Die Elektroden-Elektrolyt-Phasengrenze

Prof. Dr.-Ing. Thomas Stieglitz

Lehrstuhl für Biomedizinische Mikrotechnik Raum 102-00-073

Tel.: 7471

Email: stieglitz@imtek.de

Albert-Ludwigs-Universität Freiburg

Übersicht

Die Phasengrenze Metall-Elektrolyt

- elektrochemische Vorgänge
- elektrische Modellierung
- Charakterisierung

Die Elektroden-Elektrolyt-Phasengrenze

Vorgänge an der Phasengrenze

Albert-Ludwigs-Universität Freiburg

METALL ELEKTROLYT

Ziel: Transfer von Elektronenleitung im Metall zu lonenleitung im Elektrolyten

Albert-Ludwigs-Universität Freiburg

Kapazitive Mechanismen

Helmholtz-Doppelschicht

- Doppelschicht aus Wasser (Dipolen) und hydratisierten Ionen
- Ladung / Entladung der Doppelschicht
- "Plattenkondensator"
- geometrische Oberfläche glatter Metallelektroden
- Ladungsdichte: 20 μC/cm²

Erweiterung der Beschreibung

- Gouy-Chapman-Stern
- genauere Beschreibung der Diffusionsvorgänge
- in Elektrolyten hoher Konzentration durch Helmholtz-Modell annäherbar

Irreversible Faradische Reaktionen

NN REBURG

Albert-Ludwigs-Universität Freiburg

Ladungstransfer über Redoxreaktion nicht-ortsfeste Redoxreaktionen Reaktionspartner stehen nicht mehr für eine Umkehrung der Reaktion zur Verfügung Veränderung der biologischen Umgebung

$$\begin{aligned} \text{Pt} + 4 \cdot \text{Cl}^- &\Rightarrow \left[\text{PtCl}_4 \right]^{2^-} + 2 \cdot \text{e}^- \\ 2 \cdot \text{H}_2\text{O} + 2 \cdot \text{e}^- &\Rightarrow \text{H}_2 \uparrow + 2 \cdot \text{OH}^- \\ 2 \cdot \text{H}_2\text{O} &\Rightarrow \text{O}_2 \uparrow + 4 \cdot \text{H}^+ + 4 \cdot \text{e}^- \\ 2 \cdot \text{Cl}^- &\Rightarrow \text{Cl}_2 \uparrow + 2 \cdot \text{e}^- &\uparrow : \text{Gasentwicklung} \\ \text{Cl}^- + \text{H}_2\text{O} &\Rightarrow \text{ClO}^- + 2 \cdot \text{H}^+ + 2 \cdot \text{e}^- \end{aligned}$$

Reversible Faradaysche Reaktionen

UN FREBURG

Albert-Ludwigs-Universität Freiburg

ortsfeste Redoxreaktionen

Nutzen: Landungstransfer über Phasengrenze erhöhen

$$Pt + H_2O \Leftrightarrow PtO + 2 \cdot H^+ + 2 \cdot e^-$$

$$Ir + 2 \cdot H_2O \Leftrightarrow Ir(OH)_2 + 2 \cdot H^+ + 2 \cdot e^-$$

$$Pt + H^+ + e^- \Leftrightarrow Pt - H$$

$$Pt + H_2O + e^- \Leftrightarrow Pt - H + OH^-$$

Einfaches Ersatzschaltbild der

Phasengrenze

Phasengrenze = Elektrode

alle Vorgänge können parallel stattfinden

Faraday-Widerstand → Material

Helmholtz-Kapazität → Oberfläche

Leitungswiderstand → Elektrolyt

unter Umständen: serielle Spannungsquelle

$$\underline{Z} = \frac{1}{\frac{1}{R_{F}} + j \cdot \omega \cdot C_{H}} + R_{L}$$

$$f_{g} = \frac{1}{2 \cdot \pi \cdot C_{H} \cdot R_{E}}$$

Änderung der Valenzen von Metallen in Verbindungen, z.B. Iridiumoxid

Ergänzung des Ersatzschaltbildes um serielle Komponente

$$M^{+n}(OH)_n + H_2O \Leftrightarrow M^{+n+1}(OH)_{n+1} + H^+ + e^-$$

 $M^{+n}(OH)_n + OH^- \Leftrightarrow M^{+n+1}(OH)_{n+1} + e^-$

$$\underline{Z} = \frac{1}{\frac{1}{R_{ox}} + j \cdot \omega \cdot C_{ox}} + \frac{1}{\frac{1}{R_{F}} + j \cdot \omega \cdot C_{H}} + R_{E}$$

Reaktionen an Elektroden I

Albert-Ludwigs-Universität Freiburg

	⊟ektrodenreaktion	Reversibles Potential E0 (V) vs. RHE
1.	Esen: Auflösung/Abscheidung:	
	Fe ⇔ Fe ²⁺ + 2 · e ⁻	-0,030
2.	Oxidation/Reduktion organischer Moleküle:	
	$C_6H_{12}O_6 + 6 \cdot H_2O \Leftrightarrow 6 \cdot CO_2 + 24 \cdot H^+ + 24 \cdot e^-$	-0,015
3.	Wasserstoff-Oxidation/-entwicklung:	
	$H_2 \Leftrightarrow 2 \cdot H^+ + 2 \cdot e^-$	0,000
4.	H-Atom: Oxidation/Reduktion:	Aktivität ist
122	Pt-H⇔Pt+H ⁺ +e ⁻	potentialabhängig
5.	Oberflächen-Oxidation/-reduktion von Iridium:	
	$Ir + H_2O \Leftrightarrow IrO + 2 \cdot H^+ + 2 \cdot e^-$	0,870
	$Ir + 2 \cdot H_2O \Leftrightarrow IrO_2 + 4 \cdot H^+ + 4 \cdot e^-$	0,926
8	$Ir_2O_3 + H_2O \Leftrightarrow 2 \cdot IrO_2 + 2 \cdot H^+ + 2 \cdot e^-$	0,926

Reaktionen an Elektroden II

Albert-Ludwigs-Universität Freiburg

⊟ektrodenreaktion		Reversibles Potential E ₀ (V) vs. RHE
6.	Oberflächen-Oxidation/-reduktion von Platin:	
S	$Pt + H_2O + e^- \Leftrightarrow Pt - H + OH^-$	0,980
7.	Platin: Auflösung/Abscheidung:	
	$Pt + 4 \cdot Cl^- \Leftrightarrow [PtCl_4]^{2-} + 2 \cdot e^-$	1,143
8.	Sauerstoff-Entwicklung/Reduktion:	
2 .	$2 \cdot H_2O \Leftrightarrow O_2 \uparrow + 4 \cdot H^+ + 4 \cdot e^-$	1,228
9.	Anion: Oxidation/Reduktion:	
	$Cl^- + 4 \cdot H_2O \Leftrightarrow ClO_4^- + 8 \cdot H^+ + 8 \cdot e^-$	1,389
	$Cl^- + 2 \cdot H_2O \Leftrightarrow ClO_2^- + 4 \cdot H^+ + 4 \cdot e^-$	1,599
	$Cl^- + H_2O \Leftrightarrow ClO^- + 2 \cdot H^+ + 2 \cdot e^-$	1,715
	$2 \cdot \text{Cl}^- \Leftrightarrow \text{Cl}_2 \uparrow + 2 \cdot \text{e}^-$	1,774

RHE: reversible hydrogen electrode

Darstellung der Impedanz (II)

Albert-Ludwigs-Universität Freiburg

Bode-Diagramm

- Betrag |Z| und Phase φ
- log |Z| vs. log f
- φ vs. log f

FREBURG

3-Elektroden-Messung

Kenngrößen:

- Gold
 Leiterbahnen
- Platin Elektroden
- Durchmesser:
 500 µm

Pt-black has larger surface

Zusammenfassung

Die Elektroden-Elektrolyt-Phasengrenze

Albert-Ludwigs-Universität Freiburg

Sie kennen...

- die Vorgänge an der Elektroden-Elektrolyt-Phasengrenze
- Methoden zur Charakterisierung von Elektroden
- das elektrische Ersatzschaltbild der Phasengrenze
- die Unterscheidung von Elektroden erster und zweiter Art
- reversible, nicht reversible, polarisierbare und nicht polarisierbare Elektroden

