Monads and their applications 12

Exercise 1.

Let \mathscr{V} be a cosmos, A and B monoids in \mathscr{V} . The category \mathscr{V}_A of left A-modules is precisely the functor category $[A,\mathscr{V}]$. Show that the category of left \mathscr{V} -adjoints $\mathscr{V}_A \to \mathscr{V}_B$ is equivalent to the category of A-B-bimodules (Hint: use the theory of free cocompletions). Apply this to the case of equivalences to show that the module categories are equivalent as \mathscr{V} -categories if and only if there exists an A-B bimodule M and a B-A-bimodule N with $N \otimes_B M \cong A$ and $M \otimes_A N \cong B$ (this is called M-orita equivalence of monoids).

Exercise 2.

Recall that an Eilenberg-Moore object (EM-object for short) represents actions of a monoad in a 2-category \mathcal{K} . A *Kleisli-object* is the dual notion, that is, an EM-object in \mathcal{K}^{op} : given a monad $t: C \to C$, the Kleisli-object is the universal morphism $f: C \to C^t$ with an action $ft \Rightarrow f$.

Show that **CAT** has Kleisli-objects, described as follows: for a monad $T: \mathscr{C} \to \mathscr{C}$, the category \mathscr{C}^T has the same objects as \mathscr{C} and $\mathscr{C}^T(A, B) := \mathscr{C}(A, TB)$. The composition is defined using the monad multiplication. Show that \mathscr{C}^T is equivalent to the full subcategory of T- **Alg** consisting of the free algebras.

Exercise 3.

Let \mathscr{K} be a 2-category with EM-objects and let $C \in \mathscr{K}$. Write $\mathrm{Mnd}(C)$ for the category of monads on C. Call a 1-cell $g: A \to C$ tractable if the right Kan extension of g along itself exists. Write \mathscr{K}'_0/C for the full subcategory of the slice (1-)category consisting of tractable 1-cells. Show that the functor

$$(-)$$
- $\mathbf{Alg} \colon \mathrm{Mnd}(C)^{\mathrm{op}} \to \mathscr{K}'_0/C$

which sends t to its EM-object is right adjoint to the functor which sends g to the density monad $\operatorname{Ran}_q g$.

Exercise 4.

Let $\mathscr C$ be an unenriched cocomplete category. Let $\mathscr G$ be a full subcategory consisting of κ -presentable objects and suppose that $\mathscr G$ is a *strong* generator: the functor

$$\widetilde{K} = \operatorname{Hom}_{\mathscr{G}}(K, -) \colon \mathscr{C} \to [\mathscr{G}^{\operatorname{op}}, \mathbf{Set}]$$

is conservative. The goal of this exercise is to show that \mathscr{C} is locally κ -presentable, that is, there automatically exists a *dense* generator of κ -small

objects. More precisely, let \mathscr{A} be the closure of \mathscr{G} under κ -small colimits. Show that \mathscr{A} is dense using the following steps.

- (a) Show that the category \mathscr{A}/C is κ -filtered and that the canonical diagram $\mathscr{A}/C \to \mathscr{C}$ is sent to a colimit diagram by the functor \widetilde{K} .
- (b) Show the following fact about conservative functors $F: \mathcal{A} \to \mathcal{B}$: if \mathcal{A} has colimits of a given shape, F preserves colimits of that shape, and a specific cocone is sent to a colimit cocone by F, then the cocone in question is already a colimit cocone. In other words, a conservative functor detects all the colimits that exist in the domain and that it preserves.
- (c) Conclude that $\mathscr A$ is dense and thus that $\mathscr C$ is locally κ -presentable.

Exercise 5. ??

Let \mathscr{V} be a cosmos. Given two *small* \mathscr{V} -categories, show that there exists a \mathscr{V} -category $[\mathscr{A},\mathscr{B}]$ whose underlying category is \mathscr{V} - $\mathbf{Cat}(\mathscr{A},\mathscr{B})$. The homobject can be defined using the usual equalizer in \mathscr{V} which would give natural transformations for $\mathscr{V} = \mathbf{Set}$. Show that this defines an internal hom-object in the monoidal category \mathscr{V} - \mathbf{Cat} , that is, $-\otimes \mathscr{A} \dashv [\mathscr{A}, -]$.