# Weakly Supervised Learning for Road Scene Understanding

Donglu Wang

Supervisor: Dr Jose M Alvarez

### Outline

- ► Introduction
- Methods
  - ► Convolutional Neural Networks
  - ► Convolutional Auto-Encoders
  - Principal Component Analysis
  - ► Image Segmentation
  - ► Markov Random Fields
- ► Results
- Discussion
- ► Future Work

### Introduction

► Road detection (monocular videos or images)

► Key to autonomous driving systems

► A challenging computer vision problem (varying weather and illumination conditions, cars and pedestrians)

### Introduction

- Existing road detection methods highly involve handcrafted features
- Examples: edges, intersections, SIFT, etc.
- ► Not general, not easy to compute
- ► Goal:
  - ► Learn adequate features automatically
  - ► Tractable running time, generalizability

### Methods

- ► Classification, three categories: road, sky, vertical
- ▶ One label is required for each pixel
- ► For each pixel, use its surrounding area as input (e.g., a 32\*32 patch)

# Methods



### Methods

Based on Convolutional Neural Networks

- Unsupervised feature learning
  - ▶ Principal Component Analysis, Convolutional Auto-encoders
- Unsupervised learning methods to improve performance
  - ► Image segmentation, Markov Random Fields

### Data

- KITTI "Road" category http://www.cvlibs.net/datasets/kitti/raw\_data.php?type=road
- ► Generate (noisy) labels by using 3D reconstruction tools
- Label each part of image into one of three categories: ground (road), vertical, sky
- Automatic Photo Pop-up (Hoiem et al.) <a href="http://web.engr.illinois.edu/~dhoiem/projects/popup/">http://web.engr.illinois.edu/~dhoiem/projects/popup/</a>
- ► Manually labelled 60 images
- ► Label noise ratio: 0.1274

### Data

Original Image



Generated Labels (noisy)



Manual Labels



### Convolutional Neural Networks

- ▶ Discrete convolution of receptive fields and kernels
- Learn local, translation invariant features
- ▶ Deep architecture, higher-order features



### Convolutional Auto-Encoders

- ► Limited amount of labels, unsupervised feature learning
- Similar architecture as convolutional neural networks
- ▶ Use input data as target output
- ► Reconstruct input data from hidden representations



(Lemme et al. 2010)

### Convolutional Auto-Encoders

▶ By visualizing kernels and comparing reconstruction errors, help to adjust the architecture of convolutional neural networks



# Principal Component Analysis

Orthogonal projection of the data onto a subspace, such that the variance of the projected data is maximized



### Principal Component Analysis

- Bases of subspace are features
- Less correlated with each other

- ► ZCA Whitening:
  - ► Features have the same variance
  - ► No dimensionality reduction
  - ▶ Rotate the data to be as close as possible to the original input data

### **Image Segmentation**

- So far, pixels are predicted independently
- Pixel by pixel, high computational cost
- Segment images into super-pixels, use the centroid of each super-pixel to predict



### Image Segmentation

- Benefits:
  - Speed up prediction process substantially
  - Avoid boundary points
  - ▶ Neighbouring pixels share the same label

### Markov Random Fields



- ► Image denoising on super-pixel level
- ► Assume correlation between neighbouring super-pixels

# Markov Random Fields





### Markov Random Fields

- Drawbacks:
  - Assumption does not hold
  - ▶ E.g. pedestrians on the road

#### Results

|     | Pixels | Super-pixels | Manual Labels | Training Error |
|-----|--------|--------------|---------------|----------------|
| Raw | 0.1974 | 0.1918       | 0.1442        | 0.1535         |
| ZCA | 0.1786 | 0.1762       | 0.1274        | 0.1245         |
| CAE | 0.1726 | 0.1701       | 0.1267        | 0.1237         |

- Training data: 264 images and generated labels, 5 random patches from each class per image, in total 264\*5\*3 = 3,960 patches
- ► Test data one (pixels): 205 images and generated labels, 100 random patches per image, in total 205\*100 = 20,500 patches
- ► Test data two (super-pixels): 205 images and generated labels
- ► Test data three (super-pixels on manual labels): 20 manually labelled images from visually different scenes

### Results



Best practice: CAE(pre-train) + CNN(train) + Super-pixels(predict)

# Results

|     | Manual Labels |
|-----|---------------|
| Raw | 0.1173        |
| ZCA | 0.1320        |
| CAE | 0.1049        |

### **Discussion**

- ► Acceptable results with a small amount of training data
- Effective approach
- Resistant to noise
  - ▶ 0.1274 training noise vs. 0.1267 test error on manual labels
- tractable running time, generalize well
- Limitations:
  - ▶ Patch size, lose information of the whole image
  - ► Correlation between consecutive images is not considered

### Future Work

- ► Increase the quality and quantity of training data
- Capture the correlation between consecutive images in videos
- ► Apply on other problems

# Thank You