Realizacja Projektu Informatycznego 2022/2023 Projekt

Scrum: Backlog sprintu

Autorzy:
Dzianis Dziurdz 187726,
Jakub Czermiński 184543,
Fiodar Litskevich 187722,
Maksym Yaroshynskyi 183043

1. O projekcie i produkcie

- Nazwa projektu: Izometryczna gra RPG
- Obszar zastosowania: Rozrywka, branża gier wideo
- Celem projektu jest stworzenie wciągającej gry RPG z widokiem izometrycznym, która umożliwi graczom doświadczenie emocjonującej rozgrywki, przystosowanej do ich preferencji. Zakres produktu obejmuje pełną implementację gry, w tym system walki, rozwijania postaci, eksploracji świata gry oraz interakcji z innymi graczami.

2. Oszacowanie rozmiaru backlogu produktu

Oszacowanie elementów backlogu produktu robiliśmy za pomocą strony: https://planningpokeronline.com/, ze względu na to, że w jirze ta funkcja jest dostępna tylko w wersji premium. Jako skala dla oszacowania były użyte liczbę Fibonaczjego.

Klucz	Podsumowanie	Story Points
RPI-25	Generowanie terenu*	45.8
RPI-29	Generowanie obiektów*	15.8
RPI-30	Generowanie postaci*	18.3
RPI-31	Integracja z grą*	32.8
RPI-3	Implementacja interfejsu użytkownika	30.8
RPI-14	Stworzenie modeli 3D postaci i otoczenia gry	36
RPI-2	Projektowanie postaci	40
RPI-4	Tworzenie tutoriala	26.6
RPI-5	Programowanie mechanik gry	77.6
RPI-6	Testowanie gry	41
RPI-7	Lokalizacja gry	48
RPI-8	Stworzenie trybu multiplayer	77.6
RPI-9	Optymalizacja gry	70.6
RPI-10	Dodanie nowych poziomów do gry	50.6
RPI-11	Usprawnienie sztucznej inteligencji przeciwników	59.3
RPI-13	Dodanie systemu osiągnięć i nagród dla graczy	4
RPI-15	Programowanie mechanik walki i animacji postaci	59.3
RPI-16	Implementacja systemu zadań i questów dla graczy 52.3	
RPI-17	Tworzenie systemu handlowego i ekonomicznego w grze	28
RPI-18	Dopasowanie balansu rozgrywki pod kątem trudności i poziomów doświadczenia graczy	45.3

• RPI-25, Generowanie terenu

• RPI-29 Generowanie obiektów

15.8

• RPI-30 Generowanie postaci

Average: Agreement:

18.3

• RPI-31 Integracja z grą

Average:

Agreement:

32.8

3. Założenia i dobór zakresu sprintu

- Czas trwania sprintu: 3 tygodnie
- Pojemność zespołu: 4 osoby
- Rezerwa w pojemności zespołu na pracę inną niż wytwarzanie: 20% 96 godzin
- Średnia prędkość zespołu: około 384 godzin na 1 sprint (bez uwzględnienia rezerwy)
- Wybrane elementy z backlogu produktu(385 godzin):
 - o RPI-24 Rysowanie map(353 godziny)
 - RPI-26 Algorytm tworzenia wzniesień i dolin (16 godziny)
 - o RPI-27 Algorytm tworzenia lasów (8 godzin)
 - RPI-28 Algorytm tworzenia rzek i jezior (8 godzin)
- Uzasadnienie wyboru elementów backlogu:
 - Wybrane elementy backlogu produktu obejmują podstawowe elementy gry, które umożliwiają przetestowanie i ocenienie podstawowej mechaniki gry. Elementy te są odpowiednio oszacowane, aby zmieścić się w wyznaczonej pojemności zespołu oraz średniej prędkości.

4. Cel sprintu

Stworzenie modułu automatycznego generowania świata w izometrycznej grze, co pozwoli na zwiększenie immersji graczy poprzez dodanie większej ilości elementów otoczenia oraz usprawni rozgrywkę poprzez bardziej zróżnicowane środowisko gry. W efekcie, zwiększy to atrakcyjność gry dla graczy i może przyciągnąć nowych użytkowników.

5. Backlog sprintu

Project	Key	Summary	Issue Type	Status	Priority	Original estimate
RPI	<u>RPI-24</u>	Rysowanie map	Epic	To Do	Highest	2 weeks, 2 days, 1hour
RPI	<u>RPI-25</u>	Generowanie terenu	Task	To Do	High	4 days
RPI	<u>RPI-26</u>	RPI-25 Algorytm tworzenia wzniesień i dolin	Subtask	To Do	Medium	2 days
RPI	<u>RPI-27</u>	RPI-25 Algorytm tworzenia lasów	Subtask	To Do	Medium	1 day
RPI	RPI-28	RPI-25 Algorytm tworzenia rzek i jezior	Subtask	To Do	Medium	1 day
RPI	<u>RPI-29</u>	Generowanie obiektów	Task	To Do	High	3 days, 5 hours
RPI	<u>RPI-30</u>	Generowanie postaci	Task	To Do	High	3 days
RPI	<u>RPI-31</u>	Integracja z grą	Task	To Do	High	1 day, 4 hours
RPI	RPI-32	RPI-29 Algorytm tworzenia budynków	Subtask	To Do	Medium	48 hours
RPI	RPI-33	RPI-29 Algorytm tworzenia drzew i roślinności	Subtask	To Do	Medium	24 hours
RPI	<u>RPI-34</u>	RPI-29 Algorytm tworzenia elementów dekoracyjnych	Subtask	To Do	Medium	7 hours
RPI	<u>RPI-35</u>	RPI-30 Algorytm tworzenia bohaterów	Subtask	To Do	Medium	24 hours

RPI	<u>RPI-36</u>	RPI-30 Algorytm tworzenia przeciwników	Subtask	To Do	Medium	24 hours
RPI	<u>RPI-37</u>	RPI-30 Algorytm tworzenia zwierząt	Subtask	To Do	Medium	24 hours
RPI	<u>RPI-38</u>	RPI-31 Przygotowanie interfejsu modułu generacji świata	Subtask	To Do	Medium	24 hours
RPI	<u>RPI-39</u>	RPI-31 Implementacja funkcjonalności wywoływania generacji świata	Subtask	To Do	Medium	24 hours
RPI	<u>RPI-40</u>	RPI-31 Testowanie i debugowanie	Subtask	To Do	Medium	7 hours

6. Kryteria akceptacji

1.Generowanie terenu:
Różnorodność terenu
Realistyczność terenu
Możliwości eksploracji
Dostosowywanie terenu
Wydajność
2.Generowanie obiektów:
Różnorodność obiektów
Realistyczność obiektów
Możliwości interakcji
Dostosowywanie obiektów
3.Generowanie postaci:
Płynność i naturalność ruchu postaci
Wybór pozycji postaci
Personalizacja postaci
Dopasowanie postaci do otoczenia
Zgodność z celem projektu
4.Integracja z grą:

Spójność wizualna
Spójność fabularna
Spójność mechaniki gry
Sprawność działania
Zgodność z celem projektu

7. Definicja ukończenia

- 1. Kod został napisany zgodnie z ustalonymi standardami i przejrzyście udokumentowany.
- 2. Element gry został przetestowany przez zespół QA, a wszelkie znalezione błędy zostały naprawione.
- 3. Wykonano testy integracyjne z Przyrostem
- 4. Kod i testy umieszczono w repozytorium
- 5. Zaktualizowano backlog sprintu
- 6. Dokumentacja dotycząca elementu gry jest w pełni opracowana i dostępna dla użytkowników końcowych.