# Pendolo fisico

Francesco Sacco Francesco Tarantelli Giovanni Sucameli

## Scopo dell'esperienza

Lo scopo dell'esperienza è misurare il periodo di un pendolo fisico in funzione della distanza dal centro di massa del punto di sospensione.

#### Cenni teorici

Per trovare l'equazione del moto si è utilizzata la seconda equazione cardinale della dinamica  $\overrightarrow{M} = \frac{d\overrightarrow{L}}{dt}$ , dove  $\overrightarrow{M}$  è il momento meccanico e  $\overrightarrow{L}$  è il momento angolare e eguagliamo quest'equazione con l'equazione del momento meccanico  $\overrightarrow{M} = -m \overrightarrow{g} d\theta$ , dove m è la massa della sbarra, d è la distanza del fulcro dal centro di massa e  $\theta$  è l'angolo massimo formato tra la sbarra e la verticale.

Risolvendo l'equazione del moto e imponendo il momento d'inerzia  $I = \frac{ml^2}{12} + md^2$  si ottine la seguente equazione.

$$T(d) = 2\pi \sqrt{\frac{l^2/12 + d^2}{gd}}$$

## Materiale a disposizione

- · Asta metallica forata
- Supporto di sospensione
- Cronometro (risoluzione di 0,01s)
- Calibro Ventesimale
- Metro a nastro



#### Misure

S'è iniziato numerando i fori nella sbarra di alluminio ordinandoli da 1 a 10, dopo di che abbiamo fatto una serie di misurazioni del periodo per ogni foro.

Ogni misurazione è stata effettuata su dieci misurazioni, ad eccezione della misurazione del foro più vicino al centro, che a causa del periodo eccessivamente lungo, è stata effettuata ogni 3 oscillazioni.

Dopo di che abbiamo determinato il luogo del centro di massa bilanciando l'asta sul lato di un calibro, e una volta segnato abbiamo misurato la distanza d dei buchi dal centro di massa. I risultati delle misure sono disponibili nella seguente tabella.

| d(m)  | 0,023 | 0,079 | 0,123 | 0,179 | 0,222 | 0,279 | 0,322 | 0,379 | 0,422 | 0,479 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| tempi | 11,34 | 21,74 | 18,37 | 16,33 | 15,72 | 15,40 | 15,44 | 15,65 | 15,83 | 16,37 |
|       | 11,42 | 21,57 | 18,07 | 16,21 | 15,51 | 15,32 | 15,17 | 15,51 | 15,70 | 16,23 |
|       | 11,40 | 21,74 | 18,00 | 16,40 | 15,53 | 15,24 | 15,57 | 15,53 | 15,68 | 16,19 |
|       | 11,23 | 21,54 | 18,00 | 16,27 | 15,61 | 15,33 | 15,30 | 15,64 | 15,89 | 16,33 |
|       | 11,68 | 21,73 | 18,05 | 16,22 | 15,61 | 15,34 | 15,54 | 15,54 | 15,84 | 16,39 |
|       | 11,43 | 21,56 | 17,99 | 16,33 | 15,50 | 15,26 | 15,41 | 15,40 | 16,07 | 16,22 |
|       | 11,62 | 21,71 | 18,05 | 16,37 | 15,55 | 15,37 | 15,37 | 15,37 | 15,89 | 16,23 |
|       | 11,63 | 21,60 | 18,10 | 16,16 | 15,61 | 15,29 | 15,24 | 15,54 | 15,77 | 16,46 |
|       | 11,49 | 21,68 | 18,98 | 16,16 | 15,74 | 15,26 | 15,54 | 15,67 | 15,68 | 16,34 |
|       | 11,59 | 21,87 | 18,13 |       | 15,66 | 15,43 | 15,20 | 15,53 | 15,91 | 16,22 |
|       | 11,27 |       |       |       |       | 15,20 | 15,45 |       | 15,83 |       |
|       |       |       |       | ·     |       |       |       |       | 15,81 |       |

#### Analisi dati

Per determinare il periodo associato d abbiamo calcolato la media e per avere una stima dell'errore abbiamo usato la deviazione standard.

Dopo di chè abbiamo creato una tabella e associato un grafico con una linea di tendenza stimata direttamente a Excel.

Mettendo a confronto il grafico ottenuto dalle misurazioni e il grafico ricavato con geogebra è possibile osservare che sono pressoché congruenti, ciò conferma che il modello teorico rispetta perfettamente il fatto osservato.

| <i>T</i> (s)    | <i>d</i> (m)        |
|-----------------|---------------------|
| 3,821±0,005     | $0,023\pm0,001$     |
| 2,167±0,003     | 0,079±0,01          |
| 1,817±0,010     | 0,123 <u>+</u> 0,01 |
| 1,627±0,003     | 0,179±0,01          |
| 1,560±0,003     | 0,222 <u>±</u> 0,01 |
| 1,531±0,002     | 0,279 <u>+</u> 0,01 |
| 1,538±0,004     | 0,322 <u>±</u> 0,01 |
| 1,554±0,003     | 0,379±0,01          |
| $1,583\pm0,003$ | 0,422 <u>+</u> 0,01 |
| 1,630±0,003     | 0,479 <u>+</u> 0,01 |





### Conclusione

Abbiamo dimostrato che il periodo del pendolo varia in funzione della distanza dal centro di massa del punto di sospensione e che segue l'equazione del moto scritta nei cenni teorici.

<sup>21</sup> Novembre 2016 - Università di Pisa