Π КШ, Π КШ.2018.Август В' В', конспект лекции

Собрано 14 августа 2018 г. в 09:39

Содержание

1. Простая геометрия	1
1.1. Точки, векторы	1
1.2. Скалярное произведение	1
1.3. Векторное произведение	2
1.4. О коде	2
1.5. Поворот точки на 90 градусов	2
1.6. Угол между векторами	2
1.7. Геометрический смысл произведений	2
1.8. Принадлежность точки	3
1.8.1. Прямой	3
1.8.2. Лучу	3
1.8.3. Отрезку	3
1.9. Расстояние от точки до	3
1.9.1. Прямой	3
1.9.2. Луча	3
1.9.3. Отрезка	3
1.10. Расстояние между двумя непересекающимися отрезками	3
1.11. Проверка на пересечение	3
1.11.1. Отрезка и прямой	3
1.11.2. Двух отрезков	4
2. Прямые	5
2.1. Вывод уравнения прямой по координатам двух точек	5
2.2. Нормальный вектор к прямой	5
2.3. Пересечение двух прямых	5
2.4. Представление прямой с помощью направляющего вектора	5
2.5. Расстояние от точки до прямой, заданной уравнением	5
2.6. По какую сторону от прямой точка?	6
2.7. Перпендикуляр из точки на прямую	6
2.8. Симметрия точки относительно прямой	6
2.9. Параллельный перенос прямой на расстояние	6
3. Повороты и окружности	7
3.1. Поворот точки относительно начала координат	7
3.2. Поворот точки относительно другой точки	7
3.3. Нахождение бисектрисы угла	7
3.4. Пересечение окружности и прямой	7
3.5. Пересечение двух окружностей	7
3.6. Касательная к окружности	7

Тема #1: Простая геометрия

12 августа

1.1. Точки, векторы

Точка задается парой координат (x, y).

Расстояние между двумя точками вычисляется по формуле $\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$.

Вектор — ориентированный отрезок. Координаты вектора — разность соответвествующих координат (координата конца вектора, если отложить его от начала координат). То есть $\langle x_2 - x_1, y_2 - y_1 \rangle$.

Вектора можно складывать (покооординатное сложение), умножать на число (покоординатное умножение).

Если мы хотим на C++ завести структуру вектор и писать в естественном стиле (со знаками плюс и подобное), то это можно сделать так:

```
struct Vector {
1
2
       int x, y;
3
       Vector(int x, int y) : x(x), y(y) {}
4
  };
6
   Vector operator+(const Vector& a, const Vector& b) {
7
       return Vector(a.x + b.x, a.y + b.y);
8
9
10
  Vector operator*(const Vector& a, int b) {
11
       return Vector(a.x * b, a.y * b);
12 }
13
  Vector operator*(int a, const Vector& b) {
14
15
       return b * a;
16 | }
17
  Vector operator-(const Vector& a, const Vector& b) {
18
19
       return a + (-1) * b;
20
  }
```

Длина вектора вычисляется как корень из суммы квадратов координат.

Кстати, хранить простые точки тоже можно в структуре Vector, а не заводить для этого отдельную структуру Point, так как все операции с точками и векторами производятся одинаково. Нормированный вектор — вектор, длина которого равна 1. Нормировать вектор можно, поделив его координаты на его длину.

1.2. Скалярное произведение

Скалярное произведение двух векторов вычисляется по формуле $a \cdot b = a_x b_x + a_y b_y = |a||b|\cos \alpha$, где α — угол между векторами.

Свойства скалярного произведения:

- 1. $a \cdot b = b \cdot a$
- 2. Если два вектора перпендикулярны, то их скалярное произведение равно 0.

3. Если скалярное произведение двух векторов больше нуля, то вектор b находится в той же полуплоскости, что и вектор a, относительно перпендикуляра, проведенного к началу вектора a.

TODO: картинка.

1.3. Векторное произведение

Векторное произведение двух векторов вычисляется по формуле $a \times b = a_x b_y - a_y b_x = |a||b| \sin \alpha$, где α — угол между векторами.

Свойства векторного произведения:

- 1. $a \times b = -b \times a$ (антисимметричность)
- 2. Если два вектора коллинеарны (лежат на одной прямой), то их векторное произведение равно 0.
- 3. Если векторное произведение двух векторов больше нуля, то они вектор b лежит левее вектора a (если встать в начало вектора a и смотреть в направлении его конца). Иначе правее

TODO: картинка.

1.4. О коде

Можем снова переопределить операторы, чтобы считать векторное и скалярное произведение:

```
int operator*(const Vector& a, const Vector& b) { // векторное поизведение
    return a.x * b.y - a.y * b.x;
}
int operator%(const Vector& a, const Vector& b) { // скалярное произведение
    return a.x * b.x + a.y * b.y;
}
```

1.5. Поворот точки на 90 градусов

Из скалаярного произведения получим, что (a,b) перпендикулярен (b,-a) и (-b,a). Первое — поворот по часовой стрелке, второе — против.

1.6. Угол между векторами

Как вычислить угол между векторами *а* и *b*? По векторному и скалярному произведению можно найти синус и косинус. Потом по ним можно определить четверть, а потом найти угол. Это много ифов, а, следовательно, много возможностей ошибиться.

Но все сделали за нас. Почти во всех языках есть функция atan2. Ей на вход нужно подать синус и косинус (именно в таком порядке). А еще atan2 принимает их, помноженные на какуюто одинаковую ненулевую константу.

Получаем, что для получения угла между векторами нужно вызвать $atan2(a \times b, a \cdot b)$. Он вернет результат **в радианах** из промежутка $(-\pi; \pi]$.

1.7. Геометрический смысл произведений

Скалярное. Посмотрим на формулу $|a||b|\cos \alpha$. Можно понять, что скалярное произведение — произведение длины a на длину проекции b на вектор a.

Векторное. $|a||b|\sin \alpha$ — это ориентированная площадь параллелограмма, натянутого на вектора a и b. Ориентированная — значит, что знак зависит от направления поворота от a к b (если по часовой стрелке, то знак будет +, если против, то -).

Таким образом, площадь треугольника можно вычислить как модуль векторного произведения двух сторон, поделенный на два.

1.8. Принадлежность точки...

1.8.1. Прямой

Прямая задана двумя точками A, B. Чтобы определить, принадлежит ли точка C этой прямой. Возьмем векторное прооизведение векторов AB и AC. Оно ноль \Leftrightarrow принадлежит.

1.8.2. Лучу

Проверим, принадлежит ли точка прямой. Если да, то проверим, в какой стороне от перпендикуляра к вектору AB лежит вектор AC. Это можем понять по знаку скалярного произведения.

1.8.3. Отрезку

Отрезок AB == пересечение лучей AB и BA.

1.9. Расстояние от точки до...

1.9.1. Прямой

Пусть на прямой есть точки A,B. Дана точка C. Хотим найти длину перпендикуляра из C к AB. Построим треугольник ABC. Найдем его площадь. Потом поделим на основание и домножим на одну вторую. Но по сути мы сделали $\frac{AB \times AC}{|AB|}$.

1.9.2. Луча

Посмотрим, в какой стороне от перпендикуляра к началу луча лежит точка C. Это можем понять по скалярному произведению. Если в той же полуплоскости, что и луч, то вернем расстояние до прямой. Иначе расстояние между точками.

1.9.3. Отрезка

Дважды применить прошлый пункт, взять максимум.

1.10. Расстояние между двумя непересекающимися отрезками

Утверждается, что оно достигается в одной из четырех точек. Переберем начала-концы отрезков, найдем расстояния до другого отрезка, возмем минимум.

1.11. Проверка на пересечение...

1.11.1. Отрезка и прямой

Отрезок AB, две точки на прямой C,D. Сравним знаки $AC \times AD,\,BC \times BD.$ Они разные \Leftrightarrow пересекает.

1.11.2. Двух отрезков

Дважды прошлый пункт.

Тема #2: Прямые

12 августа

Прямую можно хранить как две точки. Можно хранить коэффициенты A,B,C уравнения Ax+By+C=0. Можно хранить направляющий вектор прямой. Сейчас поговорим о втором способе.

2.1. Вывод уравнения прямой по координатам двух точек

Пусть даны точки A,B. Какие точки $\langle x,y \rangle$ принадлежат этой прямой? Мы уже знаем, что все те, для которых $AB \times AC = 0$

Распишем это:

$$AB = (B.x - A.x, B.y - A.y)$$

$$AC = (x - A.x, y - B.y)$$

$$AB \times AC = (B.x - A.x)(y - A.y) - (B.y - A.y)(x - A.x) = y(B.x - A.x) + x(A.y - A.y) - B.x \cdot A.y + A.x \cdot A.y - (-B.y \cdot A.x + A.x \cdot A.y) = x(A.y - B.y) + y(B.x - A.x) - B.x \cdot A.y + B.y \cdot A.x$$
 Если представлять прямую в виде $ax + by + c = 0$, то

$$a = A.y - B.y, b = B.x - A.x, c = -B.x \cdot A.y + B.y \cdot A.x$$

2.2. Нормальный вектор к прямой

Константа c в том уравнении отвечает только за сдвиг, относительно начала координат. Если c=0, то мы получим прямую, проходящую через начало координат ax+by=0. Это выглядит как скалярное произведение $\Rightarrow (a,b)$ — координаты вектора, перпендикулярного нашей прямой. Этот вектор называется нормальным вектором к прямой.

2.3. Пересечение двух прямых

$$\begin{cases}
A_1 x + B_1 y + C_1 = 0 \\
A_2 x + B_2 y + C_2 = 0
\end{cases}$$
(1)

Домножим первое уравнение на A_2 , второе на A_1 . Вычтем из первого второе.

$$\begin{cases} x = -\frac{C_1 B_2 - C_2 B_1}{A_1 B_2 - A_2 B_1} \\ y = -\frac{A_1 C_2 - A_2 C_1}{A_1 B_2 - A_2 B_1} \end{cases}$$
(2)

Заметим, что условие $A_1B_2 = A_2B_1$ равносильно параллельности/совпадению прямых.

2.4. Представление прямой с помощью направляющего вектора ТООО

2.5. Расстояние от точки до прямой, заданной уравнением

Верна следующая формула:

$$dist((x,y), AB) = \frac{Ax + By + C}{\sqrt{A^2 + B^2}}$$

Она напрямую следует из той же формулы для случая, когда прямая задана двумя точками (там нужно раскрыть скобки и переобозначить коэффициенты).

Кстати, операция взятия корня — не самая быстрая. Поэтому, если вам надо часто искать расстояние от точки до прямой, то можно предварительно поделить коэффициенты прямой на $\sqrt{A^2 + B^2}$.

2.6. По какую сторону от прямой точка?

Мы уже поняли, что уравнение прямой — это векторное произведение. То есть если подставить туда координату точки (x,y), то мы получим результат векторного умножения AB на AC, где AB — направляющий вектор прямой, C — наша точка. Результат больше нуля \Leftrightarrow точка левее (относительно положительного направления Ox).

2.7. Перпендикуляр из точки на прямую

Дана точка C и прямая Ax + By + C = 0. Хотим найти точку, в которую упадет перпендикуляр из точки C на эту прямую.

Мы уже умеем находить расстояние от точки до прямой и строить вектор, перпендикулярный прямой. И даже можем отнормировать этот вектор, а потом домножить на найденное расстояние. Вопрос в том, верное ли будет направление у этого вектора?

Утверждение. Вектор $\langle A, B \rangle$ всегда будет смотреть в ту же сторону, где ориентированное расстояние больше нуля.

TODO: картинка

Затем надо от точки отложить отнормированный вектор, домноженный на -1 (поскольку вектор исходил из прямой, а мы хотим ориентировать его в сторону прямой) и на **ориентированное** расстояние от точки до прямой (чтобы попасть ровно в прямую).

2.8. Симметрия точки относительно прямой

Берем прошлый пункт, домножаем длину вектора, на который переносим точку, на два, получаем ответ.

TODO: картинка

2.9. Параллельный перенос прямой на расстояние

Мы хотим описать все точки, которые находятся от прямой Ax + By + C = 0 на расстоянии d. Но мы это умеем делать, так как умеем искать расстояние от точки до прямой:

$$\frac{Ax + By + C}{\sqrt{A^2 + B^2}} = d$$

$$Ax + By + (C - d\sqrt{A^2 + B^2}) = 0$$

Получили уравнение на прямую.

Тема #3: Повороты и окружности

12 августа

3.1. Поворот точки относительно начала координат

Как повернуть точку относительно начала координат на угол α ? Давайте представим (x,y) в виде (x,0)+(0,y) и повернем по отдельности эти точки.

Чтобы повернуть (x,0), научимся поворачивать (1,0).

(1,0), повернутый на α — это $\cos \alpha + \sin \alpha$ (по определению синуса и косинуса. ТОВО: Здесь нужна картинка единичной окружности).

Значит $(x,0) \to x \cos \alpha + x \sin \alpha$

Аналогично $(0, y) \rightarrow -y \sin \alpha + y \cos \alpha$

Тогда $(x,y) \to (x\cos\alpha - y\sin\alpha, x\sin\alpha + y\cos\alpha)$

3.2. Поворот точки относительно другой точки

Вычитаем из поворачиваемой точки координаты той, вокруг которой поворачиваем, поворачиваем относительно начала координат, прибавляем координаты.

3.3. Нахождение бисектрисы угла

Способ 1 (не очень хороший, но лобовой).

Найдем угол, поделим пополам, повернем сторону на этот угол. Получили бисектрису.

Способ 2.

Отнормируем направляющие вектора сторон. Получили равнобедренный треугольник. Найдем в нем медиану (полусумма координат). Она же и будет бисектрисой.

3.4. Пересечение окружности и прямой

TODO

3.5. Пересечение двух окружностей

TODO

3.6. Касательная к окружности

TODO