Thursday, January 24, 2019 11:23 PM

CH. 3 POINT-TO-POINT **CONNECTIONS: P2**

3 phases of establishing PPP session:

Phase 1	Link establish/config negotiation: • Before PPP exchanges datagrams [IP]: Open connection/negotiate options • Phase done when receiving rtr sends a config-ack frame back to rtr initiating connection
Phase 2	Link quality determination: [optional]: • LCP tests link to determine quality good enough to bring up network layer protocols • Can delay trans info until phase done
Phase 3	Network layer protocol config negotiation: • After LCP has finished link quality: • NCP can separately config network layer protocols/bring them up/down any time • LCP closes link? Informs layer protocols for appropriate action

Link remains config for comm until LCP/NCP frames close link: Or external event occurs

• Example: Inactivity/admin || LCP: Can term link any time: Example: Loss of link quality

LCP Operation: Link establishment/maintenance/termination

3 classes of LCP frames to accomplish work of each phases

- 1. Link-establish frames: Establish/config link:
 - o Config-Reg, Config-Ack, Config-Nak, Config-Reject
- 2. Link-maintenance frames: Manage/debug link:
 - o Code-Reject, Protocol-Reject, Echo-Reg, Echo-Reply, Discard-Reg
- 3. Link-termination: Frames term link:
 - o Term-Reg. Term-Ack

Phase 1 LCP: Link Establishment: Must complete before any network layer packets exchanged

- During establishment: LCP opens connection/negotiates params
- Starts w/initiating device sending Config-Reg frame to responder
- Config-Req frame includes var # of config options needed to set up on link
- Initiator includes options: How it wants link created/protocol/auth params
- Responder processes reg:
 - If options not good: Responder sends Config-Nak/Config-Reject msg
 - If negotiation fails: Initiator must restart process w/new options
 - o If options good: Responder responds w/Config-Ack msg
 - Moves to auth stage: Op of link handed over to NCP
 - When NCP finished configs [inclu. validating auth]: Line avail for data transfer
 - During data exchange: CLP transitions into link maintenance

Phase 2: Link Maintenance: LCP can use msgs to provide feedback/test link

Echo-Req/Echo-Reply/Discard-Req	Frames used for testing link
Code-Reject/Protocol-Reject	Frame types provide feedback when 1 device receives invalid frame • Unrecognized LCP code (frame type)/bad protocol identifier

Phase 3: Link Termination: After transfer completes: NCP terms link

- Only terms network layer/NCP link || Link remains open until then
- If LCP terms link before NCP: NCP session also term

PPP can term link any time:

- · Loss of carrier/auth failure/link quality/expiration of idle-period timer/admin
- LCP closes link by exchanging Term packets
- Device w/shutdown sends Term-Req msg: Other device replies w/Term-Ack

LCP Packet: Each packet has specific function in exchange of config info depending on type: Code field of LCP identifies it

LCP Packet Fields

Code	Packet Type	Description	
1	Config-Req	Open/reset PPP connection • List of options w/changes to defaults	
2	Config-Ack	All options in last Config-Req recognized • Both PPP peers send/receive Config-Acks: LCP negotiation done	
3	Config-Nak	All LCP options recognized: Some values not good • Config-Nak: Includes mismatched options/acceptable values	
4	Config-Reject	LCP options not good for negotiation • Includes not good options	
5	Term-Req	Close PPP connection	
6	Term-Ack	Response to Term-Req	
7	Code-Reject	LCP code unknown: Includes rejected LCP packet	
8	Protocol-Reject	 PPP frame contains unknown Protocol ID Includes rejected LCP packet Sent by PPP peer in response to PPP NCP for LAN protocol not enab 	
9	Echo-Req	Test PPP connection	
10	Echo-Reply	Response to Echo-Request: Not related to ICMP echo req/replies	
11	Discard-Req	Exercise link in outbound direction	

PPP Config Options: Can be config to support optional funcs:

Optional Functions:

- Auth using PAP/CHAP
- Compression using Stacker/Predictor
- · Multilink combines 2/more chans to increase WAN BW

To negotiate use of these options:

- LCP link-establishment frames contain option info in data field of LCP frame
- If config option not included in frame: Default value is assumed
- Phase complete when config ack frame sent/received

NCP Process: After link initiated: LCP passes control to appropriate NCP

Initially designed for IP packets: PPP can carry data from multiple network layer protocols

- · Uses a modular approach
- · Allows LCP to set up link/transfer details of network protocol to specific NCP
- Each network protocol has corresponding NCP: Each NCP has corresponding RFC
- NCPs use same packet fmt as LCPs

After LCP config/auth basic link: Right NCP invoked to complete specific config of protocol being used

· When successful: Protocol is in open state of established LCP link

• PPP can then carry corresponding layer protocol packets

IPCP: Responsible for config/enabling/disabling IPv4 modules on both ends of link: IPv6CP is an NCP w/same roles for IPv6

IPCP negotiates 2 options:

Compression	Allows devices to negotiate alg to compress TCP/IP headers/save BW • Van Jacobson TCP/IP header compression: Reduces size of TCP/IP headers to as few as 3 bytes • Sig improvement on slow serial lines: For interactive traffic
IPv4-Address	Allows initiating device to specify an IPv4 to use for routing IP over PPP link • Or request IPv4 for responder • Before this: Broadband tech (DSL/cable/dialup) links used IPv4 option

After NCP process complete:

- Link goes into open state: LCP takes over again in link maintenance phase
- Link traffic: Any possible combo of LCP/NCP/Network layer protocol packets
- When data transfer complete: NCP terms protocol link: LCP terms PPP connection

PPP Config Options

Field Length, in Bytes

Option Name	Туре	Length	Description	
Auth Protocol	3	5 or 6	Field indicates auth protocol: PAP/CHAP	
Protocol Compression	7	2	Flag indicating PPP protocol ID compressed to single octet • When 2byte protocol ID in range 0x00 – 0x00-FF	
Addr/Control Field Compression	8	2	Flag indicate PPP addr/control field be removed from header • Address: Always 0xFF • Control: Always 0x03	
Magic # (Error Detection)	5	6	Random # chosen to distinguish peer/detect looped back lines	
Callback	13 or 0x0D	3	1 octet indicator of how callback to be determined	

PPP may include following LCP options: Options config? Corresponding field value inserted into LCP option field

Auth	Peer rtrs exchange auth msgs: 2 choices: • PAP: Password Auth Protocol • CHAP: Challenge Handshake Auth Protocol
Compression	Increases effective throughput on PPP connections: Reduces amt of data in frame • Protocol decompresses frame at destination 2 compression protocols: Cisco:

	1. Stacker 2. Predictor
Error detection	 ID's fault conditions: Quality/Magic # help ensure reliable/loop-free data link Magic #: Helps detect links in looped-back condition Until successfully negotiated: Must be transmitted as 0 Generated randomly at each end of connection
PPP Callback	 Used to enhance sec: Cisco rtr can act as a callback client/server Client: Makes initial call: Requests server call it back: Terms initial call Callback rtr: Answers initial call/makes return call to client based on config statements ppp callback [accept request]
Multilink	Load balancing over rtr ints that PPP uses: AKA MP/MPPP/MLP: • Method for spreading traffic across multiple phys WAN links • Provides packet fragmentation/reassembly/proper seq/multivendor interop • Load balancing on inbound/outbound traffic

PPP Basic Config

Enable PPP on int: Encapsulation method via serial

encapsulation ppp [int config]

Example:

R1(config)# int s0/0/0

R1(config-if)# encapsulation ppp

No args: If not config on Cisco: Default encapsulation for serial ints is HDLC

Compression

R1(config-if) compress [predictor | stac]

- PPP SW compression on serial ints can be config after encapsulation enable
- Can affect sys performance
- If traffic already consists of zip/tar/mpeg/etc...don't use this option

Link Quality Monitoring: LCP provides optional link quality phase: Tests link: Determines quality sufficient to use L3 protocols

ppp quality percentage

• Ensures link meets quality req set; otherwise: Closes

Percentages calc for both incoming/outgoing directions

Outgoing: Calc: Compare total # packets/bytes sent to total # of packets/bytes received by dest node **Incoming**: Calc: Compare total # packets/bytes received to total # packets/bytes sent by dest node

• If link quality % not maintain: Link deemed poor/taken down

LQM: Link Quality Monitoring: Implements time lag so link doesn't bounce up/down

Monitors data dropped on link/Avoids frame looping:

R1(config)# int s0/0/0

R1(config-if)# encapsulation ppp

R1(config-if)# ppp quality 80

PPP Multilink: AKA MP/MPPP/MLP/Multilink:

Config MPPP: 2 steps:

· Create multilink bundle

int multilink number Creates multilink int

- Int config: IP addr assigned to multilink int
- · int enabled for multilink PPP
- int assigned multilink group #

Example:

int multilink 1

ip address 10.0.1.2 255.255.255.252

ipv6 address 2001:db8:cafe:1::2/64

ppp multilink

ppp multilink group 1

• Assign ints to multilink bundle:

Each int part of multilink group:

- Enabled PPP encapsulation
- Enabled multilink PPP

Bound to multilink bundle using multilink group #

Verify

show interfaces

show interfaces serial Verify proper config of HDLC/PPP encapsulation

HDLC: Output of sh int serial should display HDLC

PPP: LCP/NCP states also display **IPv6:** IPCP also displays for IPv6CP

show ppp multilink Verify PPP multilink enabled: Verifies enable/hostnames local/remote endpoints/serial ints

PPP Auth Protocols: Defines extensible LCP: Allows negotiation of auth protocol for auth its peer

- · Before allowing protocols to transmit over link
- RFC 1334: 2 protocols for auth: PAP/CHAP

PAP: Password Authentication Protocol:

- NO encryption
- Usrname/pass sent in plaintext
- · If accepted: Connection allowed

PPP: Performs L2 auth in addition to other layers of auth/encryption/access control/gen sec

- · Provides simple method for remote note to establish ID using 2-way handshake
- Not interactive
- when ppp encapsulation used: Usrname/passwd sent as 1 LCP data package
- Rather than server sending login prompt/waiting for response
- After PPP completes link establishment phase: Remote node keeps sending usrname/passwd pair across link
- Until receiving node ack's/terms connection

Completing: At receiving node: Username/passwd checked by auth server that allows/denies connection

Accept/Reject msg sent to requester

PAP: NOT strong auth protocol: No protection from playback/repeated trial-and-error attacks

PAP may be used in following envs:

- CHAP not supported
- Vendor incompatibilities
- · When plaintext passwds must be avail to simulate a login

CHAP: Challenge Handshake Authentication Protocol:

3-way exchange of shared secret

After auth established w/PAP: Doesn't re-authenticate!

· Leaves network vuln to attack

CHAP: Periodic challenges to make sure remote node still has valid passwd

· Passwd value: Var/changes unpredictably while link exists

After the PPP link establish phase complete: Local rtr sends challenge msg to remote node:

Remote node: Responds w/value calc using 1-way hash function

- Typically MD5: Message Digest 5 based on passwd/challenge msg
- Local rtr checks response against its own calc of expected hash value
 - o If values match: Initiating node ack's auth
 - o If NO match: Initiating node terms connection

CHAP provides:

- Protection against playback attack: Uses var challenge value: Unique/unpredictable
- B/C of this: Resulting hash value also unique/random
- Use of repeated challenges limits time of exposure to attack
- Local rtr/3rd party auth server in control of freg/timing of challenges

PPP Encapsulation/Auth Process

Config PPP Auth

ppp authentication [chap | chap pap | pap chap | pap] [if-needed] [list-name | default] [callin]

chap	Enables CHAP on serial int
рар	Enables PAP on serial int
chap pap	Enables both CHAP/PAP: CHAP before PAP
pap chap	Enables both PAP/CHAP: PAP before CHAP
if-needed	Used w/TACACS/XTACACS • Don't perform CHAP/PAP auth if usr already provided auth • Only avail on async ints
list-name	Used w/AAA/TACACS+ • Specifies name of a list of TACACS+ methods of auth to use • If no list name specified: Sys uses default • Lists created with aaa authentication ppp
default	Used w/AAA/TACACS+ • Created with aaa authentication ppp
callin	Specifies auth on incoming (received) calls only

Config PAP

R₁

username R2 password class int s0/0/0

ip address 10.0.1.1 255.255.255.252 ipv6 address 2001:db8:cafe:1::1/64

encapsulation ppp ppp authentication pap

ppp pap sent-username R1 password class

R2

username R1 password class int s0/0/0

ip address 10.0.1.2 255.255.255.252 ipv6 address 2001:db8:cafe:1::2/64 encapsulation ppp

pap authentication pap

ppp pap sent-username R2 password class

- · Hostname on 1 router must match usrname on other router
- · Passwds must match

Config CHAP

R1

username R2 password class int s0/0/0 ip address 10.0.1.1 255.255.255.252 ipv6 address 2001:db8:cafe:1::1/64 encapsulation ppp ppp authentication chap

R1

username R1 password class int s0/0/0 ip address 10.0.1.2 255.255.255.252 ipv6 address 2001:db8:cafe:1::2/64 encapsulation ppp ppp authentication chap Troubleshooting

debug Used for troubleshooting/accessed from priv EXEC

- Output displays info about various rtr ops/traffic generated/received by it/error msgs
 - · Can consume sig amt of resources: Rtr is forced to process-switch packets being debugged
 - Not used for monitoring

debug ppp Display info about op of PPP

- · NCPs supported on either end of PPP connection
- · Any loops that might exist
- · Nodes that are/aren't properly negotiating
- Errors
- Causes for PAP/CHAP session failures
- Info specific to exchange of PPP connections using CBCP: Callback Control Protocol (used by MS clients
- Incorrect packet seq # info where MPPC compression enabled

debug ppp [packet | negotiation | error | authentication | compression | cbcp]

Param	Usage
packet	packets being sent/received: low lvl dumps
negotiation	PPP packets transmitted during PPP startup: Where options negotiated
error	Protocol errors/stats associated w/PPP connection negotiation/op
authentication	Auth protocol msgs: CHAP/PAP exchanges
compression	Info specific to exchange of PPP connections using MPPC • Useful for obtaining incorrect packet seq # info • Where MPPC enabled
cbcp	Protocol errors/stats associated w/PPP connection negotiations using MSCB

debug ppp packet Packet exchanges under normal PPP op: LCP state/LQM procedures/LCP magic # debug ppp negotiation View LCP negotiations/auth/NCP negotiation debug ppp error Display protocol errors/stats associated w/negotiation/op Troubleshooting PPP Config w/Auth

Code Failure Values:

1	Challenge	2	Response
3	Success	4	Failure
id	ID # per LCP packet fmt	len	Packet length w/out header