SOVELLETUN TEOLLISUUSELEKTRONIIKAN TEHTÄVIÄ, vko 46/2017

Kirjallisuus: Lämpösuunnittelun kriteerit

Teht. 1) Määritä eri mekanismit/tavat lämmön siirtymiselle pois laitteesta tai komponentista. Vastaus: konvektio, johtuminen ja säteily, tarkemmin ks. ao. kuvat.

Mitkä ovat eri mekanismien tärkeimmät tekijät, joihin lämpösuunnittelija voi vaikuttaa? Vastaus: Jokaisen mekanismin kaavassa olevat tekijät, tarkemmin ks. ao. kuvat. Huom! Samat kaavat löytyvät suomenkielellä materiaalista: Elektronisen laitteen lämpösuunnittelu

Kirjallisuus: Elektronisen laitteen lämpösuunnittelu

Teht. 2) Määritä elektroniikkalaitteen jäähdytystarpeen määrittämisen keskeiset tekijät.

Teht. 3) Määritä lämpöinen/sähköinen analogia ja niiden keskinäinen vastaavuus.

Kirjallisuus: Elektr_komp_jaahdytys_s17_ESi

Materiaalissa olevat ko. transistoria 2N2219 eli harjoitukset 2 ja 3.

Jäähdytys

Lisäjäähdytys

Harjoitus 2.

Transistoria 2N2219 käytetään 0.35W teholla ilman jäähdytyselementtiä. Ympäristön lämpötila on +60 °C. Laske kollektoriliitoksen lämpötila.

Harjoitus 3.

Transistorin 2N2219 käytetään varustettuna jäähdytystähdellä, jonka lämpöresistanssi on 30 °C/W. Ylimenolämpöresistanssi on 5 °C/W.

- a) Laske, mikä on transistorin P_{Cmax} -arvo, jos ympäristö on +50 °C lämpötilassa.
- b) Mikä on kollektoriliitoksen tämpötila, jos transistoria käytetään
- 1 W teholla?
- c) Laske transistorin kuoren lämpötila b-kohdan tapauksessa.
- d) Vertaile eri jäähdytysprofiileja ja niiden fyysisten mittojen merkitystä jäähdytyskykyyn

Harj. 2.
$$T_j = 2$$
 $P = \frac{T_j - T_A}{R_{th,j-A}}$
 $P = 0.35W$
 $P =$

