Seja f uma função de domínio X e contradomínio Y, $f: X \to Y$.

A função f diz-se **injetiva** se p/ cada elemento $x \in X$, existe um <u>único</u> $y \in Y$ tq f(x) = y. Ou seja: $\forall a,b \in X$, $a \neq b \Rightarrow f(a) \neq f(b)$.

A função f diz-se **sobrejetiva** se p/ cada elemento $y \in Y$, existe <u>pelo menos</u> um $x \in X$ tq f(x) = y.

Ou seja: $\forall y \in Y, \exists x \in X, f(x) = y$.

A função f diz-se **bijetiva** se for injetiva e sobrejetiva.

Função injectiva mas não sobrejectiva.

Função injectiva e sobrejectiva.

Função sobrejectiva mas não injectiva.

Função não sobrejectiva e não injectiva.

Dados um subconjunto A de P e $m \in P$, diz-se que m é:

- majorante de A se, p/ todo $a \in A$, $a \le m$;
- minorante de A se, p/ todo $a \in A$, $m \le a$;
- maximal de A se $m \in A$ e $\neg(\exists a \in A, m < a)$;
- minimal de A se $\mathbf{m} \in \mathbf{A}$ e $\neg(\exists a \in A, a < m)$;
- maximo de A se m é um majorante de A e $m \in A$;
- minimo de A se m é um minorante de A e $m \in A$;
- supremo de A (ou $\forall A$) se m é um <u>majorante</u> de A e $m \le m'$, p/ qq <u>majorante</u> m' de A;
- **infimo** de A (ou $\land A$) se m é um minorante de A e $m \le m'$, p/ qq minorante m' de A;

Leis Comutativas \Rightarrow $a \land b = b \land a$ $a \lor b = b \lor a$

Leis Associativas \Rightarrow $a \land (b \land c) = (a \land b) \land c$ $a \lor (b \lor c) = (a \lor b) \lor c$

Leis de Idempotência \Rightarrow $a \land a = a$ $a \lor a = a$ Leis de Absorção \Rightarrow $a \land (a \lor b) = a$ $a \lor (a \land b) = a$

Princípio da Boa Organização

Todo subconjunto não-vazio formado por $\mathbb N$ (ou $\mathbb Z_{0^+}$) possuí um menor elemento.

Reticulados podem ser definidos de duas formas equivalentes:

- Conjunto Parcialmente Ordenado (c.p.o.)
- Estruturas Algébricas

Princípio da Dualidade de Reticulados

Uma afirmação é verdadeira em qq reticulado, sse o mesmo acontece com a respectiva afirmação dual.

Num **c.p.o.** (P; \leq) são <u>equivalentes as seguintes afirmações</u>, p/ qq $a,b \in P$:

- I) $a \leq b$
- II) $\sup \{a,b\} = b$
- III) inf $\{a,b\} = a$

Ou seja, um Reticulado é um c.p.o. tq p/ cada dois elementos a,b existe supremo e infimo de a,b.

Um c.p.o. $(P; \leq)$ tq P tem elemento máximo e elemento mínimo diz-se um **Conjunto Parcialmente Ordenado Limitado.**

Dados um Reticulado e um Subconjunto não vazio R' de R, um c.p.o $(R'; \leq ')$ diz-se **Subreticulado** de $(R; \leq)$ se $\leq' = \leq_{|R'|} e \ \forall a,b \in R'$ o Supremo e Ínfimo de $\{a,b\}$ (determinados em $(R; \leq)$) pertencem a R'.

Sejam $(P_1; \leq)$ e $(P_2; \leq)$ dois c.p.o. e $\alpha: P_1 \to P_2$ uma aplicação, que se designa:

- Isótona, ou preserva a ordem, se p/ qq $a,b \in P_1$, $a \leq_1 b \Rightarrow \alpha(a) \leq_2 \alpha(b)$
- Antítona, se p/ qq $a,b \in P_1$, $a \leq_1 b \implies \alpha(a) \geq_2 \alpha(b)$
- Mergulho de Ordem se p/ qq $a,b \in P_1$, $a \leq_1 b \Leftrightarrow \alpha(a) \leq_2 \alpha(b)$
- ullet Isomorfismo de c.p.o.'s se lpha é um mergulho de ordem e uma aplicação sobrejetiva

Um Reticulado pode ser definido como **Estrutura Algébrica**, consistindo de um conjunto e duas operações, por ex. $(R; \land, \lor)$, se $\forall x, y, z \in R$ se verifiquem as Leis Comutativas, Associativas, Idempotência e Absorção.

Se $\mathcal{R}=(R; \land, \lor)$ é um Reticulado, então a relação \leq definida em R por: $x\leq y$ se $x=x\land y$, é uma relação de ordem parcial tq p/ qq $x,y\in R$, existem $Inf\{x,y\}$ e $Sup\{x,y\}$ e tem-se $Inf\{x,y\}=x\land y$ e $Sup\{x,y\}=x\lor y$.

Se $(R; \leq)$ é um c.p.o. tq p/ qq $x, y \in R$, existem $Inf\{x, y\}$ e $Sup\{x, y\}$, então $\mathcal{R} = (R; \land, \lor)$ onde $x \land y = Inf\{x, y\}$ e $x \lor y = Sup\{x, y\}$ é um Reticulado e p/ qq $x, y \in R$, $x \leq y \Leftrightarrow x = x \land y \Leftrightarrow y = x \lor y$.

Sejam $\mathcal{R} = (\mathbf{R}; \Lambda', \ V')$ um Reticulado, \mathbf{R}' um Subconjunto não vazio de \mathbf{R} e Λ' e V' operações binárias em \mathbf{R} .

Diz-se que $\mathcal{R}'=(R';\wedge',\vee')$ é um **Subreticulado** de \mathcal{R} se $\forall a,b\in R'$, $a\wedge'b\in R'$ e $a\vee'b\in R'$ e adicionalmente $a\wedge'b=a\wedge b$ e $a\vee'b=a\vee b$.

Sejam $\mathcal{R}_1 = (R_1; \ \wedge_{\mathcal{R}_1}, \ \vee_{\mathcal{R}_1})$, $\mathcal{R}_2 = (R_2; \ \wedge_{\mathcal{R}_2}, \ \vee_{\mathcal{R}_2})$ reticulados e $\wedge_{\mathcal{R}_1 \times \mathcal{R}_2}$ e $\vee_{\mathcal{R}_1 \times \mathcal{R}_2}$ as operações binárias de $R_1 \times R_2$, definidas por:

$$\begin{aligned} &(a_1, a_2) \ \wedge_{\mathcal{R}_1 \times \mathcal{R}_2} (b_1, b_2) = (a_1 \wedge_{\mathcal{R}_1} b_1, \ a_2 \wedge_{\mathcal{R}_2} b_2) \\ &(a_1, a_2) \ \vee_{\mathcal{R}_1 \times \mathcal{R}_2} (b_1, b_2) = (a_1 \vee_{\mathcal{R}_1} b_1, \ a_2 \vee_{\mathcal{R}_2} b_2) \end{aligned}$$

 $\text{Assim } (\textit{\textbf{R}}_{1} \times \textit{\textbf{R}}_{2}; \; \land_{\mathcal{R}_{1} \times \mathcal{R}_{2}}, \; \lor_{\mathcal{R}_{1} \times \mathcal{R}_{2}}) \; \; \text{\'e designado } \; \text{\textbf{reticulado produto}} \; \; \text{de } \textit{\textbf{R}}_{1} \; \; \text{e} \; \; \textit{\textbf{R}}_{2} \text{,} \; \; \text{representado por } \; \mathcal{R}_{1} \times \mathcal{R}_{2} \text{.}$

Sejam $(R_1, \Lambda_{R_1}, V_{R_1})$ e $(R_2, \Lambda_{R_2}, V_{R_2})$ Reticulado, \leq_1 e \leq_2 as relações de ordem associadas, e seja \leq a relação de ordem definida em $R_1 \times R_2$ por: $(a_1, a_2) \leq (b_1, b_2)$ sse $a_1 \leq b_1$ e $a_2 \leq b_2$

Então $(R_1 \times R_2; \leq)$ é um Reticulado. Ademais:

 $(a_1,a_2) \ \land_{R_1 \times R_2} (b_1,b_2) = (a_1,a_2) \ \Leftrightarrow \ a_1 \land_{R_1} b_1 = a_1 \ e \ a_2 \land_{R_2} b_2 = a_2 \ \Leftrightarrow \ a_1 \leq_1 b_1 \ e \ a_2 \leq_2 b_2 \Leftrightarrow (a_1,a_2) \leq (b_1,b_2)$ Por conseguinte o Reticulado $(R_1 \times R_2; \ \land_{R_1 \times R_2}, \ \lor_{R_1 \times R_2})$ coincide com o Reticulado $(R_1 \times R_2; \ \leq)$.

Sejam $\mathcal{R}_1 = \left(R_1; \ \wedge_{\mathcal{R}_1}, \ \vee_{\mathcal{R}_1}\right)$ e $\mathcal{R}_2 = \left(R_2; \ \wedge_{\mathcal{R}_2}, \ \vee_{\mathcal{R}_2}\right)$ reticulados e $\alpha = R_1 \to R_2$ uma aplicação. Esta designa-se de:

- Homomorfismo de \mathcal{R}_1 em \mathcal{R}_2 se $\forall a,b \in R_1$, $\alpha(a \wedge_{\mathcal{R}_1} b) = \alpha(a) \wedge_{\mathcal{R}_2} a(b)$ e $\alpha(a \vee_{\mathcal{R}_1} b) = \alpha(a) \vee_{\mathcal{R}_2} a(b)$;
- **Isomorfismo** de \mathcal{R}_1 em \mathcal{R}_2 se α é bijetiva e é um homomorfismo.

Caso exista um isomorfismo de reticulados de \mathcal{R}_1 em \mathcal{R}_2 , o reticulado \mathcal{R}_1 diz-se isomorfo ao reticulado \mathcal{R}_2 .

Sejam $\mathcal{R}_1 = \left(R_1; \ \wedge_{\mathcal{R}_1}, \ \vee_{\mathcal{R}_1}\right)$ e $\mathcal{R}_2 = \left(R_2; \ \wedge_{\mathcal{R}_2}, \ \vee_{\mathcal{R}_2}\right)$ reticulados e \leq_1 e \leq_1 as relações de ordem definidas, respectivamente, em R_1 e R_2 por: $a \leq_1 b$ sse $a = a \wedge_{\mathcal{R}_1} b$, $\forall a,b \in R_1$; $a \leq_2 b$ sse $a = a \wedge_{\mathcal{R}_2} b$, $\forall a,b \in R_2$.

Então os reticulados \mathcal{R}_1 e \mathcal{R}_2 são isomorfos sse os c.p.o.s. $(\mathbf{R}_1;\leq_1)$ e $(\mathbf{R}_2;\leq_2)$ são isomorfos.

Um reticulado $(R; \leq)$ diz-se **Completo** se p/ qq subconjunto de R exista $\land S$ e/ou $\lor S$.

Todo o Reticulado <u>Finito</u> é Completo.

Um Subreticulado $(R'; \leq_{|R'})$ de $(R; \leq)$ diz-se um **Subreticulado Completo** se p/ qq subconjunto S de R', $\wedge S$ e $\vee S$, como definidos em $(R; \leq)$, pertencem a R'.

Seja $(R; \leq)$ um Reticulado, um elemento $a \in R$ diz-se **Compacto** se sempre que existe $\forall a \in A \leq A \in A$ p/ algum $A \subseteq B$, então $a \leq A \in A$ p/ algum conjunto finito $A \subseteq B$.

Um Reticulado diz-se **Compactamente Gerado** se, p/ todo $a \in R$, $a = \vee S$, p/ algum subconjunto S de R formado por elementos compactos de R.

Um Reticulado diz-se Reticulado Algébrico se é um Reticulado Completo e Compactamente gerado.

Todos elementos de um Reticulado Finito são compactos.

Um Reticulado $\mathcal{R} = (\mathbf{R}; \land, \lor)$ diz-se **Distributivo** se satisfaz uma das seguintes condições:

- $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z), \ \forall x, y, z \in R$
- $x \lor (y \land z) = (x \lor y) \land (x \lor z), \ \forall x, y, z \in R$

Estas condições, designadas leis distributivas, são equivalentes.

Sendo $\mathcal R$ um reticulado, $\mathcal R$ satisfaz uma condição sse satisfizer a outra.

 \mathcal{R} é Distributivo sse não tem qq Subreticulado isomorfo a M_5 ou a N_5 .

Um Reticulado $\mathcal{R} = (\mathbf{R}; \Lambda, V)$ diz-se **Modular** se p/ qq $x, y, z \in \mathbb{R}$:

$$x \le y \Rightarrow x \lor (y \land z) = y \land (x \lor z)$$
 OU $x \le y \Rightarrow y \land (x \lor z) = x \lor (y \land z)$

A condição da definição anterior, designada **lei modular**, é equivalente a: $(x \wedge y) \vee (y \wedge z) = y \wedge ((x \wedge y) \vee z)$

Todo o Reticulado Distributivo é um Reticulado Modular (contrário não se verifica).

 \mathcal{R} é um Reticulado Modular sse não tem qq Subreticulado isomorfo a N_5 .

Dá-se a designação de **tipo algébrico**, a um par $(0,\tau)$. Onde:

- O é um conjunto e τ é uma função de O em \mathbb{N}_0 ;
- cada elemento f de O é designado por **símbolo de operação** e $\tau(f)$ diz-se a sua **aridade**;
- o conjunto de todos os símbolos de O de aridade n, $n \in \mathbb{N}_0$, é representado por O_n .

Chama-se **álgebra** a um par $\mathcal{A}=(A;F)$ onde A é um conjunto não-vazio e F é uma família $(f^{\mathcal{A}})_{f\in O}$ de operações finitárias em A indexada por um conjunto O.

Ao conjunto A dá-se a designação de **universo** ou **conjunto de suporte** \mathcal{A} , cada operação $f^{\mathcal{A}}$ é designada por **operação fundamental de** \mathcal{A} e ao conjunto O dá-se a designação de **conjunto de símbolos operacionais de** \mathcal{A} .

Uma álgebra $\mathcal A$ diz-se uma **álgebra de tipo** $(0,\tau)$ se 0 é o conjunto de símbolos operacionais de $\mathcal A$ e τ é a função de 0 em $\mathbb N_0$ que a cada símbolo operacional $f\in 0$ associa a aridade n_f da operação básica $f^{\mathcal A}$.

Uma álgebra diz-se **trivial** se |A|=1 e diz-se finita/infinita caso o seu universo seje finito/infinito.

Sejam \mathcal{A} e \mathcal{B} álgebras de tipos (O_1, τ_1) e (O_2, τ_2) , respectivamente. Diz-se que a álgebra \mathcal{B} é um **reduto** da álgebra \mathcal{A} se: \mathcal{A} e \mathcal{B} têm o mesmo universo, $O_1 \subseteq O_2$ e, para todo $f \in O_2$, $\tau_1(f) = \tau_2(f)$ e $f^{\mathcal{A}} = f^{\mathcal{B}}$.

Um **semigrupo** é um grupóide $S = (S; \cdot)$ tq p/ qq $x, y, z \in S$, $x \cdot (y \cdot z) = (x \cdot y) \cdot z$.

Um **grupo** é uma álgebra $\mathcal{G}=(G;\cdot)$ tq p/ cada $x\in G$, existe $x^{-1}\in G$ que satisfaz: $x\cdot x^{-1}=1=x^{-1}\cdot x$

Um grupo abeliano é um grupo $\mathcal{G}=(G;\cdot,\,^{-1},1)$ tq p/ qq $x,y\in G$, $x\cdot y=y\cdot x$.

Um **anel** é uma álgebra $\mathcal{A}=(A;+,\cdot,-,0)$ de (2,2,1,0) tq (A;+,-,0) é um grupo abeliano, $(A;\cdot)$ é um semigrupo e p/ qq $x,y,z\in G$, $x\cdot (y+z)=x\cdot y+x\cdot z$ e $(y+z)\cdot x=y\cdot x+z\cdot x$.

Um **reticulado** é uma álgebra $\mathcal{R}=(R;\land,\lor)$ de tipo (2,2) tq p/ qq $\underline{x,y,z\in R}$ se verifiquem as Leis Comutativas, Associativas, Idempotência e Absorção.

Sejam $\mathcal{A}=(A;F)$ uma álgebra. Um subconjunto B de A diz-se um **subuniverso** de \mathcal{A} se B é fechado para toda a operação de F. Representa-se por $\mathbf{Sub}\,\mathcal{A}$ o conjunto de todos subuniversos de \mathcal{A} .

Sejam $\mathcal{A}=(A;F)$ uma álgebra, $X\subseteq A$ e $S=\bigcap \{B\mid B\ \text{\'e}\ subuniverso\ de\ A\ e\ X\subseteq B\}$ Então S é um subuniverso de \mathcal{A} e é o menor subuniverso de \mathcal{A} que contém X.

Sejam $\mathcal{A}=(A;F)$ uma álgebra, $X\subseteq A$ e S um subuniverso de \mathcal{A} . Designa-se por **subuniverso de** \mathcal{A} **gerado por** X, e representa-se por $Sg^{\mathcal{A}}(X)$, o menor subuniverso de \mathcal{A} que contém X, i.e., o conjunto:

 $Sg^{\mathcal{A}}(X) = \bigcap \{B \mid B \in subuniverso \ de \ A \in X \subseteq B\}$

Diz-se que S é **finitamente gerado** se $S = Sg^{\mathcal{A}}(X)$, para algum conjunto finito $X \subseteq A$.

Sejam $\mathcal{A} = (A; F)$ uma álgebra e $X \subseteq A$. Para $i \in \mathbb{N}_0$, define-se:

$$X_0 = X$$

 $X_{i+1} = X_i \cup \{f(x) \mid f \text{ \'e operação } n-\text{\'aria em } \mathcal{A} \text{ e } x \in (X_i)^n, n \in \mathbb{N}_0\}$

Então $Sg^{\mathcal{A}}(X) = \bigcup_{i \in \mathbb{N}_0} X_i$.

Sejam $\mathcal A$ uma álgebra, $X\subseteq A$ e $a\in Sg^{\mathcal A}(X)$. Então $a\in Sg^{\mathcal A}(Y)$, para algum subconjunto finito Y de X.

Sejam $\mathcal{A} = (A; F)$ uma álgebra e $X, Y \subseteq A$. Então:

- I) $X \subseteq Sg^{\mathcal{A}}(X)$
- II) $X \subseteq Y \Rightarrow Sg^{\mathcal{A}}(X) \subseteq Sg^{\mathcal{A}}(Y)$
- III) $Sg^{\mathcal{A}}(Sg^{\mathcal{A}}(X)) = Sg^{\mathcal{A}}(X)$
- IV) $Sg^{\mathcal{A}}(X) = S\{Sg^{\mathcal{A}}(Z) \mid Z \text{ \'e subconjunto finito de } X\}$

Sejam \mathcal{A} uma álgebra e $Sub\mathcal{A}$ o conjunto de subuniversos de \mathcal{A} . O reticulado $(Sub\mathcal{A},\subseteq)$ designa-se por reticulado dos subuniveros de \mathcal{A} e representa-se por $Sub\mathcal{A}$.

Sejam $\mathcal{A}=(A;F)$ e $\mathcal{B}=(B;G)$ álgebras do mesmo tipo (\mathcal{O},τ) .

Diz-se que \mathcal{B} é uma **subálgebra** de \mathcal{A} , e escreve-se $\mathcal{B} \leq \mathcal{A}$, se:

- 1) B é um subuniverso de A
- 2) p/ todo símbolo de operação $f \in O_n$, $f^{\mathcal{A}}(b_1,...,b_n) = f^{\mathcal{B}}(b_1,...,b_n)$, p/ qq $(b_1,...,b_n) \in \mathcal{B}^n$.

Sejam $\mathcal{A}=(A;F)$ uma álgebra e $X\subseteq A$ tq $X\neq\emptyset$. Chama-se **subálgebra de** \mathcal{A} **gerada por** X e representa-se por $Sg^{\mathcal{A}}(X)$ a subálgebra de \mathcal{A} cujo universo é $Sg^{\mathcal{A}}(X)$.

Sejam A um conjunto e θ uma relação relação binária em A, diz-se que θ é uma **Relação de Equivalência** em A se são satisfeitas as seguintes condições:

- I) Simetria: p/qq $a,b \in A$, $a\theta b \Rightarrow b\theta a$ ou $(a,b) \in \theta \Rightarrow (b,a) \in \theta$
- II) Reflexividade: p/ todo $a \in A$, $a\theta a$ ou $(a,a) \in \theta$
- III) Transitividade: p/ qq $a,b,c \in A$, $a\theta b$ e $b\theta c \Rightarrow a\theta c$ ou $(a,b) \in \theta$ e $(b,c) \in \theta \Rightarrow (a,c) \in \theta$

Sejam $\mathcal{A}=(A;F)$ uma álgebra de tipo (0, au) e $oldsymbol{ heta}$ uma relação de equivalência em A.

Diz-se que θ é uma Congruência em $\mathcal A$ se θ satisfaz a propriedade de substituição:

$$\forall n \in \mathbb{N}_0, f \in O_n$$
 e $(a_1, ..., a_n)(b_1, ..., b_n) \in A^n$, $(a_i \theta b_i, \forall_i \in \{1, ..., n\} \Rightarrow f^{\mathcal{A}}(a_1, ..., a_n) \theta f^{\mathcal{A}}(b_1, ..., b_n)$.

Sejam $\mathcal A$ álgebra, ao reticulado $Con\mathcal A=(Con\mathcal A,\subseteq)$ dá-se a designação de **reticulado das congruências de** $\mathcal A$.

Uma Congruência numa álgebra é uma Relação de Equivalência que é compatível com as operações da álgebra.

Dado um elemento $x \in A$, chama-se Classe de Equivalência de x Módulo θ ao conjunto:

$$[x]_\theta = \{y \in A|\ x \ \theta \ y\}$$

O conjunto de todas as relações de equivalência definidas em A representa-se por Eq(A).

Para $\mathcal{A}=(A;F)$, θ é uma **congruência** em \mathcal{A} se θ satisfaz a propriedade de substituição, i.e.:

$$a_i \theta b_i \Rightarrow f^A(a_1, ..., a_n) \theta f^B(b_1, ..., b_n)$$
 ou $(x, y) \in \theta \Rightarrow (f(x), f(y)) \in \theta$

ou seja

$$\begin{vmatrix} (a_1,b_1) \in \theta \\ (a_2,b_2) \in \theta \end{vmatrix} \Longrightarrow \begin{vmatrix} (a_1 \land a_2, b_1 \land b_2) \in \theta \\ (a_1 \lor a_2, b_1 \lor b_2) \in \theta \end{vmatrix}$$

O conjunto de todas congruências da álgebra $\mathcal A$ é denotado por ConA .

E ao reticulado $Con\mathcal{A} = (Con\mathcal{A}, \subseteq)$ dá-se a designação de **reticulado de congruências de** \mathcal{A} .

Se $\mathcal{R} = (R; \wedge, \mathsf{V})$ é um reticulado, então $\theta \in Eq(R)$ é uma congruência em \mathcal{R} sse:

- I) cada classe de θ é um subreticulado
- II) cada classe de θ é um **subconjunto convexo** de R

(i.e., $a\theta b e a \le c \le b \Rightarrow a\theta c$)

III) as classes de equivalência de heta são fechadas para os quadriláteros

(i.e. sempre que a, b, c, d são elementos de R distintos e tais que a < b, c < d e $(a \lor d = b \ e \ a \land d = c)$ ou $(b \lor c = d \ e \ b \land c = a)$. então $a \theta b$ sse $c \theta d$).