17. Stetigkeit

Vereinbarung: In diesem Paragraphen seien stets: $\emptyset \neq D \subseteq \mathbb{R}$, $x_0 \in D$ und $f: D \to \mathbb{R}$ eine Funktion.

Definition

- (1) f heißt stetig in $x_0 : \iff$ für jede Folge (x_n) in D mit $x_n \to x_0$ gilt: $f(x_n) \to f(x_0)$.
- (2) f heißt stetig auf $D : \iff f$ ist in jedem $x \in D$ stetig.
- (3) $C(D) := \{g : D \to \mathbb{R} : g \text{ ist stetig auf } D\}.$

Beispiele: (1)
$$D := [0,1] \cup 2$$
. $f(x) := \begin{cases} x^2 & \text{für } x \in [0,1) \\ 0 & \text{für } x = 1 \\ 1 & \text{für } x = 2 \end{cases}$

Klar: f ist stetig in jedem $x \in [0,1)$. $x_0 = 1$: $x_n = 1 - \frac{1}{n} \implies x_n \to 1$. $f(x_n) = (1 - \frac{1}{n})^2 \to 1 \neq 0 = f(1) \implies f$ ist in $x_0 = 1$ nicht stetig. $x_0 = 2$: Sei (x_n) eine Folge in D mit $x_n \to 2 \implies x_n = 2$ ffa $n \in \mathbb{N} \implies f(x_n) = 1$ ffa $n \in \mathbb{N} \implies f(x_n) \to 1 = f(2)$. Das heißt: f ist stetig in $x_0 = 2$.

(2) $D := [0, \infty), p \in \mathbb{N}, f(x) := \sqrt[p]{x}, \S 16 \implies f \in C[0, \infty).$

Satz 17.1 (Stetigkeitssätze)

- (1) f ist stetig in $x_0 \iff \forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) : |f(x) f(x_0)| < \varepsilon \ \forall x \in D_{\delta}(x_0)$.
- (2) Ist x_0 Häufungspunkt von D, so gilt: f ist stetig in $x_0 \iff \lim_{x \to x_0} f(x)$ existiert und ist gleich $f(x_0)$.
- (3) Ist $g: D \to \mathbb{R}$ eine weitere Funktion und sind f, g stetig in x_0 , dann sind f + g, fg und |f| stetig in x_0 .
- (4) Sei $\tilde{D} := \{x \in D : f(x) \neq 0\}$ und $x_0 \in \tilde{D}$ und f sei stetig in x_0 . Dann ist $\frac{1}{f} : \tilde{D} \to \mathbb{R}$ stetig in x_0 .

Beweis

- (1) Wie bei 16.1
- (2) Als Übung
- (3) und
- (4) wie bei 16.2

Satz 17.2 (Stetigkeit der Potenzreihen)

 $\sum_{n=0}^{\infty} a_n x^n$ sei Potenzreihe mit dem Konvergenzradius r>0. Es sei D=(-r,r) und $f(x):=\sum_{n=0}^{\infty} a_n x^n \ (x\in D)$. Dann: $f\in C(D)$. Insbesondere gilt für $x_0\in D$:

$$\lim_{x \to x_0} \sum_{n=0}^{\infty} a_n x^n = \lim_{x \to x_0} f(x) \stackrel{17.1(2)}{=} f(x_0) = \sum_{n=0}^{\infty} a_n x_0^n = \sum_{n=0}^{\infty} \lim_{x \to x_0} a_n x^n$$

Beweis

Später in §19

Beispiel 17.3

- (1) e^x , $\sin x$, $\cos x$ sind auf \mathbb{R} stetig.
- $(2) \lim_{x \to 0} \frac{\sin x}{x} = 1.$
- (3) $\lim_{x \to 0} \frac{e^x 1}{x} = 1.$
- (4) $\lim_{h\to 0} \frac{e^{x_0+h}-e^{x_0}}{h} = e^{x_0}.$

Beweis

- (1) Folgt aus 17.2
- (2) Für $x \neq 0$:

$$\frac{1}{x}\sin x = \frac{1}{x} \cdot \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots\right) = \underbrace{1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \dots}_{17.2} \xrightarrow{17.2} 1 \ (x \to 0)$$

Potenzreihe mit KR ∞ , also stetig (in x=0)

(3) Für $x \neq 0$:

$$\frac{e^x - 1}{x} = \frac{1}{x} \cdot (1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots - 1) = \underbrace{1 + \frac{x}{2!} + \frac{x^2}{3!} + \dots}_{17.2} \quad 1 \quad (x \to 0)$$

Potenzreihe mit KR ∞ , also stetig (in x=0)

(4)
$$\frac{e^{x_0+h}-e^{x_0}}{h} = e^{x_0} \frac{e^h-1}{h} \xrightarrow{(3)} e^{x_0} \cdot 1 = e^{x_0} (h \to 0)$$

Satz 17.4 (Stetigkeit von verketteten stetigen Funktionen)

Sei $E \subseteq \mathbb{R}$, $g: E \to \mathbb{R}$ eine Funktion und $f(D) \subseteq E$. f sei stetig in $x_0 \in D$ und g sei setig in $y_0 := f(x_0)$. Dann ist $g \circ f: D \to \mathbb{R}$ stetig in x_0 .

Beweis

Sei (x_n) eine Folge in D mit $x_n \to x_0$. f ist stetig in $x_0 \implies \underbrace{f(x_n)}_{=:y_n} \to f(x_0) = y_0$. g stetig in $y_0 \implies g(y_0) \to g(y_0) = g(f(x_0)) = (g \circ f)(x_0)$

$$y_0 \Longrightarrow \underbrace{g(y_n)}_{=g(f(x_n))=(g\circ f)(x_n)} \to g(y_0) = g(f(x_0)) = (g\circ f)(x_0).$$