PH223: Physics for Chemists and Mechanical Engineers

R. Todd Lines

F 2024

Contents

C	pyri	ght Information	xv
1	Who	ere We Start	1
	1.1	What is this class?	1
	1.2	Simple Harmonic Motion	3
	1.3	Simple Harmonic Motion	3
		1.3.1 Hooke's Law	4
	1.4	Mathematical Representation of Simple Harmonic Motion	5
		1.4.1 Other useful quantities we can identify	7
		1.4.2 Velocity and Acceleration	8
		1.4.3 Comparison of position, velocity, acceleration	9
	1.5	An example of oscillation	11
		1.5.1 A second example	12
		1.5.2 A third example	13
	1.6	Energy of the Simple Harmonic Oscillator	17
	1.7	Circular Motion and SHM	19
	1.8	The Pendulum	21
	1.9	Damped Oscillations	23
	1.10	Driven Oscillations and Resonance	26
2	Wha	at is a Wave?	31
	2.1	What is a Wave?	31
		2.1.1 Criteria for being a wave	31
		2.1.2 Longitudinal vs. transverse	32
		2.1.3 Examples of waves:	32
	2.2	Wave speed	33
	2.3	Example: Sound waves	34
	2.4	One dimensional waves	36
3	Wav	ves in One and More Dimensions	39
	3.1	Sinusoidal Waves	39
	-	3.1.1 Parts of a wave	40
		3.1.2 Sinusoidal waves on strings	47
	3.2	The speed of Wayes on Strings	48

iv CONTENTS

	3.3	Waves in two and three dimensions	5(
4	Lig	ht, Sound, Power	53
	4.1	Waves in matter-Sound	53
		4.1.1 Periodic Sound Waves	53
	4.2	Speed of Sound Waves	57
		4.2.1 Boundaries	
	4.3	Waves in fields-Light	
		4.3.1 Speed of Electromagnetic waves	
	4.4	Power and Intensity	
		4.4.1 Intensity	
		4.4.2 Sound Levels in Decibels	
5	Dor	opler Effect and Superposition	65
	5.1	Doppler Effect	65
		5.1.1 Doppler effect in light	
	5.2	Superposition Principle	
		5.2.1 Consequences of superposition	
	5.3	Superposition and Doppler: Shock waves	
	5.4	Importance of superposition	
6	Sta	nding Waves	79
	6.1	Mathematical Description of Superposition	
	6.2	Reflection and Transmission	
		6.2.1 Case I: Fixed rope end	
		6.2.2 Case II: Loose rope end	
		6.2.3 Case III: Partially attached rope end	
	6.3	Mathematical description of standing waves	
	6.4	Standing Waves in a String Fixed at Both Ends	
		6.4.1 Starting the waves	
		6.4.2 Musical Strings	
7	Lig	ht and Sound Standing waves	93
	7.1	Sound Standing waves (music)	93
		7.1.1 Example: organ pipe	
	7.2	Lasers and standing waves	
	7.3	Standing Waves in Rods and Membranes	
8	Sin	gle Frequency Interference, Multiple Dimensions	103
·	8.1	Mathematical treatment of single frequency interference	
		8.1.1 Example of two wave interference: Stealth Fighter	
		8.1.2 Example of two wave interference: soap bubble	
	8.2	Single frequency interference in more than one dimension	

CONTENTS

9	Mul	tiple Frequency Interference	119
	9.1	Beats	119
	9.2	Non Sinusoidal Waves	122
		9.2.1 Music and Non-sinusoidal waves	122
		9.2.2 Vibrometry	
		9.2.3 Fourier Series: Mathematics of Non-Sinusoidal Waves	
		9.2.4 Example: Fourier representation of a square wave	
	9.3	Frequency Uncertainty for Signals and Particles	
	0.0	Trequency checitality for signals and ratifices	100
10	Inte	erference of light waves	137
	10.1	The Nature of Light	137
		10.1.1 Physical Ideas of the nature of Light	137
	10.2	Measurements of the Speed of Light	139
		10.2.1 Rømer's Measurement of the speed of light	
		10.2.2 Fizeau's Measurement of the speed of light	
		10.2.3 Faster than light	
	10.3	Interference and Young's Experiment	
	10.0	10.3.1 Constructive Interference	
		10.3.2 Destructive Interference	
	10.4	Double Slit Intensity Pattern	
	10.1	10.4.1 Electric field preview	
		10.4.2 Superposition of two light waves	
		10.4.2 Superposition of two fight waves	141
11	Mar	ny slits, and single slits	153
	11.1	Diffraction Gratings	153
		11.1.1 Resolving power of diffraction gratings	156
	11.2	Single Slits	158
	11.3	Narrow Slit Intensity Pattern	
		11.3.1 Intensity of the single-slit pattern	
12	_	ertures and Interferometers	165
		Circular Apertures	
	12.2	Interferometers	
		12.2.1 The Michelson Interferometer	168
		12.2.2 Holography	170
	12.3	Diffraction of X-rays by Crystals	171
	12.4	Transition to the ray model	172
	_	26.11	. .
13	-	Model	175
	13.1	The Ray Approximation in Geometric Optics	
		13.1.1 The ray model and phase	
		13.1.2 Coherency	
	13.2	Reflection	
		13.2.1 Law of reflection	
		13.2.2 Retroreflection	
	13.3	Reflections, Objects, and seeing	184

vi CONTENTS

14 Refraction and images	187
14.1 Refraction	188
14.1.1 Speed of light in a material	189
14.1.2 Change of wavelength	191
14.1.3 Index of refraction and Snell's Law	192
14.2 Total Internal Reflection	193
14.2.1 Fiber Optics	
14.3 Images Formed by Refraction	
15 Dispersion and Thin Lenses	201
15.1 Dispersion	201
15.1.1 Calculation of n using a prism	
15.1.2 Filters and other color phenomena	
15.2 Ray Diagrams for Lenses	
15.2.1 Thin Lenses	
15.2.2 Virtual images	
15.2.3 Diverging Lenses	
16 Image Formation	215
16.1 Thin lenses and image equation	
16.1.1 Flat Refracting surfaces	
16.2 Thin Lenses	
16.2.1 Derivation of the lens equation	
16.2.2 Sign Convention	
16.2.3 Magnification	
16.3 Images formed by Mirrors	227
16.3.1 Image from a Flat Mirror	227
16.4 Mirror reversal	228
16.4.1 Concave Mirrors	228
16.4.2 Paraxial Approximation for Mirrors	229
16.4.3 Mirror Equation	231
16.4.4 Focal Point for Mirrors	231
16.4.5 Ray Diagrams for Mirrors	232
16.4.6 Spherical Aberration	
17 Optical systems	237
17.1 Combinations of lenses	237
17.2 The Camera	
18 Eyes and magnifiers	245
18.1 The Eye	245
18.1.1 Nearsightedness	
18.1.2 Farsightedness	$\frac{247}{247}$
9	$\frac{247}{248}$
18.1.3 Diopters	
18.2 Optical Systems that Magnify	240
	47.7

α	•••
CONTENTS	V11

		18.2.1 Simple Magnifier	249
		18.2.2 The Microscope	252
	18.3	Telescopes	254
		18.3.1 Refracting Telescopes	254
		18.3.2 Reflecting Telescopes	
10	Pos	olution and Charge 2	257
19		Resolution	
		Charge model	
	19.2	19.2.1 Evidence of Charge	
		19.2.2 Types of Charge	
		19.2.3 Movement of Charge	
		19.2.4 Flow of Charge	
		19.2.5 Charging by Induction	
		19.2.6 Charging by Conduction	207
2 0			71
	20.1	Charge	271
		20.1.1 Conservation of charge	272
	20.2	Insulators and Conductors	272
		20.2.1 Potential Diagrams for Molecules	272
		20.2.2 Building a solid	273
	20.3	Conduction in solids	276
		20.3.1 Metals	276
		20.3.2 Insulators	277
		20.3.3 Semiconductors	278
		20.3.4 Charging and discharging conductors	278
	20.4	Note on drawing charge diagrams	
ว1	Con	lomb's Law and Lines of Force	283
4 1		Coulomb's Law	
	21.1		
	21.2	21.1.1 Permittivity of free space	
		More than two charges	
		Field Lines	
		Field Lines	
	21.6	On-Line demonstrations	302
22	Elec	etric Fields of Standard Charge Configurations Part I 3	803
	22.1	Standard Charge Configurations	303
	22.2	Point Charges	304
			304
		22.2.2 Vector nature of the field	305
		22.2.3 Three charges	311
	22.3	Combinations of many charges	313
		22.3.1 Line of Charge	314

viii CONTENTS

	22.3.2 Semi-infinite sheet of charge	314
	22.3.3 Sphere of charge	314
22.4	On-Line Visualizations	316
23 Ele	ctric Fields of Standard Charge Configurations Part II	317
23.1	Fields from Continuous Charge Distributions	317
	23.1.1 Line of charge	319
	23.1.2 Ring of charge	323
24 Mo	tion of Charged Particles in Electric Fields	327
24.1	Sheet of Charge	327
	24.1.1 Spheres, shells, and other geometries	332
24.2	Constant electric fields	332
	24.2.1 Capacitors	332
24.3	Particle motion in a uniform field	
	24.3.1 Millikan	
	24.3.2 Free moving particles	
	•	
25 Dip	pole motion, Symmetry	34 3
25.1	Dipole motion in an electromagnetic field	343
	25.1.1 Induced dipoles	348
	25.1.2 Non-uniform fields and dipoles	349
25.2	Symmetry	351
	25.2.1 Combinations of symmetric charge distributions	354
	ctric Flux	357
26.1	The Idea of Flux	
	26.1.1 The idea of electric flux	358
	26.1.2 Flux and Curved Areas	
	26.1.3 Closed surfaces	
	26.1.4 Flux example: a sphere	362
	26.1.5 Flux example: a long straight wire	368
~		
	uss' Law and its Applications	371
	Gauss' Law	
27.2	Examples of Gauss' Law	
	27.2.1 Gauss's law strategy	
27.3	B Derivation of Gauss' Law	382
28 Co.	aduators in Equilibrium Floatric Detentials	387
	nductors in Equilibrium, Electric Potentials Conductors in Equilibrium	
20.1	Conductors in Equilibrium	
	28.1.1 In Equilibrium, excess charge is on the Surface	
	28.1.2 The Electric Field is Zero <i>Inside</i> a Conductor	
	28.1.3 Return to charge being on the surface	
	28.1.4 Field lines leave normal to the surface	
20.	28.1.5 Charge tends to accumulate at sharp points	
28 2	Electrical Work and Energy	394

CONTENTS ix

		28.2.1 Energy of a Charge in a uniform field	
29	Elec	ctric potential Energy	397
_0		Point charge potential energy	
	20.1	29.1.1 Gravitational analog	
		29.1.2 Point charges potential	
		29.1.3 Three point charges	
	29.2	Dipole potential energy	
		Shooting α -particles	
3 0	Elec	etric Potentials	409
		30.0.1 Electric Potential Difference	. 410
		30.0.2 Electric Potential	412
	30.1	Example, potential of a capacitor	413
		30.1.1 Equipotential Lines	415
	30.2	Electron Volt	. 416
31		etric potential of charges and groups of charges	421
	31.1	Point charge potential	
		31.1.1 Two point charges	
		31.1.2 Lots of point charges	
	31.2	Potential of groups of charges	
		31.2.1 Electric potential due to a uniformly charged disk	. 432
32		necting potential and field	437
	32.1	Finding the potential knowing the field	
		32.1.1 Finding the potential from the field	
		Sources of electric potential	
		Electrochemical separation of charge	
	32.4	batteries and emf	. 443
33		culating fields from potentials	451
		Finding electric field from the potential	
		Geometry of field and potential	
	33.3	Conductors in equilibrium again	
		33.3.1 Non spherical conductors	
		33.3.2 Cavities in conductors	. 462
34	_	acitance	465
	34.1	Capacitance and capacitors	
		34.1.1 Capacitors and sources of potential	
		34.1.2 Single conductor capacitance	
		34.1.3 Capacitance of two parallel plates	
		34.1.4 Capacitance of a cylindrical capacitor	
	34 2	Combinations of Canacitors	473

x CONTENTS

35 Die	electrics and Current 47
35.1	Energy stored in a capacitor
	35.1.1 Field storage
35.2	P. Dielectrics and capacitors
35.3	3 Induced Charge
35.4	Electric current
	rrent, Resistance, and Electric Fields 49
	Current and resistance
	P. Current density
36.3	3 Conservation of current
	m's law 50
37.1	Conductivity and resistivity
	37.1.1 Resistivity
	37.1.2 Superconductivity
	37.1.3 Ohm's law
	37.1.4 Life History of an electric current 50
	37.1.5 Emf
	37.1.6 Ohmic or nonohmic
37.2	2 Power in resisters
37.3	3 Magnetism
38 Ma	gnetic Field 51
	Fundamental Concepts in the Lecture 51
38.2	P. Discovery of Magnetic Field
	38.2.1 Making the field–moving charges
39 Cu	rrent loops 52
39.1	Magnetic field of a current
	39.1.1 The field due to a square current loop 52
	39.1.2 Long Straight wires
39.2	2 Magnetic dipoles
40 Am	pere's law, and Forces on Charges 54
40.1	Ampere's Law
40.2	Magnetic Force on a moving charge
40.3	B Motion of a charged particle in a B-Field
	40.3.1 The velocity selector
	40.3.2 Bainbridge Mass Spectrometer
	40.3.3 Classical Cyclotron
40.4	Hall Effect 55

CONTENTS xi

41	Mag	gnetic forces on wires	563
	41.1	Magnetic forces on Current-Carrying wires	563
		41.1.1 Force between two wires	564
	41.2	Torque on a Current Loop	565
		41.2.1 Galvanometer	
		41.2.2 Electric Motors	
	_		
42			573
	42.1	Finally, why bar magnets work	
		42.1.1 Quantum effects	
		42.1.2 Ferromagnetism	
		42.1.3 Magnetization vector	
		42.1.4 Solenoid approximation	
		42.1.5 Magnetic Field Strength (another confusing name)	580
		42.1.6 Macroscopic properties of magnetic materials	581
		42.1.7 Ferromagnetism revisited	582
		42.1.8 Paramagnetism	584
		42.1.9 Diamagnetism	585
	42.2	Back to the Earth	585
	42.3	Induced currents	586
40			- 00
43		uction Motional emf	589
		Eddy Currents	
	43.3	Magnetic flux	
		43.3.1 Non uniform magnetic fields	595
44	Fara	aday and Lenz	599
		Lenz	600
		Faraday	
	11.2	44.2.1 Faraday's law of Magnetic Induction	
		44.2.2 Return to Lenz's law	
	44.3	Pulling a loop from a magnetic field	
45			607
	45.1	Generators	607
		- 8	611
			612
		45.1.3 rms voltage	612
	45.2	Transformers	615
	45.3	Induced Electric Fields	617
	45.4	Relationship between induced fields	620
		Electromagnetic waves	622

xii CONTENTS

46	Induct	ors	625
		elf Inductance	
	46	$6.1.1$ Inductance of a solenoid $1 \dots \dots \dots \dots \dots$	627
	46.2 E1	nergy in a Magnetic Field	628
	46	5.2.1 Energy Density in the magnetic field	630
	46	5.2.2 Oscillations in an LC Circuit	631
		5.2.3 The RLC circuit	
		eturn to Non-Conservative Fields	
		5.3.1 RL Circuits: Solving for the current as a function of time	
		agnetic Field Energy in Circuits	
		utual Induction	
		5.5.1 Example: Rectangular Loop and a coil	
		200p and a con 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	01.
47	The E	lectromagnetic field	651
		elative motion and field theory	651
		7.1.1 Galilean transformation	
		eld Laws	
		7.2.1 Gauss' law	
	_,		
48	Field 1	Equations and Waves in the Field	667
	48.1 D	isplacement Current	667
		axwell Equations	
		•	
49			675
	49	0.0.1 Rewriting of Faraday's law	676
	49	0.0.2 Rewriting of the Maxwell-Ampere Law	679
	49.1 W	Vave equation for plane waves	680
	49.2 Pi	roperties of EM waves	682
	49	0.2.1 Energy in an EM wave	682
	49	0.2.2 Intensity of the waves	683
	49	0.2.3 Momentum of light	685
	49	0.2.4 Antennas Revisited	687
	49.3 T	he Electromagnetic Spectrum	688
		0.3.1 Summary	
	49	0.3.2 Photons	690
50	Polari	zation	693
	50.1 Pc	plarization of Light Waves	693
		0.1.1 Polarization by removing all but one wave orientation	
	50	0.1.2 Polarization by reflection	696
		0.1.3 Birefringence	
		0.1.4 Optical Stress Analysis	
		0.1.5 Polarization due to scattering	
		8	

¹Think of this like the special case of a capacitor made from two flat large plates, the parallel plate capacitor. It was somewhat ideal in the way we treated it. Our treatment of the special case of a coil will likewise be somewhat ideal.

C(ONTI	ENTS		xiii
	50.2	50.1.7	Optical Activity	701
\mathbf{A}	Mo	re insig	ght into inductance and non-conservative fields	703
\mathbf{B}	Sun	nmary	of Right Hand Rules	709
	B.1	PH121	or Dynamics Right Hand Rules	709
		B.1.1	Right hand rule #0:	709
		B.1.2	Right hand rule #0.5:	710
	B.2	PH223	Right Hand Rules	711
		B.2.1	Right hand rule #1:	711
		B.2.2	Right hand rule #2:	712
		B.2.3	Right hand rule #3:	712
		B.2.4	Right Hand Rule #4:	712
\mathbf{C}	Son	ne Help	oful Integrals	715
D	Son	ne Phy	sical Constants	717

xiv CONTENTS

Copyright Information

Copyright ©2024 by Author. Permission to use this work is granted for BYU-I students and faculty for educational purposes. For all other uses, contact the author for licensing.

Chapter 1

Where We Start

Fundamental Concepts

1.1 What is this class?

This class is designed to teach the physics of wave motion, electricity and magnetism, and optics. We have three major goals. One is to teach the physics of electrical attraction that forms the basis for chemical bonding. The same physical principles of electricity and magnetism affect many electrical designs as well, so this is also a goal for our mechanical engineers. The second goal is to teach wave motion well enough that the quantum nature of atoms and molecules make sense as our chemists take physical chemistry. Of course wave motion is also a major design tool for mechanical engineers and is also a major design problem for structural designs. The third goal is to teach optics enough that both chemists and engineers can understand the basics of optical instruments that will be used in chemistry or machine vision. For the chemists we need to understand the fundamental physics. For the engineers we need practical physics that can affect mechanical systems that our engineers will design, build, or test. We will need to spend time both on the fundamentals and on the practical use of those fundamentals.

In engineering, the design parameters are often the goal. In science, the physical relationship is the goal. For design engineers, both views are useful and important. The design is no good if the underlying principles preclude it from working!

As an example, I once worked on an optics project with a strong mechanical component. The system had scanning mechanisms that were fantastic mechanical devices. It was part of an aircraft and integrated into the aircraft system. But the optical system required two lasers that were separated in wavelength by

only a few nanometers. The chief engineer knew how to build all the systems, but did not understand the physics that required the close wavelength spacing. He judged that the difficulty in building the device at that wavelength spacing outweighed any benefit, and he changed the specs to give two wavelengths that were fifty nanometers apart. Fifty nanometers is a pretty small tolerance. Surely it would be good enough! The resulting product did not work. For two years he tried to fine tune the scanners, and servos to make it work. After ten million dollars and two years, he finally moved the wavelengths closer. The cost of the change was an extra \$100,000 dollars, about 1/100 of the cost of the mistake. The system worked, but since this was a race to market, the time lost and the reputation lost on the faulty product destroyed the viability of the business. It is a bad day when you and your friends lose your jobs because you made a fundamental physics mistake!

Physics courses stress how we know what we know. They support the discipline called *system engineering*, which deals with the design of new and innovative products. As a more positive example, the National Weather service often releases requests for proposed weather sensing equipment. Their request might say something like the following:

Measure the moisture of the soil globally from an altitude of 800 km with an accuracy of 5%. The suggested instrument is a passive microwave radiometer.

The job of a system engineer is to determine what type of instrument to build. What is the underlying principle that it will use to do its job? What signal processing will it need? What mechanical and electrical systems will support this? This must all be determined before the bearings and slip-rings, and structures can be designed and built.

The radiometer design that came out of this project is flying today (or one very like it based on the original design) and is a major part of the predictive models that tell us what the weather will be in a few days.

Because this type of reasoning is our goal, we will not only do typical homework problems, but we will also work on our conceptual understanding.

I will also emphasize a problem solving method that I used with my engineering team in industry. It is a structured approach to finding a solution that emphasizes understanding as well as providing a numeric answer for a particular design. When you are part of an innovative design team, you will have to repeat a calculation over and over again each time some other part of the sign changes. If you have produced a symbolic solution, a numerical model, or at least a curve, you are ready for any changes in specifications. But if you have just "found the answer" you will have to find that answer again every time the overall design specs change. This approach is too slow, and, at least in my team, would have you finding a new job because our design efforts were always done against exacting schedules and budgets. By thinking in a structured method, with an eye toward symbolic answers or relationships rather than end numbers, you will learn to be a more valuable engineer. The process we will use is the

same approach I used to teach my new engineers in the defense industry. It has been proven useful over and over for decades.

This same problem solving process is useful in chemistry, particularly as you study physical chemistry.

So let's get started. To understand waves, we need to get the waves moving. You studied Oscillation in Dynamics or PH121. Oscillating systems are often the disturbance that starts a wave. We will begin with a review of oscillation.

1.2 Simple Harmonic Motion

You are, no doubt, an expert in simple harmonic motion (SHM) after your PH121 or Dynamics class. But this will get us warmed up for the semester. In class we will use our clickers and go through a few questions. We will usually use the clicker system to answer a few questions to test your understanding of the reading material. This allows me to not waste time on things you already know, and to help me find the ones you don't. Most lectures will consist of me asking you if you have questions, and then if you don't understand (with a normal cutoff of 80% of the class answering correctly being our definition of "understanding"), I will use the material from these written lectures to teach the concepts. So we won't always go through all the ideas and skills demonstrated in these written lectures. If you feel you would have liked more explanation on something but we did not cover that concept in class because most people were "getting it," you can come and see me in my office.

1.3 Simple Harmonic Motion

Let's consider a mass attached to a spring resting on a frictionless surface¹. This mass-spring system can oscillate.

In the position shown the spring is neither pushing nor pulling on the mass. We will call this position the $equilibrium\ position$ for the mass.

¹Yes, I know there are no actual frictionless surfaces, but we are starting out at freshman level physics, so we will make the math simple enough that a freshman could do it by making simplifying assumptions. In this case, that the surface if frictionless.

Definition 1 Equilibrium Position: The position of the mass when the spring is neither stretched nor compressed.

1.3.1 Hooke's Law

A law in physics is a mathematical expression of a mental model of how the universe works. Long ago it was noticed that the pull of a spring grew in strength as the spring was pulled out of equilibrium. The mathematical expression of this is

$$F_s = -k\Delta x_{eq} \tag{1.1}$$

The force, F_s is directly proportional to the displacement from equilibrium, Δx_{eq} . Since a man named Hooke wrote this down, it is called Hooke's law. It should be familiar from your PH121 experience.

Hooke's Law is, strictly speaking, not a law that is always obeyed. It is a good model for most springs as long as we don't stretch them too far. We will often use the word "law" to mean an equation that gives a basic relationship. In that sense, Hook's law is a law.

Lets write Hooke's Law using Newton's second Law

$$\Sigma F_x = ma_x$$

If we assume no friction, we have just

$$-k\Delta x_{eq} = ma_x$$

1.4. MATHEMATICAL REPRESENTATION OF SIMPLE HARMONIC MOTION5

We can write this as

$$a_x = -\frac{k}{m} \Delta x_{eq} \tag{1.2}$$

This expression says the acceleration is directly proportional to the position, and opposite the direction of the displacement from equilibrium. We can see that the spring force tries to oppose the change in displacement. We call such a force a *restoring force*.

Definition 2 Restoring force: A force that is always directed toward the equilibrium position

This is a good definition of simple harmonic motion.

1.4 Mathematical Representation of Simple Harmonic Motion

Recall from your PH121 classes that acceleration is the second derivative of position

$$a = \frac{dv}{dt} = \frac{d^2x}{dt^2}$$

Hook's Law tells us

$$F = ma = -k \left(x - x_{eq} \right)$$

where x_{eq} it the equilibrium location. Suppose we define our coordinate system so that x_{eq} is right at the origin. Then $x_{eq} = 0$ and we would have

$$F = ma = -k (x - 0)$$

$$m\frac{d^2x}{dt^2} = -kx$$

We have a new kind of equation. If you are taking this sophomore level physics class as a... well... sophomore, you may not have seen this kind of equation before. It is called a differential equation. But really the chances are that you are a sophomore or junior (or even a senior) and have lot of experience with differential equations. The solution of this equation is a function or functions that will describe the motion of our mass-spring system as a function of time. We will need to know this function, so let's see how we can find it.

Start by defining a quantity ω as

$$\omega^2 = \frac{k}{m} \tag{1.3}$$

why define ω^2 ? Because experience has shown that it is useful to define ω this way! But you probably remember ω as having to do with rotational speed, and from trigonometry (trig) you may remember using ω to mean angular frequency

$$\omega = 2\pi f$$

so our definition of ω may hint that k/m will have something to do with the frequency of oscillation of the mass-spring system.

We can write our differential equation as

$$\frac{d^2x}{dt^2} = -\omega^2 x\tag{1.4}$$

To solve this differential equation we need a function who's second derivative is the negative of itself. We know a few of these

$$x(t) = A\cos(\omega t + \phi_o)$$

$$x(t) = A\sin(\omega t + \phi_o)$$
(1.5)

where A, ω , and ϕ_o are constants that we must find. Let's choose the cosine function and explicitly take its derivatives.

$$x(t) = A\cos(\omega t + \phi_o)$$

$$\frac{dx(t)}{dt} = -\omega A\sin(\omega t + \phi_o)$$

$$\frac{d^2x(t)}{dt^2} = -\omega^2 A\cos(\omega t + \phi_o)$$

Let's substitute these expressions into our differential equation for the motion

$$\frac{d^2x}{dt^2} = -\omega^2 x$$
$$-\omega^2 A \cos(\omega t + \phi_o) = -\omega^2 A \cos(\omega t + \phi_o)$$

As long as the constant ω^2 is our $\omega^2 = k/m$ we have a solution (now you know why we defined it as ω^2 !). Since from trig we remember ω as the angular frequency.

$$\omega = 2\pi f$$

Thus

$$\omega = \sqrt{\frac{k}{m}} = 2\pi f \tag{1.6}$$

The frequency of oscillation depends on the mass and the stiffness of the spring.

$$f = \frac{1}{2\pi} \sqrt{\frac{k}{m}} \tag{1.7}$$

Let's see if this is reasonable. Imagine driving along in your student car (say, a 1972 Gremlin). You go over a bump, and the car oscillates. Your car is a mass, and your shock absorbers are springs. You have an oscillation. But suppose you load your car with everyone in your apartment². Now as you hit the bump the car oscillates at a different frequency, a lower frequency. That is what our

² If you are married, imagin taking two other couples with you in your car.

1.4. MATHEMATICAL REPRESENTATION OF SIMPLE HARMONIC MOTION7

frequency equation tells us. Note also that if we changed to a different set of shocks, the k would change, and we would get a different frequency.

We still don't have a complete solution to our differential equation, because we don't know A and ϕ_o . From trigonometry, we recognize ϕ_o as the initial phase angle. We will call it the phase constant in this class. We will have to find this by knowing the initial conditions of the motion. We will do this in the paragraphs that follow.

A is the amplitude. We can find its value when the motion has reached its maximum displacement. Let's look at a specific case

$$A = 5$$

$$\phi_o = 0$$

$$\omega = 2$$

We can easily see that the amplitude A corresponds to the maximum displacement x_{max} .

Other useful quantities we can identify 1.4.1

We know from trigonometry that a cosine function has a period T. The period is related to the frequency

$$T = \frac{1}{f} = \frac{2\pi}{\omega} \tag{1.8}$$

We can write the period and frequency in terms of our mass and spring constant

$$T = 2\pi \sqrt{\frac{m}{k}}$$

$$f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$

$$(1.9)$$

$$f = \frac{1}{2\pi} \sqrt{\frac{k}{m}} \tag{1.10}$$

Figure 1.1:

1.4.2 Velocity and Acceleration

Since we know the derivatives of

$$x(t) = A\cos(\omega t + \phi_o) \tag{1.11}$$

we can identify the instantaneous velocity of the mass and its acceleration

$$v(t) = \frac{dx(t)}{dt} = -\omega A \sin(\omega t + \phi_o)$$

Recall that $A = x_{\text{max}}$

$$v(t) = \frac{dx(t)}{dt} = -\omega x_{\text{max}} \sin(\omega t + \phi_o)$$
 (1.12)

We identify

$$v_{\text{max}} = \omega x_{\text{max}} = x_{\text{max}} \sqrt{\frac{k}{m}}$$
 (1.13)

Likewise for the acceleration

$$a(t) = \frac{dv(t)}{dt}$$

$$= \frac{d}{dt} (-\omega x_{\text{max}} \sin(\omega t + \phi_o))$$

$$= -\omega^2 x_{\text{max}} \cos(\omega t + \phi_o)$$

$$(1.14)$$

where we can identify

$$a_{\text{max}} = \omega^2 x_{\text{max}} = \frac{k}{m} x_{\text{max}} \tag{1.16}$$

1.4. MATHEMATICAL REPRESENTATION OF SIMPLE HARMONIC MOTION9

1.4.3 Comparison of position, velocity, acceleration

Let's plot $x\left(t\right),\,v\left(t\right),\,$ and $a\left(t\right)$ for a specific case

Red is the displacement, green is the velocity, and blue is the acceleration. Note that each has a different maximum amplitude. That is a bit confusing until we recognize that they each have different units. We have just plotted them on the same graph to make it easy to compare their shapes. Note that the peaks are not in the same places! We use a phrase to say the peaks happen at different times. We say they are *not in phase*.

The acceleration is 90 $^{\circ}$ out of phase from the velocity.

Figure 1.2:

1.5 An example of oscillation

We want to see how to find A, ω , and especially ϕ_o . These quantities will be important in our study of waves. So let's do a problem.

Let's take as our system a horizontal mass-spring system where the mass is on a frictionless surface.

Initial Conditions

Now let's find A and ϕ_o . To do this we need to know how we started the mass-spring motion. We call the information on how the system starts it's motion the *initial conditions*.

Suppose we start the motion by pulling the mass to $x = x_{\text{max}}$ and releasing it at t = 0. These our our initial conditions. Let's see if we can find the phase. Our initial conditions require

$$x(0) = x_{\text{max}}$$
 (1.17)
 $v(0) = 0$

Using our formula for x(t) and v(t) we have

$$x(0) = x_{\text{max}} = x_{\text{max}} \cos(0 + \phi_o)$$
 (1.18)
 $v(0) = 0 = -v_{\text{max}} \sin(0 + \phi_o)$

From the first equation we get

$$1 = \cos(\phi_o)$$

which is true if

$$\phi_o = 0, 2\pi, 4\pi, \cdots$$

from the second equation we have

$$0 = \sin \phi_o$$

which is true for

$$\phi_o = 0, \pi, 2\pi, \cdots$$

If we choose $\phi_o = 0$, these conditions are both met. Of course we could choose $\phi_o = 2\pi$, or $\phi_o = 4\pi$, but we will follow the rule to take the smallest value for ϕ_o that meets the initial conditions.

1.5.1 A second example

Using the same equipment, let's start with

$$x(0) = 0$$
 (1.19)
 $v(0) = +v_i$

that is, the mass is moving, and we start watching just as it passes the equilibrium point.

$$x(0) = 0 = x_{\text{max}} \cos(0 + \phi_o)$$
 (1.20)
 $v(0) = v_i = -v_{\text{max}} \sin(0 + \phi_o)$

from

$$0 = x_{\text{max}} \cos(\phi_o)$$

(first equation above) we see that³

$$\phi_o = \pm \frac{\pi}{2}$$

but we don't know the sign. Using our initial velocity condition

$$v_i = -v_{\text{max}} \sin\left(\pm \frac{\pi}{2}\right)$$

$$v_i = -\omega x_{\text{max}} \sin\left(\pm \frac{\pi}{2}\right)$$

We defined the initial velocity as positive, and we insist on having positive amplitudes, so x_{max} is positive. Thus we need a minus sign from $\sin(\phi_o)$ to make v_i positive. This tells us to choose

$$\phi_o = -\frac{\pi}{2}$$

with a minus sign.

Our solutions are

$$x(t) = \frac{v_i}{\omega} \cos\left(\omega t - \frac{\pi}{2}\right)$$
$$v(t) = v_i \sin\left(\omega t - \frac{\pi}{2}\right)$$

Remark 3 Generally to have a complete solution to a differential equation, you must find all the constants (like A and ϕ_o) based on the initial conditions.

 $^{^3} Really there are more possibilities, but we are taking the smallest value for <math display="inline">\phi_o$ as we discussed above.

1.5.2 A third example

So far we have concentrated on finding ϕ_o . Let's do a more complete example where we find ϕ_o . A, and ω .

A particle moving along the x axis in simple harmonic motion starts from its equilibrium position, the origin, at t=0 and moves to the right. The amplitude of its motion is $4.00\,\mathrm{cm}$, and the frequency is $1.50\,\mathrm{Hz}$.

a) show that the position of the particle is given by

$$x = (4.00 \,\mathrm{cm}) \sin (3.00 \pi t)$$

determine

- b) the maximum speed and the earliest time (t > 0) at which the particle has this speed,
- c) the maximum acceleration and the earliest time (t > 0) at which the particle has this acceleration, and
 - d) the total distance traveled between t = 0 and t = 1.00 s

Type of problem

We can recognize this as an oscillation problem. This leads us to a set of basic equations

Basic Equations

$$x(t) = A\cos(\omega t + \phi_o)$$

$$v(t) = -\omega x_{\text{max}} \sin(\omega t + \phi_o)$$

$$a(t) = -\omega^2 A\cos(\omega t + \phi_o)$$

$$\omega = 2\pi f$$

$$v_m = \omega x_m$$

$$a_m = \omega^2 x_m$$

$$T = \frac{1}{f}$$

We should write down what we know and give a set of variables

Variables

Now we are ready to start solving the problem. We do this with algebraic symbols first

Symbolic Solution

Part (a)

We can start by recognizing that we can find ω because we know the frequency. We just use the basic equation.

$$\omega = 2\pi f$$

We also know the amplitude $A=x_{\max}$ which is given. Knowing that

$$x\left(0\right) = 0 = A\cos\left(0 + \phi_{o}\right)$$

we can guess that

$$\phi_o = \pm \frac{\pi}{2}$$

Using

$$v\left(0\right) = -\omega x_{\max} \sin\left(0 \pm \frac{\pi}{2}\right)$$

again and demanding that amplitudes be positive values, and noting that at t=0 the velocity is positive from the initial conditions:

$$\phi_o = -\frac{\pi}{2}$$

We also note from trigonometry that

$$x(t) = x_{\text{max}} \cos\left(2\pi f t - \frac{\pi}{2}\right)$$

which is a perfectly good answer. However, if we remember our trig, we could write this using

$$\cos\left(\theta - \frac{\pi}{2}\right) = \sin\left(\theta\right)$$

Then we have

$$x(t) = x_{\max} \cos \left(2\pi f t - \frac{\pi}{2}\right)$$
$$= x_{\max} \sin \left(2\pi f t\right)$$

Part (b)

We have a basic equation for $v_{\rm max}$

$$v_m = \omega x_{\text{max}}$$

= $2\pi f x_{\text{max}}$

to find when this happens, take

$$v\left(t\right) = v_{\max} = -\omega x_{\max} \sin\left(2\pi f t - \frac{\pi}{2}\right)$$

and recognize that $\sin(\theta) = 1$ is at a maximum when $\theta = \pi/2$ so the entire argument of the sine function must be $\pi/2$ when we are at the maximum displacement, so

$$\frac{\pi}{2} = \left(2\pi f t - \frac{\pi}{2}\right)$$

or

$$\pi = 2\pi f t$$

then the time is

$$\frac{1}{2f} = t$$

Part (c)

Like with the velocity we must use a basic formula, this time

$$a\left(t\right) = -\omega^{2} A \cos\left(\omega t + \phi_{o}\right)$$

but recognize that the maximum is achieved when $\cos{(\omega t + \phi_o)} = 1$ or when $\omega t + \phi_o = 0$

$$t = \frac{\phi_o}{\omega}$$
$$= \frac{-\frac{\pi}{2}}{2\pi f}$$
$$= \frac{-1}{4f}$$

The formula for a_{max} is

$$a_{\text{max}} = -\omega^2 x_{\text{max}}$$
$$= -(2\pi f)^2 x_m$$

Part (d)

We know the period is

$$T = \frac{1}{f}$$

We should find the number of periods in $t = 1.00 \,\mathrm{s}$

$$N_{periods} = \frac{t}{T}$$

and find the distance traveled in one period, and multiply them together. In one period the distance traveled is

$$d = 4x_m$$

$$d_{tot} = d * \frac{t}{T} = 4fx_m t$$

Numerical Solutions

We found algebraic answers (or symbolic answers) to the parts of our problem above. We will always do this first. Then substitute in the numbers to find numeric answers.

Part (a)

$$x(t) = x_{\text{max}} \sin(2\pi f t)$$
$$= (4.00 \text{ cm}) \sin(3.00\pi t)$$

Part (b)

$$v_m = 2\pi (1.50 \,\text{Hz}) (4.00 \,\text{cm})$$

 $0.377 \frac{\text{m}}{\text{s}}$

$$\frac{1}{2f} = t$$

$$\frac{1}{2(1.50 \,\text{Hz})} = t$$
= 0.333 s

Part (c)

$$t = \frac{-1}{4f}$$
$$= -0.16667 s$$

$$a_{\text{max}} = (2\pi f)^2 x_m$$

= $(2\pi 1.5 \,\text{Hz})^2 (4.00 \,\text{cm})$
= $3.5531 \frac{\text{m}}{\text{s}^2}$

Part (d)

$$d_{tot} = 4fx_m t$$

= $4 \times 4.00 \,\mathrm{cm} * 1.50 \,\mathrm{Hz} * 1.00 \,\mathrm{s}$
= $0.24 \,\mathrm{m}$

We should make sure the units check. We put in units along the way, so we can be confident that they do. But if you did not work along the way with units, check them now.

We should also make sure our answers are reasonable. If the amplitude came out to be a billion miles, you might guess something went wrong. Always look over your answers to make sure they seem reasonable.

1.6 Energy of the Simple Harmonic Oscillator

If there is motion, there is energy. We can find the energy in a harmonic oscillator. Let's start with kinetic energy. Recall that

$$K = \frac{1}{2}mv^2$$

for our Simple Harmonic Oscillator (SHO) we have

$$K = \frac{1}{2}m\left(-\omega x_{\text{max}}\sin\left(\omega t + \phi_o\right)\right)^2$$
$$= \frac{1}{2}m\omega^2 x_{\text{max}}^2\sin^2\left(\omega t + \phi_o\right)$$
$$= \frac{1}{2}m\frac{k}{m}x_{\text{max}}^2\sin^2\left(\omega t + \phi_o\right)$$
$$= \frac{1}{2}kx_{\text{max}}^2\sin^2\left(\omega t + \phi_o\right)$$

The potential energy due to a spring is given by (from your PH121 class or Statics/Dynamics)

$$U = \frac{1}{2}kx^2\tag{1.21}$$

Again for our SHO we have

$$U = \frac{1}{2}kx_{\text{max}}^2\cos^2\left(\omega t + \phi_o\right) \tag{1.22}$$

The total energy is given by

$$E = K + U$$

$$= \frac{1}{2}kx_{\text{max}}^{2}\sin^{2}(\omega t + \phi_{o}) + \frac{1}{2}kx_{\text{max}}^{2}\cos^{2}(\omega t + \phi_{o})$$

$$= \frac{1}{2}kx_{\text{max}}^{2}\left(\sin^{2}(\omega t + \phi_{o}) + \cos^{2}(\omega t + \phi_{o})\right)$$

$$= \frac{1}{2}kx_{\text{max}}^{2}$$
(1.23)

This is an astounding result! The amount of energy at any given time is equal to the amount of energy we started with. We are not changing how much energy we have. We call such a value that does not change a *constant of motion*.

Remark 4 The total mechanical energy of a SHO is a constant of motion

In the figure you can see that the kinetic and potential energies trade back and forth, but the total amount of energy does not change. Note that the kinetic and potential energy are out of phase with each other. If we plot them on the same scale (for the case $\phi_o=0$) we have

Figure 1.3:

1.7 Circular Motion and SHM

That circular motion and SHM are related should not be a surprise once we found the solutions to the equations of motion were trig functions. Recall that the trig functions are defined on a unit circle

$$\tan \theta = \frac{x}{y} \tag{1.24}$$

$$\cos\theta = \frac{x}{h} \tag{1.25}$$

$$\sin\theta = \frac{y}{h} \tag{1.26}$$

Let's relate this to our equations of motion.

Look at the projection x of the point P on the x axis. Lets follow this projection as P travels around the circle. We find it ranges from $-x_{\rm max}$ to $x_{\rm max}$. If we watch closely we find its velocity is zero at the extreme points and is a maximum in the middle. This projection is given as the cos of the vector from the origin to P. This model, indeed fits our SHO solution.

Now lets define a projection of P onto the y axis. Again we have SHM, but this time the projection is a sin function. Because

$$\cos\left(\theta - \frac{\pi}{2}\right) = \sin\left(\theta\right) \tag{1.27}$$

we can see that this is just a SHO that is 90 $^{\circ}$ out of phase.

Remark 5 We see that uniform circular motion can be thought of as the combination of two SHOs, with a phase difference of 90° .

The angular velocity is given by

$$\omega = \frac{v}{r} \tag{1.28}$$

A particle traveling on the x-axis in SHM will travel from x_{max} to $-x_{\text{max}}$ and from $-x_{\text{max}}$ to x_{max} (one complete period, T) while the particle traveling with P makes one complete revolution. Thus, the angular frequency ω of the SHO and the angular velocity of the particle at P are the same. (Now we know why we used the same symbol). The magnitude of the velocity is then

$$v = \omega r = \omega x_{\text{max}} \tag{1.29}$$

and the projection of this velocity onto the x-axis is

$$v_x = -\omega x_{\text{max}} \sin\left(\omega t + \phi_o\right) \tag{1.30}$$

Just what we expected!

The angular acceleration of a particle at P is given by

$$\frac{v^2}{r} = \frac{v^2}{x_{\text{max}}} = \frac{\omega^2 x_{\text{max}}^2}{x_{\text{max}}} = \omega^2 x_{\text{max}}$$
 (1.31)

The direction of the acceleration is inward toward the origin. If we project this onto the x-axis we have

$$a_x = -\omega^2 x_{\text{max}} \cos(\omega t + \phi_o) \tag{1.32}$$

1.8 The Pendulum

A simple pendulum is a mass on a string. The mass is called a "bob."

A simple pendulum exhibits periodic motion, but not exactly simple harmonic motion.

The forces on the bob, m, are \mathbf{F}_g , \mathbf{T} the tension on the string. The tangential component of F_g is always directed toward $\theta = 0$. This is a restoring force!

Let's call the path the bob takes s. The path, s, is along an arc, then from Jr. High geometry⁴, we can use the arc-length formula to describe s

$$s = L\theta \tag{10.01a}$$

and we can write an equation for the restoring force that brings the bob back to its equilibrium position as

$$F_{t} = -mg \sin \theta$$

$$= m \frac{d^{2}s}{dt^{2}}$$

$$= mL \frac{d^{2}\theta}{dt^{2}}$$
(1.33)

or

$$\frac{d^2\theta}{dt^2} = -\frac{g}{L}\sin\theta$$

This is a harder differential equation to solve. But suppose we are building a grandfather clock with our pendulum, and we won't let the pendulum swing very far. Then we can take θ as a very small angle, then

$$\sin\left(\theta\right) \approx \theta \tag{1.34}$$

⁴From Jr. High, but if you are like me you have forgotten it until now.

In this approximation

$$\frac{d^2\theta}{dt^2} = -\frac{g}{L}\theta$$

and we have a differential equation we recognize! Compare to

$$\frac{d^2x}{dt^2} = -\omega^2 x\tag{1.35}$$

if

$$\omega^2 = \frac{g}{L} \tag{1.36}$$

we have all the same solutions for s that we found for x. Since ω changed, the frequency and period will now be in terms of g and L.

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{L}{g}} \tag{1.37}$$

Remark 6 the period and frequency for a pendulum with small angular displacements depend only on L and g!

1.9 Damped Oscillations

Suppose we add in another force

$$\mathbf{F}_d = -b\mathbf{v} \tag{1.38}$$

This force is proportional to the velocity. This is typical of viscus fluids. So this is what we would get if we place our mass-spring system (or pendulum) in air or some other fluid. We call b the damping coefficient. Now our net force is

$$\Sigma F = -kx - bv_x = ma$$

We can write the acceleration and velocity as derivatives of the position

$$-kx - b\frac{dx}{dt} = m\frac{d^2x}{dt^2}$$

This is another differential equation. It is harder to guess its solution

$$x(t) = Ae^{-\frac{b}{2m}t}\cos(\omega t + \phi_o)$$
(1.39)

but now our angular frequency, ω , is more complicated

$$\omega = \sqrt{\frac{k}{m} - \left(\frac{b}{2m}\right)^2} \tag{1.40}$$

We have three cases:

- Case 7 1. the retarding force is small: ($bv_{max} < kA$) The system oscillates, but the amplitude is smaller as as time goes on. We call this "underdamped"
 - 2. the retarding force is large: (bv_{max} > kA) The system does not oscillate. we call this "overdamped." We can also say that $\frac{b}{2m} > \omega_o$ (after we define ω_o below)
 - 3. The system is critically damped (see below)

For the following values,

$$A = 5 \text{ cm}$$

$$b = 0.005 \frac{\text{kg}}{\text{s}}$$

$$k = .5 \frac{\text{N}}{\text{m}}$$

$$m = .5 \text{ kg}$$

we have a graph that looks like this

The gray lines are

$$\pm Ae^{-\frac{b}{2m}t} \tag{1.41}$$

They describe how the amplitude changes. We call this the envelope of the curve.

$$A = 5 \text{ cm}$$

$$b = 0.05 \frac{\text{kg}}{\text{s}}$$

$$k = .5 \frac{\text{N}}{\text{m}}$$

$$m = .5 \text{ kg}$$

$$A = 5 \text{ cm}$$

$$b = 0.5 \frac{\text{kg}}{\text{s}}$$

$$k = .5 \frac{\text{N}}{\text{m}}$$

$$m = .5 \text{ kg}$$

What happened?

When the damping force gets bigger, the oscillation eventually stops. Only the exponential decay is observed. This happens when

$$\frac{b}{2m} = \sqrt{\frac{k}{m}} \tag{1.42}$$

then

$$\omega = \sqrt{\frac{k}{m} - \left(\frac{b}{2m}\right)^2} = 0 \tag{1.43}$$

We call this situation we call critically damped. We are just on the edge of oscillation. We define

$$\omega_o = \sqrt{\frac{k}{m}} \tag{1.44}$$

as the $natural\ frequency$ of the system. Then the value of b that gives us critically damped behavior is

$$b_c = 2m\omega_o \tag{1.45}$$

Remark 8 When $\frac{b}{2\pi} \ge \omega_o$ the solution in equation (1.39) is not valid! If you are a mechanical engineer you will find out more about this situation in your advanced mechanics classes.

1.10 Driven Oscillations and Resonance

We found in the last section that if we added a force like

$$\mathbf{F}_d = -b\mathbf{v} \tag{1.46}$$

our oscillation died out. Suppose we want to keep it going? Let's apply a periodic force like

$$F(t) = F_0 \sin(\omega_f t)$$

where ω_f is the angular frequency of this new driving force and where F_o is a constant.

$$\Sigma F = F_0 \sin(\omega_f t) - kx - bv_x = ma$$

When this system starts out, the solutions is very messy. It is so messy that we will not give it in this class! But after a while, a steady-state is reached. In this state, the energy added by our driving force $F_o \sin(\omega_f t)$ is equal to the energy lost by the drag force, and we have

$$x(t) = A\cos(\omega_f t + \phi_o) \tag{1.47}$$

our old friend! BUT NOW

$$A = \frac{\frac{F_o}{m}}{\sqrt{\left(\omega_f^2 - \omega_o^2\right)^2 + \left(\frac{b\omega_f}{m}\right)^2}}$$
(1.48)

and where

$$\omega_o = \sqrt{\frac{k}{m}} \tag{1.49}$$

as before. It is more convenient to drop the f subscripts

$$x(t) = A\cos(\omega t + \phi_o) \tag{1.50}$$

$$A = \frac{\frac{F_o}{m}}{\sqrt{\left(\omega^2 - \omega_o^2\right)^2 + \left(\frac{b\omega}{m}\right)^2}} \tag{1.51}$$

so now our solution looks more like our original SHM solution (except for the wild formula for A).

Lets look at A for some values of ω . I will pick some nice numbers for the other values.

$$F_o = 2 \text{ N}$$

$$b = 0.5 \frac{\text{kg}}{\text{s}}$$

$$k = 0.5 \frac{\text{N}}{\text{m}}$$

$$m = 0.5 \text{ kg}$$

now let's calculate ω

$$\omega_o = \sqrt{\frac{0.5 \frac{N}{m}}{0.5 \text{ kg}}}$$
$$= \frac{1.0}{s}$$

Notice that right at ω our solution gets very big. This is called *resonance*. To see why this happens, think of the velocity

$$\frac{dx(t)}{dt} = -\omega A \sin(\omega t + \phi_o) \tag{1.52}$$

note that our driving force is

$$F(t) = F_o \sin(\omega t) \tag{1.53}$$

The rate at which work is done (power) is

$$\mathcal{P} = \frac{\mathbf{F} \cdot \Delta \mathbf{x}}{\Delta t} = \mathbf{F} \cdot \mathbf{v} \tag{1.54}$$

if F and v are in phase, the power will be at a maximum!

We can plot A for several values of b

Green: b=0.005kg/s; Blue: b=0.05kg/s; Red b=0.01 kg/s

As $b \to 0$ we see that our resonance peak gets larger. In real systems b can never be zero, but sometimes it can get small. As $b \to \text{large}$, the resonance dies down and our A gets small.

An example of this is well known to mechanical engineers. The next picture is of the Tacoma Narrows Bridge. As a steady wind blew across the bridge it formed turbulent wind gusts.

Tacoma Narrows Bridge (Image in the Public Domain)

The wind gusts formed a periodic driving force that allowed a driving harmonic oscillation to form. Since the bridge was resonant with the gust frequency, the amplitude grew until the bridge materials broke.