Principles of Distributed and Parallel Database Systems: Part 2 Distributed Query Processing

Objectives

Objective

Illustrate how concurrency control is achieved in distributed databases

Distributed Query Processing

Query Processing

Decomposition

Localization

Optimization

Decomposition

Same as in centralized system

Normalization

Eliminating redundancy

Algebraic rewriting

Normalization

Convert from general language to a "standard" form (e.g., Relational Algebra)

Example

```
Select A,C
From R,S
Where (R.B=1 and S.D=2) or (R.C>3 and S.D.=2)
    \sigma (R.B=1 v R.C>3) \wedge S.D.=2)
                                           Conjunctive
                                             normal
                                              form
```

Also: Detect invalid expressions

E.g.: Select * from R where R.A = 3

☐ R does not have "A" attribute

Eliminate redundancy

E.g. in conditions:

$$(S.A=1) \land (S.A>5) \Rightarrow False$$

$$(S.A<10) \land (S.A<5) \Rightarrow S.A<5$$

E.g.: Common sub-expressions

Algebraic rewriting

E.g.: Push conditions down

Algebraic rewriting

After decomposition:

 One or more algebraic query trees on relations

Localization:

Replace relations by corresponding fragments

Localization steps

- Start with query
- Replace relations by fragments
- Push ∪: up ()
 - $-\pi,\sigma$: down
- Simplify eliminate unnecessary operations

Notation for fragment

R

What if we have two Fragments [R₁: E < 10] [R₂: $E \ge 10$]

Anything Wrong here?


```
σE=3 | [R<sub>1</sub>: E < 10]
```