# Machine Learning

Lecture 3.2: k-Nearest Neighbors

Marc Sebban and Amaury Habrard

LABORATOIRE HUBERT CURIEN, UMR CNRS 5516 Université Jean Monnet Saint-Étienne

## Bayesian Error

#### Bayesian Error

The bayesian error  $\epsilon^*$  is the lowest possible error rate (or irreducible error) for any hypothesis h.

$$\epsilon^* = \int_{x \in R_i} \int_{x \in R_i} p(y_i|x)p(x)dx$$

where x is an instance, y its corresponding label,  $R_i$  is the area/region that a classifier function h classifies as  $y_i$ .



## Bayesian Classifier

#### Bayesian Classifier

The Bayesian classifier predicts the optimal class  $y^* \in \mathcal{Y}$  given an example  $\mathbf{x} \in \mathcal{X}$  by applying the Maximum a posteriori (MAP) decision rule:

$$\forall y_j \in \mathcal{Y}, \rho(y_j|\mathbf{x}) = \frac{\rho(\mathbf{x}|y_j).\rho(y_j)}{\rho(\mathbf{x})}$$

$$y^*(\mathbf{x}) = \arg\max_{c} p(y_c|\mathbf{x}).$$

that corresponds to  $y^*(\mathbf{x}) = \arg \max_c p(\mathbf{x}|y_c).p(y_c)$ 

If this calculation is possible, the Bayesian classifier is optimal from a probabilistic point of view, with an associated error  $\epsilon^*$ .

## Underlying conditions to solve this problem

To compute  $\epsilon^*$ , one needs some priors:

- Know the a priori probabilities  $p(y_i)$  of the different classes.
- 2 Know the probabilities of the observations given the classes  $p(\mathbf{x}|y_i)$ .

Unfortunately,  $p(y_j)$  and  $p(\mathbf{x}|y_j)$  are unknown. One needs to estimate these two quantities from the training sample S.



# Estimation of the a priori probability of the classes $p(y_j)$

### What about $p(y_i)$ ?

An unbiased estimate of  $p(y_j)$  is given by the observed frequency  $\hat{p}(y_j) = \frac{|S_j|}{|S|}$  where  $|S_j|$  is the number of training examples belonging to the class  $y_i$ .



# Estimation of the conditional probabilities $p(\mathbf{x}|y_j)$

### What about $p(\mathbf{x}|y_i)$ ?

We can distinguish two types of approaches:

- **1** The parametric methods which assume that  $p(\mathbf{x}|y_j)$  follows a given statistical distribution. In this case, the problem to solve consists in estimating the parameters of the considered distribution (e.g. normal distribution with  $\mu$  and  $\sigma$  or Binomial distribution with p).
- ② The non parametric methods which do not impose any constraint about the underlying distribution, and for which the densities  $p(\mathbf{x}|y_j)$  are locally estimated around  $\mathbf{x}$ .



# Non parametric methods

- No assumption is made on the underlying distribution...
- ... we only suppose that this target distribution is locally regular.
- The objective is to estimate  $p(\mathbf{x}|y_i)$ . Since this must be done  $\forall y_i \in \mathcal{Y}$ , for the sake of simplicity, let us focus on  $p(\mathbf{x})$  first.



### Non parametric methods

• Let p be the unknown target probability density. The probability  $\mathcal P$  to observe x in a volume V is:

$$\mathcal{P} = \int_{V} p(\mathbf{x}) d\mathbf{x}$$

• Assuming that p(x) does not significantly change in V (locally regular), we can approximate P such that:

$$\hat{\mathcal{P}} \simeq p(\mathbf{x}) \times V \tag{1}$$

ullet  ${\cal P}$  can also be estimated by the proportion of training data in V:

$$\hat{\mathcal{P}} \simeq \frac{k}{n} \tag{2}$$

• Therefore, we can deduce that

$$p(\mathbf{x}) \approx \frac{k}{nV} = \hat{p}(\mathbf{x}).$$



#### Theorem

Let us denote by  $\hat{p}_n(\mathbf{x}) = \frac{k_n}{nV_n}$  the estimate of  $p(\mathbf{x})$  from a training sample S of size n. When n is increasing,  $\hat{p}_n(\mathbf{x})$  converges to  $p(\mathbf{x})$  if the following three conditions are fulfilled:

$$\lim_{n \to \infty} V_n = 0$$

$$\lim_{n \to \infty} k_n = \infty$$

$$\lim_{n \to \infty} \frac{k_n}{n} = 0$$

### Interpretation

If n is high, we get:

- a good estimate  $\hat{p}(x)$  (resp.  $\hat{p}(x|y_j)$  if we take into account the class) of p(x) (resp.  $p(x|y_j)$ ).
- a good approximation of the Bayesian method.

Marc Sebban (LAHC) Machine Learning 9 / 30

# Non parametric methods

### k-Nearest Neighbors (Cover & Hart 1968)

It turns out that the k-nearest neighbor method satisfies the previous conditions: **fixing a number**  $k_n$  **of examples** (growing w.r.t. n) and **adapting a volume**  $V_n$  (e.g. a hypersphere centered at  $\mathbf{x}$ ) such that  $k_n$  examples are in the volume.

$$k_n = \sqrt{n}$$









## k-nearest neighbors

### kNN as a good way to estimate p(x)

To estimate  $p(\mathbf{x})$  from the n training examples of S, let us build a hypersphere centered at  $\mathbf{x}$  that contains  $k_n$  examples.

$$\hat{p}_n(\mathbf{x}) = \frac{k_n/n}{V_n}$$
 is a good estimate of  $p(\mathbf{x})$ 



4 ≣ →

# Example 1 with $k = \sqrt{n}$

$$p(\mathbf{x}) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}\mathbf{x}^2}$$







# Example 1 with $k = \sqrt{n}$

$$p(\mathbf{x}) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}\mathbf{x}^2}$$







#### k-NN as a classifier

Let us suppose we have  $n_j$  examples in S of class  $y_j$ , such that  $\sum_j n_j = n$ . Suppose the hypersphere contains  $k_j$  examples of class  $y_j$  ( $\sum_j k_j = k$ ). If we aim at classifying a new example  $\mathbf{x}$  with its k nearest-neighbors, and applying the Bayes rule, we get:

$$h(\mathbf{x}) = \arg\max_{j} \frac{\hat{p}(\mathbf{x}|y_{j}).\hat{p}(y_{j})}{\hat{p}(\mathbf{x})} = \arg\max_{j} \frac{\frac{k_{j}}{V_{n} \times n_{j}} \times \frac{n_{j}}{n}}{\frac{k}{n \times V_{n}}} = \arg\max_{j} \frac{k_{j}}{k}$$



## k-nearest neighbors algorithm

How to classify an unknown example x using S?

```
Input: \mathbf{x}, S, d
Output: class of \mathbf{x}
foreach (\mathbf{x}', \mathbf{y}') \in S do

Compute the distance d(\mathbf{x}', \mathbf{x});
```

Sort the n distances by increasing order;

Count the number of occurrences of each class  $y_j$  among the k nearest neighbors;

Assign to  $\mathbf{x}$  the most frequent class;

# Special case of the (k = 1)-nearest neighbor rule

### Convergence properties of the (k = 1)-nearest neighbor rule

#### Theorem

Let  $\mathbf{x}'$  be the nearest neighbor of  $\mathbf{x}$ ,

$$\lim_{n\to\infty} p\left(d(x,x')>\epsilon\right)=0, \forall \epsilon>0$$

### Corrolary

If  $n \to \infty$ ,  $p(y_i|\mathbf{x}') \approx p(y_i|\mathbf{x})$ .



# Special case of the (k = 1)-nearest neighbor rule

#### Proof.

Let  $\mathcal{P}$  be the probability that the hypersphere  $s(\mathbf{x}, \epsilon)$  centered at  $\mathbf{x}$  of radius  $\epsilon$  does not contain any point of S:

$$\mathcal{P} = p(\mathbf{x_1} \notin s(\mathbf{x}, \epsilon), ..., \mathbf{x_n} \notin s(\mathbf{x}, \epsilon)) = \prod_{i=1}^n p(\mathbf{x_i} \notin s(\mathbf{x}, \epsilon))$$

$$= \prod_{i=1}^n (1 - p(\mathbf{x_i} \in s(\mathbf{x}, \epsilon))) = (1 - p_{\epsilon})^n.$$

Since the nearest neighbor  $\mathbf{x}'$  of  $\mathbf{x}$  is also outside of the sphere, we get

$$p(d(\mathbf{x}, \mathbf{x}') > \epsilon) = (1 - p_{\epsilon})^n$$

therefore, 
$$\lim_{n\to\infty} p(d(\mathbf{x},\mathbf{x}')>\epsilon) = \lim_{n\to\infty} (1-p_\epsilon)^n = 0$$



#### **Theorem**

The generalization error  $\epsilon_{1NN}$  of the 1-nearest neighbor rule is bounded by twice the (optimal) bayesian error  $\epsilon^*$ .

$$\epsilon_{1NN} \leq 2\epsilon^*$$

### Corrolary

Half of the information about the true class of an example  $\mathbf{x}$  is contained in its nearest neighbor  $\mathbf{x}'$ .

# Special case of the (k = 1)-nearest neighbor rule

#### Proof.

#### Bayesian error:

$$\forall \mathbf{x} \in \mathcal{X}, \ \epsilon^*(\mathbf{x}) = \min \{ p(y_1|\mathbf{x}), p(y_2|\mathbf{x}) \}$$
$$= p(y_{min}|\mathbf{x})$$

#### 1NN error:

$$\begin{array}{lcl} \epsilon_{1NN}(\mathbf{x}) & = & p(y_1|\mathbf{x})p(y_2|\mathbf{x}') + p(y_2|\mathbf{x})p(y_1|\mathbf{x}') \\ \text{(if $n$ is large)} & \approx & p(y_1|\mathbf{x})p(y_2|\mathbf{x}) + p(y_2|\mathbf{x})p(y_1|\mathbf{x}) \\ & = & 2p(y_{min}|\mathbf{x})(1 - p(y_{min}|\mathbf{x})) \leq 2p(y_{min}|\mathbf{x}) = 2\epsilon^*(\mathbf{x}) \end{array}$$





#### We can deduce that:

#### In the discrete case

$$\epsilon^* = \sum_{\mathbf{x} \in \mathcal{X}} p(y_{min}|\mathbf{x}).p(\mathbf{x})$$

$$\epsilon_{1NN} = \sum_{\mathbf{x} \in \mathcal{X}} \left( p(y_1|\mathbf{x}) p(y_2|\mathbf{x}') + p(y_2|\mathbf{x}) p(y_1|\mathbf{x}') \right) \cdot p(\mathbf{x}) \leq 2\epsilon^*$$

#### In the continuous case

$$\epsilon^* = \int_{\mathbf{x} \in \mathcal{X}} f(y_{min}|\mathbf{x}).f(\mathbf{x})d\mathbf{x}$$

$$\epsilon_{1NN} = \int_{\mathbf{x} \in \mathcal{X}} \left( f(y_1|\mathbf{x}) f(y_2|\mathbf{x}') + f(y_2|\mathbf{x}) f(y_1|\mathbf{x}') \right) . f(\mathbf{x}) \, d\mathbf{x} \le 2\epsilon^*$$

Marc Sebban (LAHC) Machine Learning 20 / 30

### Graphically

The property  $\epsilon^* \leq \epsilon_{1NN} \leq 2\epsilon^*$  can be graphically illustrated



## Effect of k on the estimation quality

$$\epsilon^* \le \epsilon_{kNN} \le \epsilon_{(k-1)NN} \le \ldots \le \epsilon_{1NN} \le 2\epsilon^*$$



The previous property holds only asymptotically  $\rightarrow$  possible compromise between k and n:  $k = \sqrt{\frac{n}{|\mathcal{Y}|}}$ .



Marc Sebban (LAHC) Machine Learning 22 / 30

### Problems of k-NN

- To converge, the *k*-nearest neighbor algorithm requires a large number of training examples.
- However, a large number of training examples implies a large space/time complexity.

Two strategies to overcome these problems:

- Reduce the size of S while keeping the most relevant examples (e.g. the condensed nearest neighbor rule (Hart 1968)).
- Simplify the calculation of the nearest-neighbor.



## Data reduction techniques

Preliminary step: remove from S the outliers and the examples of the bayesian error region.

```
Input: S
Output: S_{cleaned}
Split randomly S into two subsets S_1 and S_2;
while no stabilization of S_1 and S_2 do

Classify S_1 with S_2 using the 1-NN rule;
Remove from S_1 the misclassified instances;
Classify S_2 with the new set S_1 using the 1-NN rule;
Remove from S_2 the misclassified instances;
```

 $S_{cleaned} = S_1 \cup S_2$ :

### Illustration





## The condensed nearest neighbor rule (CNN)

Second step: remove the irrelevant examples.

```
Input: S
Output: STORAGE
\mathsf{STORAGE} \leftarrow \emptyset; \mathsf{DUSTBIN} \leftarrow \emptyset;
Draw randomly a training example from S and put it in STORAGE;
while no stabilization of STORAGE do
    foreach x_i \in S do
        if x<sub>i</sub> is correctly classified with STORAGE using the 1-NN rule
        then
         \mid DUSTBIN \leftarrow x_i
        else
          \mid STORAGE \leftarrow x<sub>i</sub>
return STORAGE:
```

### Illustration







## How to speed-up the nearest-neighbor calculation?

Most of the approaches are based on the triangle inequality property

$$\forall (\mathbf{x}, \mathbf{y}, \mathbf{z}) \in \mathcal{X}^3, d(\mathbf{x}, \mathbf{z}) \leq d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z}).$$

- Let  $\mathbf{x}$  be the example to classify by the NN rule. Let  $\mathbf{y}$  be the current NN of  $\mathbf{x}$  at a distance  $\delta$ .
- Let **z** be the next example. If  $d(\mathbf{x}, \mathbf{z}) \leq \delta$  then update the current NN. Otherwise, remove the following examples:
  - **1** in the sphere centered at **z** and of radius  $d(\mathbf{x}, \mathbf{z}) \delta$ ,
  - ② out of the sphere centered at z and of radius  $d(x, z) + \delta$ ,





## How to speed-up the nearest-neighbor calculation?

- $d(\mathbf{v_1}, \mathbf{z}) \leq d(\mathbf{x}, \mathbf{z}) \delta \Rightarrow d(\mathbf{v_1}, \mathbf{z}) + \delta \leq d(\mathbf{x}, \mathbf{z})$  (1).
- By the triangle inequality, we know that  $d(\mathbf{x}, \mathbf{z}) \leq d(\mathbf{x}, \mathbf{v_1}) + d(\mathbf{v_1}, \mathbf{z})$  (2).
- From (1) and (2) we get  $d(\mathbf{v_1}, \mathbf{z}) + \delta \leq d(\mathbf{x}, \mathbf{v_1}) + d(\mathbf{v_1}, \mathbf{z}) \Rightarrow \delta \leq d(\mathbf{x}, \mathbf{v_1})$
- Therefore,  $\mathbf{v_1}$  cannot be the NN of  $\mathbf{x}$ . The same proof can be used for  $\mathbf{v_2}$ .



#### Some methods about fast kNN algorithms

- In 2D or 3D: graph-based searching methods such as Voronoi diagram and proximity graph.
- In higher spaces: ball-trees, kd-trees, metric-trees, quadtree, R-trees, k-Means-k-NN.

Marc Sebban (LAHC) Machine Learning 29 / 30

### Conclusion

- With a sufficiently large number of training examples, a NN classifier is able to converge towards very complex target functions.
- It is simple and theoretically well founded.
- There exist several solutions to overcome its algorithmic complexity issues (time and space).