Math H110 Theorems.

- 1. **Lemma.** Let F be a field, $\lambda \in F$, V a vector space over F (denoted by V/F), $v \in V$. Then, if $\lambda v = 0$, then $\lambda = 0$ or v = 0.
- 2. **Lemma.** A vector space over a field is a module over a field.
- 3. **Theorem.** The intersection of a family of subspaces of a vector space V is a subspace of V.
- 4. **Lemma.** Let $S = \{v_1, \ldots, v_t\}$. Then the subspace of all linear combinations of the elements of S is the span S.
- 5. **Theorem.** Let $L = v_1, \ldots, v_n$ be a list of vectors in a vector space V over a field F and let $T: F^n : \to V$ be linear transformation with $(\lambda_1, \ldots, \lambda_n) \mapsto \lambda_1 v_1 + \cdots + \lambda_n v_n$. Then, we have the following:
 - (a) L spans V iff T is onto.
 - (b) L is linearly independent iff T is 1-1 iff $\operatorname{nul} T = \{0\}$.
 - (c) L is a basis iff T is 1-1 and onto.
- 6. **Prop.** Consider $T: F^n \to V$ with $(\lambda_1, \ldots, \lambda_n) \mapsto \lambda_1 v_1 + \cdots + \lambda_n v_n$, so $T(e_i) = v_i$ for all i. Then, T is the unique linear map $F_n \to V$ that sends $e_i \mapsto v_i$ for all i.
- 7. **Theorem.** Every subspace X of V has complement.
- 8. **Lemma.** If v_1, \ldots, v_t is linearly dependent list, then there is an index k such that $v_k \in \text{span}(v_1, \ldots, v_{k-1}, v_{k+1}, \ldots, v_t)$. Furthermore, the span of the list of length t-1 gotten by removing v_k from the list is the same as the span of the original list.
- 9. **Prop.** In a finite-dimensional vector space, the length is of every linearly independent list of vectors is less than or equal to the length of every spanning list of vectors.
- 10. Cor. Two bases of V have the same number of elements.
- 11. **Prop.** X + Y is direct iff the null space of the sum map is $\{0\}$.
- 12. **Theorem.** Every subspace of a finite-dimensional vector space is finite-dimensional.
- 13. **Prop.** Every spanning list for a vector space can be pruned down to a basis of the space.
- 14. Cor. Every finite-dimensional vector space has a basis.
- 15. **Prop.** In a finite-dimensional vector space, every linearly independent list can be extended to a basis of the space.

- 16. **Major Theorem.** Every subspace of a finite-dimensional vector space has a complement.
- 17. **Prop.** Let X, Y be subspaces of a finite-dimensional vector space V. Then:
 - (a) $\dim X + \dim Y = \dim V$.
 - (b) $X \cap Y = \{0\}.$

Then, $V = X \oplus Y$.

- 18. **Prop.** $\dim(X \oplus Y) = \dim X + \dim Y$.
- 19. **Prop.** If V is a finite-dimensional vector space (with dim V = n), then every subspace has dimension at most n.
- 20. **Prop.** Let dim V = n. Then, a linearly independent list of vectors of V with length n is a basis for V.
- 21. **Prop.** Let dim V = n. Then, every spanning list for V of length n is a basis for V.
- 22. **Lemma.** The list $(x_1, 0), \ldots, (x_t, 0); (0, y_1), \ldots, (0, y_k)$ of length t + k is a basis of $X \times Y$.
- 23. Cor. $\dim(X \times Y) = \dim X + \dim Y$.
- 24. Cor. Let $T: V \to W$ be a linear map with dim V = d. Then, rank $T \leq d$.
- 25. Rank-Nullity Theorem. $\dim V = \operatorname{rank} V + \operatorname{nullity} V$.
- 26. **Prop.** If $T: V \to W$ is 1-1, then nullity T = 0.
- 27. Cor. If $T: V \to W$ is 1-1 and onto, then dim $V = \dim W$.
- 28. **Theorem.** The set of linear maps $V \to W$ is a vector space $L \cdot (F^n, W) \to T \longrightarrow (Te_1, \dots, Te_n) \in W^n$.
- 29. **Theorem.** $\dim(X+Y) = \dim X + \dim Y \dim(X \cap Y)$.
- 30. Cor. $\dim(V/X) = \dim V \dim X$.
- 31. **Theorem.** If A is a rectangular matrix with elements in a field F, then row rank A = column rank A.
- 32. **Prop.** Let $T: V \to W$ be 1-1. Then, $\dim W \ge \dim V$.
- 33. **Prop.** Let $T: V \to W$ be onto. Then, $\dim V > \dim W$.
- 34. **Prop.** Let $T: V \to W$ and dim $V = \dim W$. Then, T 1-1 iff T onto iff T bijective iff T invertible.

- 35. **Lemma.** Let V be a finite-dimensional vector space and U a subspace of V. Then, dim $U_0 = \dim V \dim U$.
- 36. **Theorem.** Every linear functional on a subspace of V can be extended to V.
- 37. **Note.** Annihilator is the dual of the quotient subspace.
- 38. **Theorem.** Let $T: V \to W$ and $T': W' \to V'$. Then $\mathcal{M}(T)$ and $\mathcal{M}(T')$ are transposes of each other.
- 39. **Lemma.** U^0 has dimension dim $V \dim U$.
- 40. **Cor.** The annihilator of U is $\{0\}$ iff U = V. The annihilator of U is V iff $U = \{0\}$.
- 41. **Prop.** If $T: V \to W$ is a linear map, then the null space of T' is the annihilator of the range of T. We have $\operatorname{ann}(\operatorname{range} T) = \{\psi : W \to F \mid \phi(Tv) = 0 \text{ for all } v \in V, T'(\psi)(v) = 0, T'\psi = 0, \phi \in \operatorname{nul}(T')\}.$
- 42. Cor. If $T: V \to W$ is a linear map between finite-dimensional F-vector spaces, then $\dim \operatorname{nul}(T') = \dim \operatorname{nul}(T) + \dim W \dim V$.
- 43. Cor. The linear map T is onto iff T' is 1-1.
- 44. **Cor.** If $T: V \to W$ is a linear map between finite-dimensional vector spaces, then T' and T have equal ranks.
- 45. Cor. We have range $T = (\text{nul } T)^0$.
- 46. **Theorem.** Let F be a finite field with q = |F|. Then, $a^q = a$ for all $a \in F$.
- 47. **Theorem.** If F is a finite field, then $|F| = p^n$ for some prime p and integer $n \ge 1$.
- 48. **Theorem.** Take an ideal I in \mathbb{Z} . Then, I is equal to either $\{0\}$ or $m\mathbb{Z}$ (where $m \in \mathbb{Z}_{>0}$).
- 49. **Theorem.** F[x] is a principal ideal domain; that is, it is an integral domain in which every ideal in F[x] is principal.
- 50. **Theorem.** Let $T: V \to V$, V finite-dimensional, and let $\alpha: F[x] \to \mathcal{L}(V)$, with $f \mapsto f(T)$. Also, we have $\ker \alpha$ to be the principal ideal (m(x)). Then, m(x) is the minimal polynomial of T and has degree $\leq n^2$.
- 51. Cayley-Hamilton Theorem. Let $T: V \to V$, V finite-dimensional, and let $\alpha: F[x] \to \mathcal{L}(V)$, with $f \mapsto f(T)$. Also, we have $\ker \alpha$ to be the principal ideal (m(x)), where m(x) is the minimal polynomial of T. Then, the characteristic polynomial is in $\ker \alpha$; that is, we can plug in the matrix for T into its characteristic polynomial and we get that it is equal to the 0-matrix.
- 52. **Prop.** For $f(x) \in F[x]$ and $\lambda \in F$, $f(\lambda) = 0$ iff f is divisible by $x \lambda$, where $x \lambda$ is an irreducible polynomial.

- 53. Cor. A polynomial of degree n can have at most n roots.
- 54. **Cor.** A polynomial with infinitely many roots is identically the zero polynomial.
- 55. **Lemma.** Let $f \in \mathbb{R}[x]$ be a real polynomial. If λ is a complex root of f, so is $\overline{\lambda}$, which is the complex conjugate of λ .