18.404/6.840 Lecture 7

Last time:

- Equivalence of variants of the Turing machine model
 - a. Multi-tape TMs
 - b. Nondeterministic TMs
 - c. Enumerators
- Church-Turing Thesis
- Notation for encodings and TMs

Today:

- Decision procedures for automata and grammars

Will have mini chat-breaks (experiment)

TMs and Encodings – review

A TM has 3 possible outcomes for each input w:

- 1. Accept w (enter q_{acc})
- 2. Reject w by halting (enter q_{rej})
- 3. *Reject* w by looping (running forever)

```
A is <u>T-recognizable</u> if A = L(M) for some TM M.

A is <u>T-decidable</u> if A = L(M) for some TM decider M.

halts on all inputs
```

 $\langle O_1, O_2, \dots, O_k \rangle$ encodes objects O_1, O_2, \dots, O_k as a single string.

Notation for writing a TM M is M = "On input w [English description of the algorithm]"

Acceptance Problem for DFAs

Let $A_{DFA} = \{\langle B, w \rangle | B \text{ is a DFA and } B \text{ accepts } w\}$

Theorem: A_{DFA} is decidable

Proof: Give TM D_{A-DFA} that decides A_{DFA} .

 D_{A-DFA} = "On input s

- 1. Check that s has the form $\langle B, w \rangle$ where B is a DFA and w is a string; reject if not.
- 2. Simulate the computation of B on w.
- 3. If *B* ends in an accept state then *accept*. If not then *reject*."

input tape contains $\langle B, w \rangle$ $Q = \{q_0, \dots, q_k\}, \ \Sigma = \{0,1\}, \ \delta = \dots, \ q_0, \ F = \dots), \ w = 01101$

Shorthand:

On input $\langle B, w \rangle$

work tape with current state and input head location

Acceptance Problem for NFAs

Let $A_{NFA} = \{\langle B, w \rangle | B \text{ is a NFA and } B \text{ accepts } w\}$

Theorem: A_{NFA} is decidable

Proof: Give TM D_{A-NFA} that decides A_{NFA} .

 $D_{\mathrm{A-NFA}} = \text{"On input } \langle B, w \rangle$

- 1. Convert NFA B to equivalent DFA B'.
- 2. Run TM D_{A-DFA} on input $\langle B', w \rangle$. [Recall that D_{A-DFA} decides A_{DFA}]
- 3. Accept if $D_{\rm A-DFA}$ accepts. Reject if not."

New element: Use conversion construction and previously constructed TM as a subroutine.

Emptiness Problem for DFAs

Let $E_{DFA} = \{\langle B \rangle | B \text{ is a DFA and } L(B) = \emptyset \}$

Theorem: E_{DFA} is decidable

Proof: Give TM $\overline{D}_{\mathrm{E-DFA}}$ that decides $\overline{E}_{\mathrm{DFA}}$.

 $\overline{D_{\mathrm{E-DFA}}}$ = "On input $\langle B \rangle$ [IDEA: Check for a path from start to accept.]

- 1. Mark start state.
- Repeat until no new state is marked:
 Mark every state that has an incoming arrow from a previously marked state.
- 3. Accept if no accept state is marked.

 Reject if some accept state is marked."

Equivalence problem for DFAs

Let $EQ_{DFA} = \{\langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$

Theorem: EQ_{DFA} is decidable

Proof: Give TM $D_{\mathrm{EO-DFA}}$ that decides EQ_{DFA} .

Check-in 7.1

Let $\overline{EQ_{REX}} = \{\langle R_1, R_2 \rangle | R_1 \text{ and } R_2 \text{ are regular expressions and } L(R_1) = L(R_2) \}$

Can we now conclude that $EQ_{\rm REX}$ is decidable?

- a) Yes, it follows immediately from things we've already shown.
- b) Yes, but it would take significant additional work.
- c) No, intersection is not a regular operation.

Teach at Splash!

ESF

esp.mit.edu/splash20

Splash is an annual teaching and learning extravaganza, brought to you by MIT ESP!

When? November 14-15

Where? Virtual

what? Teach anything! Any topic,

length, or class size!

Who? Teach thousands of curious

and motivated high schoolers

Acceptance Problem for CFGs

Let $A_{CFG} = \{\langle G, w \rangle | G \text{ is a CFG and } w \in L(G) \}$

Theorem: A_{CFG} is decidable

Proof: Give TM $D_{\mathrm{A-CFG}}$ that decides A_{CFG} .

 $D_{A-CFG} =$ "On input $\langle G, w \rangle$

- 1. Convert *G* into CNF.
- 2. Try all derivations of length 2|w| 1.
- 3. Accept if any generate w. Reject if not.

Check-in 7.2

Can we conclude that A_{PDA} is decidable?

- a) Yes.
- b) No, PDAs may be nondeterministic.
- c) No, PDAs may not halt.

Recall Chomsky Normal Form (CNF) only allows rules:

 $A \rightarrow BC$

 $B \rightarrow b$

Lemma 1: Can convert every CFG into CNF. Proof and construction in book.

Lemma 2: If H is in CNF and $w \in L(H)$ then every derivation of w has 2|w|-1 steps. Proof: exercise.

Emptiness Problem for CFGs

```
Let E_{CFG} = \{\langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}
```

Theorem: E_{CFG} is decidable

Proof:

 $D_{\rm E-CFG}$ = "On input $\langle G \rangle$ [IDEA: work backwards from terminals]

- 1. Mark all occurrences of terminals in *G*.
- Repeat until no new variables are marked
 Mark all occurrences of variable A if
 A → B₁B₂ ··· B_k is a rule and all B_i were already marked.
- 3. Reject if the start variable is marked. Accept if not."

$$S \rightarrow RTa$$
 $R \rightarrow Tb$
 $T \rightarrow a$

Equivalence Problem for CFGs

Let $EQ_{CFG} = \{\langle G, H \rangle | G, H \text{ are CFGs and } L(G) = L(H) \}$

Theorem: EQ_{CFG} is NOT decidable

Proof: Next week.

Let $AMBIG_{CFG} = \{\langle G \rangle | G \text{ is an ambiguous CFG } \}$

Check-in 7.3

Why can't we use the same technique we used to show EQ_{DFA} is decidable to show that EQ_{CFG} is decidable?

- a) Because CFGs are generators and DFAs are recognizers.
- b) Because CFLs are closed under union.
- c) Because CFLs are not closed under complementation and intersection.

Acceptance Problem for TMs

Let $A_{\text{TM}} = \{\langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w\}$

Theorem: A_{TM} is not decidable

Proof: Thursday.

Theorem: A_{TM} is T-recognizable

Proof: The following TM U recognizes $A_{\rm TM}$

U = "On input $\langle M, w \rangle$

- 1. Simulate M on input w.
- 2. Accept if M halts and accepts.
- 3. Reject if M halts and rejects.
- 4. Reject if M never halts." Not a legal TM action.

Turing's original "Universal Computing Machine"

Von Neumann said U inspired the concept of a stored program computer.

Quick review of today

1. We showed the decidability of various problems about automata and grammars:

$$A_{
m DFA}$$
 , $A_{
m NFA}$, $E_{
m DFA}$, $EQ_{
m DFA}$, $A_{
m CFG}$, $E_{
m DFA}$

2. We showed that $A_{\rm TM}$ is T-recognizable.