Προγραμματισμός με τη γλώσσα python

Alexandros Kanterakis kantale@ics.forth.gr (mailto:kantale@ics.forth.gr)

Διάλεξη 9η, Τρίτη 10 Δεκεμβρίου 2019

Το <u>pandas (http://pandas.pydata.org/)</u> είναι μία βιβλιοθήκη σε python για ανάλυση δεδομένων. Υιοθετεί τη φιλοσοφία της Matlab και R για οργάνωση 2-διάστατων δεδομένων σε μία ειδική δομή που ονομάζεται data frame. Στη βιοπληροφορική το pandas συνήθως είναι χρήσιμο για να κάνοθμε εργασίες που συνήθως γίνονται με το excel. Τα πλεονεκτήματα του pandas είναι:

- Πάρα πολύ γρήγορο. Είναι υλοποιημένο σε C (η python "τρέχει" από πάνω) και έχει πολύ καλή απόδοση για πίνακες που έχουν μέχρι και εκατομύτια από γραμμές.
- Παρέχει ένα interface το οποίο προσομοιάζει τις βάσεις δεδομένων. Με αυτόν τον τρόπο μπορούμε να γράφουμε σύντομες εκφράσεις που κάνουν πολύπλοκες διεργασίες.
- Υποστηρίζεται από τρίτες βιβλιοθήκες για visualization, Machine Learning (π.χ. <u>sci-kit (http://scikit-learn.org/stable/)</u>)
 και στατιστική (π.χ. <u>statmodels (http://statsmodels.sourceforge.net/)</u>).
- Παρέχει δικές του μεθόδους για γρήγορο plotting και στατιστική ανάλυση
- Εύκολη και γρήγορο input / output σε διάφορα formats (excel included)

Συνήθως κάνουμε import το pandas ως εξής:

```
In [1]: import pandas as pd
```

Αν δεν υπάρχει εγκαταστημένων τότε μπορείτε να το εγκαταστείσετε ως εξής:

```
pip install pandas
```

Προσοχή. Πρέπει το pip να βρίσκεται στην ίδια τοποθεσία που βρίσκεται και η python

Για τη παρούσα διάλεξη θα χρησιμοποιήσουμε έναν κατάλογο από <u>GWA studies (https://en.wikipedia.org/wiki/Genome-wide_association_study</u>). Ο κατάλογος βρίσκεται σε αυτό το link: https://www.ebi.ac.uk/gwas/api/search/downloads/full (https://www.ebi.ac.uk/gwas/api/search/downloads/full) για να το κατεβάσετε τοπικά τρέξτε:

Η παραπάνω εντολή σώζει τον κατάλογο στο αρχείο: gwas.tsv

Για να το φορτώσουμε τρέχουμε:

```
In [3]: gwas = pd.read_csv('gwas.tsv', sep='\t')
```

/Users/alexandroskanterakis/anaconda3/envs/arkalos/lib/python3.6/site-packages /IPython/core/interactiveshell.py:2728: DtypeWarning: Columns (23,27) have mix ed types. Specify dtype option on import or set low_memory=False. interactivity=interactivity, compiler=compiler, result=result)

Για να τυπώσουμε μία σύνοψη (πρώτες και τελευταίες γραμμές) των δεδομένων τρέχουμε:

In [4]: gwas

Out[4]:

S1	LINK	DATE JOURNAL LINE		FIRST AUTHOR	PUBMEDID	DATE ADDED TO CATALOG	
Effi variat CHI3 serum Ył	www.ncbi.nlm.nih.gov/pubmed /18403759	N Engl J Med	2008-04-09	Ober C	18403759	2009-09-28	0
A gen assoc stu psorias	www.ncbi.nlm.nih.gov/pubmed /18369459	PLoS Genet	2008-04-04	Liu Y	18369459	2008-06-16	1
Genome- assoc scan o SNPs id	www.ncbi.nlm.nih.gov/pubmed /18385676	Nat Genet	2008-04-03	Amos CI	18385676	2008-06-16	2
Genome assoc scan o SNPs id	www.ncbi.nlm.nih.gov/pubmed /18385676	Nat Genet	2008-04-03	Amos CI	18385676	2008-06-16	3
Genome- assoc scan o SNPs id	www.ncbi.nlm.nih.gov/pubmed /18385676	Nat Genet	2008-04-03	Amos CI	18385676	2008-06-16	4
suscept locus for cancer	www.ncbi.nlm.nih.gov/pubmed /18385738	Nature	2008-04-03	Hung RJ	18385738	2008-06-16	5
A vi assoc with nic depender	www.ncbi.nlm.nih.gov/pubmed /18385739	Nature	2008-04-03	Thorgeirsson TE	18385739	2008-09-16	6
Genome- assoc scan ider a c	www.ncbi.nlm.nih.gov/pubmed /18372901	Nat Genet	2008-03-30	Tenesa A	18372901	2008-06-16	7
Genome assoc scan ider a c	www.ncbi.nlm.nih.gov/pubmed /18372901	Nat Genet	2008-03-30	Tenesa A	18372901	2008-06-16	8
Genome- assoc scan ider a c	www.ncbi.nlm.nih.gov/pubmed /18372901	Nat Genet	2008-03-30	Tenesa A	18372901	2008-06-16	9
A gen	www.ncbi.nlm.nih.gov/pubmed	Nat Genet	2008-03-30	Tomlinson IP	18372905	2008-06-16	10

Για να τυπώσουμε μόνο κάποιες γραμμές:

In [5]: gwas[0:3] # Πρώτες 3 γραμμές

Out[5]:

	DATE ADDED TO CATALOG	PUBMEDID	FIRST AUTHOR	DATE	JOURNAL	LINK	STUDY	DISE
0	2009-09-28	18403759	Ober C	2008-04-09	N Engl J Med	www.ncbi.nlm.nih.gov/pubmed /18403759	Effect of variation in CHI3L1 on serum YKL-40	ΥI
1	2008-06-16	18369459	Liu Y	2008-04-04	PLoS Genet	www.ncbi.nlm.nih.gov/pubmed /18369459	A genome- wide association study of psoriasis a	
2	2008-06-16	18385676	Amos CI	2008-04-03	Nat Genet	www.ncbi.nlm.nih.gov/pubmed /18385676	Genome- wide association scan of tag SNPs ident	I

3 rows × 34 columns

In [6]: gwas[-3:] # Τρεις τελευταίες

Out[6]:

STUDY	LINK	JOURNAL	DATE	FIRST AUTHOR	PUBMEDID	DATE ADDED TO CATALOG	
	www.ncbi.nlm.nih.gov/pubmed /29151059	J Med Genet	2017-11-18	Delgado DA	29151059	2018-01-12	64236
	www.ncbi.nlm.nih.gov/pubmed /29151059	J Med Genet	2017-11-18	Delgado DA	29151059	2018-01-12	64237
	www.ncbi.nlm.nih.gov/pubmed /29151059	J Med Genet	2017-11-18	Delgado DA	29151059	2018-01-12	64238

3 rows × 34 columns

```
In [7]: gwas[["STUDY", "P-VALUE"]] # Μονο συγκεκριμμένες κολόνες
```

Out[7]:

	STUDY	P-VALUE
0	Effect of variation in CHI3L1 on serum YKL-40	1e-13
1	A genome-wide association study of psoriasis a	2e-06
2	Genome-wide association scan of tag SNPs ident	3e-18
3	Genome-wide association scan of tag SNPs ident	7e-06
4	Genome-wide association scan of tag SNPs ident	8e-06
5	A susceptibility locus for lung cancer maps to	5e-20
6	A variant associated with nicotine dependence,	6e-20
7	Genome-wide association scan identifies a colo	9e-26
8	Genome-wide association scan identifies a colo	6e-10
9	Genome-wide association scan identifies a colo	8e-28
10	A genome-wide association study identifies col	3e-13
11	A genome-wide association study identifies col	3e-18
12	Meta-analysis of genome-wide association data	5e-14
13	Meta-analysis of genome-wide association data	1e-10
14	Meta-analysis of genome-wide association data	1e-09
15	Meta-analysis of genome-wide association data	1e-09
16	Meta-analysis of genome-wide association data	1e-08
17	Genome-wide association study provides evidenc	3e-08
18	A genome-wide association study in 574 schizop	1e-06
19	SLC2A9 influences uric acid concentrations wit	3e-70
20	SLC2A9 is a newly identified urate transporter	3e-09
21	Newly identified genetic risk variants for cel	3e-11
22	Newly identified genetic risk variants for cel	4e-09
23	Newly identified genetic risk variants for cel	1e-09
24	Newly identified genetic risk variants for cel	5e-09
25	Newly identified genetic risk variants for cel	7e-08
26	Multiple newly identified loci associated with	9e-29
27	Multiple newly identified loci associated with	2e-18
28	Multiple newly identified loci associated with	2e-12
29	Multiple newly identified loci associated with	6e-10
64209	Identification of a novel locus on chromosome	1e-09
64210	Identification of a novel locus on chromosome	4e-07
64211	Identification of a novel locus on chromosome	3e-07
64212	Genome-wide association study of pigmentary tr	6e-06
64213	Genome-wide association study of pigmentary tr	9e-06
64214	A GWAS Meta-analysis and Replication Study Ide	6e-13
64215	A GWAS Meta-analysis and Replication Study Ide	2e-12
64216	A GWAS Meta-analysis and Replication Study Ide	5e-10
64217	A GWAS Meta-analysis and Replication Study Ide	3e-08
64218	A GWAS Meta-analysis and Replication Study Ide	1e-06
04040	A OMAO Mala analysis and Bankaritan Oradi Ida	7- 07

```
In [8]: gwas[["STUDY", "P-VALUE"]][:3] # Sygkekrimmenes kolones, prwtes 3 grammes

Out[8]:

STUDY P-VALUE

0 Effect of variation in CHI3L1 on serum YKL-40 ... 1e-13
1 A genome-wide association study of psoriasis a... 2e-06
2 Genome-wide association scan of tag SNPs ident... 3e-18
```

Αυτό είναι ισοδύναμο με:

```
In [9]: gwas[:3][["STUDY", "P-VALUE"]]

Out[9]:

STUDY P-VALUE

0 Effect of variation in CHI3L1 on serum YKL-40 ... 1e-13
1 A genome-wide association study of psoriasis a... 2e-06
2 Genome-wide association scan of tag SNPs ident... 3e-18
```

Λίστα με όλες τις κολόνες:

```
In [10]: columns = list(gwas.columns.values)
          columns
Out[10]: ['DATE ADDED TO CATALOG',
           'PUBMEDID'
           'FIRST AUTHOR',
           'DATE',
           'JOURNAL',
           'LINK',
           'STUDY'
           'DISEASE/TRAIT',
           'INITIAL SAMPLE SIZE',
           'REPLICATION SAMPLE SIZE',
           'REGION',
           'CHR ID',
           'CHR_POS',
           'REPORTED GENE(S)',
           'MAPPED GENE',
           'UPSTREAM_GENE_ID',
           'DOWNSTREAM_GENE_ID',
           'SNP_GENE_IDS',
           'UPSTREAM GENE DISTANCE',
           'DOWNSTREAM GENE DISTANCE',
           'STRONGEST SNP-RISK ALLELE',
           'SNPS',
           'MERGED'
           'SNP_ID_CURRENT',
           'CONTEXT',
           'INTERGENIC',
           'RISK ALLELE FREQUENCY',
           'P-VALUE',
           'PVALUE_MLOG',
           'P-VALUE (TEXT)',
           'OR or BETA',
           '95% CI (TEXT)',
           'PLATFORM [SNPS PASSING QC]',
           'CNV']
```

Όλες οι γραμμές που έχουν το γονίδιο BRCA2

```
In [11]: gwas[gwas['MAPPED_GENE'] == 'BRCA2']
```

Out[11]:

STUD	LINK	JOURNAL	DATE	FIRST AUTHOR	PUBMEDID	DATE ADDED TO CATALOG	
Genome wid associatio studie identify fou	www.ncbi.nlm.nih.gov/pubmed /23535733	Nat Genet	2013-04-01	Garcia- Closas M	23535733	2013-09-12	9308
Discover an refinemer of loc associate wi.	www.ncbi.nlm.nih.gov/pubmed /24097068	Nat Genet	2013-10-06	Willer CJ	24097068	2014-05-12	10954
Large-scal genotypin identifies 4 new loci.	www.ncbi.nlm.nih.gov/pubmed /23535729	Nat Genet	2013-04-01	Michailidou K	23535729	2013-09-12	17867
Large-scal associatio analysi identifie ne.	www.ncbi.nlm.nih.gov/pubmed /28604730	Nat Genet	2017-06-12	McKay JD	28604730	2017-09-18	18831
Large-scal associatio analysi identifie ne.	www.ncbi.nlm.nih.gov/pubmed /28604730	Nat Genet	2017-06-12	McKay JD	28604730	2017-09-18	18934
Large-scal associatio analysi identifie ne.	www.ncbi.nlm.nih.gov/pubmed /28604730	Nat Genet	2017-06-12	McKay JD	28604730	2017-09-18	18988
Large-scal associatio analysi identifie ne.	www.ncbi.nlm.nih.gov/pubmed /28604730	Nat Genet	2017-06-12	McKay JD	28604730	2017-09-18	25094
Rar variants of large effect in BRCA and CHE.	www.ncbi.nlm.nih.gov/pubmed /24880342	Nat Genet	2014-06-01	Wang Y	24880342	2015-01-21	27113
Rar variants of large effect in BRCA and CHE.	www.ncbi.nlm.nih.gov/pubmed /24880342	Nat Genet	2014-06-01	Wang Y	24880342	2015-01-21	27115
Cross cance genome wid analysis c lung, ova.	www.ncbi.nlm.nih.gov/pubmed /27197191	Cancer Res	2016-04-20	Fehringer G	27197191	2017-02-03	41192
Cross cance genome wid analysis c lung, ova.	www.ncbi.nlm.nih.gov/pubmed /27197191	Cancer Res	2016-04-20	Fehringer G	27197191	2017-02-03	41215
Identificatio of four nove susceptibilit	www.ncbi.nlm.nih.gov/pubmed /27117709	Nat Commun	2016-04-27	Couch FJ	27117709	2017-03-31	41316

Όλα τα διαφορετικά Diseases / Traits

ή μπορούμε να πάρουμε μία λίστα:

```
In [13]: list(gwas["DISEASE/TRAIT"].unique())
```

```
Out[13]: ['YKL-40 levels',
           'Psoriasis',
           'Lung cancer'
           'Nicotine dependence',
           'Colorectal cancer',
           'Type 2 diabetes',
           'Breast cancer',
           'Schizophrenia',
           'Urate levels',
           'Celiac disease'
           'Prostate cancer'
           'LDL cholesterol',
           'Fetal hemoglobin levels',
           'Recombination rate (females)',
           'Recombination rate (males)',
           'Iris color',
           'Systemic lupus erythematosus',
           'Type 1 diabetes',
           'HDL cholesterol',
           'Triglycerides',
           'Height',
           'Amyotrophic lateral sclerosis',
           'Coronary spasm',
           'Rheumatoid arthritis',
           'Blond vs. brown hair color',
           'Blue vs. green eyes',
           'Freckles',
           'Skin pigmentation',
           'Select biomarker traits',
           'Body mass index',
           'Waist circumference',
           'Sleep-related phenotypes',
           'Cystatin C',
           'Thyroid stimulating hormone',
           'Urinary albumin excretion',
           'Bone mineral density',
           'Hip geometry',
           'Atrial fibrillation',
           'Heart failure',
           'Major CVD',
           'Blood pressure',
           'Tonometry',
           'Morbidity-free survival',
           'Aging traits',
           'Diabetes related insulin traits',
           'Fasting plasma glucose',
           'Diabetes (incident)',
           'Electrocardiographic traits',
           'Heart rate variability traits',
           'Coronary artery calcification',
           'Subclinical atherosclerosis traits (other)',
           'Cognitive test performance',
           'Volumetric brain MRI',
           'Echocardiographic traits',
           'Endothelial function traits'
           'Exercise treadmill test traits',
           'Mean forced vital capacity from 2 exams',
           'Pulmonary function',
           'Factor VII',
           'Hemostatic factors and hematological phenotypes',
           "Crohn's disease",
           'F-cell distribution',
           'Glaucoma (exfoliation)',
           'Type 2 diabetes nephropathy',
           'Neuroticism',
           'Multiple sclerosis',
           'Asthma',
           'Obesity-related traits',
```

Όλες οι γραμμές που περιέχουν τον Brest στο Disease / Train

```
In [14]: gwas[gwas["DISEASE/TRAIT"].str.contains("Breast")]
```

Out[14]:

	DATE ADDED TO CATALOG	PUBMEDID	FIRST AUTHOR	DATE	JOURNAL	LINK	STUDY
17	2008-06-16	18326623	Gold B	2008-03-11	Proc Natl Acad Sci U S A	www.ncbi.nlm.nih.gov/pubmed /18326623	Genome-wide associatior study provides evidenc
126	2008-09-10	17903305	Murabito JM	2007-09-19	BMC Med Genet	www.ncbi.nlm.nih.gov/pubmed /17903305	A genome- wide associatior study o breast and
127	2008-09-10	17903305	Murabito JM	2007-09-19	BMC Med Genet	www.ncbi.nlm.nih.gov/pubmed /17903305	A genome wide association study o breast and
128	2008-09-10	17903305	Murabito JM	2007-09-19	BMC Med Genet	www.ncbi.nlm.nih.gov/pubmed /17903305	A genome wide association study o breast and
129	2008-09-10	17903305	Murabito JM	2007-09-19	BMC Med Genet	www.ncbi.nlm.nih.gov/pubmed /17903305	A genome wide association study o breast and
130	2008-09-10	17903305	Murabito JM	2007-09-19	BMC Med Genet	www.ncbi.nlm.nih.gov/pubmed /17903305	A genome wide association study o breast and
238	2008-06-16	17529967	Easton DF	2007-05-27	Nature	www.ncbi.nlm.nih.gov/pubmed /17529967	Genome-wide associatior study identifies novel
239	2008-06-16	17529967	Easton DF	2007-05-27	Nature	www.ncbi.nlm.nih.gov/pubmed /17529967	Genome-wide associatior study identifies novel
240	2008-06-16	17529967	Easton DF	2007-05-27	Nature	www.ncbi.nlm.nih.gov/pubmed /17529967	Genome-wide association study identifies novel
241	2008-06-16	17529967	Easton DF	2007-05-27	Nature	www.ncbi.nlm.nih.gov/pubmed /17529967	Genome-wide association study identifies novel
242	2008-06-16	17529967	Easton DF	2007-05-27	Nature	www.ncbi.nlm.nih.gov/pubmed /17529967	Genome-wide association study identifies novel

Το ίδιο αλλά χωρίς να νοιαζόμαστε για μικρά/κεφαλαία (case insensitive search)

```
In [15]: gwas[gwas["DISEASE/TRAIT"].str.contains("Breast", case=False)]
```

Out[15]:

	DATE ADDED TO CATALOG	PUBMEDID	FIRST AUTHOR	DATE	JOURNAL	LINK	STUDY
17	2008-06-16	18326623	Gold B	2008-03-11	Proc Natl Acad Sci U S A	www.ncbi.nlm.nih.gov/pubmed /18326623	Genome-wide associatior study provides evidenc
126	2008-09-10	17903305	Murabito JM	2007-09-19	BMC Med Genet	www.ncbi.nlm.nih.gov/pubmed /17903305	A genome- wide association study o breast and
127	2008-09-10	17903305	Murabito JM	2007-09-19	BMC Med Genet	www.ncbi.nlm.nih.gov/pubmed /17903305	A genome wide association study o breast and
128	2008-09-10	17903305	Murabito JM	2007-09-19	BMC Med Genet	www.ncbi.nlm.nih.gov/pubmed /17903305	A genome wide associatior study o breast and
129	2008-09-10	17903305	Murabito JM	2007-09-19	BMC Med Genet	www.ncbi.nlm.nih.gov/pubmed /17903305	A genome wide association study o breast and
130	2008-09-10	17903305	Murabito JM	2007-09-19	BMC Med Genet	www.ncbi.nlm.nih.gov/pubmed /17903305	A genome- wide association study o breast and
238	2008-06-16	17529967	Easton DF	2007-05-27	Nature	www.ncbi.nlm.nih.gov/pubmed /17529967	Genome-wide associatior study identifies novel
239	2008-06-16	17529967	Easton DF	2007-05-27	Nature	www.ncbi.nlm.nih.gov/pubmed /17529967	Genome-wide associatior study identifies novel
240	2008-06-16	17529967	Easton DF	2007-05-27	Nature	www.ncbi.nlm.nih.gov/pubmed /17529967	Genome-wide associatior study identifies novel
241	2008-06-16	17529967	Easton DF	2007-05-27	Nature	www.ncbi.nlm.nih.gov/pubmed /17529967	Genome-wide associatior study identifies novel
242	2008-06-16	17529967	Easton DF	2007-05-27	Nature	www.ncbi.nlm.nih.gov/pubmed /17529967	Genome-wide association study identifies novel

Τύπωσε για όλα τα διαφορετικά γονίδια, πόσες γραμμές υπάρχουν

In [16]:	gwas["MAPPED_GENE"].value_co	unts()			
Out[16]:	LOC105377462	384			
	IREB2	163			
	FTO	161			
	TGFB2 - LOC105372924	150			
	GCKR	147			
	FAM13A	124			
	EEFSEC	123			
	CHRNA3	116			
	HLA-DRB1 - LOC107986589	103			
	FADS1	91			
	TCF7L2	86			
	LOC107986647 - LOC105378010	85			
	TERT	85			
	LOC105373352 - TMEM18	80			
	CHRNA5	79 79			
	CDKN2B-AS1 RUVBL1	79 79			
	HYKK	77			
	HLA-DQB1 - MTCO3P1	77			
	TRIB1 - LOC105375746	77			
	ABO - LCN1P2	7.7 7.5			
	CSMD1	73			
	LOC101928778 - SEC16B	70			
	HERPUD1 - CETP	70			
	TMPRSS6	68			
	ZPR1	68			
	LOC105378797	68			
	JAZF1	67			
	VEGFA - LOC105375070	67			
	HLA-DRB9 - HLA-DRB5	66			
	HIST2H3DP1 - RPL22P6	1			
	CUTC, COX15	1			
	LOC107984948 - KLF17	1			
	ITPKB-IT1, ITPKB	1			
	LOC105370174 - VWA8	1			
	CACNA1C, LOC107984540	1			
	RN7SKP279 - LOC107984373	1			
	AGO4	1			
	C14orf159	1 1			
	DNAL4 MRPS27	1			
	SCRN3	1			
	ACD	1			
	STRADA	1			
	CAPZA2 - LOC105375465	1			
	OR52Q1P - LOC107984304	1			
	HKDC1, LOC101928994	1			
	LCE1F - LCE1E	1			
	SUDS3	1			
	LARS2, LARS2-AS1	1			
	BAG3	1			
	ZFP82	1			
	NSMCE2	1			
	LOC105376311	1			
	MGST3 - ALDH9A1	1			
	SLC1A1, SPATA6L	1			
	MIR7515HG - LINC00487	1			
	LOC105373324	1			
	APOOP3 - LEMD3	1			
	PSMA3	1			
	Name: MAPPED_GENE, Length: 19	9192, dtyp	pe: int64		

Κάνε ένα bar plot για τα πρώτα 10 από αυτά:

```
In [17]: import matplotlib.pyplot as plt
            gwas["MAPPED_GENE"].value_counts()[:10].plot(kind="bar")
Out[17]: <matplotlib.axes._subplots.AxesSubplot at 0x114e77128>
In [18]: plt.show()
              400
             350
             300
             250
             200
             150
             100
              50
                        IREB2
                                   GFB2 - LOC105372924
                                              FAM13A
                                                              HLA-DRB1 - LOC107986589
                              5
                   .0C105377462
```

Μπορούμε να διαγράψουμε ένα πεδίο:

```
In [19]: gwas = gwas.drop('LINK', 1)
```

Μπορούμε να μετατρέψουμε ένα πεδίο σε ένα άλλο φορμάτ. Π.χ:

```
In [20]: gwas['DATE'] = pd.to_datetime(gwas["DATE"]) # Μετατροπή του DATE από string σε datetime
```

Τώρα μπορούμε να κάνουμε sort τα δεδομένα μας με βάση το DATE:

```
In [21]: gwas_date_sorted = gwas.sort_values('DATE')
```

Και μπορούμε να κάνουμε plot όλα τα p-values με βάση το DATE που έγιναν publish

```
In [22]:
          gwas_date_sorted['P-VALUE'].plot()
          _____
          TypeError
                                                    Traceback (most recent call last)
          <ipython-input-22-d0f6d99f691a> in <module>()
          ---> 1 gwas_date_sorted['P-VALUE'].plot()
          ~/anaconda3/envs/arkalos/lib/python3.6/site-packages/pandas/plotting/_core.py
          in __call__(self, kind, ax, figsize, use_index, title, grid, legend, style, lo
          gx, logy, loglog, xticks, yticks, xlim, ylim, rot, fontsize, colormap, table,
          yerr, xerr, label, secondary y, **kwds)
             2451
                                             colormap=colormap, table=table, yerr=yerr,
             2452
                                             xerr=xerr, label=label, secondary_y=seconda
          ry y,
          -> 2453
                                             **kwds)
             2454
                       _call__._doc__ = plot_series.__doc__
             2455
          ~/anaconda3/envs/arkalos/lib/python3.6/site-packages/pandas/plotting/_core.py
          in plot series(data, kind, ax, figsize, use index, title, grid, legend, style,
          logx, logy, loglog, xticks, yticks, xlim, ylim, rot, fontsize, colormap, tabl
          e, yerr, xerr, label, secondary_y, **kwds)
             1892
                                   yerr=yerr, xerr=xerr,
             1893
                                   label=label, secondary y=secondary y,
          -> 1894
                                   **kwds)
             1895
             1896
          ~/anaconda3/envs/arkalos/lib/python3.6/site-packages/pandas/plotting/_core.py
          in _plot(data, x, y, subplots, ax, kind, **kwds)
             1692
                          plot_obj = klass(data, subplots=subplots, ax=ax, kind=kind, **
          kwds)
             1693
                     plot obj.generate()
          -> 1694
             1695
                     plot obj.draw()
                     return plot_obj.result
             1696
          ~/anaconda3/envs/arkalos/lib/python3.6/site-packages/pandas/plotting/_core.py
          in generate(self)
              241
                      def generate(self):
              242
                          self. args adjust()
          --> 243
                          self._compute_plot_data()
              244
                          self._setup_subplots()
                          self. make plot()
              245
          ~/anaconda3/envs/arkalos/lib/python3.6/site-packages/pandas/plotting/ core.py
          in _compute_plot_data(self)
              350
                         if is empty:
              351
                              raise TypeError('Empty {0!r}: no numeric data to '
          --> 352
                                               'plot'.format(numeric data. class . nam
          e__))
              353
                          self.data = numeric_data
              354
          TypeError: Empty 'DataFrame': no numeric data to plot
Τι έγινε εδώ;
 In [23]: set([type(x) for x in gwas date sorted['P-VALUE']])
```

Κάποια p-values είναι str και κάποια float! Ποια είναι strings? Ας προσπαθήσουμε να τα μετατρέψουμε όλα σε numberic:

Out[23]: {float, str}

```
In [24]: pd.to_numeric(gwas_date_sorted['P-VALUE'])
        ______
        ValueError
                                                Traceback (most recent call last)
        pandas/ libs/src/inference.pyx in pandas. libs.lib.maybe convert numeric (pand
        as/_libs/lib.c:56156)()
        ValueError: Unable to parse string "2E-1449"
        During handling of the above exception, another exception occurred:
        ValueError
                                                Traceback (most recent call last)
        <ipython-input-24-8a7ceacdb8bc> in <module>()
        ---> 1 pd.to_numeric(gwas_date_sorted['P-VALUE'])
        ~/anaconda3/envs/arkalos/lib/python3.6/site-packages/pandas/core/tools/numeri
        c.py in to_numeric(arg, errors, downcast)
                           coerce numeric = False if errors in ('ignore', 'raise') el
        se True
            125
                           values = lib.maybe_convert_numeric(values, set(),
         --> 126
                                                            coerce numeric=coerce n
        umeric)
            127
            128
                   except Exception:
        pandas/_libs/src/inference.pyx in pandas._libs.lib.maybe_convert_numeric (pand
        as/_libs/lib.c:56638)()
        ValueError: Unable to parse string "2E-1449" at position 35122
```

Αποτυχία. Ας του πούμε να βάλει NaN values όπου η μετατροπή αποτυγχάνει:

```
In [25]: pd.to_numeric(gwas_date_sorted['P-VALUE'], errors='coerce')
Out[25]: 274
                   4.000000e-08
                   8.000000e-06
          273
          272
                   1.000000e-10
                   2.000000e-06
         271
         270
                   2.000000e-06
          269
                   7.000000e-06
         268
                   8.000000e-12
                   5.000000e-10
          408
         266
                   2.000000e-06
          267
                   6.00000e-06
         336
                   6.000000e-08
          409
                   2.000000e-34
          265
                   3.000000e-06
          410
                   9.000000e-06
          264
                   6.000000e-06
          262
                   3.000000e-06
                   2.000000e-06
          261
          260
                   7.000000e-07
          263
                   5.000000e-06
          411
                   2.000000e-18
                   2.000000e-12
         259
          747
                   1.000000e-06
          258
                   4.000000e-07
                   3.000000e-15
          41851
         256
                   1.000000e-12
         257
                   9.00000e-13
          414
                   1.000000e-39
          413
                   6.000000e-18
          412
                   2.000000e-14
          324
                   2.000000e-06
          64151
                   7.000000e-09
          64152
                   2.000000e-08
                   4.000000e-11
          64153
          64154
                   3.000000e-09
          64155
                   3.000000e-13
          64148
                   7.000000e-13
          64138
                   3.000000e-08
          64139
                   2.000000e-09
          64136
                   3.000000e-10
          64120
                   9.000000e-09
          64121
                   1.000000e-09
          64122
                   9.000000e-11
                   7.000000e-07
         64078
          64124
                   1.000000e-08
          64125
                   6.00000e-11
          64137
                   1.000000e-12
          64127
                   3.000000e-09
          64126
                   1.000000e-08
          64129
                   4.000000e-13
          64130
                   4.000000e-09
          64131
                   1.000000e-09
          64132
                   3.000000e-09
                   4.000000e-08
          64133
                   5.000000e-12
          64134
          64135
                   3.00000e-08
          64128
                   2.000000e-16
          64123
                   9.000000e-11
          64032
                   8.00000e-08
                   3.000000e-07
          64031
          64234
                   4.000000e-06
         Name: P-VALUE, Length: 64239, dtype: float64
```

Ωραία ας αντικαταστήσουμε τώρα το παλιό με το νέο πεδίο:

Τώρα μπορούμε να δούμε ποιες γραμμή είναι NaN

```
In [27]:
            gwas_date_sorted[gwas_date_sorted['P-VALUE'].isnull()]
Out[27]:
                        DATE
                                                                                                      INITIAL
                      ADDED
                                             FIRST
                              PUBMEDID
                                                        DATE JOURNAL
                                                                            STUDY DISEASE/TRAIT
                                                                                                     SAMPLE
                                          AUTHOR
                          TO
                                                                                                        SIZE
                    CATALOG
                                                                           Six Novel
                                                                                                         9541
                                                                                           Vascular
                                                                                                     European
                                                                               Loci
                                                                   PLoS
                                                                         Associated
                                                                                         endothelial
                                                                                                      ancestry
            37312 2016-12-01
                                26910538
                                           Choi SH 2016-02-24
                                                                   Genet
                                                                                       growth factor
                                                                                                    individuals,
                                                                          Circulating
                                                                                             levels
                                                                                                        1,115
                                                                             VFG...
                                                                                                        Cile...
```

1 rows × 33 columns

Μία γραμμή δημιουργούσε αυτό το πρόβλημα. Ας τη βγάλουμε:

```
In [28]: gwas_date_sorted = gwas_date_sorted[~gwas_date_sorted['P-VALUE'].isnull()]
```

Τώρα μπορούμε να κάνουμε το plot:

Τι είναι αυτό καλέ; Από default στον X άξονα βάζει το index του dataframe:

Το index είναι ένα μοναδικό στοιχείο που χαρακτηρίζει κάθε γραμμή. Από default περιέχει τον άυξων αριθμό της γραμμής στο CSV αρχείο. Μπορούμε όμως να αλλάξουμε το index:

Παρατηρούμε ότι όσο περνάει ο χρόνος. Οι GWAS έρευνες που γίνονται έχουν πιο χαμηλό p-value.

Μπορούμε να φτιάξουμε ένα νέα field μέσω του index

```
In [33]: gwas_date_sorted2['YEAR'] = gwas_date_sorted2.index.year
```

Μπορούμε επίσης να "γκρουπάρουμε" όλες τις γραμμές ανάλογα με τις τιμές ενός πεδίου:

```
In [34]: gwas_date_sorted2.groupby('YEAR').aggregate('count')
Out[34]:
```

DATE INITIAL ADDED FIRST **REPLICATIO PUBMEDID** DATE JOURNAL STUDY DISEASE/TRAIT SAMPLE **AUTHOR** то **SAMPLE SIZ** SIZE **CATALOG YEAR** 11972 11972 14806 14806 15167 15167

13 rows × 33 columns

To aggregate εφαρμόζει μία συνάρτηση σε κάθε ένα group ξεχωριστά. Υπάρχουν πολλές built-in συναρτήσεις όπως οι count, mean, median, sum, min, max.

Π.χ: πλοτάρουμε το πλήθος των entries ανά χρόνο

```
gwas_date_sorted2.groupby('YEAR').aggregate('count')['JOURNAL'].plot()
In [35]:
Out[35]: <matplotlib.axes._subplots.AxesSubplot at 0x12077fa90>
In [36]:
          plt.show()
           14000
           12000
           10000
            8000
            6000
            4000
            2000
               0
                                                 2014
                                                         2016
                   2006
                          2008
                                  2010
                                         2012
                                      YEAR
```

Τυπώνουμε όλες τις γραμμές που έχουν MAPPED_GENE το BRCA2 και έχουν p-value<0.0000001

In [37]: gwas_date_sorted2[(gwas_date_sorted2["MAPPED_GENE"] == "BRCA2") & (gwas_date_so
 rted2['P-VALUE'] < 0.000000001)]</pre>

Out[37]:

		DATE ADDED TO CATALOG	PUBMEDID	FIRST AUTHOR	DATE	JOURNAL	STUDY	DISEASE/TRAIT	SAI
	DATE								
	2013-10-06	2014-05-12	24097068	Willer CJ	2013-10-06	Nat Genet	Discovery and refinement of loci associated wi	LDL cholesterol	
	2014-06-01	2015-01-21	24880342	Wang Y	2014-06-01	Nat Genet	Rare variants of large effect in BRCA2 and CHE	Lung cancer	3,44 aden
	2014-06-01	2015-01-21	24880342	Wang Y	2014-06-01	Nat Genet	Rare variants of large effect in BRCA2 and CHE	Lung cancer	3,44 aden
	2016-04-20	2017-02-03	27197191	Fehringer G	2016-04-20	Cancer Res	Cross- cancer genome- wide analysis of lung, ova	Cancer	5,02 ar ca
	2016-04-20	2017-02-03	27197191	Fehringer G	2016-04-20	Cancer Res	Cross- cancer genome- wide analysis of lung, ova	Cancer (pleiotropy)	5,02 ar ca
	2017-02-21	2017-06-26	28334899	Spracklen CN	2017-02-21	Hum Mol Genet	Association analyses of East Asian individuals	LDL cholesterol levels	, Asi
	2017-06-12	2017-09-18	28604730	McKay JD	2017-06-12	Nat Genet	Large-scale association analysis identifies ne	Lung cancer	ance
	2017-06-12	2017-09-18	28604730	McKay JD	2017-06-12	Nat Genet	Large-scale association analysis identifies ne	Squamous cell lung carcinoma	7,42 ance
	2017-10-23	2017-12-19	29058716	Milne RL	2017-10-23	Nat Genet	Identification of ten variants associated with	Breast cancer (estrogen- receptor negative)	ance
	2017-10-23	2017-11-30	29059683	Michailidou K	2017-10-23	Nature	Association analysis identifies 65 new breast 	Breast cancer	ance
	10 rows × 3	4 columns							
In [38]:	g=gwas_da	te_sorted	12						

Όλες οι γραμμές που έχουν χρωμόσωμα που ανοίκει στον πίνακα ['1', '2', ... '22', 'X', 'Y']

```
In [39]: g3 = g[g["CHR_ID"].isin([str(x) for x in range(1,23)] + ["X", "Y"])]
```

Πόσες γραμμές ανά χρωμόσωμα έχουμε;

```
In [40]: g3["CHR_ID"].value_counts()
Out[40]: 6
                6067
                5529
                5039
          3
                4122
          4
                3554
                3485
          11
                3348
                3035
          7
          12
                2912
          8
                2791
          10
                2755
          15
                2534
                2512
          16
                2318
          19
                2177
          17
                2130
                1640
          14
          20
                1440
          13
                1405
                1278
          18
          22
                1091
          21
                 550
          Х
                 372
          Y
                   2
          Name: CHR_ID, dtype: int64
```

Ποιο είναι το πιο χαμηλό p-value ανά χρωμόσωμα;

```
g3.groupby("CHR_ID")["P-VALUE"].aggregate('min')
Out[41]: CHR_ID
                 0.000000e+00
          1
          10
                 0.000000e+00
                 0.000000e+00
          11
                 0.000000e+00
          12
          13
                9.000000e-256
                2.000000e-188
          14
          15
                1.000000e-300
          16
                 0.000000e+00
          17
                2.000000e-298
                3.000000e-200
          18
                 0.000000e+00
          19
          2
                 0.000000e+00
          20
                2.000000e-200
          21
                4.000000e-104
          22
                5.000000e-178
                 0.000000e+00
          3
          4
                 0.000000e+00
                5.000000e-274
                 0.000000e+00
          6
                 0.000000e+00
          7
          8
                5.000000e-217
          9
                1.000000e-312
                1.000000e-247
          Х
                 9.00000e-07
          Y
          Name: P-VALUE, dtype: float64
```

Μπορούμε να σώσουμε ένα pandas αντικείμενο σε csv (ή κάποιο άλλο φορμάτ):

```
In [42]: g3.to_csv('results.csv')
```

Και σε excel. Για να γίνει αυτό χρειάζεται το πακέτο xlwt:

```
In [44]: !pip install xlwt

Collecting xlwt

Downloading xlwt-1.3.0-py2.py3-none-any.whl (99kB)

100% | 100kB 546kB/s a 0:00:01

Installing collected packages: xlwt
Successfully installed xlwt-1.3.0

In [45]: g3.to_excel('results.xls')
```

Ένα άλλος παράδειγμα: Από όλα τα studies που έχουν το Breast στο DISEASE/TRAIN και έχουν PVALUE<10^-10, βρες το χρωμόσωμα που έχει τα περισσότερα studies

```
In [46]: g3[ (g3["DISEASE/TRAIT"].str.contains('Breast')) & (g3["PVALUE_MLOG"]>10)].grou
    pby("CHR_ID")['JOURNAL'].aggregate('count').idxmax()
Out[46]: '5'
```

Αναμενόμενο αφού το BRCA2 βρίσκεται στο χρωμόσωμα 5

Να και ένα pie-chart με την κατανομή των studies ανά χρωμόσωμα:

ΠΡΟΣΟΧΗ! Ποτέ μην χρησιμοποιείται pie-chart σε (σοβαρές) ανοφορές/paper. Διαβάστε <u>αυτό</u> (http://www.businessinsider.com/pie-charts-are-the-worst-2013-6) και <u>αυτό (https://blog.funnel.io/why-we-dont-use-pie-charts-and-some-tips-on-better-data-visualizations</u>).

```
In [47]: g3[ (g3["DISEASE/TRAIT"].str.contains('Breast')) & (g3["PVALUE_MLOG"]>10)].grou
    pby("CHR_ID")['CHR_ID'].aggregate('count').plot(kind='pie')

Out[47]: <matplotlib.axes._subplots.AxesSubplot at 0x12b0d2550>
In [48]: plt.show()
```


Μερικά ακόμα παραδείγματα:

Ποιος είναι ο ερευνητής που έχει τις περισσότερες δημοσιεύσεις στο Nature Genetics;

Ποιο region περιέχει τις περισσότερες μελέτες σχετικά με καρκίνο;

Ποιος είναι ο μέσος όρος και το median του allele_frequency για όλα τα variants που ανακαλύπτοντε κάθε χρόνο;

```
In [53]: # Μετατρέπουμε το ALLELE FREQUENCY σε numeric (από string)
         g3['RISK ALLELE FREQUENCY'] = pd.to_numeric(g3['RISK ALLELE FREQUENCY'], error
         s='coerce')
         # Ο Μέσος όρος. ΠΡΟΣΟΧΗ! Αφαιρούμε όσα έχουν null RISK ALLELE FREQUENCY
         g3[~g3['RISK ALLELE FREQUENCY'].isnull()].groupby('YEAR')['RISK ALLELE FREQUENC
         Y'].aggregate('mean')
         /Users/alexandroskanterakis/anaconda3/envs/arkalos/lib/python3.6/site-packages
         /ipykernel_launcher.py:2: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row_indexer,col_indexer] = value instead
         See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/sta
         ble/indexing.html#indexing-view-versus-copy
Out[53]: YEAR
                 0.370000
         2006
         2007
                 0.415852
         2008
                 0.391309
         2009
                 0.364374
                 0.359003
         2010
         2011
                 0.389704
         2012
                 0.332810
         2013
                 0.413206
         2014
                 0.425324
         2015
                 0.508952
         2016
                 0.366965
         2017
                 0.387201
         Name: RISK ALLELE FREQUENCY, dtype: float64
In [54]: # To median
         g3[~g3['RISK ALLELE FREQUENCY'].isnull()].groupby('YEAR')['RISK ALLELE FREQUENC
         Y'].aggregate('median')
Out[54]: YEAR
         2006
                 0.370000
         2007
                 0.400000
         2008
                 0.350000
         2009
                 0.320000
         2010
                 0.330000
         2011
                 0.350000
         2012
                 0.290000
         2013
                 0.378664
         2014
                 0.400000
         2015
                 0.494200
         2016
                 0.336300
         2017
                 0.359500
         Name: RISK ALLELE FREQUENCY, dtype: float64
```

Και τα δυο μαζί:

```
g4 = g3[~g3['RISK ALLELE FREQUENCY'].isnull()].groupby('YEAR')['RISK ALLELE FRE
In [81]:
         QUENCY'].aggregate(['mean', 'median'])
```

Out[81]:

	mean	median
YEAR		
2006	0.370000	0.370000
2007	0.415852	0.400000
2008	0.391309	0.350000
2009	0.364374	0.320000
2010	0.359003	0.330000
2011	0.389704	0.350000
2012	0.332810	0.290000
2013	0.413206	0.378664
2014	0.425324	0.400000
2015	0.508952	0.494200
2016	0.366965	0.336300
2017	0.387201	0.359500

Ας κάνουμε ένα scatter plot με τον x να είναι το YEAR και το y να είναι τα mean και median

```
In [71]: g4.plot(style='.')
Out[71]: <matplotlib.axes._subplots.AxesSubplot at 0x12077ff60>
In [72]: plt.show()
                    mean
           0.50
                     median
           0.45
           0.40
           0.35
           0.30
                      2008
                              2010
                                               2014
                                                        2016
              2006
                                       2012
                                     YEAR
```

Και ένα scatter plot με το χ να είναι το mean και το y το median:

```
In [78]: g4.plot.scatter(x='mean', y='median')
Out[78]: <matplotlib.axes._subplots.AxesSubplot at 0x129569860>
```


Ένας (από τους πολλούς) τρόπους για να φτιάξετε ένα data frame από δικά σας δεδομένα είναι:

Πως επιλέγουμε συγκεκριμένες γραμμές

Πάρε μόνο τις γραμμές 2 και 4

```
In [13]: df.loc[[1,3]]
Out[13]:

A B C

1 2 bb False

3 4 dd True
```

Μετατροπη του DataFrame σε dictionary:

Προσθήκη νέας κολόνας από συνδοιασμό άλλω κολόνων:

```
In [32]: df['D'] = df['A'].apply(lambda x:x**2)
Out[32]:
            A B
                     C D
          0 1 aa
                  True
          1 2 bb False
                        4
          2 3 cc False
                        9
          3 4 dd True 16
In [33]: | df['E'] = df['C'].map({True: 'Male', False: 'Female'})
Out[33]:
                    C D
                              Ε
            A B
                   True
          0 1 aa
                            Male
          1 2 bb False
                        4 Female
          2 3 cc False
                        9 Female
          3 4 dd True 16
                            Male
```

Αλλαγή του ονόματος των στηλών:

```
In [34]: df = df.rename(index=str, columns={'C': 'Is Male', 'B': 'City'})
          df
Out[34]:
             A City Is Male D
                                   Ε
                 aa
                       True
                                Male
           1 2
                 bb
                      False
                            4 Female
             3
                      False
                 dd
                       True 16
                                Male
```

Αλλαγή του ονόματων του index

```
In [35]: df.index = df.index.rename('Εγγραφές')
```

Out[35]:

	A	City	Is Male	D	E
Εγγραφές					
0	1	aa	True	1	Male
1	2	bb	False	4	Female
2	3	СС	False	9	Female
3	4	dd	True	16	Male