1.

Q2

Q3

1. Initial state:

____ __X __

After 8 iterations:

_ X _

O__ O_ _O __O

 X_{-} X_{-} X_{-} X_{-} X_{-} X_{-} X_{-} X_{-} X_{-} X_{-}

___ O__ O__ O

2.

- a. Randomly choose a state that have the highest UCB value among these 8 states generated from the first 8 iteration
- b.

(Node 1)

Picked node 1 because it has the highest UCB value

Ο__

XX _ New state by a random action

 O_O

XXX Keep simulating until terminal, then backup update

c.

The node in red. The root node only updates visit, the other two both update visit and UCB value

At most 7 nodes

At most 7 nodes. The red node will be visited twice. In the eighth iteration, the red node will be picked because of its high UCB value(due to it is a terminal node and winning state), but since it is terminal no node will be generated, so 7 at most.

1

When x2 = 2, x1 = 0.477, $D1 = [0, 0.477(\log(3))]$

2. x1=0.6155375848385205, x2=0.850651212532439 The branching operation occurs when I take a step size 0.1 to prune the next possible state

3.
$$x1=0.6155375848385205$$
, $x2=0.850651212532439$
 $X1=0$, $x2=0$

Because there are only two points with C1 and C2

4.

No solution

Q5

$$= \neg (p2 \rightarrow (\neg p3 \lor (\neg p1 \land p2))) \rightarrow p1$$

$$= (\neg p2 \lor ((\neg p3 \lor \neg p1) \land (\neg p3 \lor p2))) \land \neg p1$$

$$= (\neg p2 \lor (\neg p3 \lor \neg p1) \land \neg p2 \lor (\neg p3 \lor p2)) \land \neg p1$$

$$= (\neg p2 \lor (\neg p3 \lor \neg p1) \land \neg p2 \lor (\neg p3 \lor p2)) \land \neg p1$$

$$= ((\neg p2 \lor \neg p3 \lor \neg p1) \land (\neg p2 \lor \neg p3 \lor p2)) \land \neg p1$$

$$= (\neg p2 \lor \neg p3 \lor \neg p1)) \land \neg p1$$

 $= \neg p1$

DIMACS: p cnf 3 1

-1