Funciones Aritméticas y el Teorema de Euler

Jesús Liceaga

jose.liceaga@cimat.mx 24 de septiembre de 2022

1. Funciones aritméticas

Definición. Sea n un entero positivo y $p_1^{\alpha_1} \dots p_n^{\alpha_n}$ su factorización en números primos. Entonces

- Denotamos por $\tau(n)$ a la cantidad de divisores que tiene n.
- Denotamos por $\sigma(n)$ a la suma de todos los divisores de n.
- Denotamos por $\pi(n)$ al producto de todos los divisores de n.
- Denotamos por $\varphi(n)$ a la cantidad de enteros positivos menores o iguales a 1 a n que son primos relativos con n.

2. Problemas

Problema 1. Demuestra que $\tau(n) = (\alpha_1 + 1) \dots (\alpha_n + 1)$.

Problema 2. Demuestra que

$$\sigma(n) = \left[\frac{p_1^{\alpha_1+1}-1}{p_1-1}\right] \cdot \ldots \cdot \left[\frac{p_n^{\alpha_n+1}-1}{p_n-1}\right].$$

Problema 3. Demuestra que $\pi(n) = n^{\frac{\tau(n)}{2}}$.

Problema 4. Demuestra que si p es primo y α es un entero positivo, entonces $\varphi(p^{\alpha}) = p^{\alpha-1}(p-1)$.

Problema 5. Prueba que si n, m son enteros positivos tales que mcd(m, n) = 1, entonces $\varphi(nm) = \varphi(n)\varphi(m)$.

Problema 6. Prueba que $\varphi(n) = p_1^{\alpha_1 - 1} \dots p_n^{\alpha_n - 1} (p_1 - 1) \dots (p_n - 1).$

Problema 7. Demuestra que si un entero tiene una cantidad impar de divisores positivos, entonces es un cuadrado perfecto.

Problema 8. Un entero positivo n tiene exactamente 2 divisores, y es tal que n+1 tiene exactamente 3 divisores. ¿Cuántos divisores tiene n+2?

Problema 9. Se tienen n focos apagados y numerados del 1 al n y una fila de n personas P_1, \ldots, P_n . Cada persona P_i pasa junto a los focos y cambia de estado (apaga los prendidos y prende los apagados) a los que están numerados con un múltiplo de i. ¿Cuáles focos quedarán prendidos después de que pasen todas las personas?

Problema 10. Demuestra que si $\sigma(n) = 2n + 1$, entonces n es el cuadrado de un entero impar.

Problema 11. Encuentra todos los enteros positivos n tales que $\tau(n)^2 = n$.

Problema 12. Sea n un entero positivo compuesto. Prueba que $\sigma(n) \ge n + \sqrt{n} + 1$.

Problema 13. Prueba que para $n \geq 2$ se tiene que

$$\frac{\sigma(n)}{\tau(n)} \ge \sqrt{n}.$$

Problema 14. Prueba que existen infinitos enteros positivos k para los cuales no existe un entero positivo n tal que $\varphi(n) = k$.

3. El Teorema de Euler

Teorema. Sen a, n enteros positivos tales que mcd(a, n) = 1. Entonces

$$a^{\varphi(n)} \equiv 1 \mod p$$
.

4. Problemas

Problema 1. ¿Qué residuo deja 2²⁰²² al dividirlo entre 120?

Problema 2. Encuentra los últimos dos dígitos de 2²⁰¹³.

Problema 3. Sean m, n enteros positivos. Demuestra que $\varphi(m^n - 1)$ es divisible entre n.

Problema 4. Determina el número de enteros positivos n tales que $a^{13} - a$ es divisible entre n para todo entero positivo a.

Problema 5. Sean p,q primos. Prueba que $p^{p(q-1)}-1$ no es divisible por $(p^{q-1}-1)q$.

Problema 6. Sean a, b enteros y p un primo de la forma 3k + 2 que divide a $a^2 + ab + b^2$. Prueba que a y b son divisibles por p.

Problema 7. Pruebe que para todo entero positivo s existe un entero positivo n tal que la suma de sus dígitos es s y s|n.