

A Semantic Loss Function for Deep Learning with Symbolic Knowledge

Jingyi Xu, Zilu Zhang, **Tal Friedman**, Yitao Liang, Guy Van den Broeck

Goal: Constrain neural network outputs using logic

Want exactly one class:

$$\begin{cases} x_1 \neg x_2 \neg x_3 \\ \lor \\ \neg x_1 x_2 \neg x_3 \\ \lor \\ \neg x_1 \neg x_2 x_3 \end{cases}$$

Want exactly one class: \

$$\begin{cases} x_1 \neg x_2 \neg x_3 \\ \lor \\ \neg x_1 x_2 \neg x_3 \\ \lor \\ \neg x_1 \neg x_2 x_3 \end{cases}$$

No information gained!

Why is mixing so difficult?

Deep Learning

- Continuous
- Smooth
- Differentiable

Logic

$$\begin{array}{c} P \lor L \\ A \Rightarrow P \\ K \Rightarrow (P \lor L) \end{array}$$

- Discrete
- Symbolic
- Strong semantics

Want exactly one class: \

$$\begin{cases} x_1 \neg x_2 \neg x_3 \\ \lor \\ \neg x_1 x_2 \neg x_3 \\ \lor \\ \neg x_1 \neg x_2 x_3 \end{cases}$$

Probability constraint is satisfied

Use a **probabilistic** interpretation!

$$S: \begin{cases} x_1 \neg x_2 \neg x_3 \\ \lor \\ \neg x_1 x_2 \neg x_3 \\ \lor \\ \neg x_1 \neg x_2 x_3 \end{cases}$$

Probability constraint is satisfied

$$x_1(1-x_2)(1-x_3) + (1-x_1)x_2(1-x_3) + (1-x_1)(1-x_2)x_3 = 0.188$$

Semantic Loss

- Continuous, smooth, easily differentiable function
- Represents how close outputs are to satisfying the constraint
- Axiomatically respects semantics of logic, maintains precise meaning
 - independent of syntax

How do we compute semantic loss?

Logical Circuits

- In general: #P-hard
- Linear in size of circuit

Supervised Learning

- Predict shortest paths
- Add semantic loss representing paths

Test accuracy %	Coherent	Incoherent	Constraint
5-layer MLP	5.62	85.91	6.99
Semantic loss	28.51	83.14	69.89

Is output the true shortest path?

Does output have true edges?

Is output a path?

Semi-Supervised Learning

• Unlabeled data must have some label

Semi-Supervised Learning

• Unlabeled data must have some label

• Exactly-one constraint increases confidence

Table 2: FASHION. Test accuracy comparison between MLP with semantic loss and ladder nets.

Accuracy % with # of used labels	100	500	1000	ALL
Ladder Net (Rasmus et al., 2015)	81.46 (±0.64)	$85.18 (\pm 0.27)$	$86.48 (\pm 0.15)$	90.46
Baseline: MLP, Gaussian Noise	69.45 (±2.03)	$78.12 (\pm 1.41)$	80.94 (±0.84)	89.87
MLP with Semantic Loss	86.74 (± 0.71)	89.49 (±0.24)	89.67 (±0.09)	89.81

Main Takeaway

- Deep learning and logic **can** be combined by using a probabilistic approach
- Maintain precise meaning while fitting into the deep learning framework

Thanks!