

Física Experimental 4

Experimento III

Decaimento da Intensidade Luminosa e Coeficientes de Absorção e Reflexão

7 de Junho de 2013

Professora Nadia M Alunos:

Nadia Maria de Liz Koche

Juarez A.S.F 11/0032829 Sérgio Fernandes da Silva Reis 11/0140257 Jedhai Pimentel 09/0007883

Conteúdo

	Objetivos	3
2	Materiais	3
3	Introdução	4
ļ	Procedimentos	6
	4.1 Determinação dos coeficientes	6
	4.2 Medindo o decaimento da intensidade com a distância no ar	6
5	Dados	7
Ó	Análise de Dados	9
7	Conclusão	14

1 Objetivos

Estudar o decaimento da intensidade luminosa que atravessa um meio material e as diversas formas pelas quais isso ocorre. Analisar também como esse decaimento ocorre quando o meio é puramente o ar.

2 Materiais

O experimento faz uso de:

- Fonte de luz com housing colimador
- Fonte de alimentação
- Suporte para filtro
- 6 filtros de vidro fume
- 1 filtro vermelho
- 1 diafragma
- 1 medidor de intensidade luminosa
- Óleo mineral
- Uma lente

3 Introdução

Ondas transportam energia e pela 1ª lei da Termodinâmica essa energia deve ser conservada. Verificam-se diversas ocasiões no dia a dia no qual a intensidade luminosa diminui ao longo da propagação da luz, isso no entanto não contradiz a primeira lei. Primeiramente a intensidade luminosa recebida está relacionada com a media no tempo da energia por uma área e não com a energia total da onda. Além disso a onda interage com a matéria e quando isso ocorre elétrons excitados podem ficar com parte da energia original ou a onda ser espalhada em outras direções diferentes da original. Veremos alguns exemplos dessas percas de intensidade.

Considere um filtro de vidro sendo iluminado, queremos estudar a fração da luz incidente que é transmitida. A luz ao atingir a superfície ar-filtro de entrada percebe uma mudança no índice de refração do meio e isso causa uma razão R_{in} de reflexão. Sendo I_0 a intensidade que incide no vidro, apenas $I_1 = (1 - R_{in})I_0$ de fato entra no vidro. Dentro do filtro temos uma razão A de absorção de intensidade devido a interação com a matéria. Da intensidade I_1 que entra no vidro apenas $I_2 = I_1(1 - A)$ chega ao final do filtro. Quando a onda atinge a superfície vidro-ar de saída novamente ocorre uma reflexão. Supomos que a razão de reflexão de saída R_{out} é a mesma da de entrada $R_{in} = R_{out} = R$. A figura 1a ilustra esse processo. No caso de termos n filtros em série com ar entre eles teremos esse processo n vezes e a intensidade final medida será:

$$I(n) = I_0$$
 $\underbrace{(1-R)^n}_{\text{reflexão de entrada em cada filtro}}$ \cdot $\underbrace{(1-A)^n}_{\text{absorção em cada filtro}}$ \cdot $\underbrace{(1-R)^n}_{\text{reflexão de saída em cada filtro}}$

Se medirmos a intensidade de luz após esses n filtros observaremos não só a perca por absorção mas também por reflexão. Suponha agora que os filtros estivessem juntos, sem ar entre eles. Nesse caso teríamos apenas reflexão na entrada do primeiro filtro e na saída do último e a intensidade medida seria:

$$I'(n) = I_0$$

$$\underbrace{(1-R)}_{\text{reflexão de entrada no 1}^{\text{o}} \text{ filtro}} \cdot \underbrace{(1-A)^n}_{\text{absorção em cada filtro}} \cdot \underbrace{(1-R)}_{\text{reflexão de saída no último filtro}}$$

Observe que se em vez de as placas estarem grudadas tivermos um material com mesmo índice de refração que os filtros - óleo mineral por exemplo - permeando o espaço entre estes os efeitos relativos à reflexão serão os mesmos e a fórmula 2 é válida. Essas duas medidas nos ajudarão a determinar R e A. Defina a fração de luz transmitida T(n) por n filtros como: ¹

$$T(n) = \frac{I(n)}{I_0} \tag{3}$$

¹Para o caso sem óleo definimos também o coeficiente de transmissão por filtro T como segue: $I(n) = T^n I_0$, ou $T(n) = T^n$. Ele mede a perca total - incluindo reflexões e absorção - por filtro.

onde I(n) é a intensidade medida após a onda passar por n filtros e I_0 é a intensidade inicial de luz. Calculamos a razão entre os coeficiente T(n) da primeira (sem óleo) e T'(n)da segunda situação (com óleo) e tiramos o log. Obtemos:

$$\log\left(\frac{T(n)}{T'(n)}\right) = \log\left(\frac{\frac{(1-R)^{2n}(1-A)^{n}I_{0}}{I_{0}}}{\frac{(1-R)^{2}(1-A)^{n}I_{0}}{I_{0}}}\right) = \log\left((1-R)^{2n-2}\right)$$

$$= \underbrace{(2\log(1-R))}_{\text{coef. angular}} n \underbrace{-2\log(1-R)}_{\text{coef. linear}}$$
(4)

Podemos então obter R a partir do coeficiente angular da reta do gráfico monolog de $\frac{T(n)}{T'(n)}$ por n. Conhecendo R podemos usar a relação 1 ou 2 para obter A.

Os coeficientes calculados até agora medem uma razão de intensidade transmitida, absorvida ou refletida. Queremos determinar um coeficiente de absorção α ou extinção ξ que meça o decaimento exponencial da intensidade segundo a fórmula:

$$I(x) = I_0 e^{-cx} \tag{5}$$

Caso usemos I_0 como intensidade incidente mediremos o $c = \xi$ que engloba todas as percas, caso usemos a intensidade que de fato entra no meio obteremos $c = \alpha$. Note que é difícil saber essa intensidade que entra no vidro mas podemos determinar α indiretamente. Considere que na fórmula 5 estejamos usando a intensidade que entra no filtro e seja x_L o comprimento de um filtro. Nesse caso: $e^{-\alpha x_L} = \frac{I(x_L)}{I_0}$. Agora, a razão de absorção A é:

variação da intensidade
$$A = \frac{I_0 - I(x_L)}{I_0} = 1 - e^{-\alpha x_L}$$
intensidade que entra no filtro

Dessa forma, conhecendo o comprimento x_L de um filtro e tendo achado a razão de absorção A podemos determinar α o coeficiente de absorção do filtro utilizado.

A intensidade de luz também diminui na propagação pelo vácuo sem que haja meio material para absorver, dispersar ou refletir. Nesse caso a diminuição se dá pelo aumento da área coberta pela frente de onda. Se a luz é pontual então a frente de onda é esférica e a área coberta aumenta com o quadrado do raio. Assim, a mesma energia tem que se distribuir por uma maior área e a intensidade luminosa percebida(energia por área por tempo) diminui com a distancia. Veja a figura 1b para ilustração, a concentração de raios passando por uma mesma área diminui a medida que nos afastamos da fonte pontual.

Figura 1: Diminuição da Intensidade Luminosa

4 Procedimentos

4.1 Determinação dos coeficientes

Monta-se o banco ótico como na figura 2a sem filtros. A lente e o diafragma são posicionados de forma a focalizar toda a área do detetor. A fonte é ligada e mede-se a intensidade I_0 medida no detetor. Um a um os filtros são colocados no suporte e para cada filtro adicionado anota-se a medida de intensidade de luz. Esse procedimento é refeito mas agora entre um filtro e outro pinga-se uma gota de óleo mineral que é espalhada homogeneamente pela superfície de contato.

4.2 Medindo o decaimento da intensidade com a distância no ar

Monta-se o banco ótico como na figura 2b. Retira-se a lente colimadora do housing e faz-se variar a distância do detetor à fonte anotando-se a intensidade medida e a distância em cada etapa. Deve-se tomar cuidado para medir a distância a partir da lâmpada da fonte e não do housing. As medidas são feitas 15 a 65 cm com saltos de 2 cm. Recoloca-se a lente colimadora no housing e as medidas são refeitas.

Figura 2: Procedimentos

5 Dados

Os dados dos procedimentos 1 são mostrados nas tabelas 1 e 2. Elas mostram ainda a razão $T(m) = \frac{I(m)}{I_0}$. Na tabela 3 vemos a razão $\frac{T(m)}{T'(m)}$ em função de m. Na tabela 4 temos os dados relativos ao procedimento 2, sendo I_1 a intensidade da luz medida na etapa sem lente e I_2 da etapa com lente.

M	I(m) ±5%	T(m)
0	281	1.000
1	179	0.637
2	112	0.399
3	71	0.253
4	46	0.164
5	29	0.103
6	19	0.068

M	I'(m)±5%	T'(m)
0	280	1.000
1	174	0.621
2	120	0.429
3	84	0.300
4	59	0.211
5	40	0.143
6	29	0.104

Tabela 1: sem óleo

 $\begin{array}{c|c} M & \frac{T(m)}{T'(m)} \\ \hline 1 & 1.026 \\ \hline 2 & 0.930 \\ \hline 3 & 0.843 \\ \hline 4 & 0.777 \\ \hline 5 & 0.720 \\ \hline 6 & 0.654 \\ \hline \end{array}$

Tabela 3: $\frac{T(m)}{T'(m)} \times m$

0.654

Tabela 2: com óleo

	T .	ı
$x(cm) \pm 0.05cm$	$I_1(x) \pm 5\%$	$I_2(x) \pm 5\%$
15.00	7000	22000
17.00	5300	19500
19.00	4130	17200
21.00	3180	15000
23.00	2520	13400
25.00	2100	11950
27.00	1740	10790
29.00	1520	9900
31.00	1289	9050
33.00	1116	8300
35.00	985	7700
37.00	862	6990
39.00	783	6500
41.00	705	6000
43.00	638	5580
45.00	576	5280
47.00	516	4950
49.00	475	4670
51.00	460	4380
53.00	419	4160
55.00	387	3970
57.00	360	3720
59.00	334	3590
61.00	325	3420
63.00	320	3260
65.00	303	3180

Tabela 4: Intensidade como função da distância

6 Análise de Dados

Nos gráficos 3 vemos T(m) plotado em função de m. Em 4 vemos I(x) vs x, onde I(x) é a intensidade da etapa sem óleo. No gráfico 6 temos os dados da tabela 3 em escala mono-log. Em 7 vemos a curva de decaimento da intensidade em função da distância no ar para o procedimento 2 etapas com lente e sem lente. Em todos os gráficos vemos também a curva obtida da regressão dos dados. Podemos agora obter algumas constantes do processo.

No gráfico 3 as equação da curva regredida à forma $T(m) = \mathbf{T}^m$ é:

$$T(m) = 0.634^m (7)$$

comparando os termos obtemos:

$$T = 0.634 = 63.4\%$$
 (Taxa de transmissão sem óleo)

No gráfico 4 plotamos os dados da intensidade em função do comprimento que a onda percorre dentro do filtro. Para isso apenas multiplicamos o número de filtros m pelo comprimento de cada filtro $x_l = 3mm$. A equação da curva obtida pela regressão ao decaimento exponencial $I(x) = Ae^{-cx}$ é:

$$I(x) = 281.293e^{-0.152x}$$

Nesse caso, sem óleo, estamos considerando a perda de energia por absorção e reflexão e por isso obtemos ξ o coeficiente de absorção.

$$\xi = 15.2 \text{ mm}^{-1}$$
 (coeficiente de extinsão sem óleo) (8)

No gráfico 6 vemos $log(\frac{T(m)}{T'(M)})$ por m. A equação da regressão linear obtida é:

$$log(\frac{T(m)}{T'(m)}) = -0.089 \cdot m + (0.106) \tag{9}$$

Comparamos os termos da regressão com a equação 4 da introdução para determinar **R**.

$$\mathbf{R} = 1 - 10^{-\frac{0.089}{2}}$$

$$\Rightarrow \mathbf{R} = 9.74\% \quad \text{(coeficiente de reflexão)}$$
(10)

Podemos agora calcular a fração de absorvição A pela fórmula 1 fazendo $I(m) = T^m$, isolando A, e usando os valores de **R** e **T** obtidos.

$$T(m) = \frac{I(m)}{I_0} = (1 - \mathbf{R})^{2m} (1 - \mathbf{A})^m = \mathbf{T}^m$$

$$\Rightarrow \mathbf{A} = 1 - \frac{\mathbf{T}}{(1 - \mathbf{R})^2} = 1 - \frac{0.634}{1 - 0.0974}$$
(11)
$$\mathbf{A} = 22.18\%$$
 (fração de absorção)

Conhecendo A podemos achar o coeficiente de absorção α usando a fórmula 6:

$$\alpha = -\frac{\ln(1-A)}{x_L} = -\frac{\ln(1-0.2218)}{3\text{mm}}$$

$$\alpha = 0.08359\text{mm}^{-1}$$
 (coeficiente de absorção) (12)

É válido notar que a razão de absorção $\bf A$ e o coeficiente de absorção α tem significados distintos apesar de semelhantes. $\bf A$ mede uma fração da intensidade que é absorvida por filtro e pode depender da geometria deste, α mede o decaimento como propriedade do material. Se o filtro tivesse espessura diferente é provável que $\bf A$ fosse diferente, mas α seria o mesmo.

Comparando com os valores dos coeficientes de absorção da água e do cobre para o mesmo comprimento de onda, temos que o coeficiente do filtro é maior que o da água e muito menor do que o do cobre, já que os valores são aproximadamente $\alpha_{H_2O} = 0,0022 \text{cm}^{-1}$ e $\alpha_{cu} = 10^7 \text{cm}^{-1}$.

Passamos agora ao estudo do decaimento da intensidade no ar no procedimento 2. Vimos no procedimento 1 que o decaimento seguiu uma função exponencial, será que o mesmo acontece com o decaimento no ar? O gráfico 7 mostra os dados plotados junto com ajustes na forma $I(x) = Ae^{-cx}$ na linha contínua e na forma $I(x) = A(x - b)^c$ em tracejado. Vemos que um decaimento exponencial não se adepta aos dados mas que o decaimento polinomial sim. Essa diferença na forma do decaimento pode ser explicada pela diferença na origem do decaimento. No procedimento 1 o decaimento ocorre por interação com a matéria enquanto no procedimento 2 ela ocorre principalmente pelo aumento da área coberta pela frente de onda. As equações das curvas pontilhadas são:

$$I_1(x) = 3000000 \cdot x^{-2.243}$$
 (decaimento sem o colimador)
 $I_2(x) = 3000001.623 \cdot (x - (-5.941))^{-1.610}$ (decaimento com o colimador) (13)

A primeira equação nos mostra que o a intensidade decai aproximadamente com o quadrado da distância, o que é esperado de uma fonte pontual no vácuo. O fato de o expoente de x ser -2.243 e não -2.0 não está bem claro. Talvez isso tenha ocorrido pelo fato da fonte não ser pontual, ou ainda pode ser que ocorra interação significativa da luz com ar e isso faça a intensidade cair mais rapidamente do que no caso idealizado onde aproximamos a propagação no ar como aquela no vácuo.

Em relação a segunda equação vê-se que o colimador reduz o decaimento ao diminuir o módulo do expoente de x nas equações acima. Idealmente a intensidade da luz colimada não deveria reduzir pois o colimador ideal produziria uma onda plana que ao se propagar cobriria sempre a mesma área. Além disso nota-se que a

colocação do colimador faz necessário um ajuste no eixo x dos dados, isso pode ser visto no termo (x - 5.941). Isso ocorre pois as distâncias medidas foram tomadas entre o sensor de intensidade luminosa e a lâmpada emissora. A distância entre a lâmpada e a superfície externa do colimador quando acoplado ao *housing* é de 6.00 cm, aproximadamente o ajuste que foi necessário. Isso indica que para o experimento com o colimador a fonte de luz deve ser considerada como a superfície externa do colimador e não a lâmpada.

Figura 3: T(m) x m

Figura 4: I(x) x x 12

Figura 5: Dados e regressões do procedimento 1:sem óleo

Figura 6: Regressão dos dado da tabela 3

Figura 7: Regressão dos dados do procedimento 2

7 Conclusão

O experimento permitiu medir e estudar a diferença entre as várias constantes relacionadas a diminuição de intensidade luminosa devido a interação com a matéria. Para o filtro em estudo foi possível medir uma razão de 9.74% de reflexão e 22.18% de absorção de intensidade. Determinou-se ainda o coeficiente de absorção do material do filtro em 0.08359 mm⁻². O estudo da intensidade luminosa com a distância percorrida no ar obteve um decaimento ligeiramente mais rápido do que o quadrático esperado, sugerindo que a interação com o ar é significativa. Por último, observamos que o uso do colimador diminui a taxa na queda da intensidade mas de forma distante da idealizada de ondas planas.

Referências

- [1] JEWETT, J.W.; SERWAY, R.A. *Física para cientistas e engenheiros* volume 4 : Luz, Óptica e Física Moderna. 8^a ed. São Paulo : Cengage Learning, 2012.
- [2] HALLIDAY, D.; RESNICK, R.; WALKER. Fundamentos de Física volume 4 8^a ed. Rio de Janeiro: LTC, 2009.
- [3] Wikipedia. Inverse-square law . Disponível em: http://en.wikipedia.org/wiki/Inverse-square_law. Acesso em: 29 de maio de 2013