

DEEP EQUILIBRIUM MODELS (DEQ)

МАРЬИН НИКИТА

171 ГРУППА

MOTIVATION. TRELLIS NETWORKS

$$\hat{z}_{t+1}^{(i+1)} = W_1 \begin{bmatrix} x_t \\ z_t^{(i)} \end{bmatrix} + W_2 \begin{bmatrix} x_{t+1} \\ z_{t+1}^{(i)} \end{bmatrix}$$

$$W_1, W_2 \in \mathbb{R}^{r \times (p+q)}$$

$$z_{t+1}^{(i+1)} = f\left(\hat{z}_{t+1}^{(i+1)}, z_t^{(i)}\right)$$

MOTIVATION. TRELLIS NETWORKS

$$\tilde{x}_{t+1} = W_1^x x_t + W_2^x x_{t+1}$$

$$\hat{z}_{1:T}^{(i+1)} = \text{Conv1D}\left(z_{1:T}^{(i)}; W\right) + \tilde{x}_{1:T}$$

$$z_{1:T}^{(i+1)} = f\left(\hat{z}_{1:T}^{(i+1)}, z_{1:T-1}^{(i)}\right)$$

MOTIVATION. TRELLIS NETWORKS

Видно, что сеть сходится к какой — то точке равновесия. Вопрос : можно ли явно найти эту точку?

WEIGHT-TIED DEEP SEQUENCE MODELS

$$\mathbf{z}_{1:T}^{[i+1]} = f_{ heta}(\mathbf{z}_{1:T}^{[i]}; \mathbf{x}_{1:T}), \quad i = 0, \dots, L-1, \quad \mathbf{z}_{1:T}^{[0]} = \mathbf{0}, \quad G(\mathbf{x}_{1:T}) \equiv \mathbf{z}_{1:T}^{[L]}$$

Свойства weight-tied:

- 1) Такая модель уменьшает риск переобучиться.
- 2) Значительно уменьшает размер модели.
- 3) Можно показать, что любая сеть может быть представлена как weight-tied такой же глубины, но с увеличением ширины.
- 4) Сеть может быть развернута на любую глубину.

$$\lim_{i \to \infty} \mathbf{z}_{1:T}^{[i]} = \lim_{i \to \infty} f_{\theta} \left(\mathbf{z}_{1:T}^{[i]}; \mathbf{x}_{1:T} \right) \equiv f_{\theta} \left(\mathbf{z}_{1:T}^{\star}; \mathbf{x}_{1:T} \right) = \mathbf{z}_{1:T}^{\star}$$

DEQ APPROACH. FORWARD PASS

$$\mathbf{z}_{1:T}^{[i+1]} = f_{\theta}(\mathbf{z}_{1:T}^{[i]}; \mathbf{x}_{1:T})$$
 for $i = 0, 1, 2, ...$

По сути это можно рассматривать как уравнение. Тогда корнем этого уравнения будет точка эквилибриума.

$$g_{\theta}(\mathbf{z}_{1:T}^{\star}; \mathbf{x}_{1:T}) = f_{\theta}(\mathbf{z}_{1:T}^{\star}; \mathbf{x}_{1:T}) - \mathbf{z}_{1:T}^{\star} \to 0$$

Перепишем уравнение по другому и будем оптимизировать до определенной точности.

$$\mathbf{z}_{1:T}^{[i+1]} = \mathbf{z}_{1:T}^{[i]} - \alpha B g_{\theta}(\mathbf{z}_{1:T}^{[i]}; \mathbf{x}_{1:T})$$
 for $i = 0, 1, 2, ...$

Метод оптимизации Бройдена.

$$\mathbf{z}_{1:T}^{\star} = \mathsf{RootFind}(g_{ heta}; \mathbf{x}_{1:T})$$

По сути, forward pass – это алгоритм оптимизации.

DEQ APPROACH. BACKWARD PASS

Theorem 1. (Gradient of the Equilibrium Model) Let $\mathbf{z}_{1:T}^{\star} \in \mathbb{R}^{T \times d}$ be an equilibrium hidden sequence with length T and dimensionality d, and $\mathbf{y}_{1:T} \in \mathbb{R}^{T \times q}$ the ground-truth (target) sequence. Let $h : \mathbb{R}^d \to \mathbb{R}^q$ be any differentiable function and let $\mathcal{L} : \mathbb{R}^q \times \mathbb{R}^q \to \mathbb{R}$ be a loss function (where h, \mathcal{L} are applied in a vectorized manner) that computes

$$\ell = \mathcal{L}(h(\mathbf{z}_{1:T}^{\star}), \mathbf{y}_{1:T}) = \mathcal{L}(h(\mathsf{RootFind}(g_{\theta}; \mathbf{x}_{1:T})), \mathbf{y}_{1:T}). \tag{7}$$

Then the loss gradient w.r.t. (\cdot) (for instance, θ or $\mathbf{x}_{1:T}$) is

$$\frac{\partial \ell}{\partial(\cdot)} = -\frac{\partial \ell}{\partial \mathbf{z}_{1:T}^{\star}} \left(J_{g_{\theta}}^{-1} \big|_{\mathbf{z}_{1:T}^{\star}} \right) \frac{\partial f_{\theta}(\mathbf{z}_{1:T}^{\star}; \mathbf{x}_{1:T})}{\partial(\cdot)} = -\frac{\partial \ell}{\partial h} \frac{\partial h}{\partial \mathbf{z}_{1:T}^{\star}} \left(J_{g_{\theta}}^{-1} \big|_{\mathbf{z}_{1:T}^{\star}} \right) \frac{\partial f_{\theta}(\mathbf{z}_{1:T}^{\star}; \mathbf{x}_{1:T})}{\partial(\cdot)}, \quad (8)$$

where $J_{q_{\theta}}^{-1}|_{\mathbf{x}}$ is the inverse Jacobian of g_{θ} evaluated at \mathbf{x} .

DEQ APPROACH. BACKWARD PASS

Proof of Theorem 1. We first write out the equilibrium sequence condition: $f_{\theta}(\mathbf{z}_{1:T}^{\star}; \mathbf{x}_{1:T}) = \mathbf{z}_{1:T}^{\star}$. By implicitly differentiating two sides of this condition with respect to (\cdot) :

$$\frac{\mathrm{d}\mathbf{z}_{1:T}^{\star}}{\mathrm{d}(\cdot)} = \frac{\mathrm{d}f_{\theta}(\mathbf{z}_{1:T}^{\star}; \mathbf{x}_{1:T})}{\mathrm{d}(\cdot)} = \frac{\partial f_{\theta}(\mathbf{z}_{1:T}^{\star}; \mathbf{x}_{1:T})}{\partial(\cdot)} + \frac{\partial f_{\theta}(\mathbf{z}_{1:T}^{\star}; \mathbf{x}_{1:T})}{\partial\mathbf{z}_{1:T}^{\star}} \frac{\mathrm{d}\mathbf{z}_{1:T}^{\star}}{\mathrm{d}(\cdot)}$$

$$\Longrightarrow \left(I - \frac{\partial f_{\theta}(\mathbf{z}_{1:T}^{\star}; \mathbf{x}_{1:T})}{\partial\mathbf{z}_{1:T}^{\star}}\right) \frac{\mathrm{d}\mathbf{z}_{1:T}^{\star}}{\mathrm{d}(\cdot)} = \frac{\partial f_{\theta}(\mathbf{z}_{1:T}^{\star}; \mathbf{x}_{1:T})}{\partial(\cdot)}$$

Since $g_{\theta}(\mathbf{z}_{1:T}^{\star}) = f_{\theta}(\mathbf{z}_{1:T}^{\star}; \mathbf{x}_{1:T}) - \mathbf{z}_{1:T}^{\star}$, we have

$$J_{g_{\theta}}\big|_{\mathbf{z}_{1:T}^{\star}} = -\bigg(I - \frac{\partial f_{\theta}(\mathbf{z}_{1:T}^{\star}; \mathbf{x}_{1:T})}{\partial \mathbf{z}_{1:T}^{\star}}\bigg),$$

which implies

$$\frac{\partial \ell}{\partial (\cdot)} = \frac{\partial \ell}{\partial \mathbf{z}_{1:T}^{\star}} \frac{\mathrm{d} \mathbf{z}_{1:T}^{\star}}{\mathrm{d} (\cdot)} = -\frac{\partial \ell}{\partial \mathbf{z}_{1:T}^{\star}} (J_{g_{\theta}}^{-1}|_{\mathbf{z}_{1:T}^{\star}}) \frac{\partial f_{\theta}(\mathbf{z}_{1:T}^{\star}; \mathbf{x}_{1:T})}{\partial (\cdot)}.$$

OPTIMIZATION

Аппроксимация якобиана через формулу Шермана – Моррисона:

$$\left| J_{g_{\theta}}^{-1} \right|_{\mathbf{z}_{1:T}^{[i+1]}} \approx B_{g_{\theta}}^{[i+1]} = B_{g_{\theta}}^{[i]} + \frac{\Delta \mathbf{z}^{[i+1]} - B_{g_{\theta}}^{[i]} \Delta g_{\theta}^{[i+1]}}{\Delta \mathbf{z}^{[i+1]}} \Delta \mathbf{z}^{[i+1]}^{\top} B_{g_{\theta}}^{[i]}$$

$$B_{g_{\theta}}^{[0]} = -I$$

Нахождение выражения через решение системы линейных уравнений:

$$-\frac{\partial \ell}{\partial \mathbf{z}_{1:T}^{\star}} \left(J_{g_{\theta}}^{-1} \big|_{\mathbf{z}_{1:T}^{\star}} \right) \longrightarrow \left(J_{g_{\theta}}^{\top} \big|_{\mathbf{z}_{1:T}^{\star}} \right) \mathbf{x}^{\top} + \left(\frac{\partial \ell}{\partial \mathbf{z}_{1:T}^{\star}} \right)^{\top} = \mathbf{0}$$

PROPERTIES OF DEEP EQUILIBRIUM MODELS

- 1) Стоимость памяти : храним х, точку эквилибриума z, функцию f. Так как сам якобиан нам не нужен, а лишь умножение его на вектор, то явно мы его не храним.
- 2) Шаги не зависят от выбора f, однако для уверенности в сходимости, f должна быть устойчивой и ограниченной.

Theorem 2. (Universality of "single-layer" DEQs.) Let $\mathbf{x}_{1:T} \in \mathbb{R}^{T \times p}$ be the input sequence, and $\theta^{[1]}, \theta^{[2]}$ the sets of parameters for stable transformations $f_{\theta^{[1]}} : \mathbb{R}^r \times \mathbb{R}^p \to \mathbb{R}^r$ and $v_{\theta^{[2]}} : \mathbb{R}^d \times \mathbb{R}^r \to \mathbb{R}^d$, respectively. Then there exists $\Gamma_{\Theta} : \mathbb{R}^{d+r} \times \mathbb{R}^p \to \mathbb{R}^{d+r}$, where $\Theta = \theta^{[1]} \cup \theta^{[2]}$, s.t.

$$\mathbf{z}_{1:T}^{\star} = \mathsf{RootFind}\big(g_{\theta^{[2]}}^f; \mathsf{RootFind}\big(g_{\theta^{[1]}}^v; \mathbf{x}_{1:T}\big)\big) = \mathsf{RootFind}\big(g_{\Theta}^{\Gamma}; \mathbf{x}_{1:T}\big)_{[:,-d:]},\tag{12}$$

where $[\cdot]_{[:,-d:]}$ denotes the last d feature dimensions of $[\cdot]$.

UNIVERSAL TRANSFORMER

TRELLISNET AND WEIGHT-TIED TRANSFORMERS AS DEQ

TrellisNet:

$$\begin{split} \tilde{\mathbf{x}}_{1:T} &= \text{Input injection (i.e., linearly transformed inputs by } \text{Conv1D}(\mathbf{x}_{1:T}; W_x)) \\ f_{\theta}(\mathbf{z}_{1:T}; \mathbf{x}_{1:T}) &= \psi(\text{Conv1D}([\mathbf{u}_{-(k-1)s:}, \mathbf{z}_{1:T}]; W_z) + \tilde{\mathbf{x}}_{1:T}) \end{split}$$

Universal Transformer:

$$\begin{split} \tilde{\mathbf{x}}_{1:T} &= \text{Input injection (i.e., linearly transformed inputs by } \mathbf{x}_{1:T}W_x) \\ f_{\theta}(\mathbf{z}_{1:T}; \mathbf{x}_{1:T}) &= \mathsf{LN}(\phi(\mathsf{LN}(\mathsf{SelfAttention}(\mathbf{z}_{1:T}W_{QKV} + \tilde{\mathbf{x}}_{1:T}; \mathsf{PE}_{1:T})))) \end{split}$$

ЭКСПЕРИМЕНТЫ

COPY MEMORY TASK

Задача проверить способность модели долгое время точно запоминать последовательность.

Table 1: DEQ achieves strong performance on the long-range copy-memory task.

	Models (Size)				
	DEQ-Transformer (ours) (14K)	TCN [7] (16K)	LSTM [26] (14K)	GRU [14] (14K)	
Copy Memory T =400 Loss	3.5e-6	2.7e-5	0.0501	0.0491	

LANGUAGE MODELING. PERFORMANCE ON PENN TREEBANK

Table 2: DEQ achieves competitive performance on word-level Penn Treebank language modeling (on par with SOTA results, without fine-tuning steps [34]). †The memory footprints are benchmarked (for fairness) on input sequence length 150 and batch size 15, which does not reflect the actual hyperparameters used; the values also do *not* include the memory for word embeddings.

Model	# Params	Non-embedding model size	Test perplexity 73.4	Memory†
Variational LSTM [22]	66M	Э.		
NAS Cell [55]	54M		62.4	-
NAS (w/ black-box hyperparameter tuner) [32]	24M	20M	59.7	S#3
AWD-LSTM [34]	24M	20M	58.8	125
DARTS architecture search (second order) [29]	23M	20M	55.7	
60-layer TrellisNet (w/ auxiliary loss, w/o MoS) [8]	24M	20M	57.0	8.5GB
DEQ-TrellisNet (ours)	24M	20M	57.1	1.2GB

LANGUAGE MODELING. PERFORMANCE ON WIKITEXT-103

Table 3: DEQ-based models are competitive with SOTA deep networks of the same model size on the WikiText-103 corpus, with significantly less memory. †See Table 2 for more details on the memory benchmarking. Transformer-XL models are not weight-tied, unless specified otherwise.

Model	# Params	Non-Embedding Model Size	Test perplexity 45.2	Memory†
Generic TCN [7]	150M	34M		
Gated Linear ConvNet [17]	230M	12	37.2	(40)
AWD-QRNN [33]	159M	51M	33.0	7.1GB
Relational Memory Core [40]	195M	60M	31.6	
Transformer-XL (X-large, adaptive embed., on TPU) [16]	257M	224M	18.7	12.0GB
70-layer TrellisNet (+ auxiliary loss, etc.) [8]	180M	45M	29.2	24.7GB
70-layer TrellisNet with gradient checkpointing	180M	45M	29.2	5.2GB
DEQ-TrellisNet (ours)	180M	45M	29.0	3.3GB
Transformer-XL (medium, 16 layers)	165M	44M	24.3	8.5GB
DEQ-Transformer (medium, ours).	172M	43M	24.2	2.7GB
Transformer-XL (medium, 18 layers, adaptive embed.)	110M	72M	23.6	9.0GB
DEQ-Transformer (medium, adaptive embed., ours)	110M	70 M	23.2	3.7GB
Transformer-XL (small, 4 layers)	139M	4.9M	35.8	4.8GB
Transformer-XL (small, weight-tied 16 layers)	138M	4.5M	34.9	6.8GB
DEQ-Transformer (small, ours).	138M	4.5M	32.4	1.1GB

CONVERGENCE TO EQUILIBRIUM

Total Broyden Iterations
Sequence Length

BROYDEN ITERATIONS AND THE RUNTIME OF DEQ

Время работы преимущественно зависит от количества итераций алгоритма Бройдена.

CONCLUSION

- Экономия памяти.
- Конкурентоспособные результаты на реальных задачах.
- Новый подход к обучению через неявные слои.