贝叶斯定理

$$P(c_i|oldsymbol{x}) = rac{P(oldsymbol{x}|c_i)P(c_i)}{P(oldsymbol{x})}$$

利用贝叶斯定理,可将计算转换成对 $P(x|c_i)$ 、(x)、 $P(c_i)$ 的计算。

一般来说, $P(c_i)$ 为先验概率, $P(\boldsymbol{x}|c_i)$ 为条件概率, $P(\boldsymbol{x})$ 是用于归一化的证据因子。对于 $P(c_i)$ 可以通过训练样本中类别为 c_i 的样本所占的比例进行估计;此外,由于只需要找出最大的 $P(\boldsymbol{x}|c_i)$,因此我们并不需要计算 $P(\boldsymbol{x})$ 。

朴素贝叶斯分类器

\$ P(x|c)\$难以直接计算,朴素贝叶斯分类器采用"属性条件独立假设": (假设每个属性独立地对结果发生影响),则

$$P(c|oldsymbol{x}) = rac{P(oldsymbol{x}|c)P(c)}{P(oldsymbol{x})} = rac{P(c)}{P(x)}\prod_{i=1}^d P(x_i|c)$$

贝叶斯决策理论的核心思想,**就是选择最高概率的决策**:对于每一个输入x,分别计算这几个类概率的值,哪个大x属于哪一个类。可以证明,若要最小化损失函数的期望,就要使其概率最高,即预测输出

$$\hat{y} = rgmax_{c_i \in Y} P(c_i) \prod_{j=1}^d P(x_j | c_i)$$

如果 x_i 是标签属性,那么可以通过计数的方法估计 $P(x_i|c_i)$

$$P(x_j|c_i) = rac{P(x_j,c_i)}{P(c_i)} pprox rac{\#(x_j,c_i)}{\#(c_i)}$$

其中, $\#(x_i, c_i)$ 表示在训练样本中 x_i 与 c_i 共同出现的次数。

例子

使用经典的西瓜训练集如下:

编号	色泽	根蒂	敲声	纹理	脐部	触感	密度	含糖率	好瓜
1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	0.697	0.460	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	0.774	0.376	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	0.634	0.264	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	0.608	0.318	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	0.556	0.215	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	0.403	0.237	是

编号	色泽	根蒂	敲声	纹理	脐部	触感	密度	含糖率	好瓜
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	0.481	0.149	是
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	0.437	0.211	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	0.666	0.091	否
10	青绿	硬挺	清脆	清晰	平坦	软粘	0.243	0.267	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	0.245	0.057	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	0.343	0.099	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	0.639	0.161	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	0.657	0.198	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	0.360	0.370	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	0.593	0.042	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	0.719	0.103	否

对下面的测试例"测1"进行分类:

编号	色泽	根蒂	敲声	纹理	脐部	触感	密度	含糖率	好瓜
测1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	0.697	0.460	?

首先,估计类先验概率 $P(c_j)$,有

$$P($$
好瓜 = 是 $) = rac{8}{17} = 0.471$ $P($ 好瓜 = 否 $) = rac{9}{17} = 0.529$

然后,为每个属性估计条件概率 (这里,对于连续属性,假定它们服从正态分布)

$$egin{aligned}
ho_{\text{含糖. }0.460\mid\mathbb{E}} &=
ho \; (\,rac{\otimes}{\mathbb{E}} = 0.460\mid\!\!\!\! egin{aligned} \mathcal{E}\, &= \mathbb{E}\,) \ &= rac{1}{\sqrt{2\pi} imes 0.101} exp \left(-rac{(0.460 - 0.279)^2}{2 imes 0.101^2}
ight) pprox 0.788 \end{aligned}$$

$$ho_{\text{含糖: }0.460|\text{否}} =
ho \; (密度 = 0.460 | 好瓜 = 是) \ = rac{1}{\sqrt{2\pi} imes 0.108} exp \left(-rac{(0.460 - 0.154)^2}{2 imes 0.108^2}
ight) pprox 0.066$$

于是有

$$P($$
好瓜 $=$ 是 $) imes P_{$ 青緑 $|$ 是 $} imes P_{$ 嶷縮 $|$ 是 $} imes P_{$ 浊响 $|$ 是 $} imes P_{$ 清晰 $|$ 是 $} imes P_{$ 四陷 $|$ 是 $} imes P_{$ 强 $|$ 2 $} imes P_{$ 3 $} imes 0.460|$ 是 $}pprox 0.063$

$$P($$
好瓜 $=$ 否 $)$ $imes$ $P_{ar{ ext{ iny hallow}}}$ $imes$ $P_{ar{ ext{ iny hall$

由于 $0.063 > 6.80 \times 10^{-5}$,因此,朴素贝叶斯分类器将测试样本"测1"判别为"好瓜"。