CSE 3521: Introduction to Artificial Intelligence

Simple Wumpus Knowledge Base

- For simplicity, only deal with the pits
- Choose vocabulary
 - \circ Let $P_{i,j}$ be True if there is a pit in [i,j]
 - \circ Let $B_{i,j}$ be True if there is a breeze in [i,j]
- KB sentences
 - o **FACT:** "There is no pit in [1,1]"

$$R_1: \neg P_{1.1}$$

• RULE: "There is breeze in adjacent neighbor of pit"

$$R_2$$
: $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$

$$R_3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$$

Need rule for each square!

Wumpus Environment

- Given knowledge base
- Include percepts as move through environment (online)
- Need to "deduce what to do"
- Derive chains of conclusions that lead to the desired goal
 - Use inference rules

$$\frac{\alpha}{\beta}$$
 Inference rule: "\alpha derives \beta"

Knowing α is true, then β must also be true

• Modus Ponens

o From implication and premise of implication, can infer conclusion

$$\frac{\alpha \Rightarrow \beta, \ \alpha}{\beta}$$

• And-Elimination

o From conjunction, can infer any of the conjuncts

$$\frac{\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_n}{\alpha_i}$$

• And-Introduction

o From list of sentences, can infer their conjunction

$$\frac{\alpha_1,\alpha_2,\dots,\alpha_n}{\alpha_1\wedge\alpha_2\wedge\cdots\wedge\alpha_n}$$

• Or-Introduction

o From sentence, can infer its disjunction with anything else

$$\frac{\alpha_i}{\alpha_1 \vee \alpha_2 \vee \cdots \vee \alpha_n}$$

- <u>Double-Negation Elimination</u>
 - o From doubly negated sentence, can infer a positive sentence

$$\frac{\neg \neg \alpha}{\alpha}$$

• Unit Resolution

o From disjunction, if one of the disjuncts is false, can infer the other is true

$$\frac{\alpha \vee \beta, \ \ \neg \beta}{\alpha}$$

Resolution

- \circ Most difficult because β cannot be both true and false
- One of the other disjuncts must be true in one of the premises
 - (implication is transitive)

$$\frac{\alpha \vee \beta, \ \neg \beta \vee \gamma}{\alpha \vee \gamma}$$

$$\begin{array}{ccc} \neg \beta & \text{or} & \beta \\ \frac{\alpha \vee \beta, \neg \beta}{\alpha} & \text{or} & \frac{\neg \beta \vee \gamma, \beta}{\gamma} \\ & \alpha & \text{or} & \gamma \end{array}$$

α	β	γ	$\alpha \vee \beta$	$\neg \beta \lor \gamma$	αVγ
Т	Т	Т	Т	Т	Т
Т	Т	F	Т	F	Т
Т	F	Т	Т	Т	Т
Т	F	F	Т	Т	Т
F	Т	Т	Т	Т	Т
F	Т	F	Т	F	Т
F	F	Т	F	Т	F
F	F	F	F	Т	F

TASK: Find the Wumpus

Can we infer that the Wumpus is in cell (1,3), given our percepts and environment rules?

Wumpus Knowledge Base

• Percept sentences (facts) "at this point"

$$\neg S_{1,1} \qquad \neg B_{1,1} \\
\neg S_{2,1} \qquad B_{2,1} \\
S_{1,2} \qquad \neg B_{1,2}$$

$$R_{l}: \neg S_{l,1} \Rightarrow \neg W_{l,1} \wedge \neg W_{l,2} \wedge \neg W_{2,1}$$

$$R_2: \neg S_{2,1} \Rightarrow \neg W_{1,1} \land \neg W_{2,1} \land \neg W_{2,2} \land \neg W_{3,1}$$

$$R_3$$
: $\neg S_{1,2} \Rightarrow \neg W_{1,1} \land \neg W_{1,2} \land \neg W_{2,2} \land \neg W_{1,3}$

$$R_4: S_{1,2} \Rightarrow W_{1,3} \vee W_{1,2} \vee W_{2,2} \vee W_{1,1}$$

Conclude $W_{1,3}$?

- Does the Wumpus reside in square (1,3)?
- In other words, can we infer $W_{1,3}$ from our knowledge base?

$$KB \vdash_i W_{1,3}$$

Conclude $W_{1,3}$ (Step #1)

• Modus Ponens $\frac{\alpha \Rightarrow \beta, \alpha}{\beta}$

$$R_1$$
: $\neg S_{1,1} \Rightarrow \neg W_{1,1} \land \neg W_{1,2} \land \neg W_{2,1}$
Percept: $\neg S_{1,1}$

• Infer

$$\neg W_{1,1} \land \neg W_{1,2} \land \neg W_{2,1}$$

Conclude $W_{1,3}$ (Step #2)

• And-Elimination $\frac{\alpha_1^{\wedge} \alpha_2^{\wedge}...^{\wedge} \alpha_n}{\alpha_i}$

$$\neg W_{1,1} \land \neg W_{1,2} \land \neg W_{2,1}$$

• Infer

$$\neg W_{1,1} \neg W_{1,2} \neg W_{2,1}$$

Conclude $W_{1,3}$ (Step #3)

• Modus Ponens $\frac{\alpha \Rightarrow \beta, \alpha}{\beta}$

$$R_2$$
: $\neg S_{2,1} \Rightarrow \neg W_{1,1} \land \neg W_{2,1} \land \neg W_{2,2} \land \neg W_{3,1}$
Percept: $\neg S_{2,1}$

Infer

$$\neg W_{1,1} \land \neg W_{2,1} \land \neg W_{2,2} \land \neg W_{3,1}$$

• And-Elimination $\frac{\alpha_1^{\wedge} \alpha_2^{\wedge}...^{\wedge} \alpha_n}{\alpha_i}$

$$\neg W_{1,1} \neg W_{2,1} \neg W_{2,2} \neg W_{3,1}$$

Conclude $W_{1,3}$ (Step #4)

• Modus Ponens $\frac{\alpha \Rightarrow \beta, \alpha}{\beta}$

$$R_4: S_{1,2} \Rightarrow W_{1,3} \vee W_{1,2} \vee W_{2,2} \vee W_{1,1}$$

Percept: $S_{1,2}$

• Infer

$$W_{1,3} \vee W_{1,2} \vee W_{2,2} \vee W_{1,1}$$

Conclude $W_{1,3}$ (Step #5)

• Unit Resolution $\frac{\alpha \vee \beta, \ \neg \beta}{\alpha}$

$$W_{1,3} \vee W_{1,2} \vee W_{2,2} \vee W_{1,1}$$
 from Step #4

- $-W_{1,1}$ from Step #2
- Infer

$$W_{1,3} \vee W_{1,2} \vee W_{2,2}$$

Conclude $W_{1,3}$ (Step #6)

• Unit Resolution $\frac{\alpha \vee \beta, \ \neg \beta}{\alpha}$

$$W_{1,3} \vee W_{1,2} \vee W_{2,2}$$
 from Step #5

- $-W_{2,2}$ from Step #3
- Infer

$$W_{1,3} \vee W_{1,2}$$

Conclude $W_{1,3}$ (Step #7)

• Unit Resolution

$$\frac{\alpha \vee \beta, \ \neg \beta}{\alpha}$$

```
W_{1,3} \vee W_{1,2} from Step #6
```

 $\neg W_{1,2}$ from Step #2

• Infer

 $W_{1,3} \rightarrow$ The wumpus is in cell 1,3!!!

Wumpus in $W_{1,3}$

Propositional Logic

- Propositional logic commits to existence of facts about the world being represented
 - Simple syntax and semantics
- Proof methods
 - o Truth table
 - o Inference rules
 - Modus Ponens
 - And-Elimination
 - And/Or-Introduction
 - Double-Negation Elimination
 - Unit Resolution
 - Resolution
- Propositional logic quickly becomes impractical

First-Order Logic

- Also called <u>first-order predicate calculus</u>
 - o FOL, FOPC
- Makes stronger commitments
 - World consists of <u>objects</u>
 - Things with identities
 - e.g., people, houses, colors, ...
 - Objects have <u>properties/relations</u> that distinguish them from other objects
 - e.g., Properties: red, round, square, ...
 - e.g., Relations: brother of, bigger than, inside, ...
 - Have <u>functional</u> relations
 - Return the object with a certain relation to given "input" object
 - The "inverse" of a (binary) relation
 - e.g., father of, best friend

Examples of Facts as Objects and Properties or Relations

- "Squares neighboring the Wumpus are smelly"
 - Objects
 - Wumpus, squares
 - Property
 - Smelly
 - Relation
 - Neighboring

Syntax of FOL: Basic Elements

- Constant symbols for specific objects *KingJohn*, 2, *OSU*, ...
- Variables

```
x, y, a, b, ...
```

- Predicate properties (unary) / relations (pairwise or more)

 Smart(), Brother(), Married(), >, ...
- Functions (return objects)

 Sqrt(), LeftTo(), FatherOf(), ...
- Connectives

$$\wedge \vee \neg \Rightarrow \Leftrightarrow$$

Quantifiers

$$\forall$$
 \exists

Equality

=

Atomic Sentences

- Collection of terms and relation(s) together to state facts
- Atomic sentence
 - \circ predicate(term₁, ..., term_n)
 - \circ Or $term_1 = term_n$
- Examples

Brother(Richard, John)

Married(FatherOf(Richard), MotherOf(John))

Complex Sentences

Made from atomic sentences using <u>logical connectives</u>

$$\neg S$$
, $S_1 \land S_2$, $S_1 \lor S_2$, $S_1 \Rightarrow S_2$, $S_1 \Leftrightarrow S_2$

- Examples:
 - Older(John, 30) $\Rightarrow \neg$ Younger(John, 30)
 - **■** > (1,2) ∨ ≤(1,2)

Quantifiers

- Currently have logic that allows objects
- Now want to express properties of entire collections of objects
 - Rather than enumerate the objects by name
- Two standard quantifiers
 - O Universal ∀
 - Existential ∃

Universal Qualification

- "For all ..." (typically use implication ⇒)
 - Allows for "rules" to be constructed
- *∀* <*variables*> <*sentence*>
 - Everyone at OSU is smart
 - $\forall x \ At(x, OSU) \Rightarrow Smart(x)$
- $\forall x P$ is equivalent to <u>conjunction</u> of all <u>instantiations</u> of P
 - (At(John, OSU) ⇒ Smart(John))
 - \land (At(Bob, OSU) \Rightarrow Smart(Bob)
 - \land (At(Mary, OSU) \Rightarrow Smart(Mary)) \land ...

Existential Quantification

- "There exists ..." (typically use conjunction ∧)
 - Makes a statement about <u>some</u> object (not all)
- ∃ <variables> <sentences>
 - Someone at OSU is smart
 - $\exists x \ At(x, OSU) \land Smart(x)$
- $\exists x P$ is equivalent to <u>disjunction</u> of all <u>instantiations</u> of P
 - (At(John, OSU) ∧ Smart(John))
 ∨ (At(Bob, OSU) ∧ Smart(Bob))
 (At(Mary, OSU) ∧ Smart(Mary)) ∨ ...
- Uniqueness quantifier
 - $\circ \exists ! x$ says a <u>unique</u> object exists (i.e. there is exactly one)

Properties of Quantifiers

- Quantifier duality: Each can be expressed using the other
 - $o \forall x \ Person(x) \Rightarrow Likes(x, IceCream)$ "Everybody likes ice cream"
 - $\circ \neg \exists x \ Person(x) \land \neg Likes(x, IceCream)$ "Not exist anyone who does not like ice cream"
 - $\exists x \ Person(x) \land Likes(x, Broccoli)$ "Someone likes broccoli"
 - $\circ \neg \forall x \ Person(x) \Rightarrow \neg Likes(x, Broccoli)$ "Not the case that everyone does not like broccoli"

Properties of Quantifiers

• Important relations

$$\circ \exists x \ P(x) = \neg \forall x \ \neg P(x)$$

$$\circ \forall x \ P(x) = \neg \exists x \neg P(x)$$

$$\circ P(x) \Rightarrow Q(x)$$
 is same as $\neg P(x) \lor Q(x)$

$$\bigcirc \neg (P(x) \land Q(x))$$
 is same as $\neg P(x) \lor \neg Q(x)$

Proof: Check the Truth Table

P	Q	$P \Rightarrow Q$
False	False	TRUE
False	True	TRUE
True	False	FALSE
True	True	TRUE

P	Q	$\neg P$	$\neg P \lor Q$
False	False	True	TRUE
False	True	True	TRUE
True	False	False	FALSE
True	True	False	TRUE

$$P(x) \Rightarrow Q(x)$$
 is same as

$$\neg P(x) \lor Q(x)$$

Proof: Check the Truth Table

P	Q	$P \wedge Q$	¬(P ∧ Q)
False	False	False	TRUE
False	True	False	TRUE
True	False	False	TRUE
True	True	True	FALSE

P	Q	$\neg P$	$\neg Q$	$\neg P \lor \neg Q$
False	False	True	True	TRUE
False	True	True	False	TRUE
True	False	False	True	TRUE
True	True	False	False	FALSE

$$\neg (P(x) \land Q(x))$$

is same as
 $\neg P(x) \lor \neg Q(x)$

Proof: Check the Truth Table

P	Q	$P \lor Q$	$\neg (P \lor Q)$
False	False	False	TRUE
False	True	True	FALSE
True	False	True	FALSE
True	True	True	FALSE

P	Q	$\neg P$	$\neg Q$	$\neg P \land \neg Q$
False	False	True	True	TRUE
False	True	True	False	FALSE
True	False	False	True	FALSE
True	True	False	False	FALSE

$$\neg (P(x) \lor Q(x))$$

is same as
 $\neg P(x) \land \neg Q(x)$

Conversion Example

• $\forall x \ Person(x) \Rightarrow Likes(x, IceCream)$ [use: $\forall x \ P(x) = \neg \exists x \ \neg P(x)$]

•

- $\neg \exists x \neg (Person(x) \Rightarrow Likes(x, IceCream))$ [use: $P(x) \Rightarrow Q(x)$ is same as $\neg P(x) \lor Q(x)$]
- $\neg \exists x \neg (\neg Person(x) \lor Likes(x, IceCream))$ [distribute negatives]
- $\neg \exists x \ Person(x) \land \neg Likes(x, \ IceCream)$
- ¬x == (¬x)