Динамическое ценообразование с помощью Томсонского Сэмплирования^{*}

А. А. Харь, Ю.В. Дорн

В наше время появляется все больше и больше онлайн магазинов, в которых продают товары разных категорий. И у людей возникает проблема: каким образом устанавливать цены? Как не сделать их слишком высокими, чтобы покупатели в принципе приобретали определенный товар, или же не сделать слишком низкими, чтобы не потерять свою прибыль? В этой статье мы изучим алгоритм динамического ценообразования. Делать мы это будем, основываясь на стандартных алгоритмах для многоруких бандитов (игровые автоматы с несколькими ручками, у которых разные распределения на выигрыши). Это непростая проблема, потому что поведение покупателя неизвестно, и, производя, так называемый exploration, мы получаем бандитский фидбек (знание лишь о той ручке, которую мы выбрали).

Ключевые слова: многорукие бандиты, Томсонское Сэмплирование, прибыль, спрос, эластичность, "пассивные" алгоритмы

DOI:

1 Введение

17

- 2 Динамическое ценообразование является сложной задачей из-за того, что поведение 3 покупателя неизвестно, а также фидбек бандитский. Стандартный подход к этой пробле-4 ме состоит из следующих 4 шагов:
- собирание данных о ценых на товар и спрос на этот товар при различных его стоимо стях;
- т оздание статической модели для спроса как функцию от цены, оценка параметров
 в модели с использованием собранных данных;
- используя обученную функцию спроса, оптимизировать некоторые метрики (например,
 прибыль) для получения новой оптимальной цены;
- установление полученной цены на товар в ближайшие несколько дней и повторение
 снова.
- 13 Это, так называемый, "пассивный" подход к динамическому ценообразованию. Такие под-
- 14 ходы "близоруки"и пытаются оптимизировать метрику кратковременно. В [1] показано,
- что такие подходы приводят к неполному обучению и не очень хорошему результаты в перспективе.
 - Мы же попробуем избавиться от этой проблемы таки образом:
- предложим и реализуем простой, "активный"алгоритм для динамического ценообразования, называемый Max-Rev-TS, который рассматривает проблему динамического ценообразования как оптимизационную проблему в условиях неопределенности;
- наша система точно оценит параметры для функции спроса и максимизирует метрику (прибыль) в условиях ограничений;
- используя априорное распределение неизвестных параметров функции спроса, а также используя Байесовское правило, мы получил апостериорное распределение;

^{*}Работа выполнена при финансовой поддержке РФФИ, проекты № №00-00-00000 и 00-00-00001.

2 И.О. Автор и др.

• покажем, что Max-Rev-TS дает серьезное улучшение качества по сравнению с "пассивными" алгоритмами.

2 Постановка задачи

26 27

28

29

30

31

32

34

36

37

42

43

49 50

51

52

53

54

57

Стандартный подход к модели спроса в проблеме ценообразования - это предположение что функция спроса из какого-либо параметрического семейства и затем оценивание параметров, используя статистические техники. Много таких моделей используется при ценообразовании, и они дают действительно неплохую прибыль, среди них линейная модель, лог-линейная модель, логитная модель [2]. Во всех эти моделях считается, что функция спроса постоянна, но в реальности она не постоянна, поэтому мы будет этом учитывать. Функция спроса на время t для вещи i задается уравнением:

$$d_{i,t}(p_i) = f_{i,t} \left(\frac{p_i}{p_{i,t-1}}\right)^{\gamma_{*,i}},\tag{1}$$

38 где $f_{i,t}$ - прогноз спроса для товара i на день t если цена на него $p_{i,t-1},\,\gamma_{*,i}$ - эластичность товара i.

40 $\gamma_{*,i}$ "показывает" как спрос товара i меняется относительно его цены.

41 Если $p_{i,t}$ близко к $p_{i,t-1}$, то можно произвести следующую аппроксимацию:

$$d_{i,t}(p_i) \approx f_{i,t} + (p_i - p_{i,t-1}) \frac{f_{i,t} \gamma_{*,i}}{p_{i,t-1}}$$
(2)

сии, которую можно решать, используя обыкновенный метод наименьших квадратов. Далее вместо того, чтобы смотреть на все данные, мы будем смотреть только на недавние (примерно 1-2 месяца) для оценки "эластичности". Оценка эластичности гораздо сложнее прогноза спроса, так как товар имеет только k конкретных цен в последние несколько месяцев, поэтому для оценки "эластичности" для этого

С такой аппроксимацией, оценка "эластичности" может быть сведена к линейной регрес-

Обычно покупатели покупают товары не по одному, а несколько сразу, кладя их в корзину, именно такую ситуацию мы и будем в дальнейшем рассматривать. Прибыль от товара i в корзине $\mathbb B$ может быть оценена следующим образом:

$$Rev_{i,t}(p_{i,t}) = p_{i,t} \times d_{i,t}(p_{i,t}) \approx p_{i,t}(f_{i,t} + (p_{i,t} - p_{i,t-1}) \frac{f_{i,t}\gamma_{*,i}}{p_{i,t-1}}) = \frac{p_{i,t}^2 f_{i,t}\gamma_{*,i}}{p_{i,t-1}} - p_{i,t} f_{i,t}\gamma_{*,i} + p_{i,t} f_{i,t}$$
(3)

Пусть $p=[p_1,p_2,\ldots,p_{|\mathbb{B}|}]$ - вектор цен на товары в корзине \mathbb{B} . Оптимизируем, используя оценку на величины $\gamma_{*,i},\ f_{i,t}.$

$$p_t = argmax_p \sum_{i \in \mathbb{B}} \frac{p_i^2 f_{i,t} \gamma_{*,i}}{p_{i,t-1}} - p_i f_{i,t} \gamma_{*,i} + p_i f_{i,t}$$

$$\tag{4}$$

58
$$\Pi_0(\gamma_*) = N(\mu_0, \Sigma_0)$$

59 $l(R_t, Rev_t, \gamma_*) = N(R_t, Rev_t, \sigma^2)$
60 $Rev_t(p, \gamma_*, f_t) = \sum_{i \in \mathbb{B}} \frac{p_i^2 f_{i,t} \gamma_{*,i}}{p_{i,t-1}} - p_i f_{i,t} \gamma_{*,i} + p_i f_{i,t}$
61 $\Pi_t(\gamma_*) \propto \Pi_{t-1}(\gamma_*) N(R_t, Rev_t, \sigma^2)$

товара, мы должны использовать все k точек.

Машинное обучение и анализ данных, 2017. Том ??. № ??.

Алгоритм 1 Max-Rev

- 0: **input** Корзина \mathbb{B} , содержащая B товаров, период времени T, в течении которого хотим максимизировать прибыль
 - выбирается вектор $\gamma_* \neq 0$ (игрок его не знает)

For t = 1, ..., T

- \bullet игрок "играет"вектор p_t для корзины $\mathbb B$
- ullet игрок получает стохастический выигрыш R_t , такой что, $\mathbb{E}[R_t] = Rev_t(p_t, \gamma_*, f_{1,t}, \dots, f_{B,t})$

End for

Алгоритм 2 Max-Rev-TS

- 0: **input** Корзина \mathbb{B} , содержащая B товаров, период времени T, в течении которого хотим максимизировать прибыль
 - выбирается вектор $\gamma_* \neq 0$ (игрок его не знает)
 - инициализируется априорное $\Pi_0(\gamma_*)$

For t = 1, ..., T

- \bullet Сэмплируем γ_t из Π_{t-1}
- Используя прогноз спроса получаем $f_{i,t}$

для всех $i \in \mathbb{B}$

- - Применяем цену p_t , получаем выигрыш R_t
 - Изменяем распределение $\Pi_t(\gamma_*)$ по формуле, приведенной выше

End for

з Заключение

В этой статье мы описали алгоритм, который максимизирует функцию прибыли. Пока еще не продемонстрировали, но продемонстрируем, что он работает лучше "пассивных"алгоритмов, которые используются в качестве стандартного алгоритма ценообразования, так как "пассивные"алгоритмы показывают хорошие результаты лишь кратковременно, у нашего же алгоритма такого явления нет.

68 Литература

63

65

66

67

73

- ⁶⁹ [1] Keskin N Bora Harrison, J Michael and Assaf Zeevi. Bayesian dynamic pricing policies: Learning and earning under a binary prior distribution. *Management Science*, 58(3):570–586, 2012.
- 71 [2] Kalyan T Talluri and Garrett J Van Ryzin. The theory and practice of revenue management.

 72 Springer Science Business Media, 68, 2006.

Поступила в редакцию