MDM Lista 13

Weronika Jakimowicz

ZAD. 1.

Niech $G \bullet e$ oznacza graf G po ściągnięciu krawędzi e. Pokaż, że jeśli G jest planarny, to $G \bullet e$ też jest planarny. Czy graf Petersena jest planarny?

.....

ZAD. 2.

Załóżmy, że graf G jest grafem o co najmniej 11 wierzchołkach. Wykaż, że grafy G i \overline{G} nie mogą być jednocześnie planarne.

.....

Wystarczy, że będziemy rozpatrywać tylko planarność G. NO NIE MOGOM NOOO.

ZAD. 4.

Udowodnij, że jeśli G jest grafem płaskim, to n(G) + f(G) = m(G) + k(G) + 1, gdzie f(G) jest liczbą obszarów, a k(G) jest liczbą składowych spójnośći.

.....

Rozważmy najpierw graf spójny G, czyli k(G) = 1. Chcemy, żeby

$$n - m + f = 2$$
.

Jest to prosty dowód indukcją po dowolnej wielkości. Weźmy indukcję po n. Mamy graf planarny |G| = n + 1 i dla dowolnego wierzchołka $v \in G$ G' = G - v spełnia

$$n - m' + f' = 2$$

ZAD. 5.

Udowodnij, że jeśli G jest spójnym grafem planarnym, w którym najkrótszy cykl ma długość r, to spełniona jest nierówność (r-2)m < r(n-2). Kiedy nierówność ta staje sie równościa?

ZAD. 11.

Dla grafy G oznaczamy przez G • e graf powstały w wyniku ściągnięcia krawędzi e, a przez $P_G(k)$ - liczbę pokolorowań grafu G k kolorami. Pokaż, że $P_G(k) = P_{G-e}(k) - P_{G-e}(k)$.

......

Kolorujemy graf G na x kolorów. Możemy to zrobić na $P_G(x)$ sposobów. Niech teraz $e = uv \in G$ będzie dowolną krawędzią. Graf G - e ma dwa sposoby kolorowania: takie, w których u, v mają ten sam kolor (niemożliwe w G) i takie, w których u, v mają różne kolory (możliwe w G). Dalej zauważmy, że jeżeli ściągamy krawędź e do jednego punktu, to tak jakbyśmy malowali u, v na ten sam kolor. Czyli jeśli $P_{G-e}(x) - P_{G\bullet e}(x)$ usuwa te kolorowania G - v na x kolorów gdzie u i v mają ten sam kolor, bo tylko te kolorowania pokrywają nam się z kolorowaniami G - e.

ZAD. 13.

Wykaż, że liczba krawędzi dowolnego grafu wynosi co najmniej $\chi(G)\frac{\chi(G)-1}{2}$.

$$\begin{split} \mathsf{e}(\mathsf{G}) &= \frac{1}{2} \sum_{\mathsf{d} \in \mathsf{G}} \mathsf{d}(\mathsf{v}) \geq \frac{1}{2} \sum \delta = \frac{1}{2} \mathsf{n} \delta \\ &\chi(\mathsf{G}) \frac{\chi(\mathsf{G}) - 1}{2} \leq \chi(\mathsf{G}) \frac{\mathsf{n} - 1}{2} \end{split}$$

ZAD. 14.

Pokaż, że dla dowolnego grafu $G \chi(G)\chi(\overline{G}) \geq n$.

.....

Weźmy dowolny graf G o n wierzchołkach i niech $c_1:V(G)\to [\chi(G)]$ będzie poprawnym kolorowaniem go za pomocą $\chi(G)$ kolorów. To samo powtórzmy dla \overline{G} , to znaczy $c_2:V(\overline{G})\to [\chi(\overline{G})]$ jest kolorowaniem za pomocą $\chi(\overline{G})$ kolorów. Zauważmy teraz, że jeżeli połączymy G i \overline{G} razem, to dostaniemy graf K_n .

Opiszmy kolorowanie na K_n takie, że każdy wierzchołek $v \in K_n$ dostaje parę uporządkowaną $(c_1(v), c_2(v))$. Ponieważ kolorowanie na G i na \overline{G} było poprawne, a dana krawędź z K_n musi istnieć w dokładnie jednym z nich, to dla dwóch stycznych wierzchołków nigdy nie będziemy mieli dokładnie tej samej pary. Co więcej, ponieważ możliwości na pierwszym miejscu jest $\chi(G)$, a na drugim miejscu każdej pary jest $\chi(\overline{G})$, to ogółem takich par do poprawnego pokolorowania K_n utworzyliśmy $\chi(G) \cdot \chi(\overline{G})$, co musi być co najmniej tyle ile $\chi(K_n) = n$. Czyli dostajemy pożądany wynik.