Applications linéaires

1 Matrice

1.1 Calcul matriciel

Exercice 1 (Des calculs de produits) Calculer lorsqu'ils sont définis les produits AB et BA dans chacun des cas suivants :

1.
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

2.
$$A = \begin{pmatrix} 0 & 2 & 1 \\ 1 & 1 & 0 \\ -1 & -2 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 0 & 1 \\ -1 & 1 & 2 \end{pmatrix}$$

3.
$$A = \begin{pmatrix} 1 & 2 \\ 1 & 1 \\ 0 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} -1 & 1 & 0 & 1 \\ 2 & 1 & 0 & 0 \end{pmatrix}$

Exercice 2 (Commutant) Soient a et b des réels non nuls, et $A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$. Trouver toutes les matrices $B \in \mathcal{M}_2(\mathbb{R})$ qui commutent avec A, c'est-à-dire telles que AB = BA.

Exercice 3 (Annulateur) On considère les matrices $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 3 & 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$

et $C = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & -1 & -1 \end{pmatrix}$. Calculer AB, AC. Que constate-t-on? La matrice A peut-elle être

inversible? Trouver toutes les matrices $F \in \mathcal{M}_3(\mathbb{R})$ telles que AF = 0 (où 0 désigne la matrice nulle).

Exercice 4 (Produit non commutatif) Déterminer deux éléments A et B de $\mathcal{M}_2(\mathbb{R})$ tels que : AB = 0 et $BA \neq 0$.

Exercice 5 (Matrices stochastiques en petite taille) On dit qu'une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est une matrice stochastique si la somme des coefficients sur chaque colonne de A est égale à 1. Démontrer que le produit de deux matrices stochastiques est une matrice stochastique si n = 2. Reprendre la question si $n \leq 1$.

Exercice 6 (Puissance *n*-ième, par récurrence) Calculer la puissance *n*-ième des matrices suivantes :

$$A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}.$$

Exercice 7 (Puissance *n*-ième - avec la formule du binôme) Soit

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ et } B = A - I.$$

Calculer B^n pour tout $n \in \mathbb{N}$. En déduire A^n .

Exercice 8 (Puissance *n*-ième - avec un polynôme annulateur) 1. Pour $n \ge 2$, déterminer le reste de la division euclidienne de X^n par $X^2 - 3X + 2$.

2. Soit
$$A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$$
. Déduire de la question précédente la valeur de A^n , pour $n \ge 2$.

Exercice 9 (Inverser une matrice sans calculs!) 1. Soit $A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$. Mon-

trer que $A^2 = 2I_3 - A$, en déduire que A est inversible et calculer A^{-1} .

- 2. Soit $A=\begin{pmatrix}1&0&2\\0&-1&1\\1&-2&0\end{pmatrix}$. Calculer A^3-A . En déduire que A est inversible puis déterminer A^{-1} .
- 3. Soit $A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$. Calculer $A^2 3A + 2I_3$. En déduire que A est inversible, et calculer A^{-1} .

Exercice 10 (Inverse avec calculs!) Dire si les matrices suivantes sont inversibles et, le cas échéant, calculer leur inverse :

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 2 \\ 0 & 2 & 3 \end{pmatrix}.$$

Exercice 11 (Matrice nilpotente) Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice nilpotente, c'est-à-dire qu'il existe $p \ge 1$ tel que $A^p = 0$. Démontrer que la matrice $I_n - A$ est inversible, et déterminer son inverse.

1.2 Puissance d'une matrice

Exercice 12 (Modélisation matricielle de suites définies par une récurrences linéaires) On considère les suites (u_n) , (v_n) et (w_n) définies par leur premier terme u_0 , v_0 et w_0 et les relations suivantes :

$$\begin{cases} u_{n+1} = -4u_n - 6v_n \\ v_{n+1} = 3u_n + 5v_n \\ w_{n+1} = 3u_n + 6v_n + 5w_n \end{cases}$$

pour $n \ge 0$. On pose $X_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$.

- 1. Exprimer X_{n+1} en fonction d'une matrice A et de X_n .
- 2. Exprimer X_n en fonction d'une matrice A et de X_0 .

Exercice 13 (Puissance d'une matrice triangulaire de diagonale nulle) Démontrer que

2

$$A = \begin{pmatrix} 0 & a_{1,2} & \cdots & \cdots & a_{1,n} \\ 0 & 0 & & & a_{2,n} \\ \vdots & \ddots & \ddots & & \vdots \\ \vdots & & \ddots & \ddots & a_{n-1,n} \\ 0 & \cdots & \cdots & 0 & 0 \end{pmatrix}$$
est nilpotente

1.3 Trace

Exercice 14 (Matrice nilpotente) Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice nilpotente, c'est-à-dire qu'il existe $p \ge 1$ tel que $A^p = 0$. Démontrer que la matrice $I_n - A$ est inversible, et déterminer son inverse.

Exercice 15 (Matrice nilpotente) Soit $A \in \mathcal{M}_n(\mathbb{R})$. Démontrer que $\operatorname{tr}(A^{\mathsf{T}}A) = \sum_{i=1}^n \sum_{j=1}^p a_{ij}^2$