n [2]:	from scipy.stats import norm sns.set() Uppgifter 1
ut[2]:	In this exercise, we generate random variable X for different sample sizes and simulate for 1000 times to calculate the mean \bar{X} and standardlized sample mean. As changing the sample sizes, we observe and compare the histograms and curves by using Central Limit Theorem. Expected mean value μ_X , standard devition σ_X and confidence interval will be calculated and hypothesis will be discussed. 1) Vi ska alltså skapa observationer av stickprovsmedelvärden \bar{x} Hur ska du göra/skriva i Python för att få observationer av stickprovsmedelvärden baserade på fem observationer av slumpvariabler? Svara gärna med hjälp av en skärmdump och förklarande text.
. [3]:	# Create a uniformly distributed discrete random variable X of five observations # which take values 4, 5, 6, 7 # we then calculate the mean X_bar for these five observations and save as x_bar_5 sample_5=np.random.randint(4,8,5) x_bar_5=sample_5.mean() sample_5, x_bar_5 (array([7, 7, 4, 4, 6]), 5.6) 2) Skapa 1000 standardiserade stickprovsmedelvärden, vart och ett baserat på 2 observationer av slumpvariabler, och gör histogram för de 1000 standardiserade stickprovsmedelvärdena. Upprepa proceduren för stickprovsstorlekarna 10, 20, 30 och 50.
n [4]:	# calculate the population mean my my = (4+5+6+7)/4 # standard deviation of population: sigma Sigma = np.Sqrt((1/4)*(4-my)**2 + (1/4)*(5-my)**2 + (1/4)*(6-my)**2 + (1/4)*(7-my)**2).round(2) def CLT_test_discrete(sample_size, N_samples): "Define a function for sample size and the number of loops" "Return the histogram figures" "Add a standard normal curve in red over the histogram" sample_mean = lambda sample_size:np.mean(np.random.randint(4,8,sample_size)) # function for sample mean standlized_samples = [(sample_mean(sample_size)-my)/(sigma/np.sqrt(sample_size)) for i in range(N_samples)] # loop for standlized samples plt.rcParams["figure.figsize"] = (15,10) fig, ax = plt.subplots() x = np.arange(-4,4,0.0001) ax.set_title(f'Histogram of discrete uniform distribution of n= {sample_size}',fontname='Sans Serif',fontsize=20) ax.set_vlabel('Standardized Sample Mean',fontsize=20,fontname='Sans Serif') ax.set_vlabel('Standardized Sample Mean',fontsize=20,fontname='Sans Serif') sns.distplot(standlized_samples, bins=20) max.grid(frue) max.set_ylim(0,0.0002) ax.axes.get_yaxis().set_visible(False) #plt.show() CLT_test_discrete(2,1000)
	Histogram of discrete uniform distribution of n= 2
\	-4 -3 -2 -1 0 1 2 3 4 Standardized Sample Mean When using the sample size of 2, the sample mean tend to be near our standardized mean 0. However, the curve is not seems to be normal distributed. CLT_test_discrete(10, 1000) Histogram of discrete uniform distribution of n= 10
[6]:	-4 -3 -2 -1 0 1 2 3 4 Standardized Sample Mean The shape become more smoothy. CLT_test_discrete(20, 1000) Histogram of discrete uniform distribution of n= 20
ı [7]:	The curve perform better to be normal distributed when we adjust the sample size to 20.
	Histogram of discrete uniform distribution of n= 30
1 [8]:	The more samples we take, the more likely that the sampling distribution of the mean will be narmal distributed. CLT_test_discrete(50, 1000)
	Histogram of discrete uniform distribution of n= 50
f [-4 -3 -2 -1 0 1 2 3 4 Standardized Sample Mean 3) Hur beräknar du μ_X i 2)? (Svara med en formel, uträkning baserad på formeln och ett numeriskt svar) 4) Hur beräknar du σ_X i 2)? (Svara med en formel, uträkning baserad på formeln och ett numeriskt svar) Expected mean and standard deviation can be calculated by: $\mu_X = E(X) = \frac{1}{n} \sum_{i=1}^n X_i$
v f F III C	where X_i is the observations in population 5) Vad händer med fördelningen för de standardiserade stickprovsmedelvärdena då antalet observationer som stickprovsmedelvärdena baseras på ökar? Finns det något teoretiskt strör detta och i så fall vilket? From the previous figures, we found that the distribution of the standarized sample mean trends to be normal distribution(informally a "bell curve" with mean equal to 0) as n becomes larger. The underlying theorem is Central Limit Theorem. As n is large, the distribution of the standarized sample mean becomes normal distribution even if the original variable is not normal distribution. 6) Gör 1000 95%-konfidensintervall för populationsmedelvärdet μ , vart och ett baserat på 50 observationer av slumpvariabler. Hur många av dessa täcker populationsmedelvärdet? År detta vad du förväntade dig? Motivera? Confidence interval can be calculate by equation: $\bar{x} \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ Because the standard diviation of population σ is known N_sample_size=50 count=0
A	<pre>for x in range(N_samples): sample_n=np.random.randint(4,8,sample_size) x_bar_n=sample_n.mean() #create 95% confidence interval for population mean # scs.norm.ppf(.975).round(2) is 1.96 z_critical_value = scs.norm.ppf(105/2).round(2) up_limit = x_bar_n + z_critical_value*sigma/np.sqrt(sample_size) down_limit = x_bar_n - z_critical_value*sigma/np.sqrt(sample_size) if down_limit < my < up_limit: count += 1 print(f'For {count} of 1000 times, the confidence interval includes the population mean, which is a proportion of {count/N_samples*100:.2f}%') For 958 of 1000 times, the confidence interval includes the population mean, which is a proportion of 95.80% Around 95% of times does the population mean fall into in the confidence interval. This expectation is approximately the same as the test result. 7) Antag att vi vill göra hypotestest för populationsmedelvärdet med</pre>
) S N	$H_0: \mu \leq 5.1$ Testet ska utföras på signifikansnivån 0.05 och med stickprovsstorleken 50. Med hjälp av de 1000 raderna och 50 kolonnerna med observerade slumpvariabler vill vi undersöka testet styrka genom att utföra testet 1000 gånger. Vad blir styrkan, dvs hur stor andel av testerna förkastar den falska nollhypotesen? Now suppose we want to do a hypothesis test for the population mean with Here the population σ is known so we need calculate the z value and P -value: $z = \frac{x-\mu}{\sigma/\sqrt{n}}$ Because it is a one side test, so P -value will be $P(Z>z)$
! s s	test = (x_bar_n-s.1)/(sigma/np.sqrt(sample_size)) # Z value # P(ZFLost) = 1 * P(Z=test) p_varde = 1 * scs.nors.cdf(test) if p_varde = 1 * scs.nors.cdf(test) if p_varde = 0.0s: # p_value is smaller than significant value 0.0s, reject H0.
	Histogram of 200 samples of continous uniform variable with n= 5 per sample -4 -2 0 2 4 6 8 10 12
€ 7 9	No, the histogram shows that the sample means are not normally distributed. Because we can see that the blue and the red standarized normal distribution curve locate very far away each other. The figure shows that these 1000 observations are not normally distributed. 9) Skapa 200 standardiserade medelvärden vart och ett baserat på stickprov av storlek fem genererade i uppgift 8 och skapa ett histogram av dessa medelvärden. Tyder histogramme på att medelvärdena är normalfördelade?* def histogram_continous_uniform_standarized(sample_size, N_of_samples): "Define an array for N_of_samples samples, each sample size of sample_size" "Return the histogram figures" "Add a standard normal curve in red over the histogram" # n is the sample_size, and samples stands for the number of samples # Define an array for N_of_samples samples per sample size of sample_size samples_n = np.zeros((N_of_samples, sample_size)) #Defining parameters from our population distribution
	<pre>ax.tick_params(axis='both', which='major', labelsize=20) ax.set_xlabel('Standardized Sample Mean', fontsize=20, fontname='Sans Serif') ax.set_ylabel('Density') ax.plot(x, norm.pdf(x,0,1), color='red') sns.distplot(x_bars_n, bins=20) #ax.grid(True) #ax.set_ylim(0,0.0002) ax.axes.get_yaxis().set_visible(False)</pre>
[14]:	# is calculate the population standard deviation signs signs (01-10) np settic2) result(2) result(2) # be created at variative that necessariations is easo long # is considered at variative that necessariations for seasons long # is considered and in the population standard deviation signs # is considered and in the population of x_barg_n to x_barg_n each long # is considered and in the population of x_barg_n # is considered and in the population of x_barg_n # is the x_b
	## Secretariate the production makes of the production state of the production of th
	# all the calculate the representation cannot be presented to explain a cannot be supported to the representation of the calculate of the calculate the representation of the calculate of the calculate the representation of the calculate of the
[15]:	The thoughout the manufacture of the production of the control of
	The thoughout the manufacture of the control of the
[15]:	The product of the production
[15]:	Standard Surprise Standard Annual Standard Ann
[15]: [16]: [17]: [18]	The state of the s
[15]: [16]: [18] 19] 10] 11] 11] 12] 13] 14] 15] 16] 17] 18] 18] 18] 18] 18] 18] 18	This year of 200 samples of certificate and the second sec
[16]: [[17]: [[18]:	Support of 200 camples of continuo soften manufacture and the signer range. Hadge and 200 camples of continuo soften manufacture and the signer range. Hadge and 200 camples of continuo soften manufacture and the signer range. Hadge and 200 camples of continuo soften manufacture and the signer range. Hadge and 200 camples of continuo soften manufacture and the signer range. Hadge and 200 camples of continuo soften manufacture and the signer range. Hadge and 200 camples of continuo soften manufacture and the signer range. Hadge and 200 camples of continuo soften manufacture and the signer range. Hadge and 200 camples of continuo soften manufacture and the signer range. Hadge and 200 camples of continuo soften manufacture and the signer range. Hadge and 200 camples of continuo soften manufacture and the signer range. Hadge and 200 camples of continuo soften manufacture and the signer range. Hadge and 200 camples of continuo soften manufacture and the signer range. Hadge and 200 camples of continuo soften manufacture and the signer range. Hadge and 200 camples of continuo soften manufacture and the signer range. Hadge and 200 camples of continuo soften manufacture and the signer range. Hadge and 200 camples of continuo soften manufacture and the signer range.
[16]: [18]:	Thoughout designed and an analysis of the control o