Linear Programming And The Simplex Algorithm

Ethan Lam Patrick Oweijane

April 27, 2022

Christian Brothers University

What Is Linear Programming?

• Linear programming is an optimization technique where we assign values to variables constrained by linear relationships.

What Is Linear Programming?

- Linear programming is an optimization technique where we assign values to variables constrained by linear relationships.
- Linear programming problems often appear in applications such as operations research and finance.
- Problems will often come in the flavor of finding the best way to allocate resource under certain constraints.

• Suppose you are managing 6000 acres of land belonging to a farm co-op.

- Suppose you are managing 6000 acres of land belonging to a farm co-op.
- You can either plant corn or soybeans.

- Suppose you are managing 6000 acres of land belonging to a farm co-op.
- You can either plant corn or soybeans.
- You have the following resource budget:

	Corn	Soybeans	Available
Fertilizer/herbicide	9 gal/acre	3 gal/acre	40500 gal
Harvesting labor	$\frac{3}{4}$ hr/acre	1 hr/acre	5250 hr
Profit	240 \$/acre	160 \$/acre	

- Suppose you are managing 6000 acres of land belonging to a farm co-op.
- You can either plant corn or soybeans.

You have the following resource budget:

	Corn	Soybeans	Available
Fertilizer/herbicide	9 gal/acre	3 gal/acre	40500 gal
Harvesting labor	$\frac{3}{4}$ hr/acre	1 hr/acre	5250 hr
Profit	240 \$/acre	160 \$/acre	

 How do you optimally plant corn and soybeans to maximize profit?

Example (cont.)

We can write this optimization problem as

where your job is to find the best possible assignment of x_1 and x_2 which represent the amount of corn and soybeans you plant, respectively.

Formalism

 We will call instances of linear programming problems linear programs.

Formalism

- We will call instances of linear programming problems linear programs.
- Linear programs can be written in **standard form**.

$$\begin{array}{ll}
\text{max} & c^T x \\
\text{s.t.} & Ax \le b \\
& x \ge 0
\end{array}$$

where A is an $m \times n$ matrix, x and c are n dimensional column vectors, and b is an m dimensional column vector.

5

Formalism

- We will call instances of linear programming problems linear programs.
- Linear programs can be written in **standard form**.

$$\begin{array}{ll}
\text{max} & c^T x \\
\text{s.t.} & Ax \le b \\
& x \ge 0
\end{array}$$

where A is an $m \times n$ matrix, x and c are n dimensional column vectors, and b is an m dimensional column vector.

Remark

Let b and b' are m dimensional vectors. By $b \leq b'$, we mean that for all i = 1, 2, ..., m

$$b_i \leq b'_i$$

5

Original linear program:

Original linear program:

Original linear program:

max
$$240x_1 + 160x_2$$

s.t. $9x_1 + 3x_2 \le 40500 \rightarrow \frac{3}{4}x_1 + x_2 \le 5250$
 $x_1 + x_2 \le 6000$
 $x_1, x_2 \ge 0$

Standard form:

$$\max \quad \overbrace{\begin{bmatrix} 240 \\ 160 \end{bmatrix}}^{c^T} \overbrace{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}}^{x}$$

Original linear program:

max
$$240x_1 + 160x_2$$

s.t. $9x_1 + 3x_2 \le 40500 \rightarrow \frac{3}{4}x_1 + x_2 \le 5250$
 $x_1 + x_2 \le 6000$
 $x_1, x_2 \ge 0$

Standard form:

Original linear program:

Standard form:

 The function we are optimizing is called the objective function.

- The function we are optimizing is called the objective function.
- An assignment to x that satisfies all constraints is called a feasible solution.

- The function we are optimizing is called the **objective** function.
- An assignment to x that satisfies all constraints is called a feasible solution.
- Linear programs (in standard form) may be:
 - Feasible ... optimal solution has finite objective value

(Fundamental theorem of linear programming)

- The function we are optimizing is called the **objective** function.
- An assignment to x that satisfies all constraints is called a feasible solution.
- Linear programs (in standard form) may be:
 - Feasible ... optimal solution has finite objective value
 - Infeasible ... no solutions

(Fundamental theorem of linear programming)

- The function we are optimizing is called the **objective** function.
- An assignment to x that satisfies all constraints is called a feasible solution.
- Linear programs (in standard form) may be:
 - Feasible ... optimal solution has finite objective value
 - Infeasible ... no solutions
 - Unbounded ... the objective value can be made infinite

(Fundamental theorem of linear programming)

• What if we want to *minimize* the objective function?

- What if we want to *minimize* the objective function?
- What if we want variables to be unbounded?

- What if we want to minimize the objective function?
- What if we want variables to be unbounded?
- What if we want variables to *lie in an interval*?

- What if we want to *minimize* the objective function?
- What if we want variables to be *unbounded*?
- What if we want variables to *lie in an interval*?
- What if we want constraints to use ≥ or =?

- What if we want to *minimize* the objective function?
- What if we want variables to be unbounded?
- What if we want variables to *lie in an interval*?
- What if we want constraints to use ≥ or =?
- All of these situations can be reformulated into a standard form equivalent!

Slack Form Intuition

Example Consider

$$x_1 + x_2 \le 6000$$

Slack Form Intuition

Example Consider

$$x_1 + x_2 \le 6000$$

then

$$0 \leq \underbrace{6000 - x_1 - x_2}_{5}$$

Slack Form Intuition

Example Consider

$$x_1 + x_2 \le 6000$$

then

$$0 \leq \underbrace{6000 - x_1 - x_2}_{\mathsf{S}}$$

where s is the "slack" we have in increasing $x_1 + x_2$ until the constraint is violated.

9

From the standard form we can construct the slack form:

$$\begin{array}{ll}
\text{max} & c^T x \\
\text{s.t.} & s = b - Ax \\
& x, s \ge 0
\end{array}$$

From the standard form we can construct the slack form:

$$\begin{array}{ll}
\text{max} & c^T x \\
\text{s.t.} & s = b - Ax \\
& x, s \ge 0
\end{array}$$

where s holds the "slack" variables which are added.

 Slack form turns our inequality constraints into equality constraints!

From the standard form we can construct the slack form:

$$\max c^{T} x$$
s.t.
$$s = b - Ax$$

$$x, s \ge 0$$

- Slack form turns our inequality constraints into equality constraints!
- Variables on the left of the = are called **basic variables**

From the standard form we can construct the slack form:

$$\max c^{T} x$$
s.t.
$$s = b - Ax$$

$$x, s \ge 0$$

- Slack form turns our inequality constraints into equality constraints!
- Variables on the left of the = are called basic variables
- Variables on the right of the = are called nonbasic variables

From the standard form we can construct the slack form:

$$\begin{array}{ll}
\text{max} & c^T x \\
\text{s.t.} & s = b - Ax \\
& x, s \ge 0
\end{array}$$

- Slack form turns our inequality constraints into equality constraints!
- Variables on the left of the = are called basic variables
- Variables on the right of the = are called nonbasic variables
- Note: Only nonbasic variables appear in the objective function

From the standard form we can construct the slack form:

$$\max c^{T} x$$
s.t. $s = b - Ax$

$$x, s \ge 0$$

- Slack form turns our inequality constraints into equality constraints!
- Variables on the left of the = are called basic variables
- Variables on the right of the = are called nonbasic variables
- Note: Only nonbasic variables appear in the objective function
- Note: As you solve a linear program, the nonbasic and basic variables will change.

From the standard form we can construct the slack form:

$$\begin{array}{ll}
\text{max} & c^T x \\
\text{s.t.} & s = b - Ax \\
& x, s \ge 0
\end{array}$$

- Slack form turns our inequality constraints into equality constraints!
- Variables on the left of the = are called basic variables
- Variables on the right of the = are called nonbasic variables
- Note: Only nonbasic variables appear in the objective function
- Note: As you solve a linear program, the nonbasic and basic variables will change.
- Note: Slack form makes solving linear programs easier.

Slack Form Example

Standard form:

Slack Form Example

Standard form:

max
$$240x_1 + 160x_2$$

s.t. $9x_1 + 3x_2 \le 40500$
 $\frac{3}{4}x_1 + x_2 \le 5250$
 $x_1 + x_2 \le 6000$
 $x_1, x_2 \ge 0$

Slack form:

max
$$240x_1 + 160x_2$$
s.t.
$$s_1 = 40500 - 9x_1 - 3x_2$$

$$s_2 = 5250 - \frac{3}{4}x_1 - x_2$$

$$s_3 = 6000 - x_1 - x_2$$

$$x_1, x_2, s_1, s_2, s_3 \ge 0$$

• Developed by George Dantzig

- Developed by George Dantzig
- Runs in *exponential* time but there exists polynomial time algorithms that solve linear programs

- Developed by George Dantzig
- Runs in exponential time but there exists polynomial time algorithms that solve linear programs
- Runs reasonably fast in practical applications

- Developed by George Dantzig
- Runs in exponential time but there exists polynomial time algorithms that solve linear programs
- Runs reasonably fast in practical applications
- Based on a fundamental operation called pivoting

- Developed by George Dantzig
- Runs in exponential time but there exists polynomial time algorithms that solve linear programs
- Runs reasonably fast in practical applications
- Based on a fundamental operation called pivoting

Interesting Theoretical Remarks

 The ability to solve linear programs in polynomial time means we have algorithms to solve problems reduced to linear programs quickly!

- Developed by George Dantzig
- Runs in exponential time but there exists polynomial time algorithms that solve linear programs
- Runs reasonably fast in practical applications
- Based on a fundamental operation called pivoting

Interesting Theoretical Remarks

- The ability to solve linear programs in polynomial time means we have algorithms to solve problems reduced to linear programs quickly!
- Restricting the variables to integers makes solving linear programs NP-Hard! (3-CNF-SAT can be reduced to determining if an integer linear program is feasible)

max 240
$$x_1 + 160x_2$$

s.t. $s_1 = 40500 - 9 x_1 - 3x_2$
 $s_2 = 5250 - \frac{3}{4}x_1 - x_2$
 $s_3 = 6000 - x_1 - x_2$
 $x_1, x_2, s_1, s_2, s_3 \ge 0$

max 240
$$x_1 + 160x_2$$

s.t. $s_1 = 40500 - 9 x_1 - 3x_2$
 $s_2 = 5250 - \frac{3}{4}x_1 - x_2$
 $s_3 = 6000 - x_1 - x_2$
 $x_1, x_2, s_1, s_2, s_3 \ge 0$

• Basic Solution: $(x_1, x_2, s_1, s_2, s_3) = (0, 0, 40500, 5250, 6000)$

max 240
$$x_1 + 160x_2$$

s.t. $s_1 = 40500 - 9 x_1 - 3x_2$
 $s_2 = 5250 - \frac{3}{4}x_1 - x_2$
 $s_3 = 6000 - x_1 - x_2$
 $x_1, x_2, s_1, s_2, s_3 \ge 0$

- Basic Solution: $(x_1, x_2, s_1, s_2, s_3) = (0, 0, 40500, 5250, 6000)$
- Basic Solution Value: 0

max
$$240 x_1 + 160x_2$$

s.t. $s_1 = 40500 - 9 x_1 - 3x_2$
 $s_2 = 5250 - \frac{3}{4}x_1 - x_2$
 $s_3 = 6000 - x_1 - x_2$
 $x_1, x_2, s_1, s_2, s_3 \ge 0$

- Basic Solution: $(x_1, x_2, s_1, s_2, s_3) = (0, 0, 40500, 5250, 6000)$
- Basic Solution Value: 0
- Entering Variable: x_1

max
$$240 x_1 + 160x_2$$

s.t. $\longrightarrow s_1 = 40500 - 9 x_1 - 3x_2$
 $s_2 = 5250 - \frac{3}{4}x_1 - x_2$
 $s_3 = 6000 - x_1 - x_2$
 $x_1, x_2, s_1, s_2, s_3 \ge 0$

- Basic Solution: $(x_1, x_2, s_1, s_2, s_3) = (0, 0, 40500, 5250, 6000)$
- Basic Solution Value: 0
- Entering Variable: x_1
- First Constraint: x_1 can be at most 40500/9 = 4500

max
$$240 x_1 + 160x_2$$

s.t. $s_1 = 40500 - 9 x_1 - 3x_2$
 $\longrightarrow s_2 = 5250 - \frac{3}{4}x_1 - x_2$
 $s_3 = 6000 - x_1 - x_2$
 $x_1, x_2, s_1, s_2, s_3 \ge 0$

- Basic Solution: $(x_1, x_2, s_1, s_2, s_3) = (0, 0, 40500, 5250, 6000)$
- Basic Solution Value: 0
- Entering Variable: x_1
- First Constraint: x_1 can be at most 40500/9 = 4500
- Second Constraint: x_1 can be at most 5250/(3/4) = 7000

max
$$240 x_1 + 160x_2$$

s.t. $s_1 = 40500 - 9 x_1 - 3x_2$
 $s_2 = 5250 - \frac{3}{4}x_1 - x_2$
 $\longrightarrow s_3 = 6000 - x_1 - x_2$
 $x_1, x_2, s_1, s_2, s_3 \ge 0$

- Basic Solution: $(x_1, x_2, s_1, s_2, s_3) = (0, 0, 40500, 5250, 6000)$
- Basic Solution Value: 0
- Entering Variable: x_1
- First Constraint: x_1 can be at most 40500/9 = 4500
- Second Constraint: x_1 can be at most 5250/(3/4) = 7000
- Third Constraint: x_1 can be at most 6000/1 = 6000

max
$$240x_1 + 160x_2$$

s.t. $s_1 = 40500 - 9x_1 - 3x_2$
 $s_2 = 5250 - \frac{3}{4}x_1 - x_2$
 $s_3 = 6000 - x_1 - x_2$
 $x_1, x_2, s_1, s_2, s_3 \ge 0$

- Basic Solution: $(x_1, x_2, s_1, s_2, s_3) = (0, 0, 40500, 5250, 6000)$
- Basic Solution Value: 0
- Entering Variable: x_1
- First Constraint: x_1 can be at most 40500/9 = 4500
- Second Constraint: x_1 can be at most 5250/(3/4) = 7000
- Third Constraint: x_1 can be at most 6000/1 = 6000
- Leaving Variable: s₁

Increasing x_1 as much as possible means $s_1=0$ (there is no more "slack"), and we can turn s_1 nonbasic and x_1 basic:

max
$$240 x_1 + 160 x_2$$

s.t. $x_1 = 4500 - \frac{1}{9} s_1 - \frac{1}{3} x_2$
 $s_2 = 5250 - \frac{3}{4} x_1 - x_2$
 $s_3 = 6000 - x_1 - x_2$
 $x_1, x_2, s_1, s_2, s_3 \ge 0$

Increasing x_1 as much as possible means $s_1 = 0$ (there is no more "slack"), and we can turn s_1 nonbasic and s_1 basic:

max
$$240 x_1 + 160 x_2$$

s.t. $x_1 = 4500 - \frac{1}{9} s_1 - \frac{1}{3} x_2$
 $s_2 = 5250 - \frac{3}{4} x_1 - x_2$
 $s_3 = 6000 - x_1 - x_2$
 $x_1, x_2, s_1, s_2, s_3 \ge 0$

We now substitute all occurrences of x_1 to get

max
$$-\frac{80}{3}s_{1} + 80x_{2} + 1080000$$
s.t.
$$x_{1} = 4500 - \frac{1}{9}s_{1} - \frac{1}{3}x_{2}$$

$$s_{2} = 1875 + \frac{1}{12}s_{1} - \frac{3}{4}x_{2}$$

$$s_{3} = 1500 + \frac{1}{9}s_{1} - \frac{2}{3}x_{2}$$

$$x_{1}, x_{2}, s_{1}, s_{2}, s_{3} \ge 0$$

Increasing x_1 as much as possible means $s_1=0$ (there is no more "slack"), and we can turn s_1 nonbasic and x_1 basic:

max
$$240 x_1 + 160x_2$$

s.t. $x_1 = 4500 - \frac{1}{9} s_1 - \frac{1}{3} x_2$
 $s_2 = 5250 - \frac{3}{4} x_1 - x_2$
 $s_3 = 6000 - x_1 - x_2$
 $x_1, x_2, s_1, s_2, s_3 \ge 0$

We now substitute all occurrences of x_1 to get

max
$$-\frac{80}{3} s_1 + 80x_2 + 1080000$$
s.t.
$$x_1 = 4500 - \frac{1}{9} s_1 - \frac{1}{3} x_2$$

$$s_2 = 1875 + \frac{1}{12} s_1 - \frac{3}{4} x_2$$

$$s_3 = 1500 + \frac{1}{9} s_1 - \frac{2}{3} x_2$$

$$x_1, x_2, s_1, s_2, s_3 \ge 0$$

We now repeat this process ...

max
$$-\frac{80}{3}s_1 + 80 x_2 + 1080000$$
s.t.
$$x_1 = 4500 - \frac{1}{9}s_1 - \frac{1}{3}x_2$$

$$s_2 = 1875 + \frac{1}{12}s_1 - \frac{3}{4}x_2$$

$$s_3 = 1500 + \frac{1}{9}s_1 - \frac{2}{3}x_2$$

$$x_1, x_2, s_1, s_2, s_3 \ge 0$$

max
$$-\frac{80}{3}s_1 + 80 x_2 + 1080000$$
s.t.
$$x_1 = 4500 - \frac{1}{9}s_1 - \frac{1}{3}x_2$$

$$s_2 = 1875 + \frac{1}{12}s_1 - \frac{3}{4}x_2$$

$$s_3 = 1500 + \frac{1}{9}s_1 - \frac{2}{3}x_2$$

$$x_1, x_2, s_1, s_2, s_3 \ge 0$$

• Basic Solution: $(x_1, x_2, s_1, s_2, s_3) = (4500, 0, 0, 1875, 1500)$

max
$$-\frac{80}{3}s_1 + 80 x_2 + 1080000$$
s.t.
$$x_1 = 4500 - \frac{1}{9}s_1 - \frac{1}{3}x_2$$

$$s_2 = 1875 + \frac{1}{12}s_1 - \frac{3}{4}x_2$$

$$s_3 = 1500 + \frac{1}{9}s_1 - \frac{2}{3}x_2$$

$$x_1, x_2, s_1, s_2, s_3 \ge 0$$

- Basic Solution: $(x_1, x_2, s_1, s_2, s_3) = (4500, 0, 0, 1875, 1500)$
- Basic Solution Value: 1080000

max
$$-\frac{80}{3}s_1 + 80 \underbrace{x_2} + 1080000$$
s.t.
$$x_1 = 4500 - \underbrace{\frac{1}{9}s_1 - \frac{1}{3}x_2}_{52}$$

$$s_2 = 1875 + \underbrace{\frac{1}{12}s_1 - \frac{3}{4}x_2}_{9}$$

$$s_3 = 1500 + \underbrace{\frac{1}{9}s_1 - \frac{2}{3}x_2}_{72}$$

$$x_1, x_2, s_1, s_2, s_3 \ge 0$$

- Basic Solution: $(x_1, x_2, s_1, s_2, s_3) = (4500, 0, 0, 1875, 1500)$
- Basic Solution Value: 1080000
- Entering Variable: x_2

max
$$-\frac{80}{3}s_1 + 80 \underbrace{x_2} + 1080000$$
s.t.
$$\rightarrow x_1 = 4500 - \frac{1}{9}s_1 - \frac{1}{3}x_2$$

$$s_2 = 1875 + \frac{1}{12}s_1 - \frac{3}{4}x_2$$

$$s_3 = 1500 + \frac{1}{9}s_1 - \frac{2}{3}x_2$$

$$x_1, x_2, s_1, s_2, s_3 \ge 0$$

- Basic Solution: $(x_1, x_2, s_1, s_2, s_3) = (4500, 0, 0, 1875, 1500)$
- Basic Solution Value: 1080000
- Entering Variable: x_2
- First Constraint: x_2 can be at most 4500/(1/3) = 13500

max
$$-\frac{80}{3}s_1 + 80 \underbrace{x_2} + 1080000$$
s.t.
$$x_1 = 4500 - \frac{1}{9}s_1 - \frac{1}{3}x_2$$

$$\longrightarrow s_2 = 1875 + \frac{1}{12}s_1 - \frac{3}{4}x_2$$

$$s_3 = 1500 + \frac{1}{9}s_1 - \frac{2}{3}x_2$$

$$x_1, x_2, s_1, s_2, s_3 \ge 0$$

- Basic Solution: $(x_1, x_2, s_1, s_2, s_3) = (4500, 0, 0, 1875, 1500)$
- Basic Solution Value: 1080000
- Entering Variable: x_2
- First Constraint: x_2 can be at most 4500/(1/3) = 13500
- Second Constraint: x_2 can be at most 1875/(3/4) = 2500

max
$$-\frac{80}{3}s_{1} + 80 \underbrace{x_{2}}_{} + 1080000$$
s.t.
$$x_{1} = 4500 - \frac{1}{9}s_{1} - \frac{1}{3}x_{2}$$

$$s_{2} = 1875 + \frac{1}{12}s_{1} - \frac{3}{4}x_{2}$$

$$\longrightarrow s_{3} = 1500 + \frac{1}{9}s_{1} - \frac{2}{3}x_{2}$$

$$x_{1}, x_{2}, s_{1}, s_{2}, s_{3} \ge 0$$

- Basic Solution: $(x_1, x_2, s_1, s_2, s_3) = (4500, 0, 0, 1875, 1500)$
- Basic Solution Value: 1080000
- Entering Variable: x_2
- First Constraint: x_2 can be at most 4500/(1/3) = 13500
- Second Constraint: x_2 can be at most 1875/(3/4) = 2500
- Third Constraint: x_2 can be at most (1500)/(2/3) = 2250

max
$$-\frac{80}{3}s_1 + 80 \underbrace{x_2} + 1080000$$
s.t.
$$x_1 = 4500 - \underbrace{\frac{1}{9}s_1 - \frac{1}{3}x_2}_{52}$$

$$s_2 = 1875 + \underbrace{\frac{1}{12}s_1 - \frac{3}{4}x_2}_{53}$$

$$s_3 = 1500 + \underbrace{\frac{1}{9}s_1 - \frac{2}{3}x_2}_{53}$$

$$x_1, x_2, s_1, s_2, s_3 \ge 0$$

- Basic Solution: $(x_1, x_2, s_1, s_2, s_3) = (4500, 0, 0, 1875, 1500)$
- Basic Solution Value: 1080000
- Entering Variable: x_2
- First Constraint: x_2 can be at most 4500/(1/3) = 13500
- Second Constraint: x_2 can be at most 1875/(3/4) = 2500
- Third Constraint: x_2 can be at most (1500)/(2/3) = 2250
- Leaving Variable: \$\sigma_3\$

max
$$-\frac{80}{3}s_{1} + 80 \underbrace{x_{2}}_{} + 1080000$$
s.t.
$$x_{1} = 4500 - \underbrace{\frac{1}{9}s_{1} - \frac{1}{3}x_{2}}_{}$$

$$s_{2} = 1875 + \underbrace{\frac{1}{12}s_{1} - \frac{3}{4}x_{2}}_{}$$

$$\underbrace{s_{3}}_{} = 1500 + \underbrace{\frac{1}{9}s_{1} - \frac{2}{3}x_{2}}_{}$$

$$x_{1}, x_{2}, s_{1}, s_{2}, s_{3} \geq 0$$

- Basic Solution: $(x_1, x_2, s_1, s_2, s_3) = (4500, 0, 0, 1875, 1500)$
- Basic Solution Value: 1080000
- Entering Variable: x_2
- First Constraint: x_2 can be at most 4500/(1/3) = 13500
- Second Constraint: x_2 can be at most 1875/(3/4) = 2500
- Third Constraint: x_2 can be at most (1500)/(2/3) = 2250
- Leaving Variable: 53

After pivoting we get ...

max
$$-\frac{40}{3}s_{1} - 120s_{3} + 1260000$$
s.t.
$$x_{1} = 3750 - \frac{1}{6}s_{1} + \frac{1}{2}s_{3}$$

$$s_{2} = \frac{375}{2} - \frac{1}{24}s_{1} + \frac{9}{8}s_{3}$$

$$x_{2} = 2250 + \frac{1}{6}s_{1} - \frac{3}{2}s_{3}$$

$$x_{1}, x_{2}, s_{1}, s_{2}, s_{3} \ge 0$$

max
$$-\frac{40}{3}s_{1} - 120s_{3} + 1260000$$
s.t.
$$x_{1} = 3750 - \frac{1}{6}s_{1} + \frac{1}{2}s_{3}$$

$$s_{2} = \frac{375}{2} - \frac{1}{24}s_{1} + \frac{9}{8}s_{3}$$

$$x_{2} = 2250 + \frac{1}{6}s_{1} - \frac{3}{2}s_{3}$$

$$x_{1}, x_{2}, s_{1}, s_{2}, s_{3} \ge 0$$

• Basic Solution: $(x_1, x_2, s_1, s_2, s_3) = (3750, 2250, 0, 375/2, 0)$

max
$$-\frac{40}{3}s_{1} - 120s_{3} + 1260000$$
s.t.
$$x_{1} = 3750 - \frac{1}{6}s_{1} + \frac{1}{2}s_{3}$$

$$s_{2} = \frac{375}{2} - \frac{1}{24}s_{1} + \frac{9}{8}s_{3}$$

$$x_{2} = 2250 + \frac{1}{6}s_{1} - \frac{3}{2}s_{3}$$

$$x_{1}, x_{2}, s_{1}, s_{2}, s_{3} \ge 0$$

- Basic Solution: $(x_1, x_2, s_1, s_2, s_3) = (3750, 2250, 0, 375/2, 0)$
- Basic Solution Value: 1260000

max
$$-\frac{40}{3}s_{1} - 120s_{3} + 1260000$$
s.t.
$$x_{1} = 3750 - \frac{1}{6}s_{1} + \frac{1}{2}s_{3}$$

$$s_{2} = \frac{375}{2} - \frac{1}{24}s_{1} + \frac{9}{8}s_{3}$$

$$x_{2} = 2250 + \frac{1}{6}s_{1} - \frac{3}{2}s_{3}$$

$$x_{1}, x_{2}, s_{1}, s_{2}, s_{3} \ge 0$$

- Basic Solution: $(x_1, x_2, s_1, s_2, s_3) = (3750, 2250, 0, 375/2, 0)$
- Basic Solution Value: 1260000
- We stop now because we cannot increase the objective function anymore.

max
$$-\frac{40}{3}s_{1} - 120s_{3} + 1260000$$
s.t.
$$x_{1} = 3750 - \frac{1}{6}s_{1} + \frac{1}{2}s_{3}$$

$$s_{2} = \frac{375}{2} - \frac{1}{24}s_{1} + \frac{9}{8}s_{3}$$

$$x_{2} = 2250 + \frac{1}{6}s_{1} - \frac{3}{2}s_{3}$$

$$x_{1}, x_{2}, s_{1}, s_{2}, s_{3} \ge 0$$

- Basic Solution: $(x_1, x_2, s_1, s_2, s_3) = (3750, 2250, 0, 375/2, 0)$
- Basic Solution Value: 1260000
- We stop now because we cannot increase the objective function anymore.
- It turns out that this is the optimal solution!

max
$$-\frac{40}{3}s_{1} - 120s_{3} + 1260000$$
s.t.
$$x_{1} = 3750 - \frac{1}{6}s_{1} + \frac{1}{2}s_{3}$$

$$s_{2} = \frac{375}{2} - \frac{1}{24}s_{1} + \frac{9}{8}s_{3}$$

$$x_{2} = 2250 + \frac{1}{6}s_{1} - \frac{3}{2}s_{3}$$

$$x_{1}, x_{2}, s_{1}, s_{2}, s_{3} \geq 0$$

- Basic Solution: $(x_1, x_2, s_1, s_2, s_3) = (3750, 2250, 0, 375/2, 0)$
- Basic Solution Value: 1260000
- We stop now because we cannot increase the objective function anymore.
- It turns out that this is the optimal solution!
- We should plant $x_1 = 3750$ acres of corn and $x_2 = 2250$ acres of soybeans yielding a profit of \$1,260,000.

Simplex Algorithm Overview

1. Transform the linear program into a slack form where the basic solution is feasible.

Simplex Algorithm Overview

- 1. Transform the linear program into a slack form where the basic solution is feasible.
- 2. Find a nonbasic variable x_e , called the entering variable, in the objective function with positive coefficient.

- 1. Transform the linear program into a slack form where the basic solution is feasible.
- 2. Find a nonbasic variable x_e , called the entering variable, in the objective function with positive coefficient.
- 3. Find the basic variable x_l , called the leaving variable, associated with the most restrictive constraint on x_e .

- 1. Transform the linear program into a slack form where the basic solution is feasible.
- 2. Find a nonbasic variable x_e , called the entering variable, in the objective function with positive coefficient.
- 3. Find the basic variable x_l , called the leaving variable, associated with the most restrictive constraint on x_e .
- 4. Transform the linear program into an equivalent one by executing a pivot

- 1. Transform the linear program into a slack form where the basic solution is feasible.
- 2. Find a nonbasic variable x_e , called the entering variable, in the objective function with positive coefficient.
- 3. Find the basic variable x_l , called the leaving variable, associated with the most restrictive constraint on x_e .
- 4. Transform the linear program into an equivalent one by executing a pivot
- Go back to Step 2 and if an entering variable cannot be found, stop.

- 1. Transform the linear program into a slack form where the basic solution is feasible.
- 2. Find a nonbasic variable x_e , called the entering variable, in the objective function with positive coefficient.
- 3. Find the basic variable x_l , called the leaving variable, associated with the most restrictive constraint on x_e .
- 4. Transform the linear program into an equivalent one by executing a pivot
- Go back to Step 2 and if an entering variable cannot be found, stop.
- 6. The basic solution is optimal so return it.

Simplex Algorithm Technical Issues

• How do you transform a linear program into a slack form where the basic solution is feasible?

Simplex Algorithm Technical Issues

- How do you transform a linear program into a slack form where the basic solution is feasible?
- What is the "most restrictive constraint"?

Simplex Algorithm Technical Issues

- How do you transform a linear program into a slack form where the basic solution is feasible?
- What is the "most restrictive constraint"?
- Can the simplex algorithm run forever?

• Linear programming can be extremely technical

- Linear programming can be extremely technical
- Easy-to-use interface to build linear programs

- Linear programming can be extremely technical
- Easy-to-use interface to build linear programs
- Abstract away technical details of doing tedious transformations

- Linear programming can be extremely technical
- Easy-to-use interface to build linear programs
- Abstract away technical details of doing tedious transformations
- Use type-system to force users to use interface correctly

- Linear programming can be extremely technical
- Easy-to-use interface to build linear programs
- Abstract away technical details of doing tedious transformations
- Use type-system to force users to use interface correctly
- Create test cases to validate our implementation

Creating a linear program:

```
LinearProgram p = new LinearProgram();
Variable corn = p.registerNonnegativeVariable("corn");
Variable soybeans = p.registerNonnegativeVariable("soybeans");
```

Adding constraints:

```
p.addConstraint(new Constraint(
        new ArrayList<>(Arrays.asList(corn, soybeans)),
        new ArrayList<>(Arrays.asList(9.0, 3.0)),
        Relation.LEQ.
        40500
)):
p.addConstraint(new Constraint(
        new ArrayList<>(Arrays.asList(corn, soybeans)),
        new ArrayList<>(Arrays.asList(3.0/4.0, 1.0)),
        Relation.LEQ.
        5250
)):
p.addConstraint(new Constraint(
        new ArrayList<>(Arrays.asList(corn, soybeans)),
        new ArrayList<>(Arrays.asList(1.0, 1.0)),
        Relation.LEQ.
        6000
));
```

Adding objective function:

```
p.setObjective(new ObjectiveFunction(
          ObjectiveGoal.MAXIMIZE,
          new ArrayList<>(Arrays.asList(corn, soybeans)),
          new ArrayList<>(Arrays.asList(240.0, 160.0))
));
```

Getting the solution:

```
System.out.println("Optimal profit: " + p.getObjectiveValue());
System.out.println("Corn: " + p.evaluateVariable(corn));
System.out.println("Soybeans: " + p.evaluateVariable(soybeans));
```

1. Obtain linear program ${\mathcal L}$ made by the user through our simple interface

- 1. Obtain linear program ${\mathcal L}$ made by the user through our simple interface
- 2. Compile ${\mathcal L}$ into an equivalent linear program ${\mathcal L}'$ in standard form

- 1. Obtain linear program ${\mathcal L}$ made by the user through our simple interface
- 2. Compile ${\mathcal L}$ into an equivalent linear program ${\mathcal L}'$ in standard form
- 3. Solve \mathcal{L}' using the simplex algorithm

- 1. Obtain linear program ${\mathcal L}$ made by the user through our simple interface
- 2. Compile ${\mathcal L}$ into an equivalent linear program ${\mathcal L}'$ in standard form
- 3. Solve \mathcal{L}' using the simplex algorithm
- 4. Convert the answer found for \mathcal{L}' back into an answer in \mathcal{L}

 Used exercises from a textbook¹ and checked with the answers in the back of the book

¹Mathematical Applications for the Management, Life, and Social Sciences (12th edition) by Harshbarger and Reynolds

- Used exercises from a textbook¹ and checked with the answers in the back of the book
- Used problems from the section on solving systems of difference constraints in CLRS

¹Mathematical Applications for the Management, Life, and Social Sciences (12th edition) by Harshbarger and Reynolds

- Used exercises from a textbook¹ and checked with the answers in the back of the book
- Used problems from the section on solving systems of difference constraints in CLRS
- Recasted example maximum flow problems in CLRS into linear programs

¹Mathematical Applications for the Management, Life, and Social Sciences (12th edition) by Harshbarger and Reynolds

- Used exercises from a textbook¹ and checked with the answers in the back of the book
- Used problems from the section on solving systems of difference constraints in CLRS
- Recasted example maximum flow problems in CLRS into linear programs
- Created stress tester that randomly generates maximum flow problems and validated solution with Max-Flow Min-Cut Theorem

¹Mathematical Applications for the Management, Life, and Social Sciences (12th edition) by Harshbarger and Reynolds

• Each edge (u, v) has positive capacity c_{uv}

- Each edge (u, v) has positive capacity c_{uv}
- Each edge (u, v) is assigned a flow f_{uv} : $0 \le f_{uv} \le c_{uv}$
- Assume $f_{uv} = 0$ if $(u, v) \notin E$

- Each edge (u, v) has positive capacity c_{uv}
- Each edge (u, v) is assigned a flow f_{uv} : $0 \le f_{uv} \le c_{uv}$
- Assume $f_{uv} = 0$ if $(u, v) \notin E$
- All non-source and non-sink vertices v must conserve flow: $\sum_{u \in V} f_{uv} = \sum_{w \in V} f_{vw}$

- Each edge (u, v) has positive capacity c_{uv}
- Each edge (u, v) is assigned a flow f_{uv} : $0 \le f_{uv} \le c_{uv}$
- Assume $f_{uv} = 0$ if $(u, v) \notin E$
- All non-source and non-sink vertices v must conserve flow: $\sum_{u \in V} f_{uv} = \sum_{w \in V} f_{vw}$
- Maximize total flow out of the source s: $\sum_{v \in V} f_{sv} f_{vs}$

- Each edge (u, v) has positive capacity c_{uv}
- Each edge (u, v) is assigned a flow f_{uv} : $0 \le f_{uv} \le c_{uv}$
- Assume $f_{uv} = 0$ if $(u, v) \notin E$
- All non-source and non-sink vertices v must conserve flow: $\sum_{u \in V} f_{uv} = \sum_{w \in V} f_{vw}$
- Maximize total flow out of the source s: $\sum_{v \in V} f_{sv} f_{vs}$
- All constraints and the objective function are linear relationships on the variables which means finding a maximum flow is reduced to solving a linear program!

 Large linear programs may expose implementation issues

- Large linear programs may expose implementation issues
- How do we generate large linear programs and also validate the answer?

- Large linear programs may expose implementation issues
- How do we generate large linear programs and also validate the answer?
- Generate large randomized flow network parameterized by n and k (Figure 1)

Figure 1: Stress test network architecture

- Large linear programs may expose implementation issues
- How do we generate large linear programs and also validate the answer?
- Generate large randomized flow network parameterized by n and k (Figure 1)
- Max-Flow Min-Cut Theorem says that validating a maximum flow amounts to finding the non-existence of an augmenting path!

Figure 1: Stress test network architecture

Thanks!

Thanks for listening!

• Implementation Code: https://github.com/ EthanTheMaster/LinearProgrammingSimplexAlgorithm