

Equilíbrio iônico: Kh, efeito do íon comum e tampão

Quer ver este material pelo Dex? Clique aqui

Resumo

Hidrólise Salina

Como sabemos, existem ácidos e bases de caráter forte ou fraco, dependendo do seu grau de ionização (no caso dos ácidos) ou de dissociação (no caso das bases). Sabemos, ainda, que a reação de um ácido com uma base gera um sal – com cátion derivado da base reagente e ânion derivado do ácido reagente – e água, conforme vemos na reação genérica abaixo:

$$HX + YOH \rightarrow YX + H_2O$$

Onde:

X = ânion do ácido hipotético HX;

Y = cátion da base hipotética YOH;

YX = sal de cátion Y e ânion X resultante.

Da mesma maneira, ao colocarmos para **reagirem um sal e a água**, a reação inversa ocorre, **gerando novamente o ácido e a base que deram origem a este sal**. A essa reação damos o nome de **hidrólise salina**. A hidrólise do sal YX, por exemplo, seria assim:

$$YX + H_2O \rightleftharpoons HX + YOH$$

Como a força dos ácidos e das bases variam, os **sais** que deles decorrem também terão **graus de acidez e basicidade** diversos. Mas se a acidez de um meio é determinada pela concentração de H⁺, e a basicidade, pela concentração de OH⁻, como um sal pode ter caráter ácido/básico? Pois bem, as formas como a hidrólise dos sais ocorrem também variam. Vejamos:

Hidrólise de sal de ácido forte e base fraca:

 Como o ácido é muito forte, ele se encontra totalmente (ou quase totalmente) ionizado. Já a base, muito fraca, encontra-se muito pouco dissociada, ou seja, praticamente não dissociada. Repare como a reação de hidrólise ocorrerá:

$$NH_4CI_{(aq)} + H_2O_{(l)} \rightleftharpoons NH_4OH_{(aq)} + H^+_{(aq)} + CI^-_{(aq)}$$

 A melhor maneira de representarmos isso é considerando a hidrólise do cátion da base separadamente, por ser o íon do eletrólito fraco (essa é a chamada equação iônica de hidrólise):

$$\begin{array}{c} NH_4^+_{(aq)} + H_2O_{(l)} \rightleftharpoons NH_4OH_{(aq)} + H^+_{(aq)} \\ & \qquad \qquad \\ \\ \text{Íon do eletrólito} \\ & \qquad \qquad \\ \\ \text{Excesso de íon } H^+ \\ \end{array}$$

 Note que a sobra de íons H⁺ na solução tornam o meio ácido, motivo pelo qual sais derivados de ácido forte e base fraca possuem caráter ácido.

! OPA, eletrólito?

É toda espécie química que, em meio aquoso, libera íons, ganhando, desse modo, capacidade de conduzir eletricidade. Por isso, em vez de dizermos "íon do **ácido** ou da **base** fraca ou do **sal**", podemos evitar a fadiga dizendo "íon do **eletrólito** fraco", já nos deixando entendidas/os que nos referíamos tanto a ácido como a base e a sal.

Hidrólise de sal de ácido fraco e base forte:

 Como a base é muito forte, ela se encontra totalmente (ou quase totalmente) dissociada. Já o ácido, muito fraco, encontra-se muito pouco ionizado, ou seja, praticamente não ionizado. Repare como a reação de hidrólise ocorrerá:

$$Na_2CO_3$$
 (aq) + 2 H_2O (I) \rightleftharpoons 2 Na^+ (aq) + 2 OH^- (aq) + H_2CO_3 (aq)

 A melhor maneira de representarmos isso é considerando a hidrólise do ânion do ácido separadamente, por ser o íon do eletrólito fraco (olha a equação iônica de hidrólise aí de novo):

$$\begin{array}{c} CO_3^{2^-} \text{ (aq)} + 2 \text{ H}_2O \text{ (I)} \rightleftharpoons H_2CO_3 \text{ (aq)} + 2 \text{ OH}^- \text{ (aq)} \\ \hline \text{ fon do eletrólito} \\ & \text{fraco} \end{array}$$

$$\begin{array}{c} \text{Excesso de ion OH}^- \\ \end{array}$$

 Note que a sobra de íons OH⁻ na solução tornam o meio básico, motivo pelo qual sais derivados de base forte e ácido fraco possuem caráter básico.

Hidrólise de sal de ácido e base fracos:

 Como tanto o ácido como a base são muito fracos, encontram-se muito pouco ionizados, ou seja, praticamente não ionizados. Repare como a reação de hidrólise ocorrerá:

$$NH_4CN_{(aq)} + H_2O_{(l)} \rightleftharpoons NH_4OH_{(aq)} + HCN_{(aq)}$$

 A melhor maneira de representarmos isso é considerando a hidrólise dos íons dos dois eletrólitos fracos (equação iônic... já tá ficando repetitivo, né não?):

$$NH_4^+_{(aq)} + CN^-_{(aq)} + H_2O_{(l)} \rightleftharpoons NH_4OH_{(aq)} + HCN_{(aq)}$$
 Íons dos eletrólitos

 Note que, em teoria, não houve sobra de íons H⁺ nem OH⁻, na solução. No entanto, sabemos que, embora ambos os eletrólitos sejam muito fracos, certamente um possui grau de ionização, logo constante de

ionização, maior que o do outro. Isto indica que, **mesmo que não possamos visualizar pela reação ideal** de hidrólise, na prática haverá, sim, sobra de íon H⁺ ou OH⁻.

- Mas como saber quem ioniza mais? Simples: comparando suas constantes de ionização (K_a/K_b). O que tiver K_i maior, terá força maior, e será, portanto, responsável pela sobra de íons. No caso utilizado, $K_a = 4,9.10^{-10}$ e $K_b = 1,8.10^{-5}$ ($K_b > K_a$), o que diz que a base é mais forte que o ácido (mas não muito, ok?).
- Conclusão: o meio fica ligeiramente básico. Caso K_a fosse maior que K_b, o meio ficaria ligeiramente ácido. Caso K_a e K_b fossem iguais, o meio ficaria neutro.

Dissolução de sal de ácido e base fortes:

 Como tanto a base como o ácido originários do sal são muito fortes, ambos se encontram totalmente (ou quase totalmente) ionizados. Ou seja, o que há é apenas uma dissolução do sal, sem formação de ácido nem de base, sem haver hidrólise – reparou que não tá escrito "hidrólise" no ponto "d"? ;). Olha só:

$$NaCl_{(s)} + H_2O_{(l)} \rightleftharpoons Na^+_{(aq)} + Cl^-_{(aq)} + H^+_{(aq)} + OH^-_{(aq)}$$

Repare que as concentrações dos íons H⁺ e OH⁻ são iguais entre si e iguais à da água "reagente" (entre aspas porque, neste caso, na verdade, é apenas solvente). Concluímos, pois, que a solução será neutra.
 Veja como a reação fica com cara de dissolução quando cortamos a água reagente com a água produto:

NaCl
$$_{(s)} \xrightarrow{H_2O} Na^+_{(aq)} + Cl^-_{(aq)}$$

Obs: - A seta de reação reversível não cabe aqui, uma vez que o que ocorreu foi a dissociação total dos íons do sal. Sendo assim, não há sentido inverso da reação;

- Aqui, obviamente, não houve a famosa equação iônica de hidrólise (aêêê).

Constante de Hidrólise (Kh)

Se não envolver alguma constante, a gente nem acredita que se trate de equilíbrio químico, não é mesmo? Pois bem, aqui também temos a **constante de hidrólise**, que, como toda constante, nos informa o padrão com que a hidrólise de um sal específico ocorre, em cada valor de temperatura.

Para encontrarmos o K_h de um sal, é importante sabermos que, entre a quantidade de íons dissociados, a quantidade dos que sofrem hidrólise varia. Às vezes, 70 em cada 100 íons — do eletrólito fraco, claro — são hidrolisados, isto é, 70% deles; às vezes, 1 em cada 10 (10%); etc. Conclusão, cada sal, em cada temperatura, tem seu **grau de hidrólise (a)**, um valor percentual que, como qualquer outro, pode ser representado também em valor decimal. Calculamos assim:

 α = n° de mols de íons hidrolisados / n° de mols de íons dissolvidos

A expressão do K_h de um sal pode ter a forma de um K_c (molaridade de produtos sobre molaridade de reagentes), ou pode ser em função do K_w e do K_i do eletrólito fraco (K_a se for de ácido fraco, K_b se for de base fraca; se forem ambos fracos, será K_a . K_b). Vamos ver cada uma dessas formas:

Exemplo 1: K_h do sal $Na_2CO_3 \rightarrow como\ K_h$ é a constante apenas da hidrólise, a reação utilizada será a de hidrólise do íon do eletrólito fraco (que, neste caso, é o ânion CO_3^{2-} , do ácido), ou seja, a **equação iônica de hidrólise**, da qual tanto já falamos neste material. Aqui está ela:

$$CO_3^{2-}$$
 (aq) + 2 H₂O (I) \rightleftharpoons H₂CO_{3 (aq)} + 2 OH⁻ (aq)

$$K_h = [H_2CO_3][OH^-]^2/[CO_3^2]$$
 ou $K_h = K_w / K_a$
Forma 1

OBS: Não preciso mais lembrar você de que a água, por ser líquido puro, não entra na expressão da constante, né?

Exemplo 2: K_h do sal $NH_4Cl \rightarrow$ a **equação iônica de hidrólise,** neste caso, é a do NH_4^+ (cátion da base, por ser o íon do eletrólito fraco). Olha:

$$NH_4^+$$
 (aq) + H_2O (I) $\rightleftharpoons NH_4OH$ (aq) + H^+ (aq)

$$K_h = [NH_4OH][H^+]^2/[NH_4^+]$$
 ou $K_h = K_w / K_b$
Forma 1

Exemplo 3: K_h do sal $NH_4CN \rightarrow$ a **equação iônica de hidrólise,** neste caso, é tanto a do NH_4^+ (cátion da base) como a do CN^- (ânion do ácido), por serem ambos íons de eletrólitos fracos. Olha:

$$NH_4^+_{(aq)} + CN^-_{(aq)} + H_2O_{(l)} \rightleftharpoons NH_4OH_{(aq)} + HCN_{(aq)}$$

$$K_h = [NH_4OH][HCN]/[NH_4^+][CN^-]$$
 ou $K_h = K_w / K_a.K_b$
Forma 1

OBS: Se o sal for de ácido forte e base forte, o que não ocorre mesmo? Hidrólise. Por que sais de ácido e base fortes não têm K_h mesmo? Porque não ocorre hidrólise.

Efeito do Íon Comum

Ao adicionarmos a uma solução um composto que possua um **íon comum** ao do soluto preexistente, o **equilíbrio se desloca** no sentido de consumir esse íon – já que a constante K_{PS} não sofre variação a não ser com mudança de temperatura –, **formando mais precipitado**, se se tratar de um soluto sólido.

Exemplo: Solução de AgCl em equilíbrio → adiciono HCl, que se ioniza na solução, gerando íons H⁺ e Cl⁻ → a concentração de Cl⁻ aumenta na solução → equilíbrio se desloca no sentido de consumir o excesso de Cl⁻ → forma-se mais AgCl puro e sólido. Observe:

Alteração

$$AgCl_{(s)} \rightleftharpoons Ag^+_{(aq)} + Cl^-_{(aq)}$$
Efeito

Solução Tampão

Soluções tampão são aquelas que **resistem a variações de pH**, quando nelas são adicionados ácidos e bases. Existem tampões ácidos e básicos, mas ambos resistem à adição tanto de ácidos como de bases. Nosso sangue, por exemplo, mantém seu pH entre 7,35 e 7,45, mesmo quando bebemos um refrigerante, que possuem alta concentração de H⁺.

Qual é a composição de uma solução tampão? Vamos ver separadamente os tampões ácido e básico.

Tampão ácido: composto por um ácido fraco e um sal derivado dele.

Exemplo: H₂CO₃ (ácido carbônico, fraco) e NaHCO₃ (bicarbonato de sódio, sal derivado). Esses compostos formam os seguintes equilíbrios, respectivamente:

$$H_2CO_3_{(aq)} \rightleftharpoons H^+_{(aq)} + HCO_3^-_{(aq)}$$

 $NaHCO_3_{(aq)} \rightleftharpoons Na^+_{(aq)} + HCO_3^-_{(aq)}$

Com esses dois equilíbrios ocorrendo ao mesmo tempo no meio, se adicionarmos:

 Um ácido: A concentração de H⁺ aumenta, mas como o equilíbrio se desloca rapidamente no sentido de consumir esse cátion – e, ao mesmo tempo, de formar a forma não ionizada do ácido –, o pH não se altera, isto é, o efeito da alteração é tamponado.

Obs: A presença de NaHCO₃ no sistema é importante porque oferece mais íons HCO₃⁻ para reagirem com o H⁺, formando H₂CO₃ e mantendo o pH. Se aumentássemos a concentração de H⁺ e não houvesse HCO₃⁻ suficiente para consumi-lo, o pH diminuiria.

• **Uma base:** A concentração de OH⁻ aumenta e reage com os íons H⁺ da solução, formando água. Isso obviamente geraria uma redução na concentração de H⁺ do sistema, mas como o equilíbrio se desloca rapidamente no sentido de o repor, o pH não aumenta, isto é, o efeito da alteração é **tamponado**.

Tampão básico: composto por uma base fraca e um sal derivado dela.

Exemplo: NH₄OH (hidróxido de amônio, fraco) e NH₄Cl (cloreto de amônio, sal derivado). Esses compostos formam os seguintes equilíbrios, respectivamente:

$$NH_4OH_{(aq)} \rightleftharpoons NH_4^+_{(aq)} + OH^-_{(aq)}$$

 $NH_4CI_{(aq)} \rightleftharpoons NH_4^+_{(aq)} + CI^-_{(aq)}$

Com esses dois equilíbrios ocorrendo ao mesmo tempo no meio, se adicionarmos:

 Uma base: A concentração de OH⁻ aumenta, mas como o equilíbrio se desloca rapidamente no sentido de consumir esse ânion – e, ao mesmo tempo, de formar a forma não dissociada da base –, o pH não se altera, isto é, o efeito da alteração é tamponado.

Obs: A presença de NH₄Cl no sistema é importante porque oferece mais íons NH₄⁺ para reagirem com o OH⁻, formando NH₄OH e mantendo o pH. Se aumentássemos a concentração de OH⁻ e não houvesse NH₄⁺ suficiente para consumi-lo, o pH aumentaria.

Um ácido: A concentração de H⁺ aumenta e reage com os íons OH⁻ da solução, formando água. Isso obviamente geraria uma redução na concentração de OH⁻ do sistema, mas como o equilíbrio se desloca rapidamente no sentido de o repor, o pH não diminui, isto é, o efeito da alteração é tamponado.

Importante à beça:

Existe uma **zona de tamponagem**, que, se for ultrapassada, o **tampão "quebra"**. Ou seja, se adicionarmos muito muito muito ácido ou muita muita muita base ao sistema, provavelmente o pH se alterará, uma vez que o tampão não fará efeito.

MATEMATICAMENTE FALANDO:

Existe uma fórmula que nos permite calcular o valor do pH/pOH de uma solução tampão, quando sabemos o K_i do ácido ou da base, a concentração do ácido ou da base e a concentração do sal derivado.

a. Tampão ácido

pH = pK_a + log[sal]/[ácido]
pK_a =
$$-$$
 logK_a

b. Tampão básico

pOH = pK_b + log[sal]/[base]
pK_b =
$$-$$
 logK_b

Obs: Transformamos o K_i em potencial de K_i (p K_i) pelo mesmo motivo que transformamos a concentração de H⁺ por potencial hidrogeniônico (pH), por exemplo \rightarrow para não utilizarmos valores tão pequenos nas contas, o que facilita a nossa vida. **Repare que pK_i é calculado de forma idêntica à do pH/pOH.**

TRAZENDO PARA A VIDA:

Como já vimos, o sangue humano possui valores de pH que, em seu estado de normalidade, variam de 7,35 a 7,45. Valores que não se encontram nesse intervalo acusam acidose (se for <7,35) ou alcalose (se for >7,45) sanguíneas, que precisam ser revertidas a fim de que o organismo não seja prejudicado. Valores de pH superiores a 7,95 e inferiores a 6,85 já podem levar uma pessoa à morte.

O tampão sanguíneo é esse:

$$CO_{2 (aq)} + H_2O_{(l)} \rightleftharpoons H_2CO_{3 (aq)} \rightleftharpoons H^+_{(aq)} + HCO_3^-_{(aq)}$$

OBS: A proporção de HCO_3^- para H_2CO_3 não é 1:1, como sugere a equação. O íon bicarbonato, na verdade, se encontra em quantidade muito superior à do ácido, devido à presença de sais derivados dele, o que faz desse tampão ligeiramente básico.

Acidose respiratória: Ocorre quando há excesso de CO₂ no sangue, por não termos exalado gás carbônico suficiente, o que aumenta a pressão parcial desse gás (pCO₂). Assim, o equilíbrio se desloca no sentido de consumir CO₂, aumentando a concentração de ácido, que se ioniza mais em H⁺ e HCO₃⁻ e diminui o pH;

Alcalose respiratória: Ocorre quando há carência de CO₂ no sangue, por termos exalado mais gás carbônico que o aceitável, o que diminui a pressão parcial desse gás (pCO₂). Assim, o equilíbrio se desloca no sentido de produzir CO₂, diminuindo a concentração de ácido, que se ioniza menos em H⁺ e HCO₃⁻ e aumenta o pH;

Acidose metabólica: Ocorre quando há **baixa concentração de HCO**₃⁻, o que aumenta a ionização do ácido e diminui o pH;

Alcalose metabólica: Ocorre quando há alta concentração de HCO₃-, o que diminui a ionização do ácido e aumenta o pH.

Exercícios

- 1. Em três frascos A, B e C, dissolvemos, em água pura, respectivamente: cloreto de sódio (NaCl), cloreto de amônio (NH₄Cl) e acetato de sódio (NaC₂H₃O₂). Sabendo-se que somente os íons Na⁺ e Cl⁻ não sofrem hidrólise, podemos afirmar que o(a)
 - a) pH da solução do frasco A situa-se entre 8,0 e 10,0.
 - b) pH da solução do frasco B situa-se entre 11,0 e 13,0.
 - c) pH da solução do frasco C situa-se entre 2,0 e 4,0.
 - d) solução do frasco A é mais ácida do que a do frasco B.
 - e) solução do frasco B é mais ácida do que a do frasco C.
- **2.** Hidrólise é uma reação entre um ânion (A) ou um cátion (C⁺) e água, com fornecimento de íons OH ou H + para a solução. Assim, a hidrólise do NH₄CN pode ser representada pelas equações:

cujos valores das constantes de hidrólise são:

$$K_h(CN^-) = \frac{1.10^{-14}}{4.10^{-10}} = 2,5.10^{-5}$$

$$K_h(NH_4^+) = \frac{1.10^{-14}}{1,8.10^{-5}} = 5,6.10^{-10}$$

Portanto, a solução resultante da hidrólise do cianeto de amônio deverá ser:

- a) fortemente ácida.
- b) fortemente básica.
- **c)** neutra.
- d) fracamente ácida.
- e) fracamente básica

3. Um dos fatores que pode modificar o pH do sangue é o ritmo respiratório. Este fato está relacionado ao equilíbrio descrito na equação abaixo.

$$CO_{2_{(g)}} + H_2O_{(\ell)} \rightleftharpoons H_2CO_{3_{(aq)}} \rightleftharpoons H^+_{(aq)} + HCO_{3^-_{(aq)}}$$

Sobre este fato são feitas as seguintes afirmações.

- I. Pessoas com ansiedade respiram em excesso e causam diminuição da quantidade de CO₂ no sangue aumentando o seu pH.
- II. Indivíduos com insuficiência respiratória aumentam a quantidade de CO₂ no sangue, diminuindo seu pH.
- III. Pessoas com respiração acelerada deslocam o equilíbrio da reação no sentido direto.

Quais estão corretas?

- a) Apenas I.
- b) Apenas II.
- c) Apenas I e II.
- d) Apenas II e III.
- e) I, II e III.
- 4. Para aumentar efetivamente a concentração de íons carbonato no equilíbrio:

$$HCO_3^- + OH^- \rightleftharpoons H_2O + CO_3^=$$

dever-se-ia adicionar:

- a) HC_ℓ
- **b)** H₂SO₄
- c) NaOH
- **d)** H₂O
- e) CH₃COOH
- 5. A adição de cianeto de sódio sólido em água estabelece o equilíbrio químico:

$$CN^{-} + H_2O \rightleftharpoons HCN + OH^{-}$$

A constante desse equilíbrio é conhecida como

- a) produto iônico da água (Kw).
- b) produto de solubilidade (Kps).
- c) constante de ionização de ácido (Ka).
- d) constante de ionização de base (Kb).
- e) constante de hidrólise de sal (Kh).

6. Mares absorvem grande parte do CO₂ concentrado na atmosfera, tornando-se mais ácidos e quentes, segundo cientistas. A Royal Society, do Reino Unido, começou um estudo para medir os níveis de acidez dos oceanos sob a influência do aumento da concentração de dióxido de carbono. O CO₂ concentrado na atmosfera é responsável pelo efeito estufa. Na água, elevando a acidez, o gás interfere na vida de corais e seres dotados de conchas, assim como diminui a reprodução do plâncton, comprometendo a cadeia alimentar de animais marinhos.

Estado de S. Paulo, 24/08/2004.

Em uma solução aquosa 0,10 mol/L de carbonato de sódio, ocorre a hidrólise do íon carbonato:

$$CO_3^{2^*}_{(aq)} + H_2O_{(\ell)} \rightleftharpoons HCO_3^*_{(aq)} + OH^*_{(aq)}$$

Constante de hidrólise, $K(h) = 2.5 \cdot 10^{-4}$. Calculando-se, para essa solução, o valor de $[OH^-]$ em mol/L, encontra-se:

- **a)** $5 \cdot 10^{-3}$
- **b)** $4 \cdot 10^{-3}$
- **c)** $3 \cdot 10^{-3}$
- **d)** $2 \cdot 10^{-3}$
- **e)** $1 \cdot 10^{-3}$
- **7.** Analise os dados da tabela abaixo. As afirmativas abaixo se referem aos dados da tabela acima. Analise-as.

Substâncias	Fórmulas	Constantes		
Ácido hipocloroso	НСℓО	$K_a = 3.1 \cdot 10^{-8}$		
Ácido fórmico	$HCHO_2$	$K_a = 1.8 \cdot 10^{-4}$		
Ácido cianídrico	HCN	$K_a = 5 \cdot 10^{-10}$		
Ácido barbitúrico	$HC_4H_3N_2O_3$	$\mathrm{K_a} = 1 \cdot 10^{-5}$		
Ácido acético	CH ₃ COOH	$K_a = 1.8 \cdot 10^{-5}$		
Amônia	NH ₃	$K_b = 1.8 \cdot 10^{-5}$		

- I. A constante de hidrólise do sal NaCℓO é numericamente maior que a do CHO2Na.
- II. Em meio aquoso, o íon $C_4H_3N_2O_3$ protoniza-se mais facilmente que o íon CN.
- III. Como o pKa do ácido fórmico é menor que o pKa do ácido acético, o formiato tem menor avidez pelo próton que o acetato.
- IV. A hidrólise do cianeto de amônio origina um meio com propriedades alcalinas.

São verdadeiras apenas as afirmativas:

- a) lell
- **b)** II e III
- **c)** I, II e III
- **d)** II, III e IV
- **e)** I, III e IV

8. Em um recipiente adequado são misturados 100 cm³ de solução aquosa de ácido acético 0,1 M e 100 cm³ de solução aquosa de acetato de sódio 0,1 M. Sobre o sistema resultante são feitas as afirmações abaixo.

Assinale a correta.

- a) A ionização do ácido não é afetado pelo acetato de sódio.
- b) O acetato de sódio presente no sistema favorece a ionização do ácido acético.
- c) A adição de 0,1 cm³ de solução aquosa de NaOH 0,1 M não deve ocasionar variação significativa de pH no sistema.
- d) A adição de 0,1 cm³ de solução aquosa de HCℓ 0,1M vai ocasionar uma variação significativa de pH no sistema.
- e) O pH do sistema independe da quantidade de acetato de sódio presente.
- **9.** Considere um litro de solução aquosa 0,10 mol/L de ácido acético (CH₃COOH). Para obter-se uma solução-tampão (aquela cujo pH não se altera pela adição de ácidos ou bases), pode-se misturar essa solução com um litro de solução aquosa 0,10 mol/L de
 - a) ácido sulfúrico (H₂SO₄).
 - b) hidróxido de sódio (NaOH).
 - c) cloreto de sódio (NaCl).
 - d) amônia (NH₃).
 - e) acetato de sódio (CH₃COONa)
- **10.** Temos o equilíbrio:

$$HF + H_2O \rightleftharpoons H_3O + F^-$$

A adição de fluoreto de sódio provocará todas as alterações abaixo, exceto:

- a) A diminuição da concentração de H_3O^+ .
- **b)** O aumento da concentração de íons fluoreto.
- c) A diminuição da concentração de HF (não-dissociado).
- d) A diminuição do grau de ionização.
- e) A inalteração da constante de ionização.

Gabarito

1. E

A - NaC $\ell \rightarrow$ não hidrolisa \rightarrow pH = 7

B - NH₄C ℓ \rightarrow sal de ácido forte e base fraca \rightarrow pH < 7

C - NaC₂H₃O₂ \rightarrow sal de ácido fraco e base forte \rightarrow pH > 7

2. E

Como a Kh (CN) > Kh (NH4 +), logo a solução resultante é fracamente básica

3. C

A eliminação de CO₂ (hiperventilação) provoca uma diminuição na [CO₂] do equilíbrio deslocando-o para a esquerda implicando no consumo de H⁺ do meio, diminuindo a sua concentração provocando aumento no pH do sangue (alcalose respiratória).

O aumento de CO₂ no sangue (insuficiência respiratória) provoca um aumento na [CO₂] do equilíbrio deslocando-o para a direita implicando no aumento da concentração de H+ provocando diminuição no pH do sangue (acidose respiratória).

4. C

A adição de NaOH aumenta a concentração dos íons OH- do equilíbrio pelo efeito do íon comum, deslocando o equilíbrio para a direita, aumentando a concentração dos íons carbonato.

5. E

O equilíbrio indicado refere-se à hidrólise do íon cianeto, onde a constante do equilíbrio denomina-se constante de hidrólise.

6. A

	CO ₃ ²	+	H ₂ O	1	HCO ₃	+	OH.
Início	0,1M				0		0
Reage/Forma	X				X		X
Equilíbrio	0,1-X=0,1M				X		X

Cálculo da [OH] da solução:

$$K_{h} = \frac{[HCO_{3}^{-}].[OH^{-}]}{[CO_{3}^{2-}]} \rightarrow 2, 5.10^{-4} = \frac{(X).(X)}{0.1} \rightarrow X^{2} = 25.10^{-6} \rightarrow X = \sqrt{25.10^{-6}} \rightarrow X = [OH^{-}] = 5.10^{-3} M$$

7. E

- I. Verdadeira. Como Ka do ácido hipocloroso é menor que Ka do ácido fórmico e Kh = Kw/Ka, concluise que Kh do sal NaClO é numericamente maior que Kh do sal CHO₂Na.
- II. Falsa. Como o ácido cianídrico, HCN, é mais fraco que o ácido barbitúrico, HC₄H₃N₂O₃ (menor valor de Ka), o íon CNprotoniza-se mais facilmente que o íon C₄H₃N₂O₃ -.
- III. Verdadeira. Como pKa do ácido fórmico é menor que pKa do ácido acético, Ka do ácido fórmico é maior que Ka do ácido acético (tabela). Portanto, sendo o ácido fórmico mais forte, o formiato tem menor avidez pelo próton que o acetato.
- IV. Verdadeira. Como a amônia é mais forte que o ácido cianídrico, na hidrólise do cianeto de amônio prevalece o caráter alcalino.

8. C

tampão ácido é constituído por um ácido fraco (CH₃COOH) e um sal que contenha o cátion proveniente do ácido fraco (CH₃COONa). O pH varia pouco devido ao efeito tampão.

9. E

Sistema tampão ácido é constituído por um ácido fraco (CH₃COOH) e um sal que contenha o cátion proveniente do ácido fraco (CH₃COONa)

10. C

A adição de fluoreto de sódio aumentará a concentração de íons fluoreto do equilíbrio pelo efeito do íon comum, deslocando o equilíbrio para a esquerda, aumentando a concentração de HF não ionizado.