RC1 Joy.md 5/14/2020

VP160 RC1

Github: https://github.com/joydddd/VP160-2020-SU-NOTES

you may need chrome + MathJax Plugin for Github to view properly

Github version will the most up to date one.

Concepts

Physical Quantities: ALWAYS number + unit

Scale / Vector ?

Numbers

• Scientific notation: 6.02×10^{23}

significant figures

uncertainty

 \circ e.g. $1.259 \pm 0.001 \mu A$

Units

• unit prefixes: $nm(10^{-9}, nano)$,\mu m(10^{-6}, micro), $um(10^{-3}, mili)$, $km(10^{3}, kilo)$...

unit conversions

Vectors

• addition/ constant multiplication/ subtraction --> vector

• dot product --> scale

$$\circ$$
 e.g. $P = \overrightarrow{F} \cdot \overrightarrow{v} = |\overrightarrow{F}||\overrightarrow{v}|cos\theta$

cross product

$$\circ$$
 e.g. $\overrightarrow{F}=\overrightarrow{IL} imes\overrightarrow{B}$

- \circ length: the cross section area of two vector $|\stackrel{
 ightarrow}{F}|=I|\stackrel{
 ightarrow}{L}||\stackrel{
 ightarrow}{B}|sin heta$
- o direction: right handed rule

Coordinate Systems

Cartesian

$$ullet |\overrightarrow{w}| = \sqrt{w_x^2 + w_y^2 + w_z^2}$$

- $\circ \{\hat{n_x}, \hat{n_y}, \hat{n_z}\} / \{\hat{i}, \hat{j}, \hat{k}\}$
 - lacksquare mutually perpendicular $\hat{n_x} \cdot \hat{n_y} = 0$
 - unit length $|\hat{n_x}| = 1$
 - lacksquare Right-hand Rule $\hat{n_x} imes \hat{n_y} = \hat{n_z}$

$$\circ \stackrel{
ightarrow}{r} = x\hat{n_x} + y\hat{n_y} + z\hat{n_z}$$

differentiate:

$$rac{\mathrm{d}\, \overrightarrow{u}}{\mathrm{d}t} = rac{\mathrm{d}}{\mathrm{d}t}(u_x(t)\hat{n_x} + u_y(t)\hat{n_y} + u_z(t)\hat{n_z}) = \dot{u_x}(t)\hat{n_x} + \dot{u_y}(t)\hat{n_y} + \dot{u_z}(t)\hat{n_z} \setminus 0$$

- integrate
- lacktriangledown dot product $\overrightarrow{u}\cdot\overrightarrow{w}=u_xw_x+u_yw_y+u_zw_z$
- cross product

$$\overrightarrow{u} imes \overrightarrow{w} = (u_y w_z - u_z w_y) \hat{n_x} + (u_z w_x - u_x w_z) \hat{n_y} + (u_x w_y - u_y w_x) \hat{n_z}$$

- Cylindrical
 - $\circ \{\hat{n_{\rho}}, \hat{n_{\varphi}}, \hat{n_{z}}\}$
 - $lacksquare
 ho = \sqrt{x^2 + y^2}$
 - $\varphi = \arctan \frac{y}{x}$
 - z=z
 - $x = \rho \cos \varphi$
 - $y = \rho \sin \varphi$
 - $\circ \stackrel{
 ightarrow}{r} =
 ho \hat{n_
 ho} + z \hat{n_z}$
 - NOT directly differentiable!!! Will discuss later
- Spherical
 - o longitude and latitude system
 - $\circ \ \{\hat{n_r}, \, \hat{n_\varphi}, \, \hat{n_\theta}\}$
 - $ho=\sqrt{x^2+y^2+z^2}$

 - $\varphi = \arctan \frac{\bar{y}}{x} (0, \pi)$ $\theta = \arctan \frac{\sqrt{x^2 + y^2}}{z} (0, \pi/2)$
 - $x = r \sin\theta \cos\varphi$
 - $y = r \sin\theta \sin\varphi$
 - $z = r \cos \theta$
 - - NOT directly differentiable!!! Will discuss later
- 2D polar coordinates
 - $\circ \;\;$ Cylindrical coordinates with z=0
 - $\circ~$ Spherical coordinates with heta=0

1D kinematics

Average vs. Instantaneous

Velocity

- average velocity:
 - $\circ \ v_{
 m av,x} = rac{x(t+\Delta t)-x(t)}{\Delta t}$
- velocity
 - \circ When the time interval $\Delta t \to 0$
 - $\circ \frac{\mathrm{d}x(t)}{\mathrm{d}t} = \dot{x}(t) \stackrel{\mathrm{def}}{=} v_x(t)$
 - o velocity is location change rate w.r.t time

Acceleration

- average acceleration $a_{ ext{av,x}} = rac{v_x(t+\Delta t) v_x(t)}{\Delta t}$
- acceleration

RC1_Joy.md 5/14/2020

 \circ When time interval $\Delta t o 0$

$$\begin{array}{ll} \circ & a_x(t) = \frac{\mathrm{d} v_x(t)}{\mathrm{d} t} = \dot{v_x}(t) = \frac{\mathrm{d}^2 x(t)}{\mathrm{d} t^2} = \ddot{x}(t) \\ \circ & \text{acceleration is velocity change rate w.r.t and twice differentiation of position w.r.t time.} \end{array}$$

see lecture notes for pics

Relativity of Velocity/acceleration