Math 122-4.1 Example

Michael Levet

March 6, 2018

Example: Find the maxima and minima for $h(t) = 10t\exp(3 - t^2)$.

Solution: We employ the first derivative test.

• Step 1: We find the critical points of h(t). To do this, we first differentiate h(t):

$$h'(t) = 10\exp(3 - t^2) + 10t(-2t)\exp(3 - t^2)$$
$$= 10\exp(3 - t^2)\left(1 - 2t^2\right)$$

We note that h'(t) is defined for all $t \in \mathbb{R}$. So the critical points occur precisely when h'(t) = 0. Now observe that:

$$10\exp(3-t^2) > 0$$
 for all $t \in \mathbb{R}$

So h'(t) = 0 if and only if $1 - 2t^2 = 0$. Solving for t:

$$1 - 2t^2 = 0$$
$$1 = 2t^2$$
$$t = \pm \frac{1}{\sqrt{2}}$$

So our critical points are $t = -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$.

• Step 2: Now that we have our critical points, we build our table to look for sign changes in h'(t) (i.e., when h'(t) changes from positive to negative, or negative to positive).

	$10\exp(3-t^2)$	$1 - 2t^2$	h'(t)
$x < -\frac{1}{\sqrt{2}}$			
$\frac{\sqrt{2}}{1}$			
$-\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}$			
$x > \frac{1}{\sqrt{z}}$			
$\sqrt{2}$			

Now recall that $10\exp(3-t^2)>0$ for all $t\in\mathbb{R}$. So we fill in + on the column corresponding to $10\exp(3-t^2)$ to indicate this:

	$10\exp(3-t^2)$	$1 - 2t^2$	h'(t)
$t < -\frac{1}{\sqrt{2}}$	+		
$-\frac{1}{\sqrt{2}} < t < \frac{1}{\sqrt{2}}$	+		
$t > \frac{1}{\sqrt{2}}$	+		

Now if $t < -\frac{1}{\sqrt{2}}$, we have that $1 - 2t^2 < 0$. It may be helpful to pick an example to illustrate this. As $-\sqrt{1}\sqrt{2}$ is our smallest critical point, any point to the left of $-\frac{1}{\sqrt{2}}$ will serve this purpose. Let us pick x = -10. We have that:

$$1 - 2(-10)^2 = 1 - 200 < 0$$

So we fill in a – in the cell corresponding to $t < -\frac{1}{\sqrt{2}}$ under the column for $1 - 2t^2$. As $10\exp(3 - t^2) > 0$ and $1 - 2t^2 < 0$ for $t < -\frac{1}{\sqrt{2}}$, we have that h'(t) < 0 when $t < -\frac{1}{\sqrt{2}}$.

	$10\exp(3-t^2)$	$1 - 2t^2$	h'(t)
$t < -\frac{1}{\sqrt{2}}$	+	-	-
$-\frac{1}{\sqrt{2}} < t < \frac{1}{\sqrt{2}}$	+		
$t > \frac{1}{\sqrt{2}}$	+		

By similar analysis, we have that $1 - 2t^2 > 0$ when:

$$-\frac{1}{\sqrt{2}} < t < \frac{1}{\sqrt{2}}$$

And $1-2t^2<0$ when $t>\frac{1}{\sqrt{2}}$. So we update the table accordingly:

	$10\exp(3-t^2)$	$1 - 2t^2$	h'(t)
$t < -\frac{1}{\sqrt{2}}$	+	-	-
$-\frac{1}{\sqrt{2}} < t < \frac{1}{\sqrt{2}}$	+	+	+
$t > \frac{1}{\sqrt{2}}$	+	-	-

Now we see that h'(t) changes from negative to positive at $t = -\frac{1}{\sqrt{2}}$. So by the First Derivative Test h(t) has a local minimum at $t = -\frac{1}{\sqrt{2}}$.

Similarly, h'(t) changes from positive to negative at $t = \frac{1}{\sqrt{2}}$. So by the First Derivative Test, h(t) has a local maximum at $t = \frac{1}{\sqrt{2}}$.