Nachklausur zur Mathematik I

WS 12/13

Prof. Dr. E. Kuwert

23. September 2013

Beginn der Klausur: 14:30 Uhr									Ende der Klausur: 17:00 Uhr				
Matrike	Vorname: elnummer gang:	:										erzahl:	
	Aufgabe	1	2	3	4	5	6	7	8	9	10	Summe	
						-				F- 8-1			

Bitte beachten Sie folgende Hinweise:

- Kennzeichen Sie alle Zettel mit Namen und Nummer der Aufgabe.
- Geben Sie alle Zettel, auch die mit Nebenrechnungen, gemeinsam mit dem vollständig ausgefüllten Deckblatt ab.
- zugelassene Hilfsmittel: ein Notizblatt (DIN A4), Stifte
- Ein Täuschungsversuch kann zum sofortigen Ausschluss und Nichtbestehen der Klausur führen.
- Resultate aus der Vorlesung dürfen Sie als bekannt voraussetzen.
- Es sind insgesamt 10 Aufgaben.
- Insgesamt sind 36 Punkte zu vergeben. Zum Bestehen sind 12 Punkte notwendig.

Nachklausur zur Mathematik I

Prof. Dr. E. Kuwert

23. September 2013

Aufgabe 1 (5 = 1 + 1 + 1 + 2 Punkte)

Berechnen Sie die Ableitung der folgenden Funktionen:

(a)
$$f:(0,+\infty)\to\mathbb{R}, f(x)=\frac{\ln x}{x}$$
.

(b)
$$g: \mathbb{R} \to \mathbb{R}$$
, $g(x) = x (\exp(x) - 1)$.

(c)
$$h: \mathbb{R} \to \mathbb{R}$$
, $h(x) = \sinh(x^2)$.

(d)
$$\varphi(x) = \text{Umkehrfunktion von } \tan y : \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \to \mathbb{R}.$$

Aufgabe 2 (3 Punkte)

Bestimmen Sie alle Lösungen $z \in \mathbb{C}$ der Gleichung $z^6 = -1$.

Aufgabe 3 (4 = 2 + 2 Punkte)

Skizzieren Sie folgende Funktionen mit Angabe von mindestens 3 Funktionswerten:

a)
$$f(x) = \frac{3x^2 - 7x - 3}{x - 2}, \quad x \in \mathbb{R} \setminus \{2\}$$

b)
$$f(x) = \cot(\frac{\pi}{2} - x), \quad x \in [0, \frac{4\pi}{3}].$$

Aufgabe 4 (6 = 2 + 2 + 2 Punkte)

Entscheiden Sie jeweils, ob die Folge a) beschränkt ist und ob Sie b) konvergiert. Geben Sie für jede Antwort eine Begründung.

(i)
$$a_n = \frac{n^2 - 2n + 10}{3n^2 + 1000n + 1}$$

(ii)
$$a_n = n^2 \sin\left((2n+1)\frac{\pi}{2}\right)$$

(iii)
$$a_n = \frac{n}{2^n}$$

Aufgabe 5 (3 Punkte)

Eine Funktion $f: I = (-1,1) \to \mathbb{R}$ heißt ungerade (bzw. gerade), falls f(-x) = -f(x) (bzw. f(-x) = f(x)) für alle $x \in I$. Zeigen Sie: ist $f: I \to \mathbb{R}$ ungerade und F eine Stammfunktion von f, so ist F gerade.

Aufgabe 6 (2 Punkte)

Beweisen Sie für alle $n \in \mathbb{N}$:

$$\sum_{k=1}^{n} (2k - 3) = n^2 - 2n.$$

Aufgabe 7 (4 = 2 + 2 Punkte)

Bestimmen Sie den Kern der Matrix

$$\begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 4 \\ 1 & 1 & 3 \end{pmatrix}$$

und bestimmen Sie alle Lösungen des Systems

Aufgabe 8 (3 Punkte)

Sei $M = \{(x,y) \in \mathbb{R}^2 : x > 0, y = \frac{1}{x}\}$. Finden Sie auf M den Punkt mit kleinstem Abstand zum Nullpunkt (die Existenz kann angenommen werden).

Aufgabe 9 (2 Punkte)

Bestimmen Sie die Taylorentwicklung einschließlich quadratischer Terme für die Funktion

$$f(x) = (1+x^3)^{3/2},$$

mit Entwicklungspunkt $x_0 = 1$.

Aufgabe 10 (4 = 2 + 2 Punkte)

Berechnen Sie die folgenden Integrale.

- (a) $\int_0^{\pi} x \sin(x) dx$ (Hinweis: partielle Integration).
- (b) $\int_1^2 \frac{\exp(x)}{2\sqrt{\exp(x)-1}} dx \text{ (Hinweis: Substitution } x = \ln(y^2+1)).$

ENDE DER KLAUSUR: Viel Glück und Erfolg!