Primjena mjera centralnosti u mreži 9/11

Elizabeta Konjušak

Odjel za matematiku

27. ožujka 2019.

Sadržaj

- Uvod
- Osnovni pojmovi teorije grafova
- Teroristička mreža
- Analiza mreže 9/11
- Zaključak
- Literatura

Uvod

Definicija terorizma

Terorizam: čin koji, s obzirom na svoju prirodu i kontekst, može ozbiljno naštetiti državi ili međunarodnoj organizaciji, a koji je počinjen s namjerom ozbiljnog zastrašivanja stanovništva, ili nezakonitog iznuđivanja (prisiljavanja) vlade ili međunarodne organizacije da nešto čine ili da se suzdrži od nekog čina, ili ozbiljnog destabiliziranja ili uništavanja temeljne političke, ustavne ili gospodarske strukture zemlje ili međunarodne organizacije.

- napad na trgovački centar u SAD-u, bombardiranje vlaka u Madridu, bombardiranje na otoku Bali...
- možemo li ovakve kretnje opisati matematičkim modelom?

Uvod

Problemi modeliranja ovakvih skupina:

- nepotpunost informacija; neke stvari nikada neće biti otkrivene
- nejasne granice; ne znamo je li baš svaka osoba s kojom se komuniciralo uključena u napad ili je samo slučajni poznanik
- dinamičnost sustava; ovakve mreže nisu statične, vrhovi i bridovi se stalno dodaju i uklanjaju, ovisno o tome je li pojedinac postao terorist ili se povukao iz cjeline, također onesposobljivanje nekih od navedenih mijenja strukturu cijele mreže

• rad je baziran na jednostavnim, povezanim, netežinskim grafovima

Definicija grafa

Graf G je uređena trojka $G = (V(G), E(G), \psi(G))$ koja se sastoji od nepraznog skupa V(G), čiji su elementi vrhovi od G, skupa E(G) disjunktnog s V(G), čiji su elementi bridovi od G i funkcije incidencije $\psi(G)$ koja svakom bridu od G pridružuje neuređeni par (ne nužno različitih) vrhova od G.

Stupanj vrha

Stupanj ili valencija vrha v grafa G je broj $d_G(v)$ bridova grafa G koji su incidentni s vrhom v.

Šetnja

Šetnja u grafu G je netrivijalan konačan niz $W = v_0 e_1 v_1 e_2 v_2 \dots e_k v_k$ čiji su članovi naizmjenično vrhovi v_i i bridovi e_i tako da su krajevi od e_i vrhovi v_{i-1} i v_i , za svaki $i = 1, 2, \dots, k$.

Udaljenost dva vrha

Udaljenost $d_G(u, v)$ dvaju vrhova $u, v \in V(G)$ je duljina najkraćeg (u, v)-puta u grafu G. Ako ne postoji takav put u G, onda stavljamo $d_G(u, v) = \infty$.

• dva su vrha, *u* i *v*, povezana ako postoji (*u*, *v*)-put u grafu G

Povezan graf

Graf G je povezan ako je $d_G(u, v) < \infty$ za svaki $u, v \in V(G)$. U suprotnom kažemo da je graf G nepovezan.

- jednostavan, netežinski, povezan graf
- stupnjevi za svaki vrh v_i su sljedeći: $d_G(v_1) = 3$, $d_G(v_2) = 1$, $d_G(v_3) = 2$, $d_G(v_4) = 3$, $d_G(v_5) = 1$.

Slika: primjer grafa.

Specijalni sučajevi jednostavnih grafova:

Slika: ciklus, put, potpun graf, zvijezda

Terorističke organizacije

- terorističke organizacije su složene i kompleksne te ih je teško analizirati
- novi terorizam ima značajke poput: decentralizacija vodstva, djelovanjem globalan, novi načini komunikacije, modernija oružja, ambiciozniji ciljevi (uništavanje cjelokupnog socijalnog sustava napadnute državete narušavanje međunarodnih odnosa)
- teško se pronalaze sličnosti skupina, budući da su različite ciljevima i međusobnom organizacijom

Terorističke organizacije

Gruba podjela terorističkih skupina:

- konvencionalno-hijerarhijska struktura je struktura s najvećom učinkovitosti, najdetaljnijim dogovorima i najlakšom komunikacijom između pojedinaca. Nedostatak je što se onesposobljavanjem vođe ili nekoliko njih (vodstveni tim) može doći do raspada cijele mreže.
- ćelijska struktura se sastoji od nekoliko manjih timova (3-10 osoba), koji se unutar veće organizacije nazivaju "ćelija". Svaka ćelija ima vođu koji razgovara sa vrhovnim vođom. Nedostatak je komunikacija među ćelijama.

Terorističke organizacije

Gruba podjela terorističkih skupina:

- Mrežna struktura sastoji se od brojnih ćelija povezanih na različite načine. Oblici mogu biti lančani, zvjezdasti, svekanalni te kombinacije navedenog. Takve strukture prolaze iz decentralizacije vodstva i time onemogućuju narušavanje mreže identifikacijom 2-3 osobe.
- Otpor bez vodstva je najsigurnija i najneučinkovitija struktura. Ovakve strukture zapravo nemaju definiranu strukturu i protuterorističke organizacije imaju problem u pronalaženju poveznica unutar same organizacije. Iz istoga razloga nestrukturiranosti, ovakve organizacije nemaju veliku učinkovitost.

Mreža 9/11

Odvijanje napada:

- 11.9.2001.
- islamski aktivisti, organizacije al-Qaeda
- 4 putnička zrakoplova
- trgovački centar, Pentagon, Bijela kuća

Mreža 9/11

Mjere centralnosti

Na mreži 9/11 ćemo pokušati doći do glavnog vrha pomoću mjera centralnosti:

- stupanj vrha
- svojstvena centralnost
- Katzova centralnost
- međupoloženost
- koeficijent grupiranja

Stupanj vrha

- stupanj vrha je jednak broju bridova s kojima je taj vrh incidentan
- računamo ga pomoću matrice susjedstva koju množimo sa vektorom jedinica, tj. $d_i = (A \cdot 1)$, gdje je $1 = (1, 1, ..., 1)^T$

Stupanj vrha

vrh (ime terorista)	stupanj vrha
Mohamed Atta	22
Marwan Al-Shehhi	18
Hani Hanjour	13
Essid S. B. Khemais	11
Nawaf Alhazmi	11
Ramzi Bin Al-Shibh	10
Ziad Jarrah	10
Abdoul A. Al-Omari*	9
Djamal Beghal	8
Zacarias Moussaoui	8

Tablica: Stupanj pojedinog vrha mreže 9/11

Svojstvena centralnost

- važnost vrha je uvjetovana važnosti njegovih susjeda, tj. vrh je važan onoliko koliko su mu važni/utjecajni susjedi
- centralnost x_i vrha i proporcionalna je sumi centralnosti njegovih susjeda, gdje je λ_1 najveća svojstvena vrijednost, te dobivamo

$$x_i = {\lambda_1}^{-1} \sum_i A_{ij} x_j$$

Svojstvena centralnost

vrh (ime terorista)	svojstvena centralnost	
Mohamed Atta	0.411	
Marwan Al-Shehhi	0.398	
Ziad Jarrah	0.259	
Hani Hanjour	0.248	
Abdoul A. Al-Omari*	0.237	
Ramzi Bin Al-Shibh	0.223	
Said Bahaji	0.202	
Fayez Ahmed	0.201	

Tablica: Svojstvena centralnost pojedinog vrha mreže 9/11

Katzova centralnost

- nadovezuje se na svojstvenu centralnost
- svakom vrhu u mreži dodajemo pozitivnu konstantu β (broj godina, visina,...)

0

$$x_i = \alpha \sum_j A_{ij} x_j + \beta_i$$

• α < 1/ λ_1 , λ_1 najveća svojstvena vrijednost

Katzova centralnost

vrh (ime terorista)	Katzova centralnost	
Mohamed Atta	0.38	
Marwan Al-Shehhi	0.356	
Hani Hanjour	0.242	
Ziad Jarrah	0.238	
Abdoul A. Al-Omari*	0.22	
Ramzi Bin Al-Shibh	0.212	
Fayez Ahmed	0.189	
Said Bahaji	0.187	

Tablica: Katzova centralnost

Međupoloženost

- temelji se na proučavanju najbržeg načina protoka informacija
- zanima nas koji ćemo vrh najviše "upotrijebiti" prilikom prenošenja poruka
- tražimo najkraći put između dva vrha

•

$$BC(i) = \sum_{s,t} \frac{n_{st}^i}{g_{st}}.$$

• omjer najkraćih putova od s do t koji prolaze kroz traženi vrh i, n_{st}^i , i ukupnog broja najkraćih putova od s do t, g_{st} .

Međupoloženost

vrh (ime terorista)	međupoloženost	
Mohamed Atta	1077.689	
Essid S. B. Khemais	460.973	
Zacarias Moussaoui	425.283	
Nawaf Alhazmi	296.198	
Hani Hanjour	229.736	
Djamal Beghal	192.433	
Marwan Al-Shehhi	162.35	
Ramzi Bin Al-Shibh	89.555	

Tablica: Međupoloženost vrhova mreže 9/11

Koeficijent grupiranja

- $C_i = \frac{\text{broj trokuta koji sadrže vrh } v_i}{\text{broj trojki vrhova kojima je } v_i \text{ u središtu}}$
- $C_i = \frac{2N_i}{d(i)(d(i)-1)}$, gdje je N_i broj susjeda vrha i koji su spojeni bridom
- vrijednost 0 osoba sadržana samo u podgrafu zvijezde (vrh stpnja 1)
- vrijednost 1 osoba dio potpunog podgrafa

Koeficijent grupiranja

vrh (ime terorista)	C_i
Khalid Al-Mihdhar	0.6
Abdoul A. Al-Omari*	0.556
Satam Suqami	0.536
Mohamed Bensakhria	0.5
Mamoun Darkanzanli	0.5
Rayed M. Abdullah	0.5
Ziad Jarrah	0.489

Tablica: Koeficijenti grupiranja vrhova mreže 9/11.

- graf je 1-povezan
- želimo "kvalitetan" raspad
- vrhovi spomenuti u mjerama centralnosti

Slika: Mreža 9/11 bez Mohameda Atte

Slika: Mreža 9/11 bez Marwana

Slika: Mreža 9/11 bez Atte i Ramzija

Zaključak

- analiziranje ovakvih društvenih skupina je jako kompleksno
- težak dolazak do informacija i problem u razlučivanju bitnih
- pomaže nam teorija grafova
- pomoću mjera centralnosti možemo identificirati vrhove
- za barem dvije osobe, vodeće u nekoj od mjera centralnosti, dobivamo dobre rezultate

Literatura

- Yu.V. Borovskikh, V.S. Korolyuk, *Eigenspaces of Graphs*, Cambridge University Press, Cambridge, 1997.
- D. Cvetković, P. Rowlinson, S. Simić, *Random permanents*, VSP BV, Utrecht, The Netherlands, 1994.
- A. Hagberg, Da. Schult, P. Swart *NetworkX Reference*, Release 2.2. URL: https://networkx.github.io/documentation/stable/_downloads/networkx_reference.pdf
- Valdis E. Krebs, *Uncloaking Terrorist Networks*, First Monday, Volume 7 Number 4 1 April 2002.
- R.Lindelauf, Design and analysis of covert networks, affiliations and projects
- L. Moore, D. Smith *The SIR Model for Spread of Disease*, Journal of Online Mathematics and its Applications, 2001.

Literatura

- F. Udwadia, G. Leitmann, L. Lambertini, *A Dynamical Model of Terrorism*, Discrete Dynamics in Nature and Society, Vol. 2006, Hindawi Publishing Corporation, New York, 2006.
 - I.Pastor Perisa, *Organizacijski oblici suvremenih terorističkih organizacija*, diplomski rad, Filozofski fakultet, Zagreb, 2002.
- D. Veljan, *Kombinatorna i diskretna matematika*, Algoritam, Zagreb, 2001.
- K.Vučić, *Međunarodna povijest terorizma*, časopis za interdisciplinarna istraživanja rata i mira,8(2014), 197-201
- Definicija terorizma, *URL:* https://hrvatski-vojnik.hr/godina-2005-menu/item/3242-okvirna-odluka-vijeca-europske-unije-o-borbi-protiv-terorizma.html
- Modelling Terrorist Networks, CD Dissertation(Whole Unit), 2011. URL: https://www.math.ucla.edu/ mason/research/dom_final.pdf