Display-Semiconductor Material

소재 기초 개념: 가스의 유동 및 진공 시스템

1차시

진공게이지 및 가스의 유동

대전대학교 에너지신소재공학과 김경남 교수

학습 내용

- Vacuum Gauge
- Vacuum Technology Gas

02 진공 System

DSC공유대학 《

Vacuum gauge

• Low vacuum gauge : Rough gauge

Gas Property Gauges

• This gauge's mechanism differs from that used in the T/C and Pirani gauges only by using a structure that enables the natural convenction in (viscous flow) gases to aid in removing heat from the hot filament.

02 │ 진공 System

Vacuum gauge

- Low vacuum gauge : accurate gauge
- Mechanical gauges

- Capacitance (diaphragm) gauge
 - Measure diaphragm bending by capacitance gauge

Absolute pressure Reference to a vacuum cell

02 │ 진공 System

Vacuum gauge

• **High vacuum gauge :** Hot cathode type (Bayrd-Alpert)

- Electrons emitted from the heated filament are attracted to the positive grid. Many elections follow long looped paths before striking the grid.
- During this time they collide with gas molecules, thus creating positive ions.
- These ions are attracted to the negative collector and constitute a current into the gauge circuit.
- A higher pressure reasults in a higher gauge current.
- The emission current must be kept within strict limits as it too affects the gauge current.

Vacuum gauge

Gauge Operating Ranges

Avogadro's number

• 실리콘(원자량 28.09)

- 원자량 atomic mass
 - 원자 질량 단위(amu) atomic mass unit로 나타낸 원자의 질량
 - 원자 질량 단위 : 탄소- 12 원자 한 개 질량의 12분의 1과 같은 질량

$$N_A = 6.022 \times 10^{23}$$
 들어있는 원자의 수 = 1mol

- Ex) 원자량이 28.09인 실리콘 원자 1mol(=6.022x10²³개)의 질량은 28.09g

Avogadro's number

- 수소기체가 2g이 되기 위해서는 그 분자의 개수가 6.022×10²³개가 필요
- 이 숫자를 아보가드로수라고 하고, 수소 분자보다 16배가 무거운 산소 분자를 아보가드로수만큼 모아놓으면 32g이 되고, 수소보다 2배 무거운 단원자 분자인 헬륨이 아보가드로수 만큼 모이면 4g이 됨.
- 그러나 아보가드로 법칙의 묘미는... 기체의 크기가 물질에 따라 모두 다른데도 불구하고 아보가드로수만큼의 기체 분자가 차지하는 부피는 표준 상태에서 22.4ℓ라는 것
- Why ?

Avogadro's number

- 기체는 사과처럼 그릇에 담아 놓으면 가만히 있는 것이 아니라 끊임없이 움직이며, 이로인해 기체 압력이 발생됨
- 그러므로 기체의 부피는 알갱이가 얼마나 크고 작으냐에 달린 것이 아니라 그 알갱이가 벽을 얼마만큼 세게 또는 자주 때리느냐에 달려 있음.
- 풍선의 표면이 압력에 의해 올록볼록 튀어나오는 것이 보이지 않는 이유는 분자가 너무 작고 또 개수가 매우 많기 때문

Gas kinetics

- Translational energy (병진 에너지) → 평행이동에 필요한 에너지
- Rotational energy (회전 에너지) → 원자간에 상대적으로 회전운동에 필요한 에너지
- Vibrational energy (진동 에너지) → 분자내 원자간의 진동 에너지

Maxwell & Boltzmann

Gas in a box → random motion → collision between molecules and atoms collision between molecule -

By continuous elastic collision among molecules, kinetic energy is exchanged and finally the molecules have a steady state velocity distribution at a temperature

→ Maxwell - Boltzmann distribution

• 맥스웰-볼쯔만 분포 : 위의 그림과 같이 상호간에 무작위 충돌을 해서 나타내는 속도 분포 혹은 에너지 분포를 말함.

DSC공유대학 🔐

Maxwell & Boltzmann

Maxwell - Boltzmann distribution

• 기체의 속도 혹은 에너지에 따른 기체수의 분포를 보면 밀폐된 용기내 기체가 0의 속도를 갖는 입자로부터 무한대의 속도를 지니는 입자까지의 분포도를 나타내게 되며, 이 중간의 속도에서 가장 많은 기체원자가 분포되어 있는 형태를 띄게 됨.

$$dn = \frac{4n}{\sqrt{\pi}} \left(\frac{m}{2kT}\right)^{3/2} V^2 \exp\left(-\frac{mv^2}{2kT}\right) dv$$

v: 기체의 속도, m: 기체의 분자량, T: 절대온도, k: 볼츠만 상수, n:단위부피당 기체의 분자수

- "dn", 기체의 분포는 기체의 온도 및 질량, 그리고 기체내의 원자 혹은 분자의 속도에 따라 변화함을 알 수 있음.
- 또한, 어떤 온도에서든지 기체 내 원자나 분자들은 0에서부터 무한대의 속도를 지닌 분포를 하고 있기 때문에 기체에 대한 속도를 나타내려면 기체내 각 원자나 분자들의 속도를 평균한 평균속도를 사용하여 나타내어야함.

DSC공유대학 》

Maxwell & Boltzmann

Maxwell & Boltzmann

3-Dimensional Maxwell - Boltzmann distribution

- --> Velocity distribution of Al vapor and H₂ gas.
- --> Velocity distribution: 0 ~ ∞.

It depends on → molecular weight (M) absolute temp. (T)

- ◎ 진공의 개념과 특징.
- Vacuum Gauge
- Avogadro's number
- **⊘** Gas의 유동

PVD (Physical Vapor Deposition)

2차시

Evaporator 원리 및 기초

교 수 | 김 경 남

학습 내용

- PVD (Physical Vapor Deposition)
- Evaporator
- •

01 | PVD (Physical Vapor Deposition)

❷ 진공증착이란?

진공중에서 물질을 가열하여 증발시킴으로써 그 증기를 기판 위에 응축시켜 박막을 제작하는 방법임.
→ 포화증기압을 이용하는 것. 온도가 올라가면 포화증기압은 증가하고, 압력이 커지면 감소함.

❷ 포화증기압이란?

• Saturation vapor pressure라고 하며 포화상태의 수증기압을 말함. 이 상태에서는 액체가 증기로 되는 속도랑 증기가 액체로 되는 속도가 같아서 액체 상태와 증기 상태가 동적 평형을 이루게 됨.

대기압에서 물은 100도에서 상변화

진공도에 따른 상변화 온도 변화

01 PVD (Physical Vapor Deposition)

Hertz

- measured the vaporization (evaporation) rate of Hg(mercury) at various pressures
 - evaporation rate was proportional to the differences between equilibrium vapor pressure P_e of the evaporant at a given T and hydrostatic pressure P_h applied to the evaporant.

❷ 증발원의 단위면적, 단위시간당 증발속도

mass evaporation rate :

$$\mathbf{\Gamma}_e = 5.8 \times 10^{-2} \sqrt{\frac{M}{T}} P_e \frac{g}{cm^2 \cdot sec}$$

the key variable affecting the evaporation rate is "Temperature"

- ♥ 진공증착
- PVD Thermal Evaporator