

Geometria Plana

Lista de Exercícios: P2

- 1 Trapézio.
- 2 Área de Polígonos.
 - 3 Semelhança.
- 4 Relações Métricas no Triângulo.
 - 5 Circunferência.

Profa. Karla Katerine Barboza de Lima FACET/UFGD

1 Trapézio

Exercício 1 Num trapézio retângulo ABCD, os ângulos \hat{A} e \hat{D} são retos. As bissetrizes dos ângulos \hat{A} e \hat{B} formam o ângulo $A\hat{M}B$ que vale $87^{\circ}30'$. Calcule os ângulos \hat{B} e \hat{C} .

Exercício 2 Num trapézio isósceles ABCD, a base menor \overline{AB} , mede 5 e a diagonal \overline{DB} é perpendicular ao lado não paralelo \overline{BC} . Calcule o perímetro desse trapézio, sabendo-se que a soma dos ângulos obtusos é o dobro da soma dos ângulos agudos.

Gabarito

- 1. 95° e 85°.
- 2. 25.

2 Área de Polígonos

Exercício 3 A base de um triângulo é o dobro da altura e sua área mede 289. Calcule a base e a altura desse triângulo.

Exercício 4 Mostre que qualquer mediana de um triângulo divide-o em dois triângulos de mesma área.

Exercício 5 Num trapézio, os ângulos adjacentes à base maior são congruentes e mede 60°, cada um. Calcule a área desse trapézio sabendo-se que as bases medem, respectivamente, 8 e 2.

Exercício 6 A área de um hexágono regular é $162\sqrt{3}$. Calcule a área do polígono estrelado que se obtém prolongando dois a dois os lados desse hexágono.

Gabarito

- 3. b = 34 e h = 17.
- 4.
- 5. $15\sqrt{3}$.
- 6. $324\sqrt{3}$.

3 Semelhança

Exercício 7 Um feixe de retas paralelas determina sobre duas transversais os pontos A, B, C, D e E, F, G, H, respectivamente. Conhecem-se: AB = 2 cm, BC = 3 cm, CD = 4 cm e EF = 3 cm. Calcule as medidas dos segmentos \overline{FG} e \overline{GH} .

Exercício 8 Num trapézio ABCD, uma paralela às bases divide o lado não paralelo \overline{AD} em dois segmentos cuja razão entre suas medidas é 2/3. Calcule as medidas dos segmentos determinados sobre o outro lado não paralelo, sabendo-se que $BC = 30 \, \mathrm{cm}$.

Exercício 9 a) Prove o Teorema da Bissetriz Interna.

b) Os lados de um triângulo ABC medem: AB = 10 cm, AC = 20 cm e BC = 27 cm. Calcule as medidas dos segmentos determinados sobre o lado oposto ao maior ângulo do triângulo, formados pela bissetriz do mesmo.

Exercício 10 Num triângulo ABC, seus lados medem: $AB = 4 \, cm$, $AC = 12 \, cm$ e $BC = 15 \, cm$. Pelo ponto M, tomado sobre o lado \overline{BC} , tal que $BM = 3 \, cm$, traçam-se as paralelas \overline{MD} e \overline{ME} , respectivamente aos lados \overline{AC} e \overline{AB} , com $D \in \overline{AB}$ e $E \in \overline{AC}$. Calcule o perímetro do paralelogramo MDAE.

Gabarito

- 7. FG = 4,5 cm e GH = 6 cm.
- 8. 12 cm e 18 cm.
- 9. b) $9 \, cm = 18 \, cm$.
- 10. 11, 2 cm.

4 Relações Métricas nos Triângulos

Exercício 11 Num triângulo retângulo, a hipotenusa mede 250 m. Os catetos são proporcionais aos números 3 e 4 e somam 350 m. Calcule as projeções desses catetos sobre a hipotenusa.

Exercício 12 Num triângulo retângulo, a soma das medidas de seus lados vale 48 cm e a soma dos quadrados dessas medidas vale 800 cm². Calcule os lados desse triângulo.

Exercício 13 As bases de um trapézio isósceles medem 2 cm e 8 cm. A altura vale 4 cm. Calcule o perímetro do trapézio.

Exercício 14 Num triângulo retângulo ABC, o ângulo B mede 30° e a hipotenusa BC = 10 cm. Calcule a distância do vértice A ao ponto M do lado \overline{BC} , sabendo-se que BM = 4 cm.

Gabarito

- 11. 160 m e 90 m.
- 12. $20 \, cm$, $16 \, cm = 12 \, cm$.
- 13. 20 m.
- 14. $\sqrt{31} \, cm$.

5 Circunferência

Exercício 15 Em uma circunferência de raio 10 cm, uma corda dista 6 cm do centro. Qual o comprimento da corda?

Exercício 16 Em uma circunferência, uma corda de 12 cm é paralela a uma tangente e bisseca o raio traçado pelo ponto de tangência. Qual o comprimento do raio?

Exercício 17 Na figura abaixo, cada uma das circunferências com centros A, B e C é tangente às outras duas. Se AB = 10, AC = 14 e BC = 18, calcule os raios das circunferências.

Exercício 18 Na figura abaixo, \overline{AC} e \overline{BD} são diâmetros da circunferência. Prove que \overline{CD} e \overline{AB} são congruentes. Além disso, mostre que $\overline{CD} \parallel \overline{AB}$.

Exercício 19 Na figura abaixo, P é o centro da circunferência e RQ = PS. Determine a medida dos arcos \widehat{RQ} , \widehat{RS} e \widehat{RSQ} .

Exercício 20 Um ângulo inscrito é formado por uma corda e um diâmetro. O arco compreendido entre os lados do ângulo é triplo do arco subentendido pela corda. Calcule o valor do ângulo.

Exercício 21 Um ângulo excêntrico externo intercepta dois arcos onde um é o triplo do outro. Sabendo-se que os outros dois arcos, não compreendidos entre os lados do ângulo, um tem 10° a mais que o menor dos dois primeiros e o outro 50° a menos que o maior, calcule o valor do ângulo excêntrico externo.

Exercício 22 Num quadrilátero inscrito num círculo de centro O, os seus vértices, consecutivos, são A, B, C e D. Sabe-se que: $\hat{C} = 60^{\circ}$ e $A\hat{B}D = 20^{\circ}$. Calcule o ângulo $A\hat{O}B$.

Exercício 23 Na figura abaixo, as retas \overrightarrow{PR} e \overrightarrow{QS} são tangentes e \overrightarrow{PQ} é um diâmetro. Sendo $\widehat{MQ}=120^\circ$ e $RQ=8\,cm$, determinar o raio da circunferência.

Gabarito

- 15. 16 cm.
- 16. $4\sqrt{3} \, cm$.
- 17. Raio da circunferência de centro B: 7; raio da circunferência de centro A: 3; Raio da circunferência de centro C: 11.

18.

19.
$$\widehat{RQ}=60^{\circ}, \ \widehat{RS}=120^{\circ} \ \mathrm{e} \ \widehat{RSQ}=300^{\circ}.$$

- $20.67^{\circ}30'$.
- $21. 50^{\circ}$.
- $22. 80^{\circ}.$
- 23. $2\sqrt{3} \, cm$.

6 Teoria

Exercício 24 Demonstre todos os teoremas deixados como exercício nas notas de aula.