M

11-31-00

PTO/SB/05 (08-00)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  | 10 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|----|--|
| Name to the control of the control o |  |    |  |

Approved for use through 10/31/2002, OMB 0651-0032 Please type a plus sign (+) inside this box \_\_\_\_\_\_ K\_\_ U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number. UTILITY 47675-14 Attorney Docket No. Markl, Isabel et al. PATENT APPLICATION First Inventor TRANSMITTAL METHYLATION ALTERED DNA SEQUENCE Title EL695285386US (Only for new nonprovisional applications under 37 CFR 1.53(b)) Express Mail Label No. Assistant Commissioner for Patents **APPLICATION ELEMENTS** ADDRESS TO: **Box Patent Application** See MPEP chapter 600 concerning utility patent application contents Washington, DC 20231 Fee Transmittal Form (e.g., PTO/SB/17) CD-ROM or CD-R in duplicate, large table or (Submit an original and a duplicate for fee processing Computer Program (Appendix) Applicant claims small entity status. 2. 8. Nucleotide and/or Amino Acid Sequence Submission See 37 CFR 1.27. (if applicable, all necessary) opecification [Total Pages 14] [Pages 14] Specification a. X Computer Readable Form (CRF) - Descriptive title of the invention b. Specification Sequence Listing on: Cross Reference to Related Applications - Statement Regarding Fed sponsored R & D i. ☐ CD-ROM or CD-R (2 copies); or - Reference to sequence listing, a table, ii.□ paper or a computer program listing appendix c. Statements verifying identity of above copies - Background of the Invention - Brief Summary of the Invention ACCOMPANYING APPLICATION PARTS - Brief Description of the Drawings (if filed) - Detailed Description 9. Assignment Papers (cover sheet & document(s)) - Claim(s) 37 CFR 3.73(b) Statement Power of - Abstract of the Disclosure 10. (when there is an assignee) Attorney English Translation Document (if applicable) Drawing(s) (35 U.S.C. 113) [Total Sheets 1 Copies of IDS Information Disclosure 5. Oath or Declaration [Total Pages [ ] Citations Statement (IDS)/PTO-1449 Newly executed (original or copy) Copy from a prior application (37 CFR 1.63 (d)) (for continuation/divisional with Box 17 completed) Preliminary Amendment 13. Return Receipt Postcard (MPEP 503) 14. X (Should be specifically itemized) **DELETION OF INVENTOR(S)** Certified Copy of Priority Document(s) (if foreign priority is claimed) 15. Signed statement attached deleting inventor(s) named in the prior application, see 37 CFR 16. 1 63(d)(2) and 1.33(b). Application Data Sheet. See 37 CFR 1.76 17. If a CONTINUING APPLICATION, check appropriate box, and supply the requisite information below and in a preliminary amendment, or in an Application Data Sheet under 37 CFR 1.76: Continuation Divisional of pnor application No..... Continuation-in-part (CIP) Prior application information: Group / Art Unit: For CONTINUATION OR DIVISIONAL / nm which an oath or declaration is supplied under Box 5b, is considered a part of the diilication and is hereby incorporated by reference. The incorporation can only be relied : submitted application parts. 23504 Customer Number or Bar Code Label Correspondence address below PATENENT & TRADMARK OFFICE Name Davis Wright Tremaine LLP 2600 Century Square 1501 Fourth Avenue Address Seattle WA City 98101-1688 State Zip Code US Country Telephone 206-622-3150 2066287699 Barry L. Davison Name (Print/Type) P47,309 Registration No. (Attorney/Agent) Signature Date 10-27-2600

Burden Hour Statement: This form is estimated to take 0.2 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Box Patent Application, Washington, DC 20231

# the state of the s

# IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: Markl, Isabel et al.

Filing Date: October 27, 2000

Serial No.: to be assigned

For: METHYLATION ALTERED DNA SEQUENCES AS MARKERS ASSOCIATED

WITH HUMAN CANCER

Docket: 47675-15

Date: October 27, 2000

Assistant Commissioner for Patents Box Patent Application Washington, DC 20231

# STATEMENT UNDER 37 C.F.R. §1.821

Sir:

I hereby state that the content of the paper and computer-readable copies of the Sequence Listing, submitted in accordance with 37 C.F.R. §1.821, are the same.

Respectfully submitted,

Barry L. Davison

Attorney for Applicants Registration No. P47,309

Davis Wright Tremaine LLP 2600 Century Square 1501 Fourth Avenue Seattle, WA 98101-1688

Tel: 206-628-7621 Fax: 206-628-7699

15

20

25

30

35

# METHYLATION ALTERED DNA SEQUENCES AS MARKERS ASSOCIATED WITH HUMAN CANCER

### 5 Technical Field of the Invention

The present invention relates to novel human DNA sequences that exhibit altered methylation patterns (hypermethylation or hypomethylation) in cancer patients. These novel methylation-altered DNA sequences are useful as diagnostic, prognostic and therapeutic markers for human cancer.

# **Background of the Invention**

The identification of early genetic changes in tumorigenesis is a primary focus in molecular cancer research. Characterization of the nature and pattern of cancer-associated genetic alterations will allow for early detection, diagnosis and treatment of cancer. Such genetic alterations in vertebrates fall generally into one of three categories: gain or loss of genetic material; mutation of genetic material; or methylation at cytosine residues in CpG dinucleotides within "CpG islands." Among these, DNA methylation is uniquely reversible, and changes in methylation state are known to affect gene expression (e.g., transcriptional initiation of genes where CpG islands located at or near the promoter region) or genomic stability.

Methylation of CpG dinucleotides within CpG islands. DNA, in higher order eukaryotic organisms, is methylated only at cytosine residues located 5' to guanosine residues in CpG dinucleotides. This covalent modification of the C-5 position of the cytosine base by the enzyme DNA (cytosine-5)-methyltransferase results in the formation of 5-methylcytosine (5-mCyt), and gives this base unique properties (e.g., susceptibility to undergo spontaneous deamination). This enzymatic conversion is the only epigenetic modification of DNA known to exist in vertebrates, and is essential for normal embryonic development (Bird, A.P., Cell 70:5-8, 1992; Laird & Jaenisch, Human Molecular Genetics 3:1487-1495, 1994; Li et al., Cell 69:915-926, 1992).

The presence of 5-mCyt at CpG dinucleotides has resulted in the 5-fold depletion of this sequence in the genome during the course of vertebrate evolution (Schroderet & Gartler, *Proc. Nat. Acad. Sci. USA* 89:957-961, 1992), presumably due to spontaneous deamination of 5-mCyt to Thymidine. Certain areas of the genome, however, do not show such depletion, and are referred to as "CpG islands" (Bird, A.P., *Nature* 321:209-213, 1986; Gardiner-Garden & Frommer, *J. Mol. Biol.* 196:261-282, 1987). These CpG islands comprise only approximately 1% of the vertebrate genome, yet account for about 15% of the total number of genomic CpG dinucleotides (Antequera & Bird, *Proc. Nat. Acad. Sci. USA* 90:11995-11999, 1993). CpG islands contain the expected (*i.e.*, the non-evolutionarily depleted) frequency of

F:\DOCS\47675\14\ORCA-14-final.doc Seattle

10

15

20

25

30

35

CpGs (with an Observed/Expected Ratio<sup>1</sup> >0.6), are GC-rich (with a GC Content<sup>2</sup> >0.5) and are typically between about 0.2 to about 1 kb in length.

Methylation within CpG islands affects gene expression. CpG islands are located upstream of many housekeeping and tissue-specific genes, but may also extend into gene coding regions (Cross & Bird, Current Opinions in Genetics and Development 5:309-314, 1995; Larsen et al., Genomics 13:1095-1107, 1992). The methylation of cytosines within CpG islands in somatic tissues is believed to affect gene expression. Methylation has been inversely correlated with gene activity and may lead to decreased gene expression by a variety of mechanisms including inhibition of transcription initiation (Bird, A.P., Nature 321:209-213, 1986; Delgado et al., EMBO Journal 17:2426-2435, 1998), disruption of local chromatin structure (Counts & Goodman, Molecular Carcinogenesis 11:185-188, 1994; Antequera et al., Cell 62:503-514, 1990), and recruitment of proteins that interact specifically with methylated sequences and thereby directly or indirectly prevent transcription factor binding (Bird, A.P., Cell 70:5-8, 1992; Counts & Goodman, Molecular Carcinogenesis 11:185-188, 1994; Cedar, H., Cell 53:3-4, 1988). Many studies have demonstrated the effect of methylation of CpG islands on gene expression (e.g., the CDKN2A/p16 gene; Gonzalez-Zulueta et al., Cancer Research 55:4531-4535, 1995), but most CpG islands on autosomal genes remain unmethylated in the germline, and methylation of these islands is usually independent of gene expression. Tissue-specific genes are typically unmethylated in the respective target organs but are methylated in the germline and in non-expressing adult tissues, while CpG islands of constitutively expressed housekeeping genes are normally unmethylated in the germline and in somatic tissues.

Methylation within CpG islands affects the expression of genes involved in cancer. Data from a group of studies show the presence of altered methylation in cancer cells relative to non-cancerous cells. These studies show not only alteration of the overall genomic levels of DNA methylation, but also changes in the distribution of methyl groups. For example, abnormal methylation of CpG islands that are associated with tumor suppressor genes or oncogenes within a cell may cause altered gene expression. Such altered gene expression may provide a population of cells with a selective growth advantage and thereby result in selection of these cells to the detriment of the organism (i.e., cancer).

Insufficient correlative data. Unfortunately, the mere knowledge of the basic existence of altered methylation of CpG dinucleotides within CpG islands of cancer cells relative to normal cells, or of the fact that in particular instances such methylation changes result in altered gene expression (or chromatin structure or stability), is inadequate to allow for effective diagnostic, prognostic and therapeutic application of this knowledge. This is

<sup>&</sup>lt;sup>1</sup> Calculated as: [number of CpG sites / (number of C bases X number of G bases)] X band length for each fragment.

<sup>&</sup>lt;sup>2</sup> Calculated as: (number of C bases + number of G bases) / band length for each fragment.

10

15

20

25

30

35

because only a limited number of CpG islands have been characterized, and thus there is insufficient knowledge, as to which particular CpG islands, among many, are actually involved in, or show significant correlation with cancer or the etiology thereof. Moreover, complex methylation patterns, involving a plurality of methylation-altered DNA sequences, including those that may have the sequence composition to qualify as CpG islands, may exist in particular cancers.

Therefore there is a need in the art to identify and characterize specific methylation altered DNA sequences, and to correlate them with cancer to allow for their diagnostic, prognostic and therapeutic application.

**Summary of the Invention** 

The present invention provides for a diagnostic or prognostic assay for cancer, comprising: obtaining a tissue sample from a test tissue; performing a methylation assay on DNA derived from the tissue sample, wherein the methylation assay determines the methylation state of a CpG dinucleotide within a DNA sequence of the DNA, and wherein the DNA sequence is a sequence selected from the group consisting of sequences of SEQ ID NOS:1-103, sequences having a nucleotide sequence at least 90% identical to sequences of SEQ ID NOS:1-103, CpG island sequences associated with sequences of SEQ ID NOS:1-103, CpG island sequences associated with sequences having a nucleotide sequence at least 90% identical to sequences of SEQ ID NOS:1-103, and combinations thereof, wherein the CpG island sequence associated with the sequence of the particular SEO ID NO is that contiguous sequence of genomic DNA that encompasses at least one nucleotide of the particular SEQ ID NO sequence, and satisfies the criteria of having both a frequency of CpG dinucleotides corresponding to an Observed/Expected Ratio >0.6, and a GC Content >0.5; and determining a diagnosis or prognosis based, at least in part, upon the methylation state of the CpG dinucleotide within the DNA sequence. Preferably, the DNA sequence is a sequence selected from the group consisting of CpG island sequences associated with sequences of SEQ ID NOS:1-103, CpG island sequences associated with sequences having a nucleotide sequence at least 90% identical to sequences of SEQ ID NOS:1-103, and combinations thereof. Preferably, the DNA sequence is a sequence selected from the group consisting of CpG island sequences associated with sequences of SEQ ID NOS: 2, 4, 6, 7, 9-16, 19, 20, 22-33, 35-43, 48, 51-55, 59, 60, 64, 71, 76, 78-81, 84 and 87-90, and combinations thereof. Preferably, the methylation assay procedure is selected from the group consisting of MethyLight, MS-SnuPE (methylation-sensitive single nucleotide primer extension), MSP (methylation-specific PCR), MCA (methylated CpG island amplification), COBRA (combined bisulfite restriction analysis), and combinations thereof. Preferably, the methylation state of the CpG dinucleotide within the DNA sequence is that of hypermethylation, hypomethylation or normal methylation. Preferably, the cancer is selected

10

15

20

25

35

from the group consisting of bladder cancer, prostate cancer, colon cancer, lung cancer, renal cancer, leukemia, breast cancer, uterine cancer, astrocytoma, glioblastoma, and neuroblastoma. Preferably, the cancer is bladder cancer, or prostate cancer.

The present invention further provides a kit useful for the detection of a methylated CpG-containing nucleic acid comprising a carrier means containing one or more containers comprising: a container containing a probe or primer which hybridizes to any region of a sequence selected from the group consisting of SEQ ID NOS:1-103, and sequences having a nucleotide sequence at least 90% identical to sequences of SEQ ID NOS:1-103; and additional standard methylation assay reagents required to affect detection of methylated CpG-containing nucleic acid based on the probe or primer. Preferably, the additional standard methylation assay reagents are standard reagents for performing a methylation assay from the group consisting of MethyLight, MS-SNuPE, MSP, MCA, COBRA, and combinations thereof. Preferably, the probe or primer comprises at least about 12 to 15 nucleotides of a sequence selected from the group consisting of SEQ ID NOS:1-103, and sequences having a nucleotide sequence at least 90% identical to sequences of SEQ ID NOS:1-103.

The present invention further provides an isolated nucleic acid molecule comprising a methylated or unmethylated polynucleotide sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:18, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:42, SEQ ID NO:44, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:62, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:74, SEQ ID NO:76, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:86, SEQ ID NO:90, SEQ ID NO:92, SEQ ID NO:97, and SEQ ID NO:100. Preferably the nucleic acid is methylated. Preferably, the nucleic acid is unmethylated.

# **Detailed Description of the Invention**

### 30 Definitions:

"GC Content" refers, within a particular DNA sequence, to the [(number of C bases + number of G bases) / band length for each fragment].

"Observed/Expected Ratio" ("O/E Ratio") refers to the frequency of CpG dinucleotides within a particular DNA sequence, and corresponds to the [number of CpG sites / (number of C bases X number of G bases)] X band length for each fragment.

"CpG Island" refers to a contiguous region of genomic DNA that satisfies the criteria of (1) having a frequency of CpG dinucleotides corresponding to an "Observed/Expected Ratio" >0.6), and (2) having a "GC Content" >0.5. CpG islands are

10

15

20

25

30

typically, but not always, between about 0.2 to about 1 kb in length. A CpG island sequence associated with a particular SEQ ID NO sequence of the present invention is that contiguous sequence of genomic DNA that encompasses at least one nucleotide of the particular SEQ ID NO sequence, and satisfies the criteria of having both a frequency of CpG dinucleotides corresponding to an Observed/Expected Ratio >0.6), and a GC Content >0.5.

"Methylation state" refers to the presence or absence of 5-methylcytosine ("5-mCyt") at one or a plurality of CpG dinucleotides within a DNA sequence.

"Hypermethylation" refers to the methylation state corresponding to an *increased* presence of 5-mCyt at one or a plurality of CpG dinucleotides within a DNA sequence of a test DNA sample, relative to the amount of 5-mCyt found at corresponding CpG dinucleotides within a normal control DNA sample.

"Hypomethylation" refers to the methylation state corresponding to a *decreased* presence of 5-mCyt at one or a plurality of CpG dinucleotides within a DNA sequence of a test DNA sample, relative to the amount of 5-mCyt found at corresponding CpG dinucleotides within a normal control DNA sample.

"Methylation assay" refers to any assay for determining the methylation state of a CpG dinucleotide within a sequence of DNA.

"MS.AP-PCR" (Methylation-Sensitive Arbitrarily-Primed Polymerase Chain Reaction) refers to the art-recognized technology that allows for a global scan of the genome using CG-rich primers to focus on the regions most likely to contain CpG dinucleotides, and described by Gonzalgo et al., *Cancer Research* 57:594-599, 1997.

"MethyLight" refers to the art-recognized fluorescence-based real-time PCR technique described by Eads et al., Cancer Res. 59:2302-2306, 1999.

"Ms-SNuPE" (Methylation-sensitive Single Nucleotide Primer Extension) refers to the art-recognized assay described by Gonzalgo & Jones, *Nucleic Acids Res.* 25:2529-2531, 1997.

"MSP" (Methylation-specific PCR) refers to the art-recognized methylation assay described by Herman et al. *Proc. Natl. Acad. Sci. USA* 93:9821-9826, 1996, and by US Patent No. 5,786,146.

"COBRA" (Combined Bisulfite Restriction Analysis) refers to the art-recognized methylation assay described by Xiong & Laird, *Nucleic Acids Res.* 25:2532-2534, 1997.

"MCA" (Methylated CpG Island Amplification) refers to the methylation assay described by Toyota et al., *Cancer Res.* 59:2307-12, 1999, and in WO 00/26401A1.

### 35 Overview

The present invention provides for 103 DNA sequences (*i.e.*, "marker sequences") having distinct methylation patterns in cancer, as compared to normal tissue. These methylation-altered DNA sequence embodiments correspond to 103 DNA fragments isolated

10

15

20

30

35

from bladder and prostate cancer patients, and in many instances, represent novel sequences not found in the GenBank database. None of the instant sequence embodiments have previously been characterized with respect to their methylation pattern in human cancers including, but not limited to, those of the bladder and prostate. The significance of such methylation patterns lies in the value of altered fragments as potential prognostic, diagnostic and therapeutic markers in the treatment of human cancers.

### Identification of Methylation-altered Marker Sequences in Genomic DNA

The MS.AP-PCR technique was used to scan the genomes of bladder or prostate cancer patients for DNA methylation changes relative to normal individuals, because the pattern is known to be highly conserved. A total of 103 DNA sequence embodiments (methylation-altered DNA sequences; "marker sequences") were isolated and characterized as having distinct methylation patterns in cancer, as compared to normal tissue.

Methods for the Identification of Marker Sequences in Genomic DNA. There are a variety of art-recognized genome scanning methods that have been used to identify altered methylation sites in cancer cells. For example, one method involves restriction landmark genomic scanning (Kawai et al., Mol. Cell. Biol. 14:7421-7427, 1994), another involves MCA (methylated CpG island amplification; Toyota et al., Cancer Res. 59:2307-12, 1999), and yet another involves MS.AP-PCR (Methylation-Sensitive Arbitrarily-Primed Polymerase Chain Reaction; Gonzalgo et al., Cancer Res. 57:594-599, 1997), which allows for a global scan of the genome using CG-rich primers to focus on the regions most likely to contain CpG dinucleotides. The MS.AP-PCR technique used in the present invention is a rapid and efficient method to screen ("scan") for altered methylation patterns in genomic DNA and to isolate specific sequences associated with these changes.

Briefly, genomic DNA from the tissue of bladder or prostate cancer patients was prepared using standard, art-recognized methods. Restriction enzymes (e.g., HpaII) with different sensitivities to cytosine methylation in their recognition sites were used to digest these genomic DNAs prior to arbitrarily primed PCR amplification with GC-rich primers. Fragments that showed differential methylation (e.g., hypermethylation or hypomethylation, based on the methylation sensitivity of the restriction enzyme, or upon DNA sequence analysis or Ms-SNuPE analysis; Gonzalgo & Jones, Nucleic Acids Res 25:2529-2531, 1997) were cloned and sequenced after resolving the PCR products on high-resolution polyacrylamide gels. The cloned fragments were used as probes for Southern blot analysis to confirm differential methylation of these regions in the tissue. Methods for DNA cloning, sequencing, PCR, high-resolution polyacrylamide gel resolution and Southern blot analysis are well known by those of ordinary skill in the relevant art.

Results. A total of 500 DNA fragments that underwent either hypermethylation (an increase in the level of methylation relative to normal) or hypomethylation (a decrease in the

10

15

20

25

30

level of methylation relative to normal) were isolated from the scanned patients genomic DNA. A total of 178 of these fragments were sequenced, of which 103 were *novel* in that they corresponded to DNA loci whose methylation pattern had not previously been characterized. The corresponding sequences are disclosed as [SEQ ID NOS:1-103], wherein for certain sequences, the letter "n" refers to an undetermined nucleotide base.

Novel marker sequences identified by MS.AP-PCR. Table I shows an overall summary of methylation patterns and sequence data corresponding to the 103 DNA fragments identified by MS.AP-PCR. A total of 103 fragments were sequenced following identification as becoming either hypermethylated (gain of methylation; noted as having a hypermethylation pattern) or hypomethylated (loss of methylation; noted as having a hypomethylation pattern) relative to normal tissue. For the fragments of each category, the "Average GC Content" is shown, calculated as (number of C bases + number of G bases)/band length for each fragment, as well as the average Observed/Expected Ratio ("O/E Ratio"), calculated as [number of CpG sites/(number of C bases X number of G bases)] X band length for each fragment. Additionally, the percent of fragments that qualify as CpG islands is listed, and corresponds to the percentage of all fragments within each category that have sequence compositions that satisfy the criteria of having a "GC Content" >0.5 and an "O/E Ratio" >0.6.

Thus, of these 103 fragments identified by MS.AP-PCR, 60 showed hypermethylation (Table I, upper row; Table II, [SEQ ID NOS:1-60]) while 43 showed hypomethylation (Table I, lower row; Table II, [SEQ ID NOS:61-103]). Moreover, 55 (43 hypermethylated, and 12 hypomethylated) of the 103 fragments correspond to CpG islands (*i.e.*, fulfill the criteria of a GC content >0.5 and an Observed/Expected Ratio >0.6;), whereas the other 48 (17 hypermethylated and 31 hypomethylated) fragments do not meet the criteria for CpG islands (*see* Table II).

TABLE I. Summary of 103 DNA Fragments Identified by MS.AP-PCR

| DNA Fragment<br>Type         | Methylation Pattern (relative to normal) | Number of<br>Fragments<br>(103 total) | Average GC<br>Content | Average<br>O/E Ratio | Percent that correspond to CpG Islands |
|------------------------------|------------------------------------------|---------------------------------------|-----------------------|----------------------|----------------------------------------|
| Hypermethylated<br>Fragments | Hyper-<br>methylation                    | 60                                    | 0.54                  | 0.72                 | 72%                                    |
| Hypomethylated<br>Fragments  | Hypo-methylation                         | 43                                    | 0.52                  | 0.48                 | 28%                                    |

Table II shows a summary of methylation pattern and sequence data for each *individual* sequence embodiment ([SEQ ID NOS:1-103]), corresponding to the 103 DNA fragments identified by MS.AP-PCR. Data for the 103 fragments was divided into either hypermethylated ([SEQ ID NOS:1-60]) or hypomethylated ([SEQ ID NOS:61-103]) categories. Table II also lists, for each sequence embodiment, the corresponding "Fragment

10

15

20

Name," fragment "Size" (in base pairs; "bp"), "GC Content," Observed/Expected Ratio ("O/E Ratio"), "Description" (i.e., as a CpG island if criteria are met), "Inventor Initials" (IDCM = Isabel D.C. Markl, JC = Jonathan Cheng, GL = Gangning Liang, HF = Hualin Fu, YT = Yoshitaka Tomigahara), "Cancer Source," and "Chromosome Match" to the GenBank database. A dash ("-") indicates that no GenBank chromosome match existed, or that only a low-scoring partial match was found. Averages of the "GC Content" and "O/E Ratio," along with the percent of fragments that are CpG islands, are listed after the last member of both the hypermethylated and hypomethylated categories.

Therefore, the present invention provides for 103 DNA fragments and corresponding marker sequence embodiments (*i.e.*, methylation-altered DNA sequences) that are useful in cancer prognostic, diagnostic and therapeutic applications.

Additionally, at least 55 of these 103 sequences correspond to CpG islands (based on GC Content and O/E ration); namely [SEQ ID NOS:2, 4, 6, 7, 9-16, 19, 20, 22-33, 35-43, 48, 51-55, 59, 60, 64, 71, 76, 78-81, 84 and 87-90]. Thus, based on the fact that the methylation state of a portion of a given CpG island is generally representative of the island as a whole, the present invention further encompassed the novel use of the 55 CpG islands associated with [SEQ ID NOS:2, 4, 6, 7, 9-16, 19, 20, 22-33, 35-43, 48, 51-55, 59, 60, 64, 71, 76, 78-81, 84 and 87-90] in cancer prognostic, diagnostic and therapeutic applications, where a CpG island sequence associated with the sequence of a particular SEQ ID NO is that contiguous sequence of genomic DNA that encompasses at least one nucleotide of the particular SEQ ID NO sequence, and satisfies the criteria of having both a frequency of CpG dinucleotides corresponding to an Observed/Expected Ratio >0.6, and a GC Content >0.5.

TABLE II. Summary of MS.AP-PCR Fragments Sequenced

| Methylation | Fragment | Size | GC      | O/E   | Description | Inventor | Cancer  | Chromosome | SEQ    |
|-------------|----------|------|---------|-------|-------------|----------|---------|------------|--------|
| Pattern     | Name     | (bp) | Content | Ratio | -           | Initials | Source  | Matches    | ID NO] |
| Hyper-      |          |      |         |       |             |          |         |            |        |
| methylation |          | 1    | j       |       |             |          |         |            |        |
| category    | 11-1A    | 510  | 0.44    | 0.74  |             | IDCM     | Bladder | -          | 1      |
|             | 14-3B    | 313  | 0.58    | 0.74  | CpG Island  | IDCM     | Bladder | 2          | 2      |
|             | 18-2B    | 165  | 0.57    | 0.45  |             | IDCM     | Bladder | 7          | 3      |
|             | 24-1B    | 601  | 0.51    | 0.72  | CpG Island  | IDCM     | Bladder | Xp11       | 4      |
|             | 26-1B    | 801  | 0.48    | 0.56  |             | IDCM     | Bladder | -          | 5      |
|             | 26-2C    | 204  | 0.50    | 0.63  | CpG Island  | IDCM     | Bladder | _          | 6      |
|             | 30-3D    | 205  | 0.55    | 1.25  | CpG Island  | IDCM     | Bladder | 14         | 7      |
|             | 32-3E    | 597  | 0.57    | 0.10  | _           | IDCM     | Bladder | 20q12-13.1 | 8      |
|             | 34-2B    | 500  | 0.62    | 0.66  | CpG Island  | IDCM     | Bladder | 20         | 9      |
|             | 34-4B    | 343  | 0.70    | 0.81  | CpG Island  | IDCM     | Bladder | - )        | 10     |
|             | 34-5D    | 291  | 0.62    | 0.96  | CpG Island  | IDCM     | Bladder | 9          | 11     |
| į           | 34-6A    | 266  | 0.64    | 0.93  | CpG Island  | IDCM     | Bladder | -          | 12     |
|             | 35-1C    | 553  | 0.64    | 0.63  | CpG Island  | IDCM     | Bladder | -          | 13     |
|             | 36-2D    | 156  | 0.60    | 0.58  | CpG Island  | IDCM     | Bladder | 10         | 14     |
| Ì           | 38-1A    | 300  | 0.70    | 0.80  | CpG Island  | IDCM     | Bladder | 10         | 15     |
| ļ           | 38-2B    | 196  | 0.56    | 0.89  | CpG Island  | IDCM     | Bladder | 15         | 16     |
| l           | 7-8E     | 299  | 0.59    | 0.39  | -           | IDCM     | Bladder | 17q21-22   | 17     |
|             | 83-4B    | 363  | 0.54    | 0.49  |             | IDCM     | Bladder | -          | 18     |

| Methylation | Fragment | Size | GC      | O/E  | Description | Inventor | Cancer   | Chromosome   | SEQ   |
|-------------|----------|------|---------|------|-------------|----------|----------|--------------|-------|
| Pattern     | Name     | (bp) | Content |      | •           | Initials | Source   | Matches      | ID NO |
| !           | 84-1D    | 322  | 0.55    | 0.90 | CpG Island  | IDCM     | Bladder  | 7            | 19    |
| ,           | 101-3E   | 255  | 0.57    | 0.83 | CpG Island  | IDCM     | Bladder  | 17           | 20    |
| į<br>Į      | M1-5A    | 406  | 0.45    | 0.96 | 1           | IDCM     | Bladder  | 1            | 21    |
|             | U2-8E    | 210  | 0.56    | 0.61 | CpG Island  | IDCM     | Bladder  | 2            | 22    |
| ,           | U12-1A   | 310  | 0.56    | 0.81 | CpG Island  | IDCM     | Bladder  | 2            | 23    |
| ĺ           | U7-4A    | 305  | 0.59    | 0.80 | CpG Island  | IDCM     | Bladder  | -            | 24    |
|             | NU9-5A   | 379  | 0.67    | 0.83 | CpG Island  | JC       | Bladder  | -            | 25    |
|             | 3-17-8-B | 625  | 0.48    | 0.72 | CpG Island  | GL       | Bladder  | 18           | 26    |
|             | 4-10-4-A | 499  | 0.55    | 0.30 | CpG Island  | GL       | Bladder  | 7            | 27    |
|             | 1-1-1-A  | 561  | 0.58    | 0.98 | CpG Island  | GL       | Bladder  | 20           | 28    |
|             | 3-17-8-A | 717  | 0.50    | 0.68 | CpG Island  | GL       | Bladder  | 17           | 29    |
|             | G145-H   | 280  | 0.50    | 1.10 | CpG Island  | GL       | Bladder  | 11           | 30    |
|             | 1-1-1-D  | 270  | 0.50    | 0.60 | CpG Island  | GL       | Bladder  | 2            | 31    |
|             | 1-1-1-C  | 347  | 0.65    | 1.25 | CpG Island  | GL       | Bladder  | -            | 32    |
|             | G178-A   | 342  | 0.55    | 0.85 | CpG Island  | GL       | Bladder  | 2            | 33    |
|             | 34-A     | 370  | 0.62    | 0.44 | _           | HF       | Prostate | -            | 34    |
|             | 34-D     | 213  | 0.53    | 0.74 | CpG Island  | HF       | Prostate | 2            | 35    |
|             | 35-D     | 173  | 0.56    | 0.66 | CpG Island  | HF       | Prostate | 3            | 36    |
|             | 36-A     | 369  | 0.67    | 0.70 | CpG Island  | HF       | Prostate | -            | 37    |
|             | 40-A     | 123  | 0.60    | 1.16 | CpG Island  | HF       | Prostate | <b>-</b> i   | 38    |
|             | 91-1     | 450  | 0.64    | 0.86 | CpG Island  | YT       | Bladder  | 5 or 16q24.3 | 39    |
|             | 93-2     | 593  | 0.51    | 0.68 | CpG Island  | YT       | Bladder  | Xp11         | 40    |
|             | 93-3     | 457  | 0.52    | 0.94 | CpG Island  | YT       | Bladder  | Xp22.1-22.3  | 41    |
|             | 94-8     | 211  | 0.66    | 0.96 | CpG Island  | YT       | Bladder  |              | 42    |
|             | 95-5     | 141  | 0.63    | 0.79 | CpG Island  | YT       | Bladder  | 14           | 43    |
|             | 97-5     | 559  | 0.56    | 0.40 | CPG Island  | YT       | Bladder  | ,            | 44    |
|             | 98-1     | 433  | 0.46    | 0.96 |             | YT       | Bladder  | 1            | 45    |
| ļ           | 100-1    | 487  | 0.59    | 0.58 |             | YT       | Bladder  | 14           | 46    |
|             | 100-2    | 403  | 0.60    | 0.47 |             | YT       | Bladder  | 3            | 47    |
|             | 100-6    | 155  | 0.57    | 0.99 | CpG Island  | YT       | Bladder  | 20           | 48    |
|             | 4-2      | 256  | 0.57    | 0.40 | CpG Island  | YT       | Bladder  | 7            | 49    |
|             | 5-8      | 224  | 0.47    | 0.96 |             | YT       | Bladder  | 5            | 50    |
|             | 6-4      | 313  | 0.70    | 0.82 | CpG Island  | YT       | Bladder  | -            | 51    |
|             | 7-6      | 385  | 0.70    | 0.88 | CpG Island  | YT       | Bladder  |              | 52    |
|             | 13-3     | 307  | 0.59    | 0.89 | CpG Island  | YT       | Bladder  | 10           | 53    |
|             | 15-2     | 182  | 0.62    | 0.92 | CpG Island  | YT       | Bladder  | 13           | 54    |
|             | 23-2     |      | 0.54    | 0.87 | CpG Island  | YT       | Bladder  | Xp22.1-22.3  | 55    |
|             | 39-2     | 795  | 0.46    | 0.64 | opg island  | YT       | Bladder  | 13           | 56    |
|             | 40-2     | 438  | 0.62    | 0.51 |             | YT       | Bladder  | 10           | 57    |
|             | 41-3     | 611  | 0.47    | 0.70 |             | YT       | Bladder  | 18           | 58    |
|             | 105-4    | 291  | 0.58    | 0.71 | CpG Island  | YT       | Bladder  | 5            | 59    |
|             | 107-8    | 226  | 0.53    | 0.96 | CpG Island  | YT       | Bladder  | 11           | 60    |
|             |          |      |         |      | · ·         |          |          |              | -     |
| AVERAGE     |          |      | 0.54    | 0.72 | 72% islands |          |          |              |       |
| Hypo-       |          |      |         |      |             |          |          |              |       |
| methylation | 14.30    | 500  | 0.55    | 0.51 |             | DC1      | D1. 11   |              |       |
| category    | 14-2B    | 580  | 0.55    | 0.51 |             | IDCM     | Bladder  | 2            | 61    |
|             | 16-1B    | 633  | 0.56    | 0.39 |             | IDCM     | Bladder  | 17           | 62    |
|             | 18-1B    | 703  | 0.45    | 0.35 | C. C. T. 1  | IDCM     | Bladder  | 17           | 63    |
| Į.          | 19-1B    | 420  | 0.66    | 0.87 | CpG Island  | IDCM     | Bladder  | -            | 64    |
| :           | 20-1B    | 496  | 0.61    | 0.59 |             | IDCM     | Bladder  | -            | 65    |
| ĺ           | 21-2C    | 637  | 0.60    | 0.33 |             | IDCM     | Bladder  | 9q34         | 66    |
| ·           | 29-1A    | 595  | 0.55    | 0.27 |             | IDCM     | Bladder  | Xp11.23      | 67    |
| 1           | 29-2B    | 580  | 0.47    | 0.77 |             | IDCM     | Bladder  | -            | 68    |
| }           | 32-1A    | 589  | 0.59    | 0.48 |             | IDCM     | Bladder  | -            | 69    |
|             | 34-1B    | 450  | 0.42    | 0.46 |             | IDCM     | Bladder  | - [          | 70    |
| Ì           | 34-3B    | 432  | 0.70    | 0.61 | CpG Island  | IDCM     | Bladder  | -            | 71    |

10

| Methylation |         | Size | GC      | O/E  | Description | Inventor | Cancer  |                    | [SEQ   |
|-------------|---------|------|---------|------|-------------|----------|---------|--------------------|--------|
| Pattern     | Name    | (bp) | Content |      |             | Initials | Source  | Matches            | ID NO] |
|             | 32-2B   | 748  | 0.47    | 0.24 |             | IDCM     | Bladder | 2                  | 72     |
|             | 32-4B   | 599  | 0.57    | 0.15 |             | IDCM     | Bladder | 20q12-13.1         | 73     |
|             | 32-5B   | 614  | 0.58    | 0.20 | 1           | IDCM     | Bladder | -                  | 74     |
|             | 33-1A   | 552  | 0.54    | 0.32 | ļ           | IDCM     | Bladder | 10                 | 75     |
|             | 5-1E    | 501  | 0.61    | 1.04 | CpG Island  | IDCM     | Bladder | -                  | 76     |
|             | 6-1A    | 826  | 0.55    | 0.36 |             | IDCM     | Bladder | 22q13.32-<br>13.33 | 77     |
|             | 7-5D    | 433  | 0.59    | 0.85 | CpG Island  | IDCM     | Bladder | 5                  | 78     |
|             | 8-7C    | 424  | 0.58    | 0.83 | CpG Island  | IDCM     | Bladder | 5                  | 79     |
|             | 30-6D   | 285  | 0.63    | 0.72 | CpG Island  | IDCM     | Bladder | 1                  | 80     |
|             | 66-2E   | 401  | 0.54    | 0.82 | CpG Island  | IDCM     | Bladder | 16                 | 81     |
|             | 78-1C   | 268  | 0.54    | 0.41 | [ -         | IDCM     | Bladder | _                  | 82     |
|             | 97-2E   | 989  | 0.53    | 0.16 | į           | IDCM     | Bladder | -                  | 83     |
|             | M1-8C   | 250  | 0.64    | 0.99 | CpG Island  | IDCM     | Bladder | -                  | 84     |
|             | M2-5A   | 402  | 0.50    | 0.45 |             | IDCM     | Bladder | 5                  | 85     |
|             | M1-4P   | 595  | 0.43    | 0.41 | Ì           | IDCM     | Bladder | -                  | 86     |
|             | M12-10A | 304  | 0.53    | 0.76 | CpG Island  | IDCM     | Bladder | 7                  | 87     |
|             | M12-12C | 296  | 0.51    | 0.64 | CpG Island  | IDCM     | Bladder | 17                 | 88     |
|             | M2-8M   | 220  | 0.67    | 0.62 | CpG Island  | IDCM     | Bladder | 6q27               | 89     |
|             | NU4-3A  | 273  | 0.63    | 1.02 | CpG Island  | JC       | Bladder | -                  | 90     |
|             | NU5-2A  | 361  | 0.44    | 0.73 |             | JC       | Bladder | 6q14.3-15          | 91     |
|             | 88-5    | 462  | 0.62    | 0.39 | j           | YT       | Bladder |                    | 92     |
| i           | 90-1    | 591  | 0.66    | 0.45 |             | YT       | Bladder | 19                 | 93     |
|             | 91-3    | 279  | 0.58    | 0.45 |             | YT       | Bladder | 5 or 16q24.3       | 94     |
| i           | 91-4    | 351  | 0.55    | 0.30 | 1           | YT       | Bladder | 18 <b>q2</b> 3     | 95     |
|             | 91-7    | 171  | 0.61    | 0.59 |             | YT       | Bladder | 11                 | 96     |
|             | 89-3    | 743  | 0.55    | 0.43 |             | YT       | Bladder | -                  | 97     |
| :           | 94-2    | 589  | 0.53    | 0.41 |             | YT       | Bladder | 22q13.31-<br>13.32 | 98     |
| i           | 94-3    | 538  | 0.53    | 0.49 |             | YT       | Bladder | 5 or 18            | 99     |
|             | 94-4    | 486  | 0.61    | 0.57 |             | YT       | Bladder | -                  | 100    |
|             | 94-5    | 450  | 0.60    | 0.45 | !           | YT       | Bladder | 1p36.2-36.3        | 101    |
|             | 94-6    | 292  | 0.58    | 0.32 |             | YT       | Bladder | 8 or 9             | 102    |
|             | 96-4    | 395  | 0.63    | 0.54 |             | YT       | Bladder | 9                  | 103    |
| AVERAGE     |         |      | 0.52    | 0.48 | 28% islands | ]        |         |                    |        |

Diagnostic and Prognostic Assays for Cancer. The present invention provides for diagnostic and prognostic cancer assays based on determination of the methylation state of one or more of the disclosed 103 methylation-altered DNA sequence embodiments. Typically, such assays involve obtaining a tissue sample from a test tissue, performing a methylation assay on DNA derived from the tissue sample, and making a diagnosis or prognosis based thereon.

The methylation assay is used to determine the methylation state of one or a plurality of CpG dinucleotide within a DNA sequence of the DNA sample. According to the present invention, possible methylation states include *hypermethylation* and *hypomethylation*, relative to a normal state (*i.e.*, non-cancerous control state). Hypermethylation and hypomethylation refer to the methylation states corresponding to an *increased* or *decreased*, respectively,

10

15

20

25

30

35

presence 5-methylcytosine ("5-mCyt") at one or a plurality of CpG dinucleotides within a DNA sequence of the test sample, relative to the amount of 5-mCyt found at corresponding CpG dinucleotides within a normal control DNA sample.

A diagnosis or prognosis is based, at least in part, upon the determined methylation state of the sample DNA sequence compared to control data obtained from normal, non-cancerous tissue.

Methylation Assay Procedures. Various methylation assay procedures are known in the art, and can be used in conjunction with the present invention. These assays allow for determination of the methylation state of one or a plurality of CpG dinucleotides (e.g., CpG islands) within a DNA sequence. Such assays involve, among other techniques, DNA sequencing of bisulfite-treated DNA, PCR (for sequence-specific amplification), Southern blot analysis, use of methylation-sensitive restriction enzymes, etc.

For example, genomic sequencing has been simplified for analysis of DNA methylation patterns and 5-methylcytosine distribution by using bisulfite treatment (Frommer et al., *Proc. Natl. Acad. Sci. USA* 89:1827-1831, 1992). Additionally, restriction enzyme digestion of PCR products amplified from bisulfite-converted DNA is used, *e.g.*, the method described by Sadri & Hornsby (*Nucl. Acids Res.* 24:5058-5059, 1996), or COBRA (Combined Bisulfite Restriction Analysis) (Xiong & Laird, *Nucleic Acids Res.* 25:2532-2534, 1997).

**COBRA**. COBRA analysis is a quantitative methylation assay useful for determining DNA methylation levels at specific gene loci in small amounts of genomic DNA (Xiong & Laird, Nucleic Acids Res. 25:2532-2534, 1997). Briefly, restriction enzyme digestion is used to reveal methylation-dependent sequence differences in PCR products of sodium bisulfitetreated DNA. Methylation-dependent sequence differences are first introduced into the genomic DNA by standard bisulfite treatment according to the procedure described by Frommer et al. (Proc. Natl. Acad. Sci. USA 89:1827-1831, 1992). PCR amplification of the bisulfite converted DNA is then performed using primers specific for the interested CpG islands, followed by restriction endonuclease digestion, gel electrophoresis, and detection using specific, labeled hybridization probes. Methylation levels in the original DNA sample are represented by the relative amounts of digested and undigested PCR product in a linearly quantitative fashion across a wide spectrum of DNA methylation levels. In addition, this technique can be reliably applied to DNA obtained from microdissected paraffin-embedded tissue samples. Typical reagents (e.g., as might be found in a typical COBRA-based kit) for COBRA analysis may include, but are not limited to: PCR primers for specific gene (or methylation-altered DNA sequence or CpG island); restriction enzyme and appropriate buffer; gene-hybridization oligo; control hybridization oligo; kinase labeling kit for oligo probe; and radioactive nucleotides. Additionally, bisulfite conversion reagents may include: DNA denaturation buffer; sulfonation buffer; DNA recovery regents or kit (e.g.,

10

15

20

25

30

35

precipitation, ultrafiltration, affinity column); desulfonation buffer; and DNA recovery components.

Preferably, assays such as "MethyLight" (a fluorescence-based real-time PCR technique) (Eads et al., *Cancer Res.* 59:2302-2306, 1999), Ms-SNuPE (Methylation-sensitive Single Nucleotide Primer Extension) reactions (Gonzalgo & Jones, *Nucleic Acids Res.* 25:2529-2531, 1997), methylation-specific PCR ("MSP"; Herman et al., *Proc. Natl. Acad. Sci. USA* 93:9821-9826, 1996; US Patent No. 5,786,146), and methylated CpG island amplification ("MCA";Toyota et al., *Cancer Res.* 59:2307-12, 1999) are used alone or in combination with other of these methods.

MethyLight. The MethyLight assay is a high-throughput quantitative methylation assay that utilizes fluorescence-based real-time PCR (TaqMan ®) technology that requires no further manipulations after the PCR step (Eads et al., Cancer Res. 59:2302-2306, 1999). Briefly, the MethyLight process begins with a mixed sample of genomic DNA that is converted, in a sodium bisulfite reaction, to a mixed pool of methylation-dependent sequence differences according to standard procedures (the bisulfite process converts unmethylated cytosine residues to uracil). Fluorescence-based PCR is then performed either in an "unbiased" (with primers that do not overlap known CpG methylation sites) PCR reaction, or in a "biased" (with PCR primers that overlap known CpG dinucleotides) reaction. Sequence discrimination can occur either at the level of the amplification process or at the level of the fluorescence detection process, or both.

The MethyLight may assay be used as a quantitative test for methylation patterns in the genomic DNA sample, wherein sequence discrimination occurs at the level of probe hybridization. In this quantitative version, the PCR reaction provides for unbiased amplification in the presence of a fluorescent probe that overlaps a particular putative methylation site. An unbiased control for the amount of input DNA is provided by a reaction in which neither the primers, nor the probe overlie any CpG dinucleotides. Alternatively, a qualitative test for genomic methylation is achieved by probing of the biased PCR pool with either control oligonucleotides that do not "cover" known methylation sites (a fluorescence-based version of the "MSP" technique), or with oligonucleotides covering potential methylation sites.

The MethyLight process can by used with a "TaqMan®" probe in the amplification process. For example, double-stranded genomic DNA is treated with sodium bisulfite and subjected to one of two sets of PCR reactions using TaqMan® probes; e.g., with either biased primers and TaqMan® probe, or unbiased primers and TaqMan® probe. The TaqMan® probe is dual-labeled with fluorescent "reporter" and "quencher" molecules, and is designed to be specific for a relatively high GC content region so that it melts out at about 10 °C higher temperature in the PCR cycle than the forward or reverse primers. This allows the TaqMan® probe to remain fully hybridized during the PCR annealing/extension step. As the

10

15

20

25

30

35

Taq polymerase enzymatically synthesizes a new strand during PCR, it will eventually reach the annealed TaqMan® probe. The Taq polymerase 5' to 3' endonuclease activity will then displace the TaqMan® probe by digesting it to release the fluorescent reporter molecule for quantitative detection of its now unquenched signal using a real-time fluorescent detection system.

Typical reagents (e.g., as might be found in a typical MethyLight-based kit) for MethyLight analysis may include, but are not limited to: PCR primers for specific gene (or methylation-altered DNA sequence or CpG island); TaqMan® probes; optimized PCR buffers and deoxynucleotides; and Taq polymerase.

Ms-SNuPE. The Ms-SNuPE technique is a quantitative method for assessing methylation differences at specific CpG sites based on bisulfite treatment of DNA, followed by single-nucleotide primer extension (Gonzalgo & Jones, Nucleic Acids Res. 25:2529-2531, 1997). Briefly, genomic DNA is reacted with sodium bisulfite to convert unmethylated cytosine to uracil while leaving 5-methylcytosine unchanged. Amplification of the desired target sequence is then performed using PCR primers specific for bisulfite-converted DNA, and the resulting product is isolated and used as a template for methylation analysis at the CpG site(s) of interest. Small amounts of DNA can be analyzed (e.g., microdissected pathology sections), and it avoids utilization of restriction enzymes for determining the methylation status at CpG sites. Typical reagents (e.g., as might be found in a typical Ms-SNuPE-based kit) for Ms-SNuPE analysis may include, but are not limited to: PCR primers for specific gene (or methylation-altered DNA sequence or CpG island); optimized PCR buffers and deoxynucleotides; gel extraction kit; positive control primers; Ms-SNuPE primers for specific gene; reaction buffer (for the Ms-SNuPE reaction); and radioactive nucleotides. Additionally, bisulfite conversion reagents may include: DNA denaturation buffer; sulfonation buffer; DNA recovery regents or kit (e.g., precipitation, ultrafiltration, affinity column); desulfonation buffer; and DNA recovery components.

MSP. MSP (methylation-specific PCR) allows for assessing the methylation status of virtually any group of CpG sites within a CpG island, independent of the use of methylation-sensitive restriction enzymes (Herman et al. Proc. Natl. Acad. Sci. USA 93:9821-9826, 1996; US Patent No. 5,786,146). Briefly, DNA is modified by sodium bisulfite converting all unmethylated, but not methylated cytosines to uracil, and subsequently amplified with primers specific for methylated versus unmethylated DNA. MSP requires only small quantities of DNA, is sensitive to 0.1% methylated alleles of a given CpG island locus, and can be performed on DNA extracted from paraffin-embedded samples. Typical reagents (e.g., as might be found in a typical MSP-based kit) for MSP analysis may include, but are not limited to: methylated and unmethylated PCR primers for specific gene (or methylation-altered DNA sequence or CpG island), optimized PCR buffers and deoxynucleotides, and specific probes.

10

15

20

25

MCA. The MCA technique is a method that can be used to screen for altered methylation patterns in genomic DNA, and to isolate specific sequences associated with these changes (Toyota et al., Cancer Res. 59:2307-12, 1999). Briefly, restriction enzymes with different sensitivities to cytosine methylation in their recognition sites are used to digest genomic DNAs from primary tumors, cell lines, and normal tissues prior to arbitrarily primed PCR amplification. Fragments that show differential methylation are cloned and sequenced after resolving the PCR products on high-resolution polyacrylamide gels. The cloned fragments are then used as probes for Southern analysis to confirm differential methylation of these regions. Typical reagents (e.g., as might be found in a typical MCA -based kit) for MCA analysis may include, but are not limited to: PCR primers for arbitrary priming Genomic DNA; PCR buffers and nucleotides, restriction enzymes and appropriate buffers; gene-hybridization oligos or probes; control hybridization oligos or probes.

Kits for Detection of Methylated CpG-containing Nucleic Acid. The reagents required to perform one or more art-recognized methylation assays (including those identified above) are combined with primers or probes comprising the sequences of SEQ ID NOS:1-103, or portions thereof, to determine the methylation state of CpG-containing nucleic acids. For example, the MethyLight, Ms-SNuPE, MCA, COBRA, and MSP methylation assays could be used alone or in combination, along with primers or probes comprising the sequences of SEQ ID NOS:1-103, or portions thereof, to determine the methylation state of a CpG dinucleotide within a genomic sequence corresponding to SEQ ID NOS:1-103, or to CpG island sequences associated with sequences of SEQ ID NOS:1-103, where the CpG island sequence associated with the sequence of the particular SEQ ID NO is that contiguous sequence of genomic DNA that encompasses at least one nucleotide of the particular SEQ ID NO sequence, and satisfies the criteria of having both a frequency of CpG dinucleotides corresponding to an Observed/Expected Ratio >0.6, and a GC Content >0.5.

## SEQUENCE LISTING

from the trees have been their trees their trees their

|                           | 5  | <110> Markl, Isabel Tomigahara, Yoshitaka Liang, Gangning Fu, Hualin Jones, Peter |       |
|---------------------------|----|-----------------------------------------------------------------------------------|-------|
|                           | 10 | <120> Methylation Altered DNA Sequences as Markers Associated with H              | Human |
|                           |    | <130> 47465-14                                                                    |       |
|                           | 15 | <160> 103                                                                         |       |
|                           | 13 | <170> PatentIn version 3.0                                                        |       |
|                           | 20 | <210> 1 <211> 510 <212> DNA <213> Homo sapiens                                    |       |
|                           | 25 | <220> <221> misc_feature <222> ()() <223> "n" refers to an undetermined base      |       |
| True Let Lat Call Lat Rad | 30 | <400> 1<br>ttgcaagccc ccttngctct tcctttgncc tcgcctacat attcagggga tcgcaatctc      | 60    |
| 31 <b>5</b> 22 .          |    | actegegaaa taatttnttt etgtaagagg aageegeett teeeetetee caeegeeaag                 | 120   |
| m Minn                    | 35 | gtaaaggctg ctaaagtagc tcttcttgga aggaaaaata ttttaaaaag cagctgggtt                 | 180   |
|                           |    | gctctccaca agaagatggc agttttggga aaacccatta tgtgtccaaa tgccggtttc                 | 240   |
|                           |    | cttttcttgt ttaacgcttt ttagagggca aaaatgacgc tcatgtgaag cccacaggct                 | 300   |
| 1.2                       | 40 | cgagccaatg tcgctgggct aattatgagt ctgcttatcc cactcccaaa tatccgagac                 | 360   |
| *==                       |    | gactcactca naagacattt ttactcttcc aagaattgng aattcagaan cagcttcccc                 | 420   |
|                           | 45 | acattctaag agaaaaaaa acttgtttaa cgggcacgtt tttgattttt ttgccgctgg                  | 480   |
|                           |    | cgaccttaat taaaagccgg gagctncnna                                                  | 510   |
|                           | 50 | <210> 2 <211> 313 <212> DNA <213> Homo sapiens                                    |       |
|                           | 55 | <400> 2                                                                           | 60    |
|                           | 55 | gcactettaa aacgeetete tgcagteeca ggteegeget eeccaagaac tggeeagate                 | 120   |
|                           |    | gegeeggget tggeecetga caactetgee tectecacet gttgegttta eteegtttag                 | 120   |
|                           | 60 | ttggctgtgc agtctctggc cccaggtgtg cttttaaaac tcgaggaacg cgggtgttgg                 | 180   |
|                           |    | actcattcgc agcctcttgc ctctggttcc cgtgatccca cggtggcgag cttccaggct                 | 240   |

|           |    | cagcgagga                                    | g atctgggttt                      | gaacattcat   | ctcccatgtt | actcttttct | tgctcctcgc | 300 |
|-----------|----|----------------------------------------------|-----------------------------------|--------------|------------|------------|------------|-----|
|           | 5  | gtccccaag                                    | c cga                             |              |            |            |            | 313 |
|           | 10 | <210> 3<br><211> 16<br><212> DN<br><213> Ho  |                                   |              |            |            |            |     |
|           |    | <400> 3<br>gcttagcaa                         | a tttccctttt                      | ttattgttgg   | ttttgtctgt | tggctcttac | cccctttcct | 60  |
|           | 15 | tttcctgct                                    | t cccctgagtc                      | agcaatgctg   | agcccagcga | agcacagggg | gccaaaggga | 120 |
|           |    | gagacacac                                    | g gagcgccccg                      | gggtccccca   | gcctcggcgg | ccaaa      |            | 165 |
|           | 20 | <210> 4<br><211> 60<br><212> DN<br><213> Ho  |                                   |              |            |            |            |     |
|           | 25 | <400> 4<br>ggggggagt                         | c gtgcgtgtca                      | gatttaggcc   | aggaagcgga | agtcgccagc | agcgagagtt | 60  |
|           |    | taacctctg                                    | t gggcgcagag                      | ggttgcgggg   | attcagcgcc | cgggaccgtg | gatctgtgca | 120 |
|           | 30 | gggagtcat                                    | a ggtgtgtgtg                      | acatcagtgg   | tggaacattt | tggctcgttt | tcacaattca | 180 |
|           |    | gtcattatc                                    | c tttctgcttt                      | cctcctggaa   | gcattaaggt | tgaagttttc | ttctaaagat | 240 |
| ,         | 35 | caaagtttt                                    | g atttgttata                      | ttagttcgga   | tttgtttgat | ttttgtttgt | gttcggtttc | 300 |
| ğ. 2      | 55 | aagtgctga                                    | t ttgtaacttt                      | tctcccccc    | cacacacacg | ccttttgacc | cctgaattat | 360 |
| Thin Hall |    | ttaaaagtc                                    | c attgttggag                      | tggcaaacat   | cctccgagac | tcaaagggca | aggccatggg | 420 |
|           | 40 | cgctttatt                                    | c cggctgctgc                      | tccaggaacg   | tgggaaagca | gcggagtttt | attctagggg | 480 |
|           |    | aaggaaaca                                    | a aggcggccga                      | gtgccagctg   | cacgtttggt | gggatttggt | catcaggggt | 540 |
|           | 45 | ggacatgct                                    | g cccaatggag                      | ctgtcggcag   | tttgacccag | cttggtccgt | cgcgtcccga | 600 |
|           | 43 | a                                            |                                   |              |            |            |            | 601 |
|           | 50 | <210> 5<br><211> 80<br><212> DN<br><213> Hor |                                   |              |            |            |            |     |
|           | 55 | <222> ()                                     | sc_feature<br>()<br>" refers to a | an undetermi | ned base   |            |            |     |
|           | 60 | <400> 5<br>gagtacgcgg                        | g ggcagaacca                      | gcgcaataca   | gcattctggt | aggggaacta | attttgacta | 60  |

|                              |    | aaatatttgc                                      | caattctaat | ccccaattcc | tggacctccg | ggtagctggc | aaggtatttt | 120 |
|------------------------------|----|-------------------------------------------------|------------|------------|------------|------------|------------|-----|
|                              | 5  | atgttagatg                                      | tgtctggagt | aaggtgcacc | ggagtatttc | gacaagagac | tcaattcaat | 180 |
|                              | 3  | gcgtattaaa                                      | acttgattga | gagagggaga | gagagaggtc | attttataaa | gaaagacctg | 240 |
|                              |    | tgaacactgt                                      | agattggaaa | tttatgtttg | caaaataaaa | ggatgggttt | atcaagtgga | 300 |
|                              | 10 | tgcatttaca                                      | aaatgtggca | tccaggtttc | gtaaaattag | ctgaattcta | cgggtaagat | 360 |
|                              |    | tatgaatgtg                                      | gctcataaat | aattaatagg | tagtgaaaaa | gaatgtattt | tgcattaggc | 420 |
|                              | 15 | agtgcattca                                      | atagtatttc | ggaaatgagc | acttcgattt | cctcggnttc | catgcgnggc | 480 |
|                              | 13 | cacctctcca                                      | gagcagggca | ggcacccagg | gnggtgccca | cacaaacaag | cgcgtgtggg | 540 |
|                              |    | cattttcttg                                      | gctcgtgcgc | tgaagtgcac | gctgggcctt | ggtgcccgca | ccctcagcct | 600 |
|                              | 20 | gggagatagg                                      | gaggtggtgc | tacctgcagg | ccgattgtgt | ccccgccata | ggacactagt | 660 |
|                              |    | gggcggcaaa                                      | cctcacaaga | ctcttgcagc | cagccttcag | cagagccagc | aaacccagcc | 720 |
|                              | 25 | gccaccgagg                                      | gaggactgct | ccatgcagat | ggtcaggggc | tttcttctga | agacgcctcc | 780 |
| MALE MALE                    | 23 | cccacgatct                                      | ctcaagttca | С          |            |            |            | 801 |
| Mine if it the dust had not  | 30 | <210> 6<br><211> 204<br><212> DNA<br><213> Homo | o sapiens  |            |            |            |            |     |
| ij                           | 35 | <400> 6 ccqqttqctq                              | ctggaggatg | ggactacgaa | qqatqqqqac | tecacteaac | caccqctcct | 60  |
| 110                          |    |                                                 | taatctcggt |            |            |            |            | 120 |
| Marie Henry Princes Miscelle |    |                                                 | tactgctaga |            |            |            |            | 180 |
|                              | 40 | cccctccagc                                      | tectecegeg | gcaa       |            |            |            | 204 |
|                              | 45 | <210> 7<br><211> 205<br><212> DNA<br><213> Homo | o sapiens  |            |            |            |            |     |
|                              | 50 | <400> 7                                         | aggagatasa | tassatasat |            |            |            | 50  |
|                              | 50 |                                                 | cgggcgtgag |            |            |            |            | 60  |
|                              |    |                                                 | gagatggttc |            |            |            |            | 120 |
|                              | 55 |                                                 | acceggate  |            | egettetace | LECGGAACGC | racateteda | 180 |
|                              |    | accectiga                                       | acccgcacgt | cycaa      |            |            |            | 205 |
|                              | 60 | <210> 8 <211> 597                               |            |            |            |            |            |     |

|                           |    | <210><211><212><213>      | 10<br>343<br>DNA<br>Homo | o sapiens      |            |            |            |            |     |
|---------------------------|----|---------------------------|--------------------------|----------------|------------|------------|------------|------------|-----|
|                           | 5  | <400>                     | 10                       |                |            |            |            |            |     |
|                           |    |                           | _                        | accagtacct     | gggaccgggg | ggagcccggt | ccggccgcta | aaccgggctg | 60  |
|                           | 10 | gctggc                    | gcca                     | gggctccggg     | aggtgcggtc | cggcggggaa | gccgtgatgg | gaagcgactc | 120 |
|                           | 10 | tgtcca                    | ggga                     | gtgtccttca     | ccaccacact | cctcacgtcc | aggcagtgat | cgacggcctg | 180 |
|                           |    | gcggca                    | ccct                     | cacagcgggc     | ccatagcacg | gggccacaca | cgtcccctga | gcttagcctg | 240 |
|                           | 15 | ggcaca                    | ttcg                     | tctgccgccg     | agggcttaag | ccagtctgca | gcccgcgccc | cgtcactcgg | 300 |
|                           |    | acgcaa                    | gtcc                     | gtcgtccgct     | ctgccacgcg | gccgctaagc | cga        |            | 343 |
|                           | 20 | <210><211><211><212><213> | 11<br>291<br>DNA<br>Homo | o sapiens      |            |            |            |            |     |
|                           | 25 | <400><br>gtcctae          | 11<br>caca               | ctccgcacac     | aacgeggeeg | gtgttaagtc | tccaaacgcc | ccgagagctc | 60  |
|                           |    | caagga                    | ccgc                     | gcgcgcgaag     | gcgccgtagc | aagtgggcac | acaccagaca | ccaccccggc | 120 |
|                           | 30 | gtgttc                    | cgcg                     | ggagaagcca     | gtgcacacat | cctcccgcaa | ggcggggttg | ccagtgcaac | 180 |
| ##<br>##<br>##            |    | acagga                    | atcc                     | tgcccttttt     | ctagaaaagc | cccctcccc  | actttccctc | caatacactc | 240 |
| 14                        | 35 | acctgc                    | gtct                     | caacagtttc     | cttcttgcgc | tacacgcggc | cgctaagccg | a          | 291 |
| Hall fleet from their the | 40 | <210><211><211><212><213> | 12<br>266<br>DNA<br>Homo | o sapiens      |            |            |            |            |     |
|                           |    | <400><br>gtccgga          | 12<br>atca               | gtttccccgg     | ccaggtcgct | tcccggtctc | aaccatttcg | cgctctgctc | 60  |
|                           | 45 | tgtccg                    | ctgg                     | tttgtccctg     | cccggttcct | ctccccgggc | ctgtcagcct | ccgcttctct | 120 |
|                           |    | ggaggtt                   | cct                      | gggactcatc     | tctgatccac | cgtcttgcgt | tctctgggcg | catcgacttc | 180 |
|                           | 50 | tctccat                   | cctt                     | cgggctcact     | cctgactccc | tegetgeege | ccccgggggt | ttccacgcgt | 240 |
|                           |    | gtctcta                   | aacc                     | gcggccgcta     | agccga     |            |            |            | 266 |
|                           | 55 | <210> <211> <212> <213>   | 13<br>553<br>DNA<br>Homo | sapiens        |            |            |            |            |     |
|                           | 60 | <220><br><221><br><222>   | misc                     | _feature<br>() |            |            |            |            |     |

|                                        |         | <400> 13                                                          |     |
|----------------------------------------|---------|-------------------------------------------------------------------|-----|
|                                        | 5       | gatcctggtc catcgaaacc ttgtgtgcat cggttagtgc ttcctgggcg tttgcttcta | 60  |
|                                        |         | gccgacgctg acagtggagt gccagaaaga gggagaggac cgtcatggct actctgcccc | 120 |
|                                        | 10      | tggtgtcacc atgcgctctc ccccggcacc ggcgaggcga                       | 180 |
|                                        | 10      | gaggecete ggteagggea geageatece tgeaceetet eegeaggtgg teteceegae  | 240 |
|                                        |         | gccacaggtg gccagcaggg cgcgggtggg ggcaggagcg cctctcccct gcccaggcct | 300 |
|                                        | 15      | cccgctcctt ctcggagcgc tgtggcgggg tggagagaca gccttctaca gctagtctag | 360 |
|                                        |         | ctcggcgcgg ttcccgtctg tggcctccta atcccacagc cacagcgcct tcctctaacc | 420 |
|                                        | 20      | tccctcggtg ggcttaaagc ctcccgttcc ttctgtctca ttccttctgc tccctcccc  | 480 |
|                                        | 20      | cgaaaccccc agatganagc tgggaacctg gcnccantna ctgagcnaac agtgttgacg | 540 |
|                                        |         | ggccgnggcc caa                                                    | 553 |
|                                        | 25      |                                                                   |     |
| 32.<br>32.                             |         | <210> 14                                                          |     |
|                                        |         | <211> 156                                                         |     |
| Π.                                     |         | <212> DNA<br><213> Homo sapiens                                   |     |
|                                        | 30      | <213> Homo sapiens                                                |     |
|                                        |         | <400> 14                                                          |     |
|                                        |         | gcgcacacag tgggtacaag gatgagctcg gtgtaaggaa tggaaagccc ccagtctaaa | 60  |
| J                                      | 35      | ccaccgcccc ctagacacgg gtgaaaacct gcctaaaagc taactcaggc agtgactcta | 120 |
| : ==                                   | 55      | tcacccgaag gggccctggg ccgcggccca agccga                           | 156 |
|                                        |         |                                                                   |     |
|                                        | 40      | <210> 15                                                          |     |
| : ==================================== | 40      | <211> 300<br><212> DNA                                            |     |
| : 🚅                                    |         | <213> Homo sapiens                                                |     |
|                                        |         |                                                                   |     |
|                                        | 45      | <220> <221> misc feature                                          |     |
|                                        |         | <222> ()()                                                        |     |
|                                        |         | <223> "n" refers to an undetermined base                          |     |
|                                        | 50      | <400> 15                                                          |     |
|                                        | 50      | gttcacagcc cataaggtgg gggtggcccg aacctgaaac ggagcctgag ccaggatcct | 60  |
|                                        |         |                                                                   | 120 |
|                                        | <i></i> | gcaaccaaag totgaagege ceeceggtgg gggeegagag egetgeagge aggtggngge | 120 |
|                                        | 55      | gcggggcagg cgggcgggcg aagggagctc cggntacgca ganaacgcgg agcgcccct  | 180 |
|                                        |         | teccacetge gegaggeat eetgeeeggg ggaggaaagg egggagteeg aggegggteg  | 240 |
|                                        | 60      | gattcccagc cagctccctc ctcacaggag gcggcccatt atccggcgtc gcaaagccga | 300 |

<211> 322

|    | <212> DNA<br><213> Homo sapiens                                               |     |
|----|-------------------------------------------------------------------------------|-----|
| 5  | <400> 19<br>ccggcccgtc cctcttaata tggcctcagt tccgaaaacc acagaataga accgcggtcc | 60  |
|    | tattccatta ttcctagctg aggtatccag gcggctcgga cctgctttga acactctaat             | 120 |
| 10 | tttttcaaag taaacgcttc gggctgcagg acactcagct aagagcatca ggggggcgcc             | 180 |
| 10 | aagaggcaag gggcggggat gggtggtggc tcgcctcgtg gcagaccgcc cgcccgctcc             | 240 |
|    | caagatccaa ctacgagctt tttaactgca gcaactttaa tatacgctat tggagctgga             | 300 |
| 15 | attaccgcgg ccgctaagcc ga                                                      | 322 |
| 20 | <210> 20<br><211> 255<br><212> DNA<br><213> Homo sapiens                      |     |
| 25 | <400> 20<br>taataagata ccaaatcggg cgagaaacga aaagctcctg gcctccgtat ttggggccag | 60  |
|    | agacaccgca gggagtcagg tccccgccga caaatcggaa gaggcctgcg ggagttagcc             | 120 |
|    | agataatget etecetgtee taccegteee caccaatttg cettttacet geegeagage             | 180 |
| 30 | ttgcttgaac caaaggggtt tgcggtcttc tcctcctcaa cttgcgatcc ccaggccttc             | 240 |
|    | gcgtcccgaa gccga                                                              | 255 |
| 35 | <210> 21<br><211> 406<br><212> DNA<br><213> Homo sapiens                      |     |
| 40 | <220> <221> misc_feature <222> ()() <223> "n" refers to an undetermined base  |     |
| 45 | <400> 21                                                                      |     |
|    | atgtgnnaag gctcgctntc catttctctt ttcctccttc tccctctctc atgtgcggtc             | 60  |
| 50 | teceteaaca tecaaaceaa eegagtgegt etgaggtgaa ategtgeeag aettagagae             | 120 |
|    | ggctgccagg tttctctcaa gtcttggctt aacaaaagaa agcaaattac aaaaatggaa             | 180 |
|    | attttcaaac tagcgttcag tggtattcaa atcgacgttt gggtagcgca caggcacaga             | 240 |
| 55 | ccgcattcgt gctattttgt gattaaaatg ataccaaaaa tacctccttg ctttggtttt             | 300 |
|    | cgtcttcgaa aacgacttct ttccttcttc taatttcccc cttacttttg ggagcggcaa             | 360 |
| 60 | acccctgacc actctagaat tgctaacatt tggaccggcg tcgcaa                            | 406 |

tion is the first first first first first first

Ş

South Waste Man Kreen South Box

|                  | <210> 22<br><211> 210<br><212> DNA                                |     |
|------------------|-------------------------------------------------------------------|-----|
| 5                | <213> Homo sapiens                                                |     |
|                  | <220>                                                             |     |
|                  | <221> misc_feature<br><222> ()()                                  |     |
| 10               | <223> "n" refers to an undetermined base                          |     |
| 10               |                                                                   |     |
|                  | <400> 22                                                          |     |
|                  | gcacgttcgn gcnncgtgta ccatnagctg ccaactggan gcaccnnggn aagggtgggg | 60  |
| 15               | gcctcctgga gacttngggg agagggatag ccggntaaag ctcctgtcct ttctataggc | 120 |
|                  | ataagcgggt ggtcaccacg gattggggat cccgaatccc tggctccaga tagacttaat | 180 |
| 20               | gaagaagcac ctggatccgg gccgcgncaa                                  | 210 |
|                  |                                                                   |     |
|                  | <210> 23<br><211> 310                                             |     |
| 25               | <212> DNA<br><213> Homo sapiens                                   |     |
|                  |                                                                   |     |
| i<br>1           | <220> <221> misc_feature                                          |     |
| 30               | <222> ()()                                                        |     |
| 30               | <223> "n" refers to an undetermined base                          |     |
|                  | <400> 23                                                          |     |
| <i>≟</i><br>35   | tcacgcttnc naaggctctg aatcctgagg gncagatctc caagaaggag ggaggctggt | 60  |
|                  | cctagttccc gaggtcctnn actaggtcta gatcactggg taaaagaagg ggagcggcan | 120 |
| me Green Stranff | cacgtatggg gtaggcgctc tcactactca catctcgaga cctttgccgg cgtagggctg | 180 |
| 40               | tccgggggga acgacccgcc ttttccggta tcggttgtca tggcggcgcc cagcccagcc | 240 |
| į                | tggttttttc cggtagccaa ttgaactaac aaccccgttc cctttaggac taatctgtca | 300 |
| 15               | cgtcggcgca                                                        | 310 |
| 45               |                                                                   |     |
|                  | <210> 24<br><211> 304                                             |     |
| <b>5</b> 0       | <212> DNA                                                         |     |
| 50               | <213> Homo sapiens                                                |     |
|                  | <220> <221> misc feature                                          |     |
|                  | <221> misc_feature<br><222> ()()                                  |     |
| 55               | <223> "n" refers to an undetermined base                          |     |
|                  | <400> 24                                                          |     |
| 60               | ctctggtctg tgntggatac gcgtgttctt ctgcggagtt aaagggtcgg ggacgggggt | 60  |
| -                | tctggactta ccanagcaat tccagccggt gggcgtttgg cagtcactta aggaggtagg | 120 |

|                         |          | gaaagcagcg agcttcaccg ggcgggctac gatgagtagc atgacgggca gcagcagcag             | 180 |
|-------------------------|----------|-------------------------------------------------------------------------------|-----|
|                         | 5        | ccagcaaaag ccctcgcaaa gtgtccagct gctgcactgc cgcggggact cccacagcac             | 240 |
|                         |          | catgactagt tcgtgcgact ctgcancanc aaacggcttc cgaggaacac angatcgcgg             | 300 |
|                         |          | gggca                                                                         | 304 |
|                         | 10       | <210> 25<br><211> 379<br><212> DNA<br><213> Homo sapiens                      |     |
|                         | 15<br>20 | <220> <221> misc_feature <222> ()() <223> "n" refers to an undetermined base  |     |
|                         | 25       | <400> 25 aaaacncatn tgnagagene nteggeagag negeagetgg etgaeeeagg agaaggegeg    | 60  |
| Harling Market          |          | ctgggtgtgg ctgggacggc caaggccgcg gcttcccgcg tggggatgcg ctntggcgca             | 120 |
| J.                      | 30       | aagctggtcc cggcggggcc aggcgtttgt gggcgggtga cggggatcta gggcttccgc             | 180 |
|                         |          | tcgngattcc tcttgggctg tctttncggg tttggactcg cctgccaggc tgtgtgcagg             | 240 |
| H den den den           |          | gttcccgctg cctctggccg gcaggcgtcc gggctgcagg tgggccggca ggcaggtgtt             | 300 |
|                         | 35       | agcgggaagg gagcacaggt agcgaggtgg gatcggcgac ctggctaggg tgtcggcaga             | 360 |
| ii<br>ha                |          | atggaatgcg cggccgcta                                                          | 379 |
| And Left Bire have head | 40       | <210> 26 <211> 625 <212> DNA <213> Homo sapiens                               |     |
|                         | 45       | <220> <221> misc_feature <222> ()() <223> "n" refers to an undetermined base  |     |
|                         | 50       | <400> 26<br>gggacgcnag ccagggantt tgatccgttt tgaatgaaaa gaaagagaan ccaaaccaaa | 60  |
|                         |          | cctntcagtc atccaaaacc ttcaggcttc cagggaggtt ttgctataat tttctctaag             | 120 |
|                         | 55       | catgactgtt tctgggggag gggaaagggg tggttgtatt tactgaaaat tcaaatcgaa             | 180 |
|                         |          | ataataaatg gccaaatttg gacacttacg gacccaaaca gttttgctca cgccagagaa             | 240 |
|                         |          | accgagagca cagggcttgc gtgaagccta tctcggcaga aggcaacatt ctaataaagc             | 300 |
|                         | 60       | ccgtgggaaa acagattaca ttttcgccat gaataagtca tgcagtgaaa aatattgcct             | 360 |

|                                 |    | acagcctgtc gacttatatt attatcacgt ttttcaactc ggcgtgagga gggagaggag            | 420 |
|---------------------------------|----|------------------------------------------------------------------------------|-----|
|                                 |    | tgttcatatt tgactaggaa ttgcaggatc gatgcaaact ccagggcagc agccagactg            | 480 |
|                                 | 5  | gcatatgtgg ggctctccgg ttactttctc tgtatgtcgc gggtgagagg aacagcgagg            | 540 |
|                                 |    | acaatttagc gcaaacacac gaagggtcgg atctcaaggg ggcagcgctg ggagaaaggt            | 600 |
|                                 | 10 | tagggctgna gagcgnanag ncaaa                                                  | 625 |
|                                 | 15 | <210> 27<br><211> 499<br><212> DNA<br><213> Homo sapiens                     |     |
|                                 | 20 | <220> <221> misc_feature <222> ()() <223> "n" refers to an undetermined base |     |
|                                 | 25 | <400> 27 gneteenegt teeceteggg eggaaeggag geaaetttee ggagtetatt tttgttaaga   | 60  |
| H H King lad tent and that that |    | caatcaactc caataactga gctgaagttt ttgtttaaaa agaaaaaaat ctgataagtg            | 120 |
|                                 |    | atgattttac ctacttgtgg acactagatt tcaattagga aggttttttt aaacggcttt            | 180 |
|                                 | 30 | ttgtaacttc gctgcaggaa gcaggtttgt ttctttttct tttctttta agagaaggtg             | 240 |
|                                 |    | tatttcactg gtgcaatggc ttggcacctc cggggcctgg gaggacctca gacctcccca            | 300 |
| E.                              | 35 | gccctgggtt tctccgtctt caagaccaac taggaagggt caagcgggga gagggagtgg            | 360 |
| ě.                              |    | agggtcaggt gagatetcag agetgeeeeg geeggeeeee gtetetttet aceteetett            | 420 |
| die han dal                     |    | ccagagaacc agcggctcac accettetca acgcaggaca tgctcggcgg ccaaagccga            | 480 |
|                                 | 40 | attctgcaga tatccatca                                                         | 499 |
|                                 | 45 | <210> 28<br><211> 561<br><212> DNA<br><213> Homo sapiens                     |     |
| ;                               | 50 | <220> <221> misc_feature <222> ()() <223> "n" refers to an undetermined base |     |
|                                 |    | <400> 28                                                                     |     |
|                                 | 55 | gggcgattgt tattcaaacn ngntanctct ctgcggggnn gagnaatgng ggcctcgcac            | 60  |
|                                 |    | ggctncatcc ccgtcgagcn cagggcctcc ctgttctnct agacatncca aggagccaac            | 120 |
| 6                               | 60 | tcctccgcag aagttccccg cttctgctct tatttccaag cttcgcgctt tctacaaact            | 180 |
|                                 |    | ccctgttgcc ttgactttga tttccagccg tggtgagggt cagagtgaac cccggcgcgc            | 240 |

|    | tccccgacgg                                       | catccccgca                     | caccaggata  | ggagaaattg | gagggcctgg | gcctcggctc | 300 |
|----|--------------------------------------------------|--------------------------------|-------------|------------|------------|------------|-----|
| 5  | ccgcagtcgt                                       | cggaggaaga                     | acccaccgcg  | gggtccccaa | gggaaagtga | agaggcccgg | 360 |
| J  | gatttttcca                                       | aagcgctgcc                     | aggaccccga  | aggaaggga  | ggagtcacct | gaagccgggg | 420 |
|    | aagctccttg                                       | ggtgctctcc                     | ttggatcctt  | atgttcactg | actttcgcga | ngccccctgg | 480 |
| 10 | aggnggaaaa                                       | teegegetgt                     | ttcccccaac  | ttaacttcac | gcggccgcta | agccgaattc | 540 |
|    | tgcngaaatc                                       | attacactng                     | С           |            |            |            | 561 |
| 15 | <210> 29<br><211> 717<br><212> DNA<br><213> Homo | o sapiens                      |             |            |            |            |     |
| 20 | <222> ()                                         | c_feature<br>()<br>refers to a | an undeterm | ined base  |            |            |     |
| 25 |                                                  |                                |             |            |            |            |     |
|    | <400> 29<br>actctccgcg                           | gtntcntggt                     | gcctcacagg  | aggtggggct | ccctccaccc | ggtccccagg | 60  |
| 30 | cctctccctc                                       | tgcccgagct                     | tcccggtcct  | gcctccttcg | cctcgcctgc | ctgcccgact | 120 |
| 30 | ctgaaccctg                                       | ctcctcttct                     | aactaaaagt  | cagtgtttta | tttcctccgc | agtccaatgc | 180 |
|    | ccgcgtttta                                       | ccttattcaa                     | taagaagggc  | ttcatttatg | gcaagacagg | acagccaggt | 240 |
| 35 | aataagggcc                                       | tctgcacacg                     | cgggcccatt  | ggaggggcgg | aactgcgaag | tcttcccgga | 300 |
|    | agagcttcct                                       | ggagagaagg                     | ggaacgagcc  | agcgtttatt | gagcatctat | tatactaagc | 360 |
| 40 | atctgcttgg                                       | cagttcacga                     | cggtcgcatt  | ttttcatcct | tacagcgatc | cctattgtgt | 420 |
|    | cgcttgcttt                                       | aaagcctcac                     | agctcacaaa  | gggctgggat | ttattccaga | tctctctc   | 480 |
|    | agatgccatc                                       | tcacttccag                     | gtgtctctgc  | tgctttgaac | gcgggaaacc | cacgcaaagg | 540 |
| 45 | agtgatttcc                                       | aaggccttct                     | gtttggaata  | tctttaatcc | tccccttatt | aactggaaaa | 600 |
|    | actcccacgc                                       | atccttcagg                     | gctcagctca  | aatgtccttt | atntctgcag | ngaaactttc | 660 |
| 50 | ccaaggaaaa                                       | ttagttacac                     | agctaatttt  | agataaattg | agccagttga | tagaatt    | 717 |
| 55 | <220>                                            | sapiens<br>feature             |             |            |            |            |     |
| 60 | <222> ()                                         |                                | n undetermi | ned base   |            |            |     |

|    | <400> 30                                                               |     |
|----|------------------------------------------------------------------------|-----|
|    | tgatggatat ctgcagaatt cgggctttgn gacgccgggc acgcagtagg gaaaacagta      | 60  |
| 5  | ttaaaacgcc ctacagaaaa tctcggcgaa gtccccggag aactctggtt tctaagatca      | 120 |
|    | gctgggcgca ctttctccgg gacgtccctt cttctcggtc tcagcgcctt cctgccctca      | 180 |
| 10 | gccgcgccng tnttgttttg gtggcaaact gaaataagaa atggaaatat attggccttt      | 240 |
| 10 | gctgctgcca gggatgagag gttgttgacg tcggcgcaaa                            | 280 |
|    |                                                                        |     |
| 15 | <210> 31<br><211> 270<br><212> DNA                                     |     |
|    | <212> DNA<br><213> Homo sapiens                                        |     |
| 20 | <220> <221> misc_feature                                               |     |
| 20 | <222> ()()                                                             |     |
|    | <223> "n" refers to an undetermined base                               |     |
| 25 | <400> 31 gnggnggna nrgggggatg gathtngga ganttnggtg atgatatat gaggattag |     |
|    | gnggnngnna nncggcgatg gatntnngna ganttnggtg atggatatct gcagaattcg      | 60  |
| 30 | gcttagcggc cgcgaacaaa gagcgaacca aaggatgctt cgaattttta aaacggaatc      | 120 |
|    | tetgeaceca aatgeaggae tggtgaetta aggagetgeg aagtetgatt taeegggeet      | 180 |
|    | actetegace tgecececae ecceagetea gggggacett tttatentga acgeeagage      | 240 |
| 35 | tacnnaccaa gtcgggtggc cacnnccaaa                                       | 270 |
|    | <210> 32                                                               |     |
| 40 | <211> 347 <212> DNA                                                    |     |
|    | <213> Homo sapiens <220>                                               |     |
|    | <221> misc_feature                                                     |     |
| 45 | <222> ()() <223> "n" refers to an undetermined base                    |     |
|    | <400> 32                                                               |     |
| 50 | tttggannta ngggggcgtg gcgtggatcc agtttccccc ggccaggtcn gcttcccggt      | 60  |
| 50 | ctcaaccatt tegegetetg etetgteege tggtttgtee etgeeeggtt eeteteeeg       | 120 |
|    | ggcctgtcag cctccgcttc tctggaggtt cctgggactc atctctgatc caccgtcttg      | 180 |
| 55 | cgttctctgg gcgcatcgac ttctctccat cttcgggctc actcctgact ccctcgctgc      | 240 |
|    | cgccccgggg gtttccacgc gtgtctctaa ccgcggccgc taagccgaat tctgcagata      | 300 |
| 60 | tccatcacng aantctgcag anatncatcg ncgaannnca ccgcact                    | 347 |
|    |                                                                        |     |

```
<210> 33
        <211> 342
        <212> DNA
        <213> Homo sapiens
    5
        <220>
        <221> misc feature
        <222>
              ()..()
        <223> "n" refers to an undetermined base
   10
        <400> 33
        gtagggcgcc gccgtgacag attagtccta aagggaacgg ggttgttagt tcaattggct
                                                                              60
   15
        accggaaaaa accaggctgg gctgggcgcc cgccatgaca accgataccg gaaaaggcgg
                                                                             120
        gtcgttcccc ccggacagcc ctacgccggc aaaggtctcg agatgtgagt agtgagagcg
                                                                             180
        cctaccccat acngtcggcc ggctcccctt cttttaccca gtgatctaga cctagtctag
                                                                             240
   20
        gacctcggga actaggacca gcctccctcc ttcttggaga tctgaccctc aggattcann
                                                                             300
        nnctttgctc acgagetcca accenaenca tecaaannne aa
                                                                             342
   25
        <210> 34
        <211> 370
        <212> DNA
        <213> Homo sapiens
30
        <220>
        <221>
              misc feature
        <222>
              ()..()
113
        <223> "n" refers to an undetermined base
   35
        <400> 34
        cattgtttac tttcgtctaa acgcggtgga agcccatgga agaaagcggt tagcagcaag
                                                                              60
  40
        gcagagccct gctccctctg cagccccagc tcccagcgcc ctggqctttc caqqcacctq
                                                                             120
        teegggtagg ggattgaggg cegtggeeag geeggeactt teetgetage egeagetgge
                                                                             180
        cacatgccca tctgaccctc cgagttctcc tctaaaaatg gggctgacag ccgctacctc
                                                                             240
   45
        acaaagtcca caccgggctc aacccgntgc cttcctcccc aacaggactc tgccaccctc
                                                                             300
        cctcaggatg cctgaggcc ccganctgca cctggccagc cantttgtga atgaggcctg
                                                                             360
   50
       nggggcgntt
                                                                             370
        <210>
              35
        <211> 213
  55
        <212> DNA
        <213> Homo sapiens
       <220>
        <221> misc_feature
  60
       <222>
              () ...()
              "n" refers to an undetermined base
```

1, 2

i.T

21 AUG

ž:

1.4 

|                             |    | <400> 35                                                                     |     |
|-----------------------------|----|------------------------------------------------------------------------------|-----|
|                             | 5  | aaaatacnan taaagegatg ettegaattt ttaaaaegga atetetgeae eeaaatgeag            | 60  |
|                             |    | gactggtgac ttaaggagct gcgaagtctg atttaccggc ctactctcga cctgccccc             | 120 |
|                             |    | acccccagct caggggacct tttgtctgaa cgccagagct actgaccagg tcggggggcc            | 180 |
|                             | 10 | gcggcccaag ccgaattctg cagatatcca tca                                         | 213 |
|                             | 15 | <210> 36 <211> 173 <212> DNA <213> Homo sapiens                              |     |
|                             | 20 | <220> <221> misc_feature <222> ()() <223> "n" refers to an undetermined base |     |
|                             | 25 | <400> 36                                                                     |     |
| (3                          | 25 | gacnncgggt ttgtgtgtaa cagggtcagt ccccgtatct actttgcgaa agcttcgagg            | 60  |
| 1,1                         |    | cgagcgtgaa gtcaagggct gcggtggatg ggggtaaaan gcctcctcnt cccactgcct            | 120 |
| The Real with State Control | 30 | gcnccgtctt ggggtaaccc ctanccccca cccggngttn cnctttaatg ctc                   | 173 |
| and the first H freeze      | 35 | <210> 37<br><211> 369<br><212> DNA<br><213> Homo sapiens                     |     |
| Hart Hall they have hard    | 40 | <220> <221> misc_feature <222> ()() <223> "n" refers to an undetermined base |     |
| i d                         | 45 | <400> 37 tcactgtgcc gggtctctcc tncccggtcc aactccctta cttgtcctca tctctgtccc   | 60  |
|                             |    | caaggtccgt gacccgcgga ggtgatgggg gggataggag agccccaggg accgcagagg            | 120 |
|                             |    | tgacacaatc gcccgcccgt cctccctcgc tgggagccga ttcagcctgt gccgagcctc            | 180 |
|                             | 50 | tecettegeg tgeetetgeg caeageggtg geacegeagg acteegggte eeceegget             | 240 |
|                             |    | ctccatcggg aagccggcaa atgcgcttcc tcagccagac cgcggcgggg tggggggggg            | 300 |
|                             | 55 | gggggcggaa gttgaaatac tgggacagaa acacctgccc gtcccaaggg acggaaaact            | 360 |
|                             |    | ggatgccaa                                                                    | 369 |
|                             | 60 | <210> 38 <211> 123 <212> DNA                                                 |     |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | <213> Homo sapiens                                                           |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------|-----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5        | <220> <221> misc_feature <222> ()() <223> "n" refers to an undetermined base |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10       | <400> 38 gtcccttcgc cccgcttttn ctttccccna ggtcccagcg nccgaaccgg cggatgtcca   | 60  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | cgaaacatag ggcgagccgg gggccangcg gggccgtgta aaatctcntg tggtcatttt            | 120 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15       | gtg                                                                          | 123 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20       | <210> 39<br><211> 450<br><212> DNA<br><213> Homo sapiens                     |     |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25       | <220> <221> misc_feature <222> ()() <223> "n" refers to an undetermined base |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30       | <400> 39 ctagccctgg aagagaatcc gaggctcagc cntgctgcag cacccaggac actgcatccc   | 60  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | agcacctgcc cgaagatcag cccaggaccc aaaggaaagc aggctccaag ctccccggaa            | 120 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | gccaaggaaa ataggaaaac atatcctgcc ccggggacac cttctggaac tatgaccaca            | 180 |
| ii<br>Li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35       | tgcacttgac cttccggaac aatcaccgca tgcacctgac ctcccggaac tgtcaccacc            | 240 |
| The state of the s |          | gegegeacet gaceteeegg caetgteacg acegegegea cetgacetee eggeactgte            | 300 |
| 1. L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40       | atcaccgcgc gcacctcacc tcccggaact gtcaccaccg cgcgcacctg acctcccggc            | 360 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40       | actgtcacga ccgcgcgcac ctgacctccc ggaactgtca tcaccaggcg cacctgaccc            | 420 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | cccggcactg tcacgaccgc gcgcacctca                                             | 450 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45<br>50 | <210> 40<br><211> 593<br><212> DNA<br><213> Homo sapiens                     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | <400> 40                                                                     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | ggaccaagct gggtaaactg ccgacagctc cattgggcag catgtccacc cctgatgacc            | 60  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55       |                                                                              | 120 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | acteegetge ttteecaegt teetggagea geageeggaa taaagegeee atggeettge            | 180 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | cctttgagtc tcggaggatg tttgccactc caacaatgga cttttaaata attcaggggt            | 240 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60       | caaaaggcgt gtgtgtgggg ggggagaaaa gttacaaatc agcacttgaa accgaacaca            | 300 |

|                                         |    | aacaaaaat                                      | c aaacaaatco | gaactaatat | aacaaatcaa | aactttgatc | tttagaagaa | 360 |
|-----------------------------------------|----|------------------------------------------------|--------------|------------|------------|------------|------------|-----|
|                                         |    | aacttcaac                                      | c ttaatgcttc | caggaggaaa | gcagaaagga | taatgactga | attgtgaaaa | 420 |
|                                         | 5  | cgagccaaa                                      | a tgttccacca | ctgatgtcac | acacacctat | gactccctgc | acagatccac | 480 |
|                                         |    | ggtcccggg                                      | c gctgaatccc | cgcaaccctc | tgcgcccaca | gaggttaaac | tctcgctgct | 540 |
|                                         | 10 | ggcgacttc                                      | c getteetgge | ctaaatctga | cacgcacgac | tccccccgcg | gca        | 593 |
|                                         | 15 | <210> 41<br><211> 45<br><212> DN<br><213> Ho   | 7            |            |            |            |            |     |
|                                         |    | <400> 41<br>accaccaac                          | c aaatagggcc | tttcctgtta | acgaccacgc | ggcaaggggg | ccgggccctc | 60  |
|                                         | 20 | gcacgcctc                                      | g acggcctccc | ccactccaaa | gggactccga | tttcgcagga | tctcccgcct | 120 |
|                                         |    | cccgcctct                                      | g ctcccaacac | cctacgtttt | tctcttcctc | ctcatttacg | tatttacaat | 180 |
|                                         | 25 | aaaacagcg                                      | a agctgcacag | tctgtctcta | aatcaaacgc | ggttaccatc | aaagcctcag | 240 |
| But | 20 | actctatgt                                      | c tcaaccgcaa | aaggtctgac | aggaaatcaa | ctcgggagtt | tgtcaattct | 300 |
| (n                                      |    | ttaaactca                                      | a agctctgtta | acgaaatctg | gatctttcct | cgctccccac | ctgcctcccc | 360 |
|                                         | 30 | tgacaggag.                                     | a atgactgtaa | aaggatcctg | tegteeeega | aagtcagcac | caagcacttc | 420 |
| H H H                                   |    | acaaattgt                                      | c aaatctcaaa | agcttacacg | cgcggca    |            |            | 457 |
| in the true the the                     | 35 | <210> 42<br><211> 21<br><212> DNZ<br><213> Hor |              |            |            |            |            |     |
| 1: 22                                   | 40 | <400> 42                                       | t            |            |            |            |            |     |
| 11 22                                   |    |                                                | g aatgacgcgc |            |            |            |            | 60  |
|                                         | 45 |                                                | g cttgggtgta |            |            |            |            | 120 |
|                                         | 73 |                                                | gegeggteee   |            |            | ctggtcgtca | ttctcgttgc | 180 |
|                                         |    | taccegette                                     | c cttgtccgac | acgreggege | a          |            |            | 211 |
|                                         | 50 | <210> 43 <211> 143 <212> DNA <213> Hon         |              |            |            |            |            |     |
|                                         | 55 | <400> 43                                       |              | ~~~~~      |            |            |            |     |
|                                         |    |                                                | c cgggggccca |            |            |            |            | 60  |
|                                         | 60 |                                                | cagggggggt   |            | ayaattcayc | cacciccag  | calecctgtt | 120 |
|                                         | 50 | uccccyayga                                     | cgcgcctctc   | a          |            |            |            | 141 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5  | <210> 44 <211> 559 <212> DNA <213> Homo sapiens                               |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------|-----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | <400> 44 acccactttc cattaacact aaataaaacg catccatgga tttcctctcc attccgaggc    | 60  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 | aacaggagtg catggcacat tgccctactc ccctgaagct cttcgctaac ctaagactcc             | 120 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | agggtgagga agttagctgg agctttttaa agtgcatctc caaagagaat tttgctcaca             | 180 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15 | ccatgagagc ccccaagaaa caccagggcc cccttagatg ccggagacca cgccctccag             | 240 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13 | gaataagccg caccetetge ceageagate ettgegegag tagecetett teeetgggge             | 300 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | taatcaagtg catgccacat gtcaccactc tcagctggca attcttcctc agaggcgcag             | 360 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 | actttcacgg aatccccagc aggggggtt aagagattca ggggaggccc cgcccgtgcc              | 420 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ttccacaaaa gtcgctttac cgtggctcgt gtcctgcggc cccaaggggg tagcctggga             | 480 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25 | cgtgtattgg gagggcatag aggctccttc caggacaagc tgccagcctc cagtgggcaa             | 540 |
| Hall Hall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20 | ccatgtgaga ggcaaaatt                                                          | 559 |
| THE RESERVE OF THE PARTY OF THE | 30 | <210> 45<br><211> 433<br><212> DNA<br><213> Homo sapiens                      |     |
| lle dism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35 | <400> 45<br>gcgaacagca caaaggcttc attcctacga gagattaagt tttagagcaa atggacacga | 60  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | tcgttaaaga atttgatatt tccatgtaaa ctgcattagc aggttatgcg atccaaactc             | 120 |
| Sad the hour had                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40 | acaggaacaa ctccaactct cggccatgcc ctatttcatg tctagatttg tttaaccgac             | 180 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40 | ttacatcata atccaagaat acgaactaca gtatattctt acagcaaagt tattccttaa             | 240 |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | aagcaaaacc gagccacctt tgaaaacacg cacacacatt atccacggca ctaaaacccc             | 300 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45 | agtottgaco gagaaagaco aacaacttgg gggggaagaa aacaacttca gagccagago             | 360 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | tcccaaagca gaaagcgctg gcggctgaag ggcacacgag gttccgctcc cgggcgaacg             | 420 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50 | ggcggcgtcg caa                                                                | 433 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55 | <210> 46 <211> 487 <212> DNA <213> Homo sapiens                               |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | <400> 46 cccttagtat tccatgagcc accattttcc ccacgatccc tccagcctga acgatcacat    | 60  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60 | cctactgtgg accacgactc tcccagcagc gggcgtttaa tatccagtta gcaggttctc             | 120 |

|           |    | accacccccc                                       | egetggeteg               | aatacagcat | etgeaeegag | ttcccgagaa | tcgtcaaccc | 180 |
|-----------|----|--------------------------------------------------|--------------------------|------------|------------|------------|------------|-----|
|           |    | agcaaatccc                                       | ttaattggtg               | gacatgaaaa | tccagggctt | tgtgctgtaa | taacagagtc | 240 |
|           | 5  | ctgggggcct                                       | ggggagtttg               | tgccgcttgg | agctcaggtt | tctgggacag | aggctgagcg | 300 |
|           |    | cagggcaggg                                       | aggcaggtct               | cacctggcac | ctcccagagt | cctcgccgag | cagatggaag | 360 |
|           | 10 | cagaggctct                                       | cgcgcccggc               | ccccgccggg | agacctctct | ctctttccct | cggcctgctc | 420 |
|           | 10 | tgccctctcc                                       | cgccttctcc               | ctgtctgatc | cttctctgct | gtcatgttct | ttgtcctcgc | 480 |
|           |    | gccccga                                          |                          |            |            |            |            | 487 |
|           | 15 | <210> 47                                         |                          |            |            |            |            |     |
|           | 20 | <211> 403<br><212> DNA                           | o sapiens                |            |            |            |            |     |
|           |    | <400> 47<br>gtcatataag                           | cacaaccatt               | cccagggcca | ccctggatgc | atcagatcag | tcccccact  | 60  |
|           | 25 | ggtgaccaca                                       | atggctggct               | cagagtgcct | ttgaacagac | aggagaaaca | gacttcttgg | 120 |
| E King    | 25 | agggagggac                                       | cttcccacag               | ggaatggcca | aggagctagg | tcttcagggc | ttgcatggcg | 180 |
|           |    | tggagtgtgt                                       | gctcaggtgc               | acagtgaagc | aaacctgagg | ggacttgggc | cctgcgtcct | 240 |
| 12        | 30 | ccagcacaca                                       | cgcacccttt               | cgccgtcaca | tccggggcac | ccacccgtgg | aatatgtgag | 300 |
|           |    | ccgcacttgg                                       | ccagccacga               | gttccagggc | caggaagtcg | tgcttctcgt | tcaggcgccc | 360 |
|           | 35 | gttgtagaag                                       | agcagcccgc               | tctgctgcac | tgtcgcgtcc | cga        |            | 403 |
| Mary Hard | 40 | <210> 48<br><211> 155<br><212> DNA<br><213> Homo | o sapiens                |            |            |            |            |     |
|           |    | <400> 48                                         |                          |            |            |            |            |     |
|           |    | ggcgtggaga                                       | ggaggggca                | gaaactcagc | cgcccctacg | tttgctaaac | tgcgtccgcc | 60  |
|           | 45 | agggggcgta                                       | tttttctaaa               | acgcacaaga | cgtttcgtgg | gttatcgatg | gtctcttgag | 120 |
|           |    | cctccttgac                                       | tgatggggat               | tgaccgggcg | ggata      |            |            | 155 |
|           | 50 | <210> 49<br><211> 256<br><212> DNA<br><213> Homo | o sapiens                |            |            |            |            |     |
|           | 55 | <400> 49                                         | ttttctttaa               | ataasaasa  | 2201001000 | 2+4242444  | 220021000  | 60  |
|           |    |                                                  | aggtggagag               |            |            |            |            | 120 |
|           | 60 |                                                  | aggtggacag<br>gtggtttggg |            |            |            |            | 120 |
|           |    |                                                  | 2-22-66333               | Julyacaa   | ggccagaggc | ayyayıllal | gatytayaya | 180 |

|                   |                                 | tgacaca        | gtg                      | cccctccgcg | tgtgagtcca | cgaaggtcac | tactgaggct | ttgtgcttgt | 240       |
|-------------------|---------------------------------|----------------|--------------------------|------------|------------|------------|------------|------------|-----------|
|                   |                                 | aaaaggc        | cgc                      | cccgca     |            |            |            |            | 256       |
|                   | 5                               | <211><br><212> | 50<br>224<br>DNA         | o sapiens  |            |            |            |            |           |
|                   | 10                              | <400>          | 50                       |            | ggcgggagct | gttcgctggc | cggcctcact | ggagtaggaa | 60        |
|                   | 15                              | ttttaga        | tga                      | aactgagtcc | gtttctcctt | gaaggcaggc | agtattctta | gatctactat | 120       |
|                   | 13                              | tcattta        | aaa                      | agaaggaaaa | gaaaaaaaaa | tgactgctac | ttactgagaa | gaaaatttct | 180       |
|                   |                                 | gttctcc        | tcc                      | gattccgctg | atcccgcttt | atccgcgcac | ctca       |            | 224       |
| <b>⊘:</b> 1000g   | <ul><li>20</li><li>25</li></ul> | <211><br><212> | 51<br>313<br>DNA<br>Homo | o sapiens  |            |            |            |            |           |
| Und Trail Und And |                                 |                | 51<br>gga                | cggcccaggc | cgcggcttcc | cgcgtgggga | tgcgctgtgg | cgcagagctg | 60        |
| Hard Hard         |                                 | gtcccgg        | cgg                      | ggccaggcgt | ttgtgggcgg | gtgacgggga | tctagggctt | ccgctcgtga | 120       |
| m<br>III          |                                 | ttcctct        | tgg                      | gctgtctttc | cgggtttgga | ctcgcctgcc | cggctgtgtg | cagggttccc | 180       |
| : EE              |                                 | gctgcct        | ctg                      | gccggcaggc | gtccgggctg | caggtgggcc | ggcaggcagg | tgttagcggg | 240       |
| 1                 | 35                              | aagggag        | cac                      | aggtagcgag | gtgggatcgg | cgacctggct | agggtgtcgg | cagaatggaa | 300       |
| Mar. Mars. Aug.   |                                 | tgcgcgg        | ccg                      | cta        |            |            |            |            | 313       |
|                   | 40                              | <211><br><212> | 52<br>385<br>DNA<br>Homo | sapiens    |            |            |            |            |           |
|                   | 45                              |                | 52                       | 2++a2++a+a | aagaaaaaa  | aggggt ggg | agatagaaga | +aaa+aaa+a | <b>CO</b> |
|                   |                                 |                |                          |            |            | agccggtcgc |            | _          | 60        |
|                   | 50                              |                |                          |            |            | gcccacctgc |            |            | 120       |
|                   | 50                              |                |                          |            |            | gcaggcgagt |            |            | 180       |
|                   |                                 |                |                          |            |            | ccccgtcacc |            |            | 240       |
|                   | 55                              |                |                          |            |            | cccacgcgg  |            |            | 300       |
|                   |                                 |                |                          |            |            | gtcagccagc | tgcggctctg | ccgaagcgct | 360       |
|                   | 60                              | cctccgc        | tcc                      | tttctcgcgc | cccga      |            |            |            | 385       |

<210> 53

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | <211><br><212><br><213>   | DNA<br>Homo              | o sapiens  |            |            |            |            |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------------|--------------------------|------------|------------|------------|------------|------------|-----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5  | <400>                     | 53<br>gctc               | ggttcggcaa | ggttcaggga | gacaaggtag | agaaggctgg | ggtgagcaag | 60  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | aagtcg                    | ggcg                     | gccgatcgtc | agggccacga | gcctcgcctt | gccttcttgg | aatcccaccc | 120 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 | aacttt                    | aaag                     | gcccaaagat | cctgaaaatt | ccgaaagcga | aactgcgggc | tggtctccag | 180 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | aagttt                    | gaga                     | acggtctccc | aggctttcca | gcgtcgtccc | gggattctcg | gacaccacaa | 240 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15 | acgcca                    | tcaa                     | ccacgagcac | cggtgtccgt | ggctattgcc | ccgaatggtc | cccatccgcg | 300 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13 | tcccct                    | a                        |            |            |            |            |            | 307 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 | <210><211><211><212><213> | 54<br>182<br>DNA<br>Homo | o sapiens  |            |            |            |            |     |
| §: <b>=</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25 | <400>                     | 54<br>cgaa               | gccgtttgga | gggaacagcg | gtttccaagt | tcctgctgac | ttgagaagcc | 60  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | tctgcg                    | ggtt                     | tccgaatctc | cggcgcactc | ctgggcgcgc | tgcgggagct | gtagctcagc | 120 |
| LĪ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20 | cagcca                    | ggga                     | gtagcggctt | tcatccgccg | ggaggagtct | ttcgagttca | atcgcggggg | 180 |
| The state of the s | 30 | ca                        |                          |            |            |            |            |            | 182 |
| dress from hard to the fire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35 | <210><211><211><212><213> | 55<br>523<br>DNA<br>Homo | o sapiens  |            |            |            |            |     |
| , <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40 | <400><br>tcgggt           | 55<br>ttga               | tccgccccaa | ccaaataggg | cctttcctgt | taacgaccac | gcggcaaggg | 60  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ggccgg                    | gccc                     | tcgcacgcct | cgacggcctc | ccccactcca | aagggactcc | gatttcgcag | 120 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45 | gatctc                    | ccgc                     | ctcccgcctc | tgctcccaac | accctacgtt | tttctcttcc | tcctcattta | 180 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15 | cgtatt                    | taca                     | ataaaacagc | gaagctgcac | agtctgtctc | taaatcaaac | gcggttacca | 240 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | tcaaag                    | cctc                     | agactctatg | tctcaaccgc | aaaaggtctg | acaggaaatc | aactcgggag | 300 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50 | tttgtc                    | aatt                     | ctttaaactc | aaagctctgt | taacgaaatc | tggatccttc | ctcgctcccc | 360 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | acctgc                    | ctcc                     | cctgacagga | gaatgactgt | aaaaggatcc | tgtcgtcccc | gaaagtcagc | 420 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55 |                           |                          |            |            |            | cgcgcgggca | ctccggaaag | 480 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | gctgtgg                   | ggga                     | ccacccaaag | caccccctc  | cacaccgcgg | gca        |            | 523 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60 | <210><br><211>            | 56<br>795                |            |            |            |            |            |     |

<212> DNA

| 5  | <210> 58 <211> 611 <212> DNA <213> Homo sapiens                                                                                     |     |
|----|-------------------------------------------------------------------------------------------------------------------------------------|-----|
| J  | <400> 58 getteeceet teetteete egegetgeee eettgagate egaceetteg tgtgtttgeg                                                           | 60  |
| 10 | ctaaattgtc ctcgctgttc ctctcacccg cgacatacag agaaagtaac cggagagccc                                                                   | 120 |
| 10 | tacatatgcc agtctggctg ctgccctgga gtttgcatcg atcctgcaat tcctagtcaa                                                                   | 180 |
|    | atatgaacac tcctctccct cctcacgccg agttgaaaaa cgtgataata atataagtcg                                                                   | 240 |
| 15 | acaggctgta ggcaatattt ttcactgcat gacttattca tggcgaaaat gtaaactgtt                                                                   | 300 |
|    | ttcccacggg ctttattaga atgttgcctt ctgccgagat aggcttcacg caagccctgt                                                                   | 360 |
| 20 | gctctcagtt tctctggcgt gagcaaaact gtttgggtcc ataagtgtcc acatttggcc                                                                   | 420 |
| 20 | atttattatt tcgatttgaa ttttcagtaa atacaaccac ccctttcccc tcccccagaa                                                                   | 480 |
|    | acagtcatgc ttagagaaaa ttatagcaaa acctccctgg aagcctgaag gttttggatg                                                                   | 540 |
| 25 | actgagaggt ttggtttggt ttctctttct tttcattcaa aacggatcaa actccctggc                                                                   | 600 |
|    | tcgcgtcccc a                                                                                                                        | 611 |
| 30 | <210> 59 <211> 291 <212> DNA <213> Homo sapiens                                                                                     |     |
| 35 | <400> 59                                                                                                                            | 60  |
|    | gagtttggca ggccccggat tccacaaagg agtaggcgcg gccagccgcc tccagccctg agctcagtaa attcggtgtc ctgaatgctc ccttcctgtc cttaccactg cgagctctct | 120 |
| 40 | tgggacaget ttetaggtte cactgegace tacttteege tecetgagtg ettetttget                                                                   | 180 |
| 10 | gaaactgcag gcgaaaagat ctctttccca gaccgcagcg cactttgaga aggggctcaa                                                                   | 240 |
| 45 | agtcgcccgc tctgaatccg gcaccggcaa ataggagtag ccgcatgcgc a                                                                            | 291 |
| 50 | <210> 60<br><211> 226<br><212> DNA<br><213> Homo sapiens                                                                            |     |
|    | <400> 60 gaaaacagat aaaacgccct acagaaaatc tcggcgaagt cccggaggac tctggtttct                                                          | 60  |
| 55 | aagatcagct gggcgcactt tctccgggac gtcccttctt ctcggtctca gcgccttcct                                                                   | 120 |
|    | gccctcagcc gcgcgcagct ttgttttggt gacaaactga aataagaaat ggaaatatat                                                                   | 180 |
|    | tggcctttgc tgctgccagg gatgagaggt tgttgacgtc ggcgca                                                                                  | 226 |
| 60 |                                                                                                                                     |     |

1,1

|                                               | 5        | <210><211><212><212><213> | 61<br>580<br>DNA<br>Homo | sapiens    |            |            |            |            |     |
|-----------------------------------------------|----------|---------------------------|--------------------------|------------|------------|------------|------------|------------|-----|
|                                               | ,        | <400><br>ctgtgat          | 61<br>tgca               | ctcggcggat | ctcggtggca | gctgcctcct | tcatctccag | tgacgcctgc | 60  |
| 1                                             | 0        | atgctgt                   | tcct                     | aggcagtgtg | aggagtgaag | atgagatttg | gcgcatcttt | caacggagtc | 120 |
| 1                                             | 0        | tgagcaa                   | aagc                     | taaagggctc | cgattcgtgc | aagccaaggg | ctgcccctcc | tatcctgtcc | 180 |
|                                               |          | tccttga                   | agga                     | cctgtgctaa | ggctttctca | tccaccaggc | caccatgggc | tgcgttcaca | 240 |
| 1                                             | 5        | aggaat                    | gctc                     | cctgtctcat | ctgctttata | gtaaagtcat | tgacgaggtg | gtggttatgt | 300 |
|                                               |          | tcattga                   | agat                     | tgctgtgcaa | cgagacacag | tcactctgat | acagcaaacc | ctgcagggtg | 360 |
| 2                                             | Λ        | tatcag                    | ggtc                     | ccctctgcat | gccctgggac | ctctctatct | tgtcctacaa | gtaggggtca | 420 |
| 2                                             | .0       | taaaata                   | acga                     | cgctgaatcc | aaaggccttg | gctcaaactg | caaccgcctg | cctcatgcaa | 480 |
|                                               |          | ccgaag                    | ccca                     | tgaggcctag | cgtcttccac | gaatgagggc | cactcccatg | gccacctcga | 540 |
| _ 2                                           | 5        | gaatct                    | gctc                     | cacgctctga | acccgcgcac | ctcaagccga |            |            | 580 |
| 2 2 mg 1500 1500 1500 1500 1500 1500 1500 150 | 0        | <210><211><211><212><213> | 62<br>633<br>DNA<br>Homo | o sapiens  |            |            |            |            |     |
| <u>.</u>                                      | <b>~</b> | <400><br>gcccagg          | 62<br>gaga               | agccctccac | ggtgggcgtc | ctcctagaca | accagcaccc | cctgcaggca | 60  |
| . 3                                           | 5        | ccctcgt                   | tctg                     | gcagaatcag | ccctttccca | cctgcaggcc | cttctcagcg | cctctgactt | 120 |
| an Shin P                                     |          | cccacao                   | caca                     | gcacaggtta | caaactggtc | cctggcagtg | cactctagcg | ggcctctctc | 180 |
| 1 4                                           | 0        | acaagti                   | tctg                     | cgggcctcgt | ttcatggaaa | gcgggttgtg | gattcctgct | gcccttggat | 240 |
|                                               |          | ggcccct                   | tgcg                     | cacgcacacc | tctgagcggg | cactgagcga | gcgtggggag | ctgctccctg | 300 |
| 4                                             | 5        | ggaacta                   | aggc                     | aggagctttt | aaacaccctt | acacacagcc | attctgcggg | aatacatgct | 360 |
| 4                                             | .)       | ttcccg                    | gtaa                     | ggcttttact | gttcattcca | ggtaaattgg | aagtcgcaca | ccccaagctc | 420 |
|                                               |          | caaata                    | caac                     | tcgttagctg | gcaggtctct | gaagccaatt | ccttctgagg | aaaatggaga | 480 |
| 5                                             | 0        | taatago                   | cagc                     | taccctccca | ggtgactggg | ggagaataaa | gtggctgtgc | atagtggtgt | 540 |
|                                               |          | ttgcago                   | ctgg                     | tggctgctat | tatccttcat | tacagcttgt | aaaaagggtg | tctaggccat | 600 |
| 5                                             | 5        | ttacaca                   | acag                     | ataggccggg | tggggtaagc | cga        |            |            | 633 |
| 6                                             | 0        | <210><211><212><212><213> | 63<br>703<br>DNA<br>Homo | sapiens    |            |            |            |            |     |

, <u>.</u>

300

aggtgeggge ategggeaga geageteeag eaggeaggae etggggeete eaccetgeae

|                                 | ccctgtgccc cgcgtgtggc ggaaccgccc cgaggggagg ctgtcaccac g                     | ggtgacagge | 360 |
|---------------------------------|------------------------------------------------------------------------------|------------|-----|
|                                 | agccccacgc gagcctgaga accctcagcc cacctttttc tgtaatcaca                       | gcaggcatct | 420 |
| 5                               | ctccggcaag tcaatccagt tccagctggt gctgcctccc ttgcctcatg                       | ggctttattt | 480 |
|                                 | tagaactctg agcaataata aaaaagacgc tacccgctac aatagatgtg                       | gcagagaatc | 540 |
| 10                              | tggctcttca cttcatcana gatcaccctg aaatgatggt tgttgttaa                        |            | 589 |
| 15                              | <210> 70<br><211> 748<br><212> DNA<br><213> Homo sapiens                     |            |     |
| 20                              | <220> <221> misc_feature <222> ()() <223> "n" refers to an undetermined base |            |     |
|                                 | <400> 70 gctacatctn ctctacattc taactaacac ttgttatttt ctgtttttgt              | ttatttattt | 60  |
| 25                              | ttaatagcca ttctagtagg catgaagtgg tgtttgcctg ctttttttga                       |            | 120 |
|                                 | ggaatagggt ggaattggtc cttaaccatc aattaagctg ggggccttag                       |            | 180 |
| 30                              | attggctgtg acaatagcta aaggaggctg ctacctcata ctgaagagat                       |            | 240 |
|                                 | tttgtcaccg gagagggcac cgaaccaact tattgtcttg gagggaagaa                       | _          | 300 |
|                                 | agaagacttg aacttctcag agaaaaaaac agtctacaga cttcatttta                       |            | 360 |
| 35                              | acacactact gaaageteta eeetggggae etggettgae ttetaaceta                       | cncctgtgtt | 420 |
|                                 | atttaggaag ageteecage tgetetgagt eteagtetee eaateagtga                       | aatggaggca | 480 |
| 40                              | atagcacctg cctggctgca tcgccccaca gtgctgcaat gagcatccaa                       | cgagagaaag | 540 |
|                                 | cttgtcacct gtgttgcaaa ctaagttaca caaatgcagg cagtagcagc                       | tagaagaaaa | 600 |
| 45                              | tggttgggaa tctgaaaaga attaaagccc cccatgaatt tcttctcacg                       | cctcctccaa | 660 |
| 73                              | aagccaggga ctgcttcacc ccgcctccag gactgctcgc tccagcattt                       | ccggcagctg | 720 |
|                                 | ctgacagaat gtatgttgcg gctgtccc                                               |            | 748 |
| 50                              | <210> 71<br><211> 599<br><212> DNA<br><213> Homo sapiens                     |            |     |
| <ul><li>55</li><li>60</li></ul> | <220> <221> misc_feature <222> ()() <223> "n" refers to an undetermined base |            |     |

Hirto I II Herri Lark Hook with half death

|                        |    | gctttttccg ttttgtctag a                                    | aaatttgggt  | tgcactaaat | tctcagctga | atgaagatga | 180 |
|------------------------|----|------------------------------------------------------------|-------------|------------|------------|------------|-----|
|                        |    | gaaggggctg gcagaggggg                                      | tggctccagc  | tctctgagaa | cctggctcct | tcccgggtgg | 240 |
|                        | 5  | cagggagaga tggcccctgg                                      | ggagacgggg  | agggtgcact | gcctcatgcc | caaaccacca | 300 |
|                        |    | gcttctagtt gagaaatcag                                      | aattttctct  | gcagaataag | gaaaaagcat | tgtcaccatg | 360 |
|                        | 10 | attcacgtgg agctggccac                                      | actcaggaaa  | ttcaatgggg | tcccacaggg | gctccgaggg | 420 |
|                        | 10 | ggaaggagag ggcctgggac                                      | atgcccctcc  | agccatcatg | gaacaggatg | ggcagggccg | 480 |
|                        |    | gccctcactg ctctctaaca                                      | gtgaaaagcc  | acatctccac | tttggaaaac | acaggcatgt | 540 |
|                        | 15 | gagageetgg gg                                              |             |            |            |            | 552 |
|                        | 20 | <210> 74<br><211> 450<br><212> DNA<br><213> Homo sapiens   |             |            |            |            |     |
| And the will will that | 25 | <220> <221> misc_feature <222> ()() <223> "n" refers to a: | n undetermi | ned base   |            |            |     |
| ALL THE RULE           | 30 | <400> 74<br>tggaggcttc gagggaagtg                          | aggttccctc  | ggacacccta | gtgggaaggc | tccacgcggt | 60  |
|                        |    | aatggaacca cgctgtgaaa                                      | cctttgcctt  | tgggtgtcat | ggtggaagca | aatcttagaa | 120 |
| ¥1                     | 35 | gacatttaat ttaaaaaatt                                      | cagttttaaa  | aaatgttgac | ttaaaaagca | gttttgaaaa | 180 |
| The first seem         |    | acaacctgga attagcctga                                      | gatcgatgcc  | aactcttagc | agtctgtata | ctaaacacag | 240 |
|                        |    | ttaaacaact gtagctgctg                                      | gcaagctgga  | acctttttgt | aaagaagcac | ataaaaagga | 300 |
| #"H #"H                | 40 | cagaactggt ggaaggtgca                                      | ctggtctttc  | cacatcgcca | ccaggcgttt | tgaagcgtgc | 360 |
|                        |    | tgctgacacg ctactcanat                                      | gcttctggaa  | gccaaacaat | aanaaaaanc | cccattgttt | 420 |
|                        | 45 | cccttgctgg gttttacccn                                      | ccatggtgga  |            |            |            | 450 |
|                        | 50 | <210> 75<br><211> 432<br><212> DNA<br><213> Homo sapiens   |             |            |            |            |     |
|                        | 55 | <220> <221> misc_feature <222> ()() <223> "n" refers to as | n undetermi | ned base   |            |            |     |
|                        | 60 | <400> 75<br>ggacaatgag gagggggtgc                          | acgtggaatc  | cccacggata | ggccggacgc | cgggcaggag | 60  |
|                        | 30 | cetttagaga gatagagaga                                      | ataatataa   | agggetagta | actacctact | acctactace | 120 |

THE PART HAS

1.1

accegataac ggeteecaag geecegtgtt tacattettt eecaetggaa geagaaatta

|                                         |                                 | tcacgccca                                    | a attcctacct                      | gccttccctg   | gattcctggt | ttcctaagaa | acgggtttgg | 300 |
|-----------------------------------------|---------------------------------|----------------------------------------------|-----------------------------------|--------------|------------|------------|------------|-----|
|                                         | 5                               | cccacccct                                    | g ggcgttcgaa                      | cagtccacag   | aagcgggcaa | aggaaagacg | actcagtctt | 360 |
|                                         | ,                               | tecectecg                                    | gc caatctcttc                     | tccgggacca   | caaatcccag | aagtcaccgc | ggccgctaag | 420 |
|                                         |                                 | ccga                                         |                                   |              |            |            |            | 424 |
|                                         | 10                              | <210> 80 <211> 28 <212> DN <213> Ho          | 35                                |              |            |            |            |     |
|                                         | <ul><li>15</li><li>20</li></ul> | <222> ()                                     | .sc_feature<br>()<br>n" refers to | an undeterm: | ined base  |            |            |     |
|                                         |                                 | <400> 80                                     | )<br>gg gcanaggcga                | tcaaaantgg   | ggtgcgctgt | ggtgggcgac | acgtgtggcg | 60  |
|                                         | 25                              | cgggtctca                                    | at tatccgccct                     | tttcacttcc   | tggactggaa | atggcagacc | atatgatggc | 120 |
|                                         |                                 | aatgaacca                                    | ac gggcgcttcc                     | ccgacggcac   | caatgggctg | caccatcacc | ctgcccaccg | 180 |
|                                         | 30                              | catgggcat                                    | g gggcagttcc                      | cgagccccca   | tcaccaccag | cagcagcagc | cccagcacgc | 240 |
| 2 M M M M M M M M M M M M M M M M M M M | 30                              | cttcaacgo                                    | c ctaatgggcg                      | agcacataca   | ctacggcgcg | ggcaa      |            | 285 |
| Min Kin Last the the Kin I              | 35                              | <210> 81 <211> 40 <212> DN <213> Ho          | )1                                |              |            |            |            |     |
| (3                                      | 40                              | <400> 81<br>cagatatgt                        | l<br>ca tectectett                | tccaaccctg   | cgtccctttg | aggcctggtc | ggcgttccca | 60  |
|                                         |                                 | acctgcccc                                    | ct accccaccaa                     | cccctgtccc   | tttggccatt | agtcccggat | tatctagcga | 120 |
|                                         | 45                              | tgccccgtg                                    | gt accgtctggc                     | tttgctgttt   | actccgcgct | cggccagttg | aggccttttg | 180 |
|                                         | 10                              | tatttatto                                    | cc tgattttctc                     | ataggggtaa   | agtgccttcg | ggaggatagg | acaagtccca | 240 |
|                                         |                                 | tcctgttca                                    | at acgaattaca                     | gctcggactt   | cgggcccttt | tacactgcct | tttgtatctg | 300 |
|                                         | 50                              | ttaacttgo                                    | g ctaaaaacga                      | ttcggttctt   | ttttttgagg | aagggggttg | gggggcggag | 360 |
|                                         |                                 | actctgtcg                                    | yc ccagtcctga                     | gggccgcggc   | gcgcaagccg | a          |            | 401 |
|                                         | 55                              | <210> 82<br><211> 26<br><212> DN<br><213> Ho | 58                                |              |            |            |            |     |
|                                         | 60                              | <400> 82                                     | ?<br>ca caactgtgtc                | tcttacccag   | gcacatgcac | tatccctgat | cccggtgcat | 60  |

()..()

"n" refers to an undetermined base

<222>

<223>

220

60

<210>

<211>

|    | <212> DNA<br><213> Homo sapiens                                               |     |
|----|-------------------------------------------------------------------------------|-----|
| 5  | <220> <221> misc_feature <222> ()() <223> "n" refers to an undetermined base  |     |
| 10 | <400> 89 attggcccgn caggcgggaa acangctgnn nttctctnac cgttntccag cactgcccag    | 60  |
|    | accaggaggc gcagggagag gaggggncag cggttccgng accgctcctc ccgctgtccc             | 120 |
| 15 | tgctctccag cctntgcctc tgcaggagcc cgcgggantt gccccaggcc cctgtcccca             | 180 |
|    | cctgtggctc ccgtcctggt cgctcccggg gccgcggcaa                                   | 220 |
| 20 | <210> 90<br><211> 273<br><212> DNA<br><213> Homo sapiens                      |     |
| 25 | <220> <221> misc_feature <222> ()() <223> "n" refers to an undetermined base  |     |
| 30 | <400> 90<br>gnagggnggn ggtcgcggac gccggtgggc agttcttgtt cggtgatgtg ggttaaaaag | 60  |
|    | gactgcagcg aggagccggg gcggcgctcg gagtaatcac cggcggcatc aaaaagcgcc             | 120 |
| 35 | atcatggcat cgaggtcgcg gtctgcttgg gagccggtgg cgccgccgcg caaggcagat             | 180 |
|    | gcctgcaggc gcatatccag ctcggtagcg ctccatacct cccacaggat ttcttccaca             | 240 |
| 40 | gaggettggg ettgtatage etgeegeece gea                                          | 273 |
| 45 | <210> 91<br><211> 361<br><212> DNA<br><213> Homo sapiens                      |     |
| 50 | <221> misc_feature<br><222> ()()<br><223> "n" refers to an undetermined base  |     |
| 55 | <400> 91<br>acggcttctn tnctaagtga cacggtgtgt gaaattcggt tggggaggta gttctgtaaa | 60  |
|    | ctgcgtctcc ccgccagcta aggaagttga gtgaagggag cgttgccgtc tgggaatcgt             | 120 |
| 60 | agtecteaca aaggegtgag taggeggeaa ataaggattt gggtttagee ttggggatte             | 180 |

actcctgtca aagctgttag agaagctccc anaactcnta aagtaacaga aactacttgc

|    | ggcaacattt              | gtaacttcca | cctggctcat | tatcttccac | tgttaccttg | tgttctagat | 300 |
|----|-------------------------|------------|------------|------------|------------|------------|-----|
| ~  | aagttataat              | ttattctaca | tatcgttcag | aagtcttgtg | cctgttccat | attgtnagca | 360 |
| 5  | t                       |            |            |            |            |            | 361 |
|    |                         |            |            |            |            |            |     |
| 10 | <210> 92<br><211> 462   |            |            |            |            |            |     |
|    | <212> DNA<br><213> Homo | sapiens    |            |            |            |            |     |
|    | <400> 92                | _          |            |            |            |            |     |
| 15 | gctgcccaca              | ctggatggga | aggaccggcg | cctgcagcat | ctgccctcca | agccttcgta | 60  |
|    | gctccctcct              | tcctgcagga | taaactctaa | actccttagc | acaacgtggg | agccttctca | 120 |
| 20 | gagactgggt              | ccaacccatc | tccagccgca | gcctcccctc | ctggccccac | tgccacaccc | 180 |
| 20 | ccgggcctcc              | ggccacactg | agcctctccc | ggtttcccag | gatacaacac | tcgcccattc | 240 |
|    | atagtgtggt              | gccttttgca | cgtgctgttc | ctctgcttgg | ggatgctgtt | ggtctttctc | 300 |
| 25 | agccaggtga              | agaggacgct | gaatgtcacc | tgcttgagta | tcaggaccgg | ggactgggcg | 360 |
|    | ctggacctag              | actcttggcc | ctggagagaa | gccctgcatg | gggccgcagc | ctgcccccgt | 420 |
| 30 | ccctgctcac              | agaaaagctc | agccttgcag | ccgcgtggga | ga         |            | 462 |
| 30 | 010 00                  |            |            |            |            |            |     |
|    | <210> 93<br><211> 591   |            |            |            |            |            |     |
| 35 | <212> DNA<br><213> Homo | o sapiens  |            |            |            |            |     |
|    | <400> 93                | t          |            | ataggaaga  | ttaataataa | tataaaaaa  | 60  |
| 40 |                         |            |            |            |            | tgtcggggaa | 120 |
| 40 |                         |            |            |            |            | gagtccgaac | 180 |
|    |                         |            |            |            |            | ctcctctctc |     |
| 45 |                         |            |            |            |            | gccacggcca | 240 |
|    |                         |            |            |            |            | cagggggtca | 300 |
|    |                         |            |            |            |            | agggcccctc | 360 |
| 50 |                         |            |            |            |            | cacactggtg | 420 |
|    |                         |            |            |            |            | agacggccat | 480 |
| 55 |                         |            |            |            |            | gcaggttccc | 540 |
|    | acactgcggg              | gggagcagga | cagacacaca | tgctcttgca | cgcgcacctc | a.         | 591 |
|    | <210> 94                |            |            |            |            |            |     |

<211> 279 <212> DNA

|          | <213> Homo sapiens                                                            |     |
|----------|-------------------------------------------------------------------------------|-----|
| 5        | <220> <221> misc_feature <222> ()() <223> "n" refers to an undetermined base  |     |
| 10       | <400> 94<br>ttntgagttt tggcctgccc acagtctagc cctggacaga gaatccgagg ctcagccatg | 60  |
|          | ctgcagcacc caggacactg catcccagca cctgcccgaa aatcagccca gggacccaaa             | 120 |
| 15       | ggaaagcagg ctccaagctc cccggaagcc aaggaaaata ggaaaacata tcctgccccg             | 180 |
| 13       | gggacacett etggaactat gaccacatge acttgacett eeggaacaat eacegeatge             | 240 |
|          | acctgacctc ccggaactgt caccaccgcg cgcacctca                                    | 279 |
| 20<br>25 | <210> 95<br><211> 351<br><212> DNA<br><213> Homo sapiens                      |     |
|          | <400> 95 cctttattat tgttaaacgt cacccagaaa acccttaact cttagacagc ggctctcatt    | 60  |
|          | aagcaaaagg ggaggcacat gaagctccag gcagggccgg gagggaaccg tgaagccaaa             | 120 |
| 30       | ggctctggga gcccccaggc acctgcgttt gcattttcat cctggaggag accaggcctc             | 180 |
|          | tggggctgct ccccggggtg cagagaggag gggtctttct tggtgtgtaa catactcatt             | 240 |
| 35       | gattcagtca cctgaccttt gactccatgt attttgttga gtctggatgt gtggtgtgct             | 300 |
|          | ctgcccagca gctgggatcc acatgagcac agacatggtc cccccgcggc a                      | 351 |
| 40       | <210> 96<br><211> 171<br><212> DNA<br><213> Homo sapiens                      |     |
| 45       | <400> 96<br>ttgagtgtcg cgtgaatacc taggggacac tcaggggaat gatggctccc ccgagaggta | 60  |
|          | aagggtggaa agaaggggcc tcagcaggtt aggtcttgct gggtccttct gtagggcgtc             | 120 |
| 50       | tgggagatag atccgtgggg ctcctagggt cgcccctacc cggcgcgggc a                      | 173 |
| 55       | <210> 97<br><211> 743<br><212> DNA<br><213> Homo sapiens                      |     |
| 60       | <220> <221> misc_feature <222> ()() <223> "n" refers to an undetermined base  |     |

|          | <400> 97                                         |            |            |            |            |              |     |
|----------|--------------------------------------------------|------------|------------|------------|------------|--------------|-----|
| 5        | <400> 97<br>cctccctggc                           | ccttgttccc | aaggagcttc | ccttgtccca | gcctcttcgc | cagtgacttc   | 60  |
| ,        | tcactggacc a                                     | attcctttac | aaggagcctg | ttttttgtgt | tttttttta  | cacctttttt   | 120 |
|          | cttctatttc a                                     | acagaaggaa | caccggacgt | ccctntgtga | tggcagcagc | catgctgcct   | 180 |
| 10       | ntgtttccgc                                       | tcaggggttc | tntgccacct | ccaattccac | ccagtctntt | ggcctcggct   | 240 |
|          | gggcttcggc                                       | tecegeetnt | gngccaaaaa | ttgcaatgcc | cgcggtcagg | gcnctttgcg   | 300 |
| 15       | gagtctcacc                                       | gcctgcggag | gcttgattcc | ctcctcacag | gcagcagcgt | ttgatggccg   | 360 |
| 13       | gtgacncccc                                       | cctttccaag | cacatntntc | atggcccctg | aatgccactt | acagggcgtc   | 420 |
|          | cctccctgtg                                       | ctaagtgctg | cctgganctt | tgggtgtggc | agcagcaaan | acctctaccc   | 480 |
| 20       | ttgnggatgt                                       | tcgtttcggg | gnggaaagac | anatancaaa | gttggtcgta | aactgtaaag   | 540 |
|          | tgtgctggga                                       | ggaaactgag | gcagggaggg | cctggtgcca | ctggggagcn | ctgccccgac   | 600 |
| 25       | cccatgtgct                                       | tcccaggctc | ccttggagcc | acgtggatgg | cgacttcctg | accttggagg   | 660 |
| 23       | ccgnggncct                                       | cantcctcat | gctcgatggc | gtcanccccc | tcttggggaa | atccaancat   | 720 |
|          | tcctgacctg                                       | aaaatgcacc | cnc        |            |            |              | 743 |
| 30<br>35 | <210> 98<br><211> 589<br><212> DNA<br><213> Homo | sapiens    |            |            |            |              |     |
| 33       | <400> 98<br>ttgccgcgct                           | gataaaggaa | gcgtctagaa | ggtctcccca | gccttcatca | tctgagactt   | 60  |
| 40       | ggctttcagc                                       | cccaaagcac | taggccctgc | tgttaacctt | ccaccattaa | cctttggtgc   | 120 |
| 40       | tcttcaatta                                       | gcagcagcca | ggggtccttg | gcaggtatga | gaatttggaa | ggacagcccc   | 180 |
|          | agggcatggc                                       | ccccggctgc | agcaaaagtt | ctaagtgttc | ttctgttgga | aggaagccca   | 240 |
| 45       | ggagatattg                                       | atcagctgca | ggtggggag  | gccccagatc | ccacccttgc | ctgcctccag   | 300 |
|          | gagaaggttc                                       | tccatgggcc | aaaatggagg | cagagtccca | ctttgcctgg | gcagctccct   | 360 |
| 50       | gagcatggct                                       | ccctgtggac | ggagctgagt | gacgtcatga | ctctaggcct | caacaaaaga   | 420 |
| 20       | gctttggaaa                                       | atcccgatga | ttcgaattgt | attaaatcaa | caaacatcgg | gttgcacagt   | 480 |
|          | tactagaaaa                                       | cggagatctg | cgtcatcact | tactagacac | gtgaccttga | . acggcggctt | 540 |
| 55       | ccccgtgtga                                       | aacagcaaag | ttctgtaacc | cccatgaacg | cgcctctca  |              | 589 |

<210> 99

<211> 538

60 <212> DNA

<213> Homo sapiens

<400> 99

|    | tgccgcgtct g                                      | accctactc  | tcacaaagac | tttccaacta | gcataattga | gttaaatggt | 60  |
|----|---------------------------------------------------|------------|------------|------------|------------|------------|-----|
| 5  | cccccaact c                                       | ccttaattc  | aagctaaact | tgcagtttaa | caactatagg | agtgatatct | 120 |
|    | acacattaat g                                      | ccacacttt  | aacatgccta | acactacaca | tgaacacgct | tccgggtgct | 180 |
| 10 | gttacatccc g                                      | ctctctccc  | aagcacgaga | cacaggcagg | atgctgacgt | cctgcttctc | 240 |
| 10 | tgctgcgggc g                                      | ıggaagtcaa | gactccggat | ttgctgcagg | agttgccgtg | gggatcctga | 300 |
|    | cttcacgcag g                                      | gagatggtcg | gcctctggaa | gtgcctggcc | cgtttatcct | tgaaatctac | 360 |
| 15 | ctgtgcaggt g                                      | gtccttgcc  | tcagcccctc | aggacaacac | aggtctttcc | taagttacag | 420 |
|    | ggagaccatc a                                      | ıgattgtcgt | gtccgagccc | cctgaagtgg | aacccacagt | ctccattcag | 480 |
| 20 | tctgccctca g                                      | gtttccctcc | cctctgcagg | gccattgctg | ctgtggacgc | gcctctca   | 538 |
| 25 | <210> 100<br><211> 486<br><212> DNA<br><213> Homo | sapiens    |            |            |            |            |     |
|    | <400> 100<br>agaggtagaa a                         | aaaggagtta | gaagcaaaga | ggaaaaaata | aataaacagg | caacaaaaac | 60  |
| 30 | ccaacccagc c                                      |            |            |            |            |            | 120 |
|    | aacgctgggg a                                      | agtggagtgg | gccccggcct | tggggactgc | agagcccgct | cagccctggg | 180 |
|    | tggctgggcc (                                      | cacatgggct | gtgccccagg | agcacaggag | gacccagagg | gtggccgaga | 240 |
| 35 | gageetegee g                                      | gggctccggt | atgggtcctg | gcccctcaca | ggtgcgagcc | tggcccagtg | 300 |
|    | actgtggacg (                                      | ctgtgggaga | gcaggcctcc | gatacgcagg | gctgggactg | ctgacctgga | 360 |
| 40 | aggtggtgcc g                                      | gggcgtgtct | ggtgaaggcg | ccgttggcag | ctagagagag | acggcggatg | 420 |
|    | gggtgacgcc a                                      | attacccacg | gtcccagttt | tgaggcttga | cggtgacgga | aaaggacgtc | 480 |
| 45 | ggcgca                                            |            |            |            |            |            | 486 |
| 50 | <210> 101<br><211> 450<br><212> DNA<br><213> Homo | sapiens    |            |            |            |            |     |
|    | <400> 101<br>aattgaacca (                         | gggtgcacgg | ccagcgccag | acacagtgag | cttcatggca | actccagttt | 60  |
| 55 | accggtgaga a                                      | accatggggc | cactcagaga | ggcaaagagc | ctcacccgag | tgagtcctct | 120 |
|    | ggcttctccc                                        | cacctgggcc | gggccccagg | ccgcgctgtg | gttccctttc | cagccgtcat | 180 |
| 60 | ccctgggtga 1                                      | tgggaggtgg | gcattctgtt | caaccttgtg | ggtcagggag | ccagggccag | 240 |
| 00 | tgtgcagatg                                        | agaagaggct | gcggttactg | gcgatgcgag | ggactgtccc | cttcgtgggc | 300 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | actiticiti itgaggedag tgaaatgigt teeciggggi igiatieeig agaaggeete              | 360 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------|-----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5  | atttaaaggg agccgccaaa ccaagtgggc ttagcaaaag cagtttgtca cctggcagca              | 420 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J  | cgtgtgagcc tcgcccggac gcgcctctca                                               | 450 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 | <210> 102<br><211> 292<br><212> DNA<br><213> Homo sapiens                      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15 | <400> 102<br>agcgcggcct ggcagattgc ccattaatga aactcagtgg gcagaggctg ctgagggaca | 60  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | cggattccca ctccccgggg gagggggtgg aaatggcttc ctccctctgc ttccctacca              | 120 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 | ccagtaatgg ggagctcacc atgcttagaa gactcttcct tgcatggagt tcgggcctcc              | 180 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 | tccctgcacc taccacccta gtggccccaa gtcttaaggc tgaaggttaa tcctgtgtcc              | 240 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ttcagaagca aaggctgcaa ccgataccaa acagaggtgg ccagcgcggg ca                      | 292 |
| force, at the first first fact that the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25 | <210> 103<br><211> 395<br><212> DNA<br><213> Homo sapiens                      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30 | <220> <221> misc_feature <222> ()()                                            |     |
| å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35 | <223> "n" refers to an undetermined base                                       |     |
| STATE OF THE STATE |    | <400> 103<br>agagettate cegegageae aagggageeg gggeetggge egeegtggga aggggeteet | 60  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40 | gccttccggg gacgcggtca gggaagtcca gccggggtgc tctctgcact gcgggtgccg              | 120 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ggctcggcag aggccaaccc ggcaaaacga gcaggatctc ccggccccac cctagtgggc              | 180 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45 | tccgcctgcc ccaacaacca tcctgccatc ctccctgcga gacaggtgac tttcctctct              | 240 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | gatgcggtgc atctgtcatc tgtctaacgg gcccattccc cagtgaaaca cccccaacca              | 300 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | aagacacgaa ggggaaggcg caagcttcta ccaagctcan tttgcccatc tggtgcccac              | 360 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50 | ctgcctngta tttggtgact tggaggatag gaagg                                         | 395 |

25

30

35

## We claim:

- 1. A diagnostic or prognostic assay for cancer, comprising:
- (a) obtaining a tissue sample from a test tissue;
- performing a methylation assay on DNA derived from the tissue sample, (b) wherein the methylation assay determines the methylation state of a CpG dinucleotide within 5 a DNA sequence of the DNA, and wherein the DNA sequence is a sequence selected from the group consisting of sequences of SEQ ID NOS:1-103, sequences having a nucleotide sequence at least 90% identical to sequences of SEQ ID NOS:1-103, CpG island sequences associated with sequences of SEQ ID NOS:1-103, CpG island sequences associated with sequences having a nucleotide sequence at least 90% identical to sequences of SEQ ID 10 NOS:1-103, and combinations thereof, wherein the CpG island sequence associated with the sequence of the particular SEO ID NO is that contiguous sequence of genomic DNA that encompasses at least one nucleotide of the particular SEQ ID NO sequence, and satisfies the criteria of having both a frequency of CpG dinucleotides corresponding to an 15 Observed/Expected Ratio >0.6, and a GC Content >0.5; and
  - (c) determining a diagnosis or prognosis based, at least in part, upon the methylation state of the CpG dinucleotide within the DNA sequence.
  - 2. The diagnostic or prognostic assay of claim 1 wherein the DNA sequence is a sequence selected from the group consisting of CpG island sequences associated with sequences of SEQ ID NOS:1-103, CpG island sequences associated with sequences having a nucleotide sequence at least 90% identical to sequences of SEQ ID NOS:1-103, and combinations thereof.
  - 3. The diagnostic or prognostic assay of claim 2 wherein the DNA sequence is a sequence selected from the group consisting of CpG island sequences associated with sequences of SEQ ID NOS: 2, 4, 6, 7, 9-16, 19, 20, 22-33, 35-43, 48, 51-55, 59, 60, 64, 71, 76, 78-81, 84 and 87-90, and combinations thereof.
  - 4. The diagnostic or prognostic assay of claim 1 wherein the methylation assay procedure is selected from the group consisting of MethyLight, MS-SNuPE, MSP MCA, COBRA, and combinations thereof.
  - 5. The diagnostic or prognostic assay of claim 1 wherein the methylation state of the CpG dinucleotide within the DNA sequence is that of hypermethylation, hypomethylation or normal methylation.
    - 6. The diagnostic or prognostic assay of claim 1 wherein the cancer is selected from the group consisting of bladder cancer, prostate cancer, colon cancer, lung cancer, renal cancer, leukemia, breast cancer, uterine cancer, astrocytoma, glioblastoma, and neuroblastoma.
    - 7. A kit useful for the detection of a methylated CpG-containing nucleic acid comprising a carrier means containing one or more containers comprising:

10

15

- (a) a container containing a probe or primer which hybridizes to any region of a sequence selected from the group consisting of SEQ ID NOS:1-103, and sequences having a nucleotide sequence at least 90% identical to sequences of SEQ ID NOS:1-103; and
- (b) additional standard methylation assay reagents required to affect detection of methylated CpG-containing nucleic acid based, at least in part, on the probe or primer.
- 8. The kit of claim 7, wherein the additional standard methylation assay reagents are standard reagents for performing a methylation assay from the group consisting of MethyLight, MS-SNuPE, MSP MCA, COBRA, and combinations thereof.
- 9. The kit of claim 7, wherein the probe or primer comprises at least about 12 to 15 nucleotides of a sequence selected from the group consisting of SEQ ID NOS:1-103, and sequences having a nucleotide sequence at least 90% identical to sequences of SEQ ID NOS:1-103.
  - 10. An isolated nucleic acid molecule comprising a methylated or unmethylated polynucleotide sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:18, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:42, SEQ ID NO:44, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:62, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:74, SEQ ID NO:76, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:86, SEQ ID NO:90, SEQ ID NO:92, SEQ ID NO:97, and SEQ ID NO:100.
    - 11. The nucleic acid of claim 10, wherein the nucleic acid is methylated.
    - 12. The nucleic acid of claim 10, wherein the nucleic acid is unmethylated.

## **Abstract**

5

There is disclosed 103 novel methylation-altered DNA sequences ("marker sequences") that have distinct methylation patterns in cancer, compared to normal tissue. In many instances, these marker sequences represent novel sequences not found in the GenBank data base, and none of these marker sequences have previously been characterized with respect to their methylation pattern in human cancers including, but not limited to those of bladder and prostate. These 103 sequences have utility as diagnostic, prognostic and therapeutic markers in the treatment of human cancer, and as reagents in kits for detecting methylated CpG-containing nucleic acids.