MSiA 400 Team 9 Group Project

The Client

- Upscale American department store
- Founded in 1938
- 2020 revenue of \$6.34 billion
- NYSE: DDS

Background & Business Question

- Retail stores struggle to stock the perfect combination of items
- Some need extra incentive discounts to sell

We aim to make this process smoother by **predicting the potential required discount** of items, informing businesses on stocking items before they make the investment.

Getting Data Into The Cloud

- Checked and re-ordered feature variables in TRNSACT, to make uploadable to the MSiA PostGRESQL cloud server
- Cleaned SKUINFO csv file
 - 9000 rows with errors, caused by extra commas from vendor names

```
drops = []
for i, v in enumerate(df[0]):
    if df.iloc[i, 0].count(',') > 10:
        drops.append(i)
len(drops)
 8148
df = df.drop(drops)
```

```
sku
```

store

register

trannum

interid

saledate

style

quantity

orgprice

amt

amt2

seq

mic

unknown

EDA

- New "discount" variable
 - Percentage of discount / 100
- Drop the irrelevant columns
 - o "unnamed: 0"
 - o "style"
 - o "size"
 - o "unknown"

```
df = psql.read_sql(""" with discount as (
    select trnsact.sku, ROUND(AVG(orgprice), 2) AS orgprice, round(avg((orgprice-retail)/orgprice), 2) as discount
    from trnsact join sksinfo Using(store, sku)
    where orgprice != 0
    group by 1
    )
    select *
    from discount join skuinfo using(sku) """, conn)
```

```
df = df.drop(columns = ['Unnamed: 0', 'style', 'size', 'unknown'])
df.head()
```

	sku	orgprice	discount	dept	classid	upc	color	packsize	vendor	brand
0	3	440.00	0.00	6505	113	40000003000	WHISPERWHITE	1	5119207	TURNBURY
1	69	12.25	0.00	7106	915	400000069000	RED CALF	1.	4816434	ME TOO
2	73	12.00	0.75	6107	001	400000073000	WHITE	6	2017178	NOBILITY

Histogram of the "discount" percent column

Data Cleaning

- Create "color group"
 - Designed color list containing the 14 most popular groups
- Group brands into 5 levels by average price

	sku	orgprice	discount	dept	classid	upc	color	packsize	vendor	brand	color group	level
0	3	440.00	0.00	6505	113	40000003000	WHISPERWHITE	1	5119207	TURNBURY	WHITE	5.0
1	69	12.25	0.00	7106	915	40000069000	RED CALF	1	4816434	ME TOO	RED	4.0
2	73	12.00	0.75	6107	001	40000073000	WHITE	6	2017178	NOBILITY	WHITE	4.0
3	78	59.04	0.17	5301	001	40000078000	BROWN	1	9912767	M.M. & R	BROWN	4.0
4	91	68.00	0.75	9801	004	400000091000	CORAL	1	9212766	GABAR IN	OTHERS	5.0

Visualization of "color group" distribution

Correlation Plot

- The correlation among variables are very low (except orgprice, but we will not include it in the model)
- The multicollinearity would not be a problem.

Feature Engineering & Modeling

- Features: dept, classid, color group, vendor, level
- Feature Engineering:
 - One hot Encoding: dept, classid, color group, vendor
 - Ordinal Encoding: level

Model Evaluation	Linear Regression	Random Forest Regressor	KNeighborsRegressor
Test R^2	0.0114	0.4753	0.3795
Test RMSE	0.2904	0.2115	0.23

Residual plot for RandomForest Regressor

ROI Analysis

Investment Cost		discounts)	Baseline Case (no predicted	es	Aggregate Value
(Days) 270	Duration	3.62%	Profit Margin of Sales at Discount	120,000,000.00	Sales (Volume)
Data Scientist) \$120,000	Salary (Data Scientist) Number of Data Scientists	\$99,493,549.59	Profit of Sales at Discount	\$7,500,000,000.00	Sales (USD)
of Data Scientists 4		50.53%	Profit Margin of Sales at Full	53.00%	Sales at Discount (%)
a Scientist Cost \$355,068	Total Dat	\$2,400,572,000.00	Profit of Sales at Full	63,600,000.00	Sales at Discount (Volume)
ng Time (Hours) 6,480	Computin	33.33%	Total Profit Margin	\$2,749,493,549.59	Sales at Discount (USD)
ng Cost (Cloud, USD) \$0	Computing Cost (Cloud, USD)	\$2,500,000,000.00	Total Profit	47.00%	Sales at Full (%)
mputing Cost \$3,110	Total Cor			56,400,000.00	Sales at Full (Volume)
restment Cost \$358,178	Total Inv	ounts, low case)	Model Benefits (predicted disco	\$4,750,572,000.00	Sales at Full (USD)
		0.01%	Reduction in Sales at Discount	18.48%	Merchandise Inventories (%)
ROI Analysis		52.99%	Sales at Discount (%)	27,200,000.00	Merchandise Inventories (Volume)
se (USD) \$199,358	Low Cas	\$2,748,974,777.23	Sales at Discount (USD)	\$1,700,000,000.00	Merchandise Inventories (USD)
se (USD) \$1,183,333	High Ca	47.01%	Sales at Full (%)	\$5,000,000,000.00	Cost of Sales (USD)
se (%) 55.6	Low Cas	\$4,751,582,760.00	Sales at Full (USD)	\$2,650,000,000.00	Cost of Sales at Discount (USD)
se (%) 330.3	High Ca	\$2,500,557,537.23	Total Profit	\$2,350,000,000.00	Cost of Sales at Full (USD)
		0.02%	Change from Baseline Case (%)		
		\$557,537.23	Change from Baseline Case (USD)	S	Average Values
				\$62.50	Average Sale Price
		unts, high case)	Model Benefits (predicted discou	48.68%	Average Discount Amount
		0.03%	Reduction in Sales at Discount	\$43.23	Average Discount Sale Price
		52.97%	Sales at Discount (%)	\$84.23	Average Full Sale Price
		\$2,747,937,232.49	Sales at Discount (USD)		
		47.03%	Sales at Full (%)		
		\$4,753,604,280.00	Sales at Full (USD)		
		\$2,501,541,512.49	Total Profit		
		0.06%	Change from Baseline Case (%)		
		\$1,541,512.49	Change from Baseline Case (USD)		

Conclusion

- ROI
 - o 55%+ in low case, with 0.01% improvement in discount avoidance
 - o 330%+ in high case, with 0.03% improvement in discount avoidance
- Due to significant differences in profit margins:

marginal reduction in stocking products that require discounts

=

positive ROI