MIDTERM

Name: SHADAB JOBAL

ID: 19101072

Amr. to Q No- 1

We know,

$$\Delta^{2} f(n,y) = f(n+1,y) + f(n-1,y) + f(n,y+1) + f(n,y-1) - 4f(n,y)$$

$$+ f(n,y-1) - 4f(n,y)$$

$$L^{2} f = \frac{S^{2} f}{Sn^{2}} + \frac{S^{2} f}{Sy^{2}}$$

gf we construct the kernel with the coefficients, we get,

(Lo (L (O)] = ()

0	1	0	
1	-4	1	
0	1	0	

The sp shape of the kernel is 3 x 3.

ing filtered = signate competete (ing padded)

1			
6	11	1	
1 200	ONT		

Steps to linearly filter an image :

-) firestly, to avoid shrinking, we need to pad the image
- 2) Now, we'll use 2D signal correlation for linear spatial Filtering.

$$W = [[0, 1, 0],$$
 $[1, -4, 1],$
 $[0, 4, 0],$

img-filtered = signal. correlate (img-padded,
w, mode = 'valid',
method = 'auto')

& one of wat

A 2D kernel is seperable if it can be written as the product of & two ID kernels.

br(21,y) = br, (21) br2(y)

Our image g was of 5x5 and kurnel w a was 3x3 shaped.

9f w is not seperable

=> Complexity: O(mn)= $O(3\times3)$ = $O(3^2)$

gf w is seperable:

=) complexity: 0 (m+m)= 0(3+3)= 0(3).

So, seperable kernel has greater advantage.

Am. to & No-3

Fine is imperater (all imperater (all imperater):

If we are given the coordinates of all the patches, we can do the following steps to "fin" this image.

- (1) Firstly, we will group the patches according to their overall brightness and contrast.
- (2) Use Then we will use contrast Limited Adaptive. Histogram Equalization on to all the patches individually.
 - (3) The Lastly, we will concatenate all the patches back togethor to from the final image.

For i, img-patch in enumerate (all_ing-patches):

ingapateta !

for j'in range (number of patches in a group):

img-patch[j,:,:,:] = exposure. equalize_
adapthist(img-patch

[j, °, °, °,], kernel size,

dip limit);

Popula formation son min on well est (6)

Histogram Equalization o

Any unpergraphics of

Listly we will concatenate all the

satches took topethor to form the

4 west of source

Compe.

Ans. to B. No - 4

(CO) 7 * E (CO)

 $\frac{\alpha}{=}$

nk	h (nk)	fr (rk)		
.0	6	0.375	18	
1	, 7	0.4375		2
2	2	0.125		
3	1	0.0625		S

	6	
H(nk)	F(rk)	
6	0.375	
13	0.8125	
15	0.9375	Constitution of the second
16	1	Franklich (

		i	
	(1	
1	-	_	

2	3	1	1
2	1	2	3
ユ	2	1	2
3	1	2	2

Ans. to QNO-2

magnitude response:

$$|F(u,v)| = \sqrt{R^2(u,v) + I^2(u,v)}$$

$$\varphi(u,v) = \tan^{-1}\left(\frac{II(u,v)}{R(u,v)}\right)$$

magnitude response is the namphitude of output signal's frequency and input signal's frequency.

Phase response environ the relationship between the phase of a sinusoidal input and output signal.

Magnitude response contains information about pinel intensity and phase response contains information about shape of the image.

0

The sharp peak at the spectourn of the given magnitude response is possibly the noise of the image.

<u>d</u>

Our filter falls into the Low Pass

Filtering (LDF) category. And the cut-off frequency Do es 150 Hz.

