1 Cel projektu

Celem projektu jest zbudowanie klawiatury komputerowej w układzie ANSI TKL. Za pracę klawiatury odpowiadać będzie mikrokontroler, który zajmie się komunikacją z komputerem poprzez USB. Głównym wyzwaniem projektu jest stworzenie kompletnego układu mikrokontrolera oraz programu w postaci modułu, do którego można będzie przyłączyć matrycę przycisków.

2 Założenia projektu

Na podstawowe założenia projektu składają się:

- Układ klawiatury w układzie ANSI TKL
- Komunikacja z komputerem poprzez USB
- Pooling rate 500Hz lub więcej
- Programowy de-bouncing
- Wspomaganie adresowania matrycy przełączników przy pomocy układów 74AHC138
- Wsparcie NKRO

Na dodatkowe założenia projektowe składają się:

- Obsługa makr
- Sterowanie podświetleniem poprzez moduł
- Mini system operacyjny

3 Wybór rozwiązania projektowego

Praca klawiatury komputerowej w głównej mierze sprowadza się do ciągłego wykonywania następujących czynności przez mikrokontroler:

- 1. Pobierz stany przełaczników (np. wykrycie stanu wysoki/niski na pinach)
- 2. Na podstawie danych, wygeneruj kolejkę zmian przycisków (downstroke i upstroke, scancode)
- 3. Prześlij dane do komputera/hosta

Oczywiście to jest najsurowsza pętla pracy klawiatury. Jako układy wykonawczy postanowiono wykorzystać układ ATMega32U4. Jest to mikrokontroler firmy Atmel (obecnie pod Microchip), który jest szeroko stosowany w układach hobbystycznych. Układ ma ten następujące cechy, decydujące o jego zastosowanu:

- Duża wydajność obliczeniowa (głównie istrukcje wykonywane w 1 cyklu zegara oraz maks 16MHz)
- Sprzętowe USB dające sporo możliwości
- Bogate wyposarzenie tj. 4 liczniki, I²C, SPI, tryby uśpienia, 2 pełne 8-bitowe porty I/O
- Zintegrowany stabilizator 3,3V, wymagany dla komunikacji z USB
- Bogata dokumentacja i obecność gotowych rozwiązań OpenSource (GH60) opatych na tym układzie
- Przyjazna w lutowaniu obudowa TQFP44
- I przede wszystkim spora ilość projektów klawiatur OpenSource opartych na tym układzie

Wybrany mikrokontroler posiada 44 piny. Standardowy układ ANSI posiada 104 klawisze. Z góry widać, że bezpośrednie podłączenie przysków do pinów mikrokontrolera nie wystarczy. Zamiast takiego podejścia stosuje się matrycę przełączników.

Połączenie przełączników w matrycę pozwala na adresowanie wybranej kolumny przycisków, a następnie ich odczytu. Ponieważ podczas odczytu musi być aktywna tylko jedna kolumna, to atrakcyjnym jest zastosowanie dekoderów n do n². Przykładowymi układami mogą być 74HC154 lub 74AHC138. Pierwszy układ to dekoder 4-do-16, zamienia 4 bitową wartość na wejściach na 1 z 16 na wyjściach. Aktywne wyjście przyjmuje stan niski, co pozwala na zastosowanie go bezpośrednio w układzie. Układ 74AHC138 jest tym samym układem co 154, ale 3-do-8. Oba układy posiadają możliwość łączenia w celu rozszerzenia ilości linii. Układ 154 byłby idealny, ponieważ 8*16 daje 128 klawiszy. Niestety, układ ten jest już stary i dostępny jedynie w starym procesie technologicznym HC(T), który posiada duże opóźnienia (mogą one przekroczyć 50ns) i pobiera więcej energii (chociaż i tak pobierana energia jest znikoma). 74AHC138 natomiast, jest dostępny w procesie AHC, który jest znacznie szybszy (wszelkie opóźnienia nie przekraczają 10ns) i łatwiej dostępny. Układ ten również można rozszerzyć do 5-do-32. W naszym przypadku jedynie potrzebne jest 16 linii, ale nic nie stoi na przeszkodzie, by układ rozubodwać.

Oznaczenie	Opis	Tpd	Tt	Warunki An do Qn
74HC4515	4-to-16 line decoder/demultiplexer with input latches; inverting	50ns	$15\mathrm{ns}$	4,5V
74HC154	4-to-16 line decoder/demultiplexer	$30 \mathrm{ns}$	15ns	4,5V
74AHC138	3-to-8 line decoder/demultiplexer; inverting	10.1ns	N/A	4,5-5,5V

Producent	SKU	n-pin	Flash	SRAM	EEPROM	Wydajność	Napięcie	Peryferia
Atmel/Microchip	ATMega32U4	44	32KB	2,5KB	1KB	16MIPS	2,7-5,5V	USB JTAG SPI TWI USART ADC
NXP	MC9S08JM60	do 64	do 60KB	do 4KB	N/A	48MHz	2,7-5,5V	USB SPI TWI ADC RTC
Microchip	PIC18F47J13	44	128KB	3760B	N/A	12MIPS	2-3,6V	USB SPI TWI RTCC ADC