

(i) Time Scaling

(ii) Time Shifting

(iii) Amplitude scaling

x . (t.)

using (1) 1 (1) : x.(+) = - P(+2)

2.(4)

- using it 1 (i) \$ 72 (= 1 p(t/3)
- using (ii) 1((ii) = xs(t) = 2 P(t-1)

$$x(t) = -p(t+2) + \frac{1}{2}p(t/3) + 2p(t-1)$$

$$x(t) = -p(t+2) + \frac{1}{2} p(t/2) + 2 p(t-1)$$

x3(t)

{ or labeling is not available }

1b)
$$p(t) \rightarrow b$$

$$t \in [-2,4]$$
0 otherwise

For an LTI system, if

$$x_1(t) \longrightarrow [n(t)] \longrightarrow y_1(t)$$
 $x_2(t) \longrightarrow [n(t)] \longrightarrow y_2(t)$

thun, $x_1(t) + x_2(t) \longrightarrow [n(t)] \longrightarrow y_1(t) + y_2(t)$
 $3p(t-2) \rightarrow D \longrightarrow 3\left(\cos^2\left((t-2)^2-5\right)+2(t-2)\right) -2 \le t-2 \le 4$
 $p(t+3) \longrightarrow D \longrightarrow \cos^2\left((t+3)^2-5\right)+2(t+3) \longrightarrow 5 \le t \le 6$
 $p(t+3) \longrightarrow D \longrightarrow \cos^2\left((t+3)^2-5\right)+2(t+3) \longrightarrow 5 \le t \le 6$
 $p(t+3) \longrightarrow D \longrightarrow \cos^2\left((t+3)^2-5\right)+2(t+3) \longrightarrow 5 \le t \le 6$
 $p(t+3) \longrightarrow D \longrightarrow \cos^2\left((t+3)^2-5\right)+2(t+3) \longrightarrow 5 \le t \le 6$
 $p(t+3) \longrightarrow D \longrightarrow \cos^2\left((t+3)^2-5\right)+2(t+3) \longrightarrow 5 \le t \le 6$
 $p(t+3) \longrightarrow D \longrightarrow \cos^2\left((t+3)^2-5\right)+2(t+3) \longrightarrow 5 \le t \le 6$
 $p(t+3) \longrightarrow D \longrightarrow \cos^2\left((t+3)^2-5\right)+2(t+3) \longrightarrow 5 \le t \le 6$
 $p(t+3) \longrightarrow D \longrightarrow \cos^2\left((t+3)^2-5\right)+2(t+3) \longrightarrow 5 \le t \le 6$
 $p(t+3) \longrightarrow D \longrightarrow \cos^2\left((t+3)^2-5\right)+2(t+3) \longrightarrow 5 \le t \le 6$
 $p(t+3) \longrightarrow D \longrightarrow \cos^2\left((t+3)^2-5\right)+2(t+3) \longrightarrow 6$
 $p(t+3) \longrightarrow D \longrightarrow 6$
 $p(t+3) \longrightarrow C \longrightarrow 6$
 $p(t+4) \longrightarrow 6$
 $p(t+$

Since we don't have enough information oregarding plt) & the system.

We can't say anything about the boundedness or causality of the system.

Ans-2.

2)

$$\mathcal{X}(t) = 10e^{\int (240\pi t)}$$

[W=240TT] nod (angular freq.) 1)

T = 217

2 tf = 2401T

T = 1 3

f = 120 Hz/ L) Fundamenta

) Fundamental

Time period

Expression

km harmonic = 10e (Kx240TTt)

1st harmonic = 10e j (24011+) expression

2nd harmonic = 10e j (480itt) expression

homosonia

1st harmonic freq. = 120HZ 2nd harmonic freq = 24042

	(2) (1)	14
	Motal energy.	
	18tal energy;	
	i lavo tot	
	AUT = 10 ej (240 Mt).	
	A A	
	Freigy = 1 (mull all	
	- O	
	$= \begin{cases} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{cases}$	
	-a -	
	[Energy Tot = '05]	
	The integral sliverges 25 energy is	00.
	0 0	
	- Bignal is not energy-limited.	4 #
	<u> </u>	I H
	Hotal Average Power:	45 J.
	Av. Power = lim 1 1 1/2 aut 1 2 dt .	10
	THOS T COTTO	11
	· · · · · · · · · · · · · · · · · · ·	- 1
	2000 j (24,1774) = (a.V.1) = 10.	
	77	
	= lim 1 1 1 100 dt	1
	-1/2	
	- (00 x 1 x (7) = 100W.	H.
	Av. Power = 100 W.	
		£.
. 1		