- (54) A METHOD FOR PRODUCING CERAMIC MATERIAL
- (11) KOKOKU TOKUKOHEI 1-32186 (43) 29.06.1989

(19) JP

- (21) Appl. No.TOKUGANSHO 59-227690 (22) 31.10.1984
- (71) MITSUBISHI KOGYO SEMENTO KABUSHIKI KAISHA
- (72) Kunihiro NAGATA, Kazuyasu HIKITA
- (51) Int. Cl⁴. C04B 35/64

PURPOSE: To obtain ceramic materials in which the particles having the dimensional aeolotropy are caused to be oriented to uniaxial direction.

CONSTITUTION: The method comprises preforming the ceramic material formed by the particles having the dimensional aeolotropy; and pressing the moldings by a process of a hot-press from the various different directions.

19 日本国特許庁(JP)

⑪特許出願公告

⑫特 許 公 報(B2)

平1-32186

®Int. Cl. 4

識別記号

庁内整理番号

四四公告 平成1年(1989)6月29日

C 04 B 35/64

Z - 8618 - 4G

発明の数 1 (全9頁)

69発明の名称

セラミツクスの製造方法

20特 願 昭59-227690

码公 開 昭61-106463

222出 願 昭59(1984)10月31日 43昭61(1986)5月24日

特許法第30条第1項適用 昭和59年5月15日 日本都市センター、全国都市会館にて開催された社団 法人窯業協会昭和59年年会講演会において発表

⑫発 明 者 永 田

邦 裕

神奈川県横須賀市鴨居3丁目65番4号

⑫発 明 者 疋 \blacksquare 和康 埼玉県秩父郡横瀬町大字横瀬1019番地

つ出 題 人 三菱鉱業セメント株式 東京都千代田区丸の内1丁目5番1号

会社

個代 理 人

弁理士 山元 俊仁

審査官 吉 見 京子

1

釣特許請求の範囲

1 予め成長させた寸法異方性を有する粒子より なるセラミツクス材料に成形用バインダを加えて 所定の形状に予備成形し、この成形体に対し第1 の方向から第1回目の熱間加圧を行ない、次に前 5 電体材料よりなる前記方法。 記第1の方向とは異なるそれに垂直な第2の方向 から第2回目の熱間加圧を行ない、これにより前 記粒子を一軸方向に配向させたセラミツクスを得 ることを特徴とするセラミックスの製造方法。

- 製造方法において、前記粒子が結晶粒子および非 結晶粒子の少なくとも一方よりなる前記方法。
- 3 特許請求が範囲第1項または第2項記載のセ ラミツクスの製造方法において、前記寸法異方性 も一方よりなる前記方法。
- 4 特許請求の範囲第3項に記載されたセラミツ クスの製造方法において、前記粒子がフラックス 法により合成され、かつその針状比が1を越え 100以下の範囲にある前記方法。
- 5 特許請求の範囲第1項~第4項のうちの何か れ1つに記載されたセラミックスの製造方法にお いて、前記粒子が異方性結晶構造を有する結晶粒 子よりなる前記方法。
- 6 特許請求の範囲第 5 項記載のセラミツクスの *25*

2

製造方法において、前記セラミツクス材料が圧電 材料よりなる前記方法。

- 7 特許請求の範囲第5項記載のセラミツクスの 製造方法において、前記セラミツクス材料が強誘
- 8 特許請求の範囲第1項記載のセラミツクスの 製造方法において、前記セラミツクス材料が、タ ングステンプロンズ型の結晶構造を有する結晶粒 子よりなる前記方法。
- 2 特許請求の範囲第1項記載のセラミツクスの 10 9 特許請求の範囲第8項記載のセラミツクスの 製造方法において、前記セラミツクス材料が、

PbNb₂O₆, (Pb, K) Nb₂O₆, Sr₂NaNb₅O₁₅, Sr₂KNb₅O₁₅, Pb_x Ba_{1-x} Nb₂O₆, Sr_x Ba_{1-x} Nb₂O₆ K₃Li₂Nb₅O₁₅ Ba₂NaNb₅O₁₅

- を有する粒子が針状および棒状の粒子の少なくと 15 Ba₂LiNb₅O₁₅、K₃Li₂Nb_{5-x} Ta_xO₁₅、(Pb、Ba、 La) Nb₂O₆
 - のうちの少なくとも1つを含むものである前記方 法。
 - 10 特許請求の範囲第1項~第9項のうちの何 20 れか1つに記載されたセラミックスの製造方法に おいて、前記第1回目および第2回目の熱間加圧 が連続して行なわれる前記方法。

発明の詳細な説明

〔発明の属する技術分野〕

本発明はセラミツクスの製造方法に関するもの

3

で、特に異なる方向から複数回熱間加圧すること によつて、セラミツクスを構成する形状異方性を 有する粒子を一軸方向に揃え、配向性の良いセラ ミックスを製造する方法に関する。

〔発明の背景〕

圧電材料の中には、本来比較的良好な誘電特 性、圧電特性および電気光学効果を有する材料が ある。一例として、タングステンプロンズ型の結 晶構造を有する強誘電体材料が挙げられるが、こ 寸法異方性を有しており、分極容易な方向が限定 される。したがつて、この材料を圧電セラミツク スに用いようとしても、セラミツクスではその粒 子の結晶軸が任意の方向を向いているため、外部 うことができず、この材料が本来有している良好 な圧電特性および電気光学効果を利用することが 不可能であつた。このため、この結晶系に対する 研究は、主として単結晶材料としての応用研究に 向けられている。

一方、ビスマス層状化合物よりなる強誘電体材 料では、その粒子が板状をなしており、したがつ て一軸加圧のホットプレス法等によつて結晶粒子 が配向されたセラミツクス、したがつて効率の良 い分極処理が可能なセラミツクスを製造すること 25 ができ、良好な圧電特性を示すものが得られてい る。しかしながら、上述の針状結晶粒子よりなる タングステンブロンズ型構造の材料においては、 一軸加圧のホッドプレス法を行なつたのみでは、 で、特定の方向に粒子を揃えることは不可能であ るため、良好な圧電特性を示すものが得られなか つた。

〔発明の目的〕

りなるセラミツクス材料から、前記粒子を一軸方 向に配向させたセラミツクスを得るための製造方 法を提供することを目的とする。

〔発明の概要〕

粒子よりなるセラミツクス材料に成形用パインダ を加えて所定の形状に予備成形し、この成形体に 対し、異なる方向から熱間での加圧(ホットプレ ース)を行なうことによつて上記目的を達成して

いる。

上記の寸法異方性を有する粒子としては、例え ばフラックス法によつて形成されたタングステン プロンズ型の結晶構造を有する例えばPbNb2O6 5 等の針状または棒状結晶粒子が用いられる。

〔発明の実施例〕

以下本発明の実施例について詳細に説明する。 結晶粒子が針状または棒状等の寸法異方性を有す る材料として種々のものが考えられるが、ここで の材料の結晶系では、結晶粒子が針状等の大きい 10 は、粒子を一軸方向に配向させた場合、その粒子 の一軸配向性が確認し易く、また粒子を一軸方向 に配向させることにより、その優れた誘電特性、 圧電特性および電気光学特性を活用することが期 待されるタングステンプロンズ型の結晶構造を有 から電界を印加しても効率の良い分極処理を行な 15 する強誘電体材料を選び、本発明の有効性を実証 することにする。

> 上記のタングステンプロンズ型の結晶構造を有 する強誘電体材料としては、PbNb₂O₆、 Sr2NaNb5O15, Sr2KNb5O15, PbxBa1-xNb2O6, 20 Sr_X Ba_{1-X} Nb_2O_{6x} (Pb_x) K) K₂Li₂Nb₅O₁₅, Ba₂NaNb₅O₁₅, Ba₂LiNb₅O₁₅, K₃Li₂Nb_{5-x}Ta_xO₁₅、(Pb、Ba、La) Nb₂O₆等が その主成分として挙げられるが、ここでは PbNb₂O₆を用いた実施例について述べる。

まず、PbNb₂O₀の針状結晶粒子をフラツクス 法で合成した。ここで用いる試薬はすべて純度 99.5%以上の高純度の試薬である。PbOとNb₂O₅ をPbNb₂O₀の組成となるように調合し、900℃の 温度で2時間仮焼成したものに、等重量のKClを 加圧面内に針状粒子がランダムに配向するのみ 30 加え、電動乳鉢で15分間混合した混合物約100グ ラムをアルミナ製るつぼに入れ、900~1200℃の 温度で1~8時間加熱して反応させた。

上記の熱処理後、混合物を熱湯を入れた2リツ トルのガラスピーカー内に入れて洗浄を行ない、 そこで本発明では、寸法異方性を有する粒子よ 35 KCI部分を除去した。その際、イオン交換した水 の熱湯を用い、攪拌しながら洗浄し、熱湯を取り 替えて反復洗浄した。この熱湯を10回以上取り替 えて洗浄を行なつたところ、得られたPbNb₂O₀ の針状粒子末に残存するCl⁻イオンは、AgNO₂溶 本発明は、予め成長させた寸法異方性を有する 40 液を用いた検出によつては検出不能であつた。

> かくて得られた針状および柱状の粒子を電子顕 微鏡で観察した結果を第1図a, bに示す。第1 図aの粒子は、KClフラックス中で温度1050℃で 5時間熱処理して得られたものであり、第1図b

の粒子は、温度1200℃で5時間熱処理して得られ たものである。合成温度が900℃未満では針状粒 子の発達が不良で短いものしか得られなかつた。 また1200℃を超える温度では、粒子が太く成長 し、粒子の寸法異方性が少なくなるため、この材 料では熱処理温度は900°~1200°Cの範囲が適当で あつた。特に1000°~1100℃の温度で合成したも のの針状比(長さ/太さまたは直径)が大きく、 20~40であつた。また合成時間が短か過ぎると粒 み過ぎて太くなり、針状比が1に近くなるため、 本実施例では1~8時間の熱処理によつて、粒子 の長さ2µm以上、針状比が1.2以上で100以下の寸 法異方性を有する粒子を得た。特に1050°~1100 は大きく、5時間反応させたものでは直径1.5~ 2μmで針状比が20~40と大きい良好な針状粒子を 得た。

次にこの針状粒子よりなる粉末をイオン交換水 の中に投入し、更に分散剤を加えて十分に分散さ 20 せた後、沈降分級によつて、大きな粒子と超微粉 とを除き、針状粒子のみを取り出した。この分散 液を沪過し、かつ沪過しながらよく洗浄して乾燥

この針状粒子よりなるセラミツクス材料に7重 25 子の配向状態を電子顕微鏡で観察した。 量%のPVA溶液を8重量%加えながら造粒し、 さらに整粒したものを、第2図aに示すように、 直径15㎜、高さ約20㎜の円柱状成形体に予備成形 した。この円柱状成形体の底面上で互いに直交す 髙さ方向を2軸とする。

次にこの成形体を、内径40mmの高純度アルミナ 製のダイスに入れ、上下方向すなわち2軸方向の 第1回目のホットプレス (熱間加圧) を行なつ た。この場合の圧力P₁と加圧の方向、ホットプ 35 レス後の試料の形状を第2図bに示す。この場 合、アルミナ製ダイスと試料を150℃/時で昇温 し、1200℃の温度において100kg/cfの圧力を印 加し、3時間のホットプレスを行なつた。

試料を取出し、この試料に対し、第1回目の加圧 方向と直角の方向から加圧しうるように試料の方 向を変えて再びアルミナ製のダイス中にセット し、昇温して、第2図 c に示すように、第2回目

のホットプレスを、Z軸と直角なY軸の方向から 圧力P₂をもつて行なつた。この第2回目のホッ トプレスは、温度1250℃において100kg/cdの圧 力を3時間加えて行ない、試料を第2図cに示す **5** 形状にした。

なお、ここでは一軸方向のみから加圧できるホ ツトプレス装置を用いたため、上記のように第1 回目のホットプレスを行なつた試料を一旦降温し てダイス内から取り出したが、互いに直交する2 子の成長が進行せず、長過ぎると粒子の成長が進 10 軸方向から加圧できるホツトプレス装置を用いれ ば、 2軸方向からの第1回目の加圧に引続き、 Y 軸方向からの第2回目の加圧を連続して行なうこ とができ、これにより、同様の効果が得られるこ とはいうまでもない。また、本実施例では、第2 ℃の範囲内で3~6時間反応させたものの針状比 15 図aに示すように試料を円柱状に予備成形した が、この成形体の形状は直方体あるいは立方体で あつてもよく、また第1回目の加圧をY軸方向か ら行ない、第2回目の加圧を2軸方向から行なつ ても得られる効果に変りはない。

> 第2回目のホットプレス後、取り出された試料 は、第3図aに示すように、円柱が径方向に押し つぶされた形状をしている。また第3図bに示す ように、この試料のX軸、Y軸、Z軸に垂直な面 をそれぞれSx、Sx、Szとして、各面における粒

まず Z 軸からの第1回目のホツトプレスを行な つた試料のSx面およびSz面をそれぞれ鏡面研磨 した後、温度1150℃で熱エツチングしてから観察 した結果を第4図a, bに示す。この第4図から る 2 方向をそれぞれX軸およびY軸とし、円柱の 30 明らかなように、加圧方向に垂直なS₂面では針状 の粒子がランダムに配向している。一方加圧方向 と平行なSx面では、加圧方向に配向した粒子は 見られない。このことから、粒子は加圧方向に垂 直な方向に配向することが理解される。

次に第3図bのように、互いに直交る2方向か ら2回のホットプレスを行なつた試料における Sx面、Sy面、S₂面の電子顕微鏡写真を第5図a, b, cに示す。この図から明らかなように、寸法 異方性を有する粒子は、2回のホットプレスのそ 上記第1回目のホットプレス後、一旦降温して 40 れぞれの圧力の方向に対して直交するX軸方向に 配向している。

> 第6図はX線回折パターンを示し、第6図aは 合成した針状粒子粉末、第6図bはSy面、第6図 cはSx面である。第6図aはPbNb₂Oεがランダ

ムな方向を向いているときの回折パターンであ り、第6図bでは、第6図aに比較して(h、 k、o)の面指数を持つ回折線の相対強度が強 く、第6図cにおいては、(o、o、l)の面指 の指数を持つ面からの回折ピークはほとんど観察 されなかつた。

この事実は、針状結晶粒子の長軸方向が一方向 に配向している場合は、結晶学的な結晶軸もまた る。

次に第7図に示すような板サンプルを切出して 誘電特性および圧電特性を測定した。ここで、試 料(I)は、Sy面に対向する一対の電極を備え、電 極と平行な方向に粒子の長軸が配向している。試* *料(Ⅱ)は、Sx面に対向する一対の電極を備え、電 極と垂直な方向に粒子の長軸が配向している。

測定用サンプルの形状は、厚さ 1 km、短辺 5 mm、長辺 7 mmの長方形の角板であり、誘電率は 数を持つ回折線の相対強度が強く、(h、k、o) 5 lkHzにおける静電容量から求めた。圧電諸定数 は、共振、反共振を生じる周波数、およびインピ ーダンスより求めた。分極処理は、温度110℃に おいて、厚さ 1 mm当り2kVの電圧を10分間印加し て行なつた。測定結果を下記の第1表に示す。な 特定の一軸方向に配向していることを示してい 10 お、第1表には、比較のために、第1回目の2軸 の方向からのみのホットプレスを行なつた試料に おいて、加圧方向に対し垂直なSz面に対向する一 対の電極を備えた試料(I')の特性と、加圧方向に 平行なSx面に対向するる一対の電極を備えた試 料(Ⅱ')の特性とを併せて示してある。

表

特性			試	料		
	1回ホットプレス(粒子が加圧方向に垂直 に配向)			2回ホットプレス(粒子が2回の加圧方向 にそれぞれ直交する方向に配向)		
	試料(I') (S₂面に電極)	試料(Ⅱ') (S _x 面に電極)	異方性 (I ′ / II′)	試料(I) (S _r 面に電極)	試料(Ⅱ) (S _* 面に電極)	異方性 (I/I)
Tc/℃	462			463		
εs	920	1050	0.88	670	890	0.75
€ max	13520	8530	1.6	20070	5920 -	3.4
Κι	0.32	0.17	1.9	0.36	0.09	4.0
Q _m	40	55	0.73	35	100	0.35
Кз 1	0.21	0.13	1.6	0,14		

1

上記第1表から明らかなように本実施例におい 30 ツトプレスを行なつたものに比較して、セラミツ ては、互いに直交する方向からの 2 回のホツトブ レスを行なうことにより、セラミツクスの持つ特 性の異方性をさらに大きなものとすることができ た。例えば、第1回目のホットプレスのみでは、 室温における比誘電率εsの異方性(比)(I'の 35 εs/Ⅱ′のεs) が0.88であるが、第2回目のホツト プレスを行なえばこの異方性の比率は0.75に変化 する。この比誘電率はキュリー温度近傍で最大値 を示し、比誘電率の最大値εmaxの異方性は1.6か ら3.4へと、2倍以上変化し、また厚み方向の電 40 気機械結合係数K.の異方性も1.9から4.0へと、や はり2倍以上の変化を示している。

このことは、本実施例のように、直交する2方 向からの2回のホットプレスを行えば、1回のホ

クス粒子が一軸方向に配向したセラミツクス製造 に有効であるのみでなく、セラミツクスを構成す る材料の特性の異方性を利用した材料を製造する ためにきわめて好適であることを示している。

また上記のような誘電率の異方性は、電気光学 効果の異方性と直接関係があり、さらにホットプ レスによる緻密化の効果とも相俟つて、優れた電 気光学材料を得ることができる。

なお、上記の実施例においては、あらかじめ PbNb₂O₆を仮焼して合成してから、KClフラツ クス中で針状結晶を成長させたが、PbOとNb2O6 とKCIとを前述の量比で混合して、同様に900~ 1200℃の温度で1~8時間加熱し反応させたとこ ろ、ほぼ同様の針状結晶が得られた。

10

また、PbNb₂O₅をKClフラックス中で合成す る最適条件は温度900°~1200℃で1~8時間であ ったが、他のSr2KNb5O15、Sr2NaNb5O15、Pbx Ba1-xNb2O6, SrxBa1-xNb2O6, Ba2NaNb5O15, K) (Pb. Nb₂O₆ Ba₂LiNb₅O₁₅, K₃Li₂Nb_{5-x} Ta_xO₁₅, (Pb, Ba, La) Nb₂O₅等で代表されるタングステンプロン ズ型結晶構造を有する材料の針状粒子合成に際し ては、材料によつてそれぞれ最適な条件を選べば よい。

また上記の実施例においては、第1回目のホッ トプレスを温度1200℃で100kg / cd の圧力を 3 時 間印加して行ない、次に第2回目のホットプレス を温度1250℃で100kg/cdの圧力を3時間印加し 子の寸法異方性等によつて異なるものであり、例 えば第1回目のホットプレスの温度を1150°~ 1250℃の範囲に選んでもよく、また印加圧力を20 ~200kg/cdの範囲内で変化させることもでき、 加圧時間も0.5~10時間程度の幅を見こむことが 20 ある。 でき、さらに第2回目のホットプレスの温度を 1180~1280℃の範囲内としてもよい。要は針状 または棒状の粒子の配向を促す条件が満足されれ

次に、第2回目のホットプレスの加圧方向に関 25 して考察すると、第1回目のホットプレスの加圧 方向に対し直交する方向から第2回目のホットプ レスを行なうことが力学的にはもつとも効率的に 粒子の一軸配向を促すことができるが、この2つ の加圧方向のなす角度は必ずしも直角である必要 30 はなく、例えば80°、100°、60°、120°等の方向か ら加圧しても、その加圧力のうち、第1回目の加 圧方向に対し垂直の成分の力の働きによつて、前 記同様に粒子が一軸配向したセラミツクスを製作 しうることは容易に類推できる。

また、一軸配向性を高めるために、所望の配向 方向とは異なる方向、好ましくは所望の配向方向

と垂直の方向から、第3回目、第4回目、……の ホットプレスを反復することがさらに有効であ

なお、上述した実施例においては、セラミツク K₂Li₂Nb₅O₁₅、 5 スを形成する材料として、タングステンプロンズ 型の結晶構造を有する結晶粒子を用いているが、 非結晶粒子を用いても、また結晶粒子、非結晶粒 子の双方を用いてもよい。

〔発明の効果〕

以上の説明で明らかなように、本発明によれ 10 ば、結晶学的に異方性を有する材料の単結晶を製 作しなくても、単結晶と同様の所望の特性を有す るセラミツクス材料を製造することができる。

単結晶の育成には材料の融点よりも高い温度を て行なつたが、これらの条件は、材料の種類、粒 15 必要とするが、本発明の方法によれば、焼結温度 で目的とするセラミツクスを得ることができるた め、加熱源、加熱方法の選択の幅が広く、また、 耐火物、るつぼ等も、より低温で使用できるた め、より安価で経済的な材料を得ることも可能で

> また本発明によれば、単結晶の育成の困難な材 料でも、比較的容易に焼成でき、異方性を利用す る材料を提供することが可能となつた。

図面の簡単な説明

第1図a, bはフラックス法で合成した PbNb₂O₆系粒子の電子顕微鏡写真、第2図a~ cは本発明の方法における成形体とホットプレス の方向との関係を示す説明図、第3図a, bは第 2回目のホットプレスの方向と電子顕微鏡で観察 した試料の面の方向とを示す説明図、第4図a, bは第1回目のホットプレスによる粒子配向状態 を示す電子顕微鏡写真、第5図a~cは第2回目 のホットプレスによる粒子配向状態を示す電子顕 微鏡写真、第6図a~cはX線回折図、第7図は 35 第2回目のホットプレスを行なつた試料から切り 出した板状サンプルの方向を示す説明図である。

第1図

(a) 1050°C で 5 時間 熱処理

10 µm

(b) 1200℃で5時間 無処理

100 µm

第2図

第7図

第5図

(a) S_X面

(b) S_Y 面

(c) S_Z 面

第6図

