EMAP SUMMER COURSE

 4^{th} January $\sim 15^{th}$ February, 2023

GENERAL AND COMBINATORIAL TOPOLOGY

raphael.tinarrage@fgv.br
https://raphaeltinarrage.github.io/

Abstract. This course is intended for a 3^{rd} year graduate student with no background on topology. The present document is a collection of notes for each lesson.

Course webpage. Various information (schedule, homework) are gathered on https://raphaeltinarrage.github.io/EMApTopology.html.

Homeworks. Exercises with a vertical segment next to them are your homework. Here is the first one:

Exercise 0. Send me an email answering the following questions:

- Do you understand English well?
- Have you ever studied topology?
- Have you ever coded? In which language?
- Any remarks?

Last update: 16th January, 2023

Contents

I	General	topology	2
1	Topologic	al spaces	2
	1.1	Topologies	2
	1.2	Euclidean topology	6
	1.3	Construction of topologies	8
2	Separation	and connectedness	12
	2.1	Neighborhoods, interior, closure, boundary	12
	2.2	Separation	14
	2.3	Connectedness	15
3	Continuity	and homeomorphisms	17
	3.1	Continuous maps	17
	3.2	Homeomorphisms	19
	3.3	Invariants of homeomorphism classes	21
4	Homotopy	qequivalence	26
	4.1	Homotopies	26
	4.2	Invariants of homotopy classes	31
	4.3	Algebraic-homotopy invariants	33
B	ibliograph	ıy	37

Chapter I

General topology

1 TOPOLOGICAL SPACES

In this section, we will introduce the basic vocabulary of topology: topological spaces, open and closed sets. We will study examples of topologies on finite sets, as well as on \mathbb{R}^n . In order to build topologies, we will define the notion of generated topologies. This will allow us to build the Euclidean topology, and the product topology. We will also define the subspace and quotient topologies.

In order to prepare this section, I drew inspiration from [1]. We won't introduce some useful notions, such as neighborhoods, initial and final topologies, as well as basis of open sets. The reader may refer to [2] for an extensive presentation.

1.1 TOPOLOGIES

§1.1.1 OPEN SETS. Topological spaces are abstractions of the concept of 'shape' or 'geometric object'. We start by defining them via open sets.

Definition 1.1. A *topological space* is a pair (X, \mathcal{T}) where X is a set and \mathcal{T} is a collection of subsets of X such that:

- 1. $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$,
- 2. for every (potentially infinite) collection $(O_{\alpha})_{\alpha \in A} \subset \mathcal{T}$, we have $\bigcup_{\alpha \in A} O_{\alpha} \in \mathcal{T}$,
- 3. for every finite collection $(O_i)_{1 \le i \le n} \subset \mathcal{T}$, we have $\bigcap_{1 \le i \le n} O_i \in \mathcal{T}$.

The set \mathcal{T} is called a *topology* on X. In these notes, we will use the symbol $\mathcal{P}(X)$ to denote the powerset of X, that is, the set of subsets of X. It follows that a topology on X is an subset of $\mathcal{P}(X)$, i.e., $\mathcal{T} \subset \mathcal{P}(X)$.

The elements of \mathscr{T} are called the *open sets*. With this vocabulary, the previous definition can be reformulated as follows;

- 1. the empty set is an open set, the set *X* itself is an open set,
- 2. an infinite union of open sets is an open set,
- 3. a finite intersection of open sets is an open set.

In general, in a given topology, an infinite intersection of open sets may not be open. An example is given in Exercise 5. However, when *X*, is finite, this statement is true.

§1.1.2 CLOSED SETS. For every open set $O \in \mathcal{T}$, its complementary ${}^cO = \{x \in X \mid x \notin O\}$ is called a *closed set*. In other words, a subset $P \subset X$ is closed if and only if its complementary is open. As a direct consequence of Definition 1.1, one proves the following:

Proposition 1.2. We have:

- 1. the sets 0 and X are closed sets,
- 2. for every (potentially infinite) collection $(P_{\alpha})\alpha \in A$ of closed set, $\bigcap_{\alpha \in A} P_{\alpha}$ is a closed set,
- 3. for every finite collection $(P_i)_{1 \le i \le n}$ of closed sets, $\bigcup_{1 < i < n} P_i$ is a closed set.

Proof. Point 1. The set \emptyset is closed because ${}^c\emptyset = X$ is open, according to Point 1 of Definition 1.1. Same for X since ${}^cX = \emptyset$ is open.

Point 2. If $(P_{\alpha})_{\alpha \in A}$ is an infinite collection of closed set, then for every $\alpha \in A$, ${}^{c}P_{\alpha}$ is open. Now, we use the relation (known as De Morgan's law)

$$^{c}\left(\bigcap_{\alpha\in A}P_{\alpha}\right)=\bigcup_{\alpha\in A}{^{c}P_{\alpha}}.$$

This is a union of open sets, hence it is open by Point 2 of Definition 1.1. Hence $\bigcap_{\alpha \in A} P_{\alpha}$ is closed.

<u>Point 3.</u> Just as previously, if $(P_i)_{1 \le i \le n}$ is a finite collection of closed set, then each $i \in [1, n]$, cP_i is open. We have the relation

$${}^{c}\left(\bigcup_{1\leq i\leq n}P_{i}\right)=\bigcap_{1\leq i\leq n}{}^{c}P_{i}.$$

This is a *finite* intersection of open sets, hence it is open by Point 3 of Definition 1.1. Hence $\bigcup_{1 < i < n} P_i$ is closed.

Note that the converse of Proposition 1.2 is true: if \mathcal{T}' is a collection of sets satisfying 1, 2 and 3, then the collection of complementaries $\mathcal{T} = \{^c P \mid P \in \mathcal{T}'\}$ satisfies the axioms of Definition 1.1. Therefore, this proposition can serve as an alternative definition for topological spaces. We say that we define a topology via its closed sets.

Example 1.3. Let $X = \{0\}$ be a set with one element. There exists only one topology on X: $\mathcal{T} = \{\emptyset, \{0\}\}.$

Example 1.4. Let X be any set. The subset $\mathscr{T} = \{\emptyset, X\}$ is a topology on X, called the *trivial topology*. Likewise, the power set of X, denoted $\mathscr{P}(X)$, is a topology on X, called the *discrete topology*.

Example 1.5. Let $X = \{0,1\}$ be a set with two elements. There exists only four different topologies on X:

$$\mathcal{T}_1 = \{\emptyset, \{0, 1\}\}, \quad \mathcal{T}_2 = \{\emptyset, \{0\}, \{0, 1\}\}, \quad \mathcal{T}_3 = \{\emptyset, \{1\}, \{0, 1\}\}, \quad \mathcal{T}_4 = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}.$$

Example 1.6. Let $X = \{0, 1, 2\}$ be a set with three elements. The set $\mathcal{T} = \{\emptyset\}$ is not a topology on X because the whole set $X = \{1, 2, 3\}$ does not belong to \mathcal{T} . Likewise, the set

$$\mathcal{T} = \{\emptyset, \{0\}, \{1\}, \{0, 1, 2\}\}\$$

is not a topology on X because the finite union $\{0\} \cup \{1\} = \{0,1\}$ does not belong to \mathcal{T} .

Example 1.7. The set

$$\mathcal{T} = \{\emptyset, \mathbb{R}\} \cup \{[0, a] \mid a \ge 0\}$$

is not a topology on \mathbb{R} . Indeed, the following union of open sets is not an open set:

$$\bigcup_{a\geq 0} [0,a] = [0,+\infty).$$

§1.1.3 COMPARISON OF TOPOLOGIES. As illustrated in Example 1.4, any set X of cardinal greater than 1 admits several different topologies. We shall compare them as follows.

Definition 1.8. Consider two topologies \mathcal{T}_1 and \mathcal{T}_2 on X. If $\mathcal{T}_1 \subset \mathcal{T}_2$, we say that \mathcal{T}_1 is *coarser* than \mathcal{T}_2 , and that \mathcal{T}_2 is *finer* than \mathcal{T}_1 .

In other words, \mathcal{T}_2 is finer than \mathcal{T}_1 if it has 'more open sets'. The relation 'being coarser' is a partial ordering on the set of all topologies on X. Using this relation, we can represent the set of all topologies on X as lattice, as drawn below for the case of Example 1.5. It will be called the *lattice of topologies on* X. In these notes, when A and B are sets such as $A \subset B$, the map $A \hookrightarrow B$ will denote the inclusion map.

Note that the relation 'being coarser' admits a lowest element (that is, an element that is coarser than any other): the trivial topology. Similarly, it admits a greatest element: the discrete topology. In the language of partially ordered sets, we say that this lattice is *bounded*.

§1.1.4 INTERSECTION AND UNION OF TOPOLOGIES. We now wish to build new topologies, based on an arbitrary collection $\{\mathscr{T}_{\alpha}\}_{\alpha\in A}$ on X. The easiest construction is the intersection $\bigcap_{\alpha\in A}\mathscr{T}_{\alpha}$.

Proposition 1.9. An arbitrary intersection of topologies on X is a topology.

Proof. It follows directly from Definition 1.1.

The intersection topology $\bigcap_{\alpha \in A} \mathscr{T}_{\alpha}$ has the property that is the greatest topology included in all the \mathscr{T}_{α} . In other words, if \mathscr{T} is any topology on X such that $\mathscr{T} \subset \mathscr{T}_{a}$ for all $\alpha \in A$, then we must have $\mathscr{T} \subset \bigcap_{a \in A} \mathscr{T}_{a}$. In the language of partially ordered sets, we say that the lattice of topologies has the greatest lower bound property.

As a dual construction, one would be tempted to consider the union $\bigcup_{a \in A} \mathscr{T}_a$. However, it may not be a topology. One should instead consider the following notion.

Definition 1.10. Let $S \subset \mathcal{P}(X)$ be any subset. The *topology generated* by S is defined as the intersection of all the topologies on X that contain S. It is denoted $\mathcal{T}(S)$.

Using Proposition 1.9, we have that $\mathcal{T}(S)$ is a topology on X. Moreover, it is the smallest topology included in all the \mathcal{T}_{α} . That is to say, if \mathcal{T} is any topology on X such that $\mathcal{T} \supset \mathcal{T}_a$ for all $\alpha \in A$, then we must have $\mathcal{T} \supset \mathcal{T}(S)$. We say that the lattice of topologies has the least upper bound property. The following proposition gives an alternative description of the generated topology.

Proposition 1.11. For any $S \subset \mathcal{P}(X)$, the generated topology $\mathcal{T}(S)$ is the collection of arbitrary unions of finite intersections of element of S.

Proof. Let \mathscr{T}' denote the collection of arbitrary unions of finite intersections of element of S. As a direct consequence of Definition 1.1, one shows that \mathscr{T}' is a topology on X. Moreover, since the generated topology \mathscr{T} is a topology, it must contain \mathscr{T}' . But since \mathscr{T} is the smallest topology containing S, we deduce that $\mathscr{T}' = \mathscr{T}$.

Exercise 1 (Enumeration of topologies). Let $X = \{0, 1, 2\}$ be a set with three elements. How many different topologies does X admit?

Remark: Let t(n) be the number of different topologies on a set with n elements. One obtains directly the bound $2 \le t(n) \le 2^{2^n}$ for $n \ge 3$. The lower bounds comes from the fact that the trivial and discrete topologies are topologies, and the upper bound from the fact that a topology on X is an element of $\mathcal{P}(\mathcal{P}(X))$. A more involved bound can be found in [3]: $2^n \le t(n) \le 2^{n(n-1)}$.

Exercise 2. Let X be a finite set, and \mathscr{T} a topology on X such that all the singletons $\{x\}$, $x \in X$, are closed. Show that \mathscr{T} is the discrete topology.

Exercise 3 (Hausdorff separability). We say that a topological space (X, \mathcal{T}) is Hausdorff (or is a T_2 -space) if for any $x, y \in X$ such that $x \neq y$,, there exists two open sets $U, V \in \mathcal{T}$ such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$. Among the topologies on $X = \{0, 1\}$ described in Example 1.5, which ones are Hausdorff?

Exercise 4. Show that the following set is a topology on \mathbb{R} :

$$\mathscr{T} = \{\emptyset, \mathbb{R}\} \cup \{(-a, a) \mid a > 0\}.$$

Hint: Remind the least-upper-bound property of the real numbers.

Exercise 5 (Cofinite topology). Let \mathbb{Z} be the set of integers. Consider the *cofinite topology* \mathscr{T} on \mathbb{Z} , defined as follows: a subset $O \subset \mathbb{Z}$ is an open set if and only if $O = \emptyset$ or cO is finite.

- 1. Show that \mathcal{T} is a topology on \mathbb{Z} .
- 2. Exhibit an sequence of open sets $\{O_n\}_{n\in\mathbb{N}}\subset\mathcal{T}$ such that $\bigcap_{n\in\mathbb{N}}O_n$ is not open.

Remark: If the set *X* is finite, then the cofinite topology is the discrete topology.

Exercise 6 (Zariski topology). A subset $F \subset \mathbb{R}^n$ is a Zariski-closed set if it can be written as

$$F = \{x \in \mathbb{R}^n \mid \forall \alpha \in A, P_{\alpha}(x) = 0\}$$

where $(P_{\alpha})_{\alpha \in A}$ is a (potentially infinite) collection of multivariate polynomials on \mathbb{R}^n . Show that the collection of Zariski-closed sets forms the collection of closed sets of a topology on \mathbb{R}^n , called Zariski topology.

Remark: Actually, as a consequence of Hilbert's Nullstellensatz, any Zariski-closed set can be written as the set of common roots of a *finite* family of polynomials.

Exercise 7 (Fifth proof of the infinity of primes from [4]). For any $a, b \in \mathbb{Z}$, define

$$N_{a,b} = \{a + bn \mid n \in \mathbb{Z}\}.$$

Call a subset $O \subset \mathbb{Z}$ closed if either $O = \text{ or if to every } a \in Z$ there exists a b > 0 such that $N_{a,b} \subset O$. Let \mathscr{T} denote the collection of all open sets.

- 1. Show that \mathcal{T} is a topology on \mathbb{Z} .
- 2. Show that any nonempty open set is infinite, and that the $N_{a,b}$ are closed sets.
- 3. Let \mathbb{P} denotes the set of all prime numbers. Show that $\mathbb{Z} \setminus \{-1,1\} = \bigcup_{b \in \mathbb{P}} N_{0,b}$.
- 4. By contradiction, use 2. and 3. to deduce that \mathbb{P} is infinite.

1.2 EUCLIDEAN TOPOLOGY

Many topological spaces encountered in practice are subsets of the Euclidean spaces \mathbb{R}^n . On \mathbb{R}^n , we will mainly consider the *Euclidean topology*. In order to define this topology, we will use open balls. Remind that the Euclidean metric on \mathbb{R}^n is defined for all $x = (x_1, ..., x_n) \in \mathbb{R}^n$ as:

$$||x|| = \sqrt{x_1^2 + \dots + x_n^2}.$$

For $x \in \mathbb{R}^n$ and r > 0, the *open ball* of center x and radius r, denoted $\mathcal{B}(x,r)$, is defined as:

$$\mathscr{B}(x,r) = \{ y \in \mathbb{R}^n, ||x - y|| < r \}.$$

In \mathbb{R} :

Definition 1.12. The *Euclidean topology* on \mathbb{R}^n , denoted $\mathcal{T}_{\mathbb{R}^n}$, is the topology generated by the balls $\{B(x,t) \mid x \in \mathbb{R}^n, t > 0\}$.

According to the discussion of §1.1.3, the Euclidean topology is the smallest topology that contains all the open balls. We now give an alternative definition of it, often more convenient to identify open sets.

Proposition 1.13. A set A is open (for the Euclidean topology) if and only if for every $x \in A$, there exists a r > 0 such that $\mathcal{B}(x,r) \subset A$.

Proof. It will be convenient to use the following vocabulary: A is open around x if there exists r > 0 such that $\mathcal{B}(x,r) \subset A$. Note that the proposition states that A is open if and only if it is open around all of its points. Let us denote by $\mathcal{U}_{\mathbb{R}^n}$ the set of all subsets $A \subset \mathbb{R}^n$ that are open around all of their points, that is,

$$\mathscr{U}_{\mathbb{R}^n} = \{ A \subset \mathbb{R}^n \mid \forall x \in A, \ \exists r > 0, \ \mathscr{B}(x,r) \subset A \}.$$

In what follows, we will say that a subset $A \subset \mathbb{R}^n$ is $\mathcal{T}_{\mathbb{R}^n}$ -closed (resp. $\mathcal{U}_{\mathbb{R}^n}$ -closed) if it belongs to $\mathcal{T}_{\mathbb{R}^n}$ (resp. $\mathcal{U}_{\mathbb{R}^n}$). The proof consists in showing that $\mathcal{U}_{\mathbb{R}^n} \subset \mathcal{T}_{\mathbb{R}^n}$, and that $\mathcal{U}_{\mathbb{R}^n}$ is a topology that contains the open balls. Using the fact that $\mathcal{T}_{\mathbb{R}^n}$ is the smaller topology that contains the open balls, it follows that $\mathcal{T}_{\mathbb{R}^n} = \mathcal{U}_{\mathbb{R}^n}$.

First step: $\mathscr{U}_{\mathbb{R}^n} \subset \mathscr{T}_{\mathbb{R}^n}$. Let $O \in \mathscr{U}_{\mathbb{R}^n}$. For any $x \in O$, let $r_x > 0$ be such that $\mathscr{B}(x, r_x) \subset O$. We have that $O = \bigcup_{x \in O} \mathscr{B}(x, r_x)$. Moreover, by definition, this union of open balls belongs to $\mathscr{T}_{\mathbb{R}^n}$. Hence $O \in \mathscr{T}_{\mathbb{R}^n}$, and we deduce that $\mathscr{U}_{\mathbb{R}^n} \subset \mathscr{T}_{\mathbb{R}^n}$.

Second step: $\mathcal{U}_{\mathbb{R}^n}$ contains the open balls. Let $x \in \mathbb{R}^n$ and r > 0. Consider the ball $\mathcal{B}(x,r)$. In order to show that it is $\mathcal{U}_{\mathbb{R}^n}$ -open, we must show that it is open around all of its points. Consider $y \in \mathcal{B}(x,r)$, and define r' = r - ||x - y||. We will show that $\mathcal{B}(y,r') \subset \mathcal{B}(x,r)$. To prove so, let $z \in \mathcal{B}(y,r')$. We apply the triangular inequality for the Euclidean norm:

$$||z-x|| \le ||z-y|| + ||y-x||$$

 $\le r' + ||y-x|| = r.$

We deduce that $\mathscr{B}(y,r') \subset \mathscr{B}(x,r)$, hence that $\mathscr{B}(x,r)$ belongs to $\mathscr{U}_{\mathbb{R}^n}$.

Third step: $\mathcal{U}_{\mathbb{R}^n}$ is a topology. We shall verify the three axioms of Definition 1.1.

- First axiom. Since \emptyset contains no point, it is open around all of its points, hence belongs to $\mathcal{U}_{\mathbb{R}^n}$. The set \mathbb{R}^n also is open, since for every $x \in \mathbb{R}^n$, the ball $\mathcal{B}(x,1)$ is a subset of \mathbb{R}^n .
- Second axiom. Let $\{O_{\alpha}\}_{{\alpha}\in A}\subset \mathscr{T}_{\mathbb{R}^n}$ be a infinite collection of open sets, and define $O=\bigcup_{{\alpha}\in A}O_{\alpha}$. Let $x\in O$. There exists an $\alpha\in A$ such that $x\in O_{\alpha}$. Since O_{α} is open, it is open

around x, i.e., there exists r > 0 such that $\mathcal{B}(x,r) \subset O_{\alpha}$. We deduce that $\mathcal{B}(x,r) \subset O$, and that O is open around x. Since this it true for any $x \in O$, we proved that O is open.

• Third axiom. Consider a finite collection $\{O_i\}_{1 \leq i \leq n} \subset \mathcal{T}_{\mathbb{R}^n}$, and define $O = \bigcap_{1 \leq i \leq n} O_i$. Let $x \in O$. For every $i \in [\![1,n]\!]$, we have $x \in O_i$. Since O_i is open, it is open around x, i.e., there exists $r_i > 0$ such that $\mathcal{B}(x, r_i) \subset O_i$. Define $r_{\min} = \min\{r_1, ...r_n\}$. For every $i \in [\![1,n]\!]$, we have $\mathcal{B}(x, r_{\min}) \subset O_i$. We deduce that $\mathcal{B}(x, r_{\min}) \subset O$, and that O is open around x. Since this it true for any $x \in O$, we have proven that O is open.

Example 1.14. The interval $I = (0, +\infty)$ is an open set for the Euclidean topology on \mathbb{R} . Indeed, for any $x \in I$, the open ball $\mathcal{B}(x,x)$ is included in I.

Example 1.15. The interval [0,1] is a closed set for the Euclidean topology on \mathbb{R} . Indeed, its complement ${}^c[0,1]=(-\infty,0)\cup(1,+\infty)$ is open, since it is the union of two open sets.

Example 1.16. Let $\mathscr{C} = \{x = (x_1, ..., x_n) \in \mathbb{R}^n \mid ||x||_{\infty} < 1\}$ be the filled open unit cube of \mathbb{R}^n , where $||x||_{\infty} = \max(|x_1|, ..., |x_n|)$ is the sup norm. Let $x \in \mathscr{C}$, define $r = 1 - ||x||_{\infty}$, and consider the open ball $\mathscr{B}(x, r)$. For any $y \in \mathscr{B}(x, r)$, we have

$$||y||_{\infty} = \max(|y_1|,...,|y_n|) < \max(|x_1|+r,...,|x_n|+r) \le \max(|x_1|,...,|x_n|) + r \le 1.$$

Therefore, $||y||_{\infty} < 1$, hence $\mathscr{B}(x,r) \subset \mathscr{C}$. This being true for any $x \in \mathscr{C}$, we deduce that \mathscr{C} is open for the Euclidean topology.

Exercise 8. Consider the real line \mathbb{R} endowed with the Euclidean topology. Are the following sets open? Are they closed?

- 1. the interval [0,1),
- 2. the intervals $[x, +\infty)$, $x \in \mathbb{R}$,
- 3. the singletons $\{x\}, x \in \mathbb{R}$,
- 4. the rational numbers \mathbb{Q} .

Exercise 9 (Sorgenfrey line). Let \mathscr{U} be the topology on \mathbb{R} generated by the the collection

$$\{[a,b) \mid a,b \in \mathbb{R}, a \leq b\}.$$

- 1. Show that \mathcal{U} is finer than the Euclidean topology.
- 2. Show that for any $x \in \mathbb{R}$, the set $[x, +\infty)$ is open and closed.

1.3 Construction of topologies

§1.3.1 SUBSPACE TOPOLOGY

Definition 1.17. Let (X, \mathcal{T}) be a topological space, and $Y \subset X$ a subset. We define the *subspace topology on Y* as the following set:

$$\mathscr{T}_{|Y} = \{ O \cap Y \mid O \in \mathscr{T} \}.$$

Proposition 1.18. *The set* $\mathcal{T}_{|Y}$ *is a topology on* Y.

Proof. We have to check the three axioms of a topological space, as in Definition 1.1.

<u>First axiom.</u> The set \emptyset is clearly open for $\mathscr{T}_{|Y}$ because it can be written as $\emptyset \cap Y$. The set Y also is open for $\mathscr{T}_{|Y}$ because it can be written $X \cap Y$, and X is open for \mathscr{T} .

Second axiom. Let $\{O_{\alpha}\}_{\alpha\in A}\subset \mathscr{T}_{|Y}$ be a infinite collection of open sets, and define $O=\bigcup_{\alpha\in A}O_{\alpha}$. By definition of $\mathscr{T}_{|Y}$, for every $\alpha\in A$, there exists O'_{α} such that $O_{\alpha}=O'_{\alpha}\cap Y$. Define $O'=\bigcup_{\alpha\in A}O'_{\alpha}$. It is an open set for \mathscr{T} . We have

$$O = \bigcup_{lpha \in A} O_lpha = \bigcup_{lpha \in A} O_lpha' \cap Y = \left(\bigcup_{lpha \in A} O_lpha'\right) \cap Y = O' \cap Y.$$

Hence $O \in \mathscr{T}_{|Y}$.

Third axiom. Consider a finite collection $\{O_i\}_{1\leq i\leq n}\subset \mathscr{T}_{\mathbb{R}^n}$, and define $O=\bigcap_{1\leq i\leq n}O_i$. Just as before, for every $i\in [\![1,n]\!]$, there exists O_i' such that $O_i=O_i'\cap Y$. Define $O'=\bigcup_{1\leq i\leq n}O_i'$. It is an open set for \mathscr{T} . We have

$$O = \bigcap_{1 \leq i \leq n} O_{\alpha} = \bigcap_{1 \leq i \leq n} O_{\alpha}' \cap Y = \left(\bigcap_{1 \leq i \leq n} O_{\alpha}'\right) \cap Y = O' \cap Y.$$

Hence $O \in \mathcal{T}_{|Y}$.

Thanks to the subspace topology, any subset of \mathbb{R}^n inherits a particular topology. Among the subsets of \mathbb{R}^n that we will consider, let us list:

- the unit sphere $\mathbb{S}^{n-1} = \{ x \in \mathbb{R}^n \mid ||x|| = 1 \},$
- the unit cube $\mathscr{C}_{n-1} = \{x \in \mathbb{R}^n \mid ||x||_{\infty} = 1\}$ where $||x||_{\infty} = \max(|x_1|, ..., |x_n|)$,
- the open balls $\mathcal{B}(x,r) = \{y \in \mathbb{R}^n \mid ||x-y|| < r\}$ for $x \in \mathbb{R}^n$ and r > 0,
- the closed balls $\overline{\mathscr{B}}(x,r) = \{y \in \mathbb{R}^n \mid ||x-y|| \le r\}$ for $x \in \mathbb{R}^n$ and $r \ge 0$,
- the standard simplex

$$\Delta_{n-1} = \{(x_1, ..., x_n) \in \mathbb{R}^n \mid x_1, ..., x_n \ge 0, x_1 + ... + x_n = 1\}.$$

Exercise 10. Consider the space \mathbb{R}^n endowed with the Euclidean topology, and its unit sphere \mathbb{S}^{n-1} endowed with the subspace topology. Define the upper hemisphere $\mathbb{S}^{n-1}_+ = \{x \in \mathbb{R}^n \mid ||x|| = 1, x_1 > 0\}$. Show that \mathbb{S}^{n-1}_+ in open in \mathbb{S}^{n-1} , but not in \mathbb{R}^n .

Exercise 11 (Topologist's sine curve). Consider the plane \mathbb{R}^2 endowed with the Euclidean topology. Define the set

$$X = \{(x, \sin(1/x) \mid x \in (0, \pi]\} \cup \{(0, 0)\}\$$

and endow it with the subspace topology. Show that the singleton $\{0\}$ is closed and not open.

Exercise 12 (Cantor set). Consider the Euclidean line \mathbb{R} . Let $C_0 = [0, 1]$, $C_1 = [0, 1/3] \cup [2/3, 1]$, $C_2 = [0, 1/9] \cup [2/9, 1/3] \cup [2/3, 7/9] \cup [8/9, 1]$, and in general, let C_{n+1} be the union of the 2n+1 closed intervals, each of length $(1/3)^{n+1}$, obtained by removing the open middle thirds of the 2^n closed intervals of C_n . We define

$$\mathscr{C}=\bigcap_{n\geq 0}C_n.$$

- 1. Show that \mathscr{C} is a nonempty closed subset of \mathbb{R} .
- 2. Show that for all $x \in \mathcal{C}$, the singleton $\{x\}$ is open for the subspace topology on \mathcal{C} .

§1.3.2 (FINITE) PRODUCT TOPOLOGY

Definition 1.19. Let $((X_{\alpha}, \mathcal{T}_{\alpha}))_{\alpha \in A}$ be a collection of topological spaces. We denote by $\prod_{\alpha \in A} \mathcal{T}_{\alpha}$ the topology generated by the sets $\prod_{\alpha \in A} O_{\alpha}$ where $O_{\alpha} \in \mathcal{T}_{\alpha}$ for all $\alpha \in A$. If A is finite, it is called the *product topology*, and when it is infinite, it is called the *box topology*.

Remark 1.20. In the context where A is infinite, the term *product topology* is reserved for another topology, that we will study in more details in the section about functional topology.

Exercise 13. Let \mathbb{R} be endowed with the Euclidean topology $\mathscr{T}(\mathbb{R})$. Show that the product topology on $\mathbb{R} \times \cdots \times \mathbb{R}$ is equal to the Euclidean topology $\mathscr{T}(\mathbb{R}^n)$ on \mathbb{R}^n .

Exercise 14. Let (X, \mathcal{T}) , (Y, \mathcal{U}) be two topological spaces. Show that if A is a closed set of X and B a closed set of Y, then $A \times B$ is a closed set of the product topology.

Exercise 15. Let (X, \mathcal{T}) be a topological space, and consider the product topology on $X \times X$. Show that (X, \mathcal{T}) is Hausdorff (in the sense of Exercise 3) if and only if the diagonal $\Delta = \{(x,x) \mid x \in X\}$ is closed in $X \times X$.

§1.3.3 QUOTIENT TOPOLOGY If X is any set, we remind the reader that an *equivalence relation* on X is a binary relation, denoted \mathcal{R} , which satisfies:

(reflexivity) $\forall x \in X, x \Re x$,

(symmetry) $\forall x, y \in X, x \Re y \iff y \Re x$,

(transitivity) $\forall x, y, z \in X$, $(x\mathcal{R}y \text{ and } y\mathcal{R}z) \implies x\mathcal{R}z$.

For any $x \in X$, we define its equivalence class as $\mathcal{O}_x = \{y \in X \mid x \mathcal{R}y\}$. Using the fact that \mathcal{R} is an equivalence relation, we deduce the following fact: $x \mathcal{R}y \iff \mathcal{O}_x = \mathcal{O}_y$. As a consequence, the set of equivalence classes form a partition of X. It is denoted X/\mathcal{R} , and is called the *quotient set*. We denote the *projection map* as

$$\pi\colon X \longrightarrow X/\mathscr{R}$$
$$x \longmapsto \mathscr{O}_x$$

Definition 1.21. Let (X, \mathcal{T}) be topological space and \mathcal{R} an equivalence relation on X. The *quotient topology* on X/\mathcal{R} is defined as the topology whose open sets are the subsets $O \subset X/\mathcal{R}$ such that $\pi^{-1}(O) \in \mathcal{T}$.

Remark 1.22. It is also called the *final topology* with respect to the map π .

The quotient topology gives a handy way to build new topological spaces. While quotienting the space, we 'merge', or 'identify' points that are in the same equivalence class.

Example 1.23 (Circle). Let \mathbb{R} be the real line endowed with the Euclidean topology, and consider the relation $x\mathcal{R}y \iff x-y \in \mathbb{Z}$. The equivalence classes are the sets $\mathcal{O}_x = \{x+n \mid n \in \mathbb{Z}\}$, and the quotient space \mathbb{R}/\mathcal{R} can be identified with the interval [0,1). While quotienting \mathbb{R} , we 'roll it up on itself'. The quotient topology is the one of a circle. In order to give rigorous sense to this last sentence, we will have to wait until Section 3.

Example 1.24 (Torii). More generally, the equivalence relation $x\Re y \iff \forall i \leq n, \ x_i - y_i \in \mathbb{Z}$ on the Euclidean space \mathbb{R}^n give rise to the *torus* of dimension n. It is denoted \mathbb{T}^n .

Example 1.25 (Möbius strip). Let $[-1,1] \times [-1,1]$ be the square of \mathbb{R}^2 , endowed with the subspace topology. Consider the equivalence relation generated by $(x,y)\mathscr{R}(x',y') \iff |x| = 1$, y = -x, x' = -y'. The quotient topological space is called the *Möbius strip*. The construction consists in gluing the opposite sides of a square, reversing the direction.

Example 1.26 (Projective spaces). Let \mathbb{S}^{n-1} be the unit sphere of \mathbb{R}^n , endowed with the subspace topology. The *antipodal relation* $x\mathcal{R}y \iff x = -y$ is an equivalence relation on \mathbb{S}^{n-1} . The quotient topological space is called the *real projective space* of dimension n-1, and is denoted $P^{n-1}\mathbb{R}$. The first projective space $P^1\mathbb{R}$ actually is a circle (make a drawing).

Quotient topology also allows to give a rigorous sense to the idea of 'gluing'. If (X, \mathcal{T}) and (Y, \mathcal{U}) are two topological spaces, $A \subset X$ a subset and $f: A \to Y$ a map, the *gluing of A onto B along f* is the quotient of the disjoint union $X \sqcup Y$ by the equivalence relation generated by $x \mathcal{R} f(x)$ for all $x \in A$. It is denoted $(X \sqcup Y)/f$.

Example 1.27 (Spheres are gluing of disks). Consider two copies $\overline{\mathscr{B}}_1, \overline{\mathscr{B}}_2$ of the unit closed ball $\overline{\mathscr{B}}(0,1)$ of \mathbb{R}^n . Let $\partial \overline{\mathscr{B}}_1$ denote the boundary of $\overline{\mathscr{B}}_1$, that is, the sphere. Let $f: \partial \overline{\mathscr{B}}_1 \to \overline{\mathscr{B}}_2$ be the inclusion map. Then the gluing $(\overline{\mathscr{B}}_1 \sqcup \overline{\mathscr{B}}_2)/f$ is the sphere \mathbb{S}^n .

Exercise 16 (Double-origin interval). Consider the topological space $X = [-1,1] \times \{0,1\}$, endowed with the subspace topology of \mathbb{R}^2 . Let \mathscr{R} be the relation on X defined as $(t,a)\mathscr{R}(u,b) \iff (t=u \text{ and } t \neq 0)$ or (t=u and a=b).

- 1. Show that \mathcal{R} is an equivalence relation, and describe its equivalence classes.
- 2. Show that the quotient topology on X/\mathcal{R} is not Hausdorff (in the sense of Exercise 3).

2 SEPARATION AND CONNECTEDNESS

In this section, we will continue introducing the basic vocabulary of topological spaces. We will first define the interior, the closure and the boundary of a set. We will then introduce the notion of Hausdorff separability, and finally of connectedness.

2.1 NEIGHBORHOODS, INTERIOR, CLOSURE, BOUNDARY

§2.1.1 NEIGHBORHOODS. In what follows, (X, \mathcal{T}) denotes a topological space.

Definition 2.1. Let $x \in X$ be a point. We say that a subset $A \subset X$ is a *neighborhood* of x if A contains an open set that contains x, that is, if $\exists O \in \mathcal{T}$ such that $O \subset A$ and $x \in O$.

In some textbooks, the set of all neighborhoods of x is denoted $\mathcal{N}(x)$, although we will not use this notation in these notes. Note that an open set is a neighborhood of all of its points. Conversely, a subset A that is a neighborhood of all of its points is open. Indeed, for each point $x \in A$, we can consider an open set O_x that contains x, and write $A = \bigcup_{x \in A} O_x$, which is open since it is an union of open sets. However, in general, a neighborhood does not have to be open.

In the case of the Euclidean topology, and as a direct consequence of Proposition 1.13, we get the following characterization:

Proposition 2.2. Let $(\mathbb{R}^n, \mathcal{T}_{\mathbb{R}^n})$ be the Euclidean space, $A \subset \mathbb{R}^n$ a subset and $x \in A$ a point. The set A is a neighborhood of x if and only if there exists a r > 0 such that $\mathcal{B}(x,r) \subset A$.

Example 2.3. Let \mathbb{R} be the Euclidean line. The set A = [-1, 1) is a neighborhood of 0, since it contains the open set (-1, 1). However, it is not a neighborhood of -1, since it does not contain any open ball of the form (-1 - r, -1 + r).

§2.1.2 Interior, closure, boundary.

Definition 2.4. Let $A \subset X$ be any subset. We define

- its interior \mathring{A} , as the set of points for which A is a neighborhood,
- its closure \overline{A} , as the set of points for which every neighborhood meets A,
- its boundary as $\partial A = \overline{A} \setminus \mathring{A}$.

Lemma 2.5. For any $A \subset X$, we have ${}^{c}(\mathring{A}) = \overline{{}^{c}A}$ and ${}^{c}(\overline{A}) = \widehat{{}^{c}A}$.

Proof. We shall only prove the first equality, since the second one is obtained by taking the complementary of A. By definition, $\overline{{}^cA}$ is the set of points for which every neighborhood meets cA , that is, the set of points for which no neighborhood is contained in A. Consequently, ${}^c(\overline{{}^cA})$ is the set of points for which there exists a neighborhood contained in A. In other words, ${}^c(\overline{{}^cA}) = \mathring{A}$, as wanted.

Proposition 2.6. *Let* $A \subset X$ *be any subset. We have:*

- Å is the union of open sets contained in A. As a consequence, it is the largest open set contained in A.
- \overline{A} is the intersection of closed sets containing A. As a consequence, it is the smallest closed set containing A.

Proof. The first point is a direct consequence of the definition of the interior. The second point is a consequence of the first point and Lemma 2.5. \Box

As useful consequences of the previous proposition, we have that a set $A \subset X$ is open of and only if $\mathring{A} = A$, and A is closed if and only if $\overline{A} = A$.

Example 2.7. Let \mathbb{R} be the Euclidean line, and A = [-1, 1). We have $\mathring{A} = (-1, 1), \overline{A} = [-1, 1]$ and $\partial A = \{-1,1\}$. In general, in the Euclidean space \mathbb{R}^n , the interior of the closed ball is the open ball, and the closure of the open ball is the closed ball. Their boundary is the sphere.

Proposition 2.8. *Let* $A, B \subset X$ *. We have:*

- $\widehat{A \cap B} = \mathring{A} \cap \mathring{B}$ and $\overline{A \cup B} = \overline{A} \cup \overline{B}$,
- $\widehat{A \cup B} \supset \mathring{A} \cup \mathring{B}$ and $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$.
- $\partial(A \cup B) \subset \partial A \cup \partial B$.

Exercise 17. On the Euclidean line \mathbb{R} , give examples of sets A and B for which $\widehat{A \cup B} \neq A$ $\mathring{A} \cup \mathring{B}$, and for which $\overline{A \cap B} \neq \overline{A} \cap \overline{B}$.

Exercise 18 (Kuratowski axioms). Given a set X and a map $c: \mathcal{P}(X) \to \mathcal{P}(X)$, consider the properties

(K1)
$$c(\emptyset) = \emptyset$$

(K2)
$$\forall A \subset X, A \subset c(A)$$

(K3)
$$\forall A \subset X, \ c(c(A)) = c(A)$$

(K3)
$$\forall A \subset X, c(c(A)) = c(A)$$
 (K4) $\forall A, B \subset X, c(A \cup B) = c(A) \cup c(B)$

Such a map c is called a closure operator.

- 1. Given a topological space (X, \mathcal{T}) , show that the map $A \mapsto \overline{A}$ is a closure operator on X.
- $X \mid c(A) = A$ forms the closed set of a topology on X.
- 3. Show that the previous constructions are inverse to one another.

Exercise 19 (Other formulation of Kuratowski axioms, [5, Exercise 5]). Show that the axioms (K1), (K2), (K3) and (K4) of Exercise 18 are equivalent to

(K*)
$$\forall A, B \subset X, A \cup c(A) \cup c(c(B)) = c(A \cup B) \setminus c(\emptyset).$$

2.2 **SEPARATION**

The notion of separation captures the idea that any two points can be separated by nonintersecting open sets. Several variations of this notion exist: T_0 -spaces, T_1 -spaces, T_2 -spaces, regular spaces, normal spaces, ... Here, we will only introduce one of them.

Definition 2.9. We say that a topological space (X, \mathcal{T}) is a *Hausdorff space* (or is a T_2 space) if for any $x, y \in X$ such that $x \neq y$, there exists neighborhoods U, V of x and y such that $U \cap V = \emptyset$.

Example 2.10. The Euclidean space $(\mathbb{R}^n, \mathscr{T}_{\mathbb{R}^n})$ is Hausdorff. To prove, let $x, y \in X$ be such that $x \neq y$. Let $r = \|x - y\|$ be their distance. The balls $\mathscr{B}\left(x, \frac{r}{2}\right)$ and $\mathscr{B}\left(y, \frac{r}{2}\right)$ are neighborhoods of x and y, and we have $\mathscr{B}\left(x, \frac{r}{2}\right) \cap \mathscr{B}\left(y, \frac{r}{2}\right) = \emptyset$.

Proposition 2.11. *If* (X, \mathcal{T}) *is a Hausdorff space, then all the singletons* $\{x\}$ *,* $x \in X$ *, are closed.*

Proof. Let us show that the complement ${}^c\{x\} = X \setminus \{x\}$ is open. We will show that it is a neighborhood of all of its points. Since X is Hausdorff, for any $y \in X$ such that $y \neq x$, there exists an neighborhood of y that does not contain x. Hence $X \setminus \{x\}$ is a neighborhood of y. \square

Exercise 20 (Separability of Zariski topology). Show that the Zariski topology on \mathbb{R}^n is not Hausdorff (see Exercise 6).

2.3 CONNECTEDNESS

§2.3.1 CONNECTED SPACES In a topological space, a set that is both open and closed will be called a *clopen* set.

Definition 2.12. Let (X, \mathcal{T}) be a topological space. We say that X is *connected* if the only clopen sets are \emptyset and X.

The following proposition shows that a connected topological space cannot be divided into two non-empty disjoint open sets, neither two non-empty disjoint closed sets.

Proposition 2.13. The following assertions are equivalent:

- (X,\mathcal{T}) is connected,
- for every open sets O, O' such that $O \cap O' = \emptyset$ and $X = O \cup O'$, we have $O = \emptyset$ or $O' = \emptyset$,
- for every closed sets P, P' such that $P \cap P' = \emptyset$ and $X = P \cup P'$, we have $P = \emptyset$ or $P' = \emptyset$.

Proof. Let us suppose that X is not connected, and let C be a non-trivial clopen set. Then cC also is clopen, and $C \cup {}^cC$ gives the desired partition.

If $A \subset X$ is a subset, we say that A is *connected* if the topological space $(A, \mathcal{T}_{|A})$ for the subspace topology is connected (see §1.3.1).

Example 2.14. The subset $X = [0,1] \cup [2,3]$ of \mathbb{R} , endowed with the subspace topology, is not connected. Indeed, [0,1] and [2,3] are closed disjoint non-empty subsets that cover X.

Proposition 2.15. Consider \mathbb{R} for the Euclidean topology. For all $a, b \in \mathbb{R}$ such that $a \leq b$, the intervals (a,b), [a,b), (a,b] and [a,b] are connected.

Proof. By contradiction, let us suppose that we can write $(a,b) = O \cup O'$ with O,O' two nonempty disjoint open sets. Let $x \in O$ and $x' \in O'$. Without loss of generality, suppose that x < x'. Let s be the supremum of $\{t \in (x,x') \mid (x,t) \subset O\}$. Since O' is open, we have s < x'.

By definition of the supremum, O does not contain any open ball around s, hence O does not contain s, since it is open. Similarly, O' does not contain any open ball around s, hence O' does not contain s. This is absurd.

Proposition 2.16. *Let* (X, \mathcal{T}) *be a topological space, and* $A \subset X$ *a connected subset. Then its closure* \overline{A} *is connected.*

Proof. Let C be a clopen set of \overline{A} . By definition of the subspace topology, $C \cap A$ is a clopen set for A. Since A is connected, $C \cap A$ must be \emptyset of A. Without loss of generality, we can suppose that $C \cap A = A$ (otherwise, we replace C with cC). The relation $C \cap A = A$ is equivalent to $A \subset C$. Taking the closure, we get $\overline{A} \subset \overline{C} = C$. Moreover, $\overline{C} = C$ since C is closed. Hence $\overline{A} = C$, proving the proposition.

In the next section, we will introduce the notion of continuous function, and that of *path-connectedness*. This will be a handy tool to prove result about connectedness. In particular, we will show that the balls of \mathbb{R}^n are connected, and more generally, that the convex subsets of \mathbb{R}^n is connected.

Exercise 21. Among the topologies on $X = \{0,1\}$ (see Example 1.5), which ones yield connected spaces?

§2.3.2 CONNECTED COMPONENTS If a space is not connected, we can consider its connected components.

Definition 2.17. Let (X, \mathcal{T}) be a topological space and $x \in X$. The *connected component* of x, denoted $\mathcal{C}(x)$, is defined as the union of all connected subsets $U \subset X$ that contain x.

Proposition 2.18. A connected component is connected.

Proof. By contradiction, suppose that $\mathscr{C}(x)$ is not connected, and let $\mathscr{C}(x) = O \cup O'$ be a partition in open sets. Without loss of generality, $x \in O$. Let A be a connected subset of X that contain x. We have a partition $A = (O \cap A) \cup (O' \cap A)$ in open sets, hence A by connectedness, we must have $A \subset O$ or $A \subset O'$. Since $x \in A$, we deduce $A \subset O$. This being true for any connected subset A containing x, we have $\mathscr{C}(x) = O$, and $O' = \emptyset$. We deduce the result. \square

In other words, the connected component $\mathcal{C}(x)$ is the largest connected subspace that contains x. As a consequence of Proposition 2.16, every connected component is closed. In general, they may not be open, as shown in Exercise 22. However, this is true in the case of the Euclidean space, and its open subspaces.

Given two points $x, y \in X$, we have $y \in \mathscr{C}(x) \iff \mathscr{C}(x) = \mathscr{C}(y)$. Consequently, the set of connected components of X forms a partition of X.

Proposition 2.19. Let $(\mathbb{R}^n, \mathcal{T})$ be the Euclidean space. Let $O \subset \mathbb{R}^n$ be an open set, and consider the topological space $(O, \mathcal{T}_{|O})$ endowed with the subspace topology. Consider a point $x \in O$, and $\mathcal{C}(x)$ its connected component in $(O, \mathcal{T}_{|O})$. Then $\mathcal{C}(x)$ is an open set of $(\mathbb{R}^n, \mathcal{T})$, hence also of $(O, \mathcal{T}_{|O})$.

Proof. Let $y \in \mathscr{C}(x)$. Since O is open in \mathbb{R}^n , there exists a ball $\mathscr{B}(y,r)$ included in O. By definition of the connected component, we have $\mathscr{B}(y,r) \subset \mathscr{C}(y)$. Using that $\mathscr{C}(x) = \mathscr{C}(y)$, we deduce $\mathscr{B}(y,r) \subset \mathscr{C}(x)$, hence that $\mathscr{C}(x)$ is open in \mathbb{R}^n .

Remark 2.20. The previous proposition is actually true for every *locally connected space*.

Example 2.21. Consider the subset $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ of \mathbb{R} . Each of its subsets $\{i\}$, $i \in X$, are open. They are all non-empty, connected and disjoint. Hence X admits ten connected components.

Exercise 22 (Connected components of \mathbb{Q}). Let \mathbb{Q} be endowed with the subspace Euclidean topology of \mathbb{R} .

- 1. Show that the connected components of \mathbb{Q} are the singletons $\{x\}, x \in \mathbb{Q}$.
- 2. Show that the singletons are not open in \mathbb{Q} .

This shows that Proposition 2.19 is not true in general.

Hint: Remember that between two distinct rational numbers there exists an irrational number.

3 CONTINUITY AND HOMEOMORPHISMS

This chapter in based on [6]. We will (at last!) introduce the notion of continuous map. Often, in textbooks, continuous maps are introduced at the very beginning, allowing to understand topology not as the theory of topological spaces, but as the *category* of topological spaces endowed with continuous maps. In this course, we chose to talk first about topological spaces only, so as to focus on their axioms. By introducing continuous maps, we will be able to define formally what it means to compare topological spaces. We will use, depending on the viewpoint, the relation of homeomorphism, or the relation of homotopy equivalence, defined in the next chapter.

3.1 CONTINUOUS MAPS

§3.1.1 CONTINUITY. The topologist's point of view allows to define the notion of continuity in great generality. Throughout this section, we will consider two topological spaces (X, \mathcal{T}) and (Y, \mathcal{U}) .

Definition 3.1. Let $f: X \to Y$ be a map. We say that f is *continuous* if for every $O \in \mathcal{U}$, the preimage $f^{-1}(O) = \{x \in X \mid f(x) \in O\}$ is in \mathcal{T} .

In other words, a map is continuous if the preimage of any open set is an open set. As shown in the following example, the continuity of a map depends on the topologies that are given to X and Y. Therefore, we should not say ' $f: X \to Y$ is continuous', but ' $f: (X, \mathcal{T}) \to (Y, \mathcal{U})$ is continuous'. However, when it will be clear what topologies we are considering, and when there will be no risk of confusion, we will use the first sentence.

Example 3.2. Let X and Y be both $\{0,1\}$, and met $f:\{0,1\} \to \{0,1\}$ be the identity map (that is, f(0) = 0 and f(1) = 1). Consider the trivial and the discrete topology

$$\mathcal{T} = \{\emptyset, \{0, 1\}\}$$
 and $\mathcal{U} = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}.$

The map f, seen as a map between the topological spaces (X, \mathcal{T}) and (Y, \mathcal{U}) , is not continuous. Indeed, $\{0\}$ is an open set of (Y, \mathcal{U}) , but $f^{-1}(\{0\}) = \{0\}$ is not an open set of (X, \mathcal{T}) . However, seen as a map between the topological spaces (X, \mathcal{U}) and (Y, \mathcal{U}) , f is continuous. For instance the preimage, $f^{-1}(\{0\}) = \{0\}$ is an open set of (X, \mathcal{U}) .

Continuity can also be stated in terms of closed sets:

Proposition 3.3. A map is continuous if and only if the preimage of closed sets are closed sets.

Exercise 23. Prove Proposition 3.3.

Hint: For any subset $A \subset Y$, show that $f^{-1}({}^{c}A) = {}^{c}(f^{-1}(A))$.

Example 3.4. Let $X = Y = \mathbb{R}$, endowed with the Euclidean topology. Let $f : \mathbb{R} \to \mathbb{R}$ be defined as f(x) = 0 for all $x \le 0$, and f(x) = 1 for all x > 0. The set $\{0\}$ is closed, but $f^{-1}(\{0\}) = (-\infty, 0)$ is not. Hence f is not continuous.

The following propositions say that the composition of two continuous maps, as well as the restriction of a continuous map, are continuous maps.

Proposition 3.5. Let (X, \mathcal{T}) , (Y, \mathcal{U}) and (Z, \mathcal{V}) be three topological spaces, and $f: X \to Y$, $g: Y \to Z$ two continuous maps. Then the composition $g \circ f: X \to Z$ is a continuous map.

Proof. Let $O \in \mathcal{V}$ be an open set of Z. We have to show that $(g \circ f)^{-1}(O)$ is in \mathcal{T} . First, note that $(g \circ f)^{-1}(O) = f^{-1}(g^{-1}(O))$. Since g is continuous, the set $g^{-1}(O)$ is in \mathcal{U} , i.e., it is an open set of Y. But since f is continuous, its preimage $f^{-1}(g^{-1}(O))$ also is an open set (of X). Since this is true for any open set $O \in \mathcal{V}$, we deduce that $g \circ f$ is continuous.

Proposition 3.6. Let f be a continuous map between (X, \mathcal{T}) and (Y, \mathcal{U}) . Consider a subset $A \subset X$, and endow it with the subspace topology $\mathcal{T}_{|A}$. The induced map $f_{|A} \colon (A, \mathcal{T}_{|A}) \to (Y, \mathcal{U})$ is continuous. Moreover, for any subset $B \subset Y$ such that $f(A) \subset B$, the induced map $f_{|A,B} \colon (A, \mathcal{T}_{|A}) \to (B, \mathcal{U}_{|B})$ also is continuous.

Proof. We will only prove the second statement. For every open set $O \in \mathcal{U}_{|B}$, let us show that $(f_{|A,B})^{-1}(O)$ is in $\mathcal{T}_{|A}$. By definition of the subspace topology $\mathcal{U}_{|B}$, there exists $O' \in \mathcal{U}$ such that $O = O' \cap B$. Now, we have

$$f_{|A,B}^{-1}(O) = f_{|A,B}^{-1}(O' \cap B) = f_{|A,B}^{-1}(O') \cap f_{|A,B}^{-1}(B).$$

Because of the assumption $f(A) \subset B$, we have $(f_{|A,B})^{-1}(B) = A$, and we deduce $f_{|A,B}^{-1}(O) = f_{|A,B}^{-1}(O') \cap A$. Since f is continuous, the preimage $f_{|A,B}^{-1}(O')$ is in \mathscr{T} , hence the intersection $f_{|A,B}^{-1}(O') \cap A$ is in $\mathscr{T}_{|A}$.

Exercise 24 (Trivial and discrete continuity). Consider the maps $f: (X, \mathcal{T}) \to (Y, \mathcal{U})$.

- 1. Show that if \mathcal{T} is the discrete topology, then all the maps are continuous.
- 2. Show that if \mathcal{U} is the trivial topology, then all the maps are continuous.

§3.1.2 LINK WITH THE USUAL ε - δ CALCULUS. We now investigate what continuity means between the Euclidean spaces. Consider a continuous map $f: \mathbb{R}^n \to \mathbb{R}^m$. Let $\varepsilon > 0$. The open ball $\mathscr{B}(f(x), \varepsilon)$ is an open set of \mathbb{R}^m . By continuity of f, the preimage $f^{-1}(\mathscr{B}(f(x), \varepsilon))$ is an open set. Since x belongs to $f^{-1}(\mathscr{B}(f(x), \varepsilon))$, Proposition 1.13 gives a $\eta > 0$ such that

$$\mathscr{B}(x,\eta) \subset f^{-1}(\mathscr{B}(f(x),\varepsilon)).$$

This is equivalent to

$$\forall y \in \mathcal{B}(x, \eta), \ f(y) \in \mathcal{B}(f(x), \varepsilon).$$

In other words, for all $y \in \mathbb{R}^n$,

$$||x-y|| < \eta \implies ||f(x)-f(y)|| < \varepsilon.$$

We recognize usual definition of continuity:

Proposition 3.7. A map $f: \mathbb{R}^n \to \mathbb{R}^m$ is continuous if and only if, for every $x \in \mathbb{R}^n$ and $\varepsilon > 0$, there exists $\eta > 0$ such that for all $y \in \mathbb{R}^n$, we have $||x - y|| < \eta \implies ||f(x) - f(y)|| < \varepsilon$.

As a consequence, what we already know about continuity between Euclidean spaces still applies in our context.

§3.1.3 CONNECTEDNESS VIA CONTINUOUS MAPS. Using the notion of continuous maps, we can give an alternative definition of connectedness (see Definition 2.12).

Proposition 3.8. A topological space (X, \mathcal{T}) is connected iff every continuous map from X to the discrete space $\{0,1\}$ is constant.

Proof. We prove first the direct implication. Suppose that X is connected, and that $f: \{0,1\}$ is continuous. Endowes with the discrete topology, $\{0\}$ is a clopen set of $\{0,1\}$. Hence $f^{-1}(\{0\})$ must be clopen, hence it must be \emptyset or X, as X is connected. We deduce that f is respectively constant equal to 1 or to 0.

In order to prove the converse implication, we consider the contraposition. Suppose that X is not connected. Hence X admits a clopen set A such that $\subseteq A \subseteq X$. Note that cA also is clopen. We build a map $f : \{0,1\}$ by setting f(x) = 0 for all $x \in A$ and f(x) = 1 for all $x \in {}^cA$. It is a continuous map for the discrete topology on $\{0,1\}$.

3.2 Homeomorphisms

§3.2.1 DEFINITIONS.

Definition 3.9. Let (X, \mathcal{T}) and (Y, \mathcal{U}) be two topological spaces, and $f: X \to Y$ a map. We say that f is a *homeomorphism* if

- f is a bijection,
- $f: X \to Y$ is continuous,
- $f^{-1}: Y \to X$ is continuous.

If there exists such a homeomorphism, we say that the two topological spaces are homeomorphic.

Example 3.10. In practice, finding the inverse f^{-1} of f consists in finding a map $g: Y \to X$ such that $g \circ f = \operatorname{id}$ and $f \circ g = \operatorname{id}$. In this case, g is the inverse of f. As an example, consider in \mathbb{R}^2 the circle and the square, endowed with the subspace topology:

$$\mathbb{S}^1 = \{ x \in \mathbb{R}^2 \mid ||x|| = 1 \}$$
 and $\mathscr{C} = \{ (x_1, x_2) \in \mathbb{R}^2 \mid \max(|x_1|, |x_2|) = 1 \}.$

Let $f: \mathbb{S}^1 \to \mathscr{C}$ be the map

$$f: (x_1, x_2) \mapsto \frac{1}{\max(|x_1|, |x_2|)} (x_1, x_2).$$

It is continuous. More over, it admits the following inverse (check that this is true):

$$f^{-1}: x \mapsto \frac{1}{\sqrt{x_1^2 + x_2^2}}(x_1, x_2).$$

This map is continuous, hence f is a homeomorphism.

More generally, one shows that all the *closed curves* — that is, the images of injective continuous maps $\mathbb{S}^1 \to \mathbb{R}^2$ — are homeomorphic. This illustrates a common way of thinking topology: topological spaces are made of rubber, and we are allowed to deform them.

Exercise 25. Show that the topological spaces \mathbb{R}^n and $\mathscr{B}(0,1) \subset \mathbb{R}^n$ are homeomorphic. *Hint:* Consider the map $f: x \mapsto \frac{1}{\|x\|+1}x$.

Exercise 26. Show that the punctured Euclidean space $\mathbb{R}^n \setminus \{0\}$ and the open annulus $\mathscr{B}(0,2) \setminus \mathscr{B}(0,1) \subset \mathbb{R}^n$ are homeomorphic.

Example 3.11. Let \mathbb{S}^1 denote the unit circle of \mathbb{R}^2 , and consider the map

$$f \colon [0, 2\pi) \longrightarrow \mathbb{S}^1$$
$$\theta \longmapsto (\cos(\theta), \sin(\theta))$$

It is continuous, and admits the following inverse:

$$g: \mathbb{S}^1 \longrightarrow [0, 2\pi)$$

 $(x_1, x_2) \longmapsto \arctan\left(\frac{x_2}{x_1}\right)$

This comes from the relation $\theta = \arctan\left(\frac{\sin(\theta)}{\cos(\theta)}\right)$ for all $\theta \in [0, 2\pi)$. The map g is **not** continuous. Indeed, $[0, \pi)$ is an open subset of $[0, 2\pi)$, but $g^{-1}([0, \pi))$ is not an open subset of \mathbb{S}^1 (it is not open around $g^{-1}(0) = (1, 0)$).

We will see in Example 3.15 that there exists no homeomorphism between $[0, 2\pi)$ and \mathbb{S}^1 .

3.3 Invariants of homeomorphism classes

§3.3.1 HOMEOMORPHISM CLASSES. Let us write $X \simeq Y$ if the two topological spaces X and Y are homeomorphic. It is clear that, for any X, we have

$$X \simeq X$$
.

Moreover, we have:

$$X \simeq Y \iff Y \simeq X$$
.

We also have a third property, stated in the following proposition:

Proposition 3.12. *If three topological spaces* X, Y, Z *are such that* X *is homeomorphic to* Y *and* Y *is homeomorphic to* Z, *then* X *is homeomorphic to* Z. *In other words,*

$$X \simeq Y$$
 and $Y \simeq Z \Longrightarrow X \simeq Z$.

Proof. Suppose that X,Y are homeomorphic, and Y,Z too. This means that we have homeomorphisms $f: X \to Y$ and $g: Y \to Z$. Consider the map $g \circ f: X \to Z$. It is continuous (by Proposition 3.5) bijective (composition of bijective maps) and its inverse $f^{-1} \circ g^{-1}: Z \to X$ is also continuous (by Proposition 3.5 too). Hence $g \circ f$ is a homeomorphism, and the spaces X,Z are homeomorphic.

The three previous properties are *reflexivity*, *symmetry* and *transitivity*, hence **'being homeomorphic'** is an equivalence relation. It allows to classify topological spaces into classes (called *classes of homeomorphism equivalence*):

• the class of intervals:

• the class of crosses:

$$\times$$
 = \times = \times = \times = \times = \times

• the class of circles:

• the class of spheres of dimension 2:

• the class of tori, the class of Klein bottles, etc...

§3.3.2 CONNECTEDNESS. The topologists' favorite game is to class topological spaces by homeomorphism equivalence. However, in general, it may be complicated to determine whether two spaces are homeomorphic. To answer this problem, a handy tool is the notion of *invariant*. An invariant is a property, a characteristic, that is shared by all the topological space of a same class. Our first example is connectedness (introduced in §2.3.2).

Proposition 3.13. Let X, Y be two topological spaces and $f: X \to Y$ a continuous surjective map. Then the number of connected components of X is greater than that of Y. In particular, if they are homeomorphic, then they have the same number of connected components.

Proof. This comes from the fact that the image of a connected space is a connected space. \Box

In practice, we use the contraposition of Proposition 3.13 to prove that two spaces are not homeomorphic. Showing that they are is another story.

Example 3.14. The subsets [0,1] and $[0,1] \cup [2,3]$ of \mathbb{R} are not homeomorphic. Indeed, the first one has one connected component, and the second one two.

Example 3.15. The interval $[0,2\pi)$ and the unit circle $\mathbb{S}^1 \subset \mathbb{R}^2$ are not homeomorphic. We will prove this by contradiction. Suppose that they are homeomorphic. By definition, this means that there exists a map $f: [0,2\pi) \to \mathbb{S}^1$ which is continuous, invertible, and with continuous inverse. Let $x \in [0,2\pi)$ such that $x \neq 0$. Consider the subsets $[0,2\pi) \setminus \{x\} \subset [0,2\pi)$ and $\mathbb{S}^1 \setminus \{f(x)\} \subset \mathbb{S}^1$, and the induced map

$$g: [0,2\pi) \setminus \{x\} \to \mathbb{S}^1 \setminus \{f(x)\}.$$

The map g is a homeomorphism by Proposition 3.6. Moreover, it is clear that $[0,2\pi)\setminus\{x\}$ has two connected components, and $\mathbb{S}^1\setminus\{f(x)\}$ only one. This contradicts Proposition 3.13.

Example 3.16. \mathbb{R} and \mathbb{R}^2 are not homeomorphic. Just as before, we will prove this by contradiction. Suppose that there exists a homeomorphism $f: \mathbb{R} \to \mathbb{R}^2$. Choose any $x \in \mathbb{R}$. The induced map

$$g: \mathbb{R} \setminus \{x\} \to \mathbb{R}^2 \setminus \{f(x)\}$$

is still a homeomorphism, but $\mathbb{R} \setminus \{x\}$ has two connected components, while $\mathbb{R}^2 \setminus \{f(x)\}$ has only one. This is a contradiction. The same reasoning shows that \mathbb{R} and \mathbb{R}^n are not homeomorphic either.

Remark 3.17. More generally, the *invariance of domain* is a theorem that says that for every integers m, n such that $m \neq n$, the spaces \mathbb{R}^n and \mathbb{R}^m are not homeomorphic. We will need much more sophisticated tools to prove that (homology of spheres). Although intuitively obvious, We will need much more sophisticated tools to prove that (Brouwer fiwed point theorem, via the homology of spheres or Sperner's lemma). As an example of its non-obviousness, note that there exist continuous surjective maps $\mathbb{R}^n \to \mathbb{R}^m$ for any n, m > 0.

Exercise 27. Show that [0,1) and (0,1) are not homeomorphic. *Hint:* Use the strategy of Examples 3.15 or 3.16.

§3.3.3 DIMENSION. We now introduce our second invariant. It is only defined for a particular class of topological spaces.

Definition 3.18. Let (X, \mathcal{T}) be a Hausdorff topological space (see Subsect. 2.2), and $n \ge 0$. We say that it is a *manifold of dimension n* if for every $x \in X$, there exists an open set O such that $x \in O$, and a homeomorphism from O to an open subset of \mathbb{R}^n .

In other words, a manifold of dimension n is a topological space that locally looks like the Euclidean space \mathbb{R}^n . Instead of saying 'manifold of dimension n', we may say 'n'-manifold. For instance, one shows that

- the open intervals $(a,b) \subset \mathbb{R}$ are manifolds of dimension 1,
- the circle $\mathbb{S}^1 \subset \mathbb{R}^2$ is a manifold of dimension 1,
- more generally, the spheres $\mathbb{S}^{n-1} \subset \mathbb{R}^n$ are manifolds of dimension n-1,
- the open balls $\mathscr{B}(x,r) \subset \mathbb{R}^n$ are manifolds of dimension n,
- the Euclidean space \mathbb{R}^n itself is a manifold of dimension n.

Remark 3.19. For this definition to make sense, we have to make sure that the topological spaces \mathbb{R}^n , $n \ge 0$, are all not-homeomorphic. Otherwise, a topological space could have several dimensions. As we said earlier, this result, the *invariance of domain*, will be proved later.

Proposition 3.20. Let X, Y be two homeomorphic topological spaces. If X is a manifold of dimension n, so is Y.

Proof. Let n be the dimension of X, and consider a homeomorphism $g: Y \to X$. Let $y \in Y$, and x = g(y). Since x has dimension n, there exists an open set O of X with $x \in O$, and open subset $U \subset \mathbb{R}^n$ and a homeomorphism $h: O \to U$. Define $O' = g^{-1}(O)$. It is an open set of Y, with $y \in O'$. Moreover, the map $h \circ g: O' \to U$ is a homeomorphism. This being true for every $y \in Y$, we deduce that Y has dimension n.

We can read the previous proposition as follows: being a manifold of dimension n is an invariant of homeomorphic spaces. As before, we can use it to show that two spaces are not homeomorphic.

Example 3.21. The unit sphere $\mathbb{S}^2 \subset \mathbb{R}^3$ and the unit open ball $\mathscr{B}(0,1) \subset \mathbb{R}^3$ are not homeomorphic. Indeed, the first one has dimension 2, and the second one dimension 3.

Given a fixed dimension $n \ge 1$, there exists several manifolds of dimension n. Hence, sometimes, the dimension will be not enough to distinguish between spaces. An example is given by the real line \mathbb{R} and the circle \mathbb{S}^1 : they are both manifolds of dimension 1, though not homeomorphic (this can be proved using the technique of Example 3.15). Actually, they are the only manifolds of dimension 1, up to homeomorphism.

In dimension 2, an interesting example is given by the compact oriented surfaces. These manifolds are indexed by their *genus*, a natural number $g \ge 0$. They are not homeomorphic, however, they have the same dimension (two) and number of connected components (one).

We also have a notion of manifold that allows to have a 'boundary'. Let us denote by $\mathbb{R}^n_+ = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1 \geq 0\}$ the Euclidean half-space, and $\{0\} \times \mathbb{R}^{n-1} = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1 = 0\}$.

Definition 3.22. Let (X, \mathcal{T}) be a Hausdorff topological space and $n \ge 0$. We say that it is a *manifold with boundary of dimension n* if for every $x \in X$, there exists an open set O such that $x \in O$, and a homeomorphism from O to an open subset of \mathbb{R}^n_+ .

Let X be a manifold with boundary and $x \in X$. As in the definition, let $O \to U$ be an homeomorphism, where $O \subset X$ and $U \subset \mathbb{R}^n_+$ are open. If U contains a point of $\{0\} \times \mathbb{R}^{n-1}$, then it is the case of all the homeomorphisms from a neighborhood of x to an open subset of \mathbb{R}^n_+ , and we say that x is a *boundary point*. We will denote by ∂X the boundary of X, taking care of noting that it is not the same notion of boundary defined in §2.1.2. If $\partial X =$, then X actually is a manifold. As examples, we have that

• the closed intervals $[a,b] \subset \mathbb{R}$ are 1-manifolds with boundary, and $\partial[a,b] = \{a,b\}$,

• the closed balls $\overline{\mathscr{B}}(x,r) \subset \mathbb{R}^n$ are *n*-manifolds with boundary, and $\partial \overline{\mathscr{B}}(x,r) = \mathbb{S}^{n-1}$.

As before, we can show that being a manifold with boundary is a property transferred by homeomorphisms.

Proposition 3.23. Let X, Y be two homeomorphic topological spaces. If X is a manifold with boundary of dimension n, then so is Y. Moreover, ∂X and ∂Y .

Proof. If $f: X \to Y$ is a homeomorphism, then the restriction $f_{|\partial X}: \partial X \to \partial Y$ still is, by Proposition 3.6.

Exercise 28 (Closed Möbius strip). Let C denote the cylinder M denoted the Möbius strip. They are both obtained from the square $[-1,1] \times [-1,1]$, the first one by identifying the points $(-1,t) \sim (1,t)$, the second one by identifying $(-1,t) \sim (1,-t)$, $t \in [0,1]$ (see §1.3.3). Show that they are not homeomorphic.

Hint: Show that ∂C and ∂M are not homeomorphic.

§3.3.4 EMBEDDABILITY. Let $n \ge 0$. An *embedding* of a topological space (X, \mathcal{T}) into \mathbb{R}^n is a continuous injective map $X \to \mathbb{R}^n$. If such an embedding exists, we say that X is *embeddable* into \mathbb{R}^n .

Proposition 3.24. Given two homeomorphic topological spaces, if one is embeddable into \mathbb{R}^n , then so is the other one.

Proof. Let $f: X \to Y$ be a homeomorphism and $g: Y \to \mathbb{R}^n$ an embedding of Y. Then $g \circ f$ is an embedding of X.

Example 3.25 (Open Möbius strip). As in Exercise 28, we will show that the cylinder and the Möbius strip are not homeomorphic, but now when considering their open version, that is, seeing them as gluing of the square $[-1,1] \times (-1,1)$. Let us denote them C and M. In this case, we have $\partial C = \partial M = \emptyset$, hence we cannot use the same strategy.

- 1. Show that *C* is embeddable in \mathbb{R}^2 .
- 2. Draw on M two circle that only intersect in one point.
- 3. Suppose that M is embeddable in \mathbb{R}^2 . Deduce that we obtain two circles in \mathbb{R}^2 that only intersect in one point.
- 4. Conclude using Jordan's curve theorem.

4 HOMOTOPY EQUIVALENCE

4.1 HOMOTOPIES

§4.1.1 HOMOTOPY EQUIVALENCE BETWEEN MAPS. We will now introduce the homotopy equivalence, another equivalence relation between topological spaces. First, we shall define it at the level of continuous maps.

Definition 4.1. Let (X, \mathcal{T}) and (Y, \mathcal{U}) be two topological spaces, and $f, g: X \to Y$ two continuous maps. A *homotopy* between f and g is a map $F: X \times [0,1] \to Y$ such that:

- $F(\cdot,0)$ is equal to f,
- $F(\cdot, 1)$ is equal to g,
- $F: X \times [0,1] \rightarrow Y$ is continuous.

If such a homotopy exists, we say that the maps f and g are homotopic.

In this definition, the notation $F(\cdot,t)$ refers to the map

$$F(\cdot,t): X \longrightarrow Y$$

 $x \longmapsto F(x,t)$

Moreover, before asking for $F: X \times [0,1] \to Y$ to be continuous, we have to give $X \times [0,1]$ a topology. The topology we choose is the *product topology* (see §1.3.2). Equivalently, if X is a subset of \mathbb{R}^n and \mathscr{T} is the subspace topology, then the product topology on $X \times [0,1]$ is equal to the subspace topology of the Euclidean space $\mathbb{R}^n \times \mathbb{R}$.

We may represent graphically a homotopy $F : \mathbb{R} \times [0,1] \to \mathbb{R}$ by plotting it for each value of $t \in [0,1]$:

This is an example for $F : [0,1] \times [0,1] \to \mathbb{R}^2$:

Sometimes we prefer to plot the deformation:

Example 4.2. Let X = Y = [-1, 1] endowed with the Euclidean topology, and consider the maps $f, g: X \to Y$ defined as $f: x \mapsto 0$ and $g: x \mapsto x$. Let us prove that they are homotopic. Consider the map

$$F: X \times [0,1] \longrightarrow Y$$
$$(x,t) \longmapsto tx$$

We see that $F(\cdot,0)$: $x\mapsto 0$ is equal to f, and $F(\cdot,1)$: $x\mapsto x$ is equal to g. Moreover, F is continuous. Hence, F is an homotopy between f and g. Thus these two maps are homotopic.

Example 4.3. The map $F: (x,t) \in \mathbb{S}^1 \times [0,1] \mapsto (\cos(\theta) + t, \sin(\theta) + t)$ is a homotopy between

$$f: \theta \mapsto (\cos(\theta), \sin(\theta))$$
 and $g: \theta \mapsto (\cos(\theta) + 1, \sin(\theta) + 1)$

Example 4.4. In \mathbb{S}^1 and $\mathbb{R}^2 \setminus \{(0,0)\}$, the plane without the origin, there is no homotopy between the maps f and g of the previous example. Indeed, the homotopy F would pass through the point (0,0) at some point, which is impossible. In order to prove this result formally, one can use the theory of *degree of a map*.

From a homotopic point a view, a trivial map is a map that is homotopic to a constant map. For instance, the identity map of Example 4.2 is homotopic to the constant map $x \mapsto 0$. More generally, we have:

Proposition 4.5. Let (X, \mathcal{T}) be a topological space. Any continuous map $f: X \to \mathbb{R}^n$ is homotopic to a constant map.

Proof. Consider the continuous map $F: (x,t) \in X \times [0,1] \mapsto tf(x)$. We have that $F(\cdot,1) = f$, and $F(\cdot,0): x \mapsto 0$ is a constant map.

Exercise 29. Let (X, \mathcal{T}) be a topological space. Show that any continuous map $f: \mathbb{R}^n \to X$ is homotopic to a constant map.

As a consequence, the theory of maps with domain or codomain \mathbb{R}^n is trivial from a homotopy equivalence perspective. However, when the domain and codomain are not Euclidean spaces, as in Example 4.4, many non-homotopic maps may exist.

Exercise 30 (Maps between the sphere). Let $f: \mathbb{S}^1 \to \mathbb{S}^2$ be a continuous map which is not surjective. Prove that it is homotopic to a constant map.

Hint: Let $x_0 \in \mathbb{S}^2$ be such that $x_0 \notin f(\mathbb{S}^1)$. Find a homotopy between f and the constant map $g: x \mapsto -x_0$.

More complicated question: Is every continuous map $f: \mathbb{S}^1 \to \mathbb{S}^2$ homotopic to a constant map?

Exercise 31. Show that 'being homotopic' is a *transitive* relation between maps: for every triplet of maps $f,g,h: X \to Y$, if f,g are homotopic and g,h are homotopic, then f,h are homotopic.

§4.1.2 HOMOTOPY EQUIVALENCE

Definition 4.6. Let (X, \mathcal{T}) and (Y, \mathcal{U}) be two topological spaces. A *homotopy equivalence* between X and Y is a pair of continuous maps $f: X \to Y$ and $g: Y \to X$ such that:

- $g \circ f: X \to X$ is homotopic to the identity map id: $X \to X$,
- $f \circ g \colon Y \to Y$ is homotopic to the identity map id: $Y \to Y$.

If such a homotopy equivalence exists, we say that *X* and *Y* are *homotopy equivalent*.

As we shall see in the examples, when comparing spaces with the homotopy equivalence, we see them a deformable objects, and we are allowed to *retract* or *flatten* them. When one is a subset of the other, we have a handy tool to show homotopy equivalence:

Definition 4.7. Let (X, \mathcal{T}) be a topological space and $Y \subset X$ a subset, endowed with the subspace topology $\mathcal{T}_{|Y}$. A *retraction* is a continuous map $r: X \to X$ such that $\forall x \in X, r(x) \in Y$ and $\forall y \in Y, r(y) = y$. A *deformation retraction* is a homotopy $F: X \times [0,1] \to Y$ between the identity map id: $X \to X$ and a retraction $r: X \to X$.

Proposition 4.8. If a deformation retraction exists, then X and Y are homotopy equivalent.

Proof. Let $r: X \to X$ denote the retraction, and consider the inclusion map $i: Y \to X$. Note that, since $\forall x \in X, r(x) \in Y$, we can see the retraction r as a map $r: X \to Y$. Let us prove that r, i is a homotopy equivalence. First, let us prove that $i \circ r: X \to X$ is homotopic to the identity map id: $X \to X$. This is clear because $i \circ r = r$, and r is homotopic to the identity by definition of a deformation retraction. Second, let us prove that $r \circ i: Y \to Y$ is homotopic to the identity map id: $Y \to Y$. This is obvious because $r \circ i = \text{id}$ by definition of a retraction.

Example 4.9. The circle and the annulus are homotopy equivalent. Indeed, the circle can be seen as a subset of the annulus, and we have a deformation retraction:

Example 4.10. The letter O and the letter Q are homotopy equivalent. Indeed, O can be seen as a subset of Q, and Q deform retracts on it.

Example 4.11. For any $n \ge 1$, the Euclidean space \mathbb{R}^n is homotopy equivalent to the point $\{0\} \subset \mathbb{R}^n$. To prove this, consider the retraction

$$r: \mathbb{R}^n \longrightarrow \{0\}$$

 $x \longmapsto 0$

It is homotopic to the identity id: $\mathbb{R}^n \to \mathbb{R}^n$ via the deformation retraction

$$F: \mathbb{R}^n \times [0,1] \longrightarrow \mathbb{R}^n$$

 $x \longmapsto (1-t)x$

Indeed, we have $F(\cdot,0) = \text{id}$ and $F(\cdot,1) = r$.

Example 4.12. For any $n \ge 1$, the Euclidean space without origin, $\mathbb{R}^n \setminus \{0\}$, is homotopy equivalent to the unit sphere $\mathbb{S}^{n-1} \subset \mathbb{R}^n$. To prove this, consider the retraction

$$r \colon \mathbb{R}^n \setminus \{0\} \longrightarrow \mathbb{S}^{n-1}$$

$$x \longmapsto \frac{x}{\|x\|}$$

It is homotopic to the identity id: $\mathbb{R}^n \setminus \{0\} \to \mathbb{R}^n \setminus \{0\}$ via the deformation retraction

$$F: (\mathbb{R}^n \setminus \{0\}) \times [0,1] \longrightarrow \mathbb{R}^n \setminus \{0\}$$
$$x \longmapsto \left(1 - t + \frac{t}{\|x\|}\right) x$$

Indeed, we have $F(\cdot,0) = \text{id}$ and $F(\cdot,1) = r$.

We now give a method to show that two topological spaces X, Y are homotopy equivalent: find a third space Z that contains X, Y and such that there exist a deformation retraction from Z to X and from Z to Y. If this is the case, we have that X is homotopy equivalent to Z, and that Y is homotopy equivalent to Z. Moreover, just as we have seen in Exercise 31, one shows that 'being homotopy equivalent' is transitive. We deduce that X and Y are homotopy equivalent. For instance, consider the two following subspaces of \mathbb{R}^2 :

They are not included one in another. However, the following space contains them, and we see that it deform retracts on both *X* and *Y*.

Example 4.13. We have the following homotopy equivalences:

Exercise 32 (Homotopy classes in the alphabet). Classify the letters of the alphabet into homotopy classes.

Exercise 33. Show that the Möbius trip and the cylinder are homotopy equivalent (see Exercise 28).

Exercise 34 (Two-out-three property). If $f: X \to Y$ and $f: Y \to Z$ are maps, then if any two of the maps f, g and $g \circ f$ are homotopy equivalences, so is the third map.

§4.1.3 LINK WITH HOMEOMORPHIC SPACES. We have studied previously another relation between topological spaces: the homeomorphism. It turns out that it is stronger than the homotopy equivalence:

Proposition 4.14. Let X,Y be two topological spaces. If they are homeomorphic, then they are homotopy equivalent.

As a consequence, in order to prove that two spaces are homotopy equivalent, it is enough to show that they are homeomorphic. However, this strategy does not always work: some spaces are homotopy equivalent but not homeomorphic. This is the case for \mathbb{R}^n and $\{0\}$ for instance (see Example 4.11).

4.2 Invariants of homotopy classes

- **§4.2.1** HOMOTOPY CLASSES. Let us denote $X \approx Y$ if the two topological spaces X and Y are homotopy equivalent. Just as for homeomorphic spaces, one shows that 'being homotopy equivalent' is an *equivalence relation*. Consequently, we can classify topological spaces according to this relation, and obtain *classes of homotopy equivalence*:
 - the class of points:

• the class of circles:

• the class of spheres, the class of torii, the class of Klein bottles, etc...

At this point, we are not able to prove that the point, the circle and the sphere are not homotopy equivalent. This will come soon, using Brouwer's theorem.

Exercise 35. Show that being homotopy equivalent is an equivalence relation (reflexive, symmetric and transitive).

§4.2.2 CONNECTEDNESS. We now investigate how the invariants behave with respect to the homotopy equivalence. The following result should be compared with Proposition 3.13:

Proposition 4.15. Two homotopy equivalent topological spaces admit the same number of connected components.

Proof. Let $f: X \to Y$ and $g: Y \to X$ be a homotopy equivalence between X and Y. Let us denote $H: X \times [0,1] \to X$ the homotopy between $g \circ f$ and id. We will show that f induces a correspondence between the connected components of X and Y. Let $A \subset X$ be a connected component. The product $A \times [0,1]$ is a connected subset of $X \times [0,1]$. Hence its image $H(A \times [0,1])$ is a connected subset of X, therefore it is contained in a connected component of Y. Moreover, we have $H(A \times \{1\}) = \operatorname{id}(A) = A$. Hence $H(A \times [0,1])$ is contained in the connected component of A. Moreover, $H(A \times \{0\}) = g \circ f(A)$. We deduce that $g \circ f(A) \subset A$. Similarly, one proves that for all connected components of X, we have that f(A) and f(A') belongs to distinct connected components of B. This proves the result.

Example 4.16. For any $n, m \ge 0$ such that $n \ne m$, the subspaces $\{1, ..., n\}$ and $\{1, ..., m\}$ of \mathbb{R} are not homotopy equivalent. Indeed, the first one admits n connected components, and the second one m components.

- **§4.2.3 DIMENSION.** On the other hand, dimension, introduced in §3.3.3, is **not** an invariant of homotopy equivalence. That is, certain homotopy equivalent spaces have different dimensions. This is the case, for instance, with all the Euclidean spaces \mathbb{R}^n , $n \ge 0$. They are all homotopy equivalent by Example 4.11, but all with different dimensions (\mathbb{R}^n has dimension n).
- **§4.2.4 CONTRACTIBILITY.** Let $\{pt\}$ denote the one-point set, endowed with the trivial topology (it is the only topology it admits). A topological space (X, \mathcal{T}) is said to be *contractible* if it is homotopy equivalent to $\{pt\}$. Equivalently, as a consequence of Definition 4.6, it means that the identity map id: $X \to X$ is homotopic to a constant map. Of course, 'being contractible' is an invariant of homotopy classes. From a topological point of view, we consider that the contractible spaces are the most simple ones.

A large collection of such spaces is given by the convex subsets of \mathbb{R}^n . Remind that a subset $X \subset \mathbb{R}^n$ is *convex* if for any $x, y \in X$, the segment $[x, y] = \{(1 - t)x + ty \mid t \in [0, 1]\}$ is included in X.

Proposition 4.17. Let $X \subset \mathbb{R}^n$ be a convex subset of \mathbb{R}^n and endow it with the subspace Euclidean topology. Then it is contractible.

Proof. Let $x \in X$ be any point. We will show that the identity map id: $X \to X$ is homotopic to the constant map $c_x : X \to \{x\}$. Consider the map

$$H: X \times [0,1] \longrightarrow X$$

 $(y,t) \longmapsto (1-t)y + tx$

This map is continuous, $H(\cdot,0) = \text{id}$ and $H(\cdot,1) = c_x$. Hence it the desired homotopy.

Exercise 36. Show that Proposition 4.17 is still true if X is only *star-shaped*, that is, if there exists $x \in X$ such that for all $y \in X$, the segment [x, y] is included in X.

§4.2.5 LUSTERNIK-SCHNIRELMANN CATEGORY. In their study of critical points on manifolds, Lusternik and Schnirelmann introduced an invariant of topological spaces, now known as the LS category [7, 8]. Given a topological space (X, \mathcal{T}) , we say that an open set $U \subset X$ is *categorical* if the inclusion map $U \hookrightarrow X$ is homotopic to a constant map. Then cat(X) is defined as the minimal number of categorical open sets needed to cover X, minus one. For instance, X has LS category 0 is and only if it is contractible. From this point of view, the LS category can be seen as a generalization of the notion of contractibility.

Note that, for an open subset U, 'being categorical' is a weaker property than 'being contractible'. For instance, in a contractible space X, any subset is categorical. Even if U is not connected.

As an example, the sphere \mathbb{S}^n has LS category equal to 1. Indeed, a cover in two contractible open sets can be obtained by considering the hemispheres \mathbb{S}^n_+ and \mathbb{S}^n_- , that we thicken a little bit in order to obtain open sets. They can be contracted onto the north pole and south pole respectively. This gives an upper bound $\operatorname{cat}(\mathbb{S}^n) \leq 1$. The lower bound $\operatorname{cat}(\mathbb{S}^n) \geq 1$ will be proved later using Brouwer's theorem.

As another example given without a proof, the torus \mathbb{T}^n , defined as the product $(\mathbb{S}^1)^n$, has LS category equal to n.

Exercise 37 (LS category of the torus). Show that the LS category of the 2-torus is at most 2, by drawing an explicit example of cover.

4.3 ALGEBRAIC-HOMOTOPY INVARIANTS

Homotopy is a fundamental notion in topology, allowing to define some of the most important invariants: the fundamental groups, the homotopy groups, the mapping class groups, etc. In this section, we will give a glimpse of these notions.

§4.3.1 PATH-CONNECTEDNESS. Let (X, \mathcal{T}) be a topological space, and $x, y \in X$ two points. We define a *path* from x to y as a continuous map γ : $[0,1] \to X$ such that $\gamma(0) = x$ and $\gamma(1) = y$.

Definition 4.18. We say that (X, \mathcal{T}) is *path-connected* if for every $x, y \in X$, there exists a path γ from x to y.

In other words, a space is path-connected if we can draw a path between any two points. This turns out to be a stronger notion than connectedness, introduced in §2.3.1.

Proposition 4.19. If a topological space (X, \mathcal{T}) is path-connected, then it is connected.

Proof. We will prove the contraposition. Suppose that X is not connected. Hence we have a partition $X = U \cup V$ into two disjoint clopen sets. Let $x \in U$ and $y \in V$. Suppose that γ : $[0,1] \to X$ is a path from x to y. Then the preimages $\gamma^{-1}(U)$ and $\gamma^{-1}(V)$ are clopen subsets of [0,1], and are disjoint since $x \neq y$. This is absurd since [0,1] is connected.

In practice, it may be easier to prove that a space is path-connected than connected. However, some spaces are connected without being path-connected, as shown in the following.

Exercise 38 (Adherence of topologist's sine curve). Let $X \subset \mathbb{R}^2$ be the adherence of the topologist's sine curve, defined in Exercise 11. Explicitly, it is

$$X = \{(x, \sin(1/x) \mid x \in (0, \pi]\} \cup \{(0, t) \mid t \in [-1, 1]\}$$

Endow *X* with the subspace topology. Show that *X* is connected but not path-connected.

Remark 4.20. Some partial converses to Proposition 4.19 exist. For instance, if X is an connected *open* subset of \mathbb{R}^n , then one shows that it is path-connected.

§4.3.2 FUNDAMENTAL GROUPS. In what follows, we parametrize the circle \mathbb{S}^1 by the interval [0,1). Let (X,\mathcal{T}) be a path-connected, and $x_0 \in X$ a point. We define a *loop* with base x_0 as a continuous map $\gamma \colon \mathbb{S}^1 \to X$ such that $\gamma(0) = x_0$. In other words, it is a path from x_0 to x_0 . Two loops γ, γ' are *homotopic* if there exists a homotopy $H \colon \mathbb{S}^1 \times [0,1] \to X$ from γ to γ' . 'Being homotopic' is an equivalence relation on the set of loops on X, and we consider the quotient set

$$\pi_1(X, x_0) = \{\text{loops } \mathbb{S}^1 \to X\} / \text{homotopy equivalence.}$$

If γ is a loop, we denote by $[\gamma]$ its equivalence class. Given two loops γ, γ' , the *concatenation* $\gamma\gamma'$ is defined as the loop such that $\gamma\gamma'(t) = \gamma(2t)$ if $t \le 1/2$, and $\gamma\gamma'(t) = \gamma(2t-1)$ if $t \ge 1/2$. As a direct consequence of the definitions, have the following property:

Proposition 4.21. Let γ and γ' be two loops. If η is a loop homotopic to γ , and η' is a loop homotopic to γ' , then the concatenation $\eta \eta'$ is homotopic to $\gamma \gamma'$.

Consequently, we can define the concatenation between homotopy classes: for $[\gamma]$ and $[\gamma]$ in $\pi_1(X, x_0)$, $[\gamma \gamma']$ does not depend on the choice of γ and γ' .

Definition 4.22. The set $\pi_1(X, x_0)$, endowed with the concatenation operation $[\gamma][\gamma'] = [\gamma\gamma']$, is called the *fundamental group* of X with base x_0 .

Proposition 4.23. *The fundamental group is a group.*

Proof. We have to check the three axioms of a group: existence of neutral element, existence of an inverse, and associativity. We only give an idea of the proof. The neutral element is the constant loop. For any loop γ , its inverse is the reversed loop $t \mapsto \gamma(1-t)$. Last, the associativity is proven by re-parametrizing the loops $(\gamma\gamma')\gamma''$ and $\gamma(\gamma'\gamma'')$.

If X is path-connected, then $\pi_1(X, x_0)$ does not depend on x_0 , hence we can talk about the fundamental group $\pi_1(X)$.

Example 4.24. If X is a contractible topological space, then all the loops are homotopic to a constant map, hence $\pi_1(X) = \{0\}$. For instance, this is the case for the convex subsets of \mathbb{R}^n .

As shown by the following proposition, the fundamental group is an invariant of homotopy classes. Hence, as we have seen with the number of connected components, and the Lusternik–Schnirelmann category, it can be used to prove that two spaces are not homotopy equivalent. We will make use of this fact in the next paragraph.

Proposition 4.25. *If two path-connected topological spaces* X *and* Y *are homotopy equivalent, then the fundamental groups* $\pi_1(X)$ *and* $\pi_1(Y)$ *are isomorphic.*

Proof. Let $f: X \to Y$ and $g: Y \to X$ be a homotopy equivalence. Consider the map

$$f \colon \pi_1(X) \longrightarrow \pi_1(Y)$$

 $[\gamma] \longmapsto [f \circ \gamma]$

Is is well defined since for any $\gamma' \in [\gamma]$, $f \circ \gamma'$ is included in $[f \circ \gamma]$.

§4.3.3 FUNDAMENTAL GROUP OF THE CIRCLE. The example of the circle is particularly interesting. One shows that $\pi_1(\mathbb{S}^1)$ is equal to \mathbb{Z} , the group of integers. Proofs of this result use the theory of *covering spaces*, that is out of the scope of this course. Instead, we will give some elements of intuition.

Let us parametrize the circle by an angle $\theta \in [0,1)$. Let $m \in \mathbb{Z}$. Seeing also \mathbb{S}^1 as a subset of the plane \mathbb{R}^2 , we define a map $\delta_m \colon \mathbb{S}^1 \to \mathbb{S}^1$ by

$$\delta_m : \theta \mapsto (\cos(2\pi m\theta), \sin(2\pi m\theta)).$$

The map δ_m is a loop that winds m times around the circle. One shows that the map

$$\mathbb{Z} \to \pi_1(\mathbb{S}^1)$$
 $m \mapsto \delta_m$

is an isomorphism of groups. In other words, each loop of \mathbb{S}^1 is homotopic to a map δ (surjectivity) and no maps δ_m , $\delta_{m'}$ are homotopic is $m \neq m'$ (injectivity).

As we have seen before, the fundamental group of a contractible space is $\{0\}$. Therefore, as a consequence of Proposition 4.25, the circle is not homotopy equivalent to a contractible space. This is the classical proof that the circle is not contractible.

§4.3.4 HOMOTOPY GROUPS. Let X be path-connected space. The notion of fundamental group admits a direct generalization to higher dimensions. Instead of considering maps $\mathbb{S}^1 \to X$, we can study the maps $\mathbb{S}^n \to X$ for any $n \ge 1$. These maps can be compared via homotopy equivalence, and we define the n^{th} homotopy group as

$$\pi_n(X) = \{\text{loops } \mathbb{S}^n \to X\}/\text{homotopy equivalence}.$$

As it it the case for π_1 , the π_n 's can be given a group structure. Moreover, one shows that they are invariant of homotopy classes: if X and Y are homotopy equivalent spaces, then the groups $\pi_n(X)$ and $\pi_n(Y)$ are isomorphic.

The theory of homotopy groups is reputed to be difficult and intriguing. In particular, computing the homotopy groups of spheres is still an open area of research. We give in the following table their first homotopy groups. The notation $\mathbb{Z}/n\mathbb{Z}$ refers to the cyclic group with n elements.

	π_1	π_2	π_3	π_4	π_5	π_6	π_7
\mathbb{S}^1	\mathbb{Z}	0	0	0	0	0	0
\mathbb{S}^2	0	\mathbb{Z}	\mathbb{Z}	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/12\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$
\mathbb{S}^3	0	0	\mathbb{Z}	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/12\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$
\mathbb{S}^4	0	0	0	\mathbb{Z}	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z} \times \mathbb{Z}/12\mathbb{Z}$
\mathbb{S}^5	0	0	0	0	\mathbb{Z}	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/2\mathbb{Z}$

§4.3.5 MAPPING CLASS GROUPS. Let X be a topological space. We denote by $\operatorname{Aut}(X)$ the set of *automorphisms* of X, that is, the set of homeomorphisms $X \to X$. In this context, we want to compare the automorphisms not up to homotopy, but up to *isotopy*. An isotopy between two automorphisms $g, f: X \to X$ is a homotopy $H: X \times [0,1] \to X$ between f and g such that for each $t \in [0,1]$, the map $H(\cdot,t)$ is a homeomorphism. 'Being isotopic' is an equivalence relation between homeomorphisms. It is a stronger notion than homotopy. We define the *mapping class group* of X as

$$MCG(X) = Aut(X)/isotopy$$
 equivalence.

One shows that the mapping class group is an invariant of homotopy classes. Let us give some examples, without proofs:

- the circle: $MCG(\mathbb{S}^1) = \mathbb{Z}/2\mathbb{Z}$, corresponding to the maps δ_1 and δ_{-1} introduced in §4.3.3,
- the sphere: $MCG(\mathbb{S}^2) = \mathbb{Z}/2\mathbb{Z}$, corresponding also to orientation-preserving or reversing maps,
- the tori: $MCG(\mathbb{T}^n) = GL(n,\mathbb{Z})$.

Bibliography

- [1] Frédéric Paulin. *Topologie, analyse et calcul différentiel.* 2008. https://www.imo.universite-paris-saclay.fr/~frederic.paulin/notescours/cours_analyseI.pdf.
- [2] James R Munkres. *Topology*, volume 2. Prentice Hall Upper Saddle River, 2000.
- [3] Roland E Larson and Susan J Andima. The lattice of topologies: a survey. *The Rocky Mountain Journal of Mathematics*, 5(2):177–198, 1975.
- [4] Martin Aigner and Günter M Ziegler. Proofs from the book. Berlin. Germany, 1, 1999.
- [5] William J Pervin. Foundations of general topology. Academic Press, 2014.
- [6] Allen Hatcher. Algebraic topology. Cambridge Univ. Press, Cambridge, 2000.
- [7] L Lusternik, L Schnirelmann, and J Kravtchenko. Méthodes topologiques dans les problèmes variationnels. première partie: Espaces à un nombre fini de dimensions. *Revue de Métaphysique et de Morale*, 42(1), 1935.
- [8] Octavian Cornea, Gregory Lupton, John Oprea, Daniel Tanré, et al. *Lusternik-Schnirelmann category*. Number 103. American Mathematical Soc., 2003.