```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from sklearn.cluster import AgglomerativeClustering

In [603... data = datasets.load_iris()

In [604... # create a DataFrame with data
df = pd.DataFrame(data.data, columns=data.feature_names)
# add the target Lables
df["species"] = data.target_names[data.target]
df
```

\cap		Γ	c	0	4
U	uц	L	O	U	4

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
•••					
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

```
In [605... # summary of the dataframe
          df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 150 entries, 0 to 149 Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	sepal length (cm)	150 non-null	float64
1	sepal width (cm)	150 non-null	float64
2	petal length (cm)	150 non-null	float64
3	petal width (cm)	150 non-null	float64
4	species	150 non-null	object

dtypes: float64(4), object(1)

memory usage: 6.0+ KB

In [606... # by using duplicated function we find the duplicate values and using sum we find the count df.duplicated().sum()

Out[606... 1

In [607...

dropped the duplicate value found df.drop duplicates()

Out[607...

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
•••					
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

149 rows × 5 columns

In [608...

Using isnull function we can find any null values are there in our data. df.isnull().sum()

Out[608... sepal length (cm) 0 sepal width (cm) 0 petal length (cm) 0 petal width (cm) 0 species 0

dtype: int64

In [609...

by using describe function we get the statistical values. mean and median is almost same so outliers count will be low df.describe()

Out[609...

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333
std	0.828066	0.435866	1.765298	0.762238
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

Tn [610

```
# here target value is not needed because we are doing clustring unsupervised machine learning
features = df.drop("species",axis = 1)
features
```

\cap	14-	Γ.	c	1	a	
U	a u	ш	O	_	U	

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
•••				
145	6.7	3.0	5.2	2.3
146	6.3	2.5	5.0	1.9
147	6.5	3.0	5.2	2.0
148	6.2	3.4	5.4	2.3
149	5.9	3.0	5.1	1.8

150 rows × 4 columns

```
In [611... # for getting the pattern of data we draw a scatter plot by using two features of data
          sns.scatterplot(data=df,x = df["sepal length (cm)"], y = df["petal length (cm)"])
          plt.show()
```



```
In [612... # before labeling we choose only numbers from our data
    data_num = df.select_dtypes("number")

In [613... # here we are using clustering algorithm because we know the number of number of clusters and clusters are spherical
    # before that we standardised our data by using labeling method
    scaler = StandardScaler()
    std_v = scaler.fit_transform(data_num)

In [614... # here we took kmeans as 2
    km = KMeans(n_clusters=2)
```

```
km.fit predict(std v)
```

C:\Users\RohithUdayaKumar\anaconda3\Lib\site-packages\sklearn\cluster\ kmeans.py:1446: UserWarning: KMeans is known to have a m emory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP NUM THREADS=1.

warnings.warn(

In [615... **df**

\cap		-	Γ.	\subset	1		
U	uч	L	Ι'	O	_)	•••

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
•••					
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

```
In [616...
```

```
# we adding new cluster column to the df
df["cluster"]=km.fit_predict(std_v)
```

C:\Users\RohithUdayaKumar\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1446: UserWarning: KMeans is known to have a m emory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1. warnings.warn(

In [617... **df**

Ο.	. d. 1		\neg
Uι	IΤΙ	ρŢ	. /

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	species	cluster
0	5.1	3.5	1.4	0.2	setosa	1
1	4.9	3.0	1.4	0.2	setosa	1
2	4.7	3.2	1.3	0.2	setosa	1
3	4.6	3.1	1.5	0.2	setosa	1
4	5.0	3.6	1.4	0.2	setosa	1
•••						
145	6.7	3.0	5.2	2.3	virginica	0
146	6.3	2.5	5.0	1.9	virginica	0
147	6.5	3.0	5.2	2.0	virginica	0
148	6.2	3.4	5.4	2.3	virginica	0
149	5.9	3.0	5.1	1.8	virginica	0

150 rows × 6 columns

```
In [618... sns.scatterplot(data=df,x=df["sepal length (cm)"], y=df["petal length (cm)"],hue = "cluster")
```

Out[618... <Axes: xlabel='sepal length (cm)', ylabel='petal length (cm)'>

In [619... # profile of each cluster

cluster_profile=df.groupby("cluster").mean(numeric_only=True)
 cluster_profile

Out[619... sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)

cluster

0	6.262	2.872	4.906	1.676
1	5.006	3.428	1.462	0.246

```
In [620... df["cluster"]==2
Out[620... 0
                 False
          1
                 False
          2
                 False
          3
                 False
                 False
                 . . .
          145
                 False
          146
                 False
          147
                 False
          148
                 False
          149
                 False
          Name: cluster, Length: 150, dtype: bool
In [621...
         new_data=df[df["cluster"]==0]
          new_data
```

Out[621		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	species	cluster
	50	7.0	3.2	4.7	1.4	versicolor	0
	51	6.4	3.2	4.5	1.5	versicolor	0
	52	6.9	3.1	4.9	1.5	versicolor	0
	53	5.5	2.3	4.0	1.3	versicolor	0
	54	6.5	2.8	4.6	1.5	versicolor	0
	•••						
	145	6.7	3.0	5.2	2.3	virginica	0
	146	6.3	2.5	5.0	1.9	virginica	0
	147	6.5	3.0	5.2	2.0	virginica	0
	148	6.2	3.4	5.4	2.3	virginica	0
	149	5.9	3.0	5.1	1.8	virginica	0
	100 rows × 6 columns						
In [622	# in cluster == 1 we have 2 species						

```
In [622... # in cluster == 1 we have 2 species
    new_data["species"].unique()

Out[622... array(['versicolor', 'virginica'], dtype=object)

In [623... # for the cluster 0 we have 1 species are there
    new_data1=df[df["cluster"]==1]
    new_data1["species"].unique()

Out[623... array(['setosa'], dtype=object)

In [624... # Hierarchical clustering might be suitable for the Iris dataset because the dataset is very small
    hc = AgglomerativeClustering( n_clusters=2,linkage="ward")
```

```
hc.fit predict(std v)
df["hc clusters"]=hc.fit predict(std v)
In [625...
In [626... df
Out[626...
        sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
                                           species cluster hc_clusters
               5.1
                       3.5
                                1.4
      0
                                        0.2
                                            setosa
                                                  1
                                                        1
      1
               4.9
                       3.0
                                1.4
                                        0.2
                                            setosa
                                                  1
                                                        1
      2
                                        0.2
               4.7
                       3.2
                                1.3
                                            setosa
                                                  1
                                                        1
      3
               4.6
                       3.1
                                1.5
                                        0.2
                                            setosa
                                                  1
                                                        1
               5.0
                       3.6
                                1.4
                                        0.2
       4
                                            setosa
                                                  1
                                                        1
     145
               6.7
                       3.0
                                5.2
                                        2.3 virginica
                                                  0
                                                        0
     146
                       2.5
                                5.0
               6.3
                                        1.9 virginica
                                                  0
                                                        0
                                         2.0 virginica
     147
               6.5
                       3.0
                                5.2
                                                  0
                                                        0
     148
               6.2
                       3.4
                                5.4
                                         2.3 virginica
                                                  0
                                                        0
     149
               5.9
                       3.0
                                5.1
                                        1.8 virginica
                                                  0
                                                        0
```

150 rows × 7 columns

In [627... # visual for the pattern of data
sns.scatterplot(data=df,x=df["sepal length (cm)"], y=df["petal length (cm)"],hue = "hc_clusters")
plt.show()


```
In [628... # Silhouette Score is a metric used to evaluate the quality of clustering.

from sklearn.metrics import silhouette_score

sil_score = silhouette_score(std_v,df["hc_clusters"])

sil_score

# silhouette score is near to 1 means clusters are well-separated
```

```
Out[628... 0.5770346019475988

In [629... from scipy.cluster.hierarchy import dendrogram, linkage

z = linkage(std_v,method="ward")

In [630... label = df["species"].to_list()

In [631... label
```

```
Out[631... ['setosa',
            'setosa',
            'setosa',
```

```
'setosa',
'versicolor',
```

```
'versicolor',
'virginica',
```

```
'virginica',
'virginica']
```

```
In [632... # here is the visualization for the hierarchical relationship
dendrogram(z,labels=label)
plt.show()
```


In []: