Vertiefungskurs Mathematik

Integrationstechniken

1. Partielle Integration

Nach der Produktregel gilt: $(u(x) \cdot v(x))' = u'(x) \cdot v(x) + u(x) \cdot v'(x)$. Wir bilden auf beiden Seiten Stammfunktionen und rechnen weiter:

$$\int (u(x) \cdot v(x))' dx = \int u'(x) \cdot v(x) dx + \int u(x) \cdot v'(x) dx$$
$$u(x) \cdot v(x) = \int u(x)' \cdot v(x) dx + \int u(x) \cdot v'(x) dx$$
$$\int u(x) \cdot v'(x) dx = u(x) \cdot v(x) - \int u'(x) \cdot v(x) dx$$

Kurzform der partiellen Integration: $\int uv' = uv - \int u'v$

Vereinbarung: alle vorkommenden Funktionen sollen stetig differenzierbar sein. Dadurch wird die Existenz aller auftretenden Integrale gesichert. Bei Stammfunktionen lassen wir die Angabe der Konstanten +c meist weg.

Beispiel 1:

$$\int_0^4 2xe^x dx \quad \text{Wir setzen } u = 2x, v' = e^x$$

$$\int_0^4 2xe^x dx = [2xe^x]_0^4 - \int_0^4 2e^x dx = 8e^4 - 0 - [2e^x]_0^4 = 8e^4 - 2e^4 + 2e^0 = 6e^4 + 2$$

Mögliche Kriterien für die Wahl von u, v:

Das Polynom sollte als u gewählt werden.

Der Faktor, der beim Ableiten 'einfacher' wird, sollte als u gewählt werden.

Beispiel 2

$$\int_{0}^{\frac{\pi}{2}} x^{2} \sin(x) dx \quad \text{Wir setzen } u = x^{2}, v' = \sin(x)$$

$$\int_{0}^{\frac{\pi}{2}} x^{2} \sin(x) dx = \left[x^{2}(-\cos(x))\right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} 2x(-\cos(x)) dx$$
(Das letzte Integral berechnen wir wieder mit partieller Integration, $u = 2x, v' = -\cos(x)$)
$$= -(\frac{\pi^{2}}{4} \cdot 0 - 0) - (\left[2x(-\sin(x))\right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} 2(-\sin(x)) dx) = 0 - (-\pi \cdot 1 + 0 - \left[2\cos(x)\right]_{0}^{\frac{\pi}{2}}) = -(-\pi - 0 + 2) = \pi - 2$$

Ist der eine Faktor ein Polynom vom Grad n, so muss man die partielle Integration n-mal durchführen, bis die Ableitung dieses Faktors eine Konstante ist.

Beispiel 3

$$\int_{a}^{b} \ln(x) dx \quad \text{Wir setzen } u = \ln(x), v' = 1$$

$$\int_{a}^{b} \ln(x) dx = [x \ln(x)]_{a}^{b} - \int_{a}^{b} x \frac{1}{x} dx = [x \ln(x)]_{a}^{b} - [x]_{a}^{b} = [x \ln(x) - x]_{a}^{b}$$

Eine Stammfunktion von ln(x) ist x ln(x) - x.

ln(x) ist guter Kandidat für u.

Beispiel 4

$$\int_0^{\frac{\pi}{2}} \sin(x) \cos(x) dx \quad \text{Wir setzen } u = \sin(x), v' = \cos(x)$$

$$\int_0^{\frac{\pi}{2}} \sin(x) \cos(x) dx = \left[\sin(x) \sin(x)\right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} \cos(x) \sin(x) dx = \frac{1}{2} \left[\sin^2(x)\right]_0^{\frac{\pi}{2}} = \frac{1}{2}$$

Bei trigonometrischen Funktionen steht manchmal auf beiden Seiten dasselbe Integral. Dann bringt man beide auf eine Seite und teilt durch 2.

2. Integration durch Substitution

Lineare Substitution

Aus der Kettenregel folgt: Ist f eine verkettete Funktion mit f(x) = g(mx + b) und G Stammfunktion von g, dann ist $F(x) = \frac{1}{m}G(mx + b)$ eine Stammfunktion von f.

Beispiele:

$$f(x) = \sin(2x) \Rightarrow \int f(x) = -\frac{1}{2}\cos(2x) + c$$

$$f(x) = (2x - 4)^3 \Rightarrow \int f(x) = \frac{1}{8}(2x - 4)^4 + c$$

Logarithmische Integration

Aus der Kettenregel folgt: Eine Stammfunktion für $\frac{g'(x)}{g(x)}$ ist $\ln |g(x)|$.

Beispiele:

$$f(x) = \frac{2x}{1+x^2} \Rightarrow \int f(x) = \ln(1+x^2) + c$$

$$f(x) = \frac{6e^{2x}}{5 + 3e^{2x}} \Rightarrow \int f(x) = \ln(5 + 3e^{2x}) + c$$

Integration durch Substitution

Die Kettenregel liefert: $(F \circ u)' = f(u(x)) \cdot u'(x)$.

Daraus ergibt sich: $\int f(u(x)) \cdot u'(x) dx = F \circ u$

Beispiel 1:
$$\int \sin(x^2)2x \, dx$$
. Setze $f(x) = \sin(x)$, $u(x) = x^2$. Es ergibt sich: $\int \sin(x^2)2x \, dx = -\cos(x^2)$

Das Verfahren wird in der Praxis einfacher durch das 'Rechnen' mit den Differentialen dx und du.

$$u = x^2 \Rightarrow \frac{du}{dx} = 2x \Rightarrow dx = \frac{du}{2x}$$
 Also gilt:

$$\int \sin(x^2)2x \, dx = \int \sin(u)2x \frac{du}{2x} = \int \sin(u) \, du = -\cos(u) + c =$$

$$-\cos(x^2) + c$$

Beispiel 2:

$$\int (2x^2 + 1)^3 4x \, dx, \quad u = 2x^2 + 1 \Rightarrow \frac{du}{dx} = 4x \Rightarrow dx = \frac{du}{4x}$$
$$\int (2x^2 + 1)^3 4x \, dx = \int u^3 \, du = \frac{1}{4}u^4 + c = \frac{1}{4}(2x^2 + 1)^4 + c$$

Beispiel 3:

$$\int \frac{x}{\sqrt{1+x^2}} dx, \quad u = 1 + x^2 \Rightarrow \frac{du}{dx} = 2x \Rightarrow dx = \frac{du}{2x}$$

$$\int \frac{x}{\sqrt{1+x^2}} dx = \int \frac{1}{2\sqrt{u}} du = \sqrt{u} + c = \sqrt{1+x^2} + c$$

Substitution bei bestimmten Integralen

Es gilt:

$$\int_{a}^{b} f(u(x)) \cdot u'(x) \, dx = [F \circ u]_{a}^{b} = F(u(b)) - F(u(a)) = \int_{u(a)}^{u(b)} f(u) \, du$$

Beispiel:

$$\int_0^2 \frac{8x^3}{\sqrt{x^4 + 9}} dx \quad u = x^4 + 9 \Rightarrow \frac{du}{dx} = 4x^3 \Rightarrow dx = \frac{du}{4x^3}$$

$$\int_0^2 \frac{8x^3}{\sqrt{x^4 + 9}} dx = \int_{u(0)}^{u(2)} \frac{2}{\sqrt{u}} du = \left[4\sqrt{u}\right]_9^{25} = 8.$$

Oder man berechnet erst das unbestimmte Integral, resubstituiert u und rechnet mit den ursprünglichen Grenzen:

$$\int \frac{8x^3}{\sqrt{x^4 + 9}} \, dx = \int \frac{2}{\sqrt{u}} \, du = 4\sqrt{u} + c = 4\sqrt{x^4 + 9} + c$$

$$\int_0^2 \frac{8x^3}{\sqrt{x^4 + 9}} dx = \left[4\sqrt{x^4 + 9}\right]_0^2 = 8$$

Lineare Substitution und Logarithmische Integration sind Spezialfälle der Integraton durch Substitution:

$$\int g(mx+c) dx \quad u = mx + c \Rightarrow \frac{du}{dx} = m \Rightarrow dx = \frac{du}{m}$$

$$\int g(mx+c) dx = \int \frac{g(u)}{m} du = \frac{1}{m} G(u) + c = \frac{1}{m} G(mx+b) + c$$

$$\int \frac{g'(x)}{g(x)} dx \quad u = g(x) \Rightarrow \frac{du}{dx} = g'(x) \Rightarrow dx = \frac{du}{g'(x)}$$

$$\int \frac{g'(x)}{g(x)} dx = \int \frac{1}{u} du = \ln|u| + c = \ln|g(x)| + c$$

Integration durch Partialbruchzerlegung

Für jede gebrochenrationale Funktion lässt sich eine Stammfunktion bestimmen, indem man den Funktionsterm in eine geeignet Summe zerlegt. Für eine rationale Funktion $f(x) = \frac{p_1(x)}{p_2(x)}$ gehen wir wie folgt vor:

- 1. Falls Zählergrad \geq Nennergrad, führe Polynomdivision durch:
- $f(x) = p_3(x) + \frac{p_4(x)}{p_2(x)}$
- 2. Falls eine Nullstelle von $p_2(x)$ auch eine Nullstelle von $p_4(x)$, kürze mit dem entsprechenden Linearfaktor. $f(x) = p_3(x) + \frac{p_5(x)}{p_6(x)}$
- 3. Der Bruch $\frac{p_5(x)}{p_6(x)}$ wird aufgespaltet in eine Summe von Partialbrüchen: Jede einfache Nullstelle a des Nenners liefert einen Term $\frac{A}{x-a}$, jede doppelte Nullstelle b den Term $\frac{B_1}{(x-b)}+\frac{B_2}{(x-b)^2}$.

Hinweis: Wir beschränken uns auf höchstens doppelte Nullstellen im Nenner und betrachten auch nicht den Fall, dass ein Faktor im Nenner keine Nullstelle hat (z.B: $x^4 + 1$).

Beispiel 1:
$$\frac{5x+7}{(x-1)(x+5)} = \frac{A}{x-1} + \frac{B}{x+5}$$

Koeffizientenvergleich:

$$5x + 7 = A(x + 5) + B(x - 1)$$

$$5x + 7 = (A + B)x + (5A - B)$$

$$A + B = 5$$

$$(2)$$

$$5A - B = 7$$

$$(1) + (2)$$

$$6A = 12$$

$$A = 2, B = 3$$

$$\int_{2}^{8} \frac{5x+7}{(x-1)(x+5)} dx = \int_{2}^{8} \frac{2}{x-1} + \frac{3}{x+5}$$

$$= [2\ln|x-1| + 3\ln|x+5|]_{2}^{8} = 2\ln7 + 3\ln13 - 2\ln1 - 3\ln7 = -\ln7 + 3\ln13$$

Bestimmung der Koeffizienten durch Betrachtung des Wachstumsverhaltens:

$$\frac{5x+7}{(x-1)(x+5)} = \frac{A}{x-1} + \frac{B}{x+5}$$

Wenn sich x der 1 nähert, explodiert der linke Term. Auf der rechten Seite spielt der Term mit dem B bei der Explosion keine Rolle, d.h. das A muss sich dem Term $\frac{5x+7}{x+5}$ annähern, wenn dort die 1 eingesetzt wird. Das ergibt $A=\frac{12}{6}=2$. Analog erhält man $B=\frac{-18}{-6}=3$.

Beispiel 2:

$$\frac{x+3}{(x-1)^2(x-5)} = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x-5}$$

B und C lassen sich durch Betrachtung des Wachstumsverhaltens bestimmen:

$$C = \frac{5+3}{(5-1)^2} = \frac{1}{2}, \quad B = \frac{1+3}{1-5} = -1$$

A ergibt sich durch den Vergleich des Koeffizienten für x^2 (wenn die rechte Seite auf einen Bruchstrich gebracht wird).

$$0 = Ax^2 + Cx^2 \Rightarrow A = -\frac{1}{2}$$