# МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа фотоники, электроники и молекулярной физики

# Отчёт о выполнении лабораторной работы 4.4.4

Интерферометр Фабри-Перо

Автор: Макаров Лев Евгеньевич Б04-306

#### 1 Введение

#### Цель работы:

- 1. Определение характеристик интерферометра Фабри-Перо: база интерферометра, добротность, линейная дисперсия, аппаратная разрешающая способность
- 2. Определение числа интерферирующих лучей, разности длин волн для линий пары колец.

В работе используются: ртутная и натриевая лампы, интерферометры Фабри-Перо, катетометры, линзы, светофильтры, оптические скамьи.

#### 2 Теоретические сведения



Рис. 1: Интерферометр Фабри-Перо

Интерферометр Фабри–Перо состоит из двух стеклянных (или кварцевых) пластин P1 и P2, внутренние плоские поверхности которых хорошо отполированы (с точностью до  $10^{-2}\lambda$ ) и установлены параллельно друг другу. На эти поверхности наносятся хорошо отражающие покрытия. Наружные поверхности пластин обычно составляют небольшой угол с внутренними, чтобы световой блик, отраженный от наружных поверхностей, не мешал наблюдениям. Интерферометр Фабри–Перо можно рассматривать как плоскопараллельную воздушную пластину, на которой происходят многократные отражения и интерференция световых лучей. Интерференционная картина, наблюдаемая в фокальной плоскости линзы  $\Pi$ , состоит из концентрических колец равного наклона. Для двух соседних лучей, распространяющихся между зеркалами интерферометра под углом  $\theta$ , разность хода определяется соотношением

$$\Delta = 2L\cos\theta$$

где L — расстояние между зеркалами. Разрешающей способностью прибора называют величину

$$R = \frac{\lambda}{\delta \lambda}$$

разрешающая способность характеризует возможность прибора различать две близкие спектральные линии с длинами волн  $\lambda$  и  $\lambda + \delta\lambda$ 

Угловая дисперсия определяется как

$$D = \frac{d\varphi}{d\lambda}$$

По величине угловой дисперсии можно определить угловое расстояние между двумя близкими спектральными линиями:  $\delta \varphi = D\delta \lambda$ 

Дисперсионная область – предельная ширина спектрального интервала  $\Delta \lambda$  прибора, для которой дифракционные максимумы соседних порядков не перекрываются. Она определяет диапазон длин волн, при которых прибор может быть использоан для анализа спектра.

В случае интерферометра Фабри-Перо интерференционные максимумы будут наблюдаться для волн, падающих под углами  $\theta_m$ , удовлетворяющими условию:

$$2L\cos\theta_m = m\lambda,\tag{1}$$

где L - база интерферометра. Для малых углов выражение можно переписать как

$$\theta_m^2 = 2 - \frac{\lambda}{L}m\tag{2}$$

Так как  $\theta(i) = \frac{d(i)}{2f}$ , где f — фокусное расстояние линзы, стоящей после интерферметра, а d(i) — диаметр i-ого кольца, можно получить зависимость угла на максимум интерференции от его номера или диаметра кольца

$$\frac{d^2(i)}{4f^2} = \theta^2(i) = \text{const} + \frac{i\lambda}{L}$$
 (3)

Выражение можно преобразовать для получения угловой дисперсии:

$$D_{\text{\tiny YFJ}} \approx -\frac{1}{\lambda \theta_m},$$
 (4)

где  $\theta_m = \frac{d}{2f}$  в данной работе (f – фокусное расстояние используемой в работе линзы). Также для малых углов условие возникновения интерференционного кольца можно записать

Также для малых углов условие возникновения интерференционного кольца можно записать в виде:

$$\frac{\lambda}{L} = \frac{1}{4f^2} \frac{\Delta(d_i^2)}{\Delta(i)},\tag{5}$$

Отсюда следует используемая в работе формула для линейной дисперсии, которая используется в работе:

$$D = \frac{2f^2}{\lambda d} \tag{6}$$

Аппаратная разрешающая способность для порядка спектра  $m \approx \frac{2L}{\lambda}$  может быть найдена как:

$$R = \frac{\lambda}{\delta \lambda} = \frac{\pi \sqrt{r}}{1 - r} m = Nm,\tag{7}$$

где  $N=rac{\pi\sqrt{r}}{1-r}$  — число интерферирующих лучей.

Дисперсионная область интерферометра Фабри-Перо может быть найдена по следующей формуле:

$$\Delta \lambda = \frac{\lambda^2}{2L}.\tag{8}$$

### 3 Экспериментальная установка

В работе используются ртутная и натриевая лампы; интерферометры Фабри-Перо, катетометры, линзы, светофильтры, оптические скамьи.



Рис. 2: Схема установки

На схеме S — лампа,  $_0$  — линза, C — светофильтр, ИФП — интерферометр Фабри-Перо, T — зрительная труба. Диаметры колец измеряются с помощью микроскопа катетометра.

## 4 Результаты измерений и обработка данных

#### І. Юстировка системы

- 1. Включим лампу.
- 2. Убедимся, что на интерферометр попадает свет.
- 3. В остальном установка является настроенной
- 4. Ознакомимся с техническим описанием приборов

### II. Измерения

5. Замерим диаметры колец и запишем в таблицы 1-4

Таблица 1: Измерение диаметров колец зеленой пары Ртутной лампы

| $N_{down}$ | $x_{down}$ , MM | $N_{up}$ | $x_{up}$ , MM |
|------------|-----------------|----------|---------------|
| 1          | 169.290         | -1       | 184.361       |
| 2          | 165.989         | -2       | 187.624       |
| 3          | 163.536         | -3       | 190.000       |
| 4          | 161.517         | -4       | 192.028       |
| 5          | 159.769         | -5       | 193.752       |
| 6          | 158.237         | -6       | 195.295       |
| 7          | 156.788         | -7       | 196.703       |
| 8          | 155.512         | -8       | 197.964       |
| 9          | 154.333         |          |               |
| 10         | 153.210         |          |               |

Таблица 2: Измерение диаметров колец Натриевой лампы

|            |                 |          | , <u> </u>    |
|------------|-----------------|----------|---------------|
| $N_{down}$ | $x_{down}$ , MM | $N_{up}$ | $x_{up}$ , MM |
| 4          | 141.915         | -4       | 161.000       |
| 5          | 140.272         | -5       | 162.449       |
| 6          | 139.420         | -6       | 163.327       |
| 7          | 138.209         | -7       | 164.652       |
| 8          | 137.493         | -8       | 165.281       |
| 9          | 136.354         | -9       | 166.421       |
| 10         | 135.800         | -10      | 166.973       |
| 11         | 134.727         | -11      | 168.074       |
| 12         | 134.265         | -12      | 168.632       |
| 13         | 133.301         |          |               |
| 14         | 132.771         |          |               |
| 15         | 131.860         |          |               |
| 16         | 131.450         |          |               |

Таблица 3: Измерение диаметров колец оранжевой пары Ртутной лампы

| $N_{down}$ | $x_{down}, \text{ MM}$ | $N_{up}$ | $x_{up}$ , MM |
|------------|------------------------|----------|---------------|
| 8          | 160.925                | 8        | 192.618       |
| 9          | 159.655                | 9        | 193.790       |
| 10         | 159.100                | 10       | 194.355       |
| 11         | 158.000                | 11       | 195.421       |
| 12         | 157.600                | 12       | 195.873       |
| 13         | 156.610                | 13       | 196.839       |
| 14         | 156.140                | 14       | 197.276       |
| 15         | 155.279                |          |               |
| 16         | 154.866                |          |               |
| 17         | 153.935                |          |               |
| 18         | 153.657                |          |               |

Таблица 4: Измерение диаметров колец желтой пары Ртутной лампы

| $N_{down}$ | $x_{down}$ , MM | $N_{up}$ | $x_{up}$ , MM |
|------------|-----------------|----------|---------------|
| 8          | 160.911         | -8       | 192.714       |
| 9          | 159.661         | -9       | 193.921       |
| 10         | 159.073         | -10      | 194.483       |
| 11         | 158.080         | -11      | 195.552       |
| 12         | 157.507         | -12      | 196.015       |
| 13         | 156.528         | -13      | 196.960       |
| 14         | 156.126         | -14      | 197.439       |
| 15         | 155.194         |          |               |
| 16         | 154.801         |          |               |
| 17         | 153.973         |          |               |
| 18         | 153.562         |          |               |

6. Замерим  $\delta r$  для желтой, зеленой пары ртути и для натрия. Запишем результаты в таблицу 5.

Таблица 5: Измерение  $\delta r$  для разный пар

| 1               | 1       | / 1 I   | 1       |  |
|-----------------|---------|---------|---------|--|
|                 | желтый  | зелены  | натрий  |  |
| $x_{up}$ , MM   | 183.822 | 184.392 | 156.166 |  |
| $x_{down}$ , MM | 184.099 | 184.714 | 156.666 |  |
| $\delta r$ , mm | 0.277   | 0.322   | 0.500   |  |

- 7. Оценим максимальный порядок интерференции и дисперсионную область
- 8. данный пункт не выполнялся

#### III. Обработка результатов

1. Построим график зависимости  $d_i^2 = F(i)$  для зеленой пары ртути. Изобразим его на рисунке  $\frac{3}{2}$ 



Рис. 3: График зависимости  $d_i^2 = F(i)$  для зеленой пары

Рассчитаем базу интерферометра:

$$L = \frac{4\lambda f^2}{k} \approx (0.118 \pm 0.005) \text{ mm}$$

2. Построим график зависимости  $\overline{d} = F(1/\Delta d)$  и изобразим его на рис. 4



Рис. 4: График зависимости  $\overline{d} = F(1/\Delta d)$  для желтой пары линий ртути

По углу наклона рассчитаем разность длин волн  $\Delta\lambda$  для желтой пары

$$\Delta \lambda = \frac{\lambda k}{4f^2} \approx 2.5 \text{ Å}$$

3. Построим аналогичные графики и аналогичные рассчеты для натриевой лампы.

$$L=rac{4\lambda f^2}{k}pprox (0.279\pm 0.005)$$
 мм  $\Delta\lambda=rac{\lambda k}{4f^2}pprox 3.2~{
m \AA}$ 



Рис. 5: График зависимости  $d_i^2 = F(i)$  для линий натрия



Рис. 6: График зависимости  $\overline{d} = F(1/\Delta d)$  для линий натрия

4. Оценим экспериментальное значение линейной дисперсии интерферометра. Результаты запишем в таблицу 6 для желтой пары и таблицу 7 для натрия.

Таблица 6: Измерение D для желтой пары

| N                  | 1     | 2     | 3     | 4     | 5     |
|--------------------|-------|-------|-------|-------|-------|
| $D_{exp}$ , mm/Å   | 0.231 | 0.208 | 0.177 | 0.158 | 0.165 |
| $D_{theor}$ , mm/Å | 0.120 | 0.110 | 0.102 | 0.096 | 0.091 |

Таблица 7: Измерение D для натрия

| N                  | 1     | 2     | 3     | 4     | 5     | 6     |
|--------------------|-------|-------|-------|-------|-------|-------|
| $D_{exp}$ , mm/Å   | 0.274 | 0.213 | 0.175 | 0.162 | 0.168 | 0.130 |
| $D_{theor}$ , mm/Å | 0.178 | 0.151 | 0.134 | 0.121 | 0.112 | 0.104 |

5. Оценим аппаратную разрешающую способность

$$R_{Na} = \frac{4f^2}{D\delta r} \approx 3500$$

$$R = \frac{4f^2}{D\delta r} \approx 2000$$