Immune repertoire forensics A RepSeg data analysis tutorial

Mikhail Shugay, PhD

Skoltech, MA03172 course [Term 2, 2017-2018]

December 1, 2017

T-cell receptor

T-cell:APC contact

From James and Vale, Nature 2012,

https://valelab.ucsf.edu/images/

T-cell receptor

T-cell:APC contact

From James and Vale, Nature 2012,

https://valelab.ucsf.edu/images/

TCR:pMHC structure

PDB:1ao7, rendered using UCSF chimera, colored by chain

VDJ rearrangement

An example schema for $TCR\beta$ locus

Variable, Diversity and Joining are chosen at random, V-D and D-J junctions are filled with non-template N bases.

VDJ rearrangement

An example schema for $TCR\beta$ locus

Variable, Diversity and Joining are chosen at random, V-D and D-J junctions are filled with non-template N bases.

VDJ rearrangement mechanism can be efficiently recaptured with a probabilistic model [Murugan et al. PNAS 2012]

$$P(\sigma) = P(V)P(D, J)$$

$$\times P(\#del_V|V)P(\#del_J|J)P(\#del_{D5}, \#del_{D3}|D)$$

$$\times P(\#ins_{VD})P(\#ins_{DJ}) \prod_{i \in ins_{VD}} P(b_i|b_{i-1}) \prod_{i \in ins_{DJ}} P(b_i|b_{i+1})$$

TCR regions

A TCR chains consists of the following regions:

In total there are four framework (FRs) and three complementarity determining regions/loops (CDRs).

TCR regions

A TCR chains consists of the following regions:

In total there are four framework (FRs) and three complementarity determining regions/loops (CDRs).

The likely functions of these regions are:

- ► FR regions maintain TCR secondary structure and (possibly) play role in MHC binding
- CDR1,2 are germline encoded and play role in antigen recognition, as well as (possibly) MHC binding
- CDR3 plays a major role in antigen recognition and is extremely variable

TCR repertoire sequecing

An example of RepSeq dataset

After all pre-processing steps:

- Read grooming (filtering, etc)
- UMI-based assembly (for molecular barcoded data)
- V-D-J mapping and clonotype assembly

An example of RepSeq dataset

After all pre-processing steps:

- Read grooming (filtering, etc)
- ▶ UMI-based assembly (for molecular barcoded data)
- V-D-J mapping and clonotype assembly

We finally get clonotype frequency tables that look like

1 1.0	.0%						
		3913	CSAGGLGSTDTQYF	TRBV20- 1	TRBD1	TRBJ2- 3	TGCAGTGCTGGGGGGCTCGGTAGCACAGATACGCAGTATTTT
2 0.9	.90%	3440	CASNSGSSYNEQFF	TRBV5-1	TRBD2	TRBJ2- 1	TGCGCCAGCAATAGCGGGAGCTCCTACAATGAGCAGTTCTTC
3 0.7	.79%	3021	CSARQGNQPQHF	TRBV20- 1	TRBD1	TRBJ1- 5	TGCAGTGCGCGACAGGGGAATCAGCCCCAGCATTTT
4 0.6	.65%	2490	CASSQEPGGEQFF	TRBV4-1	TRBD2	TRBJ2- 1	TGCGCCAGCAGCCAAGAGCCGGGCGGGGAGCAGTTCTTC
5 0.6	.61%	2336	CASSYGMNTEAFF	TRBV6-6	TRBD2	TRBJ1- 1	TGTGCCAGCAGTTACGGGATGAACACTGAAGCTTTCTTT
6 0.5	.52%	1992	CASSQGGRAPHTQYF	TRBV4-3	TRBD2	TRBJ2- 3	TGCGCCAGCAGCGAGGGGGGGGGGCCCCCCATACGCAGTATTTT
7 0.4	.49%	1871	CASSQSQGGSYEQYF	TRBV5-1	TRBD1	TRBJ2- 7	TGCGCCAGCAGCCAAAGTCAAGGGGGGTCCTACGAGCAGTACTTC
8 0.4	.48%	1847	CASSRPKSGRSGELFF	TRBV11- 2	TRBD2	TRBJ2- 2	TGTGCCAGCAGCCCAAGAGCGGGAGAAGTGGGGAGCTGTTTTTT