Art Unit: 1625

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of the Claims:

- 1-3. (canceled)
- 4. (withdrawn) A compound of the formula (II):

$$\begin{bmatrix} O \end{bmatrix}_{n} & R_{1} & O \\ S & - C - N \\ R_{2} & R_{4} \end{bmatrix}$$
(II)

wherein

X is $-(CH_2)_{m^-}$, $-O_-$, $-S(O)_{n^-}$, $-N(R_5)_-$, $-CH=CH_-$, or $-CH_2-CH=CH_-$; m is 0, 1, 2 or 3;

n is 0, 1 or 2;

 R_1 - R_4 are the same or different and are each selected from H, lower alkyl, -OH, <u>and</u> - $CH(R_6)$ - $CONR_7R_8$; or any of R_1 - R_4 can be taken together to form a 3-7 member carbocyclic or heterocyclic ring;

R₅ is H, lower alkyl, or -OH;

R₆, R₇ and R₈ are each independently H or lower alkyl; and

ring A, together with the carbon atoms to which it is attached is selected from:

- a) a 6-membered carbocyclic ring in which from 1 to 3 carbon atoms may be replaced by hetero atoms selected from oxygen, nitrogen and sulfur; and
- b) a 5-membered carbocyclic ring in which either:
 - i) one carbon atom may be replaced with an oxygen, nitrogen, or sulfur atom;

Art Unit: 1625

ii) two carbon atoms may be replaced with a sulfur and a nitrogen atom, an oxygen and a nitrogen atom, or two nitrogen atoms; or

iii) three carbon atoms may be replaced with three nitrogen atoms, one oxygen and two nitrogen atoms, or one sulfur and two nitrogen atoms; and the stereoisomeric forms, mixtures of stereoisomeric forms, or pharmaceutically acceptable salt and ester forms thereof.

5-16. (canceled)

17. (original) A compound of formula (V):

$$Ar_1 \xrightarrow{R_{2A}} N \xrightarrow{R_{4A}}$$

(V)

wherein:

Ar₁ and Ar₂ are each independently selected from C₆-C₁₀ aryl or heteroaryl; wherein each of Ar₁ or Ar₂ may be independently optionally substituted with 1-3 substituents independently selected from:

- a) H, C₆-C₁₀ aryl, heteroaryl, F, Cl, Br, I, -CN, -CF₃, -NO₂, -OH, -OR₇, O(CH₂)_pNR₉R₁₀, -OC(=O)R₇, -OC(=O)NR₉R₁₀, -O(CH₂)_pOR₈, -CH₂OR₈, -NR₉R₁₀, -NR₈S(=O)₂R₇, -NR₈C(=O)R₇, or -NR₈C(=S)R₇;
- b) $-CH_2OR_{11}$;
- c) $-NR_8C(=O)NR_9R_{10}, -NR_8C(=S)NR_9R_{10}, -CO_2R_{12}, -C(=O)R_{13}, -C(=O)NR_9R_{10}, -C(=S)NR_9R_{10}, -CH=NOR_{12}, -CH=NR_7, -(CH_2)_pNR_9R_{10}, -CH=NR_1, -CH=NNR_{12}R_{12A}, -C(=NR_8)NR_{8A}R_{8B} -NR_8C(=NH)R_{8A}, -C(=NR_8)NR_{8A}R_{8B} -NR_8C(=NH)R_{8A}, -C(=NR_8)NR_{8A}R_{8B} -NR_8C(=NH)R_{8A}, -C(=NR_8)NR_{8A}R_{8B} -NR_8C(=NH)R_{8A}, -C(=NR_8)NR_{8A}R_{8B} -NR_8C(=NH)R_{8A}, -C(=NR_8)NR_8R_{8B} -NR_8C(=NH)R_{8A}, -C(=NR_8)R_8R_{8B} -NR_8C(=NH)R_{8A}, -C(=NR_8)R_8R_{8B} -NR_8C(=NH)R_{8A}, -C(=NR_8)R_{8A}R_{8B} -NR_8C(=NH)R_{8A}, -C(=NR_8)R_{8A}R_{8B} -NR_8C(=NH)R_{8A}, -C(=NR_8)R_{8A}R_{8B} -NR_8C(=NH)R_{8A}, -C(=NR_8)R_{8A}R_{8B} -NR_8C(=NH)R_{8A}, -C(=NR_8)R_{8A}R_{8B} -NR_8C(=NH)R_{8A}, -C(=NR_8)R_{8A}R_{8B} -NR_8C(=NH)R_{8A}R_{8B}, -R_8C(=NH)R_{8A}R_{8B} -NR_8C(=NH)R_{8A}R_{8B}R_{8$

$$(CH_2)_t \qquad (CH_2)_t \qquad (NH_2)_t \qquad (NH_2)_t$$

 $NR_8C(=NH)NR_{8A}R_{8B}$,

d) $-S(O)_vR_7$, $-(CH_2)_pS(O)_vR_7$, $-CH_2S(O)_vR_7$; and

Art Unit: 1625

- e) C_1 - C_8 alkyl, C_2 - C_8 alkenyl, or C_2 - C_8 alkynyl, where:
 - 1) each alkyl, alkenyl, or alkynyl group is unsubstituted; or
 - 2) each alkyl, alkenyl or alkynyl group is independently substituted with 1 to 3 groups independently selected from C₆-C₁₀ aryl, heteroaryl, F, Cl, Br, I, CF₃, -CN, -NO₂, -OH, -OR₇, -CH₂OR₈, - NR_9R_{10} , -O-(CH₂)_p-OH, -S-(CH₂)_p-OH, - $X_1(CH_2)_pOR_7$, $X_1(CH_2)_pNR_9R_{10}$, $-X_1(CH_2)_pC(=O)NR_9R_{10}$, - $X_1(CH_2)_pC(=S)NR_9R_{10}$, $-X_1(CH_2)_pOC(=O)NR_9R_{10}$, - $X_1(CH_2)_DCO_2R_8$, $-X_1(CH_2)_DS(O)_VR_7$, $-X_1(CH_2)_DNR_8C(=O)NR_9R_{10}$, $-C(=O)R_{13}$, $-CO_2R_{12}$, $-OC(=O)R_7$, $-C(=O)NR_9R_{10}$, - $OC(=O)NR_{12}R_{12A}$, O-tetrahydropyranyl, $-C(=S)NR_9R_{10}$, -CH=NNR₁₂R_{12A}, -CH=NOR₁₂, -CH=NR₇, -CH=NNHCH(N=NH)NH₂, -NR₈CO₂R₇, -NR₈C(=O)NR₉R₁₀, - $NR_8C(=S)NR_9R_{10}$, -NHC(=NH)NH₂, -NR₈C(=O)R₇, - $NR_8C(=S)R_7$, $-NR_8S(=O)_2R_7$, $-S(O)_yR_7$, $-S(=O)_2NR_{12}R_{12A}$, $-S(=O)_2NR_{12A}$ P(=O)(OR₈)₂, -OR₁₁, and a C₅-C₇ monosaccharide where each hydroxyl group of the monosaccharide is independently either unsubstituted or is replaced by H, C₁-C₄ alkyl, C₁-C₄ alkoxy, or -

 X_1 is -O-, -S-, -N(R_8)-;

J is C_2 - C_4 alkylene or Q-CO-;

Q is C_1 - C_3 alkylene;

R_{2A} is H, C₁-C₆ alkyl, aryl or heteroaryl;

 R_{4A} is H, C_1 - C_6 alkyl, aryl or heteroaryl;

 R_7 is C_1 - C_6 alkyl, C_6 - C_{10} aryl, or heteroaryl;

 $O-C(=O)R_7$;

 R_8 , R_{8A} and R_{8B} are each independently H, C_1 - C_4 alkyl, or C_6 - C_{10} aryl;

R₉ and R₁₀ are independently selected from H, C₁-C₄ alkyl, and C₆-C₁₀ aryl; or R₉ and R₁₀ together with the nitrogen to which they are attached, form a 3-7 member heterocyclic ring;

R₁₁ is the residue of an amino acid after the hydroxyl group of the carboxyl group is removed;

Art Unit: 1625

 R_{12} and R_{12A} are each independently selected from H, C_1 - C_6 alkyl, cycloalkyl, C_6 - C_{10} aryl, and heteroaryl; or R_{12} and R_{12A} , together with the nitrogen to which they are attached, form a 5-7 member heterocyclic ring;

 R_{13} is H, C_1 - C_6 alkyl, cycloalkyl, C_6 - C_{10} aryl, heteroaryl, - $C(=O)R_7$, - $C(=O)NR_9R_{10}$, or - $C(=S)NR_9R_{10}$;

p is from 1, 2, 3, or 4;

q is 0, 1, or 2;

t is 2, 3, or 4;

y is 0, 1 or 2;

and the stereoisomeric forms, mixtures of stereoisomeric forms, or pharmaceutically acceptable salt and ester forms thereof.

- 18. (original) The compound of claim 17, wherein Ar_1 and Ar_2 are phenyl and q=1.
- 19. (original) The compound of claim 17, wherein q is 1 and J is Q-CO to form a compound of formula (VI):

$$Ar_1 \xrightarrow{S} R_{2A} Q \xrightarrow{N} R_{4A}$$

$$(VI)$$

20-22. (canceled)

23. (currently amended) The compound of claim 19, wherein the compounds are selected in accordance with the following table:

Art Unit: 1625

$$Ar_{1} \xrightarrow{S} R_{2A} Q \xrightarrow{N} R_{4A}$$

$$(VI)$$

No.	Ar ₁	Ar ₂	R _{2A}	Q	R _{4A}
VI-1	Phenyl	Phenyl	Н	CH ₂	Н
VI-2	Phenyl	Phenyl	Н	CH ₂	CH ₃
VI-3	Phenyl	Phenyl	Н	CH ₂	(CH ₂) ₂ OMe
VI-4	Phenyl	Phenyl	Н	CH ₂	(CH ₂) ₂ OH
VI-5	Phenyl	Phenyl	Н	CH ₂	(S)-CH(CH ₃)CH ₂ OH
VI-6	4-Fluorophenyl	4-Fluorophenyl	Н	CH ₂	CH ₃
VI-7	3-Thienyl	3-Thienyl	Н	CH ₂	Н
VI-8	3-Thienyl	Phenyl	Н	CH ₂	Н
VI-9	Phenyl	Phenyl	Н	(CH ₂) ₂	Н

24-32. (canceled)

33. (withdrawn) A compound of formula (VII):

$$\begin{array}{c|c}
A & (O)_q & O \\
S & S \\
R_{2A} & J
\end{array}$$

$$\begin{array}{c|c}
N & R_{4A} \\
\hline
(VII)
\end{array}$$

wherein

•

 $\label{eq:Xisabond} X \text{ is a bond, -CH$_2$CH$_2$_-, -O-, -S(O)$_y$_-, -N(R$_8)-, -CHN(R$_8)-, -CH=CH-, -CH$_2$_-CH=CH-, -C(=O), -C(R$_8)=N-, -N=C(R$_8)-, -C(=O)-N(R$_8)-, or -NR$_8$_-C(=O)-; }$

Art Unit: 1625

Rings A and B, together with the carbon atoms to which they are attached, are each independently selected from:

- a) a 6-membered aromatic carbocyclic ring in which from 1 to 3 carbon atoms may be replaced by hetero atoms selected from oxygen, nitrogen and sulfur; and
- b) a 5-membered aromatic carbocyclic ring in which either:
 - i) one carbon atom is replaced with an oxygen, nitrogen, or sulfur atom;
 - ii) two carbon atoms are replaced with a sulfur and a nitrogen atom, an oxygen and a nitrogen atom, or two nitrogen atoms; or
 - three carbon atoms are replaced with three nitrogen atoms, one oxygen and two nitrogen atoms, or one sulfur and two nitrogen atoms;

wherein Ring A and Ring B may each independently be substituted with 1-3 substituents selected from:

- a) H, C₆-C₁₀ aryl, heteroaryl, F, Cl, Br, I, -CN, -CF₃, -NO₂, -OH, -OR₇, O(CH₂)_pNR₉R₁₀, -OC(=O)R₇, -OC(=O)NR₉R₁₀, -O(CH₂)_pOR₈, -CH₂OR₈, -NR₉R₁₀, -NR₈S(=O)₂R₇, -NR₈C(=O)R₇, or -NR₈C(=S)R₇;
- b) $-CH_2OR_{11}$;

 $NR_8C(=NH)NR_{8A}R_{8B}$

- d) $-S(O)_{y}R_{7}$, $-(CH_{2})_{p}S(O)_{y}R_{7}$, $-CH_{2}S(O)_{y}R_{7}$; and
- e) C_1 - C_8 alkyl, C_2 - C_8 alkenyl, or C_2 - C_8 alkynyl, where:
 - 1) each alkyl, alkenyl, or alkynyl group is unsubstituted; or
 - each alkyl, alkenyl or alkynyl group is independently substituted with 1 to 3 groups independently selected from C₆-C₁₀ aryl, heteroaryl, F, Cl, Br, I, CF₃, -CN, -NO₂, -OH, -OR₇, -CH₂OR₈, -NR₉R₁₀, -O-(CH₂)_p-OH, -S-(CH₂)_p-OH, X₁(CH₂)_pOR₇, X₁(CH₂)_pNR₉R₁₀, -X₁(CH₂)_pC(=O)NR₉R₁₀, -

Art Unit: 1625

 $X_1(CH_2)_pC(=S)NR_9R_{10}, -X_1(CH_2)_pOC(=O)NR_9R_{10}, -X_1(CH_2)_pCO_2R_8, -X_1(CH_2)_pS(O)_yR_7, -X_1(CH_2)_pNR_8C(=O)NR_9R_{10}, -C(=O)R_{13}, -CO_2R_{12}, -OC(=O)R_7, -C(=O)NR_9R_{10}, -OC(=O)NR_{12}R_{12A}, O-tetrahydropyranyl, -C(=S)NR_9R_{10}, -CH=NNR_{12}R_{12A}, -CH=NOR_{12}, -CH=NR_7, -CH=NNHCH(N=NH)NH_2, -NR_8CO_2R_7, -NR_8C(=O)NR_9R_{10}, -NR_8C(=S)NR_9R_{10}, -NHC(=NH)NH_2, -NR_8C(=O)R_7, -NR_8C(=O)R_7, -NR_8C(=S)R_7, -NR_8S(=O)_2R_7, -S(O)_yR_7, -S(=O)_2NR_{12}R_{12A}, -P(=O)(OR_8)_2, -OR_{11}, and a C_5-C_7 monosaccharide where each hydroxyl group of the monosaccharide is independently either unsubstituted or is replaced by H, C_1-C_4 alkyl, C_1-C_4 alkoxy, or -O-C(=O)R_7;$

J is C_2 - C_4 alkylene or Q-CO-;

Q is C_1 - C_3 alkylene;

 R_{2A} is H, C_1 - C_6 alkyl, aryl or heteroaryl;

R_{4A} is H, C₁-C₆ alkyl, aryl or heteroaryl;

 R_7 is C_1 - C_6 alkyl, C_6 - C_{10} aryl, or heteroaryl;

R₈, R_{8A} and R_{8B} are each independently H, C₁-C₄ alkyl, or C₆-C₁₀ aryl;

R₉ and R₁₀ are independently selected from H, C₁-C₄ alkyl, and C₆-C₁₀ aryl; or R₉ and R₁₀ together with the nitrogen to which they are attached, form a 3-7 member heterocyclic ring;

R₁₁ is the residue of an amino acid after the hydroxyl group of the carboxyl group is removed;

 R_{12} and R_{12A} are each independently selected from H, C_1 - C_6 alkyl, cycloalkyl, C_6 - C_{10} aryl, and heteroaryl; or R_{12} and R_{12A} , together with the nitrogen to which they are attached, form a 5-7 member heterocyclic ring;

 R_{13} is H, C_1 - C_6 alkyl, cycloalkyl, C_6 - C_{10} aryl, heteroaryl, - $C(=O)R_7$, - $C(=O)NR_9R_{10}$, or - $C(=S)NR_9R_{10}$;

 X_1 is -O-, -S-, -N(R_8)-;

p is from 1 to 4;

q is 0, 1, or 2;

t is 2, 3, or 4;

y is 0, 1 or 2;

Art Unit: 1625

and the stereoisomeric forms, mixtures of stereoisomeric forms, or pharmaceutically acceptable salt and ester forms thereof.

- 34. (withdrawn) The compound of claim 33, wherein rings A and B are benzo; X is a bond or -O- and q=1.
 - 35. (withdrawn) The compound of claim 34, having the formula (VII-1):

(VII-1)

36. (withdrawn) The compound of claim 33, wherein q is 1; and J is Q-CO- to form a compound of formula (VIII):

- 37. (withdrawn) The compound of claim 36, wherein rings A and B are benzo; and X is a bond or -O-.
 - 38. (canceled)
- 39. (withdrawn) The compound of claim 36, wherein the compounds are selected in accordance with the following table:

Art Unit: 1625

(VIII)

No.	A	В	X	R _{2A}	Q	R _{4A}
VIII-1	Benzo	Benzo	bond	Н	CH ₂	Н
VIII-2	Benzo	Benzo	bond	H	CH ₂	Me
VIII-3	Benzo	Benzo	bond	Н	CH ₂	(CH ₂) ₂ OMe
VIII-4	Benzo	Benzo	bond	Н	CH ₂	(CH ₂) ₂ OH
VIII-5	Benzo	Benzo	bond	H	CH ₂	CH(CH ₃)CH ₂ OH
VIII-6	Benzo	Benzo	bond	Н	CH ₂	ОН
VIII-7	Benzo	Benzo	bond	H	CH ₂	CH ₂ -(4-methoxyphenyl)
VIII-8	Benzo	Benzo	bond	Н	CH ₂	Ph
VIII-9	Benzo	Benzo	bond	H	(CH ₂) ₂	Н

40. (withdrawn) The compound of claim 4, wherein ring A is selected from thiophene, isothiazole, phenyl, oxazole, isoxazole, thiazole, and imidazole.

41. (canceled)

42. (currently amended) The method of claim 41, wherein the compound is administered A method of treating diseases or disorders in a subject in need thereof comprising administering a therapeutically effective amount of a compound of claim 17 to the subject for the treatment of sleepiness, tiredness, Parkinson's disease, cerebral ischemia, stroke, sleep apneas, eating disorders, attention deficit hyperactivity disorder, cognitive dysfunction or fatigue; or for the promotion of wakefulness, stimulation of appetite, or stimulation of weight gain.

Art Unit: 1625

43. (currently amended) The method of claim 41, wherein the compound is administered A method of treating diseases or disorders in a subject in need thereof comprising administering a therapeutically effective amount of a compound of claim 17 to the subject for the treatment of disorders associated with hypofunctionality of the cerebral cortex.

- 44. (previously presented) The method of claim 43, wherein the compound is administered for the treatment of depression, schizophrenia, or chronic fatigue syndrome.
- 45. (currently amended) A pharmaceutical composition comprising a compound of elaims 4, 17 or 33 claim 17 in admixture with one or more pharmaceutically acceptable excipients.
- 46. (withdrawn) The compound of claim 4 wherein ring A is thiophenylene or phenylene.
 - 47. (withdrawn) The compound of claim 46 wherein ring A is phenylene.
 - 48. (withdrawn) The compound of claim 47 wherein X is a bond.
 - 49. (withdrawn) The compound of claim 47 wherein X is -O-.
 - 50. (withdrawn) The compound of claim 47 wherein X is -NCH₃.
 - 51. (withdrawn) The compound of claim 47 wherein X is -S-.
 - 52. (withdrawn) The compound of claim 4 wherein n is 1.
- 53. (withdrawn) The compound of claim 4 wherein R_3 and R_4 are taken together with the nitrogen to which they are attached to form a morpholine ring.
- 54. (previously presented) The compound of claim 17 wherein Ar₁ and Ar₂ are each independently phenyl or thienyl.

Art Unit: 1625

55. (previously presented) The compound of claim 54 wherein Ar_1 and Ar_2 are phenyl.

- 56. (previously presented) The compound of claim 17 wherein q is 1.
- 57. (previously presented) The compound of claim 17 wherein J is C_2 alkylene.
- 58. (previously presented) The compound of claim 17 wherein J is C_3 alkylene.
- 59. (previously presented) The compound of claim 17 wherein R_{2A} is H or C_1 - C_6 alkyl and R_{4A} is phenyl, thienyl or pyridyl.
 - 60. (previously presented) The compound of claim 59 wherein R_{4A} is phenyl.
- 61. (previously presented) The compound of claim 17 wherein Ar_1 and Ar_2 are phenyl, q is 1, and J is C_2 - C_3 alkylene.
- 62. (previously presented) The compound of claim 19 wherein Q is C_1 alkylene.
- 63. (previously presented) The compound of claim 19 wherein Q is C_2 alkylene.
- 64. (currently amended) The compound of claim 19 wherein the compound is selected in accordance with the following table:

Art Unit: 1625

<u>:</u>

$$Ar_{1} \xrightarrow{S} R_{2A} Q \xrightarrow{N} R_{4A}$$

$$(VI)$$

No.	Ar ₁	Ar ₂	R _{2A}	Q	R _{4A}
VI-1	Phenyl	Phenyl	H	CH ₂	Н
VI-2	Phenyl	Phenyl	H	CH ₂	CH ₃
VI-3	Phenyl	Phenyl	Н	CH ₂	(CH ₂) ₂ OMe
VI-4	Phenyl	Phenyl	Н	CH ₂	(CH ₂) ₂ OH
VI-5	Phenyl	Phenyl	Н	CH ₂	(S)-CH(CH ₃)CH ₂ OH
VI-6	4-Fluorophenyl	4-Fluorophenyl	Н	CH ₂	CH ₃
VI-7	3-Thienyl	3-Thienyl	H	CH ₂	Н
VI-8	3-Thienyl	Phenyl	Н	CH ₂	Н
VI-9	Phenyl	Phenyl	Н	(CH ₂) ₂	Н

65. (withdrawn) The compound of claim 33 wherein rings A and B are each independently selected from phenylene and thienylene.

66. (withdrawn) The compound of claim 65 wherein rings A and B are phenylene.

- 67. (withdrawn) The compound of claim 33 wherein q is 1.
- 68. (withdrawn) The compound of claim 33 wherein X is a bond, -O-, or CH_2CH_2 .
 - 69. (withdrawn) The compound of claim 68 wherein X is a bond.
 - 70. (withdrawn) The compound of claim 33 wherein J is C_2 alkylene.
 - 71. (withdrawn) The compound of claim 33 wherein J is C_3 alkylene.

Art Unit: 1625

72. (withdrawn) The compound of claim 33 wherein rings A and B are phenylene, X is a bond, -O-, or CH_2CH_2 , q is 1, and J is C_2 - C_3 alkylene.