Exercise 1 - Mean squared error

Consider the three points (1,5), (4,11) and (5,13):

- The left graphics shows the lines $f(x)=3+0\cdot x$, $f(x)=3+1\cdot x$, $f(x)=3+2\cdot x$, $f(x)=3+3\cdot x$, $f(x)=3+4\cdot x$. Calculate the mean-squared error for each straight line. Then plot the slope and the resulting mean-squared error in a common coordinate system. Which functional form do you recognize?
- The right graphics shows the lines $f(x)=1+2\cdot x$, $f(x)=3+2\cdot x$, $f(x)=4+2\cdot x$, $f(x)=5+2\cdot x$, $f(x)=6+2\cdot x$. Calculate the mean-squared error for each straight line. Then plot the intercept and the resulting mean-squared error in a common coordinate system. Which functional form do you recognize?

Exercise 2 - USB sticks

The following table shows current market prices for USB flash drives of different sizes.

Capacity [GB]	Price [€]
16	6
32	6.5
64	8.5
128	14
256	28

- 1. Why is it justified to model the prices using linear regression?
- 2. Compute the optimal regression line manually, i.e. with a calculator, using the formula from the lecture.
- 3. What interpretation do the parameters in this example allow?

Have a closer look at the following webpages:

https://scikit-learn.org/stable/modules/linear_model.html (only Section 1.1.1; but take in an impression of what else is possible!)

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html