

VibCat: Vibration Categorization for input & interaction

Daehwa Kim Ulsan National Institute of Science and Technology NAVER UNDERGRADUATE POSTER COMPETITION

Contribution & Goal

New press interaction & Object recognition

This poster suggests new interaction & object recognition technique using only *commodity built-in vibration motor* and *accelerometer* in smart phone.

Fig 1. VibCat Object Recognition

Fig 2. VibCat New press interaction

Evaluation

Experimental Condition

- Samsung galaxy S7 (with OEM Vibration Motor) with silicon case to prevent the mobile device from vibrating on either axis.
- Placing the objects ten times randomly, each time capturing ten samples.
- Vibrate during 1000msec and measure 40 acceleration values every 7msec after 500msec.

Fig 7. The objects for VibCat test: desk, cup, cup with water, and glass bottle

Approach & Method

Forced oscillation & natural frequency

 $x(t) = X_0 \sin(\omega t + \phi)$

$$X_{0} = \frac{KF_{0}}{\left\{ \left(1 - \omega^{2} / \omega_{n}^{2} \right)^{2} + \left(2\varsigma\omega / \omega_{n} \right)^{2} \right\}^{1/2}} \qquad \phi = \tan^{-1} \frac{-2\varsigma\omega / \omega_{n}}{1 - \omega^{2} / \omega_{n}^{2}}$$

(where $\omega_n = \sqrt{\frac{k}{m}}$, $\varsigma = \frac{\lambda}{2\sqrt{km}}$, $K = \frac{1}{k}$, X_0 : amplitude of motion, ω_n : natural frequency) Equation 1. Motion of objects in forced oscillation

Fig 3. Forced Oscillation diagram

Fig 4. The acceleration graph of various objects

82% 12% 6% 96.7% 3.7% 1% 88% 100%

Result

Fig 8. Confusion Matrix

Collect data vibration data from accelerometer

Data Smoothing Savitzky golay filter

Arrange the wave The highest peak is in first position

Feature selection analysis 40 data points + 40 absolute + average + root mean square(rms) + min +max

Fig 5. Acceleration graph of each object

Fig 6. savitzky golay filter result

Application

Services for blind Predict lost device location

Interactive Dictionary

Bring real objects to VR

New 'press' interaction (interaction without touch)

Waste sorting, Auto refill, Self checkout

Future work

- -Root the kernel and control the vibration intensity. Then collect the various channel's result and train it.
- -Extend the accelerometer measure region.
- Control the vibration intensity. Then find the natural frequency directly.

Demo video

VibCat github

Reference

-Hui-Shyong Yeo, Gergely Flamich, Patrick Schrempf, David Harris-Birtill, and Aaron Quigley. 2016. Radarcat: Radar categorization for input & interaction. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology. ACM, 833-841

- Gierad Laput, Robert Xiao, and Chris Harrison. 2016. ViBand: High-Fidelity Bio-Acoustic Sensing Using Commodity Smartwatch Accelerometers. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology (UIST '16). ACM, New York, NY, USA, 321-333.