MA 105: Calculus

D1 - Lecture 17

Sandip Singh

Department of Mathematics

Autumn 2023, IIT Bombay, Mumbai

Rules for the total derivative

Rule 1: Just like in the one variable case, if f and g are differentiable

$$D(f+g)(x) = Df(x) + Dg(x)$$

and

$$D(cf)(x) = cDf(x), \ \forall c \in \mathbb{R}.$$

Rule 2: Somewhat harder, but only because the notation gets more cumbersome, is the Chain rule: Let $U \subseteq \mathbb{R}^m$, $V \subseteq \mathbb{R}^n$, $f: U \to \mathbb{R}^n$ be a function which differentiable at $x_0 \in U$ and $f(U) \subseteq V$. Let $g: V \to \mathbb{R}^\ell$ be a function which is differentiable at $f(x_0)$. Then $g \circ f: U \to \mathbb{R}^\ell$ is differentiable at x_0 and

$$D(g \circ f)(x_0)_{\ell \times m} = Dg(f(x_0))_{\ell \times n} \circ Df(x_0)_{n \times m},$$

where o on the right hand side denotes the matrix multiplication.

The Chain Rule: Applications

Assume that $x,y:I\to\mathbb{R}$ are differentiable functions from some interval (open or closed) to \mathbb{R} . Thus the pair (x(t),y(t)) defines a function from I to \mathbb{R}^2 . Suppose we have a function $f:\mathbb{R}^2\to\mathbb{R}$ which is differentiable. We would like to study the derivative of the composite function z(t)=f(x(t),y(t)) from I to \mathbb{R} .

Theorem 2: With notation as above

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}.$$

For a function w(t) = f(x(t), y(t), z(t)) in three variables, the chain rule takes the form

$$\frac{dw}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} + \frac{\partial f}{\partial z}\frac{dz}{dt}.$$

Remark: We omit the proof of the above theorem here but if you are interested in seeing that I can upload it on Moodle later.

An application to tangents of curves

A simple example to verify the chain rule: Let z = f(x, y) = xy, $x(t) = t^3$ and $y(t) = t^2$. Then $z(t) = t^5$, so $z'(t) = 5t^4$.

On the other hand, using the chain rule we get

$$z'(t) = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt} = y \cdot 3t^2 + x \cdot 2t = 3t^4 + 2t^4 = 5t^4.$$

Example: A continuous mapping $c: I \to \mathbb{R}^n$ on an interval $I \subseteq \mathbb{R}$ is called a path or curve in \mathbb{R}^n , (n = 2, 3). The function c(t) will be given by a tuple of functions form.

Let us consider a curve c(t) in \mathbb{R}^3 . Each point on the curve will be given by a triple of coordinates which will depend on t, that is, the curve can be described by a triple of functions (g(t), h(t), k(t)).

We can write

$$c(t) = g(t)\mathbf{i} + h(t)\mathbf{j} + k(t)\mathbf{k}$$
, and if $c'(t_0) = g'(t_0)\mathbf{i} + h'(t_0)\mathbf{j} + k'(t_0)\mathbf{k}$

exists and is nonzero, it represents the tangent vector to the curve c(t) at the point $c(t_0)$.

For an example, consider the curve $c(t)=(t,\sqrt{1-t^2})$ in \mathbb{R}^2 and defined on the interval [-1,1]. Observe that the curve c(t) represents the **upper unit semicircle** centered at the origin.

You can verify easily that whenever $c'(t_0)$ exists and is nonzero, the tangent line to the circle c(t) at the point $c(t_0)$ is the line that passes through the point $c(t_0)$ and is parallel to the tangent vector $c'(t_0)$.

So far our example has nothing to do with the chain rule. Suppose z = f(x, y) is a surface, and our curve given by c(t) = (g(t), h(t), f(g(t), h(t))) lies on the surface z = f(x, y).

Let us compute the tangent vector to the curve at $c(t_0) = (x_0, y_0, z_0)$. It is given by

$$c'(t_0) = g'(t_0)\mathbf{i} + h'(t_0)\mathbf{j} + k'(t_0)\mathbf{k},$$

where k(t) = f(g(t), h(t)). Using the chain rule we see that

$$k'(t_0) = \frac{\partial f}{\partial x}(x_0, y_0)g'(t_0) + \frac{\partial f}{\partial y}(x_0, y_0)h'(t_0).$$

We can further show that this tangent vector lies on the tangent plane to the surface z = f(x, y).

Indeed, we have already seen that the tangent plane to the surface z = f(x, y) at the point (x_0, y_0, z_0) on the surface has the equation

$$z = f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0).$$

A normal vector to this plane is given by

$$\left(-\frac{\partial f}{\partial x}(x_0,y_0),-\frac{\partial f}{\partial y}(x_0,y_0),1\right).$$

Thus, to verify that the tangent vector

$$c'(t_0) = \left(g'(t_0), h'(t_0), \frac{\partial f}{\partial x}(x_0, y_0)g'(t_0) + \frac{\partial f}{\partial y}(x_0, y_0)h'(t_0)\right)$$

at the point $c(t_0) = (x_0, y_0, z_0)$ on the curve c(t) lies on the plane, we need only check that its dot product with the normal vector is 0. But this is now clear.

The Gradient of scalar fields

When viewed as a row vector rather than as a matrix, the derivative matrix of $f: U \to \mathbb{R}$ at a point $(a_1, a_2, \ldots, a_m) \in U \subseteq \mathbb{R}^m$ is called the gradient of f at (a_1, a_2, \ldots, a_m) and is denoted as $\nabla f(a_1, a_2, \ldots, a_m)$. Thus

$$\nabla f(a_1, a_2, \ldots, a_m) = \left(\frac{\partial f}{\partial x_1}(a_1, a_2, \ldots, a_m), \ldots, \frac{\partial f}{\partial x_m}(a_1, a_2, \ldots, a_m)\right).$$

For the case m=2, in terms of the coordinate vectors ${\bf i}$ and ${\bf j}$ the gradient can be written as

$$\nabla f(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0)\mathbf{i} + \frac{\partial f}{\partial y}(x_0, y_0)\mathbf{j}.$$

As we will see in the next slide, the gradient is related to the directional derivative in the direction v:

$$\nabla_{\mathbf{v}} f = \nabla f \cdot \mathbf{v}.$$

Another application of the chain rule: Directional derivatives

Let $U \subset \mathbb{R}^3$ and let $f: U \to \mathbb{R}$ be differentiable. We want to relate the directional derivative to the gradient.

We consider the (differentiable) curve $c(t) = (x_0, y_0, z_0) + tv$, where $v = (v_1, v_2, v_3)$ is a **unit vector**. We can rewrite c(t) as $c(t) = (x_0 + tv_1, y_0 + tv_2, z_0 + tv_3)$. We apply the chain rule to compute the derivative of the function f(c(t)) (observe that $\frac{d}{dt}f(c(t))$ at t=0 is same as the directional derivative of f at (x_0, y_0, z_0) in the direction of the vector $v = (v_1, v_2, v_3)$):

$$\frac{d}{dt}f(c(0)) = \frac{\partial f}{\partial x}(x_0, y_0, z_0)v_1 + \frac{\partial f}{\partial y}(x_0, y_0, z_0)v_2 + \frac{\partial f}{\partial z}(x_0, y_0, z_0)v_3$$

and this can be rewritten as

$$\nabla_{v} f(x_0, y_0, z_0) = \frac{d}{dt} f(c(0)) = \nabla f(x_0, y_0, z_0) \cdot v.$$

Of course, the same argument works when $U \subset \mathbb{R}^2$ and f is a function of two variables.

The Chain Rule and Gradients

The preceding argument is a special case of a more general fact.

Let c(t) be a (differentiable) curve in \mathbb{R}^3 . Then, by writing c(t)=(x(t),y(t),z(t)) and then using the chain rule for the derivative of f(c(t)) we obtain that

$$\frac{d}{dt}f(c(t)) = \nabla f(c(t)) \cdot c'(t).$$

Going back to the directional derivative, we can ask ourselves the following question. In what direction is f changing fastest at a given point (x_0, y_0, z_0) ? In other words, in which direction does the directional derivative attain its largest value?

Using what we have just learnt, we are looking for a unit vector $v = (v_1, v_2, v_3)$ such that

$$\nabla f(x_0, y_0, z_0) \cdot v$$

is as large as possible (we assume that $\nabla f(x_0, y_0, z_0) \neq (0, 0, 0)$).

We rewrite the preceding dot product as

$$\nabla f(x_0, y_0, z_0) \cdot v = \|\nabla f(x_0, y_0, z_0)\| \|v\| \cos \theta$$

where θ is the angle between v and $\nabla f(x_0, y_0, z_0)$. Since v is a unit vector, this gives

$$\nabla f(x_0, y_0, z_0) \cdot v = \|\nabla f(x_0, y_0, z_0)\| \cos \theta.$$

The maximum value on the right hand side is obviously attained when $\theta=0$, that is, when v points in the direction of ∇f . In other words the function is increasing fastest in the direction v given by ∇f . Thus the unit vector that we seek is

$$v = \frac{\nabla f(x_0, y_0, z_0)}{\|\nabla f(x_0, y_0, z_0)\|}.$$

Surfaces defined implicitly

So far we have only been considering surfaces of the form z = f(x, y), where f was a function on a subset of \mathbb{R}^2 . We now consider a more general type of surface S defined implicitly:

$$S = \{(x, y, z) | f(x, y, z) = b\}$$

where b is a constant. Most surfaces we have come across are usually described in this form: for instance, the sphere which is given by $x^2 + y^2 + z^2 = r^2$ or the right circular cone $x^2 + y^2 - z^2 = 0$. Let us try to understand what a tangent plane is more precisely.

If S is a surface, a tangent plane to S at a point $s_0 \in S$ (if it exists) is a plane that contains the tangent lines at s_0 to all curves passing through s_0 and lying on S.

If c(t) is a curve on the surface S given by f(x, y, z) = b, we see that f(c(t)) = b, and hence

$$\frac{d}{dt}f(c(t))=0.$$

On the other hand, by the chain rule,

$$0 = \frac{d}{dt} f(c(t)) = \nabla f(c(t)) \cdot c'(t).$$

Thus, if $s_0 = c(t_0) = (x_0, y_0, z_0)$ is a point on the surface, we see that

$$\nabla f(c(t_0)) \cdot c'(t_0) = 0.$$

for every curve c(t) on the surface S passing through $s_0 = (x_0, y_0, z_0)$.

Hence, if $\nabla f(x_0, y_0, z_0) \neq 0$, then $\nabla f(x_0, y_0, z_0)$ is perpendicular to the tangent plane of S at (x_0, y_0, z_0) . How to determine a vector perpendicular to the tangent plane at the point (x_0, y_0, z_0) on the surface S given by z = f(x, y)? It is determined by $\nabla (z - f(x, y))$ at the point (x_0, y_0, z_0) .

The equation of the tangent plane

Since we know that the gradient of f is normal to the level surface $S = \{(x,y,z) \in \mathbb{R}^3 \mid f(x,y,z) = c\}$ (provided the gradient is nonzero), it allows us to write down the equation of the tangent plane of S at the point $s_0 = (x_0, y_0, z_0)$. The equation of this plane is (here f_x, f_y, f_z denote the respective partial derivatives of f)

$$f_x(x_0, y_0, z_0)(x-x_0)+f_y(x_0, y_0, z_0)(y-y_0)+f_z(x_0, y_0, z_0)(z-z_0)=0.$$

For the curve f(x,y) = c, by considering y as a function of x (implicitly) we obtain (by differentiating f(x,y) with respect to x and using the chain rule) that

$$f_x(x_0, y_0) + f_y(x_0, y_0) \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -\frac{f_x(x_0, y_0)}{f_y(x_0, y_0)}$$

and hence the equation of the tangent line to the curve f(x, y) = c passing through (x_0, y_0) is

$$y - y_0 = -\frac{f_x(x_0, y_0)}{f_y(x_0, y_0)}(x - x_0),$$

that is, $f_x(x_0, y_0)(x - x_0) + f_v(x_0, y_0)(y - y_0) = 0$.

Gravitational force as gradient of the potential energy

Let **r** denote the position vector

$$x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

of a point P = (x, y, z) in \mathbb{R}^3 . Instead of writing $\|\mathbf{r}\|$, it is customary to write r for $\sqrt{x^2 + y^2 + z^2}$. This notation is very useful.

For instance, the Newton's Law of Gravitation can be expressed as

$$\mathbf{F} = -\frac{GMm}{r^3} \cdot \mathbf{r}$$

where the mass M is assumed to be at the origin, \mathbf{r} denotes the position vector of the mass m, G is a constant and \mathbf{F} denotes the gravitational force between the two (point) masses.

A simple computation shows that

$$\nabla\left(\frac{1}{r}\right) = -\frac{\mathbf{r}}{r^3}.$$

Thus the gravitational force at any point can be expressed as the gradient of a function called the potential function/energy.

Keeping our previous discussion in mind, we know that if

$$V = -\frac{GMm}{r}, \quad \mathbf{F} = -\frac{GMm}{r^3} \cdot \mathbf{r} = -\nabla V.$$

What are the level surfaces of V? Clearly, r must be a constant on these level sets, so the level surfaces are spheres.

Since $\mathbf{F} = -\nabla V$, we see that the gravitational force \mathbf{F} is orthogonal to the sphere and points towards the origin.

Review - problems involving the gradient

Exercise 1: Find the points on the hyperboloid $x^2 - y^2 + 2z^2 = 1$ where the normal line is parallel to the line that joins the points (3, -1, 0) and (5, 3, 6).

Solution: The hyperboloid is an implicitly definined surface. A normal vector at a point (x_0, y_0, z_0) on the hyperboloid is given by the gradient of the function $x^2 - y^2 + 2z^2$ at (x_0, y_0, z_0) :

$$\nabla f(x_0, y_0, z_0) = (2x_0, -2y_0, 4z_0).$$

We require this vector to be parallel to the line joining the points (3,-1,0) and (5,3,6). This line lies in the same direction as the vector (5-3,3+1,6-0)=(2,4,6). Thus we need only solve the equations

$$(2x_0,-2y_0,4z_0)=\lambda(2,4,6),$$

for some $\lambda \in \mathbb{R}$ such that the point (x_0, y_0, z_0) lies on the hyperboloid. By solving the above equations, we find that $x_0 = \lambda$, $y_0 = -2\lambda$ and $z_0 = (3/2)\lambda$. Substituting x_0, y_0, z_0 in the equation of the hyperboloid yields $\lambda = \pm \sqrt{2/3}$.

Problems involving the gradient, continued

Exercise 2: Find the directions in which the directional derivative of $f(x, y) = x^2 + \sin xy$ at the point (1, 0) has the value 1.

Solution: We compute ∇f first:

$$\nabla f(x,y) = (2x + y\cos xy, x\cos xy),$$

so at (1,0) we get, $\nabla f(1,0) = (2,1)$.

To find the directional derivative in the direction $v=(v_1,v_2)$ (where v is a unit vector), we simply take the dot product with the gradient:

$$\nabla_{v} f(1,0) = \nabla f(1,0) \cdot v = (2,1) \cdot (v_1, v_2) = 2v_1 + v_2.$$

This will have value "1" when $2v_1 + v_2 = 1$, subject to $v_1^2 + v_2^2 = 1$, which yields $v_1 = 0$, $v_2 = 1$ or $v_1 = 4/5$, $v_2 = -3/5$.

Review of the gradient

Exercise 3: Find $D_uF(2,2,1)$ where D_u denotes the directional derivative of the function F(x,y,z)=3x-5y+2z and u is the unit vector in the direction of the outward normal to the sphere $x^2+y^2+z^2=9$ at the point (2,2,1).

Solution: The unit outward normal to the sphere $g(x, y, z) = x^2 + y^2 + z^2 = 9$ at (2, 2, 1) is given by

$$u = \frac{\nabla g(2,2,1)}{\|\nabla g(2,2,1)\|}.$$

We see that $\nabla g(2,2,1) = (4,4,2)$ so the corresponding unit vector u is $\frac{1}{3}(2,2,1)$.

To get the directional derivative we simply take the dot product of $\nabla F(2,2,1)=(3,-5,2)$ with $u=\frac{1}{3}(2,2,1)$:

$$D_u F(2,2,1) = (3,-5,2) \cdot \frac{1}{3}(2,2,1) = -\frac{2}{3}.$$