Betriebssysteme und Netzwerke Vorlesung N01

Artur Andrzejak

Ende Betriebssysteme

Start Netzwerke

Internet - Grundbegriffe

Folien zum großen Teil auf Basis der Materialien aus:

Computer Networking: A Top Down Approach, 5th ed. Jim Kurose, Keith Ross, Addison-Wesley, April 2009

Internet – Drei "Reale" Bestandteile

- 1. Millionen von Hosts (Endsysteme)
 - "Gastgeber" für Netzwerkanwendungen ("to host" = bewirten)
- 2. Kommunikationsleitungen
 - Glasfaser, Kupfer, Radio, Satellit
 - 3. Router oder Switches
 - Leiten die Daten weiter oder um

ISP = Internetdienstanbieter (Internet Service Provider)

Internet – Konzeptionelle Bestandteile

- Protokolle kontrollieren das Senden und Empfangen von Nachrichten
 - Z.B. TCP, IP, HTTP, Ethernet, Skype
- Internet-Standards
 - Format RFC: Request for comments
 - IETF: Internet Engineering Task Force
- "Netzwerk von Netzwerken" das eigentliche Internet
 - besteht aus vielen Autonomen Systemen (AS, Link) mit ggf. verschiedenen Besitzern
 - hierarchisch aufgebaut

Protokolle – Definition?

Protokoll eines Nachrichtenaustausches definiert

- das <u>Format</u> der Nachrichten
- ihre <u>Reihenfolge</u>
- ▶ sowie die <u>Aktionen</u>, die bei Übertragung und/oder Empfang einer Nachricht ausgeführt werden

Internet – Anwendungen und Dienste

- Diese Kommunikations-Infrastruktur ermöglicht verteilte Anwendungen
 - WWW, VoIP, Email, Spiele, P2P-Filesharing
 - Wir beschäftigen uns zunächst damit
- Für diese Anwendungen werden Kommunikationsdienste bereitgestellt
 - Z.B. DNS = Domain Name System was macht das?
- Zusätzlich bietet die Infrastruktur gewisse (Qualitäts-)
 Eigenschaften der Übertragung
 - Verlässliche Datenzustellung von Quelle zu dem Ziel
 - "Best Effort" Dienstqualität (Quality of Service, QoS) minimalistische Dienstgüte-Zusicherung

Internet - Geschichte

Zusatzmaterialien zu diesem Teil

- Auf Coursera gibt es einen guten Kurs als Begleitung zu dem Netzwerk-Teil von IBN
 - Internet History, Technology, and Security
 - https://www.coursera.org/learn/internet-history/home/info
- Sehr empfehlenswert als Ergänzung zu IBN!
 - Aber keine Pflicht / kein Klausurstoff
- Einige Videos sind über YouTube zugreifbar
 - https://www.youtube.com/playlist?list=PLIRFEj9H3Oj6srSAgLb-ZGVNGlo3v14X

1961-1972: Entwicklung der Paketvermittlung

- ▶ 1961: Kleinrock (Doktorand MIT) zeigt die Wirksamkeit der sog. Paketvermittlung (PV) mittels der Warteschlangentheorie
- 1964: Baran untersucht sichere Sprachkommunikation in militärischen Netzen (Rand Institute)
- ▶ 1967: Entstehung von ARPAnet bei Advanced Research Projects Agency (ARPA) (Licklider/Lawrence, MIT)

1969: Erster ARPAnet Knoten an UCLA, weitere folgten bald in Stanford, University of Cal. in Santa Barbara, University of Utah

1972:

- Erste öffentliche Vorführung von ARPAnet
- NCP (Network Control Protocol)- erstes Host-zu-Host Protokoll
- Erstes E-mail Programm
- ▶ ARPAnet hat 15 Knoten bereit für eine LAN-Party? ☺

1972-1980: Proprietäre Netzwerke und Internetworking

- Weitere eigenständige Netze neben ARPAnet
 - ALOHANet, ein Mikrowellennetz, das Unis auf den hawaiianischen Inseln verband (1970)
 - Telenet, ein kommerzielles PV-Netz von BBN
 - Cyclades, ein französisches PV-Netz
 - ▶ IBM SNA, entwickelt parallel zum ARPAnet (1969-1974)
- 1974: Vinton Cerf und Robert Kahn entwarfen Architektur für den Zusammenschluss solcher Netzwerke - das Internetworking (Geld von DARPA)
- Später, 1984: EARN (European Academic and Research Network) – HD von Anfang an dabei
 - Kommunikation mit ca. 1300 anderen Nutzern
 - Erste Nutzung von Email an der Uni HD

Prinzipien des Internetworkings - noch gültig!

- Minimalismus, Autonomie keine internen Änderungen nötig, um die Netze zusammenzuschließen
- "Best effort" Modell minimalistische Dienstgüte-Zusicherung
- Zustandslose Router
- Dezentralisierte Kontrolle

1972-1980: ... Internetworking

- Konzeptionelle / empirische Erkenntnisse führen zu den drei wichtigsten Protokollen - TCP, UDP, IP
- <u>Metcalfe</u> und <u>Boggs</u> kreieren <u>Ethernet</u>-Protokoll, das mehreren Geräten ermöglicht, gleiche Leitung zu nutzen
 - Motiviert von der Notwendigkeit, mehrere PCs, Drucker und Laufwerke zusammenzuschließen
 - Fundament der heutigen PC-LANs

Konzept des Ethernets – das Medium (Ether) ist ein Draht

1980-1990: Die Ausbreitung der Netzwerke

- Anzahl Hosts (Endpunkte) im ARPAnet 1979: ~200
 - Bis Ende der 1980er im Internet: etwa hunderttausend
- ▶ 1983: Protokoll TCP/IP ersetzt NCP (an einem Tag!)
- ▶ 1983: DNS eingeführt; übersetzt www.abc.xyz zu "echten" IP-Adressen wie 123.99.88.101 [RFC 1034]
- ▶ 1985: ftp Protokoll entsteht
- 1985: IBM European Networking Center in HD eingerichtet; beschäftigt sich u.a. mit OSI und Netzwerkbetriebssystemen
- ▶ 1987: Anschluss des URZ HD ans Internet (über BelWü)
- 1988: TCP wird verbessert
- In Frankreich:
 - Minitel wird zu einem großen Erfolg (1982-2012)

1990er: Kommerzialisierung und das Web

- Kommerzialisierung: Forschungsnetze werden durch kommerzielle Provider ersetzt
 - Frühe 1990er: ARPAnet hört zu existieren auf
 - ▶ 1991: NSFnet (zur Verbindung von Superrechnern) darf auch kommerziell genutzt werden; wird 1995 stillgelegt
- Die Geburt des World Wide Webs (Web)
 - Erfunden 1989-1991 von Tim Berners-Lee am CERN
 - Vier Bestandteile: HTML, HTTP, Webserver, Browser
 - ▶ 1994: Marc Andreesen entwickelt Mosaic GUI-Browser
 - ▶ 1995: Studenten nutzen Mosaic / Netscape täglich
 - ▶ 1998: HD bekommt Deutschlands größtes Uni-Internetcafé
- Videos:
 - "Internet A History/A07 Assume the Web"
 - Auch wichtig: "Internet A History/A01 Robert Cailliau..."

2000er: Neuere Entwicklungen

- Allgemeine Fortschritte
 - Bei den Anwendungen, Internettelefonie, höhere Übertragungsraten in LANs, schneller Router
- Die Verbreitung schneller Zugangsnetze (auch mobiler Netze) ermöglichte neue Anwendungen
 - Videos, Internetfernsehen, P2P-Filesharing
- Soziale Netzwerke
- Probleme mit der Sicherheit
 - Denial of Service (DoS) Angriffe
 - Verbreitung von Würmern
- Video: "Videos: "Internet A History/A09 The Modern Internet

Die Internet-"Pyramide": Netzwerkrand und Zugangsnetze

Die Internet-"Pyramide"

- Netzwerkrand (network edge)
 - Anwendungen und Hosts
 - Host = Gastgeber einerAnwendung
- Zugangsnetze (access networks)
 - Leitungen, die Hosts mit Randroutern verbinden
- Das Innere des Netzwerks (network core)
 - Geflecht von Switches und Leitungen
 - Netzwerk von Netzwerken

Am Abgrund... Rand der Netzwerke

Endsysteme (Hosts)

- Anfangs nur Rechner, jetzt eine große Vielfalt: Handys, PDAs, Sensoren
- Für uns nur "Behälter" für verteilte Anwendungen

Architekturtypen von ver. Anw.

Client-Server

Client stellt Anfragen, Server beantwortet sie; Beispiel?

Peer-to-Peer (P2P)

- minimale Verwendung von dedizierten Servern
- Beide Hosts haben gleiche / ähnliche Funktionalität

Nicht zu verwechseln mit:

Zugangsnetze

 Physikalische Leitungen und Komponenten, die Hosts mit Randroutern verbinden

- Drei Kategorien
 - Heimzugänge: Verbinden private Haushalte mit Intern.
 - Firmenzugänge: Analog für Firmen, Institutionen, Universitäten
 - Drahtlose Zugänge:
 Verbinden mobile
 Endsysteme mit Internet

Hierarchie der Internetdienstanbieter (ISPs)

- Die ISPs bilden eine Hierarchie
- Die Spitze sind Tier-1-ISPs (Stufe-1-ISPs) bzw. Internet-**Backbones**
 - Übertragungsgeschwindigkeiten bis Hunderte Gbit/s
 - Jeder ist mit jedem anderen direkt verbunden
 - Sie arbeiten international
- Die genaue Definition ist umstritten, siehe z.B. hier
- ▶ Beispiele: Verizon, Sprint Nextel, AOL, AT&T
 - Aber <u>nicht</u> Deutsche Telekom, France / British Telecom (<u>Link</u>)

Beispiel: Sprint Nextel Netzwerk (2007)

<u>Point of Presence</u>: Physischer Knotenpunkt des Netzwerks

Tier-2-ISPs

- Tier-2-ISPs ist ein nationaler oder regionaler ISP, der an Tier-1-ISPs für die Verbindung (Transit) zu anderen ISPs bezahlt
 - Angebunden an nur einige Tier-1-ISPs; manche größer als diese
- ▶ Beispiele (<u>Link</u>):
 - Deutsche Telekom /AS3320
 - France Telecom /AS5511 aka OpenTransit

 Tier-2 ISP

 Tier-2 ISP

 Tier-2 ISP

 Tier-2 ISP

Tier-3-ISPs

Tier-3-ISPs und lokale ISPs

▶ Es sind die "last hop" Netzwerke, die z.T. auch die Zugangsnetzwerke zur Verfügung stellen

Ein Paket durchkreuzt viele Netzwerke

Paketvermittlung vs. Leitungsvermittlung

Wie werden die Daten durch ein Netzwerk übermittelt?

- Zwei Ansätze: Leitungsvermittlung (LV, Circuit Switching) und Paketvermittlung (PV, Packet Switching)
- LV: Die benötigten Ressourcen (wie Puffer, Schaltungen, Kanal) werden <u>für die Dauer der Kommunikationssitzung</u> zwischen diesen Endsystemen <u>reserviert</u>
- PV: Die Ressourcen werden <u>nicht reserviert</u>
 - Die Nachrichten einer Sitzung verwenden diese Ressourcen <u>nach Bedarf</u> und müssen infolgedessen ggf. warten

Leitungsvermittelte Netzwerke: Gem. Nutzung

Multiplexing ermöglicht gemeinsame Nutzung der Ressourcen. Es gibt zwei Typen davon:

- Frequenzmultiplexverfahren (FDM, frequency division multiplexing)
 - Jeder durchgeschalteten Verbindung wird ein bestimmtes Frequenzband zugewiesen
- Zeitmultiplexverfahren (TDM, time-division multiplexing)
 - ▶ Zeit wird in Rahmen (Frames) mit konstanter Dauer eingeteilt
 - Jeder Rahmen in eine feste Zahl von Zeitschlitzen (time slots)
 - ▶ Eine Verbindung erhält einen festen Zeitschlitz in jedem Rahmen

Paketvermittlung

- Hier zerlegt die Quelle lange Nachrichten in kleinere "Datenhäppchen", genannt Pakete
- Jedes dieser Pakete bewegt sicht zw. Quelle und Ziel über Kommunikationsleitungen und Paketswitches
- Haupttypen der Paketswitches
 - Router mehr Intelligenz, Entscheidungen über längere Netzwerkabschnitte
 - (Sicherungsschicht)-Switches primitiv, haben Informationen nur über direkte Nachbarn
- Video: "Internet B Technology/B01 Introduction The Link Layer"
 - Von 2:30 bis 4:30+ (min:sec)

PV: Statistisches Multiplexing

- Das Multiplexing der Pakete von A und B hat <u>kein "fixes"</u> <u>Schema</u> (kein Slot für A/B), sondern geschieht nach Bedarf
 - ▶ D.h. mehr Pakete von A im Puffer => A's häufiger gesendet
- Effizienter als Zeitmultiplexverfahren der Leitungsvermittl'g

Mehr Nutzer bei PV - Beispiel

- Szenario:
 - 1 Mbps Leitung
 - Jeder Benutzer aktiv 10% der Zeit
 - 100 kb/s wenn aktiv
- N Benutzer

 Weiterer Vorteil der PV:
 Jeder kann bis 1 Mbps nutzen

 1 Mbps Leitung
- Leitungsvermittlung # Benutzer?
 - ▶ 10 Benutzer, und jeder sendet mit <u>maximal</u> 100 kb/s
- Paketvermittlung wie viele können gleichzeitig?
 - ▶ Bei 35 Benutzern ist die W-keit, dass mehr als 10 zugleich aktiv sind, kleiner als 4/10000 (0.0004)
 - Keine Garantie, dass jeder gerade senden kann ...
 - ... Aber sehr kleine W-keit der Probleme bei 3.5 mal mehr Nutzern als bei LV!

Paketvermittlung vs. Leitungsvermittlung

Paketvermittlung	Leitungsvermittlung	Ineffizienz der LV?
Ressourcen werden nur nach Bedarf verwendet	Dedizierte Belegung und Reservierung der Ressourcen	Weniger gleichzeitige Nutzer
Pakete werden mit der vollen Übertragungs-geschwindigkeit der Leitung übertragen	Unterteilung der Bandbreite in Kanäle (pro Leitung ein Kanal)	Übertragung langsamer als ggf. möglich

- Aber PV hat auch Probleme welche?
 - Kumulativer Bandbreitenbedarf kann die Kapazität überschreiten => keine Dienstgarantie für einen Benutzer
 - Pakete werden verzögert, insbesondere wenn viele senden
 - Schlecht für Echtzeitdienste wie Audio/Video-Streaming
 - Pakete gehen verloren, wenn die Switch-Puffer überlaufen

Verzögerung, Verlust, Durchsatz in paketvermittelten Netzen

Wodurch entstehen Verzögerung und Verlust?

- An jedem Knoten (d.h. einem Host oder Router) seiner Reise zum Zielhost erfährt ein Paket verschiedene Verzögerungen – welche?
- Verarbeitungsverzögerung
- Warteschlangenverzögerung
- Übertragungsverzögerung
- Ausbreitungsverzögerung

Arten der Verzögerung

1. Verarbeitungsverzögerung

- Die Zeitdauer, welche zur Prüfung des Paket-Headers sowie zur Entscheidung über den weiteren Weg des Paketes benötigt wird
- Zeit, um nach Bitfehlern der Übertragung zu suchen

- 2. Warteschlangenverzögerung
 - Wartezeit im Puffer, bis das Paket über entsprechende Leitung versendet werden kann
 - Hängt von der Länge der Schlange (~ congestion level) ab

Arten der Verzögerung /2

3. Übertragungsverzögerung

- R = Übertragunsgeschwindigkeit (link bandwidth) (in bps)
- ▶ L = Paketlänge (bits)
- ▶ Übertragungszeit = L/R

4. Ausbreitungsverzögerung

- d = Länge der physischen Leitung
- s = Ausbreitungsgeschwindigkeit (~2x10⁸ m/sec in Kabeln)
- Ausbreitungsverzögerung= d/s

Gesamtverzögerung (pro Übetragungsknoten)

$$d_{\text{node}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

- d_{proc}: Verarbeitungsverzögerung (processing delay)
 - typischerweise einige Mikrosekunden oder weniger
- d_{queue}: Warteschlangenverzögerung (queuing delay)
 - hängt von der Überlastung (congestion) ab (Mikro- bis Millisekunden)
- d_{trans}: Übertragungsverzögerung (transmission delay)
 - ► = L/R, signifikant für langsame Leitungen (Mikro- bis Millisekunden)
- d_{prop}: Ausbreitungsverzögerung (propagation delay)
 - einige Mikrosekunden bis hunderte Millisekunden (Satelliten)

Warteschlangenverzögerung (reloaded)

- R: Übertragunsgeschwindigkeit (bps)
- L: Paketlänge (bits)
- a : mittlere Rate, mit der Pakete an der Warteschlange eintreffen

- I = La/R wird als der Verkehrswert (traffic intensity) bezeichnet
 - Verhältnis (ankommende Bitrate) / (abgehende Bitrate)
- La/R ~ 0: Schlange sehr kurz, kaum Verzögerungen
- ▶ La/R → 1: Verzögerungen werden sehr groß
- La/R > 1: Mehr ankommende Daten als verschickt werden können, mittlere Verzögerung wird unendlich

Ende-zu-Ende-Verzögerung

- Auf dem Weg addieren sich diese Verzögerungen auf
- Programm Traceroute erlaubt die Messung der Verzögerung von der Quelle bis zu jedem Router auf dem Weg zum Ziel
- Für alle i = 0,..., 255:
 - Sende drei spezielle Pakete, die den Router i auf Pfad zu Ziel erreichen
 - ▶ Router *i* schickt die Pakete zum Sender (Quelle) zurück
 - Sender misst die den Zeitinterval zwischen dem Absenden und der Antwort - Rundlaufzeit (round-trip delay)

Traceroute - Beispiel

traceroute: gaia.cs.umass.edu bis www.eurecom.fr

```
Drei Messungen der Verzögerungen von
                                           gaia.cs.umass.edu bis cs-gw.cs.umass.edu
1 cs-gw (128.119.240.254) 1 ms 1 ms 2 ms
2 border1-rt-fa5-1-0.gw.umass.edu (128.119.3.145) 1 ms 1 ms 2 ms
3 cht-vbns.gw.umass.edu (128.119.3.130) 6 ms 5 ms 5 ms
4 jn1-at1-0-0-19.wor.vbns.net (204.147.132.129) 16 ms 11 ms 13 ms
  in1-so7-0-0-0.wae.vbns.net (204.147.136.136) 21 ms 18 ms 18 ms
6 abilene-vbns.abilene.ucaid.edu (198.32.11.9) 22 ms 18 ms 22 ms
7 nycm-wash.abilene.ucaid.edu (198.32.8.46) 22 ms 22 ms 22 ms
                                                                       Ubersee-
8 62.40.103.253 (62.40.103.253) 104 ms 109 ms 106 ms 4 9 de2-1.de1.de.geant.net (62.40.96.129) 109 ms 102 ms 104 ms
                                                                        verbindung
10 de.fr1.fr.geant.net (62.40.96.50) 113 ms 121 ms 114 ms
11 renater-gw.fr1.fr.geant.net (62.40.103.54) 112 ms 114 ms 112 ms
12 nio-n2.cssi.renater.fr (193.51.206.13) 111 ms 114 ms 116 ms
13 nice.cssi.renater.fr (195.220.98.102) 123 ms 125 ms 124 ms
14 r3t2-nice.cssi.renater.fr (195.220.98.110) 126 ms 126 ms 124 ms
15 eurecom-valbonne.r3t2.ft.net (193.48.50.54) 135 ms 128 ms 133 ms 16 194.214.211.25 (194.214.211.25) 126 ms 128 ms 126 ms
                       Router anwortet nicht
19 fantasia.eurecom.fr (193.55.113.142) 132 ms 128 ms 136 ms
```

Durchsatz (throughput)

- Durchsatz (throughput): Geschwindigkeit, mit welcher die Bits zwischen dem Sender und Empfänger übertragen werden (in Bits/s)
 - Momentaner ~: Geschwindigkeit zu einem spezifischen Zeitpunkt
 - Durchschnittlicher ~: Geschwindigkeit über einen längeren Zeitraum gemittelt

Server sendet Bits in eine Leitung

Server kann Daten mit Geschwindigkeit R_s Bits/s senden

Router kann Daten mit Geschwindigkeit R_c Bits/s übertragen

Durchsatz /2

Bottleneck - Leitung (Engpassleitung)

R_s bits/sec

Leitung auf dem Ende-zu-Ende Pfad, welche den Ende-zu-Ende Durchsatz beschränkt

R_c bits/sec

Durchsatz im Internet

- Der Ende-zu-Ende Durchsatz nach dem obigen Modell müsste sein: min(R_c, R_s, R/10)
- In der Praxis: R_c or R_s ist häufig der Flaschenhals
- => Zugangsnetzwerke sind oft das Problem

10 Verbindungen teilen sich eine Backbone (Tier-1-ISP) Verbindung mit Durschsatz R bits/sec

Zusammenfassung

- Grundbegriffe Internet
- Internet-Geschichte
- Netzwerkrand
- Verzögerung, Verlust und Durchsatz in paketvermittelten Netzen
- Das Innere des Netzwerks

- Quellen:
 - Netzwerke: Kurose Kapitel 1 (Abschnitte 1.2, 1.3, 1.4)

Danke.

Zusatzfolien

Typische Heimzugänge

- Einwahlmodem (dial-up) modem) - "alter Hut"
- ▶ ISDN "digitale Telefonleitung" - "alter Hut"
- [V]DSL [Very-high Speed] **Digital Subscriber Line**
- Hybride Glasfaser-Koaxialkabel - Anschlüsse
 - Glasfasern bis Kabelkopfstück, dann Koaxialkabel
 - Nutzt Infrastruktur des Kabelfernsehens
 - Geräte dazu: Kabelmodems

- DSL teilt die Telefonleitung in drei Frequenzbänder ein:
 - Telefon: 0-4 kHz
 - **Upstream**-Kanal: 4-50 kHz
 - Downstream: 50 kHz bis >1 MHz

http://www.cabledatacomnews.com/cmic/diagram.html

Firmenzugänge

- Typischerweise in Firmen, Universitäten, Regierungen
 - Verbindung zwischen dem lokalen Netzwerk (LAN, local area network) mit einem Randrouter via Ethernet (später)
 - Im LAN werden Kupferkabel mit verdrillten Adern oder Koaxialkabel benutzt

Drahtlose Zugänge – Lokal & Weitverkehr

- Lokal: Wireless LAN (W-LAN, Wi-Fi, WLAN) Link
 - Kommunikation (bis 100m) mit einer Basisstation, die mit dem Internet verbunden ist
 - Standards der <u>IEEE-802.11</u>-Familie
- Wireless Wide Area Network (WWAN, Weitverkehrsfunknetz)
 - ► Funknetze: <u>GSM</u>, <u>UMTS</u>, <u>LTE</u>; <u>WiMAX</u> – IEEE 802.16
 - Benutzt dieselbe Infrastruktur wie Mobiltelefone (nicht WiMAX)
 - Die Basisstationen gehören den Mobilfunknetz-Betreibern

Trägermedien

 Leiten elektromagnetische Wellen oder Lichtimpulse auf einer Teilstrecke der Übertragung

- Koaxialkabel
- Verdrilltes Kupferdraht
- Lichtwellenleiter

Nichtgeführte Medien

 Radiowellen in der Atmosphäre oder Weltraum

Cat-5 TP-Kabel

Verdrillte Adernpaare mit Farbcodes nach T568A

- Verdrilltes Kupferdraht (<u>Twisted</u>
 <u>Pair</u>, <u>TP</u>) mehrere isolierte Kabel
 - Kategorie 3: traditionelleTelefonleitung, 10 Mbps Ethernet
 - Kategorie 5: 100Mbps Ethernet

Multimode – Stufenindexfaser (Lichtwellenleiter)

