³⁵K ε+β⁺ decay (175 ms) 1980Ew02

Parent: 35 K: E=0; J^{π} =3/2+; $T_{1/2}$ =175 ms 2; $Q(\varepsilon)$ =11874.4 9; $\%\varepsilon+\%\beta^+$ decay=100

- 1980Ew02,1979Ca15: A 600-MeV proton beam was produced from the synchrocyclotron at CERN-ISOLDE and bombard a ScC₂ target. The ⁴⁵Sc(p,8n3p) spallation reaction products diffused out of the target and reached a tungsten surface ionization source where potassium isotopes were selectively ionized. The beam was extracted from the ion source, separated by the ISOLDE analyzing magnet, and collected by a mylar foil for γ -ray measurements and then a carbon foil for proton measurements. γ rays were detected using a Ge(Li) detector. Time for positron activities were determined using a 700- μ m thick silicon detector. Protons were detected using a 20- μ m-700- μ m thick Δ E-E telescope of silicon surface barrier detectors with FWHM=50 keV. Measured E γ (<5 MeV), I γ , E $_p$ (>0.9 MeV), I $_p$. Deduced Deduced levels, J, π , decay branching ratios, log ft, parent ³⁵K T $_{1/2}$, and coeffcients of the isobaric multiplet mass equation for A=36, T=2 quartets. Comparisons with shell-model calculations and the mirror nucleus ³⁵Cl. Also see abstracts 1978HaYH, 1979HaZY, 1979HaZT, and 1979AnZZ.
- 2018Sa54: A 36-MeV/nucleon 36 Ar primary beam was produced from the K500 cyclotron at Texas A&M University. The secondary 35 K beam was produced via the 1 H(36 Ar, 35 K)2n reaction of 36 Ar bombarding a LN₂-cooled hydrogen gas target, separated by MARS, and implanted into a 45- μ m DSSD sandwiched between a 140- μ m SSSD and a 1-mm Si-pad detector in a pulsed-beam mode. ε + β +-delayed protons were detected by the implantation detector. γ rays were detected by two HPGe detectors. Measured E_D(>300 keV), I_D, E γ , I γ , p γ -coin, $\gamma\gamma$ -coin. Deduced parent 35 K T_{1/2}.
- 2019ChZU: Same beam production as 2018Sa54. 35 K was implanted into the AstroBox2 detector filled with 800-Torr P5 gas. $\varepsilon + \beta^+$ -delayed protons were detected by the implantation detector. γ rays were detected by 4 Clover Ge detectors. Measured $E_p(>100 \text{ keV})$, I_p , $E\gamma$, $I\gamma$, $P\gamma$ -coin, $P\gamma$ -coin.
- 1998Sc19: A polarized 35 K beam was produced via the fragmentation of 500-MeV/nucleon 40 Ca impinging on a 9 Be target at GSI, separated using Δ E-tof by FRS, momentum-selected by slits, and implanted into a KBr single crystal placed in the central region of a magnet. Positrons were detected using plastic scintillators. γ rays were detected using a Ge detector. Measured β -decay asymmetry and $\beta\gamma$ -coin. Deduced polarization and g-factor of 35 K ground state from β -NMR and 35 K $T_{1/2}$ from $\beta\gamma$ -decay time spectra.
- 2006Me04: A polarized 35 K beam was produced via the proton-pickup reaction 36 Ar(9 Be, 10 Li) 35 K, separated by NSCL-A1900, and implanted into a KBr crystal. Positrons were detected using plastic scintillators. Deduced the magnetic dipole moment and g-factor of 35 K ground state from β -NMR.
- Theoretical studies involving ³⁵K decay: shell model (1985Br29, 2003Sm02, Surender et al., Annals of Physics 470, 169772 (2024)).

35 Ar Levels

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	T _{1/2}	Comments
0	3/2+	1.7756 s <i>14</i>	
1184.01 25	1/2+		
1750.72 <i>25</i>	$(5/2)^+$		
2637.99 26	3/2+		
2982.79 12	5/2+		
4065.0? <i>4</i>	$(1/2^+,3/2^+,5/2^+)$		
4528.2 <i>4</i>	$(1/2^+,3/2^+,5/2^+)$		
4725.9 <i>6</i>	1/2+		
4785.8 <i>11</i>	$1/2^+, 3/2^+, 5/2^+$		
5572.66 <i>15</i>	3/2+		T=3/2
6348 11	(1/2,3/2,5/2)		E(p0) _{c.m.} =452 keV 11 (2019ChZU).
7053 11	$3/2^+,5/2^+$		E(p0) _{c.m.} =1157 keV 11 (2019ChZU).
7255 11			E(p3) _{c.m.} =693 keV 11 (2019ChZU).
7283 11			E(p0) _{c.m.} =1387 keV 11 (2019ChZU).
7431 <i>11</i>			$E(p3)_{c.m.}$ =869 keV 11 (2019ChZU).
7518 <i>11</i>	1/2+,3/2+,5/2+		E(level): weighted average of E(level) of 7497 20, 7510 20, and 7527 11. The former two E(level) are deduced from E(p0) _{c.m.} =1601 20 (1980Ew02) and E(p1) _{c.m.} =1467 20 (1980Ew02), respectively, with the corresponding

 $^{^{35}\}text{K-J}^{\pi}$, $T_{1/2}$: From Adopted Levels of ^{35}K .

³⁵K-T_{1/2}: Weighted average of 175 ms 2 (2018Sa54), 178 ms 8 (1998Sc19), and 190 ms 30 (1980Ew02).

 $^{^{35}}$ K-Q(ε + β ⁺): From 2021Wa16.

 $^{^{35}}$ K-%(ε + β +)p=0.37 15 for E(p)>0.9 MeV (1980Ew02). E(p)<0.9 MeV has also been observed (2018Sa54,2019ChZU).

³⁵K ε+β⁺ decay (175 ms) 1980Ew02 (continued)

³⁵Ar Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	Comments
8393? 20	1/2+,3/2+,5/2+	E(level)(34 Cl) (2012Ni10) and S(p)(35 Ar)=5896.2 7 (2021Wa16). The 7527 11 is from 2019ChZU with E(p3) _{c.m.} =965 11. E(level): weighted average of E(level) of 8392 20, 8392 20, and 8395 20, deduced from E(p0) _{c.m.} =2496 20 (1980Ew02), E(p1) _{c.m.} =2349 20 (1980Ew02), and E(p2) _{c.m.} =2038 20 (1980Ew02), respectively, with the corresponding E(level)(34 Cl) (2012Ni10) and S(p)(35 Ar)=5896.2 7 (2021Wa16).

[†] From a least-squares fit to γ -ray energies in 1980Ew02 for levels connected with γ transitions.

ε, β^+ radiations

E(decay)	E(level)	Ι <i>β</i> ⁺ †	${\rm I}\varepsilon^{\dagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger}$	Comments
(3481 20)	8393?	0.062 26	4.3×10^{-4} 18	4.6 + 3 - 2	0.062 26	
(4356 11)	7518	>0.090	>3×10 ⁻⁴	5.0	>0.09	$I(\varepsilon + \beta^+)$: 0.15 6 $I(p0+p1)$ (1980Ew02). Evaluators adopted a lower limit due to unreported $I(p3)$ (2019ChZU).
(5526 11)	6348	0.0025 5	$2.9 \times 10^{-6} 6$	7.2 1	$2.5 \times 10^{-3} 5$	
(6301.7 14)	5572.66	36.3 24	0.0265 18	3.31 4	36.3 24	
(7088.6 18)	4785.8	1.0 4	$5 \times 10^{-4} 2$	5.2 2	1.0 4	
(7148.5 15)	4725.9	2.1 4	0.0010 2	4.9 <i>1</i>	2.1 4	
(7346.2 14)	4528.2	0.7 4	$3 \times 10^{-4} 2$	5.4 + 4 - 2	0.7 4	
(7809.4 14)	4065.0?	0.56 33	2.0×10^{-4} 12	5.6 + 4 - 2	0.56 33	
(8891.6 14)	2982.79	26.0 22	0.0060 5	4.27 4	26.0 22	
(9236.4 14)	2637.99	≤0.4		≥6.2	≤0.4	
(10123.7 14)	1750.72	11.9 9	0.00181 14	4.91 <i>4</i>	11.9 9	
(10690.4 14)	1184.01	2.2 7	$2.8 \times 10^{-4} 9$	5.8 + 2 - 1	2.2 7	
(11874.4 17)	0	19 4	0.0018 4	5.1 <i>I</i>	19 4	$I(ε+β^+)$: from 1980Ew02 assuming mirror log ft with a small asymmetry correction.

[†] Absolute intensity per 100 decays.

$\gamma(^{35}Ar)$

Iy normalization: From $\Sigma\%$ Iy(γ to g.s.)=80.6 40, deduced from 100– $\Sigma\%$ I_p-%I(ε + β +)(g.s.), where $\Sigma\%$ I_p=0.37 15 (1980Ew02) and %I(ε + β +)(g.s.)=19 4 (1980Ew02), corresponding to log ft=5.07 5, which was deduced from the 35 S (g.s.)-> 35 Cl (g.s.) mirror log ft=5.01 2 with a small asymmetry correction.

 $\varepsilon+\beta^+$ feeding is obtained from γ intensity balance at each level. 1980Ew02 states that in complex decay schemes of heavy nuclides this method is known to be suspect since there is significant γ intensity that is unobserved because it lies in a multitude of very weak γ -ray peaks. In a nucleus as light as 35 K the problem is less acute. They have generated a pandemonium test in the same spirit as in 1977Ha51 and find that less than one percent of the γ intensity from 35 K decay should be missed for that reason.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger}$	$E_i(level)$	\mathtt{J}_i^{π}	\mathbb{E}_f	J_f^π	Comments
886.8 5	0.9 3	2637.99	3/2+	1750.72	(5/2)+	$\%$ I γ =0.46 +19-17
1044.4 <i>4</i>	1.3 4	5572.66	3/2+	4528.2	$(1/2^+,3/2^+,5/2^+)$	$\%I\gamma = 0.66 + 25 - 23$
1184.0 <i>3</i>	14.3 7	1184.01	1/2+	0	3/2+	$\%I\gamma = 7.25$
1426.8 <i>4</i>	3.0 5	4065.0?	$(1/2^+,3/2^+,5/2^+)$	2637.99	3/2+	$\%I\gamma = 1.5 + 4 - 3$
1507.4 5	1.9 4	5572.66	3/2+	4065.0?	$(1/2^+,3/2^+,5/2^+)$	$\%I\gamma = 0.96 + 27 - 25$
1750.5 <i>3</i>	28 <i>1</i>	1750.72	$(5/2)^+$	0	3/2+	$\%$ I γ =14.1 9

Continued on next page (footnotes at end of table)

[‡] From the Adopted Levels.

35 K ε + β ⁺ decay (175 ms) 1980Ew02 (continued)

γ (35Ar) (continued)

$\mathrm{E}_{\gamma}{}^{\dagger}$	I_{γ} †‡	$E_i(level)$	J_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Comments
1798.9 5	3.5 6	2982.79	5/2+	1184.01	1/2+	%Iγ=1.8 4
2589.8 <i>1</i>	52 2	5572.66	3/2+	2982.79	5/2+	$\%I\gamma = 26.3 \ 18$
2638.0 <i>4</i>	5.5 7	2637.99	3/2+	0	$3/2^{+}$	$\%I\gamma = 2.85$
^x 2697.7 6						Unplaced γ ray, accounting for no more than 1.2% $\varepsilon + \beta^+$ -feeding (1980Ew02).
2934.5 5	3.5 6	5572.66	3/2+	2637.99	$3/2^{+}$	$\%I\gamma = 1.8 \ 4$
2982.68 <i>13</i>	100 4	2982.79	5/2 ⁺	0	$3/2^{+}$	$\%I\gamma = 50.5\ 27$
3542.0 <i>6</i>	2.9 6	4725.9	1/2+	1184.01	$1/2^{+}$	$\%I\gamma = 1.5 \ 4$
3821.7 7	3.5 7	5572.66	3/2+	1750.72	$(5/2)^+$	$\%I\gamma = 1.8 \ 5$
4387.2 9	3.5 8	5572.66	3/2+	1184.01	$1/2^{+}$	$\%I\gamma = 1.85$
4527.9 7	2.6 7	4528.2	$(1/2^+,3/2^+,5/2^+)$	0	$3/2^{+}$	$\%I\gamma = 1.3 \ 4$
4724.5 11	1.2 5	4725.9	1/2+	0	$3/2^{+}$	$\%I\gamma = 0.61 + 30 - 27$
4785.4 11	1.9 7	4785.8	$1/2^+, 3/2^+, 5/2^+$	0	$3/2^{+}$	$\%I\gamma=1.0$ 4
5572.3 10	6.1 <i>16</i>	5572.66	3/2+	0	$3/2^{+}$	$\%I_{\gamma}=3.1 + 10-9$
						$1980\text{Ew}02$ observed the double escape peak at 4550 keV of this γ ray. 2018Sa54 observed the photopeak at 5572 keV.

[†] From 1980Ew02. [‡] For absolute intensity per 100 decays, multiply by 0.505 29. ^x γ ray not placed in level scheme.

35 K ε + β + decay (175 ms) 1980Ew02

Decay Scheme

