Roll No.

SHAMBHUNATH INSTITUTE OF ENGINEERING AND TECHNOLOGY

Subject Code: BCS-602

Course: B.Tech

Subject: Compiler Design

SEMESTER: VIth

SECOND SESSIONAL EXAMINATION, EVEN SEMESTER, (2024-2025)

Branch: COMPUTER SCIENCE & ENGINEERING

Maximum Marks-15

Time - 1 Hr. NOTE :(Attempt All Sections)

1. Attempt ALL Questions.

	AMPETION OF	Marks	CO	BL
QN	QUESTION	1 %	CO2	Ll
a.	Explain parser.	1	CO2	L3
b. Ø	Find first and follow Production Rules:	et		
.0	S-> aBDh B-> cC C-> bC D-> EF E-> $g \mid C$ F-> $f \mid C$	1	CO2	L2
Sc.	What is a regular expression?	1	CO2	L3
d.	Explain Operator precedence parsing.	1	CO2	1.2
e.	Explain classification of grammars.	1		

2. Attempt Any ONE of the following.

	OUESTION	Marks	CO	BL
QN a.	Write the algorithm for FIRST() and FOLLOW() with example.	5	CO2	L3
. Y .	0,	5	CO2	L3
b.	Explain Error Recovery in LR Parsing.	5	*	1

3. Attempt Any ONE of the following.

ON	OUESTION	Marks	CO	BL
a.	Explain LL(1) Parser with example.	5	CO2	L4
b.	Explain Parsing Techniques in Compiler Design.	5	CO2	L3

Bloom's Taxonomy Level (BL):-

Analyze(L4), Creating(L6) Evaluating(L5), Apply(L3), Understanding(L2), emember(L1),

SHAMBHUNATH INSTITUTE OF ENGINEERING AND TECHNOLOGY

Subject Code: BCS-602

Course: B. Tech

Subject: Compiler Design SEMESTER VI'th

HIRD SESSIONAL EXAMINATION, EVEN SEMESTER, (2024-2025)

Branch: COMPUTER SCIENCE & ENGINEERING

NOTE :(Attempt All Sections)

Maximum Marks - 45

1. Attempt Any FIVE of the following.

QN	QUESTION			
\mathbf{a}_{-}	What are the sarious towns of	Marks	CO	BL
b.	What are the various types of intermediate code representation?	2	CO ₃	LI
	What is meant by viable prefixes?	2	CO3	1.2
C.	What is an operator precedence parser?	2	CO ₃	1.2
d.	What is code generation?	300		
e.	What are the benefits of intermediate code generation?	10	CO3	L1
1.	What is SDT?	.,⊘`2	CO3	LI
	What is SD1?	2	CO3	L1

2. Attempt Any ONE of the following.

QN	QUESTION			
a.	Construct syntax tree and postfor notation	Marks	CO	BI
	Construct syntax tree and postfix notation for the following expression: $(a+(b+c)^d-c/(f+g))$	5	CO3	L
b.	Define syntax directed translation (SDT). Construct an annotated parse tree for the expression $(5*3+1)*7$.	5	CO3	⊘¶.
c,	Explain error detection and recovery technique.	5	CO3	1

3. Attempt Any FIVE of the following.

QN @	QUESTION	Marks	CO	BL
S	What is dynamic scoping?	2	CO4	1.5
ь,	What is a basic block?	2	CO4	1.2
c.	Write the algorithm for FIRST and FOLLOW.	2	CO4	1,2
d.	What is meant by viable prefixes?	2	CO4	LI
c.	What is a flow graph?	2	CO4	1.3
f.	What is hashing? Explain.	2	CO4	9.4

4. Attempt Any ONE of the following.

QN	QUESTION	Marks	CO	BL
a.	Write the quadruples, triple and indirect triple for the following expression: $(x + y) * (y + z) + (x + y + z)$	5	CO4	1.4
b.	Consider the following program code:	13.		
0	Prod=0; I=1; Do { Prod=prod+a[i]*b[i]; I=i+1; } while (i<=10);	. ⊘ 5	CO4	1.2
.0	a. Partition in into blocks			
5	b. Construct the flow graph			ľ
c.	Explain intermediate code generation? With Example.	5	CO4	1.1

5. Attempt Any FIVE of the following.

QN	QUESTION	Marks	CO	BLO
a.	Define back patching?	2	CO5	1.2
b.	Construct the SLR parse table for the following Grammar E→E+E E→E*E E→id	2	COS	1.4
c.	Explain DAG with Example.	2	CO5	L2
d	List the different storage allocation strategies.	2	CO5	L3
e.	What is code motion?	2	CO5	L2
f.	Define symbol table?	2	CO5	L3

6. Attempt Any ONE of the following.

ONT				<u>J</u>
QN	QUESTION	Marks	CO	BL
a.	What is an activation record? Explain how it is related with runtime storage organization?	5	CO5	L3
b.	Consider the following grammar: E-> E+T T	otor.		
cjet.	T-> TF F F-> F* a b	5	CO5	L5
inghili ar	Construct the SLR parsing table and also parse the input "a*b+a"	بطويده	POR ALC	
	Write a short note with example to optimize the code:			
c.	a. Dead code elimination		CO5	L4
	b. Variable elimination	3	COS	1.74
	c. Code motion			-0
	d. Reduction in strength		- 1	7(0)

Bloom's Taxonomy Level (BL):-

J, Creating(L6) Apply(L3), Analyze(L4), Remember(L1), Understanding(L2), Evaluating(L5),