

Practice of AI

线性回归

Jim Xie

一元线性回归

当X=6 时, Y等于几比较合适?

$$Y = k * x + b$$

多元线性回归模型

面积(平)	房价(元)
80	240
90	270
100	300
95	???

 x_1

$$Y = \omega x + b$$

$$J = \frac{1}{2} \sum_{i} (y_i - (\omega x_i + b))^2$$

多元线性回归:

面积(平)	房间数(个)	房价(元)
90	2	270
90	3	280
100	3	310
95	3	???

 χ_2

$$Y = \omega_1 x_1 + \omega_2 x_2 + b$$

$$J = \frac{1}{2} \sum (y_i - (w_1 x_i + w_2 x_i + b))^2$$
 如果同时要求 ω_1 与 ω_2 和最小呢?

最小二乘法

1. 设直线方程为: $Y = \omega x + b$

2. 每个样本误差为: 真实值-预测值

3. 所有样本误差为: 每个样本误差的平方和

4. 写成公式: $J(\omega, b) = \frac{1}{2} \sum (y_i - (\omega x_i + b))^2$

5. 训练的目标: 当总误差最小时的 ω 和 b 的值

 y_i 和 x_i 已知,只要求出最小值对应的 (ω, b) 即可。

索回归模型 (LASSO)

预测函数:

$$Y = \omega_1 x_1 + \omega_2 x_2 + b$$

总误差(多元回归):

$$J = \frac{1}{2} \sum_{i} (y_i - (w_1 x_i + w_2 x_i + b))^2$$

总误差(LASSO):

$$J = \frac{1}{2}\sum(y_i - (w_1x_i + w_2x_i + b))^2 + \lambda(w_1 + w_2)$$

求总误差最小值时,会使得部分ω值很小或为0;

从而使某些特征失效,有特征选择作用;

岭回归模型 (Ridge)

预测函数:

$$Y = \omega_1 x_1 + \omega_2 x_2 + b$$

总误差(多元回归):

$$J = \frac{1}{2} \sum_{i} (y_i - (w_1 x_i + w_2 x_i + b))^2$$

总误差(Ridge):

$$J = \frac{1}{2} \sum (y_i - (w_1 x_i + w_2 x_i + b))^2 + \lambda (\omega_1^2 + \omega_2^2)$$

求总误差最小值时,会使得参数 ω_1, ω_2 趋近;

没有特征选择作用,

Elastic Net模型

预测函数:

$$Y = \omega_1 x_1 + \omega_2 x_2 + b$$

总误差(多元回归):

$$J = \frac{1}{2} \sum_{i} (y_i - (w_1 x_i + w_2 x_i + b))^2$$

总误差(Ridge):

$$J = \frac{1}{2} \sum_{i} (y_i - (w_1 x_i + w_2 x_i + b))^2 + \lambda_1 (w_1 + w_2) + \lambda_2 (\omega_1^2 + \omega_2^2)$$

求总误差最小值时,会使得部分 ω 值很小或为0;

从而使某些特征失效,有特征选择作用;

线性回归模型: Linear, Ridge, LASSO, Elastic Net

其实就是线性回归加上正则项 (1为惩罚系数)

线性回归模型 :
$$J = \frac{1}{2}\sum (Y - \overline{Y})^2$$

岭回归模型 :
$$J = \frac{1}{2} \sum (Y - \overline{Y})^2 + \lambda \sum W_i^2$$

LASSO回归模型:
$$J = \frac{1}{2} \sum (Y - \bar{Y})^2 + \lambda \sum W_i$$

Elastic Net回归模型:
$$J = \frac{1}{2}\sum_{i} (Y_i - \overline{Y}_i)^2 + \lambda_1 \sum_{i} W_i^2 + \lambda_2 \sum_{i} W_i$$

线性回归扩展:多项式回归

曲线拟合

http://127.0.0.1:8888/notebooks/C2/模型训练.ipynb

将输入X增加多个维度,扩展为多项式

$$\vec{X} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad -$$

```
from sklearn.linear_model import Ridge
from sklearn.preprocessing import PolynomialFeatures
     from sklearn.pipeline import make pipeline
      def test_poly(degree = 12):
             model = make_pipeline (PolynomialFeatures(degree))
model.fit(X_train,Y_train)
  6
            pred_y = model.predict(X_test)
error = (np.sqrt(sum((pred_y-Y_test)**2/Y_test.size)))
df4['Pred'] = pd.Series(pred_y.reshape(-1,).tolist())
print("degree ",degree,"error ",error)
sns.scatterplot(x="X1", y="Y",s=150,data=df4)
sns.lineplot(x="X1",y="Pred",data=df4,color='red')
  8
11
12
13
              plt.show()
14
15
16 test poly(1)
17 test_poly(2)
18 test_poly(3)
19 test_poly(5)
20 test poly(50)
```

$$\vec{Y} = \begin{bmatrix} x_1 \\ x_2 \\ x_1^2 \\ x_2^2 \\ x_1 x_2 \end{bmatrix}$$

定理

一定可以找到一个多项式,使得可以过所有点

Why 100% when doing add?