Guía HILE Ingeniería Matemática **Semana 13** Integral 08-2 Universidad de Chile

Ejercicios

1. Estudiar la convergencia de las siguientes integrales:

(a)
$$\int_0^\infty \frac{x^2}{1+x^2+x^4}$$
. (e) $\int_0^\infty x^2 e^{-x}$. (i) $\int_0^\pi \frac{x}{\sin(x)}$.

(e)
$$\int_{0}^{\infty} x^{2}e^{-x}$$
.

(i)
$$\int_0^\pi \frac{x}{\operatorname{sen}(x)}.$$

(b)
$$\int_0^\infty \frac{1}{(x-1)^2}$$
.

$$\mathbf{(f)} \ \int_0^\infty \frac{\mathrm{sen}(x)}{x^2}$$

(b)
$$\int_0^\infty \frac{1}{(x-1)^2}$$
. (f) $\int_0^\infty \frac{\sin(x)}{x^2}$. (j) $\int_0^{\frac{\pi}{2}} \frac{1}{\sqrt{1-\sin^2 x}}$.

(c)
$$\int_0^\infty \frac{x^5}{x^{12}+1}$$
.

(c)
$$\int_0^\infty \frac{x^5}{x^{12}+1}$$
. (g) $\int_0^1 \sqrt{x} \csc(x)$. (k) $\int_0^\infty x^x$.

(k)
$$\int_0^\infty x^x$$
.

(d)
$$\int_0^\infty e^{-x} \ln(1+e^x)$$
. (h) $\int_0^1 \frac{\ln(1-x)}{x^{\frac{3}{2}}}$. (l) $\int_0^\infty \frac{1}{x \ln^p(x)}$.

(1)
$$\int_0^\infty \frac{1}{x \ln^p(x)}$$

- 2. Calcular, si existe, el área comprendida entre la curva $y = \frac{1}{a^2 + x^2}$ y el eje OX.
- **3.** Determinar para cuales valores de $n \in$ la integral $I_n = \int_0^1 \frac{x^n}{\sqrt{x^3(1-x)}}$ es convergente y establezca una forma recursiva para la sucesión $\{I_n\}_{n\in\mathbb{N}}$
- **4.** Mostrar que la integral $I = \int_{0}^{\frac{\pi}{2}} \ln(\operatorname{sen}(x))$ verifica la relación: $I = \int_{0}^{\frac{\pi}{2}} \ln(\cos(x)) = 1$ $\frac{1}{2}\int_{0}^{2}\ln(\frac{1}{2}\sin(2x))$. Deducir el valor de I.

Problemas

- **P1.** (a) Pruebe que las integrales $\int_1^2 \frac{dx}{x(\ln x)^2}$, $\int_1^2 \frac{dx}{(x-1)^2}$ divergen.
 - (b) Pruebe que $\int_{1}^{\infty} \left(\frac{1}{x(\ln x)^2} \frac{1}{(x-1)^2} \right) dx$ converge y encuentre su
 - (c) Encuentre los valores de $\alpha > 0$ para lo cuales $\int_0^1 \frac{1}{x^{\alpha(1-x)}} dx$ converge. *Indicación:* El comportamiento de $\int_0^1 \frac{1}{x^{\alpha}} y \int_1^{\infty} \frac{1}{x^{\alpha}}$ se considera co-
- **P2.** Sea $f: \longrightarrow \text{definida por } f(x) = \frac{1}{x} \left(\frac{1}{x} \frac{1}{\operatorname{senh}(x)} \right) \operatorname{para} x \neq 0 \text{ y } f(0) = k.$
 - (a) Encuentre el valor de k de modo que f sea continua en todo
 - (b) Estudie la convergencia de las integrales $\int_{-1}^{1} f$, $\int_{-1}^{\infty} f$, $\int_{-1}^{\infty} f$ y $\int_{-1}^{\infty} f$.
- **P3.** Dada la función $f(x) = e^{\frac{1}{x}}(1 \frac{1}{x})$. Se pide :

Ingeniería Matemática Universidad de Chile

- (a) Estudiarla completamente indicando dominio, ceros, límites importantes, asíntotas, continuidad, crecimiento, concavidades, gráfico y recorrido.
- (b) Determinar si el área de las siguientes regiones es o no finita. En caso afirmativo dar su valor.

$$R_1 = \{(x,y)/x < 0 \ f(x) \le y \le 1\}$$

$$R_2 = \{(x,y)/0 < x \le 1 \ f(x) \le y \le 1\}$$

$$R_3 = \{(x,y)/x \ge 1 \ f(x) \le y \le 1\}$$

Indicaci'on: Ni $e^{\frac{1}{x}}$ ni $\frac{e^{\frac{1}{x}}}{x}$ tienen primitivas explícitamente calculables, sin embargo, f sí la tiene.

P4. (a) Aplicando la definición de integral impropia calcule:

$$\int_{-\infty}^{\ln(2)} \frac{1}{e^x + 4e^{-x}}$$

(b) Analice la convergencia de la integral:

$$\int_{0}^{\frac{3\pi}{2}} \frac{x}{\operatorname{sen}(x)}$$

(c) Analice la convergencia de las áreas de las superficies engendradas al rotar la función

 $|\ln(x)|: |0,1| \to \text{en torno al eje } OX \text{ y en torno al eje } OY.$