De Morgan with quantifiers

De Morgan

$$\neg \forall_x [P:Q] \stackrel{val}{=} \exists_x [P:\neg Q]$$
$$\neg \exists_x [P:Q] \stackrel{val}{=} \forall_x [P:\neg Q]$$

not for all = at least for one not

not exists = for all not

Hence: $\neg \forall = \exists \neg \text{ and } \neg \exists = \forall \neg$

It holds further that:

$$\neg \forall_x \neg = \exists_x \neg \neg = \exists_x$$
$$\neg \exists_x \neg = \forall_x \neg \neg = \forall_x$$

holds also for quantified formulas!

Substitution

meta rule

Simple

$$\phi \stackrel{val}{=} \psi$$

$$\phi[\xi/P] \stackrel{val}{=} \psi[\xi/P]$$

Sequential

$$\phi \stackrel{val}{=} \psi$$

$$\phi[\xi/P][\eta/Q] \stackrel{val}{=} \psi[\xi/P][\eta/Q]$$

Simultaneous

$$\phi \stackrel{val}{=} \psi$$

EVERY occurrence of P is substituted!

$$\phi[\xi/P, \eta/Q] \stackrel{val}{=} \psi[\xi/P, \eta/Q]$$

holds also for quantified formulas!

The rule of Leibniz

Leibniz

$$\phi \stackrel{val}{=} \psi$$

$$C[\phi] \stackrel{val}{=} C[\psi]$$

formula that has ϕ as a sub formula

meta rule

single occurrence is replaced!

Other equivalences with quantifiers

Exchange trick

$$\forall_x [P:Q] \stackrel{val}{=} \forall_x [\neg Q:\neg P]$$

$$\exists_x [P:Q] \stackrel{val}{=} \exists_x [Q:P]$$

No wonder as

$$\forall_x [P:Q] \stackrel{val}{=} \forall_x [P \Rightarrow Q]$$

$$\exists_x [P:Q] \stackrel{val}{=} \exists_x [P \land Q]$$

Term splitting

$$\forall_x [P:Q \land R] \stackrel{val}{=} \forall_x [P:Q] \land \forall_x [P:R]$$

$$\exists_x [P:Q \lor R] \stackrel{val}{=} \exists_x [P:Q] \lor \exists_x [P:R]$$

Other equivalences with quantifiers

Monotonicity of quantifiers

$$\forall_x [P:Q \Rightarrow R] \Rightarrow (\forall_x [P:Q] \Rightarrow \forall_x [P:R]) \stackrel{val}{=} T$$

$$\forall_x [P:Q \Rightarrow R] \Rightarrow (\exists_x [P:Q] \Rightarrow \exists_x [P:R]) \stackrel{val}{=} T$$

tautologies

Lemma EI: $P \stackrel{val}{=} Q$ iff $P \Leftrightarrow Q$ is a tautology.

Lemma W4: $P \models Q \text{ iff } P \Rightarrow Q \text{ is a tautology.}$

still hold (in predicate logic)

Lemma W5: If $Q \models R$ then $\forall_x [P:Q] \models \forall_x [P:R]$.

Derivations / Reasoning

Limitations of proofs by calculation

Proofs by calculation are formal and well-structured, but often undirected and not particularly intuitive.

Example

$$P \wedge (P \vee Q) \stackrel{\text{val}}{=} (P \vee F) \wedge (P \vee Q)$$

$$\stackrel{\text{val}}{=} P \vee (F \wedge Q)$$

$$\stackrel{\text{val}}{=} P \vee F$$

$$\stackrel{\text{val}}{=} P$$

we can prove this more intuitively by reasoning

Conclusions

$$P \wedge (P \vee Q) \stackrel{\text{val}}{=} P \quad P \wedge (P \vee Q) \Leftrightarrow P \stackrel{\text{val}}{=} T$$

An example of a mathematical proof

Theorem

If x^2 is even, then x is even $(x \in \mathbb{Z})$.

(sub)goal

Proof

Let $x \in \mathbb{Z}$ be such that x^2 is even.

We need to prove that x is even too.

generating hypothesis

pure hypothesis

conclusion

Assume that x is odd, towards a contradiction.

If x is odd than x = 2y+1 for some $y \in \mathbb{Z}$.

Then $x^2 = (2y+1)^2 = 4y^2 + 4y + 1 = 2(2y^2 + 2y) + 1$ and $2y^2 + 2y \in \mathbb{Z}$.

So, x^2 is odd too, and we have a contradiction.

Thanks to Bas Luttik

Exposing logical structure

Theorem

If x^2 is even, then x is even $(x \in \mathbb{Z})$.

Proof

Assume x² is even.

Assume that x is odd.

Then x = 2y+1 for some $y \in \mathbb{Z}$.

Then
$$x^2 = (2y+1)^2 = 4y^2 + 4y + 1 = 2(2y^2 + 2y) + 1$$
 and $2y^2 + 2y \in \mathbb{Z}$.

So, x^2 is odd

a contradiction.

So, x is even

(sub)goal

generating hypothesis

pure hypothesis

conclusion

Thanks to Bas Luttik

Single inference rule

Q is a correct conclusion from n premises $P_1, ..., P_n$ iff $(P_1 \land P_2 \land \land P_n) \overset{\text{val}}{\vDash} Q$

If n=0, then $P_1 \wedge P_2 \wedge ... \wedge P_n \stackrel{\text{val}}{=} T$ Note that $T \models Q$ means that $Q \stackrel{\text{val}}{=} T$

Q holds unconditionally

Derivation

Q is a correct conclusion from n premises $P_1, ..., P_n$ iff $(P_1 \land P_2 \land ... \land P_n) \stackrel{\text{val}}{\vDash} Q$

a formal system
based on the single
inference rule
for proofs that closely
follow our
intuitive reasoning

Two types of inference rules:

elimination rules

introduction rules

for drawing conclusions out of premises

for simplifying goals

(particularly useful) instances of the single inference rule

and one new special rule!

Conjunction elimination

How do we use a conjunction in a proof?

 $P \wedge Q \stackrel{\text{val}}{\models} P$

 $P \land Q \stackrel{\text{val}}{\models} Q$

∧-elimination

|| ||

(k) $P \wedge Q$

 $\parallel \parallel \parallel$

 $\{\land$ -elim on $(k)\}$

(m) F

 $\parallel \parallel$

(k) $P \wedge Q$

 $\{\land$ -elim on $(k)\}$

(m) Q

(k < m) (k < m)

Implication elimination

How do we use an implication in a proof?

 $P \Rightarrow Q \stackrel{\text{val}}{\vDash} ???$

 $(P \Rightarrow Q) \land P \stackrel{\text{val}}{\vDash} Q$

⇒-elimination

$$\parallel \parallel$$

$$(m)$$
 Q

$$(k \le m, l \le m)$$

Conjunction introduction

How do we prove a conjunction?

∧-introduction

• • •

(k) F

• • •

(I) C

• • •

 $\{\land$ -intro on (k) and (l) $\}$

(m) $P \wedge Q$

(k < m, l < m)

 $P \land Q \stackrel{\text{val}}{\models} P \land Q$

Implication introduction

How do we prove an implication?

⇒-introduction

truly new
and
necessary for
reasoning with
hypothesis

shows the validity of a hypothesis

time for an example!

Negation introduction

Negation elimination

How do we use a negation in a proof?

¬-elimination

 $P \wedge \neg P \stackrel{\text{val}}{\models} F$

time for an example!

(k < m, l < m)

F introduction

(k)

(I)

 $\neg P$

the same as ¬-elim only intended bottom-up

{F-intro on (k) and (l)} (m) F

 $(k \le m, l \le m)$

F elimination

How do we use F in a proof? F-elimination (k) $\{F-elim on (k)\}$ (m)

it's very useful!

 $F \stackrel{\text{val}}{\models} P$

Double negation introduction

Double negation elimination

Proof by contradiction

Theorem

If x^2 is even, then x is even $(x \in \mathbb{Z})$.

Proof

Assume x² is even.

Assume that x is odd.

Then x = 2y+1 for some $y \in \mathbb{Z}$.

Then
$$x^2 = (2y+1)^2 = 4y^2 + 4y + 1 = 2(2y^2 + 2y) + 1$$
 and $2y^2 + 2y \in \mathbb{Z}$.

So, x^2 is odd

a contradiction.

So, x is even

(sub)goal

generating hypothesis

pure hypothesis

conclusion

Thanks to Bas Luttik

Proof by contradiction

How do we prove P by a contradiction?

proof by contradiction

```
{Assume}
(k)
         ¬P
        \{\neg-intro on (k) and (I-I)\}
(l)
        \neg \neg P
        \{\neg\neg\text{-elim on (I)}\}\
(|+|)
```

 $\neg P \Rightarrow F \stackrel{\text{val}}{\models} \neg \neg P \stackrel{\text{val}}{\models} P$

¬-intro

¬¬-elim

time for an example!

(k < m)