EE 240C Analog-Digital Interface Integrated Circuits

5th Order Modulator (Example)

L54

Overview

- Building and evaluating behavioral models
 - Focus on functionality first
 - Add nonidealities later
 - Beware: changes get more expensive later in the process ...

- A 5th-order, 1-Bit $\Sigma\Delta$ modulator example
 - Noise shaping
 - Complex loop filters
 - Stability
 - Voltage scaling

SD Modulator Filter Design

Procedure

- Establish requirements
- Design noise-transfer function, NTF
- Determine loop-filter, H
- Synthesize filter
- Evaluate performance, stability

References:

- R. W. Adams and R. Schreier, "Stability Theory for DS Modulators," in Delta-Sigma Data Converters, S. Norsworthy et al. (eds), IEEE Press, 1997, pp. 141–164.
- S. Pavan, R. Schreier, and G. C. Temes, <u>Understanding Delta-Sigma Data Converters</u>. Wiley-IEEE Press, 2017. Chapter 4.

Modulator Specification

Example: Audio ADC

-	Dynamic range	DR	16 Bits
_	Signal bandwidth	В	20 kHz
_	Nyquist frequency	f_N	44.1 kHz

- Modulator orderL5
- Oversampling ratio $M = f_s / f_N$ 64
- Sampling frequency f_s 2.822 MHz
- The order L and oversampling ratio M are chosen based on
 - SQNR > 120dB (20dB below thermal noise)
 - Experience (e.g. Figure 4.14 in Adams & Schreier or Figure 4.18, 4.19, 4.20 in Understand Delta-Sigma Data Converters)

Modulator Specification

SQNR

- Modulator Order (N in graphs below)
- Oversampling Ratio (OSR)
- Number of levels / bits in quantizer

[S. Pavan, R. Schreier, and G. C. Temes, <u>Understanding Delta-Sigma Data Converters</u>. Wiley-IEEE Press, 2017. Chapter 4.]

140 120 120 120 100 80 80 80 80 60 4 8 16 32 64 128 256 512 1024 OSR

Figure 4.18 Empirical SQNR limit for 1-bit modulators of order *N*.

Figure 4.20 Empirical SQNR limit for modulators with 3-bit quantizers of order *N*.

Modulator Block Diagram

$$STF = \frac{Y(z)}{X(z)} = \frac{H(z)}{1 + H(z)}$$

Approach:
Design NTF and solve for H(z)

$$NTF = \frac{Y(z)}{E(z)} = \frac{1}{1 + H(z)}$$

Noise Transfer Function, NTF(z)

```
% stop-band attenuation Rstop ...
% reduce if design is not stable
Rstop = 80;
[b,a] = cheby2(L, Rstop, 1/M, 'high');
% normalize (for causality)
b = b/b(1);
NTF = filt(b, a, 1/fs);
% check stability (mag < 1.5)
[mag] = bode(NTF, pi*fs)
>> mag = 1.32
  sigma delta L5 design.m
```


Noise Transfer Function, NTF(z)

- NTF(z) numerator and denominator constant terms equal to 1
 (b(1) = 1 and a(1) = 1)
 - \rightarrow H(z) = 1/NTF(z) 1 has no constant term in numerator
 - → unit delay through loop filter
 - → realizable modulator
- Rule-of-thumb for stability of 1-bit modulators (Lee's rule): $\|\mathsf{NTF}(\omega)\|_{\infty} = \max |\mathsf{NTF}(\omega)| < 1.5$
- In-band NTF attenuation (→ higher SQNR)
 vs out-of-band NTF gain (→ lower maximum stable amplitude)

Loop-Filter, H(z)

```
H = inv(NTF) - filt(1, 1, 1/fs);
% check causality ... y(1) should be 0
y = impulse(H);
y = y(1)
>>> y = 0
```


5th Order Loop Filter

- Lot's of gain in the passband
- Remember that NTF ~ 1/H
- H ~ 0dB in stop-band gives quantization noise a place to show up

Modulator Topologies

- CIFB: Cascade of Integrators with Feedback
 - State at the output of the integrators
 → larger unscaled signals at output of integrators
 - Multiple DACs

Figure 4.21 A third-order NTF realized as a cascade of integrators with feedback (CIFB) structure. All NTF zeros are at z = 1.

- CIFF: Cascade of Integrators with Feed-forward
 - Only quantization noise in integrators

[S. Pavan, R. Schreier, and G. C. Temes, <u>Understanding Delta-Sigma Data Converters</u>. Wiley-IEEE Press, 2017. Chapter 4.]

Figure 4.29 A low distortion CIFF structure, accomplished using input feedforward.

Modulator Topology

sigma_delta_L5_sim.mdl

Rounded Filter Coefficients

Ref: Nav Sooch, Don Kerth, Eric Swanson, and Tetsuro Sugimoto, "Phase Equalization System for a Digital-to-Analog Converter Using Separate Digital and Analog Sections", U.S. Patent 5061925, 1990, figure 3 and table 1.

EE 240C Analog-Digital Interface Integrated Circuits

Noise Shaping

5th Order Noise Shaping

- Mostly quantization noise, except at low frequencies
- Let's zoom ...

sigma_delta_L5.m

5th Order Noise Shaping

sigma_delta_L5.m

5th Order Noise Shaping

sigma delta L5.m

- SQNR > 120dB
- Sigma-delta modulators are usually designed for negligible quantization noise
- Other error sources dominate, e.g. thermal noise

In-Band Noise Shaping

In-Band Noise Shaping

- Positive phase jumps indicates poles of H(z) slightly outside unit circle
- Is the modulator stable?
- Let's analyze ...

EE 240C Analog-Digital Interface Integrated Circuits

Stability and Voltage Scaling

L56

Stability Analysis

- Approach: linearize quantizer and use linear system theory!
- Effective quantizer gain

$$G_{eff}^2 = \frac{\overline{y^2}}{q^2}$$

Obtain G_{eff} from simulation

Modulator Root-Locus

- As G_{eff} increases, poles of STF move from
 - poles of H(z) ($G_{eff} = 0$) to
 - zeros of H(z) ($G_{eff} = \infty$)
- Pole-locations inside unit-circle correspond to stable modulator
- G_{eff} > 0.45 for stability

sigma_delta_L5_H.m

Effective Quantizer Gain, Geff

- Large inputs → comparator input grows
- Output is fixed (±1)
- → G_{eff} drops
- → modulator unstable for large inputs

• Solution:

- Limit input amplitude
- Detect instability
 (long sequence of +1 or -1)
 and reset integrators
- Note: signals grow slowly for nearly stable systems
 → use long simulations

sigma_delta_L5_peaks.m

Loop Voltages

- Internal signal amplitudes are week function of input level (except near overload)
- Exceed supply voltage
- Solutions:
 - Reduce V_{ref} ??
 - Scaling

5th Order Modulator – Scaling

Only the sign of Q matters: choose k₁ without changing the 1-Bit data at all

Scaling Example

Integrator 3 Output times S:

K3 * S, b1 /S, a3 / S, K4 / S, b2 * S

sigma_delta_L5_sim.mdl

Voltage Scaling


```
k1=1/10;
k2=1;
k3=1/4;
k4=1/4;
k5=1/8;
a1= 1;
a2=1/2;
a3=1/2;
a4=1/4;
a5=1/4;
b1=1/512;
b2=1/16-1/64;
g =1;
```

- Integrator output range is fine now
- But: maximum input signal limited to -5dB (-7dB with safety) fix?

Input Range Scaling

Increasing the DAC levels by g reduces the analog Increasing the zero to digital conversion gain: $\frac{D_{OUT}(z)}{V_{IN}(z)} = \frac{H(z)}{1 + gH(z)} \cong \frac{1}{g}$

Increasing v_{IN} & DAC level (g) by the same factor leaves 1-Bit data unchanged

Scaled Modulator Model

$$g = 2.5$$
;

Scaled Model Overload

2dB safety margin for stability

NTF Design

- SQNR is determined by NTF design choices
 - Filter order and shape (e.g. zeros)
 - In-band quantization noise attenuation vs maximum stable amplitude
- Filter shape influence circuit topology
 - Zeros in loop filter → resonator structures
- Manual iteration to maximize SQNR
- Or use MATLAB Delta Sigma Toolbox
 - NTF = synthesizeNTF(order=3,osr=64,opt=0,H_inf=1.5,f0=0)
 - NTF = synthesizeChebyshevNTF(order=3,OSR=64,opt=1,H_inf=1.5,f0=0)

EE 240C Analog-Digital Interface Integrated Circuits

Limit Cycles

5th Order Modulator

sigma_delta_L5_sim.mdl

Quantization Noise Tones

Input: 0.1V, sinusoid 2¹⁵ point DFT 30 averages

Quantization Noise Tones

Input: 0.1V, sinusoid 2¹⁵ point DFT 30 averages

Quantization Noise Filter Requirements

DC Inputs

2mV DC input (1V full-scale)

Simulation technique:

A random 1st sample randomizes the noise from DC input and enables averaging.
Otherwise the small tones are not visible.

Limit Cycles

• Representing a DC term with a -1/+1 pattern ... e.g.

$$\frac{1}{11} \rightarrow \left\{ \underbrace{-1 + 1}_{1} \quad \underbrace{-1 + 1}_{2} \quad \underbrace{-1 + 1}_{3} \quad \underbrace{-1 + 1}_{4} \quad \underbrace{-1 + 1}_{5} \quad +1 \right\} \\
\underbrace{-1 + 1}_{1} \quad \underbrace{-1 + 1}_{2} \quad \underbrace{-1 + 1}_{3} \quad \underbrace{-1 + 1}_{4} \quad \underbrace{-1 + 1}_{5} \quad +1 \right\}$$

Spectrum

$$\frac{f_s}{11}$$
 $2\frac{f_s}{11}$ $3\frac{f_s}{11}$...

[Eric Swanson]

Limit Cycles

Fundamental

$$f_{\delta} = f_{s} \frac{V_{DC}}{V_{DAC}}$$

$$= 3MHz \frac{2mV}{1V}$$

$$= 6kHz$$

• "Tone velocity" $\frac{df_{\delta}}{dV_{DC}} = \frac{f_{S}}{V_{DAC}}$

$$\frac{df_{\delta}}{dV_{DC}} = \frac{f_S}{V_{DAC}}$$
$$= \frac{3kHz/mV}{mV}$$

ΣΔ Tones

Tones follow the noise shape

• The fundamental of a tone that falls into a "quantization noise null" disappears ...

$$V_{DC} = V_{FB} \frac{f_{\delta}}{f_s}$$

$$= 1V \frac{10.5 \text{kHz}}{3 \text{MHz}}$$

$$= 3.5 \text{mV}$$

ΣΔ Tones

3.5mV DC input

- High ΣΔ loop gain at 10.5 KHz suppresses limit cycle tone
- Tone at 2·10.5 KHz
 = 21 KHz still visible

ΣΔ Tones

- In-band tones look like signals
- Big problem in some applications
 - E.g. audio → tones below the quantization noise floor can be audible
 - Harmonics below the noise floor in the frequency domain combine to periodic time domain artifacts above the noise floor
- Tones near $f_s/2$ can be aliased down into the signal band
 - Since they are often strong, even a small alias can be a big problem
- Dither can be used to reduce or eliminate in-band tones

EE 240C Analog-Digital Interface Integrated Circuits

Dither

 DC inputs can of course be represented by many possible bit patterns

 Including some that are random but still average to the DC input

The spectrum of such a sequence has no tones

• How can we get a $\Sigma\Delta$ modulator to produce such "randomized" sequences?

- The target DR for our audio $\Sigma\Delta$ is 16 Bits, or 98dB
- Let's choose the sampling capacitor such that it limits the dynamic range:

$$DR = \frac{\frac{1}{2}(V_{FS})^{2}}{k_{B}T/C}$$

$$C = DR \frac{k_{B}T}{\frac{1}{2}(V_{FS})^{2}}$$

$$= 10^{9.8} \frac{k_{B}T}{\frac{1}{2}(1V)^{2}} = \underline{50.5pF} \rightarrow \sqrt{\overline{v_{n}^{2}}} = \sqrt{\frac{k_{B}T}{C}} = \underline{9\mu V}$$

2mV DC input

- Tones disappear
- Courtesy of the "excessive" SQNR of this design
- Note: they are not just buried
- How can we tell?

Dither at an amplitude which buries the inband tones has virtually no effect on tones near f_s/2

EE 240C Analog-Digital Interface Integrated Circuits

Full-Scale Inputs

Full-Scale Inputs

 With practical levels of thermal noise added, let's try a 5kHz sinusoidal input near full-scale

- No distortion is visible in the spectrum
 - 1-Bit modulators are intrinsically linear
 - But tones exist at high frequencies
 - → to the oversampled modulator, a sinusoidal input looks like two "slowly" alternating DCs ... hence giving rise to limit cycles

Full-Scale Inputs

No distortion "linear" 1-Bit DAC

Full-Scale Inputs

Tones near f_s/2

Avoid mixing into signal band

Why would this happen?

AM Modulation

$$x_1(t) = X_1 \cos(\omega_1 t)$$

$$x_2(t) = X_2 \cos(\omega_2 t)$$

$$x_1(t) \times x_2(t) = \frac{X_1 X_2}{2} \left[\cos(\omega_1 t + \omega_2 t) + \cos(\omega_1 t - \omega_2 t)\right]$$

V_{ref} Interference

1μV interference suffices to create strong in-band tones

1mV interference also rises the noise floor

V_{ref} Interference

Symmetry of the spectra at $f_s/2$ and DC confirm that this is AM modulation

EE 240C Analog-Digital Interface Integrated Circuits

Decimation Filters

Decimation filters for $\Sigma\Delta$ ADCs

- Digital decimation filters
 - Aliasing in the analog domain
 - Aliasing in the digital domain
 - Coefficient precision and gain scaling
- Digital arithmetic throughput calculations
 - One-stage decimation
 - Linear phase implications
 - Multi-stage decimation

Ref: R. E. Crochiere and L. R. Rabiner, "Interpolation and Decimation of Digital

Signals - A Tutorial Review", Proc. IEEE, 69, pp. 300-331, March 1981.

ΣΔ Analog-to-Digital Converters

- A ΣΔ Analog-to-Digital Converter (ΣΔ ADC) combines
 - An analog $\Sigma\Delta$ modulator which produces an oversampled output stream of 1-bit digital samples
 - A digital <u>decimation filter</u> which takes the 1-bit modulator output as its input and
 - Filters out out-of-band quantization noise
 - Filters out unwanted out-of-band signals present in the modulator's analog input
 - Lowers the sampling frequency to a value closer to 2X the highest frequency of interest

Decimation Filters for ΣΔ ADCs

- Commercial DSPs <u>aren't</u> designed to handle 1-bit input samples at oversampled data rates
 - A 400Mip DSP only executes 133 instructions per 3MHz sample
- DSPs <u>are</u> designed to handle 16+ bit wide data words at Nyquist-like sampling frequencies
- $\Sigma\Delta$ decimation filters bridge the speed/resolution gap

Aliasing in the Analog Domain

- An analog filter <u>preceding</u> the $\Sigma\Delta$ modulator is required to reject aliases that fold into the signal band
- Example:
 - $f_s = 3MHz$, B = 20kHz $\rightarrow 2.98MHz$ aliases to 20kHz
 - 1st order RC LPF with 30kHz cutoff has only 40dB attenuation at 3MHz
 - Is this sufficient?
 - Depends on application
 - Microphones produce negligible output at 3MHz

EE 240C Analog-Digital Interface Integrated Circuits

Digital Decimation Filter

Aliasing in the Digital Domain

- The digital decimation filter following the SD modulator rejects quantization noise and out-ofband signal components to well below the noise floor
- Example:
 - $f_s = 3MHz$
 - $-f_N = f_s/64 = 46.875 \text{kHz}$
 - 135dB attenuation from for frequencies $> f_N/2$
 - Digital filters can readily achieve this
 - Filter coefficient precision:
 - Rule of thumb: 6dB/bit attenuation
 - 135/6 = 22.5 bit \rightarrow use 24 bit coefficients

Target Filter Response

Decimation Filter Synthesis

 We will design several increasingly more efficient filters

- "Filter #1"
 - -0.00 ± 0.01 dB gain from 0-20kHz
 - 135dB stopband attenuation from 23–2977kHz
 - Linear phase
 - Synthesize with Parks-McClellan algorithm
 - MATLAB "remez"
 - 5612 tap FIR filter

Filter #1 Target & Actual Response

Filter #1

- A classical 5612-tap, f_s =3MHz FIR filter would require a 5612*3MHz = 16.8GHz multiply-accumulate (MAC) rate
- Optimizations:
 - 1. Decimation by 64 discards 63 out of 64 outputs:
 - No point to compute discarded samples
 - MAC rate reduced to 263MHz (16.8 GHz / 64)
 - 2. Linear phase filter coefficients are symmetrical
 - Cut coefficient ROM size in half to 2806
 - Perform addition before multiplication
 → 132MHz MAC rate (16.8 GHz / 64 / 2)
 - 3. Modulator output is 1-bit signal
 - Discard multiplier altogether, only accumulator is needed

Filter #1

- The second key factor that makes this FIR filter unusual is that it needs no hardware multiplier at all
 - Input data is only 1-bit wide
 - The "multiplier" merely adds or subtracts coefficients from the accumulator
- 263MHz begins to seem reasonable, but we can use another simple trick to reduce power further ...

Coefficient Symmetry

 Linear phase filter coefficients are symmetric around the middle of the impulse response

 We'd never waste ROM to store all 5612 coefficients when only 2806 are unique

 A 5612x1b data memory allows us to exploit coefficient symmetry to reduce "multiply"– accumulate rates by another 2X ...

Filter #2

- Filter complexity is a strong function of the ratio of transition band width to sampling rate
- Transition bands:
 - Filter #1: 20 ... 24kHz
 - Filter #2: 20 ... $f_N/2-20kHz = 26kHz$
 - A 25kHz tone aliases to f_N -25kHz = 21kHz
 - Attenuation << 135dB but 21kHz is not audible ...
 - Additional quantization noise is negligible
 - Remez returns 2406 taps (instead of 5612)
 - MAC rate drops to 132MHz * 2406 / 5612 = 57MHz

EE 240C Analog-Digital Interface Integrated Circuits

Digital Filter Implementation Considerations

FIR Arithmetic Throughput

- FIR filters with 1-bit input data don't need traditional hardware multipliers
 - Use add/subtract/do nothing accumulators
- How wide should these accumulators be?
 - What coefficient precision is needed?
 - What output resolution should we use?
 - Let's look at a Filter #2 implementation ...

FIR Implementation

- Digital filters usually come with bit-width' that are multiples of 4
- Rounding to 16 Bits would lower the SNR below 98dB
- Let's try a 20-bit filter for our 16-bit ADC
 - $-2^{20}=1048576$
 - Each LSB is 1ppm of the ADC input range
- Let's look at the mapping of a 1Vrms full scale sinewave to digital output values
 - Before we set filter gain levels, we need to review modulator outputs

Modulator Outputs

Positive and negative peaks of a 1Vrms full-scale sinewave correspond to levels shown below:

[Eric Swanson]

Decimation Filter Gain

- "Gain scaling" in the decimation filter maps the ± 0.4714 modulator average output at signal peaks to the 20-bit digital full-scale range of $\pm 2^{19}$
 - Ideal decimation filter dc gain is 2¹⁹/0.4714=1112000=120.9dB
 - To allow for offsets, etc., we'll use a slightly smaller gain of 2²⁰=120.4dB
- An FIR filter's dc gain equals the sum of its coefficients
 - Let's adjust Filter #2's coefficients accordingly ...

Ref: Nav Sooch, "Gain Scaling of Oversampled Analog-to-Digital Converters", U.S. Patent 4851841, 1989.

Filter #2 Response

Filter #2 Response

 The gain adjustment is correct, but coefficients are still floating point

 Rounding these coefficients to the nearest integer using MATLAB's round() function yields the following response ...

Filter #2 Responses

Filter #2 Responses

- The stopband attenuation drops from 135dB to about 90dB
- Problem is obviously coefficient precision
- Check the integer coefficients
 - The biggest one is +15715
 - The smallest one is -3332
 - That's only 14–15b of coefficient precision,
 commensurate with ~90dB attenuation
- When 2406 coefficients sum to 220, the biggest coefficient is pretty small

Filter #2 Bit Map

Let's look at the digital scaling in our defective filter:

[Eric Swanson]

Filter #2 Bit Map

To add coefficient resolution, we'll add 8 coefficient bits below the 2° point:

Filter #2 Bit Map

 Higher-precision coefficients are produced with coef = round(256*coef)/256 operation

 The 23b fixed point coefficient magnitude response appears on the following slide ...

- Rounding of the 28b accumulator to produce the 20b ADC result adds 20b quantization noise
 - At -122dBFS, that's insignificant for a 103dB dynamic range ADC

Filter #2 Responses

[Eric Swanson]

Filter #2 Bit Width

The green accumulator bits (20 and 21) provide complete overload protection:

[Eric Swanson]

ΣΔ ADC Output DFT: finite precision

$\Sigma\Delta$ ADC Output DFT: floating point

