(Ma) a family of R-modules

TT Ma is the universal attracting a by ret in contegory of models N W/ huns Yx: N -> Mx Yx.

Junique Y: N - TT Mx 5.6.

The of Ma Countes Va

 $Y = (Y_{\alpha})_{\alpha \in \Lambda}$. Let .

⊕ M_∞ is universal repelling object in category of (N, (φ.: M_∞ → N)_{∞∈Λ}).

J unique Y: ⊕M_e → N sit.

Mayra Com tes Va

Mayra

Mayra

N

An O((14)) 5 m/

defr. $\rightarrow \qquad \left\{ \left(\left(\mathcal{N}_{\alpha} \right)_{\alpha \in \Lambda} \right) = \sum_{\alpha \in \Lambda} \left\{ \left(\mathcal{U}_{\alpha} \right) \right\} \right\}$

Given N, We have 1-1 correspondence

 $\left\{ \left(\mathcal{Y}_{\alpha} \colon \mathcal{N} \longrightarrow \mathcal{M}_{\alpha} \right)_{\alpha \in \Lambda} \right\} \longleftrightarrow \left\{ \mathcal{Y} \colon \mathcal{N} \longrightarrow \mathsf{TM}_{\alpha} \right\}$

$$Hom(N, \Pi M_x) \cong \Pi Hom(N, M_x)$$

 $Hom(\oplus M_x, N) \cong \Pi Hom(M_x, N)$

Chinse Remainder Theorem:

Let R be a commetative unital ring, M be an R-module, and $I_1,...,I_n$ are $I_i+I_j=(1)=R$) Pairwise Comaximal (coprime) ideals in R.

Page

Then
$$I_{1}M \cap \cdots \cap I_{n}M = (I_{1}\cdots I_{n})M$$
 and
$$M / (I_{1}\cdots I_{n})M \cong \bigoplus_{i=1}^{n} M / (I_{i}M)$$

Proof Let N=2. $I_{1}+I_{2}=(1)$. $f_{1}M$ g_{1} g_{2} g_{2} g_{2} g_{3} g_{4} g_{4} g_{5} g_{5}

Clare?: $I_{1}M \cap I_{2}M = (I_{1}I_{2})M$.

Proof: clearly, \supseteq holds.

Let $u \in I_{1}M \cap I_{2}M$. Then $u = Iu = a_{1}u + a_{2}u \in (I_{1}I_{2})M$.

for general n: use induction & the fact that if $I_1,...,I_n$ are pairwise commaximal than I_1 and $I_2...I_n$ are commaximal.

Proof: $\forall i=2,...,n$, f ma $a_i \in I_i$, $b_i \in I_i$ s.t. $a_i + b_i = I$.

thun $I = (a_2 + b_2) \cdots (a_n + b_n) = \sum_{\substack{a \in I \text{ one } a \\ \text{one } a}} f$ by $I_2 \cdots I_n$

Free Modules:

Let R be a unital ring.

R" is a free module of rank n.

Det M is a free R-module of rank n if $M \cong \mathbb{R}^n$.

Det A set B is a basis of M if \forall veM, u is uniquely representable as a linear combination of elements of B: $u = a, b, + ... + anbn, a_i \in R, b_i \in B$.

Theore: Mis free of rank n iff M has a busis B with IBI= n.

Proof: R" has a Standard basis e,=(1,0,...,0),..., en=(0,...,0,1).

If $M \cong R^n$, take $b_i = \Psi^1(e_i)$, then $\{b_1, ..., b_n\}$ is a basisfor M.

if {b,,..., bn} is a basis, let $\Psi(u = \Sigma a; b_i) = \Sigma a; e_i \in \mathbb{R}^n$.

This is on isomorphism. $a_{i,...,a_n}$ are called "coordinates."

"Free modules of rank | A | is $\bigoplus_{\alpha \in \Lambda} R$ "

foul live animalina

" S= [] = N, Q; eR, S; eS]