BIOS 635: Introduction to Machine Learning

Kevin Donovan

UNC-Chapel Hill

1/19/2021

What is machine learning?

About Me

PhD student in Biostatistics UNC at Chapel Hill Basketball and Green Bay Packers enthusiast Hip-Hop, Jazz, Funk, Metal music fanatic

Structure for class:

- Lecture Tues/Thurs 9:30-10:45AM
- Office Hours Wed 10-11AM
- Weekly homework assignments, bi-weekly article evaluations
- Midterm exam on real data analysis, final group project
- Implementation of methods taught through R

"But before we move on, allow me to belabor the point even further..."

Goals for class:

- Primary: Promote the understanding of machine learning conceptually from a stats framework
- Primary: Teach implementation of methods in R
- 3 Secondary: Promote good analytic practices, with focus on
 - 1 data management
 - 2 data visualization/tabulation
 - exploratory analysis
 - 4 reproducibility
- Oevelop a critical eye for machine learning and its application in science and society at large

Machine Learning:

Development and application of methods to identify patterns in data

How to identify these patterns?

- Patterns are complex, how to model?
- How much modeling do we enforce on the data?
- How to evaluate a method's performance?
- What population are we analyzing? Who is benefiting from the analysis? Who is being left out?

Statistical Inference

Black box may be "nuisance", may only want to predict output

Branches of machine learning

- Supervised Learning
 "Ground truth" observed for all subjects, used to "train" method
- Unsupervised Learning
 "Ground truth" not observed for any subjects, is "latent"
- Reinforcement Learning
 Algorithm "self-updates" based on data and valuation system

Supervised and Unsupervised:

Training the method

Can we then **test** the method on the same data? How training done when we **don't see the outcome**?

Supervised and Unsupervised

Patterns found completely dependent on training data

- What population is this training data from?
- What communities are represented, which are not?
- Why are these communities not represented?
- Who benefits from insights learned from method?

Genetic analyses of diverse populations improves discovery for complex traits

```
Genevieve L Wojcik, Mariaelisa Graff, [...] Christopher S. Carlson 

Nature 570, 514–518(2019) | Cite this article

22k Accesses | 100 Citations | 564 Altmetric | Metrics
```

- Many communities largely left behind in medical machine learning research
- Reflects systemic inequities in other parts of society at large
- As data analysts, need to combat and consider in our research

Reproducibility in the Computing Age

Evidence shows low reproducibility of scientific research despite

- Extensive professional specialization
- Well-developed methodology for study design and data analysis
- 3 Explosion in open source statistical software and computing tools
- 4 Software supported by extensive documentation

How can we turn the tide on the reproducibility issue?

Song of the session:

Pomp & Pride by Toots and the Maytals

