# Enrollment Projection Using Time Series

Shu Zhang

January 26, 2018

This project is to predict the enrollment of several types of students at Iowa State University in 2018.

### Load required libraries

```
library(lubridate)
## Warning: package 'lubridate' was built under R version 3.4.1
##
## Attaching package: 'lubridate'
## The following object is masked from 'package:base':
##
##
       date
library(bsts)
## Warning: package 'bsts' was built under R version 3.4.1
## Loading required package: BoomSpikeSlab
## Warning: package 'BoomSpikeSlab' was built under R version 3.4.1
## Loading required package: Boom
## Warning: package 'Boom' was built under R version 3.4.1
## Loading required package: MASS
##
## Attaching package: 'Boom'
## The following object is masked from 'package:stats':
##
##
       rWishart
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 3.4.1
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
       as.Date, as.Date.numeric
##
## Loading required package: xts
## Warning: package 'xts' was built under R version 3.4.2
library(plyr)
## Attaching package: 'plyr'
```

```
## The following object is masked from 'package:lubridate':
##
##
       here
library(dplyr)
## Warning: package 'dplyr' was built under R version 3.4.1
## Warning: Installed Rcpp (0.12.12) different from Rcpp used to build dplyr (0.12.11).
## Please reinstall dplyr to avoid random crashes or undefined behavior.
## Attaching package: 'dplyr'
## The following objects are masked from 'package:plyr':
##
##
       arrange, count, desc, failwith, id, mutate, rename, summarise,
##
       summarize
## The following objects are masked from 'package:xts':
##
       first, last
## The following object is masked from 'package:MASS':
##
       select
## The following objects are masked from 'package:lubridate':
##
##
       intersect, setdiff, union
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
library(ggplot2)
library(reshape2)
## Warning: package 'reshape2' was built under R version 3.4.3
library(prophet)
## Warning: package 'prophet' was built under R version 3.4.1
## Loading required package: Rcpp
## Warning: package 'Rcpp' was built under R version 3.4.1
library(nnfor)
## Warning: package 'nnfor' was built under R version 3.4.3
## Loading required package: forecast
## Warning: package 'forecast' was built under R version 3.4.3
library(magrittr)
library(knitr)
```

## Warning: package 'knitr' was built under R version 3.4.1

```
library(RColorBrewer)
library(forecast)
```

### group name abbreviations explained

```
Groups <- c('FRF','FNRF','FFF','FRT','FNRT','FFT','SRF','SNRF','SFF','SRT','SNRT','SFT')
Explaination <- c('fall resident freshman','fall non resident','fall foreign freshman','fall resident t
kable(cbind(Groups,Explaination),caption = "12 groups to be modeled.")
```

Table 1: 12 groups to be modeled.

|           | Groups Explaination         |
|-----------|-----------------------------|
| FRF       | fall resident freshman      |
| FNRF      | fall non resident           |
| FFF       | fall foreign freshman       |
| FRT       | fall resident transfer      |
| FNRT      | fall non resident transfer  |
| FFT       | fall foreign transfer       |
| SRF       | summer resident freshman    |
| SNRF      | summer non resident         |
| SFF       | summer foreign freshman     |
| SRT       | summer resident transfer    |
| SNRT      | summer non resident transfe |
| SFT       | summer foreign transfer     |
| ##read th | e weekly data and print the |

```
week_full <- read.csv('D:/Work/Weeks_Data_010118_new.csv')
dim(week_full)
## [1] 4075 39</pre>
```

### print the first 3 rows of the dataframe

```
head(week_full,3)
               Date Year FRF_P FNRF_P FFF_P FRF_O FNRF_O FFF_O FRF_A FNRF_A
##
     Cycle
## 1
         9 08/27/03 2004
                            238
                                    100
                                            9
                                                   0
                                                          0
                                                                 0
        10 08/28/03 2004
                             246
                                    103
                                                   0
                                                          0
                                                                 0
                                                                               0
                                    103
        10 08/29/03 2004
                            246
                                            9
                                                   0
                                                          0
                                                                 0
## 3
     FFF_A FRT_P FNRT_P FRT_O FNRT_O FFT_O FRT_A FNRT_A FFT_A SRF_P
## 1
         0
              71
                      24
                             3
                                    0
                                           0
                                                  0
                                                        0
                                                                      0
## 2
         0
              71
                      24
                             3
                                    0
                                           0
                                                  0
                                                        0
                                                                0
                                                                      0
                                                                             2
## 3
              71
                      24
                             3
                                    0
                                           0
                                                  0
     SNRF_P SFF_P SRF_O SNRF_O SFF_O SRF_A SNRF_A SFF_A SRT_P SNRT_P SFT_P
##
## 1
          1
                 0
                       0
                              0
                                           0
                                                   0
## 2
                 0
                       0
                              0
                                                   0
                                                                       2
                                                                              2
          1
                                     0
                                           0
                                                         0
                                                                1
## 3
          1
                 0
                       0
                               0
                                                                              2
     SRT_O SNRT_O SFT_O SRT_A SNRT_A SFT_A
## 1
                 0
                       0
                             0
## 2
         0
                 0
                       0
                             0
                                     0
                                           0
```

```
## 3 0 0 0 0 0
```

### print the last 3 rows of the dataframe

```
tail(week_full,3)
                   Date Year FRF_P FNRF_P FFF_P FRF_O FNRF_O FFF_O FRF_A
##
        Cycle
## 4073
           27 12/28/17 2018 5079 10349
                                              403
                                                   4655
                                                           9415
                                                                   241
                                                                        2476
           27 12/29/17 2018
                               5087
                                     10373
                                              412
                                                   4669
                                                           9443
                                                                   256
                                                                        2483
## 4075
           28 01/01/18 2018
                               5097 10401
                                              423
                                                           9459
                                                                        2520
                                                   4674
                                                                   256
        FNRF_A FFF_A FRT_P FNRT_P FFT_P FRT_O FNRT_O FFT_O FRT_A FNRT_A FFT_A
##
## 4073
          1528
                   14
                        720
                                353
                                        24
                                             478
                                                     200
                                                             7
                                                                  216
## 4074
          1543
                   14
                         728
                                355
                                        26
                                             478
                                                     200
                                                             7
                                                                  221
                                                                          61
                                                                                  1
          1569
                   15
                         739
                                        29
                                             478
                                                     200
                                                             7
                                                                  227
                                                                          61
## 4075
                                355
                                                                                  1
##
        SRF_P SNRF_P SFF_P SRF_O SNRF_O SFF_O SRF_A SNRF_A SFF_A SRT_P SNRT_P
                                                      8
                                                                         34
                                                                                 25
## 4073
           27
                   58
                         12
                                20
                                        43
                                               9
                                                            14
                                                                    0
## 4074
           27
                   58
                          12
                                20
                                        43
                                               9
                                                      8
                                                            14
                                                                    0
                                                                         33
                                                                                 26
## 4075
           27
                   59
                          12
                                20
                                        43
                                               9
                                                      8
                                                            15
                                                                    0
                                                                         33
                                                                                 26
##
        SFT_P SRT_O SNRT_O SFT_O SRT_A SNRT_A SFT_A
## 4073
           12
                  22
                          20
                                 5
                                       17
                                               3
                                                      1
## 4074
           12
                  22
                          20
                                 5
                                       17
                                               3
                                                      2
## 4075
           12
                  22
                          20
                                 5
                                       17
                                               3
                                                      2
```

#### remove partial month from both ends

```
week_full <- week_full[-c(1:3,length(week_full$Date)),]</pre>
```

### convert the column 'Date' to Date type

```
week_full$Date <-as.Date(week_full$Date,format = "%m/%d/%y")</pre>
```

### add one row for Aug 31st, 2013, since 2013 have till Aug 30th

```
which(week_full$Date=='2013-08-30')#2734 2790

## [1] 2734 2790

week_full <- rbind( week_full[1:2734,], week_full[2734,], week_full[2735:dim(week_full)[1],])
week_full[2735,'Date'] <- as.Date('08/31/13',format = "%m/%d/%y")</pre>
```

### add one row for Aug 31st,2014, since it has only has records till Aug 1st, no sept.

```
which(week_full$Date=='2014-08-01')#3026 3060
## [1] 3026 3060
week_full <- rbind( week_full[1:3026,], week_full[3026,], week_full[3027:dim(week_full)[1],])
week_full[3027,'Date'] <- as.Date('08/31/14',format = "%m/%d/%y")</pre>
```

### truncate each cycle by 08-31

```
week_full <- week_full[!((month(week_full$Date)==9)&(week_full$FRF_A>1500)),]
```

#### find start overlap dates

```
Dates <- week full$Date
diff(Dates) [diff(Dates) < 0]</pre>
## Time differences in days
                                        -62 -72 -53
## [1]
         -12
               -62 -4745
                            -51
                                  -59
                                                                 -66
                                                                       -75
## [12]
          -70
                -77
                      -77
                            -73
which(diff(Dates)<0)</pre>
## [1] 252 759 892 1032 1273 1579 1879 2157 2327 2421 2716 3008 3321 3606
## [15] 3893
```

#### correct the mistyped dates in vector Dates

```
Dates[892] <- as.Date("2007-02-16")
Dates[2326] <- as.Date("2012-04-14")
Dates[2327] <- as.Date("2012-04-16")
Dates[2328] <- as.Date("2012-04-17") # data quality, mistyped dates
diff(Dates)[diff(Dates) <0] #-15 -66 -51 -72 -66 -72 -57 -69 -75 -70 -85 -84 -94

## Time differences in days
## [1] -12 -62 -51 -59 -62 -72 -53 -66 -75 -70 -77 -73
```

#### correct the mityped dates in dataset

```
week_full$Date[892] <- as.Date("2007-02-16")
week_full$Date[2326] <- as.Date("2012-04-14")
week_full$Date[2327] <- as.Date("2012-04-16")
week_full$Date[2328] <- as.Date("2012-04-17")</pre>
```

#### find indexes for the overlapping dates between two consequtive cycles

```
former_end_dates <- Dates[which(diff(Dates)<0)]
start_Overlap_dates <- Dates[(which(diff(Dates)<0)+1)]
start_Overlap_dates_index <- (which(diff(Dates)<0)+1)</pre>
```

#### find end overlap dates

```
end_overlap_dates_index <- vector()
for(i in 1:length(start_Overlap_dates_index)){
   j <- start_Overlap_dates_index[i]</pre>
```

```
repeat {
  if (Dates[j]>former_end_dates[i]) {
    end_overlap_dates_index <-c(end_overlap_dates_index,j-1)
    break}
  j=j+1;
}</pre>
```

### remove overlapping dates

### remove variable Cycle

```
week_rm_overlap <- subset(week_rm_overlap,select = -c(Cycle))
week_rm_overlap$Year <- as.factor(week_rm_overlap$Year)</pre>
```

### aggregate weekly data to monthly by keeping the last record in each month

```
last <- function(x) { return( x[length(x)] ) }
week_to_month<- week_rm_overlap %>% group_by(month=floor_date(Date, "month")) %>%summarise_all(funs(lass
## Warning: package 'bindrcpp' was built under R version 3.4.1
week_to_month <- as.data.frame(week_to_month)
monthly_data <- week_to_month[,-1]
#write.csv(monthly_data, "month_data.csv", row.names = F)</pre>
```

#### create time series for each group

```
colnames(monthly_data)
                         "FRF P" "FNRF P" "FFF P"
  [1] "Date"
                "Year"
                                                   "FRF O" "FNRF O"
##
  [8] "FFF O"
                "FRF A"
                         "FNRF A" "FFF A" "FRT P"
                                                   "FNRT P" "FFT P"
## [15] "FRT_O"
                "FNRT_O" "FFT_O" "FRT_A" "FNRT_A" "FFT_A"
                                                           "SRF_P"
                         "SRF_O" "SNRF_O" "SFF_O"
## [22] "SNRF_P" "SFF P"
                                                   "SRF A" "SNRF A"
## [29] "SFF_A" "SRT_P" "SNRT_P" "SFT_P" "SRT_O" "SNRT_O" "SFT_O"
```

```
## [36] "SRT_A" "SNRT_A" "SFT_A"
new_data <- monthly_data%>%select(contains("A"))
new_data <- new_data[,-2]</pre>
head(new_data,3)
            Date FRF_A FNRF_A FFF_A FRT_A FNRT_A FFT_A SRF_A SNRF_A SFF_A
##
## 1 2003-09-30
                    106
                             20
                                           6
                                                   3
                                                          0
                                                                1
## 2 2003-10-31
                    424
                                     1
                                          19
                                                   5
                                                          0
                                                                6
                                                                        0
                                                                               0
                            110
## 3 2003-11-26
                    742
                            239
                                          38
                                                                        1
                                                                               1
     SRT_A SNRT_A SFT_A
##
## 1
                        0
## 2
          1
                  1
## 3
          1
                  1
# Multiple line plot
meltdf <- melt(new_data,id="Date")</pre>
meltdf$Date <- as.Date(meltdf$Date,format='\(\frac{\text{Y}}{\text{-\mathbb{m}}}\)</pre>
ggplot(meltdf,aes(x=Date,y=value,colour=variable,group=variable)) + geom_line(size=1)+
  scale_x_date(date_breaks = "1 year", date_labels = "%Y")+ scale_color_brewer(palette="Set3",type="seq
                                                                                     variable
    3000 -
                                                                                         FRF_A
                                                                                         FNRF_A
                                                                                         FFF_A
                                                                                         FRT_A
                                                                                         FNRT_A
    2000 -
                                                                                         FFT_A
                                                                                         SRF_A
                                                                                         SNRF_A
                                                                                         SFF A
    1000 -
                                                                                        SRT_A
                                                                                         SNRT_A
                                                                                          SFT_A
       0 -
           2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
```

### graph for each group

```
ggplot(data=meltdf, aes(x=Date, y=value, col=variable))+
    geom_line()+
    guides(colour=FALSE)+
```

Date

```
facet_wrap(~variable, ncol=2,dir="v",scales='free_y')+
ylab('')
```



```
\#\#plot FRF
```

```
Date <- monthly_data$Date

df_FRF <- monthly_data[,c('Date','FRF_P','FRF_O','FRF_A')]

meltdf_FRF <- melt(df_FRF,id="Date")
ggplot(meltdf_FRF,aes(x=Date,y=value,colour=variable,group=variable)) + geom_line(size=1)+
    scale_x_date(date_breaks = "1 year", date_labels = "%Y")+ scale_color_brewer(palette="Set2",type="seq")</pre>
```



#recreate dataset for newly couts each month

```
monthly_data <- read.csv("D:/Work/monthly_data.csv")
new <- monthly_data%>%group_by(Year)%>%select(-Date)%>%lapply(diff)
new <- as.data.frame(new)
new1 <- cbind(Date=monthly_data$Date[2:172],new)

for(row in seq(0, 171, by = 12)[2:15]){
   new1[row,] <- monthly_data[row+1,]
}
dim(new1)</pre>
```

## [1] 171 38

head(new1,2)

```
##
           Date Year FRF_P FNRF_P FFF_P FRF_O FNRF_O FFF_O FRF_A FNRF_A FFF_A
## 1 2003-10-31
                    0
                        900
                               1025
                                       12
                                             791
                                                    913
                                                             3
                                                                 318
                                                                          90
## 2 2003-11-26
                    0
                        865
                                902
                                       27
                                             710
                                                     778
                                                             6
                                                                 318
                                                                         129
                                                                                  0
     FRT_P FNRT_P FFT_P FRT_O FNRT_O FFT_O FRT_A FNRT_A FFT_A SRF_P SNRF_P
##
                                                 13
                                                          2
## 1
       129
                48
                       7
                             51
                                    11
                                            2
                                                                0
                                                                       8
        89
                20
                      11
                             60
                                    12
                                                 19
                                                                      17
                                                                             15
##
     SFF_P SRF_O SNRF_O SFF_O SRF_A SNRF_A SFF_A SRT_P SNRT_P SFT_P SRT_O
## 1
         1
               7
                       4
                              1
                                    5
                                            0
                                                  0
                                                         8
                                                                2
                                            1
                                                                2
                                                                       0
                                                                             8
## 2
         2
               13
                                    3
                                                  1
                                                        11
                      11
                              1
     SNRT O SFT O SRT A SNRT A SFT A
                 2
## 1
          3
                       1
                               1
                                     0
## 2
          0
                 0
                       0
                                     0
```

```
tail(new1,2)
             Date Year FRF_P FNRF_P FFF_P FRF_O FNRF_O FFF_O FRF_A FNRF_A
## 170 2017-11-30
                                 1942
                                        139
                                              765
                                                     1770
                      0
                          877
                                                              89
## 171 2017-12-29
                      0
                          342
                                  923
                                        188
                                               326
                                                      765
                                                                   298
                                                                           200
       FFF_A FRT_P FNRT_P FFT_P FRT_O FNRT_O FFT_O FRT_A FNRT_A FFT_A SRF_P
## 170
               193
                        93
                                4
                                    161
                                            66
                                                    2
                                                         75
                                                                 20
## 171
                                    114
                                            43
                                                    3
                                                         60
                                                                 16
                                                                        0
           4
                167
                        80
                                9
       SNRF_P SFF_P SRF_O SNRF_O SFF_O SRF_A SNRF_A SFF_A SRT_P SNRT_P SFT_P
                                                          -1
## 170
                                 8
                                                     3
           11
                   0
                         4
                                       1
                                             1
                   0
                                 8
                                       0
                                                     3
                                                           0
                                                                         3
                                                                                5
## 171
           14
                         2
                                             2
##
       SRT_O SNRT_O SFT_O SRT_A SNRT_A SFT_A
## 170
                  11
                         3
                               7
## 171
                   2
                                       2
                                              2
           4
                         0
                                3
```

# CV for FRF\_A

```
pred_arima <- c()</pre>
pred_mlp <- c()</pre>
pred_HW <- c()</pre>
pred bsts <- c()
pred_ets <- c()</pre>
pred_baggedETS <- c()</pre>
i <- 121
while(i < nrow(new1)){</pre>
    #ts <- ts(new1[1:i, "FRF_A"], start=c(2003,10), frequency=12)
    a <- scale(new1[1:i, "FRF_A"])</pre>
    ts <- ts(as.vector(a), start=c(2003,10), frequency=12)
    p_arima <-forecast(auto.arima(ts), 10)$mean[1:10]</pre>
    p_mlp <- forecast(mlp(ts,hd=5), 10)$mean[1:10]</pre>
    p HW <- forecast(HoltWinters(ts, beta=FALSE, gamma=TRUE), 10) $mean[1:10]
    bsts.model <- bsts(ts, state.specification = AddSeasonal(AddLocalLinearTrend(list(), ts),</pre>
                                                                                                                                                  ts, nseasons = 12), niter = 500, ping=0, se
    p_bsts <- (predict.bsts(bsts.model, horizon = 10, burn = SuggestBurn(0.1, bsts.model), quantiles = c(
    p_ets <- forecast(ets(ts), 10)$mean[1:10]</pre>
    p_baggedETS <- forecast(baggedETS(ts,bootstrapped_series = bld.mbb.bootstrap(ts, 100)),10)$mean[1:10]
         for(j in 1:10){
              pred_arima <- c(pred_arima,round(sum(new1[,'FRF_A'][(i-1):i])+sum(p_arima[1:j]*attr(a, 'scaled:sc</pre>
               pred_mlp \leftarrow c(pred_mlp,round(sum(new1[,'FRF_A'][(i-1):i]) + sum(p_mlp[1:j]*attr(a, 'scaled:scale') + scaled:scale') + scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scaled:scale
              pred_HW <- c(pred_HW,round(sum(new1[,'FRF_A'][(i-1):i])+sum(p_HW[1:j]*attr(a, 'scaled:scale')+att</pre>
              pred_bsts <- c(pred_bsts,round(sum(new1[,'FRF_A'][(i-1):i])+sum(p_bsts[1:j]*attr(a, 'scaled:scale</pre>
              pred_ets <- c(pred_ets,round(sum(new1[,'FRF_A'][(i-1):i])+sum(p_ets[1:j]*attr(a, 'scaled:scale')+</pre>
              pred_baggedETS <- c(pred_baggedETS,round(sum(new1[,'FRF_A'][(i-1):i])+sum(p_baggedETS[1:j]*attr(a</pre>
         }
    i = i + 12
```

```
pred_prophet <- c()</pre>
i <- 121
while(i < nrow(new1)){</pre>
  data <-new1[1:i,c('Date','FRF_A')]</pre>
  colnames(data) <- c('ds','y')</pre>
  fit <- prophet(data, yearly.seasonality=T, weekly.seasonality=TRUE) #, mcmc.samples=2000) #mcmc decrease e
  future <- make_future_dataframe(fit, periods = 10,freq='month')</pre>
  forecast <- predict(fit, future)</pre>
  p_prophet <- tail(forecast,10)$yhat</pre>
  for(j in 1:10){
      pred_prophet <- c(pred_prophet,round(sum(new1[,'FRF_A'][(i-1):i])+sum(p_prophet[1:j])))</pre>
  i=i+12
## Initial log joint probability = -6.16183
## Optimization terminated normally:
   Convergence detected: absolute parameter change was below tolerance
## Initial log joint probability = -6.45264
## Optimization terminated normally:
## Convergence detected: absolute parameter change was below tolerance
## Initial log joint probability = -4.79346
## Optimization terminated normally:
## Convergence detected: absolute parameter change was below tolerance
## Initial log joint probability = -5.58938
## Optimization terminated normally:
## Convergence detected: absolute parameter change was below tolerance
## Initial log joint probability = -6.89602
## Optimization terminated normally:
     Convergence detected: absolute parameter change was below tolerance
```

### convert preds to real preds

```
actual <- monthly_data%>%select(Year,Date,FRF_A)%>%group_by(Year)%>%filter(month(Date) %in% c(1:8,11,12
actual <- actual[actual$Year %in% c(2013:2017),'FRF_A']
actual <- as.vector(actual$FRF_A)

ets <- accuracy(pred_ets, actual)
arima <- accuracy(pred_arima, actual)
mlp <- accuracy(pred_mlp, actual)
HW <- accuracy(pred_HW, actual)
baggedETS <- accuracy(pred_baggedETS, actual)
bsts <- accuracy(pred_bsts, actual)
prophet <- accuracy(pred_prophet, actual)

accuracy_matrix <- rbind(arima,mlp,HW,prophet,bsts,ets,baggedETS)
rownames(accuracy_matrix) <- c('arima','mlp','HW','prophet','bsts','ets','baggedETS')</pre>
```

```
accuracy_matrix
                           RMSE
                                   MAE
                                                 MPE
                                                             MAPE
                 ME
## arima
             -92.42 144.4334449 98.94 -3.187340923 3.394663173
             110.04 216.9574152 175.16 2.872856323 5.789271801
## mlp
             -82.46 122.0228667 90.06 -2.870258160 3.129168228
## HW
            -462.48 571.6781612 468.48 -14.147294789 14.430829634
## prophet
            -125.52 259.6902771 175.52 -3.803395193 5.510860158
## bsts
## ets
             -88.00 126.3851257 96.04 -3.029328773 3.304252180
## baggedETS -470.34 561.8010146 473.46 -14.460768597 14.610503419
```

### CV for FNRF A

```
pred arima <- c()</pre>
pred mlp <- c()
pred_HW <- c()</pre>
pred_bsts <- c()</pre>
pred_ets <- c()</pre>
pred_baggedETS <- c()</pre>
i <- 121
while(i < nrow(new1)){</pre>
  #ts <- ts(new1[1:i, "FNRF_A"], start=c(2003,10), frequency=12)
  a <- scale(new1[1:i, "FNRF_A"])
  ts <- ts(as.vector(a), start=c(2003,10), frequency=12)
  p_arima <-forecast(auto.arima(ts), 10)$mean[1:10]
  p_mlp \leftarrow forecast(mlp(ts,hd=5), 10)mean[1:10]
  p_HW <- forecast(HoltWinters(ts, beta=FALSE, gamma=TRUE), 10)$mean[1:10]
  bsts.model <- bsts(ts, state.specification = AddSeasonal(AddLocalLinearTrend(list(), ts),</pre>
                                                                ts, nseasons = 12), niter = 500, ping=0, se
  p_bsts <- (predict.bsts(bsts.model, horizon = 10, burn = SuggestBurn(0.1, bsts.model), quantiles = c(
  p_ets <- forecast(ets(ts), 10)$mean[1:10]</pre>
  p_baggedETS <- forecast(baggedETS(ts,bootstrapped_series = bld.mbb.bootstrap(ts, 100)),10)$mean[1:10]
    for(j in 1:10){
      pred_arima <- c(pred_arima,round(sum(new1[,'FNRF_A'][(i-1):i])+sum(p_arima[1:j]*attr(a, 'scaled:s</pre>
      pred_mlp <- c(pred_mlp,round(sum(new1[,'FNRF_A'][(i-1):i])+sum(p_mlp[1:j]*attr(a, 'scaled:scale')</pre>
      pred_HW <- c(pred_HW,round(sum(new1[,'FNRF_A'][(i-1):i])+sum(p_HW[1:j]*attr(a, 'scaled:scale')+at</pre>
      pred_bsts <- c(pred_bsts,round(sum(new1[,'FNRF_A'][(i-1):i])+sum(p_bsts[1:j]*attr(a, 'scaled:scal</pre>
      pred_ets <- c(pred_ets,round(sum(new1[,'FNRF_A'][(i-1):i])+sum(p_ets[1:j]*attr(a, 'scaled:scale')</pre>
      pred_baggedETS <- c(pred_baggedETS,round(sum(new1[,'FNRF_A'][(i-1):i])+sum(p_baggedETS[1:j]*attr(</pre>
    }
  i = i + 12
pred_prophet <- c()</pre>
i <- 121
```

```
while(i < nrow(new1)){</pre>
  data <-new1[1:i,c('Date','FNRF_A')]</pre>
  colnames(data) <- c('ds','v')</pre>
  fit <- prophet(data, yearly.seasonality=T, weekly.seasonality=TRUE) #, mcmc.samples=2000) #mcmc decrease e
  future <- make_future_dataframe(fit, periods = 10,freq='month')</pre>
  forecast <- predict(fit, future)</pre>
  p_prophet <- tail(forecast,10)$yhat</pre>
  for(j in 1:10){
      pred_prophet <- c(pred_prophet,round(sum(new1[,'FNRF_A'][(i-1):i])+sum(p_prophet[1:j])))</pre>
  }
  i=i+12
}
## Initial log joint probability = -5.7961
## Optimization terminated normally:
     Convergence detected: absolute parameter change was below tolerance
## Initial log joint probability = -7.75793
## Optimization terminated normally:
     Convergence detected: absolute parameter change was below tolerance
## Initial log joint probability = -5.92601
## Optimization terminated normally:
    Convergence detected: relative gradient magnitude is below tolerance
## Initial log joint probability = -5.65997
## Optimization terminated normally:
   Convergence detected: absolute parameter change was below tolerance
## Initial log joint probability = -6.1386
## Optimization terminated normally:
     Convergence detected: absolute parameter change was below tolerance
opt for FNRF A
actual <- monthly_data%>%select(Year,Date,FNRF_A)%>%group_by(Year)%>%filter(month(Date) %in% c(1:8,11,1
actual <- actual[actual$Year %in% c(2013:2017), 'FNRF_A']</pre>
actual <- as.vector(actual$FNRF_A)</pre>
ets <- accuracy(pred_ets, actual)</pre>
arima <- accuracy(pred_arima, actual)</pre>
mlp <- accuracy(pred_mlp, actual)</pre>
HW <- accuracy(pred_HW, actual)</pre>
baggedETS <- accuracy(pred_baggedETS, actual)</pre>
bsts <- accuracy(pred_bsts, actual)</pre>
prophet <- accuracy(pred_prophet, actual)</pre>
accuracy_matrix <- rbind(arima,mlp,HW,prophet,bsts,ets,baggedETS)
rownames(accuracy_matrix) <- c('arima', 'mlp', 'HW', 'prophet', 'bsts', 'ets', 'baggedETS')</pre>
accuracy_matrix
##
                   ME
                              RMSE
                                      MAE
                                                    MPE
                                                                 MAPE
## arima
             -129.92 163.9064367 142.04 -6.793653929 7.536708026
```

## CV for FFF\_A

```
pred_arima <- c()</pre>
pred mlp <- c()
pred_HW <- c()</pre>
pred bsts <- c()
pred_ets <- c()</pre>
pred_baggedETS <- c()</pre>
i <- 121
while(i < nrow(new1)){</pre>
  a <- scale(new1[1:i, "FFF_A"])</pre>
  ts <- ts(as.vector(a), start=c(2003,10), frequency=12)
  p_arima <-forecast(auto.arima(ts), 10)$mean[1:10]</pre>
  p_mlp <- forecast(mlp(ts,hd=5), 10)$mean[1:10]</pre>
  p_HW <- forecast(HoltWinters(ts, beta=FALSE, gamma=TRUE), 10) $mean[1:10]
  bsts.model <- bsts(ts, state.specification = AddSeasonal(AddLocalLinearTrend(list(), ts),</pre>
                                                                 ts, nseasons = 12), niter = 500, ping=0, se
  p_bsts <- (predict.bsts(bsts.model, horizon = 10, burn = SuggestBurn(0.1, bsts.model), quantiles = c(
  p_ets <- forecast(ets(ts), 10)$mean[1:10]</pre>
  p_baggedETS <- forecast(baggedETS(ts,bootstrapped_series = bld.mbb.bootstrap(ts, 100)),10)$mean[1:10]
    for(j in 1:10){
      pred_arima <- c(pred_arima,round(sum(new1[,'FFF_A'][(i-1):i])+sum(p_arima[1:j]*attr(a, 'scaled:sc</pre>
      pred_mlp <- c(pred_mlp,round(sum(new1[,'FFF_A'][(i-1):i])+sum(p_mlp[1:j]*attr(a, 'scaled:scale')+</pre>
      pred_HW <- c(pred_HW,round(sum(new1[,'FFF_A'][(i-1):i])+sum(p_HW[1:j]*attr(a, 'scaled:scale')+att</pre>
      pred_bsts <- c(pred_bsts,round(sum(new1[,'FFF_A'][(i-1):i])+sum(p_bsts[1:j]*attr(a, 'scaled:scale</pre>
      pred_ets <- c(pred_ets,round(sum(new1[,'FFF_A'][(i-1):i])+sum(p_ets[1:j]*attr(a, 'scaled:scale')+</pre>
      pred_baggedETS <- c(pred_baggedETS,round(sum(new1[,'FFF_A'][(i-1):i])+sum(p_baggedETS[1:j]*attr(a</pre>
    }
  i = i + 12
pred_prophet <- c()</pre>
i <- 121
while(i < nrow(new1)){</pre>
  data <-new1[1:i,c('Date','FFF_A')]</pre>
  colnames(data) <- c('ds','y')</pre>
  fit <- prophet(data, yearly.seasonality=T, weekly.seasonality=TRUE) #, mcmc.samples=2000) #mcmc decrease e
  future <- make_future_dataframe(fit, periods = 10,freq='month')</pre>
```

```
forecast <- predict(fit, future)</pre>
  p_prophet <- tail(forecast, 10)$yhat</pre>
  for(j in 1:10){
      pred_prophet <- c(pred_prophet,round(sum(new1[,'FFF_A'][(i-1):i])+sum(p_prophet[1:j])))</pre>
  i=i+12
}
## Initial log joint probability = -5.22602
## Optimization terminated normally:
    Convergence detected: absolute parameter change was below tolerance
## Initial log joint probability = -5.66414
## Optimization terminated normally:
## Convergence detected: absolute parameter change was below tolerance
## Initial log joint probability = -5.99382
## Optimization terminated normally:
## Convergence detected: absolute parameter change was below tolerance
## Initial log joint probability = -6.48336
## Optimization terminated normally:
     Convergence detected: absolute parameter change was below tolerance
## Initial log joint probability = -6.57691
## Optimization terminated normally:
     Convergence detected: absolute parameter change was below tolerance
actual <- monthly_data%>%select(Year,Date,FFF_A)%>%group_by(Year)%>%filter(month(Date) %in% c(1:8,11,12
actual <- actual[actual$Year %in% c(2013:2017),'FFF_A']</pre>
actual <- as.vector(actual$FFF A)</pre>
ets <- accuracy(pred_ets, actual)</pre>
arima <- accuracy(pred_arima, actual)</pre>
mlp <- accuracy(pred_mlp, actual)</pre>
HW <- accuracy(pred_HW, actual)</pre>
baggedETS <- accuracy(pred baggedETS, actual)</pre>
bsts <- accuracy(pred_bsts, actual)</pre>
prophet <- accuracy(pred_prophet, actual)</pre>
accuracy_matrix <- rbind(arima,mlp,HW,prophet,bsts,ets,baggedETS)</pre>
rownames(accuracy_matrix) <- c('arima', 'mlp', 'HW', 'prophet', 'bsts', 'ets', 'baggedETS')</pre>
accuracy_matrix
##
                             RMSE
                                    MAE
                                                    MPE
                                                                  MAPE
## arima
             -1.56 10.775899034 6.80 -5.538836294 11.018377288
             -15.06 29.937601774 21.38 -21.329950326 29.634639214
## mlp
              0.10 1.529705854 1.30 -1.908785218
## HW
                                                         5.787530334
## prophet -59.78 77.577702982 61.02 -121.069827656 121.477498093
             -13.74 22.611943747 19.38 -51.029093896 57.423528968
## bsts
             -2.32 14.455448800 8.88 -12.851965686 17.598854401
## baggedETS -12.98 32.248720905 26.90 -63.029416980 68.095782791
pred_arima <- c()</pre>
pred_mlp <- c()</pre>
```

pred\_HW <- c()</pre>

```
pred_bsts <- c()</pre>
pred_ets <- c()</pre>
pred_baggedETS <- c()</pre>
i <- 121
while(i < nrow(new1)){</pre>
  a <- scale(new1[1:i, "FRT_A"])</pre>
  ts <- ts(as.vector(a), start=c(2003,10), frequency=12)
  p_arima <-forecast(auto.arima(ts), 10)$mean[1:10]</pre>
  p_mlp <- forecast(mlp(ts,hd=5), 10)$mean[1:10]</pre>
  p_HW <- forecast(HoltWinters(ts, beta=FALSE, gamma=TRUE), 10) mean[1:10]
  bsts.model <- bsts(ts, state.specification = AddSeasonal(AddLocalLinearTrend(list(), ts),
                                                                 ts, nseasons = 12), niter = 500, ping=0, se
  p_bsts <- (predict.bsts(bsts.model, horizon = 10, burn = SuggestBurn(0.1, bsts.model), quantiles = c(
  p_ets <- forecast(ets(ts), 10)$mean[1:10]</pre>
  p_baggedETS <- forecast(baggedETS(ts,bootstrapped_series = bld.mbb.bootstrap(ts, 100)),10)$mean[1:10]
    for(j in 1:10){
      pred_arima <- c(pred_arima,round(sum(new1[,'FRT_A'][(i-1):i])+sum(p_arima[1:j]*attr(a, 'scaled:sc</pre>
      pred_mlp <- c(pred_mlp,round(sum(new1[,'FRT_A'][(i-1):i])+sum(p_mlp[1:j]*attr(a, 'scaled:scale')+</pre>
      pred_HW <- c(pred_HW,round(sum(new1[,'FRT_A'][(i-1):i])+sum(p_HW[1:j]*attr(a, 'scaled:scale')+att</pre>
      pred_bsts <- c(pred_bsts,round(sum(new1[,'FRT_A'][(i-1):i])+sum(p_bsts[1:j]*attr(a, 'scaled:scale</pre>
      pred_ets <- c(pred_ets,round(sum(new1[,'FRT_A'][(i-1):i])+sum(p_ets[1:j]*attr(a, 'scaled:scale')+</pre>
      pred_baggedETS <- c(pred_baggedETS,round(sum(new1[,'FRT_A'][(i-1):i])+sum(p_baggedETS[1:j]*attr(a</pre>
    }
  i = i + 12
pred_prophet <- c()</pre>
i <- 121
while(i < nrow(new1)){</pre>
  data <-new1[1:i,c('Date','FRT_A')]</pre>
  colnames(data) <- c('ds','y')</pre>
  fit <- prophet(data, yearly.seasonality=T, weekly.seasonality=TRUE) #, mcmc.samples=2000) #mcmc decrease e
  future <- make_future_dataframe(fit, periods = 10,freq='month')</pre>
  forecast <- predict(fit, future)</pre>
  p_prophet <- tail(forecast,10)$yhat</pre>
  for(j in 1:10){
      pred_prophet <- c(pred_prophet,round(sum(new1[,'FRT_A'][(i-1):i])+sum(p_prophet[1:j])))</pre>
  i=i+12
## Initial log joint probability = -8.72314
## Optimization terminated normally:
     Convergence detected: absolute parameter change was below tolerance
```

```
## Initial log joint probability = -8.90163
## Optimization terminated normally:
   Convergence detected: absolute parameter change was below tolerance
## Initial log joint probability = -9.45713
## Optimization terminated normally:
## Convergence detected: absolute parameter change was below tolerance
## Initial log joint probability = -10.4001
## Optimization terminated normally:
     Convergence detected: relative gradient magnitude is below tolerance
## Initial log joint probability = -9.94197
## Optimization terminated normally:
     Convergence detected: absolute parameter change was below tolerance
actual <- monthly data%>%select(Year, Date, FRT A)%%group by(Year)%>%filter(month(Date) %in% c(1:8,11,12
actual <- actual[actual$Year %in% c(2013:2017), 'FRT_A']</pre>
actual <- as.vector(actual$FRT_A)</pre>
ets <- accuracy(pred_ets, actual)</pre>
arima <- accuracy(pred_arima, actual)</pre>
mlp <- accuracy(pred_mlp, actual)</pre>
HW <- accuracy(pred_HW, actual)</pre>
baggedETS <- accuracy(pred_baggedETS, actual)</pre>
bsts <- accuracy(pred_bsts, actual)</pre>
prophet <- accuracy(pred_prophet, actual)</pre>
accuracy_matrix <- rbind(arima,mlp,HW,prophet,bsts,ets,baggedETS)</pre>
rownames(accuracy_matrix) <- c('arima', 'mlp', 'HW', 'prophet', 'bsts', 'ets', 'baggedETS')</pre>
accuracy_matrix
##
                 ME
                             RMSE
                                     MAE
                                                     MPE
                                                                 MAPE
            -10.24 42.88216412 34.64 -4.8261387437 7.126176821
## arima
## mlp
             -85.30 126.58301624 100.38 -13.3111516153 15.209226538
             -8.80 14.02854233 10.80 -2.6208991607 3.231486845
## HW
              -8.48 69.36223756 53.52 -0.6496365456 9.656472643
## prophet
## bsts
              51.66 69.72417084 54.70 7.3152855285 10.321295924
              22.64 52.32475514 39.36 2.8335527648 6.974171429
## ets
## baggedETS 44.30 70.97055728 53.86 6.5625777357 9.952583606
```

### model comparison



### model fitting

```
new2<- new1%>%select(contains("A"))
new2 \leftarrow new2[,-2]
head(new2,3)
            Date FRF_A FNRF_A FFF_A FRT_A FNRT_A FFT_A SRF_A SNRF_A SFF_A
##
## 1 2003-10-31
                   318
                            90
                                    1
                                         13
                                                  2
                                                        0
                                                               5
                                                                       0
                                                  4
                                                               3
## 2 2003-11-26
                   318
                           129
                                    0
                                         19
                                                                       1
                                                                             1
                                    0
                                         30
                                                  9
                                                        0
                                                               3
                                                                       3
                                                                             0
## 3 2003-12-31
                   362
                           157
     SRT_A SNRT_A SFT_A
## 1
         1
                 1
## 2
         0
                 0
                        0
                       0
## 3
         1
                 1
ts <- ts(new2[1:169,2], start=c(2003,10), frequency=12)
fit <- HoltWinters(ts)</pre>
checkresiduals(fit)
```



```
fore <- forecast(fit,10)
pred <- vector()
for(j in 1:10){
        pred<- c(pred,round(sum(new2$FRF_A[168:169])+sum(fore$mean[1:j])))
}
pred</pre>
```

## [1] 2145 2460 2798 3011 3133 3170 3222 3226 3221 3205

### forecast Nov-Aug using HolterWinters

```
pred_accept_df <- vector()
for(i in 2:13){
    a <- scale(new2[1:169, i])
    ts <- ts(as.vector(a), start=c(2003,10), frequency=12)
    fit <- HoltWinters(ts,beta=FALSE, gamma=TRUE)
    fore <- forecast(fit,10)
    pred <- vector()
    for(j in 1:10){
        pred<- c(pred,round(sum(new2[,i][168:169])+sum(fore$mean[1:j]*attr(a, 'scaled:scale')+attr(a, 'sc
        }
    pred_accept_df<- cbind(pred_accept_df, pred)
    i=i+1</pre>
```

```
}
colnames(pred_accept_df) <- colnames(new2)[2:13]</pre>
\#pred\_accept\_df < -as.data.frame(pred\_accept\_df)
\#row.names(pred\_accept\_df) \leftarrow seq(as.Date("2017/11/30"), by = "month", length.out = 10)
pred_accept_df
         FRF_A FNRF_A FFF_A FRT_A FNRT_A FFT_A SRF_A SNRF_A SFF_A SRT_A
##
##
   [1,] 2155
                  1313
                          11
                               165
                                        44
                                               3
                                                     11
                                                                         10
##
   [2,] 2460
                  1562
                          20
                               253
                                        56
                                               5
                                                     15
                                                             9
                                                                    1
                                                                         14
##
  [3,] 2785
                  1859
                          33
                               360
                                       102
                                               5
                                                     47
                                                            37
                                                                   43
                                                                         20
  [4,] 2985
##
                  2162
                          52
                               562
                                       157
                                              13
                                                     35
                                                            19
                                                                    3
                                                                         31
##
   [5,] 3100
                  2389
                          86
                               751
                                       211
                                              43
                                                     48
                                                            25
                                                                   5
                                                                         45
##
   [6,] 3141
                  2517
                                       272
                                              57
                                                            58
                                                                   7
                         174
                               953
                                                     91
                                                                         61
##
   [7,] 3192
                  2583
                         220 1091
                                       324
                                              86
                                                     96
                                                            66
                                                                   10
                                                                         74
##
   [8,] 3193
                  2565
                         236 1195
                                       353
                                              96
                                                     88
                                                            65
                                                                   10
                                                                         68
   [9,] 3185
                  2540
                         237 1290
                                       361
                                             105
                                                     88
                                                            64
                                                                   10
                                                                         71
##
                  2472
                                                                         72
## [10,] 3169
                         235 1353
                                       358
                                             102
                                                     88
                                                            64
                                                                   10
         SNRT_A SFT_A
##
                     2
## [1,]
              1
## [2,]
              2
                     2
## [3,]
              6
                     2
## [4,]
             10
                     3
                     6
## [5,]
             18
## [6,]
             24
                     8
## [7,]
             27
                    12
## [8,]
             21
                    10
## [9,]
             21
                    10
             20
                    10
## [10,]
predicted_accepts <- pred_accept_df</pre>
```

### forecast Nov-Aug using ets

```
pred_accept_df <- vector()
for(i in 2:13){
    a <- scale(new2[1:169, i])
    ts <- ts(as.vector(a), start=c(2003,10), frequency=12)
    fit <- ets(ts)
    fore <- forecast(fit,10)
    pred <- vector()
    for(j in 1:10){
        pred<- c(pred,round(sum(new2[,i][168:169])+sum(fore$mean[1:j]*attr(a, 'scaled:scale')+attr(a, 'scaled:scale')
    }
    pred_accept_df<- cbind(pred_accept_df, pred)
    i=i+1
}
colnames(pred_accept_df) <- colnames(new2)[2:13]</pre>
```

```
\#pred\_accept\_df < -as.data.frame(pred\_accept\_df)
\#row.names(pred_accept_df) \leftarrow seq(as.Date("2017/11/30"), by = "month", length.out = 10)
pred_accept_df
##
         FRF_A FNRF_A FFF_A FRT_A FNRT_A FFT_A SRF_A SNRF_A SFF_A SRT_A
##
    [1,] 2143
                  1309
                          10
                                156
                                        40
                                                     11
##
    [2,] 2456
                  1574
                          18
                                239
                                        55
                                                4
                                                     16
                                                             9
                                                                    3
                                                                          8
   [3,] 2792
                  1884
                          32
                                342
                                        90
                                                4
                                                     38
                                                            30
                                                                    9
                                                                         12
##
##
   [4,] 3003
                  2190
                          51
                                552
                                       146
                                                     35
                                                            20
                                                                    9
                                                                         19
                                               11
##
   [5,] 3123
                  2413
                          89
                                754
                                       201
                                               39
                                                     48
                                                            28
                                                                   11
                                                                         34
   [6,] 3158
##
                  2543
                         196
                                967
                                       271
                                               67
                                                     86
                                                            60
                                                                   12
                                                                         56
##
   [7,]
         3209
                  2605
                         243 1104
                                       315
                                              98
                                                     97
                                                            72
                                                                   13
                                                                         66
   [8,] 3211
                         259 1216
                                                            70
##
                  2583
                                       341
                                             110
                                                     88
                                                                    7
                                                                         57
                                                                    7
##
   [9,] 3203
                  2557
                         260 1308
                                       356
                                              117
                                                     88
                                                            69
                                                                         57
                         255 1367
                                       355
                                                     88
                                                            69
                                                                    7
                                                                         57
## [10,] 3186
                  2489
                                             114
##
         SNRT_A SFT_A
##
   [1,]
              1
                     1
##
   [2,]
              1
                     1
  [3,]
              2
                     2
##
  [4,]
              3
                     2
##
## [5,]
              6
                     6
## [6,]
              8
                    15
## [7,]
             10
                    17
##
  [8,]
             12
                    19
## [9,]
             12
                    19
## [10,]
             12
                    19
```

### forecast Nov-Aug using arima

[3,] 2799

[4,] 3003

##

```
pred_accept_df <- vector()</pre>
for(i in 2:13){
  a <- scale(new2[1:169, i])
  ts <- ts(as.vector(a), start=c(2003,10), frequency=12)
  fit <- auto.arima(ts)</pre>
  fore <- forecast(fit,10)</pre>
  pred <- vector()</pre>
   for(j in 1:10){
      pred<- c(pred,round(sum(new2[,i][168:169])+sum(fore$mean[1:j]*attr(a, 'scaled:scale')+attr(a, 'sc
  pred_accept_df<- cbind(pred_accept_df, pred)</pre>
  i=i+1
}
colnames(pred_accept_df) <- colnames(new2)[2:13]</pre>
pred_accept_df
         FRF_A FNRF_A FFF_A FRT_A FNRT_A FFT_A SRF_A SNRF_A SFF_A SRT_A
##
##
    [1,] 2127
                  1308
                           14
                                176
                                         45
                                                      11
                                                               8
                                                                           12
##
   [2,] 2466
                  1587
                           25
                                281
                                         58
                                                 5
                                                      16
                                                              10
                                                                     1
```

```
[5,] 3119
                 2505
                              755
                                      200
                                                                      37
##
                         84
                                             41
                                                   47
                                                          28
                                                                 5
##
   [6,] 3123
                 2663
                        157
                              921
                                      254
                                             67
                                                   89
                                                          56
                                                                 7
                                                                      50
##
   [7,]
         3171
                 2750
                        197
                             1055
                                      301
                                             98
                                                   96
                                                          71
                                                                 8
                                                                      60
   [8,]
                 2748
                                      330
                                                   87
                                                          70
                                                                 6
                                                                      55
##
         3164
                        215 1152
                                            110
##
   [9,]
         3164
                 2738
                        221
                             1234
                                      340
                                            118
                                                   87
                                                          68
                                                                 6
                                                                      56
## [10,] 3147
                 2695
                        225 1296
                                      340
                                            115
                                                   87
                                                          68
                                                                 6
                                                                      57
##
         SNRT A SFT A
## [1,]
              2
                    3
##
   [2,]
              3
                    4
## [3,]
              5
                    5
## [4,]
              7
                    7
## [5,]
                    9
             10
##
   [6,]
             13
                   11
## [7,]
             15
                   14
## [8,]
             13
                   14
## [9,]
             14
                   14
## [10,]
             14
                   15
```

#### Fitted vs actual

```
HWplot<-function(ts_object, n.ahead=12, CI=.95, error.ribbon='green', line.size=1){
   hw_object<-HoltWinters(ts_object, beta=F, gamma=T)
   forecast<-predict(hw_object, n.ahead=n.ahead, prediction.interval=T, level=CI)

   for_values<-data.frame(time=round(time(forecast), 3), value_forecast=as.data.frame(forecast)$fit,
   fitted_values<-data.frame(time=round(time(hw_object$fitted), 3), value_fitted=as.data.frame(hw_obje
        actual_values<-data.frame(time=round(time(hw_object$x), 3), Actual=c(hw_object$x))

   graphset<-merge(actual_values, fitted_values, by='time', all=TRUE)
   graphset<-merge(graphset, for_values, all=TRUE, by='time')
   graphset[is.na(graphset$dev), ]$dev<-0

   graphset$Fitted<-c(rep(NA, NROW(graphset)-(NROW(for_values) + NROW(fitted_values))), fitted_values$

   graphset.melt<-melt(graphset[, c('time', 'Actual', 'Fitted')], id='time')
   p<-ggplot(graphset.melt, aes(x=time, y=value)) + geom_ribbon(data=graphset, aes(x=time, y=Fitted, y=return(p))
}</pre>
```

#### $\mathbf{F}\mathbf{R}\mathbf{F}$

```
ts <- ts(new2[1:169,2], start=c(2003,10), frequency=12)
fit <- HoltWinters(ts)
HWplot(ts, n.ahead = 12)</pre>
```

## Warning: Removed 24 rows containing missing values (geom\_path).



#### ##FNRF

```
ts <- ts(new2[1:169,3], start=c(2003,10), frequency=12)
fit <- HoltWinters(ts)
HWplot(ts, n.ahead = 12)</pre>
```

## Warning: Ignoring unknown aesthetics: y



```
\#FFF
```

```
ts <- ts(new2[1:169,4], start=c(2003,10), frequency=12)
fit <- HoltWinters(ts)
HWplot(ts, n.ahead = 12)</pre>
```



```
\#\#\mathrm{FRT}
```

```
ts <- ts(new2[1:169,5], start=c(2003,10), frequency=12)
fit <- HoltWinters(ts)
## Warning in HoltWinters(ts): optimization difficulties: ERROR:</pre>
```

## ABNORMAL\_TERMINATION\_IN\_LNSRCH
HWplot(ts, n.ahead = 12)

## Warning: Ignoring unknown aesthetics: y



```
\#\#\mathrm{FNRT}
```

```
ts <- ts(new2[1:169,6], start=c(2003,10), frequency=12)
fit <- HoltWinters(ts)
HWplot(ts, n.ahead = 12)</pre>
```



```
\#\#\mathrm{FFT}
```

```
ts <- ts(new2[1:169,7], start=c(2003,10), frequency=12)
fit <- HoltWinters(ts)
HWplot(ts, n.ahead = 12)</pre>
```



```
\#\#\mathrm{SRF}
```

```
ts <- ts(new2[1:169,8], start=c(2003,10), frequency=12)
fit <- HoltWinters(ts)
HWplot(ts, n.ahead = 12)</pre>
```



```
\#\#\mathrm{SNRF}
```

```
ts <- ts(new2[1:169,9], start=c(2003,10), frequency=12)
fit <- HoltWinters(ts)
HWplot(ts, n.ahead = 12)</pre>
```



```
\#\mathrm{SFF}
```

```
ts <- ts(new2[1:169,10], start=c(2003,10), frequency=12)
fit <- HoltWinters(ts)
HWplot(ts, n.ahead = 12)</pre>
```



```
\#\#\mathrm{SRT}
```

```
ts <- ts(new2[1:169,11], start=c(2003,10), frequency=12)
fit <- HoltWinters(ts)
HWplot(ts, n.ahead = 12)</pre>
```



```
\#\#\mathrm{SNRT}
```

```
ts <- ts(new2[1:169,12], start=c(2003,10), frequency=12)
fit <- HoltWinters(ts)
HWplot(ts, n.ahead = 12)</pre>
```



```
\#\#\mathrm{SFT}
```

```
ts <- ts(new2[1:169,13], start=c(2003,10), frequency=12)
fit <- HoltWinters(ts)
HWplot(ts, n.ahead = 12)</pre>
```



### regression enroll on accept

```
final_accepts <- new_data[month(new_data$Date)==8,]
final_accepts_FS <- add(final_accepts[,2:7]+final_accepts[,8:13])
final_enrolls_FS <- read.csv("D:/Work/actual_enrol_FS.csv")

beta0 <- vector()
beta1 <- vector()
r_squared <-vector()

for(i in 1:6){
    fit_lm <- lm(final_enrolls_FS[,i]~final_accepts_FS[,i])
    beta0 <- c(beta0,summary(fit_lm)$coefficients[1])
    beta1 <- c(beta1,summary(fit_lm)$coefficients[2])
    r_squared <- c(r_squared,summary(fit_lm)$r.squared)
}

regression_matrix <- cbind(beta0=beta0,beta1=beta1,r_squared=r_squared)
row.names(regression_matrix) <- colnames(final_enrolls_FS)

regression_matrix</pre>
```

```
## beta0 beta1 r_squared
## RF 73.939368567 0.9711277948 0.9959973124
## NRF 2.269236815 0.9840619230 0.9995922023
```

```
## FF -2.373942470 0.9009744562 0.9832725919
## RT 28.583994459 0.9626212247 0.9821580650
## NRT 8.755461846 0.9060818792 0.9935604213
## FT 5.108378917 0.9137058433 0.9798333400
```

### combine fall and summer for each type of students

```
predicted_accepts_FS <- add(predicted_accepts[,1:6]+predicted_accepts[,7:12])
predicted_accepts_FS

## FRF_A FNRF_A FFF_A FRT_A FNRT_A FFT_A</pre>
```

```
##
   [1,]
         2166
                 1321
                         12
                              175
                                      45
##
   [2,] 2475
                 1571
                         21
                              267
                                      58
                                             7
   [3,] 2832
                         76
                              380
                                     108
                                             7
##
                 1896
##
   [4,] 3020
                 2181
                         55
                              593
                                     167
                                            16
##
   [5,]
         3148
                 2414
                         91
                              796
                                     229
                                            49
                 2575
         3232
                        181 1014
                                     296
##
   [6,]
                                            65
##
   [7,]
         3288
                 2649
                        230
                            1165
                                     351
                                            98
##
  [8,] 3281
                                     374
                                           106
                 2630
                        246 1263
## [9,] 3273
                 2604
                        247 1361
                                     382
                                           115
## [10,] 3257
                 2536
                        245 1425
                                     378
                                           112
```

### predict Enrollment in August 2018 using forecasted values of Accept

```
predicted_enrollments_FS <- vector()
for(i in 1:6){
    a<- regression_matrix[i,1]+regression_matrix[i,2]*predicted_accepts_FS[10,i]
    predicted_enrollments_FS <- c(predicted_enrollments_FS,a)
}
predicted_enrollments_FS <- t(predicted_enrollments_FS)
colnames(predicted_enrollments_FS) <- colnames(final_enrolls_FS)
predicted_enrolls <- round(predicted_enrollments_FS,0)
predicted_enrolls</pre>
```

```
## RF NRF FF RT NRT FT
## [1,] 3237 2498 218 1400 351 107
```