$$i = 2 \mid j = 0 \mid k = 1 \mid m = 5$$

Automātu teorija – 2. mājasdarbs

Kristiāns Francis Cagulis, kc22015

$$i = 2 \mid j = 0 \mid k = 1 \mid m = 5$$

1. UZDEVUMS

1.1. Nosacījums

Akceptors ar magazīna tipa atmiņu $(Q,X,S,\delta,q_0,\$,Q_A)$ ir definēts sekojoši:

 $Q = \{s_0, s_1, s_2\} \quad$ – stāvokļu kopa $X = \{0, 1\}$ – ieejas alfabēts $S = \{z,\$\}$ — steka alfabēts $q_0=s_0 \\ \$$ - sākumstāvoklis - steka beigas simbols $Q_A = \{s_0\}$ – akceptējošo stāvokļu kopa

Pārejas funkcija δ ir dota ar tabulu:

Stāvoklis q	Ieeja x	Simbols no steka	Mērķstāvoklis
Virkne uz steku	s_0	ε	\$
s_1	z\$	s_1	0
z	s_1	zzz	s_1
ε	z	s_2	ε
s_2	1	z	s_2
ε	s_2	0	z
s_0	ε	s_1	1
z	s_2	zz	

Uzrakstiet visus attiecīgās valodas vārdus ar garumu ≤ 4 .

1.2. Atbilde

• ε , 00, 10, 000, 010, 100, 110, 0000, 0010, 0100, 0110, 1000, 1010

$$i = 2 \mid j = 0 \mid k = 1 \mid m = 5$$

2. UZDEVUMS

2.1. Nosacījums

- (a) Uzbūvējiet akceptoru ar magazīna tipa atmiņu ar ieejas alfabētu $X=\{0,1\}$, kurš akceptē tādus (un tikai tādus) vārdus kuros apakšvirkņu 010 ir mazāk nekā apakšvirkņu 101. Pārejas funkciju δ uzrakstiet kā tabulu teksta formātā.
- (b) Vai šī valoda ir regulāra? Pamatojiet!

2.2. Atbilde

2.2.1. Atlauts

•

(a) Akceptors ar magazīna tipa atmiņu $(Q,X,S,\delta,q_0,\$,Q_A)$ ir definēts sekojoši:

$$\begin{split} Q &= \{s_0,\} & -\text{stāvokļu kopa} \\ X &= \{0,1\} & -\text{ieejas alfabēts} \\ S &= \{1,0,\$\} & -\text{steka alfabēts} \\ q_0 &= s_0 & -\text{sākumstāvoklis} \\ \$ & -\text{steka beigas simbols} \\ Q_A &= \{\} & -\text{akceptējošo stāvokļu kopa} \end{split}$$

(a) Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do.

$$i = 2 \mid j = 0 \mid k = 1 \mid m = 5$$

3. UZDEVUMS

3.1. Nosacījums

Varbūtiskais akceptors (Q,X,p,q_0,Q_A,λ) ir definēts sekojoši:

 $Q = \{s_0, s_1\} \quad \text{- stāvokļu kopa}$

 $X = \{a, b\}$ – ieejas alfabēts

 $Q_A = \{s_1\} \quad \ \, -$ akceptējošo stāvokļu kopa

 $\lambda = 0.5$ – akceptēšanas slieksnis

Pārejas funkcija p ir dota ar tabulu (tikai pozitīvas varbūtības):

Stāvoklis q	Ieeja x	Mērķstāvoklis q'	Varbūtība $p(q, x, q')$
s_0	a	s_1	1
s_0	b	s_0	$\frac{1}{8}$
s_0	b	s_1	$\frac{7}{8}$
s_1	a	s_0	1
s_1	b	s_0	$\frac{1}{8}$
s_1	b	s_1	$\frac{7}{8}$

- (a) Uzrakstiet visus attiecīgās valodas vārdus ar garumu ≤ 4 .
- (b) Vai šī valoda ir regulāra? Pamatojiet?

3.2. Atbilde

- (a) a, b, ab, bb, aaa, aab, abb, baa, bab, bbb, aaab, aabb, abaa, abab, abab, baab, baba, babb, bbaa, bbbb, bbaa, bbbb, bbaa, bbbb, abbb, bbaa, bbbb, abbb, abbb,
- (b) Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do.

$$i = 2 \mid j = 0 \mid k = 1 \mid m = 5$$

4. UZDGVUMS

4.1. Nosacījums

Uzbūvējiet varbūtisko akceptoru ar ie
ejas alfabētu $X=\{a,b\}$ un stāvokļu skaitu ne vairāk ka 10, kurš akcept
ē tādus un tikai tādus vārdus, kuros burtu a skaits ir
 $\min(2,0)+3=3$ un burtu b skaits ir $\max(1,5)+6=11$. Pārejas funkciju p
 uzrakstiet kā tabulu teksta formātā.

Vai divreiz vieglāks uzdevums par divreiz mazāku atzīmi šajā uzdevumā: burtu a nav, burtu b skaits ir $\max(1,5)+6=11$, stāvokļu skaits nepārsniedz 5.

4.2. Atbilde

Varbūtiskais akceptors $(Q, X, p, q_0, Q_A, \lambda)$ ir definēts sekojoši:

$$\begin{split} Q &= \{s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_7\} &\quad -\text{ stāvokļu kopa} \\ X &= \{a, b\} &\quad -\text{ ieejas alfabēts} \\ q_0 &= s_0 &\quad -\text{ sākumstāvoklis} \\ Q_A &= \{s_2, s_7\} &\quad -\text{ akceptējošo stāvokļu kopa} \\ \lambda &= 0.33445 &\quad -\text{ akceptēšanas slieksnis} \end{split}$$

Pārejas funkcija pir dota ar tabulu (tikai pozitīvas varbūtības):

$$i=2\mid j=0\mid k=1\mid m=5$$

Stāvoklis q	Ieeja x	Mērķstāvoklis q'	Varbūtība $p(q,x,q')$
s_0	b	s_1	0.25
s_0	a	s_3	0.25
s_0	b	s_3	0.25
s_0	a	s_4	0.5
s_0	b	s_5	0.5
s_0	a	s_6	0.5
s_1	a	s_1	1
s_1	b	s_1	0.8
s_1	b	s_2	0.8
s_2	a	s_2	1
s_2	b	s_2	0.95
s_2	b	s_3	0.05
s_3	a	s_3	1
s_3	b	s_3	1
s_4	b	s_1	0.5
s_4	b	s_3	0.5
s_4	a	s_4	1
s_5	a	s_3	0.5
s_5	b	s_5	1
s_5	a	s_6	0.5
s_6	a	s_6	0.3
s_6	b	s_6	1
s_6	a	s_7	0.7
s_7	a	s_7	0.75
s_7	b	s_7	1