Esercizi prob 3

March 1, 2025

1 Esercizio 3.1

Per BC1, $\forall \varepsilon$

$$\mathbb{P}\left(|X_n - X| > \varepsilon, i.o.\right) = 0$$

Ovvero:

$$\forall \varepsilon, \ per \ q.o. \ \omega, \ \exists N : |X_n(\omega) - X(\omega)| \le \varepsilon$$

Che è quasi la tesi (basta prendere solo una quantità numerabile di ε che però tendano a 0). Ω_0 sarà l'intersezione (numerabile) di tutti gli insiemi per cui vale la formula scritta sopra.

2 Esercizio 3.2

2.1 (1)

$$\mathbb{P}\left(\left\{X_n \neq 0\right\}\right) = \frac{1}{k(n)} \to 0$$

2.2(2)

Dato ω , per ogni valore distinto di k esiste un valore di n tale che $X_n(\omega) = 1$, quindi $X_n(\omega) = 1$ infinite volte.

Quindi

$$\nexists \omega : X_n(\omega) \to 0$$

(tranne forse $\omega = 0$ o $\omega = 1$ ma non ho voglia di controllare).

3 Esercizio 3.3

3.1 $Y_n \to 0$ in $\mathbb{L}^p \quad \forall p$

$$\mathbb{E}\left[|Y_n|^p\right] = \int_0^{+\infty} \frac{|x|^p}{\log^p(n)} e^{-x} dx = \frac{c}{\log^p(n)} \xrightarrow{n \to \infty} 0$$

3.2 (Y_n) non converge q.c.

$$\mathbb{P}(Y_n > 1) = \mathbb{P}(X_n > \log n) = e^{-\log n} = \frac{1}{n}$$
$$\sum_{n} \mathbb{P}(Y_n > 1) = +\infty$$

Quindi, per BC2,

$$Y_n(\omega) > 1$$
 i.o.

4 Esercizio 3.4

Assumiamo che $X \geq 0$.

La tesi è che $X_1 \in \mathbb{L}^1 \Leftrightarrow \mathbb{P}(X_n > 1, i.o.) = 0$

$$\mathbb{E}\left[X\right] = \int_{0}^{+\infty} \mathbb{P}\left(X > x\right) \, dx = \sum_{n=0}^{+\infty} \int_{\frac{n}{L}}^{\frac{n+1}{L}} \mathbb{P}\left(X > x\right) \, dx$$

$$\sum_{n=0}^{+\infty} \frac{1}{L} \mathbb{P}\left(X_n > \frac{n+1}{L}\right) \le \mathbb{E}\left[X\right] \le \sum_{n=0}^{+\infty} \frac{1}{L} \mathbb{P}\left(X_n > \frac{n}{L}\right)$$

$4.1 \Rightarrow$

Sappiamo che $X_1 \in \mathbb{L}^1$:

$$\frac{1}{L} \sum_{n=0}^{+\infty} \mathbb{P}\left(\frac{N_n}{n+1} > \frac{1}{L}\right) < +\infty$$

Per BC1:

$$\mathbb{P}\left(\frac{N_n}{n+1} > \frac{1}{L}, \ i.o.\right) = 0 \quad \forall L$$

Quindi:

$$\mathbb{P}\left(\frac{X_n}{n} > 0, \ i.o.\right) = 0$$

Per l'esercizio 3.1:

$$\frac{X_n}{n} \longrightarrow 0$$
 q.c.

$4.2 \Leftarrow$

Se $\lim_{n\to\infty} \frac{X_n}{n} = 0$:

$$\mathbb{P}\left(\frac{N_n}{n} > 0, \ i.o.\right) = 0$$

Per BC2:

$$\sum_{n=0}^{\infty} \mathbb{P}\left(\frac{X_n}{n} > \frac{1}{L}\right) < +\infty \implies \mathbb{E}\left[X\right] < +\infty$$

NOTA: IID usato per poter applicare BC.

5 Esercizio 3.5

5.1 (1):
$$\#(C_F^0)^c \leq \aleph_0 \ (\Rightarrow \overline{C_F^0} = \mathbb{R})$$

Fè continuo a destra: $\forall x \in (C_F^0)^c$ si possono definire

$$\omega_x^- := \lim_{y \nearrow x} F(y); \qquad \omega_x^+ := F(x)$$

Si ha che $\exists q_x \in (\omega_x^-, \omega_x^+)$ t.c. $q_x \in \mathbb{Q}$. Inoltre, siccome F è non descrescente, $q_x \neq q_y \ \forall x \neq y$, quindi abbiamo creato una funzione iniettiva $(C_F^0)^c \longrightarrow \mathbb{Q}$

5.2 (2): Eventualmente $F_n(z) > \omega \wedge X_n^+(\omega) \leq z$

$$z > \inf \{ y | F_X(y) > \omega \} \implies F_X(z) > \omega$$

Siccome per ipotesi $z \in C_F^0$:

$$F_{X_n}(z) \longrightarrow F_X(z) > \omega$$

Quindi la prima tesi eventualmente è vera.

Siccome ${\cal F}_{X_n}$ è debolmente crescente, questo implica anche che

$$z \ge \inf \{ y | F_{X_n}(y) > \omega \}$$

5.3 (3): $\limsup_{n} X_{n}^{+}(\omega) \leq X^{+}(\omega)$

$$\limsup_{n} X_{n}^{+}(\omega) \le z \qquad \forall z > X^{+}(\omega)$$

5.4 (4): $\liminf_{n} X_{n}^{-}(\omega) \geq X^{-}(\omega)$

Basta rifare tutto invertendo tutti i segni.

5.5 (5): $X_n^+ \to X^+$ q.c.

Q.c., $X^- = X^+$, quindi convergenza c'è per teorema dei 2 carabinieri.

6 Esercizio 3.6

6.1 (1):
$$X_n \xrightarrow{\mathcal{L}} X_1$$

Nota: non ho capito la vera definizione formale di IID

Supponiamo che $\mathbb{E}[h(X_n)] \longrightarrow \mathbb{E}[H(X)]$ con h semplice. Allora sappiamo che tutte le funzioni continue bounded sono il limite di una serie crescente di funzioni semplici. Quindi tesi vera per convergenza dominata.

6.2 (2): $\exists a < b : \mathbb{P}(X_1 \le a) > 0 \land \mathbb{P}(X_1 \ge b) > 0$

Assumendo la tesi falsa per assurdo, siccome

$$\mathbb{P}\left(X_{1} \leq a\right) + \mathbb{P}\left(a < X_{1} < b\right) + \mathbb{P}\left(b \leq X_{1}\right) = 1$$

Si ha che $\mathbb{P}(a < X_1 < b) = 1 \quad \forall a < b.$

Quindi X_1 è costante (che va contro l'ipotesi).

La seconda tesi è vera per BC2.

6.3 (3): $(X_n)_n$ non converge q.c.

Q.c. $(X_n(\omega))_n$ continua a saltare da sotto a a sopra b infinite volte, quindi non può convergere.

6.4 (4): $(X_n)_n$ non converge in prob

Per qualsiasi $X(\omega)$ (ad ω fissato) si ha che

$$|X_n(\omega) - X(\omega)| > (b-a)$$

infinite volte.