MATH 315; HOMEWORK # 3

Due Feb. 4, 2015

- 1. (Exercise 11.2) (a) If $m \geq 3$, explain why $\phi(m)$ is always even.
- (b) $\phi(m)$ is "usually" divisible by 4. Describe all of the m's for which $\phi(m)$ is not divisible by 4.
- 2. (Exercise 11.5 (a)) Find x that solves the simultaneous congruence: $x \equiv 3 \pmod{7}$ and $x \equiv 5 \pmod{9}$
- 3. (Exercise 11.11) Find at least five different numbers n with $\phi(n) = 160$. How many more can you find?
- 4. (Exercise 11.13 (a)) For each integer $2 \le a \le 10$, find the last four digits of a^{1000} . [Hint: We need to calculate $a^{1000} \mod 10000$. Use Euler's theorem and Chinese remainder theorem. For example, $10000 = 2^4 \cdot 5^4$; $2^{1000} \equiv 0 \mod 2^4$, and $2^{500} \equiv 1 \mod 5^4$.]
- 5. (page 83, Exercise 12.2) (a) Show that there are infinitely many prime numbers that are congruent to 5 modulo 6. (Hint: use $A = 6p_1p_2 \cdots p_r + 5$.)
- (b) Try to use the same idea (with $A = 5p_1p_2 \cdots p_r + 4$) to show that there are infinitely many primes congruent to 4 modulo 5. What goes wrong? In particular, what happens if you start with $\{19\}$ and try to make a longer list?
 - 6. (page 84, Exercise 12.5, some parts) Recall that the number $n! = 1 \cdot 2 \cdots n$.
 - (1) Find the highest power of 2 dividing 5!, 10!. If you find a pattern, find the highest power of 2 dividing 100!.
 - (2) For a prime p, find the highest power of p dividing n!. (Hint: use the Gauss notation [x]. It is defined as [x] = n if $n \le x < n + 1$. So [2.78] = 2. The number of multiples of p among 1, ..., n, are $\left[\frac{n}{p}\right]$.)
 - (3) Prove that if p^m divides n!, then $m < \frac{n}{p-1}$.