Tecnologia de Redes: Meios Físicos de Transmissão

Volnys Borges Bernal

volnys@lsi.usp.br

http://www.lsi.usp.br/~volnys

- □ Conexão lógica tipo barramento
 - * Meios físicos utilizados pelo padrão Ethernet (semelhante ao padão IEEE 802.3)
 - ⇒10Base5
 - d⇒10Base2
 - ⇒10BaseT
 - Categoria 3
 - ◆ Categoria 5
 - Categoria 5e
 - ⇒100BaseT
 - ⇒10BaseF
 - ⇒100BaseF
- □ Conexão lógica tipo Ponto-a-Ponto
 - * Linha serial

- □ Meios físicos de transmissão definidos pelo padrão IEEE 802.3
 - * Redes em barra CSMA/CD
 - * Baseado no padrão <u>Ethernet</u> (muito semelhante ao Ethernet)
 - * Define várias opções de meio físico e taxa de transmissão:

***** Exemplo:

⇒10Base5

10 Mbps, baseband, 500 m

- □ Padrões 802.3
 - * 10Base5
 - ⇒ Cabo Metálico Coaxial
 - * 10Base2
 - ⇒ Cabo Metálico Coaxial
 - * 10BaseT
 - ⇒ Cabo Metálico de par trançado
 - * 10BaseF
 - ⇔ Cabo de fibra ótica

 Condutor metálico interno com uma blindagem externa separado por isolante

- □ MAU Medium Attachment Unit
 - * Transceptor (transceiver)
 - * Função
 - ⇒ Isolamento entre o terra do cabo
 - ⇒ Detecção de colisão
 - ➡ Proteção: O transceptor protege o computador de descargas elétrica no cabo (raio ou contato na rede de energia elétrica).
 Neste caso, os transceptores externos permitem uma maior proteção ao computador que os transceptores internos

- □ AUI Attachment Unit Interface
 - * Permite a ligação entre o nó (computador) e o trasceptor (transceiver)
 - * Cabo AUI
 - ⇒Opcional
 - ⇒ Também chamado de "drop cable"
 - ⇒ Distância máxima: 50 m
 - ⇒Quatro ou cinco pares trançados blindados para:
 - transmitir dados do nó para o transceiver
 - transmitir dados do transceiver para o nó
 - transmitir sinais de controle do nó para o MAU
 - ◆ transmitir sinais de controle do MAU para o nó
 - alimentar o MAU com energia fornecida pelo nó

- □ Repetidor
 - * Repete o sinal
 - * Permite conectar outros segmentos de cabo coaxial
- □ Tipos de cabo coaxial para Ethernet
 - * 10Base5
 - * 10Base2

□ Características

* 10Base5

⇒10 Mbps

⇒baseband

⇒500 metros de comprimento do segmento

* Cabo coaxial RG-8

⇔ Cabo de 50 ohms

* Topologia

⇒lógica: barramento

- * Chamado de "cabo coaxial grosso" (Thick cable)
- * Era utilizado em backbones de redes locais com grandes distâncias entre equipamentos
- * Não é mais utilizado atualmente
- * Difícil de ser flevienade

- **□** Conectores
 - * Vampiros
 - * Terminadores

□ Restrições:

- * Número de repetidores:
 - ➡ Máximo de 2 repetidores entre dois nós
 - ➡ Máximo de 4 repetidores por rede
- * Número máximo de nós por segmento: 100
- * Número máximo de nós por rede: 1024
- * Comprimento máximo do cabo AUI: 50 m
- * Distância mínima entre tranceivers: 2,5 m
- * Tamanho total do barramento: 2.500 m
- * Taxa média de erros: 1 erro a cada 108

□ Cabo coaxial 10Base2

```
* 10Base2
```

d⇒10 Mbps

⇒baseband

⇒ 185 metros (~200m) de comprimento do segmento

* Cabo coaxial RG-58

⇔ Cabo de 50 ohms

* Topologia

⇒física: barramento

⇒lógica: barramento

- * Chamado de "cabo coaxial fino" (Thin cable)
- * Era utilizado em de redes locais, não mais utilizado atualmente
- * Muitos problemas nas conexões
- * Se uma conexão apresenta problema toda comunciação na rede

- Conectores
 - * Conector T BNC
 - * Conector BNC macho para cabo Coaxial
 - * Terminador BNC
 - ⇒ Terminador BNC macho de 50 ohms

- □ Restrições se utilizado com Ethernet:
 - * Número de repetidores:
 - ➡ Máximo de 2 repetidores entre dois nós
 - ➡ Máximo de 4 repetidores por rede
 - * Número máximo de nós por segmento: 30
 - * Número máximo de nós por rede: 90
 - * Distância mínima entre nós: 0,5 m
 - * Tamanho total do barramento: 2.500 m
 - * Taxa média de erros: 1 erro a cada 10⁷

- □ Aterramento
 - * Devido a possibilidade de diferença de potencial entre as duas extermidades do cabo, podem ser geradas correntes pela malha de blindagem
 - * O cabo deve ser aterrado somente em uma de suas extremidades
- □ Problemas
 - * Mal contacto em um conector interrompe toda a comunicação

- □ Ferramentas
 - * Clivador

⇒ Permite a conectorização (junção do conector ao cabo)

- * Testador de cabos
 - □ Time domain reflectometry
 - Permite detectar o exato local de problema em um cabo coaxial

Cabo de par trançado

□ Características

* 10BaseT

⇒10 Mbps

⇒baseband

→ T - twisted-pair (par trançado)

* Impedânica de 100 ohms

* Conexões ponto a ponto full-duplex

Poucas placas de rede suportam full-duplex

⇒ Poucos switchs suportam full-duplex

□ Topologia

* física: estrela

* lógica: barramento

□ Topologia

* física: estrela

* lógica: barramento

- □ Restrições
 - * (1) Comprimento máximo do cabo UTP: 100 m

- □ Restrições (cont.)
 - * (2) Cascateamento de HUBs
 - → Maior caminho entre duas estações pode conter 5 segmentos (4 repetidores). Cada segmento pode ser 10BaseT, 10Base5 ou 10Base2

☐ Cascateamento

- □ Conexão com tecnologia antiga (coaxial)
 - * Coneção de uma rede UTP com uma rede coaxial

⇔ (1) Através de um HUB com interface AUI

- Conexão com tecnologia antiga (coaxial)
 - * (2) Coneção de um computador com interface AUI em uma rede UTP

⇒Através de um transceiver AUI/UTP

- □ Tipos de cabo de par trançado
 - * Unshielded Twisted Pair (UTP) Par trançado não blindado

 - ⇒ cada par é trançado independentemente

- □ Tipos de cabo de par trançado
 - * Shielded Twisted Pair (STP) Par trançado blindado

 - ⇒ cada par é trançado independentemente
 - ⇒Não utilizado na prática!!!

□ Classificação de cabos UTP

* Categoria 3

⇔até 16 MHz,

⇒ deve ser utilizado em transmissões até 10 Mbps

⇒Obsoleto

* Categoria 5

d⇒até 100 MHz

⇒ deve ser utilizado em transmissões de até 100 Mbps

* Categoria 5e

⇔até 350 MHz

⇒ deve ser utilizado em transmissões de até 155 Mbps

- □ Classificação de cabos UTP
 - * Cabo rígido
 - Deve ser utilizado em
 - cabeamento interno em dutos
 - comprimento máximo: 90 m
 - * Cabo flexível
 - ⇒ Deve ser utilizado em
 - ◆ cordão de estação
 - →liga a estação à tomada de rede
 - ◆ cordão de distribuição
 - →liga o ponto do patch pannel ao equipamento de interconexão (HUB, swtich ou roteador)
 - → Possui maior impedância (resitência)
 - - 10 m. Cordão do estação + cordão do distribuição

- □ Conector RJ45
 - * Padrão de conectorização EIA/TIA 568A

- □ Conector RJ45
 - * Padrão de conectorização EIA/TIA 568B

conector RJ45

□ Pares utilizados no Ethernet e Fast Ethernet

□ Cabo ethernet normal (568A-568A)

□ Cabo ethernet normal (568B-568B)

Branco-Laranja 1
Laranja 2
Branco-Verde 3
Azul 4
Branco-Azul 5
Verde 6
Branco-Marrom 7
Marrom 8

1 Branco-Laranja

2Laranja

3 Branco-Verde

4 Azul

5 Branco-Azul

6 Verde

7 Branco-Marrom

8 Marrom

□ Cabo ethernet cruzado (568A-568B)

- □ Pares utilizados no ATM e Gigabit-Ethernet
 - * Todos os pares são utilizados !!!

- □ Utilização do cabo invertido
 - * Ligação HUB-HUB, HUB-SWITCH
 - * Ligação direta computador-computador

- Ferramentas para UTP
 - * Clivador
 - ⇒ Permite a conectorização do conector RJ54 ao ao cabo
 - * Testador de cabos UTP
 - →O padrão ANSI/TIA/EIA define um conjunto de testes a serem realizados e requisitos a serem atendidos para cabo UTP
 - ⇒ Para as categorias
 - Categoria 3 (até 16 Mhz)
 - ◆ Categoria 4 (até 20 MHz)
 - Categoria 5 (até 100 MHz)
 - ⇒ "Transmission Performance Specifications for Field Testing of Unshielded Twisted-Pair Cabling System"
 - ⇒ Equipamento de teste geralmente chamado de *Multitester*

- □ Testes
 - * Mapeamento de fios
 - * Comprimento
 - * Atenuação
 - * Paradiafonia (NEXT)
 - ⇒Interferência de sinal entre pares

□ Testes

- * Mapeamento de fios (Wire Map)
 - ⇒continuidade
 - ⇒curtocircuito
 - ⇒par cruzado
 - ⇒par reverso
 - ⇒par separado (split pairs)

- **□** Testes
 - * Comprimento do cabo

Não deve exceder ao definido pelo padrão

□ Testes

* Atenuação

- ⇔É a medida de perda de sinal em um canal
- ⇒ Exemplo: som (sinal): quanto mais distante menos é escutado devido à atenuação do sinal
- A atenuação de cabos flexiveis é 20% maior do que do cabo rígido
- ⇔É medida em dB (decibeis)
- ⇒É diferente para cada frequência

□ Testes

- * Paradiafonia (NEXT)
 - ⇒ NEXT Near End Cross Talk
 - ⇒ Mede a interferênica do sinal de um par em um outro
 - →Os verificadores inserem um sinal em um par e verificam qual é a interferência que ocorre nos outros pares
 - ⇒ Varia de acordo com a frequência
 - Causas: Par separado, Par mal trançados, Cabo muito esticado

□ Testes

* Relação sinal-ruído

⇒ Atenuação x Paradiafonia

* Capacitância

⇒ Mede a velocidade que o cabo possui de "reter" um sinal

□ Funcionamento

- * A transmissão em fibra ótica é realizada pelo envio de um sinal de luz
- * Proprieades óticas dos materiais

⇒refração
⇒reflexão

□ Tipos de Fibra

* Monomodo

⇔cabo até 45 km

índice de refração constante

* Multimodo

⇔cabo até 2 km

índice de refração constante

índice de refração gradual

- □ Propriedades
 - * Imune a interferências eletromagnéticas
 - * Não gera interferênicia eletromagnética
 - * Confiabilidade
 - * Altas taxas de transmissão
- □ Conexão
 - * Necessita duas fibras

⇔Tx - Transmissão

⇒Rx - Recepção

□ Caractetísticas

```
* 10BaseF
```

⇒10 Mbps

⇒Fiber

* 100BaseF

□ Tipos de Conectores

* SC

* ST

* Outros

- □ Ligação passiva
 - * Através de conectores fêmea

⇒não podem existir muitas conexções passivas

* Fusão

⇒ Processo de "junção" de duas fibras

- Ferramentas para cabo de fibra ótica
 - * Clivador
 - * Testador

Comparação

Comparação

□ Resumo

Nome	cabo	tam max seg	nós/seg	vantagens
10Base5	coaxial grosso	500m	100	backbone
10Base2	coaxial fino	200m	30	barato
10BaseT	par trançado	100m	1024	fácil manutenção
10BaseF	fibra ótica	2000m	1024	entre prédios

Comparação

□ Cabo -Comparação de custo (março/2000)

* 10baseT

Cat 5 rigido	IK \$	0,35
--------------	--------------	------

⇒Cat 5 flexível R\$ 0,60

Cat 5e rígido R\$ 0,65

⇒ Cat 5e flexível R\$ 0,85

⇒RJ45 Fêmea cat 5 R\$ 8,00 (AMP)

⇒RJ45 Fêmea cat 5e R\$ 11,00 (Panduit)

⇒RJ45 Macho cat 5 R\$ 0,60 (AMP)

⇒RJ45 Macho cat 5e R\$ 1,70 (Panduit)

* Fibra Optica 125/62,5 um uso interno

⇒2 pares
R\$ 6,00

⇔6 pares
 R\$ 12,00

⇔conector ST climpagem R\$ 25,00

- □ Padrão EIA/TIA-568
 - * EIA (Electronic Industries Association)
 - Responsável pela elaboração padrão de cabeamento de telecomunicação de edifícios comerciais
 - * Tipos de cabos
 - Unshielded Twisted Pair (UTP) Par trançado não blindado
 - ◆ 4 pares de fios
 - ⇒ Shielded Twisted Pair (STP) Par trançado blindado
 - 4 pares de fios
 - ⇔Cabo coaxial de 50 ohms
 - Cabo com um par de fibra ótica multimodo (Tx,Rx)

* Tipos de cabos de par trançado 10BaseT

```
Coaxial
```

```
₽UTP
```

- Categoria 3 (obsoleta)
- Categoria 5
- ◆ Categoria 5e

```
STP
```

⇒Fibra Ótica

□ Definições

* Área de trabalho

⇒sala, escritório,...

⇒mínimo de 2 tomadasos por sala

* Armário de telecomunicações

⇒patch pannel (painel de distribuição)

⇒equipamentos de rede

⇒rede separada de telefonia!

⇒geralmente um por andar

* Cabeamento horizontal

- → Topologia física estrela
- Das tomadas das áreas de trabalho ao armário de distribuição
- ⇒ Distância máxima definida no padrão: 90 m

* Sala central de distribuição

⇒Armário de telecomunicação

* Distâncias máximas

- ⇒ Cordão de patch panel: 2 m (flexível)
- ⇒ Cordão de estação: 8 m (flexível)

* Cabeamento vertical

- ⇒Cabeamento de backbone
- → Topologia física estrela
- ⇒geralmente uma por prédio

- □ Precauções
 - * Fiações elétricas
 - deve passar a pelo menos 20 cm de distância
 - ⇔ou utilizar calha blindada

- □ Problemas
 - * Quando são utilizadas diferentes tecnologias

d>Ex:

- Quando se possui um switch ATM no armário de distribuição central e for necessário conectar uma estação
- ◆ Seria necessário ter também um swithc ATM no armário de distribuição horizontal correspondente

□ Futuro

- * (1) Cabeamento centralizado
 - ⇒Problema: distância
 - ⇒Utiliza cabeamento otico
- * (2) Wireless
 - ⇔Comunicação sem fio (radio)

Bibliografia deste módulo

Bibliografia deste módulo

□ Livros

- * Redes de computadores: das LANs MANs e WANs às redes ATM
 - ⇒SOARES, LUIZ F. G.
 - ⇒ Editora Campus. 1995
- * Computer Networks
 - ⇒TANENBAUM, ANDREW S.
 - ⇒3rd edition. Prentice Hall 1996.
- * Tudo sobre cabeamento de redes
 - ⇒ Frank J. Derfler Jr e Les Freed
 - ⇒ Editora Campus, 1994