Formelsammlung Elektronik

Emil Slomka, Tim Hilt

28. Dezember 2018

1 Grundlagen und Wiederholung

1.1 Übertragungsfunktion

$$F = \frac{U_a}{U_e} = \frac{ ext{Widerstände parallel zum Ausgang}}{ ext{Widerstände parallel zum Eingang}}$$

Bei Berechnung zweier, paralleler Widerstände \mathbb{R}_1 und \mathbb{R}_2 :

$$R_1||R_2 = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

Abbildung 1: Ladekurven Kondensator **Achtung:** $t = \Delta t = t_1 - t_0$

Emil Slomka, Tim Hilt Seite 2

Achtung: Immer alle Widerstände parallel und in Reihe zum Kondensator berücksichtigen und Übertragungsfunktion für Ladeziel verwenden!

Abbildung 2: Gleichstromersatzschaltbild eines Bipolartransistors

2 Filter

Im Fourierbereich: $\omega = 2\pi f$, im Laplacebereich: $j\omega = p$

	RC-Tiefpass	RC-Hochpass	RL-Tiefpass	RL-Hochpass
$egin{aligned} \ddot{ ext{U}}_{c} = H(j\omega) \end{aligned}$	$\frac{1}{1+j\omega RC}$	$\frac{j\omega RC}{1+j\omega RC}$	$\frac{R}{R+j\omega L}$	$\frac{j\omega L}{R+j\omega L}$
Grenzfrequenz f_G/ω_G	$\frac{1}{2\pi RC}$; $\frac{1}{RC}$	$\frac{1}{2\pi RC}$; $\frac{1}{RC}$	$\frac{R}{2\pi L}; \frac{R}{L}$	$\frac{R}{2\pi L}; \frac{R}{L}$

Tabelle 1: Grenzfrequenz und Übertragungsfunktionen