Die bestmögliche Lösung lautet:

Durch eine Unterbrechungsfreie Stromversorgung (USV) vom Typ VFI sollen die in der Tabelle mit ihrer jeweiligen Leistungsaufnahme aufgeführten Geräte abgesichert werden.

Stück	Gerät	Leistungsauf nahme je
4	Computer	720 W
5	Monitor	15 W
1	Switch	10 W
2	Router	15 W
2	Router	15 V

a) Berechnen Sie die Gesamtleistungsaufnahme aller angeschlossenen Geräte:

Gesamt-Leistungsaufnahme: 2995 W

b) Berechnen Sie die Gesamt-Scheinleistung, wenn der **Powerfactor** (bzw. Leistungsfaktor bzw. cos φ) = **0.86** ist.

Gesamt-Scheinleistung: 3483 VA

USV-Hersteller empfehlen die Berücksichtigung einer zusätzlichen Leistungsreserve von 25 %.

c) Berechnen Sie die benötigte Scheinleistung in VA der USV, zur Absicherung der aufgeführten Komponenten mit der vom Hersteller empfohlenen zusätzlichen Leistungsreserve.

Scheinleistung inkl. Reserve: 4353 VA

Bestimmen Sie zu den folgenden Hexadezimalzahlen ihren Vorgänger und Nachfolger:

Vorgänger → gegebene Zahl → Nachfolger

$$\overline{\mathsf{FFFD}} \ \bigcirc \ \rightarrow \ \overline{\mathsf{FFFF}} \ \bigcirc \ \bigcirc$$

passt zu

Reihenschaltung

Schieben Sie die richtigen Bezeichnungen und Formeln neben dieses Bild ${ extstyle Q}$

passt zu

Uges = U1 + U2 + U3

passt zu

Schieben Sie die richtigen Bezeichnungen und Formeln neben dieses Bild

passt zu

Rges = R1 + R2 + R3

Die bestmögliche Lösung lautet:

abrunden	aufrunden	
©	0	Die voraussichtliche Standzeit einer USV mit einer bestimmten Last wurde in Minuten und Sekunden berechnet. Das Ergebnis ist in ganzen Minuten anzugeben.
0	•	Die Gesamt-Leistungsaufnahme aller durch eine USV abzusichernden Geräte wurde genau berechnet. Sie soll auf ganze 50 Watt gerundet werden.
0	©	Eine bestimmte Datenmenge (Audio-, Video-Dateien) soll auf einem USB-Stick gesichert werden. Die zu speichernde Datenmenge ist in ganzen GB anzugeben.
•	О	Der Wirkungsgrad einer Schaltung wurde auf 4 Stellen genau berechnet (0,xxyy) und soll in Prozent angegeben werden (xx,yy 9 Die Prozent-Angabe soll in ganzen Prozent erfolgen.

Bei einem Logik-IC, der digitale Grundlogiken enthält, ist leider die Typenbezeichnung nicht mehr komplett lesbar (siehe Foto).

Sie wissen daher nicht, WELCHE Grundlogik dieser IC enthält (4 x die gleiche Grundlogik).

Um dies herauszufinden, legen Sie an den Eingängen A und B Kombinationen aus High- und Low-Pegeln an und messen am Ausgang Y den resultierenden Pegel, wie in der folgenden Tabelle dargestellt:

Input Voltage		Output Voltage
B (Pin 2)	A (Pin 1)	Y (Pin 3)
1,8 V	1,8 V	1,8 V
1,8 V	4,2 V	1,8 V
4,2 V	1,8 V	1,8 V
4,2 V	4,2 V	4,2 V

(Positiv-Logik)

Wählen Sie aus der folgenden Tabelle die richtige **Teile-Nummer** aus (Feld "Part No." anklicken, bis es weiß umrandet ist):

Part No.	Description
74HC 00	Quad 2-input NAND Gate
74HC 02	Quad 2-input NOR Gate
74HC 04	Hex 1-input Inverter
74HC 08	Quad 2-input AND Gate
74HC 10	Triple 3-input NAND Gate
74HC 11	Triple 3-input AND Gate
74HC 20	Dual 4-input NAND Gate
74HC 30	Single 8-input NAND Gate
74HC 32	Quad 2-input OR Gate
74HC 86	Quad 2-input EXCLUSIVE-OR Gate
74HC 266	Quad 2-input EXCLUSIVE-NOR Gate

Berechnen Sie den Gesamtwiderstand dieser Schaltung mit R1 = 10 O und R2 = 50 O.

Handelt es sich hierbei um eine Reihenschaltung, eine Parallelschaltung oder eine gemischte Schaltung?

Der Gesamtwiderstand beträgt 8,3 Ω

Für ein Modellbau-Proiekt wollen Sie einen Mikro-Motor verwenden. Die Spannungsversorgung wird mit 6 V bereitgestellt. Da der Motor für eine Betriebsspannung von 4 V bei einer Stromaufnahme von 0.68 A ausgelegt ist, benötigen Sie einen entsprechenden Vorwiderstand.

Hinweis: Falls Sie sich einen Stromlaufplan zeichnen, können Sie den Motor als einen ohmschen Widerstand auffassen. Der Motor wird mit Gleichspannung betrieben – es gibt also keine Phasenverschiebung, Die Farbcodierung auf dem Widerstand hat keine Bedeutung. Sie

Schematische Darstellung (schematic figure)

Technische Daten Motor M₁

4 V Nennspannung Strom bei max. Wirkung 0.68 A Abgabeleistung (mechanische Leistung) 0.12 W Last-Drehzahl

14020 U/min 1 mm

Wellen-Ø Max. Drehmoment 0.025 Ncm

dient nur der Illustration. a) Berechnen Sie die Größe des benötigten Vorwiderstandes:

Widerstand \mathbf{R}_{R1} : 2.941 Ω Verlustleistung P_{R1}: 1.36 W

b) Berechnen Sie die Leistungsaufnahme des Motors

Leistungsaufnahme P_{M1}: 2.72 W

c) Die mechanische Leistung des Motors ist laut Datenblatt mit 0.12 W angegeben.

Berechnen Sie den Wirkungsgrad η des Motors.

Wirkungsgrad **n**_{M1}: 0.044 ohne Einheit (< 1)

Bitte geben Sie Dezimalzahlen nur durch Punkte getrennt an (nicht durch Komma): richtig: 2.5 falsch: 2,5!

Das Programm kann sonst Ihre Ergebnisse leider nicht richtig bewerten ("Bug").

Wie groß ist der Informationsgehalt einer 10-stelligen Binärinformation?

(anders formuliert: Wieviele Informationen können mit einer 10-stelligen Dualzahl dargestellt werden?)

Geben Sie bitte nur den **Zahl**enwert an!

Antwort: 1024

Bestimmen Sie zu den folgenden Dualzahlen ihren Vorgänger und Nachfolger:

Vorgänger → gegebene Zahl → Nachfolger 10000 → 10001 → 10010 🐼