

# Intervalos de confianza bootstrap métodos percentil

Grau en Estadística

Mètodes no paramètrics i de remostreig

Jordi Ocaña Rebull

Departament d'Estadística



#### El método percentil. Definición

- Situación de partida:  $\theta$  parámetro de interés,  $\hat{\theta}$  su estimador "plug-in",  $\hat{G}$  estimador bootstrap de la distribución de  $\hat{\theta}$
- IC percentil bootstrap de  $\theta$ , con recubrimiento nominal  $1 \alpha$ :  $\left[ \hat{G}^{-1} \left( \frac{\alpha}{2} \right), \quad \hat{G}^{-1} \left( 1 \frac{\alpha}{2} \right) \right]$
- En la práctica se suele aproximar mediante  $\left[\hat{\theta}_{(\alpha/2)}^*, \hat{\theta}_{(1-\alpha/2)}^*\right]$  donde  $\hat{\theta}_{(p)}^*$  corresponde al percentil muestral p obtenido a partir de B réplicas bootstrap:  $\hat{\theta}_1^*, \hat{\theta}_2^*, \dots, \hat{\theta}_B^*$



#### Motivación método percentil (i)

- Sea  $\hat{\sigma}_{\hat{\theta}}$  un estimador de la desviación estándar de  $\hat{\theta}$
- Recordemos: si  $\frac{\hat{\theta} \theta}{\hat{\sigma}_{\hat{\theta}}} \approx N(0,1)$ 
  - entonces  $\hat{\theta} \pm z_{\alpha/2} \hat{\sigma}_{\hat{\theta}}$  es IC "estándar" con recubrimiento  $1 \alpha$ , aproximadamente
- Extremos del IC estándar equivalentes a percentiles  $\alpha/2$  y  $1-\alpha/2$  de la distribución de  $\hat{\theta}^* \sim N(\hat{\theta}, \hat{\sigma}_{\hat{\theta}})$



#### Motivación método percentil (ii)

- Si cierto  $\hat{\theta} \approx N(\theta, \sigma_{\hat{\theta}})$ , en general también  $\hat{\theta}^* \approx N(\hat{\theta}, \hat{\sigma}_{\hat{\theta}})$ , a su vez bien emulada por  $\hat{G}$ , la estima bootstrap de la distribución de  $\hat{\theta}$
- Es decir:  $\hat{\theta} z_{\alpha/2} \hat{\sigma}_{\hat{\theta}} \approx \hat{G}^{-1} (\alpha / 2)$  $\hat{\theta} + z_{\alpha/2} \hat{\sigma}_{\hat{\theta}} \approx \hat{G}^{-1} (1 - \alpha / 2)$
- Pero ¿y si  $\hat{\theta}$  no normal? (p.e.  $\theta = \rho$ , coef. de correlación): ¿existe transformación normalizadora y estabilizadora de varianza?



#### Motivación método percentil (y iii)

 $\blacksquare$  Si existe h, monótona creciente, tal que

$$\phi = h(\theta), \hat{\phi} = h(\hat{\theta}), \hat{\phi} \approx N(\phi, \sigma_{\hat{\phi}}), \sigma_{\hat{\phi}}$$
 cte.

p.e. 
$$\phi = \frac{1}{2} \log \frac{1+\rho}{1-\rho} = \tanh^{-1}(\rho), \quad \hat{\phi} \approx N(\phi, \frac{1}{\sqrt{n-3}})$$

- $\blacksquare$  En escala  $\phi$ , intervalo percentil  $\approx$  estándar
- Monotonicidad de  $h \Rightarrow$  en escala  $\theta = h^{-1}(\phi)$ , IC percentil (jobtenido directamente, sin conocer h!) aproximadamente correcto



#### En resumen:

#### **Esquemáticamente:**

$$\frac{\hat{\theta}_{\left(p\right)}^{*} = \hat{G}^{-1}\left(p\right), \quad \phi_{\left(p\right)}^{*} = \hat{Q}^{-1}\left(p\right) \cong \hat{\phi} + \Phi^{-1}\left(p\right)\sigma_{\hat{\theta}}}{h^{-1}}$$
interpretable como percentil

donde  $\hat{Q}$  es la distribución bootstrap de  $\hat{\phi}$  y  $\Phi$  es la función de distribución N(0,1)

#### Entonces justificada la validez del IC

$$\left[\hat{G}^{-1}\left(\frac{\alpha}{2}\right), \hat{G}^{-1}\left(1 - \frac{\alpha}{2}\right)\right] = \hat{G}^{-1}\left(\Phi\left(-z_{\frac{\alpha}{2}}\right), \Phi\left(z_{\frac{\alpha}{2}}\right)\right)$$



## Modelo para el sesgo y la heteroscedasticidad

 $\blacksquare$  Supongamos que existe una transformación h, normalizadora, pero que no corrige el sesgo ni estabiliza la varianza, en concreto sea

$$\begin{split} \phi &= h \left( \theta \right), \quad \hat{\phi} = h \left( \hat{\theta} \right) \\ \frac{\hat{\phi} - \phi}{\sigma_{\hat{\phi}} \left( \phi \right)} + z_0 &\approx N \left( 0, 1 \right), \quad \text{con } \sigma_{\hat{\phi}} \left( \phi \right) = 1 + a \phi \\ \text{y por lo tanto, también } \frac{\hat{\phi}^* - \hat{\phi}}{1 + a \hat{\phi}} + z_0 &\approx N \left( 0, 1 \right) \end{split}$$



## UNIVERSITAT DE BARCELONA CONSTRUCCIÓN de los IC BCa. Intervalo en la escala normal

De 
$$1-\alpha \cong \Pr\left\{-z_{\frac{\alpha}{2}} \leq \frac{\hat{\phi}-\phi}{1+a\phi} + z_0 \leq z_{\frac{\alpha}{2}}\right\}$$

o, equivalentemente,

$$\alpha \cong \Pr \left\{ -z_{\frac{\alpha}{2}} > \frac{\hat{\phi} - \phi}{1 + a\phi} + z_0 \right\} + \Pr \left\{ z_{\frac{\alpha}{2}} > \frac{\hat{\phi} - \phi}{1 + a\phi} + z_0 \right\},$$

llegamos a la conclusión de que un IC de nivel, aproximado,  $1 - \alpha$  para  $\phi$  viene dado por:

$$\Pr\left\{\hat{\phi} + \frac{z_0 - z_{\frac{\alpha}{2}}}{1 - a\left(z_0 - z_{\frac{\alpha}{2}}\right)}\sigma_{\hat{\phi}}\left(\hat{\phi}\right) \leq \phi \leq \hat{\phi} + \frac{z_0 + z_{\frac{\alpha}{2}}}{1 - a\left(z_0 + z_{\frac{\alpha}{2}}\right)}\sigma_{\hat{\phi}}\left(\hat{\phi}\right)\right\}$$



## UNIVERSITAT DE BARCELONA COnstrucción de los IC Bca. Intervalo en la escala normal

Los extremos del intervalo anterior pueden considerarse percentiles de una distribucion  $N(\hat{\phi} - z_0 \sigma_{\hat{\phi}}(\hat{\phi}), \sigma_{\hat{\phi}}(\hat{\phi}))$ pero no los percentiles  $\frac{\alpha}{2}$  y  $1 - \frac{\alpha}{2}$ , sino percentiles

$$lpha_1 = \Phi \left[ z_0 + rac{z_0 - z_{rac{lpha}{2}}}{1 - a \left( z_0 - z_{rac{lpha}{2}} 
ight)} 
ight] \, \mathrm{y}$$

$$1-\alpha_2 = \Phi \left[ z_0 + \frac{z_0 + z_{\frac{\alpha}{2}}}{1-a\left(z_0 + z_{\frac{\alpha}{2}}\right)} \right]$$

respectivamente



## UNIVERSITAT DE BARCELONA COnstrucción de los IC Bca. Intervalo en la escala original

 $\blacksquare$  Por lo tanto, el intervalo en la escala  $\theta$ :

$$\left[h^{-1}\left(\hat{\phi}+\frac{z_0-z_{\frac{\alpha}{2}}}{1-a\left(z_0-z_{\frac{\alpha}{2}}\right)}\sigma_{\hat{\phi}}\left(\hat{\phi}\right)\right),h^{-1}\left(\hat{\phi}+\frac{z_0+z_{\frac{\alpha}{2}}}{1-a\left(z_0+z_{\frac{\alpha}{2}}\right)}\sigma_{\hat{\phi}}\left(\hat{\phi}\right)\right)\right]$$

tendrá extremos de la forma:

$$\hat{\theta}_{(\alpha_1)}^* = \hat{G}^{-1} \left[ \Phi \left( z_0 + \frac{z_0 - z_{\frac{\alpha}{2}}}{1 - a \left( z_0 - z_{\frac{\alpha}{2}} \right)} \right) \right] \quad \mathbf{y}$$

$$\hat{\theta}_{(1-\alpha_2)}^* = \hat{G}^{-1} \left( \Phi \left( z_0 + \frac{z_0 + z_{\frac{\alpha}{2}}}{1 - a(z_0 + z_{\frac{\alpha}{2}})} \right) \right)$$

Intervalos de confianza percentil bootstrap



## Estima de la corrección del sesgo $z_0$

- Falta determinar el valor del parámetro de corrección del sesgo,  $z_0$ , y de la "constante de aceleración", a
- Estima de  $z_0$ :  $\hat{z}_0 = \Phi^{-1}(\hat{G}(\hat{\theta}))$ .
  - En efecto:

$$\hat{G}(\hat{\theta}) = P_* \{ \hat{\theta}^* \le \hat{\theta} \}$$

$$= P_* \{ \hat{\phi}^* \le \hat{\phi} \} = P_* \{ \frac{\hat{\phi}^* - \hat{\phi}}{1 + a\hat{\phi}} + z_0 \le z_0 \} \cong \Phi(z_0)$$



# Estima de la constante de aceleración



$$\hat{a} = \frac{\sum_{i=1}^{n} U_i^3}{6\left\{\sum_{i=1}^{n} U_i^2\right\}^{\frac{3}{2}}}$$

-  $U_i$  es la función empírica de influencia asociada al dato i:

ato 
$$i$$
: 
$$U_i = U\left(x_i, \hat{F}\right) = \lim_{\varepsilon \to 0} \frac{t\left((1-\varepsilon)\hat{F} + \varepsilon\delta_i\right) - t\left(\hat{F}\right)}{\varepsilon}$$

Alternativamente, aproximación jackknife:

$$\hat{a} = \frac{\sum_{i=1}^{n} (\hat{\theta}_{(\cdot)} - \hat{\theta}_{(-i)})^{3}}{6 \left\{ \sum_{i=1}^{n} (\hat{\theta}_{(\cdot)} - \hat{\theta}_{(-i)})^{2} \right\}^{\frac{3}{2}}}$$

Intervalos de confianza percentil bootstrap



#### Resumen de intervalos percentil

#### IC percentil:

- Validez: ∃ transformación normalizante, centradora y estabilizadora de varianza (no necesario conocerla)
- Definición:  $\left[\hat{G}^{-1}\left(\frac{\alpha}{2}\right), \hat{G}^{-1}\left(1-\frac{\alpha}{2}\right)\right]$
- IC percentil corregido para el sesgo, acelerado (BCa):
  - Validez: ∃ transformación normalizante (no necesario conocerla)
  - Definición:

$$\left[ \hat{G}^{-1} \left( \Phi \left( \hat{z}_0 + \frac{\hat{z}_0 - z_{\frac{\alpha}{2}}}{1 - \hat{a} \left( \hat{z}_0 - z_{\frac{\alpha}{2}} \right)} \right) \right), \hat{G}^{-1} \left( \Phi \left( \hat{z}_0 + \frac{\hat{z}_0 + z_{\frac{\alpha}{2}}}{1 - \hat{a} \left( \hat{z}_0 + z_{\frac{\alpha}{2}} \right)} \right) \right) \right]$$

Si sesgo pero homoscedasticidad  $\Rightarrow a = 0$ : intervalo "corregido para el sesgo": BC

Intervalos de confianza percentil bootstrap