BEST AVAILABLE COPY

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-327807

(43)Date of publication of application: 10.12.1993.

(51)Int.CI.

HO4L 27/36 H04J 3/00 H04J 11/00 H04L 27/38 HO4N 7/00 HO4N 7/13 // HO4N 7/20

(21)Application number: 04-068935

(71)Applicant:

MATSUSHITA ELECTRIC IND CO LTD

(22)Date of filing:

27.03.1992

(72)Inventor:

OSHIMA MITSUAKI

(30)Priority

Priority number: 03 62798

Priority date: 27.03.1991

Priority country: JP

03 95813 03155650 03182236

04 60739

25.04.1991 29.05.1991 23 07 1991 17.03.1992

JP

JP

JP

JP

(54) TRANSMITTER

(57)Abstract:

PURPOSE: To provide the transmission reception system in which a problem that a transmission information quantity cannot be increased is solved when the frequency band is limited in the transmitter sending a digital signal and much more information is sent within the same frequency

CONSTITUTION: The transmitter 1 uses a modulator 4 implementing mvalue QAM modulation to allocate data of n-value of a 1st data string to a signal point group formed by grouping signal points on a signal space diagram comprising the 1st data string of n-value and 2nd and 3rd data strings of p-value and to send the modified m-value QAM modulation signal. A 1st receiver 23 uses a demodulator 25 to demodulate the 1st data string of n-value, a 2nd receiver 33 demodulates the 1st data string and the 2nd data string, and a 3rd receiver 43 demodulates the 1st data string, the end data string and the 3rd data string, and then even the receiver having only a demodulation capability of n-value in the case of n<m when the m-value modified multi-value modulation wave demodulates the data of the 1st data string of n-value in the transmitter.

LEGAL STATUS

[Date of request for examination]

31.01.1997

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3008651

[Date of registration]

03.12.1999

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of

rejection]

[Date of extinction of right]

THIS PAGE BLANK (USPTO)

(19)日本国特許庁(JP)

(12)公開特許公報 (A) (11)特許出願公開番号

特開平5-327807

(43)公開日 平成5年(1993)12月10日

(51)Int. C1.5	識別記号	庁内整理番号	FI.			技術表示箇所
H O 4 L 27/3 H O 4 J 3/0 11/0	0 M	8843 - 5 K 7117 - 5 K 9297 - 5 K	H 0 4 L	27/00	F	
安 本≋	f求 未請求 請求 [」]	9297-5K 頁の数15			G (全98頁)	最終頁に続く
一 	一一一		1		, (至00尺)	AX III S Y C IV C
(21)出願番号	特願平4-68935		(71)出願人		1 産業株式会社	
(22)出願日	平成4年(1992)3月27日		(72)発明者	大阪府門真市大字門真1006番地 月者 大嶋 光昭		
(31)優先権主張番号 特願平3-62798				大阪府門	真市大字門真1	006番地 松下電器
(32)優先日	平3(1991)3月27日			産業株式	会社内	
(33)優先権主張国	日本 (JP)		(74)代理人	弁理士	小鍜治 明	(外2名)
(31)優先権主張番号 特願平3-95813			•		-	
(32)優先日 平3(1991)4月25日					•	
(33)優先権主張国 日本(JP)						·
(31)優先権主張番号	特願平3-155650					
(32)優先日	平3(1991)5月29日					
(33)優先権主張国	日本 (JP)					
						最終頁に続く

(54) 【発明の名称】伝送装置

(57)【要約】

【目的】 デジタル信号を伝送する伝送装置において周 波数帯が制限されている場合に伝送情報量を増大できな いことを解決し同一周波数帯でより多くの情報を伝送す る送受信システムを提供することを目的とする。

【構成】 送信機1ではm値のQAM変調を行なう変調 器4によりn値の第1データ列と、p値の第2データ列 と第3データ列を信号スペースダイアグラム上の信号点 をグループ化した信号点群に第1データ列のn値のデー タを割りあてて変形m値のQAM変調信号を送信する。 第1受信機23では復調器25によりn値の第1データ 列を第2受信機33では第1データ列と第2データ列を 第3受信機43では第1データ列,第2データ列,第3 データ列を復調することにより、m値の変形多値変調波 を受信した場合n<mなるn値の復調能力しかない受信 機でもn値の第1データ列のデータを復調する伝送装置 が得られる。

【特許請求の範囲】

【請求項1】信号の入力部と、搬送波を、上記入力部からの入力信号により変調し信号スペースダイアグラム図上になるm値の信号点を発生させる変調部と、変調信号を送信する送信部からなり信号伝送を行う伝送装置において、上記信号点の位置を上記入力信号の一部により変更もしくは変調することを特徴とする伝送装置。

【請求項2】信号の入力部と、搬送波を、上記入力部からの入力信号により変調し信号スペースダイアグラム図上になるm値の信号点を発生させる変調部と、変調信号 10を送信する送信部からなりデータ伝送を行う伝送装置において、上記入力信号としてn値の第1データ列と、第2データ列を入力し、上記信号点をn個の信号点群に分割し、上記信号点群を各々第1データ列の各データに割りあて、上記信号点群の中の各信号点に第2データ群の各データを割りあて、送信することを特徴とする伝送装置。

【請求項3】映像信号を高域映像信号と低域映像信号に 分離し、上記低域映像信号を第1データ列として伝送し 上記高域映像信号を第2データ列として送信することを 20 特徴とする請求項2記載の伝送装置。

【請求項4】第1データ群及び第2データ群の双方を送信又は受信中にできるとともに、送信中に第5データ群の符号誤まり率が高くなった時に、第2データ群の送信もしくは受信を中止し第1データ群のみを伝送することを特徴とする請求項2記載の伝送装置。

【請求項 5】 QAM伝送方式の信号ダイヤグラム図上における原点に最も近い信号点とI 軸もしくはQ 軸との距離を δ としたシフト量をSとした場合、上記信号点と上記I 軸もしくは上記Q 軸との距離がS δ なる距離になりかつS>1 になるように上記信号点の上記信号ダイアグラム図上の位置を移動させたことを特徴とする請求項 2 記載の伝送装置。

【請求項6】受信信号の入力部と信号スペースダイアグラム図上で、P値の信号点のQAM変調信号を復調する復調器と、出力部を有する伝送装置において、上記信号点をn値の信号点群に分割し、各信号点群をn値の第1データ列に対応させて第1データ列を復調し、信号点群の中の略々P/n値の信号点にP/n値の第2データ列を対応させて第2データ列を復調し、第1データ列と第402データ列のデータを復調再生することを特徴とする伝送装置。

【請求項7】映像信号を高域映像信号と低域映像信号に 分離し、上記低域映像信号を第1データ列として伝送し 上記高域映像信号を第2データ列として受信することを 特徴とする請求項6記載の伝送装置。

【請求項8】第1データ群及び第2データ列の双方を受信中に、第2データ列の符号誤まり率が高くなった時に、必要に応じて第1データ列の伝送に限定することを特徴とする請求項6記載の伝送装置。

【請求項9】受信信号から搬送波を再生する搬送波再生 部を有し、上記搬送波再生部は受信信号の周波数を16 逓倍することにより搬送波を再生することを特徴とする 請求項6記載の伝送装置。

【請求項10】 QAM伝送方式の信号ダイヤグラム図上における原点に最も近い信号点とI軸もしくはQ軸との距離を δ としシフト量をSとした場合、上記信号点と上記I軸もしくは上記Q軸との距離が $S\delta$ なる距離になりかつS>1になるように上記信号点の上記信号ダイアグラム図上の位置を移動させたことを特徴とする請求項6記載の伝送装置。

【請求項11】信号の入力部と、搬送波を上記入力部か らの入力信号により変調し信号スペースダイアグラム図 上になるm値の信号点を発生させる変調部と、変調信号 を送信する送信部からなりデータ送信を行う伝送装置に おいて、上記入力信号としてn値の第1データ列と、第 2データ列を入力し、上記信号点を n 個の信号点群に分 割し、上記信号点群を各々第1データ列のn値のデータ に割りあて、上記信号点群の中の各信号点に第2データ 群の各データを割りあてて、送信する送信機により送信 信号を送り、上記送信信号の入力部と、信号スペースダ イアグラム図上で、P値の信号点のQAM変調波を復調 する復調器と、出力部を有する受信装置において、上記 信号点をn値の信号点群に分割し、各信号点群n値の第 1データ列を対応させて復調し、信号点群の中の略々 p /n値の信号点にp/n値の第2データ列を対応させて 復調し、第1データ列と第2データ列のデータを復調再 生する受信装置を用いてデータ受信を行う伝送装置。

【請求項12】映像信号を高域映像信号と低域映像信号 に分離し、上記低域映像信号を第1データ列として伝送 し上記高域映像信号を第2データ列として伝送すること を特徴とする請求項11記載の伝送装置。

【請求項13】 QAM伝送方式の信号ダイヤグラム図上における原点に最も近い信号点とI 軸もしくはQ 軸との距離を δ としシフト量をSとした場合、上記信号点と上記I 軸もしくは上記Q 軸との距離がS δ なる距離になりかつS>1 になるように上記信号点の上記信号ダイアグラム図上の位置を移動させたことを特徴とする請求項11記載の伝送装置。

【請求項14】音声信号を高域信号と低域信号に分離し、上記低域信号を第1データ列として伝送し上記高域信号を第2データ列として送信することを特徴とする請求項2記載の伝送装置。

【請求項15】受信信号の入力部と、信号スペースダイヤグラム図上でP値の信号点のQAMもしくはQPSK変調信号を復調する第1の復調器と、出力部を有する伝送装置において、上記信号点の位置の変更もしくは変調を検出し復調する第2の復調器を設けることにより、QAMもしくはQPSK復調信号とは別に出力信号を得ることを特徴とする伝送装置。

【発明の詳細な説明】

[0001]

re) ;

【産業上の利用分野】本発明は搬送波を変調することに よりデジタル信号を伝送する伝送装置に関するものであ る。

[0002]

【従来の技術】近年、デジタル伝送装置は様々な分野で の利用が進んでいる。とりわけデジタル映像伝送技術の 進展はめざましい。

されつつある。現在デジタルTV伝送装置は放送局間の 中継用として一部実用化されているにすぎない。しか し、近い将来、地上放送と衛星放送への展開が予定され 各国で検討が進められている。

【0004】高度化する消費者の要望に応えるため、H DTV放送、PCM音楽放送や情報提供放送やFAX放 送等の放送サービスの内容の質と量を今後向上させる必 要がある。この場合TV放送の限られた周波数帯域の中 で情報量を増大させる必要がある。この帯域で伝送でき る情報伝送量はその時代の技術的限界に応じて増大す る。このため理想的には時代に応じて受信システムを変 更し、情報伝送量を拡張できることが望ましい。

【0005】しかし放送の視点からみた場合、公共性が 重要であり長期間に至る全ての視聴者の既得権の確保が 重要となる。新しい放送サービスを始める場合、既存の 受信機もしくは受像機でそのサービスを享受できること が必要条件である。過去と現在、そして現在と将来の新 旧の放送サービスの間の受信機もしくは受像機の互換 性、放送の両立性が最も重要であるといえる。

【0006】今後登場する新しい伝送規格、例えばデジ 30 タルTV放送規格には将来の社会の要求と技術進歩に対 応できる情報量の拡張性と、既存の受信機器との間の互 換性と両立性が求められている。

【0007】ここで、これまでに提案されているTV放 送の伝送方式を拡張性と両立性の観点から述べる。

【0008】まずデジタルTVの衛星放送方式としてN TSC-TV信号を約6Mbpsに圧縮した信号を4値 PSK変調を用いTDM方式で多重化し1つのトランス ポンダーで4~20チャンネルNTSCのTV番組もし くは1チャンネルのHDTVを放送する方式が提案され 40 ている。またHDTVの地上放送方式として1チャンネ ルのHDTV映像信号を15Mbps程度のデータに圧 縮し、16もしくは32QAM変調方式を用い地上放送 を行う方式が検討されている。

【0009】まず衛星放送方式においては現在提案され ている放送方式は、単純に従来の伝送方式で放送するた め1チャンネルのHDTVの番組放送に数チャンネル分 のNTSCの周波数帯域を使用する。このため、HDT V番組の放送時間帯には数チャンネルのNTSC番組が 受信放送できないという問題点があった。NTSCとH 50 再生する。次に該当する信号点群の中のp/n点の信号

DTVの放送との間の受信機、受像機の互換性、両立性 がなかったといえる。また将来の技術進歩に伴い必要と なる情報伝送量の拡張性も全く考慮されていなかったと いえる。

【0010】次に現在検討されている従来方式のHDT Vの地上放送方式はHDTV信号を16QAMや32Q AMといった従来の変調方式でそのまま放送しているに すぎない。既存のアナログ放送の場合、放送サービスエ リア内においてもビルかげや低地や隣接するTV局の妨. 【0003】中でもデジタルTVの伝送方式が最近注目 10 害を受けるような受信状態が悪い地域が必ず存在する。 このような地域においては、既存のアナログ放送の場合 画質が劣化するものの、映像は再生できTV番組は視聴 できた。しかし、従来のデジタルTV放送方式では、こ のような地域においては全く映像が再生できず、TV番 組を全く視聴できないという重大な問題があった。これ は、デジタルTV放送の本質的な課題を含むものでデジ タルTV放送の普及に致命的となりかねない問題であっ た。これは従来のQAM等の変調方式の信号点の位置か 等間隔に配置されていることに起因する。信号点の配置 を変更もしくは変調する方式は従来なかった。

[0011]

【発明が解決しようとする課題】本発明は上記従来の問 題点を解決するもので、特に衛星放送におけるNTSC 放送とHDTV放送の両立性、また地上放送におけるサ ービスエリア内の受信不能地域を大巾に減少させる伝送 装置を提供することを目的とする。

[0012]

【課題を解決するための手段】上記目的を達成するため に本発明の伝送装置は、信号の入力部と、位相の異なる 複数の搬送波を上記入力部からの入力信号により変調し 信号ベクトル図上になるm値の信号点を発生させる変調 部と変調信号を送信する送信部からなりデータ送信を行 う送信装置と上記送信信号の入力部と、ベクトル図上で 1値の信号点のQAM変調波を復調する復調器と出力部 を有する受信装置の2つの構成を有している。

[0013]

【作用】この構成によって入力信号としてn値のデータ をもつ第1データ列と第2データ列を入力させ、送信装 置の変調器によりベクトル図上にm値の信号点をもつ変 形m値のQAM方式の変調波を作る。このm点の信号点 をn組の信号点群に分割しこの信号点群を第1データ列 のnケの各データに割りあて、この信号点群の中のm/n ケの信号点もしくは副信号点群に第2データ列の各デー 夕割りあて送信装置により送信信号を送出する。場合に より第3データも送出できる。

【0014】次に、p>mなるp値の復調器を持つ受信 装置においては上記送信信号を受信し信号スペースダイ アグラム上のp点の信号点に対して、まずp点の信号点 を n 組の信号点群に分割し、第 1 データ列の信号を復調 点にp/n値の第2データ列を対応させて復調し第1データと第2データを復調再生する。p=nの受信機においてはn群の信号点群を再生し、各々にn値を対応させ第1データ列のみを復調再生する。

【0015】以上の動作により送信装置からの同一信号を受信した場合、大型アンテナと多値の復調能力をもつ受信機では第1データ列と第2データ列を復調できる。同時に小型アンテナと少値の復調能力をもつ受信機では第1データ列の受信ができる。こうして両立性のある伝送システムを構築することができる。この場合第1データ列をNTSCまたはHDTVの低域成分等の低域TV信号に、第2データ列をHDTVの高域成分等の高域TV信号に割りあてることにより、同一電波に対して少値の復調能力をもつ受信機ではNTSC信号、多値の復調能力をもつ受信機ではHDTV信号を受信できる。このことによりNTSCとHDTVの両立性のあるデジタル放送が可能となる。

[0016]

【実施例】

(実施例1)以下本発明の一実施例について、図面を参照しながら説明する。

【0017】図1は本発明による伝送装置のシステム全体図を示す。入力部2と分離回路部3と変調器4と送信部5をもつ送信機1は複数の多重化された入力信号を分離回路3により第1データ列, D_{1} 、と第2データ列, D_{2} 、と第3データ列, D_{3} に分離し変調器4により、変調信号として送信部5より出力し、アンテナ6により、この変調信号は伝送路7により人工衛星10に送られる。この信号は人工衛星10においてはアンテナ11で受信され、中継器12により増幅され、アンテナ13により再び地球へ送信される。

【0018】送信電波は、伝送経路21、31、41により第1受信機23、第2受信機33、第3受信機43に送られる。まず、第1受信機23ではアンテナ22を介して入力部24より入力し、復調器25により第1データ列のみが復調され、出力部26より出力される。この場合第2データ列、第3データ列の復調能力はもたない。

【0019】第2受信機33では、アンテナ32を介して入力部34より出力した信号は復調機35により第1データ列と第2データ列が復調され、合成器37により一つのデータ列に合成され、出力部36より出力される。

【0020】第3受信機43ではアンテナ42からの入力は入力部44に入り復調器45により第1データ列、第2データ列、第3データ列の3つのデータ列が復調され合成器47により一つのデータ群となり出力部46より出力される。

【0021】以上のように同じ送信機1からの同一の周 けた後、合成器65で、第2AM変調波と合成され、送波数帯の電波を受けても、上述の3つの受信機の復調器 50 信部5により送信信号しとして出力される。この方式そ

の性能の違いにより受信可能な情報量が異なる。この特長により一つの電波帯で性能の異なる受信機に対してその性能に応じた両立性のある3つの情報を同時に伝送することが可能となる。例えば同一番組のNTSCとHDTVと超解像度型HDTVの3つのデジタルTV信号を伝送する場合、スーパーHDTV信号を低域成分、高域差成分、超高域差成分に分離し、各々を第1データ列、第2データ列、第3データ群に対応させれば、1チャンネルの周波数帯で両立性のある中解像度、高解像度の3種のデジタルTV信号を同時に放送できる。

【0022】この場合、小型アンテナを用いた少値復調の受信機ではNTSC-TV信号を、中型アンテナを用いた中値復調可能なの受信機ではHDTV信号を、大型アンテナを用いた多値復調可能なの受信機では超高解像度型HDTVを受信できる。図1をさらに説明するとNTSCのデジタルTV放送を行うデジタル送信機51は入力部52より第1データ群と同様のデータのみを入力し、変調器54により変調し、送信機55とアンテナ56により伝送路57により衛星10に送り伝送路58により地球へ再び送信される。

【0023】第1受信機23では、デジタル送信機1からの受信信号を復調器24により、第1データ列に相当するデータを復調する。同様にして、第2受信機33と第3受信機43は、第1データ列と同じ内容のデータ群を復調する。つまり3つの受信機は、デジタル一般TV放送等のデジタル放送も受信できる。

【0024】では、各部の説明をする。図2は送信機1 のブロック図である。

30 【0025】入力信号は入力部2に入り、分離回路3で 第1データ列信号と第2データ列信号と第3データ列信 号の3つのデジタル信号に分離される。

【0026】例えば映像信号が入力された場合、映像信 号の低域成分を第1データ列信号、映像信号の高域成分 を第2データ列信号、映像信号の超高域成分を第3デー タ列信号に割り当てることが考えられる。分離された3 つの信号は、変調器4の内部の変調入力部61に入力さ れる。ここでは外部信号に基づき信号点の位置を変調も しくは変更する信号点位置変調/変更回路67があり外 部信号に応じて信号点の位置を変調もしくは変更する。 変調器4の中では直交した2つの搬送波の各々に振幅変 調を行い、多値のQAM信号を得る。変調入力部61か らの信号は第1AM変調器62と第2AM変調器63に 送られる。cos(2πfet)なる搬送波発生器64からの搬 送波のうち一つは第1AM変調器62によりAM変調さ れ、合成器 6.5 に送られ、もう一つの搬送波は $\pi/2$ 移相 器66に送られ90°移相されて、 $sin(2\pi f_{et})$ の状 態で第2AM変調器63に送られ、多値の振幅変調を受 けた後、合成器65で、第2AM変調波と合成され、送

7

のものは従来より一般的に実施されているため詳しい動 作の説明は省略する。

【0027】図3016値の一般的なQAMの信号スペースダイアグラムの第1象限を用い動作を説明する。変調器4で発生する全ての信号は、直交した2つの搬送波 $A\cos 2\pi f_c$ tのベクトル81と $B\sin 2\pi f_c$ tのベクトル82の2つのベクトルの合成ベクトルで表現できる。0点からの合成ベクトルの先端を信号点と定義すると、16値QAMの場合 a_1 、 a_2 、 a_3 、 a_4 の4値の振幅値と b_1 、 b_2 、 b_3 、 b_4 の4値の振幅値の組み合わせにより合計16ケの信号点が設定できる。図3の第1象限では信号点83の $C_{11</sub>、信号点<math>84$ の C_{12} 、信号点850 C_{22} 、信号点860 C_{21} 040の信号が存在する。

【0028】 C_{11} はベクトル $0-a_1$ とベクトル $0-b_1$ の 合成ベクトルであり、 $C_{11}=a_1\cos 2\pi f_c t - b_1\sin 2\pi f_c t = A\cos(2\pi f_c t + d\pi/2)$ となる。

【0029】ここで図3の直交座標上における $0-a_1$ 間の距離を A_1 、 a_1-a_2 間を A_2 、 $0-b_1$ 間を B_1 、 b_1-b_2 間を B_2 と定義し、図上に示す。

【0030】図4の全体ベクトル図に示すように、合計 20 16ケの信号点が存在する。このため各点を4bitの 情報に対応させることにより、4bitの情報伝送が1 周期つまり1タイムスロット中に可能となる。

【0031】図5に2進法で各点を表現した場合のその一般的な割り付け例を示す。当然、各信号点間の距離が離れている程、受信機の方で区別し易い。従って、一般的には各信号点間の距離を、できるだけ離すような配置にする。もし、特定の信号点間の距離を近付けた場合、受信機ではその2点間の識別が困難となり、エラレートが悪くなる。従って一般的には図5のように等間隔の配 30 置にするのが望ましいといわれている。従って16QA Mの場合A1=A2/2なる信号点の配置が一般的に実施されている。

【0032】さて、本発明の送信機1の場合、まず、デ ータを第1データ列と第2データ列場合により第3デー タ列にに分割する。そして図6に示すように、16ケの 信号点もしくは信号点群を4つの信号点群に分割し、第 1データ列の4つのデータをまず、各々の信号点群に割 り当てる。つまり第1データ列が11の場合第1データ 象限の第1信号点群91の4つの信号点のうちのいずれ 40 か一つを送信し、01の場合は第2象限の第2信号点群 92、00の場合、第3象限の第3信号点群93、10 の場合第4象限の第4信号点群94、の中の各々4つの 信号点の中から一つの信号点を第2データ列の値に応じ て選択して送信する。次に16QAMの場合第2データ 列の2bit、4値のデータ、64値QAMの場合4b it、16値のデータを91、92、93、94の各分 割信号点群の中の4つの信号点もしくは副信号点群に図 7のように割り当てる。どの象限も対象配置となる。信 号点の91、92、93、94への割り当ては第1デー 50

タ群の2bitデータにより優先的に決められる。こう して第1データ列の2bitと第2データ列の2bit

は全く独立して送信できる。そして第1データ列は受信機のアンテナ感度が一定値以上あれば4PSK受信機でも復調できる。アンテナにさらに高い感度があれば本発明の変形16QAM受信機で第1データ群と第2データ群の双方が復調できる。

【0033】ここで図8に、第1データ列の2ビットと 第2データ列の2ビットの割り当て例を示す。

【0034】この場合、HDTV信号を低域成分と高域 成分に分け第1データ列に低域映像信号を割り当て、第 2 データ列に高域映像信号を割り当てることにより、4 PSKの受信システムでは第1データ列のNTSC相当 の映像を、16QAM又は、64QAMの受信システム では第1データ列と第2データ列の双方が再生でき、こ れらを加算して、HDTVの映像を得ることができる。 【0035】ただ図9のように信号点間距離を等距離に した場合、4 P S K 受信機からみて第1象限に斜線で示 した部分との間のスレシホルド距離がある。スレシホル ド距離をA_{To}とするとで4PSKを送るだけならA_{To}の 振幅でよい。しかしをAroを維持しながら16QAMを 送ろうとすると3A_{To}つまり3倍の振幅が必要である。 つまり、4 P S K を送信する場合に比べて、9 倍のエネ ルギーを必要とする。何も配慮をしないで4PSKの信 号点を16QAMモードで送ることは電力利用効率が悪 い。また搬送波の再生も難しくなる。衛星伝送の場合使 用できる電力は制約される。このような電力利用効率の 悪いシステムは、衛星の送信電力が増大するまで現実的 でない。将来デジタルTV放送が開始されると4PSK の受信機が大量に出回ることが予想されている。一旦普 及した後にはこれらの受信感度を上げることは受信機の 両立性の問題が発生するため不可能といえる。従って、 4 P S K モードの送信電力は減らせない。このため16 QAMモードで疑似4PSKの信号点を送る場合、送信 電力を従来の16QAMより下げる方式が必要となるこ とが予想される。そうしないと限られた衛星の電力では 送信できなくなる。

【0036】本発明の特徴は図10のように図番91~94の4つの分割信号点群の距離を離すことにより、疑似4PSK型16QAM変調の送信電力を下げることができる点にある。

【0037】ここで受信感度と送信出力との関係を明らかにするために図1に戻りデジタル送信機51と第1受信機23の受信方式について述べる。

【0038】まず、デジタル送信機51と第1受信機23は一般的な伝送装置で、データ伝送もしくは放送を含む映像伝送を行っている。図7に示すようにデジタル送信機51は4PSK送信機であり、の図2で説明した多値QAMの送信機1からAM変調機能を除いたものである。入力信号は入力部52を介して変調器54に入力さ

れる。変調器54では変調入力部121により、入力信 号を2つの信号に分けて基準搬送波を位相変調する第1 - 2 相位相変調回路 1 2 2 と基準搬送波と 9 0 ° 位相が 異なる搬送波を変調する第2-2相位相変調回路123 に送り、これらの位相変調波は合成器65で合成され、 送信部55により送信される。

【0039】この時の変調信号スペースダイアグラムを 図18に示す。4つの信号点を設定し、電力利用効率を 上げるために一般的には信号点間距離は等間隔にするの が常識となっている。一つの例として、信号点125を 10 (11)、信号点126を(01)、信号点127を (00)、信号点128を(10)と定義した場合を示 す。この場合4PSKの第1受信機23が満足なデータ を受信するためにはデジタル送信機51の出力に一定以 上の振幅値が要求される。図18で説明すると第1受信 機23がデジタル送信機51の信号を4PSKで受信す るのに最低必要な送信信号の最低振幅値つまり0-a1 間の距離をАтоと定義すると送信限界の最低振幅Ато以 上で送信すれば、第1受信機23が受信可能となる。

【0040】次に第1受信機23について述べる。第1 受信機23は送信機1からの送信信号もしくはデジタル 送信機51からの4PSKの送信信号を衛星10の中継 器12を介して、小型のアンテナ22で受信し、復調器 24により受信信号を4PSK信号とみなして復調す る。第1受信機23は本来、デジタル送信機51の4P SKまたは2PSKの信号を受信し、デジタルTV放送 やデータ送信等の信号を受信するように設計されてい る。

【0041】図19は第1受信機の構成ブロック図で衛 星12からの電波をアンテナ22で受信した、この信号 30 は入力部24より入力した後、搬送波再生回路131と π/2移相器 1 3 2 により搬送波と直交搬送波が再生さ れ、各々第1位相検出回路133と第2位相検波回路1 34により、直交している成分が各々独立して検波さ れ、タイミング波抽出回路135によりタイムスロット 別に各々独立して識別され、第1識別再生回路136と 第2識別再生回路137により2つの独立した復調信号 は第1データ列再生部232により第1データ列に復調 され、出力部26により出力される。

【0042】ここで受信信号を図20のベクトル図を用 40 いて説明する。デジタル送信機51の4PSKの送信電 波に基づき第1受信機23で受信され信号は、もし伝送 歪みやノイズが全くない理想的な条件では図20の15 1~154の4つの信号点で表せる。

【0043】しかし、実際は伝送路中のノイズと伝送系 の振幅歪みや位相歪みの影響を受け受信された信号点は 信号点の周囲のある一定の範囲に分布する。信号点から 離れると隣の信号点と判別できなくなるためエラーレー トが次第に増え、ある設定範囲を越えるとデータを復元

ート以内で復調するためには隣接信号点間距離をとれば よい。この距離を2AROと定義する。4PSKの限界受 信入力の時信号点151が図20の | 0 - a_{R1} | ≥ A_{RO}、 | 0 - b_{R1} | ≧ A_{RO}の斜線で示す第1弁別領域1 55に入るように伝送システムを設定すれば、後は搬送 波が再生できれば復調できる。アンテナ22の設定した 最低の半径値をす。とすると、送信出力をある一定以上 にすれば全てのシステムで受信できる。図18における 送信信号の振幅は第1受信機23の4PSK最低受信振 幅値、Aroになるようにに設定する。この送信最低振幅 値をАтоと定義する。このことによりアンテナ22の半 径がro以上なら受信条件が最悪であっても第1受信機 23はデジタル送信機51の信号を復調できる。本発明 の変形16QAM、64QAMを受信する場合第1受信 機23は搬送波を再生することが、困難となる。このた め図25 (a) のように送信機1が ($\pi/4+n\pi/$ 2) の角度上の位置に8つの信号点を配置し送信すれ ば、4 逓倍方式により搬送波を再生できる。又、図25 (b) のように n π / 8 の 角度 の 延長線 上 に 1 6 ケ の 信 号点を配置すれば搬送波再生回路131に16逓倍方式 の搬送波再生方式を採用することにより信号点が縮退し 疑似4PSK型16QAM変調信号の搬送波を容易に再 生できる。この場合 $A_1/(A_1+A_2)=t$ an $(\pi/$ 8)となるように送信機1の信号点を設定し送信すれば よい。ここでQPSK信号を受信する場合を考えてみ る。図2の送信機の信号点位置変調/変更回路67のよ うに信号点位置は (図18) のQPSK信号の信号点位 置をAM等の変調を重畳することもできる。この場合第 1受信機23の信号点位置復調部138は信号点の位置 変調信号もしくは位置変更信号をPM、AM等の復調す る。そして送信信号から第1データ列と復調信号を出力 する。

【0044】次に送信機1に戻り図9のベクトル図を用 いてここで送信機1の16PSKの送信信号を説明する と図9のように信号点83の水平ベクトル方向の振幅A 1を図18のデジタル送信機51の4PSK最低送信出 カA₇₀より大きくする。すると、図9の第1象限の信号 点83、84、85、86の信号は斜線で示す第14P SK受信可能領域87に入る。これらの信号を第1受信 機23で受信した場合、この4つの信号点は図20の受 信ベクトル図の第1弁別領域に入る。従って、第1受信 機23は図9の信号点83、84、85、86のいずれ を受信しても図20の信号点151と判断し、(11) なるデータをこのタイムスロットに復調する。このデー 夕は図8に示したように、送信機1の第1分割信号点群 91の(11)、つまり第1データ列の(11)であ る。第2象限、第3象限、第4象限の場合も同様にして 第1データ列は復調される。つまり、第1受信機23は 16QAMもしくは32QAMもしくは64QAMの送 できなくなる。最悪条件の場合でも設定されたエラーレ 50 信機1からの変調信号の複数のデータ列のうち、第1デ

ータ列の2bitのデータのみを復調することになる。 この場合は第2データ列や第3データ列の信号は全て第 1~第4の分割信号点群91に包含されるため第1デー タ列の信号の復調には影響を与えない。しかし搬送波の 再生には影響を与えるので後で述べるような対策が必要

【0045】もし、衛星の中継器の出力に限界がないな ら図9のような従来の信号点等距離方式の一般の16~ 64QAMで実現できる。しかし、前述のように地上伝 送と違い、衛星伝送では衛星の重量が増えると打ち上げ 10 コストが大幅に増大する。従って本体の中継器の出力限 界と太陽電池の電力の限界から送信出力は制約されてい る。この状態はロケットの打ち上げコストが技術革新に より安くならない限り当分続く。送信出力は通信衛星の 場合20W、放送衛星でも100W~200W程度であ る。従って、図9のような信号点等距離方式の16QA Mで4PSKを伝送しようとした場合16QAMの振幅 は2 А1 = А2であるから3 Ато必要となり電力で表現す ると9倍必要となる。両立性をもたせるために4PSK の9倍の電力が必要である。かつ4PSKの第1受信機 20 も小型のアンテナで受信可能にしようとすると、現在、 計画されている衛星ではこれだけの出力を得ることは難 しい。例えば40Wのシステムでは360W必要となり 経済的に実現できなくなる。

【0046】ここで、考えてみると確かに全ての受信機 が同じ大きさのアンテナの場合、同じ送信電力なら等距 離信号点方式外地番効率がよい。しかし大きさの異なる アンテナの受信機群とを組合わせたシステムを考えてみ ると新たな伝送方式が構成できる。

【0047】これを具体的に述べると4PSKは小型の 30 アンテナを用いた簡単で低コストの受信システムで受信 させ受信者数を増やす。次に16QAMは中型アンテナ を用いた高性能であるが高コストの多値復調受信システ ムで受信させ投資に見合ったHDTV等の高付加価値サ ービスを行い特定の受信者に対象を限定すればシステム として成立する。こうすれば送信出力を若干増加させる だけで4PSKと16QAM、場合により64DMAを 階層的に送信することができる。

【0048】例えば図10のようにA1=A2となるよ うに信号点間隔をとることにより、全送信出力を下げる ことができる。この場合4PSKを送信するための振幅 A(4)はベクトル95で表現でき、2A₁2の平方根とな る。全体の振幅A(16)はベクトル96で表現でき(A 1+A2)²+ (B1+B2)²の平方根となる。

[0049]

 $|A(4)|^2 = A_1^2 + B_1^2 = A_{TO}^2 + A_{TO}^2 = 2 A_{TO}^2$ $|A(16)|^2 = (A_1 + A_2)^2 + (B_1 + B_2)^2 = 4 A$ $_{\text{TO}}^2 + 4 \text{ A}_{\text{TO}}^2 = 2 8 \text{ A}_{\text{TO}}^2$

|A(16)|/|A(4)| = 2

つまり、4PSKを送信する場合の2倍の振幅、4倍の 50 A₂≦1.23A₁

送信エネルギーで送信できる。等距離信号点で伝送する 一般的な受信機では変形16値QAMの復調はできない がA₁とA₂の2つの閾値を予め設定することにより第2 受信機33で受信できる。図10の場合、第1分割信号 点群91の中の信号点の最短距離はAiであり、4PS Kの信号点間距離2A1と比べるとA2/2A1なる。A1 = A₂より1/2の信号点間距離となり、同じエラーレ **ートを得ようとすると2倍の振幅の受信感度、エネルギ** ーでは4倍の受信感度が必要となる。4倍の受信感度を 得るには、第2受信機33のアンテナ32の半径r2を 第1受信機23のアンテナ22の半径半径下1に比べて 2倍すなわちr2=2r1にすればよい。例えば第1受信 機23のアンテナが直径30cmなら第2受信機33のア ンテナ直径を60cmにすれば実現できる。このことによ り第2データ列の復調により、これをHDTVの高域成 分に割り当てればHDTV等の新たなサービスが同一チ ャンネルで可能となる。サービス内容が倍増することか ら受信者はアンテナと受信機の投資に見合った分のサー ビスを受けることができる。従って第2受信機33はそ の分高コストでもよい。ここで、4PSKのモード受信 のために最低送信電力が決まっているため、図10のA 」とA₂の比率により4PSKの送信電力に対する変形1 6APSKの送信電力比n16と第2受信機33のアンテ ナ半径下₂が決定する。

12

【0050】この最適化を計るため計算してみると、4 PSKの最低必要な送信エネルギーは{(A1+A2)/ A₁}²倍これをn₁₆と定義すると、変形16値QAMで 受信するときの信号点間距離はA₂、4PSKで受信す るときの信号点間距離は2A1、信号点間距離の比率は A2/2A、であるから受信アンテナの半径をr2とする と図11のような関係となる。曲線101は送信エネル ギー倍率 n16と第2受信機23のアンテナ22の半径 r 2の関係を表す。

【0051】点102は等距離信号点の場合の16QA Mを送信する場合で、前述のとおり9倍の送信エネルギ ーを必要とし実用的ではない。図11からnュ₅を5倍以 上増やしても第2受信機23のアンテナ半径 r₂はさほ ど小さくならないことがグラフからわかる。

【0052】衛星の場合、送信電力は限定されており、 一定値以上はとれない。このことから n 1 6 は 5 倍以下 が望ましいことが明らかになる。この領域を図11の領 域103の斜線で示す。例えばこの領域内なら例えば点 104は送信エネルギー4倍で第2受信機23のアンテ ナ半径 r2は 2 倍になる。また、点105 は送信エネル ギーが2倍で r₂は約5倍になる。これらは、実用化可 能な範囲にある。

【0053】nieが5より小さいことをAiとA2で表現 すると

 $n_{16} = ((A_1 + A_2)/A_1)^2 \le 5$

図10から分割信号点群間の距離を2A(4),最大振巾を2A(16)とすると、A(4)とA(16)-A(4)は A_1 と A_2 に比例する

従って

 $\{A(16)\}^2 \le 5\{A(14)\}^2 \ge t$

次に変形の64APSK変調を用いた例を示す。第3受信機43は、64値QAM復調ができる。

【0054】図12のベクトル図は図10のベクトル図の分割信号点群を4値から16値に増加させた場合である。図12の第1分割信号点群91の中には信号点170を始めとして $4 \times 4 = 16$ 値の信号点が等間隔に配置されている。この場合、4PSKとの両用性をもたせるため送信振巾の $A_1 \ge A_{TO}$ に設定しなければならない。第3受信機43のアンテナの半径を r_3 として、送信、出力信号n64と定義した場合の r_3 の値を、同様にして求めると

 $r_3^2 = \{6^2/(n-1)\}r_1^2$

となり、図1364値QAMの半径 r_3 -出力倍数nのようなグラフとなる。

【0055】ただし、図12のような配置では第2受信 20機33で受信した場合4PSKの2bitしか復調できないので第1、第2、第3の3つの両立性を成立させるには、第2受信機33に変形64値QAM変調波から変形16値QAMを復調する機能をもたせることが望ましい。

【0056】図14のように3階層の信号点のグルービングを行うことにより3つの受信機の両立性が成立する。第1象限だけで説明すると、第1分割分割信号点群91は第1データ列の2bitの(11)を割りあてたことは述べた。

【0057】次に、第1副分割信号点群181には第2 データ列の2bitの(11)を割りあてる。第2副分 割信号点群182には(01)を、第3副分割信号点群 183には(00)を第4副分割信号点群184には

(10)を割りあてる。このことは図7と等価である。 【0058】図15の第1象限のベクトル図を用いて第3データ列の信号点配置を詳しく説明すると例えば信号点201,205,209,213を(11)、信号点202,206,210,214を(01)、信号点203,207,211,215を(00)、信号点204,208,212,216を(10)とすれば、第3データ列の2bitのデータを第1データ、第2データと独立して、3階層の2bitデータが独立して伝送できる。

【0059】6 bitのデータが送るだけでなく本発明の特徴として3つのレベルの性能の異なる受信機で、2 bit, 4 bit, 6 bitの異なる伝送量のデータが伝送できしかも、3つの階層の伝送間の両立性をもたせることができる。

【0060】ここで、3階層伝送時の両立性をもたせる 50 5の内部に復調制御部231と、第1データ列再生部2

ために必要な信号点の配置方法を説明する。

【0061】図15にあるように、まず、第1データ列のデータを第1受信機 23で受信させるためには、 A_1 $\ge A_{70}$ であることはすでに述べた。

14

【0062】次に第2データ列の信号点、例えば図10の信号点91と図15の副分割信号点群の182,183,184の信号点と区別できるように信号点間距離を確保する必要がある。

【0063】図15では2/3 A_2 だけ離した場合を示す。この場合第1副分割信号点群181の内部の信号点201,202の信号点間距離は A_2 /6となる。第3受信機43で受信する場合に必要な受信エネルギーを計算する。この場合、アンテナ32の半径を r_3 として、必要な送信エネルギーを4PSK送信エネルギーの n_{64} 倍であると定義すると、

 $r_3^2 = (1 2 r_1)^2 / (n-1) k k k k k k$

このグラフは図16の曲線221で表せる。例えば点222,223の場合4PSK送信エネルギーの6倍の送信エネルギーが得られれば8倍の半径のアンテナで、また9倍の送信エネルギーなら6倍のアンテナで第1、第2、第3のデータ列が復調できることがわかる。この場合、第2データ列の信号点間距離が2/3A2と近づくため

 $\mathbf{r_2}^2 = (3\mathbf{r_1})^2 / (\mathbf{n} - 1)$ となり 曲線 223のように若干第 2 受信機 33 のアンテナ 32を大きくする必要がある。

【0064】この方法は、現時点のように衛星の送信エネルギーが小さい間は第1データ列と第2データ列を送り、衛星の送信エネルギーが大巾に増加した将来において第1受信機23や第2受信機33の受信データを損なうことなく、また改造することなく第3データ列を送ることができるという両立性と発展性の両面の大きな効果が得られる。

【0065】受信状態を説明するために、まず第2受信機33から述べる。前述の第1受信機23が本来半径r1の小さいアンテナでデジタル送信機51の4PSK変調信号及び送信機1の第1データ列を復調できるように設定してあるのに対し、第2受信機33では送信機1の図10に示した16値の信号点つまり第2データ列の16QAMの2ビットの信号を完全に復調できる。第1データ列と合わせて4bitの信号を復調できる。この場合A1、A2の比率が送信機により異なる。このデータを図21の復調制御部231で設定し、復調回路に閾値を送る。これによりAM復調が可能となる。

【0066】図21の第2受信機33のブロック図と、図19の第1受信機23のブロック図はほぼ同じ構成である。違う点は、まずアンテナ32がアンテナ22より大きい半径r2をもっている点にある。このため、より信号点間距離の短い信号を弁別できる。次に、復調器35の内部に復調制御部231と 第1データ列車は部2

32と第2データ列再生部233をもつ。第1識別再生回路136は変形16QAMを復調するためAM復調機能をもっている。この場合、各搬送波は4値の値をもち、零レベルと土各2値の閾値をもつ。本発明の場合、変形16QAM信号のため、図22の信号ベクトル図のように閾値が送信機の送信出力により異なる。従って、 TH_{16} を基準化したスレシホールド値とすると、図22から明らかなように

 $TH_{16} = (A_1 + A_2/2)/(A_1 + A_2)$ となる。

【0067】このA1, A2もしくは TH_{16} 及び、多値変調の値mの復調情報は、送信機1より、第1データ列の中に含めて送信される。また復調制御部231が受信信号を統計処理し復調情報を求める方法もとれる。

【0068】図26を用いてシフトファクターA1/A2 の比率を決定していく方法を説明する。A1/A2を変え ると閾値が変わる。受信機側で設定したA1/A2が送信 機側で設定したA1/A2の値から離れるに従いエラーは 増える。図26の第2データ列再生部233からの復調 信号を復調制御回路231にフィールドバックしてエラ ーレートの減る方向にシフトファクターA1/A2を制御 することにより第3受信機43はシフトファクターをA 1/A2を復調しなくても済むため回路が簡単になる。ま た送信機はA1/A2を送る必要がなくなり伝送容量が増 えるという効果がある。これを第2受信機33に用いる こともできる。復調制御回路231はメモリー231 a を持つ。TV放送のチャンネル毎に異なるしきい値、つ まりシフト比や信号点数や同期ルールを記憶し再びその チャンネルを受信するとき、この値を呼び出すことによ り受信が速く安定するという効果がある。

【0069】この復調情報が不明の場合、第2データ列の復調は困難となる。以下、(図24)のフローチャートを用いて説明する。

【0070】復調情報が得られない場合でもステップ313の4PSKの復調及びステップ301の第1データ列の復調はできる。そこで、ステップ302で第1データ列再生部232で得られる復調情報を復調制御部231に送る。復調制御部231はステップ303でmが4又は2ならステップ313の4PSKもしくは2PSKの復調を行う。NOならステップ304でmが8又は16ならステップ305ではTH8とTH16の演算を行う。ステップ306で復調制御部231はAM復調の閾値TH16を第1識別再生回路137に送り、ステップ307、315で変形16QAMの復調と第2データ列の再生がなされる。ステップ308でエラーレートがチェックされ、悪い場合はステップ313に戻り、4PSK復調を行なう。

【0071】またこの場合、図22の信号点85.83 きる。このため、64値QAMを復調するため、第1識は $cos(\omega t + n\pi/2)$ の角度上にあるが、信号点 50 別再生回路136は検信号波に対し、8値のレベルを弁

84.86はこの角度上にない。従って図21の第2データ列再生部233より搬送波再生回路131へ第2データ列の搬送波送出情報を送り信号点84.86のタイミングの信号からけか送波を抽出しないように歌字して

16

ミングの信号からは搬送波を抽出しないように設定してある。 【0072】第2データ列が復調不能な場合を想定して

を間欠的に送っている。この信号により第2データ列が 復調できなくても、第1データ列のみでも信号点83. 10 85がわかる。このため、搬送波再生回路131に搬送 波送出情報を送ることにより搬送波が再生できる。

送信機1は第1データ列によりを搬送波タイミング信号

【0073】次に送信機1より、図23に示すような変形64QAMの信号が送られてきた場合、図24のフローチャートに戻るとステップ304でmが16でないか判断されステップ310でmが64以下かがチェックされ、ステップ311で等距離信号点方式でない場合、ステップ312に向かう。ここでは変形64QAM時の信号点間距離 TH_{64} を求めると

 $TH_{64} = (A_1 + A_2/2)/(A_1 + A_2)$ であり、 TH_{16} と同じである。しかし、信号点間距離が

小さくなる。

【0074】第1副分割信号点群181の中にある信号点間の距離を A_3 とすると、第1副分割信号点群181と第2副分割信号点群182の距離は (A_2 - $2A_3$)、基準化すると (A_2 - $2A_3$) / (A_1 + A_2) となる。これを d_{64} と定義すると、 d_{64} が第2受信機33の弁別能力 T_2 以下である場合、弁別できない。この場合、ステップ313で判断し、 d_{64} が許容範囲外であればステップ313の4PSKモードに入る。弁別範囲にある場合はステップ305へ向い、ステップ307の16QAMの復調を行う。ステップ308でエラーレートが大きい場合は、ステップ313の4PSKモードに入る。

【0075】この場合、送信機1が図25(a)に示すような信号点の変形8 QAM信号を送信すれば、全ての信号点が $\cos (2\pi f + n \cdot \pi / 4)$ の角度上にあるため、4 逓倍回路により、全ての搬送波が同じ位相に縮退されるため搬送波の再生が簡単になるという効果が生まれる。この場合、配慮をしていない4 PSK受信機でも第1データ列の2 bitは復調でき、第2 受信機3 3 では第2 データ列の1 bitが再生でき、合計3 bit 再生できる。

【0076】次に第3受信機43について述べる。図26は第3受信機43のブロック図で、図21の第2受信機33とほぼ同じ構成となる。違う点は第3データ列再生部234が追加されていることと識別再生回路に8値の識別能力があることにある。アンテナ42の半径 r_3 が r_2 よりさらに大きくなるため、より信号点間距離の近い信号、例えば32値QAMや64値QAMも復調できる。このため、64値QAMを復調するため、第1識別再生回路136は検信号波に対し、8値のレベルを弁

別する必要がある。この場合7つの閾値レベルが存在す る。このうち1つは0のため1つの象限には3つの閾値 が存在する。

【0077】図27の信号スペースダイアグラムに示す ように、第1象限では3つの閾値が存在する。

【0078】図27に示すように3つの正規化された閾 値、TH 164とTH 264とTH 364が存在する。

[0079]

 $TH1_{64} = (A_1 + A_3/2) / (A_1 + A_2)$ $TH 2_{64} = (A_1 + A_2/2) / (A_1 + A_2)$ $TH3_{64} = (A_1 + A_2 - A_3/2) / (A_1 + A_2)$ で表わせる。

【0080】この閾値により、位相検波した受信信号を AM復調することにより、図21で説明した第1データ 列と第2データ列と同様にして第3データ列のデータが 復調される。図23のように第3データ列は例えば第1 副分割信号群181の中の4つの信号点201、20 2、203、204の弁別により、4値つまり2bit とれる。こうして6 b i t つまり変形6 4 値Q A M の復 調が可能となる。

【0081】この時の復調制御部231は第1データ列 再生部232の第1データ列に含まれる復調情報によ り、m、A₁、A₂、A₃の値がわかるのでその閾値TH 164とTH 264とTH 364を計算して第1識別再生回路 136と第2識別再生回路137に送り、変形64QA M復調を確実に行うことができる。この場合復調情報に はスクランブルがかかっているので許可された受信者し か64QAMを復調できないようにすることもできる。 図28は変形64QAMの復調制御部231のフローチ ャートを示す。 (図24) の16値QAMのフローチャ ートと違う点のみを説明する。図28のステップ304 よりステップ320になりm=32ならステップ322 の32値QAMを復調する。NOならステップ321でm =64か判別し、ステップ323でA₃が設定値以下か ら再生できないため、ステップ305に向い、図24と 同じフローチャートになり、変形16QAMの復調を行 なう。ここでステップ323に戻ると、A3が設定値以 上ならステップ324で閾値の計算を行い、ステップ3 25で第1、第2識別再生回路へ3つの閾値を送りステ ップ326で変形64QAMの再生を行い、ステップ3 27で第1、第2、第3データの再生を行い、ステップ 328でエラーレートが大きければステップ305に向 い16QAM復調をして小さければ64QAM復調を継 続する。

【0082】ここで、復調に重要な搬送波再生方式につ いて述べる。本発明は変形16QAMや、変形64QA Mの第1データ列を4PSK受信機で再生させるところ に特徴の一つがある。この場合、通常の4PSK受信機 を用いた場合は搬送波の再生が困難となり正常な復調が できない。これを防止するため送信機側と受信機側でい 50 期領域502のように同期領域の中に復調情報502を

くつかの対策が必要となる。

【0083】本発明による方法として2通りの方式があ る。第1の方式は一定規則基つき間欠的に(2n-1) π/4の角度上の信号点を送る方法である。第2の方式 はηπ/8の角度上に略略、全ての信号点を配置し送信 する方法である。

18

【0084】第一の方法は、図38に示したように4つ の角度、 $\pi/4$ 、 $3\pi/4$ 、 $5\pi/4$ 、 $7\pi/4$ の角度 上にある信号点例えば信号点83、85の信号を送る 10 時、図38の送信信号のタイムチャート図の中のタイム スロット群451のうち斜線で示す間欠的に送られる同 期タイムスロット452、453、454、455をあ る一定の規則に基ずき設定する。そして、この期間中に 必ず上記角度上の8つの信号点の中のひとつの信号点を 送信する。それ以外のタイムスロットでは任意の信号点 を送信する。そして送信機1は、このタイムスロットを 送る上記の規則を図41に示すデータの同期タイミング 情報部499に配置して送信する。

【0085】この場合の送信信号の内容を図41を用い てさらに詳しく説明すると同期タイムスロット452、 453、454、455を含むタイムスロット群451 は1つの単位データ列491、Dnを構成する。

【0086】この信号には同期タイミング情報の規則に 基づき間欠的に同期タイムスロットが配置されているの で、この配置規則がわかれば、同期タイムスロットにあ る情報を抽出することにより搬送波再生は容易にでき る。

【0087】一方データ列492のフレームの先頭部分 には、Sで示す同期領域493がありこれは斜線で示す 同期タイムスロットだけで構成されている。この構成に より上記の搬送波再生用の抽出情報が多くなるので4P SK受信機の搬送波再生が確実にしかも早くできるとい う効果がある。

【0088】この同期領域493は、S1、S2、S3 で示す同期部496、497、498、等を含み、この 部分には、同期のためのユニークワードや前述の復調情 報が入っている。さらに Iェで示す位相同期信号配置情 報部499もあり、この中には、位相同期タイムスロッ トの配置間隔の情報や配置規則の情報等の情報が入って 40 いる。

【0089】位相同期タイムスロットの領域の信号点は 特定の位相しかもたないため搬送波は4PSK受信機で も再生できるため、位相同期部配置情報 Irの内容は確 実に再生できるため、この情報入手後は搬送波を確実に 再生できる。

【0090】図41の同期領域493の次に復調情報部 501があり、変形多値QAM信号を復調するときに必 要なスレシホルド電圧に関する復調情報が入っている。 この情報は多値QAMの復調に重要なので、図41の同 入れると復調情報の入手がより確実になる。

【0091】図42はTDMA方式によりバースト状の信号を送る場合の信号配置図である。図41との違いはデータ列492、Dnと他のデータ列との間にガードタイム521が設けられ、この期間中、送信信号は送信されない。またデータ列492の先頭部には同期をとるための同期部522が設けられている。この期間中は前述の $(2n-1)\pi/4$ の位相の信号点しか送信されない。従って4PSKの復調器でも搬送波が再生できる。こうしてTDMA方式でも同期及び搬送波再生が可能と 10 なる。

【0092】次に図19の第1受信機23の搬送波再生 方式について図43と図44を用いて詳しく述べる。図 43において入力した受信信号は入力回路24に入り、 同期検波回路541で同期検波された復調信号の1つは 出力回路542に送られ出力され、第1データ列が再生 される。抽出タイミング制御回路543で図41の位相 同期部配置情報部499が再生され、どのタイミングで (2n-1) $\pi/4$ の位相同期部の信号が入ってくるか わかり、図44のような間欠的な位相同期制御信号56 1が送られる。復調信号は逓倍回路545に送られ、4 逓倍されて搬送波再生制御回路54に送られる。図44 の信号562のように真の位相情報563の信号とそれ 以外の信号を含む。タイミングチャート564の中の斜 線に示すように $(2n-1)\pi/4$ の位相の信号点から なる位相同期タイムスロット452が間欠的に含まれ る。これを位相同期制御信号564を用いて搬送波再生 制御回路544により、サンプリングすることにより位 相標本信号565が得られる。これをサンプリングホー ルドすることにより、所定の位相信号566が得られ る。この信号はループフィルタ546を通り、VCO5 47に送られ搬送波が再生され、同期検波回路541に 送られる。こうして図39の斜線に示すような(2n-1) $\pi/4$ の位相の信号点が抽出される。この信号を基 に 4 逓倍方式により正確な搬送波が再生できる。この 時、複数の位相が再生されるが図41の同期部496に ユニークワードを入れることににより、搬送波の絶対位 相を特定できる。

【0093】図40のように変形64QAM信号を送信する場合、略略(2n-1) π /4の位相の斜線で示す位相同期領域471の中の信号点に対してのみ位相同期タイムスロット452、452b等を送信機は送る。このため通常の4PSK受信機では搬送波は再生できないが、4PSKの第1受信機23でも、本発明の搬送波再生回路を装備することのより搬送波が再生できるという効果がある。

【0094】以上はコスタス方式の搬送波再生回路を用いた場合である。次に逆変調方式搬送波再生回路に本発明を用いた場合を説明する。

【0095】図45は本発明の逆変調方式搬送波再生回 50

20

路を示す。入力回路24からの受信信号は同期検波回路 541により、復調信号が再生される。一方、第1遅延 回路591により遅延された入力信号は4相位変調器5 92において上記復調信号により逆復調され搬送波信号 となる。搬送波再生制御回路544を通過できた上記搬 送波信号は、位相比較器593に送られる。一方VCO 547からの再生搬送波は第2遅延回路594により、 遅延され、位相比較器593で前述の逆変調搬送波信号 と位相比較され、位相差信号はループフィルタ546を 通してVCO547に供給され、受信搬送波と同位相の 搬送波が再生される。この場合、図43のコスタス形搬 送波再生回路と同様にして、抽出タイミング制御回路5 43は図39の斜線で示した領域の信号点のみの位相情 報をサンプリングさせるので16QAMでも64QAM でも、第1受信機23の4PSKの変調器で搬送波を再 生できる。

【0096】次に、16逓倍方式により搬送波を再生する方式について述べる。図2の送信機1は、図46に示すように変形16QAMの信号点を $n\pi/8$ の位相に配置して変調および送信を行なう。図19の第1受信機23の方では、図48に示すような16逓倍回路661をもつコスタス型の搬送波再生回路を用いることにより、搬送波が再生できる。16逓倍回路661により、図46のような $n\pi/8$ の位相の信号点は第1象現に縮退されるためループフィルタ546とVCO541により搬送波が再生できる。ユニークワードを同期領域に配置することにより16相から絶対位相を抽出することもできる。

【0097】次に16通倍回路の構成を説明する。復調信号から和回路662と差回路663により、和信号、差信号を作り、乗算器664で掛け合わせて $\cos 2\theta$ をつくる。また乗算器665では $\sin 2\theta$ をつくる。これらを乗算器666で乗算し、 $\sin 4\theta$ をつくる。【0098】 $\sin 2\theta$ と $\cos 2\theta$ から、同様にして、和回路667差回路668と乗算器670により $\sin 8\theta$ をつくる。和回路671と差回路672と乗算器により $\cos \theta$ とのの80をつくる。そして乗算器674により $\sin \theta$ をつくることにより16通倍ができる。【0099】以上のような16通倍方式により、図46のような信号点配置をした変形16QAM信号の全ての信号点の搬送波を特定の信号点を抽出することなしに再生できるという大きな効果がある。

【0100】また図47のような配置をした変形64QAM信号の搬送波も再生できるが、いくつかの信号点は同期領域471より若干ずれているので、復調時エラーレートが増えてしまう。

【0101】この対策として2つの方法がある。1つは 同期領域をはずれた信号点の信号を送信しないことであ る情報量は減るが構成は簡単になるという効果がある。 もう1つは図38で説明したように同期タイムスロット を設けることである。タイムスロット群451の中の同期タイムスロットの期間中に斜線で示す $n\pi/8$ の位相の同期位相領域471、471 a等の信号点を送ることにより、この期間中に正確に同期をとることができるため位相誤差がすくなくなる。

【0102】以上のようにして16逓倍方式により、簡単な受信機の構成で4PSK受信機により変形16QAMや変形64QAMの信号の搬送波を再生できるという大きな効果がある。また、さらに同期タイムスロットを設定した場合、変形64QAMの搬送波再生時の位相精 10度を上げるという効果が得られる。

【0103】以上詳しく述べたように本発明の伝送装置を用いることにより、1つの電波帯域で複数のデータを 階層構造で同時に伝送することができる。

【0104】この場合に、一つの送信機に対し異なる受信感度と復調能力をもつ3つの階層の受信機を設定することにより、受信機の投資に見合ったデータ量を復調できるという特長がある。まず小さなアンテナと低分解能であるが低コストの第1受信機を購入した人受信者は第1データ列を復調再生できる。次に、中型のアンテナと中分解能の高コストの第2受信機を購入した受信者は第1、第2データ列を再生できる。また、大型のアンテナと高分解能の、かなり高コストの第3受信機を購入した人は第1、第2、第3データ列の全て復調再生できる。

【0105】もし第1受信機を家庭用デジタル衛星放送受信機にすれば多数の一般消費者に受け容れられるような低い価格で受信機を実現できる。第2受信機は当初は大型のアンテナを必要とする上に高コストのため消費者全般には受け容れられるものではないがHDTVを視聴したい人々には多少高くても意味がある。第3受信機は30衛星出力が増加するまでの間かなり大型の産業用アンテナが必要で家庭用には現実的でなく産業用途に当初は適している。例えば超高解像HDTV信号を送り、衛星により各地の映画館に伝送すれば、映画館をビデオにより電子化できる。このばあい映画館やビデオシアターの運営コストが安くなるという効果もある。

【0106】以上のように本発明をTV伝送に応用した場合、3つの画質の映像サービスを1つの電波の周波数帯域で提供でき、しかもお互いに両立するという大きな効果がある。実施例では4PSK、変形8QAM、変形 4016QAM、変形64QAMの例を示したが、32QAMや256QAMでも実現できる。又、8PSKや16PSK、32PSKでも実施できる。また実施例では衛星伝送の例を示したが地上伝送や有線伝送でも同様にして実現できることはいうまでもない。

【0107】(実施例2)実施例2は実施例1で説明した物理階層構造をエラー訂正能力の差別化等により論理的にさらに分割し、論理的な階層構造を追加したものである。実施例1の場合それぞれの階層チャンネルは電気信号レベルつまり物理的な復調能力が異なる。これに対 50

し実施例 2ではエラー訂正能力等の論理的な再生能力が異なる。具体的には例えば D_1 の階層チャンネルの中のデータを例えば D_{1-1} と D_{1-2} の 2 つに分割し、この分割データの1 つ例えば D_{1-1} データのエラー訂正能力を D_{1-2} データより高め、エラー訂正能力を差別化することより、復調再生時に D_{1-1} と D_{1-2} のデータのエラー後調能力が異なるため、送信信号のC/N値を低くしていった場合、 D_{1-2} が再生できない信号レベルにおいても D_{1-1} は設定したエラーレート内に収まり原信号を再生できる。これは論理的な階層構造ということができる。つまり、変調階層チャンネルのデータを分割し、誤り訂

22

正符号と積符号の使用等の誤り訂正の符号間距離の大きさを差別化することによ誤り訂正能力による論理的な階層構造が追加され、さらに細かい階層伝送が可能とな

【0108】これを用いると、 D_1 チャンネルは D_{1-1} , D_{1-2} の2つのサブチャンネル, D_2 チャンネルは D_{2-1} , D_{2-2} の2つのサブチャンネルに増える。

【0109】これを入力信号のC/N値と階層チャンネ ル番号の図87を用いて説明すると、階層チャンネルD 1-1は最も低い入力信号で再生できる。このCN値をd とすると、CN = dの時、 D_{1-1} は再生されるが D_{1-2} , D_{2-1} , D_{2-2} は再生されない。次にCN = C以上になる とD₁₋₂がさらに再生され、CN=bの時D₂₋₁が加わ り、CN=aの時D2-2が加わる。このようにCNが上 がるにつれて、再生可能な階層の総数が増えていく。逆 をいうとCNが下がるにつれて、再生可能な階層の総数 が減っていく。これを図86の伝送距離と再生可能CN 値の図で説明する。一般的に図86実線861に示すよ うに伝送距離が長くなるに従い、受信信号のC/N値は 低下する。図85で説明したCN=aとなる地点の送信 アンテナからの距離をLaとし、CN=bではLb、C N=CではLc, CN=dではLd, CN=eではLe となるとする。送信アンテナよりLdの距離より迫い地 域は図85で説明したようにD1-1チャンネルのみが再 生できる。この D1-1の 受信可能範囲を斜線の領域 86 2で示す。図から明らかなようにD₁₋₁チャンネルはー 番広い領域で再生できる。同様にして D₁₋₂チャンネル は送信アンテナより距離Lc以内の領域863で再生で きる。距離Lc以内の範囲では領域862も含まれるた めD1-1チャンネルも再生できる。同様にして領域86 4ではD₂₋₁チャンネルが再生でき、領域865ではD 2-2チャンネルが再生可能となる。このようにして、 C N値の劣化に伴いない伝送チャンネルが段階的に減少す る階層型伝送ができる。データ構造を分離して階層構造 にし、本発明の階層伝送を用いることにより、アナログ 伝送のように C/N の劣化に伴いデータ量が次第に減少 する階層型の伝送が可能となるという効果がある。

【0110】次に、具体的な構成を述べる。ここでは物理階層2層、論理階層2層の実施例を述べる。図87は

30

る。誤り訂正された D1-1、 D1-2、 D2-1、 D2-2信号は 合成部37において1つの信号となり出力部36より出 力される。

24

送信機1のブロック図である。基本的には実施例1で説 明した図2の送信機のブロック図と同じなので詳しい説 明は省略するが、エラー訂正符号エンコーダが付加され ている点が異なる。これをECCエンコーダと略す。分 離回路 3 は1-1、1-2、2-1、2-2の 4 つの出力をもち、入力 信号をD₁₋₁、D₁₋₂、D₂₋₁、D₂₋₂の4つの信号に分離 して出力する。このうち、D₁₋₁、D₁₋₂信号は第1EC Cエンコーダ871aに入力され、各々、主ECCエン コーダ872aと副ECCエンコーダ873aに送ら れ、誤り訂正の符号化がなされる。

【0114】この場合、論理階層構造によりD₁₋₁はD 1-2より、またD2-1はD2-2より誤り訂正能力が高いた め図85で説明したように、入力信号のC/N値がより 低い状態においても所定の誤り率が得られ、原信号を再 生できる。

【0111】ここで主ECCエンコーダ872aは副E CCエンコーダ873aよりも強力なエラー訂正能力を もっている。このため、図85のCN-階層チャンネル のグラフで説明したように、復調再生時、D₁₋₁チャン ネルはD₁₋₂チャンネルより低いC/N値においてもD 1-1は基準エラーレート以下で再生できる。 D1-1は D1-2よりC/Nの低下に強い論理的な階層構造となってい る。誤り訂正された D₁₋₁、 D₁₋₂信号は合成器 8 7 4 a でD₁信号に合成され、変調器4に入力される。一方、 D₂₋₁、D₂₋₂信号は第2ECCエンコーダ871bの中 20 の各々主エンコーダ872bと副ECCエンコーダ87 3 bにより誤り訂正符号化され合成器874 bによりD ₂信号に合成され、変調器4により入力される。主EC Cエンコーダ872bは副ECCエンコーダ873bよ りエラー訂正能力が高い。この場合、変調器 4 は D1信 号、D₂信号より階層型の変調信号を作り、送信部5よ り送信される。以上のように図87の送信機1はまず実 施例1で説明した変調によるD1、D2の2層の物理階層 構造をもっている。この説明は既に述べた。次に、エラ 一訂正能力の差別化により D₁₋₁と D₁₋₂ 叉は D₂₋₁、 D 2-2の各々2層の論理的階層構造をもっている。

【0115】具体的に主ECCデコーダ877a,87 7 bと副ECCデコーダ878a, 878bの間に誤り 訂正能力の差別化を行う方法を述べる。副ECCデコー ダにリードソロモン符号やBCH符号のような標準的な 符号間距離の符号化方式を用いた場合、主ECCデコー ダにリードソロモン符号とリードソロモン符号の両者の 積符号や長符号化方式を用いた誤り訂正の符号間距離の 大きい符号化方式を用いることにより誤り訂正能力に差 をつけることができる。こうして論理的階層構造を実現 できる。符号間距離を大きくする方法は様々な方法が知 られているため他の方式に関しては省略する。本発明は 基本的にはどの方式も適用できる。

【0112】次にこの信号を受信する状態を説明する。 図88は受信機のブロック図である。図87の送信機の 送信信号を受信した第2受信機33の基本構成は、実施 例1の図21で説明した第2受信機33とほぼ同じ構成 である。ECCデコーダ876a、876bを追加した 点が異なる。この場合、QAM変復調の例を示すが、A SKもしくはPSK、FSK変復調でもよい。

【0116】ここで論理的な階層構造を図89のC/N と誤り訂正後のエラーレートの関係図を用いて説明す る。図89において、直線881はD1-1チャンネルの C/Nとエラーレートの関係を示し、直線882はD 1-2チャンネルのC/Nと訂正後のエラーレートの関係 を示す。

【0113】さて、図88において、受信された信号は 復調器35によりD₁、D₂信号として再生され分離器3 a、3bにより、各々D₁₋₁とD₁₋₂、D₂₋₁、D₂₋₂の4 つの信号がつくられ、第1ECCデコーダ876aと第 2 E C C デコーダ876 b に入力される。第1 E C C デ コーダ876aでは、D₁₋₁信号が主ECCデコーダ8 77aにより誤り訂正されて合成部37に送られる。-方、D1-2信号は副ECCデコーダ878aにより誤り 訂正され合成部37に送られる。同様にして第2ECC デコーダ876bにおいてD2-1信号は主ECCデコー ダ877bにおいて、D2-2信号は副ECCデコーダ8 78 bにおいて誤り訂正され、合成部 37 に入力され

【0117】入力信号のC/N値が小さくなればなる 程、訂正後のデータのエラーレートは大きくなる。一定 のC/N値以下では誤り訂正後のエラーレートがシステ ム設計時の基準エラーレートEth以下に収まらず原デ ータが正常に再生されない。さて、図89において徐々 に C/Nを上げてゆくとD1-1信号の直線881が示す ようにC/Nがe以下の場合Dュチャンネルの復調がで きない。e≦C/N<dの場合D₁チャンネルの復調は できるが、D₁₋₁チャンネルのエラーレートはEthを 上回り、原データを正常に再生できない。

【0118】C/N=dの時、 D_{1-1} は誤り訂正能力が D₁₋₂より高いため、誤り訂正後のエラーレートは点8 85dに示すようにEth以下になり、データを再生で きる。一方、D1-2の誤り訂正能力はD1-1ほど高くない ため訂正後のエラーレートがD₁₋₁ほど低くないため訂 正後のエラーレートがE2とEthを上回るため再生で きない。従ってこの場合D1-1のみが再生できる。

 ${ [0119] C/N$ が向上してC/N = Cになった時、 D₁₋₂の誤り訂正後のエラーレートが点885Cに示す ようにEthに達するため、再生可能となる。この時点 では D2-1、 D2-2 つまり D2チャンネルの復調は不確実 な状況にある。C/Nの向上に伴い、C/N=b'にお いてD2チャンネルが確実に復調できるようになる。

【 0 1 2 0 】さらに C / N が向上し C / N = b になった

時点で、 D_{2-1} のエラーレートが点885bに示すようにEthまで減少し、 D_{2-1} が再生できるようになる。この時、 D_{2-2} のエラーレートはEthより大きいため再生できない。C/N=aになって点885aに示すように D_{2-2} のエラーレートがEthにまで減少し D_{2-2} チャンネルが再生できるようになる。

【0121】このようにして、誤り訂正能力の差別化を用いることにより物理階層 D_1 、 D_2 チャンネルをさらに2層の論理階層2分割し、計4層の階層伝送ができるという効果が得られる。

【0122】この場合、データ構造を高階層のデータが欠落しても原信号の一部が再生できるような階層構造にし、本発明の階層伝送と組み合わせることにより、アナログ伝送のようにC/Nの劣化に伴いデータ量が次第に減少する階層型伝送が可能となるという効果がある。特に、近年の画像圧縮技術は急速に進歩しているため、画像圧縮データを階層構造とし階層伝送と組み合わせた場合、同一地点間において、アナログ伝送よりはるかに高画質の映像を伝送すると同時に、アナログ伝送のように段階的に受信信号レベルに応じて画質を低くしながら広20い地域で受信できる。このように従来のデジタル映像伝送にはなかった階層伝送の効果をデジタルによる高画質を保ちながら得ることができる。

【 0 1 2 3】 (実施例 3) 以下本発明の第 3 の実施例に ついて図面を参照しながら説明する。

【0124】図29は実施例3の全体図である。実施例3は本発明の伝送装置をデジタルTV放送システムに用いた例を示し、超高解像度の入力映像402は、第1画像エンコーダー401の入力部403に入力し、分離回路404により、第1データ列と第2データ列と第3データ列に分離され、圧縮回路405により圧縮され出力される。

【0125】他の入力映像406,407,408は各々第1画像エンコーダー401と同様の構成の第2画像エンコーダー409,411により圧縮され出力される。

【0126】これらの4組のデータのうち、第1データ列の4組の信号は、多重器412の第1多重器413によりTDM方式等の時間的に多重化されて、第1データ列として、送信機1に送られる。

【0127】第2データ列の信号群の全部もしくは1部は多重器 414により多重化され、第2データ列として送信機1に送られる。また、第3データ列の信号群の全部もしくは1部は多重器 415により多重化され、第3データ列として送信機1に送られる。

【 0 1 2 8 】これらを受けて送信機 1 では 3 つのデータ列を変調器 4 により実施例 1 で述べた変調を行い、送信部 5 によりアンテナ 6 と伝送路 7 により、衛星 1 0 に送り中継器 1 2 により、第 1 受信機 2 3 等の 3 種の受信機に送られる。

【0129】第1受信機23では伝送路21により半径 r_1 の小径のアンテナ22で受けて、受信信号の中の第 1 データ列のみを第1データ列再生部232で再生し、第1画像デコーダー421によりNTSC信号もしくは ワイドNTSC信号等の低解像度の映像出力425と426を再生し出力させる。

【0130】第2受信機33では、半径r₂の中径のアンテナ32で受けて、第1データ列再生部232と第2データ列再生部233により第1データ列と第2データ10列を再生し、第2画像デコーダー422により、HDTV信号等の高解像度の映像出力427もしくは映像出力425、426を再生し出力させる。

【0131】第3受信機43では、半径r3の大径のアンテナ33で受けて、第1データ列再生部232と第2データ列再生部233と第3データ列再生部234により、第1データ列と第2データ列と第3データ列を再生し、ビデオシアターや映画館用の超高解像度HDTV等の超高解像度の映像出力428を出力する。映像出力425、4266,427も出力できる。一般のデジタルTV放送は、デジタル送信機51から放送され、第1受信機23で受信した場合、NTSC等の低解像の映像出力426として出力される。

【0132】では、次に図30の第1画像エンコーダー401のブロック図に基ずき、構成を詳しく述べる。超高解像度の映像信号は入力部403に入力され、分離回路404に送られる。分離回路404ではサブバンドコーディング方式により4つの信号に分離する。QMF等の水平ローパスフィルタ451と水平ハイパスフィルタ452により、水平低域成分と水平高域成分に分離され、サブサンブリングを453、454により、各々の成分はサンブリングレートを半分にした後、水平低域成分は垂直ローパスフィルタ455と垂直ハイパスフィルタ456により、各々水平低域垂直低域信号、略して11以11に信号と水平低域垂直高域信号、略して11以11に引きた分離され、サブサンブリング部1105に送られて

【0133】水平高域成分は、垂直ローパスフィルタ459と垂直ハイパスフィルタ460により、水平高域垂直低域信号、略して H_HV_1 信号と、水平高域垂直低域信号、略して H_HL_H 信号に分離され、サブサンプリング部461,462によりサンプリングレートを下げて、圧縮部405に送られる。

【0134】圧縮部405では $H_{L}V_{L}$ 信号を第1圧縮部 471でDCT等の最適の圧縮を行い第1出力部472より第1データ列として出力する。

【0135】H_LV_H信号は第2圧縮部473で圧縮され 第2出力部464に送られる。H_HV_L信号は第3圧縮部 463により圧縮され第2出力部464へ送られる。H 50_HV_H信号は分離回路465により高解像度映像記号(H

нV_H1) と超高解像度映像信号 (H_HV_H2) に分けられ、H_HV_H1は第2出力部464へ、H_HV_H2は第3出力部468へ送られる。

【0136】次に図31を用いて第1画像デコーダー4 21を説明する。第1画像デコーダー421は第1受信 機23からの出力、第1データ列つまりD₁を入力部5 01に入力しデスクランブル部502によりスクランブ ルを解いた後伸長部503により、前述のHLVL信号に 伸長した後画面比率変更回路504と出力部505によ り画面比率を変更してNTSC信号の画像506、NT SC信号でストライプ画面の画像507、ワイドTVの フル画面の画像508もしくは、ワイドTVのサイドパ ネル画面の画像509を出力する。この場合、ノンイン タレースもしくはインタレースの2つの走査線のタイプ が選べる。走査線もNTSCの場合525本と二重描画 による1050本が得られる。また、デジタル送信機5 1からの4PSKの一般のデジタルTV放送を受信した 場合は、第1受信機23と第1画像デコーダ421によ りTV画像を復調、再生できる。次に図32の第2画像 デコーダーのブロック図を用いて第2画像デコーダーを 20 説明する。まず第2受信機33からのD1信号は第1入 力部521より入力し、第1伸長部522で伸長され、 オーバーサンプリング部523により2倍のサンプリン グレートになり垂直ローパスィルタ524により、HL V_L信号が再生される。D₂信号は第2入力部530より 入力し、分離回路531により3つの信号に分離され、 第2伸長部532と第3伸長部533と、第3伸長部5 34により各々伸長及び、デスクランブルされ、オーバ ーサンプリング部535、536、537により2倍の サンプリングレートとなり、垂直ハイパスフィルター5 30 38、垂直ローパスフィルタ539、垂直ハイパスフィ ルタ540により送られる。HLVL信号とHLVH信号は 加算器525で加算され、オーバーサンプリング部54 1と水平ローパスフィルター542により水平低域映像 信号となり、加算器543に送られる。H_HV_L信号とH нVн1信号は加算器526により加算され、オーバーサ ンプリング部544と水平ハイパスフィルター545に より水平高域映像信号になり加算器543によりHDT V等の高解像度映像信号HD信号となり出力部546か らHDTV等の画像出力547が出力される。場合によ 40 りNTSC信号も出力される。

【0137】図33は第3画像デコーダーのブロック図で D_1 信号は第1入力部521から D_2 信号は第2入力部530から入力し高域画像デコーダー527により前述の手順でHD信号が再生される。 D_3 信号は第3入力部551より入力し超高域部画像デコーダー552により伸長、デスクランブル、および合成され H_HV_H 2信号が再生される。この信号はHD信号と合成器553で合成され超高解像度TV信号、S-HD信号となり出力部554より超高解像度映像信号555が出力される。

【0138】次に図29の説明で触れた多重器401の 具体的な多重化方法について述べる。図34はデータ配 列図であり、第1データ列、D1と第2データ列、D2と 第3データ列D₃に6つのNTSCチャンネルL1、L 2、L3、L4、L5、L6と6つのHDTVチャンネ ルM1~M6と6つのS-HDTVチャンネルH1~H 6をTの期間中に、時間軸上にどう配置するかを描いた ものである。図34はまずTの期間にD1信号にL1か らL6をTDM方式等で時間多重により配置するもので ある。D₁のドメイン601に第1チャンネルのH_LV_L 信号を送る。次にD₂信号のドメイン602には第1チ ャンネルに相当する時間領域に第1チャンネルのHDT VとNTSCとの差分情報M1つまり、前述のH_LV_H信 号とH_HV_L信号とH_HV_H1信号を送る。またD₃信号の ドメイン603には第1チャンネルのスーパーHDTV 差分情報H1, すなわち図30で説明したH_HV_H-2H

【0139】ここで第1チャンネルのTV局を選択した場合を説明する。まず小型アンテナと第1受信機23と第1画像デコーダ421のシステムをもつ一般の受信者は図31のNTSCもしくはワイドNTSCのTV信号が得られる。次に中型アンテナと第2受付信機33と第2画像エンコーダ422をもつ特定の受信者はチャンネル1を選択した場合第1データ列、 D_1 のドメイン601と第2データ列、 D_2 のドメイン602の信号を合成してチャンネル1のNTSC番組と同じ番組内容のHDTV信号を得る。

【0140】大型アンテナと多値復調できる第3受信機43と第3画像デコーダー423をもつ映画館等の一部の受信者は D_1 のドメイン601と D_2 のドメイン602と D_3 のドメイン603の信号を合成し、チャンネル1のNTSCと同じ番組内容で映画館用の画質の超解像度HDTV信号を得る。2から3までの他のチャンネルも同様にして再生される。

【0141】図35は別のドメインの構成である。まず NTSCの第1チャンネルはL1に配置されている。こ のL1はD1信号の第1タイムドメインのドメイン60 1の位置にあり、先頭部にNTSC間のデスクランブル 情報と実施例1で説明した復調情報を含む情報S11が 入っている。次にHDTVの第1チャンネルはL1とM 1に分割されて入っている。M1はHDTVとNTSC との差分情報であり、D₂のドメイン602とドメイン 611の両方に入っている。この場合6MbpsのNT SC圧縮信号を採用しL1に収容すると、M1の帯域は 2倍の12Mbpsになる。L1とM1とを合わせると 18Mbpsの帯域が第2受信機33と第2画像デコー ダ423から復調再生可能である。一方、現在提案され ている圧縮方法を用い約15Mbpsの帯域でHDTV 圧縮信号を実現することができる。従って図35の配置 50 でチャンネル1でHDTVとNTSCを同時に放送でき

【0142】図36の配置図はD₃で6つのタイムドメインを占有させスーパーHDTV信号を伝送した場合を 10示す。NTSC圧縮信号を6Mbpsに設定した場合9倍の54Mbpsが伝送できる。このためより高画質のスーパーHDTVを伝送できる。

【0143】以上は、送信信号の電波の水平もしくは垂直の偏波面の片方を利用する場合である。ここで水平と垂直の2つの偏波面を使うことにより、周波数利用効率は2倍となる。以下に説明をする。

【0145】図50はTDMA方式にした場合で、各データバースト721の先頭部に同期部731とカード部741が設けられている。又、フレームの先頭部には同期情報部720が設けられている。この場合は、各タイムスロット群が、各々1つのチャンネルが割りあてられている。例えば、第1タイムスロット750で第1チャンネルの全く同じ番組のNTSC、HDTV、スーパー*

*HDTVを送ることができる。各々のタイムスロット750~750eが完全に独立している。従って特定の放送局が特定のタイムスロットを用いてTDMA方式で放送する場合、他局と独立してNTSC、HDTV、スーパーHDTVの放送ができるという効果がある。又、受信側も水平偏波アンテナで第1受信機23をもつ構成の場合NTSC TV信号を両偏波アンテナなら、HDTVを再生できる。第2受信機33にすると低解像度のスーパーHDTVを再生できる。第3受信機43にするとスーパーHDTV信号を完全に再生できる。以上のように両立性のある放送システムを構築出来る。この場合、図50のような配置で、バースト状のTDMA方式でなく、図49のような連続信号の時間多重も可能である。また図51に示すような信号配置にすればより高解度のHDTV信号を再生できる。

【0146】以上述べたように実施例3により超高解像 度型HDTV、HDTVとNTSC-TVの3つの信号 の両立性のあるデジタルTV放送が可能になるという顕 著な効果がある。とくに映画館等に伝送した場合、映像 を電子化することができるという新たな効果がある。

【0147】ここで、本発明による変形QAMをSRQAMと呼び、具体的なエラーレートについて述べる。

【0148】まず、16SRQAMのエラーレートを計算する。図99416SRQAMの信号点のベクトル図である。第1象限において、16QAMの場合、信号点83a、83b、84a、85、83a等の各16ヶの信号点の間隔は等間隔であり、全て 2δ である。

【0149】16QAMの信号点83aは座標軸のI軸、Q軸より δ の距離にある。ここで16SRQAMにする場合、nをシフト値と定義すると、信号点83aはシフトして、座標軸からの距離を $n\delta$ の位置の信号点83へ移動させる。この場合nは

0 < n < 3

である。また他の信号点84a、86aもシフトして信号点84、86oの位置に移動する。第1データ列の誤り率をPe1とすると

[0150]

【数1】

Pe₁₋₁₆ =
$$\frac{1}{4}$$
 (erfc $(\frac{n \delta}{\sqrt{2 \sigma}})$ + erfc $(\frac{3 \delta}{\sqrt{2 \sigma}})$
= $\frac{1}{8}$ erfc $(\frac{n \sqrt{\rho}}{\sqrt{9 + n^2}})$

【0151】第2データ列の誤り率をPe2とすると 【0152】 【数2】

Pe2-16 =
$$\frac{1}{2}$$
 erfc $(\frac{\frac{3-n}{2}\delta}{\sqrt{2\sigma}})$
= $\frac{1}{4}$ erfc $(\frac{3-n}{2\sqrt{9+n^2}}\sqrt{\rho})$

【0153】となる。次に36SRQAMもしくは32SRQAMのエラーレートを計算する。図100は36SRQAMの信号ベクトル図である。第1象限において36QAMの信号点間距離は 2δ であると定義する。【0154】36QAMの信号点83aは座標軸より δ の距離にある。この信号点83aは36SRQAMになると信号点83の位置にシフトし、座標軸より $n\delta$ の距離となる。各々の信号点はシフトして信号点83、8 *

*4、85、86、97、98、99、100、101となる。9ヶの信号点からなる信号点群90を一つの信号点とみなして、変形4PSK受信機で受信し、第1デー10 夕列D1のみ一再生した場合の誤り率をPe1とし、信号点群90の中の9個の信号点を各々弁別し、第2データ列D2を再生した場合の誤り率をPe2とすると【0155】

Pe₁₋₃₂ =
$$\frac{1}{6}$$
 erfc $(\frac{n \delta}{\sqrt{2 \sigma}})$
= $\frac{1}{6}$ erfc $(\sqrt{\frac{6 \rho}{5}} \times \frac{n}{\sqrt{n^{2}+2n+25}})$
Pe₂₋₃₂ = $\frac{2}{3}$ erfc $(\sqrt{\frac{5-n}{4\sqrt{2}}} \frac{\delta}{\rho})$
= $\frac{2}{3}$ erfc $(\sqrt{\frac{3 \rho}{40}} \times \frac{5-n}{\sqrt{n^{2}+2n+25}})$

【0156】となる。この場合、図101のC/N~エラーレート図はエラーレートPeと伝送系のC/Nとの関係を計算した一例を示す。曲線900は比較のため従来方式の32QAMのエラーレートを示す。直線905はエラーレートが10の-1.5乗の直線を示す。本発明のSRQAMのシフト量nを1.5とした場合の第1階層 D_1 のエラーレートは曲線901aとなり、エラーレートが10^{-1.5}において曲線900の32QAMに対してC/N値が5dB下がっても D_1 は同等のエラーレートで再生できるという効果がある。

【0158】32SRQAMの場合にシフト量nを変化 させた場合に所定のエラーレートを得るのに必要な第1データ列 D_1 と第2データ列 D_2 のC/N値を図103の 50 シフト量nとC/Nの関係図で示す。図103をみると明らかなように、nが0.8以上であれば、階層伝送つまり第<math>1データ列 D_1 と第2データ列 D_2 の伝送に必要なC/N値の差が生まれ、本発明の効果が生じることがわかる。従って、32SRQAMの場合n>0.85の条件下で効果がある。16SRQAMの場合のエラーレートは図102のC/Nとエラーレートの関係図のようになる。図102において曲線900は16QAMのエラーレートを示す。曲線901a、901b、901cは各々第1データ列 D_1 のn=1.2、1.5、1.80場合のエラーレートを示す。由線902a、902b、902cは各々第2データ列 D_2 のn=1.2、1.5、1.80場合のエラーレートを示す。

【0159】図104のシフト量nとC/Nの関係図は16SRQAMの場合にシフト量nを変化させた場合に特定のエラーレートを得るのに必要な第1データ列 D_1 と第2データ列 D_2 のC/Nの値を示したものである。図104から明らかなように16SRQAMの場合n>0.9であれば本発明の階層伝送が可能となることがわかる。以上からn>0.9なら階層伝送が成立する。

【0160】ここで具体的にデジタルTVの地上放送に本発明のSRQAMを適用した場合の一例を示す。図105は地上放送時の送信アンテナと受信アンテナとの距

離と、信号レベルとの関係図を示す。曲線911は送信 アンテナの高さが1250ftの場合の受信アンテナの 信号レベルを示す。まず、現在検討が進められているデ ジタルTV放送方式において要求される伝送系の要求エ ラーレートを100-1.5乗と仮定する。領域912 はノイズレベルを示し、点910はC/N=15dBになる 地点で従来方式の32QAM方式の受信限界点を示す。 このL=60mileの地点においてデジタルのHDT V放送が受信できる。しかし、天候等の受信条件の悪化 によりC/Nが低下すると急激にHDTVの受信が不能 10 となる問題を持っている。また地形や建築物の影響によ り、少なくとも10dB程度の変動が見込まれ、60m ileの半径内の全ての地点で受信できる訳でない。こ の場合、アナログと違いデジタルの場合完全に映像が伝 送できない。従って従来のデジタルTV放送方式のサー ビスエリアは不確実なものであった。

【0161】一方、本発明の32SRQAMの場合、前述のように第1階層 D_1 でNTSC等の中解像度TV成分を送り、第2階層 D_2 でHDTVの高域成分のみを送ることができる。例えば図105において第1階層のサービスエリアは点910 ものように70 mile地点まで拡大し、第2階層は910 ものように、55 mile地点まで拡大し、第2階層は910 ものように、55 mile地点まで拡大し、第2階層は910 ものように、55 mile地点まで後退する。図106032SRQAMのサービスエリア図はこの場合のサービスエリアの面積の違いを示す。図106は図53をより具体的に説明したものである。図106において領域708、703 a、703 b、712 は各々従来方式の32 QAMのサービスエリア、第1階層 D_1 のサービスエリア、第2層 D_2 のサービスエリア、隣接アナログ局のサービスエリアを示す。

【0162】つまり、従来方式の32QAMでは各目上 3060マイルのサービスエリアを、設定できる。しかし、 実際は天候や地形の条件変化により受信限界地近傍においてきわめて受信状態が不安定であった。

【0163】しかし、本発明の32SRQAMを用い、第1階層 D_1 でNTSCグレードの中低域TV成分を送信し、第2階層 D_2 でHDTVの高域TV成分を送信することにより、図106のように高解像度グレードのサービスエリアの半径が5マイル縮小するものの、中低解像度グレードのサービスエリアの半径が10マイル以上拡大するという効果が生まれる。

【0164】このことにより、一番目に従来方式では、 受信条件が悪い地域において存在した受信不能地域においても本発明のSRQAM方式を適用することにより、 少なくとも設定したサービスエリア内においては殆んど の受信機で中低解像度グレードでTV放送を受信できる ような送信が可能となる。従ってビルかげや低地の受信 不能領域と隣接アナログ局からの妨害を受ける地域において受信不能地域が大巾に減少し、これに伴い受信者数 が増加する。

【0.1.6.5】二番目に従来方式では高価なHDTV受信 50 をつけることができた。SRQAMは "C-CDM"と

機と受像機をもつ受信者しか受信できなかったため、サービスエリア内においても一部の受信者しか視聴できなかった。しかし本発明では従来のNTSCやPALやSECAM方式の従来型のTV受像機を持っている受信者もデジタル受信機のみを増設することにより、デジタルHDTV放送の番組をNTSCグレードではあるが受信可能になるという効果がある。このため受信者はより少ない経済的負担で番組が視聴できる。同時に総受信者数が増えるためTV送信者側はより多くの視聴者を得られるためTV事業としての経営がより安定するという社会的効果が生まれる。

【0166】三番目に中低解像度グレードの受信地域の面積はn=2.5の場合、36%従来方式に比して拡大する。拡大に応じて受信者が増える。サービスエリアの拡大と受信者数の増加によりその分TV事業者の事業収入が増大する。このことによりデジタル放送の事業リスクが減りデジタルTV放送の普及が早まることが期待できる。

【0167】さて、図107032SRQAMのサービスエリア図にみるように、n=1.80場合も同様の効果が得られる。シフト値nを変更することにより、各々の放送局がHDTV受像機とNTSCTV受像機の分布状況等の地域特有の条件や事情に応じてnを変更し、SRQAMの D_1 と D_2 のサービスエリア703aと703bを最適な条件に設定することにより、受信者は最大の満足を放送局は最大の受信者数を得ることができる。

【0168】この場合

n > 1.0

の時、以上のような効果が得られる。従って、32SR QAMの場合nは

1 < n < 5

となる。同様にして16SRQAMの場合nは1 < n < 3となる。

【0169】この場合図99、図100のようにシフトさせて第1と第2階層を得るSRQAM方式において、16SRQAM、32SRQAM、64SRQAMにおいてnが1.0以上であれば、地上放送において本発明の効果が得られる。実施例では映像信号を伝送した場合を説明したが音声信号を高域部もしくは高分解能部と低域部もしくは低分解能部にわけ、それぞれ第2データ列、第1データ列として本発明の伝送方式を用いて伝送すると、同様の効果が得られる。PCM放送、ラジオ、携帯電話に用いるとサービスエリアが広がるという効果がある。

【0170】また、実施例では時間分割多重(TDM) 方式と組み合わせてTDMによるサブチャンネルを設け、その各サブチャンネルのエラー訂正のコードゲインを差別化することにより、各サブチャンネルの閾値に差をつけることができた。SRQAMは"C-CDM"と

よばれる本発明の信号点符号分割多重方式 (Constellat ion-Code Division Multiplex) をrectangle-QAMに応用 したものである。C-CDMはTDMやFDMと独立し た多重化方式である。コードに対応した信号点コードを 分割することにより、サブチャンネルを得る方式であ る。この信号点の数を増やすことによりTDMやFDM にはない伝送容量の拡張性が得られる。このことは従来 機器とほぼ完全な互換性を保ちながら実現する。このよ うな優れた効果をもつ多重化技術である。さて、C-C DMとTDMを組み合わせた実施例を用いたが周波数分 10 割多重方式 (FDM) と組み合わせても、同様の閾値の 緩和効果が生まれる。例えば、TV放送に用いた場合、 図108のTV信号の周波数分布図に示すようになる。 従来のアナログ放送例えばNTSC方式の信号はスペク トラム725のような周波数分布をしている。一番大き な信号は映像のキャリア722である。カラーのキャリ ア723や音声のキャリア724はそれほど大きくな い。お互いの干渉を避けるためにはデジタル放送の信号 をFDMにより2つの周波数に分ける方法が考えられ る。この場合、図に示すように映像のキャリア722を 20 避けるように第1キャリア726と第2キャリア727 に分割し各々第1信号720と第2信号721を送るこ とにより干渉は軽減できる。第1信号720により低解 像度TV信号を大きな出力で送信し、第2信号721に より高解像度信号を小さな出力で送信することにより、 妨害を避けながらFDMによる階層型放送が実現する。 【0171】この時、まず第1信号720にC-CDM により得られる32SRQAMを用いてサブチャンネル を追加する。次にこの閾値の低いサブチャンネルにさら に低解像度の成分をのせる。一方のサブチャンネルに普 30 通解像度の成分を伝送することにより、さらに階層の数 が増え、低解像度のサービスエリアが拡がるという効果 が生まれる。この閾値の低いサブチャンネルに音声情報 叉は同期情報、各データのヘッダー等の重要な情報を入 れることにより、この重要な情報は確実に受信できるた め安定した受信が可能となる。第2信号721に、同様 の手法を用いると、サービスエリアの階層が増える。H DTVの走査線が1050本の場合、525本に加え て、C-CDMにより775本のサービスエリアが加わ る。

【0172】このようにして、FDMとC-CDMを組 み合わせるとサービスエリアが拡大するという効果が生 まれる。この場合FDMにより2つのサブチャンネルを 設けたが3つの周波数に分割し、3つのサブチャンネル を設けてもよい。

【0173】次にTDMとC-CDMを組み合わせて妨 害を避ける方法を述べる。図109に示すようにアナロ グTV信号には水平帰線部732と映像信号部731が ある。水平帰線部732の信号レベルが低いことと、こ の期間中は妨害を受けても画面に出力されないことを利 50 なり、従来の送信機で単に多値QAM変調した信号では

用する。デジタルTV信号の同期をアナログTV信号と 合わせ、水平帰線部732の期間の水平帰線同期スロッ ト733、733aに重要なデータ、例えば同期信号等 を送るか高い出力で多くのデータを送ることができる。 このことにより、妨害を増やさないでデータ量を増やし たり出力を上げられるという効果がある。なお垂直帰線 部735、735aの期間に同期させて垂直帰線同期ス ロット737、737aを設けても同様の効果が得られ

【0174】図110はC-CDMの原理図である。 叉、図111は16QAMの拡張版のC-CDMのコー ド割り当て図を示し、図112は32QAM拡張版のコ ード割り当て図を示す。図110、111に示すように 256QAMは第1、2、3、4層740a、740 b、740c、740dの4つの層に分けられ、各々 4、16、64、256ケのセグメントを持つ。第4層 740dの256QAMの信号点コードワード742d は8bitの"11111111"である。これを2b itずつ4つのコードワード741a、741b、74 1 c、741 dに分割し、各第1、2、3、4層740 a、740b、740c、740dの信号点領域742 a、742b、742c、742dに各々"11"、 "11" "11"、"11"を割り当てる。かくして、 2 b i t ずつのサブチャンネルすなわち、サブチャンネ ル1、サブチャンネル2、サブチャンネル3、サブチャ ンネル4ができる。これを信号点符号分割多重方式とい う。図111は16QAMの拡張版の具体的な符号配置 を示し、図112は36QAMの拡張版を示す。C-C DM多重化方式は独立したものである。従って従来の周 波数分割多重方式 (FDM) や時間分割多重方式 (TD M) と組み合わせることにより、更にサブチャンネルが 増やせるという効果がある。こうしてC-CDM方式に より新しい多重化方式を実現できる。Rectangle-QAMを 用いてC-CDMを説明したが、信号点をもつ他の変調 方式例えば他の形のQAMやPSK、ASK、そして周 波数領域を信号点とみなし、FSKも同様に多重化でき

【0175】(実施例4)以下本発明の第4の一実施例 について図面を参照しながら説明する。

【0176】図37は実施例4の全体のシステム図であ る。実施例4は実施例3で説明した伝送装置を地上放送 に用いたもので、ほぼ同じ構成、動作である。実施例3 で説明した図29との違いは、送信用のアンテナ6aが 地上伝送用アンテナになっている点と各受信機の各々の アンテナ21a,31a,41aが地上伝送用アンテナ になっている点のみである。その他の動作はまったく同 じであるため重復する説明を省略する。衛星放送と違 い、地上放送の場合は送信アンテナ6 a と受信機との距 離が重要となる。遠距離にある受信機は到達電波が弱く

【0177】しかし本発明の伝送装置を用いた場合、図37のように遠距離にアンテナ22aがある第1受信機23は変形64QMA変調信号もしくは変形16QAM変調信号を受信して4PSKモードで復調し第1データ列のD1信号を再生するのでNTSCのTV信号が得られる。従って電波が弱くても中解像度でTV番組を視聴できる。

【0178】次に中距離にアンテナ32aがある第2受信機33では到達電波が充分強いため変形16または64QAM信号から第2データ列と第1データ列を復調できHDTV信号が得られる。従って同じTV番組をHDTVで視聴できる。

【0179】一方、近距離にあるか超高感度のアンテナ 42aをもつ第3受信機 43は電波が変形 64 QAM信号の復調に充分な強度であるため第1、2、3、データ列D1,D2,D3を復調し超高解像度HDTV信号が得られる。同じTV番組を大型映画と同じ画質のスーパーHDTVで視聴できる。

【0180】この場合の周波数の配置方法は図34、図 20 35、図36の図を用いて時間多重配置を周波数配置に読み代えることにより説明できる。図34のように1から6チャンネルまで周波数がわり割当られている場合D 1信号にNTSCのL1を第1チャンネルに、D2信号の第1チャンネルのM1にHDTVの差分情報を、D3 信号の第1チャンネルのH1に超高解像度HDTVの差分情報を配置することによりNTSCとHDTVと超解像度HDTVを同一のチャンネルで送信することができる。また図35、図36のように他のチャンネルのD2 信号やD3信号を使用することが許可されれば、より高 30 画質のHDTVや超高解像度HDTVが放送できる。

【0181】以上のように互いに両立性のある3つのデジタルTV地上放送を1つのチャンネルもしくは他のチャンネルのD2,D3信号領域を使用して放送できるという効果がある。本発明の場合、同じチャンネルで同じ内容のTV番組を中解像度であれば、より広範囲の地域で受信できるという効果がある。

【0182】デジタル地上放送として16QAMを用いた6MHzの帯域のHDTV放送等が提案されている。しかしこれらの方式はNTSCとの両立性がないため同40じ番組をNTSCの別チャンネルで送信するサイマルキャスト方式の採用が前提となっている。また16QAMの場合、伝送できるサービスエリアが狭くなることが予想されている。本発明を地上放送に用いることにより別にチャンネルを設ける必要がなくなるだけでなく、遠距離の受信機でも中解像度で番組を視聴できるため放送サービスエリアが広いという効果がある。

【0183】図52は従来提案されている方式のHDT Vのデジタル地上放送時の受信妨害領域図を示すもの で、従来提案されている方式を用いたHDTVのデジタ 50 ル放送局 701から HDT Vの受信できる受信可能領域 702と隣接するアナログ放送局 711の受信可能領域 712を示している。両者の重複する重複部 713においてはアナログ放送局 711の電波妨害により、少なく

38

とも HDTVを安定して受信することができなくなる。 【0184】次に図53は本発明による階層型の放送方式を用いた場合の受信妨害領域図を示す。本発明は従来方式と同一の送信電力の場合、電力利用効率が低いため、HDTVの高解像度受信可能領域703は上述の従来方式の受信可能領域702より広い範囲のデジタルNTSC等の低解像度受信可能領域704が存在する。以上の2つの領域から構成される。この場合のデジタル放送局701からアナログ放送局711への電波妨害は図52で示した従来方式と同レベルである。

【0185】この場合、本発明ではアナログ放送局711からのデジタル放送局701への妨害は3つの領域が存在する。1つはHDTVもNTSCも受信できない第1妨害領域705である。第2は妨害を受けるもののNTSCを妨害前と同様に受信できる第2妨害領域706で一重斜線で示す。ここではNTSCはC/Nが低くても受信可能な第1データ列を使用しているためアナログ局711の電波妨害によりC/Nが低下しても妨害の影響範囲は狭い。

【0186】第3は妨害前はHDTVが受信できていたが妨害後はNTSCのみ受信できる第3妨害領域707で2重斜線で示す。

【0187】以上のようにして従来方式より妨害前のHDTVの受信領域は若干狭くなるが、NTSCを含めた受信範囲は広くなる。さらにアナログ放送局711からの妨害により従来方式ではHDTVが妨害により受信できなかった領域においてもHDTVと同一の番組をNTSCで受信可能となる。こうして番組の受信不能領域が大巾に削減するという効果がある。この場合、放送局の送信電力を若干増やすことにより、HDTVの受信可能領域は従来方式と同等になる。さらに従来方式では全く番組を視聴できなかった遠方地域や、アナログ局との重複地域において、NTSCTVの品位で番組が受信できる。

【0188】また2階層の伝送方式を用いた例を示したが、図78の時間配置図のように3階層の伝送方式を用いることもできる。HDTVをHDTV、NTSC、低解像度NTSCの3つのレベルの画像に分離し、送信することにより、図53の受信可能領域は2層から3層に広がり最外層は広い領域となるとともに2階層伝送では全く受信不可能であった第1妨害領域705では低解像度NTSCTVの品位で番組が受信可能となる。以上はデジタル放送局がアナログ放送に妨害を与える例を示した。

【0189】次にデジタル放送がアナログ放送に妨害を

与えないという規制条件のもとにおける実施例を示す。 現在米国等で検討されている空きチャンネルを利用する 方式は、隣接して同じチャンネルを使用する。このため 後から放送するデジタル放送は既存のアナログ放送に妨 害を与えてはならない。従ってデジタル放送の送信レベルを図53の条件で送信する場合より下げる必要があ る。この場合、従来方式の16QAMや4ASK変調の 場合、図54の妨害状態図に示すように二重斜線で示した受信不能領域713が大きいためHDTVの受信可能 領域708は大巾に小さくなってしまう。サービスエリアが狭くなり、その分受信者が減るためスポンサーが減 る。従って従来方式では放送事業が経済的に成立しにくいことが予想されている。

【0190】次に図55に本発明の放送方式を用いた場合を示す。HDTVの高解像度受信可能領域703は、従来方式の受信可能領域708より若干狭くなる。しかし、従来方式より広い範囲のNTSC等の低解像度受信可能領域704が得られる。一重斜線で示す部分は、同一番組をHDTVレベルでは受信できないが、NTSCレベルで受信できる領域を示す。このうち第1妨害領域20705においてアナログ放送局711からの妨害を受け、HDTVも、NTSCも両方受信できない。

【0191】以上のように同じ電波強度の場合、本発明 の階層型放送ではHDTV品位の受信可能地域は若干狭 くなる一方で、同一番組をNTSCTVの品位で受信で きる地域が増える。このため放送局のサービスエリアが 増えるという効果がある。より多くの受信者に番組を提 供できる効果がある。HDTV/NTSCTVの放送事 業を、より経済的に安定して成立させることができる。 将来デジタル放送受信機の比率が増えた段階ではアナロ 30 グ放送への妨害規則は緩和されるため電波強度を強くす ることができる。この時点でHDTVのサービスエリア を大きくすることができる。この場合、第1データ列と 第2データ列の信号点の間隔を調整することにより図5 5で示したデジタルHDTVINTSCの受信可能地域 とデジタルNTSCの受信可能地域を調整することがで きる。この場合、前述のように第1データ列に、この間 隔の情報を送信することにより、より安定して受信がで きる。

【0192】図56は、将来デジタル放送に切り替えた 40場合の妨害状況図を示す。この場合、図52と違い隣接局はデジタル放送を行うデジタル放送局701aとなる。送信電力を増やすことができるため、HDTV等の高解像度受信可能領域703はアナログTV放送と同等の受信可能領域702まで拡大できる。

【0193】そして両方の受信可能領域の競合領域71 4では互いに妨害を受けるため通常の指向性のアンテナ では番組をHDTVの品位では再生できないが、受信ア ンテナの指向性の方向にあるデジタル放送局の番組をN TSCTVの品位で受信できる。また非常に高い指向性 50

のアンテナを用いた場合アンテナの指向性方向にある放送局の番組をHDTVの品位で受信できる。低解像度受信可能領域704は、アナログTV放送の標準の受信可能領域702より広くなり、隣接の放送局の低解像度受信可能領域704aの競合領域715、716ではアンテナの指向性の方向にある放送局の番組がNTSCTVの品位で再生できる。

【0194】さて、かなり将来のデジタル放送の本格普及時期においては規制条件がさらに緩和され、本発明の階層型放送により広いサービスエリアのHDTV放送が可能となる。この時点においても、本発明の階層型放送方式を採用するにより従来方式と同程及の広い範囲のHDTV受信範囲を確保するとともに従来方式では受信不可能であった遠方地域や競合地域においてもNTSCTVの品位で番組が受信できるため、サービスエリアの欠損部が大巾に減少するという効果がある。

【0195】(実施例5)実施例5は本発明を振巾変調つまりASK方式に用いた場合の実施例である図57は実施例5の4値のASK信号信号点配置図を示し、4つの信号点721、722、723、724をもつ。4値の場合2bitのデータを1周期で送ることができる。信号点721、722、723、724を例えば00、01、10、11に対応させることができる。

【0196】本発明による階層型伝送を行うために、図58に示すように、信号点721、722を1つのグループつまり第1の信号点群725として扱い、信号点723、724を別のグループ、第2の信号点群726と定義する。そして2つの信号点群の間の間隔を等間隔の信号点の間隔より広くする。つまり信号点721、722の間隔をLとすると信号点723、724の間隔は同じLで良いが、信号点722と信号点723の間隔L。はLより大きく設定する。

【0197】つまり L。>L

と設定する。これが本発明の階層型伝送システムの特徴である。ただしシステムの設計によっては条件や設定により一時的もしくは恒久的にL=L。になっても良い。【0198】そして図59(a)のように2つの信号点群に第1データ列 D_1 の1bitのデータを対応させることができる。例えば第1の信号点群725を0、第2の信号点群726を1と定義すれば、第1データ列の1bitの信号が定義できる。次に第2データ列 D_2 の1bitの信号を各信号群の中の2つの信号点群に対応させる。例えば、図59(b)のように信号点721、723を D_2 =0とし、信号点722、724を D_2 =1とすれば第2データ列 D_2 のデータを定義できる。この場合も2bit/シンボルとなる。

【0199】このように信号点を配置することにより、ASK方式で本発明の階層型伝送が可能となる。階層型 伝送システムは信号対雑音比つまりC/N値が充分高い 時は従来の等間隔信号点方式と変わりはない。しかし、

42

C/N値が低い場合、従来方式では全くデーターを再生 できない条件においても本発明を用いることにより第2 データ列D₂は再生できなくなるが、第1データ列D₁は 再生できる。これを説明するとC/Nが悪くなった状態 は図60のように示せる。つまり受信機で再生した信号 点はノイズや伝送歪等により、分散信号点領域721a 722a、723a、724aの広い範囲にガウス分布 状に分散する。このような場合、信号点721と信号点 722、信号点723と信号点724の区別が難しくな る。つまり第2データ列D2のエラーレートが非常に高 くなる。しかし図から明らかなように信号点721、7 22のグループと信号点723,724のグループとの 区別は容易である。つまり第1の信号点群725と第2 の信号点群726との区別ができる。このため、第1デ ータ列D1は低いエラーレートで再生できることにな る。

【0200】こうして2つの階層のデータ列D1とD2が 送受信できる。従って伝送システムのC/Nの良い状態 及び地域では第1データ列D1と第2列D2の両方がC/ Nの悪い状態及び地域では第1データ列D₁のみが再生 される階層型伝送ができるという効果がある。

【0201】図61は送信機741のブロック図で入力 部742は第1データ列入力部743と第2データ列入 力部744から構成される。搬送波発生器64からの搬 送波は入力部742からの信号を処理部745でまとめ た入力信号により乗算器746において振巾変調されさ らにフィルタ747により帯域制限されVSB信号等の ASK信号となり出力部748から出力される。

【0202】ここでフィルタを通過した後の出力波形に ついて述べる。図62(a)はASK変調信号の周波数分 布図である。図のようにキャリアの両側に側波帯があ る。この信号をフィルタ747のバンドパスフィルタ図 62(b)の送信信号749のようにキャリア成分を少し 残して片側の側波帯を取り去る。これをVSB信号とい うが、foを変調周波数帯域とすると、約fo/2の周波 数帯域で送信できるため、周波数利用効率が良いことが 知られている。図60のASK信号は元来2bit/シ ンボルであるがVSB方式を用いると同一周波数帯域で 16QAMの4bit/シンボルに相当する情報量が伝 送できる。

【0203】次に図63のブロック図で示す受信機75 1では地上のアンテナ32aで受けた信号は入力部75 2を経て、チャンネル選択により可変する可変発振器7 54からの信号と、混合器753において混合され、低 い中間周波数に変換される。次に検波器755において 検波され、LPF756によりベースバンド信号となり 識別再生器 7 5 7 により第 1 データ列 D₁と第 2 データ 列D₂が再生され第1データ列出力部758と第2デー 夕列出力部759から出力される。

を送る場合を説明する。図64は映像信号送信機774 のブロック図である。HDTV信号等の高解像度TV信 号は第1画像エンコーダー401の入力部403に入力 し、サブバンドフィルター等の映像の分離回路404に より、H_LV_L, H_LV_H, H_HV_L, H_HH_H等の高域TV信 号と低域TV信号に分離される。この内容は実施例3で 図30を用いて説明したので詳しい説明は省略する。分 離されたTV信号は圧縮部405において、MPEG等 で用いられているDPCMDCT可変長符号化や等の手 法を用いて符号化される。動き補償は入力部403にお いて処理される。圧縮された4つの画像データは合成器 771によって第1データ列D₁と第2データ列D₂の2 つのデータ列となる。この場合H_LV_L信号つまり低域の 画像信号は第1データ列に含まれる。送信機の741の 第1データ列入力部743と第2データ列入力部744 に入力され振巾変調を受け、VSB等のASK信号とな り、地上アンテナから放送される。

【0205】このデジタルTV放送のTV受信機全体の ブロック図が図65である。地上アンテナ32aで受信 した放送信号はTV受信機781の中の受信機751の 入力部752に入力され、検波復調部760により受信 者が希望する任意のチャンネルの信号が選局され復調さ れ、第1データ列D1と第2データ列D2が再生され第1 データ列出力部758と第2データ列出力部759から 出力される。詳しい説明は重なるため省く。D₁, D₂信 号は分離部776に入力される。D1信号は分離器77 7により分離されH_LV_L圧縮成分は第1入力部521に 入力される。他方は合成器778によりD₂信号と合成 され第2入力部531に入力される。第2画像デコーダ において第1入力部521に入ったH_LV_L圧縮信号は、 第1伸長部523によりH_LV_L信号に伸長され画像合成 部548と画面比率変更回路779に送られる。元のT V信号がHDTV信号の場合、H_LV_L信号はワイドのN TSC信号になり、元の信号がNTSC信号の場合、M PEG1のようなNTSCより品位が低い低解像度TV 信号になる。

【0206】この説明では元の映像信号をHDTV信号 と設定しているため、H_LV_L信号はワイドNTSCのT V信号となる。TVの画面アスペクト比が16:9であ 40 れば16:9の画面比率のまま出力部780を介して映 像出力426として出力する。もし、TVの画面アスペ クト比が4:3であれば、画面比率変更回路779によ り16:9から4:3の画面アスペクト比のレターボッ クス形式かサイドパネル形式に変更して出力部780を 介して映像出力425として出力する。

【0207】一方、第2データ列出力部759からの第 2データ列 D₂は、分離部 776の合成器 778 におい て分離器 777 の信号と合成され、第2 画像デコーダの 第2入力部531に入力され、分離回路531によりH 【0204】次にこの送信機と受信機を用いてTV信号 50 $_{
m L}$ ${
m V}_{
m H}$ ${
m V}_{
m L}$ 、 ${
m H}_{
m H}$ ${
m V}_{
m H}$ の圧縮信号に分離されて各々第2

伸張部535、第3伸長部536、第4伸長部に送ら れ、伸長されて元のHLVH、HHVL、HHVH信号とな る。これらの信号にH_LV_L信号を加え、画像合成部54 8に入力され、合成されて1つのHDTV信号となり出 力部546より出力され、出力部780を介してHDT Vの映像信号427として出力される。

【0208】この出力部780は第2データ列出力部7 59の第2データ列の誤まり率を誤まり率検知部782 で検知しエラーレートが高い場合は自動的にH_⊾V_⊥信号 の低解像度の映像信号を出力させる。

【0209】以上のようにして、階層型放送の送信、受 信が可能となる。伝送条件が良い場合、例えばTV送信 アンテナが近い放送に対しては、第1データ列と第2デ ータ列の両方が再生できるので、 HDTVの品位で番組 を受信できる。また送信アンテナとの距離が遠い放送に 対しては、第1データ列を再生し、このV_LH_L信号から 低解像度のTV信号を出力する。このことにより、HD TVの品位もしくはNTSCTVの品位で同一番組をよ り広い地域で受信できるという効果がある。

【0210】また図66のTV受信機のブロック図のよ 20 うに第1データ列出力部768だけに受信機751の機 能を縮小すると受信機は第2データ列およびHDTV信 号を扱わなくてもよくなるため、構成が大巾には簡略化 できる。画像デコーダーは(図31)で説明した第1画 像デコーダ421を用いればよい。この場合NTSCT Vの品位の画像が得られる。HDTVの品位では番組を 受信できないが受信機のコストは大巾に安くなる。従っ て広く普及する可能性がある。このシステムでは従来の TVディスプレイをもつ多くの受信システムを変更しな いでアダプターとして追加することにより、デジタルT V放送が受信できるという効果がある。

【0211】図67のような構成にするとPSK信号を 復調する衛星放送受信機とASK信号を復調する地上放 送受信機の機能をもつ受信機を簡単に構成できる。この 場合、衛星アンテナ32から受信したPSK信号は発振 器787からの信号と混合器786において混合され、 低い周波数に変換されTV受信機781の入力部34に 入力され、図63で説明した混合器753に入力され る。衛星TV放送の特定のチャンネルの低い周波数に変 換されたPSK、もしくはQAM信号は復調部35によ 40 りデータ列D1、D2が復調され、分離部788を介して 第2画像エンコーダ422により、画像信号として再生 され、出力部780より出力される。一方、地上用のア ンテナ32aにより受信されたデジタル地上放送とアナ ログ放送は、入力部752に入力され図63で説明した のと同じプロセスで混合器 753により特定のチャンネ ルが選択され、検波され、低域のみのベースバンド信号 となる。アナログ衛星TV放送に混合器753に入り復 調される。デジタル放送の場合は、識別再生器757に

44

2により映像信号が再生され、出力される。また地上と 衛星のアナログTV放送を受信する場合は映像復調部7 88によりAM復調されたアナログTV信号が出力部7 80より出力される。図67の構成をとると混合器75 3が衛星放送と地上放送で共用できる。また第2画像デ コーダ422も共用できる。又、デジタル地上放送でA SK信号を用いた場合、AM復調のため従来のアナログ 放送と同様の検波器755とLPF756等の受信回路 を兼用できる。以上のように図67の構成にすると大巾 10 に受信回路を共用化し、回路を削減するという効果があ

【0212】また、実施例では4値のASK信号を2つ のグループに分け、D₁、D₂の2層の各1bitの階層 型伝送を行った。しかし、図68のように8値のASK 信号を用いるとD₁、D₂、D₃の3層の各1bitの階 層型伝送を行うことができる。図68ではD3信号の信 号点は信号点721aと721b、722aと722 b、723aと723b、724aと724bの2値つ まり1bitである。次にD2の信号点は信号点群72 1と722、信号点群723と724の2値の1bit である。D₃のデータは大信号点群725と726の2 値の1bitとなる。この場合、図57の4つの信号点 721、722、723、724を各2ヶの信号点72 1aと721b、722aと722b、723aと72 3 b、724 a と 7 2 4 b に分離し、各グループの間の 距離を離すことにより3層の階層型伝送が可能となる。 【0213】この3層の階層型伝送システムを用いて3 層の映像伝送を行うことは実施例3と3で説明したもの で動作の詳しい説明は省略する。

【0214】さて実施例3では図30のような画像エン コーダ401を説明したが、図30のブロック図は、図 69のように書き換えることができる。内容は全く同じ であるため説明は省略する。このように、画像エンコー ダ401はサブバンドフィルタ等の映像の分離回路40 4、404aを2つもつ。これらを分離部794とする と、図70の分離部のプロック図に示す。ように1つの **分離回路に信号を時分割で2回通すことにより回路を削** 滅できる。これを説明すると、第1サイクルでは入力部 403からのHDTVやスーパーHDTVの映像信号は 時間軸圧縮回路795により、時間軸を圧縮されて分離 回路404により、H_HV_H-H、H_HV_L-H、H_LV_H-H、 $H_{L}V_{L}+1$ の4つの成分に分けられる。この場合、 スイッチ765、765a、765b、765cは1の 位置にあり、圧縮部405に、HոVոーH、HոVュー H、H_LV_H-Hの3つの信号を出力する。しかし、H_L V_L-Hの信号はスイッチ765cの出力1から時間軸 調整回路795の入力2へ入力し、第2サイクルつまり 時分割処理の空き時間に分離回路404に送られ分離処 理されH_HV_H、H_HV_L、H_LV_H、H_LV_Lの4つの成分に よりデータ列D₁とD₂が再生され第2画像デコーダ42 50 分けられ出力される。第2サイクルではスイッチ76

46

5、765a、765b、765cは出力2の位置に変わるため、4つの成分は圧縮部405へ送られる。このようにして図70の構成をとり時分割処理することにより分離回路が削減できるという効果がある。

【0215】次にこのような3層の階層型の画像伝送を行うと受信機側には実施例3の図33のブロック図で説明したような、画像デコーダが必要となる。これを、書き換えると図71のようなブロック図となる。処理能力は違うものの同じ構成の合成器566が2つ存在することになる。

【0216】これは図72のような構成をとると図70 の分離回路の場合と同様にして1つの合成器で実現でき る。2 を説明すると、5 つのスイッチ、765a765b, 765c, 765dにより、まず、タイミン 765 cの入力が1に切り替わる。すると、第1伸長部 522、第2伸長部522a, 第3伸長部522b, 第 4 伸長部 5 2 2 c から各々H_LV_L, H_LV_H, H_HV_L, H нVнの信号が、スイッチを介して合成器556の対応す る入力部に入力され、合成処理されて1つの映像信号と なる。この映像信号はスイッチ765dに送られ出力1 より出力し再びスイッチ765cの入力2に送られる。 この映像信号はもともと、高解像度映像信号を分割した H_LV_L-H成分の信号である。次のタイミング2におい て、スイッチ765、765a, 765b, 765cは 入力2に切替わる。こうして、今度はH_HV_H-H, H_H V_L-H, H_LV_H-HそしてH_LV_L-H信号が合成器5 56に送られ、合成処理されて1つの映像信号が得られ る。この映像信号はスイッチ765dの出力2より出力 部554から出力される。

【0217】このようにして、3層の階層型放送を受信する場合時分割処理により2ケの合成器を1ケに削減するという効果がある。

【0218】さて、この方式は、まずタイミング1において H_HV_H , H_HV_L , H_LV_H , H_LV_L 信号を入力させ、 H_LV_L 一H信号を合成させる。その後、タイミング1と別の期間タイミング2において、 H_HV_H 一H, H_HV_L 一H, H_LV_H 一Hと上記の H_LV_L 一H信号を入力させ、最終の映像信号を得るという手順をとっている。従って、2つのグループの信号のタイミングをずらす必要がある。

【0219】もし、もともと、入力した信号の上記成分のタイミングの順序が違っていたり重複している場合は時間的に分離するためスイッチ765、765a,765b,765cにメモリを設け蓄積し、時間軸を調整することが必要となる。しかし送信機の送信信号を図73のようにタイミング1とタイミング2に時間的に分離して送信することにより、受信機側に時間軸調整回路が不要となる。従って、受信機の構成が簡単になるという効果がある。

【0220】図73の時間配置図のD1は送信信号の第1データ列D1を示し、タイミング1の期間中にDチャンネルで H_LV_L , H_LV_H , H_HV_L , H_HV_H 信号を送り、タイミング2の期間にD2チャンネルで H_LV_H ーH, H_HV_L ーH, H_HV_H ーHを送る場合の信号の時間配置を示している。このようにして時間的に分離して送信信号を送ることにより、受信機のエコンコーダの回路構成を削除するという効果がある。

【0221】次に受信機の伸長部の数が多い。これらの数を削減する方法について述べる。図74(b)は送信信号のデータ810、810a,810b,810cの時間配置図を示す。この図において、データの間に別データ811,810a,811b,811cを送信する。すると、目的とする送信データは間欠的に送られてくることになる。すると、図74(a)のブロック図に示す第2面像エンコーダ422はデータ列D1を第1入力部521とスイッチ812を介して次々と伸長部503に入力する。例えば、データ810の入力完了後は別データ811の時間中に伸長処理を行い、データ810の処理修了後、次のデータ810aが入力することになる。こうすることにより、合成器の場合と同様の手法で時分割で1つの伸長部503を共用することができる。こうして、伸長部の総数を減らすことができる。

【0222】図75はHDTVを送信する場合の時間配置図である。例えば放送番組の第1 チャンネルのNTS C成分に相当する $H_{\rm L}$ $V_{\rm L}$ 信号を $H_{\rm L}$ $V_{\rm L}$ (1) とすると、これをD1信号の太線で示すデータ821の位置に時間配置する。第1 チャンネルのHDTV付加成分に相当する $H_{\rm L}$ $V_{\rm H}$, $H_{\rm H}$ $V_{\rm L}$, $H_{\rm H}$ $V_{\rm H}$ 信号はD2信号のデータ821a,821b,821cの位置に配置する。すると第1 チャンネルの全てのデータの間には別のTV番組の情報である別データ822、822a,822b,822cが存在するため、この期間中に伸長部の伸長処理が可能となる。こうして1つの伸長部で全ての成分を処理できる。この方式は伸長器の処理が速い場合に適用できる。

【0223】また、図76のようにD1信号に、データ821,821a,821b,821cを配置しても同様の効果が得られる。通常の4PSKや4ASKのよう10階層がない伝送を用いて送受信する場合に有効である。

【0224】図77は、例えばNTSCとHDTVと高解像度HDTVもしくは、低解像度NTSCとNTSCとHDTVのような3層の映像を物理的に2層の階層伝送方式を用いて階層放送を行う場合の時間配置図を示す。例えば、低解像度NTSCとNTSCとHDTVの3層の映像を放送する場合D1信号には低解像NTSC信号に相当する $H_{\rm L}V_{\rm L}$ 信号がデータ821に配置されている。又、NTSCの分離信号である $H_{\rm L}V_{\rm H}$, $H_{\rm H}V_{\rm L}$,

50 H_HV_Hの各成分の信号はデータ821a,821b,8

21 cの位置に配置されている。HDTVの分離信号で あるH_V_H-H, H_HV_L-H, H_HV_H-H信号はデータ 823,823a,823bに配置されている。

【0225】ここでは、実施例2で説明したエラー訂正 能力の差別化による論理的な階層伝送を追加している。 具体的にはH_LD_LはD₁信号の中のD₁₋₁チャンネルを用 いている。D₁₋₁チャンネルは実施例2で述べたように D₁₋₂チャンネルより大巾に訂正能力の高い誤り訂正方 式を採用している。 D1-1チャンネルは D1-2チャンネル め、他のデータ821a, 821b, 821cよりC/ N値の低い条件においても再生できる。このためアンテ ナから遠い地域や自動車の車内等の受信条件の悪い場合 においても低解像度のNTSCTVの品位で番組を再生 することができる。実施例2で述べたようにエラーレー トの観点でみた場合、D1信号の中のD1-1チャンネルに あるデータ821はD1-2チャンネルにある他のデータ 821a, 821b, 821cより受信妨害に強く、差 別化されており論理的な階層が異なる。実施例2で述べ たようにD₁, D₂の階層は物理的階層といえ、このエラ - 一訂正符号間距離の差別化による階層構造は論理的な階 層構造といえる。

【0226】さて、D₂信号の復調には物理的にD₁信号 より高いC/N値を必要とする。従って、遠隔地等のC /N値の一番低い受信条件では、H_LV_L信号つまり、低 解像度NTSC信号が再生される。そして、C/N値が 次に低い受信条件では加えてH_LV_H, H_HV_L, H_HV_Hが 再生され、NTSC信号が再生できる。さらにC/N値 の高い受信条件ではH_LV_Lに加えてH_LV_H-H, H_HV_L -H, H_HV_H-Hも再生されるためHDTV信号が再生 30 される。こうして3つの階層の放送ができる。この方式 を用いることにより図53で説明した受信可能領域は図 90の受信妨害領域図に示すように2層から3層に拡大 し、より番組受信可能領域が拡がる。

【0227】ここで図78は図77の時間配置の場合の 第3画像デコーダのブロック図を示す。基本的には図7 2のブロック図からD3信号の第3入力部551を省い た構成に図74(a)のブロック図の構成を加えた構成 になっている。

【0228】動作を説明するとタイミング1において入 40 力部521よりD1信号が、入力部530よりD2信号 が入力される。HLVH等の各成分は時間的に分離されて いるためこれらはスイッチ812により伸長部503に 順次、独立して送られる。この順序を図77の時間配置 図を用いて説明する。まず、第1チャンネルのH_LV_Lの 圧縮信号が伸長部503に入り、伸長処理される。次に 第1チャンネルのH_LV_H, H_HV_L, H_HV_Hが伸長処理さ れ、スイッチ812aを介して、合成器556の所定の 入力部に入力され、合成処理され、まずHLVL-H信号 が合成される。この信号はスイッチ765aの出力1か 50 長部503合成器556の数を大巾に削減できるという

らスイッチ765の入力2に入力され、合成器556の $H_{L}V_{L}$ 入力部に入力される。

48

【0229】次にタイミング2において、図77の時間 配置図に示すようにD2信号のH_LV_H-H, H_HV_L-H, H_HV_H-H信号が入力され伸長部503により伸長 され、スイッチ812aを介して各信号が合成器556 の所定の入力に入力され、合成処理されHDTV信号が 出力される。このHDTV信号はスイッチ765aの出 力2より出力部521を介してHDTV信号が出力され に比べて冗長度は高いが再生後のエラーレートは低いた 10 る。上述のように図77の時間配置により送信すること により受信機の伸長部と合成器の数を大巾に削減すると いう効果がある。なお、図77は時間配置図ではD1, D 2 信号の 2 つの段階を用いたが、前述の D 3 信号を用 いると、高解像度HDTVを加え4つの階層のTV放送 ができる。

> 【0230】図79はD1, D2, D3の3層の物理階 層を用いた3つの階層の映像を放送する階層型放送の時 間配置図である。図から明かなように同一TVチャンネ ルの各成分は時間的に重複しないように配置してある。 又、図80は図78のブロック図で説明した受信機に第 3入力部521aを加えた受信機である。図79の時間 配置により放送することにより、図80のブロック図で 示すような簡単な構成で受信機が構成できるという効果

【0231】動作は、図77の時間配置図、図78のブ ロック図とほぼ同じである。このため説明は省略する。 又、図81の時間配置図のようにD1信号に全ての信号 を時間多重することもできる。この場合、データ821 と別データ822の2つのデータはデータ821a,8 12b,821cに比べてエラー訂正能力を高めてあ る。このため、他のデータに比べて階層が高くなってい る。前述のように物理的には一層であるが論理的には2 層の階層伝送となっている。又、番組チャンネル1のデ ータの間に別の番組チャンネル2の別データが括入され ている。このため、受信機側でシリアル処理が可能とな り、図79の時間配置図と同じ効果が得られる。

【0232】図81の時間配置図の場合、論理的な階層 となっているが、データ821、別データ822の伝送 ビットレートを1/2や1/3に落とすことにより、こ のデータの伝送時のエラーレートが下がるため、物理的 な階層伝送をすることもできる。この場合、物理階層は 3層となる。

【0233】図82は、図81の時間配置図のような、 データ列D1信号のみを伝送する場合の画像デコーダ4 23のブロック図で、図80のブロック図に示す画像デ コーダに比べて、より簡単な構成となる。動作は図80 で説明した画像デコーダと同じため説明を省略する。

【0234】以上のように、図81の時間配置図のよう な送信信号を送信すると図82のブロック図のように伸 効果がある。又、4つの成分が時間的に分離されて入力 されるため、合成器556つまり図32の画像合成部5 48の内部の回路ブロックを入力する画像成分に応じて 接続変更により、いくつかのブロックを時分割で共用し

回路を省略することもできる。 【0235】以上のようにして簡単な構成で受信機が構成できるという効果がある。なお、実施例5では、AS K変調を用いて動作を説明したが、実施例5で説明した多くの手法は実施例1,2,3で説明したPSKやQA M変調にも使える。

【0236】又、これまでの実施例はFSK変調にも使える。例えば、図83のようにf1, f2, f3, f4 の多値のFSK変調を行う場合、実施例5の図58の信号点配置図のようにグループ化を行い、各グループの信号点位置を離すことにより、階層型伝送ができる。

【0238】又、図84のような、ブロック図に示す磁気記録再生装置に本発明の実施例5を用いることもでき 30 る。実施例5はASKのため磁気記録再生ができる。

【0239】図84を説明すると、磁気記録再生装置8 51は、入力した映像信号を画像エンコーダ401によ り分離および圧縮し、入力部742の中の第1データ列 入力部743にHLVL成分等の低域映像信号を、第2デ ータ列入力部744にH_HV_H成分等を含む高域映像信号 を入力し、変復調器852の中の変調部749に入力す る。これまでの動作は実施例5の図64の送信機とほぼ 同じである。変調信号は記録再生回路853と磁気ヘッ ド854により磁気テープ855に記録される。この記 40 録の手法は従来のデジタルの多値記録を変形して物理的 な階層記録もできるし、実施例1、3のような位相変調 や位相振巾変調による階層記録もできる。磁気テープ上 の多トラックによる階層記録もできる。データ送信レー トの変更による階層記録もできる。又、エラー訂正能力 を変えて、データを差別化することによる論理的な階層 記録もできる。

【0240】次に、再生する時は磁気テープ855を磁 気ヘッド854と磁気再生回路853により再生信号を 変復調器852に送る。以下は実施例1,3,4とほぼ 50 50

同様な動作をする。復調部760により第1データ列D1と第2データ列D2を再生し、画像デコーダー422により映像信号を出力する。この場合、階層記録を行っているためC/Nが高いときはHDTV等の信号高解像度TV信号を再生できる。一方C/Nが低い場合もしくは機能の低い磁気再生装置で再生した場合、NTSC、TV信号もしくは低解像度NTSCTV信号が出力される。

【0241】以上のように本発明を用いた磁気再生装置 10 においては、C/Nが低くなったり、エラーレートが高 く場合においても同一内容の映像を低い解像度、もしく は低い画質で再生できるという効果が得られる。

【0242】(実施例6)実施例6は本発明を4階層の映像階層伝送に用いたものである。実施例2で説明した4階層の伝送方式と4階層の映像データ構造を組み合わせることにより図91の受信妨害領域図に示すように4層の受信領域ができる。図に示すように最内側に第1受信領域890a、その外側に第2受信領域890b、第3受信領域890c、第4受信領域890dができる。この4階層を実現する方式について述べる。

【0243】4階層を実現するには変調による4層の物理階層やエラー訂正能力の差別化による4層の論理階層があるが、前者は階層間のC/N差が大きいため4層では大きなC/Nが必要となる。後者は、復調可能なことが前提であるため、階層間のC/N差を大きくとれない。現実的であるのは、2層の物理階層と2層の論理階層を用いて、4層の階層伝送を行うことである。では、まず映像信号を4層に分離する方法を述べる。

【0244】図93は分離回路3のプロック図である分離回路3は映像分離回路895と4つの圧縮回路から構成される。分離回路404a、404b、404cの内部の基本的な構成は、図30の第1画像エンコーダ401の中の分離回路404のプロック図と同じなので説明は省略する。分離回路404a等は映像信号を低域成分 H_LV_L と高域成分 H_HV_H と中間成分 H_HV_L 、 H_LV_H の4つの信号に分離する。この場合、 H_LV_L は解像度が元の映像信号の半分になる。

【0245】さて入力した映像信号は映像分離回路404aにより高域成分と低域成分に2分割される。水平と垂直方向に分割されるため4つの成分が出力される。高域と低域の分割点はこの実施例では中間点にある。従って、入力信号が垂直1000本のHDTV信号の場合HLVに信号は垂直500本の、水平解像度も半分のTV信号となる。

【0246】低域成分の H_1V_1 信号は分離回路404c により、さらに水平、垂直方向の周波数成分が各々2分割される。従って H_1V_1 出力は例えば垂直250本、水平解像度は1/4となる。これをLL信号と定義するとLL成分は圧縮部405aにより圧縮され、 D_{1-1} 信号として出力される。

【0247】一方、 H_LV_L の高域成分の3成分は合成器 772cにより1つのLH信号に合成され、圧縮部405 bにより圧縮され D_{1-2} 信号として出力される。この場合、分離回路404cと合成器772cの間に圧縮部を3つ設けてもよい。

【0248】高域成分のH_HV_H、H_LV_H、H_HV_Lの3成分は合成器772aにより一つのH_HV_H-H信号となる。圧縮信号が垂直水平とも1000本の場合、この信号は水平、垂直方向に500本~1000本の成分をもつ。そして分離回路404bにより4つの成分に分離さ 10れる。

【0249】従ってHLVL出力として水平、垂直方向の 500本~750本の成分が分離される。これをHH信 号とよぶ。そしてH_HV_H、H_LV_H、H_HV_Lの3成分は7 50本~1000本の成分をもち、合成器772bで合 成され、HH信号となり圧縮部405dで圧縮され、D 2-2信号として出力される。一方HL信号はD2-1信号と して出力される。従ってLL、つまりDューュ信号は例え ば0本~250本以下の成分、LHつまりD1-2信号は 250本以上500本以下の周波数成分HLつまりD 2-1信号は500本以上750本以下の成分、HHつま り D₂₋₂信号は 750 本以上 1000 本以下の周波数成 分をもつ。この分離回路3により階層型のデータ構造が できるという効果がある。この図93の分離回路3を用 いて実施例2で説明した図87の送信機1の中の分離回 路3の部分を置きかえることにより、4層の階層型伝送 ができる。

【0250】こうして階層型データ構造と階層型伝送を組み合わせることにより、C/Nの劣下に伴い段階的に画質が劣下する画像伝送が実現できる。これは放送にお 30いてはサービスエリアの拡大という大きな効果がある。次にこの信号を復調再生する受信機は実施例2で説明した図88の第2受信機と同じ構成と動作である。従って全体の動作は省略する。ただ映像信号を扱うため合成部37の構成がデータ送信と異なる。ここでは合成部37を詳しく説明する。

【0251】実施例2において図88の受信機のブロック図を用いて説明したように、受信した信号は復調され、エラー訂正され、 D_{1-1} 、 D_{1-2} 、 D_{2-1} 、 D_{2-2} の4つの信号となり、合成部37に入力される。

入力される。画像合成部 5 3 1 a の例の説明に関しては図3 2 の画像デコーダ 5 2 7 で説明したので省略する。一方、H H 信号は分離器 5 3 1 bにより分離され、画像合成部 5 4 8 bに入力される。H L 信号は画像合成部 5 4 8 bにおいてH H 信号と合成され、 H_HV_H - H 信号となり分離器 5 3 1 cにより分離され、画像合成部 5 4 8 cにおいて L H と L L の合成信号と合成され、映像信号となり合成部 3 3 から出力される。そして図 8 8 の第 2 受信機の出力部 3 6 で T V 信号となり出力される。この場合、原信号が垂直 1 0 5 0 本、約 1 0 0 0 本のH D T V 信号ならば図 9 1 の受信妨害図に示した 4 つの受信条件により 4 つの画質の T V 信号が受信される。

【0253】、TV信号の画質を詳しく説明する。図91と図86を一つにまとめたのが図92の伝送階層構造図である。このようにC/Nの向上とともに受信領域862d、862c、862b、862aにおいて D_{1-1} 、 D_{1-2} 、 D_{2-1} 、 D_{2-2} と次々と再生できる階層チャンネルが追加されデータ量が増える。

【0254】映像信号の階層伝送の場合図95伝送階層 20 構造図のように C/Nの向上とともにLL、LH、H L、HH信号の階層チャンネルが再生されるようにな る。従って送信アンテナからの距離が近づくにつれ、画 質が向上する。L=Ldの時LL信号、L=Lcの時L L+LH信号、L=Lbの時LL+LH+HL信号、L =Laの時LL+LH+HL+HH信号が再生される。 従って、原信号の帯域を1とすると1/4、1/2、3 /4、1の帯域の画質が各々の受信地域で得られる。原 信号が垂直走査線1000本のHDTVの場合、250 本、500本、750本、1000本のTV信号が得ら れる。このようにして段階的に画質が劣化する階層型映 像伝送が可能となる。図96は従来のデジタルHDTV 放送の場合の受信妨害図である。図から明らかなように 従来方式ではCNがV。以下でTV信号の再生は全く不 可能となる。従ってサービスエリア距離Rの内側におい ても他局との競合地域、ビルかげ等では×印で示すよう に受信できない。図97は本発明を用いたHDTVの階 層放送の受信状態図を示す。図97に示すように、距離 Larc/N = a, Lbrc/N = b, Lcrc/N = bc、LdでC/N=dとなり各々の受信地域で250 40 本、500本、750本、1000本の画質が得られ る。距離La以内でもC/Nが劣下し、HDTVの画質 そのものでは再生できない地域が存在する。しかし、そ の場合でも画質が落ちるものの再生はできる。例えばビ ルかげのB地点では750本、電車内のD地点では25 0本、ゴーストを受けるF地点では750本、自動車内 のG地点では250本、他局との競合地域であるL地点 でも250本の画質で再生できる。以上のようにして本 発明の階層伝送を用いることにより従来提案されている 方式では受信再生できなかった地域でも受信できるよう

う著しい効果がある。また、図98の階層伝送図に示すように D_{1-1} チャンネルでその地域のアナログ放送と同じ番組の番組Dを放送し、 D_{1-2} 、 D_{2-1} 、 D_{2-2} チャンネルで他の番組C、B、Aを放送することにより、番組Dのサイマルキャストを全地域で確実に放送し、サイマルキャストの役割を果たしながら他の3つの番組をサービスするという多番組化の効果も得られる。

【0255】本発明の階層型伝送方式の一つの特徴は周波数利用効率を向上させるものであるが一部の受信機にとっては電力利用効率がかなり低下する。従って全ての伝送システムに適用できるものではない。例えば特定受信者間の衛星通信システムならその時期に得られる最高の周波数利用効率と最高の電力利用効率の機器にとりかえるのが最も経済性が高い方法である。このような場合必ずしも本発明を使う必要はない。

【0256】しかし、衛星放送方式や地上放送方式の場合は本発明のような階層型伝送方式が必要である。なぜなら衛星放送の規格の場合50年以上の永続性が求められる。この期間、放送規格は変更されないが技術革新に伴い衛星の送信電力は飛躍的に向上する。放送局は数十年後の将来において現時点においても製造された受信機がTV番組を受信視聴できるように互換性のある放送を行わなければならない。本発明を用いると既存のNTSC放送とHDTV放送との互換性と将来の情報伝送量の拡張性という効果が得られる。

【0257】本発明は電力効率よりも周波数効率を重視したものであるが、受信機側に各伝送段階に応じて設計受信感度を設けた各々、何種類かの受信機を設定することにより送信機の電力をさほど増やす必要はなくなる。このため現在の電力の小さい衛星でも充分送信可能である。また将来、送信電力が増大した場合でも同一の規格で伝送できるため将来の拡張性と、新旧の受信機との間の互換性が得られる。以上述べたように本発明は衛星放送規格に用いた場合、顕著な効果がえられる。

【0258】また本発明の階層型伝送方式を地上放送に 用いた場合、電力利用効率を全く考慮する必要がないた め衛星放送より本発明は実施しやすい。前述のように従 来のデジタルHDTV放送方式では存在したサービスエ リア内の受信不能地域を大巾に減少させるという顕著な 効果と前述のNTSCとHDTV受信機もしくは受像機 40 の両立性の効果がある。またTV番組のスポンサーから みた場合のサービスエリアが実質的に拡大するという効 果もある。なお、実施例ではQPSKと16QAMと3 2QAMの変調方式を用いた例を用いて説明したが、6 **4 Q A M や 1 2 8 Q A M や 2 5 6 Q A M 等に適用できる** ことはいうまでもない。また、図を用いて説明したよう に多値のPSKやASKやFSKに適用できることもい うまでもない。本発明とTDMを組み合わせて伝送する 実施例を説明したが、FDM、CDMAや拡散通信方式 を組み合わせて伝送することもできる。

[0259]

【発明の効果】以上のように本発明は、信号入力部と、 位相の異なる複数の搬送波を上記入力部からの入力信号 により変調し信号ベクトル図上になるm値の信号点を発 生させる変調部と、変調信号を送信する送信部からなり データ伝送を行う伝送装置においてn値の第1データ列 と第2データ列を入力し、上記信号をn個の信号点群に 分割し、該信号点群の各々第1データ列のデータに割り あて上記信号点群の中の各信号点に第2データ群の各デ ータを割りあて、送信する送信機により信号を送信し、 該送信信号の入力部と、信号スペースダイヤグラム上で p値の信号点のQAM変調波を復調する復調器と出力部 を有する受信装置において上記信号点をn値の信号点群 に分割し、各信号点群n値の第1データ列を対応させて 復調し、信号点群の中の略々p/n値の信号点にp/n値の 第2データ列のデータを復調再生し、受信装置を用いて データを伝送することにより、例えば送信機1の変調器 4により、n値の第1データ列と第2データ列と第3デ ータ列を信号点群にデータを割りあてて変形m値のQA M変調信号を送信し、第1受信機23では、復調器25 によりn値の第1データ列を、第2受信機33では第1 データ列と第2データ列を、第3受信機43では第1デ ータ列、第2データ列、第3データ列を復調することに より、効果として最大m値のデータを変調した多値変調 波をn<mなるn値の復調能力しかない受信機でもn値 のデータを復調可能とした両立性と発展性のある伝送装 置が得られる。さらに、QAM方式の信号点のうち最も 原点に近い信号点とI軸もしくはQ軸との距離をfとし た場合、この距離がn>1なるnfとなるように上記信 号点をシフトさせることにより、階層型の伝送が可能と

【0260】この伝送系にNTSC信号を第1データ列、HDTVとNTSCとの差信号を第2データ列として送信することにより、衛星放送においてはNTSC放送とHDTV放送との両立性があり、情報量の拡張性の高いデジタル放送が可能となり、地上放送においてはサービスエリアの拡大と受信不能地域の解消という顕著な効果がある。

【図面の簡単な説明】

【図1】本発明の第1の実施例における伝送装置のシステム全体を示す構成図

【図2】本発明の実施例1の送信機1のブロック図

【図3】本発明の実施例1の送信信号のベクトル図

【図4】本発明の実施例1の送信信号のベクトル図

【図5】本発明の実施例1の信号点へのコードの割り当て図

【図6】本発明の実施例1の信号点群へのコーディング 図

【図7】本発明の実施例1の信号点群の中の信号点への 50 コーディング図 【図8】本発明の実施例1の信号点群と信号点へのコーディング図

【図9】本発明の実施例1の送信信号の信号点群の閾値 状態図

【図10】本発明の実施例1の変形16値QAMのベクトル図

【図11】本発明の実施例1のアンテナ半径 r₂と送信電力比nとの関係図

【図12】本発明の実施例1の変形64値QAMの信号 点の図

【図13】本発明の実施例1のアンテナ半径 r₃と送信電力比nとの関係図

【図14】本発明の実施例1の変形64値QAMの信号 群と副信号点群のベクトル図

【図15】本発明の実施例1の変形64値QAMの比率A₁,A₂の説明図

【図16】本発明の実施例1のアンテナ半径 r₂, r₃と送信電力比n₁₆, n₆₄の関係図

【図17】本発明の実施例1のデジタル送信機のブロック図

【図18】本発明の実施例1の4PSK変調の信号スペースダイアグラム図

【図19】本発明の実施例1の第1受信機のブロック図

【図20】本発明の実施例1の4PSK変調信の信号スペースダイアグラム図

【図21】本発明の実施例1の第2受信機のブロック図

【図22】本発明の実施例1の変形16値QAMの信号 ベクトル図

【図23】本発明の実施例1の変形64値QAMの信号 ベクトル図

【図24】本発明の実施例1のフローチャート

【図25】 (a) は本発明の実施例1の8値QAMの信号ベクトル図

(b) は本発明の実施例1の16値QAMの信号ベクトル図

【図26】本発明の実施例1の第3受信機のブロック図

【図27】本発明の実施例1の変形64値QAMの信号 点の図

【図28】本発明の実施例1のフローチャート

【図29】本発明の実施例3における伝送システムの全 40 体の構成図

【図30】本発明の実施例3の第1画像エンコーダーの ブロック図

【図31】本発明の実施例3の第1画像デコーダのブロック図

【図32】本発明の実施例3の第2画像デコーダのブロック図

【図33】本発明の実施例3の第3画像デコーダのブロック図

【図34】本発明の実施例3のD1, D2, D3信号の時

間多重化の説明図

【図35】本発明の実施例3のD₁, D₂, D₃信号の時間多重化の説明図

56

【図36】本発明の実施例3のD₁, D₂, D₃信号の時間多重化の説明図

【図37】本発明の実施例4における伝送装置のシステム全体の構成図

【図38】本発明の実施例3における変形16QAMの信号点のベクトル図

10 【図39】本発明の実施例3における変形16QAMの 信号点のベクトル図

【図40】本発明の実施例3における変形64QAMの信号点のベクトル図

【図41】本発明の実施例3の時間軸上の信号配置図

【図42】本発明の実施例3のTDMA方式の時間軸上の信号配置図

【図43】本発明の実施例3の搬送波再生回路のブロック図

【図44】本発明の実施例3の搬送波再生の原理図

20 【図45】本発明の実施例3の逆変調方式の搬送波再生 回路のブロック図

【図46】本発明の実施例3の16QAM信号の信号点 配置図

【図47】本発明の実施例3の64QAM信号の信号点 配置図

【図48】本発明の実施例3の16逓倍方式の搬送波再 生回路のブロック図

【図49】本発明の実施例3のDv1, Dh1, Dv2、

D_{H2}, D_{V3}, D_{H3}信号の時間多重化の説明図

【図50】本発明の実施例3のDv1, DH1, Dv2、
 DH2, Dv3, DH3信号のTDMA方式の時間多重化の説明図

【図51】本発明の実施例3のDv1, DH1, Dv2、

 D_{H2} , D_{V3} , D_{H3} 信号のTDMA方式の時間多重化の説明図

【図52】本発明の実施例4における従来方式の受信妨害領域図

【図53】本発明の実施例4における階層型放送方式の 場合の受信妨害領域図

10 【図54】本発明の実施例4における従来方式の受信妨害領域図

【図55】本発明の実施例4における階層型放送方式の 場合の受信妨害領域図

【図56】本発明の実施例4におけるデジタル放送局2 局の受信妨害領域図

【図57】本発明の実施例5における変形4ASK信号の信号点配置図

【図58】本発明の実施例5における変形4ASKの信号点配置図

50 【図59】 (a) は本発明の実施例5における変形4A

SKの信号点配置図

(b) は本発明の実施例5における変形4ASKの信号 点配置図

【図60】本発明の実施例5における低いC/N値の場合の変形4ASK信号の信号点配置図

【図61】本発明の実施例5における送信機のブロック 図

【図62】(a)は本発明の実施例5におけるASK変調信号の周波数分布図

(b) は本発明の実施例5におけるASK変調信号の周 10 波数分布図

【図63】本発明の実施例5における受信機のブロック 図

【図64】本発明の実施例5における映像信号送信機の ブロック図

【図65】本発明の実施例5におけるTV受信機全体のブロック図

【図66】本発明の実施例5における別のTV受信機のブロック図

【図67】本発明の実施例5における衛星・地上TV受 20 信機のブロック図

【図68】本発明の実施例5における8値ASK信号の信号点配置図

【図69】本発明の実施例5における画像エンコーダの 別のブロック図

【図70】本発明の実施例5における分離回路1つの画像エンコーダのブロック図

【図71】本発明の実施例5における画像デコーダのブロック図

【図72】本発明の実施例5における合成器1つの画像 30 デコーダのブロック図

【図73】本発明による実施例5の送信信号の時間配置 図

【図74】(a)は本発明による実施例5の画像デコー ダのブロック図

(b) は本発明による実施例5の送信信号の時間配置図 【図75】本発明による実施例5の送信信号の時間配置 図

【図76】本発明による実施例5の送信信号の時間配置 図

【図77】本発明による実施例5の送信信号の時間配置 図

【図78】本発明による実施例5の画像デコーダのブロック図

【図79】本発明による実施例5の3階層の送信信号の 時間配置図

【図80】本発明による実施例5の画像デコーダーのブロック図

【図81】本発明による実施例5の送信信号の時間配置 図 58

【図82】本発明による実施例5のD1の画像デコーダーのブロック図

【図83】本発明による実施例5の周波数変調信号の周波数-時間図

【図84】本発明による実施例5の磁気記録再生装置の ブロック図

【図85】本発明による実施例2のC/Nと階層番号の 関係図

【図86】本発明による実施例2の伝送距離とC/Nの 関係図

【図87】本発明による実施例2の送信機のブロック図

【図88】本発明による実施例2の受信機のブロック図

【図89】本発明によ実施例2のC/N−エラーレート の関係図

【図90】本発明による実施例5の3階層の受信妨害領 域図

【図91】本発明による実施例6の4階層の受信妨害領域図

【図92】本発明による実施例6の階層伝送図

【図93】本発明による実施例6の分離回路のブロック図

【図94】本発明による実施例6の合成部のブロック図

【図95】本発明による実施例6の伝送階層構造図

【図96】従来方式のデジタルTV放送の受信状態図

【図97】本発明による実施例6のデジタルTV階層放送の受信状態図

【図98】本発明による実施例6の伝送階層構造図

【図99】本発明による実施例3の16SRQAMのベクトル図

【図 1.0 0 】本発明による実施例 3 の 3 2 S R Q A M のベクトル図

【図101】本発明による実施例3のC/N-エラーレートの関係図

【図102】本発明による実施例3のC/N−エラーレートの関係図

【図103】本発明による実施例3のシフト量nと伝送 に必要なC/Nの関係図

【図104】本発明による実施例3のシフト量nと伝送 に必要なC/Nの関係図

【図105】本発明による実施例3の地上放送時の送信 アンテナからの距離と信号レベルとの関係図

【図106】本発明による実施例3の32SRQAMの サービスエリア図

【図107】本発明による実施例3の32SRQAMのサービスエリア図

【図108】本発明による実施例3のTV信号周波数分 布図

【図109】本発明による実施例3のTV信号時間配置

50 【図110】本発明による実施例3のC-CDMの原理

図

【図111】本発明による実施例3の符号割り当て図

【図112】本発明による実施例3の36QAMを拡張

した場合の符号割り当て図

【符号の説明】

- 1 送信機
- 4 変調器
- 6 アンテナ
- 6 a 地上アンテナ
- 10 衛星
- 12 中継器
- 、23 第1受信機

- 25 復調器
- 33 第2受信機
- 35 復調器
- 43 第3受信機
- 51 デジタル送信機
- 8 5 信号点
- 91 第1分割信号点群
- 401 第1画像エンコーダー
- 703 SRQAMの受信可能地域
- 10 708 従来方式の受信可能地域
 - 722 キャリア
 - 725 スペクトラム

【図3】

【図6】

[図2]

【図4】

【図5】

【図11】

【図13】

【図14】

【図15】

B2

Ві

[図75]

(01) 1260	Q (Sin2πtct) bı	(11) 125
	Ато	
3 a2	0 A10	1 (Cos2 π fct)
		1298
(00)	bz	128

			821s		8216		821c	
			HLVH(1)	H _L V _H (2)	HuVL(1)	HHVL(2)	HeVe(1)	HHVH(2)
D,	821			822a		82.2b		8220
D.	.HLVL(1)	HLVL(2)					ļ	
لـــا		822						
		ļ	<u>i</u> _	<u> </u>	<u> </u>	<u> </u>	ــــــــــــــــــــــــــــــــــــــ	

【図18】

【図17】

【図20】

【図25】

[図22]

[図21]

【図31】

【図73】

【図24】

【図26】

【図28】

【図76】

	821	•	621a /	_	821b		821c		
· [Di]	HLVL(1)	HLVL(2)	HLVH(1)	HLVH(2)	НиVь(1)	Нн√∟(2)	HisVH(1)	HnVn(2)	
لستا		822	٦	B22a		B2225		822c	 1
ECC D1-1			01-2						

[図29]

【図30】

【図32】 出た部 第2画像デコーダー 小類回路 第1入力部 第2入力部

【図33】

【図34】

【図35】

【図36】

【図38】

[図39]

【図40】

[図44]

[図41]

[図42]

【図43】

【図45】

[図46]

[図47]

[図48]

【図49】

【図50】

【図51】

【図52】

【図53】

【図54】

【図55】

「図 5 6] 「図 9 2] 704 890d 880c 890b 701 714 701a 892a D2-2 852d D1-1 862d D1-1 862d

【図57】

【図58】

【図59】

【図60】

【図61】

【図95】

【図83】

【図63】

【図65】

【図67】

【図69】

【図70】

【図71】

【図72】

【図74】

t2

ŧı

to

tз

t5

[図82]

[図84]

[図86]

[図98]

[図90]

[図87]

[図91]

[図96]

【図93】

【図94】

【図97】

【図100】

[図101]

【図109】

【図102】

【図103】

n

【図104】

【図105】

703本条明の受信可能領域 708従来の受信可能領域 P=32 n=2.5 の場合

【図107】

P=32 n=1.8 の場合

【図108】

[図110]

【図111】

サブチャンネル1 (SRQAM:Dr=2bit)

【図112】

サブチャンネル1 (SRQAM:D)=2bit)

【手続補正書】

【提出日】平成4年6月26日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0239

【補正方法】変更

【補正内容】

【0239】図84を説明すると、磁気記録再生装置8 51は、入力した映像信号を画像エンコーダ401によ り高域成分と低域成分に分離および圧縮し、入力部74 2の中の第1データ列入力部743にH_LV_L成分等の低 域映像信号を、第2データ列入力部744にH_HV_H成分 等を含む高域映像信号を入力し、変復調器852の中の 変調部749に入力する。この動作は実施例5の図64 の送信機とほぼ同じであるため詳しい説明は省略する。 変調信号は記録再生回路853において、バイアス発生 器856によりACバイアスされ増巾器857aにより 増巾され磁気ヘッド854により磁気テープ855に記 録される。図113の記録信号周波数配置図に示すよう に周波数fcなる搬送波をもつ例えば16SRQAMの 主信号85aに情報が記録されるとともに、f。o2Gの2f_sの周波数f_sをもつパイロット信号859aが同 時に記録される。周波数f Biasなるバイアス信号859 bにより、ACバイアスが加わり磁気記録されるため歪 が少なくなる。主信号に例えば16SRQAMを用いた 場合、信号点配置は図10のようになる。この信号を再 生する場合、磁気ヘッド854からは、主信号859と パイロット信号859aが再生され、増巾器857bに より増巾される。この信号より搬送波再生回路858の フィルタ858aにより2斤。なるパイロット信号斤。が 周波数分離され、1/2分周器858bによりf。の搬 送波が再生される。この再生された搬送波により主信号 は復調される。この時、高C/NのHDTV用テープ8 55を用いた場合、信号点の弁別が容易なため復調部7 60においてD1とD2の双方が復調される。そして画 像デコーダ422によりHDTVのTV信号が再生され る。次に安価な低C/Nのビデオテープ855を用いた 場合C/Nが低いため信号点の弁別が難しいためD2は 再生できない。しかし、D1は再生できる。この場合N TSCのTV信号が出力される。また第2データ列出力 部759と第2データ列入力部744を省略し、第1デ ータ列D₁のみを変復調する変形QPSK等の変調器を

もつ、NTSC専用の記録再生装置851も設定でき る。上述のHDTV信号が記録されたビデオテープ85 5をこのNTSC専用の磁気記録再生装置で再生した場 合、D1信号が再生され、ワイドNTSC信号が出力さ れる。つまり同じHDTVのビデオテープ855を再生 した場合、機種を変えることにより一方ではHDTV信 号、一方ではワイドNTSCTV信号が再生できるとい うテープと機種間の互換性が実現する。この場合、HD TV専用機に比べてNTSC専用機は著しく簡単な構成 になり低いコストで実現できる。このため巾広い価格帯 の機種が設定できるという効果がある。このように互換 性を保ちながら拡張性が得られるため10年後も陳腐化 しない記録再生規格が実現する。この記録の手法として 実施例1、3のような位相変調による階層記録もでき る。磁気テープ上の多トラックによる階層記録もでき る。又、エラー訂正能力を変えて、データを差別化する ことによる論理的な階層記録もできる。通常記録再生の 規格を設定する場合、現実に入手できる最も高いC/N のテープを用いて規格が定められている。この場合10 年~20年にテープの性能が向上した場合、互換性をと ることは難しいため新旧規格は片互換である場合が多か った。しかし、本発明の場合、まず、現行テープで第1 データ列もしくは第2データ列を記録再生する規格をつ くった場合でも、将来テープのC/Nの10dB単位の 向上とともに第2データ列、第3データ列と次々と互換 性を保ちながらデータ量を拡張できるという効果があ る。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】図面の簡単な説明

【補正方法】追加

【補正内容】

【図面の簡単な説明】

【図113】本発明の実施例5における変調信号の周波 数配置図

【手続補正3】

【補正対象書類名】図面

【補正対象項目名】図84

【補正方法】変更

【補正内容】

【図84】

【手続補正4】 【補正対象書類名】図面 【補正対象項目名】図113

【図113】

フロントページの続き

(51) Int.Cl.⁵ 識別記号 庁内整理番号 FΙ 技術表示箇所 H O 4 L 27/38 H 0 4 N 7/00 A 9070-5C 7/13 // H04N 7/20 8943 - 5 C

(31)優先権主張番号 特願平3-182236 (31)優先権主張番号 特願平4-60739 (32)優先日 平3(1991)7月23日

(32)優先日 平4(1992)3月17日 (33)優先権主張国 日本 (JP) (33)優先権主張国 日本 (JP)