Презентация по курсовой работе на тему: «Исследование метрических

методов классификации»

Выполнил: Ощепков Дмитрий Олегович

Научный руководитель: Котельников Евгений Вячеславович

Актуальность

Метрические методы классификации применяются в различных областях жизнедеятельности человека, например:

- Биомедицина и медицинская диагностика
- Обработка естественного языка
- Компьютерное зрение и обработка изображений

Проблема исследования

• Проблема исследования заключается в отсутствии четких рекомендаций или наставлений для выбора конкретного метрического метода классификации в конкретной задаче.

Цели и задачи

- Провести сравнительный анализ различных метрических методов классификации в разных сценариях и задачах.
- Сформировать рекомендации по выбору модели.

Постановка задачи

• Задача классификации заключается в том, чтобы разделить разные ситуации или объекты на группы или классы на основе имеющихся данных.

Метод k ближайших соседей

• Классификация на основе меток k ближайших объектов

$$a(u,k) =$$

$$= \underset{y \in Y}{\operatorname{argmax}} \sum_{i=1}^{k} [y_u^{(i)} = y]$$

Метод взвешенных ближайших соседей

• Модификация предыдущего, при классификации присваивает веса ближайшим соседям

$$a(u, k) =$$

$$= \underset{y \in Y}{\operatorname{argmax}} \sum_{i=1}^{l} \left[y_u^{(i)} = y \right] w_i$$

Метод парзеновского окна фиксированной ширины

• В этом методе объект классифицируется на основе ядерной функции. Ширина окна влияет на важность удаленности объектов при классификации

$$a(u, h, K) =$$

$$= \underset{y \in Y}{\operatorname{argmax}} \sum_{i=1}^{l} \left[y_u^{(i)} = y \right] K \left(\frac{\rho\left(u, x_u^{(i)}\right)}{h} \right)$$

Метод парзеновсего окна переменной ширины

• В отличие от метода парзеновского окна фиксированной ширины, здесь ширина окна может изменяться в зависимости от расстояния между объектами

$$a(u, k, K) = \underset{y \in Y}{\operatorname{argmax}} \sum_{i=1}^{k} \left[y_u^{(i)} = y \right] K \left(\frac{\rho\left(u, x_u^{(i)}\right)}{\rho\left(u, x_u^{(k+1)}\right)} \right)$$

Метод потенциальных функций

• Функция потенциала определяет близость объектов и их принадлежность к классам

$$a(u, K) =$$

$$= \underset{y \in Y}{\operatorname{argmax}} \sum_{i=1}^{k} \left[y_u^{(i)} = y \right] *$$

$$* K \left(\frac{\rho \left(u, x_u^{(i)} \right)}{\rho \left(u, x_u^{(k+1)} \right)} \right)$$

Bank Customer Churn Dataset

- Из особенностей датасета можно выделить дисбаланс данных и отсутствие выбросов.
- Дисбаланс был устранен с помощью алгоритма SMOTE, который добавил примеры в меньший класс

Bank Customer Churn Dataset

	KNN	Weight KNN	Fixed-width Parzen Window	Variable- width Parzen Window	Potential Function	Sk-learn
Accuracy	0.7753	0.7753	0.7093	0.744	0.798	0.7753
F1	0.4871	0.4871	0.4591	0.4754	0.0066	0.4871
Precision	0.4482	0.4482	0.3656	0.4028	0.2	0.4482
Recall	0.5333	0.5333	0.6167	0.58	0.0033	0.5333

Bank Customer Churn Dataset

- Были проведены замеры метирик до и после применения SMOTE
- На практике подтвердилось, что рассмотренные методы чувствительны к дисбалансу классов.
- Метод потенциальных функций показал наибольшее accuracy, но базовый классификатор выдает 0.7753, что говорит о низком уровне качества модели
- Наилучшие показатели основной метрики (F1) y knn и knnweighed
- Стоит отметить, что Fixed-width Parzen Window имеет наибольший показатель Recall

Остальные датасеты

•

Выводы

- В зависимости от задачи могут быть применимы разные методы, но наибольшие показатели в тестах как правило у алгоритма knn, поэтому этот алгоритм стоит пробовать первым.
- Алгоритмы действительно чувствительны к нормировке, (выбросам) и дисбалансу классов

Спасибо за внимание!