Ciências / Ciência da computação / Introduction to the Theory of Computation (3rd Edition)

Exercício 23

Capítulo 1, Página 87

Introduction to the Theory of Computation

ISBN: 9781133187790

Índice

Solução 🕏 Certificado

Passo 1 1 de 2

We know that B^+ is a shorthand for BB^* , i.e. $B^+=B^*\setminus\{arepsilon\}.$

Let's now suppose that $BB\subseteq B$. This implies that for any two $w_1,w_2\in B$ we have $w_1w_2\in B$ as well. We will call this fact closure of B under concatenation.

From definition we always have $B\subset B^+$. To prove the other direction, take any $w\in B^+$. There must be $n\in\mathbb{N}$ such that $w\in B^n$. This means that there are words $w_1,w_2,\ldots,w_n\in B$ such that $w=w_1w_2\ldots w_n$.

Now using mathematical induction, we prove that $w \in B$. If n

Now assume that for n the claim holds. Take any word $w = w_1 v$

$$w=\underbrace{w_1w_2\dots w_n}_{\in B}\underbrace{w_{n+1}}_{\in B}\in B$$

as well, which proves the claim.

Resultado 2 de 2

Proof using mathematical induction.

Avaliar esta solução

公公公公公

Privacidade Termos de serviço

Português (BR) 🗸