Exercise-set 5. Solutions

- 1. $\chi(G) \geq \lceil n/2 \rceil$ (at most 2 vertices can get the same color), and G can be colored with this many colors $\implies \chi(G) = \lceil n/2 \rceil$.
- 2. $\omega(G) \ge 10$ (any 10 consecutive numbers form a clique) $\implies \chi(G) \ge 10$, and G can be colored with 10 colors (periodically) $\implies \chi(G) \le 10$.
- 3. $\omega(G) \geq 5$ ({1,8,15,22,29} is a clique) $\Longrightarrow \chi(G) \geq 5$, and G can be colored with 5 colors $\Longrightarrow \chi(G) \leq 5$.
- 4. $\omega(G) \geq 11$ ({10,11,...,20} is a clique) $\Longrightarrow \chi(G) \geq 11$, and G can be colored with 11 colors $\Longrightarrow \chi(G) \leq 11$.
- 5. $\omega(G) \ge 4$ (the powers of 2 form a clique) $\implies \chi(G) \ge 4$, and G can be colored with 4 colors (using the same color between consecutive powers of 2) $\implies \chi(G) \le 4$.
- 6. $\omega(G) \ge 11$ (prime numbers and 1 form a clique) $\implies \chi(G) \ge 11$, and G can be colored with 11 colors $\implies \chi(G) \le 11$.
- 7. $\omega(G) \geq 5 \implies \chi(G) \geq 5$, and G can be colored with 5 colors $\implies \chi(G) \leq 5$.
- 8. G is K_{10} with a perfect matching deleted. $\omega(G) \geq 5 \implies \chi(G) \geq 5$, and G can be colored with 5 colors $\implies \chi(G) \leq 5$.
- 9. $\omega(G) \ge 6$ ($\{1,4,7,8,9,10\}$ is a clique) $\Longrightarrow \chi(G) \ge 6$, and G can be colored with 6 colors $\Longrightarrow \chi(G) \le 6$.
- 10. YES. See exercise 22.
- 11. $\omega(G) \geq 50$ (even numbers form a clique) $\implies \chi(G) \geq 50$, and G can be colored with 50 colors $\implies \chi(G) \leq 50$.
- 12. $\omega(G) \geq 4 \implies \chi(G) \geq 4$, and G can be colored with 4 colors $\implies \chi(G) \leq 4$.
- 13. $\chi(G) = 4$. See exercise 25.
- 14. Use the greedy coloring in the original (increasing) order of the vertices.
- 15. Order the vertices: first the exceptional ones, then the rest, and use the greedy coloring.
- 16. Use the greedy coloring in the decreasing order of the degrees.
- 17. a) Vertices of the same color are independent.
 - b) It is a good coloring, if each vertex in the complement of a maximum independent set of vertices gets a different color.
- 18. No (counterexample).
- 19. a) It is an interval graph (\exists a representation of the vertices with intervals).
 - b) It is not an interval graph, since $\chi(G) \neq \omega(G)$.
 - c) It is not an interval graph, since there is no representation of the vertices with intervals.
 - d) It is an interval graph.
 - e) It is not an interval graph (the 5-cycle cannot be represented with intervals).
 - f) It is an interval graph.
- 20. $\chi(G) = \omega(G) = 11$ (=max. # of intervals though a point)
- 21. It is an interval graph $(\exists$ a representation of the vertices with intervals).
- 22. $\omega = 10$ in the original graph. We can delete at most 2 vertices from a clique $\implies \chi = \omega \ge 8$.