Law of Large Graphs 1

Law of Large Graphs

June 17, 2015

- 1 Introduction
- 2 Background
- 3 Theory
- 4 Simulations

To demonstrate the previous results, we simulate random graphs from a SBM with parameters.

$$B = \begin{bmatrix} .42 & .2 \\ .2 & .7 \end{bmatrix}, \qquad \rho = \begin{bmatrix} .5 & .5 \end{bmatrix}$$

From this model we sample M Adjacency Matrices with N vertices to calculate both \bar{A} and \hat{P} . With these estimators for P, we calculate the mean squared error of each block region in the model, and compare these with our predictions.

Law of Large Graphs 2

Figure 1: N*Variance(\hat{P}) and RE, dotted lines represent the predictions and each color represents unique values within the true $P \in \{.2, .42, .7\}$

We now examine simulations where we vary the ρ vector for the SBM with the following parameters:

$$B = \begin{bmatrix} .42 & .2 \\ .2 & .7 \end{bmatrix}, \qquad N = 500, \qquad M = 100$$

Law of Large Graphs 3

Figure 2: N*Variance(\hat{P}) and RE, plots on the left are Predicted values corresponding to the right plot and each color represents unique values within the true $P \in \{.2, .42, .7\}$

5 Real Data

6 Discussion