Вычислительная геометрия

Борис Золотов Матвей Магин

4 июня 2022 г.

Летняя школа МКН СП6ГУ

Содержание

Задачи, выполнимые за $\mathit{O}(1)$

Задачи, выполнимые за O(1)

Некоторые договоренности

Для удобства мы будем считать, что точки, с которыми мы работаем на плоскости или в пространстве общего положения, то есть что для них выполняется следующее

- Никакие 3 из них не лежат на одной прямой.
- Никакие 4 из них не лежат на одной окружности.
- У них нет общих х и у координат.

В совокупности это верно почти всегда.

Сейчас мы рассмотрим несколько простых задач вычислительной геометрии, некоторые из них понадобятся нам позднее как элементарные позадачи более сложных задач.

Задание фигур уравнениями

При работе с геометрическими объектами удобно задавать их уравнениями

• Прямая:

$$\ell$$
: $ax+by+c=0$ или ℓ : $y=kx+b$. Прямая через точки $A(x_1,y_1), B(x_2,y_2)$:
$$\ell\colon\begin{cases} ax_1+by_1+c=0\\ ax_2+by_2+c=0\end{cases}$$
 $a=y_2-y_1,\ b=x_1-x_2,\ c=-(ax_1+by_1)$

• Окружность:

$$(x-x_0)^2+(y-y_0)^2=R^2$$
, где (x_0,y_0) – центр, а R – радиус

Расстояние от точки до прямой

Если прямая задана как ℓ : ax+by+c=0, то расстояние от точки $M(x_0,y_0)$ до неё можно рассчитать как

$$d(M,\ell) = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

Центр описанной окружности

Задача

Дана тройка точек a, b, c. Требуется найти центр описанной окружности $\triangle abc$.

Центр описанной окружности

- 1. Ищем серединные перепендикуляры к [ac] и [bc], как прямые p_1 и p_2 . Если ℓ_1 : $y=a_1x+b_1$, а ℓ_2 : $y=a_2x+b_2$, то $\ell_1\perp\ell_2\Leftrightarrow a_1\cdot a_2=-1$. Находим серединный перпендикуляр к сторонекак прямую, проходящую через середину стороны и перпендикулярную ей.
- 2. Ищем их пересечение, как решение линейной системы:

$$p_1: y = \alpha_1 x + \beta, \ p_2: y = \alpha_2 x + \beta_2.$$

$$\begin{cases} y = \alpha_1 x + \beta_1 \\ y = \alpha_2 x + \beta_2 \end{cases}$$

Смежные задачи

Ясно, что очень большое количество задач можно решить совершенно аналогичным образом, например, задачи нахождения

- инцентра.
- ортоцентра.
- барицентра.

Угол между векторами

Рассмотрим вектора $\vec{a} = (x_1, y_1)$ и $\vec{b} = (x_2, y_2)$.

$$\langle \vec{a}, \vec{b} \rangle = x_1 x_2 + y_1 y_2 = |\vec{a}| |\vec{b}| \cos \angle (\vec{a}, \vec{b}) = \sqrt{x_1^2 + y_1^2} \sqrt{x_2^2 + y_2^2} \cos \angle (\vec{a}, \vec{b})$$

Значит, мы знаем, как найти угол между векторами \vec{a} и \vec{b} :

$$\angle(\vec{a}, \vec{b}) = \arccos\left(\frac{x_1y_1 + x_2y_2}{\sqrt{x_1^2 + y_1^2}\sqrt{x_2^2 + y_2^2}}\right)$$

Косое произведение

Определение

Косым проивезеднием векторов $\vec{a}=(x_1,y_1)$ и $\vec{b}=(x_2,y_2)$ на плоскости будем называть

$$ec{a} \wedge ec{b} = egin{array}{cc} x_1 & y_2 \ x_2 & y_2 \end{bmatrix} = x_1 y_2 - x_2 y_1$$

Покажем, что $\vec{a} \wedge \vec{b} = |\vec{a}| |\vec{b}| \sin \angle (\vec{a}, \vec{b})$, где $\angle (\vec{a}, \vec{b})$ – угол вращения против часовой стрелки от \vec{a} к \vec{b} .

Эквивалентность определений

В самом деле,
$$\cos(\angle(\vec{a},\vec{b})) = x_1x_2 + y_1y_2/(\sqrt{x_1^2 + y_1^2}\sqrt{x_2^2 + y_2^2}).$$

$$\begin{split} \sin(\angle(\vec{a}, \vec{b})) &= \sqrt{1 - \cos^2(\angle(\vec{a}, \vec{b}))} = \sqrt{1 - \frac{(x_1 x_2 + y_1 y_2)^2}{(x_1^2 + y_1^2)(x_2^2 + y_2^2)}} = \\ &= \sqrt{\frac{x_1^2 x_2^2 + x_1^2 y_2^2 + y_1^2 x_2^2 + y_1^2 y_2^2 - x_1^2 x_2^2 - y_1^2 y_2^2 - 2x_1 x_2 y_1 y_2}{(x_1^2 + y_1^2)(x_2^2 + y_2^2)}} \\ &= \frac{x_1 y_2 - y_1 x_2}{\sqrt{(x_1^2 + y_1^2)} \sqrt{(x_2^2 + y_2^2)}} = \frac{\vec{a} \wedge \vec{b}}{|\vec{a}| |\vec{b}|} \end{split}$$

Площадь треугольника

Теперь ясно, что $\vec{a} \wedge \vec{b} = \frac{1}{2} S_{\triangle ABC}$, где площадь ориентированная.

Ориентация

Определение

Будем говорить, что тройка точек (a,b,c) положительно ориентирована и писать $\mathrm{sign}(a,b,c)>0$, если поворот вектора \vec{ba} к вектору \vec{bc} осуществляется против часовой стрелки.

Замечение

Ориентация тройки точек (a,b,c,) совпадает со знаком косого произведения $\vec{ba} \wedge \vec{bc}$.

Ориентация

Пересечение отрезков

Задача

Дана четверка точек a, b, c, d. Требуется определить, пересекаются ли отрезки [ab] и [cd].

Заметим, что отрезки [ab] и [cd] пересекаются т. и т.т., когда

- Концы a, b лежат по разные стороны от прямой (cd).
- ullet Концы c,d лежат по разные стороны от прямой (ab)

Заметим, что точки a и b лежат по разные стороны от прямой (cd) т. и т.т., когда различны $\mathrm{sign}(a,c,d)$ и $\mathrm{sign}(b,c,d)$.

Пересечение отрезков

Пересечение отрезков

```
INTERSECT(a, b, c, d):
if sign(a, c, d) = \overline{sign(b, c, d)} then
   return False
else
   if sign(a, b, c) = sign(a, b, d) then
       return False
   else
       return TRUE
   end if
end if
```