

planetmath.org

Math for the people, by the people.

$\begin{array}{c} \text{example of non-complete lattice} \\ \text{homomorphism} \end{array}$

 ${\bf Canonical\ name} \quad {\bf Example Of Noncomplete Lattice Homomorphism}$

Date of creation 2013-03-22 16:58:36 Last modified on 2013-03-22 16:58:36 Owner Algeboy (12884) Last modified by Algeboy (12884)

Numerical id 4

Author Algeboy (12884)

Entry type Example Classification msc 06B05 Classification msc 06B99

Related topic ExtendedRealNumbers

The real number line $[-\infty, \infty] = \mathbb{R} \cup \{-\infty, \infty\}$ is complete in its usual ordering of numbers. Furthermore, the meet of a subset S of \mathbb{R} is the infimum of the set S.

Now define the map $f:[-\infty,\infty]\to[-\infty,\infty]$ as

$$f(x) = \begin{cases} 0 & x \le 0 \\ 1 & x > 0. \end{cases}$$

First notice that if $x \le y$ then $f(x) \le f(y)$, for either $x \le y \le 0$ in which case f(x) = 0 = f(y), or $x \le 0 < y$ which gives f(x) = 0 < 1 = f(y) or $0 < x \le y$ so f(x) = 1 = f(y).

In the second place, if S is a finite subset of \mathbb{R} then S contains a minimum element $s \in S$. So $f(s) \in f(S)$ and $f(s) \leq f(t)$ for all $t \in S$, so $f(\min S) = f(s) = \min f(S)$. Hence f is a lattice homomorphism.

However, f is not a complete lattice homomorphism. To see this let $S = \{x \in \mathbb{R} : 0 < x\}$. Then $\inf S = 0$. However, $f(\inf S) = f(0) = 0$ while $\inf f(S) = \inf\{1\} = 1$.