CS M148 –

Data Science Fundamentals

Lecture #1: Introduction to CS M148

Baharan Mirzasoleiman UCLA Computer Science

(modified from Harvard CS109A)

Instructor: Baharan Mirzasoleiman

http://web.cs.ucla.edu/~baharan

baharan@cs.ucla.edu

Lectures: Monday-Wednesday 8-10am

Office hours: Monday 10-10:30am (until 11am if there are more students), Zoom (same

for the lectures)

Lectures will be recorded You can find all the info in the Syllabus (Canvas)

TA	Email	Office Hours (from week 2)	Location
Lionel Levine	lionel@cs.ucla.edu	Thursday / 1-2pm	<u>Zoom</u>
Siddharth Joshi	sjoshi804@gmail.com	Wednesday / 2:30-3:30pm	<u>Zoom</u>
Wenhan Yang	hangeryang18@g.ucla.edu	Thursday / 2-3pm	<u>Zoom</u>
Yihe Deng	yihedeng@ucla.edu	Tuesday / 1-2pm	<u>Zoom</u>
Yu Yang	yuyang@cs.ucla.edu	Monday / 1-2pm	<u>Zoom</u>

Lecture Outline

- Why data science? Why taking (or not taking!) CS146?
- What is data science?
- What is this class and what it is not?
- The data science process
- Example

How much data do we have?

22,571 GB of data for every person on Earth!

Why?

Jobs!

Why?

Why are you here?

What is data science?

A little bit of history

History

Long time ago (thousands of years) science was only empirical and people counted stars

Long time ago (thousands of years) science was only empirical and people counted stars or crops

Long time ago (thousands of years) science was only empirical and people counted stars or crops and used the data to create machines to describe the phenomena

Few hundred years: theoretical approaches, try to derive equations to describe general phenomena.

1.
$$\nabla \cdot \mathbf{D} = \rho_V$$

2.
$$\nabla \cdot \mathbf{B} = 0$$

3.
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

4.
$$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$$

$$H(t)|\psi(t)\rangle = i\hbar \frac{\partial}{\partial t}|\psi(t)\rangle$$

About a hundred years ago: computational approaches

And then data science

In both data science and machine learning we extract pattern and insights from data.

- Inter-disciplinary
- Data and task focused
- Resource aware
- Adaptable to changes in the environment and needs

Technology Trends

2020s 2010s **Data Industry** > Collect and sell information 2000s **Internet Industry** > Online retailers and services 1990s **Software Industry** > Sold computer software 1980s Hardware Industry Sold computers

The Potential of Data Science

Disease Diagnosis

Detecting malaria from blood smears

Drug Discovery

Quickly discovering new drugs for COVID

Urban Planning

Predicting and planning for resource needs

Agriculture

Precision agriculture

The Potential of Data Science

Some DS models for evaluating job applications show bias in favor of male candidate

Risk models used in US courts have shown to be biased against nonwhite defendants

The Data Science Process

Ask an interesting question

Get the Data

Clean/Explore the Data

Model the Data

Communicate/Visualize the Results

The Data Science Process

Ask an interesting question

Get the Data

Clean/Explore the Data

Model the Data

Communicate/Visualize the Results

What is the scientific goal?

What would you do if you had **all** of the data?

What do you want to predict or estimate?

The Data Science Process

Ask an interesting question

Get the Data

Clean/Explore the Data

Model the Data

Communicate/Visualize the Results

How were the data sampled?

Which data are relevant?

Are there privacy issues?

The Data Science Process

Ask an interesting question

Get the Data

Clean/Explore the Data

Model the Data

Communicate/Visualize the Results

Clean the data and take care of missing values.

Plot the data.

Are there anomalies or egregious issues?

Are there patterns?

The Data Science Process

Ask an interesting question

Get the Data

Clean/Explore the Data

Model the Data

Communicate/Visualize the Results

Build a model.

Fit the model.

Validate the model.

The Data Science Process

Ask an interesting question

Get the Data

Clean/Explore the Data

Model the Data

Communicate/Visualize the Results

What did we learn?

Do the results make sense?

Can we effectively tell a story?

What Is Data Science?

https://www.youtube.com/watch?v=X3paOmcrTjQ

- Can be from the internet or external/internal databases).
- Must be extracted into a usable format (.csv, json, xml, etc..)

Skills Required:

- Database Management: MySQL, PostgresSQL, MongoDB
- Querying Relational Databases
- Retrieving Unstructured Data: text, videos, audio files, documents
- Distributed Storage: Hadoops, Apache Spark/Flink

We will talk about data collection process and the bias it can cause in the data

Requires the most time and effort

 The results and output of your machine learning model is only as good as what you put into it

Objective:

- Examine the data: understand every feature you're working with, identify errors, missing values, and corrupt records
- Clean the data: throw away, replace, and/or fill missing values/errors

- Scripting language: Python, R, SAS
- Data Wrangling Tools: Python Pandas, R
- Distributed Processing: Hadoop, Map Reduce / Spark

Trying to understand what patterns and values our data has

- Different types of visualizations and statistical testings to back up the findings.
- Derive hidden meanings behind data through various graphs and analysis.

Objective:

- Find patterns in your data through visualizations and charts
- Extract features by using statistics to identify and test significant variables

- Python: Numpy, Matplotlib, Pandas, Scipy, R: GGplot2, Dplyr
- Inferential statistics, Experimental Design, Data Visualization

After cleaning your data and finding what features are most important, using your model as a predictive tool will enhance your business decision making

Objective:

- In-depth Analytics: create predictive models/algorithms
- Evaluate and refine the model

- Machine Learning: Supervised/Unsupervised algorithms
- Evaluation methods
- Machine Learning Libraries: Python (Sci-kit Learn) / R (CARET)
- Linear algebra & Multivariate Calculus

Understand and learn how to explain your findings through communication

Objective:

- Identify business insights: return back to business problem
- Visualize your findings accordingly: keep it simple and priority driven
- Tell a clear and actionable story: effectively communicate to nontechnical audience

- Business Domain Knowledge
- Data Visualization Tools: Tablaeu, D3.JS, Matplotlib, GGplot, Seaborn
- Communication: Presenting/Speaking & Reporting/Writing

The more data you receive the more frequent the update.

 If not, your model will degrade over time and won't perform as good

Goal of the course

Theory

- Key Machine Learning concept
- Important metrics for evaluation
- Handling different kinds of data
- 4. Extracting insights from analysis of the models

Practice

 Implement ML and deep learning models using python libraries

Using free online tools and resources for data science

Impact

- Solving real-life problems using DS
- 2. Evaluating the social impact of DS

We wont get deep in math

We will focus on insights & interpretation

Project: Data

Data Formats, Pandas
Data cleaning & exploration

Weeks 1-4: Regression

Data collection & bias kNN Regression Linear Regression Multi and Poly Regression Model Selection and Cross Validations Hypothesis testing Ridge and Lasso Regularization

Weeks 4-5: Classification

kNN Classification Logistic Regression Multi-class Classification

Weeks 5-6: Trees

Decision Trees

Bagging

Random Forest

Week 6: Midterm Exam

Weeks 7: Data

Data Imputation

Weeks 8-9: Neural Networks

Multi-Layer Perceptron
Architecture of NN
Fitting NN, backprop and SGD
Regularization of NN

Weeks 10

Clustering

Model Interpretation

Extra: learning from large datasets

Class statistics

Let's fill out a survey:

shorturl.at/hwBC5

Do you need CS148?

If you took CS146 or CS145 before

CS146 and CS 145 are more advanced than CS148

CS148 is more focused on data, and interpretation

You may see the same topics in CS146, CS145. CS148 covers them from a more applied perspective.

Grading

Find the schedule in the Syllabus uploaded to Canvas

Homework: 20%
 3 homework assignments

• Midterm: 20% 6th week of the class In class

Projects: 20%3 projects

• Final Exam: 40%

• Total: 100%

Ungraded labs are for you to practice

Logistics

Lectures: Monday/Wednesday 8:00 am - 9:50 am, Kaplan 150, Zoom

recorded

Discussions:

- Lionel Levine Sec (1A) F 10:00 pm 11:50 pm, Royce Hall 156
- Siddharth Joshi Sec (1B) F 12:00 pm 1:50 pm, Royce Hall 154
- Wenhan Yang Sec (1D) F 4:00 pm 5:50 pm, Franz Hall 1260
- Yihe Deng Sec (1C) F 2:00 pm 3:50 pm, Dodd Hall 78
- Yu Yang Sec (1E) F 12:00 pm 1:50 pm, Boelter Hall 2760

Office hours (Lionel Levine): Thursday / 1-2pm, Zoom

Office hours (Siddharth Joshi): Wednesday / 2:30-3:30pm, Zoom

Office hours (Wenhan Yang): Thursday / 2-3pm, Zoom

Office hours (Yihe Deng): Tuesday / 1-2pm, Zoom

Office hours (Yu Yang): Monday / 1-2pm, Zoom (see canvas)

Office hours (Baharan Mirzasoleiman): Monday 10am-10:30am (until 11am if needed), Zoom

All the zoom links are also posted on Canvas.

Logistics

Enroll in:

• Piazza: https://piazza.com/ucla/winter2023/csm148 Ask questions

Gradescope in Bruinlearn

Upload assignments

If you need PTE or would like to audit: shorturl.at/bxyHP

Why Not to Become a Data Analyst?

https://www.youtube.com/watch?v=M2ySRYpo9S0

The Data Science Process: Example

Ask an interesting question

Get the Data

Clean/Explore the Data

Model the Data

Communicate/Visualize the Results

Example:

 Let's say that we are interested in the English Premier League (football/soccer) and want to build a model to predict a player's market value.

Question

Does age affect one's market value?

Example: Get the data

name	club	age	position	market value
Alexis Sanchez	Arsenal	28	LW	65
Mesut Ozil	Arsenal	28	AM	50
Petr Cech	Arsenal	35	GK	7
Theo Walcott	Arsenal	28	RW	20
Laurent Koscielny	Arsenal	31	СВ	22

Web scraping with Python:

page = requests.get(url)

soup = BeautifulSoup(page.content, "html.parser")

from www.transfermarkt.us

EDA helps you:

- Ensure your data is as expected/valid/appropriate for the task
- Provides insights into a dataset
- Extract/determine important variables/attributes/features
- Detect outliers and anomalies
- Test underlying assumptions
- Make informed decisions in developing models

- EDA is an approach/philosophy **not** just a set of tools or techniques.
- Explore global properties: use histograms, scatter plots, and aggregation functions to summarize the data
- Explore **group** properties: group like-items together to compare subsets of the data (are the comparison results reasonable/expected?)
- This approach can be done at any time and any stage of the data science process

name	club	age	position	market value	
Alexis Sanchez	Arsenal	28	LVV	65	
Mesut Ozil	Arsenal	28	AM	50	
• Credible/Tru	ustworthv?		GK	7	
 Credible/Trustworthy? Possibly subjective market values? 			RW CB	20	
Sampled da			from <u>w</u>	ww.transfermarkt.us	

name	club	age	position	market value
Alexis Sanchez	Arsenal	28	LW	65
Mesut Ozil	Arsenal	28	AM	50
Petr Cech	Arsenal	35	GK	7
Theo Walcott	Arsenal	28	RW	20
Laurent Koscielny	Arsenal	31	СВ	22

from www.transfermarkt.us

name	club	age	position	market value
Alexis Sanchez	Arsenal	28	LW	65
Mesut Ozil	Arsenal	28	AM	50
Petr Cech	Arsenal	35	GK	7
Theo Walcott	Arsenal	28	RW	20
Laurent Koscielr	Does it	22		
	necessa	w.transfermarkt.us		

name	club	age	position	market value
Alexis Sanchez	Arsenal	28	LW	65
Mesut Ozil	Arsenal	28	AM	50
Petr Cech	Arsenal	35	GK	7
Theo Walcott	Arsenal	28	RW	20
Laurent Koscielny	Arsenal	31	СВ	22

Missing data? Imputation needed?

2

name	club	age	position	market value
Alexis Sanchez	Arsenal	28	LW	65
Mesut Ozil	Arsenal	28	AM	50
Petr Cech	Arsenal	35	GK	7
Theo Walcott	Arsenal	28	RW	20
Laurent Koscielny	Arsenal	31	СВ	22

Are the data types okay (df.dtypes)? Should be casted?

name	club	age	position	market value
Alexis Sanchez	Arsenal	28	LW	65
Mesut Ozil	Arsenal	28	AM	50
Petr Cech	Arsenal	35	GK	7
Theo Walcott	Arsenal	28	RW	20
Laurent Koscielny	Arsenal	31	СВ	22

	age	page_views	fpl_value	fpl_points	market_value
count	461.000000	461.000000	461.000000	461.000000	461.000000
mean	26.804772	763.776573	5.447939	57.314534	11.012039
std	3.961892	931.805757	1.346695	53.113811	12.257403
min	17.000000	3.000000	4.000000	0.000000	0.050000
25%	24.000000	220.000000	4.500000	5.000000	3.000000
50%	27.000000	460.000000	5.000000	51.000000	7.000000
75%	30.000000	896.000000	5.500000	94.000000	15.000000
max	38.000000	7664.000000	12.500000	264.000000	75.000000

	age	page_views	fpl_value	fpl_points	market_value					
count	461.0000	This see	ems abno	ormally lo	w. Is it					
mean	26.8047		This seems abnormally low. Is it correct? Who is this?							
std	3.961892	901.000707	1.540095	33.113011	201400					
min	17.000000	3.000000	4.000000	0.000000	0.050000					
25%	24.000000	220.000000	4.500000	5.000000	3.000000					
50%	27.000000	460.000000	5.000000	51.000000	7.000000					
75%	30.000000	896.000000	5.500000	94.000000	15.000000					
max	38.000000	7664.000000	12.500000	264.000000	75.000000					

	age	page_views	fpl_value	fpl_points	market_value
cor	This	also seem	c cucoici	oue le it	461.000000
me		11.012039			
	_	correct? V	WIIO 13 til	13:	12.257403
min	17.000000	3.000000	4.000000	0.000000	0.050000
25%	24.000000	220.000000	4.500000	5.000000	3.000000
50%	27.000000	460.000000	5.000000	51.000000	7.000000
75%	30.000000	896.000000	5.500000	94.000000	15.000000
max	38.000000	7664.000000	12.500000	264.000000	75.000000

Inspecting suspicious data

This accounts for both extreme values that we noticed. But, is this data truly accurate? It's worth validating online, elsewhere.

```
import pandas as pd
df = pd.read csv("epl.csv")
df.iloc[df['market_value'].idxmin()]
                Eduardo Carvalho
name
club
                          Chelsea
age
                               34
position
                               LW
position cat
market value
                             0.05
page views
                              467
fpl value
fpl_sel
                            0.10%
fpl points
region
nationality
                         Portugal
new foreign
age cat
club_id
big club
new_signing
Name: 109, dtype: object
```


from www.transfermarkt.us

df.loc[df['market_value'] >= 15].sort_values(by='market_value', ascending=False).head(15)

	name	club	age	nosition	position_cat	market_value	p ge_views	fpl_value	fpl_se	fpl_points
92	Eden Hazard	Chelsea	26	LW	1	75.0	4220	10.5	2.30%	224
263	Paul Pogba	Manchester+United	24	СМ	2	75.0	7435	8.0	19.50%	115
0	Alexis Sanchez	Arsenal	28	LW	1	65.0	4329	12.0	17.10%	264
241	Sergio Aguero	Manchester+City	29	CF	1	65.0	4046	11.5	9.70%	175
240	Kevin De Bruyne	Manchester+City	26	AM	1	65.0	2252	10.0	17.50%	199
377	Harry Kane	Tottenham	23	CF	1	60.0	4161	12.5	35.10%	224
104	N%27Golo Kante	Chelsea	26	DM	2	50.0	4042	5.0	13.80%	83
1	Mesut Ozil	Arsenal	28	AM	1	50.0	4395	9.5	5.60%	167
260	Romelu Lukaku	Manchester+United	24	CF	1	50.0	3727	11.5	45.00%	221
93	Diego Costa	Chelsea	28	CF	1	50.0	4454	10.0	3.00%	196
214	Philippe Coutinho	Liverpool	25	AM	1	45.0	2958	9.0	30.80%	171
242	Raheem Sterling	Manchester+City	22	LW	1	45.0	2074	8.0	3.80%	149
376	Dele Alli	Tottenham	21	СМ	2	45.0	4626	9.5	38.60%	225
98	Thibaut Courtois	Chelsea	25	GK	4	40.0	1260	5.5	18.50%	141
215	Sadio Mane	Liverpool	25	LW	1	40.0	3219	9.5	5.30%	156

	age	page_views	fpl_value	fpl_points	market_value
count	461.000000	461.000000	461.000000	461.000000	461.000000
mean	26.804772	763.776573	5.447939	57.314534	11.012039
std	3.961892	931.805757	1.346695	53.113811	12.257403
min	17.000000	3.000000	4.000000	0.000000	0.050000
25%	24.000000	220.000000	4.500000	5.000000	3.000000
50%	27.000000	460.000000	5.000000	51.000000	7.000000
75%	30.000000	896.000000	5.500000	94.000000	15.000000
max	38.000000	7664.000000	12.500000	264.000000	75.000000

Summary statistics can only reveal so much

Visualization

Same stats do not imply same graphs

Same graphs do not imply same stats

Visualization

Visualization is incredibly important, both for EDA and for communicating your results to others.

Visualization packages will be used throughout the semester.

Useful PANDAS functions

.read_csv() # loads a .csv file

Accessing/processing:

- df["column_name"]
 - .max(), .min(),
 - .idxmax(), .idxmin()
- <dataframe> <conditional>
- .loc[] label-based accessing
- .iloc[] index-based accessing
- .sort_values()
- .isnull(), .notnull()
- .dropna()
- .any()
- .values() E.g., df['column'].values()
 - (df['name'] == "Chris").any()
- [0:3] # grab the first 3 rows of the DataFrame

Grouping/Splitting/Aggregating:

- groupby(),
- .get_groups()
- .drop()
- .merge(), .concat() .aggregate()
- .append()
- .sum() .median() .mean()

High-level viewing:

- .head() first N observations
- .tail() last N observations
- .describe() statistics of the quantitative data
- .dtypes the data types of the columns

.columns - names of the columns

.shape – the # of (rows, columns)

Let's get started!

https://www.youtube.com/watch?v=fn3KWM1kuAw