Applied Statistical Methods II

Chapter #17

Analysis of Factor Level Means

A Single Estimate

- Assume that you are interested in the estimation/testing of one linear combination of the factor means.
 - μ_i for some i.
 - $\mu_i \mu_j$ for some i, j.
 - $\frac{\mu_1+\mu_2}{2}-\frac{\mu_3+\mu_4}{2}$.
- Before we undertake the analysis, we know that we are interested in these combinations.
- Assuming normality, these are easy to estimate:
 - Use normality to get the sampling distribution of a test statistic.
 - Invert it to get a confidence interval.
 - Only interested in one combination, no need to worry about multiple testing.

Inference for μ_i

- Recall $\hat{\mu}_i = \overline{Y}_i$.
- $var(\overline{Y}_{i.}) = \sigma^2/n_i$
- $s^2(\overline{Y}_{i\cdot}) = MSE/n_i$
- Under normality, $\frac{\overline{Y}_{i.}-\mu_{i}}{s(\overline{Y}_{i.})} \sim t_{n_{T}-r}$
 - $SSE/\sigma^2 \sim \chi^2_{n_T-r}$ is independent of $\overline{Y}_{i.}$.
- Easy to do tests and get confidence intervals:
 - Reject $H_0: \mu_i = c$ vs $H_0: \mu_i \neq c$ when

$$\left|\frac{\overline{Y}_{i\cdot}-c}{s(\overline{Y}_{i\cdot})}\right|>t_{n_T-r}(1-\alpha/2).$$

• $\overline{\mathbf{Y}}_{i.} \pm t_{n_T-r}(1-\alpha/2)s(\overline{\mathbf{Y}}_{i.})$

Inference for $\mu_i - \mu_j$

- Let $D = \mu_i \mu_j$ and $\hat{D} = \overline{Y}_{i.} \overline{Y}_{j.}$
- $E\hat{D} = D$ follows directly from
 - unbiasedness of \overline{Y}_{i} , and \overline{Y}_{j} .
- $Var(\hat{D}) = Var(\overline{Y}_{i.}) + Var(\overline{Y}_{j.}) = \sigma^2 \left(\frac{1}{n_i} + \frac{1}{n_j}\right)$ follows from
 - independence of \overline{Y}_{i} and \overline{Y}_{j} .
- $s^2(\hat{D}) = s^2(\overline{Y}_{i\cdot}) + s^2(\overline{Y}_{j\cdot}) = MSE\left(\frac{1}{n_i} + \frac{1}{n_j}\right)$
- $\bullet \ \frac{\hat{D}-D}{s(\hat{D})} \sim t_{n_T-r}.$
- Use this distribution to get confidence intervals and tests.

Inference for $\sum_{i} c_{i} \mu_{i}$

- Assume you want to draw inference on a linear combination $L = \sum_i c_i \mu_i$.
 - Want to estimate $\mu_i \mu_i$.
 - Want to compare $\frac{\mu_1 + \mu_2}{2}$ to $\frac{\mu_3 + \mu_4}{2}$.
- Can formulate the testing problem as $H_0: L\mu = C$.
 - In second bullet above: $L=[\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2}][\mu_1,\ldots,\mu_4]'$ and C=0.
- Let $\hat{L} = \sum_{i} c_{i} \overline{Y}_{i}$.
 - Unbiased and normal.
- $Var(\hat{L}) = \sum_{i} c_i^2 Var(\overline{Y}_{i.}) = \sigma^2 \sum_{i} c_i^2 / n_i$
- $s^2(\hat{L}) = MSE \sum c_i^2/n_i$.
- \bullet $\frac{\hat{L}-L}{s(\hat{L})} \sim t_{n_T-r}$.

The Cereal Example

- Estimate μ_2 and its confidence interval.
- Is there a difference between μ_1 and μ_2 ?
- Do designs 3 and 4 collectively sell more than designs 1 and 2 on average?

Recall the One-Way ANOVA Model

The one-way ANOVA model:

- $Y_{ij} = \mu_i + \epsilon_{ij}$
- \bullet $i=1,\ldots,r$
- $j = 1, \ldots, n_i$
- $E\epsilon_{ij} = 0$, $Var\epsilon_{ij} = \sigma^2$.
- $EY_{ii} = \mu_i$

Now we will focus on:

• inference on g = 1, ..., G linear combinations of the group means $L_g = \sum_{i=1}^r c_{gi}\mu_i$.

Controlling Type I Error

- Main consideration:
 - Controlling type I error rate.
- Computing multiple tests at level α will inflate the family-wise Type I error.
 - We do three different level $\alpha = 0.05$ pairwise comparisons.
 - If tests are independent, probability of rejecting any of the 3 tests when H_0 is true is $1 (.95)^3 = 0.143$
 - Dealt with these topics before.
 - Has a similar consequence on confidence intervals.

Controlling Type I Error

- Main consideration:
 - Controlling type I error rate.
- Computing multiple tests at level α will inflate the family-wise Type I error.
 - We do three different level $\alpha = 0.05$ pairwise comparisons.
 - If tests are independent, probability of rejecting any of the 3 tests when H_0 is true is $1 (.95)^3 = 0.143$
 - Dealt with these topics before.
 - Has a similar consequence on confidence intervals.

Consider three situations

- You want to consider all pairwise comparisons. For r levels, that's $\frac{r(r+1)}{2}$ tests.
 - Which group means can you consider equal?
 - Will use Tukey's procedure for this.
- You want to explore any linear combination of factor

means. i.e.
$$q^T \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_r \end{bmatrix}$$
 for all unit vectors $q \in \mathbb{R}^r$.

- Do a complete data exploration.
- Will use Scheffé.
- Have a finite set of comparisons you want to look at.
 - If the number of contrasts is equal to or smaller than the number of factor levels.
 - Use Bonferroni.

Consider three situations

- You want to consider all pairwise comparisons. For r levels, that's $\frac{r(r+1)}{2}$ tests.
 - Which group means can you consider equal?
 - Will use Tukey's procedure for this.
- You want to explore any linear combination of factor

means. i.e.
$$q^T \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_r \end{bmatrix}$$
 for all unit vectors $q \in \mathbb{R}^r$.

- Do a complete data exploration.
- Will use Scheffé.
- Have a finite set of comparisons you want to look at.
 - If the number of contrasts is equal to or smaller than the number of factor levels.
 - Use Bonferroni.

Consider three situations

- You want to consider all pairwise comparisons. For r levels, that's $\frac{r(r+1)}{2}$ tests.
 - Which group means can you consider equal?
 - Will use Tukey's procedure for this.
- You want to explore any linear combination of factor

means. i.e.
$$q^T \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_r \end{bmatrix}$$
 for all unit vectors $q \in \mathbb{R}^r$.

- Do a complete data exploration.
- Will use Scheffé.
- Have a finite set of comparisons you want to look at.
 - If the number of contrasts is equal to or smaller than the number of factor levels.
 - Use Bonferroni.

Tukey's Multiple Comparisons

- You want to test, for all $1 \le i < j \le r$: $H_0(i,j) : \mu_i \mu_j = 0$ vs. $H_a(i,j) : \mu_i \mu_j \ne 0$.
- Tukey's multiple comparison method for testing:
 - has level exactly α for balanced design.
 - is conservative for unbalanced designs. Type I error $< \alpha$.
- The resulting confidence intervals, if family of tests are repeated for multiple replications:
 - all confidence intervals for the family will be correct $(1 \alpha)\%$ of the time for equal sample sizes.
 - all confidence intervals for the family will be correct $> (1 \alpha)\%$ of the time for unequal sample sizes.
- Procedure is often called Tukey-Kramer for unequal sample sizes.

Idea Behind Tukey

- Consider Y_1, \ldots, Y_r as independent normal random variables with variance σ^2 .
- Studentized range is $\frac{\max(Y_i) \min(Y_i)}{\sqrt{MSE}}$.
- Recall that MSE, estimate of σ^2 , depends on degrees of freedom ν .
- ullet Tukey computed the distribution $rac{\max(Y_i) \min(Y_i)}{\sqrt{MSE}} \sim q_{r,
 u}.$
- ullet To get simultaneous confidence intervals for ${\it D_{ij}}=\mu_i-\mu_j$
 - ullet $\hat{D}_{ij} \pm \mathit{Ts}(\hat{D}_{ij})$
 - $\hat{D}_{ij} = \overline{Y}_{i.} \overline{Y}_{j.}$
 - $s^2(\hat{D}) = MSE\left(\frac{1}{n_i} + \frac{1}{n_j}\right)$
 - $T = \frac{1}{\sqrt{2}} q_{r,n_T-r} (1-\alpha)$
 - Adjust the multiple of the estimated standard deviation.

- Note that we use 1α rather than $1 \alpha/2$.
- To get the p-value of pairwise tests:

$$ullet q_{ij}^* = rac{\sqrt{2}|\hat{D}_{ij}|}{s(\hat{D}_{ij})}$$

- p-val = $\Pr(q > q_{ii}^* | q \sim q_{r,n_T-r})$.
- Note that for unequal sample sizes, $s(\hat{D})$ will vary.

Scheffé

- Same principle used to get Working-Hotelling confidence bands can be used to get Scheffé adjusted tests.
- Contains all estimable comparisons with (1α) % confidence.
- Viewing ANOVA as regression, regression function is over a discrete space.
 - Confidence band can be seen as covering all possible linear combinations $L = \sum c_i \mu_i$.
 - Let's derive the confidence band.
- Adjust the multiple of the standard deviation:
 - $\hat{L} \pm Ss(\hat{L})$
 - $s^2(\hat{L}) = MSE \sum c_i^2/n_i$
 - $S^2 = (r-1)F_{r-1,n_T-r}(1-\alpha)$
- Tests based on $F^* = \frac{\hat{L}^2}{(r-1)s^2(\hat{L})} \sim F_{r-1,n_T-r}$.

Scheffé

- Same principle used to get Working-Hotelling confidence bands can be used to get Scheffé adjusted tests.
- Contains all estimable comparisons with (1α) % confidence.
- Viewing ANOVA as regression, regression function is over a discrete space.
 - Confidence band can be seen as covering all possible linear combinations $L = \sum c_i \mu_i$.
 - Let's derive the confidence band.
- Adjust the multiple of the standard deviation:
 - $\hat{L} \pm Ss(\hat{L})$
 - $s^2(\hat{L}) = MSE \sum c_i^2/n_i$
 - $S^2 = (r-1)F_{r-1,n_T-r}(1-\alpha)$
- Tests based on $F^* = \frac{\hat{L}^2}{(r-1)s^2(\hat{L})} \sim F_{r-1,n_T-r}$.

Bonferroni

- If have a few linear comparisons that we want to make.
- If the number of comparisons, G, is equal to or smaller than the number of factor levels.
- Deflate the level of a single test from α to α/G .
- What is the problem with using Bonferroni with many tests?
- Let's go back to simulation example.

Bonferroni

- If have a few linear comparisons that we want to make.
- If the number of comparisons, G, is equal to or smaller than the number of factor levels.
- Deflate the level of a single test from α to α/G .
- What is the problem with using Bonferroni with many tests?
- Let's go back to simulation example.

- If our goal is to identify different pairs, use Tukey.
- In R:
 - Fit an ANOVA object using aov
 - Call internal function TukeyHSD (x = <aov object>)
 - Try cereal example
- Using Tukey's multiple comparison procedure we would conclude at the level $\alpha=0.05$ that there is no statistical difference between items sold with designs 1,2 and 3 but that design 4 sold more items then either designs 1,2, or 3.
- To get CI for multiple contrasts, have to do some work.
 - Want to know if the average number of sales with designs 1 and 2 is equal to design 3.
 - Want to know if the average number of sales with designs 1 and 2 is equal to design 4.

- If our goal is to identify different pairs, use Tukey.
- In R:
 - Fit an ANOVA object using aov
 - Call internal function TukeyHSD (x = <aov object>)
 - Try cereal example
- Using Tukey's multiple comparison procedure we would conclude at the level $\alpha=0.05$ that there is no statistical difference between items sold with designs 1,2 and 3 but that design 4 sold more items then either designs 1,2, or 3.
- To get CI for multiple contrasts, have to do some work.
 - Want to know if the average number of sales with designs 1 and 2 is equal to design 3.
 - Want to know if the average number of sales with designs 1 and 2 is equal to design 4.