

North South University Department of Electrical & Computer Engineering

LAB REPORT

Course (Code:	EEE211
----------	-------	---------------

Course Title: Digital Electronics

Section: 01

Experiment Number: 08

Experiment Name: Introduction to Flip flop and Sequential Circuit

Experiment Date: 04.01.2021
Date of Submission: 10.01.2021

Course Instructor: Fahimul Haque

Submitted To: Fatema Zahra

Experiment Name:

Introduction to flip flops & Sequential circuits.

Objective:

- Learning the concept of states in digital logic & how flip-flop circuits can be used to store state information.

- Understand the intermal logic to & sept relationship among J-K, T & D flip-flops & observe their charge teristics.

- lendersterne le deringen symphromous sequential circuit as per state diagram.

Theory:

Flip-flop is a storage device which has two stable states & has capability of storing one leit of binary impormation. The output of the flip-flop can only change if a clock pulse is supplied to flip-flop. There are three tupes of flip flops. They are J.K, D & + flip flop. Exercy of them has different charecteristics.

Sequential logic in a type of logic circuit whose output depends both on the present value of Ets imput & sequence of past impud. It is a contrast to combinational logic.

西107474(Dual DPUp-Flops)
西1074(Dual DPUp-Flops)
西1074(Dual JK PLip Flops)
西1074(Dual JK PLip Flops)
西1074(Dual DPUp-Flops)
西1074(Dual DPUp-Flops)

Table:

Previous State	Next State	JK		T	D.
A BC	An Bn Cn	AB	C	AB C	A.BC
		JAKA JSKB	Jeke	TA TB TC	DA DB DC
000	001	OYOX	1 ×	0 0 1	001
001	0 1 0	OXIX	* 1	0))	010
0 1 0	0 1 1	OX XO) ×	001	011
0 1 1	100) X X J	x 1	111	100
100	101	X O O Y	1 X	001	101
101	1 1 0	X O 1 X	× 1	0.11	110
110	1 1 1	x o x o) Y	001	1 2 2
111	000	X1 ×1	× 1	111	000

	4.	JB	11	C	
Fon		٦			
700		2		4.0	1.5

1. Je = 1

For TA.

A BC	00	01	11	10
0	0	0	M	0
(0	0	11	0

C TA=BC

For Te

700	勘	KA		
BC	00	01	11	10
A of	×	X	(X)	X
At	0	0	, 1	6
1				

. KA=BC

 FOR DA.

- DA = AC'+AB'+A'BC

For Dc

ABO	00	01	11	10	
0	21	0	6	1	
1	1	0	0	J	

c. Dc = C.

For DB.

. DB = Be'+B'C

Circuit Diagram!

Tigure : JK Flip. Flop.

Discussion:

Due to pandemic instead of practical session we completed the lab through of online simulation. Through this lab, we have learned to implement flip-flop & design the sequential circuit. We also learned compare letween different Alip-fleps & decide the efficient one.

Simulation:

