1

Linear Equations in Linear Algebra

1.7

- **Definition:** An indexed set of vectors $\{\mathbf{v}_1, ..., \mathbf{v}_p\}$ in
 - is said to be **linearly independent** if the vector equation $x_1 v_1 + x_2 v_2 + ... + x_n v_n = 0$

has only the trivial solution. The set $\{v_1, ..., v_p\}$ is said to be **linearly dependent** if there exist weights $c_1, ..., c_p$, not all zero, such that

$$c_1 V_1 + c_2 V_2 + \dots + c_p V_p = 0$$
 ----(1)

- Equation (1) is called a **linear dependence relation** among $\mathbf{v}_1, ..., \mathbf{v}_p$ when the weights are not all zero.
- An indexed set is linearly dependent if and only if it is not linearly independent.

■ Example 1: Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$, and $\mathbf{v}_3 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$.

- a. Determine if the set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly independent.
- b. If possible, find a linear dependence relation among \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 .
- **Solution:** We must determine if there is a nontrivial solution of the following equation.

 Row operations on the associated augmented matrix show that

$$\begin{bmatrix} 1 & 4 & 2 & 0 \\ 2 & 5 & 1 & 0 \\ 3 & 6 & 0 & 0 \end{bmatrix} \Box \begin{bmatrix} 1 & 4 & 2 & 0 \\ 0 & -3 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

- x_1 and x_2 are basic variables, and x_3 is free.
- Each nonzero value of x_3 determines a nontrivial solution of (1).
- Hence, \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 are linearly dependent.

b. To find a linear dependence relation among \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 , row reduce the augmented matrix and write the new system:

$$\begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad \begin{aligned} x_1 - 2x_3 &= 0 \\ x_2 + x_3 &= 0 \\ 0 &= 0 \end{aligned}$$

- Thus, $x_1 = 2x_3$, $x_2 = -x_3$, and x_3 is free.
- Choose any nonzero value for x_3 —say, $x_3 = 5$.
- Then $x_1 = 10$ and $x_2 = -5$.

• Substitute these values into equation (1) and obtain the equation below.

$$10v_1 - 5v_2 + 5v_3 = 0$$

This is one (out of infinitely many) possible linear dependence relations among \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 .

- Suppose that we begin with a matrix $A = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}$ instead of a set of vectors.
- The matrix equation Ax = 0 can be written as $x_1a_1 + x_2a_2 + ... + x_na_n = 0$.
- Each linear dependence relation among the columns of A corresponds to a nontrivial solution of Ax = .0
- Thus, the columns of matrix A are linearly independent if and only if the equation Ax = 0 has only the trivial solution.

- A set containing only one vector say, \mathbf{v} is linearly independent if and only if \mathbf{v} is not the zero vector.
- This is because the vector equation $x_1 v = 0$ has only the trivial solution when $v \neq 0$.
- The zero vector is linearly dependent because $x_1 0 = 0$ has many nontrivial solutions.

• A set of two vectors $\{\mathbf{v}_1, \mathbf{v}_2\}$ is linearly dependent if at least one of the vectors is a multiple of the other.

• The set is linearly independent if and only if neither of the vectors is a multiple of the other.

- Theorem 7: Characterization of Linearly Dependent Sets
- An indexed set $S = \{v_1, ..., v_p\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others.
- In fact, if S is linearly dependent and $V_1 \neq 0$, then some \mathbf{v}_j (with j > 1) is a linear combination of the preceding vectors, $\mathbf{v}_1, \ldots, \mathbf{v}_{j-1}$.

- **Proof:** If some \mathbf{v}_j in S equals a linear combination of the other vectors, then \mathbf{v}_j can be subtracted from both sides of the equation, producing a linear dependence relation with a nonzero weight (-1) on \mathbf{v}_j .
- [For instance, if $\mathbf{v}_1 = c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3$, then $0 = (-1)\mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 + 0 \mathbf{v}_4 + \dots + 0 \mathbf{v}_p.$]
- Thus *S* is linearly dependent.
- Conversely, suppose *S* is linearly dependent.
- If \mathbf{v}_1 is zero, then it is a (trivial) linear combination of the other vectors in S.

• Otherwise, $V_1 \neq 0$, and there exist weights $c_1, ..., c_p$, not all zero, such that

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_p \mathbf{v}_p = 0.$$

- Let j be the largest subscript for which $c_j \neq 0$.
- If j = 1, then $c_1 v_1 = 0$, which is impossible because $v_1 \neq 0$.

• So j > 1, and

$$\begin{aligned} c_{1}\mathbf{v}_{1} + \dots + c_{j}\mathbf{v}_{j} + 0\mathbf{v}_{j} + 0\mathbf{v}_{j+1} + \dots + 0\mathbf{v}_{p} &= 0 \\ c_{j}\mathbf{v}_{j} &= -c_{1}\mathbf{v}_{1} - \dots - c_{j-1}\mathbf{v}_{j-1} \\ \mathbf{v}_{j} &= \left(-\frac{c_{1}}{c_{j}}\right)\mathbf{v}_{1} + \dots + \left(-\frac{c_{j-1}}{c_{j}}\right)\mathbf{v}_{j-1}. \end{aligned}$$

- Theorem 7 does *not* say that *every* vector in a linearly dependent set is a linear combination of the preceding vectors.
- A vector in a linearly dependent set may fail to be a linear combination of the other vectors.

• Example 2: Let
$$\mathbf{u} = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 1 \\ 6 \\ 0 \end{bmatrix}$. Describe the

set spanned by **u** and **v**, and explain why a vector **w** is in Span {**u**, **v**} if and only if {**u**, **v**, **w**} is linearly dependent.

- Solution: The vectors \mathbf{u} and \mathbf{v} are linearly independent because neither vector is a multiple of the other, and so they span a plane in \square ³.
- Span $\{\mathbf{u}, \mathbf{v}\}$ is the x_1x_2 -plane (with $x_3 = 0$).
- If w is a linear combination of u and v, then {u, v, w} is linearly dependent, by Theorem 7.
- Conversely, suppose that {**u**, **v**, **w**} is linearly dependent.
- By theorem 7, some vector in $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a linear combination of the preceding vectors (since $\mathbf{u} \neq \mathbf{0}$).
- That vector must be w, since v is not a multiple of u.

• So w is in Span $\{u, v\}$. See the figures given below.

Linearly dependent,
w in Span{u, v}

Linearly independent, w not in Span{u, v}

- Example 2 generalizes to any set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ in \square with \mathbf{u} and \mathbf{v} linearly independent.
- The set {u, v, w} will be linearly dependent if and only if w is in the plane spanned by u and v.

- **Theorem 8:** If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, any set $\{\mathbf{v}_1, ..., \mathbf{v}_p\}$ in \square^n is linearly dependent if p > n.
- **Proof:** Let $A = \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_p \end{bmatrix}$.
- Then A is $n \times p$, and the equation Ax = 0 corresponds to a system of n equations in p unknowns.
- If p > n, there are more variables than equations, so there must be a free variable.

- Hence Ax = 0 has a nontrivial solution, and the columns of A are linearly dependent.
- See the figure below for a matrix version of this theorem.

If p > n, the columns are linearly dependent.

• Theorem 8 says nothing about the case in which the number of vectors in the set does *not* exceed the number of entries in each vector.

■ **Theorem 9:** If a set $S = \{v_1, ..., v_p\}$ in \square^n contains the zero vector, then the set is linearly dependent.

- **Proof:** By renumbering the vectors, we may suppose $v_1 = 0$.
- Then the equation $1v_1 + 0v_2 + ... + 0v_p = 0$ shows that S in linearly dependent.

1

Linear Equations in Linear Algebra

1.8

INTRODUCTION TO LINEAR TRANSFORMATIONS

- A transformation (or function or mapping) T from; to; m is a rule that assigns to each vector \mathbf{x} in; m a vector $T(\mathbf{x})$ in; m
- The set; "is called **domain** of T, and; "is called the **codomain** of T.
- The notation $T: i \to i^m$ indicates that the domain of T is i and the codomain is i.
- For \mathbf{x} in \mathbf{i}^n , the vector $T(\mathbf{x})$ in \mathbf{i}^m is called the **image** of \mathbf{x} (under the action of T).
- The set of all images $T(\mathbf{x})$ is called the **range** of T. See the figure on the next slide.

Domain, codomain, and range of $T: \mathbb{R}^n \to \mathbb{R}^m$.

- For each \mathbf{x} in i^n , $T(\mathbf{x})$ is computed as $A\mathbf{x}$, where A is an $m \times n$ matrix.
- For simplicity, we denote such a matrix transformation by x a Ax.
- The domain of *T* is i "when *A* has *n* columns and the codomain of *T* is i " when each column of *A* has *m* entries.

• The range of T is the set of all linear combinations of the columns of A, because each image $T(\mathbf{x})$ is of the form $A\mathbf{x}$.

• Example 1: Let
$$A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix}$$
, $u = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $c = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}$.

and define a transformation $T: i^2 \rightarrow i^3$ by T(x) = Ax, so that

$$T(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 - 3x_2 \\ 3x_1 + 5x_2 \\ -x_1 + 7x_2 \end{bmatrix}.$$

© 2012 Pearson Education, Inc.

Slide 1.8-4

- a. Find $T(\mathbf{u})$, the image of \mathbf{u} under the transformation T.
- **b.** Find an \mathbf{x} in \mathbf{i}^2 whose image under T is \mathbf{b} .
- c. Is there more than one **x** whose image under *T* is **b**?
- d. Determine if **c** is in the range of the transformation *T*.

Solution:

a. Compute

$$T(\mathbf{u}) = A\mathbf{u} = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \\ -9 \end{bmatrix}.$$

b. Solve T(x) = b for x. That is, solve Ax = b,

$$\begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}. \qquad ----(1)$$

• Row reduce the augmented matrix:

$$\begin{bmatrix} 1 & -3 & 3 \\ 3 & 5 & 2 \\ -1 & 7 & -5 \end{bmatrix} : \begin{bmatrix} 1 & -3 & 3 \\ 0 & 14 & -7 \\ 0 & 4 & -2 \end{bmatrix} : \begin{bmatrix} 1 & -3 & 3 \\ 0 & 1 & -.5 \\ 0 & 0 & 0 \end{bmatrix} : \begin{bmatrix} 1 & 0 & 1.5 \\ 0 & 1 & -.5 \\ 0 & 0 & 0 \end{bmatrix}$$
----(2)

• Hence
$$x_1 = 1.5$$
, $x_2 = -.5$, and $x = \begin{vmatrix} 1.5 \\ -.5 \end{vmatrix}$.

• The image of this \mathbf{x} under T is the given vector \mathbf{b} .

- c. Any **x** whose image under *T* is **b** must satisfy equation (1).
 - From (2), it is clear that equation (1) has a unique solution.
 - So there is exactly one **x** whose image is **b**.
- d. The vector \mathbf{c} is in the range of T if \mathbf{c} is the image of some \mathbf{x} in \mathbf{i}^2 , that is, if $\mathbf{c} = T(\mathbf{x})$ for some \mathbf{x} .
 - This is another way of asking if the system Ax = c is consistent.

 To find the answer, row reduce the augmented matrix.

$$\begin{bmatrix} 1 & -3 & 3 \\ 3 & 5 & 2 \\ -1 & 7 & 5 \end{bmatrix} : \begin{bmatrix} 1 & -3 & 3 \\ 0 & 14 & -7 \\ 0 & 4 & 8 \end{bmatrix} : \begin{bmatrix} 1 & -3 & 3 \\ 0 & 1 & 2 \\ 0 & 14 & -7 \end{bmatrix} : \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & -35 \end{bmatrix}$$

- The third equation, 0 = -35, shows that the system is inconsistent.
- So \mathbf{c} is *not* in the range of T.

SHEAR TRANSFORMATION

Example 2: Let $A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$. The transformation

 $T: i^2 \rightarrow i^2$ defined by T(x) = Ax is called a **shear** transformation.

• It can be shown that if T acts on each point in the 2×2 square shown in the figure on the next slide, then the set of images forms the shaded parallelogram.

SHEAR TRANSFORMATION

- The key idea is to show that T maps line segments onto line segments and then to check that the corners of the square map onto the vertices of the parallelogram.
- For instance, the image of the point $u = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$ is

$$T(\mathbf{u}) = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 6 \\ 2 \end{bmatrix},$$

© 2012 Pearson Education, Inc

and the image of
$$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$$
 is $\begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 8 \\ 2 \end{bmatrix}$.

- T deforms the square as if the top of the square were pushed to the right while the base is held fixed.
- **Definition:** A transformation (or mapping) *T* is **linear** if:
 - i. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u} , \mathbf{v} in the domain of T;
 - ii. $T(c\mathbf{u}) = cT(\mathbf{u})$ for all scalars c and all \mathbf{u} in the domain of T.

- Linear transformations preserve the operations of vector addition and scalar multiplication.
- Property (i) says that the result $T(\mathbf{u} + \mathbf{v})$ of first adding \mathbf{u} and \mathbf{v} in \mathbf{i}^n and then applying T is the same as first applying T to \mathbf{u} and \mathbf{v} and then adding $T(\mathbf{u})$ and $T(\mathbf{v})$ in \mathbf{i}^m .
- These two properties lead to the following useful facts.
- If T is a linear transformation, then

$$T(0) = 0 \qquad \qquad ----(3)$$

and
$$T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$$
. ----(4)
for all vectors \mathbf{u} , \mathbf{v} in the domain of T and all scalars c , d .

- Property (3) follows from condition (ii) in the definition, because T(0) = T(0u) = 0.
- Property (4) requires both (i) and (ii): $T(c\mathbf{u} + d\mathbf{v}) = T(c\mathbf{u}) + T(d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$
- If a transformation satisfies (4) for all \mathbf{u} , \mathbf{v} and c, d, it must be linear.
- (Set c = d = 1 for preservation of addition, and set for d = 0 preservation of scalar multiplication.)

 Repeated application of (4) produces a useful generalization:

$$T(c_1 \mathbf{v}_1 + ... + c_p \mathbf{v}_p) = c_1 T(\mathbf{v}_1) + ... + c_p T(\mathbf{v}_p)$$
 ----(5)

• In engineering and physics, (5) is referred to as a *superposition principle*.

Think of $\mathbf{v}_1, ..., \mathbf{v}_p$ as signals that go into a system and $T(\mathbf{v}_1), ..., T(\mathbf{v}_p)$ as the responses of that system to the signals.

- The system satisfies the superposition principle if whenever an input is expressed as a linear combination of such signals, the system's response is the *same* linear combination of the responses to the individual signals.
- Given a scalar r, define $T: i^2 \rightarrow i^2$ by T(x) = rx.
- *T* is called a **contraction** when $0 \le r \le 1$ and a **dilation** when r > 1.