Electrochemical Impedance Spectroscopy for Lithium Ion Batteries - Degradation Mechanism Analysis

2024. 11. 20. Min Jae Jung

Typical EIS of Li-ion batteries

- 1 Lithium-ion conduction in electrolyte of porous electrode
- (2) Lithium-ion conduction through SEI film
- (3) Intercalation/deintercalation at the electrode– electrolyte interface
- 4 Lithium-ion diffusion in electrode phase
- (5) Lithium-ion diffusion in electrolyte phase

Degradation mechanisms in Li-ion batteries

Cause and effect of degradation mechanisms

Typical EIS variation with aging experiment

Typical EIS with degradation mechanisms

Legend:

- Loss of lithium inventory
- Loss of anode active material
- Loss of cathode active material

Typical degradation mechanisms and EIS evolution

Major degradation mechanisms

Example of ECM and physical equivalence

