HW5

ID#: 105-083-037

1a. Truth Table:

Smoke	Fire	$(Smoke \Rightarrow Fire) \Rightarrow (\neg Smoke \Rightarrow$
		¬Fire)
T	Т	T
T	F	T
F	Т	F
F	F	T

This sentence is neither (it is satisfiable), because it is true in some models.

1b. Truth Table:

Smoke	Fire	Heat	Smoke ⇒	Smoke V	((Smoke V	(Smoke ⇒
			Fire	Heat	$Heat) \Rightarrow$	Fire) ⇒
					Fire)	((Smoke V
						$Heat) \Rightarrow Fire)$
T	T	T	T	T	T	T
T	F	T	F	T	F	T
T	T	F	T	T	T	T
T	F	F	F	T	F	T
F	T	T	T	T	T	T
F	F	T	T	T	F	F
F	T	F	T	T	T	T
F	F	F	T	F	T	T

This sentence is neither (it is satisfiable), because it is true in some models.

1c. Truth Table:

Smoke	Fire	Heat	Smoke A	((Smoke	Smoke ⇒	Heat ⇒	((Smoke	((Smoke
			Heat	\land Heat) \Rightarrow	Fire	Fire	⇒ Fire)	∧ Heat)
				Fire)			V (Heat	⇒ Fire)
							\Rightarrow Fire))	\Leftrightarrow
								((Smoke
								⇒ Fire)
								V (Heat
								\Rightarrow Fire))
T	T	T	T	T	T	T	T	T
T	F	T	T	F	F	F	F	T
T	T	F	F	T	T	T	T	T

T	F	F	F	T	F	T	T	T
F	T	T	F	T	T	T	T	T
F	F	T	F	T	T	F	T	T
F	T	F	F	T	T	T	T	T
F	F	F	F	T	T	T	T	T

This sentence is valid, because it is true in all models.

2.

Propositional Symbols & Meanings:

U = is a unicorn

My = is mythical

M = is mortal

Mam = is a mammal

H = is horned

Mag = is magical

a.

First Version of Knowledge Base:

$$((U \land My) \Rightarrow (U \land \neg M)) \land ((U \land \neg My) \Rightarrow (U \land M \land Mam))$$
$$((U \land (\neg M \lor Mam)) \Rightarrow (U \land H)$$
$$(U \land H) \Rightarrow (U \land Mag)$$

We assume that our universe only consists of unicorns, and delete the propositional symbol U. We also simplify our rules, so that our final knowledge base is the following.

Knowledge Base:

S1: $(My \rightarrow \neg M)$

S2: $(\neg My \rightarrow (M \land Mam))$

S3: $((\neg M \lor Mam) \rightarrow H)$

S4: $(H \rightarrow Mag)$

b.

S1:

 $(My \rightarrow \neg M)$

```
(\neg My \lor \neg M)
                  Implication Elimination
(\neg My \lor \neg M)
                  Double-Negation Elimination
S2:
(\neg My \rightarrow (M \land Mam))
(\neg(\neg My) \lor (M \land Mam))
                                      Implication Elimination
(My \lor (M \land Mam))
                            Double-Negation Elimination
(My \lor M) \land (My \lor Mam)
                                      V Distributivity
S3:
((\neg M \lor Mam) \rightarrow H)
((\neg(\neg M \lor Mam)) \lor H) Implication Elimination
((\neg(\neg M)) \land \neg Mam) \lor H)
                                      De Morgan
                            Double-Negation Elimination
((M \land \neg Mam) \lor H)
(M \lor H) \land (\neg Mam \lor H)
                                      V Distributivity
S4:
(H \rightarrow Mag)
                  Implication Elimination
(\neg H \lor Mag)
Our CNF Knowledge Base is now:
S1: (\neg My \lor \neg M)
S2: (My \lor M) \land (My \lor Mam)
S3: (M \vee H) \wedge (\neg Mam \vee H)
S4: (¬H ∨ Mag)
```

c. We determine whether or not it is true that the unicorn is always magical, horned, or mythical.

To prove if the unicorn is always magical, we begin with $\alpha = \neg Mag$ and resolve for the empty clause:

```
8. ¬H From 6, 7
9. ¬Mam From 5, 8
10. M From 4, 8
11. My From 3, 9
12. ¬My From 1, 10
13. Empty Clause From 11, 12
```

We have proven that the unicorn is always magical. Next, we try to prove that the unicorn is always horned, beginning with $\alpha = \neg H$:

1.	$(\neg My \lor \neg M)$	From S1
2.	$(My \lor M)$	From S2
3.	(My V Mam)	From S2
4.	$(M \lor H)$	From S3
5.	(¬Mam ∨ H)	From S3
6.	(¬H∨Mag)	From S4
7.	$\neg H$	From α
8.	\neg Mam	From 5, 7
9.	My	From 3, 8
10.	$\neg M$	From 1, 9
11.	H	From 4, 10
12.	Empty Clause	From 7, 11

We have proven that the unicorn is always horned. Next, we try to prove that the unicorn is always mythical, beginning with $\alpha = \neg My$:

1.	$(\neg My \lor \neg M)$	From S1
2.	$(My \lor M)$	From S2
3.	(My V Mam)	From S2
4.	$(M \lor H)$	From S3
5.	(¬Mam ∨ H)	From S3
6.	(¬H∨Mag)	From S4
7.	$\neg My$	From α
8.	M	From 2, 7
9.	Mam	From 3, 7
10.	$\neg My$	From 1, 8
11.	Н	From 5, 9
12.	Mag	From 6, 11

There is nothing left to resolve and no empty clause, so we cannot prove that the unicorn is always mythical.

3.

Oil	Gas	Positive Test Probability	Presence Probability
T	F	N/A	0.5
F	T	N/A	0.2

F	F	N/A	0.3
T	F	0.9	N/A
F	T	0.3	N/A
F	F	0.1	N/A

We are calculating the probability that oil is present given a positive test result, by the formula:

 $((Oil\ Prob\ Pos\ Test)*(Oil\ Pres\ Prob)) + (((Oil\ Prob\ Pos\ Test)*(Oil\ Pres\ Prob)) + ((Gas\ Prob\ Pos\ Test)*(Oil\ Pres\ Prob)))$

$$(0.9*0.5) \, / \, ((0.9*0.5) \, + \, (0.3*0.2) \, + \, (0.1*0.3)) = 0.45 \, / \, (0.45 \, + \, 0.06 \, + \, 0.03) = 0.45 \, / \, 0.54 = 0.8333$$