The Impact of Film's Properties on IMDB Ratings: A Logistic Regression Approach

Wanding Wang, Yujie Tang, Weiqing Guo, Bashiru Mukaila, Jialu FU

Background

• IMDb is a popular platform for the competitive entertainment industry, with ratings influencing audience perception and revenue.

Table 1: Highlight of the IMDB data

film_id	year	length	budget	votes	genre	rating
5993	1943	65	15.5	42	Action	7.6
37190 43646	1961 1987	87 79	12.3 16.4	6 161	Drama Action	6.0 7.5
28476 23975	1976 1982	NA 88	$12.2 \\ 12.5$	5 97	Documentary Action	$8.0 \\ 3.5$
50170	1936	NA	7.0	146	Drama	4.4

Aims

Main purpose

 Explore the relationship between the properties of films and the IMDB ratings.

Research Question

 Investigate the specific properties of a movie that have a significant influence on whether it receives an IMDB rating of 7 or higher.

Exploratory Analysis – Scatterplot Matrix of the Numerical Variables

Exploratory Analysis - Binary Boxplots of Year, Length, Budget by Rating

 The middle 50% of ratings fall between 1953 and 1999, with ratings greater than 7 showing more variability in length and higher budgets compared to those under 7.

Proportions of rating greater than 7 by genre

Model fitting in R

]	Estimate	Std. Error	z value	Pr(> z)				
(Intercept)	-1.84494	0.09865	-18.70	2 < 2e-16 ***				
genreAnimation	2.54653	0.18731	13.59	5 < 2e-16 ***				
genreComedy	2.15141	0.12537	17.16	0 < 2e-16 ***				
genreDocumentai	cy 4.22875	0.30618	13.81	1 < 2e-16 ***				
genreDrama	-0.97113	0.18244	-5.32	3 1.02e-07 ***				
genreRomance	-13.72113	261.39713	0.05	2 0.958				
genreShort	6.01161	0.71936	8.35	7 < 2e-16 ***				
$g(p_i) = log(\frac{p_i}{1-p_i}) = \alpha + \beta \cdot genre_i$								

• where p_i denotes the probability of receiving a high rating, and β represents the coefficient for genres such as Action, Animation, Comedy, etc.

Odds Ratios

 For every unit increase in Short, the probability of rating above 7 becomes 408.14 times higher than that of Action.

 For every unit increase in Drama, the probability of rating above 7 becomes 0.38 times higher than that of Action.

Probability of films with rating above 7

$$\hat{p} = \frac{\exp(\hat{\alpha} + \hat{\beta} \cdot \Pi_{genre}(\cdot))}{1 + \exp(\hat{\alpha} + \hat{\beta} \cdot \Pi_{genre}(\cdot))}$$

 The estimated probability of all kinds of films is denoted by the dark blue column, while the light blue denotes the actual frequency in the dataset.

Model fitting in R

 We use a stepwise approach and select the best model based on AIC as the selection criterion.

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-23.864236	5.767450	-4.138	3.51e-05
year	0.010238	0.002940	3.483	0.000497
length	-0.056869	0.003537	-16.077	< 2e-16
budget	0.509979	0.030117	16.933	< 2e-16
genreAnimation	-0.078708	0.320139	-0.246	0.805793
genreComedy	3.110781	0.179174	17.362	< 2e-16
genreDocumentary	5.604906	0.442282	12.673	< 2e-16
genreDrama	-1.556649	0.239136	-6.509	7.54e-11
genreRomance	-14.607631	391.828859	-0.037	0.970261
genreShort	4.005562	0.796669	5.028	4.96e-07

The best model removed the votes variable from the full model.

$$g(p_i) = log(\frac{p_i}{1-p_i}) = \alpha + \beta_1 \cdot year_i + \beta_2 \cdot length_i + \beta_3 \cdot budget_i + \beta_4 \cdot genre_i$$

Odds Ratios

- Statistically, a film with a rating above 7 is 1.01 times more likely than an older film.
- A minute longer movie is 0.94 times less likely to be rated above 7.
- For every million dollar increase in budget, a film is 1.67 times more likely to receive a 7+ rating.
- The influences of the genre are similar to those discussed previously.

Conclusion

Genre preferences of the audience

- The audiences prefer movies with logic and depth (Documentary and Short) over formulaic commercial films (Action, Drama, and Romance).
- Animation and Comedy genres have mixed ratings with more high-rated movies, aligning with popular audience trends.

Impact of numerical factors on movie ratings

- Release year and production budget positively impact a movie's rating, while movie length negatively impacts it due to people's preference for faster-paced content.
- Votes do not significantly impact a movie's rating, possibly due to their subjectivity.

Future Work

Additional Movie Attributes

 Explore the impact of other movie attributes such as box office and investment in art and music on movie ratings, to further enhance the accuracy of the classifier's functionality.

More Response Variable Categories

 Consider dividing the response variable into more categories to improve discriminability.

Improved Sample Collection

• Obtain a more comprehensive sample to improve the model's performance, as the uneven distribution of genres in the current sample has led to errors.