

Modulname	Atomphysik und Bauelemente				
Modulverantwortlicher	Prof. Dr. Schäfer				
Qualifikationsziele	 Verstehen physikalischer und technischer Grundlagen insbesondere zum Atombau, elektromagnetischen Strahlen, Spektroskopie und allgem. Elektrochemie sowie den Halbleiterbauelementen Anwendung der Kenntnisse auf typische Aufgaben zu den angesprochenen Themen 				
	Die Veranstaltung vermittelt überwiegend Fachkompetenz 80 % Methodenkompetenz 10 % Systemkompetenz 10 % Sozialkompetenz 0 %				
Modulinhalte	Atome: Bohr´sches Atommodell, quantenmechanisches Atommodell, H-Atom, Wasserstoff-Spektrum, Spektroskopie, Welle-Teilchen Dualismus				
	Strahlung: Photonen, elektromagnetisches Spektrum, Röntgenstrahlen, Photoeffekt, Elektronenstrahlen				
	Ladungsträgertransport: Gasentladung, Lampen, Elektrolyse, elektrochem. Potentiale, Nernst´sche Gl.				
	Thermodynamik: kinetische Gastheorie, Zustandsgleichung, spez. Wärme, 1. Hauptsatz, Zustandsänderungen, Kreisprozesse, 2. Hauptsatz				
	Bauelemente der Elektrotechnik: Eigenschaften von Silizium, Bändermodell, Eigenleitung, dotierte Halbleiter, pn-Übergang, Diode, Solarzelle, Bipolartransistor, MOS-Transistor				
Lehrformen	Vorlesung / Übung 5 SWS Praktikum 0 SWS Anteil Vorlesung 5 SWS Anteil Übung 0 SWS andere Lehr- und Lernformen: Experimentelle Vorlesung mit Übungsaufgaben				
	andere Lenii- und Lennomien. Experimentelle vonesung mit Obdrigsadigaben				
Voraussetzungen für die Teilnahme	keine				
Literatur/ multimediale Lehr-und Lernprogramme	Materialien zur Vorlesung Atomphysik und Bauelemente, Übungsaufgaben Hering, Martin, Stohrer: Physik für Ingenieure, VDI-Verlag, Düsseldorf Kuypers: Physik für Ingenieure, Band 1 und 2, Verlag Chemie, Weinheim Stroppe: Physik, Fachbuchverlag, Leipzig – Köln Shakelford: Werkstofftechnologie für Ingenieure, Pearson Education, München - Boston Physikalisch-technische Formelsammlung				
Lehrbriefautor					
Verwendbarkeit					
Arbeitsaufwand/ Gesamtworkload	Präsenzzeit 90 h + Selbststudium 90 h = 180 h = 6 Credit Punkte Erläuterungen: Der Arbeitsaufwand beträgt 180 Stunden. Davon sind 90 Stunden Vorlesung und Besprechung der Übungsaufgaben sowie 2 Stunden Klausur. Die Eigenarbeit beträgt 90 Stunden (Vor- und Nachbereitung der Vorlesungen, Berechnung der Übungsaufgaben, Vorbereitung auf die Klausur)				

ECTS und Gewichtung der	6 Credit Punkte
Note in der Gesamtnote	
Leistungsnachweis	Bezeichnung der Fachprüfung: Physikalisch-technische Grundlagen schriftl. Prüfung (PS) 120 Minuten
Semester	2. Semester
Häufigkeit des Angebots	Sommersemester
Dauer	5 SWS
Art der Lehrveranstaltung (Pflicht, Wahl, etc.)	technisches Pflichtmodul
Besonderes	

Version	Datum	Bearbeiter/in	Freigabe	Seite
				Seite 2 von 2