

INSTITUTO DE INGENIERÍA MATEMÁTICA Y COMPUTACIONAL

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

IMT3410: Métodos para ecuaciones diferenciales

Clase 3

Manuel A. Sánchez 2024.08.14

Preguntas

- □ ¿Es el método de Euler explícito convergente?
- □ ¿Cual es el orden de precisión del método de Euler?

Preguntas

- ☐ ¿Es el método de Euler explícito convergente?
- □ ¿Cual es el orden de precisión del método de Euler?

El método de Euler es convergente, ya que este es consistente y tiene cota de Lipschitz.

Preguntas

- □ ¿Es el método de Euler explícito convergente?
- □ ¿Cual es el orden de precisión del método de Euler?

El método de Euler es convergente, ya que este es consistente y tiene cota de Lipschitz. Observamos que

$$|T_n| = |hy''(\xi_n)| \le Kh$$
, K es independiente de h

Método de la Regla del Trapecio

La regla trapezoidal es un método de paso simple definido por la iteración

$$y_{n+1} = y_n + \frac{h}{2}(f(x_n, y_n) + f(x_{n+1}, y_{n+1}))$$

Observe que el método se deriva de

$$y(x_{n+1}) - y(x_n) = \int_{x_n}^{x_{n+1}} y'(x) dx = \int_{x_n}^{x_{n+1}} f(x, y(x)) dx$$

Proposición

El orden de la regla trapezoidal es p = 2.

Demostración

Error de truncación:

$$T_n = \frac{y(x_{n+1}) - y(x_n)}{h} - \Phi(x_n, y(x_n); h)$$

$$= \frac{y(x_{n+1}) - y(x_n)}{h} - \frac{1}{2} (f(x_n, y(x_n)) + f(x_{n+1}, y(x_{n+1})))$$

Por Taylor

$$y(x_{n+1}) = y(x_n) + hy'(x_n) + \frac{h^2}{2}y''(x_n) + O(h^3)$$
$$y'(x_n) = f(x_n, y(x_n))$$
$$f(x_{n+1}, y(x_{n+1})) = y'(x_{n+1}) = y'(x_n) + hy''(x_n) + O(h^2)$$

Demostración

Entonces

$$T_n = (y'(x_n) + \frac{h}{2}y''(x_n) + O(h^2)) - \frac{1}{2}(y'(x_n) + y'(x_n) + hy''(x_n) + O(h^2))$$

= $O(h^2)$.

Más específicamente:

$$|T_n| \leq \frac{1}{12} \max_{x \in [x_0, x_M]} |y'''(x)| h^2.$$

Regla trapezoidal

Proposición

La Regla trapezoidal es convergente.

Encontremos la constante de Lipschitz L_{Φ} . Primero, observemos que:

$$h \Phi(x_n, y_n; h) = \frac{h}{2} (f(x_n, y_n) + f(x_{n+1}, y_{n+1})) = \frac{h}{2} (f(x_n, y_n) + f(x_{n+1}, y_n + h \Phi(x_n, y_n; h)))$$

Así

$$\begin{aligned} |\Phi(x_{n}, u; h) - \Phi(x_{n}, v; h)| \\ &= \frac{1}{2} |f(x_{n}, u) + f(x_{n} + h, u + h \Phi(x_{n}, u; h)) - f(x_{n}, v) - f(x_{n} + h, v + h \Phi(x_{n}, v; h))| \\ &\leq \frac{1}{2} |f(x_{n}, u) - f(x_{n}, v)| + \frac{1}{2} |f(x_{n} + h, u + h \Phi(x_{n}, u; h)) - f(x_{n} + h, v + h \Phi(x_{n}, v; h))| \\ &\leq \frac{1}{2} L_{f} |u - v| + \frac{1}{2} L_{f} |u + h \Phi(x_{n}, u; h) - v - h \Phi(x_{n}, v; h)| \end{aligned}$$

Demostración

$$|\Phi(x_n, u; h) - \Phi(x_n, v; h)| \leq \frac{1}{2} L_f |u - v| + \frac{1}{2} L_f |u - v| + \frac{1}{2} L_f h |\Phi(x_n, u; h) - \Phi(x_n, v; h)|$$

De donde tenemos que:

$$|\Phi(x_n, u; h) - \Phi(x_n, v; h)| \le \frac{L_f}{1 - hL_f/2} |u - v|$$

Por lo tanto, si $1 - hL_f/2 > 0$, podemos tomar $L_{\Phi} \leq \frac{L_f}{1 - hL_f/2}$.

Consistencia

$$\Phi(x, y; 0) = \frac{1}{2}(f(x, y) + f(x, y)) = f(x, y)$$

Además

$$|e_n| \leq \frac{T}{L_{\Phi}} (e^{L_{\Phi}(x_n - x_0)} - 1) \underset{h \to 0}{\longrightarrow} 0$$

Implementación de la regla trapezoidal

La regla trapezoidal:

$$y_{n+1} = y_n + \frac{h}{2} (f(x_n, y_n) + f(x_{n+1}, y_{n+1}))$$

Dado la iteración y_n , como resolvemos para y_{n+1} ?

Implementación de la regla trapezoidal

La regla trapezoidal:

$$y_{n+1} = y_n + \frac{h}{2} (f(x_n, y_n) + f(x_{n+1}, y_{n+1}))$$

Dado la iteración y_n , como resolvemos para y_{n+1} ? Este método corresponde a un método **implícito**, necesitamos resolver para y_{n+1} .

Implementación de la regla trapezoidal

La regla trapezoidal:

$$y_{n+1} = y_n + \frac{h}{2} (f(x_n, y_n) + f(x_{n+1}, y_{n+1}))$$

Dado la iteración y_n , como resolvemos para y_{n+1} ? Este método corresponde a un método **implícito**, necesitamos resolver para y_{n+1} .

Método de Newton-Raphson (encontrar aproximaciones de raíces de una función real):

Resolver para z:
$$F(z) = y_n + \frac{h}{2} (f(x_n, y_n) + f(x_{n+1}, z)) - z = 0$$

$$z^{(k+1)} = z^{(k)} - \frac{F(z^{(k)})}{F'(z^{(k)})}, \quad \text{con } z^{(0)} = y_n + hf(x_n, y_n)$$

Necesitamos calcular $F'(z^{(k)})$, es decir $\frac{\partial f}{\partial y}(z^{(k)})$.

Problema no lineal, caso vectorial.

Resolver el problema no lineal F(z) = 0, para $F : \mathbb{R}^n \to \mathbb{R}^n$.

- □ Newton-Raphson: $\mathbf{z}^{(k+1)} = \mathbf{z}^{(k)} (\nabla F(\mathbf{z}^{(k)}))^{-1} F(\mathbf{z}^{(k)})$
- □ Métodos de quasi-Newton: $J_k \approx \nabla F(\mathbf{z}^{(k)})$. Broyden 1965.

$$\Delta \mathbf{z}^{(k)} = \mathbf{z}^{(k)} - \mathbf{z}^{(k-1)}$$

$$\Delta F_k = F(\mathbf{z}^{(k)}) - F(\mathbf{z}^{(k-1)})$$

$$J_k = J_{k-1} + \frac{\Delta F_k - J_{k-1} \Delta \mathbf{z}_k}{\|\Delta \mathbf{z}_k\|^2} \Delta \mathbf{z}_k^{\top}$$

$$J_k^{-1} = J_{k-1}^{-1} + \frac{\Delta z_k - J_{k-1}^{-1} \Delta F_k}{\|\Delta F_k\|^2} \Delta F_k^{\top}$$

$$\mathbf{z}^{(k+1)} = \mathbf{z}^{(k)} - J_k^{-1} F(\mathbf{z}^{(k)})$$

Problema no lineal, caso vectorial.

BFGS.

$$J_{k} = J_{k-1} + \frac{\Delta F_{k} \Delta F_{k}^{\top}}{\Delta F_{k}^{\top} \Delta z_{k}} - \frac{J_{k-1} \Delta z_{k} (J_{k-1} \Delta z_{k})^{\top}}{\Delta z_{k}^{\top} J_{k-1} \Delta z_{k}}$$

$$J_{k}^{-1} = \left(I - \frac{\Delta z_{k} \Delta F_{k}^{\top}}{\Delta F_{k}^{\top} \Delta z_{k}}\right) J_{k-1}^{-1} \left(I - \frac{\Delta F_{k} \Delta z_{k}^{\top}}{\Delta z_{k}^{\top} \Delta F_{k}}\right) + \frac{\Delta z_{k} \Delta z_{k}^{\top}}{\Delta F_{k}^{\top} \Delta z_{k}}$$

from scipy.optimize import fmin_bfgs

Ejemplo 1. Cuando todo funciona

Consideremos el siguiente PVI: $y' = -y + 2 \exp(-t) \cos(2t)$, y(0) = 0. Comparamos los dos métodos vistos hasta ahora

$$y^{n+1} = y^n + h(-y^n + 2\exp(-t_n)\cos(2t_n)$$

Ejemplo 2.

Consideremos el siguiente PVI

$$y'=\ln(3)\left(y-\lfloor y\rfloor-\frac{3}{2}\right),\quad y(0)=0$$
 solución exacta: $y(x)=-\lfloor x\rfloor+\frac{1}{2}(1-3^{x-\lfloor x\rfloor}),\quad x\geq 0$

Ejercicios

1 Derive la regla del punto medio implícito

$$y_{n+1} = y_n + hf(x_n + \frac{1}{2}h, \frac{1}{2}(y_n + y_{n+1}))$$

Pruebe que es de orden 2 y convergente.

2 La forma general, método theta

$$y_{n+1} = y_n + (\Delta t)(\theta f(t_n, y_n) + (1 - \theta)f(t_{n+1}, y_{n+1})), \quad \theta \in [0, 1]$$

- 1 $\theta = 1 \longrightarrow \text{Euler explícito}$
- $\theta = \frac{1}{2} \longrightarrow \text{Regla trapezoidal}$
- $\theta = 0 \longrightarrow \text{Euler implicito}$

es convergente y de orden 1 si $\theta \neq \frac{1}{2}$.

Carl Runge, Martin Wilhelm Kutta \sim 1900.

Aproximación de orden más alto. Nuestro objetivo es introducir métodos de paso simple con orden precisión mas alto. Para ilustrar su derivación, observemos lo siguiente

$$y(x_{n+1}) = y(x_n) + \int_{x_n}^{x_{n+1}} f(\tau, y(\tau)) d\tau$$

= $y(x_n) + h \int_0^1 f(x_n + \tau h, y(x_n + \tau h)) d\tau$

Regla de Cuadratura $y(x_{n+1}) = y(x_n) + h \sum_{i=1}^{s} b_i f(x_n + c_i h, y(x_n + c_i h)).$

En la expresión de arriba aparecen valores desconocidos. La idea de los método de Runge-Kutta es aproximarlos por valores $\xi_j \approx y(x_n + c_j h)$.

Así, escribimos la estructura de la iteración de paso simple con

$$\Phi(x_n, y_n; h) = \sum_{i=1}^{s} b_i k_i; \qquad k_i = f(x_n + c_i h, \xi_i)$$

Aproximación de orden más alto. Consideremos como primer ejemplo el siguiente esquema

(RK2)
$$y_{n+1} = y_n + h(ak_1 + bk_2), \begin{cases} k_1 = f(x_n, y_n) \\ k_2 = f(x_n + \alpha h, y_n + \beta hk_1) \end{cases}$$

Esto corresponde a un método de paso simple con:

$$\Phi(x_n, y_n; h) = a f(x_n, y_n) + b f(x_n + \alpha h, y_n + \beta h f(x_n, y_n))$$

Observemos que el método de Euler corresponde a a = 1, b = 0.

Consistencia de RK2:

$$\Phi(x, y; 0) = f(x, y) \longrightarrow \boxed{a + b = 1}$$

Orden de RK2:

y escribimos

$$\Phi(x_n, y(x_n); h) = af + b(f + \alpha h \frac{\partial f}{\partial x} + \beta h \frac{\partial f}{\partial y} f + \frac{1}{2} (\alpha h)^2 \frac{\partial^2 f}{\partial x^2} + \alpha \beta h^2 \frac{\partial^2 f}{\partial x \partial y} + \frac{1}{2} (\beta h)^2 \frac{\partial^2 f}{\partial y^2} + O(h^3))$$

Entonces

$$T_{n} = \frac{y(x_{n+1}) - y(x_{n})}{h} - \Phi(x_{n}, y(x_{n}); h)$$

$$= f + \frac{h}{2} \left(\frac{\partial f}{\partial x} + f \frac{\partial f}{\partial y} \right) + \frac{h^{2}}{6} \left(\frac{\partial^{2} f}{\partial x^{2}} + 2 \frac{\partial^{2} f}{\partial x \partial y} f + \frac{\partial^{2} f}{\partial y^{2}} f^{2} + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial x} + \frac{\partial f}{\partial x} f \right) \right)$$

$$- (af + b(f + \alpha h \frac{\partial f}{\partial x} + \beta h f \frac{\partial f}{\partial y} + \frac{1}{2} (\alpha h)^{2} \frac{\partial^{2} f}{\partial x^{2}} + \alpha \beta h^{2} f \frac{\partial^{2} f}{\partial x \partial y}$$

$$+ \frac{1}{2} (\beta h)^{2} f^{2} \frac{\partial^{2} f}{\partial y^{2}}) + O(h^{3}).$$

Eliminar
$$f \longrightarrow 1 - a - b = 0$$

Eliminar
$$h \longrightarrow \frac{1}{2} \left(\frac{\partial f}{\partial x} + f \frac{\partial f}{\partial y} \right) - b\alpha \frac{\partial f}{\partial x} - b\beta \frac{\partial f}{\partial y} f = 0$$

Por lo tanto $b\alpha = b\beta = \frac{1}{2}$.

El método es de orden p = 2 si

$$\beta = \alpha$$
, $a = 1 - \frac{1}{2\alpha}$, $b = \frac{1}{2\alpha}$; $\alpha \neq 0$

Pregunta: ¿Puede ser el método de orden p = 3?

Ejemplos: Orden p = 2

 $\square \quad \text{Euler modificado} \quad (\alpha = \frac{1}{2})$

$$y_{n+1} = y_n + hf(x_n + \frac{1}{2}h, y_n + \frac{1}{2}hf(x_n, y_n))$$

□ Euler mejorado $(\alpha = 1)$

$$y_{n+1} = y_n + \frac{1}{2}h(f(x_n, y_n) + f(x_n + h, y_n + hf(x_n, y_n)))$$

Manuel A. Sánchez 20/28

Esquema de Runge-Kutta explícitos

Esquemas de Runge-Kutta explícitos

Regla de Cuadratura:

$$y_{n+1} = y_n + h \sum_{j=1}^s b_j f(x_n + c_j h, y(x_n + c_j h)) = y_n + h \sum_{j=1}^s b_j f(x_n + c_j h, \xi_i)$$

No sabemos los valores de $y(x_n + c_j h) \approx \xi_j$. Fórmulas **explícitas**

Aproximaciones:
$$\xi_1 = y_n$$

 $\xi_2 = y_n + h \, a_{21} \, f(x_n, \xi_1)$
 $\xi_3 = y_n + h \, a_{31} \, f(x_n, \xi_1) + h \, a_{32} \, f(x_n + c_2 h, \xi_2)$
 \vdots
 $\xi_s = y_n + h \sum_{i=1}^{s-1} a_{s,i} f(x_n + c_i h, \xi_i)$

para i = 1, 2, ..., s, s es el número de pasos del método.

Manuel A. Sánchez 22/28

Runge-Kutta explícito

$$y_{n+1} = y_n + h \sum_{i=1}^{s} b_i k_i$$

$$k_i = f(x_n + c_i h, \xi_i)$$

$$\xi_i = y_n + h \sum_{j=1}^{i-1} a_{ij} f(x_n + c_j h, \xi_j)$$

para i = 1, ..., s.

Diagrama de Butcher

$$c \mid A$$
 b^T

Manuel A. Sánchez 23/28

Diagramas de Butchet ERK

$$\sum_{i=1}^{\nu} a_{ji} = c_j, j = 1, \ldots, \nu, \quad \operatorname{orden} \rho > 1$$

Ejemplos:

Ejercicio

A partir de los diagramas de Butcher anterior escriba los métodos de Runge-Kutta asociados.

Manuel A. Sánchez 25/28

Métodos de Runge-Kutta implícitos

Métodos de Runge-Kutta implícitos

$$\xi_j = y_n + h \sum_{i=1}^s a_{ji} f(x_n + c_i h, \xi_i), j = 1, \dots, v$$

$$y_{n+1} = y_n + h \sum_{j=1}^s b_j f(x_n + c_j h, \xi_j)$$

Ejemplo:

$$\xi_1 = y_n + \frac{h}{4} (f(x_n, \xi_1) - f(x_n + \frac{2}{3}h, \xi_2))$$

$$\xi_2 = y_n + \frac{h}{12} (5f(x_n, \xi_1) + 5f(x_n + \frac{2}{3}h, \xi_2))$$

$$y_{n+1} = y_n + \frac{h}{4} (f(x_n, \xi_1) + 3f(x_n + \frac{2}{3}h, \xi_2))$$

Diagrama de Butcher

$$\begin{array}{c|cccc}
0 & 1/4 & -1/4 \\
2/3 & 1/4 & 5/12 \\
\hline
& 1/4 & 3/4
\end{array}$$

INSTITUTO DE INGENIERÍA Matemática y computacional

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE