Lab Cycle – I (Wine quality dataset)

1. Download the dataset winequality-red.csv file(each column is separated by a semicolon (;)) from the UCI Machine Learning Repository.

```
import numpy as np
arr = np.loadtxt(r"C:\Users\Y20C179\Downloads\winequality-
red.csv",delimiter=";", dtype=str,skiprows=1)
display(arr)
```

Output:

2. Convert it to numPy array, name it as wines (leave the first row of the list) and specify the data type of array as float.

```
wines=arr.astype('float64')
print(wines)
```

```
[[ 7.4
        0.7
              0.
                        0.56
                             9.4
                                    5.
                                         j
[ 7.8
        0.88
              0.
                        0.68
                              9.8
                                    5.
7.8
                                         1
        0.76
              0.04
                        0.65
                             9.8
                                    5.
6.3
      0.51
              0.13
                   ... 0.75 11.
                                    6.
[ 5.9  0.645  0.12  ...  0.71  10.2
                                    5.
                                         ]]
[ 6.
        0.31
              0.47 ... 0.66 11.
                                    6.
```

3. Identify the shape of the array.

wines.shape

Output:

```
(1599, 12)
```

4. Display the element at row 3 and column 4.

```
wines[2,3]
```

Output:

2.3

5. Display the first three items from the fourth column.

```
wines[:3,[3]]
```

Output:

```
array([[1.9],
[2.6],
[2.3]])
```

6. Display third column from each row.

```
wines[:,2]
```

```
array([0., 0., 0.04, ..., 0.13, 0.12, 0.47])
```

7. Display fourth row.

```
wines[3]
```

Output:

```
array([11.2 , 0.28 , 0.56 , 1.9 , 0.075, 17. , 60. , 0.998, 3.16 , 0.58 , 9.8 , 6. ])
```

8. Assign value 10 to 2nd row and 6th column element.

```
wines[1,5]=10
print(wines[1,5])
```

Output:

10.0

9. Take the 10th column from wines array and name that slice as slice_new and assign value 666 to all elements of slice_new.

```
slice_new=wines[:,9]
slice_new[:]=666
print(slice new)
```

```
[666. 666. 666. 666. 666. 666.]
```

10. Display wines array.

```
print(wines)
```

Output:

```
[[ 7
          0 ... 666
                    9 30]
         0 ... 666
                   9 30]
[ 11
Γ
  7
       0
          0 ... 666
                    9 34]
                    11 32]
       0
          0 ... 666
          0 ... 666
       0
                    11 32]
          0 ... 666 11 32]]
array([[ 7,
                             9, 30],
             0, 0, ..., 666,
             0, 0, ..., 666,
                             9, 30],
      [ 11,
                                  34],
        7,
             0,
                0, ..., 666,
                              9,
             0, 0, ..., 666,
                              11,
                                  32],
        6,
                                  32],
           0, 0, ..., 666,
                             11,
        6,
      [ 6, 0, 0, ..., 666,
                             11,
                                  32]])
```

11. Find the data type of wines array and Change the data type to int.

```
print(wines.dtype)
wines=wines.astype('int')
print(wines.dtype)
print(wines)
```

```
float64
int32
                    9 5]
[[ 7
      0 0 ... 666
   7
      0
        0 ... 666
                        5]
[ 7
          0 ... 666
                        5]
                        6]
0 ... 666
                   11
[ 5
                        5]
      0 0 ... 666 10
6
      0
          0 ... 666 11
                        6]]
```

12. Add 10 points to each quality score.

```
wines[:,-1]+=10
print(wines[:,-1])
```

Output:

```
[15 15 15 ... 16 15 16]
```

13. Find the sum of all the elements in an array

```
print(sum(sum(wines)))
print(wines.sum())
```

Output:

1226388 1226388

14. Find the sum of all the values in every column.

```
print(wines.sum(axis=0))
```

Output:

15. Find the sum of all the values in every row.

```
print(np.sum(wines, axis=1))
```

```
[746 779 771 ... 773 777 765]
```

16. Add the quality column to itself.

```
wines[:,-1]+=wines[:,-1]
wines[:,-1]
```

Output:

```
array([30, 30, 30, ..., 32, 30, 32])
```

17. Multiply alcohol by quality

```
print(wines[:,-2]* wines[:,-1])
```

Output:

```
[270 270 270 ... 352 300 352]
```

18. Display which wines have a quality rating higher than 5.

```
print(wines[wines[:,-1]>5])
```

Output:

```
[[11 0 0 ... 0 9 6]

[ 7 0 0 ... 0 10 7]

[ 7 0 0 ... 0 9 7]

...

[ 5 0 0 ... 0 11 6]

[ 6 0 0 ... 0 11 6]
```

19. Check if any wines have a quality rating equal to 10.

```
print (wines [wines [:, -1] == 10])
```

Output:

[]

20. Select rows in wines where the quality is over 7

```
print (wines [wines [:, -1] > 7])
```

Output:

```
0
        3 0 15 37
      0 6 0 5 13
                        0 12
[10
   0
                   0
                      3
                              8]
   0 0 1 0 12 88
                   0
                      3
                        0 12
                              8]
[12 0 0 2 0
              6 29
                   0
                        0 9
[11 0 0 5 0
              6 19
                   0
                      3
                        0 13
                              8]
      0 2
9
   0
           0
              6 17
                   0
                      3
                        0 11
[10 0 0 2
              5 16
           0
                   0
                      3
                        0 11
                              8]
[10 0 0 2
           0 5 16
                   0
                      3
                        0 11
                              8]
   0
      0 2
           0 19 50
                   0
                      3
                        0 14
[ 7
   0 0 2
           0 34 45
                   0
                      3
                        0 12
                              8]
[9 0 0
         1
           0
              7 16
                   0
                      3
                        0 12
                              8]
[10
   0
      0
         1
           0 42 74
                   0
                              8]
   0 0
           0
              8 17
                   0
                      3
                        0 13
                              8]
[8 0
      0
         1
           0
              6 12
                   0
                      3
                              8]
   0
      0
         1
           0 28 87
                   0
                              8]
   0
      0
           0
             3 13
                   0
                      3
                              8]
[700
           0 15 29
                   0
                      3
                              8]
           0 17 24
                             8]]
```

21. Display wines with alcohol greater than 10 and quality greater than 7.

```
print(wines[(wines[:,-2]>10) & (wines[:,-1]>7)])
```

```
3 0 15 37
                  0
                       0 12
                            8]
     0 6 0 5 13
[10
                  0
                    3
                      0 12
                            8]
[ 5
   0 0 1 0 12 88
                  0
                    3
                      0 12
                            8]
[11
   0 0 5 0 6 19
                  0
                    3
                       0 13
[90020617
                  0 3 0 11
[10 0 0 2 0 5 16
                  0 3 0 11
                            8]
[10
   0 0 2 0 5 16
                  0
                    3
                      0 11
   0 0 2 0 19 50
                 0 3 0 14
                            8]
   0 0 2 0 34 45
                  0 3 0 12
[ 9
   0 0 1 0 7 16
                  0 3
                      0 12
                            8]
[10
   0 0 1 0 42 74
                  0 2 0 11
                            8]
7 0 0 2 0 8 17
                            8]
[8 0 0 1 0 6 12
                  0 3 0 11
                            8]
 5 0 0 1 0 28 87
                  0 3
                      0 14
                            8]
7 0 0 2 0 15 29
                  0 3
                      0 11
[7 0 0 1 0 17 24 0 3 0 11 8]]
```

Γ.	Satya	Hima	avanth
	Y20C9	5179.	CSF-C

22. Change the shape of wines array.

```
wines = wines.reshape((533,36))
print(wines.shape)
```

Output:

(533, 36)

<u>Lab Cycle – II (Iris dataset)</u>

1. Print the dataset iris.

```
import pandas as pd
file = pd.read_csv("/content/IRIS.csv")
file
```

Output:

1	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 5 columns

2. Print the structure of the dataset iris.

file.info()

Output:

150 non-null

dtypes: float64(4), object(1)

memory usage: 6.0+ KB

4 species

object

3. Print the summary of all the variables of the dataset iris.

file.describe()

Output:

	sepal_length	sepal_width	petal_length	petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

4. How many of the variables (columns) are in the dataset iris.

len(file.keys())

Output:

5

5. How many observations (rows) are in the dataset iris.

len(file)

Output:

150

6. Use *duplicated()* function to print the logical vector indicating the duplicate values present in the dataset iris.

file.duplicated()

Output:

```
False
       False
2
       False
3
       False
       False
145
       False
146
       False
       False
147
148
       False
149
      False
Length: 150, dtype: bool
```

7. Extract duplicate elements from the dataset iris.

file[file.duplicated()]

	sepal_length	sepal_width	petal_length	petal_width	species
34	4.9	3.1	1.5	0.1	Iris-setosa
37	4.9	3.1	1.5	0.1	Iris-setosa
142	5.8	2.7	5.1	1.9	Iris-virginica

8. Extract unique elements from the dataset iris.

file.drop_duplicates()

Output:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

147 rows × 5 columns

9. Print the indices of duplicate elements in the dataset iris.

file[file.duplicated()].index.tolist()

Output:

34 4.9 37 4.9 142 5.8

Name: sepal_length, dtype: float64

10. Print the indices of unique elements in the dataset iris.

```
file.drop_duplicates().index.tolist()
Output:
[0,
 1,
 2,
 3,
 4,
 5,
 6,
 7,
 8,
 9,
 10,
 11,
 12,
 13,
 14,
 15,
   11. How many unique elements are in the dataset iris.
len(file.drop_duplicates())
Output:
147
   12. How many duplicate elements are in the dataset iris.
len(file[file.duplicated()])
```

13. Print the sorted elements in the dataset iris(Ascending order).

file.sort_values('sepal_length', axis=0)

Output:

	sepal_length	sepal_width	petal_length	petal_width	species
13	4.3	3.0	1.1	0.1	Iris-setosa
42	4.4	3.2	1.3	0.2	Iris-setosa
38	4.4	3.0	1.3	0.2	Iris-setosa
8	4.4	2.9	1.4	0.2	Iris-setosa
41	4.5	2.3	1.3	0.3	Iris-setosa
122	7.7	2.8	6.7	2.0	Iris-virginica
118	7.7	2.6	6.9	2.3	Iris-virginica
117	7.7	3.8	6.7	2.2	Iris-virginica
135	7.7	3.0	6.1	2.3	Iris-virginica
131	7.9	3.8	6.4	2.0	Iris-virginica

150 rows × 5 columns

14. Find whether any missing values are in the dataset iris.

file.dropna()

Output:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 5 columns

15. Display how many missing values are present in each column.

file.isnull().sum()

Output:

sepal_length 0
sepal_width 0
petal_length 0
petal_width 0
species 0
dtype: int64

16. Replace all missing values with zero.

file.fillna(0)

Output:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 5 columns

17. Calculate Petal width mean , median , SD, Variance for the species setosa.

```
print(file[file['species']=='Iris-setosa']['petal_width'].mean())
print(file[file['species']=='Iris-setosa']['petal_width'].std())
print(file[file['species']=='Iris-setosa']['petal_width'].var())
```

Output:

0.244

0.1072095030816784

0.011493877551020411

18. Print from 10th row to 20th row of iris dataset.

file[10:21]

	sepal_length	sepal_width	petal_length	petal_width	species
10	5.4	3.7	1.5	0.2	Iris-setosa
11	4.8	3.4	1.6	0.2	Iris-setosa
12	4.8	3.0	1.4	0.1	Iris-setosa
13	4.3	3.0	1.1	0.1	Iris-setosa
14	5.8	4.0	1.2	0.2	Iris-setosa
15	5.7	4.4	1.5	0.4	Iris-setosa
16	5.4	3.9	1.3	0.4	Iris-setosa
17	5.1	3.5	1.4	0.3	Iris-setosa
18	5.7	3.8	1.7	0.3	Iris-setosa
19	5.1	3.8	1.5	0.3	Iris-setosa
20	5.4	3.4	1.7	0.2	Iris-setosa

19. Print Species and its corresponding Petal length and Width.

file[['species', 'petal length', 'petal width']]

Output:

	species	petal_length	petal_width
0	Iris-setosa	1.4	0.2
1	Iris-setosa	1.4	0.2
2	Iris-setosa	1.3	0.2
3	Iris-setosa	1.5	0.2
4	Iris-setosa	1.4	0.2
145	Iris-virginica	5.2	2.3
146	Iris-virginica	5.0	1.9
147	Iris-virginica	5.2	2.0
148	Iris-virginica	5.4	2.3
149	Iris-virginica	5.1	1.8

150 rows × 3 columns

20. Display records only with species "Iris-setosa".

file[file['species']=="Iris-setosa"]

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
5	5.4	3.9	1.7	0.4	Iris-setosa
6	4.6	3.4	1.4	0.3	Iris-setosa
7	5.0	3.4	1.5	0.2	Iris-setosa
8	4.4	2.9	1.4	0.2	Iris-setosa
9	4.9	3.1	1.5	0.1	Iris-setosa

21. Count number of times a particular species has occurred.

```
file['species'].value_counts()
```

Output:

Iris-setosa 50
Iris-versicolor 50
Iris-virginica 50
Name: species, dtype: int64

22. Identifying minimum and maximum Value of Sepal width.

```
print (min (file['sepal_width']))
print (max (file['sepal_width']))
Output:
2.0
4.4
```

23. Add new column to store sum of first four column values

```
file['Total']=file[file.columns[0:4]].sum(axis=1)
file
```

Output:

	sepal_length	sepal_width	petal_length	petal_width	species	Total
0	5.1	3.5	1.4	0.2	Iris-setosa	10.2
1	4.9	3.0	1.4	0.2	Iris-setosa	9.5
2	4.7	3.2	1.3	0.2	Iris-setosa	9.4
3	4.6	3.1	1.5	0.2	Iris-setosa	9.4
4	5.0	3.6	1.4	0.2	Iris-setosa	10.2
145	6.7	3.0	5.2	2.3	Iris-virginica	17.2
146	6.3	2.5	5.0	1.9	Iris-virginica	15.7
147	6.5	3.0	5.2	2.0	Iris-virginica	16.7
148	6.2	3.4	5.4	2.3	Iris-virginica	17.3
149	5.9	3.0	5.1	1.8	Iris-virginica	15.8

150 rows × 6 columns

<u>Lab Cycle – III (National Universities Rankings dataset)</u>

```
import pandas as pd
file = pd.read_csv("/content/National_Universities_Rankings.csv")
file
```

Output:

	index	Name	Location	Rank	Description	Tuition and fees	In-state	Undergrad Enrollment
0	0	Princeton University	Princeton, NJ	1	Princeton, the fourth-oldest college in the Un	\$45,320	NaN	5,402
1	1	Harvard University	Cambridge, MA	2	Harvard is located in Cambridge, Massachusetts	\$47,074	NaN	6,699
2	2	University of Chicago	Chicago, IL	3	The University of Chicago, situated in Chicago	\$52,491	NaN	5,844
3	3	Yale University	New Haven, CT	3	Yale University, located in New Haven, Connect	\$49,480	NaN	5,532
4	4	Columbia University	New York, NY	5	Columbia University, located in Manhattan's Mo	\$55,056	NaN	6,102
226	226	University of MassachusettsDartmouth	North Dartmouth, MA	220	Located about 60 miles south of Boston, the Un	\$19,270	\$12,588	7,295
227	227	University of MissouriSt. Louis	St. Louis, MO	220	Undergraduates at University of MissouriSt	\$26,277	\$10,065	13,569
228	228	University of North CarolinaGreensboro	Greensboro, NC	220	University of North CarolinaGreensboro is lo	\$21,595	\$6,733	15,951
229	229	University of Southern Mississippi	Hattiesburg, MS	220	The University of Southern Mississippi has two	\$16,094	\$7,224	11,840
230	230	Utah State University	Logan, UT	220	Founded in 1888, Utah State University is a pu	\$19,772	\$6,866	25,259
231 rd	ows × 8 c	olumns						

1. Find the universities in which undergraduate students were admitted.

```
file['Name'][file['Undergrad Enrollment'].notnull()]
```

0	Princeton University
1	Harvard University
2	University of Chicago
3	Yale University
4	Columbia University
	•••
226	University of MassachusettsDartmouth
227	University of MissouriSt. Louis
228	University of North CarolinaGreensboro
229	University of Southern Mississippi
230	Utah State University
Name:	Name, Length: 231, dtype: object

2. List the states along with the cities in which universities located.

```
a = file['Location'].str.split(', ', expand=True)
file['city']=a[0]
file['state']=a[1]
file
```

Output:

	index	Name	Location	Rank	Description	Tuition and fees	In- state	Undergrad Enrollment	city	state
0	0	Princeton University	Princeton, NJ	1	Princeton, the fourth-oldest college in the Un	\$45,320	NaN	5,402	Princeton	NJ
1	1	Harvard University	Cambridge, MA	2	Harvard is located in Cambridge, Massachusetts	\$47,074	NaN	6,699	Cambridge	MA
2	2	University of Chicago	Chicago, IL	3	The University of Chicago, situated in Chicago	\$52,491	NaN	5,844	Chicago	IL
3	3	Yale University	New Haven, CT	3	Yale University, located in New Haven, Connect	\$49,480	NaN	5,532	New Haven	CT
4	4	Columbia University	New York, NY	5	Columbia University, located in Manhattan's Mo	\$55,056	NaN	6,102	New York	NY

226	226	University of MassachusettsDartmouth	North Dartmouth, MA	220	Located about 60 miles south of Boston, the Un	\$19,270	\$12,588	7,295	North Dartmouth	MA
227	227	University of MissouriSt. Louis	St. Louis, MO	220	Undergraduates at University of MissouriSt	\$26,277	\$10,065	13,569	St. Louis	MO
228	228	University of North Carolina Greensboro	Greensboro, NC	220	University of North CarolinaGreensboro is lo	\$21,595	\$6,733	15,951	Greensboro	NC
229	229	University of Southern Mississippi	Hattiesburg, MS	220	The University of Southern Mississippi has two	\$16,094	\$7,224	11,840	Hattiesburg	MS
230	230	Utah State University	Logan, UT	220	Founded in 1888, Utah State University is a pu	\$19,772	\$6,866	25,259	Logan	UT
231 ro	vs × 10	columns								

3. List the cities & universities under each state.

```
list(file.groupby(['state', 'city', 'Name']).groups.keys())
```

```
[('AK', 'Fairbanks', 'University of Alaska--Fairbanks'),
    ('AL', 'Auburn', 'Auburn University'),
    ('AL', 'Birmingham', 'University of Alabama--Birmingham'),
    ('AL', 'Huntsville', 'University of Alabama--Huntsville'),
    ('AL', 'Tuscaloosa', 'University of Alabama'),
    ('AR', 'Fayetteville', 'University of Arkansas'),
    ('AZ', 'Tempe', 'Arizona State University--Tempe'),
    ('AZ', 'Tucson', 'University of Arizona'),
    ('CA', 'Azusa', 'Azusa Pacific University'),
    ('CA', 'Berkeley', 'University of California--Berkeley'),
    ('CA', 'Bavis', 'University of California--Davis'),
    ('CA', 'Fresno', 'California State University--Fresno'),
    ('CA', 'Fullerton', 'California State University--Fullerton'),
    ('CA', 'Irvine', 'University of California--Irvine'),
    ('CA', 'La Jolla', 'University of California--San Diego'),
    ('CA', 'La Wirada', 'Biola University'),
    ('CA', 'La Verne', 'University of La Verne'),
```

4. How many universities in each state have ranking<50? Print them along with ranking.

```
list(file[file['Rank']<50].groupby(['state','Rank','Name']).groups)</pre>
```

Output:

```
[('CA', 5, 'Stanford University'),
 ('CA', 12, 'California Institute of Technology'),
 ('CA', 20, 'University of California--Berkeley'),
 ('CA', 23, 'University of Southern California'),
 ('CA', 24, 'University of California--Los Angeles'),
 ('CA', 37, 'University of California--Santa Barbara'),
 ('CA', 39, 'University of California--Irvine'),
 ('CA', 44, 'University of California--Davis'),
 ('CA', 44, 'University of California--San Diego'),
 ('CT', 3, 'Yale University'),
 ('DC', 20, 'Georgetown University'),
 ('FL', 44, 'University of Miami'),
 ('GA', 20, 'Emory University'),
 ('GA', 34, 'Georgia Institute of Technology'),
 ('IL', 3, 'University of Chicago'),
 ('IL', 12, 'Northwestern University'),
 ('IL', 44, 'University of Illinois--Urbana-Champaign'),
 ('IN', 15, 'University of Notre Dame'),
```

5. How many universities have both out-of state and in-state students?

```
len(file['Tuition and fees'].notnull()) & (file['In-
state'].notnull())])
```

Output:

133

6. How many universities have marginal difference <=\$5000 in in-state &out-of state tuition fees.

```
fee_Tu = file['Tuition and fees'].str.replace('\W', '' ,regex=True)
fee_Tu = fee_Tu.astype(int)

fee_In = file['In-state'].fillna('0')
fee_In = fee_In.str.replace('\W', '' ,regex=True)
fee_In = fee_In.astype(int)
file[abs(fee_Tu-fee_In)<=5000]</pre>
```

Output:

	index	Name	Location	Rank	Description	Tuition and fees	In-state	Undergrad Enrollment	city	state
204	204	South Dakota State University	Brookings, SD	202	Founded in 1881, South Dakota State University	\$11,403	\$8,172	11,007	Brookings	SD
208	208	University of South Dakota	Vermillion, SD	202	Founded in 1862, University of South Dakota is	\$11,688	\$8,457	7,435	Vermillion	SD

7. List the universities having tuition fee>15000\$ and rank between 120 to 170.

```
file[(file['Tuition and fees'].str.replace('\W', '' ,regex=True).astype
(int)>15000)&(file['Rank']>120)& (file['Rank']<170)]</pre>
```

	index	Name	Location	Rank	Description	Tuition and fees	In- state	Undergrad Enrollment	city	state
123	123	The Catholic University of America	Washington, DC	124	Catholic University of America, as its name su	\$42,536	NaN	3,480	Washington	DC
124	124	DePaul University	Chicago, IL	124	DePaul University has five campuses in and aro	\$37,626	NaN	15,961	Chicago	IL
125	125	Duquesne University	Pittsburgh, PA	124	Founded in 1878, Duquesne University is a priv	\$35,062	NaN	5,961	Pittsburgh	PA
126	126	Howard University	Washington, DC	124	At Howard University, a historically black col	\$24,908	NaN	6,883	Washington	DC
127	127	University of Arizona	Tucson, AZ	124	As one of the largest public institutions in i	\$30,025	\$10,872	33,732	Tucson	AZ
128	128	Arizona State UniversityTempe	Tempe, AZ	129	Arizona State UniversityTempe, which has one	\$25,458	\$10,158	41,828	Tempe	AZ
129	129	Clarkson University	Potsdam, NY	129	Clarkson University is a private school in nor	\$46,132	NaN	3,257	Potsdam	NY
130	130	Colorado State University	Fort Collins, CO	129	Colorado State University is located in Fort C	\$28,374	\$11,080	24,433	Fort Collins	CO
131	131	New School	New York, NY	129	Founded in 1919, New School is a private insti	\$45,535	NaN	6,792	New York	NY

8. Find the campuses of universities located in different cities (multiple cities).

```
file[['city', 'Name']].groupby(['city', 'Name']).first()
```

Output:

city	Name
Albany	University at AlbanySUNY
Albuquerque	University of New Mexico
Ames	Iowa State University
Amherst	University of MassachusettsAmherst
Ann Arbor	University of MichiganAnn Arbor
Williamsburg	College of William & Mary
Winchester	Shenandoah University
Winston-Salem	Wake Forest University
Worcester	Clark University
	Worcester Polytechnic Institute

231 rows × 0 columns

9. Mention the states where out-of state fee is more than in-state students.

Print Minimum and Maximum fees.

```
ft = file['Tuition and fees'].str.replace('\W', '', regex=True).astype(i
nt)
fi = file['In-
state'].fillna('0').str.replace('\W', '' , regex=True).astype(int)
print("Min and max of Tuition and fees: " , min(ft), max(ft))
print("Min and max of In-state fee: ", min(fi), max(fi))
file[ft>fi].drop_duplicates(['state'])['state']

Output:
```

```
Min and max of Tuition and fees: 5300 55056
Min and max of In-state fee: 0 18687
       NΠ
1
       MA
2
       ΙL
3
       CT
4
       NY
5
       CA
7
       NC
       PΑ
       MD
```

10. Find the cities locating top 100 universities.

```
file[file['Rank'] <= 100].drop duplicates(['city'])['city']</pre>
```

```
Princeton
0
1
         Cambridge
2
           Chicago
         New Haven
3
          New York
93
           Boulder
94
        Burlington
97
       Stony Brook
            Auburn
98
           Buffalo
Name: city, Length: 87, dtype: object
```

T. Satya Himavanth Y20CS179, CSE-C

11. Find universities with least no of undergraduate students.

```
file[file['Undergrad Enrollment'] == file['Undergrad Enrollment'].min()]
```

Output:

i	ndex	Name	Location	Rank	Description	Tuition and fees	In- state	Undergrad Enrollment	city	state
11	11	California Institute of Technology	Pasadena, CA	12	Caltech, which focuses on science and engineer	\$47,577	NaN	1,001	Pasadena	CA

12. Identifying correlations between enrollment numbers and university rank.

```
file['Rank'].corr(file['Undergrad Enrollment'].apply(lambda x:int(x.rep
lace(',', ""))))
```

Output:

-0.040770935787747827

<u>Lab Cycle – IV (Adidas dataset)</u>

1. List all the retailers with retailer id.

```
import pandas as pd
file = pd.read_excel("/content/Adidas_US_Sales_Datasets_1_.xlsx")
file.drop_duplicates(['Retailer'])[['Retailer', 'Retailer ID']] #Retail
er ID
```

Output:

	B-4-43	D-4-43 TD
	Retailer	Retailer ID
0	Foot Locker	1185732
46	Walmart	1185732
68	Sports Direct	1197831
140	West Gear	1128299
212	Kohl's	1189833
1148	Amazon	1185732

2. List all the retailers in every region.

```
list(file.groupby(['Region', 'Retailer']).groups.keys())
```

```
[('Midwest', 'Amazon'),
  ('Midwest', 'Foot Locker'),
  ('Midwest', "Kohl's"),
  ('Midwest', 'Sports Direct'),
  ('Midwest', 'West Gear'),
  ('Northeast', 'Amazon'),
```

3. List the retailers in every city of a state.

```
list(file.groupby(['State', 'City', 'Retailer']).groups.keys())
```

Output:

```
('Minnesota', 'Minneapolis', "Kohl's"),
('Mississippi', 'Jackson', 'Foot Locker'),
('Mississippi', 'Jackson', 'Sports Direct'),
('Mississippi', 'Jackson', 'Walmart'),
('Missouri', 'St. Louis', 'Foot Locker'),
```

4. List the products sold by the retailer in every city.

```
list(file.groupby(['City', 'Product']).groups.keys())
```

Output:

```
[('Albany', "Men's Apparel"),
  ('Albany', "Men's Athletic Footwear"),
  ('Albany', "Men's Street Footwear"),
  ('Albany', "Women's Apparel"),
```

5. Find the total sales of every retailer.

```
file.groupby('Retailer')['Total Sales'].sum()
```

```
Retailer
Amazon 77698912.0
Foot Locker 220094720.0
Kohl's 102114753.0
Sports Direct 182470997.0
Walmart 74558410.0
West Gear 242964333.0
Name: Total Sales, dtype: float64
```

6. Find the total sales of the retailers in every city along with profit.

```
file.groupby(['City', 'Retailer'])[['Total Sales', 'Operating Profit']]
.sum()
```

Output:

Total Sales Operating Profit

City Retailer

Albany	Kohl's	3692639.0	1367451.11
	West Gear	20735165.0	8062399.80

7. Find the total sales &profit of each product sold by the retailer.

```
file.groupby(['Retailer', 'Product'])[['Total Sales', 'Operating Profit
']].sum()
```

Output:

Total Sales Operating Profit

Retailer	Product		
Amazon	Men's Apparel	10474770.0	3331443.80
	Men's Athletic Footwear	12011959.0	4518030.11
	Men's Street Footwear	22161652.0	8707658.12
	Women's Apparel	15710639.0	6280071.53

8. Find the units sold, total sales &profit of the products sold between the dates 1/1/2020 and 4/15/2020.

```
file[(file['Invoice Date']>'1/1/2020') & (file['Invoice Date']<'4/15/20
20')][['Units Sold', 'Total Sales', 'Operating Profit']].sum()</pre>
```

Output:

```
Units Sold 137483.00
Total Sales 51549291.00
Operating Profit 17815082.37
dtype: float64
```

9. Find the no of units sold of each product by each retailer in every city.

```
file.groupby(['City', 'Retailer', 'Product'])['Units Sold'].sum()
```

Output:

```
City Retailer Product
Albany Kohl's Men's Apparel 1375
Men's Athletic Footwear 1401
Men's Street Footwear 2104
Women's Apparel 1613
Women's Athletic Footwear 1311
```

10. Find the products with different price per unit in different cities with proper information.

```
list(df.groupby(['Product', 'City', 'Price per Unit']).groups.keys())
```

```
[("Men's Apparel", 'Albany', 49),
  ("Men's Apparel", 'Albany', 50),
  ("Men's Apparel", 'Albany', 51),
  ("Men's Apparel", 'Albany', 52),
  ("Men's Apparel", 'Albany', 55),
```

11. Find the total sales &profits of all products in every month.

```
file.groupby(file['Invoice Date'].dt.strftime('%B'))[['Total Sales', 'O
perating Profit']].sum() #.sort_values('Invoice Date')
```

Output:

Total Sales Operating Profit

Invoice Date

April	72339970.0	27559237.31
August	92166201.0	34451440.30
December	85841957.0	31590202.03

12. Find the total sales &profit of the products in different sales methods in each city

```
file.groupby(['City', 'Sales Method'])[['Total Sales', 'Operating Profi
t']].sum()
```

Output:

Total Sales Operating Profit

City Sales Method

Albany	In-store	23815000.0	9121062.50
	Online	612804.0	308788.41
Albuquerque	Online	19424023.0	6569814.43
	Outlet	440993.0	168245.98

13. Find the retailers who sold the same product with different prices in different cities

```
list(file.groupby(['Retailer', 'Product', 'Price per Unit']).groups.key
s())
```

Output:

```
[('Amazon', "Men's Apparel", 32.0),
  ('Amazon', "Men's Apparel", 35.0),
  ('Amazon', "Men's Apparel", 36.0),
  ('Amazon', "Men's Apparel", 37.0),
  ('Amazon', "Men's Apparel", 39.0),
```

14. Find the products whose sales raises in every month.

```
f=file.groupby([file['Invoice Date'].dt.month, file['Invoice Date'].dt.y
ear, file['Product']])['Total Sales'].sum()
print(f)
l=list(file['Product'].unique())[:]
for i in 1:
    print(i,f[:,:,i].is_monotonic_increasing)
```

Invoice Date	Invoice Date	Product	
1	2020	Men's Apparel	2288362.0
		Men's Athletic Footwear	2639958.0
		Men's Street Footwear	3859495.0
		Women's Apparel	3066713.0
		Women's Athletic Footwear	1990181.0
12	2021	Men's Athletic Footwear	13195038.0
		Men's Street Footwear	18953848.0
		Women's Apparel	14910708.0
		Women's Athletic Footwear	9549962.0
		Women's Street Footwear	10547148.0
Name: Total S	Sales, Length:	144, dtype: float64	
Men's Street	Footwear False	2	
Men's Athleti	ic Footwear Fal	lse	
Women's Stree	et Footwear Fal	lse	
Women's Athle	etic Footwear A	alse	
Men's Apparel	l False		
Women's Appar	rel False		

15. Find the retailers whose profit increased every month.

```
f=file.groupby([file['Invoice Date'].dt.month, file['Invoice Date'].dt.y
ear, file['Retailer']])['Operating Profit'].sum()
print(f)
# print(f[:,"Men's Apparel"].is_monotonic_increasing)
l=list(file['Retailer'].unique())[:]
for i in l:
    print(i,f[:,:,i].is_monotonic_increasing)
```

Output:

Invoice Date	Retailer	
2020	Foot Locker	3544899.00
	West Gear	2285106.41
2021	Amazon	1510504.30
	Foot Locker	3761780.79
	Kohl's	3565743.93
2021	Foot Locker	10016105.07
	Kohl's	2749782.47
	Sports Direct	5660159.36
	Walmart	631767.00
	West Gear	6232275.13
	2020	2020 Foot Locker West Gear 2021 Amazon Foot Locker Kohl's 2021 Foot Locker Kohl's Sports Direct Walmart

Name: Operating Profit, Length: 104, dtype: float64

Foot Locker False

Walmart False

Sports Direct False

West Gear False

Kohl's False

Amazon False

<u>Lab Cycle – V (Movies Dataset)</u>

```
import pandas as pd
from datetime import datetime
file = pd.read_csv("movies.csv")
file = file[file["Release Date"].str.contains('TBD') == False]
file['Release Date'] = file['Release Date'].apply(pd.to_datetime)
file['Date']=file['Release Date'].dt.strftime('%d')
file['Month']=file['Release Date'].dt.strftime('%m')
file['Year']=file['Release Date'].dt.strftime('%Y')
```

1. (i). Find out the no of movies released in every month of the year 1995.

```
file[file['Year'] == '1995'][['Title', 'Month']].groupby('Month').count()
```

Output:

(ii). Find out the no. of movies released in every year from 1990 to 1998.

```
file[(file['Year']>='1990') & (file['Year']<='1998')][['Title', 'Year']
].groupby('Year').count()</pre>
```

Output:

Title

Year

1990	28
1991	33
1992	28

2. (i). Find no. of movies released under each genre given in the database.

```
file[['Title', 'Major Genre']].dropna().groupby('Major Genre').count()
```

Output:

Title

Major Genre

•	
Action	420
Adventure	274
Black Comedy	36
Comedy	675

(ii). Find the movies under each genre with 1MDB rating >7 and rotten tomatoes rating > 60.

```
list(file['IMDB Rating']>7) & (file['Rotten Tomatoes Rating']>60)
].dropna().groupby(['Major Genre', 'Title']).groups.keys())
```

```
[('Action', 'Black Hawk Down'),
  ('Action', 'Blood Diamond'),
  ('Action', 'Casino Royale'),
  ('Action', 'Inglourious Basterds'),
  ('Action', 'Iron Man'),
  ('Action', 'Live Free or Die Hard'),
  ('Action', 'The Bourne Ultimatum'),
  ('Action', 'The Dark Knight'),
```

3. (i). Find the movies released under each fiction with each director in the ascending order of release dates.

```
file[file['Creative Type'].fillna('0').str.contains('Fiction')][['Title
', 'Director', 'Release Date']].sort_values('Release Date')
```

Output:

	Title	Director	Release Date
213	Casablanca	Michael Curtiz	1942-01-01
582	Moby Dick	John Huston	1956-01-01
876	The Sound of Music	Robert Wise	1965-04-01
292	Escape from the Planet of the Apes	NaN	1971-01-01

(ii). Find movies released under each distributor in the order of genre and director.

```
list(file.dropna().groupby(['Distributor', 'Major Genre', 'Director']).
groups.keys())
```

Output:

```
[('20th Century Fox', 'Action', 'Len Wiseman'),
  ('20th Century Fox', 'Action', 'Mathieu Kassovitz'),
  ('20th Century Fox', 'Action', 'Renny Harlin'),
  ('20th Century Fox', 'Action', 'Tim Story'),
  ('20th Century Fox', 'Adventure', 'Gil Kenan'),
```

4. (i). Find the movies released world-wide and find out the revenue received world-wide other than US with their ratings.

```
file['Revenue other than US'] = file['Worldwide Gross'].replace('Unknow
n', '0').astype(int) - file['US Gross'].replace('Unknown', '0').astype(
int) # for revenue other than us
file[file['Revenue other than US'] > 0][['Title', 'Revenue other than U
S', 'IMDB Rating']]
```

Output:

Title Revenue other than US IMDB Rating

4	Slam	77702	3.4
5	Mississippi Mermaid	2600000	NaN
8	Pirates	4700000	5.8

(ii). Find the movies with loss & profit released in each year with genre and ratings.

```
file['Worldwide Gross'] = file['Worldwide Gross'].replace('Unknown', '0
').astype(int)
list(file[file['Worldwide Gross']-
file['Production Budget']!=0].groupby(['Year', 'Major Genre', 'IMDB Rat
ing']).groups.keys())
```

```
[('1929', 'Musical', 6.7),
  ('1930', nan, 7.9),
  ('1931', nan, 2.2),
  ('1934', 'Romantic Comedy', 8.3),
  ('1938', 'Drama', nan),
  ('1938', nan, 8.0),
```

<u>Lab Cycle - VI (Student dataset)</u>

```
import pandas as pd
import numpy as np
cse = pd.read_csv("CSE.csv")
it = pd.read_csv("IT.csv")
student = pd.read_csv("student.csv")
cse.rename(columns={'Professional Elective':'PE'}, inplace=True)
merged_data = pd.merge(student, cse).append(pd.merge(student, it))
merged_data = merged_data.reset_index()
```

1. Combine the CSE & IT data and display the data

```
pd.concat([cse, it])
```

Output:

	Regd.No	CN	DAA	AFL	OE	PE
0	Y20CS001	10.0	15.0	11.0	16.0	12.0
1	Y20CS002	16.0	14.0	15.0	10.0	13.0
2	Y20CS003	15.0	12.0	32.0	12.0	NaN
3	Y20CS004	12.0	NaN	12.0	NaN	17.0
4	Y20CS005	14.0	16.0	13.0	25.0	6.0
5	Y20CS006	9.0	17.0	9.0	14.0	23.0

2. Display all CSE students' marks along with personal information.

```
pd.merge(student, cse, on='Regd.No')
```

	Regd.No	Name	Sex	Course	Branch	Address	EAMCET RANK	CN	DAA	AFL	OE	PE
0	Y20CS001	ADAPA HEMANTH VENKATA SAI PAVAN KUMAR	М	B.Tech	CSE	GUNTUR	2000	10.0	15.0	11.0	16.0	12.0
1	Y20CS002	ALAPARTHI VIVEK MADHAV	F	B.Tech	CSE	GUNTUR	1900	16.0	14.0	15.0	10.0	13.0
2	Y20CS003	ALIFA SHAIK	F	B.Tech	CSE	GUNTUR	3126	15.0	12.0	32.0	12.0	NaN
3	Y20CS004	ALLA NEEHARIKA	М	B.Tech	CSE	TENALI	2500	12.0	NaN	12.0	NaN	17.0
4	Y20CS005	AVYAKTHA	F	B.Tech	CSE	VINUKONDA	8000	14.0	16.0	13.0	25.0	6.0
5	Y20CS006	AMBATI MEGHANA	М	B.Tech	CSE	NARASARAOPET	4012	9.0	17.0	9.0	14.0	23.0

3. Print all students Regd.No, Name and professional elective.

```
merged_data[['Regd.No', 'Name', 'PE']]
```

Output:

	Regd.No	Name	PE
0	Y20CS001	ADAPA HEMANTH VENKATA SAI PAVAN KUMAR	12.0
1	Y20CS002	ALAPARTHI VIVEK MADHAV	13.0
2	Y20CS003	ALIFA SHAIK	NaN
3	Y20CS004	ALLA NEEHARIKA	17.0
4	Y20CS005	AVYAKTHA	6.0
5	Y20CS006	AMBATI MEGHANA	23.0

4. Identify the students whose DAA marks are >18.

merged_data[merged_data['DAA']>18]

Output:

5. Display the names and EAMCET ranks of the students who got minimum 12 marks in all courses.

merged_data[(merged_data["CN"]>=12)&(merged_data['OE']>=12)&(merged_data['AFL"]>=12)&(merged_data['PE']>=12)&(merged_data['DAA']>=12)][['Name', 'EAMCET RANK']]

Output:

Name EAMCET RANK

6. Calculate mean value of all the subject's marks.

```
merged_data.loc[0:,['CN','DAA','AFL','OE','PE']].mean()
```

Output:

```
CN 13.607143
DAA 14.000000
AFL 13.214286
OE 14.428571
PE 17.666667
dtype: float64
```

7. Display the names common in both CSE & IT along with Regd.No.

```
merged data[merged data['Name'].duplicated()][['Name', 'Regd.No']]
```

Output:

```
Name Regd.No
```

8. Fill the missing values of the data with average marks of the subject of specific group.

```
print(cse.fillna(cse.mean()))
print(it.fillna(it.mean()))
```

```
AFL
    Regd.No
               CN
                        DAA
                                              0E
   Y20CS001
             10.0 15.000000 11.000000
                                       16.000000
                                                  12.000000
1
   Y20CS002 16.0 14.000000 15.000000
                                       10.000000
                                                  13.000000
2
   Y20CS003 15.0 12.000000 32.000000 12.000000 13.692308
   Y20CS004 12.0 14.071429 12.000000 14.428571 17.000000
    Regd.No
              AFL
                          CN
                                   DAA
                                                PE
    Y20IT001
             15.0 12.000000 14.000000
                                         12.000000
0
1
    Y20IT002 13.0 13.000000 15.000000
                                         15.000000
2
    Y20IT003
             12.0 14.000000 16.000000
                                         14.000000
    Y20IT004 14.0 14.214286 17.000000
                                         16.000000
```

9. Divide the students into 5 groups based on average marks.

```
merged_data.fillna(merged_data[['CN', 'DAA', 'AFL', 'OE', 'PE']].mean()
, inplace=True)
merged_data['Avg_Marks'] = merged_data[['CN', 'DAA', 'AFL', 'OE', 'PE']
].mean(axis = 1)
merged_data['Group'] = pd.cut(merged_data['Avg_Marks'], bins=np.arange(
10, 36, 5), labels=['A', 'B', 'C', 'D', 'E'])
merged_data[['Regd.No', 'Group']]
```

Output:

	Regd.No	Group
0	Y20CS001	Α
1	Y20CS002	Α
2	Y20CS003	В
3	Y20CS004	Α
4	Y20CS005	Α
5	Y20CS006	Α

10. Create equal sized groups of students based on EAMCET Rank.

```
merged_data['group2']=pd.qcut(merged_data['EAMCET RANK'],6,labels=False
)
merged_data[['Regd.No','Name','group2']]
```

	Regd.No	Name	group2
0	Y20CS001	ADAPA HEMANTH VENKATA SAI PAVAN KUMAR	0
1	Y20CS002	ALAPARTHI VIVEK MADHAV	0
2	Y20CS003	ALIFA SHAIK	1
3	Y20CS004	ALLA NEEHARIKA	1

11. Display the electives and the Regd. No of students who opted the elective along with the subject name.

Output:

```
Regd.No
            OE
                 PE
  Y20CS001 16.0 12.0
  Y20CS002 10.0 13.0
  Y20CS005 25.0
                6.0
  Y20CS006 14.0 23.0
   Regd.No
            PE
   Y20IT001 12.0
1
   Y20IT002 15.0
   Y20IT003 14.0
2
   Y20IT004 16.0
```

12. Compare the performance of the students from various cities.

```
merged data.groupby(merged data['Address']).mean()
```

Output:

	index	EAMCET RANK	CN	DAA	AFL	OE	PE	Avg_Marks	group2
Address									
CHILAKALURIPET	4.666667	14002.333333	15.666667	13.666667	15.000000	14.428571	14.666667	14.685714	3.333333
GUNTUR	4.555556	8152.222222	14.000000	13.222222	15.468254	14.142857	14.814815	14.329630	1.555556
NARASARAOPET	7.000000	11676.500000	12.901786	18.500000	11.500000	14.964286	16.666667	14.906548	3.000000
TENALI	8.000000	10998.200000	12.921429	13.000000	10.800000	14.742857	13.800000	13.052857	2.600000
VIJAYAWADA	10.000000	6141.250000	11.750000	12.750000	13.053571	12.964286	11.250000	12.353571	1.500000
VINUKONDA	9.400000	29000.000000	14.400000	14.000000	12.000000	15.371429	34.400000	18.034286	4.000000

13. Find the correlation between the marks of DS &DAA.

```
df=pd.concat([cse,it])
df['CN'].corr(df['DAA'])
```

Output:

-0.2031529941702545