| PEiTC_01 | Romaniak Hubert | Informatyka           | Semestr zimowy |
|----------|-----------------|-----------------------|----------------|
|          |                 | niestacjonarna II rok | 2023/24        |

# 7adanie 1

Układy trzech rezystorów (połączenie szeregowe i równoległe)

#### Wstęp teoretyczny

Rezystancję układu można wyliczyć za pomocą wzoru:

$$R = \frac{U}{I}$$

Gdzie:

- U napięcie między końcami układu w woltach [V]
- I natężenie prądu elektrycznego płynącego przez układ w amperach [A]

Jednostką rezystancji jest ohm  $[\Omega]$ .

Dla każdego układu będącego połączeniem rezystancji można wyliczyć rezystancję zastępczą, czyli rezystancję, której wartość jest równoważna do danego układu.

W przypadku połączenia szeregowego n rezystancji, rezystancja zastępcza jest wyznaczana za pomocą wzoru:

$$R_z = \sum_{i=1}^n R_i$$

W przypadku połączenia równoległego n rezystancji, rezystancja zastępcza jest wyznaczana za pomocą wzoru:

$$R_z = \frac{1}{\sum_{i=1}^n \frac{1}{R_i}}$$

#### Cel zadania

- a) Obliczyć teoretyczną rezystancję zastępczą połączenia szeregowego 3 rezystorów o wartościach  $1k\Omega$ ,  $2k\Omega$ ,  $4k\Omega$  i porównać z wartością otrzymaną w symulatorze
- b) Obliczyć teoretyczną rezystancję zastępczą połączenia równoległego 3 rezystorów o wartościach  $1k\Omega$ ,  $2k\Omega$ ,  $4k\Omega$  i porównać z wartością otrzymaną w symulatorze

## Obliczenia teoretyczne

a) 
$$R_z = 1.00k + 2.00k + 4.00k = 7.00k [\Omega]$$

a) 
$$R_z=1{,}00k+2{,}00k+4{,}00k=7{,}00k\left[\Omega\right]$$
  
b)  $R_z=\frac{1}{\frac{1}{1{,}00k}+\frac{1}{2{,}00k}+\frac{1}{4{,}00k}}=\frac{1}{1{,}00m+0{,}50m+0{,}25}}=\frac{1}{1{,}75}\approx 571{,}43\left[\Omega\right]$ 

a)



Rysunek 1 - układ 3 rezystorów połączonych szeregowo

Rysunek 2 - układ z rezystorem zastępczym dla połączenia szeregowego

$$U = 1 [V]$$

$$I \approx 142,86\mu [A]$$

$$R_z \approx \frac{1}{142,86\mu} \approx 7,00k [\Omega]$$



Rysunek 3 - układ 3 rezystorów połączonych równolegle



Rysunek 4 - układ z rezystorem zastępczym dla połączenia równoległego

$$U = 1 [V]$$

$$I \approx 1,75m [A]$$

$$R \approx \frac{1}{1,75m} \approx 571,43 [\Omega]$$

## Wnioski

Za pomocą podanych wzorów na rezystancję zastępczą można obliczyć wartość rezystancji zastępczej układu rezystorów, której działanie będzie takie samo jak działanie tego układu.

# Zadanie 2

### Filtr dolnoprzepustowy RC

### Wstęp teoretyczny

Filtr w elektronice to układ odpowiedzialny za przepuszczanie lub blokowanie sygnałów o określonym zakresie częstotliwości. Filtry dzielą się na pasywne i aktywne. Filtry pasywne korzystają tylko z elementów RLC (rezystancji, indukcyjności, pojemności), natomiast filtry aktywne, poza elementami RLC, korzystają z dodatkowych elementów, takich jak m.in. wzmacniacze operacyjne.

Częstotliwość graniczna filtra to częstotliwość, poza którą tłumienie filtra staje się większe niż 3 dB (moc spada o więcej niż połowę) w stosunku do tłumienia wewnątrz pasma przepustowego.

Decybel (dB) jest miarą tłumienia sygnału. Wyraża się wzorem:

$$\begin{split} 1\,dB &= 10\log\frac{P_{out}}{P_{in}} = 10\log\frac{\frac{U_{out}^2}{R}}{\frac{U_{in}^2}{R}} = 10\log\frac{U_{out}^2}{U_{in}^2} = 10\log\left(\frac{U_{out}}{U_{in}}\right)^2 = 10\times2\log\frac{U_{out}}{U_{in}} \\ &= 20\log\frac{U_{out}}{U_{in}} \end{split}$$

 $-3 dB = 10 \log(0.5)$  spad

spadek mocy do 50,00% początkowej

 $-3 dB \approx 20 \log(0.7079)$ 

spadek napięcia do 70,79% początkowego

Filtr dolnoprzepustowy to filtr, który przepuszcza sygnały o częstotliwości poniżej częstotliwości granicznej, a tłumi sygnały o większej częstotliwości.

Częstotliwość graniczna pasywnego filtra dolnoprzepustowego RC wyznaczana jest ze wzoru:

$$f_C = \frac{1}{2\pi RC}$$

#### Cel zadania

Wyznaczyć częstotliwość graniczną dla filtra o wybranych wartościach ( $R=6.8k\Omega$ , C=4.7nF,  $U_{in}=10\,V$ ,  $\psi_{in}=0\,rad$ ). Zmieniać częstotliwość sygnału i odczytywać napięcie wyjściowe, a następnie porównać wyniki z obliczeniami teoretycznymi.



Rysunek 5 - schemat układu filtra dolnoprzepustowego RC

#### Obliczenia teoretyczne

Częstotliwość graniczna 
$$f_C = \frac{1}{2\pi RC} \approx \frac{1}{2\times 3.14\times 6.8k\times 4.7n} \approx \frac{1}{0.000201} \approx 4,980k \ [Hz]$$

 $f = f_c$ 

Pulsacja 
$$\omega = 2\pi f \approx 2 \times 3.14 \times 4.980 k \approx 31,29 k \left[\frac{rad}{s}\right]$$

Reaktancja pojemnościowa 
$$X_C = \frac{1}{\omega C} \approx \frac{1}{31.29k \times 4.7n} \approx \frac{1}{0.000147} \approx 6.8k \ [\Omega]$$

Impedancja pojemnościowa 
$$Z_C = -jX_C \approx -j6.8k \ [\Omega]$$

Impedancja 
$$Z = R + Z_C \approx 6.8k - j6.8k [\Omega]$$

Napięcie wyjściowe (z dzielnika napięcia):

$$U_{out} = U_{in} \frac{Z_C}{Z} \approx 10 \frac{-j6,8k}{6,8k - j6,8k} = 10 \frac{-j}{1 - j} \times \frac{1 + j}{1 + j} = 10 \frac{-j - j^2}{1^2 - j^2} = 10 \frac{-j - (-1)}{1 - (-1)} = 10 \frac{-j + 1}{1 + 1}$$

$$= 10 \frac{1 - j}{2} = 5(1 - j) = \begin{cases} z = 1 - j = |z|e^{j\varphi} \\ |z| = \sqrt{1^2 + (-1)^2} = \sqrt{1 + 1} = \sqrt{2} \\ \cos \varphi = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \end{cases}$$

$$= 10 \frac{1 - j}{2} = 5(1 - j) = \begin{cases} \varphi = -\arccos \frac{1}{\sqrt{2}} = -\arccos \frac{\sqrt{2}}{2} = -\frac{\pi}{4} \\ \varphi = -\arccos \frac{1}{\sqrt{2}} = -\arccos \frac{\sqrt{2}}{2} = -\frac{\pi}{4} \end{cases}$$

$$= 5 \times \sqrt{2}e^{j(-\frac{\pi}{4})} \approx 5 \times 1,414e^{j(-\frac{\pi}{4})} = 7,071e^{j(-\frac{\pi}{4})} [V]$$

Wartość skuteczna napięcia wyjściowego  $U_{out}=7{,}071\,V$  i jest przesunięta w fazie o  $\psi_{out}=-\frac{\pi}{4}\approx -0{,}785\,rad~(-45{,}000^\circ)$  w stosunku do napięcia wejściowego.

Tłumienie sygnału 
$$20 \log \frac{7,071}{10} = 20 \log 0,7071 \approx 20 \times (-0,1505) = -3,010 [dB]$$

Uwaga

Można zauważyć, że wzór na napięcie wyjściowe skraca się do postaci:  $U_{out} = U_{in} \frac{1 - \frac{f}{f_c} j}{1 + \left(\frac{f}{f_c}\right)^2}$ 

Po kolejnych przekształceniach można zauważyć, że wzór na wartość napięcia wyjściowego ma postać:  $|U_{out}| = \frac{f_c U_{in}}{\sqrt{f^2 + f_c^2}}$ , a wzór na przesunięcie w fazie wynosi  $\psi = -\arccos\frac{f_c}{\sqrt{f^2 + f_c^2}}$ . W obu wzorach pojawia

się wspólny czynnik  $A=\frac{f_c}{\sqrt{f^2+{f_c}^2}}$ , który można wyliczyć osobno. Ostatecznie, wzory przyjmują postać:

$$A = \frac{f_c}{\sqrt{f^2 + {f_c}^2}}$$

$$|U_{out}| = AU_{in}$$

$$\psi_{out} = -\arccos A$$

$$f = 1Hz$$

$$A = \frac{f_c}{\sqrt{f^2 + f_c^2}} \approx 1,0000$$

$$|U_{out}| = AU_{in} \approx 10,000 V$$

Przesunięcie w fazie

$$\psi_{out} = -\arccos A \approx -0.0002 \ rad \ (-0.012^{\circ})$$

Tłumienie sygnału

$$20 \log \frac{10,000}{10} = 0,000 \ dB$$

f = 10Hz

$$A = \frac{f_c}{\sqrt{f^2 + f_c^2}} \approx 1,0000$$

Wartość napięcia wyjściowego

$$|U_{out}| = AU_{in} \approx 10,000 V$$

Przesunięcie w fazie

$$\psi_{out} = -\arccos A \approx -0.0002 \, rad \, (-0.012^{\circ})$$

Tłumienie sygnału

$$20\log\frac{10,000}{10} = 0,000\ dB$$

f = 100Hz

$$A = \frac{f_c}{\sqrt{f^2 + f_c^2}} \approx 0,9998$$

Wartość napięcia wyjściowego

$$|U_{out}| = AU_{in} \approx 9,998 V$$

Przesunięcie w fazie

$$\psi_{out} = -\arccos A \approx -0.0201 \, rad \, (-1.150^\circ)$$

Tłumienie sygnału

$$20\log\frac{9,99}{10} = -0,002\,dB$$

f = 1kHz

$$A = \frac{f_c}{\sqrt{f^2 + f_c^2}} \approx 0.9804$$

Wartość napięcia wyjściowego

$$|U_{out}| = AU_{in} \approx 9.804 V$$

Przesunięcie w fazie

$$\psi_{out} = -\arccos A \approx -0.198 \, rad \, (-11.354^{\circ})$$

Tłumienie sygnału

$$20\log\frac{9,804}{10} \approx -0,172\ dB$$

f = 10kHz

$$A = \frac{f_c}{\sqrt{f^2 + f_c^2}} \approx 0,4458$$

Wartość napięcia wyjściowego

$$|U_{out}| = AU_{in} \approx 4,458 V$$

Przesunięcie w fazie

$$\psi_{out} = -\arccos A \approx -1,109 \, rad \, (-63,527^{\circ})$$

Tłumienie sygnału

$$20 \log \frac{4,458}{10} \approx -7,018 dB$$

f = 100kHz

$$A = \frac{f_c}{\sqrt{f^2 + f_c^2}} \approx 0.0497$$

Wartość napięcia wyjściowego

$$|U_{out}| = AU_{in} \approx 0.497 V$$

Przesunięcie w fazie

$$\psi_{out} = -\arccos A \approx -1,521 \, rad \, (-87,149^{\circ})$$

Tłumienie sygnału

$$20 \log \frac{0,497}{10} \approx -26,073 \ dB$$

$$f = 1MHz$$

$$A = \frac{f_c}{\sqrt{f^2 + f_c^2}} \approx 0,0050$$

Wartość napięcia wyjściowego

 $|U_{out}| = AU_{in} \approx 0.050 \, V$ 

Przesunięcie w fazie

 $\psi_{out} = -\arccos A \approx -1.566\,rad\,(-89.715^\circ)$ 

Tłumienie sygnału

 $20 \log \frac{0,0050}{10} \approx -46,056 dB$ 

### Podsumowanie wyników

| f[Hz]            | 1      | 10     | 100    | 1000    | 4980    | 10000   | 100000  | 1000000 |
|------------------|--------|--------|--------|---------|---------|---------|---------|---------|
| $ U_{out} [V]$   | 10,000 | 10,000 | 9,998  | 9,804   | 7,071   | 4,458   | 0,497   | 0,050   |
| $\psi_{out}$ [°] | -0,012 | -0,012 | -1,150 | -11,354 | -45,000 | -63,527 | -87,149 | -89,715 |
| Tłumienie [dB]   | 0,000  | 0,000  | -0,002 | -0,172  | -3,010  | -7,018  | -26,073 | -46,056 |



Rysunek 6 – wykres zależności wartości napięcia wyjściowego od częstotliwości dla filtra dolnoprzepustowego RC (obliczenia)



Rysunek 7 – wykres zależności przesunięcia fazowego od częstotliwości dla filtra dolnoprzepustowego RC (obliczenia)



Rysunek 8 – wykres zależności tłumienia od częstotliwości dla filtra dolnoprzepustowego RC (obliczenia)

| f[Hz]            | 1      | 10     | 100    | 1000    | 4980    | 10000   | 100000  | 1000000 |
|------------------|--------|--------|--------|---------|---------|---------|---------|---------|
| $ U_{out} [V]$   | 10,000 | 10,000 | 9,998  | 9,804   | 7,071   | 4,458   | 0,497   | 0,050   |
| $\psi_{out}$ [°] | -0,012 | -0,115 | -1,150 | -11,355 | -45,000 | -63,528 | -87,149 | -89,715 |
| Tłumienie [dB]   | 0,000  | 0,000  | -0,002 | -0,172  | -3,010  | -7,018  | -26,067 | -46,071 |



Rysunek 9 – wykres zależności wartości napięcia wyjściowego od częstotliwości dla filtra dolnoprzepustowego RC (symulacja)



Rysunek 10 – wykres zależności przesunięcia fazowego od częstotliwości dla filtra dolnoprzepustowego RC (symulacja)



Rysunek 11 – wykres zależności tłumienia od częstotliwości dla filtra dolnoprzepustowego RC (symulacja)

## Wnioski

Filtr pasywny dolnoprzepustowy RC przepuszcza sygnały, których częstotliwość jest poniżej częstotliwości granicznej, a tłumi sygnały o częstotliwości powyżej. Pasmo zaporowe filtra to zakres częstotliwości, dla których tłumienie jest większe niż  $3\,dB$ , co przekłada się na spadek mocy do 50% wartości początkowej lub spadek napięcia skutecznego/amplitudy napięcia do 70,79% wartości początkowej.

Tłumienie dolnoprzepustowego filtra RC, poza oczywistym zmniejszeniem amplitudy, przekłada się też na przesunięcie w fazie sygnału przefiltrowanego w stosunku do sygnału wejściowego. Przy częstotliwości granicznej, przesunięcie to wynosi  $-\frac{\pi}{4}\approx-0.79\ radiana\ (-45^\circ)$ , natomiast powyżej tej częstotliwości, przesunięcie zbliża się asymptotycznie do  $-\frac{\pi}{2}\approx-1.57\ radiana\ (-90^\circ)$ .

## Zadanie 3

## Filtr górnoprzepustowy RC

#### Wstęp teoretyczny

WSTĘP DO FILTRÓW – PATRZ "ZADANIE 2: WSTĘP TEORETYCZNY"

Filtr górnoprzepustowy to filtr, który przepuszcza sygnały o częstotliwości powyżej częstotliwości granicznej, a tłumi sygnały o mniejszej częstotliwości.

Częstotliwość graniczna pasywnego filtra górnoprzepustowego RC wyznaczana jest ze wzoru:

$$f_C = \frac{1}{2\pi RC}$$

#### Cel zadania

Wyznaczyć częstotliwość graniczną dla filtra o wybranych wartościach ( $R=6.8k\Omega$ , C=4.7nF,  $U_{in}=10\,V$ ,  $\psi_{in}=0\,rad$ ). Zmieniać częstotliwość sygnału i odczytywać napięcie wyjściowe, a następnie porównać wyniki z obliczeniami teoretycznymi.



Rysunek 12 - schemat układu filtra górnoprzepustowego RC

#### Obliczenia teoretyczne

Obliczenia teoretyczne są bardzo zbliżone do obliczeń z zadania 2, dlatego część wartości zostaje przepisana (PATRZ "ZADANIE 2: OBLICZENIA TEORETYCZNE").

Częstotliwość graniczna  $f_C \approx 4,980k$  [Hz]

 $f=f_{c}$  Impedancja  $Zpprox 6,8k-j6,8k\left[ \Omega 
ight]$ 

Napięcie wyjściowe (dzielnik napięcia):

$$U_{out} = U \frac{R}{Z} \approx 10 \frac{6,8k}{6,8k - j6,8k} = 10 \frac{1}{1 - j} \times \frac{1 + j}{1 + j} = 10 \frac{1 + j}{1^2 - j^2} = 10 \frac{1 + j}{1 - (-1)} = 10 \frac{1 + j}{1 + 1}$$

$$= 10 \frac{1 + j}{2} = 5(1 + j) = \begin{cases} z = 1 + j = |z|e^{j\varphi} \\ |z| = \sqrt{1^2 + 1^2} = \sqrt{1 + 1} = \sqrt{2} \\ \cos \varphi = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \\ \varphi = \arccos\left|\frac{\sqrt{2}}{2}\right| = \arccos\frac{\sqrt{2}}{2} = \frac{\pi}{4} \end{cases}$$

$$\approx 5 \times 1.414e^{j\frac{\pi}{4}} = 7.071e^{j\frac{\pi}{4}} [V]$$

Wartość skuteczna napięcia wyjściowego  $U_{out}=7{,}071\,V$  i jest przesunięta w fazie o  $\psi_{out}=\frac{\pi}{4}\approx 0{,}785\,rad~(45{,}000^\circ)$  w stosunku do napięcia wejściowego.

Tłumienie sygnału 
$$20 \log \frac{7,071}{10} = 20 \log 0,7071 \approx 20 \times (-0,1505) = -3,010 [dB]$$

Uwaga

Można zauważyć, że wzór na napięcie wyjściowe skraca się do postaci:  $U_{out} = U_{in} \frac{\left(\frac{f}{f_c}\right)^2 + \frac{f}{f_c}j}{1 + \left(\frac{f}{f_c}\right)^2}$ 

Po kolejnych przekształceniach można zauważyć, że wzór na wartość napięcia wyjściowego ma postać:  $|U_{out}| = \frac{fU_{in}}{\sqrt{f^2 + f_c^2}}$ , a wzór na przesunięcie w fazie wynosi  $\psi = \arccos\frac{f}{\sqrt{f^2 + f_c^2}}$ . W obu wzorach pojawia

się wspólny czynnik  $A=\frac{f}{\sqrt{f^2+{f_c}^2}}$ , który można wyliczyć osobno. Ostatecznie, wzory przyjmują postać:

$$A = \frac{f}{\sqrt{f^2 + {f_c}^2}}$$

$$|U_{out}| = AU_{in}$$

$$\psi_{out} = \arccos A$$

f = 1Hz

$$A = \frac{f}{\sqrt{f^2 + f_c^2}} \approx 0,0002$$

Wartość napięcia wyjściowego

$$|U_{out}| = AU_{in} \approx 0,002\,V$$

Przesunięcie w fazie

$$\psi_{out} = \arccos A \approx 1,571 \ rad \ (89,988^{\circ})$$

Tłumienie sygnału

$$20 \log \frac{0.00}{10} = -73,944 dB$$

f = 10Hz

$$A = \frac{f}{\sqrt{f^2 + f_c^2}} \approx 0,0020$$

Wartość napięcia wyjściowego

$$|U_{out}| = AU_{in} \approx 0.020 V$$

Przesunięcie w fazie

$$\psi_{out} = \arccos A \approx 1,569 \, rad \, (89,885^{\circ})$$

$$20 \log \frac{0,020}{10} = -53,945 dB$$

$$f = 100Hz$$

$$A = \frac{f}{\sqrt{f^2 + f_c^2}} \approx 0.0201$$

Wartość napięcia wyjściowego

$$|U_{out}| = AU_{in} \approx 0.201 V$$

Przesunięcie w fazie

$$\psi_{out} = \arccos A \approx 1,551 \ rad \ (88,850^{\circ})$$

Tłumienie sygnału

$$20 \log \frac{0,201}{10} = -33,946 \ dB$$

$$f = 1kHz$$

$$A = \frac{f}{\sqrt{f^2 + f_c^2}} \approx 0,1969$$

Wartość napięcia wyjściowego

$$|U_{out}| = AU_{in} \approx 1,969 V$$

Przesunięcie w fazie

$$\psi_{out} = \arccos A \approx 1,373 \, rad \, (78,646^{\circ})$$

Tłumienie sygnału

$$20 \log \frac{1,96}{10} \approx -14,116 \, dB$$

$$f = 10kHz$$

$$A = \frac{f}{\sqrt{f^2 + f_c^2}} \approx 0.8951$$

Wartość napięcia wyjściowego

$$|U_{out}| = AU_{in} \approx 8,951 V$$

Przesunięcie w fazie

 $\psi_{out} = \arccos A \approx 0,462 \ rad \ (26,473^{\circ})$ 

Tłumienie sygnału

$$20 \log \frac{8,951}{10} \approx -0,962 dB$$

f = 100kHz

$$A = \frac{f}{\sqrt{f^2 + f_c^2}} \approx 0,9988$$

Wartość napięcia wyjściowego

$$|U_{out}| = AU_{in} \approx 9,988 V$$

Przesunięcie w fazie

$$\psi_{out} = \arccos A \approx 0.050 \, rad \, (2.851^\circ)$$

Tłumienie sygnału

$$20 \log \frac{9,988}{10} \approx -0.011 dB$$

f = 1MHz

$$A = \frac{f}{\sqrt{f^2 + f_c^2}} \approx 1,0000$$

Wartość napięcia wyjściowego

$$|U_{out}| = AU_{in} \approx 10,000 \, V$$

Przesunięcie w fazie

$$\psi_{out} = \arccos A \approx 0.005 \, rad \, (0.285^{\circ})$$

Tłumienie sygnału

$$20 \log \frac{10,000}{10} \approx 0,000 dB$$

### Podsumowanie wyników

| f[Hz]            | 1       | 10      | 100     | 1000    | 4980   | 10000  | 100000 | 1000000 |
|------------------|---------|---------|---------|---------|--------|--------|--------|---------|
| $ U_{out} [V]$   | 0,002   | 0,020   | 0,201   | 1,969   | 7,071  | 8,951  | 9,988  | 10,000  |
| $\psi_{out}$ [°] | 89,988  | 89,885  | 88,850  | 78,646  | 45,000 | 26,473 | 2,851  | 0,285   |
| Tłumienie [dB]   | -73,944 | -53,945 | -33,946 | -14,116 | -3,010 | -0,962 | -0,011 | 0,000   |



Rysunek 13 – wykres zależności wartości napięcia wyjściowego od częstotliwości dla filtra górnoprzepustowego RC (obliczenia)



Rysunek 14 – wykres zależności przesunięcia fazowego od częstotliwości dla filtra górnoprzepustowego RC (obliczenia)



Rysunek 15 – wykres zależności tłumienia od częstotliwości dla filtra górnoprzepustowego RC (obliczenia)

| f[Hz]            | 1       | 10      | 100     | 1000    | 4980   | 10000  | 100000 | 1000000 |
|------------------|---------|---------|---------|---------|--------|--------|--------|---------|
| $ U_{out} [V]$   | 0,002   | 0,020   | 0,201   | 1,969   | 7,071  | 8,952  | 9,988  | 10,000  |
| $\psi_{out}$ [°] | 89,989  | 89,885  | 88,850  | 78,646  | 44,999 | 26,473 | 2,851  | 0,285   |
| Tłumienie [dB]   | -73,944 | -53,944 | -33,946 | -14,116 | -3,010 | -0,962 | -0,011 | 0,000   |



Rysunek 16 – wykres zależności wartości napięcia wyjściowego od częstotliwości dla filtra górnoprzepustowego RC (symulacja)



Rysunek 17 – wykres zależności przesunięcia fazowego od częstotliwości dla filtra górnoprzepustowego RC (symulacja)



Rysunek 18 – wykres zależności tłumienia od częstotliwości dla filtra górnoprzepustowego RC (symulacja)

### Wnioski

Filtr pasywny górnoprzepustowy RC przepuszcza sygnały, których częstotliwość jest powyżej częstotliwości granicznej, a tłumi sygnały o częstotliwości poniżej. Pasmo zaporowe filtra to zakres częstotliwości, dla których tłumienie jest większe niż  $3\,dB$ , co przekłada się na spadek mocy do 50% wartości początkowej lub spadek napięcia skutecznego/amplitudy napięcia do 70,79% wartości początkowej.

Tłumienie górnoprzepustowego filtra RC, poza oczywistym zmniejszeniem amplitudy, przekłada się też na przesunięcie w fazie sygnału przefiltrowanego w stosunku do sygnału wejściowego. Przy częstotliwości granicznej, przesunięcie to wynosi  $\frac{\pi}{4}\approx 0,79\ radiana\ (45^\circ)$ , natomiast poniżej tej częstotliwości, przesunięcie zbliża się asymptotycznie do  $\frac{\pi}{2}\approx 1,57\ radiana\ (90^\circ)$ .

## Zadanie 4

## Filtr górnoprzepustowy RL

#### Wstęp teoretyczny

WSTĘP DO FILTRÓW – PATRZ "ZADANIE 3: WSTĘP TEORETYCZNY"

Częstotliwość graniczna pasywnego filtra górnoprzepustowego RL wyznaczana jest ze wzoru:

$$f_C = \frac{R}{2\pi L}$$

#### Cel zadania

Wyznaczyć częstotliwość graniczną dla filtra o wybranych wartościach ( $R=3,3~k\Omega$ , F=150mH,  $U_{in}=10~V$ ,  $\psi_{in}=0~rad$ ). Zmieniać częstotliwość sygnału i odczytywać napięcie wyjściowe, a następnie porównać wyniki z obliczeniami teoretycznymi.



Rysunek 19 - schemat układu filtra górnoprzepustowego RL

#### Obliczenia teoretyczne

Częstotliwość graniczna 
$$f_C = \frac{R}{2\pi L} \approx \frac{3,3k}{2\times3,14\times150m} \approx \frac{3,3k}{0,942478} \approx 3,501k \ [Hz]$$

 $f = f_c$ 

Pulsacja 
$$\omega = 2\pi f \approx 2 \times 3,14 \times 4,98k \approx 22,00k \left[\frac{rad}{s}\right]$$

Reaktancja pojemnościowa  $X_L = \omega L = 22,00k \times 150m = 3,3k [\Omega]$ 

Impedancja pojemnościowa  $Z_L = jX_L \approx j3.3k \ [\Omega]$ 

Impedancja  $Z = R + Z_L \approx 3.3k + j3.3k [\Omega]$ 

Napięcie wyjściowe (z dzielnika napięcia):

$$U_{out} = U_{in} \frac{Z_L}{Z} \approx 10 \frac{j3,3k}{3,3k - j3,3k} = 10 \frac{j}{1 - j} \times \frac{1 + j}{1 + j} = 10 \frac{j + j^2}{1^2 - j^2} = 10 \frac{j + (-1)}{1 - (-1)} = 10 \frac{-1 + j}{1 + 1}$$

$$= 10 \frac{-1 + j}{2} = 5(-1 + j) = \begin{cases} z = -1 + j = |z|e^{j\varphi} \\ |z| = \sqrt{(-1)^2 + 1^2} = \sqrt{1 + 1} = \sqrt{2} \end{cases}$$

$$= \cos \varphi = \frac{-1}{\sqrt{2}} = -\frac{\sqrt{2}}{2}$$

$$\varphi = \arccos \left| -\frac{\sqrt{2}}{2} \right| = \arccos \frac{\sqrt{2}}{2} = \frac{\pi}{4}$$

$$\approx 5 \times 1,414e^{j\frac{\pi}{4}} = 7,071e^{j\frac{\pi}{4}} [V]$$

Wartość skuteczna napięcia wyjściowego  $U_{out}=7{,}071\,V$  i jest przesunięta w fazie o  $\psi_{out}=\frac{\pi}{4}\approx 0{,}785\,rad~(45{,}000^\circ)$  w stosunku do napięcia wejściowego.

$$20 \log \frac{7,07}{10} = 20 \log 0,7071 \approx 20 \times (-0,1505) = -3,010 [dB]$$

Uwaga

Można zauważyć, że wzór na napięcie wyjściowe skraca się do postaci:  $U_{out} = U_{in} \frac{-\left(\frac{f}{f_c}\right)^2 + \frac{f}{f_c}j}{1 + \left(\frac{f}{f_c}\right)^2}$ .

Po kolejnych przekształceniach można zauważyć, że wzór na wartość napięcia wyjściowego ma postać:  $|U_{out}| = \frac{fU_{in}}{\sqrt{f^2 + f_c^2}}$ , a wzór na przesunięcie w fazie wynosi  $\psi = \arccos\frac{f}{\sqrt{f^2 + f_c^2}}$ . W obu wzorach pojawia

się wspólny czynnik  $A=\frac{f}{\sqrt{f^2+f_c^2}}$ , który można wyliczyć osobno. Ostatecznie, wzory przyjmują postać:

$$A = \frac{f}{\sqrt{f^2 + {f_c}^2}}$$

$$|U_{out}| = AU_{in}$$

$$\psi_{out} = \arccos A$$

f = 1Hz

$$A = \frac{f}{\sqrt{f^2 + f_c^2}} \approx 0,0003$$

Wartość napięcia wyjściowego

$$|U_{out}| = AU_{in} \approx 0.003 V$$

Przesunięcie w fazie

$$\psi_{out} = \arccos A \approx 1,571 \, rad \, (89,984^{\circ})$$

Tłumienie sygnału

$$20 \log \frac{0,003}{10} = -70,884 dB$$

f = 10Hz

$$A = \frac{f}{\sqrt{f^2 + f_c^2}} \approx 0,0029$$

Wartość napięcia wyjściowego

$$|U_{out}| = AU_{in} \approx 0.029 V$$

Przesunięcie w fazie

 $\psi_{out} = \arccos A \approx 1,568 \, rad \, (89,836^{\circ})$ 

Tłumienie sygnału

 $20\log\frac{0,029}{10} = -50,884 \, dB$ 

f = 100Hz

$$A = \frac{f}{\sqrt{f^2 + f_c^2}} \approx 0.0286$$

Wartość napięcia wyjściowego

$$|U_{out}| = AU_{in} \approx 0.286 V$$

Przesunięcie w fazie

$$\psi_{out} = \arccos A \approx 1,542 \, rad \, (88,364^{\circ})$$

Tłumienie sygnału

$$20\log\frac{0,286}{10} = -30,887 \ dB$$

f = 1kHz

$$A = \frac{f}{\sqrt{f^2 + f_c^2}} \approx 0,2746$$

Wartość napięcia wyjściowego

$$|U_{out}| = AU_{in} \approx 2,746 V$$

Przesunięcie w fazie

$$\psi_{out} = \arccos A \approx 1,293 \, rad \, (74,059^\circ)$$

Tłumienie sygnału

$$20 \log \frac{2,746}{10} \approx -11,224 \ dB$$

f = 10kHz

$$A = \frac{f}{\sqrt{f^2 + f_c^2}} \approx 0,9438$$

Wartość napięcia wyjściowego

$$|U_{out}| = AU_{in} \approx 9,438 V$$

Przesunięcie w fazie

 $\psi_{out} = \arccos A \approx 0.337 \ rad \ (19.295^\circ)$ 

Tłumienie sygnału

$$20\log\frac{9,438}{10} \approx -0,502 \, dB$$

f = 100kHz

$$A = \frac{f}{\sqrt{f^2 + f_c^2}} \approx 0,9994$$

Wartość napięcia wyjściowego

$$|U_{out}| = AU_{in} \approx 9,994 V$$

Przesunięcie w fazie

$$\psi_{out} = \arccos A \approx 0.035 \, rad \, (2.005^\circ)$$

Tłumienie sygnału

$$20 \log \frac{9,994}{10} \approx -0,005 dB$$

f = 1MHz

$$A = \frac{f}{\sqrt{f^2 + f_c^2}} \approx 1,0000$$

Wartość napięcia wyjściowego

$$|U_{out}| = AU_{in} \approx 10,000 V$$

Przesunięcie w fazie

$$\psi_{out} = \arccos A \approx 0.004 \, rad \, (0.201^\circ)$$

Tłumienie sygnału

$$20 \log \frac{10,000}{10} \approx 0,000 dB$$

### Podsumowanie wyników

| f[Hz]            | 1       | 10      | 100     | 1000    | 3501   | 10000  | 100000 | 1000000 |
|------------------|---------|---------|---------|---------|--------|--------|--------|---------|
| $ U_{out} [V]$   | 0,003   | 0,029   | 0,286   | 2,746   | 7,071  | 9,438  | 9,994  | 10,000  |
| $\psi_{out}$ [°] | 89,984  | 89,836  | 88,364  | 74,059  | 45,000 | 19,295 | 2,005  | 0,201   |
| Tłumienie [dB]   | -70,884 | -50,884 | -30,887 | -11,224 | -3,010 | -0,502 | -0,005 | 0,000   |



Rysunek 20 – wykres zależności wartości napięcia wyjściowego od częstotliwości dla filtra górnoprzepustowego RL (obliczenia)



Rysunek 21 – wykres zależności przesunięcia fazowego od częstotliwości dla filtra górnoprzepustowego RL (obliczenia)



Rysunek 22 – wykres zależności tłumienia od częstotliwości dla filtra górnoprzepustowego RL (obliczenia)

| f[Hz]            | 1       | 10      | 100     | 1000    | 3501   | 10000  | 100000 | 1000000 |
|------------------|---------|---------|---------|---------|--------|--------|--------|---------|
| $ U_{out} [V]$   | 0,003   | 0,029   | 0,285   | 2,746   | 7,071  | 9,438  | 9,994  | 10,000  |
| $\psi_{out}$ [°] | 89,984  | 89,836  | 88,364  | 74,060  | 45,003 | 19,297 | 2,005  | 0,201   |
| Tłumienie [dB]   | -70,885 | -50,885 | -30,888 | -11,225 | -3,011 | -0,502 | -0,005 | 0,000   |



Rysunek 23 – wykres zależności wartości napięcia wyjściowego od częstotliwości dla filtra górnoprzepustowego RL (symulacja)



Rysunek 24 – wykres zależności przesunięcia fazowego od częstotliwości dla filtra górnoprzepustowego RL (symulacja)



Rysunek 25 – wykres zależności tłumienia od częstotliwości dla filtra górnoprzepustowego RL (symulacja)

### Wnioski

Można zauważyć, że działanie górnoprzepustowego filtra RL jest takie samo jak filtra RC. Jedyną różnicą jest ich budowa. Zatem wnioski również będą takie same (PATRZ "ZADANIE 3: WNIOSKI").