HEURI STIEKEN

Episode I

In which we will discover

what makes a hard problem HARD.

16 85 JS

BA-CH-65

AANTAL MOGELIKHEDEN

16 85 JS

6 760 000

BA-CH-65

45 697 600

31 JSB 3

17 576 000

□ 10 85 JS	16 85 JS	u 10 85 JS	a 16 85 JS	■ 16 85 JS	□ 16 85 JS	<u> 16 85 JS</u>	16 85 JS	16 85 JS	u 10 85 JS	<u> </u>
BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	■ BA
31 JSB 3	31 JSB 3	31 JSB 3	31 JSB 3	31 JSB 3	31 JSB 3	31				
. 16 85 JS	16 85 JS	16 85 JS	16 85 JS	. 16 85 JS	16 85 JS	. 16 85 JS	16 85 JS	16 85 JS	. 16 85 JS	16
BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	. B <i>A</i>
31 JSB 3	31 JSB 3	31 JSB 3	31 JSB 3	. 31 JSB 3	. 31 JSB 3	31 JSB 3	31 JSB 3	31 JSB 3	. 31 JSB 3	31
16 85 JS	16 85 JS	16 85 JS	16 85 JS	. 16 85 JS	■ 16 85 JS	16 85 JS	₹ 16 85 JS	€ 16 85 JS	. 16 85 JS	. <u>16</u>
BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	<u>BA-CH-65</u>	■ BA
31 JSB 3	31 JSB 3	31 JSB 3	31 JSB 3	31 JSB 3	. 31 JSB 3	. 31				
16 85 JS	16 85 JS	■ 16 85 JS	16 85 JS	16 85 JS	<mark>. 16 85 JS</mark>	■ 16 85 JS	16 85 JS	16 85 JS	. 16 85 JS	. <mark>16</mark>
BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	. B <i>A</i>
31 JSB 3	31 JSB 3	31 JSB 3	31 JSB 3	. 31 JSB 3	31 JSB 3	31 JSB 3	31 JSB 3	31 JSB 3	31 JSB 3	. 31
16 85 JS	16 85 JS	16 85 JS	16 85 JS	. 16 85 JS	. 16 85 JS	16 85 JS	■ 16 85 JS	16 85 JS	■ 16 85 JS	. <mark>16</mark>
BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	■ <mark>BA-CH-65</mark>	. B <i>A</i>
31 JSB 3	31 JSB 3	a 31 JSB 3	31 JSB 3	31 JSB 3	31 JSB 3	31 JSB 3	31 JSB 3	31 JSB 3	. 31 JSB 3	. 31
16 85 JS	16 85 JS	16 85 JS	. 16 85 JS	16 85 JS	16 85 JS	16 85 JS	■ 16 85 JS	16 85 JS	■ 16 85 JS	. <u>16</u>
BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	. B A
31 JSB 3	31 JSB 3	31 JSB 3	31 JSB 3	31 JSB 3	31 JSB 3	. 31				
16 85 JS	■ 16 85 JS	16 85 JS	16 85 JS	16 85 JS	16 85 JS	16 85 JS	16 85 JS	. 16 85 JS	16 85 JS	16
BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	. B <i>A</i>
31 JSB 3	31 JSB 3	31 JSB 3	31 JSB 3	31 JSB 3	31 JSB 3	. 31				
16 85 JS	16 85 JS	16 85 JS	. 16 85 JS	16 85 JS	16 85 JS	16 85 JS	16 85 JS	16 85 JS	■ 16 85 JS	. <mark>16</mark>
BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	. B <i>A</i>
31 JSB 3	31 JSB 3	31 JSB 3	31 JSB 3	31 JSB 3	31 JSB 3	. 31				
16 85 JS	16 85 JS	16 85 JS	16 85 JS	■ 16 85 JS	■ 16 85 JS	16				
BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	BA-CH-65	■ BA
31 ISR 3	31 ISR 3	31 ISR 3	31 ISB 3	31 ISR 3	31 ISB 3	31 ISR 3	21 ISB 3	21 ICR 2	31 ISR 3	31

12 stukjes:

12!=

12 * 11 * 10 ... =

479 001 600

GROOTE TOESTANDSRUMTE

Complexiteitsfunctie!

ACT KONNGRNEN

AGHT KONNGRNEN

AGHT KONNGRNEN

GOED OF FOUR

_	100	 	:	100 200	-	

GOED OF FOUR?

GOED OF FOUR

No.	Section 1		 	CONTRACTOR OF STREET	

n choose k ("n boven k"):

$$\binom{n}{k} = \frac{n!}{k!(n-k)}$$

8 koninginnen, 64 velden:

$$\binom{64}{8} = \frac{64!}{8!(64-8)!}$$

GROOTTE TOESTANDSRUIMTE

 $\binom{64}{8}$ = 4 426 165 368

9 x 9

10 x 10

 $\binom{100}{10}$ = 17 310 309 456 440

 $\binom{81}{9}$ = 260 887 834 350

 $\binom{225}{15}$ = 91005567811177500000000 (= 9,1 * 10²²)

 $\binom{400}{20} = 278836098366709000 \dots 000 (= 2,7 * 10^{33})$

queens	velden	grootte toestandsruimte
8	64	4426165368
9	81	260887834350
10	100	17310309456440
11	121	1276749965026540
12	144	103619293824707000
13	169	9176358300744340000
14	196	880530516383349000000
15	225	91005567811177500000000
16	256	1007875160202230000000000
17	289	1190739044344490000000000000
18	324	149482492334195000000000000000
19	361	19870867053543800000000000000000
20	400	2788360983670900000000000000000000

STATE-SPACE COMPLEXITY N-QUEENS

Complexiteitsfunctie: $C(n) = \binom{n^2}{n}$ (n: aantal koninginnen, C(n): aantal bordconfiguraties)

STATE-SPACE COMPLEXITY N-QUEENS

Complexiteitsfunctie: $C(n) = \binom{n^2}{n}$ (n: aantal koninginnen, C(n): aantal bordconfiguraties)

REVENIEN PROCESSOR

Intel Core i7 5960X: 238 310 MIPS

• Omgerekend: 7,51 * 10¹² MIPY

rekentijd (jaren)	rekentijd (heelallen)
0.00058895	0
0.034714024	0
2.303328908	0
169.8857614	0
13787.69776	0
1221016.377	0
117164363.7	0
12109301434	0.877485611
1.34109E+12	97.18042227
1.58441E+14	11481.23574
1.98903E+16	1441326.496
2.64404E+18	191597067.5
3.71022E+20	26885680741
	0.00058895 0.034714024 2.303328908 169.8857614 13787.69776 1221016.377 117164363.7 12109301434 1.34109E+12 1.58441E+14 1.98903E+16 2.64404E+18

GROOTST BEKENDE INSTANTIE

• Opgelost: 1 000 000 queens

Grootte state-space ?

0000000000000000000000000 heelallen.

HOW WAS IT DONE?

GROOTTE STATE-SPACE

- Moeilijkheid instantie: toestandsruimtegrootte
- Moeilijkheid probleem: toename t'grootte
- ruimtes >10¹⁶ niet doorrekenen (Torenvliet)
- ruimtes >10¹⁶ in 4 maanden door te rekenen
- Grote getallen zijn psychologisch lastig

RELATIES TUSSEN GETALLEN

- "De koffie is een euro duurder geworden."
- "Mijn inkomen is 6% achteruit gegaan"
- "De rente op je hypotheek bedraagt 2% voor de komende twintig jaar."
- Grote getallen en hun relaties zijn psychologisch lastig

MOEILIKHEID VAN EEN PROBLEEM (INSTANTIE)

- Klassiek antwoord: "Probleem is moeilijk als het efficientste algoritme voor de moeilijkste instantie niet in polynomiale tijd een oplossing vindt"
- We kennen dat algoritme niet (en kunnen dat niet kennen).
- Verschillen per instantie zijn groot

GROTE STATE-SPACE, MOEILIK PROBLEEM?

OPLOSSINGEN: HOE VEEL, HOE DICHT

↓ "Perfect compound swap" ↓

"Partial retiling" →

- Vind je 1 oplosing, vind je er meer?
- Relaties tussen oplossingen?
- Patronen in oplossingen?
- Patronen in distributies van oplossingen?

6			τ-		8	2		Э
	2			4			9	
8 5		3			5	4		
5		4	6		7			ω
	3						5	
7			ω		3	Υ-		2
		7	7			9		0
	8			3			2	
3		2	9		4			5

6	4		1		8	2		3
	2		3	4			9	
8		3			5	4		
8 5		4	6		7			ω
	3	8					5	
7			ω		3	Υ_		2
		_	7			9		0
	8			3			2	
3		2	9		4			5

- De NS wil de reistijd van Amsterdam-Zandvoort minimaliseren.
- Objectiviteitsfunctie (scorefunctie): gemiddelde reistijd per passagier
- Variabelen: treinlengte, treinfrequentie
- Meer/langere treinen: betekent meer passagiers, maar ook meer clogging

WELKE PROBLEMEN ZIJN MOEILIJK?

- Toestandsruimte groot?
- Oplossingsdichtheid laag?
- Er zijn geen leads?
- Oplossingen zijn ongerelateerd?
- Objectiviteitsfunctie is onglad?

TEN INSTANTIE IS MAKKELIJK ALSE

- De toestandsruimte klein is.
- De Oplossingsdichtheid hoog is.
- Er zijn goed bruikbare leads zijn.
- De oplossingen patronen vertonen.
- De Objectiviteitsfunctie glad is.

