

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Кафедра информатики, математического и компьютерного моделирования

Лабораторная работа №4 «Математический маятник»

по дисциплине «Математическое моделирование»

Направление подготовки 01.03.02 «Прикладная математика и информатика»

Выполнил студент гр. Б9120-01.03.02 <u>Агличеев А.О.</u> (ΦMO) (nodnucb) Проверил профессор <u>Пермяков М.С.</u> (ΦMO) (nodnucb)

« 3 » февраля 2023 г.

Содержание

1	Вве	едение	3
2	Соз	дание математической модели	3
3	Реализация модели		6
	3.1	Сравнение линейных и нелинейных незатухающих колебаний	6
	3.2	Затухающие колебания	10
	3.3	Вынужденные колебания	13
	3.4	Резонанс	14
4	Вы	вод	15

1 Введение

Маятник — система, подвешенная в поле тяжести и совершающая механические колебания. Маятники используются в различных приборах, например, в часах и сейсмографах. Они облегчают изучение колебаний, так как наглядно демонстрируют их свойства. Одним из простейших маятников является шарик, подвешенный на нити. Если считать нить нерастяжимой и пренебречь размерами груза по сравнению с длиной нити, а массой нити по сравнению с массой груза, то шарик на нити можно рассматривать как материальную точку, находящуюся на неизменном расстоянии от точки подвеса. Такой маятник называется математичским.

В данной работе будет реализована модель маятника в нескольких вариантах:

- 1. Без учёта трения
- 2. С учётом трения
- 3. С учётом трения и вынужденных колебаний

2 Создание математической модели

Рис. 1: Математический маятник

Момент инерции математического маятника равен:

$$M_{\text{\tiny MH}} = J \frac{d^2 \theta}{dt^2} \tag{1}$$

, где θ - угол наклона маятника в текущий момент, J - момент инерции, относительно оси

Момент инерции вычисляется по формуле:

$$J = mL^2 (2)$$

, где *m* - масса маятника, L - длина нити

Если тело не находится в положении равновесия, то на него действует возвращающий момент:

$$M_{\scriptscriptstyle\rm B} = FL = -mgL\sin\theta$$

, где $g \approx 9.8$ - ускорение свободного падения Подставим (2) в (1) и приравняем моменты:

$$mL^2 \frac{d^2\theta}{dt^2} = -mgL\sin\theta$$

Сделаем элементарные преобразования, примем $\omega_0 = \frac{g}{L}$ и получим нелинейное дифференциальное уравнение второго порядка, описывающее маятник:

$$\ddot{\theta} + \omega_0^2 \cdot \sin \theta = 0$$

Для решения понизим порядом и сведем к системе дифференциальных уравнений первого порядка:

$$\begin{cases} \dot{\theta} = \upsilon, \\ \dot{\upsilon} + \omega_0^2 \sin \theta = 0 \end{cases}$$

При малых углах $\sin\theta \approx \theta$ и уравнение превращается в

$$\ddot{\theta} + \omega_0^2 \cdot \theta = 0,$$

с соответсвующей ей системой:

$$\begin{cases} \dot{\theta} = \upsilon, \\ \dot{\upsilon} + \omega_0^2 \theta = 0 \end{cases}$$

При наличии затуханий уравнение примет вид:

$$\ddot{\theta} + k\dot{\theta} + \omega_0^2 \sin \theta = 0,$$

где k - коэффициент затухания с соответсвующей ей системой:

$$\begin{cases} \dot{\theta} = \upsilon, \\ \dot{\upsilon} + k\upsilon + \omega_0^2 \sin \theta = 0 \end{cases}$$

Добавим внешнюю периодическую силу, действующую на маятник, и колебания станут вынужденными:

$$\ddot{\theta} + k\dot{\theta} + \omega_0^2 \sin \theta = a \cdot \sin (\omega t),$$

с соответсвующей ей системой:

$$\begin{cases} \dot{\theta} = \upsilon, \\ \dot{\upsilon} + k\upsilon + \omega_0^2 \sin \theta = a \sin (\omega t) \end{cases}$$

3 Реализация модели

Модель была реализована в MathCad. Система дифференциальных уравнений решалась с помощью функции rkfixed. Она решает систему ОДУ методом Рунге-Кутта четвертого порядка и принамает в качестве параметров вектор начальных условий, границы интервала, на котором ищется решение, число точек внутри интервала и вектор содержащий производные.

3.1 Сравнение линейных и нелинейных незатухающих колебаний

$\theta 1 \coloneqq \begin{bmatrix} 10 & \mathbf{deg} \\ 0 \end{bmatrix} \omega 1 \coloneqq 3$	$\theta 2 \coloneqq \begin{bmatrix} 10 & \mathbf{deg} \\ 0 \end{bmatrix} \omega 2 \coloneqq 3$
$D1(t, \theta) \coloneqq \begin{bmatrix} \theta_1 \\ -(\omega 1^2) \cdot \sin(\theta_0) \end{bmatrix}$	$D2(t, heta) \coloneqq egin{bmatrix} heta_1 \ -(\omega 2^2) \cdot heta_0 \end{bmatrix}$
$Z1 \coloneqq \text{rkfixed} \left(\theta 1, 0, 6, 1000, D1 \right)$	$Z2 \coloneqq \text{rkfixed} \left(\theta 2, 0, 6, 1000, D2\right)$
$t\!\coloneqq\!Z1^{(0)}\hspace{0.05cm} \overrightarrow{ heta1}\!\coloneqq\!Z1^{(1)}$	€2:=Z2 ⁽¹⁾
$\theta 1 \coloneqq \theta 1 \cdot \frac{180}{\pi} \qquad v 1 \coloneqq Z 1^{(2)}$	$\theta 2 \coloneqq \theta 2 \cdot \frac{180}{\pi} \qquad \upsilon 2 \coloneqq Z2^{(2)}$

Рис. 2: Код для сравнения линейных и нелинейных незатухающих колебаний

Рис. 3: График сравнения линейных и нелинейных колебаний при $\theta=10^\circ$

Рис. 4: График сравнения линейных и нелинейных колебаний при $\theta=20^\circ$

Рис. 5: График сравнения линейных и нелинейных колебаний при $\theta=40^\circ$

Рис. 6: График сравнения линейных и нелинейных колебаний при $\theta=60^\circ$

Рис. 7: Фазовый портрет колебаний при разных углах

3.2 Затухающие колебания

$$\theta 1 \coloneqq \begin{bmatrix} 20 & \mathbf{deg} \\ 0 \end{bmatrix} \quad \omega 1 \coloneqq 3 \quad k1 \coloneqq 0.25$$

$$D1(t,\theta) \coloneqq \begin{bmatrix} \theta_1 \\ -(\omega 1^2) \cdot \sin(\theta_0) - k1 \cdot \theta_1 \end{bmatrix}$$

$$Z1 \coloneqq \text{rkfixed}(\theta 1, 0, 50, 1000, D1)$$

$$\theta 1 \coloneqq Z1^{(0)} \quad \theta 1 \coloneqq Z1^{(1)}$$

$$\theta 1 \coloneqq \theta 1 \cdot \frac{180}{\pi} \quad \psi 1 \coloneqq Z1^{(2)}$$

Рис. 8: Код для затухающих колебаний

Рис. 9: График колебаний при $\theta=20^\circ~k=0.25$ и k=0.75

Рис. 10: Фазовый портрет при $\theta=20^\circ~k=0.25$ и k=0.75

Рис. 11: График колебаний при $\theta=40^\circ~k=0.25$ и k=0.75

Рис. 12: Фазовый портрет при $\theta=40^\circ~k=0.25$ и k=0.75

3.3 Вынужденные колебания

$$\theta \mathbf{1} \coloneqq \begin{bmatrix} 0 & \mathbf{deg} \\ 0 & 0 \end{bmatrix} \qquad \omega 0 \coloneqq 3 \qquad \mathbf{k} \mathbf{1} \coloneqq 0.25 \qquad a \coloneqq 1 \qquad \omega \mathbf{1} \coloneqq 3 \\
\theta \mathbf{1} & 0 & 0 & 0 \\
-(\omega 0^2) \cdot \sin \left(\theta_0\right) - k \mathbf{1} \cdot \theta_1 + a \cdot \sin \left(\omega \mathbf{1} \cdot t\right) \end{bmatrix}$$

$$\mathbf{Z} \mathbf{1} \coloneqq \operatorname{rkfixed}(\theta \mathbf{1}, 0, 50, 1000, D\mathbf{1})$$

$$\theta \mathbf{1} \coloneqq \mathbf{Z} \mathbf{1}^{(1)} \qquad \mathbf{t} \coloneqq \mathbf{Z} \mathbf{1}^{(0)}$$

$$\theta \mathbf{1} \coloneqq \theta \mathbf{1} \cdot \frac{180}{\pi} \qquad \upsilon \mathbf{1} \coloneqq \mathbf{Z} \mathbf{1}^{(2)}$$

Рис. 13: Код для вынужденных колебаний

Рис. 14: График вынужденных колебаний

3.4 Резонанс

Рис. 15: Код для резонанса

При $\omega_0 = \omega$ возникает резонанс.

4 Вывод

Таким образом, были составлены математические модели линейных и нелинейных незатухающих, затухающих и вынужденных колебаний.