

## **DSLab 2015.11.09 Adders**

#### Lab. 6 Adders

- 使用Verilog 與 Schematic 設計及驗證以下電路
- Verilog
  - Behavioral level modeling
  - Dataflow modeling
  - Structural level (Gate-level) modeling
- Schematic
- 本次實驗請撰寫並繳交實驗報告

#### Dataflow Description of 4-bit Adder

```
// Dataflow description of 4-bit adder
module adder_4_bit_df (
  output [3:0]
                    Sum,
                   C_out,
  output
                    A, B,
  input [3: 0]
  input C_in
   assign \{C_{out}, Sum\} = A + B + C_{in};
endmodule
```

### Gate-level Description of 4-bit Ripple-Carry Adder

```
module half_adder (output S, C, input x, y);
  xor(S, x, y);
  and (C, x, y);
                                                        Half adder
                                                                           Half adder
endmodule
                                                                                 P_i \oplus C_i
module full_adder (output S, C, input x, y, z);
           S1, C1, C2;
  wire
  half_adder HA1 (S1, C1, x, y);
  half_adder HA2 (S, C2, S1, z);
  or G1 (C, C2, C1);
endmodule
module ripple_carry_4_bit_adder ( output [3: 0] Sum, output C4, input [3:0] A, B, input C0);
                C1, C2, C3;
                              // Intermediate carries
   wire
                FA0 (Sum[0], C1, A[0], B[0], C0),
   full adder
                 FA1 (Sum[1], C2, A[1], B[1], C1),
                 FA2 (Sum[2], C3, A[2], B[2], C2),
                 FA3 (Sum[3], C4, A[3], B[3], C3);
endmodule
```

#### Exercise 1: 4-bit Adder–Subtractor

Design and verify the four-bit adder—subtractor (with overflow detection)



### Exercise 2: 8-bit Carry-look Ahead Adder (1/3)

- Design and verify the 8-bit carry-look ahead adder composed of two 4-bit carry-look ahead adder
  - carry propagate:  $P_i = A_i \oplus B_i$ , carry generate:  $G_i = A_i B_i$
  - sum:  $S_i = P_i \oplus C_i$ , carry:  $C_{i+1} = G_i + P_i C_i$
  - $C_1 = G_0 + P_0 C_0$
  - $C_2 = G_1 + P_1 C_1 = G_1 + P_1 (G_0 + P_0 C_0) = G_1 + P_1 G_0 + P_1 P_0 C_0$
  - $C_3 = G_2 + P_2C_2 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$



## Exercise 2: 8-bit Carry-look Ahead Adder (2/3)



Fig. 4-11 Logic Diagram of Carry Lookahead Generator

# Exercise 2: 8-bit Carry-look Ahead Adder (3/3)



Copyright ©2013 Pearson Education, publishing as Prentice Hall

#### Exercise 3: Decimal Adder (1/2)

Design and verify the 2-digit decimal adder



### Exercise 3: Decimal Adder (2/2)

**Table 4.5** *Derivation of BCD Adder* 

| Binary Sum |            |            |                |            |         | BCD Sum |                |                |                       |                       | Decimal |
|------------|------------|------------|----------------|------------|---------|---------|----------------|----------------|-----------------------|-----------------------|---------|
| K          | <b>Z</b> 8 | <b>Z</b> 4 | Z <sub>2</sub> | <b>Z</b> 1 |         | c       | S <sub>8</sub> | S <sub>4</sub> | <b>S</b> <sub>2</sub> | <b>S</b> <sub>1</sub> |         |
| 0          | 0          | 0          | 0              | 0          |         | 0       | 0              | 0              | 0                     | 0                     | 0       |
| 0          | 0          | 0          | 0              | 1          |         | 0       | 0              | 0              | 0                     | 1                     | 1       |
| 0          | 0          | 0          | 1              | 0          |         | 0       | 0              | 0              | 1                     | 0                     | 2       |
| 0          | 0          | 0          | 1              | 1          |         | 0       | 0              | 0              | 1                     | 1                     | 3       |
| 0          | 0          | 1          | 0              | 0          |         | 0       | 0              | 1              | 0                     | 0                     | 4       |
| 0          | 0          | 1          | 0              | 1          |         | 0       | 0              | 1              | 0                     | 1                     | 5       |
| 0          | 0          | 1          | 1              | 0          |         | 0       | 0              | 1              | 1                     | 0                     | 6       |
| 0          | 0          | 1          | 1              | 1          |         | 0       | 0              | 1              | 1                     | 1                     | 7       |
| 0          | 1          | 0          | 0              | 0          |         | 0       | 1              | 0              | 0                     | 0                     | 8       |
| 0          | 1          | 0          | 0              | 1          |         | 0       | 1              | 0              | 0                     | 1                     | 9       |
| 0          | 1          | 0          | 1              | 0          |         | 1       | 0              | 0              | 0                     | 0                     | 10      |
| 0          | 1          | 0          | 1              | 1          |         | 1       | 0              | 0              | 0                     | 1                     | 11      |
| 0          | 1          | 1          | 0              | 0          |         | 1       | 0              | 0              | 1                     | 0                     | 12      |
| 0          | 1          | 1          | 0              | 1          | +0      | 1       | 0              | 0              | 1                     | 1                     | 13      |
| 0          | 1          | 1          | 1              | 0          | +6<br>⇒ | 1       | 0              | 1              | 0                     | 0                     | 14      |
| 0          | 1          | 1          | 1              | 1          |         | 1       | 0              | 1              | 0                     | 1                     | 15      |
| 1          | 0          | 0          | 0              | 0          |         | 1       | 0              | 1              | 1                     | 0                     | 16      |
| 1          | 0          | 0          | 0              | 1          |         | 1       | 0              | 1              | 1                     | 1                     | 17      |
| 1          | 0          | 0          | 1              | 0          |         | 1       | 1              | 0              | 0                     | 0                     | 18      |
| 1          | 0          | 0          | 1              | 1          |         | 1       | 1              | 0              | 0                     | 1                     | 19      |