Q1: what is the meaning of an Algorithm?

An *algorithm* is a sequence of unambiguous instructions for solving a problem, i.e., for obtaining a required output for any legitimate input in a finite amount of time.

Q2: For the following pair of functions, determine the smallest integer value of $n\geq 0$ for which the first function becomed greater than or equal to the second function.

A: n², 10n B: 2ⁿ, 2n³

A:

B:

n	10n	n^2
0	0	0
1	10	1
2	20	4
3	30	9
4	40	16
5	50	25
6	60	36
7	70	49
8	80	64
9	90	81
10	100	100
11	110	121
12	120	144

n	2 ⁿ	2n ³
0	1	0
1	2	2
3	4	16
3	8	54
4	16	128
5	32	250
6	64	432
7	128	686
8	265	1024
9	512	1458
10	1024	2000
11	2048	2662
12	4096	3456
13	8192	4394
14	16384	5488

 $n = 10 \qquad \qquad n = 12$

Q3: analyze the Time Complexity for the following algorithm:

```
i = 1
Loop (i <= 10)
j = 1
Loop (j <= i)
k = 1
Loop (k <= j)
Application code
k = k + 1
j = j + 1
i = i + 1
```

method 1

Outer loop:

Outer loop iterations = n times

First inner loop : the inner loop is dependent on the outer loop for one of its factors, the number of iterations in the body of the inner loop is $1+2+3+4+\ldots+8+9+10=55$, the average of this loop is 5.5 (55/10), this can be written as (N+1)/2.

Second inner loop: the inner loop is dependent on the first inner loop for one of its factors, the number of iterations in the body of the inner loop is $1+3+6+10+\ldots+36+45+55=220$, the average of this loop is 22 (220/10), this can be written as (N+1)*2.

#Iterations = #loop iterations * #inner loop iterations

```
T(N) = n * ((N+1)/2) * ((N+1)*2)

T(N) = n^3 + n^2 + 2n
```

method 2

$$= \sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{j} 1$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{i} j$$

$$= \sum_{1=1}^{n} \frac{i(i+1)}{2}$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} i^{2} + \sum_{i=1}^{n} i \right)$$

$$= \frac{1}{2} \left(\frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} \right)$$

$$= \frac{1}{12} \left(n(n+1)(2n+1) + 3n(n+1) \right)$$

$$= \frac{n(n+1)}{12} (2n+4)$$

$$= \frac{1}{6} n(n+1)(n+2)$$

$$T(N) = (n^{3} + 3n^{2} + 2n) / 6$$

Solition from : <u>https://math.stackexchange.com/questions/312859/nested-</u>summation

method 3

$$T(N) = (n^3 + 3n^2 + 2n) / 6$$

https://cs.stackexchange.com/questions/3306/time-complexity-of-a-triple-nested-loop