QUARTO TESTE

Universidade Federal de Goiás (UFG) - Regional Jataí Bacharelado em Ciência da Computação Teoria da Computação Esdras Lins Bispo Jr.

15 de fevereiro de 2018

ORIENTAÇÕES PARA A RESOLUÇÃO

- A avaliação é individual, sem consulta;
- A pontuação máxima desta avaliação é 10,0 (dez) pontos, sendo uma das 06 (seis) componentes que formarão a média final da disciplina: quatro testes, uma prova e exercícios;
- \bullet A média final (MF) será calculada assim como se segue

$$MF = MIN(10, S)$$

 $S = (\sum_{i=1}^{4} 0, 2.T_i) + 0, 2.P + EB$

em que

- -S é o somatório da pontuação de todas as avaliações,
- $-T_i$ é a pontuação obtida no teste i,
- -P é a pontuação obtida na prova, e
- -EB é a pontuação total dos exercícios-bônus.
- O conteúdo exigido desta avaliação compreende o seguinte ponto apresentado no Plano de Ensino da disciplina: (3) Problemas Decidíveis, (4) Problemas Indecidíveis e (5) Complexidade de Tempo.

Nome:

Quarto Teste

1. (5,0 pt) [Sipser 7.6] Mostre que P é fechada sob operação de complemento.

Prova: Seja A uma linguagem decidível em \mathbf{P} . Seja M_A a máquina de Turing simples que decide a linguagem A (pois se uma linguagem é decidível, então uma máquina de Turing a decide). Como A é decidível em tempo polinomial determinístico, A pertence a $\mathrm{TIME}(n^k)$ (em que k é um número natural). Iremos construir a máquina de Turing simples M_{aux} , a partir de M_A , que decide \overline{A} em tempo polinomial determinístico. A descrição de M_{aux} é dada a seguir:

 M_{aux} = "Sobre a entrada ω , faça:

- (a) Rode M_A sobre ω .
- (b) Se M_A aceita, rejeite. Caso contrário, aceite".

O tempo de execução t de M_{aux} é igual a soma do tempo de execução dos passos (a) e (b). Logo, $t = O(n^k) + O(1) = O(n^k)$. Como k é um número natural, $\overline{A} \in \text{TIME}(n^k)$ e, consequentemente, $\overline{A} \in \mathbf{P}$. Logo, podemos afirmar que \mathbf{P} é fechada sob a operação de complemento \blacksquare

2. (5,0 pt) [Sipser 7.27] (Adaptação) Uma coloração de um grafo é uma associação de cores aos seus vértices de forma que dois vértices vizinhos não possam ser associados à mesma cor. Seja $3CORES = \{\langle G \rangle \mid \text{ os vértices de } G \text{ podem ser coloridos com três cores de forma que nenhum par de vizinhos tenha a mesma cor}. Mostre que <math>3CORES \in \mathbf{NP}$.

Prova: Iremos construir a máquina de Turing não-determinística M que decide 3CORES em tempo polinomial não-determinístico. A descrição de M é dada a seguir:

 $M = \text{``Sobre a entrada } \langle G \rangle$, em que G é um grafo, faça:

- (a) De forma não-determinística, teste todas as colorações de três cores de G.
- (b) Para toda aresta de G, faça:
 - i. Se as duas pontas forem da mesma cor, rejeite.
- (c) Aceite.

O tempo de execução t de M é igual a soma do tempo de execução dos passos (a), (b) e (c). Logo, $t = O(1) + O(n^2) + O(1) = O(n^2)$. Como 2 é um número natural, $3CORES \in \text{NTIME}(n^2)$ e, consequentemente, $3CORES \in \text{NP}$

Teoremas Auxiliares

Definição 1.16: Uma linguagem é chamada de uma linguagem regular se algum autômato finito a reconhece.

Teorema 1.25: A classe de linguagens regulares é fechada sob a operação de união.

Teorema 1.26: A classe de linguagens regulares é fechada sob a operação de concatenação.

Teorema 1.26.1: A classe de linguagens regulares é fechada sob a operação de complemento.

Teorema 1.39: Todo autômato finito não-determinístico tem um autômato finito determinístico equivalente.

Teorema 1.49: A classe de linguagens regulares é fechada sob a operação estrela.

Teorema 1.49.1: A classe de linguagens regulares é fechada sob a operação de intersecção.

Teorema 1.54: Uma linguagem é regular se e somente se alguma expressão regular a descreve.

Definição 3.5: Chame uma linguagem de Turing-reconhecível se alguma máquina de Turing a reconhece.

Definição 3.6: Chame uma linguagem de Turing-decidível ou simplesmente decidível se alguma máquina de Turing a decide.

Teorema 3.13: Toda máquina de Turing multifita tem uma máquina de Turing que lhe é equivalente.

Teorema 3.16: Toda máquina de Turing não-determinística tem uma máquina de Turing determinística que lhe é equivalente.

Teorema 3.21: Uma linguagem é Turing-reconhecível se e somente se algum enumerador a enumera.

Teorema 4.1: A_{AFD} é uma linguagem decidível.

Teorema 4.2: A_{AFN} é uma linguagem decidível.

Teorema 4.3: A_{EXR} é uma linguagem decidível.

Teorema 4.4: V_{AFD} é uma linguagem decidível.

Teorema 4.5: EQ_{AFD} é uma linguagem decidível.

Teorema 4.9: Toda linguagem livre-de-contexto é decidível.

Teorema 4.11: A_{MT} é uma linguagem indecidível.

Definição 4.14: Um conjunto A é contável se é finito ou tem o mesmo tamanho que N.

Teorema 7.8: Seja t(n) uma função, em que $t(n) \geq n$. Então toda máquina de Turing multifita de tempo t(n) tem uma máquina de Turing de um única fita equivalente de tempo $O(t^2(n))$.

Teorema 7.11: Seja t(n) uma função, em que $t(n) \geq n$. Então toda máquina de Turing não-determinística de uma única fita de tempo t(n) tem uma máquina de Turing de um única fita equivalente de tempo $2^{O(t(n))}$.

Definição 7.12: P é a classe de linguagens que são decidíveis em tempo polinomial sobre uma máquina de Turing determinística de uma única fita. Em outras palavras, $\mathbf{P} = \bigcup_{k} \mathbf{TIME} \ (n^k)$.

Definição 7.19: NP é a classe das linguagens que têm verificadores de tempo polinomial.

Teorema 7.20: Uma linguagem está em \mathbf{NP} sse ela é decidida por alguma máquina de Turing não-determinística de tempo polinomial. Em outras palavras, $\mathbf{NP} = \bigcup_k \mathbf{NTIME} \ (n^k)$.