Lista 4 - Limites e continuidade

1. Investigue se os limites abaixo existem ou não. Se o limite existir, calcule-o e se não existir, justifique sua resposta:

a)
$$\lim_{x \to 2} \frac{\frac{1}{x} - \frac{1}{2}}{x - 2}$$

e)
$$\lim_{x \to -2} -\frac{x}{x+2}$$

b)
$$\lim_{x \to 1} \frac{x^3 - x}{x^2 - 6x + 5}$$

f)
$$\lim_{x \to 0} \frac{\sqrt{x+4}-2}{x}$$

c)
$$\lim_{x\to 0} \begin{cases} 2-x, se \ x < 0 \\ 1+x^2, se \ x \ge 0 \end{cases}$$

g)
$$\lim_{t \to 2} \frac{t^3 + 3t^2 - 12t + 4}{t^3 - 4t}$$

d)
$$\lim_{x \to 1} \sqrt{\frac{3}{1-x^3} + \frac{1}{x-1}}$$

h)
$$\lim_{x \to -4} \frac{2x+8}{x^2+x-12}$$

2. Encontre as assíntotas e esboce o gráfico das seguintes funções:

a)
$$f(x) = \frac{x+3}{x+2}$$

b)
$$f(x) = -\frac{8}{x^2-4}$$

3. Determine o domínio das funções e calcule seus limites no infinito:

a)
$$f(x) = \frac{2x^2}{1-x^2}$$

b)
$$f(x) = \frac{3x^3 - x + 1}{x^3 - 2x^2 - 3x}$$

4. Verifique se as funções a seguir são contínuas nos pontos indicados. Caso não sejam, determine as razões da descontinuidade:

a)
$$f(x) = \frac{x}{x^2 - 1}$$
 para $x = -2$ e $x = 1$.

b)
$$f(x) = \begin{cases} -x - 2, se \ x \neq 3 \\ -5, se \ x = 3 \end{cases}$$
, em $x = 3$.

c)
$$f(x) = \begin{cases} \frac{x^2}{4}, x < 2\\ \frac{(\sqrt{4x-7}+1)}{2}, x \ge 2 \end{cases}$$
, para $x = 2$.

d)
$$f(x) = \begin{cases} 1, & \text{se } x < 1 \\ 2x - 1, & \text{se } 1 \le x < 2, \text{ para } x = 1 \text{ e } x = 2. \\ x + 1, & \text{se } x \ge 2 \end{cases}$$

5. Determine as assíntotas horizontais e verticais das funções dadas e identifique-as nos gráficos:

a)
$$f(x) = \frac{2x^2}{x^2 - 1}$$

c)
$$f(x) = \frac{5x}{(x-4)(x^2-5)}$$

d)
$$f(x) = \frac{3x}{x(x+3)(x^2-4)}$$

e)
$$f(x) = \frac{2x}{\sqrt{x^2+4}}$$

f)
$$f(x) = \frac{2x^2+1}{2x^2-3x}$$

Lista 4 - Respostas

1.

a)
$$-1/4$$

e) ∄

b)
$$-1/2$$

f) $\frac{1}{4}$

g) $\frac{3}{3}$

d)
$$-1/40$$

h) -

2.

a)
$$f(x) = \frac{x+3}{x+2}$$
.

I. Assíntota Horizontal: y = 1

II. Assíntota Vertical: x = -2

b)
$$f(x) = -\frac{8}{x^2-4}$$

I. Assíntota Horizontal: y = 0

II. Assíntotas Verticais: x = -2 e x = 2

3.

a)
$$f(x) = \frac{2x^2}{1-x^2}$$

I. Domínio: $\{x \in \mathbb{R} \mid x \neq -1 \ e \ x \neq 1\}$

II. $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = -2$ (Assíntota Horizontal)

III. Assíntotas Verticais: x = -1 e x = 1

b)
$$f(x) = \frac{3x^3 - x + 1}{x^3 - 2x^2 - 3x}$$

I. Domínio: $\{x \in \mathbb{R} \mid x \neq 0, x \neq -1 \ e \ x \neq 3\}$

II. $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = 3$ (Assíntota Horizontal)

III. Assíntotas Verticais: x = -1, x = 0 e x = 3

4.

- a) Contínuo para x = -2 e descontínuo para x = 1.
- b) Contínuo para x = 3.
- c) Contínuo para x = 2.
- d) Contínuo para x = 1 e x = 2.

5. Determine as assíntotas horizontais e verticais das funções dadas e identifique-as nos gráficos:

a)
$$f(x) = \frac{2x^2}{x^2 - 1}$$

Assíntota Horizontal: y = 2

Assíntota Vertical: x = -1 e x = 1

b)
$$f(x) = \frac{3x-5}{x-2}$$

Assíntota Horizontal: y = 3

Assíntota Vertical: x = 2

c)
$$f(x) = \frac{5x}{(x-4)(x^2-5)}$$

Assíntota Horizontal: y = 0

Assíntota Vertical:
$$x = -\sqrt{5}$$
, $x = \sqrt{5}$ e $x = 4$

d)
$$f(x) = \frac{3x}{x(x+3)(x^2-4)}$$

Assíntota Horizontal: y = 0

Assíntota Vertical:
$$x = -3$$
, $x = -2$ e $x = 2$

e)
$$f(x) = \frac{2x}{\sqrt{x^2+4}}$$

Assíntota Horizontal: y = -2 e y = 2.

Assíntota Vertical: não tem

f)
$$f(x) = \frac{2x^2+1}{2x^2-3x}$$

Assíntota Horizontal: y = 1

Assíntota Vertical: x = 0 e x = 3/2

