Digital-to-digital Conversion

- Data → Analog or Digital
- Signals

 Analog or Digital
- Digital Transmission
- Analog Transmission

Digital Transmission

Digital to Digital Conversion

Signal Element versus Data Element

- A Data element is the smallest entity that can represent a piece of information → Bit
- A Signal element is the shortest unit of a digital signal
- Data Elements: Carried
- Signal Elements: Carriers

Signal Element versus Data Element

a. One data element per one signal element (r = 1)

c. Two data elements per one signal element (r = 2)

b. One data element per two signal elements $\left(r = \frac{1}{2}\right)$

d. Four data elements per three signal elements $\left(r = \frac{4}{3}\right)$

Data Rate versus Signal Rate

- Data Rate is number of data elements sent in 1 sec (bps)
- Signal Rate is number of signal elements sent in 1 sec (baud)
- Data Rate → Bit Rate
- Signal Rate

 Pulse
 Rate, Modulation Rate

 or Baud Rate

Example

A signal has a signal rate of 100 bauds. What is the Data rate if one data element is carried per signal element?

Line Coding

- Digital data to Digital signals
- Data (Text, Numbers, Pictures, Audio, or Video) is stored in computer memory as sequences of bits
- Line coding converts a sequence of Bits to a Digital Signal

Line Coding and Decoding

 We can roughly divide line coding schemes into five broad categories

Unipolar NRZ scheme

Polar schemes (NRZ)

Polar schemes (RZ)

 We can roughly divide line coding schemes into five broad categories

Polar Biphase

O No inversion: Next bit is 1 • Inversion: Next bit is 0

 We can roughly divide line coding schemes into five broad categories

Bipolar schemes: AMI & Pseudoternary

Multilevel: 2B1Q

Table 4.1: Summary of line coding schemes

Category	Scheme	Bandwidth (average)	Characteristics
Unipolar	NRZ	B = N/2	Costly, no self-synchronization if long 0s or 1s, DC
	NRZ-L	B = N/2	No self-synchronization if long 0s or 1s, DC
Polar	NRZ-I	B = N/2	No self-synchronization for long 0s, DC
	Biphase	B = N	Self-synchronization, no DC, high bandwidth
Bipolar	AMI	B = N/2	No self-synchronization for long 0s, DC
	2B1Q	B = N/4	No self-synchronization for long same double
Multilevel			bits
	8B6T	B = 3N/4	Self-synchronization, no DC
	4D-PAM5	B = N/8	Self-synchronization, no DC
Multitransition	MLT-3	B = N/3	No self-synchronization for long 0s