

Kontroler PSP EVSE v1.0

Dokumentacja techniczna i rozruchowa

Spis treści

Rejestr zmian	3
Wstęp	4
Parametry techniczne	5
Rozmieszczenie wyprowadzeń \ Wymiary	6
Instalacja	8
Sygnalizacja zewnętrzna	8
Wyłącznik awaryjny (EPO)	9
Liczniki energii	9
Blokada kabla	10
Interfejs WWW	11
WebAPI	14
Przywracanie nastaw fabrycznych	15
Algorytm ograniczania mocy	16
Algorytm zabezpieczenia nadprądowego	16
Obsługa okresowa	17
Utylizacia	17

Rejestr zmian

Zmiany w DTR:

- v1.0 Wersja pierwotna.
- v1.1: Endpoint dla Prometheus.io / Grafana,
 - Limity dla pojedynczej sesji ładowania
- v1.1.1 Korekta błędnego rozkładu wyprowadzeń (EPO_IN<->RELAY_FB_IN) oraz (LED_1_KATODE<->LED_2_KATODE) .
 Blokada kabla: NC -> NO.
- ...

Wstęp

UWAGA!

Urządzenie przeznaczone dla profesjonalistów.

Kontroler PSP EVSE v1.0 służy do budowy stacji ładowania pojazdów o napędzie elektrycznym z sieci energetycznej prądu przemiennego zgodnie z normą PN-EN IEC 61851-1.

Zasadnicze cechy kontrolera to:

- Praca w trybie 3 przypadek B zintegrowane gniazdo.
- Praca w trybie 3 przypadek C zintegrowany kabel z wtyczką.
- Obsługa blokowania kabla dla trybu 3 przypadek B.
- Prad ładowania do 32A.
- Ładowanie jedno lub trójfazowe.
- Funkcja BOOST zwiększenie prądu ładowania do końca aktualnej sesji.
- > Automatyczne/Manualne uruchamianie ładowania.
- Wbudowany algorytm podążania za definiowaną mocą (OZE, ograniczanie mocy).
- Obsługa liczników energii (lokalne RS485 lub zdalne IP).
- ➤ Wbudowane WiFi z obsługą infrastruktury (STA) lub punktu dostępowego (AP).
- Lokalny interfejs WWW.
- > Możliwość integracji z systemem automatyki poprzez WebAPI.
- > EndPointy dla bazy danych Prometheus.io (wizualizacja Grafana).
- > Aktualizacje oprogramowania OTA.

UWAGA!

Producent nie gwarantuje przydatności wyrobu do każdej aplikacji. W przypadkach wątpliwych należy skonsultować aplikację z producentem.

UWAGA!

Urządzenie stanowi komponent do wbudowania w systemie, dla zachowania zgodności systemu z dyrektywami LVD, EMC, RED mogą być wymagane dodatkowe środki.

UWAGA!

Produkt jest zasilany napięciem niebezpiecznym dla zdrowia i życia, należy bezwzględnie zachować wszelkie środki ostrożności oraz środki ochrony osobistej.

Parametry techniczne

Parametry ogólne	Wartość	Uwagi
Napięcie zasilania	85-264 VACrms, 50Hz	Uwzględnić zakres zasilania cewki stycznika
Pobór mocy	<2W	Owzgiędnie zakies zasiłania cewki stycznika
Kompatybilność EVSE	PN EN-IEC 61851-1:2019	Wszystkie zgodne pojazdy
Wyłącznik awaryjny EPO	NC, 1mA@5VDC	Normalnie zamknięty
Wymagana ochrona antyprzepięciowa	T1 + T2 lub T2	IEC 61643-11
(SPD)	11 + 12 100 12	Uwzględnić SPD w RG
Temperatura pracy	-25+60°C	
Wilgotność	<90%	Bez kondesacji
Stopień ochrony IP	IP00	Dez Kontacoacj.
Dedykowana obudowa – szyna DIN	Kradex Z101 ABS V0	
Maksymalna długość pojedynczej sesji	200h	
Maksymalna ilość energii na pojedyn-	200kWh	
czą sesję	20011111	
Parametry LED	Wartość	Uwagi
sygnalizacyjnych		
LED sygnalizacyjna	Dwukolorowa,	Zalecana dioda niebiesko/czerwona
	wspólna anoda	(LED 1/LED 2)
Zasilanie z kontrolera	5VDC poprzez R = 220R	Terminal: LED_ANODE
Zasilanie zewnętrzne (opcja)	5VDC, <200mA	Dla każdego kanału typu "open drain":
	,	LED_1_KATODE / LED_1_KATODE
Parametry blokady (przypadek B)	Wartość	Uwagi
Napięcie zasilania blokady	12-24VDC	
Maksymalny prąd chwilowy	1A@1s	
Maksymalny prąd ciągły	200mA	
Styk informacyjny	NO	NO – blokada otwarta.
Sterownie w trybie serwomotor	Impulsowe dwukierunko-	
·	we, wypełnienie 700ms	
Sterownie w trybie solenoid	Ciągłe	
Parametry stycznika głównego	Wartość	Uwagi
Zasilanie cewki nominalne	230VACrms, 50Hz	Dostarczane z kontrolera
Maksymalny prąd chwilowy cewki	1AAcrms@100ms	<23VA
Maksymalny prąd ciągły cewki	50mAACrms	<0,575VA
Maksymalny czas odpuszczania	50ms	
Styk pomocniczy	NC, 1mA@5VDC	Normanie zamknięty
Parametry RS485	Wartość	Uwagi
Standard	TTL 5V	
Maksymalna długość magistrali	100m	
Terminator końcowy	120R	
Parametry WiFi	Wartość	Uwagi
Tryby pracy	Infrastruktura (STA),	_
	punkt dostępowy (AP)	
Kompatybilność	2,4GHz; 802.11 b/g/n	
Antena	Wbudowana	
Uwierzytelnianie w trybie	WPA/WPA2 PSK	Hasło do 63 znaków
infrastruktury		
Uwierzytelnianie w trybie	WPA/WPA2 PSK	SSID: PSP_XX_YY,
punktu dostępowego		IP: 192.168.100.1,
		Fabryczne hasło: pspower2021
Maksymalna ilość połączeń do punktu	1	
dostępowego		
Adresowanie	DHCP	
Parametry monitorowania	Wartość	Uwagi
Prometheus endpoit EVSE	http:// <ip>/EvseMetrics</ip>	
Prometheus endpoit statystyczni	http:// <ip>/Meter1Metrics</ip>	
licznik energii	1 1 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
	http:// <ip>/Meter2Metrics</ip>	1
Prometheus endpoit sterujący	http:// <ii>//heterzhetrics</ii>	
licznik energii Minimalny interwał akwizycji danych	15s	

Rozmieszczenie wyprowadzeń \ Wymiary

PE PP_IN LOCK_FB_IN LOCK_OUT_2 LOCK_OUT_1 LOCK_VCC

RS485_A RS485_B LED_1_KATODE LED_2_KATODE LED_ANODE EPO_IN RELAY_FB_IN CP_OUT

MAIN_RELAY_L MAIN_RELAY_N AC_N AC_L

Sygnał	Opis	
PE	Główny potencjał odniesienia, PE	
PP_IN	Tryb 3 Przypadek B: Wejście sygnału PP	
LOCK_FB_IN	Tryb 3 Przypadek B: Wejście sygnału styku informacyjnego blokady	
LOCK_OUT_2	Tryb 3 Przypadek B: Wyjście sterujące blokady nr 2	
LOCK_OUT_1	Tryb 3 Przypadek B: Wyjście sterujące blokady nr 1	
LOCK_VCC	Tryb 3 Przypadek B: Wejście zasilania blokady	
MAIN_RELAY_L	Wyjście zasilania cewki stycznika głównego L	
MAIN_RELAY_N	Wyjście zasilania cewki stycznika głównego N	
AC_N	Wejście zasilania z sieci AC, N	
AC_L	Wejście zasilania z sieci AC, L	
CP_OUT	Wyjście sygnału CP	
RELAY_FB_IN	Wejście styku pomocniczego stycznika głównego	
EPO_IN	Wejście sygnału z przycisku EPO	
LED_ANODE	Wyjście zasilania LED sygnalizacyjnej	
LED_2_KATODE	Wejście sterujące LED sygnalizacyjnej nr 2	
LED_1_KATODE	Wejście sterujące LED sygnalizacyjnej nr 1	
RS485_B	Magistrala RS485, sygnał B	
RS485_A	Magistrala RS485, sygnał A	

Wymiary:

Instalacja

Instalację należy przeprowadzić w oparciu o wybrane schematy aplikacyjne (patrz -> dokument "PSP EVSE v1.0 Schematy aplikacyjne").

Miejsce instalacji powinno odpowiadać wymaganiom środowiskowym kontrolera oraz użytych komponentów.

Pierwszą konfigurację należy przeprowadzić przy wykorzystaniu wbudowanego interfejsu użytkownika WWW.

Zweryfikować dostępność aktualizacji oprogramowania.

UWAGA!

Projekt i wykonanie punktu ładowania pojazdów elektrycznych wymaga wiedzy tematycznej i określonych przez prawo uprawnień.

Sygnalizacja zewnętrzna

Kontroler obsługuje dwukanałową sygnalizację zewnętrzną typu LED. Jeżeli zaistnieje potrzeba wykorzystania sygnalizatora o parametrach przekraczających zdolności zasilania z kontrolera, należy użyć zewnętrznego źródła zasilania i wykorzystać tylko wejścia dla katod.

LED Sygnalizacyjne (kolory dla zalecanej diody):

LED 1 (niebieski)	LED 2 (czerwony)	Opis
Wyłączona	Wyłączona	Stan bezczynności (A1/A2).
		Punkt ładowania oczekuje na podłączenie pojazdu.
Światło ciągłe	Wyłączona	Pojazd podłączony (B1/B2).
Miga z okresem	Wyłączona	Pojazd ładuje (C1/C2).
ok.0,6 lub 2s		Szybsze miganie sygnalizuje aktywowanie funkcji
		BOOST.
Miga z okresem	Wyłączona	Pojazd wentyluje (D1/D2).
ok. 1,5s		
Światło ciągłe	Miga z okresem	Błąd diody pojazdu.
	ok. 0,2s	Błąd pojazdu (E).
Światło ciągłe	Światło ciągłe	Błąd ogólny pojazdu.
Wyłączona	Światło ciągłe	Błąd stycznika głównego (F).
		Błąd PP (F).
		Błąd blokady (F).
Wyłączona	Miga z okresem	Uaktywniono wyłącznik awaryjny (EPO)(F).
	ok. 0,2s	

LED Status (serwisowa, na obwodzie):

LED Status	Opis
Miga z okresem ok. 1s	Kontroler połączony z skonfigurowaną siecią WiFi w trybie
	infrastruktury (STA).
Miga z okresem ok. 4s	Kontroler w trybie punktu dostępowego (AP)
Szybkie miganie z okresem	Kontroler w trybie łączenia z skonfigurowaną siecią WiFi.
ok. 0,2s	Stan ten powinien być przejściowy, jeżeli występuje per-
	manentnie oznacza problem z połączeniem.

Wyłącznik awaryjny (EPO)

Wyłącznik awaryjny (EPO) spełnia następujące role:

- Służy do bezzwłocznego logicznego zatrzymania ładowania.
- Kasuje stany awaryjne punktu ładowania.
- > Jest wykorzystywany w funkcjach serwisowych.

Wyłącznik EPO powinien być zrealizowany jako bistabilny, indywidualny, normlanie zamknięty przycisk grzybkowy.

Wyłącznik EPO należy umieścić w dobrze widocznym miejscu z bezpośrednim dostępem dla obsługi punktu ładowania.

UWAGA!

Jeżeli wyłącznik awaryjny ma pełnić funkcję deterministycznego odłączenia od zasilania należy tą funkcję zrealizować za pomocą dodatkowych urządzeń w obwodach stycznika głównego.

Liczniki energii

Kontroler EVSE obsługuje wybrane liczniki energii elektrycznej. Służą one do akwizycji pomiarów w celu prowadzenia statystyk ładowania (licznik statystyczny) oraz kontroli poboru energii elektrycznej (licznik sterujący).

Licznik statystyczny powinien zostać zamontowany tak aby dokonywał pomiarów na obwodzie elektrycznym zasilającym pojedynczy punkt ładowania.

Licznik sterujący powinien zostać zamontowany na WLZ w rozdzielnicy głównej tak aby dokonywał pomiarów mocy/energii płynącej do lub z systemu energetycznego do którego podłączony jest obiekt rozliczeniowy.

Obsługiwane liczniki energii:

- ✓ EASTRON SDM72D-M oraz pochodne.
- ✓ LUMEL NMID30-2 (EASTRON SDM630), oraz pochodne.
- ✓ EASTRON SDM120.

Parametry transmisji danych:

- Adres modbus licznik statystyczny: 1.
- Adres modbus licznik sterujący: 2.
- RS485:
 - prędkość: 9600,bitów danych: 8,
 - stop: 1,
 - parzystość: EVEN,

Liczniki energii mogą być przyłączone bezpośrednio do kontrolera EVSE przy wykorzystaniu wbudowanej magistrali RS485/Modbus lub zdalnie za pośrednictwem dedykowanego mostka MIpB oraz sieci WiFi. W przypadku wykorzystania mostka MIpB adresowanie modbus musi być zachowane dla odpowiedniej funkcji licznika energii (statystyczny/sterujący).

Kontroler posiada wbudowaną w serwisie WWW funkcję do konfiguracji liczników typu SDM120. Konfiguracja odbywa się poprzez selektywne (pojedyncze) podłączenie licznika SDM120 do magistrali RS485/Modbus oraz wybranie właściwej funkcji narzędziowej dla jego roli. Przed uruchomieniem funkcji narzędziowej nadania roli należy wprowadzić podłączony licznik SDM120 w tryb nastawiania.

Blokada kabla

W trybie 3 przypadek B konieczne jest zastosowanie blokady celowego lub przypadkowego rozłączenia kabla łączącego pojazd z punktem ładowania w stanie zasilonym energią elektryczną. Siłownik blokady zasilany jest z zewnętrznego źródła napięcia stałego (LOCK_VCC).

Kontroler obsługuje blokady typu:

<u>Solenoid</u> – blokada z elektromagnetycznym wyzwalaniem trzpienia blokującego. Serwomotor – blokada z serwomechanizmem napędzanym silnikiem DC.

UWAGA!

W przypadku blokady typu serwomotor należy zastosować zewnętrzny mechaniczny układ awaryjnego odblokowania na wypadek zaniku zasilania z sieci energetycznej.

Interfejs WWW

Ekran główny - Status

- Ad1. Pasek stanu: Nazwa urządzenia (wersja oprogramowani), menu lub powrót.
- Ad2. Informacje o WiFi, licznikach energii, sposobie sterowania, dostępnej mocy.
- Ad3. Pole informacji statusu ładowania. Nazwa stanu pracy, prąd/moc, czas sesji, energia.
- Ad4. Przycisk uruchamiania/zatrzymywania ładowania lub informacja o automatycznym uruchamianiu ładowania.
- Ad5. Przycisk aktywacji/dezaktywacji funkcji BOOST
- Ad6. Historia sesji (Ładowanie > 1 minuta)

Ekran – Liczniki energii (jeżeli występują)

Parametry zwracane przez skonfigurowane liczniki statystyczny i\lub sterujący. Opis i znaczenie parametrów wg dokumentacji producenta licznika.

Ekran – Ustawienia WiFI&WWW

- Ad1. Konfiguracja języka interfejsu WWW.
- Ad2. Wyniki skanowania eteru w poszukiwaniu punktów dostępowych WiFi (SSID:Moc sygnału [%]).
- Ad.3 Wybór z znalezionych sieci WiFi oraz wprowadzanie hasła.
- Ad4. Parametry pracy w trybie punktu dostępowego, nadawanie SSID oraz hasła dostępu. Domyślny SSID to PSP_XX_YY, gdzie XX,YY to ostanie bajty MAC.

Ekran – Ustawienia systemowe

- Ad1. Konfiguracja trybu ładowarki oraz typu blokady kabla dla przypadku B.
- Ad2. Ustawienia maksymalnego prądu ładowania w trybie normlanym i trybie BOOST.
- Ad3. Ustawienia typu\dostępu (lokalny RS485/Modbus lub zdalny IP) do statystycznego licznika energii.
- Ad4. Ustawienia typu\dostępu (lokalny RS485/Modbus lub zdalny IP) do sterującego licznika energii.
- Ad5. Limit prądu fazy. Aktywny dla sterujących liczników energii zwracających pomiar prądu.
- Ad6. Wybór strategii sterowania w celu optymalizacji/ograniczenia poboru mocy. Ustawienie limitu mocy.
- Ad7. Wybór automatycznego lub manualnego startu ładowania.
- Wybór typu konfiguracji ładowania jedno lub trójfazowa.

Ekran - Informacje o systemie

- Ad1. Link do strony producenta.
- Ad2. Informacje na temat:

Typu produktu: <znacznik produktu>

WiFi: SSID:RSSI dB/%

MAC: <adres mac interfejsu sieciowego> Heap: alokacja pamięci (dane serwisowe)

- Ad3. Aktualna kondycja systemu.
- Ad4. Pole umożliwia uruchomienie kodów serwisowych
- Ad5. Aktualizacja firmware.

Ekran - Narzędzia

Narzędzia umożlwiające dokonanie konfiguracji liczników energii typu SDM120. Liczniki do konfiguracji należy podłączać do magistrali RS485/Modbus pojedynczo nadając rolę poprzez wybór odpowiedniego przycisku.

UWAGA!

Produkt podlega ciągłym udoskonaleniom poprzez zdalne aktualizacje. Poszczególne ekrany mogą ulec zmianom i nieznacznie odbiegać od przedstawionych.

WebAPI

Patrz -> dokument "Przewodnik WebAPI".

Przywracanie nastaw fabrycznych

<u>Metoda 1:</u> Kod serwisowy z poziomu ekranu "Informacje o systemie" Uruchomić kod serwisowy "FactoryDefault".

Metoda 2: Zwora na obwodzie kontrolera

Postepowanie:

- 1. Odłącz zasilanie systemu EVSE,
- 2. Zamknij zworę przywracania nastaw fabrycznych (pin 3-4, CONN2),
- 3. Załącz zasilanie systemu EVSE,
- 4. Odczekaj ok. 20 sekund, w tym czasie LED statusowa błyska,
- 5. Odłącz zasilanie systemu EVSE,
- 6. Otwórz zworę przywracania nastaw fabrycznych,
- 7. Ponownie załącz zasilanie EVSE

Metoda 3: Sekwencja EPO

Postepowanie:

- 1. Odłącz zasilanie systemu EVSE,
- 2. Upewnij się, czy przycisk EPO nie jest w stanie aktywnym,
- 3. Załącz zasilanie systemu EVSE,
- 4. Obserwuj LED sygnalizacyjne,
- 5. Gdy LED sygnalizacyjne zostaną zaświecone aktywuj przycisk EPO,
- 6. Gdy LED sygnalizacyjne zgasną dezaktywuj przycisk EPO,
- 7. Powtażaj czynności 5-6 aż do momentu gdy po aktywacji EPO sygnalizacyjne LED nie zgasną.
- 8. Odczekaj ok 30 sekund aby system przywrócił nastawy fabryczne,
- 9. Dezaktywuj przycisk EPO

UWAGA

Po przywróceniu nastaw fabrycznych i restarcie systemu wystartuje on w trybie WiFI AP. SSID = PSP_XX_YY.

Algorytm ograniczania mocy

Wykorzystując algorytm ograniczania mocy można osiągnąć cele:

- ✓ Ograniczenie exportu energii pochodzącej z prosumenckiej instalacji wytwórczej OZE.
- ✓ Realizację założonej ilości exportu energii z OZE.
- ✓ Zapobieganie przekroczenia prądu wyzwolenia zabezpieczeń głównych/lokalnych.
- ✓ Instalację wielu punktów ładowania pojazdów na obwodzie o organicznej mocy.

Efekt działania algorytmu ograniczania mocy jest zależny od nastawy limitu mocy.

Moc EVSE + Moc Obiektu - Moc OZE = Limit mocy

Przypadek 1: Limit mocy = 0,

Algorytm pilnuje aby bilans mocy na przyłączu do obiektu znajdował się blisko zera. Oznacza to, że w przypadku poboru mocy przez obiekt i EVSE, oczekuje się aby system dostarczania energii odnawialnej pokrywał w pełni bieżące potrzeby

Moc EVSE + Moc Objektu = Moc OZE

Przypadek 2: Limit mocy > 0,

Algorytm pilnuje aby bilans mocy na przyłączu do obiektu nie był większy od zadanego limitu mocy.

Moc EVSE + Moc Obiektu - Moc OZE = Limit mocy
Gdy brak OZE algorytm pilnuje aby moc przyłaczeniowa do ob

Gdy brak OZE, algorytm pilnuje aby moc przyłączeniowa do obiektu nie została przekroczona

Przypadek 3: Limit mocy < 0,

Zagwarantowanie eksportu energii do systemu energetycznego na poziomie limitu mocy.

Algorytm zabezpieczenia nadprądowego

Jeżeli jako sterujący licznik energii zastosowano urządzenie z pomiarem prądu faz/fazy (np. NMID30-2, SDM120M ...) kontroler EVSE będzie pilnował aby parametr limitu prądu fazy nie został przekroczony w celu ochrony przed wyzwoleniem zabezpieczenia nadprądowego na linii zasilającej obiekt z EVSE.

Obsługa okresowa

Zalecana okresowa obsługa:

- Weryfikacja zabezpieczeń dla obwodu elektrycznego (RCD,MCB)
- > Weryfikacja połączeń elektrycznych.
- Weryfikacja dostępności aktualizacji.

Utylizacja

Zużyty sprzęt elektryczny i elektroniczny zgodnie z obowiązującym w Polsce prawem podlega utylizacji w ściśle określony sposób. Informacje na temat punktów zbiórki do uzyskania na www.pspower.pl

