PSALTer results panel

 $S = = \iiint (\mathcal{A}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + f^{\alpha\beta} \ \tau (\Delta + \mathcal{K})_{\alpha\beta} + \frac{1}{2} \lambda_{.} (4 \, \partial_{,} \mathcal{A}^{\alpha_{\alpha}} - 4 \, \mathcal{A}^{\theta}_{\alpha \, \theta} \, \partial_{,} f^{\alpha_{i}} + 4 \, \mathcal{A}^{\theta}_{\alpha \, \theta} \, \partial_{i} f^{\alpha_{i}} + 4 \, \mathcal{A}^{\theta}_{\alpha \, \theta} \, \partial_{i} f^{\alpha_{i}} + 4 \, \mathcal{A}^{\theta}_{\alpha \, \theta} \, \partial_{i} f^{\alpha_{i}} + 4 \, \mathcal{A}^{\theta}_{\alpha \, \theta} \, \partial_{i} f^{\alpha_{i}} + 2 \, \partial_{i} f^{\alpha_{i}} \, \partial_{\theta} \mathcal{A}^{\theta}_{\alpha \, i}) - 4 \, f^{\alpha}_{\alpha \, \alpha} \, \partial_{\theta} \mathcal{A}^{i\theta}_{\alpha \, i} - 2 \, \partial_{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}}_{\alpha \, i} - 2 \, \partial_{\alpha} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}} - 2 \, \partial_{\alpha} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}} + \partial_{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}}_{\alpha \, i} + \partial_{\alpha} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}}_{\alpha \, i} + \partial_{\alpha} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}}_{\alpha \, i} + \partial_{\alpha} f^{\alpha_{i}}_{\alpha \, i} + \partial_{\alpha}$

Wave operator

	${\stackrel{0}{\cdot}}^{+}\mathcal{A}^{\parallel}$	$0.^+f^{\parallel}$	$0.^+f^{\perp}$	${}^{0}\mathcal{A}^{\parallel}$										
${}^{0^+}\mathcal{R}^{\parallel}$ †	0	0	0	0										
^{0,+} <i>f</i> [∥] †	0	$-2 k^2 \lambda$.	0	0										
0.+ f ¹ †	0	0	0	0										
⁰ . A∥ †	0	0	0	0	$^{1^+}\mathcal{F}^{\parallel}{}_{lphaeta}$	$^{1^{+}}\mathcal{H}^{\perp}{}_{lphaeta}$	$1^+f^{\parallel}_{\alpha\beta}$	$^{1}\mathcal{A}^{\ }{}_{\alpha}$	$^1{\mathscr H}^{^\perp}{}_{lpha}$	$^{1}f^{\parallel}_{\alpha}$	$^{1}f_{a}^{\scriptscriptstyle \perp}$			
				$^{1\overset{+}{.}}\mathcal{A}^{\parallel}\dagger^{lphaeta}$	0	0	0	0	0	0	0			
				$^{1^+}\mathcal{A}^{\scriptscriptstyle\perp}\dagger^{^{lphaeta}}$	0	0	0	0	0	0	0			
				$1^+ f^{\parallel} \uparrow^{\alpha\beta}$	0	0	0	0	0	0	0			
				$^{1}\mathcal{A}^{\parallel}\dagger^{lpha}$	0	0	0	0	0	0	0			
				$^{1}\mathcal{A}^{\scriptscriptstyle\perp}\dagger^{^{lpha}}$	0	0	0	0	0	0	0			
				$f^{\parallel} \uparrow^{\alpha}$	0	0	0	0	0	0	0			
				$\frac{1}{f}f^{\perp}\uparrow^{\alpha}$	0	0	0	0	0	0	0	$2^+_{\cdot}\mathcal{A}^{\parallel}_{\alpha\beta}$	$2^+ f^{\parallel}_{\alpha\beta}$	$2^{-}\mathcal{A}^{\parallel}_{\alpha\beta\chi}$
				,							$^{2^{+}}\mathcal{H}^{\parallel}$ † $^{\alpha\beta}$	0	0	0
											$\overset{2^+}{\cdot}f^{\parallel} \uparrow^{\alpha\beta}$	0	$k^2 \lambda$.	0
											$2^{-}\mathcal{A}^{\parallel} + \alpha^{\beta\chi}$	0	0	0

Saturated propagator

Source constraints

Spin-parity form	Covariant form	Multiplicities		
⁰⁻ σ == 0	$\epsilon \eta_{\alpha\beta\chi\delta} \ \partial^{\delta} \sigma^{\alpha\beta\chi} == 0$	1		
$0^+_{\cdot} \tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}=0$	1		
$0^+ \sigma^{\parallel} == 0$	$\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta} == 0$	1		
1. r. a == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}$	3		
$1 r^{\parallel \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3		
$1 \sigma^{\perp \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}=0$	3		
$\frac{1}{ \alpha ^{\alpha}} = 0$	$\partial_{\delta}\partial^{\alpha}\sigma_{\chi}^{\chi}{}^{\delta} + \partial_{\delta}\partial^{\delta}\sigma_{\chi}^{\chi\alpha}{}_{\chi} == \partial_{\delta}\partial_{\chi}\sigma^{\chi\alpha\delta}$	3		
$\frac{1_{\cdot}^{+} \tau^{\parallel^{\alpha\beta}} == 0}{$	$\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta} = \partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\beta\alpha}$	3		
$1^+_{\cdot}\sigma^{\perp}{}^{\alpha\beta} == 0$	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} == \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3		
$1^+ \sigma^{\parallel^{\alpha\beta}} == 0$	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\alpha\chi} == \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi}$	3		
$2^{-}\sigma^{\parallel^{\alpha\beta\chi}}=0$	$3\partial_{\epsilon}\partial_{\delta}\partial^{\chi}\partial^{\alpha}\sigma^{\delta\beta\epsilon} + 3\partial_{\epsilon}\partial^{\epsilon}\partial^{\chi}\partial^{\alpha}\sigma^{\delta\beta}_{\delta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\alpha\chi\delta} + 4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\chi\alpha\delta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\delta\alpha\chi} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\delta\alpha\delta} + 4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\delta\alpha\delta} + 4\partial_{\epsilon}\partial^{\mu}\partial_{\lambda}\partial^{\mu}\partial^{\mu}\partial_{\lambda}\partial^{\mu}\partial^{\mu}\partial^{\mu}\partial^{\mu}\partial^{\mu}\partial^{\mu}\partial^{\mu}\partial^{\mu$	5		
	$2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\alpha\beta\chi} + 3\eta^{\beta\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\alpha}\sigma^{\delta}_{\delta}{}^{\epsilon} + 3\eta^{\alpha\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial_{\delta}\sigma^{\delta\beta\epsilon} + 3\eta^{\beta\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\epsilon}\sigma^{\delta\alpha}_{\delta} = 3\partial_{\epsilon}\partial_{\delta}\partial^{\phi}\partial^{\beta}\sigma^{\delta\alpha\epsilon} + 3\partial_{\epsilon}\partial^{\epsilon}\partial^{\chi}\partial^{\beta}\sigma^{\delta\alpha}_{\delta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\beta\chi\delta} +$			
	$4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\delta\beta\chi} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\alpha\beta\delta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\beta\alpha\chi} + 4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\chi\alpha\beta} + 3\eta^{\alpha\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\beta}\sigma^{\delta}{}^{\epsilon} + 3\eta^{\beta\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial_{\delta}\sigma^{\delta\alpha\epsilon} + 3\eta^{\alpha\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\delta}\sigma^{\delta\alpha\epsilon} + 3\eta^{\alpha\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\phi}\partial^{\delta}\sigma^{\delta\alpha\epsilon} + 3\eta^{\alpha\chi}\partial_{\phi}\partial^{\phi}\partial_{\phi}\partial^{\delta}\sigma^{\delta\alpha\epsilon} + 3\eta^{\alpha\chi}\partial_{\phi}\partial^{\phi}\partial_{\phi}\partial^{\delta}\sigma^{\delta\alpha\epsilon} + 3\eta^{\alpha\chi}\partial_{\phi}\partial^{\phi}\partial_{\phi}\partial^{\delta}\sigma^{\delta\alpha\epsilon} + 3\eta^{\alpha\chi}\partial_{\phi}\partial^{\phi}\partial_{\phi}\partial^{\delta}\sigma^{\delta\alpha\epsilon} + 3\eta^{\alpha\chi}\partial_{\phi}\partial^{\phi}\partial_{\phi}\partial^{\phi}\partial_{\phi}\partial^{\phi}\partial_{\phi}\partial^{\phi}\partial_{\phi}\partial^{\phi}\partial_{\phi}\partial^{\phi}\partial_{\phi}\partial^{\phi}\partial_{\phi}\partial^{\phi}\partial_{\phi}\partial^{\phi}\partial_{\phi}\partial^{\phi}\partial_{\phi}\partial^{\phi}\partial_{\phi}\partial^{\phi}\partial_{\phi}\partial^{\phi}\partial_{\phi}\partial^{\phi}\partial^{\phi}\partial_{\phi}\partial^{\phi}\partial_{\phi}\partial^{\phi}\partial_{\phi}\partial^{\phi}\partial_{\phi}\partial^{\phi}\partial^{\phi}\partial_{\phi}\partial^{\phi}\partial_{\phi}\partial^{\phi}\partial^{\phi}\partial_{\phi}\partial^{\phi}\partial^{\phi}\partial_{\phi}\partial^{\phi}\partial^{\phi}\partial_{\phi}\partial^{\phi}\partial^{\phi}\partial^{\phi}\partial^$			
$2^+ \sigma^{\parallel}^{\alpha\beta} == 0$	$3\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 3\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta} + 2\eta^{\alpha\beta}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\sigma^{\chi}_{\chi}^{\delta} = 2\partial_{\delta}\partial^{\beta}\partial^{\alpha}\sigma^{\chi}_{\chi}^{\delta} + 3(\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\alpha\chi})$	5		
Total expected gauge generators: 34				

Massive spectrum

(No particles)

Massless spectrum

Massless particle

Pole residue:	$\left \frac{p^2}{\lambda}\right > 0$
Polarisations:	2

Unitarity conditions