Serii de numere reale

October 23, 2022

1 Noţiuni teoretice

Definiție 1 Pentru un șir de numere reale $(a_n)_{n\geq 1}$ expresia $\sum_{n=1}^{\infty} a_n$ se numește serie numerică cu termenul general a_n .

Şirul $(s_n)_{n\geq 1}$, definit prin $s_n=a_1+a_1+\cdots+a_n, n\geq 1$ se numeşte şirul sumelor parţiale ale seriei $\sum_{n=1}^{\infty}a_n$.

Dacă există limita $\lim_{n\to\infty} s_n = s$, $s\in\overline{\mathbb{R}}$, atunci s se numește **suma seriei** $\sum_{n=1}^{\infty} a_n$. Dacă $s\in\mathbb{R}$, seria $\sum_{n=1}^{\infty} a_n$ se numește **convergentă**. O serie care nu este convergentă se numește **divergentă**.

Dacă seria $\sum_{n=1}^{\infty} a_n$ este convergentă atunci $\lim_{n\to\infty} a_n = 0$. Rezultă de aici următorul criteriu de divergență:

Dacă $\lim_{n\to\infty} a_n \neq 0$, atunci seria $\sum_{n=1}^{\infty} a_n$ este divergentă.

1.1 Serii remarcabile

1) Seria geometrică $\sum_{n=0}^{\infty}q^n=1+q+q^2+\cdots,\,q\in\mathbb{R},$ este convergentă dacă și numai dacă $q\in(-1,1).$ Are loc relația

$$\sum_{n=0}^{\infty} q^n = \begin{cases} \frac{1}{1-q}, & \text{dacă } q \in (-1,1) \\ +\infty, & \text{dacă } q \in [1,\infty) \end{cases}.$$

Dacă $q \leq -1$, atunci seria geometrică este divergentă.

2) Seria armonică generalizată $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$, $\alpha \in \mathbb{R}$, este convergentă dacă şi numai dacă $\alpha > 1$.

Pentru $\alpha > 1$ notăm $\zeta(\alpha) = \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$.

Au loc relațiile

$$\zeta(2) = \frac{\pi^2}{6}$$
 (Euler), $\zeta(4) = \frac{\pi^4}{90}$.

Seria $\sum_{n=1}^{\infty} \frac{1}{n}$ se numește **serie armonică** și avem $\sum_{n=1}^{\infty} \frac{1}{n} = +\infty$.

3) O altă serie remarcabilă este $\sum_{n=0}^{\infty} \frac{1}{n!} = e$.

Criterii generale de convergență 1.2

Criteriul general al lui Cauchy. Seria $\sum_{n=1}^{\infty} a_n$ este convergentă dacă și numai dacă, pentru orice $\varepsilon > 0$, există $n_{\varepsilon} \in \mathbb{N}$ astfel ca pentru orice $n \geq n_{\varepsilon}$ și orice $p \in \mathbb{N}^*$

$$|a_{n+1} + a_{n+2} + \dots + a_{n+p}| < \varepsilon.$$

Criteriul lui Abel-Dirichlet. Dacă $(a_n)_{n\geq 1}$ este un şir descrescător cu $\lim_{n\to\infty}a_n=0$ și seria $\sum_{n=1}^\infty b_n$ are șirul sumelor parțiale mărginit, atunci seria $\sum_{n=1}^{\infty} a_n b_n \text{ este convergent}.$

Criteriul lui Abel. Dacă $(a_n)_{n\geq 1}$ este un șir monoton și mărginit și

seria $\sum_{n=1}^{\infty} b_n$ este convergentă, atunci seria $\sum_{n=1}^{\infty} a_n b_n$ este convergentă.

Criteriul lui Leibniz. Fie $(a_n)_{n\geq 1}$ un şir descrescător pentru care $\lim_{n\to\infty} a_n = 0$. Atunci seria alternată $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ este convergentă.

$\mathbf{2}$ Criterii de convergență pentru serii cu termeni pozitivi

Criteriul raportului (D'Alembert).

Fie $\sum_{n=1}^{\infty} a_n$ o serie cu termeni pozitivi, astfel că există $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = l$, $l \in \overline{\mathbb{R}}$. Atunci:

- i) Dacă l<1, atunci $\sum_{n=1}^{\infty}a_n$ este convergentă. ii) Dacă l>1, atunci $\sum_{n=1}^{\infty}a_n$ este divergentă.
- iii) Dacă l=1 criteriul este ineficient.

Criteriul radicalului (Cauchy).

Fie $\sum\limits_{n=1}^\infty a_n$ o serie cu termeni pozitivi, astfel că există $\lim_{n\to\infty}\sqrt[n]{a_n}=l,$ $l\in\overline{\mathbb{R}}.$ Atunci:

- i) Dacă l < 1, atunci $\sum_{n=1}^{\infty} a_n$ este convergentă.
- ii) Dacă l>1, atunci $\sum\limits_{n=1}^{\infty}a_{n}$ este divergentă.
- iii) Dacă l=1 criteriul este ineficient.

Criteriul lui Raabe-Duhamel.

Fie $\sum_{n=1}^{\infty} a_n$ o serie cu termeni pozitivi, astfel că există $\lim_{n\to\infty} n(\frac{a_n}{a_{n+1}}-1)=l,\,l\in\overline{\mathbb{R}}.$ Atunci:

- i) Dacă l > 1, atunci $\sum_{n=1}^{\infty} a_n$ este convergentă.
- ii) Dacă l < 1, atunci $\sum_{n=1}^{\infty} a_n$ este divergentă.
- iii) Dacă l = 1 criteriul este ineficient.

Criteriul condensării (Cauchy).

Dacă $(a_n)_{n\geq 1}$ este un șir descrescător de numere reale pozitive atunci seriile $\sum_{n=1}^{\infty} a_n$ și $\sum_{n=1}^{\infty} 2^n a_{2^n}$ au aceeași natură.

Criteriile comparației. Fie $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ două serii cu termeni pozitivi.

Criteriul 1. Dacă există $n_0 \in \mathbb{N}^*$ astfel ca $a_n \leq b_n$, pentru orice $n \geq n_0$,

- i) Dacă $\sum_{n=1}^{\infty} b_n$ este convergentă, atunci $\sum_{n=1}^{\infty} a_n$ este convergentă.
- ii) Dacă $\sum\limits_{n=1}^{\infty}a_n$ este divergentă, atunci $\sum\limits_{n=1}^{\infty}b_n$ este divergentă.

Criteriul 2. Dacă există $n_0 \in \mathbb{N}^*$ astfel ca $\frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$, pentru orice

- i) Dacă $\sum\limits_{n=1}^{\infty}b_n$ este convergentă, atunci $\sum\limits_{n=1}^{\infty}a_n$ este convergentă.
- ii) Dacă $\sum\limits_{n=1}^{\infty}a_n$ este divergentă, atunci $\sum\limits_{n=1}^{\infty}b_n$ este divergentă. Criterul 3. Dacă există $\lim\limits_{n\to\infty}\frac{a_n}{b_n}=l$, atunci:

- i) Dacă $l\in(0,\infty)$, atunci seriile $\sum\limits_{n=1}^\infty a_n,\,\sum\limits_{n=1}^\infty b_n$ au aceeași natură ii) Dacă l=0 avem implicațiile:
- 1) $\sum_{n=1}^{\infty} b_n$ este convergentă, atunci $\sum_{n=1}^{\infty} a_n$ este convergentă;
- 2) $\sum_{n=1}^{\infty} a_n$ este divergentă, atunci $\sum_{n=1}^{\infty} b_n$ este divergentă;

În general pentru a decide natura unei serii prin al treilea criteriu al comparației se folosesc seriile armonice generalizate. Se obține astfel următoarea variantă a criteriului 3 des intâlnită în practică.

Consecința criteriului comparației

Dacă există $\alpha \in \mathbb{R}$ astfel ca $\lim_{n \neq \infty} n^{\alpha} a_n = l \in [0, \infty)$ atunci:

- a) pentru $\alpha > 1$ seria $\sum_{n=1}^{\infty} a_n$ este convergentă;
- b) pentru $\alpha \leq 1$ și $l \neq 0$ seria $\sum_{n=1}^{\infty} a_n$ este divergentă.

3 Exerciții și probleme

Ex. 1 Să se determine sumele seriilor:

a)
$$\sum_{n=1}^{\infty} \frac{1}{(3n-2)(3n+1)}$$
;

b)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)};$$

c)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)\dots(n+p)}, p \in \mathbb{N}^*;$$

$$\frac{d}{\sum_{n=1}^{\infty} \frac{n}{1 \cdot 3 \cdot 5 \dots (2n+1)}};$$

$$e) \sum_{n=1}^{\infty} \frac{n \cdot 2^n}{(n+2)!};$$

$$f) \sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}(\sqrt{n+1}+\sqrt{n})};$$

$$g) \sum_{n=1}^{\infty} \operatorname{arctg} \frac{1}{2n^2};$$

$$h) \sum_{n=1}^{\infty} \operatorname{arctg} \frac{2}{n^2 + n + 4};$$

$$i) \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n};$$

$$j) \sum_{n=1}^{\infty} \frac{1}{(a+n)(a+n+1)\cdots(a+n+p)}; \ a > -1, \ p \in \mathbb{N};$$

$$\sum_{n=1}^{\infty} \frac{n!}{a(a+1)\cdots(a+n-1)}, \ a>1;$$

$$l) \sum_{n=1}^{\infty} \operatorname{arctg} \frac{2}{n^2};$$

$$m) \sum_{n=1}^{\infty} \arctan \frac{2^n}{1+2^{2n+1}};$$

n)
$$1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \dots;$$

$$o) \sum_{n=1}^{\infty} \frac{n^3}{n!};$$

$$p) \sum_{n=1}^{\infty} \frac{n^4}{n!};$$

$$q$$
) $\sum_{n=1}^{\infty} \frac{1}{n(2n-1)}$.

Ex. 2 Să se precizeze natura seriilor:

a)
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} a^n$$
, $a > 0$;

b)
$$\sum_{n=1}^{\infty} \frac{n!}{a(a+1)...(a+n)}, \ a > 0;$$

c)
$$\sum_{n=1}^{\infty} \frac{a(a+1)...(a+n-1)}{n!} \cdot \frac{1}{n^{\alpha}}, \ a > 0, \ \alpha \neq a;$$

d)
$$\sum_{n=1}^{\infty} \left(\frac{\ln n}{n}\right)^{\alpha}$$
, $\alpha \in \mathbb{R}$;

$$e) \sum_{n=1}^{\infty} \left(\frac{an+b}{cn+d}\right)^n, \ a>0, c>0;$$

$$f) \sum_{n=1}^{\infty} \left(\sqrt[3]{n^3 + 3n^2 + 1} - \sqrt[3]{n^3 - n^2 + 1} \right)^n;$$

g)
$$\sum_{n=1}^{\infty} \sin \frac{\pi}{n^{\alpha}}, \ \alpha > 0;$$

$$h$$
) $\sum_{n=3}^{\infty} \frac{1}{n \cdot \ln(n) \cdot \ln \ln(n)}$;

i)
$$\sum_{n=2}^{\infty} (2 - \sqrt{e})(2 - \sqrt[3]{e}) \cdots (2 - \sqrt[n]{e});$$

$$j) \sum_{n=1}^{\infty} a^{\ln n}, \ a > 0;$$

k)
$$\sum_{n=1}^{\infty} a^n \left(1 + \frac{1}{n}\right)^{n^2 + bn + c}, \ a > 0, \ b, c \in \mathbb{R};$$

$$l) \sum_{n=2}^{\infty} (\sqrt[n]{n} - 1);$$

$$m) \sum_{n=1}^{\infty} \left(\frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)} \right)^{\alpha}, \alpha \in \mathbb{R};$$

$$n) \sum_{n=1}^{\infty} \frac{1}{1+\sqrt{2}+\sqrt[3]{3}+\cdots+\sqrt[n]{n}};$$

$$o) \sum_{n=2}^{\infty} \frac{1}{n \ln n}.$$

Ex. 3 Să se precizeze natura seriilor:

a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2n+1}{3^n};$$

b)
$$\sum_{n=1}^{\infty} \cos n \cdot \sin \frac{1}{n};$$

c)
$$\sum_{n=1}^{\infty} \frac{\sin n \cdot \sin n^2}{\sqrt{n}};$$

$$d) \sum_{n=1}^{\infty} \sin(\pi\sqrt{n^2+1}).$$

Ex. 4 Se consideră șirul $(a_n)_n$ definit prin relația de recurență

$$a_{n+1} = \ln(1 + a_n), \ n \ge 1 \ \text{si} \ a_1 = 1.$$

- a) $S\breve{a}$ se arate $c\breve{a}$ $\lim_{n\to\infty} a_n = 0$;
- b) Să se arate că seria $\sum_{n=1}^{\infty} a_n$ este divergentă.
- c) Să se arate că seria $\sum\limits_{n=1}^{\infty}a_{n}^{2}$ este convergentă.

4 Indicaţii şi răspunsuri

Solutie Ex. 1 a) $\frac{1}{3}$; b) $\frac{1}{4}$; c) $\frac{1}{p \cdot p!}$; d) $\frac{1}{2}$;

- e) 1; f) 1;
- g) Folosim identitatea

$$\operatorname{arctg} x - \operatorname{arctg} y = \operatorname{arctg} \frac{x - y}{1 + xy}, \quad \forall xy > -1.$$

Avem

$$a_n = \arctan \frac{1}{2n^2} = \arctan \frac{2}{4n^2} = \arctan \frac{2}{1+4n^2-1} = \arctan \frac{2}{1+(2n+1)(2n-1)}$$

= $\arctan \frac{(2n+1)-(2n-1)}{1+(2n+1)(2n-1)} = \arctan (2n+1) - \arctan (2n-1).$

Suma seriei este $\frac{\pi}{4}$; h) arctg 2; i) ln 2;

j)
$$\frac{1}{p(a+1)(a+2)\cdots(a+p)}$$
; k) $\frac{1}{a-2}$; l) $\frac{3\pi}{4}$; m) $\frac{\pi}{4}$; n) Suma este $\frac{3}{2} \ln 2$. Se calculeaza $s_{3n} = \gamma_{4n} - \frac{1}{2}\gamma_n - \frac{1}{2}\gamma_n + \ln \frac{4n}{\sqrt{2n^2}}$. $\lim_{n\to\infty} s_{3n} = \frac{3}{2} \ln 2$. o) 5e; p) 15e; q) $2 \ln 2$.

Solutie Ex. 2 a) Pentru a < 4 seria este convergentă, iar pentru $a \ge 4$ seria este divergentă.

- b) Aplicăm criteriul lui Raabe Duhamel. Seria este convergentă pentru a>1 si divergentă pentru $a\leq 1$.
- c) Aplicăm criteriul lui Raabe-Duhamel. Seria converge pentru $\alpha > a$ și diverge pentru $\alpha < a$
- d) Seria $\sum_{n=1}^{\infty} a_n$ este convergentă pentru $\alpha > 1$ și divergentă pentru $\alpha \leq 1$.
- e) Aplicăm criteriul radicalului. Pentru $a \ge c$ seria este divergentă iar pentru a < c seria este convergentă.
- f) Seria este divergentă.

- g) Comparăm cu seria armonică. Seria este convergentă pentru $\alpha > 1$ şi divergentă pentru $\alpha \leq 1$.
- h) Seria este divergentă.
- i) Se folosește inegalitatea $(1+\frac{1}{n})^n < e < (1+\frac{1}{n})^{n+1}$ și criteriul comparației. Seria este divergentă.
- j) Pentru $a \ge 1$ seria este divergentă $(a_n \to 0)$. Pentru a < 1 se aplică criteriul condensării. Seria este convergentă pentru $a < \frac{1}{e}$ și divergentă pentru $a \ge \frac{1}{e}$. Se poate aplica si Raabe Duhamel.
- k) Aplicăm criteriul radicalului. Dacă $a<\frac{1}{e}$ seria este convergentă iar dacă $a>\frac{1}{e}$ seria este divergentă. Pentru $a=\frac{1}{e}$ utilizând inegalitatea $\left(1+\frac{1}{n}\right)^{n+1}>e$ rezultă că seria este divergentă. Pentru $a=\frac{1}{e}$ se poate arata că $\lim_{n\to\infty}a_n\neq 0$.
- l) Seria este divergentă.
- m) Se folosește inegalitatea

$$\frac{1}{2\sqrt{n}}<\frac{1\cdot 3\cdot 5\cdots (2n-1)}{2\cdot 4\cdot 6\cdots (2n)}<\frac{1}{\sqrt{2n+1}}.$$

Conform criteriului comparației seria este convergentă pentru $\alpha > 2$ și divergentă pentru $\alpha \leq 2$. Se poate aplica si criteriul Raabe Duhamel pentru $\alpha \neq 2$.

- n) Se compară seria data cu seria armonică. Conform criteriului 3 al comparației seria este divergentă.
- o) Aplicăm criteriul condensării. Seria este divergentă.

Solutie Ex. 3 a) Se aplică criteriul lui Leibnitz. Seria este convergentă.

- b) Se aplică criteriul lui Abel-Dirichlet. Seria este convergentă.
- c) Se aplică criteriul lui Abel-Dirichlet. Seria este convergentă.
- d) Seria este convergentă.

Solutie Ex. 4 a) Se arată că sirul este monoton și mărginit.

- b) Aplicăm criteriul comparației comparând cu seria $\sum_{n=1}^{\infty} \frac{1}{n}$.
- c) Aplicăm criteriul comparației comparând cu seria $\sum\limits_{n=1}^{\infty}\frac{1}{n^2}.$