PROCESSAMENTO DIGITAL DE IMAGENS

PDI – Aula 4

Universidade Federal do Rio Grande do Norte
Unidade Acadêmica Especializada em Ciências Agrárias
Escola Agrícola de Jundiaí
Tecnologia em Análise e Desenvolvimento de Sistemas

Profa. Alessandra Mendes

Operações sobre imagens

São operações aritméticas sobre imagens:

- $a(x,y) = f(x,y) + g(x,y) \rightarrow Adição$
- $> s(x,y) = f(x,y) g(x,y) \rightarrow Subtração$
- $m(x,y) = f(x,y) * g(x,y) \rightarrow \text{Multiplicação}$
- $d(x,y) = f(x,y) / g(x,y) \rightarrow Divisão$
- Tais operações são feitas entre os pixels correspondentes em f e g para x = 0,1,2,...,m-1 e y = 0,1,2,...,n-1, sendo m e n os números de linhas e colunas das imagens, respectivamente.

Exemplos:

No Octave, as operações de adição e subtração operam sobre os elementos da matriz (elemento por elemento). As demais são operações matriciais e podem operar sobre os elemento se forem precedidos por ponto.

Ex: a=[1,2,3] ./[1,2,3]

Adicionais: \setminus , \wedge , '

OPERAÇÃO	FORMATAÇÃO	RESULTADO
Adição Escalar	a + c	$[a1+c \ a2+c \ \ an+c]$
Adição vetorial	a + b	$[a1 + b1 \ a2 + b2 \dots an + bn]$
Multiplicação Escalar	a * c	[a1*c a2*c an*c]
Multiplicação vetorial	a. * b	[a1*b1 a2*b2 an*bn]
Divisão	a. / b	[a1/b1 a2/b2 an/bn]
Divisão	$a. \setminus b$	[b1/a1 b2/a2 bn/an]
Potenciação por escalar	a. ^ c	[a1^c a2^c an^c]
	c. ^ a	[c^a1 c^a2 c^an]
Potenciação vetorial	a. ^ b	[a1^b1 a2^b2 an^bn]

- Adição de imagens
- **Exemplo:** seja g(x,y) uma *imagem corrompida* formada com a adição de ruído h(x,y) a uma imagem sem ruído f(x,y):

$$g(x,y) = f(x,y) + h(x,y)$$

- onde presume-se que a cada par de coordenadas (x,y) o ruído não esteja correlacionado e tem média zero.
- O objetivo do procedimento é *reduzir o ruído* somando um conjunto de imagens ruidosas, $\{gi(x,y)\}$, e dividindo o resultado pelo número de imagens somadas.
- Na prática as imagens gi(x,y) devem ser alinhadas para evitar a introdução de borramento (*blurring*).

Imagem da galáxia corrompida por ruído Gaussiano aditivo e resultados das médias com 5, 10, 20, 50 e 100 imagens ruidosas, respectivamente.

- Subtração de imagens
- Uma aplicação frequente é o melhoramento das diferenças entre imagens.
- Exemplo: infravermelho da área de Washington, D.C.

- a) Imagem original.
- b) Imagem obtida zerando o bit menos significativo de todos os pixels da imagem original
- c) Diferença das duas imagens, escalada para o intervalo [0, 255].

- Multiplicação e divisão de imagens
- ▶ Um exemplo de aplicação é no *mascaramento da região de interesse* (*ROI Region Of Interest*).
- A imagem a ser multiplicada é uma máscara que tem valor 1 na ROI e valor 0 em outras posições.

- a) Imagem de raios-X digital.
- b) Máscaras de ROI para isolar os dentes.
- c) Produto entre (a) e (b)

Operações com conjuntos

Uma forma utilização dos conjuntos em processamento de imagens é enxergar os seus elementos como *coordenadas dos pixels* que representam *regiões* de uma imagem.

- a) Dois conjuntos de coordenadas, Ae B no espaço 2D.
- b) União de A e B
- c) Intersecção de A e B
- d) O complemento de A
- e) A diferença entre A e B.

As áreas sombreadas representam os elementos das operações resultantes.

Operações com conjuntos

▶ A *união* de dois conjuntos A e B em escala de cinza pode ser definida como o conjunto $A \cup B = \{ \max(a,b) \mid a \in A, b \in B \}$

- a) Imagem original
- b) Imagem negativa usando a complementação
- c) União da imagem original e uma imagem constante

Operações lógicas

- Exemplo de operações lógicas envolvendo foreground da imagem (branco).
 - \rightarrow NOT = NÃO (inverso)
 - AND = E (interseção)
 - ► OR = OU (união)
 - \rightarrow AND-NOT = E-NÃO
 - \rightarrow XOR = OU OU (complemento)
 - As linhas tracejadas são mostradas para referência e não fazem parte do resultado.

Operações ponto a ponto

- Operações sobre pixels individuais (single-pixel operations).
 - Função de transformação de intensidade usada para obter o negativo de uma imagem de 8 bits.
 - As setas tracejadas mostram a transformação de um valor de intensidade de entrada arbitrária z_0 para um valor de saída correspondente s_0 .

Operações sobre a vizinhança

- Média local usando processamento de vizinhança.
 - O procedimento é ilustrado nos esquemas (a) e (b) para uma vizinhança retangular.
 - As próximas imagens ilustram o angiograma aórtico (c) e o resultado usando a média (d).

Transformações geométricas

- Modificam a relação espacial entre os pixels e consistem em duas operações básicas:
 - (1) transformação espacial de coordenadas e
 - (2) interpolação de intensidade que atribui valores para pixels transformados.
- As transformações relocam os pixels de uma imagem para novas posições.
- Para concluir o processo, são atribuídos valores de intensidade a estas posições utilizando a interpolação.

Transformation Name	Coordinate Equations	Example
Identity	x = v y = w	\int_{x}^{y}
Scaling	$x = c_x v$ $y = c_y w$	
Rotation	$x = v \cos \theta - w \sin \theta$ $y = v \cos \theta + w \sin \theta$	
Translation	$x = v + t_x$ $y = u + t_y$	Ī
Shear (vertical)	$x = v + s_v w$ $y = w$	
Shear (horizontal)	$x = v$ $y = s_h v + w$	7

Transformações geométricas

- a) Imagem de 300 dpi da letra T;
- b) Imagem rotacionada 21º sentido horário usando interpolação do vizinho mais próximo;
- c) Imagem rotacionada 21º usando interpolação bilinear;
- d) Imagem rotacionada 21º usando interpolação bicúbica.

Operações vetoriais e matriciais

- D processamento de imagens coloridas é uma área típica em que operações vetoriais e matriciais são usadas.
- Por exemplo, cada pixel de uma imagem RGB tem 3 componentes que podem ser organizados na forma de um vetor coluna Z, onde z_1 é a intensidade do pixel na componente vermelha, z_2 na verde e z_3 na azul.

Transformadas

Em alguns casos as tarefas de processamento de imagens são melhores formuladas transformando as imagens de entrada e aplicando a transformada inversa para retornar ao domínio espacial.

- a) Imagem corrompida por interferência senoidal;
- b) Magnitude da transformada de Fourier mostrando a rajada de energia responsável pela interferência;
- Máscara usada para eliminar a interferência;
- d) Resultado da computação da inversa da transformada de Fourier.

Testando o conhecimento

Elaborar um algoritmo que leia uma imagem e aplique a moldura conforme mostrado abaixo:

Disponível no SIGAA

PRÁTICA 5

Operações sobre imagens:

- I. Aritméticas
- 2. Com conjuntos
- 3. Ponto a ponto
- 4. Geométricas
- 5. Vetoriais e matriciais

Octave:

comandos find, unique, Strcat, int2str.

Disponível no SIGAA

