Notes - Commutative Rings (2025-01-22)

George McNinch

2025-01-22

Ring homomorphisms

If R and S are rings, a function $\phi: R \to S$ is called a ring homomorphism provided that

- a. ϕ is a homomorphism of *additive groups*, and
- b. ϕ preserves multiplication; i.e. for all $x, y \in R$ we have $\phi(xy) = \phi(x)\phi(y)$.
- c. $\phi(1_R) = 1_S$.

The *kernel* of the ring homomorphism $\phi: R \to S$ is given by

$$\ker \phi = \phi^{-1}(0) = \{ x \in R \mid \phi(x) = 0 \};$$

thus ker ϕ is just the kernel of ϕ viewed as a homomorphism of additive groups.

Properties of the kernel:

- a. $\ker \phi$ is an additive subgroup of R
- b. for every $r \in R$ and every $x \in \ker \phi$ we have $rx \in \ker \phi$.

Ideals of a ring

For simplicity suppose that the ring R (and S) are *commutative* rings.

A subset I of R is an *ideal* provided that

- a. I is an additive subgroup of R, and
- b. for every $r \in R$ and every $x \in I$ we have $rx \in I$.

We sometimes describe condition b. by saying that "I is closed under multiplication by every element of R".

The proof of the following is immediate from definitions:

Proposition If $\phi: R \to S$ is a ring homomorphism, then $\ker \phi$ is an ideal of R.

Quotient rings

Let R be a commutative ring and I an ideal of R.

Since I is a subgroup of the (abelian) additive group R, we may consider the quotient group R/I. Its elements are (additive) cosets a+I for $a \in R$.

It follows from the definition of cosets that the a+I=b+I if and only if $b-a\in I$.

The additive group can be made into a commutative ring by defining the multiplication as follows:

For $a+I, b+I \in R/I$ (so that $a,b \in R$), the product is given by

$$(a+I)(b+I) = ab + I.$$

In order to make this definition, one must confirm that this rule is well-defined. Namely, if we have equalities a + I = a' + I and b + I = b' + I, we need to know that

$$(a+I)(b+I) = (a'+I)(b'+I).$$

Applying the definition, we see that we must confirm that

$$ab = I = a'b' + I.$$

For this, we need to argue that $a'b' - ab \in I$.

Since a+I=a'+I, we know that $a'-a=x\in I$ and since b+I=b'+I we know that $b'-b=y\in I$.

Thus a' = a + x and b' = b + y. Now we see that

$$a'b' = (a+x)(b+y) = ab + ay + xb + xy$$

Since I is an ideal, we see that $ay, xb, xy \in I$ henc $ay + xb + xy \in I$. Now conclude that a'b' + I = ab + I as required.

It is now straightforward to confirm that the ring axioms hold for the set R/I with these operations.

Proposition If I is an ideal of the commutative ring R, then R/I is a commutative ring with the addition and multiplication just described.

Principal ideals

If R is a commutative ring and $a \in R$, the principal ideal generated by a – written Ra or $\langle a \rangle$ – is defined by

$$Ra = \langle a \rangle = \{ ra \mid r \in R \}.$$

Proposition For $a \in R$, Ra is an *ideal* of R.

Example Let $n \in \mathbb{Z}_{>0}$ and consider the principal ideal $n\mathbb{Z}$ of the ring \mathbb{Z} generated by $n \in \mathbb{Z}$.

As an additive group, $n\mathbb{Z}$ is the infinite cyclic group generated by n.

The quotient ring $\mathbb{Z}/n\mathbb{Z}$ is the finite commutative ring with n elements; these elements are precisely the *congruence classes* of integers modulo n.

Isomorphism Theorem

Theorem Let R,S be commutative rings with identity and let $\phi:R\to S$ be a ring homomorphism. Assume that ϕ is *surjective* (i.e. *onto*). Then ϕ determines an isomorphism $\overline{\phi}:R/I\to S$ where $I=\ker\phi$, where $\overline{\phi}$ is determined by the rule

$$\overline{\phi}(a+I) = \phi(a) \quad \text{for } a \in R.$$

Outline of proof

First, you must confirm that $\overline{\phi}$ is well-defined; i.e. that if a+I=a'+I then $\overline{\phi}(a+I)=\overline{\phi}(a'+I)$.

Next, you must confirm that $\overline{\phi}$ is a ring homomorphism (this is immediate from the definition of ring operations on R/I).

Finally, you must confirm that $\ker \overline{\phi} = \{0\}$, where here 0 refers to the additive identity of the quotient ring R/I. This additive identity is of course the trivial coset $I = 0 + I \in R/I$.

Polynomial ring example

If F is a field and $a \in F$, consider the mapping

$$\Phi: F[T] \to F$$

given by $\Phi(f(T)) = f(a)$. Namely, applying Φ to a polynomial f(T) results in the value f(a) of f(T) at a.

The definition of multiplication in F[T] guarantees that Φ is a ring homomorphism.