LCLIVO	20 10		O JOSH WIIGHT				
Metric Prefixes							
peta	Р	10^{15}	1 000 000 000 000 000				
tera	Τ	10^{12}	1 000 000 000 000				
giga	G	10^{9}	1 000 000 000				
mega	Μ	10^{6}	1 000 000				
kilo	k	10^{3}	1 000				
hecto	h	10^{2}	100				
deca	da	10^{1}	10				
one		10^{0}	1				
deci	d	10^{-1}	0.1				
centi	c	10^{-2}	0.01				
milli	m	10^{-3}	0.001				
micro	μ	10^{-6}	0.000 001				
nano	n	10^{-9}	0.000 000 001				
pico	р	10^{-12}	0.000 000 000 001				
femto	f	10^{-15}	0.000 000 000 000 001				

Ohm's Law
$$V = IR$$
, $I = \frac{V}{R}$, $R = \frac{V}{I}$

Battery Symbol

The side with the longer line is the positive side

Complex Numbers

- $\begin{aligned} \bullet \, z &= x + i y = r e^{i\theta} = r[\cos(\theta) + i\sin(\theta)] \\ \bullet \, [r(\cos(\theta) + i\sin(\theta))]^n &= r^n[\cos(n\theta) + i\sin(n\theta)] \end{aligned}$
- $\bullet z^{\hat{n}} = (re^{i\theta}) = r^{\hat{n}}e^{in\theta}$
- $\bullet \frac{1}{i} = -i$

- normalized: $sinc(t) = \frac{\sin(\pi t)}{\pi t}$

$$\bullet \left| \frac{a}{b} \right| = \frac{|a|}{|b|} \qquad \qquad \angle \frac{a}{b} = \angle a - \angle b$$

Trig

$$\cos(2a) = \cos^2(a) - \sin^2(a) = 2\cos^2(a) - 1 = 1 - 2\sin^2(a)$$

$$\cos^2(a) + \sin^2(a) = 1 \qquad |\sin(2a) = 2\sin(a)\cos(a)$$

$$\cos^2(a) = \frac{1}{2}(1 + \cos(2a)) \qquad |\sin^2(a) = \frac{1}{2}(1 - \cos(2a))$$

Voltage Division between two non-zero points (superposition)

 $V_{DD}
ightarrow R_1
ightarrow V_1
ightarrow R_2
ightarrow V_{EE} \ V_1 = V_{DD} rac{R_2}{R_1 + R_2} + V_{EE} rac{R_1}{R_1 + R_2}$

AC Resistors and Capacitors

$$R||\frac{1}{Cs} = \frac{R\frac{1}{Cs}}{R+\frac{1}{Cs}} = \frac{R}{RCs+1}$$

$$\frac{R}{R + \frac{1}{Cs}} = \frac{RCs}{RCs + 1} = \frac{s}{s + \frac{1}{RC}}$$
$$\frac{\frac{1}{Cs}}{R + \frac{1}{Cs}} = \frac{1}{RCs + 1}$$

MOS

NMOS PMOS

MOS DC Biasing

- this is all for NMOS. PMOS is backward $\beta = k_n'(\frac{W}{L})$ cutoff: $V_{GS} < V_{th}$

• cuton:
$$V_{GS} < V_{th}$$

• $I_D = 0$
• triode (linear): $V_{DS} < V_{GS} - V_{th}$
• $I_D = k'_n \frac{W}{L} \left((V_{GS} - V_{th}) V_{DS} - \frac{V_{DS}^2}{2} \right)$
• equive (seturation): $V_{DS} > V_{GS} - V_{th}$

- active (saturation): $V_{DS} > V_{GS} V_{th}$

- $*I_D = \frac{k'_n}{2} \frac{W}{L} (V_{GS} V_{th})^2$ $* overdrive voltage V_{ov} = V_{GS} V_{th}$ to show it's active: show that $V_{DS} > V_{ov}$ or

$V_{DS} > V_{GS} - V_{th}$ MOS Small Signal

mos sman signar							
	R_i	R_o	$\frac{V_o}{V_g}$				
CS	$R_{G1} R_{G2}$	R_D	$-\frac{R_D R_L}{\frac{1}{g_m} + R_S}$				
CG	_1_	R_{D}	$R_D R_L$				

	g_m		R_i
CD	$R_{G1} R_{G2}$	1_	R_L

- CG: Common Gate
- CD: Common Drain (buffer)
- apparently, when calculating the max gain of the frequency response, it is OK to just use the part of he equation that doesn't depend on s

MOS current mirrors

- where M1 is the transistor with base shorted to ground
- $\bullet I_{D1} = \frac{(W/L)_1}{(W/L)_2}$ $\bullet I_{D2} = \frac{(W/L)_2}{(W/L)_1} I_{D1}$

Bode Plots

- magnitude is plotted in dB: $|T(j\omega)|_{dB} = 20 \log_{10} |T(j\omega)|$ • starts on y-axis at DC offset with slope 0
- just add together the bode plots of each individual pole, zero, and the DC offset
- poles always slope down, zeros slope up (applies for both magnitude and phase)
- dec=decade, e.g. from 10^0 to 10^1
- magnitude:
- *Pole/Zero at origin:
- constant slope $\pm 20db/dec$ for all ω ; 0dB at $\omega = 10^0 = 1$
- *Pole/Zero at ω_0 :
- 0 for $\omega < \omega_0$ slope $\pm 20 \frac{db}{dec}$ after *Constant C: constant line at $20 \log_{10}(|C|)$
- *Pole at origin: constant $-\frac{\pi}{2}$ or -90°
- *Zero at origin: constant $+\frac{\pi}{2}$ or $+90^{\circ}$
- *Pole/Zero at ω_0 : 0 for $\omega < \frac{\omega_0}{10}$
- slope linearly $(\pm 45^{\circ}/dec)$ until $10\omega_0$
- 0 slope for $\omega > 10\omega_0$
- *Constant C: no effect (0 for all ω)
- Prof wants us to actually show the -3dB drop curve,

not just a straight intersection

• on the x-axis of the bode plot you need to plot frequency in Hz, so take $s = j\omega$ and divide by 2π

Solving systems with Op Amps

• only applies if the op-amp has feedback

- step 0: if the op amp is ideal, write out ideal properties:
- $*V_{+} = V_{-}$ $*I_{-} = 0, I_{+} = 0$ $*A \approx \infty$
- avoid doing KCL/KVL directly on the output node of the op amp
- ignore resistors from a point at 0V to ground

Op Amp Equations

Inverting Amplifier

Non-Inverting Amplifier

- ideal open-loop behavior: $(V_p V_n) > 0 \rightarrow V_o = V_{DD}$
- $(V_p V_n) < 0 \rightarrow V_o = -V_{DD}$ general form: $T(s) = \frac{K_0}{1 + \frac{s}{\omega_0}}$
- $*T(0) = K_0$: DC offset. For these simple ones, it's equal to ideal response

- $*\omega_0 = \frac{\omega_t}{1 + R_2/R_1}$ inverting op amp: $*ideal: T(s) = \frac{V_o}{V_i} = -\frac{R_2}{R_1}$

*Ideal:
$$T(s) = \frac{V_0}{V_i} = -\frac{R_2}{R_1}$$

* non-ideal: $T(s) = \frac{V_0}{V_i} = \frac{-R_2/R_1}{1 + \frac{1 + R_2/R_1}{A(s)}} = \frac{-R_2/R_1}{1 + \frac{s}{(\frac{\omega_t}{1 + R_2/R_1})}} = \frac{-R_2/R_1}{1 + \frac{s}{\omega_0}}$

• non-inverting op-amp:

- non-inverting op-amp: *ideal: $T(s) = \frac{V_o}{V_i} = 1 + \frac{R_2}{R_1}$

* non-ideal:
$$T(s) = \frac{V_o}{V_i} = \frac{1 + R_2/R_1}{1 + \frac{1 + R_2/R_1}{A(s)}} = \frac{1 + R_2/R_1}{1 + \frac{s}{\left(\frac{\omega_t}{1 + R_2/R_1}\right)}} = \frac{1 + R_2/R_1}{1 + \frac{s}{\omega_0}}$$