DS Micro-Econométrie, 3ème Année, 28 Octobre 2024

(Documents Non Autorisés)

Cette épreuve contient 04 pages

Durée, 01h30.

Exercice 1: On considère le modèle complet d'interaction spatiale offre-demande en forme structurelle suivante: $\alpha_{-} = \alpha_{0} + \alpha_{1}p + \varepsilon_{s}$

$$q_s = \alpha_0 + \alpha_1 p + \varepsilon_s$$

$$q_d = \beta_0 + \beta_1 p + \beta_2 r + \varepsilon_d$$

$$q_s \equiv q_d$$

Où, N définit 20 zones géographiques de marchés; q consommation de biens par habitant; p prix relatif des biens par rapport à l'indice global des prix à la consommation; r revenu disponible à prix constant. On mène une identification de l'équation d'offre.

- 1. Discuter l'hypothèse OLS d'exogéneité ainsi que les résultats des tests usuels de diagnostic et conclure.
- 2. Décrire <u>théoriquement</u> les méthodes d'estimations, TSLS & IV, appliquées au modèle offre-demande;
- 3. Discutez et comparez l'importance et la cohérence des résultats d'estimations, TSLS & IV, du modèle offre-demande;
- 4. Définir <u>théoriquement</u> le Durbin-Wu-Hausman-test de spécification Hypothèse de base, Statistique du test et ddl;
- Interprétation du résultat du DWH-test (différence substantielle entre régression OLS et régression IV/TSLS).

Source	SS	df	1	MS		Number of obs	W
0.000	- 5000000					F(1, 18)	
Model	2.58000329	1	2.580	00329		Prob > F	= 0.680
Residual	265.534161	18	14.75	18978		R-squared	= 0.009
	AND THE STATE					Adj R-squared	= -0.045
Total	268.114164	19	14.11	12718		Root MSE	= 3.840
q	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval
р	.0621821	.1486	891	0.42	0.681	2502022	.374566
cons	94.67881	14.85	652	6.36	0.000	63.38237	125.975

. sktest ress

Skewness/Kurtosis tests for Normality

					joint -
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj chi2(2)	Prob>chi2
ress	20	0 1787	0.8851	2.05	0.3594

. hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity

Ho: Constant variance

Variables: fitted values of q

chi2(1) = 0.05Prob > chi2 = 0.8187

. ovtest

Ramsey RESET test using powers of the fitted values of q

Ho: model has no omitted variables

F(3, 15) = 0.97Prob > F = 0.4323

	SS	df		MS		Number of obs		20
214	.17271	1	214.	17271		F(1, 18) Prob > F	_	8.51 0.0092
53.	078661	18	25.17	10367		R-squared	=	0.3210
						Adj R-squared	=	0.2833
67.	251371	19	35.11	84932		Root MSE	=	5.0171
	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
.28	37938	.097	2907	2.92	0.009	.0793936		.488194
	33922		5333	7.57	0.000	52.26421		2.41423

. predict pfit

(option xb assumed; fitted values)

. corr pfit res_p (obs=20)

	pfit	res_p
pfit	1.0000	
res_p	0.0000	1.0000

Source	SS	df	M	15		Number of obs	
Model Residual	159.454397 108.659767	1 18	159.45 6.0366			F(1, 18) Prob > F R-squared	= 0.0001 = 0.5947
Total	268.114164	19	14.111	2718		Adj R-squared Root MSE	= 0.5722 = 2.457
ą	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
pfit _cons	_8628519 14_59657	.1678: 16.80		5.14 0.87	0.000	_5101352 -20_7007	1.215569 49.89384

First-stage regressions

Source	ss	df	MS	5		Number of obs		20
Model Residual	214.17271 453.078661	1 18	214.17 25.1710			F(1, 18) Prob > F R-squared	=	8.51 0.0092 0.3210
Total	667.251371	19	35.1184	932		Adj R-squared Root MSE	=	0.2833 5.0171
p	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
					The state of	. 0793936		

Instrumental variables (2SLS) regression

Source	ss	df		MS		Number of obs	- 20
Model Residual	-425.176018 693.290182	1	-425.1 38.51	76018 61212		F(1, 18) Prob > F R-squared	= 4.14 = 0.0569
Total	268.114164	19	14.11	12718		Adj R-squared Root MSE	= = 6.2061
q	Coef.	Std.	Err.	ŧ	P>Itl	[95% Conf.	Interval]
_cons	.8628517 14.5966	42.43		2.03 0.34	0.057 0.735	0280897 -74.5622	1.753793 103.7554

Instrumented: Instruments:

	- Coeffi	cients —		
	IA (P)	(B) OLS	(b-B) Difference	sqrt(diag(V_b-V_B)) S.E.
р	.8628517	.D621821	- 8006696	.2162639

b = consistent under Ho and He; obtained from ivreg B = inconsistent under Ha, efficient under Ho; obtained from regress

Test: Ho: difference in coefficients not systematic

chi2(1) =
$$(b-B)$$
'[(V_b-V_B) '(-1)] $(b-B)$
= 13.71
rob>chi2 = 0.0002

Prob>chi2 = 0.0002

Exercice 2:

Soit le modèle de données mixtes 1 suivant,

$$\begin{cases} E(y_{it}) = \sum_{k=1}^{K} X_{k it} \beta_k \\ Cov(y_{it}y_{js}) = \delta_{ij} \sigma_u^2 + \delta_{ij}\delta_{ts} \sigma_{\varepsilon}^2 \end{cases}$$

- 1. De quel modèle s'agit-il?
- 2. Ecrire sa matrice var-covariance résiduelle, $\Omega_{(NT,NT)}$, en fonction des projecteurs orthogonaux, inter et intra-i.

 $^{1 \}forall i = 1,...,N \ et \ \forall t = 1,...,T$