Semantic Parsing with Combinatory Categorial Grammars

Yoav Artzi, Nicholas FitzGerald and Luke Zettlemoyer University of Washington

ACL 2013 Tutorial Sofia, Bulgaria

Learning

- What kind of data/supervision we can use?
- What do we need to learn?

Supervised Data

show	me	flights	to	Boston	
$\overline{S/N}$		\overline{N}	$\overline{PP/NP}$	$\overline{}$ NP	
λf		$\lambda x.flight(x)$	$\lambda y.\lambda x.to(x,y)$	BOSTON	
			PP		
	λ		$\lambda x.to(x,B)$	$\lambda x.to(x, BOSTON)$	
			$\overline{\hspace{1cm}}Nackslash$	\overline{N}	
			$N \setminus N$ $\lambda f. \lambda x. f(x) \wedge to(x, BOSTON)$		
		\overline{N}			
	$\lambda x.flight(x) \wedge to(x,BOSTON)$				
\overline{S}					
$\lambda x.flight(x) \wedge to(x,BOSTON)$					

Supervised Data

Supervised Data

Supervised learning is done from pairs of sentences and logical forms

Show me flights to Boston

 $\lambda x.flight(x) \wedge to(x,BOSTON)$

I need a flight from baltimore to seattle

 $\lambda x.flight(x) \wedge from(x, BALTIMORE) \wedge to(x, SEATTLE)$

what ground transportation is available in san francisco

 $\lambda x.ground_transport(x) \land to_city(x, SF)$

Weak Supervision

- Logical form is latent
- "Labeling" requires less expertise
- Labels don't uniquely determine correct logical forms
- Learning requires executing logical forms within a system and evaluating the result

What is the largest state that borders Texas?

New Mexico

What is the largest state that borders Texas?

 $New\ Mexico$

$$argmax(\lambda x.state(x) \ \land border(x,TX), \lambda y.size(y))$$
 $argmax(\lambda x.river(x) \ \land in(x,TX), \lambda y.size(y))$

What is the largest state that borders Texas?

 $New\ Mexico$

What is the largest state that borders Texas?

New Mexico

Weak Supervision Learning from Demonstrations

at the chair, move forward three steps past the sofa

Weak Supervision Learning from Demonstrations

at the chair, move forward three steps past the sofa

Some examples from other domains:

- Sentences and labeled game states [Goldwasser and Roth 2011]
- Sentences and sets of physical objects [Matuszek et al. 2012]

Parsing

Learning

Modeling

- Structured perceptron
- A unified learning algorithm
- Supervised learning
- Weak supervision

Structured Perceptron

- Simple additive updates
 - Only requires efficient decoding (argmax)
 - Closely related to maxent and other feature rich models
 - Provably finds linear separator in finite updates, if one exists
- Challenge: learning with hidden variables

Structured Perceptron

```
Data: \{(x_i,y_i): i=1\dots n\}

For t=1\dots T: [iterate epochs]

For i=1\dots n: [iterate examples]

y^*\leftarrow \arg\max_y \langle \theta, \Phi(x_i,y) \rangle [predict]

If y^*\neq y_i: [check]

\theta\leftarrow\theta+\Phi(x_i,y_i)-\Phi(x_i,y^*) [update]
```

One Derivation of the Perceptron

Log-linear model:
$$p(y|x) = \frac{e^{w \cdot f(x,y)}}{\sum_{y'} e^{w \cdot f(x,y')}}$$

Step 1: Differentiate, to maximize data log-likelihood

$$update = \sum_{i} f(x_i, y_i) - E_{p(y|x_i)} f(x_i, y)$$

Step 2: Use online, stochastic gradient updates, for example i:

$$update_i = f(x_i, y_i) - E_{p(y|x_i)}f(x_i, y)$$

Step 3: Replace expectations with maxes (Viterbi approx.)

$$update_i = f(x_i, y_i) - f(x_i, y^*)$$
 where $y^* = \arg\max_y w \cdot f(x_i, y)$

The Perceptron with Hidden Variables

Log-linear model:
$$p(y|x) = \sum_h p(y,h|x)$$
 $p(y,h|x) = \frac{e^{w \cdot f(x,h,y)}}{\sum_{y',h'} e^{w \cdot f(x,h',y')}}$

Step I: Differentiate marginal, to maximize data log-likelihood

$$update = \sum_{i} E_{p(h|y_i,x_i)}[f(x_i,h,y_i)] - E_{p(y,h|x_i)}[f(x_i,h,y)]$$

Step 2: Use online, stochastic gradient updates, for example i:

$$update_i = E_{p(y_i,h|x_i)}[f(x_i,h,y_i)] - E_{p(y,h|x_i)}[f(x_i,h,y)]$$

Step 3: Replace expectations with maxes (Viterbi approx.)

$$update_i = f(x_i,h',y_i) - f(x_i,h^*,y^*)$$
 where $y^*,h^* = \arg\max_{y,h} w \cdot f(x_i,h,y)$ and $h' = \arg\max_h w \cdot f(x_i,h,y_i)$

Hidden Variable Perceptron

```
Data: \{(x_i, y_i) : i = 1 \dots n\}
For t = 1 ... T:
                                                                  [iterate epochs]
   For i = 1 \dots n:
                                                               [iterate examples]
           y^*, h^* \leftarrow \arg\max_{u,h} \langle \theta, \Phi(x_i, h, y) \rangle
                                                                           [predict]
           If y^* \neq y_i:
                                                                             [check]
               h' \leftarrow \arg\max_h \langle \theta, \Phi(x_i, h, y_i) | [predict hidden]
               \theta \leftarrow \theta + \Phi(x_i, h', y_i) - \Phi(x_i, h^*, y^*) [update]
```

Hidden Variable Perceptron

- No known convergence guarantees
 - Log-linear version is non-convex
- Simple and easy to implement
 - Works well with careful initialization
- Modifications for semantic parsing
 - Lots of different hidden information
 - Can add a margin constraint, do probabilistic version, etc.

Learning Choices

Validation Function

$$\mathcal{V}:\mathcal{Y} \to \{t,f\}$$

- Indicates correctness of a parse y
- Varying V allows for differing forms of supervision

Lexical Generation Procedure

$$GENLEX(x, \mathcal{V}; \Lambda, \theta)$$

- Given: sentence x validation function $\mathcal V$ lexicon Λ parameters θ
- Produce a overly general set of lexical entries

Initialize θ using Λ_0 , $\Lambda \leftarrow \Lambda_0$

For
$$t = 1 ... T, i = 1 ... n$$
:

Step 1: (Lexical generation)

a. Set
$$\lambda_G \leftarrow GENLEX(x_i, \mathcal{V}_i; \Lambda, \theta)$$
, $\lambda \leftarrow \Lambda \cup \lambda_G$

- b. Let Y be the k highest scoring parses from $GEN(x_i; \lambda)$
- c. Select lexical entries from the highest scoring valid parses:

$$\lambda_i \leftarrow \bigcup_{y \in MAXV_i(Y;\theta)} LEX(y)$$

d. Update lexicon: $\Lambda \leftarrow \Lambda \cup \lambda_i$

Step 2: (Update parameters)

Output: Parameters θ and lexicon Λ

Unification-based

 $GENLEX(x, z; \Lambda, \theta)$

I want a flight to Boston

 $\lambda x.flight(x) \wedge to(x,BOS)$

- I. Find highest scoring correct parse
- 2. Find splits that most increases score
- 3. Return new lexical entries

 $\begin{array}{c|c} \hline (S|NP)/NP \\ \lambda y.\lambda x.to(x,y) \end{array} \begin{array}{c|c} \hline NP \\ BOS \end{array} \\ \hline \\ I \text{ want a flight} & \text{to Boston} \\ \hline \\ S/(S|NP) \\ \lambda f.\lambda x.flight(x) \wedge f(x) & \lambda x.to(x,BOS) \\ \hline \\ \lambda x.flight(x) \wedge to(x,BOS) \\ \hline \\ \\ \lambda x.flight(x) \wedge to(x,BOS) \\ \hline \\ \end{array}$

to

Boston

Iteration 2