Digital Signal Processing for Music

Part 13: Improving (Re-)Quantization Quality

Andrew Beck

Introduction

Quantization error properties are fixed, so there is no way of improving the quality

Or is there????

"Cheating" for Better Quality

Improving perceptual quality of errors due to:

- >> Quantization
 - >> Oversampling
 - >> Noise Shaping
- >> Re-Quantization / Word Length Reduction
 - >> Dither
 - >> Noise Shaping

Oversampling

- >> Recording at higher sample rates and downsampling
- >> Allows use of less steep anti-aliasing filters
- >> Also improves quantization error

Quantization error properties

- >> White noise (ie flat spectrum)
- >> Noise power sample rate independent

$$|Q(\mathrm{j}\omega)|^2 \sim rac{\Delta^2}{12\cdot\omega_\mathrm{S}}$$

Oversampling Process

Quantization Noise Spectrum for Oversampling Amount

SNR Gain from Oversampling

$$egin{align} |Q(\mathrm{j}\omega)|^2 &= rac{\Delta^2}{12 \cdot \omega_S^*} \ &= rac{\Delta^2}{12 \cdot L \cdot \omega_S} \ W_{\mathrm{Q,LP}}^* &= rac{\Delta^2}{12 \cdot L} \ &\Rightarrow \ SNR^* &= 6.02 \cdot w + 10 \log_{10}(L) + c_S \ \end{align*}$$

Oversampling Summary

$$SNR = 6.02 \cdot w + c_S + 10 \log_{10}(L)$$

Every doubling of f_S adds ~3dB SNR

8

Dither

- >>> Previous assumption: Quantization error is white noise (ie, rect)
 - >> No correlation between signal and quantization error
- >> Not true for:
 - >> Low signal level
 - >> Low signal frequency

Solution: Add noise before quantization (dither)

Dither Process

Dither Simple Example

Input signal: DC at $1.3 \cdot \Delta$

- >> Without dither:
 - \rightarrow Output value: Δ
 - >> Quantization error constant: $0.3 \cdot \Delta$
- >> With dither:
 - \rightarrow Output range: $-\Delta/2...\Delta/2$
 - Signal is most frequently quantized to $\Delta(p = 0.7)$, but sometimes to $2 \cdot \Delta(p = 0.3)$
 - \Rightarrow Average output value: $1.3 \cdot \Delta$
 - >> Quantization error varying between $0.3 \cdot \Delta$ and $0.7 \cdot \Delta$

Dither Properties

Dither with Rectangular PDF, $-\frac{\Delta}{2}\dots\frac{\Delta}{2}$, Not Quantized

$$egin{aligned} x = 0 \cdot \Delta & o xar{
ho} = 0, \ \sigma_R(x) & = \Delta \sqrt{(-0)^2 \cdot 1.0} & = 0.0\Delta \ x = 0.1 \cdot \Delta & o xar{
ho} = 0.1\Delta, \ \sigma_R(x) = \Delta \sqrt{(-0.1)^2 \cdot 0.9 + (0.9)^2 \cdot 0.1} & = 0.3\Delta \ x = 0.3 \cdot \Delta & o xar{
ho} = 0.3\Delta, \ \sigma_R(x) = \Delta \sqrt{(-0.3)^2 \cdot 0.7 + (0.7)^2 \cdot 0.3} & = 0.46\Delta \ x = 0.5 \cdot \Delta & o xar{
ho} = 0.5\Delta, \ \sigma_R(x) = \Delta \sqrt{(-0.5)^2 \cdot 0.5 + (0.5)^2 \cdot 0.5} & = 0.5\Delta \ x = 0.7 \cdot \Delta & o xar{
ho} = 0.7\Delta, \ \sigma_R(x) = \Delta \sqrt{(-0.7)^2 \cdot 0.3 + (0.3)^2 \cdot 0.7} & = 0.46\Delta \ x = 0.9 \cdot \Delta & o xar{
ho} = 0.9\Delta, \ \sigma_R(x) = \Delta \sqrt{(-0.9)^2 \cdot 0.1 + (0.1)^2 \cdot 0.9} & = 0.3\Delta \ x = 1 \cdot \Delta & o xar{
ho} = 0, \ \sigma_R(x) = 0 \ \end{cases}$$

Dither with Triangular PDF, $-\Delta \dots \Delta$, Not Quantized

$$egin{aligned} x &= 0 \cdot \Delta &
ightarrow x_{
m Q} = 0, \ \sigma_R(x) &= 0.5\Delta & \ x &= 0.1 \cdot \Delta &
ightarrow x_{
m Q} = 0.1\Delta, \ \sigma_R(x) &= 0.5\Delta & \ x &= 0.3 \cdot \Delta &
ightarrow x_{
m Q} = 0.3\Delta, \ \sigma_R(x) &= 0.5\Delta & \ x &= 0.5 \cdot \Delta &
ightarrow x_{
m Q} = 0.5\Delta, \ \sigma_R(x) &= 0.5\Delta & \ x &= 0.7 \cdot \Delta &
ightarrow x_{
m Q} = 0.7\Delta, \ \sigma_R(x) &= 0.5\Delta & \ x &= 0.9 \cdot \Delta &
ightarrow x_{
m Q} = 0.9\Delta, \ \sigma_R(x) &= 0.5\Delta & \ x &= 1 \cdot \Delta &
ightarrow x_{
m Q} = 0, \ \sigma_R(x) &= 0.5\Delta & \ \end{array}$$

Linearization and Noise Modulation

Linearization and Noise Modulation

Noise Properties

$$egin{aligned} d_{ ext{RECT}}(n) &= d(n) \ d_{ ext{TRI}}(n) &= d_{ ext{RECT},1}(n) + d_{ ext{RECT},2}(n) \ d_{ ext{HP}}(n) &= d(n) - d(n-1) \end{aligned}$$

Noise Properties

How Does the SNR Change by Adding Dither?

Noise power of d_{RECT} & d_{TRI}

$$W_{ ext{RECT}} = rac{\Delta^2}{12} \ W_{ ext{TRI}} = rac{\Delta^2}{6}$$

SNR of dithered full scale signal

$$SNR_{
m RECT} = SNR_{normal} - 3.01 \; [dB] \ SNR_{
m TRI} = SNR_{normal} - 4.77 \; [dB]$$

		Sine	Speech	Music
8-Bit	Trunc	→ →	▶ - ♦)	▶ - ♦)
	Rect	▶ - ♦)	▶ - ♦)	▶ - ♦)
	Tri	▶ - •)	→ →	→ →
4-Bit	Trunc	▶ - •	▶ - ♦	▶ - •
	Rect	▶ - ♦	▶ - ♦	▶ - •
	Tri	→ →	▶ - ♦	▶ - ♦
2-Bit	Trunc	▶ - •)	→ →	→ →
	Rect	→ →	▶ - ♦)	▶ - •
	Tri	▶ - •)	→ →	→ →

Z-Transform (Quick and Dirty)

Z

Time

$$X(z) \leftrightarrow x(n) \ X(z) \cdot z^{-k} \leftrightarrow x(n-k)$$

Transfer Function:

$$H(z)=rac{out}{in}=rac{Y(z)}{X(z)}$$

Spectrum:

$$H(\mathrm{j}\Omega)=H(zig|_{z=e^{\mathrm{j}\Omega}})$$

Noise Shaping

Idea

Filter quantization error, shape its frequency response

- >> Move power to high frequencies
- >> Less recognizable in lower frequencies

First Order Noise Shaping

$$egin{aligned} y(i) &= [x(i) - q(i-1)]_Q \ &= x(i) - q(i-1) + q(i) \end{aligned}$$

$$egin{aligned} y(i) &= x(i) - q(i-1) + q(i) \ Y(z) &= X(z) - z^{-1} \cdot Q(z) + Q(z) \ &= X(z) + \underbrace{\left(1 - z^{-1}
ight)}_{H_{\mathrm{Q}}(z)} \cdot Q(z) \end{aligned} \ \Rightarrow \ H_{\mathrm{Q}}(z) &= 1 - z^{-1} \ |H_{\mathrm{Q}}(\mathrm{j}\Omega)| = |1 - e^{-\mathrm{j}\Omega}| \ &= 2 \cdot \left| \sin\left(rac{\Omega}{2}
ight)
ight|$$

Second Order Noise Shaping

$$egin{aligned} y(i) &= [x(i) - 2 \cdot q(i-1) + q(i-2)]_Q \ &= x(i) - 2 \cdot q(i-1) + q(i-2) + q(i) \end{aligned}$$

$$egin{aligned} y(i) &= x(i) - 2 \cdot q(i-1) + q(i-2) + q(i) \ &Y(z) &= X(z) - 2 \cdot z^{-1} \cdot Q(z) + z^{-2} \cdot Q(z) + Q(z) \ &= X(z) + (1-z^{-1})^2 \cdot Q(z) \ &\Rightarrow \ &H_{\mathrm{Q}}(z) &= (1-z^{-1})^2 \end{aligned}$$

Without derivation: *n*th order noise shaping

$$egin{align} Y(z) &= X(z) + (1-z^{-1})^n \cdot Q(z) \ &\Rightarrow \ H_{\mathrm{Q}}(z) &= (1-z^{-1})^n \ \end{aligned}$$

Higher Order Noise Shaping

Arbitrary Noise Shaping Transfer Functions

Dither & Noise Shaping

Dither & Noise Shaping: System A

$$egin{aligned} y(i) &= [x(i) + d(n) - q(i-1)]_Q \ &= x(i) + d(n) - q(i-1) + q(i) \end{aligned}$$

$$Y(z) = X(z) - z^{-1} \cdot Q(z) + Q(z) + D(z)$$
 $= X(z) + (1 - z^{-1}) \cdot Q(z) + D(z)$

Dither & Noise Shaping: System B

$$egin{aligned} y(i) &= [x(i) + d(n) - q(i-1) - d(n-1)]_Q \ &= x(i) - q(i-1) + q(i) - d(n-1) + d(n) \end{aligned}$$

$$egin{align} Y(z) &= X(z) - z^{-1} \cdot Q(z) + Q(z) - z^{-1} \cdot D(z) + D(z) \ &= X(z) + (1-z^{-1}) \cdot (Q(z) + D(z)) \ \end{aligned}$$

Noise Shaping Audio Example

- **>>** 16 Bit:
- 8 Bit: 0:00 / 0:04 •
- 8 Bit Dither: 0:00 / 0:04
- 8 Bit Standard Noise Shaping:
- 8 Bit Powerful Noise Shaping:

o:00 / 0:04

Noise Shaping Spectrograms

Summary

>> Oversampling

- >> Reduces quantization error power in the audible band
- \rightarrow *Process*: oversampling \rightarrow filtering \rightarrow downsampling

>> Dither

- >> Reduces correlation of error and signal for low amplitude signals
- >> Increases the power of the quantization error slightly
- >> Process: Add triangular shaped low-level noise before word-length reduction

>> Noise Shaping

- >> Reduces the audibility of the quantization error by shifting it to high frequencies
- >> Works best at high sample rates
- >> Process: Feedback the quantization error

