Formal Language and Automata Theory

Chapter Three

Regular expression and regular language

Regular Expressions

- A language is regular if there exists accepter for it.
- The notation of regular expressions involves a combination of strings of symbols from some alphabet Σ , parentheses, and the operators +, ., and *.

Formal definition of RE

- Let Σ be a, given alphabet. Then
 - 1. φ,λ and a ε Σ are all regular expressions. These are called primitive regular expressions.
 - 2. If r_1 and r_2 are regular expressions, so are r_1+r_2 , r_1*r_2 , $r_1.r_2$, r_1* , and (r1).
 - 3. A string is a regular expression if and only if it can be derived from the primitive regular expressions by a finite number of applications of the rules in (2).

Languages associated with RE

A **Regular Expression** can be recursively defined as follows:

- 1. ε is a Regular Expression indicates the language containing an empty string. (L (ε) = $\{\varepsilon\}$)
- 2. φ is a Regular Expression denoting an empty language. (L (φ) = { })
- 3. x is a Regular Expression where $L=\{x\}$

- 4. If X is a Regular Expression denoting the language L(X) and Y is a Regular Expression denoting the language L(Y), then
 - a. X + Y is a Regular Expression corresponding to the language L(X) U L(Y) where L(X+Y) = L(X) U L(Y).
 - **b.** $X \cdot Y$ is a Regular Expression corresponding to the language $L(X) \cdot L(Y)$ where $L(X \cdot Y) = L(X) \cdot L(Y)$
 - c. \mathbf{R}^* is a Regular Expression corresponding to the language $\mathbf{L}(\mathbf{R}^*)$ where $\mathbf{L}(\mathbf{R}^*) = (\mathbf{L}(\mathbf{R}))^*$
- 5. If we apply any of the rules several times from 1 to 5, they are Regular Expressions.

Example:

- For $\Sigma = \{a,b\}$, the expression r = (a+b)*(a+bb)
- is regular. It denotes the language L(r): { a, bb, aa, abb, ba, bbb,}
- We can see this by considering the various parts of r. The first part, (a + b)*, stands for any string of a's and b's. The second part, (a + bb) represents either an a or a double b. Consequently, L (r) is the set of all strings on {a,b}, terminated by either an a or a bb.

Some RE Examples

Regular Expression	Regular Set
(0+10*)	L= { 0, 1, 10, 100, 1000, 10000, }
(0*10*)	L={1, 01, 10, 010, 0010,}
(0+ε)(1+ ε)	L= {ε, 0, 1, 01}
(a+b)*	Set of strings of a's and b's of any length including the null

	string. So L= { ε, 0, 1,00,01,10,11,}
(a+b)*abb	Set of strings of a's and b's ending with the string abb, So L = {abb, aabb, babb, aaabb, ababb,}
(11)*	Set consisting of even number of 1's including empty string, So L= $\{\epsilon, 11, 1111, 111111,\}$
(aa)*(bb)*b	Set of strings consisting of even number of a's followed by odd number of b's , so L= {b, aab, aabbb, aabbbbb, aaaab, aaaabbb,}
(aa + ab + ba + bb)*	String of a's and b's of even length can be obtained by concatenating any combination of the strings aa, ab, ba and bb including null, so L= {aa, ab, ba, bb, aaab, aaba,}

Regular Sets

 Any set that represents the value of the Regular Expression is called a Regular Set.

Properties of Regular Sets

Property 1. The union of two regular set is regular. **Proof**:

Property 2. The intersection of two regular set is regular. **Proof**:

Let us take two regular expressions

 $RE1 = a(a^*) \text{ and } RE2 = (aa)^*$

So, L1 = { a,aa, aaa, aaaa,} (Strings of all possible lengths excluding Null)

L2 = { ε, aa, aaaa, aaaaaa,......} (Strings of even length including Null)

 $L1 \cap L2 = \{ aa, aaaa, aaaaaa,..... \}$ (Strings of even length excluding Null)

RE (L1 \cap L2) = aa(aa)* which is a regular expression itself.

Property 3. The complement of a regular set is regular. **Proof**:

Let us take a regular expression:

RE = (aa)*

So, $L = \{\epsilon, aa, aaaa, aaaaaa,\}$ (Strings of even length including Null)

Complement of L is all the strings that is not in L.

So, L' = {a, aaa, aaaaa,} (Strings of odd length excluding Null)

RE (L') = $a(aa)^*$ which is a regular expression itself.

Property 4. The difference of two regular set is regular. **Proof**:

Let us take two regular expressions:

 $RE1 = a (a^*) \text{ and } RE2 = (aa)^*$

So, L1= {a,aa, aaa, aaaa,} (Strings of all possible lengths excluding Null)

 $L2 = \{ \epsilon, aa, aaaaa, aaaaaa,..... \}$ (Strings of even length including Null)

 $L1 - L2 = \{a, aaa, aaaaaa, aaaaaaa,\}$

(Strings of all odd lengths excluding Null)

RE (L1 - L2) = a (aa)* which is a regular expression.

Property 5. The reversal of a regular set is regular. **Proof:**

We have to prove $L(\mathbf{R})$ is also regular if L is a regular set.

Let, L= {01, 10, 11, 10} RE (L)= 01 + 10 + 11 + 10 L(R)= {10, 01, 11, 01} RE (LR)= 01+ 10+ 11+10 which is regular

Property 6. The closure of a regular set is regular.

Proof:

If L = {a, aaa, aaaaa,} (Strings of odd length excluding Null)

i.e., RE (L) = a (aa)*

L*= {a, aa, aaa, aaaa, aaaaa,} (Strings of all lengths excluding Null)

 $RE(L^*) = a(a)^*$

Property 7. The concatenation of two regular sets is regular. **Proof**:

```
Let RE1 = (0+1)*0 and RE2 = 01(0+1)*
Here, L1 = \{0, 00, 10, 000, 010, .....\} (Set of strings ending in 0) and L2 = \{01, 010, 011, .....\} (Set of strings beginning with 01) Then, L1 L2 = \{001, 0010, 0011, 0001, 00010, 00011, 1001, 10010, ......\} Set of strings containing 001 as a substring which can be represented by an RE: (0+1)*001(0+1)*
```

Identities Related to Regular Expressions

- Given R, P, L, Q as regular expressions, the following identities hold:
- 1. $Ø^* = \varepsilon$
- $2. \epsilon^* = \epsilon$
- 3. $R + = RR^* = R^*R$
- 4. R*R* = R*
- $5. (R^*)^* = R^*$
- 6. $RR^* = R^*R$
- 7. (PQ)*P = P(QP)*
- 8. $(a+b)^* = (a^*b^*)^* = (a^*+b^*)^* = (a+b^*)^* = a^*(ba^*)^*$
- 9. $R + \emptyset = \emptyset + R = R$ (The identity for union)
- 10. $R\varepsilon = \varepsilon R = R$ (The identity for concatenation)
- 11. $\emptyset L = L\emptyset = \emptyset$ (The annihilator for concatenation)
- 12. R + R = R (Idempotent law)
- 13. L(M + N) = LM + LN (Left distributive law)
- 14. (M + N) L = LM + LN (Right distributive law)
- 15. $\varepsilon + RR^* = \varepsilon + R^*R = R^*$

Construction of an RE from an FA

Problem

• Construct a regular expression corresponding to the automata given below:

Finite automata

Solution:

Here the initial state is q1 and the final state is q2 Now we write down the equations:

q1 = q10 +
$$\varepsilon$$

q2 = q11 + q20
q3 = q21 + q30 + q31
Now, we will solve these three equations:
q1 = ε 0* [As, ε R = R]
So, q1 = 0* s
q2 = 0*1 + q20
So, q2 = 0*1(0)* [By Arden's theorem]
Hence, the regular expression is 0*10*.

Construction of an FA from an RE

- We can use Thompson's Construction to find out a Finite Automaton from a Regular Expression.
- We will reduce the regular expression into smallest regular expressions and converting these to NFA and finally to DFA.

• Case 1: For a regular expression 'a', we can construct the following FA:

Finite automata for RE = a

• Case 2: For a regular expression 'ab', we can construct the following FA:

Finite automata for RE = ab

• *Case 3*: For a regular expression (a+b), we can construct the following FA:

Finite automata for RE= (a+b)

• Case 4: For a regular expression (a+b)*, we can construct the following FA:

Method:

- **Step 1** Construct an NFA with Null moves from the given regular expression.
- Step 2 Remove Null transition from the NFA and convert it into its equivalent DFA.

Problem

Convert the following RA into its equivalent DFA: 1 (0 + 1)* 0 *Solution*:

We will concatenate three expressions "1", "(0 + 1)*" and "0"

NDFA with NULL transition for RA: 1(0 + 1)*0

• Now we will remove the ϵ transitions. After we remove the ϵ transitions from the NDFA, we get the following:

NDFA without NULL transition for RA: 1(0 + 1)*0

• If you want to convert it into a DFA, simply apply the method of converting NDFA to DFA discussed in Chapter 2.

Pumping Lemma for Regular Languages

Theorem

Let L be a regular language. Then there exists a constant 'c' such that for every string w in L:

$$|\mathbf{w}| \ge \mathbf{c}$$

We can break w into three strings, w = xyz, such that:

- 1. |y| > 0
- $2. |xy| \le c$
- 3. For all $k \ge 0$, the string xy^kz is also in L.

Applications of Pumping Lemma

Pumping Lemma is to be applied to show that certain languages are not regular. It should never be used to show a language is regular.

- 1. If L is regular, it satisfies Pumping Lemma.
- 2. If **L** is non-regular, it does not satisfy Pumping Lemma.

Method to prove that a language L is not regular:

- 1. At first, we have to assume that **L** is regular.
- 2. So, the pumping lemma should hold for L.
- 3. Use the pumping lemma to obtain a contradiction:
- (a) Select w such that $|\mathbf{w}| \ge \mathbf{c}$
- (b) Select y such that $|y| \ge 1$
- (c) Select x such that $|xy| \le c$
- (d) Assign the remaining string to z.
- (e) Select **k** such that the resulting string is not in **L**.

Hence L is not regular.

Problem

Prove that $L = \{a^ib^i \mid i \ge 0\}$ is not regular.

Solution:

- 1. At first, we sassume that L is regular and n is the number of states.
- 2. Let w = anbn. Thus $|w| = 2n \ge n$.
- 3. By pumping lemma, let w = xyz, where $|xy| \le n$.
- 4. Let x = ap, y = aq, and z = arbn, where $p + q + r = n.p \neq 0$, $q \neq 0$, $r \neq 0$
- 0. Thus $|y| \neq 0$
- 5. Let k = 2. Then xy2z = apa2qarbn.
- 6. Number of as = (p + 2q + r) = (p + q + r) + q = n + q
- 7. Hence, xy2z = an + q bn. Since $q \neq 0$, xy2z is not of the form anbn.
- 8. Thus, xy2z is not in L. Hence L is not regular.