

QA for pTx coils

Franck Mauconduit

DRF/Joliot/NeuroSpin & Université Paris-Saclay, CEA, Gif-sur-Yvette, France

Methods

Method: acquisition of B1+ maps and comparison to a reference B1+ map

Installation :

Predefined phantom: Agar (no fluid movement)

short T1: ~650ms

Reproducible positioning: holder available + automatic position detection

with a profile measurement in 3 main directions

Sequence : based on an XFL acquisition

(Fast mode = 9 gre + 1 saturated gre)

Protocol : must be fixed in advanced for comparison and rapid to execute
5 slices, TR = 2s, XFL fast mode => 20s total acquisition time (for 8 Tx channels)

Methods

List of protocols used for the QA of a pTx coil

Reference file:

location: %CustomerSeq%/SafetyCoilCheck/

filename : [COILNAME]_fast_reference.dat

ex: 8Tx32Rx_Head_7T_fast_reference.dat

→ Each coil will have its reference file

Measurement file:

Standard reconstruction from our B1 mapping XFL sequence

location: %CustomerSeq%/RECO_B0B1/

This measurement is compared to the reference file in ICE

Results:

Dicom series:

■ [PROTOCOL_NAME]_CHECK-PTX-COIL

-> Visual check of the magnitude and

phase images

-> Follow-up graphs and validity of the

[PROTOCOL_NAME]_FOLLOWUP-PTX-COIL measurement

Followup data saved in %CustomerSeq%/QA/[COILNAME]/

Visual check

MEASUREMENT

Reference = saved data from day 1

Visual check : no global changes between reference and measurement

Data comparison

Dicom series [PROTOCOL_NAME]_CHECK-PTX-COIL

Predefined ROI

channel by channel comparison

Correlation (mag+phase) between reference and measurement in ROI

RMSE between reference and measurement in ROI

=> thresholds to be determined

Data comparison

Dicom series [PROTOCOL_NAME]_CHECK STUDY 1 2/28/2023 8:23:07 AM 13 IMA 6 / 6

Predefined ROI channel by channel comparison

Correlation (mag+phase) between reference measurement in ROI

RMSE between reference and measurement in

=> thresholds to be determined

Follow-up RMSE

Follow-up Corr. Coef. magnitude

Follow-up Corr. Coef. phase

Follow-up linear cor. module

Follow-up linear cor. phase

Addiontional info

To reduce variability of B1 map comparison due to phantom positionning relative to isocenter, phantom position is determined using 3 line scans and B1 maps are acquired by shifting the FOV with this data

Phantom profiles in 3 main directions And shift estimation using these profiles

Addiontional info

In addition to B1 map comparison, a scattering matrix is computed using Dico forward/reflected measurements on every channel. This matrix should inform about transmit coil stability over time. It should also be possible to use the scattering matrix computed by the Siemens calibration (VE12U).

