PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISH	HED (INDER THE PATENT COOPERATION TREATY (PCT)
(51) International Patent Classification 6:		(11) International Publication Number: WO 98/12207
C07H 21/04, C12P 21/02, C12N 15/11, 15/33, 15/48, 15/85	Al	(43) International Publication Date: 26 March 1998 (26.03.98
(21) International Application Number: PCT/US	97/166	(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE
(22) International Filing Date: 18 September 1997 (18.09.9	GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO
(30) Priority Data: 08/717,294 20 September 1996 (20.09.9) (71) Applicant: THE GENERAL HOSPITAL CORPOR [US/US]; 55 Fruit Street, Boston, MA 02114 (US)	RATIO	BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL
(72) Inventors: SEED, Brian; Apartment 5J, Nine Hawthon Boston, MA 02114 (US). HAAS, Jurgen; Huberwe 69198 Schriesheim (DE).		
(74) Agent: ELBING, Karen, L.; Clark & Elbing LLP, 176 Street, Boston, MA 02110 (US).	Federa	
		-
	•	·
(54) Title: HIGH LEVEL EXPRESSION OF PROTEINS		
(57) Abstract		
The invention features a synthetic gene encoding a pro or less preferred codon in the natural gene encoding the pro	tein noi tein ha	mally expressed in a mammalian cell wherein at least one non-preferred been replaced by a preferred codon encoding the same amino acid.
•		
		·
		•

	Leu	CTG	118.00	81.21	0.94
	Leu	CTA	3.00	2.06	0.02
	Leu	CTT	1.00	0.69	0.01
5	Leu	CTC	3.00	2.06	0.02
	Pro	CCG	4.00	2.75	0.05
	Pro	CCA	0.00	0.00	0.00
	Pro	CCT	3.00	2.06	0.04
10	Pro	CCC	68.00	46.80	0.91

TABLE 4: Codon Frequency Table of the Native Factor VIII B Domain Deleted Gene

15	AA	Codon	Numb	per /100	00 Fra	ction		
	Gly	GGG	12.00	8.26	0.15			
	Gly	GGA	34.00	23.40	0.41			
	Gly	GGT	16.00	11.01	0.20			
20	Gly	GGC	20.00	13.76	0.24			
		_						
	Glu	GAG	33.00	22.71	0.39			
	Glu	GAA	51.00	35.10	0.61			
	Asp	GAT	55.00	37.85	0.67			
25	Asp	GAC	27.00	18.58	0.33			
	Val	GTG	29.00	19.96	0.33			
	Val	GTA	19.00	13.08	0.22			
	Val	GTT	17.00	11.70	0.19			
30	Val	GTC	23.00	15.83	0.26			
		~~~						
	Ala	GCG	2.00	1.38	0.03			
	Ala	GCA	18.00	12.39	0.25			
	Ala	GCT	31.00	21.34	0.44			
35	Ala	GCC	20.00	13.76	0.28			

	Ar	g AGG	18.0	0 12.3	39 0.25
	Ar				
	Ser	-	22.00		
	Ser	AGC	24.00		
5					0.20
	Lys	AAG	32.00	0 22.0	2 0.40
	Lys	AAA	48.00	33.0	
	Asr	AAT	38.00	26.1	
	Asr	AAC	25.00		
10					
	Met	ATG	43.00	29.5	9 1.00
	Ile	ATA	13.00	8.95	0.18
•	Ile	ATT	36.00	24.78	0.49
	He	ATC	25.00	17.21	0.34
15					
	Thr	ACG	1.00	0.69	0.01
	Thr	ACA	23.00	15.83	0.28
	Thr	ACT	36.00	24.78	0.43
	Thr	ACC	23.00	15.83	0.28
20					
	Trp	TGG	28.00	19.27	1.00
	End	TGA	1.00	0.69	1.00
	Cys	TGT	7.00	4.82	0.37
	Cys	TGC	12.00	8.26	0.63
25					
	End	TAG	0.00	0.00	0.00
	End	TAA	0.00	0.00	0.00
	Туг	TAT	41.00	28.22	0.60
	Tyr	TAC	27.00	18.58	0.40
30					
	Leu	TTG	20.00	13.76	0.16
	Leu	TTA	10.00	6.88	0.08
	Phe	TTT	45.00	30.97	0.58
	Phe	TTC	32.00	22.02	0.42
35		<b>m</b> o c			
	Ser	TCG	2.00	1.38	0.02
	Ser	TCA	27.00	18.58	0.22
	Ser	TCT		18.58	0.22
	Ser	TCC	18.00	12.39	0.15
40					

	Arg	CGG	6.00	4.13	0.08
	Arg	CGA	10.00	6.88	0.14
	Arg	CGT	7.00	4.82	0.10
	Arg	CGC	10.00	6.88	0.14
5					
	Gln	CAG	42.00	28.91	0.63
	Gln	CAA	25.00	17.21	0.37
	His	CAT	28.00	19.27	0.55
	His	CAC	23.00	15.83	0.45
10					
	Leu	CTG	36.00	24.78	0.29
	Leu	CTA	15.00	10.32	0.12
	Leu	CTT	24.00	16.52	0.19
	Leu	CTC	20.00	13.76	0.16
15					
	Pro	CCG	1.00	0.69	0.01
	Pro	CCA	32.00	22.02	0.43
	Pro	CCT	26.00	17.89	0.35
	Pro	CCC	15.00	10.32	0.20
20					

<u>Use</u>

30

The synthetic genes of the invention are useful for expressing the a protein normally expressed in mammalian cells in cell culture (e.g. for commercial production of human proteins such as hGH, TPA, Factor VIII, and Factor IX). The synthetic genes of the invention are also useful for gene 25 therapy. For example, a synthetic gene encoding a selected protein can be introduced in to a cell which can express the protein to create a cell which can be administered to a patient in need of the protein. Such cell-based gene therapy techniques are well known to those skilled in the art, see, e.g., Anderson, et al., U.S. Patent No. 5,399,349; Mulligan and Wilson, U.S. Patent No. 5,460,959.

What is claimed is:

1. A synthetic gene encoding a protein normally expressed in an eukaryotic cell wherein at least one non-preferred or less preferred codon in a natural gene encoding said protein has been replaced by a preferred codon encoding the same amino acid, said synthetic gene being capable of expressing said protein at a level which is at least 110% of that expressed by said natural gene in an *in vitro* mammalian cell culture system under identical conditions.

5

10

- 2. The synthetic gene of claim 1 wherein said synthetic gene is capable of expressing said protein at a level which is at least 150% of that expressed by said natural gene in an *in vitro* cell culture system under identical conditions.
- 3. The synthetic gene of claim 1 wherein said synthetic gene is capable of expressing said protein at a level which is at least 200% of that expressed by said natural gene in an *in vitro* cell culture system under identical conditions.
- 4. The synthetic gene of claim 1 wherein said synthetic gene is capable of expressing said protein at a level which is at least 500% of that expressed by said natural gene in an *in vitro* cell culture system under identical conditions.
- 5. The synthetic gene of claim 1 wherein said synthetic gene comprises fewer than 5 occurrences of the sequence CG.
  - 6. The synthetic gene of claim 1 wherein at least 10% of the codons in said natural gene are non-preferred codons.

7. The synthetic gene of claim 1 wherein at least 50% of the codons in said natural gene are non-preferred codons.

8. The synthetic gene of claim 1 wherein at least 50% of the non-preferred codons and less preferred codons present in said natural gene have been replaced by preferred codons.

5

- 9. The synthetic gene of claim 1 wherein at least 90% of the non-preferred codons and less preferred codons present in said natural gene have been replaced by preferred codons.
- 10. The synthetic gene of claim 1 wherein said protein is normally expressed by a mammalian cell.
  - 11. The synthetic gene of claim 1 wherein said protein is a retroviral protein.
  - 12. The synthetic gene of claim 1 wherein said protein is a lentiviral protein.
- 13. The synthetic gene of claim 11 wherein said protein is an HIV protein.
  - 14. The synthetic gene of claim 13 wherein said protein is selected from the group consisting of gag, pol, and env.
    - 15. The synthetic gene of claim 13 wherein said protein is gp120.

16. The synthetic gene of claim 13 wherein said protein is gp160.

- 17. The synthetic gene of claim 1 wherein said protein is a human protein.
- 18. The synthetic gene of claim 1 wherein said human protein is 5 Factor VIII.
  - 19. The synthetic gene of claim 1 wherein 20% of the codons are preferred codons.
  - 20. The synthetic gene of claim 18 wherein said gene has the coding sequence present in SEQ ID NO:42.
- 10 21. The synthetic gene of claim 1 wherein said protein is green fluorescent protein.
  - 22. The synthetic gene of claim 20 wherein said synthetic gene is capable of expressing said green fluorescent protein at a level which is at least 200% of that expressed by said natural gene in an *in vitro* mammalian cell culture system under identical conditions.

15

23. The synthetic gene of claim 20 wherein said synthetic gene is capable of expressing said green fluorescent protein at a level which is at least 1000% of that expressed by said n atural gene in an *in vitro* mammalian cell culture system under identical conditions.

24. The synthetic gene of claim 21 having the sequence depicted in Figure 11 (SEQ ID NO:40).

- 25. An expression vector comprising the synthetic gene of claim 1.
- 5 26. The expression vector of claim 21, said expression vector being a mammalian expression vector.
  - 27. A mammalian cell harboring with the synthetic gene of claim 1.
- 28. A method for preparing a synthetic gene encoding a protein

  normally expressed by mammalian cells, comprising identifying non-preferred
  and less-preferred codons in the natural gene encoding said protein and
  replacing one or more of said non-preferred and less-preferred codons with a
  preferred codon encoding the same amino acid as the replaced codon.

Syngp120mn

1/18

! CTCGAGATCC ATTGTGCTCT AAAGGAGATA CCCGGCCAGA CACCCTCACC SI TGCGGTGCCC AGCTGCCCAG GCTGAGGCAA GAGAAGGCCA GAAACCATGC 101 CCATGGGGTC TETGCAACCG CTGGCCACCT TGTACCTGCT GGGGATGCTG 151 GTCGCTTCCG TGCTAGCCAC CGAGAAGCTG TGGGTGACCG TGTACTACGG 201 CGTGCCCGTG TGGAAGGAGG CCACCACCAC CCTGTTCTGC GCCAGCGACG 251 CCAAGGCGTA CGACACCGAG GTGCACAACG TGTGGGCCAC CCAGGCGTGC 301 GTGCCCACCG ACCCCAACCC CCAGGAGGTG GAGCTCGTGA ACGTGACCGA 351 GAACTTCAAC AFGTGGAAGA ACAACATGGT GGAGCAGATG CATGAGGACA 401 TCATCAGCCT GTGGGACCAG AGCCTGAAGC CCTGCGTGAA GCTGACCCCC 451 CTGTGCGTGA (ECCTGAACTG CACCGACCTG AGGAACACCA CCAACACCAA 501 CAACAGCACC GCCAACAACA ACAGCAACAG CGAGGGCACC ATCAAGGGCG 551 GCGAGATGAA CAACTGCAGC TTCAACATCA CCACCAGCAT CCGCGACAAG 601 ATGCAGAAGG ASTACGCCCT GCTGTACAAG CTGGATATCG TGAGCATCGA 651 CAACGACAGC ACCAGCTACC GCCTGATCTC CTGCAACACC AGCGTGATCA 701 CCCAGGCCTG GCCCAAGATC AGCTTCGAGC CCATCCCCAT CCACTACTGC 751 GCCCCCGCCG CCTTCGCCAT CCTGAAGTGC AACGACAAGA AGTTCAGCGG CAAGGGCAGC TGCAAGAACG TGAGCACCGT GCAGTGCACC CACGGCATCC 851 GGCCGGTGGT GAGCACCCAG CTCCTGCTGA ACGGCAGCCT GGCCGAGGAG 901 GAGGTGGTGA TCCGCAGCGA GAACTTCACC GACAACGCCA AGACCATCAT 951 CGTGCACCTG AATGAGAGCG TGCAGATCAA CTGCACGCGT CCCAACTACA 1001 ACAAGCGCAA GCGCATCCAC ATCGGCCCCG GGCGCGCCTT CTACACCACC 1051 AAGAACATCA TCGGCACCAT CCGCCAGGCC CACTGCAACA TCTCTAGAGC 1101 CAAGTGGAAC GACACCCTGC GCCAGATCGT GAGCAAGCTG AAGGAGCAGT 1151 TCAAGAACAA GACCATCGTG TTCAACCAGA GCAGCGGGGG CGACCCCGAG 1201 ATCGTGATGC ACAGCTTCAA CEGCGGCGGC GAATTCTTCT ACTGCAACAC 1251 CAGCCCCCTG TTCAACAGCA CCTGGAACGG CAACAACACC TGGAACAACA 1301 CCACCGGCAG CAACAACAAT ATTACCCTCC AGTGCAAGAT CAAGCAGATC 1351 ATCANCATGT CGCAGGAGGT GGGCAAGGCC ATGTACGCCC CCCCCATCGA 1401 GGGCCAGATO CGGTGCAGCA GCAACATCAC CGGTCTGCTG CTGACCCGCG 1451 ACGGCGGCAA GGACACCGAC ACCAACGACA CCGAAATCTT CCGCCCCGGC

> FIGI (SHEET 1 OF 4)

1501 GGGGGGGACA TGCGCGACAA CTGGAGATCT GAGCTGTACA AGTACAAGGT
1551 GGTGACGATC GAGCCCCTGG GCGTGGCCCC CACCAAGGCC AAGCGCCGCG
1601 TGGTGCAGCG CGAGAAGCGC TAAAGCGGCC GC (SEQ ID NO:34)

FIG 1 (SHEET 2 OF 4)

#### 3/18

### syngploomn

1 ACCCAGAAGE TETEGETGAE CETETACTAE GECETECCEC TETEGAAGGA 51 GOCCACCACC ACCOMMENTATION GCGCCAGCGA CGCCAAGGCG TACGACACCG 101 AGGTGCACAA CETGTGGGCC ACCCAGGCGT GCGTGCCCAC CGACCCCAAC 151 CCCCAGGAGG TEGAGCTCGT GAACGTGACC GAGAACTTCA ACATGTGGAA 201 GAACAACATG CTGGAGCAGA TGGATGAGGA CATCATCAGC CTGTGGGACC 251 AGAGCOTGAA GOCCTGCCTG AAGCTGACCC COCTGTGCGT GACCOTCAAC 301 TGEACCGACC TGAGGAACAC CACCAACACC AACAACAGCA CCGCCAACAA III CHACAGCHAC NGCGAGGGCA CCATCHAGGG CGGCGAGATG AAGAACTGCA 401 MOTTCAACAT CACCACCAGC ATCCGCGACA AGATCCAGAA GGAUTACGCC 45: CTGCTGTACA AGCTGGATAT CGTGAGCATC CACAACGACA GCACCAGCTA 501 COGCOTGATO TOCTGCAACA COAGCOTGAT CACCOAGGOO TGCCCCAAGA 551 TOAGCTTOGA GOCCATOCCO ATOCACTACT GOGCCCCCCC CGGCTTCGCC 601 ATCCTGAACT GCAACGACAN GAAGTTCAGC GCCAAGGGCA GCTGCAAGAA 651 COTOACCACO MTOCAGMONA COCACODEAT COGGCCGGTG GTGAGGAGGC 701 ACCTECTECT GAACUSCAGE CTOSECGAGG AGGAGGTGST GATCCGCAGC 751 GAGAACTIVA CCGACAACGC CAAGACCATC ATCGTGCACC TGAATGAGAG 901 CGTGCAGATC AACTGCACGC GTCCCAACTA CAACAAGCGC AAGCGCATCC 851 ACATOGGCCC CGGGGGGGCC TTCTACAGCA CGAAGAACAT CATGGGCACC 901 ATCCCCCAGG CCCACTGCAA CATCTCTAGA GCCAAGTGGA ACGACACCCT 951 GEGECAGATE GTGAGEAAGE TGAAGGAGCA GTTCANGAAC AAGACCATCG 1001 TOTTCAACGA GAGGAGCGGC GGCGACCCCG AGATCGTGAT GCACAGCTTC 1051 AACTGCGGGG GCGAATTCTT CTÁCTGCAAC ACCAGCCCCC TGTIVAAUAG 1101 CACCTGGAAC GGCAACAACA CCTGGAACAA CACCACUUGU AGCAACAACA 1151 ATATTACCCT CCAGTGCAAG ATCAAGCAGA TCATCAACAT GTGGCAGGAG 1201 GTGGGCAAGG CCATGTACGC CCCCCCATC GAGGGCCAGA TCCGGTGCAG 1251 CAGCAACATO ACCOSTUTGO TOCTGACCES CGACGGGGGG AACGACACCG 1301 ACACCANCUA CACCGAAATO TTCCGCCCCG GCGGGGGGA CATGCGCGAC 1351 AMETOGAGAT CTGAGCTGTA CAAGTACAAG GTGGTGACGA TCGAGCCCCT 1401 COCCOCOSCO CCCACCAAGG CCAAGGGCCG CGTGGTGCAG CGCGAGAAGC

> FIG. 1 (SHEET 3 OF 4)

1451	GGGCCGCCAT CUGCGCCCTG TTCCTGGGCT TCCTGGGGGC GGCGGCAGC
1501	ACCATGGGGG CCGCCAGCGT GACCCTGACC GTGCAGGCCC GCCTGCTCCT
1551	GAGCGGCATC GTGCAGCAGC AGAACAACCT CCTCCGCGCC ATCGAGGCCC
1601	AGCAGCATAT GITCCAGCTC ACCGTGTGGG GCATCAAGCA GCTCCAGGCC
1651	CGCGTGCTGG CIGTGGAGCG CTACCTGAAG GACCAGCAGC TCCTGGGCTT
1701	CTGGGGCTGC TECGGCAAGC TGATCTGCAC CACEACGGTA CCCTGGAACG
1751	CCTCCTGGAG CAACAAGAGC CTGGACGACA TCTGGAACAA CATGACCTGG
1501	ATGCAGTGGG AGCGCGAGAT CGATAACTAC ACCAGCCTGA TCTACAGCCT
1951	GCTGGAGAAG ABCCAGACCC AGCAGGAGAA GAACGAGCAG GAGCTGCTGG
1901	AGETGGACAA CIGGGCGAGC CTGTGGAACT GGTTCGACAT CACCAACTGG
1951	CTGTGGTACA TEAAAATCTT CATCATGATT GTGGGCGGCC TGGTGGGCCT
2001	CCGCATCGTG TICGCCGTGC TGAGCATCGT GAACCGCGTG CGCCAGGGCT
2051	ACAGGECECT GAGECTECAG ACCEGGECEE CEGTGCCGGC CGGGCCCGAC
2101	CGCCCCGAGG CCATCCAGGA GGAGGGCGGC GAGCGCGACC GCGACACCAG
2151	EGGCAGGETE GTGCACGGET TEETGGCGAT CATETGGGTE GACCTCCGCA
2201	SCCTGTTCCT CTTCAGCTAC CACCACCGCG ACCTGCTGCT GATCGCCGCC
2251	CGCATCGTGG AACTCCTAGG CCGCCGCGGC TGGGAGGTGC TGAAGTACTG
2301	GTGGAACCTC CTCCAGTATT GGAGCCAGGA GCTGAAGTCC AGCGCCGTGA
2351	GCCTGCTGAA CGCCACCGCC ATCGCCGTGG CCGAGGGCAC CGACCGCGTG
2601	ATCGAGGTGC TCCAGAGGGC CGGGAGGGGCG ATCCTGCACA TCCCCACCCG
2451	CATECGCENG (GGETEGAGA GGGCGCTGCT G (SEQ ID NO:35)

FIG. 1 (SHEET 4 OF 4).



FIGURE 2



FIGURE 3



FIGURE 4



FIGURE 5

C	A Cat	4 0	L ttg ctt	С 998 998	ע נו א	a a c t	ស្រួ	)
С 99а 99а	a ag cg	X aaa aag	N aac aac	E gaa gag	E Ŭ Ū	N aat aac	ת מ	1
R aga cga	הר ה הפונים	ж ааа аад	o V gtc	D gat gat	X aaa aaa	C O O	ת ת ת ת ה ח ת	l
S agt tcc	ga ga	Е даа дад	8 B B B B B B B B B B B B B B B B B B B	X aaa aag	aa z t	V gra grr	D gat gac	
M atg atg	L a tta a ctg	R cgt cga	s agt tcc	T aca acc	s agt tcc	rta ctg	T aca acg	
Caa Caa	R g agé r cge	acg acc	R aga cgc	a ca a ca	S agt agc	L cta ctg	A gca gcc	
r rra rrg	0 C C C	t tta ctg	Y tat tac	ה הדר הדר	T aca	S agt agc	C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
V gta gtc	2 e e e	S tca agc	aca act	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	P cca	I ata ata	tta ctc	
S agr tca	C Ca Ca Ca	ה ה ה	H Cat	A gca gcc	aat aat	ანნ მმფ	F ttt	
tra crt	A A A B C	E gaa gag	E gaa gag	r rta cra	Q Caa Cag	G gga ggt	S agt tcc	
tra crg	a gre	n Cat Cat	P CCC	aca act	С 99а 99с	C tgt tgt	L L C C C	
r tra ctc	ה ה ה ה	O Caa Cag	V gta gtt	L Ctt	s agt tcg	ж <b>а</b> аа аад	S agt tcc	
T aca act	C T C C C C C C C C C C C C C C C C C C	I ata atc	G 998 999	V gta gtc	V gta gtc	V gta gtc	r rra crt	
I ata atc	₹ Ö B B	Р ССВ ССС	L tta ctg	ж ааа аад	R aga cga	L tta ctg	L cra	
S agt agc	a p G a p	L ttg ttg	aca acc	I ata atc	ctc ctt	ж в в в в в в	L tta ctc	
I ata atc	ה היה בי	CCC	G 99a 99c	F ttc ttt	E gag gaa	D gat gac	L tta ctg	
V I gta I gtc	S ago	T aca	S agr rca	R aga cgc	tgt tgt	R aga aga	L tra crg	
r cca	מ מ מיני תירו	N AAC AAC	L tta ctg	D gat gac	M atg atg	I ata atc	L tta ctg	
N aat aac	a gta	a a a t	ر gta gtg	S agt agt	Y tat tac	V gta gtg	ж 199 199	•
M ↓atg	В в д в В в д д	ந 9 தத 9 தத	H Cat	ה נננ נננ	D gac gac	a a a c c c c c c c c c c c c c c c c c	S agt tcc	J
M (SEQ ID NO:36) env→atg (SEQ ID NO:37) ₩c→atg	env ¥t	env vt	env vr	env	env	env Wt	env	
NO:3 NO:3								
8 8 8 8 8 8								
(SE (SE								

FIGURE 6

en v



FIGURE 7



FIGURE 8



FIGURE 9

FIG. 10



1	GAATTCACGC GTAAGCTTGC CGCCACCATG GTGAGCAAGG GCGAGGAGCT
51	GTTCACCGGG GTGGTGCCCA TCCTGGTCGA GCTGGACGGC GACGTGAACG
101	GCCACAAGTT CAGCGTGTCC GGCGAGGGCG AGGGCGATGC CACCTACGGC
151	AAGCTGACCC TGAAGTTCAT CTGCACCACC GGCAAGCTGC CCGTGCCCTG
201	GCCCACCCTC GTGACCACCT TCAGCTACGG CGTGCAGTGC TTCAGCCGCT
251	·
301	
351	
401	AGCTGAAGGG CATCGACTTC AAGGAGGACG GCAACATCCT GGGGCACAAG
451	CTGGAGTACA ACTACAACAG CCACAACGTC TATATCATGG CCGACAAGCA
501	GAAGAACGGC ATCAAGGTGA ACTTCAAGAT CCGCCACAAC ATCGAGGACG
551	GCAGCGTGCA GCTCGCCGAC CACTACCAGC AGAACACCCC CATCGGCGAC
601	GGCCCCGTGC TGCTGCCCGA CAACCACTAC CTGAGCACCC AGTCCGCCCT
651	
701	GAGCAAAGAC CCCAACGAGA AGCGCGATCA CATGGTCCTG CTGGAGTTCG
701	TGACCGCCGC CGGGATCACT CACGGCATGG ACGAGCTGTA CAAGTAAAGC
751	GGCCGCGGAT CC (SEQ ID NO: 40)

15/18

Native Factor VIII B domain deleted gene segment inserted in the expression vector

1	AAGCTTAAAC	CATGCCCATG	GGGTCTCTGC	AACCGCTGGC	CACCTTGTAC
51	CTGCTGGGGA	TGCTGGTCGC	TTCCGTGCTA	GCCGCCACCA	GAAGATACTA
101	CCTGGGTGCA	GTGGAACTGT	CATGGGACTA	TATGCAAAGI	GATCTCGGTG
151					ATCTTTTCCA
201	TTCAACACCT	CAGTCGTGTA	CAAAAAGACT	CTGTTTGTAG	AATTCACGGA
251	TCACCTTTTC	AACATCGCTA	AGCCAAGGCC	ACCCTGGATG	GGTCTGCTAG
301	GTCCTACCAT	CCAGGCTGAG	CTTTATGATA	CAGTGGTCAT	TACACTTAAG
351	AACATGGCTT	CCCATCCTGT	CAGTCTTCAT	GCTGTTGGTG	TATCCTACTG
401	GAAAGCTTCT	GAGGGAGCTG	AATATGATGA	TCAGACCAGT	CAAAGGGAGA
451	AAGAAGATGA	TAAAGTCTTC	CCTGGTGGAA	GCCATACATA	TGTCTGGCAG
501	GTCCTGAAAG	AGAATGGTCC	AATGGCCTCT	GACCCACTGT	GCCTTACCTA
551	CTCATATCTT	TCTCATGTGG	ACCTGGTAAA	AGACTTGAAT	TCAGGCCTCA
601	TTGGAGCCCT	ACTAGTATGT	AGAGAAGGGA	GTCTGGCCAA	GGAAAAGACA
651	CAGACCTTGC	ACAAATTTAT	ACTACTTTTT	GCTGTATTTG	ATGAAGGGAA
701	AAGTTGGCAC	TCAGAAACAA	AGAACTCCTT	GATGCAGGAT	AGGGATGCTG
751	CATCTGCTCG	GGCCTGGCCT	AAAATGCACA	CAGTCAATGG	TTATGTAAAC
801	AGGTCTCTGC	CAGGTCTGAT	TGGATGCCAC	AGGAAATCAG	TCTATTGGCA
<b>B51</b>	TGTGATTGGA	ATGGGCACCA	CTCCTGAAGT	GCACTCAATA	TTCCTCGAAG
901	GTCACACATT				GGAAATCTCG
951	CCAATAACTT	TCCTTACTGC	TCAAACACTC	TTGATGGACC	TTGGACAGTT
1001		TGTCATATCT			
1051	ATGTCAAAGT	AGACAGCTGT	CCAGAGGAAC	CCCAACTACG	AATGAAAAAT
1101	AATGAAGAAG	CGGAAGACTA	TGATGATGAT	CTTACTGATT	CTGAAATGGA
1151	TGTGGTCAGG	TTTGATGATG	ACAACTCTCC	TTCCTTTATC	CAAATTCGCT
1201	CAGTTGCCAA	GAAGCATCCT	AAAACTTGGG	TACATTACAT	TGCTGCTGAA
1251		GGGACTATGC			ATGACAGAAG
1301		CAATATTTGA			
1351		CCGATTTATG			TAAGACTCGT
1401		AGCATGAATC			
1451		ACACTGTTGA			
1501	ATAACATCTA	CCCTCACGGA	ATCACTGATG	TCCGTCCTTT	GTATTCAAGG
1551		AAGGTGTAAA			
1601		AAATATAAAT			
1651		TCGGTGCCTG		ACTCTAGTTT	
1701		TAGCTTCAGG			
1751	AGAATCTGTA	GATCAAAGAG	GAAACCAGAT	AATGTCAGAC	AAGAGGAATG
1801		TTCTGTATTT			
1851		GCTTTCTCCC			
1901		GCCTCCAACA			
1951		GTTGTCAGTT			
2001		GAGCACAGAC			
2051	TACCTTCAAA	CACAAAATGG	TCTATGAAGA	CACACTCACC	CTATTCCCAT
2101		AACTGTCTTC			
2151	CTGGGGTGCC	ACAACTCAGA	CTTTCGGAAC	AGAGGCATGA	CCGCCTTACT
2201	GAAGGTTTCT		AGAACACTGG		
2251	ATGAAGATAT	TTCAGCATAC	TTGCTGAGTA	AAAACAATGC	CATTGAACCA
2301	AGAAGCTTCT	CCCAGAATTC	AAGACACCCT	AGCACTAGGC	AAAAGCAATT
2351	TAATGCCACC	CCACCAGTCT	TGAAACGCCA	TCAACGGGAA	ATAACTCGTA
2401		GTCAGATCAA			
2451		AGAAGGAAGA			
2501	GAGCCCCCCC	AGCTTTCAAA	AGAAAACACG	ACACTATTTT	ATTGCTGCAG
2551	TGGAGAGGCT		GGGATGAGTA		
2601	AACAGGGCTC			TTCAAGAAAG	
2651	GGAATTTACT	GATGGCTCCT	TTACTCAGCC	CTTATACCGT	GGAGAACTAA
2701		GGGACTCCTG			
					_

Pig. 12

2751	AATATCATGG	TAACTTTCAG	AAATCAGGCC	TCTCGTCCCT	ATTCCTTCTA
2801	TTCTAGCCTT	ATTTCTTATG	AGGAAGATCA	GAGGCAAGGA	GCAGAACCTA
2851	GAAAAAACTT	TGTCAAGCCT	AATGAAACCA	ARACTTACTT	TTGGAAAGTG
2901	CAACATCATA	TGGCACCCAC	TAAAGATGAG	TTTGACTGCA	AAGCCTGGGC
2951	TTATTTCTCT	GATGTTGACC	TGGAAAAAGA	TGTGCACTCA	GGCCTGATTG
3001	GACCCCTTCT	GGTCTGCCAC	ACTAACACAC	TGAACCCTGC	TCATGGGAGA
3051	CAAGTGACAG	TACAGGAATT	TGCTCTGTTT	TTCACCATCT	TTGATGAGAC
3101	CAAAAGCTGG	TACTTCACTG	AAAATATGGA	AAGAAACTGC	AGGGCTCCCT
3151	GCAATATCCA	GATGGAAGAT	CCCACTTTTA	AAGAGAATTA	TCGCTTCCAT
3201	GCAATCAATG	GCTACATAAT	GGATACACTA	CCTGGCTTAG	TAATGGCTCA
3251	GGATCAAAGG	ATTCGATGGT	ATCTGCTCAG	CATGGGCAGC	AATGAAAACA
3301	TCCATTCTAT	TCATTTCAGT	GGACATGTGT	TCACTGTACG	AAAAAAAGAG
3351	GAGTATAAAA	TGGCACTGTA	CARTCTCTAT	CCAGGTGTTT	TTGAGACAGT
3401	GGAAATGTTA	CCATCCAAAG	CTGGAATTTG	GCGGGTGGAA	TGCCTTATTG
3451	GCGAGCATCT	ACATGCTGGG	ATGAGCACAC	TTTTTCTGGT	GTACAGCAAT
3501	<b>AAGTGTCAGA</b>	CTCCCCTGGG	AATGGCTTCT	GGACACATTA	GAGATTTTCA
3551	GATTACAGCT	TCAGGACAAT	ATCGACAGTG	GGCCCCAAAG	CTGGCCAGAC
3601	TTCATTATTC	CGGATCAATC	AATGCCTGGA	GCACCAAGGA	GCCCTTTTCT
3651	TGGATCAAGG	TGGATCTGTT	GGCACCAATG	ATTATTCACG	GCATCAAGAC
3701	CCAGGGTGCC	CGTCAGAAGT	TCTCCAGCCT	CTACATCTCT	CAGTTTATCA
3751	TCATGTATAG	TCTTGATGGG	AAGAAGTGGC	AGACTTATCG	AGGAAATTCC
3801	ACTGGAACCT	TAATGGTCTT	CTTTGGCAAT	GTGGATTCAT	CTGGGATAAA
3851	ACACAATATT	TTTAACCCTC	CAATTATTGC	TCGATACATC	CGTTTGCACC
3901	CARCTCATTA	TAGCATTCCC	AGCACTCTTC	CCATGGAGTT	CATGGGCTGT
3951	GATTTAAATA	GTTGCAGCAT	GCCATTGGGA	ATGGAGAGTA	AAGCAATATC
4001	AGATGCACAG	ATTACTGCTT	CATCCTACTT	TACCAATATG	TTTGCCACCT
4051	GGTCTCCTTC	AAAAGCTCGA	CTTCACCTCC	AAGGGAGGAG	TAATGCCTGG
4101	AGACCTCAGG	TGAATAATCC	AAAAGAGTGG	CTGCAAGTGG	ACTTCCAGAA
4151	GACAATGAAA	GTCACAGGAG	TAACTACTCA	GGGAGTAAAA	TCTCTGCTTA
4201	CCAGCATGTA	TGTGAAGGAG	TTCCTCATCT	CCAGCAGTCA	AGATGGCCAT
4251	CAGTGGACTC	TCTTTTTTCA	GAATGGCAAA	GTAAACGTTT	TTCAGGGAAA
4301	TCAAGACTCC	TTCACACCTG	TGGTGAACTC	TCTAGACCCA	CCGTTACTGA
4351	CTCGCTACCT	TCGAATTCAC	CCCCAGAGTT	GGGTGCACCA	GATTGCCCTG
4401	AGGATGGAGG	TTCTGGGCTG	CGAGGCACAG	GACCTCTACT	GAGGGTGGCC
4451	ACTGCAGCAC	CTGCCACTGC	CGTCACCTCT	CCCTCCTCAG	CTCCAGGGCA
4501	GTGTCCCTCC	CTGGCTTGCC	TTCTACCTTT	GTGCTAAATC	CTAGCAGACA
4551	CTGCCTTGAA	GCCTCCTGAA	TTAACTATCA	TCAGTCCTGC	ATTTCTTTGG
4601		GGAGGGTGCA	TCCAATTTAA	CTTAACTCTT	ACCGTCGACC
4651	TGCAGGCCCA	ACGCGGCCGC			

Fig. 12

(2 of 2)

Synthetic Factor VIII B domain deleted gene segment inserted in the expression vector

```
AAGCTTAAAC CATGCCCATG GGGTCTCTGC AACCGCTGGC CACCTTGTAC
         CTGCTGGGGA TGCTGGTCGC TTCCGTGCTA GCCGCCACCC GCCGCTACTA
     51
         CCTGGGCGCC GTGGAGCTGT CCTGGGACTA CATGCAGAGC GACCTGGGCC
AGCTCCCCGT GGACGCCCGC TTCCCCCCCC GCGTGCCCAA GAGCTTCCCC
   151
         TTCANCACCA GCGTGGTGTA CAAGAAAACC CTGTTCGTGG AGTTCACCGA
   201
        CCACCTGTTC AACATTGCCA AGCCGCGCCC CCCCTGGATG GGCCTGCTGG
   251
   301
        GCCCCACCAT CCAGGCCGAG GTGTACGACA CCGTGGTGAT CACCCTGAAG
   351 AACATGGCCA GCCACCCCGT CAGCCTGCAC GCCGTGGGCG TGAGCTACTG
401 GAAGGCCAGC GAGGGCGCCG AGTACGACGA CCAGACGTCC CAGCGCGAGA
         AGGAGGACGA CAAGGTGTTC CCGGGGGGGA GCCACACCTA CGTGTGGCAG
   451
         GTGCTTAAGG AGAACGGCCC TATGGCCAGC GACCCCCTGT GCCTGACCTA
CAGCTACCTG AGCCACGTGG ACCTGGTGAA GGATCTGAAC AGCGGGCTGA
   501
   551
         TCGGCGCCCT GCTGGTGTGT CGCGAGGGCA GCCTGGCCAA GGAGAAAACC
   601
   651
         CAGACCCTGC ACAAGTTCAT CCTGCTGTTC GCCGTGTTCG ACGAGGGGAA
         GAGCTGGCAC AGCGAGACTA AGAACAGCCT GATGCAGGAC CGCGACGCCG
CCAGCGCCCG CGCCTGGCCC AAGATGCACA CCGTTAACGG CTACGTGAAC
   701
   751
   801
         CGCAGCCTGC CCGGCCTGAT CGGCTGCCAC CGCAAGAGCG TGTACTGGCA
         CGTCATCGGC ATGGGCACCA CCCCTGAGGT GCACAGCATC TTCCTGGAGG
   851
        GCCACACCTT CCTGGTGCGC AACCACCGCC AGGCCAGCCT GGAGATCAGC CCCATCACCT TCCTGACTGC CCAGACCCTG CTGATGGACC TAGGCCAGTT
   901
   951
         CCTECTETTC TECCACATCA GCAGCCACCA GCACGACGGC ATGGAGGCTT
 1001
        ACGTGAAGGT GGACAGCTGC CCCGAGGAGC CCCAGCTGCG CATGAAGAAC
 1051
        AACGAGGAGG CCGAGGACTA CGACGACGAC CTGACCGACA GCGAGATGGA
 1101
        TGTCGTACGC TTCGACGACG ACAACAGCCC CAGCTTCATC CAGATCCGCA
GCGTGGCCAA GAAGCACCCT AAGACCTGGG TGCACTACAT CGCCGCCGAG
 1151
 1201
        GAGGAGGACT GGGACTACGC CCCGCTAGTA CTGGCCCCCG ACGACCGCAG
 1251
        CTACAAGAGC CAGTACCTGA ACAACGGCCC CCAGCGCATC GGCCGCAAGT ACAAGAAGGT GCGCTTCATG GCCTACACCG ACGAGACTTT CAAGACCCGC
 1301
 1351
        GAGGCCATCC AGCACGAGTC CGGCATCCTC GGCCCCCTGC TGTACGGCGA
 1401
 1451
        GGTGGGCGAC ACCCTGCTGA TCATCTTCAA GAACCAGGCC AGCAGGCCCT
        ACAACATCTA CCCCCACGGC ATCACCGACG TGCGCCCCCT GTACAGCCGC
 1501
        CGCCTGCCCA AGGGCGTGAA GCACCTGAAG GACTTCCCCA TCCTGCCCGG
 1551
 1601
        CGAGATCTTC AAGTACAAGT GGACCGTGAC CGTGGAGGAC GGCCCCACCA
        AGAGCGACCC CCGCTGCCTG ACCCGCTACT ACAGCAGCTT CGTGAACATG
GAGCGCGACC TGGCCTCCGG ACTGATCGGC CCCCTGCTGA TCTGCTACAA
 1651
 1701
 1751
        GGAGAGCGTG GACCAGCGCG GCAACCAGAT CATGAGCGAC AAGCGCAACG
        TGATCCTGTT CAGCGTGTTC GACGAGAACC GCAGCTGGTA TCTGACCGAG
AACATCCAGC GCTTCCTGCC CAACCCCGCT GGCGTGCAGC TGGAAGATCC
 1801
 1851
        CGAGTTCCAG GCCAGCAACA TCATGCACAG CATCAACGGC TACGTGTTCG
ACAGCCTGCA GCTGAGCGTG TGCCTGCATG AGGTGGCCTA CTGGTACATC
1901
1951
2001
        CTGAGCATCG GCGCCCAGAC CGACTTCCTG AGCGTGTTCT TCTCCGGGTA
        TACCTTCAAG CACAAGATGG TGTACGAGGA CACCCTGACC CTGTTCCCCT
2051
       TCTCCGGCGA GACTGTGTTC ATGTCTATGG AGAACCCCGG CCTGTGGATT
2101
       CTGGGCTGCC ACAACAGCGA CTTCCGCAAC CGCGGCATGA CTGCCCTGCT
2151
        GAAAGTCTCC AGCTGCGACA AGAACACCGG CGACTACTAC GAGGACAGCT
2201
       ACGAGGACAT CTCCGCCTAC CTGCTGTCCA AGAACAACGC CATCGAGCCC
2251
2301
       CGCTCCTTCT CCCAAAACTC CCGCCACCCC AGCACGCGTC AGAAGCAGTT
       CAACGCCACC CCCCCGTGC TGAAGCGCCA CCAGCGCGAG ATCACCCGCA
CCACCCTGCA AAGCGACCAG GAGGAGATCG ACTACGACGA CACCATCAGC
GTGGAGATGA AGAAGGAGGA CTTCGACATC TACGACGAGA ACGAGAACCA
2351
2401
2451
       GAGCCCCCGC TCCTTCCAAA AGAAAACCCG CCACTACTTC ATCGCCGCCG
TGGAGCGCCT GTGGGACTAC GGCATGAGCA GCAGCCCCCA CGTCCTGCGC
2501
2551
       AACCGCGCCC AGAGCGGCAG CGTGCCCCAG TTCAAGAAGG TGGTGTTCCA
2601
       GGAGTTCACC GACGGCAGCT TCACCCAGCC CCTGTACCGC GGCGAGCTGA
2651
2701 ACGAGCACCT GGGCCTGCTC GGCCCCTACA TCCGCGCCCGA GGTGGAGGAC
```

Fig. 13

(1 of 2)

2751	AACATCATGO		CARCCAAGC	TCCCGGCCCT	ACTCCTTCTA
2801	CTCCTCCCTC		AGGAGGACC		
2851	GCAAGAACTI		: AACGAGACTI	AGACCTACTT	
2901	CAGCACCACA		CAAGGACGAC	TTCGACTGCA	
2951	CTACTTCAGO		TGGAGAAGG	CGTGCACAGO	
3001	GCCCCCTGCT		ACCARCACCO	TGAACCCCCC	
3051	CAGGTGACTG		TGCCCTGTTC	TTCACCATCT	
3101	TAAGAGCTGG		AGAACATGGA	GCGCAACTGC	
3151	GCAACATCCA		CCCACCTTCA	AGGAGAACTA	
3201	GCCATCAACG		GGACACCCTG		TGATGGCCCA
3251	GGACCAGCGC		ACCTGCTGTC		
3301	TCCACAGCAT		GGCCACGTTI		CAAGAAGGAG
3351	Gagtacaaga		CAACCTGTAC		TCGAGACTCT
3401	GGAGATGCTG		CCGGGATCTG		TGCCTGATCG
3451	GCGAGCACCT		ATGAGCACCC	TGTTCCTGGT	GTACAGCAAC
3501	AAGTGCCAGA		CATGGCCAGC	GGCCACATCC	GCGACTTCCA
3551	CATCACCCC		ACGGCCAGTG	GGCTCCCAAG	CTGGCCGCC
3601	TGCACTACAG	CGGCAGCATC	AACGCCTGGT	CGACCAAGGA	GCCCTTCTCC
3651	TGGATCAAGG	TGGACCTGCT	GGCCCCCATG	ATCATCCACG	GCATCAAGAC
3701	CCAGGGCGCC	CGCCAGAAGT	TCAGCAGCCT	GTACATCAGC	CAGTTCATCA
3751	TCATGTACTC	TCTAGACGGC	AAGAAGTGGC	AGACCTACCG	CGGCAACAGC
3801	ACCGGCACCC	TGATGGTGTT	CTTCGGCAAC	GTGGACAGCA	GCGGCATCAA
3851	GCACAACATC	TTCAACCCCC	CCATCATCGC	CCGCTACATC	CGCCTGCACC
3901	CCACCCACTA	CAGCATCCGC	AGCACCCTGC	GCATGGAGCT	GATGGGCTGC
3951	GACCTGAACA	GCTGCAGCAT	GCCCCTGGGC	ATGGAGAGCA	AGGCCATCAG
4001 4051	CGACGCCCAG	ATCACCGCCT	CCAGCTACTT	CACCAACATG	TTCGCCACCT
4101	GGAGCCCCAG	CAAGGCCCGC	CTGCACCTGC	AGGGCCGCAG	CAACGCCTGG
4151	CGCCCCCAGG	TGAACAACCC	CAAGGAGTGG	CTGCAGGTGG	ACTTCCAGAA
	AACCATGAAG	GTGACTGGCG	TGACCACCCA	GGGCGTCAAG	AGCCTGCTGA
4201 4251	CCAGCATGTA	CGTGAAGGAG	TTCCTGATCA	GCAGCAGCCA	GGACGGCCAC
	CAGTGGACCC	TGTTCTTCCA	AAACGGCAAG	GTGAAGGTGT	TCCAGGGCAA
4301	CCAGGACAGC	TTCACACCGG	TCGTGAACAG	CCTGGACCCC	CCCCTGCTGA
4351	CCCGCTACCT	GCGCATCCAC	CCCCAGAGCT		GATCGCCCTG
4401	CGCATGGAGG	TGCTGGGCTG	CGAGGCCCAG		GAAGCGGCCG
4451	C				

Fig. 13

(2 of 2)

### INTERNATIONAL SEARCH REPORT

International application No PCT/US97/16639

A. CLA	SSIFICATION OF SUBJECT MATTER :C07H 21/04; C12P 21/02; C12N 15/11, 15/33,	15/48, 15/85		
US CL According	:435/69.1, 70.1, 70.3, 172.3, 320.1; 536/23.1, 2 to International Patent Classification (IPC) or to be	3.72, 25.3	and IPC	
	LDS SEARCHED		<del></del>	
Ainimum o	locumentation searched (classification system follow	wed by classification syn	nbols)	
U.S. :	435/69.1, 70.1, 70.3, 172.3, 320.1; 536/23.1, 23	.72, 25.3		
Documenta	tion searched other than minimum documentation to	the extent that such docum	nents are included	in the fields scarched
BIOSIS, I	data base consulted during the international search ( EMBASE, MEDLINE, DERWENT rms: gene?, dna?, nucleic acid?, deoxyribonucleic?			e, scarch terms used)
. DOC	UMENTS CONSIDERED TO BE RELEVANT			
ategory*	Citation of document, with indication, where	appropriate, of the releva	ant passages	Relevant to claim No.
WO 96/09378 A (THE GENERAL HOSPITAL CORPORATION) 28 March 1996, abstract, page 1, line 20-page 4, line 26, page 15, lines 25-32, page 17, lines 27-39 and pages 42-54.				1-28
	SEETHARAM et al. Mistranslati Espression of the Protein in Escherich Containing Low Frequency Codons Comm. 30 August 1988. Vol. 155.	ia coli Using a Syn . Biochem. Bio	thetic Gene phys. Res.	1-28
Purthe	er documents are listed in the continuation of Box	C. Sec patent i	amily annex.	
	sial categories of cited documents:  ament defining the general state of the art which is not considered	date and not in o	onflict with the applic	national filing date or priority ation but eited to understand
to b	e of particular relevance or document published on or effer the international filling date		scory underlying the scular relevance; the	invention claimed invention cannot be
dom	ment which may throw doubts on priority claim(s) or which is to establish the publication date of snother citation or other	occasidered novel ; when the docume	or eannot be considere nt is taken alone	ed to involve an inventive step
· · · · · · · · · · · ·	inf reason (as specified)  ment referring to an oral disclosure, use, exhibition or other  se	combined to in-	roire en inventire	claimed invention cannot be stap when the document is documents, such combination
doors the p	ment published prior to the international filing date but later than priority date claimed		of the same petent i	1
	ctual completion of the international search  4BER 1997	Date of mailing of the i	_	ch report
Commissions Box PCT	ailing address of the ISA/US or of Patents and Trademarks	Authorized officer NANCÝ J. DEGEN	nah -	Halle /
_	D.C. 20231 . (703) 305-3230		) 308-0196	١