

Examen Intrasemestral

Il Algebra I Ciencias de la Computación

Curso	2015-201	6
-------	----------	---

Nombre: _____ Grupo: ____

- 1. Dada la matriz $A \in M_n(K)$ se define \overline{A} como la matriz formada por los elementos conjugados de A. Demuestre que $\left|\overline{A}\right| = \overline{|A|}$
- 2. Dado el siguiente sistema de ecuaciones lineales:

$$\begin{cases} ax + by + 2z = 1 \\ ax + (2b-1)y + 3z = 1 \\ ax + by + (b+3)z = 2b-1 \end{cases}$$

- **2.1** Investigue la resolubilidad del sistema en dependencia de los parámetros a y b.
- **2.2** Resuelva, si es posible, el sistema para $a = 0 \land b = 1$.
- 3. Diga si las siguientes afirmaciones son Verdaderas o Falsas. Justifique cada respuesta.

3.1 ____ Si
$$A, B \in M_n(K)$$
 entonces $(A-B)(A+B) = A^2 - B^2$.

3.2
$$z = \left(\frac{1-\sqrt{3}i}{-2i}\right)^n$$
 es una raíz cúbica de la unidad, $n = 4k$ $k \in \mathbb{Z}_+$.

3.3 ____ Sean
$$z_1, z_2 \in \mathbb{C}$$
 entonces la ecuación $|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2)$ es una identidad.

4. (opcional)

Sabiendo que $z + \frac{1}{z} = 2\cos\alpha$, $\alpha \in \mathbb{R}, z \in \mathbb{C}$ hallar $z^n + \frac{1}{z^n}, n \in \mathbb{N}$ de la forma más simplificada posible.