Department of Industrial Engineering University of Stellenbosch

Simulasie 442 : Simulation 442 2025

Tutoriaal 7	Punt: 48	Ingeedatum: 19-09-2025 (10:00) B3003			
Tutorial 7	Mark:	Due date:			
Instruksies:	Formatteer alle syfers sinvol.				
	Werk in groepe van twee en toon beide lede se name op een				
	dokument aan asb.				
	Gebruik Matlab, R of Excel vir u berekenings.				
	Die data vir hierdie tutoriaal is beskikbaar in die lêer Tut07_2025_RawData.xlsx.				
	U mag nie oplossings met ander groepe uitruil nie.				
Instructions:	Format all numbers sensibly.				
	Work in groups of two and indicate both names on one sub-				
	mission please.				
	Use Matlab, R or Excel for your calculations.				
	The data for this tutorial is available in the file Tut07_2025_RawData.xlsx.				
	You may not exchange solutions with other groups.				

Question 1 [6]

- 1. Describe the evaluation process in the K-N procedure. How does this approach differ from traditional methods like ANOVA, and what are its benefits in scenario evaluation? [3]
- 2. What is the *indifference zone* δ in the K-N procedure? How does it affect the evaluation of scenarios and the overall decision-making process? [3]

Question 2 [14]

There are two sets of variables with multiple observations, as shown in the Sim442 RawData Excel sheet in Question2. Determine if the two variables are statistically significantly different from each other with a mean difference of 0 by deriving a hypothesis, conducting the t-test and calculating the p-value. Note the sample have unknown, unequal variances (the variances were estimated from the samples), and the observations are normal distributed and independent.

Question 3 [18]

McLaren Racing's technical directors have released an internal memorandum following the continuous poor performance of their vehicles due to engine reliability issues during the 2025 F1 season. The memorandum states that they have developed six new engine configurations, which would be tested over 20 replications (each) for the best lap times (in seconds) at their test track.

The recorded lap times of different configurations can be seen in the Sim442 RawData Excel sheet on sheet Question 4. Assume that a shorter lap time will result in a reduced engine lifespan.

Perform a t-test on data to determine which configurations are not statistically significantly different, and which configuration McLaren should select when considering the lap times and engine lifespan (the quickest lap time at the longest engine lifespan).

Hint: Provide the p-value table [9 marks] and interpret all the values [9 marks].

Question 4 [10]

Refer to the output of the Model 0 simulation below. In this example, Experiment 1 has one cook, Experiment 2 has 2 cooks, and so forth.

You want to *maximise* the throughput. What is the best number of cooks to use if the arrival rate is 0.5 arrivals/minute? Explain your answer.

Detailed Results

Experiment	root.Drain.statnumout	Standard Deviation	Minimum	Maximum	Left interval bound	Right interval bound
Exp 1	27.7	4.7914397352823	19	35	25.4575371755511	29.9424628244489
Exp 2	53.5	8.9824390076591	38	68	49.2960891380451	57.7039108619549
Ехр 3	70.55	9.92856061015255	51	86	65.9032905976865	75.1967094023135
Exp 4	77.15	10.4994987349021	52	100	72.2360833300287	82.0639166699713
Exp 5	78.2	11.1996240538408	55	91	72.9584145943428	83.4415854056572
Exp 6	74.05	11.1519410630474	54	90	68.8307309209837	79.2692690790163

Table of the p-values of the T-test of the output value 'root.Drain.statnumout

	Exp 2	Ехр 3	Exp 4	Exp 5	Ехр 6
Exp 1	0	0	0	0	0
Exp 2		0	0	0	0
Ехр 3			0.048	0.028	0.301
Exp 4				0.761	0.371
Exp 5					0.248

Total: Cross-check: 48