# Künstliche Intelligenz Einführung

Dr.-Ing. Stefan Lüdtke

Universität Leipzig

Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI)

# Leipzig







# Ziel der Lehrveranstaltung

- Künstliche Intelligenz: Teilbereich der Informatik, der sich mit der Erstellung intelligenter Agenten beschäftigt
- Angrenzende Fachgebiete: Neurowissenschaften, Psychologie, Linguistik, ...
  - Diese beschätigen sich mit der Erforschung menschlicher Intelligenz
  - Uns geht es stattdessen um rationale Agenten

# Was ist Intelligenz?

An agent is intelligent to the extent that what it does is likely to achieve what it wants, given what it has perceived" (Stuart Russell, Human Compatible: Al and the Problem of Control)

#### Literatur und Inhalte

Stuart Russel und Peter Norvig
Artificial Intelligence – A Modern Approach (AIMA), 3. Ausgabe
Prentice Hall, 2009
aima.cs.berkeley.edu

### Inhalte (Plan)

- Einführung Intelligente Agenten
- III Problemlösung durch Suchen
- Schlussfolgern unter Unsicherheit
- Maschinelles Lernen
- Decision Theory

# Organisatorisches

- Lehrveranstaltungen vom 27.02. bis 14.03.
- Voraussetzung für die Teilnahme an der Klausur: Erfolgreiche Teilnahme am Projekt
  - Weitere Infos dazu nächste Woche
- Vorlesungsmaterialien: stefanluedtke.github.io/teaching

# Zeitplan, voraussichtlich

|          | 9 - 11                           | 11 - 13                         | 13 - 15                                | 15 - 17                                  |
|----------|----------------------------------|---------------------------------|----------------------------------------|------------------------------------------|
| Mo 27.02 | . V1 Einführung<br>V2 Agenten    | U1 Python                       | U1 Python                              |                                          |
| Di 28.02 | . V3 Suche uninformiert          | V4 Suche                        | U2 Agenten                             | V5 Suche: CSPs                           |
| Mi 01.03 | . U3 Suche, CSPs                 | V6 Game Playing                 | U3 Suche, CSPs                         |                                          |
| Do 02.03 | . V7 Planung                     | U4 Planung                      | V8<br>Wahrscheinlich-<br>keitsrechnung | U5.1<br>Wahrscheinlich-<br>keitsrechnung |
| Fr 03.03 | . V9 Bayesian<br>Networks        | V10 Prob.<br>Inferenz           | U5.2 Inferenz                          |                                          |
| Mo 06.03 | . V11 HMMs                       | U5.3 HMMs                       | V12 ML Intro,<br>Clustering            |                                          |
| Di 07.03 | . V13<br>Entscheidungs-<br>bäume | U6.1<br>Entscheidungs-<br>bäume | V14 ANNS                               |                                          |
| Mi 08.03 | . V15 ML:<br>Backprop            | V16 ML<br>Evaluation            | U6.2 ML<br>Evaluation                  | Projekt                                  |
| Do 09.03 | . V17 MDPs                       | U7 MDPs                         | Projekt                                | Projekt                                  |
| Fr 10.03 | . V18 Q-Learning                 | V19<br>Spieltheorie             | Projekt                                |                                          |
| Mo 13.03 | . Projekt                        | Projekt                         | Projekt                                | Projekt                                  |
| Di 14.03 | . Projekt                        | Projekt                         | Projekt                                | Projekt                                  |
|          |                                  |                                 |                                        |                                          |

# Was ist Intelligenz?

Herangehensweisen, Intelligenz zu definieren:

- äußerlich sichbares Verhalten vs. innere Denkprozesse
- Menschliche Intelligenz vs. rationales Verhalten

# Was ist künstliche Intelligenz?

Welches Systemverhalten erfüllt das Kriterium "Intelligent"?

| Menschlich Denken                             | Rational Denken                               |
|-----------------------------------------------|-----------------------------------------------|
| "The exciting new effort to make              | "The study of mental faculties through the    |
| computers think machines with minds, in       | use of computational models." (Charniak &     |
| the full and literal sense." (Haugeland 1984) | McDermott, 1985)                              |
| "[The automation of] activities that we       | "The study of computations that make it       |
| associate with human thinking, activities     | possible to perceive, reason, and act." (Win- |
| such as decision making, problem solving,     | ston, 1992)                                   |
| learning" (Bellman, 1978)                     | ·                                             |
| Menschlich Handeln                            | Rational Handeln                              |
| "The art of creating machines that perform    | "Computational intelligence is the study of   |
| functions that require intelligence when per- | the design of intelligent agents." (Poole et  |
| formed by people." (Kurzweil, 1990)           | al., 1998)                                    |
| "The study of how to make computers do        | "AI is concerned with intelligent behavior    |
| things at which, at the moment, people are    | in artifacts." (Nilsson, 1998)                |
| better." (Rich & Knight, 1991)                | ·                                             |

Als nächstes: Kurzer Einblick in jede der 4 Sichtweisen

#### Menschlich Handeln

Turing (1950) "Computing machinery and intelligence"

- $\blacksquare$  "Können Maschinen denken?"  $\to$  "Können sich Maschinen intelligent verhalten?"
- Praktischer Test: Imitationsspiel



- Vorhersage, dass in 2000 eine Maschine eine 30% Chance haben könnte, einen Laien für 5 Minuten von ihrer Menschlichkeit zu überzeugen
- Diskutiert bereits alle wesentlicher Argumente gegen KI, die in den folgenden 50 Jahren aufgebracht werden
- Identifiziert bereits wesentliche Komponenten von KI-Systemen: Wissen, Schließen, Sprachverständnis, Lernfähigkeit

#### Menschlich Handeln

Turing (1950) "Computing machinery and intelligence"

#### Problematik des Turing-Tests:

- Nicht reproduzierbar
- Nicht konstruktiv
- Nicht mathematisch analysierbar

#### Menschlich Denken

#### Kognitions- und Neurowissenschaften

- 1960er: "Kognitive Revolution": Psychologie der Informationsverarbeitung ersetzt den vorherrschenden orthodoxen Behaviorismus
- Erfordert wissenschaftliche Theorien der internen Prozesse im Gehirn
  - Welches Abstraktionsniveau? "Wissen"? "Schaltkreise"?
  - Wie validieren? Verhaltenstests (top down)? Direkte Analyse neurologischer Daten (bottom up)?
- Beide Ansätze (Kognitionswissenschaften und Neurowissenschaften) jetzt von KI getrennt
- Siehe auch: Human Brain Project Ziel unter anderem: Nachbildung (von Teilen) des Gehirns durch Computermodelle. Finanziert durch die Europäische Union (1,19 Mrd. Euro)

#### Rationales Denken

#### Grundregeln des Schließens

- Schlusssysteme, die Regeln f
   ür korrekte Inferenz festlegen
- Durch syntaktische Schlussregeln und formal präzise Definition wird maschinelles Schließen möglich
- Normativ statt beschreibend
- Seit Aristoteles: Was sind "korrekte" Argumentations- und Denkprozesse?
- von hier direkte Linie über Mathematik und Philosophie zur KI
- Probleme:
  - Formalisierung von Alltagswissen ("Common Sense")
  - Behandlung von Unsicherheit
  - Nicht jede "intelligente Handlung" erfordert einen mathematischen Beweis

#### Rationales Handeln

#### Das Richtige tun

- Rationales Verhalten = das Richtige tun
- Das Richtige = das, was die erwartete Zielerreichung maximiert, gegeben die verfügbaren Informationen
- Dabei irrelevant, ob man "viel denken muss", um das Richtige herauszufinden
- Charakterisierung von "Intelligenz" auf Basis der Wirkung in Bezug auf ein objektives Kriterium (Rationalität)
- Perspektive dieser Vorlesung

## Rationale Agenten

- Ein *Agent* ist eine Entität, die ihre Umgebung wahrnimmt und in dieser Umgebung handelt
- In dieser Vorlesung diskutieren wir den Entwurf von rationalen Agenten
- Abstrakt ist ein Agent eine Funktion, die Beobachtungssequenzen auf Aktionen abbildet:

```
Agent: [Percept] -> Action
```

- Für beliebige Umgebungen und Aufgaben suchen wir dann diejenigen Agenten, die die beste Leistung erreichen
- Problem: Aufgrund von Einschränkungen in Speicherplatz und Rechenleistung wird "perfekte Rationalität" nicht immer erreichbar sein
  - Wir suchen somit das beste Programm für die gegebenen Rechnerressourcen "bounded rationality"

#### Starke vs. Schwache KI

- Schwache KI: Systeme, die in bestimmten Teilbereichen menschliche Leistungsfähigkeit erreichen, z.B. Schach
  - KI-Forschung beschäftigt sich fast ausschließlich mit Erstellung von schwacher KI
- Starke KI (Artificial General Intelligence, AGI): KI, die alle intellektuellen Aufgaben erlernen oder verstehen kann, die ein Mensch auführen kann
  - Fernziel der KI-Forschung
  - Unpräzise Definition

#### Aktuelle AGI-Debatte

- AGI unpräzise definiert (können ja nicht mal Intelligenz definieren...)
- Ergebnisorientierte Definition von Francois Chollet: "We will know we have AGI when the majority of the world's GDP is being produced by autonomous AI agents."
- Aktuelle Debatte, wie lange wir noch von einer AGI entfernt sind
- Eure Prognose zu AGI?

#### Aktuelle AGI-Debatte

- AGI unpräzise definiert (können ja nicht mal Intelligenz definieren...)
- Ergebnisorientierte Definition von Francois Chollet: "We will know we have AGI when the majority of the world's GDP is being produced by autonomous AI agents."
- Aktuelle Debatte, wie lange wir noch von einer AGI entfernt sind
- Eure Prognose zu AGI?
- Prognosen reichen von "AGI in 8 Jahren" bis zu "nicht in den nächsten 50 Jahren"
- Meine Prognose
  - aktuelle KI-Modelle (Language Models, Vision Models) als nützliche Tools, aber Skalierung nicht ausreichend für AGI
  - 10% Wahrscheinlichkeit, für AGI in 15 Jahren
  - 30% Wahrscheinlichkeit für AGI in 30 Jahren

# Zusammenfassung

- Ziel des Forschungsbereichs Künstliche Intelligenz ist die Erstellung rationaler Agenten
- Dafür kommen unter anderem Methoden der Logik,
   Suchverfahren, Statistik, Machine Learning und Decision Theory
   zum Einsatz, die wir uns in dieser Vorlesung anschauen werden