Examen

Première session

Devoir maison à rendre sur la page moodle du cours pour le 14 février 2020. Le barème est donné dans la marge à titre indicatif.

Exercice 1. Algorithme DPLL

Considérons la formule propositionnelle φ_1 ci-dessous.

$$\varphi_1 \stackrel{\text{def}}{=} ((P_2 \Rightarrow P_1) \Rightarrow P_3) \land \neg P_3 \land (P_2 \Rightarrow (P_1 \lor P_3))$$
.

- [1] (a) Mettre φ_1 sous forme normale négative : calculer $\operatorname{nnf}(\varphi_1)$.
- [1] (b) Mettre $\operatorname{nnf}(\varphi_1)$ sous forme clausale.
- [2] (c) Appliquer l'algorithme DPLL à la formule obtenue en (b). Plus précisément, dessiner un arbre de recherche DPLL comme vu en cours (c.f. figures 15 à 18 des notes de cours).

Exercice 2. Calcul des séquents propositionnel

Considérons la formule propositionnelle φ_2 ci-dessous.

$$\varphi_2 \stackrel{\text{def}}{=} ((P_2 \Rightarrow P_1) \land \neg P_3) \lor ((P_2 \Rightarrow (P_1 \lor P_3)) \Rightarrow P_3).$$

- [1] (a) Mettre φ_2 sous forme normale négative : calculer $\operatorname{nnf}(\varphi_2)$.
- [2] (b) Faire une recherche de preuve dans le calcul des séquents propositionnel vu en cours sur la formule $\operatorname{nnf}(\varphi_2)$ obtenue en (b).
- [1 (bonus)] (c) Quel lien y a-t-il entre les résultats obtenus à la question (c) de l'exercice 1 et à la question (b) de cet exercice?

Exercice 3. Modélisation en logique propositionnelle

Le problème qui nous intéresse est le problème de pavage carré. L'entrée du problème est un entier naturel $n \in \mathbb{N}$ et un catalogue, qui est un ensemble fini C de tuiles carrées avec une couleur par côté comme les trois tuiles t_0 , t_1 et t_2 ci-dessous :

Le but pour un catalogue C donné est de déterminer s'il est possible de couvrir un carré de dimension $n \times n$ en respectant les couleurs. On peut pour cela réutiliser les tuiles du catalogue, mais celles-ci ne peuvent pas être tournées. Voici ci-dessous un exemple de pavage 3×3 avec le catalogue $C \stackrel{\text{def}}{=} \{t_0, t_1, t_2\}$:

Formellement, un catalogue C est associé à deux relations binaires $H \subseteq C \times C$ de contraintes horizontales et $V \subseteq C \times C$ de contraintes verticales, où $(t,t') \in H$ si la couleur de droite de t est la même que la couleur de gauche de t' et $(t,t') \in V$ si la couleur du haut de t est la même que la couleur du bas de t'. Par exemple, pour notre catalogue $C \stackrel{\text{def}}{=} \{t_0, t_1, t_2\}$, on a les contraintes suivantes :

$$H = \{(t_0, t_1), (t_1, t_0), (t_1, t_2), (t_2, t_0), (t_2, t_2)\}, \qquad V = \{(t_0, t_1), (t_1, t_2), (t_2, t_0)\}.$$

Un pavage carré de dimension n par C est alors une fonction $p: (\{1, \ldots, n\} \times \{1, \ldots, n\}) \to C$ telle que

- 1. pour tout $1 \le i < n$ et $1 \le j \le n$, si p(i,j) = t et p(i+1,j) = t' alors $(t,t') \in H$ et
- 2. pour tout $1 \le i \le n$ et $1 \le j < n$, si p(i,j) = t et p(i,j+1) = t' alors $(t,t') \in V$.

Fixons un catalogue C avec ses relations H et V ainsi qu'une dimension n. Notre objectif est d'écrire une formule propositionnelle φ_3 (qui dépend de C, H, V et n) telle que φ_3 soit satisfiable si et seulement s'il existe un pavage carré de dimension n par C. On utilisera pour cela des propositions $P_{i,j,t}$ où $1 \le i \le n$, $1 \le j \le n$ et $t \in C$, qui exprimeront le fait que p(i,j) = t dans notre pavage. Dans les questions suivantes, on cherche des formules propositionnelles qui dépendent de C, H, V, et n.

- [1] (a) Écrire une formule propositionnelle $\varphi_{3,\geq 1}$ qui impose que chaque case du carré $n\times n$ reçoit au moins une tuile.
- [1] (b) Écrire une formule propositionnelle $\varphi_{3,\leq 1}$ qui impose que chaque case du carré $n\times n$ reçoit au plus une tuile.
- [1,5] (c) Écrire une formule propositionnelle $\varphi_{3,H}$ qui impose que deux cases adjacentes horizontalement du carré $n \times n$ respectent la contrainte H et une formule propositionnelle $\varphi_{3,V}$ qui impose que deux cases adjacentes verticalement du carré $n \times n$ respectent la contrainte V.
- [0,5] (d) Écrire la formule propositionnelle φ_3 en utilisant les réponses précédentes.

Exercice 4. Modèle en logique du premier ordre

On considère dans cet exercice la signature du premier ordre $L \stackrel{\text{def}}{=} (\emptyset, \mathcal{P})$ où $\mathcal{P} \stackrel{\text{def}}{=} \{E^{(2)}, =^{(2)}, G^{(1)}\}$. Soit l'interprétation I de domaine $D_I \stackrel{\text{def}}{=} \{v_0, v_1, v_2, v_3\}$ avec

$$\begin{split} E^I & \stackrel{\text{def}}{=} \left\{ (v_0, v_0), (v_0, v_1), (v_0, v_2), (v_1, v_1), (v_2, v_0), (v_3, v_0), (v_3, v_1), (v_3, v_2) \right\} \,, \\ & =^I \stackrel{\text{def}}{=} \left\{ (v_0, v_0), (v_1, v_1), (v_2, v_2), (v_3, v_3) \right\} \,, \\ & G^I \stackrel{\text{def}}{=} \left\{ v_0, v_3 \right\} \,. \end{split}$$

On peut voir I comme le graphe dirigé colorié ci-dessous, où « E » dénote la relation d'adjacence, « G » dénote les sommets gris et « = » est l'égalité.

- [1] (a) Est-ce que I est un modèle de la formule $\varphi_{4,a} \stackrel{\text{def}}{=} (E(x,y) \wedge E(y,z)) \Rightarrow E(x,z)$? Justifiez.
- [1] (b) Est-ce que I est un modèle de la formule $\varphi_{4,b} \stackrel{\text{def}}{=} G(x) \Leftrightarrow (\forall y . (E(x,y) \land \neg(x=y)) \Rightarrow \neg G(y))$?

 Justifiez.
- [2] (c) Écrivez une formule $\varphi_{4,c}$ qui exprime le fait que tous les sommets non gris de I ont un degré sortant de 1. L'interprétation I est-elle un modèle de votre formule? Justifiez.

[3] Exercice 5. Théorie des ordres linéaires stricts

On se place dans la théorie $Th(A_{ols})$ des ordres linéaires stricts de l'exemple 14.4 des notes de cours. Montrer que la formule φ_5 donnée ci-dessous appartient à cette théorie :

$$\varphi_5 \stackrel{\text{def}}{=} \forall x \exists y. (\neg (y < x) \Rightarrow \forall z. (x < z \lor x = z))$$

[2] Exercice 6. Calcul des séquents

On souhaite vérifier que l'inférence est valide dans le syllogisme « Tous les humains sont mortels, or Socrate est humain, donc Socrate est mortel ». On considère pour cela la signature du premier ordre définie par $\mathcal{F} \stackrel{\text{def}}{=} \{s^{(0)}\}$ et $\mathcal{P} \stackrel{\text{def}}{=} \{H^{(1)}, M^{(1)}\}$ où la constante s représente « Socrate », la relation unaire H représente « être humain » et la relation unaire M représente « être mortel ». On peut alors traduire « tous les humains sont mortels » par $\forall x. H(x) \Rightarrow M(x)$, « Socrate est humain » par H(s), et « Socrate est mortel » par M(s).

Montrer que la formule φ_6 ci-dessous est valide, en en fournissant une dérivation dans le calcul des séquents.

$$\varphi_6 \stackrel{\text{def}}{=} ((\forall x. H(x) \Rightarrow M(x)) \land H(s)) \Rightarrow M(s)$$