

332:494:01/599:02 – Smart Grid – spring 20121 Homework Assignment – Set 1

General guidelines for homework assignments: Homework should be submitted online (via Canvas under the 'assignment' Homework 1)

Question 1:

For the **single-phase** system in Figure 1, it is given that the load Z_{Load} is consuming 16kVA at a pf = 0.6 leading. The voltage across the load $V_{Load} = 120 \angle 0^{\circ} V(rms)$. The line impedance is $Z_{Line} = 1 + j2\Omega$

Figure 1

- (a) For the load impedance, Z_{Load} , draw the power triangle and find (**include units** for each of the first three values): P_{Load} ; Q_{Load} ; $|S_{Load}|$; S_{Load} and the power factor angle θ_{pf}
- (b) Find the load impedance: Z_{load}
- (c) Find the power losses on the line impedance $S_{line}(Z_{line})$

Question 2:

Given the single-phase system in Figure 2, given that:

- $V_{Load} = 13,800 \angle 0^{\circ} V_{rms}$
- Load 1: 60kW at 0.8 power factor lead;
- Load 2: 160 kVA at 0.5 power factor **lag**;

Figure 2

- (a) Find and draw the power triangle for load Z_{Load1} : what is the real power P_{Load1} and reactive power Q_{Load1} consumed by load Z_{Load1}
- (b) Find and draw the power triangle for load Z_{Load2} : what is the real power P_{Load2} and reactive power Q_{Load2} consumed by load Z_{Load2}
- (c) Find the power factor (pf) for the total load $Z_{Load_eq} = Z_{Load1} || Z_{Load2}$ and the total apparent power $|S_{Load_eq}|$ in Figure 3

Figure 3

- (d) Find the line current phasor I_{line}
- (e) A capacitor is added in parallel to Z_{Load_eq} (see figure 4). If the power grid frequency is f=60Hz, calculate the size of the capacitor C_{comp} required in order to correct the power factor for the load to 0.95 lag

332:494/599 HW 1

Question 3:

A small manufacturing plant is located 3km down a transmission line, which has a series reactance of j0.4 Ω /km. The line resistance is negligible. The plant is a three-phase load with a line voltage of 690V (Assume a positive sequence and a phase voltage V_{an} that serves as reference with angle $\angle 0^{\circ}$). It consumes 200 kW at 0.85 power factor lagging.

- (a) Determine the line voltage at the source
- (b) Determine the 3-phase complex power generated by the source

Question4:

The following three-phase loads are connected in parallel across a 3,800 V (line-line; (Assume a positive sequence and a phase voltage V_{an} that serves as reference with angle $\angle 0^{\circ}$) balanced three-phase power network:

Load 1: 120 kVA at 0.9 power factor lag;

Load 2: 180 kW at 0.55 power factor lead;

Load 3: 30 kW at unity power factor.

- (a) Find the total complex power of the three loads
- (b) Find the overall power factor
- (c) Find line current in the supply line

332:494/599 HW 1