Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

Отчет по заданию N1

«Методы сортировки»

Вариант $2\ /\ 1\ /\ 2\ /\ 3$

Выполнил: студент 102 группы Плеханов А. Д.

> Преподаватель: Кулагин А. В.

Содержание

Постановка задачи	2
Результаты экспериментов	3
Сортировка простым выбором	3
Сортировка Шелла	4
Структура программы и спецификация функций	5
Отладка программы, тестирование функций	7
Анализ допущенных ошибок	8
Список цитируемой литературы	9

Постановка задачи

В задании требуется реализовать две сортировки массива чисел - сортировку простым выбором и сортировку Шелла. Необходимо провести эксперементальное сравнение, а также привести теоретические оценки сложности данных методов. Сравнение требуется произвести по количеству сравнений и перестановок на массивах чисел длиною 10, 100, 1000, 10000. Тип элементов массива long long int, сортировка элементов массива происходит в порядке неубывания.

Результаты экспериментов

Сортировка простым выбором

n	Параметр	Номер	Среднее			
11		1	2	3	4	значение
10	Сравнения	45	45	45	45	45
	Перемещения	0	5	9	8	6
100	Сравнения	4950	4950	4950	4950	4950
	Перемещения	0	50	92	97	60
1000	Сравнения	499500	499500	499500	499500	499500
	Перемещения	0	500	988	992	620
10000	Сравнения	49995000	49995000	49995000	49995000	49995000
	Перемещения	0	5000	9989	9987	6244

Таблица 1: Результаты работы сортировки простым выбором

Сортировка простым выбором, применимая к массиву длиной n, имеет, как видно из таблицы, постоянное количество сравнений, равное $\frac{n(n-1)}{2}$, в любом случае. В лучшем случае (когда массив осортирован по неубыванию) не производится никаких обменов. Обмен между элементами массива может происходить каждую итерацию цикла, в котором происходит выбор следующего наименьшего элемента, значит, максимальное количество обменов равно n - 1. Таким образом, алгоритм имеет суммарную сложность, равную $O(n^2) + O(n) = O(n^2)$, в худшем, среднем и лучшем случае.

Сортировка Шелла

n	Параметр	Номер о	Среднее			
11		1	2	3	4	значение
10	Сравнения	9	45	36	25	29
	Перемещения	0	45	29	18	23
100	Сравнения	275	620	875	866	659
	Перемещения	0	430	622	623	419
1000	Сравнения	5616	9217	13091	13506	10358
	Перемещения	0	4478	7822	8254	5139
10000	Сравнения	86021	132571	196085	196834	152878
	Перемещения	0	55174	113907	114687	70942

Таблица 2: Результаты работы сортировки Шелла

Сортировка Шелла - усовершенствованная сортировки включенями. Суть усовершенствования заключается в последовательной сортировке подмассивов, полученных из элементов, отстоящих друг от друга на одинаковых расстояних d_i . Сортировка подмассивов осуществляется включениями. В методе, предложенном Д. Шеллом, изначально выбиралась послдеовательность приращений $d_1 = n/2$, ..., $d_k = d_{k+1}/2$. Последним приращением всегда должна быть 1. Выбор такой последовательности приращений даёт сложность $O(n^2)$. В моей сортировке была использована последовательность приращений, предложенная Робертом Сэджвиком:

$$d[i]=9*2^i-9*2^{i/2}+1,$$
 если і - четно $d[i]=8*2^i-6*2^{(i+1)/2}+1,$ если і - нечетно

При таком выборе последовательности приращений алгоритм имеет сложность $O(n^{7/6})$ в среднем случае и $O(n^{4/3})$ в худшем случае.

Структура программы и спецификация функций

- long long int random_long(void)
 Функция возвращает случайное 64-битное число
- void swap(long long *a, long long *b)

 Функция получает на вход два указателя на 64-битные числа и меняет содержимое указателей местами
- int cmp_order(const void *a, const void *b) Функция принимает на вход два указателя, приводит их к типу 64-битного числа и возвращает:
 - 1, ecли a > b
 - 0, если содержимое указателей равно
 - -1, если содержимое указателя в больше, чем а
- int cmp_reverse(const void *a, const void *b)

 Функция принимает на вход два указателя на элементы const void, приводит их к типу long long int и возвращает:
 - -1, если содержимое указателя а больше, чем b
 - 0, если содержимое указателей равно
 - 1, если содержимое указателя в больше, чем а
- long long int *generate_arr(int n, int p) Функция получает на вход число n - длину генерируемого массива и параметр p, и возвращает указатель на неубывающий массив (p = 1), произвольный массив (p = 0) или невозрастающий массив(p = -1)
- long long int *duplicate_arr(long long int *a, int n)
 Функция получает на вход указатель на массив и его длину, возвращает
 указатель на дублированный исходный массив
- void print_arr(long long *a, int n) Функция печати массива а длины n
- void select_sort(long long *a, int n)

 Функция получает на вход указатель на массив и его длину, производит его сортировку методом простого выбора, выводя на экран кол-во сравнений и обменов

- int *increment(int *len, int n)

 Функция получает на вход указатель len и число n, строит массив приращений с помощью формул Сэджвика для массива длины n и сохраняет его длину по указателю len. Возвращает указатель на массив приращений.
- void shell_sort(long long *a, int n)
 Функция получает на вход указатель на массив и его длину и производит его сортировку методом Шелла

Отладка программы, тестирование функций

Тестировка функций сортировки производилась с помошью функции void print_arr(long long int *a, int n) на массивах длины до 1000. Также для удобства чтения выведенных на экран массивов применялась модифицированная функция long long int random_long(void), возращавшая число в пределах [—999; 999] (генерируемое 64-битное число бралось по модулю 1000).

Анализ допущенных ошибок

При реализации сортировки простым выбором в некоторых случаях вызывалась функция void swap(long long int *a, long long int *b) при одинаковых указателях a и b.

Изначально массив приращений для сортировки Шелла строился методом Шелла, что отрицательно сказывалось на эффективности алгоритма в отличие от сортировки с приращениями Сэджвика.

Список литературы

- [1] Кормен Т., Лейзерсон Ч., Ривест Р, Штайн К. Алгоритмы: построение и анализ. Второе издание. М.: «Вильямс», 2005.
- [2] Вирт Н. Алгоритмы и структуры данных. —М.: Мир, 1989.