

Índice

-2

- □ Introducción Big Data 1° semana
- □ Introducción a Big Data y Business Intelligence
- Problemas
- Herramientas
- □ Casos de éxito
- □ Introducción NOSQL

-INGP. 2021

Indice Introducción de Big Data All of the Information you need! INGP. 2021

Introducción Big Data

□ Entendiendo Big Data

Introducción Big Data

BIG DATA projects aren't one man thing

- Servidores
- Arquitectura
- Programación
- Diseño
- Análisis
- Dirección
 - DevOps, Backend, Frontend, Data scientist...

•INGP. 2021

7

Introducción Big Data

- Data scientist
 - ...a data scientist is 1) a data analyst in California or 2) a statistician under 35
 - Gartner blog post by analyst Svetlana Sicular
 - Estadística
 - R, Matlab, SAS, SPSS
 - Minería de datos
 - Procesamiento de lenguaje natural
 - Machine Learning
 - Map/Reduce, Hadoop, Hive, etc
 - Python
 - The notion of a Data Scientist is a little mad but then so is Big Data.

 Removing the buzzwords just leaves you with....Data.

INGP. 2021

Introducción Big Data

No todo son analíticas

creative coders, data designers and artists http://eyeofestival.com/

http://content.stamen.com/visualizing a day of financial transactions on nasc aq part 2
INGP. 2021

http://content.stamen.com/facebook_mapping_how_viral_photos_spread

9

Introducción Big Data

10

- □ BIG DATA para salvar el mundo
 - □ Siempre hemos tenido mucha información
 - Pero ahora gracias a nuevas herramientas se pueden analizar e interpretar
 - También se pueden almacenar más cantidad de información
 - Genoma Humano
 - Datos de Enfermedades
 - LHC

INGP. 2021

Índice

15

- □ Introducción Big Data 1° semana
- □ Introducción a Big Data y Business Intelligence
- □ Problemas
- □ Herramientas
- □ Casos de éxito
- □ Introducción NOSQL

•INGP. 2021

15

Introducción a Big Data y Business Intelligence

16

- Business Intelligence se basa en la explotación de los recursos de información de una organización, internos y externos
- Apoyo a la toma de decisiones estratégicas
- Respuestas a preguntas del tipo:
 - ¿Qué especialidad jurídica es la más demandada, en qué lugar y entre que segmento de población?
 - ¿Qué horario laboral me permite racionalizar el consumo energético de mi empresa?

Introducción a Big Data y Business Intelligence

17

- · La información se guarda en Almacenes de Datos
 - Desde finales de los 80
 - "Una colección de datos orientados por tema, integrados, variables en el tiempo y no volátiles que se emplea como apoyo a la toma de decisiones estratégicas" (Bill Inmon)
 - Características
 - Datos estructurados
 - · Almacenados en SGBDR
 - Volumen -> Terabytes Petabytes

17

17

Introducción a Big Data y Business Intelligence

18

- Aumento de volumen y campios en las características de los datos
 - Grandes empresas 1 TB / Hora
 - Facebook 10 TB / Hora
 - Datos semi-estructurados o no estructurados
 - Texto, imágenes, JSON, XML, RSS, ...
 - Aumento velocidad de generación de los datos
- Las técnicas de Almacenes de Datos no son adecuadas para este análisis
- La solución a estos problemas es el enfoque Big Data

Big Data – Variedad

 Variedad: capacidad para soportar el aumento en la heterogeneidad de las fuentes a procesar.

21

21

Big Data – Velocidad

22

Velocidad: velocidad a la que fluye la información.

Telescopio SKA 10 petabytes / hora

Twitter 100.000 tweets / min

22

Big Data – Veracidad

23

- Veracidad: incertidumbre datos = incertidumbre conocimiento extraído.
 - 1 de cada 3 ejecutivos **desconfía** de los datos que usan para tomar decisiones
 - ¿Encuestas precisas?
 - Uso de datos incorrectos supone **grandes perdidas** (varios billones de euros al año)

23

23

Big Data - Valor

24

- ¿Por qué queremos implementar esta tecnología?
- żSupone alguna ventaja para nuestra empresa?

24

Índice

25

- □ Introducción Big Data 1° semana
- □ Introducción a Big Data y Business Intelligence
- □ Problemas
- Herramientas
- □ Casos de éxito
- □ Introducción NOSQL

•INGP. 2021

25

Problemas – Integración

26

- El uso de distintas fuentes de datos da lugar a problemas de incoherencia
- Distintas formas de representar los mismos datos
 - Descripción:
 - J.A. Rodríguez ←→ José A. Rodríguez
 - Unidades:
 - Estatura: 1,70 mts ← → 170 cm
- Su resolución puede requerir la aplicación de procesos que tienen un alto coste temporal (ETL's)

Problemas - API's

27

- Depender de servicios de datos libres proporcionados por empresas externas
 - Cambios en el formato...
 - Cambios en las condiciones de servicio...
 - Cambios en las API's de obtención de datos...
 - Averías
 - Cierre del servicio

27

27

Problemas – Aspectos Legales

28

 Usar datos proporcionados a través de terceros

- ¿De quién es la propiedad de los datos obtenidos tras el procesamiento y análisis?
- ¿Es lícito usarlos para la creación de nuestras aplicaciones?

Problemas – Aspectos Legales

29

- La mayoría de la población desconoce:
 - Clausulas de privacidad
 - Redes Sociales: Geo localización activada por defecto, clausulas difíciles de comprender, complicadas opciones de privacidad...
 - Posibles usos de los datos:
 - Correos electrónicos: Usados por los proveedores del servicio para marketing...

29

29

Problemas – Aspectos Legales

30

 ¿Es ético analizar a una persona por los datos de las redes sociales?
 ¿Es legal?

- ¿Sí?: Ausentismo y rendimiento laboral, fraude al seguro, criminales, revueltas, epidemias....
- ¿No?: amistades, relaciones sentimentales, ideologías, pensamientos...
- En cualquier caso, hemos de estar muy seguros de la veracidad de los datos y resultados obtenidos

Índice

31

- □ Introducción Big Data 1° semana
- □ Introducción a Big Data y Business Intelligence
- □ Problemas
- □ Herramientas
- □ Casos de éxito
- □ Introducción NOSQL

•INGP. 2021

31

Herramientas

-32

- Que características tiene una herramienta para Big Data:
 - Escalable para que soporte fácilmente petabytes
 - **Distribuido** (en varios procesadores, diferentes lugares y características)
 - Guardar los datos en el formato original, pudiendo hacer querys sin convertir el formato o moverlo
 - Capacidad de poder realizar User-defined functions (UDFs)

INGP. 2021

Herramientas

33

- □ Ejecutar **UDFs** en petabyte data en minutos
- Permitir **guardar muchos formatos**, desde imágenes audio, datos jerarquizados, pares nombre-valor...
- □ Cargar datos de multiples fuentes al menos GB/segundo
- □ Cargar los datos en BD **antes de declarar o** descubrir su estructura
-
- □ 2 Soluciones **RDBMSs** y **MapReduce/Hadoop**

-INGP. 2021

33

Herramientas Arquitectura BigData típica Características: Almacenamiento de diferentes tipos de Semi-estructurados (Marketing/ campañas/ móbil/ web logs) Estructurados oFicheros de log Carga de datos desde diferentes bases de datos (MySQL, Oracle, PostgreSQL, MongoDB, etc) Minería de datos Web Logs Analíticas Load Files Almacenes de datos para reporting Análisis por lotes (Hadoop) Web caching Search INGP. 2021 Imagen via (http://scalein.com/)

MapReduce/Hadoop

35

- Open source top-level Apache
- □ Desarrollado por Google 2000s
- □ MapReduce es un framework que ejecuta UDF
- Muchas Bases de datos están implementando interfaces para permitir que Hadoop Jobs, de forma distribuida en sus instancias de bases de datos.

•INGP. 2021

35

MapReduce/Hadoop

36

Extended Relational DBMS	MapReduce/Hadoop
Proprietary, mostly	Open source
Expensive	Less expensive
Data must be structured	Data does not require structuring
Great for speedy indexed lookups	Great for massive full data scans
Deep support for relational semantics	Indirect support for relational semantics, e.g., Hive
Indirect support for complex data structures	Deep support for complex data structures
Indirect support for iteration, complex branching	Deep support for iteration, complex branching
Deep support for transaction processing	Little or no support for transaction processing

Figure 21-2: Comparison of relational DBMS and MapReduce/Hadoop architectures.

-INGP. 2021

Hadoop

MapReduce

7 TAUDICUI

- MapReduce software framework. Permite escribir programas para procesar grandes cantidades de datos no estructurados en clusters distribuidos de procesos.
 - 2 Fases
 - Map (Se realiza en paralelo para cada entrada):
 - 1 Entrada (clave, valor) y devuelve una lista de pares (clave2,valor2).
 - 2- Junta todos los pares con la misma clave de todas las listas y los agrupa. Creando un grupo por cada una de las diferentes claves generadas
 - \blacksquare Map(k₁,v₁) -> list(k₂,v₂)
 - Reduce
 - Entrada lista de valores, salida colección de valores
 - Reduce(k2, list (v2)) -> list(v3)

-INGP. 2021

37

Hadoop

41

- Hive Permite utilizar un lenguaje similar al estandar SQL. Hive Query Language (HQL). Hive re-escribe las consultas a operaciones de MapReduce para utilizarlas en clusters de Hadoop.
- □ NoSQL Final del tema
- Hadoop Distributed File System (HDFS) Sistema de ficheros, distribuido, escalable y portable en Java.

•INGP. 2021

41

Hadoop

42

- Sqoop Es una herramienta que ha sido diseñada para el volcado eficiente de datos entre una distribución Hadoop de Apache y Bases de datos relacionales. (SQL to Hadoop = Sqoop)
- Pig Es una plataforma de programción para escribir programas de MapReduce con Scripts de PIG.
- Oozie Es un planificador de flujos de trabajo para organizar Hadoops Jobs.
 - Hadoop jobs =Java map-reduce, Streaming map-reduce, Pig, Hive, and Sqoop.

-INGP. 2021

Casos de éxito

43

- Casos de éxito
 - Recomendación Amazon
 - Elecciones OBAMA

43

43

Casos de éxito - Amazon

44

- Amazon usa un sistema de recomendación de productos a posibles compradores.
- Proporciona a cada visitante de Amazon.com una página web personalizada
 - Nos ofrece de forma automática los productos que el sistema determina que podríamos querer adquirir

44

Casos de éxito - Amazon

45

- Amazon implementa un enfoque híbrido
 - "ítem to-ítem collaborative filtering": historial de compras, artículos en el carrito de la compra, puntuaciones y "likes" sobre artículos, lo que han visto y comprado otros usuarios con perfiles similares...

45

45

Casos de éxito – Campaña Obama

Aplicando con éxito tecnología Big Data en sus campañas

• Predicción de resultados electorales

- electorales desde 2008
- Retroalimentación de la estrategia de campaña electoral
- Para las elecciones de 2012 conto con un equipo de 50 analistas y 50 ingenieros

Equipo Mitt Romney

Equipo B. Obama

47

47

Casos de éxito – Campaña Obama

Aplicación	Datos / Conocimiento
Encuestas individuales sobre las actividades y preferencias del votante	Sistema de puntuación que describe a los votantes de forma individual (+50 Variables)
Facebook / Twitter	Búsqueda en páginas de apoyo a Obama de posibles simpatizantes / +50.000 Cuentas de Twitter asociadas a la política
Aplicación móvil	Agentes electorales – Encuestas intención de voto
"Dashboard"	Sistema de recogida de opiniones de los ciudadanos
Bases de datos ya existentes	Datos de 180 millones de votantes, afiliados, voluntarios, donaciones, webs apoyo a Obama
	Encuestas individuales sobre las actividades y preferencias del votante Facebook / Twitter Aplicación móvil "Dashboard"

Índice

51

- □ Introducción Big Data 1° semana
- □ Introducción a Big Data y Business Intelligence
- Problemas
- Herramientas
- □ Casos de éxito
- □ Introducción NOSQL

•INGP. 2016

51

Tema 1. Almacenes de Datos: introducción y motivación

Introducción NoSQL

52

Conceptos básicos NoSQL "Not only SQL"

- ☐ Actualmente la mayoría de la información generada desde internet es:
 - NO ESTRUCTURADA.
 - o El esfuerzo de estructurarla es demasiado grande.
 - o Gran volumen de información
- Aparecen los nuevos sistemas de gestión de datos para información no estructurada y distribuidas.
 - Algunas soluciones:
 - $\begin{tabular}{ll} \hline \square & Clave-valor (Amazon DynamoDB $$ $\underline{\mbox{http://aws.amazon.com/es/dynamodb/)}}$ \\ \end{tabular}$
 - □ Columnas (Cassanda http://cassandra.apache.org/)
 - Orientados a documentos (MongoDB http://www.mongodb.org/)
 - ☐ Grafos (Neo4j http://www.neo4j.org/)

Tema 1. Almacenes de Datos: introducción y motivación

Introducción NoSQL

53

Las BD NoSQL:

No tienen Schemas, no permiten Joins y escalan horizontalmente.

- Por ejemplo: Guardar historial de pacientes.
 - Almacén de datos:
 - Diseñar el esquema estrella identificando hechos y dimensiones.
 - O NoSQL BD:
 - No hace falta diseñar el esquema de datos, solamente introducir los datos.
 - EJ: MongoDB (Orientado a documentos) insertando los JSON con la información, sería suficiente aunque fueran diferentes unos de otros.

53

Introducción NoSQL * Cual elegir?: (Fuente: http://blog.nchurst.com/visual-guide-to-nosal-systems) Visual Guide to NoSQL Systems Astar Data Models Pick Two | Popramo Cassandra Symple B Toly Cabine Coulch B Roll Coulch B R

Visualización de Big Data

56

Visualizar no es complicado, lo complicado es transmitir conocimiento a partir de la visualización.

Los métodos de visualización más usados:

- Grafos
- Mapas

