CHELTENHAM GIRLS HIGH SCHOOL

YEAR 12 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATIONS August 2009

EXTENSION 1 MATHEMATICS

Time allowed: 2 hours (plus 5minutes reading time).

DIRECTIONS TO CANDIDATES

- Attempt ALL questions.
- All necessary working should be shown in every question.
- Marks may be deducted for careless or badly arranged work
- Answers are to be completed in blue or black pen on supplied writing paper.
- Write your name or number on the top right of each page.
- Board approved calculators may be used.
- Diagrams are not drawn to scale.

Name:_		
Stude	ent number :	
Clas	s Teacher:	

Question	1	2	3	4	5	6	7	Total	%
Mark		-							
	/12	/12	/12	/12	/12	/12	/12	/84	

|--|

- a) Differentiate $y = \cos^{-1} 3x$
- b) Find $\int \cos^2 x \, dx$
- Show that $F(x) = \frac{\sqrt{1-x^2}}{\sin^{-1} x}$ is an odd function.
- d) Find the coordinates of the point P which divides the interval AB with end points

 A(2, 3) and B(7, -7) externally in the ratio 4:9.
- Evaluate $\int_{1}^{\sqrt{3}} \frac{x}{x^2 + 1} dx$, giving your answers in simplified, exact form.

Question 2 Start a new page.

Marks

1

Marks

- a) i) Factorise $a^3 b^3$.
 - ii) Hence or otherwise show that if $\sin A \neq \cos A$ then $\frac{2\sin^3 A 2\cos^3 A}{\sin A \cos A} = 2 + \sin 2A$.
- Solve the inequality $\frac{2x-3}{x+2} \ge 3$
- Use calculus to find the value of x which will maximise the value of $3\sin x + 2\cos x$.

 Give your answer in radians, correct to 2 decimal places. (You need not find the maximum value or prove that it will actually be a maximum.)
- Use $x = \log u$ to find $\int \frac{e^x}{\sqrt{1 e^{2x}}} dx$.

Question 3 is on the next page.

p2

Ouestion 3 Start a new page.

Marks

- A polynomial is given by $f(x) = x^3 + ax^2 + 7x + b$. Find the values of a and b if (x+3)a) 4 is a factor of f(x) and when f(x) is divided by (x-2) the remainder is 35.

- The equation $\ln x + x = 2$ has only one root. b)
 - i) Show that the root lies between x = 1 and x = 2.

- 1
- ii) With 2 as a first estimate of the root, use one application of Newton's method to find an other approximation to the root, correct to 2 decimal places.
- 3
- 4 Use the method of mathematical induction to prove that $9^{n+2} - 4^n$ is divisible by 5 for all c) positive integers n.

Ouestion 4

Start a new page.

Marks

- Let $f(x) = 2x x^2$ for $x \le 1$. This function has an inverse $f^{-1}(x)$. a)
 - i) Sketch the graphs of y = f(x) and $y = f^{-1}(x)$ on the same diagram.
- 2

ii) Find an expression for $f^{-1}(x)$.

3

iii) Evaluate $f^{-1}\left(\frac{3}{4}\right)$.

- 2
- The point B is allowed to move along a fixed line such that its acceleration in cm/s^2 is given b) by $\ddot{x} = x^2 + 3$ where x is the displacement of OB.

Initially B is at rest, 3cm to the left if O (where x = -3).

- i) Prove that B will move with velocity v such that $v^2 = \frac{2}{3}x^3 + 6x + 36$.
- 2
- ii) By the time that B is 3cm to the right of O, how fast is it moving, to the nearest 0.01cm/s?

2

iii) Explain how we know that B will never move towards the left.

1

р3

1

- a) Mr and Mrs Bunn, Mr and Mrs Dunn, Mr and Mrs Funn, Mr and Mrs Gunn and Mr and Mrs Hunn are a group of 10 friends at a fund-raising dance in aid of the bush fire victims.

 How many ways can:
 - i) they stand in line to do the Macarena? (There are no restrictions on who stands beside whom.)
 - ii) they sit around a round table if no men sit together?
 - iii) 9 of them be chosen to dance a particular dance which requires exactly 9 people?
- b) A particle is moving in simple harmonic motion on a line. Its maximum acceleration is $2m/s^2$ and its maximum speed is 6 m/s. Find the amplitude and period of its motion.
- when a stone is projected from the origin with a velocity V, directed α degrees above horizontal, the equations of motion horizontally and vertically are given by

 $x = Vt \cos \alpha$ and $y = Vt \sin \alpha - 5t^2$. Do NOT prove these results.

- i) Show that the maximum height of its flight path is $\frac{V^2 \sin^2 \alpha}{20}$.
- ii) Prove that the stone will land furthest from the origin when $\alpha = 45^{\circ}$.
- iii) In terms of V, what is this maximum range of the stone?

Question 6 Start a new page. Marks

- Sketch $y = \frac{x}{x^2 4}$, clearly indicating its asymptotes.
- b) The line y = x + b intersects $x^2 = 12y$ at $P(x_1, y_1)$ and $Q(x_2, y_2)$.

 M is the midpoint of interval PQ.
 - i) Show this information on a neat sketch.
 - ii) Find the equation of the locus of M.
 - iii) Find the values of b for which P and Q are 2 distinct points.

1

a) i) Use the result for $\cos(A+B)$ to prove that $\cos 2x = 1 - 2\sin^2 x$.

ii) Use the result $\lim_{x\to 0} \frac{\sin x}{x} = 1$ to find $\lim_{x\to 0} \frac{1-\cos 2x}{x^2}$.

2

b) A conical vessel has height 26cm and diameter 26cm.

Water is leaking out of the bottom at a rate of 80cm³ per minute. After t minutes the depth of water is h cm.

i) Find the surface area S (shaded) of the water in terms of h.

1

ii) Show that the volume of water is given by

1

 $V = \frac{1}{12}\pi h^3 .$

iii) Find expressions for $\frac{dV}{dh}$, $\frac{dS}{dh}$ and $\frac{dV}{dt}$.

3

iv) Find the rate at which the surface area S is decreasing when the water is 10cm deep.

4

End of test.

	12 MAE CT4 09
\bigcirc \bigcirc	a) $y = \sqrt{1 - 9x^2}$. 3
	$= \frac{-3}{\sqrt{1-9n^2}}$
	V1-922
	b) $\int \omega_s^2 x ds = \frac{1}{2} \int \left(1 + \cos 2x\right) ds$
	= t[2+ t sin 2n] +c
	c) $F(-x) = \sqrt{1-(-7c)^2}$
	sin (-21)
	$=\sqrt{1-x^2}$
	- sm ⁻¹ 2C
	= -FG
<u>()</u>	Fax is odd.
	d) $A(2,3) -4:9$ $B(7,-7)$
	$= \left(\frac{18-28}{5}, \frac{27+28}{5}\right)$
	$ = (-2 11) $ $ e) t \int_{-\infty}^{\sqrt{5}} \frac{2n}{x^2 + 1} du = \frac{1}{2} \left[\ln (n^2 + 1) \right]^{\sqrt{5}} $
	= \frac{1}{2} \ldots 4 - \frac{1}{2} \ldots 2
	$= \pm \ln 2$
(
, Jan 1987	v.

	a) f(x)= x2 + a x2 + 7 x + 6
	f(-1) = 0
	0 = -27 + 9a - 21 + 6
	0 = 9a + b - 48 0
	f(2) = 35
	35 = 8 + 4 a + 14 + b
,	0 = 4a +b - 13 (2)
	()-(): 0 = 5a - 35
	a = 7
	(i): 1. 0 = 63 + 6 - 48
	b = - 15}
	a = 7
	b) i) Let ln x + x - 2 = f(x)
	$f(1) = m_1 + 1 - 2$
	<u> </u>
<u></u>	< 0
·	$f(2) = h_2 + 2 - 2$
·	= ln 2
	> 0
~;	Three is a root between $1 \neq 2$. ii) $f'(x) = \frac{1}{2} + 1$
	+(50.)
	$If x = 2, x = x, -\frac{f(x)}{f(x)}$
	$=2-\frac{h_2+2-2}{2}$
· · · · · · · · · · · · · · · · · · ·	= 2 - = = +1
	$=2-\frac{2h^2}{3}$
	= 1.53790188
	= 1.54
·	

(3)	c) RTP: 9 ⁿ⁺² - 4 ⁿ = 5 A; (A; integral)
	Try n=1: LHS = 93-41
	= 725
	= 5 x 145
	: True for n=1
	Assume true for n = k (k integral)
	i.e. $9^{k+2} - 4^k = 5 A_k \dots 0$
	·
	Try for $n = k+1$: $q^{k+1} - 4^{k+1} = q \times q^{k+2} - 4 \times 4^{k}$
	$= 9\left(5A_{k} + 4^{k}\right) - 4 \times 4^{k}$
	$= 45A_{k} + 9x4^{k} - 4x4^{k}$
-	$= 5\left(9A_k + 4^k\right)$
	.: If true for n=k then true for n=k+1
	But true for n=1
	ir a n=v
	n n = 3
	etc,
	: True for all positive integers.
•	
\ <u></u>	
VIII - 1 - 1 - 1 - 1 - 1 - 1	
<u> </u>	

-

.

0	cii) When y=0, Vt snd -5t2 =0
()(2)	1 / v ' v .) . o
~~	$t \left(V_{sin} K_{-5t} \right) = 0$ $\therefore t = 0 \text{or} t = \frac{V_{sin} \cdot st}{5}$
\mathcal{O}	$\therefore t = 0$ or $t = \frac{7\pi m}{5}$
	When $t = \frac{V \sin \lambda}{5}$, $\chi = \frac{V^2 \sin \lambda}{5}$ cord
	\bullet
	$= \frac{V^2 \sin 2L}{10} \cdots 0$
	•
	which has maximum when sin 2x = 1
	.: 2 × = 90°
	· · 2 = 45° RED.
	From (ii), maximum range = $\frac{V^2}{10}$.
	tron (11), maximim range = 10.
<u> </u>	
<u></u>	

	:. Locus of Min x=6
	iii) For distinct points, in (1), A>0
<u> </u>	144 + 486 > 0
	486>-144
	6>-3
	
L->	
)	
Ţ	
<i>1.</i>	
-	

.

```
(D) a) i) wo (A+B) = conAconB - sin A sin B
                                        (: sin >c + cos x=1)
                 Th3 QED
                 さずん
                                        [accept +80]
                 -160 Th
    18. surface decreasing by 16 cm / min
```