Grundbegriffe der Informatik

Aufgaben, wie sie vielleicht in einer Klausur dran kommen könnten

Die nachfolgenden Aufgaben könnten so oder so ähnlich, evtl. in vereinfachter Form, in der Klausur dran kommen.

Achtung: Aus der Tatsache, dass gewisse Aufgabentypen oder Themen im folgenden nicht abgedeckt werden, darf man nicht schließen, dass Entsprechendes auch nicht in der Klausur dran kommen kann.

Noch mal Achtung: Die Anzahl der nachfolgend aufgeführten Aufgaben hat nichts mit der Anzahl Aufgaben in der Klausur zu tun.

Und noch mal Achtung: Die angegebene Punktzahlen geben nicht in allen Fällen den Schwierigkeitsgrad der Teilaufgaben wider.

Aufgabe Ü.24 (1+2+1+2 Punkte)

Was kann man über den Wahrheitswert der aussagenlogischen Formel $A \vee \neg A \Rightarrow B$ sagen? Begründen Sie Ihre Antwort.

Was kann man über den Wahrheitswert der aussagenlogischen Formel $A \land \neg A \Rightarrow B$ sagen? Begründen Sie Ihre Antwort.

Aufgabe Ü.25 (3 Punkte)

Es sei A das Alphabet $A = \{0, 1\}$. Die Abbildung f : A - > A sei definiert durch f(0) = 1 und f(1) = 0.

Definieren Sie präzise eine Funktion $F:A^*->A^*$, die "in einem Wort alle Bits umkippt".

Aufgabe Ü.26 (1+1+1+5 Punkte)

Eine Folge x_0, x_1, x_2, \ldots nichtnegativer ganzer Zahlen sei wie folgt definiert:

$$x_0 = -1$$

$$x_1 = 0$$

$$x_2 = 1$$

$$\forall n \in \mathbb{N}_0: x_{n+3} = x_{n+2} + x_n$$

- a) Geben Sie die sechs Werte x_8 bis x_{13} an. (weitere Werte nicht nötig)
- b) Schreiben Sie zum Vergleich die Werte 2, 2+1, 4, 4+2, 8 und 8+4 auf. Was sehen Sie?
- c) Gibt es eine Konstante $k \in \mathbb{N}_0$, so dass für die Funktion

$$x: \mathbb{N}_0 - > \mathbb{N}_0$$
$$n \mapsto x_n$$

gilt: $x(n) \in On^k$?

d) Beweisen Sie Ihre Behauptung aus Punkt c).

Aufgabe Ü.27 (1+1 Punkte)

Es sei $A = \{a, b\}$. Eine Folge L_0, L_1, \ldots von Mengen von Wörtern aus A^* sei wie folgt definiert:

$$L_0 = \{\mathtt{a},\mathtt{b}\}^*$$

$$\forall n \in \mathbb{N}_0: \ L_{n+1} = L_n \cap L_n L_n$$

- a) Geben Sie explizit an, welche Wörter in L_1 und L_2 jeweils sind.
- b) Geben Sie (ohne Nachweis der Korrektheit) für beliebiges $n \in \mathbb{N}_0$ eine explizite Formel (in der nicht irgendwelche L_i vorkommen) für L_n an.

Aufgabe Ü.28 (1+1+1+1+1+1 Punkte)

Es sei $A = \{a, b\}$. Die Sprache $L \subseteq A^*$ sei definiert durch $L = \{a\}^*\{ba\}\{b\}^*$.

Welche der folgenden Wörter sind in der formalen Sprache L^* enthalten? Geben Sie für jedes Wort w, das in L^* liegt, eine Zerlegung in Wörter w_1, \ldots, w_k aus L an, so dass $w = w_1 \cdots w_k$ gilt.

- a) aaabbb
- b) bbbaaa
- c) aabaaaba
- d) baaaaba
- e) aababbbb
- f) abababab

Aufgabe Ü.29 (2+2+2+2 Punkte)

Gegeben seien die formalen Sprachen

$$L_1 = \{\mathbf{a}^k \mathbf{b}^m \mid k < m\}$$
$$L_2 = \{\mathbf{a}^k \mathbf{b}^m \mid k > m\}$$

über dem Alphabet $A = \{a, b\}.$

Geben Sie für der folgenden formalen Sprachen L_a, \ldots, L_d eine kontextfreie Grammatik an, die L erzeugt:

- a) $L_a = L_1$
- $b) L_b = L_1 \cap L_2$
- c) $L_c = L_1 \cup L_2$
- $d) L_d = L_1 L_2$

Aufgabe Ü.30 (1+1+2 Punkte)

Es sei $A = \{a, b\}$. Für jede kontextfreie Grammatik G, die eine formale Sprache $L(G) \subseteq A^*$ erzeugt, sei die Funktion f_G wie folgt definiert:

$$f_g: \mathbb{N}_0 - > \mathbb{N}_0$$

 $n \mapsto |L(G) \cap A^n|$

- 1. Geben Sie eine Grammatik G an, für die $f_G(n) \in \Theta^{2n}$ ist.
- 2. Geben Sie eine Grammatik G an, für die $f_G(n) \in \Theta 1$ ist.
- 3. Geben Sie eine Grammatik G an, für die $f_G(n) \in \Theta n$ ist.

Aufgabe Ü.31 (1+1+1+1 Punkte)

Es sei A ein Alphabet. Auf A^* sei die Relation \leq wie folgt definiert:

$$\forall w_1, w_2 \in A^* : (w_1 \leq w_2 \Longleftrightarrow \exists u, v \in A^* : uw_1v = w_2)$$

- a) Ist die Relation \leq reflexiv?
- b) Ist die Relation ≤ symmetrisch?
- c) Ist die Relation \leq antisymmetrisch?
- d) Ist die Relation ≺ transitiv?

Begründen Sie jede Ihrer Antworten präzise.

Aufgabe Ü.32 (1+1 Punkte)

Was ist eine Codierung? Wann heißt eine Codierung präfixfrei?

Aufgabe Ü.33 (1+2+1 Punkte)

Das Wort w = 0011111110111110111101111101111soll komprimiert werden.

- a) Zerlegen Sie w in Dreierblöcke und bestimmen Sie die Häufigkeiten der vorkommenden Blöcke.
- b) Zur Kompression soll ein Huffman-Code verwendet werden. Benutzen Sie die in Teilaufgabe a) bestimmten Häufigkeiten, um den entsprechenden Baum aufzustellen. Beschriften Sie alle Knoten und Kanten.
- c) Geben Sie die Codierung des Wortes w mit Ihrem Code an.

Aufgabe Ü.34 (1+1+2 Punkte)

- a) Wieviele Knoten kann ein ungerichteter Baum haben, der genau n Kanten enthält?
- b) Wieviele Knoten kann ein gerichteter Baum haben, der genau n Kanten enthält?
- c) Beweisen Sie eine Ihrer beiden Antworten.

Aufgabe Ü.35 (2+1+2 Punkte)

Gegeben sei der Graph G = (V, E) mit $V = \{0, 1, 2\}^3$ und

$$E = \bigcup \{ \{xw, wy\} \mid x, y \in \{0, 1, 2\} \land x \neq y \land w \in \{0, 1, 2\}^2 \}$$

(Bei der Lösung wurde ein einfacherer Graph betrachtet:

$$G' = (V, E)$$
 mit $V = \{0, 1, 2\}^2$ und

$$E = \bigcup \{ \{xw, wy\} \mid x, y \in \{0, 1, 2\} \land x \neq y \land w \in \{0, 1, 2\}^1 \}$$

)

- a) Zeichnen Sie G.
- b) Geben Sie einen Weg in G an, der jede Kante von G genau einmal enthält.
- c) Geben Sie die Adjazenzmatrix von G an. Wählen Sie dabei als Zeilenbeziehungsweise Spaltennummer eines Knotens $v \in \{0, 1, 2\}^3$ gerade $\text{Num}_3(v)$.

Aufgabe Ü.36 (1+1+1+2+1+1+1 Punkte)

Es sei G=(V,E) ein gerichteter Graph mit $V=\{0,1,\ldots,n-1\}$. Die Adjazenzmatrix von G heiße A.

- a) Was hat die Kantenmenge E mit V "zu tun"?
- b) Was ist die Bedeutung des Eintrages in Zeile i Spalte j von A?
- c) Welche besondere Eigenschaft hat A, wenn G schlingenfrei ist?
- d) Wieviele schlingenfreie Graphen G mit n Knoten gibt es? Begründen Sie Ihre Antwort.
- e) Was ist die Wegematrix eines Graphen?
- f) Welche besondere Eigenschaft hat die Wegematrix von G, wenn G streng zusammenhängend ist?

Aufgabe Ü.37 (1+1+1 Punkte)

- a) Für welche reelle Zahlen $c \in \mathbb{R}$ ist $5n^4$ in $O(n^c)$?
- b) Für welche reelle Zahlen $c \in \mathbb{R}$ ist $5n^4$ in $O(c^n)$?
- c) Für welche reelle Zahlen $c \in \mathbb{R}$ ist 2^n in $O(c^n)$?

Aufgabe Ü.38 (1+2+1+2 Punkte)

Es sei R eine Äquivalenzrelation auf einer Menge M.

- a) Geben Sie $R \circ R$ an.
- b) Beweisen Sie Ihre Behauptung aus Punkt a).
- c) Geben Sie R^* an.

d) Beweisen Sie Ihre Behauptung aus Punkt c).

Aufgabe Ü.39 (3 Punkte)

Geben Sie einen endlichen Akzeptor A an, der genau die Wörter $w \in \{a, b\}^*$ akzeptiert, bei denen erste und das letzte Zeichen übereinstimmen.

Aufgabe Ü.40 (4 Punkte)

Gegeben seien zwei endliche Akzeptoren $A_1 = (Z_1, z_{01}, X, f_1, F_1)$ und $A_2 = (Z_2, z_{02}, X, f_2, F_2)$, die zwei formale Sprachen $L_1 = L(A_1) \subseteq X^*$ und $L_2 = L(A_2) \subseteq X^*$ akzeptieren.

Konstruieren Sie einen endlichen Akzeptor $A = (Z, z_0, X, f, F)$, der $L_1 \cap L_2$ akzeptiert.

Aufgabe Ü.41 (1+1+1+2 Punkte)

Alle folgenden Mengen sind Sprachen über dem Alphabet {a, b}. Geben Sie für die folgenden Mengen reguläre Ausdrücke an:

- 1. Die Menge aller Wörter ungerader Länge.
- 2. Die Menge aller Wörter gerader Länge, die mit verschiedenen Symbolen anfangen und enden.
- 3. Die Menge aller Wörter, die ba als Teilwort enthalten.
- 4. Die Menge aller Wörter, die aba nicht als Teilwort enthalten.

Aufgabe Ü.42 (1+2+2+1+1 Punkte)

Die Turingmaschine T sei durch folgende Überführungstabelle gegeben:

	z_0	z_1	z_2	z_3	z_4	z_5	z_6
a	$(z_1, \bar{\mathtt{a}}, 1)$	$(z_0, a, 1)$	$(z_2,\mathtt{a},-1)$	$(z_4, \bar{\mathtt{a}}, 1)$	$(z_2,\mathtt{a},-1)$	$(z_6, a, -1)$	(f, m, 0)
b	$(z_1, \bar{\mathtt{b}}, 1)$	$(z_0,\mathtt{b},1)$	$(z_2, \mathbf{b}, -1)$	$(z_4,\bar{\mathtt{b}},1)$	$(z_2, \mathbf{b}, -1)$	$(z_6, \mathbf{b}, -1)$	$(f, \mathbf{m}, 0)$
ā	$(z_1, \bar{\mathtt{a}}, 1)$	$(z_0,\mathtt{a},1)$	$(z_3,\mathtt{a},-1)$	$(z_3, \bar{\mathtt{a}}, -1)$	$(z_4,\bar{\mathtt{a}},1)$	$(z_5,\mathtt{a},1)$	$(f, \mathbf{m}, 0)$
$ar{\mathtt{b}}$	$(z_1, \bar{\mathtt{b}}, 1)$	$(z_0,\mathtt{b},1)$	$(z_3,\mathtt{b},-1)$	$(z_3, \bar{\mathtt{b}}, -1)$	$(z_4,\bar{\mathtt{b}},1)$	$(z_5,\mathtt{b},1)$	(f, m, 0)
	$(g,\square,0)$	$(z_2,\square,-1)$		$(z_5,\square,1)$		$(z_6,\square,-1)$	

Die Eingabe sei ein Wort aus {a,b}*.

- a) Sei w = aaabbabaa. Welches Wort steht auf dem Band, wenn die Turingmaschine das erste Mal im Zustand z_2 ist?
- b) Die Eingabe sei wieder w. Geben Sie für jeden Zeitpunkt, zu dem die Turingmaschine aus einem Zustand ungleich z_4 in den Zustand z_4 übergeht, das Wort an, das zu diesem Zeitpunkt auf dem Band steht.
- c) Die Eingabe sei wieder w. Welches Wort steht am Ende der Berechnung auf dem Band?
- d) Die Eingabe sei w' = aaba. Welches Wort steht am Ende der Berechnung auf dem Band?
- e) Die Eingabe sei von der Form w_1xw_2 mit $|w_1|=|w_2|$ und $x\in\{a,b\}$. Welches Wort steht am Ende der Berechnung auf dem Band?