13

Funções Vetoriais

13.4

Movimento no Espaço: Velocidade e Aceleração

Nesta seção, mostraremos como as ideias dos vetores tangente e normal, assim como as de curvatura, podem ser usadas na física para estudar o movimento de objetos, sua velocidade e sua aceleração, quando estão se movendo ao longo de uma curva espacial. Em particular, seguiremos os passos de Newton, usando seu método para deduzir a Primeira Lei de Kepler para o movimento planetário.

Suponha que uma partícula se mova no espaço de forma que seu vetor posição no instante $t \in \mathbf{r}(t)$. Observe da Figura 1 que, para pequenos valores de h, o vetor

$$\frac{\mathbf{r}(t+h)-\mathbf{r}(t)}{h}$$

se aproxima da direção da partícula que se move ao longo da curva $\mathbf{r}(t)$. Seu módulo mede o tamanho do vetor deslocamento por unidade de tempo.

Figura 1

O vetor $\boxed{1}$ fornece a velocidade média no intervalo de tempo de comprimento h e seu limite é o **vetor velocidade** $\mathbf{v}(t)$ no instante t:

$$\mathbf{v}(t) = \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h} = \mathbf{r}'(t)$$

Portanto, o vetor velocidade é também o vetor tangente e tem a direção da reta tangente à curva.

A **velocidade escalar** da partícula no instante t é a magnitude do vetor velocidade, ou seja, $|\mathbf{v}(t)|$.

Isto é apropriado, pois, a partir de 2, temos

 $|\mathbf{v}(t)| = |\mathbf{r}'(t)| = \frac{ds}{dt} =$ taxa de variação da distância com relação ao tempo

Como no caso de movimento unidimensional, a **aceleração** da partícula é definida como a derivada da velocidade:

$$\mathbf{a}(t) = \mathbf{v}'(t) = \mathbf{r}''(t)$$

Exemplo 1

O vetor posição de um objeto em movimento em um plano é dado por $\mathbf{r}(t) = t^3 \mathbf{i} + t^2 \mathbf{j}$. Determine a sua velocidade, a velocidade escalar aceleração quando t = 1 e ilustre geometricamente.

SOLUÇÃO: A velocidade e a aceleração no instante t são

$$\mathbf{v}(t) = \mathbf{r}'(t) = 3t^2 \mathbf{i} + 2t \mathbf{j}$$

$$\mathbf{a}(t) = \mathbf{r}''(t) = 6t \, \mathbf{i} + 2 \, \mathbf{j}$$

e a velocidade escalar é

$$|\mathbf{v}(t)| = \sqrt{(3t^2)^2 + (2t)^2} = \sqrt{9t^4 + 4t^2}$$

Exemplo 1 – Solução

Quando t = 1, temos

$$v(1) = 3 i + 2 j$$
 $a(1) = 6 i + 2 j$ $|v(1)| = \sqrt{13}$

Os vetores velocidade e aceleração estão mostrados na Figura 2.

Em geral, por integração vetorial podemos recuperar a velocidade quando a aceleração for conhecida e a posição quando a velocidade for conhecida:

$$\mathbf{v}(t) = \mathbf{v}(t_0) + \int_{t_0}^t \mathbf{a}(u) \ du \qquad \mathbf{r}(t) = \mathbf{r}(t_0) + \int_{t_0}^t \mathbf{v}(u) \ du$$

Se a força que age sobre a partícula é conhecida, então a aceleração pode ser determinada a partir da **Segunda Lei de Newton para o Movimento**. A versão vetorial dessa lei nos diz que, se em qualquer instante de tempo t, uma força $\mathbf{F}(t)$ age sobre um objeto m produzindo uma aceleração $\mathbf{a}(t)$, então

$$\mathbf{F}(t) = m\mathbf{a}(t)$$

Quando estudamos o movimento de uma partícula, é frequentemente útil decompor a aceleração em duas componentes, uma na direção da tangente e outra na direção da normal. Se escrevemos $v = |\mathbf{v}|$ para a velocidade escalar da partícula, então

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} = \frac{\mathbf{v}(t)}{|\mathbf{v}(t)|} = \frac{\mathbf{v}}{v}$$

e, assim,

$$\mathbf{v} = \mathbf{v}\mathbf{T}$$

Se derivarmos ambos os lados em relação a t, obteremos

$$\mathbf{a} = \mathbf{v}' = \mathbf{v}'\mathbf{T} + \mathbf{v}\mathbf{T}'$$

Se usarmos a expressão da curvatura, temos

$$\kappa = \frac{|\mathbf{T}'|}{|\mathbf{r}'|} = \frac{|\mathbf{T}'|}{v} \qquad \log o \qquad |\mathbf{T}'| = \kappa v$$

O vetor normal unitário foi definido na seção anterior como $\mathbf{N} = \mathbf{T}'/|\mathbf{T}'|$, então $\boxed{6}$ fornece

$$T' = |T'|N = \kappa vN$$

e a Equação 5 se torna

$$\mathbf{a} = v'\mathbf{T} + \kappa v^2\mathbf{N}$$

Escrevendo a_T e a_N para as componentes tangencial e normal da aceleração, temos

$$\mathbf{a} = a_T \mathbf{T} + a_N \mathbf{N}$$

onde

$$a_{\tau} = V'$$

$$a_T = V'$$
 e $a_N = \kappa V^2$

Essa conclusão está ilustrada na na Figura 7.

Figura 7

Vamos olhar agora o que a Fórmula 7 nos diz. A primeira coisa a observar é que o vetor binormal B não aparece. Independentemente de como o objeto se move no espaço, sua aceleração sempre está nos planos de T e N (o plano osculador). (Lembre-se de que T fornece a direção e sentido do movimento e N aponta a direção na qual a curva está entortando.) Em seguida, observamos que a componente tangencial da aceleração é v', a taxa de variação da velocidade escalar, e a componente normal da aceleração é κv^2 , a curvatura vezes o quadrado da velocidade escalar.

Isso explica o que acontece com um passageiro em um carro — uma virada brusca em uma rua pode ser vista como um valor grande de curvatura κ , de forma que a componente da aceleração perpendicular ao movimento é grande e o passageiro é jogado contra a porta do carro. A alta velocidade em uma curva tem o mesmo efeito; de fato, se dobrarmos nossa velocidade escalar, a_N será aumentada por um fator de 4.

Apesar de termos uma expressão para as componentes tangencial e normal da aceleração na Equação 8, é desejável obter expressões que dependam somente de **r**, **r**', e **r**''.

Com essa finalidade, tomamos o produto escalar de $\mathbf{v} = v\mathbf{T}$ com a como dada na Equação 7:

$$\mathbf{V} \cdot \mathbf{a} = V\mathbf{T} \cdot (V'\mathbf{T} + \kappa V^2\mathbf{N})$$

$$= VV'\mathbf{T} \cdot \mathbf{T} + \kappa V^3\mathbf{T} \cdot \mathbf{N}$$

$$= VV' \qquad \text{(uma vez que } \mathbf{T} \cdot \mathbf{T} = 1 \text{ e } \mathbf{T} \cdot \mathbf{N} = 0\text{)}$$

Portanto

$$a_T = v' = \frac{\mathbf{v} \cdot \mathbf{a}}{v} = \frac{\mathbf{r}'(t) \cdot \mathbf{r}''(t)}{|\mathbf{r}'(t)|}$$

Usando a fórmula da curvatura dada, temos

$$a_N = \kappa v^2 = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3} |\mathbf{r}'(t)|^2 = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|}$$

Exemplo 7

Uma partícula se move com função posição $\mathbf{r}(t) = \langle t^2, t^2, t^3 \rangle$. Determine as componentes tangencial e normal da aceleração.

SOLUÇÃO:
$$\mathbf{r}(t) = t^2 \mathbf{i} + t^2 \mathbf{j} + t^3 \mathbf{k}$$

 $\mathbf{r}'(t) = 2t \mathbf{i} + 2t \mathbf{j} + 3t^2 \mathbf{k}$
 $\mathbf{r}''(t) = 2 \mathbf{i} + 2 \mathbf{j} + 6t \mathbf{k}$
 $|\mathbf{r}'(t)| = \sqrt{8t^2 + 9t^4}$

Exemplo 7 – Solução

Portanto, da Equação 9 vem que a componente tangencial é

$$a_T = \frac{\mathbf{r}'(t) \cdot \mathbf{r}''(t)}{|\mathbf{r}'(t)|} = \frac{8t + 18t^3}{\sqrt{8t^2 + 9t^4}}$$

Uma vez que
$$\mathbf{r}'(t) \times \mathbf{r}''(t) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2t & 2t & 3t^2 \\ 2 & 2 & 6t \end{vmatrix} = 6t^2 \mathbf{i} - 6t^2 \mathbf{j}$$

Da Equação 10 obtemos a componente normal

$$a_N = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|} = \frac{6\sqrt{2}t^2}{\sqrt{8t^2 + 9t^4}}$$

Leis de Kepter

- Um planeta gira em torno do Sol em uma órbita elíptica, com o Sol em um dos focos.
- O segmento de reta que liga o Sol a um planeta varre áreas iguais em intervalos de tempo iguais.
- O quadrado do período de revolução de um planeta é proporcional ao cubo do comprimento do eixo maior de sua órbita.

Como a força gravitacional do Sol sobre um planeta é muito maior que as forças exercidas por outros corpos celestes, podemos ignorar todos os outros corpos do Universo, exceto o Sol e um planeta girando em torno dele. Usaremos um sistema de coordenadas com origem no Sol e seja $\mathbf{r} = \mathbf{r}(t)$ o vetor posição do planeta. (Poderíamos igualmente considerar \mathbf{r} o vetor posição da Lua ou de um satélite girando em torno da Terra, ou um cometa movendo-se em torno de uma estrela.)

O vetor velocidade é $\mathbf{v} = \mathbf{r}'$ e o vetor aceleração é $\mathbf{a} = \mathbf{r}''$. Utilizaremos as seguintes leis de Newton:

Segunda Lei do Movimento: $\mathbf{F} = m\mathbf{a}$

Lei da Gravitação:
$$\mathbf{F} = -\frac{GMm}{r^3}\mathbf{r} = -\frac{GMm}{r^2}\mathbf{u}$$

onde **F** é a força da gravidade sobre o planeta, m e M são as massas do planeta e do Sol, G é a constante gravitacional, $r = |\mathbf{r}|$, e $\mathbf{u} = (1/r)\mathbf{r}$ é o vetor unitário na direção de \mathbf{r} .

Mostraremos inicialmente que o planeta se move em um plano. Igualando a expressão para F nas duas leis de Newton, chegamos a

$$\mathbf{a} = -\frac{GM}{r^3}\mathbf{r}$$

e assim, \mathbf{a} é paralelo a \mathbf{r} . Segue que $\mathbf{r} \times \mathbf{a} = \mathbf{0}$. Usamos a fórmula

$$\frac{d}{dt} [\mathbf{u}(t) \times \mathbf{v}(t)] = \mathbf{u}'(t) \times \mathbf{v}(t) + \mathbf{u}(t) \times \mathbf{v}'(t)$$

para escrever
$$\frac{d}{dt} = (\mathbf{r} \times \mathbf{v}) = \mathbf{r}' \times \mathbf{v} + \mathbf{r} \times \mathbf{v}'$$

$$= \mathbf{v} \times \mathbf{v} + \mathbf{r} \times \mathbf{a} = \mathbf{0} + \mathbf{0} = \mathbf{0}$$

$$\mathbf{r} \times \mathbf{v} = \mathbf{h}$$

onde \mathbf{h} é um vetor constante. (Podemos assumir que $\mathbf{h} \neq 0$; isto é, \mathbf{r} e \mathbf{v} não são paralelos.) Isto significa que o vetor $\mathbf{r} = \mathbf{r}(t)$ é perpendicular a \mathbf{h} para todos os valores de t, de modo que o planeta sempre se situa no plano através da origem perpendicular de \mathbf{h} . Assim, a órbita do planeta é uma curva plana.

Para demonstrarmos a Primeira Lei de Kepler, vamos reescrever o vetor **h** como segue:

$$\mathbf{h} = \mathbf{r} \times \mathbf{v} = \mathbf{r} \times \mathbf{r}' = r\mathbf{u} \times (r\mathbf{u})'$$

$$= r\mathbf{u} \times (r\mathbf{u}' + r'\mathbf{u}) = r^2(\mathbf{u} \times \mathbf{u}') + rr'(\mathbf{u} \times \mathbf{u})$$

$$= r^2(\mathbf{u} \times \mathbf{u}')$$

Então,

$$\mathbf{a} \times \mathbf{h} = \frac{-GM}{r^2} \mathbf{u} \times (r^2 \mathbf{u} \times \mathbf{u}') = -GM \mathbf{u} \times (\mathbf{u} \times \mathbf{u}')$$
$$= -GM [(\mathbf{u} \cdot \mathbf{u}')\mathbf{u} - (\mathbf{u} \cdot \mathbf{u})\mathbf{u}'] \quad \text{pela Fórmula} \\ \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$$

Mas $\mathbf{u} \cdot \mathbf{u} = |\mathbf{u}|^2 = 1$ e, uma vez que $|\mathbf{u}(t)| = 1$, ocorre $\mathbf{u} \cdot \mathbf{u}' = 0$. Portanto

$$\mathbf{a} \times \mathbf{h} = GM \mathbf{u}'$$

e $(\mathbf{v} \times \mathbf{h})' = \mathbf{v}' \times \mathbf{h} = \mathbf{a} \times \mathbf{h} = GM \mathbf{u}'$ Integrando ambos os lados da equação, obtemos

 $\mathbf{v} \times \mathbf{h} = GM \mathbf{u} + \mathbf{c}$

onde **c** é um vetor constante.

Neste ponto é conveniente escolher os eixos coordenados de forma que o vetor da base canônica \mathbf{k} aponte na direção do vetor \mathbf{h} . Em seguida, o planeta se move no plano xy. Como ambos $\mathbf{v} \times \mathbf{h}$ e \mathbf{u} são perpendiculares a \mathbf{h} , a Equação 11 mostra que \mathbf{c} pertence ao plano xy. Isso significa que podemos escolher os eixos x e y de forma que o vetor \mathbf{i} esteja na direção de \mathbf{c} , como mostrado na Figura 8.

h

Se θ é o ângulo entre **c** e **r**, então (r, θ) são as coordenadas polares do planeta. Da Equação 11, temos

$$\mathbf{r} \cdot (\mathbf{v} \times \mathbf{h}) = \mathbf{r} \cdot (GM \mathbf{u} + \mathbf{c}) = GM \mathbf{r} \cdot \mathbf{u} + \mathbf{r} \cdot \mathbf{c}$$

= $GMr \mathbf{u} \cdot \mathbf{u} + |\mathbf{r}| |\mathbf{c}| \cos \theta = GMr + rc \cos \theta$

onde $c = |\mathbf{c}|$. Então,

$$r = \frac{\mathbf{r} \cdot (\mathbf{v} \times \mathbf{h})}{GM + c \cos \theta} = \frac{1}{GM} \frac{\mathbf{r} \cdot (\mathbf{v} \times \mathbf{h})}{1 + e \cos \theta}$$

onde e = c/(GM). Mas

$$\mathbf{r} \cdot (\mathbf{v} \times \mathbf{h}) = (\mathbf{r} \times \mathbf{v}) \cdot \mathbf{h} = \mathbf{h} \cdot \mathbf{h} = |\mathbf{h}|^2 = h^2$$

onde $h = |\mathbf{h}|$. Logo

$$r = \frac{h^2/(GM)}{1 + e\cos\theta} = \frac{eh^2/c}{1 + e\cos\theta}$$

Escrevendo $d = h^2/c$, obtemos a equação

$$r = \frac{ed}{1 + e\cos\theta}$$

vemos que a Equação 12 é aquela da forma polar da seção cônica com foco na origem e excentricidade *e*. Sabemos que a órbita de um planeta é uma curva fechada e assim a cônica deve ser uma elipse.