# 이중 판별자를 활용한 두 도메인의 특성을 갖는 생성적 적대 신경망을 활용한 중성적 사람 얼굴 생성

2017741009 장우현

### Woohyun Jang

Abstract: 해당 논문은 중성적인 사람 얼굴을 생성하기 위한 이중 판별자를 활용한 생성적 적대 신경망 (GAN)을 다루고 있습니다. 논문은 성별의 장벽이 줄어들고 있음을 언급하며, 중성적인 사람 이미지와 안경을 낀 남자 이미지를 생성하기 위한 모델을 제안합니다. 제안된 모델은 GAN의 생성자와 판별자를 사용하여 도메인 A와 도메인 B의 특성을 모두 반영하는 이미지를 생성합니다. 실험 결과를 통해 제안된 모델이 중성적인 사람 이미지와 안경을 낀 남자 이미지를 성공적으로 생성하는 것을 확인하였습니다. 이 연구는 사회적 성별 관념에 대한 다양성을 촉진하고 사회적 성별 편견 완화에 기여할 수 있는 중요한 결과를 도출하였습니다.

## 1. 서 론

요즘 젠더 간의 경계가 과거보다 모호해지면서 다양한 성별적 가치관이 생겨나고 있다 [1]. 이러한 상황 속에서 외관적으로 남자답다, 여자답다의 구분의 중요도가 낮아지는 추세다. 이에 따라 남성과 여성의 얼굴의 특징을 모두 갖춘 어느 성별이 아닌 통합된 인간의 얼굴이 어떠한 지 확인해보고 싶어 이런과제를 시도했다.

컴퓨터 비전 및 딥러닝 분야에서 생성 적대 신경망 (GAN)은 이미지 생성과 관련된 다양한 응용 분야에서 근 주목을 받고 있다. GAN(Generative Adversarial Networks) [2]은 생성자와 판별자라는 두 가지 주요 구성 요소로 이루어져 있으며, 생성자는 실제와 구분하기 어려운 가짜 이미지를 생성하고, 판별자는 생성된 이미지를 실제와 구분하는 역할을 수행한다. 이러한 생성자와 판별자 간의 경쟁과 학습을 통해 점차적으로 더 실제와 유사한 이미지를 생성하는 능력이 향상된다.

본 연구에서는 기존의 GAN 모델에 변형을 가하여 도메인 A와 도메인 B의 특장을 모두 갖는 이미지를 생성하는 새로운 모델을 제안한다. 특히 이 모델은 중성적인 사람 이미지를 생성하는 것에 초점을 맞추었으며, 모델의 일반화 성능을 확인하기 위해 추가로 안경을 낀 남자 이미지 생성도 시도하였다. 중성적인 사람 이미지는 성별 특징이 모호하게 표현되거나 중립적인 표정과 특징을 가진 이미지를 의미하며, 안경을 낀 남자 이미지는 남성 특징과 안경의 특징을 동시에 가진 이미지를 의미한다.

이번 연구에서는 두 개의 판별자를 사용하여 각각 도메인 A와 도메인 B의 이미지를 판별하고, 생성된 이미지가 각각의 도메인 특징을 잘 반영하는지 확인한다.

본 연구의 목적은 도메인 A와 도메인 B의 특징을 모두 갖는 중성적인 사람 이미지 및 안경을 낀 남자이미지를 생성하는 GAN 모델을 제안하고, 그 성능을 평가하는 것이다. 이를 통해 중성적인 이미지 생성및 도메인 특징 조합에 대한 새로운 접근 방식을 제시하고, 실제 응용 분야에 적용될 수 있는 잠재력을 탐구하고자 한다.

본 논문의 구성은 다음과 같다. 먼저, 2장에서는 해당모델의 구체적인 설명을 하고 3장에서는 학습된 모델을 통해 목표 이미지들을 생성한 후 확인하며 4 장에서는 실험 결과를 제시하고 향후 연구 방향을 제 시한다.

## 2. 본 론

#### 2.1 연구 문제 정의

본 연구의 목적은 두 개의 판별자를 활용하여 도메인 A와 도메인 B의 특징을 모두 갖는 이미지를 생성하는 GAN 모델을 개발하는 것이며, 이번 연구에서는 남성 이미지와 여성 이미지를 활용해 중성적인 사람 이미지, 남성 이미지와 안경 낀 사람 이미지를 활용해 안경을 낀 남자 이미지를 생성하는 것이 목표다.

## 2.2 데이터셋 설명

본 연구에서는 CelebA [3] 데이터셋을 사용하여 실험을 수행한다. CelebA 데이터셋은 유명인 인물의 얼굴이미지로 구성되어 있으며, 다양한 속성 정보를 포함하고 있다. 이를 통해 남자와 여자, 안경을 낀 사람 등의속성에 대한 라벨을 활용하여 중성적인 사람 이미지와 안경을 낀 남자 이미지를 생성할 수 있도록 학습한다.

#### 2.3 제안된 모델

본 연구에서 제안하는 GAN 모델은 기존 이미지 데이터 처리에 특화되어 있는 DCGAN(Deep Convolutional Generative Adversarial Networks) [4] 구조에 판별자를 추가적으로 학습하여 두 가지 특성을 학습하여 이미지를 생성하는 모델로 설계했으며 다음과 같은 구조로 이루어져 있다



[Fig. 1] 제안한 GAN 모델 구조

입력 이미지는 모두 한 번에 처리되는 것이 아닌, 도메인 A와 도메인 B로 나누어 데이터를 각자 로드하고 각각의 판별자를 학습하는데 사용된다. 판별자 A (Discriminator A)는 도메인 A의 이미지와 생성된 이미지를 입력으로 받아 진짜와 가짜를 구분하는 역할을 수행한다. 판별자 B (Discriminator B)는 도메인 B의 이미지와 생성된 이미지를 입력으로 받아 진짜와 가짜를 구분하는 역할을 수행한다. 생성자 (Generator)는 입력으로 랜덤한 잡음 벡터를 받아 도메인 A와 도메인 B의특징을 모두 갖는 이미지를 생성한다.

#### 2.4 학습 방법

제안된 GAN 모델은 최적화 알고리즘으로 Adam을 사용하여 학습된다. 생성자와 판별자 A, 판별자 B는 각각의 손실 함수를 최소화하는 방향으로 동시에 학습된다.

손실 함수는 기존의 GAN 모델과 동일한 적대적 손실함수  $L_{adv}$ (Adversarial Loss) [2]를 활용하여 정의되며, 판별자 A와 B는 생성된 이미지를 가짜로, 각 도메인의 입력 이미지들을 진짜로 판단하도록 학습한다. 생성자는 두 판별자가 생성한 이미지를 진짜로 판단하도록 유도한다. 수식은 (1)과 같다.

$$\begin{split} \mathcal{L}_{\text{adv}}(G, D_A, D_B) &= \mathbb{E}_{A \sim P_{data}(A)}[log D_A(A)] \\ &+ \mathbb{E}_{B \sim P_{data}(B)}[log D_B(B)] \\ &+ \mathbb{E}_{zA \sim P_z(z)}[log (1 - D_A(z))] \\ &+ \mathbb{E}_{z \sim P_z(z)}[log (1 - D_B(z))] \leftrightarrow (1) \end{split}$$

## 3. 실험 결과

## 3.1 데이터 전처리

데이터 전처리 단계에서 이미지 크기를 64x64 픽셀로 조정하고, RGB 채널 값을 [0, 1] 범위로 정규화하였다.

#### 3.2 모델 학습

모델 학습 시 학습률은 0.0001, 배치 크기는 1로 설정하고, 전체 데이터셋을 50번 반복하여 학습을 진행하였다.

## 3.3 이미지 생성 결과



[Fig. 2] 남성 이미지와 여성 이미지를 학습하여 중성의 이미지를 생성한 결과



[Fig. 3] 남성 이미지와 안경 쓴 사람 이미지를 학습하여 안경 쓴 남자 이미지를 생성한 결과

## 4. 결 론

본 연구에서는 두 개의 판별자를 활용하여 도메인 A와 도메인 B의 특징을 모두 갖는 이미지를, 그 중에서도 중성적인 사람 이미지와 안경을 낀 남자 이미지를 생성하는 GAN 모델을 개발하였다. 제안된 모델은 중성적인 사람 이미지와 안경을 낀 남자 이미지 생성을 성공적으로 수행하였으므로 도메인 A와 도메인 B의 특징을 잘 반영하는 이미지를 생성하는 것을 확인하였다.

실험 결과를 평가하기 위해 시각적 평가를 수행하였다. 시각적 평가에서는 자연스러운 특징, 도메인 특징의 잘 반영된 모습 등을 확인할 수 있었다.

본 연구는 중성적인 사람 이미지의 생성을 통해 사회 적 성별 관념에 대해 다양성을 촉진하는 데 기여할 수 있다는 중요성을 갖는다.

결론적으로, 제안된 GAN 모델은 중성적인 사람 이미지와 안경을 낀 남자 이미지의 고품질 생성에 성공하였으며, 다양성과 완성도 면에서 우수한 성능을 보였다. 이를 통해 사회적 성별 편견 완화와 다양성 촉진을 위

한 중요한 연구 성과를 도출하였다. 앞으로의 연구에서 는 제안된 모델을 보다 발전시켜 사회적 문제 해결과 다양한 응용 분야에 적용하는 데 더욱 집중할 필요가 있다.

## References

- [1] Nielsen, M. W., Alegria, S., Börjeson, L., Etzkowitz, H., Falk-Krzesinski, H. J., Joshi, A., ... & Schiebinger, L. (2017). Gender diversity leads to better science. *Proceedings of the National Academy of Sciences*, 114(8), 1740-1742.
- [2] Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., & Bharath, A. A. (2018). Generative adversarial networks: An overview. *IEEE signal processing magazine*, 35(1), 53-65.
- [3] CelebFaces Attributes (CelebA) Dataset. Retrieved from <a href="https://www.kaggle.com/datasets/jessicali9530/celeba-dataset">https://www.kaggle.com/datasets/jessicali9530/celeba-dataset</a>
- [4] Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434. <a href="https://keras.io/examples/generative/dcgan\_overriding\_train\_step/">https://keras.io/examples/generative/dcgan\_overriding\_train\_step/</a>