

Let f and s be the propositions:

- f It is below freezing.
- s It is snowing.

Write these propositions using f and s and logical connectives.

- 1 It is below freezing and snowing. FAS
- 2 It is below freezing, but not snowing. fars
- It is either below freezing, or snowing (or both). FVS
- 4 It is neither below freezing, nor snowing. \(\frac{1}{(fvs)} = 7f17s
- That it is below freezing is necessary and sufficient for it to be snowing. $f \leftarrow 7$ \mathcal{S}

State the converse, contrapositive, and inverse of each of the given statements.

- If it snows tonight, I will stay home.
- I go to the beach whenever it is a sunny summer day.
- 3 A positive integer is prime only if it has no divisors other than 1 and itself.

If it snows tonight, I will stay home.

```
CONVERSE:
  If I will stay home, it snows lonight.
INVERSE:
 If it does not snow tonight. I will not stay home.
CONTRAPOSITIVE:
 If I will not stay home, it did not snow tonight.
```

2 I go to the beach whenever it is a sunny summer day.

```
CONVERSE:
  It is a sunny summer day whenever I go to the beach If ... then ... format:
    If I go to the beach, then it is a sunny summer day.
INVERSE
  I do not go to the beach whenever it is not a runny summer day.
  If... then ... format:
   If it is not a sunny cummer day, then I do not go to the beach.
CONTRA POSÍTIVE:
  It is not a sunny summer day whenever I do not go to the beach.
  If... then... format;
    If I do not go to the beach, then it is not a sunny summer day.
```

A positive integer is prime only if it has no divisors other than 1 and itself.

```
CONVERSE!
 A positive integer has no divisors other than 1 and itself only if it is prime.
  If... then... format
    If a positive integer has no divisors other than 1 and itself, then it is prime.
INVERCE:
  A positive integer is not prime only if it has divisors other than 1 and itself.
 If ... then ... format
   If a positive integer is not prime, then it has divisors other than 1 and itself.
CONTRAPOCITIVE:
 A positive integer has divisors other than I and itself only if it is not prime.
 If... then ... format
    If a positive integer has divisors others than I and itself, then it is not prime.
```

Use Logical Equivalence Rules to simplify the following. Construct the truth tables for each of the compound propositions and its simplified expression.

$$1 \neg b \land (a \rightarrow b) \land a$$

$$(a \rightarrow b) \leftrightarrow (\neg a \lor b)$$

$$((p \rightarrow q) \rightarrow r) \land (\neg q \leftrightarrow (p \land \neg q))$$

$$\neg a \land (b \oplus c) \land (\neg b \lor c)$$

STATEMENTIS	REASON/S	a	Ь	¬b	a->6	761 (a →b)	Tb / Co	1-3671a	
1) $\neg b \wedge (a \rightarrow b) \wedge a$	Given	7	٦	F	Т	F		F	
$2)(a \wedge \neg b) \wedge (a \rightarrow b)$	commutative. Associative	T	F	T	F	P		F	
3)7(7aVb) 1 (a→b)	De Morgan's	F	1	F	Т	F		F	
3) ¬(¬a∨b) Λ (a→b) 4) ¬(a→b) Λ (a→b)	Material Implication	F	F	T	T	F		F	
5) F	De Morgan's Material Implication Negation								

STATE MENT/S 1) $(a \rightarrow b) \longleftrightarrow (a \rightarrow b)$ 2) $(a \rightarrow b) \longleftrightarrow (a \rightarrow b)$ 3) T	REASON/S	a	b	a-sh	10	7aVb	(a→b) ←> (¬aVb)	
1) (a → b) (1avb)	Given	十	T	+	F	Т	T	
$(a \rightarrow b) \longleftrightarrow (a \rightarrow b)$	Material Implication	T	F	F	F	F	+	
3) T	Material Implication Biconditional Definition	F	Ŧ	Т	7	1	Т	
7		F	E	T	Ť	7	Ť	

$$((p \rightarrow q) \rightarrow r) \land (\neg q \leftrightarrow (p \land \neg q))$$

STATEMEN	T/S				REASON/S				
1), ((p \rightarrow q)	>r) 1 (7a <	> (p/7g))			Given				
2)(7(70)0	2r) 1 (79 <	<> (p1-q))			Material Implication (x2)				
3)((01)70) Vr) A (Ja	$\Leftrightarrow (p \land \neg a)$			De Morgan's				
4) ((p/179)	vr) 1((p1-) V((pr/ng)	a 1 - (p/7a)))	Material Equivalence				
ร)((p/1a)	Vr) 1((p/-	19) V(9 1 -	((CATAD))		Idempoient, commutative & Associative				
6) ((p/1a)	Vr) 1((D)-	a) V(a) G	((Lavala)		De Morgan's				
7)((0170)	ur) 1 ((6/17	(a) v (a)	1		Absorption				
8 (0170	vr) 1((p1-	, ,			Distributive				
					same!				
	a =	b €	C = d =		e =				
p a	r p -> a	a->r 7a	PATA TAKT	c/b/d	d raa /cve				
7 +	T ' T '	T F	' F ' T	T					
1 T	FT	FF	FT	F	FFF				
TF	1 F	T T	TT	T	FT				
TF	F F	ŤŤ	TT	T	FT				
FT	TT	TF	FT	T	Т т				
FT	FT	FF	f T	F	FF				
FF	† T	TT	FF	F	/ F / F /				
FF	FT	FT	FF	F	/ F F/				

STATEMENT/S	REASON/S						
1) 79 1 (b 0 0) 1 (1 b v c)	Given						
2) 79 1 ((bVC) 1 (7bV 7C)) 1 (7bVC)	XOR(Negation of Material Equivalence Law #2)						
3)7a1(bvc)1(7bV(7c1c))	Distributive						
4) 7a 1(bvc)1(HbVF)	Negation						
5) 701/1(bVC)1 7b1	Identitu						
6) 7a 1((617b) v (c 17b))	Identity Distributive						
7) 701 (FV(c/7b))	Negation						
8) 701 C17b	Identity						
	came!						
p = r = q =	SE						
a b c 7a b&c 7b 7bVC 7a1	p (a 1 r 1 a 1 c & 1 7 b)						
TTTFFFFFF							
TFFTFF							
T F T F T T F							
T F F F T T F	FFF						
F T T F F T F	FTF						
F T F T F T	FFF						
F F T T T T T							
F F T F T T F	F/F/F/						

Determine whether each pair of propositions are logically equivalent or not. Use Logical Equivalence Rules.

3
$$p \leftrightarrow (q \land r)$$
 and $(p \leftrightarrow q) \land (p \leftrightarrow r)$

$$\neg (p \leftrightarrow q) \text{ and } p \oplus q$$

1
$$\neg (p \lor (\neg p \land q))$$
 and $\neg p \land \neg q$

$$\neg (p \leftrightarrow q) \text{ and } p \leftrightarrow \neg q$$

STATEMENT/S	REASON/S
i)T((pra)V(TDATQ))	Given
1) (TO P A Q) V (TO A TQ)) 2) (TO V (Q) A (D V Q)	De Morgan's
3).(p->7a) 1 (7a-> p)	Material Implication
3) (p -> 7q) A (7q -> p). 4) p +> 7q	De Morgan's Material Implication Material Equivalence
:. 7(pe 30) = pe 70	

3
$$p \leftrightarrow (q \land r)$$
 and $(p \leftrightarrow q) \land (p \leftrightarrow r)$

STATEMENT/S	REASONS
$1), p \leftarrow 7(q / r)$	Left side given
2) (p 1 (q /r)) V (7p1,7(q1r))	Material Equivalence
2) (p 1 (q 1r)) v (¬p1 ¬(q1r)) 3) (p1 (q 1r)) v (¬p1 (¬q v¬r))	pe Morgan's
4) (pt) a) 1 (pt > c)	
5) (p->q) 1 (p->r) 1 (p->r) 1 (r->p)	Right side given
4) (TRYA) 1 (TRYP) 1 (TRYP) (DYAT) (OPYAT) (D	Right side given Material Implication(x2)
T (T D V (T A	Distributive
8) (701 D) V(701 (701717)) V((917) 1 D) V((917) 1 GQ 1717)	Dis tributive
8) (FDAP) V(FPA (FQATE)) V((QAE) AP) V((QAE) AGQ (TE))	Negation, commutative
10) p 1 (917) V (tip 1 (1917)	Identity, commutative
$p \leftrightarrow 7(q \land r) \neq (p \leftrightarrow q) \land (p \leftrightarrow r)$	

 $\neg (p \leftrightarrow q) \text{ and } p \oplus q$

