Name:	Solution
	The state of the s

ChBE 2130 Thermodynamics I Fall 2015 Exam 3

Remember

- Write down relevant relationships needed to solve each problem
- Provide details, intermediate steps, and units
- Note any assumptions
- Show your work
- Where indicated, place your final answer on the ________
- Submit your crib sheet with your exam.

Problem	Possible Points	Score
1	20	
2	20	
3	20	
. 4	40	
Total		

1. Concept Questions [20 pts: 5 points each, no partial credit within sub-problem]

- For an ideal gas, simplify the equation, $V-T\left(\frac{\partial V}{\partial T}\right)_P$
 - a. *V*
 - b. *R/P*
 - c. RT/P
 - d. 0

- for ideal gas V= RT (2V) = R
 - by substitution

$$\frac{RT}{\rho} - T\left(\frac{R}{\rho}\right) = 0$$

- Using the differential form of enthalpy as a basis, simplify $\left(\frac{\partial H}{\partial S}\right)_P$
- a. P
 - c. U
 - d. 0

- dH = TdS + VdP
 - Constart P => VdP=0
- 4H = TdS
- (2H) = T
- A gas is flowing in an insulated duct of constant cross sectional area at stable conditions. Compared to the inlet conditions, the outlet will have
 - a. Lower pressure and higher velocity
 - b. Higher pressure and higher velocity
 - c. Lower pressure and lower velocity
 - d. Higher pressure and lower velocity
- Gas -> Compressible Insulated -> Adiabatic
- Stable Subsonic
- A saturated liquid at moderate temperature and pressure enter a throttle
 valve where the pressure is reduced by half. The existing stream will consist
 of which of the following
 - a. Subcooled liquid
 - b. Saturated liquid
 - c. Mixed phase gas and liquid
 - d. Saturated gas

2

4

2. **[20 pts]** The behavior of a fluid is described by the following equation of state: $V = B + \binom{RT}{P}$ where B is a constant. Develop a simplified expression for the residual enthalpy, H^R.

$$Z = \frac{BP}{RT} + \frac{RTP}{RTP} = \frac{BP}{RT} + 1$$

$$Z = f(P,T)$$

$$\frac{+1^{R}}{RT} = -\int_{0}^{P} T\left(\frac{JZ}{JT}\right) \frac{dP}{P}$$

$$\left(\frac{\partial^2 z}{\partial \tau}\right)_p = -\frac{BP}{R\tau^2}$$

$$\frac{H^{R}}{RT} = -\left(\frac{P}{T} \left(\frac{BP}{RT^{2}} \right) \frac{JP}{P} \right) = \left(\frac{B}{RT} \frac{B}{RT} \frac{JP}{P} \right) = 0$$

3. **[20 pts]** In terms of experimentally measurable properties, $\left(\frac{\partial T}{\partial V}\right)_S$ equals which of the following? Show your calculations and substitutions for full credit. Hint: Start with the cyclic relationship for $\left(\frac{\partial T}{\partial V}\right)_S$.

$$\begin{array}{c} \text{a.} + \left(T/_{C_V} \right) \left(^{\beta}/_{\kappa} \right) \\ \text{b.} - \left(^{T}/_{C_V} \right) \left(^{1}/_{\beta V} \right) \end{array}$$

c.
$$\binom{C_P}{T}\binom{1}{\beta V}$$

d.
$$\binom{C_p}{T}\binom{\beta}{\kappa}$$

(5)
$$-\left(\frac{3T}{3S}\right)_{V} = -\frac{T}{C_{V}}$$
 by definition

$$\left(\frac{\partial T}{\partial N}\right)_{S} = -\frac{T}{C_{N}}\left(\frac{\beta}{K}\right)$$

8pts each

- 4. [40 pts] Steam enters a turbine at 2000 kPa and 500°C. The exhaust is at 20 kPa.
 - a. If the turbine operates isentropically, what is the outlet phase and/or quality and the enthalpy? $x = 5^{\vee} 5$ 7.9094 3

$$P_1 = 2000 \text{ kP}_2$$
 $T_1 = 500^{\circ} \text{ G}$
 $P_2 = 20 \text{ kP}_a$

$$= \frac{3-5}{5^{V}-5^{c}} = \frac{7.9094-7.4}{7.9094-0.6}$$

Phase/Quality Mixed
$$X = 0.067$$

 $9 = 0.933$

$$\chi = 0.067$$

$$H = \chi H^{0} + (I - \chi) H^{V}$$

 $H = 0.067 (251.453) + (I - 0.067) 2609.9$

b. If work is produced at a rate of 2500 kW and the exhaust is saturated vapor, what is the outlet enthalpy, mass flow rate, and turbine efficiency? Note that a kW = kJ/s

20 kPa, Sat. vapor - From Stean table

 $\dot{W} = \dot{m} \Delta H$ $\dot{m} = \dot{W}_{ALL}$ Outlet Enthalpy $\frac{2609.9}{2609.9} \frac{KJ/kg}{KJ}$

$$-2500 \text{ kJ}$$
 $\frac{48}{5}$ $\frac{1(2609.9 - 3467.3) \text{ kJ}}{\text{Mass Flow Rate (in kg/s)}}$ $\frac{2.92 \text{ kg/s}}{\text{Mass Flow}}$

V = SPECIFIC VOLUME cm³ g⁻¹
U = SPECIFIC INTERNAL ENERGY kJ kg⁻¹
H = SPECIFIC ENTHALPY kJ kg⁻¹
S = SPECIFIC ENTROPY kJ kg⁻¹ K⁻¹

Table F.2. Superheated Steam, SI Units (Continued)

TEMPERATURE: t° C (TEMPERATURE: T kelvins)

							(TEMPERATURE: 7 kelvins)	RE: 7 kelvins)			
P/kPa , sat /∘ ⊖		sat.	sat.	300 (573.15)	350 (623.15)	400 (673.15)	450 (723.15)	500 (773.15)	550 (823.15)	600 (873.15)	650 (923.15)
6		j	<u>.</u>		(04000	007000		379880	402960.	426040.
•	> :	1.000	129200. 2385.2	264500. 2812.3	287580. 2889.9	310660. 2969.1	3049.9	3132.4	3216.7	3302.6	3390.3 3816.4
(6.98)	I	29.335	2514.4	3076.8		3279.7	3383.6		3596.5 11.0957	3703.0 11.2243	11.3476
	S	0.1060	8.9767	10.3450		10.00	23370		37980.	40290.	42600.
	>	1.010	14670.	26440.		31060.	33370. 3049.8		3216.6	3302.6	3390.3
10	ے ت	191.822	2438.0 2584.8	2812.2 3076.6		3279.6	3383.5		3596.5	3705.5	3816.3
(45.83)	ĽΩ	0.6493	8.1511	9.2820		9.6083	9.7572		10.0329	10.1616	10.2849
	>	1.017	7649.8	13210.		15520.	16680.		18990. 3216 5	3302.5	21300. 3390.2
50	2	251.432	2456.9	2812.0		2968.9 3279.4	3383.4		3596.4	3705.4	3816.2
(60.09)	ΙC	251.453	2609.9	3075.4 8 9618		9.2882	9.4372		9.7130	9.8416	9.9650
	η :	- [1000			10350.	11120.		12660.	13430.	14190.
ć	> :		5229.3 2468 6			2968.7	3049.6		3216.5	3302.5	3390.2
30	ב כ	289.27.1	2625.4			3279.3	3383.3		3596.3	3/05.4	97778
(03.15)	. v.		7.7695			9.1010	9.2499		107C/6	500	10040
) >		3993.4			7762.5	8340.1		9494.9	10070.	10640. 2200 1
40	> =	317.609	2477.1	2811.6		2968.6	3049.5		3216.4	3302.4	3816.1
(75.89)	Œ	317.650	2636.9	3075.9		3279.1	3383.1		3336.2 9.3929	9.5216	9.6450
	S	1.0261	7.6709	8.6413		0008.9	9.1.10		7595.5	8057.4	8519.2
	>	1.030	3240.2	5283.9		6209.1	0040.4		3216.3	3302.3	3390.1
20	٦	340.513	2484.0	2811.5		2968.5	3049.4		3596.1	3705.2	3816.0
(81.35)	ΙO	340.564	2646.0 7 5947	30/5./ 8.5380		8.8649	9.0139		9.2898	9.4185	9.5419
	n =	1.00.1	2246.0	3520 5		4138.0	4446.4		5062.8	5370.9	5678.9
1	> :	1.03/	2410.3	2811.0		2968.2	3049.2		3216.1	3302.2	3388.9
(91.79)) I	384.451	2663.0	3075.1		3278.6	3382.7		3595.8 0 1025	3705.0 9.2312	9.3546
(2)	S	1.2131	7.4570	8.3502		8.6773	8.8265		9.1060	7.7004	4058 B
	>	1.043	1693.7	2638.7		3102.5	3334.0		3/96.5	3302.0	3389.8
100	٦	417.406	2506.1	2810.6		2968.0	3049.0		3595.6	3704.8	3815.7
(89.63)	Ι¢	417.511	2675.4	3074.5 8 2166		3270.2	8.6934		8.9695	9.0982	9.2217
	Ŋ	1.3027	7.3390	0.7100		!	, !				

	kJ kg		-
$cm^3 g^{-1}$	ENERGY	kJ kg	kJ kg [–] I
$V = SPECIFIC VOLUME cm^3 g^-$	U = SPECIFIC INTERNAL ENERGY kJ kg	H = SPECIFIC ENTHALPY KJ Kg	$S = SPECIFIC ENTROPY kJ kg^{-1} K^{-1}$

S
scrapice
Ters

1	2,0	30 3 3910	33 5 8777	34 1648	88 1 1522	666	i6 .279	048	0 827	8 616
	059				222.58 3380.0 3802.8 7.8522					
	009				210.11 · 3290.8 3690.0 7.7265					
	550				197.57 3203.2 3578.6 7.5951					
ز	500				184.94 3117.0 3468.4 7.4570	,				
ruperature	475				178.59 3074.3 3413.7 7.3851					
TASA T	450									141.65 3028.1 3353.9 7.2174
	425	180.32 2991.3 3306.9 7.2746	175.20 2990.8 3306.1 7.2608	170.37 2990.3 3305.4 7.2474	165.78 2989.7 3304.7 7.2344	161.43 2989.2 3304.0 7.2216	157.30 2988.7 3303.3 7.2092	149.63 2987.6 3301.8 7.1851	142.65 2986.6 3300.4 7.1621	136.28 2985.5 3299.0 7.1401
	400				159.30 2947.6 3250.3 7.1550					
	Sat. Vap.	113.38 2595.7 2794.1 6.3853	110.32 2596.3 2794.8 6.3751	107.41 2596.8 2795.5 6.3651	104.65 2597.3 2796.1 6.3554	102.031 2597.7 2796.7 6.3459	99.536 2598.2 2797.2 6.3366	94.890 2598.9 2798.2 6.3187	90.652 2599.6 2799.1 6.3015	86.769 2600.2 2799.8 6.2849
	Sa+.	1.166 876.234 878.274 2.3846	1.168 882.472 884.574 2.3976	1.170 888.585 890.750 2.4103	1.172 894.580 896.807 2.4228	1.174 900.461 902.752 2.4349	1,177 906.236 908.589 2,4469	1.181 917.479 919.959 2.4700	1.185 928.346 930.953 2.4922	1.189 938.866 941.601 2.5136
		ンコエい	ンコこく	ンコエロ	ンコエの	ンコエの	ンコエの	ンコエの	ンコエの	ンコエの
		1750 (205.72)	1800 (207.11)	1850 (208.47)	1900 (209.80)	1950 (211.10)	2000 (212.37)	2100 (214.85)	2200 (217.24)	2300 (219.55)