New Horizon College of Engineering, Bangalore. Autonomous College Affiliated to VTU Department of MCA

Session: Jan 20 – May 20 IV Semester MCA

Course Code: 19MCA42

Course Name: Design & Analysis of Algorithms

First Assignment Questions

					4
(÷	r	N	11	n	

1.	Compute the following sums and give its order of growth rate:		L3	CO1
	(i) $\sum_{i=3}^{n+1} i$ (ii) $\sum_{i=0}^{n-1} i (i+1)$			
2.	Evaluate the following recurrence relations: a) $x(n) = 2x(n/2) + n$ for $n > 1$, $x(1) = 1$ (solve for $n = 2^k$) b) $x(n) = x(n-1) + 5$ for $n > 1$, $x(1) = 0$	2M	L5	CO1
3.	Design an algorithm to find GCD of 3 Numbers.	2M	L6	CO1
4.	Apply Merge sorting procedure to sort the list N, E, W, H, O, R, I, Z, O, N in alphabetical order. Draw its tree calls.	1.5M	L3	CO2

Group2

1.	Compute the following sums and give its order of growth rate:		L3	CO1
	(i) $\sum_{i=0}^{n-1} (i^2+1)^2$ (ii) $\sum_{i=1}^{n} \sum_{j=1}^{n} ij$			
2.	Evaluate the following recurrence relations: a) $x(n) = x(n/3) + 1$ for $n > 1$, $x(1) = 1$ (solve for $n = 3^k$) b) $x(n) = x(n-1) + n$ for $n > 0$, $x(0) = 0$		L5	CO1
3.	Design an algorithm to find the Fibonacci series.	2M	L6	CO1
4.	Apply Quick sort algorithm to sort the list N, E, W, H, O, R, I, Z, O, N in alphabetical order.	1.5M	L3	CO2

Group3

1.	Compute the following sums and give its order of growth rate:		L3	CO1
	(i) $1+3+5+7+\ldots+999$ (ii) $\sum_{i=3}^{n+1} 1$			
2.	Evaluate the following recurrence relations:	2M	L5	CO1
	a) $x(n) = x(n/2) + n$ for $n > 1$, $x(1) = 1$ (solve for $n = 2^k$) b) $x(n) = 3x(n-1) + n$ for $n > 0$, $x(0) = 0$			
3.	Design an algorithm to find the Prime numbers from 1 to N.	2M	L6	CO1
4.	Apply Merge sort algorithm to sort the list E, X, A, M, P, L, E, O, N in alphabetical order. Draw its tree calls.	1.5M	L3	CO2

Note: Submission date on or before 10th February 2020