mathCrow: Agentic AI for Math Tasks

Ahmed Ali Abbasi

What Is An Agent?

- Agent = "LLM" + "Memory" + "Tools" + "Planning".
- Autonomous agents are designed to solve complex tasks with minimal human interaction.
- LLM functions as the brain of the agent.
- This project implements agents with two components: "LLM" and "Tools".

What is an Agent?

Fig. 1. Overview of a LLM-powered autonomous agent system.

Figure source: https://lilianweng.github.io/posts/2023-06-23-agent/

What Is An Agent?

- Routers have minimum autonomy implemented by "if-else" conditions.
- Agents leave all decision making and planning to the brain (LLM).
- Langraph is a python package used to implement agentic frameworks.

Recent Academic/Research Use of Agents: ChemCrow

ChemCrow [https://www.nature.com/articles/s42256-024-00832-8] designs an agent specialized to chemistry tasks. Figure shows example of 14 tools for 4 domains {Molecule, General, Safety, Reaction.}

Why Use Expert-Designed Tools instead of chatGPT?

- Specific/Expert-designed tools are more accurate than chatGPT, especially for complex tasks.
- Expert designed tools do not "hallucinate".
- Tool use by LLMs provides greater autonomy than human-tool-use.
- Tools can be integrated with local LLMs, preserving privacy.

ChemCrow vs ChatGPT4

- Compared on 3 metrics {"accuracy, reasoning, completion"}.
- Human experts ranks ChemCrow higher.
- Evaluator LLM ranks GPT-4 higher.

We Propose MathCrow

- We propose a math agent with two tools.
- Tool 1: Retrieval Augmented Generation (Agentic-RAG) for finely-reading research papers.
- Tool 2: Linear Assignment Problem Solver.
- Agentic use of tools:

 i) improves the generated responses
 ii) eliminates hallucinations
 iii) has greater autonomy than stand-alone tool use.

Tool 1: Retrieval Augmented Generation (RAG)

- Key idea is to retrieve relevant data (context) before generating response.
- Typical data examples are books, research papers or other documents stored in a vector database.
- Advantages of RAG:
 - i) analyze documents larger than the context window.
 - ii) avoid updating/fine-tuning LLM to incorporate new information.
 - iii) fewer hallucinations.

RAG Overview

The retrieved documents from the store are the context included in the LLM query off which the answer is based.

RAG Overview

- Which documents to retrieve from the database?
- Database contains embeddings (dense vectors) of words in all document "chunks".
- The embeddings of the input query are compared with chunk embeddings.
- Top-k, where $k = \{3,4,...\}$, similar chunks are retrieved.
- Agent (LLM / brain) decides if retrieved chunks are relevant.
- Relevant document chunks form the context.

Embedding Models

- Embedding models embed words into vectors.
- Several embedding models including paid versions by Open-Al embeddings and Google Gemini Embeddings.
- Free/Open source embedding models ranked at https://huggingface.co/spaces/mteb/leaderboard
- We use open-source embeddings to have a zero-cost agentic system.

Tool 2: Linear Assignment Problem (LAP) solver

- Wrap"scipy.optimize.linear_su m_assignment" as a "tool" so the agent (LLM) can call it.
- Like ChemCrow, this is an example of a specialized tool for one specific problem.

```
from langchain.tools import Tool
from scipy.optimize import linear_sum_assignment
class costMatrixClass(BaseModel):
  M: List[List[float]] = Field(description="This is the cost matrix of float numbers."
def solveLAP(M):
  A = np.arrav(M)
 row_ind, col_ind = linear_sum assignment(A)
  return {"messages": [row ind.col ind]}
  #return M np
# Create a Tool instance
squareTool = Tool.from_function(
    func=solveLAP.
    name="squareMatrix",
    description="Solves linear assignment problem (LAP).",
    args schema=costMatrixClass)
TOOLS.append(squareTool)
```

MathCrow Visualization

- Figure shows nodes and edges.
- "__start__" node receives user/input prompt. [solid edge] and passes prompt to node "agent".
- "agent" analyzes prompt to decide which/if any tool to call. [dotted conditional edge]
- if LAP tool was called, routes to LAP node, which displays output.
- if RAG tool was called, evaluate if the retrieved context is relevant. if so, "generate", otherwise "rewrite" query.

Local LLM deployment

- Trained quantized models have much lower computation (inference) cost and can be deployed locally (e.g. ISU Nova Cluster)
- State-of-the-art quantized models available at ollama.

Local LLM deployment

- https://ollama.com/library/ll ama3.3/tags
- Notice reduced (49 GB)
 model size for quantized
 version.

Ilama3.3:70b-ir	49GB	128K context window	Text input	5 months ago
Ilama3.3:70b-ir	nstruct-q5_1 53GB	128K context window	Text input	5 months ago
llama3.3:70b-ir	nstruct-q5_K_M	128K context window	Text input	5 months ago
llama3.3:70b-instruct-q6_K				
992c05c90cd8	58GB nstruct-q8_0	128K context window	Text input	5 months ago
d5b5e1b84868	75GB	128K context window	Text input	5 months ago
8fbd361705a0	141GB	128K context window	Text input	5 months ago

Conclusion

- Proof of concept extension of ChemCrow to Math Specific Agent, MathCrow.
- Zero-cost local and private agentic framework deployment using quantization and ISU NOVA A-100 GPU.