

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

Textos de

Matemática Discreta

Estruturas Fundamentais, Relações e Indução

Eliana Costa e Silva eos@estg.ipp.pt

Para os cursos de:
Licenciatura em Segurança Informática
em Redes de Computadores
Licenciatura em Engenharia Informática

O uso destes apontamentos como $\acute{\mathbf{u}}$ nico material de estudo $\acute{\mathbf{e}}$ fortemente desaconselhado.				
O estudante deve também consultar a bibliografia recomendada indicada na Ficha da Unidade Curricular				
e disponível neste documento, nomeadamente, [4], [3], [1], [2].				
Última atualização:				
Fevereiro de 2022				

Conteúdo

1	Repres	sentação e operações sobre conjuntos	2
2 Funções, sucessões de números inteiros, somatórios e produtórios			
	2.1	Funções	13
	2.2	Sucessões de números inteiros	22
	2.3	Somatórios e produtórios	25
3	Relaçõ	es	32
	3.1	Relações binárias	32
	3.2	Representação de relações binárias	34
	3.3	Propriedades das relações binárias	37
4	Induçã	to e recursividade	42
	4.1	Indução Matemática	43
	12	Recursividade	45

Estruturas Fundamentais, Relações e Indução

Grande parte da Matemática Discreta é dedicada ao estudo de estruturas discretas, usadas para representar objetos discretos.

Muitas dessas estruturas discretas são construídos utilizando **conjuntos**, que são coleções de objetos. De entre as estruturas discretas construídas a partir de conjuntos temos as combinações - coleções não ordenada de objetos usados extensivamente em contagem; as relações - conjuntos de pares ordenados que representam relações entre os objetos; os grafos - conjuntos de vértices e arestas que ligam os vértices; e as **máquinas de estados finitos** - usadas para modelar máquinas de computação.

O conceito de uma função é também extremamente importante em matemática discreta. Uma função atribui a cada elemento de um primeiro conjunto exatamente um elemento de um segundo conjunto, em que os dois conjuntos não são necessariamente distintos. Elas também são usados para representar a complexidade computacional de algoritmos (que não iremos abordar nesta UC), para estudar o tamanho dos conjuntos, para contar objetos, e em uma infinidade de outras maneiras. Estruturas úteis, como sucessões (ou sequências) e strings são tipos especiais de funções. Neste capítulo, vamos introduzir a noção de uma sucessões, que representa conjuntos ordenados de elementos. Além disso, vamos apresentar alguns tipos importantes de sucessões e vamos mostrar como definir os termos de uma sucessão usando termos anteriores. Também vamos resolver o problema da identificação de uma sucessão a partir dos seus primeiros termos.

Com frequência encontramos somas de termos consecutivos de sucessões de números, assim como de outros conjuntos de números indexados, iremos abordar a notação de somatório e estudar alguns **somatórios** mais comuns e úteis. Podemos por exemplo encontrar tais somatórios na **análise** do número de passos **de um algoritmo** para classificar uma lista de números de modo que os seus termos estejam por ordem crescente.

As **relações** entre elementos de conjuntos ocorrem em muitos contextos. Por exemplo, na relação entre um negócio e o número de telefone do cliente, na relação entre um funcionário e o seu vencimento, relação entre uma pessoa e um parente, ... As relações podem ser utilizadas para resolver problemas tais como

determinar quais pares de cidades que estão ligadas por linhas aéreas, encontrando qual a ordem viável das diferentes fases de projeto complicado, ou produzir uma maneira útil para armazenar informações em bases de dados de computador.

Quando um procedimento é especificado para resolver um problema, este procedimento deve sempre resolver corretamente o problema. Apenas testando para ver que o resultado correto é obtido para um conjunto limitado de valores não mostra que o procedimento funciona sempre corretamente. A correção de um procedimento só pode ser garantido por provar que ele dá sempre o resultado correto. Um modo de fazer tal verificação é recorrer a indução matemática. Técnicas de verificação de programas assentam neste princípio e em formulas de recursividade subjacentes.

1 Representação e operações sobre conjuntos

Definição 1:

Um conjunto é uma coleção não ordenada de objetos.

Os objetos de um conjunto são chamados os elementos do conjunto.

Diz-se que os elementos pertencem ao conjunto.

Notação:

Os conjuntos representam-se por letras maiúsculas e os objetos por letras minúsculas.

Escrevemos $a \in A$ para denotar que a é um elementos do conjunto A.

Exemplo 1:

O conjunto dos números naturais menores que 5 pode ser escrito como $A = \{1, 2, 3, 4\}$.

Exemplo 2:

O conjunto das vogais pode ser escrito como $V = \{a, e, i, o, u\}$.

Exemplo 3:

O conjunto de todos os números inteiros não negativos menores do que 1000 pode denotado por $X = \{0, 1, 2, \dots, 999\}$.

A descrição dos elementos de um conjunto pode ser feita por:

ullet extensão - enumerando explicitamente todos os elementos.

Exemplo 4:

```
A = \{1, 2, 3\}, B = \{a, d, g, t\}, C = \{amarelo, azul, castanho\}.
```

• compreensão - especificando uma propriedade que caracteriza todos os elementos.

Exemplo 5:

 $X=\{x\in\mathbb{N}: x<4\}, \text{ conjunto de todos os números naturais menores}$ do que 4.

 $Y=\{n\in\mathbb{N}:n$ é impar e $n\leq 7\}$, conjunto de todos os números impares menores ou iguais a 7.

 recursividade - especificamos o primeiro elemento do conjunto e a regra que permite determinar os restantes.

Exemplo 6:

O conjunto, S, de todos os números positivos pares pode ser descrito como:

(i)
$$2 \in S$$
; (ii) se $x \in S$ então $x + 2 \in S$.

Alguns conjuntos usualmente utilizados em Matemática Discreta são:

- $\mathbb{N} = \{1, 2, \dots\}$, conjunto dos números naturais;
- $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$, conjunto dos números inteiros;
- $\mathbb{Q} = \{p/q : p \in \mathbb{Z}, q \in \mathbb{Z} \text{ e } q \neq 0\}$, conjunto dos números racionais;
- R, conjunto dos números reais;
- C, conjunto dos números complexos.

Exemplo 7:

Podemos também considerar conjuntos cujos elementos são eles próprios conjuntos. O conjunto $\{\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}\}$ contém 5 elementos e cada um deles é um conjunto.

Definição 2:

O conjunto vazio (ou conjunto nulo) é um conjunto que não tem elementos e representa-se por \emptyset ou $\{\}$.

Atenção!

É importante não confundir o conjunto $\{\emptyset\}$ (o conjunto formado pelo conjunto vazio) com o conjunto vazio. Ou seja, $\{\emptyset\} \neq \emptyset$.

Fazendo uma analogia com um computador, o conjunto vazio pode ser visto como uma pasta vazia, e o conjunto que contém apenas o conjunto vazio pode ser entendido como uma pasta com exatamente uma pasta dentro, sendo essa pasta vazia.

Definição 3:

O conjunto universo é formado por todos os elementos em consideração e representa-se por U.

Definição 4:

Dado um conjunto A com exatamente n elementos distintos, em que n é um número inteiro não negativo, dizemos que A é um conjunto finito e que n é o cardinal de A. O cardinal de A representa-se por #A, card(A) ou |A|.

Exemplo 8:

$$\#(\{1,2,3\}) = 3 e \#\emptyset = 0.$$

Definição 5:

Um conjunto é dito infinito se ele não é finito.

Definição 6:

Um conjunto com um único elemento é chamado um conjunto unitário.

Exemplo 9:

O conjunto $\{\emptyset\}$ é um conjunto unitário uma vez que $\#(\{\emptyset\}) = 1$.

Definição 7:

Dois conjuntos A e B dizem-se iguais se todo o elemento de A está em B e todo o elemento de B está em A. Escreve-se A=B.

Exemplo 10:

Sejam $A = \{a, e, i, o, u\}$ e $B = \{e, i, a, o, u\}$. Tem-se que A = B.

Exemplo 11:

Sejam $X = \{x : x \text{ \'e positivo e divide 5}\}\ e\ Y = \{1,5\}$. Temos que X = Y.

Definição 8:

O conjunto A é um subconjunto de B se e somente se todo o elemento de A também for um elemento de B. Escreve-se $A \subseteq B$ e diz-se que A é um subconjunto do conjunto B.

Exemplo 12:

Sejam
$$X = \{1, 2, 4, 9\}$$
 e $Y = \{2, 4\}$.

Temos que todos os elementos de Y são elementos de X. De facto, $2 \in Y$ e $2 \in X$, e do mesmo modo $4 \in Y$ e $4 \in X$.

Então $Y \subseteq X$.

Exemplo 13:

Considerem-se os conjuntos

$$A = \{1, 3, 4, 5, 8, 9\}, B = \{1, 2, 3, 5, 7\}$$
 e $C = \{1, 5\}$. Então,

$$C \subseteq A$$
, $C \subseteq B$, $A \supseteq C$, $B \supseteq C$

Diagrama de Venn

Num Diagrama de Venn faz-se um esboço dos conjuntos, os quais são representados por áreas fechadas no plano. O conjunto universal é representado pelo interior de um retângulo, e os restantes conjuntos são representados por círculos desenhados no interior do retângulo. Representados, por exemplo, da seguinte forma:

$$A \subset B$$

Teorema 1:

Sejam A, B e C conjuntos quaisquer. Tem-se que:

- (i) $\emptyset \subseteq A \subseteq U$;
- (ii) $A \subseteq A$;
- (iii) Se $A \subseteq B$ e $B \subseteq C$ então $A \subseteq C$;
- (iv) A = B se e só se $A \subseteq B$ e $B \subseteq A$.

Observações:

• Quando se pretende enfatizar que A é um subconjunto de B mas $A \neq B$, escreve-se $A \subset B$ e diz-se que A é um subconjunto estrito de B.

- Se $A \subseteq B$ então é possível que A = B.
- Símbolos utilizados entre:

Elemento e Conjunto: \in , \notin

Conjuntos: $\subset, \subseteq, \supset, \supseteq, \nsubseteq$

• Note-se ainda que, um conjunto A pode ser elemento de um conjunto B, nesse caso faz sentido escrever $A \in B$.

Operações com conjuntos

Definição 9:

Sejam A e B dois conjuntos.

A $uni\tilde{a}o$ ou reuni $\tilde{a}o$ dos conjuntos A e B, representada por $A \cup B$, é o conjunto de todos os elementos que pertencem a A ou a B, i. e.,

$$A \cup B = \{x : x \in A \lor x \in B\}.$$

Exemplo 14:

Considere os conjuntos $A = \{1, 2, 4, 9\}$ e $B = \{2, 4, 6\}$.

Tem-se que

$$A \cup B = \{1, 2, 4, 6, 9\}.$$

De um modo geral,

$$\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup \dots \cup A_n = \{x : \exists_{1 \le i \le n}, x \in A_i\}.$$

Definição 10:

Sejam A e B dois conjuntos.

A intersecção dos conjuntos A e B, representada por $A \cap B$, é o conjunto de todos os elementos que pertencem simultaneamente a A e a B, i. e.,

$$A \cap B = \{x : x \in A \land x \in B\}.$$

Exemplo 15:

Considere os conjuntos $A = \{1, 2, 4, 9\}$ e $B = \{2, 4, 6\}$.

Tem-se que

$$A \cap B = \{2, 4\}.$$

De um modo geral,

$$\bigcap_{i=1}^{n} A_i = A_1 \cap A_2 \cap \dots \cap A_n = \{x : \forall_{1 \le i \le n}, x \in A_i\}.$$

Definição 11:

Dois conjuntos são disjuntos se a sua intersecção é um conjunto vazio.

Exemplo 16:

Considere os conjuntos $A = \{2, 4, 6\}$ e $B = \{1, 3, 5\}$.

Tem-se que

$$A \cap B = \{\}.$$

Portanto, os conjuntos A e B são disjuntos.

Exemplo 17:

Sejam $A = \{1, 2, 3\}$ e $B = \{3\}$. Temos que

$$A \cup B = \{1, 2, 3\} \cup \{3\} = \{1, 2, 3\} = A \in A \cap B = \{1, 2, 3\} \cap \{3\} = \{3\} = B.$$

Teorema 2:

Sejam A e B dois conjuntos tais que $A \subseteq B$. Então,

$$A \cup B = B \in A \cap B = A$$
.

Teorema 3:

Sejam A e B dois conjuntos. Então,

$$\#(A \cup B) = \#A + \#B - \#(A \cap B).$$

A generalização deste resultado para uniões de um número arbitrário de conjuntos é chamado o princípio da inclusão-exclusão o qual veremos mais tarde.

Exemplo 18:

Sejam $A = \{1, 2, 3\}$ e $B = \{3, 4\}$. Temos que #A = 3 e #B = 2, $A \cup B = \{1, 2, 3, 4\}$, $\#(A \cup B) = 4$ e $A \cap B = \{3\}$, $\#(A \cap B) = 1$. Portanto, $\#(A \cup B) = \#A + \#B - \#(A \cap B)$.

Definição 12:

Sejam A e B dois conjuntos.

A diferença entre A e B, representada por A-B ou $A\backslash B$, é o conjunto que contém aqueles elementos que estão em A mas não estão em B, i. e.,

$$A - B = \{x : x \in A \land x \notin B\}.$$

A diferença ente A e B é também designada por complemento de B em relação a A.

Exemplo 19:

Considerem-se os conjuntos $A = \{1, 2, 3, 4\}$ e $B = \{2, 4, 6\}$.

Tem-se que,

$$A - B = \{x : x \in A \land x \notin B\} = \{1, 3\} \in B - A = \{x : x \in B \land x \notin A\} = \{6\}.$$

Como se pode verificar $A - B \neq B - A$.

Definição 13:

Sejam $A \in B$ dois conjuntos.

A diferença simétrica entre A e B, representada por $A \oplus B$, é o conjunto de todos os objetos que são membros de exatamente um dos conjuntos A e B, i.e.

$$A \oplus B = (A \cup B) - (A \cap B).$$

Exemplo 20:

Considerem-se os conjuntos $A = \{1, 2, 3, 4\}$ e $B = \{2, 4, 6\}$.

Tem-se que, $A \oplus B = \{1, 3, 6\}.$

Definição 14:

Considere-se U como sendo o conjunto universo. O complementar absoluto, ou simplesmente, complementar do conjunto A, representado por \bar{A} ou A^c ou ainda A', é o conjunto de elementos que pertencem ao conjunto universal U mas que não pertencem ao conjunto A, i. e.,

$$\bar{A} = \{x : x \in U \land x \notin A\}$$

Exemplo 21:

Considere $A=\{a,e,i,o,u\}$ e o conjunto universo formado por todas as letras do alfabeto Português. Então, $\bar{A}=\{b,c,d,f,g,h,j,k,l,m,n,p,q,r,s,t,v,w,y,z\}$.

Definição 15:

Dados dois conjuntos A e B, chama-se produto cartesiano de A e B, e designa-se por $A \times B$, o conjunto de todos os pares ordenados (a,b) com $a \in A$ e $b \in B$, i. e.,

$$A \times B = \{(a, b) : a \in A \land b \in B\}.$$

Exemplo 22:

Considere-se os conjuntos $A = \{1, 2\}$ e $B = \{a, b, c\}$. O produto cartesiano de A por B é

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}.$$

Exemplo 23:

Considere-se o conjunto $A = \{1, 2\}$. O produto cartesiano de A por A é

$$A \times A = A^2 = \{(1,1), (1,2), (2,1), (2,2)\}.$$

Observações: Um subconjunto R do produto cartesiano $A \times B$ é chamado de relação do conjunto A com o conjunto B. Por exemplo, $R = \{(1, a), (1, c), (2, a)\}$ é uma relação do conjunto $A = \{1, 2, 3\}$ com o conjunto $B = \{a, b, c\}$.

Estudaremos estas relações mais a fundo mais adiante!

Definição 16:

O produto cartesiano de $A_1, A_2, ..., A_n$, com $n \in \mathbb{N}$, representado por $A_1 \times A_2 \times \cdots \times A_n = \prod_{i=1}^n A_i$, é o conjunto de n-uplas ordenadas $(a_1, a_2, ..., a_n)$ em que $a_i \in A_i$ para i = 1, 2, ..., n, i.e.,

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n) : a_i \in A_i, i = 1, 2, \dots, n\}$$

Exemplo 24:

Dados os conjuntos $A = \{1, 2\}, B = \{a, b, c\}$ e $C = \{0, 4\}$, o produto cartesiano $A \times B \times C$ é

$$A \times B \times C = \{(1, a, 0), (1, b, 0), (1, c, 0), (2, a, 0), (2, b, 0), (2, c, 0)$$
$$(1, a, 4), (1, b, 4), (1, c, 4), (2, a, 4), (2, b, 4), (2, c, 4)\}$$

Propriedades 1:

• O produto cartesiano não é comutativo.

Exemplo 25:

Vejamos que para $A = \{1, 2\}$ e $B = \{a, b, c\}$, se tem $A \times B \neq B \times A$.

Temos que

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$$
 e
 $B \times A = \{(a, 1), (b, 1), (c, 1), (a, 2), (b, 2), (c, 2)\}$, portanto,

$$A \times B \neq B \times A$$
.

• $\#(A_1 \times A_2 \times \cdots \times A_n) = \#(A_1) \times \#(A_2) \times \dots \#(A_n)$, para $n \in \mathbb{N}$.

Exemplo 26:

Dados os conjuntos $A = \{1, 2\}, B = \{a, b, c\} \in C = \{0, 4\}, \text{ tem-se}$

$$\#(A \times B \times C) = 12 = 2 \times 3 \times 2 = \#(A) \times \#(B) \times \#(C).$$

Definição 17:

Dado um conjunto A, o conjunto das partes de A é o conjunto constituído por todos os subconjuntos de A. O conjuntos das partes representa-se por $\mathcal{P}(A)$.

Exemplo 27:

Seja $A = \{1, 2, 3\}$ (conjunto constituído por 3 elementos), então $\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\} \text{ (8 elementos)}.$

Exemplo 28:

Seja $B = \emptyset$ (0 elementos), então $\mathcal{P}(B) = \{\emptyset\}$ (1 elemento).

Exemplo 29:

Seja $C=\{a,b\}$ (2 elementos), então $\mathcal{P}(C)=\{\emptyset,\{a\},\{b\},\{a,b\}\} \mbox{ (4 elementos)}.$

- Para qualquer conjunto, o conjunto vazio e o próprio conjunto são elementos do conjunto das partes.
- $\#(\mathcal{P}(A)) = 2^{\#(A)}$

Definição 18:

Seja A um conjunto não vazio. Uma partição de A é um subconjunto de $\mathcal{P}(A)$, cujos elementos $A_i, i = 1, \ldots, n$ são tais que:

- (i) A_i são subconjuntos não vazios de A;
- (i) $A_1 \cup A_2 \cup \cdots \cup A_n = A$;
- (ii) A_i são mutuamente disjuntos, i.e., para $i \neq j, A_i \cap A_j = \emptyset$.

A cada A_i chamamos uma célula.

Exemplo 30:

Seja $A = \{a, b, c\}$. Duas partições de A são, por exemplo:

- $\{\{a\}, \{b\}, \{c\}\}, \text{ com } A_1 = \{a\}, A_2 = \{b\} \text{ e } A_3 = \{c\}.$
- $\{\{a,c\},\{b\}\}, \text{ com } A_1 = \{a,c\} \text{ e } A_2 = \{b\}.$

Exemplo 31:

O Diagrama de Venn, em baixo, representa a partição do conjunto rectangular A em cinco células, A_1, A_2, A_3, A_4 e A_5 .

Identidades de Conjuntos Sejam $A, B \in C$ subconjuntos do conjunto universo U. Tem-se

$A \cup \emptyset = A \text{ (P1a)}, A \cap \emptyset = \emptyset \text{ (P1b)}$	Propriedades dos
$A \cap U = A \text{ (P1c)}, A \cup U = U \text{ (P1d)}$	elementos neutros
$A \cup A = A \text{ (P2a)}$	Propriedades
$A \cap A = A \text{ (P2b)}$	idempotentes
$\overline{\overline{A}} = A \text{ (P3a)}, \overline{\emptyset} = U \text{ (P3b)}, \overline{U} = \emptyset \text{ (P3c)}$	Propriedades
$A \cup \overline{A} = U \text{ (P3d)}$	dos
$A \cap \overline{A} = \emptyset $ (P3e)	complementares
$A \cup B = B \cup A \text{ (P4a)}$	Propriedades
$A \cap B = B \cap A \text{ (P4b)}$	comutativas
$(A \cup B) \cup C = A \cup (B \cup C) \text{ (P5a)}$	Propriedades
$(A \cap B) \cap C = A \cap (B \cap C) \text{ (P5b)}$	associativas
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \text{ (P6a)}$	Propriedades
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \text{ (P6b)}$	distributivas
$\overline{A \cup B} = \overline{A} \cap \overline{B} \text{ (P7a)}$	Leis de
$\overline{A \cap B} = \overline{A} \cup \overline{B} \text{ (P7b)}$	De Morgan

Exemplo 32:

Considere os conjuntos $A, B \in C$.

Mostre que $\overline{A \cap (B \cup C)} = (\overline{C} \cap \overline{B}) \cup \overline{A}$.

Resolução:

$$\overline{A\cap (B\cup C)} = \overline{A}\cup \overline{(B\cup C)}, \quad \text{pela segunda lei de De Morgan}$$

$$= \overline{A}\cup (\overline{B}\cap \overline{C}), \quad \text{pela primeira lei de De Morgan}$$

$$= (\overline{B}\cap \overline{C})\cup \overline{A}, \quad \text{pela propriedade comutativa de união}$$

$$= (\overline{C}\cap \overline{B})\cup \overline{A}, \quad \text{pela propriedade comutativa de intersecção}$$

Exercícios: 1 a 16.

2 Funções, sucessões de números inteiros, somatórios e produtórios

2.1 Funções

Definição 19:

Sejam A e B conjuntos não vazios.

Uma função f de A para B, é uma correspondência que a cada elemento de A associa um e um só elemento de B.

Escreve-se $f: A \longrightarrow B$.

Cada elemento $a \in A$ designa-se por *objeto* e ao elemento $b \in B$ correspondente chama-se *imagem* de a por f, e denota-se por b = f(a).

- $A \notin o \ dominio \ de \ f D_f \ ou \ dom(f);$
- B é o conjunto de chegada de f ou contradomínio D'_f , $\operatorname{cdom}(f)$;
- a imagem de f é o conjunto de todas as imagens dos elementos de A f(A) ou $\operatorname{im}(f)$.

Uma função $f:A\longrightarrow B$ pode ser definida em termos de uma relação de A para B, i.e., um subconjunto de $A\times B$. Uma relação de A para B que contém um e um só par ordenado (a,b) para cada elemento $a\in A$, onde f(a)=b, define uma função f de A para B.

Exemplo 33:

Considere $A = \{a, b, c\}$ e $B = \{1, 2, 3, 4\}$, com f(a) = 3, f(b) = 4, f(c) = 1.

Tem-se que f é uma função, $D_f = \{a, b, c\}, D_f' = \{1, 2, 3, 4\}$ e $f(A) = \{1, 3, 4\}.$

Exemplo 34:

Considere $f: \mathbb{Z} \longrightarrow \mathbb{Z}$, com $f(x) = x^2$ (função que faz corresponder a cada número inteiro o seu quadrado).

Tem-se que o domínio é $D_f = \mathbb{Z}$, o contradomínio $D'_f = \mathbb{Z}$ e o conjunto imagem de f, $f(\mathbb{Z}) = \{0, 1, 4, 9, \dots\}$ (conjunto de todos os inteiros que são quadrados perfeitos).

Definição 20:

O gráfico de uma função f de A para B é o conjunto dos pares ordenados $\{(a,b): a \in A \in b \in B\}$.

Exemplo 35:

Considere f como sendo a função que determina os dois últimos bits de uma cadeia de bits de extensão 2 ou maior.

Por exemplo,

$$f(11010) = 10 e f(111) = 11.$$

Então,

o domínio de f é o conjunto de todas as cadeias de bits de extensão igual ou superior a 2, e o contradomínio é $\{00,01,10,11\}$.

Exemplo 36:

O domínio e o contradomínio de funções são geralmente especificadas em linguagem computacionais. Por exemplo, em Java

afirma que o domínio desta função é o conjunto dos números reais, e o seu contradomínio é o conjunto dos números inteiros.

Operações com funções

Sejam f e g duas funções reais de variáveis reais:

	Expressão algébrica	Domínio
f+g	(f+g)(x) = f(x) + g(x)	$D_f \cap D_g$
f-g	(f-g)(x) = f(x) - g(x)	$D_f \cap D_g$

	Expressão algébrica	Domínio
$f \times g$	$(f \times g)(x) = f(x) \times g(x)$	$D_f \cap D_g$
$\frac{f}{g}$	$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, g(x) \neq 0$	$D_f \cap D_g \cap \{x : g(x) \neq 0\}$

Exemplo 37:

Sejam f e g funções de \mathbb{R} em \mathbb{R} , tais que $f(x)=x^3$ e g(x)=1-x.

Então,

$$(f+g)(x) = f(x) + g(x) = x^3 + (1-x) = 1 - x + x^3 \text{ e } D_{f+g} = \mathbb{R};$$

 $(f \times g)(x) = f(x) \times g(x) = x^3 \times (1-x) = x^3 - x^4 \text{ e } D_{f \times g} = \mathbb{R}.$

Algumas funções importantes

Função identidade: A função identidade num conjunto A é a função $f:A\longrightarrow A$ definida por f(x)=x para todo o $x\in A$.

Função constante: é uma função tal que todos os elementos do domínio têm a mesma imagem, ou seja, para todo o $x \in \mathbb{R}$ tem-se $f(x) = k, k \in \mathbb{R}$.

Função característica: A característica de um número real x é o maior número inteiro que é menor ou igual a x e denota-se por [x].

Por exemplo,

$$\left[-\frac{3}{2} \right] = -2, [-0.24] = -1 \text{ e } [2.5] = 2.$$

A função característica faz corresponder a cada número real x a sua característica [x].

Nota: Também se designa esta função por função maior inteiro menor que (floor) e representa-se por |x|.

Função menor inteiro maior que (*ceiling*): determina para o número real x o menor número inteiro maior que ou igual a x e representa-se por $\lceil x \rceil$.

Exemplo 38:

Função maior inteiro menor que (floor):

$$\left[\frac{1}{2}\right] = 0, \left[-\frac{3}{2}\right] = -2, \left[-0.24\right] = -1 \text{ e } [2.5] = 2$$

Função menor inteiro maior que (ceiling):

$$\lceil \frac{1}{2} \rceil = 1, \lceil -\frac{3}{2} \rceil = -1, \lceil -0.24 \rceil = 0 \text{ e } \lceil 2.5 \rceil = 3$$

Função módulo n: Dados um número inteiro x e um inteiro positivo n, existem um inteiro y e um natural r com $0 \le r < n$, tais que x = yn + r, sendo y e r únicos.

Como é bem sabido, y é o quociente da divisão de x por n e r é o resto dessa divisão.

Facilmente se conclui que $y = \left[\frac{x}{n}\right]$.

O resto da divisão de x por n diz-se x módulo n e representa-se por x mod n.

Por exemplo, $8 \mod 3 = 2 e - 8 \mod 3 = 1$.

A função módulo n faz corresponder a cada número inteiro x, o número x mod n.

A igualdade seguinte relaciona a função módulo n com a função característica:

 $x \mod n = x - [x/n]n$.

Definição 21:

Considere as funções $g:A\longrightarrow B$ e $f:B\longrightarrow C$ tal que $g(A)\subseteq B$.

A função composta de f e g, que se representa por $f \circ g$, é definida por

$$(f \circ g)(x) = f(g(x)).$$

- $f \circ g$ lê-se "f após g" ou "f composta com g".
- O seu domínio é

$$D_{f \circ q} = \{ x \in D_q : g(x) \in D_f \}.$$

Exemplo 39:

Considere os conjuntos $A = \{a, b, c\}$, $B = \{a, b\}$ e $C = \{1, 2, 3\}$ e as funções $g: A \longrightarrow B$ e $f: B \longrightarrow C$, tais que,

$$g(a) = b, g(b) = a, g(c) = a e f(a) = 2, f(b) = 3.$$

Tem-se que $D_f = B$, $D_g = A$ e $g(A) = \{a, b\} \subseteq D_f$.

Composição de f com g é definida por

$$(f \circ g)(a) = f(g(a)) = f(b) = 3,$$

$$(f \circ g)(b) = f(g(b)) = f(a) = 2,$$

$$(f \circ g)(c) = f(g(c)) = f(a) = 2.$$

e $D_{f \circ g} = \{x \in D_g : g(x) \in D_f\} = \{a, b, c\}.$

No entanto, a composição de g com f ${\bf n\tilde{a}o}$ está definida uma vez que

$$f(a) = 2,$$

$$f(b) = 3,$$

donde $f(B) = \{2, 3\} \nsubseteq D_q = \{a, b, c\}.$

Exemplo 40:

Considere as funções

$$f: \mathbb{R}_0^+ \longrightarrow \mathbb{R} \qquad g: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \sqrt{x} - 1 \quad e \qquad x \longmapsto |x| - 2.$$

 \bullet g após f

$$f(\mathbb{R}_0^+) = [-1, +\infty] \subseteq \mathbb{R}(=D_q)$$

$$D_{g \circ f} = \mathbb{R}_0^+ \ \mathrm{e} \ (g \circ f)(x) = g(f(x)) = g(\sqrt{x} - 1) = |\sqrt{x} - 1| - 2.$$

 \bullet f após g

$$g(\mathbb{R}) = [-2, +\infty[\not\subseteq \mathbb{R}_0^+ (=D_f).$$
 Logo, f após g não está definida.

Nota: Em geral $f \circ g \neq g \circ f$, ou seja, a propriedade comutativa não se aplica à composição de funções.

 \bullet g após g

$$g(\mathbb{R}) = [-2, +\infty[\subseteq \mathbb{R}(=D_g)]$$

$$D_{g \circ g} = \mathbb{R} \ e \ (g \circ g)(x) = g(g(x)) = g(|x| - 2) = ||x| - 2| - 2.$$

Uma função $f:A\longrightarrow B$ diz-se:

• injetiva (um-para-um), se quaisquer dois elementos distintos do domínio têm imagens diferentes, i.e., para todos $x, x' \in A$ se tem f(x) = f(x') então x = x';

- sobrejetiva, se todo o elemento $y \in B$ é imagem de algum elemento do domínio $x \in A$, i.e., $\forall y \in B, \exists x \in A: f(x) = y;$
- bijetiva (ou uma correspondência biúnivoca), se for injectiva e sobrejectiva,i.e., $\forall y \in B, \exists^1 x \in A: f(x) = y.$

Observação:

- Uma função é injetiva se não existem objetos diferentes com a mesma imagem, i.e., $f(x) \neq f(x')$ sempre que $x \neq x'$.
- Uma função é sobrejetiva se o seu conjunto de chegada coincide com a sua imagem.

Exemplo 41:

Exemplo 42:

não é injetiva (por exemplo, $f_1(-1) = 1 = f(1)$), não é sobrejetiva (por exemplo y = -2 não é imagem de nenhum objeto) não é bijetiva pois não é injetiva(ou sobrejetiva);

Exemplo 43:

 $f_2:\mathbb{R}^+_0\longrightarrow\mathbb{R}, f_2(x)=x^2$ - injetiva, não é sobrejetiva, não é bijetiva;

Exemplo 44:

 $f_3:\mathbb{R}\longrightarrow\mathbb{R}^+_0, f_3(x)=x^2$ - não é injetiva, sobrejetiva, não é bijetiva;

Exemplo 45:

 $f_4:\mathbb{R}^+_0\longrightarrow\mathbb{R}^+_0, f_4(x)=x^2$ - injetiva, sobrejetiva, bijetiva.

Nota: f_2, f_3, f_4 são restrições de $f_1!$

Exemplo 46:

 $f_5:\mathbb{R}\longrightarrow\mathbb{R}, f_5(x)=\cos(x)$ - não é injectiva, não é sobrejectiva, não é bijetiva;

Exemplo 47:

 $f_6:[-\pi/2,\pi/2]\longrightarrow [0,1], f_6(x)=\cos(x)$ - não é injectiva, é sobrejectiva, não é bijetiva;

Nota: f_6 é uma restrição de f_5 !

Definição 22:

Seja f uma função bijetiva do conjunto A para o conjunto B. A função inversa de f, representada por f^{-1} , é a função que a cada elemento $b \in B$, o único elemento $a \in A$, tal que f(a) = b. Assim, $f^{-1}(b) = a$ quando f(a) = b.

Atenção!

- Não confundir f^{-1} com 1/f!
- \bullet Se uma função f não é bijetiva, não podemos definir inversa de f, ou seja, f não é invertível.

Exemplo 48:

Considere a função f de $\{a,b,c\}$ para $\{1,2,3\},$ tal que

$$f(a) = 2, f(b) = 3 e f(c) = 1.$$

Esta função é invertível pois é bijetiva.

Tem-se
$$f^{-1}(1) = c$$
, $f^{-1}(2) = a$ e $f^{-1}(3) = b$.

Exemplo 49:

Considere a função $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = x^2$.

Como vimos esta função não é bijetiva e consequentemente não é invertível. No entanto, restringindo o domínio a \mathbb{R}_0^+ , ou seja, $f_1: \mathbb{R}_0^+ \longrightarrow \mathbb{R}_0^+$, $f(x) = x^2$, obtém-se uma função invertível. De facto,

 $f \in injetiva pois, dados x, x' \in \mathbb{R}_0^+,$

$$f_1(x) = f_1(x') \Rightarrow x^2 = x'^2 \Leftrightarrow x^2 - x'^2 = (x - x')(x + x') = 0 \Leftrightarrow x = x' \text{ ou } x = -x'.$$
 Visto que $x, x' \in \mathbb{R}_0^+$, temos que $x = x'$.

f é sobrejetiva pois, cada número real não negativo admite raíz quadrada.

Visto que f é injetiva e sobrejetiva então é bijetiva e, portanto, admite inversa.

A sua inversa é $f^{-1}(x) = \sqrt{x}$ e $D_{f^{-1}} = \mathbb{R}_0^+$.

- Uma função f é invertível se e só se f é bijetiva.
- Seja $f:A\longrightarrow B$ uma função invertível. Então, $f^{-1}\circ f=id_A$ e $f\circ f^{-1}=id_B$.
- $(f^{-1})^{-1} = f$.

Exercícios: 17 a 25.

2.2 Sucessões de números inteiros

Definição 23:

Uma sucessão (ou sequência) é uma função de um subconjunto dos números inteiros, I, (geralmente, ou do conjunto $\mathbb{N}_0 = \{0, 1, 2, ...\}$ ou do conjunto $\mathbb{N} = \{1, 2, ...\}$) para um conjunto $S \subseteq \mathbb{R}$.

Usaremos a notação a_n para denotar a imagem do número inteiro n.

Chamamos a_n de termo da sucessão e denotaremos a sucessão por $\{a_n\}$.

Exemplo 50:

Considere-se a ordem de chegada da prova de 1.500 metros Masculinos do Campeonato Nacional Esperanças - Sub-23 em Pista Coberta do ano de 2010:

1	Bruno Albuquerque
2	Paulo Lopes
3	Luís Mendes
4	José Costa
5	Ruben Felizardo
6	Jorge Miranda
7	Bruno Rodrigues
8	Ricardo Fernandes

A tabela representa uma sucessão onde os elementos do conjunto $I = \{1, 2, 3, \dots, 8\} \subseteq \mathbb{Z}$ representam a ordem de chegada e os elementos do conjunto S são os nomes dos atletas.

Note que a ordem é fundamental para definir a sucessão!

Exemplo 51:

Considerem-se as sucessões e os respetivos primeiros termos:

$$a_n = \frac{1}{n}, n \in \mathbb{N}$$

$$a_1 = 1,$$

$$a_2 = \frac{1}{2},$$

$$a_3 = \frac{1}{3},$$

$$b_n = n^2 - n, n \in \mathbb{N}_0$$
 $b_0 = 0,$ $b_1 = 0,$ $b_2 = 2,$ $b_3 = 6,$

$$c_n = n!, n \in \mathbb{N}_0$$
 $c_0 = 0! = 1,$ $c_1 = 1! = 1,$ $c_2 = 2! = 2 \times 1 = 2,$ $c_3 = 3! = 3 \times 2 \times 1 = 6,$ $c_4 = 4! = 4 \times 3 \times 2 \times 1 = 24$

Sucessões de números inteiros especiais

Definição 24:

Uma progressão geométrica é uma sucessão da forma

$$a, ar, ar^2, ar^3, \dots, ar^n, \dots$$

em que o primeiro termo a e a razão r são números reais.

O termo geral de uma progressão geométrica é $a_n = a r^n$, $n \in \mathbb{N}_0$.

Nota: Uma progressão geométrica é o análogo discreto de uma função exponencial $f(x) = ar^x$!

Exemplo 52:

A sucessão $\{c_n\}$, definida por $c_n=2\times 5^n,\ n\in\mathbb{N}_0$ é uma progressão geométrica uma vez que

$$\frac{c_{n+1}}{c_n} = \frac{2 \times 5^{n+1}}{2 \times 5^n} = \frac{2 \times 5^n \times 5}{2 \times 5^n} = 5, n \in \mathbb{N}_0.$$

Os termos desta sucessão são:

$$c_0 = 2, c_1 = 10, c_2 = 50, c_3 = 250, \dots$$

sucessões de números inteiros especiais

Definição 25:

Uma progressão aritmética é uma sucessão da forma

$$a, a+r, a+2r, a+3r, \ldots, a+nr, \ldots$$

em que o primeiro termo a e a razão r são números reais.

O termo geral de uma progressão aritmética é $a_n = a + n r, n \in \mathbb{N}_0$.

Nota: Uma progressão aritmética é o análogo discreto de uma função linear f(x) = a + rx!

Exemplo 53:

A sucessão $\{d_n\}$, definida por $d_n=-2+3n,\,n\in\mathbb{N}_0$ é uma progressão aritmética uma vez que

$$d_{n+1} - d_n = (-2 + 3(n+1)) - (-2 + 3n) = 3, n \in \mathbb{N}_0.$$

Os termos desta sucessão são:

$$d_0 = -2, d_1 = 1, d_2 = 4, d_3 = 7, \dots$$

Observação: As sucessões na forma $a_0, a_1, a_2, \ldots, a_n$ são geralmente usadas em ciências da computação e são também designadas de *cadeias*. Esta cadeia é também indicada por $a_0 a_1 a_2 \ldots a_n$.

A extensão da cadeia S é o número de termos da cadeia.

A cadeia vazia, λ , é a cadeia que não tem termos e portanto tem extensão zero.

Exemplo 54:

A cadeia matematica tem extensão 10.

Problema:

Encontrar a regra ou fórmula que define uma sucessão a partir dos termos iniciais.

Exemplo 55:

Considerem-se os seguintes termos iniciais de uma dada sucessão.

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$$

Temos que

$$a_n = \frac{1}{n}, n \in \mathbb{N}$$
 ou $a_n = \frac{1}{n+1}, n \in \mathbb{N}_0.$

Algumas sucessões usuais

n -ésimo termo $n \in \mathbb{N}$	10 primeiros termos
\overline{n}	1, 2, 3, 4, 5, 6, 7, 8, 9, 10
$(-1)^n$	-1, 1, -1, 1, -1, 1, -1, 1
2n	2, 4, 6, 8, 10, 12, 14, 16, 18, 20
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	1, 3, 5, 7, 9, 11, 13, 15, 17, 19
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	3, 5, 7, 9, 11, 13, 15, 17, 19, 21
n^2	1, 4, 9, 16, 25, 36, 49, 64, 81, 100
2^n	2, 4, 8, 16, 32, 64, 128, 256, 512, 1024
3^n	3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049
n!	1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800

2.3 Somatórios e produtórios

Para representar a soma dos termos de uma sucessão $a_j, a_{j+1}, a_{j+2}, \dots, a_k$ utiliza-se:

$$\sum_{i=j}^{k} a_i,$$

ou seja,

$$a_j + a_{j+1} + \dots a_k = \sum_{i=j}^k a_i.$$

Exemplo 56:

Para a sucessão definida por $a_n=n^3, n\in\mathbb{N},$ tem-se

$$\sum_{i=1}^{6} a_i = \sum_{i=1}^{6} i^3 = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 6^3.$$

Exemplo 57:

Para a sucessão definida por $b_n = \sqrt{n}, n \in \mathbb{N}$, tem-se

$$\sum_{i=4}^{7} b_i = \sum_{i=4}^{7} \sqrt{i} = \sqrt{4} + \sqrt{5} + \sqrt{6} + \sqrt{7}.$$

- Também se usam as notações $\sum_{i=j}^k a_i$, $\sum_{j \leq i \leq k} a_i$ e $\sum_{i \in C} a_i$, onde $C \subseteq \mathbb{N}_0$.
- Lê-se somatório de termo geral a_i , com índice i a variar de j até k.
- A escolha da letra i como variável é arbitrária, ou seja, podem-se também utilizar por exemplo as letras j e k. Ou seja, para $n \leq m$,

$$\sum_{i=n}^{m} a_i = \sum_{j=n}^{m} a_j = \sum_{k=n}^{m} a_k.$$

• A letra maiúscula grega sigma, Σ, indica o somatório.

Exemplo 58:

Calcule o valor de (a) $\sum_{i=2}^{5} (-1)^i$ e (b) $\sum_{i=2}^{4} (-1)^i$.

Solução:

(a)
$$\sum_{i=2}^{5} (-1)^i = (-1)^2 + (-1)^3 + (-1)^4 + (-1)^5 = 1 + (-1) + 1 + (-1) = 0;$$

(b)
$$\sum_{i=2}^{4} (-1)^i = (-1)^2 + (-1)^3 + (-1)^4 = 1 + (-1) + 1 = 1$$
.

Propriedades dos Somatórios

(P1)

$$\sum_{i=j}^{k} (a_i + b_i) = \sum_{i=j}^{k} a_i + \sum_{i=j}^{k} b_i$$

Exemplo 59:

Para
$$a_n = n^2$$
 e $b_n = 3n$, com $n \in \mathbb{N}$, tem-se
$$\sum_{i=3}^{5} (i^2 + 3i) = (3^2 + 3 \times 3) + (4^2 + 3 \times 4) + (5^2 + 3 \times 5)$$
$$= (3^2 + 4^2 + 5^2) + (3 \times 3 + 3 \times 4 + 3 \times 5) = \sum_{i=3}^{5} i^2 + \sum_{i=3}^{5} 3i.$$

(P2) Para $\alpha \in \mathbb{R}$, tem-se

$$\sum_{i=j}^{k} \alpha a_i = \alpha \sum_{i=j}^{k} a_i$$

Exemplo 60:

Para $\alpha = 2$ e $a_n = n^3$, com $n \in \mathbb{N}$, tem-se

$$\sum_{i=1}^{4} (2 \times i^3) = 2 \times 1^3 + 2 \times 2^3 + 2 \times 3^3 + 2 \times 4^3$$
$$= 2(1^3 + 2^3 + 3^3 + 4^3) = 2 \sum_{i=1}^{4} i^3.$$

(P3) Para j < m < k, tem-se

$$\sum_{i=j}^{k} a_i = \sum_{i=j}^{m} a_i + \sum_{i=m+1}^{k} a_i$$

Exemplo 61:

Para $a_n = n^3$, com $n \in \mathbb{N}$, tem-se

$$\sum_{i=1}^{7} i^3 = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 6^3 + 7^3$$
 (pela propriedade associativa da adição)
$$= (1^3 + 2^3 + 3^3) + (4^3 + 5^3 + 6^3 + 7^3) = \sum_{i=1}^{3} i^3 + \sum_{i=4}^{7} i^3$$

$$\sum_{i=1}^{k+1} i^3 = 1^3 + 2^3 + 3^3 + 4^3 + \dots + k^3 + (k+1)^3$$
 (pela propriedade associativa da adição)
$$= (1^3 + 2^3 + 3^3 + 4^3 + \dots + k^3) + (k+1)^3 = \sum_{i=1}^{k} i^3 + \sum_{i=k+1}^{k+1} i^3$$

Exemplo 62:

Mudança de índice:

(a)
$$\sum_{j=1}^{5} 2^j = \sum_{k=0}^{4} 2^{k+1};$$
 (b) $\sum_{j=2}^{7} j^4 = \sum_{k=0}^{5} (k+2)^4.$

Exemplo 63:

Somatórios duplos:

$$\sum_{i=1}^{5} \sum_{j=1}^{3} (ij) = \sum_{i=1}^{5} (i+2i+3i) = \sum_{i=1}^{5} 6i = 6 \times 1 + 6 \times 2 + 6 \times 3 + 6 \times 4 + 6 \times 5 = 90.$$

Exemplo 64:

$$\sum_{i \in \{2,4,6\}} i = 2+4+6 = 12;$$

$$\sum_{i \in \{1,3,5\}} (i+2) = (1+2) + (3+2) + (5+2) = 15.$$

Teorema 4:

Sejam a_0 e r dois números reais e $r \neq 0$, então a soma dos n+1 primeiros termos de uma progressão aritmética $\{a_n\}$, de termo geral $a_n=a_0+nr,\,n\in\mathbb{N}_0,$ é dada por:

$$S_{n+1} = \sum_{i=0}^{n} a_i = \sum_{i=0}^{n} (a_0 + i r) = (n+1) \times \frac{a_0 + a_n}{2}.$$

Exemplo 65:

Considere-se a progressão aritmética definida por $c_n = -2 + 3n, n \in \mathbb{N}_0$.

Tem-se que o primeiro termo é $c_0 = -2$ e a razão é r = 3.

Assim, a soma dos 10 primeiros termos é:

$$S_{10} = \sum_{i=0}^{9} (-2+3i)$$

$$= 10 \times \frac{-2 + (-2+3 \times 9)}{2}$$

$$= \frac{207}{2}.$$

Teorema 5:

Sejam a_0 e r dois números reais e $r \neq 0$, então a soma dos n+1 primeiros termos de uma progressão geométrica $\{a_n\}$, de termo geral $a_n = a_0 r^n$, $n \in \mathbb{N}_0$, é dada por:

$$S_{n+1} = \sum_{i=0}^{n} a_i = \sum_{i=0}^{n} a_0 r^i = \begin{cases} a_0 \times \frac{1 - r^{n+1}}{1 - r} & \text{se} \quad r \neq 1\\ (n+1) a_0 & \text{se} \quad r = 1 \end{cases}.$$

Exemplo 66:

Para a progressão geométrica definida por $d_n = 2 \times 5^n$, $n \in \mathbb{N}_0$.

Tem-se que o primeiro termo é $d_0 = 2$ e a razão é r = 5.

Assim, a soma dos 4 primeiros termos é:

$$S_4 = \sum_{i=0}^{3} (2 \times 5^i)$$
$$= 2 \times \frac{1 - 5^4}{1 - 5}$$
$$= 312.$$

Alguns Somatórios Usuais

$$\frac{\sum_{i=0}^{n} ar^{i}, r \neq 0 \text{ (PG)} \quad a \times \frac{1 - r^{n+1}}{1 - r}, r \neq 1}{\sum_{i=1}^{n} i \text{ (PA)} \quad \frac{n(n+1)}{2}}$$

$$\frac{\sum_{i=1}^{n} i^{2}}{\sum_{i=1}^{n} i^{3}} \quad \frac{n(n+1)(2n+1)}{6}$$

$$\frac{\sum_{i=1}^{n} i^{3}}{\sum_{i=0}^{n} x^{i}, |x| < 1} \quad \frac{1}{1 - x}$$

$$\frac{\sum_{i=1}^{\infty} ix^{i-1}, |x| < 1}{\sum_{i=1}^{\infty} ix^{i-1}, |x| < 1} \quad \frac{1}{(1 - x)^{2}}$$

Produtórios

Para representar o produto dos termos de uma sucessão $a_j, a_{j+1}, a_{j+2}, \dots, a_k$ utiliza-se:

$$\prod_{i=j}^{k} a_i = a_j \times a_{j+1} \times \dots \times a_k.$$

Lê-se produtório de termo geral a_i , com índice i a variar de j até k.

Exemplo 67:

Para $a_n = n^3, n \in \mathbb{N}$, tem-se

$$\prod_{i=2}^{6} a_i = \prod_{i=2}^{6} i^3 = 2^3 \times 3^3 \times 4^3 \times 5^3 \times 6^3.$$

Exemplo 68:

Para $b_n = \sqrt{n}, n \in \mathbb{N}$, tem-se

$$\prod_{i=4}^{7} b_i = \prod_{i=4}^{7} \sqrt{i} = \sqrt{4} \times \sqrt{5} \times \sqrt{6} \times \sqrt{7}.$$

Propriedades dos Produtórios

(P1)
$$\prod_{i=j}^{k} (a_i \times b_i) = \prod_{i=j}^{k} a_i \times \prod_{i=j}^{k} b_i$$

Exemplo 69:

Para $a_n = n^2$ e $b_n = 3n$, com $n \in \mathbb{N}$, tem-se

$$\prod_{i=3}^{5} (i^2 \times 3i) = (3^2 \times 3 \times 3) \times (4^2 \times 3 \times 4) \times (5^2 \times 3 \times 5)$$

$$= (3^2 \times 4^2 \times 5^2) \times (3 \times 3 \times 3 \times 4 \times 3 \times 5) = \prod_{i=3}^{5} i^2 \times \prod_{i=3}^{5} 3i$$

(P2) Para $\alpha \in \mathbb{R}$, tem-se

$$\prod_{i=j}^{k} \alpha a_i = \alpha^{k-j+1} \prod_{i=j}^{k} a_i$$

Exemplo 70:

Para $\alpha = 2$ e $a_n = n^3$, com $n \in \mathbb{N}$, tem-se

$$\prod_{i=1}^{3} (2 \times i^{3}) = 2 \times 1^{3} \times 2 \times 2^{3} \times 2 \times 3^{3} = 2^{3-1+1} (1^{3} \times 2^{3} \times 3^{3}) = 2^{3} \prod_{i=1}^{3} i^{3}$$

(P3) Para j < m < k, tem-se

$$\prod_{i=j}^{k} a_i = \prod_{i=j}^{m} a_i \times \prod_{i=m+1}^{k} a_i$$

Exemplo 71:

Para $a_n = n^3$, com $n \in \mathbb{N}$, tem-se

$$\prod_{i=1}^{7} i^3 = 1^3 \times 2^3 \times 3^3 \times 4^3 \times 5^3 \times 6^3 \times 7^3$$
(pela propriedade associativa dos números reais)
$$= (1^3 \times 2^3 \times 3^3) \times (4^3 \times 5^3 \times 6^3 \times 7^3) = \prod_{i=1}^{3} i^3 \times \prod_{i=4}^{7} i^3$$

$$\begin{split} \prod_{i=1}^{k+1} i^3 &=& 1^3 \times 2^3 \times 3^3 \times 4^3 \times \dots \times k^3 \times (k+1)^3 \\ & & \text{(pela propriedade associativa dos números reais)} \\ &=& (1^3 \times 2^3 \times 3^3 \times 4^3 \times \dots \times k^3) \times (k+1)^3 = \prod_{i=1}^k i^3 \times \prod_{i=k+1}^{k+1} i^3 \end{split}$$

Cardinalidade

Definição 26:

Os conjuntos A e B têm a mesma cardinalidade se e somente se existir uma bijeção de A para B.

Definição 27:

Um conjunto diz-se enumerável se tem a mesma cardinalidade de \mathbb{N} .

Um conjunto finito ou enumerável é dito contável.

Um conjunto diz-se não enumerável (ou não contável) se não é enumerável.

Se o conjunto infinito S é enumerável escreve-se $\#S = \aleph_0$ (\aleph é alef, a primeira letra do alfabeto hebraico) e diz-se que S tem cardinalidade "alef zero".

Exemplo 72:

Mostre que conjunto dos números inteiros positivos ímpares é enumerável.

Seja $I = \{1, 3, 5, 7, \dots\}$ o conjunto dos números inteiros positivos ímpares.

A função $f: \mathbb{N} \longrightarrow I$ definida por f(n) = 2n - 1 é uma bijeção de \mathbb{N} em I.

Portanto, I é enumerável, ou seja, $\#I = \aleph_0$.

Teorema 6:

A união contável de conjuntos contáveis é contáveis, isto é, se os conjuntos A_1, A_2, \ldots são contáveis então

$$A_1 \cup A_2 \cup A_3 \cup \dots$$

também é um conjunto contável.

Teorema 7:

O conjunto [0,1] é não contável.

Exemplo 73:

Mostre que o conjunto dos números reais é não contável.

De facto, o conjunto dos números reais é infinito. Por outro lado, $[0,1] \subset \mathbb{R}$. Visto que [0,1] é não contável, então \mathbb{R} é não contável.

Teorema 8:

(Cantor)

Para qualquer conjunto A temos que

$$\#A < \#\mathcal{P}(A)$$
.

Exercícios: 26 a 37.

3 Relações

São enumeras as situações e contextos em que são estabelecidas relações entre conjuntos. Por exemplo, relação entre uma empresa e os seus números de telefone, um funcionário e o seu salário, etc. Para além disso, relações entre um programa e as variáveis que este usa e entre uma linguagem de programação e uma declaração válida nessa linguagem, são frequentes em Ciências da Computação.

Em Matemática a relação entre conjuntos é um subconjunto do produto Cartesiano desses conjuntos.

Definição 28:

Sejam A_1, A_2, \ldots, A_n conjuntos e $A_1 \times A_2 \times \cdots \times A_n$ o seu produto cartesiano.

Uma relação R sobre $A_1 \times A_2 \times \cdots \times A_n$ consiste num conjunto de n-uplos (a_1, a_2, \dots, a_n) com $a_i \in A_i, i = 1, 2, \dots, n$, ou seja, é dada por um subconjunto de $A_1 \times A_2 \times \cdots \times A_n$. Como R é uma relação constituída por n-uplos, R diz-se uma relação n-ária.

Exemplo 74:

Uma empresa vende determinados produtos que vamos designar por x, y, z e w. Os clientes são considerados do tipo a, b ou c de acordo com a quantidade de material comprada pelo cliente no último ano civil. Relativamente a um certo dia a empresa registou as vendas de acordo com a tabela seguinte:

Cliente	Tipo	Produto	Preço
J.Costa	a	x	50
A.Santos	c	y	15
C.Cardoso	b	y	15
H.Barros	a	w	30

Considerando $C = \{\text{clientes}\}, T = \{a, b, c\}, P = \{\text{produtos}\}\ e\ D = \{\text{preços dos produtos}\},$ associada a esta tabela temos uma relação quaternária constituída pelos seguintes elementos de $C \times T \times P \times D$:

(J.Costa, a, x, 50), (A.Santos, c, y, 15), (C.Cardoso, b, y, 15), (H.Barros, a, w, 30).

3.1 Relações binárias

Definição 29:

Sejam $A \in B$ dois conjuntos.

Uma relação binária R de A para B é constituída por um conjunto de pares (x,y) com $x \in A$ e $y \in B$.

Notação:

Se $(x, y) \in R$, dizemos que $x \notin R$ -relacionado com y.

Escrevemos $R:A\longrightarrow B$ para exprimir que R é uma relação de A para B.

Dada uma relação R é usual escrever-se:

- xRy para significar que $(x, y) \in R$;
- xRy para significar que $(x,y) \notin R$.

Exemplo 75:

Considerem-se os conjuntos $A = \{1, 2\}$ e $B = \{a, b, c\}$. Uma relação binária de A para B poderá ser, por exemplo, o conjunto

$$R = \{(1, a), (2, b), (2, c)\}.$$

Tem-se,

$$1Ra, 2Rb, 2Rc, \text{ mas } 1Rb, 1Rc, 2Ra.$$

Exemplo 76:

Considere-se o conjunto $H = \{1, 2, 3, 4\}$, e defina-se em H a relação binária R estritamente menor que. Portanto,

$$aRb$$
 se e só se $a < b$.

Então,

$$R = \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)\}.$$

Observações:

- Uma relação $R:A\longrightarrow B$ pode ser vista como um subconjunto de $A\times B$ e podemos expressar relações usando a notação dos conjuntos.
- $A \times B$ é uma relação a qual designamos por relação universal de A para B.
- A relação vazia não contém nenhum par.

Definição 30:

Considerem-se os conjuntos A e B e seja $R \subseteq A \times B$ uma relação binária de A para B.

Um elemento $a \in A$ pertencerá ao domínio da relação binária R, se existir um elemento $b \in B$ tal que $(a,b) \in R$. Assim, o **domínio da relação binária** R é,

$$dom(R) = \{ a \in A : \exists b \in B \in (a, b) \in R \}.$$

Um elemento $b \in B$ pertencerá ao contradomínio da relação binária R, se existir um elemento $a \in A$ tal que $(a, b) \in R$. Assim, o **contradomínio da relação binária** R é,

$$cdom(R) = \{b \in B : \exists a \in A \in (a, b) \in R\}.$$

Exemplo 77:

Considerem-se os conjuntos $A = \{a, b, c\}$ e $B = \{1, 2, 3, 4\}$ e a relação binária, de A para B,

$$R = \{(a, 2), (b, 3), (a, 3), (a, 4), (b, 4)\}.$$

O domínio de R é o conjunto $dom(R) = \{a, b\}.$

O contradomínio de R é o conjunto $cdom(R) = \{2, 3, 4\}.$

3.2 Representação de relações binárias

Matrizes booleana

As relações finitas podem ser representadas por $matrizes\ booleanas$, i.e., matrizes cujas entradas são constituídas por 0's e 1's.

Com efeito, sejam $A = \{a_1, a_2, ..., a_m\}$ e $B = \{b_1, b_2, ..., b_n\}$ e consideremos A e B ordenados segundo a ordem natural dos índices dos seus elementos.

A matriz $m \times n, \, M_R = (a^R_{ij})_{i=1,\dots,m;j=1,\dots,n}$ de uma relação $R:A \longrightarrow B$ é definida por

$$a_{ij}^R = \begin{cases} 0 \text{ se } a_i R b_j \\ 1 \text{ se } a_i R b_j \end{cases}.$$

Exemplo 78:

Sejam $A = \{1, 3\}$ e $B = \{2, 4, 6\}$.

Considerem-se os elementos de A e B ordenados pela ordem natural.

Seja R a relação "menor do que". Tem-se

$$R = \{(1,2), (1,4), (1,6), (3,4), (3,6)\}.$$

A matriz desta relação é:

$$\left[\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & 1 \end{array}\right].$$

Exercício:

Determine a relação binária R de $A = \{1, 3\}$ para $B = \{2, 4, 6\}$, definida pela matriz:

$$\left[\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 0 & 1 \end{array}\right].$$

Grafo orientado

As relações podem também ser representadas por um grafo orientado (ou digrafo)¹.

Considere-se $A = \{a_1, a_2, ..., a_m\}$ e $B = \{b_1, b_2, ..., b_n\}$.

A cada elemento $a \in A$ e a cada elemento $b \in B$ corresponde um **vértice** (nodo) do grafo com a etiqueta a.

A cada par $(a, b) \in R$ corresponde um **ramo** unindo cada vértice $a \in A$ a um vértice $b \in B$.

O ramo correspondendo a um par ordenado $(a, a) \in R$ diz-se um lacete.

Exemplo 79:

Seja $A = \{a, b, c\}$ e considere-se a relação binária

$$R = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, a)\}.$$

O grafo orientado desta relação é:

Exercício:

Determine a relação dada pelo grafo orientado:

Exemplo 80:

No conjunto $A = \{1, 2, 3, 4, 5\}$, a relação "x é maior que y" determina o conjunto

$$R = \{(5,4), (5,3), (5,2), (5,1), (4,3), (4,2), (4,1), (3,2), (3,1), (2,1)\}.$$

Exercício:

Represente a relação anterior por uma matriz booleana e por um grafo orientado.

Exemplo 81:

Para os conjuntos $A = \{1, 2, 3\}$ e $B = \{a, e, i, o, u\}$,

$$R = \{(1, a), (2, e), (3, i), (1, o), (2, u)\}$$

é uma relação de A em B.

 $^{^{1}\}mathrm{Teoria}$ de Grafos será abordada em mais pormenor mais adiante nesta UC

Exercício:

Represente a relação anterior por uma matriz booleana.

Observações:

• Se A é um conjunto e R e uma relação de A para A, dizemos que R é uma relação em A ou sobre A. Esta relação designa-se por relação identidade e denota-se por $I_A = \{(a, a) : a \in A\}$.

• Se $R:A\longrightarrow B$, então a relação inversa $R^{-1}:B\longrightarrow A$ é constituída por todos os pares (b,a) tais que $(a,b)\in R$.

Tem-se assim:

- $bR^{-1}a$ sse aRb;
- $(R^{-1})^{-1} = R$.

Exemplo 82:

A relação inversa da relação $R=\{(1,x),(2,z),(3,y)\}$ de $A=\{1,2,3\}$ para $B=\{x,y,z\}$ é:

$$R^{-1} = \{(x,1), (z,2), (y,3)\}.$$

• Todas as operações efetuadas sobre conjuntos podem ser também efectuadas sobre relações. Assim, dadas duas relações R e S, com os mesmos conjuntos de partida e os mesmos conjuntos de chegada, tem-se:

$$x(R \cap S)y \Leftrightarrow xRy \wedge xSy$$

 $x(R \cup S)y \Leftrightarrow xRy \vee xSy$
 $x(R - S)y \Leftrightarrow xRy \wedge xSy$
 $x\overline{R}y \Leftrightarrow xRy$

Definição 31:

Sejam $R: X \longrightarrow Y$ e $S: Y \longrightarrow Z$ duas relações.

A composição de R e S, denotada por $S \circ R$, tem X como conjunto de partida, Z como conjunto de chegada e é constituída por todos os pares (x,y) para os quais existe algum objeto $y \in Y$ tal que $(x,y) \in R$ e $(y,z) \in S$. Ou seja,

 $x(S \circ R)z$ se existe algum $y \in Y$ para o qual xRy e ySz.

Isto é,

$$S \circ R = \{(x, z) : \text{ se existe } y \in Y \text{ para o qual } (x, y) \in R \text{ e } (y, z) \in S\}.$$

Exemplo 83:

Considere as relações $R = \{(1,3), (2,2), (3,1)\}\ e\ S = \{(1,2), (2,1), (3,1)\}.$

Tem-se que,

$$1(S \circ R)1$$
, pois $1R3 = 3S1$
 $2(S \circ R)1$, pois $2R2 = 2S1$
 $3(S \circ R)2$, pois $3R1 = 1S2$.

Portanto,

$$S \circ R = \{(1,1), (2,1), (3,2)\}.$$

- A composição de relações é associativa, i.e., $(R \circ S) \circ T = R \circ (S \circ T)$.
- Seja R uma relação sobre um conjunto A.

Geralmente abreviamos $R \circ R$ por R^2 , $R \circ R \circ R$ por R^3 , etc.

3.3 Propriedades das relações binárias

Definição 32:

Uma relação binária R num conjunto A (ou seja, $R \subseteq A \times A$) diz-se:

Reflexiva: Se para todo o $x \in A$, $(x, x) \in R$.

Irreflexiva: Se para todo o $x \in A$, $(x, x) \notin R$.

Simétrica: Se para todo o $x, y \in A$, $(x, y) \in R \Rightarrow (y, x) \in R$.

Anti-Simétrica: Se para todo $x, y \in A : ((x, y) \in R \text{ e } (y, x) \in R) \Rightarrow x = y.$

Transitiva: Se para todo o $x, y, z \in A$, $((x, y) \in R \in (y, z) \in R) \Rightarrow (x, z) \in R$.

Observação:

Mostrar que uma dada relação R num conjunto A satisfaz alguma das propriedades anteriores implica mostrar a propriedade em causa é válida para todos os elementos de R.

Por outro lado, para mostrar que R não satisfaz uma dada propriedade basta arranjar um contra-exemplo.

Exercício:

Para o conjunto $A = \{1, 2, 3, 4\}$, considere as relações

$$R_{1} = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\}$$

$$R_{2} = \{(1,1), (1,2), (2,1)\}$$

$$R_{3} = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)\}$$

$$R_{4} = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\}$$

$$R_{5} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}$$

$$R_{6} = \{(3,4)\}$$

Quais destas relações são:

(i) Reflexivas; Resposta: R_3 e R_5 , pois ...

(ii) Simétricas; Resposta: R_2 e R_3 , pois ...

(iii) Anti-simétricas; Resposta: R_4 , R_5 e R_6 , pois ...

(iv) Transitivas; Resposta: R_4 , R_5 e R_6 , pois ...

Exercício:

Represente as relações anteriores por um grafo orientado e confirme os resultados obtidos anteriormente.

Observação:

Do ponto de vista gráfico:

- uma relação é reflexiva se para todo o vértice existir um ramo ligando-o a ele mesmo (ou seja, existe um lacete para todo o vértice).
- a relação será simétrica sempre que ao haver uma aresta de a para b também haja uma aresta de b para a;
- a relação será transitiva sempre que ao haver uma aresta da a para b e outra de b para c, também haja uma aresta de a para c.

Fecho de uma relação

Considerem-se um conjunto A e o conjunto de todas as relações em A. Seja \mathcal{P} uma propriedade de uma dessas relações, como a transitividade ou a simetria.

Uma relação com a propriedade \mathcal{P} é designada uma \mathcal{P} -relação.

O \mathcal{P} -fecho de relação arbitrária R em A, denotado por $\mathcal{P}(R)$, é uma relação tal que,

$$R \subseteq \mathcal{P}(R) \subseteq S$$
,

para a \mathcal{P} -relação S contendo R. Usaremos a notação

reflexivo(R), simétrico(R) e transitivo(R),

para os fecho reflexivo, simétrico e transitivo de R.

Dados um conjunto A com n elementos e uma relação R em A:

- reflexivo(R) é obtido adicionando a R os elementos (x, x) que não pertencem a R;
- $\operatorname{simétrico}(R)$ é obtido adicionando a R os elementos (y, x) tais que (x, y) pertencem a R;

• transitivo(R)= $R \cup R^2 \cup \cdots \cup R^n$.

Exemplo 84:

Considerem-se o conjunto $A = \{1, 2, 3\}$ e a relação $R = \{(1, 2), (2, 3), (3, 3)\}.$

Então.

reflexivo(R)= $R \cup \{(1,1),(2,2)\},$

$$simétrico(R) = R \cup \{(2,1), (3,2)\}$$

е

transitivo(R)= $R \cup R^2 \cup R^3 = \{(1,2), (2,3), (3,3), (1,3)\}.$

Relação de equivalência

Definição 33:

Uma relação binária R num conjunto A diz-se uma relação de equivalência se R for simultaneamente uma relação reflexiva, simétrica e transitiva.

Exemplo 85:

Seja $A = \{1, 2, 3\}.$

A relação

$$R = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$$

é uma relação de equivalência.

Provar!!

Classes de equivalência

Definição 34:

Sendo R uma relação de equivalência sobre um conjunto A não vazio e sendo $a \in A$, o conjunto:

$$C_a = \frac{a}{R} = [a]_R = \{x \in A : xRa\}$$

chama-se classe de equivalência do elemento a.

Exemplo 86:

Sejam $A = \{a, b, c, d, e\}$ um conjunto e

$$R = \{(a, a), (b, b), (c, c), (d, d), (e, e), (c, d), (d, c)\}$$

uma relação de equivalência em A (Provar!).

Temos,

$$[a]_R = \{a\}, [b]_R = \{b\}, [c]_R = \{c, d\} = [d]_R \in [e]_R = \{e\}.$$
 (1)

Observação:

Classe de equivalência do elemento a é o conjunto de todos os elementos que estão em relação com a.

Definição 35:

O conjunto de todas as classes de equivalência duma relação R, chama-se conjunto quociente de A por R e denota-se:

$$\frac{A}{R} = A/R = \{C_x : x \in A\}.$$

Exercício

Sejam $A = \{a, b, c, d, e\}$ um conjunto e

$$R = \{(a, a), (b, b), (c, c), (d, d), (e, e), (c, d), (d, c)\}$$

uma relação de equivalência em A.

Construa o conjunto quociente.

Teorema 9:

Seja R uma relação de equivalência num conjunto A. O conjunto quociente A/R é uma partição de A, isto é:

- $[a]_R \neq \emptyset$ (De facto, para cada $a \in A$, temos $a \in [a]_R$);
- $A = \bigcup_{a \in A} [a]_R$;
- $aRb \Leftrightarrow [a]_R \cap [b]_R = \emptyset$.

Relação de ordem

Definição 36:

Uma relação binária R num conjunto A diz-se:

- R é uma relação de ordem parcial (fraca) (r.o.p.) em A sse é reflexiva, anti-simétrica e transitiva. Ao par (A,R) chama-se um conjunto parcialmente ordenado ou c.p.o. ou poset.
- R é uma relação de ordem parcial estrita em A sse é irreflexiva, anti-simétrica e transitiva;
- R é uma relação de ordem total em A sse é uma r.o.p. em que cada elemento de A está relacionado com todos os outros elementos de A, ou seja, para todo o x ∈ A se tem xRy, ∀y ∈ A.
 O para (A, R) chama-se um conjunto totalmente ordenado ou c.t.o..

Exemplo 87:

A relação inclusão de conjuntos é uma relação de ordem parcial pois:

- $A \subseteq A$ para todo o conjunto $A \Longrightarrow \text{Reflexiva}$;
- Se $A \subseteq B$ e $B \subseteq A$ então $A = B \Longrightarrow$ Anti-simétrica;
- Se $A \subseteq B$ e $B \subseteq C$ então $A \subseteq C \Longrightarrow$ Transitiva.

ESTG|P.PORTO 40

Definição 37:

Seja \leq (que se lê "menor ou igual geral") uma relação de ordem parcial em A.

• Denotamos por \prec (que se lê "menor geral") a correspondente ordem parcial estrita, i.e., a ordem parcial estrita obtida de \preceq tirando-lhe todos os pares (x, x), com $x \in A$.

- A inversa de \prec denota-se por \succ e a inversa de \preceq denota-se por \succeq .
- Se (A, \preceq) é um c.p.o., então (A, \succeq) também é um c.p.o. e diz-se o dual de (A, \preceq) .
- Seja (A, \preceq) é um c.p.o.. Se $x \prec y$ dizemos que x é um predecessor de y, ou que y é um successor de x.
- Se $x \prec y$ e não existem elementos entre x e y, i.e., não existe nenhum $z \in A$ tal que $x \prec z \prec y$, dizemos que x é um predecessor imediato de y, ou que y é um sucessor imediato de x.

Diagrama de Hasse

Um c.o.p. pode ser representado por um diagrama de Hasse do seguinte modo:

representamos os elementos do conjunto e sempre que x é um predecessor imediato de y ligamos x a y por um arco com x situado num nível inferior a y.

Exemplo 88:

O diagrama de Hasse do conjunto $\{1,2,3\}$ com a relação \leq habitual é:

Exemplo 89:

O diagrama de Hasse para o c.o.p. $(\mathcal{P}(A), \subseteq)$, com $A = \{a, b\}$ é:

Exercícios: 38 a 56.

4 Indução e recursividade

Provas diretas de implicações

A formulação de um resultado do tipo $p \to q$ é bastante frequente. Para demonstrar diretamente a veracidade de um tal resultado, temos de encontrar uma prova de q, assumindo a veracidade de p.

Exemplo 90:

Mostre que, se a e b são dois números reais tais que 0 < a < b, então $a^2 < b^2$.

Resolução:

Sejam a e b dois números reais tais que 0 < a < b. Temos que

$$a < b \Rightarrow a \times a < a \times b \Leftrightarrow a^2 < ab$$
.

Por outro lado,

$$a < b \Rightarrow a \times b < b \times b \Leftrightarrow ab < b^2$$
.

Assim,

$$a^2 < ab < b^2.$$

donde, $a^2 < b^2$.

Prova por contradição ou redução ao absurdo (reductio ad absurdum)

Por forma a provar p, podemos assumir $\neg p$ e procurar uma contradição.

Exemplo 91:

Existe um número infinito de números primos.

Resolução:

Admitamos, por absurdo, que existem apenas n números primos, denotados por p_1, p_2, \ldots, p_n .

Consideremos o número $x = p_1 p_2 \dots p_n + 1$. É obvio que x não é divisível por nenhum dos números p_1, p_2, \dots, p_n , já que o resto da divisão é 1. Então x é um número primo, o que contradiz a hipótese inicial de que existem apenas n números primos. Logo, essa hipótese está errada, e portanto, existe um número infinito de números primos.

Observação:

Note-se que $p \to q$ é logicamente equivalente a $\neg(p \land \neg q)$. A redução ao absurdo consiste em assumir a veracidade da conjunção $p \lor \neg q$ e procurar uma contradição. Portanto, $\neg(p \land \neg q)$ será verdadeira, tal como $p \to q$.

4.1 Indução Matemática

A indução matemática é uma técnica simples, muito usada para demonstrar resultados sobre diversos objetos discretos.

Pode ser aplicada para demonstrar resultados sobre:

- complexidade de algoritmos,
- verificação de programas,
- teoremas sobre grafos e árvores, identidades e
- inequações.

Um proposição é verdadeira para todos os números naturais maiores ou iguais a n_0 , se

(i) Passo base:

For verdadeira para $n = n_0$;

(ii) Passo indutivo:

Supondo que a proposição é verdadeira para $n = k(k \ge n_0)$ - **Hipótese**, então a proposição também é válida para n = k + 1 - **Tese**.

Exemplo 92:

Vamos provar que $\#\mathcal{P}(A) = 2^{\#A}$, para um conjunto A não vazio qualquer.

Passo base: P(1)

Para um conjunto com um único elemento $A_1 = \{a\}$ (n = 1), temos que $\mathcal{P}(A_1) = \{\emptyset, A_1\}$, portanto,

$$P(1): \#\mathcal{P}(A_1) = 2^1, \text{ com } \#A_1 = 1.$$

Passo indutivo: $P(k) \Rightarrow P(k+1)$

Hipótese: P(k) é verdadeira, ou seja, $\#\mathcal{P}(A_k) = 2^k$, para $\#A_k = k$.

Tese: P(k+1) é verdadeira, ou seja, $\#\mathcal{P}(A_{k+1}) = 2^{k+1}$, para $\#A_{k+1} = k+1$.

Seja $A_k = \{a_1, a_2, \dots, a_k\}$ e seja $A_{k+1} = \{a_1, a_2, \dots, a_k, a_{k+1}\}$ resultante de acrescentar o novo elemento a_{k+1} ao conjunto A_k .

Os subconjuntos de A_{k+1} podem ser agrupados em dois grupos:

- (i) os que não incluem a_{k+1} que são precisamente os que constituem o conjunto das partes de A_k , ou seja, $\mathcal{P}(A_k)$, constituído, por hipótese de indução, por 2^k elementos;
- (ii) os que incluem o novo elemento a_{k+1} que são obtidos acrescentando o novo elemento a_{k+1} a cada subconjunto de A_k , num total de 2^k novos conjuntos.

Assim,

$$\#\mathcal{P}(A_{k+1}) = \#\mathcal{P}(A_k) + 2^k = 2^k + 2^k = 2 \times 2^k = 2^{k+1}.$$

Visto que P(1) e $P(k) \Rightarrow P(k+1)$, então a proposição é válida para todo o n.

Exemplo 93:

Mostre que para qualquer número inteiro positivo n temos $1+2+\cdots+n=\frac{n(n+1)}{2}$.

Passo base: P(1) $P(1): 1 = \frac{1(1+1)}{2}$ é verdadeira.

Passo indutivo: $P(k) \Rightarrow P(k+1)$

Hipótese: $P(k): 1 + 2 + \dots + k = \frac{k(k+1)}{2}$.

Tese: $P(k+1): 1+2+\cdots+k+1 = \frac{(k+1)(k+2)}{2}$.

Temos que

$$\begin{array}{ll} 1+2+\cdots+k+1 &= 1+2+\cdots+k+(k+1)\\ &= \frac{k(k+1)}{2}+(k+1), \text{ por hipótese de indução.}\\ &= \frac{k(k+1)+2(k+1)}{2} = \frac{(k+1)(k+2)}{2}\\ \text{Logo, se } P(k) \text{ \'e verdadeira, então } P(k+1) \text{ tamb\'em \'e.} \end{array}$$

Visto que P(1) e $P(k) \Rightarrow P(k+1)$, então a proposição é válida para todo o n, ou seja,

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}, n \ge 1.$$

Uma forma de indução matemática, chamada indução completa, é geralmente usada quando não podemos facilmente demonstrar o resultado usando indução matemática.

A indução completa compreende dois passos e difere da indução matemática no passo de indução, no facto se partir da hipótese de indução que P(r) é verdadeira para todos os valores de r que não excedem k, ou seja,

_Indução matemática _

$$\left\{ \begin{array}{ll} P(1) \ \mathrm{Verd.} \\ (\forall k) P(k) \ \mathrm{Verd.} \to P(k+1) \ \mathrm{Verd.}, \end{array} \right. \longrightarrow P(n) \ \mathrm{Verd.}, \forall n \geq 1 \ .$$

Indução completa (ou segundo princípio da indução matemática ou indução forte)

$$\left\{ \begin{array}{ll} P(1) \text{ Verd.} \\ (\forall k) P(r) \text{ Verd.}, \forall r, 1 \leq r \leq k \rightarrow P(k+1) \text{ Verd.}, \end{array} \right. \longrightarrow P(n) \text{ Verd.}, \forall n \geq 1 \ .$$

Propriedade da boa ordenação: _

Todo o conjunto não vazio de números inteiros não negativos contem pelo menos um menor elemento.

 \Leftrightarrow Indução Matemática 👄 Indução Completa Boa ordenação

4.2 Recursividade

Nem sempre um determinado objeto (função, conjunto, estrutura) pode ser definido explicitamente. Pode ser mais fácil defini-lo em termos dele próprio.

Uma definição recursiva de uma função com o conjunto dos números inteiros não negativos é definida em duas partes:

- Passo base: Especificar o(s) valor(es) inicial(is) da função;
- Passo recursivo: Fornecer uma regra para encontrar o valor num número inteiro a partir de valores nos números inteiros menores.

Exemplo 94:

Considere a função S definida recursivamente por:

$$\begin{cases} S(0) = 3 \\ S(n) = 2S(n-1) + 3, n \ge 1 \end{cases}.$$

Encontre $S(1), S(2), S(3) \in S(4)$.

Resolução:

$$S(1) = 2S(0) + 3 = 2 \times 3 + 3 = 9,$$
 $S(2) = 2S(1) + 3 = 2 \times 9 + 3 = 21,$ $S(3) = 2S(2) + 3 = 2 \times 21 + 3 = 45,$ $S(4) = 2S(3) + 3 = 2 \times 45 + 3 = 93.$

Exemplo 95:

Dê uma definição recursiva da função fatorial F(n) = n!.

Resolução:

Temos que

$$\begin{cases} F(0) = 0! = 1 \\ F(n) = n \times F(n-1), n \ge 1 \end{cases}, \quad \text{ou} \quad \begin{cases} F(0) = 0! = 1 \\ F(n+1) = (n+1) \times F(n), n \ge 0 \end{cases}.$$

Definição 38:

Os números de Fibonacci, f_0, f_1, f_2, \ldots , são definidos por

$$\begin{cases} f_0 = 0, f_1 = 1 \\ f_n = f_{n-1} + f_{n-2}, n \ge 2 \end{cases}.$$

Exemplo 96:

Encontre os números de Fibonacci f_2, f_3, f_4, f_5 e f_6 .

Resolução:

$$f_0 = 0, f_1 = 1$$

$$f_2 = f_1 + f_0 = 1$$

$$f_3 = f_2 + f_1 = 2$$

$$f_4 = f_3 + f_2 = 3$$

$$f_5 = f_4 + f_3 = 5$$

$$f_6 = f_5 + f_4 = 8$$

Uma fórmula de recorrência linear pode ser escrita como

$$S(n) = f_1(n)S(n-1) + f_2(n)S(n-2) + \dots + f_k(n)S(n-k) + g(n)$$

onde f_i e g são expressões envolvendo n.

Uma relação de recorrência:

- tem coeficientes constantes quando f_i são constantes.

Exemplo:
$$S(n) = S(n-1) + 3S(n-2) + n^3$$
.

- é de primeira ordem quando o n-ésimo termo depende apenas do n-1-ésimo termo.

Exemplo:
$$S(n) = 2S(n-1) + n$$
.

- homogénea quando g(n) = 0.

Exemplo:
$$S(n) = 2S(n-1)$$
.

Exemplo 97:

Considere a relação de recorrência definida por

$$\begin{cases} S(1) = 2 \\ S(n) = 2S(n-1), n \ge 2 \end{cases}.$$

Temos que

$$S(1) = 2$$

$$S(2) = 2S(1) = 4 = 2^{2}$$

$$S(3) = 2S(2) = 8 = 2^{3}$$

$$S(4) = 2S(3) = 16 = 2^{4}$$
...
$$S(n) = 2^{n}$$
.

A expressão $S(n) = 2^n$ permite determinar S(n) sem ter de determinar valores anteriores de S. Dizemos que $S(n) = 2^n$ é a fórmula fechada (closed-form solution) de S.

Resolver a relação recursiva consiste em encontrar a sua fórmula fechada.

Uma técnica para resolver relações de recorrência é o algoritmo **Algoritmo EGV** (Expand, Guess, Verify = Desenvolver, Estimar, Verificar).

Algoritmo EGV

Exemplo 98:

Mostre que $S(n) = 2^n$ para a fórmula de recorrência dada por:

$$\begin{cases} S(1) = 2 \\ S(n) = 2S(n-1), n \ge 2 \end{cases}.$$

Resolução:

• Expand: Usando a fórmula de recorrência tem-se que:

$$S(n) = 2S(n-1)$$

$$\Rightarrow S(n) = 2(2S(n-2)) = 2^{2}S(n-2)$$

$$\Rightarrow S(n) = 2^{2}(2S(n-3)) = 2^{3}S(n-3)$$
...

• Guess: Observando o desenvolvimento em cima, podemos conjeturar que

$$S(n) = 2^k S(n - k).$$

Para n - k = 1 então k = n - 1, donde

$$S(n) = 2^{n-1}S(1) = 2^{n-1} \times 2 = 2^n.$$

• Verify: Verificar usando indução.

Passo Base: $S(1) = 2^1 = 2$ é verdadeiro.

Passo de Indução:

Hipótese:
$$S(k) = 2^k$$

Tese: $S(k+1) = 2^{k+1}$

$$S(k+1)$$
 = $2S(k)$, pela definição da fórmula de recorrência
 = 2×2^k , pela hipótese de indução
 = 2^{k+1}

Fica assim provado que $S(n) = 2^n$.

_Algoritmo EGV ____

- 1. Começando por S(n), que é função de S(n-1):
 - Calcular S(n-1) e substituir em S(n), obtendo-se assim S(n) em função de S(n-2).
 - Calcular S(n-2) e substituir em S(n), obtendo-se assim S(n) em função de S(n-3).
 - Calcular S(n-3) e substituir em S(n), obtendo-se assim S(n) em função de S(n-4).

• ...

- 2. Repetir o processo até ser capaz de definir S(n) em função de S(n-k). Fazer n-k=1 e deduzir S(n) em função de apenas n.
- 3. Usando indução, demonstrar que a fórmula fechada está correta.

Exercício:

Encontre a fórmula fechada para a fórmula de recorrência dada por:

$$\begin{cases} T(1) = 1 \\ T(n) = T(n-1) + 3, n \ge 2 \end{cases}$$

Resolução:

1. Expand:

$$T(n) = T(n-1) + 3$$

$$= (T(n-2) + 3) + 3 = T(n-2) + 2 \times 3$$

$$= (T(n-3) + 3) + 2 \times 3 = T(n-3) + 3 \times 3$$

2. **Guess**: $T(n) = T(n - k) + k \times 3$.

Para n - k = 1 então k = n - 1, donde

$$T(n) = T(1) + (n-1) \times 3 = 1 + 3n - 3 = 3n - 2.$$

3. Verify:

Passo Base: $T(1) = 3 \times 1 - 2 = 3 - 2 = 1$ é Verdadeira.

Passo de Indução:

Hipótese: T(k) = 3k - 2

Tese:
$$T(k+1) = 3(k+1) - 2 = 3k + 1$$

$$T(k+1) = T(k) + 3,$$
pela definição da fórmula de recorrência
$$= 3k - 2 + 3,$$
 pela hipótese de indução
$$= 3k + 1$$

Logo, tem-se que T(n) = 3n - 2.

Exercícios: 57 a 62.

Bibliografia

- [1] J. L. Gersting. Mathematical Structures for Computer Science: A Modern Approach to Discrete Mathematics. W.H. Freeman & Company, 6th edition edition, 2007.
- [2] H. Liebeman. Introduction to Operations Research. McGraw-Hill, 8th edition edition, 2007.
- [3] S. Lipschutz and M. Lipson. Matemática Discreta. Bookman, 3.ª edição edition, 2013.
- [4] K.H. Rosen. Discrete Mathematics and Its Applications. McGraw-Hill, 7th edition edition, 2012.