

Analyzing Resilience of Airlines Routes using Graph Computations

Nimaye Garodia, Alyssa Gorbaneva, Harsh Mathur

Our Promise

Find major airline that is most resilient to calamities and hub impact

Model calamities for airlines

Visualise Spectral Analysis of Airline Route Architecture

Definitions

Airline Codes: Unique identifiers assigned to airlines, typically using IATA or ICAO codes, representing the airline in the network.

UA = United, DL = Delta, AA = American

Airport Code: Unique 3 letter identifier for airport, used to index/label nodes in the graph

RDU = Raleigh-Durham International Airport

Hub (node): A central node in the airline network where multiple routes converge, facilitating transfers between flights. A special kind of **node**.

Destinations (node): Airports (nodes) that are the endpoints of routes, where flights from a hub or other airports arrive.

Routes (edge): Connections between airports in the airline network, representing the flight paths between them.

1. Northeast: Winter Storm EWR, IAD, PHL, DCA, BOS, JFK, LGA

2. South: Hurricane IAH, CLT, DFW, MIA, ATL

3. Midwest: Severe
Thunderstorm
ORD, MSP, DTW

4. West Wildfires SFO, DEN, LAX, SEA, PHX, SLC

Home > Natural Hazards > Article

The vulnerability of the European air traffic network to spatial hazards

Original Paper | Open access | Published: 19 August 2011

Volume 60, pages 1027–1036, (2012) Cite this article

Simplified Proximity Metrics: Geographic constraints are simplified

Hazard Specificity: It doesn't account for the varying nature and duration of different hazards.

Calamity Simulation

Define distance of edge as d_{ij} = Haversine distance of flight route from hub i to destination j. Then,

$$\mathbb{P}(\text{edge } ij \text{ is removed}) = \frac{k_i}{d_{ij}}$$

For a given "scenario", we cycle through each of the hubs, i. For each hub, we remove a proportion p of routes with the above probability distribution. $k_i > 0$ is found so that

$$\sum_{i} \frac{k_i}{d_{ij}} = 1 \implies k_i = \frac{1}{\sum_{j} 1/d_{ij}}$$

Fiedler cut for AA:

Partition 1: ['ABO', 'ADL', 'AKL', 'ANC, 'ASP, 'BKK', 'BNE, 'CBR, 'CHC, 'CNS, 'CTS, 'DRW', 'ELP, 'EUG, 'FAT, 'FUK, 'GDL', 'HAN, 'HND', 'HNL', 'ICN, 'ITM', 'KHH', 'KIX, 'KOA, 'LAX', 'LIH', 'MEL, 'MFR, 'MMH', 'MRY, 'NAN', 'NGO, 'NRT, 'OAK', 'OGG', 'OKC', 'PER, 'PPT, 'PUS, 'PVG', 'RDM', 'RNO', 'SAF', 'SGN', 'SIN', 'SUC, 'SMF, 'STS, 'SYD', 'TPE', 'TSV', 'TUS', 'YEG'

Partition 2: ['ABE', 'ABI', 'ABZ', 'ACC', 'ACT', 'AEX', 'AGP', 'AGS', 'AGU', 'ALB', 'ALO', 'AMA', 'AMM', 'AMS', 'ANU', 'AQP', 'ARN', 'ART', 'ASU', 'ATH', 'ATL', 'AUA', 'AUH', 'AUS', 'AVL', 'AVP', 'AZO', 'BAH', 'BCN', 'BDA', 'BDL', 'BFL', 'BGI', 'BGM', 'BGO', 'BGR', 'BHD', 'BHM', 'BJL', 'BJX', 'BLQ', 'BLR', 'BMI', 'BNA', 'BOG', 'BOI', 'BOM', 'BOS', 'BPT', 'BRO', 'BRU', 'BSB', 'BSL', 'BTR', 'BTV', 'BUD', 'BUF', 'BUR', 'BWI', 'BZE', 'CAE', 'CAK', 'CCS', 'CDG', 'CHA', 'CHO', 'CHS', 'CID', 'CLE', 'CLL', 'CLO', 'CLT', 'CMB', 'CMH', 'CMI', 'CNF', 'COS', 'COU', 'CPH', 'CPT', 'CRP', 'CUN', 'CUR', 'CUU', 'CVG', 'CWA', 'CWB', 'CZM', 'DAB', 'DAY', 'DBQ', 'DCA', 'DEL', 'DEN', 'DFW', 'DKR', 'DOH', 'DOM', 'DRO', 'DSM', 'DTW', 'DUB', 'DUS', 'DXB', 'EBB', 'EDI', 'EIS', 'ELH', 'ELM', 'ERI', 'EVV', 'EWN', 'EWR', 'EYW', 'EZE', 'FAR', 'FAY', 'FCO', 'FDF', 'FLG', 'FLL', 'FLO', 'FNT', 'FPO', 'FRA', 'FSD', 'FSM', 'FWA', 'GCK', 'GCM', 'GEG', 'GGG', 'GGT', 'GIB', 'GIG', 'GJT', 'GLA', 'GND', 'GNV', 'GOT', 'GPT', 'GRB', 'GRI', 'GRK', 'GRR', 'GRU', 'GSO', 'GSP', 'GUA', 'GVA', 'GYE', 'HAJ', 'HAM', 'HEL', 'HHH', 'HKG', 'HMO', 'HOU', 'HPN', 'HSV', 'HTS', 'HVN', 'HYD', 'IAD', 'IAH', 'ICT', 'ILM', 'IND', 'IPT', 'ISB', 'ISP', 'IST', 'ITH', 'JAN', 'JAX', 'JFK', 'JLN', 'JNB', 'JNU', 'JUL', 'KIN', 'KTN', 'KUL', 'KWI', 'LAS', 'LAW', 'LBA', 'LBB', 'LCA', 'LCH', 'LEX', 'LFT', 'LGA', 'LGB', 'LGK', 'LGW', 'LHE', 'LHR', 'LIM', 'LIN', 'LIR', 'LIS', 'LIT', 'LPA', 'LPB', 'LRD', 'LRM', 'LSE', 'LUX', 'LYH', 'LYS', 'MAA', 'MAD', 'MAF', 'MAN', 'MAO', 'MAR', 'MBJ', 'MCI', 'MCO', 'MCT', 'MDE', 'MDT', 'MEM', 'MEX', 'MFE', 'MGA', 'MGM', 'MHH', 'MHK', 'MHT', 'MIA', 'MKE', 'MLB', 'MLI', 'MLM', 'MLU', 'MOB', 'MQT', 'MRS', 'MSN', 'MSP', 'MSY', 'MTY', 'MUC', 'MVD', 'MXP', 'MYR', 'MZT', 'NAS', 'NBO', 'NCE', 'NCL', 'OAJ', 'OMA', 'ONT', 'ORD', 'ORF', 'ORY', 'OSL', 'OTP', 'PAP', 'PBC', 'PBI', 'PDX', 'PEK', 'PEN', 'PGV', 'PHF', 'PHL', 'PHX', 'PIA', 'PIT', 'PLS', 'PMC', 'PNS', 'POA', 'POP', 'POS', 'PRG', 'PSA', 'PSP', 'PTP', 'PTY', 'PUJ', 'PVD', 'PVR', 'QRO', 'RAP', 'RDU', 'REC', 'RIC', 'ROA', 'ROC', 'ROW', 'RST', 'RSW', 'RTB', 'RTM', 'SAL', 'SAN', 'SAP', 'SAT', 'SAV', 'SBA', 'SBP', 'SBY', 'SCE', 'SCL', 'SCY', 'SDF', 'SDQ', 'SEA', 'SFO', 'SGF', 'SHV', 'SJD', 'SJO', 'SJT', 'SJU', 'SKB', 'SLC', 'SLP', 'SNA', 'SOF', 'SPS', 'SRQ', 'SSA', 'STI', 'STL', 'STR', 'STT', 'STX', 'SUX', 'SVG', 'SWF', 'SXM', 'SYR', 'TGU', 'TLH', 'TLS', 'TLV', 'TOL', 'TPA', 'TRC', 'TRI', 'TUL', 'TVC', 'TXK', 'TXL', 'TYR', 'TYS', 'UIO', 'UVF', 'VCE', 'VIE', 'VIJ', 'VPS', 'VQS', 'VVI', 'WAW', 'XNA', 'YHZ', 'YKF', 'YOW', 'YQB', 'YUL', 'YUM', 'YVR', 'YYC', 'YYZ', 'ZAG', 'ZCL', 'ZIH', 'ZRH', 'CRW', 'PWM', 'SPI', 'LCY', 'PUQ'I

Fiedler Cut Visualization

Fiedler cut for DL:

Partition 1: ['ABQ', 'ABR', 'ABV', 'ABY', 'ACC', 'AEX', 'AGS', 'ALB', 'AMS', 'ANC', 'APN', 'ATL', 'ATW', 'AUA', 'AZO', 'BCN', 'BDA', 'BHM', 'BIL', 'BJX', 'BKK', 'BNE', 'BOG', 'BOI', 'BOM', 'BON', 'BRD', 'BRU', 'BSB', 'BTR', 'BTS', 'BWI', 'BZN', 'CCS', 'CDG', 'CHA', 'CHS', 'CIU', 'CLE', 'CMH', 'CNY', 'COD', 'COS', 'CRW', 'CVG', 'CWA', 'CZM', 'DAB', 'DAL', 'DCA', 'DHN', 'DIK', 'DKR', 'DLH', 'DOH', 'DUB', 'DUS', 'DXB', 'ECP', 'ELP', 'EVV', 'EWN', 'EZE', 'FAR', 'FAT', 'FAY', 'FCA', 'FLL', 'FNT', 'FPO', 'FRA', 'FSD', 'FSM', 'FUK', 'FWA', 'GCM', 'GDL', 'GEG', 'GFK', 'GGT', 'GIG', 'GND', 'GNV', 'GPT', 'GRB', 'GRK', 'GRU', 'GTF', 'GTR', 'GUA', 'HAM', 'HIB', 'HKG', 'HLN', 'HOU', 'HSV', 'IAD', 'ICN', 'ICT', 'INL', 'ISN', 'JAN', 'JFK', 'JNB', 'KIN', 'KOA', 'KSC', 'LAN', 'LAS', 'LAX', 'LFT', 'LGW', 'LHR', 'LIH', 'LIM', 'LIR', 'LNK', 'LOS', 'LSE', 'MAD', 'MAN', 'MBS', 'MCT', 'MDW', 'MEL', 'MGA', 'MGM', 'MID', 'MLB', 'MLI', 'MLU', 'MNL', 'MOB', 'MOT', 'MSO', 'MSP', 'MUC', 'MXP', 'MYR', 'NAS', 'NCE', 'NGO', 'OAJ', 'OAK', 'OKC', 'ONT', 'PAP', 'PDX', 'PHC', 'PHF', 'PHX', 'PIA', 'PLS', 'PNS', 'PPT', 'PSC', 'PSP', 'PTY', 'PVG', 'PVR', 'RAP', 'REP', 'RHI', 'ROA', 'ROB', 'ROC', 'ROR', 'RST', 'RTB', 'SAL', 'SAP', 'SBN', 'SCL', 'SEA', 'SFO', 'SGF', 'SHV', 'SIN', 'SJC', 'SJD', 'SJO', 'SJU', 'SMF', 'SNA', 'SPN', 'STI', 'STR', 'STT', 'SVO', 'SXM', 'SYD', 'TGU', 'TLH', 'TLV', 'TPE', 'TRI', 'TUL', 'TUS', 'TVC', 'UIO', 'UVF', 'VCE', 'VLD', 'VPS', 'VSA', 'YEG', 'YQR', 'YUL', 'YWG', 'YXE', 'YYC', 'YYZ', 'ZRH', 'PRG', 'ACA']

Partition 2: [ABE, 'AUH, 'AUS, 'AVI,' AVP, 'BAH, 'BDL, 'BGM, 'BGR, 'BIS, 'BJI, 'BMI, 'BNA, 'BOS, 'BOK, 'STM, 'BTV, 'BUF, 'BUR, 'BZE, 'CAE, 'CAK, 'CAN, 'CDC, 'CHO, 'CID, 'CLT, 'CMN, 'CPR, 'CSG, 'CUL, 'CUN, 'DAR, 'DAY, 'DEN, 'DFW, 'DMM, 'DSW, 'DTW, 'EBB, 'EKO, 'ELM, 'ERI, 'ESC, 'EUG, 'EWR, 'EYW, 'FCO, 'GCC, 'GLT, 'GLA, 'GRR, 'GSO, 'GSP, 'GUM, 'HMO, 'HMD, 'HND, 'HNI, 'HPN, 'HRE, 'IAH, 'IDA, 'ILM, 'IMT, 'INDI, 'ITH, 'JAC, 'JAX, 'JRO, 'KGL, 'KIX, 'KWI, 'LEX, 'LGA, 'LGB, 'LIT, 'LUN, 'LWS, 'MBJ, 'MCI, 'MCO, 'MDT, 'MEM, 'MEX, 'MFR, 'MHT, 'MA', 'MKE, 'MOT, 'MRS, 'MSN, 'MSY, 'MTY, 'NIM, 'NRT, 'OGG, 'OMA, 'ORD, 'ORF, 'OUA, 'PBI, 'PEK, 'PHL, 'PIH, 'PIT, 'PLN, 'PUJ, 'PVD, 'RDM, 'RDU, 'RIC, 'RKS, 'RNO, 'RSW, 'SAN, 'SAT, 'SAV, 'SCE, 'SDF, 'SDQ, 'SGU, 'SLC, 'SRO, 'STL, 'SWF, 'STR, 'TWF, 'TYS, 'VEL, 'XNA, 'YHZ, 'YOW, 'YYR, 'PWM, 'HGH, 'LYS, 'TLS, 'CUU'

Connected Components Sizes	Largest Connected Component Size	Algebraic Connectivity (λ2)	Diameter	Spectral Radius	Average Clustering Coefficient	Graph
[225]	225	0.35	4	22.45	0.57	Graph_UA
[215]	215	0.33	3	23.06	0.58	Graph_DL
[216]	216	0.27	4	23.67	0.59	Graph_AA

Airline	LCC	λ ₂
United Airlines	213	0.282

Airline	LCC	λ_2
Delta Airlines	201	0.361

Airline	LCC	λ ₂
American Airlines	205	0.274

Connected Components Sizes	Largest Connected Component Size	Algebraic Connectivity (λ2)	Diameter	Spectral Radius	Average Clustering Coefficient	Graph (Northeast: Winter Storm)
[220, 1, 2, 1, 1]	220	0.00	5	20.31	0.46	UA Scenario 1
[215]	215	0.32	3	21.49	0.56	DL Scenario 1
[208, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	208	0.00	4	21.69	0.47	AA Scenario 1

	Connected Components Sizes	Largest Connected Component Size	Algebraic Connectivity (λ2)	Diameter	Spectral Radius	Average Clustering Coefficient	Graph (South: Hurricane)
	[211, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	211	0.00	4	21.73	0.54	UA Scenario 2
- 1	[197, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	197	0.00	4	21.67	0.53	DL Scenario 2
- 1	[188, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	188	0.00	5	20.97	0.46	AA Scenario 2

Connected Components Sizes	Largest Connected Component Size	Algebraic Connectivity (λ2)	Diameter	Spectral Radius	Average Clustering Coefficient	Graph(Midwest: Severe Thunderstorm)
[1, 204, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	204	0.00	4	20.49	0.45	UA Scenario 3
[191, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	191	0.00	4	19.17	0.38	DL Scenario 3
[206, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]	206	0.00	5	22.23	0.50	AA Scenario 3

1, 1, 1, 1, 1, 1, 1, 1]

1, 1, 1, 1, 1, 1, 1, 1]

[208, 1, 1, 1, 1, 1, 1, 1, 1]

0.36 UA Scenario 4

UA Scenario 4

UA Scenario 4

0.49

0.52

Connected Components Sizes	Largest Connected Component Size	Algebraic Connectivity (λ2)	Diame ter	Spectral Radius	Average Clustering Coefficient	Graph (West Wildfires)	
[188, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,							

Connected Components Sizes	Largest Connected Component Size	Algebraic Connectivity (λ2)	Diame ter	Spectral Radius	Average Clustering Coefficient	Graph (West Wildfires)
[188, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,						

188

193

208

0.00

0.00

0.00

19.10

21.61

22.02

5

Results - Lowest Change in Spectral Values

- 1. Northeast: Winter Storm Delta
- 2. South: Hurricane United
- 3. Midwest: Severe Thunderstorm American
- 4. West Wildfires American/Delta

Possible Extensions

Apply to all Transport Architecture - Routes, etc

Include Dynamic Nature of Routes - Non-Hubs becoming Hubs, etc

Increase Passenger Flow Consideration

From today! (Mitch/Dav) Modelling the routes as a delay based on H-SIR

Appendix

Algebraic Connectivity (λ2)	Spectral Radius	Average Clustering Coefficient	Graph	Change in Algebraic Connectivity (λ2)	Change in Spectral Radius	Change in Average Clustering Coefficient
0.00	20.31	0.46	UA Scenario 1	-0.35	-2.14	-0.11
0.32	21.49		DL Scenario 1	-0.01	-1.58	-0.02
-0.00	21.69		AA Scenario 1	-0.27	-1.98	-0.12
-0.00	21.73		UA Scenario 2		-0.72	-0.03
-0.00	21.67	' ' '	DL Scenario 2	-0.33	-1.40	-0.05
-0.00	20.97		AA Scenario 2		-2.71	-0.13

Appendix

Algebraic Connectivity (λ2)	Spectral Radius	Average Clustering Coefficient	Graph	Change in Algebraic Connectivity (λ2)	Change in Spectral Radius	Change in Average Clustering Coefficient
-0.00	20.49	0.45	UA Scenario 3	-0.35	-1.96	-0.11
-0.00	19.17		DL Scenario 3	-0.33	-3.89	-0.20
-0.00	22.23	0.50	AA Scenario 3	-0.27	-1.45	-0.08
-0.00	19.10		UA Scenario 4	-0.35	-3.35	-0.21
-0.00	21.61	0.49	DL Scenario 4	-0.33	-1.46	-0.09
-0.00	22.02		AA Scenario 4	-0.27	-1.66	-0.07

References

Wilkinson, S.M., Dunn, S. & Ma, S. The vulnerability of the European air traffic network to spatial hazards. *Nat Hazards* **60**, 1027–1036 (2012). https://doi.org/10.1007/s11069-011-9885-6

https://networks.skewed.de/net/openflights

OpenAI: ChatGPT

Notes of CompSci 521

