Clase 1: Repaso de sistemas, modelos, ecuaciones

Empezemos con un ejemplo motivador. En una fábrica un ingeniero en control se ve enfrentado con un problema: su jefe le asignó la tarea de estudiar cómo eliminar las oscilaciones observadas en el puente grúa.

¿Qué es un puente grúa? Algo como esto:

Ejemplo de puente grúa

Han observado, en la fábrica, que al elevar cargas con este dispositivo se presentan oscilaciones muy poco amortiguadas en la dirección vertical.

Análisis del problema

Al ingeniero en control, llamado Ogata, se le ocurrió que para entender el problema debía armar un modelo físico-matemático de este dispositivo que le permitiera explicar el fenómeno, estudiarlo y proponer una solución.

La forma más simple de describir este sistema que se le ocurrió, y que justifique la existencia de oscilaciones, es la siguiente:

Modelo del puente grúa

Las ecuaciones matemáticas de este modelo salen de plantear las leyes físicas de cada elemento:

$$\sum_{i} F_{i} = M \frac{d^{2} y}{dt^{2}}$$

$$f + Mg - Ky - B\frac{dy}{dt} = M\frac{d^2y}{dt^2}$$

Con esta ecuación, llegamos al modelo matemático más simple al que recurrió Ogata.

Ejercicio

1. ¿Qué tipo de ecuación matemática es esta?

una ecuación diferencial de 2do orden, no homogenea debido a f.

2. ¿Es lineal el sistema descripto con dicha ecuación?

no es lineal ; Por? Explicar

Una herramienta de análisis que Ogata viene usando desde que estudió Ingeniería Electrónica en la FIUBA es la función de transferencia. ¿Te acordás de dónde salía y qué utilidad tenía?

Ejercicio

Es hora de agarrar papel y lápiz. Desarrollá la ecuación de transferencia para el modelo de Ogata. ¿Cuál creés que es la entrada y cuál sería la salida?

Deberías llegar a la siguiente ecuación:

$$H(s) = \frac{Z(s)}{F(s)} = \frac{1/M}{s^2 + \frac{B}{M}s + \frac{K}{M}}$$

Donde

$$Z(s) = \mathcal{L}\{z(t)\}$$

es la transformada de Laplace de los desplazamientos del centro de masa del puente grúa, respecto del punto de equilibrio. Es decir:

$$z = y - y_{equilibrio}$$

$$F(s) = \mathcal{L}\{f(t)\}\$$

es la transformada de Laplace de la fuerza aplicada al dispositivo.

RTA:

a partir de la ecuacion diferencial

 $f + Mg - Ky - B\frac{dy}{dt} = M\frac{d^2y}{dt^2}$ Faltó el paso de pasar a z(t)

transformo con Laplace para encontrar la transferencia a condiciones iniciales nulas y teniendo en cuenta que resuelvo en el equilibrio :

$$F(s) - K.Z - B.S.Z = MS^{2}.Z$$

reagrupando

$$F(s) = (MS^2 + K + B.S)Z(s)$$

y finalmente se obtiene el H(s).

$$H(s) = \frac{1}{MS^2 + K + B.S} \checkmark$$

A modo de repaso de las herramientas básicas de análisis que un ingeniero en Control debe conocer, y para practicar el uso de las bibliotecas de Control en Python, vamos a empezar por ingresar el modelo y simularlo.

Para trabajar con la biblioteca de funciones dedicadas al control, y todas las herramientas de simulación en python, necesitamos importarlas:

In [1]:

!pip install control

No es un paquete de python que venga instalado por defecto, por eso, agregamos la posibil
import control as ctrl
import numpy as np

Numpy es la biblioteca de computos científicos más usada en pyhon
import matplotlib.pyplot as plt

Matplotlib es la biblioteca que nos va a permitir graficar

Requirement already satisfied: control in c:\users\brian\anaconda3\lib\site-packages (0.9.0)
Requirement already satisfied: numpy in c:\users\brian\anaconda3\lib\site-pa

Requirement already satisfied: numpy in c:\users\brian\anaconda3\lib\site-packages (from control) (1.16.4)

Requirement already satisfied: matplotlib in c:\users\brian\anaconda3\lib\si te-packages (from control) (3.1.0)

Requirement already satisfied: scipy in c:\users\brian\anaconda3\lib\site-pa ckages (from control) (1.2.1)

Requirement already satisfied: cycler>=0.10 in c:\users\brian\anaconda3\lib \site-packages (from matplotlib->control) (0.10.0)

Requirement already satisfied: kiwisolver>=1.0.1 in c:\users\brian\anaconda3 \lib\site-packages (from matplotlib->control) (1.1.0)

Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in c:\users\brian\anaconda3\lib\site-packages (from matplotlib->control) (2.4.0)

Requirement already satisfied: python-dateutil>=2.1 in c:\users\brian\anacon da3\lib\site-packages (from matplotlib->control) (2.8.0)

Requirement already satisfied: six in c:\users\brian\anaconda3\lib\site-pack ages (from cycler>=0.10->matplotlib->control) (1.12.0)

Requirement already satisfied: setuptools in c:\users\brian\anaconda3\lib\si te-packages (from kiwisolver>=1.0.1->matplotlib->control) (41.0.1)

Algunos recursos para tener en cuenta:

https://python-control.readthedocs.io/en/0.8.3/intro.html (https://python-control.readthedocs.io/en/0.8.3/intro.html)

https://numpy.org/devdocs/user/quickstart.html (https://numpy.org/devdocs/user/quickstart.html)

https://matplotlib.org/tutorials/index.html (https://matplotlib.org/tutorials/index.html)

El siguiente bloque define dentro de este Notebook, los valores de los parámetros del modelo:

In [2]:

```
# Definición de valores de parámetros del modelo

M = 0.3 # kg

K = 0.03 # N/m

B = 0.3 # Ns/m

print('El sistema tiene una masa de {:f} kg, constante elástica de {:f} N/m y coeficiente d
```

El sistema tiene una masa de 0.300000 kg, constante elástica de 0.030000 N/m y coeficiente de roce viscoso 0.300000 Ns/m.

Ingresamos la definición del sistema de acuerdo a la función de transferencia hallada:

In [3]:

```
numerador = np.array([1/M])
denominador = np.array([1, B/M, K/M])  #(a.5**2 + b.5 + c)
sistema = ctrl.tf(numerador, denominador)  #tf(num, den[, dt])  Create a transf
print(sistema)
```

```
3.333
-----s^2 + s + 0.1
```

In []:

A partir de esta definición, es muy simple calcular y graficar la respuesta al impulso, o la respuesta al escalón. A continuación lo resolvemos:

In [5]:

```
tiempo, z = ctrl.impulse_response(sistema) #T, yout, xout= impulse_response(sys[, T, X
plt.plot(tiempo, z)
plt.ylabel('z(t) (m)')
plt.xlabel('Tiempo (s)')
plt.title('Respuesta a f(t) = $\delta$(t), impulso')
plt.grid()
plt.show()
```


Para probar: Si quisieras elegir los tiempos de simulación para la respuesta el impulso, deberías pasarle un array a la función impulse response(). Revisá su documentación de la siguiente forma:

```
ctrl.impulse_response?
```

en un diálogo de código e intentá elegir simular para los tiempos que desees.

In [6]:

```
tiempo, z = ctrl.step_response(sistema) #step_response(sys[, T, X0, input, output, ...])
plt.plot(tiempo, z)
plt.ylabel('z(t) (m)')
plt.xlabel('Tiempo (s)')
plt.title('Respuesta a f(t) = s(t), escalon')
plt.grid()
plt.show()
```


Por último, otras herramientas muy utilizada también, son el diagrama de bode o de respuesta en frecuencia del sistema, y el diagrama de polos y ceros. Ambos simulados a continuación:

In [7]:

In [14]:

```
limites= (0.1, 10)
mag, phase, omega = ctrl.bode_plot(sistema, Hz= True, margins= True, omega_limits= limites)
#aca esta en frecuencia
Figh of para etra cosal
```

Gm = inf (at nan Hz), Pm = 31.05 deg (at 0.27 Hz)

Para probar: Utiliza la ayuda de la función bode_plot() para graficar en función de la frecuencia en Hz. Además, explora la forma de seleccionar las frecuencias a simular.

In [9]:

```
ctrl.pzmap(sistema) #control.pzmap(sys, Plot=True, grid=False,
polos = ctrl.pole(sistema)
ceros = ctrl.zero(sistema)
print('El sistema tiene polos en s1 = {} y s2 = {} y no tiene ceros finitos.'.format(polos
```

El sistema tiene polos en s1 = -0.8872983346207417 y s2 = -0.11270166537925 831 y no tiene ceros finitos.

Para completar el modelo, Ogata incluye la señal de perturbación que estima que proviene de la carga del puente grúa, y que tiene la siguiente forma:

$$f = Asen(\omega t)$$

Con

A = 1 N

у

 $\omega = 90 \ rad/s$

Tarea:

Ejercicio 1

Resuelva la respuesta del sistema a dicha perturbación y comparela con la solución cargada. Puede resolverlo mediante simulación como se indica a continuación:

In [15]:

```
# Ejercicio de simulación: Ingrese acá su código de simulación para hallar z(t) con la f(t)
A = 1
omega = 90
             #rad/s
# Tip: https://python-control.readthedocs.io/en/0.8.3/generated/control.forced_response.htm
t0=0
t1=80
nt= 50000
t= np . linspace ( t0 , t1 , nt )
f= A*np.sin(omega*t)
t, zout= ctrl.forced_response(sistema,t, f )
# Respuesta a la perturbacion senoidal, la solucion forzada.
plt.plot(t, zout)
plt.ylabel('z(t) (m)')
plt.xlabel('Tiempo (s)')
plt.title('Respuesta a f(t) = s(t), Asen(w.t)')
plt.grid()
plt.show()
#Solucion forzada entre los 76 a 78 segundos.
plt.plot(t, zout)
plt.ylim([-0.001, 0.001])
plt.xlim([76, 78])
plt.ylabel('z(t) (m)')
plt.xlabel('Tiempo (s)')
plt.title('Respuesta a f(t) = s(t), Asen(w.t), regimen permanente')
plt.grid()
plt.show()
# Aquí va tu código!
```


¿Cuál es la amplitud? ¿ Y la fase?

Ejercicio 2

¿Cómo simularía o calcularía la respuesta en régimen permanente? Explique.

RTA:

Régimen estacionario. Permanente se usa para sinusoidal

Por lo general para calcular la respuesta en régimen permanente se usa el teorema de valor final:

$$f(\infty) = Lim_{t \to \infty} f(t) = \overline{Lim}_{S \to 0} S. F(S)$$

pero este sirve cuando hay un valor final, y **este no es el caso**. por lo que se puede ver en el gráfico de arriba que en el regimen permanente oscila de forma senoidal.

O sea que el resultado lo obtenés así?

No se te ocurre otra forma? Obtener amplitud y fase a la salida en régimen permanente...

Después de observar la respuesta del modelo y contrastar con las mediciones y observaciones del puente grúa en cuestión, Ogata investigó cómo podía mejorar dicha situación. En resumen, se planteó un objetivo:

"Quiero que esta señal de perturbación, que es similar a la que aparece en el puente grúa, se atenúe lo más posible"

y luego, lo tradujo a un requerimiento matemático para el modelo como:

$$z(t) \xrightarrow[t\to\infty]{} 0.$$

Para lograr este objetivo, Ogata encontró algo que se denomina un amortiguador de masa. El modelo final, con el amortiguador de masa se puede observar a continuación:

Modelo del puente grúa con amortiguador

Ejercicio 3

Hallar el modelo matemático del puente grúa con amortiguador de masa y hallar la nueva función de transferencia.

Verificar el resultado de Ogata:

$$\frac{Z(s)}{F(s)} = \frac{1}{M} \frac{s^2 + K_a/M_a}{s^4 + \frac{B}{M}s^3 + (\frac{K_a}{M_a} + \frac{K}{M} + \frac{K_a}{M})s^2 + \frac{BK_a}{MM_a}s + \frac{KK_a}{MM_a}}$$

Dada la masa M_a = 0,03 kg, Ogata pretende diseñar el amortiguador de masa, es decir, elegir K_a para que se cumpla el objetivo planteado anteriormente.

RTA:

¿Por qué? ¿Qué significa? ¿Qué son y1 e y2 entonces?

Nuevamente se trabaja en el equilibrio

Tranformo con Laplace y reordeno:
$$F = (MS^2 + K + SB)Y_1 + K_a(Y_2 - Y_1)$$

$$0 = M_aS^2Y_2 + K_a(Y_2 - Y_1) \rightarrow Y_2 = \frac{K_a}{M_aS^2 + K_a}$$

reemplazando Y_2 :

$$F = (MS^{3} + K + SB)Y_{1} - K_{a}Y_{1} + K_{a}\frac{KaY_{1}}{M_{a}S^{2} + K_{a}}$$

$$F = \frac{MM_{a}S^{4} + M_{a}KS^{2} + M_{a}BS^{3} + MK_{a}s^{2} + KK_{a} + SBK_{a} - K_{a}M_{a}S^{2} - Ka^{2} + Ka^{2}}{M_{a}S^{2} + K_{a}}Y_{1}$$

reorganizando un poco mas y haciendo un cambio de z:

$$\frac{Z(s)}{F(s)} = \frac{1}{M} \frac{s^2 + K_a/M_a}{s^4 + \frac{B}{M}s^3 + (\frac{K_a}{M_a} + \frac{K}{M} + \frac{K_a}{M})s^2 + \frac{BK_a}{MM_a}s + \frac{KK_a}{MM_a}}$$

QUEDO UN TERMINO NEGATIVO!!! -K_a/M PREGUNTAR QUE PEDO!!!!

Ejercicio 4

Ayude a Ogata a encontrar el valor de K_a . Repita el análisis pero ahora del sistema completo con el amortiguador de masa y el valor de K_a encontrado para verificar que el objetivo se cumple.

- 1. Defina el sistema amortiguado. Calcule K_a .
- 2. Grafique y analice la respuesta al impulso.
- 3. Grafique y analice la respuesta al escalón.
- 4. Grafique y analice el diagrama de Bode.
- 5. Grafique y analice el diagrama de polos y ceros.
- 6. Grafique y analice la respuesta transitoria para la f(t) dada.
- 7. Grafique y analice la respuesta en régimen permanante para la f(t) dada.

RTA

Dado que el teorema de valor final vale cuando se tiene un valor final, no sep uede usar en este caso./ entonces solo queda ver la funcion transferencia y buscar K_a de forma tal que se **anule** la perturbacion en regimen permanente: Esto implica colocar los ceros del sistema para anular el efecto de esa frecuencia!

$$\frac{Z(s)}{F(s)} = \frac{1}{M} \frac{s^2 + K_a M_a}{s^4 + \frac{B}{M} s^3 + (\frac{K_a}{M_a} + \frac{K}{M} + \frac{-k_a}{M}) s^2 + \frac{BK_a}{MM_a} s + \frac{KK_a}{MM_a}} = 0$$

entonces el numerador sera:

$$s^2 + K_a/M_a = 0 \rightarrow K_a = -S^2. M_A$$

entonces

$$K_a = -(jw)^2$$
. $M_a = w^2$. $M_a = (90 rad/s)^2$. $M_a = 243$ (unidades?)

In [43]:

```
# Ejercicio de simulación:
Ma = 0.03 \# kg
Ka = 243
           #omega^2*Ma
# Defina el sistema
\#numerador2 = (1/M)*[1 0 (Ka/Ma)];
\#denominador2 = [1 \ B/M \ (Ka/Ma + K/M + Ka/M) \ ((B*Ka)/(M*Ma)) \ ((K*Ka)/(M*Ma))];
numeradorAMR = np.array([1/M, 0, (Ka/(M*Ma))])
denominadorAMR = np.array([1, B/M, (Ka/Ma + K/M + Ka/M), ((B*Ka)/(M*Ma)), ((K*Ka)/(M*Ma))]
sistemaAMR = ctrl.tf(numeradorAMR, denominadorAMR)
                                                                #tf(num, den[, dt])
print(sistemaAMR)
# Respuesta al impulso
tiempoAMR, z2 = ctrl.impulse_response(sistemaAMR)
                                                       #T, yout, xout= impulse response(sys
plt.plot(tiempoAMR, 22)
plt.ylabel('z(t) (m)')
plt.xlabel('Tiempo (s)')
plt.title('Respuesta a f(t) = $\delta$(t), impulso, sistema amortiguado')
plt.grid()
plt.show()
# Respuesta al escalón
tiempoAMR, z2 = ctrl.step_response(sistemaAMR)
                                                      #step_response(sys[, T, X0, input, outp
plt.plot(tiempoAMR, z2)
plt.ylabel('z(t) (m)')
plt.xlabel('Tiempo (s)')
plt.title('Respuesta a f(t) = s(t), /escalon, sistema amortiguado')
plt.grid()
plt.show()
                                         No se ven.... Tampoco incluis observaciones. Son esperados
                                         los resultados? Cómo se comparan con los del sistema
                                         sin amortiguador?
```

```
s^4 + s^3 + 8910 s^2 + 8100 s + 810
```

In [44]:

```
# Diagrama de Bode
mag, phase, omega = ctrl.bode_plot(sistemaAMR)
plt.xlim([70, 100])
```

Out[44]:

(70, 100)

Además mostrar el gráfico completo. Si vas a mostrar además tanto detalle deberías pasarle los puntos a simular en el rango porque sino hay muy poca resolución por defecto

Es menor

Se puede observar que en 90 rad/s es donde la magnitud del bode decrece, es decir que mata la frecuencia, esto es similar a un filtro Noch como los vistos en ADC. Con esto se consigue atenuar la oscilación en regimen permanente.

In [37]:

```
# Diagrama de polos y ceros
ctrl.pzmap(sistemaAMR, Plot = True) #control.pzmap(sys, Plot=Tr

polos = ctrl.pole(sistemaAMR)
ceros = ctrl.zero(sistemaAMR)
print('El sistema tiene polos en s1 = {} , s2 = {}, s3 = {} y s4 = {} .'.format(polos[0],
```

El sistema tiene polos en s1 = (-0.04545125705060565+94.39239580122363j), s2 = (-0.04545125705060565-94.39239580122363j), s3 = (-0.7947027057034085+0j) y s4 = (-0.11439478019537752+0j).

¿Era lo esperado? ¿OBservaciones?

In [42]:

```
# Respuesta transitoria con f(t) dada
t_AMR, zout_AMR= ctrl.forced_response(sistemaAMR,t, f )
plt.plot(t_AMR, zout_AMR)
plt.ylabel('z(t) (m)')
plt.xlabel('Tiempo (s)')
plt.title('Respuesta a f(t) = s(t), Asen(w.t), amortiguada en transitorio')
plt.grid()
plt.show()
# Respuesta en régimen permanente con f(t) dada
plt.plot(t_AMR, zout_AMR)
plt.ylim([-0.001, 0.001])
plt.xlim([76, 78])
plt.ylabel('z(t) (m)')
plt.xlabel('Tiempo (s)')
plt.title('Respuesta a f(t) = s(t), Asen(w.t), amoriguada en regimen permanente')
plt.grid()
plt.show()
```


Se observa que a comparación del sistema original(sin amortiguador) este se ve notablemente disminuida la oscilación por lo que se puede decir que amortigua a la recuencia de 90 rad/s en regimen permanente.

¿Cuánto atenua en la simulación? ¿Qué pasa si dejás pasar más tiempo?
mas dempo: