Speed Dating

Here is where you can meet your true love

— ki, Sophia, Rainfield

Agenda

01

Dataset & Business Value

02

Data Collection

03

Data Preprocessing

04

Model Creation

05

Model Evaluation

06

Conclusion & Improvements

Our Dataset

Data Source

"Speed Dating Experiment" from Kaggle.com

Experiment Design

Serial Experimental Speed Dating Events from 2002-2004

Study Goal

Gender Differences in Mate Selection

Data Attributes

Demographics, Dating Habits, Lifestyle, Self Perceptions, Ratings on the Dates

• • •

Experimental Flow

Business Questions

Clusters

What are the Clusters with Highest Match Rate ?

Attributes

Which attributes are the most desirable in potential mate selection?

Business Value

Offer solutions for speed-dating agencies and dating apps to improve match success rates

Preprocessing

Data Extraction

Extract Useful Attributes

Feature Selection - Part 1

Select 30 out of 200 Features which best describe participants' personalities (Demographics, Interests, Self Perceptions)

Feature Selection - Part 2

Keep 5 Self Perceptions Features & Use K-Means to pick extra 3 Features (C²⁵₃) with Highest Silhouette Score

Feature Selection - Part 3

Adopt PCA to Reduce Dimensions in Remaining 22 Features

Data Cleaning

Impute Missing Values with Mean

Feature Scaling

Apply Standard Scaler

Merge Datasets

Modelling

Display Match Rate between Clusters

Feature Selection

10 Features

with Higher Silhouette Score

30**C**10= 30,045,015 Too many Combinations

Feature Selection

Final Dataset

	iid	id	gender	idg	condtn	wave	round	position	positin1	order		sinc3_3	intel3_3	fun3_3	amb3_3	attr5_3	sinc5_3	intel5_3	fun5_3	amb5_3	class
0	1	1.0	0	1	1	1	10	7	NaN	4		7.0	7.0	7.0	7.0	NaN	NaN	NaN	NaN	NaN	f0
1	1	1.0	0	1	1	1	10	7	NaN	3		7.0	7.0	7.0	7.0	NaN	NaN	NaN	NaN	NaN	f0
2	1	1.0	0	1	1	1	10	7	NaN	10		7.0	7.0	7.0	7.0	NaN	NaN	NaN	NaN	NaN	f0
3	1	1.0	0	1	1	1	10	7	NaN	5		7.0	7.0	7.0	7.0	NaN	NaN	NaN	NaN	NaN	f0
4	1	1.0	0	1	1	1	10	7	NaN	7		7.0	7.0	7.0	7.0	NaN	NaN	NaN	NaN	NaN	f0
5	1	1.0	0	1	1	1	10	7	NaN	6		7.0	7.0	7.0	7.0	NaN	NaN	NaN	NaN	NaN	f0
6	1	1.0	0	1	1	1	10	7	NaN	1		7.0	7.0	7.0	7.0	NaN	NaN	NaN	NaN	NaN	f0
7	1	1.0	0	1	1	1	10	7	NaN	2		7.0	7.0	7.0	7.0	NaN	NaN	NaN	NaN	NaN	f0
8	1	1.0	0	1	1	1	10	7	NaN	8		7.0	7.0	7.0	7.0	NaN	NaN	NaN	NaN	NaN	f0
9	1	1.0	0	1	1	1	10	7	NaN	9		7.0	7.0	7.0	7.0	NaN	NaN	NaN	NaN	NaN	f0
10	2	2.0	0	3	1	1	10	3	NaN	10		6.0	9.0	9.0	4.0	NaN	NaN	NaN	NaN	NaN	f0
11	2	2.0	0	3	1	1	10	3	NaN	9	•••	6.0	9.0	9.0	4.0	NaN	NaN	NaN	NaN	NaN	f0
12	2	2.0	0	3	1	1	10	3	NaN	6		6.0	9.0	9.0	4.0	NaN	NaN	NaN	NaN	NaN	f0
13	2	2.0	0	3	1	1	10	3	NaN	1		6.0	9.0	9.0	4.0	NaN	NaN	NaN	NaN	NaN	f0
14	2	2.0	0	3	1	1	10	3	NaN	3		6.0	9.0	9.0	4.0	NaN	NaN	NaN	NaN	NaN	f0
15	2	2.0	0	3	1	1	10	3	NaN	2		6.0	9.0	9.0	4.0	NaN	NaN	NaN	NaN	NaN	f0
16	2	2.0	0	3	1	1	10	3	NaN	7	•••	6.0	9.0	9.0	4.0	NaN	NaN	NaN	NaN	NaN	f0
17	2	2.0	0	3	1	1	10	3	NaN	8		6.0	9.0	9.0	4.0	NaN	NaN	NaN	NaN	NaN	f0
18	2	2.0	0	3	1	1	10	3	NaN	4	•••	6.0	9.0	9.0	4.0	NaN	NaN	NaN	NaN	NaN	f0
19	2	2.0	0	3	1	1	10	3	NaN	5		6.0	9.0	9.0	4.0	NaN	NaN	NaN	NaN	NaN	f0

K-Means

Which Algorithm we choose?

OPTICS
DBSCAN
HDBSCAN

Model Evaluation

Distribution

Match Result

MO 17.3% 161 / 929	19.2% 332 / 1731
•	14.1% 131 / 929

F1M0 Combination has the Highest Match Rate

Dominant Class - By Male

	FO	F1
МО	17.3% 161 / 929	19.2 % 332 / 1731
M1	11.1% 66 / 595	14.1% 131 / 929

F1 is the Dominant Class in mate selection of Males

Dominant Class - By Male

	FO	F1
MO	17.3 % 161 / 929	19.2 % 332 / 1731
M1	11.1% 66 / 595	14.1% 131 / 929

F1 is the Dominant Class in mate selection of Males

Dominant Class - By Female

	FO	F1
МО	17.3% 161 / 929	19.2% 332 / 1731
M1	11.1% 66 / 595	14.1% 131 / 929

MO is the Dominant Class in mate selection of Females

Dominant Class - By Female

	FO	F1
МО	17.3% 161 / 929	19.2 % 332 / 1731
M1	11.1% 66 / 595	14.1% 131 / 929

MO is the Dominant Class in mate selection of Females

Self Perception Analysis

Interest Analysis - by Male Clusters

Interest Analysis - by Female Clusters

Secrets to Increase your Match Success Rate

Self Confidence

X

Diverse Interests

Recommendations to Dating App

	FO	F1
МО	17.3% 161 / 929	19.2 % 332 / 1731
M1	11.1% 66 / 595	14.1% 131 / 929

Avoid 'FOM1' Combinations!

Limitations & Improvements

Model Limitation

Try out more Clustering Models (Centroid/ Density-based)

Limited Samples

Small Sampling Size & Sample Variety

Computing Power

Limited time to attempt 30 million Feature Combinations

Questions?

