关系数据库

关系模型概述

关系数据结构及定义

关系

- 单一的数据结构---关系现实世界的实体以及实体间的各种联系均用关系来表示
- 逻辑结构----二维表 从用户角度,关系模型中数据的逻辑结构是一张二维表
- 建立在集合代数的基础上

域

- 一组具有相同数据类型的值的集合
 - 整数 实数 介于某个取值范围的整数

笛卡尔积

给定一组域D1, D2, ..., Dn, 允许其中某些域是相同的

$$D_1$$
, D_2 , ..., D_n 的笛卡尔积为:
$$D_1 \times D_2 \times ... \times D_n = \{ (d_1, d_2, ..., d_n) \mid d_i \in D_i, i = 1, 2, ..., n \}$$

所有域的所有取值的一个不重复组合 取集合

表示方法

• 笛卡尔积可表示为一张二维表

• 表中的每行对应一个元组, 表中的每列对应一个域

元组

笛卡尔积中每一个元素 (d1, d2,, dn) 叫作一个n元组 (n-tuple) 或简称元组

分量

笛卡尔积元素 (d1, d2, ..., dn) 中的每一个值di叫作一个分量

基数

若 D_i (i=1, 2, ..., n) 为有限集,其基数为 m_i (i=1, 2, ..., n) ,则 $D_1 \times D_2 \times ... \times D_n$ 的基数M为: $M = \prod_{i=1}^n m_i$

 $D_1 \times D_2 \times ... \times D_n$ 的<u>子集</u>叫作在域 D_1 , D_2 , ..., D_n 上的 关系,表示为

$$R (D_1, D_2, ..., D_n)$$

R: 关系名

n: 关系的目或度 (Degree)

关系中的每个元素是关系中的元组,通常用t表示

- n=1 为单元关系 一元关系
- n=2 为二元关系
- 关系也是一个二维表,表的每行对应一个元组,表的每列对应一个域

属性

• 关系中不同列可以对应相同的域

- 为了加以区分,必须对每列起一个名字,称为属性
- n目关系必有n个属性

码

• 候选码

若关系中的某一属性组的值能唯一地标识一个元组,则称该属性组为候选码简单的情况:候选码只包含一个属性

全码

最极端的情况:关系模式的所有属性组是这个关系模式的候选码,称为全码

主码

若一个关系有多个候选码,则选定其中一个为主码

• 主属性

候选码的主属性称为主属性 (Prime attribute) 不包含在任何侯选码中的属性称为非主属性或非码属性 (Non-key attribute)

三类关系

- 基本关系(基本表或基表)实际存在的表,是实际存储数据的逻辑表示
- 查询表查询结果对应的表
- 视图表 由基本表或其他视图表导出的表,是虚表,不对应实际存储的数据

基本关系的性质

- 1. 列是同质的
- 不同的列可出自同一个域
 其中的每一列称为一个属性
 不同的属性要有不同的属性名
- 3. 列是无序的, 行也是
- 4. 元组的候选码具有唯一性
- 5. 分量必须取原子值

表2.3 非规范化关系					
SUPERVISOR	SPECIALITY	POSTGR	ADUATE		
		PG1	PG2		
张清玫	计算机专业	李勇	刘晨		
刘逸	信息专业	王敏		K	
				小表	

关系模式

是对关系的描述

R (U, D, DOM, F)

- R 关系名 表名
- U 组成该关系的属性名集合 表的属性
- D U中属性所来自的域 属性类型
- DOM 属性向域的映像集合
- F 属性间数据的依赖关系的集合

关系模式通常可以简记为 R(U) 或 $R(A_1, A_2, ..., A_n)$

域名及属性向域的映象常常直接说明为属性的类型、长度

关系数据库

在一个给定的应用领域中, 所有关系的集合构成一个关系数据库

- 关系数据库的型:关系数据库模式,是对关系数据库的描述
- 关系数据库的值:关系模式在某一时刻对应的关系的集合,通常称为关系数据库

关系模型的存储结构

- 有的关系数据库管理系统中一个表对应一个操作系统文件,将物理数据组织 交给操作系统完成
- 有的关系数据库管理系统从操作系统那里申请若干个大的文件,自己划分文件空间,组织表、索引等存储结构,并进行存储管理

关系操作

常用的关系操作

• 查询操作: **选择,投影,并,差,笛卡尔积**,连接,除,交前五个为基本操作

• 数据更新:插入,删除,修改

操作的对象和结果都是集合,一次一集合的方式

关系的完整性

三类完整性约束

实体完整性和**参照**完整性

关系模型必须满足的完整性约束条件称为关系的两个不变性,应该由关系系统 自动支持

用户定义的完整性

应用领域需要遵循的约束条件,体现了具体领域中的语义约束

实体完整性

若属性A为基本关系R的主属性,则不能为空

参照完整性

关系间的引用

在关系模型中实体及实体间的联系都是用关系来描述的,自然存在着关系与关系间的引用

引用其他元组的属性参数

学生关系引用了专业关系的主码"专业号"

学生关系中的"专业号"值必须是确实存在的专业的专业号

例[2.3] 学生实体及其内部的一对多联系

学生(学号,姓名,性别,专业号,年龄,班长)

学号	姓名	性别	专业号	年龄	班长
801	张三	女	01	19	802
802	李四	男	01	20	
803	王五	男	01	20	802
804	赵六	女	02	20	805
805	钱七	男	02	19	

"学号"是主码,"班长"是**外码**,它引用了本关系的"学号" "班长"必须是确实存在的学生的学号

外码

设F是基本关系R的一个或一组属性,但不是关系R的码,如果F与基本关系S的主码K。相对应,则称F是R的外码

- 基本关系R称为参照关系
- 基本关系S称为被参照关系或目标关系

例

学生关系的 专业号 与专业关系的主码 专业号 相对应

- "专业号"属性是学生关系的外码
- 专业关系是被参照关系, 学生关系为参照关系

学生关系 ──专业号 专业关系

- 关系R和S不一定是不同的关系
- 目标关系S的主码K。和参照关系的外码F必须定义在同一个(或一组)域上
- 外码并不一定要与相应的主码同名
- 当外码与相应的主码属于不同关系时,往往取相同的名字,以便于识别

参照完整性规则

若属性(或属性组)F是基本关系R的外码它与基本关系S的主码Ks相对应(基本关系R和S不一定是不同的关系),则对于R中每个元组在F上的值必须为:

- 取空值
- 等于S中某个元组的主码值

例如

学生关系中每个元组的 专业号 属性只取两类值:

- 空值,未分配专业
- 非空值,专业号值

用户定义的完整性

一些合理的,人性化的要求

例:

课程(课程号,课程名,学分)

- ■"课程号"属性必须取唯一值
- ■非主属性"课程名"也不能取空值
- "学分"属性只能取值{1,2,3,4}

关系代数

- 运算对象和结果是关系
- 运算符: 集合运算符, 专门的关系运算符
- 传统的集合运算是从关系的"水平"方向即行的角度进行
- 专门的关系运算不仅涉及行而且涉及列

运算	含义	
集合	U	并
运算符	-	差
	Ω	交
	×	笛卡尔积
专门的	σ	选择
关系	π	投影
运算符	\bowtie	连接
	÷	除

比较运算符	>,>=,<,<=,=,=/	大于小于等于, 大于等于等
	_	非
逻辑运算符	٨	与
	V	或

传统的运算

井∪

R,S 进行并运算的前提

- 具有相同的目n (即两个关系都有n个属性)
- 相应的属性取自同一个域

RUS 仍为 n 目关系,由属于R或属于S的元组组成 取并集

 $R \cup S = \{t \mid t \in R \lor t \in S\}$

差 -

R,S 进行差运算的前提

- 具有相同的目n (即两个关系都有n个属性)
- 相应的属性取自同一个域

仍为n目关系,由属于R而不属于S的所有元组组成 取差集

$R - S = \{t \mid t \in R \land t / \in S\}$

R					
Α	В	С	R-S		
a1	b1	с1	Α	В	С
a1	b2	c2	a1	b1	c1
a2	b2	c1			
S					
Α	В	С			
a1	b2	c2			
a1	b3	c2			
a2	b2	с1			WERS ITT

交⋂

R,S 进行交运算的前提

- 具有相同的目n (即两个关系都有n个属性)
- 相应的属性取自同一个域

取交集

$$R \cap S = \{ t | t \in R \land t \in S \}$$

 $R \cap S = R - (R-S)$

R					
Α	В	С	R∩S		
a1	b1	с1	Α	В	С
a1	b2	c2	a1	b2	c2
a2	b2	с1	a2	b2	c1
S			az	UZ	CI
Α	В	С			
a1	b2	c2			
a1	b3	c2			
a2	b2	с1			NERS I I PON

笛卡尔积 X

- R: n目关系, k个元组
- S: m目关系, k2个元组

RXS

- 列:有(n+m)列 元组的前n列是关系R的一个元组 后m列是关系S的一个元组
- 行: k1 X k2 个元组

$$R \times S = \{ \widehat{t_r} \, t_s \mid t_r \in R \land t_s \in S \}$$

			$R \times$	S				
_			R.A	R.B	R.C	S.A	S.B	S.C
R			" a1	b1	с1	a1	b2	c2
Α -1	В	C	→a1	b1	с1	a1	b3	c2
a1 a1	b1 b2	c1 <	a1	b1	с1	a2	b2	с1
a2	b2	c1	a1	b2	c2	a1	b2	c2
S			a1	b2	c2	a1	b3	c2
Α	В	c	a1	b2	c2	a2	b2	c1
a1	b2	c2	a2	b2		a1	b2	c2
a1	b3	c2	\ \.		c1	aı	DZ	CZ
a2	b2	с1	\ a2	b2	с1	a1	b3	c2
			a2	b2	с1	a2	b2	с1

专门的关系运算

几个记号

 $R, t \in R, t[Ai]$

设关系模式为R(A1, A2,, An)

它的一个关系设为R

t∈R 表示t是R的一个元组

t[Ai]则表示元组t中相应于属性Ai的一个分量

A, t[A], A

若 $A=\{A_{i1}, A_{i2}, ..., A_{ik}\}$,其中 $A_{i1}, A_{i2}, ..., A_{ik}$ 是 $A_1, A_2, ..., A_n$ 中的一部分,则A称为属性列或属性组。

t[A]=($t[A_{i1}]$, $t[A_{i2}]$, ..., $t[A_{ik}]$)表示元组t在属性列A上诸分量的集合。

A则表示 $\{A_1, A_2, ..., A_n\}$ 中去掉 $\{A_{i1}, A_{i2}, ..., A_{ik}\}$ 后剩余的属性组。

(3) $\widehat{t_r} \widehat{t_s}$

R为n目关系,S为m目关系。

 $t_r \in R$, $t_s \in S$, $t_r t_s$ 称为元组的连接。

 $t_r t_s$ 是一个n + m列的元组,前n个分量为R中的一个n元组,后m个分量为S中的一个m元组。

(4) 象集Z_x

给定一个关系R(X, Z),X和Z为属性组。

当t[X]=x时,x在R中的象集(Images Set)为:

 $Z_{\mathbf{x}} = \{t[Z] | t \in \mathbb{R}, t[X] = x\}$

它表示R中属性组X上值为x的诸元组在Z上分量的集合

R	
x_1	Z_1
x_1	Z_2
x_1	Z_3
x_2	Z_2
x_2	Z_3
x_3	Z_1
x_3	Z_3

 $Z_{x2} = \{Z_2, Z_3\},$

❖ x₃在R中的象集

❖ x₂在R中的象集

❖ x₁在R中的象集

 $Z_{x1} = \{Z_1, Z_2, Z_3\},$

 $Z_{x3} = \{Z_1, Z_3\}$

象集举例

专门的关系运算有

选择,投影,连接,除运算

选择运算

又称限制

选择σ

在关系R中选择满足给定条件的诸元组

$$\sigma_{\mathsf{F}}(R) = \{t | t \in R \land F(t) = '真'\}$$

F: 选择条件,是一个逻辑表达式,取值为"真"或"假"

- ●基本形式为: X₁θY₁
- θ表示比较运算符,它可以是>,≥,<,≤,=或<>

选择运算是从关系R中选取使逻辑表达式F为真的元组,是从行的角度进行的运 算

(表名) (表名) (表名)

在表中符合逻辑表达式的元组

[例2.4] 查询信息系(IS系)全体学生。 $\sigma_{Sdept = 'IS'}$ (Student)

结果:

Sno	Sname	Ssex	Sage	Sdept
201215125	张立	男	19	IS

[例2.5] 查询年龄小于20岁的学生。

 $\sigma_{\text{Sage} < 20}(\text{Student})$

结果:

Sno	Sname	Ssex	Sage	Sdept
201215122	刘晨	女	19	IS
201215123	王敏	女	18	MA
201215125	张立	男	19	IS

投影运算□

某种关系在某种或多种属性上的投影

对列进行操作

■ 从R中选择出若干属性列组成新的关系

$$\pi_A(R) = \{ t[A] \mid t \in R \}$$

A: R中的属性列

■ 投影操作主要是从列的角度进行运算

■投影之后不仅取消了原关系中的某些列,而且还可能 取消某些元组(避免重复行)

[例2.6] 查询学生的姓名和所在系。

即求Student关系上学生姓名和所在系两个属性上的投影

$$\pi_{\text{Sname},\text{Sdept}}(\text{Student})$$

结果:

Sname	Sdept
李勇	cs
刘晨	cs
王敏	MA
张立	IS

连接也称为θ连接

连接运算的含义

从两个关系的笛卡尔积中选取属性间满足一定条件的元组 $R \bowtie S = \{ t_r t_s \mid t_r \in R \land t_s \in S \land t_r [A] \theta t_s [B] \}$

- A和B: 分别为R和S上度数相等且可比的属性组
- ●θ: 比较运算符
- 连接运算从R和S的广义笛卡尔积R×S中选取R关系在 A属性组上的值与S关系在B属性组上的值满足比较关 系θ的元组

自然连接

- 自然连接是一种特殊的等值连接 两个关系中进行比较的分量必须是相同的属性组
- 在结果中把重复的属性列去掉
- 自然连接的含义 R和S具有相同的属性组B

$$R \bowtie S = \{ \widehat{t_r t_s} [U-B] \mid t_r \in R \land t_s \in S \land t_r[B] = t_s[B] \}$$

一般的连接操作是从行的角度进行运算

自然连接还需要取消重复列,所以是同时从行和列的角度进行运算

自然连接步骤:

- 先找到两种关系中的相等属性r
- 以属性r值较少的关系为准,决定连接后的关系行数
- 然后正常连接即可

	R	
Α	В	С
a1	b1	5
a1	b2	6
a2	b3	8
a2	b4	12

3			
В	E		
b1	3		
b2	7		
b3	10		
b3	2		
b5	2		

两种关系存在相同属性B, 所以自然连接后, 关系应有A,B,C,E四种属性R有4行, S有5行, 所以自然连接后, 关系应有4行

所以自然连接后的关系结果为

A	В	С	D
a1	b1	5	3
a1	b2	6	7
a2	b3	8	10
a2	b3	8	2

当0不等于0时

将关系R中所有属性C小于关系S中的属性E的情况都列出来

每一行上,C 都是小于 E的

4	等值连接 $R \bowtie_{R.B=S.B}$ 的结果如下:					
	Α	R.B	С	S.B	E	
	a1	b1	5	b1	3	
	a1	b2	6	b2	7	
	a2	b3	8	b3	10	
	a2	b3	8	b3	2	

每一行上, R.B = S.B

属性值必须两个关系共有,结果去掉重复的

悬浮元组

两个关系R和S在做自然连接时,关系R中某些元组有可能在S中不存在公共属性上值相等的元组,从而造成R中这些元组在操作时被舍弃了,这些被舍弃的元组称为悬浮元组

外连接

- 如果把悬浮元组也保存在结果关系中,而在其他属性上填空值(Null),就 叫做外连接
- 左外连接
 - ·只保留左边关系R中的悬浮元组
- 右外连接
 - ·只保留右边关系S中的悬浮元组

	左连	连接			右连	接	
Α	В	С	E	Α	В	С	E
a1	b1	5	3	a1	b1	5	3
a1	b2	6	7	a1	b2	6	7
a2	b3	8	10	a2	b3	8	10
a2	b3	8	2	a2	b3	8	2
a2	b4	12	NULL	NULL	b5	NULL	2

除运算

同时在列和行上进行操作

给定关系R(X, Y)和S(Y, Z),其中X, Y, Z为属性组。 R中的Y与S中的Y可以有不同的属性名,但必须出自相同的域集。 R与S的除运算得到一个新的关系P(X),P是R中满足下列条件的元组在X属性 列上的投影:

元组在X上分量值x的象集Y,包含S在Y上投影的集合,记作:

$$R \div S = \{t_r[X] | t_r \in R \land \pi_Y(S) \subseteq Y_x\}$$

 Y_x : x 在 R 中的象集, $x = t_r[X]$

除操作是同时从行和列角度进行运算

R				
Α	В	С		
a1	b1	c2		
a2	b3	с7		
a3	b4	c6		
a1	b2	c3		
a4	b6	c6		
a2	b2	c3		
a1	b2	с1		

S				
В	С	D		
b1	c2	d1		
b2	с1	d1		
b2	c3	d2		

R ÷ S

在关系R中, A可以取四个值{a1, a2, a3, a4}

- a1的象集为{ (b1, C2) , (b2, c3) , (b2, c1) }
- a2的象集为{ (b3, C7) , (b2, C3}
- a3的象集为{ (b4, c6l}
- a4的象集为{ (bs, c6l} S 在 (B, C) 上的投影为 { (b1, c2), (b2, c1), (b2, c3) }

只有a1的象集包含了S在(B, C)属性组上的投影所以R÷S={a1}

