Introduction to CSE-203

"Data Structures & Algorithms"

Prerequisite: C Programming Language

Data Structure & Algorithms

Where do the fit in a program?

Ingredients

Procedure

remaining butter with a pastry blender until mixture is crumbly.

4. Whisk together milk and egg yolks. Add to flour mixture; stir with a fork until a soft dough forms. Pat dough out into prepared

Structuring Data

Why is it important?

Structuring Data

Why is it important?

VS.

Structuring Data

Why is it important?

- Items can be easily retrieved (Access)
- Items are easily found (Search)
- New ingredients can be placed easily (Add)
- Old items can be removed easily (Delete)

Different Types of Data Structures

Based on Operation

Abstraction

A Data Structure

Implementation of Static ArrayList

Regular Operations:

- Add (at the end)
- Edit
- Get nth item
- Update nth item
- Search for an item

Advanced Operations:

- Find min
- Find max
- Insert in middle

Analyzing Runtime

The Big O Notation – A Family of algorithms

$$f(x) \in O(g(x))$$

as there exists

$$c > 0 \text{ (e.g., } c = 1)$$

& $x_0 \text{ (e.g., } x_0 = 5)$

such that

 x_0 (e.g., $x_0 = 5$) $f(x) \le cg(x)$ whenever $x \ge x_0$.

Some Common Big O notations

```
i. O(1)
ii. O(\log_2 n)
iii. O(n)
iv. O(n\log_2 n)
\nu. O(n^2)
vi. O(n^3)
```