Fundamental Mechanics of Materials Equations

σ sigma

 ε epsilon

τ tau γ gamma

v nu δ Δ delta

α alpha φ phi

ω omega

 θ theta

Basic definitions

Average normal stress in an axial member

$$\sigma_{\text{avg}} = \frac{F}{A}$$

Average direct shear stress

$$au_{
m avg} \, = \, rac{V}{A_V}$$

Average bearing stress

$$\sigma_b = \frac{F}{A_b}$$

Average normal strain in an axial member
$$\varepsilon_{\text{avg}} = \frac{\delta}{L} \qquad \varepsilon_{transverse} = \frac{\Delta d}{d} \text{ or } \frac{\Delta w}{w} \text{ or } \frac{\Delta t}{t}$$

$$\gamma = \text{change in angle from } 90^{\circ}$$

Average normal strain caused by temperature change

$$\varepsilon_T = \alpha \Delta T$$

Hooke's Law (one-dimensional)

$$\sigma = E \varepsilon$$
 and $\tau = G \gamma$

Poisson's ratio

$$\nu\,=\,-\frac{\epsilon_{lat}}{\epsilon_{long}}$$

Relationship between E, G, and ν

$$G = \frac{E}{2(1+\nu)}$$

$$\sigma_{
m allow} = rac{\sigma_{
m failure}}{
m FS} \quad {
m or} \quad au_{
m allow} = rac{ au_{
m failure}}{
m FS}$$

$$ext{FS} = rac{\sigma_{ ext{failure}}}{\sigma_{ ext{actual}}} \quad ext{ or } \quad ext{FS} = rac{ au_{ ext{failure}}}{ au_{ ext{actual}}}$$

Axial deformation

Deformation in axial members

$$\delta = \frac{FL}{AE}$$
 or $\delta = \sum_{i} \frac{F_{i}L_{i}}{A_{i}E_{i}}$

Force-temperature-deformation relationship

$$\delta = \frac{FL}{AE} + \alpha \Delta TL$$

Torsion

Maximum torsion shear stress in a circular shaft

$$\tau_{\text{max}} = \frac{Tc}{J}$$

where the polar moment of inertia J is defined as

$$J = \frac{\pi}{2}[R^4 - r^4] = \frac{\pi}{32}[D^4 - d^4]$$

Angle of twist in a circular shaft

$$\phi = rac{TL}{JG}$$
 or $\phi = \sum_i rac{T_i L_i}{J_i G_i}$ $r_2 T_1 = r_1 T_2$ $r_1 \omega_1 = r_2 \omega$

Power transmission in a shaft

$$P = T\omega$$
 $watts = Nm/s$ $hp = 6600 \text{ in } \cdot \text{lb/s}$

Six rules for constructing shear-force and bending-moment diagrams

Rule 2:
$$\Delta V = V_2 - V_1 = \int_{x_1}^{x_2} w(x) dx$$

Rule 3:
$$\frac{dV}{dx} = w(x)$$

Rule 4:
$$\Delta M = M_2 - M_1 = \int_{x_1}^{x_2} V dx$$

Rule 5:
$$\frac{dM}{dx} = V$$

Rule 6:
$$\Delta M = -M_0$$

Flexure

$$\sigma_x = -\frac{My}{I}$$
 or $\sigma_{\text{max}} = \frac{Mc}{I} = \frac{M}{S}$ where $S = \frac{I}{C}$

$$\sigma_{x} = \left[\frac{I_{z}z - I_{yz}y}{I_{y}I_{z} - I_{yz}^{2}} \right] M_{y} + \left[\frac{-I_{y}y + I_{yz}z}{I_{y}I_{z} - I_{yz}^{2}} \right] M_{z}$$

composite beams

$$n = \frac{E_B}{E_A}$$

Unsymmetric bending of symmetric cross sections

$$\sigma_x = \frac{M_y z}{I_y} - \frac{M_z y}{I_z} \qquad \tan \beta = \frac{M_y I_z}{M_z I_y}$$

 $\sigma_B = \frac{-nMy}{I^T}$

Horizontal shear stress associated with bending

$$au_H = rac{VQ}{It}$$
 where $Q = \sum \bar{y}_i A_i$

Shear flow formula

$$q = \frac{VQ}{I}$$

Shear flow, fastener spacing, and fastener shear relationship

Shear flow, fastener spacing, and fastener shear relationship
$$qs \le n_f V_f = n_f \tau_f A_f \quad \text{or} \quad q = \frac{V_{beam}Q}{I} = \frac{nV_{fastener}}{s}$$
 For circular cross sections,

$$Q = \frac{1}{12}d^3$$
 (solid sections)

$$Q = \frac{2}{3}[R^3 - r^3] = \frac{1}{12}[D^3 - d^3]$$
 (hollow sections)

Beam deflections

Elastic curve relations between w, V, M, θ , and v for constant EI

Deflection =
$$v$$

Slope =
$$\frac{dv}{dx} = \theta$$

Moment
$$M = EI \frac{d^2v}{dx^2}$$

Shear
$$V = \frac{dM}{dx} = EI \frac{d^3v}{dx^3}$$

Load
$$w = \frac{dV}{dx} = EI \frac{d^4v}{dx^4}$$

Fundamental Mechanics of Materials Equations

Plane stress transformations

Normal and shear stresses on an arbitrary plane

$$\begin{split} \sigma_n &= \sigma_x \cos^2 \theta + \sigma_y \sin^2 \theta + 2\tau_{xy} \sin \theta \cos \theta \\ \tau_{nt} &= -(\sigma_x - \sigma_y) \sin \theta \cos \theta + \tau_{xy} (\cos^2 \theta - \sin^2 \theta) \end{split}$$

$$\begin{split} &\sigma_n = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta \\ &\sigma_t = \frac{\sigma_x + \sigma_y}{2} - \frac{\sigma_x - \sigma_y}{2} \cos 2\theta - \tau_{xy} \sin 2\theta \\ &\tau_{nt} = -\frac{\sigma_x - \sigma_y}{2} \sin 2\theta + \tau_{xy} \cos 2\theta \end{split}$$

Principal stress magnitudes

$$\sigma_{p1,p2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

Orientation of principal plane

$$\tan 2\theta_p = \frac{\tau_{xy}}{(\sigma_x - \sigma_y)/2}$$

Maximum in-plane shear stress magnitude

$$au_{ ext{max}} = \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} \quad \text{or} \quad au_{ ext{max}} = \frac{\sigma_{p1} - \sigma_{p2}}{2}$$

$$\sigma_{ ext{avg}} = \frac{\sigma_x + \sigma_y}{2}$$

Absolute maximum shear stress magnitude

$$au_{ ext{abs max}} = rac{\sigma_{ ext{max}} - \sigma_{ ext{min}}}{2}$$

Normal, stress invariance

$$\sigma_x + \sigma_y = \sigma_n + \sigma_t = \sigma_{p1} + \sigma_{p2}$$

Plane strain transformations

Normal and shear strain in arbitrary directions

$$\varepsilon_n = \varepsilon_x \cos^2 \theta + \varepsilon_y \sin^2 \theta + \gamma_{xy} \sin \theta \cos \theta$$

$$\gamma_{nt} = -2(\varepsilon_x - \varepsilon_y)\sin\theta\cos\theta + \gamma_{xy}(\cos^2\theta - \sin^2\theta)$$

$$\varepsilon_{n} = \frac{\varepsilon_{x} + \varepsilon_{y}}{2} + \frac{\varepsilon_{x} - \varepsilon_{y}}{2} \cos 2\theta + \frac{\gamma_{xy}}{2} \sin 2\theta$$

$$\varepsilon_{t} = \frac{\varepsilon_{x} + \varepsilon_{y}}{2} - \frac{\varepsilon_{x} - \varepsilon_{y}}{2} \cos 2\theta - \frac{\gamma_{xy}}{2} \sin 2\theta$$

$$\frac{\gamma_{nt}}{2} = -\frac{\varepsilon_{x} - \varepsilon_{y}}{2} \sin 2\theta + \frac{\gamma_{xy}}{2} \cos 2\theta$$

$$\varepsilon_{ncipal strain magnitudes}$$

$$\varepsilon_{p1,p2} = \frac{\varepsilon_x + \varepsilon_y}{2} \pm \sqrt{\left(\frac{\varepsilon_x - \varepsilon_y}{2}\right)^2 + \left(\frac{\gamma_{xy}}{2}\right)^2}$$

Orientation of principal strains

$$\tan 2\theta_p = \frac{\gamma_{xy}}{\varepsilon_x - \varepsilon_y}$$

Maximum in-plane shear strain

$$\frac{\gamma_{\max}}{2} = \pm \sqrt{\left(\frac{\varepsilon_x - \varepsilon_y}{2}\right)^2 + \left(\frac{\gamma_{xy}}{2}\right)^2} \quad \text{or} \quad \gamma_{\max} = \varepsilon_{p1} - \varepsilon_{p2}$$

$$\varepsilon_{\text{avg}} = \frac{\varepsilon_x + \varepsilon_y}{2}$$

Normal strain invariance

$$\varepsilon_x + \varepsilon_y = \varepsilon_n + \varepsilon_t = \varepsilon_{p1} + \varepsilon_{p2}$$

Generalized Hooke's Law

Normal stress/normal strain relationships

$$\varepsilon_x = \frac{1}{E} [\sigma_x - \nu(\sigma_y + \sigma_z)]$$

$$\varepsilon_y = \frac{1}{E} [\sigma_y - \nu(\sigma_x + \sigma_z)]$$

$$\varepsilon_z = \frac{1}{E} [\sigma_z - \nu(\sigma_x + \sigma_y)]$$

$$\gamma_{xy} = rac{1}{G} au_{xy}$$
 $\gamma_{yz} = rac{1}{G} au_{yz}$ $\gamma_{zx} = rac{1}{G} au_{zx}$

$$G = \frac{E}{2(1+\nu)}$$

Normal stress/normal strain relationships for plane stress

From all stress/normal strain relationships for plane stress
$$\varepsilon_x = \frac{1}{E}(\sigma_x - \nu \sigma_y)$$

$$\varepsilon_y = \frac{1}{E}(\sigma_y - \nu \sigma_x)$$
or
$$\varepsilon_z = -\frac{\nu}{E}(\sigma_x + \sigma_y)$$

$$\sigma_x = \frac{E}{1 - \nu^2}(\varepsilon_x + \nu \varepsilon_y)$$

$$\sigma_y = \frac{E}{1 - \nu^2}(\varepsilon_y + \nu \varepsilon_x)$$

Shear stress/shear strain relationships for plane stress

$$\gamma_{xy} = \frac{1}{G} \tau_{xy}$$
 or $\tau_{xy} = G \gamma_{xy}$

Pressure vessels

Axial stress in spherical pressure vessel

$$\sigma_a = \frac{pr}{2t} = \frac{pd}{4t}$$

Longitudinal and hoop stresses in cylindrical pressure vessels

 $\sigma_{radial-outside} = 0$ $\sigma_{radial-inside} = -p$

$$\sigma_{\text{long}} = \frac{pr}{2t} = \frac{pd}{4t}$$
 $\sigma_{\text{hoop}} = \frac{pr}{t} = \frac{pd}{2t}$

Failure theories

Mises equivalent stress for plane stress

$$\sigma_{M} = \left[\sigma_{n1}^{2} - \sigma_{n1}\sigma_{n2} + \sigma_{n2}^{2}\right]^{1/2} = \left[\sigma_{x}^{2} - \sigma_{x}\sigma_{y} + \sigma_{y}^{2} + 3\tau_{xy}^{2}\right]^{1/2}$$

Column buckling

Euler buckling load

$$P_{cr} = \frac{\pi^2 EI}{(KL)^2}$$

Euler buckling stress

$$\sigma_{cr} = \frac{\pi^2 E}{(KL/r)^2}$$

$$r^2 = \frac{I}{\Lambda}$$

$$\overline{x} = \frac{\sum x_i A_i}{\sum A_i}$$
 $\overline{y} = \frac{\sum y_i A_i}{\sum A_i}$ $I = \sum (I_c + d^2 A)$

Table A.1 Properties of Plane Figures

1. Rectangle	6. Circle	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$A = \pi r^2 = \frac{\pi d^2}{4}$ $I_x = I_y = \frac{\pi r^4}{4} = \frac{\pi d^4}{64}$	
2. Right Triangle	7. Hollow Circle	
$A = \frac{bh}{2}$ $\overline{y} = \frac{h}{3} \qquad I_x = \frac{bh^3}{36}$ $\overline{x} = \frac{b}{3} \qquad I_y = \frac{hb^3}{36}$ $I_{x'} = \frac{bh^3}{12} \qquad I_{y'} = \frac{hb^3}{12}$	$A = \pi (R^2 - r^2) = \frac{\pi}{4} (D^2 - d^2)$ $I_x = I_y = \frac{\pi}{4} (R^4 - r^4)$ $= \frac{\pi}{64} (D^4 - d^4)$	
3. Triangle	8. Parabola	
$A = \frac{bh}{2}$ $\overline{y} = \frac{h}{3} \qquad I_x = \frac{bh^3}{36}$ $\overline{x} = \frac{(a+b)}{3} \qquad I_y = \frac{bh}{36}(a^2 - ab + b^2)$ $I_{x'} = \frac{bh^3}{12}$	$y' = \frac{h}{b^2}x'^2$ $x = \frac{3b}{8}$ $\overline{y} = \frac{3h}{5}$ Zero slope	
4. Trapezoid	9. Parabolic Spandrel	
$A = \frac{(a+b)h}{2}$ $\overline{y} = \frac{1}{3} \left(\frac{2a+b}{a+b}\right)h$ $I_x = \frac{h^3}{36(a+b)}(a^2 + 4ab + b^2)$	$y' = \frac{h}{b^2}x'^2$ $\overline{x} = \frac{3b}{4}$ $\overline{y} = \frac{3h}{10}$	
5. Semicircle	10. General Spandrel	
$A = \frac{\pi r^2}{2}$ $\overline{y} = \frac{4r}{3\pi} \qquad I_x = \left(\frac{\pi}{8} - \frac{8}{9\pi}\right)r^4$ $I_{x'} = I_{y'} = \frac{\pi r^4}{8}$	$y' = \frac{h}{b^n} x'^n$ $y' = \frac{h}{b^n} x'^n$ $A = \frac{bh}{n+1}$ $x' = \frac{n+1}{n+2}b$ $\overline{y} = \frac{n+1}{4n+2}h$	

SIMPLY SUPPORTED BEAMS					
Beam	Slope	Deflection	Elastic Curve		
$ \begin{array}{c cccc} & & & & & & & & & & & & & & & & & & &$	$\theta_1 = -\theta_2 = -\frac{PL^2}{16EI}$	$v_{\text{max}} = -\frac{PL^3}{48EI}$	$v = -\frac{Px}{48EI} (3L^2 - 4x^2)$ for $0 \le x \le \frac{L}{2}$		
θ_1 a b b	$\theta_1 = -\frac{Pb(L^2 - b^2)}{6LEI}$ $\theta_2 = +\frac{Pa(L^2 - a^2)}{6LEI}$	$v = -\frac{Pa^2b^2}{3LEI}$ at $x = a$	$ \begin{aligned} 6 \\ v &= -\frac{Pbx}{6LEI} (L^2 - b^2 - x^2) \\ &\text{for } 0 \le x \le a \end{aligned} $		
θ_1 L x	$\theta_{1} = -\frac{ML}{3EI}$ $\theta_{2} = +\frac{ML}{6EI}$	$v_{\text{max}} = -\frac{ML^2}{9\sqrt{3} EI}$ at $x = L\left(1 - \frac{\sqrt{3}}{3}\right)$	$v = -\frac{Mx}{6LEI}(2L^2 - 3Lx + x^2)$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\theta_1 = -\theta_2 = -\frac{wL^3}{24EI}$	$v_{\text{max}} = -\frac{5wL^4}{384EI}$	$v = -\frac{wx}{24EI}(L^3 - 2Lx^2 + x^3)$		
$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\theta_{1} = -\frac{wa^{2}}{24LEI}(2L - a)^{2}$ $\theta_{2} = +\frac{wa^{2}}{24LEI}(2L^{2} - a^{2})$	$v = -\frac{wa^3}{24LEI}(4L^2 - 7aL + 3a^2)$	$v = -\frac{wx}{24LEI}(Lx^3 - 4aLx^2 + 2a^2x^2 + 4a^2L^2$ $-4a^3L + a^4) \text{for } 0 \le x \le a$ $v = -\frac{wa^2}{24LEI}(2x^3 - 6Lx^2 + a^2x + 4L^2x - a^2L)$ 15 \qquad \text{for } a \le x \le L		
θ_1 θ_2 λ	16 $\theta_{1} = -\frac{7w_{0}L^{3}}{360EI}$ $\theta_{2} = +\frac{w_{0}L^{3}}{45EI}$	$v_{\text{max}} = -0.00652 \frac{w_0 L^4}{EI}$ at $x = 0.5193L$	$v = -\frac{w_0 x}{360 LEI} (7L^4 - 10L^2 x^2 + 3x^4)$		

CANTILEVER BEAMS					
Beam	Slope	Deflection	Elastic Curve		
$ \begin{array}{c} V \\ \hline V \\ \hline V \\ max \end{array} $ $ \begin{array}{c} V \\ max \end{array} $	$\theta_{\text{max}} = -\frac{PL^2}{2EI}$	$v_{\text{max}} = -\frac{PL^3}{3EI}$	$v = -\frac{Px^2}{6EI}(3L - x)$		
$ \begin{array}{c c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	$\theta_{\text{max}} = -\frac{PL^2}{8EI}$	$v_{\text{max}} = -\frac{5PL^3}{48EI}$	$v = -\frac{Px^{2}}{12EI}(3L - 2x) \qquad \text{for } 0 \le x \le \frac{L}{2}$ $v = -\frac{PL^{2}}{48EI}(6x - L) \qquad \text{for } \frac{L}{2} \le x \le L$		
$L \longrightarrow \frac{M}{v_{\text{max}}}$	$\theta_{\text{max}} = -\frac{ML}{EI}$	$v_{\text{max}} = -\frac{ML^2}{2EI}$	$v = -\frac{Mx^2}{2EI}$		
$ \begin{array}{c c} v & w \\ \hline \downarrow \downarrow$	$\theta_{\text{max}} = -\frac{wL^3}{6EI}$	$v_{\text{max}} = -\frac{wL^4}{8EI}$	$v = -\frac{wx^2}{24EI}(6L^2 - 4Lx + x^2)$		
$ \begin{array}{c} v \\ w_0 \\ \downarrow v \\ max \end{array} $	$\theta_{\text{max}} = -\frac{w_0 L^3}{24EI}$	$v_{\text{max}} = -\frac{w_0 L^4}{30EI}$	$v = -\frac{w_0 x^2}{120LEI} (10L^3 - 10L^2 x + 5Lx^2 - x^3)$		