Отчет о решении уравнения переноса с запаздыванием. Параллельная реализация.

Идея распараллеливания

Каждый процесс бежит по своей полосе ($[X_i, X_{i+1}]x[0, M]$) вверх и передают следующему процессу две крайние точки из перекрытия.

Использование

Все параметры (размеры, границы, функции) задаются через файл config.h. Вывод матрицы как в MATLAB (транспонированная) в файл, который задается как аргумент.

Запуск на кластере "Уран": mpicc main.c -o main srun -n <число процессов> main output

Распределение нагрузки

Nº	ФИО	Задачи
1	Бакиров Тимур	Отладка параллельной версии, написание отчета
2	Блинов Павел	Последовательная реализация, тестирование
3	Горголь Роман	Последовательная реализация, отладка, набор кода
4	Данилов Дмитрий	Отладка параллельной версии, рефакторинг кода
5	Ионин Константин	Идея, последовательная реализация, отладка
6	Куклин Евгений	Последовательная реализация, консультация по работе с кластером, отладка
7	Парфёнов Никита	Идея, последовательная реализация, прототип параллельной версии, отладка

Тестирование

Условия тестирования: N (пространство) = 100, M (время) = 10000000, [0; PI] x [0; PI], кластер "Уран".

