CMPSC 465 – Spring 2021 — Solutions to Homework 2

Josiah Kim, SID 948500821, juk483

February 4, 2021

1. Acknowledgements

- (a) I did not work in a group.
- (b) I did not consult with any of my group members.
- (c) I did not consult any non-class materials.

2. Compare growth rates

(a) Polynomials grow according to their exponents. Since 1.5 > 1.3:

$$f = \Omega(g)$$

(b) Exponentials grow according to their base. The base is 2 in both cases.

$$f = \Theta(g)$$

(c) f is an exponential while g is a polynomial.

$$f = \Omega(g)$$

(d) f is $O(3^n)$ and g is $O(2^n)$.

$$f = \Omega(g)$$

(e) f is $O((log n)^1 00)$; g is $O(n^0.1)$

$$f = \Omega(g)$$

(f) Polynomials grow slower than logs.

$$f = \Omega(g)$$

(g) Factorials grow faster than exponentials.

$$f = O(g)$$

(h) $f = log(e^n) = nlog(e)$. f is O(n) and g is O(nlogn).

$$f = O(g)$$

(i) f is O(n), g is $O((log n)^2)$

$$f = O(g)$$

(j) f is O(n), g is O(n)

$$f = \Theta(g)$$

3. Polynomials and Horner's Rule

(a) The first multiplication is a * x. The second is a * x * x. The third is a * x * x * x. The number of multiplications are dependent on n and its previous n-number of multiplications which can be translated to $\frac{n(n-1)}{2}$.

The first addition is (a*x) + (a*x*x). The second addition is firstSum + (a*x*x*x). The last sum will always be $nSum + a_0$. Therefore, the number of additions can be represented by n+1.

Therefore, $T(n) = \frac{n(n-1)}{2} + n + 1$ which gives us the time complexity of $O(n^2)$

(b) LOOP INVARIANT:

$$\begin{array}{l} i=3:\ z=zx_0+a_3\\ i=2:\ z=(zx_0+a_3)x_0+a_2\\ i=1:\ z=((zx_0+a_3)x_0+a_2)x_0+a_1\\ i=0:\ z=(((zx_0+a_3)x_0+a_2)x_0+a_1)x_0+a_0\\ \text{By expanding, we get:}\ z=zx_0^4+x_0^3a_3+x_0^2a_2+x_0^1a_1+a_0\\ \text{After j iterations, we get:}\ z=\sum_{j=0}^{i-1}x_0^ja_j \end{array}$$

INITIALIZATION:

We will assume that $a_n \subset \mathbb{N}$. Before the loop, set n = 4 so $z = a_4 = 4$. This should equal: $4 + 3x_0^3 + 2x_0^2 + 0$ $z = x_0^4 + x_0^3 a_3 + x_0^2 a_2 + x_0^1 a_1 + a_0$ True.

MAINTENANCE:

We will assume LI holds for i. Need to prove it holds for i + 1.

 $z_{after} = \text{val of z after } i+1 \text{ iterations}$ $z_{after} = z_{before}x_0 + a_i =$

 $z_{after} \equiv z_{before} x_0 + a_i \equiv$ (By LI)

= $(\sum_{j=0}^{i-1} x_0^j a_j) x_0 + a_i = \sum_{j=0}^{i-1} x_0^{j+1} a_j + a_i = \sum_{j=0}^{i} x_0^j a_j = \sum_{j=0}^{j_{after}-1} x_0^j a_j$ The last a_0 will always be 0.

True.

TERMINATION:

At termination, z returns with the value after n loops: $x_0^n a_n + ... + x_0 a_1 + a_0$) This is the same format as $p(x_0)$. True.

(c) This algorithm is similar to the brute-force method in the fact that it will wait until the end to calculate the sum. However, the product is also calculated at the end.

When i = 3, z returns: $(((zx_0 + a_3)x_0 + a_2)x_0 + a_1)x_0 + a_0$

There are n-number of additions and products (assuming a_0 is always zero).

Therefore, the numbers of sums can be represented by O(n) and the number of products can also be represented by O(n). Therefore, the time complexity results in O(n).

4. Solving Recurrences

(a) Branching Factor: 2

Height: $log_2(n)$

Size of Subproblems at Depth k: $(\frac{n}{2^k})^{\frac{1}{2}} = \frac{\sqrt{n}}{2^{\frac{k}{2}}}$

Number of Subproblems at Depth k: 2^k

$$T(n) = \sum_{k=1}^{\log_2 n} 2^k * 1 * \frac{\sqrt{n}}{2^{\frac{k}{n}}}$$

Number of Subproblems a
$$T(n) = \sum_{k=1}^{log_2n} 2^k * 1 * \frac{\sqrt{n}}{2^{\frac{k}{2}}}$$

$$T(n) = \sqrt{n} * \sum_{k=1}^{log_2n} \frac{2^k}{2^{\frac{k}{2}}}$$

$$T(n) = \sqrt{n} * \sum_{k=1}^{log_2n} 2^{\frac{k}{2}}$$

$$T(n) = \sqrt{n} * \frac{\Theta(2^{\frac{1}{2}log_2n})}{\Theta(\sqrt{n})}$$

$$T(n) = \Theta(2^{\frac{1}{2}log_2n})$$

$$T(n) = \Theta(\sqrt{n})$$

$$T(n) = \sqrt{n} * \sum_{k=1}^{\log_2 n} 2^{\frac{1}{2}}$$

$$T(n) = \sqrt{n} * \frac{\Theta(2^{\frac{1}{2}\log_2 n})}{\Theta(\sqrt{n})}$$

$$T(n) = \Theta(2^{\frac{1}{2}log_2n})$$

$$\Gamma(n) = \Theta(\sqrt{n})$$

(b) Branching Factor: 2

Height: $log_3(n)$

Size of Subproblems at Depth k: $(\frac{n}{3^k})^0 = 1$

Number of Subproblems at Depth k: 2^k

$$T(n) = \sum_{k=0}^{\log_3 n} 2^k * 1 * 1$$

$$T(n) = \sum_{k=0}^{\log_3 n} 2^k$$

$$T(n) = \frac{\Theta(2^{\log_3 n})}{\Theta(1)}$$

$$T(n) = \sum_{k=0}^{k=0} {\log_3 n} 2^k$$

$$T(n) = \frac{\Theta(2^{\log_3 n})}{\Theta(1)}$$

$$T(n) = \Theta(2^{log_3n})$$

(c) Branching Factor: 5

Height: log_4n

Size of Subproblems at Depth k: $\frac{n}{4^k}$

Number of Subproblems at Depth k: 5^k $T(n) = \sum_{k=0}^{\log_4 n} 5^k * 1 * \frac{n}{4^k}$ $T(n) = n \sum_{k=0}^{\log_3 n} \frac{5^k}{4^k}$ $T(n) = n(\frac{5}{4})^{\log_4 n}$ $\Theta((5)^{\log_4 n})$

$$T(n) = \sum_{k=0}^{\log_4 n} 5^k * 1 * \frac{n}{4^k}$$

$$T(n) = n \sum_{k=0}^{\log_3 n} \frac{5^k}{4^k}$$

$$T(n) = n(\frac{5}{4})^{\log_4 n}$$

$$T(n) = n * \frac{\Theta((\frac{5}{4})^{log_4 n})}{\Theta(n)}$$

$$T(n) = \Theta((\frac{5}{4})^{\log_4 n})$$

(d) Branching Factor: 6

Height: $log_7 n$

Size of Subproblems at Depth k: $\frac{n}{7^k}$

Number of Subproblems at Depth k: 7^k $T(n) = \sum_{k=0}^{\log_7 n} 7^k * 1 * \frac{n}{7^k}$ $T(n) = n \sum_{k=0}^{\log_7 n} \frac{7^k}{7^k}$

$$T(n) = \sum_{k=0}^{\log_7 n} 7^k * 1 * \frac{n}{7^k}$$

$$T(n) = n \sum_{k=0}^{\log_7 n} \frac{7^k}{7^k}$$

$$T(n) = \Theta(1)$$

(e) Branching Factor: 9

Height: $log_9 n$

Size of Subproblems at Depth k: $(\frac{n}{3^k})^2 = \frac{n^2}{3^{2k}} = \frac{n^2}{9^k}$

Number of Subproblems at Depth $k:9^k$ $T(n) = \sum_{k=0}^{\log_9 n} 9^k * 1 * \frac{n^2}{9^k}$

$$T(n) = \sum_{k=0}^{\log_9 n} 9^k * 1 * \frac{n^2}{9^k}$$

$$T(n) = n^2 \sum_{k=0}^{\log_9 n} 1$$

$$T(n) = n^2 * \frac{\Theta(1)}{\Theta(n^2)}$$

$$T(n) = \Theta(1)$$