Machine Learning

313704071 陳安定 Assignment 2

1. Consider a network as defined in (3.1) and (3.2). Assume that $n_L = 1$, find an algorithm to calculate $\nabla a^{[L]}(x)$.

$$(3.1) \ a^{[1]} = x \in \mathbb{R}^{n_1}$$

$$(3.2) \ a^{[l]} = \sigma \big(W^{[l]} a^{[l-1]} + b^{[l]} \big) \in \mathbb{R}^{n_l} \quad \text{for } l = 2, 3, \dots, L.$$

$$\nabla a^{[L]}(x) = \begin{bmatrix} \frac{\partial a^{[l]}}{\partial W^{[l]}} \\ \frac{\partial a^{[l]}}{\partial b^{[4]}} \\ \frac{\partial a^{[l]}}{\partial a^{[l-1]}} \end{bmatrix}$$

$$\begin{split} \frac{\partial a^{[l]}}{\partial W^{[l]}} &= \sigma' \big(W^{[l]} a^{[l-1]} + b^{[l]} \big) a^{[l-1]} \\ \frac{\partial a^{[l]}}{\partial b^{[4]}} &= \sigma' \big(W^{[l]} a^{[l-1]} + b^{[l]} \big) \\ \frac{\partial a^{[l]}}{\partial a^{[l-1]}} &= \sigma' \big(W^{[l]} a^{[l-1]} + b^{[l]} \big) W^{[l]} \end{split}$$

2. Use a neural network to approximate the Runge function.

$$f(x) = \frac{1}{1+25x^2}, \ x \in [-1,1].$$

The f(x) is an even function, in [-1,1], $0 < f(x) \le 1$, maximum value f(0) = 1, minimum value $f(\pm 1) = \frac{1}{26}$. Moreover, f(x) is decreasing when x > 0, and increasing when x < 0.

$$f'(x) = -\frac{50x}{(1+25x^2)^2}$$

Hypothesis: An MLP trained with Chebyshev-like sampling and endpoint reweighting in the loss (weighted MSE); hidden layers use **tanh** and the output layer is linear. Expect to achieve $RMSE \leq \varepsilon$ and $L_{\infty} \leq \delta$, where ε, δ is the pre-set tolerance limits. (*RMSE*: root mean square error, L_{∞} : Maximum absolute error).

Evaluation criteria: The reasons why we use these two criteria as follows, RMSE focus on the overall average error, it can reflect the approximate quality of the model in most intervals, and L_{∞} check the worst-case performance of the model within the interval, especially the areas where the Runge function has large curvature at the endpoints and is most prone to oscillation.

Chebyshev-like sampling: In the interval [-1, 1], samples are distributed more densely at the endpoints to reduce the approximation error caused by the Runge function when the endpoint curvature is large.

Model: Two hidden layers are sufficient to represent smooth functions. 64–128 neurons are recommended per layer to ensure approximation capability. (we use 64 neurons). About the Weight setting, adopt Xavier/Glorot-uniform and follow tanh activation function to set appropriate gain (about 5/3). The initial value of Bias is set to 0 to facilitate symmetric training.

$$W(x) = \frac{1}{\sqrt{1 - x^2 + \varepsilon}}$$

When x reaches ± 1 , $1 - x^2$ approach 0, W(x) will increase. Used to strengthen the impact of endpoints

<u>Note</u>: Xavier/Glorot-uniform initialization is a weight initialization method that aims to balance the signal variance in forward propagation and back propagation to avoid gradient explosion or disappearance.

Forward / Backpropagation: By inputting x through (1-64-64-1)

$$W^{[4]}\sigma(W^{[3]}\sigma(W^{[2]}x+b^{[2]})+b^{[3]})+b^{[4]}$$

to produce approximate value f'(x), then return error and calculate the gradient according to the loss function and update the weights and biases.

At the center point x = 0, NN's hotspot is slightly lower than the true value. Near the endpoints $|x| \approx 1$, the function value of NN is slightly higher than the true value.

The error for x>0 is larger than that for x<0.