Mathematik für Physiker I

Friedemann Schuricht

übertragen von Lukas Körber und Friedrich Zahn

Wintersemester 2014/2015

Inhaltsverzeichnis

VIIInte	gration auf Mannigfaltigkeiten	7
29	Mannigfaltigkeiten	7

Überblick

Diese Vorlesung wird sich mit folgenden Tehmen befassen:

- 1. Integration auf Mannigfaltigkeiten
- 2. **Differenzialgleichungen**, sowohl gewöhnlich, als auch partiel
- 3. **Funktionalanalysis** in Banach- und Hilberträumen (insbesondere unendlich dimensionale Räume z.B. von Folgen und Funktionen)
- 4. **Funktionstheorie**, der Theorie von komplexwertigen Funktionen und z.B. \mathbb{C} -Differenzierbarkeit

Kapitel VIII

Integration auf Mannigfaltigkeiten

Literaturtipp: Königsberger Analysis 2, Springer

29 Mannigfaltigkeiten

Sei $\varphi \in C^q(V, \mathbb{R}^n)$ mit $q \in \mathbb{N}_{\geq 1}$, also q-fach stetig differenzierbar, wobei $V \subset \mathbb{R}^d$ offen ist, dann heißt φ **regulär**, falls

$$\varphi'(x): \mathbb{R}^d \to \mathbb{R}^n$$
 regulär (d.h. injektiv) (29.1)

Falls φ regulär für alle $x \in V$ ist, heißt es auch **regulär auf V** beziehungsweise **reguläre** C^q -Parametrisierung (manchmal auch C^q -Immersion).

V ist dann der **Parameterbereich** von φ .

Bemerkung: $\phi(V)$ wird selten auch **Spur** von ϕ genannt.

Aus der Linearen Algebra wissen wir, dass aus (29.1) sofort

$$d \le n \tag{29.2}$$

folgt. Dies sei in Kapitel VIII immer erfüllt! (29.2) ist außerdem äquivalent dazu, dass rang $\varphi'(x) = d$.

Beispiel 1 (reguläre Kurven $\varphi: I \subset \mathbb{R} \to \mathbb{R}^n$) Dabei ist I offen und der Tagentialvektor nirgendwo identisch mit dem Nullvektor, also $\varphi'(x) \neq 0$

1.
$$\varphi: (0, 2\pi) \to \mathbb{R}^2 \text{ mit } \varphi(t) = \begin{pmatrix} \cos kt \\ \sin kt \end{pmatrix} \text{ und } k \in \mathbb{N}_{\geq 2}$$

Der Einheitskreis wird hier k-mal durchlaufen. Da $\varphi'(x) \neq 0$, ist φ regulär.

2.
$$\varphi(-\pi, \pi) \to \mathbb{R}^2 \text{ mit } \varphi(t) = (1 + 2\cos t) \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}$$

$$\varphi(\pm \frac{2\pi}{3}) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \, \varphi(0) = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$$

 $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ gehört **nicht** zur Kurve ("= $\phi(\pm \pi)$ ") und ϕ ist regulär.

3.
$$\varphi: (-1,1) \to \mathbb{R}^2$$
 mit $\varphi(t) = \begin{pmatrix} t^3 \\ t^2 \end{pmatrix}$ ist wegen $\varphi'(0) = 0$ **nicht** regulär

Beispiel 2 (Parametrisierung von Graphen) Sei $f \in C^q(V, \mathbb{R}^{n-d})$, $V \subset \mathbb{R}^d$. Betrachtet wird $\varphi : V \to \mathbb{R}^n$ mit $\varphi(x) = (x, f(x))$

 φ ist regulär, da offenbar $\varphi \in C^q(V, \mathbb{R}^n)$ und $\varphi' = \begin{pmatrix} i d^d \\ f'(x) \end{pmatrix} \in \mathbb{R}^{n \times d}$ ist.

Es folgt eine Wiederholung zur **Relativtopologie** (vgl. Kapitel 14). Wir wissen, dass $U \subset M$ genau dann offen bezüglich M ist, wenn es ein $\tilde{U} \subset \mathbb{R}^n$ gibt, dass offen ist, und das $U = \tilde{U} \cap M$ erfüllt. Später wird M eine Mannigfaltigkeit sein und wir werden untersuchen, was in ihr offen ist.

Auf dieser Grundlage lässt sich auch der Begriff der **Umgebung** definieren: $U \subset M$ heißt nämlich genau dann Umgebung von $u \in M$ bezüglich M, wenn es ein bezüglich M offenes $U_0 \subset M$ gibt, in dem u liegt und das Teilmenge von U ist.

Beispiel für $M \subset \mathbb{R}^n$.

Definition (Mannigfaltigkeiten) Wir nennen $M \subset \mathbb{R}^n$ eine **d-dimensionale** C^q -Mannigfaltigkeit $(q \in \mathbb{N}_{\geq 1})$, falls

- 1. es für alle $u \in M$ eine (offene) Umgebung U von u bezüglich M gibt und
- 2. es eine reguläre \mathbb{C}^q -Parametrisierung $\varphi : \mathbb{V} \subset \mathbb{R}^d \to \mathbb{R}^n$ (V ist offen) existiert, die homöomorph ist und in die Mannigfaltigkeit abbildet (also $\varphi(\mathbb{V}) = \mathbb{U}$).

Wiederholung: Eine stetige Abbildung heißt homöomorph, falls eine Umkehrabbildung existiert, die auch stetig ist.

In der Literatur wird M auch manchmal als C^q-Untermannigfaltigkeit bezeichnet. Wir werden jedoch später zeigen, dass die verschiedenen Definitionen von Mannigfaltigkeiten gleichwertig sind.

Da ab jetzt immer hauptsächlich C¹-Mannigfaltigkeiten auftauchen werden, werden wir diese in Zukunft einfach "Mannigfaltigkeiten"nennen.

Die Umkehrabbildung φ^{-1} beziehungsweise (φ^{-1}, U) nennt man die **Karte** von M um $u \in M$, wobei U das zugehörige **Kartengebiet**, φ selbst die Parametrisierung und V der Parameterbereich ist.

Karten können eine Mannigfaltigkeit jedoch nur lokal beschreiben. Aus diesem Grund führt man den Begriff des Atlas, der eine globale Beschreibung ermöglicht, ein:

Die Menge $\{\phi_{\alpha}^{-1} | \alpha \in A\}$ heißt **Atlas** der Mannigfaltigkeit M, falls die zugehörigen Kartengebiete U_{α} jene vollständig überdecken.

Weiterhin wichtig ist der Begriff der sogenannten **Einbettung**, bei der es sich um eine reguläre Parametrisierung handelt, die homöomorph ist. Wir vereinbaren, dass es sich im folgenden bei allen Parametrisierungen von Mannigfaltigkeiten stets um Einbettungen handelt.

Beispiel 3 (Beweise bitte Selbstudium)

- 1. Der Kreis aus Beispiel 1.1 ist eine 1-dimensionale C^{∞} -Mannigfaltigkeit, obwohl der Kreis k-fach durchlaufen wird. Der Atlas benötigt mindestens zwei Karten.
- 2. Die Kurven aus Biespiel 1.2 und 1.3 sind keine Mannigfaltigkeiten, da ϕ nicht überall homöomorph ist.
- 3. Jedes offene $\mathbf{M} \subset \mathbb{R}^n$ ist eine n-dimensionale \mathbf{C}^{∞} -Mannigfaltigkeit mit $\{id\}$ als Atlas.

Beispiel 4 Sei M := graph f aus Beispiel 2. Offenbar ist $\varphi : V \subset \mathbb{R}^d \to M \subset \mathbb{R}^n$ eine Einbettung. Das macht M zu einer d-dimensionalen \mathbb{C}^q -Mannigfaltigkeit.

Beispiel 5 Sei $f: D \subset \mathbb{R}^n \to \mathbb{R}^{n-d}$ (D offen) q-fach stetig differenzierbar für $q \ge 1$. Offenbar ist

rang
$$f'(u) = n - d \quad \forall u \in D$$
 (29.3)

Wir nennen M = $\{u \in D \mid f(n) = 0\}$ die Niveaumenge von f

Fixieren wir $\tilde{u} = (\tilde{x}, \tilde{y}) = (x_1, ..., x_d, y_1, ..., y_{n-d}) \in M$, so sehen wir mit (29.3) und eventuellen Koordinatenvertauschungen, dass $f(\tilde{x}, \tilde{y})$ regulär ist. Der *Satz über implizite Funktionen* sichert uns nun, dass es eine Umgebung $V \subset \mathbb{R}^d$ von \tilde{x} , eine Umgebung W $\subset \mathbb{R}^{n-d}$ von \tilde{y} und ein $\psi: V \to W \in C^q(V,W)$ gibt, das $(x, \psi(x)) \in M$ erfüllt und homöomorph ist.

Es folgt, dass $\varphi : V \subset \mathbb{R}^d \to \mathbb{R}^n$ mit $\varphi(x) = (x, \psi(x))$ eine homöomorphe, reguläre Einbettung und $\varphi(V)$ Umgebung von $\tilde{u} \in M$ bezüglich von M ist. Daraus können wir nun schließen, dass M eine d-dimensionale C^q-Mannigfaltigkeit ist.

Bemerkung: $M = graph f und M = \{f = 0\} sind grundlegende Konstruktionen$ für Mannigfaltigkeiten. Lokal ist jede Mannigfaltigkeit von dieser Gestalt!

Satz 29.1 (lokale Darstellung einer Mannigfaltigkeit als Graph)

Sei $M \subset \mathbb{R}^n$ eine d-dimensionale \mathbb{C}^q -Mannigfaltigkeit.

 $\iff \forall u \in M \subset \mathbb{R}^n$ existiert eine Umgebung U von u bezüglich M, $W \subset \mathbb{R}^n$ offen, $f \in \mathbb{C}^q(\mathbb{W},\mathbb{R}^{n-d})$ und eine Permutation π von Koordinaten in \mathbb{R}^n mit $\psi(\mathbb{W}) = \mathbb{U}$ für $\psi(v)$:= $\psi(v, f(v))$ ∀ $v \in W$ (das heißt U ist Graph von f).

somit: M ist C^q-Mannigfaltigkeit genau dann, wenn M lokaler Graph einer C^q -Funktion f ist (vergleiche Beispiel 2 und 4).

Beweis. " ← ": folgt aus Beispielen 2 und 4.

" \Rightarrow ": fixiere $\tilde{u} \in M$, sei $\phi : \tilde{V} \in \mathbb{R}^d \to \tilde{U} \subset \mathbb{R}^n$ und der zugehörige \mathbb{C}^q -Parameter $\tilde{u} = \varphi(\tilde{x})$

$$\varphi'(x) \text{ ist regul\"ar} \xrightarrow{\text{evtl. } \pi \text{ der Zeilen}} \varphi'_{\text{I}}(\tilde{x}) \subseteq \mathbb{R}^{d \times d} \text{ ist regul\"ar f\"ur } \varphi(x) = \begin{pmatrix} \varphi_{\text{I}}(x) \left[\in \mathbb{R}^{d} \right] \\ \varphi_{\text{II}}(x) \left[\in \mathbb{R}^{n-d} \right] \end{pmatrix}$$

Zerlege $u = \pi(v, w)$ mit $v \in \mathbb{R}^d$, d.h. $\tilde{u} = \pi(\tilde{v}, \tilde{w})$

Theorem über inverse Fkt. $\exists V \subset \tilde{V} \text{ offen, } \tilde{x} \in V, W \subset \mathbb{R}^d \text{ offen, } \tilde{v} \in W \text{ mit } \phi_I^{-1} : W \to V$

Homöomorphismus und C^q-Abbildung, $\varphi_{\rm I}^{-1}(\tilde{v}) = \tilde{x}$

mit $f(v) := \varphi_{\mathrm{II}} \left(\varphi_{\mathrm{I}}^{-1}(v) \right) \forall v \in \mathrm{W} \text{ ist } f \in \mathrm{C}^{q} \left(\mathrm{W}, \mathbb{R}^{n-d} \right)$ und $\psi(v) := \varphi \left(\varphi_{\mathrm{I}}^{-1}(v) \right) = \left(\varphi_{\mathrm{I}} \left(\varphi_{\mathrm{I}}^{-1}(v) \right), \varphi_{\mathrm{II}} \left(\varphi_{\mathrm{I}}^{-1}(v) \right) \right) = \pi \left(v, f(v) \right)$

 $\Rightarrow \psi(\tilde{\nu}) = \pi(\tilde{\nu}, \tilde{w}) = \tilde{u}, \psi(\tilde{w}) = \phi(\tilde{\nu}) \in M$

 $\phi: \tilde{V} \to \tilde{U}$ ist Homöomorphismus

 $\Rightarrow \varphi(v)$ ist offen in M

 \Rightarrow U := ψ (W) ist offen bezüglich M \Rightarrow U ist Umgebung von \tilde{u} bezüglich M $\xrightarrow{\tilde{u} \text{ beliebig}} \text{Behauptung.}$

q.e.d.

Satz 29.2 (Charakterisierung von Mf mit umgebendem Raum)

 $M \subset \mathbb{R}^n$ sei d-dimensionale \mathbb{C}^q -Mannigfaltigkeit.

 $\iff \forall u \in M \text{ existiert eine Umgebung } \tilde{U} \text{ von } u \text{ bezüglich } \mathbb{R}^n,$

 $\tilde{V} \subset \mathbb{R}^n$, $\tilde{\psi} : \tilde{U} \to \tilde{V}$ wobei $\tilde{\psi}$ ein \mathbb{C}^q -Diffeomorphismus ist und

$$\tilde{\Psi}\left(\tilde{\mathbf{U}}\cap\mathbf{M}\right) = \tilde{\mathbf{V}}\cap\left(\mathbb{R}^d\times\mathbf{0}\right)$$

Bemerkung: Diese Charakterisierung von Mannigfaltigkeiten benutzt den umgebenden Raum und wird häufig als Definition der Mannigfaltigkeit benutzt.

```
Beweis. " \Leftarrow ": \psi eingeschränkt auf \tilde{U} \cap M liefert Karten \Rightarrow Behauptung.
"\Rightarrow": fixiere \tilde{u} \in M, wähle \tilde{U} \subset M, W \subset \mathbb{R}^d, f \in \mathbb{C}^q (W, \mathbb{R}^{n-d})
gemäß Satz 29.1 oBdA \pi = id
zerlege u = (v, w) \in \mathbb{R}^d \times \mathbb{R}^{n-d}, \tilde{u} = (\tilde{v}, f(\tilde{v}))
sei \hat{U} := W \times \mathbb{R}^{n-d} =: \hat{V}, liefert SZylinderäus U und W in Beweis zu Satz 29.1
sei \tilde{\varphi}: \hat{V} \to \hat{U} mit \tilde{\varphi}(v, w) := (v, f(v) + w) \Rightarrow \tilde{\varphi} \in \mathbb{C}^q
\tilde{\varphi}'(\tilde{v},0) = \begin{pmatrix} id_d & 0 \\ f'(v) & id_{n-d} \end{pmatrix} \text{ ist regulär }
\xrightarrow{\text{Satz } \ddot{\textbf{u}}. \text{ inverse Fkt.}} \exists \text{ Umgebung } \tilde{\textbf{U}} \subset \hat{\textbf{U}} \text{ von } \tilde{\textbf{U}}, \text{ Umgebung } \tilde{\textbf{V}} \subset \hat{\textbf{V}} \text{ von } (\tilde{\boldsymbol{v}}, \textbf{0}), \text{ sodass}
\tilde{\Psi} := \tilde{\varphi}^{-1} \in \mathbb{C}^q (\tilde{\mathbf{U}}, \tilde{\mathbf{V}}) exisitiert.
wegen \tilde{\varphi}(\tilde{V} \cap (\mathbb{R}^d \times 0)) = \tilde{U} \cap M folgt die Behauptung.
                                                                                                                                                                     q.e.d.
Folgerung 29.3 Sei M \subset \mathbb{R}^n d-dimensionale \mathbb{C}^q-Mannigfaltigkeit
und \varphi: V \subset \mathbb{R}^d \to U \subset M Parameter um u \in M
\Longrightarrow \exists \tilde{\mathbf{U}}, \tilde{\mathbf{V}} \subset \mathbb{R}^n \text{ offen und } \tilde{\boldsymbol{\varphi}} : \tilde{\mathbf{V}} \to \tilde{\mathbf{U}} \text{ mit } \mathbf{U} \subset \tilde{\mathbf{U}}, \mathbf{V} \times \mathbf{0} \subset \tilde{\mathbf{V}},
\tilde{\phi} ist \mathbb{C}^q-Diffeomorphismus und \tilde{\phi}(x,0) = \phi(x) \forall x \in \mathbb{V}
Beweis. Folgt aus Beweisen von Satz 29.1 und 29.2
                                                                                                                                                                     q.e.d.
```

Theorem 29.4 (lokale Darstellung von Mf als Niveaumenge) $M \subset \mathbb{R}^n$ sei d-dimensionale \mathbb{C}^q -Mannigfaltigkeit. $\iff \forall u \in M$ existiert eine Umgebing \tilde{U} von u bezüglich \mathbb{R}^n und $f \in \mathbb{C}^q (\tilde{U}, \mathbb{R}^{n-d})$ mit rang f'(u) = n - d und $\tilde{U} \cap M = \{\tilde{u} \in \tilde{U} | f(\tilde{u}) = 0\}$

somit: M ist eine C^q -Mannigfaltigkeit genau dann, wenn M die lokale Niveaumenge einer C^q -Funktion f ist.

Bemerkung: $c \in \mathbb{R}^{n-d}$ heißt regulärer Wert von $f \in \mathbb{C}^q (\tilde{\mathbb{U}}, \mathbb{R}^{n-d})$,

 $\tilde{\mathbf{U}} \subset \mathbb{R}^n$ offen, falls $rang \ f'(u) = n - d \ \forall \ u \in \tilde{\mathbf{U}}$ mit f(u) = c

```
Folglich ist \mathbf{M} \coloneqq \left\{ u \in \tilde{\mathbf{U}} | f(u) = c \right\} eine d-dimensionale \mathbf{C}^q-Mannigfaltigkeit, falls c ein regulärer Wert von f ist. 

Beweis. " \Leftarrow ": gemäß Bsp. 5 erhält man lokale Parametriesierung \Rightarrow Behauptung. " \Rightarrow ": fixiere \tilde{u} \in \mathbf{M}, wähle \tilde{\mathbf{U}}, \tilde{\mathbf{V}} \subset \mathbb{R}^n, \tilde{\mathbf{\Psi}} : \tilde{\mathbf{U}} \to \tilde{\mathbf{V}} gemäß Satz 29.2 sei f \coloneqq \left(\tilde{\mathbf{\Psi}}_{d+1}, \ldots, \tilde{\mathbf{\Psi}}_n\right), offenbar f \in \mathbf{C}^q\left(\tilde{\mathbf{U}}, \mathbb{R}^{n-d}\right) mit \tilde{\mathbf{\Psi}} aus dem Beweis zu Satz 29.2: \tilde{\mathbf{\Psi}}'(\tilde{u}) = \tilde{\mathbf{\varphi}}'(\tilde{v}, 0)^{-1} ist regulär \Rightarrow f'(\tilde{u}) hat vollen Rang, d.h. rang \ f'(\tilde{u}) = n - d nach Konstruktion \{u \in \tilde{\mathbf{U}} | f(u) = 0\} = \mathbf{U} \cap \mathbf{M} \Rightarrow Behauptung. q.e.d.
```

Lemma 29.5 (Kartenwechsel)

Sei $M \in \mathbb{R}^n$ d-dimensionale Mannigfaltigkeit und ϕ_1^{-1} , ϕ_2^{-1} Karten mit zugehörigem Kartengebiet $U_1 \cap U_2 \neq \emptyset$ $\Longrightarrow \phi_2^{-1} \circ \phi_1 : \phi_1^{-1} (U_1 \cap U_2) \to \phi_2^{-1} (U_1 \cap U_2)$ ist C^q -Diffeomorphismus.

Beweis. Ersetze ϕ_1, ϕ_2 mit $\tilde{\phi}_1, \tilde{\phi}_2$ gemäß Folgerung 29.3 \Rightarrow Einschränkung von $\tilde{\phi}_2^{-1} \circ \tilde{\phi}_1$ liefert Behauptung.

q.e.d.

Definition Sei $M \subset \mathbb{R}^n$ d-dimensionale Mannigfaltigkeit. Ein Vektor $v \in \mathbb{R}^n$ heißt **Tangentialvektor** in $u \in M$ an M, falls eine stetig differenzierbare Kurve $\gamma : (-\delta, \delta) \to M(\delta > 0)$ exisitiert mit $\gamma(0) = u$ und $\gamma'(0) = v$.

Die Menge aller Tangentialvektoren T_uM heißt Tangentialraum.

Satz 29.6 Sei $M \in \mathbb{R}^n$ eine d-dimensionale Mannigfaltigkeit, $u \in M$, $\phi : V \to U$ der zugehörige Parameter um $u \Longrightarrow T_uM$ ist d-dimensionaler (\mathbb{R} -) Vektorraum und

$$T_{u}M = \underbrace{\varphi'(x)}_{L(\mathbb{R}^{d},\mathbb{R}^{n})} \left(\mathbb{R}^{d}\right) \text{ für } x = \varphi^{-1}(u)$$
(29.4)

wobei T_u M unabhängig vom speziellen Parameter φ ist.

Beweis. Sei $\gamma: (-\delta, \delta) \to MeineC^1$ -Kurve mit $\gamma(0) = u$ $\Rightarrow g := \varphi^{-1} \circ \gamma$ ist C^1 -Kurve, $g: (-\delta, \delta) \to \mathbb{R}^d$ mit g(0) = x und

$$\gamma'(0) = \varphi'(x)g'(0), \varphi'(x)$$
ist regulär. (\spadesuit)

Offenb. liefert auch jede C^1 -Kurve g in \mathbb{R}^d durch x eine C^1 -Kurve γ in M mit (\spadesuit) Die Menge aller Tangentialvektoren g'(0) von C^1 -Kurven g in \mathbb{R}^d ist offenbar \mathbb{R}^d

$$\Rightarrow 29.4 \xrightarrow{\varphi'(x) \text{ ist regul\"ar}} dim \, T_u M = d$$

da (♠) für jeden Parameter φ gilt, ist T_u M unabhängig von φ. **q.e.d.**

Bemerkung: Man bezeichnet auch $(u, T_u M) \subset M \times \mathbb{R}^n$ als Tangentialraum und $TM = \bigcup_{U \in M} (u, T_u M) \subset M \times \mathbb{R}^n$ als Tangentialbündel.

Beispiel 6 Sei $M \subset \mathbb{R}^n$ offen

 \Rightarrow M ist ist n-dimensionale Mannigfaltigkeit und $T_uM = \mathbb{R}^n \forall u \in M$

Definition Sei $M \subset \mathbb{R}^n$ d-dimensinale Mannigfaltigkeit. Ein Vektor $w \in \mathbb{R}^n$ heißt **Normalenvektor** in $u \in M$ an M, falls $\langle w, v \rangle = 0 \forall v \in T_u M$ (d.h. $w \perp v \forall v \in T_u M$) Die Menge aller Normalenvektoren $N_u M = T_u M^{\perp}$ heißt **Normalenraum** von M in u.