Máquina de Turing

Esdras Lins Bispo Jr. esdraspiano@gmail.com

Teoria Computação Bacharelado em Ciência da Computação

26 de março de 2019

Plano de Aula

- Revisão
- Máquina de Turing
- Configuração de MT

Sumário

Revisão

- 2 Máquina de Turing
- Configuração de MT

Diferenças entre MT e AFDs

- Uma MT pode tanto escrever sobre a fita quanto ler a partir dela;
- A cabeça de leitura-escrita pode mover-se tanto para a esquerda quanto para a direita;
- A fita é infinita;
- Os estados especiais para rejeitar e aceitar fazem efeito imediatamente.

Sumário

- Revisão
- 2 Máquina de Turing
- Configuração de MT

Construindo uma MT

Construir M_1 que reconheça a linguagem

$$B = \{\omega\#\omega \mid \omega \in \{0,1\}^*\}.$$

Descrição de M_1

 $M_1 =$ "Sobre a cadeia de entrada ω :

- Faça um zigue-zague ao longo da fita checando posições correspondentes de ambos os lados do símbolo # para verificar se elas contêm o mesmo símbolo. Se elas não contêm, ou se nenhum # for encontrado, rejeite. Marque os símbolos à medida que eles são verificados para manter registro de quais símbolos têm correspondência.
- Quando todos os símbolos à esquerda do # tiverem sido marcados, verifique a existência de algum símbolo remanecente à direta do #. Se resta algum símbolo, rejeite; caso contrário, aceite.


```
° 1 1 0 0 0 # 0 1 1 0 0 0 u ...
х 1 1 0 0 0 # 0 1 1 0 0 0 u ...
x 1 1 0 0 0 # x 1 1 0 0 0 \( \dots \)...
   1000#x11000u...
х x 1 0 0 0 # x 1 1 0 0 0 u ...
x x x x x x # x x x x x
                         accept
```


Uma **máquina de Turing** é uma 7-upla $(Q, \Sigma, \Gamma, \delta, q_0, q_{aceita}, q_{rejeita})$, de forma que Q, Σ, Γ são todos conjuntos finitos e

- Q é o conjunto de estados,
- ② Σ é o alfabeto de entrada sem o **símbolo branco** \sqcup ,
- ullet Γ é o alfabeto da fita, em que $\sqcup \in \Gamma$ e $\Sigma \subseteq \Gamma$,
- $oldsymbol{\delta}: Q imes \Gamma o Q imes \Gamma imes \{E,D\}$ é a função de transição,
- $oldsymbol{0} q_0 \in Q$ é o estado inicial,
- $oldsymbol{0}$ $q_{aceita} \in Q$ é o estado de aceitação, e
- $m{Q}$ $q_{rejeita} \in Q$ é o estado de rejeição, em que $q_{rejeita}
 eq q_{aceita}$

Sumário

Revisão

- 2 Máquina de Turing
- Configuração de MT

Uma configuração de uma MT leva em consideração:

- o estado atual da MT;
- o conteúdo atual da fita;
- a posição atual da cabeça.

Uma configuração de uma MT leva em consideração:

- o estado atual da MT;
- o conteúdo atual da fita;
- a posição atual da cabeça.

Uma forma especial de representar...

u*q*v em que

- u e v são cadeias sobre Γ;
- uv é o conteúdo atual da fita;
- q é o estado atual; e
- a posição atual da cabeça está sobre o primeiro símbolo de v.

FIGURA 3.4

Uma máquina de Turing com configuração 1011q701111

A configuração C_1 origina a configuração C_2 , se a máquina de Turing puder legitimamente ir de C_1 para C_2 .

Mais formalmente...

Para:

- \bullet a, b, $c \in \Gamma$,
- u, $v \in \Gamma^*$,
- os estados q_i e q_j ,
- as configurações uaq_i bv e uq_i acv.

A configuração C_1 origina a configuração C_2 , se a máquina de Turing puder legitimamente ir de C_1 para C_2 .

Mais formalmente...

Para:

- a, b, $c \in \Gamma$,
- u, $v \in \Gamma^*$,
- os estados q_i e q_i ,
- as configurações uaq_i bv e uq_i acv.

Digamos que

 uaq_i bv origina uq_j acv

se na função de transição $\delta(q_i, b) = (q_i, c, E)$.

Mais formalmente...

Digamos que

 uaq_i bv origina uq_j acv

se na função de transição $\delta(q_i,b)=(q_j,c,E)$. Ou

 uaq_i bv origina $uacq_j$ v

se na função de transição $\delta(q_i,b)=(q_j,c,D)$.

Termos importantes:

- configuração inicial;
- configuração de aceitação;
- configuração de rejeição;
- o configuração de parada.

Linguagem de uma MT

Uma máquina de Turing M aceita a entrada ω se uma sequência de configurações C_1, C_2, \ldots, C_k existe, de forma que

- C_1 é a configuração inicial de M sobre a entrada ω ;
- cada C_i origina C_{i+1} ;
- C_k é uma configuração de aceitação.

Linguagem de uma MT

Uma máquina de Turing M aceita a entrada ω se uma sequência de configurações C_1, C_2, \ldots, C_k existe, de forma que

- C_1 é a configuração inicial de M sobre a entrada ω ;
- cada C_i origina C_{i+1} ;
- C_k é uma configuração de aceitação.

Linguagem de M

É a coleção de cadeias que M aceita. Também chamada de linguagem reconhecida por M e denotada por L(M).

Definições

Definição

Chame uma linguagem de **Turing-reconhecível**, se alguma máquina de Turing a reconhece.

Definições

Definição

Chame uma linguagem de **Turing-reconhecível**, se alguma máquina de Turing a reconhece.

Definição

Chame uma linguagem de **Turing-decidível**, se alguma máquina de Turing a decide.

Definições

Definição

Chame uma linguagem de **Turing-reconhecível**, se alguma máquina de Turing a reconhece.

Definição

Chame uma linguagem de **Turing-decidível**, se alguma máquina de Turing a decide.

Corolário

Toda linguagem Turing-decidível é Turing-reconhecível.

Máquina de Turing

Esdras Lins Bispo Jr. esdraspiano@gmail.com

Teoria Computação Bacharelado em Ciência da Computação

26 de março de 2019

