3. úkol z předmětu Složitost

Petr Zemek

xzemek02@stud.fit.vutbr.cz

Fakulta Informačních Technologií, Brno

Příklad 1

Věta 1. Problém PARTITION¹ je NP-úplný.

 $D\mathring{u}kaz$. Redukcí problému SUBSET-SUM, který je **NP**-úplný, a ukázáním, že PARTITION \in **NP**.

(1) SUBSET-SUM \leq PARTITION: Nechť je problém SUBSET-SUM dán trojicí $\langle S_s, v_s, V \rangle$, kde S_s je konečná množina položek, $v_s \colon S_s \to \mathbb{N}$ je totální váhovací funkce a V je hledaná suma. Bez újmy na obecnosti lze předpokládat, že $U = \sum_{a \in S_s} v_s(a) > 2V$ (pokud tomu tak není, tak lze do S_s přidat novou položku s váhou 2V+1, která na náležitost instance $\langle S_s, v_s, V \rangle$ do problému SUBSET-SUM do nemá vliv, protože $v(a) \in \mathbb{N}$, pro všechna $a \in S_s$). Redukujeme jej na problém PARTITION se vstupem $\langle S_p, v_p \rangle$, kde $S_p = S_s \cup \{z\}, z \notin S_s$ je nová položka, $v_p = v_s \cup \{(z, U - 2V)\}$. Tato redukce je zjevně polynomiální.

Zbývá dokázat, že tato redukce zachovává příslušnost, to jest $\langle S_s, v_s, V \rangle \in \text{SUBSET-SUM}$ tehdy a jen tehdy, když $\langle S_p, v_p \rangle \in \text{PARTITION}$.

"⇒": Nechť $\langle S_s, v_s, V \rangle \in \text{SUBSET-SUM}$, tudíž v S_s existuje množina položek $A \subseteq S_s$ taková, že $\sum_{a \in A} v_s(a) = V$. Pak $\sum_{a \in S_s \backslash A} v_s(a) = U - V$. Rozdělme množinu S_p na $S_{p_1}, S_{p_2} \subseteq S_p$ takové, že $S_{p_1} = S_s \backslash A$, $S_{p_2} = \{z\} \cup A$. Pro tyto množiny platí, že $S_{p_1} \cup S_{p_2} = S_p$, $S_{p_1} \cap S_{p_2} = \emptyset$, a $\sum_{a \in S_{p_1}} v_p(a) = \sum_{a \in S_{p_2}} v_p(a) = U - V$, tudíž $\langle S_p, v_v \rangle \in \text{PARTITION}$.

" \Leftarrow ": Nechť $\langle S_p, v_p \rangle \in$ PARTITION, tudíž existuje rozdělení množiny S_p na $S_{p_1}, S_{p_2} \subseteq S_p$ takové, že $S_{p_1} \cup S_{p_2} = S_p, S_{p_1} \cap S_{p_2} = \emptyset$, a $\sum_{a \in S_{p_1}} v_p(a) = \sum_{a \in S_{p_2}} v_p(a) = W$. Potom $W = (\sum_{a \in S_p} v_p(a))/2 = U - V$. Dále platí, že $z \in S_{p_i}$ pro nějaké $1 \le i \le 2$. Zvolme množinu $A \subseteq S_{p_i}$ tak, že $z \notin A$, a tudíž $\sum_{a \in A} v_s(a) = V$. Jelikož $A \subseteq S_s$, tak $\langle S_s, v_s, V \rangle \in$ SUBSET-SUM.

(2) PARTITION \in **NP**: Nechť je problém PARTITION dán dvojicí $\langle S, v \rangle$. Sestrojíme NTS, který nedeterministicky zvolí množinu $S' \subseteq S$ a v polynomiálním čase ověří, že $\sum_{a \in S'} v(a) = \sum_{a \in S \setminus S'} v(a)$.

Příklad 2

Věta 2. Nechť $L_t = \{true\}$ je jazyk nad abecedou $\{true, false\}$. Pak platí $P = NP \Rightarrow L_t$ je NP-úplný.

Důkaz. Nechť $\mathbf{P} = \mathbf{NP}$. Zjevně $L_t \in \mathbf{NP}$. NP-těžkost jazyka L_t ukážeme redukcí problému SAT, který je \mathbf{NP} -úplný. Nechť Σ označuje abecedu, nad níž je SAT definován. Z předpokladu, že $\mathbf{P} = \mathbf{NP}$ a z faktu, že třída \mathbf{P} je uzavřena vůči doplňku, plyne, že existuje DTS M_{SAT} , který rozhoduje SAT v polynomiálním čase. Redukci R problému SAT na L_t definujeme tak, že pro $x \in \Sigma^*$, R(x) = true pokud M_{SAT} akceptuje x a R(x) = false pokud M_{SAT} zamítne x. Jelikož M_{SAT} rozhoduje SAT v polynomiálním čase, R je polynomiální redukce. To, že R zachovává příslušnost, plyne přímo z popisu této redukce.

Příklad 3

Věta 3. $P = NP \Rightarrow každý jazyk L \in NP je NP-úplný.$

Důkaz. Vyplývá z Věty 2 (L_t je \mathbf{NP} -úplný \Rightarrow lze jej triviálně použít k dokázání \mathbf{NP} -těžkosti libovolného $L \in \mathbf{NP}$ ukázáním $L_t \leq_R L$; stačí, když si zvolíme libovolné $x \in L$ a $y \notin L$ a položíme R(true) = x a R(w) = y, pro všechny $w \in \{true, false\}^* \setminus \{true\}$.

 $^{^{1}}$ Zadání problémů PARTITION a SUBSET-SUM mám dle 6. přednášky, 11. a 12. slajd, respektive. Předpokládám, že funkce v je totální a její vyčíslení lze provést v polynomiálním čase.