Κωνικές Τομές Παραβολή

Κωνσταντίνος Λόλας

- ① σταθερή απόσταση από ένα σημείο
- ② ίση απόσταση από δύο σημεία
- ③ σταθερή απόσταση από ευθεία
- (ση απόσταση από δύο ευθείες

- ① σταθερή απόσταση από ένα σημείο
- ίση απόσταση από δύο σημεία
- ③ σταθερή απόσταση από ευθείο
- ίση απόσταση από δύο ευθείες

- ① σταθερή απόσταση από ένα σημείο
- ίση απόσταση από δύο σημεία
- ③ σταθερή απόσταση από ευθεία
- ίση απόσταση από δύο ευθείες

- 💵 σταθερή απόσταση από ένα σημείο
- ② ίση απόσταση από δύο σημεία
- ③ σταθερή απόσταση από ευθεία
- ίση απόσταση από δύο ευθείες

Κάναμε

- 📵 σταθερή απόσταση από ένα σημείο
- ίση απόσταση από δύο σημεία
- 3 σταθερή απόσταση από ευθεία
- ίση απόσταση από δύο ευθείες

άρα το επόμενο, μοιραία θα είναι το

Κάναμε

- 📵 σταθερή απόσταση από ένα σημείο
- ίση απόσταση από δύο σημεία
- 3 σταθερή απόσταση από ευθεία
- ίση απόσταση από δύο ευθείες

ίση απόσταση από σημείο και ευθεία?

Φύγαμε για Geogebra

Λίγο πιο απλά?

Φυσικά. Θα ασχοληθούμε μόνο με τις παραβολές που έχουν:

- εστία πάνω στους άξονες
- διευθετούσα κάθετη στον άξονα της εστίας
- η αρχή των αξόνων είναι στο μέσο της εστίας και της διευθετούσας

Λόλας Κωνικές Τομές 4/20

Ακόμα πιο απλά?

Και πάλι φυσικά.

- $\bullet \ \operatorname{Estár} \operatorname{E}(\frac{p}{2},0)$
- ullet Διευθετούσα $x=-rac{p}{2}$

ή

- $\bullet \ \operatorname{Estim} \mathrm{E}(0,\frac{p}{2})$
- ullet Διευθετούσα $y=-rac{p}{2}$

Πιο επίσημα?

Εξίσωση Παραβολής 1

Η παραβολή με εστία το σημείο $\mathrm{E}(\frac{p}{2},0)$ και διευθετούσα $x=-\frac{p}{2}$ έχει εξίσωση

$$y^2 = 2px$$

- ullet Το σημείο (0,0) ανήκει πάντα στην παραβολή
- ο y'y είναι άξονας συμμετρίας
- ullet η συνάρτηση $f(x)=\sqrt{x}$ είναι ο "πάνω" κλάδος της παραβολής

Λόλας Κωνικές Τομές 7/20

- ullet Το σημείο (0,0) ανήκει πάντα στην παραβολή
- \bullet ο y'y είναι άξονας συμμετρίας
- η συνάρτηση $f(x)=\sqrt{x}$ είναι ο "πάνω" κλάδος της παραβολής

Λόλας Κωνικές Τομές 7/20

- ullet Το σημείο (0,0) ανήκει πάντα στην παραβολή
- ullet ο y'y είναι άξονας συμμετρίας
- η συνάρτηση $f(x) = \sqrt{x}$ είναι ο "πάνω" κλάδος της παραβολής

Λόλας Κωνικές Τομές 7/20

Τα ίδια, αλλά ανάποδα!

Αλλάξτε τα x με τα y!

Εξίσωση Παραβολής 2

Η παραβολή με εστία το σημείο $\mathrm{E}(0,\frac{p}{2})$ και διευθετούσα $y=-\frac{p}{2}$ έχει εξίσωση

$$x^2 = 2py$$

- Το σημείο (0,0) ανήκει πάντα στην παραβολή
- ο x'x είναι άξονας συμμετρίας
- \bullet η συνάρτηση $f(x) = x^2$ είναι μια παραβολή

- ullet Το σημείο (0,0) ανήκει πάντα στην παραβολή
- ullet ο x'x είναι άξονας συμμετρίας
- ullet η συνάρτηση $f(x)=x^2$ είναι μια παραβολή

- ullet Το σημείο (0,0) ανήκει πάντα στην παραβολή
- ullet ο x'x είναι άξονας συμμετρίας
- η συνάρτηση $f(x) = x^2$ είναι μια παραβολή

Εφαπτομένη παραβολής

Εξίσωση

Η εξίσωση της εφαπτομένης της παραβολής $y^2=2px$ στο σημείο της (x_1,y_1) είναι η

$$yy_1 = p(x + x_1)$$

Πάμε για απόδειξη?

Ιδιότητες Παραβολής $y^2=2px$

- $\ \, \textbf{1} \ \,$ Η εφαπτομένη της στο σημείο της (x_1,y_1) τέμνει τον άξονα στο σημείο $(-x_1,0)$
- ② Κάθε παράλληλη στον x'x ανακλάται στην παραβολή και περνά από την εστία

. Πάιιε για απόδειξη?

Λόλας Κωνικές Τομές 11/20

Ιδιότητες Παραβολής $y^2=2px$

- $\ \, \textbf{Φ} \ \,$ Η εφαπτομένη της στο σημείο της (x_1,y_1) τέμνει τον άξονα στο σημείο $(-x_1,0)$
- ② Κάθε παράλληλη στον x'x ανακλάται στην παραβολή και περνά από την εστία

Πάμε για απόδειξη?

Λόλας Κωνικές Τομές 11/20

Να βρείτε την εξίσωση της παραβολής που έχει κορυφή την αρχή των αξόνων και επιπλέον:

- $oldsymbol{\Phi}$ έχει άξονα συμμετρίας τον άξονα x'x και εστία $\mathrm{E}(3,0)$
- @ έχει άξονα συμμετρίας τον άξονα x'x και διευθετούσα $\delta:x=4$
- ullet έχει άξονα συμμετρίας τον άξονα y'y και εστία $\mathrm{E}(0,-2)$

Λόλας Κωνικές Τομές 12 / 20

Να βρείτε την εξίσωση της παραβολής που έχει κορυφή την αρχή των αξόνων και επιπλέον:

- έχει άξονα συμμετρίας τον άξονα x'x και εστία $\mathrm{E}(3,0)$
- έχει άξονα συμμετρίας τον άξονα x'x και διευθετούσα $\delta: x=4$

Λόλας Κωνικές Τομές 12/20

Να βρείτε την εξίσωση της παραβολής που έχει κορυφή την αρχή των αξόνων και επιπλέον:

- έχει άξονα συμμετρίας τον άξονα x'x και εστία $\mathrm{E}(3,0)$
- έχει άξονα συμμετρίας τον άξονα x'x και διευθετούσα $\delta: x=4$
- έχει άξονα συμμετρίας τον άξονα y'y και εστία $\mathrm{E}(0,-2)$

Λόλας Κωνικές Τομές 12/20

Να βρείτε την εξίσωση της παραβολής που έχει κορυφή την αρχή των αξόνων και επιπλέον:

- έχει άξονα συμμετρίας τον άξονα x'x και εστία $\mathrm{E}(3,0)$
- έχει άξονα συμμετρίας τον άξονα x'x και διευθετούσα $\delta:x=4$
- έχει άξονα συμμετρίας τον άξονα y'y και εστία $\mathrm{E}(0,-2)$
- έχει άξονα συμμετρίας τον άξονα $y^\prime y$ και η απόσταση της εστίας ${
 m E}$ από την διευθετούσα δ είναι 2

Λόλας Κωνικές Τομές 12/20

Να βρείτε την εστία E και τη διευθετούσα δ της παραβολής με εξίσωση:

- $y^2 = 3x$

Λόλας Κωνικές Τομές 13/20

Να βρείτε την εστία E και τη διευθετούσα δ της παραβολής με εξίσωση:

- $y^2 = 3x$
- $y = -2x^2$

Λόλας Κωνικές Τομές 13/20

Να βρείτε την εξίσωση της εφαπτομένης της παραβολής $C:y^2=4x$, που είναι κάθετη στην ευθεία $\varepsilon:x+2y+1=0$

- **1** A(3,4)
- ② $B(-4,\mu)$, $\mu > 0$

Λόλας Κωνικές Τομές 14/20

Να βρείτε την εξίσωση της εφαπτομένης της παραβολής $C: y^2 = 4x$, που είναι κάθετη στην ευθεία $\varepsilon: x + 2y + 1 = 0$

- \bullet A(3,4)
- ② $B(-4,\mu)$, $\mu > 0$

Λόλας Κωνικές Τομές 14/20

Δίνεται η παραβολή $C:y^2=2x$. Να βρείτε την εφαπτομένη της παραβολής που διέρχεται από το σημείο $\mathbf{A}(-4,1)$

Λόλας Κωνικές Τομές 15/20

Να βρείτε την εξίσωση της παραβολής C, που έχει κορυφή την αρχή των αξόνων, άξονα συμμετρίας τον x'x και εφάπτεται της ευθείας $\varepsilon: 2x-y+4=0$

Λόλας Κωνικές Τομές 16/20

Δίνεται η παραβολή $C_1:y^2=4x$ και ο κύκλος $C_2:x^2+y^2=\frac{1}{2}.$

- $\ \, \textbf{Φ}$ Να δείξετε ότι η εφαπτόμενη ε της παραβολής C_1 στο σημείο της $\mathbf{A}(1,\mu)$, $\mu>0$ εφάπτεται στον κύκλο C_2
- ② Αν η ευθεία ε του προηγούμενου ερωτήματος τέμνει τον άξονα x'x στο B, να βρείτε την άλλη κοινή εφαπτόμενη η του κύκλου C_2 και της παραβολής C_1 , καθώς και το σημείο επαφής της C_1 με την η

Λόλας Κωνικές Τομές 17/20

Δίνεται η παραβολή $C_1:y^2=4x$ και ο κύκλος $C_2:x^2+y^2=\frac{1}{2}.$

- $\ \, \textbf{Φ} \,$ Να δείξετε ότι η εφαπτόμενη ε της παραβολής C_1 στο σημείο της $A(1,\mu)$, $\mu>0$ εφάπτεται στον κύκλο C_2
- ② Αν η ευθεία ε του προηγούμενου ερωτήματος τέμνει τον άξονα x'x στο B, να βρείτε την άλλη κοινή εφαπτόμενη η του κύκλου C_2 και της παραβολής C_1 , καθώς και το σημείο επαφής της C_1 με την η

Λόλας Κωνικές Τομές 17/20

Δίνεται η παραβολή $C: y^2 = 4x$. Να βρείτε την εξίσωση της χορδής της Cπου έχει μέσο το σημείο ${\rm M}(2,-1)$

> Λόλας Κωνικές Τομές 18/20

Δίνεται η παραβολή $y^2=2x$. Να δείξετε ότι τα μέσα ${\bf M}$ των χορδών που είναι παράλληλες στην ευθεία $\varepsilon:x-y+1=0$, βρίσκονται σε ημιευθεία.

Λόλας Κωνικές Τομές 19/20

Δίνεται η ευθεία $\varepsilon:x-2y+6=0$, ο κύκλος $C_1:x^2+y^2+4x+3=0$ και η παραβολή $C_2:y^2=x$. Εστω ένα σημείο ${\bf M}$ που κινείται στην παραβολή.

- $m{4}$ Να δείξετε ότι $(\mathrm{MN}) \geq \sqrt{5}$, όπου N σημείο της ευθείας
- $oldsymbol{@}$ Να βρείτε το πλησιέστερο σημείο της παραβολής C_2 από την ευθεία arepsilon
- ③ Να δείξετε ότι $(MP) \ge 1$, όπου P σημείο του κύκλου

Λόλας Κωνικές Τομές 20/20

Εξάσκηση 9

Δίνεται η ευθεία $\varepsilon:x-2y+6=0$, ο κύκλος $C_1:x^2+y^2+4x+3=0$ και η παραβολή $C_2:y^2=x$. Εστω ένα σημείο ${\bf M}$ που κινείται στην παραβολή.

- $oldsymbol{1}$ Να δείξετε ότι $(\mathrm{MN}) \geq \sqrt{5}$, όπου N σημείο της ευθείας
- $m{2}$ Να βρείτε το πλησιέστερο σημείο της παραβολής C_2 από την ευθεία arepsilon
- $oxed{3}$ Να δείξετε ότι $(\mathrm{MP}) \geq 1$, όπου $\mathrm P$ σημείο του κύκλου

Εξάσκηση 9

Δίνεται η ευθεία $\varepsilon: x-2y+6=0$, ο κύκλος $C_1: x^2+y^2+4x+3=0$ και η παραβολή $C_2: y^2 = x$. Εστω ένα σημείο M που κινείται στην παραβολή.

- Nα δείξετε ότι $(MN) > \sqrt{5}$, όπου N σημείο της ευθείας
- Να βρείτε το πλησιέστερο σημείο της παραβολής C_2 από την ευθεία ε
- Να δείξετε ότι $(MP) \ge 1$, όπου P σημείο του κύκλου

Λόλας Κωνικές Τομές 20/20 Στο moodle θα βρείτε τις ασκήσεις που πρέπει να κάνετε, όπως και αυτή τη παρουσίαση

Η εστία είναι η $E(\frac{p}{2},0)$ και η διευθετούσα $\varepsilon: x=-\frac{p}{2}$. Για κάθε σημείο M(x,y) θα ισχύει:

$$|ME| = d_{(\varepsilon, M)}$$

$$\sqrt{\left(x - \frac{p}{2}\right)^2 + (y - 0)^2} = \frac{\left|1 \cdot x + 0 \cdot y + \frac{p}{2}\right|}{\sqrt{1^2 + 0^2}}$$

$$\sqrt{\left(x - \frac{p}{2}\right)^2 + y^2} = \left|x + \frac{p}{2}\right|$$

$$\left(\sqrt{\left(x - \frac{p}{2}\right)^2 + y^2}\right)^2 = \left(\left|x + \frac{p}{2}\right|\right)^2$$

$$x^2 - px + \frac{p^2}{4} + y^2 = x^2 + px + \frac{p^2}{4}$$

$$y^2 = 2px$$

Η εστία είναι η $\mathrm{E}(\frac{p}{2},0)$ και η διευθετούσα $\varepsilon:x=-\frac{p}{2}.$ Για κάθε σημείο M(x,y) θα ισχύει:

$$|ME| = d_{(\varepsilon, M)}$$

$$\sqrt{\left(x - \frac{p}{2}\right)^2 + (y - 0)^2} = \frac{\left|1 \cdot x + 0 \cdot y + \frac{p}{2}\right|}{\sqrt{1^2 + 0^2}}$$

$$\sqrt{\left(x - \frac{p}{2}\right)^2 + y^2} = |x + \frac{p}{2}|$$

$$\left(\sqrt{\left(x - \frac{p}{2}\right)^2 + y^2}\right)^2 = \left(|x + \frac{p}{2}|\right)^2$$

$$x^2 - px + \frac{p^2}{4} + y^2 = x^2 + px + \frac{p^2}{4}$$

$$y^2 = 2px$$

Η εστία είναι η $E(\frac{p}{2},0)$ και η διευθετούσα $\varepsilon: x=-\frac{p}{2}$. Για κάθε σημείο M(x,y) θα ισχύει:

$$|ME| = d_{(\varepsilon, M)}$$

$$\sqrt{\left(x - \frac{p}{2}\right)^2 + (y - 0)^2} = \frac{\left|1 \cdot x + 0 \cdot y + \frac{p}{2}\right|}{\sqrt{1^2 + 0^2}}$$

$$\sqrt{\left(x - \frac{p}{2}\right)^2 + y^2} = |x + \frac{p}{2}|$$

$$\left(\sqrt{\left(x - \frac{p}{2}\right)^2 + y^2}\right)^2 = \left(|x + \frac{p}{2}|\right)^2$$

$$x^2 - px + \frac{p^2}{4} + y^2 = x^2 + px + \frac{p^2}{4}$$

$$y^2 = 2px$$

Η εστία είναι η $\mathrm{E}(\frac{p}{2},0)$ και η διευθετούσα $\varepsilon:x=-\frac{p}{2}.$ Για κάθε σημείο M(x,y) θα ισχύει:

$$|ME| = d_{(\varepsilon, M)}$$

$$\sqrt{\left(x - \frac{p}{2}\right)^2 + (y - 0)^2} = \frac{|1 \cdot x + 0 \cdot y + \frac{p}{2}|}{\sqrt{1^2 + 0^2}}$$

$$\sqrt{\left(x - \frac{p}{2}\right)^2 + y^2} = |x + \frac{p}{2}|$$

$$\left(\sqrt{\left(x - \frac{p}{2}\right)^2 + y^2}\right)^2 = \left(|x + \frac{p}{2}|\right)^2$$

$$x^2 - px + \frac{p^2}{4} + y^2 = x^2 + px + \frac{p^2}{4}$$

$$y^2 = 2px$$

Η εστία είναι η $\mathrm{E}(\frac{p}{2},0)$ και η διευθετούσα $\varepsilon:x=-\frac{p}{2}.$ Για κάθε σημείο M(x,y) θα ισχύει:

$$|ME| = d_{(\varepsilon, M)}$$

$$\sqrt{\left(x - \frac{p}{2}\right)^2 + (y - 0)^2} = \frac{\left|1 \cdot x + 0 \cdot y + \frac{p}{2}\right|}{\sqrt{1^2 + 0^2}}$$

$$\sqrt{\left(x - \frac{p}{2}\right)^2 + y^2} = |x + \frac{p}{2}|$$

$$\left(\sqrt{\left(x - \frac{p}{2}\right)^2 + y^2}\right)^2 = \left(|x + \frac{p}{2}|\right)^2$$

$$x^2 - px + \frac{p^2}{4} + y^2 = x^2 + px + \frac{p^2}{4}$$

$$y^2 = 2px$$

Η παραβολή έχει εξίσωση $y^2=2px$ και έστω σημείο της $M(x_1,y_1)$. Επιλέγουμε τυχαίο σημείο $A(x_2,y_2)$. Η εφαπτόμενη στο ${\bf M}$ έστω είναι της μορφής

$$y = \lambda x + \beta$$

$$\lambda = rac{y_2 - y_1}{x_2 - x_1}$$
 και αφού διέρχεται από το Μ

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$$

Για τα Μ και Α ισχύει:

$$\begin{array}{c} y_1^2=2px_1 \text{ кан } y_2^2=2px_2\\ y_2^2-y_1^2=2p(x_2-x_1) \implies (y_2-y_1)(y_2+y_1)=2p(x_2-x_1) \implies \\ \frac{y_2-y_1}{x_2-x_1}=\frac{2p}{y_2+y_1} \end{array}$$

Η παραβολή έχει εξίσωση $y^2=2px$ και έστω σημείο της $M(x_1,y_1)$. Επιλέγουμε τυχαίο σημείο $A(x_2,y_2)$. Η εφαπτόμενη στο ${\bf M}$ έστω είναι της μορφής

$$y = \lambda x + \beta$$

$$\lambda = \frac{y_2 - y_1}{x_2 - x_1}$$
 και αφού διέρχεται από το M
$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$$

Για τα Μ και Α ισχύει:

$$\begin{array}{c} y_1^2=2px_1 \ \mathrm{Kal} \ y_2^2=2px_2 \\ y_2^2-y_1^2=2p(x_2-x_1) \ \Longrightarrow \ (y_2-y_1)(y_2+y_1)=2p(x_2-x_1) \ \Longrightarrow \\ \frac{y_2-y_1}{x_2-x_1}=\frac{2p}{y_2+y_1} \end{array}$$

Η παραβολή έχει εξίσωση $y^2=2px$ και έστω σημείο της $M(x_1,y_1)$. Επιλέγουμε τυχαίο σημείο $A(x_2,y_2)$. Η εφαπτόμενη στο ${\bf M}$ έστω είναι της μορφής

$$y = \lambda x + \beta$$

$$\lambda = \frac{y_2 - y_1}{x_2 - x_1}$$
 και αφού διέρχεται από το Μ
$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$$

Για τα Μ και Α ισχύει:

$$\begin{aligned} y_1^2 &= 2px_1 \text{ KQL } y_2^2 = 2px_2 \\ y_2^2 - y_1^2 &= 2p(x_2 - x_1) \implies (y_2 - y_1)(y_2 + y_1) = 2p(x_2 - x_1) \implies \\ \frac{y_2 - y_1}{x_2 - x_1} &= \frac{2p}{y_2 + y_1} \end{aligned}$$

Η παραβολή έχει εξίσωση $y^2=2px$ και έστω σημείο της $M(x_1,y_1)$. Επιλέγουμε τυχαίο σημείο $A(x_2,y_2)$. Η εφαπτόμενη στο ${\bf M}$ έστω είναι της μορφής

$$y = \lambda x + \beta$$

$$\lambda = \frac{y_2 - y_1}{x_2 - x_1}$$
 και αφού διέρχεται από το Μ
$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$$

Για τα Μ και Α ισχύει:

$$\begin{aligned} y_1^2 &= 2px_1 \text{ kal } y_2^2 = 2px_2 \\ y_2^2 - y_1^2 &= 2p(x_2 - x_1) \implies (y_2 - y_1)(y_2 + y_1) = 2p(x_2 - x_1) \implies \\ \frac{y_2 - y_1}{x_2 - x_1} &= \frac{2p}{y_2 + y_1} \end{aligned}$$

Η παραβολή έχει εξίσωση $y^2=2px$ και έστω σημείο της $M(x_1,y_1)$. Επιλέγουμε τυχαίο σημείο $A(x_2,y_2)$. Η εφαπτόμενη στο ${\bf M}$ έστω είναι της μορφής

$$y = \lambda x + \beta$$

$$\lambda=\frac{y_2-y_1}{x_2-x_1}$$
 και αφού διέρχεται από το M
$$y-y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1)$$

Για τα Μ και Α ισχύει:

$$\begin{split} y_1^2 &= 2px_1 \text{ kal } y_2^2 = 2px_2 \\ y_2^2 - y_1^2 &= 2p(x_2 - x_1) \implies (y_2 - y_1)(y_2 + y_1) = 2p(x_2 - x_1) \implies \\ \frac{y_2 - y_1}{x_2 - x_1} &= \frac{2p}{y_2 + y_1} \end{split}$$

Είχαμε
$$y-y_1=rac{y_2-y_1}{x_2-x_1}(x-x_1)$$
 και βρήκαμε $rac{y_2-y_1}{x_2-x_1}=rac{2p}{y_2+y_1}.$ Αρα
$$y-y_1=rac{2p}{y_2+y_1}(x-x_1)$$

Αν τώρα το y_2 τείνει στο y_1 θα έχουμε

$$y - y_1 = \frac{p}{y_1}(x - x_1)$$

$$yy_1 - y_1^2 = px - px_1$$

$$yy_1 - 2px_1 = px - px$$

$$yy_1 = px + px_1$$

$$yy_1 = p(x + x_1)$$

Είχαμε
$$y-y_1=rac{y_2-y_1}{x_2-x_1}(x-x_1)$$
 και βρήκαμε $rac{y_2-y_1}{x_2-x_1}=rac{2p}{y_2+y_1}.$ Αρα
$$y-y_1=rac{2p}{y_2+y_1}(x-x_1)$$

Αν τώρα το y_2 τείνει στο y_1 θα έχουμε

$$y - y_1 = \frac{p}{y_1}(x - x_1)$$

$$yy_1 - y_1^2 = px - px_1$$

$$yy_1 - 2px_1 = px - px_1$$

$$yy_1 = px + px_1$$

$$yy_1 = p(x + x_1)$$

Είχαμε
$$y-y_1=rac{y_2-y_1}{x_2-x_1}(x-x_1)$$
 και βρήκαμε $rac{y_2-y_1}{x_2-x_1}=rac{2p}{y_2+y_1}.$ Αρα
$$y-y_1=rac{2p}{y_2+y_1}(x-x_1)$$

Av τώρα το y_2 τείνει στο y_1 θα έχουμε

$$y - y_1 = \frac{p}{y_1}(x - x_1)$$

$$yy_1 - y_1^2 = px - px_1$$

$$yy_1 - 2px_1 = px - px_1$$

$$yy_1 = px + px_1$$

$$yy_1 = p(x + x_1)$$

Κωνικές Τομές 4/6

Είχαμε
$$y-y_1=rac{y_2-y_1}{x_2-x_1}(x-x_1)$$
 και βρήκαμε $rac{y_2-y_1}{x_2-x_1}=rac{2p}{y_2+y_1}.$ Αρα
$$y-y_1=rac{2p}{y_2+y_1}(x-x_1)$$

Av τώρα το y_2 τείνει στο y_1 θα έχουμε

$$y - y_1 = \frac{p}{y_1}(x - x_1)$$

$$yy_1 - y_1^2 = px - px_1$$

$$yy_1 - 2px_1 = px - px_1$$

$$yy_1 = px + px_1$$

$$yy_1 = p(x + x_1)$$

Είχαμε
$$y-y_1=rac{y_2-y_1}{x_2-x_1}(x-x_1)$$
 και βρήκαμε $rac{y_2-y_1}{x_2-x_1}=rac{2p}{y_2+y_1}.$ Αρα
$$y-y_1=rac{2p}{y_2+y_1}(x-x_1)$$

Αν τώρα το y_2 τείνει στο y_1 θα έχουμε

$$y - y_1 = \frac{p}{y_1}(x - x_1)$$

$$yy_1 - y_1^2 = px - px_1$$

$$yy_1 - 2px_1 = px - px_1$$

$$yy_1 = px + px_1$$

$$yy_1 = p(x + x_1)$$

Πίσω στη θεωρία

Απόδειξη τομής εφαπτόμενης - άξονα

Στην

$$yy_1 = p(x + x_1)$$

και για y=0, έχουμε

$$0 = p(x + x_1) \implies x = -x_1$$

Αρα το σημείο

$$K(-x_1, 0)$$

Πίσω στη θεωρία

Απόδειξη ανακλαστικής ιδιότητας

Θα δείξουμε ότι |ME| = |NE|

$$\sqrt{\left(x_{1} - \frac{p}{2}\right)^{2} + (y_{1} - 0)^{2}} = \sqrt{x_{1}^{2} - px_{1} + \frac{p^{2}}{4} + y_{1}^{2}}$$

$$\sqrt{x_{1}^{2} - px_{1} + \frac{p^{2}}{4} + 2px_{1}} = \sqrt{x_{1}^{2} + px_{1} + \frac{p^{2}}{4}}$$

$$\sqrt{\left(x_{1} + \frac{p}{2}\right)^{2}} = \left|\frac{p}{2} + x_{1}\right|$$

Απόδειξη ανακλαστικής ιδιότητας

Θα δείξουμε ότι |ME| = |NE|

Απόδειξη ανακλαστικής ιδιότητας

Θα δείξουμε ότι |ME| = |NE|

$$\begin{split} \sqrt{\left(x_{1} - \frac{p}{2}\right)^{2} + (y_{1} - 0)^{2}} &= \sqrt{x_{1}^{2} - px_{1} + \frac{p^{2}}{4} + y_{1}^{2}} \\ \sqrt{x_{1}^{2} - px_{1} + \frac{p^{2}}{4} + 2px_{1}} &= \sqrt{x_{1}^{2} + px_{1} + \frac{p^{2}}{4}} \\ \sqrt{\left(x_{1} + \frac{p}{2}\right)^{2}} &= \left|\frac{p}{2} + x_{1}\right| \\ &\xrightarrow[\kappa]{\left(x_{1}, y_{1}\right) \longrightarrow \left(x_{1} - \frac{p}{2}, 0\right) \longrightarrow \left(x_{1} - \frac{p}{2}, 0\right)} \\ &\xrightarrow[\kappa]{\left(x_{1}, y_{2}\right) \longrightarrow \left(x_{1} - \frac{p}{2}, 0\right) \longrightarrow \left(x_$$