Package 'opticskxi'

December 9, 2024

Title OPTICS K-Xi Density-Based Clustering

Version 1.1.0

Description Density-based clustering methods are well adapted to the clustering of high-dimensional data and enable the discovery of core groups of various shapes despite large amounts of noise. This package provides a novel density-based cluster extraction method, OPTICS k-Xi, and a framework to compare k-Xi models using distance-based metrics to investigate datasets with unknown number of clusters. The vignette first introduces density-based algorithms with simulated datasets, then presents and evaluates the k-Xi cluster extraction method. Finally, the models comparison framework is described and experimented on 2 genetic datasets to identify groups and their discriminating features. The k-Xi algorithm is a novel OPTICS cluster extraction method that specifies directly the number of clusters and does not require fine-tuning of the steepness parameter as the OPTICS Xi method. Combined with a framework that compares models with varying parameters, the OPTICS k-Xi method can identify groups in noisy datasets with unknown number of clusters. Results on summarized genetic data of 1,200 patients are in Charlon T. (2019) <doi:10.13097/archive-ouverte/unige:161795>.

Imports ggplot2, magrittr, rlang

Depends R (>= 3.5.0)

Suggests amap, dbscan, cowplot, fastICA, fpc, ggrepel, grid, grDevices, gtable, knitr, parallel, plyr, reshape2, stats, testthat, text2vec, utils

VignetteBuilder knitr

License GPL-3 Encoding UTF-8 RoxygenNote 7.3.2

URL https://gitlab.com/thomaschln/opticskxi

BugReports https://gitlab.com/thomaschln/opticskxi/-/issues

NeedsCompilation no

Author Thomas Charlon [aut, cre] (https://orcid.org/0000-0001-7497-0470)

Maintainer Thomas Charlon < charlon@protonmail.com>

Repository CRAN

Date/Publication 2024-12-09 16:40:02 UTC

2 contingency_table

Contents

•		1)
ζ.		19
	%>%	18
	% \$%	18
	%<>%	
	residuals_table	
	psych_kxi_pipeline	16
	psych_kxi_ensemble_models	15
	print_table	15
	opticskxi_pipeline	14
	opticskxi	13
	nice_palette	
	m_psychwords	12
	multishapes	11
	hla	11
	gtable_kxi_profiles	10
	ggplot_optics	
	ggplot_kxi_metrics	
	ggpairs	8
	get_best_kxi	7
	fortify_pca	
	fortify_ica	6
	fortify_dimred	5
	ensemble_models	. 4
	ensemble_metrics	3
	crohn	
	contingency_table	. 2

contingency_table

Contingency table

Description

Include NAs and add totals to table.

Usage

```
contingency_table(...)
```

Arguments

... Passed to table

Value

Table object

crohn 3

crohn

Crohn's disease data

Description

The data set consist of 103 common (>5% minor allele frequency) SNPs genotyped in 129 trios from an European-derived population. These SNPs are in a 500-kb region on human chromosome 5q31 implicated as containing a genetic risk factor for Crohn disease.

Imported from the gap R package.

An example use of the data is with the following paper, Kelly M. Burkett, Celia M. T. Greenwood, BradMcNeney, Jinko Graham. Gene genealogies for genetic association mapping, with application to Crohn's disease. Fron Genet 2013, 4(260) doi: 10.3389/fgene.2013.00260

Usage

```
data(crohn)
```

Format

A data frame containing 387 rows and 212 columns

Source

MJ Daly, JD Rioux, SF Schaffner, TJ Hudson, ES Lander (2001) High-resolution haplotype structure in the human genome Nature Genetics 29:229-232

ensemble_metrics

Compute ensemble metrics

Description

Use models' rankings over several metrics to select best model.

Usage

```
ensemble_metrics(
  n_top = 0,
  df_params,
  metrics = NULL,
  metrics_exclude = NULL,
  n_models = 10
)
```

4 ensemble_models

Arguments

n_top Threshold of number of models to rank

df_params Output of opticskxi_pipeline

metrics Names of metrics to use. Any of those computed by opticskxi_pipeline, e.g.

'sindex', 'ch', 'dunn', 'dunn2', 'widestgap', 'entropy' etc. NULL for all (8).

metrics_exclude

Names of metrics to exclude. Typically used with metrics = NULL. E.g. 'en-

tropy'.

n_models Number of best models to return

Value

List of metrics matrix and df_params subsetted to best models

ensemble_models Select models based on ensemble metrics

Description

Typically we will call ensemble_metrics with varying numbers of ranks to consider and this function will sum up the ranks from those calls.

Usage

```
ensemble_models(l_ensemble_metrics, n_models = 4)
```

Arguments

1_ensemble_metrics

Output of function ensemble_metrics

n_models Number of best models to return

Value

List of parameters of best models

fortify_dimred 5

for	tifv	_dimred	
-----	------	---------	--

Fortify a dimension reduction object

Description

Fortify a dimension reduction object

Usage

```
fortify_dimred(
   m_dimred,
   m_vars = NULL,
   v_variance = NULL,
   sup_vars = NULL,
   var_digits = 1
)
```

Arguments

m_dimred	Projection matrix
m_vars	Rotation matrix (optional)
v_variance	Explained variance (optional)
sup_vars	Optional supplementary variables
var_digits	Explained variance percent digits

Value

Data frame

See Also

```
fortify_pca, fortify_ica
```

Examples

```
pca <- prcomp(iris[-5])
df_pca <- fortify_dimred(pca$x)</pre>
```

6 fortify_pca

fortify_ica

Get and fortify ICA

Description

Get and fortify ICA

Usage

```
fortify_ica(m_data, ..., sup_vars = NULL)
```

Arguments

m_data Input matrix

... Passed to fastICA::fastICA

sup_vars Optional supplementary variables

Value

Fortified dimension reduction

See Also

```
fortify_dimred, fortify_pca
```

Examples

```
df_ica <- fortify_ica(iris[-5], n.comp = 2)</pre>
```

fortify_pca

Get and fortify PCA

Description

Get and fortify PCA

Usage

```
fortify_pca(m_data, ..., sup_vars = NULL)
```

Arguments

m_data Input matrix

... Passed to stats::prcomp

sup_vars Optional supplementary variables

get_best_kxi 7

Value

Fortified dimension reduction

See Also

```
fortify_dimred, fortify_ica
```

Examples

```
df_pca <- fortify_pca(iris[-5])
df_pca <- fortify_pca(iris[-5], sup_vars = iris[5])</pre>
```

get_best_kxi

Get best k-Xi model

Description

Select k-Xi clustering model based on a metric and a rank

Usage

```
get_best_kxi(df_kxi, metric = "avg.silwidth", rank = 1)
```

Arguments

df_kxi Data frame returned by opticsxi_pipeline

metric Metric to choose best model

rank Rank(s) of model to choose, ordered by decreasing metric

Value

df_kxi row with specified metric and rank, simplified to a list if only one rank selected

See Also

```
opticskxi_pipeline
```

8 ggpairs

ggpairs

Plot multiple axes of a data frame or a fortified dimension reduction.

Description

Plot multiple axes of a data frame or a fortified dimension reduction.

Usage

```
ggpairs(
  df_data,
  group = NULL,
  axes = 1:2,
  variables = FALSE,
  n_vars = 0,
  ellipses = FALSE,
  ...,
  title = NULL,
  colors = if (!is.null(group)) nice_palette(df_data[[group]])
)
```

Arguments

df_data	Data frame
group	Column name of the grouping of observations
axes	Axes to plot. If more than 2, plots all pair combinations
variables	Logical, plot variable contributions of the dimension reduction to the selected axes, only for 2 axes
n_vars	Maximum number of variable contributions to plot. By default 0, for all variables.
ellipses	Logical, plot ellipses of groups
	Passed to ggplot2 stat_ellipse if ellipses are requested
title	String to add as title, default NULL
colors	Vector of colors for each group

Value

ggmatrix

See Also

```
fortify_pca, fortify_ica
```

ggplot_kxi_metrics 9

Examples

```
df_pca <- fortify_pca(iris[-5])
ggpairs(df_pca)
df_pca <- fortify_pca(iris[-5], sup_vars = iris[5])
ggpairs(df_pca, group = 'Species', ellipses = TRUE, variables = TRUE)</pre>
```

ggplot_kxi_metrics

Ggplot OPTICS k-Xi metrics

Description

Plot metrics of a kxi_pipeline output

Usage

```
ggplot_kxi_metrics(df_kxi, metric = c("avg.silwidth", "bw.ratio"), n = 8)
```

Arguments

df_kxi Data frame returned by opticskxi_pipeline

metric Vector of metrics to display from the df_kxi object

n Number of best models for the first metric to display

Value

ggplot

See Also

opticskxi_pipeline

ggplot_optics

Ggplot optics

Description

Plot OPTICS reachability plot.

Usage

```
ggplot_optics(
  optics_obj,
  groups = NULL,
  colors = if (!is.null(groups)) nice_palette(groups),
  segment_size = 300/nrow(df_optics)
)
```

10 gtable_kxi_profiles

Arguments

optics_obj dbscan::optics object

groups Optional vector defining groups of OPTICS observations

colors If groups specified, vector of colors for each group

segment_size Size for geom_segment

Value

ggplot

See Also

opticskxi

Examples

```
data('multishapes')
optics_obj <- dbscan::optics(multishapes[1:2])
ggplot_optics(optics_obj)
ggplot_optics(optics_obj,
  groups = opticskxi(optics_obj, n_xi = 5, pts = 30))</pre>
```

gtable_kxi_profiles

Gtable OPTICS k-Xi distance profiles

Description

Plot OPTICS distance profiles of k-Xi clustering models

Usage

```
gtable_kxi_profiles(df_kxi, metric = "avg.silwidth", rank = 1:4, ...)
```

Arguments

df_kxi Data frame returned by opticskxi_pipeline
metric Metric to choose best clustering model

rank Ranks of models to plot, ordered by decreasing model metric

... Passed to ggplot_kxi_profile

See Also

opticskxi_pipeline

hla 11

hla

The HLA data

Description

This data set contains HLA markers DRB, DQA, DQB and phenotypes of 271 Schizophrenia patients (y=1) and controls (y=0). Genotypes for 3 HLA loci have prefixes name (e.g., "DQB") and a suffix for each of two alleles (".a1" and ".a2").

Imported from the gap package.

Usage

data(hla)

Format

A data frame containing 271 rows and 8 columns

Source

Dr Padraig Wright of Pfizer

multishapes

A dataset containing clusters of multiple shapes

Description

Data containing clusters of any shapes. Useful for comparing density-based clustering (DBSCAN) and standard partitioning methods such as k-means clustering. Imported from the factoextra package.

Usage

```
data("multishapes")
```

Format

A data frame with 1100 observations on the following 3 variables.

x a numeric vector containing the x coordinates of observations

y a numeric vector containing the y coordinates of observations

shape a numeric vector corresponding to the cluster number of each observations.

Details

The dataset contains 5 clusters and some outliers/noises.

12 nice_palette

Examples

```
data('multishapes')
plot(multishapes[, 1], multishapes[, 2],
    col = multishapes[, 3], pch = 19, cex = 0.8)
```

m_psychwords

A dataset containing words by embeddings matrix

Description

Data containing Glove embeddings of psychological related words, useful for demonstrating the use of the modified opticskxi pipeline psychkxi.

Usage

```
data("m_psychwords")
```

Format

A matrix with 799 words in rows and 100 embedding dimensions in columns.

Details

The dataset contains 2 main hierarchical clusters and each has subclusters.

nice_palette

Nice palette

Description

Color palette

Usage

```
nice_palette(groups, rainbow = FALSE)
```

Arguments

groups

Vector, each unique value will get a color

rainbow

If TRUE, rainbow-like colors, else differentiate successive values

Value

Vector of colors

opticskxi 13

opticskxi

OPTICS k-Xi clustering algorithm

Description

For each largest distance differences on the OPTICS profile, consecutive observations left and right on the OPTICS profile (i.e. lower and higher OPTICS id) will be assigned to 2 different clusters if their distance is below the distance of the edge point. If above, observations are NA. The pts parameter defines a minimum number of observations to form a valley (i.e. cluster). If the number of observations in one valley is smaller than pts, observations are set to NA.

Usage

```
opticskxi(
  optics_obj,
  n_xi,
  pts = optics_obj$minPts,
  max_loop = 50,
  verbose = FALSE
)
```

Arguments

 $\begin{array}{ll} \text{optics_obj} & \text{Data frame returned by optics} \\ \text{n_xi} & \text{Number of clusters to define} \end{array}$

pts Minimum number of points per clusters
max_loop Maximum iterations to find n_xi clusters

verbose Print the ids of the largest difference considered and cluster information if they

define one

Value

Vector of clusters

See Also

```
opticskxi_pipeline, ggplot_optics
```

Examples

```
data('multishapes')
optics_shapes <- dbscan::optics(multishapes[1:2])
kxi_shapes <- opticskxi(optics_shapes, n_xi = 5, pts = 30)
ggplot_optics(optics_shapes, groups = kxi_shapes)
ggpairs(cbind(multishapes[1:2], kXi = kxi_shapes), group = 'kXi')</pre>
```

14 opticskxi_pipeline

opticskxi_pipeline

OPTICS k-Xi models comparison pipeline

Description

Computes OPTICS k-Xi models based on a parameter grid, binds results in a data frame, and computes distance based metrics for each model.

Usage

```
opticskxi_pipeline(
   m_data,
   df_params = expand.grid(n_xi = 1:10, pts = c(20, 30, 40), dist = c("euclidean",
   "abscorrelation"), dim_red = c("identity", "PCA", "ICA"), n_dimred_comp = c(5, 10, 20)),
   n_cores = 1
)
```

Arguments

m_data Data matrix

df_params Parameter grid for the OPTICS k-Xi function call and optional dimension reduc-

tion. Required columns: n_xi, pts, dist. Optonal columns: dim_red, n_dim_red.

n_cores Number of cores

Value

Input parameter data frame with with results binded in columns optics, clusters and metrics.

See Also

```
get_best_kxi, ggplot_kxi_metrics, gtable_kxi_profiles
```

Examples

```
data('hla')
m_hla <- hla[-c(1:2)] %>% scale

df_params_hla <- expand.grid(n_xi = 3:5, pts = c(20, 30),
    dist = c('manhattan', 'euclidean'))

df_kxi_hla <- opticskxi_pipeline(m_hla, df_params_hla)

ggplot_kxi_metrics(df_kxi_hla, n = 8)

gtable_kxi_profiles(df_kxi_hla) %>% plot

best_kxi_hla <- get_best_kxi(df_kxi_hla, rank = 2)

clusters_hla <- best_kxi_hla$clusters

fortify_pca(m_hla, sup_vars = data.frame(Clusters = clusters_hla)) %>%

ggpairs('Clusters', ellipses = TRUE, variables = TRUE)
```

print_table 15

print_table

Print table

Description

Print knitr::kable latex table with legend at bottom.

Usage

```
print_table(table_obj, label)
```

Arguments

```
table_obj Table object
label Latex label
```

Value

None

```
psych_kxi_ensemble_models
```

Example pipeline for ensemble models

Description

Example pipeline for ensemble models on mental health related natural language processing

Usage

```
psych_kxi_ensemble_models(
   m_data,
   ...,
   n_models = 4,
   metrics = NULL,
   metrics_exclude = NULL,
   model_subsample = c(0.1, 0.2, 0.5),
   n_models_subsample = 10
)
```

psych_kxi_pipeline

Arguments

m_data	Data matrix Data frame returned by optics	
	Passed to function psych_kxi_pipeline	
n_models	Number of best models to return	
metrics	Names of metrics to use. Any of those computed by opticskxi_pipeline, e.g. 'sindex', 'ch', 'dunn', 'dunn2', 'widestgap', 'entropy' etc. NULL for all (8).	
metrics_exclude		
	Names of metrics to exclude. Typically used with metrics = NULL. E.g. 'entropy'.	
model_subsample		
	Ratios of best models to consider.	
n_models_subsample		
	Number of best models when subsampling.	

Value

Input parameter data frame with with results binded in columns optics, clusters and metrics. Subsetted to best models according to ensemble metrics.

Examples

psych_kxi_pipeline

Example pipeline for mental health natural language processing

Description

Removes too large clusters and models with less than a minimum number of clusters.

residuals_table 17

Usage

Arguments

m_data Data matrix

df_params Parameter grid for the OPTICS k-Xi function call and optional dimension reduc-

tion. Required columns: n_xi, pts, dist. Optonal columns: dim_red, n_dim_red.

max_size_ratio Maximum size ratio of clusters n_min_clusters Minimum number of clusters

n_cores Number of cores

Value

Input parameter data frame with with results binded in columns optics, clusters and metrics.

residuals_table Residuals table

Description

Bind contingency table and Pearson Chi-squared residuals.

Usage

```
residuals_table(...)
```

Arguments

... Passed to contingency_table and chisq.test

Value

Matrix

18 %>%

%<>%	Magrittr pipe-assign operator

Description

Magrittr pipe-assign operator

%\$% Magrittr pipe-with operator

Description

Magrittr pipe-with operator

%>% Magrittr pipe operator

Description

Magrittr pipe operator

Index

```
* datasets
    crohn, 3
    hla, 11
%<>%, 18
%>%, 18
%$%, 18
{\tt contingency\_table, 2}
crohn, 3
ensemble_metrics, 3
ensemble_models, 4
fortify_dimred, 5, 6, 7
fortify_ica, 5, 6, 7, 8
\texttt{fortify\_pca}, \textbf{5}, \textbf{6}, \textbf{6}, \textbf{8}
get_best_kxi, 7, 14
ggpairs, 8
ggplot_kxi_metrics, 9, 14
ggplot_optics, 9, 13
gtable_kxi_profiles, 10, 14
hla, 11
m_psychwords, 12
multishapes, 11
nice_palette, 12
opticskxi, 10, 13
opticskxi_pipeline, 7, 9, 10, 13, 14
print_table, 15
psych_kxi_ensemble_models, 15
psych_kxi_pipeline, 16
residuals_table, 17
```