#### Question 1

• 
$$n=51$$
,  $\bar{X}=485$ ,  $S=17.2$ 

• 
$$H_{0:} \mu = \mu_0 = 490$$

• 
$$H_1$$
:  $\mu < \mu_0 = 490$  (at maximum)

• 
$$Z = \frac{\bar{X} - \mu_0}{S/\sqrt{n}} = \frac{485 - 490}{17.2/\sqrt{51}} = -2.076$$

• 
$$Z_{\alpha} = Z_{0.05} = -1.645$$

• Falls in Rejection Region/enough evidence to support H<sub>1</sub> =>Reject H<sub>0</sub>

$$Z = \frac{\overline{X} - \mu_0}{\sqrt[\sigma]{\sqrt{n}}} \text{ if } \sigma \text{ known or } Z = \frac{\overline{X} - \mu_0}{\sigma_{\overline{X}}} = \frac{\overline{X} - \mu_0}{\sqrt[s]{\sqrt{n}}} \text{ if } \sigma \text{ unknown but } n \ge 30$$



# Question 2

• 
$$n=5, \bar{X}=9.5, \sigma=2$$

• 
$$H_0$$
:  $\mu = \mu_0 = 0.8$ 

• 
$$H_1$$
:  $\mu \neq \mu_0 = 0.8$ 

• 
$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} = \frac{9.5 - 0.8}{2 / \sqrt{5}} = 1.667$$

• 
$$Z_{\alpha/2} = Z_{0.025} = 1.96$$

Doesn't Falls in Rejection Region/
Not enough evidence to support H<sub>1</sub>
=>fail to Reject H<sub>0</sub>

$$Z = \frac{\overline{X} - \mu_0}{\sqrt[\sigma]{\sqrt{n}}} \text{ if } \sigma \text{ known or } Z = \frac{\overline{X} - \mu_0}{\sigma_{\overline{X}}} = \frac{\overline{X} - \mu_0}{\sqrt[s]{\sqrt{n}}} \text{ if } \sigma \text{ unknown but } n \ge 30$$



## Question 3

• 
$$n=5, \bar{X}=8.7, \sigma=1.2$$

• 
$$H_0$$
:  $\mu = \mu_0 = 8.5$ 

• 
$$H_1$$
:  $\mu > \mu_0 = 8.5$ 

• Specific alternative  $\mu$ =9.5

• 
$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} = \frac{8.7 - 9.5}{1.2 / \sqrt{5}} = -1.49$$

• 
$$P(Z < -1.49) = 0.068 = \beta$$



## Question 4

- $\sigma$  unknown
- $n=10, \bar{X}=1290, S=110$
- $H_{0:} \mu = 1200$
- $H_1$ :  $\mu \neq 1200$

• 
$$T = \frac{\bar{X} - \mu_0}{s/\sqrt{n}} = \frac{1290 - 1200}{110/\sqrt{10}} = 2.587$$

- $t_{\alpha/2} = t_{0.025} = 2.262$
- Falls in Rejection Region

=>Reject  $H_0$ 



## Question 5

•  $\sigma$  unknown

• 
$$n=12$$
,  $\bar{X} = 37.2833$ ,  $S = 2.73$ 

• 
$$H_{0}$$
.  $\mu = 40$ 

•  $H_1$ :  $\mu < 40$ 

• 
$$T = \frac{\bar{X} - \mu_0}{s/\sqrt{n}} = \frac{37.283 - 40}{2.732/\sqrt{12}} = -3.445$$

• 
$$t_{\alpha} = t_{0.05} = -1.796$$

- Falls in Rejection Region
- =>Reject  $H_0$



$$T = -3.445$$

## Question 6

$$n=12, \bar{X}=20$$

#### **Uniform Distribution?**

Expected frequency for each grade is the same, i.e. the mean

| $\overline{x} =$ | 20 | $=e_i$ |
|------------------|----|--------|
|                  |    |        |

| Grade              | A  | В  | C  | D  | F  |
|--------------------|----|----|----|----|----|
| Frequ. oi          | 14 | 18 | 32 | 20 | 16 |
| Expected Frequ. ei | 20 | 20 | 20 | 20 | 20 |

$$\chi^{2} = \sum_{i=1}^{5} \frac{(o_{i} - e_{i})^{2}}{e_{i}}$$

$$\chi^2 = \frac{(14-20)^2}{20} + \frac{(18-20)^2}{20} + \dots + \frac{(16-20)^2}{20} = 10.00$$

$$\alpha = 0.05 \implies \chi^2_{\alpha = 0.05 (df = 4)} = 9.488$$
 => Reject Ho