Departamento de Ciência de Computadores

Desenho e Análise de Algoritmos (CC2001) 2017/18

duração: 3h Exame (29.01.2018)

Resolução de questões selecionadas

1. Considere a rede de fluxo seguinte, onde c/f são pares capacidade/fluxo, e s e t são a origem e destino.

a) [9.7 1.0] Indique os valores de:

$$|f|$$
 7 $c(q,m)$ 0 $c(m,q)$ 5

FCUP

$$c_f(q,m)$$
 5 $c_f(m,q)$ 0 $c_f(z,t)$ 2

$$c_f(p,s)$$
 1 $c_f(s,z)$ 0 $c_f(k,t)$ 4

b) [1.5 2.0] Partindo do fluxo f, aplique o algoritmo de Edmonds-Karp para obter um fluxo máximo (desenhe a rede residual em cada iteração, represente o fluxo final na rede, e explique sucintamente os passos).

1. Rede residual G_f para f:

Caminho de s para t em G_f obtido por pesquisa em largura (BFS):

$$\gamma = (s, p, z, t)$$

com capacidade min(7, 2, 2) = 2. Usamos γ para acrescentar 2 unidades ao fluxo.

2. Nova rede G_f :

Caminho de s para t (por BFS):

$$\gamma = (s, x, m, z, q, t).$$

Capacidade de γ é

$$\min(6, 5, 3, 2, 2) = 2.$$

Usamos γ para acrescentar 2 unidades ao fluxo.

3. Nova rede G_f :

Não existe caminho de s para t. O fluxo não pode aumentar. Logo, $|f^*| = 7 + 2 + 2 = 11$. Representação do fluxo final (f^*) :

c) [0.6] Complete as frases: A capacidade do corte $(\{s, q, t\}, \{p, x, z, m, k\})$ $\not\in (8+3+9)+(2+2)=24$

 $(\{s, p, x, m, z\}, \{q, k, t\})$ \acute{e} um corte $\{S,T\}$ com capacidade mínima, a qual \acute{e}

Para provar o **Teorema de Ford-Fulkerson**, mostrou-se que $S = \{$ nós acessíveis de s na rede residual final $\}$ e $T = V \setminus S$ definem um corte $\{S, T\}$ com capacidade mínima.

d) [1.2] Escreva em pseudocódigo uma função que determine um caminho para aumento numa dada rede residual G_f e o incremento de |f|. Assuma que $V = \{1, 2, ..., |V|\}$. Qual é a sua complexidade?

O caminho para aumento do fluxo é um caminho de s para t no grafo G_f e pode ser determinado por pesquisa em largura (como no algoritmo de Edmonds-Karp) ou em profundidade.

```
CAMINHOAUMENTO_BFS(s,t,G_f,pai)

Para v \leftarrow 1 até |G_f.V| fazer

pai[v] \leftarrow 0; visitado[v] \leftarrow \texttt{false};

Q \leftarrow \texttt{MK\_EMPTY\_QUEUE}(|G_f.V|);

ENQUEUE(s,Q); visitado[s] \leftarrow \texttt{true}; cap[s] \leftarrow \infty;

Enquanto (Notemptyqueue(Q)) fazer

v \leftarrow \texttt{DEQUEUE}(Q);

Se \ v = t \text{ então retorna } cap[t];

Para \ w \in G_f.Adjs[v] \text{ fazer}

Se \ visitado[w] = \texttt{false então}

visitado[w] \leftarrow \texttt{true}; pai[w] \leftarrow v;

cap[w] \leftarrow \min(cap[v], \texttt{VALOR\_ARCO}(v, w, G_f));

ENQUEUE(w,Q);

retorna 0; /* zero indica não existência de caminho */
```

Assume-se que cap é um vetor de inteiros e que VALOR_ARCO (v, w, G_f) é a capacidade residual do arco (v, w). A função tem complexidade $O(|V| + |E_f|)$, sendo E_f o conjunto de ramos de G_f .

Em alternativa, podia começar por determinar um caminho de s para t e, a seguir, a sua capacidade.

2. [1.0 1.5] Considere o problema de formar uma certa quantia q com um número **mínimo** de moedas de valores 1, 2, 5, 10, 20, 50, 100, e 200, estando q e esses valores na mesma unidade monetária. Indique a **estratégia** *greedy* que obtém a solução ótima se se dispuser de um número ilimitado de moedas de cada tipo e prove que é incorreta se **for limitado**. Indique **todos** os erros possíveis e instâncias nessas condições.

Estratégia greedy: usar as moedas de valor mais elevado não superior a q o número máximo de vezes possível e aplicar a mesma estratégia para a quantia que sobrar.

Esta estratégia falha se o número de moedas for limitado porque:

- pode não permitir formar a quantia q, embora fosse possível se se usasse outra estratégia (por exemplo, se q = 6 e tiver duas moedas de valor 5, três de valor 2 e nenhuma de valor 1; se aplicar a estratégia greedy, não consegue formar q, embora pudesse formar com as moedas de valor 2).
- pode requerer mais moedas para formar q do que seria necessário (por exemplo, se q=60 e tiver pelo menos uma moeda de 50, três de 20 e cem moedas de 1, e nenhuma dos restantes tipos, a estratégia greedy usaria onze moedas uma de 50 e dez de 1 mas bastava usar três de 20).
- **3.** [2.0] Usando a definição matemática das ordens de grandeza e das classes indicadas, justifique a veracidade ou falsidade de cada uma das afirmações seguintes.
- a) $3n^2 + 100 \in \Omega(6n^2 + 5)$.

Afirmação verdadeira, pois $\exists_{c\in\mathbb{R}^+}\exists_{n_0\in\mathbb{N}}\forall_{n\geq n_0}\ 3n^2+100\geq c(6n^2+5)$. Por exemplo, $c=\frac{1}{2}$ e $n_0=1$.

N.º Nome

b) $100n + 3n\log_2 n \notin \Theta(n\log_2 n)$

Afirmação falsa, pois $\exists_{c_1 \in \mathbb{R}^+} \exists_{c_2 \in \mathbb{R}^+} \exists_{n_0 \in \mathbb{N}} \forall_{n \geq n_0} \quad c_1(n \log_2 n) \leq 100n + 3n \log_2 n \leq c_2(n \log_2 n)$. Por exemplo, $c_1 = 1, c_2 = 103$ e $n_0 = 2$.

- **4.** Considere o algoritmo de Dijkstra, suportado por uma *heap binária de mínimo* Q, para determinação de caminhos mínimos com origem num nó s num grafo dirigido G = (V, E, d), com $d(e) \in \mathbb{Z}^+$, para $e \in E$.
- a) [0.3+0.7] O que retorna a operação EXTRACTMIN(Q)? Como é efetuada e de que modo afeta Q na implementação de Q apresentada nas aulas (recorde que se mantém dois $arrays\ Q.a\ e\ Q.pos_a$).

 $\mathsf{EXTRACTMin}(Q)$ retorna o **identificador do nó** v que tem dist[v] mínimo (e que está ainda na heap).

Cada elemento de Q.a é um par que corresponde a (v, dist[v]), sendo dist[v] a chave. EXTRACTMIN(Q) retira o elemento Q.a[1], que tem chave mínima, substituindo-o pelo elemento Q.a[size] (sendo size o número de elementos ainda na heap, o qual é decerementado nesta operação). A seguir, aplica a operação HEAPIFY(1) para repor a condição de heap-min, isto é, para garantir que a chave de cada nó da heap não excede as chaves dos seus filhos, se existirem. Se exceder, o nó troca de posição com o filho que tiver chave menor e a operação HEAPIFY prossegue a partir desse filho.

Na implementação, $Q.pos_a[v]$ indica a posição dos dados correspondentes ao nó v do grafo, isto é, a posição do par (v, dist[v]) na heap Q.a. Se a posição for alterada, o valor $Q.pos_a[v]$ é alterado consistentemente (garantindo que, enquanto v está na heap, $Q.pos_a[v] = i$ sse Q.a[i] = (v, dist[v])). Esse array é útil na operação DECREASEKEY(Q, v, dist[v]) para localizar (v, dist[v]) na heap em O(1).

Aqui, size é o número de elementos ainda na heap. Podia ser indicado $O(\log_2(|V|))$ em vez de $O(\log_2(size))$.

5. [0.4 0.0(*)] Uma árvore de pesquisa red-black não é uma árvore equilibrada. Que propriedade garante que a operação de procura de um dado valor seja realizada em $O(\log_2 n)$, sendo n o número de valores na árvore?

/* Em alternativa, resolva questão 10. */

Uma árvore "red-black" com n nós internos tem altura menor ou igual a $2\log_2(n+1)$. A operação de pesquisa tem complexidade O(h), sendo h a altura da árvore, e $O(\log_2 n) = O(\log_2(n+1))$.

6. [2.0] Aplique o algoritmo de Prim para obter uma árvore geradora \mathcal{T} de peso $\underline{\mathbf{mínimo}}$ do grafo indicado, com $\underline{\mathrm{raiz}}\ q$. Anote os nós com pares (dist,pai), como se definiu nas aulas, de modo a poder reconstruir **os passos intermédios** dessa aplicação. Na caixa à direita, indique os nós em \mathcal{T} após cada iteração.

Resolução omitida (ver a forma das anotações nos apontamentos das aulas ou na correção do 1ºteste).

- 7. Considere o algoritmo de Kosaraju-Sharir para determinação das componentes fortemente conexas de um grafo dirigido G = (V, E). Pretendemos obter uma lista de listas de nós que definem cada componente.
- a) [1.5 2.0] Descreva os passos principais, as suas complexidades temporais e as estruturas de dados que usam.
 - 1. Aplicar pesquisa em profundidade (DFS) para visitar o grafo G e colocar numa pilha S os identificadores dos nós por ordem crescente de tempo de finalização (o nó v é colocado em S à saída de $DFS_Visit(v)$). Este passo usa ainda um array de booleanos para assinalar os nós já visitados. Tem complexidade $\Theta(|V|+|E|)$, para G representado por listas de adjacências.
 - 2. Construir o grafo G^T transposto de G. Tem complexidade $\Theta(|V| + |E|)$.
 - 3. Visitar G^T , usando a pilha S para definir a ordem pela qual efetua a pesquisa: enquanto a pilha não ficar vazia, retira o nó v do topo e, se v ainda não estiver visitado, efetua pesquisa em profundidade a partir de v, acrescentando a lista de nós que visita nessa pesquisa à lista das componentes (lista de listas). Tem complexidade $\Theta(|V|+|E|)$.
- b) [0.4] Que propriedades da pesquisa e do grafo de componentes são determinantes para a correção?

A pesquisa em profundidade num DAG determina uma ordenação topológica dos nós do DAG.

O grafo das componentes fortemente conexas de G é um DAG. As componentes fortemente conexas de G e G^T são iguais. Uma ordenação topológica do DAG das componentes de G^T corresponde a uma ordenação topológica inversa do DAG as componentes de G.

A pesquisa em DFS de G no passo 1. coloca os nós na pilha S por uma ordem que induz uma ordenação topológica inversa do DAG das componentes de G^T . Se uma componente $\mathcal C$ permite aceder a uma componente $\mathcal C'$ em G (e, consequentemente, no DAG de componentes de G), com $\mathcal C' \neq \mathcal C$, então os nós de $\mathcal C'$ ficaram abaixo dos de $\mathcal C$ na stack S. Assim, ao visitar o DAG de G^T por ordem inversa, garante que os nós que encontra por visitar na pesquisa a partir de um dado v (no passo 2) pertencem à sua componente conexa (dado que as componentes a que conseguiria aceder já estão visitadas).

N.º Nome

8. Considere a função ANALISAROTA(s,t,m,L) para verificar se uma rota a dar por um utilizador passa em s e t e tem lugares suficientes entre s e t para um grupo de m elementos, sendo L uma matriz e L[v,w] o número de lugares disponíveis no troço (v,w) (que será -1 se não existir esse troço). A rota é dada pela sequência de nós por onde passa, os quais são todos distintos. O utilizador começa por dar o número de nós da rota e a seguir indicará os nós. Assuma que $s \neq t$ e $m \geq 1$.

```
ANALISAROTA(s, t, m, L)
 1.
        d \leftarrow m;
 2.
       ok \leftarrow \texttt{false};
 3.
       ler(n); ler(v); k \leftarrow 1;
 4.
        Se (v = s) então ok \leftarrow true;
 5.
        Enquanto (v \neq t \land d = m \land k < n) fazer
              ler(w); k \leftarrow k+1;
 6.
              Se (w = s) então ok \leftarrow true;
 7.
 8.
              senão
 9.
                  se (ok = true \land d > L[v, w]) então
 10.
                      d \leftarrow L[v, w];
 11.
              v \leftarrow w;
 12.
        Se (v = t \land ok = true \land d = m) então
 13.
              retorna true;
 14.
       retorna false;
```

a) [1.2] Qual é a complexidade no pior caso? $\Theta(n)$ E, no melhor caso? $\Theta(1)$ Identifique-os e explique.

A complexidade do algoritmo é dominada pelo ciclo "Enquanto", pois os blocos 1–4 e 12–14 têm complexidade $\Theta(1)$.

O **pior caso** acontece quando se tem de processar os n nós da rota. Ocorre, por exemplo, se a rota não passar nem em s nem em t.

O **melhor caso** ocorre, por exemplo, quando os dois primeiros nós são s e t, pois o bloco 6-11 só será executado uma vez. Esse bloco tem complexidade $\Theta(1)$, assim como cada teste da condição de ciclo e transferência de controlo.

b) [0.7] Assuma que não é necessário ler a rota até ao fim. Indique um **invariante de ciclo** que permita demonstrar a correção da função.

Seja x_1, x_2, \dots, x_n a sequência de nós que o utilizador pretende indicar.

Quando se está a testar a condição de ciclo (linha 5) pela *i*-ésima vez, para $i \ge 1$ fixo, tem-se:

- já foram lidos x_1, \ldots, x_i e falta ler x_{i+1}, \ldots, x_n ;
- o valor de $v \notin x_i$ e o valor de $k \notin i$;
- o valor de ok é true se s já ocorreu em x_1, \ldots, x_i e é false caso contrário;
- o valor de t não ocorreu em x_1, \ldots, x_{i-1} ;
- o valor de d é o número de elementos do grupo que se poderia transportar de s até x_i , se s já tiver ocorrido (d = m a menos que s tenha ocorrido em x_1, \ldots, x_{i-1} e $L[x_{i-1}, x_i] < m$);
- a variável n mantém o valor dado na linha 3 e m o valor que tem na chamada da função.

- c) [1.1] Usando indução matemática (sobre o número de vezes que testa a condição de ciclo), demonstre o invariante que indicou e, aplicando-o, apresente a dedução de que a função retorna o valor correto.
 - (i) Caso de base i=1. As instruções 1–4 garantem que n tem o valor indicado, $d=m, v=x_1, k=1$ e ok= true se $s=x_1$, sendo false, caso contrário, faltando ler x_2,\ldots,x_n .
 - (ii) **Hereditariedade**. Suponhamos, como hipótese de indução (HI), que o estado das variáveis quando está a testar a condição pela *i*-ésima vez é o que se definiu (no invariante enunciado). Se a condição de ciclo for satisfeita, então:
 - pela HI, concluimos que d=m à entrada da iteração i e, como $t \neq v=x_i$, então t não ocorreu em $x_1, \ldots, x_{i-1}, x_i$;
 - executará o bloco 6–11: lê w, o qual pela HI tomará o valor x_{i+1} (ficou por ler $x_{i+2}, \ldots x_n$); incrementa k (usando a HI, conclui-se que k fica com valor i+1); verifica se w=s e, se for, atribuiu true a ok (assinalando o facto de $x_1, \ldots, x_i, x_{i+1}$ passar em s); se $w \neq s$, verifica se x_1, \ldots, x_i já passou em s (pela HI, tal corresponde a verificar o estado da variável ok) e se já tiver passado, em 9–10, reduz d de m para $L[x_i, x_{i+1}]$ se o troço (x_i, x_{i+1}) restringir o número de elementos que se pode transportar de s até s até
 - Portanto, concluimos que quando se executa o teste da condição de ciclo pela (i+1)-ésima vez, o estado das variáveis satisfaz o invariante (ou seja, a condição que se obtém se substituir i por i+1 no seu enunciado).

Da prova de (i) e (ii) resulta, pelo princípio de indução matemática, que a propriedade (i.e., o invariante) se verifica em todas as iterações do ciclo.

O ciclo termina quando $v=t \lor d \neq m \lor k=n$, passando à execução de 12–14 para dar o resultado.

- Se $v = t \wedge ok = \text{true} \wedge d = m$, na linha 12, então, usando o invariante e o facto de $s \neq t$, concluimos que x_1, \ldots, x_k passou em s, que $x_k = t$, e que no percurso de s até t tem lugares suficientes para o grupo.
- Se $v \neq t \lor ok \neq \text{true} \lor d \neq m$, na linha 12, então:
 - se ok = false então x_1, \ldots, x_k não passou em s. Assim, se k = n (linha 5), não havia mais nós. Portanto, é correto retornar false. Se k < n então v = t (linha 5), isto é $x_k = t$, e também é correto retornar false pois não voltará a encontrar t dado que os nós da rota são todos distintos.
 - Se $ok = true \ e \ v = x_k \neq t$, então k = n ou d < m (na paragem do ciclo). Em ambos os casos conclui-se que é correto retornar false pois se k = n a rota terminou sem passar em t e se d < m não será possível transportar o grupo nessa rota. Analogamente se conclui que é correto retornar false se $ok = true \ e \ d < m$.
- d) [0.3] Assuma que é necessário ler a rota até ao fim. Corrija o programa.

Depois do ciclo "Enquanto" terminar, acrescentar entre a linha 11 e a linha 12, o ciclo seguinte para consumir o que falta ler da rota:

```
Enquanto (k < n) fazer ler(w); k \leftarrow k + 1;
```

N.º Nome

9. Seja G=(V,E,d) um grafo dirigido finito, com $V=\{1,2,\ldots,n\}$, e em que $d(e)\in\mathbb{Z}^+$ define o peso do ramo e, para todo $e\in E$. O peso de um percurso é a soma dos pesos nos ramos do percurso. Considere percursos $\gamma_{ij}^{(k,r)}$ de i para j com no máximo r ramos e que passam num nó k pré-definido (basta que k ocorra, não tem de ser um nó intermédio). Seja $K_{ij}^{(k,r)}$ o **peso mínimo** que um tal percurso pode ter, para k e k fixos. Um percurso tem pelo menos um ramo. Se o percurso não existir, defina $K_{ij}^{(k,r)}$ como k.

a) [0.6] Para a instância representada, indique os valores de:

b) [0.5] No caso geral, prove que nenhum percurso $\gamma_{ij}^{(k,r)}$ com peso $K_{ij}^{(k,r)}$ contém um ciclo de k para k, a menos que i=j=k.

Se contiver um ciclo de k para k então $\gamma_{ij}^{(k,r)} = \gamma_{ik}^{(k,r_1)} \gamma_{kk}^{(k,r_2)} \gamma_{kj}^{(k,r_3)}$, com $\gamma_{kk}^{(k,r_2)}$ não vazio e $r_1 + r_2 + r_3 = r$ (podendo r_1 ou r_3 ser 0, caso i = k ou j = k). O percurso $\gamma_{ik}^{(k,r_1)} \gamma_{kj}^{(k,r_3)}$ teria um peso inferior a $K_{ij}^{(k,r)}$ o que seria absurdo dado que passa em k e tem $r_1 + r_3 \leq r$ ramos, pelo que $\gamma_{ij}^{(k,r)}$ não teria peso mínimo. Portanto, $\gamma_{ij}^{(k,r)}$ só pode conter um ciclo de k para k se for um ciclo de k para k.

c) [1.0 0.5(*)] Defina $K_{ij}^{(k,r)}$ por uma recorrência, para todo $(i,j) \in V \times V$ e $r \geq 1$, com $k \geq 1$ fixo, bem como o nó $N_{ij}^{(k,r)}$ que segue o nó i num percurso $\gamma_{ij}^{(k,r)}$ encontrado com peso $K_{ij}^{(k,r)}$. Explique sucintamente. (Sugestão: como exprimir a matriz $K^{(k,r+1)}$ a partir da matriz $K^{(k,r)}$ e de d?)

Seja $D_{ij} = d(i,j)$ se $(i,j) \in E$ e, caso contrário, $D_{ij} = \infty$. Para r = 1, o valor $K_{ij}^{(k,1)}$ requer um percurso de i para j com um ramo e que passe em k, o que obriga a ter k = i ou k = j. Assim,

$$K_{ij}^{(k,1)} = \begin{cases} \infty, & \text{se } i \neq k \land j \neq k \\ D_{ij} & \text{se } i = k \lor j = k \end{cases} \qquad N_{ij}^{(k,1)} = \begin{cases} 0, & \text{se } (i \neq k \land j \neq k) \lor (i,j) \notin E \\ j & \text{se } (i = k \lor j = k) \land (i,j) \in E. \end{cases}$$

Para $r \geq 1$, podemos definir $K_{ij}^{(k,r+1)}$ e $N_{ij}^{(k,r+1)}$, distinguindo i=k de $i \neq k$ assim

$$\begin{array}{lcl} K_{kj}^{(k,r+1)} & = & \min(K_{kj}^{(k,r)}, \min_{1 \leq p \leq n}(K_{kp}^{(k,r)} + D_{pj})) \\ K_{ij}^{(k,r+1)} & = & \min(K_{ij}^{(k,r)}, \min_{1 \leq p \leq n}(D_{ip} + K_{pj}^{(k,r)})), & \text{para } i \neq k \end{array}$$

$$N_{ij}^{(k,r+1)} = \begin{cases} N_{ij}^{(k,r)} & \text{se } K_{ij}^{(k,r+1)} = K_{ij}^{(k,r)} \\ N_{kp}^{(k,r)} & \text{se } i = k \text{ e } K_{kj}^{(k,r+1)} = K_{kp}^{(k,r)} + D_{pj}, \text{ sendo } p \text{ o menor nó nessas condições.} \\ p & \text{se } i \neq k \text{ e } K_{ij}^{(k,r+1)} = D_{ip} + K_{pj}^{(k,r)}, \text{ sendo } p \text{ o menor nó nessas condições.} \end{cases}$$

O percurso mínimo $\gamma_{ij}^{(k,r+1)}$ é um percurso $\gamma_{ij}^{(k,r)}$ com até r ramos ou por um percurso que tem r+1 ramos. Nesse caso, se $i \neq k$, começa por um ramo (i,p), para algum $p \in V$, e os restantes formam um percurso $\gamma_{pj}^{(k,r)}$ ótimo (para passar em k basta que k=p). Se i=k, então $\gamma_{ij}^{(k,r+1)}$ termina com um ramo (p,j), para algum p, e o percurso de i até p é um percurso ótimo $\gamma_{kp}^{(k,r)}$.

d) [0.2 0.0(*)] Indique um valor r_0 , dependente de n, tal que $K_{ij}^{(k,r)}=K_{ij}^{(k,r_0)}$, para todo (i,j) e $r\geq r_0$.

```
r_0 = 2(n-1), pois pode ser preciso passar por todos os nós para chegar de i a k e depois também para chegar de k a j.
```

e) [1.10.1 (*)] Escreva (em pseudocódigo) uma função RESOLVE(D,n,k,K), com **complexidade** $O(n^3)$, para obter a matriz K, sendo K_{ij} o peso mínimo de um percurso de i para j que passe por k, com $k \ge 1$ fixo, para todos os pares (i,j). Deve ser baseada na recorrência definida anteriormente e usar **programação dinâmica**. São dados n, k e a matriz D, sendo $D_{ij} = d(i,j)$ se $(i,j) \in E$ (caso contrário, $D_{ij} = \infty$).

```
Ideia para resolução:
  RESOLVE(D, n, k, K)
        /* inicializar */
        Para i \leftarrow 1 até n fazer
               Para j \leftarrow 1 até n fazer
                    Se ((i \neq k \land j \neq 1) \lor (i,j) \notin E) então K[i,j] \leftarrow \infty; N[i,j] \leftarrow 0;
                    senão K[i,j] \leftarrow D[i,j]; \quad N[i,j] \leftarrow j;
        /* determinar K^{(k,n)} */
        trocas \leftarrow \texttt{true};
        Enquanto (trocas) fazer
               trocas \leftarrow false;
               Para i \leftarrow 1 até n fazer
                    Para j \leftarrow 1 até n fazer
                          Para p \leftarrow 1 até n fazer
                                Se i \neq k então
                                      Se K[i, j] > D[i, p] + K[p, j] então
                                            K[i,j] \leftarrow D[i,p] + K[p,j]; \quad N[i,j] \leftarrow p;
                                            trocas \leftarrow \texttt{true};
                                senão /*i = k */
                                      Se K[k,j] > K[k,p] + D[p,j] então
                                            K[k,j] \leftarrow K[k,p] + D[p,j]; \quad N[k,j] \leftarrow N[k,p];
                                            trocas \leftarrow \texttt{true};
```

A complexidade desta função seria $O(n^4)$ porque cada iteração do ciclo "Enquanto" tem complexidade $O(n^3)$ e o número de iterações do ciclo "Enquanto" não excede 2(n-1)+1, de acordo com 9d).

A complexidade pode ser reduzida para $O(n^3)$, pois podemos evitar o ciclo j. Note-se, por exemplo, que se $i \neq k$ e $j \neq k$, um percurso ótimo de i para j é formado por um percurso ótimo de i para k e um percurso ótimo de k para j. Tendo por base a recorrência, podemos calcular K_{ik} , para todo i, e K_{kj} para todo j em $O(n^3)$, e somar esses valores para obter K_{ij} . A implementação desta ideia requer algum cuidado (podendo usar dois arrays de n inteiros). É de salientar que, uma solução alternativa baseada no algoritmo de Dijkstra poderia ser melhor do que $O(n^3)$.

10. [0.4 0.0(*)] Explique de que modo a correção do algoritmo de Kruskal, para cálculo de uma árvore de suporte de peso **máximo** (ou **mínimo**) de um grafo G = (V, E, d), se deduz da correção da estratégia greedy que determina um conjunto máximo independente num matróide pesado (S, \mathcal{F}) . A que corresponde $S \in \mathcal{F}$?

/* Em alternativa, resolva questão 5. */

Se se definir S=E e \mathcal{F} como conjunto dos subconjuntos E' de E que definem os subgrafos acíclicos de G (ou seja, cada E' define uma floresta de G), o par (S,\mathcal{F}) tem estrutura de matróide.

O algoritmo greedy para um matróide pesado determina $E' \in \mathcal{F}$ com peso máximo. Toma $E' = \emptyset$ e, considerando os elementos de S por ordem crescente de peso, acrescenta o próximo elemento $e \in S$ ao conjunto E' desde que $E' \cup \{e\}$ pertença a \mathcal{F} (o que, para o caso considerado, significa que o subgrafo (V, E') é acíclico). Essa estratégia é análoga à que o algoritmo de Kruskal aplica.