UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"

FACULDADE DE CIÊNCIAS - CAMPUS BAURU
DEPARTAMENTO DE COMPUTAÇÃO
BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

NOME DO AUTOR

TÍTULO DO TEXTO

BAURU Outubro/2018

NOME DO AUTOR

TÍTULO DO TEXTO

Trabalho de Conclusão de Curso do Curso de Ciência da Computação da Universidade Estadual Paulista "Júlio de Mesquita Filho", Faculdade de Ciências, Campus Bauru.

Orientador: Prof. Dr. Seu Orientador

Nome do Autor Título do Texto/ Nome do Autor. - Bauru, Outubro/2018-24 p. : il. (algumas color.) ; 30 cm.

Orientador: Prof. Dr. Seu Orientador

Trabalho de Conclusão de Curso – Universidade Estadual Paulista "Júlio de Mesquita Filho"

Faculdade de Ciências

Ciência da Computação, Outubro/2018. 1. Tags 2. Para 3. A 4. Ficha 5. Catalográfica

Nome do Autor

Título do Texto

Trabalho de Conclusão de Curso do Curso de Ciência da Computação da Universidade Estadual Paulista "Júlio de Mesquita Filho", Faculdade de Ciências, Campus Bauru.

Banca Examinadora

Prof. Dr. Seu Orientador

Orientador Universidade Estadual Paulista "Júlio de Mesquita Filho" Faculdade de Ciências Departamento de Ciência da Computação

Professor Convidado 1

Universidade Estadual Paulista "Júlio de Mesquita Filho" Faculdade de Ciências Departamento de Ciência da Computação

Professor Convidado 2

Universidade Estadual Paulista "Júlio de Mesquita Filho" Faculdade de Ciências Departamento de Ciência da Computação

Bauru,	de	de	

Agradecimentos

Espaço destinado aos agradecimentos.

Resumo

Espaço destinado à escrita do resumo.

Palavras-chave: Palavras-chave de seu resumo.

Abstract

Abstract area.

Keywords: Abstract keywords.

Lista de figuras

Figura 1 –	Exemplo do ambiente TeXworks	19
Figura 2 –	Imagem 1 da minipage	19

Lista de quadros

Quac	lro 1	L –	Exemple	o de	e quadro																												10	6
------	-------	-----	---------	------	----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	----	---

Lista de tabelas

Гabе	la :	1	_	Exempl	o d	e transações	de	mercad	0																		1.	5
------	------	---	---	--------	-----	--------------	----	--------	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	----	---

Lista de abreviaturas e siglas

S1 Sigla 1

S2 Sigla 2

Sumário

1	INTRODUÇÃO 14
1.1	Modificadores de Texto
1.2	Seções
1.2.1	Subseções
1.2.1.1	Sub-subseções
1.3	Alíneas
1.4	Tabelas
1.5	Quadros
1.6	Algoritmos
1.7	Códigos
1.8	Figuras
1.9	Equações
1.10	Como citar as referências
1.11	Notas
2	CONCLUSÃO
	REFERÊNCIAS 23
	Índice

1 Introdução

Para iniciar a produção em .tex é necessário instalar os pacotes básicos da linguagem e seus compiladores. O MiKTeX é um pacote básico para o Windows (miktex.org/download) e o MacTeX um pacote básico para o Mac (tug.org/mactex) que contém o mínimo necessário de TeX/LaTeX para rodar. Ele já vem com os compiladores nativos da linguagem e uma IDE (TeXworks, para edição do texto) que possui o compilador integrado.

Normalmente é utilizado o modo pdfLaTeX + MakeIndex + BibTeX para compilar um arquivo .tex. Existem outros formatos de compiladores, mas essa opção é capaz de gerar um .pdf automático após a compilação e ainda por cima adicionar as funcionalidades do BibTeX (recursos para criação e montagem automática de fontes bibliográficas).

Além disso, também é necessária a instalação do pacote abnTeX2. Esse tutorial https://github.com/abntex/abntex2/wiki/Instalacao provém o passo a passo de como instalar cada componente do TeX, em qualquer sistema operacional (Linux, Mac OS e Windows). Caso esteja utilizando o MiKTeX, ele é capaz de efetuar o download do pacote automaticamente, apenas instale-o, abra o projeto.tex e compile-o, ele irá requisitar a autorização para baixar automaticamente os pacotes que faltam para efetuar a compilação.

Com tudo em mãos e o compilador funcionando, é hora de abrir o modelo (projeto.tex) e começar a escrever o texto. É possível perceber no código a estrutura do arquivo e os campos possíveis de edição. Ao escrever o texto, ele é escrito normalmente, sendo que existem diversos comandos para estilizá-lo, criar tabelas, figuras, dentre outros. A seguir abordaremos os principais comandos e funções que podem ser utilizadas em um projeto básico de TCC. Para outras funções e pacotes, procure no Google, a comunidade é ativa e provavelmente já deve ter feito o que é de sua necessidade.

O arquivo projeto.tex contém os pacotes e comandos básicos que definem a estrutura desse texto já no formato requisitado pela ABNT. Dentro dele é possível ver que estamos importando outros dois arquivos .tex (introducao e conclusao), ou seja, esses arquivos estão sendo basicamente concatenados com o comando "input". A divisão não é necessária, mas pode ser que auxilie na escrita do texto ao deixar as coisas mais separadas e organizadas, não sendo um único arquivo cheio de linhas e linhas de código.

1.1 Modificadores de Texto

Os modificadores de texto mais simples utilizados são o negrito ("textbf") **texto em negrito** e o itálico ("emph") *texto em itálico*.

1.2 Seções

Seções podem ser criadas a partir do comando "section" e hierarquizadas abaixo do capítulo principal. É possível referenciá-las, por exemplo, Seção 1.2 corresponde a seção atual em que estamos. Já se quisermos referenciar alguma outra coisa, é só utilizarmos o comando "ref" presente no código desse texto, por exemplo, Capítulo 1.

1.2.1 Subseções

Subseções também podem ser criadas com o comando "subsection" e referenciadas 1.2.1.

1.2.1.1 Sub-subseções

Também há mais um nível que pode ser criado com o comando "subsubsection".

1.3 Alíneas

- a) As alineas devem ser criadas desse modo, com o comando begin{alineas}. Isso é necessário para que estejam no formato definido pelo pacote abnTeX2 e, consequentemente, no formato definido pela ABNT.
- b) Cada item da alínea pode ser invocado com um comando item.
- c) O fim de cada alínea é determinado por end{alineas}.

1.4 Tabelas

As tabelas também podem ser referenciadas como se fossem seções ou figuras, por exemplo, esta é a Tabela 1.

Tabela 1 – Exemplo de transações de mercado.

TID	Conjunto de Itens
1	{Pão, Leite}
2	{Pão, Fralda, Cerveja, Ovos}
3	{Leite, Fralda, Cerveja, Coca-Cola}
4	{Pão, Leite, Fralda, Cerveja}
5	{Pão, Leite, Fralda, Coca-Cola}

Quando uma tabela é criada com begin{table}, ela é automaticamente adicionada à Lista de Tabelas.

1.5 Quadros

Este modelo vem com o ambiente quadro e impressão de Lista de quadros configurados por padrão. Verifique um exemplo de utilização:

Quadro 1 – Exemplo de quadro

Pessoa	Idade	Peso	Altura
Marcos	26	68	178
Ivone	22	57	162
Sueli	40	65	153

Fonte: Autor.

Este parágrafo apresenta como referenciar o quadro no texto, requisito obrigatório da ABNT. Primeira opção, utilizando autoref: Ver o Quadro 1. Segunda opção, utilizando ref: Ver o Quadro 1.

1.6 Algoritmos

O pacote nicealgo incluído nos arquivos desse projeto é responsável por disponibilizar comandos extras, não inerentes ao básico TeX, para a criação de algoritmos. Um exemplo do Algoritmo 1 é escrito a seguir. Eles também pode ser referenciados como se fossem tabelas ou figuras.

Algoritmo 1 - Algoritmo AIS

 ${\rm Entrada:} \quad {\rm Conjunto} \,\, {\rm Frequente} \,\, L = 0 \,\, {\rm e} \,\, {\rm Grupo} \,\, {\rm de} \,\, {\rm Fronteira} \,\, F = 0.$

```
Enquanto F \neq 0, faça
2.
           Seja conjunto candidato C = 0;
3.
           Para cada tuplas t da base de dados, faça
4.
                 Para cada conjuntos de itens f em F, faça
                       Se t contém f, então
5.
                         Seja C_f = \text{conjuntos de itens candidatos extensões de } f \text{ e contidos em } t;
6.
                       Para cada conjunto de itens c_f em C_f, faça
7.
                             Se c_f \in C, então
8.
                               c_f.contagem = c_f.contagem+1;
9.
                             Se não
10.
                               c_f.contagem = 0;
C = C + c_f;
11.
12.
13.
14.
15.
           Seja F = 0;
16.
17.
           Para cada conjunto de itens c em C, faça
                 Se contagem(c)/tamanho\_db > minsupport, então
18.
19.
                   L = L + c:
                 oldsymbol{Se}\ c deve ser usado como a próxima fronteira, então
20.
                   F = F + c;
21.
22.
23.
```

1.7 Códigos

Códigos podem ser criados a partir do comando begin{Istlisting} e end{Istlisting}. É possível passar parâmetros para essa função, como por exemplo, a linguage do código e a legenda dele. Por exemplo: \begin{Istlisting}[language=Python, caption=Exemplo de código em Python]

Código 1.1 – Exemplo de código em Python

```
import numpy as np

def incmatrix(gen|1,gen|2):
    m = len(gen|1)
    n = len(gen|2)
```

```
M = None \# to become the incidence matrix
VT = np.zeros((n*m,1), int) #dummy variable
#compute the bitwise xor matrix
M1 = bitxormatrix(genl1)
M2 = np.triu(bitxormatrix(genl2),1)
for i in range (m-1):
    for j in range (i+1, m):
        [r,c] = np.where(M2 == M1[i,j])
        for k in range(len(r)):
            VT[(i)*n + r[k]] = 1;
            VT[(i)*n + c[k]] = 1;
            VT[(j)*n + r[k]] = 1;
            VT[(j)*n + c[k]] = 1;
            if M is None:
                M = np.copy(VT)
            else:
                M = np.concatenate((M, VT), 1)
            VT = np.zeros((n*m,1), int)
```

return M

1.8 Figuras

Este parágrafo apresenta como referenciar figura no texto, requisito obrigatório da ABNT. Primeira opção, utilizando autoref: Ver a Figura 1. Segunda opção, utilizando ref: Ver a Figura 1.

Atente-se ao código para perceber um possível redimensionamento com a função scale e o caminho de onde a figura deve ser retirada.

Quando uma figura é criada com begin{figure}, ela é automaticamente adicionada à Lista de Ilustrações.

Figura 1 – Exemplo do ambiente TeXworks.

Fonte: Elaborada pelo autor.

Figura 2 - Imagem 1 da minipage

Fonte: Produzido pelos autores

1.9 Equações

O TeX também é muito famoso pela forma em que consegue tratar funções e símbolos matemáticos. A partir da utilização de dois cifrões (\$codigo matemático\$) é possível identificar ao compilador que a escrita a seguir são símbolos e códigos originários do pacote matemático do TeX. Aqui estamos demonstrado um exemplo $\phi=1+x$ dessa utilização.

Também podemos definir equações utilizando os comandos begin $\{equation\}$ e end $\{equation\}$. Por exemplo:

$$E(\mathbf{v}, \mathbf{h}) = -\sum_{i=1}^{m} a_i v_i - \sum_{j=1}^{n} b_j h_j - \sum_{i=1}^{m} \sum_{j=1}^{n} v_i h_j w_{ij},$$
(1.1)

$$P(\mathbf{v}, \mathbf{h}) = \frac{e^{-E(\mathbf{v}, \mathbf{h})}}{\sum_{\mathbf{v}, \mathbf{h}} e^{-E(\mathbf{v}, \mathbf{h})}},$$
(1.2)

$$\hat{\phi}^{j} = \begin{cases} \hat{\phi}^{j} \pm \varphi_{j}\varrho & \text{com probabilidade PAR} \\ \hat{\phi}^{j} & \text{com probabilidade (1-PAR)}. \end{cases}$$
 (1.3)

Existem diversos sites no Google que contém códigos de símbolos e funções matemáticas de todos os tipos. Exemplo:

 $estudijas.lu.lv/pluginfile.php/14809/mod_page/content/16/instrukcijas/matematika_moodle/LaTeX_Symbols.pdf.$

1.10 Como citar as referências

Aqui está um exemplo de como podemos referenciar as bibliografias utilizadas no trabalho. Elas são guardadas na forma de metadados (tags) no arquivo .bib a qual é importada no projeto principal (projeto.tex).

E podemos citá-las de acordo com os identificadores atribuídos para cada referência, por exemplo, (STONEBRAKER et al., 1993), (ROCHA; CAPPABIANCO; FALCÃO, 2009) e (KERAS..., 2018).

Após citar um item de referência bibliográfica com o comando "cite", ela será automaticamente padronizada e incluída na página de Referências de seu arquivo. Atualmente os maiores sites portadores de artigos, periódicos, dentre outros (IEEE, Springer, etc) já conseguem exportar a publicação desejado no formato BibTeX, sendo facilmente adicionado ao arquivo .bib de seu trabalho.

Muitas vezes não é possível exportar publicações diretamente para o formato BibTeX, como, por exemplo, na citação de sites. Para mais informações sobre como criar manualmente arquivos BibTeX: https://github.com/abntex/limarka/wiki/Adicionando-refer%C3%AAncias>

1.11 Notas

- O título de quadros e tabelas são sempre em cima.
- Sempre que possível, utilize o comando autoref.
- todas as figuras da monografia precisam estar referenciadas no texto pelo menos uma vez.

2 Conclusão

Os arquivos estão sendo concatenados. Podemos continuar a nossa escrita em outro arquivo .tex desde que ele seja importado no projeto principal, que é sempre o utilizado para efetuar a compilação.

Referências

KERAS Documentation. 2018. Disponível em: << https://keras.io/>>. Acesso em 22 de Outubro de 2018.

ROCHA, L. M.; CAPPABIANCO, F. A. M.; FALCÃO, A. X. Data clustering as an optimum-path forest problem with applications in image analysis. *International Journal of Imaging Systems and Technology*, Wiley Periodicals, v. 19, n. 2, p. 50–68, 2009.

STONEBRAKER, M.; AGRAWAL, R.; DAYAL, U.; NEUHOLD, E. J.; REUTER, A. Dbms research at a crossroads: The vienna update. In: *VLDB '93 Proceedings of the 19th International Conference on Very Large Data Bases.* [S.I.]: Morgan Kaufmann Publishers Inc., 1993. p. 688–692.

Índice