Direct Sum

Let $\mathcal U$ and $\mathcal V$ be two vector spaces consisting of D-vectors over a field $\mathbb F$.

Definition: If $\mathcal U$ and $\mathcal V$ share only the zero vector then we define the *direct sum* of $\mathcal U$ and $\mathcal V$ to be the set

$$\{\mathbf{u} + \mathbf{v} : \mathbf{u} \in \mathcal{U}, \mathbf{v} \in \mathcal{V}\}$$

written $\mathcal{U} \oplus \mathcal{V}$

That is, $\mathcal{U} \oplus \mathcal{V}$ is the set of all sums of a vector in \mathcal{U} and a vector in \mathcal{V} .

In Python, [u+v for u in U for v in V]

Direct Sum: Example

Vectors over GF(2):

Example: Let $\mathcal{U} = \text{Span } \{1000, 0100\}$ and let $\mathcal{V} = \text{Span } \{0010\}$.

- ightharpoonup Every nonzero vector in $\mathcal U$ has a one in the first or second position (or both) and nowhere else.
- lacktriangle Every nonzero vector in ${\cal V}$ has a one in the third position and nowhere else.

Therefore the only vector in both $\mathcal U$ and $\mathcal V$ is the zero vector.

Therefore $\mathcal{U} \oplus \mathcal{V}$ is defined.

 $\mathcal{U} \oplus \mathcal{V} = \{0000 + 0000, 1000 + 0000, 0100 + 0000, 1100 + 0000, 0000 + 0010, 1000 + 0010, 0100 + 0010, 1100 + 0010\}$ which is equal to $\{0000, 1000, 0100, 1100, 0010, 1010, 0110, 1110\}$.

Direct Sum: Example

Vectors over \mathbb{R} :

Example: Let $\mathcal{U}=$ Span $\{[1,2,1,2],[3,0,0,4]\}$ and let \mathcal{V} be the null space of $\begin{bmatrix}0&1&-1&0\\1&0&0&-1\end{bmatrix}.$

- ▶ The vector [2, -2, -1, 2] is in \mathcal{U} because it is [3, 0, 0, 4] [1, 2, 1, 2]
- \blacktriangleright It is also in \mathcal{V} because

$$\left[\begin{array}{ccc|c} 0 & 1 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{array}\right] \left[\begin{array}{c} 2 \\ -2 \\ -1 \\ 2 \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right]$$

Therefore we cannot form $\mathcal{U} \oplus \mathcal{V}$.

Direct Sum: Example

Vectors over \mathbb{R} :

Example:

- ▶ Let $\mathcal{U} = \text{Span } \{[4, -1, 1]\}.$
- $\blacktriangleright \ \mathsf{Let} \ \mathcal{V} = \mathsf{Span} \ \{[0,1,1]\}.$

The only intersection is at the origin, so $\mathcal{U}\oplus\mathcal{V}$ is defined.

- ▶ $\mathcal{U} \oplus \mathcal{V}$ is the set of vectors $\mathbf{u} + \mathbf{v}$ where $\mathbf{u} \in \mathcal{U}$ and $\mathbf{v} \in \mathcal{V}$.
- ▶ This is just Span $\{[4, -1, 1], [0, 1, 1]\}$
- ▶ Plane containing the two lines

Properties of direct sum

Lemma: $\mathcal{U} \oplus \mathcal{V}$ is a vector space.

(Prove using Properties V1, V2, V3.)

Lemma: The union of

- \triangleright a set of generators of \mathcal{U} , and
- ightharpoonup a set of generators of $\mathcal V$

is a set of generators for $\mathcal{U}\oplus\mathcal{V}$.

Proof: Suppose $\mathcal{U} = \text{Span } \{\mathbf{u}_1, \dots, \mathbf{u}_m\}$ and $\mathcal{V} = \text{Span } \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$. Then

- every vector in \mathcal{U} can be written as $\alpha_1 \mathbf{u}_1 + \cdots + \alpha_m \mathbf{u}_m$, and
- every vector in \mathcal{V} can be written as $\beta_1 \mathbf{v}_1 + \cdots + \beta_n \mathbf{v}_n$

so every vector in $\mathcal{U}\oplus\mathcal{V}$ can be written as

$$\alpha_1 \mathbf{u}_1 + \cdots + \alpha_m \mathbf{u}_m + \beta_1 \mathbf{v}_1 + \cdots + \beta_n \mathbf{v}_n$$

Properties of direct sum

Direct Sum Basis Lemma:

Union of a basis of \mathcal{U} and a basis of \mathcal{V} is a basis of $\mathcal{U} \oplus \mathcal{V}$.

Proof: Clearly

- ightharpoonup a basis of $\mathcal U$ is a set of generators for $\mathcal U$, and
- ightharpoonup a basis of $\mathcal V$ is a set of generators for $\mathcal V$.

Therefore the previous lemma shows that

lacktriangle the union of a basis for $\mathcal U$ and a basis for $\mathcal V$ is a generating set for $\mathcal U\oplus\mathcal V$.

We just need to show that the union is linearly independent.

Properties of direct sum

Direct Sum Basis Lemma:

Union of a basis of \mathcal{U} and a basis of \mathcal{V} is a basis of $\mathcal{U} \oplus \mathcal{V}$.

Proof, cont'd: Let $\{\mathbf{u}_1, \dots, \mathbf{u}_m\}$ be a basis for \mathcal{U} . Let $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ be a basis for \mathcal{V} .

We need to show that $\{\mathbf{u}_1,\ldots,\mathbf{u}_m,\mathbf{v}_1,\ldots,\mathbf{v}_n\}$ is independent.

Suppose

$$\mathbf{0} = \alpha_1 \mathbf{u}_1 + \cdots + \alpha_m \mathbf{u}_m + \beta_1 \mathbf{v}_1 + \cdots + \beta_n \mathbf{v}_n.$$

Then

$$\underbrace{\alpha_1 \; \mathbf{u}_1 + \dots + \alpha_m \; \mathbf{u}_m}_{\text{in } \mathcal{U}} = \underbrace{(-\beta_1) \; \mathbf{v}_1 + \dots + (-\beta_n) \; \mathbf{v}_n}_{\text{in } \mathcal{V}}$$

Left-hand side is a vector in \mathcal{U} , and right-hand side is a vector in \mathcal{V} .

By definition of $\mathcal{U} \oplus \mathcal{V}$, the only vector in both \mathcal{U} and \mathcal{V} is the zero vector.

This shows:

$$\mathbf{0} = \alpha_1 \mathbf{u}_1 + \cdots + \alpha_m \mathbf{u}_m$$

and

$$\mathbf{0} = (-\beta_1) \mathbf{v}_1 + \cdots + (-\beta_n) \mathbf{v}_n$$

By linear independence, the linear combinations must be trivial.

QED

Direct Sum

Direct Sum Basis Lemma:

Union of a basis of \mathcal{U} and a basis of \mathcal{V} is a basis of $\mathcal{U} \oplus \mathcal{V}$.

Direct Sum Dimension Corollary: $\dim \mathcal{U} + \dim \mathcal{V} = \dim \mathcal{U} \oplus \mathcal{V}$

Proof: A basis for \mathcal{U} together with a basis for \mathcal{V} forms a basis for $\mathcal{U} \oplus \mathcal{V}$. QED

Complementary subspace

If $\mathcal{U} \oplus \mathcal{V} = \mathcal{W}$, we say \mathcal{U} and \mathcal{V} are complementary subspaces of \mathcal{W} .

Example: Suppose \mathcal{U} is a plane in \mathbb{R}^3 .

Then any line through the origin that does not lie in $\mathcal U$ is complementary subspace with respect to $\mathbb R^3$

Example illustrates that, for a given subspace $\mathcal U$ of $\mathcal W$, there can be many different subspaces $\mathcal V$ such that $\mathcal U$ and $\mathcal V$ are complementary.

Complementary subspace

Proposition: For any finite-dimensional vector space \mathcal{W} and any subspace \mathcal{U} , there is a subspace \mathcal{V} such that \mathcal{U} and \mathcal{V} are complementary.

Proof: Let $\mathbf{u}_1, \dots, \mathbf{u}_k$ be a basis for \mathcal{U} . By Superset-Basis Lemma, there is a basis for

 \mathcal{W} that includes $\mathbf{u}_1, \dots, \mathbf{u}_k$:

$$B = \{\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{v}_1, \dots, \mathbf{v}_r\}$$

Let $\mathcal{V} = \mathsf{Span} \{ \mathbf{v}_1, \dots, \mathbf{v}_r \}$.

Any vector in ${\mathcal W}$ can be written in terms of its basis:

$$\mathbf{w} = \underbrace{\alpha_1 \, \mathbf{u}_1 + \dots + \alpha_k \, \mathbf{u}_k}_{\text{in } \mathcal{U}} + \underbrace{\beta_1 \, \mathbf{v}_1 + \dots + \beta_r \, \mathbf{v}_r}_{\text{in } \mathcal{V}}$$

If some vector \mathbf{v} is in Span $\{\mathbf{u}_1,\ldots,\mathbf{u}_k\}$ and in Span $\{\mathbf{v}_1,\ldots,\mathbf{v}_r\}$ then $\mathbf{v}=\alpha_1\,\mathbf{u}_1+\cdots+\alpha_k\,\mathbf{u}_k$ and $\mathbf{v}=\beta_1\,\mathbf{v}_1+\cdots+\beta_r\,\mathbf{v}_r$ so

$$\alpha_1 \mathbf{u}_1 + \cdots + \alpha_k \mathbf{u}_k = \beta_1 \mathbf{v}_1 + \cdots + \beta_r \mathbf{v}_r$$

$$\mathbf{0} = \alpha_1 \, \mathbf{u}_1 + \dots + \alpha_k \, \mathbf{u}_k - \beta_1 \, \mathbf{v}_1 - \dots - \beta_r \, \mathbf{v}_r$$

so $\alpha_1 = \cdots = \alpha_k = \beta_1 = \cdots = \beta_r = 0$ so $\mathbf{v} = \mathbf{0}$.

QED