Differential Equations Week 2

Garud Shah

January 26, 2025

Problem 1 (Problem 1a)

Consider the differential equation $y' = 3x^2y^2$.

- I. Prove that there is a unique solution on some interval around all initial values.
- II. Draw at least 5 level curves of y'(x, y).
- III. Solve the differential equation.
- IV. Draw a direction field for the differential equation.
- V. For the inital value problem y(0) = 1:
 - 1. Draw the solutions of the differential equation with this intial value onto the direction field.
 - 2. Approximate the solutions of the differential equation with Euler's Method, with a delta-value of Δ .
 - 3. Graph the solutions in 1aV2 for
 - (a) $\Delta = 0.4$
 - (b) $\Delta = 0.2$
 - (c) $\Delta = 0.01$.
- VI. For the inital value problem y(0) = 0:
 - 1. Draw the solutions of the differential equation with this intial value onto the direction field.
 - 2. Approximate the solutions of the differential equation with Euler's Method, with a delta-value of Δ .
 - 3. Graph the solutions in 1aVI2 for
 - (a) $\Delta = 0.4$
 - (b) $\Delta = 0.2$
 - (c) $\Delta = 0.01$.