

Datasheet

APM32F072x8xB

Arm® Cortex®-M0+ based 32-bit MCU

Version: V1.6

1 Product Characteristics

Core

- 32-bit Arm® Cortex®-M0+Core
- Up to 48MHz working frequency

On-Chip Memory

Flash: 64~128KB

- SRAM: 16KB

Clock

- 4~32MHz Crystal oscillator
- 32KHz RTC oscillator with calibration
- Internal 8MHz RC oscillator
- Internal 48MHz self-correcting RC oscillator
- Internal 40KHz RC oscillator
- PLL supports 2~16 frequency doubling

Reset, Power Management

- Power-on/ Power-down reset (POR/PDR)
- Programmable voltage regulator
- Digital supply voltage: V_{DD}=2.0~3.6V
- Analog supply voltage: V_{DDA}=V_{DD}~3.6V
- Partial I/O supply voltage:
 V_{DDIO2}=1.65~3.6V
- Support external battery V_{BAT} to supply power to RTC and backup register: V_{BAT}=1.65~3.6V

Low Power Consumption Mode

- Sleep, halt and standby mode
- Serial Wire Debugging (SWD)

I/O

- Up to 87 I/O
- All I/Os are mappable to external interrupt vectors
- Up to 68 I/Os with 5V input tolerance,
 19 I/Os are powered by VD_{DIO2}

Communication Interface

- Two I2C interfaces (1Mbit/s), all of which support SMBus/PMBus and wake-up
- Four USART interfaces, all of which support master synchronous SPI and modem control, and two of them support ISO7816, LIN and IrDA interfaces, automatic baud rate detection and wake-up
- Two SPI interfaces (18Mbit/s), all supporting I2S interface multiplexing
- One CAN interface

- One full-speed USB2.0 interface, without external crystal oscillator, supporting BCD and LPM
- HDMI CEC

Analog Peripherals

- One 12-bit ADC, supporting up to 16 external channels, with conversion range of 0~3.6V, independent analog power supply: V_{DDA}=2.4~3.6V
- One dual, 12-bit DAC
- Two programmable analog comparators
- Up to 24 capacitive sensing channels, which can be used for proximity, touch key, linear or rotary sensors

Timer

- 1 16-bit advanced control timer which can provide up to 7 channels of PWM output, and supports dead zone generation and brake input functions
- One 32-bit and five 16-bit general timers, each timer has up to four independent channels for input capture/output comparison, PWM complementary, infrared control decoding or DAC control
- Two 16-bit basic timers
- One independent watchdog and one system window watchdog timer
- System tick timer

RTC

- Support calendar function
- Alarm and regular wake-up from halt/standby mode
- 7-Channel DMA ContReeler
- CRC Calculation Unit
- 96-Bit UID

Contents

1	Product Characteristics	1
2	Product Information	5
3	Pin Information	е
3.1	Pin Distribution	6
3.2	Pin Function Description	8
3.3	GPIO Multiplexing Function Configuration	. 25
4	Function Description	. 29
4.1	System Architecture	. 29
4.1.1	System Block Diagram	. 29
4.1.2	Storage Mapping	. 30
4.1.3	Startup Mode	. 32
4.2	Core	. 32
4.3	Interrupt ContReeler	. 32
4.3.1	Nested Vector Interrupt ContReeler (NVIC)	. 32
4.3.2	External Interrupt/ Event ContReeler (EINT)	. 32
4.4	On-Chip Memory	. 32
4.5	Clock	. 33
4.5.1	Clock Source	. 33
4.5.2	System Clock	. 34
4.5.3	Bus Clock	. 34
4.6	Power Management	. 34
4.6.1	Power Supply Scheme	. 34
4.6.2	Voltage Regulator	. 34
4.6.3	Power Supply Monitor	. 34
4.7	Low Power Consumption Mode	. 35
4.8	GPIO	. 35
4.9	Communication Interface	. 35
4.9.1	USART	. 35
4.9.2	I2C	. 36
4.9.3	SPI/I2S	. 36
4.9.4	HDMI-CEC	. 36
4.9.5	CAN	. 37
4.9.6	USBD	. 37

4.10	Analog Peripherals	37
4.10.1	1 ADC	37
4.10.2	2 Calibration of Internal Reference voltage (V _{REFINT})	37
4.10.3	3 V _{BAT} Monitor	37
4.10.4	4 DAC	37
4.10.5	5 Comparator	38
4.10.6	6 Touch sensing contReeler	38
4.11	Timer	39
4.12	Real-Time Clock (RTC)	42
4.13	CRC calculation unit	42
4.14	DMA	
5	Electrical Characteristics	
5.1	Test Conditions of Electrical Characteristics	43
5.1.1	Maximum and Minimum Values	43
5.1.2	Typical values	43
5.1.3	Typical curve	43
5.1.4	Power Supply Scheme	44
5.1.5	Load Capacitance	44
5.2	Testing under General Working Conditions	45
5.3	Absolute Maximum Rating	46
5.3.1	Maximum Temperature Characteristics	46
5.3.2	Maximum Rated Voltage Characteristics	46
5.3.3	Maximum Rated Current Characteristics	46
5.3.4	ESD Characteristics	47
5.3.5	Static Locking	47
5.4	On-Chip Memory	48
5.4.1	Flash Characteristics	48
5.5	Clock System	48
5.5.1	Characteristics of External Clock Source	48
5.5.2	Characteristics of Internal Clock Source	49
5.5.3	PLL Characteristics	50
5.6	Power Management	50
5.6.1	Characteristic test of embedded reset and power control module	50
5.7	Power Consumption	51

10	Version history	85
9	Naming of Common Functional Modules	84
8	Ordering Information	82
7.2	Tray Packaging	80
7.1	Reel Packaging	78
7	Packaging Information	78
6.4	QFN48 Package Information	75
6.3	LQFP48 Package Information	73
6.2	LQFP64 Package Information	70
6.1	LQFP100 package information	67
6	Package Information	67
5.14	Comparator	66
5.13	DAC	65
5.12.2	12-bit ADC Characteristics	64
5.12.1	Built-in Reference Voltage Characteristics	64
5.12	ADC	64
5.11.2	SPI Interface Characteristics	62
5.11.1	I2C Interface Characteristics	61
5.11	Communication Interface	61
5.10	NRST pin characteristics	60
5.9	I/O Port Characteristics	59
5.8	Wake-up Time in Low Power Mode	58
5.7.3	Peripheral power consumption	57
5.7.2	Running mode	51
5.7.1	Power consumption test environment	51

2 **Product Information**

See the following table for APM32F072x8xB product functions and peripheral configuration.

Table 1APM32F072x8xB Series Chip Functions and Peripherals

Pr	oduct	APM32F072								
7	Гуре	C8Ux ⁽¹⁾	С8Тх	R8Tx	V8Tx	CBUx	СВТ6	RBT6	VBTx	
Pa	ckage	QFN48	LQFP48	LQFP64	LQFP100	QFN48	LQFP48	LQFP64	LQFP100	
Core and ma	aximum working	Arm® 32-bit Cortex®-M0+@48MHz								
free	quency	AIII 32-bit Coltex*-WUT@40MIZ								
Workir	ng voltage	2.0~3.6V								
Fla	sh(KB)			64				128		
SRA	AM(KB)				1	6				
G	PIOs	3	37	51	87	(37	51	87	
	USART				4	1				
	SPI/I2S				2/	/2				
Communication	I2C				2	2				
interface	USBD	1								
	CAN	1								
	CEC	1								
	16-bit advanced	1								
	32-bit general	1								
Timer	16-bit general				5	5				
Timei	16-bit basic				2	2				
	System tick timer				1					
	Watchdog				2	2				
Real-t	ime clock	1								
	Unit				1					
12-bit ADC	External channel	1	0	,	16		10		16	
	Internal channel				3	3				
10 hit DAC	Unit				1					
12-bit DAC	Channel				2	2				
Analog	comparator				2	2				
Capacitance	sensor channel	1	7	18	24		17	18	24	
Working	temperature	Ambient temperature: -40°C to 85°C/-40°C to 105°C								
VVOIRING	tomporaturo	Junction temperature: -40°C to 105°C/-40°C to 125°C								

Notes:

⁽¹⁾ When x is 6, the ambient temperature is -40 $^{\circ}$ C to 85 $^{\circ}$ C, and the junction temperature is -40 $^{\circ}$ C to 105 $^{\circ}$ C. When x is 7, the ambient temperature is -40 $^{\circ}$ C to 105 $^{\circ}$ C, and the junction temperature is -40 $^{\circ}$ C to 125 $^{\circ}$ C.

3 Pin Information

3.1 Pin Distribution

Figure. 1 Pin Distribution Diagram of APM32F072x8xB Series LQFP100

Figure. 2 Pin Distribution Diagram of APM32F072x8xB Series LQFP64

Figure. 3 Pin Distribution Diagram of APM32F072x8xB Series LQFP48

Figure. 4 Pin Distribution Diagram of APM32F072x8xB Series QFN48

3.2 Pin Function Description

Table 2Legends/Abbreviations Used in Output Pin Table

N	lame	Abbreviation	Definition				
Dir	n name	Unless otherwis	se specified in parentheses below the pin name, the pin functions during and				
FII	THAITIE		after reset are the same as the actual pin name				
		Р	Power supply pin				
Pi	n type	Ι	Input pins only				
		I/O	I/O pins				
		5T	I/O with 5V tolerance				
		5Tf	5Tf I/O, FM+ function with 5 V tolerance				
		STDA	I/O with 3.3 V tolerance is directly connected to ADC				
1/0 \$	structure	STD	Standard 3.3VI/O				
		В	Dedicated BOOT0 pin				
		RST	Bidirectional reset pin with built-in weak pull-up resistor				
I	Note	Unless otherwi	se specified in the notes, all I/O is set as floating input during and after reset				
	Multiplexing		The function selected by GPIOx_AFR register				
Pin	function						
function	Additional	_	Functions directly selected/enabled through peripheral registers				
	function	Г	unctions directly selected/enabled tillough peripheral registers				

Table 3APM32F072x8xB Sort Description by Pin Name

Pin name (Function after reset)	Multiplexing function	Additional Function	Туре	Structure	LQFP100	LQFP64	LQFP48/ QFN48
PA0	USART2_CTS, TMR2_CH1_ETR, COMP1_OUT, TSC_G1_IO1, USART4_TX	RTC_TAMP2, WKUP1, ADC_IN0, COMP1_INM6	I/O	STDA	23	14	10
PA1	USART2_RTS, TMR2_CH2, TMR15_CH1N, TSC_G1_IO2, USART4_RX, EVENTOUT	ADC_IN1, COMP1_INP	I/O	STDA	24	15	11
PA2	USART2_TX, COMP2_OUT, TMR2_CH3, TMR15_CH1, TSC_G1_IO3	ADC_IN2, COMP2_INM6, WKUP4	I/O	STDA	25	16	12
PA3	USART2_RX, TMR2_CH4, TMR15_CH2, TSC_G1_IO4	ADC_IN3, COMP2_INP	I/O	STDA	26	17	13
PA4	SPI1_NSS, I2S1_WS, TMR14_CH1, TSC_G2_IO1, USART2_CK	COMP1_INM4, COMP2_INM4, ADC_IN4, DAC_OUT1	I/O	STDA	29	20	14
PA5	SPI1_SCK, I2S1_CK, CEC, TMR2_CH1_ETR, TSC_G2_IO2	COMP1_INM5, COMP2_INM5, ADC_IN5, DAC_OUT2	I/O	STDA	30	21	15
PA6	SPI1_MISO, I2S1_MCK, TMR3_CH1, TMR1_BKIN, TMR16_CH1, COMP1_OUT, TSC_G2_IO3, EVENTOUT, USART3_CTS	ADC_IN6	I/O	STDA	31	22	16

	SEMICO					SEMICONDUCTOR	
Pin name (Function after reset)	Multiplexing function	Additional Function	Туре	Structure	LQFP100	LQFP64	LQFP48/ QFN48
	SPI1_MOSI,						
	I2S1_SD,						
	TMR3_CH2,						
	TMR14_CH1,						
PA7	TMR1_CH1N,	ADC_IN7	I/O	STDA	32	23	17
	TMR17_CH1,						
	COMP2_OUT,						
	TSC_G2_IO4,						
	EVENTOUT						
	USART1_CK,						
	TMR1_CH1,						
PA8	EVENTOUT,	_	I/O	5T	67	41	29
	MCO,						
	CRS_SYNC						
	USART1_TX,						
	TMR1_CH2,		I/O	5T	68	42	
PA9	TMR15_BKIN,	_					30
	TSC_G4_IO1						
	USART1_RX,						
	TMR1_CH3,		I/O	5T	69		
PA10	TMR17_BKIN,	_				43	31
	TSC_G4_IO2						
	CAN_RX,						
	USART1_CTS,						
	TMR1_CH4,				70		
PA11	COMP1_OUT,	USBD_DM	I/O	5T		44	32
	TSC_G4_IO3,						
	EVENTOUT						
	CAN_TX,						
	USART1_RTS,						
	TMR1_ETR,						
PA12	COMP2_OUT,	USBD_DP	I/O	5T	71	45	33
	TSC_G4_IO4,						
	EVENTOUT						
	IR_OUT,						
PA13	SWDIO,	_	I/O	5T	72	46	34
	USBD_NOE						
	USART2_TX,		,				
PA14	SWCLK	_	I/O	5T	76	49	37

Dia		SEMIC					I OED49	
Pin name (Function after reset)	Multiplexing function	Additional Function	Туре	Structure	LQFP100	LQFP64	LQFP48/ QFN48	
	SPI1_NSS,							
	I2S1_WS,							
PA15	USART2_RX,	_	I/O	5T	77	50	38	
77110	USART4_RTS,							
	TMR2_CH1_ETR,							
	EVENTOUT							
	TMR3_CH3,							
	TMR1_CH2N,							
PB0	TSC_G3_IO2,	ADC_IN8	I/O	STDA	35	26	18	
	EVENTOUT,							
	USART3_CK							
	TMR3_CH4,							
	USART3_RTS,							
PB1	TMR14_CH1,	ADC_IN9	I/O	STDA	36	27	19	
	TMR1_CH3N,							
	TSC_G3_IO3							
PB2	TSC_G3_IO4	_	I/O	5T	37	28	20	
	SPI1_SCK,							
	I2S1_CK,							
PB3	TMR2_CH2,	_	I/O	5T	89	55	39	
	TSC_G5_IO1,							
	EVENTOUT							
	SPI1_MISO,							
	I2S1_MCK,							
PB4	TMR17_BKIN,		1/0	I/O 5T	90	56	40	
PD4	TMR3_CH1,	_	1/0				40	
	TSC_G5_IO2,							
	EVENTOUT							
	SPI1_MOSI,							
	I2S1_SD,							
PB5	I2C1_SMBA,	WKUP6	I/O	5T	91	57	41	
	TMR16_BKIN,							
	TMR3_CH2							
	I2C1_SCL,							
550	USART1_TX,		1/0	5.70	00	50	40	
PB6	TMR16_CH1N,	_	I/O	5Tf	92	58	42	
	TSC_G5_IO3							
	I2C1_SDA,							
PB7	USART1_RX,							
	USART4_CTS,	_	I/O	O 5Tf	93	59	43	
	TMR17_CH1N,							
	TSC_G5_IO4							

	1	1		ı	1	1	DUCTOR
Pin name (Function after reset)	Multiplexing function	Additional Function	Туре	Structure	LQFP100	LQFP64	LQFP48/ QFN48
	I2C1_SCL,						
	CEC,					61	
PB8	TMR16_CH1,	_	I/O	5Tf	95		45
	TSC_SYNC,						
	CAN_RX						
	SPI2_NSS,						
	I2S2_WS,						
	I2C1_SDA,						
PB9	IR_OUT,	_	I/O	5Tf	96	62	46
	TMR17_CH1,						
	EVENTOUT,						
	CAN_TX						
	SPI2_SCK,						
	I2C2_SCL,						
DD40	USART3_TX,		1/0	5-	47	00	0.4
PB10	CEC,	_	I/O	5T	47	29	21
	TSC_SYNC,						
	TMR2_CH3						
	USART3_RX,					30	
	TMR2_CH4,						
PB11	EVENTOUT,	_	I/O	5T	48		22
	TSC_G6_IO1,						
	I2C2_SDA						
	TMR1_BKIN,						
	TMR15_BKIN,						
	SPI2_NSS,						
PB12	12S2_WS,	_	I/O	5T	51	33	25
	USART3_CK,						
	TSC_G6_IO2,						
	EVENTOUT						
	SPI2_SCK,						
	I2S2_CK,						
	I2C2_SCL,						
PB13	USART3_CTS,	_	I/O	5Tf	52	34	26
	TMR1_CH1N,						
	TSC_G6_IO3						
	SPI2_MISO,						
	12S2_MCK,						
	I2C2_SDA,						
PB14	USART3_RTS,	_	I/O	5Tf	53	35	27
	TMR1_CH2N,						21
	TMR15_CH1,						
	TSC_G6_IO4						

	SEMICON						ONDUCTOR		
Pin name (Function after reset)	Multiplexing function	Additional Function	Туре	Structure	LQFP100	LQFP64	LQFP48/ QFN48		
PB15	SPI2_MOSI, I2S2_SD, TMR1_CH3N, TMR15_CH1N, TMR15_CH2	WKUP7, RTC_REFIN	I/O	5T	54	36	28		
PC0	EVENTOUT	ADC_IN10	I/O	STDA	15	8	_		
PC1	EVENTOUT	ADC_IN11	I/O	STDA	16	9	_		
PC2	SPI2_MISO, I2S2_MCK, EVENTOUT	ADC_IN12	I/O	STDA	17	10	_		
PC3	SPI2_MOSI, I2S2_SD, EVENTOUT	ADC_IN13	I/O	STDA	18	11	_		
PC4	EVENTOUT, USART3_TX	ADC_IN14	I/O	STDA	33	24	_		
PC5	TSC_G3_IO1, USART3_RX	ADC_IN15, WKUP5	I/O	STDA	34	25	_		
PC6	TMR3_CH1	_	I/O	5T	63	37	_		
PC7	TMR3_CH2	_	I/O	5T	64	38	_		
PC8	TMR3_CH3	_	I/O	5T	65	39	_		
PC9	TMR3_CH4	_	I/O	5T	66	40	_		
PC10	USART3_TX, USART4_TX	_	I/O	5T	78	51	_		
PC11	USART3_RX, USART4_RX	_	I/O	5T	79	52	_		
PC12	USART3_CK, USART4_CK	_	I/O	5T	80	53	_		
PC13	_	WKUP2, RTC_TAMP1, RTC_TS, RTC_OUT	I/O	STD	7	2	2		
PC14-OSC32_IN (PC14)		OSC32_IN	I/O	STD	8	3	3		
PC15-OSC32_OUT (PC15)		OSC32_OUT	I/O	STD	9	4	4		
PD0	SPI2_NSS, I2S2_WS, CAN_RX	_	I/O	5T	81	_	_		

D'							L OFD49		
Pin name (Function after reset)	Multiplexing function	Additional Function	Туре	Structure	LQFP100	LQFP64	LQFP48/ QFN48		
	SPI2_SCK,								
PD1	I2S2_CK,	_	I/O	5T	82	_	_		
	CAN_TX								
PD2	USART3_RTS,		I/O	5T	83	54			
I DZ	TMR3_ETR	_	1/0	31	03	54			
	SPI2_MISO,								
PD3	I2S2_MCK,	_	I/O	5T	84	_	_		
	USART2_CTS								
	SPI2_MOSI,								
PD4	I2S2_SD,	_	I/O	5T	85	_	_		
	USART2_RTS								
PD5	USART2_TX	_	I/O	5T	86	_	_		
PD6	USART2_RX	_	I/O	5T	87	_	_		
PD7	USART2_CK	_	I/O	5T	88	_	_		
PD8	USART3_TX	_	I/O	5T	55	_	_		
PD9	USART3_RX	_	I/O	5T	56	_	_		
PD10	USART3_CK	_	I/O	5T	57	_	_		
PD11	USART3_CTS	_	I/O	5T	58	_	_		
PD12	USART3_RTS,	_	I/O	5T	59	_	_		
	TSC_G8_IO1								
PD13	TSC_G8_IO2	_	I/O	5T	60	_	_		
PD14	TSC_G8_IO3	_	I/O	5T	61	_	_		
PD15	TSC_G8_IO4, CRS_SYNC	_	I/O	5T	62	_	_		
PE0	EVENTOUT, TMR16_CH1	_	I/O	5T	97	_	_		
	EVENTOUT,								
PE1	TMR17_CH1	_	I/O	5T	98	_	_		
DEO	TSC_G7_IO1,		1/0	<i></i>	4				
PE2	TMR3_ETR		I/O	5T	1	_			
DEC	TSC_G7_IO2,		1/0	c.T	0				
PE3	TMR3_CH1	_	I/O	5T	2	_	_		
PE4	TSC_G7_IO3,		I/O	5T	3				
F E4	TMR3_CH2	_	1/0	31	J				

						SEMICO	CONDUCTOR		
Pin name (Function after reset)	Multiplexing function	Additional Function	Туре	Structure	LQFP100	LQFP64	LQFP48/ QFN48		
PE5	TSC_G7_IO4, TMR3_CH3	_	I/O	5T	4	_	_		
PE6	TMR3_CH4	WKUP3, RTC_TAMP3	I/O	5T	5	_	_		
PE7	TMR1_ETR	_	I/O	5T	38	_	-		
PE8	TMR1_CH1N	_	I/O	5T	39	_	_		
PE9	TMR1_CH1	_	I/O	5T	40	_	-		
PE10	TMR1_CH2N	_	I/O	5T	41	_	_		
PE11	TMR1_CH2	_	I/O	5T	42	_	_		
PE12	SPI1_NSS, I2S1_WS, TMR1_CH3N	_	I/O	5T	43	_	_		
PE13	SPI1_SCK, I2S1_CK, TMR1_CH3	_	I/O	5T	44	_	_		
PE14	SPI1_MISO, I2S1_MCK, TMR1_CH4	_	I/O	5T	45	_	_		
PE15	SPI1_MOSI, I2S1_SD, TMR1_BKIN	_	I/O	5T	46	_	_		
PF0-OSC_IN (PF0)	CRS_SYNC	OSC_IN	I/O	5T	12	5	5		
PF1-OSC_OUT (PF1)	_	OSC_OUT	I/O	5T	13	6	6		
PF2	EVENTOUT	WKUP8	I/O	5T	19	_	_		
PF3	EVENTOUT	_	I/O	5T	22	_	_		
PF6	_	_	I/O	5T	73	_	_		
PF9	TMR15_CH1	_	I/O	5T	10	_	_		
PF10	TMR15_CH2	_	I/O	5T	11	_	_		
VBAT	_	_	Р	_	6	1	1		
VSSA	_	_	Р	_	20	12	8		

						SEMICO	NDUCTOR •
Pin name (Function after reset)	Multiplexing function	Additional Function	Туре	Structure	LQFP100	LQFP64	LQFP48/ QFN48
VDDA	_	_	Р	_	21	13	9
VSS	_	_	Р	_	27	18	_
VDD	_	_	Р	_	28	19	_
VSS	_	_	Р	_	49	31	23
VDD	_	_	Р	_	50	32	24
VSS	_	_	Р	_	74	47	35
VDDIO2	_	_	Р	_	75	48	36
VSS	_	_	Р	_	99	63	47
VDD	_	_	Р	_	100	64	48
NRST	_	_	I/O	RST	14	7	7
воото	_	_	I	В	94	60	44

Table 4APM32F072x8xB Sort Description by Pin Serial Number

Name	AND TANGET OF ZAC						LQFP48/
(Function after reset)	Multiplexing function	Additional function	Type	Structure	LQFP100	LQFP64	QFN48
PE2	TSC_G7_IO1, TMR3_ETR	_	I/O	5T	1	_	_
PE3	TSC_G7_IO2, TMR3_CH1		I/O	5T	2		_
PE4	TSC_G7_IO3, TMR3_CH2	_	I/O	5T	3	_	_
PE5	TSC_G7_IO4, TMR3_CH3	_	I/O	5T	4	_	_
PE6	TMR3_CH4	WKUP3, RTC_TAMP3	I/O	5T	5	_	_
VBAT	_	_	Р	_	6	1	1
PC13	_	WKUP2, RTC_TAMP1, RTC_TS, RTC_OUT	I/O	STD	7	2	2
PC14-OSC32_IN (PC14)	_	OSC32_IN	I/O	STD	8	3	3
PC15-OSC32_OUT (PC15)	_	OSC32_OUT	I/O	STD	9	4	4
PF9	TMR15_CH1	_	I/O	5T	10	_	_
PF10	TMR15_CH2	_	I/O	5T	11	_	_
PF0-OSC_IN (PF0)	CRS_SYNC	OSC_IN	I/O	5T	12	5	5
PF1-OSC_OUT (PF1)	_	OSC_OUT	I/O	5T	13	6	6
NRST	_	_	I/O	RST	14	7	7
PC0	EVENTOUT	ADC_IN10	I/O	STDA	15	8	_
PC1	EVENTOUT	ADC_IN11	I/O	STDA	16	9	_
PC2	SPI2_MISO, I2S2_MCK, EVENTOUT	ADC_IN12	I/O	STDA	17	10	_
PC3	SPI2_MOSI, I2S2_SD, EVENTOUT	ADC_IN13	I/O	STDA	18	11	_
PF2	EVENTOUT	WKUP8	I/O	5T	19	_	_
VSSA	_	_	Р	_	20	12	8
VDDA	_	_	Р	_	21	13	9
PF3	EVENTOUT	_	I/O	5T	22	_	_
	i	1		1	1	1	

Nama						LOED49/	
Name (Function after reset)	Multiplexing function	Additional function	Type	Structure	LQFP100	LQFP64	LQFP48/ QFN48
PA0	USART2_CTS, TMR2_CH1_ETR, COMP1_OUT, TSC_G1_IO1, USART4_TX	RTC_TAMP2, WKUP1, ADC_IN0, COMP1_INM6	I/O	STDA	23	14	10
PA1	USART2_RTS, TMR2_CH2, TMR15_CH1N, TSC_G1_IO2, USART4_RX, EVENTOUT	ADC_IN1, COMP1_INP	I/O	STDA	24	15	11
PA2	USART2_TX, COMP2_OUT, TMR2_CH3, TMR15_CH1, TSC_G1_IO3	ADC_IN2, COMP2_INM6, WKUP4	I/O	STDA	25	16	12
PA3	USART2_RX, TMR2_CH4, TMR15_CH2, TSC_G1_IO4	ADC_IN3, COMP2_INP	I/O	STDA	26	17	13
VSS	_	_	Р	_	27	18	_
VDD	_	_	Р	_	28	19	_
PA4	SPI1_NSS, I2S1_WS, TMR14_CH1, TSC_G2_IO1, USART2_CK	COMP1_INM4, COMP2_INM4, ADC_IN4, DAC_OUT1	I/O	STDA	29	20	14
PA5	SPI1_SCK, I2S1_CK, CEC, TMR2_CH1_ETR, TSC_G2_IO2	COMP1_INM5, COMP2_INM5, ADC_IN5, DAC_OUT2	I/O	STDA	30	21	15
PA6	SPI1_MISO, I2S1_MCK, TMR3_CH1, TMR1_BKIN, TMR16_CH1, COMP1_OUT, TSC_G2_IO3, EVENTOUT, USART3_CTS	ADC_IN6	I/O	STDA	31	22	16

Massa						32.	L OFD49/
Name (Function after reset)	Multiplexing function	Additional function	Туре	Structure	LQFP100	LQFP64	LQFP48/ QFN48
	SPI1_MOSI,						
	I2S1_SD,						
	TMR3_CH2,						
	TMR14_CH1,						
PA7	TMR1_CH1N,	ADC_IN7	I/O	STDA	32	23	17
	TMR17_CH1,						
	COMP2_OUT,						
	TSC_G2_IO4,						
	EVENTOUT						
PC4	EVENTOUT,	ADC_IN14	I/O	STDA	33	24	_
1 04	USART3_TX			SIDA	33	24	
PC5	TSC_G3_IO1,	ADC_IN15,	I/O	STDA	34	25	
PCS	USART3_RX	WKUP5	2	SIDA	34	25	_
	TMR3_CH3,						
	TMR1_CH2N,				35	26	
PB0	TSC_G3_IO2,	ADC_IN8	I/O	STDA			18
	EVENTOUT,						
	USART3_CK						
	TMR3_CH4,						1
	USART3_RTS,						
PB1	TMR14_CH1,	ADC_IN9	I/O	STDA	36	27	19
	TMR1_CH3N,						
	TSC_G3_IO3						
PB2	TSC_G3_IO4	_	I/O	5T	37	28	20
PE7	TMR1_ETR	_	I/O	5T	38	_	_
PE8	TMR1_CH1N	_	I/O	5T	39	_	_
PE9	TMR1_CH1	_	I/O	5T	40	_	_
PE10	TMR1_CH2N	_	I/O	5T	41	_	_
PE11	TMR1_CH2	_	I/O	5T	42	_	_
	SPI1_NSS,						
PE12	I2S1_WS,	_	I/O	5T	43	_	_
	TMR1_CH3N						
	SPI1_SCK,						
PE13	I2S1_CK,	_	I/O	5T	44	_	_
	TMR1_CH3						
	SPI1_MISO,						
PE14	I2S1_MCK,	_	I/O	5T	45	_	_
	TMR1_CH4						
	SPI1_MOSI,						
PE15	I2S1_SD,	_	I/O	5T	46	_	_
-			-		-		
	TMR1_BKIN						

	SEMICONDUCTOR						
Name (Function after reset)	Multiplexing function	Additional function	Туре	Structure	LQFP100	LQFP64	LQFP48/ QFN48
	SPI2_SCK,						
	I2C2_SCL,						
DD40	USART3_TX,		1/0		47	00	04
PB10	CEC,	_	I/O	5T	47	29	21
	TSC_SYNC,						
	TMR2_CH3						
	USART3_RX,						
	TMR2_CH4,						
PB11	EVENTOUT,	_	I/O	5T	48	30	22
	TSC_G6_IO1,						
	I2C2_SDA						
VSS		_	P	_	49	31	23
VDD			P		50	32	24
VUU	TMD4 DIZINI	_	Г	_	50	32	
	TMR1_BKIN,				51	22	
	TMR15_BKIN,						
55.40	SPI2_NSS,						0.5
PB12	I2S2_WS,	_	I/O	5T		33	25
	USART3_CK,						
	TSC_G6_IO2,						
	EVENTOUT						
	SPI2_SCK,						
	12S2_CK,		I/O	5Tf	52	34	26
PB13	I2C2_SCL,	_					
	USART3_CTS,						
	TMR1_CH1N,						
	TSC_G6_IO3						
	SPI2_MISO,						
	I2S2_MCK,						
	I2C2_SDA,						
PB14	USART3_RTS,	_	I/O	5Tf	53	35	27
	TMR1_CH2N,						
	TMR15_CH1,						
	TSC_G6_IO4						
	SPI2_MOSI,						
	12S2_SD,						
PB15	TMR1_CH3N,	WKUP7,	I/O	5T	54	36	28
	TMR15_CH1N,	RTC_REFIN					
	TMR15_CH2						
PD8	USART3_TX	_	I/O	5T	55	_	_
PD9	USART3_RX	_	I/O	5T	56	_	_
PD10	USART3_CK	_	I/O	5T	57	_	_

	SEMICONDUCTOR						
Name (Function after reset)	Multiplexing function	Additional function	Туре	Structure	LQFP100	LQFP64	LQFP48/ QFN48
PD11	USART3_CTS	_	I/O	5T	58	_	_
PD12	USART3_RTS, TSC_G8_IO1	_	I/O	5T	59	_	_
PD13	TSC_G8_IO2	_	I/O	5T	60	_	_
PD14	TSC_G8_IO3	_	I/O	5T	61	_	_
PD15	TSC_G8_IO4, CRS_SYNC	_	I/O	5T	62	_	_
PC6	TMR3_CH1	_	I/O	5T	63	37	_
PC7	TMR3_CH2	_	I/O	5T	64	38	_
PC8	TMR3_CH3	_	I/O	5T	65	39	_
PC9	TMR3_CH4	_	I/O	5T	66	40	_
PA8	USART1_CK, TMR1_CH1, EVENTOUT, MCO, CRS_SYNC	_	I/O	5T	67	41	29
PA9	USART1_TX, TMR1_CH2, TMR15_BKIN, TSC_G4_IO1	_	I/O	5T	68	42	30
PA10	USART1_RX, TMR1_CH3, TMR17_BKIN, TSC_G4_IO2	_	I/O	5T	69	43	31
PA11	CAN_RX, USART1_CTS, TMR1_CH4, COMP1_OUT, TSC_G4_IO3, EVENTOUT	USBD_DM	I/O	5T	70	44	32
PA12	CAN_TX, USART1_RTS, TMR1_ETR, COMP2_OUT, TSC_G4_IO4, EVENTOUT	USBD_DP	I/O	5T	71	45	33
PA13	IR_OUT, SWDIO, USBD_NOE	_	I/O	5T	72	46	34
PF6	_	_	I/O	5T	73	_	_
	l						

Nama				1		327	I OED49/
Name (Function after reset)	Multiplexing function	Additional function	Туре	Structure	LQFP100	LQFP64	LQFP48/ QFN48
VSS	_	_	Р	_	74	47	35
VDDIO2	_	_	Р	_	75	48	36
PA14	USART2_TX, SWCLK	_	I/O	5T	76	49	37
PA15	SPI1_NSS, I2S1_WS, USART2_RX, USART4_RTS, TMR2_CH1_ETR, EVENTOUT	_	I/O	5T	77	50	38
PC10	USART3_TX, USART4_TX	_	I/O	5T	78	51	_
PC11	USART3_RX, USART4_RX	_	I/O	5T	79	52	_
PC12	USART3_CK, USART4_CK	_	I/O	5T	80	53	_
PD0	SPI2_NSS, I2S2_WS, CAN_RX	_	I/O	5T	81	_	_
PD1	SPI2_SCK, I2S2_CK, CAN_TX	_	I/O	5T	82		_
PD2	USART3_RTS, TMR3_ETR	_	I/O	5T	83	54	_
PD3	SPI2_MISO, I2S2_MCK, USART2_CTS	_	I/O	5T	84	_	_
PD4	SPI2_MOSI, I2S2_SD, USART2_RTS	_	I/O	5T	85	_	_
PD5	USART2_TX	_	I/O	5T	86	_	_
PD6	USART2_RX	_	I/O	5T	87	_	_
PD7	USART2_CK	_	I/O	5T	88	_	_
PB3	SPI1_SCK, I2S1_CK, TMR2_CH2, TSC_G5_IO1, EVENTOUT	_	I/O	5T	89	55	39

Name	Multiplexing function	Additional function	Type	Structure	I OFP100	I OFP64	LQFP48/
(Function after reset)		Additional fariotion	.,,,,,	Oti dotai o	<u> </u>	EQ () 04	QFN48
	SPI1_MISO,						
	I2S1_MCK,						
PB4	TMR17_BKIN,	_	I/O	5T	90	56	40
	TMR3_CH1,						
	TSC_G5_IO2,						
	EVENTOUT						
	SPI1_MOSI,						
	I2S1_SD,						
PB5	I2C1_SMBA,	WKUP6	I/O	5T	91	57	41
	TMR16_BKIN,						
	TMR3_CH2						
	I2C1_SCL,						
PB6	USART1_TX,	_	I/O	5Tf	92	58	42
	TMR16_CH1N,						
	TSC_G5_I03						
	I2C1_SDA,						
	USART1_RX,						
PB7	USART4_CTS,	_	I/O	5Tf	93	59	43
	TMR17_CH1N,						
	TSC_G5_IO4						
воото	_	_	1	В	94	60	44
	I2C1_SCL,						45
	CEC,			5Tf	95	61	
PB8	TMR16_CH1,	_	I/O				
	TSC_SYNC,						
	CAN_RX		İ				
	SPI2_NSS,						
	12S2_WS,						
	I2C1_SDA,						
PB9	IR_OUT,	_	I/O	5Tf	96	62	46
	TMR17_CH1,						
	EVENTOUT,						
	CAN_TX						
DEO	EVENTOUT,		1/0	ЕТ	07		
PE0	TMR16_CH1	_	I/O	5T	97	_	_
DE4	EVENTOUT,		1/0	-T	00		
PE1	TMR17_CH1	_	I/O	5T	98	_	
VSS	_	_	Р	_	99	63	47
				+			

Notes:

- PC13, PC14 and PC15 are powered by the power switch. The use of PC13 to PC15 of GPIO is limited in output mode since the switch only absorbs a limited current (3 mA):
 - ① When the heavy load is 30pF, the speed should not exceed 2MHz.

- ② It is not used as a current source (for example, driving light emitting diodes).
- (2) After reset, these pins are configured as SWDIO and SWCLK multiplexing functions, and the internal pull-up of SWDIO pin and the internal pull-down of SWCLK pin are activated.

 $(3) \qquad \text{The gray part is powered by V_{DDIO2}.}$

3.3 **GPIO Multiplexing Function Configuration**

Table 5GPIOA Multiplexing Function Configuration

Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PA0	_	USART2_CTS	TMR2_CH1_ETR	TSC_G1_IO1	USART4_TX	_	_	COMP1_OUT
PA1	EVENTOUT	USART2_RTS	TMR2_CH2	TSC_G1_IO2	USART4_RX	TMR15_CH1N	_	_
PA2	TMR15_CH1	USART2_TX	TMR2_CH3	TSC_G1_IO3	_	_	_	COMP2_OUT
PA3	TMR15_CH2	USART2_RX	TMR2_CH4	TSC_G1_IO4	_	_	_	_
PA4	SPI1_NSS,I2S1_WS	USART2_CK	_	TSC_G2_IO1	TMR14_CH1	_	_	_
PA5	SPI1_SCK,I2S1_CK	CEC	TMR2_CH1_ETR	TSC_G2_IO2	_	_	_	_
PA6	SPI1_MISO,I2S1_MCK	TMR3_CH1	TMR1_BKIN	TSC_G2_IO3	USART3_CTS	TMR16_CH1	EVENTOUT	COMP1_OUT
PA7	SPI1_MOSI,I2S1_SD	TMR3_CH2	TMR1_CH1N	TSC_G2_IO4	TMR14_CH1	TMR17_CH1	EVENTOUT	COMP2_OUT
PA8	MCO	USART1_CK	TMR1_CH1	EVENTOUT	CRS_SYNC	_	_	_
PA9	TMR15_BKIN	USART1_TX	TMR1_CH2	TSC_G4_IO1	_	_	_	_
PA10	TMR17_BKIN	USART1_RX	TMR1_CH3	TSC_G4_IO2	_	_	_	_
PA11	EVENTOUT	USART1_CTS	TMR1_CH4	TSC_G4_IO3	CAN_RX	_	_	COMP1_OUT
PA12	EVENTOUT	USART1_RTS	TMR1_ETR	TSC_G4_IO4	CAN_TX	_	_	COMP2_OUT
PA13	SWDIO	IR_OUT	USBD_NOE	_	_	_	_	_
PA14	SWCLK	USART2_TX	_	_	_	_	_	_
PA15	SPI1_NSS,I2S1_WS	USART2_RX	TMR2_CH1_ETR	EVENTOUT	USART4_RTS	_	_	_

Table 6GPIOB Multiplexing Function Configuration

Name	AF0	AF1	AF2	AF3	AF4	AF5
PB0	EVENTOUT	TMR3_CH3	TMR1_CH2N	TSC_G3_IO2	USART3_CK	_
PB1	TMR14_CH1	TMR3_CH4	TMR1_CH3N	TSC_G3_IO3	USART3_RTS	_
PB2	_	_	_	TSC_G3_IO4	_	_
PB3	SPI1_SCK,I2S1_CK	EVENTOUT	TMR2_CH2	TSC_G5_IO1	_	_
PB4	SPI1_MISO,I2S1_MCK	TMR3_CH1	EVENTOUT	TSC_G5_IO2	_	TMR17_BKIN
PB5	SPI1_MOSI,I2S1_SD	TMR3_CH2	TMR16_BKIN	I2C1_SMBA	_	_
PB6	USART1_TX	I2C1_SCL	TMR16_CH1N	TSC_G5_IO3	_	_
PB7	USART1_RX	I2C1_SDA	TMR17_CH1N	TSC_G5_IO4	USART4_CTS	_
PB8	CEC	I2C1_SCL	TMR16_CH1	TSC_SYNC	CAN_RX	_
PB9	IR_OUT	I2C1_SDA	TMR17_CH1	EVENTOUT	CAN_TX	SPI2_NSS,I2S2_WS
PB10	CEC	I2C2_SCL	TMR2_CH3	TSC_SYNC	USART3_TX	SPI2_SCK,I2S2_CK
PB11	EVENTOUT	I2C2_SDA	TMR2_CH4	TSC_G6_IO1	USART3_RX	_
PB12	SPI2_NSS,I2S2_WS	EVENTOUT	TMR1_BKIN	TSC_G6_IO2	USART3_CK	TMR15_BKIN
PB13	SPI2_SCK,I2S2_CK	_	TMR1_CH1N	TSC_G6_IO3	USART3_CTS	I2C2_SCL
PB14	SPI2_MISO,2S2_MCK	TMR15_CH1	TMR1_CH2N	TSC_G6_IO4	USART3_RTS	I2C2_SDA
PB15	SPI2_MOSI,I2S2_SD	TMR15_CH2	TMR1_CH3N	TMR15_CH1N	_	_

www.geehy.com

Table 7GPIOC Multiplexing Function Configuration

Name	AF0	AF1
PC0	EVENTOUT	_
PC1	EVENTOUT	_
PC2	EVENTOUT	SPI2_MISO,I2S2_MCK
PC3	EVENTOUT	SPI2_MOSI,I2S2_SD
PC4	EVENTOUT	USART3_TX
PC5	TSC_G3_IO1	USART3_RX
PC6	TMR3_CH1	_
PC7	TMR3_CH2	_
PC8	TMR3_CH3	_
PC9	TMR3_CH4	_
PC10	USART4_TX	USART3_TX
PC11	USART4_RX	USART3_RX
PC12	USART4_CK	USART3_CK
PC13	_	_
PC14	_	_
PC15	_	_

Table 8GPIOD Multiplexing Function Configuration

Name	AF0	AF1
PD0	CAN_RX	SPI2_NSS,I2S2_WS
PD1	CAN_TX	SPI2_SCK,I2S2_CK
PD2	TMR3_ETR	USART3_RTS
PD3	USART2_CTS	SPI2_MISO,I2S2_MCK
PD4	USART2_RTS	SPI2_MOSI,I2S2_SD
PD5	USART2_TX	-
PD6	USART2_RX	-
PD7	USART2_CK	-
PD8	USART3_TX	-
PD9	USART3_RX	-
PD10	USART3_CK	-
PD11	USART3_CTS	-
PD12	USART3_RTS	TSC_G8_IO1
PD13	-	TSC_G8_IO2
PD14	-	TSC_G8_IO3
PD15	CRS_SYNC	TSC_G8_IO4

www.geehy.com

Table 9GPIOE Multiplexing Function Configuration

Name	AF0	AF1
PE0	TMR16_CH1	EVENTOUT
PE1	TMR17_CH1	EVENTOUT
PE2	TMR3_ETR	TSC_G7_IO1
PE3	TMR3_CH1	TSC_G7_IO2
PE4	TMR3_CH2	TSC_G7_IO3
PE5	TMR3_CH3	TSC_G7_IO4
PE6	TMR3_CH4	-
PE7	TMR1_ETR	-
PE8	TMR1_CH1N	-
PE9	TMR1_CH1	-
PE10	TMR1_CH2N	-
PE11	TMR1_CH2	-
PE12	TMR1_CH3N	SPI1_NSS,I2S1_WS
PE13	TMR1_CH3	SPI1_SCK,I2S1_CK
PE14	TMR1_CH4	SPI1_MISO,I2S1_MCK
PE15	TMR1_BKIN	SPI1_MOSI,I2S1_SD

Table 10GPIOF Multiplexing Function Configuration

Name	AF
PF0	CRS_SYNC
PF1	-
PF2	EVENTOUT
PF3	EVENTOUT
PF6	-
PF9	TMR15_CH1
PF10	TMR15_CH2

www.geehy.com

4 Function Description

This chapter mainly introduces the system architecture, interrupt, on-chip memory, clock, power supply and peripheral characteristics of APM32F072x8xB series products. For information about Arm® Cortex®-M0+core, please refer to the Arm® Cortex®-M0+technical reference sheet, which can be downloaded from Arm's website.

4.1 System Architecture

4.1.1 System Block Diagram

Cortex-MO+ (Fmax: 48MHz) SWD NVIC SCB STK Flash BUS MATRIX GP10s Flash (A-F)SRAM (16KB) DMA ace RCM TSC TMR1/2/3/6/7 AHB1 to APB CRC bridge14/15/16/17 RTC CAN WWDT CRS IWDT PMU SP12/12S2 DAC USART1/2/3/4 CEC 1201/2 SYSCFG+COMP USBD USBD/CAN EINT

Figure. 5 System Block Diagram

www.geehy.com Page29

ADC
SPI1/I2S1
DBGMCU

4.1.2 Storage Mapping

Table 11APM32F072x8xB Storage Mapping Table

Region	Start Address	Peripheral Name
Code	0x0000 0000	Code mapping area
Code	0x0002 0000	Reserve
Code	0x0800 0000	Main storage area
Code	0x0802 0000	Reserve
Code	0x1FFF C800	BootLoader
Code	0x1FFF F800	Option byte
Code	0x1FFF FC00	Reserve
SRAM	0x2000 0000	SRAM
_	0x2000 4000	Reserve
APB bus	0x4000 0000	TMR2
APB bus	0x4000 0400	TMR3
APB bus	0x4000 0800	Reserve
APB bus	0x4000 1000	TMR6
APB bus	0x4000 1400	TMR7
APB bus	0x4000 1800	Reserve
APB bus	0x4000 2000	TMR14
APB bus	0x4000 2400	Reserve
APB bus	0x4000 2800	RTC
APB bus	0x4000 2C00	WWDT
APB bus	0x4000 3000	IWDT
APB bus	0x4000 3400	Reserve
APB bus	0x4000 3800	SPI2/I2S2
APB bus	0x4000 3C00	Reserve
APB bus	0x4000 4400	USART2
APB bus	0x4000 4800	USART3
APB bus	0x4000 4C00	USART4
APB bus	0x4000 5000	Reserve
APB bus	0x4000 5400	I2C1
APB bus	0x4000 5800	I2C2
APB bus	0x4000 5C00	USBD
APB bus	0x4000 6000	USBD/CANSRAM
APB bus	0x4000 6400	CAN
APB bus	0x4000 6800	Reserve
APB bus	0x4000 6C00	CRS
APB bus	0x4000 7000	PMU
APB bus	0x4000 7400	DAC
APB bus	0x4000 7800	CEC

Region	Start Address	Peripheral Name
APB bus	0x4000 7C00	Reserve
APB bus	0x4000 8000	Reserve
APB bus	0x4001 0000	SYSCFG+COMP
APB bus	0x4001 0400	EINT
APB bus	0x4001 0800	Reserve
APB bus	0x4001 2400	ADC
APB bus	0x4001 2800	Reserve
APB bus	0x4001 2C00	TMR1
APB bus	0x4001 3000	SPI1/I2S1
APB bus	0x4001 3400	Reserve
APB bus	0x4001 3800	USART1
APB bus	0x4001 3C00	Reserve
APB bus	0x4001 4000	TMR15
APB bus	0x4001 4400	TMR16
APB bus	0x4001 4800	TMR17
APB bus	0x4001 4C00	Reserve
APB bus	0x4001 5800	DBGMCU
APB bus	0x4001 5C00	Reserve
_	0x4001 8000	Reserve
AHB1 bus	0x4002 0000	DMA
AHB1 bus	0x4002 0400	Reserve
AHB1 bus	0x4002 1000	RCM
AHB1 bus	0x4002 1400	Reserve
AHB1 bus	0x4002 2000	Flash Interface
AHB1 bus	0x4002 2400	Reserve
AHB1 bus	0x4002 3000	CRC
AHB1 bus	0x4002 3400	Reserve
AHB1 bus	0x4002 4000	TSC
_	0x4002 4400	Reserve
AHB2 bus	0x4800 0000	GPIOA
AHB2 bus	0x4800 0400	GPIOB
AHB2 bus	0x4800 0800	GPIOC
AHB2 bus	0x4800 0C00	GPIOD
AHB2 bus	0x4800 1000	GPIOE
AHB2 bus	0x4800 1400	GPIOF
_	0x4800 1800	Reserve
Core	0xE000 E010	STK
Core	0xE000 E100	NVIC
Core	0xE000 ED00	SCB
_	0xE010 0000	Reserve

4.1.3 Startup Mode

At startup, the user can select one of the following three startup modes by setting the high and low levels of the Boot pin:

- Boot from main memory
- Boot from BootLoader
- Boot from built-in SRAM

The user can use USART (PA14/PA15 or PA9/PA10), I2C(PB6/PB7) and USBDDFU interface to reprogram the user Flash if boot from BootLoader.

4.2 **Core**

The core of APM32F072x8xB is Arm[®] Cortex[®]-M0+, which is the latest generation of embedded Arm core. Based on low development cost and power consumption characteristics of this platform, it can provide excellent calculation performance and advanced system interrupt response, and is compatible with all Arm tools and software.

4.3 Interrupt ContReeler

4.3.1 Nested Vector Interrupt ContReeler (NVIC)

The APM32F072x8xB product has a nested vector interrupt contReeler, and NVIC can handle up to 32 maskable interrupt channels (excluding 16 interrupt lines of Cortex®-M0+) and 4 priorities. The interrupt vector entry address can be directly transmitted to the core, so that the interrupt response processing with low delay can give priority to the late higher priority interrupt.

4.3.2 External Interrupt/ Event ContReeler (EINT)

The external interrupt/event contReeler has 32 edge detectors, each of which includes an edge detection circuit and an interrupt/event request generation circuit. Each detector can be configured as rising edge trigger, falling edge trigger and double edge trigger, and can also be shielded separately. Up to 87 GPIO can be connected to 16 external interrupt lines.

4.4 On-Chip Memory

User-modifiable memory includes main memory, SRAM, option byte and BootLoader. The BootLoader has been written at ex-works and cannot be modified.

Table 12Memory Description

Memory	Max bytes	Description
main memory	128KB	Store user's code and constant data
SRAM	16KB	_
Option byte	16Bytes	Three levels can be configured to protect part of the main memory or the whole main memory
BootLoader	12KB	_

4.5 Clock

See the following figure for clock tree of APM32F072x8xB: Figure. 6 APM32F072x8xB Clock Tree

4.5.1 Clock Source

Clock sources of APM32F072x8xB can be divided into high-speed clock and low-speed clock according to speed, with high-speed clocks including HSICLK48_CLK, HSICLK14_CLK, HSICLK_CLK and HSECLK, and low-speed clocks including LSECLK and LSICLK. On-chip/off-chip is divided into internal clock and external clock. The internal clocks are HSICLK48_CLK, HSICLK14_CLK, and the external clocks are HSECLK and LSECLK, among which HSICLK48_CLK, HSICLK14_CLK and HSICLK_CLK are calibrated at ex-works.

4.5.2 System Clock

The APM32F072x8xB can select HSICLK48_CLK, HSICLK_CLK, PLL_CLK and HSECLK_CLK as system clocks. In which the clock source of HSICLK48_CLK is HSICLK48 and the clock source of HSICLK_CLK is HSICLK. One of HSICLK48_CLK, HSICLK and HSECLK can be selected as the clock source of PLL_CLK, and the required system clock can be obtained by configuring the frequency doubling coefficient and frequency division coefficient of PLL. Clock source of HSECLK_CLK is HSECLK. When the product is reset and started, HSICLK_CLK is selected as the system clock by default, and then the user can choose one of the above four clock sources as the system clock by himself.

4.5.3 Bus Clock

Clock source of AHB is SYC_CLK, clock source of APB is ABH_CLK, the required clock can be obtained by configuring frequency division coefficient, and the maximum value of AHB_CLK and APB_CLK is 48MHz.

4.6 **Power Management**

4.6.1 Power Supply Scheme

Table 13Power Supply Scheme

Name	Voltage Range	Description
V _{DD} /V _{DDIO1}	2.0~3.6V	I/O (see pin distribution diagram for specific IO) and internal voltage regulator are powered through V_{DD} pin.
V _{DDIO2}	1.65-3.6V	I/O is powered through V_{DDIO2} pin (see pin distribution diagram for specific IO).
VDDA	V _{DD} ~3.6V	The V_{DDA} supplies power to the ADC, reset module, RC oscillator and PLL, and the voltage level of V_{DDA} must always be greater than or equal to the voltage level of V_{DD} , which should be given priority.
V _{BAT}	1.65-3.6V	When V_{DD} is powered off, power can be supplied to RTC, external 32kHz oscillator and backup register through V_{BAT} pin.

Note: For more details on how to connect the power supply pins, see Figure 7 Power Supply Scheme

4.6.2 Voltage Regulator

Table 14Working Mode of Regulator

Name	Description
Master mode (MR)	Used in running mode
Low power mode (LPR)	Used in halt mode
Power-down mode	Used in standby mode, when the voltage regulator has high impedance output, the core circuit is powered down, the power consumption of the voltage regulator is zero, and all data of registers and SRAM will be lost.

Note: The voltage regulator is always in working state after reset, and outputs with high impedance in power-down mode.

4.6.3 Power Supply Monitor

Power-on reset (POR) and power-down reset (PDR) circuits are integrated inside the product. These two circuits are always in working condition. When the power-down reset circuit monitors that the power supply voltage is lower than the specified threshold value (V_{POR/PDR}), even if the external reset circuit is used, the system will remain reset.

The product has a built-in programmable voltage regulator (PVD) that can monitor V_{DD} and compare it with V_{PVD} threshold. When V_{DD} is outside the V_{PVD} threshold range and the interrupt is enabled, the MCU can be set to a safe state through the interrupt service program.

4.7 Low Power Consumption Mode

APM32F072x8xB supports three low power consumption modes: sleep mode, halt mode and standby mode. These three modes are different in power consumption, wake-up time and wake-up mode, so the low power consumption mode can be selected according to actual application requirements.

Table 15Low Power Consumption Mode

Mode type	Description
Sleep mode	The CPU stops working, all peripherals are working, and interrupts/events can wake up the CPU.
halt mode	Under the condition that SRAM and register data are not lost, the halt mode can achieve the lowest power consumption; The clock of the internal 1.5V power supply module will stop, HSECLK crystal resonator, HSICLK and PLL will be prohibited, and the voltage regulator can be configured in normal mode or low power consumption mode; Any external interrupt line can wake up MCU, including one of 16 external interrupt lines, PVD output, RTC, I2C1, USART1, USART2, analog comparator, USBD and CEC.
Standby mode	The mode power consumption is the lowest. Internal voltage regulator is turned off, all 1.5V power supply modules are powered off, HSECLK crystal resonator, HSICLK and PLL clocks are turned off, SRAM and register data disappear, RTC area and backup register contents remain, and standby circuit still works; The external reset signal on NRST, IWDT reset, rising edge on WKUP pin or RTC event will wake MCU out of standby mode.

Note: RTC, IWDT and corresponding clocks still work normally in halt or standby mode.

4.8 **GPIO**

The working modes of GPIO can be configured as gengeral input, general output, multiplexing function and analog input/output. General input can be configured as floating input, pull-up input and pull-down input, while general output can be configured as push-pull output and open-drain output. Multiplexing function can be used for digital peripherals, while analog input/output can be used for analog peripherals and low power consumption mode. It can be configured with resistors that prohibit pull-up/pull-down. The speeds of 2MHz, 10MHz and 50MHz can be configured. The higher the speed, the greater the power consumption and noise.

4.9 Communication Interface

4.9.1 **USART**

Up to four universal synchronous/asynchronous transceivers are embedded in the chip, and the communication rate can support 6Mbit/s at most. All USART can be configured with baud rate, parity bit, stop bit and data bit length, and DMA contReeler can be used to support single-line half-duplex mode. The functional differences of 4 USART are shown in the following table.

Table 16APM32F072x8xB USART Functional Differences

USART Mode/Function	USART1/2	USART3/4
Hardware flow control of modem	√	$\sqrt{}$
Synchronization mode	√	$\sqrt{}$
Smart card mode	√	
IrDASIR codec module	√	_
LIN mode	√	_
Dual clock domain and wake-up from halt mode	√	_
Receiver timeout interrupt	√	_
MODBUS communication	√	_
Automatic baud rate detection	√	_

Note: $\sqrt{\ }$ = support.

4.9.2 I2C

Built-in I2C1/2 can work in multi-master mode and slave mode. It supports 7-bit and 10-bit addressing modes, standard mode (up to 100kbit/s), fast mode (up to 400kbit/s) and ultra-fast mode (1Mbit/s). The DMA contReeler can be used.

In addition, I2C1 also provides hardware support for SMBUS2.0 and PMBUS1.1: ARP function, host notification protocol, hardware CRC(PEC) generation/verification, timeout verification and alarm protocol management.

See the following table for the differences between I2C1 and I2C2:

Table 17 APM32F072x8xB I2C 1/2 Functional Differences

I2C function	I2C1	I2C2
Independent clock	$\sqrt{}$	_
SM bus	$\sqrt{}$	_
Wake up from STOP	√	_

Note:√=Support

4.9.3 SPI/I2S

Two built-in SPI support full-duplex and half-duplex communication in master mode and slave mode. The DMA contReeler can be used, which can be configured with 4~16 bits per frame and the highest communication rate is 18 mbit/s.

Two built-in I2S (multiplexed with SPI1 and SPI2, respectively) support half-duplex communication in master mode and slave mode, and support synchronous transmission, which can be configured with 16-bit, 24-bit and 32-bit data transmission of 16-bit or 32-bit resolution, and can be configured with audio sampling rate ranging from 8 kHz to 192 kHz.

4.9.4 HDMI-CEC

There is a built-in HDMI-CEC, the hardware supports consumer electronic control protocol, and there are two clock sources, HSICLK/255 and LSECLK. when LSECLK is selected as the clock source, HDMI_CEC is supported to wake up MCU in stop low power consumption mode.

4.9.5 CAN

A built-in CAN, conforming to CAN2.0A and CAN2.0B(active) specifications, the highest bit rate supporting 1Mbit/s, sending and receiving frame format supporting standard frame grid with 11-bit identifier and extended frame with 29-bit identifier, and allocating 256Bytes dedicated SRAM for sending and receiving data.

4.9.6 USBD

A built-in USBD, in line with full-speed USBD device 2.0 standard (12Mbit/s), supporting battery charging specification version 1.2, built-in USBD_PHY, configurable USBD_DP pull-up, eliminating external pull-up resistance. A dedicated SRAM data buffer of 1024Bytes is allocated (the last 256Bytes are shared with CAN), and HSICLK48_CLK and PLL_CLK can be selected as clock sources to generate 48MHz clock.

4.10 Analog Peripherals

4.10.1 ADC

Two built-in 12-bit ADCs, up to 16 external channels and 3 internal channels, which measure reference voltage and V_{BAT} voltage respectively. It can be configured with the resolution, the sampling time is programmable, and it support self-calibration. The startup mode supports software trigger and hardware trigger. The conversion mode supports single conversion, continuous conversion and intermittent conversion, and the conversion channel selection supports single channel conversion and scanning conversion of a certain sequence of channels. It supports analog watchdog and DMA.

4.10.2 Calibration of Internal Reference voltage (V_{REFINT})

Built-in reference voltage V_{REFINT}, internally connected to ADC_IN17 channel, which can be obtained through ADC; V_{REFINT} provides stable (band gap) voltage output for ADC and comparator. Calibrate at the ex-works and store the calibration value in the read-only area of the memory to improve the accuracy of the reference voltage.

Table 18Calibration Value of Internal Reference Voltage

Calibration Value Name	Description	Memory Address
VREFINT_CAL	Original data collected at V _{DDA} =3.3V(±10mV) under 25℃ (±5℃)	0x1FFF F7BA - 0x1FFF F7BB

4.10.3 VBAT Monitor

The built-in V_{BAT} monitor is internally connected to a 2-divider bridge, and $V_{BAT}/2$ is connected to ADC_IN18 channel, which can be obtained through ADC.

4.10.4 DAC

A built-in 12-bit DACs, it is 2 channels for output, which can be configured in 8-bit and 12-bit modes, and the DMA function is supported. The waveform generation supports noise wave and triangle wave. The conversion mode supports independent or simultaneous conversion and the trigger mode supports external signal trigger and internal timer update trigger.

4.10.5 Comparator

Two built-in fast rail-to-rail comparators, the internal/external reference voltage, hysteresis, speed and support are programmable, and the output polarity support is configurable. The reference voltage can be selected from external I/O, DAC output pin, internal reference voltage (VREFINT), and 1/4 or 1/2 or 3/4 of the internal reference voltage, which can generate interrupts, and support MCU entering sleep and stop modes by external interrupts.

4.10.6 Touch sensing contReeler

Built-in touch sensing contReeler can detect the change of capacitance, which can be applied to touch keys. When a finger touches a key, capacitance will be introduced, which will cause the capacitance change, so as to judge whether there is an eye-catching key. The touch sensing is compatible with slider, touch key, linear and rotary.

Up to 32 GPIOs support capacitance sensor function, which are divided into 8 groups. In practical application, each sampling capacitor occupies one GPIO port, so up to 24 capacitance sensor channels are supported. See the table below for specific pin distribution.

Table 19Applicable Pin Distribution of Touch Sensors

Group Number	Capacitance Sensor Signal Name	Pin Name
G1	TSC_G1_IO1	PA0
G1	TSC_G1_IO2	PA1
G1	TSC_G1_IO3	PA2
G1	TSC_G1_IO4	PA3
	_	
G2	TSC_G2_IO1	PA4
G2	TSC_G2_IO2	PA5
G2	TSC_G2_IO3	PA6
G2	TSC_G2_IO4	PA7
	_	
G3	TSC_G3_IO1	PC5
G3	TSC_G3_IO2	PB0
G3	TSC_G3_IO3	PB1
G3	TSC_G3_IO4	PB2
	_	
G4	TSC_G4_IO1	PA9
G4	TSC_G4_IO2	PA10
G4	TSC_G4_IO3	PA11
G4	TSC_G4_IO4	PA12
	_	
G5	TSC_G5_IO1	PB3
G5	TSC_G5_IO2	PB4
G5	TSC_G4_IO3	PB6
G5	TSC_G4_IO4	PB7
G6	TSC_G6_IO1	PB11

Group Number	Capacitance Sensor Signal Name	Pin Name
G6	TSC_G6_IO2	PB12
G6	TSC_G6_IO3	PB13
G6	TSC_G6_IO4	PB14
	_	
G7	TSC_G7_IO1	PE2
G7	TSC_G7_IO2	PE3
G7	TSC_G7_IO3	PE4
G7	TSC_G7_IO4	PE5
	_	
G8	TSC_G8_IO1	PD12
G8	TSC_G8_IO2	PD13
G8	TSC_G8_IO3	PD14
G8	TSC_G8_IO4	PD15

Table 20Number of Touch Sensor Channels Supported by Each Model in Practical Application

Craum Number	Number of Channels for Each Group of Capacitance Sensors				
Group Number	APM32F072Vx	APM32F072Rx	APM32F072Cx		
G1	3	3	3		
G2	3	3	3		
G3	3	3	2		
G4	3	3	3		
G5	3	3	3		
G6	3	3	3		
G7	3	0	0		
G8	3	0	0		
Total Number of Capacitance Sensor Channels	24	18	17		

4.11 **Timer**

A built-in 16-bit advanced timer TMR1, a 32-bit general timer TMR2, five 16-bit general timers TMR3/14/15/16/17, two basic timers TMR6/7, an independent watchdog timer, a window watchdog timer and a system tick timer.

Watchdog timer can be used to detect whether the program is running normally.

The system tick timer is a peripheral of the core, which has the function of automatic reloading. When the counter is 0, it can generate a masked system interrupt, which can be used for real-time operating system and general delay.

The characteristics are compared as follows:

Table 21 Function Comparison between Advanced/General-purpose/Basic and System Tick Timers

Timer type	System tick timer	Basic	timer		General-purpose timer			Advanced timer			
Timer name	Sys Tick Timer	TMR6	TMR7	TMR2	TMR3	TMR14	TMR15	TMR16/17	TMR1		
Counter resolution	24 bits	16 I	bits	32 bits			16 bits		16 bits		
Counter type	Down	U	р			Up, dow	vn, up/down		Up, down, up/down		
Prescaler factor	-	Any integer between 1 and 65536		An		ny integer bet	tween 1 and 6553	6	Any integer between 1 and 65536		
General DMA request	-	ОК		ОК		Not OK	C	ÞΚ	ОК		
Capture/Compa rison channel	-	-	-	4		1	2	1	4		
Complementary outputs	-	N	lo	No		No			Y	es	Yes
Pin characteristics	-	-	-	1 externa trigger signput pin, 4 channe complem channels	gnal els (non- entary	1 channel pin	 brake input signal pin, pair of complementar y channel pins, channel (non-complementar y channel) pin 	 brake input signal pin, pair of complementar y channel pins 	1 external trigger signal input pin,1 brake input signal pin,3 pairs of complementary channel pins,1 channel (non-complementary channel)pin		

www.geehy.com

Timer type	System tick timer	Basic timer	General-purpose timer	Advanced timer
Function Instruction	Special for real-time operating system Automatic reloading function supported When the counter is 0, it can generate a maskable system interrupt Can program the clock source	Used to generate DAC trigger signals. Can be used as a 16-bit general-purpose timebase counter.	Synchronization or event chaining function provided Timers in debug mode can be frozen. Can be used to generate PWM output Except TMR14, each timer has independent DMA request mechanism. It can handle incremental encoder signals	It has complementary PWM output with dead band insertion When configured as a 16-bit standard timer, it has the same function as the TMRx timer. When configured as a 16-bit PWM generator, it has full modulation capability (0~100%). In debug mode, the timer can be frozen, and PWM output is disabled. Synchronization or event chaining function provided.

Table 22 Independent Watchdog and Window Watchdog Timers

Name	Counter resolution	Counter type	Prescaler factor	Functional Description	
Independent watchdog	12-bit	Down	Any integer between 1 and 256	The clock is provided by an internally independent RC oscillator of 40KHz, which is independent of the master clock, so it can run in stop and standby modes. The whole system can be reset in case of problems. It can provide timeout management for applications as a free-running timer. It can be configured as a software or hardware startup watchdog through option bytes. Timers in debug mode can be frozen.	
Window watchdog	7-bit	Down	-	Can be set for free running. The whole system can be reset in case of problems. Driven by the master clock, it has early interrupt warning function; Timers in debug mode can be frozen.	

www.geehy.com

4.12 Real-Time Clock (RTC)

A built-in RTC with LSECLK signal input pins (OSC32_IN, OSC32_OUT), three TAMP input signal detection pins (RTC_TAMP1/2/3), one reference clock input signal (RTC_REFIN), one output timestamp event output pin (RTC_TS), and one signal output pin RTC_OUT (It can be configured as calibration signal output or alarm clock signal output).

The external crystal oscillator, resonator or oscillator, LSICLK and HSECLK/32 with external frequency of 32.768kHz can be selected as the clock source.

With calendar function, it can display sub-seconds, seconds, minutes, hours (12 or 24 hours format), weeks, dates, months and years. It supports alarm clock function, output alarm clock signal for external use, and wake up from low power consumption mode. It can receive signals to wake up from low power consumption mode. In terms of accuracy, it supports daylight saving time compensation, month angel compensation and leap year days compensation. In terms of accuracy, the error caused by crystal oscillator can be repaired by RTC digital calibration function, and the accuracy of calendar can be improved by using a more accurate second source clock (50 or 60Hz).

4.13 CRC calculation unit

A CRC (cyclic redundancy check) calculation unit is built in, which can generate CRC codes and operate 8-bit, 16-bit and 32-bit data.

4.14 **DMA**

A built-in DMA supports seven DMA channels, each channel supports multiple DMA requests, but only one DMA request is allowed to enter the DMA channel at the same time. The peripherals supporting DMA requests are ADC, SPI1/2, USART1/2/3/4, I2C1/2, TMR1, TMR2, TMR3, TMR6, TMR7, TMR15, TMR16 and TMR 17. Four levels of DMA channel priority can be configured, and data transmission of "Memory \rightarrow Memory, Memory \rightarrow Peripheral, Peripheral \rightarrow Memory" can be supported (memory includes Flash and SRAM).

5 Electrical Characteristics

5.1 Test Conditions of Electrical Characteristics

All voltage parameters (unless otherwise specified) refer to Vss.

5.1.1 Maximum and Minimum Values

Unless otherwise specified, all products are tested on the production line at T_A =25 $^{\circ}$ C. Its maximum and minimum values can support the worst environmental temperature, power supply voltage and clock frequency.

In the notes at the bottom of each table, it is stated that the data obtained through comprehensive evaluation, design simulation or process characteristics are not tested on the production line. On the basis of comprehensive evaluation, take the average value and add and subtract three times the standard deviation (average $\pm 3\Sigma$) to get the maximum and minimum values after passing the sample test.

5.1.2 Typical values

Unless otherwise specified, typical data are measured based on T_A =25°C, V_{DD} = V_{DDIO2} = V_{DDA} =3.3V. these data are only used for design guidance.

5.1.3 Typical curve

Unless otherwise specified, typical curves will not be tested on the production line, and will only be used for design guidance.

5.1.4 Power Supply Scheme

MCU V_{BAT} LSECLK、 V_{BAT} Power RTC. switch backup register ν_{ss} Input $3 \times V_{DD}$ $V_{\text{DD}\,\text{I}\,\text{O}\,\text{I}}$ Schmitt trigger, Core, output buffer Flash SRAM, Voltage regulator I/O Logic, digital Input Schmitt peripherals V_{DD102} trigger. output buffer RC oscillator, analog peripherals V_{SSA} ADC, DAC $\rm V_{REF^+}$ $V_{\mathsf{REF}-}$

Figure 7 Power Supply Scheme

5.1.5 Load Capacitance

Figure 8 Load Conditions when Measuring Pin Parameters

Figure 9 Pin Input Voltage Measurement Scheme

Figure 10 Power Consumption Measurement Scheme

5.2 Testing under General Working Conditions

Table 23General Working Conditions

Symbol	Parameter	Condition	Minimum value	Maximum value	Unit
f _{HCLK}	Internal AHB clock frequency	-	-	48	MHz
fpclk	Internal APB clock frequency	-	-	48	IVIIIZ
V _{DD}	Standard operating voltage	-	2	3.6	V
V _{DDIO2}	IO supply voltage	Only V _{DD} exists to supply power	1.65	3.6	V
V _{DDA}	Analog operating voltage (when neither ADC nor DAC is used)	V _{DDA} must not be less	V _{DD}	3.6	V
	Analog operating voltage (when ADC and DAC is used)	than V _{DD}	2.4	3.6	
V_{BAT}	Backup area working voltage	-	1.65	3.6	V
		STD and RST I/O	-0.3	V _{DDIOX} +0.3	
V_{IN}	I/O input voltage	STDA I/O	-0.3	V _{DDA} +0.3	V
		5T and 5Tf I/O	-0.3	5.5	

Symbol	Parameter	Condition	Minimum value	Maximum value	Unit
		Boot0	0	5.5	

5.3 **Absolute Maximum Rating**

If the load on the device exceeds the absolute maximum rating, it may cause permanent damage to the device. Here, only the maximum load that can be borne is given, and there is no guarantee that the device functions normally under this condition.

5.3.1 Maximum Temperature Characteristics

Table 24Temperature Characteristics

Symbol	Description	Numerical value	Unit
T _{STG}	Storage temperature range	−65~+150	$^{\circ}\mathbb{C}$
TJ	Maximum junction temperature	150	$^{\circ}\mathbb{C}$

5.3.2 Maximum Rated Voltage Characteristics

All power supply (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the power supply within the external limited range.

Table 25Maximum Rated Voltage Characteristics

Symbol	Description	Minimum value	Maximum value	Unit
V _{DD} -V _{SS}	External main supply voltage (V _{DD})	-0.3	4.0	
V _{DDA} -V _{SSA}	External analog supply voltage (V _{DDA})	-0.3	4.0	
V _{DDIO2} -V _{SS}	External I/O supply voltage	-0.3	4.0	
V _{BAT} -V _{SS}	External backup power supply voltage	-0.3	4.0	
V _{DD} -V _{DDA}	Allowable voltage difference of V _{DD} >V _{DDA}	-	0.4	V
	Input voltage on 5T and 5Tf pins	Vss-0.3	V _{DDIOX} +4.0	
V	Input voltage on STDA pin	V _{SS} -0.3	4.0	
V _{IN}	Boot0	0	V _{DD} +4.0	
	Input voltage on any other pin		4.0	
$ \Delta V_{DDx} $	Voltage difference between different power supply pins	-	50	
V _{SSx} -V _{SS}	Voltage difference between different grounding pins	-	50	mV

5.3.3 Maximum Rated Current Characteristics

Table 26Maximum Rated Current Characteristics

Symbol	Description		Unit					
Σ I _{VDD}	Total current into sum of all V _{DD} power lines (source) ⁽¹⁾	120						
Σ I _{VSS}	Total current out of sum of all V _{SS} ground lines (sink) ⁽¹⁾	-120	mA					

Symbol	Description	Maximum value	Unit
I _{DD} (PIN)	Maximum current into each V _{DD} power pin (source) ⁽¹⁾	100	
I _{SS (PIN)}	Maximum current out of each V _{SS} ground pin (sink) ⁽¹⁾	-100	
	Output current sunk by any I/O and control pin	25	
IIO (PIN)	Output current source by any I/O and control pin	-25	
	Total output current sunk by sum of all I/Os and control pins ⁽²⁾	80	
Σ I _{IO} (PIN)	Total output current sourced by sum of all I/Os and control pins ⁽²⁾	-80	
	Total output current sourced by sum of all I/Os supplied by V _{DDIO2}	-40	
	Injected current on B, 5T and 5Tf pins	-5/+0 ⁽⁴⁾	
II _{INJ(PIN)} (3)	II _{INJ(PIN)} (3) Injected current on STD and RST pin		
	Injected current on STDA pins ⁽⁵⁾	±5	
Σ I _{INJ(PIN)}	Total injected current (sum of all I/O and control pins) ⁽⁶⁾	±25	

- (1) All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.
- (2) This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.
- (3) A positive injection is induced by $V_{IN} > V_{DDIOx}$ while a negative injection is induced by $V_{IN} < V_{SS}$. $I_{INJ(PIN)}$ must never be exceeded.
- (4) Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.
- On these I/Os, a positive injection is induced by $V_{IN} > V_{DDA}$. Negative injection disturbs the analog performance of the device.
- When several inputs are submitted to a current injection, the maximum ΣI_{INJ(PIN)} is the absolute sum of the positive and negative injected currents (instantaneous values).

5.3.4 ESD Characteristics

Table 27ESD Characteristics

Symbol	Parameter	Condition	Maximum value	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (manikin)	T _A =+25℃	2000	
VESD(CDM)	Electrostatic discharge voltage (charging equipment model)	T _A =+25℃	750	V

Note: It is tested by a third-party testing organization instead of in production.

5.3.5 Static Locking

Table 28Static Locking

Symbol	Parameter	Condition	Туре
LU	Class of static latch	T _A =+25°C/105°C	Class II-A

Note: It is tested by a third-party testing organization instead of in production.

5.4 **On-Chip Memory**

5.4.1 Flash Characteristics

Table 29Flash Characteristics

Symbol	Parameter	Condition	Minimum value	Typical value	Maximum value	Unit
4	16 bit programming	T _A =-40~105℃,		36	_	lle.
t _{prog}	time	V _{DD} =2.0~3.6V	-	30	•	μs
4	Page (2KB) erase	T _A =-40~105℃,		3		mo
t _{ERASE}	time	V _{DD} =2.0~3.6V	-	3	-	ms
4	Whole erase time	T _A =25℃,		6.4		me
t _{ME}	Whole erase time	V _{DD} =3.3V	-	0.4	•	ms
V _{prog}	Programming voltage	T _A =-40~105℃	2	-	3.6	V
N _{RW}	Erase cycle	T _A =25°C	-	10K	-	cycles

Note: It is tested in comprehensive evaluation instead of in production.

5.5 Clock System

5.5.1 Characteristics of External Clock Source

High-speed external clock generated by crystal resonator

For detailed parameters (frequency, package, precision, etc.) of crystal resonator, please consult the corresponding manufacturer.

Table 30Characteristics of HSECLK 4 ~ 32 MHz Oscillator

Symbol	Parameter	Condition	Minimum value	Typical value	Maximum value	Unit
fosc_IN	Oscillator frequency	-	4	8	32	MHz
R _F	Feedback resistance	-	-	200	-	kΩ
I _{DD}	HSECLK current consumption	V _{DD} =3.3V, C _L =10pF@8MHz	-	0.5	-	mA
tsu(HSECLK)	Startup time	V _{DD} is stable	-	2	-	ms

Note: It is tested in comprehensive evaluation instead of in production.

Low-speed external clock generated by crystal resonator

For detailed parameters (frequency, package, precision, etc.) of crystal resonator, please consult the corresponding manufacturer.

Table 31LSECLK oscillator characteristics (fLSECLK=32.768KHz)

Symbol	Parameter	Condition	Minimum value	Typical value	Maximum value	Unit
I _{DD}	LSECLK current consumption	High driving ability	-	-	1.6	μΑ
tsu(LSECLK) ⁽¹⁾	Startup time	V _{DDIOx} is stable	-	2	-	S

Note: It is tested in comprehensive evaluation instead of in production.

(1) t_{SU(LSECLK)} is the starting time, which is measured from the software enabling LSECLK until the stable oscillation at 32.768KHz is obtained. This value is measured using a standard crystal resonator, which may vary from crystal manufacturer to crystal manufacturer.

5.5.2 Characteristics of Internal Clock Source

High speed internal (HSICLK)RC oscillator

Table 32HSICLK Oscillator Characteristics

Symbol	Parameter	Condition		Minimum value	Typical value	Maximum value	Unit	
fHSICLK	Frequency	-		-	8	-	MHz	
Δ	Accuracy of HSICLK	Factory calibration	V _{DD} =3.3V, T _A =25°C ⁽¹⁾	-1	-	1	%	
Acchsiclk	oscillat		calibration	calibration	V _{DD} =2-3.6V, T _A =-40~105℃	-2.8	-	3.8
tsu(HSICLK)	Startup time of HSICLK oscillator	V _{DD} =3.3V T _A =-40~105℃		1	-	2	μs	
IDDA(HSICLK)	Power consumption of HSICLK oscillator		-		80	100	μA	

Note: Except for (1) calibration in production, other data are obtained in comprehensive evaluation instead of in production.

Table 33HSICLK14 Oscillator Characteristics

Symbol	Parameter	Condition		Minimum value	Typical value	Maximum value	Unit
f _{HSICLK14}	Frequency	-		-	14	-	MHz
A	Accuracy of HSICLK14	Factory	$V_{DD}=3.3V$, $T_{A}=25^{\circ}C^{(1)}$	-1	-	1	%
Acchsick14	oscillator	-N14 calibration	V _{DD} =2-3.6V, T _A =-40~105℃	-4.2	-	5.1	%
tsu(HSICLK14)	Startup time of HSICLK14 oscillator	V _{DD} =3.3V T _A =-40~105℃		1	-	2	μs
IDDA(HSICLK14)	Power consumption of HSICLK14 oscillator	-		-	100	150	μΑ

Note: Except for (1) calibration in production, other data are obtained in comprehensive evaluation instead of in production.

Table 34HSICLK48 Oscillator Characteristics

Symbol	Parameter	Condition		Minimum value	Typical value	Maximum value	Unit		
f _{HSICLK48}	Frequency	-		-	48	-	MHz		
۸	Accuracy of	Factory	$V_{DD}=3.3V$, $T_{A}=25^{\circ}C^{(1)}$	-2	-	2	%		
ACCHSICLK48	HSICLK48 oscillator	calibration	calibration	calibration	V _{DD} =2-3.6V, T _A =-40~105℃	-4.9	-	4.7	%
tsu(HSICLK48)	Startup time of HSICLK48 oscillator	V _{DD} =3.3V, T _A =-40~105°C		-	-	6	μs		
I _{DDA(HSICLK48)}	Power consumption of HSICLK48 oscillator		-		312	350	μΑ		

Note: Except for (1) calibration in production, other data are obtained in comprehensive evaluation instead of in production.

Low speed internal (LSICLK)RC oscillator

Table 35LSICLK Oscillator Characteristics

Symbol	Parameter	Condition	Minimum value	Typical value	Maximum value
fLSICLK	Frequency (V _{DD} =2-3.6V, T _A =-40~105 $^{\circ}$ C)	30	40	50	KHz
tsu(LSICLK)	Startup time of LSICLK oscillator (V _{DD} =3.3V, T_A =-40~105°C)	-	-	85	μs
I _{DD(LSICLK)}	Power consumption of LSICLK oscillator	-	0.75	1.2	μΑ

Note: It is tested in comprehensive evaluation instead of in production.

5.5.3 PLL Characteristics

Table 36PLL Characteristics

	<u>_</u>				
Symbol	Parameter	Minimum value	Typical value	Maximum value	Unit
4	PLL input clock	1	8.0	24	MHz
f _{PLL_IN}	PLL input clock duty cycle	40	-	60	%
f _{PLL_OUT}	PLL frequency doubling output clock (V _{DD} =3.3V, T _A =-40~105℃)	-	48	-	MHz
tLOCK	PLL phase locking time	-	-	200	μs

Note: It is tested in comprehensive evaluation instead of in production.

5.6 **Power Management**

5.6.1 Characteristic test of embedded reset and power control module

Table 37Embedded Reset and Power Control Module Characteristics

Symbol	Parameter	Condition	Minimum value	Typical value	Maximum value	Unit
V _{POR/PDR} ⁽¹⁾	Power-on/power-down	Falling edge	1.87	1.90	1.94	V
	reset threshold	Rising edge	1.91	1.94	1.97	>
VPDRhyst	PDR hysteresis	-	-	40	-	mV
Trsttempo	Reset duration	-	0.80	1.14	1.89	ms

Note: It is tested in comprehensive evaluation instead of in production.

Table 38Programmable Voltage Detector Characteristics

Symbol	Parameter	Condition	Minimum value	Typical value	Maximum value	Unit
VPVD	Level selection of	PLS[2:0]=000 (rising edge)	2.16	2.20	2.24	V
	programmable	PLS[2:0]=000 (falling edge)	2.06	2.10	2.14	V

⁽¹⁾ PDR detector monitors V_{DD} and V_{DDA} (if enabled in option byte), POR detector monitors V_{DD} only.

Symbol	Parameter	Condition	Minimum value	Typical value	Maximum value	Unit
	voltage detector	PLS[2:0]=001 (rising edge)	2.25	2.30	2.36	V
		PLS[2:0]=001 (falling edge)	2.14	2.20	2.25	V
		PLS[2:0]=010 (rising edge)	2.37	2.40	2.44	V
		PLS[2:0]=010 (falling edge)	2.26	2.30	2.33	V
		PLS[2:0]=011 (rising edge)	2.46	2.50	2.54	V
		PLS[2:0]=011 (falling edge)	2.36	2.40	2.43	V
		PLS[2:0]=100 (rising edge)	2.57	2.60	2.62	V
		PLS[2:0]=100 (falling edge)	2.46	2.50	2.51	V
		PLS[2:0]=101 (rising edge)	2.61	2.70	2.79	V
		PLS[2:0]=101 (falling edge)	2.52	2.60	2.68	V
		PLS[2:0]=110 (rising edge)	2.74	2.80	2.87	V
		PLS[2:0]=110 (falling edge)	2.62	2.70	2.76	V
		PLS[2:0]=111 (rising edge)	2.81	2.90	2.99	V
		PLS[2:0]=111 (falling edge)	2.71	2.80	2.89	V
V _{PVDhyst}	PVD hysteresis	-	-	100	-	mV

Note: It is tested in comprehensive evaluation instead of in production.

5.7 **Power Consumption**

5.7.1 Power consumption test environment

- (1) Test under the conditions of Coremark, KeilV5 compiling environment and L3 compiling optimization level.
- (2) All I/O pins are configured as analog inputs, which are connected to V_{DD} or V_{SS} (non-load) at a static level.
- (3) Unless otherwise specified, all peripherals are turned off.
- (4) The relationship between the setting of flash waiting period and f_{HCLK}:
 - 0~24MHz: 0 waiting periods,
 - 24~48MHz: 1 waiting periods.
- (5) Instruction prefetch function is enabled (Note: this bit must be set before clock setting and bus frequency division).
- (6) When the peripheral is turned on: f_{PCLK}=f_{HCLK}.

5.7.2 Running mode

Table 39The program is executed in Flash, and the power consumption in running mode

		Typical value ⁽¹⁾	Maximum value ⁽¹⁾	
Parameter	Condition	fhcLK	T _A =25℃, V _{DD} =3.3V	T _A =105℃, V _{DD} =3.6V

			I _{DDA} (μ A)	I _{DD} (mA)	I _{DDA} (µA)	I _{DD} (mA)
		48MHz	102.28	12.17	118.82	14.11
	(9)	32MHz	71.61	8.32	86.71	8.98
	HSECLK bypass ⁽²⁾ , enabling all peripherals	24MHz	58.13	6.59	73.20	7.29
	panpholaid	8MHz	3.48	2.42	13.04	3.00
		1MHz	3.46	0.60	12.77	0.82
		48MHz	102.27	7.46	118.94	7.91
	(2)	32MHz	71.58	5.10	86.79	5.80
	HSECLK bypass ⁽²⁾ , turn off all peripherals	24MHz	58.20	4.20	73.02	4.63
	polipriorale	8MHz	3.48	1.65	12.92	2.10
Power		1MHz	3.47	0.51	12.79	0.68
consumption in running mode	HSICLK48, enabling all peripherals	48MHz	311.25	12.49	329.35	13.28
	HSICLK48, turn off all peripherals	48MHz	311.28	7.39	329.52	7.88
		48MHz	162.85	12.17	187.51	14.01
	HSICLK ⁽²⁾ , enabling all peripherals	32MHz	132.34	8.25	154.99	8.83
	⊓SiCLN [™] , enabiling all periprierals	24MHz	118.92	6.45	141.01	7.14
		8MHz	64.57	2.39	79.45	2.81
		48MHz	162.84	7.41	187.46	7.85
	LICICI I(2) to one off all manifes and	32MHz	132.32	5.12	154.69	5.86
	HSICLK ⁽²⁾ , turn off all peripherals	24MHz	118.97	4.16	141.07	4.90
		8MHz	64.57	1.61	79.42	1.92

Note: (1) It is tested in comprehensive evaluation instead of in production.

(2) The external clock is 8MHz, and when f_{HCLK}>8MHz, turn on PLL, otherwise, turn off PLL.

Table 40Program Execution in SRAM, Power Consumption in Running Mode

			Typical	value ⁽¹⁾	Maximum value (1)		
Parameter	Condition	fHCLK	LK T _A =25℃, V _{DD} =3.3V		T _A =105℃, V _{DD} =3.6V		
			I _{DDA} (μ A)	I _{DD} (mA)	I _{DDA} (μ A)	I _{DD} (mA)	
		48MHz	102.37	9.89	119.11	13.45	
		32MHz	71.67	6.77	86.72	7.19	
	HSECLK bypass ⁽²⁾ , enabling all peripherals	24MHz	58.01	5.19	72.69	5.50	
Power	peripricials	8MHz	3.48	1.99	12.96	2.28	
consumption in running mode		1MHz	3.46	0.55	12.79	0.74	
	(0)	48MHz	102.34	5.16	119.22	5.48	
	HSECLK bypass ⁽²⁾ , turn off all peripherals	32MHz	71.63	3.61	86.76	3.91	
	ponpriordio	24MHz	58.00	2.81	72.74	3.11	

		8MHz	3.47	1.19	12.76	1.37
		1MHz	3.46	0.45	12.82	0.64
	HSICLK48, enabling all peripherals	48MHz	311.26	10.16	329.53	10.77
	HSICLK48, turn off all peripherals	48MHz	311.29	5.13	329.60	5.53
		48MHz	162.85	9.91	187.39	13.37
	HSICLK ⁽²⁾ , enabling all peripherals	32MHz	132.34	6.77	154.96	7.20
		24MHz	118.84	5.20	140.84	5.48
		8MHz	64.57	2.01	79.41	2.23
		48MHz	162.83	5.12	187.35	5.49
	LICICI I(2) to one off all manifestation	32MHz	132.34	3.58	154.77	3.87
	HSICLK ⁽²⁾ , turn off all peripherals	24MHz	118.82	2.79	140.67	3.08
		8MHz	64.57	1.19	79.41	1.38

Notes: (1) It is tested in comprehensive evaluation instead of in production.

⁽²⁾ The external clock is 8MHz, and when f_{HCLK}>8MHz, turn on PLL, otherwise, turn off PLL.

Table 41Power Consumption in Sleep mode when the program is executed in SRAM or Flash

	· · · · · · · · · · · · · · · · · · ·		Typical	value ⁽¹⁾	Maximum	value ⁽¹⁾
Parameter	Condition	f _{HCLK}	T _A =25℃,	V _{DD} =3.3V	T _A =105℃, V _{DD} =3.6V	
			I _{DDA} (µA)	I _{DD} (mA)	I _{DDA} (µA)	I _{DD} (mA)
		48MHz	102.36	6.91	119.16	7.14
	(0)	32MHz	71.66	4.67	86.79	4.83
	HSECLK bypass ⁽²⁾ , enabling all peripherals	24MHz	58.04	3.54	72.81	3.71
	poripriorate	8MHz	3.47	1.21	12.91	1.31
		1MHz	3.47	0.17	12.84	0.26
		48MHz	102.33	1.49	119.11	1.62
	(0)	32MHz	71.64	1.03	86.66	1.15
	HSECLK bypass ⁽²⁾ , turn off all peripherals	24MHz	58.02	0.81	72.65	0.93
	por.prio.s.c	8MHz	3.46	0.29	12.81	0.39
Input the lowest		1MHz	3.46	0.05	12.82	0.16
bit	HSICLK48, enabling all peripherals	48MHz	311.28	7.08	329.43	7.58
	HSICLK48, turn off all peripherals	48MHz	311.34	1.42	329.48	1.58
		48MHz	162.83	6.93	187.55	7.09
	HSICLK ⁽²⁾ , enabling all peripherals	32MHz	132.34	4.68	154.85	4.81
	nsicek ^e , enabiling all periprierals	24MHz	118.84	3.55	140.72	3.67
		8MHz	64.56	1.24	79.47	1.34
		48MHz	162.81	1.46	187.36	1.57
	HSICLK ⁽²⁾ , turn off all peripherals	32MHz	132.32	1.01	154.69	1.12
	Holoury, turn on an periprierals	24MHz	118.81	0.78	140.64	0.88
		8MHz	64.56	0.28	79.39	0.38

Notes: (1) It is tested in comprehensive evaluation instead of in production.

⁽²⁾ The external clock is 8MHz, and when $f_{HCLK}>8MHz$, turn on PLL, otherwise, turn off PLL.

Table 42Power Consumption in Halt and Standby Mode

				٦	ГурісаІ va	lue ⁽¹⁾ ,(T _A =	25℃)		Maximum value ⁽¹⁾ , (V _{DD} =3.6V)				
Parameter		Condition	V _{DD} =	V _{DD} =2.0V V _{DD} =3.3V		=3.3V	V _{DD} =3.6V		T _A =85℃		T _A =	105℃	Unit
			I _{DDA}	I _{DD}	I _{DDA}	I _{DD}	I _{DDA}	I _{DD}	I _{DDA}	I _{DD}	I _{DDA}	I _{DD}	
Power		The voltage regulator is in running mode and all oscillators are off	2.51	20.58	3.70	22.29	4.17	22.98	10.3	62.81	12.09	109.05	
consumption in halt mode	V _{DDA} monitoringON	The voltage regulator is in low power mode, and all oscillators are off	2.50	6.57	3.70	8.25	4.16	8.93	10.2	44.14	12.06	88.89	
Power	monitoringON	The LSICLK and IWDT are on	2.66	1.86	3.95	3.81	4.42	4.54	10.1	17.81	12.63	30.32	
consumption in standby mode		The LSICLK and IWDT are off	2.36	1.60	3.45	3.40	3.86	4.09	9.5	17.33	12.09	29.79	
Power		The voltage regulator is in running mode and all oscillators are off	1.49	20.55	2.22	22.31	2.56	23.00	8.9	61.25	10.89	109.89	μA
consumption in halt mode	V _{DDA} monitoringOFF	The voltage regulator is in low power mode, and all oscillators are off	1.49	6.55	2.21	8.26	2.55	8.93	8.8	42.96	10.79	89.21	
Power	monitoringOFF	The LSICLK and IWDT are on	1.64	1.85	2.46	3.81	2.82	4.54	8.4	17.77	10.99	30.21	
consumption in standby mode		The LSICLK and IWDT are off	1.34	1.60	1.97	3.40	2.25	4.10	7.8	17.31	10.39	29.75	

Note: It is tested in comprehensive evaluation instead of in production.

Table 43V_{BAT} Power Consumption

Parameter	Condition	Typical value ⁽¹⁾ ,T _A =25℃				Maximum value ⁽¹⁾ , V _{BAT} =3.6V				Unit
Farameter		V _{BAT} =1.65V	V _{BAT} =1.8V	V _{BAT} =2.4V	V _{BAT} =3.3V	T _A =25℃	T _A =65℃	T _A =85℃	T _A =105℃	Unit
	LSECLK and RTC are on,	0.75				3.35				
	LSECLK oscillator drive		0.80	1.11	1.86		6.07	9.00	12.18	
	capability configuration									
	LSECLKDRV [1:0] =00									
I _{DD_} VBAT	LSECLK and RTC are on,		1.21	1.61	2.39	4.03	6.72	9.60	12.87	μA
	LSECLK oscillator drive	1.12								
	capability configuration									
	LSECLKDRV [1:0] =11									

Note: It is tested in comprehensive evaluation instead of in production.

5.7.3 Peripheral power consumption

The HSECLK Bypass 1M is adopted as clock source, f_{PCLK}=f_{HCLK}=1M.

Peripheral power consumption = current that enables the peripheral clock-current that disables the peripheral clock.

Table 44Peripheral Power Consumption

Parameter	Peripheral	Typical value ⁽¹⁾ T _A =25℃, V _{DD} =3.3V	Unit
	BusMatrix	3.47	
	CRC	0.86	
	DMA	4.74	
	FLASH 8.94	8.94	
	GPIOA	4.39	
	GPIOB	4.58	
	GPIOC	1.05	
	GPIOD	1.05	
	GPIOE	1.08	
	GPIOF	0.75	
	SRAM	0.47	
	TSC	2.11	
	ALL_AHB	28.95	
Peripheral power	APB_Bridge	1.34	
consumption	ADC	2.66	μA
	CAN	5.75	
	CEC	0.83	
	CRS	0.66	
	DAC	2.30	
	DBGMCU	0.30	
	I2C1	1.99	
	I2C2	2.22	
	PMU	0.68	
	SPI1 4.27 SPI2 4.14	4.27	
		4.14	
	SYSCFG	0.93	
	TMR1	7.07	
	TMR2	7.19	

Parameter	Peripheral	Typical value ⁽¹⁾ T _A =25℃, V _{DD} =3.3V	Unit
	TMR3	5.47	
	TMR6	1.34	
	TMR7	1.36	
	TMR14	2.65	
	TMR15	4.28	
	TMR16	3.26	
	TMR17	3.43	
	USART1	9.41	
	USART2	9.05	
	USART3	2.77	
	USART4	2.82	
	USBD	48.58	
	WWDT	0.82	
	ALL_APB	127.91	

5.8 Wake-up Time in Low Power Mode

The measurement of wake-up time with low power consumption is from the start of wake-up event to the time when the user program reads the first instruction, in which $V_{DD}=V_{DDA}$.

Table 45Low Power Wake-up Time

Symbol	Doromotor	Parameter Condition		Typical value ⁽¹⁾ , (T _A =25℃)			Unit
Symbol Parameter		Condition	2V	3.3V	3.6V	value ⁽¹⁾	Onit
twusleep	Wake up from sleep mode	-	48	YSCLK cyc	les	-	
twustop Wake up from mode	Wake up from halt	The voltage regulator is in running mode	3.12	2.72	2.65	3.30	-16
	mode	The voltage regulator is in low power mode	5.63	4.00	3.82	6.15	μs
twustdby	Wake up from standby mode	-	80.83	38.17	34.74	120.54	

Note: It is tested in comprehensive evaluation instead of in production.

5.9 **I/O Port Characteristics**

Table 46DC Characteristics (T_A=-40 $^{\circ}$ C-105 $^{\circ}$ C,V_{DD}=2~3.6V)

Symbol	Parameter	Condition	Minimum value	Typical value	Maximum value	Unit
		STD and STDA I/O	-	-	0.3V _{DDIOx} +0.07	
V _{IL}	Input low level voltage	5T and 5Tf I/O	-	-	0.475V _{DDIOx} -0.2	V
		I/O pins except Boot0	-	-	0.3V _{DDIOx}	
		STD and STDA I/O	0.445V _{DDIOx} +0.398	-	-	
V _{IH}	Input high level voltage	5T and 5Tf I/O	0.5V _{DDIOx} +0.2	-	-	V
	level voltage	I/O pins except Boot0	0.7V _{DDIOx}	-	-	
	Schmitt trigger	STD and STDA I/O	-	200	-	\/
V _{hys}	hysteresis	5T and 5Tf I/O	-	100	-	mV
		STD, 5T and 5Tf I/OTTa in digital mode, VSS≤VIN≤VDDIOx	-	-	+0.1	
I _{lkg}	Input leakage current	STDA in digital mode, V _{DDIOX} ≤V _{IN} ≤V _{DDA}	-	-	1	μA
		5T and 5Tf I/O V _{DDIOx} ≤V _{IN} ≤5V	-	-	10	
R _{PU}	Weak pull-up equivalent resistance	V _{IN} =V _{SS}	25	40	55	kΩ
R _{PD}	Weak pull- down equivalent resistance	V _{IN} =V _{DDIOx}	25	40	55	kΩ

Table 47AC Characteristics (T_A =25 $^{\circ}$ C)

SPEED[1:0]	Symbol	Parameter	Condition	Minimum value	Maximum value	Unit
	f _{max(IO)out}	Maximum frequency		-	2	MHz
10(2MHz)	t _{f(IO)out}	Output falling time from high to low level	C _L =50pF, V _{DDIOX} =2~3.6V	-	120	
	tr(IO)out	Output rising time from low to high level	22107.	-	120	ns
01(10MHz)	f _{max(IO)out}	Maximum frequency		-	10	MHz
	t _{f(IO)out}	Output falling time from high to low level	$C_L=50pF$, $V_{DDIOX}=2\sim3.6V$	-	25	ns
	t _{r(IO)out}	Output rising time from low to high level		-	25	113
	f _{max(IO)out}	Maximum frequency		-	50	MHz
11(50MHz)	t _f (IO)out	Output falling time from high to low level	C _L =30pF, V _{DD} =2.7~3.6V	-	8	ns
	$t_{r(IO)out}$	Output rising time from low to high level		-	8	115
	f _{max(IO)out}	Maximum frequency		-	2	MHz
FM+ Configuration	t _{f(IO)out}	Output falling time	C _L =50pF, V _{DDIOx} ≥2V	-	11	ns
Ü	t _{r(IO)out}	Output rising time		-	33	IIS

SPEED[1:0]	Symbol	Parameter	Condition	Minimum value	Maximum value	Unit
	f _{max(IO)out}	Maximum frequency		-	0.5	MHz
FM+ Configuration	t _f (IO)out	Output falling time	C _L =50pF, V _{DDIOx} <2V	-	14	20
g	t _{r(IO)out}	Output rising time	5513X - 1	-	43	ns

Figure 11 Definition of Input and Output AC characteristics

Table 48 Output Drive Current Characteristics (T_A =25 °C)

Symbol	Parameter	Condition	Minimum value	Maximum value	Unit
V _{OL}	I/O pin outputs low voltage	I _{IO} =8mA,	-	0.4	
Voн	I/O pin outputs high voltage	V _{DDIOx} ≥2.7V	V _{DDIOx} -0.4	-	V
VoL	I/O pin outputs low voltage	I _{IO} =20mA,	-	1.3	V
V _{OH}	I/O pin outputs high voltage	V _{DDIOx} ≥2.7V	V _{DDIOx} -1.3	-	

Note: It is tested in comprehensive evaluation instead of in production.

5.10 NRST pin characteristics

The input drive of NRST pin adopts CMOS process, which is connected with a permanent pull-up resistor R_{PU}

Table 49NRST Pin Characteristics (T_A=-40~105 °C, V_{DD}=2~3.6V)

Symbol	Parameter	Condition	Minimum value	Typical value	Maximum value	Unit
VIL(NRST)	NRST input low voltage	-	-	-	0.3V _{DD} +0.07	>
V _{IH(NRST)}	NRST input high voltage	-	0.445V _{DD} +0.398	-	-	V
V _{hys} (NRST)	Voltage hysteresis of NRST Schmitt trigger	-	-	200	-	mV

Symbol	Parameter	Condition	Minimum value	Typical value	Maximum value	Unit
R _{PU}	Weak pull-up equivalent	V _{IN} =V _{SS}	25	40	55	kΩ
	resistance					

5.11 Communication Interface

5.11.1 I2C Interface Characteristics

Standard mode (Sm): Up to 100kbit/sFast mode (Fm): Up to 400kbit/s

Ultrafast mode (Fm+): Up to 1Mbit/s

Table 50I2C Interface Characteristics (T_A=25 $^{\circ}$ C, V_{DD}=3.3V)

	5	Standa	ard I2C	Fas	t I2C	Ultrafa	ast I2C	
Symbol	Parameter	Minimum value	Maximum value	Minimum value	Maximum value	Minimum value	Maximum value	Unit
t _{w(SCLL)}	SCL clock low time	4.84	-	1.21	-	0.52	-	
tw(SCLH)	SCL clock high time	5.09	-	1.14	-	0.46	-	μs
t _{su(SDA)}	SDA setup time	4400	-	860	-	300	-	
t _{h(SDA)}	SDA data holding time	0	210	0	252	0	145	
t _r (SDA)/ t _r (SCL)	SDA and SCL rising time	-	1000	-	300	-	300	ns
t _f (SDA)/ t _f (SCL)	SDA and SCL falling time	-	9.86	-	8.12	-	4	
t _{h(STA)}	Start condition holding time	4.96	-	0.68		0.33	-	
t _{su(STA)}	Repeated start condition setup time	4.9	-	0.87	-	0.54	-	μs
t _{su(STO)}	Setup time of stop condition	4.50	-	1.21	-	0.54	-	μs
t _w (STO:STA)	Time from stop condition to start condition (bus idle)	4.67	-	1.37	-	0.77	-	μs

Note: It is tested in comprehensive evaluation instead of in production.

Figure. 12 Bus AC Waveform and Measurement Circuit

Note: the measuring points are set at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

5.11.2 SPI Interface Characteristics

Table 51SPI Characteristics (T_A=25℃, V_{DD}=3.3V)

Symbol	Parameter	Condition	Minimum value	Maximum value	Unit	
f _{SCK}	CDI alaak fraguanay	Master mode	-	18	MHz	
1/t _{c(SCK)}	SPI clock frequency	Slave mode	-	18	IVIIIZ	
t _{r(SCK)}	SPI clock rising and falling time	Load capacitance: C=15pF	-	6	ns	
t _{su(NSS)}	NSS setup time	Slave mode	4T _{PCLK}	-	ns	
th(NSS)	NSS hold time	Slave mode	2T _{PCLK} + 10	-	ns	
tw(SCKH)	SCK high and low time	Master mode, f _{PCLK} =36MHz, Prescaler coefficient =4	54	57	ns	
t _{su(MI)}	Data input action time	Master mode	12	-		
t _{su(SI)}	Data input setup time	Slave mode	20	-	ns	
t _{h(MI)}	Data invest hald time	Master mode	34	-		
t _{h(SI)}	Data input hold time	Slave mode	22	-	ns	
t _{a(SO)}	Data output access time	Slave mode, fpclk=20MHz	-	17	ns	
t _{dis(SO)}	Data output prohibition time	Slave mode	-	18	ns	
t _{v(SO)}	Effective time of data output	Slave mode (after enable edge)	-	16	ns	

Symbol	Parameter	Condition	Minimum value	Maximum value	Unit
4 (1.10)	Effective time of data output	Master mode (after enable		6	ns
t _{v(MO)}	Effective time of data output	edge)	-		
_		Slave mode (after enable	11.5	-	
t _{h(SO)}	Data autout halding time	edge)	11.5		20
t _{h(MO)}	Data output holding time	Master mode (after enable	2		ns
		edge)	2	-	

Note: It is tested in comprehensive evaluation instead of in production.

Figure. 13 SPI Timing Diagram—Slave Mode and CPHA=0

NSS Input t_{c(SCK)} t_{SU(NSS)} $t_{h(NSS)}$ CPHA=1 CPOL=0 t_{w(sckh)} CPHA=1 CPOL=1 t_{w(SCKL)} SCK Input $t_{r(SCK)}$ t_{f(SCK)} $t_{V(SO)}$ t_{h(SO)} t_{dls(SO)} MISO t_{a(SO)} Output MSB out BIT 6~1 OUT **LSB OUT** -t_{su(si)} t_{h(SI)} BIT 6~1 IN LSB IN Msb in **MOSI Input**

Figure. 14 SPI Timing Diagram of figure. 1—slave mode and CPHA=1

Note: the measuring points are set at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

High NSS input CPHA=0 CPOL=0 CPHA=0 CPOL=1 **SCK** input CPHA=1 CPOL=0 CPHA=1 CPOL=1 SCK input $t_{r(SCK)}$ $\mathbf{t}_{\text{W(SCKL)}}$ $t_{\text{f(SCK)}}$ MSB IN BIT 6~1 IN LSB IN MISO input t_{h(MI)} MOSI MSB OUT BIT 6~1 OUT LSB OUT output $t_{h(MO)}$

Figure 15 SPI Timing Diagram—Master mode

Note: the measuring points are set at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

5.12 **ADC**

5.12.1 Built-in Reference Voltage Characteristics

Table 52Built-in Reference Voltage Characteristics

Symbol	Parameter	Condition	Minimum value	Typical value	Maximum value	Unit
VREFINT	Built-in reference voltage	-40°C <t<sub>A<+105°C</t<sub>	1.19	1.23	1.27	V
tstart	ADC_IN17 buffer startup time	-	-	-	10	μs
T _{S_vrefint}	Sampling time of ADC when reading out internal reference voltage	-	4	-	-	μs
ΔV _{REFINT}	Built-in reference voltage extends to temperature range	V _{DDA} =3.3V	-	1	25	mV

Note: It is tested in comprehensive evaluation instead of in production.

5.12.2 12-bit ADC Characteristics

Table 5312-bit ADC Characteristics

Symbol	Parameter	Condition	Minimum value	Typical value	Maximum value	Unit
V_{DDA}	service voltage	-	2.4	-	3.6	V
I _{DDA}	ADC power consumption	V_{DDA} =3.3 V , f_{ADC} =4 MHz , S_{ADC} =4 MHz , f_{ADC}	-	1	-	mA
f _{ADC}	ADC frequency	-	0.6	-	14	MHz
C _{ADC}	Internal sample and hold capacitor	-	-	8	-	pF

Symbol	Parameter	Condition	Minimum value	Typical value	Maximum value	Unit
RADC	Sampling resistance	-	-	-	1000	Ω
ts	Sampling time	f _{ADC} =14MHz	0.107	-	17.1	μs
T _{CONV}	Sampling and	f _{ADC} =14MHz,12-bit	1	-	18	μs
	conversion time	conversion				

Note: It is tested in comprehensive evaluation instead of in production.

Table 54Accuracy of 12-bit ADC

Symbol	Parameter	Condition	Typical value	Maximum value	Unit
E _T	Composite error		3.19	4	
Eo	Offset error			2.7	
E _G	Gain error	f _{ADC} =14MHz, V _{DDA} =2.4V-3.6V T _A =-40°C~105°C	3	3.2	LSB
E _D	Differential linear error		0.7	1.4	
EL	Integral linearity error		1.4	1.6	

Note: It is tested in comprehensive evaluation instead of in production.

5.13 **DAC**

Test parameter description:

- DNL differential nonlinear error: the deviation between two consecutive codes is——1
 LSB
- INL integral nonlinear error: the difference between the measured value at code i and the value at code i on the connection between code 0 and the last code 4095

Table 55DAC Characteristics

Symbol	Parameter	Condition	Minimum value	Typical value	Maximum value	Unit
V_{DDA}	Analog supply voltage	-	2.4	-	3.6	٧
	6	Load is connected to V _{SSA} with buffer on	5	-	-	- 0
R _{LOAD}	Resistive load	Load is connected to V _{DDA} with buffer on	-	-	-	kΩ
Ro	output impedance	The resistive load between DAC_OUT and V _{SS} is 1.5MΩ with Buffer off	-	-	15	kΩ
C _{LOAD}	Capacitive load	Maximum capacitive load at DAC_OUT pin with buffer on	-	-	50	pF
DAC_OUT	The voltage of	The buffer is on, corresponding to 12-bit input codes (0x0E0) to (0xF1C) when V _{DDA} =3.6V and (0x155) and (0xEAB) when V _{DDA} =2.4V	0.2	-	V _{DDA-0.2}	V
	DAC_OUT output	The buffer is off, corresponding to the 12-bit input codes (0x0E0) to (0xF1C) when V _{DDA} =3.6V and (0x155) and (0xEAB) when V _{DDA}	-	0.5	VDDA-1LSB	mV

Symbol	Parameter	Condition	Minimum value	Typical value	Maximum value	Unit
Power consumption		Non-load, the input terminal adopts intermediate code (0x800)	-	-	295	uA
I _{DDA}	of DAC in quiescent mode	Non-load, input terminal adopts difference code (0xF1C)			340	
DNL	Differential nonlinear error	Configured with 12-bit DAC	-	-	+2	LSB
INL	Integral nonlinear error	Configured with 12-bit DAC	-	-	+4	LSB
Offset	offset error	V _{DDA} =3.6 is configured with12-bit DAC	-	-	+10	LSB
Gain error	Gain error	Configured with12-bit DAC	-	-	+0.4	%

Note: It is tested in comprehensive evaluation instead of in production.

5.14 Comparator

Table 56Comparator Characteristics

Symbol	Parameter	Condition		Minimum value	Typical value	Maximum value	Unit
V_{DDA}	Analog supply voltage	-		V_{DD}	-	3.6	V
VIN	Comparator input voltage range	-		0	-	V _{DDA}	-
	Full range step, overload propagation delay of 100mV	Very low power mode		-	2	7	μs
		Low power consumption mode		-	0.7	2.1	
t_D		Medium	power mode	-	0.3	1.2	
		Full	V _{DDA} ≥2.7V	-	90	180	
		speed mode	V _{DDA} <2.7V	-	110	300	ns
Voffset	offset error	-		-	+4	±10	mv

Note: It is tested in comprehensive evaluation instead of in production.

6 Package Information

6.1 LQFP100 package information

Figuer. 16 Package Diagram of LQFP100

Note:

- (1) The figure is not drawn to scale.
- (2) The pad inside the back is not connected to V_{SS} or $V_{DD.}$
- (3) There is a pad on the bottom surface of LQFP package, which should be soldered on PCB.
- (4) All pins should be soldered on PCB.

Table 57LQFP100 Package Data

	DIMENSION LIST (FOOTPRINT: 2.00)						
S/N	SYM	DIMENSIONS	REMARKS				
1	Α	MAX. 1.600	OVERALL HEIGHT				
2	A2	1.400±0.050	PKG THICKNESS				
3	D	16.000±0.200	LEAD TIP TO TIP				
4	D1	14.000±0.100	PKG LENGTH				
5	E	16.000±0.200	LEAD TIP TO TIP				
6	E1	14.000±0.100	PKG WDTH				
7	L	0.600±0.150	FOOT LENGTH				
8	L1	1.000 REF	LEAD LENGTH				
9	е	0.500 BASE	LEAD PITCH				
10	H (REF)	(12.00)	CUM LEAD PITCH				
11	b	0.22±0.050	LEAD WIDTH				

Note: Dimensions are marked in millimeters.

Figure. 17 LQFP100-100 Pin, 14 x 14mm Welding Layout Suggestion

Note: Dimensions are marked in millimeters.

Figure 18 LQFP100-100 Pin, 14 x 14mm Package Identification

6.2 **LQFP64 Package Information**

Figure. 19 LQFP64 Package Diagram

Note: The drawing is not drawn to scale.

Table 58LQFP64 Package Data

S/N	SYM	DIMENSIONS	REMARKS
1	А	MAX.1.600	OVERALLHEIGHT
2	A2	1.400±0.050	PKGTHICKNESS
3	D	12.000±0.200	LEADTIPTOTIP
4	D1	10.000±0.100	PKGLENGTH
5	E	12.000±0.200	LEADTIPTOTIP
6	E1	10.000±0.100	PKGWIDTH
7	L	0.600±0.150	FOOTLENGTH
8	L1	1.000REF.	LEADLENGTH
9	е	0.500BASE	LEADPITCH
10	H(REF.)	(7.500)	GUM.LEADPITCH
11	b	0.220±0.050	LEADWIDTH

Note: Dimensions are marked in millimeters.

Figure 20 LQFP64 Welding Layout Suggestion

Note: Dimensions are marked in millimeters.

Figure 21 LQFP64 Coding Specification

6.3 **LQFP48 Package Information**

Figure. 22 LQFP48 Package Diagram

Note: The drawing is not drawn to scale.

Table 59LQFP48 Package Data

S/N	SYM	DIMENSIONS	REMARKS
1	А	MAX.1.60	OVERALLHEIGHT
2	A2	1.40±0.05	PKGTHICKNESS
3	D	9.00±0.20	LEADTIPTOTIP
4	D1	7.00±0.10	PKGLENGTH
5	E	9.00±0.20	LEADTIPTOTIP
6	E1	7.00±0.10	PKGWIDTH
7	L	0.60±0.15	FOOTLENGTH
8	L1	1.00REF.	LEADLENGTH
9	е	0.50BASE	LEADPITCH
10	H(REF.)	(5.50)	GUM.LEADPITCH
11	b	0.22±0.050	LEADWIDTH

Note: Dimensions are marked in millimeters.

Figure 23 LQFP48 Welding Layout Suggestion

Note: Dimensions are marked in millimeters.

Figure 24 LQFP48 Coding Specification

6.4 **QFN48 Package Information**

Figure. 25 QFN48 Package Diagram

Note: The drawing is not drawn to scale.

Table 60QFN48 Package Data

SYMBOL		MILLIMETER					
OTMBOL	MIN	NOM	MAX				
А	0.70	0.75	0.80				
A1	0	0.02	0.05				
b	0.20	0.25	0.30				
С	0.203BSC						

SYMBOL	MILLIMETER						
STWIDGE	MIN	NOM	MAX				
е		0.50BSC					
D	6.90	7.00	7.10				
D2	5.50	5.60	5.70				
Е	6.90	7.00	7.10				
E2	5.50	5.60	5.70				
L	0.35	0.40	0.45				

Note: Dimensions are marked in millimeters.

Figure 26 QFN48 Welding Layout Suggestion

Note: Dimensions are marked in millimeters.

Figure 27 QFN48 Coding Specification

7 Packaging Information

7.1 Reel Packaging

Figure. 28 Reel Packaging Specification

A0	Dimensiondesignedtoaccommodatethecomponentwidth
В0	Dimensiondesignedtoaccommodatethecomponentlength
K0	Dimensiondesignedtoaccommodatethecomponentthickness
W	Overallwidthofthecarriertape

Quadrant Assignments for PIN1O rientation in Tape

Table 61Reel Packaging Parameter Specification Table

Device	Package Type	Pins	SPQ	ReelDiameter (mm)	A0 (mm)	B0 (mm)	K0 (mm)	W (mm)	Pin1 Quadrant
APM32F072R8T6	LQFP	64	1000	330	12.35	12.35	2.2	24	Q1
APM32F072RBT6	LQFP	64	1000	330	12.35	12.35	2.2	24	Q1
APM32F072C8T6	LQFP	48	2000	330	9.3	9.3	2.2	16	Q1
APM32F072CBT6	LQFP	48	2000	330	9.3	9.3	2.2	16	Q1
APM32F072C8U6	QFN	48	2500	330	7.4	7.4	1.4	16	Q1
APM32F072CBU6	QFN	48	2500	330	7.4	7.4	1.4	16	Q1
APM32F072R8T7	LQFP	64	1000	330	12.35	12.35	2.2	24	Q1
APM32F072C8T7	LQFP	48	2000	330	9.3	9.3	2.2	16	Q1
APM32F072C8U7	QFN	48	2500	330	7.4	7.4	1.4	16	Q1
APM32F072CBU7	QFN	48	2500	330	7.4	7.4	1.4	16	Q1

7.2 Tray Packaging

Figure. 29 Tray Packaging Schematic Diagram

TrayDimensions

Table 62Tray Packaging Parameters Specification Table

Device	Package Type	Pins	SPQ	X- Dimension (mm)	Y- DimensZion (mm)	X- Pitch (mm)	Y- Pitch (mm)	Tray Lengt h (mm)	Tray Widt h (mm)
APM32F072V8T6	LQFP	100	900	16.6	16.6	20.3	21	322.6	135.9
APM32F072VBT6	LQFP	100	900	16.6	16.6	20.3	21	322.6	135.9
APM32F072R8T6	LQFP	64	1600	12.3	12.3	15.2	15.7	322.6	135.9
APM32F072RBT6	LQFP	64	1600	12.3	12.3	15.2	15.7	322.6	135.9
APM32F072C8T6	LQFP	48	2500	9.7	9.7	12.2	12.6	322.6	135.9
APM32F072CBT6	LQFP	48	2500	9.7	9.7	12.2	12.6	322.6	135.9
APM32F072C8U6	QFN	48	2600	7.25	7.25	11.8	12.8	322.6	135.9
APM32F072CBU6	QFN	48	2600	7.25	7.25	11.8	12.8	322.6	135.9
APM32F072V8T7	LQFP	100	900	16.6	16.6	20.3	21	322.6	135.9
APM32F072VBT7	LQFP	100	900	16.6	16.6	20.3	21	322.6	135.9
APM32F072R8T7	LQFP	64	1600	12.3	12.3	15.2	15.7	322.6	135.9
APM32F072C8T7	LQFP	48	2500	9.7	9.7	12.2	12.6	322.6	135.9
APM32F072C8U7	QFN	48	2600	7.25	7.25	11.8	12.8	322.6	135.9
APM32F072CBU7	QFN	48	2600	7.25	7.25	11.8	12.8	322.6	135.9

8 Ordering Information

Figure 30 Naming Rules of Ordering Information

XXX=Programmed device code R=Reel package Blank=Tray package

Table 63List of Ordering Information

Order code	FLASH(KB)	SRAM(KB)	SPQ	Package	Packing	Temperature range
APM32F072C8T6	64	16	2500	LQFP48	Tray	-40℃ ~85℃
APM32F072C8U6	64	16	2600	QFN48	Tray	-40℃ ~85℃
APM32F072R8T6	64	16	1600	LQFP64	Tray	-40℃ ~85℃
APM32F072V8T6	64	16	900	LQFP100	Tray	-40℃ ~85℃
APM32F072CBT6	128	16	2500	LQFP48	Tray	-40℃ ~85℃
APM32F072CBU6	128	16	2600	QFN48	Tray	-40℃ ~85℃
APM32F072RBT6	128	16	1600	LQFP64	Tray	-40℃ ~85℃
APM32F072VBT6	128	16	900	LQFP100	Tray	-40℃ ~85℃
APM32F072C8T6-R	64	16	2000	LQFP48	Reel	-40℃ ~85℃
APM32F072C8U6-R	64	16	2500	QFN48	Reel	-40℃ ~85℃
APM32F072R8T6-R	64	16	1000	LQFP64	Reel	-40℃ ~85℃
APM32F072CBT6-R	128	16	2000	LQFP48	Reel	-40℃ ~85℃
APM32F072CBU6-R	128	16	2500	QFN48	Reel	-40℃ ~85℃
APM32F072RBT6-R	128	16	1000	LQFP64	Reel	-40℃ ~85℃
APM32F072C8T7	64	16	2500	LQFP48	Tray	-40℃ ~ 105℃
APM32F072C8U7	64	16	2600	QFN48	Tray	-40℃ ~ 105℃
APM32F072R8T7	64	16	1600	LQFP64	Tray	-40℃ ~105℃
APM32F072V8T7	64	16	900	LQFP100	Tray	-40℃ ~105℃
APM32F072CBU7	128	16	2600	QFN48	Tray	-40℃ ~ 105℃
APM32F072VBT7	128	16	900	LQFP100	Tray	-40℃ ~ 105℃
APM32F072C8T7-R	64	16	2000	LQFP48	Reel	-40℃ ~ 105℃
APM32F072C8U7-R	64	16	2500	QFN48	Reel	-40℃ ~ 105℃
APM32F072R8T7-R	64	16	1000	LQFP64	Reel	-40℃ ~ 105℃
APM32F072CBU7-R	128	16	2500	QFN48	Reel	-40℃ ~105℃

Note: SPQ= minimum package quantity

9 Naming of Common Functional Modules

Table 64Naming of Common Function Modules

Chinese description	简称
Reset management unit	RMU
Clock management unit	CMU
Reset and clock management unit	RCM
External interrupt	EINT
General IO	GPIO
Alternate function IO	AFIO
Wake up contReeler	WUPT
Buzzer	BUZZER
Independent watchdog timer	IWDT
Window watchdog timer	WWDT
Timer	TMR
CRC contReeler	CRC
Power management unit	PMU
DmacontReeler	DMA
Attack Damage Carry	ADC
Real-time clock	RTC
External memory contReeler	EMMC
ContReeler area network	CAN
I2C interface	I2C
Serial peripheral interface	SPI
Universal asynchronous transceiver	UART
Universal asynchronous synchronous transceiver	USART
Flash interface control unit	FMC

10 Version history

Table 65 Document Version History

Date	Version	Change History		
Sept 15, 2020	1.0	New		
May 17, 2021	(1) Modify the header, front and back	(1) Modify the header, front and back cover and the logo of the package drawing		
May 17, 2021	1.1	(2) Modify the output value of fPLL_OUT in the PLL feature		
June 30,2021	1.2	Add 5.3.3 Maximum Current Rating Characteristics		
		(1) Modify the description of NVIC		
		(2) Modify the description of DMA		
April 8, 2022	1.3	(3) Modify all the captions of the figure		
Αριίι 6, 2022	1.3	(4) Modify Chapter 4.10.5 DAC function description		
		(5) Modify Chapter 5.12.2 ADC Electrical Characteristics Conditions		
		(6) Modify the names of clock		
		(1) Delete the description of APM32F072RBT7.		
May 19, 2022	1.4	(2) Update the latest definition of the name in "Ordering Information".		
Way 19, 2022	1.4	(3) Add the statement		
		(4) Correct the appellation of Arm		
June 23,2022	ine 23,2022 1.5	(1) Change the statement		
Julie 25,2022	1.5	(2) Modify product naming rules figure		
		(1) Modify the CDM Characteristic		
		(2) Modify the description of ADC		
March 2, 2023	1.6	(3) Modify the frequency of HSICLK48 under normal pressure and temper		
		(4) Delete the description of APM32F072CBT7		
		(5) Modify address mapping and timer format		

Statement

This document is formulated and published by Geehy Semiconductor Co., Ltd. (hereinafter referred to as "Geehy"). The contents in this document are protected by laws and regulations of trademark, copyright and software copyright. Geehy reserves the right to make corrections and modifications to this document at any time. Please read this document carefully before using Geehy products. Once you use the Geehy product, it means that you (hereinafter referred to as the "users") have known and accepted all the contents of this document. Users shall use the Geehy product in accordance with relevant laws and regulations and the requirements of this document.

1. Ownership

This document can only be used in connection with the corresponding chip products or software products provided by Geehy. Without the prior permission of Geehy, no unit or individual may copy, transcribe, modify, edit or disseminate all or part of the contents of this document for any reason or in any form.

The "极海" or "Geehy" words or graphics with "®" or "TM" in this document are trademarks of Geehy.

Other product or service names displayed on Geehy products are the property of their respective owners.

2. No Intellectual Property License

Geehy owns all rights, ownership and intellectual property rights involved in this document.

Geehy shall not be deemed to grant the license or right of any intellectual property to users explicitly or implicitly due to the sale or distribution of Geehy products or this document.

If any third party's products, services or intellectual property are involved in this document, it shall not be deemed that Geehy authorizes users to use the aforesaid third party's products, services or intellectual property, unless otherwise agreed in sales order or sales contract.

3. Version Update

Users can obtain the latest document of the corresponding models when ordering Geehy products.

If the contents in this document are inconsistent with Geehy products, the agreement in thesales order or the sales contract shall prevail.

4. Information Reliability

The relevant data in this document are obtained from batch test by Geehy Laboratory or cooperative third-party testing organization. However, clerical errors in correction or errors caused by differences in

testing environment may occur inevitably. Therefore, users should understand that Geehy does not bear any responsibility for such errors that may occur in this document. The relevant data in this document are only used to guide users as performance parameter reference and do not constitute Geehy's guarantee for any product performance.

Users shall select appropriate Geehy products according to their own needs, and effectively verify and test the applicability of Geehy products to confirm that Geehy products meet their own needs, corresponding standards, safety or other reliability requirements. If loses are caused to users due to the user's failure to fully verify and test Geehy products, Geehy will not bear any responsibility.

5. Legality

USERS SHALL ABIDE BY ALL APPLICABLE LOCAL LAWS AND REGULATIONS WHEN USING THIS DOCUMENT AND THE MATCHING GEEHY PRODUCTS. USERS SHALL UNDERSTAND THAT THE PRODUCTS MAY BE RESTRICTED BY THE EXPORT, RE-EXPORT OR OTHER LAWS OF THE COUNTIRIES OF THE PRODUCTS SUPPLIERS, GEEHY, GEEHY DISTRIBUTORS AND USERS. USERS (ON BEHALF OR ITSELF, SUBSIDIARIES AND AFFILIATED ENTERPRISES) SHALL AGREE AND PROMISE TO ABIDE BY ALL APPLICABLE LAWS AND REGULATIONS ON THE EXPORT AND RE-EXPORT OF GEEHY PRODUCTS AND/OR TECHNOLOGIES AND DIRECT PRODUCTS.

6. Disclaimer of Warranty

THIS DOCUMENT IS PROVIDED BY GEEHY "AS IS" AND THERE IS NO WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, TO THE EXTENT PERMITTED BY APPLICABLE LAW.

GEEHY WILL BEAR NO RESPONSIBILITY FOR ANY DISPUTES ARISING FROM THE SUBSEQUENT DESIGN OR USE BY USERS.

7. Limitation of Liability

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL GEEHY OR ANY OTHER PARTY WHO PROVIDE THE DOCUMENT "AS IS", BE LIABLE FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, DIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE DOCUMENT (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY USERS OR THIRD PARTIES).

8. Scope of Application

The information in this document replaces the information provided in all previous versions of the document.

© 2020-2023 Geehy Semiconductor Co., Ltd. - All Rights Reserved