Autovalori e Autovettori

Andrea Canale

December 24, 2024

Contents

1	Autovettori	2
2	Matrici diagonalizzabili	2
	2.1 Diagonalizzazione per endomorfismi	2
	2.2 Diagonalizzazione in generale	3
3	Matrici diagonali	3
4	Polinomio caratteristico	4
	4.1 Polinomi caratteristici di matrici simili	4
	4.2 Polinomio caratteristico di un endomorfismo	4
5	Autovettori con autovalori distinti	4
6	Autospazio	4
7	Molteplicità algebrica	5
8	Molteplicità geometrica	5
9	Teorema della diagonalizzabilità	5
10	Sommario diagonalizzabilità	6

1 Autovettori

Dato $T:V\to V$ un endomorfismo di uno spazio vettoriale V definito in un campo \mathbb{K} , un autovettore di T è un vettore $v\neq 0$ tale che $T(v)=\lambda v$ per qualche $\lambda\in\mathbb{K}$ che chiameremo autovalore associato a v.

Notiamo che se $\lambda = 0, v \in ker(V)$

Inoltre, ogni multiplo di un autovettore è a sua volta un autovettore con un autovalore diverso, ad esempio:

$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
, definita come $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \\ 3 & 0 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

Abbiamo come autovettori

•
$$v = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$
, $T(v) = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix} = 2v$

•
$$w = \begin{pmatrix} 0 \\ 3 \\ 3 \end{pmatrix}$$
, $T(w) = \begin{pmatrix} 0 \\ 6 \\ 6 \end{pmatrix} = 2w = 6v$

2 Matrici diagonalizzabili

2.1 Diagonalizzazione per endomorfismi

Un endomorfismo $T:V\to V$ è diagonalizzabile se V ha una base B composta dai suoi autovettori e se $[T]_B^B$ è composta da autovalori di T sulla diagonale.

Esempio:

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 definita come $T\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} 3 & 4 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$

Troviamo che i suoi autovettori sono

•
$$v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, T(v_1) = \begin{pmatrix} 3 \\ 0 \end{pmatrix} = 3v_1$$

•
$$v_2 = \begin{pmatrix} -4\\1 \end{pmatrix}, T(v_2) = \begin{pmatrix} -8\\2 \end{pmatrix} = 2v_2$$

Gli autovalori sono 3 e 2. Notiamo ora che v_1, v_2 formano una base di \mathbb{R}^2 .

Calcoliamo la matrice associata a T(la matrice delle coordinate dei risultati di T(v1) e T(v2)):

$$[T]_B^B = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$$
 Cioè: $3v_1 + 0v_2 = T(v_1)$ e $0v_1 + 2v_2 = T(v_2)$

Concludiamo che l'endomorfismo è diagonalizzabile.

2.2 Diagonalizzazione in generale

La teoria che abbiamo visto prima vale solo per gli endomorfismi. Vediamo ora come diagonalizzare una matrice qualsiasi.

Una matrice $A \in M(n, \mathbb{K})$ è diagonalizzabile, se è simile ad una matrice D che è diagonale:

$$D = M^{-1} \cdot A \cdot M$$

Ciò vale anche per gli endomorfismi, un endomorfismo è diagonalizzabile se la sua matrice associata è diagonalizzabile.

3 Matrici diagonali

Il motivo per cui scegliamo di usare matrici diagonali è che ci semplifica i calcoli:

- Il calcolo del determinante è il prodotto degli elementi sulla diagonale
- Il prodotto fra una matrice e un vettore è $\begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \lambda_1 x_1 \\ \lambda_2 x_2 \\ \vdots \\ \lambda_n x_n \end{pmatrix}$
- Possiamo facilmente calcolare potenze molto grandi: $(M^{-1} \cdot A \cdot M)^{100}$

4 Polinomio caratteristico

Per trovare autovalori usiamo il polinomio caratteristico, definito come:

$$P_a(\lambda) = \det(A - \lambda I_n) = \det\begin{pmatrix} a_{11} - \lambda & \dots & a_{1n} \\ a_{21} & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} - \lambda \end{pmatrix}$$

Ossia il determinante della matrice di cui vogliamo trovare gli autovalori togliendo λ sulla diagonale.

Infatti I_n è l'identità di grandezza n dove n è la dimensione della $A \in M(n, \mathbb{K})$.

Questo calcolo restituisce un polinomio di grano n con incognite λ .

Notiamo che se il polinomio viene di un grado minore di n, c'è sicuramente un errore nei calcoli.

4.1 Polinomi caratteristici di matrici simili

Se A e B sono simili, allora $P_a(\lambda) = P_b(\lambda)$

4.2 Polinomio caratteristico di un endomorfismo

Dato un endomorfismo $T: V \to V$, il polinomio caratteristico di T è $P_a(\lambda)$ dove $A = [T]_C^B$.

5 Autovettori con autovalori distinti

Se $v_1,...,v_k$ sono autovettori con autovalori $\lambda_1,...,\lambda_k$ distinti, allora $v_1,...,v_k$ sono linearmente indipendenti.

Inoltre, se $P_a(\lambda)$ ha n radici distinte, allora A è diagonalizzabile.

6 Autospazio

Sia T un endomorfismo. Per ogni autovalore λ definiamo l'autospazio:

$$V_{\lambda} = \{v \in V | T(v) = \lambda v\} = ker(T - \lambda id)$$

In altre parole l'autospazio è l'insieme di tutti gli autovettori che hanno autovalore λ più l'origine 0_v che non sarebbe un autovettore(perchè gli autovettori sono diversi da 0).

Gli autospazi dei corrispettivi autovalori sono sempre in somma diretta.

7 Molteplicità algebrica

Sia $T:V\to V$ un endomorfismo e λ un autovalore per T. La molteplicità algebrica, definita come $m_a(\lambda)$ è la molteplicità di λ come radice del polinomio caratteristico.

In altre parole, corrisponde al numero di soluzioni trovare per ogni radice distinta di $p_a(\lambda)$.

8 Molteplicità geometrica

La molteplicità geometrica $m_g(\lambda)$ è la dimensione dell'autospazio associato a λ . Dato $T: V \to V$, possiamo calcolare $m_g(\lambda)$ attraverso il teorema della dimensione:

$$m_q(\lambda) = dim(ker(A - \lambda I_n)) = dim(V) - rk(A - \lambda I_n)$$

Notiamo che per ogni autovalore λ_i di un endomorfismo T, vale:

$$1 \le m_q(\lambda_i) \le m_a(\lambda_i)$$

Questo ci può tornare utile per controllare che i calcoli siano corretti e perchè se $m_a(\lambda) = 1$, allora sicuramente $m_g(\lambda) = 1$

9 Teorema della diagonalizzabilità

Sia V uno spazio vettoriale su $\mathbb K$ di dimensione n e $T:V\to V$ un endomorfismo, esso è diagonalizzabile se valgono due proposizione:

- $p_t(\lambda)$ ha n radici distinte contate con molteplicità
- $m_g(\lambda) = m_a(\lambda)$ per ogni autovalore di T

10 Sommario diagonalizzabilità

Un endomorfismo è diagonalizzabile se:

- Vale il teorema della diagonalizzabilità. Oppure
- \bullet Se $P_a(\lambda)$ ha
n radici distinte, allora A è diagonalizzabile. Oppure
- $\bullet \ [T]^B_B$ è composta da autovalori di T sulla diagonale

In ogni caso, negli esercizi bisogna sempre dimostrare il teorema della diagonalizzabilità. Una matrice quadrata M è diagonalizzabile se:

• Esiste una matrice D tale che $D = M^{-1} \cdot A \cdot M$