Aalto University School of Science Degree Programme in Computer Science and Engineering

Stella Student

Software Processes for Dummies: Re-inventing the Wheel

Master's Thesis Espoo, June 18, 2011

DRAFT! — March 20, 2017 — DRAFT!

Supervisors: Professor Antti Ylä-Jääski, Aalto University

Professor Pekka Perustieteilijä, University of Helsinki

Advisor: Olli Ohjaaja M.Sc. (Tech.)

Aalto University School of Science ABSTRACT OF Degree Programme in Computer Science and Engineering MASTER'S THESIS

Author:	Stella Student					
Title:						
Software Processes for Dummies: Re-inventing the Wheel						
Date:	June 18, 2011	Pages:	26			
Major:	Data Communication Software	Code:	T-110			
Supervisors:	Professor Antti Ylä-Jääski					
	Professor Pekka Perustieteilijä					

Advisor: Olli Ohjaaja M.Sc. (Tech.) A dissertation or thesis is a document submitted in support of candidature for a degree or professional qualification presenting the author's research and find-

ings. In some countries/universities, the word thesis or a cognate is used as part of a bachelor's or master's course, while dissertation is normally applied to a doctorate, whilst, in others, the reverse is true.

!Fixme Abstract text goes here (and this is an example how to use fixme). Fixme! Fixme is a command that helps you identify parts of your thesis that still require some work. When compiled in the custom mydraft mode, text parts tagged with fixmes are shown in bold and with fixme tags around them. When compiled in normal mode, the fixme-tagged text is shown normally (without special formatting). The draft mode also causes the "Draft" text to appear on the front page, alongside with the document compilation date. The custom mydraft mode is selected by the mydraft option given for the package aalto-thesis, near the top of the thesis-example.tex file.

The thesis example file (thesis-example.tex), all the chapter content files (1introduction.tex and so on), and the Aalto style file (aalto-thesis.sty) are commented with explanations on how the Aalto thesis works. The files also contain some examples on how to customize various details of the thesis layout, and of course the example text works as an example in itself. Please read the comments and the example text; that should get you well on your way!

Keywords:	ocean, sea, marine, ocean mammal, marine mammal, whales,		
	cetaceans, dolphins, porpoises		
Language:	English		

Acknowledgements

I wish to thank all students who use LATEX for formatting their theses, because theses formatted with LATEX are just so nice.

Thank you, and keep up the good work!

Espoo, June 18, 2011

Stella Student

Abbreviations and Acronyms

2k/4k/8k mode COFDM operation modes

3GPP 3rd Generation Partnership Project

ESP Encapsulating Security Payload; An IPsec security

protocol

FLUTE The File Delivery over Unidirectional Transport pro-

tocol

e.g. for example (do not list here this kind of common

acronymbs or abbreviations, but only those that are essential for understanding the content of your thesis.

note Note also, that this list is not compulsory, and should

be omitted if you have only few abbreviations

Contents

Al	Abbreviations and Acronyms 4					
1	Introduction					
	1.1 Problem statement	. 7				
	1.2 Helpful hints					
	1.3 Structure of the Thesis					
2	Background	8				
	2.1 Electricity consumption of ICT equipments	. 8				
	2.2 Data-center electricity consumption	. 9				
	2.3 Energy proportionality	. 10				
	2.3.1 Packet-level and flow-level Simulators	. 11				
	2.4 Simulating energy consumption of large-scale networks	. 12				
	2.5 SimGrid	. 12				
3	Environment					
	3.1 LaTeX working environments	. 13				
	3.1.1 Environment	. 13				
	3.1.2 Editor	. 13				
	3.2 Graphics	. 14				
4	Methods	17				
5	Implementation	19				
6	Evaluation					
7	Discussion					
8	Conclusions					
Δ	First appendix					

Introduction

This is my master's thesis, and I am very proud of it. Of course, when I write my real master's thesis, I will not use the singular pronoun I, but rather try to avoid referring to myself and speak of the research we have conducted—I rarely work alone, after all. Yet, both I and we are correct, and it depends on the instructor and the supervisor (of course from you, too), which one they would prefer. Anyway, the tense should be active, and passive sentenses should be avoided (especially, writing sentences where the subject is presented with by preposition), so often you cannot avoid choosing between the pronouns. Life is strange, but there you have it.

By the way, the preferred order of writing your master's thesis is about the same as the outline of the thesis: you first discover your problem and write about that, then you find out what methods you should use and write about that. Then you do your implementation, and document that, and so on. However, the abstract and introduction are often easiest to write last. This is because these really cover the entire thesis, and there is no way you could know what to put in your abstract before you have actually done your implementation and evaluation. Rarely anyone write the thesis from the beginning to the end just one time, but the writing is more like process, where every piece of text is written at least twice. Be also prepared to delete your own text. In the first phase, you can hide it into comments that are started with % but during the writing, the many comments should be visible for your helpers, the instructor and supervisor.

The introduction in itself is rarely very long; two to five pages often suffice.

Problem statement

Undergraduate students studying technical subjects do not consider typography very interesting these days, and therefore the typographical quality of many theses is unacceptably low. We plan to rectify this situation somewhat by providing a decent-quality example thesis outline for students. We expect that the typographical quality of the master's theses will dramatically increase as the new thesis outline is taken into use.

Helpful hints

Read the information from the university master's thesis pages [?] before starting the thesis. You should also go through the thesis grading instructions [?] together with your instructor and/or supervisor in the beginning of your work.

Structure of the Thesis

You should use transition in your text, meaning that you should help the reader follow the thesis outline. Here, you tell what will be in each chapter of your thesis.

Background

Electricity consumption of ICT equipments

ICT equipments consume a significant amount of electricity. A survey conducted by Heddeghem et al. [12] shows the electricity consumption and growth trends of three classes of ICT equipments: personal computers, communication networks, and data centers. Personal computers include equipments such as desktop, laptop and external monitors. Communication networks includes residential network access equipments (such as WiFi routers and modems), network equipments used in offices (such as routers and switches) and telecom-operator network equipments (such as base stations, routers and optical amplification systems). Data-centers house storage and computing servers, communication network equipments, and power provisioning and cooling facilities. In this classification there are overlaps, for instance, telcom operator can have office network equipments and data-centers. After carefully avoiding possible redundant measurements, the researchers estimated absolute electricity consumption and annual consumption growth rate of each category of equipments for the period 2007 and 2012. The results of the study show that the global electricity consumption of ICT equipments in all the three categories combined contributed 3.9% in 2007 and 4.6% in 2012. The estimated annual growth rate of the individual category is 5% for personal computers, 10% for communication networks, and 4% for data-centers. These growth rates are higher than that of the total global electricity consumption, which is 3%.

Data-center electricity consumption

In Section 2.1 we described data-center's global share in electricity consumption. In this section we describe the components involved within the data center itself.

Electricity consumption units with in a typical data-center can be classified into two broad groups [8]: The first group is IT equipments (which includes computing servers, storage servers and networking components) and the other group is infrastructure facilities (which includes power provisioning, cooling and lighting components).

Figure 2.1 [8] shows the electricity consumption proportion of the datacenter components. This value differs significantly from one data-center to another [2], for instance, due to architectural difference[11] or energy efficiency of the components. The infrastructure facility components take the large proportion (65%) of the consumption.

Figure 2.1: Energy consumption percentage of data-center components

Though the infrastructure facility consumes relatively larger amount of electricity, the focus of this study is on the IT equipment components, particularly on the network equipments.

If we further zoom in on the IT equipments part, we can find server, storage and network equipments. A data-center servers consist of one or more CPU cores, memory and I/O devices. The energy consumption relationship among these components is shown in Figure 2.2. Combined, Memory and CPU units consume the larger amount of energy relative to other components. The fact that CPU is the dominant electricity consuming unit is exploited by Fan et al. in [9] to model the dynamic power usage of thousands

of servers by using only CPU utilization as a parameter. The result of their study was very accurate, with error as low as 1%.

Figure 2.2: Energy consumption percentage of Xeon based (on the left) and Atom based (on the right) servers

Energy proportionality

The only reason the study of energy consumption management of network equipment becomes so important is that, in general, ICT equipments do not consume energy proportional to their workload. An ideal ICT equipment is the one which consume zero electricity when it is idle, and it consumes electricity proportional to its workload when it is active. However, the reality is, even power efficient servers consume about 50% of their peak power [3], even when they are doing nothing. This percentage can even reach 85% for network switches [10]. Figure 2.3 in [14] shows the energy proportionality of a typical network equipment. From the graph we can observe that the dynamic power consumption range is narrow. Three approaches are in common use to deal with this situation. The first one is re-engineering network devices so as to make them more energy proportional, device vendors are the prime role player in this aspect. The second approach is related to the operating rate of a network equipment port. A typical switch can operate on different transmission rate (100Mbps, 1 Gbps or 10 Gbps). An active port transmitting at 10 Gbps can consume more energy than if it transmit at 100 Mbps. Rate adaptation is the approach devised to take advantage of this situation. Instead of transmitting at the maximum rate all time, the network port can be made to adapt to the actual traffic load. This energy saving approach is known as Adaptive Link Rate (ALR). The third approach, which is known as Low Power Idle (LPI), allows a network device to send data as fast as possible and then enter low power mode between transfers. The low power

Figure 2.3: Ideal and measured energy proportionality of a network equipment

mode can further be extended by a technique called packet coalescing, which allows more energy saving [4].

Packet-level and flow-level Simulators

Packet-level simulators strives to model a given network phenomenon at the granularity level of packets, thus in general they are accepted by the research community to be more accurate compared to flow-level simulators [6]. One of the most popular packet-level simulator is NS-3, which is categorized under discrete-event simulator with events corresponding to sending and receiving packets [13]. Though packet-level simulators tend to be more accurate, they fail to scale well in the area of large-scale networks.

In the area of large-scale networks, flow-level simulators are the preferred alternative. Rather than modeling a given network phenomenon at a packet level, flow-level simulators treat a set of packets as a single unit. The most commonly used definition for flow in the context of computer networking is coined by Claffy et al. in [7]:

"...a flow ...a unidirectional traffic stream with a unique [source-IP-address, source-port, destination-IP-address, destination-port, IP-protocol] tuple ..."

In addition to the five tuple mentioned in the definition, a flow also has

a limited time duration. Claffy et al. used a time limit of 64 seconds as a flow duration in their study. Researchers such as Carneiro et al. [5], adopted this same definition to develop flow monitoring module for NS-3, a module that can generate information such as amount of packets or bytes transferred, packets dropped or transmission start and end time for each flow. Barakat et al. in [1] also used the same definition to model traffic at the flow-level for the Internet backbone link. By abstracting away fine details, flow-level models provides easy way to instantiate experiments and they also scale very well for conducting large-scale network simulations [1, 6].

Simulating energy consumption of large-scale networks

One way of conducting energy consumption or any other experiment is to use real production environment or test-bed environment, both are referred to as in vivo in [6]. In the former case, handling transient and varying conditions would make the data collection and prediction very difficult and often times, a production environment is not available for experimentation. In the later case, it requires setting-up a separate testing environment designed solely for the purpose of conducting the desired experiment. This approach apart from being expensive, it requires significant amount of time for experiment setup and, it is also non-repeatable as experimenting with different scenario demands a modified or new configuration.

The other alternative for experimenting is simulation, also referred to as in silico in [6]. Simulation, unlike real environment, allows great flexibility in terms of experiment configuration, control and repetition. In addition it can also be less time consuming and less expensive. That is why virtually in all computer network related researches simulations are widely used.

In this study we simulate energy-aware large scale distributed networks using SimGrid (Detail description about SimGrid follows in the next section). When we say large-scale distributed network, we are referring to a set of networks residing inside in the distributed data centers and also the networks that are used to connect them.

SimGrid

Architecture of SimGrid
Its current state and capabilities
Missing models

Environment

A problem instance is rarely totally independent of its environment. Most often you need to describe the environment you work in, what limits there are and so on. This is a good place to do that. First we tell you about the LaTeX working environments and then is an example from an thesis written some years ago.

LaTeX working environments

To create LATEX documents you need two things: a LATEX environment for compiling your documents and a text editor for writing them.

Environment

Fortunately LaTeX can nowadays be found for any (modern) computer environment, be it Linux, Windows, or Macintosh. For Linuxes (and other Unix clones) and Macs, I'd recommend *TeX Live* [?], which is the current default LaTeX distribution for many Linux flavors such as Fedora, Debian, Ubuntu, and Gentoo. TeX Live is the replacement for the older *teTeX*, which is no longer developed.

TeX Live works also for Windows machines (at least according to their web site); however, I have used MiKTeX [?] and can recommend it for Windows. MiKTeX has a nice package manager and automatically fetches missing packages for you.

Editor

You can write LaTeX documents with any text editor you like, but having syntax coloring options and such really helps a lot. My personal favourite

for editing LaTeX is the TeXlipse [?] plugin for the Eclipse IDE [?]. Eclipse is an open-source integrated development environment (IDE) initially created for writing Java code, but it currently has support for editing languages such as C, C++, JavaScript, XML, HTML, and many more. The TeXlipse plugin allows you to edit and compile LaTeX documents directly in Eclipse, and compilation errors and warnings are shown in the Eclipse Problems dialog so that you can locate and fix the issues easily. The plugin also supports reference traversal so that you can locate the source line where a label or a citation is defined.

Eclipse is an entire development environment, so it may feel a bit heavy-weight for editing a document. If you are looking for a more light-weight option, check out TeXworks. TeXworks is a LaTeX editor that is packaged with the newer MiKTeX distributions, and it can be acquired from http://www.tug.org/texworks/.

And if you are attached to your *emacs* or *vim* editor, you can of course edit your LATEX documents with them. Emacs at least has syntax coloring and you can compile your document with a key binding, so this may be a good option if you prefer working with the standard Linux text editors.

Graphics

When you use pdflatex to render your thesis, you can include PDF images directly, as shown by Figure 3.1 below.

Figure 3.1: The INDICA two-layered value chain model.

You can also include JPEG or PNG files, as shown by Figure 3.2.

You can create PDF files out of practically anything. In Windows, you can download PrimoPDF or CutePDF (or some such) and install a printing

Figure 3.2: Eeyore, or Ihaa, a very sad donkey.

driver so that you can print directly to PDF files from any application. There are also tools that allow you to upload documents in common file formats and convert them to the PDF format. If you have PS or EPS files, you can use the tools ps2pdf or epspdf to convert your PS and EPS files to PDF.

Furthermore, most newer editor programs allow you to save directly to the PDF format. For vector editing, you could try Inkscape, which is a new open source WYSIWYG vector editor that allows you to save directly to PDF. For graphs, either export/print your graphs from OpenOffice Calc/Microsoft Excel to PDF format, and then add them; or use gnuplot, which can create PDF files directly (at least the new versions can). The terminal type is pdf, so the first line of your plot file should be something like set term pdf

To get the most professional-looking graphics, you can encode them using the TikZ package (TikZ is a frontend for the PGF graphics formatting system). You can create practically any kind of technical images with TikZ, but it has a rather steep learning curve. Locate the manual (pgfmanual.pdf) from your IATEX distribution and check it out. An example of TikZ-generated graphics is shown in Figure 3.3.

Another example of graphics created with TikZ is shown in Figure 3.4. These show how graphs can be drawn and labeled. You can consult the example images and the PGF manual for more examples of what kinds figures you can draw with TikZ.

 X_3

Figure 3.3: Example of a multiversion database page merge. This figure has been taken from the PhD thesis of Haapasalo [?].

Figure 3.4: Examples of graphs draw with TikZ. These figures have been taken from a course report for the graph theory course [?].

Methods

You have now stated your problem, and you are ready to do something about it! *How* are you going to do that? What methods do you use? You also need to review existing literature to justify your choices, meaning that why you have chosen the method to be applied in your work.

If you have not yet done any (real) methological courses (but chosen introduction courses of different areas that are listed in the methodological courses list), now is the time to do so or at least check through material of suitable methodological courses. Good methodologial courses that consentrates especially to methods are presented in Table 4.1. Remember to explain the content of the tables (as with figures). In the table, the last column gives the research area where the methods are often used. Here we used table to give an example of tables. Abbreviations and Acronyms is also a long table. The difference is that longtables can continue to next page.

Code	Name	Methods	Area
T-110.6130	Systems Engineering	Computer simulations,	T-110
	for Data Communi-	mathematical modeling,	
	cations Software	experimental research,	
		data analysis, and	
		network service business	
		research methods, (agile	
		method)	
Mat-2.3170 Simulation (here is an		Details of how to build	T-110
example of multicolumn for tables)		simulations	
S-38.3184	Network Traffic Mea-	How to measure and	T-110
	surements and Anal-	analyse network traffic	
	ysis		

Table 4.1: Research methodology courses

Implementation

You have now explained how you are going to tackle your problem. Go do that now! Come back when the problem is solved!

Now, how did you solve the problem? Explain how you implemented your solution, be it a software component, a custom-made FPGA, a fried jelly bean, or whatever. Describe the problems you encountered with your implementation work.

Evaluation

You have done your work, but that's¹ not enough.

You also need to evaluate how well your implementation works. The nature of the evaluation depends on your problem, your method, and your implementation that are all described in the thesis before this chapter. If you have created a program for exact-text matching, then you measure how long it takes for your implementation to search for different patterns, and compare it against the implementation that was used before. If you have designed a process for managing software projects, you perhaps interview people working with a waterfall-style management process, have them adapt your management process, and interview them again after they have worked with your process for some time. See what's changed.

The important thing is that you can evaluate your success somehow. Remember that you do not have to succeed in making something spectacular; a total implementation failure may still give grounds for a very good master's thesis—if you can analyze what went wrong and what should have been done.

 $^{^{1}}$ By the way, do *not* use shorthands like this in your text! It is not professional! Always write out all the words: "that is".

Discussion

At this point, you will have some insightful thoughts on your implementation and you may have ideas on what could be done in the future. This chapter is a good place to discuss your thesis as a whole and to show your professor that you have really understood some non-trivial aspects of the methods you used...

Conclusions

Time to wrap it up! Write down the most important findings from your work. Like the introduction, this chapter is not very long. Two to four pages might be a good limit.

Bibliography

- [1] BARAKAT, C., THIRAN, P., IANNACCONE, G., DIOT, C., AND OWEZARSKI, P. Modeling internet backbone traffic at the flow level. *IEEE Trans. Signal Processing* 51, 8 (2003), 2111–2124.
- [2] Barroso, L. A., Clidaras, J., and Hölzle, U. The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines, Second Edition. Synthesis Lectures on Computer Architecture. Morgan & Claypool Publishers, 2013.
- [3] Barroso, L. A., and Hölzle, U. The case for energy-proportional computing. *IEEE Computer* 40, 12 (2007), 33–37.
- [4] Bolla, R., Bruschi, R., Davoli, F., and Cucchietti, F. Energy efficiency in the future internet: A survey of existing approaches and trends in energy-aware fixed network infrastructures. *IEEE Communications Surveys and Tutorials* 13, 2 (2011), 223–244.
- [5] CARNEIRO, G., FORTUNA, P., AND RICARDO, M. Flowmonitor: a network monitoring framework for the network simulator 3 (NS-3). In 4th International Conference on Performance Evaluation Methodologies and Tools, VALUETOOLS '09, Pisa, Italy, October 20-22, 2009 (2009), p. 1.
- [6] CASANOVA, H., GIERSCH, A., LEGRAND, A., QUINSON, M., AND SUTER, F. Versatile, scalable, and accurate simulation of distributed applications and platforms. J. Parallel Distrib. Comput. 74, 10 (2014), 2899–2917.
- [7] CLAFFY, K., MILLER, G., AND THOMPSON, K. The nature of the beast: Recent traffic measurements from an internet backbone. In *Proceedings of INET* (1998), vol. 98, pp. 21–24.

BIBLIOGRAPHY 24

[8] DAYARATHNA, M., WEN, Y., AND FAN, R. Data center energy consumption modeling: A survey. *IEEE Communications Surveys and Tutorials* 18, 1 (2016), 732–794.

- [9] Fan, X., Weber, W., and Barroso, L. A. Power provisioning for a warehouse-sized computer. In 34th International Symposium on Computer Architecture (ISCA 2007), June 9-13, 2007, San Diego, California, USA (2007), pp. 13–23.
- [10] FIANDRINO, C., KLIAZOVICH, D., BOUVRY, P., AND ZOMAYA, A. Y. Performance metrics for data center communication systems. In 8th IEEE International Conference on Cloud Computing, CLOUD 2015, New York City, NY, USA, June 27 - July 2, 2015 (2015), pp. 98–105.
- [11] GYARMATI, L., AND TRINH, T. A. How can architecture help to reduce energy consumption in data center networking? In *Proceedings of the 1st International Conference on Energy-Efficient Computing and Networking, e-Energy 2010, Passau, Germany, April 13-15, 2010* (2010), pp. 183–186.
- [12] Heddeghem, W. V., Lambert, S., Lannoo, B., Colle, D., Pickavet, M., and Demeester, P. Trends in worldwide ICT electricity consumption from 2007 to 2012. *Computer Communications* 50 (2014), 64–76.
- [13] LLC, M. NS-3 simulator, 2017.
- [14] Mahadevan, P., Sharma, P., Banerjee, S., and Ranganathan, P. A power benchmarking framework for network devices. In NET-WORKING 2009, 8th International IFIP-TC 6 Networking Conference, Aachen, Germany, May 11-15, 2009. Proceedings (2009), pp. 795–808.

Appendix A

First appendix

This is the first appendix. You could put some test images or verbose data in an appendix, if there is too much data to fit in the actual text nicely. For now, the Aalto logo variants are shown in Figure A.1.

(a) In English

(b) Suomeksi

(c) På svenska

Figure A.1: Aalto logo variants