TEST REPORT

Reference No. : WTS17S0786215E

FCC ID : 2AC2P-BA-521BT

Applicant :: Zhongshan White Bird Electronic Ltd

Address...... 1F/3 Bldg, Xingda Jiahu industrial zone, Torch development

district, Zhongshan, China

Manufacturer Zhongshan White Bird Electronic Ltd

Address 1F/3 Bldg, Xingda Jiahu industrial zone, Torch development

district, Zhongshan, China

Product.....: Bluetooth fat scales

Model(s) BA-521BT, BG-307BT, BG-520BT, BA-306BT, BA-520BT,

BA-701BT, BA-702BT, BA-801BT, BA-802BT

Standards.....: FCC CFR47 Part 15.247:2016

Date of Receipt sample : 2017-07-31

Date of Test : 2017-08-02 to 2017-09-10

obin.Zhou

Date of Issue : 2017-09-20

Test Result..... : Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Robin Zhou / Test Engineer

Reference No.: WTS17S0786215E Page 2 of 40

1 Laboratories Introduction

Waltek Services Test Group Ltd. is one of the largest and the most comprehensive third party testing organizations in China, our headquarter located in Shenzhen (CNAS Registration No. L3110, A2LA Certificate Number: 4243.01) and have branches in Foshan (CNAS Registration No. L6478), Dongguan (CNAS Registration No. L9950), Zhongshan, Suzhou (CNAS Registration No. L7754), Ningbo and Hong Kong, Our test capability covered four large fields: safety test. Electronic Magnetic Compatibility(EMC), reliability and energy performance, Chemical test. Meanwhile, Waltek has got recognition as registration and accreditation laboratory from EMSD (Electrical and Mechanical Services Department), and American Energy star, FCC(The Federal Communications Commission), CPSC(Consumer Product Safety Commission), CEC(California energy efficiency), IC(Industry Canada) and ELI(Efficient Lighting Initiative). It's the strategic partner and data recognition laboratory of international authoritative organizations, such as UL, Intertek (ETL-SEMKO), CSA, TÜV Rheinland, TÜV SÜD, etc. As a professional, comprehensive, justice international test organization, we still keep the scientific and rigorous work attitude to help each client satisfy the international standards and assist their product enter into globe market smoothly.

Waltek Services (Shenzhen) Co., Ltd.

A. Accreditations for Conformity Assessment (International)

Country/Region	Accreditation Body	Scope	Note
USA		FCC ID \ DOC \ VOC	1
Canada	CNIAC	IC ID \ VOC	2
Japan	CNAS	MIC-T \ MIC-R	-
Europe	(Registration No.: L3110) A2LA (Certificate No.: 4243.01)	EMCD \ RED	-
Taiwan		NCC	-
Hong Kong		OFCA	-
Australia		RCM	-
India		WPC	-
Thailand	International Services	NTC	-
Singapore		IDA	-

Note:

- 1. FCC Designation No.: CN1201. Test Firm Registration No.: 523476.
- 2. IC Canada Registration No.: 7760A

B. TCBs and Notify Bodies Recognized Testing Laboratory.

Recognized Testing Laboratory of	Notify body number
TUV Rheinland	
Intertek	Ontional
TUV SUD	Optional.
SGS	
Phoenix Testlab GmbH	0700
Element Materials Technology Warwick Ltd	0891
Timco Engineering, Inc.	1177
Eurofins Product Service GmbH	0681

Waltek Services (Shenzhen) Co.,Ltd.

http://www.waltek.com.cn

2 Contents

Reference No.: WTS17S0786215E

		Page
_	COVER PAGE	
1	LABORATORIES INTRODUCTION	
2	CONTENTS	
3	REVISION HISTORY	
4	GENERAL INFORMATION	
	4.1 GENERAL DESCRIPTION OF E.U.T.	
	4.2 DETAILS OF E.U.T. 4.3 CHANNEL LIST	
	4.4 TEST MODE	
5	EQUIPMENT USED DURING TEST	
	5.1 EQUIPMENTS LIST	
	5.2 MEASUREMENT UNCERTAINTY	
	5.3 TEST EQUIPMENT CALIBRATION	
6	TEST SUMMARY	
7	CONDUCTED EMISSION	
8	RADIATED EMISSIONS	
	8.1 EUT OPERATION	
	8.2 TEST SETUP	
	8.4 TEST PROCEDURE	
	8.5 CORRECTED AMPLITUDE & MARGIN CALCULATION	
	8.6 SUMMARY OF TEST RESULTS	
9	CONDUCTED SPURIOUS EMISSIONS	
	9.1 TEST PROCEDURE	
	9.2 TEST RESULT	
10		
	10.1 TEST PRODUCE	
11		
11		
	11.1 TEST PROCEDURE:	
12		
	12.1 Test Procedure:	
	12.2 TEST RESULT:	
13	POWER SPECTRAL DENSITY	
	13.1 Test Procedure:	
	13.2 TEST RESULT:	
14	ANTENNA REQUIREMENT	
15	FCC ID: 2AC2P-BA-521BT SAR EVALUATION	
	15.1 REQUIREMENTS	
	15.2 THE PROCEDURES / LIMIT	
	15.3 RESULT: COMPLIANCE	
16	PHOTOGRAPHS -MODEL BA-521BT TEST SETUP	

Reference No.: WTS17S0786215E Page 4 of 40

	16.1	RADIATED SPURIOUS EMISSIONS	33
17	РНОТ	OGRAPHS - CONSTRUCTIONAL DETAILS	35
	17.1	Model BA-521BT-External Photos	35
	17.2	Model BA-521BT-Internal Photos	38

Reference No.: WTS17S0786215E Page 5 of 40

3 Revision History

Test report No.	Date of Receipt sample	Date of Test	Date of Issue	Purpose	Comment	Approved
WTS17S0786215E	2017-07-31	2017-08-02 to 2017-09-10	2017-09-20	original	ı	Valid

Reference No.: WTS17S0786215E Page 6 of 40

4 General Information

4.1 General Description of E.U.T.

Product: Bluetooth fat scales

Model(s): BA-521BT, BG-307BT, BG-520BT, BA-306BT, BA-520BT, BA-701BT,

BA-702BT, BA-801BT, BA-802BT

Model Description:

Only the model name is different. The model BA-521BT is the tested

sample.

Operation Frequency: Bluetooth LE 2402~2480MHz

The Lowest Oscillator: 4MHz
Antenna Gain: 0dBi

Type of modulation: GFSK(BLE only)

Hardware Version: CS20H V2.1 2015-10-20

Software Version: A6

4.2 Details of E.U.T.

Ratings: Input: 6.0V===, (powered by Dry BATTERY: 4x1.5V).

4.3 Channel List

Bluetooth LE

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	1	2404	2	2406	3	2408
4	2410	5	2412	6	2414	7	2416
8	2418	9	2420	10	2422	11	2424
12	2426	13	2428	14	2430	15	2432
16	2434	17	2436	18	2438	19	2440
20	2442	21	2444	22	2446	23	2448
24	2450	25	2452	26	2454	27	2456
28	2458	29	2460	30	2462	31	2464
32	2466	33	2468	34	2470	35	2472
36	2474	37	2476	38	2478	39	2480

4.4 Test Mode

Table 2 Tests carried out under FCC part 15.247

Bluetooth LE Test Items	Mode	Data Rate	Channel	TX/RX
Maximum Peak Output Power	Bluetooth LE	1 Mbps	0/19/39	TX
Power Spectral Density	Bluetooth LE	1 Mbps	0/19/39	TX
Bandwidth	Bluetooth LE	1 Mbps	0/19/39	TX
Band Edge	Bluetooth LE	1 Mbps	0/19/39	TX
Transmitter Spurious Emissions	Bluetooth LE	1 Mbps	0/19/39	TX

Note: Parameters set by test software during channel & power tests, the software provided by the customer was used to set the operating channels as well as the output power level. The RF output power set is the power expected by the manufacturer and is going to be fixed on the firmware of the final product.

5 Equipment Used during Test

5.1 Equipments List

	5.1 Equipments List							
3m Semi-anechoic Chamber for Radiation Emissions								
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date		
1	Spectrum Analyzer	R&S	FSP	100091	2017-04-29	2018-04-28		
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	2017-01-12	2018-01-11		
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	2016-10-17	2017-10-16		
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	2017-04-07	2018-04-06		
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	2016-09-12	2017-09-11		
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	2017-04-07	2018-04-06		
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	2017-04-07	2018-04-06		
8	8 Coaxial Cable (above 1GHz)		1GHz-25GHz	EW02014-7	2017-04-07	2018-04-06		
3m Sei	mi-anechoic Chamber	for Radiation Emis	sions					
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date		
1	Test Receiver	R&S	ESCI	101296	2017-04-06	2018-04-05		
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	2017-04-07	2018-04-06		
3	Amplifier	ANRITSU	MH648A	M43381	2017-04-07	2018-04-06		
4	Cable	HUBER+SUHNER	CBL2	525178	2017-04-07	2018-04-06		
RF Coi	nducted Testing							
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date		
1.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	2016-09-12	2017-09-11		
2.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	2016-09-12	2017-09-11		

Reference No.: WTS17S0786215E Page 9 of 40

5.2 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	± 1 x 10 ⁻⁶
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
Radiated Spurious Emissions test	± 5.03 dB (Bilog antenna 30M~1000MHz)
Radiated Spurious Effissions test	± 5.47 dB (Horn antenna 1000M~25000MHz)
Conducted Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)
Confidence interval: 95%. Confidence fa	actor:k=2

5.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by GUANG ZHOU GRG METROLOGY & TEST CO., LTD. address is No.163, Pingyun Rd. West of Huangpu Ave, Tianhe District, Guangzhou, Guangdong, China.

Reference No.: WTS17S0786215E Page 10 of 40

6 Test Summary

Test Items	Test Requirement	Result		
	15.247(d)			
Radiated Spurious Emissions	15.205(a)	Pass		
	15.209(a)			
Conducted Spurious Emissions	15.247(d)	Pass		
Conducted Emissions	15.207(a)	N/A		
Bandwidth	15.247(a)(2)	Pass		
Maximum Peak Output Power	15.247(b)(3),(4)	Pass		
Power Spectral Density	15.247(e)	Pass		
Band Edge	15.247(d)	Pass		
Antenna Requirement	15.203	Pass		
SAR Evaluation	1.1307(b)(1)	Pass		
Note: Pass=Compliance; Fail=Not Compliance; N/A=Not Applicable.				

Reference No.: WTS17S0786215E Page 11 of 40

7 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2013

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: Frequency (MHz) Limit (dBμV)
Quasi-peak Average

 Quasi-peak
 Average

 0.15 to 0.5
 66 to 56*
 56 to 46*

 0.5 to 5
 5
 60

 5 to 30
 60
 50

Remark: This requirement does not apply for device powered by battery.

Reference No.: WTS17S0786215E Page 12 of 40

8 Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.10:2013

Test Result: PASS
Measurement Distance: 3m

Limit:

	Field Strength		Field Strength Limit at 3m Measurement Dist		
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

8.1 EUT Operation

Operating Environment:

Temperature: $23.5 \, ^{\circ}\text{C}$ Humidity: $52.1 \, \% \, \text{RH}$

Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in Transmitting mode (Bluetooth LE), the test data were shown in the report.

8.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

8.3 Spectrum Analyzer Setup

Sweep Speed	Auto
IF Bandwidth	10kHz
Video Bandwidth	10kHz
Resolution Bandwidth	10kHz
z	
Sweep Speed	Auto
Detector	PK
Resolution Bandwidth	100kHz
Video Bandwidth	300kHz
Sweep Speed	Auto
Detector	PK
Resolution Bandwidth	1MHz
Video Bandwidth	3MHz
Detector	Ave.
Resolution Bandwidth	1MHz
Video Bandwidth	10Hz
	Sweep Speed

Reference No.: WTS17S0786215E Page 15 of 40

8.4 Test Procedure

1. The EUT is placed on a turntable, which is 0.8m above ground plane for below 1GHz and 1.5m for above 1GHz.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.

4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.

5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

6. Repeat above procedures until the measurements for all frequencies are complete.

7. The radiation measurements are performed in X, Y and Z axis positioning(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), the worst condition was tested putting the eut in X axis, so the worst data were shown as follow.

8.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. - Limit

8.6 Summary of Test Results

Test Frequency: 9 KHz ~ 30 MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 18GHz

Frequency	Receiver Reading		r				Turn	RX An	tenna Corrected		Corrected		
		Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin				
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/ m)	(dB)				
			GFSK L	ow Chanr	nel 2402	MHz							
326.89	34.59	QP	156	2.0	Н	-13.35	21.24	46.00	-24.76				
326.89	39.16	QP	11	1.3	V	-13.35	25.81	46.00	-20.19				
4804.00	46.38	PK	271	1.5	V	-1.06	45.32	74.00	-28.68				
4804.00	38.46	Ave	271	1.5	V	-1.06	37.40	54.00	-16.60				
7206.00	49.34	PK	331	1.9	Н	1.33	50.67	74.00	-23.33				
7206.00	35.44	Ave	331	1.9	Н	1.33	36.77	54.00	-17.23				
2318.34	45.92	PK	43	1.5	V	-13.19	32.73	74.00	-41.27				
2318.34	39.96	Ave	43	1.5	V	-13.19	26.77	54.00	-27.23				
2356.24	44.57	PK	301	1.4	Н	-13.14	31.43	74.00	-42.57				
2356.24	36.18	Ave	301	1.4	Н	-13.14	23.04	54.00	-30.96				
2487.53	42.13	PK	210	1.3	V	-13.08	29.05	74.00	-44.95				
2487.53	37.98	Ave	210	1.3	V	-13.08	24.90	54.00	-29.10				

Frequency	Receiver Reading	Detector	Turn	RX An	tenna	Corrected	Corrected		
			table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	GFSK Middle Channel 2440MHz								
326.89	33.43	QP	4	1.4	Н	-13.35	20.08	46.00	-25.92
326.89	38.12	QP	181	1.9	V	-13.35	24.77	46.00	-21.23
4880.00	43.46	PK	48	1.8	V	-0.62	42.84	74.00	-31.16
4880.00	37.32	Ave	48	1.8	V	-0.62	36.70	54.00	-17.30
7320.00	48.22	PK	53	1.2	Н	2.21	50.43	74.00	-23.57
7320.00	35.19	Ave	53	1.2	Н	2.21	37.40	54.00	-16.60
2340.45	45.19	PK	140	1.9	V	-13.19	32.00	74.00	-42.00
2340.45	38.98	Ave	140	1.9	V	-13.19	25.79	54.00	-28.21
2362.54	43.27	PK	166	1.6	Н	-13.14	30.13	74.00	-43.87
2362.54	37.50	Ave	166	1.6	Н	-13.14	24.36	54.00	-29.64
2497.27	44.74	PK	334	1.1	V	-13.08	31.66	74.00	-42.34
2497.27	38.29	Ave	334	1.1	V	-13.08	25.21	54.00	-28.79

Frequency	Receiver Reading Dete		Turn RX Ante table Angle Height	tenna	Corrected	Corrected			
		Detector		Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	GFSK High Channel 2480MHz								
326.89	33.37	QP	52	2.0	Н	-13.35	20.02	46.00	-25.98
326.89	37.49	QP	135	1.1	V	-13.35	24.14	46.00	-21.86
4960.00	44.06	PK	22	2.0	V	-0.24	43.82	74.00	-30.18
4960.00	36.27	Ave	22	2.0	V	-0.24	36.03	54.00	-17.97
7440.00	47.10	PK	63	1.9	Н	2.84	49.94	74.00	-24.06
7440.00	35.17	Ave	63	1.9	Н	2.84	38.01	54.00	-15.99
2333.93	45.27	PK	42	2.0	V	-13.19	32.08	74.00	-41.92
2333.93	37.73	Ave	42	2.0	V	-13.19	24.54	54.00	-29.46
2360.18	44.26	PK	307	1.4	Н	-13.14	31.12	74.00	-42.88
2360.18	36.81	Ave	307	1.4	Н	-13.14	23.67	54.00	-30.33
2489.63	42.36	PK	235	1.3	V	-13.08	29.28	74.00	-44.72
2489.63	37.56	Ave	235	1.3	V	-13.08	24.48	54.00	-29.52

Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not reported.

Reference No.: WTS17S0786215E Page 19 of 40

9 Conducted Spurious Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB 558074 D01 DTS Meas Guidance v04, April 5, 2017

Test Result: PASS

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

9.1 Test Procedure

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
- 2. Set the spectrum analyzer:

RBW = 100kHz, VBW = 300kHz, Sweep = auto Detector function = peak, Trace = max hold

9.2 Test Result

Bluetooth LE Low Channel

Fundamental

Reference No.: WTS17S0786215E Page 23 of 40

10 **Band Edge Measurement**

Test Requirement: FCC CFR47 Part 15 Section 15.247

558074 D01 DTS Meas Guidance v04, April 5, 2017 Test Method:

Test Limit: Regulation 15.247 (d), In any 100 kHz bandwidth outside the

> frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Mode: **Transmitting**

10.1 Test Produce

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

10.2 Test Result

Test result plots shown as follows:

Reference No.: WTS17S0786215E Page 25 of 40

11 Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 DTS Meas Guidance v04, April 5, 2017

11.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100 kHz, VBW = 300 kHz

11.2 Test Result:

Operation mode	Test Channel	6dB Bandwidth (MHz)		
	Channel 0	0.683		
Bluetooth LE	Channel 19	0.683		
	Channel 39	0.683		

Reference No.: WTS17S0786215E Page 27 of 40

12 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 DTS Meas Guidance v04, April 5, 2017

12.1 Test Procedure:

558074 D01 DTS Meas Guidance v04, April 5, 2017

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 1 MHz. VBW = 3 MHz. Sweep = auto; Detector Function = Peak, Set the span to fully encompass the DTS bandwidth.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

12.2 Test Result:

Operation mode	Operation mode Test Channel		Limit	
	Channel 0	-4.27	1W/30dBm	
Bluetooth LE	Channel 19	-4.97	1W/30dBm	
	Channel 39	-4.29	1W/30dBm	

Reference No.: WTS17S0786215E Page 29 of 40

13 Power Spectral density

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 DTS Meas Guidance v04, April 5, 2017

13.1 Test Procedure:

558074 D01 DTS Meas Guidance v04, April 5, 2017

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3kHz. VBW = 10kHz , Span = 1.5 times the DTS channel bandwidth(6 dB bandwidth). Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

13.2 Test Result:

Operation mode	Test Channel	Power Spectral (dBm per 3kHz)	Limit
	Channel 0	-18.17	8dBm per 3kHz
Bluetooth LE	Channel 19	-19.11	8dBm per 3kHz
	Channel 39	-19.31	8dBm per 3kHz

Reference No.: WTS17S0786215E Page 31 of 40

14 Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Result:

The EUT has one PCB Printed Antenna, the gain is 0dBi. meets the requirements of FCC 15.203.

Reference No.: WTS17S0786215E Page 32 of 40

15 FCC ID: 2AC2P-BA-521BT SAR Evaluation

Test Requirement: FCC Part 1.1307

Evaluation Method FCC Part2.1093 & KDB 447498 D01 General RF Exposure Guidance v06

15.1 Requirements

1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [$\sqrt{f(GHz)}$] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR where

- 1. f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation.
- 3. The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is \leq 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

15.2 The procedures / limit

Maximum conducted (average) output power (dBm)	Maximum conducted (average) output power (mW)	Source-based time-averaged maximum conducted output power(mW)	Minimum test separation distance required for the exposure conditions (mm)	SAR Test Exclusion Thresholds Calculation Value	SAR Test Exclusion Thresholds Limit	Result
-4.27	0.37	0.37	5	0.12	3.0	Compliance

Remark: Max. duty factor is 100%

Low Chanel: f=2412MHz=2.412GHz, so $\sqrt{f(GHz)}$ =1.553 High Chanel: f=2462MHz=2.462GHz, so $\sqrt{f(GHz)}$ =1.569

15.3 Result: Compliance

No SAR measurement is required.

16 Photographs – Model BA-521BT Test Setup

16.1 Radiated Spurious Emissions

Test frequency 9KHz to 30MHz

Test frequency from 30MHz to 1GHz

17 Photographs - Constructional Details

17.1 Model BA-521BT-External Photos

Reference No.: WTS17S0786215E Page 36 of 40

Reference No.: WTS17S0786215E Page 37 of 40

Reference No.: WTS17S0786215E Page 38 of 40

17.2 Model BA-521BT-Internal Photos

Reference No.: WTS17S0786215E Page 39 of 40

Reference No.: WTS17S0786215E Page 40 of 40

=====End of Report=====