姓名: 张三

学号: 1234567

一. (20 points) 利用信息熵进行决策树划分

- 1. 对于不含冲突样本(即属性值相同但标记不同的样本)的训练集,必存在与训练集一致(训练误差为0)的决策树. 如果训练集可以包含无穷多个样本,是否一定存在与训练集一致的深度有限的决策树?并说明理由(仅考虑每次划分仅包含一次属性判断的决策树).
- 2. 信息熵 Ent(D) 定义如下

$$\operatorname{Ent}(D) = -\sum_{k=1}^{|\mathcal{Y}|} p_k \log_2 p_k \tag{1}$$

请证明信息熵的上下界为

$$0 \le \operatorname{Ent}(D) \le \log_2 |\mathcal{Y}| \tag{2}$$

并给出等号成立的条件.

3. 在 ID3 决策树的生成过程中, 需要计算信息增益(information gain)以生成新的结点. 设离散属性 a 有 V 个可能取值 $\{a^1, a^2, \dots, a^V\}$,请考教材 4.2.1 节相关符号的定义证明:

$$\operatorname{Gain}(D, a) = \operatorname{Ent}(D) - \sum_{v=1}^{V} \frac{|D^v|}{|D|} \operatorname{Ent}(D^v) \ge 0$$
 (3)

即信息增益非负.

解:

二. (15 points) 决策树划分计算

本题主要展现决策树在不同划分标准下划分的具体计算过程. 假设一个包含三个布尔属性 X,Y,Z 的属性空间,目标函数 f = f(X,Y,Z) 作为标记空间,它们形成的数据集如??所示.

1. 请使用信息增益作为划分准则画出决策树的生成过程. 当两个属性信息增益相同时, 依据字母顺序选择属性.

编号	X	Y	Z	f	编号	X	Y	Z	f
1	1	0	1	1	5	0	1	0	0
2	1	1	0	0	6	0	0	1	0
3	0	0	0	0	7	1	0	0	0
4	0	1	1	1	8	1	1	1	0

Table 1: 布尔运算样例表

2. 请使用基尼指数作为划分准则画出决策树的生成过程, 当两个属性基尼指数相同时, 依据字母顺序选择属性.

解:

三. (25 points) 决策树剪枝处理

教材 4.3 节介绍了决策树剪枝相关内容, 给定包含 5 个样例的人造数据集如表??所示, 其中"爱运动"、"爱学习"是属性, "成绩高"是标记. 验证集如表??所示. 使用信息增益为划分准则产生如图??所示的两棵决策树. 请回答以下问题:

(a) 训练集									
编号	爱运动	爱学习	成绩高						
1	是	是	是						
2	否	是 否	是 否						
3	是	否	否						
4	是	否	否						
5	否	否	是						

(b) 验业集									
编号	爱运动	爱学习	成绩高						
6	是	是	是						
7	否	是否	否						
8	是 否	否	否						
9	否	否	否						

Table 2: 人造数据集

Figure 1: 人造数据决策树结果

1. 请验证这两棵决策树的产生过程.

- 2. 对图??的结果基于该验证集进行预剪枝、后剪枝,给出剪枝后的决策树.
- 3. 比较预剪枝、后剪枝的结果,每种剪枝方法在训练集、验证集上的准确率分别为多少? 哪种方法拟合能力较强?

解:

四. (20 points) 连续与缺失值

1. 考虑如表??所示数据集,仅包含一个连续属性,请给出将该属性"数字"作为划分标准时的决策树划分结果。

属性	类别
3	正
4	负
6	负
9	正

Table 4: 连续属性数据集

2. 请阐述决策树如何处理训练时存在缺失值的情况,具体如下:考虑表??的数据集,如果发生部分缺失,变成如表??所示数据集(假设X,Y,Z 只有 0 和 1 两种取值). 在这种情况下,请考虑如何处理数

X	Y	\mathbf{Z}	f
1	0	-	1
-	1	0	0
0	-	0	0
0	1	1	1
-	1	0	0
0	0	-	0
1	-	0	0
1	1	1	0

Table 5: 缺失数据集

据中的缺失值,并结合问题??第1小问的答案进行对比,论述方法的特点以及是否有局限性。

3. 请阐述决策树如何处理测试时存在缺失值的情况,具体如下:对于问题??训练出的决策树,考虑表??所示的含有缺失值的测试集,输出其标签,并论述方法的特点以及是否有局限性。

编号	爱运动	爱学习	成绩高
6	是	-	
7	-	是	
8	否	-	
9	-	否	

Table 6: 缺失数据集

解:

五. (20 points) 多变量决策树

考虑如下包含 10 个样本的数据集, 每一列表示一个样本, 每个样本具有二个属性, 即 $\boldsymbol{x}_i = (x_{i1}; x_{i2})$.

编号	1	2	3	4	5	6	7	8	9	10
$\overline{A_1}$	24	53	23	25	32	52	22	43	52	48
A_2	40	52	25	77	48	110	38	44	27	65
标记	1	0	0	1	1	1	1	0	0	1

- 1. 计算根结点的熵;
- 2. 构建分类决策树, 描述分类规则和分类误差;
- 3. 根据 $\alpha x_1 + \beta x_2 1$,构建多变量决策树,描述树的深度以及 α 和 β 的值.

解: