

Problem

The variance can be arbitrarily large by taking large parameters

Goal

Finding parameters a_1, \ldots, a_m s.t.

 $\mathbf{Var}(\{F(x) \mid x \in X \subseteq \mathbb{R}^m\})$ is maximized

(= the variance of the PCs F(x) for the data points x in X is maximized)

under the condition that $a_1^2 + \cdots + a_m^2 = 1$

Problem

What parameters $a_1, ..., a_m$ do make F return the most informative PCs?

- Q1. What does "informative" mean?
- Q2. How do we calculate the parameters?

Problem

What parameters $a_1, ..., a_m$ do make F return the most informative PCs?

Q1. What does "informative" mean?

Q2. How do we calculate the parameters?

- Using Language multipliers
- C.f. "Pattern Recognition and Machine Learning" Chapter 12.1 for detail

The second and further PCs

- ullet The PCs returned by F usually lost some information from original features
- The 2nd, 3rd, 4th, ..., and m-th informative PCs are needed to recover the original features in \mathbb{R}^m completely
- In general, the i-th informative PCs are obtained as F but they should be independent of the (i-1)-th and earlier informative PCs