Praktikum Jaringan Komputer Pertemuan 6 - Konfigurasi Dasar Mikrotik (NAT, DHCP, IP Addressing)

1.1. CAPAIAN PEMBELAJARAN

- 1. Memahami konsep DHCP dan NAT
- 2. Melakukan simulasi DHCP dan NAT menggunakan router Mikrotik
- 3. Melakukan DHCP Jaringan Wired & Wireless, dan NAT menggunakan router mikrotik

1.2. ALAT DAN BAHAN

- 1. Seperangkat komputer lengkap/Laptop dengan koneksi internet
- 2. Web Browser (Chrome/Firefox/Opera/Edge/Safari/dll)
- 3. Aplikasi Kantor (Microsoft Office/Libre Office/WPS Office/etc)
- 4. Cisco Packet Tracer
- 5. Router Mikrortik RB951 (minimal 1)
- 6. Kabel UTP Straight (minimal 1)

1.3. DASAR TEORI

Pada dasarnya konfigurasi IP address dapat dilakukan secara manual (*static*) dan otomatis (*dynamic*). Pada jaringan komputer lokal dan skala kecil konfigurasi IP *address* dilakukan secara manual, namun pada jaringan skala besar konfigurasi biasanya dilakukan secara dinamis karena dapat menghemat waktu. Konfigurasi IP *address* secara dinamis dilakukan dengan menambahkan DHCP *server*.

A. DHCP

DHCP atau *Dynamic Host Configuration Protocol* adalah protokol berbasis arsitektur *client/server* yang digunakan untuk pengalokasian IP *address* dalam satu jaringan secara otomatis.

Gambar 1.1 Jaringan DHCP Server

Perangkat yang digunakan adalah DHCP server. DHCP server adalah server yang secara otomatis menyediakan dan menetapkan IP address, default gateways, dan parameter lain jaringan seperti IP DNS ke perangkat client. IP address yang dikirim oleh DHCP server dapat kadaluarsa pada waktu yang ditetapkan. Namun, DHCP server akan memperbarui masa IP address tersebut secara otomatis. Jaringan yang tidak menggunakan DHCP harus mengkonfigurasi IP address di semua komputer secara manual. Konfigurasi IP address secara manual tentu saja sangat merepotkan dan tidak efisien waktu.

1) Prinisp Kerja DHCP Server

Ketika komputer *client* yang terhubung ke DHCP *server* menghidupkan perangkatnya, maka otomatis komputer *client* tersebut meminta (*request*) IP *address* ke *server*. *Server* menjawab permintaan tersebut dan memberikan IP *address* ke komputer *client* agar dapat terhubung ke jaringan.

Gambar 1.2. Prinsip Kerja DHCP Server

Prinsip kerja DHCP server dapat dilihat pada Gambar 36 dan penjelasaan setiap prosesnya sebagai berikut:

a) IP Least Discovery.

Tahap ini disebut sebagai tahap penemuan. Pada saat *client* terhubung ke jaringan akan mencari DHCP *server* pada jaringan tersebut. *Client* akan mengirimkan pesan **DHCPDISCOVER** ke *subnet* jaringan menggunakan alamat tujuan 255.255.255. Setelah ditemukan, *client* akan meminta IP *address* yang tersedia pada DHCP *server*.

b) IP Least Offer.

Ketika DHCP *server* menerima pesan **DHCPDISCOVER**, *server* membuat penawaran ke *client* dengan mengirim pesan **DHCPOFFER**. Pesan tersebut berisi *id client*, IP *address* yang ditawarkan, *subnet mask*, durasi penggunaan, dan IP *address* dari DHCP *server*.

c) IP Lease Request.

Ketika *client* kemudian menyetujui penawaran dari *server*, *client* memberikan pesan **DHCPREQUEST** kepada *server*. Isi pesannya adalah meminta agar server meminjamkan salah satu IP *address* yang tersedia pada daftar IP *address* DHCP.

d) IP Lease Acknowledge.

Ketika *server* menerima pesan permintaan dari *client*, maka *server* mengirim pesan ke *client* berupa pesan **DHCPACK**. Pesan ini berisi IP *address*, durasi sewa penggunaan IP, dan informasi konfigurasi lain yang mungkin dibutuhkan *client*. *Server* akan memberi tanda di *database* pada IP *address* agar tidak digunakan oleh komputer lain. Setelah proses ini selesai dan berhasil, komputer *client* bisa menggunakan jaringan tersebut dan bertukar data dengan komputer *client* lain di jaringan lokal tersebut.

2) Fungsi DHCP Server

Fungsi utama DHCP *server* adalah pengalokasi IP *address* secara otomatis ke setiap komputer *client* yang terhubung dengannya. Jika berbicara secara detail fungsi DHCP *server* dapat dipecah sebagai berikut:

a) Mengelola dan mendistribusikan IP *address*.

Fungsi DHCP untuk mengelola dan memudahkan distribusi IP *address* ke komputer *client*. Proses distribusi dilakukan ke banyak perangkat sekaligus secara otomatis.

b) Mencegah IP conflict

IP *conflict* terjadi akibat adanya dua perangkat yang memiliki IP *address* sama, sehingga perangkat tersebut tidak dapat terhubung dengan jaringan. DHCP *server* meminimalisir kesalahan dalam pembagian IP *address*.

c) Memperbarui IP address secara otomatis.

IP *address* diberikan oleh *server* memiliki masa pemakaian atau masa kadaluarsa. Agar IP *address* selalu dapat dipakai perlu memperbarui atau meminta IP *address* yang baru. DHCP server dapat memperbarui kembali secara otomatis IP *address* tanpa perlu mengkonfigurasi kembali.

d) Mendukung penggunaan kembali IP address

IP *address* yang pernah digunakan dapat digunakan kembali oleh komputer *client*. Syarat untuk menggunakan kembali yaitu perlu dipastikan IP *address* sedang tidak digunakan oleh komputer lain. DHCP *server* membantu memeriksa penggunaan IP address apakah sedang bebas pakai atau tidak

B. NAT

NAT (Network Address Translation) merupakan sebuah protokol pada jaringan yang memungkinkan jaringan privat dapat terhubung ke internet, secara garis besar NAT itu akan membelokan traffic yang melewati router.

NAT digunakan untuk mengubah alamat IP yang ada didalam sebuah paket data. Baik itu source IP ataupun destination IP. Jika paket data pertama dari sebuah koneksi terkena NAT, maka semua paket data dalam koneksi tersebut secara otomatis terkena NAT juga.

Karena terbatasnya alamat ip publik yang ada di internet maka banyak Internet Provider menggunakan cara ini untuk mengcover jaringan lan pada sisi client agar tetap terhubung ke internet. Biasanya ISP hanya memberikan 1 buah IP publik untuk client dan dari 1 ip publik itulah nantinya jaringan Lan pada sisi client dapat terhubung ke internet

Gambar 1.3. Cara kerja NAT

1) Jenis-jens NAT

a) Source NAT (srcNAT)

Berfungsi menyembunyikan / mengganti IP Address client dengan IP Address yang sudah terpasang pada router (Umumnya dari IP lokal ke IP publik). Jenis Source NAT yang paling umum adalah *Masquerade*. *Masquerade* berfungsi mengubah alamat IP sumber menjadi alamat IP yang digunakan untuk keluar ke internet. Biasanya digunakan ketika koneksi internet menggunakan IP dinamis (IP berubah-ubah).

b) Destination NAT (dstNAT)

Berfungsi untuk melakukan penggantian IP Address tujuan, atau membelokkan koneksi ke tujuan lain, Biasanya di vendor lain dikenali sebagai fitur **port forwarding**.

Jika menggunakan perangkat berbasis Cisco ada 3 jenis NAT, yaitu:

a) Static NAT

Penggunaan 1 IP Public untuk 1 IP Private (One to One Mapping). Sebagai contoh ada sebuah server yang ingin diakses melalui internet, sedangkan Server tsb menggunakn IP Private, dengan menggunakan Static NAT maka server tsb dapat diakses melalui IP Public.

b) Dynamic NAT

Penggunaan IP Public untuk IP Private yang memiliki jumlah yang sama. Jadi untuk menggunakannya membutuhkan jumlah IP Public dan IP Private yang sama, misal: jika ada 5 client maka kita harus memiliki 5 IP Public, maka dari itu Dynamic NAT ini jarang digunakan.

c) Dynamic NAT Overloading

Penggunaan 1 IP Public untuk beberapa IP Private. Sebagai contoh ada lebih dari 1 client ingin mengakses internet, namun hanya ada 1 IP Public, maka kita bisa gunakan Dynamic NAT Overloading ini.

C. Router RB951

MikroTik RouterBoard RB951 adalah salah satu produk router yang cukup populer dari MikroTik, dirancang untuk digunakan dalam jaringan rumah atau kantor kecil.

Spesifikasi Umum RB951:

- 1. **CPU**: Router ini dilengkapi dengan CPU Atheros AR9344 berkecepatan 600 MHz. Ini memberikan kinerja yang cukup baik untuk kebutuhan jaringan kecil.
- 2. **Memori**: RB951 memiliki RAM sebesar 128 MB, yang cukup untuk menjalankan berbagai fitur yang ditawarkan oleh RouterOS MikroTik, termasuk NAT, firewall, routing, hotspot, dan sebagainya.
- 3. **Ethernet Ports**: RB951 memiliki **5 port Ethernet 10/100 Mbps**. Ini berarti router dapat menghubungkan hingga 5 perangkat jaringan melalui kabel LAN, seperti PC, server, atau switch.
- 4. **Wireless**: Model RB951Ui-2HnD memiliki radio **wireless 2.4 GHz 802.11b/g/n** dengan dua antena internal yang menawarkan daya transmisi hingga 1000mW. Ini cocok untuk menyediakan koneksi nirkabel di area yang lebih luas.

5. **Power over** Ethernet (**PoE**):

 Port 1 mendukung input PoE, sehingga perangkat ini dapat dihidupkan menggunakan kabel Ethernet jika Anda menggunakan perangkat injektor PoE atau switch yang mendukung PoE.

- Port 5 mendukung output PoE untuk menghidupkan perangkat lain yang mendukung
 PoE, seperti perangkat akses point atau kamera IP.
- 6. **RouterOS**: Seperti router MikroTik lainnya, RB951 menjalankan **RouterOS**, sistem operasi jaringan MikroTik yang sangat fleksibel. RouterOS mendukung berbagai fitur, seperti:
 - Routing dinamis dan statis
 - NAT (Network Address Translation)
 - o Firewall
 - o VPN (Virtual Private Network)
 - QoS (Quality of Service)
 - Hotspot
 - DHCP Server
 - o DNS
 - o VLAN
- 7. **Slot USB**: RB951 memiliki **1 port USB 2.0**, yang memungkinkan Anda untuk menyambungkan perangkat penyimpanan atau modem 3G/4G sebagai backhaul.
- 8. **Dimensi dan Power Supply**: RB951 adalah perangkat yang relatif kecil dengan desain yang ringkas. Ini membutuhkan power supply 9-30V dan biasanya sudah termasuk adaptor 24V dalam paket penjualan.

1.4. PRAKTIKUM

1. Percobaan menggunakan Router Mikrotik RB951

A. Alat & Bahan

- PC (1)
- Kabel UTP Straight (1)
- Router Mikrotik RB951 (1)
- Aplikasi winbox (1)
- Kabel LAN terkoneksi Internet (1)

B. Setup Jaringan

- 1. Siapkan alat & bahan
- 2. Hubungkan Kabel LAN yang terkoneksi Internet pada Port 1 Router
- 3. Hubungkan PC dengan Router menggunakan Kabel UTP Straight pada Port 2 Router
- 4. Buka aplikasi winbox, klik pada MAC Address Router yang muncul secara otomatis.

C. Metode

- Jaringan kabel menggunakan konfigurasi DHCP
 - 1. Buka tab IP > DHCP Client > Klik tanda plus biru (+) > Pada menu Interface pilih port sumber Jaringan Internet, pada praktikum ini digunakan Port ethernet 1.

2. Buka tab IP > Addresses > Perhatikan alamat IP yang muncul, merupakan alamat IP dari Jaringan Internet > Tambahkan alamat IP untuk client side pada port yang terhubung dengan PC kalian (pada praktikum ini digunakan port eth2).

Aturan Pengalamatan IP: 192. 168. NPM (2 digit terakhir).1 / 24 (prefix dibebaskan

tapi disarankan menggunakan prefix 24). Alamat IP ini akan digunakan sebagai Gateway PC masing-masing.

- 3. Buka tab IP > DCHP Server > DHCP Setup. Buat konfigurasi untuk mengatur alamat IP yang nanti akan dibagikan ke client side, dalam praktikum ini Port ethernet 2.
 - Konfigurasi DHCP Setup

• Tampilan hasil konfigurasi

4. Buka tab IP > Firewall > NAT > Lakukan konfigurasi NAT seperti pada gambar berikut.

- 5. Set PC masing-masing dengan konfigurasi IPV4 DHCP
- 6. Lakukan pengecekan alamat IP pada cmd dengan command "ipconfig", jika kofigurasi DHCP berhasil maka alamat IP PC akan menyesuaikan dengan alamat IP yang telah dikonfigurasi melalui router.

```
C:\Users\HP>ipconfig

Windows IP Configuration

Ethernet adapter Ethernet:

Connection-specific DNS Suffix :
Link-local IPv6 Address . . : fe80::5c12:2661:314:3c09%11
IPv4 Address . . . : 192.168.53.254
Subnet Mask . . . . : 255.255.255.0
Default Gateway . . . : 192.168.53.1
```

7. Lakukan pengecekan koneksi internet dengan melakukan browsing pada web browser

- Konfigurasi Jaringan Wireless pada router mikrotik RB951
 - 1. Tahapan ini melanjutkan konfigurasi DHCP yang telah dibuat sebelumnya
 - 2. Buka tab Wireless > Security Profiles > klik tanda plus biru (+) > konfigurasi seperti pada gambar. Langkah ini digunakan untuk menambahkan password ke jaringan WLAN kita.

3. Buka tab Interfaces > klik 2x pada opsi WLAN 1 > buka tab Wireless > konfigurasi seperti pada gambar. Ini digunakan untuk mengatur jaringan WLAN kita seperti mode yang digunakan, nama SSID, dan Security profile yang digunakan.

4. Buka tab IP > Addresses > tambahkan pengaturan alamat IP untuk jaringan wireless client side. Pastikan gunakan alamat IP yang berbeda Network ID dari yang sebelumnya.

- 5. Konfigurasi DHCP Server untuk jaringan WLAN 1.
- 6. Uji konektivitas jaringan menggunakan perangkat masing-masing.