Indice

1	Intr	roduzione	3
	1.1	Modelli Matematici	3
		1.1.1 Il problema della dieta	5
		1.1.2 Un problema di miscelazione	8
		1.1.3 Un problema di pianificazione della produzione	10
		1.1.4 Il problema dello zaino	11
		1.1.5 Un problema di pianificazione	12
		1.1.6 Un problema di scheduling del personale	14
		1.1.7 Un problema di pianificazione urbana	16
		1.1.8 Un esempio sportivo	18
		1.1.9 Il problema del trasporto	19
		1.1.10 Un esempio di pianificazione edilizia	21
		1.1.11 Un esempio di modello non lineare	23
		1.1.12 Un altro esempio di modello non lineare	26
	1.2	Esercizi	27
2	Ric	hiami di algebra lineare e geometria dei poliedri	33
	2.1	Elementi di Algebra Lineare	33
		2.1.1 Calcolo della matrice inversa	41
		2.1.2 Rango di una matrice	45
	2.2	Geometria poliedrale	45
3	Pro	grammazione lineare	49
	3.1	Introduzione	49
	3.2	Il metodo grafico	51
		3.2.1 Alcune osservazioni sul metodo grafico	55
	3.3	La geometria dei problemi di programmazione lineare	68
	3.4	Il Metodo del Simplesso	73
		1	

INDICE 2

		3.4.1 Forma algebrica del metodo del simplesso
		3.4.2 Forma tabellare del metodo del simplesso 84
	3.5	Problemi di programmazione lineare in forma non standard 100
	3.6	Il Metodo del Simplesso a due fasi
	3.7	Il Metodo del Simplesso in Forma Matriciale
		3.7.1 Calcolo di una soluzione di base ammissibile 129
		3.7.2 Forma matriciale delle equazioni correnti
	3.8	Esercizi
4	Pro	grammazione Lineare Intera 145
	4.1	Introduzione
	4.2	L'algoritmo Branch-and-Bound per Problemi di Programma-
		zione Binaria
		4.2.1 Sommario dell'algoritmo Branch-and-Bound 150
	4.3	L'algoritmo Branch-and-Bound per la Programmazione Intera 160
	4.4	L'algoritmo Branch-and-Cut per la Programmazione Binaria . 166
	4.5	Esercizi
5	Ana	alisi Post-ottimale 178
	5.1	Analisi di sensitività e postottimale
		5.1.1 Analisi di sensitività
		5.1.2 Prezzi ombra
	5.2	Esercizi
6	Pro	blemi di Ottimizzazione su Reti 186
	6.1	Definizioni e proprietà
	6.2	Il Problema di Minimo Albero Ricoprente 190
		6.2.1 L'algoritmo di Prim
		6.2.2 L'algoritmo di Kruskal
		6.2.3 Il Metodo Reverse-Delete
		6.2.4 Condizione di ottimalità del minimo albero ricoprente . 204
	6.3	Il Problema di Cammino Minimo
	-	6.3.1 L'algoritmo di Dijkstra
	6.4	Esercizi

Capitolo 1

Introduzione

1.1 Modelli Matematici

Il termine modello indica una struttura appositamente costruita per evidenziare le caratteristiche di oggetti reali. Alcune volte i modelli possono essere concreti (come ad esempio i modelli che rappresentano i prototipi di aerei, navi oppure automobili), ma spesso sono di tipo astratto, come i cosiddetti modelli matematici che usano appunto il simbolismo matematico per evidenziare determinate caratteristiche di oggetti veri. In poche parole i modelli matematici non sono altro che insiemi di relazioni che descrivono, in modo semplificato, fenomeni reali. L'interesse nella modellistica deriva dal fatto che essa consente di studiare l'evoluzione di tali fenomeni senza che questo accadano realmente. Si pensi per esempio alle simulazioni matematiche degli effetti di eventi catastrofici come i terremoti in zone abitate, in grado di fornire informazioni sulle loro conseguenze che ovviamente non potrebbero mai essere note se non dopo tale evento (e di conseguenza del tutto inutili). I campi di applicazione dei modelli matematici sono attualmente i più svariati: esempi concreti sono i modelli che descrivono la dinamica delle popolazioni, oppure la diffusione di epidemie oppure lo studio dell'inquinamento in determinati territori. Nei capitoli seguenti saranno analizzate le proprietà dei modelli matematici di ottimizzazione e saranno descritti alcuni metodi numerici per determinarne la soluzione.

I modelli matematici possono essere di due tipi:

1. Modelli stocastici: quando descrivono problemi influenzati da eventi casuali (ad esempio il modello matematico della teoria delle code, in

cui il tempo di servizio di uno sportello è di tipo casuale);

2. Modelli deterministici: quando descrivono relazioni esatte tra grandezze.

Una seconda suddivisione riguarda la validità dei modelli dal punto di vista temporale, infatti i modelli matematici possono essere:

- 1. Modelli statici: se le relazioni tra le grandezze restano invariate nel tempo;
- 2. Modelli dinamici: se le relazioni tra le grandezze dipendono dal tempo.

Un'ultimo tipo di classificazione è inerente la tipologia di relazioni matematiche tra grandezze:

- 1. Modelli lineari: se le relazioni tra le grandezze sono descritte da equazioni/disequazioni di tipo lineare;
- 2. Modelli non lineari: se almeno una delle relazioni tra le grandezze non è di tipo lineare.

L'approccio modellistico di un problema reale viene realizzato attraverso diverse fasi:

- 1. Analisi del problema: Consiste nell'analisi della struttura del problema con lo scopo di determinare l'obiettivo da raggiungere e le relazioni logico-funzionali;
- Costruzione del modello: Si descrivono in termini matematici le principali caratteristiche del problema e si traducono le relazioni tra le grandezze del problema;
- Analisi del modello: Si deducono analiticamente le proprietà matematiche del modello (esistenza, unicità della soluzione, stabilità della soluzione e altre);
- 4. Soluzione numerica: Si definisce un algoritmo per determinare (anche via software) la soluzione del problema;
- 5. Validazione dei risultati: Si verifica la congruenza dei risultati numerici rispetto ai dati sperimentali di cui si è in possesso. Nel caso in cui i dati siano discordanti allora si effettua un raffinamento del modello e si ripetono i passi precedenti.

Come detto la costruzione del modello matematico consiste nel tradurre una serie di relazioni logiche tra le grandezze reali coinvolte in termini, appunto, matematici. Per far questo è necessario applicare leggi fisiche, economiche, di mercato tradotte in equazioni algebriche, disequazioni, funzioni e così via. Poichè il modello è definito per mezzo delle relazioni che lo costituiscono è necessario che queste siano il più indipendenti possibile dai dati introdotti poichè un modello deve essere usato in più situazioni e con valori differenti. I risultati numerici devono essere considerati sempre in modo critico: la loro affidabilità dipende da molti fattori (precisione dei dati, affidabilità del software, efficacia e stabilità dell'algoritmo numerico e altri).

Nei successivi paragrafi saranno descritti alcuni classici Problemi di Ottimizzazione in diversi ambiti applicativi.

1.1.1 Il problema della dieta

Supponiamo di avere n alimenti (o classi di alimenti, carne, pesce, uova, legumi e altri) che contengono m sostanze nutritive (per esempio proteine, vitamine, carboidrati e altre). Si vuole determinare la quantità giornaliera di ciascun alimento che una persona deve assumere in modo tale da minimizzare il costo giornaliero del cibo ma garantendo il fabbisogno minimo di ogni sostanza nutriente.

Per formulare il modello matematico del problema dobbiamo innanzitutto elencare i dati assegnati. Infatti è necessario conoscere quindi i seguenti dati:

- $c_j = \text{costo unitario del } j \text{esimo alimento, per } j = 1, \dots, n;$
- b_i = fabbisogno minimo giornaliero dell'*i*-esimo nutriente, per $i = 1, \ldots, m$;
- a_{ij} = quantità dell'*i*-esimo nutriente presente nell'unità del *j*-esimo alimento, per i = 1, ..., m e j = 1, ..., n.

Finora il problema è stato descritto in linguaggio naturale e, per formulare il relativo modello matematico, bisogna seguire una serie di passi. Innanzitutto bisogna capire quali sono le grandezze che si vogliono determinare.

I Passo: Identificare le variabili

In questo caso l'identificazione è molto semplice in quanto dobbiamo determinare le quantità giornaliere di ciascun alimento, quindi definiamo le seguenti grandezze:

 $x_j = \text{quantità giornaliera del } j - \text{esimo alimento, per } j = 1, \dots, n.$

II Passo: Definire la funzione obiettivo

L'obiettivo è la minimizzazione del costo giornaliero della dieta noti i costi unitari c_j , ovvero il costo complessivo di tutti gli alimenti. La quantità x_1 del primo alimento costa c_1x_1 , la quantità x_2 del secondo costa c_2x_2 , cosicchè il costo complessivo degli alimenti è

$$Z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n = \sum_{j=1}^n c_j x_j.$$

L'obiettivo è quello di determinare le quantità x_j , j = 1, ..., n, in modo tale che venga minimizzato il valore di Z, purchè le quantità dell'i—esimo nutriente sia superiore al valore minimo giornaliero b_i . Le variabili x_j non possono assumere valori arbitrari ma questi devono essere tali da soddisfare una serie di vincoli, ovvero un vincolo per ciascuna sostanza nutriente. E questo porta all'ultima fase nella definizione del modello.

III Passo: Determinare i vincoli del problema

I vincoli riguardano esclusivamente le sostanze nutrienti. Bisogna calcolare la quantità complessiva di ciascuna sostanza nutriente presente in tutti n gli alimenti assunti nelle quantità x_1, x_2, \ldots, x_n . Per esempio nella quantità x_1 del primo alimento è presente $a_{11}x_1$ quantità del primo nutriente, $a_{21}x_1$ del secondo e così via. Nella quantità x_2 del secondo alimento sono presenti $a_{12}x_2$ quantità del primo nutriente, $a_{22}x_2$ del secondo e così via. Volendo determinare la quantità del primo nutriente questa risulta:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n$$

che deve soddisfare la seguente disuguaglianza:

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n > b_1$$

che costituisce il primo vincolo del modello. In generale la necessità di soddisfare il fabbisogno dell'i—esimo nutriente definisce un vincolo:

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \ge b_i.$$

In questo modo definiamo esattamente m vincoli. Al termine di questa fase abbiamo un passo finale che consiste nella formulazione del modello.

IV Passo: Formulazione completa del modello

In definitiva il problema può essere formulato nel seguente modo:

$$\min Z = \sum_{j=1}^{n} c_j x_j$$

Soggetto a:

$$\sum_{j=1}^{n} a_{ij} x_j \ge b_i, \qquad i = 1, \dots, m$$

$$x_j \ge 0, \qquad j = 1, \dots, n.$$

Supponiamo per esempio di dover decidere la composizione della dieta giornaliera a base di pasta, carne, verdura e formaggio, tenendo conto che giornalmente si devono assumere almeno 70 g. di proteine, almeno 50 g. di grassi ed almeno 250 g. di zuccheri. Nella seguente tabella sono indicati i grammi di nutrienti in ogni 100 grammi di alimento ed i relativi costi.

	Pasta	Carne	Verdura	Formaggio
Proteine	9.9	20.8	2	22
Grassi	1.2	1.1	0.2	26
Zuccheri	75.3	0	4	0
Costo €/kg	1.4	12	1.2	12

Ad esempio un etto di pasta contiene 9.9 grammi di proteine, 1.2 g. di grassi e 75.3 g. di zuccheri. Di consequenza un chilo di pasta contiene 99 grammi di proteine, 12 grammi di grassi e 753 grammi di zuccheri. L'obiettivo che ci poniamo è quello di minimizzare la spesa giornaliera per l'acquisto degli alimenti in modo tale che venga soddisfatto il fabbisogno giornaliero di grassi, zuccheri e proteine.

Indicando con x_1 la quantità (in chilogrammi) di pasta, con x_2 la quantità (in chilogrammi) di carne, con x_3 la quantità (in chilogrammi) di verdura e con x_4 la quantità (in chilogrammi) di formaggio da acquistare, il problema

può essere formulato come segue:

$$\begin{array}{llll} \min & Z = 1.4x_1 + 12x_2 + 1.2x_3 + 12x_4 \\ \text{Soggetto a:} & & \\ 99x_1 & +208x_2 & +20x_3 & +220x_4 & \geq & 70 \\ 12x_1 & +11x_2 & +2x_3 & +260x_4 & \geq & 50 \\ 753x_1 & & +40x_3 & & \geq & 250 \\ x_1, x_2, x_3, x_4 \geq 0. & & \end{array}$$

1.1.2 Un problema di miscelazione

Una fonderia deve produrre 1000 pezzi del peso ciascuno di un chilogrammo. Il ferro con cui tali pezzi sono fatti dovrà contenere manganese e silicio nelle seguenti quantità:

$$0.45\% \le \text{manganese}, \quad 3.25\% \le \text{silicio} \le 5.5\%.$$

Sono disponibili tre tipi di materiale ferroso le cui caratteristiche sono riportate nella seguente tabella:

Materiale ferroso	A	В	С
Silicio (%)	4.00	1.00	0.60
Manganese (%)	0.45	0.50	0.40
Costo (€/kg.)	0.025	0.030	0.018

Inoltre si può aggiungere direttamente manganese al costo di 10 Euro al kg. Il problema che si vuole modellare è quello di determinare il piano di produzione che minimizza il costo del materiale utilizzato. Si vogliono cioè individuare le quantità di materiale per ciascuno dei tre tipi A, B, o C e di manganese puro da acquistare per produrre i 1000 pezzi richiesti, spendendo il meno possibile. Proviamo a costruire un modello analitico per il problema. A questo scopo introduciamo le variabili x_1, x_2, x_3, x_4 , aventi il seguente significato:

 $x_1(\geq 0)$: la quantità in kg di materiale ferroso A da utilizzare;

 $x_2 (\geq 0)$: la quantità in kg di materiale ferroso B da utilizzare;

 $x_3 (\geq 0)$: la quantità in kg di materiale ferroso C da utilizzare;

 $x_4(>0)$: la quantità in kg di manganese da utilizzare.

Abbiamo imposto che le quantità di prodotto acquistate siano dei valori non negativi (vincoli di nonnegatività). Il costo complessivo dei materiali risulta essere:

$$0.025x_1 + 0.030x_2 + 0.018x_3 + 10x_4.$$

Gli altri vincoli da rispettare sono descritti in seguito. Innanzitutto la quantità complessiva di prodotto deve essere pari a 1000 kg.:

$$x_1 + x_2 + x_3 + x_4 = 1000.$$

La quantità di silicio, in kg, presente nel prodotto risultante è data da

$$0.04x_1 + 0.01x_2 + 0.006x_3$$

e deve essere compresa nei limiti voluti (cioè deve essere superiore a 32.5 kg su 1000 kg di prodotto finito e inferiore a 55 kg nella stessa quantità di prodotto, pari rispettivamente al 3.25% e al 5.5%):

$$32.5 \le 0.04x_1 + 0.01x_2 + 0.006x_3 \le 55.$$

Possiamo quindi esprimere la condizione sulla percentuale di silicio mediante i due vincoli lineari (per semplicità i due vincoli sono stati moltiplicati per 100):

$$\begin{array}{ccccc} 4x_1 & +x_2 & +0.6x_3 & \geq & 3250 \\ 4x_1 & +x_2 & +0.6x_3 & \leq & 5500. \end{array}$$

Analogamente, per la condizione sulla percentuale di manganese (che deve essere superiore a 4.5 kg su 1000 kg di prodotto, pari allo 0.45%) si ottiene

$$0.0045x_1 + 0.005x_2 + 0.004x_3 + x_4 \ge 4.5$$

e quindi

$$0.45x_1 + 0.5x_2 + 0.4x_3 + 100x_4 \ge 450.$$

Il problema della determinazione di un piano di produzione che minimizza il costo può quindi essere formulato come segue:

$$\min \ Z = 0.025x_1 + 0.030x_2 + 0.018x_3 + 10x_4$$

$$x_i > 0, i = 1, 2, 3, 4.$$

Le variabili x_1, x_2, x_3 e x_4 corrispondono alle scelte operative che il problema reale richiede di compiere, e ciascun vincolo del modello corrisponde ad una condizione imposta dal problema reale. Determinare i valori delle variabili in modo che i vincoli siano soddisfatti e la funzione obiettivo assuma il minimo valore fornisce il miglior piano di produzione.

10

1.1.3 Un problema di pianificazione della produzione

Un'industria chimica produce quattro tipi di fertilizzante, la cui lavorazione è affidata a due reparti: produzione e confezionamento. Per ottenere fertilizzante pronto per la vendita è necessaria la lavorazione in entrambi i reparti. La seguente tabella riporta, per ciascun tipo di fertilizzante, i tempi (in ore) necessari per la lavorazione in ciascun reparto per avere una tonnellata di prodotto pronto per la vendita

Reparto	Tipo 1	Tipo 2	Tipo 3	Tipo 4
Produzione	2	1.5	0.5	2.5
Confezionamento	0.5	0.25	0.25	1

Dopo aver dedotto, da ciascuna tonnellata, il costo del materiale grezzo, una tonnellata di fertilizzante produce i seguenti profitti (in euro per tonnellata):

	Tipo 1	Tipo 2	Tipo 3	Tipo 4
Profitto netto	250	230	110	350

Si vuol determinare la quantità di fertilizzante di ciascun tipo da produrre settimanalmente in modo tale da massimizzare il profitto sapendo che il reparto produzione può lavorare al più 100 ore la settimana mentre il reparto confezionamento al più 50 ore settimanali.

Definiamo, come variabili del modello, quelle pari al numero di tonnellate prodotte settimanalmente per ciascun tipo di fertilizzante:

 $x_i = \text{tonnellate dell'} i - \text{esimo tipo di fertilizzante prodotte settimanalmente.}$

Scopo è la massimizzazione del profitto complessivo, che si ottiene moltiplicando il profitto unitario per il numero di tonnellate prodotte:

$$Z = 250x_1 + 230x_2 + 110x_3 + 350x_4$$
.

I vincoli riguardano il numero di ore settimanali che i due reparti possono lavorare. Per il reparto produzione il vincolo sul tempo necessario a produrre le quantità di prodotto pari a x_1, x_2, x_3 e x_4 è:

$$2x_1 + 1.5x_2 + 0.5x_3 + 2.5x_4 \le 100,$$

mentre per il reparto confezionamento il vincolo è:

$$0.5x_1 + 0.25x_2 + 0.25x_3 + x_4 \le 50.$$

Il problema della pianificazione settimanale della produzione può quindi essere formulato come segue:

$$\max Z = 250x_1 + 230x_2 + 110x_3 + 350x_4$$

$$2x_1 + 1.5x_2 + 0.5x_3 + 2.5x_4 \le 100$$

$$0.5x_1 + 0.25x_2 + 0.25x_3 + x_4 \le 50$$

$$x_i \ge 0, \ i = 1, 2, 3, 4.$$

1.1.4 Il problema dello zaino

Sia dato un insieme E di n oggetti, a ciascuno dei quali è associato un peso w_i ed un valore c_i , $i=1,\ldots,n$, valori interi e positivi. Il problema dello zaino (KP, da Knapsack Problem) consiste nel determinare un sottoinsieme di elementi che abbia valore totale massimo ed il cui peso totale non superi un prefissato intero b. Il nome deriva dal fatto che viene usualmente descritto come il problema di scegliere quali oggetti di un assegnato insieme mettere in uno zaino in modo da non superare un dato peso (o capacità) e da massimizzare appunto il valore complessivo degli oggetti selezionati. Si assume che sia

$$0 < b < \sum_{i=1}^{n} w_i,$$

altrimenti il problema sarebbe banale e che inoltre sia

$$w_i \le b, \qquad i = 1, \dots, n$$

in quanto nessun elemento di peso superiore alla capacità b può far parte di una soluzione e quindi ogni elemento di peso superiore a b può essere eliminato da E. Il problema può essere scritto come un problema di massimo. Possiamo formulare il problema come uno di programmazione lineare introducendo, per ogni oggetto $i=1,2,\ldots,n$, una variabile $x_i\in\{0,1\}$, con il significato che la variabile assume valore 1 se l'elemento i-esimo appartiene al sottoinsieme selezionato, e 0 altrimenti (si decide cioè se inserire o meno l'oggetto). La funzione obiettivo, da massimizzare, è

$$Z = \sum_{i=1}^{n} c_i x_i$$

in cui sono sommati i valori dei soli oggetti selezionati. La condizione relativa alla capacità dello zaino diviene

$$\sum_{i=1}^{n} w_i x_i \le b$$

infatti, dato che ciascuna x_i può assumere solo i valori 0 o 1, nella somma vengono considerati i pesi dei soli oggetti selezionati. La formulazione finale del problema è la seguente

$$\max Z = \sum_{i=1}^{n} c_i x_i$$
$$\sum_{i=1}^{n} w_i x_i \le b$$
$$x_i \in \{0, 1\}.$$

1.1.5 Un problema di pianificazione

Una comunità agricola, composta da tre cooperative, deve pianificare la produzione agricola per l'intero anno. Il rendimento di ogni cooperativa dipende dalla quantità di terreno disponibile e dalla quantità di acqua, come risulta dalla seguente tabella:

Cooperativa	Terra disponibile	Acqua disponibile
	(ettari)	(migliaia metri cubi)
1	160	400
2	240	600
3	120	175

I raccolti possibili sono barbabietole, cotone e sorgo. Queste coltivazioni differiscono per la quantità di acqua di cui necessitano e per il rendimento netto per ettaro, dati riportati nella seguente tabella:

Prodotto	Consumo di acqua	Guadagno netto
	(metri-cubi/ettaro)	(euro/ettaro)
Barbabietole	3	1000
Cotone	2	750
Sorgo	1	250

13

Si deve considerare inoltre che per ciascuna coltivazione la comunità ha fissato la massima quantità di terreno coltivabile che si può usare: 240 ettari per le barbabietole, 200 per il cotone e 130 per il sorgo. Inoltre è stato stabilito che la percentuale di terreno che ogni cooperativa può utilizzare per le coltivazioni deve essere la stessa.

Ovviamente le quantità da determinare sono le aree di ciascuna delle tre cooperative da destinare alle tre coltivazioni, quindi definiamo nove variabili:

Coltivazione	Cooperativa		
	1	2	3
Barbabietola	x_1	x_2	x_3
Cotone	x_4	x_5	x_6
Sorgo	x_7	x_8	x_9

Ovviamente la funzione da massimizzare è il guadagno totale netto che si ottiene moltiplicando la quantità totale di ettari destinati a ciascun singolo prodotto per il guadagno netto per ettaro:

$$Z = 1000(x_1 + x_2 + x_3) + 750(x_4 + x_5 + x_6) + 250(x_7 + x_8 + x_9).$$

I vincoli sono di quattro tipi:

1) Terra utilizzabile da ciascuna cooperativa:

$$\begin{array}{ccccc} x_1 & +x_4 & +x_7 & \leq & 160 \\ x_2 & +x_5 & +x_8 & \leq & 240 \\ x_3 & +x_6 & +x_9 & \leq & 120, \end{array}$$

2) Acqua utilizzabile da ciascuna cooperativa:

$$3x_1 +2x_4 +x_7 \le 400$$

 $3x_2 +2x_5 +x_8 \le 600$
 $3x_3 +2x_6 +x_9 \le 175$,

3) Terra utilizzabile complessivamente per ciascuna coltivazione:

$$\begin{array}{ccccc} x_1 & +x_2 & +x_3 & \leq & 240 \\ x_4 & +x_5 & +x_6 & \leq & 200 \\ x_7 & +x_8 & +x_9 & \leq & 130, \end{array}$$

4) Stessa proporzione di terra coltivata:

$$\frac{x_1 + x_4 + x_7}{160} = \frac{x_2 + x_5 + x_8}{240}$$

$$\frac{x_2 + x_5 + x_8}{240} = \frac{x_3 + x_6 + x_9}{120}$$

$$\frac{x_3 + x_6 + x_9}{120} = \frac{x_1 + x_4 + x_7}{160},$$

che in questo caso sono espresse scrivendo tutte le variabili al primo membro:

$$3(x_1 + x_4 + x_7) - 2(x_2 + x_5 + x_8) = 0$$

$$x_2 + x_5 + x_8 - 2(x_3 + x_6 + x_9) = 0$$

$$4(x_3 + x_6 + x_9) - 3(x_1 + x_4 + x_7) = 0,$$

ovviamente oltre alla condizioni di nonnegatività, $x_i \ge 0, i = 1, \dots, 9$.

1.1.6 Un problema di scheduling del personale

Una compagnia aerea sta riorganizzando i servizi nel proprio aeroporto principale e per questo deve effettuare una politica di nuove assunzioni delle quali si deve decidere la numerosità. Per questo vengono analizzate le necessità legate ai diversi momenti della giornata, considerando che il proprio personale deve essere ripartito in 5 turni di lavoro che coprono l'intero arco delle 24 ore:

Turno 1: dalle 6.00 alle 14.00

Turno 2: dalle 8.00 alle 16.00

Turno 3: dalle 12.00 alle 20.00

Turno 4: dalle 16.00 alle 24.00

Turno 5: dalle 22.00 alle 6.00.

Inoltre, per il numero minimo di lavoratori che devono essere presenti nelle diverse fasce orarie della giornata e per i relativi costi di un'unita di personale sono stati individuati i seguenti dati:

			Turno			
Fascia oraria	1	2	3	4	5	Addetti
6.00-8.00	×					40
8.00-10.00	×	×				70
10.00-12.00	×	×				65
12.00-14.00	×	×	×			80
14.00-16.00		×	×			65
16.00-18.00			×	×		70
18.00-20.00			×	×		80
20.00-22.00				×		40
22.00-24.00				×	×	50
24.00-6.00					×	15
Costo per addetto	170€	160€	175€	180€	200€	

Il problema è determinare il numero di dipendenti che devono essere assegnati a ciascun turno in modo tale da minimizzare il costo complessivo e superando il numero minimo di persone che devono essere presenti in ciascuna fascia oraria.

È opportuno in questo caso definire le seguenti variabili:

$$x_j$$
 = numero di dipendenti assegnati al turno $j, j = 1, 2, 3, 4, 5$.

Il vincolo principale per i possibili valori di queste variabili è che il loro numero presente durante ogni intervallo di tempo deve superare i valori riportati nell'ultima colonna. Per esempio dalle 8.00 alle 10.00 sono in servizio i dipendenti del secondo e del terzo turno e la loro somma deve superare 70:

$$x_1 + x_2 \ge 70.$$

La funzione da minimizzare è il costo complessivo giornaliero che è la somma dei costi relativi ai dipendenti assegnati a ciascun turno, quindi:

minimizzare
$$Z = 170x_1 + 160x_2 + 175x_3 + 180x_4 + 200x_5$$

mentre i vincoli sono:

e inoltre

$$x_j \ge 0, \ x_j \in \mathbb{N}, \qquad j = 1, \dots, 5.$$

Possiamo osservare che alcuni vincoli non sono necessari. Infatti i vincoli di nonnegatività per x_1, x_4 e x_5 sono ridondanti in virtù del primo, dell'ottavo e del decimo vincolo, così come anche il terzo vincolo, a causa della presenza del secondo (se la somma tra x_1 e x_2 deve essere maggiore di 70 allora è chiaro che supera anche 65) ma anche il sesto esattamente per un motivo analogo.

1.1.7 Un problema di pianificazione urbana

Il piano regolatore di una città prevede che in una zona debbano essere costruiti il nuovo ospedale, il carcere, una caserma dei Vigili del Fuoco, una scuola, un parcheggio ed una chiesa. Sono state individuate 6 zone in cui le strutture potrebbero essere costruite e, per ciascun'opera, sono stati determinati i costi per l'eventuale realizzazione in ognuna delle aree. Tali costi (in milioni di euro) sono riassunti nella seguente tabella.

	Zona 1	Zona 2	Zona 3	Zona 4	Zona 5	Zona 6
Carcere	7.0	8.0	6.5	9.0	8.0	7.0
Ospedale	9.0	9.0	8.0	7.0	6.0	9.0
Caserma	4.0	4.5	3.5	4.0	3.0	3.5
Scuola	2.0	2.0	1.5	2.5	1.0	1.5
Parcheggio	0.5	0.3	0.5	0.6	0.5	0.6
Chiesa	2.0	1.5	1.0	1.5	2.0	1.8

Si vuole pianificare la costruzione delle 6 opere pubbliche minimizzando il costo complessivo della loro realizzazione.

In questo caso il problema che si vuole descrivere è quello di associare ad ogni elemento di un insieme (ovvero quello delle opere da costruire) un singolo elemento di un secondo insieme (ovvero quello delle zone edificabili), in modo tale che non ci sia nessun elemento (di entrambi gli insiemi) che non sia associato a nulla oppure abbia più associazioni. Definiamo quindi le variabili x_{ij} tali che

$$x_{ij} = \begin{cases} 1 & \text{se la } i\text{-esima opera viene realizzata nella } j\text{-esima zona;} \\ 0 & \text{altrimenti} \end{cases}$$

per i, j = 1, ..., 6. Ogni x_{ij} è una variabile binaria (può assumere solo due valori). Per esempio se fosse $x_{11} = 1$ allora tutte le variabili x_{1j} , con $j \neq 1$, e x_{i1} , con $i \neq 1$, dovrebbero essere uguali a zero. Il valore assunto da tale insieme di variabili potrebbe essere riassunto in una matrice, per esempio la seguente

$$X = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}. \tag{1.1}$$

Indicato con c_{ij} il costo richiesto per la realizzazione della i-esima opera nella j-esima zona, il costo complessivo richiesto risulterebbe essere

$$Z = \sum_{i=1}^{6} \sum_{j=1}^{6} c_{ij} x_{ij}$$
 (1.2)

Se la scelta fosse stata quella schematizzata dalla matrice (1.1) allora il costo complessivo sarebbe stato pari a

$$Z = 7 + 8 + 3.5 + 2.5 + 0.3 + 2 = 15.3 \text{ M} \in$$
.

Obiettivo è quello di minimizzare la funzione (1.2) al variare di tutte le possibili matrici (1.1). I vincoli sono legati alla richiesta che in ogni riga ed in ogni colonna della matrice X ci sia solo un elemento uguale a 1. Questo

può essere tradotto richiedendo che la somma degli elementi di ogni riga e di ogni colonna della matrice X sia uguale a 1 e che gli elementi possano essere uguali a 0 o a 1.

Riassumendo il modello matematico è il seguente

min
$$Z = \sum_{i=1}^{6} \sum_{j=1}^{6} c_{ij} x_{ij}$$

soggetto ai vincoli

$$\sum_{j=1}^{6} x_{ij} = 1, \quad i = 1, \dots, 6$$

$$\sum_{i=1}^{6} x_{ij} = 1, \quad j = 1, \dots, 6$$

$$x_{ij} \in \{0, 1\}.$$

1.1.8 Un esempio sportivo

Sapendo che una squadra di pallavolo dopo 15 partite di campionato ha vinto 20 set e ne ha persi 30, si vuol determinare il massimo dei punti che potrebbe avere ottenuto.

Come noto i possibili risultati di una partita di pallavolo sono solo sei: tre in caso di vittoria (per 3 set a zero, 3 set a 1 oppure 3 set a 2) e tre in caso di sconfitta (analogamente 0-3, 1-3 oppure 2-3). Il numero di punti assegnati per la vittoria è 3 (se il risultato è 3-0 oppure 3-1) oppure 2 (se il risultato è 3-2). Per la sconfitta è assegnato solo un punto se il risultato è 2-3, altrimenti non sono assegnati punti. Poichè è noto il numero dei set vinti e persi conviene definire sei variabili, ognuna delle quali conta un diverso risultato:

 x_1 = numero di vittorie per 3 - 0; x_2 = numero di vittorie per 3 - 1; x_3 = numero di vittorie per 3 - 2; x_4 = numero di sconfitte per 0 - 3; x_5 = numero di sconfitte per 1 - 3; x_6 = numero di sconfitte per 2 - 3.

In questo caso il numero di punti è la funzione

$$Z = 3x_1 + 3x_2 + 2x_3 + x_6$$

che deve essere massimizzata. I vincoli sono tre:

1) Il numero di partite:

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 15;$$

2) Il numero di set vinti

$$3x_1 + 3x_2 + 3x_3 + x_5 + 2x_6 = 20;$$

3) Il numero di set persi

$$x_2 + 2x_3 + 3x_4 + 3x_5 + 3x_6 = 30.$$

Riassumendo, la formulazione matematica del problema è la seguente

$$\max Z = 3x_1 + 3x_2 + 2x_3 + x_6$$

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 15$$

$$3x_1 + 3x_2 + 3x_3 + x_5 + 2x_6 = 20$$

$$x_2 + 2x_3 + 3x_4 + 3x_5 + 3x_6 = 30$$

$$x_i \ge 0, x_i \in \mathbb{N}, i = 1, \dots, 6.$$

1.1.9 Il problema del trasporto

Una ditta di trasporto deve trasferire container vuoti dai propri 6 Magazzini, situati a Verona, Perugia, Roma, Pescara, Taranto e Lamezia, ai principali Porti nazionali (Genova, Venezia, Ancona, Napoli, Bari). Le disponibilità di container vuoti ai Magazzini sono le seguenti

	Container vuoti
Verona	10
Perugia	12
Roma	20
Pescara	24
Taranto	18
Lamezia	30

e le richieste ai Porti sono le seguenti:

	Container richiesti
Genova	20
Venezia	15
Ancona	25
Napoli	33
Bari	21

Il costo del trasporto dei container dai magazzini ai porti è proporzionale alla distanza percorsa dal camion che lo trasporta. I costi (in \in) di trasporto per un singolo container sono riportati nella seguente tabella:

	Genova	Venezia	Ancona	Napoli	Bari
Verona	290	115	355	715	810
Perugia	380	340	165	380	610
Roma	505	530	285	220	450
Pescara	655	450	155	240	315
Taranto	1010	840	550	305	95
Lamezia	1072	1097	747	372	333

Si vuole formulare il relativo problema di ottimizzazione avendo come obiettivo la minimizzazione dei costi di trasporto.

Innanzitutto associamo ad ognuno dei sei magazzini un numero intero (1=Verona, 2=Perugia, 3=Roma, 4=Pescara, 5=Taranto, 6=Lamezia) e ad ognuno dei porti un altro numero intero (1=Genova, 2=Venezia, 3=Ancona, 4=Napoli, 5=Bari). Per determinare il costo complessivo del trasporto si deve conoscere il numero di container che sono trasportati da ciascun magazzino ad ogni porto. Definiamo pertanto le seguenti variabili nonnegative

 $x_{ij} = il$ numero di container spediti dal magazzino i al porto j,

con
$$i = 1, ..., 6$$
, e $j = 1, ..., 5$.

Per semplicità indichiamo con c_{ij} il costo unitario per trasportare un container dall'i—esimo magazzino al j—esimo porto.

La funzione obiettivo, da minimizzare, è pertanto

$$Z = \sum_{i=1}^{6} \sum_{j=1}^{5} c_{ij} x_{ij}.$$

I vincoli derivano dalla richiesta che ovviamente tutti i container presenti in ciascun magazzino devono essere inviati ai porti. Pertanto avremo esattamente 6 vincoli di uguaglianza:

Analogamente ogni porto potrà ricevere un numero di container pari alla sua capacità. Dobbiamo pertanto aggiungere altri 5 vincoli, uno per ciascun porto:

$$x_{11}$$
 $+x_{21}$ $+x_{31}$ $+x_{41}$ $+x_{51}$ $+x_{61} = 20$
 x_{12} $+x_{22}$ $+x_{32}$ $+x_{42}$ $+x_{52}$ $+x_{62} = 15$
 x_{13} $+x_{23}$ $+x_{33}$ $+x_{43}$ $+x_{53}$ $+x_{63} = 25$
 x_{14} $+x_{24}$ $+x_{34}$ $+x_{44}$ $+x_{54}$ $+x_{64} = 33$
 x_{15} $+x_{25}$ $+x_{35}$ $+x_{45}$ $+x_{55}$ $+x_{65} = 21$

A questi vanno aggiunti i vincoli di interezza per ciascuna variabile x_{ij} . Riassumiamo il modello finale:

$$Z = \sum_{i=1}^{6} \sum_{j=1}^{5} c_{ij}x_{ij}$$

$$x_{11} + x_{12} + x_{13} + x_{14} + x_{15} = 10$$

$$x_{21} + x_{22} + x_{23} + x_{24} + x_{25} = 12$$

$$x_{31} + x_{32} + x_{33} + x_{34} + x_{35} = 20$$

$$x_{41} + x_{42} + x_{43} + x_{44} + x_{55} = 24$$

$$x_{51} + x_{52} + x_{53} + x_{54} + x_{55} = 18$$

$$x_{61} + x_{62} + x_{63} + x_{64} + x_{65} = 30$$

$$x_{11} + x_{21} + x_{31} + x_{41} + x_{51} + x_{61} = 20$$

$$x_{12} + x_{22} + x_{32} + x_{42} + x_{52} + x_{62} = 15$$

$$x_{13} + x_{23} + x_{33} + x_{43} + x_{53} + x_{63} = 25$$

$$x_{14} + x_{24} + x_{34} + x_{44} + x_{54} + x_{64} = 33$$

$$x_{15} + x_{25} + x_{35} + x_{45} + x_{55} + x_{65} = 21$$

$$x_{ij} \in \mathbb{N}, i = 1, \dots, 6, j = 1, \dots, 5.$$

1.1.10 Un esempio di pianificazione edilizia

In un terreno di 8 ettari una società deve costruire alcuni impianti sportivi, ovvero campi di calcio, di calcetto, di tennis, di pallavolo e di pallacanestro. Si vuole massimizzare il numero di impianti da costruire considerando che i relativi costi e le dimensioni sono riassunti nella seguente tabella:

Impianto	Dimensioni (in metri)	Costo (in M€)
Calcio	100×50	1.0
Calcio a 5	40×20	0.4
Tennis	24×11	0.3
Pallavolo	18×9	0.5
Pallacanestro	28×15	0.5

Bisogna inoltre considerare che l'estensione di ciascun impianto va aumentata del 10% per gli spazi da adibire a strade, spogliatoi e spazio libero intorno ai campi, che la società ha a disposizione 4 milioni di euro, che bisogna costruire almeno un impianto per ciascuna tipologia e che il numero di campi di pallacanestro e pallavolo non deve superare la metà del numero degli altri impianti.

La funzione da massimizzare è il numero di impianti complessivo pertanto bisogna conoscere il numero di ciascun tipo di impianto da costruire. Definiamo pertanto 5 variabili:

 x_1 = Numero di campi di calcio da costruire

 x_2 = Numero di campi di calcio a 5 da costruire

 x_3 = Numero di campi di tennis da costruire

 x_4 = Numero di campi di pallavolo da costruire

 x_5 = Numero di campi di pallacanestro da costruire.

La funzione obiettivo, da massimizzare, è pertanto la seguente:

$$Z = x_1 + x_2 + x_3 + x_4 + x_5.$$

Il primo vincolo riguarda lo spazio a disposizione, bisogna pertanto calcolare i metri quadri richiesti da ciascun impianto sportivo.

Supericie campo di calcio	$= 100 \times 50 \ m^2 = 5000$	$+10\% = 5500m^2$
Supericie campo di calcio a 5	$=40 \times 20 \ m^2 = 800$	$+10\% = 880m^2$
Supericie campo di tennis	$= 24 \times 11 \ m^2 = 464$	$+10\% = 510.4m^2$
Supericie campo di pallavolo	$=18 \times 9 \ m^2 = 162$	$+10\% = 178.2m^2$
Supericie campo di pallacanestro	$=28 \times 15 \ m^2 = 720$	$+10\% = 792m^2$.

Pertanto deve risultare:

$$5500x_1 + 880x_2 + 510.4x_3 + 178.2x_4 + 792x_5 \le 80000m^2.$$

Il secondo vincolo riguarda i costi complessivi che non devono superare la cifra disponibile:

$$x_1 + 0.4x_2 + 0.3x_3 + 0.5x_4 + 0.5x_5 \le 4 M \in$$

L'ultima riguarda il vincolo sul numero di campi di pallacanestro e pallavolo:

$$x_4 + x_5 \le \frac{x_1 + x_2 + x_3}{2}.$$

Il vincolo di nonnegatività è sostituito dal requisito che tutte le variabili x_i devono essere maggiori o uguali di 1. La formulazione del problema è la seguente:

1.1.11 Un esempio di modello non lineare

Un'industria chimica deve costruire un serbatoio scoperto da adibire all'immagazzinamento di un prodotto liquido utilizzando una quantità di lamiera pari a 150 metri quadri. Il serbatoio deve essere collocato all'interno di un capannone a pianta quadrata con lato di 15 metri e con un tetto spiovente dall'altezza di 7 metri fino all'altezza di 4 metri. Per semplicità si suppone che il serbatoio abbia la forma di un prisma retto con base quadrata. Si vuole formulare il problema di determinare le dimensioni del serbatoio in modo tale che il volume sia massimo.

Appare chiaro che, dovendo determinare le dimensioni del serbatoio, ovvero la lunghezza del lato di base e dell'altezza, si pongano, come variabili del problema:

 x_1 = lunghezza del lato di base

 x_2 = lunghezza dell'altezza.

Il volume del serbatoio è quindi

$$Z = x_1^2 x_2$$

che è la funzione da massimizzare.

I vincoli sulle variabili del problema sono di due tipi:

- 1) vincoli sulla quantità di lamiera da utilizzare;
- 2) vincoli sulle dimensioni del serbatoio rispetto al capannone che lo deve contenere.

La lamiera disponibile (ovvero 150 metri quadri) deve essere sufficiente per costruire solo la base e le pareti laterali, ovvero la superficie complessiva deve essere

$$x_1^2 + 4x_1x_2 = 150.$$

Per quello che riguarda le dimensioni deve essere innanzitutto

$$x_1 \le 15$$
.

Per determinare il vincolo sull'altezza calcoliamo prima la pendenza del tetto (ovvero il rapporto tra la differenza di ordinate e quella di ascisse):

$$p = \frac{7-4}{15} = \frac{3}{15} = 0.2$$

cosicchè, dalla seguente figura (non in scala)

si evince che deve essere

$$x_2 + 0.2x_1 = 7.$$

Il problema di programmazione lineare può quindi essere riassunto nel seguente modo:

$$\max Z = x_1^2 x_2$$

$$x_1^2 + 4x_1 x_2 = 150$$

$$x_1 \leq 15$$

$$0.2x_1 + x_2 \leq 7$$

$$x_1, x_2 \geq 0.$$

In questo esempio sia la funzione Z che i vincoli sulle variabili x_1, x_2 sono di tipo non lineare.

26

1.1.12 Un altro esempio di modello non lineare

Una compagnia petrolifera si rifornisce di greggio in tre città portuali, indicate con A, B e C. Il porto B è ubicato a 200 km a est e a 150 km a nord del porto A. Il porto C si trova a 100 km a est e a 300 km a nord del porto A. La compagnia intende costruire una nuova raffineria in modo tale da minimizzare la quantità totale di tubi occorrenti per collegare la raffineria ai porti. Inoltre la raffineria non può essere costruita a sud del porto A nè a meno di 100 km di distanza da questo.

Innanzitutto scegliamo un sistema di riferimento in cui il porto A coincide con l'origine, in modo tale che i tre porti abbiano le seguenti coordinate: A(0,0), B(200,150) e C(100,300).

Siano (x_1, x_2) le coordinate del punto dove costruire la raffineria R. Calcoliamo le distanze di R dai tre porti:

$$\overline{AR} = \sqrt{x_1^2 + x_2^2}
\overline{BR} = \sqrt{(x_1 - 200)^2 + (x_2 - 150)^2}
\overline{CR} = \sqrt{(x_1 - 100)^2 + (x_2 - 300)^2}$$

cosicchè la distanza totale dai tre porti è la funzione

$$Z = \sqrt{x_1^2 + x_2^2} + \sqrt{(x_1 - 200)^2 + (x_2 - 150)^2} + \sqrt{(x_1 - 100)^2 + (x_2 - 300)^2}.$$

Un primo vincolo è che risulti $x_2 \ge 0$ (la raffineria deve trovarsi infatti a nord del porto A). Inoltre deve distare da questo più di 100 km quindi deve essere

$$x_1^2 + x_2^2 \ge 100^2$$
.

Il problema può essere quindi formulato nel seguente modo

$$\min \ Z = \sqrt{x_1^2 + x_2^2} + \sqrt{(x_1 - 200)^2 + (x_2 - 150)^2} + \sqrt{(x_1 - 100)^2 + (x_2 - 300)^2}$$

$$x_1^2 + x_2^2 \ge 10000$$

$$x_2 \ge 0.$$

1.2 Esercizi

Esercizio 1.2.1 Una multinazionale produce biocarburanti in uno stabilimento composto da tre reparti: Preparazione, Purificazione ed Estrazione. Le tipologie di carburanti sono due: il biometano ed il biodiesel. I tempi necessari per la lavorazione di una tonnellata di prodotto sono riportati nella seguente tabella, insieme alla capacità produttiva giornaliera di ciascun reparto.

	Ore di lavora	Capacità	
Reparto	Biometano Biodiesel		giornaliera (ore)
Preparazione	0.50	0.75	18
Purificazione	1.10	1.35	18
Estrazione	1.85	1.95	15

Il management intende pianificare la produzione giornaliera dei due tipi di carburante sapendo che il biometano produce un ricavo di $500 \in per$ tonnellata, il biodiesel $590 \in per$ tonnellata con l'obiettivo di massimizzare il ricavo giornaliero. Si scriva il relativo modello di ottimizzazione.

Esercizio 1.2.2 Un'azienda chimica può produrre due tipi di fertilizzanti. Ogni quintale di fertilizzante di tipo A contiene 0.1 quintali di azoto e 0.3 quintali di potassio e ha un prezzo di vendita di 300. Ogni quintale di fertilizzante di tipo B contiene 0.2 quintali di azoto, 0.1 quintali di potassio e ha un prezzo di vendita di 400. L'azienda dispone di 9 quintali di azoto e di 10 quintali di potassio. Si scriva il relativo modello di ottimizzazione volendo conoscere le produzioni giornaliere espresse in quintali di A e B che rendono massimo il ricavo supponendo che, per problemi di tipo tecnologico, le produzioni di A e B devono essere nel rapporto 1/2 e che ci sia una domanda di mercato pari almeno a 20 quintali di prodotto tra A e B.

Esercizio 1.2.3 Un'azienda deve produrre 2 profilati metallici (A e B) che richiedono l'impiego di manodopera, disponibile al massimo in 36 squadre. Per la produzione giornaliera di un lotto di A e di un lotto di B si impiegano rispettivamente 3 e 6 squadre. È necessario produrre tra A e B almeno 4 lotti al giorno. Si possono impiegare due diverse tecnologie (1 e 2). La tecnologia 1 produce al massimo 2 lotti di B per ogni lotto di A (cioè le produzioni di B ed A sono al massimo nel rapporto due a uno). La tecnologia 2 produce al massimo 2 lotti di A per ogni lotto di B (cioè le produzioni di A e B sono al massimo nel rapporto due a uno). Il profitto unitario è lo stesso per entrambi i prodotti. Si scriva il relativo modello di ottimizzazione volendo determinare il piano di produzione giornaliero che massimizzi il profitto totale. (Osservazione. Ogni soluzione ammissibile deve essere tale da soddisfare entrambi i vincoli sulle tecnologie utilizzate.)

Esercizio 1.2.4 Un'azienda di materie plastiche ha avuto una commessa per la quale deve consegnare entro una settimana almeno 4 tonnellate di materiale dei prodotti A e B. Problemi di organizzazione del lavoro impongono che la differenza tra le quantità prodotte di B e di A sia al massimo pari a 4 tonnellate. I vincoli posti dal sistema tecnologico impongono invece che per ogni tonnellata di A si producano almeno 2 tonnellate di B. I costi di produzione di A e di B sono nel rapporto uno a tre. Si scriva il relativo modello di ottimizzazione volendo conoscere il piano di produzione che minimizzi il costo totale.

Esercizio 1.2.5 In un commissariato di polizia si deve provvedere alla riorganizzazione dei turni giornalieri, ciascuno dei quali è composto da 4 ore. Ogni poliziotto deve lavorare giornalmente per due turni alternati, per esempio, chi inizia a lavorare al primo turno lavorerà anche al terzo, chi inizia al secondo turno lavorerà anche al quarto, e così via. Nella sequente tabella,

per ogni turno, è riportato il numero minimo di poliziotti che devono essere presenti in quel turno:

Turno	1	2	3	4	5	6
Orario	0 - 4	4 - 8	8 - 12	12 - 16	16 - 20	20 - 24
Num. minimo	30	25	50	40	60	35

Per esempio, nel turno 4, cioè dalle ore 12 alle ore 16, devono essere in servizio almeno 40 poliziotti. La retribuzione dei poliziotti è di 14 euro all'ora per i turni diurni (3, 4, 5 e 6) e di 20 euro all'ora per i turni notturni (1 e 2). Formulare il problema come problema di ottimizzazione, con l'obiettivo di minimizzare le spese giornaliere di retribuzione dei poliziotti.

Esercizio 1.2.6 L'allenatore della staffetta italiana 4×100 mista di nuoto deve decidere i 4 atleti da schierare dei 6 disponibili. Nella seguente tabella sono riportati i tempi medi, in secondi, di ciascun nuotatore in ognuna delle 4 frazioni:

Nuotatore	Dorso	Rana	Delfino	Stile libero
Alberto	65	73	63	57
Bruno	67	70	65	58
Carlo	68	72	69	55
Donato	67	75	70	59
Erminio	71	69	75	57
Francesco	69	71	66	59

Scrivere il relativo modello di ottimizzazione per assegnare ciascun nuotatore ad una delle 4 frazioni volendo minimizzare il tempo complessivo della staffetta.

Esercizio 1.2.7 Un'industria chimica produce due tipi di concimi, A e B, che si differenziano per il diverso contenuto di azoto e ferro. Il concime di tipo A deve contenere almeno il 25% di azoto e almeno il 10% di ferro, mentre il concime di tipo B deve contenere asattamente il 20% di azoto e almeno il 16% di ferro. I comcimi si ottengono facendo due composti contenenti azoto e ferro. L'industria dispone di 30.000 kg di composto 1, acquistato al prezzo di $3 \in /kg$, e di 25.000 kg di composto 2, acquistato al prezzo di $4 \in /kg$. Il composto 1 contiene il 40% di ferro ed il 50% di azoto, il composto 2 contiene il 6% di ferro ed il 70% di azoto. Si scriva il modello di ottimizzazione della

produzione dei due concimi sapendo che la quantità di concime deve essere pari a 40.000~kg per quello di tipo A e 50.000~kg per quello di tipo B con l'obiettivo di minimzzare i costi di produzione.

Esercizio 1.2.8 Un'azienda ospedaliera deve riorganizzare i turni del personale paramedico. Ogni infermiere, indipendentemente dalla collocazione all'interno della settimana, lavora 5 giorni consecutivi e poi ha diritto a due giorni di riposo. Le esigenze di servizio per i vari giorni della settimana richiedono la presenza del sequente numero minimo di infermieri:

Giorno	Numero minimo
Lunedì	28
Martedì	18
Mercoledì	20
Giovedì	26
Venerdì	22
Sabato	13
Domenica	13

Ciascun infermiere viene retribuito in base al giorno della settimana in cui lavora. In particolare il costo che l'ospedale sostiene per retribuire un infermiere è di 50 euro al giorno (per i turni del lunedì, martedì, mercoledì, giovedì e venerdì), di 75 euro al giorno per i turni di sabato e di 85 euro al giorno per i turni di domenica. Ad esempio, un infermiere il cui turno comincia il giovedì, per i suoi 5 giorni lavorativi (dal giovedì al lunedì) riceve una retribuzione pari a euro 310 (ovvero $50 \times 3 + 75 + 85$). Scrivere il relativo modello di ottimizzazione considerando che l'obiettivo dell'azienda ospedaliera è quello di minimizzare i costi complessivi settimanali di retribuzione degli infermieri.

Esercizio 1.2.9 Il Ministero della Sanità ha in progetto la costruzione di ospedali ortopedici specializzati, che nel raggio di 200 km siano in grado di servire le seguenti città: Latina, Lecce, Matera, Napoli, Potenza, Salerno e Roma. Nel seguito, per ogni città, sono elencate quelle situate a una distanza inferiore ai 200 km:

- 1. Latina: Latina, Napoli, Roma;
- 2. Lecce: Lecce, Matera;
- 3. Matera: Lecce, Matera, Potenza;
- 4. Napoli: Latina, Napoli, Potenza, Salerno;
- 5. Potenza: Matera, Napoli, Potenza, Salerno;

- 6. Salerno: Napoli, Potenza, Salerno;
- 7. Roma: Latina, Roma.

Ad esempio, se un ospedale venisse costruito a Napoli, esso sarebbe in grado di servire anche le città di Latina, Potenza e Salerno, che si trovano a una distanza da Napoli inferiore a 200 km. Si vuole decidere in quale delle 7 città costruire gli ospedali, in maniera tale che ogni città abbia almeno un ospedale ad una distanza non superiore a 200 km e tenendo conto che in una stessa città non si può costruire più di un ospedale.

Scivere il relativo modello di ottimizzazione avendo l'obiettivo di minimizzare il numero di ospedali da costruire.

Esercizio 1.2.10 Un coltivatore ha a disposizione 16 ettari di terreno da coltivare a lattuga o a patate. Le risorse a sua disposizione sono 70 kg. di semi di lattuga, 18 tonnellate di tuberi e 160 tonnellate di concime. Supponendo che il mercato sia in grado di assorbire tutta la produzione, la resa stimata per la lattuga è 3000€ per ettaro e quella per le patate è 6500€ per ettaro. L'assorbimento di risorse per un ettaro coltivato è di 7 kg di semi e 10 tonnellate di concime per la lattuga e 3 tonnellate di tuberi e 20 di concime per le patate. Scrivere il modello di ottimizzazione volendo stabilire quanti ettari di terreno destinare a lattuga e quanti a patate e avendo l'obiettivo di massimizzare il ricavo.

Esercizio 1.2.11 Una ditta di produzione di elettrodomestici produce dei frigoriferi in tre stabilimenti e li smista in quattro magazzini intermedi di vendita. La produzione settimanale nei tre stabilimenti A, B e C è rispettivamente di 50, 70 e 20 unità. La quantità richiesta dai 4 magazzini è rispettivamente di 10, 60, 30 e 40 unità. I costi per il trasporto di un frigorifero tra gli stabilimenti e i magazzini 1, 2, 3 e 4 sono i seguenti:

- dallo stabilimento A: 6, 8, 3, 4 euro;
- dallo stabilimento B: 2, 3, 1, 3 euro;
- dallo stabilimento C: 2, 4, 6, 5 euro.

Scrivere il modello di ottimizzazione con l'obiettivo di minimizzare i costi per il trasporto delle merci dagli stabilimenti ai magazzini.

Esercizio 1.2.12 Un'industria alimentare produce hamburger del peso di almeno 100 grammi costituito da carne macinata di manzo e di maiale. Il macinato di manzo contiene l'80% di polpa ed il 20% di grasso e costa allindustria 6 euro al chilogrammo. Il macinato di maiale contiene il 68% di

polpa ed il 32% di grasso e costa allindustria 3.5 euro al chilogrammo. Si vuole determinare la quantità di macinato di manzo e di maiale da utilizzare per produrre ogni singolo hamburger che superi il peso minimo ed evitando che il contenuto grasso dellhamburger superi i 25 grammi ma che sia superiore a 10 grammi avendo l'obiettivo di minimizzare il costo delle materie prime.

Esercizio 1.2.13 Un condominio deve effettuare la ristrutturazione del fabbricato. Un ingegnere incaricato di redarre il capitolato di spesa individua cinque lavori da esequire prioritariamente:

I lavoro: Rifacimento dell'impianto elettrico; II lavoro: Rifacimento dell'impianto idrico;

III lavoro: Tinteggiatura vano scale; IV lavoro: Rifacimento frontespizio;

 $V\ lavoro:\ Rifacimento\ balconi.$

L'amministratore contatta cinque ditte che sottopongono un preventivo per ciascuna della cinque voci previste dal capitolato riassunto nella seguente tabella:

	Ditta 1	Ditta 2	Ditta 3	Ditta 4	Ditta 5
I Lavoro	6.0	5.5	6.0	4.0	5.0
II Lavoro	8.0	8.0	7.0	8.0	7.5
III Lavoro	4.0	4.5	4.0	5.0	5.5
IV Lavoro	10.0	9.0	10.0	8.0	9.0
$V\ Lavoro$	3.0	3.5	2.5	2.9	3.0

L'assemblea condominiale deve assegnare i lavori alle ditte con l'obiettivo di minimizzare il costo complessivo della ristrutturazione ma volendo assegnare ogni singolo lavoro ad una ditta diversa in modo tale da minimizzare il tempo di esecuzione dei lavori.

Capitolo 2

Richiami di algebra lineare e geometria dei poliedri

2.1 Elementi di Algebra Lineare

Un vettore $x \in \mathbb{R}^n$ è un insieme ordinato di n numeri reali disposti per convenzione in una colonna e viene rappresentato nel seguente modo:

$$oldsymbol{x} = \left[egin{array}{c} x_1 \ x_2 \ dots \ x_n \end{array}
ight].$$

Il vettore può essere anche rappresentato come una riga utilizzando l'operazione di trasposizione, che viene indicata aggiungendo T come apice:

$$\boldsymbol{x}^T = \left[\begin{array}{cccc} x_1 & x_2 & \dots & x_{n-1} & x_n \end{array} \right].$$

Considerando l'insieme \mathbb{R}^n come uno spazio ad n dimensioni un vettore $\boldsymbol{x} \in \mathbb{R}^n$ può essere visto un punto appartenente al suddetto spazio. Da questo punto di vista i termini vettore e punto possono essere considerati come sinonimi. Si definisce norma euclidea di un vettore $\boldsymbol{x} \in \mathbb{R}^n$ o lunghezza la quantità non negativa

$$\|\boldsymbol{x}\| = \sqrt{\sum_{i=1}^n x_i^2}$$

e può essere considerata come una misura della grandezza di un vettore (ricordiamo che nello spazio \mathbb{R}^n non esiste il concetto di ordinamento).

Si possono definire operazioni che coinvolgono vettori e scalari, per esempio se $\alpha \in \mathbb{R}$ e $\mathbf{x} \in \mathbb{R}^n$ allora il vettore $\mathbf{v} = \alpha \mathbf{x}$ è il seguente

$$\alpha \boldsymbol{x} = \begin{bmatrix} \alpha x_1 \\ \alpha x_2 \\ \vdots \\ \alpha x_n \end{bmatrix},$$

ma anche le classiche operazioni tra vettori, come la somma tra $x, y \in \mathbb{R}^n$:

$$oldsymbol{v} = oldsymbol{x} + oldsymbol{y} = egin{bmatrix} x_1 + y_1 \ x_2 + y_2 \ dots \ x_n + y_n \end{bmatrix}.$$

La combinazione lineare tra m vettori $\boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(m)} \in \mathbb{R}^n$ ed altrettanti scalari $\alpha_1, \dots, \alpha_m$ è ottenuta come

$$oldsymbol{v} = \sum_{i=1}^m lpha_i oldsymbol{x}^{(i)} = \left[egin{array}{c} \sum_{i=1}^m lpha_i oldsymbol{x}^{(i)}_1 \ \sum_{i=1}^m lpha_i oldsymbol{x}^{(i)}_n \ \vdots \ \sum_{i=1}^m lpha_i oldsymbol{x}^{(i)}_n \end{array}
ight],$$

che ovviamente è sempre un vettore appartenente ad \mathbb{R}^n .

Gli m vettori $\boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(m)} \in \mathbb{R}^n$ si dicono linearmente dipendenti se esistono m scalari $\alpha_1, \dots, \alpha_m$, non tutti nulli, tali che la combinazione lineare tra gli m vettori e gli m scalari sia uguale a zero.

Un primo tipo di prodotto tra vettori è il cosiddetto prodotto interno (o scalare), spesso indicato come (\cdot, \cdot) , e che è definito nel seguente modo: siano $x, y \in \mathbb{R}^n$, allora

$$(\boldsymbol{x}, \boldsymbol{y}) = \boldsymbol{x}^T \boldsymbol{y} = \sum_{i=1}^n x_i y_i = \alpha$$

e il risultato è un numero reale. Il prodotto scalare soddisfa le seguenti proprietà:

- 1. $\mathbf{x}^T \mathbf{x} \geq 0$ per ogni $\mathbf{x} \in \mathbb{R}^n$ e $(\mathbf{x}, \mathbf{x}) = 0$ se e solo se $\mathbf{x} = 0$;
- 2. $\boldsymbol{x}^T \boldsymbol{y} = \boldsymbol{y}^T \boldsymbol{x}$ per ogni $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$;
- 3. $(\alpha \boldsymbol{x})^T \boldsymbol{y} = \alpha(\boldsymbol{x}^T \boldsymbol{y})$ per ogni $\alpha \in \mathbb{R}$ e per ogni $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$;
- 4. $(\boldsymbol{x} + \boldsymbol{y})^T \boldsymbol{z} = \boldsymbol{x}^T \boldsymbol{z} + \boldsymbol{y}^T \boldsymbol{z}$ per ogni $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathbb{R}^n$.
- 5. se $\mathbf{x}^T \mathbf{y} = 0$ allora i due vettori si dicono ortogonali.

Assegnati due numeri interi positivi $m, n \in \mathbb{N}, m, n \geq 1$, si definisce matrice una tabella avente m righe ed n colonne. Se gli elementi della matrice sono numeri reali allora l'insieme delle matrici aventi m righe ed n colonne si indica con $\mathbb{R}^{m \times n}$. Per convenzione le matrici si indicano con lettere maiuscole dell'alfabeto latino. Se $A \in \mathbb{R}^{m \times n}$ allora m ed n si dicono dimensioni della matrice. Se consideriamo due numeri interi $i, j \in \mathbb{N}$, tali che $1 \leq i \leq m$ e $1 \leq j \leq n$, questi identificano, rispettivamente, una riga ed una colonna della matrice A, e l'elemento che si trova nella posizione (i, j) viene indicato con a_{ij} . Una matrice di dimensione $m \times n$ può essere rappresentata nel seguente modo:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}.$$

Se m = n allora la matrice A si dice quadrata di dimensione n o di ordine n altrimenti si dice rettangolare. Gli elementi a_{ij} di una matrice quadrata A di ordine n tali che i = j sono detti elementi principali o diagonali e formano la cosiddetta diagonale principale di A.

Assegnata una matrice $A \in \mathbb{R}^{m \times n}$ si definisce matrice trasposta di A la matrice $B = A^T \in \mathbb{R}^{n \times m}$ tale che

$$b_{ij} = a_{ji}, \quad i = 1, \dots, n, \ j = 1, \dots, m.$$

Se accade che $A = A^T$ allora la matrice è detta simmetrica. Assegnate due matrici $A, B \in \mathbb{R}^{m \times n}$ si definisce somma di A e B, e si denota con C = A + B, la matrice $C \in \mathbb{R}^{m \times n}$ i cui elementi sono:

$$c_{ij} = a_{ij} + b_{ij}$$
 $i = 1, \dots, m, \ j = 1, \dots, n.$

In modo analogo si definisce la differenza tra matrici, infatti D = A - B è la matrice avente elementi:

$$d_{ij} = a_{ij} - b_{ij}$$
 $i = 1, \dots, m, \ j = 1, \dots, n.$

Se $\alpha \in \mathbb{R}$ ed $A \in \mathbb{R}^{m \times n}$ allora la matrice $C = \alpha A$ è definita da:

$$c_{ij} = \alpha a_{ij}$$
.

Se $A \in \mathbb{R}^{m \times p}$ e $B \in \mathbb{R}^{p \times n}$ si definisce prodotto di A per B la matrice $C \in \mathbb{R}^{m \times n}$ i cui elementi sono

$$c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}$$
 $i = 1, \dots, m, \ j = 1, \dots, n.$

Si noti che affinchè tale prodotto abbia senso è necessario che il numero delle colonne di A coincida con il numero delle righe di B. Quando ciò accade le matrici si dicono conformabili, altrimenti si dicono non conformabili. Ad esempio nel nostro caso se $m \neq n$ allora il prodotto BA non ha senso. Ha sempre significato considerare i prodotti AB e BA se A e B sono matrici quadrate dello stesso ordine (m = n).

È facile verificare che il prodotto tra matrici gode della proprietà associativa ma in generale non di quella commutativa. Vale invece la seguente proprietà:

$$(AB)^T = B^T A^T.$$

Esempio 2.1.1 Siano A e B le seguenti matrici:

$$A = \begin{bmatrix} 3 & 1 & 0 \\ -1 & 2 & 1 \\ 3 & 1 & 1 \end{bmatrix}; \qquad B = \begin{bmatrix} 2 & 1 & -1 \\ 0 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix}.$$

Calcoliamo la matrice C = AB. L'elemento c_{ij} è uguale alla somma dei prodotti degli elementi della i-esima riga di A per la j-esima colonna di B.

$$\begin{array}{lll} c_{11} &= 3 \cdot 2 + 1 \cdot 0 + 0 \cdot 2 = 6 \\ c_{12} &= 3 \cdot 1 + 1 \cdot 1 + 0 \cdot 1 = 4 \\ c_{13} &= 3 \cdot (-1) + 1 \cdot 1 + 0 \cdot 1 = -2 \\ c_{21} &= -1 \cdot 2 + 2 \cdot 0 + 1 \cdot 2 = 0 \\ c_{22} &= -1 \cdot 1 + 2 \cdot 1 + 1 \cdot 1 = 2 \\ c_{23} &= -1 \cdot (-1) + 2 \cdot 1 + 1 \cdot 1 = 4 \\ c_{31} &= 3 \cdot 2 + 1 \cdot 0 + 1 \cdot 2 = 8 \\ c_{32} &= 3 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 = 5 \\ c_{33} &= 3 \cdot (-1) + 1 \cdot 1 + 1 \cdot 1 = -1. \end{array}$$

In definitiva

$$C = \left[\begin{array}{ccc} 6 & 4 & -2 \\ 0 & 2 & 4 \\ 8 & 5 & -1 \end{array} \right].$$

Calcolando il prodotto D = BA si trova invece:

$$D = \left[\begin{array}{rrr} 2 & 3 & 0 \\ 2 & 3 & 2 \\ 8 & 5 & 2 \end{array} \right]$$

da cui risulta evidente che $AB \neq BA$.

Si definisce matrice identità di ordine n la matrice quadrata diagonale I_n avente tutti gli elementi principali uguali a 1:

$$I_n = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \dots & \dots & 0 & 1 \end{bmatrix}.$$

La matrice identità è l'elemento neutro per il prodotto, cioè se $A \in \mathbb{R}^{n \times n}$ si ha

$$AI_n = I_n A = A.$$

Siano $A, B \in \mathbb{R}^{n \times n}$ le seguenti matrici

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \qquad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

dove $A_{11}, B_{11} \in \mathbb{R}^{p \times p}$, $A_{12}, B_{12} \in \mathbb{R}^{p \times (n-p)}$, $A_{21}, B_{21} \in \mathbb{R}^{(n-p) \times p}$ e infine $A_{22}, B_{22} \in \mathbb{R}^{(n-p) \times (n-p)}$, con p < n, rappresentano a loro volta matrici e non semplici elementi. Si dice cioè che A e B sono state suddivise a blocchi. Il prodotto AB può essere calcolato utilizzando tale decomposizione delle matrici:

$$AB = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}.$$

Tale modo di effettuare il prodotto tra matrici viene detto prodotto a blocchi ed è molto utile quando le matrici hanno una particolare struttura (per esempio se uno dei blocchi è identicamente nullo oppure è uguale alla matrice identità). Data una matrice $A \in \mathbb{R}^{m \times n}$, una matrice $B \in \mathbb{R}^{h \times k}$, $0 < h \leq m$, $0 < k \leq n$, è detta sottomatrice di A se è ottenuta da A eliminando m - h righe ed n - k colonne. Data una matrice $A \in \mathbb{R}^{m \times n}$, una sottomatrice quadrata B di ordine $k \leq n$ di A è detta principale se gli elementi principali di B sono anche gli elementi principali di A. Una sottomatrice B principale di ordine k di A è detta principale di testa se è formata dagli elementi a_{ij} , $i, j = 1, \ldots, k$.

Esiste un secondo prodotto tra vettori, il cosiddetto prodotto esterno: se $x \in \mathbb{R}^n$ e $y \in \mathbb{R}^m$ allora viene definito nel seguente modo:

$$A = \boldsymbol{x} \boldsymbol{y}^T$$

e il risultato è una matrice di dimensione $n \times m$ i cui elementi sono:

$$a_{ij} = x_i y_j,$$
 $i = 1, \dots, n, \ j = 1, \dots, m.$

Osservazione. A differenza del prodotto scalare il prodotto esterno può essere eseguito anche tra vettori che hanno un numero differente di elementi.

Esempio 2.1.2 Siano x e y i seguenti vettori:

$$\boldsymbol{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

e

$$y = \begin{bmatrix} -1 \\ -2 \\ 4 \end{bmatrix}$$
.

Calcoliamo prima il prodotto interno:

$$\mathbf{x}^T \mathbf{y} = 1 \cdot (-1) + 2 \cdot (-2) + 3 \cdot 4 = 7.$$

Osserviamo che tale operazione gode della proprietà commutativa, poichè $\mathbf{y}^T \mathbf{x} = 7$.

Per quello che riguarda il prodotto esterno, il risultato è la matrice

$$A = \boldsymbol{x} \boldsymbol{y}^T = \left[egin{array}{ccc} -1 & -2 & 4 \ -2 & -4 & 8 \ -3 & -6 & 12 \end{array}
ight].$$

Tale prodotto non gode della proprietà commutativa, infatti:

$$B = yx^T = \begin{bmatrix} -1 & -2 & -3 \\ -2 & -4 & -6 \\ 4 & 8 & 12 \end{bmatrix}.$$

Infatti $B \neq A$, anche se va osservato che $B = A^T$.

Se $A \in \mathbb{R}^{m \times n}$ e $\boldsymbol{x} \in \mathbb{R}^n$ è possibile definire il prodotto matrice per vettore nel seguente modo:

$$y = Ax$$
, $y_i = \sum_{j=1}^n a_{ij}x_j$, $i = 1, \dots, m$

quindi $\boldsymbol{y} \in \mathbb{R}^m$. Non è possibile effettuare il prodotto $A\boldsymbol{x}^T$ perchè le dimensioni non sono compatibili.

Esempio 2.1.3 *Sia*

$$A = \left[\begin{array}{rrr} 5 & 1 & 0 \\ -1 & 1 & 2 \\ 5 & -5 & 1 \end{array} \right]$$

e sia x il vettore

$$x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
.

Calcoliamo il vettore prodotto y = Ax:

$$\begin{array}{ll} y_1 &= 5 \cdot 1 + 1 \cdot 2 + 0 \cdot 3 = 7 \\ y_2 &= -1 \cdot 1 + 1 \cdot 2 + 2 \cdot 3 = 7 \\ y_3 &= 5 \cdot 1 - 5 \cdot 2 + 1 \cdot 3 = -2. \end{array}$$

Definizione 2.1.1 Se $A \in \mathbb{R}^{n \times n}$ è una matrice di ordine n = 1, si definisce determinante di A il numero

$$\det A = a_{11}.$$

Se la matrice A è quadrata di ordine n allora, fissata una qualsiasi riga (colonna) di A, diciamo la i-esima (j-esima), applicando la cosiddetta regola di Laplace il determinante di A è:

$$\det A = \sum_{j=1}^{n} a_{ij} (-1)^{i+j} \det A_{ij}$$

dove A_{ij} è la matrice che si ottiene da A cancellando la i-esima riga e la j-esima colonna.

Il determinante è pure uguale a

$$\det A = \sum_{i=1}^{n} a_{ij} (-1)^{i+j} \det A_{ij},$$

cioè il determinante è indipendente dall'indice di riga (o di colonna) fissato. Se A è la matrice di ordine 2

$$A = \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right].$$

allora

$$\det A = a_{11}a_{22} - a_{21}a_{12}.$$

Assegnata la matrice A di ordine 3

$$A = \left[\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right]$$

e prendendo i = 1 risulta

$$\det A = a_{11} \det \begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix} - a_{12} \det \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix} + a_{13} \det \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}.$$

Il determinante ha le seguenti proprietà:

1. Se A è una matrice triangolare o diagonale allora

$$\det A = \prod_{i=1}^{n} a_{ii};$$

- 2. $\det I = 1$;
- 3. $\det A^T = \det A$;
- 4. $\det AB = \det A \det B$ (Regola di Binet);
- 5. se $\alpha \in \mathbb{R}$ allora det $\alpha A = \alpha^n \det A$;
- 6. $\det A = 0$ se una riga (o una colonna) è nulla, oppure una riga (o una colonna) è proporzionale ad un'altra riga (o colonna) oppure è combinazione lineare di due (o più) righe (o colonne) di A.

Una matrice A di ordine n si dice non singolare se il suo determinante è diverso da zero, in caso contrario viene detta *singolare*. Si definisce inversa di A la matrice A^{-1} tale che:

$$AA^{-1} = A^{-1}A = I_n$$

Per quello che riguarda il determinante della matrice inversa vale la seguente proprietà:

$$\det A^{-1} = \frac{1}{\det A}.$$

Ricordiamo che se A, B e C sono matrici invertibili, in base alla regola di Binet, anche il loro prodotto è una matrice invertibile e risulta

$$(AB)^{-1} = B^{-1}A^{-1}$$
.

Questa proprietà vale anche se abbiamo più di due matrici, cioè:

$$(ABC)^{-1} = C^{-1}B^{-1}A^{-1}.$$

2.1.1 Calcolo della matrice inversa

Per il calcolo della matrice inversa si può utilizzare il cosiddetto algoritmo di Gauss-Jordan, che si basa su un'operazione fondamentale che consente di trasformare una matrice A (in generale di dimensione $m \times n$) in un'altra \overline{A} in cui la k-esima colonna sia uguale alla k-esima colonna della matrice identità di ordine m, purchè l'elemento a_{hk} sia diverso da zero.

Per eseguire tale trasformazione si devono eseguire le seguenti operazioni:

- 1. Dividere la riga di indice h per l'elemento $a_{h,k}$;
- 2. Sottrarre da ogni riga i della matrice (con $i \neq h$) la riga h della matrice (quella appena modificata) moltiplicata per a_{ik} .

Esempio 2.1.4 Consideriamo la matrice

$$\left[\begin{array}{cccc} 3 & 4 & 2 & 1 \\ 0 & 2 & 2 & 1 \\ 5 & 6 & 3 & 1 \end{array}\right].$$

Essendo $a_{22}=2\neq 0$ possiamo prendere tale elemento come pivot. Dividiamo la seconda riga per a_{22} :

$$\left[\begin{array}{cccc} 3 & 4 & 2 & 1 \\ 0 & 1 & 1 & 1/2 \\ 5 & 6 & 3 & 1 \end{array}\right].$$

Adesso eseguiamo la sottrazione tra la prima riga e la seconda riga moltiplicata per 4:

$$\left[\begin{array}{cccc} 3 & 4 & -2 & -11 \\ 0 & 1 & 1 & 1/2 \\ 5 & 6 & 3 & 1 \end{array}\right].$$

Adesso eseguiamo la sottrazione tra la terza riga e la seconda riga moltiplicata per 6:

$$\left[\begin{array}{cccc} 3 & 4 & -2 & -11 \\ 0 & 1 & 1 & 1/2 \\ 5 & 6 & -3 & -2 \end{array}\right].$$

L'algoritmo di Gauss-Jordan consiste nell'applicare la suddetta trasformazione m volte, ottenendo una matrice che avrà m colonne uguali alla matrice identità. Per calcolare l'inversa di una matrice quadrata di ordine n applichiamo tale algoritmo alla matrice $[A\ I_n]$ di ordine $n\times 2n$ prendendo come pivot gli elementi in posizione (i,i) con $i=1,\ldots,n$. Alla fine di tale procedura si otterrà la matrice $[I_n\ B]$ di dimensione $n\times 2n$. Si osserva pertanto che

$$A^{-1}[A I_n] = [I_n B]$$

da cui si ricava che $B = A^{-1}$.

Esempio 2.1.5 Consideriamo la matrice

$$A = \left[\begin{array}{rrr} 3 & 4 & 2 \\ 0 & 2 & 2 \\ 5 & 6 & 3 \end{array} \right].$$

Aggiungiamo a questa la matrice identità di ordine 3

$$\left[\begin{array}{cccccc} 3 & 4 & 2 & 1 & 0 & 0 \\ 0 & 2 & 2 & 0 & 1 & 0 \\ 5 & 6 & 3 & 0 & 0 & 1 \end{array}\right].$$

ed eseguiamo un'operazione di pivot sull'elemento $a_{11} = 3$. Innanzitutto dividiamo la prima riga per $a_{11} = 3$:

$$\left[\begin{array}{ccccccc}
1 & 4/3 & 2/3 & 1/3 & 0 & 0 \\
0 & 2 & 2 & 0 & 1 & 0 \\
5 & 6 & 3 & 0 & 0 & 1
\end{array}\right].$$

Essendo $a_{21} = 0$ non eseguiamo nessuna operazione sulla seconda riga. Sottraiamo alla terza riga la prima moltiplicata per 5 (o analogamente sommiamo alla terza riga la prima moltiplicata per -5):

Si ottiene la seguente matrice

$$\left[
\begin{array}{ccccccccc}
1 & 4/3 & 2/3 & 1/3 & 0 & 0 \\
0 & 2 & 2 & 0 & 1 & 0 \\
0 & -2/3 & -1/3 & -5/3 & 0 & 1
\end{array}
\right].$$

Poichè $a_{22} = 2 \neq 0$ possiamo eseguire l'operazione di pivot su tale elemento. Dividiamo la seconda riga per 2:

$$\begin{bmatrix} 1 & 4/3 & 2/3 & 1/3 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1/2 & 0 \\ 0 & -2/3 & -1/3 & -5/3 & 0 & 1 \end{bmatrix}.$$

Sommiamo alla prima riga la seconda moltiplicata per -4/3:

Il risultato è la nuova prima riga della matrice. Sommiamo ora alla terza riga la seconda moltiplicata per 2/3:

Il risultato è la nuova terza riga della matrice. Abbiamo ottenuto la seguente matrice

$$\left[\begin{array}{ccccccc}
1 & 0 & -2/3 & 1/3 & -2/3 & 0 \\
0 & 1 & 1 & 0 & 1/2 & 0 \\
0 & 0 & 1/3 & -5/3 & 1/3 & 1
\end{array} \right].$$

Poichè $a_{33} = 4 \neq 0$ possiamo eseguire l'operazione di pivot su tale elemento. Dividiamo la terza riga per 1/3:

$$\left[\begin{array}{ccccccc}
1 & 0 & -2/3 & 1/3 & -2/3 & 0 \\
0 & 1 & 1 & 0 & 1/2 & 0 \\
0 & 0 & 1 & -5 & 1 & 3
\end{array}\right].$$

Sommiamo alla prima riga la terza moltiplicata per 2/3:

Il risultato di tale operazione costituisce la nuova prima riga della matrice. Sommiamo alla seconda riga la terza moltiplicata per -1:

Otteniamo la matrice

$$\left[\begin{array}{ccccccc}
1 & 0 & 0 & -3 & 0 & 2 \\
0 & 1 & 0 & 5 & -1/2 & -3 \\
0 & 0 & 1 & -5 & 1 & 3
\end{array}\right].$$

Avendo ottenuto una matrice le cui prime tre colonne coincidono con quelle della matrice identità abbiamo terminato il calcolo della matrice inversa di

A che risulta essere:

$$A^{-1} = \left[\begin{array}{rrr} -3 & 0 & 2\\ 5 & -1/2 & -3\\ -5 & 1 & 3 \end{array} \right].$$

2.1.2 Rango di una matrice

Assegnata una matrice $A \in \mathbb{R}^{m \times n}$, il **rango** di A, indicato con $\operatorname{rk}(A)$, è definito come il numero di righe (o di colonne) della più grande sottomatrice non singolare di A. Il rango di A coincide anche con il numero massimo di righe o colonne linearmente indipendenti di A. Il rango, a differenza del determinante, è definito anche per matrici rettangolari, e si ha che

$$rk(A) \le min\{m, n\}$$
.

Se risulta

$$\operatorname{rk}(A) = \min \{m, n\}$$

allora si dice che la matrice ha rango pieno.

Se A è rettangolare con $m \leq n$, allora un insieme di $k \leq m$ colonne di A forma una sottomatrice corrispondente ad una matrice di base se:

- 1. le k colonne sono linearmente indipendenti;
- 2. aggiungendo una qualsiasi colonna restante di A a tale insieme si ottengono k+1 colonne linearmente dipendenti.

2.2 Geometria poliedrale

Assegnati k vettori $\boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(k)} \in \mathbb{R}^n$ e k scalari $\alpha_1, \dots, \alpha_k \in \mathbb{R}$ allora il vettore

$$oldsymbol{y} = \sum_{i=1}^k lpha_i oldsymbol{x}^{(i)}, \qquad oldsymbol{y} \in \mathbb{R}^n$$

si dice:

 \bullet combinazione affine di $\boldsymbol{x}^{(1)},\dots,\boldsymbol{x}^{(k)}$ se

$$\sum_{j=1}^{k} \alpha_j = 1;$$

- combinazione conica di $\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(k)}$ se $\alpha_j\geq 0$, per $j=1,\ldots,k$; combinazione convessa di $\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(k)}$ se $\alpha_j\geq 0$, per $j=1,\ldots,k$, e

$$\sum_{i=1}^{k} \alpha_i = 1.$$

Definizione 2.2.1 Un insieme $P \subset \mathbb{R}^n$ è convesso se per ogni $\boldsymbol{x}, \boldsymbol{y} \in P$ risulta

$$\lambda x + (1 - \lambda)y \in P, \quad \forall \lambda \in [0, 1].$$

Se un insieme è convesso allora, per ogni coppia di punti appartenenti ad esso, il segmento che li congiunge appartiene interamente all'insieme. I seguenti sono esempi di insiemi convessi.

I seguenti sono invece esempi di insiemi non convessi.

Un iperpiano \mathbf{I} di \mathbb{R}^n è un insieme di punti che soddisfa un'equazione lineare e separa i punti di \mathbb{R}^n in due regioni dette **semispazi.** Dato un vettore $\mathbf{a} \in \mathbb{R}^n$, uno scalare $b \in \mathbb{R}$ ed un vettore di variabili $\mathbf{x} \in \mathbb{R}^n$, allora \mathbf{I} può essere rappresentato come

$$\mathbf{I} = \left\{ \boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{a}^T \boldsymbol{x} = b \right\}.$$

I punti di \mathbb{R}^n sono suddivisi in due semispazi S_1 ed S_2 tali che

$$S_1 \cap S_2 = \mathbf{I}$$
.

I due semispazi sono rappresentabili nel seguente modo:

$$S_1 = \{ \boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{a}^T \boldsymbol{x} \le b \}$$

$$S_2 = \{ \boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{a}^T \boldsymbol{x} \ge b \}.$$

L'unione dei semispazi S_1 ed S_2 corrisponde a \mathbb{R}^n .

Definizione 2.2.2 Un insieme $S \subseteq \mathbb{R}^n$ è uno **spazio affine** se e solo se la combinazione affine di ogni sottoinsieme finito di vettori di S appartiene ad S.

Assegnata una matrice $A \in \mathbb{R}^{m \times n}$, un vettore $\boldsymbol{b} \in \mathbb{R}^m$ ed un vettore di variabili $\boldsymbol{x} \in \mathbb{R}^n$ allora l'insieme

$$S = \{ \boldsymbol{x} \in \mathbb{R}^n \mid A\boldsymbol{x} = \boldsymbol{b} \}$$

è uno spazio affine. Se il sistema di equazioni Ax = b è composto da una sola equazione allora lo spazio affine è un iperpiano. Uno spazio affine è un insieme convesso.

Definizione 2.2.3 Un cono poliedrale C è l'intersezione di un insieme finito di semispazi i cui iperpiani passano per l'origine.

Assegnata una matrice $A \in \mathbb{R}^{m \times n}$ ed un vettore di variabili $\boldsymbol{x} \in \mathbb{R}^n, C$ può essere rappresentato come

$$C = \{ \boldsymbol{x} \in \mathbb{R}^n \mid A\boldsymbol{x} \le 0 \}.$$

Anche un cono poliedrale è un insieme convesso.

Definizione 2.2.4 Un poliedro P è l'intersezione di un numero finito di semispazi.

Assegnata una matrice $A \in \mathbb{R}^{m \times n}$, un vettore $\boldsymbol{b} \in \mathbb{R}^m$ ed un vettore di variabili $\boldsymbol{x} \in \mathbb{R}^n$, allora il poliedro P può essere rappresentato come

$$P = \{ \boldsymbol{x} \in \mathbb{R}^n \mid A\boldsymbol{x} \le \boldsymbol{b} \}.$$

Un poliedro P è **limitato** se esiste uno scalare M sufficientemente grande tale che, per ogni $\boldsymbol{x} \in P$ si ha che

$$\|\boldsymbol{x}\| \leq M$$
.

Un poliedro limitato si dice politopo.

Assegnato un poliedro P un punto $\overline{x} \in P$ si dice **vertice** se non può essere ottenuto come combinazione convessa di altri punti di P.

Capitolo 3

Programmazione lineare

3.1 Introduzione

I problemi di ottimizzazione, alcuni dei quali sono stati descritti nel precedente capitolo, hanno la seguente forma

$$\begin{cases} \max Z = f(x) \\ x \in S \end{cases}$$
 (3.1)

dove f è una funzione

$$f: \mathbb{R}^n \longrightarrow \mathbb{R}$$

mentre $S \subseteq \mathbb{R}^n$. Una possibile variazione del problema (3.1) è che il problema sia quello di minimizzare f(x). La funzione

$$Z = f(x_1, x_2, \ldots, x_n)$$

viene detta funzione obiettivo, le variabili x_1, x_2, \ldots, x_n , prendono il nome di variabili decisionali. Una qualunque assegnazione di valore alle variabili decisionali è detta soluzione. L'insieme S, che viene definito solitamente attraverso una serie di disequazioni, o anche equazioni, dette vincoli, prende il nome di regione ammissibile, o regione di ammissibilità. Ogni $x \in S$ viene detto soluzione ammissibile. Una soluzione non ammissibile è una soluzione che viola almeno un vincolo. La soluzione ottima è quella che fornisce il valore migliore per la funzione obiettivo (cioè il massimo o il minimo in base al tipo di problema da risolvere). Un problema viene detto inammissibile se $S = \emptyset$. Tra i diversi problemi di ottimizzazione è possibile distinguere i seguenti tipi:

- Problemi di Ottimizzazione Continua, se le variabili possono assumere valori reali, ovvero $x \in \mathbb{R}^n$, in particolare si parla di Ottimizzazione Vincolata se $S \subset \mathbb{R}^n$, Ottimizzazione Non Vincolata se $S = \mathbb{R}^n$.
- Problemi di Ottimizzazione Discreta, se le variabili possono assumere valori interi, ovvero $x \in \mathbb{N}^n$, in particolare si parla di Programmazione Intera se $S \subset \mathbb{N}^n$, Programmazione Binaria se le variabili decisionali possono assumere come valore solo 0 oppure 1.
- Problemi di Programmazione Mista, se alcune variabili possono assumere valori interi mentre le altre possono assumere valori reali.

Quando la funzione f(x) è di tipo lineare, ovvero può essere scritta come

$$Z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

ed anche i vincoli che definiscono S sono di tipo lineare allora il problema di ottimizzazione viene detto di programmazione lineare, dove in questo caso il termine programmazione deve essere inteso come sinonimo di pianificazione. Come visto negli esempi del precedente capitolo la programmazione lineare riguarda la pianificazione di alcune attività al fine di ottenere il risultato migliore, ovvero l'uso ottimale delle risorse disponibili. Dal punto di vista matematico il modello consiste nel determinare il valore assunto dalle variabili decisionali in modo tale che la funzione f(x) sia massima. I vincoli lineari posti sulle variabili decisionali sono detti vincoli funzionali (o strutturali):

con $b_i \geq 0$, i = 1, ..., m. A questi si aggiungono vincoli di nonnegatività per le variabili decisionali: $x_i \geq 0$, i = 1, ..., n. Il numero di variabili decisionali è indipendente dal numero di vincoli strutturali. Il tipo di problema appena definito viene detto in forma standard, e chiaramente è possibile definire problemi che abbiano caratteristiche differenti da quanto visto, per esempio si potrebbe porre il problema di minimizzare la funzione obiettivo, oppure qualche vincolo potrebbe essere in forma di uguaglianza

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n = b_i$$

oppure con differente verso nella disuguaglianza

$$a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n \ge b_i$$

oppure potrebbe mancare qualche vincolo di nonnegatività oppure si potrebbe richiedere che una variabile sia intera oppure binaria.

3.2 Il metodo grafico

Quando un problema ha soltanto due variabili decisionali, per esempio x_1 e x_2 , allora è possibile risolverlo per via grafica. Tale tecnica consiste nel tracciare, nel piano (x_1, x_2) (cioè x_1 ascissa e x_2 ordinata), i contorni della regione ammissibile. Si considerano quindi i vincoli uno per uno e si identificano le regioni del piano contenenti i punti che soddisfano tale vincolo e che vengono intersecate con la regione già identificata grazie ai vincoli che sono già stati considerati. I vincoli di nonnegatività $x_1, x_2 \geq 0$ restringono la ricerca della regione di ammissibilità al solo primo quadrante del piano cartesiano.

Consideriamo ora il seguente problema di programmazione lineare:

$$\max Z = 3x_1 + 5x_2$$

$$x_2 \leq 3$$

$$x_1 + x_2 \leq 5$$

$$-x_1 + x_2 \leq 2$$

$$x_1 \geq 0, x_2 \geq 0.$$

Rappresentiamo graficamente le regioni del piano (x_1, x_2) che sono identificate dai vincoli del problema. Per identificare la regione del piano cartesiano identificata dal primo vincolo tracciamo il grafico della retta

$$x_2 = 3$$
.

I punti sono quelli che si trovano al di sotto di questa, come evidenziato nella figura.

Per il secondo vincolo consideriamo la retta

$$x_1 + x_2 = 5.$$

Per individuare la regione di interesse osserviamo che l'origine (0,0) soddisfa la disequazione quindi la porzione del piano di interesse è quella che la contiene. La regione ammissibile si ottiene effettuando l'intersezione tra quella appena determinata e l'insieme identificato dal primo vincolo.

Procediamo in modo analogo anche per il terzo vincolo, ottenendo la seguente regione ammissibile.

Si ricava ora la variabile x_2 dall'espressione della funzione obiettivo

$$Z = 3x_1 + 5x_2$$
 \Rightarrow $x_2 = -\frac{3}{5}x_1 + \frac{1}{5}Z.$

L'equazione della funzione obiettivo in forma esplicita rappresenta un fascio di rette parallele aventi coefficiente angolare -3/5 ed ordinata del punto di intersezione con l'asse x_2 pari a Z/5. Assegnando qualche valore a Z si può determinare in quale direzione di tale fascio il valore aumenta. In questo modo il valore massimo della funzione obiettivo viene assunto necessariamente nel vertice della regione ammissibile che viene incontrato per ultimo procedendo nella direzione del fascio di rette che aumenta il valore di Z. Ponendo Z=0 la retta del fascio passa per l'origine del riferimento cartesiano mentre la retta passante per il punto (0,2) ha valore Z=10. I valori di Z crescono (come era prevedibile) in corrispondenza di rette del fascio che si muovono verso la direzione delle ordinate crescenti. Quindi la soluzione ottima coincide con il punto (2,3) in cui la funzione obiettivo assume valore Z=21.

Volendo verificare che la soluzione ottima è quella trovata si può calcolare il valore di Z anche negli altri vertici:

nel punto (1,3) si ha Z=18;

nel punto (5,0) si ha Z=15.

Riassumendo il metodo grafico per risolvere problemi di programmazione lineare in due dimensioni prevede i seguenti passi:

- 1. Individuare la regione ammissibile calcolando l'intersezione tra tutti gli insiemi cui appartengono i punti che soddisfano ogni singolo vincolo;
- 2. Individuare la direzione del fascio di rette identificato dalla funzione obiettivo;
- 3. Individuare la direzione di crescita o decrescita di Z in base al tipo di problema assegnato;
- 4. Identificare la soluzione ottima come l'ultimo vertice della regione ammissibile intersecata con una retta del fascio che si muove lungo la direzione individuata al passo precedente.

Una volta individuata la regione ammissibile il metodo non prevede di valutare le coordinate dei vertici, il valore assunto dalla funzione obiettivo in tali punti e quindi determinando la soluzione ottima in base a tali valori: questa procedura è errata o, meglio, non significa risolvere il problema graficamente.

3.2.1 Alcune osservazioni sul metodo grafico

Osservazione 1. Il metodo grafico si può applicare facilmente quando il problema ha due variabili. Se il problema avesse tre variabili decisionali la regione ammissibile diventerebbe una figura solida (un poliedro in particolare) mentre la funzione obiettivo sarebbe un fascio di piani paralleli. È chiaro come la rappresentazione grafica di tali enti geometrici diventi molto più complessa, seppur non impossibile da studiare.

Osservazione 2. Il metodo grafico consente alcune osservazioni che sono valide anche nel caso in cui le variabili decisionali siano un numero maggiore. Infatti la soluzione si trova sempre sulla frontiera della regione ammissibile ed è localizzata (quando esiste ed è unica) in un vertice. Sulla questione relativa all'esistenza e all'unicità della soluzione tuttavia ci sono altre osservazioni da fare.

Osservazione 3. Consideriamo la stessa regione ammissibile dell'esempio fatto ma cambiamo la funzione obiettivo:

$$\max Z = x_1 + x_2$$

allora cambia la soluzione.

Infatti osserviamo che le soluzioni sarebbero state tutti i punti appartenenti al segmento congiungente (5,0) e (2,3), cioè sarebbero state infinite.

Osservazione 4. Se i vincoli fossero stati i seguenti:

$$\begin{array}{rcl} -x_1 & +x_2 & \leq & 1 \\ 2x_1 & -3x_2 & \leq & 4 \\ x_1 \geq 0, x_2 \geq 0. \end{array}$$

allora la regione ammissibile sarebbe stata la seguente

cioè una regione illimitata superiormente allora anche la funzione obiettivo sarebbe stata illimitata e quindi la soluzione sarebbe stata $Z=+\infty$, quindi il problema di massimo non avrebbe ammesso soluzione.

Osservazione 5. Se invece si fossero considerati i vincoli opposti, cioè

$$\begin{array}{cccc} -x_1 & +x_2 & \geq & 1 \\ 2x_1 & -3x_2 & \geq & 4 \\ x_1 \geq 0, x_2 \geq 0. \end{array}$$

allora la regione ammissibile sarebbe stata l'intersezione tra gli insiemi evidenziati nel seguente grafico, ovvero sarebbe stata vuota ed il problema non avrebbe ammesso soluzione.

Esempio 3.2.1 Applicare il metodo grafico per risolvere il seguente problema di programmazione lineare:

$$\begin{array}{lll} \min & Z = 3x_1 + 4x_2 \\ x_1 & +x_2 & \geq & 4 \\ & x_2 & \leq & 10 \\ x_1 & -x_2 & \leq & 0 \\ x_1 \geq 0, x_2 \geq 0. \end{array}$$

Rappresentiamo graficamente le regioni del piano (x_1,x_2) che sono identificate dai vincoli del problema, iniziando dalla retta $x_1+x_2=4$

L'insieme dei punti che soddisfa il primo vincolo è quello che non contiene l'origine pertanto coincide con quello evidenziato in ciano. La retta $x_2 = 10$ è parallela all'asse x_1 cosicchè il secondo vincolo identifica i punti che appartengono alla striscia delimitata dalle due rette e, intersecandola con l'insieme già ottenuto si ottiene il seguente

Il terzo vincolo è delimitato dalla retta $x_1 = x_2$ (ovvero la bisettrice del primo e terzo quadrante), e, poichè è soddisfatto dal punto di coordinate (0,1) allora la regione ammissibile è la seguente

Consideriamo ora la funzione obiettivo e ricaviamo la variabile \boldsymbol{x}_2

$$Z = 3x_1 + 4x_2$$
 \Rightarrow $x_2 = -\frac{3}{4}x_1 + \frac{1}{4}Z$

che rappresenta l'equazione del fascio di rette parallele di coefficiente angolare -3/4. Poichè la funzione obiettivo deve essere minimizzata la soluzione coincide con il punto della regione ammissibile che appartiene al fascio e avente il minimo valore di Z. Tracciando la retta del fascio passante per l'origine (con Z=0 quindi)

si vede graficamente che la soluzione è il punto (2,2) per cui Z=14.

Esempio 3.2.2 Applicare il metodo grafico per risolvere il seguente problema di programmazione lineare:

$$\max Z = x_1 - x_2 x_1 + x_2 \ge 2 x_1 + x_2 \le 8 x_1 -2x_2 \le 0 x_1 \ge 0, x_2 \ge 0.$$

Rappresentiamo graficamente le regioni del piano (x_1, x_2) che sono identificate dai vincoli del problema, iniziando dalla retta $x_1 + x_2 = 2$

L'insieme dei punti che soddisfa il primo vincolo è quello che non contiene l'origine pertanto coincide con quello evidenziato in ciano. La retta $x_1 + x_2 = 8$ è parallela alla retta giá tracciata e, poichè l'origine soddisfa il vincolo stesso la regione ammissibile identificata dal secondo vincolo identifica i punti che appartengono alla striscia delimitata dalle due rette:

Il terzo vincolo è delimitato dalla retta $x_1 = 2x_2$ (passante per l'origine e per il punto di coordinate (2,1)) e, poichè al disequazione è soddisfatta dalle coordinate del punto (0,1) allora la regione ammissibile è la seguente

Consideriamo ora la funzione obiettivo e ricaviamo la variabile x_2

$$Z = x_1 - x_2 \qquad \Rightarrow \qquad x_2 = x_1 - Z$$

che rappresenta l'equazione del fascio di rette parallele alla bisettrice del primo e terzo quadrante. Una generica retta appartente a tale fascio interseca l'asse x_2 nel punto di coordinate (0,-Z). Poichè il valore della funzione obiettivo (cioè Z) deve essere massimizzato, la direzione di crescita è quella verso il basso (nella direzione in cui il valore -Z diminuisce e quindi Z aumenta) Tracciando la retta del fascio passante per l'origine (con Z=0 quindi)

Soluzione ottima risulta essere il punto di coordinate (8/3, 16/3) in cui Z = 8/3.

Esempio 3.2.3 Applicare il metodo grafico per risolvere il seguente problema di programmazione lineare:

$$\max Z = x_1 - 2x_2 x_1 + x_2 \ge 4 x_1 - x_2 \le 1 x_1 \ge 1 x_1 \ge 0, x_2 \ge 0.$$

Rappresentiamo graficamente le regioni del piano (x_1, x_2) che sono identificate dai vincoli del problema, iniziando dalla retta $x_1 + x_2 = 4$

L'insieme dei punti che soddisfa il primo vincolo è quello che non contiene l'origine pertanto coincide con quello evidenziato in ciano. La retta $x_1-x_2=1$ è parallela alla bisettrice del primo e terzo quadrante e passa per il punto di coordinate (1,0), poichè l'origine soddisfa il vincolo la regione ammissibile identificata dal secondo vincolo identifica i punti che si trovanp al di sopra della retta:

L'ultimo vincolo restringe la regione ammissibile a tutti i punti che hanno prima coordinata maggiore di 1, pertanto la regione ammissibile risulta la seguente:

Consideriamo ora la funzione obiettivo e ricaviamo la variabile x_2

$$Z = x_1 - 2x_2 \qquad \Rightarrow \qquad x_2 = \frac{1}{2}x_1 - \frac{Z}{2}$$

che rappresenta l'equazione del fascio di rette di coefficiente angolare 1/2. Una generica retta appartente a tale fascio interseca l'asse x_2 nel punto di coordinate (0, -Z/2). Poichè il valore della funzione obiettivo (cioè Z) deve essere massimizzato, la direzione di crescita è quella verso il basso (nella direzione in cui il valore -Z diminuisce e quindi Z aumenta) Tracciamo la retta del fascio passante per l'origine (con Z=0 quindi)

Appare chiaro che la soluzione ottima è il punto di coordinate (5/2,3/2), in cui Z=-1/2.

Osserviamo che, nel precedente esempio, nonostante la regione ammissibile fosse illimtata la funzione obiettivo ammette un valore massimo finito e non pari a $+\infty$ (come si potrebbe erroneamente concludere).

3.3 La geometria dei problemi di programmazione lineare

Nei paragrafi seguenti l'attenzione sarà rivolta allo studio delle proprietà geometriche e alla risoluzione dei problemi di programmazione lineare in forma standard. cioè tali che

- 1. Funzione obiettivo da massimizzare;
- 2. Vincoli funzionali (o strutturali) nella forma \leq e termine noto $b_i \geq 0$ per ogni i;
- 3. Vincoli di nonnegatività per le variabili decisionali.

Osserviamo che il vincolo di nonnegatività del termine noto serve a discriminare effettivamente tra le diverse tipologie di disuguaglianza. Infatti considerando il vincolo

$$3x_1 - 5x_2 + x_3 \ge 2$$

moltiplicandolo per -1 diventerebbe

$$-3x_1 + 5x_2 - x_3 < -2$$

e quindi apparentemente potrebbe essere trattato come un vincolo di tipo \leq . In realtà le cose sono piuttosto differenti e vedremo in seguito che esistono meccanismi sostanzialmente molto diversi per risolvere problemi con differenti tipi di disuguaglianza.

In termini matematici il problema in forma standard è il seguente

$$\max Z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

$$a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \leq b_1$$

$$a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n \leq b_2$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n \leq b_m$$

$$x_i \geq 0, \ i = 1, \dots, n,$$

ed inoltre $b_i \geq 0, i = 1, \ldots, m$.

Le variabili x_i che definiscono le incognite del problema sono dette, come abbiamo visto, variabili decisionali. Talvolta questi problemi possono essere

rappresentati in forma compatta ponendo

$$oldsymbol{c} = \left[egin{array}{c} c_1 \ c_2 \ dots \ c_n \end{array}
ight], \qquad oldsymbol{x} = \left[egin{array}{c} x_1 \ x_2 \ dots \ x_n \end{array}
ight],$$

con $c, x \in \mathbb{R}^n$, la funzione obiettivo risulta essere pertanto pari al prodotto scalare tra i vettori $c \in x$, e, per quello che riguarda i vincoli, posto

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \qquad \boldsymbol{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix},$$

costituiscono un sistema di disequazioni

$$Ax \leq b$$
.

La forma matriciale di un problema di programmazione lineare in forma standard risulta essere la seguente

$$\max Z = \mathbf{c}^T \mathbf{x}$$
$$A\mathbf{x} \le \mathbf{b}$$
$$\mathbf{x} \ge 0.$$

Si definisce frontiera del vincolo l'iperpiano in \mathbb{R}^n di equazione

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n = b_i$$
.

L'insieme dei punti che soddisfa la disequazione

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \le b_i$$

rappresenta un semispazio in \mathbb{R}^n . La regione ammissibile è l'intersezione di tutti i semispazi e gli iperpiani definiti dai vincoli. Una proprietà importante di cui gode sempre la regione ammissibile è che si tratta di un insieme convesso. La relazione

$$\lambda \boldsymbol{x} + (1 - \lambda) \boldsymbol{y}$$

Figura 3.1:

prende il nome di combinazione lineare convessa. Tale concetto può essere generalizzato considerando k elementi $t_1, \ldots t_k \in P$ e definendo una loro combinazione lineare convessa nel seguente modo

$$\boldsymbol{w} = \sum_{i=1}^k \lambda_i \boldsymbol{t}_i, \quad \text{purchè} \quad \sum_{i=1}^k \lambda_i = 1.$$

I punti di intersezione tra n iperpiani sono detti vertici. I vertici ammissibili sono quelli che appartengono alla regione ammissibile mentre i vertici non ammissibili sono quelli che non appartengono alla regione ammissibile. Se consideriamo la Figura 3.1 allora i punti O, A, C, D ed E sono vertici ammissibili, mentre i punti B, F e G sono vertici non ammissibili.

Osservazione. È chiaro che anche gli iperpiani di equazione

$$x_i = 0$$

che corrispondono ai vincoli di nonnegatività delimitano la regione ammissibile. Per i problemi di programmazione lineare in forma standard accade che proprio per questo l'origine è sempre un vertice ammissibile (soddisfa sicuramente i vincoli funzionali che hanno termine noto nonnegativo ed appartiene, per ogni i all'iperpiano di equazione $x_i = 0$).

Teorema 3.3.1 (di Weyl-Minkowski. Enunciato) Ogni punto interno al politopo $P \subset \mathbb{R}^n$ può essere espresso come combinazione lineare convessa di un insieme di vertici di P.

Fondamentale nella teoria dei problemi di programmazione lineare è il seguente teorema del quale viene fornita una dimostrazione, seppur non molto rigorosa.

Teorema 3.3.2 Se la regione ammissibile è un politopo allora il massimo della funzione obiettivo non può essere un punto interno.

Dimostrazione. Sia w un punto interno al politopo e supponiamo che, applicando il Teorema 3.3.1, esistono due vertici x e y tali che

$$\boldsymbol{w} = \lambda \boldsymbol{x} + (1 - \lambda) \boldsymbol{y}, \qquad \lambda \in [0, 1].$$

Calcoliamo la funzione obiettivo nei due vertici e poniamo

$$Z_1 = \boldsymbol{c}^T \boldsymbol{x}, \qquad Z_2 = \boldsymbol{c}^T \boldsymbol{y},$$

e supponiamo che sia $Z_1 < Z_2$. Calcoliamo la funzione obiettivo in \boldsymbol{w} :

$$Z^* = \boldsymbol{c}^T \boldsymbol{w} = \boldsymbol{c}^T (\lambda \boldsymbol{x} + (1 - \lambda) \boldsymbol{y}) = \lambda \boldsymbol{c}^T \boldsymbol{x} + (1 - \lambda) \boldsymbol{c}^T \boldsymbol{y} = \lambda Z_1 + (1 - \lambda) Z_2.$$

Ovviamente risulta

$$Z^* = \lambda Z_1 + (1 - \lambda)Z_2 < \lambda Z_2 + (1 - \lambda)Z_2 = \lambda Z_2 + Z_2 - \lambda Z_2 = Z_2.$$

Quindi appare chiaro come il valore della funzione obiettivo in un qualunque punto interno sia sempre inferiore rispetto al valore assunto in un vertice. La dimostrazione può essere generalizzata supponendo che \boldsymbol{w} sia una combinazione convessa di un insieme di vertici. \square

In un problema di programmazione lineare con n variabili decisionali, due vertici si dicono adiacenti se condividono le frontiere di n-1 vincoli. Facendo riferimento alla Figura 3.1 sono vertici adiacenti, per esempio, $A \in C$, ma anche $C \in D$, mentre non sono vertici adiacenti $O \in C$.

Invece nella seguente figura in \mathbb{R}^3 il vertice A ha come vertici adiacenti (esattamente tre) i punti B, C e D. Con ciascuno di questi condivide l'appartenenza a due piani che delimitano la regione ammissibile.

Due vertici adiacenti sono collegati attraverso un segmento che giace sulla frontiera comune e che viene detto spigolo della regione ammissibile. Una delle idee alla base del metodo del simplesso è la proprietà che la soluzione ottima è sempre uno dei vertici della regione ammissibile, e inoltre se si considera un qualsiasi problema di programmazione lineare che possiede almeno una soluzione ottima allora se un vertice non ha vertici adiacenti migliori (valutati attraverso la funzione obiettivo), allora deve essere necessariamente la soluzione ottima. Consideriamo infatti la seguente figura in \mathbb{R}^2 .

Il valore della funzione obiettivo nel vertice \mathbf{A} è sicuramente maggiore di quello dei due vertici adiacenti \mathbf{B} e \mathbf{C} . Se esistesse un vertice \mathbf{D} non adiacente ad \mathbf{A} migliore di quest'ultimo allora la regione ammissibile non potrebbe essere un insieme convesso. Questa proprietà è fondamentale per l'applicazione del metodo descritto nei seguenti paragrafi per risolvere problemi di programmazione lineare in forma standard, ovvero il metodo del simplesso.

3.4 Il Metodo del Simplesso

Il metodo del simplesso è una procedura iterativa di tipo algebrico che si applica a problemi di programmazione lineare in forma standard. Il metodo del simplesso si basa sulle seguenti idee chiave:

- 1. Il metodo del simplesso è un algoritmo di tipo iterativo che concentra l'attenzione esclusivamente sui vertici della regione ammissibile, passando, ad ogni iterazione, da un vertice ad un altro, finchè non trova la soluzione ottima oppure conclude che la funzione obiettivo è illimitata (ovvero $Z=+\infty$), identificando anche il caso in cui la soluzione ottima non è unica.
- 2. Il metodo sceglie come vertice iniziale l'origine (tutte le variabili decisionali sono poste uguali a zero).
- 3. Considerato un determinato vertice risulta più conveniente, da un punto di vista computazionale, ottenere informazioni sui vertici adiacenti. Passando da un vertice all'altro la procedura per trovare la soluzione ottima si snoda attraverso gli spigoli della regione ammissibile.
- 4. Dopo aver identificato il vertice ammissibile la procedura si muove lungo lo spigolo dove il tasso di incremento di Z è maggiore.
- 5. Un tasso di miglioramento positivo per la funzione obiettivo implica che il vertice adiacente è migliore di quello attuale, un tasso negativo indica invece che è peggiore. Se nessuno dei vertici adiacenti produce un tasso positivo significa che è stata raggiunta la soluzione ottima.

74

3.4.1 Forma algebrica del metodo del simplesso

Consideriamo il seguente problema di programmazione lineare:

$$\max Z = 3x_1 + 5x_2$$

$$x_1 \leq 4$$

$$2x_2 \leq 12$$

$$3x_1 + 2x_2 \leq 18$$

$$x_1 \geq 0, x_2 \geq 0.$$

Tracciamo la regione ammissibile ed identifichiamo i suoi vertici.

Si verifica agevolmente che il vertice (2,6) è soluzione ottima in cui il valore della funzione obiettivo è Z=36.

La procedura algebrica del metodo del simplesso si basa sulla risoluzione di un sistema di equazioni lineari. Il primo passo di inizializzazione del metodo consiste nel convertire i vincoli funzionali di disuguaglianza in equivalenti vincoli di uguaglianza. Questa trasformazione avviene introducendo le cosiddette variabili slack (scarto). Considerando il primo vincolo

$$x_1 \le 4 \qquad \Rightarrow \qquad 4 - x_1 \ge 0$$

e ponendo

$$x_3 = 4 - x_1$$

risulta

$$x_3 \ge 0$$

cosicchè le variabili x_1 e x_3 soddisfano l'equazione

$$x_1 + x_3 = 4$$
.

Procedendo in modo analogo per gli altri vincoli funzionali, il problema di programmazione lineare

$$\max Z = 3x_1 + 5x_2$$

$$x_1 \leq 4$$

$$2x_2 \leq 12$$

$$3x_1 + 2x_2 \leq 18$$

$$x_1 > 0, x_2 > 0$$

diventa il seguente

$$\max Z = 3x_1 + 5x_2
x_1 + x_3 = 4
2x_2 + x_4 = 12
3x_1 + 2x_2 + x_5 = 18
x_i \ge 0, i = 1, 2, 3, 4, 5$$
(3.2)

che viene detto problema in forma aumentata. Le variabili slack introdotte sono appunto x_3, x_4 e x_5 .

Si definisce soluzione aumentata quella soluzione per cui alle variabili decisionali sono state aggiunte le variabili slack.

Si definisce soluzione di base (basica) un vertice cui sono stati aggiunti i valori delle variabili slack.

Si definisce soluzione basica ammissibile (in breve BFS=Basic Feasible Solution) un vertice ammissibile cui sono state aggiunte le variabili slack.

Se una variabile slack è uguale a zero, allora la soluzione corrente appartiene alla frontiera del vincolo funzionale, mentre se il valore della variabile slack è positivo allora la soluzione corrente si trova all'interno della regione ammissibile rispetto a tale vincolo. In realtà si può osservare che se una soluzione ha una variabile (sia decisionale che slack) uguale a zero questo vuol dire che appartiene ad uno degli spigoli che delimitano la regione ammissibile:

Il numero di BFS è finito e possiamo elencarle tutte:

$$(0,0,4,12,18) (0,6,4,0,6) (2,6,2,0,0) (4,3,0,6,0) (4,0,0,12,6),$$

i valori delle variabili sono desunte dalle equazioni dei vincoli scritte in forma aumentata (3.2). Per esempio posto $x_1 = x_2 = 0$, dall'equazione del primo vincolo si deduce $x_3 = 4$, dal secondo $x_4 = 12$ e dal terzo $x_5 = 18$. Ancora, posto $x_1 = 0$ e $x_2 = 6$ sempre dall'equazione del primo vincolo si ricava $x_3 = 4$, $x_4 = 0$ perchè appartiene al segmento in cui x_4 è nulla, mentre x_5 si

ricava dall'equazione del terzo vincolo

$$x_5 = 18 - 2x_2 = 6.$$

Per le altre BFS si procede in modo analogo.

In base alle osservazioni fatte risulta ovvio che ogni BFS ha almeno due variabili uguali a zero. Il motivo di questa proprietà sta nel fatto che, nella forma aumentata, si deve risolvere un sistema di 3 equazioni lineari in 5 incognite. Il sistema presenta, quindi, 2 gradi di libertà, cioè a due variabili possono essere assegnati valori arbitrari, per esempio zero.

Le due variabili poste uguali a zero sono dette variabili non di base (o non in base) mentre le altre tre variabili sono dette variabili di base. Il numero di variabili di base è uguale al numero di vincoli funzionali, mentre il numero di variabili non di base è la differenza tra il numero complessivo di variabili ed il numero di vincoli. Se le variabili di base soddisfano i vincoli di nonnegatività allora la soluzione è una BFS.

Due BFS adiacenti condividono tutte le variabili non di base tranne una, quindi per passare da una BFS ad una adiacente è necessario che una variabile non di base lo diventi e viceversa.

Per esempio se consideriamo la BFS (0,0,4,12,18) allora (0,6,4,0,6) è adiacente ad essa in quanto x_1 risulta non essere in base in entrambe, mentre la BFS (2,6,2,0,0) non lo è in quanto non hanno in comune alcuna variabile non in base.

Cerchiamo ora di descrivere matematicamente i passi delle singole iterazioni previste dal metodo del simplesso. Il primo passo è quello di riscrivere le equazioni del modello, scrivendo anche la funzione obiettivo come se fosse un'ulteriore equazione:

Si parte da una soluzione base e si usa l'equazione (0) per calcolare il valore della funzione obiettivo. Anche Z viene considerata come variabile sempre in base.

Scegliere l'origine come vertice ammissibile significa porre $x_1 = x_2 = 0$ cioè si considera come soluzione basica ammissibile (0, 0, 4, 12, 18). Appare chiaro che inizialmente le variabili in base sono le variabili slack, i cui valori vengono

calcolati sfruttando le equazioni (1), (2) e (3), in particolare

$$x_3 = 4,$$
 $x_4 = 12,$ $x_5 = 18,$

mentre la funzione obiettivo calcolata vale 0.

Il problema, scritto attraverso le equazioni (0)-(3), ha le seguenti proprietà:

- 1) Nella funzione obiettivo sono presenti solo variabili non in base (ad eccezione di Z);
- 2) Ogni variabile in base è presente solo in un'equazione con coefficiente uguale a 1.

Un problema scritto in tale forma viene detto in forma canonica. Il vantaggio offerto dalla prima proprietà è che, essendo nullo il valore di tutte le variabili presenti nella funzione obiettivo, il valore assunto da questa nella BFS corrente coincide con il termine noto della funzione stessa.

La seconda proprietà consente di ottenere immediatamente il valore della variabile in base presente nell'equazione che è uguale al termine noto (poichè tutte le altre variabili presenti nell'equazione hanno valore zero).

In un problema in forma canonica è possibile associare ad ogni equazione una (ed una sola) variabile di base:

- $Z 3x_1 5x_2$ = 0(0)Variabile di base Z
- (1)
- (2)
- x_1 $+x_3$ = 4 Variabile di base x_3 $2x_2$ $+x_4$ = 12 Variabile di base x_4 $3x_1+$ $2x_2$ $+x_5$ = 18 Variabile di base x_5 (3)Variabile di base x_5 .

Trasformare, ad ogni passo, il problema in forma canonica consente, una volta determinata la nuova BFS, di aggiornare il valore delle variabili in base e della funzione obiettivo.

Poichè le variabili slack non compaiono nell'espressione di Z, i coefficienti delle variabili non di base x_1, x_2 indicano il tasso di incremento della funzione obiettivo prodotto da un eventuale aumento del valore di tali variabili. Poichè i tassi di miglioramento, cioè i coefficienti di x_1 e x_2 , sono positivi si può concludere che (0,0,4,12,18) non è soluzione ottima.

Passo 1 della singola iterazione: Stabilire la direzione dello sposta-

Incrementare il valore di una variabile non di base rispetto al valore zero corrente (pur adattando i valori in modo tale da soddisfare i vincoli) corrisponde a muoversi lungo uno spigolo che inizia dal vertice ammissibile. La scelta della variabile non di base viene fatta osservando l'espressione della funzione obiettivo:

$$Z = 3x_1 + 5x_2$$
.

Aumentare x_1 significa che il tasso di miglioramento della funzione obiettivo è 3, mentre per x_2 è 5. Appare chiaro che conviene scegliere x_2 come variabile entrante in base.

Passo 2 della singola iterazione: Criterio di arresto.

Bisogna determinare il valore da assegnare alla variabile entrante senza che la nuova soluzione basica esca dalla regione di ammissibilità. Il valore della variabile non di base x_1 resta zero.

$$(1) x_1 +x_3 = 4 x_3 = 4$$

$$(2) 2x_2 +x_4 = 12 x_4 = 12 - 2x_2$$

La nonnegatività delle variabili impone dei vincoli sulle relazioni appena scritte:

$$x_3 = 4 \ge 0$$
 Nessun limite su x_2

$$x_4 = 12 - 2x_2 \ge 0$$
 $x_2 \le 12/2 = 6$

$$x_5 = 18 - 2x_2 \ge 0$$
 $x_2 \le 18/2 = 9$.

Quindi il valore di x_2 può essere incrementato fino a 6, valore che rende la variabile attualmente in base $x_4 = 0$. Oltre tale valore x_4 assume valore negativo violando l'ammissibilità della soluzione. Questi calcoli costituiscono quello che è noto come test del minimo rapporto. Obiettivo di tale test è determinare quale variabile di base assume per prima il valore zero all'aumentare del valore della variabile entrante. Si possono escludere da tale test tutte quelle variabili associate ad equazioni in cui il coefficiente della variabile entrante è zero oppure negativo. Quindi per ogni equazione in cui il coefficiente della variabile entrante è strettamente positivo, il test calcola il rapporto tra il termine noto ed il coefficiente della variabile entrante. La variabile di base nell'equazione con il minimo rapporto è quella che raggiunge per prima il valore 0 e quindi rappresenta, di fatto, la variabile uscente dalla base. Nell'esempio fatto entra x_2 ed esce x_4 .

Passo 3 della singola iterazione: Ottenere la nuova BFS.

La situazione determinata dal passo 2 del metodo del simplesso è schematizzata nella seguente tabella:

	BFS iniziale	Nuova BFS
Variabili di base	$x_3 = 4, x_4 = 12, x_5 = 18$	$x_2 = 6, x_3 = ?, x_5 = ?$
Variabili non di base	$x_1 = 0, x_2 = 0$	$x_1 = 0, x_4 = 0$

Il sistema

deve essere scritto ora in forma canonica, cioè ogni variabile in base deve comparire solo in un'equazione e con coefficiente uguale a 1 e nell'equazione (0) i coefficienti delle variabili in base devono essere uguali a zero. La trasformazione può avvenire effettuando delle opportune combinazioni lineari tra le equazioni del problema attraverso il cosiddetto metodo di Gauss-Jordan. Innanzitutto dividiamo l'equazione (2) per 2 ottenendo la nuova seconda equazione:

$$(2') x_2 + \frac{1}{2}x_4 = 6.$$

Per eliminare il coefficiente di x_2 dall'equazione (3) sommiamo all'equazione (3) l'equazione (2') moltiplicata per -2:

$$(3) \quad 3x_1 + 2x_2 + x_5 = 18 +$$

$$-2 \times (2') \quad -2x_2 - x_4 = -12$$

$$(3') \quad 3x_1 - x_4 + x_5 = 6.$$

L'equazione (1) resta invariata perchè il coefficiente di x_2 è già uguale a zero. Ora dobbiamo eliminare il coefficiente della variabile entrante in base dall'equazione (0), sommando all'equazione (0) l'equazione (2') moltiplicata per 5:

Il sistema è diventato quindi

(0)
$$Z -3x_1 + \frac{5}{2}x_4 = 30$$
 Variabile di base Z

$$(1) x_1 +x_3 = 4 Variabile di base x_3$$

(2)
$$x_2 + \frac{1}{2}x_4 = 6$$
 Variabile di base x_2

$$(3) 3x_1 -x_4 + x_5 = 6 Variabile di base x_5.$$

Dalle equazioni (1) e (2) rispettivamente si ricava che $x_5 = 6$ e $x_3 = 4$. Quindi la nuova BFS è (0, 6, 4, 0, 6). Si osservi che ogni variabile di base appare in una sola equazione con coefficiente 1.

Test di ottimalità:

Effettuando il test di ottimalità sulla nuova funzione obiettivo

$$Z = 3x_1 - \frac{5}{2}x_4 + 30$$

si deduce che è necessaria una seconda iterazione poichè il coefficiente di x_1 è positivo, infatti la variabile entrante deve essere proprio x_1 . Per calcolare la variabile uscente dobbiamo effettuare il test del minimo rapporto tra le equazioni (1), (2) e (3).

$$(1) x_3 = 4 - x_1 \ge 0 x_1 \le 4$$

(2)
$$x_2 = 6 \ge 0$$
 Nessun limite su x_2

(3)
$$x_5 = 6 - 3x_1 \ge 0$$
 $x_1 \le 6/3 = 2$.

Da tale test risulta che la variabile uscente è x_5 .

	BFS precedente	Nuova BFS
Variabili di base	$x_2 = 6, x_3 = 4, x_5 = 6$	$x_1 = 2, x_2 = 6, x_3 = ?$
Variabili non di base	$x_1 = 0, x_4 = 0$	$x_4 = 0, x_5 = 0$

Il sistema

(0)
$$Z -3x_1 + \frac{5}{2}x_4 = 30$$

(1) $x_1 + x_3 = 4$

$$(2) x_2 +\frac{1}{2}x_4 = 6$$

$$(3) 3x_1 -x_4 +x_5 = 6$$

deve essere trasformato in modo tale che i coefficienti della colonna relativa alla variabile entrante x_1 siano uguali a quelli della colonna relativa alla variabile uscente x_5 , quindi bisogna rendere 1 il coefficiente di x_1 nell'equazione (3) ed eliminare quelli di x_1 dalle equazioni (0) e (1). L'equazione (3) viene divisa per 3 diventando:

(3)
$$x_1 - \frac{1}{3}x_4 + \frac{1}{3}x_5 = 2.$$

Il sistema è diventato

$$(0) Z -3x_1 +\frac{5}{2}x_4 = 30$$

$$(1) x_1 +x_3 = 4$$

(2)
$$x_2 + \frac{1}{2}x_4 = 6$$

(3)
$$x_1 \qquad -\frac{1}{3}x_4 + \frac{1}{3}x_5 = 2.$$

Sommiamo all'equazione (3) la (1) moltiplicata per -1:

$$(1) x_1 +x_3 = 4 +$$

$$-1 \times (3) x_1 \frac{1}{3}x_4 -\frac{1}{3}x_5 = -2$$

$$(1') x_3 +\frac{1}{3}x_4 -\frac{1}{3}x_5 = 2$$

e sommiamo all'equazione (0) la (3) moltiplicata per 3:

$$(0) Z -3x_1 + \frac{5}{2}x_4 = 30 +$$

$$3 \times (3) 3x_1 -x_4 +x_5 = 6$$

$$(0') Z + \frac{3}{2}x_4 +x_5 = 36.$$

Il sistema è diventato

(0)
$$Z$$
 $+\frac{3}{2}x_4$ $+x_5 = 36$ Variabile di base Z

(1)
$$x_3 + \frac{1}{3}x_4 - \frac{1}{3}x_5 = 2$$
 Variabile di base x_3

(2)
$$x_2 + \frac{1}{2}x_4 = 6$$
 Variabile di base x_2

(3)
$$x_1 -\frac{1}{3}x_4 + \frac{1}{3}x_5 = 2 \text{Variabile di base } x_1.$$

Dalla (1) segue che $x_3 = 2$ quindi la nuova BFS è (2,6,2,0,0) da cui si ottiene il valore della funzione obiettivo Z = 36 che è ottimo perchè tutti i coefficienti dell'equazione (0)

$$Z = -\frac{3}{2}x_4 - x_5 + 36$$

sono negativi quindi non è possibile trovare nessuna direzione di ulteriore crescita.

Esercizio 3.4.1 Calcolare le coordinate in forma aumentata di tutti i vertici ammissibili della regione delimitata dai seguenti vincoli:

$$\begin{array}{cccc} x_1 & \leq & 3 \\ x_1 & +x_2 & \leq & 6 \\ -x_1 & +x_2 & \leq & 2 \\ x_1, x_2 \geq 0. \end{array}$$

3.4.2 Forma tabellare del metodo del simplesso

La forma tabellare del metodo del simplesso consente di organizzare i dati del problema in modo sintetico e di avere in forma compatta tutte le informazioni che consentono di effettuare le iterazioni previste dal metodo. Nella tabella, detta anche tableau, compaiono, riga per riga, i coefficienti di tutte le equazioni del problema, compresa l'equazione (0) (che sarebbe la funzione obiettivo). In ogni colonna sono riportati tutti i coefficienti relativi ad una stessa variabile ed i termini noti b_i . Nella prima colonna è specificata la variabile in base presente nell'equazione riportata nella riga, ovviamente per l'equazione (0) si suppone che la variabile in base sia Z. Consideriamo il seguente problema:

$$\max Z = x_1 + 2x_2 + x_3$$

$$x_1 + x_2 + 3x_3 \le 6$$

$$2x_1 + 3x_2 + x_3 \le 15$$

$$x_1, x_2, x_3 > 0.$$

Introduciamo le variabili slack x_4 e x_5 , cosicchè, in forma aumentata, il sistema algebrico diventa:

con vincolo di nonnegatività su tutte le variabili. Il tableau iniziale del metodo del simplesso è il seguente

	Tableau iniziale										
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	b_i			
Z	(0)	1	-1	-2	-1	0	0	0			
x_4	(1)	0	1	1	3	1	0	6			
x_5	(2)	0	2	3	1	0	1	15			

Identifichiamo in x_2 la variabile entrante in base, in quanto il coefficiente negativo dell'equazione (0) più grande in modulo è proprio quello di x_2 . Evidenziamo la colonna relativa alla variabile entrante in base, che viene detta colonna pivot:

	Tableau iniziale									
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	b_i		
Z	(0)	1	-1	-2	-1	0	0	0		
x_4	(1)	0	1	1	3	1	0	6		
x_5	(2)	0	2	3	1	0	1	15		

A questo punto applichiamo il criterio del minimo rapporto per decidere quale variabile deve uscire dalla base attraverso i seguenti passi:

- 1. si individuano nella colonna pivot tutti i coefficienti strettamente positivi;
- 2. si divide il termine noto per tale coefficiente;
- 3. si identifica il più piccolo tra tali rapporti;
- 4. la variabile di base corrispondente a tale riga (detta riga pivot) è quella uscente.

			,	Tableau	iniziale			
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	b_i
Z	(0)	1	-1	-2	-1	0	0	0
x_4	(1)	0	1	1	3	1	0 6	$\rightarrow 6/1 = 6$
x_5	(2)	0	2	3	1	0	1 15	$\rightarrow 15/3 = 5$

Il criterio del minimo rapporto stabilisce che dalla base deve uscire la variabile x_5 . Evidenziamo tutti i coefficienti dell'equazione relativa alla riga di x_5 :

	Tableau iniziale											
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	b_i				
Z	(0)	1	-1	-2	-1	0	0	0				
x_4	(1)	0	1	1	3	1	0	6				
x_5	(2)	0	2	3	1	0	1	15				

La variabile entrante x_2 prende il posto, nella prima colonna, della variabile uscente x_5 .

Ora la colonna relativa alla variabile entrante in base deve essere resa uguale a quella della variabile uscente. Per rendere unitario l'elemento pivot (cioè 3) dobbiamo dividere l'equazione (2) proprio per questo numero ottenendo i nuovi coefficienti che andranno inseriti nel nuovo tableau:

$$x_1$$
 x_2 x_3 x_4 x_5 b_i (2) $\frac{2}{3}$ 1 $\frac{1}{3}$ 0 $\frac{1}{3}$ 5

Nelle operazioni sul tableau non vengono considerati i coefficienti della colonna relativa a Z perchè rimangono inalterati in tutte le iterazioni.

Adesso si devono azzerare, con opportune combinazioni lineari tra le equazioni, i coefficienti di x_2 nelle equazioni (0) e (1).

Per quello che riguarda il coefficiente 1 nell'equazione (1) si può sottrarre da questa l'equazione (2) che adesso presenta lo stesso coefficiente, ovvero sommare alla stessa l'equazione (2) moltiplicata per -1:

	x_1	x_2	x_3	x_4	x_5	b_i	
(1)	1	1	3	1	0	6	+
$-1 \times (2)$	$-\frac{2}{3}$	-1	$-\frac{1}{3}$	0	$-\frac{1}{3}$	-5	=
(1')	$\frac{1}{3}$	0	$\frac{8}{3}$	1	$-\frac{1}{3}$	1	

Per quello che riguarda il coefficiente -2 nell'equazione (0) si può sommare a questa l'equazione (2) moltiplicata per 2:

	x_1	x_2	x_3	x_4	x_5	b_i	
(0)	-1	-2	-1	0	0	0	+
$2 \times (2)$	$\frac{4}{3}$	2	$\frac{2}{3}$	0	$\frac{2}{3}$	10	=
(0')	$\frac{1}{3}$	0	$-\frac{1}{3}$	0	$\frac{2}{3}$	10	

Adesso i valori possono essere riportati nel tableau relativo alla prima iterata del metodo del simplesso.

Iterazione 1										
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	b_i		
Z	(0)	1	$\frac{1}{3}$	0	$-\frac{1}{3}$	0	$\frac{2}{3}$	10		
x_4	(1)	0	$\frac{1}{3}$	0	$\frac{8}{3}$	1	$-\frac{1}{3}$	1		
x_2	(2)	0	$\frac{2}{3}$	1	$\frac{1}{3}$	0	$\frac{1}{3}$	5		

Dobbiamo effettuare un'altra iterazione perchè il test di ottimalità non è verificato in quanto nell'equazione (0) è presente un coefficiente negativo. Variabile entrante è x_3 mentre variabile uscente è x_4 (applicando il test del minimo rapporto).

	Iterazione 1											
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	b_i				
\overline{Z}	(0)	1	$\frac{1}{3}$	0	$-\frac{1}{3}$	0	$\frac{2}{3}$	10				
x_4	(1)	0	$\frac{1}{3}$	0	$\frac{8}{3}$	1	$-\frac{1}{3}$	1				
x_2	(2)	0	$\frac{2}{3}$	1	$\frac{1}{3}$	0	$\frac{1}{3}$	5				

Dopo la seconda iterazione abbiamo il seguente tableau, che è stato ottenuto prima moltiplicando l'equazione (1) per 3/8:

$$x_1$$
 x_2 x_3 x_4 x_5 b_i (1) $\frac{1}{8}$ 0 1 $\frac{3}{8}$ $-\frac{1}{8}$ $\frac{3}{8}$

poi sommando all'equazione (2) la (1) moltiplicata per -1/3:

In seguito, per azzerare il coefficiente -1/3 dall'equazione (0) sommiamo a quest'ultima l'equazione (1) moltiplicata per 1/3:

Il tableau del metodo è diventato pertanto

	Iterazione 2										
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	b_i			
Z	(0)	1	$\frac{3}{8}$	0	0	$\frac{1}{8}$	$\frac{5}{8}$	<u>81</u> 8			
x_3	(1)	0	$\frac{1}{8}$	0	1	$\frac{3}{8}$	$-\frac{1}{8}$	$\frac{3}{8}$			
x_2	(2)	0	$\frac{5}{8}$	1	0	$-\frac{1}{8}$	$\frac{3}{8}$	$\frac{39}{8}$			

Siamo arrivati alla soluzione ottima (0, 39/8, 3/8, 0, 0) in cui la funzione obiettivo vale Z = 81/8.

Terminiamo questo paragrafo analizzando alcune situazioni che si possono verificare applicando il metodo del simplesso ad un problema di programmazione lineare.

Scelta della variabile entrante e di quella uscente

Nell'applicazione del metodo del simplesso potrebbero verificarsi due situazioni:

- 1. Nell'equazione (0) due, o più, variabili non di base hanno lo stesso coefficiente negativo più piccolo e pertanto possono entrambe entrare in base presentando lo stesso tasso di incremento per la funzione obiettivo;
- 2. Due, o più quozienti, soddisfano il test del minimo rapporto ovvero, incrementando il valore della variabile entrante in base, ci sono più variabili di base che raggiungeranno simultaneamente il valore zero.

Ci chiediamo come bisogna comportarsi in questo caso e soprattutto se esiste un modo ottimale per scegliere la variabile.

Il secondo caso presenta un aspetto molto delicato in quanto delle variabili che soddisfano il test solo una uscirà dalla base mentre l'altra, o le altre, resteranno in base pur assumendo valore zero nell'iterazione successiva.

In questo caso tali variabili, così come la relativa BFS, sono dette degeneri. In presenza di BFS degeneri il cambiamento di base può non migliorare il valore della funzione obiettivo poichè il minimo rapporto può essere uguale a zero anche nelle iterazioni successive pertanto possono entrare in base variabili con valore uguale a zero. Una conseguenza di tale situazione è che potrebbe percorrersi ciclicamente (e cioè all'infinito) una sequenza di basi degeneri associate allo stesso vertice. Questi casi, che in verità non derivano da problemi reali, possono essere evitati applicando alcune regole cosiddette anticiclo che cambiano il criterio per la scelta delle variabili entranti o uscenti dalla base. La più nota è senz'altro la Regola di Bland che impone di scegliere, tra le variabili candidate ad entrare o ad uscire, sempre quella che ha indice minore. È possibile dimostrare che, applicando la regola di Bland, il metodo del simplesso converge sempre in un numero finito di iterazioni.

Anche per quello che riguarda la scelta della variabile entrante in base non c'è alcun modo di sapere, a priori, la scelta migliore, pertanto di solito conviene applicare la regola di Bland anche in questo caso.

90

Esempio 3.4.1 Risolvere il seguente problema in forma standard:

$$\max Z = 5x_1 + 6x_2 + 4x_3$$

$$-x_1 + 3x_2 + 4x_3 \le 18$$

$$2x_1 + 2x_2 + x_3 \le 4$$

$$3x_1 + 2x_3 \le 8$$

$$x_1, x_2, x_3 \ge 0.$$

Scriviamo innanzitutto il problema in forma aumentata introducendo tre variabili slack:

Le equazioni da risolvere sono:

Iterazione 0											
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	x_6	b_i		
Z	(0)	1	-5	-6	-4	0	0	0	0		
x_4	(1)	0	-1	3	4	1	0	0	18		
x_5	(2)	0	2	2	1	0	1	0	4		
x_6	(3)	0	3	0	2	0	0	1	8		

Iterazione 1												
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	x_6	b_i			
Z	(0)	1	1	0	-1	0	3	0	12			
x_4	(1)	0	-4	0	$\frac{5}{2}$	1	$-\frac{3}{2}$	0	12			
x_2	(2)	0	1	1	$\frac{1}{2}$	0	$\frac{1}{2}$	0	2			
x_6	(3)	0	3	0	2	0	0	1	8			
				_								
				Itera	zione 2							
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	x_6	b_i			
	(0)						4		1.0			

Iterazione 2												
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	x_6	b_i			
Z	(0)	1	3	2	0	0	4	0	16			
x_4	(1)	0	- 9	-5	0	1	-4	0	2			
x_3	(2)	0	2	2	1	0	1	0	4			
x_6	(3)	0	-1	-4	0	0	-2	1	0			

Soluzione è (0,0,4,2,0,0) con valore della funzione obiettivo Z=16. Osserviamo che la variabile in base x_6 assume valore nullo, pertanto la BFS trovata è degenere.

Nessuna variabile di base uscente-Z illimitata

Questa situazione si verifica quando nel tableau del metodo del simplesso ad un coefficiente negativo dell'equazione (0) corrispondente ad una variabile non di base è associata una colonna di coefficienti tutti nulli o negativi. Questo vuol dire che la variabile entrante può essere incrementata all'infinito senza uscire dalla regione di ammissibilità e lasciando che anche Z può essere aumentata all'infinito, cioè $Z=+\infty$. Una situazione del genere si verifica quando è stato commesso qualche errore nella definizione del modello utilizzato per descrivere il problema reale.

Risolviamo quindi il seguente problema:

$$\max Z = 6x_1 + 4x_2 + x_3 + x_4$$

$$2x_1 + x_2 -3x_3 +4x_4 \le 10$$

$$3x_1 + x_2 +5x_4 \le 6$$

$$x_1, x_2, x_3, x_4 \ge 0.$$

Scriviamo innanzitutto il problema in forma aumentata

$$\begin{array}{lllll} \max & Z = 6x_1 + 4x_2 + x_3 + x_4 \\ 2x_1 & +x_2 & -3x_3 & +4x_4 & +x_5 & = & 10 \\ 3x_1 & +5x_2 & +5x_4 & +x_6 & = & 6 \\ x_1, x_2, x_3, x_4, x_5, x_6 \geq 0. & & & \end{array}$$

Le equazioni da risolvere sono:

$$(2) 3x_1 +x_2 +5x_4 +x_6 = 6$$

Iterazione 0											
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	x_6	b_i		
Z	(0)	1	-6	-4	-1	-1	0	0	0		
x_5	(1)	0	2	1	-3	4	1	0	10		
x_6	(2)	0	3	1	0	5	0	1	6		

	Iterazione 1											
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	x_6	b_i			
Z	(0)	1	0	-2	-1	9	0	2	12			
x_5	(1)	0	0	$\frac{1}{3}$	-3	$\frac{2}{3}$	1	$-\frac{2}{3}$	6			
x_1	(2)	0	1	$\frac{1}{3}$	0	$\frac{5}{3}$	0	$\frac{1}{3}$	2			

				Itera	zione 2				
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	x_6	b_i
Z	(0)	1	6	0	-1	19	0	4	24
x_5	(1)	0	-1	0	-3	-1	1	-1	4
x_2	(2)	0	3	1	0	5	0	1	6

La variabile x_3 può entrare in base ma non c'è alcuna variabile candidata ad uscire. Quindi la funzione obiettivo è illimitata e risulta $Z = +\infty$.

Il caso di soluzioni ottime multiple

Può verificarsi che un problema ammetta infinite soluzioni tutte ottime (è il caso in cui due vertici adiacenti sono entrambi ottimi e quindi anche il relativo spigolo che li congiunge è costituito da soluzioni ottime). Questo caso si verifica quando il coefficiente di una variabile non di base nell'equazione (0) è uguale a zero e nella colonna ci sono coefficienti positivi relativi a variabili che potrebbero uscire dalla base. Volendo si potrebbe effettuare un'ulteriore iterazione del metodo del simplesso, verificando che la funzione obiettivo non cambia valore, e trovando un altro vertice ammissibile.

Risolvere il seguente problema di programmazione lineare in forma standard:

$$\max Z = 4x_1 + 5x_2 + 3x_3 + 5x_4$$

$$x_1 + x_2 + x_3 + 2x_4 \le 12$$

$$3x_1 + 2x_2 - x_3 + 2x_4 \le 6$$

$$x_1 + 2x_3 \le 10$$

$$x_1, x_2, x_3, x_4 \ge 0.$$

Scriviamo il problema nella forma aumentata introducendo tre variabili slack:

$$\max Z = 4x_1 + 5x_2 + 3x_3 + 5x_4$$

$$x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0.$$

Le equazioni da risolvere sono

$$(0) Z -4x_1 -5x_2 -3x_3 -5x_4 = 0$$

$$(3) x_1 +2x_3 +x_7 = 10.$$

	Iterazione 0											
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b_i		
Z	(0)	1	-4	-5	-3	-5	0	0	0	0		
x_5	(1)	0	1	1	1	2	1	0	0	12		
x_6	(2)	0	3	2	-1	2	0	1	0	6		
x_7	(3)	0	1	0	2	0	0	0	1	10		

	Iterazione 1													
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b_i				
\overline{Z}	(0)	1	$\frac{7}{2}$	0	$-\frac{11}{2}$	0	0	$\frac{5}{2}$	0	15				
x_5	(1)	0	$-\frac{1}{2}$	0	$\frac{3}{2}$	1	1	$-\frac{1}{2}$	0	9				
x_2	(2)	0	$\frac{3}{2}$	1	$-\frac{1}{2}$	1	0	$\frac{1}{2}$	0	3				
x_7	(3)	0	1	0	2	0	0	0	1	10				

	Iterazione 2													
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b_i				
\overline{Z}	(0)	1	$\frac{25}{4}$	0	0	0	0	$\frac{5}{2}$	$\frac{11}{4}$	$\frac{85}{2}$				
x_5	(1)	0	$-\frac{5}{4}$	0	0	1	1	$-\frac{1}{2}$	$-\frac{3}{4}$	$\frac{3}{2}$				
x_2	(2)	0	$\frac{7}{4}$	1	0	1	0	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{11}{2}$				
x_3	(3)	0	$\frac{1}{2}$	0	1	0	0	0	$\frac{1}{2}$	5				

A questo punto osserviamo che la BFS in forma non aumentata

$$x_1 = 0$$
, $x_2 = \frac{11}{2}$, $x_3 = 5$, $x_4 = 0$

in cui la funzione obiettivo assume valore Z=85/2, soddisfa il test di ottimalità e pertanto è soluzione ottima. Bisogna osservare però che la variabile x_4 , nonostante non sia in base, ha coefficiente nullo nell'equazione (0) e che è presente invece una variabile in base, ovvero x_5 , che soddisfa il test del minimo rapporto e che potrebbe uscire dalla base. Eseguiamo pertanto un'ulteriore iterazione facendo entrare x_4 ed uscire x_5 :

	Iterazione 2												
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b_i			
\overline{Z}	(0)	1	$\frac{25}{4}$	0	0	0	0	$\frac{5}{2}$	$\frac{11}{4}$	$\frac{85}{2}$			
x_5	(1)	0	$-\frac{5}{4}$	0	0	1	1	$-\frac{1}{2}$	$-\frac{3}{4}$	$\frac{3}{2}$			
x_2	(2)	0	$\frac{7}{4}$	1	0	1	0	$\frac{1}{2}$	$\frac{1}{4}$	<u>11</u> 2			
x_3	(3)	0	$\frac{1}{2}$	0	1	0	0	0	$\frac{1}{2}$	5			

	Iterazione 3													
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b_i				
Z	(0)	1	$\frac{25}{4}$	0	0	0	0	$\frac{5}{2}$	$\frac{11}{4}$	$\frac{85}{2}$				
x_4	(1)	0	$-\frac{5}{4}$	0	0	1	1	$-\frac{1}{2}$	$-\frac{3}{4}$	$\frac{3}{2}$				
x_2	(2)	0	3	1	0	0	-1	1	1	4				
x_3	(3)	0	$\frac{1}{2}$	0	1	0	0	0	$\frac{1}{2}$	5				

Anche la BFS

$$x_1 = 0$$
, $x_2 = 4$, $x_3 = 5$, $x_4 = \frac{3}{2}$

in cui la funzione obiettivo assume valore Z=85/2, soddisfa il test di ottimalità, pertanto estistendo due vertici ottimi significa che tutti i punti che appartengono allo spigolo che li congiunge sono soluzione ottima.

Esercizi di riepilogo sul metodo del simplesso per problemi in forma standard

Esempio 3.4.2 Risolvere il seguente problema in forma standard:

$$\max Z = 3x_1 + x_2 + x_3$$

$$2x_1 - x_2 + x_3 \leq 4$$

$$3x_1 + x_2 + 2x_3 \leq 6$$

$$x_2 + x_3 \leq 5$$

$$x_1, x_2, x_3 \geq 0.$$

Scriviamo innanzitutto il problema in forma aumentata introducendo tre variabili slack:

Le equazioni da risolvere sono:

Iterazione 0											
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	x_6	b_i		
Z	(0)	1	-3	-1	-1	0	0	0	0		
x_4	(1)	0	2	-1	1	1	0	0	4		
x_5	(2)	0	3	1	2	0	1	0	6		
x_6	(3)	0	0	1	1	0	0	1	5		

Iterazione 1											
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	x_6	b_i		
\overline{Z}	(0)	1	0	$-\frac{5}{2}$	$\frac{1}{2}$	$\frac{3}{2}$	0	0	6		
x_1	(1)	0	1	$-\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	0	0	2		
x_5	(2)	0	0	$\frac{5}{2}$	$\frac{1}{2}$	$-\frac{3}{2}$	1	0	0		
x_6	(3)	0	0	1	1	0	0	1	5		

Osserviamo che in questo caso il test del minimo rapporto consente di far uscire dalla base la variabile x_5 in quanto il rapporto assume valore zero (cioè il più piccolo valore ammissibile).

	Iterazione 2												
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	x_6	b_i				
\overline{Z}	(0)	1	0	0	1	0	1	0	6				
x_1	(1)	0	1	0	<u>3</u> 5	$\frac{1}{5}$	$\frac{1}{5}$	0	2				
x_2	(2)	0	0	1	$\frac{1}{5}$	$-\frac{3}{5}$	$\frac{2}{5}$	0	0				
x_6	(3)	0	0	0	$\frac{4}{5}$	$\frac{3}{5}$	$-\frac{2}{5}$	1	5				

La soluzione ottima è il vettore (2,0,0,0,0,5) con Z=6.

Esempio 3.4.3 Risolvere il seguente problema in forma standard:

$$\max Z = 6x_1 + 3x_2 + 8x_3$$

$$2x_1 - x_2 + 4x_3 \le 6$$

$$x_1 + 4x_3 \le 5$$

$$x_1, x_2, x_3 \ge 0.$$

Scriviamo innanzitutto il problema in forma aumentata introducendo tre variabili slack:

$$\max Z = 6x_1 + 3x_2 + 8x_3$$

$$2x_1 -x_2 +4x_3 +x_4 = 6$$

$$x_1 +4x_3 +x_5 = 5$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0.$$

Le equazioni da risolvere sono:

	Iterazione 0										
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	b_i			
\overline{Z}	(0)	1	-6	-3	-8	0	0	0			
x_4	(1)	0	2	-1	4	1	0	6			
x_5	(2)	0	1	0	4	0	1	5			

				Iteraz	zione 1			
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	b_i
\overline{Z}	(0)	1	-4	-3	0	0	2	10
x_4	(1)	0	1	-1	0	1	-1	1
x_3	(2)	0	$\frac{1}{4}$	0	1	0	$\frac{1}{4}$	$\frac{5}{4}$
				Iteraz	zione 2) 		
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	b_i
\overline{Z}	(0)	1	0	-7	0	4	-2	14
x_1	(1)	0	1	-1	0	1	-1	1
x_3	(2)	0	0	$\frac{1}{4}$	1	$-\frac{1}{4}$	$\frac{1}{2}$	1
				Iteraz	zione 3			
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	b_i
\overline{Z}	(0)	1	0	0	28	-3	12	42
x_1	(1)	0	1	0	4	0	1	5
x_2	(2)	0	0	1	4	-1	2	4

La BFS corrente non soddisfa il test di ottimalità in quanto la variabile x_4 ha un coefficiente negativo nell'equazione (0) pertanto potrebbe entrare in base. Nella colonna associata alla variabile entrante non sono presenti coefficienti positivi pertanto non è possibile applicare il test del minimo rapporto e nessuna variabile è candidata ad uscire dalla base. Questa condizione porta alla conclusione che la funzione è illimitata, pertanto $Z=+\infty$.

3.5 Problemi di programmazione lineare in forma non standard

Ricordiamo che un problema di programmazione lineare in forma standard ha le seguenti proprietà:

- 1. funzione obiettivo da massimizzare;
- 2. vincoli di tipo \leq e termini noti positivi;
- 3. nonnegatività delle variabili decisionali.

Esamineremo nei paragrafi successivi come si risolvono i problemi in cui una (o più) delle proprietà elencate viene meno. In alcuni casi è possibile ricondurre il problema alla forma standard, utilizzando degli opportuni cambi di variabile, in altri invece ciò non è possibile.

Infatti in alcuni problemi in forma non standard l'origine non è un vertice ammissibile e quindi manca una soluzione basica ammissibile iniziale per poter innescare il metodo del simplesso. Inoltre nei problemi con vincoli di uguaglianza non è possibile introdurre le variabili slack, e quindi sceglierle come variabili di base. In questi casi l'approccio utilizzato è l'introduzione delle cosiddette variabili artificiali, che definiscono un vero e proprio problema artificiale che viene risolto per ottenere, se esiste, la soluzione basica ammissibile.

Analizziamo ora i diversi modi di affrontare il problema in base alle possibili difformità del problema rispetto alla forma standard.

Termini noti negativi

Se uno dei termini noti è negativo allora l'intero vincolo può essere moltiplicato per -1, quindi

$$x_1 - x_2 \le -1$$

diventa

$$-x_1 + x_2 > 1$$
.

Considereremo come si tratta il vincolo funzionale nella forma \geq nei successivi paragrafi, adesso analizziamo il caso di un vincolo di uguaglianza. D'ora in poi si continuerà a supporre che il termine noto di un vincolo sia sempre positivo (oppure nullo) e a considerare i vincoli in modo tale che rispettino sempre questa proprietà.

Minimizzazione della funzione obiettivo

Quando il problema da risolvere è la minimizzazione della funzione obiettivo può essere trasformato in forma standard facendolo diventare di massimo. Infatti il punto in cui viene assunto il valore minimo di una funzione coincide con quello in cui viene raggiunto il massimo dalla medesima funzione ma con il segno cambiato. Quindi

$$\min Z = \sum_{j=1}^{n} c_j x_j \qquad \Leftrightarrow \qquad \max -Z = \sum_{j=1}^{n} (-c_j) x_j$$

e si può applicare il metodo del simplesso a tale funzione obiettivo. Si deve poi considerare che, una volta trovato il valore massimo di tale funzione obiettivo, per ottenere il valore del minimo voluto si dovrà cambiare il suo segno.

Variabili senza un esplicito limite inferiore

Se il vincolo di nonnegatività fosse sostituito dal seguente

$$x_i \leq 0$$

allora basterebbe porre

$$x_j' = -x_j \ge 0,$$

effettuare il cambio di variabile $x_j = -x'_j$ nella funzione obiettivo e nei vincoli, ed applicare il metodo del simplesso.

Se la variabile x_i non ha un esplicito limite inferiore, ovvero il vincolo

$$x_i \in \mathbb{R}$$

sostituisce quello di nonnegatività $x_j \geq 0$, allora è necessario sostituire ad x_j la differenza tra due nuove variabili nonnegative, ponendo

$$x_j = x_j^+ - x_j^-, \qquad x_j^+, x_j^- \ge 0.$$

Ogni BFS per la nuova forma del modello ha la proprietà che $x_j^+ = 0$ oppure $x_j^- = 0$ (oppure possono essere entrambe nulle). Nella soluzione ottenuta con il metodo del simplesso si ha:

$$x_j^+ = \begin{cases} x_j & \text{se } x_j \ge 0; \\ 0 & \text{altrimenti,} \end{cases} \qquad x_j^- = \begin{cases} |x_j| & \text{se } x_j \le 0; \\ 0 & \text{altrimenti.} \end{cases}$$

Per esempio nel problema di programmazione lineare

$$\max Z = 3x_1 + x_2 - 4x_3$$

$$2x_1 + x_2 - x_3 \leq 4$$

$$2x_1 + 2x_2 + 3x_3 \leq 9$$

$$x_1, x_2 \geq 0, x_3 \in \mathbb{R}$$

poniamo

$$x_3 = x_3^+ - x_3^-, \qquad x_3^+, x_3^- \ge 0$$

e scriviamo il problema in forma aumentata introducendo due variabili slack:

$$\max Z = 3x_1 + x_2 - 4x_3^+ + 4x_3^- 2x_1 + x_2 - x_3^+ + x_3^- + x_4 = 4 2x_1 + 2x_2 + 3x_3^+ - 3x_3^- + x_5 = 9 x_1, x_2, x_3^+, x_3^-, x_4, x_5 \ge 0.$$

Le equazioni da risolvere sono:

$$(2) 2x_1 +2x_2 +3x_3^+ -3x_3^- +x_5 = 9$$

	Iterazione 0												
Var. base	Eq.	Z	x_1	x_2	x_{3}^{+}	x_3^-	x_4	x_5	b_i				
\overline{Z}	(0)	1	-3	-1	4	-4	0	0	0				
x_4	(1)	0	2	1	-1	1	1	0	4				
x_5	(2)	0	2	2	3	-3	0	1	9				

Iterazione 1												
Var. base	Eq.	Z	x_1	x_2	x_3^+	x_3^-	x_4	x_5	b_i			
\overline{Z}	(0)	1	5	3	0	0	4	0	16			
x_3^-	(1)	0	2	1	-1	1	1	0	4			
x_5	(2)	0	8	5	0	0	3	1	21			

La soluzione è $x_1=x_2=x_3^+=0,\,x_3^-=4$ da cui segue

$$x_3 = -4$$

e quindi la BFS è (0,0,-4) con valore della funzione obiettivo Z=16. Questa tecnica ha lo svantaggio di incrementare il numero di variabili decisionali rispetto al problema originale. Infatti se nessuna variabile avesse limite inferiore il loro numero raddoppierebbe. Questo approccio può essere modificato in modo tale da aggiungere solo una variabile decisionale al modello. Infatti ad ogni variabile non limitata inferiormente si può sostituire

$$x_j = x_j' - x'', \qquad x_j', x'' \ge 0,$$

in cui x'' rappresenta sempre la stessa variabile. L'interpretazione di x'' in questo caso è che -x'' rappresenta il valore attuale della più grande (in termini assoluti) variabile originale negativa, cosicchè x'_j rappresenta di quanto x_j eccede tale valore.

Variabili definite in un intervallo

Supponiamo che, per una variabile x_j , sia definito il seguente vincolo

$$l_j \le x_j \le L_j, \qquad l_j < L_j.$$

Sottraendo il valore l_j dalle disequazioni si ottiene

$$0 \le x_i - l_i \le L_i - l_i.$$

Introducendo una nuova variabile

$$x_j' = x_j - l_j,$$

il vincolo

$$x_i' \leq L_i - l_i$$

viene considerato come un vincolo funzionale mentre il limite inferiore

$$x_i' = x_j - l_j \ge 0,$$

diviene il conseuto vincolo di nonnegatività. Pertanto si effettua il seguente cambio di variabile

$$x_j = x_j' + l_j$$

in ogni equazione del problema. Per esempio, nel seguente problema:

$$\max Z = 3x_1 + 5x_2$$

$$x_1 \leq 4$$

$$2x_2 \leq 12$$

$$3x_1 + 2x_2 \leq 18$$

$$x_1 \geq -10, x_2 \geq 1.$$

Definiamo le variabili

$$x_1' = x_1 + 10,$$
 $x_2' = x_2 - 1,$ $x_1', x_2' \ge 0,$

cosicchè

$$x_1 = x_1' - 10, \qquad x_2 = x_2' + 1$$

ed il problema diventa

$$\max Z = 3(x'_1 - 10) + 5(x'_2 + 1)$$

$$x'_1 - 10 \leq 4$$

$$2(x'_2 + 1) \leq 12$$

$$3(x'_1 - 10) + 2(x'_2 + 1) \leq 18$$

$$x'_1, x'_2 \geq 0$$

e quindi

$$\max Z = 3x'_1 + 5x'_2 - 25$$

$$x'_1 \leq 14$$

$$2x'_2 \leq 10$$

$$3x'_1 + 2x'_2 \leq 46$$

$$x'_1, x'_2 \geq 0.$$

3.6 Il Metodo del Simplesso a due fasi

In questo paragrafo saranno analizzati gli ultimi due casi di problemi in forma non standard, ovvero il caso in cui il vincolo sia di uguaglianza oppure il caso di vincolo tipo \geq . Per ora consideriamo il primo caso. Le difficoltà nella risoluzione del problema sono

- 1. l'origine non è (nella gran parte dei casi) un vertice ammissibile quindi il metodo del simplesso non è applicabile in quanto manca la BFS iniziale da cui iniziare l'esplorazione dei vertici ammissibili;
- 2. non è possibile introdurre le variabili slack da usare come variabili in base in quanto il vincolo si presenta già come un'equazione.

Tali problemi vengono risolti utilizzando una versione modificata del metodo del simplesso, detta metodo del simplesso a due fasi. Il nome deriva dal fatto che, in una prima fase, viene determinata la BFS iniziale, se esiste, mentre nella seconda viene risolto il problema partendo proprio da tale BFS. Sostanzialmente nelle due fasi vengono definiti (e risolti) due diversi problemi. Iniziamo considerando il caso di un vincolo di uguaglianza. Sia assegnato il seguente problema:

$$\max Z = 5x_1 + x_2 + 6x_3$$

$$x_1 + 5x_2 - x_3 \le 4$$

$$x_1 + 2x_2 + 3x_3 = 6$$

$$x_1, x_2, x_3 \ge 0.$$

Scriviamo quindi il problema nella forma aumentata introducendo una variabile slack:

$$\max Z = 5x_1 + x_2 + 6x_3$$

$$x_1 + 5x_2 - x_3 + x_4 = 4$$

$$x_1 + 2x_2 + 3x_3 = 6$$

$$x_1, x_2, x_3, x_4 \ge 0.$$
(3.3)

Appare ovvio che nel sistema manca una variabile in base, pertanto è necessario introdurne una modificando artificialmente il problema:

$$\max Z = 5x_1 + x_2 + 6x_3$$

$$x_1 + 5x_2 - x_3 + x_4 = 4$$

$$x_1 + 2x_2 + 3x_3 + \overline{x}_5 = 6$$

$$x_1, x_2, x_3, x_4, \overline{x}_5 \ge 0.$$
(3.4)

La variabile \overline{x}_5 , detta appunto variabile artificiale, viene indicata in modo diverso in quanto deve assumere valore zero in qualsiasi BFS ammissibile del problema (3.3). Il problema definito nella prima fase del metodo deve essere tale che la sua soluzione abbia tutte le variabili artificiali (in questo caso \overline{x}_5) uguali a zero, quindi:

I Fase
$$\max \ Z = -\overline{x}_5 \\ x_1 + 5x_2 - x_3 + x_4 = 4 \\ x_1 + 2x_2 + 3x_3 + \overline{x}_5 = 6 \\ x_1, x_2, x_3, x_4, \overline{x}_5 \ge 0.$$

In generale se il problema è di massimo si sceglie come funzione obiettivo

$$Z = -\sum$$
 variabili artificiali

ovvero tale che $Z \leq 0$ ed assuma valore massimo (nullo) proprio quando le variabili artificiali introdotte siano tutte uguali a zero.

Nella seconda fase, avendo già una BFS ammissibile, calcolata nella prima fase, non è necessario l'uso di alcuna variabile artificiale, pertanto possiamo applicare il metodo del simplesso alla funzione obiettivo del problema di partenza:

II Fase
$$\max Z = 5x_1 + x_2 + 6x_3$$

$$x_1 + 5x_2 - x_3 + x_4 = 4$$

$$x_1 + 2x_2 + 3x_3 = 6$$

$$x_1, x_2, x_3, x_4 \ge 0.$$

Applichiamo ora il metodo del simplesso al problema definito nella I fase, considerando che le variabili di base sono x_4 e \overline{x}_5 , e che la BFS iniziale è (0,0,0,4,6). Le equazioni della I fase sono

Poniamo il problema in forma canonica eliminando il coefficiente della variabile di base \overline{x}_5 dalla funzione obiettivo. Per questo sottraiamo dall'equazione (0) l'equazione (2), ottenendo le nuove equazioni:

Scriviamo	il	tableau	della	iterazioni	del	metodo	del	simplesso	applicato	alla
I fase:										

	Iterazione 0												
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	\overline{x}_5	b_i					
\overline{Z}	(0)	1	-1	-2	-3	0	0	-6					
x_4	(1)	0	1	5	-1	1	0	4					
\overline{x}_5	(2)	0	1	2	3	0	1	6					
			Iterazi	one 1									
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	\overline{x}_5	b_i					
Z	(0)	1	0	0	0	0	1	0					
x_4	(1)	0	$\frac{4}{3}$	$\frac{17}{3}$	0	1	$\frac{1}{3}$	6					
x_3	(2)	0	$\frac{1}{3}$	$\frac{2}{3}$	1	0	$\frac{1}{3}$	2					

Abbiamo ottenuto la soluzione ottima della I fase in cui il valore della funzione obiettivo è 0 (come era atteso), la BFS (0,0,2) è quella iniziale per la II fase. Terminata la prima fase del metodo del simplesso, prima di procedere alla successiva, si devono effettuare alcune operazioni sul tableau che è stato ottenuto. Innanzitutto devono essere eliminate le colonne relative alle variabili artificiali, inoltre deve essere sostituita la funzione obiettivo ed infine il problema deve essere posto in forma canonica (cioè devono essere azzerati i coefficienti della funzione obiettivo relativi alle variabili in base), quindi eliminiamo la colonna relativa alla variabile \overline{x}_5 e sostituiamo l'equazione (0):

$$(0) Z -5x_1 -x_2 -6x_3 = 0$$

Tableau finale I Fase con funzione obiettivo II Fase											
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	b_i				
\overline{Z}	(0)	1	-5	-1	-6	0	0				
x_4	(1)	0	$\frac{4}{3}$	$\frac{17}{3}$	0	1	6				
x_3	(2)	0	$\frac{1}{3}$	$\frac{2}{3}$	1	0	2				

A questo	punto	si	${\it elimina}$	il	${\it coefficiente}$	della	variabile	di	base	x_3	dalla
funzione (obiettivo	е	si ottier	ıe i	il tableau ini	iziale o	della II fas	se:			

Iterazione 0												
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	b_i					
\overline{Z}	(0)	1	-3	3	0	0	12					
x_4	(1)	0	$\frac{4}{3}$	$\frac{17}{3}$	0	1	6					
x_3	(2)	0	$\frac{1}{3}$	$\frac{2}{3}$	1	0	2					

	Iterazione 1												
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	b_i						
Z	(0)	1	0	$\frac{63}{4}$	0	$\frac{9}{4}$	$\frac{51}{2}$						
x_1	(1)	0	1	$\frac{17}{4}$	0	$\frac{3}{4}$	$\frac{9}{2}$						
x_3	(2)	0	0	$-\frac{3}{4}$	1	$-\frac{1}{4}$	$\frac{1}{2}$						

Abbiamo ottenuto la soluzione ottima del problema di massimo (9/2, 0, 1/2) con valore della funzione obiettivo Z = 51/2.

Esempio 3.6.1 Applicare il metodo del simplesso adue fasi per risolvere il seguente problema di programmazione lineare in forma non standard:

$$\max Z = 4x_1 + 2x_2 + x_3$$

$$2x_1 + x_2 = 4$$

$$x_1 + 3x_2 + 3x_3 = 8$$

$$x_1, x_2, x_3 \ge 0.$$

Scriviamo quindi il problema nella forma aumentata introducendo una variabile artificiale in ogni vincolo di uguaglianza:

$$\max Z = 4x_1 + 2x_2 + x_3$$

$$2x_1 + x_2 + \overline{x_4} = 4$$

$$x_1 + 3x_2 + 3x_3 + \overline{x_5} = 8$$

$$x_1, x_2, x_3, \overline{x_4}, \overline{x_5} \ge 0.$$
(3.5)

Scriviamo ora i problemi da risolvere nelle due fasi:

I Fase
$$\max Z = -\overline{x}_4 - \overline{x}_5$$

$$2x_1 + x_2 + \overline{x}_4 = 4$$

$$x_1 + 3x_2 + 3x_3 + \overline{x}_5 = 8$$

$$x_1, x_2, x_3, \overline{x}_4, \overline{x}_5 \ge 0.$$

II Fase
$$\max Z = 4x_1 + 2x_2 + x_3$$
$$2x_1 + x_2 = 4$$
$$x_1 + 3x_2 + 3x_3 = 8$$
$$x_1, x_2, x_3 \ge 0.$$

Applichiamo ora il metodo del simplesso al problema definito nella I fase, considerando che le variabili di base sono \overline{x}_4 e \overline{x}_5 , e che la BFS iniziale è (0,0,0,4,8). Le equazioni della I fase sono

Poniamo il problema in forma canonica eliminando i coefficienti delle variabili artificiali dalla funzione obiettivo. Per questo sottraiamo dall'equazione (0) le equazioni (1) e (2), ottenendo le nuove equazioni:

Scriviamo il tableau della iterazioni del metodo del simplesso applicato alla I fase:

	Iterazione 0										
Var. base	Eq.	Z	x_1	x_2	x_3	\overline{x}_4	\overline{x}_5	b_i			
Z	(0)	1	-3	-4	-3	0	0	-12			
\overline{x}_4	(1)	0	2	1	0	1	0	4			
\overline{x}_5	(2)	0	1	3	3	0	1	8			

Var – Iterazione 1											
Var. base	Eq.	Z	x_1	x_2	x_3	\overline{x}_4	\overline{x}_5	b_i			
Z	(0)	1	$-\frac{5}{3}$	0	1	0	$\frac{4}{3}$	$-\frac{4}{3}$			
\overline{x}_4	(1)	0	$\frac{5}{3}$	0	-1	1	$-\frac{1}{3}$	$\frac{4}{3}$			
x_2	(2)	0	$\frac{1}{3}$	1	1	0	$\frac{1}{3}$	$\frac{8}{3}$			
_	Iterazione 2										

]	Iterazi	one 2				
Var. base	Eq.	Z	x_1	x_2	x_3	\overline{x}_4	\overline{x}_5	b_i
\overline{z}	(0)	1	0	0	0	1	1	0
x_1	(1)	0	1	0	$-\frac{3}{5}$	$\frac{3}{5}$	$-\frac{1}{5}$	$\frac{4}{5}$
x_2	(2)	0	0	1	$\frac{6}{5}$	$-\frac{1}{5}$	$\frac{2}{5}$	$\frac{12}{5}$

Abbiamo ottenuto la soluzione ottima della I fase in cui il valore della funzione obiettivo è 0 (come era atteso), la BFS (4/5, 12/5, 0) è quella iniziale per la II fase. Per risolvere la seconda eliminiamo dal tableau le colonne relative alle variabili artificiali e sostituiamo la funzione obiettivo scrivendo la nuova l'equazione (0):

$$(0) Z -4x_1 -2x_2 -x_3 = 0$$

Tableau	I Fase	con fu	ınzione	obiet	tivo II	Fase
Var. base	Eq.	Z	x_1	x_2	x_3	b_i
\overline{Z}	(0)	1	-4	-2	-1	0
x_1	(1)	0	1	0	$-\frac{3}{5}$	$\frac{4}{5}$
x_2	(2)	0	0	1	$\frac{6}{5}$	$\frac{12}{5}$

A questo punto si eliminano i coefficienti delle variabile di base x_1 e x_2 dalla funzione obiettivo e si ottiene il tableau iniziale della II fase:

		Itera	zione (0		
Var. base	Eq.	Z	x_1	x_2	x_3	b_i
\overline{Z}	(0)	1	0	0	-1	8
x_1	(1)	0	1	0	$-\frac{3}{5}$	$\frac{4}{5}$
x_2	(2)	0	0	1	<u>6</u> 5	$\frac{12}{5}$

Iterazione 1										
Var. base	Eq.	Z	x_1	x_2	x_3	b_i				
Z	(0)	1	0	$\frac{5}{6}$	0	10				
x_1	(1)	0	1	$\frac{1}{2}$	0	2				
x_3	(2)	0	0	$\frac{5}{6}$	1	2				

Abbiamo ottenuto la soluzione ottima del problema di massimo (2,0,2) con valore della funzione obiettivo Z=10.

Vincoli funzionali nella forma \geq

Consideriamo il seguente problema di programmazione lineare:

$$\max \ Z = x_1 + 4x_2 + 3x_3$$

$$x_1 + 3x_2 - 6x_3 \ge 6$$

$$2x_1 - x_2 + 5x_3 \le 10$$

$$x_1, x_2, x_3 \ge 0.$$

Il primo vincolo viene modificato in uno di uguaglianza definendo la variabile x_4 , detta variabile surplus, posta uguale a:

$$x_4 = x_1 + 3x_2 - 6x_3 - 6, \qquad x_4 \ge 0.$$

In questo modo il vincolo diventa l'uguaglianza

$$x_1 + 3x_2 - 6x_3 - x_4 = 6$$

ed è necessario aggiungere un'ulteriore variabile artificiale \overline{x}_5 poichè x_4 non può essere usata come variabile di base perchè nell'equazione ha coefficiente

-1 mentre la forma canonica del problema prevede che le variabili in base debbano avere necessariamente coefficiente 1. Nel secondo vincolo è necessario aggiungere la usuale variabile slack. Il problema nella forma aumentata è il seguente:

Obiettivo della prima fase del metodo è:

Massimizzare
$$Z = -\overline{x}_5$$

fino ad ottenere $\overline{x}_5 = 0$. Nella seconda fase invece si vuole

Massimizzare
$$Z = x_1 + 4x_2 + 3x_3$$

con $\overline{x}_5 = 0$. La soluzione ottima della prima fase viene utilizzata come BFS iniziale per la seconda.

Riscriviamo ora i problemi che devono essere risolti nelle due fasi.

I Fase:

II Fase

$$\max Z = x_1 + 4x_2 + 3x_3$$

$$x_1 + 3x_2 - 6x_3 - x_4 = 6$$

$$2x_1 - x_2 + 5x_3 + x_6 = 10$$

$$x_1, x_2, x_3, x_4, x_6 \ge 0.$$

Le equazioni della prima fase sono

Per porre in problema in forma canonica bisogna prima sottrarre dall'equazione (0) l'equazione (1), ottenendo le nuove equazioni

$$(0)$$
 $Z -x_1 -3x_2 +6x_3 +x_4 = -6$

$$(2) 2x_1 - x_2 + 5x_3 + x_6 = 10.$$

Adesso possiamo scrivere il tableau del metodo del simplesso:

	Iterazione 0										
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	\overline{x}_5	x_6	b_i		
Z	(0)	1	-1	-3	6	1	0	0	-6		
\overline{x}_5	(1)	0	1	3	-6	-1	1	0	6		
x_6	(2)	0	2	-1	5	0	0	1	10		

	Iterazione 1										
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	\overline{x}_5	x_6	b_i		
\overline{Z}	(0)	1	0	0	0	0	1	0	0		
x_2	(1)	0	$\frac{1}{3}$	1	-2	$-\frac{1}{3}$	$\frac{1}{3}$	0	2		
x_6	(2)	0	$\frac{7}{3}$	0	3	$-\frac{1}{3}$	$\frac{1}{3}$	1	12		

Eliminiamo ora la colonna relativa alle variabile artificiale \overline{x}_5 e sostituiamo la funzione obiettivo:

Tableau iniziale II Fase										
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_6	b_i		
Z	(0)	1	-1	-4	-3	0	0	0		
x_2	(1)	0	$\frac{1}{3}$	1	-2	$-\frac{1}{3}$	0	2		
x_6	(2)	0	$\frac{7}{3}$	0	3	$-\frac{1}{3}$	1	12		

A questo punto, per rendere il tableau in forma canonica, eliminiamo il coefficiente di x_2 dall'equazione (0), moltiplicando l'equazione (1) per 4 e sommandola, appunto, all'equazione (0);

	Iterazione 0										
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_6	b_i			
Z	(0)	1	$\frac{1}{3}$	0	-11	$-\frac{4}{3}$	0	8			
x_2	(1)	0	$\frac{1}{3}$	1	-2	$-\frac{1}{3}$	0	2			
x_6	(2)	0	$\frac{7}{3}$	0	3	$-\frac{1}{3}$	1	12			

	Iterazione 1										
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_6	b_i			
\overline{Z}	(0)	1	<u>80</u> 9	0	0	$-\frac{23}{9}$	$\frac{11}{3}$	52			
x_2	(1)	0	$\frac{17}{9}$	1	0	$-\frac{5}{9}$	$\frac{2}{3}$	10			
x_3	(2)	0	$\frac{7}{9}$	0	1	$-\frac{1}{9}$	$\frac{1}{3}$	4			

Poichè la variabile x_4 può entrare in base ma nessuna variabile soddisfa il test del minimo rapporto, la funzione è illimitata, quindi il problema non ammette soluzione e

$$Z = +\infty$$
.

Il metodo del simplesso a due fasi per problemi di minimo

Supponiamo di dover risolvere il seguente problema di minimo:

$$\min Z = x_1 + 5x_2 + 4x_3$$

$$x_1 + 3x_3 = 6$$

$$x_1 + x_2 + x_3 \ge 4$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0.$$

Scriviamo quindi il problema nella forma aumentata introducendo una variabile surplus e due variabili artificiali:

Il problema che definisce la prima fase del metodo a due fasi deve essere tale che la sua soluzione abbia tutte le variabili artificiali (in questo caso \overline{x}_4 e \overline{x}_6) uguali a zero, quindi:

I Fase min
$$Z = \overline{x}_4 + \overline{x}_6$$

 $x_1 + 3x_3 + \overline{x}_4 = 6$
 $x_1 + x_2 + x_3 - x_5 + \overline{x}_6 = 4$
 $x_1, x_2, x_3, \overline{x}_4, x_5, \overline{x}_6 \ge 0$.

In generale se il problema è di minimo si sceglie come funzione obiettivo

$$Z = \sum$$
 variabili artificiali

ovvero tale che $Z \ge 0$ ed assuma valore minimo (nullo) proprio quando le variabili artificiali introdotte sono tutte uguali a zero.

Nella seconda fase si può applicare il metodo del simplesso alla funzione obiettivo del problema di partenza:

II Fase
$$\min \ Z = x_1 + 5x_2 + 4x_3$$

$$x_1 + 3x_3 = 6$$

$$x_1 + x_2 + x_3 - x_5 = 4$$

$$x_1, x_2, x_3, x_5 \ge 0.$$

Poichè il problema è di minimo dobbiamo trasformarlo in un problema di massimo cambiando il segno ai due membri della funzione obiettivo in entrambi i problemi:

I Fase
$$\max -Z = -\overline{x}_4 - \overline{x}_6 \\ x_1 + 3x_3 + \overline{x}_4 = 6 \\ x_1 + x_2 + x_3 - x_5 + \overline{x}_6 = 4 \\ x_1, x_2, x_3, \overline{x}_4, x_5, \overline{x}_6 \ge 0.$$

II Fase
$$\max -Z = -x_1 - 5x_2 - 4x_3$$

$$x_1 + 3x_3 = 6$$

$$x_1 + x_2 + x_3 - x_5 = 4$$

$$x_1, x_2, x_3, x_5 \ge 0.$$

Le equazioni della I fase sono

Per porre in problema in forma canonica bisogna prima sottrarre dall'equazione (0) l'equazione (1), ottenendo le nuove equazioni:

e poi sottrarre dall'equazione (0) l'equazione (2), ottenendo la nuova equazione:

Adesso possiamo scrivere il tableau del metodo del simplesso:

Iterazione 0									
Var. base Eq.	Z	x_1	x_2	x_3	\overline{x}_4	x_5	\overline{x}_6	b_i	
Z (0)	-1	-2	-1	-4	0	1	0	-10	
\overline{x}_4 (1)	0	1	0	3	1	0	0	6	
\overline{x}_6 (2)	0	1	1	1	0	-1	1	4	

Iterazione 1											
Var. base	Eq.	Z	x_1	x_2	x_3	\overline{x}_4	x_5	\overline{x}_6	b_i		
\overline{Z}	(0)	-1	$-\frac{2}{3}$	-1	0	$\frac{4}{3}$	1	0	-2		
x_3	(1)	0	$\frac{1}{3}$	0	1	$\frac{1}{3}$	0	0	2		
\overline{x}_6	(2)	0	$\frac{2}{3}$	1	0	$-\frac{1}{3}$	-1	1	2		

Iterazione 2											
Var. base	Eq.	Z	x_1	x_2	x_3	\overline{x}_4	x_5	\overline{x}_6	b_i		
\overline{Z}	(0)	-1	0	0	0	1	0	1	0		
x_3	(1)	0	$\frac{1}{3}$	0	1	$\frac{1}{3}$	0	0	2		
x_2	(2)	0	$\frac{2}{3}$	1	0	$-\frac{1}{3}$	-1	1	2		

Ora eliminiamo dal tableau finale della I fase le colonne relative alle variabili artificiali e sostituiamo i coefficienti dell'equazione obiettivo della II fase:

Tableau II Fase											
Var. base	Eq.	Z	x_1	x_2	x_3	x_5	b_i				
Z	(0)	-1	1	5	4	0	0				
x_3	(1)	0	$\frac{1}{3}$	0	1	0	2				
x_2	(2)	0	$\frac{2}{3}$	1	0	-1	2				

	II	Fase-E	liminaz.	coeff. E	Equazion	e (0)	
Var. base	Eq.	Z	x_1	x_2	x_3	x_5	b_i
\overline{Z}	(0)	-1	$-\frac{7}{3}$	0	4	5	-10
x_3	(1)	0	$\frac{1}{3}$	0	1	0	2
x_2	(2)	0	$\frac{2}{3}$	1	0	-1	2

			Iterazi	one 0							
Var. base	Eq.	Z	x_1	x_2	x_3	x_5	b_i				
Z	(0)	-1	$-\frac{11}{3}$	0	0	5	-18				
x_3	(1)	0	$\frac{1}{3}$	0	1	0	2				
x_2	(2)	0	$\frac{2}{3}$	1	0	-1	2				
Iterazione 1											
Var. base	Eq.	Z	x_1	x_2	x_3	x_5	b_i				
Z	(0)	-1	0	$\frac{11}{2}$	0	$-\frac{1}{2}$	-7				
x_3	(1)	0	0	$-\frac{1}{2}$	1	$\frac{1}{2}$	1				
x_1	(2)	0	1	$\frac{3}{2}$	0	$-\frac{3}{2}$	3				
			Iterazi	one 2							
Var. base	Eq.	Z	x_1	x_2	x_3	x_5	b_i				
Z	(0)	-1	0	5	1	0	-6				

La BFS ottima è (6,0,0) mentre il valore minimo della funzione obiettivo è:

-1

0

2

3

1

0

2

6

0

1

$$Z = 6.$$

Problemi non ammissibili

(1)

(2)

0

 x_5

 x_1

Nel metodo del simplesso il problema fondamentale è l'identificazione di una BFS iniziale quando una soluzione semplice non è disponibile. L'uso di variabili artificiali consente di trasformare il problema in uno artificiale e la stessa tecnica consente di ottenere una BFS iniziale per tale problema. Il metodo del simplesso a due fasi consente di ottenere una soluzione ottima

partendo dalla BFS iniziale del problema artificiale. Tale tecnica tuttavia contiene una possibile minaccia. Infatti potrebbe essere difficile trovare una soluzione ammissibile perchè non ce ne sono, ciò nonostante, trasformando il problema e applicando il metodo del simplesso, questo trova una soluzione apparentemente ottima. Esiste un modo per verificare quando tale situazione si verifica: infatti se il problema originale non ha soluzioni ammissibili, allora la prima fase del metodo del simplesso a due fasi fornisce una soluzione finale in cui almeno una variabile artificiale è in base ed assume un valore maggiore di zero.

Consideriamo per esempio il seguente problema di programmazione lineare:

$$\max Z = 6x_1 + x_2 x_1 + x_2 \ge 5 2x_1 + x_2 = 2 x_1 > 0, x_2 > 0$$

e scriviamo direttamente il problema artificiale

$$\max Z = 6x_1 + x_2 x_1 + x_2 - x_3 + \overline{x}_4 = 5 2x_1 + x_2 + \overline{x}_5 = 2 x_1, x_2, x_3, \overline{x}_4, \overline{x}_5 \ge 0.$$

L'applicazione del metodo del simplesso a due fasi implica la risoluzione dei seguenti problemi:

I Fase
$$\max Z = -\overline{x}_4 - \overline{x}_5$$

$$x_1 + x_2 - x_3 + \overline{x}_4 = 5$$

$$2x_1 + x_2 + \overline{x}_5 = 2$$

$$x_1, x_2, x_3, \overline{x}_4, \overline{x}_5 \ge 0;$$
II Fase
$$\max Z = 6x_1 + x_2$$

$$x_1 + x_2 - x_3 = 5$$

$$2x_1 + x_2 = 2$$

$$x_1, x_2, x_3 \ge 0.$$

Le equazioni della prima fase sono:

Trasformiamo il problema della prima fase in forma canonica eliminando dalla funzione obiettivo i coefficienti delle variabili di base \overline{x}_4 e \overline{x}_5 . Prima sottraiamo dall'equazione (0) l'equazione (1)

Poi sottraiamo dall'equazione (0) l'equazione (2)

Applichiamo il metodo del simplesso al problema definito nella prima fase:

	Iterazione 0											
Var. base	Eq.	Z	x_1	x_2	x_3	\overline{x}_4	\overline{x}_5	b_i				
\overline{Z}	(0)	1	-3	-2	1	0	0	- 7				
\overline{x}_4	(1)	0	1	1	-1	1	0	5				
\overline{x}_5	(2)	0	2	1	0	0	1	2				

	Iterazione 1											
Var. base	Eq.	Z	x_1	x_2	x_3	\overline{x}_4	\overline{x}_5	b_i				
Z	(0)	1	0	$-\frac{1}{2}$	1	0	$\frac{3}{2}$	-4				
\overline{x}_4	(1)	0	0	$\frac{1}{2}$	-1	1	$-\frac{1}{2}$	4				
x_1	(2)	0	1	$\frac{1}{2}$	0	0	$\frac{1}{2}$	1				

	Iterazione 2											
Var. base	Eq.	Z	x_1	x_2	x_3	\overline{x}_4	\overline{x}_5	b_i				
Z	(0)	1	1	0	1	0	2	-3				
\overline{x}_4	(1)	0	-1	0	-1	1	-1	3				
x_2	(2)	0	2	1	0	0	1	2				

Il test di ottimalità è verificato quindi il metodo ha trovato (apparentemente) la soluzione per il problema definito nella prima fase, soluzione ottima che è (0,2,0,3,0). Tuttavia la variabile artificiale \overline{x}_4 è rimasta in base e questo vuol dire che il problema di partenza non ammette alcuna soluzione ammissibile e quindi neanche quella ottima.

Variabile artificiale in base con valore nullo

In determinati esercizi può capitare che al termine della prima fase sia presente in base una variabile artificiale che però assume valore zero. Tale situazione è schematizzata nel seguente tableau:

	Eq.	x_1	 x_j	 x_n	 \overline{x}_h	 b_i
Z		\overline{c}_1	 \overline{c}_j	 \overline{c}_n	 0	 0
÷		÷	÷	÷	0	:
:		:	:	:	0	÷
\overline{x}_h		\overline{a}_{i1}	 \overline{a}_{ij}	 \overline{a}_{in}	 1	 0
÷		÷	÷	÷	0	:
<u>:</u>		:	:	:	0	:

Quindi, la riga i del tableau è relativa ad una variabile artificiale in base di valore 0. A questo punto, basta effettuare un'operazione di pivot sulla riga i in corrispondenza di una qualsiasi colonna j tale che \overline{a}_{ij} sia diverso da zero. La variabile artificiale \overline{x}_h lascia la base e il suo posto è preso da x_j . Si noti che si può effettuare l'operazione di pivot anche su un elemento $\overline{a}_{ij} < 0$: sostanzialmente i valori delle variabili non cambiano poichè x_j entra in base assumendo valore 0 e pertanto la soluzione rimane ammissibile. Si passa cioè

da una soluzione degenere ad un'altra che rappresenta lo stesso punto nello spazio e quindi la stessa soluzione. Se non dovesse esistere nessun $\overline{a}_{ij} \neq 0$ in corrispondenza della riga i e delle colonne delle variabili decisionali allora questo vuol dire che la riga i della matrice A ed il relativo termine noto sono stati trasformati, con operazioni elementari tra righe, in una riga nulla. Ciò equivale a dire che il vincolo i-esimo del sistema è ridondante e può pertanto essere eliminato. Quindi, nel caso $\overline{a}_{ij} = 0$ per ogni j, si può eliminare la riga i avendo una variabile di base in meno e quindi togliendo \overline{x}_h dalla base senza sostituirla con nessuna altra variabile.

Esempio 3.6.2 Applicare il metodo del simplesso a due fasi per risolvere il seguente problema di programmazione lineare in forma non standard:

$$\max Z = 4x_1 + 2x_2 + 3x_3$$

$$x_1 + 2x_2 + 3x_3 = 4$$

$$2x_1 + x_2 - x_3 = 8$$

$$x_1, x_2, x_3 \ge 0.$$

Scriviamo quindi il problema nella forma aumentata introducendo una variabile artificiale in ogni vincolo di uguaglianza:

$$\max Z = 4x_1 + 2x_2 + 3x_3 x_1 + 2x_2 + 3x_3 + \overline{x}_4 = 4 2x_1 + x_2 - x_3 + \overline{x}_5 = 8 x_1, x_2, x_3, \overline{x}_4, \overline{x}_5 \ge 0.$$
 (3.6)

Scriviamo ora i problemi da risolvere nelle due fasi:

I Fase
$$\max Z = -\overline{x}_4 - \overline{x}_5$$

$$x_1 + 2x_2 + 3x_3 + \overline{x}_4 = 4$$

$$2x_1 + x_2 - x_3 + \overline{x}_5 = 8$$

$$x_1, x_2, x_3, \overline{x}_4, \overline{x}_5 \ge 0.$$

II Fase

$$\max Z = 4x_1 + 2x_2 + 3x_3$$

$$x_1 + 2x_2 + 3x_3 = 4$$

$$x_1 + x_2 - x_3 = 8$$

$$x_1, x_2, x_3 \ge 0.$$

Applichiamo ora il metodo del simplesso al problema definito nella I fase, considerando che le variabili di base sono \overline{x}_4 e \overline{x}_5 , e che la BFS iniziale è (0,0,0,4,8). Le equazioni della I fase sono

$$(1) x_1 + 2x_2 + 3x_3 + \overline{x}_4 = 4$$

$$(2) 2x_1 + x_2 - x_3 + \overline{x}_5 = 8.$$

Poniamo il problema in forma canonica eliminando i coefficienti delle variabili artificiali dalla funzione obiettivo. Per questo sottraiamo dall'equazione (0) le equazioni (1) e (2), ottenendo le nuove equazioni:

$$(0)$$
 $Z -3x_1 -3x_2 -2x_3 = -12$

(1)
$$x_1 + 2x_2 + 3x_3 + \overline{x}_4 = 4$$

(0)
$$Z -3x_1 -3x_2 -2x_3 = -1$$

(1) $x_1 +2x_2 +3x_3 +\overline{x}_4 = 4$
(2) $2x_1 +x_2 -x_3 +\overline{x}_5 = 8$

Scriviamo il tableau della iterazioni del metodo del simplesso applicato alla I fase:

Iterazione 0											
Var. base	Eq.	Z	x_1	x_2	x_3	\overline{x}_4	\overline{x}_5	b_i			
\overline{Z}	(0)	1	-3	-3	-2	0	0	-12			
\overline{x}_4	(1)	0	1	2	3	1	0	4			
\overline{x}_5	(2)	0	2	1	-1	0	1	8			

Iterazione 1											
Var. base	Eq.	Z	x_1	x_2	x_3	\overline{x}_4	\overline{x}_5	b_i			
Z	(0)	1	0	3	7	3	0	0			
x_1	(1)	0	1	2	3	1	0	4			
\overline{x}_5	(2)	0	0	-3	-7	-2	1	0			

La BFS trovata a questo punto è (4,0,0,0,0) con variabili in base $x_1 \in \overline{x}_5$. Osserviamo che in realtà questa BFS risulta essere ammissibile anche per il problema di partenza quindi l'unico problema è sostituire la variabile artificiale in base con un'altra qualsiasi. Si sceglie quindi di far entrare in base x_2 anche se il suo coefficiente nell'equazione (2) è negativo.

Iterazione 2										
b	ar. ase	Eq.	Z	x_1	x_2	x_3	\overline{x}_4	\overline{x}_5	b_i	
	Z	(0)	1	0	0	0	1	1	0	
	x_1	(1)	0	1	0	$-\frac{5}{3}$	$-\frac{1}{3}$	$\frac{2}{3}$	4	
	x_2	(2)	0	0	1	$\frac{7}{3}$	$\frac{2}{3}$	$-\frac{1}{3}$	0	

Abbiamo ottenuto così la BFS ammissibile (4,0,0) che era sostanzialmente la stessa trovata al termine della prima iterazione. Per risolvere la seconda fase, al solito, eliminiamo dal tableau le colonne relative alle variabili artificiali e sostituiamo la funzione obiettivo scrivendo la nuova l'equazione (0):

$$(0) Z -4x_1 -2x_2 -3x_3 = 0$$

Tableau	I Fase	con fu	ınzione	obiet	tivo II	Fase
Var. base	Eq.	Z	x_1	x_2	x_3	b_i
Z	(0)	1	-4	-2	-3	0
x_1	(1)	0	1	0	$-\frac{5}{3}$	4
x_2	(2)	0	0	1	$\frac{7}{3}$	0

A questo punto si eliminano i coefficienti delle variabile di base x_1 e x_2 dalla funzione obiettivo e si ottiene il tableau iniziale della II fase:

]	[terazio	one 0		
Var. base	Eq.	Z	x_1	x_2	x_3	b_i
Z	(0)	1	0	0	-5	16
x_1	(1)	0	1	0	$-\frac{5}{3}$	4
x_2	(2)	0	0	1	$\frac{7}{3}$	0

]	Iterazio	one 1		
Var. base	Eq.	Z	x_1	x_2	x_3	b_i
Z	(0)	1	0	$\frac{15}{7}$	0	16
x_1	(1)	0	1	$\frac{5}{7}$	0	4
x_3	(2)	0	0	$\frac{3}{7}$	1	0

Abbiamo ottenuto la soluzione ottima del problema di massimo (4,0,0) con valore della funzione obiettivo Z=16.

Esempio 3.6.3 Applicare il metodo del simplesso a due fasi per risolvere il seguente problema di programmazione lineare:

$$\max Z = 2x_1 + 4x_2 + 6x_3$$

$$3x_1 + 2x_2 + 4x_3 = 4$$

$$3x_1 + x_2 + 4x_3 = 5$$

$$x_1 + 3x_2 + x_3 = 6$$

$$x_1, x_2, x_3 \ge 0.$$

Scriviamo quindi il problema nella forma aumentata introducendo una variabile artificiale in ogni vincolo di uguaglianza:

Scriviamo ora i problemi da risolvere nelle due fasi:

I Fase
$$\max Z = -\overline{x}_4 - \overline{x}_5 - \overline{x}_6 \\ 3x_1 + 2x_2 + 4x_3 + \overline{x}_4 = 4 \\ 3x_1 + x_2 + 4x_3 + \overline{x}_5 = 5 \\ x_1 + 3x_2 + x_3 + \overline{x}_6 = 6 \\ x_1, x_2, x_3, \overline{x}_4, \overline{x}_5, \overline{x}_6 \ge 0.$$

II Fase

$$\max Z = 2x_1 + 4x_2 + 6x_3$$

$$3x_1 + 2x_2 + 4x_3 = 4$$

$$3x_1 + x_2 + 4x_3 = 5$$

$$x_1 + 3x_2 + x_3 = 6$$

$$x_1, x_2, x_3 \ge 0.$$

Applichiamo ora il metodo del simplesso al problema definito nella I fase, considerando che le variabili di base sono quelle artificiali e che la BFS iniziale è (0,0,0,4,8). Le equazioni della I fase sono

Poniamo il problema in forma canonica eliminando i coefficienti delle variabili artificiali dalla funzione obiettivo. Per questo sottraiamo dall'equazione (0) le equazioni (1), (2) e (3) ottenendo le nuove equazioni:

Scriviamo il tableau della iterazioni del metodo del simplesso applicato alla I fase:

Iterazione 0									
Var. base	Eq.	Z	x_1	x_2	x_3	\overline{x}_4	\overline{x}_5	\overline{x}_6	b_i
\overline{Z}	(0)	1	-7	-6	-9	0	0	0	-15
\overline{x}_4	(1)	0	3	2	4	1	0	0	4
\overline{x}_5	(2)	0	3	1	4	0	1	0	5
\overline{x}_6	(3)	0	1	3	1	0	0	1	6

				Itera	zione 1				
Var. base	Eq.	Z	x_1	x_2	x_3	\overline{x}_4	\overline{x}_5	\overline{x}_6	b_i
\overline{Z}	(0)	1	$-\frac{1}{4}$	$-\frac{3}{2}$	0	$\frac{9}{4}$	0	0	-6
x_3	(1)	0	$\frac{3}{4}$	$\frac{1}{2}$	1	$\frac{1}{4}$	0	0	1
\overline{x}_5	(2)	0	0	-1	0	-1	1	0	1
\overline{x}_6	(3)	0	$\frac{1}{4}$	$\frac{5}{2}$	0	$-\frac{1}{4}$	0	1	5
	Iterazione 2								
Var									
Var. base	Eq.	Z	x_1	x_2	x_3	\overline{x}_4	\overline{x}_5	\overline{x}_6	b_i
base Z	Eq. (0)	Z 1	x_1	x_2			\overline{x}_5	\overline{x}_6	b_i -3
					x_3	\overline{x}_4			
\overline{Z}	(0)	1	2	0	x_3	\overline{x}_4 3	0	0	-3

La BFS corrente soddisfa il test di ottimalità pertanto siamo arrivati al termine della prima fase. Tuttavia osserviamo che due variabili artificiali sono rimaste in base ed una delle due ha valore diverso da zero. Questa condizione è sufficiente per affermare che il problema è inammissibile (infatti potremmo far uscire dalla base la variabile artificiale con valore nullo eseguendo un'altra iterazione ma comunque rimarebbe in base l'altra variabile).

Riepiloghiamo a questo punto i possibili scenari che si possono presentare al termine della prima fase:

- 1. Tutte le variabili artificiali sono fuori dalla base, quindi si procede alla risoluzione della seconda fase;
- 2. Almeno una variabile artificiale è rimasta in base con valore diverso da zero, in questo caso si conclude che il problema non ammette soluzione in quanto la regione ammissibile è l'insieme vuoto:
- 3. Una variabile artificiale resta in base con valore nullo, in questo caso si procede ad un'ulteriore iterazione facendo entrare in base un'altra variabile purchè abbia coefficiente diverso da zero nell'equazione associata

alla variabile artificiale in base. Subito dopo si passa alla risoluzione della seconda fase.

3.7 Il Metodo del Simplesso in Forma Matriciale

Come accennato in uno dei precedenti paragrafi un problema di programmazione lineare può essere descritto in modo più compatto utilizzando matrici ed vettori. Pertanto un modo alternativo per comprendere le operazioni effettuate dal metodo del simplesso è quello di tradurle utilizzando, appunto, una notazione matriciale, più compatta e probabilmente più semplice da implementare. Ricordiamo che, nella notazione matriciale, abbiamo introdotto i vettori:

$$oldsymbol{c} = \left[egin{array}{c} c_1 \ c_2 \ dots \ c_n \end{array}
ight], \qquad oldsymbol{x} = \left[egin{array}{c} x_1 \ x_2 \ dots \ x_n \end{array}
ight], \qquad oldsymbol{b} = \left[egin{array}{c} b_1 \ b_2 \ dots \ b_m \end{array}
ight]$$

e la matrice dei coefficienti delle disequazioni vincolari

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

in modo tale che il problema possa essere scritto come

$$\max Z = \mathbf{c}^T \mathbf{x}$$
$$A\mathbf{x} \le \mathbf{b}$$
$$\mathbf{x} \ge 0$$

Per ottenere la forma aumentata del problema si introduce il vettore \boldsymbol{x}_S delle variabili slack.

$$\boldsymbol{x}_{S} = \begin{bmatrix} x_{n+1} \\ x_{n+2} \\ \vdots \\ x_{n+m} \end{bmatrix}$$

cosicchè i vincoli diventano

$$\left[egin{array}{cc} A \;, & I \end{array}
ight] \left[egin{array}{c} oldsymbol{x} \ oldsymbol{x}_S \end{array}
ight] = oldsymbol{b}$$

con

$$\left[egin{array}{c} x \ x_S \end{array}
ight] \geq 0$$

dove I è la matrice identità di ordine m e $\mathbf{0}$ è il vettore nullo avente n+m elementi.

3.7.1 Calcolo di una soluzione di base ammissibile

L'approccio generale del metodo del simplesso è quello di ottenere una sequenza di BFS sempre migliori finchè non si raggiunge la soluzione ottima. Una delle caratteristiche principali del metodo del simplesso in forma matriciale riguarda il modo con cui esso risolve il problema di determinare una nuova BFS dopo aver identificato le variabili in base e quelle non in base. Date queste variabili la BFS risultante è la soluzione del sistema di m equazioni

$$\left[egin{array}{cc} A & I \end{array} \right] \left[egin{array}{c} oldsymbol{x} \ oldsymbol{x}_S \end{array} \right] = oldsymbol{b}$$

in cui le n variabili non di base nel vettore di n+m elementi

$$\left[egin{array}{c} oldsymbol{x} \ oldsymbol{x}_S \end{array}
ight]$$

sono poste uguali a zero. Eliminando tali variabili, ovvero ponendo il loro valore uguale a zero, rimane un sistema di m equazioni in m incognite

$$Bx_B = \mathbf{b} \tag{3.7}$$

dove il vettore

$$oldsymbol{x}_B = \left[egin{array}{c} x_{B1} \ x_{B2} \ dots \ x_{Bm} \end{array}
ight]$$

è ottenuto da $[x x_S]$ eliminando le variabili non di base mentre la matrice

$$B = \begin{bmatrix} B_{11} & B_{12} & \dots & B_{1m} \\ B_{21} & B_{22} & \dots & B_{2m} \\ \vdots & \vdots & & \vdots \\ B_{m1} & B_{m2} & \dots & B_{mm} \end{bmatrix}$$

è ottenuta da [A, I] eliminando le colonne corrispondenti alle variabili non di base. Gli elementi di x_B e le colonne di B possono essere disposti in un ordine differente quando viene applicato il metodo del simplesso.

Il metodo del simplesso introduce in base le variabili per cui B è non singolare, in modo tale che la matrice B^{-1} esista. Risolvere il sistema (3.7) significa sostanzialmente invertire la matrice B e calcolare il vettore

$$B^{-1}B\boldsymbol{x}_B = B^{-1}\boldsymbol{b}$$

da cui segue che la soluzione per le variabili di base è

$$\boldsymbol{x}_B = B^{-1}\boldsymbol{b}.$$

Indicando con c_B il vettore i cui elementi sono i coefficienti della funzione obiettivo corrispondenti agli elementi di x_B allora il valore della funzione obiettivo per la soluzione di base è:

$$Z = \boldsymbol{c}_B^T \boldsymbol{x}_B = \boldsymbol{c}_B^T B^{-1} \boldsymbol{b}.$$

Considerando l'esempio introdotto all'inizio del capitolo possiamo evidenziare, nelle diverse iterazioni, i valori della matrice B e dei vettori x_B . Inizialmente i vettori sono:

$$oldsymbol{c} = \left[egin{array}{c} 3 \ 5 \ 0 \ 0 \ 0 \end{array}
ight], \; oldsymbol{b} = \left[egin{array}{c} 4 \ 12 \ 18 \end{array}
ight], \; oldsymbol{x} = \left[egin{array}{c} x_1 \ x_2 \end{array}
ight], \; oldsymbol{x}_S = \left[egin{array}{c} x_3 \ x_4 \ x_5 \end{array}
ight]$$

la matrice delle equazioni:

$$[A, I] = \left[\begin{array}{ccccc} 10 & 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & 1 & 0 \\ 3 & 2 & 0 & 0 & 1 \end{array} \right].$$

Iterazione 0:

$$\mathbf{x}_{B} = \begin{bmatrix} x_{3} \\ x_{4} \\ x_{5} \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = B^{-1}$$

e pertanto

$$\boldsymbol{x}_B = B^{-1}\boldsymbol{b} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix} = \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix},$$

poichè

$$oldsymbol{c}_B = \left[egin{array}{c} 0 \ 0 \ 0 \end{array}
ight]$$

si ha

$$Z = oldsymbol{c}_B^T oldsymbol{x}_B = \left[egin{array}{ccc} 0 & 0 & 0 \end{array}
ight] \left[egin{array}{c} 4 \ 12 \ 18 \end{array}
ight] = 0.$$

Iterazione 1:

$$\mathbf{x}_{B} = \begin{bmatrix} x_{3} \\ x_{2} \\ x_{5} \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 2 & 1 \end{bmatrix}, \quad B^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$

e pertanto

$$\boldsymbol{x}_{B} = \left[egin{array}{c} x_{3} \\ x_{2} \\ x_{5} \end{array} \right] = \left[egin{array}{ccc} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & -1 & 1 \end{array} \right] \left[egin{array}{c} 4 \\ 12 \\ 18 \end{array} \right] = \left[egin{array}{c} 4 \\ 6 \\ 6 \end{array} \right],$$

poichè

$$oldsymbol{c}_B = \left[egin{array}{c} 0 \ 5 \ 0 \end{array}
ight]$$

si ha

$$Z = \boldsymbol{c}_B^T \boldsymbol{x}_B = \left[egin{array}{ccc} 0 & 5 & 0 \end{array}
ight] \left[egin{array}{c} 4 \ 6 \ 6 \end{array}
ight] = 30.$$

Iterazione 2:

$$\boldsymbol{x}_{B} = \begin{bmatrix} x_{3} \\ x_{2} \\ x_{1} \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 2 & 3 \end{bmatrix}, \quad B^{-1} = \begin{bmatrix} 1 & 1/3 & -1/3 \\ 0 & 1/2 & 0 \\ 0 & -1/3 & 1/3 \end{bmatrix}$$

e pertanto

$$\mathbf{x}_{B} = \begin{bmatrix} x_{3} \\ x_{2} \\ x_{1} \end{bmatrix} = B^{-1}\mathbf{b} = \begin{bmatrix} 1 & 1/3 & -1/3 \\ 0 & 1/2 & 0 \\ 0 & -1/3 & 1/3 \end{bmatrix} \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \\ 2 \end{bmatrix},$$

poichè

$$oldsymbol{c}_B = \left[egin{array}{c} 0 \ 5 \ 3 \end{array}
ight]$$

si ha

$$Z = oldsymbol{c}_B^T oldsymbol{x}_B = \left[egin{array}{ccc} 0 & 5 & 3 \end{array}
ight] \left[egin{array}{c} 2 \ 6 \ 2 \end{array}
ight] = 36.$$

3.7.2 Forma matriciale delle equazioni correnti

L'insieme delle equazioni correnti del metodo del simplesso (cioè il tableau) può essere rappresentato in forma matriciale nel seguente modo:

$$\left[egin{array}{ccc} 1 & -oldsymbol{c}^T & 0 \ oldsymbol{0} & A & I \end{array}
ight] \left[egin{array}{c} Z \ oldsymbol{x} \ oldsymbol{x}_S \end{array}
ight] = \left[egin{array}{c} oldsymbol{0} \ oldsymbol{b} \end{array}
ight].$$

Ad ogni passo vengono eseguite su questi dati una serie di operazioni algebriche (in particolare il prodotto di un'equazione per una costante e combinazioni lineari tra le equazioni) che possono essere espresse in forma matriciale

come il prodotto di una matrice per entrambi i membri dell'equazione appena scritta. Tale matrice è molto simile, come vedremo, alla matrice identità. In modo simbolico questa matrice può essere rappresentata usando le informazioni relative ai termini noti del nuovo sistema di equazioni. Infatti ad ogni iterazione i termini noti sono $Z = \mathbf{c}_B^T B^{-1} \mathbf{b}$ e $\mathbf{x}_B = B^{-1} \mathbf{b}$, quindi possiamo scrivere

$$\begin{bmatrix} Z \\ \boldsymbol{x}_B \end{bmatrix} = \begin{bmatrix} 1 & \boldsymbol{c}_B^T B^{-1} \\ \boldsymbol{0} & B^{-1} \end{bmatrix} \begin{bmatrix} 0 \\ \boldsymbol{b} \end{bmatrix} = \begin{bmatrix} c_B^T B^{-1} \boldsymbol{b} \\ B^{-1} \boldsymbol{b} \end{bmatrix}.$$

Eseguendo le stesse operazioni sui due membri dell'equazione la stessa matrice deve premoltiplicare anche le equazioni a sinistra, quindi poichè

$$\begin{bmatrix} 1 & \boldsymbol{c}_B^T B^{-1} \\ \boldsymbol{0} & B^{-1} \end{bmatrix} \begin{bmatrix} 1 & -\boldsymbol{c}^T & 0 \\ \boldsymbol{0} & A & I \end{bmatrix} = \begin{bmatrix} 1 & \boldsymbol{c}_B^T B^{-1} A - \boldsymbol{c}^T & \boldsymbol{c}_B^T B^{-1} \\ \boldsymbol{0} & B^{-1} A & B^{-1} \end{bmatrix}$$

la forma matriciale delle insieme delle equazioni dopo ogni iterazione è

$$\begin{bmatrix} 1 & \boldsymbol{c}_B^T B^{-1} A - \boldsymbol{c}^T & \boldsymbol{c}_B^T B^{-1} \\ \boldsymbol{0} & B^{-1} A & B^{-1} \end{bmatrix} \begin{bmatrix} Z \\ \boldsymbol{x} \\ \boldsymbol{x}_S \end{bmatrix} = \begin{bmatrix} c_B^T B^{-1} \boldsymbol{b} \\ B^{-1} \boldsymbol{b} \end{bmatrix}.$$

Il vettore $\mathbf{c}_B^T B^{-1} A - \mathbf{c}^T$ prende il nome di vettore dei costi ridotti. Le forme del simplesso viste (forma algebrica, forma tabellare e forma matriciale) prendono esattamente sempre le stesse decisioni (variabile entrante, variabile uscente), l'unica differenza è il modo usato per effettuare i calcoli per poi prendere tali decisioni. La forma matriciale fornisce sicuramente un modo compatto che non richiede la scrittura di una sequenza di equazioni algebriche o di tabelle.

Esempio 3.7.1 Consideriamo il seguente problema di programmazione lineare

$$\max Z = x_1 + 2x_2 + x_3 + x_4 + x_5 + x_6$$

Stabilire se la base formata dalle colonne 1, 3 e 4 è una soluzione ottima.

In questo caso

$$B = \{1, 3, 4\}, \qquad N = \{2, 5, 6\}$$

Le colonne della matrice $[A,\ I]$ relative alle variabili di base e non di base sono

$$A_B = \begin{bmatrix} 1 & 3 & 1 \\ 2 & -5 & 0 \\ 1 & -1 & 0 \end{bmatrix}, \qquad A_N = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix},$$

I vettori dei costi

$$c_B = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}, \qquad c_N = \begin{bmatrix} 2 & 1 & 1 \end{bmatrix}.$$

Calcoliamo A_B^{-1} :

$$A_B^{-1} = \frac{1}{3} \begin{bmatrix} 0 & -1 & 5 \\ 0 & -1 & 2 \\ 3 & 4 & -11 \end{bmatrix}$$

ed il vettore dei costi aggiornati

$$\overline{oldsymbol{c}} = c_B^T A_B^{-1} A_N - oldsymbol{c}^T = \left[egin{array}{c} 10/3 \ 1/3 \ 7/3 \end{array}
ight].$$

Poichè i coefficienti della funzione obiettivo sono tutti positivi abbiamo identificato una soluzione ottima

$$oldsymbol{x}_B = A_B^{-1} oldsymbol{b} = \left[egin{array}{c} x_1 \ x_3 \ x_4 \end{array}
ight] = \left[egin{array}{c} 1 \ 0 \ 2 \end{array}
ight],$$

le altre variabili (fuori base) sono tutte nulle.

Esempio 3.7.2 Considerare i seguenti vincoli:

con $x_i \ge 0$, per i = 1, ..., 4. Individuare quali tra le seguenti coppie di indici individua una BFS ammissibile:

$$\{1,2\}$$
 $\{1,4\}$ $\{2,3\}$ $\{2,4\}$

La matrice dei coefficienti dei vincoli è

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 & 0 \\ 1 & 0 & -1 & 1 \end{array} \right]$$

Per ogni insieme B assegnato si tratta di vedere se le colonne relative sono linearmente indipendenti, e tra quelle che verificano tale proprietà se i valori assunti dalle variabili in base sono ammissibili.

$$B = \{1, 2\} \qquad A_B = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix} \qquad \det A_B = -2$$

$$x_3 = x_4 = 0 \qquad \begin{cases} x_1 & +2x_2 & = 2 \\ x_1 & = 3 \end{cases} \qquad \begin{cases} x_1 & = 3 \\ x_2 & = -1/2 \end{cases}$$

In questo caso la risposta è no.

$$B = \{1, 4\} \qquad A_B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \qquad \det A_B = 1$$

$$x_2 = x_3 = 0 \qquad \begin{cases} x_1 & = 2 \\ x_1 & +x_4 & = 3 \end{cases} \qquad \begin{cases} x_1 & = 2 \\ x_4 & = 1 \end{cases}$$

In questo caso la risposta è si.

$$B = \{2,3\} \qquad A_B = \begin{bmatrix} 2 & 3 \\ 0 & -1 \end{bmatrix} \qquad \det A_B = -2$$

$$x_1 = x_4 = 0 \qquad \begin{cases} 2x_2 & +3x_3 & = 2 \\ -x_3 & = 3 \end{cases} \qquad \begin{cases} x_2 & = 11/2 \\ x_3 & = -3 \end{cases}$$

In questo caso la risposta è no.

$$B = \{2, 4\} \qquad A_B = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \qquad \det A_B = 2$$
$$x_1 = x_3 = 0 \qquad \begin{cases} 2x_2 & = 2 \\ x_4 & = 3 \end{cases} \qquad \begin{cases} x_2 & = 1 \\ x_4 & = 3 \end{cases}$$

In questo caso la risposta è si.

Esempio 3.7.3 Considerare il sequente insieme di vincoli:

con $x_i \ge 0$, per i = 1, ..., 5. Individuare quali tra le seguenti terne di indici individua una BFS:

$$\{1,2,3\}$$
 $\{1,2,4\}$ $\{1,2,5\}$

La matrice dei coefficienti dei vincoli è

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}, \qquad \boldsymbol{b} = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$$

Per ogni insieme assegnato si tratta di vedere se le colonne relative sono linearmente indipendenti, e tra quelle che verificano tale proprietà se i valori assunti dalle variabili in base sono ammissibili.

$$B = \{1, 2, 3\}$$

$$A_B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\boldsymbol{x}_B = A_B^{-1} \boldsymbol{b} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$$

In questo caso non abbiamo una BFS.

In alternativa al calcolo dell'inversa della matrice A_B si può risolvere il sistema lineare che si ottiene ponendo le variabili fuori base uguali a zero (cioè $x_4 = x_5 = 0$):

$$\begin{cases} x_1 + x_2 + x_3 &= 2 \\ x_1 &= 2 \\ x_2 &= 1 \end{cases}$$

$$x_1 = 2 \qquad x_2 = 1 \qquad x_3 = -1.$$

da cui risulta che gli indici assegnati non individuano una BFS.

$$B = \{1, 2, 4\}$$

$$A_B = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\boldsymbol{x}_B = A_B^{-1} \boldsymbol{b} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

In questo caso gli indici individuano una BFS.

$$B = \{1, 2, 5\}$$

$$A_B = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$
 $\boldsymbol{x}_B = A_B^{-1} \boldsymbol{b} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -1 & 0 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$

In questo caso gli indici individuano una BFS seppur degenere.

Esempio 3.7.4 Considerati i vincoli definiti nell'esercizio precedente, cosa si può dire sulla base composta dagli indici {1,3,4}?

In questo caso risulta

$$A_B = \left[\begin{array}{rrr} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right]$$

е

$$\det A_B = 0$$

quindi le tre variabili non formano una base.

3.8 Esercizi

Esercizio 3.8.1 Applicare il metodo grafico per risolvere il seguente problema di programmazione lineare

$$\max Z = 5x_1 + 2x_2$$

$$x_1 -x_2 \leq 0$$

$$-x_1 +x_2 \leq 4$$

$$5x_1 +2x_2 \leq 10$$

$$x_1, x_2 \geq 0.$$

(Soluzione ottima Z = 10).

Esercizio 3.8.2 Applicare il metodo grafico per risolvere il seguente problema di programmazione lineare

$$\max Z = x_1 - x_2$$

$$x_1 + x_2 \le 6$$

$$x_1 + x_2 \ge 2$$

$$x_1 - x_2 \le 4$$

$$x_1, x_2 \ge 0.$$

(Soluzione ottima Z=4).

Esercizio 3.8.3 Applicare il metodo grafico per risolvere il seguente problema di programmazione lineare

$$\max Z = x_1 - x_2 x_1 + x_2 \le 8 x_1 + x_2 \ge 3 x_1 - x_2 \le 5 x_1 \ge 1, x_2 \ge 0.$$

(Soluzione ottima Z = 5).

Esercizio 3.8.4 Applicare il metodo grafico per risolvere il seguente problema di programmazione lineare

$$\max Z = x_1 + 3x_2 -x_1 + x_2 \le 3 x_1 + x_2 \ge 6 2x_1 -x_2 \le 0 x_1, x_2 \ge 0.$$

(Soluzione ottima Z=21).

Esercizio 3.8.5 Applicare il metodo grafico per risolvere il seguente problema di programmazione lineare

$$\max Z = x_1 + x_2$$

$$3x_1 + 6x_2 \le 24$$

$$x_1 + x_2 \ge 4$$

$$-2x_1 + x_2 \le 0$$

$$x_1 -2x_2 \le 0$$

$$x_1, x_2 \ge 0.$$

(Soluzione ottima Z = 6).

Esercizio 3.8.6 Applicare il metodo grafico per risolvere il seguente problema di programmazione lineare

$$\max Z = 2x_1 + 4x_2$$

$$x_1 - x_2 \le 3$$

$$-x_1 + x_2 \le 1$$

$$2x_1 + 4x_2 \le 8$$

$$x_1, x_2 \ge 0.$$

(Soluzione ottima Z=8).

Esercizio 3.8.7 Applicare il metodo grafico per risolvere il seguente problema di programmazione lineare

$$\max Z = x_1 + x_2 \\ -x_2 \leq -1 \\ x_1 -x_2 \leq 1 \\ -2x_1 +x_2 \leq 2 \\ x_1, x_2 \geq 0.$$

(Problema illimitato).

Esercizio 3.8.8 Risolvere il sequente problema di programmazione lineare

$$\max Z = 4x_1 + 3x_2 - x_3$$

$$3x_1 + 4x_2 - 2x_3 \le 5$$

$$3x_2 + 3x_3 \le 6$$

$$x_1, x_2, x_3 \ge 0.$$

(Soluzione ottima Z = 10).

Esercizio 3.8.9 Risolvere il seguente problema di programmazione lineare

$$\max Z = 4x_1 + 4x_2 + x_3$$

$$4x_1 + 3x_2 + 5x_3 \le 8$$

$$2x_1 - x_2 + 4x_3 \le 6$$

$$x_1, x_2, x_3 \ge 0.$$

(Soluzione ottima Z = 32/3).

Esercizio 3.8.10 Risolvere il seguente problema di programmazione lineare

$$\max Z = 4x_1 - 2x_2 + 3x_3$$

$$4x_1 + 3x_2 + 2x_3 \le 4$$

$$3x_1 + x_2 + x_3 \le 3$$

$$x_1, x_2, x_3 \ge 0.$$

(Soluzione ottima Z = 6).

Esercizio 3.8.11 Risolvere il seguente problema di programmazione lineare

$$\max Z = 4x_1 + x_2 + x_3$$

$$-x_1 + 2x_2 + 3x_3 \leq 3$$

$$2x_1 + x_2 \leq 4$$

$$x_1, x_2, x_3 \geq 0.$$

(Soluzione ottima Z = 29/3).

Esercizio 3.8.12 Risolvere il seguente problema di programmazione lineare

$$\max Z = 3x_1 - x_2 + 5x_3$$

$$3x_1 + 3x_3 \le 4$$

$$2x_1 - 2x_2 + 3x_3 \le 3$$

$$x_1, x_2, x_3 \ge 0.$$

(Soluzione ottima Z = 37/6).

Esercizio 3.8.13 Risolvere il seguente problema di programmazione lineare

$$\max Z = 8x_1 + x_2 + x_3$$

$$3x_1 + 2x_2 \leq 4$$

$$2x_1 + 2x_2 - 5x_3 \leq 1$$

$$x_1, x_2, x_3 > 0.$$

(Soluzione ottima $Z = +\infty$).

Esercizio 3.8.14 Risolvere il seguente problema di programmazione lineare

$$\max Z = 3x_1 + x_3 4x_1 + x_2 + x_3 \le 2 5x_1 + x_2 + x_3 \le 3 x_1, x_2, x_3 \ge 0.$$

(Soluzione ottima Z=2).

Esercizio 3.8.15 Risolvere il seguente problema di programmazione lineare

$$\begin{array}{lll} \max \ Z = 6x_1 + 3x_2 + 8x_3 \\ 2x_1 & -x_2 & +4x_3 & \leq \ 6 \\ x_1 & +4x_3 & \leq \ 5 \\ x_1, x_2, x_3 \geq 0. \end{array}$$

(Soluzione ottima $Z = +\infty$).

Esercizio 3.8.16 Risolvere il seguente problema di programmazione lineare

$$\max Z = x_1 + 3x_2 + 6x_3$$

$$3x_1 + 3x_2 + 6x_3 \le 10$$

$$3x_1 + x_2 + 4x_3 \le 6$$

$$x_1, x_2, x_3 \ge 0.$$

(Soluzione ottima Z = 10).

Esercizio 3.8.17 Risolvere il seguente problema di programmazione lineare

$$\max Z = 2x_1 + 3x_2 + 4x_3$$

$$-x_1 + 3x_2 + 2x_3 \le 4$$

$$x_1 + 3x_2 + 3x_3 \le 6$$

$$x_1, x_2, x_3 \ge 0.$$

(Soluzione ottima Z = 12).

Esercizio 3.8.18 Risolvere il sequente problema di programmazione lineare

$$\max Z = 3x_1 - x_2 + 3x_3$$

$$3x_1 + 4x_2 + 3x_3 \le 4$$

$$3x_1 + 2x_2 + x_3 \le 1$$

$$x_1, x_2, x_3 \ge 0.$$

(Soluzione ottima Z=3).

Esercizio 3.8.19 Risolvere il seguente problema di programmazione lineare

$$\begin{array}{lll} \max \ Z = 8x_1 + x_2 - x_3 \\ 3x_1 & +2x_2 & \leq \ 4 \\ 2x_1 & +2x_2 & -5x_3 & \leq \ 1 \\ x_1, x_2 \geq 0, x_3 \in \mathbb{R}. \end{array}$$

(Soluzione ottima Z = 31/3).

Esercizio 3.8.20 Risolvere il seguente problema di programmazione lineare

$$\max Z = 7x_1 - x_2 + 6x_3$$

$$3x_1 - x_2 + 4x_3 \le 2$$

$$3x_1 + x_2 + 4x_3 \le 4$$

$$x_1, x_3 \ge 0, x_2 \in \mathbb{R}.$$

(Soluzione ottima Z = 6).

Esercizio 3.8.21 Risolvere il seguente problema di programmazione lineare

$$\max Z = 4x_1 + 3x_2 + 2x_3$$

$$4x_1 + 5x_2 + 5x_3 \ge 5$$

$$3x_1 + 2x_2 + 5x_3 = 6$$

$$x_1, x_2, x_3 \ge 0$$

(Soluzione ottima Z = 9).

Esercizio 3.8.22 Risolvere il seguente problema di programmazione lineare

(Soluzione ottima Z = 12/5).

Esercizio 3.8.23 Risolvere il sequente problema di programmazione lineare

$$\min Z = 3x_1 + 2x_2 + 4x_3$$

$$4x_1 + 3x_2 + 3x_3 \ge 8$$

$$3x_1 - x_2 + 2x_3 = 6$$

$$x_1, x_2, x_3 \ge 0$$

(Soluzione ottima Z=6).

Esercizio 3.8.24 Risolvere il seguente problema di programmazione lineare

$$\min Z = 3x_1 + 4x_2 + 6x_3$$

$$3x_1 + 4x_2 + 5x_3 = 10$$

$$2x_1 + 2x_2 = 4$$

$$x_1, x_2, x_3 \ge 0$$

(Soluzione ottima Z = 52/5).

Esercizio 3.8.25 Risolvere il seguente problema di programmazione lineare

$$\max Z = -x_1 + 3x_2 + 4x_3$$

$$3x_1 + 4x_2 + 3x_3 = 4$$

$$-2x_1 + 2x_2 + 3x_3 = 5$$

$$x_1, x_2, x_3 \ge 0$$

(Problema non ammissibile).

Esercizio 3.8.26 Risolvere il seguente problema di programmazione lineare

$$\max Z = 3x_1 + 2x_2 + 2x_3$$

$$3x_1 + 2x_2 + 4x_3 \ge 2$$

$$3x_1 + x_2 + 4x_3 \le 6$$

$$x_1, x_2, x_3 \ge 0$$

(Soluzione ottima Z = 12).

Esercizio 3.8.27 Risolvere il seguente problema di programmazione lineare

$$\max Z = 4x_1 + 3x_2 + x_3$$

$$2x_1 + 3x_2 + 6x_3 = 6$$

$$3x_1 + 2x_2 - x_3 = 9$$

$$x_1, x_2, x_3 \ge 0$$

(Soluzione ottima Z = 12).

Esercizio 3.8.28 Risolvere il seguente problema di programmazione lineare

$$\max Z = 4x_1 - 3x_2 + 5x_3$$

$$3x_1 + 4x_2 + 3x_3 \ge 4$$

$$3x_1 - x_2 + 5x_3 \le 5$$

$$x_1, x_2, x_3 \ge 0$$

(Soluzione ottima Z = 20/3).

Esercizio 3.8.29 Risolvere il seguente problema di programmazione lineare

$$\max Z = 3x_1 + 4x_2 + 6x_3$$

$$2x_1 + 2x_2 = 4$$

$$3x_1 + 4x_2 + 5x_3 \le 10$$

$$x_1, x_2, x_3 \ge 0$$

(Soluzione ottima Z = 54/5).

144

Esercizio 3.8.30 Risolvere il seguente problema di programmazione lineare

$$\max Z = 4x_1 + 3x_2 + 3x_3$$
$$3x_1 + 2x_2 + 3x_3 = 4$$
$$3x_1 + 4x_2 + x_3 = 2$$
$$x_1, x_2, x_3 \ge 0$$

(Soluzione ottima Z = 13/3).

Capitolo 4

Programmazione Lineare Intera

4.1 Introduzione

Un problema di programmazione lineare intera (in breve PLI) si presenta nella forma

$$\max Z = \sum_{j=1}^{n} c_j x_j$$

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i, \qquad i = 1, 2, \dots, m,$$

$$x_j \text{ variabile intera, per } j = 1, \dots, n.$$

$$(4.1)$$

In questo capitolo affronteremo la risoluzione di problemi di PLI in forma standard considerando che i metodi che saranno descritti possono essere adattati anche a problemi in forma non standard. Nella programmazione intera il maggiore problema che si presenta è che la regione ammissibile è composta da un numero discreto (ovvero finito o infinitamente numerabile) di punti e non forma un insieme compatto. Nella seguente figura viene riportato un esempio di regione ammissibile definita dai vincoli del generico problema (4.1) considerando le variabili decisionali come se fossero reali e all'interno della quale sono evidenziati i punti che rappresentano invece la regione ammissibile (discreta) del problema di programmazione intera.

È evidente dalla figura che il problema non può essere risolto con i classici metodi per la programmazione lineare a variabili reali (ad esempio, il metodo del simplesso) in quanto in generale non tutti i vertici hanno coordinate intere e quindi anche il vertice ottimale non è detto che abbia coordinate intere (dipende dalla regione ammissibile e dalla funzione obiettivo).

Poichè i problemi di PLI sono, in generale, più difficili da risolvere rispetto a quelli di programmazione lineare, si potrebbe essere tentati dall'uso di una tecnica di approsimazione che consiste nell'applicare il metodo del simplesso al problema ignorando il vincolo di interezza delle variabili, e approssimando la soluzione, di solito reale, al valore intero più vicino. Un primo problema legato a tale approccio sta nel fatto che tale approssimazione non garantisce che questa sia ancora ammissibile. Consideriamo il seguente esempio.

Esempio 4.1.1

$$\max Z = x_2$$

$$-x_1 + x_2 \le \frac{1}{2}$$

$$x_1 + x_2 \le \frac{7}{2}$$

$$x_1, x_2 \in \mathbb{N}.$$

Risolviamo il problema in modo grafico ignorando il vincolo di interezza delle variabili, ottenendo quello che si chiama problema rilassato.

Come si vede in figura soluzione ottima del problema è $x_1 = 3/2$ e $x_2 = 2$. Non è possibile approssimare x_1 ad un valore intero poichè la soluzione non sarebbe ammissibile.

Esempio 4.1.2

$$\begin{array}{lll} \max & Z = x_1 + 5x_2 \\ x_1 & +10x_2 & \leq & 20 \\ x_1 & & \leq & 2 \\ x_1, x_2 \in \mathbb{N}. \end{array}$$

In questo caso tralasciando il vincolo di interezza la soluzione ottima è $x_1 = 2$ e $x_2 = 9/5$. Effettuando un'approssimazione si otterrebbe una soluzione ammissibile con $x_1 = 2$ e $x_2 = 1$ con valore Z = 7, che, tuttavia, è lontana dalla soluzione del problema di programmazione intera $x_1 = 0$ e $x_2 = 2$ con Z = 10.

Uno dei metodi per risolvere problemi di PLI è il metodo del Branch-and-Bound, che descriveremo nel prossimo paragrafo. Il metodo consente di risolvere il problema suddividendo la regione ammissibile (e quindi l'insieme delle soluzioni) in sottoinsiemi più piccoli e risolvendo il problema in ciascuno di questi. Questa suddivisione viene fatta ricorsivamente, dividendo a loro volta i sottoinsiemi in altri, più piccoli, e riapplicando sempre la stessa procedura. In questo modo viene generato un albero di problemi ognuno dei quali ammette una soluzioni ammissibile per il problema rilassato. La procedura termina quando non ci sono più sottoproblemi da risolvere e a questo punto la migliore soluzione intera ottenuta come soluzione ottima del problema di partenza. Altri problemi che rientrano nella programmazione intera sono quelli in cui le variabili decisionali possono assumere solo i valori 0 e 1. In questo caso si parla di programmazione binaria. La procedura per risolvere questi problemi sarà descritta nel successivo paragrafo.

4.2 L'algoritmo Branch-and-Bound per Problemi di Programmazione Binaria

I problemi di programmazione binaria sono quelli in cui ogni variabile x_i è associata ad una determinata decisione e pertanto può assumre solo due valori

$$x_i = \begin{cases} 1 & \text{se la decisione è si;} \\ 0 & \text{se la decisione è no.} \end{cases}$$

Tali variabili sono dette binarie. Ogni problema di programmazione binaria con n variabili decisionali ha un numero finito di soluzioni, pari a 2^n . Queste potrebbero essere enumerate per trovare quella ottima ma il loro numero, esponenziale, rende tale approccio improponibile dal punto di vista computazionale. Il metodo di Branch-and-Bound costituisce una validissima alternativa a tale procedura. Descriviamo ora le diverse fasi dell'algoritmo:

1. Branching, ovvero il modo di scegliere il sottoinsieme di soluzioni da

esplorare;

- 2. **Bounding**, ovvero il calcolo di un opportuno limite per la soluzione ottima:
- 3. **Fathoming**, ovvero la cancellazione di sottoinsiemi di soluzioni all'interno ai quali la soluzione ottima non può appartenere.

Branching

Quando si opera con variabili binarie il modo più semplice di procedere è quello di suddividere l'insieme delle soluzioni ammissibili in sottoinsiemi, fissando ad ogni passo il valore di una variabile detta variabile di branching (i cui valori possibili sono chiaramente solo 0 e 1). Esistono tecniche piuttosto sofisticate per la scelta della variabile di branching, in alternativa si può seguire l'ordine naturale, per esempio al primo passo si sceglie x_1 , quindi x_2 e così via. I due valori della variabile di branching definiscono due sottoproblemi che vengono risolti in modo approssimato, come sarà descritto nel paragrafo successivo. In questo modo si definisce un vero e proprio albero, detto albero delle soluzioni, che si ramifica iterazione dopo iterazione, quando vengono definiti (e risolti) i sottoproblemi definiti attribuendo i valori alle diverse variabili di branching. Nel corso dell'algoritmo alcuni di questi problemi potranno essere tagliati (fathomed) mentre altri saranno ulteriormente suddivisi in sottoproblemi.

Bounding

Per ogni sottoproblema si deve ottenere un limite (bound) sulla soluzione ammissibile. Un modo classico per ottenere questa informazione è quello di risolvere il problema rilassato (anche detto rilassamento lineare), che viene ottenuto cancellando (o sostituendo) i vincoli che lo rendono difficile da risolvere.

Per un problema di programmazione binaria si taglia proprio il vincolo $x_j \in \{0,1\}$ che viene sostituito dai vincoli

$$x_j \le 1, \qquad x_j \ge 0$$

per ogni j. Per risolvere il problema rilassato si può applicare, per esempio, il metodo del simplesso (oppure anche il metodo grafico qualora il numero di variabili decisionali sia uguale a due).

Fathoming

Una volta risolto un problema rilassato un'eventualità è che l'insieme delle sue soluzioni non possa contenere con certezza la soluzione ottima. In questo caso può essere tagliato, cioè non si considerano più i sottoproblemi che esso potrebbe generare in quanto si è certi che essi non porteranno ad una soluzione migliore. Esistono tre criteri per tagliare un sottoproblema.

Un criterio è quello di avere ottenuto una soluzione binaria del rilassamento lineare. Infatti se la soluzione ottima del rilassamento lineare è una soluzione binaria, questa deve essere soluzione ottima anche del problema di programmazione binaria. Se questa soluzione binaria è la migliore soluzione trovata fino all'iterazione attuale allora viene memorizzata come soluzione incombente (cioè la migliore soluzione ammissibile trovata finora). Si pone

 Z^* = valore di Z per la soluzione incombente.

Quindi il sottoproblema in questione non viene più preso in considerazione. Poichè Z^* è la migliore soluzione trovata finora questo suggerisce un altro criterio per tagliare un sottoproblema. Infatti se il valore ottimo della funzione obiettivo del rilassamento lineare è inferiore a Z^* allora non c'è bisogno di considerare ulteriormente tale sottoproblema.

Un ulteriore criterio per tagliare un sottoproblema è legato al fatto che se il problema rilassato non ha soluzioni ammissibili allora a maggior ragione il problema non rilassato non può averne.

Riepilogando, i Criteri di Fathoming sono i seguenti:

Criterio n. 1: il limite è inferiore a Z^* ;

Criterio n. 2: il rilassamento lineare del sottoproblema non ha soluzioni ammissibili;

Criterio n. 3: la soluzione ottima del rilassamento lineare ha componenti binarie.

4.2.1 Sommario dell'algoritmo Branch-and-Bound

Riepiloghiamo i passi del metodo di Branch-and-Bound per un problema di programmazione binaria in cui si deve trovare il massimo della funzione obiettivo.

Inizializzazione:

Porre $Z^* = -\infty$. Applicare il passo di bounding, il passo di fathoming all'intero problema. Se non viene tagliato allora viene classificato come problema

completo e si esegue la prima iterazione.

Singola Iterazione:

Fase 1. Branching: Tra i sottoproblemi rimanenti se ne seleziona uno (non cè un criterio prestabilito, ma si può scegliere quello generato più di recente oppure quello che ha il bound più grande). Da questo si generano due nuovi sottoproblemi fissando la variabile di branching ai valori 0 e 1.

Fase 2. Bounding: Per ogni sottoproblema si ottiene un limite (bound) risolvendo il suo rilassamento lineare e approssimando per difetto il valore di Z della soluzione ottima risultante al più grande numero intero inferiore ad esso (se Z è reale).

Fase 3. Fathoming: Per ogni nuovo sottoproblema si applicano i 3 criteri di fathoming e si scartano quelli che ne soddisfano uno.

Se uno dei sottoproblemi viene scartato in base al terzo criterio di fathoming allora si deve eventualmente aggiornare il valore della soluzione incombente Z^* .

Test di ottimalità:

Si ferma l'algoritmo quando non rimangono più sottoproblemi da risolvere, la soluzione incombente è ottima, altrimenti eseguire un'altra iterazione.

Il motivo della scelta del sottoproblema creato più di recente è che durante la fase di bounding vengono risolti problemi di programmazione lineare solitamente usando il metodo del simplesso. Piuttosto che eseguire ogni volta il metodo dall'inizio conviene applicare una riottimizzazione che consiste nel modificare il tableau finale del precedente problema tenendo conto delle piccole differenze nel modello ed applicando poche iterazioni del metodo del simplesso.

Esempio 4.2.1 Applichiamo il metodo Branch-and-Bound al seguente problema di Programmazione Lineare Binaria:

$$\max Z = 9x_1 + 5x_2 + 6x_3
6x_1 + 3x_2 + 5x_3 \le 10
-x_1 -x_2 +x_3 \le 0
x_j variabile binaria per j = 1, 2, 3.$$

Il primo passo dell'algoritmo è quello di risolvere il rilassamento lineare del problema completo:

$$\begin{array}{lllll} \max \ Z = 9x_1 + 5x_2 + 6x_3 & & \\ (1) & 6x_1 & +3x_2 & +5x_3 & \leq & 10 \\ (2) & -x_1 & -x_2 & +x_3 & \leq & 0 \\ (3) & x_1 & & \leq & 1 \\ (4) & & x_2 & & \leq & 1 \\ (5) & & x_3 & \leq & 1 \\ x_1, x_2, x_3 \geq 0. & & & \end{array}$$

Applichiamo il metodo del simplesso introducendo 5 variabili slack.

Iterazione 0											
Var. base Eq.	Z	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	b_i	
Z (0)	1	- 9	-5	-6	0	0	0	0	0	0	
x_4 (1)	0	6	3	5	1	0	0	0	0	10	
x_5 (2)	0	-1	-1	1	0	1	0	0	0	0	
x_6 (3)	0	1	0	0	0	0	1	0	0	1	
x_7 (4)	0	0	1	0	0	0	0	1	0	1	
x_8 (5)	0	0	0	1	0	0	0	0	1	1	

				It	erazione	e 1				
Var. base Eq.	Z	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	b_i
Z (0)	1	0	-5	-6	0	0	9	0	0	9
x_4 (1)	0	0	3	5	1	0	-6	0	0	4
x_5 (2)	0	0	-1	1	0	1	1	0	0	1
x_1 (3)	0	1	0	0	0	0	1	0	0	1
x_7 (4)	0	0	1	0	0	0	0	1	0	1
x_8 (5)	0	0	0	1	0	0	0	0	1	1

Iterazione 2											
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	b_i
\overline{Z}	(0)	1	0	$-\frac{7}{5}$	0	$\frac{6}{5}$	0	<u>9</u> 5	0	0	<u>69</u> 5
x_3	(1)	0	0	3 5	1	$\frac{1}{5}$	0	$-\frac{6}{5}$	0	0	$\frac{4}{5}$
x_5	(2)	0	0	$-\frac{8}{5}$	0	$-\frac{1}{5}$	1	$\frac{11}{5}$	0	0	$\frac{1}{5}$
x_1	(3)	0	1	0	0	0	0	1	0	0	1
x_7	(4)	0	0	1	0	0	0	0	1	0	1
x_8	(5)	0	0	$-\frac{3}{5}$	0	$-\frac{1}{5}$	0	<u>6</u> 5	0	1	1/5

Iterazione 3											
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	b_i
Z	(0)	1	0	0	0	<u>6</u> 5	0	<u>9</u> 5	$\frac{7}{5}$	0	76 5
x_3	(1)	0	0	0	1	$\frac{1}{5}$	0	$-\frac{6}{5}$	$-\frac{3}{5}$	0	$\frac{1}{5}$
x_5	(2)	0	0	0	0	$-\frac{1}{5}$	1	$\frac{11}{5}$	$\frac{8}{5}$	0	$\frac{9}{5}$
x_1	(3)	0	1	0	0	0	0	1	0	0	1
x_2	(4)	0	0	1	0	0	0	0	1	0	1
x_8	(5)	0	0	0	0	$-\frac{1}{5}$	0	$\frac{6}{5}$	$\frac{3}{5}$	1	$\frac{4}{5}$

Soluzione del problema rilassato è (1,1,1/5) mentre il valore della funzione obiettivo è 76/5 = 15 + 1/5 che viene approssimato al valore intero

$$Z = 15.$$

Nessuno dei criteri di fathoming consente di tagliare il problema completo quindi scegliamo x_1 come variabile di branching e definiamo due sottoproblemi, uno in cui fissiamo $x_1 = 0$ e l'altro con $x_1 = 1$:

SOTTOPROBLEMA 1

Fissato $x_1 = 0$

$$\max Z = 5x_2 + 6x_3$$

- $(1) \quad 3x_2 + 5x_3 \le 10$
- $(2) x_2 + x_3 \le 0$
- (3) x_j variabile binaria per j = 2, 3;

SOTTOPROBLEMA 2

Fissato $x_1 = 1$

$$\max Z = 9 + 5x_2 + 6x_3$$

- $(1) \quad 3x_2 + 5x_3 + 6 \le 10$
- $(2) \quad -x_2 + x_3 1 \le 0$
- (3) x_j variabile binaria per j = 2, 3

ovvero

SOTTOPROBLEMA 2

$$\begin{array}{ll} \max \ Z = 9 + 5x_2 + 6x_3 \\ (1) & 3x_2 + 5x_3 \leq 4 \\ (2) & -x_2 + x_3 \leq 1 \\ (3) & x_j \text{ variabile binaria per } j = 2, 3. \end{array}$$

Risolviamo ora il sottoproblema 1 rilassato:

$$\begin{array}{lll} \max \ Z = 5x_2 + 6x_3 \\ 3x_2 & +5x_3 & \leq & 10 \\ -x_2 & +x_3 & \leq & 0 \\ x_2 & & \leq & 1 \\ & x_3 & \leq & 1 \\ x_2, x_3 \geq 0 \end{array}$$

Applichiamo il metodo del simplesso introducendo 4 variabili slack.

Iterazione 0											
Var. base	Eq.	Z	x_2	x_3	x_4	x_5	x_6	x_7	b_i		
Z	(0)	1	-5	-6	0	0	0	0	0		
x_4	(1)	0	3	5	1	0	0	0	10		
x_5	(2)	0	-1	1	0	1	0	0	0		
x_6	(3)	0	1	0	0	0	1	0	1		
x_7	(4)	0	0	1	0	0	0	1	1		

Iterazione 1											
Var. base	Eq.	Z	x_2	x_3	x_4	x_5	x_6	x_7	b_i		
Z	(0)	1	-11	0	0	6	0	0	0		
x_4	(1)	0	8	0	1	-5	0	0	10		
x_3	(2)	0	-1	1	0	1	0	0	0		
x_6	(3)	0	1	0	0	0	1	0	1		
x_7	(4)	0	1	1	0	-1	0	1	1		
				Iter	azione	2					
Var.	Eq.	Z	x_2	Iter x_3	azione x_4	$\frac{1}{2}$	x_6	x_7	b_i		
Var. base	Eq. (0)	<i>Z</i> 1	x_2				x_6 11	x_7	b_i 11		
				x_3	x_4	x_5					
Z	(0)	1	0	x_3	x_4	x_5	11	0	11		
Z x_4	(0) (1)	1 0	0	x_3 0 0	x_4 0 1	x_5 6 -5	11 -8	0	11 2		

Soluzione del sottoproblema 1 rilassato è (0,1,1)mentre il valore della funzione obiettivo è

$$Z = 11.$$

Poichè la soluzione è binaria allora il sottoproblema viene tagliato in base al terzo criterio di fathoming. Inoltre poniamo $Z^*=11$ in quanto questa è divenuta la soluzione incombente (cioè la migliore soluzione ammissibile trovata finora).

Risolviamo ora il sottoproblema 2 rilassato:

$$\max Z = 5x_2 + 6x_3 + 9$$

$$3x_2 + 5x_3 \le 4$$

$$-x_2 + x_3 \le 1$$

$$x_2 \le 1$$

$$x_3 \le 1$$

$$x_2, x_3 \ge 0$$

Anche in questo caso applicando il metodo del simplesso si devono introdurre 4 variabili slack.

Iterazione 0												
Var. base	Eq.	Z	x_2	x_3	x_4	x_5	x_6	x_7	b_i			
Z	(0)	1	-5	-6	0	0	0	0	9			
x_4	(1)	0	3	5	1	0	0	0	4			
x_5	(2)	0	-1	1	0	1	0	0	1			
x_6	(3)	0	1	0	0	0	1	0	1			
x_7	(4)	0	0	1	0	0	0	1	1			
				Iter	azione	1						
Var. base	Eq.	Z	x_2	x_3	x_4	x_5	x_6	x_7	b_i			
\overline{Z}	(0)	1	$-\frac{7}{5}$	0	<u>6</u> 5	0	0	0	<u>69</u> 5			
x_3	(1)	0	$\frac{3}{5}$	1	$\frac{1}{5}$	0	0	0	$\frac{4}{5}$			
x_5	(2)	0	$-\frac{8}{5}$	0	$-\frac{1}{5}$	1	0	0	$\frac{1}{5}$			
x_6	(3)	0	1	0	0	0	1	0	1			
x_7	(4)	0	$-\frac{3}{5}$	0	$-\frac{1}{5}$	0	0	1	$\frac{1}{5}$			
				Iter	azione	2						
Var. base	Eq.	Z	x_2	x_3	x_4	x_5	x_6	x_7	b_i			
Z	(0)	1	0	0	<u>6</u> 5	0	$\frac{7}{5}$	0	$\frac{76}{5}$			
x_3	(1)	0	0	1	$\frac{1}{5}$	0	$-\frac{3}{5}$	0	$\frac{1}{5}$			
x_5	(2)	0	0	0	$-\frac{1}{5}$	1	$\frac{8}{5}$	0	$\frac{9}{5}$			
x_2	(3)	0	1	0	0	0	1	0	1			
x_7	(4)	0	0	0	$-\frac{1}{5}$	0	$\frac{3}{5}$	1	$\frac{4}{5}$			

Soluzione del sottoproblema 1 rilassato è (1,1,1/5) mentre il valore della funzione obiettivo è 76/5 che viene approssimato al valore intero

$$Z = 15.$$

Visualizziamo l'albero delle soluzioni ottenuto finora:

Passiamo ora alla seconda iterazione e scriviamo i sottoproblemi ponendo $x_2=1$ e $x_2=0$:

Sottoproblema 3

Fissato $x_2 = 0$

$$\max Z = 9 + 6x_3$$

- (1) $5x_3 \le 4$
- (2) $x_3 \le 1$
- (3) x_3 variabile binaria,

SOTTOPROBLEMA 4

Fissato $x_2 = 1$

$$\max Z = 14 + 6x_3$$

- (1) $3 + 5x_3 \le 4$
- (2) $-1+x_3 \le 1$
- (3) x_3 variabile binaria,

ovvero

SOTTOPROBLEMA 4

$$\max Z = 14 + 6x_3$$

- (1) $5x_3 \le 1$
- (2) $x_3 \le 2$
- (3) x_3 variabile binaria.

In questo caso è superfluo risolvere il rilassamento lineare dei problemi binari perchè le soluzioni sono molto semplici. Infatti $x_3=0$ è soluzione del sottoproblema 3, e Z=9 è il relativo valore della funzione obiettivo. Poichè tale valore è inferiore rispetto alla soluzione incombente il sottoproblema viene tagliato applicando il primo criterio di fathoming. La soluzione del sottoproblema 4 è $x_3=0$, in cui la funzione obiettivo ammette valore Z=14, che diviene la nuova soluzione incombente

$$Z^* = 14$$
.

ed il sottoproblema viene tagliato applicando il terzo criterio di fathoming. Poichè non ci sono ulteriori sottoproblemi da risolvere la soluzione incombente è quella ottima e l'albero delle soluzioni finale è il seguente.

4.3 L'algoritmo Branch-and-Bound per la Programmazione Intera

Consideriamo il seguente problema di PLI:

$$\max Z = \sum_{j=1}^{n} c_j x_j$$

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i, \qquad i = 1, 2, \dots, m,$$

$$x_j \text{ variabile intera, per } j = 1, \dots, n.$$

L'algoritmo è molto simile al branch-and-bound per variabili binarie nel senso che si utilizza la tecnica del rilassamento lineare per i passi di bounding e fathoming. I cambiamenti sono i seguenti.

Innanzitutto la scelta della variabile di branching non avviene secondo l'ordine naturale poichè ora si considerano solo le variabili che devono assumere valori interi e che invece hanno un valore non intero nella soluzione ottima nel rilassamento dell'attuale sottoproblema. Di solito tra queste variabili viene scelta la prima nell'ordinamento naturale ma potrebbero essere utilizzate anche tecniche più sofisticate.

Il secondo cambiamento riguarda i valori assegnati alla variabile di branching. Poichè tale variabile può assumere valori interi non è possibile definire i due sottoproblemi uguagliandola a 0 o 1, nè si può generare un sottoproblema per ogni possibile valore, allora si definiscono due sottoproblemi specificando due possibili intervalli di valori. In dettaglio, se x_i è la variabile di branching ed x_i^* è il suo valore nella soluzione ottima del rilassamento lineare si definiscono due sottoproblemi aggiungendo il vincolo

$$x_i \leq \lfloor x_i^* \rfloor$$

nel primo e

$$x_i \ge \lfloor x_i^* \rfloor + 1$$

in cui $\lfloor x_i^* \rfloor$ indica la parte intera del numero reale x_i^* :

$$\lfloor x_i^* \rfloor = \max \left\{ n \in \mathbb{Z} \mid n \le x_i^* \right\}.$$

Osserviamo che per problemi di PLI la variabile di branching non scompare dai sottoproblemi definiti, questo vuol dire che la stessa variabile potrebb

essere scelta come variabile di branching in più iterazioni.

Il terzo cambiamento riguarda il passo di bounding. Nel caso di un problema di programmazione lineare intera pura il valore ottimo della funzione obiettivo del rilassamento lineare Z viene approssimato per difetto al fine di ottenere un valore intero. Se alcune variabili possono assumere valori reali tale arrotondamento non è necessario.

La quarta modifica riguarda il terzo criterio di fathoming. Nel caso della programmazione intera mista il criterio deve richiedere che solo le variabili vincolate ad essere intere lo siano effettivamente nella soluzione ottima del rilassamento lineare.

Vediamo quindi di riassumere l'algoritmo di Branch-and-Bound per problemi di programmazione lineare intera mista.

Inizializzazione:

Porre $Z^* = -\infty$. Si applicano le operazioni di bounding e fathoming al problema di partenza. Se il problema non viene tagliato allora si esegue la prima iterazione.

Singola iterazione:

1. Branching: si sceglie uno dei sottoproblemi non tagliati (per esempio quello generato più recentemente). Si sceglie la variabile di branching, cioè la prima variabile intera che nella soluzione ottima del rilassamento lineare non ha valore intero. Se x_j è la variabile di branching ed x_j^* il suo valore non intero allora si generano due nuovi sottoproblemi aggiungendo rispettivamente i vincoli

$$x_j \le \lfloor x_j^* \rfloor$$
 e $x_j \ge \lfloor x_j^* \rfloor + 1$.

- 2. Bounding: per ogni nuovo sottoproblema si risolve il relativo rilassamento lineare e si usa come bound il valore di Z della soluzione ottima ottenuta.
- 3. Fathoming: ad ogni nuovo sottoproblema si applicano i seguenti criteri di fathoming tagliando i sottoproblemi che ne soddisfano uno:

Criterio 1: il bound risulta minore o uguale rispetto al valore della soluzione incombente Z^* ;

Criterio 2: il rilassamento lineare non ha soluzioni ammissibili;

Criterio 3: la soluzione ottima per il rilassamento lineare ha valori interi per tutte le variabili vincolate ad assumere valori interi (se questa soluzione è migliore di quella incombente diventa la nuova soluzione

incombente e si riapplica il criterio 1 a tutti i sottoproblemi non ancora tagliati).

Test di ottimalità:

Si ferma l'algoritmo quando non ci sono sottoproblemi da risolvere, allora la soluzione incombente è quella ottima. Se non c'è alcuna soluzione incombente allora il problema non ha soluzioni ammissibili, in caso contrario si esegue un'altra iterazione.

Esempio 4.3.1 Risolvere il seguente problema di PLI:

$$\max Z = 2x_1 + 3x_2 + 2x_3$$

$$x_1 + 2x_3 \leq 3$$

$$2x_1 + x_2 \leq 5$$

$$x_1, x_2, x_3 \in \mathbb{N}.$$

Innanzitutto risolviamo, usando il metodo del simplesso, il rilassamento lineare del problema di partenza che viene ottenuto eliminando il vincolo di interezza delle tre variabili. Introduciamo due variabili slack, x_4 e x_5 , che sono inizialmente le variabili in base.

Iterazione 0										
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	b_i		
\overline{Z}	(0)	1	-2	-3	-2	0	0	0		
x_4	(1)	0	1	0	2	1	0	3		
x_5	(2)	0	2	1	0	0	1	5		

Iterazione 1										
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	b_i		
Z	(0)	1	4	0	-2	0	3	15		
x_4	(1)	0	1	0	2	1	0	3		
x_2	(2)	0	2	1	0	0	1	5		

Iterazione 2											
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	b_i			
\overline{Z}	(0)	1	5	0	0	1	3	18			
x_3	(1)	0	$\frac{1}{2}$	0	1	$\frac{1}{2}$	0	$\frac{3}{2}$			
x_2	(2)	0	2	1	0	0	1	5			

La soluzione ottenuta (0, 5, 3/2) non è intera, quindi non può essere applicato il terzo criterio di fathoming ed il problema non viene tagliato, inoltre

$$Z = 18$$

diviene il bound per i successivi sottoproblemi pur non essendo soluzione incombente in quanto la soluzione non è intera. Consideriamo ora come variabile di branching x_3 poichè è la prima variabile che nella soluzione del problema rilassato non ha un valore intero e definiamo due sottoproblemi in cui aggiungiamo rispettivamente i seguenti vincoli:

$$x_3 \le \left\lfloor \frac{3}{2} \right\rfloor = 1$$

e

$$x_3 \ge 2$$
.

Scriviamo ora esplicitamente i due sottoproblemi:

Sottoproblema 1

$$\max Z = 2x_1 + 3x_2 + 2x_3$$

$$x_1 + 2x_3 \leq 3$$

$$2x_1 + x_2 \leq 5$$

$$x_3 \leq 1$$

$$x_1, x_2, x_3 \in \mathbb{N}$$

e

Sottoproblema 2

$$\begin{array}{lll} \max \ Z = 2x_1 + 3x_2 + 2x_3 \\ x_1 & + 2x_3 & \leq \ 3 \\ 2x_1 & + x_2 & \leq \ 5 \\ x_1, x_2, x_3 \in \mathbb{N}, x_3 \geq 2. \end{array}$$

Risolviamo il sottoproblema 1 con il metodo del simplesso introducendo 3 variabili slack.

Iterazione 0										
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	x_6	b_i	
Z	(0)	1	-2	-3	-2	0	0	0	0	
x_4	(1)	0	1	0	2	1	0	0	3	
x_5	(2)	0	2	1	0	0	1	0	5	
x_6	(3)	0	0	0	1	0	0	1	1	

Iterazione 1										
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	x_6	b_i	
Z	(0)	1	4	0	-2	0	3	0	15	
x_4	(1)	0	1	0	2	1	0	0	3	
x_2	(2)	0	2	1	0	0	1	0	5	
x_6	(3)	0	0	0	1	0	0	1	1	

	Iterazione 2												
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	x_6	b_i				
\overline{Z}	(0)	1	4	0	0	0	3	2	17				
x_4	(1)	0	1	0	0	1	0	-2	1				
x_2	(2)	0	2	1	0	0	1	0	5				
x_3	(3)	0	0	0	1	0	0	1	1				

La soluzione ottenuta (0,5,1) è intera, quindi applicando il terzo criterio di fathoming il problema viene tagliato. Il valore della funzione obiettivo, cioè Z=17, diviene la nuova soluzione incombente.

$$Z^* = 17.$$

Per risolvere il sottoproblema 2 si deve effettuare il seguente cambio di variabile

$$x_3' = x_3 - 2$$
 \Rightarrow $x_3 = x_3' + 2, x_3' \ge 0,$

cosicchè il sottoproblema può essere riscritto nel seguente modo:

$$\max Z = 2x_1 + 3x_2 + 2(x_3' + 2)$$

$$x_1 + 2(x_3' + 2) \le 3$$

$$2x_1 + x_2 \le 5$$

$$x_1, x_2, x_3' \in \mathbb{N},$$

ovvero

$$\max Z = 2x_1 + 3x_2 + 2x_3' + 4$$

$$x_1 + 2x_3' \leq -1$$

$$2x_1 + x_2 \leq 5$$

$$x_1, x_2, x_3' \in \mathbb{N}.$$

Appare evidente, osservando il primo vincolo, che il problema non ammette soluzioni ammissibili, quindi il sottoproblema può essere tagliato. Possiamo quindi scrivere l'albero dei sottoproblemi:

Osservazione In modo simile si risolvono i problemi di programmazione lineare intera mista in cui solo k < n variabili decisionali (convenzionalmente le prime) sono intere:

$$\max Z = \sum_{j=1}^{n} c_j x_j$$

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i, \quad i = 1, 2, \dots, m,$$

$$x_j \ge 0, \quad j = 1, 2, \dots, n,$$

$$x_j \text{ variabile intera, per } j = 1, \dots, k, \ k < n.$$

4.4 L'algoritmo Branch-and-Cut per la Programmazione Binaria

Si tratta di un metodo, descritto per la prima volta intorno alla metà degli anni Ottanta, per risolvere in modo efficiente problemi di programmazione binaria di grandi dimensioni per i quali l'algoritmo di Branch-and-Bound mostrava una complessità computazionale di ordine esponenziale. Il metodo si può applicare comunque anche a problemi di programmazione binaria mista e intera mista. Ambito ideale di applicazione sono i problemi in cui la matrice A dei vincoli funzionali presenta una struttura sparsa, cioè il numero di elementi diversi da zero non supera il 5%. Consideriamo solo il caso di problemi di programmazione binaria pura. Il metodo utilizza una serie di tecniche combinate insieme: il preprocessamento automatico del problema,

la generazione dei piani di taglio e le tecniche di branch-and-bound. Le tecniche di preprocessamento del problema sono le seguenti:

1. Fissare il valore di alcune variabili: quando una variabile non può assumere un determinato valore poichè sarebbe violato uno dei vincoli indipendentemente dal valore assunto dalle altre variabili allora il suo valore deve essere necessariamente l'altro valore. Per esempio il vincolo

$$5x_1 + x_2 - x_3 \le 2$$

non può essere soddisfatto se $x_1 = 1$ e quindi deve essere necessariamente $x_1 = 0$. Un criterio generale può essere il seguente: una volta identificata la variabile con il più grande coefficiente positivo si verifica se la somma tra tale coefficiente e tutti i coefficienti negativi del vincolo eccede il termine noto, in caso affermativo tale variabile deve essere posta uguale a zero.

2. Eliminare i vincoli ridondanti: se un vincolo funzionale viene soddisfatto dalla soluzione binaria più difficile allora è ridondante e può essere eliminato. Per un vincolo di tipo \leq la soluzione binaria più difficile ha variabili uguali a 1 per quelle che hanno coefficienti nonnegativi e le altre sono uguali a 0. Tali valori si invertono se il vincolo è di tipo \geq . Per esempio i vincoli

$$3x_1 + 3x_2 < 8$$
, $3x_1 - 2x_2 > -3$

sono ridondanti perchè

$$3(1) + 3(1) = 6 \le 8,$$
 $3(0) - 2(1) = -2 \ge -3.$

3. Rendere i vincoli più stringenti: in questo caso si cerca di ridurre la regione ammissibile senza tuttavia eliminare soluzioni ammissibili. Consideriamo il seguente semplice problema:

$$\max Z = 2x_1 + 3x_2$$
$$2x_1 + 2x_2 \le 3$$
$$x_1, x_2 \text{ variabili binarie.}$$

Le soluzioni ammissibili sono (0,0), (1,0) e (0,1). Soluzione ottima del rilassamento lineare è (1/2,1) mentre la soluzione ottima del problema binario è (0,1). Se al vincolo assegnato si sostituisce il seguente

$$x_1 + x_2 \le 1$$

si ottiene una regione ammissibile ridotta pur senza eliminare alcuna soluzione ammissibile ma con l'effetto che sia il rilassamento lineare che il problema binario hanno la stessa soluzione ottima. Nella seguente figura sono riportate le due regioni di ammissibilità.

La sostituzione di un vincolo con un altro che riduce la regione di ammissibilità è detta generazione di un piano di taglio. Un piano di taglio (o taglio) è appunto un nuovo vincolo funzionale che riduce la regione di ammissibilità senza eliminare alcuna soluzione ammissibile.

I piani di taglio possono essere generati in molti modi, la seguente è una delle possibili procedure.

- 1. Considerare solo i vincoli funzionali nella forma \leq che hanno coefficienti nonnegativi.
- 2. Determinare un gruppo di variabili (detto copertura minima del vincolo) tali che:
 - (a) il vincolo è violato se ogni variabile del gruppo è uguale a 1 e tutte le altre sono uguali a 0.
 - (b) il vincolo è soddisfatto se il valore di ciascuna di queste variabili viene cambiato da 1 a 0.
- 3. Se N denota il numero delle variabili del gruppo il piano di taglio risultante ha la forma

somma delle variabili del gruppo $\leq N-1$.

Per esempio considerando il vincolo

$$5x_1 + 4x_2 + 7x_3 + 5x_4 \le 13$$

l'insieme $\{x_1, x_2, x_3\}$ è una copertura minima perchè ponendo il loro valore uguale a 1 (e $x_4=0$) risulta

$$5 + 4 + 7 + 0 > 13$$
.

Tuttavia cambiando il valore di ogni variabile (a turno) da 0 a 1 il vincolo è soddisfatto:

$$5+4+0+0 \le 13$$
, $5+0+7+0 \le 13$, $0+4+7+0 \le 13$.

Per comprendere meglio il significato di copertura minima consideriamo il seguente vincolo:

$$8x_1 + 3x_2 + 2x_3 \le 9. (4.2)$$

La situazione dei vertici è la seguente:

vertici ammissibili	vertici non ammissibili
(0, 0, 0)	(1, 1, 1)
(0, 0, 1)	(1, 1, 0)
(0, 1, 0)	(1, 0, 1)
(1, 0, 0)	
(0, 1, 1)	

Osserviamo che l'insieme $\{x_1, x_2\}$ rappresenta una copertura minima del vincolo, quindi

$$x_1 + x_2 < 1 \tag{4.3}$$

rappresenta un vincolo da affiancare a (4.2). Inoltre anche l'insieme $\{x_1, x_3\}$ rappresenta una copertura minima del vincolo, quindi un altro vincolo è

$$x_1 + x_3 < 1. (4.4)$$

I due vincoli (4.3) e (4.4) sono più stringenti rispetto a (4.2) poichè i vertici ammissibili appartengono alla frontiera di almeno uno dei due, mentre nessuno appartiene alla frontiera del vincolo originario (fa eccezione l'origine che appartiene comunque alla frontiera di tutti i vincoli di nonnegatività), come si evince dalla presente tabella:

Vertici ammissibili	Appartenenza ai Vincoli					
	$x_1 + x_2 \le 1$	$x_1 + x_3 \le 1$				
(0,0,0)	no	no				
(0,0,1)	no	\sin				
(0, 1, 0)	si	no				
(1,0,0)	si	\sin				
(0, 1, 1)	si	${ m si}$				

Per illustrare meglio l'efficacia di tale tecnica consideriamo il seguente esempio di programmazione lineare binaria:

$$\max Z = 6x_1 + 5x_2 + 4x_3$$

$$2x_1 + 3x_2 + 4x_3 \le 6$$

$$3x_1 + x_2 + 6x_3 \le 9$$

$$x_j \text{ variabile binaria per } j = 1, 2, 3.$$

Risolviamo il rilassamento lineare del problema completo:

$$\begin{array}{lllll} \max & Z = 6x_1 + 5x_2 + 4x_3 \\ (1) & 2x_1 & + 3x_2 & + 4x_3 & \leq & 6 \\ (2) & 3x_1 & + x_2 & + 6x_3 & \leq & 9 \\ (3) & x_1 & & \leq & 1 \\ (4) & & x_2 & & \leq & 1 \\ (5) & & x_3 & \leq & 1 \\ x_1, x_2, x_3 \geq 0. \end{array}$$

Applichiamo il metodo del simplesso introducendo 5 variabili slack.

	Iterazione 0												
Var. base Eq.	Z	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	b_i			
Z (0)	1	-6	-5	-4	0	0	0	0	0	0			
x_4 (1)	0	2	3	4	1	0	0	0	0	6			
x_5 (2)	0	3	1	6	0	1	0	0	0	9			
x_6 (3)	0	1	0	0	0	0	1	0	0	1			
x_7 (4)	0	0	1	0	0	0	0	1	0	1			
x_8 (5)	0	0	0	1	0	0	0	0	1	1			

	Iterazione 1													
Var. base Eq.	Z	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	b_i				
Z (0)	1	0	-5	-4	0	0	6	0	0	6				
x_4 (1)	0	0	3	4	1	0	-2	0	0	4				
x_5 (2)	0	0	1	6	0	1	-3	0	0	6				
x_1 (3)	0	1	0	0	0	0	1	0	0	1				
x_7 (4)	0	0	1	0	0	0	0	1	0	1				
x_8 (5)	0	0	0	1	0	0	0	0	1	1				

	Iterazione 2													
Var. base Eq.	Z	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	b_i				
Z (0)	1	0	0	-4	0	0	6	5	0	11				
x_4 (1)	0	0	0	4	1	0	-2	-3	0	1				
x_5 (2)	0	0	0	6	0	1	-3	-1	0	5				
x_1 (3)	0	1	0	0	0	0	1	0	0	1				
x_2 (4)	0	0	1	0	0	0	0	1	0	1				
x_8 (5)	0	0	0	1	0	0	0	0	1	1				

	Iterazione 3												
Var. base Eq.	Z	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	b_i			
Z (0)	1	0	0	0	1	0	4	2	0	12			
x_3 (1)	0	0	0	1	$\frac{1}{4}$	0	$-\frac{1}{2}$	$-\frac{3}{4}$	0	$\frac{1}{4}$			
x_5 (2)	0	0	0	0	$-\frac{3}{2}$	1	0	$\frac{7}{2}$	0	$\frac{7}{2}$			
x_1 (3)	0	1	0	0	0	0	1	0	0	1			
x_2 (4)	0	0	1	0	0	0	0	1	0	1			
x_8 (5)	0	0	0	0	0	0	0	0	1	$\frac{3}{4}$			

Soluzione del problema rilassato è dunque il vettore (1,1,1/4), con valore della funzione obiettivo Z=12. È ovvio che non potendo tagliare il problema completo poichè tale soluzione non soddisfa alcun criterio di fathoming, è necessario scegliere la variabile di branching $(x_1$ seguendo l'ordine naturale oppure x_3 in modo più oculato), definire due sottoproblemi e risolverli. Consideriamo invece la possibilità di risolvere il problema completo sostituendo ai due vincoli quelli definiti dalle rispettive coperture minime. È facile osservare che il primo vincolo ammette come unica copertura minima l'insieme $\{x_2, x_3\}$, che definisce il vincolo

$$x_2 + x_3 \le 1$$

mentre il secondo vincolo ammette come unica copertura minima l'insieme $\{x_1, x_2, x_3\}$, che definisce il vincolo

$$x_1 + x_2 + x_3 \le 2.$$

Consideriamo quindi il seguente problema

$$\max Z = 6x_1 + 5x_2 + 4x_3$$

$$x_2 + x_3 \leq 1$$

$$x_1 + x_2 + x_3 \leq 2$$

$$x_j \text{ variabile binaria per } j = 1, 2, 3.$$

Risolviamo il rilassamento lineare del problema completo:

$$\max Z = 6x_1 + 5x_2 + 4x_3$$
(1) $x_2 + x_3 \le 1$
(2) $x_1 + x_2 + x_3 \le 2$
(3) $x_1 \le 1$
(4) $x_2 \le 1$
(5) $x_3 \le 1$
 $x_1, x_2, x_3 \ge 0$.

Applichiamo il metodo del simplesso introducendo 5 variabili slack.

	Iterazione 0													
Var. base I	Ξq.	Z	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	b_i			
Z ((0)	1	-6	-5	-4	0	0	0	0	0	0			
x_4 ((1)	0	0	1	1	1	0	0	0	0	1			
x_5 ((2)	0	1	1	1	0	1	0	0	0	2			
x_6 ((3)	0	1	0	0	0	0	1	0	0	1			
x_7 ((4)	0	0	1	0	0	0	0	1	0	1			
x_8 ((5)	0	0	0	1	0	0	0	0	1	1			

Iterazione 1												
Var. base Eq.	Z	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	b_i		
Z (0)	1	0	-5	-4	0	0	6	0	0	6		
x_4 (1)	0	0	1	1	1	0	0	0	0	1		
x_5 (2)	0	0	1	1	0	1	-1	0	0	1		
x_1 (3)	0	1	0	0	0	0	1	0	0	1		
x_7 (4)	0	0	1	0	0	0	0	1	0	1		
x_8 (5)	0	0	0	1	0	0	0	0	1	1		

Iterazione 2												
Var. base I	Ξq.	Z	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	b_i	
Z ((0)	1	0	0	1	5	0	6	0	0	11	
x_2 ((1)	0	0	1	1	1	0	0	0	0	1	
x_5 ((2)	0	0	0	0	-1	1	-1	0	0	0	
x_1 ((3)	0	1	0	0	0	0	1	0	0	1	
x_7 ((4)	0	0	0	-1	-1	0	0	1	0	0	
x_8 ((5)	0	0	0	1	0	0	0	0	1	1	

Soluzione ottima del problema rilassato è dunque (1,1,0), con Z=11, che risulta essere soluzione ottima anche del problema binario iniziale. L'uso dei vincoli definiti dalle coperture minime consente di ridurre la regione ammissibile eliminando quei vertici che sono ammissibili per il problema rilassato ma non per quello binario. In tal modo aumenta la probabilità che la soluzione del rilassamento lineare coincida con quella del problema binario.

4.5 Esercizi

Esercizio 4.5.1 Applicare il metodo del simplesso per risolvere il rilassamento lineare del seguente problema di programmazione lineare binaria determinando un limite per Z:

$$\max Z = 3x_1 + 2x_2$$

$$2x_1 + 3x_2 \le 5$$

$$2x_1 + x_2 \le 2$$

$$x_1, x_2 \in \{0, 1\}.$$

(Soluzione Z=3).

Esercizio 4.5.2 Applicare il metodo del simplesso per risolvere il rilassamento lineare del seguente problema di programmazione lineare binaria determinando un limite per Z:

$$\max Z = 4x_1 + 2x_2$$

$$3x_1 - x_2 \le 6$$

$$2x_1 + x_2 \le 2$$

$$x_1, x_2 \in \{0, 1\}.$$

(Soluzione Z=4).

Esercizio 4.5.3 Applicare il metodo del simplesso per risolvere il rilassamento lineare del seguente problema di programmazione lineare binaria determinando un limite per Z:

$$\max Z = 5x_1 + 3x_2 -x_1 + 4x_2 \le 5 3x_1 + 6x_2 \le 5 x_1, x_2 \in \{0, 1\}.$$

(Soluzione Z=6).

Esercizio 4.5.4 Applicare il metodo del simplesso per risolvere il rilassamento lineare del seguente problema di programmazione lineare binaria determinando un limite per Z:

$$\max Z = 6x_1 + 3x_2$$

$$4x_1 + 5x_2 \le 5$$

$$2x_1 + 3x_2 \le 4$$

$$x_1, x_2 \in \{0, 1\}.$$

(Soluzione Z=6).

Esercizio 4.5.5 Sia assegnato il seguente problema di programmazione lineare intera:

$$\max Z = 3x_1 + 2x_2 + 4x_3$$

$$-x_1 + 3x_2 + 4x_3 \le 6$$

$$3x_1 + 4x_2 \le 8$$

$$x_1, x_2, x_3 \in \mathbb{N}.$$

Determinare un limite per Z applicando il metodo del simplesso per risolvere il relativo rilassamento lineare ed individuare la prima variabile di branching. (Soluzione Z=16 e x_1 prima variabile di branching).

Esercizio 4.5.6 Sia assegnato il seguente problema di programmazione lineare intera:

$$\max Z = 5x_1 + 3x_2 + 3x_3 -x_1 + 2x_2 -x_3 \le 3 2x_1 +x_2 + 4x_3 \le 7 x_1, x_2, x_3 \in \mathbb{N}.$$

Determinare un limite per Z applicando il metodo del simplesso per risolvere il relativo rilassamento lineare ed individuare la prima variabile di branching. (Soluzione Z=18 e x_1 prima variabile di branching).

Esercizio 4.5.7 Sia assegnato il seguente problema di programmazione lineare intera:

$$\max Z = 4x_1 + 2x_2 + 5x_3$$

$$5x_1 + x_2 + 5x_3 \le 6$$

$$4x_1 + 2x_2 + 3x_3 \le 8$$

$$x_1, x_2, x_3 \in \mathbb{N}.$$

Determinare un limite per Z applicando il metodo del simplesso per risolvere il relativo rilassamento lineare ed individuare la prima variabile di branching. (Soluzione Z = 9 e x_2 prima variabile di branching).

Esercizio 4.5.8 Sia assegnato il seguente problema di programmazione lineare intera:

$$\begin{array}{lll} \max \ Z = 3x_1 + 4x_2 + 3x_3 \\ x_1 & +3x_2 & +2x_3 & \leq & 10 \\ 2x_1 & -x_2 & +5x_3 & \leq & 12 \\ x_1, x_2, x_3 \in \mathbb{N}. \end{array}$$

Determinare un limite per Z applicando il metodo del simplesso per risolvere il relativo rilassamento lineare ed individuare la prima variabile di branching. (Soluzione Z=24 e x_1 prima variabile di branching).

Esercizio 4.5.9 Siano x_i , i = 1, ..., 5, cinque variabili binarie. Si consideri il sequente vincolo

$$3x_1 + 6x_2 + 7x_3 + 7x_4 + 2x_5 \le 15$$

e si identifichino quali, tra i seguenti insiemi, costituiscono una copertura minima:

$$\{x_1, x_2, x_3\}, \{x_3, x_4\}, \{x_3, x_4, x_5\}, \{x_1, x_3, x_4\}.$$

Esercizio 4.5.10 Siano x_i , i = 1, ..., 5, tutte variabili binarie. Si consideri il seguente vincolo

$$2x_1 + 5x_2 + 7x_3 + 2x_4 + 6x_5 \le 8$$

e si identifichino quali, tra i seguenti insiemi, costituiscono una copertura minima:

$$\{x_1, x_2, x_3\}, \quad \{x_3, x_4, x_5\}, \quad \{x_1, x_2, x_3, x_4\}, \quad \{x_1, x_3, x_5\},$$

 $\{x_2, x_3\}, \quad \{x_2, x_4\}, \quad \{x_1, x_3\}, \quad \{x_3, x_5\}.$

Esercizio 4.5.11 Si consideri il seguente vincolo in cui tutte le variabili decisionali sono binarie:

$$3x_1 + 5x_2 + 7x_3 + 4x_4 + 6x_5 \le 10.$$

Determinare tutte le coperture minime di tale vincolo.

Esercizio 4.5.12 Siano x_i , i = 1, ..., 3, tre variabili binarie. Si consideri il seguente vincolo

$$3x_1 + 4x_2 + 6x_3 \le 8.$$

Si identifichino tutte le coperture minime ed i vincoli che queste definiscono.

Esercizio 4.5.13 Si consideri il seguente vincolo in cui tutte le variabili decisionali sono binarie:

$$4x_1 + 7x_2 + 4x_3 + 5x_4 \le 10.$$

Scrivere i vincoli definiti dalle coperture minime di tale vincolo.

Capitolo 5

Analisi Post-ottimale

5.1 Analisi di sensitività e postottimale

I problemi di programmazione lineare sono la formulazione matematica di problemi che si presentano nella vita reale e richiedono un'opportuna sperimentazione per poter definire un modello finale del problema che tenga conto correttamente di tutti i parametri e che fornisca, una volta risolto, la soluzione ottima del caso reale. Durante tale sperimentazione sarà necessario risolvere un problema, valutare i risultati, verificare l'aderenza di questi alla realtà, modificare opportunamente il modello e ripetere lo stesso procedimento finchè i risultati sono quelli attesi. Appare chiaro che tale processo richiede la risoluzione di una serie di problemi matematici che spesso hanno dimensioni molto elevate e sono molto simili tra loro. Pertanto risulta molto conveniente valutare, spesso a posteriori, come varia la soluzione di un problema di programmazione lineare al variare di qualche parametro. Le cause che richiedono tale analisi a posteriori possono essere, tra le altre, le seguenti:

- 1. Debugging del modello (cioè trovare eventuali debolezze o errori nel modello);
- 2. Validazione del modello (cioè verificare se i risultati sono aderenti alla realtà);
- 3. Decisioni del management sull'allocazione delle risorse (prezzi ombra);
- 4. Valutazione delle stime dei parametri del modello.

Un approccio molto utilizzato per affrontare questi problemi è quello della cosiddetta Riottimizzazione, che consiste nel dedurre come le variazioni nella definizione del modello influenzano il risultato ottenuto. Se si risolve il problema di programmazione lineare utilizzando il metodo del simplesso allora si può cercare di dedurre la variazione nella soluzione ottima studiando il tablaeu finale oppure utilizzando la soluzione ottima del modello precedente come BFS iniziale per quello modificato (purchè risulti ancora ammissibile). Un classico problema di programmazione lineare prevede la risoluzione del problema di massimo

$$\max Z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

che può essere interpretato come la volontà di rendere massimo il profitto Z, in funzione delle quantità x_i (n è il numero di merci che vengono prodotte ed x_i è la quantità prodotta, mentre c_i è il profitto della singola unità di merce prodotta). Ovviamente le quantità prodotte devono essere vincolate alle risorse disponibili. Le risorse sono m e, per ognuna di queste, vale il seguente vincolo

$$a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n < b_i$$

in cui b_i rappresenta la disponibilità della i—esima risorsa: per esempio se tale risorsa è una fabbrica oppure il reparto di un'azienda allora b_i può essere il tempo che il management aziendale destina affinchè questa risorsa produca ed i valori a_{ij} sono il tempo che tale risorsa usa per produrre la j—esima merce. I valori dei parametri appena indicati potrebbero essere soggetti a variazioni poichè potrebbe essere scopo dell'azienda quello di valutare l'opportunità di modificare il loro valore e valutare il conseguente tasso di variazione del profitto.

5.1.1 Analisi di sensitività

Supponiamo assegnato il seguente problema di programmazione lineare

$$\max Z = \mathbf{c}^T \mathbf{x}$$
$$A\mathbf{x} \le \mathbf{b}$$
$$\mathbf{x} \ge 0$$

e che ammetta soluzione ottima \boldsymbol{x}^* tale che

$$Z^* = \boldsymbol{c}^T \boldsymbol{x}^* = \boldsymbol{c}_B^T \boldsymbol{x}_B^*$$

dove, al solito, x_B rappresenta il vettore delle variabili in base e c_B il vettore dei costi associati alle variabili in base. Ci poniamo due quesiti:

1. Di quanto varia la funzione obiettivo se c_j varia della quantità Δc_j , supponendo che tale variazione lasci invariati gli indici delle variabili in base?

Indichiamo con e_j il j—esimo versore fondamentale di \mathbb{R}^n e indichiamo con $Z^*(\mathbf{c} + \Delta c_j \mathbf{e}_j)$ il valore della funzione obiettivo in corrispondenza dei nuovi costi. Allora risulta

$$Z^*(\boldsymbol{c} + \Delta c_j \boldsymbol{e}_j) = (\boldsymbol{c} + \Delta c_j \boldsymbol{e}_j)^T \boldsymbol{x}_B^*$$

$$= \boldsymbol{c}^T \boldsymbol{x}_B^* + (\Delta c_j \boldsymbol{e}_j)^T \boldsymbol{x}_B^* = \begin{cases} Z^* & \text{se } x_j \text{ non è in base} \\ Z^* + \Delta c_j x_j & \text{se } x_j \text{ è in base}. \end{cases}$$

Quindi se indichiamo con ΔZ la variazione della funzione obiettivo è data da

$$\Delta Z^* = Z^*(\boldsymbol{c} + \Delta c_j \boldsymbol{e}_j) - Z^* = \begin{cases} 0 & \text{se } x_j \text{ non è in base} \\ \Delta c_j x_j & \text{se } x_j \text{ è in base.} \end{cases}$$

Considerando il problema dal punto di vista economico l'interpretazione è ovvia: se un bene non viene prodotto allora il valore della funzione obiettivo non è influenzata dal suo prezzo.

2. Di quanto varia la funzione obiettivo se b_i varia della quantità Δb_i , supponendo che tale variazione lasci invariati gli indici delle variabili in base?

Affrontiamo questa questione nella prossima sezione, con un esempio.

5.1.2 Prezzi ombra

A questo scopo consideriamo ora il seguente problema di programmazione lineare:

$$\max Z = x_1 + 2x_2$$

$$20x_1 + 3x_2 \le 50$$

$$10x_1 + 3x_2 \le 30$$

$$x_2 \le 4$$

$$x_1 \ge 0, x_2 \ge 0.$$

Risolviamo ora il problema applicando il metodo del simplesso. Introduciamo tre variabili slack (una per ogni vincolo) e risolviamo il problema aumentato:

	Iterazione 0											
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	b_i				
Z	(0)	1	-1	-2	0	0	0	0				
x_3	(1)	0	20	3	1	0	0	50				
x_4	(2)	0	10	3	0	1	0	30				
x_5	(3)	0	0	1	0	0	1	4				

	Iterazione 1											
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	b_i				
Z	(0)	1	-1	0	0	0	2	8				
x_3	(1)	0	20	0	1	0	-3	38				
x_4	(2)	0	10	0	0	1	-3	18				
x_2	(3)	0	0	1	0	0	1	4				

	Iterazione 2											
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	b_i				
Z	(0)	1	0	0	0	$\frac{1}{10}$	$\frac{17}{10}$	$\frac{49}{5}$				
x_3	(1)	0	0	0	1	-2	3	2				
x_1	(2)	0	1	0	0	$\frac{1}{10}$	$-\frac{3}{10}$	$\frac{9}{5}$				
x_2	(3)	0	0	1	0	0	1	4				

Soluzione ottima, come atteso, in forma aumentata, è:

$$\left(\frac{9}{5}, 4, 2, 0, 0\right)$$

mentre il valore della funzione obiettivo è Z=49/5. Poniamo attenzione ai coefficienti delle variabili slack del tableau finale (evidenziati in rosso) e poniamo

$$y_1^* = 0, y_2^* = \frac{1}{10}, y_3^* = \frac{17}{10},$$

e ricordiamo che ogni variabile slack viene associata ad un determinato vincolo.

Risolviamo ora lo stesso problema, cambiando però il termine noto dell'ultimo vincolo, che diventa 5:

$$\max Z = x_1 + x_2$$

$$20x_1 + 3x_2 \le 50$$

$$10x_1 + 3x_2 \le 30$$

$$x_2 \le 5$$

$$x_1 \ge 0, x_2 \ge 0.$$

Il nuovo problema aumentato è il seguente:

$$\max Z = x_1 + x_2$$

$$20x_1 + 3x_2 + x_3 = 50$$

$$10x_1 + 3x_2 + x_4 = 30$$

$$x_2 + x_5 = 5$$

$$x_i \ge 0, i = 1, 2, 3, 4, 5.$$

Applichiamo ora il metodo del simplesso, evidenziando in blu le parti di tableau che sono cambiate rispetto al problema precedente.

	Iterazione 0											
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	b_i				
Z	(0)	1	-1	-2	0	0	0	0				
x_3	(1)	0	20	3	1	0	0	50				
x_4	(2)	0	10	3	0	1	0	30				
x_5	(3)	0	0	1	0	0	1	5				
Iterazione 1												
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	b_i				
Z	(0)	1	-1	0	0	0	2	10				
x_3	(1)	0	20	0	1	0	-3	35				
x_4	(2)	0	10	0	0	1	-3	15				
x_2	(3)	0	0	1	0	0	1	5				
				Iterazio	ne 2							
Var. base	Eq.	Z	x_1	x_2	x_3	x_4	x_5	b_i				
Z	(0)	1	0	0	0	$\frac{1}{10}$	$\frac{17}{10}$	$\frac{23}{2}$				
x_3	(1)	0	0	0	1	-2	3	5				
x_1	(2)	0	1	0	0	$\frac{1}{10}$	$-\frac{3}{10}$	$\frac{3}{2}$				
x_2	(3)	0	0	1	0	0	1	5				

Soluzione ottima, come atteso, in forma aumentata, è:

$$\left(\frac{3}{2}, 5, 5, 0, 0\right)$$

mentre il valore della funzione obiettivo è $Z_1=23/2$. Calcoliamo ora la differenza tra i valori delle funzioni obiettivo ottenute nei due problemi:

$$\Delta Z = Z_1 - Z = \frac{23}{2} - \frac{49}{5} = \frac{17}{10} = y_3^*.$$

Il valore y_i^* definito in precedenza viene detto prezzo ombra per la risorsa i e misura il valore marginale della risorsa, cioè il tasso di incremento di Z ottenuto aumentando la disponibilità della i—esima risorsa. Il metodo del simplesso identifica il prezzo ombra come il valore del coefficiente della i—esima variabile slack nell'equazione (0) del tableau finale.

L'analisi dei prezzi ombra può essere fatta anche graficamente quando il problema ha solo due variabili decisionali. Dall'analisi del prezzo ombra $y_1^* = 0$ si deduce che un incremento della prima risorsa non cambia la soluzione ottima (infatti questa non soddisfa il primo vincolo in forma di uguaglianza).

5.2 Esercizi

Esercizio 5.2.1 Considerato il seguente problema di programmazione lineare:

$$\max Z = 8x_1 + 7x_2$$

$$2x_1 + x_2 \le 2$$

$$3x_1 + x_2 \le 4$$

$$-x_1 + 2x_2 \le 2$$

$$x_1, x_2 > 0$$

determinare di quale delle risorse associate a ciascun vincolo conviene incrementare la disponibilità per aumentare maggiormente il valore della funzione obiettivo nella soluzione ottima.

(Soluzione: la prima risorsa).

Esercizio 5.2.2 Considerato il seguente problema di programmazione lineare:

$$\max Z = 4x_1 + x_2 3x_1 - x_2 \le 4 2x_1 + 2x_2 \le 3 -x_1 + 2x_2 \le 4 x_1, x_2 > 0$$

determinare di quale delle risorse associate a ciascun vincolo conviene incrementare la disponibilità per aumentare maggiormente il valore della funzione obiettivo nella soluzione ottima.

(Soluzione: la seconda risorsa).

185

Esercizio 5.2.3 Considerato il seguente problema di programmazione lineare:

$$\max Z = 3x_1 + 4x_2$$

$$2x_1 - x_2 \le 4$$

$$4x_1 + 3x_2 \le 3$$

$$x_1 + 2x_2 \le 1$$

$$x_1, x_2 \ge 0$$

determinare di quale delle risorse associate a ciascun vincolo conviene incrementare la disponibilità per aumentare maggiormente il valore della funzione obiettivo nella soluzione ottima.

(Soluzione: la terza risorsa).

Esercizio 5.2.4 Considerato il seguente problema di programmazione lineare:

$$\max Z = 5x_1 + 2x_2$$

$$3x_1 - x_2 \le 2$$

$$2x_1 + 3x_2 \le 3$$

$$x_1 + 3x_2 \le 1$$

$$x_1, x_2 \ge 0$$

determinare di quale delle risorse associate a ciascun vincolo conviene incrementare la disponibilità per aumentare maggiormente il valore della funzione obiettivo nella soluzione ottima.

(Soluzione: la prima risorsa).

Capitolo 6

Problemi di Ottimizzazione su Reti

6.1 Definizioni e proprietà

La rappresentazione attraverso reti è uno strumento ampiamente utilizzato per descrivere problemi derivanti da differenti aree come la distribuzione di servizi, la pianificazione e la gestione delle risorse, l'allocazione di strutture per le telecomunicazioni (si pensi per esempio alla rappresentazione della rete autostradale o ferroviaria, in cui sono rappresentati alcuni punti che sono collegati tra loro in modo diretto da strade o ferrovie). Essa consente di visualizzare graficamente le componenti del sistema, le relative connessioni ed eventualmente alcune informazioni aggiuntive (per esempio la lunghezza di un collegamento, il costo per percorrere un determinato tratto o altro) relative ad esse. Una rete consiste in un insieme di punti detti nodi (o vertici) ed in un insieme di linee chiamate lati (o anche archi) che li collegano. In modo formale una rete (anche detta grafo) è definita nei seguenti modi.

Definizione 6.1.1 Una rete non orientata è una coppia G = (V, A) tale che

- 1. V è un insieme finito di punti (detti appunto vertici o nodi);
- 2. A è un insieme finito di coppie non ordinate di vertici, dette lati.

Un collegamento viene indicato scrivendo una coppia di nodi $(u, v), u, v \in V$. Considerando il grafo non orientato G = (V, E), tale che:

$$V = \{V_1, V_2, V_3, V_4, V_5, V_6\}$$

$$A = \{(V_1, V_2), (V_1, V_3), (V_1, V_5), (V_2, V_4), (V_2, V_5), (V_2, V_6), (V_3, V_4), (V_3, V_5), (V_3, V_6), (V_4, V_5), (V_4, V_6), (V_5, V_6)\}$$

graficamente può essere rappresentato in questo modo

I lati non hanno una direzione fissata, in realtà si suppone convenzionalmente che sia possibile un flusso in entrambe le direzioni (in questo caso si parla anche di arco non orientato). Osserviamo che non essendo le coppie ordinate i lati (V_i, V_j) e (V_j, V_i) rappresentano la medesima connessione. Quando due nodi non sono connessi direttamente allora ha senso chiedersi se esista una sequenza di lati che li connette.

Definizione 6.1.2 Si definisce percorso una sequenza di vertici

$$V_{i_1}V_{i_2}V_{i_3}\dots V_{i_n}$$

tali che:

1. $V_{i_j} \in V \text{ per ogni } j;$

2.
$$(V_{i_j}, V_{i_{j+1}}) \in A \text{ per } j = 1, \dots, n-1.$$

Se in un percorso tutti i vertici sono distinti allora la sequenza è detta cammino. Nella rete del precedente esempio un percorso è

$$V_1V_2V_4V_5V_3V_1V_5V_6$$

mentre un cammino è, per esempio,

 $V_1V_5V_3V_4V_2$.

Definizione 6.1.3 Un cammino che inizia e finisce sullo stesso nodo è detto ciclo (in questo caso ovviamente non ci sono nodi ripetuti tranne il primo e l'ultimo).

Si dice che due nodi sono connessi se esiste almeno un cammino non orientato che li congiunge. Una rete è connessa se ogni coppia di nodi è connessa.

Definizione 6.1.4 Se in una rete non ci sono cicli allora è detta aciclica.

Definizione 6.1.5 Una rete connessa e aciclica è detta albero.

Definizione 6.1.6 Un albero è detto albero ricoprente (spanning tree) se connette tutti i nodi del grafo G.

Se n è il numero dei nodi, ovvero la cardinalità dell'insieme V allora ogni albero ricoprente ha esattamente n-1 archi poichè questo è il numero minimo di archi necessari per avere una rete connessa ed il numero massimo possibile senza creare cicli. La seguente figura illustra un esempio di albero.

Definizione 6.1.7 Una rete orientata è una coppia G = (V, A) tale che

- 1. V è un insieme finito di vertici;
- 2. A è un insieme finito di coppie ordinate di vertici, dette archi.

Se consideriamo il seguente esempio:

l'insieme degli archi è il seguente

$$A = \{(V_1, V_2), (V_1, V_3), (V_2, V_4), (V_2, V_5), (V_3, V_4), (V_3, V_5), (V_4, V_5), (V_4, V_6), (V_5, V_4), (V_5, V_2), (V_5, V_6)\}.$$

Quindi se G = (V, A) è un grafo diretto allora A è un insieme di coppie ordinate, cosicchè $A \subseteq V \times V$. In questo caso l'arco viene etichettato citando prima l'origine (nodo di partenza) e poi la destinazione (nodo di arrivo). In questo caso l'arco (V_i, V_j) è diverso dall'arco (V_j, V_i) . In modo analogo a quanto detto per le reti non orientate si possono definire percorsi orientati, per esempio

$$V_1V_2V_4V_5V_2V_4V_6$$

cammini orientati:

 $V_1V_2V_5V_4V_6$

e cicli orientati:

$$V_2V_4V_5V_2$$
.

Nei paragrafi seguenti saranno descritti e risolti due classici esempi di problemi di ottimizzazione definiti su reti connesse, il problema di minimo albero ricoprente (o problema dell'albero di minima estensione) e il problema del minimo cammino.

6.2 Il Problema di Minimo Albero Ricoprente

Il Problema di Minimo Albero Ricoprente (Minimum Spanning Tree, o albero di minima estensione) si definisce se la rete è connessa e non orientata, e, ad ogni lato, è associata una misura non negativa, la lunghezza, (che, per esempio, può rappresentare una distanza, un tempo oppure un costo). Per il problema in questione si vuole trovare un albero ricoprente, cioè una rete senza cicli che colleghi tutti i nodi e tale che la sua lunghezza complessiva sia minima. Il problema di minimo albero ricoprente può essere sintetizzato nei seguenti punti:

- 1. È assegnato un insieme di nodi ed una lista di possibili collegamenti tra i nodi insieme alle relative lunghezze;
- si vuole costruire la rete con un numero di lati sufficiente a collegare tutti i nodi, in modo tale che esista un cammino tra ogni coppia di nodi;
- 3. obiettivo da raggiungere è determinare l'albero che ha la minima lunghezza.

Se la rete ha n nodi, per quanto detto in precedenza, richiede n-1 collegamenti per assicurare l'esistenza di un cammino per ogni coppia di nodi. Possibili applicazioni di questo problema riguardano, per esempio, la progettazione di reti di telecomunicazioni (per esempio reti in fibra ottica, reti di computer, linee dati telefoniche), oppure di reti di trasporto, di reti di trasmissione elettrica o di collegamenti elettrici (per esempio minimizzare la lunghezza dei cavi elettrici all'interno di un computer), e tutte quelle applicazioni in cui si vogliono minimizzare le connessioni tra punti diversi che devono comunicare (o essere collegati) tra loro.

6.2.1 L'algoritmo di Prim

Un algoritmo per il problema di minimo albero ricoprente è composto dai seguenti passi:

1. Si seleziona un nodo in modo arbitrario che viene connesso al nodo più vicino (ovvero il lato con lunghezza inferiore che ha come estremo il nodo scelto) oppure si seleziona il lato che ha la lunghezza minima;

- 2. Si identifica il nodo non connesso più vicino ad un nodo già connesso, e quindi si collegano i due nodi. Si ripete l'operazione finchè tutti i nodi saranno connessi;
- 3. Nel caso in cui il numero di possibili nodi da scegliere al passo 1 o al passo 2 sia maggiore di 1, la scelta è del tutto arbitraria e porta comunque ad una soluzione ottima.

Per esempio si supponga di dover cablare in fibra ottica una zona dove sono già presenti alcune stazioni per lo smistamento del segnale. Tali punti devono essere collegati minimizzando la lunghezza complessiva dei cavi utilizzati. La situazione è schematizzata dalla seguente rete:

Nelle pagine seguenti vengono riportati i passi dell'algoritmo applicato a tale rete, scegliendo A come nodo iniziale. I lati di colore rosso identificano quelli appartenenti all'albero che si sta determinando.

Il minimo albero ricoprente è il seguente:

La lunghezza complessiva dei collegamenti è uguale a 15. È evidente che il minimo albero ricoprente trovato non è l'unico in quanto in diversi passi dell'algoritmo è stato necessario effettuare una scelta tra diversi lati.

6.2.2 L'algoritmo di Kruskal

L'algoritmo di Kruskal per trovare il minimo albero ricoprente è composto dai seguenti passi:

1. si seleziona il lato di lunghezza minima (se sono più di uno allora se ne sceglie uno in modo arbitrario);

- 2. ad ogni iterazione si selezionano i lati che hanno la stessa lunghezza e si sceglie quello che, aggiunto all'insieme di lati già scelti, non forma alcun ciclo;
- 3. all'aumentare delle iterazioni sono scelti i lati di lunghezza via via crescente.

Nelle pagine seguenti vengono riportati i passi dell'algoritmo di Kruskal applicato alla stessa rete considerata nel paragrafo precedente, scegliendo CD, di lunghezza 1, come lato iniziale. I lati di colore rosso identificano quelli appartenenti all'albero che si sta determinando.

A questo punto ci sono sei lati di lunghezza 2, quindi scegliamo arbitrariamente il lati BC,

e quindi il lato AB

A questo punto possiamo scegliere EH (sempre arbitrariamente)

quindi GH:

ed ora FG

A questo punto non si può scegliere il lato EF perchè si formerebbe un ciclo, quindi si devono considerare i lati di lunghezza maggiore: non essendoci lati di lunghezza 3 consideriamo quelli di lunghezza 4, ovvero AD, AC e CE. I primi due non possono essere scelti poichè in entrambi i casi si formerebbe un ciclo, mentre CE può essere scelto:

Avendo connesso tutti i nodi l'algoritmo di Kruskal termina, quindi il minimo albero ricoprente è il seguente:

Esempio 6.2.1 Sia assegnata una rete non orientata composta da 7 nodi individuati con lettere da A a G, tale che le distanze tra i questi sono riportate nella seguente tabella:

	A	B	C	D	E	F	G
A		10	8	6	4	4	5
B			10	11	10	4	5
C				γ	4	10	6
D					3	γ	2
E						8	5
F							6

Determinare il minimo albero ricoprente.

Applichiamo l'algoritmo di Prim identificando innanzitutto il collegamento più breve, ovvero DG, quindi questo è il primo lato dell'albero che stiamo cercando

Il nodo più vicino a D o a G è in nodo E, quindi il lato DE viene aggiunto all'albero.

I nodi più vicini sono C e A, entrambi connessi a E, scegliamo il latco EC.

E adesso scegliamo il lato EA:

Adesso si sceglie il nodo F, connesso al nodo A da un lato di lunghezza 4.

Resta il nodo B il cui collegamento più vicino è con il nodo F.

L'applicazione del metodo di Kruskal avrebbe portato alla scelta della stessa sequenza di lati e quindi al medesimo risultato.

6.2.3 Il Metodo Reverse-Delete

Il metodo Reverse-Delete è una variante dell'algoritmo di Kruskal in cui, però, si parte dall'analisi dei lati che hanno un costo maggiore, che vengono progressivamente cancellati, a meno che l'eliminazione di un arco non implichi la perdita della connettività della rete.

Consideriamo la stessa rete di un esempio visto in precedenza.

Cancelliamo per primi i latiBEeDGdi lunghezza 6

Cancelliamo ora l'unico lato di lunghezza 5, ovvero CF.

Passando ai lati di lunghezza 4 possiamo cancellare AC e AD ma non CE poichè si renderebbe la rete non connessa.

Per ottenere il minimo albero ricoprente è sufficiente cancellare uno dei seguenti lati di lunghezza 2: EF, FG, GH ed EH, per esempio quest'ultimo.

Se la rete e interamente connessa, come nell'esempio 6.2.1, risulta essere complicata applicare il metodo Reverse-Delete in quanto non avendo a disposizione la rappresentazione grafica della rete pertanto risulta molto complesso (anche se non impossibile) riuscire a riconoscere quali lati non devono essere cancellati per evitare di rendere la rete non connessa.

6.2.4 Condizione di ottimalità del minimo albero ricoprente

Assegnato un grafo non orientato G=(V,A) e supponendo di aver determinato un albero G'=(V,T) potrebbe essere utile stabilire un criterio per stabilire se G' sia un minimo albero ricoprente. Per tale ragione è fondamentale la seguente definizione.

Definizione 6.2.1 Sia G' = (V, T) un albero definito sul grafo non orientato G = (V, A), un lato $\mathfrak{t} \not\in T$ è un lato di diminuzione di G' se nel ciclo che si forma aggiungendo \mathfrak{t} a T esiste un lato $\mathfrak{m} \in T$ avente lunghezza superiore a quella di \mathfrak{t} .

Consideriamo il seguente grafo sul quale è stato evidenziato, in rosso, un albero comprendente tutti i nodi

Il lato AB è un lato di diminuzione per tale albero perchè se fosse aggiunto ad esso si creerebbe il ciclo composto dai lati AB, BE, CE e AC in cui è presente il lato AC la cui lunghezza è superiore a quella di AB:

Questo significa che l'albero evidenziato in rosso non era sicuramente il minimo albero ricoprente poichè aggiungendo il lato AB e cancellando il lato AC si ottiene un albero ricoprente di lunghezza complessiva inferiore.

La proprietà del ciclo

Sia C un ciclo definito sul grafo G e sia f il lato di massima lunghezza di C. Allora la proprietà del ciclo prevede che il minimo albero ricoprente non contiene il lato f.

Per dimostrare tale proprietà facciamo l'ipotesi semplificativa che, indicato con w_i il peso associato al lato i tutti i lati appartenenti al grafo abbiano lunghezze distinte, ovvero

$$w_i \neq w_i, \ \forall i, j \in G$$

con $i \neq j$.

Supponiamo ora per assurdo che il lato f faccia parte del minimo albero T ricoprente il grafo G. Se il lato f fosse concellato allora l'albero T sarebbe sconnesso, ovvero l'insieme dei vertici sarebbe diviso in due sottoinsiemi S_1 ed S_2 tali che

$$S_1 \cap S_2 = \emptyset$$

e

$$S_1 \cup S_2 = V$$
.

Poichè $f \in C$ esisterà sicuramente un altro lato, diciamo e, di lunghezza inferiore rispetto a quella di f

$$w_e < w_f$$

i cui estremi appartengono ognuno ed uno dei due insiemi S_1 ed S_2 . Aggiungendo tale lato all'albero T si otterrà un albero T^* la cui lunghezza complessiva è

$$|T^*| = |T| + w_e - w_f < |T|$$

e questo contraddice l'ipotesi fatta che T è il minimo albero ricoprente. Nella seguente figura viene rappresentata la proprietà di ciclo, i lati blu rappresentano il minimo albero ricoprente T, il lato evidenziato in rosso è il lato e, mentre il ciclo di cui fa parte per ipotesi il lato f è evidenziato dalle linee tratteggiate.

La proprietà del taglio

Sia S un qualsiasi sottoinsieme di vertici del grafo G e sia e il lato di minima lunghezza con un solo estremo appartenente ad S. Allora proprietà del taglio prevede che il lato e appartiene al minimo albero ricoprente.

Supponiamo ora per assurdo che il lato e non faccia parte del minimo albero ricoprente il grafo G, che chiamiamo T. Aggiungendo il lato e all'albero T si forma sicuramente un ciclo, pertanto ci sarà sicuramente un altro lato, diverso da e che connette S all'insieme complementare di vertici \overline{S} . Poichè questo altro lato ha sicuramente una lunghezza superiore a quella di e, allora e è un lato di diminuzione per T e questo contraddice l'ipotesi fatta che T è il minimo albero ricoprente. Nella seguente figura viene rappresentata la proprietà del taglio, i lati blu rappresentano il minimo albero ricoprente T, il lato evidenziato in rosso è il lato e, mentre il ciclo di cui fa parte per ipotesi il lato e è evidenziato dalle linee tratteggiate.

6.3 Il Problema di Cammino Minimo

Il problema di cammino minimo viene definito su reti connesse, sia orientate che non orientate, in cui sono presenti due nodi speciali chiamati origine e destinazione, ed indicati di solito con O e T rispettivamente. Ad ogni arco è inoltre associato un numero positivo (detto lunghezza dell'arco). L'obiettivo è determinare il cammino che unisce i nodi O e T con la lunghezza complessiva minima. La lunghezza del cammino è la somma delle lunghezze degli archi che lo compongono.

6.3.1 L'algoritmo di Dijkstra

L'algoritmo di Dijikstra è un metodo di tipo iterativo (cioè consiste in una serie di operazioni che vengono ripetute un certo numero di volte finchè non si arriva alla soluzione del problema), e consiste nello scegliere, ad ogni iterazione, il nodo più vicino all'origine tra quelli non ancora scelti. Nelle iterazioni successive si scelgono i nodi che sono progressivamente più lontani dall'origine (alla prima iterazione si sceglie semplicemente il nodo più vicino all'origine). Nel dettaglio l'algoritmo procede nel seguente modo:

nella k—esima iterazione si considerano i nodi più vicini al nodo origine (già scelti ai passi precedenti), e che per questo sono detti appunto nodi scelti. Tra questi si considerano quelli che sono direttamente connessi a nodi non ancora scelti e che sono detti nodi non scelti. Tra i nodi non scelti si considerano quelli più vicini ai nodi già scelti. Tali nodi sono detti nodi candidati. Tra questi viene scelto il più vicino all'origine. L'algoritmo termina quando viene scelto il nodo destinazione.

Consideriamo ora la seguente rete non orientata nella quale vogliamo calcolare il cammino minimo dall'origine alla destinazione.

L'applicazione dell'algoritmo di Dijkstra viene descritta utilizzando una tabella composta da sette colonne e da un numero di righe uguale al numero di iterazioni richieste. Nella prima colonna della tabella è riportato l'indice dell'iterazione corrente, nella seconda colonna sono riportati i nodi appartenenti all'insieme di quelli già scelti nelle precedenti iterazioni (all'inizio solo il nodo O) e che sono direttamente collegati a nodi non ancora scelti. Per ciascuno di tali nodi viene individuato uno (o più) nodi candidati, ovvero quei nodi, non ancora scelti, ad esso più vicini, e che sono riportati nella terza colonna. Per ciascuno dei nodi candidati viene riportata nella quarta colonna la sua distanza dall'origine (cioè la somma tra la distanza del nodo scelto dall'origine e la distanza del nodo scelto da quello candidato). A questo punto, confrontando tutti i valori riportati nella quarta colonna, viene scelto il nodo candidato (o i nodi candidati) più vicino all'origine, e che viene riportato nella quinta colonna. La distanza viene riportata nella sesta colonna, mentre gli ultimi archi selezionati sono scritti nella settima colonna.

k	Nodi scelti alle iterazioni precedenti	Nodi candidati	Distanza totale da <i>O</i>	k-esimo nodo scelto	Distanza minima da <i>O</i>	Ultimo arco
1	0	A	2	A	2	OA
2	O A	$C \ B$	2 + 2 = 4	$C \ B$	4 4	OC AB
3	A B C	D E E	2 + 7 = 9 4 + 3 = 7 4 + 4 = 8	E	7	BE
4	A B E	D D D	2+7 = 9 4+4 = 8 7+1 = 8	D	8	$BD \\ ED$
5	D E	T T	8+5=13 7+7=14	T	13	DT

Osservando la penultima colonna dell'ultima riga della tabella si determina la lunghezza del cammino minimo che parte da O e arriva a T. Per determinare gli archi che compongono il cammino minimo si deve partire dal nodo destinazione T nell'ultima colonna della tabella e, procedere a ritroso, individuando i nodi che sono stati raggiunti alle diverse iterazioni, In questo caso per arrivare a T siamo passati dal nodo D (infatti l'arco finale è proprio DT). Per arrivare a D siamo passati dai nodi B ed E (evidentemente ci sono più cammini minimi con la medesima lunghezza). In definitiva, in questo modo, si trovano due cammini minimi entrambi di lunghezza 13:

$$O \longrightarrow A \longrightarrow B \longrightarrow E \longrightarrow D \longrightarrow T$$

$$O \longrightarrow A \longrightarrow B \longrightarrow D \longrightarrow T.$$

Esempio 6.3.1 Determinare il cammino minimo della seguente rete che unisce i nodi O e T:

k	Nodi scelti alle iterazioni precedenti	Nodi candidati	Distanza totale da O	k-esimo nodo scelto	Distanza minima da O	Ultimo arco
1	0	A	3	A	3	OA
2	O A	B C D E	$ \begin{array}{c} 4 \\ 4 \\ 3 + 2 = 5 \\ 3 + 2 = 5 \end{array} $	В С	4 4	OB OC
3	$egin{array}{c} A \ B \ C \end{array}$	D E E E	3+2=53+2=54+2=64+2=6	D E	5 5	AD AE
4	C E D	F F T	4+6=10 5+3=8 5+5=10	F	8	EF
5	D F	T T	5+5=10 8+5=13	T	10	DT

Abbiamo trovato un unico cammino minimo di lunghezza 10:

$$O \longrightarrow A \longrightarrow D \longrightarrow T$$
.

Esempio 6.3.2 Determinare il cammino minimo della seguente rete che unisce i nodi O e T:

k	Nodi scelti alle iterazioni precedenti	Nodi candidati	Distanza totale	k-esimo nodo vicino	Distanza minima	Ultimo arco
1	O	В	4	B	4	OB
2	О В	$A \\ C$	5 $4+5=9$	A	5	OA
3	O A B	$C \\ D \\ C$	$ 8 \\ 3+5=8 \\ 4+5=9 $	$C \\ D$	8	$OC \\ AD$
4	B C D	E F F	4+7=11 8+2=10 8+3=11	F	10	CF
5	B C D F	E E G G	4+7=11 8+6=14 8+4=12 10+2=12	E	11	BE
6	D F E	-	8 + 4 = 12 $10 + 2 = 12$ $11 + 2 = 13$	G	12	DG FG
7	F E G	H	10 + 6 = 16 11 + 2 = 13 12 + 3 = 15	Н	13	EH
8	E G H	T	11 + 6 = 17 12 + 9 = 21 13 + 8 = 21	I	17	EI
9	G H I		12 + 9 = 21 13 + 8 = 21 17 + 5 = 22	T	21	GT HT

Abbiamo trovato tre possibili cammini minimi di lunghezza 21:

$$\begin{array}{c} O \longrightarrow A \longrightarrow D \longrightarrow G \longrightarrow T \\ O \longrightarrow C \longrightarrow F \longrightarrow G \longrightarrow T \\ O \longrightarrow B \longrightarrow E \longrightarrow H \longrightarrow T. \end{array}$$

Esempio 6.3.3 Determinare il cammino minimo della stessa rete dell'esercizio precedente supponendo che gli archi non siano orientati:

k	Nodi scelti alle iterazioni precedenti	Nodi candidati	Distanza totale	k-esimo nodo vicino	Distanza minima	Ultimo arco
1	О	B	4	B	4	OB
2	О В	$A \\ C$	5 $4+5=9$	A	5	OA
3	O A B	$C \\ D \\ C$	8 3+5=8 4+5=9	C D	8	OC AD
4	B C D	$egin{array}{c} E \ F \ F \end{array}$	4+7=11 8+2=10 8+3=11	F	10	CF
5	B C D F	E E G E	4+7=11 8+6=14 8+4=12 10+1=11	E	11	$BE \ FE$
6	D F E	G G H	8 + 4 = 12 10 + 2 = 12 11 + 2 = 13	G	12	DG FG
7	F E G	H	10 + 6 = 16 11 + 2 = 13 12 + 3 = 15		13	EH
8	E G H	T	11 + 6 = 17 12 + 9 = 21 13 + 2 = 15	I	15	HI
9	G H I		12 + 9 = 21 13 + 8 = 21 15 + 5 = 20	T	20	IT

Abbiamo trovato due possibili cammini minimi di lunghezza 20:

$$\begin{array}{c} O \longrightarrow B \longrightarrow E \longrightarrow H \longrightarrow I \longrightarrow T \\ O \longrightarrow C \longrightarrow F \longrightarrow E \longrightarrow H \longrightarrow I \longrightarrow T \end{array}$$

Rispetto all'esercizio precedente osserviamo che il cammino minimo ha lunghezza inferiore ma attraversa un numero di archi superiore.

6.4 Esercizi

Esercizio 6.4.1

Una rete ha 7 nodi, individuati dalle lettere A,B,C,D,E,F, e G, tutti direttamente connessi tra loro. Applicare i metodi di Prim e Kruskal per determinare il minimo albero ricoprente sapendo che le lunghezze dei lati che connettono i nodi sono riportate nella seguente tabella ed indicando l'ordine con cui i lati vengono scelti:

	A	B	C	D	E	F	G
A		4	5	2	7	8	9
B			7	8	9	7	5
C				7	6	6	5
D					8	9	3
E						8	8
F							9

Esercizio 6.4.2

Una rete ha 7 nodi, individuati dalle lettere A,B,C,D,E,F, e G, tutti direttamente connessi tra loro. Applicare i metodi di Prim e Kruskal per determinare il minimo albero ricoprente sapendo che le lunghezze dei lati che connettono i nodi sono riportate nella seguente tabella ed indicando l'ordine con cui i lati vengono scelti:

	A	B	C	D	E	F	G
A		2	7	4	2	7	8
B			8	g	7	8	9
C				6	8	8	8
D					7	8	9
E						3	9
F							5

Esercizio 6.4.3

Una rete ha 7 nodi, individuati dalle lettere A,B,C,D,E,F, e G, tutti direttamente connessi tra loro. Applicare i metodi di Prim e Kruskal per determinare il minimo albero ricoprente sapendo che le lunghezze dei lati che connettono i nodi sono riportate nella seguente tabella ed indicando l'ordine con cui i lati vengono scelti:

	A	B	C	D	E	F	G
A		8	9	8	9	8	7
B			3	9	5	6	6
C				8	7	γ	2
D					9	8	4
E						8	7
F							8

Esercizio 6.4.4

Una rete ha 7 nodi, individuati dalle lettere A,B,C,D,E,F, e G, tutti direttamente connessi tra loro. Applicare i metodi di Prim e Kruskal per determinare il minimo albero ricoprente sapendo che le lunghezze dei lati che connettono i nodi sono riportate nella seguente tabella ed indicando l'ordine con cui i lati vengono scelti:

	A	B	C	D	E	F	G
A		3	7	9	2	5	γ
B			8	9	8	7	8
C				7	4	γ	8
D					6	7	9
E						γ	9
F							6

Esercizio 6.4.5 Determinare, nella seguente rete, il cammino minimo (oppure i cammini minimi) che unisce i nodi O e T:

Nel caso in cui il cammino minimo non sia unico verificare se sia possibile ottenerne uno solo eliminando uno degli archi.

Esercizio 6.4.6 Determinare, nella seguente rete, il cammino minimo (oppure i cammini minimi) che unisce i nodi O e T:

Nel caso in cui il cammino minimo non sia unico verificare se sia possibile ottenerne uno solo eliminando uno degli archi.

Esercizio 6.4.7 Determinare, nella seguente rete, il cammino minimo (oppure i cammini minimi) che unisce i nodi O e T:

Nel caso in cui il cammino minimo non sia unico verificare se sia possibile ottenerne uno solo eliminando uno degli archi.

Esercizio 6.4.8 Determinare, nella seguente rete, i cammini minimi che uniscono i nodi O e T:

Verificare se sia possibile ottenere un unico cammino minimo eliminando uno degli archi (o aumentando di un'unità il valore di uno degli archi).