

⁽¹⁰⁾ DE 44 20 785 A 1

DEUTSCHES PATENTAMT Aktenzeichen:

P 44 20 785.9

Anmeldetag:

15. 6.94

Offenlegungstag:

5.10.95

(51) Int. Cl.6: C 12 N 15/80

C 12 N 15/52 C 12 N 1/15 C 12 N 1/19 C 12 P 25/00

// (C12N 15/81,C12R 1:865) (C12N 15/52, C12R 1:645) (C12N 1/19,C12R 1:865)

30 Innere Priorität: 32 33 31

25.03.94 DE 44 10 382.4

(7) Anmelder:

BASF AG, 67063 Ludwigshafen, DE

② Erfinder:

Revuelta Doval, Jose Lui, Prof. Dr., Salamanca, ES; Santos Garcia, Maria Angeles, Dr., Santa Marta, ES; Buitrago Serna, Maria Jose, Salamanca, ES

(54) Riboflavin-Biosynthese in Pilzen

Die vorliegende Erfindung betrifft die Gene für Riboflavin-Biosynthese in dem Pilz Ashbya gossypii sowie gentechnische Verfahren zur Herstellung von Riboflavin unter Verwendung dieser Gene und Genprodukte.

DE 44 20 785 A

Beschreibung

Die vorliegende Erfindung betrifft die Gene für Riboflavin-Biosynthese in Pilzen, die damit codierten Proteine sowie gentechnische Verfahren zur Herstellung von Riboflavin unter Verwendung dieser Gene und Genprodukte.

Die Herstellung von Riboflavin durch Fermentation von Pilzen wie Eremothecium ashbyii oder Ashbya gossypii ist bekannt (The Merck Index, Windholz et al., eds. Merck & Co., Seite 1183, 1983).

In der EP 405370 sind Riboflavin-überproduzierende Bakterienstämme beschrieben, die durch Transformation der Riboflavin-Biosynthese-Gene aus Bacillus subtilis erhalten wurden.

Da die Genetik der Riboflavin-Biosynthese in Bakterien und Eukaryonten verschieden ist, sind die oben erwähnten Gene aus Bacillus subtilis nicht für ein rekombinantes Herstellverfahren für Riboflavin mit eukaryontischen Produktionsorganismen wie Ashbya gossypii geeignet.

In einer am 19.11.1992 beim Deutschen Patentamt eingereichten Patentanmeldung wurde die Klonierung der Riboflavin-Biosynthese Gene der Hefe Saccharomyces cerevisiae beschrieben.

Eine Klonierung der Ashbya gossypii Riboflavin-Biosynthese Gene unter Verwendung der S. cerevisiae RIB-Gene mit üblichen Hybridisierungsmethoden gelang jedoch nicht; offenbar war die Homologie der RIB-Gene aus S. cerevisiae und A. gossypii für eine Hybridisierung nicht groß genug.

Es bestand daher die Aufgabe, die Riboflavin-Biosynthese Gene aus einem Eukaryonten zu isolieren, um damit ein rekombinantes Herstellverfahren für Riboflavin in einem eukaryontischen Produktionsorganismus bereitzustellen.

Demgemäß wurden in dem Ascomyceten Ashbya gossypii sechs Gene (rib-Gene), die für Enzyme der Riboflavin-Biosynthese ausgehend von GTP codieren, gefunden und isoliert.

Die Erfindung betrifft die folgenden DNA-Sequenzen:

DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 2 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO: 2, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäurensubstituiert worden sind, ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.

DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 4 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO: 4, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.

DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 6 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO: 6, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.

DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 8 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO: 8, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.

DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 10 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO: 10, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.

DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 12 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO: 12, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.

Die Gene und ihre Genprodukte (Polypeptide) sind im Sequenzprotokoll mit ihrer Primärstruktur aufgeführt und haben folgende Zuordnung:

SEQ ID NO: 1: rib 1-Gen

SEQ ID NO: 2: rib 1-Genprodukt (GTP-cyclohydrolase II)

SEQ ID NO: 3: rib 2-Gen

SEQ ID NO:4: rib 2-Genprodukt (DRAP-Deaminase)

5 SEQ ID NO: 5: rib 3-Gen

SEQ ID NO:6: rib 3-Genprodukt (DBP-Synthase)

SEQ ID NO:7: rib 4-Gen

SEQ ID NO:8: rib 4-Genprodukt (DMRL-Synthase)

SEQ ID NO:9: rib 5-Gen

SEQ ID NO: 10: rib 5-Genprodukt (Riboflavin-Synthase)

SEQ ID NO: 11: rib 7-Gen

SEQ ID NO: 12: rib 7-Genprodukt (HTP-Reductase)

Guanosintriphosphat (GTP) wird durch GTP-Cyclohydrolase II (rib 1-Genprodukt) zu 2,5-Diamino-6-ribosy-lamino-4-(3H)-pyrimidin-5-phosphat umgewandelt. Diese Verbindung wird anschließend durch rib 7-Genprodukt zu 2,5-Diamino-ribitylamino-2,4 (1H,3H)-pyrimidin-5-phosphat reduziert und dann durch rib 2-Genprodukt zum 5-Amino-6-ribitylamino-2,4 (1H,3H)-pyrimidindion deaminiert. Anschließend wird in einer rib 4-Genprodukt katalysierten Reaktion die C4-Verbindung DBP hinzugefügt und es entsteht 6,7-Dimethyl-8-ribityllumazin

50

5

10

15

20

25

30

35

40

45

55

60

65

(DMRL), aus dem in der rib 5-Genprodukt katalysierten Reaktion Riboflavin entsteht. Die C4-Verbindung DBP (L-3,4-Dihydroxy-2-butanon-4-phosphat) wird aus D-Ribulose-5-phosphat in einer rib 3-Genprodukt katalysierten Reaktion gebildet.

Die in SEQ ID NO: 1, 3, 5, 7, 9, 11 beschriebenen DNA-Sequenzen codieren für die Polypeptide, die in SEQ ID

NO: 2, 4, 6, 8, 10, 12 beschrieben sind.

Außer den im Sequenzprotokoll genannten DNA-Sequenzen sind auch solche geeignet, die infolge der Degeneration des genetischen Codes eine andere DNA Sequenz besitzen, jedoch für das gleiche Polypeptid codieren.

Weiterhin sind auch solche DNA Sequenzen Gegenstand der Erfindung, die für ein Genprodukt (Polypeptid) mit anderer als der im Sequenzprotokoll aufgeführten Primärstruktur codieren, solange das Genprodukt noch im wesentlichen die gleichen biologischen Eigenschaften wie das im Sequenzprotokoll genannte Genprodukt besitzt. Unter biologischen Eigenschaften sind vor allem die die Biosynthese von Riboflavin bewirkenden enzymatischen Aktivitäten zu verstehen.

Solche veränderten Genprodukte mit im wesentlichen gleichen biologischen Eigenschaften sind durch Deletion oder Hinzufügen von einer oder mehreren Aminosäuren oder Peptiden oder durch Austausch von Aminosäuren durch andere Aminosäuren erhältlich oder können aus anderen Organismen als Ashbya gossypii isoliert

werden.

Die DNA-Sequenzen, die für die veränderten Genprodukte codieren, sind zu den DNA-Sequenzen gemäß Sequenzprotokoll in der Regel zu 80 oder mehr Prozent homolog. Solche DNA-Sequenzen lassen sich ausgehend von den in SEQ ID NO: 1, 3, 5, 7, 9, 11 beschriebenen DNA-Sequenzen, beispielsweise mit üblichen Hybridisierverfahren oder der PCR-Technik aus anderen Eukaryonten als Ashbya gossypii isolieren. Diese DNA-Sequenzen hybridisieren unter Standardbedingungen mit den in SEQ ID NO: 1, 3, 5, 7, 9, 11 beschriebenen DNA-Sequenzen.

Unter Standardbedingungen sind beispielsweise Temperaturen zwischen 42 und 58°C in einer wäßrigen Pufferlösung mit einer Konzentration zwischen 0,1 und 1 × SSC (1 × SSC: 0,15 M NaCl, 15 mM Natriumcitrat pH 7,2) zu verstehen. Die experimentellen Bedingungen für DNA-Hybridisierungen sind in Lehrbüchern der Gentechnik, beispielsweise in Sambrook et al., "Molecular Cloning", Cold Spring Harbor Laboratory, 1989, beschrieben.

Ein weiterer Gegenstand der Erfindung sind Regulationssequenzen, insbesondere Promotorsequenzen, die in 5-Richtung vor dem für das entsprechende Polypeptid codierenden DNA-Sequenzen liegen. Die Regulationssequenzen sind im Sequenzprotokoll aufgeführt und im folgenden näher erläutert.

Regulationssequenz für rib 1-Gen: SEQ ID NO: 1 Nukleotid 1-242 Regulationssequenz für rib 2-Gen: SEQ ID NO: 3 Nukleotid 1-450 Regulationssequenz für rib 3-Gen: SEQ ID NO: 5 Nukleotid 1-314 Regulationssequenz für rib 4-Gen: SEQ ID NO: 7 Nukleotid 1-270 Regulationssequenz für rib 5-Gen: SEQ ID NO: 9 Nukleotid 1-524 Regulationssequenz für rib 7-Gen: SEQ ID NO: 11 Nukleotid 1-352

Die Regulationssequenzen können auch noch in 5'- und/oder 3'-Richtung verkürzt werden, ohne daß ihre Funktion wesentlich nachläßt.

Essentiell für die Regulationswirkung sind in der Regel Fragmente von 30 bis 100, bevorzugt 40 bis 70 Nukleotiden aus den oben angegebenen Sequenzbereichen.

Diese Regulationssequenzen können auch durch gerichtete Mutagenese im Vergleich zu den natürlichen Sequenzen in ihrer Funktion optimiert werden.

Die erfindungsgemäßen Regulationssequenzen eignen sich für die Überexpression von Genen in Ashbya, insbesondere von Genen, die für die Riboflavin-Biosynthese verantwortlich sind.

Weiterhin sind Gegenstand der Erfindung Expressionsvektoren, die eine oder mehrere der erfindungsgemäßen DNA-Sequenzen enthalten. Solche Expressionsvektoren erhält man, indem man die erfindungsgemäßen DNA-Sequenzen mit geeigneten funktionellen Regulationssignalen versieht. Solche Regulationssignale sind DNA-Sequenzen, die für die Expression verantwortlich sind, beispielsweise Promotoren, Operatoren, Enhancer, ribosomale Bindungsstellen, und die vom Wirtsorganismus erkannt und bedient werden.

Gegebenenfalls können noch weitere Regulationssignale, die beispielsweise Replikation oder Rekombination der rekombinanten DNA im Wirtsorganismus steuern, Bestandteil des Expressionsvektors sein.

Ebenso gehören die mit den erfindungsgemäßen DNA-Sequenzen oder Expressionsvektoren transformierten Wirtsorganismen zum Gegenstand der Erfindung. Bevorzugt werden als Wirtsorganismen eukaryontische Organismen, besonders bevorzugt solche der Gattung Saccharomyces, Candida, Pichia, Eremothecium oder Ashbya verwendet. Besonders bevorzugte Arten sind Saccharomyces cerevisiae, Candida flaveri, Candida famata, Eremothecium ashbyii und Ashbya gossypii.

Weiterhin gehört zur Erfindung ein rekombinantes Herstellverfahren für Riboflavin, in dem die erfindungsgemäßen transformierten Wirtsorganismen in an sich bekannter Weise durch Fermentation gezüchtet werden und das während der Fermentation gebildete Riboflavin aus dem Fermentationsmedium isoliert und gegebenenfalls gereinigt wird.

5

10

25

30

50

Die rib-Gene und -Genprodukte lassen sich wie im Beispiel und im Sequenzprotokoll beschrieben isolieren und charakterisieren.

Beispiel 1

Isolierung der Ashbya gossypii Riboflavin Biosynthese Gene (rib-Gene)

a. Konstruktion einer Ashbya gossypii cDNA-Bank

Gesamt RNA wurde aus dem Mycel des Riboflavin überproduzierenden Stammes Ashbya gossypii ATCC 10195 nach Züchtung auf YEPD Medium (Sherman et al., "Methods in yeast genetics", Cold Spring Harbor, New York, 1989) in der späten logarithmischen Wachstumsphase extrahiert.

Poly(A)⁺ RNA wurde durch zweimalige Adsorption und Elution an oligo(dT)-Cellulose gereinigt (Aviv und

Leder, Proc. Natl. Acad. Sci. USA 69, 1972, 1408—1412). Die cDNA wurde nach der allgemeinen Vorschrift von Gubler und Hoffmann isoliert (Gene 25, 1983, 263) und synthetische EcoRI-Adaptoren wurden an die Enden der bluntend cDNA-Moleküle hinzugefügt. Die EcoRI nachgeschnittenen cDNA Fragmente wurden anschließend mittels T4 Polynukleotidkinase phosphoryliert und in den dephosphorylierten EcoRI geschnittenen Vektor pYEura3 kloniert (Fig. 1). pYEura3 (Clonetech Laboratories, Inc., Kalifornien) ist ein Hefe-Expressionsvektor, der die Galaktose-induzierbaren GAL1 und GAL10 Promotoren und URA, CEN4 und ARS1 beinhaltet. Diese Hefeelemente erlauben die Transformation und Expression klonierter DNA-Fragmente in Hefezellen.

Aliquots der Ligationsreaktion wurden benutzt um hochkompetente (Hanahan, DNA Cloning, ed. D.M. Glover; IRL Press, Oxford 1985, 109) E. coli XL1-Blue (Bullock et al., Biotechniques 5 (1987) 376-378) zu transformieren und Transformanden wurden auf Basis ihrer Ampicillinresistenz selektioniert.

Etwa 3 \times 10⁵ ampicillinresistente Zellen wurden vereinigt, amplifiziert und daraus Plasmid-DNA isoliert (Birnboim und Doly, Nucleic Acids Res. 7, 1979, 1513).

b. Isolierung von Ashbya gossypii cDNA-Klonen, die für riboflavinbildende Enzyme codieren

cDNA-Klone von Ashbya gossypii, die für riboflavinbildende Enzyme codieren, wurden durch funktionelle Komplementation von Saccharomyces cerevisiae Mutanten, die in der Riboflavin-Biosynthese betroffen sind, isoliert.

Die Stämme AJ88 (Mata leu2 his3 rib1::URA3 ura3-52), AJ115 (Matalpha leu2 inos1 rib2::URA3 ura3-52), AJ71 (Matalpha leu2 inos1 rib3::URA3 ura3-52), AJ66 (Matalpha leu2 inos1 rib4::URA3 ura3-52), AJ66 (Matalpha leu2 inos1 rib5::URA3 ura3-52) und AJ121 (Matalpha leu2 inos1 rib7::URA3 ura3-52) sind mutierte Stämme, die durch Zerstörung eines der sechs Gene (RIB1 bis RIB5 und RIB7), die in die Riboflavinbiosynthese bei Saccharomyces cerevisiae involviert sind.

Diese Stämme wurden jeweils mit 25 µg cDNA aus der Ashbya gossypii cDNA-Bank transformiert und auf festem Galaktose-haltigem Medium ohne Riboflavin ausplattiert. Nach ungefähr einer Woche Wachstum wurden Rib + Transformanden von den Kulturschalen isoliert.

Jeweils eine Transformande von jeder transformierten Mutante (Rib1+, Rib2+, Rib3+, Rib4+, Rib5+ und Rib7+) wurde analysiert und in allen Fällen wurde gefunden, daß der Rib+ Phänotyp nur in Galaktosemedium, nicht jedoch in Glucosemedium exprimiert war.

Diese Ergebnisse belegen, daß der Rib + Phänotyp unter der Kontrolle des plasmidständigen galaktoseinduzierbaren GAL10 Promotors exprimiert wurde.

Plasmid-DNA wurde aus den Rib1+, Rib2+, Rib3+, Rib4+, Rib5+ und Rib7+ Transformanden durch Transformation von E. coli isoliert und pJR715, pJR669, pJR788, pJR733, pJR681 und pJR827 genannt.

Partialsequenzierung der in diesen Plasmiden enthaltenen cDNA-Insertionen bestätigte, daß sie für Proteine codieren, die analog zu Proteinen der Rib-Genprodukte aus Saccharomyces sind.

c. Isolierung von Ashbya gossypii genomischen Klonen, die für riboflavinbildende Enzyme codieren

Um die genomischen Kopien der riboflavinbildenden Gene von Ashbya gossypii zu isolieren wurde eine genomische Bank von Ashbya gossypii ATCC 10195 in dem Cosmid superCos1 (Stratagene Cloning Systems, Kalifornien) angelegt und mit ³²P-markierten Proben, die von den cDNA Kopien der RIB1, RIB2, RIB3, RIB4, RIB5 und RIB7 Gene von Ashbya gossypii abgeleitet waren, gescreent.

Cosmid Klone mit RIB1, RIB2, RIB3, RIB4, RIB5 und RIB7 DNA wurden isoliert durch Koloniehybridisierung (Grunstein und Hogness, Proc. Natl. Acad. Sci. USA 72, 1975, 3961—3965). Weitere Southern Analysen von enzymatisch gespaltener Cosmid DNA unter Verwendung der gleichen RIB-spezifischen cDNA Proben erlaubte die Identifizierung definierter Restriktionsfragmente, die die RIB1, RIB2, RIB3, RIB4, RIB5 und RIB7 Gene von Ashbya gossypii enthielten.

Ein 3,1 kb langes BamHI-ClaI DNA Fragment wurde gefunden, das das gesamte RIB1 Gen von Ashbya gossypii, codierend für GTP-Cyclohydrolase II enthielt. Dieses Fragment wurde aus einem Agarose Gel isoliert und in den BamHI und ClaI geschnittenen pBluescript KS (+) phagemid (Stratagene Cloning Systems) kloniert und lieferte so das Plasmid pJR765 (Fig. 2).

Eine 1329 bp lange DNA Sequenz wurde erhalten (SEQ ID NO: 1), die den RIB1 offenen Leserahmen von 906 bp, 242 bp von der 5'-nichtkodierenden Region und 181 bp von der 3'-nichtkodierenden Region enthielt.

Das gesamte Ashbya gossypii RIB2 Gen, das für die DRAP-Deaminase codiert, wurde auf einem 3,0 kb langen

10

15

20

25

30

35

40

50

55

EcoRI-PstI Fragment gefunden, das kloniert in pBluescript KS (+) das Plasmid PJR758 ergab (Fig. 3).

Eine 2627 bp lange Region der EcoRI-PstI-Insertion mit dem offenen Leserahmen von RIB2 von 1830 bp, 450 bp der 5'-untranslatierten Region und 347 bp der 3'-untranslatierten Region wurde sequenziert (SEQ ID NO: 3).

Das gesamte Ashbya gossypii RIB3 Gen, das für die DBP-Synthase codiert, wurde auf einem 1,5 kb langen Pstl-HindIII Fragment gefunden, das kloniert in pBluescript KS (+) das Plasmid PJR790 ergab (Fig. 4).

Eine 1082 bp lange Region der PstI-HindIII-Insertion mit dem offenen Leserahmen von RIB3 von 639 bp, 314 bp der 5'-untranslatierten Region und 129 bp der 3'-untranslatierten Region wurde sequenziert (SEQ ID NO: 5).

Das Ashbya gossypii RIB4 Gen, das für die DMRL-Synthase codiert, wurde auf einem 3.2 kb langen Pstl-Pstl

Fragment gefunden, das kloniert in pBluescript KS(+) das Plasmid PJR762 ergab (Fig. 5).

Eine 996 bp lange Region der PstI-PstI-Insertion mit dem offenen Leserahmen von RIB4 von 519 bp, 270 bp der 5'-untranslatierten Region und 207 bp der 3'-untranslatierten Region wurde sequenziert (SEQ ID NO: 7).

Das gesamte Ashbya gossypii RIB5 Gen, das für die Riboflavin-Synthase codiert, wurde auf einem 2,5 kb langen PstI-PstI Fragment gefunden, das kloniert in pBluescript KS(+) das Plasmid PJR739 (Fig. 6) ergab.

Eine 1511 bp lange Region der Pstl-Pstl-Insertion mit dem offenen Leserahmen von RIB5 von 708 bp, 524 bp der 5'-untranslatierten Region und 279 bp der 3'-untranslatierten Region wurde sequenziert (SEQ ID NO: 9).

Schließlich wurde das Ashbya gossypii RIB7 Gen, das für die HTP-Reduktase codiert, auf einem 4,1 kb langen EcoRI-EcoRI-Fragment gefunden, das kloniert in pBluescript KS(+) das Plasmid PJR845 ergab (Fig. 7).

Eine 1596 bp lange Region der EcoRI-EcoRI-Insertion mit dem offenen Leserahmen von RIB7 von 741 bp, 352 bp der 5'-untranslatierten Region und 503 bp der 3'-untranslatierten Region wurde sequenziert (SEQ ID NO: 11).

Beispiel 2

mRNA Analyse der Ashbya gossypii RIB-Gene

Um die RIB spezifischen Transkripte zu identifizieren wurden Northern Analysen durchgeführt. Gesamt RNA wurde aus dem Ashbya gossypii Stamm ATCC 10195 wie in Beispiel 1 beschrieben, isoliert. Die RNA Proben des Stammes (5 µg) wurden elektrophoretisch aufgetrennt auf 0,8% Agarose-Formaldehyd-Gelen zusammen mit RNA-Größenmarkern und unter Vakuum auf Nylonmembrane geblottet (Thomas, Proc. Natl. Acad. Sci. USA, 77, 1980, 5201 – 5205).

Die Nylonmembranen wurden unabhängig voneinander mit ³²P-markierten RIB-spezifischen DNA-Proben bei 42°C in 5 × SSC und in Gegenwart von 50% Formamid hybridisiert. Das Ashbya gossypii RIB1 Gen wird als unique Message von etwa 1150 Nukleotiden exprimiert, was in beiden Stämmen durch eine 0,7 kbp lange SmaI-SacI Probe aus dem Plasmid pJR765 (Fig. 8) nachgewiesen wurde.

Analog wurden unique 1900 Nukleotide lange RIB2-, 900 Nukleotide lange RIB3-, 800 Nukleotide lange RIB4-, 1050 Nukleotide lange RIB5- und 1000 Nukleotide lange RIB7-Transkripte in den Blots mit Hilfe eines 0,5 kbp langen SmaI-SmaI-Fragments aus pJR758, eines 0,6 kbp langen HindIII-KpnI-Fragments aus pJR790, eines 0,5 kbp langen ScaI-HindIII Fragments aus pJR739 und eines 0,3 kbp langen PstI-PstI-Fragments aus pJR845 als spezifischer Probe nachgewiesen.

Beispiel 3

Expression der Ashbya gossypii RIB-Gene in Saccharomyces cerevisiae

Wie in Beispiel 1 beschrieben, können gut untersuchte Mutanten von Saccharomyces cerevisiae, die in einer Stufe der Riboflavinbiosynthese defekt sind, auf Kulturmedien ohne Riboflavin wachsen, wenn sie ein Plasmid tragen, das für die komplementierenden Enzyme von Ashbya codiert. Um die Funktion der Ashbya gossypii RIB Genprodukte zu testen wurden flavinbildende Enzymaktivitäten in zellfreien Extrakten von S. cerevisiae-Mutanten gemessen, die eines der Expressionsplasmide pJR715, pJR669, pJR788, pJR733, pJR681 und pJR827 trugen.

Diese in Beispiel 1 beschriebenen von pYEura3 abgeleiteten Plasmide enthalten Ashbya gossypii RIB-spezifische cDNA-Fragmente unter der Kontrolle des galaktoseinduzierbaren GAL10 Promotors.

Zellfreie Proteinextrakte von S. cerevisiae wurden aus Kulturen gewonnen, die in Flüssigmedium bis zu einer optischen Dichte von etwa 2 OD gewachsen waren.

Die Zellen wurden geerntet, mit kaltem 20 mM Tris HCl, pH 7,5 gewaschen und im gleichen Puffer, der mit 1 mM Phenylethylsulfonylfluorid supplementiert war, resuspendiert.

Zell-Lysate wurden durch Vortexen in Gegenwart von Glaskugeln und Zentrifugation bei 3000 g für 20 min. bei 4°C hergestellt.

GTP-Cyclohydrolase II, DRAP-Deaminase, DBP-Synthase, DMRL-Synthase. Riboflavin-Synthase und HTP-Reduktase Enzymaktivitäten wurden bestimmt wie in der Literatur beschrieben (Shavlovsky et al, Arch. Microbiol. 124 1980, 255—259; Richter et al., J. Baceriol. 175, 1993, 4045—4051; Klein und Bacher, Z. Naturforsch. 35b, 1980, 482—484; Richter et al. J. Bacteriol. 174. 1992, 4050—4056; Nielsen et al. J. Biol. Chem. 261, 1986, 3661; Plaut und Harvey, Methods Enzymol. 18B, 1971, 515—538; Hollander und Brown, Biochem. Biophys. Res. Commun. 89, 1979, 759—763; Shavlovski et al., Biochim. Biophys. Acta, 428, 1976, 611—618).

Protein wurde nach der Methode von Peterson quantifiziert (Anal. Biochem. 83, 1977, 346—356). Wie aus Tab. 1 ersichtlich, bewirkt das Plasmid pJR715 die Expression von GTP-Cyclohydrolase II Aktivität in der S. cerevisiae Mutante AJ88. Weiterhin ist diese Aktivität nur vorhanden in Zellen, die auf Galaktosemedium gewachsen sind, was darauf hinweist, daß die RIB1 cDNA Expression von Ashbya gossypii unter der Kontrolle des

galaktoseinduzierbaren GALIO-Promotors erfolgt.

Daher belegen diese Ergebnisse, daß RIB1 für die GTP-Cyclohydrolase II in Ashbya gossypii codiert. Auf analoge Art wurde gezeigt daß RIB2 für DRAP-Deaminase, RIB3 für DBP-Synthase, RIB4 für DMRL-Synthase, RIB5 für Riboflavinsynthase und RIB7 für HTP-Reduktase in diesem Pilz codiert.

Tabelle 1

GTP-Cyclohydrolase II Aktivität der S. cerevisiae RIB1 Mutante AJ88 und ihrer Transformanden

Stamm	Plasmid	GTP-Cyclohydrolase II U/mg Protein **)					
		Glucose	Galaktose				
X 2180-1A*	-	0,48	0,34				
AJ 88	-	n.d.	n.d.				
AJ 88	pIR715	n.d.	21,60				

n.d.:not detected

*) Wildtyp

5

10

15

20

25

30

35

40

45

50

55

60

**) Einheiten GTP-Cyclohydrolase II Aktivitäten
1U katalysiert die Bildung von 1 nmol HTP pro Stunde

Tabelle 2

DRAP-Deaminase Aktivität der S. cerevisiae RIB2 Mutante AJ115 und ihrer Transformanden

Stamm	Plasmid	DRAP-Deaminase U/mg Protein *)						
į		Glucose	Galaktose					
X 2180-1A		0,45	0,38					
AJ 115	-	n.d.	n.d.					
AJ 115	pIR669	n.d.	53,22					

n.d.:not detected

*) 1U katalysiert die Bildung von 1 nmol ARAP pro Stunde

Tabelle 3

DBP-Synthase Aktivität der S. cervisiae RIB3 Mutante AJ71 und ihrer Transformanden

Stamm	Plasmid	DBP-Synthase U/mg Protein *)						
		Glucose	Galaktose					
X 2180-1A	-	0,80	0,75					
AJ 71	-	n.d.	n.d.					
AJ 71	pIR788	n.d.	25,19					

n.d.:not detected

*) 1U katalysiert die Bildung von 1 nmol DBP pro Stunde

GTP-Cyclohydrolase II Aktivität der S. cervisiae RIB4 Mutante A106 und ihrer Transformanden

Stamm .	Plasmid	DMRL-Synthase U/mg Protein *)						
		Glucose	Galaktose					
X 2180-1A	-	2,04	1,73					
AJ 106	-	n.d.	n.d.					
AJ 106	pIR733	n.d.	86,54					

n.d.:not detected

*) 1U katalysiert die Bildung von 1 nmol DMRL pro Stunde

Tabelle 5

Riboflavin-Synthase Aktivität der S. cerevisiae RIB5 Mutante AJ66 und ihrer Transformande

Stamm	Plasmid	Riboflavin-Synthase U/mg Protein *)						
		Glucose	Galaktose					
X 2180-1A	-	4,41	3,80					
AJ 66	-	n.d.	n.d.					
AJ 66	pIR681	n.d.	164,20					

n.d.:not detected

*) 1U katalysiert die Bildung von 1 nmol Riboflavin pro Stunde

Tabelle 6

HTP-Reduktase Aktivität der S. cerevisiae RIB7 Mutante AJ121 und ihrer Transformande

Stamm	Plasmid	HTP-Reductase U/mg Protein *)						
		Glucose	Galaktose					
X 2180-1A		1,86	2,54					
AJ 121	_	n.d.	n.d.					
AJ 121	pIR827	n.d.	46,21					

n.d.:not detected

*) 1U katalysiert die Bildung von 1 nmol DRAP pro Stunde

7

BNSDOCID: <DE 4420785A1>

10

5

15

20

25

30

35

40

45

50

55

).)

60

SEQUENZPROTOKOLL

	(1) ALGEMEINE INFORMATION:	
5	(i) ANMELDER:	
	(A) NAME: BASF Aktiengesellschaft	
	(B) STRASSE: Carl-Bosch-Strasse 38	
	(C) ORT: Ludwigshafen	
10	(E) LAND: Bundesrepublik Deutschland	
	(F) POSTLEITZAHL: D-67056	
	(G) TELEPHON: 0621/6048526	
	(H) TELEFAX: 0621/6043123	
15	(I) TELEX: 1762175170	
	(ii) ANMELDETITEL: Riboflavin-Biosynthese in Pilzen	
	(iii) ANZAHL DER SEQUENZEN: 12	
	(,	
20	(iv) COMPUTER-LESBARE FORM:	
	(A) DATENTRĀGER: Floppy disk	
	(B) COMPUTER: IBM PC compatible	
	(C) BETRIEBSSYSTEM: PC-DOS/MS-DOS	
25	(D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPA)	
	(2) INFORMATION ZU SEQ ID NO: 1:	
	(i) SEQUENZ CHARAKTERISTIKA:	
	(A) LÂNGE: 1329 Basenpaare	
30	(B) ART: Nukleinsäure	
	(C) STRANGFORM: Doppel	
	(D) TOPOLOGIE: linear	
	(ii) ART DES MOLEKÜLS: cDNS zu mRNS	
35	(iii) HYPOTHETISCH: NEIN	
	(iii) ANTISENSE: NEIN	
	(VI) URSPRÜNLICHE HERKUNFT:	
	(A) ORGANISMUS: Ashbya gossypii	
40	(ix) MERKMALE:	
	(A) NAME/SCHLÜSSEL: 5'UTR	
	(B) LAGE: 1242	
	(ix) MERKMALE:	
45	(A) NAME/SCHLÜSSEL: CDS	
	(B) LAGE: 2431148	
	(ix) MERKMALE:	
50	(A) NAME/SCHLÜSSEL: 3'UTR	
50	(B) LAGE: 11491329	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:	
55	TTTCTGTCCG CATACTTCAT ATGCTCATCG CACATTGATA ATGTACATTC GAAAAATTTC	60
J.J	AAGATTAGCC TCCGTGAACA GCGATTTACC TTAGGCAAAA GTAACAAAAG GCTTTTCCGT	120
	AGGTGCTTTG TCATTCAACA ATCCACGTCG GAATTGGCGA CTATATAGTG TAGGGCCCAT	180
	AAAGCAGTAG TCGGTGTTGA TAGCTGTGTC AGACCAACTC TTTGTTAATT ACTGAAGCTG AT ATG ACT GAA TAC ACA GTG CCA GAA GTG AGG TGT GTC GCA CGC GCG	240
60		287
	Met Thr Glu Tyr Thr Val Pro Glu Val Arg Cys Val Ala Arg Ala 1 5 10 15	
	10 15	

CGC	ATA	CCG.	ACG	GTA	CAG	GGC	ACC	GAT	GTC	TTC	CTC	CAT	CTA	TAC	CAC	3	35	
Arg	Ile	Pro	Thr	Val	Gln	Gly	Thr	Asp	Val	Phe	Leu	His	Leu	Tyr	His			
				20					25					30				
AAC	TCG	ATC	GAC	AGC	AAG	GAA	CAC	CTA	GCG	ATT	GTC	TTC	GGC	GAG	AAC	3	83	5
Asn	Ser	Ile	Asp	Ser	Lys	Glu	His	Leu	Ala	Ile	Val	Phe	Gly	Glu	Asn			
			35					40					45			•		
ATA	CGC	TCG	CGG	AGT	CTG	TTC	CGG	TAC	CGG	AAA	GAC	GAC	ACG	CAG	CAG	4	31	
Ile	Arg	Ser	Arg	Ser	Leu	Phe	Arg	Tyr	Arg	Lys	Asp	Asp	Thr	Gln	Gln			10
		50					55					60						
GCG	CGG	ATG	GTG	CGG	GGC	GCC	TAC	GTG	GGC	CAG	CTG	TAC	CCC	GGG	CGG	4	179	
Ala	Arg	Met	Val	Arg	Gly	Ala	Tyr	Val	Gly	Gln	Leu	Tyr	Pro	Gly	Arg			
	65					70					75							15
ACC	GAG	GCA	GAC	GCG	GAT	CGG	CGT	CAG	GGC	CTG	GAG	CTG	CGG	TTT	GAT	5	527	
Thr	Glu	Ala	Asp	Ala	Asp	Arg	Arg	Gln	Gly	Leu	Glu	Leu	Arg	Phe	Asp			
80					85					90					95			
GAG	ACA	GGG	CAG	CTG	GTG	GTG	GAG	CGG	GCG	ACG	ACG	TGG	ACC	AGG	GAG	5	575	20
							Glu											
		_		100					105					110				
CCG	ACA	CTG	GTG	CGG	CTG	CAC	TCG	GAG	TGT	TAC	ACG	GGC	GAG	ACG	GCG	6	523	
							Ser											25
			115	_				120					125					
TGG	AGC	GCG	CGG	TGC	GAC	TGC	GGG	GAG	CAG	TTC	GAC	CAG	GCG	GGT	AAG	6	571	
							Gly											
		130		-	-	-	135					140						30
CTG	ATG		GCG	GCG	ACA	GAG	GGC	GAG	GTG	GTT	GGC	GGT	GCG	GGG	CAC	•	719	
							Gly											
	145					150					155							
GGC	GTG	ATC	GTG	TAC	CTG	CGG	CAG	GAG	GGC	CGC	GGC	ATC	GGG	CTA	GGC	•	767	35
							Gln											
160				_	165	_				170					175			
GAG	AAG	CTG	AAG	GCG	TAC	AAC	CTG	CAG	GAC	CTG	GGC	GCG	GAC	ACG	GTG	5	315	40
							Leu											40
	-		_	180	_				185					190				
CAG	GCG	AAC	GAG	CTG	CTC	AAC	CAC	CCT	GCG	GAC	GCG	CGC	GAC	TTC	TCG	;	863	
							His											45
			195					200					205					43
TTG	GGG	CGC		ATC	CTA	CTG	GAC	CTC	GGT	ATC	GAG	GAC	ATC	CGG	TTG	•	911	
							Asp											
		210					215		_			220						50
CTC	ACG		AAC	ccc	GAC	AAG			CAG	GTG	CAC	TGT	CCG	CCG	GCG		959	00
															Ala			
	225				- 4-	230					235							
CTA		TGC	ATC	GAG	CGG			ATG	GTG	CCG			TGG	ACT	CAG	1	007	55
															Gln			
240		-3 -			245					250			-		255			
~ = 0																		

60

	CC	C AC	מי מי	e cc	CC								•				
	Pr	O Th	r Cl	n Gl	v va	יט איני זאריי	C TC	G CG	C GA	G CT	G GA	C GG	C TA	C CT	G CG	C GCC	1055
			_		y va 26	U T WI	y se	r ar	g GT:	u Le	u As	p Gl	УТу	r Le	u Ar	g Ala	
5	AA	G GT	C GA	G CG			ב ראי	C አመ	c cm	26 C 23	5				27	O G CAC	
	Ly	s Va	1 G1	u Ar	g Mei	t Glv	, Hi	S Mei	t Lei	G CA	G CG	G CC	G CTY	G GTY	G CT	G CAC 1 His	1103
				2/	⊋				286	3				200	_		
	ACC	G TC	T GC	G GC	G GC	GAC	CTO	2 000	c cc		ם ב	7 20	0 024	289		ATCTTTGG	_
10	Thi	r Se	r Al	a Ala	a Ala	a Glu	ı Leı	ı Pro	o Arc	r Ala	a Asi	n Th	r Ui.	- A17	A TAA	ATCTTTG(1155
			29	U				295	5				201	٠			
	TAT	CATT	AAAA	CTC	rata <i>i</i>	AAC C	TATO	CCA	CA CO	GCG	CCG	C GG(~~m~	7030	A C C C	TGCTCA	1015
			300	MACE	70.1.1	TAP	CAAC	FIAAT	CC GC	CCCC	ᠧᡎᠧ	2 002	י שייי	1 mcc	maaa		1215
15			3100	ATC	ATCAC	AL A	TCC?	rcgg(IT AC	AGTO	GTC	G TTC	SAAG	AGCG	TGC	GROCAC	
	(2)	INI	ORM	AT.TOT	1 20	SEQ	ID N	IO: 2	2:							•	1329
						CHAR											
20						: 30			äure	en							
20						Amin											
		122				OGIE											
		(11	.) AH	CT. DE	S MO	LEKŪ	LS:	Prot	ein								
25	Mot	(X1	.) SE	QUEN	ZBES	CHRE	IBUN	G: S	EQ I	D NO	: 2:						
	1	* 111	GIU	ııyr	rnr	Val	Pro	Glu	. Val	Arg	Cys	Val	Ala	Arg	Ala	Arg	
	~				2					10							
				20	GII	GIY	Thr	Asp	Val	Phe	Leu	His	Leu	Tyr	His	Asn	
30	Ser	Ile	ASD	-		C1.,	w.	T	25					30			
			35		ב עם	Glu	HIS	40	Ата	Ile	Val	Phe			Asn	Ile	
	Arg	Ser			Leu	Phe	Δτα		λ ~~~	T		_	45				
		50	_				55	TYL	Arg	пÃ2	ASP		Thr	Gln	Gln	Ala	
35	Arg	Met	Val	Arg	Gly	Ala	Tvr	Va 1	Glv	Gla	Ι	60	D	~1	_		
						70					75						
	Glu	Ala	Asp	Ala	Asp	Arg	Arg	Gln	Gly	Leu	Glu	T.en	Δτα	Dho	3 am	80	
40					00					90					0.5		
40	Thr	Gly	Gln	Leu	Val	Val	Glu	Arg	Ala	Thr	Thr	Tro	Thr	Ara	Glu	Pro	
				T00					105					110			
	Thr	Leu	Val	Arg	Leu	His	Ser	Glu	Cys	Tyr	Thr	Gly	Glu	Thr	Ala	מדים	
45								120					10-				
	ser	Ala	Arg	Cys	Asp	Cys	Gly	Glu	Gln	Phe	Asp	Gln	Ala	Gly	Lys	Leu	
							135					1 4 0					
	145	AIA	Ala	Ala	Thr	Glu	Gly	Glu	Val	Val	${\tt Gly}$	Gly	Ala	Gly	His	Gly	
50						720					155						
	VET	TIE	vaı	ıyr	Leu	Arg	Gln	Glu	Gly	Arg	Gly	Ile	Gly	Leu	Gly	Glu	
					T03					170					1		
	ى بر	neu	ny 2	180	ıyr	Asn	Leu	Gln	Asp	Leu	Gly	Ala	Asp	Thr	Val	Gln	
55				700					185					100			
			195	neu	neu	Asn	HIS	Pro	Ala	Asp	Ala	Arg	Asp	Phe	Ser	Leu	
	Gly	Arq		Ile	T.en	T.017	λ c.~	200	C 1	- 7 -	<u></u>	_	205				
60	_	210				Leu	215	reu	GIĀ	тте	Glu		Ile	Arg	Leu	Leu	
60							215					220					

4	20	785	A 1	
---	----	-----	------------	--

Thr Asn Asn Pro Asp Lys Val Gln Gln Val His Cys Pro Pro Ala Leu 225 230 235 240	
225 230 235 240 Arg Cys Ile Glu Arg Val Pro Met Val Pro Leu Ser Trp Thr Gln Pro	
245 250 255	5
Thr Gln Gly Val Arg Ser Arg Glu Leu Asp Gly Tyr Leu Arg Ala Lys 260 265 270	
Val Glu Arg Met Gly His Met Leu Gln Arg Pro Leu Val Leu His Thr	
275 280 285	10
Ser Ala Ala Glu Leu Pro Arg Ala Asn Thr His Ile	
290 295 300	
(2) INFORMATION ZU SEQ ID NO: 3:	
(i) SEQUENZ CHARAKTERISTIKA:	15
(A) LÂNGE: 2627 Basenpaare	
(B) ART: Nukleinsäure	
(C) STRANGFORM: Doppel	
(D) TOPOLOGIE: linear	20
(ii) ART DES MOLEKŪLS: cDNS zu mRNS	
(iii) HYPOTHETISCH: NEIN	
(iii) ANTISENSE: NEIN	
(vi) URSPRÛNLICHE HERKUNFT:	25
(A) ORGANISMUS: Ashbya gossypii	
(ix) MERKMALE:	
(A) NAME/SCHLÜSSEL: 5'UTR	30
(B) LAGE: 1450	30
(ix) MERKMALE:	
(A) NAME/SCHLÜSSEL: CDS	
(B) LAGE: 4512280	35
(ix) MERKMALE:	
(A) NAME/SCHLÜSSEL: 3'UTR	
(B) LAGE: 22812627	
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 3:	CO 40
CTGCAGGACA ATTTAAATTA CGATTACACG CGGCAGCCTT CTTGGTGCGA CAGGATTTTG	60 20
TACAAGAATG ACCCCAAGCG GGTAAGAGTI CATAGGTATG CCTCGTTTGT THOMSON	80
ATTITITICANT ATACTGATCA CGAACCCGTA ACGCTCGATC TOTACCGTTTO	40
CAATTTGTCC CAATGGCTAT GCAGAATATT TCCCCACAGA GCTCCTTGTT TTTTGTCC	00 45
GGAGACGTCA CAGATATACT ACTGATGTTG TTCTCCAGGTC THINDSTONE	60
TICGATUTIG TEGTATICAL GATATICCIC ISTITICATITI	20
ACGGTATAGC GCTATTCGTT CATAGTGACA CATGCGGCAC TAGGTATTAT.	74
TATAAACTGC TACTTAACGI ICGIAACACC AIG CIC IIII GGG GII GG	50
Met Leu Lys Gly Val Pro Gly Leu	
1 5	522
CIT TIT AAG GAG ACG CAA CGI CAI CIG AAA CCC 1184 CIT III	
Leu Phe Lys Glu Thr Gln Arg His Leu Lys Pro Arg Leu Val Arg Ile	55
10 15 20	570
ATG GAA AAC ACA TCG CAG GAT GAG AGT CCC 1221 11611 CTC CTC	,
Met Glu Asn Thr Ser Gln Asp Glu Ser Arg Lys Arg Gln Val Ala Ser	
25 30 35 40	60

	AA	C TTC	G AGO	. AGC	GAT	GCC	GAT	GAC	GGC	TCG	CCC	GC	A GTT	· ACC	a Acc	CCG	610
	Ası	n Lei	ı Ser	Ser	Asp	Ala	Asp	Glu	Gly	Ser	Pro	Ala	. Val	Thr	Arc	Pro	618
					45)				50	1				= =	-	
5	GTT	P AAZ	ATC	: ACC	AAA	CGC	CTC	AGG	AAG	AAG	AAC	CTO	GGG	ACA	-		666
	Val	Lys	: Ile	THE	. ràs	Arg	Leu	Arg	Lys	Lys	Asn	Let	ı Gly	Thr	Glv	GAG	000
				00					65					70			
	CTA	CGG	GAC	AAA	GCA	GGA	TTC	AAG	TTG	AAG	GTG	CAA	GAC	GTG	AGC	: AAA	714
10	Leu	l Arg	, vah	Lys	Ala	Gly	Phe	Lys	Leu	Lys	Val	Glr	Asp	Val	Ser	Lys	714
			, ,					80					05				
	AAC	CGT	CAC	AGA	CAG	GTC	GAT	CCG	GAA	TAC	GAA	GTC	GTG	GTA	GAT	GGC	762
	ASD	. ALG	HIS	Arg	Gln	Val	Asp	Pro	Glu	Tyr	Glu	Val	Val	Val	Asp	Gly	, 02
15		90					95					100					
	CCG	ATG	CGC	AAG	ATC	AAA	CCG	TAT	TTC	TTC	ACA	TAC	AAG	ACT	TTC	TGC	810
	FIO	Mer	Arg	Lys	Ile	Lys	Pro	Tyr	Phe	Phe	Thr	Tyr	Lys	Thr	Phe	Cvs	010
						TTO					115					100	
20	AAG	GAG	CGC	TGG	AGA	GAT	CGG	AAG	TTG	CTT	GAT	GTG	TTT	GTG	GAT	C2.3	858
	гÃ2	GIU	Arg	Trp	Arg	Asp	Arg	Lys	Leu	Leu	Asp	Val	Phe	Val	Asp	Glu	330
					125					130					125		
25	Dho	7	GAC	CGC	GAT	AGG	CCT	TAC	TAC	GAG	AAA	GTC	ATC	GGT	TCG	GGT	906
23	Pne	Arg	Asp	Arg	Asp	Arg	Pro	Tyr	Tyr	Glu	Lys	Val	Ile	Gly	Ser	Gly	
				140					145					150			
	Clv	GIG	CTC	CTG	AAC	GGT	AAG	TCA	TCG	ACG	TTA	GAT	AGC	GTA	TTG	CGT	954
30	GLY	AGT	155	reu	Asn	GIĀ	Lys	Ser	Ser	Thr	Leu	Asp	Ser	Val	Leu	Arg	
			エンン					160					165				
	Acn	Clu	A CT	CIC	ATT	TCG	CAC	GAG	CTG	CAC	CGT	CAT	GAG	CCA	CCG	GTC	1002
	non	170	ASD	rea	тте	Ser	His	Glu	Leu	His	Arg	His	Glu	Pro	Pro	Val	
35	TCC	_	AGC.	CCC	2 (00)	100	175		_			180					
	Ser	Ser	Ara	D~c	ATT	AGG	ACG	GTG	TAC	GAA	GAT	GAT	GAC	ATC	CTG	GTG	1050
	185		y	FIO	116	arg	unr	vai	Tyr	Glu		Asp	Asp	Ile	Leu	Val	
		GAC	AAG	CCC	A CC	190	3 COC	~~~			195					200	
40	Ile	Asp	Lvs	Pro	Sar	C1	ATT	CCA	GCC	CAT	CCC	ACC	GGG	CGT	TAC	CGC	1098
			_, _	0	205	Gry	TTE	PIO	Ala		Pro	Thr	Gly	Arg	Tyr	Arg	
	TTC	AAC	TCC	Δጥጉ		אאא	አጠአ	cmm		210					215		
	Phe	Asn	Ser	Ile	Thr	Lare	TIA	CTT	GAA	AAA	CAG	CTT	GGA	TAC	ACT	GTT	1146
45				220		-17 3	TIE	Leu	GIA	гĀЗ	GIn	Leu	Gly		Thr	Val	
	CAT	CCA			CGA	רייוכ	CAC	000	225					230			
	His	Pro	Cvs	Asn	Δτα	Leu	Acr	7	CTA	ACC	AGT	GGC	CTA	ATG	TTC	TTG	1194
			235		9	acu .	rsp.	240	Leu	TUL	Ser	Gly	Leu	Met	Phe	Leu	
50	GCA			CCA	אמכ	CCA .			~~				245				
	Ala	Lys	Thr	Pro	Tivs	Clu	31 a :	GAT.	GAG .	ATG	GGT	GAT	CAG	ATG	AAG	GCG	1242
	Ala	250		_•	, _ _	-Ly	255	rap	GTU.	wec			Gln	Met	Lys	Ala	
			GTG :	AAG	מממ	י לעם	~ JJ	~m~	~~~			260					
55	CGC Arg	Glu	Val	Lvs 1	Tive i	CAA.	TAT (3'1'1' (GCC (CGG	GTT	GTT	GGG	GAA	TTT	CCT	1290
	Arg 265			_, • .		270	- A.T. /	vori ,	чта.	arg	val	Val	Gly	Glu	Phe	Pro	
					•	2,0					275					280	

ATA	GGT	GAG	ATA	GTT	GTG	GAT	ATG	CCA	CTG	AAG	ACT	ATA	GAG	CCG	AAG	1338	
Ile	Gly	Glu	Ile	Val	Val	Asp	Met	Pro	Leu	Lys	Thr	Ile	Glu	Pro	Lys		
				285					290					295			
CTT	GCC	CTA	AAC	ATG	GTT	TGC	GAC	CCG	GAA	GAC	GAA	GCG	GGC	AAG	GGC	1386	5
Leu	Ala	Leu	Asn	Met	Val	Cys	Asp	Pro	Glu	Asp	Glu	Ala	Gly	Lys	Gly		
			300					305					310			1424	
GCT	AAG	ACG	CAG	TTC	AAA	AGA	ATC	AGC	TAC	GAT	GGA	CAA	ACG	AGC	ATA	1434	10
Ala	Lys	Thr	Gln	Phe	Lys	Arg	Ile	Ser	Tyr	Asp	GīĀ	GID	Inr	Ser	TTE		10
		315					320		1.00	C 3 M	C 2 C	325	CCT	Cum	CAC	1482	
GTC	AAG	TGC	CAA	CCG	TAC	ACG	GGC	CGG	ACG	CAT	CAG	TIO	224	Val	His	1402	
Val		Cys	Gln	Pro	Tyr		Gly	Arg	THE	nis	340	TTE	Arg	AGT	nis		15
	330					335				Cam		א מיטיזי	ጥለጥ	æ⊂C	ካልጥ	1530	
TTG	CAA	TAC	CTG	GGC	TTC	CCA	ATT	GCC	AAC	CAT	D~C	TIA	US A T	Ser	Δςπ	2504	
Leu	Gln	Tyr	Leu	Gly		Pro	Ile	Ala	ASII	355	PIO	TIE	TAT	361	360		
345					350		CEC	000	220		WGC.	ΔΔΔ	GCA	GAC		1578	20
CCG	CAC	ATA	TGG	GGC	CCA	AGT	CTG	03	AAG	Clu	Cre	Tare	Δla	Asn	TVT		
Pro	His	Ile	Trp		Pro	Ser	Leu	GTĀ	370	GIU	Cys	ב עַנו	7.1	375	-3 -		
				365		c=1		C2.3		CCT	AAG	ል ርጥ	ΔΔΔ		GCG	1626	
AAG	GAG	GTC	ATC	CAA	AAA	CTA	AAC	CAA	TIO	Clar	Tare	Thr	TAYS	Ser	GCG Ala		25
Lys	Glu	Val		Gin	Lys	Leu	Asn		TIE	GIY	ny s	1111	390	501			
			380			0 x m	maa	385	COT	CAA	COU	ጥጥር	_	GGG	GAA	1674	
GAA	AGT	TGG -	TAC	CAT	TCT	GAT	700	Cln	GU	Glu	Val	Phe	Lvs	Glv	Glu		
Glu	Ser		ıyr	HIS	ser	ASD	400	GIII	Gry	014	,	405					30
~~~	# 06	395	CN N	ത്രന	ccc	a cc		ርጥር	TAC	ACT	GAC			CCG	AAT	1722	
CAA	1.GC	GAT	GAA	TGT	C111	Thr	Glu	T.e31	Tyr	Thr	Asp	Pro	Gly	Pro	Asn		
Gin		ASO	Giu	Cys	Gly	415			-2 -		420		_				
CAM	410	CNC	ጥጥል	TCC	ىست		GCA	TAT	CGG	TAT	GAA	TCC	ACT	GAA	CTG	1770	35
ACD	Tan	Aco	T.011	TGG	Ten	His	Ala	Tvr	Arq	Tyr	Glu	Ser	Thr	Glu	Leu		
425	neu	rs,			430			-	_	435					440		
GAT	CAC	220	GGT	GCT		AAG	CGG	AGT	TAC	TCT	ACT	GCG	TTI	CCI	GAG	1818	
Asp	Glu	Asn	Glv	Ala	Lvs	Lys	Arg	Ser	Tyr	Ser	Thr	Ala	Phe	Pro	Glu		40
21.00				445		_	_		450					455	;		
TGG	GCT	CTI	GAG			GGC	GAC	TTC	ATG	CGG	CTI	GCC	ATC	GAA	CAG	1866	5
Tro	Ala	Lev	Glu	Gln	His	Gly	Asp	Phe	Met	Arg	Leu	Ala	1 Ile	e Glu	Gln		45
			460	1				465	5				470)			
GCT	AAG	AAA	TGC	CCA	ccc	GCG	AAG	ACA	TCA	TTI	AGC	GT?	r GG:	r GCC	GTG	1914	1
Ala	Lvs	Lvs	Cys	Pro	Pro	Ala	Lys	Thr	: Ser	Phe	Ser	· Val	L Gly	/ Ala	val		
		475	5				480)				48	5				50
TTA	GTI	' AAT	r GGG	ACC	GAG	ATT	TTG	GCC	ACT	GGI	TAC	TC	A CG	G GAG	CTG	1963	2
Leu	Val	Ası	ı Gly	Thi	Glu	ı Ile	e Lev	ı Alá	1 Thi	Gly	Ty:	: Se	r Ar	g Gl	ı Leu		
	490)				495	5				500	כ					_
GAA	GGC	: AAC	acc	CAC	GCT	r GAZ	A CAA	Y TG	r GCZ	CII	CA	A AA	A TA	T TT	r gaa	201	0 55
Glu	Gly	ASI	n Thr	His	s Ala	a Glu	ı Glr	ı Cys	s Ala	a Lev	ı Gli	ı Ly	s Ty	r Ph	e Glu		
505					510					519	5				520		

13

60

													T.				
	CAZ	A CA	I. AAA	A ACC	GAC	AAG	GTI	CC	r att	GG1	C AC	GTA	ATA	TAC	: ACC	ACT	2058
	GII	n His	s Lys	Thr	Asr	Lys	Val	. Pro	o Ile	Gly	Th:	. Val	Ile	Ty	Thi	Thr	2030
					545)				530	3				E 2 6	-	
5	ATC	GAC	G CCI	TGI	TCI	CTC	CGT	CTO	AG1	GGI	' AA	AAA 1	CCG	TGI	3 CMC		2106
	Met	: Glı	ı Pro	Cys	Ser	Leu	Arg	Lei	ı Ser	Gly	Asr	Lvs	Pro	Cvs	. Val	Glu	2100
				240					545					550			
	CGI	ATA	ATC	TGC	CAG	CAG	GGT	' AA1	TTA T	ACT	GCT	ىرىسى ،	بلعلمان	Cma		GTA	215
10	Arg	Ile	e Ile	Cys	Gln	Gln	Gly	Ası	ı Ile	Thr	Δ]=	Val	Pho	V-1	01-	Val	2154
			555				_	560)		71_0	· vai	565	V d 1	. Сту	vai	
	CTT	GAG	CCA	GAC	AAC	TTC	GTG			እ አጥ	ארים ו	» cm	202			TTG	
	Leu	Glu	Pro	Asp	Asn	Phe	Val	Tivs	ι Δen	yen	The s	Com	3	33.	CTA	Leu	2202
15		570)	_			575	_, _	ASII	ASII	. 1111		Arg	Ala	Leu	Leu	
	GAA	CAA	CAT	GGT	ልጥል	GAC			1 Cmm	000		580				GAA	
	Glu	Gln	His	Gly	Tle	2550	TA1	TIA	CIT	GIC	CCT	GGG	TTT	CAA	GAA	GAA	2250
	585		0	C+3	116	590	IYL	TTE	Leu	vaı			Phe	Gln	Glu	Glu	
20			CAA	ccc	CCA						595					600	
	Cvs	Thr	Clu	37.	NI.	11G	AAG	GGT	CAT	TGA	TTTT	GCT (GCGA.	ATTG	TA		2297
	Cy D	1111	GIU	Ald		reu	ьуs	GIY	His								
	CATV	~ x ~ m	(T) N N		605					610							
25	y mar	SWC.I.	TAA A	AATA:	rcga	GG CC	STAT	AATT	C GT	CGCA'	TTTT	ATA	ragt'	rat ·	CTAT	GTTTA	2357
23	AIG	AC I G	111 7	AAGC.	TTGA:	IC TA	ATAT:	${ t r}{ t r}{ t c}{ t r}$	C AA	STGA.	እጥጥር	CCAC	יאידיאי	י מיטים	maam	1 000m	
	******	- T-L-L-1	uur (JAGGC	JAG L	T.T. J.C	AAA	rtcg	C AAG	CAA	TCTT	ልጥል ባ	PACCO	י ידיינאן	~ 2 00 0	3 m3 m3 ·	
	ACG	344 11	GMG A	ALTICA	7.T.T.V	AG CI	'ACC'	Γ GAT	\mathbf{T} $\mathbf{T}\mathbf{T}$	GCTC	2220	ጥርጥባ	مسترسر	י מטעם	3 COM		
20	AGI	MUM	IAG	LICCI	L'AAG	LT TO	TTTT	ATTG	\mathbf{T} CCC	CAG	rcgg	CCAZ	TTG	TC (CGGA	CTTAT'	r 2597
30	2115	2 T T TV	CCA	LTAG	r.C.G.T.(ST TA	IGTA (${ t GTAT}$	T					_			2627
	(2)	INF	ORMAT	MOI	ZU S	SEQ I	D NO): 4	:								2021
			(i) S	EQUE	NZ C	HARA	KTEF	RIST	IKA:								
			(2	LÄ	NGE:	609	Ami	nos	āurer	1							
35			(E	3) AF	T: A	mino	säur	:e									
						GIE:											
		(ii)) ARI	DES	MOL	EKÜL	S: F	rote	ein								
		(xi)	SEC	UENZ	BESC	HREI	BUNG	: SI	EQ II	NIO -							
40	Met	Leu	Lys	Gly	Val	Pro	Glv	T.011	Leu	Pho.	T	G1	m1	-1	_		
	1			•	5		<u></u> 3	neu	пец	Pile 10	цХS	GIU	unr	GIn		His	
	Leu	Lys	Pro	Ara		Va 1	7~~	T10	1	10	_				15		
		-		20		var.	ALG	TIE	Met	GIU	Asn	Thr	Ser		Asp	Glu	
45	Ser	Ara	Lve		Gln.	370 3	.	۵.	25					30			
		5	35	AL Y	GTII	vai.	Ата	Ser	Asn	Leu	Ser	Ser	Asp	Ala	Asp	Glu	
	Glyz	Ser		71-	Y7_ 7	_,	_	40					45				
	Gry	261	PIO	AIG	vaı	Thr .	Arg	Pro	Val	Lys	Ile	Thr	Lys	Arg	Leu	Arg	
50		30					55					60					
	rλ2	гÀ2	ASI	Leu	Gly	Thr	Gly	Glu	Leu	Arg	Asp	Lys	Ala	Gly	Phe	Lvs	
						70					75					~ ~	
	Leu	Lys	Val	Gln	Asp	Val .	Ser	Lys	Asn	Arg	His	Arg	Gln	Va1	Δsn	Pro	
55					00					9.0					0 =		
	Glu	Tyr	Glu	Val	Val	Val 2	Asp	Glv	Pro	Met	Ara	Lve	Tla	Tare	73	Th	
				100			-	•	105		9	-1 3			FIO	TAL	
	Phe	Phe	Thr	Tyr	Lys	Thr	Phe (Cvs	Lys	G1 11	A ~~	محمل	7	110	3		
60			115		-	- •		120	_, J		vr â			ASP	arg	гÃ2	
JU													125				

			•										/				
Leu	Leu	Asp.	Val	Phe	Val	Asp	Glu	Phe	Arg	Asp	Arg	Asp	Arg	Pro	Tyr		
	130					135					140						
Tyr	Glu	Lys	Val	Ile	Gly	Ser	Gly	Gly	Val		Leu	Asn	Gly	Lys			
145					150			_		155	_		_		160		5
Ser	Thr	Leu	Asp		Val	Leu	Arg	Asn		Asp	Leu	Ile	Ser		Glu		
		_	•	165	_	_		a	170	•	D	-1 -	3	175	11-1		
Leu	His	Arg		Glu	Pro	Pro	Val		Ser	Arg	Pro	Ile		TUIT	Val		
_		_	180	-	-1 -	-	· · - 1	185		T	D===	C	190	710	Dro		10
Tyr	Glu		Asp	ASD	IIe	ren		TIE	Asp	гÃг	PIO	Ser 205	GIY	TIE	PIO		
	···	195	mh	C1	3	m	200	Dho	2 02	505	T10		Lace	TIA	T.OU		
Ala		Pro	THE	GTĀ	AIG	215	Arg	PHE	ASII	267	220	Thr	Lys	116	Deu		15
C1	210	C1-	T 011	C1	m.~		17= 1	uie	Pro	0/6		Arg	T. - 11	Δsn	Ara		.,
	гÃ2	Giii	neu	Gry	230	1111	AGT	1113	FLO	235	7311	n.y	200	nop	240		
225	mbx	505	Glaz	T.Ou		Dhe	T.011	Δla	TAYS		חדם	Lys	Glv	Δla			
nea	1111	261	GIY	245	riec	1110	neu	7124	250		0	- 27 -	0-7	255	1.05		20
Glu	Mat	Glv	Asn		Met	Lvc	Δla	Ara		Val	Lvs	Lys	Glu		Val		
GIG	Mec	Gry	260	Q - 111	1100	٠,٠		265			-1 -		270	-1 -			
Δla	Ara	Va I		Glv	Glu	Phe	Pro		Glv	Glu	Ile	Val		Asp	Met		
		275	,	0-1			280					285		-			25
Pro	Leu		Thr	Ile	Glu	Pro		Leu	Ala	Leu	Asn	Met	Val	Cys	Asp		
	290	•				295	-				300				-		
Pro		Asp	Glu	Ala	Gly	Lys	Gly	Ala	Lys	Thr	Gln	Phe	Lys	Arg	Ile		
305					310					315					320		30
Ser	Tyr	Asp	Gly	Gln	Thr	Ser	Ile	Val	Lys	Cys	Gln	Pro	Tyr	Thr	Gly		
				325					330			•		335			
Arg	Thr	His		Ile	Arg	Val	His		Gln	Tyr	Leu	Gly		Pro	Ile		35
			340					345			_		350	_	_		33
Ala	Asn		Pro	Ile	Tyr	Ser		Pro	His	Iie	Trp	Gly	Pro	Ser	Leu		
-1.	•	355	-	•			360	T =	~3	**- 3	-1 -	365	T	T	3.55		
GIA		GIU	Cys	гÃг	ALA		ıyr	rys	GIU	vai	380	Gln	гуѕ	neu	ASII	•	40
<i>α</i> 3	370	G1	T	m1=	T	375	×1-	C1	50×	Ti		ಚಕ್ಕ	505	N CD	Cor		
	TIG	GIÀ	гус	THE	390	Ser	ALG	GIU	Ser	395	TAT	His	Ser	ASD	400		
385	Glaz	G111	17 a 1	Dho		Gly	Glu	Gln	Cvc		Glu	Cys	Glv	ጥኮኖ			
GIII	GTA	GIU	AGI	405		Gry	GIU	GIII	410		GIG	Cy 3	GLy	415	914		45
T.e.ii	ጥላታ	ጥከተ	Asn			Pro	Asn	Asp			Len	Trp	Leu		Ala		
200	-1-		420		011			425					430				
Tvr	Ara	Tvr		Ser	Thr	Glu	Leu		Glu	Asn	Gly	Ala		Lys	Arq		
-1 -	3	435					440				•	445		-	•		50
Ser	Tyr		Thr	Ala	Phe	Pro		Trp	Ala	Leu	Glu	Gln	His	Gly	Asp		
	450					455		_			460						
Phe		Arg	Leu	Ala	Ile		Gln	Ala	Lys	Lys	Cys	Pro	Pro	Ala	Lys		50
465		_			470				-	475					480		55
	Ser	Phe	Ser	Val	Gly	Ala	Val	Leu	Val	Asn	Gly	Thr	Glu	Ile	Leu		
				485					490					495			

15

60

	Ala	Thr	Gly	Tyr	Ser	Arg	Glu	Leu	Glu	Gly	Asn	Thr	His	Δla	Glu	Gln	
				200					505					510			
5			313		Lys			520					525				
		220			Ile		535					540					
10	243				Pro	ວລບ					555	Cys					
	Ile	Thr	Ala	Val	Phe 565	Val	Gly	Val	Leu	Glu 570	Pro	Asp	Asn	Phe	Val 575	Lys	
15	Asn	Asn	Thr	Ser 580	Arg	Ala	Leu	Leu	Glu 585	Gln	His	Gly	Ile	Asp 590	Tyr	Ile	
	Leu	Val	Pro 595	Gly	Phe	Gln	Glu	Glu 600	Cys	Thr	Glu	Ala		Leu	Lys	Gly	
	His												605				
20	(2)	TNIDO															
	(2)	TINE C	KMA'I	ITENIA ITON	ZU S CHA	EQ I	D NC): 5:									
		(-,	(A) LÃ	NGE:	ገለጹን የሰ፤	EKIS	LIKA	.: 								
25			(B) AR	T: N	ukle	insā	nre nre	aare								
					RANG												
			(D) TO	POLO	GIE:	lin	ear									
20		(ii)	ART	DES	MOL	EKŪL	S: c	DNS	zu m	RNS							
30	(iii)	HYP	OTHE	TISC	H: N	EIN										
	(.	111) /*** \	ANT	ISEN	SE:	NEIN											
		(\ \ \)			LICH												
35		(ix)	MER	, OR KMAT.	GANI.	SMOS	: As	nbya	gos	sypi	i						
		•			ME/S	CHLÜ	SSEL	. 5,	פיחוז								
			(B) LA	GE:	13	14	• -	OIK								
		(ix)	MER					•									
40					ME/S			: CD	s								
		<i>, .</i> .			GE:	315.	.953										
	1	(1X)	MERI			_											
45			(A)	IAN (ME/S	CHLŪ:	SSEL	: 3′1	JTR								
	4	(xi)			GE: 9												
	CCCTT	CTT	SC AC	CGGT	BESCI CGTT	וה טעה מערים	BUNG BUNG	- SE() ID	NO:	5:						
	AATGT	PACC	AC C	TATC	TGTA	G TT	PACT	ATCG	CATY	PULTA:	rrg (SAACA	AATG.	AG T	AAGT	CCTCA	60
50	CAAGT	GAA.	AC AT	PATC:	ACAT	GC	CAGC	AGGT	TGG	CTAC	CA	TAA	TA COU	TG A	CCTG	TTAGG	120
	TOACE	TATE	M M	4000	C.T.T.(≟ AG∶	rgct.	PTTG.	CAA	rgarr	PCT (באהינה:	ልሮልሞ	3 አ ጥ/	~~~~		242
	· · · · · ·	TACE	A M	AVI-I.	I CAA(J GT	PTTA(CAAG	TTC	CAAC	GCT (የልርጥ	ים ב בר	ተር አ	TC N C	~ > > ~ ~	240
55	ACAAA	CCA	AG CZ	AAC A	ATG A	ACA A	AGC (CA :	rgc i	ACT (SAT A	ATC (GT :	ACC (30T 1	⊶ጥላር ∆ጥል	
				1	Met 1	hr s	Ser 1	Pro C	ys ?	Chr A	sp 1	le (ily :	thr i	Ala :	Ile	350
					1				5				_	10			

16

60

GAG	CAG	TTC.	AAG	CAA	AAT	AAG	ATG	ATC	ATC	GTC	ATG	GAC	CAC	ATC	TCG	398	
Glu	Gln	Phe	Lys	Gln	Asn	Lys	Met	Ile	Ile	Val	Met	Asp	His	Ile	Ser		
		15					20					25					
														ACT		446	5
Arg		Asn	Glu	Ala	Asp		Ile	Cys	Ala	Ala		His	Met	Thr	Ala		
	30					35					40						
														TGC		494	
	Gln	Met	Ala	Phe		Ile	Arg	Tyr	Ser		Gly	Tyr	Val	Cys			10
45					50					55					60		
														ATG		542	
Pro	Met	Thr	Asn		Ile	Ala	Asp	Lys		Asp	Leu	Pro	Leu	Met	Asn		
	•			65					70					75			15
														GCG		590	
Thr	Leu	Lys	_	Lys	Ala	Phe	Ser		Asp	Arg	His	Ser		Ala	Tyr		
			80					85					90				20
														TCC		638	20
Thr	Ile		Cys	Asp	Tyr	Ala		Gly	Thr	Thr	Thr		Ile	Ser	Ala		
		95					100					105					
														TCC		686	25
Arg	_	Arg	Ala	Leu	Thr		Asn	Gln	Leu	Ala		Pro	Glu	Ser	Lys		23
	110					115					120						
														GCC		734	
	Thr	Asp	Phe	Thr		Pro	Gly	His	Ile		Pro	Leu	Arg	Ala			30
125					130					135					140	~~~	••
														CTC		782	
Asp	Gly	Gly	Val		Glu	Arg	Asp	GTĀ		Thr	GIU	Ата	Ala	Leu	Asp	•	
				145					150					155		020	35
														GAA		830	
Leu	Cys	Arg		Ala	GIA	vai	Pro		vaı	Ala	Ala	TIE		Glu	Leu		
cm.	3.00	~	160	~~	CEC	000	CEC	165	3 mc	x cm	mmc	Cam	170	TGT	2002	878	
														Cys		0/0	40
vai	ser		Arg	ASD	٧dı	GTA	180	mec	Mec	1111	nea	185	Gru	Cys	116		
C2 2	mmc	175	220	3 3 C	CNC	CCT		ccc	CTC	איניכ	3.00		CAM	GAC	CTC	926	
														Asp		920	
GIU	190	261	пХ≥	гÃ2	urs	195	Den	YT.	Leu	116	200	VAI	nis	ASD	nea		45
220		CCX	com	ccc	ccc		CAC	תיא כי		~ A A . /		ייייטרייי	י אי ידינד	እ ር ጥር (GTGT	980	
					Ala			indi	1000		-GAG.	LICI		1010	30101	,00	
205	AIG	Ala	vai	ATG	210	Lys	GIII										
	מרחרת אור	nco 1	אאמאר	DACC:		ሀር እ ሞረ	ירא א	A A A A	מתר א	አ አጥር	CMA	י א א ביים	רידים (יחיית אב	PATCAA	1040	50
					GT A							LGAAN	ur.	JALL.	Intern	1082	
					SEQ :				LIMI	CGAI	AC					1002	
(2)					CHAR												
	,		_		: 213				n								55
		•	•	-	Amino			ت نب	•								
					OGIE												
	(;;)	•-			JGTE LEKÜI			-in									
	(/	. 11()															60

		(xi) SE	QUEN	ZBES	CHRE	IBUN	G: S	EQ II	ON C	: 6:					
	Met											Ile	Glu	Gln	Phe	Lys
	1				5				-	10					15	-20
5	Gln	Asn	Lys	Met	Ile	Ile	Val	Met	Asp	His	Ile	Ser	Arg	Glu		Glu
				.20					25				•	30		
	Ala	Asp	Leu	Ile	Cys	Ala	Ala	Ala	His	Met	Thr	Ala	Glu	Gln	Met	Ala
			35					40					45			
10	Phe	Met	Ile	Arg	Tyr	Ser	Ser	Gly	Tyr	Val	Cys	Ala	Pro	Met	Thr	Asn
		50					55		_		-	60				
	Ala	Ile	Ala	Asp	Lys	Leu	Asp	Leu	Pro	Leu	Met	Asn	Thr	Leu	Lys	Cys
	65					70					75				-	80
15	Lys	Ala	Phe	Ser	Asp	Asp	Arg	His	Ser	Thr	Ala	Tyr	Thr	Ile	Thr	Cvs
					85					90		_			95	•
	Asp	Tyr	Ala	His	Gly	Thr	Thr	Thr	Gly	Ile	Ser	Ala	Arg	Asp	Ara	Ala
				100		4			105				_	110		
20	Leu	Thr	Val	Asn	Gln	Leu	Ala	Asn	Pro	Glu	Ser	Lys	Ala		Asp	Phe
			115					120				_	125		-	
	Thr	Lys	Pro	Gly	His	Ile	Val	Pro	Leu	Arg	Ala	Arg	Asp	Gly	Gly	Val
		130					135					140				
25	Leu	Glu	Arg	Asp	Gly	His	Thr	Glu	Ala.	Ala	Leu	Asp	Leu	Cys	Arg	Leu
	145					150					155					160
	Ala	Gly	Val	Pro	Glu	Val	Ala	Ala	Ile	Cys	Glu	Leu	Val	Ser	Glu	Arg
					165					170					175	
30	Asp	Val	Gly	Leu	Met	Met	Thr	Leu	Asp	Glu	Cys	Ile	Glu	Phe	Ser	Lys
				180					185					190		
	Lys	His		Leu	Ala	Leu	Ile	Thr	Val	His	Asp	Leu	Lys	Ala	Ala	Val
35			195					200					205			
35	Ala	Ala	Lys	Gln												
	(0)	210														
	(2)	INFO														
40		(1)					TERIS									
							Bas		are							
							einsa									
							1: Do		L							
45		/221					lir									
	,						is: c	DNS	zu n	iRNS						
	,	(iii) (iii)	ANT	CIME	TTTS(H: D	MEIN									
	,						v Erkun									
50		(\ \ \ \)														
		/ i ~ \		KMAI		LSMUS	S: As	spya	a gos	sypi	Li					
		(TX)														
							JSSEI	.: 5	UTR.							
55		(i •)		3) LA KMAI		12	2/0									
		(4.2.)				CUIT F	İSSEI		200							
							789		JS							
			٠.	-,		4/1	/ 03	,								

60

(ix) MERKMALE:

(A) NAME/SCHLÜSSEL: 3'UTR

(B) LAGE: 790..996

(B) LAGE: 790996		5
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 7:	60	
TGGTATAATG ATACAGGAAG TGAAAATCCG AAAGGTTCAG ACGATGAAAA GAGTTTGAGA	60	
CGCATCAATG ATCAGCTTTG AGCTATATGT AAGTCTATTA ATTGATTACT AATAGCAATT	120	*
TATGGTATCC TCTGTTCTGC ATATCGACGG TTCTCACGTG ATGATCAGCT TGAGGCTTCG	180	10
CGGATAAAGT TCCATCGATT ACTATAAAAC CATCACATTA AACGTTCACT ATAGGCATAC	240	
ACACAGACTA AGTTCAAGTT AGCAGTGACA ATG ATT AAG GGA TTA GGC GAA GTT	294	
Met Ile Lys Gly Leu Gly Glu Val		
1 5	2.40	15
GAT CAA ACC TAC GAT GCG AGC TCT GTC GAG GTT GGC ATT GTC CAC GCG	342	
Asp Gln Thr Tyr Asp Ala Ser Ser Val Glu Val Gly Ile Val His Ala		
10 15 20		
AGA TGG AAC AAG ACT GTC ATT GAC GCT CTC GAC CAA GGT GCA ATT GAG	390	20
Arg Trp Asn Lys Thr Val Ile Asp Ala Leu Asp Gln Gly Ala Ile Glu		
25 30 35 40		
AAA CTG CTT GCT ATG GGA GTG AAG GAG AAG AAT ATC ACT GTA AGC ACC	438	
Lys Leu Leu Ala Met Gly Val Lys Glu Lys Asn Ile Thr Val Ser Thr		25
45 50 55	•	
GTT CCA GGT GCG TTT GAA CTA CCA TTT GGC ACT CAG CGG TTT GCC GAG	486	
Val Pro Gly Ala Phe Glu Leu Pro Phe Gly Thr Gln Arg Phe Ala Glu		
60 65 70		30
CTG ACC AAG GCA AGT GGC AAG CAT TTG GAC GTG GTC ATC CCA ATT GGA	534	
Leu Thr Lys Ala Ser Gly Lys His Leu Asp Val Val Ile Pro Ile Gly		
75 80 85		
GTC CTG ATC AAA GGC GAC TCA ATG CAC TTT GAA TAT ATA TCA GAC TCT	582	35
Val Leu Ile Lys Gly Asp Ser Met His Phe Glu Tyr Ile Ser Asp Ser		
90 95 100		
GTG ACT CAT GCC TTA ATG AAC CTA CAG AAG AAG ATT CGT CTT CCT GTC	630	
Val Thr His Ala Leu Met Asn Leu Gln Lys Lys Ile Arg Leu Pro Val		40
105 110 115 120		
ATT TTT GGT TTG CTA ACG TGT CTA ACA GAG GAA CAA GCG TTG ACA CGT	678	
Ile Phe Gly Leu Leu Thr Cys Leu Thr Glu Glu Gln Ala Leu Thr Arg		
125 130 135		45
GCA GGC CTC GGT GAA TCT GAA GGC AAG CAC AAC CAC GGT GAA GAC TGG	726	
Ala Gly Leu Gly Glu Ser Glu Gly Lys His Asn His Gly Glu Asp Trp		
140 145 150		
GGT GCT GCC GTG GAG ATG GCT GTA AAG TTT GGC CCA CGC GCC GAA	774	50
Gly Ala Ala Val Glu Met Ala Val Lys Phe Gly Pro Arg Ala Glu		
155 160 165		
CAA ATG AAG AAG TGAATATTAA AAAATCACTA CTTAAAATTA ACGTTTTTAT	826	
Gln Met Lys Lys		55
170		
TATGTCTATA TCAAATTCTT ACGTGATAAC TTTTGATTTC GCTTCCTGGA TTGGCGCAAG	886	
GCCTCCCTGT GTCGCAGTTT TTGTTCACGG GTCCACACAG CTCTGTTTTC CCAGAACATA	946	
GCCTCCCTGT GTCGCAGTTT TTGTTCACGG GTCCACACAG CTCTGTTTTC CANALISATION TCCTCCCAGC CGGCGAACCG GTTAGACGCT TCTGCTGGCG TTCTTATTTT	996	60
TOCTOCOAGO CAGUGAACOG GITAGACACI TOTACIAGOG TICITATITI	- -	

	(2) INFORMATION ZU SEQ ID NO: 8:
	(i) SEQUENZ CHARAKTERISTIKA:
	(A) LÂNGE: 172 Aminosauren
5	(B) ART: Aminosäure
	(D) TOPOLOGIE: linear
	(ii) ART DES MOLEKÜLS: Protein
	(X1) SEQUENZBESCHREIRING: SEC ID NO. 3
10	Met Ile Lys Gly Leu Gly Glu Val Asp Gln Thr Tyr Asp Ala Ser Se
	Val Glu Val Gly Ile Val His Ala Arg Trp Asn Lys Thr Val Ile As
15	Ala Leu Asp Gln Gly Ala Ile Glu Lys Leu Leu Ala Met Gly Val Lys
	Δ11
	Glu Lys Asn Ile Thr Val Ser Thr Val Pro Gly Ala Phe Glu Leu Pro
20	Phe Gly Thr Gln Arg Phe Ala Glu Leu Thr Lys Ala Ser Gly Lys His
	Leu Asp Val Val Ile Pro Ile Gly Val Leu Ile Lys Gly Asp Ser Met
25	an an
25	His Phe Glu Tyr Ile Ser Asp Ser Val Thr His Ala Leu Met Asn Leu 100
	Gln Lys Lys Ile Arg Leu Pro Val Ile Phe Gly Leu Leu Thr Cys Leu 115
30	
30	Thr Glu Glu Gln Ala Leu Thr Arg Ala Gly Leu Gly Glu Ser Glu Gly
	Lys His Asn His Gly Glu Asp Trp Gly Ala Ala Val Glu Met Ala
35	
	Val Lys Phe Gly Pro Arg Ala Glu Gln Met Lys Lys
	170
	(2) INFORMATION ZU SEQ ID NO: 9:
40	(i) SEQUENZ CHARAKTERISTIKA:
	(A) LÂNGE: 1511 Basenpaare
	(B) ART: Nukleinsäure
	(C) STRANGFORM: Doppel
45	(D) TOPOLOGIE: linear
	(ii) ART DES MOLEKÜLS: CDNS zu mRNS
	(iii) HYPOTHETISCH: NEIN
	(iii) ANTISENSE: NEIN
50	(vi) URSPRŪNLICHE HERKUNFT:
	(A) ORGANISMUS: Ashbya gossypii
	(IX) MERRMALE:
	(A) NAME/SCHLÜSSEL: 5'UTR
55	(B) LAGE: 1524
	(ix) MERKMALE:
	(A) NAME/SCHLÜSSEL: CDS

20

(B) LAGE: 525..1232

60

(ix) MERKMALE:

(A) NAME/SCHLÜSSEL: 3'UTR

(B) LAGE: 1233..1511

	150			AGE: IZBES				TO T	- NO	. 0.							5
ጥርጥ											ccc	3 M 3 C	C 3 3		CAGGAG	C 0	,
															CCAGGAG	60	
															CCAGCA CCGGCA	120 180	
															TTAAAA	240	10
															TTTCCC	300	
															CCTAAA	360	
															AACCGC	420	
															GATGCA	480	15
															C GGT	536	
															r Gly	330	
													1				
ATA	GTG	GAA	CAC	ATT	GGC	ACT	GTT	GCT	GAG	TAC	TTG	GAG	AAC	GAT	GCC	584	20
				Ile													
5					10					15				-	20		
AGC	GAG	GCA	GGC	GGC	AAC	GGT	GTG	TCA	GTC	CTT	ATC	AAG	GAT	GCG	GCT	632	
Ser	Glu	Ala	Gly	Gly	Asn	Gly	Val	Ser	Val	Leu	Ile	Lys	Asp	Ala	Ala		25
				25					30					35			
CCG	ATA	CTG	GCG	GAT	TGC	CAC	ATC	GGT	GAC	TCG	ATT	GCA	TGC	AAT	GGT	680	
Pro	Ile	Leu	Ala	Asp	Суз	His	Ile	Gly	Asp	Ser	Ile	Ala	Cys	Asn	Gly		20
			40					45					50				30
				GTG												728	
Ile	Cys		Thr	Val	Thr	Glu		Thr	Ala	qzA	Ser	Phe	Lys	Val	Gly		
		55					60	_				65					35
				ACA												776	
тте	70	Pro	GIU	Thr	vaı		Arg	Thr	GIU	Val		Ser	Trp	Lys	Ala		
ccc		220	N CT C	3 3 C	CERN	75	3.00		3.000	maa	80						
				AAC Asn												824	40
85	361	пуs	11-	#211	90	GIU	ALG	AIG	TTE	ser 95	ASD	Asp	AIG	Arg			
	GGG	CAC	ጥልሮ	GTG		GGC	CAC	CTC	CAC		CEC	000	mcm.	3 (110)	100	070	
				Val												872	
2			-1-	105			*****	144	110	561	V C. I.	A.L.	261	115	A G T		45
TCC	AGA	GAG	CAC	GAC	GGG	AAC	TCT	ATC		ىلىكىك	DAG	بالبائيل	ΔΔΔ		CGC	920	
				Asp												720	
	_		120	•				125			-1 -		130		9		
GAT	CAA	GAG	TAC	GAG	AAG	TAC	GTA	GTA	GAA	AAG	GGT	TTT		GCG	ATC	968	50
				Glu												,,,,	
-		135	_		-	_	140			• -	4	145			-		
GAC	GGT	GTG	TCG	CTG	ACT	GTA	AGC	AAG	ATG	GAT	CCA		GGC	TGT	TTC	1016	55
				Leu												_	23
	150					155				•	160	-	-	_			

					•								•				
	TAC	ATC	TCG	. ATG	ATT	GCA	CAC	ACG	CAG	ACC	GCT	GTA	GCC	CTT	CCA	CTG	1064
	Tyr	Ile	Ser	Met	Ile	Ala	His	Thr	Gln	Thr	Ala	Val	Ala	Leu	Pro	T.e11	
	165					170					175					180	
5	AAG	CCG	GAC	GGT	GCC	CTC	GTG	AAC	АТА	GAA		САТ	بلعثات	AAC	ccc		1112
•	Lys	Pro	Asp	Gly	Ala	Leu	Val	Asn	Tle	Glu	Thr	Asn	Val	λεπ	63.0	Tree	1112
	_		-		185					190	1111	ASD	vai	MOII		TAR	
	CTA	GTA	GAG	AAG		CTT	GCA	CAG	ጥልሮ		አአጥ	ccc	CAC	cmc	195		11.50
10	Leu	Val	Glu	Tivs	Gin	Val	Δla	Cla	TAC	tou	VUT	77.	CAG	CIG	GAA	GGT	1160
10				200	0111	٧٩٢	, Ald	GIII	205	Leu	ASII	ALA	GIN		GIII	GIA	
	GAG	AGC	TCG		באנינו	CAC	ccc	CITIC	_	C2.2	3.00	3 mm	.	210			
	Glu	Ser	Ser	Dro	Tou	CAG	7	77-1	ton	GAA	AGG	ATT.	A11	GAA	TCC	AAG	1208
	914		Ser 215	110	nea	GIII	Arg			GIU	Arg	тте		GIU	Ser	Lys	
15	COLO	COM		3 000				220		_			225				
	CIT	GCT	AGC	ATC	TCA	AA'1'	AAG	TGA:	L'TAT?	ATT .	ATCT'	rggg'	IG C	rgta:	TATC'	r	1259
	ren		Ser	Ile	Ser	Asn											
		230					235										
20																ACACCT	
																ACACCC	
	TGTT	rgtg	GCC 2	AACG	CAAA	CA TO	GGAG	TGC:	r GC	CCGT'	TACG	CAC	GTCG	AAC :	rcgt/	AGACCT	1439
	TGC	CGTC	AAT (GCAC	GAGG	CG A	ACAG	JTGG!	A AA	CCGG	TGGT	CTT	GTCA	AAC (CGCC	AGCTTC	1499
25			AGT (1511
	(2)	INFO	ORMA!	rion	ZU S	SEQ :	ID NO): 10):								1311
			(i) S														
								inosa		1							
30							osau			•							
							lir										
		(ii)	ARI														
			SEC								7.0						•
35	Mot	Pho	wp~	C3	T1 -		27	3. DE	-7 II	יטאי כ	 : TO:	: 					
	1	1110	Thr	GTA		vaı	GIU	HIŞ	TTE		Thr	Val	Ala	Glu		Leu	
		3	3		5				_	10					15		
	GIU	ASII	qzA	ATA	ser	GIU	Ala	Gly		Asn	Gly	Val	Ser	Val	Leu	Ile	
40	_	_		20					25					30			
40	rys	Asp	Ala	Ala	Pro	Ile	Leu	Ala	Asp	Cys	His	Ile	Gly	Asp	Ser	Ile	
			35					40					45				
	Ala		Asn	Gly	Ile	Cys	Leu	Thr	Val	Thr	Glu	Phe	Thr	Ala	Asp	Ser	
		50					55					60					
45	Phe	Lys	Val	Gly	Ile	Ala	Pro	Glu	Thr	Val	Tyr	Arg	Thr	Glu	Val.	Ser	
	65														0	80	
	Ser	Trp	Lys	Ala	Gly	Ser	Lys	Ile	Asn	Leu	Glu	Ara	Ala	Ile	Ser	ASD	
					85		_			90		3			95	p	
50	Asp	Arg	Arg	Tvr	Glv	Glv	His	Tvr	Val		Glv	Wie	17a 1	A cr		570]	
	-	_		100	V-1	1		-1-	105	GIII	GIY	UIS	Vai		261	vai	
	Ala	Ser	Tla		Cor	7~~	C1	17: -		01		a	-1	110		_	
			Ile	Val	261	ALY:	GIU		ASD	GTĀ	ASN	ser		ASN	Pne	Lys	
55	Db -	T	115	•	_			120					125				
	FIIE	nys	Leu	Arg	Asp	Gin		Tyr	Glu	Lys	Tyr		Val	Glu	Lys	Gly	
		130					135					140					
	hue	val	Ala	Ile	Asp		Val	Ser	Leu	Thr	Val	Ser	Lys	Met	Asp	Pro	
60	145					150					155					160	

		DE	44 2	0 /85	Al			
Asp Gly	Cys. Phe Tyr 165	Ile Ser M	Met Ile	Ala His 170	Thr Gln	Thr Ala		
Ala Leu	Pro Leu Lys 180	Pro Asp G	ly Ala 185	Leu Val	Asn Ile	Glu Thr 190	Asp	5
Val Asn	Gly Lys Leu 195		ys Gln 900	Val Ala	Gln Tyr 205		Ala	
Gln Leu 210	Glu Gly Glu	Ser Ser P 215	ro Leu	Gln Arg	Val Leu 220	Glu Arg	Ile	10
Ile Glu 225	Ser Lys Leu	Ala Ser I 230	le Ser	Asn Lys 235				
	RMATION ZU S		11:	233				
(i)	SEQUENZ CHA							15
	(A) LĀNGE:			2				
	(B) ART: N (C) STRANG (D) TOPOLO	FORM: Dop	pe1					20
(ii)	ART DES MOL	EKŪLS: cD	NS zu n	nRNS				
•	HYPOTHETISC							
•	ANTISENSE:		·m·					25
(VI)	URSPRÛNLICH (A) ORGANI			svoii				
(ix)	MERKMALE:		,- 3	-12				
	(A) NAME/S	CHLÜSSEL:	5'UTR					30
	(B) LAGE:	1352						50

(ix) MERKMALE:

(A) NAME/SCHLÜSSEL: CDS

(B) LAGE: 353..1093

(ix) MERKMALE:

(A) NAME/SCHLÜSSEL: 3'UTR

(B) LAGE: 1094..1596

		(xi)) SE	QUEN	ZBESC	CHRE	EBUNG	: SE	Q II	ON C	: 11:	:							40
AG	AA	GAA	GCG	CAGG	CGCCZ	AG TO	CCGAC	CTGC	AG0	GAGA	ACGA	GGC	GCGC	CGG 1	rtga	GAACA		60	40
GC	GC	GCT	GCC	CATG	GACG/	AT G	GGG?	PATAC	: AG	ACGG	CGGG	TATA	ACAG	ACG (GCGG	TGGTG	1	L20	
CC	GA	GAG	AGG	CACC	AGGC	CG GC	CTTC	TCC	GC	GATG	CAAG	GAAG	GAGAZ	AGG (GAC	LAGAGG	1	180	
CG	AA	GTT	CAA	GCCA!	rcta.	AG G	PACA	SAAGO	ccc	CAAT	rgaa	GCG	ACTO	CA S	rcgr	CCGGG	2	240	45
CG	GA	TGA	GAA	CGAG	TTCT	CG A	PATTA	TAGA	GGG	cccc	CGTT	TCG	AGTG	ATT (GCG:	CAAAA	3	300	43
AC	GG	CTA:	гст	GCCT	CGT	C G	ccc	CACCA	CCC	CTCG	GGAA	CAC	rggc	AAA	CC AS	rg	3	355	
															Me	et			
																1			50
GC	G	CTA	ATA	CCA	CTT	TCT	CAA	GAT	CTG	GCT	GAT	ATA	CTA	GCA	CCG	TAC	4	103	30
Al	a	Leu	Ile	Pro	Leu	Ser	Gln	Asp	Leu	Ala	Asp	Ile	Leu	Ala	Pro	Tyr			
				5				-	10		_			15		_			
TT	'A	CCG	ACA	CCA	CCG	GAC	TCA	TCC	GCA	CGC	CTG	CCG	TTT	GTC	ACG	CTG	4	151	55
Le	u	Pro	Thr	Pro	Pro	Asp	Ser	Ser	Ala	Arc	Leu	Pro	Phe	Val	Thr	Leu			33
			20					25					30						

60

35

					J								T.					
	ACG	TAT	GCG	CAG	TCC	CTA	GAT	GCT	CGT	ATC	GCG	AAG	CAA	AAG	GGT	GAA	499	
	Thr	Tyr	Ala	Gln	Ser	Leu	Asp	Ala	Arg	Ile	Ala	Lvs	Gln	Lvs	Glv	Glu	433	
		35					40					45						
5	AGG	ACG	GTT	ATT	TCG	CAT	GAG	GAG	ACC	AAG	ACA	ATG	ACG	CAT	TAT	CTA	547	
	Arg	Thr	Val	Ile	Ser	His	Glu	Glu	Thr	Lys	Thr	Met	Thr	His	Tvr	Leu	347	
	50					55					60					65		
	CGC	TAC	CAT	CAT	AGC	GGC	ATC	CTG	ATT	GGC	TCG	GGC	ACA	GCC	CTT	GCG	595	
10	Arg	Tyr	His	His	Ser	Gly	Ile	Leu	Ile	Gly	Ser	Gly	Thr	Ala	Leu	Δla	323	
					70					75					80			
	GAC	GAC	CCG	GAT	CTC	AAT	TGC	CGG	TGG	ACA	CCT	GCA	GCG	GAC	GGG	GCG	643	
	Asp	Asp	Pro	Asp	Leu	Asn	Cys	Arg	Trp	Thr	Pro	Ala	Ala	Asp	Glv	Ala	043	
15		•		85					90					95				
	GAT	TGC	ACC	GAA	CAG	TCT	TCA	CCA	CGA	CCC	ATT	ATC	TTG	GAT	GTT	CGG	691	
	Asp	Cys	Thr	Glu	Gln	Ser	Ser	Pro	Arg	Pro	Ile	Ile	Leu	qzA	Val	Arg		
			100					105					110					
20	GGC	AGA	TGG	AGA	TAC	CGC	GGG	TCC	AAA	ATA	GAG	TAT	CTG	CAT	AAC	CTT	739	
	${ t Gly}$	Arg	Trp	Arg	Tyr	Arg	Gly	Ser	Lys	Ile	Glu	Tyr	Leu	His	Asn	Leu		
		115					120					125						
	GGC	AAG	GGG	AAG	GCG	CCC	ATA	GTG	GTC	ACG	GGG	GGT	GAG	CCG	GAG	GTC	787	
25	GIĀ	Lys	Gly	Lys	Ala	Pro	Ile	Val	Val	Thr	Gly	Gly	Glu	Pro	Glu	Val		
	130					135					140					145		
	CGC	GAA	CTA	GGC	GTC	AGT	TAC	CTG	CAG	CTG	GGT	GTC	GAC	GAG	GGT	GGC	835	
20	Arg	Glu	Leu	Gly	Val	Ser	Tyr	Leu	Gln	Leu	Gly	Val	Asp	Glu	Gly	Gly		
30					150					155					160			
	CGC	TTG	AAT	TGG	GGC	GAG	TTG	TTT	GAG	CGA	CTC	\mathtt{TAT}	TCT	GAG	CAC	CAC	883	
	Arg	Leu	Asn	Trp	Gly	Glu	Leu	Phe	Glu	Arg	Leu	Tyr	Ser	Glu	His	His		
35				165					170					175				
33	CTG	GAA	AGT	GTC	ATG	GTC	GAA	GGC	GGC	GCG	GAG	GTG	CTC	AAC	CAG	CTG	931	
	Leu	GIU	ser	Vai	Met	Val	Glu		Gly	Ala	Glu	Val	Leu	Asn	Gln	Leu		
	CEC		180					185					190				•	
40	CTG	CIG	2	CCA	GAT	ATT	GTG	GAC	AGT	CTG	GTG	ATC	ACG	ATA	GGA	TCC	979	
	Leu	195	Arg	Pro	Asp			Asp	Ser	Leu	Val	Ile	Thr	Ile	Gly	Ser		
			CMC				200					205						
	AAG	Pho	CIG	GGC	TCA	CTA	GGT	GTT	GCG	GTC	TCA	CCA	GCT	GAG	GAG	GTG	1027	
45	Lys 210	rne	пец	GIĀ			GIĀ	Val	Ala			Pro	Ala	Glu	Glu	Val		
		C TI X	C2 C	~~~		215					220					225		
	AAC	LOU	Clu	CAT	GTG	AAC	TGG	TGG -	CAC	GGA	ACA	AGT	GAC	AGT	GTT	TTG	1075	
	Asn	пеа	GIU	uis	AST	ASN	.r.b	Trp			Thr	Ser	Asp	Ser	Val	Leu		
50	TCC	ccc	ccc		230					235					240			
	TGC Cys	GUC	y ~~	Tan	GCA 31-	TAGC	GGTT	AT G	ACTG	GTC1	A CI	AGTI	AAAA	CTA	TTT	CTC	1130	
	Cys.	Сту.			Ala													
	Cmam	3 (7 3 m		245 														
55	CIAL	ACAT.	AT T	GCGT GGGG	CACA	T AG	CGTT	TATC	CCC	CTCG	CCA	ACCG	CCTC	GT G	CCGI	TGGAA	1190	
	CTICT	320m	TO C	GGGG Cm² -	GACC	T CA	AGCG	CTCC	GCA	TCGA	CTA	GTTT	TTAA'	TA C	AAAC	AGATT	1250	
	CCCT	עע איי בישיר ד.	ACTTG CGTAACGGCC AGAGGTCTCT G CAACC CCAGGTATAA TGCAACTTGG A							GACTTTCTGA			TAATCTTCAC CACCTCACCT					
	44.CC	ענטינואט <i>ייינוייי</i> ייייייייייייייייי	AC C	mans.	TATA	A IG	CAAC	TTGG	ATC	CATC	CTC	TGGA	TTCI	'AG G	TAAC	TGAGA	1370	
60		1M	AC C	r GTA	TCTC	T TC	AACA	ACTC	CTT	CTTT	TCT	TCGI	CGCI	GA G	TTTC	ATATG	1430	

AAT	TGTAC	CA C	GAGC	GACC	G AC	GGA	GCAG	TT		CGCG	CTGC	GCGI			GTCTC GTTCTG	1490 1550 1596	
									٠٥٠٠	MIG	. GCr						5
(2) INFORMATION ZU SEQ ID NO: 12: (i) SEQUENZ CHARAKTERISTIKA:																	
	•) <u>[</u> ā						3								
		-	3) AF														
) TC														10
	(ii)	-	DES		_			ein									
									D NO:	: 12:	:						
Met									Leu			Ile	Leu	Ala	Pro		
1				5					10					15			15
	Leu	Pro	Thr	Pro	Pro	Asp	Ser	Ser	Ala	Arg	Leu	Pro	Phe	Val	Thr		
-4			20					25					30				
Leu	Thr	Tyr	Ala	Gln	Ser	Leu	Asp	Ala	Arg	Ile	Ala	Lys	Gln	Lys	Gly		
		35					40					45					20
Glu	Arg	Thr	Val	Ile	Ser	His	Glu	Glu	Thr	Lys	Thr	Met	Thr	His	Tyr		
	50					55					60						
Leu	Arg	Tyr	His	His	Ser	Gly	Ile	Leu	Ile	Gly	Ser	Gly	Thr	Ala	Leu		25
65					70					75					80		25
Ala	Asp	Asp	Pro	Asp	Leu	Asn	Cys	Arg	Trp	Thr	Pro	Ala	Ala		Gly		
				85					90					95			
Ala	Asp	Cys	Thr	Glu	Gln	Ser	Ser		Arg	Pro	Ile	Ile		Asp	Val		30
			100					105		_			110	•	_		
Arg	Gly		Trp	Arg	Tyr	Arg		Ser	Lys	Ile	Glu		Leu	His	Asn		
		115					120	-				125	~1		a 1		
Leu		Lys	Gly	Lys	Ala		Ile	Val	Val	Tnr		GTĀ	GIU	Pro	GIU		35
	130		_	-1		135	~	T	01-	T	140	170 1	2 ~~	C111	Clv		
	Arg	GIU	Leu	GIŢ		Ser	TAT	теп	Gln	155	GIŞ	vai	ASP	GIU	160		
145		.			150	C1	T 011	סממ	Glu		T.=11	The part	Ser	Glu			
GIY	AIG	rea	ASII	165	GTĀ	GIU	nea	File	170	ALG	neu	TYL	501	175			40
***	7	~ 1	C-~		Wot	57 - 1	C1.,	Gly		Δla	Glu	Wa 1	T.011		Gln		
HIS	nea	GIU	180	Var	Mec	ACT	GIU	185		niu			190				
T 011	T.011	T.011		Pro	Asn	Tle	Val			Leu	Val	Ile			Gly		_
nea	Dea	195	nr 9	110	1100		200					205			-		45
Ser	Lvs		Leu	Glv	Ser	Leu			Ala	Val	Ser		Ala	Glu	Glu		
502	210					215					220						
Val		Leu	Glu	His	Val		Trp	Trp	His	Gly	Thr	Ser	Asp	Ser	Val		50
225					230		-	-		235					240		30
		Gly	Arg	Leu	Ala												
-		-	_	245													
																	55

Patentansprüche

1. DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 2 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO: 2, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.

onne die enzymatische wirkung des Folypeptids weschillen zu fedizieren.

2. DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 4 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO: 4, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.

65

3. DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 6 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO: 6, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind,

ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.

4. DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 8 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO: 8, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.

5. DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 10 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO: 10, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind,

ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.

6. DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 12 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO: 12, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.

7. Expressionsvektor, enthaltend eine oder mehrere DNA-Sequenzen gemäß Anspruch 1 bis 6.

8. Wirtsorganismus der mit einem Expressionssystem gemäß Anspruch 7 transformiert worden ist.

9. Rekombinantes Herstellverfahren für Riboflavin, dadurch gekennzeichnet, daß ein Wirtsorganismus gemäß Anspruch 8 verwendet wird.

Hierzu 7 Seite(n) Zeichnungen

26

5

10

15

20

25

30

35

40

45

50

55

60

- Leerseite -

Fig. 1

Fig. 2

Fig. 3

Fig. 4

ί

Fig. 5

Fig. 6

Fig. 7

