Colles - Semaine 15

Exercice 1. ESC 2005

On considère la fonction de deux variables f définie sur l'ouvert $U = [0, +\infty[\times]0, +\infty[\text{ par :}$

$$f(x,y) = x^2 \ln(y) - y \ln(x)$$

- 1. On note g la fonction définie sur $]0, +\infty[$ par $g(t) = 4t^2 2t \ln t 1.$
 - a) Montrer que g est C^2 sur son domaine de définition et calculer g'(t) et g''(t) pour t > 0.
 - **b)** Étudier les variations de g' sur $]0; +\infty[$, puis celle de g sur $]0; +\infty[$. (On précisera à chaque fois les limites aux bornes)
 - c) En déduire qu'il existe un unique élément strictment positif α tel que $g(\alpha) = 0$.
 - d) Vérifier : $\ln(\alpha) = 2\alpha \frac{1}{2\alpha}$.
- 2. a) Montrer que f est de classe C^2 sur U.
 - b) Calculer les dérivées partielles d'ordre 1 de f.
 - c) En déduire que si (x_0, y_0) est un point critique de f, alors $x_0 > 1$ et $y_0 = \frac{(x_0)^2}{\ln(x_0)}$.
 - d) Établir alors que $g(\ln(x_0)) = 0$. En déduire que f possède un unique point critique noté M, de coordonnées $\left(e^{\alpha}, \frac{e^{2\alpha}}{\alpha}\right)$ où α est le réel défini en 1.c).
- 3. a) Calculer les dérivées partielles d'ordre 2 de f.
 - **b)** En utilisant la relation de la question **1.d)**, montrer : $2\ln(y_0) + \frac{y_0}{(x_0)^2} = \frac{2}{\alpha}$. En déduire que la fonction f ne présente pas d'extremum.

Exercice 2. ESCP 2002

Soit a un paramètre réel et F_a la fonction définie sur \mathbb{R}^2 par :

$$\forall (x,y) \in \mathbb{R}^2, \quad F_a(x,y) = (x \ y \ a) \begin{pmatrix} -3 & 1 & 1 \\ 1 & -3 & 1 \\ 1 & 1 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \\ a \end{pmatrix}$$

- 1. Déterminer, pour tout $(x,y) \in \mathbb{R}^2$, l'expression de $F_a(x,y)$ en fonction de x,y et a.
- 2. Vérifier que cette fonction est de classe C^1 sur \mathbb{R}^2 et calculer ses dérivées partielles d'ordre 1 en tout point (x,y) de \mathbb{R}^2 .
- 3. Montrer qu'il existe un unique point (x_0, y_0) de \mathbb{R}^2 , que l'on précisera, en lequel les dérivées partielles d'ordre 1 de F_a sont nulles. Calculer $F_a(x_0, y_0)$.
- 4. Calculer, pour tout couple (x, y) de \mathbb{R}^2 , le nombre :

$$G_a(x,y) = F_a(x,y) + \frac{1}{3}(3x - y - a)^2 + 2a^2,$$

et préciser son signe.

- 5. En déduire que la fonction F_a admet un unique extremum sur \mathbb{R}^2 . Préciser s'il s'agit d'un minimum ou d'un maximum global et donner sa valeur notée M(a).
- 6. Montrer que la fonction M qui, à tout réel a associe le nombre M(a), admet un unique extremum que l'on précisera. Que peut-on en conclure?

1

Exercice 3. INSEEC 2002

On considère la fonction g définie sur \mathbb{R}^3 par :

$$\forall (x, y, z) \in \mathbb{R}^3, \ g(x, y, z) = 4x^2 + 4y^2 + 2z^2 + 4xz - 4yz$$

On définit la fonction $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ par : $\forall (x,y) \in \mathbb{R}^2$, $f(x,y) = g(x,y,y^2)$. On dit alors qu'on étudie la fonction g sous la contrainte $z = y^2$.

- 1. Expliciter f(x,y), et calculer $\partial_1(f)(x,y)$, $\partial_2(f)(x,y)$, $\partial^2_{1,1}(f)(x,y)$, $\partial^2_{1,2}(f)(x,y)$ et $\partial^2_{2,2}(f)(x,y)$.
- 2. Déterminer les extrema éventuels de f sur \mathbb{R}^2 .
- 3. Montrer, pour tout $(x, y, z) \in \mathbb{R}^3$:

$$g(x, y, z) = 4\left(x + \frac{1}{2}z\right)^2 + 4\left(y - \frac{1}{2}z\right)^2$$

En déduire que f admet un minimum global en (0,0).

- 4. Montrer que f présente un minimum local en (-2,2).
- 5. Déterminer le développement limité d'ordre 2 de f en $\left(-\frac{1}{2},1\right)$. En déduire le développement limité d'ordre 2 de $f\left(-\frac{1}{2}+h,1+h\right)$ et de $f\left(-\frac{1}{2}+h,1-h\right)$, lorsque h est au voisinage de 0. En déduire que f ne présente pas d'extremum local en $\left(-\frac{1}{2},1\right)$.

Exercice 4. HEC 2017

Soit f la fonction de deux variables définies sur \mathbb{R}^2 par :

$$f:(x,y)\mapsto x^3+y^3-9xy+1$$

- 1. a) Donner le développement limité à l'ordre 2 de f au voisinage de (0,0).
 - b) En déduire que (0,0) est un point col de f.
- 2. a) Montrer que f admet un extremum local.
 - b) Cet extremum est-il global?