O sipanju svetlobe

Majhni delci ($d \ll \lambda$): Rayleigh-jevo sipanje

- močna odvisnost od valovne dolžine
- v vse smeri
- → modro nebo (rdeč sončni zahod)

Večji delci ($d > \lambda$): Mie-jevo sipanje

- vse valovne dolžine enako
- predvsem naprej
- → bela megla, suspenzija z večjimi agregati

Od kod absorbcijski spekter?

Absorpcija svetlobe pri prehodih med energijskimi stanji znotraj molekul (elektronskimi / vibracijskimi / rotacijskimi / magnetnimi).

Molekula lahko absorbira samo svetlobo, katere energija točno ustreza energiji enega od prehodov med stanji!

Svetloba:

- elektromagnetno valovanje (valovna dolžina/frekvenca)
- fotoni (energija $E = h c / \lambda$)

Energy of a Single Photon (eV)

h ... Planckova konstanta: 4x10⁻¹⁵ eV s

c ... hitrost svetlobe: 3x108 m/s

Energijo EM valovanja prestrežejo elektroni

- Elektronske orbitale so območja okoli jeder, kjer se nahaja elektron ali par elektronov z določeno energijo.
- Atomske orbitale se sestavljajo v molekularne.
- Elektroni po absorbciji energije prehajajo med elektronskimi orbitalami na časovni skali femtosekund.
- Energijske razlike med elektronskimi stanji so nekaj eV, kar ustreza energiji vidnih fotonov, zato elektronske prehode raziskujemo z UV-VIS spektroskopijo.

B Formation of σ- and π-molecular orbitals from two sp² hybridized carbon atoms

Od česa je odvisen absorpcijski spekter?

• Prepustnost (T) vzorca eksponentno pada (Beer-Lambert) z:

 $T = \frac{I}{I_0} = \exp(-\epsilon' c d)$

- debelino vzorca ... d
- koncentracijo absorberja ... *c*
- koeficientom absorpcije ... ε (presekom za absorpcijo ... ε
- Meritve UV-VIS običajno predstavimo kot absorbanco:
- Z UV-VIS lahko določamo koncentracijo snovi (če vzorec ne siplje svetlobe!)

Od kod barva?

- Razmerja prepustnosti različnih pasov absorpcijskega spektra se lahko spreminjajo z debelino vzorca.
- Zaradi različne občutljivosti čepkov se zaznava barve različno debelih vzorcev še dodatno spremeni.
- → Tanka plast bučnega olja ima zelenkast odtenek, debela pa bolj rdečega

Nekatere molekule svetijo

- Včasih molekule absorbirano svetlobo po nekaj nanosekundah oddajo nazaj – *fluorescenca*
- Izsevana svetloba ima v povprečju daljšo valovno dolžino kot absorbirana, ker se nekaj energije izgubi v nesevalnih prehodih (vibracije, trki)
- Zaradi občutljivosti (dobri detektorji lahko zaznajo posamezne fotone), kontrasta in specifičnosti mnogo analitskih metod izkorišča fluorescenco

Nekatere molekule svetijo

- V celicah fluorescira v UV-VIS le nekaj vrst molekul ("avtofluorescenca")
- Skupna značilnost: konjugirani elektronski sistemi, katerih delokalizirani elektroni so šibkeje vezani na jedra, zato so njihovi energijski nivoji bliže skupaj (2-3 eV), prehodom ustreza energija fotonov vidne svetlobe

(vezani elektroni imajo elektronske nivoje bolj razmaknjene in zato fluorescenco v rentgenskem delu spektra 0.1–10 nm)

aromatske aminokisline

Riboflavin

HO,

NAD/NADH

$O = \dot{P} - C$

Fluorescenčna barvila

Fluorescenčni proteini

Chromophore Structural Motifs of Green Fluorescent Protein Variants

Organska barvila

Izbira fluorescenčnega barvila

ı	Label	$^{\lambda_{abs}}$,	ε _{max} , M ⁻¹ cm ⁻¹	λ _{fl} , nm	η _{fl} , %	τ _{fl} ,	Substitute for
	ATTO 390	390	24000	476	90	5.0	
	ATTO 425	439	45000	485	90	3.6	
	ATTO 430LS	436	32000	545	65	4.0	
	ATTO 465	453	75000	506	75	5.0	
	ATTO 488	500	90000	520	80	4.1	Alexa 488*, FITC, FAM**
	ATTO 490LS	495	40000	658	30	2.6	
	ATTO 495	498	80000	526	20	1.0	
	ATTO 514	511	115000	532	85	3.9	Alexa 514
	ATTO 520	517	110000	538	90	3.6	JOE**, TET**
	ATTO 532	532	115000	552	90	3.8	Alexa 532*, HEX**
	ATTO Rho6G	533	115000	557	90	4.1	HEX**
	ATTO 542	542	120000	562	93	3.7	
	ATTO 550	554	120000	576	80	3.6	TAMRA**, Cy3***
	ATTO 565	564	120000	590	90	4.0	Cy3.5***, ROX**
	ATTO Rho3B	566	120000	589	50	1.5	
	ATTO Rho11	572	120000	595	80	4.0	ROX**
	ATTO Rho12	576	120000	601	80	4.0	
	ATTO Thio12	582	110000	607	15	2.0	
	ATTO Rho101	587	120000	609	80	4.2	
	ATTO 590	593	120000	622	80	3.7	Alexa 594*, Texas Red*

 λ_{abs} valovna dolžina vrha absorpcijskega spektra

ε ekstinkcijski koeficient (M⁻¹ cm⁻¹) podaja učinkovitost absorpcije svetlobe

 η (ϕ) kvantni izkoristek (%): razmerje med številom izsevanih in absorbiranih fotonov

 λ_{fl} valovna dolžina vrha emisijskega spektra

Svetlost barvila (brightness) $\propto \varepsilon \eta$

Pomembni podatki so lahko tudi naboj, fotostabilnost, življenjski čas (τ), ...

Pomembna je tudi smer

Absorpcija je odvisna tudi od **polarizacije svetlobe** (tj. smeri nihanja električnega polja) in smeri dipola, ki svetlobo absorbira:

- Z linearno polarizirano svetlobo lahko določimo smer dipolnega momenta orbital ter s tem smer in stopnjo urejenosti molekul ("order parameter") – anizotropija fluorescence.
- S krožno polarizirano svetlobo lahko razločimo kiralne molekule; npr. določimo sekundarno strukturo proteinov (α, β) s CD-spektroskopijo ("circular dichroism")

Vibracije vezi

- Jedra se gibljejo. Ker pa so vezana drug na drugega, izgleda, kot bi vezi vibrirale.
- Vibracijska gibanja se dogajajo na pikosekundni časovni skali.
- Prehode med vibracijskimi stanji z energijsko razliko 0.05–0.5 eV lahko spremljamo z infrardečo spektroskopijo (FTIR, Raman).
- Vsaka vez ima svojo značilno frekvenco ("fingerprint"), kar omogoča kemijsko identifikacijo

Opletanje verig

- Ko se v verigo povezana jedra gibljejo, izgleda, kot da veriga opleta, npr. pri
 - alkilnih verigah v lipidih,
 - stranskih verigah aminokislin v proteinih,
 - krajših verigah polimerov.
- Opletanje poteka na nanosekundni časovni skali.
- Za detekcijo opletanja potrebujemo metode, ki lahko zaznajo usmeritev molekul v prostoru:
 - anizotropija fluorescence,
 - elektronska paramagnetna resonanca (EPR).

akvaporin v lipidni membrani

Dinamika spina v magnetnem polju

 V magnetnem polju (B) je energija jedra/elektrona s spinom odvisna od orientacije spina glede na B

(spin imajo le orbitale s posameznimi elektroni ter nekatera jedra, npr. ¹H, ¹³C, ¹⁵N, ³¹P)

- Energijske razlike so nekaj μeV/meV, zato za prehode pri NMR/EPR potrebujemo radijske/mikro-valove
- Energijska razlika je odvisna tudi od lokalnih magnetnih polj – zamik spektralnih črt (t.i. "chemical shift") omogoča določanje kemijske sestave snovi

 $B_0 = 0$ Gostota magnetnega polja – B_0

S spektroskopijami lahko merimo tudi razdalje

 Učinkovitost prenosa energije vzbujenega stanja z enega dela molekule na drugega je močno odvisen od razdalje: r^{-6} (gibljiv dipol-dipol)

Lahko merimo razdalje med molekulami ali njihovimi deli z natančnostjo 0,1 nm!

- Primeri metod:
 - FRET (Foerster/fluorescence resonance energy transfer): prenos energije med fluorescenčnim donorjem in akceptorjem
 - 2D NMR (NOE: nuclear Overhauser effect) in 2D EPR (ELDOR: electron-electron double resonance): prenos magnetizacije med jedri/elektroni

$$\begin{array}{c|c}
 & 13C \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & |$$

Dinamika molekul & časovna okna spektroskopij

Za **UV-VIS** so skoraj vsi pojavi počasni, zato vedno meri <u>superpozicijo</u> vseh stanj! Za FTIR so elektronski pojavi prehitri, med vibriranjem vezi FTIR zazna zgolj povprečno stanje orbital! Spremembe konformacij pa so za FTIR prepočasne, zato jih zazna kot superpozicijo konformacij!

Za EPR so vse <u>spremembe vezi</u> prehitre, zato jih vidi <u>povprečne!</u> Spremembe konformacij kratkih verig so ravno v EPR časovnem oknu, zato je EPR tako občutljiv na anizotropijo njihovega opletanja! Spremembe konformacij daljših polimerov so za EPR prepočasne, zato jih zazna kot superpozicijo konformacii!

Za **NMR** je skoraj vsa <u>dina-</u>mika znotraj krajših molekul prehitra, zato jo vidi <u>povpre-čeno!</u> Samo spremembe konformacijskih stanj dolgih biopolimerov so dovolj po-časne, da jih **NMR** vidi kot superpozicijo stani!