



KS091201
MATEMATIKA DISKRIT
(DISCRETE
MATHEMATICS)

#### Discrete Basic Structure: Sets

Discrete Math Team

#### **Outline**

- What is a set?
- Set properties
- Specifying a set
- Often used sets
- The universal set
- Venn diagrams
- Sets of sets
- The empty set
- Set equality
- Subsets and Proper subsets
- Set cardinality
- Power sets

- Tuples
- Cartesian products
- Sets operation:
  - Union
  - Intersection
  - Disjoint
  - Difference
  - Symmtric difference
  - Complement
  - Set Identities
  - How to proof set identities

#### What is a set?

- A set is a group of "objects"
  - People in a class: { Alice, Bob, Chris }
  - Colors of a rainbow: { red, orange, yellow, green, blue, purple }
  - States of matter { solid, liquid, gas, plasma }
  - States in the US: { Alabama, Alaska, Virginia, ... }
  - Sets can contain non-related elements: { 3, a, red, Virginia }
- Although a set can contain (almost) anything, we will most often use sets of numbers
  - All positive numbers less than or equal to 5: {1, 2, 3, 4, 5}
  - A few selected real numbers:  $\{2.1, \pi, 0, -6.32, e\}$

### Set properties

- Order does not matter
  - We often write them in order because it is easier for humans to understand it that way
  - {1, 2, 3, 4, 5} is equivalent to {3, 5, 2, 4, 1}
- Sets are notated with curly brackets { }
- Sets do not have duplicate elements
  - Consider the set of vowels in the alphabet.
    - It makes no sense to list them as {a, a, a, e, i, o, o, o, o, u}
    - What we really want is just {a, e, i, o, u}
  - Consider the list of students in this class
    - Again, it does not make sense to list somebody twice
- Note that a list is like a set, but order does matter and duplicate elements are allowed
  - We won't be studying lists much in this class

# Specifying a set

- Sets are usually represented by a capital letter (A, B, S, etc.)
- Elements are usually represented by an italic lowercase letter (a, x, y, etc.)
- Easiest way to specify a set is to list all the elements: A= {1, 2, 3, 4, 5}
  - Not always feasible for large or infinite sets
- Can use an ellipsis (...) when general pattern of the elements is obvious: B = {0, 1, 2, 3, ...}
  - Can cause confusion.
    - Consider the set  $C = \{3, 5, 7, ...\}$  What comes next?
    - If the set is all odd integers greater than 2, it is 9
    - If the set is all prime numbers greater than 2, it is 11

# Specifying a set (cont.)

- Can use set-builder notation
  - D =  $\{x \mid x \text{ is prime and } x > 2\}$
  - $E = \{x \mid x \text{ is odd and } x > 2\}$
  - The vertical bar means "such that"
  - Thus, set D is read (in English) as: "all elements x such that x is prime and x is greater than 2"
- A set is said to "contain" the various "members" or "elements" that make up the set
  - If an element x is a member of (or an element of) a set S, we use then notation  $x \in S$ 
    - $\mathbf{0}$  4  $\in$  {1, 2, 3, 4}
  - If an element is not a member of (or an element of) a set S, we use the notation  $x \notin S$ 
    - $\circ$  7  $\notin$  {1, 2, 3, 4}
    - Virginia ∉ {1, 2, 3, 4}

#### Often used sets

- **N** = {0, 1, 2, 3, ...} is the set of natural numbers
- $\circ$  **Z** = {..., -2, -1, 0, 1, 2, ...} is the set of integers
- $\mathbf{Z}^+$  = {1, 2, 3, ...} is the set of positive integers (a.k.a whole numbers)
  - Note that people disagree on the exact definitions of whole numbers and natural numbers
- $\mathbf{Q} = \{p/q \mid p \in \mathbf{Z}, q \in \mathbf{Z}, q \neq 0\}$  is the set of rational numbers
  - Any number that can be expressed as a fraction of two integers (where the bottom one is not zero)
- R is the set of real numbers

#### The universal set

- U is the universal set the set of all of elements (or the "universe") from which given any set is drawn

  - For the set  $\{0, 1, 2\}$ , U could be the natural numbers (zero and up), the integers, the rational numbers, or the real numbers, depending on the context
  - ullet For the set of the students in this class,  $oldsymbol{U}$  would be all the students in the University (or perhaps all the people in the world)
  - ullet For the set of the vowels of the alphabet,  $oldsymbol{U}$  would be all the letters of the alphabet
  - To differentiate U from  $\cup$  (which is a set operation), the universal set is written in a different font (and in bold and italics)

# Venn diagrams

- Represents sets graphically
  - The box represents the universal set
  - Circles represent the set(s)
- Consider set S, which is the set of all vowels in the alphabet
- The individual elements are usually not written in a Venn diagram



#### Sets of sets

- Sets can contain other sets
  - $\circ$  S = { {1}, {2}, {3} }
  - $\bullet$  T = { {1}, {{2}}, {{{3}}} }
  - - V has only 3 elements!
- Note that  $1 \neq \{1\} \neq \{\{1\}\} \neq \{\{\{1\}\}\}\}$ 
  - They are all different

# The empty set

- If a set has zero elements, it is called the empty (or null) set
  - Written using the symbol Ø
  - Thus,  $\emptyset = \{\}$ 
    - ← VERY IMPORTANT
  - If you get confused about the empty set in a problem, try replacing Ø by { }
- As the empty set is a set, it can be an element of other sets
  - $\circ$  {  $\varnothing$ , 1, 2, 3, x } is a valid set
- Note that  $\emptyset \neq \{\emptyset\}$ 
  - The first is a set of zero elements
  - The second is a set of 1 element (that one element being the empty set)
- Replace  $\varnothing$  by  $\{\}$ , and you get:  $\{\} \neq \{\{\}\}$ 
  - It's easier to see that they are not equal that way

# Set equality

- Two sets are equal if they have the same elements
  - - Remember that order does not matter!
  - - Since duplicate elements are not allowed!
- Two sets are not equal if they do not have the same elements
  - $\bullet$  {1, 2, 3, 4, 5}  $\neq$  {1, 2, 3, 4}

#### Subsets

- If all the elements of a set S are also elements of a set T, then S is a subset of T
  - For example, if S = {2, 4, 6} and T = {1, 2, 3, 4, 5, 6, 7},
     then S is a subset of T
  - This is specified by S ⊆ T
    Or by {2, 4, 6} ⊆ {1, 2, 3, 4, 5, 6, 7}
- If S is not a subset of T, it is written as such:
   S ⊈ T
  - For example,  $\{1, 2, 8\} \nsubseteq \{1, 2, 3, 4, 5, 6, 7\}$
- Note that any set is a subset of itself!
  - Given set S = {2, 4, 6}, since all the elements of S are elements of S, S is a subset of itself
  - This is kind of like saying 5 is less than or equal to 5
  - Thus, for any set  $S, S \subseteq S$

# Subsets (cont.)

- The empty set is a subset of all sets (including itself!)
  - Recall that all sets are subsets of themselves
- All sets are subsets of the universal set
- A horrible way to define a subset:
  - $\bullet$   $\forall x (x \in A \rightarrow x \in B)$
  - English translation: for all possible values of x, (meaning for all possible elements of a set), if x is an element of A, then x is an element of B
  - This type of notation will be gone over later

#### **Proper Subsets**

- If S is a subset of T, and S is not equal to T, then S is a proper subset of T
  - Let  $T = \{0, 1, 2, 3, 4, 5\}$
  - If  $S = \{1, 2, 3\}$ , S is not equal to T, and S is a subset of T
  - A proper subset is written as  $S \subset T$
  - Let R = {0, 1, 2, 3, 4, 5}. R is equal to T, and thus is a subset (but not a proper subset) of T
    - Can be written as:  $R \subseteq T$  and  $R \not\subset T$  (or just R = T)
  - Let Q = {4, 5, 6}. Q is neither a subset or T nor a proper subset of T
- The difference between "subset" and "proper subset" is like the difference between "less than or equal to" and "less than" for numbers
- The empty set is a proper subset of all sets other than the empty set (as it is equal to the empty set)

#### Proper subsets: Venn diagram

$$S \subset R$$



# Set cardinality

- The cardinality of a set is the number of elements in a set
  - Written as |A|
- Examples
  - Let  $R = \{1, 2, 3, 4, 5\}$ . Then |R| = 5
  - $\circ$   $|\varnothing| = 0$
  - Let  $S = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$ . Then |S| = 4
- This is the same notation used for vector length in geometry
- A set with one element is sometimes called a singleton set

#### Power sets

- Given the set S = {0, 1}. What are all the possible subsets of S?
  - They are:  $\emptyset$  (as it is a subset of all sets),  $\{0\}$ ,  $\{1\}$ , and  $\{0, 1\}$
  - The power set of S (written as P(S)) is the set of all the subsets of S
  - P(S) = {∅, {0}, {1}, {0,1}}
    Note that |S| = 2 and |P(S)| = 4
- Let  $T = \{0, 1, 2\}$ . The  $P(T) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0,1\}, \{0,2\}, \{1,2\}, \{0,1,2\}\}$ 
  - Note that |T| = 3 and |P(T)| = 8
- $\circ$  P( $\varnothing$ ) = { $\varnothing$ }
  - Note that  $|\varnothing| = 0$  and  $|P(\varnothing)| = 1$
- If a set has n elements, then the power set will have  $2^n$  elements

(2,3)

+X

### **Tuples**

- In 2-dimensional space, it is a (x, y) pair of numbers to specify a location
- In 3-dimensional (1,2,3) is not the same as (3,2,1) – space, it is a (x, y, z) triple of numbers
- In n-dimensional space, it is a n-tuple of numbers
  - Two-dimensional space uses pairs, or 2-tuples
  - Three-dimensional space uses triples, or 3-tuples
- Note that these tuples are ordered, unlike sets
  - the x value has to come first

#### Cartesian products

- A Cartesian product is a set of all ordered ntuples where each "part" is from a given set
  - Denoted by A x B, and uses parenthesis (not curly brackets)
  - For example, 2-D Cartesian coordinates are the set of all ordered pairs Z x Z
    - Recall **Z** is the set of all integers
    - This is all the possible coordinates in 2-D space
  - Example: Given A = { a, b } and B = { 0, 1 }, what is their Cartiesian product?
    - $\circ$  C = A x B = { (a,0), (a,1), (b,0), (b,1) }
- Note that Cartesian products have only 2 parts in these examples (later examples have more parts)
- Formal definition of a Cartesian product:
  - $A \times B = \{ (a,b) \mid a \in A \text{ and } b \in B \}$

# Cartesian products (cont.)

- All the possible grades in this class will be a Cartesian product of the set S of all the students in this class and the set G of all possible grades
  - Let  $S = \{ Alice, Bob, Chris \}$  and  $G = \{ A, B, C \}$
  - D = { (Alice, A), (Alice, B), (Alice, C), (Bob, A), (Bob, B), (Bob, C), (Chris, A), (Chris, B), (Chris, C) }
  - The final grades will be a subset of this: { (Alice, C), (Bob, B), (Chris, A) }
    - Such a subset of a Cartesian product is called a relation (more on this later in the course)
- There can be Cartesian products on more than two sets
- A 3-D coordinate is an element from the Cartesian product of Z x Z x Z





# KS091201 MATEMATIKA DISKRIT (DISCRETE MATHEMATICS)

#### **Sets Operation**

Discrete Math Team

#### **Sets of Colors**

- Pick any 3 "primary" colors
- Triangle shows mixable color range (gamut)
  - the set of colors



#### Set operations: Union (Gabungan)

- A union of the sets contains all the elements in EITHER set
- Union symbol is usually a
- Example:
  - $\circ$  C = M  $\cup$  P



# Set operations: Union (cont.)

• Formal definition for the union of two sets:

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$

- Further examples

  - {New York, Washington}  $\cup$  {3, 4} = {New York, Washington, 3, 4}
  - $\{1, 2\} \cup \emptyset = \{1, 2\}$



# Properties of the union operation

$$\bullet A \cup \emptyset = A$$

$$\bullet$$
 A  $\cup$   $U = U$ 

$$\bullet A \cup A = A$$

$$\bullet$$
 A  $\cup$  B = B  $\cup$  A

$$\bullet A \cup (B \cup C) = (A \cup B) \cup C$$

Identity law

**Domination law** 

Idempotent law

Commutative law

Associative law

#### Set operations: Intersection (Irisan)

- An intersection of the sets contains all the elements in BOTH sets
- Intersection symbol is a
- Example:  $C = M \cap P$



# Set operations: Intersection

- Formal definition for the intersection of two sets:  $A \cap B = \{x \mid x \in A \text{ and } x \in B \}$
- Further examples

  - {New York, Washington}  $\cap$  {3, 4} =  $\emptyset$ 
    - No elements in common
  - - Any set intersection with the empty set yields the empty set



# Properties of the intersection operation

$$\bullet$$
 A  $\cap$   $U$  = A

$$\circ$$
 A  $\cap$  Ø = Ø

$$\circ$$
 A  $\cap$  A = A

$$\circ$$
 A  $\cap$  B = B  $\cap$  A

$$\circ$$
 A  $\cap$  (B  $\cap$  C) = (A  $\cap$  B)  $\cap$  C

Identity law

**Domination law** 

Idempotent law

Commutative law

Associative law

# Disjoint sets

- Two sets are disjoint if they have NO elements in common
- Formally, two sets are disjoint if their intersection is the empty set
- Another example: the set of the even numbers and the set of the odd numbers





# Disjoint sets (cont.)

- Formal definition for disjoint sets: two sets are disjoint if their intersection is the empty set
- Further examples
  - {1, 2, 3} and {3, 4, 5} are not disjoint
  - {New York, Washington} and {3, 4} are disjoint
  - $\circ$  {1, 2} and  $\varnothing$  are disjoint
    - Their intersection is the empty set
  - o Ø and Ø are disjoint!
    - Their intersection is the empty set

#### Set operations: Difference (Selisih)

- A difference of two sets is the elements in one set that are NOT in the other
- Difference symbol is a minus sign
- Example:
  - $\circ$  C = M P
- Also visa-versa:
  - $\circ$  C = P M



# Set operations: Difference (cont.)

A - B



B - A



#### Set operations: Difference (cont.)

 Formal definition for the difference of two sets:

$$A - B = \{ x \mid x \in A \text{ and } x \notin B \}$$
  
 $A - B = A \cap \overline{B} \leftarrow Important!$ 

- Further examples

  - {New York, Washington} {3, 4} = {New York, Washington}
  - - The difference of any set S with the empty set will be the set S

#### Set operations: Symmetric Difference

- A symmetric difference of the sets contains all the elements in either set but NOT both
- Symetric diff. symbol is a ⊕
- Example:  $C = M \oplus P$



#### Set operations: Symmetric Difference

 Formal definition for the symmetric difference of two sets:

$$A \oplus B = \{x \mid (x \in A \text{ or } x \in B) \text{ and } x \notin A \cap B\}$$
  
 $A \oplus B = (A \cup B) - (A \cap B) \leftarrow \text{Important!}$ 

- Further examples

  - {New York, Washington}  $\oplus$  {3, 4} = {New York, Washington, 3, 4}
  - - The symmetric difference of any set S with the empty set will be the set S

#### Complement sets

 A complement of a set is all the elements that are NOT in the set

Complement symbol is a bar above the set

name: P or M

Alternative symbols

• PC or MC



## Complement sets (cont.)

 $\overline{\mathsf{A}}$ 



 $\overline{\mathsf{B}}$ 



#### Complement sets (cont.)

- Formal definition for the complement of a set:  $\overline{A} = \{x \mid x \notin A\} = A^c$ 
  - $\circ$  Or U A, where U is the universal set
- Further examples (assuming  $U = \mathbf{Z}$ )

Properties of complement sets

$$\circ \overline{\overline{A}} = A$$

Complementation law

$$\bullet$$
 A  $\cup$   $\overline{\mathsf{A}}$  =  $U$ 

Complement law

$$\bullet A \cap \overline{A} = \emptyset$$

Complement law

#### Set identities

- Set identities are basic laws on how set operations work
  - Many have already been introduced on previous slides
- Just like logical equivalences!
  - Replace ∪ with ∨
  - Replace ∩ with ∧
  - Replace Ø with F
  - ullet Replace  $oldsymbol{\mathit{U}}$  with T

### Recap of set identities

| $A \cup \emptyset = A$  | Identity Law         | A∪U = U                        | Domination law   |  |
|-------------------------|----------------------|--------------------------------|------------------|--|
| $A \cap U = A$          | Identity Law         | $A \cap \emptyset = \emptyset$ | Domination law   |  |
| $A \cup A = A$          | Idempotent Law       | $(A^c)^c = A$                  | Complement Law   |  |
| $A \cap A = A$          | idempotent Law       | (II) - II                      | Complement Law   |  |
| $A \cup B = B \cup A$   | Commutative Law      | $(A \cup B)^c = A^c \cap B^c$  | Do Mongon's Lovy |  |
| $A \cap B = B \cap A$   | Commutative Law      | $(A \cap B)^c = A^c \cup B^c$  | De Morgan's Law  |  |
| $A \cup (B \cup C)$     |                      | $A \cap (B \cup C) =$          |                  |  |
| $= (A \cup B) \cup C$   | Associative Law      | $(A \cap B) \cup (A \cap C)$   | Distributive Law |  |
| $A \cap (B \cap C)$     | Associative Law      | $A \cup (B \cap C) =$          | Distributive Law |  |
| $= (A \cap B) \cap C$   |                      | $(A \cup B) \cap (A \cup C)$   |                  |  |
| $A \cup (A \cap B) = A$ | Ala a mati an I assa | $A \cup A^c = U$               | Complement       |  |
| $A \cap (A \cup B) = A$ | Absorption Law       | $A \cap A^c = \emptyset$       | Complement Law   |  |

#### How to prove a set identity?

- For example:  $A \cap B = B (B A)$
- There are four methods to prove:
  - Use the basic set identities
  - Use membership tables
  - Prove each set is a subset of each other
    - This is like proving that two numbers are equal by showing that each is less than or equal to the other
  - Use set builder notation and logical equivalences

### What we are going to prove?

$$A \cap B = B - (B - A)$$



#### **Proof by Set Identities**

Prove that  $A \cap B = B - (B - A)$ 

$$A \cap B = B - (B \cap \overline{A})$$

$$=B\cap \overline{(B\cap \overline{A})}$$

$$=B\cap(\overline{B}\cup\overline{\overline{A}})$$

$$=B\cap (\overline{B}\bigcup A)$$

$$=(B \cap \overline{B}) \cup (B \cap A)$$

$$= \varnothing \bigcup (B \cap A)$$

$$=(B \cap A)$$

$$=A\cap B$$

Definition of difference

Definition of difference

DeMorgan's law

Complementation law

Distributive law

Complement law

Identity law

Commutative law

- Membership tables show all the combinations of sets an element can belong to
  - 1 means the element belongs, 0 means it does not
- Consider the following membership table:

| Α | В | AUB | $A \cap B$ | A - B |
|---|---|-----|------------|-------|
| 1 | 1 | 1   | 1          | 0     |
| 1 | 0 | 1   | 0          | 1     |
| 0 | 1 | 1   | 0          | 0     |
| 0 | 0 | 0   | 0          | 0     |

- The top row is all elements that belong to both sets
   A and B
  - Thus, these elements are in the union and intersection, but not the difference

- Membership tables show all the combinations of sets an element can belong to
  - 1 means the element belongs, 0 means it does not
- Consider the following membership table:

| Α | В | AUB | $A \cap B$ | A - B |
|---|---|-----|------------|-------|
| 1 | 1 | 1   | 1          | 0     |
| 1 | 0 | 1   | 0          | 1     |
| 0 | 1 | 1   | 0          | 0     |
| 0 | 0 | 0   | 0          | 0     |

- The second row is all elements that belong to set A but not set B
  - Thus, these elements are in the union and difference, but not the intersection

- Membership tables show all the combinations of sets an element can belong to
  - 1 means the element belongs, 0 means it does not
- Consider the following membership table:

| Α | В | AUB | $A \cap B$ | A - B |
|---|---|-----|------------|-------|
| 1 | 1 | 1   | 1          | 0     |
| 1 | 0 | 1   | 0          | 1     |
| 0 | 1 | 1   | 0          | 0     |
| 0 | 0 | 0   | 0          | 0     |

- The third row is all elements that belong to set B but not set A
  - Thus, these elements are in the union, but not the intersection or difference

- Membership tables show all the combinations of sets an element can belong to
  - 1 means the element belongs, 0 means it does not
- Consider the following membership table:

| Α | В | AUB | $A \cap B$ | A - B |
|---|---|-----|------------|-------|
| 1 | 1 | 1   | 1          | 0     |
| 1 | 0 | 1   | 0          | 1     |
| 0 | 1 | 1   | 0          | 0     |
| 0 | 0 | 0   | 0          | 0     |

- The bottom row is all elements that belong to neither set A or set B
  - Thus, these elements are neither the union, the intersection, nor difference

#### Proof by membership tables

• The following membership table shows that  $A \cap B = B - (B - A)$ 

| Α | В | $A \cap B$ | B-A | B-(B-A) |
|---|---|------------|-----|---------|
| 1 | 1 | 1          | 0   | 1       |
| 1 | 0 | 0          | 0   | 0       |
| 0 | 1 | 0          | 1   | 0       |
| 0 | 0 | 0          | 0   | 0       |

- Because the two indicated columns have the same values, the two expressions are identical
- This is similar to Propositional logic!

# Proof by showing each set is a subset of the other

- Assume that an element is a member of one of the identities
  - Then show it is a member of the other
- Repeat for the other identity
- We are trying to show:
  - $(x \in A \cap B \rightarrow x \in B (B A)) \land (x \in B (B A) \rightarrow x \in A \cap B)$
  - This is the biconditional:
  - $\bullet$  X $\in$ A $\cap$ B  $\leftrightarrow$  X $\in$ B-(B-A)
- Not good for long proofs

## Proof by showing each set is a subset of the other

- Assume that  $x \in B-(B-A)$ 
  - By definition of difference, we know that x∈B and x∉B-A
- Consider x∉B-A
  - If  $x \in B-A$ , then (by definition of difference)  $x \in B$  and  $x \notin A$
  - Since x∉B-A, then only one of the inverses has to be true (DeMorgan's law): x∉B or x∈A
- $\circ$  So we have that  $x \in B$  and  $(x \notin B \text{ or } x \in A)$ 
  - It cannot be the case where  $x \in B$  and  $x \notin B$
  - Thus,  $x \in B$  and  $x \in A$
  - This is the definition of intersection
- Thus, if  $x \in B-(B-A)$  then  $x \in A \cap B$

# Proof by showing each set is a subset of the other

- Assume that  $x \in A \cap B$ 
  - By definition of intersection,  $x \in A$  and  $x \in B$
- Thus, we know that  $x \notin B-A$ 
  - B-A includes all the elements in B that are also not in A not include any of the elements of A (by definition of difference)
- Consider B-(B-A)
  - We know that x∉B-A
  - We also know that if  $x \in A \cap B$  then  $x \in B$  (by definition of intersection)
  - Thus, if  $x \in B$  and  $x \notin B-A$ , we can restate that (using the definition of difference) as  $x \in B-(B-A)$
- Thus, if  $x \in A \cap B$  then  $x \in B (B A)$

# Proof by set builder notation and logical equivalences

- First, translate both sides of the set identity into set builder notation
- Then modify one side to make it identical to the other
  - Do this using logical equivalences

Definition of intersection

# Proof by set builder notation and logical equivalences

 $=A\cap B$ 

$$B-(B-A) \qquad \qquad \text{Original statement} \\ = \{x \mid x \in B \land x \not\in (B-A)\} \qquad \qquad \text{Definition of difference} \\ = \{x \mid x \in B \land \neg (x \in (B-A))\} \qquad \qquad \text{Negating "element of"} \\ = \{x \mid x \in B \land \neg (x \in B \land x \not\in A)\} \qquad \qquad \text{Definition of difference} \\ = \{x \mid x \in B \land (x \not\in B \lor x \in A)\} \qquad \qquad \text{DeMorgan's Law} \\ = \{x \mid (x \in B \land x \not\in B) \lor (x \in B \land x \in A)\} \qquad \qquad \text{Distributive Law} \\ = \{x \mid (x \in B \land \neg (x \in B)) \lor (x \in B \land x \in A)\} \qquad \qquad \text{Negating "element of"} \\ = \{x \mid F \lor (x \in B \land x \in A)\} \qquad \qquad \text{Negation Law} \\ = \{x \mid x \in B \land x \in A\} \qquad \qquad \text{Identity Law}$$

#### Computer representation of sets

- ullet Assume that  $oldsymbol{U}$  is finite (and reasonable!)
  - ullet Let  $oldsymbol{\mathit{U}}$  be the alphabet
- ullet Each bit represents whether the element in  $oldsymbol{U}$  is in the set
- The vowels in the alphabet: abcdefghijklmnopqrstuvwxyz 10001000100000100000100000

#### Computer representation of sets

Consider the union of these two sets:
 100010001000001000000

Consider the intersection of these two sets:
 100010001000001000000