

SAT LAB 1 – Full Annealing of τ Field on Radial θ_4 Kink Background

Simulation Setup:

- 50×50 grid with $\tau \in \mathbb{Z}_3$ and a static radial $\theta_4(r)$ kink centered at $r_0 = 15 \ \mu m$.
- $-\theta_4(r) = (2\pi/3)(1 + \tanh[\mu(r r_0)])/2$ with $\mu = 5 \mu m^{-1}$.
- Local fusion penalty strength $\lambda(x, y) = \lambda_0 + \lambda_1 | \nabla \theta_4(x, y) |$ with $\lambda_0 = 1.0, \lambda_1 = 10.0$. - 100,000-step Metropolis annealing from T = 2.0 to 0.25.

Results Summary:

- 1. τ domains emerge clearly and preferentially align near the radial kink zone.
- 2. Fusion violation density is lowest around $r \approx 15 \mu m$, where the θ_4 gradient is steepest.
- 3. τ domain coherence is strongest near the θ_4 wall, confirming coupling-induced stabilization.

Conclusion:

This confirms the SAT-predicted effect: τ fusion behavior is modulated by θ_4 scalar geometry.

The kink acts as an energetic attractor for fusion-stable τ configurations.