Table 1: Comparison of our forecast-corrupt-denoise approach with GPs with standalone forecasting models with higher number of layers (parameters) denoted by \dagger sign. Initially, the number of layers for our proposed model and other baselines are chosen from $\{1,2\}$, however to show that the performance of our model indeed stems from its mechanism, we included the results of stand-alone forecasting models with number of layers chosen from $\{3,4\}$. Results are reported as average and standard error of **MSE**. A lower **MSE** indicates a better forecasting model.

Dataset Horizon	AutoDG(Ours)	Autoformer	Autoformer [†]	InfoDG(Ours)	Informer	Informer [†]
24 Hat 72 72 96	$\begin{array}{c} 0.392 \pm \! 0.006 \\ 0.387 \pm \! 0.001 \\ \textbf{0.380} \pm \! 0.001 \\ \textbf{0.385} \pm \! 0.003 \end{array}$	$\begin{array}{c} 0.412 \pm \! 0.006 \\ 0.422 \pm \! 0.007 \\ 0.383 \pm \! 0.002 \\ 0.400 \pm \! 0.004 \end{array}$	0.359 ±0.007 0.383 ±0.001 0.442 ±0.006 0.416 ±0.001	0.398 ±0.006 0.399 ±0.001 0.380 ±0.001 0.397 ±0.003	$\begin{array}{c} 0.421 \pm \! 0.006 \\ 0.434 \pm \! 0.001 \\ 0.436 \pm \! 0.001 \\ 0.402 \pm \! 0.003 \end{array}$	$\begin{array}{c} 0.422\ \pm0.009\\ 0.486\ \pm0.010\\ 0.412\ \pm0.003\\ 0.408\ \pm0.005 \end{array}$
Electricity 48 72 96 96	$\begin{array}{c} \textbf{0.165} \pm 0.001 \\ \textbf{0.188} \pm 0.003 \\ \textbf{0.209} \pm 0.004 \\ \textbf{0.211} \pm 0.001 \end{array}$	$\begin{array}{c} 0.187 \pm \! 0.003 \\ 0.203 \pm \! 0.008 \\ 0.230 \pm \! 0.001 \\ 0.230 \pm \! 0.014 \end{array}$	$\begin{array}{c} 0.242 \pm \! 0.007 \\ 0.232 \pm \! 0.005 \\ 0.263 \pm \! 0.004 \\ 0.224 \pm \! 0.004 \end{array}$	0.193 ±0.001 0.222 ±0.002 0.238 ±0.001 0.242 ±0.001	$\begin{array}{c} 0.222 \pm \! 0.001 \\ 0.262 \pm \! 0.002 \\ 0.280 \pm \! 0.003 \\ 0.289 \pm \! 0.002 \end{array}$	$\begin{array}{c} 0.266 \pm \! 0.001 \\ 0.293 \pm \! 0.002 \\ 0.310 \pm \! 0.002 \\ 0.327 \pm \! 0.003 \end{array}$
24 leg 48 05 72 96	0.446 ±0.002 0.546 ±0.005 0.666 ±0.003 0.713 ±0.004	$\begin{array}{c} 0.472 \pm \! 0.003 \\ 0.603 \pm \! 0.003 \\ \textbf{0.667} \pm \! 0.004 \\ 0.739 \pm \! 0.009 \end{array}$	$\begin{array}{c} 0.524 \pm \! 0.001 \\ 0.622 \pm \! 0.001 \\ 0.701 \pm \! 0.004 \\ 0.744 \pm \! 0.002 \end{array}$	0.455 ±0.009 0.556 ±0.005 0.643 ±0.003 0.708 ±0.004	$\begin{array}{c} 0.524 \pm \! 0.003 \\ 0.629 \pm \! 0.003 \\ 0.729 \pm \! 0.023 \\ 0.770 \pm \! 0.004 \end{array}$	$\begin{array}{c} 0.498 \pm \! 0.001 \\ 0.690 \pm \! 0.031 \\ 0.716 \pm \! 0.024 \\ 0.738 \pm \! 0.0015 \end{array}$