Homework 5

Ryan Coyne

March 1, 2024

Question 1

Prove the following theorem:

Theorem 1 Let H_1 and H_2 be groups, and define

$$H_1 \times \{e\} := \{(h_1, e) | h_1 \in H_1\} \subset H_1 \times H_2$$

and

$$\{e\} \times H_2 := \{(e, h_2) | h_2 \in H_2\} \subset H_1 \times H_2.$$

Then

- a) $H_1 \times \{e\}$ and $\{e\} \times H_2$ are normal subgroups of $H_1 \times H_2$,
- b) $(H_1 \times \{e\}) \cap (\{e\} \times H_2) = \{(e, e)\}, \text{ and }$
- c) $(H_1 \times \{e\})(\{e\} \times H_2) = H_1 \times H_2$.
- a) **Proof** Let $(h_1, h_2) \in H_1 \times H_2$ so $h_1 \in H_1$ and $h_2 \in H_2$ and let $(x, e) \in H_1 \times \{e\}$ so $x \in H_1$. Now,

$$(h_1, h_2) \circ (x, e) \circ (h_1, h_2)^{-1} = (h_1, h_2) \circ (x, e) \circ (h_1^{-1}, h_2^{-1})$$

$$= (h_1 x h_1^{-1}, h_2 e h_2^{-1})$$

$$= (h_1 x h_1^{-1}, h_2 h_2^{-1})$$

$$= (h_1 x h_1^{-1}, e).$$

Since, $h_1, h_1^{-1}, x \in H_1$, it follows that $h_1xh_1^{-1} \in H_1$. Thus, $(h_1, h_2) \circ (x, e) \circ (h_1, h_2)^{-1} = (h_1xh_1^{-1}, e) \in H_1 \times H_2$ and therefore $H_1 \times \{e\}$ is normal. Now, let $y \in H_1$. We have that

$$(h_1, h_2) \circ (e, y) \circ (h_1, h_2)^{-1} = (h_1, h_2) \circ (e, y) \circ (h_1^{-1}, h_2^{-1})$$

$$= (h_1 e h_1^{-1}, h_2 y h_2^{-1})$$

$$= (h_1 h_1^{-1}, h_2 y h_2^{-1})$$

$$= (e, h_2 y h_2^{-1}).$$

Since, $h_2, h_2^{-1}, y \in H_1$, it follows that $h_2 y h_2^{-1} \in H_2$. Thus, $(h_1, h_2) \circ (y, e) \circ (h_1, h_2)^{-1} = (e, h_2 y h_2^{-1}) \in H_1 \times H_2$ and therefore $\{e\} \times H_2$ is normal. \blacksquare

- b) **Proof** Let $x \in (H_1 \times \{e\}) \cap (\{e\} \times H_2)$. Now, $x \in \{e\} \times H_2$ and $x \in H_1 \times \{e\}$. Thus, $(h_1, e) = x = (e, h_2)$ for some $h_1 \in H_1$ and $h_2 \in H_2$. Since $(h_1, e) = (e, h_2)$ it follows that $h_1 = e$ and $h_2 = e$. Thus x = (e, e) and so, $(H_1 \times \{e\}) \cap (\{e\} \times H_2) = \{(e, e)\}$.
- c) **Proof** By definition

$$(H_1 \times \{e\})(\{e\} \times H_2) = \{(h_1, e)(e, h_2) | h_1 \in H_1 \text{ and } h_2 \in H_2\}$$

$$= \{(h_1 e, e h_2) | h_1 \in H_1 \text{ and } h_2 \in H_2\}$$

$$= \{(h_1, h_2) | h_1 \in H_1 \text{ and } h_2 \in H_2\}$$

$$= H_1 \times H_2.$$

Question 2

Prove the following theorem:

Theorem 2 Let G be a group, and H a subgroup of G. Then H is normal if and only if gH = Hg for all $g \in G$.

Proof

(\Leftarrow) Let $h \in H$ and $g \in G$. Now, gh = hg and so, $ghg^{-1} = h \in H$. Therefore, H is normal. (\Rightarrow) Suppose H is normal. Then, $gh_1g^{-1} = h_2 \in H$ for some $h_1 \in H$ and $g \in G$. It follows that $gh_1 = h_2g$. Now, we define a function, $f: H \to H$, as

$$f(h) = ghg^{-1} \tag{1}$$

and let $x \in \ker(f)$. Then, $gxg^{-1} = e$, and so $x = g^{-1}g = e$. Therefore $\ker(f) = \{e\}$ and f is injective. Since f is a function between two finite sets of the same size, it must also be surjective. Thus, f produces a different $h_2 \in H$ for each $h_1 \in H$, and every h_2 is produced by some h_1 . Therefore, gH = Hg for all $g \in G$.