A Tensor-based Factorization Model of Semantic Compositionality

Tim Van de Cruys, Thierry Poibeau and Anna Korhonen (ACL 2013)

Presented by Mamoru Komachi komachi@tmu.ac.jp The 5th summer camp of NLP 2013/08/31

The principle of compositionality

- Dates back to Gottlob Frege (1892)
- "... meaning of a complex expression is a function of the meaning of its parts and the way those parts are (syntactically) combined"

Compositionality is modeled as a multiway interaction between latent factors

- Propose a method for computation of compositionality within a distributional framework
 - Compute a latent factor model for nouns
 - The latent factors are used to induce a latent model of three-way (subject, verb, object) interactions, represented by a core tensor
- Evaluate on a similarity task for transitive phrases (SVO)

Previous work

Distributional framework for semantic composition

Previous work: Mitchell and Lapata (ACL 2008)

- Explore a number of different models for vector composition:
 - Sector addition: $p_i = u_i + v_i$
 - See Vector multiplication: $p_i = u_i \cdot v_i$
- Evaluate their models on a noun-verb phrase similarity task
 - Multiplicative model yields the best results
- One of the first approaches to tackle compositional phenomena (baseline in this work)

Previous work: Grefenstette and Sadrzadeh (EMNLP 2011)

- An instantiation of Coecke et al. (Linguistic Analysis 2010)
 - A sentence vector is a function of the Kronecker product of its word vectors

$$\overrightarrow{sub\ verb\ obj} = (\overrightarrow{sub} \circ \overrightarrow{obj}) * \overrightarrow{verb}$$

- Assume that relational words (e.g. adjectives or verbs) have a rich (multidimensional) structure
- Proposed model uses an intuition similar to theirs (the other baseline in this work)

Overview of compositional semantics

	input	target	operation
Mitchell and Lapata (2008)	Vector	Noun-verb	Add & mul
Baroni and Zamparelli (2010)	Vector	Adjective & noun	Linear transformation (matrix mul)
Coecke et al. (2010), Grefenstette and Sadrzadeh (2011)	Vector	Sentence	Krochecker product
Socher et al. (2010)	Vector + matrix	Sentence	Vector & matrix mul

Methodology

The composition of SVO triples

Construction of latent noun factors

Context words

V

Sunov

W

X

- Non-negative matrix factorization (NMF)
- Minimizes KL divergence between an original matrix $V_{I\times J}$ and $W_{I\times K}H_{K\times J}$ s.t. all values of the in the three matrices be non-negative

Tucker decomposition

- Generalization of the SVD
- Decompose a tensor into a core tensor, multiplied by a matrix along each mode

Decomposition w/o the latent verb

Only the subject and object mode are represented by latent factors (to be able to efficiently compute the similarity of verbs)

Extract the latent vectors from noun matrix

$$\mathbf{Y}_{< athlete, race>} = \mathbf{w}_{athlete} \circ \mathbf{w}_{race}$$

The athlete runs a race.

Compute the outer product (0) of subject and object.

Capturing the latent interactions with verb matrix

Take the Hadamard product (*) of matrix Y with verb matrix G, which yields our final matrix Z.

Examples & Evaluation

Semantic features of the subject combine with semantic features of the object

factors	subject	object	value
(195, 119)	people (.008), child (.008), adolescent (.007)	cup (.007), championship (.006), final (.005)	.007
$\langle 25, 119 \rangle$	hockey (.007), poker (.007), tennis (.006)	cup (.007), championship (.006), final (.005)	.004
$\langle 90, 119 \rangle$	professionalism (.007), teamwork (.007), confi-	cup (.007), championship (.006), final (.005)	.003
⟨28,119⟩	dence (.006) they (.004), pupil (.003), participant (.003)	cup (.007), championship (.006), final (.005)	.003

Table 1: Factor pairs with highest value for matrix $\mathbf{Y}_{(athlete.race)}$

factors	subject	object	value
$\langle 7, 89 \rangle$	password (.009), login (.007), username (.007)	filename (.007), null (.006), integer (.006)	.010
$\langle 40, 89 \rangle$	anyone (.004), reader (.004), anybody (.003)	filename (.007), null (.006), integer (.006)	.007
$\langle 195, 89 \rangle$	people (.008), child (.008), adolescent (.007)	filename (.007), null (.006), integer (.006)	.006
$\langle 45, 89 \rangle$	website (.004), Click (.003), site (.003)	filename (.007), null (.006), integer (.006)	.006

Table 2: Factor pairs with highest value for matrix $\mathbf{Y}_{\langle user, command \rangle}$

Animacy: 28, 40, 195; Sport: 25; Sport event: 119; Tech: 7, 45, 89

Verb matrix contains the verb semantics computed over the complete corpus

factors	subject	object	value
⟨128, 181⟩	Mathematics (.004), Science (.004), Economics (.004)	course (.005), tutorial (.005), seminar (.005)	.058
⟨293,181⟩	organization (.007), association (.007), federation (.006)	course (.005), tutorial (.005), seminar (.005)	.053
$\begin{array}{c} \langle 60, 140 \rangle \\ \langle 268, 268 \rangle \end{array}$	rail (.011), bus (.009), ferry (.008) API (.008), Apache (.007), Unix (.007)	third (.004), decade (.004), hour (.004) API (.008), Apache (.007), Unix (.007)	.038 .038

Table 3: Factor combinations for G_{run}

^{&#}x27;Organize' sense: <128, 181>; <293, 181>

^{&#}x27;Transport' sense: <60, 140>

^{&#}x27;Execute' sense: <268, 268>

Tensor G captures the semantics of the verb

- Most similar verbs from Z
 - $\mathbb{Z}_{\text{run,}}$ $\mathbb{Z}_{\text{run,}}$ $\mathbb{Z}_{\text{run,}}$: finish (.29), attend (.27), win (.25)
 - Z_{run<user,command>}: execute (.42), modify (.40), invoke (.39)
 - © Z_{damage, < man, car>}: crash (.43), drive (.35), ride (.35)
 - \otimes $Z_{damage, < car, man>}$: scare(.26), kill (.23), hurt (.23)
- Similarity is calculated by measuring the cosine of the vectorized representation of the verb matrix
- Can distinguish word order

Transitive (SVO) sentence similarity task

- Extension of the similarity task (Mitchell and Lapata, ACL 2008)
 - http://www.cs.ox.ac.uk/activities/CompDist Meaning/GS2011data.txt
 - 2,500 similarity judgments
 - 25 participants

р	target	subject	object	landmark	sim
19	meet	system	criterion	visit	1
21	write	student	name	spell	6

Latent model outperforms previous models

model	contextualized	Non- contextualized
baseline	.2	23
multiplicative	.32	.34
categorical	.32	.35
latent	.32	.37
Upper bound	.6	52

- Multiplicative (Mitchell and Lapata, ACL-2008)
- Categorical (Grefenstette and Sadrzadeh, 2011)
- Upper bound = inter-annotator agreement (Grefenstette and Sadrzadeh, EMNLP 2011)

Conclusion

- Proposed a novel method for computation of compositionality within a distributional framework
 - Compute a latent factor model for nouns
 - The latent factors are used to induce a latent model of three-way (subject, verb, object) interactions, represented by a core tensor
- Evaluated on a similarity task for transitive phrases and exceeded the state of the art