Tarea 4 - Semana 4

Ejercicio 1

a) Calcule la la fracción de deficit de masa $\Delta m/m$ de las siguientes reacciones de fusión (2 pts):

$$4^{1}\text{H} \rightarrow^{4}\text{He}$$

 $3^{4}\text{He} \rightarrow^{12}\text{C}$
 $^{12}\text{C} +^{4}\text{He} \rightarrow^{16}\text{O}$
 $2^{16}\text{O} \rightarrow^{28}\text{Si} +^{4}\text{He}$
 $2^{28}\text{Si} \rightarrow^{56}\text{Fe}$

b) Describa la tendencia y discuta las implicaciones para la evolución estelar (2 pts).

Ejercicio 2:

a) Explique cómo procede el ciclo CNO en estrellas de metalicidad cero (estrellas de primera generación). (2 pts)

Ejercicio 3:

Estime las abundancias relativas de los isótopos de C y N durante el equilibrio del ciclo-CN, si sus tiempos de vida durante el equilibrio son: $\tau(^{15}N)=30yr$, $\tau(^{13}C)=1600yr$, $\tau(^{12}C)=6600yr$ y $\tau(^{14}N)=6\times 10^5yr$. (2 pts)

Ejercicio 4:

En la clase vimos que la tasa de reacción es proporcional al coeficiente de reacción:

$$\langle \sigma v \rangle = \left(\frac{8}{2\pi}\right)^{1/2} \frac{S(E_0)}{(k_B T)^{3/2}} \int_0^\infty e^{-E/k_B T} e^{-b/\sqrt{E}} dE$$

donde $b=\pi(2m)^{1/2}Z_1Z_2e^2/\hbar=31.3Z_1Z_2m^{1/2}$ y $m=m_1m_2/(m_1+m_2)$ es la masa reducida en unidades de masa atómica.

- a) Explique en términos generales que representan los términos e^{-E/k_BT} y $e^{-b/\sqrt{E}}$ (1.5 pts)
- b) Grafique el producto de ambos términos en función de la energía para dos valores de temperatura. Explique porque la tasa de reacción aumenta con la temperatura. (1.5 pts) Pistas: adopte $b = 30keV^{1/2}$, use energías entre 0 < E(keV) < 100 y temperaturas del orden de $\sim 10^7 K$.
- c) Explique porque el quemado de H ocurre a temperaturas menores que el de He. (1.5 pts)

d) Los elementos más pesados que Fe pueden producirse por captura de neutrones. Estas reacciones pueden ocurrir a temperaturas bajas (incluso a temperaturas terrestres). Explique por qué. (1.5pts)

Ejercicio 5:

Derive una expresión aproximada para la masa mínima necesaria para que llevar a cabo fusión nuclear. La idea básica es que tenemos el núcleo de una estrella contrayéndose en el cual la temperatura, T_c es determinada por la masa del núcleo, M_c y la densidad ρ_c . A medida que se contrae el núcleo, M_c es constante pero ρ_c y T_c aumentan. La temperatura del núcleo debe alcanzar la temperatura de ignición de fusión, T_{ign} , antes de que la presión del gas de electrones degenerado supere a la del gas ideal. Use los siguientes pasos:

- a) Encuentre una relación entre T_c , M_c y ρ_c , asumiendo que el núcleo provee toda la presión. Pistas: use el teorema del virial para un gas ideal y asuma densidad ρ_c uniforme. (1.5 pts)
- b) Derive una relación entre T_c y ρ_c para el punto justo antes de que la presión del gas degenerado supere a la del gas ideal, i.e. $P_{ideal} = P_{deg,e}$. La expresión debe estar en función: del número promedio de electrones libres por nucleón μ_e y, la masa atómica media del material nuclear μ_c y K. Donde K esta definida por la ecuación de estado para un gas degenerado no relativista $P = K \left(\rho / \mu_e \right)^{5/3}$. Para el caso especifico de un gas de electrones $K = 10^{13}$ (cgs). (1.5 pts)
- c) Combine las expresiones de a) y b) para eliminar la dependencia de ρ_c para encontrar la relación entre T_c y M_c . Al tomar $T_c=T_{ign}$ encontramos la masa mínima del núcleo para alcanzar la temperatura de ignición. (1.5 pts)
- d) Derive la masa mínima para fusión de H asumiendo $T_{ign}=6\times10^6$ Kelvin y un núcleo de puro H $(\mu_c=0.5,\mu_e=1)$. Luego derive la masa mínima para la fusión de He asumiendo $T_{ign}=10^9$ Kelvin y un núcleo de He puro $(\mu_c=1.33,\mu_e=2)$. Exprese el resultado en M_{\odot} . (1.5 pts)