CHAPTER 10

Introduction to Artificial Neural Networks with Keras

Birds inspired us to fly, burdock plants inspired Velcro, and nature has inspired countless more inventions. It seems only logical, then, to look at the brain's architecture for inspiration on how to build an intelligent machine. This is the logic that sparked *artificial neural networks* (ANNs): an ANN is a Machine Learning model inspired by the networks of biological neurons found in our brains. However, although planes were inspired by birds, they don't have to flap their wings. Similarly, ANNs have gradually become quite different from their biological cousins. Some researchers even argue that we should drop the biological analogy altogether (e.g., by saying "units" rather than "neurons"), lest we restrict our creativity to biologically plausible systems.¹

ANNs are at the very core of Deep Learning. They are versatile, powerful, and scalable, making them ideal to tackle large and highly complex Machine Learning tasks such as classifying billions of images (e.g., Google Images), powering speech recognition services (e.g., Apple's Siri), recommending the best videos to watch to hundreds of millions of users every day (e.g., YouTube), or learning to beat the world champion at the game of Go (DeepMind's AlphaGo).

The first part of this chapter introduces artificial neural networks, starting with a quick tour of the very first ANN architectures and leading up to *Multilayer Perceptrons* (MLPs), which are heavily used today (other architectures will be explored in the next chapters). In the second part, we will look at how to implement neural networks using the popular Keras API. This is a beautifully designed and simple high-

level API for building, training, evaluating, and running neural networks. But don't be fooled by its simplicity: it is expressive and flexible enough to let you build a wide variety of neural network architectures. In fact, it will probably be sufficient for most of your use cases. And should you ever need extra flexibility, you can always write custom Keras components using its lower-level API, as we will see in Chapter 12.

But first, let's go back in time to see how artificial neural networks came to be!

From Biological to Artificial Neurons

Surprisingly, ANNs have been around for quite a while: they were first introduced back in 1943 by the neurophysiologist Warren McCulloch and the mathematician Walter Pitts. In their landmark paper² "A Logical Calculus of Ideas Immanent in Nervous Activity," McCulloch and Pitts presented a simplified computational model of how biological neurons might work together in animal brains to perform complex computations using *propositional logic*. This was the first artificial neural network architecture. Since then many other architectures have been invented, as we will see.

The early successes of ANNs led to the widespread belief that we would soon be conversing with truly intelligent machines. When it became clear in the 1960s that this promise would go unfulfilled (at least for quite a while), funding flew elsewhere, and ANNs entered a long winter. In the early 1980s, new architectures were invented and better training techniques were developed, sparking a revival of interest in *connectionism* (the study of neural networks). But progress was slow, and by the 1990s other powerful Machine Learning techniques were invented, such as Support Vector Machines (see Chapter 5). These techniques seemed to offer better results and stronger theoretical foundations than ANNs, so once again the study of neural networks was put on hold.

We are now witnessing yet another wave of interest in ANNs. Will this wave die out like the previous ones did? Well, here are a few good reasons to believe that this time is different and that the renewed interest in ANNs will have a much more profound impact on our lives:

- There is now a huge quantity of data available to train neural networks, and ANNs frequently outperform other ML techniques on very large and complex problems.
- The tremendous increase in computing power since the 1990s now makes it possible to train large neural networks in a reasonable amount of time. This is in part due to Moore's law (the number of components in integrated circuits has

279

¹ You can get the best of both worlds by being open to biological inspirations without being afraid to create biologically unrealistic models, as long as they work well.

² Warren S. McCulloch and Walter Pitts, "A Logical Calculus of the Ideas Immanent in Nervous Activity," *The Bulletin of Mathematical Biology* 5, no. 4 (1943): 115–113.

- doubled about every 2 years over the last 50 years), but also thanks to the gaming industry, which has stimulated the production of powerful GPU cards by the millions. Moreover, cloud platforms have made this power accessible to everyone.
- The training algorithms have been improved. To be fair they are only slightly different from the ones used in the 1990s, but these relatively small tweaks have had a huge positive impact.
- Some theoretical limitations of ANNs have turned out to be benign in practice. For example, many people thought that ANN training algorithms were doomed because they were likely to get stuck in local optima, but it turns out that this is rather rare in practice (and when it is the case, they are usually fairly close to the global optimum).
- · ANNs seem to have entered a virtuous circle of funding and progress. Amazing products based on ANNs regularly make the headline news, which pulls more and more attention and funding toward them, resulting in more and more progress and even more amazing products.

Biological Neurons

Before we discuss artificial neurons, let's take a quick look at a biological neuron (represented in Figure 10-1). It is an unusual-looking cell mostly found in animal brains. It's composed of a cell body containing the nucleus and most of the cell's complex components, many branching extensions called dendrites, plus one very long extension called the axon. The axon's length may be just a few times longer than the cell body, or up to tens of thousands of times longer. Near its extremity the axon splits off into many branches called telodendria, and at the tip of these branches are minuscule structures called synaptic terminals (or simply synapses), which are connected to the dendrites or cell bodies of other neurons.³ Biological neurons produce short electrical impulses called action potentials (APs, or just signals) which travel along the axons and make the synapses release chemical signals called neurotransmitters. When a neuron receives a sufficient amount of these neurotransmitters within a few milliseconds, it fires its own electrical impulses (actually, it depends on the neurotransmitters, as some of them inhibit the neuron from firing).

Figure 10-1. Biological neuron4

Thus, individual biological neurons seem to behave in a rather simple way, but they are organized in a vast network of billions, with each neuron typically connected to thousands of other neurons. Highly complex computations can be performed by a network of fairly simple neurons, much like a complex anthill can emerge from the combined efforts of simple ants. The architecture of biological neural networks (BNNs)⁵ is still the subject of active research, but some parts of the brain have been mapped, and it seems that neurons are often organized in consecutive layers, especially in the cerebral cortex (i.e., the outer layer of your brain), as shown in Figure 10-2.

³ They are not actually attached, just so close that they can very quickly exchange chemical signals.

⁴ Image by Bruce Blaus (Creative Commons 3.0). Reproduced from https://en.wikipedia.org/wiki/Neuron.

⁵ In the context of Machine Learning, the phrase "neural networks" generally refers to ANNs, not BNNs.

Figure 10-2. Multiple layers in a biological neural network (human cortex)⁶

Logical Computations with Neurons

McCulloch and Pitts proposed a very simple model of the biological neuron, which later became known as an *artificial neuron*: it has one or more binary (on/off) inputs and one binary output. The artificial neuron activates its output when more than a certain number of its inputs are active. In their paper, they showed that even with such a simplified model it is possible to build a network of artificial neurons that computes any logical proposition you want. To see how such a network works, let's build a few ANNs that perform various logical computations (see Figure 10-3), assuming that a neuron is activated when at least two of its inputs are active.

Figure 10-3. ANNs performing simple logical computations

Let's see what these networks do:

- The first network on the left is the identity function: if neuron A is activated, then neuron C gets activated as well (since it receives two input signals from neuron A); but if neuron A is off, then neuron C is off as well.
- The second network performs a logical AND: neuron C is activated only when both neurons A and B are activated (a single input signal is not enough to activate neuron C).
- The third network performs a logical OR: neuron C gets activated if either neuron A or neuron B is activated (or both).
- Finally, if we suppose that an input connection can inhibit the neuron's activity (which is the case with biological neurons), then the fourth network computes a slightly more complex logical proposition: neuron C is activated only if neuron A is active and neuron B is off. If neuron A is active all the time, then you get a logical NOT: neuron C is active when neuron B is off, and vice versa.

You can imagine how these networks can be combined to compute complex logical expressions (see the exercises at the end of the chapter for an example).

The Perceptron

The *Perceptron* is one of the simplest ANN architectures, invented in 1957 by Frank Rosenblatt. It is based on a slightly different artificial neuron (see Figure 10-4) called a *threshold logic unit* (TLU), or sometimes a *linear threshold unit* (LTU). The inputs and output are numbers (instead of binary on/off values), and each input connection is associated with a weight. The TLU computes a weighted sum of its inputs ($z = w_1 x_1 + w_2 x_2 + \cdots + w_n x_n = \mathbf{x}^{\mathsf{T}} \mathbf{w}$), then applies a *step function* to that sum and outputs the result: $h_w(\mathbf{x}) = \text{step}(z)$, where $z = \mathbf{x}^{\mathsf{T}} \mathbf{w}$.

Figure 10-4. Threshold logic unit: an artificial neuron which computes a weighted sum of its inputs then applies a step function

⁶ Drawing of a cortical lamination by S. Ramon y Cajal (public domain). Reproduced from https://en.wikipedia.org/wiki/Cerebral_cortex.

The most common step function used in Perceptrons is the Heaviside step function (see Equation 10-1). Sometimes the sign function is used instead.

Equation 10-1. Common step functions used in Perceptrons (assuming threshold =

heaviside
$$(z) = \begin{cases} 0 & \text{if } z < 0 \\ 1 & \text{if } z \ge 0 \end{cases}$$
 sgn $(z) = \begin{cases} -1 & \text{if } z < 0 \\ 0 & \text{if } z = 0 \\ +1 & \text{if } z > 0 \end{cases}$

A single TLU can be used for simple linear binary classification. It computes a linear combination of the inputs, and if the result exceeds a threshold, it outputs the positive class. Otherwise it outputs the negative class (just like a Logistic Regression or linear SVM classifier). You could, for example, use a single TLU to classify iris flowers based on petal length and width (also adding an extra bias feature $x_0 = 1$, just like we did in previous chapters). Training a TLU in this case means finding the right values for w_0 , w_1 , and w_2 (the training algorithm is discussed shortly).

A Perceptron is simply composed of a single layer of TLUs,7 with each TLU connected to all the inputs. When all the neurons in a layer are connected to every neuron in the previous layer (i.e., its input neurons), the layer is called a fully connected layer, or a dense laver. The inputs of the Perceptron are fed to special passthrough neurons called input neurons: they output whatever input they are fed. All the input neurons form the *input layer*. Moreover, an extra bias feature is generally added $(x_0 = 1)$: it is typically represented using a special type of neuron called a bias neuron, which outputs 1 all the time. A Perceptron with two inputs and three outputs is represented in Figure 10-5. This Perceptron can classify instances simultaneously into three different binary classes, which makes it a multilabel classifier.

From Biological to Artificial Neurons | 285

Figure 10-5. Architecture of a Perceptron with two input neurons, one bias neuron, and three output neurons

Thanks to the magic of linear algebra, Equation 10-2 makes it possible to efficiently compute the outputs of a layer of artificial neurons for several instances at once.

Equation 10-2. Computing the outputs of a fully connected layer

$$h_{\mathbf{W},\,\mathbf{b}}(\mathbf{X}) = \phi(\mathbf{X}\mathbf{W} + \mathbf{b})$$

In this equation:

- · As always, X represents the matrix of input features. It has one row per instance and one column per feature.
- The weight matrix W contains all the connection weights except for the ones from the bias neuron. It has one row per input neuron and one column per artificial neuron in the layer.
- The bias vector **b** contains all the connection weights between the bias neuron and the artificial neurons. It has one bias term per artificial neuron.8
- The function ϕ is called the *activation function*: when the artificial neurons are TLUs, it is a step function (but we will discuss other activation functions shortly).

So, how is a Perceptron trained? The Perceptron training algorithm proposed by Rosenblatt was largely inspired by Hebb's rule. In his 1949 book The Organization of Behavior (Wiley), Donald Hebb suggested that when a biological neuron triggers another neuron often, the connection between these two neurons grows stronger. Siegrid Löwel later summarized Hebb's idea in the catchy phrase, "Cells that fire

Chapter 10: Introduction to Artificial Neural Networks with Keras

⁷ The name *Perceptron* is sometimes used to mean a tiny network with a single TLU.

⁸ In mathematics, the sum of a matrix (XW) and a vector (b) is undefined. However, in Data Science, we allow "broadcasting": we add the vector to every row in the matrix.

together, wire together"; that is, the connection weight between two neurons tends to increase when they fire simultaneously. This rule later became known as Hebb's rule (or Hebbian learning). Perceptrons are trained using a variant of this rule that takes into account the error made by the network when it makes a prediction; the Perceptron learning rule reinforces connections that help reduce the error. More specifically, the Perceptron is fed one training instance at a time, and for each instance it makes its predictions. For every output neuron that produced a wrong prediction, it reinforces the connection weights from the inputs that would have contributed to the correct prediction. The rule is shown in Equation 10-3.

Equation 10-3. Perceptron learning rule (weight update)

$$w_{i,j}^{\text{(next step)}} = w_{i,j} + \eta (y_j - \hat{y}_j) x_i$$

In this equation:

- $w_{i,j}$ is the connection weight between the i^{th} input neuron and the j^{th} output neuron.
- x_i is the ith input value of the current training instance.
- \hat{y}_i is the output of the j^{th} output neuron for the current training instance.
- y_i is the target output of the j^{th} output neuron for the current training instance.
- η is the learning rate.

The decision boundary of each output neuron is linear, so Perceptrons are incapable of learning complex patterns (just like Logistic Regression classifiers). However, if the training instances are linearly separable, Rosenblatt demonstrated that this algorithm would converge to a solution. This is called the *Perceptron convergence theorem*.

Scikit-Learn provides a Perceptron class that implements a single-TLU network. It can be used pretty much as you would expect—for example, on the iris dataset (introduced in Chapter 4):

```
import numpy as np
from sklearn.datasets import load iris
from sklearn.linear model import Perceptron
iris = load iris()
X = iris.data[:, (2, 3)] # petal length, petal width
y = (iris.target == 0).astype(np.int) # Iris setosa?
```

```
From Biological to Artificial Neurons | 287
```

```
per_clf = Perceptron()
per_clf.fit(X, y)
y_pred = per_clf.predict([[2, 0.5]])
```

You may have noticed that the Perceptron learning algorithm strongly resembles Stochastic Gradient Descent. In fact, Scikit-Learn's Perceptron class is equivalent to using an SGDClassifier with the following hyperparameters: loss="perceptron", learning rate="constant", eta0=1 (the learning rate), and penalty=None (no regularization).

Note that contrary to Logistic Regression classifiers, Perceptrons do not output a class probability; rather, they make predictions based on a hard threshold. This is one reason to prefer Logistic Regression over Perceptrons.

In their 1969 monograph Perceptrons, Marvin Minsky and Seymour Papert highlighted a number of serious weaknesses of Perceptrons—in particular, the fact that they are incapable of solving some trivial problems (e.g., the Exclusive OR (XOR) classification problem; see the left side of Figure 10-6). This is true of any other linear classification model (such as Logistic Regression classifiers), but researchers had expected much more from Perceptrons, and some were so disappointed that they dropped neural networks altogether in favor of higher-level problems such as logic, problem solving, and search.

It turns out that some of the limitations of Perceptrons can be eliminated by stacking multiple Perceptrons. The resulting ANN is called a Multilayer Perceptron (MLP). An MLP can solve the XOR problem, as you can verify by computing the output of the MLP represented on the right side of Figure 10-6: with inputs (0, 0) or (1, 1), the network outputs 0, and with inputs (0, 1) or (1, 0) it outputs 1. All connections have a weight equal to 1, except the four connections where the weight is shown. Try verifying that this network indeed solves the XOR problem!

Figure 10-6. XOR classification problem and an MLP that solves it

⁹ Note that this solution is not unique: when data points are linearly separable, there is an infinity of hyperplanes that can separate them.

The Multilayer Perceptron and Backpropagation

An MLP is composed of one (passthrough) input layer, one or more layers of TLUs, called hidden layers, and one final layer of TLUs called the output layer (see Figure 10-7). The layers close to the input layer are usually called the *lower layers*, and the ones close to the outputs are usually called the *upper layers*. Every layer except the output layer includes a bias neuron and is fully connected to the next layer.

Figure 10-7. Architecture of a Multilayer Perceptron with two inputs, one hidden layer of four neurons, and three output neurons (the bias neurons are shown here, but usually they are implicit)

The signal flows only in one direction (from the inputs to the outputs), so this architecture is an example of a feedforward neural network (FNN).

When an ANN contains a deep stack of hidden layers, 10 it is called a deep neural network (DNN). The field of Deep Learning studies DNNs, and more generally models containing deep stacks of computations. Even so, many people talk about Deep Learning whenever neural networks are involved (even shallow ones).

For many years researchers struggled to find a way to train MLPs, without success. But in 1986, David Rumelhart, Geoffrey Hinton, and Ronald Williams published a

From Biological to Artificial Neurons | 289

groundbreaking paper11 that introduced the backpropagation training algorithm, which is still used today. In short, it is Gradient Descent (introduced in Chapter 4) using an efficient technique for computing the gradients automatically:12 in just two passes through the network (one forward, one backward), the backpropagation algorithm is able to compute the gradient of the network's error with regard to every single model parameter. In other words, it can find out how each connection weight and each bias term should be tweaked in order to reduce the error. Once it has these gradients, it just performs a regular Gradient Descent step, and the whole process is repeated until the network converges to the solution.

Automatically computing gradients is called automatic differentiation, or autodiff. There are various autodiff techniques, with different pros and cons. The one used by backpropagation is called reverse-mode autodiff. It is fast and precise, and is well suited when the function to differentiate has many variables (e.g., connection weights) and few outputs (e.g., one loss). If you want to learn more about autodiff, check out Appendix D.

Let's run through this algorithm in a bit more detail:

- It handles one mini-batch at a time (for example, containing 32 instances each), and it goes through the full training set multiple times. Each pass is called an epoch.
- · Each mini-batch is passed to the network's input layer, which sends it to the first hidden layer. The algorithm then computes the output of all the neurons in this layer (for every instance in the mini-batch). The result is passed on to the next layer, its output is computed and passed to the next layer, and so on until we get the output of the last layer, the output layer. This is the forward pass: it is exactly like making predictions, except all intermediate results are preserved since they are needed for the backward pass.
- · Next, the algorithm measures the network's output error (i.e., it uses a loss function that compares the desired output and the actual output of the network, and returns some measure of the error).
- Then it computes how much each output connection contributed to the error. This is done analytically by applying the chain rule (perhaps the most fundamental rule in calculus), which makes this step fast and precise.

¹⁰ In the 1990s, an ANN with more than two hidden layers was considered deep. Nowadays, it is common to see ANNs with dozens of layers, or even hundreds, so the definition of "deep" is quite fuzzy.

¹¹ David Rumelhart et al. "Learning Internal Representations by Error Propagation," (Defense Technical Information Center technical report, September 1985).

¹² This technique was actually independently invented several times by various researchers in different fields, starting with Paul Werbos in 1974.

- The algorithm then measures how much of these error contributions came from
 each connection in the layer below, again using the chain rule, working backward
 until the algorithm reaches the input layer. As explained earlier, this reverse pass
 efficiently measures the error gradient across all the connection weights in the
 network by propagating the error gradient backward through the network (hence
 the name of the algorithm).
- Finally, the algorithm performs a Gradient Descent step to tweak all the connection weights in the network, using the error gradients it just computed.

This algorithm is so important that it's worth summarizing it again: for each training instance, the backpropagation algorithm first makes a prediction (forward pass) and measures the error, then goes through each layer in reverse to measure the error contribution from each connection (reverse pass), and finally tweaks the connection weights to reduce the error (Gradient Descent step).

It is important to initialize all the hidden layers' connection weights randomly, or else training will fail. For example, if you initialize all weights and biases to zero, then all neurons in a given layer will be perfectly identical, and thus backpropagation will affect them in exactly the same way, so they will remain identical. In other words, despite having hundreds of neurons per layer, your model will act as if it had only one neuron per layer: it won't be too smart. If instead you randomly initialize the weights, you *break the symmetry* and allow backpropagation to train a diverse team of neurons.

In order for this algorithm to work properly, its authors made a key change to the MLP's architecture: they replaced the step function with the logistic (sigmoid) function, $\sigma(z)=1$ / $(1+\exp(-z))$. This was essential because the step function contains only flat segments, so there is no gradient to work with (Gradient Descent cannot move on a flat surface), while the logistic function has a well-defined nonzero derivative everywhere, allowing Gradient Descent to make some progress at every step. In fact, the backpropagation algorithm works well with many other activation functions, not just the logistic function. Here are two other popular choices:

The hyperbolic tangent function: $tanh(z) = 2\sigma(2z) - 1$

Just like the logistic function, this activation function is *S*-shaped, continuous, and differentiable, but its output value ranges from –1 to 1 (instead of 0 to 1 in the case of the logistic function). That range tends to make each layer's output more or less centered around 0 at the beginning of training, which often helps speed up convergence.

The Rectified Linear Unit function: ReLU(z) = max(0, z)

The ReLU function is continuous but unfortunately not differentiable at z=0 (the slope changes abruptly, which can make Gradient Descent bounce around), and its derivative is 0 for z < 0. In practice, however, it works very well and has the advantage of being fast to compute, so it has become the default.¹³ Most importantly, the fact that it does not have a maximum output value helps reduce some issues during Gradient Descent (we will come back to this in Chapter 11).

These popular activation functions and their derivatives are represented in Figure 10-8. But wait! Why do we need activation functions in the first place? Well, if you chain several linear transformations, all you get is a linear transformation. For example, if f(x) = 2x + 3 and g(x) = 5x - 1, then chaining these two linear functions gives you another linear function: f(g(x)) = 2(5x - 1) + 3 = 10x + 1. So if you don't have some nonlinearity between layers, then even a deep stack of layers is equivalent to a single layer, and you can't solve very complex problems with that. Conversely, a large enough DNN with nonlinear activations can theoretically approximate any continuous function.

Figure 10-8. Activation functions and their derivatives

OK! You know where neural nets came from, what their architecture is, and how to compute their outputs. You've also learned about the backpropagation algorithm. But what exactly can you do with them?

Regression MLPs

First, MLPs can be used for regression tasks. If you want to predict a single value (e.g., the price of a house, given many of its features), then you just need a single output neuron: its output is the predicted value. For multivariate regression (i.e., to predict

¹³ Biological neurons seem to implement a roughly sigmoid (S-shaped) activation function, so researchers stuck to sigmoid functions for a very long time. But it turns out that ReLU generally works better in ANNs. This is one of the cases where the biological analogy was misleading.

multiple values at once), you need one output neuron per output dimension. For example, to locate the center of an object in an image, you need to predict 2D coordinates, so you need two output neurons. If you also want to place a bounding box around the object, then you need two more numbers: the width and the height of the object. So, you end up with four output neurons.

In general, when building an MLP for regression, you do not want to use any activation function for the output neurons, so they are free to output any range of values. If you want to guarantee that the output will always be positive, then you can use the ReLU activation function in the output layer. Alternatively, you can use the softplus activation function, which is a smooth variant of ReLU: softplus(z) = log(1 + exp(z)). It is close to 0 when z is negative, and close to z when z is positive. Finally, if you want to guarantee that the predictions will fall within a given range of values, then you can use the logistic function or the hyperbolic tangent, and then scale the labels to the appropriate range: 0 to 1 for the logistic function and -1 to 1 for the hyperbolic tangent.

The loss function to use during training is typically the mean squared error, but if you have a lot of outliers in the training set, you may prefer to use the mean absolute error instead. Alternatively, you can use the Huber loss, which is a combination of both.

The Huber loss is quadratic when the error is smaller than a threshold δ (typically 1) but linear when the error is larger than δ . The linear part makes it less sensitive to outliers than the mean squared error, and the quadratic part allows it to converge faster and be more precise than the mean absolute error.

Table 10-1 summarizes the typical architecture of a regression MLP.

Table 10-1. Typical regression MLP architecture

Hyperparameter	Typical value
# input neurons	One per input feature (e.g., 28 x 28 = 784 for MNIST)
# hidden layers	Depends on the problem, but typically 1 to 5
# neurons per hidden layer	Depends on the problem, but typically 10 to 100
# output neurons	1 per prediction dimension
Hidden activation	ReLU (or SELU, see Chapter 11)
Output activation	None, or ReLU/softplus (if positive outputs) or logistic/tanh (if bounded outputs)
Loss function	MSE or MAE/Huber (if outliers)

Classification MLPs

MLPs can also be used for classification tasks. For a binary classification problem, you just need a single output neuron using the logistic activation function: the output will be a number between 0 and 1, which you can interpret as the estimated probability of the positive class. The estimated probability of the negative class is equal to one minus that number.

MLPs can also easily handle multilabel binary classification tasks (see Chapter 3). For example, you could have an email classification system that predicts whether each incoming email is ham or spam, and simultaneously predicts whether it is an urgent or nonurgent email. In this case, you would need two output neurons, both using the logistic activation function: the first would output the probability that the email is spam, and the second would output the probability that it is urgent. More generally, you would dedicate one output neuron for each positive class. Note that the output probabilities do not necessarily add up to 1. This lets the model output any combination of labels: you can have nonurgent ham, urgent ham, nonurgent spam, and perhaps even urgent spam (although that would probably be an error).

If each instance can belong only to a single class, out of three or more possible classes (e.g., classes 0 through 9 for digit image classification), then you need to have one output neuron per class, and you should use the softmax activation function for the whole output layer (see Figure 10-9). The softmax function (introduced in Chapter 4) will ensure that all the estimated probabilities are between 0 and 1 and that they add up to 1 (which is required if the classes are exclusive). This is called multiclass classification.

Figure 10-9. A modern MLP (including ReLU and softmax) for classification

Regarding the loss function, since we are predicting probability distributions, the cross-entropy loss (also called the log loss, see Chapter 4) is generally a good choice.

Table 10-2 summarizes the typical architecture of a classification MLP.

Table 10-2. Typical classification MLP architecture

Hyperparameter	Binary classification	Multilabel binary classification	Multiclass classification
Input and hidden layers	Same as regression	Same as regression	Same as regression
# output neurons	1	1 per label	1 per class
Output layer activation	Logistic	Logistic	Softmax
Loss function	Cross entropy	Cross entropy	Cross entropy

Before we go on, I recommend you go through exercise 1 at the end of this chapter. You will play with various neural network architectures and visualize their outputs using the *TensorFlow Playground*. This will be very useful to better understand MLPs, including the effects of all the hyperparameters (number of layers and neurons, activation functions, and more).

Now you have all the concepts you need to start implementing MLPs with Keras!

Implementing MLPs with Keras

Keras is a high-level Deep Learning API that allows you to easily build, train, evaluate, and execute all sorts of neural networks. Its documentation (or specification) is available at https://keras.io/. The reference implementation, also called Keras, was developed by François Chollet as part of a research project and was released as an open source project in March 2015. It quickly gained popularity, owing to its ease of use, flexibility, and beautiful design. To perform the heavy computations required by neural networks, this reference implementation relies on a computation backend. At present, you can choose from three popular open source Deep Learning libraries: TensorFlow, Microsoft Cognitive Toolkit (CNTK), and Theano. Therefore, to avoid any confusion, we will refer to this reference implementation as multibackend-Keras.

Since late 2016, other implementations have been released. You can now run Keras on Apache MXNet, Apple's Core ML, JavaScript or TypeScript (to run Keras code in a web browser), and PlaidML (which can run on all sorts of GPU devices, not just Nvidia). Moreover, TensorFlow itself now comes bundled with its own Keras implementation, tf.keras. It only supports TensorFlow as the backend, but it has the advantage of offering some very useful extra features (see Figure 10-10): for example, it supports

TensorFlow's Data API, which makes it easy to load and preprocess data efficiently. For this reason, we will use tf.keras in this book. However, in this chapter we will not use any of the TensorFlow-specific features, so the code should run fine on other Keras implementations as well (at least in Python), with only minor modifications, such as changing the imports.

Figure 10-10. Two implementations of the Keras API: multibackend Keras (left) and tf.keras (right)

The most popular Deep Learning library, after Keras and TensorFlow, is Facebook's PyTorch library. The good news is that its API is quite similar to Keras's (in part because both APIs were inspired by Scikit-Learn and Chainer), so once you know Keras, it is not difficult to switch to PyTorch, if you ever want to. PyTorch's popularity grew exponentially in 2018, largely thanks to its simplicity and excellent documentation, which were not TensorFlow 1.x's main strengths. However, TensorFlow 2 is arguably just as simple as PyTorch, as it has adopted Keras as its official high-level API and its developers have greatly simplified and cleaned up the rest of the API. The documentation has also been completely reorganized, and it is much easier to find what you need now. Similarly, PyTorch's main weaknesses (e.g., limited portability and no computation graph analysis) have been largely addressed in PyTorch 1.0. Healthy competition is beneficial to everyone.

All right, it's time to code! As tf.keras is bundled with TensorFlow, let's start by installing TensorFlow.

Installing TensorFlow 2

Assuming you installed Jupyter and Scikit-Learn by following the installation instructions in Chapter 2, use pip to install TensorFlow. If you created an isolated environment using virtualeny, you first need to activate it:

¹⁴ Project ONEIROS (Open-ended Neuro-Electronic Intelligent Robot Operating System).

Next, install TensorFlow 2 (if you are not using a virtualeny, you will need administrator rights, or to add the --user option):

```
$ python3 -m pip install -U tensorflow
```


For GPU support, at the time of this writing you need to install tensorflow-gpu instead of tensorflow, but the TensorFlow team is working on having a single library that will support both CPU-only and GPU-equipped systems. You will still need to install extra libraries for GPU support (see https://tensorflow.org/install for more details). We will look at GPUs in more depth in Chapter 19.

To test your installation, open a Python shell or a Jupyter notebook, then import TensorFlow and tf.keras and print their versions:

```
>>> import tensorflow as tf
>>> from tensorflow import keras
>>> tf.__version__
'2.0.0'
>>> keras.__version__
'2.2.4-tf'
```

The second version is the version of the Keras API implemented by tf.keras. Note that it ends with -tf, highlighting the fact that tf.keras implements the Keras API, plus some extra TensorFlow-specific features.

Now let's use tf.keras! We'll start by building a simple image classifier.

Building an Image Classifier Using the Sequential API

First, we need to load a dataset. In this chapter we will tackle Fashion MNIST, which is a drop-in replacement of MNIST (introduced in Chapter 3). It has the exact same format as MNIST (70,000 grayscale images of 28×28 pixels each, with 10 classes), but the images represent fashion items rather than handwritten digits, so each class is more diverse, and the problem turns out to be significantly more challenging than MNIST. For example, a simple linear model reaches about 92% accuracy on MNIST, but only about 83% on Fashion MNIST.

Using Keras to load the dataset

Keras provides some utility functions to fetch and load common datasets, including MNIST, Fashion MNIST, and the California housing dataset we used in Chapter 2. Let's load Fashion MNIST:

Implementing MLPs with Keras | 297

```
fashion_mnist = keras.datasets.fashion_mnist
(X_train_full, y_train_full), (X_test, y_test) = fashion_mnist.load_data()
```

When loading MNIST or Fashion MNIST using Keras rather than Scikit-Learn, one important difference is that every image is represented as a 28×28 array rather than a 1D array of size 784. Moreover, the pixel intensities are represented as integers (from 0 to 255) rather than floats (from 0.0 to 255.0). Let's take a look at the shape and data type of the training set:

```
>>> X_train_full.shape
(60000, 28, 28)
>>> X_train_full.dtype
dtype('uint8')
```

Note that the dataset is already split into a training set and a test set, but there is no validation set, so we'll create one now. Additionally, since we are going to train the neural network using Gradient Descent, we must scale the input features. For simplicity, we'll scale the pixel intensities down to the 0–1 range by dividing them by 255.0 (this also converts them to floats):

```
X_valid, X_train = X_train_full[:5000] / 255.0, X_train_full[5000:] / 255.0
y_valid, y_train = y_train_full[:5000], y_train_full[5000:]
X test = X test / 255.0
```

With MNIST, when the label is equal to 5, it means that the image represents the handwritten digit 5. Easy. For Fashion MNIST, however, we need the list of class names to know what we are dealing with:

For example, the first image in the training set represents a coat:

```
>>> class_names[y_train[0]]
'Coat'
```

Figure 10-11 shows some samples from the Fashion MNIST dataset.

Figure 10-11. Samples from Fashion MNIST

Creating the model using the Sequential API

Now let's build the neural network! Here is a classification MLP with two hidden lavers:

```
model = keras.models.Sequential()
model.add(keras.layers.Flatten(input_shape=[28, 28]))
model.add(keras.layers.Dense(300, activation="relu"))
model.add(keras.layers.Dense(100, activation="relu"))
model.add(keras.layers.Dense(10, activation="softmax"))
```

Let's go through this code line by line:

- The first line creates a Sequential model. This is the simplest kind of Keras model for neural networks that are just composed of a single stack of layers connected sequentially. This is called the Sequential API.
- · Next, we build the first layer and add it to the model. It is a Flatten layer whose role is to convert each input image into a 1D array: if it receives input data X, it computes X.reshape(-1, 28*28). This layer does not have any parameters; it is just there to do some simple preprocessing. Since it is the first layer in the model, you should specify the input shape, which doesn't include the batch size, only the shape of the instances. Alternatively, you could add a keras.layers.Input Layer as the first layer, setting input shape=[28,28].
- Next we add a Dense hidden layer with 300 neurons. It will use the ReLU activation function. Each Dense layer manages its own weight matrix, containing all the connection weights between the neurons and their inputs. It also manages a vector of bias terms (one per neuron). When it receives some input data, it computes Equation 10-2.
- Then we add a second Dense hidden layer with 100 neurons, also using the ReLU activation function.
- Finally, we add a Dense output layer with 10 neurons (one per class), using the softmax activation function (because the classes are exclusive).

Specifying activation="relu" is equivalent to specifying activa tion=keras.activations.relu. Other activation functions are available in the keras.activations package, we will use many of them in this book. See https://keras.io/activations/ for the full list.

Instead of adding the layers one by one as we just did, you can pass a list of layers when creating the Sequential model:

```
Implementing MLPs with Keras | 299
```

```
model = keras.models.Sequential([
    keras.layers.Flatten(input_shape=[28, 28]),
    keras.layers.Dense(300, activation="relu"),
   keras.layers.Dense(100, activation="relu"),
    keras.layers.Dense(10, activation="softmax")
])
```

Using Code Examples from keras.io

Code examples documented on keras.io will work fine with tf.keras, but you need to change the imports. For example, consider this keras.io code:

```
from keras.layers import Dense
   output layer = Dense(10)
You must change the imports like this:
    from tensorflow.keras.layers import Dense
   output_layer = Dense(10)
Or simply use full paths, if you prefer:
    from tensorflow import keras
   output_layer = keras.layers.Dense(10)
```

This approach is more verbose, but I use it in this book so you can easily see which packages to use, and to avoid confusion between standard classes and custom classes. In production code, I prefer the previous approach. Many people also use from tensorflow.keras import layers followed by layers.Dense(10).

The model's summary() method displays all the model's layers, 15 including each layer's name (which is automatically generated unless you set it when creating the layer), its output shape (None means the batch size can be anything), and its number of parameters. The summary ends with the total number of parameters, including trainable and non-trainable parameters. Here we only have trainable parameters (we will see examples of non-trainable parameters in Chapter 11):

```
Model: "sequential"
Layer (type)
                   Output Shape
                                     Param #
_____
flatten (Flatten)
                    (None, 784)
                                     0
                                     235500
dense (Dense)
                    (None, 300)
```

>>> model.summary()

¹⁵ You can use keras.utils.plot_model() to generate an image of your model.

dense_1 (Dense)	(None, 100)	30100
dense_2 (Dense)	(None, 10)	1010
Total params: 266,610 Trainable params: 266,610 Non-trainable params: 0		

Note that Dense layers often have a *lot* of parameters. For example, the first hidden layer has 784×300 connection weights, plus 300 bias terms, which adds up to 235,500 parameters! This gives the model quite a lot of flexibility to fit the training data, but it also means that the model runs the risk of overfitting, especially when you do not have a lot of training data. We will come back to this later.

You can easily get a model's list of layers, to fetch a layer by its index, or you can fetch it by name:

All the parameters of a layer can be accessed using its get_weights() and set_weights() methods. For a Dense layer, this includes both the connection weights and the bias terms:

Notice that the Dense layer initialized the connection weights randomly (which is needed to break symmetry, as we discussed earlier), and the biases were initialized to zeros, which is fine. If you ever want to use a different initialization method, you can set kernel initializer (*kernel* is another name for the matrix of connection

Implementing MLPs with Keras | 301

weights) or bias_initializer when creating the layer. We will discuss initializers further in Chapter 11, but if you want the full list, see https://keras.io/initializers/.

The shape of the weight matrix depends on the number of inputs. This is why it is recommended to specify the input_shape when creating the first layer in a Sequential model. However, if you do not specify the input shape, it's OK: Keras will simply wait until it knows the input shape before it actually builds the model. This will happen either when you feed it actual data (e.g., during training), or when you call its build() method. Until the model is really built, the layers will not have any weights, and you will not be able to do certain things (such as print the model summary or save the model). So, if you know the input shape when creating the model, it is best to specify it.

Compiling the model

After a model is created, you must call its compile() method to specify the loss function and the optimizer to use. Optionally, you can specify a list of extra metrics to compute during training and evaluation:

Using loss="sparse_categorical_crossentropy" is equivalent to using loss=keras.losses.sparse_categorical_crossentropy. Similarly, specifying optimizer="sgd" is equivalent to specifying optimizer=keras.optimizers.SGD(), and metrics=["accuracy"] is equivalent to metrics=[keras.metrics.sparse_categorical_accuracy] (when using this loss). We will use many other losses, optimizers, and metrics in this book; for the full lists, see https://keras.io/losses, https://keras.io/optimizers, and https://keras.io/ometrics.

This code requires some explanation. First, we use the "sparse_categorical_cross entropy" loss because we have sparse labels (i.e., for each instance, there is just a target class index, from 0 to 9 in this case), and the classes are exclusive. If instead we had one target probability per class for each instance (such as one-hot vectors, e.g. [0., 0., 0., 1., 0., 0., 0., 0., 0.] to represent class 3), then we would need to use the "categorical_crossentropy" loss instead. If we were doing binary classification or multilabel binary classification, then we would use the "sigmoid" (i.e., logistic) activation function in the output layer instead of the "softmax" activation function, and we would use the "binary_crossentropy" loss.

If you want to convert sparse labels (i.e., class indices) to one-hot vector labels, use the keras.utils.to_categorical() function. To go the other way round, use the np.argmax() function with axis=1.

Regarding the optimizer, "sgd" means that we will train the model using simple Stochastic Gradient Descent. In other words, Keras will perform the backpropagation algorithm described earlier (i.e., reverse-mode autodiff plus Gradient Descent). We will discuss more efficient optimizers in Chapter 11 (they improve the Gradient Descent part, not the autodiff).

When using the SGD optimizer, it is important to tune the learning rate. So, you will generally want to use optimizer=keras.optimizers.SGD(lr=???) to set the learning rate, rather than optimizer="sgd", which defaults to lr=0.01.

Finally, since this is a classifier, it's useful to measure its "accuracy" during training and evaluation.

Training and evaluating the model

Now the model is ready to be trained. For this we simply need to call its fit() method:

```
>>> history = model.fit(X_train, y_train, epochs=30,
                       validation_data=(X_valid, y_valid))
Train on 55000 samples, validate on 5000 samples
Epoch 1/30
                                                       - accuracy: 0.7660
55000/55000 [=====] - 3s 49us/sample - loss: 0.7218
                                     - val_loss: 0.4973 - val_accuracy: 0.8366
Epoch 2/30
55000/55000 [=====] - 2s 45us/sample - loss: 0.4840
                                                      - accuracy: 0.8327
                                     - val loss: 0.4456 - val accuracy: 0.8480
[...]
Epoch 30/30
55000/55000 [=====] - 3s 53us/sample - loss: 0.2252
                                                     - accuracy: 0.9192
                                     - val loss: 0.2999 - val accuracy: 0.8926
```

We pass it the input features (X_train) and the target classes (y_train), as well as the number of epochs to train (or else it would default to just 1, which would definitely not be enough to converge to a good solution). We also pass a validation set (this is optional). Keras will measure the loss and the extra metrics on this set at the end of each epoch, which is very useful to see how well the model really performs. If the performance on the training set is much better than on the validation set, your model is

Implementing MLPs with Keras | 303

probably overfitting the training set (or there is a bug, such as a data mismatch between the training set and the validation set).

And that's it! The neural network is trained.¹⁶ At each epoch during training, Keras displays the number of instances processed so far (along with a progress bar), the mean training time per sample, and the loss and accuracy (or any other extra metrics you asked for) on both the training set and the validation set. You can see that the training loss went down, which is a good sign, and the validation accuracy reached 89.26% after 30 epochs. That's not too far from the training accuracy, so there does not seem to be much overfitting going on.

Instead of passing a validation set using the validation_data argument, you could set validation_split to the ratio of the training set that you want Keras to use for validation. For example, validation_split=0.1 tells Keras to use the last 10% of the data (before shuffling) for validation.

If the training set was very skewed, with some classes being overrepresented and others underrepresented, it would be useful to set the class_weight argument when calling the fit() method, which would give a larger weight to underrepresented classes and a lower weight to overrepresented classes. These weights would be used by Keras when computing the loss. If you need per-instance weights, set the sam ple_weight argument (if both class_weight and sample_weight are provided, Keras multiplies them). Per-instance weights could be useful if some instances were labeled by experts while others were labeled using a crowdsourcing platform: you might want to give more weight to the former. You can also provide sample weights (but not class weights) for the validation set by adding them as a third item in the validation_data tuple.

The fit() method returns a History object containing the training parameters (history.params), the list of epochs it went through (history.epoch), and most importantly a dictionary (history.history) containing the loss and extra metrics it measured at the end of each epoch on the training set and on the validation set (if any). If you use this dictionary to create a pandas DataFrame and call its plot() method, you get the learning curves shown in Figure 10-12:

¹⁶ If your training or validation data does not match the expected shape, you will get an exception. This is perhaps the most common error, so you should get familiar with the error message. The message is actually quite clear: for example, if you try to train this model with an array containing flattened images

⁽X_train.reshape(-1, 784)), then you will get the following exception: "ValueError: Error when checking input: expected flatten input to have 3 dimensions, but got array with shape (60000, 784)."

```
import pandas as pd
import matplotlib.pyplot as plt

pd.DataFrame(history.history).plot(figsize=(8, 5))
plt.grid(True)
plt.gca().set_ylim(0, 1) # set the vertical range to [0-1]
plt.show()
```


Figure 10-12. Learning curves: the mean training loss and accuracy measured over each epoch, and the mean validation loss and accuracy measured at the end of each epoch

You can see that both the training accuracy and the validation accuracy steadily increase during training, while the training loss and the validation loss decrease. Good! Moreover, the validation curves are close to the training curves, which means that there is not too much overfitting. In this particular case, the model looks like it performed better on the validation set than on the training set at the beginning of training. But that's not the case: indeed, the validation error is computed at the *end* of each epoch, while the training error is computed using a running mean *during* each epoch. So the training curve should be shifted by half an epoch to the left. If you do that, you will see that the training and validation curves overlap almost perfectly at the beginning of training.

When plotting the training curve, it should be shifted by half an epoch to the left.

The training set performance ends up beating the validation performance, as is generally the case when you train for long enough. You can tell that the model has not quite converged yet, as the validation loss is still going down, so you should probably continue training. It's as simple as calling the fit() method again, since Keras just continues training where it left off (you should be able to reach close to 89.4% validation accuracy).

If you are not satisfied with the performance of your model, you should go back and tune the hyperparameters. The first one to check is the learning rate. If that doesn't help, try another optimizer (and always retune the learning rate after changing any hyperparameter). If the performance is still not great, then try tuning model hyperparameters such as the number of layers, the number of neurons per layer, and the types of activation functions to use for each hidden layer. You can also try tuning other hyperparameters, such as the batch size (it can be set in the fit() method using the batch_size argument, which defaults to 32). We will get back to hyperparameter tuning at the end of this chapter. Once you are satisfied with your model's validation accuracy, you should evaluate it on the test set to estimate the generalization error before you deploy the model to production. You can easily do this using the evalu ate() method (it also supports several other arguments, such as batch_size and sample weight; please check the documentation for more details):

```
>>> model.evaluate(X_test, y_test)
10000/10000 [=======] - 0s 29us/sample - loss: 0.3340 - accuracy: 0.8851
[0.3339798209667206, 0.8851]
```

As we saw in Chapter 2, it is common to get slightly lower performance on the test set than on the validation set, because the hyperparameters are tuned on the validation set, not the test set (however, in this example, we did not do any hyperparameter tuning, so the lower accuracy is just bad luck). Remember to resist the temptation to tweak the hyperparameters on the test set, or else your estimate of the generalization error will be too optimistic.

Using the model to make predictions

Next, we can use the model's predict() method to make predictions on new instances. Since we don't have actual new instances, we will just use the first three instances of the test set:

As you can see, for each instance the model estimates one probability per class, from class 0 to class 9. For example, for the first image it estimates that the probability of class 9 (ankle boot) is 96%, the probability of class 5 (sandal) is 3%, the probability of class 7 (sneaker) is 1%, and the probabilities of the other classes are negligible. In other words, it "believes" the first image is footwear, most likely ankle boots but possibly sandals or sneakers. If you only care about the class with the highest estimated probability (even if that probability is quite low), then you can use the pre dict_classes() method instead:

```
>>> y_pred = model.predict_classes(X_new)
>>> y_pred
array([9, 2, 1])
>>> np.array(class_names)[y_pred]
array(['Ankle boot', 'Pullover', 'Trouser'], dtype='<U11')</pre>
```

Here, the classifier actually classified all three images correctly (these images are shown in Figure 10-13):

```
>>> y_new = y_test[:3]
>>> y_new
array([9, 2, 1])
```


Figure 10-13. Correctly classified Fashion MNIST images

Now you know how to use the Sequential API to build, train, evaluate, and use a classification MLP. But what about regression?

Building a Regression MLP Using the Sequential API

Let's switch to the California housing problem and tackle it using a regression neural network. For simplicity, we will use Scikit-Learn's fetch_california_housing() function to load the data. This dataset is simpler than the one we used in Chapter 2, since it contains only numerical features (there is no ocean_proximity feature), and there is no missing value. After loading the data, we split it into a training set, a validation set, and a test set, and we scale all the features:

```
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
```

Implementing MLPs with Keras | 307

```
housing = fetch_california_housing()

X_train_full, X_test, y_train_full, y_test = train_test_split(
    housing.data, housing.target)

X_train, X_valid, y_train, y_valid = train_test_split(
    X_train_full, y_train_full)

scaler = StandardScaler()

X_train = scaler.fit_transform(X_train)

X_valid = scaler.transform(X_valid)

X test = scaler.transform(X test)
```

Using the Sequential API to build, train, evaluate, and use a regression MLP to make predictions is quite similar to what we did for classification. The main differences are the fact that the output layer has a single neuron (since we only want to predict a single value) and uses no activation function, and the loss function is the mean squared error. Since the dataset is quite noisy, we just use a single hidden layer with fewer neurons than before, to avoid overfitting:

As you can see, the Sequential API is quite easy to use. However, although Sequential models are extremely common, it is sometimes useful to build neural networks with more complex topologies, or with multiple inputs or outputs. For this purpose, Keras offers the Functional API.

Building Complex Models Using the Functional API

One example of a nonsequential neural network is a *Wide & Deep* neural network. This neural network architecture was introduced in a 2016 paper by Heng-Tze Cheng et al.¹⁷ It connects all or part of the inputs directly to the output layer, as shown in Figure 10-14. This architecture makes it possible for the neural network to learn both deep patterns (using the deep path) and simple rules (through the short path).¹⁸ In contrast, a regular MLP forces all the data to flow through the full stack of layers;

¹⁷ Heng-Tze Cheng et al., "Wide & Deep Learning for Recommender Systems," Proceedings of the First Workshop on Deep Learning for Recommender Systems (2016): 7–10.

¹⁸ The short path can also be used to provide manually engineered features to the neural network.

thus, simple patterns in the data may end up being distorted by this sequence of transformations.

Figure 10-14. Wide & Deep neural network

Let's build such a neural network to tackle the California housing problem:

```
input_ = keras.layers.Input(shape=X_train.shape[1:])
hidden1 = keras.layers.Dense(30, activation="relu")(input_)
hidden2 = keras.layers.Dense(30, activation="relu")(hidden1)
concat = keras.layers.Concatenate()([input_, hidden2])
output = keras.layers.Dense(1)(concat)
model = keras.Model(inputs=[input_], outputs=[output])
```

Let's go through each line of this code:

- First, we need to create an Input object.¹⁹ This is a specification of the kind of input the model will get, including its shape and dtype. A model may actually have multiple inputs, as we will see shortly.
- Next, we create a Dense layer with 30 neurons, using the ReLU activation function. As soon as it is created, notice that we call it like a function, passing it the input. This is why this is called the Functional API. Note that we are just telling Keras how it should connect the layers together; no actual data is being processed yet.
- We then create a second hidden layer, and again we use it as a function. Note that
 we pass it the output of the first hidden layer.

Implementing MLPs with Keras | 309

- Next, we create a Concatenate layer, and once again we immediately use it like a
 function, to concatenate the input and the output of the second hidden layer. You
 may prefer the keras.layers.concatenate() function, which creates a
 Concatenate layer and immediately calls it with the given inputs.
- Then we create the output layer, with a single neuron and no activation function, and we call it like a function, passing it the result of the concatenation.
- Lastly, we create a Keras Model, specifying which inputs and outputs to use.

Once you have built the Keras model, everything is exactly like earlier, so there's no need to repeat it here: you must compile the model, train it, evaluate it, and use it to make predictions.

But what if you want to send a subset of the features through the wide path and a different subset (possibly overlapping) through the deep path (see Figure 10-15)? In this case, one solution is to use multiple inputs. For example, suppose we want to send five features through the wide path (features 0 to 4), and six features through the deep path (features 2 to 7):

```
input_A = keras.layers.Input(shape=[5], name="wide_input")
input_B = keras.layers.Input(shape=[6], name="deep_input")
hidden1 = keras.layers.Dense(30, activation="relu")(input_B)
hidden2 = keras.layers.Dense(30, activation="relu")(hidden1)
concat = keras.layers.concatenate([input_A, hidden2])
output = keras.layers.Dense(1, name="output")(concat)
model = keras.Model(inputs=[input_A, input_B], outputs=[output])
```


Figure 10-15. Handling multiple inputs

¹⁹ The name input is used to avoid overshadowing Python's built-in input() function.

The code is self-explanatory. You should name at least the most important layers, especially when the model gets a bit complex like this. Note that we specified inputs=[input_A, input_B] when creating the model. Now we can compile the model as usual, but when we call the fit() method, instead of passing a single input matrix X_train, we must pass a pair of matrices (X_train_A, X_train_B): one per input.²⁰ The same is true for X valid, and also for X test and X new when you call evaluate() or predict():

```
model.compile(loss="mse", optimizer=keras.optimizers.SGD(lr=1e-3))
X_train_A, X_train_B = X_train[:, :5], X_train[:, 2:]
X_valid_A, X_valid_B = X_valid[:, :5], X_valid[:, 2:]
X_test_A, X_test_B = X_test[:, :5], X_test[:, 2:]
X_{new}A, X_{new}B = X_{test}A[:3], X_{test}B[:3]
history = model.fit((X_train_A, X_train_B), y_train, epochs=20,
                    validation_data=((X_valid_A, X_valid_B), y_valid))
mse_test = model.evaluate((X_test_A, X_test_B), y_test)
y_pred = model.predict((X_new_A, X_new_B))
```

There are many use cases in which you may want to have multiple outputs:

- The task may demand it. For instance, you may want to locate and classify the main object in a picture. This is both a regression task (finding the coordinates of the object's center, as well as its width and height) and a classification task.
- Similarly, you may have multiple independent tasks based on the same data. Sure, you could train one neural network per task, but in many cases you will get better results on all tasks by training a single neural network with one output per task. This is because the neural network can learn features in the data that are useful across tasks. For example, you could perform multitask classification on pictures of faces, using one output to classify the person's facial expression (smiling, surprised, etc.) and another output to identify whether they are wearing glasses or
- Another use case is as a regularization technique (i.e., a training constraint whose objective is to reduce overfitting and thus improve the model's ability to generalize). For example, you may want to add some auxiliary outputs in a neural network architecture (see Figure 10-16) to ensure that the underlying part of the network learns something useful on its own, without relying on the rest of the network.

Output Laver Concat Aux. Output Hidden 2 Hidden 1 Input A Input B

Figure 10-16. Handling multiple outputs, in this example to add an auxiliary output for regularization

Adding extra outputs is quite easy: just connect them to the appropriate layers and add them to your model's list of outputs. For example, the following code builds the network represented in Figure 10-16:

```
[...] # Same as above, up to the main output layer
output = keras.layers.Dense(1, name="main_output")(concat)
aux output = keras.lavers.Dense(1, name="aux output")(hidden2)
model = keras.Model(inputs=[input_A, input_B], outputs=[output, aux_output])
```

Each output will need its own loss function. Therefore, when we compile the model, we should pass a list of losses²¹ (if we pass a single loss, Keras will assume that the same loss must be used for all outputs). By default, Keras will compute all these losses and simply add them up to get the final loss used for training. We care much more about the main output than about the auxiliary output (as it is just used for regularization), so we want to give the main output's loss a much greater weight. Fortunately, it is possible to set all the loss weights when compiling the model:

```
model.compile(loss=["mse", "mse"], loss_weights=[0.9, 0.1], optimizer="sgd")
```

Now when we train the model, we need to provide labels for each output. In this example, the main output and the auxiliary output should try to predict the same thing, so they should use the same labels. So instead of passing y_train, we need to pass (y_train, y_train) (and the same goes for y_valid and y_test):

```
history = model.fit(
    [X train A, X train B], [y train, y train], epochs=20,
    validation_data=([X_valid_A, X_valid_B], [y_valid, y_valid]))
```

²⁰ Alternatively, you can pass a dictionary mapping the input names to the input values, like {"wide_input": X_train_A, "deep_input": X_train_B}. This is especially useful when there are many inputs, to avoid getting the order wrong.

²¹ Alternatively, you can pass a dictionary that maps each output name to the corresponding loss. Just like for the inputs, this is useful when there are multiple outputs, to avoid getting the order wrong. The loss weights and metrics (discussed shortly) can also be set using dictionaries.

When we evaluate the model, Keras will return the total loss, as well as all the individual losses:

```
total loss, main loss, aux loss = model.evaluate(
   [X_test_A, X_test_B], [y_test, y_test])
```

Similarly, the predict() method will return predictions for each output:

```
y_pred_main, y_pred_aux = model.predict([X_new_A, X_new_B])
```

As you can see, you can build any sort of architecture you want quite easily with the Functional API. Let's look at one last way you can build Keras models.

Using the Subclassing API to Build Dynamic Models

Both the Sequential API and the Functional API are declarative: you start by declaring which layers you want to use and how they should be connected, and only then can you start feeding the model some data for training or inference. This has many advantages: the model can easily be saved, cloned, and shared; its structure can be displayed and analyzed; the framework can infer shapes and check types, so errors can be caught early (i.e., before any data ever goes through the model). It's also fairly easy to debug, since the whole model is a static graph of layers. But the flip side is just that: it's static. Some models involve loops, varying shapes, conditional branching, and other dynamic behaviors. For such cases, or simply if you prefer a more imperative programming style, the Subclassing API is for you.

Simply subclass the Model class, create the layers you need in the constructor, and use them to perform the computations you want in the call() method. For example, creating an instance of the following WideAndDeepModel class gives us an equivalent model to the one we just built with the Functional API. You can then compile it, evaluate it, and use it to make predictions, exactly like we just did:

```
class WideAndDeepModel(keras.Model):
   def init (self, units=30, activation="relu", **kwarqs):
       super().__init__(**kwargs) # handles standard args (e.g., name)
       self.hidden1 = keras.layers.Dense(units, activation=activation)
       self.hidden2 = keras.lavers.Dense(units.activation=activation)
       self.main output = keras.layers.Dense(1)
       self.aux_output = keras.layers.Dense(1)
   def call(self, inputs):
       input_A, input_B = inputs
       hidden1 = self.hidden1(input_B)
       hidden2 = self.hidden2(hidden1)
       concat = keras.layers.concatenate([input_A, hidden2])
       main_output = self.main_output(concat)
       aux_output = self.aux_output(hidden2)
       return main output, aux output
model = WideAndDeepModel()
```

Implementing MLPs with Keras | 313

This example looks very much like the Functional API, except we do not need to create the inputs; we just use the input argument to the call() method, and we separate the creation of the layers²² in the constructor from their usage in the call() method. The big difference is that you can do pretty much anything you want in the call() method: for loops, if statements, low-level TensorFlow operations—your imagination is the limit (see Chapter 12)! This makes it a great API for researchers experimenting with new ideas.

This extra flexibility does come at a cost: your model's architecture is hidden within the call() method, so Keras cannot easily inspect it; it cannot save or clone it; and when you call the summary() method, you only get a list of layers, without any information on how they are connected to each other. Moreover, Keras cannot check types and shapes ahead of time, and it is easier to make mistakes. So unless you really need that extra flexibility, you should probably stick to the Sequential API or the Functional API.

Keras models can be used just like regular layers, so you can easily combine them to build complex architectures.

Now that you know how to build and train neural nets using Keras, you will want to save them!

Saving and Restoring a Model

When using the Sequential API or the Functional API, saving a trained Keras model is as simple as it gets:

```
model = keras.models.Sequential([...]) # or keras.Model([...])
model.compile([...])
model.fit([...])
model.save("my_keras_model.h5")
```

Keras will use the HDF5 format to save both the model's architecture (including every layer's hyperparameters) and the values of all the model parameters for every layer (e.g., connection weights and biases). It also saves the optimizer (including its hyperparameters and any state it may have). In Chapter 19, we will see how to save a tf.keras model using TensorFlow's SavedModel format instead.

²² Keras models have an output attribute, so we cannot use that name for the main output layer, which is why we renamed it to main output.

You will typically have a script that trains a model and saves it, and one or more scripts (or web services) that load the model and use it to make predictions. Loading the model is just as easy:

```
model = keras.models.load_model("my_keras_model.h5")
```


This will work when using the Sequential API or the Functional API, but unfortunately not when using model subclassing. You can use save_weights() and load_weights() to at least save and restore the model parameters, but you will need to save and restore everything else yourself.

But what if training lasts several hours? This is quite common, especially when training on large datasets. In this case, you should not only save your model at the end of training, but also save checkpoints at regular intervals during training, to avoid losing everything if your computer crashes. But how can you tell the fit() method to save checkpoints? Use callbacks.

Using Callbacks

The fit() method accepts a callbacks argument that lets you specify a list of objects that Keras will call at the start and end of training, at the start and end of each epoch, and even before and after processing each batch. For example, the ModelCheckpoint callback saves checkpoints of your model at regular intervals during training, by default at the end of each epoch:

```
[...] # build and compile the model
checkpoint_cb = keras.callbacks.ModelCheckpoint("my_keras_model.h5")
history = model.fit(X_train, y_train, epochs=10, callbacks=[checkpoint_cb])
```

Moreover, if you use a validation set during training, you can set save_best_only=True when creating the ModelCheckpoint. In this case, it will only save your model when its performance on the validation set is the best so far. This way, you do not need to worry about training for too long and overfitting the training set: simply restore the last model saved after training, and this will be the best model on the validation set. The following code is a simple way to implement early stopping (introduced in Chapter 4):

Another way to implement early stopping is to simply use the EarlyStopping callback. It will interrupt training when it measures no progress on the validation set for

Implementing MLPs with Keras | 315

a number of epochs (defined by the patience argument), and it will optionally roll back to the best model. You can combine both callbacks to save checkpoints of your model (in case your computer crashes) and interrupt training early when there is no more progress (to avoid wasting time and resources):

The number of epochs can be set to a large value since training will stop automatically when there is no more progress. In this case, there is no need to restore the best model saved because the EarlyStopping callback will keep track of the best weights and restore them for you at the end of training.

There are many other callbacks available in the keras.callbacks package.

If you need extra control, you can easily write your own custom callbacks. As an example of how to do that, the following custom callback will display the ratio between the validation loss and the training loss during training (e.g., to detect overfitting):

```
class PrintValTrainRatioCallback(keras.callbacks.Callback):
    def on_epoch_end(self, epoch, logs):
        print("\nval/train: {:.2f}".format(logs["val_loss"] / logs["loss"]))
```

As you might expect, you can implement on_train_begin(), on_train_end(), on_epoch_begin(), on_epoch_end(), on_batch_begin(), and on_batch_end(). Callbacks can also be used during evaluation and predictions, should you ever need them (e.g., for debugging). For evaluation, you should implement on_test_begin(), on_test_end(), on_test_batch_begin(), or on_test_batch_end() (called by evaluate()), and for prediction you should implement on_predict_begin(), on_predict_end(), on_predict_batch_begin(), or on_predict_batch_end() (called by predict()).

Now let's take a look at one more tool you should definitely have in your toolbox when using tf.keras: TensorBoard.

Using TensorBoard for Visualization

TensorBoard is a great interactive visualization tool that you can use to view the learning curves during training, compare learning curves between multiple runs, visualize the computation graph, analyze training statistics, view images generated by your model, visualize complex multidimensional data projected down to 3D and automatically clustered for you, and more! This tool is installed automatically when you install TensorFlow, so you already have it.

To use it, you must modify your program so that it outputs the data you want to visualize to special binary log files called *event files*. Each binary data record is called a *summary*. The TensorBoard server will monitor the log directory, and it will automatically pick up the changes and update the visualizations: this allows you to visualize live data (with a short delay), such as the learning curves during training. In general, you want to point the TensorBoard server to a root log directory and configure your program so that it writes to a different subdirectory every time it runs. This way, the same TensorBoard server instance will allow you to visualize and compare data from multiple runs of your program, without getting everything mixed up.

Let's start by defining the root log directory we will use for our TensorBoard logs, plus a small function that will generate a subdirectory path based on the current date and time so that it's different at every run. You may want to include extra information in the log directory name, such as hyperparameter values that you are testing, to make it easier to know what you are looking at in TensorBoard:

```
import os
root_logdir = os.path.join(os.curdir, "my_logs")

def get_run_logdir():
    import time
    run_id = time.strftime("run_%Y_%m_%d-%H_%M_%S")
    return os.path.join(root_logdir, run_id)

run_logdir = get_run_logdir() # e.g., './my_logs/run_2019_06_07-15_15_22'
```

The good news is that Keras provides a nice TensorBoard() callback:

And that's all there is to it! It could hardly be easier to use. If you run this code, the TensorBoard() callback will take care of creating the log directory for you (along with its parent directories if needed), and during training it will create event files and write summaries to them. After running the program a second time (perhaps

Implementing MLPs with Keras | 317

changing some hyperparameter value), you will end up with a directory structure similar to this one:

There's one directory per run, each containing one subdirectory for training logs and one for validation logs. Both contain event files, but the training logs also include profiling traces: this allows TensorBoard to show you exactly how much time the model spent on each part of your model, across all your devices, which is great for locating performance bottlenecks.

Next you need to start the TensorBoard server. One way to do this is by running a command in a terminal. If you installed TensorFlow within a virtualeny, you should activate it. Next, run the following command at the root of the project (or from anywhere else, as long as you point to the appropriate log directory):

```
$ tensorboard --logdir=./my_logs --port=6006
TensorBoard 2.0.0 at http://mycomputer.local:6006/ (Press CTRL+C to quit)
```

If your shell cannot find the *tensorboard* script, then you must update your PATH environment variable so that it contains the directory in which the script was installed (alternatively, you can just replace tensorboard in the command line with python3 -m tensorboard.main). Once the server is up, you can open a web browser and go to http://localhost:6006.

Alternatively, you can use TensorBoard directly within Jupyter, by running the following commands. The first line loads the TensorBoard extension, and the second line starts a TensorBoard server on port 6006 (unless it is already started) and connects to it:

```
%load_ext tensorboard
%tensorboard --logdir=./my logs --port=6006
```

Either way, you should see TensorBoard's web interface. Click the SCALARS tab to view the learning curves (see Figure 10-17). At the bottom left, select the logs you want to visualize (e.g., the training logs from the first and second run), and click the epoch_loss scalar. Notice that the training loss went down nicely during both runs, but the second run went down much faster. Indeed, we used a learning rate of 0.05 (optimizer=keras.optimizers.SGD(lr=0.05)) instead of 0.001.

Figure 10-17. Visualizing learning curves with TensorBoard

You can also visualize the whole graph, the learned weights (projected to 3D), or the profiling traces. The TensorBoard() callback has options to log extra data too, such as embeddings (see Chapter 13).

Additionally, TensorFlow offers a lower-level API in the tf.summary package. The following code creates a SummaryWriter using the create_file_writer() function, and it uses this writer as a context to log scalars, histograms, images, audio, and text, all of which can then be visualized using TensorBoard (give it a try!):

```
test_logdir = get_run_logdir()
writer = tf.summary.create_file_writer(test_logdir)
with writer.as_default():
    for step in range(1, 1000 + 1):
        tf.summary.scalar("my_scalar", np.sin(step / 10), step=step)
        data = (np.random.randn(100) + 2) * step / 100 # some random data
        tf.summary.histogram("my_hist", data, buckets=50, step=step)
        images = np.random.rand(2, 32, 32, 3) # random 32*32 RGB images
        tf.summary.image("my_images", images * step / 1000, step=step)
        texts = ["The step is " + str(step), "Its square is " + str(step**2)]
        tf.summary.text("my_text", texts, step=step)
        sine_wave = tf.math.sin(tf.range(12000) / 48000 * 2 * np.pi * step)
        audio = tf.reshape(tf.cast(sine_wave, tf.float32), [1, -1, 1])
        tf.summary.audio("my_audio", audio, sample_rate=48000, step=step)
```

Implementing MLPs with Keras | 319

This is actually a useful visualization tool to have, even beyond TensorFlow or Deep Learning.

Let's summarize what you've learned so far in this chapter: we saw where neural nets came from, what an MLP is and how you can use it for classification and regression, how to use tf.keras's Sequential API to build MLPs, and how to use the Functional API or the Subclassing API to build more complex model architectures. You learned how to save and restore a model and how to use callbacks for checkpointing, early stopping, and more. Finally, you learned how to use TensorBoard for visualization. You can already go ahead and use neural networks to tackle many problems! However, you may wonder how to choose the number of hidden layers, the number of neurons in the network, and all the other hyperparameters. Let's look at this now.

Fine-Tuning Neural Network Hyperparameters

The flexibility of neural networks is also one of their main drawbacks: there are many hyperparameters to tweak. Not only can you use any imaginable network architecture, but even in a simple MLP you can change the number of layers, the number of neurons per layer, the type of activation function to use in each layer, the weight initialization logic, and much more. How do you know what combination of hyperparameters is the best for your task?

One option is to simply try many combinations of hyperparameters and see which one works best on the validation set (or use K-fold cross-validation). For example, we can use GridSearchCV or RandomizedSearchCV to explore the hyperparameter space, as we did in Chapter 2. To do this, we need to wrap our Keras models in objects that mimic regular Scikit-Learn regressors. The first step is to create a function that will build and compile a Keras model, given a set of hyperparameters:

```
def build_model(n_hidden=1, n_neurons=30, learning_rate=3e-3, input_shape=[8]):
    model = keras.models.Sequential()
    model.add(keras.layers.InputLayer(input_shape=input_shape))
    for layer in range(n_hidden):
        model.add(keras.layers.Dense(n_neurons, activation="relu"))
    model.add(keras.layers.Dense(1))
    optimizer = keras.optimizers.SGD(lr=learning_rate)
    model.compile(loss="mse", optimizer=optimizer)
    return model
```

This function creates a simple Sequential model for univariate regression (only one output neuron), with the given input shape and the given number of hidden layers and neurons, and it compiles it using an SGD optimizer configured with the specified learning rate. It is good practice to provide reasonable defaults to as many hyperparameters as you can, as Scikit-Learn does.

Next, let's create a KerasRegressor based on this build_model() function:

```
keras_reg = keras.wrappers.scikit_learn.KerasRegressor(build_model)
```

The KerasRegressor object is a thin wrapper around the Keras model built using build_model(). Since we did not specify any hyperparameters when creating it, it will use the default hyperparameters we defined in build_model(). Now we can use this object like a regular Scikit-Learn regressor: we can train it using its fit() method, then evaluate it using its score() method, and use it to make predictions using its predict() method, as you can see in the following code:

Note that any extra parameter you pass to the fit() method will get passed to the underlying Keras model. Also note that the score will be the opposite of the MSE because Scikit-Learn wants scores, not losses (i.e., higher should be better).

We don't want to train and evaluate a single model like this, though we want to train hundreds of variants and see which one performs best on the validation set. Since there are many hyperparameters, it is preferable to use a randomized search rather than grid search (as we discussed in Chapter 2). Let's try to explore the number of hidden layers, the number of neurons, and the learning rate:

This is identical to what we did in Chapter 2, except here we pass extra parameters to the fit() method, and they get relayed to the underlying Keras models. Note that RandomizedSearchCV uses K-fold cross-validation, so it does not use X_valid and y_valid, which are only used for early stopping.

The exploration may last many hours, depending on the hardware, the size of the dataset, the complexity of the model, and the values of n_iter and cv. When it's over, you can access the best parameters found, the best score, and the trained Keras model like this:

```
Fine-Tuning Neural Network Hyperparameters | 321
```

```
>>> rnd_search_cv.best_params_
{'learning_rate': 0.0033625641252688094, 'n_hidden': 2, 'n_neurons': 42}
>>> rnd_search_cv.best_score_
-0.3189529188278931
>>> model = rnd_search_cv.best_estimator_.model
```

You can now save this model, evaluate it on the test set, and, if you are satisfied with its performance, deploy it to production. Using randomized search is not too hard, and it works well for many fairly simple problems. When training is slow, however (e.g., for more complex problems with larger datasets), this approach will only explore a tiny portion of the hyperparameter space. You can partially alleviate this problem by assisting the search process manually: first run a quick random search using wide ranges of hyperparameter values, then run another search using smaller ranges of values centered on the best ones found during the first run, and so on. This approach will hopefully zoom in on a good set of hyperparameters. However, it's very time consuming, and probably not the best use of your time.

Fortunately, there are many techniques to explore a search space much more efficiently than randomly. Their core idea is simple: when a region of the space turns out to be good, it should be explored more. Such techniques take care of the "zooming" process for you and lead to much better solutions in much less time. Here are some Python libraries you can use to optimize hyperparameters:

Hyperopt

A popular library for optimizing over all sorts of complex search spaces (including real values, such as the learning rate, and discrete values, such as the number of layers).

Hyperas, kopt, or Talos

Useful libraries for optimizing hyperparameters for Keras models (the first two are based on Hyperopt).

Keras Tuner

An easy-to-use hyperparameter optimization library by Google for Keras models, with a hosted service for visualization and analysis.

Scikit-Optimize (skopt)

A general-purpose optimization library. The BayesSearchCV class performs Bayesian optimization using an interface similar to GridSearchCV.

Spearmint

A Bayesian optimization library.

Hyperband

A fast hyperparameter tuning library based on the recent Hyperband paper²³ by Lisha Li et al.

Sklearn-Deap

A hyperparameter optimization library based on evolutionary algorithms, with a GridSearchCV-like interface.

Moreover, many companies offer services for hyperparameter optimization. We'll discuss Google Cloud AI Platform's hyperparameter tuning service in Chapter 19. Other options include services by Arimo and SigOpt, and CallDesk's Oscar.

Hyperparameter tuning is still an active area of research, and evolutionary algorithms are making a comeback. For example, check out DeepMind's excellent 2017 paper,²⁴ where the authors jointly optimize a population of models and their hyperparameters. Google has also used an evolutionary approach, not just to search for hyperparameters but also to look for the best neural network architecture for the problem; their AutoML suite is already available as a cloud service. Perhaps the days of building neural networks manually will soon be over? Check out Google's post on this topic. In fact, evolutionary algorithms have been used successfully to train individual neural networks, replacing the ubiquitous Gradient Descent! For an example, see the 2017 post by Uber where the authors introduce their *Deep Neuroevolution* technique.

But despite all this exciting progress and all these tools and services, it still helps to have an idea of what values are reasonable for each hyperparameter so that you can build a quick prototype and restrict the search space. The following sections provide guidelines for choosing the number of hidden layers and neurons in an MLP and for selecting good values for some of the main hyperparameters.

Number of Hidden Layers

For many problems, you can begin with a single hidden layer and get reasonable results. An MLP with just one hidden layer can theoretically model even the most complex functions, provided it has enough neurons. But for complex problems, deep networks have a much higher *parameter efficiency* than shallow ones: they can model complex functions using exponentially fewer neurons than shallow nets, allowing them to reach much better performance with the same amount of training data.

To understand why, suppose you are asked to draw a forest using some drawing software, but you are forbidden to copy and paste anything. It would take an enormous

amount of time: you would have to draw each tree individually, branch by branch, leaf by leaf. If you could instead draw one leaf, copy and paste it to draw a branch, then copy and paste that branch to create a tree, and finally copy and paste this tree to make a forest, you would be finished in no time. Real-world data is often structured in such a hierarchical way, and deep neural networks automatically take advantage of this fact: lower hidden layers model low-level structures (e.g., line segments of various shapes and orientations), intermediate hidden layers combine these low-level structures to model intermediate-level structures (e.g., squares, circles), and the highest hidden layers and the output layer combine these intermediate structures to model high-level structures (e.g., faces).

Not only does this hierarchical architecture help DNNs converge faster to a good solution, but it also improves their ability to generalize to new datasets. For example, if you have already trained a model to recognize faces in pictures and you now want to train a new neural network to recognize hairstyles, you can kickstart the training by reusing the lower layers of the first network. Instead of randomly initializing the weights and biases of the first few layers of the new neural network, you can initialize them to the values of the weights and biases of the lower layers of the first network. This way the network will not have to learn from scratch all the low-level structures that occur in most pictures; it will only have to learn the higher-level structures (e.g., hairstyles). This is called *transfer learning*.

In summary, for many problems you can start with just one or two hidden layers and the neural network will work just fine. For instance, you can easily reach above 97% accuracy on the MNIST dataset using just one hidden layer with a few hundred neurons, and above 98% accuracy using two hidden layers with the same total number of neurons, in roughly the same amount of training time. For more complex problems, you can ramp up the number of hidden layers until you start overfitting the training set. Very complex tasks, such as large image classification or speech recognition, typically require networks with dozens of layers (or even hundreds, but not fully connected ones, as we will see in Chapter 14), and they need a huge amount of training data. You will rarely have to train such networks from scratch: it is much more common to reuse parts of a pretrained state-of-the-art network that performs a similar task. Training will then be a lot faster and require much less data (we will discuss this in Chapter 11).

Number of Neurons per Hidden Layer

The number of neurons in the input and output layers is determined by the type of input and output your task requires. For example, the MNIST task requires $28 \times 28 = 784$ input neurons and 10 output neurons.

As for the hidden layers, it used to be common to size them to form a pyramid, with fewer and fewer neurons at each layer—the rationale being that many low-level fea-

²³ Lisha Li et al., "Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization," Journal of Machine Learning Research 18 (April 2018): 1–52.

²⁴ Max Jaderberg et al., "Population Based Training of Neural Networks," arXiv preprint arXiv:1711.09846 (2017).

tures can coalesce into far fewer high-level features. A typical neural network for MNIST might have 3 hidden layers, the first with 300 neurons, the second with 200, and the third with 100. However, this practice has been largely abandoned because it seems that using the same number of neurons in all hidden layers performs just as well in most cases, or even better; plus, there is only one hyperparameter to tune, instead of one per layer. That said, depending on the dataset, it can sometimes help to make the first hidden layer bigger than the others.

Just like the number of layers, you can try increasing the number of neurons gradually until the network starts overfitting. But in practice, it's often simpler and more efficient to pick a model with more layers and neurons than you actually need, then use early stopping and other regularization techniques to prevent it from overfitting. Vincent Vanhoucke, a scientist at Google, has dubbed this the "stretch pants" approach: instead of wasting time looking for pants that perfectly match your size, just use large stretch pants that will shrink down to the right size. With this approach, you avoid bottleneck layers that could ruin your model. On the flip side, if a layer has too few neurons, it will not have enough representational power to preserve all the useful information from the inputs (e.g., a layer with two neurons can only output 2D data, so if it processes 3D data, some information will be lost). No matter how big and powerful the rest of the network is, that information will never be recovered.

In general you will get more bang for your buck by increasing the number of layers instead of the number of neurons per layer.

Learning Rate, Batch Size, and Other Hyperparameters

The numbers of hidden layers and neurons are not the only hyperparameters you can tweak in an MLP. Here are some of the most important ones, as well as tips on how to set them:

Learning rate

The learning rate is arguably the most important hyperparameter. In general, the optimal learning rate is about half of the maximum learning rate (i.e., the learning rate above which the training algorithm diverges, as we saw in Chapter 4). One way to find a good learning rate is to train the model for a few hundred iterations, starting with a very low learning rate (e.g., 10⁻⁵) and gradually increasing it up to a very large value (e.g., 10). This is done by multiplying the learning rate by a constant factor at each iteration (e.g., by exp(log(10⁶)/500) to go from 10⁻⁵ to 10 in 500 iterations). If you plot the loss as a function of the learning rate (using a log scale for the learning rate), you should see it dropping at first. But after a while, the learning rate will be too large, so the loss will shoot back up: the optimal learning rate will be a bit lower than the point at which the loss starts to climb (typically about 10 times lower than the turning point). You can then reinitialize your model and train it normally using this good learning rate. We will look at more learning rate techniques in Chapter 11.

Optimizer

Choosing a better optimizer than plain old Mini-batch Gradient Descent (and tuning its hyperparameters) is also quite important. We will see several advanced optimizers in Chapter 11.

Batch size

The batch size can have a significant impact on your model's performance and training time. The main benefit of using large batch sizes is that hardware accelerators like GPUs can process them efficiently (see Chapter 19), so the training algorithm will see more instances per second. Therefore, many researchers and practitioners recommend using the largest batch size that can fit in GPU RAM. There's a catch, though: in practice, large batch sizes often lead to training instabilities, especially at the beginning of training, and the resulting model may not generalize as well as a model trained with a small batch size. In April 2018, Yann LeCun even tweeted "Friends don't let friends use mini-batches larger than 32," citing a 2018 paper²⁵ by Dominic Masters and Carlo Luschi which concluded that using small batches (from 2 to 32) was preferable because small batches led to better models in less training time. Other papers point in the opposite direction, however; in 2017, papers by Elad Hoffer et al.²⁶ and Priya Goyal et al.²⁷ showed that it was possible to use very large batch sizes (up to 8,192) using various techniques such as warming up the learning rate (i.e., starting training with a small learning rate, then ramping it up, as we will see in Chapter 11). This led to a very short training time, without any generalization gap. So, one strategy is to try to use a large batch size, using learning rate warmup, and if training is unstable or the final performance is disappointing, then try using a small batch size instead.

Activation function

We discussed how to choose the activation function earlier in this chapter: in general, the ReLU activation function will be a good default for all hidden layers. For the output layer, it really depends on your task.

²⁵ Dominic Masters and Carlo Luschi, "Revisiting Small Batch Training for Deep Neural Networks," arXiv preprint arXiv:1804.07612 (2018).

²⁶ Elad Hoffer et al., "Train Longer, Generalize Better: Closing the Generalization Gap in Large Batch Training of Neural Networks," Proceedings of the 31st International Conference on Neural Information Processing Systems (2017): 1729-1739.

²⁷ Priya Goyal et al., "Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour," arXiv preprint arXiv: 1706.02677 (2017).

Number of iterations

In most cases, the number of training iterations does not actually need to be tweaked: just use early stopping instead.

The optimal learning rate depends on the other hyperparameters—especially the batch size—so if you modify any hyperparameter, make sure to update the learning rate as well.

For more best practices regarding tuning neural network hyperparameters, check out the excellent 2018 paper²⁸ by Leslie Smith.

This concludes our introduction to artificial neural networks and their implementation with Keras. In the next few chapters, we will discuss techniques to train very deep nets. We will also explore how to customize models using TensorFlow's lower-level API and how to load and preprocess data efficiently using the Data API. And we will dive into other popular neural network architectures: convolutional neural networks for image processing, recurrent neural networks for sequential data, autoencoders for representation learning, and generative adversarial networks to model and generate data.²⁹

Exercises

- 1. The TensorFlow Playground is a handy neural network simulator built by the TensorFlow team. In this exercise, you will train several binary classifiers in just a few clicks, and tweak the model's architecture and its hyperparameters to gain some intuition on how neural networks work and what their hyperparameters do. Take some time to explore the following:
 - a. The patterns learned by a neural net. Try training the default neural network by clicking the Run button (top left). Notice how it quickly finds a good solution for the classification task. The neurons in the first hidden layer have learned simple patterns, while the neurons in the second hidden layer have learned to combine the simple patterns of the first hidden layer into more complex patterns. In general, the more layers there are, the more complex the patterns can be.
 - b. Activation functions. Try replacing the tanh activation function with a ReLU activation function, and train the network again. Notice that it finds a solution

Exercises | 327

- even faster, but this time the boundaries are linear. This is due to the shape of the ReLU function.
- c. The risk of local minima. Modify the network architecture to have just one hidden layer with three neurons. Train it multiple times (to reset the network weights, click the Reset button next to the Play button). Notice that the training time varies a lot, and sometimes it even gets stuck in a local minimum.
- d. What happens when neural nets are too small. Remove one neuron to keep just two. Notice that the neural network is now incapable of finding a good solution, even if you try multiple times. The model has too few parameters and systematically underfits the training set.
- e. What happens when neural nets are large enough. Set the number of neurons to eight, and train the network several times. Notice that it is now consistently fast and never gets stuck. This highlights an important finding in neural network theory: large neural networks almost never get stuck in local minima, and even when they do these local optima are almost as good as the global optimum. However, they can still get stuck on long plateaus for a long time.
- f. The risk of vanishing gradients in deep networks. Select the spiral dataset (the bottom-right dataset under "DATA"), and change the network architecture to have four hidden layers with eight neurons each. Notice that training takes much longer and often gets stuck on plateaus for long periods of time. Also notice that the neurons in the highest layers (on the right) tend to evolve faster than the neurons in the lowest layers (on the left). This problem, called the "vanishing gradients" problem, can be alleviated with better weight initialization and other techniques, better optimizers (such as AdaGrad or Adam), or Batch Normalization (discussed in Chapter 11).
- g. Go further. Take an hour or so to play around with other parameters and get a feel for what they do, to build an intuitive understanding about neural networks.
- 2. Draw an ANN using the original artificial neurons (like the ones in Figure 10-3) that computes $A \oplus B$ (where \oplus represents the XOR operation). Hint: $A \oplus B = (A \land \neg B) \lor (\neg A \land B)$.
- 3. Why is it generally preferable to use a Logistic Regression classifier rather than a classical Perceptron (i.e., a single layer of threshold logic units trained using the Perceptron training algorithm)? How can you tweak a Perceptron to make it equivalent to a Logistic Regression classifier?
- 4. Why was the logistic activation function a key ingredient in training the first MLPs?
- 5. Name three popular activation functions. Can you draw them?

Chapter 10: Introduction to Artificial Neural Networks with Keras

²⁸ Leslie N. Smith, "A Disciplined Approach to Neural Network Hyper-Parameters: Part 1—Learning Rate, Batch Size, Momentum, and Weight Decay," arXiv preprint arXiv:1803.09820 (2018).

²⁹ A few extra ANN architectures are presented in Appendix E.

- 6. Suppose you have an MLP composed of one input layer with 10 passthrough neurons, followed by one hidden layer with 50 artificial neurons, and finally one output layer with 3 artificial neurons. All artificial neurons use the ReLU activation function.
 - What is the shape of the input matrix X?
 - What are the shapes of the hidden layer's weight vector W_h and its bias vector b_h?
 - What are the shapes of the output layer's weight vector W_o and its bias vector
 b_o?
 - What is the shape of the network's output matrix **Y**?
 - Write the equation that computes the network's output matrix Y as a function of X, W_b, b_b, W_o, and b_o.
- 7. How many neurons do you need in the output layer if you want to classify email into spam or ham? What activation function should you use in the output layer? If instead you want to tackle MNIST, how many neurons do you need in the output layer, and which activation function should you use? What about for getting your network to predict housing prices, as in Chapter 2?
- 8. What is backpropagation and how does it work? What is the difference between backpropagation and reverse-mode autodiff?
- 9. Can you list all the hyperparameters you can tweak in a basic MLP? If the MLP overfits the training data, how could you tweak these hyperparameters to try to solve the problem?
- 10. Train a deep MLP on the MNIST dataset (you can load it using keras.data sets.mnist.load_data(). See if you can get over 98% precision. Try searching for the optimal learning rate by using the approach presented in this chapter (i.e., by growing the learning rate exponentially, plotting the loss, and finding the point where the loss shoots up). Try adding all the bells and whistles—save checkpoints, use early stopping, and plot learning curves using TensorBoard.

Solutions to these exercises are available in Appendix A.

CHAPTER 11

Training Deep Neural Networks

In Chapter 10 we introduced artificial neural networks and trained our first deep neural networks. But they were shallow nets, with just a few hidden layers. What if you need to tackle a complex problem, such as detecting hundreds of types of objects in high-resolution images? You may need to train a much deeper DNN, perhaps with 10 layers or many more, each containing hundreds of neurons, linked by hundreds of thousands of connections. Training a deep DNN isn't a walk in the park. Here are some of the problems you could run into:

- You may be faced with the tricky *vanishing gradients* problem or the related *exploding gradients* problem. This is when the gradients grow smaller and smaller, or larger and larger, when flowing backward through the DNN during training. Both of these problems make lower layers very hard to train.
- You might not have enough training data for such a large network, or it might be too costly to label.
- Training may be extremely slow.
- A model with millions of parameters would severely risk overfitting the training set, especially if there are not enough training instances or if they are too noisy.

In this chapter we will go through each of these problems and present techniques to solve them. We will start by exploring the vanishing and exploding gradients problems and some of their most popular solutions. Next, we will look at transfer learning and unsupervised pretraining, which can help you tackle complex tasks even when you have little labeled data. Then we will discuss various optimizers that can speed up training large models tremendously. Finally, we will go through a few popular regularization techniques for large neural networks.

With these tools, you will be able to train very deep nets. Welcome to Deep Learning!

The Vanishing/Exploding Gradients Problems

As we discussed in Chapter 10, the backpropagation algorithm works by going from the output layer to the input layer, propagating the error gradient along the way. Once the algorithm has computed the gradient of the cost function with regard to each parameter in the network, it uses these gradients to update each parameter with a Gradient Descent step.

Unfortunately, gradients often get smaller and smaller as the algorithm progresses down to the lower layers. As a result, the Gradient Descent update leaves the lower layers' connection weights virtually unchanged, and training never converges to a good solution. We call this the *vanishing gradients* problem. In some cases, the opposite can happen: the gradients can grow bigger and bigger until layers get insanely large weight updates and the algorithm diverges. This is the *exploding gradients* problem, which surfaces in recurrent neural networks (see Chapter 15). More generally, deep neural networks suffer from unstable gradients; different layers may learn at widely different speeds.

This unfortunate behavior was empirically observed long ago, and it was one of the reasons deep neural networks were mostly abandoned in the early 2000s. It wasn't clear what caused the gradients to be so unstable when training a DNN, but some light was shed in a 2010 paper by Xavier Glorot and Yoshua Bengio.¹ The authors found a few suspects, including the combination of the popular logistic sigmoid activation function and the weight initialization technique that was most popular at the time (i.e., a normal distribution with a mean of 0 and a standard deviation of 1). In short, they showed that with this activation function and this initialization scheme, the variance of the outputs of each layer is much greater than the variance of its inputs. Going forward in the network, the variance keeps increasing after each layer until the activation function saturates at the top layers. This saturation is actually made worse by the fact that the logistic function has a mean of 0.5, not 0 (the hyperbolic tangent function has a mean of 0 and behaves slightly better than the logistic function in deep networks).

Looking at the logistic activation function (see Figure 11-1), you can see that when inputs become large (negative or positive), the function saturates at 0 or 1, with a derivative extremely close to 0. Thus, when backpropagation kicks in it has virtually no gradient to propagate back through the network; and what little gradient exists keeps getting diluted as backpropagation progresses down through the top layers, so there is really nothing left for the lower layers.

331

¹ Xavier Glorot and Yoshua Bengio, "Understanding the Difficulty of Training Deep Feedforward Neural Networks," Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (2010): 249–256.

Figure 11-1. Logistic activation function saturation

Glorot and He Initialization

In their paper, Glorot and Bengio propose a way to significantly alleviate the unstable gradients problem. They point out that we need the signal to flow properly in both directions: in the forward direction when making predictions, and in the reverse direction when backpropagating gradients. We don't want the signal to die out, nor do we want it to explode and saturate. For the signal to flow properly, the authors argue that we need the variance of the outputs of each layer to be equal to the variance of its inputs,² and we need the gradients to have equal variance before and after flowing through a layer in the reverse direction (please check out the paper if you are interested in the mathematical details). It is actually not possible to guarantee both unless the layer has an equal number of inputs and neurons (these numbers are called the fan-in and fan-out of the layer), but Glorot and Bengio proposed a good compromise that has proven to work very well in practice: the connection weights of each layer must be initialized randomly as described in Equation 11-1, where $fan_{ava} = (fan_{in})$ + fan_{out})/2. This initialization strategy is called Xavier initialization or Glorot initialization, after the paper's first author.

The Vanishing/Exploding Gradients Problems | 333

Equation 11-1. Glorot initialization (when using the logistic activation function)

Normal distribution with mean 0 and variance
$$\sigma^2 = \frac{1}{\mathit{fan}_{\mathrm{avg}}}$$

Or a uniform distribution between
$$-r$$
 and $+r$, with $r = \sqrt{\frac{3}{fan_{\text{avg}}}}$

If you replace fan avg with fan in Equation 11-1, you get an initialization strategy that Yann LeCun proposed in the 1990s. He called it LeCun initialization. Genevieve Orr and Klaus-Robert Müller even recommended it in their 1998 book Neural Networks: Tricks of the Trade (Springer). LeCun initialization is equivalent to Glorot initialization when $fan_{in} = fan_{out}$. It took over a decade for researchers to realize how important this trick is. Using Glorot initialization can speed up training considerably, and it is one of the tricks that led to the success of Deep Learning.

Some papers³ have provided similar strategies for different activation functions. These strategies differ only by the scale of the variance and whether they use fan_{avg} or fan_{in} as shown in Table 11-1 (for the uniform distribution, just compute $r = \sqrt{3\sigma^2}$). The initialization strategy for the ReLU activation function (and its variants, including the ELU activation described shortly) is sometimes called He initialization, after the paper's first author. The SELU activation function will be explained later in this chapter. It should be used with LeCun initialization (preferably with a normal distribution, as we will see).

Table 11-1. Initialization parameters for each type of activation function

Initialization	Activation functions	σ^2 (Normal)
Glorot	None, tanh, logistic, softmax	1 / fan _{avg}
He	ReLU and variants	2 / fan _{in}
LeCun	SELU	1 / fan _{in}

By default, Keras uses Glorot initialization with a uniform distribution. When creating a layer, you can change this to He initialization by setting kernel_initial izer="he_uniform" or kernel_initializer="he_normal" like this:

If you want He initialization with a uniform distribution but based on fan_{avg} rather than fan_{in} , you can use the VarianceScaling initializer like this:

² Here's an analogy: if you set a microphone amplifier's knob too close to zero, people won't hear your voice, but if you set it too close to the max, your voice will be saturated and people won't understand what you are saying. Now imagine a chain of such amplifiers: they all need to be set properly in order for your voice to come out loud and clear at the end of the chain. Your voice has to come out of each amplifier at the same amplitude as it came in.

³ E.g., Kaiming He et al., "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification," Proceedings of the 2015 IEEE International Conference on Computer Vision (2015): 1026–1034.

```
he_avg_init = keras.initializers.VarianceScaling(scale=2., mode='fan_avg',
                                                 distribution='uniform')
keras.layers.Dense(10, activation="sigmoid", kernel_initializer=he_avg_init)
```

Nonsaturating Activation Functions

One of the insights in the 2010 paper by Glorot and Bengio was that the problems with unstable gradients were in part due to a poor choice of activation function. Until then most people had assumed that if Mother Nature had chosen to use roughly sigmoid activation functions in biological neurons, they must be an excellent choice. But it turns out that other activation functions behave much better in deep neural networks—in particular, the ReLU activation function, mostly because it does not saturate for positive values (and because it is fast to compute).

Unfortunately, the ReLU activation function is not perfect. It suffers from a problem known as the dying ReLUs: during training, some neurons effectively "die," meaning they stop outputting anything other than 0. In some cases, you may find that half of your network's neurons are dead, especially if you used a large learning rate. A neuron dies when its weights get tweaked in such a way that the weighted sum of its inputs are negative for all instances in the training set. When this happens, it just keeps outputting zeros, and Gradient Descent does not affect it anymore because the gradient of the ReLU function is zero when its input is negative.4

To solve this problem, you may want to use a variant of the ReLU function, such as the leaky ReLU. This function is defined as LeakyReLU_a(z) = max(αz , z) (see Figure 11-2). The hyperparameter α defines how much the function "leaks": it is the slope of the function for z < 0 and is typically set to 0.01. This small slope ensures that leaky ReLUs never die; they can go into a long coma, but they have a chance to eventually wake up. A 2015 paper⁵ compared several variants of the ReLU activation function, and one of its conclusions was that the leaky variants always outperformed the strict ReLU activation function. In fact, setting $\alpha = 0.2$ (a huge leak) seemed to result in better performance than $\alpha = 0.01$ (a small leak). The paper also evaluated the randomized leaky ReLU (RReLU), where α is picked randomly in a given range during training and is fixed to an average value during testing. RReLU also performed fairly well and seemed to act as a regularizer (reducing the risk of overfitting the training set). Finally, the paper evaluated the parametric leaky ReLU (PReLU), where α is authorized to be learned during training (instead of being a hyperparameter, it becomes a parameter that can be modified by backpropagation like any other parameter). PReLU was reported to strongly outperform ReLU on large image datasets, but on smaller datasets it runs the risk of overfitting the training set.

Figure 11-2. Leaky ReLU: like ReLU, but with a small slope for negative values

Last but not least, a 2015 paper by Djork-Arné Clevert et al.6 proposed a new activation function called the exponential linear unit (ELU) that outperformed all the ReLU variants in the authors' experiments: training time was reduced, and the neural network performed better on the test set. Figure 11-3 graphs the function, and Equation 11-2 shows its definition.

Equation 11-2. ELU activation function

$$ELU_{\alpha}(z) = \begin{cases} \alpha(\exp(z) - 1) & \text{if } z < 0 \\ z & \text{if } z \ge 0 \end{cases}$$

Figure 11-3. ELU activation function

⁴ Unless it is part of the first hidden layer, a dead neuron may sometimes come back to life: Gradient Descent may indeed tweak neurons in the layers below in such a way that the weighted sum of the dead neuron's inputs is positive again.

⁵ Bing Xu et al., "Empirical Evaluation of Rectified Activations in Convolutional Network," arXiv preprint arXiv:1505.00853 (2015).

⁶ Diork-Arné Clevert et al., "Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)," Proceedings of the International Conference on Learning Representations (2016).

The ELU activation function looks a lot like the ReLU function, with a few major differences:

- It takes on negative values when z < 0, which allows the unit to have an average output closer to 0 and helps alleviate the vanishing gradients problem. The hyperparameter α defines the value that the ELU function approaches when z is a large negative number. It is usually set to 1, but you can tweak it like any other hyperparameter.
- It has a nonzero gradient for z < 0, which avoids the dead neurons problem.
- If α is equal to 1 then the function is smooth everywhere, including around z = 0, which helps speed up Gradient Descent since it does not bounce as much to the left and right of z = 0.

The main drawback of the ELU activation function is that it is slower to compute than the ReLU function and its variants (due to the use of the exponential function). Its faster convergence rate during training compensates for that slow computation, but still, at test time an ELU network will be slower than a ReLU network.

Then, a 2017 paper⁷ by Günter Klambauer et al. introduced the Scaled ELU (SELU) activation function: as its name suggests, it is a scaled variant of the ELU activation function. The authors showed that if you build a neural network composed exclusively of a stack of dense layers, and if all hidden layers use the SELU activation function, then the network will self-normalize: the output of each layer will tend to preserve a mean of 0 and standard deviation of 1 during training, which solves the vanishing/exploding gradients problem. As a result, the SELU activation function often significantly outperforms other activation functions for such neural nets (especially deep ones). There are, however, a few conditions for self-normalization to happen (see the paper for the mathematical justification):

- The input features must be standardized (mean 0 and standard deviation 1).
- Every hidden layer's weights must be initialized with LeCun normal initialization. In Keras, this means setting kernel_initializer="lecun_normal".
- The network's architecture must be sequential. Unfortunately, if you try to use SELU in nonsequential architectures, such as recurrent networks (see Chapter 15) or networks with skip connections (i.e., connections that skip layers, such as in Wide & Deep nets), self-normalization will not be guaranteed, so SELU will not necessarily outperform other activation functions.

The Vanishing/Exploding Gradients Problems | 337

· The paper only guarantees self-normalization if all layers are dense, but some researchers have noted that the SELU activation function can improve performance in convolutional neural nets as well (see Chapter 14).

So, which activation function should you use for the hidden layers of your deep neural networks? Although your mileage will vary, in general SELU > ELU > leaky ReLU (and its variants) > ReLU > tanh > logistic. If the network's architecture prevents it from selfnormalizing, then ELU may perform better than SELU (since SELU is not smooth at z = 0). If you care a lot about runtime latency, then you may prefer leaky ReLU. If you don't want to tweak yet another hyperparameter, you may use the default α values used by Keras (e.g., 0.3 for leaky ReLU). If you have spare time and computing power, you can use cross-validation to evaluate other activation functions, such as RReLU if your network is overfitting or PReLU if you have a huge training set. That said, because ReLU is the most used activation function (by far), many libraries and hardware accelerators provide ReLU-specific optimizations; therefore, if speed is your priority, ReLU might still be the best choice.

To use the leaky ReLU activation function, create a LeakyReLU layer and add it to your model just after the layer you want to apply it to:

```
model = keras.models.Sequential([
    keras.layers.Dense(10, kernel_initializer="he_normal"),
    keras.layers.LeakyReLU(alpha=0.2),
    [...]
])
```

For PReLU, replace LeakyReLU(alpha=0.2) with PReLU(). There is currently no official implementation of RReLU in Keras, but you can fairly easily implement your own (to learn how to do that, see the exercises at the end of Chapter 12).

For SELU activation, set activation="selu" and kernel initializer="lecun nor mal" when creating a layer:

```
layer = keras.layers.Dense(10, activation="selu",
                           kernel initializer="lecun normal")
```

Batch Normalization

Although using He initialization along with ELU (or any variant of ReLU) can significantly reduce the danger of the vanishing/exploding gradients problems at the beginning of training, it doesn't guarantee that they won't come back during training.

⁷ Günter Klambauer et al., "Self-Normalizing Neural Networks," Proceedings of the 31st International Conference on Neural Information Processing Systems (2017): 972-981.

In a 2015 paper,⁸ Sergey Ioffe and Christian Szegedy proposed a technique called *Batch Normalization* (BN) that addresses these problems. The technique consists of adding an operation in the model just before or after the activation function of each hidden layer. This operation simply zero-centers and normalizes each input, then scales and shifts the result using two new parameter vectors per layer: one for scaling, the other for shifting. In other words, the operation lets the model learn the optimal scale and mean of each of the layer's inputs. In many cases, if you add a BN layer as the very first layer of your neural network, you do not need to standardize your training set (e.g., using a StandardScaler); the BN layer will do it for you (well, approximately, since it only looks at one batch at a time, and it can also rescale and shift each input feature).

In order to zero-center and normalize the inputs, the algorithm needs to estimate each input's mean and standard deviation. It does so by evaluating the mean and standard deviation of the input over the current mini-batch (hence the name "Batch Normalization"). The whole operation is summarized step by step in Equation 11-3.

Equation 11-3. Batch Normalization algorithm

1.
$$\mu_B = \frac{1}{m_B} \sum_{i=1}^{m_B} \mathbf{x}^{(i)}$$

2.
$$\sigma_B^2 = \frac{1}{m_B} \sum_{i=1}^{m_B} (\mathbf{x}^{(i)} - \boldsymbol{\mu}_B)^2$$

3.
$$\widehat{\mathbf{x}}^{(i)} = \frac{\mathbf{x}^{(i)} - \mathbf{\mu}_B}{\sqrt{{\sigma_B}^2 + \varepsilon}}$$

4.
$$\mathbf{z}^{(i)} = \mathbf{\gamma} \otimes \widehat{\mathbf{x}}^{(i)} + \mathbf{\beta}$$

In this algorithm:

- μ_B is the vector of input means, evaluated over the whole mini-batch B (it contains one mean per input).
- σ_B is the vector of input standard deviations, also evaluated over the whole minibatch (it contains one standard deviation per input).
- m_B is the number of instances in the mini-batch.
- $\hat{\mathbf{x}}^{(i)}$ is the vector of zero-centered and normalized inputs for instance *i*.

- γ is the output scale parameter vector for the layer (it contains one scale parameter per input).
- ⊗ represents element-wise multiplication (each input is multiplied by its corresponding output scale parameter).
- β is the output shift (offset) parameter vector for the layer (it contains one offset parameter per input). Each input is offset by its corresponding shift parameter.
- ε is a tiny number that avoids division by zero (typically 10⁻⁵). This is called a smoothing term.
- z⁽ⁱ⁾ is the output of the BN operation. It is a rescaled and shifted version of the inputs.

So during training, BN standardizes its inputs, then rescales and offsets them. Good! What about at test time? Well, it's not that simple. Indeed, we may need to make predictions for individual instances rather than for batches of instances: in this case, we will have no way to compute each input's mean and standard deviation. Moreover, even if we do have a batch of instances, it may be too small, or the instances may not be independent and identically distributed, so computing statistics over the batch instances would be unreliable. One solution could be to wait until the end of training, then run the whole training set through the neural network and compute the mean and standard deviation of each input of the BN layer. These "final" input means and standard deviations could then be used instead of the batch input means and standard deviations when making predictions. However, most implementations of Batch Normalization estimate these final statistics during training by using a moving average of the layer's input means and standard deviations. This is what Keras does automatically when you use the BatchNormalization layer. To sum up, four parameter vectors are learned in each batch-normalized layer: γ (the output scale vector) and β (the output offset vector) are learned through regular backpropagation, and μ (the final input mean vector) and σ (the final input standard deviation vector) are estimated using an exponential moving average. Note that μ and σ are estimated during training, but they are used only after training (to replace the batch input means and standard deviations in Equation 11-3).

Ioffe and Szegedy demonstrated that Batch Normalization considerably improved all the deep neural networks they experimented with, leading to a huge improvement in the ImageNet classification task (ImageNet is a large database of images classified into many classes, commonly used to evaluate computer vision systems). The vanishing gradients problem was strongly reduced, to the point that they could use saturating activation functions such as the tanh and even the logistic activation function. The networks were also much less sensitive to the weight initialization. The authors were able to use much larger learning rates, significantly speeding up the learning process. Specifically, they note that:

⁸ Sergey Ioffe and Christian Szegedy, "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift," Proceedings of the 32nd International Conference on Machine Learning (2015): 448– 456

Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. [...] Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.9% top-5 validation error (and 4.8% test error), exceeding the accuracy of human raters.

Finally, like a gift that keeps on giving, Batch Normalization acts like a regularizer, reducing the need for other regularization techniques (such as dropout, described later in this chapter).

Batch Normalization does, however, add some complexity to the model (although it can remove the need for normalizing the input data, as we discussed earlier). Moreover, there is a runtime penalty: the neural network makes slower predictions due to the extra computations required at each layer. Fortunately, it's often possible to fuse the BN layer with the previous layer, after training, thereby avoiding the runtime penalty. This is done by updating the previous layer's weights and biases so that it directly produces outputs of the appropriate scale and offset. For example, if the previous layer computes XW + b, then the BN layer will compute $\gamma \otimes (XW + b - \mu)/\sigma + \beta$ (ignoring the smoothing term ε in the denominator). If we define $W' = \gamma \otimes W/\sigma$ and $b' = \gamma \otimes (b - \mu)/\sigma + \beta$, the equation simplifies to XW' + b'. So if we replace the previous layer's weights and biases (W and B) with the updated weights and biases (W' and B'), we can get rid of the BN layer (TFLite's converter does this automatically; see Chapter 19).

You may find that training is rather slow, because each epoch takes much more time when you use Batch Normalization. This is usually counterbalanced by the fact that convergence is much faster with BN, so it will take fewer epochs to reach the same performance. All in all, *wall time* will usually be shorter (this is the time measured by the clock on your wall).

Implementing Batch Normalization with Keras

As with most things with Keras, implementing Batch Normalization is simple and intuitive. Just add a BatchNormalization layer before or after each hidden layer's activation function, and optionally add a BN layer as well as the first layer in your model. For example, this model applies BN after every hidden layer and as the first layer in the model (after flattening the input images):

The Vanishing/Exploding Gradients Problems 341

```
model = keras.models.Sequential([
    keras.layers.Flatten(input_shape=[28, 28]),
    keras.layers.BatchNormalization(),
    keras.layers.Dense(300, activation="elu", kernel_initializer="he_normal"),
    keras.layers.BatchNormalization(),
    keras.layers.Dense(100, activation="elu", kernel_initializer="he_normal"),
    keras.layers.BatchNormalization(),
    keras.layers.Dense(10, activation="softmax")
```

That's all! In this tiny example with just two hidden layers, it's unlikely that Batch Normalization will have a very positive impact; but for deeper networks it can make a tremendous difference.

Let's display the model summary:

```
>>> model.summary()
Model: "sequential_3"
```

node: sequenced:_s			
Layer (type)	Output	Shape	Param #
flatten_3 (Flatten)	(None,	784)	0
batch_normalization_v2 (Batc	(None,	784)	3136
dense_50 (Dense)	(None,	300)	235500
batch_normalization_v2_1 (Ba	(None,	300)	1200
dense_51 (Dense)	(None,	100)	30100
batch_normalization_v2_2 (Ba	(None,	100)	400
dense_52 (Dense)	(None,	10)	1010
Total params: 271,346			

Total params: 271,346 Trainable params: 268,978 Non-trainable params: 2,368

As you can see, each BN layer adds four parameters per input: γ , β , μ , and σ (for example, the first BN layer adds 3,136 parameters, which is 4×784). The last two parameters, μ and σ , are the moving averages; they are not affected by backpropagation, so Keras calls them "non-trainable" (if you count the total number of BN parameters, 3,136 + 1,200 + 400, and divide by 2, you get 2,368, which is the total number of non-trainable parameters in this model).

⁹ However, they are estimated during training, based on the training data, so arguably they *are* trainable. In Keras, "non-trainable" really means "untouched by backpropagation."

Let's look at the parameters of the first BN layer. Two are trainable (by backpropagation), and two are not:

```
>>> [(var.name, var.trainable) for var in model.layers[1].variables]
[('batch_normalization_v2/gamma:0', True),
   ('batch_normalization_v2/moving_mean:0', False),
   ('batch_normalization_v2/moving_variance:0', False)]
```

Now when you create a BN layer in Keras, it also creates two operations that will be called by Keras at each iteration during training. These operations will update the moving averages. Since we are using the TensorFlow backend, these operations are TensorFlow operations (we will discuss TF operations in Chapter 12):

The authors of the BN paper argued in favor of adding the BN layers before the activation functions, rather than after (as we just did). There is some debate about this, as which is preferable seems to depend on the task—you can experiment with this too to see which option works best on your dataset. To add the BN layers before the activation functions, you must remove the activation function from the hidden layers and add them as separate layers after the BN layers. Moreover, since a Batch Normalization layer includes one offset parameter per input, you can remove the bias term from the previous layer (just pass use_bias=False when creating it):

```
model = keras.models.Sequential([
    keras.layers.Flatten(input_shape=[28, 28]),
    keras.layers.BatchNormalization(),
    keras.layers.Dense(300, kernel_initializer="he_normal", use_bias=False),
    keras.layers.BatchNormalization(),
    keras.layers.Activation("elu"),
    keras.layers.Dense(100, kernel_initializer="he_normal", use_bias=False),
    keras.layers.BatchNormalization(),
    keras.layers.Activation("elu"),
    keras.layers.Dense(10, activation="softmax")
])
```

The BatchNormalization class has quite a few hyperparameters you can tweak. The defaults will usually be fine, but you may occasionally need to tweak the momentum. This hyperparameter is used by the BatchNormalization layer when it updates the exponential moving averages; given a new value \mathbf{v} (i.e., a new vector of input means or standard deviations computed over the current batch), the layer updates the running average $\hat{\mathbf{v}}$ using the following equation:

```
\hat{\mathbf{v}} \leftarrow \hat{\mathbf{v}} \times \text{momentum} + \mathbf{v} \times (1 - \text{momentum})
```

The Vanishing/Exploding Gradients Problems | 343

A good momentum value is typically close to 1; for example, 0.9, 0.99, or 0.999 (you want more 9s for larger datasets and smaller mini-batches).

Another important hyperparameter is axis: it determines which axis should be normalized. It defaults to -1, meaning that by default it will normalize the last axis (using the means and standard deviations computed across the *other* axes). When the input batch is 2D (i.e., the batch shape is [batch size, features]), this means that each input feature will be normalized based on the mean and standard deviation computed across all the instances in the batch. For example, the first BN layer in the previous code example will independently normalize (and rescale and shift) each of the 784 input features. If we move the first BN layer before the Flatten layer, then the input batches will be 3D, with shape [batch size, height, width]; therefore, the BN layer will compute 28 means and 28 standard deviations (1 per column of pixels, computed across all instances in the batch and across all rows in the column), and it will normalize all pixels in a given column using the same mean and standard deviation. There will also be just 28 scale parameters and 28 shift parameters. If instead you still want to treat each of the 784 pixels independently, then you should set axis=[1, 2].

Notice that the BN layer does not perform the same computation during training and after training: it uses batch statistics during training and the "final" statistics after training (i.e., the final values of the moving averages). Let's take a peek at the source code of this class to see how this is handled:

```
class BatchNormalization(keras.layers.Layer):
    [...]
    def call(self, inputs, training=None):
        [...]
```

The call() method is the one that performs the computations; as you can see, it has an extra training argument, which is set to None by default, but the fit() method sets to it to 1 during training. If you ever need to write a custom layer, and it must behave differently during training and testing, add a training argument to the call() method and use this argument in the method to decide what to compute¹⁰ (we will discuss custom layers in Chapter 12).

BatchNormalization has become one of the most-used layers in deep neural networks, to the point that it is often omitted in the diagrams, as it is assumed that BN is added after every layer. But a recent paper¹¹ by Hongyi Zhang et al. may change this assumption: by using a novel *fixed-update* (fixup) weight initialization technique, the authors managed to train a very deep neural network (10,000 layers!) without BN,

¹⁰ The Keras API also specifies a keras.backend.learning_phase() function that should return 1 during training and 0 otherwise.

¹¹ Hongyi Zhang et al., "Fixup Initialization: Residual Learning Without Normalization," arXiv preprint arXiv: 1901.09321 (2019).

achieving state-of-the-art performance on complex image classification tasks. As this is bleeding-edge research, however, you may want to wait for additional research to confirm this finding before you drop Batch Normalization.

Gradient Clipping

Another popular technique to mitigate the exploding gradients problem is to clip the gradients during backpropagation so that they never exceed some threshold. This is called *Gradient Clipping*. This technique is most often used in recurrent neural networks, as Batch Normalization is tricky to use in RNNs, as we will see in Chapter 15. For other types of networks, BN is usually sufficient.

In Keras, implementing Gradient Clipping is just a matter of setting the clipvalue or clipnorm argument when creating an optimizer, like this:

```
optimizer = keras.optimizers.SGD(clipvalue=1.0)
model.compile(loss="mse", optimizer=optimizer)
```

This optimizer will clip every component of the gradient vector to a value between -1.0 and 1.0. This means that all the partial derivatives of the loss (with regard to each and every trainable parameter) will be clipped between -1.0 and 1.0. The threshold is a hyperparameter you can tune. Note that it may change the orientation of the gradient vector. For instance, if the original gradient vector is [0.9, 100.0], it points mostly in the direction of the second axis; but once you clip it by value, you get [0.9, 1.0], which points roughly in the diagonal between the two axes. In practice, this approach works well. If you want to ensure that Gradient Clipping does not change the direction of the gradient vector, you should clip by norm by setting clipnorm instead of clipvalue. This will clip the whole gradient if its ℓ_2 norm is greater than the threshold you picked. For example, if you set clipnorm=1.0, then the vector [0.9, 100.0] will be clipped to [0.00899964, 0.9999595], preserving its orientation but almost eliminating the first component. If you observe that the gradients explode during training (you can track the size of the gradients using TensorBoard), you may want to try both clipping by value and clipping by norm, with different thresholds, and see which option performs best on the validation set.

Reusing Pretrained Layers

It is generally not a good idea to train a very large DNN from scratch: instead, you should always try to find an existing neural network that accomplishes a similar task to the one you are trying to tackle (we will discuss how to find them in Chapter 14), then reuse the lower layers of this network. This technique is called *transfer learning*.

Reusing Pretrained Layers | 345

It will not only speed up training considerably, but also require significantly less training data.

Suppose you have access to a DNN that was trained to classify pictures into 100 different categories, including animals, plants, vehicles, and everyday objects. You now want to train a DNN to classify specific types of vehicles. These tasks are very similar, even partly overlapping, so you should try to reuse parts of the first network (see Figure 11-4).

Figure 11-4. Reusing pretrained layers

If the input pictures of your new task don't have the same size as the ones used in the original task, you will usually have to add a preprocessing step to resize them to the size expected by the original model. More generally, transfer learning will work best when the inputs have similar low-level features.

The output layer of the original model should usually be replaced because it is most likely not useful at all for the new task, and it may not even have the right number of outputs for the new task.

Similarly, the upper hidden layers of the original model are less likely to be as useful as the lower layers, since the high-level features that are most useful for the new task may differ significantly from the ones that were most useful for the original task. You want to find the right number of layers to reuse.

¹² Razvan Pascanu et al., "On the Difficulty of Training Recurrent Neural Networks," Proceedings of the 30th International Conference on Machine Learning (2013): 1310–1318.

The more similar the tasks are, the more layers you want to reuse (starting with the lower layers). For very similar tasks, try keeping all the hidden layers and just replacing the output layer.

Try freezing all the reused layers first (i.e., make their weights non-trainable so that Gradient Descent won't modify them), then train your model and see how it performs. Then try unfreezing one or two of the top hidden layers to let backpropagation tweak them and see if performance improves. The more training data you have, the more layers you can unfreeze. It is also useful to reduce the learning rate when you unfreeze reused layers: this will avoid wrecking their fine-tuned weights.

If you still cannot get good performance, and you have little training data, try dropping the top hidden layer(s) and freezing all the remaining hidden layers again. You can iterate until you find the right number of layers to reuse. If you have plenty of training data, you may try replacing the top hidden layers instead of dropping them, and even adding more hidden layers.

Transfer Learning with Keras

Let's look at an example. Suppose the Fashion MNIST dataset only contained eight classes—for example, all the classes except for sandal and shirt. Someone built and trained a Keras model on that set and got reasonably good performance (>90% accuracy). Let's call this model A. You now want to tackle a different task: you have images of sandals and shirts, and you want to train a binary classifier (positive=shirt, negative=sandal). Your dataset is quite small; you only have 200 labeled images. When you train a new model for this task (let's call it model B) with the same architecture as model A, it performs reasonably well (97.2% accuracy). But since it's a much easier task (there are just two classes), you were hoping for more. While drinking your morning coffee, you realize that your task is quite similar to task A, so perhaps transfer learning can help? Let's find out!

First, you need to load model A and create a new model based on that model's layers. Let's reuse all the layers except for the output layer:

```
model_A = keras.models.load_model("my_model_A.h5")
model_B_on_A = keras.models.Sequential(model_A.layers[:-1])
model_B_on_A.add(keras.layers.Dense(1, activation="sigmoid"))
```

Note that model_A and model_B_on_A now share some layers. When you train model_B_on_A, it will also affect model_A. If you want to avoid that, you need to *clone* model_A before you reuse its layers. To do this, you clone model A's architecture with clone_model(), then copy its weights (since clone_model() does not clone the weights):

Reusing Pretrained Layers | 347

```
model_A_clone = keras.models.clone_model(model_A)
model_A_clone.set_weights(model_A.get_weights())
```

Now you could train model_B_on_A for task B, but since the new output layer was initialized randomly it will make large errors (at least during the first few epochs), so there will be large error gradients that may wreck the reused weights. To avoid this, one approach is to freeze the reused layers during the first few epochs, giving the new layer some time to learn reasonable weights. To do this, set every layer's trainable attribute to False and compile the model:

You must always compile your model after you freeze or unfreeze lavers.

Now you can train the model for a few epochs, then unfreeze the reused layers (which requires compiling the model again) and continue training to fine-tune the reused layers for task B. After unfreezing the reused layers, it is usually a good idea to reduce the learning rate, once again to avoid damaging the reused weights:

So, what's the final verdict? Well, this model's test accuracy is 99.25%, which means that transfer learning reduced the error rate from 2.8% down to almost 0.7%! That's a factor of four!

```
>>> model_B_on_A.evaluate(X_test_B, y_test_B)
[0.06887910133600235, 0.9925]
```

Are you convinced? You shouldn't be: I cheated! I tried many configurations until I found one that demonstrated a strong improvement. If you try to change the classes or the random seed, you will see that the improvement generally drops, or even vanishes or reverses. What I did is called "torturing the data until it confesses." When a

paper just looks too positive, you should be suspicious: perhaps the flashy new technique does not actually help much (in fact, it may even degrade performance), but the authors tried many variants and reported only the best results (which may be due to sheer luck), without mentioning how many failures they encountered on the way. Most of the time, this is not malicious at all, but it is part of the reason so many results in science can never be reproduced.

Why did I cheat? It turns out that transfer learning does not work very well with small dense networks, presumably because small networks learn few patterns, and dense networks learn very specific patterns, which are unlikely to be useful in other tasks. Transfer learning works best with deep convolutional neural networks, which tend to learn feature detectors that are much more general (especially in the lower layers). We will revisit transfer learning in Chapter 14, using the techniques we just discussed (and this time there will be no cheating, I promise!).

Unsupervised Pretraining

Suppose you want to tackle a complex task for which you don't have much labeled training data, but unfortunately you cannot find a model trained on a similar task. Don't lose hope! First, you should try to gather more labeled training data, but if you can't, you may still be able to perform *unsupervised pretraining* (see Figure 11-5). Indeed, it is often cheap to gather unlabeled training examples, but expensive to label them. If you can gather plenty of unlabeled training data, you can try to use it to train an unsupervised model, such as an autoencoder or a generative adversarial network (see Chapter 17). Then you can reuse the lower layers of the autoencoder or the lower layers of the GAN's discriminator, add the output layer for your task on top, and fine-tune the final network using supervised learning (i.e., with the labeled training examples).

It is this technique that Geoffrey Hinton and his team used in 2006 and which led to the revival of neural networks and the success of Deep Learning. Until 2010, unsupervised pretraining—typically with restricted Boltzmann machines (RBMs; see Appendix E)—was the norm for deep nets, and only after the vanishing gradients problem was alleviated did it become much more common to train DNNs purely using supervised learning. Unsupervised pretraining (today typically using autoencoders or GANs rather than RBMs) is still a good option when you have a complex task to solve, no similar model you can reuse, and little labeled training data but plenty of unlabeled training data.

Note that in the early days of Deep Learning it was difficult to train deep models, so people would use a technique called *greedy layer-wise pretraining* (depicted in Figure 11-5). They would first train an unsupervised model with a single layer, typically an RBM, then they would freeze that layer and add another one on top of it, then train the model again (effectively just training the new layer), then freeze the

new layer and add another layer on top of it, train the model again, and so on. Nowadays, things are much simpler: people generally train the full unsupervised model in one shot (i.e., in Figure 11-5, just start directly at step three) and use autoencoders or GANs rather than RBMs.

Figure 11-5. In unsupervised training, a model is trained on the unlabeled data (or on all the data) using an unsupervised learning technique, then it is fine-tuned for the final task on the labeled data using a supervised learning technique; the unsupervised part may train one layer at a time as shown here, or it may train the full model directly

Pretraining on an Auxiliary Task

If you do not have much labeled training data, one last option is to train a first neural network on an auxiliary task for which you can easily obtain or generate labeled training data, then reuse the lower layers of that network for your actual task. The first neural network's lower layers will learn feature detectors that will likely be reusable by the second neural network.

For example, if you want to build a system to recognize faces, you may only have a few pictures of each individual—clearly not enough to train a good classifier. Gathering hundreds of pictures of each person would not be practical. You could, however, gather a lot of pictures of random people on the web and train a first neural network to detect whether or not two different pictures feature the same person. Such a

network would learn good feature detectors for faces, so reusing its lower layers would allow you to train a good face classifier that uses little training data.

For natural language processing (NLP) applications, you can download a corpus of millions of text documents and automatically generate labeled data from it. For example, you could randomly mask out some words and train a model to predict what the missing words are (e.g., it should predict that the missing word in the sentence "What ____ you saying?" is probably "are" or "were"). If you can train a model to reach good performance on this task, then it will already know quite a lot about language, and you can certainly reuse it for your actual task and fine-tune it on your labeled data (we will discuss more pretraining tasks in Chapter 15).

Self-supervised learning is when you automatically generate the labels from the data itself, then you train a model on the resulting "labeled" dataset using supervised learning techniques. Since this approach requires no human labeling whatsoever, it is best classified as a form of unsupervised learning.

Faster Optimizers

Training a very large deep neural network can be painfully slow. So far we have seen four ways to speed up training (and reach a better solution): applying a good initialization strategy for the connection weights, using a good activation function, using Batch Normalization, and reusing parts of a pretrained network (possibly built on an auxiliary task or using unsupervised learning). Another huge speed boost comes from using a faster optimizer than the regular Gradient Descent optimizer. In this section we will present the most popular algorithms: momentum optimization, Nesterov Accelerated Gradient, AdaGrad, RMSProp, and finally Adam and Nadam optimization.

Momentum Optimization

Imagine a bowling ball rolling down a gentle slope on a smooth surface: it will start out slowly, but it will quickly pick up momentum until it eventually reaches terminal velocity (if there is some friction or air resistance). This is the very simple idea behind *momentum optimization*, proposed by Boris Polyak in 1964.¹³ In contrast, regular Gradient Descent will simply take small, regular steps down the slope, so the algorithm will take much more time to reach the bottom.

Faster Optimizers | 351

Recall that Gradient Descent updates the weights $\boldsymbol{\theta}$ by directly subtracting the gradient of the cost function $J(\boldsymbol{\theta})$ with regard to the weights $(\nabla_{\boldsymbol{\theta}}J(\boldsymbol{\theta}))$ multiplied by the learning rate η . The equation is: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}}J(\boldsymbol{\theta})$. It does not care about what the earlier gradients were. If the local gradient is tiny, it goes very slowly.

Momentum optimization cares a great deal about what previous gradients were: at each iteration, it subtracts the local gradient from the *momentum vector* \mathbf{m} (multiplied by the learning rate η), and it updates the weights by adding this momentum vector (see Equation 11-4). In other words, the gradient is used for acceleration, not for speed. To simulate some sort of friction mechanism and prevent the momentum from growing too large, the algorithm introduces a new hyperparameter β , called the *momentum*, which must be set between 0 (high friction) and 1 (no friction). A typical momentum value is 0.9.

Equation 11-4. Momentum algorithm

1.
$$\mathbf{m} \leftarrow \beta \mathbf{m} - \eta \nabla_{\mathbf{\theta}} J(\mathbf{\theta})$$

2.
$$\theta \leftarrow \theta + \mathbf{m}$$

You can easily verify that if the gradient remains constant, the terminal velocity (i.e., the maximum size of the weight updates) is equal to that gradient multiplied by the learning rate η multiplied by $1/(1-\beta)$ (ignoring the sign). For example, if $\beta=0.9$, then the terminal velocity is equal to 10 times the gradient times the learning rate, so momentum optimization ends up going 10 times faster than Gradient Descent! This allows momentum optimization to escape from plateaus much faster than Gradient Descent. We saw in Chapter 4 that when the inputs have very different scales, the cost function will look like an elongated bowl (see Figure 4-7). Gradient Descent goes down the steep slope quite fast, but then it takes a very long time to go down the valley. In contrast, momentum optimization will roll down the valley faster and faster until it reaches the bottom (the optimum). In deep neural networks that don't use Batch Normalization, the upper layers will often end up having inputs with very different scales, so using momentum optimization helps a lot. It can also help roll past local optima.

Due to the momentum, the optimizer may overshoot a bit, then come back, overshoot again, and oscillate like this many times before stabilizing at the minimum. This is one of the reasons it's good to have a bit of friction in the system: it gets rid of these oscillations and thus speeds up convergence.

Implementing momentum optimization in Keras is a no-brainer: just use the SGD optimizer and set its momentum hyperparameter, then lie back and profit!

¹³ Boris T. Polyak, "Some Methods of Speeding Up the Convergence of Iteration Methods," USSR Computational Mathematics and Mathematical Physics 4, no. 5 (1964): 1–17.

```
optimizer = keras.optimizers.SGD(lr=0.001, momentum=0.9)
```

The one drawback of momentum optimization is that it adds yet another hyperparameter to tune. However, the momentum value of 0.9 usually works well in practice and almost always goes faster than regular Gradient Descent.

Nesteroy Accelerated Gradient

One small variant to momentum optimization, proposed by Yurii Nesterov in 1983, ¹⁴ is almost always faster than vanilla momentum optimization. The *Nesterov Accelerated Gradient* (NAG) method, also known as *Nesterov momentum optimization*, measures the gradient of the cost function not at the local position θ but slightly ahead in the direction of the momentum, at $\theta + \beta m$ (see Equation 11-5).

Equation 11-5. Nesterov Accelerated Gradient algorithm

- 1. $\mathbf{m} \leftarrow \beta \mathbf{m} \eta \nabla_{\mathbf{\theta}} J(\mathbf{\theta} + \beta \mathbf{m})$
- 2. $\theta \leftarrow \theta + m$

This small tweak works because in general the momentum vector will be pointing in the right direction (i.e., toward the optimum), so it will be slightly more accurate to use the gradient measured a bit farther in that direction rather than the gradient at the original position, as you can see in Figure 11-6 (where ∇_1 represents the gradient of the cost function measured at the starting point θ , and ∇_2 represents the gradient at the point located at $\theta + \beta m$).

As you can see, the Nesterov update ends up slightly closer to the optimum. After a while, these small improvements add up and NAG ends up being significantly faster than regular momentum optimization. Moreover, note that when the momentum pushes the weights across a valley, ∇_1 continues to push farther across the valley, while ∇_2 pushes back toward the bottom of the valley. This helps reduce oscillations and thus NAG converges faster.

NAG is generally faster than regular momentum optimization. To use it, simply set nesterov=True when creating the SGD optimizer:

```
optimizer = keras.optimizers.SGD(lr=0.001, momentum=0.9, nesterov=True)
```

Faster Optimizers | 353

Figure 11-6. Regular versus Nesterov momentum optimization: the former applies the gradients computed before the momentum step, while the latter applies the gradients computed after

AdaGrad

Consider the elongated bowl problem again: Gradient Descent starts by quickly going down the steepest slope, which does not point straight toward the global optimum, then it very slowly goes down to the bottom of the valley. It would be nice if the algorithm could correct its direction earlier to point a bit more toward the global optimum. The *AdaGrad* algorithm¹⁵ achieves this correction by scaling down the gradient vector along the steepest dimensions (see Equation 11-6).

Equation 11-6. AdaGrad algorithm

- 1. $\mathbf{s} \leftarrow \mathbf{s} + \nabla_{\mathbf{\theta}} J(\mathbf{\theta}) \otimes \nabla_{\mathbf{\theta}} J(\mathbf{\theta})$
- 2. $\theta \leftarrow \theta n \nabla_0 I(\theta) \oslash \sqrt{s + \varepsilon}$

The first step accumulates the square of the gradients into the vector \mathbf{s} (recall that the \otimes symbol represents the element-wise multiplication). This vectorized form is equivalent to computing $s_i \leftarrow s_i + (\partial J(\mathbf{0}) / \partial \theta_i)^2$ for each element s_i of the vector \mathbf{s} ; in other words, each s_i accumulates the squares of the partial derivative of the cost function with regard to parameter θ_i . If the cost function is steep along the ith dimension, then s_i will get larger and larger at each iteration.

The second step is almost identical to Gradient Descent, but with one big difference: the gradient vector is scaled down by a factor of $\sqrt{s+\varepsilon}$ (the \oslash symbol represents the

¹⁴ Yurii Nesterov, "A Method for Unconstrained Convex Minimization Problem with the Rate of Convergence O(1/k²)," Doklady AN USSR 269 (1983): 543–547.

¹⁵ John Duchi et al., "Adaptive Subgradient Methods for Online Learning and Stochastic Optimization," *Journal of Machine Learning Research* 12 (2011): 2121–2159.

element-wise division, and ε is a smoothing term to avoid division by zero, typically set to 10^{-10}). This vectorized form is equivalent to simultaneously computing $\theta_i \leftarrow \theta_i - \eta \, \partial J(\mathbf{0}) / \, \partial \theta_i / \, \sqrt{s_i + \varepsilon}$ for all parameters θ_i .

In short, this algorithm decays the learning rate, but it does so faster for steep dimensions than for dimensions with gentler slopes. This is called an *adaptive learning rate*. It helps point the resulting updates more directly toward the global optimum (see Figure 11-7). One additional benefit is that it requires much less tuning of the learning rate hyperparameter η .

Figure 11-7. AdaGrad versus Gradient Descent: the former can correct its direction earlier to point to the optimum

AdaGrad frequently performs well for simple quadratic problems, but it often stops too early when training neural networks. The learning rate gets scaled down so much that the algorithm ends up stopping entirely before reaching the global optimum. So even though Keras has an Adagrad optimizer, you should not use it to train deep neural networks (it may be efficient for simpler tasks such as Linear Regression, though). Still, understanding AdaGrad is helpful to grasp the other adaptive learning rate optimizers.

RMSProp

As we've seen, AdaGrad runs the risk of slowing down a bit too fast and never converging to the global optimum. The RMSProp algorithm¹⁶ fixes this by accumulating only the gradients from the most recent iterations (as opposed to all the gradients

Faster Optimizers | 355

since the beginning of training). It does so by using exponential decay in the first step (see Equation 11-7).

Equation 11-7. RMSProp algorithm

1.
$$\mathbf{s} \leftarrow \beta \mathbf{s} + (1 - \beta) \nabla_{\mathbf{\theta}} J(\mathbf{\theta}) \otimes \nabla_{\mathbf{\theta}} J(\mathbf{\theta})$$

2.
$$\theta \leftarrow \theta - \eta \nabla_{\theta} J(\theta) \oslash \sqrt{s + \varepsilon}$$

The decay rate β is typically set to 0.9. Yes, it is once again a new hyperparameter, but this default value often works well, so you may not need to tune it at all.

As you might expect, Keras has an RMSprop optimizer:

```
optimizer = keras.optimizers.RMSprop(lr=0.001, rho=0.9)
```

Note that the rho argument corresponds to β in Equation 11-7. Except on very simple problems, this optimizer almost always performs much better than AdaGrad. In fact, it was the preferred optimization algorithm of many researchers until Adam optimization came around.

Adam and Nadam Optimization

Adam,¹⁷ which stands for adaptive moment estimation, combines the ideas of momentum optimization and RMSProp: just like momentum optimization, it keeps track of an exponentially decaying average of past gradients; and just like RMSProp, it keeps track of an exponentially decaying average of past squared gradients (see Equation 11-8).¹⁸

Equation 11-8. Adam algorithm

1.
$$\mathbf{m} \leftarrow \beta_1 \mathbf{m} - (1 - \beta_1) \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

2.
$$\mathbf{s} \leftarrow \beta_2 \mathbf{s} + (1 - \beta_2) \nabla_{\mathbf{\theta}} J(\mathbf{\theta}) \otimes \nabla_{\mathbf{\theta}} J(\mathbf{\theta})$$

$$3. \quad \widehat{\mathbf{m}} \leftarrow \frac{\mathbf{m}}{1 - \beta_1^t}$$

4.
$$\widehat{\mathbf{s}} \leftarrow \frac{\mathbf{s}}{1 - \beta_2^t}$$

5.
$$\theta \leftarrow \theta + \eta \widehat{\mathbf{m}} \oslash \sqrt{\widehat{\mathbf{s}} + \varepsilon}$$

Chapter 11: Training Deep Neural Networks

¹⁶ This algorithm was created by Geoffrey Hinton and Tijmen Tieleman in 2012 and presented by Geoffrey Hinton in his Coursera class on neural networks (slides: https://homl.info/57; video: https://homl.info/58). Amusingly, since the authors did not write a paper to describe the algorithm, researchers often cite "slide 29 in lecture 6" in their papers.

¹⁷ Diederik P. Kingma and Jimmy Ba, "Adam: A Method for Stochastic Optimization," arXiv preprint arXiv: 1412.6980 (2014).

¹⁸ These are estimations of the mean and (uncentered) variance of the gradients. The mean is often called the *first moment* while the variance is often called the *second moment*, hence the name of the algorithm.

In this equation, t represents the iteration number (starting at 1).

If you just look at steps 1, 2, and 5, you will notice Adam's close similarity to both momentum optimization and RMSProp. The only difference is that step 1 computes an exponentially decaying average rather than an exponentially decaying sum, but these are actually equivalent except for a constant factor (the decaying average is just $1 - \beta_1$ times the decaying sum). Steps 3 and 4 are somewhat of a technical detail: since **m** and **s** are initialized at 0, they will be biased toward 0 at the beginning of training, so these two steps will help boost **m** and **s** at the beginning of training.

The momentum decay hyperparameter β_1 is typically initialized to 0.9, while the scaling decay hyperparameter β_2 is often initialized to 0.999. As earlier, the smoothing term ε is usually initialized to a tiny number such as 10^{-7} . These are the default values for the Adam class (to be precise, epsilon defaults to None, which tells Keras to use keras.backend.epsilon(), which defaults to 10^{-7} ; you can change it using keras.backend.set_epsilon()). Here is how to create an Adam optimizer using Keras:

```
optimizer = keras.optimizers.Adam(lr=0.001, beta 1=0.9, beta 2=0.999)
```

Since Adam is an adaptive learning rate algorithm (like AdaGrad and RMSProp), it requires less tuning of the learning rate hyperparameter η . You can often use the default value $\eta = 0.001$, making Adam even easier to use than Gradient Descent.

If you are starting to feel overwhelmed by all these different techniques and are wondering how to choose the right ones for your task, don't worry: some practical guidelines are provided at the end of this chapter.

Finally, two variants of Adam are worth mentioning:

AdaMax

Notice that in step 2 of Equation 11-8, Adam accumulates the squares of the gradients in s (with a greater weight for more recent gradients). In step 5, if we ignore ε and steps 3 and 4 (which are technical details anyway), Adam scales down the parameter updates by the square root of s. In short, Adam scales down the parameter updates by the ℓ_2 norm of the time-decayed gradients (recall that the ℓ_2 norm is the square root of the sum of squares). AdaMax, introduced in the same paper as Adam, replaces the ℓ_2 norm with the ℓ_∞ norm (a fancy way of saying the max). Specifically, it replaces step 2 in Equation 11-8 with $s \leftarrow \max(\beta_2 s, \ \nabla_\theta J(\theta))$, it drops step 4, and in step 5 it scales down the gradient updates by a factor of s, which is just the max of the time-decayed gradients. In practice, this can make AdaMax more stable than Adam, but it really depends on

Faster Optimizers | 357

the dataset, and in general Adam performs better. So, this is just one more optimizer you can try if you experience problems with Adam on some task.

Nadam

Nadam optimization is Adam optimization plus the Nesterov trick, so it will often converge slightly faster than Adam. In his report introducing this technique, 19 the researcher Timothy Dozat compares many different optimizers on various tasks and finds that Nadam generally outperforms Adam but is sometimes outperformed by RMSProp.

Adaptive optimization methods (including RMSProp, Adam, and Nadam optimization) are often great, converging fast to a good solution. However, a 2017 paper²⁰ by Ashia C. Wilson et al. showed that they can lead to solutions that generalize poorly on some datasets. So when you are disappointed by your model's performance, try using plain Nesterov Accelerated Gradient instead: your dataset may just be allergic to adaptive gradients. Also check out the latest research, because it's moving fast.

All the optimization techniques discussed so far only rely on the *first-order partial derivatives* (*Jacobians*). The optimization literature also contains amazing algorithms based on the *second-order partial derivatives* (the *Hessians*, which are the partial derivatives of the Jacobians). Unfortunately, these algorithms are very hard to apply to deep neural networks because there are n^2 Hessians per output (where n is the number of parameters), as opposed to just n Jacobians per output. Since DNNs typically have tens of thousands of parameters, the second-order optimization algorithms often don't even fit in memory, and even when they do, computing the Hessians is just too slow.

Chapter 11: Training Deep Neural Networks

¹⁹ Timothy Dozat, "Incorporating Nesterov Momentum into Adam" (2016).

²⁰ Ashia C. Wilson et al., "The Marginal Value of Adaptive Gradient Methods in Machine Learning," Advances in Neural Information Processing Systems 30 (2017): 4148–4158.

Training Sparse Models

All the optimization algorithms just presented produce dense models, meaning that most parameters will be nonzero. If you need a blazingly fast model at runtime, or if you need it to take up less memory, you may prefer to end up with a sparse model instead.

One easy way to achieve this is to train the model as usual, then get rid of the tiny weights (set them to zero). Note that this will typically not lead to a very sparse model, and it may degrade the model's performance.

A better option is to apply strong ℓ_1 regularization during training (we will see how later in this chapter), as it pushes the optimizer to zero out as many weights as it can (as discussed in "Lasso Regression" on page 137 in Chapter 4).

If these techniques remain insufficient, check out the TensorFlow Model Optimization Toolkit (TF-MOT), which provides a pruning API capable of iteratively removing connections during training based on their magnitude.

Table 11-2 compares all the optimizers we've discussed so far (* is bad, ** is average, and *** is good).

Table 11-2.	Optimizer	comparison
-------------	-----------	------------

Class	Convergence speed	Convergence quality
SGD	*	***
SGD(momentum=)	**	***
SGD(momentum=, nesterov=True)	**	***
Adagrad	***	* (stops too early)
RMSprop	***	** or ***
Adam	***	** or ***
Nadam	***	** or ***
AdaMax	***	** or ***

Learning Rate Scheduling

Finding a good learning rate is very important. If you set it much too high, training may diverge (as we discussed in "Gradient Descent" on page 118). If you set it too low, training will eventually converge to the optimum, but it will take a very long time. If you set it slightly too high, it will make progress very quickly at first, but it will end up dancing around the optimum, never really settling down. If you have a limited computing budget, you may have to interrupt training before it has converged properly, yielding a suboptimal solution (see Figure 11-8).

Faster Optimizers | 359

Figure 11-8. Learning curves for various learning rates η

As we discussed in Chapter 10, you can find a good learning rate by training the model for a few hundred iterations, exponentially increasing the learning rate from a very small value to a very large value, and then looking at the learning curve and picking a learning rate slightly lower than the one at which the learning curve starts shooting back up. You can then reinitialize your model and train it with that learning rate.

But you can do better than a constant learning rate: if you start with a large learning rate and then reduce it once training stops making fast progress, you can reach a good solution faster than with the optimal constant learning rate. There are many different strategies to reduce the learning rate during training. It can also be beneficial to start with a low learning rate, increase it, then drop it again. These strategies are called *learning schedules* (we briefly introduced this concept in Chapter 4). These are the most commonly used learning schedules:

Power scheduling

Set the learning rate to a function of the iteration number t: $\eta(t) = \eta_0 / (1 + t/s)^c$. The initial learning rate η_0 , the power c (typically set to 1), and the steps s are hyperparameters. The learning rate drops at each step. After s steps, it is down to $\eta_0 / 2$. After s more steps, it is down to $\eta_0 / 3$, then it goes down to $\eta_0 / 4$, then $\eta_0 / 5$, and so on. As you can see, this schedule first drops quickly, then more and more slowly. Of course, power scheduling requires tuning η_0 and s (and possibly s).

Exponential scheduling

Set the learning rate to $\eta(t) = \eta_0 \ 0.1^{t/s}$. The learning rate will gradually drop by a factor of 10 every s steps. While power scheduling reduces the learning rate more and more slowly, exponential scheduling keeps slashing it by a factor of 10 every s steps.

Piecewise constant scheduling

Use a constant learning rate for a number of epochs (e.g., $\eta_0 = 0.1$ for 5 epochs), then a smaller learning rate for another number of epochs (e.g., $\eta_1 = 0.001$ for 50 epochs), and so on. Although this solution can work very well, it requires fiddling around to figure out the right sequence of learning rates and how long to use each of them.

Performance scheduling

Measure the validation error every N steps (just like for early stopping), and reduce the learning rate by a factor of λ when the error stops dropping.

1cycle scheduling

Contrary to the other approaches, 1cycle (introduced in a 2018 paper²¹ by Leslie Smith) starts by increasing the initial learning rate η_0 , growing linearly up to η_1 halfway through training. Then it decreases the learning rate linearly down to η_0 again during the second half of training, finishing the last few epochs by dropping the rate down by several orders of magnitude (still linearly). The maximum learning rate η_1 is chosen using the same approach we used to find the optimal learning rate, and the initial learning rate η_0 is chosen to be roughly 10 times lower. When using a momentum, we start with a high momentum first (e.g., 0.95), then drop it down to a lower momentum during the first half of training (e.g., down to 0.85, linearly), and then bring it back up to the maximum value (e.g., 0.95) during the second half of training, finishing the last few epochs with that maximum value. Smith did many experiments showing that this approach was often able to speed up training considerably and reach better performance. For example, on the popular CIFAR10 image dataset, this approach reached 91.9% validation accuracy in just 100 epochs, instead of 90.3% accuracy in 800 epochs through a standard approach (with the same neural network architecture).

A 2013 paper²² by Andrew Senior et al. compared the performance of some of the most popular learning schedules when using momentum optimization to train deep neural networks for speech recognition. The authors concluded that, in this setting, both performance scheduling and exponential scheduling performed well. They favored exponential scheduling because it was easy to tune and it converged slightly faster to the optimal solution (they also mentioned that it was easier to implement

Faster Optimizers | 361

than performance scheduling, but in Keras both options are easy). That said, the lcycle approach seems to perform even better.

Implementing power scheduling in Keras is the easiest option: just set the decay hyperparameter when creating an optimizer:

```
optimizer = keras.optimizers.SGD(lr=0.01. decay=1e-4)
```

The decay is the inverse of *s* (the number of steps it takes to divide the learning rate by one more unit), and Keras assumes that *c* is equal to 1.

Exponential scheduling and piecewise scheduling are quite simple too. You first need to define a function that takes the current epoch and returns the learning rate. For example, let's implement exponential scheduling:

```
def exponential_decay_fn(epoch):
    return 0.01 * 0.1**(epoch / 20)
```

If you do not want to hardcode η_0 and s, you can create a function that returns a configured function:

```
def exponential_decay(lr0, s):
    def exponential_decay_fn(epoch):
        return lr0 * 0.1**(epoch / s)
    return exponential_decay_fn

exponential_decay_fn = exponential_decay(lr0=0.01, s=20)
```

Next, create a LearningRateScheduler callback, giving it the schedule function, and pass this callback to the fit() method:

```
lr_scheduler = keras.callbacks.LearningRateScheduler(exponential_decay_fn)
history = model.fit(X_train_scaled, y_train, [...], callbacks=[lr_scheduler])
```

The LearningRateScheduler will update the optimizer's learning_rate attribute at the beginning of each epoch. Updating the learning rate once per epoch is usually enough, but if you want it to be updated more often, for example at every step, you can always write your own callback (see the "Exponential Scheduling" section of the notebook for an example). Updating the learning rate at every step makes sense if there are many steps per epoch. Alternatively, you can use the keras.optimizers.schedules approach, described shortly.

The schedule function can optionally take the current learning rate as a second argument. For example, the following schedule function multiplies the previous learning rate by $0.1^{1/20}$, which results in the same exponential decay (except the decay now starts at the beginning of epoch 0 instead of 1):

```
def exponential_decay_fn(epoch, lr):
    return lr * 0.1**(1 / 20)
```

²¹ Leslie N. Smith, "A Disciplined Approach to Neural Network Hyper-Parameters: Part 1—Learning Rate, Batch Size, Momentum, and Weight Decay," arXiv preprint arXiv:1803.09820 (2018).

²² Andrew Senior et al., "An Empirical Study of Learning Rates in Deep Neural Networks for Speech Recognition," Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (2013): 6724–6728.

This implementation relies on the optimizer's initial learning rate (contrary to the previous implementation), so make sure to set it appropriately.

When you save a model, the optimizer and its learning rate get saved along with it. This means that with this new schedule function, you could just load a trained model and continue training where it left off, no problem. Things are not so simple if your schedule function uses the epoch argument, however: the epoch does not get saved, and it gets reset to 0 every time you call the fit() method. If you were to continue training a model where it left off, this could lead to a very large learning rate, which would likely damage your model's weights. One solution is to manually set the fit() method's initial epoch argument so the epoch starts at the right value.

For piecewise constant scheduling, you can use a schedule function like the following one (as earlier, you can define a more general function if you want; see the "Piecewise Constant Scheduling" section of the notebook for an example), then create a Lear ningRateScheduler callback with this function and pass it to the fit() method, just like we did for exponential scheduling:

```
def piecewise_constant_fn(epoch):
   if epoch < 5:
       return 0.01
   elif epoch < 15:
       return 0.005
   else:
       return 0.001</pre>
```

For performance scheduling, use the ReduceLROnPlateau callback. For example, if you pass the following callback to the fit() method, it will multiply the learning rate by 0.5 whenever the best validation loss does not improve for five consecutive epochs (other options are available; please check the documentation for more details):

```
lr_scheduler = keras.callbacks.ReduceLROnPlateau(factor=0.5, patience=5)
```

Lastly, tf.keras offers an alternative way to implement learning rate scheduling: define the learning rate using one of the schedules available in keras.optimizers.sched ules, then pass this learning rate to any optimizer. This approach updates the learning rate at each step rather than at each epoch. For example, here is how to implement the same exponential schedule as the exponential_decay_fn() function we defined earlier:

```
s = 20 * len(X_train) // 32 # number of steps in 20 epochs (batch size = 32) learning_rate = keras.optimizers.schedules.ExponentialDecay(0.01, s, 0.1) optimizer = keras.optimizers.SGD(learning_rate)
```

This is nice and simple, plus when you save the model, the learning rate and its schedule (including its state) get saved as well. This approach, however, is not part of the Keras API; it is specific to tf.keras.

Faster Optimizers | 363

As for the 1cycle approach, the implementation poses no particular difficulty: just create a custom callback that modifies the learning rate at each iteration (you can update the optimizer's learning rate by changing self.model.optimizer.lr). See the "1Cycle scheduling" section of the notebook for an example.

To sum up, exponential decay, performance scheduling, and 1 cycle can considerably speed up convergence, so give them a try!

Avoiding Overfitting Through Regularization

With four parameters I can fit an elephant and with five I can make him wiggle his trunk.

```
—John von Neumann, cited by Enrico Fermi in Nature 427
```

With thousands of parameters, you can fit the whole zoo. Deep neural networks typically have tens of thousands of parameters, sometimes even millions. This gives them an incredible amount of freedom and means they can fit a huge variety of complex datasets. But this great flexibility also makes the network prone to overfitting the training set. We need regularization.

We already implemented one of the best regularization techniques in Chapter 10: early stopping. Moreover, even though Batch Normalization was designed to solve the unstable gradients problems, it also acts like a pretty good regularizer. In this section we will examine other popular regularization techniques for neural networks: ℓ_1 and ℓ_2 regularization, dropout, and max-norm regularization.

ℓ, and ℓ, Regularization

Just like you did in Chapter 4 for simple linear models, you can use ℓ_2 regularization to constrain a neural network's connection weights, and/or ℓ_1 regularization if you want a sparse model (with many weights equal to 0). Here is how to apply ℓ_2 regularization to a Keras layer's connection weights, using a regularization factor of 0.01:

The l2() function returns a regularizer that will be called at each step during training to compute the regularization loss. This is then added to the final loss. As you might expect, you can just use keras.regularizers.l1() if you want ℓ_1 regularization; if you want both ℓ_1 and ℓ_2 regularization, use keras.regularizers.l1_l2() (specifying both regularization factors).

Since you will typically want to apply the same regularizer to all layers in your network, as well as using the same activation function and the same initialization strategy in all hidden layers, you may find yourself repeating the same arguments. This

makes the code ugly and error-prone. To avoid this, you can try refactoring your code to use loops. Another option is to use Python's functools.partial() function, which lets you create a thin wrapper for any callable, with some default argument values:

Dropout

Dropout is one of the most popular regularization techniques for deep neural networks. It was proposed in a paper²³ by Geoffrey Hinton in 2012 and further detailed in a 2014 paper²⁴ by Nitish Srivastava et al., and it has proven to be highly successful: even the state-of-the-art neural networks get a 1–2% accuracy boost simply by adding dropout. This may not sound like a lot, but when a model already has 95% accuracy, getting a 2% accuracy boost means dropping the error rate by almost 40% (going from 5% error to roughly 3%).

It is a fairly simple algorithm: at every training step, every neuron (including the input neurons, but always excluding the output neurons) has a probability *p* of being temporarily "dropped out," meaning it will be entirely ignored during this training step, but it may be active during the next step (see Figure 11-9). The hyperparameter *p* is called the *dropout rate*, and it is typically set between 10% and 50%: closer to 20–30% in recurrent neural nets (see Chapter 15), and closer to 40–50% in convolutional neural networks (see Chapter 14). After training, neurons don't get dropped anymore. And that's all (except for a technical detail we will discuss momentarily).

Figure 11-9. With dropout regularization, at each training iteration a random subset of all neurons in one or more layers—except the output layer—are "dropped out"; these neurons output 0 at this iteration (represented by the dashed arrows)

It's surprising at first that this destructive technique works at all. Would a company perform better if its employees were told to toss a coin every morning to decide whether or not to go to work? Well, who knows; perhaps it would! The company would be forced to adapt its organization; it could not rely on any single person to work the coffee machine or perform any other critical tasks, so this expertise would have to be spread across several people. Employees would have to learn to cooperate with many of their coworkers, not just a handful of them. The company would become much more resilient. If one person quit, it wouldn't make much of a difference. It's unclear whether this idea would actually work for companies, but it certainly does for neural networks. Neurons trained with dropout cannot co-adapt with their neighboring neurons; they have to be as useful as possible on their own. They also cannot rely excessively on just a few input neurons; they must pay attention to each of their input neurons. They end up being less sensitive to slight changes in the inputs. In the end, you get a more robust network that generalizes better.

Another way to understand the power of dropout is to realize that a unique neural network is generated at each training step. Since each neuron can be either present or absent, there are a total of 2^N possible networks (where N is the total number of droppable neurons). This is such a huge number that it is virtually impossible for the same neural network to be sampled twice. Once you have run 10,000 training steps, you have essentially trained 10,000 different neural networks (each with just one training instance). These neural networks are obviously not independent because they share many of their weights, but they are nevertheless all different. The resulting neural network can be seen as an averaging ensemble of all these smaller neural networks.

²³ Geoffrey E. Hinton et al., "Improving Neural Networks by Preventing Co-Adaptation of Feature Detectors," arXiv preprint arXiv:1207.0580 (2012).

²⁴ Nitish Srivastava et al., "Dropout: A Simple Way to Prevent Neural Networks from Overfitting," Journal of Machine Learning Research 15 (2014): 1929–1958.

In practice, you can usually apply dropout only to the neurons in the top one to three layers (excluding the output layer).

There is one small but important technical detail. Suppose p=50%, in which case during testing a neuron would be connected to twice as many input neurons as it would be (on average) during training. To compensate for this fact, we need to multiply each neuron's input connection weights by 0.5 after training. If we don't, each neuron will get a total input signal roughly twice as large as what the network was trained on and will be unlikely to perform well. More generally, we need to multiply each input connection weight by the *keep probability* (1-p) after training. Alternatively, we can divide each neuron's output by the keep probability during training (these alternatives are not perfectly equivalent, but they work equally well).

To implement dropout using Keras, you can use the keras.layers.Dropout layer. During training, it randomly drops some inputs (setting them to 0) and divides the remaining inputs by the keep probability. After training, it does nothing at all; it just passes the inputs to the next layer. The following code applies dropout regularization before every Dense layer, using a dropout rate of 0.2:

```
model = keras.models.Sequential([
    keras.layers.Flatten(input_shape=[28, 28]),
    keras.layers.Dropout(rate=0.2),
    keras.layers.Dense(300, activation="elu", kernel_initializer="he_normal"),
    keras.layers.Dropout(rate=0.2),
    keras.layers.Dense(100, activation="elu", kernel_initializer="he_normal"),
    keras.layers.Dropout(rate=0.2),
    keras.layers.Dropout(rate=0.2),
    keras.layers.Dense(10, activation="softmax")
])
```


Since dropout is only active during training, comparing the training loss and the validation loss can be misleading. In particular, a model may be overfitting the training set and yet have similar training and validation losses. So make sure to evaluate the training loss without dropout (e.g., after training).

If you observe that the model is overfitting, you can increase the dropout rate. Conversely, you should try decreasing the dropout rate if the model underfits the training set. It can also help to increase the dropout rate for large layers, and reduce it for small ones. Moreover, many state-of-the-art architectures only use dropout after the last hidden layer, so you may want to try this if full dropout is too strong.

Avoiding Overfitting Through Regularization | 367

Dropout does tend to significantly slow down convergence, but it usually results in a much better model when tuned properly. So, it is generally well worth the extra time and effort.

If you want to regularize a self-normalizing network based on the SELU activation function (as discussed earlier), you should use *alpha dropout*: this is a variant of dropout that preserves the mean and standard deviation of its inputs (it was introduced in the same paper as SELU, as regular dropout would break self-normalization).

Monte Carlo (MC) Dropout

In 2016, a paper²⁵ by Yarin Gal and Zoubin Ghahramani added a few more good reasons to use dropout:

- First, the paper established a profound connection between dropout networks (i.e., neural networks containing a Dropout layer before every weight layer) and approximate Bayesian inference,²⁶ giving dropout a solid mathematical justification.
- Second, the authors introduced a powerful technique called MC Dropout, which
 can boost the performance of any trained dropout model without having to
 retrain it or even modify it at all, provides a much better measure of the model's
 uncertainty, and is also amazingly simple to implement.

If this all sounds like a "one weird trick" advertisement, then take a look at the following code. It is the full implementation of *MC Dropout*, boosting the dropout model we trained earlier without retraining it:

Note that model(X) is similar to model.predict(X) except it returns a tensor rather than a NumPy array, and it supports the training argument. In this code example, setting training=True ensures that the Dropout layer remains active, so all predictions will be a bit different. We just make 100 predictions over the test set, and we stack them. Each call to the model returns a matrix with one row per instance and one column per class. Because there are 10,000 instances in the test set and 10 classes, this is a matrix of shape [10000, 10]. We stack 100 such matrices, so y_probas is an

Chapter 11: Training Deep Neural Networks

²⁵ Yarin Gal and Zoubin Ghahramani, "Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning," Proceedings of the 33rd International Conference on Machine Learning (2016): 1050–1059.

²⁶ Specifically, they show that training a dropout network is mathematically equivalent to approximate Bayesian inference in a specific type of probabilistic model called a *Deep Gaussian Process*.

array of shape [100, 10000, 10]. Once we average over the first dimension (axis=0), we get y_proba, an array of shape [10000, 10], like we would get with a single prediction. That's all! Averaging over multiple predictions with dropout on gives us a Monte Carlo estimate that is generally more reliable than the result of a single prediction with dropout off. For example, let's look at the model's prediction for the first instance in the Fashion MNIST test set, with dropout off:

The model seems almost certain that this image belongs to class 9 (ankle boot). Should you trust it? Is there really so little room for doubt? Compare this with the predictions made when dropout is activated:

```
>>> np.round(y_probas[:, :1], 2)
array([[0. ,0. ,0. ,0. ,0. ,0.14, 0. ,0.17, 0. ,0.68]],
        [[0. ,0. ,0. ,0. ,0. ,0.16, 0. ,0.2 ,0. ,0.64]],
        [[0. ,0. ,0. ,0. ,0. ,0.02, 0. ,0.01, 0. ,0.97]],
        [...]
```

This tells a very different story: apparently, when we activate dropout, the model is not sure anymore. It still seems to prefer class 9, but sometimes it hesitates with classes 5 (sandal) and 7 (sneaker), which makes sense given they're all footwear. Once we average over the first dimension, we get the following MC Dropout predictions:

The model still thinks this image belongs to class 9, but only with a 62% confidence, which seems much more reasonable than 99%. Plus it's useful to know exactly which other classes it thinks are likely. And you can also take a look at the standard deviation of the probability estimates:

Apparently there's quite a lot of variance in the probability estimates: if you were building a risk-sensitive system (e.g., a medical or financial system), you should probably treat such an uncertain prediction with extreme caution. You definitely would not treat it like a 99% confident prediction. Moreover, the model's accuracy got a small boost from 86.8 to 86.9:

```
>>> accuracy = np.sum(y_pred == y_test) / len(y_test)
>>> accuracy
0.8694
```

Avoiding Overfitting Through Regularization | 369

The number of Monte Carlo samples you use (100 in this example) is a hyperparameter you can tweak. The higher it is, the more accurate the predictions and their uncertainty estimates will be. However, if you double it, inference time will also be doubled. Moreover, above a certain number of samples, you will notice little improvement. So your job is to find the right trade-off between latency and accuracy, depending on your application.

If your model contains other layers that behave in a special way during training (such as BatchNormalization layers), then you should not force training mode like we just did. Instead, you should replace the Dropout layers with the following MCDropout class:²⁷

```
class MCDropout(keras.layers.Dropout):
    def call(self, inputs):
        return super().call(inputs, training=True)
```

Here, we just subclass the Dropout layer and override the call() method to force its training argument to True (see Chapter 12). Similarly, you could define an MCAlpha Dropout class by subclassing AlphaDropout instead. If you are creating a model from scratch, it's just a matter of using MCDropout rather than Dropout. But if you have a model that was already trained using Dropout, you need to create a new model that's identical to the existing model except that it replaces the Dropout layers with MCDrop out, then copy the existing model's weights to your new model.

In short, MC Dropout is a fantastic technique that boosts dropout models and provides better uncertainty estimates. And of course, since it is just regular dropout during training, it also acts like a regularizer.

Max-Norm Regularization

Another regularization technique that is popular for neural networks is called *max-norm regularization*: for each neuron, it constrains the weights **w** of the incoming connections such that $\| \mathbf{w} \|_2 \le r$, where r is the max-norm hyperparameter and $\| \cdot \|_2$ is the ℓ , norm.

Max-norm regularization does not add a regularization loss term to the overall loss function. Instead, it is typically implemented by computing $\|\mathbf{w}\|_2$ after each training step and rescaling \mathbf{w} if needed ($\mathbf{w} \leftarrow \mathbf{w} \, r/\|\mathbf{w}\|_2$).

370 | Chapter 11: Training Deep Neural Networks

²⁷ This MCDropout class will work with all Keras APIs, including the Sequential API. If you only care about the Functional API or the Subclassing API, you do not have to create an MCDropout class; you can create a regular Dropout layer and call it with training=True.

Reducing *r* increases the amount of regularization and helps reduce overfitting. Maxnorm regularization can also help alleviate the unstable gradients problems (if you are not using Batch Normalization).

To implement max-norm regularization in Keras, set the kernel_constraint argument of each hidden layer to a max_norm() constraint with the appropriate max value, like this:

After each training iteration, the model's fit() method will call the object returned by max_norm(), passing it the layer's weights and getting rescaled weights in return, which then replace the layer's weights. As you'll see in Chapter 12, you can define your own custom constraint function if necessary and use it as the kernel_con straint. You can also constrain the bias terms by setting the bias_constraint argument.

The max_norm() function has an axis argument that defaults to 0. A Dense layer usually has weights of shape [number of inputs, number of neurons], so using axis=0 means that the max-norm constraint will apply independently to each neuron's weight vector. If you want to use max-norm with convolutional layers (see Chapter 14), make sure to set the max_norm() constraint's axis argument appropriately (usually axis=[0, 1, 2]).

Summary and Practical Guidelines

In this chapter we have covered a wide range of techniques, and you may be wondering which ones you should use. This depends on the task, and there is no clear consensus yet, but I have found the configuration in Table 11-3 to work fine in most cases, without requiring much hyperparameter tuning. That said, please do not consider these defaults as hard rules!

Table 11-3. Default DNN configuration

Hyperparameter	Default value
Kernel initializer	He initialization
Activation function	ELU
Normalization	None if shallow; Batch Norm if deep
Regularization	Early stopping ($+\ell_2$ reg. if needed)
Optimizer	Momentum optimization (or RMSProp or Nadam)
Learning rate schedule	1cycle

Summary and Practical Guidelines | 371

If the network is a simple stack of dense layers, then it can self-normalize, and you should use the configuration in Table 11-4 instead.

Table 11-4. DNN configuration for a self-normalizing net

Hyperparameter	Default value
Kernel initializer	LeCun initialization
Activation function	SELU
Normalization	None (self-normalization)
Regularization	Alpha dropout if needed
Optimizer	Momentum optimization (or RMSProp or Nadam)
Learning rate schedule	1cycle

Don't forget to normalize the input features! You should also try to reuse parts of a pretrained neural network if you can find one that solves a similar problem, or use unsupervised pretraining if you have a lot of unlabeled data, or use pretraining on an auxiliary task if you have a lot of labeled data for a similar task.

While the previous guidelines should cover most cases, here are some exceptions:

- If you need a sparse model, you can use ℓ_1 regularization (and optionally zero out the tiny weights after training). If you need an even sparser model, you can use the TensorFlow Model Optimization Toolkit. This will break self-normalization, so you should use the default configuration in this case.
- If you need a low-latency model (one that performs lightning-fast predictions), you may need to use fewer layers, fold the Batch Normalization layers into the previous layers, and possibly use a faster activation function such as leaky ReLU or just ReLU. Having a sparse model will also help. Finally, you may want to reduce the float precision from 32 bits to 16 or even 8 bits (see "Deploying a Model to a Mobile or Embedded Device" on page 685). Again, check out TF-MOT
- If you are building a risk-sensitive application, or inference latency is not very important in your application, you can use MC Dropout to boost performance and get more reliable probability estimates, along with uncertainty estimates.

With these guidelines, you are now ready to train very deep nets! I hope you are now convinced that you can go quite a long way using just Keras. There may come a time, however, when you need to have even more control; for example, to write a custom loss function or to tweak the training algorithm. For such cases you will need to use TensorFlow's lower-level API, as you will see in the next chapter.

Exercises

- 1. Is it OK to initialize all the weights to the same value as long as that value is selected randomly using He initialization?
- 2. Is it OK to initialize the bias terms to 0?
- 3. Name three advantages of the SELU activation function over ReLU.
- 4. In which cases would you want to use each of the following activation functions: SELU, leaky ReLU (and its variants), ReLU, tanh, logistic, and softmax?
- 5. What may happen if you set the momentum hyperparameter too close to 1 (e.g., 0.99999) when using an SGD optimizer?
- 6. Name three ways you can produce a sparse model.
- 7. Does dropout slow down training? Does it slow down inference (i.e., making predictions on new instances)? What about MC Dropout?
- 8. Practice training a deep neural network on the CIFAR10 image dataset:
 - a. Build a DNN with 20 hidden layers of 100 neurons each (that's too many, but it's the point of this exercise). Use He initialization and the ELU activation function.
 - b. Using Nadam optimization and early stopping, train the network on the CIFAR10 dataset. You can load it with keras.datasets.cifar10.load_data(). The dataset is composed of 60,000 32 × 32-pixel color images (50,000 for training, 10,000 for testing) with 10 classes, so you'll need a softmax output layer with 10 neurons. Remember to search for the right learning rate each time you change the model's architecture or hyperparameters.
 - c. Now try adding Batch Normalization and compare the learning curves: Is it converging faster than before? Does it produce a better model? How does it affect training speed?
 - d. Try replacing Batch Normalization with SELU, and make the necessary adjustements to ensure the network self-normalizes (i.e., standardize the input features, use LeCun normal initialization, make sure the DNN contains only a sequence of dense layers, etc.).
 - e. Try regularizing the model with alpha dropout. Then, without retraining your model, see if you can achieve better accuracy using MC Dropout.
 - Retrain your model using 1cycle scheduling and see if it improves training speed and model accuracy.

Solutions to these exercises are available in Appendix A.