### Introduction to Statistical Machine Learning

#### Christfried Webers

Statistical Machine Learning Group NICTA and College of Engineering and Computer Science The Australian National University

> Canberra February – June 2013

(Many figures from C. M. Bishop, "Pattern Recognition and Machine Learning")

#### Introduction to Statistical Machine Learning

Christfried Webers NICTA

The Australian National University



Overview Introduction Linear Algebra

Probability Linear Regression 1

Linear Regression 2 Linear Classification 1

Linear Classification 2 Neural Networks 1

Neural Networks 2 Kernel Methods

Sparse Kernel Methods Graphical Models 1

Graphical Models 2

Graphical Models 3

Mixture Models and FM 1 Mixture Models and EM 2

Approximate Inference

Sampling

Principal Component Analysis Sequential Data 1

Sequential Data 2

Combining Models Selected Topics

Discussion and Summary

1of 600

## Part XVI

Mixture Models and EM 1

#### Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA

The Australian National University



Motivation

K-means Cluster

K-means Applications



K-means Cluste

K-means Applications

- We studied how to define joint distributions over observed and latent variables (e.g. graphical models).
- Distribution over observed variables via marginalisation.
- Complex marginal distributions over observed variables can be expressed via more tractable joint distributions over the expanded space of observed and latent variables.
- Mixture Models can also be used to cluster data.
- General technique for finding maximum likelihood estimators in latent variable models: expectation-maximisation (EM) algorithm.
- Later: Variational Interference (Bayesian treatment).

### Example - Wallaby Distribution

• Introduced very recently to show ...



Introduction to Statistical Machine Learning

> © 2013 Christfried Webers NICTA

The Australian National University



Motivation

K-means Cluster

K-means Applications





K-means Cluster

K-means Application





• Use  $\mu, \sigma$  as latent variables and define a distribution

$$p(\mu,\sigma) = \begin{cases} \frac{3}{10} & \text{if } (\mu,\sigma) = (5,0.5) \\ \frac{3}{10} & \text{if } (\mu,\sigma) = (9,2) \\ \frac{4}{10} & \text{if } (\mu,\sigma) = (2,20) \\ 0 & \text{otherwise.} \end{cases}$$

$$p(x) = \int_{-\infty}^{\infty} \int_{0}^{\infty} p(x, \mu, \sigma) d\mu d\sigma$$

$$= \int_{-\infty}^{\infty} \int_{0}^{\infty} p(x | \mu, \sigma) p(\mu, \sigma) d\mu d\sigma$$

$$= \frac{3}{10} \mathcal{N}(x | 5, 0.5) + \frac{3}{10} \mathcal{N}(x | 9, 2) + \frac{4}{10} \mathcal{N}(x | 2, 20)$$



© 2013
Christfried Webers
NICTA
The Australian National



Motivation

-means Clusterin

K-means Applications



K-means Clustering

K-means Applications

- Given a set of data  $\{\mathbf{x}_1, \dots, \mathbf{x}_N\}$  where  $\mathbf{x}_n \in \mathbb{R}^D$ ,  $n = 1, \dots, N$ .
- Goal: Partition the data into K clusters.



- Given a set of data  $\{\mathbf{x}_1,\ldots,\mathbf{x}_N\}$  where  $\mathbf{x}_n\in\mathbb{R}^D$ ,  $n=1,\ldots,N$ .
- Goal: Partition the data into K clusters.
- Each cluster contains points close to each other.
- Introduce a prototype  $\mu_k \in \mathbb{R}^D$  for each cluster.
- Goal: Find
  - **1** a set prototypes  $\mu_k$ ,  $k = 1, \dots, K$ , each representing a different cluster.
  - an assignment of each data point to exactly one cluster.

assigned to each of them.



мопуапоп

K-means Clustering

K-means Applications

 In the following, we will formalise this introducing a notation which will be useful later.

• Start with arbitrary chosen prototypes  $\mu_k$ , k = 1, ..., K.

Assign each data point to the closest prototype.
 Calculate new prototypes as the mean of all data points



K-means Clustering

K-means Applications

Mixture of Gaussian:

Binary indicator variables

$$r_{nk} = \begin{cases} 1, & \text{if data point } \mathbf{x}_n \text{ belongs to cluster } k \\ 0, & \text{otherwise} \end{cases}$$

using the 1-of-K coding scheme.

Define a distortion measure

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_{n} - \boldsymbol{\mu}_{k}\|^{2}$$

• Find the values for  $\{r_{nk}\}$  and  $\{\mu_k\}$  so as to minimise J.

### K-means Clustering - Notation

- Find the values for  $\{r_{nk}\}$  and  $\{\mu_k\}$  so as to minimise J.
- But  $\{r_{nk}\}$  depends on  $\{\mu_k\}$ , and  $\{\mu_k\}$  depends on  $\{r_{nk}\}$ .

Introduction to Statistical Machine Learning

> ©2013 Christfried Webers NICTA

The Australian National University



Motivation

K-means Clustering

K-means Applications

 $\forall n = 1, \dots, N$ 

- Christfried Webers The Australian National

- Find the values for  $\{r_{nk}\}$  and  $\{\mu_k\}$  so as to minimise J.
- But  $\{r_{nk}\}$  depends on  $\{\mu_k\}$ , and  $\{\mu_k\}$  depends on  $\{r_{nk}\}$ .
- Iterate until no further change
  - Minimise J w.r.t.  $r_{nk}$  while keeping  $\{\mu_k\}$  fixed,

$$r_{nk} = \begin{cases} 1, & \text{if } k = \arg\min_{j} ||\mathbf{x}_{n} - \boldsymbol{\mu}_{j}||^{2} \\ 0, & \text{otherwise.} \end{cases}$$

Expectation step

Minimise J w.r.t.  $\{\mu_{k}\}$  while keeping  $r_{nk}$  fixed,

$$0 = 2\sum_{n=1}^{N} r_{nk}(\mathbf{x}_n - \boldsymbol{\mu}_k)$$
$$\boldsymbol{\mu}_k = \frac{\sum_{n=1}^{N} r_{nk}\mathbf{x}_n}{\sum_{n=1}^{N} r_{nk}}$$

Maximisation step

© 2013
Christfried Webers
NICTA
The Australian National





K-means Clustering

K-means Application.



Christfried Webers
NICTA
The Australian National
University





K-means Clustering

K-means Application



#### K-means Clustering - Cost Function



Cost function *J* after each E step (blue points) and M step (red points).

Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA The Australian National



Motivation

K-means Clustering

K-means Applications

K-means Cluster

к-means Appucations

- Initial condition crucial for convergence.
- What happens, if at least one cluster centre is too far from all data points?
- Complex step: Finding the nearest neighbour. (Use triangle inequality; built K-D trees, ...)
- Generalise to non-Euclidian dissimilarity measures  $V(\mathbf{x}_n, \boldsymbol{\mu}_k)$  (called *K*-medoids algorithm),

$$\widetilde{J} = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \mathcal{V}(\mathbf{x}_n, \boldsymbol{\mu}_k).$$

- Online stochastic algorithm
  - **1** Draw data point  $\mathbf{x}_n$  and locate nearest prototype  $\boldsymbol{\mu}_k$ .
  - **②** Update only  $\mu_k$  using decreasing learning rate  $\eta_n$

$$oldsymbol{\mu}_k^{\mathsf{new}} = oldsymbol{\mu}_k^{\mathsf{old}} + \eta_n (\mathbf{x}_n - oldsymbol{\mu}_k^{\mathsf{old}}).$$

Introduction to Statistical
Machine Learning

© 2013
Christfried Webers
NICTA
The Australian National



Motivation

K-means Clustering

K-means Applications

- Segment an image into regions of reasonable homogeneous appearance.
- Each pixel is a point in  $\mathbb{R}^3$  (red, blue, green). (Note that the pixel intensities are bounded in the range [0,1] and therefore this space is strictly speaking not Euclidian).
- Run K-means on all points of the image until converge. Replace all pixels with the corresponding mean  $\mu_{\nu}$ .
- Results in an image with a palette only *K* different colours.
- There are much better approaches to image segmentation (but it is an active research topic), this here serves only to illustrate K-means.

### Illustrating K-means Clustering - Segmentation









#### Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA The Australian National



Motivation

K-means Clustering

K-means Applications

### Illustrating K-means Clustering - Segmentation









#### Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA The Australian National



lotivation

K-means Clustering

K-means Applications

© 2013 Christfried Webers NICTA The Australian National



Motivation

K-means Clustering

K-means Applications

Mixture of Gaus

- Lossy data compression: accept some errors in the reconstruction as trade-off for higher compression.
- Apply K-means to the data.
- Store the code-book vectors  $\mu_k$ .
- Store the data in the form of references (labels) to the code-book. Each data points has a label in the range [1,..., K].
- New data points are also compressed by finding the closest code-book vector and then storing only the label.
- This technique is also called vector quantisation.

### Illustrating K-means Clustering - Compression



4.2%



16.7%



8.3%



100 %

Introduction to Statistical Machine Learning

©2013
Christfried Webers
NICTA
The Australian National



K-means Clustering

K-means Applications

cture of Gaussians

K-means Clustering

K-means Applications

Mixture of Gaussians

 A Gaussian mixture distribution is a linear superposition of Gaussians of the form

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \, \mathcal{N}(\mathbf{x} \,|\, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k).$$

- As  $\int p(\mathbf{x}) d\mathbf{x} = 1$ , if follows  $\sum_{k=1}^{K} \pi_k = 1$ .
- $\bullet$  Let us write this with the help of a latent variable z .

#### Definition (Latent variables)

Latent variables (as opposed to observable variables), are variables that are not directly observed but are rather inferred (through a mathematical model) from other variables that are observed and directly measured. They are also sometimes called hidden variables, model parameters, or hypothetical variables.



V maane Clustori

K-means Applicatio

- Let  $\mathbf{z} \in \{0,1\}^K$  and  $\sum_{k=1}^K z_k = 1$ . In words,  $\mathbf{z}$  is a K-dimensional vector in 1-of-K representation.
- There are exactly K different possible vectors z depending on which of the K entries is 1.
- Define the joint distribution  $p(\mathbf{x}, \mathbf{z})$  in terms of a marginal distribution  $p(\mathbf{z})$  and a conditional distribution  $p(\mathbf{x} \mid \mathbf{z})$  as

$$p(\mathbf{x}, \mathbf{z}) = p(\mathbf{z}) p(\mathbf{x} \mid \mathbf{z})$$



Mixture of Gaussians

Set the marginal distribution to

$$p(z_k=1)=\pi_k$$

where  $0 \le \pi_k \le 1$  together with  $\sum_{k=1}^K \pi_k = 1$ .

Because z uses 1-of-K coding, we can also write

$$p(\mathbf{z}) = \prod_{k=1}^K \pi_k^{z_k}.$$

Set the conditional distribution of x given a particular z to

$$p(\mathbf{x} | z_k = 1) = \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k),$$

or

$$p(\mathbf{x} \mid \mathbf{z}) = \prod_{k=1}^K \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_k},$$

# Christfried Webers

Mixture of Gaussians

 The marginal distribution over x is now found by summing the joint distribution over all possible states of z

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x} \mid \mathbf{z}) = \sum_{\mathbf{z}} \prod_{k=1}^{K} \pi_k^{z_k} \prod_{k=1}^{K} \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_k}$$
$$= \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

- The marginal distribution of x is a Gaussian mixture.
- For several observations  $x_1, \ldots, x_N$  we need one latent variable  $\mathbf{z}_n$  per observation.
- What have we gained? Can now work with the joint distribution  $p(\mathbf{x}, \mathbf{z})$ . Will lead to significant simplification later, especially for EM algorithm.



K-means Clustering

K-means Applications

Mixture of Gaussians

Conditional probability of z given x by Bayes' theorem

$$\gamma(z_k) = p(z_k = 1 \mid \mathbf{x}) = \frac{p(z_k = 1) p(\mathbf{x} \mid z_k = 1)}{\sum_{j=1}^{K} p(z_j = 1) p(\mathbf{x} \mid z_j = 1)}$$
$$= \frac{\pi_k \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

•  $\gamma(z_k)$  is the responsibilty of component k to 'explain' the observation  $\mathbf{x}$ .

- Mixture of Gaussians

- Goal: Generate random samples distributed according to the mixture model.
  - **1** Generate a sample  $\hat{\mathbf{z}}$  from the distribution  $p(\mathbf{z})$ .
  - Generate a value  $\hat{\mathbf{x}}$  from the conditional distribution  $p(\mathbf{x} \mid \hat{\mathbf{z}})$ .
- Example: Mixture of 3 Gaussians, 500 points.



Original states of z.



Marginal  $p(\mathbf{x})$ .



(R, G, B) - colours mixed according to  $\gamma(z_{nk})$ .

#### Mixture of Gaussians - Maximum Likelihood

- Given N data points, each of dimension D, we have the data matrix  $\mathbf{X} \in \mathbb{R}^{N \times D}$  where each row contains one data point.
- Similarly, we have the matrix of latent variables  $\mathbf{Z} \in \mathbb{R}^{N \times K}$  with rows  $\mathbf{z}_n^T$ .
- Assume the data are drawn i.i.d., the distribution for the data can be represented by a gaphical model.



Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA The Australian National



монуаноп

-means Clustering

K-means Applications



C-means Clustering

K-means Applications

Mixture of Gaussian

• The log of the likelihood function is then

$$\ln p(\mathbf{X} \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_{k} \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right\}$$

• Significant problem: If a mean  $\mu_j$  'sits' directly on a data point  $\mathbf{x}_n$  then

$$\mathcal{N}(\mathbf{x}_n \,|\, \mathbf{x}_n, \sigma_j^2 \mathbf{I}) = \frac{1}{(2\pi)^{1/2}} \frac{1}{\sigma_j}.$$

- Here we assumed  $\Sigma_k = \sigma_k^2 \mathbf{I}$ . But problem is general, just think of a main axis transformation for  $\Sigma_k$ .
- Overfitting (in disguise) occuring again with the maximum likelihood approach.
- Use heuristics to detect this situation and reset the mean of the corresponding component of the mixture.

A K component mixture has a total of K! equivalent



Motivation

Z-maans Application

Mixture of Gaussians

of parameters to K solutions.
Also called identifiability problem. Needs to be considered when the parameters discovered by a model are

solutions corresponding to the *K*! ways of assigning *K* sets

- when the parameters discovered by a model are interpreted.
- Maximising the log likelihood of a Gaussian mixture is more complex then for a single Gaussian. Summation over all K components inside of the logarithm make it harder.
- Setting the derivatives of the log likelihood to zero does not longer result in a closed form.
- May use gradient-based optimisation.
- Or EM algorithm. Stay tuned.