EM384: Analytical Methods for Engineering Management

Lesson 17: Sensitivity Analysis II

1 March 2023

Table of contents

- 1. Lesson Objectives
- 2. Review
- 3. Example Walkthrough
- 4. Practical Exercise 1
- 5. Practical Exercise 2
- 6. Conclusion

Lesson Objectives

Lesson Objectives

Create and interpret Sensitivity Reports, to include:

- · Shadow Price
- Reduced Cost
- · Constraint Outcomes: Binding and Nonbinding

Review

Sensitivity Analysis on Decision Variable Coefficients

- Basic Variable: A decision variable that is included in the optimal solution (and therefore has a non-zero value).
- Non-basic Variable: A decision variable that is *not* included in the optimal solution (and therefore has a value of zero)
- Reduced Cost: For any nonbasic variable, the reduced cost for the variable is the amount by which its objective function coefficient must be improved before that variable will be a basic variable in some optimal solution to the LP.¹ If a decision variable is basic (already in the solution), its reduced cost is zero.
- Allowable Increase and Allowable Decrease: This provides the range the objective function coefficient can vary while the optimal solution (decision variables) remains the same. For changes outside of the given range, the linear program would have to be re-solved.

¹"Introduction to Mathematical Programming" by Wayne Winston

Sensitivity Analysis on Constraint "RHS"

- Shadow Price: The shadow price of a linear program constraint is the amount by which the optimal objective function value will change if the right-hand-side is increased by one.²
- · Binding Constraint: A constraint which has a non-zero shadow price.
- Non-binding Constraint: A constraint which has a shadow price equal to zero.
- Allowable Increase and Allowable Decrease: This provides the range the right-hand side constraint can change before the shadow price becomes unreliable (or changes). The shadow price is valid within the given range between Allowable Increase and Allowable Decrease for the right-hand side of the constraint.

²"Introduction to Mathematical Programming" by Wayne Winston

Example Walkthrough

JRTC Depployment Algebraic Formulation

Decision variables:

 x_1 : Number of C130s used

 x_2 : Number of C17s used

Objective function:

Maximize $Z = 3x_1 + 4x_2$ (Soldiers deployed, in dozens)

Constraints:

 $x_1 \le 12$ (C130s available)

 $x_2 \le 10$ (C17s available)

 $2x_1 + 3x_2 \le 36$ (Ground support)

 $4x_1 + 5x_2 \le 80$ (Budget, in \$1000's)

 $x_1, x_2 \ge 0$ (non-negativity)

Graphical Solution

Excel Solution

- 4	A B	С	D	E	F	G	Н
1	Parameters						
2							
3		C-130	C-17				
4	Personnel	3	4	dozen			
5	Ground Support	2	3	hours			
6	Cost	4	5	\$k			
7	The second second						
8	Decision Variables						
9							
10		C-130	C-17				
11	Number of Aircr	raft 12	4	# AC			
12		1111					
13	Objective Function						
14							
15	# of Personnel	52	dozen				
16							
17	Constraints						
18					0		
19				LHS		RHS	,
20	C-130s Available	1	0	12	<=	12	# AC
21	C-17s Available	0	1	4	<=	10	# AC
22	Ground Support	2	3	36	<=	36	hours
23	Cost Constraint	4	5	68	<=	80	\$k

Excel Answer Report

Microsoft Excel 16.0 Answer Report Worksheet: [JRTC Problem with Sentivity Analysis.xlsx]JRTC Report Created: 9/12/2020 10:53:02 AM Result: Solver found a solution. All Constraints and optimality conditions are satisfied. Solver Engine Engine: Simplex LP Solution Time: 0.016 Seconds. Iterations: 3 Subproblems: 0 Solver Options Max Time Unlimited, Iterations Unlimited, Precision 0.000001 Max Subproblems Unlimited, Max Integer Sols Unlimited, Integer Tolerance 0%, Assume NonNegative Objective Cell (Max) Objective Value: 52 dozen Soldiers Original Value Final Value Cell Name \$D\$6 # of Soldiers (dozens) 52 Optimal Solution: 12 x C130s and 4 x C17s Variable Cells Cell Name Original Value Final Value Integer 12 Contin \$B\$3 Number of Aircraft C-130 \$C\$3 Number of Aircraft C-17 4 4 Contin Slack (for <= constraints): For these constraints, if a slack variable is positive it means that not all of that particular resource was used. If the slack is zero for a particular constraint, then all of the available resource was used and that constraint is termed binding. Constraints Cell Namo Cell Value Formula Status Slack If a constraint has a Slack of 0, you know it is a Binding Constraint. SDS9 Budget (Sthousands) 68 \$D\$9<=\$F\$9 / Not Binding 12 You can only improve the Objective Value by increasing resources to Binding constraints. \$D\$10 Ground Support (hours) 36 SDS10<=SFS10 Binding 0 Adding more resources to a constraint with slack will not affect the Objective Value SDS11 C-130s Available 12 SDS11<=SFS11 Binding 0 SDS12 C-17s Available 4 SDS12<=SFS12 Not Binding 6 BN CDR: we need to take more Soldiers...what if Lincrease the budget to 100?

Excel Sensitivity Report

Microsoft Excel 16.0 Sensitivity Report

Worksheet: [JRTC Problem with Sentivity Analysis.xlsx], Report Created: 9/12/2020 10:53:03 AM

Reduced Cost: Indicates how much the objective function coefficient of each decision variable would have to IMPROVE before it would be included in the optimal solution. If a decision variable is already in the optimal solution, its reduced cost is 0.

Variable Cells

Cell	Name	Value			Decrease
\$B\$3	Number of Aircraft C-1:	12		3 1E+30	0.33333333
\$C\$3	Number of Aircraft C-1	4	(0	4 0.5	4

Constraints

		Final	/Snadow V	onstrain:	Allowable	Allowable
Cell	Name	Value	Price P	H. Sidel	ncrease	Decrease
\$D\$9	Budget (\$ thousands)	6B	0	80	1E+30	12
\$D\$10	Ground Support (hour	36	1.33333333	36	7.2	12
\$D\$11	C-130s Available	12	0.33333333	/ 12	6	9
\$D\$12	C-17s Available	4	0/	10	1E+30	6

Final Chadow Constrain Howald, Allowable

Allowable Increase and Allowable Decrease (Decision Variables): This provides the range the objective function coefficient can vary while the optimal solution remains the same.

What if a C17 could hold 2 dozen people instead of 4 dozen - would this change our optimal solution?

If there are any changes outside of the allowable increase of decrease, you'll have to resolve the LP

Shadow Price: The shadow price for a constraint is the change in the value of the optimal solution per unit increase in the right-hand side of the constraint. i.e. Given one more unit of a constrained resource, the shadow price is how much the objective value would change

What if we had one more hour of ground support available - how would this affect our optimal solution? What if we had one LESS hour of ground support available?

The shadow price is valid for the range given by the Allowable Increase and Allowable Decrease for the right-hand side (Constraints).

What if we had 8 more hours available?

Practical Exercise 1

Problem 1

University Ceramics manufactures plates, mugs, and steins that include the campus name and logo for sale in campus bookstores. The time required for each item to go through the two stages of production (molding and finishing), the material required (clay), and the corresponding unit profits are given in the following table, along with the amount of each resource available for tomorrow's eight-hour shift.

	Plates	Mugs	Steins	Available
Molding (minutes)	4	6	3	2,400
Finishing (minutes)	8	14	12	7,200
Clay (ounces)	5	4	3	3,000
Unit Profit	\$3.10	\$4.75	\$4.00	

See Handout

PE1 Formulation

Decision Variables

 x_1 : Number of plates produced.

 x_2 : Number of mugs produced.

 x_3 : Number of steins produced.

Objective Function

Maximize $Z = 3.10x_1 + 4.75x_2 + 4x_3$ (Profit in \$)

Constraints

$$4x_1 + 6x_2 + 3x_3 \le 2400$$
 (Moulding, in minutes) $8x_2 + 14x_2 + 12x_3 \le 7200$ (Finishing, in minutes) $5x_1 + 4x_2 + 3x_3 \le 3000$ (Clay, in ounces) $x_1, x_2, x_3 > 0$ (non-negativity)

$$x_1, x_2, x_3 \geq 0$$
 (non-negativity)

Paramete	rs						
		Plates	Mugs	Steins			
	Molding	4	6	3	minutes		
	Finishing	8	14	12	minutes		
	Clay	5	4	3	ounces		
	Profit	\$3.10	\$4.75	\$4.00			
Decision V	'ariables						
		Plates	Mugs	Steins			
	# produced	300	0	400			
Objective							
	Max. Profit	\$2,530.00					
Constraint	ts						
		Plates	Mugs	Steins	LHS		RHS
	Molding	4	6	3	2400	<=	2400
	Finishing	8	14	12	7200	<=	7200
	Clay	5	4	3	2700	<=	3000

Answer Report

Objective Cell (Max)

Cell	Name	Original Value	Final Value
\$C\$13	Max. Profit Plates	\$11.85	\$2,530.00

Variable Cells

Cell	Name	Original Value	Final Value	Integer
\$C\$10	# produced Plates	1	300	Contin
\$D\$10	# produced Mugs	1	0	Contin
\$E\$10	# produced Steins	1	400	Contin

Sensitivity Report

Variable Cells

Cell	Name	Final Value	Reduced Cost	Objective Coefficient	Allowable Increase	Allowable Decrease
	# produced Plates		0		2.233333333	
\$D\$10	# produced Mugs	0	-0.458333333	4.75	0.458333333	1E+30
\$E\$10	# produced Steins	400	0	4	0.65	1.375

Constraints

		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$F\$17	Molding LHS	2400	0.216666667	2400	200	600
\$F\$18	Finishing LHS	7200	0.279166667	7200	2400	2400
\$F\$19	Clay LHS	2700	0	3000	1E+30	300

Constraints

Cell	Name	Cell Value	Formula	Status	Slack
\$F\$17	Molding LHS	2400	\$F\$17<=\$H\$17	Binding	0
\$F\$18	Finishing LHS	7200	\$F\$18<=\$H\$18	Binding	0
\$F\$19	Clay LHS	2700	\$F\$19<=\$H\$19	Not Binding	300

Practical Exercise 2

Problem 2

Dahlby Outfitters wishes to introduce packaged trail mix as a new product. The ingredients for the trail mix are seeds, raisins, flakes, and two kinds of nuts. Each ingredient contains certain amounts of vitamins, minerals, protein, and calories. The marketing department has specified that the product be designed so that a certain minimum nutritional profile is met. The decision problem is to determine the optimal product composition—that is, to minimize the product cost by choosing the amount for each of the ingredients in the mix. The following data summarizes the parameters of the problem:

Component	Nutritional Requirement					
Vitamins	10	20	10	30	20	20
Minerals	5	7	4	9	2	10
Protein	1	4	10	2	1	15
Calories	500	450	160	300	500	600
Cost/pound	\$4	\$5	\$3	\$7	\$6	

See Handout

PE2 Formulation

Decision Variables

 x_1 : weight of seeds in mix, in pounds.

 x_2 : weight of raisins in mix, in pounds.

 x_3 : weight of flakes in mix, in pounds.

 x_4 : weight of pecans in mix, in pounds.

 x_5 : weight of walnuts in mix, in pounds.

Objective Function

Minimize
$$Z = 4x_1 + 5x_2 + 3x_3 + 7x_4 + 6x_5$$
 (cost in \$)

Constraints
$$10x_1 + 20x_2 + 10x_3 + 30x_4 + 20x_5 \ge 20$$
 (Vitamins, in grams)

$$5x_1 + 7x_2 + 4x_3 + 9x_4 + 2x_5 \ge 10$$
 (Minerals, in Grams)

$$x_1 + 4x_2 + 10x_3 + 2x_4 + x_5 \ge 15$$
 (Protein, in grams)

$$500x_1 + 450x_2 + 160x_3 + 300x_4 + 500x_5 \ge 600$$
 (Protein, in grams)

$$x_1, x_2, x_3 \ge 0$$
 (non-negativity)

Paramete	rs								
		Seeds	Raisins	Flakes	Pecans	Walnuts			
	Vitamins	10	20	10	30	20			
	Minerals	5	7	4	9	2			
	Protein	1	4	10	2	1			
	Calories	500	450	160	300	500			
	Cost	\$4	\$5	\$3	\$7	\$6			
Decision \	/ariables								
		Seeds	Raisins	Flakes	Pecans	Walnuts			
	lbs. of	0.48	0.33	1.32	0.00	0.00			
Objective									
	Min. Cost	\$7.54							
Constrain	ts								
		Seeds	Raisins	Flakes	Pecans	Walnuts	LHS		RHS
	Vitamins	10	20	10	30	20	24.642	>=	20
	Minerals	5	7	4	9	2	10	>=	10
	Protein	1	4	10	2	1	15	>=	15
	Calories	500	450	160	300	500	600	>=	600

Answer Report

Objective Cell (Min)

Cell Name	Original Value	Final Value
\$C\$14 Min. Cost Seeds	\$7.54	\$7.54

Variable Cells

Cell	Name	Original Value	Final Value	Integer
\$C\$11	lbs. of Seeds	0.48	0.48	Contin
\$D\$11	lbs. of Raisins	0.33	0.33	Contin
\$E\$11	lbs. of Flakes	1.32	1.32	Contin
\$F\$11	lbs. of Pecans	0.00	0.00	Contin
\$G\$11	lbs. of Walnuts	0.00	0.00	Contin

Constraints

Cell	Name	Cell Value	Formula	Status	Slack
\$H\$18	Vitamins LHS	24.64200477	\$H\$18>=\$J\$18	Not Binding	4.642004773
\$H\$19	Minerals LHS	10	\$H\$19>=\$J\$19	Binding	0
\$H\$20	Protein LHS	15	\$H\$20>=\$J\$20	Binding	0
\$H\$21	Calories LHS	600	\$H\$21>=\$J\$21	Binding	0

Sensitivity Report

Variable Cells

		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$C\$11	lbs. of Seeds	0.477326969	() 4	1.064766839	0.462962963
\$D\$11	lbs. of Raisins	0.334128878	(5	0.391666667	0.849173554
\$E\$11	lbs. of Flakes	1.318615752	(3	2.651612903	0.376
\$F\$11	lbs. of Pecans	0	1.57875895	5 7	1E+30	1.57875895
\$G\$11	lbs. of Walnuts	0	3.471360382	2 6	1E+30	3.471360382

Constraints

Cell	Name	Final Value	Shadow Price	Constraint R.H. Side	Allowable Increase	Allowable Decrease
\$H\$18	Vitamins LHS	24.64200477	0	20	4.642004773	1E+30
\$H\$19	Minerals LHS	10	0.490453461	10	1.03626943	0.578512397
\$H\$20	Protein LHS	15	0.056085919	15	2.333333333	5.882352941
\$H\$21	Calories LHS	600	0.002983294	600	60.86956522	74.07407407

Conclusion

Next Class

Homework:

- Watch video on Python PuLP (will be uploaded to TEAMS)
- · Finish Homework Set 5

Next Lesson: Same Lesson Objectives

• Model and solve a linear program in Python using the PuLP Library, and interpret the results to include the sensitivity analysis.