Laboratorio: Trabajo final (Ecualizador de audio)

Introducción

Objetivo

- Ecualizador paramétrico de audio
 - análisis de la función de transferencia dada $H_d(z)$ de una sala
 - determinación del ecualizador perfecto $H_c(z)$
 - diseño de un ecualizador paramétrico $H_e(z)$ tal que $|H_e(\omega)| \approx |H_c(\omega)|$
 - aplicación del ecualizador paramétrico a la sala

Metodología

- por parejas (preferiblemente) o individual, a discreción
- entregables
 - memoria (~10 páginas) con descripción del problema y de la solución, pruebas y resultados
 - código MATLAB
 - importante: sólo MATLAB básico y Signal Processing Toolbox
- calendario
 - fecha límite: viernes 30 de enero de 2022 a las 23:55 CET
- evaluación
 - 2 puntos de la nota total
 - sólo los entregables
 - NO examen, ni presentación

Descripción (I)

Sala = Sistema distorsionador

- $H_d(z)$ sala y cualquier otro elemento (amplificador, altavoz...)
- función MATLAB: [Z, P, K] = room(u1, u2);
 - u1, u2 correo alumno1 y alumno2
 - $[B, A] = zp2tf(Z, P, K) \dots$
- plantilla LTF.m

Ecualizador paramétrico = Sistema compensador

- compensador perfecto: $H_d(z) = H_{min}(z)H_{ap}(z) \rightarrow H_c(z) = 1/H_{min}(z)$
- aproximación con ecualizador paramétrico discreto
- diseño con 3 tipos de filtro (descritos en *Audio-EQ-Cookbook.txt*)
 - filtros repisa paso bajo $H_I(z)$ y paso alto $H_h(z)$
 - parámetros: ganancia, frecuencia de "corte" y ancho de banda
 - filtros pico paso banda $H_{b1}(z)$, $H_{b2}(z)$, $H_{b3}(z)$
 - parámetros: ganancia, frecuencia central y ancho de banda
- $H_e(z) = H_l(z)H_{b1}(z)H_{b2}(z)H_{b3}(z)H_h(z)$ de modo que $|H_e(\omega)| \approx |H_c(\omega)|$ mediante prueba y error
- aplicación a la sala: $H_{eq}(z) = H_d(z)H_e(z)$

Descripción (y II)

Señal de prueba

- *chirp*: barrido de frecuencias
- generada en MATLAB según las instrucciones del documento de especificaciones

Algunas consideraciones

- sólo interesa ecualizar la banda de audición del oído humano: [20 Hz, 20 kHz]
- una "buena" ecualización debería ajustar la distorsión con diferencias ≤ ±0.5 dB
- para aplicar los filtros hay que saber cómo responden a los distintos parámetros (FC2)

Evaluación

Generalidades

- criterios con escala: 0 mal, 1 regular, 2 bien, 3 excelente
- nota del trabajo = $\sum c_k$
- ajuste lineal a los 2 puntos de la asignatura

Criterios

- Memoria: M1) estructura del documento, M2) uso de figuras y tablas y M3) uso del lenguaje
- Código: C1) ejecución correcta, C2) estructura del código y C3) uso del lenguaje de programación
- Sistemas distorsionador y compensador perfecto: DC1) análisis del sistema distorsionador y DC2) cálculo del sistema compensador
- Filtros compensadores repisa y pico: FC1) cálculo de coeficientes y FC2) análisis
- Ecualizador: EQ1) cálculo de coeficientes, EQ2) análisis y EQ3) implementación
- Señal de prueba: SG1) procesado