Algoritmos de Monte Carlo e Cadeias de Markov – CPS 767 2025/1

Prof. Daniel R. Figueiredo

Terceira Lista de Exercícios

Dica: Para ajudar no processo de aprendizado responda às perguntas integralmente, mostrando o desenvolvimento das respostas.

Questão 1: Passeios aleatórios enviesados

Considere um grafo não direcionado G = (V, E) com peso nas arestas, tal que $w_{ij} > 0$ para toda aresta $(i, j) \in E$. Considere um andarilho aleatório que caminha por este grafo em tempo discreto, mas cujos passos são enviesados pelos pesos das arestas. Em particular, a probabilidade do andarilho ir do vértice i para o vértice j é dado por w_{ij}/W_i , onde $W_i = \sum_j w_{ij}$ (W_i é a soma dos pesos das arestas incidentes ao vértice $i \in V$). Temos assim um passeio aleatório enviesado linearmente pelos pesos das arestas.

- 1. Mostre que este passeio aleatório induz uma cadeia de Markov calculando a matriz de transição de probabilidade.
- 2. Determine a distribuição estacionária desta cadeia de Markov (dica: use o método da inspeção).
- 3. Determine se esta cadeia de Markov é reversível no tempo.

Questão 2: Convergência de passeios aleatórios

Considere um passeio aleatório preguiçoso (com p=1/2) caminhando sobre um grafo com n vértices. Estamos interessados em entender a convergência da distribuição $\pi(t)$ em diferentes grafos. Assuma que o passeio sempre inicia sua caminhada no vértice 1, ou seja, $\pi_1(0)=1$. Considere os seguintes grafos: grafo em anel (n=125), árvore binária cheia (n=127), grafo em reticulado (grid) com duas dimensões (n=121).

- 1. Para cada grafo, construa a matriz de transição de probabilidade (ou seja, determine P_{ij} para todo vértice i, j do grafo). Atenção com a numeração dos vértices!
- 2. Determine analiticamente a distribuição estacionária para cada grafo (ou seja, determine π_i para cada vértice i do grafo).
- 3. Para cada grafo, calcule numericamente a variação total entre $\pi(t)$ e a distribuição estacionária, para $t = 0, 1, \ldots$ Trace um gráfico onde cada curva corresponde a um grafo (preferencialmente em escala $\log \log$, com $t \in [1, 10^3]$).
- 4. O que você pode concluir sobre a convergência em função da estrutura do grafo?

Questão 3: Tempo de mistura

Considere um processo estocástico que inicia no estado 1 e a cada instante de tempo incrementa o valor do estado em uma unidade com probabilidade p ou retorna ao estado inicial (estado 1) com probabilidade 1-p. No estado n o processo não cresce mais, e se mantém neste estado com probabilidade p. Assuma que p = 10 e que $p \in \{0.25, 0.5, 0.75\}$.

- 1. Construa a cadeia de Markov deste processo mostrando a matriz de transição de probabilidade em função de p.
- 2. Determine numericamente o vão espectral da cadeia de Markov para cada valor de p.

- 3. Determine numericamente a distribuição estacionária para vada valor de p, e indique o estado de menor probabilidade.
- 4. Utilizando os dados acima, determine um limitante inferior e superior para o tempo de mistura quando $\epsilon=10^{-6}$ para cada valor de p.
- 5. O que você pode concluir sobre a influência de p no tempo de mistura?

Questão 4: Voltando à origem

Considere uma cadeia de Markov cujo espaço de estados é um látice de duas dimensões sobre os números naturais, ou seja $S = \{(i,j) | i \ge 1, j \ge 1\}$. Cada estado pode transicionar para um de seus vizinhos no látice. Entretanto, se afastar da origem (se movimentar para o norte ou para o leste) tem probabilidade p/2, e se aproximar da origem tem probabilidade (1-p)/2, onde p é um parâmetro do modelo (nas bordas, utilize self-loops). Assuma que $p \in \{0.25, 0.35, 0.45\}$.

- 1. Construa um simulador para essa cadeia de Markov.
- 2. Utilize o simulador para estimar a distribuição estacionária da origem (estado (1,1)), ou seja $\pi_{1,1}$, para cada valor de p. Dica: utilize os tempos de retorno!
- 3. Seja d(t) o valor esperado da distância (de Manhattan) entre X_t (o estado no tempo t) e a origem. Utilize o simulador para estimar d(t) para $t \in \{10, 100, 1000\}$, para cada valor de p. O que você pode concluir?