Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 11

Aufgabe 11.1 (3+3+3+4 Punkte)

Geben Sie für die folgenden Sprachen L_i jeweils einen Endlichen Akzeptor A_i , einen Regulären Ausdruck R_i und eine Rechtslineare Grammatik G_i an, so dass für $i \in \{1, 2, 3, 4\}$ gilt: $L(A_i) = \langle R_i \rangle = L(G_i) = L_i$.

Hinweis: Benutzen Sie für Ihren Akzeptor jeweils möglichst wenig Zustände.

- a) $L_1 = \{ w \in \{ a, b \}^* \mid N_a(w) \mod 2 = 1 \}.$
- b) $L_2 = \{w \in \{a, b\}^* \mid w \text{ enthält weder das Teilwort aa noch das Teilwort bb}\}.$
- c) $L_3 = \{w \in \{a, b\}^* \mid \text{Das vorletzte Zeichen in } w \text{ ist ein } a\}.$
- d) $L_4 = \{w \in \{a, b\}^* \mid w \text{ hat gerade Länge und enthält das Teilwort aa}\}.$

Lösung 11.1

- a) Akzeptor:
 - regulärer Ausdruck: b*ab*(ab*ab*)*
 - rechtslineare Grammatik: $G=(\{S,A\},\{\mathtt{a},\mathtt{b}\},S,\{S\to\mathtt{b}S\mid\mathtt{a}A,A\to\mathtt{b}A\mid\varepsilon\mid\mathtt{a}S\})$

- b) Akzeptor:
 - regulärer Ausdruck: Ø* | (b|ab)(ab)* | (a|ba)(ba)*
 - rechtslineare Grammatik: $G = (\{S, A, B\}, \{a, b\}, S, \{S \to \varepsilon \mid bB \mid aA, A \to bB \mid \varepsilon, B \to \varepsilon \mid aA\})$

- c) Akzeptor:
 - regulärer Ausdruck: (a|b)*a(a|b)
 - rechtslineare Grammatik: $G=(\{S,A\},\{\mathtt{a},\mathtt{b}\},S,\{S\to\mathtt{a} S\mid\mathtt{b} S\mid\mathtt{a} A,A\to\mathtt{a}\mid\mathtt{b}\})$

- d) Akzeptor:
 - regulärer Ausdruck: ((a|b)(a|b))* (aa | ((a|b)(aa)(a|b))) ((a|b)(a|b))*
 - rechtslineare Grammatik: $G = (\{S, A, A_2, B, B_1, B_2\}, \{a, b\}, S,$

$$\{S \to \mathtt{a} A \mid \mathtt{b} B,$$

$$A \to aA_2 \mid bS$$
,

$$A_2
ightarrow \mathtt{a} B_2 \mid \mathtt{b} B_2 \mid arepsilon,$$

$$B \to aB_1 \mid bS$$
,

$$B_1 \rightarrow \mathtt{a} B_2 \mid bB,$$

$$B_2 \rightarrow aA_2 \mid bA_2\})$$

Aufgabe 11.2 (1+1 Punkte)

Geben Sie zu folgendem Endlichen Akzeptor A

a) einen regulären Ausdruck R an, so dass $L(A) = \langle R \rangle$ und

b) eine kurze, möglichst präzise Beschreibung für L(A) in eigenen Worten an. Hinweis: Interpretieren Sie dabei die Eingabe als Binärzahl.

Lösung 11.2

- a) (0|1(01*0)*1)*
- b) Der Akzeptor akzeptiert genau die durch 3 teilbaren Binärzahlen und ε .

Aufgabe 11.3 (1+4 Punkte)

Gegeben sei ein Endlicher Akzeptor $A = (Z, z_0, X, f, F)$, der die Sprache $L \subseteq X^*$ akzeptiert. Gesucht ist ein Endlicher Akzeptor A^c , für den gilt: $L(A^c) = L^c$, mit $L^c = \{w \mid w \in X^* \land w \notin L\}$.

- a) Geben Sie A^c an.
- b) Beweisen Sie durch vollständige Induktion über die Wortlänge |w|, dass für Ihren Akzeptor A^c aus Teilaufgabe a) gilt: $L(A^c) = L^c$.

Lösung 11.3

- a) $A^c = (Z, z_0, X, f, Z \setminus F)$
- b) Wir müssen zeigen, dass jedes w, das A zu einem akzeptierenden Zustand führt, in A^c zu einem nicht akzeptierenden Zustand führt **und** jedes Wort w, das A zu einem nicht akzeptierenden Zustand führt, in A^c zu einem akzeptierenden Zustand führt.
 - Wir betrachten $w \in L(A)$:
 - Induktionsanfang: |w| = 0: D.h. $w = \varepsilon$. Da $w \in L(A)$ heisst das, q_0 ist akzeptierender Zustand in A. Nach Konstruktion aus Teilaufgabe a) heisst das auch, dass q_0 kein akzeptierender Zustand in A^c ist. $\sqrt{}$

Induktionsvoraussetzung:

Für beliebiges, aber festes $n \in \mathbb{N}_0$ mit $|w_n| = n$ gilt: $w_n \in L(A) \land w_n \notin L(A^c)$.

Induktionsschluss: Sei $w = w_n x$, mit $x \in X$. Da wir $w \in L(A)$ betrachten, führt $f^*(z_0, w) = f^*(z_0, w_n x) = f(f^*(z_0, w_n), x)$ in einen akzeptierenden Zustand von A und daher in einen nicht akzeptierenden Zustand in A^c .

• Wir betrachten $w \notin L(A)$:

Induktionsanfang: |w| = 0: D.h. $w = \varepsilon$. Da $w \notin L(A)$ heisst das, q_0 ist kein akzeptierender Zustand in A. Nach Konstruktion aus Teilaufgabe a) heisst das auch, dass q_0 akzeptierender Zustand in A^c ist. $\sqrt{}$

Induktionsvoraussetzung:

Für beliebiges, aber festes $n \in \mathbb{N}_0$ mit $|w_n| = n$ gilt: $w_n \notin L(A) \land w_n \in L(A^c)$.

Induktionsschluss: Sei $w = w_n x$, mit $x \in X$. Da wir $w \notin L(A)$ betrachten, führt $f^*(z_0, w) = f^*(z_0, w_n x) = f(f^*(z_0, w_n), x)$ in einen nicht-akzeptierenden Zustand von A und daher in einen akzeptierenden Zustand in A^c .