NUMBER SYSTEM CONVERSION AND ARITHMETIC

Convert the following numbers in decimal to binary, octal, and hexadecimal: 156, 1024, 255.

1. 156:

Decimal To Binary:

2	156	
2	78	0
2	39	0
2	19	1
2	9	1
2	4	1
2	2	0
	1	0

$(156)_{10} = (10011100)_2$

Decimal To Octal

8	156	
8	19	4
	2	3

$(156)_{10} = (234)_8$

Decimal To Hexa Decimal

16	156	
	8	12

=> 12 = C

$(156)_{10} = (8C)_{16}$

2. 1024

Decimal To Binary

2	1024	
2	512	0
2	256	0
2	128	0

2	64	0
2	32	0
2	16	0
2	8	0
2	4	0
2	2	0
	1	0

$(1024)_{10} = (100000000000)_2$

Decimal To Octal

8	1024	
8	128	0
8	16	0
	2	0

$(1024)_{10} = (2000)_8$

Decimal To Hexa Decimal

16	1024	
16	64	0
16	4	0

$(1024)_{10} = (400)_{16}$

3. 255

Decimal To Binary

2	255	
2	127	1
2	63	1
2	31	1
2	15	1
2	7	1
2	3	1
	1	1

$(255)_{10} = (11111111)_2$

Decimal To Octal

8	255	
8	31	7
8	3	7

$(255)_{10} = (377)_8$

Decimal To Hexadecimal

16	255	
8	15	15

=> 15 = F

$(255)_{10} = (FF)_{16}$

Convert the following into Octal $(124)_{10}$, $(A78E)_{16}$

1. (124)10

8	124	
8	15	4
	1	7

$(124)_{10} = (174)_8$

2. (A78E)₁₆

(A78E)₁₆

$$= (A \times 16^3) + (7 \times 16^2) + (8 \times 16^1) + (E \times 16^0)$$

We know that A = 10 And E = 14

=
$$(10 \times 16^3) + (7 \times 16^2) + (8 \times 16^1) + (14 \times 16^0)$$

 $=(42894)_{10}$

8	42894	
8	5361	6
8	670	1
8	83	6
8	10	3
8	1	2

(A78E)₁₆ = (123616)₈

Convert the following into Hexadecimal (784)₁₀, (372)₈.

1. (784)₁₀

16	784	
16	49	0
	3	1

$(784)_{10} = (310)_{16}$

2. (372)8

$$= (3 \times 8^2) + (7 \times 8^1) + (2 \times 8^0)$$

$$= 192 + 56 + 2$$

 $=(250)_{10}$

16	250	
16	15	10

We Know That 15 = F And 10 = A

 $(372)_8 = (FA)_{16}$

Convert the following into Binary $(235)_8$, $(276)_{10}$, $(C13E)_{16}$

1. (235)8

$$= (2 \times 8^{2}) + (3 \times 8^{1}) + (5 \times 8^{0})$$
$$= 128 + 24 + 5$$

=(157)	10
--------	----

2	157	
2	78	1
2	63	1
2	31	1
2	15	1
2	7	1
2	3	1
	1	1

$(235)_8 = (11111111)_2$

2. (276)₁₀

2	276	
2	138	0
2	69	0
2	34	1
2	17	0
2	8	1
2	4	0
2	2	0
	1	0

$(276)_{10} = (100010100)_2$

3. (C13E)₁₆

=
$$(C \times 16^3) + (1 \times 16^2) + (3 \times 16^1) + (E \times 16^0)$$

We Know That $C = 12$ And $E = 14$
= $(12 \times 16^3) + (1 \times 16^2) + (3 \times 16^1) + (14 \times 16^0)$
= $49152 + 256 + 48 + 14$
= $(49470)_{10}$

2	49470	
2	24735	0
2	12367	1
2	6183	1
2	3091	1
2	1545	1
2	772	1
2	386	0

2	193	0
2	96	1
2	48	0
2	24	0
2	12	0
2	6	0
2	3	0
2	1	1

 $(C13E)_{16} = (1100001001111110)_2$