Fonctions dérivées et applications

Analyse - Cours

I Fonctions dérivées

Définition:

Soit f une fonction définie sur un intervalle I. Si, pour tout réel a de I, le nombre dérivé f'(a) existe, on dit que la fonction f est dérivable sur I. On appelle fonction dérivée de f sur I la fonction qui, a tout réel $x \in I$ associe le réel f'(x). On la note f'.

I. 1 Dérivées des fonctions usuelles

Nom	Fonction	Dérivée
Fonction constante	$\forall x \in \mathbb{R}: f(x) = k (k \in \mathbb{R})$	$\forall x \in \mathbb{R}: f'(x) = 0$
Fonction affine	$\forall x \in \mathbb{R}: f(x) = ax + b (a \text{ et } b \text{ réels})$	$\forall x \in \mathbb{R}: f'(x) = a$
Fonction puissance	$\forall x \in \mathbb{R}: f(x) = x^n (n \in \mathbb{N}^*)$	$\forall x \in \mathbb{R}: f'(x) = nx^{n-1}$
Fonction inverse	$\forall x \in \mathbb{R}^*: f(x) = \frac{1}{x}$	$\forall x \in \mathbb{R}^*: f'(x) = \frac{-1}{x^2}$
Fonction puissance inverse	$\forall x \in \mathbb{R}^* : f(x) = \frac{1}{x^n} (n \in \mathbb{N}^*)$	$\forall x \in \mathbb{R}^*: f'(x) = \frac{-n}{x^{n+1}}$
Fonction racine carrée	$\forall x \in \mathbb{R}_+^* : f(x) = \sqrt{x}$	$\forall x \in \mathbb{R}_+^*: f'(x) = \frac{-1}{2\sqrt{x}}$
Fonction cosinus	$\forall x \in \mathbb{R}: f(x) = \cos(x)$	$\forall x \in \mathbb{R}: f'(x) = -\sin(x)$
Fonction sinus	$\forall x \in \mathbb{R}: f(x) = \sin(x)$	$\forall x \in \mathbb{R}: f'(x) = \cos(x)$
Fonction exponentielle	$\forall x \in \mathbb{R}: f(x) = e^x$	$\forall x \in \mathbb{R}: f'(x) = e^x$
Fonction logarithme	$\forall x \in \mathbb{R}_+^* : f(x) = \ln(x)$	$\forall x \in \mathbb{R}^*: f'(x) = \frac{1}{x}$

II Opérations sur les fonctions dérivables

1. Propriété:

Soient u et v deux fonctions dérivables sur un intervalle I, et k un nombre réel.

Fonction	Dérivée	
Somme $u + v$	u' + v'	
Produit par un réel $k \times u$	$k \times u'$	
Produit $u \times v$	$u' \times v + u \times v'$	
Quotient $\frac{u}{v}$ $(v \neq 0)$	$\frac{u' \times v - u \times v'}{v^2}$	
Inverse $\frac{1}{u}$ $(u \neq 0)$	$\frac{-u'}{u^2}$	

III Dérivée d'une fonction composée

Définition:

Soient u et v deux fonctions dérivable respectivement sur les intervalles I et J tel que pour tout x dans I, $u(x) \in J$. Pour tout réel x dans I, on note $v \circ u(x) = v(u(x))$. La fonction $v \circ u$ ainsi définie est appelé la composée de u par v.

2. Propriété:

Soient les fonction u et v telles que $v \circ u$ est dérivable sur un intervalle I. Pour tout réel x dans I, $(v \circ u)'(x) = u'(x) \times v'(u(x))$.

Remarque : On peut aussi noter $(v \circ u)' = u' \times (v' \circ u)$.

IV Applications de la dérivation

IV. 1 Étude des variations d'une fonction

1. Théorème:

Soit f une fonction dérivable sur un intervalle I, de fonction dérivée f'.

- Si f est croissante sur I, alors f' est positive sur I.
- Si f est décroissante sur I, alors f' est négative sur I.
- Si f est constante sur I, alors f' est nulle sur I.

2. Théorème (réciproque) :

Soit f une fonction dérivable sur un intervalle I, de fonction dérivée f'.

- Si f' est strictement positive sur I, sauf pour un nombre fini de réel où elle s'annule, alors f est strictement croissante sur I.
- Si f' est strictement négative sur I, sauf pour un nombre fini de réel où elle s'annule, alors f est strictement décroissante sur I.
- Si f' est nulle sur I, alors f est constante sur I.

IV. 2 Étude des extrema d'une fonction

Définition:

Soit f une fonction définie sur un intervalle I et c un réel de I et qui n'est pas une borne de I.

- Dire que f(c) est un maximum local de f signifie qu'il existe deux réels a et b dans I tels que $c \in]a; b[$ et que pour tout réel $x \in]a; b[$, $f(x) \leq f(c)$.
- Dire que f(c) est un minimum local de f signifie qu'il existe deux réels a et b dans I tels que $c \in]a; b[$ et que pour tout réel $x \in]a; b[$, $f(x) \geq f(c)$.
- Un extremum local est un minimum ou un maximum local.

3. Théorème (condition nécessaire sur l'existence d'un extremum local) :

Soit f une fonction dérivable sur un intervalle ouvert I et a un réel de I. Si f présente un extremum local en a alors f'(a) = 0.

Remarque : La réciproque est fausse. En effet, pour f: $x \mapsto x^3$ on a $f: x \mapsto 3x^2$ donc f'(0) = 0 mais f n'admet pas d'extremum local en O.

4. Théorème (condition suffisante sur l'existence d'un extremum local) :

Soit f une fonction dérivable sur un intervalle ouvert I, de dérivée f' et $a \in I$. Si la dérivée f' s'annule en a en changeant de signe en a, alors la fonction f admet un extremum local en a.