

Lorenzo Lamberti GreenWaves Technologies

Project Overview

Project Goal:

Application of Optical Character Recognition (OCR) techniques to implement license plate recognition on GAP.

京QC8152

Project Flow:

- 1. Study of related works:
 - find a suitable algorithm for embedded devices
- 2. Implementation of the algorithm (python code)
- 3. Evaluation of performances:
 - accuracy and reliability of model's predictions
- 4. Optimization of the model to satisfy GAP's constrains

Introduction to OCR

Optical Character Recognition

Goal: recognize text in images and transcribe it.

OCR categories:

- **In the wild** (unpredictable scenario)
- controlled environment (fixed setup)

License plate recognition is a sub-category of OCR in the wild

OCR in the wild is the hardest task and not completely solved

Challenges OCR in the wild

- Artifacts: light variations and reflections.
- Weather conditions: snow and rain.
- Text is sparse: text can be randomly located in the image.
- Font size not constant: depends on the object distance.
- Variability of fonts (including special characters e.g. logograms for China)

OCR Strategies

Traditional approaches:

Classic computer vision techniques (Tesseract) (preprocessing + template/pattern matching)

- Based on a-priori assumptions
- Poor generalization on new scenarios: bad results in the wild

Input sample character

B mask

1	1	1	1	0
1	0	0	0	1
1	1	1	1	0
1	0	0	0	1
1	0	0	0	1
1	1	1	1	0

Result

1	1	1	1	
1				1
1	1	1	1	
1				1
1				1
1	1	1	1	

В

New approaches:

Based on **Deep learning** (Convolutional Neural Networks)

- Algorithm automatically learns features from given istances
- Good generalization if a large dataset is provided

State of the art License plate Recognition

Standard Deep Learning approach to License Plate OCR:

The problem is tackled in **2 steps**: (They are treated separately)

1. Text Detection:

Localization of the full words

2. Text Recognition:

Reconstruction of the word character by character

<Sichuan>A57237

Segmentation-free methods

Segmentation methods

Step 1: License Plate Detection

Object Detection algorithms:

(based on CNNs, convolutional neural networks)

- Single Shot Detector (SSD)
- You Only Look Once (YOLO)
- Region Based CNNs (R-CNN)

Classification VS Object Detection

CAT

CAT, DOG, DUCK

Step 2: License Plate Recognition

Recurrent Neural Networks (RNNs):

- LSTM
- BiLSTM
- CRNN

It is a type of network in which inside loops are allowed: **memory effects**.

It models temporal/spatial sequences.

It's the most common approach for text recognition but Gap doesn't support RNNs at the moment

Step 2: License Plate Recognition

Convolutional Neural Networks Only:

Character segmentation with object detectors:

Too redundant.

Need training data with segmented characters annotation: very rare

Holistic CNNs:

8 branches of the CNN search for different positions in the image.

One branch specializes for detecting different characters in the plate.

Code not publicy available

LPRNet:

End-to-end method without preliminary character segmentation. Straight from pixels to char predictions

Approaches selected: how they work

1) SSD: Single-Shot detector

- A fully Convolutional Neural Network
- Single step: simultaneous bounding box regression and classification
- One bbox and class associated to each object

2) LPRNet for character recognition:

Convolutional Neural network + Decoder

- CNN predicts probability of characters and blank spaces
- 2. Decoder: associates probabilities to the right characters and removes double predictions

Approaches selected: Why

1° Step: SSD (object detection)

Code available in official Tensorflow obj detection API

Lightweight models available (Mobilenet)

Flexible: easy to switch architecture & a lot of pretrained models to try.

Big dataset ready to use.

2° Step: LPRNet (character recognition)

Code available (Intel - tensoflow)

Etremely lightweitght: 1.7 Mb

Fast: inference time 3ms on a Nvidia GTX 1080

Promises an accuracy of over 95%

Only a CNN: doesn't use RNNs (not supported by gap)

License Plate Detection

Character Recognition

<Henan>K0F755

GAP Constraints:

- Tensorflow framework: we must provide a .tflite model
- Memory: 8Mb (must fit in L3 memory)
- Real-Time Execution: ~ 1 FPS
- Good accuracy (of course)

General design flow for ML algorithms

- 1. Dataset search: a lot data to train the algorithm
- **2.** Model selection: satisfy GAP's constrains
- 3. Optimization: quantization aware training
- 4. Validation: test performances of real dataI acquired a little validation dataset (70 images) with GAP Himax camera

Validation dataset: GAP's Himax camera

Low resolution grayscale images (QVGA: 320x240)

20 Italian license plates

50 Chinese license plates

Acquired at 5 distances (0.3m, 1m, 2m, 3m, 4m)

0.3 m

→

1 m

 \longrightarrow

2 m

3 m

4 m

Evaluation Metrics

1° Step: License Plate Detection

$$AP = \frac{Correct predictions}{Total n^{\circ} License Plates}$$

 $IoU = \frac{Area of Overlap}{IoU}$

How many plates were correctly located

How well the prediction is overlapping to the LP

IoU: 0.9264

Good

Excellent

Correct license plates 2° Step: Text Recognition: Accuracy = Total n° License Plates

A license plate is correct if all the characters are correctly recognized One mistake = wrong recognition

Correct!

1 B A 2 1 0 2 Wrong!

Design Flow on GAP

Step 1: License Plate Detection

SSD - Object Detection

Design flow of the license plate detector:

1. Dataset search: open source Google OpenImages

7k high-res images

2. Find the right **architecture** (accuracy/memory tradeoff)

Resnet: 270Mb (too big)

MobilenetV1-V2: 22,7Mb; 18,5Mb (still too big)

SSDlite MobilenetV2: 13,3 Mb

3. Optimization: quantization aware training

float32bit \rightarrow int8bit (4x memory save) 13,3 Mb \rightarrow 3,2Mb

4. Validation on images acquired on gap

Not a problem transfering learning from hi-res images to Himax QVGA

My validation dataset (Himax pictures)

Training Experiments

Bigger images = better accuracy:

SSD 512x512 images: 45.4%
SSD 320x240 images (QVGA): 42.0%

We are forced to use QVGA format (320x240).

But a camera with higher resolution improves accuracy.

Shrinking down the model's size:

Arch	•	SSD MobilenetV1	(22Mb)	39.6%
nitect	•	SSD MobilenetV2	(18Mb)	42.0%
ures	•	SSDlite MobilenetV2	(13.3Mb)	39.8%

We want to fit in 8 MB

Failed approaches:

Grayscale training: 38.3%
Frozen backbone training: 17.3%

Validation images are grayscale.

Transform training images to grayscale too

Start from a pretrained model and just finetune last layer of the network

Optimization: quantization aware training

• SSD SSDliteV2 (13.3Mb) 39.8%

• SSD SSDliteV2 **8bit quant** (3.2Mb) ↑ 38.9%

Final model

Final Detection Accuracy

Model's final mAP score: 38.9 %

- SSDlite MobilenetV2 architecture
- 3.2Mb
- 8 bit quantized
- Training on QVGA resolution images (320x240)

Result Comparison:

- Nice accuracy, same algorithm performs 22% on COCO.
- But here we are detecting a single class (easier problem)

Reference benchmark: standard COCO dataset

Algorithm	Architecture	Size	mAP on COCO
YOLOv2	Darknet 19	(60Mb)	21%
YOLOv3	Darknet 53	(190Mb)	33%
SSD	Mobilenet v1	(73Mb)	18%
SSD	Mobilenet v2	(138Mb)	22%
SSD	SSDlitev2	(48Mb)	22%
SSD	Resnet 50	(350Mb)	35%
SSD	Resnet 101	(610Mb)	40%

Detection distance

After 2 meters the characters are not readable anymore. But the algoritm still works.

0.3 m

Vehicle registration plate: 938

IBL 739WJm

1 m

2 m

3 m

4 m

Design Flow on GAP

Step 2: Character Recognition

LPRNet – License Plate Recognition Network

Design flow for character recognition:

1. Dataset search:

Synthetic Chinese License Plates (270k images) **CCPD**: real Chinese License Plates (200k images) **Czech** Low-Quality License Plates (185k images)

2. Architecture manipulation:

original size:
6.8Mb
replaced unsupported operations:
9.6Mb
Depth reduction fully connected layers:
4 Mb

3. Optimization: quantization aware training

float32bit \rightarrow int8bit (4x memory save) 4 Mb \rightarrow 1.0Mb

4. Validation on images acquired on gap

Himax QVGA grayscale images

Training Datasets for char recognition

Synthetic Chinese CCPD Chinese Czech dataset

MA-IP218

MA-IP218

MA-O0877

GAP Validation image

Accuracy on benchmark datasets

Synthetic Chinese License Plates: 97.7 %

CCPD: real Chinese License Plates: 99 1%

Czech Low-Quality License Plates: 99.2%

Accuracy after quantization and depth reduction

Training and testing on Synthetic chinese license plates

Original network (6.8Mb):	98.1 %	
Replace unsupported operations (9.6Mb):	97.5%	optimi
Depth reduction fully connected layers (4 Mb):	97.6% —	ization
Quantization aware training (1.0Mb):	97.7% —	

There is no accuracy drop while optimizing: brought down the model size from 9.6 to 1 Mb

Maximum Recognition Distance

QVGA (320x240) low quality images: from 2 meters the characters are barely readable.

The algorithm is reliable up to 1m of distance.

0.3 m 1 m 3 m 2 m Accuracy: 100% Accuracy: 100% Accuracy: 0% Accuracy: 36.4% Accur-1:54.5%

<Shanghai>A708K1

<Shanghai>A708K1

<Shanghai>A708K1

<Shanghai>AFM3883

<Shandong>Q3X5U3

Good resistance to tilting and blur

Tilting Effects

Blurred images

1BA3102

Final Pipeline

Unification of the 2 steps

Final Unified Pipeline

Unification of the 2 steps:

1. SSD: License plate detection (3.2Mb)

2. LPRNet: Text Recognition (1Mb)

Final LP model size: 3.2 Mb + 1Mb = 4.2 Mb OK!

Gap memory constrain: 8Mb

So it can fit within L3 memory of GAP

Input Image

2 Step: LPRNet for text recognition

<Henan>K0F755

Final Pipeline Speed: does it run in real-time?

```
Inference estimation Worst case 1 MAC/Cycle 8 MAC/Cycle 1° Step (SSD): 540M MACs \rightarrow 3.6 sec at 150MHz \rightarrow 0.45 sec at 150MHz 2° Step (LPRNet): 172M MACs \rightarrow 1.8 sec at 150MHz \rightarrow 0.14 sec at 150MHz Steps Combined: 712M MACs \rightarrow 5.4 sec at 150MHz \rightarrow 0.49 sec at 150MHz
```

Real-Time applications: ~ 1 FPS

Our Speed: 0.49 sec < Inference Speed < 5.4sec 0.2 FPS < Inference Speed < 2 FPS

Conclusion

Conclusion

2 Steps approach for License Plate OCR:

- 1. License Plate Detection: SSD (Single Shot Detector)
- 2. License Plate Text Recognition: LPRNet

Works on Himax QVGA grayscale images:

Detects License plates up to 4m distance.

mAP score = 38.9%

• Recognize Text up to **1m** distance.

Accuracy = 97.7 - 99.2%

Final LP model size: 3.2 Mb + 1Mb = 4.2 Mb

Fits in the **L3 RAM memory** of gap: < 8Mb

Inference speed (expected on GAP): 0.49 sec < time < 5.4sec

Could run in **Real-Time**: ~ 1 FPS

Input Image

License Plate Detection

License Plate Text Recognition

<Henan>K0F755

Thank you! Questions?

- Manuele Rusci
- Marco Fariselli
- Francesco Paci
- Ahmad Bijar

