Informe Comparativo de Modelos de Prediccion

Este informe documenta el analisis exploratorio, preprocesamiento, entrenamiento y evaluacion de modelos para la prediccion del tiempo de produccion. Se muestran visualizaciones EDA, estadisticas descriptivas y la comparacion de tres modelos de machine learning.

Exploración de Datos (EDA)

Distribución de la variable objetivo:

Boxplot por tipo de producto:

Matriz de correlación:

Relación unidades producidas vs tiempo:

120

Units Produced

140

160

180

200

Preprocesamiento de Datos

60

80

100

- Conversion de fechas
- Eliminacion de columnas irrelevantes
- Imputacion/eliminacion de nulos
- Eliminacion de outliers
- Codificacion de variables categoricas
- Normalizacion de variables numericas
- Division en entrenamiento y prueba

Comparación de Modelos

Se entrenaron los modelos: ANN, Random Forest y XGBoost. Las metricas evaluadas fueron: MAE, MSE, R2 y tiempo de entrenamiento.

Gráficos Predicción vs Real:

ANN:

Random Forest:

XGBoost:

Modelo	MAE	MSE	R ² Score	Tiempo Entrenamiento (s)
ANN	5.625	44.995	-0.052	13.95
Random Forest	5.561	43.346	-0.013	2.14
XGBoost	5.761	47.924	-0.120	0.20

Conclusión:

El modelo recomendado es: Random Forest, por su mejor desempeno en las metricas evaluadas.

Generado por Maykol Ramos- Rodrigez Leon - UNT - Tesis 2025