Codes correcteurs

Cours Bachelor HEIG-VD

Semestre printemps 2023

Laboratoire 3 : Codes cycliques

Le but de ce laboratoire est d'étudier l'algorithme d'Euclide appliqué à des polynômes, les règles de calcul dans un corps fini et les codes cycliques et en particulier les codes BCH et Reed-Solomon.

Problème 1

Soient a(x) et b(x) deux polynômes dans $\mathbb{F}_q[x]$. L'algorithme d'Euclide étendu permet non seulement d'obtenir le pgdc(a(x), b(x)), mais aussi de fournir les polynômes $u_i(x)$ et $v_i(x)$ tels que $r_i(x) = a(x) u_i(x) + b(x) v_i(x)$ (voir la section 7.10 du polycopié). En utilisant les mêmes notations de la section 7.10 (pages 46-47) du polycopié et étant donné deux polynômes $a(x) = x^8$ et $b(x) = x^6 + x^4 + x^2 + x + 1$ dans $\mathbb{F}_2[x]$, écrire un programme qui permet de

- 1) calculer les polynômes $u_i(x)$, $v_i(x)$, $r_i(x)$ et $q_i(x)$ pour $-1 \le i \le n$,
- 2) donner le pgdc(a(x), b(x)),
- 3) vérifier les formules $r_i(x) = a(x) u_i(x) + b(x) v_i(x)$ pour $-1 \le i \le n$

Problème 2

Écrire un programme qui permet de trouver la représentation exponentielle, polynomiale et vectorielle du corps fini \mathbb{F}_{2^5} défini à partir du polynôme primitif $m(x) = x^5 + x^2 + 1$ et de donner le polynôme minimal de chaque élément de \mathbb{F}_{2^5} .

Problème 3

Construire le polynôme générateur g(x) d'un code BCH de longueur 63, qui corrige toutes les erreurs de poids inférieur ou égal à 3 en utilisant la représentation de \mathbb{F}_{2^6} défini à partir du polynôme primitif $m(x) = x^6 + x + 1$.

Écrire le polynôme générateur g(x) sous forme

$$g(x) = \sum_{i=0}^{r} P_i(\alpha) x^i$$

où r est le degré du polynôme g(x), $P_i(x)$ est un polynôme dans $\mathbb{F}_2[x]$ de degré inférieur ou égal à 5 et où $\alpha \equiv \bar{x}$ modulo le polynôme m(x).

Problème 4

Pour construire un code de Reed-Solomon \mathcal{C} sur le corps \mathbb{F}_q il est commode, en pratique de prendre q de la forme $q=2^m$. Les éléments de \mathbb{F}_{2^m} sont des suites de m bits. Si on ramène tout à \mathbb{F}_2 on peut voir alors \mathcal{C} comme un code binaire \mathcal{C}' , de longueur $n'=(2^m-1)m$, de dimension $k'=k\,m$ et de distance minimale $d'\geq d=2^m-k$ (car cette opération augmente les poids des mots du code \mathcal{C}).

Le code \mathcal{C}' est bien adapté aux corrections faites par paquets : si t vérifie $2t + 1 \leq d(\mathcal{C}) = q - k$, le code corrige t éléments de \mathbb{F}_{2^m} , donc t m erreurs binaires si celles-ci sont consécutives.

Le satellite d'exploration de Jupiter Galileo utilise le code de Reed-Solomon (255,223) sur le corps \mathbb{F}_{2^8} (corps des octets) où ce corps est construit modulo le polynôme primitif $m(x)=x^8+x^7+x^2+x+1$ de $\mathbb{F}_2[x]$

- a) Calculer la distance minimale et la capacité de correction de ce code.
- b) Le polynôme générateur choisi est $g(x)=\prod_{j=12}^{43} (x-(\alpha^{11})^j)$ et où $\alpha\equiv \bar x$ modulo le polynôme m(x).

Écrire un programme fournissant g(x) sous la forme

$$g(x) = \sum_{i=0}^{32} P_i(\alpha) x^i$$

avec $P_i(x) \in \mathbb{F}_2[x]$ et de degré inférieur ou égal à 7.

Ce code de $(\mathbb{F}_{256})^{255}$ est alors 16-correcteur; via ce que nous avons dit est un code linéaire sur $(\mathbb{F}_2)^{2040}$, de dimension 1784 qui peut corriger au moins 128 erreurs portant sur les bits dès qu'elles sont consécutives (erreurs par paquets).