# Reinforcement Learning for Particle Accelerators

An Introduction

Jan Kaiser and Oliver Stein
MT-ARD-ST3 pre-meeting ML workshop





### **Try Reinforcement Learning Yourself**

Jupyter Notebook with code for examples from this presentation



### What can RL do?

Some examples

Control humanoid in simulation



Control robot hands in the real world



<u>Play games with imperfect information and develop</u> <u>long-term strategies</u>



Control the plasma in a tokamak fusion reactor



### **Concepts of Reinforcement Learning**

### Some examples



- The agent (or policy) is the function we are trying to learn and tells us what to do to solve the task.
- The **environment** is the world that the RL agent lives in and defines the task.
- **Actions** are how the RL agent interacts with the environment.
- Observations are what the agent sees of the environment.
- The **reward** is returned by the environment after each action and describes the goodness of that action.
- The **return** is the cumulative reward over time. The goal of RL is to maximise the return.

### **Taxonomy of Reinforcement Learning**

A brief overview



Introduction



**Actions and observations** 





#### Observation



#### Rewards



### **Training results**



Positioning and focusing in the ARES Experimental Area



#### **Technical overview**



### **Training results**



Running on the real accelerator



### **Getting it to work**

#### **Choosing rewards**

- Make beam as small as possible (when reading screen)
   Squeeze beam into corner
- Minimise sum of pixels
  - Push beam off-screen
- Get positive reward for each beam parameter while in threshold. After 5 steps in threshold give win bonus and stop.
  - Briefly jump out of threshold after 4 steps



$$R(\mathbf{s}_t, \mathbf{a}_t) = \begin{cases} \hat{R}(\mathbf{s}_t, \mathbf{a}_t) & \text{if } \hat{R}(\mathbf{s}_t, \mathbf{a}_t) > 0 \\ \underline{2 \cdot \hat{R}(\mathbf{s}_t, \mathbf{a}_t)} & \text{otherwise.} \end{cases}$$

$$\hat{R}\left(\boldsymbol{s}_{t},\boldsymbol{a}_{t}\right)=O\left(\boldsymbol{x}_{t}\right)-O\left(\boldsymbol{x}_{t+1}\right)$$

$$O(\mathbf{x}_t) = \underline{\ln} \sum_{p \in \mathbf{b}_t, p' \in \mathbf{b}'} w_p |p - p'|$$

#### Sim2real transfer

Getting RL to run on simulations is easy. Getting it to run on a real accelerator is hard.

#### **Domain randomisation**

The simulation is never quite like the real world.

-> Add random noise.



#### **Delta actions**

Magnet settings may be affected by noise.

-> Policy outputs changes to magnet settings.





### **Further Resources**

#### Where to start if you want to get into reinforcement learning

#### Getting started in RL

- OpenAl Spinning Up Very understandable explanations on RL and the most popular algorithms accompanied by easy-to-read Python implementations.
- Reinforcement Learning with Stable Baselines 3 YouTube playlist giving a good introduction on RL using Stable Baselines3.
- Build a Doom Al Model with Python Detailed 3h tutorial of applying RL using DOOM as an example.
- An introduction to Reinforcement Learning Brief introduction to RL.
- An introduction to Policy Gradient methods Deep Reinforcement Learning -Brief introduction to PPO.

#### **Papers**

- Learning-based optimisation of particle accelerators under partial observability without real-world training - Tuning of electron beam properties on a diagnostic screen using RL.
- Sample-efficient reinforcement learning for CERN accelerator control Beam trajectory steering using RL with a focus on sample-efficient training.
- Autonomous control of a particle accelerator using deep reinforcement learning -Beam transport through a drift tube linac using RL.
- Basic reinforcement learning techniques to control the intensity of a seeded free-electron laser - RL-based laser alignment and drift recovery.

- Real-time artificial intelligence for accelerator control: A study at the Fermilab Booster - Regulation of a gradient magnet power supply using RL and real-time implementation of the trained agent using field-programmable gate arrays (FPGAs).
- Magnetic control of tokamak plasmas through deep reinforcement learning -Landmark paper on RL for controlling a real-world physical system (plasma in a tokamak fusion reactor).

#### Literature

Reinforcement Learning: An Introduction - Standard text book on RL.

#### **Packages**

- Gym Defacto standard for implementing custom environments. Also provides a library of RL tasks widely used for benchmarking.
- Stable Baslines3 Provides reliable, benchmarked and easy-to-use implementations of the most important RL algorithms.
- Ray RLlib Part of the Ray Python package providing implementations of various RL algorithms with a focus on distributed training.

## **Questions or remarks?**

### **Contact**

**DESY.** Deutsches

Elektronen-Synchrotron

Jan Kaiser & Oliver Stein

Machine Beam Control (MSK)

jan.kaiser@desy.de | oliver.stein@desy.de

www.desy.de