# **Software Information**

- Please check, whether your inputs, the equations applied and the charactersitics are displayed correctly.
- You are welcome to send your feedback via https://github.com/oemof/tespy/issues.
- $\bullet$  LATEX packages required are:
  - graphicx
  - float
  - hyperref
  - booktabs
  - amsmath
  - units
  - cleveref
- To supress these messages, call the model documentation with the keyword draft=False.

TESPy Version: 0.4.0 - dev

Commit: d918f10d@feature/self\_documenting\_models

CoolProp version: 6.4.0

Python version: 3.8.0 (default, Oct 28 2019, 16:14:01) [GCC 8.3.0]

# 1 Connections in design mode

# 1.1 Specified connection parameters

| label                                              | p in bar (1) | T in °C (2) |
|----------------------------------------------------|--------------|-------------|
| cycle closer:out1_turbine inlet valve:in1          | 110.000      | 550.000     |
| turbine inlet valve:out1_high pressure turbine:in1 | 100.000      | -           |
| high pressure turbine:out1_extraction splitter:in1 | 10.000       | -           |
| $source\_cw:out1\_condenser:in2$                   | 10.000       | 60.000      |
| $condenser: out 2\_sink\_cw: in 1$                 | -            | 110.000     |

Table 1: Specified connection parameters

## 1.2 Equations applied

$$0 = p - p_{\text{spec}} \tag{1}$$

$$0 = T(p,h) - T_{\text{spec}} \tag{2}$$

## 1.3 Specified fluids

| label                                     | water $(3)$ |
|-------------------------------------------|-------------|
| cycle closer:out1_turbine inlet valve:in1 | 1.000       |
| $source\_cw:out1\_condenser:in2$          | 1.000       |

Table 2: Specified fluids

## 1.4 Equations applied

$$0 = x_{\text{water}} - x_{\text{water,spec}} \tag{3}$$

# 2 Components in design mode

## 2.1 Components of type CycleCloser

### 2.1.1 Mandatory constraints

$$0 = p_{\text{in},i} - p_{\text{out},i} \ \forall i \in [1]$$

$$0 = h_{\text{in},i} - h_{\text{out},i} \ \forall i \in [1]$$

$$\tag{5}$$

## 2.2 Components of type Valve

## 2.2.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1]$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \ \forall fl \in \text{network fluids}, \ \forall i \in [1]$$
 (7)

$$0 = h_{\text{in},i} - h_{\text{out},i} \,\forall i \in [1]$$

$$\tag{8}$$

## 2.3 Components of type Turbine

#### 2.3.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1] \tag{9}$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \ \forall fl \in \text{network fluids}, \ \forall i \in [1]$$
(10)

#### 2.3.2 Inputs specified

| label                                      | eta_s (11)     |
|--------------------------------------------|----------------|
| high pressure turbine low pressure turbine | 0.900<br>0.900 |

Table 3: Parameters of components of type Turbine

#### 2.3.3 Equations applied

$$0 = -(h_{\text{out}} - h_{\text{in}}) + (h_{\text{out,s}} - h_{\text{in}}) \cdot \eta_{\text{s}}$$
(11)

## 2.4 Components of type Splitter

#### 2.4.1 Mandatory constraints

$$0 = \sum \dot{m}_{\text{in},i} - \sum \dot{m}_{\text{out},j} \ \forall i \in \text{inlets}, \forall j \in \text{outlets}$$
 (12)

$$0 = x_{fl,\text{in}} - x_{fl,\text{out},j} \ \forall fl \in \text{network fluids}, \ \forall j \in \text{outlets}$$
 (13)

$$0 = h_{in} - h_{\text{out}, j} \,\forall j \in \text{outlets} \tag{14}$$

$$0 = p_{\text{in},1} - p_{\text{in},i} \ \forall i \in \text{inlets} \setminus \{1\}$$
  

$$0 = p_{\text{in},1} - p_{\text{out},j} \ \forall j \in \text{outlets}$$
(15)

## 2.5 Components of type Condenser

#### 2.5.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1,2]$$

$$\tag{16}$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \,\forall fl \in \text{network fluids}, \,\forall i \in [1,2]$$

$$\tag{17}$$

$$0 = \dot{m}_{\text{in},1} \cdot (h_{\text{out},1} - h_{\text{in},1}) + \dot{m}_{\text{in},2} \cdot (h_{\text{out},2} - h_{\text{in},2})$$
(18)

## 2.5.2 Inputs specified

| label                  | ttd_u (19)     | pr1 (20)       | pr2 (21)         | subcooling (22) |
|------------------------|----------------|----------------|------------------|-----------------|
| preheater<br>condenser | 5.000 $12.000$ | 1.000<br>1.000 | $0.990 \\ 0.990$ | True<br>True    |

Table 4: Parameters of components of type Condenser

#### 2.5.3 Equations applied

$$0 = ttd_{u} - T_{sat}(p_{in,1}) + T_{out,2}$$
(19)

$$0 = p_{\text{in},1} \cdot pr1 - p_{\text{out},1} \tag{20}$$

$$0 = p_{\text{in},2} \cdot pr2 - p_{\text{out},2} \tag{21}$$

$$0 = h_{\text{out},1} - h\left(p_{\text{out},1}, x = 0\right) \tag{22}$$

#### 2.6 Components of type Merge

#### 2.6.1 Mandatory constraints

$$0 = \sum \dot{m}_{\text{in},i} - \sum \dot{m}_{\text{out},j} \ \forall i \in \text{inlets}, \forall j \in \text{outlets}$$
 (23)

$$0 = \sum_{i} \dot{m}_{\text{in},i} \cdot x_{fl,\text{in},i} - \dot{m}_{\text{out}} \cdot x_{fl,\text{out}} \,\forall fl \in \text{network fluids}, \,\forall i \in \text{inlets}$$
 (24)

$$0 = \sum_{i} (\dot{m}_{\text{in},i} \cdot h_{\text{in},i}) - \dot{m}_{\text{out}} \cdot h_{\text{out}} \ \forall i \in \text{inlets}$$
 (25)

$$0 = p_{\text{in},1} - p_{\text{in},i} \ \forall i \in \text{inlets} \setminus \{1\}$$
  

$$0 = p_{\text{in},1} - p_{\text{out},j} \ \forall j \in \text{outlets}$$
(26)

## 2.7 Components of type Pump

#### 2.7.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1]$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \ \forall fl \in \text{network fluids}, \ \forall i \in [1]$$
 (28)

#### 2.7.2 Inputs specified

Table 5: Parameters of components of type Pump

#### 2.7.3 Equations applied

$$0 = -(h_{\text{out}} - h_{\text{in}}) \cdot \eta_{\text{s}} + (h_{\text{out,s}} - h_{\text{in}})$$
(29)

#### 2.8 Components of type HeatExchangerSimple

#### 2.8.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \,\forall i \in [1]$$

$$(30)$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \ \forall fl \in \text{network fluids}, \ \forall i \in [1]$$
 (31)

#### 2.8.2 Inputs specified

| label           | pr (32) |
|-----------------|---------|
| steam generator | 0.950   |

Table 6: Parameters of components of type HeatExchangerSimple

### 2.8.3 Equations applied

$$0 = p_{\text{in},1} \cdot pr - p_{\text{out},1} \tag{32}$$

# 3 Busses in design mode

## 3.1 Bus "power"

Specified total value of energy flow:  $\dot{E}_{\rm bus} = -5000000.000\,{\rm W}$ 

$$0 = \dot{E}_{\text{bus}} - \sum_{i} \dot{E}_{\text{bus},i} \tag{33}$$

| label                 | $\dot{E}_{ m comp}$                                 | $\dot{E}_{ m bus}$              | η       |
|-----------------------|-----------------------------------------------------|---------------------------------|---------|
| high pressure turbine |                                                     |                                 |         |
| low pressure turbine  | $\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$    |                                 | f(X)(1) |
| pump                  | $\dot{m}_{\rm in} \cdot (h_{\rm out} - h_{\rm in})$ | $rac{\dot{E}_{ m comp}}{\eta}$ | f(X)(2) |

Table 7: power



Figure 1: Bus efficiency characteristic

Figure 2: Bus efficiency characteristic

## 3.2 Bus "heat"

This bus is used for postprocessing only.

| label     | $\dot{E}_{ m comp}$                                                      | $\dot{E}_{ m bus}$                   | $\eta$ |
|-----------|--------------------------------------------------------------------------|--------------------------------------|--------|
| condenser | $\dot{m}_{\mathrm{in},1} \cdot (h_{\mathrm{out},1} - h_{\mathrm{in},1})$ | $\dot{E}_{\mathrm{comp}} \cdot \eta$ | -1.000 |

Table 8: heat