Base de l'optique géométrique

I | Propriétés générales

A Approximation de l'optique géométrique

Définition 2.1 : approximation de l'optique géométrique

L'approximation de l'optique géométrique consiste à négliger tout phénomène de diffraction (et d'interférence, cf. chapitres plus avancés) pour ignorer le comportement ondulatoire de la lumière. Dans cette approche, la lumière est équivalente à un flux de particules *indépendantes*, sans interaction globale (propriété d'une onde) : c'est le modèle corpusculaire.

B Notion de rayon lumineux

Dans le cadre de l'optique géométrique, on décrit donc la lumière par la trajectoire des photons.

Définition 2.2 : rayon et faisceau lumineux

On appelle « rayon lumineux » le chemin que semble suivre la lumière entre deux points lors d'une expérience de propagation. C'est une **courbe orientée** donnant la direction et le sens de propagation d'une onde lumineuse.

On appelle « faisceau lumineux » passant par un point l'ensemble des rayons lumineux passant par ce point.

Remarque

C'est un outil théorique : il est impossible d'isoler un rayon lumineux en pratique à cause de la diffraction.

C Propagation rectiligne

Propriété 2.1: propagation rectiligne

Dans un milieu TLHI, la lumière se propage en ligne droite.

Contre-exemple

L'indice optique changeant avec la température, dans certaines conditions l'atmosphère n'est pas homogène : cela peut causer des mirages (trajectoire courbée de la lumière).

D Retour inverse de la lumière

Propriété 2.2 : retour inverse

Dans un milieu TLI, homogène ou non, le trajet suivi par la lumière entre deux points situés sur un même rayon lumineux est indépendant du sens de propagation.

Implication 2.1: échange

Si on connaît le trajet dans un sens, on le connaît l'autre sens. On utilisera ce raisonnement à plusieurs reprises pour l'étude des systèmes optiques.

\mathbf{E}

Indépendance des rayons lumineux

Propriété 2.3 : indépendance des rayons lumineux

Les rayons lumineux n'interfèrent pas entre eux. Notamment, un rayon ne peut pas en dévier un autre.

II | Lois de Snell-Descartes

\mathbf{A}

Changement de milieu

Définition 2.3 : dioptre

On appelle « dioptre » la surface de séparation entre deux milieux transparents d'indices optiques différents.

FIGURE 2.1 – Exemple de dioptre.

Notation 2.1 : vocabulaire général

- On appelle **point** d'incidence I le point d'intersection entre le rayon incident et le dioptre;
- On appelle plan d'incidence le plan contenant le rayon incident et la normale au dioptre en I;
- On appelle **angle d'incidence** i_1 l'angle entre la normale et le rayon incident;
- On appelle **angle de réflexion** r l'angle entre la normale et le rayon réfléchi;
- On appelle **angle de réfraction** i_2 l'angle entre la normale et le rayon réfracté.

Propriété 2.4 : réflexion, réfraction

Au niveau d'un dioptre, un rayon lumineux incident donne naissance à un rayon réfracté (traversant le dioptre) et à un rayon réfléchi.

FIGURE 2.2 – Rayons incidents, réfléchis et réfractés sur un dioptre.

Important 2.1: calcul des angles

Les angles se calculent entre le rayon et la **normale** au dioptre. Le sens de comptage doit être indiqué sur la figure.

B Lois de Snell-Descartes

Loi 2.1 : Lois de Snell-Descartes

Les rayons réfléchi et réfracté appartiennent au plan d'incidence, et respectent

$$r = -i_1$$
 et $n_1 \sin(i_1) = n_2 \sin(i_2)$

FIGURE 2.3 – Réflexion d'un rayon incident

FIGURE 2.4 – Réfraction d'un rayon incident avec $n_2 > n_1$.

Implication 2.2: réfraction

On distingue 3 cas généraux pour la réfraction :

- 1) Si $i_1=0$, alors $i_2=0$: en incidence dite « normale », il n'y a pas de déviation du rayon ;
- 2) Si $n_2 > n_1^a$, alors $|i_2| < |i_1|$: le rayon réfracté se rapproche de la normale;
- 3) Si $n_2 < n_1^{\ b}$, alors $|i_2| > |i_1|$: le rayon réfracté s'écarte de la normale.

Par le principe du retour inverse de la lumière (2.2), le troisième point se déduit du deuxième.

- a. On dit alors que le milieu 2 est plus réfringent que le milieu 1.
- b. On dit alors que le milieu 2 est moins réfringent que le milieu 1.

Phénomène de réflexion totale

A partir du moment où $n_2 > n_1$, le rayon réfracté se rapproche toujours de la normale, et existera toujours. En revanche, si $n_2 < n_1$, le rayon réfracté s'écarte de la normale. On considère qu'il existe uniquement s'il reste à l'intérieur du milieu n_2 , soit par définition $|i_2| < \frac{\pi}{2}$ rad.

Propriété 2.5 : angle limite de réflexion totale

Lors du passage d'un milieu plus réfringent à un milieu moins réfringent ($n_2 < n_1$), il existe un angle incident limite i_{lim} au-delà duquel il n'y a pas de rayon réfracté : on parle de **réflexion totale**. On a

$$|i_{\lim}| = \arcsin\left(\frac{n_2}{n_1}\right)$$

Démonstration 2.1 : angle limite de réflexion totale

Soit i_{\lim} l'angle d'incidence limite de réfraction, tel que $i_2 = \frac{\pi}{2}$. On a :

$$i_2 = \frac{\pi}{2} \Rightarrow \sin(i_2) = 1$$

Or, $n_2 \sin(i_2) = n_1 \sin(i_{\text{lim}})$ d'après la loi de Snell-Descartes pour la réfraction. Ainsi,

$$n_{2}\underbrace{\sin(i_{2})}_{=1} = n_{1}\sin(i_{\lim})$$

$$\Leftrightarrow \frac{n_{2}}{n_{1}} = \sin(i_{\lim})$$

$$\Rightarrow i_{\lim} = \arcsin\left(\frac{n_{2}}{n_{1}}\right)$$

III Généralités sur les systèmes optiques

Définition

Définition 2.4 : Système optique

On appelle système optique un ensemble de composants optiques (dioptres, miroirs) rencontrés successivement par les rayons lumineux.

Exemple

L'exemple le plus simple est le miroir plan.

B Système centré

Définition 2.5 : Systèmes centrés

On appelle système centré un système optique invariant par rotation autour d'un axe; cet axe est alors appelé axe optique. On l'oriente dans le sens de propagation de la lumière incidente, et les distances sont considérées algébriquement (affectées d'un signe). On notera par exemple $\overline{AB} = -2$ cm.

C Rayons incidents, rayons émergents

Définition 2.6 : Rayons incidents et émergents

On appelle **rayons incidents** les rayons entrant par la face d'entrée d'un système optique. On appelle **rayons émergents** les rayons sortant par la face de sortie d'un système optique.

D Faisceaux lumineux

Définition 2.7 : Faisceaux lumineux

On appelle faisceau lumineux un ensemble de rayons lumineux. Un faisceau peut être convergent, divergent ou parallèle.

E Objets et images réelles ou virtuelles

Définition 2.8 : Objet et image

On appelle point **objet** d'un système optique le point d'intersection des rayons **incidents**.

On appelle point **image** d'un système optique le point d'intersection des rayons **émergents**.

Définition 2.9 : Réel et virtuel

Un point objet est **réel** si le faisceau **incident** est **divergent**. Il est **virtuel** si le faisceau est **convergent**.

Un point image est **réel** si le faisceau **émergent** est **convergent**. Il est **virtuel** si le faisceau est **divergent**.

On trouve aussi les définitions suivantes, plus communément admises (mais plus verbeuses).

Définition 2.10 : Réel et virtuel, bis

Un point **objet** est **réel** s'il est placé **avant** la face d'entrée du système, et **virtuel sinon**.

Un point image est réel s'il est placé après la face de sortie du système, et virtuel sinon.

Notation 2.2 : conjugaison de 2 points

Lorsqu'un point objet A passe par un système optique S pour former l'image A', on dit que A et A' sont conjugués par le système. Schématiquement, on note cette relation

$$A \xrightarrow{S} A'$$

Dans cette notation, A est un objet **pour** S, et A' est une image **pour** S. Nous serons amené-es à étudier des combinaisons de systèmes optiques dans lesquels un point sera à la fois image de l'un et objet du suivant.

F Objet étendu, grandissement transversal

Définition 2.11 : objet étendu et angle apparent

On appelle *objet étendu* un ensemble de points objets continu, considéré comme une infinité de points objets.

L'angle apparent d'un objet étendu est l'angle perçu (par un détecteur : œil, caméra...) entre les rayons émis par les extrémités de l'objet.

Définition 2.12 : grandissement transversal

Soit \overline{AB} un objet étendu avec A sur l'axe optique, passant par un système S donnant une image elle aussi étendue $\overline{A'B'}$. On appelle $grandissement\ transversal$ et on le note γ le rapport

$$\gamma = \frac{\overline{AB}}{\overline{A'B'}}$$

pour $AB \xrightarrow{S} A'B'$

FIGURE 2.14 – Objet et image étendues.

G Foyers d'un système optique

Définition 2.13 : Foyers principaux image et objet

Le foyer principal objet F est le **point objet** d'un système donnant une **image à l'infini** (rayons parallèles entre eux) avec des rayons parallèles à l'axe optique. Le plan perpendiculaire à l'axe optique et passant par F est appelé plan focal objet. On note

FIGURE 2.15 – Foyer principal objet.

Le foyer principal image F' est le **point** image d'un système d'un **objet situé à l'in-**fini (rayons parallèles entre eux) avec des rayons parallèles à l'axe optique. Le plan perpendiculaire à l'axe optique et passant par F' est appelé plan focal image. On note

FIGURE 2.16 – Foyer principal image.

Remarque 2.1 : retour inverse

Nous pouvons en quelque sorte déduire le fonctionnement du système optique dans le second cas en utilisant le principe du **retour inverse de la lumière**, en « remontant le film ».

Propriété 2.6 : foyers principaux

En plus d'être une définition, c'est une propriété : tous rayons incidents qui se croisent en F émergent parallèles à l'axe optique, et tous rayons incidents parallèles à l'axe optique émergent en se croisant en F'.

Corollaire 2.1 : foyers secondaires

Tous incidents ravons parallèles entre eux émergent en se croisant dans le plan focal image a, et tous rayons incidents croisant se dans le plan focal objet b émergent parallèles entre eux.

- a. en un point appelé foyer $secondaire image <math>\Phi'$
- b. en un point appelé foyer $secondaire\ objet\ \Phi$

IV Approximation de Gauss

Stigmatisme, aplanétisme

Définition 2.14 : stigmatisme

Un système optique est dit stigmatique si tous les rayons émis par un point objet A convergent en un seul point image A'. Il ne l'est pas si l'image d'un point forme une tâche.

Définition 2.15 : aplanétisme

Un système optique est dit aplanétique si un objet étendu \overline{AB} perpendiculaire à l'axe optique donne une image $\overline{A'B'}$ également perpendiculaire à l'axe optique.

B Rigoureux ou approché?

La plupart des systèmes optiques (lentilles, œil, appareil photo...) ne sont pas rigoureusement stigmatiques et aplanétiques : il arrive souvent qu'un point source forme une tâche sur un capteur (astigmatisme) ou qu'une droite soit vue courbée (non-aplanétisme). On peut cependant trouver des conditions dans lesquelles le stigmatisme et l'aplanétisme sont approchés, par exemple si la tâche formée par le système est plus petite que l'élément récepteur (pixel pour une caméra).

C Conditions de Gauss

Définition 2.16: Rayons paraxiaux

Un système optique est utilisé dans les conditions de Gauss lorsqu'il est éclairé par des rayons **paraxiaux**, c'est-à-dire

- 1) peu éloignés de l'axe optique;
- 2) peu inclinés par rapport à l'axe optique.

Propriété 2.7 : approximation de Gauss

Dans les conditions de Gauss, un système centré respecte les conditions de stigmatisme et d'aplanétisme approchés. On les **considérera** comme rigoureux tant dans les tracés que dans les calculs.