Core network protocols and architectures

Multi-Protocol Label Switching
Control plane

Enzo Mingozzi
Professor @ University of Pisa
enzo.mingozzi@unipi.it

MPLS control plane

- Procedures at each LSR to
 - create bindings between FECs and labels
 - inform other LSRs of the bindings it creates
 - combine information above to construct and maintain the forwarding table used by the label switching component

LSR label scope

Labels may have "per interface" scope

LSR label scope

Otherwise, labels have per-LSR scope

Label assignment and distribution

- Labels are "downstream-assigned"
 - The binding of a FEC F to a label L is taken by the LSR which is downstream with respect to that binding

A label distribution protocol is then needed

Downstream-on-demand

 An LSR is allowed to explicitly request, from its next hop for a particular FEC, a label binding for

Unsolicited downstream

 An LSR is allowed to distribute bindings to LSRs that have not explicitly requested them

Label retention modes

Liberal label retention mode

Label retention modes

Conservative label retention mode

LSP setup control

- FEC-to-label bindings are only distributed for the purpose of establishing label-switched paths
- Which FEC to advertise a binding for?
 - The choice of FEC determines which LSPs are set up
- When to advertise this binding?
 - This determines who has control over the LSP setup

 Two modes of operation: ordered control vs. independent control

ROUTING TABLE (IGP)

ROUTING TABLE (IGP)

ROUTING TABLE (IGP)

ROUTING TABLE (IGP)

ROUTING TABLE (IGP)

Downstream on-demand

ROUTING TABLE (IGP)

Downstream on-demand

ROUTING TABLE (IGP)

Downstream on-demand

Independent control

ROUTING TABLE (IGP)

Independent control

ROUTING TABLE (IGP)

Independent control

ROUTING TABLE (IGP)

LSP setup control

- Which FEC to advertise a binding for?
- When to advertise this binding?

Ordered control

- Egress (or Ingress) LSRs have control over which LSP are setup
- Default behaviour: FEC mapping to the LSR loopback address

Independent control

- All routers advertise FECs independently (but it should be in a consistent manner)
- Default behaviour: FEC mapping for all prefixes in the routing table

Aggregation (MP2P)

LDP - Label Distribution Protocol

- Specifically designed for label distribution
- Relies on an IGP for all routing-related decisions
 - LSR A that receives a mapping for label L for FEC F from its LDP peer LSR B will use label L for forwarding if and only if B is on the IGP shortest path for destination F from A's point of view
- Major functions (with related messages)
 - Neighbour discovery (UDP)
 - Session establishment and maintenance (TCP)
 - Label advertisement
 - Notification

RSVP for label distribution

Ordered control with downstream on-demand

References

- I. Minei and J. Lucek, MPLS-Enabled
 Applications: Emerging Developments and New Technologies, 3rd Edition, Wiley, Dec. 2010
- RFCs
 - RFC3031, Multiprotocol Label Switching Architecture,
 Jan. 2001
 - RFC3032, MPLS Label Stack Encoding, Jan. 2001
 - RFC5036, LDP Specification, Oct. 2007