Distributed Systems P1: Intro to Ceph

Yuan-Ting Hsieh Hsuan-Heng Wu

HDD Rand Bandwidth w.r.t Object Size

Read Bandwidth n = 1, random left, sequential right

Read Bandwidth n = 2 , random left , sequential right

Read Bandwidth n = 3, random left, sequential right

HDD Read IOPS w.r.t Object Size

Read IOPS n = 1 , random left , sequential right

Read IOPS n = 2, random left, sequential right

Read IOPS n = 3, random left, sequential right

HDD Read Latency w.r.t Object Size

Read Latency n = 1, random left, sequential right

Read Latency n = 2, random left, sequential right

Read Latency n = 3, random left, sequential right

HDD Write Bandwidth w.r.t Object Size

Bandwidth, n = 1, n = 2, n = 3

HDD Write IOPS w.r.t Object Size

IOPS, n = 1, n = 2, n = 3

HDD Write Latency w.r.t Object Size

Latency, n = 1, n = 2, n = 3

SSD Results - Read Rand

IOPS n = 1,2,3

2²¹

log object size (bytes)

IOPS

16

12000

SSD Results - Read Seq

SSD Results - Write

HDD vs SSD - Write

Bandwidth n = 3

IOPS n=3

Latency n = 3

Workload Balancing of Ceph

Pretty good at homogeneous environment (3 HDD with 200G)

OSD Throttle Bytes

Ceph Placement Groups

- Each object will be map to a placement group
- Placement groups are assigned to OSDs using CRUSH
- Can use ceph pg dump_stuck to see bad pgs
 - Inactive: cannot process reads or writes because they are waiting for an OSD with the most up-to-date data to come up and in
 - Unclean: Placement groups contain objects that are not replicated the desired number of times. They should be recovering
 - Stale Placement groups are in an unknown state the OSDs that host them have not reported to the monitor cluster in a while (configured by mon_osd_report_timeout)

Workload Balancing in Heterogeneous Environment

Note that SSD is 100G while HDD is 200G

Workload Balancing in Heterogeneous Environment

If we set affinity of HDD to 0, i.e. it won't be primary for some placement group

Latency Comparison

Throughput Comparison

Problems

- 1. 3 HDD small object size, read performance is very bad. Why?
- 2. When size and min_size of OSD pool grows, rand read bandwidth and latency gets worse, Why?
- A good way to change system config, right now we just remove all and install all again.

Reference links

- Benchmark: https://tracker.ceph.com/projects/ceph/wiki/Benchmark_Ceph_Cluster_Performance
- Primary Affinity: https://ceph.com/qeen-categorie/ceph-qet-the-best-of-your-ssd-with-primary-affinity/
- Pools: http://docs.ceph.com/docs/jewel/rados/operations/pools/