L'opérade Swiss-Cheese et le centre de Drinfeld

Najib Idrissi

Plan

Tresses et petits disques

2 L'opérade Swiss-Cheese

3 Modèle rationnel : diagrammes de cordes

Plan

Tresses et petits disques

2 L'opérade Swiss-Cheese

3 Modèle rationnel : diagrammes de cordes

Groupes de tresses

Rappel: groupe des tresses pures

 P_{t}

Rappel: groupe des tresses pures

 P_r

Extension : groupoïde des tresses colorées

ob
$$CoB(r) = \Sigma_r$$
,
 $End_{CoB(r)}(\sigma) \cong P_r$

Câblage

« Câblage » : insertion d'une tresse dans un brin

Câblage

« Câblage » : insertion d'une tresse dans un brin

Donne à $\{CoB(r)\}_{r\geq 1}$ une structure d'opérade symétrique dans la catégorie des groupoïdes :

$$\circ_i : CoB(k) \times CoB(l) \rightarrow CoB(k+l-1), \ 1 \leq i \leq k$$

Soit $P \in CatOp$. Une P-algèbre est la donnée de :

- Une catégorie C;
- Pour tout objet $x \in \operatorname{ob} P(r)$, un foncteur $\bar{x} : C^{\times r} \to C$;
- Pour tout morphisme $f \in \operatorname{Hom}_{\mathbb{P}(r)}(x,y)$, une transformation naturelle

 + compatibilité avec les actions des groupes symétriques et avec les compositions opéradiques.

- Catégorie C;
- $\sigma \in \mathsf{ob}\,\mathsf{CoB}(r) = \Sigma_r \leadsto \otimes_\sigma : \mathsf{C}^{\times r} \to \mathsf{C}$;

- Catégorie C;
- $\sigma \in \mathsf{ob}\,\mathsf{CoB}(r) = \Sigma_r \leadsto \otimes_\sigma : \mathsf{C}^{\times r} \to \mathsf{C}$;
- $\otimes_{\sigma}(X_1,\ldots,X_n)=\otimes_{\mathsf{id}_r}(X_{\sigma(1)},\ldots,X_{\sigma(n)});$

- Catégorie C;
- $\sigma \in \mathsf{ob}\,\mathsf{CoB}(r) = \Sigma_r \leadsto \otimes_\sigma : \mathsf{C}^{\times r} \to \mathsf{C}$;
- $\otimes_{\sigma}(X_1,\ldots,X_n)=\otimes_{\mathsf{id}_r}(X_{\sigma(1)},\ldots,X_{\sigma(n)});$
- $\otimes_{id_2}(\otimes_{id_2}(X,Y),Z) = \otimes_{id_3}(X,Y,Z) = \otimes_{id_2}(X,\otimes_{id_2}(Y,Z)),$ etc.

- Catégorie C;
- $\sigma \in \mathsf{ob}\,\mathsf{CoB}(r) = \Sigma_r \leadsto \otimes_\sigma : \mathsf{C}^{\times r} \to \mathsf{C}$;
- $\otimes_{\sigma}(X_1,\ldots,X_n)=\otimes_{\mathsf{id}_r}(X_{\sigma(1)},\ldots,X_{\sigma(n)});$
- $\otimes_{\mathsf{id}_2}(\otimes_{\mathsf{id}_2}(X,Y),Z) = \otimes_{\mathsf{id}_3}(X,Y,Z) = \otimes_{\mathsf{id}_2}(X,\otimes_{\mathsf{id}_2}(Y,Z)),$ etc.
- Tresse colorée $\beta: \sigma \to \sigma' \leadsto$ transformation naturelle $\beta_*: \otimes_{\sigma} \to \otimes_{\sigma'}$. Par exemple :

Pour P = CoB, les algèbres consistent en :

- Catégorie C;
- $\sigma \in \mathsf{ob}\,\mathsf{CoB}(r) = \Sigma_r \leadsto \otimes_\sigma : \mathsf{C}^{\times r} \to \mathsf{C}$;
- $\otimes_{\sigma}(X_1,\ldots,X_n)=\otimes_{\mathsf{id}_r}(X_{\sigma(1)},\ldots,X_{\sigma(n)});$
- $\otimes_{\mathsf{id}_2}(\otimes_{\mathsf{id}_2}(X,Y),Z) = \otimes_{\mathsf{id}_3}(X,Y,Z) = \otimes_{\mathsf{id}_2}(X,\otimes_{\mathsf{id}_2}(Y,Z)),$ etc.
- Tresse colorée $\beta: \sigma \to \sigma' \leadsto$ transformation naturelle $\beta_*: \otimes_{\sigma} \to \otimes_{\sigma'}$. Par exemple :

$$\xrightarrow{1} \xrightarrow{2} \leadsto \tau_{X,Y} : X \otimes Y \to Y \otimes X$$

Théorème (MacLane, Joyal–Street)

Une algèbre sur CoB est une catégorie monoïdale tressée (stricte, sans unité).

L'opérade des petits disques

L'opérade topologique D_n [Boardman-Vogt, May] des petits n-disques gouverne les algèbres à homotopie près :

Lien avec les tresses

Proposition

$$D_2(r) \simeq Conf_r(\mathbb{R}^2) \simeq K(P_r, 1) \ (\Longrightarrow D_2 \simeq B\pi D_2)$$

Lien avec les tresses

Proposition

$$D_2(r) \simeq Conf_r(\mathbb{R}^2) \simeq K(P_r, 1) \ (\Longrightarrow D_2 \simeq B\pi D_2)$$

 $CoB(r) \simeq sous-groupoïde de <math>\pi D_2(r)$

Lien avec les tresses

Proposition

$$D_2(r) \simeq Conf_r(\mathbb{R}^2) \simeq K(P_r, 1) \ (\Longrightarrow D_2 \simeq B\pi D_2)$$

 $CoB(r) \simeq$ sous-groupoïde de $\pi D_2(r)$

Problème : l'inclusion ne respecte pas la structure d'opérade.

Lien avec les tresses (2)

Il faut passer par les tresses parenthésées PaB :

Lien avec les tresses (2)

Il faut passer par les tresses parenthésées PaB :

Théorème (Fresse)

Les opérades πD_2 et CoB sont faiblement équivalentes.

 $\pi D_2 \overset{\sim}{\leftarrow} PaB \overset{\sim}{\rightarrow} CoB$ est un zigzag d'équivalences d'*opérades*.

Remarques

Extension du théorème :

Théorème

Une algèbre sur PaB est une catégorie monoïdale tressée (sans unité).

Versions unitaires CoB₊ et PaB₊ :

Théorème

Une algèbre sur CoB_+ (resp. PaB_+) est une catégorie monoïdale tressée stricte (resp. non stricte), avec unité stricte dans les deux cas.

Plan

1 Tresses et petits disques

2 L'opérade Swiss-Cheese

3 Modèle rationnel : diagrammes de cordes

Définition de l'opérade Swiss-Cheese

L'opérade Swiss-Cheese SC [Voronov 1999] gouverne l'action d'une algèbre D_2 sur une algèbre D_1 . C'est une opérade colorée, avec deux couleurs \mathfrak{c} (« closed » \leadsto D_2) et \mathfrak{o} (« open » \leadsto D_1).

L'opérade Swiss-Cheese SC [Voronov 1999] gouverne l'action d'une algèbre D_2 sur une algèbre D_1 . C'est une opérade colorée, avec deux couleurs \mathfrak{c} (« *closed* » \leadsto D_2) et \mathfrak{o} (« *open* » \leadsto D_1).

Définition de l'opérade Swiss-Cheese

L'opérade Swiss-Cheese SC [Voronov 1999] gouverne l'action d'une algèbre D_2 sur une algèbre D_1 . C'est une opérade colorée, avec deux couleurs \mathfrak{c} (« closed » \leadsto D_2) et \mathfrak{o} (« open » \leadsto D_1).

L'opérade CoPB

ldée

Étendre CoB pour fabriquer une opérade colorée équivalente à πSC .

CoPB(2, 3)

L'opérade CoPB

ldée

Étendre CoB pour fabriquer une opérade colorée équivalente à π SC.

CoPB(2,3)

Théorème (I.)

 $\pi SC \simeq CoPB$.

Tressages et semi-tressages

Dans D_2 / CoB : tressage = commutativité à homotopie près

Tressages et semi-tressages

Dans D₂ / CoB : tressage = commutativité à homotopie près

Dans SC / CoPB : semi-tressage = morphisme « central »

Centre de Drinfeld

C : catégorie monoïdale $\leadsto \Sigma C$ la bicatégorie à un objet associée \leadsto centre de Drinfeld $\mathcal{Z}(C) := \operatorname{End}(\operatorname{id}_{\Sigma C})$:

- objets : (X, Φ) où $X \in C$ et $\Phi : (X \otimes -) \xrightarrow{\cong} (- \otimes X)$ (« semi-tressage »);
- {morphismes $(X, \Phi) \to (Y, \Psi)$ } = {morphismes $X \to Y$ compatibles avec Φ et Ψ }.

Théorème (Drinfeld, Joyal–Street 1991, Majid 1991)

 $\mathcal{Z}(C)$ est une catégorie monoïdale tressée avec

$$(X,\Phi)\otimes (Y,\Psi)=(X\otimes Y,(\Psi\otimes 1)\circ (1\otimes \Phi)),$$

$$\tau_{(X,\Phi),(Y,\Psi)} = \Phi_Y.$$

Théorème de Voronov

Théorème (Voronov)

Une algèbre sur $H_*(SC)$ consiste en la donnée :

- D'une algèbre associative A;
- D'une algèbre de Gerstenhaber B;
- D'un morphisme central d'algèbres commutatives $B \to Z(A)$.

$$(\mathsf{Rappel} : H_*(\mathtt{D}_1) = \mathtt{Ass}, \ H_*(\mathtt{D}_2) = \mathtt{Ger})$$

Algèbres sur CoPB

Théorème (I.)

Une algèbre sur CoPB consiste en la donnée :

- D'une catégorie monoïdale (stricte sans unité) N;
- D'une catégorie monoïdale tressée (stricte sans unité) M;
- D'un foncteur monoïdal tressé (strict) $F : M \to \mathcal{Z}(N)$.
- → analogue du théorème de Voronov

Algèbres sur CoPB

Théorème (I.)

Une algèbre sur CoPB consiste en la donnée :

- D'une catégorie monoïdale (stricte sans unité) N;
- D'une catégorie monoïdale tressée (stricte sans unité) M;
- D'un foncteur monoïdal tressé (strict) $F : M \to \mathcal{Z}(N)$.
- → analogue du théorème de Voronov

Remarque

Comme pour CoB, il existe une version non-stricte du théorème, ainsi qu'une version unitaire.

Comparaison avec le théorème de Voronov

Théorème (Voronov)

Une algèbre sur $H_*(SC)$ consiste en la donnée :

- D'une algèbre associative A;
- D'une algèbre de Gerstenhaber B;
- D'un morphisme central d'algèbres commutatives $B \to Z(A)$.

$$(\mathsf{Rappel}: H_*(\mathtt{D}_1) = \mathtt{Ass}, \ H_*(\mathtt{D}_2) = \mathtt{Ger})$$

Les générateurs

On veut décrire PaPB par générateurs et relations.

$\mu_{\mathfrak{c}} \in ob\mathtt{PaB}(2)$	$\mu_{\mathfrak{o}} \in ob\mathtt{PaPB}(2,0)$	$f \in ob\mathtt{PaPB}(0,1)$	$ au\in exttt{PaB}(2)$
$(\frac{1}{\bullet} + \frac{2}{\bullet})$	-1	(1 2
$p \in \mathtt{PaPB}(0,2)$	$\psi \in exttt{PaPB}(1,1)$	$\alpha_{\mathfrak{c}} \in \mathtt{PaB}(3)$	$\alpha_{\mathfrak{o}} \in \mathtt{PaPB}(3,0)$
1 2	1 2	1 2 3	1 2 3

Idée de la preuve

Tous les morphismes se décomposent comme à gauche.

Idée de la preuve

Tous les morphismes se décomposent comme à gauche. L'image d'un tel morphisme est bien définie par les relations :

- Théorèmes de cohérence de MacLane et Epstein.
- Adaptation de la preuve du théorème sur PaP et du théorème sur PaB.

Plan

Tresses et petits disques

2 L'opérade Swiss-Cheese

3 Modèle rationnel : diagrammes de cordes

Opérade des diagrammes de cordes

Algèbre de Lie de Drinfeld-Kohno:

$$\mathfrak{p}(r) = \mathbb{L}(t_{ij})_{1 \leq i \neq j \leq r} / \langle t_{ij} - t_{ji}, [t_{ij}, t_{kl}], [t_{ik}, t_{ij} + t_{jk}] \rangle.$$

Opérade des diagrammes de cordes

Algèbre de Lie de Drinfeld-Kohno :

$$\mathfrak{p}(r) = \mathbb{L}(t_{ij})_{1 \leq i \neq j \leq r} / \langle t_{ij} - t_{ji}, [t_{ij}, t_{kl}], [t_{ik}, t_{ij} + t_{jk}] \rangle.$$

Structure d'opérade (sur l'algèbre enveloppante) :

$$t_{13}t_{12}t_{12}\circ_3t_{12}\in\mathbb{U}\mathfrak{p}(4)$$

Opérade des diagrammes de cordes

Algèbre de Lie de Drinfeld-Kohno :

$$\mathfrak{p}(r) = \mathbb{L}(t_{ij})_{1 \leq i \neq j \leq r} / \langle t_{ij} - t_{ji}, [t_{ij}, t_{kl}], [t_{ik}, t_{ij} + t_{jk}] \rangle.$$

Structure d'opérade (sur l'algèbre enveloppante) :

$$t_{13}t_{12}t_{12}\circ_3t_{12}\in\mathbb{U}\mathfrak{p}(4)$$

Complétion (de Mal'cev) :

$$\widehat{\mathtt{CD}} = \mathbb{G} \hat{\mathbb{U}} \hat{\mathfrak{p}}$$

opérade dans la catégorie des group(oïde)s complets, associée à la complétion de l'algèbre de Lie $\mathfrak p$ en chaque arité (\approx exponentielles formelles).

Associateurs de Drinfeld

Associateurs de Drinfeld ($\mu \in \mathbb{Q}^{\times}$) :

$$\mathsf{Ass}^\mu(\mathbb{Q}) = \{\phi : \mathtt{PaB}_+ o \widehat{\mathtt{CD}}_+ \mid \phi(au) = e^{\mu t_{12}/2}.\}$$

Si $\phi \in \mathsf{Ass}^{\mu}(\mathbb{Q})$, alors :

$$\Phi(t_{12},t_{23}):=\phi(\alpha)\in\mathbb{G}(\mathbb{Q}[[t_{12},t_{23}]])$$

vérifie les équations usuelles (pentagone, hexagone).

Associateurs de Drinfeld

Associateurs de Drinfeld ($\mu \in \mathbb{Q}^{\times}$) :

$$\mathsf{Ass}^\mu(\mathbb{Q}) = \{\phi : \mathtt{PaB}_+ o \widehat{\mathtt{CD}}_+ \mid \phi(au) = e^{\mu t_{12}/2}. \}$$

Si $\phi \in \mathsf{Ass}^{\mu}(\mathbb{Q})$, alors :

$$\Phi(t_{12},t_{23}):=\phi(\alpha)\in\mathbb{G}(\mathbb{Q}[[t_{12},t_{23}]])$$

vérifie les équations usuelles (pentagone, hexagone).

Théorème (Drinfeld)

$$\mathsf{Ass}^\mu(\mathbb{Q}) \neq \varnothing$$

 ϕ induit une équivalence rationnelle $\pi(D_2)_+ \simeq PaB_+ \xrightarrow{\sim_{\mathbb{Q}}} \widehat{CD}_+$.

Modèle rationnel de πSC_+

En s'inspirant de la preuve du théorème, on construit une nouvelle opérade $\operatorname{PaPCD}_{+}^{\phi}$ (pour $\phi \in \operatorname{Ass}^{\mu}(\mathbb{Q})$ fixé).

Théorème (I.)

$$\pi SC_{+} \simeq_{\mathbb{Q}} PaP\widehat{CD}_{+}^{\phi}.$$

Formalité

Théorème (Kontsevich 1999; Tamarkin 2003, n = 2)

L'opérade D_n est formelle : $C_*(D_n) \simeq H_*(D_n)$.

Formalité

Théorème (Kontsevich 1999; Tamarkin 2003, n=2)

L'opérade D_n est formelle : $C_*(D_n) \simeq H_*(D_n)$.

En homotopie rationnelle : $\langle H^*(P) \rangle$ à comparer à $\langle \Omega^*(P) \rangle$.

Théorème (Fresse–Willwacher 2015)

 $D_n \simeq_{\mathbb{Q}} \langle H^*(D_n) \rangle^{\mathbb{L}} \implies D_n \text{ est formelle sur } \mathbb{Q}.$

Non-formalité

$$H_*(\operatorname{SC}) = \operatorname{Ger} \otimes \operatorname{Ass} ext{ est un } ext{``produit de Voronov "}:$$

$$H^*(\operatorname{SC}) \cong (\operatorname{Ger} \otimes \operatorname{Ass})^* \cong \operatorname{Ger}^* \otimes \operatorname{Ass}^*$$

$$\Longrightarrow \langle H^*(\operatorname{SC}) \rangle^{\mathbb{L}} \simeq \langle \operatorname{Ger}^* \rangle^{\mathbb{L}} \times \langle \operatorname{Ass}^* \rangle^{\mathbb{L}}$$

$$\Longrightarrow \pi \langle H^*(\operatorname{SC}) \rangle^{\mathbb{L}} \simeq_{\mathbb{Q}} \widehat{\operatorname{CD}} \times \operatorname{PaP}$$

Non-formalité

$$H_*(\operatorname{SC}) = \operatorname{Ger} \otimes \operatorname{Ass} ext{ est un } ext{``produit de Voronov "}:$$

$$H^*(\operatorname{SC}) \cong (\operatorname{Ger} \otimes \operatorname{Ass})^* \cong \operatorname{Ger}^* \otimes \operatorname{Ass}^*$$

$$\Longrightarrow \langle H^*(\operatorname{SC}) \rangle^{\mathbb{L}} \simeq \langle \operatorname{Ger}^* \rangle^{\mathbb{L}} \times \langle \operatorname{Ass}^* \rangle^{\mathbb{L}}$$

$$\Longrightarrow \pi \langle H^*(\operatorname{SC}) \rangle^{\mathbb{L}} \simeq_{\mathbb{Q}} \widehat{\operatorname{CD}} \times \operatorname{PaP}$$

Théorème (Livernet 2015)

L'opérade SC n'est pas formelle.

$$\implies \langle H^*(\mathtt{SC}) \rangle^{\mathbb{L}} \not \simeq_{\mathbb{Q}} \mathtt{SC} \implies \mathtt{PaP} \widehat{\mathtt{CD}}_+^{\phi} \not \simeq_{\mathbb{Q}} \widehat{\mathtt{CD}} \times \mathtt{PaP}$$

Merci!

Merci de votre attention!

arXiv:1507.06844