4.4. PRESSURE COEFFICIENTS FOR ROOFS AND OTHER STRUCTURES

The pressure coefficients for other structures and components that are not covered here (such as roofs, paraphets, sign boards, etc.) the pressure coefficients will be taken from the Eurocode [1].

5. WIND LOADS ON BUILDINGS

5.1. WIND LOADS ON BUILDINGS WITH RECTANGULAR CROSS-SECTIONS

The total wind loads, F, on a building with rectangular cross-section is calculated from the following equation:

$$F = F_{ex} + F_{in} + F_{fr}$$
with
$$F_{ex} = C_s \cdot C_d \cdot \sum_{\text{surface area}} q_p(z_e) C_{pe} A_{ex}$$

$$F_{in} = \sum_{\text{surface area}} q_p(z_i) C_{pi} A_{in}$$

$$F_{fr} = \sum_{\text{surface area}} q_p(z_e) C_{fr} A_{fr}$$

$$(5.1)$$

where

 F_{ex} = Forces on external surfaces

 F_{in} = Forces on internal surfaces

 F_{f} = Friction forces

 C_{s} = Load correlation coefficient

 C_d = Dynamic resonance coefficient

 $q_p(z_e)$ = Peak pressure at external height z_e

 $q_p(z_i)$ = Peak pressure at internal height z_i

 C_{ne} = External pressure coefficient

 C_{pi} = Internal pressure coefficient

 C_{f} = Friction coefficient

 A_{av} = External reference surface area

 A_n = Internal reference surface area

 A_{fr} = External surface area parallel to the wind (friction surface area)