1. Notion de famille de circuit logique

Un circuit logique se présente sous forme d'un circuit intégré qui permet de regrouper dans un même boîtier un maximum de composants électroniques dont le plus important est le transistor.

Les circuits intégrés logiques sont classés suivant leur technologie de fabrication en plusieurs familles logiques. Chaque famille logique a pour point commun la technologie employée.

Dans ce chapitre, on étudiera les familles les plus populaires actuellement, à savoir :

> La famille TTL (Transistor Transistor Logic):

Utilise une technologie à base de transistors bipolaires.

La famille CMOS (Complementary Metal Oxide Semiconductor):

Utilise une technologie à base de transistors MOS.

Chaque famille logique est caractérisée par des paramètres électriques comme l'alimentation et la consommation, et des performances dynamiques comme le temps de propagation.

2. Variantes technologiques des familles logiques TTL et CMOS

21. Variantes technologiques de la famille TTL

- > La série Std 74xx : Série Standard qui est peu rapide avec une consommation élevée.
- > La série 74Lxx : Série à faible consommation (Low Power) mais au détriment de la rapidité.
- La série 74Hxx ou 74Fxx : Série rapide (High speed ou Fast) mais au détriment de la consommation.
- > La série **745**xx : Série **5**chottky qui est 2 fois plus rapide que la série H pour la même consommation.
- > La série 74LSxx : Série qui constitue un compromis entre la série TTL L et la série TTL S.
- > Les séries 74ASxx (Advanced Schottky) et 74ALSxx (Advanced Low power Schottky) : Séries à technologie avancée et dérivées des séries présentées précédemment.

22. Les variantes technologiques de la famille CMOS

- La série 4000 : Série classique de base.
- > La série 74Cxx: Même technologie que la série 4000, mais le brochage et les fonctions de la série 74xx.
- La série 74HCxx: CMOS rapide comme la famille TTL LS, son alimentation est de 2 à 6 volts.
- La série 74HCTxx : Compatibilité totale avec la famille TTL LS, rapidité et consommation de la famille CMOS HC et son alimentation est de 5 volts.
- > La série 74ACxx: Advanced CMOS, CMOS encore plus rapide que la famille HC.
- > La série 74ACTxx : CMOS AC compatible TTL.

A Remarques:

- La série 4000 existe en version standard (circuits 4000) et en version bufférisée (circuits 4000B).
- > Les séries 74 existent en 2 gammes, dont la différence est la plage de fonctionnement en température :
- ♦ La gamme industrielle (74xx) fonctionnant entre 0 °C et +70 °C.
- $\$ La gamme **militaire** (**54**xx) fonctionnant entre -55 °C et +125 °C.

3. Paramètres caractéristiques des circuits logiques

31. Tension d'alimentation

- Famille logique TTL: L'alimentation doit être fixe et égale à 5 Volts avec une tolérance de ± 5%.
- > Famille logique CMOS classique : Le choix de la tension d'alimentation est plus large de 3 à 18 Volts.

32. Niveaux logiques

Pour une famille donnée, les niveaux logiques $\mathbf{0}$ ou \mathbf{L} (Low) et $\mathbf{1}$ ou \mathbf{H} (High) ne correspondent pas à une tension précise, mais à une certaine plage de tension.

La terminologie utilisée pour les valeurs de la tension en entrée (Input) :

- > VIHmin : Tension minimale en entrée qui assure le niveau logique haut.
- > VILmax : Tension maximale en entrée qui assure le niveau logique bas.

> En TTL: VIHmin=2 V et VILmax=0,8 V

> En CMOS : VIHmin=0,55*Vcc et VILmax=0,45*Vcc

La terminologie utilisée pour les valeurs de la tension de sortie (Output) :

- > VOHmin : Tension minimale de la sortie à l'état logique haut.
- > VOLmax : Tension maximale de la sortie à l'état logique bas.

> En TTL: VOHmin=2,4 V et VOLmax=0,4 V

 \gt En CMOS : VOHmin=0,95*Vcc et VOLmax=0,05*Vcc

33. Consommation

La consommation d'un circuit logique est la puissance demandée par son boîtier au circuit d'alimentation. Elle doit être la plus faible possible et elle est nécessaire pour dimensionner l'alimentation des circuits logiques.

Le constructeur indique une puissance consommée moyenne liée aux niveaux de sortie des circuits logiques.

34. Temps de propagation

Dans une porte logique, les grandeurs sont transmises avec un retard caractéristique de la porte : c'est le temps de propagation de l'information dans la porte. On distingue alors :

> TpHL : Temps de propagation du signal logique lorsque la sortie passe de l'état haut à l'état bas.

> **TpLH**: Temps de propagation du signal logique lorsque la sortie passe de l'état bas à l'état haut.

Pour assurer la mesure de ces durées, une référence de tension est fixée par les constructeurs (1,3 V en TTL) pour le début et la fin de la propagation.

Ces temps de propagation sont étroitement liés à la fréquence limite d'utilisation Fmax : Fmax=1/(TpHL+TpLH).

35. Comparaison des paramètres des différentes familles logiques

Conditions : tension d'alimentation	51,12 - 25 0,00pc		FAMILI	FS								
54/74 TTI 0111							E4	EC	à , ans	°C		
54/74 TTL Standard			Advanced Schottky 54 55 à + 125 °C Advanced Low Power Schottky 74 0 à + 70 °C									
			Fast 74 LVT Technologie ABT (3,3 V)									
54LS/74LS TTL Low Power Scho		14C/74HC/74HCT		CMOS			/4 LT1	1 PUIIIINIU	yje ADI 1	3,0 1		
	JUKY	140/14110/141101	1								*****	
Paramètres			74	74S	74LS	74AS	74ALS	74F	74HC	74HCT	4000B	74 LV
Puissance dissipée (mW)	Porte statique		10	19	2	8,5	1,2	5,5			0,001	
	Porte à 100 kHz		10	19	2	8,5	1,2	5,5	0,075		0,1	0,1
	Compteur statique	9	300	500	100	•	60	190			0,001	10
	Compteur à 100 k	Hz	300	500	100		60	190	0,125		0,120	
Temps de propagation (ns) Porte (typic			10	3	9,5	1,5	4	3	7	7	40	
	Porte (maximum)		20	5	15	2,5	7	4	14	15	80	3,5
Fréq. max. d'horloge (MHz)	Bascule D (typique	e)	25	100	33	160	60	125	55		12	150
	Compteur (typique	9)	32	70	32		45	125	45		6	
Tension d'alimentation (V)			5 ± 5 %	5 ± 5 %	5 ± 5 %	5 ± 10 %	5 ± 10 %	5 ± 5 %	2 à 6	5 ± 10 %	3 à 15	2,7 - 3,
Courant	l _{Okmin} (mA)		16	20	8	20	8	20	4	4	6,8	64 (ma
	I _{CHmax} (mA)		- 0,4	-1	- 0,4	- 0,2	- 0,4	-1			- 6,8	-32
	I _{ILmax} (mA)		- 1,6	- 0,2	- 0,36	- 0,5	- 0,2	- 0,6	0,001	±0,001		-
	I _{IHmax} (μΑ)		40	50	20	20	20	20	-		-	71 µA
Tension	V _{OLmax} (V)		0,4	0,5	0,5	0,5	0,5	0,5	0,1	0,1	0,1	0,55
	V _{OHmin} (V)		0,4	2,7	2,7	V _{CC} - 2	V _{CC} -2	2,5	4,9	4,9	4,9	2
	V _{ILmax} (V)		0,8	8,0	0,7	0,8	0,8	0,8	1	0,8	0,8	0,8
	V _{Hmin} (V)		2	2	2	2	2	2	3,5	2	2	2
Marge de bruit (V)	État haut		0,4	0,7	0,7	V _{CC} - 4	V _{CC} -4	0,5	1,4	2,9	2,9	0,8
	État bas		0,4	0.3	0,2	0,3	0,3	0,3	0,9	0,7	0,7	1,2
Sortance (charge LS)	Standard		40	50	20	50	20	50	50		2	
	Amplis-bus		120	160	6)	120	60	160	16		4	
Charge admissible des différentes familles ($I_{\rm OLmin}/I_{\rm ILmax}$) 74		Lmax) 74	10	8	4)	32	80	26	16 000	16 000		
		74S	12	10	50	40	100	33	20 000	20 000		
		74LS	5	4	2)	16	40	13	8 000	8 000		
		74AS	12	10	50	40	100	33	20 000	20 000		
		74ALS	5	4	20	16	40	13	8 000	8 000		
		74F	12	10	50	40	100	33	20 000	20 000		
		74HC	2	2	10	8	20	6	4 000	4 000		
		74HCT	2	2	10	8	20	6	4 000	4 000		

4. Etages de sortie

41. Etage de sortie à collecteur ouvert

L'étage de sortie à collecteur ouvert (ou à drain ouvert) permet de piloter des charges externes lorsque la tension et le courant d'une sortie logique normale ne suffisent pas.

Un étage de sortie à collecteur ouvert est repéré par le symbole \Delta Pour assurer un niveau logique en sortie, il faut compléter son polarisation par une résistance de tirage à +Vcc (pull up resistor).

42. Etage de sortie 3 états

L'étage de sortie 3 états présente en plus des deux niveaux logiques classiques dits à basse impédance, un 3ème état de la haute impédance HZ où l'impédance de sortie devient très grande, voire infinie. Lorsqu'une sortie est mise en état HZ, elle sera déconnectée et isolée électriquement du reste du montage.

Une porte trois états possède en plus des entrées logiques classiques une entrée supplémentaire du contrôle qui permet de mettre ou non la sortie en état HZ (voir l'exemple ci-dessus d'une porte NAND à 3 états).

5. Interfaçage des circuits logiques

51. Interfaçage CMOS/TTL et TTL/CMOS

- > Une sortie CMOS peut commander sans problème une entrée TTL.
- > Par contre, une sortie TTL délivre une tension VOHmin de 2,4 V qui reste insuffisante pour une entrée CMOS (VIHmin=0,55*5=2,75 V). La solution la plus utilisée pour assurer la compatibilité consiste à utiliser une résistance de rappel à la source d'alimentation Rp comprise entre 1 $K\Omega$ à 10 $K\Omega$.

52. Commande d'une entrée logique TTL par un contact

Souvent, l'entrée d'un circuit logique TTL change d'état en fonction de l'état d'un contact (interrupteur, contact d'un capteur TOR, ...). Il faut alors prévoir un interfaçage pour assurer le bon fonctionnement.

521. Contact commandant un niveau bas

Sans la résistance du pull up R1, la fermeture du contact provoque un court-circuit de l'alimentation 5 V. La résistance R₁ résout ce problème :

- > Au repos, le contact est ouvert, R1 assure le niveau 1 logique sur l'entrée de la porte logique.
- > Lorsque le contact est fermé, l'entrée logique est au niveau 0 et l'alimentation n'est pas court-circuitée.

Le bon fonctionnement implique la condition VI>VIH \Rightarrow R₁<(Vcc-VIH)/IIH $\Rightarrow R_1 < (5-2)/(40*10^{-6}) \Rightarrow R_{1max} = 75 \text{ K}\Omega.$

Une valeur typique de R_1 est de l'ordre de 3,3 $K\Omega$.

522. Contact commandant un niveau haut

Sans la résistance du **pull down R_2**, la fermeture du contact provoque un court-circuit de l'alimentation 5 V. La résistance R2 résout ce problème :

- > Au repos, le contact est ouvert, R2 assure le niveau 0 logique sur l'entrée de la porte logique.
- Lorsque le contact est fermé, l'entrée logique est au niveau 1 et l'alimentation n'est pas court-circuitée.

Le bon fonctionnement implique la condition $VI < VIL \Rightarrow R_2 < VIL/IIL$

 \Rightarrow R₂<0,8/(1,6*10⁻³) \Rightarrow R_{2max}=500 Ω .

Une valeur typique de R_2 est de l'ordre de 330 Ω .

A Remarque:

Pour la famille CMOS, une valeur typique de R_1 (pull up) et de R_2 (pull down) est de l'ordre de 100 $K\Omega$.