Ordre et manipulations

- 1. (a) Soit $H: \mathbb{R} \to \mathbb{R}$ la fonction de Heaviside $H(t) = \begin{cases} 0, & t < 0, \\ 1, & t \geq 0, \end{cases}$ et δ_0 la distribution de Dirac en 0, définie par $\langle \delta_0, \varphi \rangle = \varphi(0)$ pour toute function test ϕ . Montrer que $H' = \delta_0$ au sens des distributions.
 - (b) Soit $n \in \mathbb{N}$, donner un exemple de distribution d'ordre n et donner une distribution d'ordre infini.
 - (c) Pour $\theta \in \mathbb{C}^{\infty}$, calculer $\theta \delta'_0$.
- 2. Étudier la convergence au sens des distributions des suites suivantes, on précisera l'ordre des distributions de la suite ainsi que celui de la limite lorsqu'elle existe :
 - (a) $f_n(x) = n^d f(nx)$ avec $f \in L^1(\mathbb{R}^d)$;
- (d) $f_n(x) = \cos(nx)$;

(b) $T_n = (-1)^n \delta_{1/n}$;

(e) $f_n(x) = n^p \cos(nx)$ avec p > 0;

(c) $T_n = \frac{n}{2}(\delta_{1/n} - \delta_{-1/n})$;

(f) $f_n(x) = |x|^{\frac{1}{n}-1} - 2n\delta_0$ dans $\mathcal{D}'(\mathbb{R})$.

Deux exemples

- 3. On étudie deux distributions : la valeur principale et la partie finie.
 - (a) On définit la valeur principale de 1/x par : $\forall \varphi \in \mathcal{D}(\mathbb{R})$,

$$\langle \mathbf{p}. \mathbf{v}. (1/x), \varphi \rangle = \lim_{\varepsilon \to 0^+} \int_{|x| \geqslant \varepsilon} \frac{\varphi(x)}{x} dx.$$

- i. Montrer que p. v.(1/x) définit bien une distribution et préciser son ordre.
- ii. Montrer que x p. v.(1/x) = 1 au sens des distributions.
- iii. Montrer que $x \mapsto \ln(|x|)$ définit une distribution dont la dérivée est p. v.(1/x).
- (b) On définit la partie finie de 1/|x| par : $\forall \varphi \in \mathcal{D}(\mathbb{R})$,

$$\langle \operatorname{fp}(1/|x|), \varphi \rangle = \int_{-M}^{M} \frac{\varphi(x) - \varphi(0)}{|x|} dx + 2\varphi(0) \ln(M),$$

- où M > 0 vérifie $\operatorname{supp}(\varphi) \subset [-M, M]$.
 - i. Montrer que fp(1/|x|) définit bien une distribution (en particulier ne dépend pas de M tant que [-M,M]contient le support de φ) et préciser son ordre.
- ii. Montrer que x fp(1/|x|) = sgn(x) au sens des distributions.
- iii. Montrer que $x \mapsto \operatorname{sgn}(x) \ln(|x|)$ définit une distribution dont la dérivée est $\operatorname{fp}(1/x)$.

Résolutions d'EDO au sens des distributions

- 4. Soit I un intervalle de \mathbb{R} .
 - (a) Résoudre T' = 0 dans $\mathcal{D}'(I)$.
 - (b) Soit $f, g \in C^{\infty}(I)$, montrer que toute solution T de T' + fT = g dans $\mathcal{D}'(I)$ est une fonction lisse.
 - (c) Pour $f \in C^{\infty}(\mathbb{R})$, résoudre $T' + fT = \delta_0$ dans $\mathcal{D}'(\mathbb{R})$.
 - (d) Résoudre $T'' T' 2T = \delta_0$ dans $\mathcal{D}'(\mathbb{R})$.
- 5. Soit $\theta \in \mathcal{D}(\mathbb{R})$ telle que $\theta(0) = 1$.
 - (a) Pour tout $\varphi \in \mathcal{D}(\mathbb{R})$, montrer qu'il existe $\psi \in \mathcal{D}(\mathbb{R})$ telle que

$$\varphi(x) - \varphi(0)\theta(x) = x\psi(x).$$

- (b) Résoudre xT = 0 dans $\mathcal{D}'(\mathbb{R})$.
- (c) Résoudre xT = 1 dans $\mathcal{D}'(\mathbb{R})$.
- (d) Pour $n \in \mathbb{N}$, $n \ge 2$, résoudre $x^n T = 1$ dans $\mathcal{D}'(\mathbb{R})$.

6. Résoudre dans $\mathcal{D}'(\mathbb{R})$ les équations suivantes :

(a)
$$xT = \operatorname{sgn}(x)$$
,

(c)
$$(x-1)T = \delta_0$$
,

(b)
$$xT = 1_{\mathbb{R}^+},$$

(d)
$$(x-a)(x-b)T = 1$$
 avec $a \neq b$.

7. Formule des sauts. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction C^1 sur \mathbb{R}^* , on dit que f admet un saut en 0 si f se prolonge par continuité à droite et à gauche de 0 par des valeurs finies. On note $[[f(0)]] = f(0^+) - f(0^-)$ la hauteur du saut de f en 0. On note $\{f'\}$ la dérivée de la partie régulière de f, c'est-à-dire

$$\{f'\}(x) = \begin{cases} f'(x) & \text{si } f \text{ est d\'erivable en } x \\ 0 & \text{sinon} \end{cases}$$

(a) Montrer qu'au sens des distributions :

$$f' = \{f'\} + [[f(0)]]\delta_0.$$

(b) Soit (x_n) une suite indexée par $\mathbb Z$ strictement croissante telle que

$$\lim_{n \to -\infty} x_n = -\infty \quad \text{et} \quad \lim_{n \to +\infty} x_n = +\infty.$$

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction C^1 admettant des sauts sur chaque x_n . Montrer qu'au sens des distributions

$$f' = \{f'\} + \sum_{n \in \mathbb{Z}} [[f(x_n)]] \delta_{x_n}.$$

- (c) Soit $P=\partial^2+a\partial+b$ un opérateur différentiel avec $a,b\in\mathbb{R}.$
 - i. Soit f et g deux fonctions de classe C^2 sur \mathbb{R} , on définit $h=f\mathbbm{1}_{\mathbb{R}^+}+g\mathbbm{1}_{\mathbb{R}^-}$. Calculer P.h au sens des distributions.
 - ii. En déduire une solution particulière de l'équation $T'' + aT' + b = \delta_0$.

Une injection de Sobolev en dimension 1

- 8. Soient I un intervalle de \mathbb{R} et $p \in [1, +\infty]$. Soit $f \in W^{1,p}(I) = \{f \in L^p, f' \in L^p\}$.
 - (a) Soit $a \in I$, montrer que la fonction T, donnée par

$$T(x) = \int_{a}^{x} f'(t) dt,$$

est bien définie, continue et dérivable presque partout. On pourra utilise le théorème de différentiation de Lebesgue : $si~u \in L^1_{loc}(\mathbb{R}^d)$ alors pour presque tout $x \in \mathbb{R}^d$,

$$\frac{1}{|B(x,r)|}\int_{B(x,r)}f(y)\mathrm{d}y\quad \stackrel{r\to 0}{\longrightarrow}\quad f(x).$$

- (b) Montrer que T' = f' presque partout et au sens des distributions.
- (c) En déduire qu'il existe $c \in \mathbb{R}$ tel que, pour presque tout $x \in \mathbb{R}$,

$$f(x) = c + \int_{-\infty}^{x} f'(t) dt.$$

En particulier, f admet un représentant continu et dérivable presque partout.

- (d) Si 1 , montrer que <math>f est hölderienne. Pour quel $\alpha > 0$ a-t-on l'inclusion $H^1(I) \subset C^{0,\alpha}(I)$?
- (e) Si $p = +\infty$, montrer que f est lipschitzienne.
- (f) Montrer que $W^{1,p}(I) \hookrightarrow L^{\infty}(I)$, c'est-à-dire qu'il existe une constante c > 0 telle que, pour tout $g \in W^{1,p}(I)$, on a $g \in L^{\infty}(I)$ et

$$||g||_{L^{\infty}} \leqslant c||g||_{W^{1,p}}.$$

On dit que $W^{1,p}(I)$ s'injecte continûment dans $L^{\infty}(I)$. On pourra commencer par le cas $I = \mathbb{R}$ et $g \in C_c^{\infty}(\mathbb{R})$, et considérer la fonction $G \circ g$ avec $G : t \mapsto t|t|^{p-1}$.

- (g) On suppose I borné.
 - i. Montrer que $W^{1,p}(I)$ est stable par produit.
 - ii. Montrer que l'injection $W^{1,p}(I) \hookrightarrow C(\overline{I})$ est compacte, c'est-à-dire que tout élément de $W^{1,p}(I)$ est dans $C(\overline{I})$ et que de tout suite borné de $(W^{1,p}(I), ||.||_{W^{1,p}})$, on peut extraire une suite convergent uniformément sur \overline{I} vers une limite dans $C(\overline{I})$.
- (h) On suppose I non borné, montrer que

$$\lim_{\substack{|x| \to +\infty \\ x \in I}} f(x) = 0.$$

Distributions.

- 9. Distribution positive Soit $u \in \mathcal{D}'(\Omega)$ une distribution tel que pour tout $\phi \in \mathcal{D}(\Omega)$ positive, $< u, \phi >$ est positive. Montrer que u est d'ordre 0 et que l'on peut l'identifier à une mesure de Radon.
- 10. On note $\arg(z)$ la valeur pricipale de l'argument d'un complexe z, i.e. l'argument dans $]-\pi,\pi]$. Pour tout $\epsilon>0$, on définit

$$f_{\epsilon}(x) = \ln(x + i\epsilon) = \ln|x + i\epsilon| + i\arg(x + i\epsilon).$$

- (a) Calculer $f_{0^+} = \lim_{\epsilon \to 0^+} f_{\epsilon}$ et $f_{0^-} = \lim_{\epsilon \to 0^-} f_{\epsilon}$ in $\mathcal{D}'(\mathbb{R})$.
- (b) Calculer f'_{0^+} et f'_{0^-} au sens des distribution. *Hint:* Utiliser la fonction *partie principale* p. v.(1/x) définie dans un exercice précédent.
- (c) Déduire que dans $\mathcal{D}'(\mathbb{R})$

$$\lim_{\varepsilon \to 0^+} \frac{1}{x + i\varepsilon} = -i\pi\delta_0 + \text{p. v.}(1/x) \qquad \text{et} \qquad \lim_{\varepsilon \to 0^+} \frac{1}{x - i\varepsilon} = i\pi\delta_0 + \text{p. v.}(1/x).$$

Supports et convolution

- 11. Soit $T \in \mathcal{D}'(\mathbb{R}^d)$.
 - (a) Rappeler la définition du support de T.
 - (b) Soit $\varphi \in \mathcal{D}(\mathbb{R}^d)$, montrer que si supp $T \cap \text{supp } \varphi = \emptyset$ alors $\langle T, \varphi \rangle = 0$. La réciproque est-elle vraie? Est-ce que si ϕ s'annule sur le support de T, $\langle T, \varphi \rangle = 0$?
 - (c) On suppose que T est à support compact et on considère $\psi \in \mathcal{D}(\mathbb{R}^d)$ telle que $\psi = 1$ sur un voisinage de supp T. Montrer que $\psi T = T$.
- 12. Distrubution à support ponctuel Montrer que les distributions dont le support est un singleton peuvent s'écrire comme combinaison linéaire des dérivées de la distribution de Dirac en ce point.
- 13. (a) Soient $T \in \mathcal{D}'(\mathbb{R}^d)$ et $\varphi \in C^{\infty}(\mathbb{R}^d)$, montrer que si supp $T \cap \text{supp } \varphi$ est compact alors on peut définir $\langle T, \varphi \rangle$.
 - (b) Soient $T, S \in \mathcal{D}'(\mathbb{R}^d)$, on suppose T et S vérifient la condition suivante : pour tout compact K de \mathbb{R}^d ,

$$\{(x,y) \in \mathbb{R}^d \times \mathbb{R}^d \mid x \in \operatorname{supp} T, \ y \in \operatorname{supp} S, \ x + y \in K\}$$

est compact. Montrer que dans ce cas, T * S et S * T sont bien définies.

- 14. La convolution est-elle associative pour le triplet 1, δ'_0 et H, où H est la fonction de Heaviside définie dans l'exercice 1 ? Donner une condition suffisante sur les supports pour que la convolution soit associative.
- 15. Calculer les convolutions suivantes :

(a)
$$\delta_a * \delta_b \operatorname{sur} \mathbb{R}^d$$
,

(d)
$$(x^p \delta_0^{[q]}) * (x^m \delta_0^{[n]}),$$

(g)
$$\mathbb{1}_{[a,b]} * \mathbb{1}_{[c,d]}$$
,

(b)
$$T * \delta_a$$
 avec $T \in \mathcal{D}'(\mathbb{R}^d)$,

(e)
$$\delta_0^{[k]} * (x^m H)$$
,

(h)
$$\mathbb{1}_{[0,1]} * (xH)$$
,

(c)
$$H * H$$
 (Heaviside),

(f)
$$(x^p H) * (x^q H)$$
,

(i)
$$\delta_{S(0,r)} * |x|^2 \text{ sur } \mathbb{R}^3$$
.

16. Densité des fonctions lisses dans $\mathcal{D}'(\mathbb{R}^d)$. Soit (ρ_n) une suite régularisante définie par

$$\forall x \in \mathbb{R}^d, \quad \rho_n(x) = n^d \rho(-nx),$$

où $\rho \in \mathbb{C}^{\infty}(\mathbb{R}^d, [0, 1])$ est à support dans la boule unité. Montrer que pour toute distribution T dans $\mathcal{D}'(\mathbb{R}^d)$, $T \star \rho_n$ converge vers T au sens des distributions.

17. Régularisation par des polynômes Pour $n \in \mathbb{N}^*$, On définit P_n un polynôme sur \mathbb{R}^d par

$$P_n(x) = \frac{n^d}{\pi^{d/2}} \left(1 - \frac{|x|^2}{n}\right)^{n^3}.$$

- (a) Calculer la limite dans $\mathcal{D}'(\mathbb{R}^d)$ de la suite $(P_n)_n$?
- (b) Déduire que toute distribution à support compact est une limite dans $\mathcal{D}'(\mathbb{R}^d)$ d'une suite de polynôme.
- 18. On note $\mathcal{D}'_{+}(\mathbb{R}) = \{ T \in \mathcal{D}'(\mathbb{R}) \mid \text{supp } T \subset \mathbb{R}^+ \}.$

Distributions.

- (a) Montrer que la convolution de deux éléments de $\mathcal{D}'_{+}(\mathbb{R})$ est bien définie et donne un élément de $\mathcal{D}'_{+}(\mathbb{R})$. On pourra loucher sur l'exercice 11. Pour la suite de l'exercice, on admet que la convolution est associative et commutative dans $\mathcal{D}'_{+}(\mathbb{R})$. Quel est le neutre de la convolution dans $\mathcal{D}'_{+}(\mathbb{R})$?
- (b) Montrer que pour tout $a \in \mathbb{R}$, pour tout $T, S \in \mathcal{D}'_{+}(\mathbb{R})$, on a $(e^{ax}T)*(e^{ax}S) = e^{ax}(T*S)$.
- (c) Pour $T \in \mathcal{D}'_{+}(\mathbb{R})$, on note T^{-1} l'inverse de T dans $\mathcal{D}'_{+}(\mathbb{R})$ pour la convolution lorsqu'il existe. Montrer que T^{-1} est effectivement unique et calculer $(\delta'_{0})^{-1}$, $(H)^{-1}$ et $(\delta'_{0} \lambda \delta_{0})^{-1}$ pour $\lambda \in \mathbb{R}$.
- (d) Soit P un polynôme scindé sur \mathbb{R} , calculer $[P(\partial).\delta_0]^{-1}$.
- (e) Résoudre dans $\mathcal{D}'_+(\mathbb{R})$ le système suivant

$$\begin{cases} \delta_0'' * X + \delta_0' * Y = \delta \\ \delta_0' * X + \delta_0'' * Y = 0. \end{cases}$$

- 19. On étudie le comportement de la convergence de distributions avec le produit de convolution.
 - (a) Soient $T \in \mathcal{E}'(\mathbb{R}^d)$, $V \in \mathcal{D}'(\mathbb{R}^d)$ et (V_n) une suite de distribution de $\mathcal{D}'(\mathbb{R}^d)$. Montrer que si $V_n \to V$ dans $\mathcal{D}'(\mathbb{R}^d)$ alors $V_n * T \to V * T$ dans $\mathcal{D}'(\mathbb{R}^d)$.
 - (b) Soient $T \in \mathcal{D}'(\mathbb{R}^d)$, $V \in \mathcal{E}'(\mathbb{R}^d)$ et (V_n) une suite de distribution de $\mathcal{E}'(\mathbb{R}^d)$. Montrer que si $V_n \to V$ dans $\mathcal{E}'(\mathbb{R}^d)$ alors $V_n * T \to V * T$ dans $\mathcal{D}'(\mathbb{R}^d)$.
 - (c) Montrer qu'il existe deux suites de distributions T_n et V_n convergent vers 0 dans $\mathcal{D}'(\mathbb{R})$ et telles que $T_n * V_n \to \delta_0$.
- 20. (a) Montrer que pour $d \ge 3$, la solution fondamental du Laplacien est $u_0(x) = (-d(d-2)\operatorname{Vol}(B(0,1))\|x\|^{d-2})^{-1}$, i.e. $\Delta u_0 = \delta_0$ au sens des distributions.
 - (b) Donner la solution de $\Delta u = f$ au sens des distributions avec f dans $\mathcal{E}'(\mathbb{R}^d)$.