

Module 7 – Logistic Regression

Class Modules

- Module 1- Introduction to Machine Learning
- Module 2- Setting up Machine Learning Environment
- Module 3- Linear Regression (Econometrics approach)
- Module 4- Machine Learning Fundamentals
- Module 5- Linear Regression (Machine Learning approach)
- Module 6- Penalized Regression (Ridge, LASSO, Elastic Net)
- Module 7- Logistic Regression
- Module 8- K-Nearest Neighbors (KNN)
- Module 9- Classification and Regression Trees (CART)
- Module 10- Bagging and Boosting
- Module 11- Dimensionality Reduction (PCA)
- Module 12- Clustering (KMeans Hierarchical)

Road map

Topics

- 1. Linear probability model (LPM) vs Logistic regression
- 2. Sigmoid function
- 3. Logistic regression
- 4. Regularized logistic regression
- 5. Maximum Likelihood Estimation
- 6. MLE and GD
- 7. Classification performance metrics
 - (accuracy, precision, recall, f1 score, MCC, ROC and AUC)

Classification

- Qualitative variables can be either nominal or ordinal.
- Qualitative variables are often referred to as **categorical**.
- Classification is the process of predicting categorical variables.
- Classification problems are quite common, perhaps even more than regression problems.

Examples:

- Financial instrument tranches (investment grade or junk)
- Online transactions (fraudulent or not)
- Loan application (approved or denied)
- Credit card default (default or not)
- Car insurance customers (high, medium, low risk)

Credit card default example

➤ Goal: Build a classifier that performs well in both train and test set.

Linear Probability Model (LPM) vs Logistic Regression

Starting with simple LPM: $y = \beta_0 + \beta_1 bal + \epsilon$ where, Y = 1 for default and 0 otherwise.

$$E(Y|bal) = \sum P(y_i|bal).y_i = \Pr(Y = 1|bal) = P(x) = \beta_0 + \beta_1 bal$$

- It seems that simple regression is perfect for this task,
- But what are the caveats?

Linear Probability Model (LPM) vs Logistic Regression

• What else? What if the data set is imbalanced?

Sigmoid Function

• We need a monotone mapping function that has a range of [0,1]

Logistic Regression (Model)

• The model:

$$f_{w,b}(X) = \frac{1}{1 + e^{-(WX + b)}}$$

- In case of two classes, $f_{w,b}(X) = \Pr(Y = 1|x) = p(x)$.
- A bit of rearrangement gives

$$Log\left(\frac{p(X)}{1-p(X)}\right) = WX + b$$

- This monotone transformation is called the \log odds or \log transformation of p(x).
- Logistic regression ensures that our estimates always lie between 0 and 1

Logistic regression fit (Decision boundary)

• Depending on how we define WX + b, we can get any of the following fits from logistic regression classifier.

Regularized Logistic regression

• Penalizing the logistic regression by adding L1, L2 or the combination penalty term.

$$J_{w,b} = \frac{logistic\ cost\ function}{function} + \lambda_1 \sum_{j=1}^{D} |w_j| + \lambda_2 \sum_{j=1}^{D} w_j^2$$

UtahStateUniversity

Logistic Regression Estimation (Maximum Likelihood)

- In logistic regression, instead of minimizing the average loss, we maximize the **likelihood** of the training data according to our model. This is called maximum likelihood estimation.
- What is the likelihood function?
- The likelihood function describes the joint probability of the observed data as a function of the parameters of the model.

L = 0.9 * 0.8 * (1 - 0.75) * (1 - 0.2) = 0.144

Logistic Regression (Maximum Likelihood)

MLE in action!

$$f_{w^*,b^*}(X) = \frac{1}{1+e^{-(W^*X+b^*)}}$$

$$L_{w,b} = \prod_{i} f_{w,b}(x_i)^{y_i} \left(1 - f_{w,b}(x_i)\right)^{1 - y_i}$$

Logistic Regression (Objective function)

Maximizing the likelihood function:

$$Max \{L_{w,b} = \prod_{i} f_{w,b}(x_i)^{y_i} (1 - f_{w,b}(x_i))^{1-y_i} \}$$

- **Solution**: In practice, it is more convenient to maximize the log-likelihood function. This log-likelihood maximization, gives us w^* and b^* . There is no closed form solution to this optimization problem. We need to use gradient descent.
- We are now ready to make predictions.

$$f_{w^*,b^*}(X) = \frac{1}{1+e^{-(W^*X+b^*)}}$$

• Depending on how we define the probability threshold, we can classify the observations. In practice, the <u>choice of the threshold</u> could be different depending on the problem.

MLE and Gradient Descent

Simplified loss function

$$L(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)}) = \begin{cases} -\log(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)})) & \text{if } \mathbf{y}^{(i)} = \mathbf{1} \\ -\log(1 - f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)})) & \text{if } \mathbf{y}^{(i)} = 0 \end{cases}$$

$$L(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)}) = -\mathbf{y}^{(i)}\log(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)})) - (1 - \mathbf{y}^{(i)})\log(1 - f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}))$$

$$J(\overrightarrow{w}, b) = \frac{1}{m} \sum_{i=1}^{m} \left[L(f_{\overrightarrow{w}, b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)}) \right]$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left[\mathbf{y}^{(i)} \log \left(f_{\overrightarrow{w}, b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) + (1 - \mathbf{y}^{(i)}) \log \left(1 - f_{\overrightarrow{w}, b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) \right]$$

UtahStateUniversity

Logistic regression output for credit card default example

$$P(default|bal,inc) = \frac{1}{1 + e^{-(b + w_1(bal) + w_2(inc))}}$$

		Predictions (Decision boundary)		
		0 No Default	1 Default	
Actual	0 No Default	TN=1933	FP=3	
	1 Default	FN=44	TP=20	•

Pedram, Jahangiry

Classification metrics

Topics

- Classification performance metrics
 - a) Accuracy
 - b) Precision
 - c) Recall
 - d) F1 score
 - e) MCC
 - f) ROC and AUC

		Predictions		
		0 negative	1 positive	
Actual	0 negative	TN	FP	
	1 positive	FN	TP	

Confusion Matrix

		Predictions		
		0 negative	1 positive	
Actual	0 negative	TN	FP*	
Act	1 positive	FN**	TP	

FP* Type I error FN** Type II eror

		predicted class		
		class 1	class 2	class 3
actual class	class 1	True positives		
	class 2		True positives	
	class 3			True positives

Accuracy, Precision, Recall and F1score

$$Accuracy = \frac{TN + TP}{TN + TP + FN + FP}$$

		Predictions		
		0 negative	1 positive	
Actual	0 negative	TN	FP	
	1 positive	FN	TP	

While **recall** expresses the ability to find all **relevant** instances in a dataset, **precision** expresses the proportion of the data points our model says was relevant were actually relevant.

$$Recall = \frac{TP}{TP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

F1 uses the **harmonic** mean instead of a simple average because it punishes extreme values.

MCC (Matthews Correlation Coefficient)

$$MCC = \frac{TP \cdot TN - FP \cdot FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$

- Accuracy and error rates are misleading for imbalanced data sets.
- Precision, recall or even f1 score will not consider the true negatives (TN)
- MCC is one of the most informative metrics for any binary classifier.
- MCC returns a value between -1 and +1.
 - \square +1 represents a perfect prediction,
 - □ 0 represents no better than a random prediction,
 - □ -1 indicates total misclassification

		Predictions		
		0 negative	1 positive	
Actual	0 negative	TN	FP	
	1 positive	FN	TP	

ROC (Receiver Operating Characteristic)

		Predictions		
		0 negative	1 positive	
Actual	0 negative	TN	FP	False Positive Rate = $\frac{FP}{FP + TN}$
	1 positive	FN	TP	$True\ Positive\ Rate = \frac{TP}{TP + FN}$

Some other classification metrics

		True condition				
	Total population	Condition positive	Condition negative	Prevalence $= \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	Σ True posi	uracy (ACC) = tive + Σ True negative otal population
Predicted	Predicted condition positive	True positive	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = Σ False positive Σ Predicted condition positive	
condition	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) = Σ True negative Σ Predicted condition negative	
		True positive rate (TPR), Recall, Sensitivity, probability of detection, $Power = \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = TPR FPR	Diagnostic odds ratio (DOR)	F ₁ score =
		False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate (TNR) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) $= \frac{FNR}{TNR}$	= <u>LR+</u> LR-	2 · Precision · Recall Precision + Recall

Pedram Jahangiry

Class Modules

- ✓ Module 1- Introduction to Machine Learning
- ✓ Module 2- Setting up Machine Learning Environment
- ✓ Module 3- Linear Regression (Econometrics approach)
- ✓ Module 4- Machine Learning Fundamentals
- ✓ Module 5- Linear Regression (Machine Learning approach)
- ✓ Module 6- Penalized Regression (Ridge, LASSO, Elastic Net)
- ✓ Module 7- Logistic Regression
- Module 8- K-Nearest Neighbors (KNN)
- Module 9- Classification and Regression Trees (CART)
- Module 10- Bagging and Boosting
- Module 11- Dimensionality Reduction (PCA)
- Module 12- Clustering (KMeans Hierarchical)

