1: Let random variable X be normally distributed with mean 50 and standard deviation 8. In other words, let $X \sim \mathcal{N}(50, 8)$. You want to determine P(46 < X < 62).

- **a:** Determine the x values at the tick marks.
- **b:** Shade the appropriate region.
- c: Find the probability P(46 < X < 62).
- 2: Let $X \sim \mathcal{N}(65, 0.2)$. You want to determine P(|X 65| < 0.3).

- **a:** Determine the *x* values at the tick marks.
- **b:** Shade the appropriate region.
- c: Find the probability P(|X 65| < 0.3).

3: Let $X \sim \mathcal{N}(100, 5)$. You want to determine P(|X - 100| > 6).

- **a:** Determine the x values at the tick marks.
- **b:** Shade the appropriate region.
- c: Find the probability P(|X 100| > 6).

4: Let $X \sim \mathcal{N}(0, 2.2)$. You want to determine P(X > -3.96).

- **a:** Determine the *x* values at the tick marks.
- **b:** Shade the appropriate region.
- c: Find the probability P(X > -3.96).

5: Let $X \sim \mathcal{N}(14, 3)$. Determine x_0 such that $P(X < x_0) = 0.68$.

6: Let $X \sim \mathcal{N}(2300, 250)$. Determine x_1 such that $P(X > x_1) = 0.86$.

7: Let $X \sim \mathcal{N}(3, 0.1)$. Determine r_0 such that $P(|X - 3| < r_0) = 0.89$.

8: Let $X \sim \mathcal{N}(85, 5)$. Determine r_1 such that $P(|X - 85| > r_1) = 0.23$.

9: Let $X \sim \mathcal{N}(100, \ \sigma)$. If P(X < 108) = 0.9452, then what is σ ?

10: Let $X \sim \mathcal{N}(\mu, 20)$. If P(X < 100) = 0.8413, then what is μ ?

11: Let $X \sim \mathcal{N}(20, 20)$. Determine P(10 < X < 20).

12: Let $X \sim \mathcal{N}(20, 20)$. Determine x_0 such that $P(X > x_0) = 0.67$.