HW1

前言:

使用三種不同套件(tree、rpart、randomforest),對給定資料切成 80%的 train 與 20%的 test 進行訓練(用 bus、mrt_bus、bus_interbus 三個 feature)建模之後測試並分析最後的準確率,為了避免抽樣有所影響,因此總共會做十次比較其平均 與標準差。

程式碼:

```
# 導入相關套件
library(tree)
library(rpart)
library(randomForest)
# 調へ見付
setwd('C://users/Steven/Desktop/陽交109下/巨量資料分析/謀程/單元2: 預測模式(一)/範例程式與資料')
data <- read.csv('MaaS_Data.csv'',header=T)
head(data) # 看一下前幾筆資料
# 資料清洗和選取
data[data == ""] <- NA # 將空值以NA取代
head(data) #確認一下空值是否都用NA補
# label轉成factor,用於分類
data$Buy <- as.factor(data$Buy)</pre>
以下的部分要跑十次
# 分割資料(train:80%, test:20%)(這個block要跑10次)
n <- 0.2*nrow(data)
index <- sample(1:nrow(data), n) # 用隨機取的方式
maas_train <- data[-index,]</pre>
maas_test <- data[index,]</pre>
Tree 的部分
# 利用tree套件建模
maas.tree <- tree(Buy ~ bus+mrt_bus+bus_interbus, data=maas_train)</pre>
plot(maas.tree)
text(maas.tree, cex=0.75)
# tree進行預測
tree.predict <- predict(maas.tree, maas_test, type="class")</pre>
#計算tree預測的正確率
compare.tree <- ifelse(tree.predict == maas_test$Buy, 1, 0)</pre>
accuracy.tree <- sum(compare.tree)/ length(compare.tree)</pre>
accuracy.tree
rpart 的部分
```

```
# 利用rpart套件建模
maas.rpart <- rpart(Buy ~ bus+mrt_bus+bus_interbus, data=maas_train, cp=0)
plot(maas.rpart)
text(maas.rpart, cex=0.75)
# rpart進行預測
rpart.predict <- predict(maas.rpart, maas_test, type="class")</pre>
#計算rpart預測的正確率
compare.rpart <- ifelse(rpart.predict == maas_test$Buy, 1, 0)</pre>
accuracy.rpart <- sum(compare.rpart)/ length(compare.rpart)</pre>
accuracy.rpart
randomForest 的部分
# 利用rf套件建模
maas.rf <- randomForest(Buy ~ bus+mrt_bus+bus_interbus, data=maas_train)</pre>
#rf進行預測
rf.predict <- predict(maas.rf, maas_test, type="class")
#計算rf預測的正確率
compare.rf <- ifelse(rf.predict == maas_test$Buy, 1, 0)
accuracy.rf <- sum(compare.rf)/ length(compare.rf)
accuracy.rf
```

輸出結果:

	tree	rpart	randomForest
第1次	0.9403748	0.9369676	0.9344123
第2次	0.9531516	0.9505963	0.9497445
第3次	0.9386712	0.9267462	0.9344123
第4次	0.9361158	0.9352641	0.9369676
第5次	0.9241908	0.9241908	0.9224872
第6次	0.9318569	0.9241908	0.9224872
第7次	0.9403748	0.9361158	0.9335605
第8次	0.9429302	0.9429302	0.9412266
第9次	0.9378194	0.9352641	0.9344123
第10次	0.927598	0.9241908	0.9224872
平均	<mark>0.937308</mark>	0.933646	0.93322
標準差	<mark>0.008172</mark>	0.008892	0.008827

分析:

- 1.從結果來看,tree 最好、rpart 次之、最差的是 rf,跟事先預期的結果差不了多少。
- 2.因為 tree 是用完一個 feature 之後,往下長的過程中,用過的 feature 不會再用,加上本身無法設 cp=xxx,因此樹不會長的太複雜;
- 3.而 rpart 用過的 feature 仍有機會重複使用,加上設了 cp=0 沒有剪枝的關係,樹會長到無法再長為止,因此使得模型可能有些 overfitting,泛化能力較差;
- 4.而 randomForest,他採用的分類方法是 gini index,也就是屬於 rpart 的集成,表現與穩定性通常會比 rpart 好些,而 rf 本身也可以設 cp=xxx,但是本作業中沒有用到,但結果確是 rpart 比 rf 好一點。
- 5.而事實上本次實驗,三種模型表現的都差不多,因此準確率的高低也有可能

只是抽樣帶來的結果,並無好壞之分。

以下附上某次實驗中 tree 與 rpart 的圖,方便比較:

