Prof. Dr. Dr. H.C. Florian Rupp Akaki Matcharashvili SPRING TERM WEEK 5

General Descent Methods – CE Solutions

Short Recap of the Lecture Topics:

General Descent Methods & Admissible Descent Directions:

• Let $\{s^k\}_{k\in\mathbb{N}_0}$ be the sequence of descent directions generated by the general descent method. A sub-sequence $\{s^\ell\}_{\ell\in L\subset\mathbb{N}_0}$ is called **admissible**, if the condition C1 holds

$$\nabla f(x^k)^T s^k < 0$$
 for all $k \in \mathbb{N}_0$

(i.e. s^k is a descent direction) together with the condition C2:

$$\left\{\frac{\nabla f(x^\ell)^T s^\ell}{\|s^\ell\|}\right\}_{\ell \in L} \, \overset{\ell \to \infty}{\longrightarrow} \, \, 0 \qquad \Longrightarrow \qquad \left\{\nabla f(x^\ell)\right\}_{\ell \in L} \, \overset{\ell \to \infty}{\longrightarrow} \, \, 0$$

• Angle condition (AC): For an $0 < \eta < 1$ and for all $\ell \in L$ it holds that

$$\cos\left(\angle(-\nabla f(x^\ell),s^\ell)\right) \ = \ \frac{-\nabla f(x^\ell)^T s^\ell}{\|\nabla f(x^\ell)\| \|s^\ell\|} \ \geq \ \eta \,.$$

• Generalized angle condition (GAC): For a suitable chosen function $\phi : [0, \infty) \to [0, \infty)$ that is continuous in 0 with $\phi(0) = 0$ it holds for all $\ell \in L$ that

$$\|\nabla f(x^{\ell})\| \le \phi\left(\frac{\nabla f(x^{\ell})^T s^{\ell}}{\|s^{\ell}\|}\right).$$

- Theorem: (AC \Rightarrow GAC \Rightarrow C2) Let $f: \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable and $\{s^\ell\}_{\ell \in L}$ be a sub-sequence of descent directions (i.e. $\nabla f(x^\ell)^T s^\ell < 0$ for all $\ell \in L$) generated by the general descent method.
 - 1. If $\{s^{\ell}\}_{{\ell}\in L}$ fulfills the angle condition AC then it also fulfills the generalized angle condition GAC.
 - 2. If $\{s^{\ell}\}_{{\ell}\in L}$ fulfills the general angle condition GAC then it is also admissible (and fulfills C2).

Here, η and ϕ must (of course) be independent of $\ell \in L$.

Admissible Step Size Rules:

• Let $\{\sigma_k\}_{k\in\mathbb{N}_0}$ be the sequence of step sizes generated by the general descent method. A subsequence $\{\sigma_\ell\}_{\ell\in L\subset\mathbb{N}_0}$ is called **admissible**, if

$$f(x^{\ell} + \sigma_{\ell} s^{\ell}) \leq f(x^{\ell})$$
 for all $\ell \in L$

and

$$f(x^{\ell} + \sigma_{\ell} s^{\ell}) - f(x^{\ell}) \stackrel{\ell \to \infty}{\longrightarrow} 0 \Longrightarrow \left\{ \frac{\nabla f(x^{\ell})^T s^{\ell}}{\|s^{\ell}\|} \right\}_{\ell \in L} \stackrel{\ell \to \infty}{\longrightarrow} 0$$

• Let s^k be a descent direction of f at x^k . The step size σ_k is called **efficient**, if there is a constant $\theta > 0$ such that

$$f(x^k + \sigma_k s^k) \leq f(x^k) - \theta \left(\frac{\nabla f(x^k)^T s^k}{\|s^k\|}\right)^2.$$

- Lemma: Let $f: \mathbb{R}^n \to \mathbb{R}$ continuously differentiable. Let the sequences $\{x^k\}_{k \in \mathbb{N}_0}$, $\{s^k\}_{k \in \mathbb{N}_0}$, and $\{\sigma_k\}_{k \in \mathbb{N}_0}$ be generated by the general descent method with $f(x^k + \sigma_k s^k) \leq f(x^k)$ for all $k \in \mathbb{N}_0$. Let $\{\sigma_\ell\}_{\ell \in L \subset \mathbb{N}_0}$ be a sub-sequence for wich all σ_ℓ , $\ell \in L$, are efficient, then the step size subsequence $\{\sigma_\ell\}_{\ell \in L \subset \mathbb{N}_0}$ is admissible.
- Admissibility of the Armijo Step Sizes: Let $f: \mathbb{R}^n \to \mathbb{R}$ continuously differentiable. Let the sequences $\{x^k\}_{k\in\mathbb{N}_0}$, $\{s^k\}_{k\in\mathbb{N}_0}$, and $\{\sigma_k\}_{k\in\mathbb{N}_0}$ be generated by the general descent method. Moreover, let there be
 - a bounded sub-sequence $\{x^{\ell}\}_{{\ell}\in L\subset\mathbb{N}_0}$ of iterates (e.g. as $\{x^{\ell}\}_{{\ell}\in L}$ converges), and
 - a strictly monotonously increasing function $\phi:[0,\infty)\to[0,\infty)$ such that the sub-sequence of descent directions $\{s^\ell\}_{\ell\in L}$ corresponding to $\{x^\ell\}_{\ell\in L}$ satisfies

$$||s^{\ell}|| \geq \phi \left(-\frac{\nabla f(x^{\ell})^T s^{\ell}}{||s^{\ell}||}\right)$$
 for all $\ell \in L$.

Then, the corresponding sub-sequence of step sizes $\{\sigma_\ell\}_{\ell\in L}$ generated by the Armijo step size rule is admissible.

• Global Convergence Theorem for a Descent Method: Let $f: \mathbb{R}^n \to \mathbb{R}$ continuously differentiable. Let $x^0 \in \mathbb{R}^n$ arbitrary and the sequences $\{x^k\}_{k \in \mathbb{N}_0}$, $\{s^k\}_{k \in \mathbb{N}_0}$, and $\{\sigma_k\}_{k \in \mathbb{N}_0}$ be generated by the general descent method. Moreover, let $\overline{x} \in \mathbb{R}^n$ be an accumulation point of $\{x^k\}_{k \in \mathbb{N}_0}$ with a sub-sequence $\{x^\ell\}_{\ell \in L \subset \mathbb{N}_0} \to \overline{x}$ for $\ell \to \infty$, $\ell \in L$.

If $\{s^{\ell}\}_{\ell\in L}$, and $\{\sigma_{\ell}\}_{\ell\in L}$ are admissible, then \overline{x} is a stationary point, i.e. $\nabla f(\overline{x}) = 0$.

Solved Central Exercise Problems:

Exercise 5.1: Criteria for Admissibility — Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable, and (x^k) , (s^k) and (σ_k) be generated by the general descent method. Prove the following assertions:

a) A sub-sequence of search directions $\{s^{k_j}\}$ is admissible, if there exists a strictly monotonically increasing function $\varphi:[0,\infty)\to[0,\infty)$ with $\varphi(0)=0$, that satisfies

$$-\nabla f(x^{k_j})^T s^{k_j} \geq \varphi\Big(\|\nabla f(x^{k_j})\|\Big)\|s^{k_j}\| \quad \forall j.$$

b) A sub-sequence of step sizes (σ_{k_j}) is admissible, if for any $\varepsilon > 0$ there exists a $\delta(\varepsilon) > 0$, such that the following implication holds:

$$\frac{-\nabla f(x^{k_j})^T s^{k_j}}{\|s^{k_j}\|} \geq \varepsilon \text{ for infinitely many } j$$

$$\implies f(x^{k_j}) - f(x^{k_j} + \sigma_{k_i} s^{k_j}) \geq \delta(\varepsilon) \text{ for infinitely many } j.$$

Solution:

ad a) The first condition of admissibility, is that s^k is a descent direction, which is always true for a descent method, i.e. it holds:

$$\nabla f(x^k)^T s^k \ < \ 0 \quad \forall \, k$$

We will show only the second condition, i.e.:

$$\left\{ \frac{\nabla f(x^{k_j})^T s^{k_j}}{\|s^{k_j}\|} \right\}_j \to 0 \implies \left\{ \nabla f(x^{k_j}) \right\}_j \to 0.$$

We show this by contraposition. Thus, let $\{\nabla f(x^{k_j})\}_j \neq 0$. Then there is $\varepsilon > 0$ and a sub-sequence of $\{k_j\}$ (for simplicity denoted by k_j again) such that

$$\|\nabla f(x^{k_j})\| \geq \varepsilon \quad \forall j.$$

By the strictly monotonous growth of φ and $\varphi(0) = 0$:

$$\frac{-\nabla f(x^{k_j})^T s^{k_j}}{\|s^{k_j}\|} \geq \varphi(\|\nabla f(x^{k_j})\|) \geq \varphi(\varepsilon) > \varphi(0) = 0 \quad \forall j.$$

This shows $\left\{\frac{-\nabla f(x^{k_j})^T s^{k_j}}{\|s^{k_j}\|}\right\}_j \not\to 0$, concluding the contraposition.

ad b) Since the sequence $\{\sigma_k\}$ was generated by a descent method, it holds

$$f(x^k + \sigma_k s^k) < f(x^k) \quad \forall k.$$

Thus the first condition for admissibility is satisfied. We show the second condition, i.e.

$$f(x^{k_j} + \sigma_{k_j} s^{k_j}) - f(x^{k_j}) \rightarrow 0 \quad \Longrightarrow \quad \left\{ \frac{\nabla f(x^{k_j})^T s^{k_j}}{\|s^{k_j}\|} \right\}_j \rightarrow 0,$$

again by contraposition. Let $\left\{\frac{\nabla f(x^{k_j})^T s^{k_j}}{\|s^{k_j}\|}\right\}_j \to 0$. Since s^{k_j} are descent directions, there is an $\varepsilon > 0$ and a sub-sequence of $\{k_i\}$ (for simplicity again denoted by k_j), with

$$\frac{-\nabla f(x^{k_j})^T s^{k_j}}{\|s^{k_j}\|} \ge \varepsilon \quad \forall j \quad \text{(thus for infinitely many } j\text{)}.$$

Thus by assumption, there is a $\delta > 0$ with

$$f(x^{k_j}) - f(x^{k_j} + \sigma_{k_i} s^{k_j}) \ge \delta$$
 for infinitely many j ,

and thus it holds $f(x^{k_j} + \sigma_{k_j} s^{k_j}) - f(x^{k_j}) \not\to 0$, which concludes the contraposition.

Exercise 5.2: Curry Step Size Rule — Let $f: \mathbb{R}^n \to \mathbb{R}$ continuously differentiable, and $x^0 \in \mathbb{R}^n$ such that the level-set $\mathcal{N}_f(x^0) = \{x \in \mathbb{R}^n : f(x) \leq f(x^0)\}$ is compact. Let further $x \in \mathcal{N}_f(x^0)$ and $s \in \mathbb{R}^n$ a descent direction of f in x. The Curry Step Size Rule computes $\overline{\sigma} > 0$ as the smallest positive stationary point of the function $\phi: \mathbb{R} \to \mathbb{R}$ defined by $\phi(\sigma) := f(x + \sigma s)$:

$$\overline{\sigma} := \min \left\{ \sigma > 0 : \phi'(\sigma) = 0 \right\}.$$

- a) Show well-posedness of the Curry step size rule. Hint: Assume first, that there is no positive stationary point of ϕ , and use the mean value theorem to construct a contradiction to the compactness of $\mathcal{N}_f(x^0)$. Further show, that under all stationary points of ϕ there is actually a smallest one.
- **b)** Show, using the Intermediate Value Theorem, that there is a smallest $0 < \hat{\sigma} < \overline{\sigma}$ such that $\nabla f(x + \hat{\sigma}s)^T s = \frac{1}{2} \nabla f(x)^T s$.
- c) Show using part b): $f(x) f(x + \overline{\sigma}s) \ge -\frac{1}{2}\hat{\sigma}\nabla f(x)^T s$.
- d) Use compactness of $\mathcal{N}_f(x^0)$ and continuity of ∇f to show with help of part b), that for any $\varepsilon > 0$ there is a $\delta(\varepsilon) > 0$, independent of x and s, such that

$$-\frac{1}{2} \frac{\nabla f(x)^T s}{\|s\|} \geq \varepsilon \implies \|\hat{\sigma}s\| \geq \delta(\varepsilon).$$

e) Use parts c) and d), to show that any sub-sequence of step sizes $\{\sigma_k\}_K$, generated by the Gradient Descent Method with starting point x^0 and the Curry step size rule is admissible.

Solution:

ad a) Assume, that there is no positive stationary point of ϕ . By $\phi'(0) = \nabla f(x)^T s < 0$ and by continuity for all $\sigma > 0$, it holds that $\phi'(\sigma) = \nabla f(x + \sigma s)^T s < 0$. Thus also for all $\sigma > 0$:

$$f(x+\sigma s)-f(x) \ = \ \phi(\sigma)-\phi(0) \ = \ \sigma\phi'(\xi) \ = \ \sigma\nabla f(x+\xi s)^T s \ < \ 0 \quad \text{with } \xi\in(0,\sigma)\,,$$

and thus $x + \sigma s \in \mathcal{N}_f(x^0)$. This contradicts the compactness, more specifically the boundedness of the level-set. It remains to show, that there is a smallest positive stationary point of ϕ . The set $M = \{\sigma \geq 0 : \phi'(\sigma) = 0\}$ is bounded from below by 0, thus possesses an infimum $\overline{\sigma} \geq 0$. By the closedness of M (note ϕ' is continuous!) the infimum $\overline{\sigma}$ is an element of the set. By $\phi'(0) < 0$ it holds $\overline{\sigma} > 0$, and thus the assertion is shown.

ad b) The derivative $\phi'(\sigma) = \nabla f(x + \sigma s)^T s$ is continuous by assumption. Since

$$\phi'(0) = \nabla f(x)^T s < \frac{1}{2} \nabla f(x)^T s < 0 = \phi'(\overline{\sigma})$$

by the Intermediate Value Theorem, there is an $\hat{\sigma} \in (0, \overline{\sigma})$ with $\phi'(\hat{\sigma}) = \frac{1}{2}\nabla f(x)^T s$. As in part a), from the closedness of the set of candidates, there is a smallest $\hat{\sigma} > 0$ with $\phi'(\hat{\sigma}) = \frac{1}{2}\nabla f(x)^T s$.

ad c) For all $\sigma \in [0, \overline{\sigma}]$ it holds $\phi'(\sigma) \leq 0$. Thus ϕ is monotonically decreasing in $[0, \overline{\sigma}]$. From this, we directly conclude:

$$f(x) - f(x + \overline{\sigma}s) \ge f(x) - f(x + \overline{\sigma}s).$$

Further the Mean Value Theorem gives

$$f(x) - f(x + \hat{\sigma}s) = -\hat{\sigma}\nabla f(x + \xi s)^T s = -\hat{\sigma}\phi'(\xi)$$

with $\xi \in [0, \hat{\sigma}]$. Since $\hat{\sigma}$ was the smallest σ with $\phi'(\sigma) = \frac{1}{2}\phi'(0)$ and ϕ' is continuous, it holds $\phi'(\sigma) \leq \phi'(\hat{\sigma})$ for all $\sigma \in [0, \hat{\sigma}]$. Hence, part b) gives

$$-\hat{\sigma}\nabla f(x+\xi s)^T s \geq -\hat{\sigma}\nabla f(x+\hat{\sigma}s)^T s = -\frac{1}{2}\hat{\sigma}\nabla f(x)^T s.$$

ad d) By the compactness of the levelset, it follows even, that ∇f is uniformly continuous in $\mathcal{N}_f(x^0)$. We use, that

$$-\frac{1}{2}\nabla f(x)^T s = (\nabla f(x + \hat{\sigma}s) - \nabla f(x))^T s$$

and obtain by Cauchy-Schwarz inequality

$$\epsilon \le -\frac{1}{2} \frac{\nabla f(x)^T s}{\|s\|} \le \|\nabla f(x + \hat{\sigma}s) - \nabla f(x)\|.$$

Since $x \in \mathcal{N}_f(x^0)$ as well as $x + \hat{\sigma}s \in \mathcal{N}_f(x) \subset \mathcal{N}_f(x^0)$ by part c), the uniform continuity of ∇f on $\mathcal{N}_f(x^0)$ implies the existence of some $\delta(\epsilon) > 0$ with $||x - (x + \hat{\sigma}s)|| = ||\hat{\sigma}s|| \ge \delta(\epsilon)$. ad e) We show

$$\left\{ \frac{\nabla f(x^k)^T s^k}{\|s^k\|} \right\}_K \not\to 0 \implies f(x^k + \sigma_k s^k) - f(x^k) \not\to 0.$$

If there holds $\left\{\frac{\nabla f(x^k)^T s^k}{\|s^k\|}\right\}_K \to 0$, then there is a sub-sequence $\{x^k\}_{K'}$ of $\{x^k\}_K$ and $\epsilon > 0$ with

$$-\frac{1}{2} \frac{\nabla f(x^k)^T s^k}{\|s^k\|} \ge \epsilon \quad \forall k \in K'.$$

Thus from c) and d) we deduce, that

$$f(x^k) - f(x^k + \sigma_k s^k) \geq -\frac{1}{2} \hat{\sigma_k} \frac{\nabla f(x^k)^T s^k \|s^k\|}{\|s^k\|} \geq \epsilon \|\hat{\sigma_k} s^k\| \geq \epsilon \delta(\epsilon) > 0 \quad \forall k \in K'.$$

Hence it holds $f(x^k + \sigma_k s^k) - f(x^k) \not\to 0$ for $k \to \infty$.