${\bf Package\ `TBFLChange Point Detection'}$

December 16, 2020

December 10, 2020
Type Package
Title Change point detection in high-dimensional linear regression models
Version 0.1.0
Author Yue Bai and Abolfazl Safikhani
Maintainer Yue Bai <baiyue@ufl.edu></baiyue@ufl.edu>
Description Change point detection in high-dimensional linear regression models. Use four spaces when indenting paragraphs within the Description.
License GPL-2
Encoding UTF-8
LazyData true
Imports stats, graphics, mvtnorm, factoextra, Rcpp, RcppArmadillo, lattice, xtable, ggplot2, glmnet, sparsevar LinkingTo Rcpp,
RcppArmadillo
Suggests knitr, rmarkdown
VignetteBuilder knitr
RoxygenNote 7.0.2
R topics documented:
BIC BIC.threshold BIC.threshold.ggm constant.sim.break ggm.first.step.blocks ggm.second.step.search

2 BIC.threshold

	ggm.sim.break	6
	lambda_warm_up_lm	7
	lm.first.step.blocks	7
	lm.second.step.search	8
	lm.sim.break	9
	mspe.plot	10
	pred	10
	pred.block	11
	pred.block.var	11
	pred.var	12
	remove.extra.pts	12
	soft_full	13
	tbfl	13
	var.first.step.blocks	15
	var.second.step.search	16
	var.sim.break	17
Index		18

Description

BIC

BIC and HBIC function

Usage

```
BIC(residual, phi, gamma.val = 1, method = "MLR")
```

BIC and HBIC function

Arguments

residual matrix

phi estimated coefficient matrix of the model

 $\mbox{gamma.val} \qquad \mbox{hyperparameter for HBIC, if HBIC} == \mbox{TRUE}.$

method method name for the model: MLR: Multiple Linear Regression; VAR: Vector

autoregression;

BIC.threshold BIC threshold for final parameter estimation

Description

BIC threshold for final parameter estimation

BIC.threshold.ggm 3

Usage

```
BIC.threshold(
  method,
  beta.final,
  k,
  m.hat,
  brk,
  data_y,
  data_x = NULL,
  b_n = floor(sqrt(T)),
  nlam = 20
)
```

Arguments

method	method name for the model: Constant: Mean-shift Model; MvLR: Multivariate Linear Regression; MLR: Multiple Linear Regression
beta.final	a combined matrix of estimated parameter coefficient matrices for all stationary segementations
k	dimensions of parameter coefficient matrices
m.hat	number of estimated change points
brk	vector of estimated change points
data_y	input data matrix (response), with each column representing the time series component
data_x	input data matrix (predictor), with each column representing the time series component
b_n	the block size
nlam	number of hyperparameters for grid search

Value

lambda.val.best, the tuning parameter lambda selected by BIC.

BIC.threshold.ggm BIC threshold for final parameter estimation (GGM)

Description

BIC threshold for final parameter estimation (GGM)

```
BIC.threshold.ggm(
  beta.final,
  k,
  m.hat,
  brk,
  data_y,
```

4 constant.sim.break

```
data_x = NULL,
b_n = floor(sqrt(T)),
nlam = 20
)
```

Arguments

beta.final a combined matrix of estimated parameter coefficient matrices for all stationary

segementations

k dimensions of parameter coefficient matrices

m. hat number of estimated change pointsbrk vector of estimated change points

data_y input data matrix (response), with each column representing the time series com-

ponent

data_x input data matrix (predictor), with each column representing the time series

component

b_n the block size

nlam number of hyperparameters for grid search

Value

lambda.val.best, the tuning parameter lambda selected by BIC.

 ${\tt constant.sim.break}$

Generate the constant model data with break points

Description

Generate the constant model data with break points

Usage

```
constant.sim.break(nobs, cnst, sigma, brk = nobs + 1)
```

Arguments

nobs number of time points

cnst the constant

sigma covariance matrix of the white noise

brk vector of break points

Value

A list oject, which contains the followings

series_y matrix of response data
noises matrix of white noise error

ggm.first.step.blocks 5

ggm.first.step.blocks Threshold block fused lasso step for gaussian graphical model.

Description

Perform the block fused lasso with thresholding to detect candidate break points.

Usage

```
ggm.first.step.blocks(
  data_y,
  data_x,
  lambda1,
  lambda2,
  max.iteration = max.iteration,
  tol = tol,
  blocks,
  cv.index,
  HBIC = FALSE,
  gamma.val = NULL
)
```

Arguments

```
data_y
                  input data matrix Y
                  input data matrix X
data_x
lambda1
                  tuning parmaeter lambda_1 for fused lasso
                  tuning parmaeter lambda_2 for fused lasso
lambda2
                  max number of iteration for the fused lasso
max.iteration
                  tolerance for the fused lasso
tol
blocks
                  the blocks
cv.index
                  the index of time points for cross-validation
                  logical; if TRUE, use high-dimensional BIC, if FALSE, use orginal BIC. Default
HBIC
                  is FALSE.
gamma.val
                  hyperparameter for HBIC, if HBIC == TRUE.
```

```
ggm.second.step.search
```

Exhaustive search step for gaussian graphical model.

Description

Perform the exhaustive search to "thin out" redundant break points.

6 ggm.sim.break

Usage

```
ggm.second.step.search(
  data_y,
  data_x,
  max.iteration = max.iteration,
  tol = tol,
  cp.first,
  beta.est,
  blocks
)
```

Arguments

data_y input data matrix, with each column representing the time series component data_x input data matrix, with each column representing the time series component

max.iteration max number of iteration for the fused lasso

tol tolerance for the fused lasso

cp.first the selected break points after the first step beta.est the estiamted parameters by block fused lasso

blocks the blocks

Value

A list oject, which contains the followings

cp.final a set of selected break point after the exhaustive search step **beta.hat.list** the estimated coefficient matrix for each segmentation

ggm.sim.break

Generate the gaussian graphical model data with break points

Description

Generate the gaussian graphical model data with break points

Usage

```
ggm.sim.break(nobs, px, sigma, brk = nobs + 1)
```

Arguments

nobs number of time points px the number of features

sigma covariance matrix of the X matrix

brk vector of break points

Value

A list oject, which contains the followings

```
series_x matrix of data
```

lambda_warm_up_lm 7

lambda_warm_up_lm

lambda warm up for linear regression model

Description

lambda warm up for linear regression model

Usage

```
lambda_warm_up_lm(data_y, data_x, blocks, cv_index)
```

Arguments

```
data_y input matrix Y
data_x input matrix X
blocks the vector of blocks
cv_index the vector of indices for validation
```

Value

a value for parameter lambda

lm.first.step.blocks Threshold block fused lasso step for linear regression model.

Description

Perform the block fused lasso with thresholding to detect candidate break points.

```
lm.first.step.blocks(
  data_y,
  data_x,
  lambda1,
  lambda2,
  max.iteration = max.iteration,
  tol = tol,
  blocks,
  cv.index,
  fixed_index = NULL,
  nonfixed_index = NULL,
  HBIC = FALSE,
  gamma.val = NULL
)
```

Arguments

data_x input data matrix x, with each column representing the time series component input data matrix x, with each column representing the time series component

lambda1 tuning parmaeter lambda_1 for fused lassolambda2 tuning parmaeter lambda_2 for fused lassomax.iteration max number of iteration for the fused lasso

tol tolerance for the fused lasso

blocks the blocks

cv. index the index of time points for cross-validation

fixed_index index for linear regression model with only partial components change.

nonfixed_index index for linear regression model with only partial components change.

HBIC logical; if TRUE, use high-dimensional BIC, if FALSE, use orginal BIC. Default

is FALSE.

gamma.val hyperparameter for HBIC, if HBIC == TRUE.

lm. second. step. search Exhaustive search step for linear regression model.

Description

Perform the exhaustive search to "thin out" redundant break points.

Usage

```
lm.second.step.search(
  data_y,
  data_x,
  max.iteration = max.iteration,
  tol = tol,
  cp.first,
  beta.est,
  blocks
)
```

Arguments

data_y input data matrix, with each column representing the time series component input data matrix, with each column representing the time series component

max.iteration max number of iteration for the fused lasso

tol tolerance for the fused lasso

cp.first the selected break points after the first step
beta.est the estiamted parameters by block fused lasso

blocks the blocks

lm.sim.break 9

Value

A list oject, which contains the followings

cp.final a set of selected break point after the exhaustive search stepbeta.hat.list the estimated coefficient matrix for each segmentation

lm.sim.break

Generate the linear regression model data with break points

Description

Generate the linear regression model data with break points

Usage

```
lm.sim.break(
  nobs,
  px,
  cnst = NULL,
  phi = NULL,
  sigma,
  sigma_x = 1,
  brk = nobs + 1
)
```

Arguments

nobs	number of time points
px	the number of features
cnst	the constant
phi	parameter coefficient matrix of the linear model
sigma	covariance matrix of the white noise
sigma_x	variance of the predictor variable x
brk	vector of break points

Value

```
A list oject, which contains the followings
```

```
series_y matrix of response data
series_x matrix of predictor data
noises matrix of white noise error
```

10 pred

mspe.plot	
-----------	--

Plot the cross-validation score

Description

Plot the cross-validation score

Usage

```
mspe.plot(pred.error, lambda)
```

Arguments

pred.error prediction error

lambda indice of tuning parameter lambda

pred prediction function

Description

prediction function

Usage

```
pred(X, phi, j, p.x, p.y, h = 1)
```

Arguments

Χ	data for prediction
phi	parameter matrix
j	the start time point for prediction
p.x	the dimension of data X
p.y	the dimension of data Y
h	the length of observation to predict

pred.block 11

pred.block	Prediction function (block)	

Description

Prediction function (block)

Usage

```
pred.block(X, phi, j, p.x, p.y, h)
```

Arguments

X	data for prediction
phi	parameter matrix
j	the start time point for prediction
p.x	the dimension of data X
p.y	the dimension of data Y
h	the length of observation to predict

Prediction function for VAR (block)

Usage

```
pred.block.var(Y, phi, q, T, p, h)
```

Arguments

Description

Υ	data for prediction
phi	parameter matrix
q	the AR order
T	the start time point for prediction
р	the number of time series components
h	the length of observation to predict

12 remove.extra.pts

р	red	٦.	va	r

Prediction function for VAR 2

Description

Prediction function for VAR 2

Usage

```
pred.var(Y, phi, q, T, p, h = 1)
```

Arguments

Υ	data for prediction
phi	parameter matrix
q	the AR order
Т	the start time point for prediction
p	the number of time series components
h	the length of observation to predict

remove.extra.pts

helper function for detection check

Description

helper function for detection check

Usage

```
remove.extra.pts(pts, brk)
```

Arguments

pts	the estimated change points
brk	the true change points

soft_full 13

soft_full

soft threshold function

Description

soft threshold function

Usage

```
soft_full(L, lambda)
```

Arguments

L input matrix

lambda threshold parameter

Value

thresholded matrix L

tbfl

Threshold block fused lasso (TBFL) algorithm for change point detection

Description

Perform the threshold block fused lasso (TBFL) algorithm to detect the structural breaks in large scale high-dimensional non-stationary linear regression models.

```
tbfl(
 method,
 data_y,
 data_x = NULL
 lambda.1.cv = NULL,
 lambda.2.cv = NULL,
 q = 1,
 max.iteration = 100,
  tol = 10^{(-2)},
 block.size = NULL,
 blocks = NULL,
 refit = FALSE,
 fixed_index = NULL,
 HBIC = FALSE,
 gamma.val = NULL,
 optimal.block = TRUE,
 optimal.gamma.val = 1.5,
 block.range = NULL
```

14 tbfl

Arguments

method method name for the model: Constant: Mean-shift Model; MvLR: Multivariate

Linear Regression; MLR: Multiple Linear Regression; VAR: Vector autoregres-

sion; GGM: Gaussian graphical model

data_y input data matrix (response), with each column representing the time series com-

ponent

data_x input data matrix (predictor), with each column representing the time series

component

lambda.1.cv tuning parmaeter lambda_1 for fused lasso tuning parmaeter lambda_2 for fused lasso

q the AR order

max.iteration max number of iteration for the fused lasso

tol tolerance for the fused lasso

block.size the block size blocks the blocks

refit logical; if TRUE, refit the model, if FALSE, use BIC to find a thresholding value

and then output the parameter estimates without refitting. Default is FALSE.

fixed_index index for linear regression model with only partial components change.

HBIC logical; if TRUE, use high-dimensional BIC, if FALSE, use original BIC. Default

is FALSE.

gamma.val hyperparameter for HBIC, if HBIC == TRUE.

optimal.block logical; if TRUE, grid search to find optimal block size, if FALSE, directly use

the default block size. Default is TRUE.

optimal.gamma.val

hyperparameter for optimal block size, if optimal.blocks == TRUE. Default is

1.5.

block.range the search domain for optimal block size.

Value

A list oject, which contains the followings

cp.first a set of selected break point after the first block fused lasso step

cp.final a set of selected break point after the final exhaustive search step

beta.hat.list a list of estimated parameter coefficient matrices for each stationary segementation

beta.est a list of estimated parameter coefficient matrices for each block

beta.final a list of estimated parameter coefficient matrices for each stationary segementation, using BIC thresholding or refitting the model.

beta.full.final For GGM only. A list of $p \times p$ matrices for each stationary segementation. The off-diagonal entries are same as the beta.final.

jumps The change (jump) of the values in estimated parameter coefficient matrix.

bn.optimal The optimal block size.

bn.range The values of block size in grid search.

HBIC.full The HBIC values.

pts.full The selected change points for each block size.

var.first.step.blocks 15

Author(s)

Yue Bai, <baiyue@ufl.edu>

Examples

```
T <- 2*10^3; # number of observations/samples
p.y <- 1; \# dimension of observed Y
p.x <- 20
brk <- c(floor(T/4), floor(2*T/4), floor(3*T/4), T+1)</pre>
m <- length(brk)</pre>
d <- 15 #number of non-zero coefficient
###generate coefficient beta
beta.full <- matrix(0, p.y, p.x*m)</pre>
set.seed(1)
aa <- c(-3, 5, -3, 3)
for(i in 1:m){beta.full[1, (i-1)*p.x+sample(1:p.x, d, replace = FALSE)] <- aa[i] + runif(d, -1, 1);}
e.sigma <- as.matrix(1*diag(p.y))</pre>
try <- lm.sim.break(nobs = T, px = p.x, phi = beta.full, sigma = e.sigma, sigma_x = 1, brk = brk)</pre>
data_y <- try$series_y; data_y <- as.matrix(data_y, ncol = p.y)</pre>
data_x <- try$series_x; data_x <- as.matrix(data_x)</pre>
method <- c("MLR")</pre>
temp <- tbfl(method, data_y, data_x)</pre>
temp$cp.final #change points
temp$beta.final #final estimated parameters (after BIC threshold)
temp_refit <- tbfl(method, data_y, data_x, refit = TRUE)</pre>
temp_refit$beta.final #final estimated parameters (refitting the model)
```

var.first.step.blocks Threshold block fused lasso step for linear regression model.

Description

Perform the block fused lasso with thresholding to detect candidate break points.

```
var.first.step.blocks(
  data_y,
  lambda1,
  lambda2,
  q,
  max.iteration,
  tol,
  blocks,
  cv.index,
  HBIC = FALSE,
  gamma.val = NULL
)
```

Arguments

data_y input data matrix Y, with each column representing the time series component

lambda1 tuning parmaeter lambda_1 for fused lassolambda2 tuning parmaeter lambda_2 for fused lasso

q the AR order

max.iteration max number of iteration for the fused lasso

tol tolerance for the fused lasso

blocks the blocks

cv. index the index of time points for cross-validation

HBIC logical; if TRUE, use high-dimensional BIC, if FALSE, use orginal BIC. Default

is FALSE.

gamma.val hyperparameter for HBIC, if HBIC == TRUE.

var.second.step.search

Exhaustive search step

Description

Perform the exhaustive search to "thin out" redundant break points.

Usage

```
var.second.step.search(
  data_y,
  q,
  max.iteration = max.iteration,
  tol = tol,
  cp.first,
  beta.est,
  blocks
)
```

Arguments

data_y input data matrix, with each column representing the time series component

q the AR order

max.iteration max number of iteration for the fused lasso

tol tolerance for the fused lasso

cp.first the selected break points after the first step beta.est the estiamted parameters by block fused lasso

blocks the blocks

Value

A list oject, which contains the followings

cp.final a set of selected break point after the exhaustive search step **phi.hat.list** the estimated coefficient matrix for each segmentation

var.sim.break 17

var.sim.break

Generating non-stationary ARMA data.

Description

Generating non-stationary ARMA data.

Usage

```
var.sim.break(
  nobs,
  arlags = NULL,
  malags = NULL,
  cnst = NULL,
  phi = NULL,
  theta = NULL,
  skip = 200,
  sigma,
  brk = nobs + 1
)
```

Arguments

nobs	number of time points
arlags	the true AR order
malags	the true MA order
cnst	the constant
phi	parameter matrix of the AR model
theta	parameter matrix of the MA model
skip	the number of time points to skip at the begining (for stable data)
sigma	covariance matrix of the white noise
brk	vector of break points

Value

Matrice of time series data and white noise data

Index

```
BIC, 2
BIC.threshold, 2
{\tt BIC.threshold.ggm, 3}
constant.sim.break,4
ggm.first.step.blocks,5
{\tt ggm.second.step.search, 5}
ggm.sim.break,6
lambda_warm_up_lm, 7
lm.first.step.blocks, 7
lm.second.step.search, 8
lm.sim.break, 9
mspe.plot, 10
pred, 10
pred.block, 11
pred.block.var, 11
pred.var, 12
\verb"remove.extra.pts", \\ 12
\mathsf{soft\_full},\, \textcolor{red}{13}
tbf1, 13
var.first.step.blocks, 15
var.second.step.search, 16
var.sim.break, 17
```