Capítulo III

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM SUPERIOR

Capítulo III

Equações Lineares Homogéneas.

Recordemos que uma equação diferencial ordinária de n-ésima ordem é uma equação na qual a derivada de odem n, $y^{(n)} = d^n y/dx^n$ da função desconhecida y(x) é a maior derivada existente. Assim a equação é da forma $F(x, y, y', ..., y^{(n)}) = 0$, podendo ocorrer simultaneamente, ou não, derivadas com ordem inferior a $y^{(n)}$, bem como a própria função y. A equação é chamada linear se pode ser escrita na forma $y^{(n)} + p_{n-1}(x)y^{(n-1)} + \dots + p_1(x)y' + p_0(x)y = r(x)$ onde r à direita e os coeficientes $p_{\scriptscriptstyle 0},\ p_{\scriptscriptstyle 1},\ ...,\ p_{\scriptscriptstyle n-1}$ são qualquer função dada de $\,x\,.$ Qualquer equação diferencial de n-ésima ordem que não possa ser escrita na forma anterior é chamada não linear. anteriormente, para n=2, a $y^{(n)} + p_{n-1}(x)y^{(n-1)} + \cdots + p_1(x)y' + p_0(x)y = r(x)$, com $y^{(n)}$ como primeiro termo é prática. (Deve dividir-se a equação por f(x) se o seu primeiro termo é $f(x)y^{(n)}$.) Se $r(x) \equiv 0$, a equação anterior torna-se $y^{(n)} + p_{n-1}(x)y^{(n-1)} + \cdots + p_1(x)y' + p_0(x)y = 0$ e é chamada homogénea. Se r(x) é diferente de zero a equação é chamada não homogénea.

Solução. Solução Geral. Independência Linear.

Uma solução de uma equação diferencial de n-ésima ordem - linear ou não linear — num intervalo aberto I é uma função y = h(x) que é definida e n vezes diferenciável em I e é tal que a equação se torna uma identidade se substituirmos a função desconhecida y e as suas derivadas na equação por h e as suas correspondentes derivadas.

Voltemos à equação homogénea e vejamos:

<u>Teorema</u> – Para a equação diferencial linear homogénea $y^{(n)} + p_{n-1}(x)y^{(n-1)} + \dots + p_1(x)y' + p_0(x)y = 0$, as somas e múltiplos constantes de soluções num intervalo aberto I são novamente soluções da equação anterior em I.

A demonstração é uma generalização simples da demonstração que vimos para o teorema fundamental nas equações diferenciais lineares de segunda ordem. Não vamos aqui realizá-lo.

Repetimos aqui o aviso de que este teorema não se verifica para a equação linear não homogénea ou para uma equação não linear.

A nossa discussão desenvolve-se paralelamente ao que fizemos para as equações diferenciais de segunda ordem. Vamos definir uma solução geral de $y^{(n)} + p_{n-1}(x)y^{(n-1)} + \cdots + p_1(x)y' + p_0(x)y = 0$, para o que necessitamos da noção de independência linear de duas a n funções, um conceito de grande importância.

Definição (Solução Geral. Base. Solução Particular.).

Uma solução geral de $y^{(n)}+p_{n-1}(x)y^{(n-1)}+\cdots+p_1(x)y'+p_0(x)y=0$ num intervalo aberto I é uma solução da equação anterior em I da forma $y(x)=c_1y_1(x)+\cdots+c_ny_n(x)$ (c_1,\ldots,c_n arbitrários) onde y_1,\ldots,y_n é uma base – ou sistema fundamental – de soluções de $y^{(n)}+p_{n-1}(x)y^{(n-1)}+\cdots+p_1(x)y'+p_0(x)y=0$ em I; isto é, estas soluções são linearmente independentes em I como definido à frente. Uma solução particular da equação anterior em I é obtida se atribuirmos valores específicos para as n constantes c_1,\ldots,c_n em $y(x)=c_1y_1(x)+\cdots+c_ny_n(x)$.

Definição (Independência e Dependência Linear).

n funções $y_1(x), \ldots, y_n(x)$ são chamadas *linearmente independentes* num intervalo I onde são definidas se a equação $k_1y_1(x)+\cdots+k_ny_n(x)=0$ em I implica que todos k_1, \ldots, k_n são nulos. Estas funções são chamadas linearmente dependentes em I se esta equação também se verifica em I para k_1, \ldots, k_n não todos nulos. Se e somente se y_1, \ldots, y_n são linearmente dependentes em I, podemos expressar uma (pelo

menos) destas funções em I como uma $combinação\ linear$ das outras n-1 funções, isto é, como uma soma dessas funções cada uma multiplicada por uma constante – nula ou não. Isto motiva o termo $linearmente\ dependente$. Por exemplo, se $k_1y_1(x)+\cdots+k_ny_n(x)=0$ em I se verifica para $k_1\neq 0$, podemos efectuar a divisão por k_1 e expressar y_1 como a combinação linear $y_1=-\frac{1}{k_1}(k_2y_2+\cdots+k_ny_n)$. Note-se que quando n=2, estes conceitos reduzem-se aos definidos anteriormente (EDOL 2^a ordem).

<u>Exemplo</u> – Mostre que as funções $y_1 = x$, $y_2 = 3x$, $y_3 = x^3$ são linearmente dependentes em qualquer intervalo.

$$y_2 = 3y_1 + 0y_3$$
.

<u>Exemplo</u> – Mostre que $y_1 = x$, $y_2 = x^2$, $y_3 = x^3$ são linearmente independentes em qualquer intervalo, por exemplo, em $-1 \le x \le 2$.

A equação $k_1 y_1(x) + \dots + k_n y_n(x) = 0$ em I é $k_1 x + k_2 x^2 + k_3 x^3 = 0$. Tomando x = -1, 1, 2, obtemos $-1k_1 + k_2 + k_3 = 0$, $k_1 + k_2 + k_3 = 0$, $2k_1 + 4k_2 + 8k_3 = 0$, respectivamente, o que implica $k_1 = 0$, $k_2 = 0$, $k_3 = 0$, isto é, independência linear.

Este cálculo demonstra a necessidade de encontrar um método melhor para testar a independência linear, como veremos mais à frente.

Exemplo – Resolva a equação diferencial de quarta ordem $y^{IV} - 5y'' + 4y = 0$.

Como anteriormente, tentamos $y = e^{\lambda x}$. Então a substituição e omissão do factor comum (não nulo) $e^{\lambda x}$ origina a equação característica $\lambda^4 - 5\lambda^2 + 4 = 0$ que é uma equação quadrática em $\mu = \lambda^2$, $\mu^4 - 5\mu + 4 = 0$. As raízes são $\mu = 1$ e $\mu = 4$. Assim $\lambda = -2$, -1, 1, 2, que origina quatro soluções, portanto uma solução geral em qualquer

intervalo é $y = c_1 e^{-2x} + c_2 e^{-x} + c_3 e^x + c_4 e^{2x}$ desde que aquelas soluções são linearmente independentes.

Problema de Valor Inicial. Existência e Solução Única.

Um problema de valor inicial para a equação $y^{(n)} + p_{n-1}(x)y^{(n-1)} + \dots + p_1(x)y' + p_0(x)y = 0$ consiste na equação anterior e n condições iniciais $y(x_0) = K_0$, $y'(x_0) = K_1$, ..., $y^{(n-1)}(x_0) = K_{n-1}$ onde x_0 é um determinado ponto no intervalo I considerado.

O teorema de existência de solução e solução única aplica-se a problemas de valor inicial.

Exemplo – Resolva o problema de valor inicial $x^3y''' - 3x^2y'' + 6xy' - 6y = 0$, y(1) = 2, y'(1) = 1, y''(1) = -4 num intervalo aberto I no eixo dos x positivo contendo x = 1.

Como anteriormente tentamos $y = x^m$. Por diferenciação e substituição obtém-se $m(m-1)(m-2)x^m - 3m(m-1)x^m + 6mx^m - 6x^m = 0$. Ordenando os termos e ignorando o factor x^m , obtemos $m^3 - 6m^2 + 11m - 6 = 0$. Se conseguirmos encontrar a primeira raíz m = 1, podemos dividir e encontrar as outras raízes m = 2 e m = 3. (Caso contrário, para equações de grau superior a quatro, é necessário encontrar as raízes através de um método numérico.) As correspondentes soluções x, x^2 , x^3 são linearmente independentes em I - penúltimo exemplo. Assim uma solução geral em I é $y = c_1 x + c_2 x^2 + c_3 x^3$.

O 2º passo consiste em achar a solução particular. Precisamos agora das derivadas $y'=c_1+2c_2x+3c_3x^2, \quad y''=2c_2+6c_3x$. Daqui e de y e das condições iniciais obtemos $y(1)=c_1+c_2+c_3=2$, $y'(1)=c_1+2c_2+3c_3=1$, $y''(1)=2c_2+6c_3=-4$. Pela eliminação ou pela regra de Cramer, tem-se $c_1=2$, $c_2=1$, $c_3=-1$. Assim $y=2x+x^2-x^3$.

Independência Linear de Soluções. Wronskiano.

Vimos que era conveniente deter um critério prático para atestar da independência linear de soluções. Felizmente que o critério envolvendo o wronskiano, que vimos anteriormente, estende-se à ordem n. Utiliza o wronskiano W de n soluções definido

como o determinante de ordem
$$n: W(y_1, ..., y_n) = \begin{vmatrix} y_1 & y_2 & \cdots & y_n \\ y'_1 & y'_2 & \cdots & y'_n \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)} & y_2^{(n-2)} & \cdots & y_n^{(n-1)} \end{vmatrix} e$$

pode ser exposto como se segue.

Teorema — Suponha-se que os coeficientes $p_0(x), \ldots, p_{n-1}(x)$ de $y^{(n)} + p_{n-1}(x)y^{(n-1)} + \cdots + p_1(x)y' + p_0(x)y = 0$ são contínuos num intervalo aberto I. Então n soluções y_1, \ldots, y_n da equação anterior em I são linearmente dependentes em I se e somente se o seu wronskiano é nulo para $x = x_0$ em I. Para além disso, se W = 0 para $x = x_0$, então W = 0 em I; assim se existe um x_1 em I para o qual $W \neq 0$, então y_1, \ldots, y_n são linearmente independentes em I.

Demonstração — Sejam y_1, \ldots, y_n linearmente dependentes em I. Então existem constantes k_1, \ldots, k_n não todos nulos, tais que $k_1 y_1 + \cdots + k_n y_n = 0$ para todo o x em I, e, efectuando n-1 diferenciações desta identidade, $k_1 y_1' + \cdots + k_n y_n' = 0$, ..., $k_1 y_1^{(n-1)} + \cdots + k_n y_n^{(n-1)} = 0$, e $k_1 y_1 + \cdots + k_n y_n = 0$, $k_1 y_1' + \cdots + k_n y_n' = 0$, ..., $k_1 y_1^{(n-1)} + \cdots + k_n y_n^{(n-1)} = 0$ é um sistema linear homogéneo de equações algébricas com uma solução não trivial k_1, \ldots, k_n , de forma a que o seu determinante coeficiente

seja nulo para todo o x em I, pelo teorema de Cramer. Mas o determinante é o wronskiano W, portanto W=0 para todo o x em I.

Do mesmo modo, seja W=0 para um x_0 em I. Então o sistema $k_1y_1+\cdots+k_ny_n=0$, $k_1y_1'+\cdots+k_ny_n'=0$, ..., $k_1y_1^{(n-1)}+\cdots+k_ny_n^{(n-1)}=0$ com $x=x_0$ tem uma solução $\widetilde{k}_1,\ldots,\widetilde{k}_n$, não todos nulos, pelo mesmo teorema. Com estas constantes definimos a solução $\widetilde{y}=\widetilde{k}_1y_1+\cdots+\widetilde{k}_ny_n$ de $y^{(n)}+p_{n-1}(x)y^{(n-1)}+\cdots+p_1(x)y'+p_0(x)y=0$. Através de $k_1y_1+\cdots+k_ny_n=0$, $k_1y_1'+\cdots+k_ny_n'=0$, ..., $k_1y_1^{(n-1)}+\cdots+k_ny_n^{(n-1)}=0$ satisfaz as condições iniciais $\widetilde{y}(x_0)=0$, ..., $\widetilde{y}^{(n-1)}(x_0)=0$. Mas outra solução que satisfaz estas condições iniciais é $y\equiv 0$. Assim $\widetilde{y}\equiv y$ em I pelo último teorema, isto é, $k_1y_1+\cdots+k_ny_n=0$ verifica-se identicamente em I, o que significa dependência linear de y_1,\ldots,y_n . Se W=0 num x_0 em I, verifica-se dependência linear pelo parágrafo anterior, portanto $W\neq 0$ para qualquer x_1 implica independência linear das soluções y_1,\ldots,y_n .

Exemplo – Podemos agora provar que no penúltimo exemplo tem-se uma base.

Vejamos:

$$W = \begin{vmatrix} e^{-2x} & e^{-x} & e^{x} & e^{2x} \\ -2e^{-2x} & -e^{-x} & e^{x} & 2e^{2x} \\ 4e^{-2x} & e^{-x} & e^{x} & 4e^{2x} \\ -8e^{-2x} & -e^{-x} & e^{x} & 8e^{2x} \end{vmatrix} = e^{-2x}e^{-x}e^{x}e^{2x}\begin{vmatrix} 1 & 1 & 1 & 1 \\ -2 & -1 & 1 & 2 \\ 4 & 1 & 1 & 4 \\ -8 & -1 & 1 & 8 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 3 & 4 \\ 0 & -3 & -3 & 0 \\ 0 & 7 & 9 & 16 \end{vmatrix} = \begin{vmatrix} 1 & 3 & 4 & 1 & 3 \\ -3 & -3 & 0 & -3 & -3 = -48 + 0 - 108 + 84 + 0 + 144 = 72 \\ 7 & 9 & 16 & 7 & 9 \end{vmatrix}$$

Uma Solução Geral de $y^{(n)}+p_{n-1}(x)y^{(n-1)}+\cdots+p_1(x)y'+p_0(x)y=0$ Inclui Todas as Soluções.

Mostraremos primeiro que as soluções gerais existem sempre:

Demonstração – Escolhe-se um determinado x_0 em I. Pelo penúltimo teorema antes do teorema acima, a equação $y^{(n)}+p_{n-1}(x)y^{(n-1)}+\cdots+p_1(x)y'+p_0(x)y=0$ tem n soluções y_1,\ldots,y_n , onde y_j satisfaz as condições iniciais $y(x_0)=k_0,\ y'(x_0)=k_1,\ldots,y^{(n-1)}(x_0)=k_{n-1}$, com $k_j=1$ e todos os outros k's nulos. O seu wronskiano em x_0 é igual a 1; por exemplo, quando n=3,

$$W(y_1(x_0), y_2(x_0), y_3(x_0)) = \begin{vmatrix} y_1(x_0) & y_2(x_0) & y_3(x_0) \\ y'_1(x_0) & y'_2(x_0) & y'_3(x_0) \\ y''_1(x_0) & y''_2(x_0) & y''_3(x_0) \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = 1.$$

Assim estas soluções são lineamente independentes em I, pelo último teorema antes do que demonstramos agora; formam uma base em I, e $y=c_1y_1+\dots+c_ny_n$ com constantes arbitrárias c_1,\dots,c_n é uma solução geral de $y^{(n)}+p_{n-1}(x)y^{(n-1)}+\dots+p_1(x)y'+p_0(x)y=0$ em I.

Podemos agora provar a propriedade básica de que a partir de uma solução geral da equação anterior qualquer solução da mesma solução pode ser obtida através de uma escolha adequada dos valores das constantes arbitrárias. Assim, uma equação diferencial linear de *n*-ésima ordem não tem *soluções singulares*, isto é, soluções que não podem ser obtidas a partir de uma solução geral.

<u>Demonstração</u> – Seja $y = c_1 y_1 + \dots + c_n y_n$ uma geral de $y^{(n)} + p_{n-1}(x)y^{(n-1)} + \dots + p_1(x)y' + p_0(x)y = 0$ em I e escolha-se um determinado x_0 em I. Mostremos que podemos encontrar valores de $c_1,...,c_n$ para o qual y e as suas primeiras n-1 derivadas estão para Y e as suas correspondentes derivadas em x_0 , isto é, isto significa que para $x = x_0$ deveríamos ter $c_1 y_1 + \dots + c_n y_n = Y$, $c_1'y_1 + \dots + c_n'y_n = Y', \dots, c_1y_1^{(n-1)} + \dots + c_ny_n^{(n-1)} = Y^{(n-1)}$. Mas este é um sistema linear de equações com $c_1,...,c_n$ desconhecidos. O seu determinante coeficiente é o wronskiano de $y_1, ..., y_n$ para $x = x_0$, que não é nulo pelo penúltimo teorema anterior a este porque $y_1, ..., y_n$ são linearmente independentes em I - formando uma base! Assim o sistema de equações lineares tem uma solução única $c_1 = C_1,...,c_n = C_n$. particular em I Com estes valores encontramos a solução $y^* = C_1 y_1(x) + \cdots + C_n y_n(x)$ a partir da solução geral. Do sistema de equações lineares vemos que y^* está para Y em x_0 e o mesmo se verifica para as primeiras n-1 derivadas de y^* e Y. Isto é, y^* e Y satisfazem em x_0 as mesmas condições iniciais. Do teorema da solução única segue-se que $y^* \equiv Y$ em I, e o teorema é provado.

Equações Homogéneas com Coeficientes Constantes.

Escrevamos agora uma equação diferencial linear homogénea de n-ésima ordem na forma $y^{(n)}+a_{n-1}y^{(n-1)}+\cdots+a_1y'+a_0y=0$. A ideia de solução é a mesma que para n=2. Na verdade, por substituição de $y=e^{\lambda x}$ e as suas derivadas obtemos a equação característica $\lambda^n+a_{n-1}\lambda^{n-1}+\cdots+a_1\lambda+a_0=0$ da primeira equação. Para encontrar soluções da equação homogénea, temos que determinar as raízes de $\lambda^n+a_{n-1}\lambda^{n-1}+\cdots+a_1\lambda+a_0=0$, o que será difícil na prática e terá que ser feito por um método numérico, a não ser que o consigamos fazer por manipulação ou tentativas. Vamos discutir alguns casos:

Raízes reais distintas.

Se $\lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0 = 0$ tem n raízes reais diferentes $\lambda_1, \dots, \lambda_n$, então as n soluções $y_1 = e^{\lambda_1 x}, \dots, y_n = e^{\lambda_n x}$ constituem uma base para todo o x, e a correspondente solução geral de $y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0y = 0$ é $y = c_1 e^{\lambda_1 x} + \dots + c_n e^{\lambda_n x}$. Na verdade, as soluções em $y_1 = e^{\lambda_1 x}, \dots, y_n = e^{\lambda_n x}$ são linearmente independentes, como veremos depois do exemplo.

Exemplo – Resolva a equação diferencial y''' - 2y'' - y' + 2y = 0.

As raízes da equação característica $\lambda^3 - 2\lambda^2 - \lambda + 2 = 0$ são -1, 1 e 2 e a correspondente solução geral é $y = c_1 e^{-x} + c_2 e^x + c_3 e^{2x}$.

Os estudantes familiarizados com determinantes de *n*-ésima ordem podem verificar que pondo em evidência todas as exponenciais das colunas, o wronskiano de $e^{\lambda_1 x}, \dots, e^{\lambda_n x}$ torna-se:

$$W = \begin{vmatrix} e^{\lambda_1 x} & e^{\lambda_2 x} & \cdots & e^{\lambda_n x} \\ \lambda_1 e^{\lambda_1 x} & \lambda_2 e^{\lambda_2 x} & \cdots & \lambda_n e^{\lambda_n x} \\ \lambda_1^2 e^{\lambda_1 x} & \lambda_2^2 e^{\lambda_2 x} & \cdots & \lambda_n^2 e^{\lambda_n x} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_1^{n-1} e^{\lambda_1 x} & \lambda_2^{n-1} e^{\lambda_2 x} & \cdots & \lambda_n^{n-1} e^{\lambda_n x} \end{vmatrix} = e^{(\lambda_1 + \dots + \lambda_n)x} = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ \lambda_1 & \lambda_2 & \cdots & \lambda_n \\ \lambda_1^2 & \lambda_2^2 & \cdots & \lambda_n^2 \\ \vdots & \vdots & \ddots & \ddots \\ \lambda_1^{n-1} & \lambda_2^{n-1} & \cdots & \lambda_n^{n-1} \end{vmatrix}.$$

A função exponencial nunca é nula. Assim W=0 se e somente se o determinante à direita é nulo. Este é o chamado *determinante Vandermonde* ou *Cauchy*. Pode mostrar-se que iguala $(-1)^{n(n-1)/2}V$ onde V é o produto de todos os factores $\lambda_j - \lambda_k$ com j < k ($\leq n$); por exemplo, quando n=3 tem-se $-V = -(\lambda_1 - \lambda_2)(\lambda_1 - \lambda_3)(\lambda_2 - \lambda_3)$. Isto mostra que o wronskiano não é nulo se e somente se todas as n raízes de $\lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0 = 0$ são diferentes, e, sendo assim, tem-se:

<u>Teorema</u> — Qualquer número de soluções $y_1 = e^{\lambda_1 x}, \dots, y_m = e^{\lambda_m x}$ de $y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y' + a_0 y = 0$ são linearmente independentes num intervalo aberto I se e somente se $\lambda_1, \dots, \lambda_m$ são diferentes.

Raízes complexas simples.

Se ocorrerem raízes complexas, elas devem ocorrer em pares conjugados uma vez que os coeficientes de $y^{(n)}+a_{n-1}y^{(n-1)}+\cdots+a_1y'+a_0y=0$ são reais. Assim, se $\lambda=\gamma+i\omega$ é uma raíz simples de $\lambda^n+a_{n-1}\lambda^{n-1}+\cdots+a_1\lambda+a_0=0$, também $\overline{\lambda}=\gamma-i\omega$ o é, e duas correspondentes soluções linearmente independentes são $y_1=e^{\gamma x}\cos\omega x$, $y_2=e^{\gamma x}\sin\omega x$.

Exemplo – Resolva o problema de valor inicial y''' - 2y'' + 2y = 0, y(0) = 0.5, y'(0) = -1, y''(0) = 2.

Uma raíz de $\lambda^3 - 2\lambda^2 + 2\lambda = 0$ é $\lambda_1 = 0$. Uma solução correspondente é $y_1 = e^{0x} = 1$. A divisão por λ permite obter $\lambda^2 - 2\lambda + 2 = 0$. As raízes são $\lambda_2 = 1 + i$ e $\lambda_3 = 1 - i$. As correspondentes soluções são $y_2 = e^x \cos x$ e $y_3 = e^x \sin x$. A correspondente solução geral e as suas derivadas são $y = c_1 + e^x [A\cos x + B\sin x]$, $y' = e^x [(A + B)\cos x + (B - A)\sin x]$, $y'' = e^x [2B\cos x - 2A\sin x]$. Daqui e das condições iniciais obtemos $y(0) = c_1 + A = 0.5$, y'(0) = A + B = -1, y''(0) = 2B = 2. Assim B = 1, A = -2, $c_1 = 2.5$. A resposta é $y = 2.5 + e^x [-2\cos x + \sin x]$.

Raízes reais múltipas.

Se uma $raíz\ dupla$ ocorre, digamos, $\lambda_1=\lambda_2$, então $y_1=y_2$ em $y_1=e^{\lambda_1 x},...,y_n=e^{\lambda_n x}$ e tomamos y_1 e $y_2=xy_1$ como duas soluções linearmente independentes correspondendo a esta raíz, como anteriormente. Se uma $raíz\ tripla$ ocorre, digamos, $y_1=y_2=y_3$ em $y_1=e^{\lambda_1 x},...,y_n=e^{\lambda_n x}$ e três soluções linearmente independentes

correspondendo a esta raíz são y_1 , xy_1 , x^2y_1 . Mais geralmente, se λ é uma *raíz de ordem m*, então *m* correspondentes soluções linearmente independentes são $e^{\lambda x}$, $xe^{\lambda x}$, ..., $x^{m-1}e^{\lambda x}$.

Exemplo – Resolva a equação diferencial $y^V - 3y^{IV} + 3y''' - y'' = 0$.

A equação característica $\lambda^5 - 3\lambda^4 + 3\lambda^3 - \lambda^2 = 0$ tem as raízes $\lambda_1 = \lambda_2 = 0$ e $\lambda_3 = \lambda_4 = \lambda_5 = 1$ e a resposta é $y = c_1 + c_2 x + (c_3 + c_4 x + c_5 x^2)e^x$.

Mostramos agora como chegar a $e^{\lambda x}$, $xe^{\lambda x}$, ..., $x^{m-1}e^{\lambda x}$ - e que estas funções são soluções de $y^{(n)} + a_{n-1}y^{(n-1)} + \cdots + a_1y' + a_0y = 0$. Para simplificar um pouco as fórmulas, usaremos a notação do operador – se escrevermos Dy = y' significa que Dé um operador, transforma y na sua derivada y'; L é um operador linear: $L[y] = PD[y] = 0 \Leftrightarrow y'' + ay' + by = 0$, P significando polinómio – escrevendo de $y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0y = 0$ $L[y] = [D^n + a_{n-1}D^{n-1} + \dots + a_0]y$. Para $y = e^{\lambda x}$ podemos efectuar as diferenciações indicadas, obtendo $L[e^{\lambda x}] = [\lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_0]e^{\lambda x}$. Seja λ_1 uma raíz de n-ésima ordem do polinómio à direita, e sejam $\lambda_{m+1},...,\lambda_n$ outras raízes, todas diferentes de λ_1 , quando m < n. Na forma de produto tem-se $L[e^{\lambda x}] = (\lambda - \lambda_1)^m h(\lambda) e^{\lambda x}$ com $h(\lambda) = 1$ se m = n ou $h(\lambda) = (\lambda - \lambda_{m+1}) \cdots (\lambda - \lambda_n)$ se m < n. Diferencia-se em ambos a λ : $\frac{\partial}{\partial \lambda} L[e^{\lambda x}] = m(\lambda - \lambda_1)^{m-1} h(\lambda) e^{\lambda x} +$ membros relativamente os $+(\lambda-\lambda_1)^m\frac{\partial}{\partial x^2}[h(\lambda)e^{\lambda x}]$. As diferenciações relativamente a $x\in\lambda$ são independentes, portanto podemos inverter a sua ordem à esquerda: $\frac{\partial}{\partial \lambda} L[e^{\lambda x}] = L \left| \frac{\partial}{\partial \lambda} e^{\lambda x} \right| = L[xe^{\lambda x}].$ Agora o membro direito da penúltima equação é nulo para $\lambda = \lambda_1$ devido aos factores $\lambda - \lambda_1$ (e $m \ge 2$). Assim $\frac{\partial}{\partial \lambda} L[e^{\lambda x}] = L\left[\frac{\partial}{\partial \lambda} e^{\lambda x}\right] = L[xe^{\lambda x}]$ mostra-nos que $xe^{\lambda_1 x}$ é uma solução de $y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0y = 0$. Podemos repetir este processo e

chegar a $x^2e^{\lambda_1x}$, $x^{m-1}e^{\lambda_1x}$ através de outras n-2 diferenciações relativamente a λ . Continuando já não obteríamos zero à direita porque a menor potência de $\lambda-\lambda_1$ seria $(\lambda-\lambda_1)^0$, multiplicada por $m!h(\lambda)$ e $h(\lambda)\neq 0$ porque $h(\lambda)$ não tem factores $\lambda-\lambda_1$; assim encontraríamos precisamente as soluções em $e^{\lambda x}$, $xe^{\lambda x}$, ..., $x^{m-1}e^{\lambda x}$.

Raízes complexas múltiplas.

Neste caso, as soluções reais são obtidas como no caso das raízes complexas simples. Consequentemente, se $\lambda = \gamma + i\omega$ é uma *raíz complexa dupla*, também o conjugado $\overline{\lambda} = \gamma - i\omega$ o é. As correspondentes soluções linearmente independentes são $e^{i\alpha}\cos\alpha x$, $e^{i\alpha}\sin\alpha x$, $xe^{i\alpha}\cos\alpha x$, $xe^{i\alpha}\sin\alpha x$. As duas primeiras destas resultam de $e^{\lambda x}$ e $e^{\lambda x}$ como antes, e as segundas duas de $xe^{\lambda x}$ e $xe^{\lambda x}$ do mesmo modo. Para raízes complexas triplas - que raramente ocorrem na prática - obter-se-ia duas soluções mais, $x^2e^{i\alpha}\cos\alpha x$, $x^2e^{i\alpha}\sin\alpha x$, e assim sucessivamente.

Exemplo – Resolva $y^{(7)} + 18y^{(5)} + 81y''' = 0$.

A equação característica $\lambda^7 + 18\lambda^5 + 81\lambda^3 = \lambda^3(\lambda^4 + 18\lambda^2 + 81) = \lambda^3(\lambda^2 + 9)^2 =$ $= \lambda^3 [(\lambda + 3i)(\lambda - 3i)]^2 = 0 \text{ tem uma raíz tripla zero e raízes duplas } -3i \text{ e } 3i,$ assim, com $\gamma = 0$ e $\omega = 3$, uma solução geral é $y = c_1 + c_2 x + c_3 x^2 + A_1 \cos 3x + B_1 \sin 3x + x(A_2 \cos 3x + B_2 \sin 3x).$

Equações Não Homogéneas.

Das equações lineares homogéneas passaremos às equações diferenciais lineares $n\tilde{a}o$ homogéneas de n-ésima ordem, que escreveremos na forma standard $y^{(n)}+p_{n-1}(x)y^{(n-1)}+\cdots+p_1(x)y'+p_0(x)y=r(x)$ com $y^{(n)}=d^ny/dx^n$ como primeiro termo, que é prático. Aqui, $r(x)\not\equiv 0$. Ao estudar a equação acima, precisamos também da correspondente equação homogénea $y^{(n)}+p_{n-1}(x)y^{(n-1)}+\cdots+p_1(x)y'+p_0(x)y=0$ tal como anteriormente para n=2.

Poderemos deduzir a teoria relativa à equação não homogénea a partir da teoria inerente à correspondente equação homogénea, isto é:

Não demonstraremos este teorema, embora a demonstração se assemelhe àquela de para n=2.

Solução Geral (Solução Particular).

geral não Uma solução da equação diferencial homogénea $y^{(n)} + p_{n-1}(x)y^{(n-1)} + \dots + p_1(x)y' + p_0(x)y = r(x)$ num intervalo aberto I é uma solução da forma $y(x) = y_h(x) + y_p(x)$, onde $y_h(x) = c_1 y_1(x) + \dots + c_n y_n(x)$ é uma solução geral da equação homogénea $y^{(n)} + p_{n-1}(x)y^{(n-1)} + \cdots + p_1(x)y' + p_0(x)y = 0$ em I e $y_p(x)$ é qualquer solução da equação não homogénea em I não contendo solução particular da constantes arbitrárias. Uma equação $y^{(n)} + p_{n-1}(x)y^{(n-1)} + \dots + p_1(x)y' + p_0(x)y = r(x)$ em I é uma solução obtida de $y(x) = y_h(x) + y_p(x)$, atribuindo valores específicos às constantes arbitrárias $c_1, ..., c_n$ em $y_h(x)$. Tal como no caso da equação homogénea, podemos provar que a equação não homogénea tem uma solução geral, que inclui todas as soluções, por forma a que $y^{(n)} + p_{n-1}(x)y^{(n-1)} + \cdots + p_1(x)y' + p_0(x)y = r(x)$ não tenha soluções singulares.

<u>Teorema</u> – Se os coeficientes $p_0(x), ..., p_{n-1}(x)$ da equação $y^{(n)} + p_{n-1}(x)y^{(n-1)} + \cdots + p_1(x)y' + p_0(x)y = r(x)$ e r(x) são contínuos num intervalo aberto I, então a última equação tem uma solução geral em I, e toda a solução de

 $y^{(n)} + p_{n-1}(x)y^{(n-1)} + \dots + p_1(x)y' + p_0(x)y = r(x)$ em I é obtida atribuindo valores adequados às constantes nessa solução geral.

Problema de Valor Inicial.

Um problema de valor inicial para $y^{(n)}+p_{n-1}(x)y^{(n-1)}+\cdots+p_1(x)y'+p_0(x)y=r(x)$ consiste nesta equação e n condições iniciais $y(x_0)=K_0$, $y'(x_0)=K_1,\ldots,y^{(n-1)}(x_0)=K_{n-1}$ - tal como para a respectiva equação homogénea $y^{(n)}+p_{n-1}(x)y^{(n-1)}+\cdots+p_1(x)y'+p_0(x)y=0$ - e tem uma única solução.

Teorema – Se os coeficientes de $y^{(n)}+p_{n-1}(x)y^{(n-1)}+\cdots+p_1(x)y'+p_0(x)y=r(x)$ e r(x) são contínuos num intervalo aberto I e x_0 pertence a I, então o problema de valor inicial $y^{(n)}+p_{n-1}(x)y^{(n-1)}+\cdots+p_1(x)y'+p_0(x)y=r(x)$, $y(x_0)=K_0$, $y'(x_0)=K_1$, ..., $y^{(n-1)}(x_0)=K_{n-1}$ tem uma solução única em I.

Demonstração – Escolha-se qualquer solução geral $y(x) = y_h(x) + y_p(x)$ da equação não homogénea em I, que existe pelo anterior teorema. Então o segundo teorema que vimos para equações lineares homogéneas de n-ésima ordem – teorema da existência e solução única para problemas de valor inicial – implica que o problema de valor inicial para a equação homogénea $y^{(n)} + p_{n-1}(x)y^{(n-1)} + \cdots + p_1(x)y' + p_0(x)y = 0$ com condições iniciais $y(x_0) = K_0 - y_p(x_0), \ldots, y^{(n-1)}(x_0) = K_{n-1} - y_p^{(n-1)}(x_0)$ tem uma solução única $y^*(x)$ em I. Assim $y(x) = y^*(x) + y_p(x)$ é uma solução de $y^{(n)} + p_{n-1}(x)y^{(n-1)} + \cdots + p_1(x)y' + p_0(x)y = r(x)$ em I, que satisfaz as condições iniciais, $y(x_0) = K_0, y'(x_0) = K_1, \ldots, y^{(n-1)}(x_0) = K_{n-1}$; isto é, y(x) é a solução desejada, e o teorema fica demonstrado.

Veremos de seguida métodos de resolução.

Método dos Coeficientes Indeterminados.

Tal como nas equações lineares de segunda ordem, o método dos coeficientes indeterminados permite obter soluções particulares y_p da equação de coeficientes constantes $y^{(n)} + a_{n-1}y^{(n-1)} + \cdots + a_1y' + a_0y = r(x)$. Neste método, a gama de aplicação – a funções r(x) cujas derivadas têm formas similares às da própria função r(x) - e os detalhes técnicos de cálculo continuam os mesmos de para n=2. A única pequena diferença diz respeito à Regra da Modificação e advém do facto de que enquanto para n=2 a equação característica da equação homogénea pode ter somente raízes simples ou duplas, a equação característica da presente equação homogénea $y^{(n)} + a_{n-1}y^{(n-1)} + \cdots + a_1y' + a_0y = 0$ pode ter raízes múltiplas de maiores ordens $m (\leq n)$. Tem-se assim:

Regras Para o Método dos Coeficientes Indeterminados.

(A) Regra Básica – Se r(x) em $y^{(n)} + a_{n-1}y^{(n-1)} + \cdots + a_1y' + a_0y = r(x)$ é uma das funções na primeira coluna da tabela abaixo, escolhe-se a função correspondente y_p na segunda coluna e determina-se os seus coeficientes indeterminados por substituição de y_p e das suas derivadas em $y^{(n)} + a_{n-1}y^{(n-1)} + \cdots + a_1y' + a_0y = r(x)$.

(B) Regra da Modificação – Se um termo escolhido para y_p é uma solução da equação homogénea $y^{(n)}+a_{n-1}y^{(n-1)}+\cdots+a_1y'+a_0y=0$, então multiplica-se $y_p(x)$ por x^k , onde k é o inteiro positivo mais pequeno, tal que nenhum termo de $x^ky_p(x)$ é uma solução de $y^{(n)}+a_{n-1}y^{(n-1)}+\cdots+a_1y'+a_0y=0$.

(C) Regra da Soma – Se r(x) é uma soma das funções listadas na tabela abaixo – primeira coluna – então escolhe-se para y_p a soma de funções nas linhas correspondentes da segunda coluna.

Assim, para um problema de valor inicial tem-se três passos:

- *Primeiro passo* Encontrar uma solução geral da equação homogénea $y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0y = 0.$
- Segundo passo Verificar se a regra da modificação pode ser aplicada, e depois determinar uma solução particular $y_p(x)$ da equação não homogénea $y^{(n)} + a_{n-1}y^{(n-1)} + \cdots + a_1y' + a_0y = r(x)$.
- *Terceiro passo* Encontrar a solução particular da equação não homogénea $y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0y = r(x)$ que satisfaz as condições iniciais dadas.

	-
Termo em $r(x)$	Escolha para y _p
ke ^{γx}	Ce^{ix}
$kx^n\big(n=0,1,\ldots\big)$	$C_n x^n + C_{n-1} x^{n-1} + \dots + C_1 x + C_0$
$k\cos\omega x$	$ \begin{cases} K\cos\omega x + M\sin\omega x \end{cases} $
k sin ωx	$\int_{0}^{\infty} K \cos t dx + M \sin t dx$
$ke^{ax}\cos\omega x$	$\bigg\} e^{ax} \big(K \cos \omega x + M \sin \omega x \big)$
$ke^{ax}\sin\omega x$	(K cosan + M sin an)

Método dos Coeficientes Indeterminados

Exemplo – Resolva $y^{IV} - y = 4.5e^{-2x}$.

A equação característica $\lambda^4 - 1 = 0$ tem as raízes ± 1 e $\pm i$. Assim uma solução geral é $y_h = c_1 e^x + c_2 e^{-x} + c_3 e^{-ix}$ ou $y_h = c_1 e^x + c_2 e^{-x} + A \cos x + B \sin x$.

A regra da modificação não é necessária. De $y_p = Ce^{-2x}$ encontra-se por substituição $(-2)^4 Ce^{-2x} - Ce^{-2x} = 4,5e^{-2x}$. Obtém-se C = 0,3. A resposta é $y = y_h + y_p = c_1e^x + c_2e^{-x} + A\cos x + B\sin x + 0,3e^{-2x}$.

<u>Exemplo</u> (regra B) – Considere $y''' - 3y'' + 3y' - y = 30e^x$. Encontre uma solução geral.

A equação característica $\lambda^3 - 3\lambda^2 + 3\lambda - 1 = 0$ tem uma raíz tripla $\lambda = 1$. Assim uma solução geral é $y_h = c_1 e^x + c_2 x e^x + c_3 x^2 e^x$. Vejamos qual o segundo passo. Se tentarmos $y_p = Ce^x$, encontramos C - 3C + 3C - C = 30 que não tem solução. Tentemos Cxe^x e Cx^2e^x . A regra da modificação diz que façamos o seguinte $y_p = Cx^3e^x$. Então $y_p' = C(x^3 + 3x^2)e^x$, $y_p'' = C(x^3 + 6x^2 + 6x)e^x$, $y_p''' = C(x^3 + 9x^2 + 18x + 6)e^x$. A substituição destas expressões em $y''' - 3y'' + 3y' - y = 30e^x$ e a omissão do factor comum e^x permitem obter a expressão: $(x^3 + 9x^2 + 18x + 6)C - 3(x^3 + 6x^2 + 6x)C + 3(x^3 + 3x^2)C - x^3C = 30$. Os termos lineares, quadráticos e cúbicos desaparecem e 6C = 30. Assim C = 5. A resposta é $y = y_h + y_p = (c_1 + c_2x + c_3x^2)e^x + 5x^3e^x$.

Exemplo – Resolva o problema de valor inicial $y''' - 2y'' - y' + 2y = 2x^2 - 6x + 4$, y(0) = 5, y'(0) = -5, y''(0) = 1.

Uma solução geral da equação homogénea é $y_h = c_1 e^{-x} + c_2 e^x + c_3 e^{2x}$. É necessária uma solução y_p . O lado direito da tabela sugere que tentemos $y_p = Kx^2 + Mx + N$. Então $y_p' = 2Kx + M$, $Y_p''' = 2K$, $y_p'''' = 0$. A substituição na equação permite obter: $-2 \cdot 2K - (2Kx + M) + 2(Kx^2 + Mx + N) = 2x^2 - 6x + 4$. Equacionando por potências tem-se $2Kx^2 = 2x^2$, (-2K + 2M)x = -6x, -4K - M + 2N = 4. Assim K = 1, M = -2, N = 3. Obtém-se a solução geral $y = y_h + y_p = c_1 e^{-x} + c_2 e^x + c_3 e^{2x} + x^2 - 2x + 3$. Para determinarmos as constantes a partir das condições iniciais, precisaremos também das derivadas $y' = -c_1 e^{-x} + c_2 e^x + 2c_3 e^{2x} + 2x - 2$, $y'' = -c_1 e^{-x} + c_2 e^x + 4c_3 e^{2x} + 2$. Para x = 0 e usando as condições iniciais, obtemos $y(0) = c_1 + c_2 + c_3 + 3 = 5$, $y'(0) = -c_1 + c_2 + 2c_3 - 2 = -5$, $y''(0) = c_1 + c_2 + 4c_3 + 2 = 1$. Somando y(0) com y'(0) tem-se $2c_2 + 3c_3 = -1$. Subtraindo y''(0) por y(0) vem $3c_3 = -3$. Assim $c_3 = -1$, $c_2 = 1$ e $c_1 = 2$. A resposta é $y = 2e^{-x} + e^x + x^2 - 2x + 3$.

Método de Variação de Parâmetros.

O *método de variação de parâmetros* é um método para encontrar soluções particulares y_p de equações diferenciais lineares homogéneas de n-ésima ordem $y^{(n)} + p_{n-1}(x)y^{(n-1)} + \cdots + p_1(x)y' + p_0(x)y = r(x)$. Aplica-se a qualquer equação $y^{(n)} + p_{n-1}(x)y^{(n-1)} + \cdots + p_1(x)y' + p_0(x)y = r(x)$ com coeficientes contínuos e membro direito igual a r(x) num intervalo aberto I, mas é mais complicado do que o método anterior. O método permite obter uma solução particular y_p da primeira equação em I na forma $y_p(x) = y_1(x) \int \frac{W_1(x)}{W(x)} r(x) dx + y_2(x) \int \frac{W_2(x)}{W(x)} r(x) dx + \cdots + y_n(x) \int \frac{W_n(x)}{W(x)} r(x) dx$. Aqui y_1, \ldots, y_n é uma base de soluções da equação homogénea $y^{(n)} + p_{n-1}(x)y^{(n-1)} + \cdots + p_1(x)y' + p_0(x)y = 0$ em I, com o wronskiano W, e W_j ($j = 1, \ldots, n$) é obtido de W substituindo a j-ésima coluna de W pela coluna $[0 \ 0 \ \ldots \ 0 \ 1]$. Assim, quando n = 2, $W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}$, $W_1 = \begin{vmatrix} 0 & y_2 \\ 1 & y_2' \end{vmatrix} = -y_2$, $W_2 = \begin{vmatrix} y_1 & 0 \\ y_1' & 1 \end{vmatrix} = y_1$, e vemos que $y_p(x) = y_1(x) \int \frac{W_1(x)}{W(x)} r(x) dx + y_2(x) \int \frac{W_2(x)}{W(x)} r(x) dx + \cdots + y_n(x) \int \frac{W_n(x)}{W(x)} r(x) dx$ é igual ao obtido anteriormente para n = 2.

Para além disso, a demonstração efectuada para n=2, estende-se para n arbitrário, como se segue:

Escrevamos $y^{(n)} + p_{n-1}(x)y^{(n-1)} + \cdots + p_1(x)y' + p_0(x)y = 0$ como L[y] = 0. Numa solução geral de L[y], $y = c_1 y_1 + \cdots + c_n y_n$ substituamos as constantes (ou *parâmetros*) por funções $u_1(x), \dots, u_n(x)$ a serem determinadas de modo que $y_p = u_1 y_1 + \cdots + u_n y_n$ se torne uma solução da equação não homogénea $y^{(n)} + p_{n-1}(x)y^{(n-1)} + \cdots + p_1(x)y' + p_0(x)y = r(x)$ em I. Esta é uma condição em n funções arbitrárias u_j , e parece plausível que que possamos impor mais n-1 condições. Para simplificar os cálculos, escolhemos as últimas condições de modo

que em y_p' , y_p'' , ... nos *livremos* do máximo de derivadas de u_j possível. Assim, de $y_{n} = u_{1}y_{1} + \dots + u_{n}y_{n}$, $y'_{n} = (u_{1}y'_{1} + \dots + u_{n}y'_{n}) + (u'_{1}y_{1} + \dots + u'_{n}y_{n})$ e escolhemos como primeira das n-1 condições $u_1'y_1 + \cdots + u_n'y_n = 0$. Diferenciando o que resta, encontramos $y_p'' = (u_1 y_1'' + \dots + u_n y_n'') + (u_1' y_1' + \dots + u_n' y_n')$ e impomos como segunda condição $u_1'y_1' + \cdots + u_n'y_n' = 0$ e assim sucessivamnte até que encontramos $y_n^{(n-1)} = (u_1 y_1^{(n-1)} + \dots + u_n y_n^{(n-1)}) + (u_1' y_1^{(n-2)} + \dots + u_n' y_n^{(n-2)})$ e impomos como última das n-1 condições $u_1'y_1^{(n-2)} + \cdots + u_n'y_n^{(n-2)} = 0$. As expressões para as derivadas, como reduzidas por estas condições, são $y_p^{(j)}=u_1y_1^{(j)}+\cdots+u_ny_n^{(j)}, \quad j=1,\ \ldots,\ n-1$. última expressões obtém-se destas $y_n^{(n)} = \left(u_1 y_1^{(n)} + \dots + u_n y_n^{(n)}\right) + \left(u_1' y_1^{(n-1)} + \dots + u_n' y_n^{(n-1)}\right). \quad \text{Como} \quad n \text{ -\'esima} \quad \text{condição,}$ queremos que y_p seja uma solução da equação não homogénea $y^{(n)} + p_{n-1}(x)y^{(n-1)} + \dots + p_1(x)y' + p_0(x)y = r(x);$ substituindo as expressões $y_{n}^{(j)} = u_{1} y_{1}^{(j)} + \dots + u_{n} y_{n}^{(j)}, \quad y_{n}^{(n-1)} = \left(u_{1} y_{1}^{(n-1)} + \dots + u_{n} y_{n}^{(n-1)}\right) + \left(u_{1}' y_{1}^{(n-2)} + \dots + u_{n}' y_{n}^{(n-2)}\right).$ $y''_{n} = (u_{1}y''_{1} + \dots + u_{n}y''_{n}) + (u'_{1}y'_{1} + \dots + u'_{n}y'_{n}), \qquad y'_{n} = (u_{1}y'_{1} + \dots + u_{n}y'_{n}) + (u'_{1}y_{1} + \dots + u'_{n}y'_{n}),$ $+u'_ny_n$) e $y_n = u_1y_1 + \cdots + u_ny_n$ em $y^{(n)} + p_{n-1}(x)y^{(n-1)} + \cdots + p_1(x)y' + p_0(x)y = r(x)$ tem-se $\left(u_1 v_1^{(n)} + \dots + u_n v_n^{(n)}\right) + \left(u_1' v_1^{(n-1)} + \dots + u_n' v_n^{(n-1)}\right) + p_{n-1} \left(u_1 v_1^{(n-1)} + \dots + u_n' v_n^{(n-1)}\right) + p_{n-1} \left(u_1 v_1^{(n-1)} + \dots + u_n' v_n^{(n-1)}\right) + p_{n-1} \left(u_1 v_1^{(n-1)} + \dots + u_n' v_n^{(n-1)}\right) + p_{n-1} \left(u_1 v_1^{(n-1)} + \dots + u_n' v_n^{(n-1)}\right) + p_{n-1} \left(u_1 v_1^{(n-1)} + \dots + u_n' v_n^{(n-1)}\right) + p_{n-1} \left(u_1 v_1^{(n-1)} + \dots + u_n' v_n^{(n-1)}\right) + p_{n-1} \left(u_1 v_1^{(n-1)} + \dots + u_n' v_n^{(n-1)}\right) + p_{n-1} \left(u_1 v_1^{(n-1)} + \dots + u_n' v_n^{(n-1)}\right) + p_{n-1} \left(u_1 v_1^{(n-1)} + \dots + u_n' v_n^{(n-1)}\right) + p_{n-1} \left(u_1 v_1^{(n-1)} + \dots + u_n' v_n^{(n-1)}\right) + p_{n-1} \left(u_1 v_1^{(n-1)} + \dots + u_n' v_n^{(n-1)}\right) + p_{n-1} \left(u_1 v_1^{(n-1)} + \dots + u_n' v_n^{(n-1)}\right) + p_{n-1} \left(u_1 v_1^{(n-1)} + \dots + u_n' v_n^{(n-1)}\right) + p_{n-1} \left(u_1 v_1^{(n-1)} + \dots + u_n' v_n^{(n-1)}\right) + p_{n-1} \left(u_1 v_1^{(n-1)} + \dots + u_n' v_n^{(n-1)}\right) + p_{n-1} \left(u_1 v_1^{(n-1)} + \dots + u_n' v_n^{(n-1)}\right) + p_{n-1} \left(u_1 v_1^{(n-1)} + \dots + u_n' v_n^{(n-1)}\right) + p_{n-1} \left(u_1 v_1^{(n-1)} + \dots + u_n' v_n^{(n-1)}\right) + p_{n-1} \left(u_1 v_1^{(n-1)} + \dots + u_n' v_n^{(n-1)}\right) + p_{n-1} \left(u_1 v_1^{(n-1)} + \dots + u_n' v_n^{(n-1)}\right) + p_{n-1} \left(u_1 v_1^{(n-1)} + \dots + u_n' v_n^{(n-1)}\right) + p_{n-1} \left(u_1 v_1^{(n-1)} + \dots + u_n' v_n^{(n-1)}\right) + p_{n-1} \left(u_1 v_1^{(n-1)} + \dots + u_n' v_n^{(n-1)}\right) + p_{n-1} \left(u_1 v_1^{(n-1)} + \dots + u_n' v_n^{(n-1)}\right) + p_{n-1} \left(u_1 v_1^{(n-1)} + \dots + u_n' v_n^{(n-1)}\right) + p_{n-1} \left(u_1 v_1^{(n-1)} + \dots + u_n' v_n^{(n-1)}\right) + p_{n-1} \left(u_1 v_1^{(n-1)} + \dots + u_n' v_n^{(n-1)}\right) + p_{n-1} \left(u_1 v_1^{(n-1)} + \dots + u_n' v_n^{(n-1)}\right) + p_{n-1} \left(u_1 v_1^{(n-1)} + \dots + u_n' v_n^{(n-1)}\right) + p_{n-1} \left(u_1 v_1^{(n-1)} + \dots + u_n' v_n^{(n-1)}\right) + p_{n-1} \left(u_1 v_1^{(n-1)} + \dots + u_n' v_n^{(n-1)}\right) + p_{n-1} \left(u_1 v_1^{(n-1)} + \dots + u_n' v_n^{(n-1)}\right) + p_{n-1} \left(u_1 v_1^{(n-1)} + \dots + u_n' v_n^{(n-1)}\right) + p_{n-1} \left(u_1 v_1^{(n-1)} + \dots + u_n' v_n^{(n-1)}\right) + p_{n-1} \left(u_1 v_1^{(n-1)} + \dots + u_n' v_n^{(n-1)}\right) + q_{n-1} \left(u_1 v_1^{(n-1)} + \dots + u_n' v_n^{(n-1)}\right) + q_{n-1} \left(u_1 v_1^{(n-1)} + \dots + u_n' v_n^{($ $+\cdots+p_0(u_1y_1+\cdots+u_ny_n)=r(x)$. Ordenando os termos em u_1 , então em u_2 , etc, tem-se $u_1L[y_1] = 0$, então $u_2L[y_2] = 0$, etc, porque y_1, \dots, y_n são soluções de $y_p(x) = y_1(x) \int \frac{W_1(x)}{W(x)} r(x) dx + y_2(x) \int \frac{W_2(x)}{W(x)} r(x) dx + \dots + y_n(x) \int \frac{W_n(x)}{W(x)} r(x) dx.$ $(u_1 y_1^{(n)} + \dots + u_n y_n^{(n)}) + (u_1' y_1^{(n-1)} + \dots + u_n' y_n^{(n-1)}) + p_{n-1} (u_1 y_1^{(n-1)} + \dots + u_n y_n^{(n-1)}) +$ $+\cdots+p_0(u_1y_1+\cdots+u_ny_n)=r(x)$ a $u_1'y_1^{(n-1)}+\cdots+u_n'y_n^{(n-1)}=r$. As condições que vimos formam um sistema de n equações para as funções desconhecidas u_1', \dots, u_n' :

$$\begin{cases} y_1u_1' + \dots + & y_nu_n' = 0 \\ y_1'u_1' + \dots + & y_n'u_n' = 0 \\ & \vdots & & . & O \text{ determinate dos coeficientes do sistema \'e o} \\ y_1^{(n-2)}u_1' + \dots + y_n^{(n-2)}u_n' = 0 \\ y_1^{(n-1)}u_1' + \dots + y_n^{(n-1)}u_n' = r \end{cases}$$

wronskiano W que não é nulo pois y_1, \ldots, y_n é uma base de soluções de $y_p(x) = y_1(x) \int \frac{W_1(x)}{W(x)} r(x) dx + y_2(x) \int \frac{W_2(x)}{W(x)} r(x) dx + \cdots + y_n(x) \int \frac{W_n(x)}{W(x)} r(x) dx$. A regra de Cramer permite obter para u_1', \ldots, u_n' os integrandos na última equação, e a integração e substituição em $y_p = u_1 y_1 + \cdots + u_n y_n$ produz a expressão para $y_p, \quad y_p(x) = y_1(x) \int \frac{W_1(x)}{W(x)} r(x) dx + y_2(x) \int \frac{W_2(x)}{W(x)} r(x) dx + \cdots + y_n(x) \int \frac{W_n(x)}{W(x)} r(x) dx$ e completa a integração.

Exemplo – Resolva a equação não homogénea de Euler-Cauchy $x^3y''' - 3x^2y'' + 6xy' - 6y = x^4 \ln x$.

O primeiro passo consiste em encontrar uma soçução geral: a substituição de $y=x^m$ e das suas derivadas, omitindo o factor x^m , permite obter m(m-1)(m-2)-3m(m-1)+6m-6=0. As raízes são 1, 2, 3 e dão-nos como uma base da equação homogénea $y_1=x$, $y_2=x^2$, $y_3=x^3$. O segundo passo consiste em

encontrar os determinantes necessários. São eles: $W = \begin{vmatrix} x & x^2 & x^3 \\ 1 & 2x & 3x^2 \\ 0 & 2 & 6x \end{vmatrix} = 2x^3$,

$$W_{1} = \begin{vmatrix} 0 & x^{2} & x^{3} \\ 0 & 2x & 3x^{2} \\ 1 & 2 & 6x \end{vmatrix} = x^{4}, \ W_{2} = \begin{vmatrix} x & 0 & x^{3} \\ 1 & 0 & 3x^{2} \\ 0 & 1 & 6x \end{vmatrix} = -2x^{3}, \ W_{3} = \begin{vmatrix} x & x^{2} & 0 \\ 1 & 2x & 0 \\ 0 & 2 & 1 \end{vmatrix} = x^{2}. \text{ O terceiro}$$

passo consiste na integração. Precisamos de r(x) na forma padrão, que obteremos dividindo a equação dada por x^3 - o coeficiente de y'''; assim $r(x) = (x^4 \ln x)/x \ln x$.

Então
$$y_p(x) = x \int \frac{x}{2} x \ln x dx - x^2 \int x \ln x dx + x^3 \int \frac{1}{2x} x \ln x dx = \frac{x}{2} \left(\frac{x^3}{3} \ln x - \frac{x^3}{9} \right) - x^2 \left(\frac{x^2}{2} \ln x - \frac{x^2}{4} \right) + \frac{x^3}{2} (x \ln x - x).$$
 Simplificando vem $y_p = \frac{x^4}{6} \left(\ln x - \frac{11}{6} \right).$