

Faculty of Engineering & Technology Electrical & Computer Engineering Department

CIRCUIT ANALYSIS ENEE2304

PSpice Project

Prepared by:

Maha Maher Mali

1200746

Instructor: Dr. Hakam Shehadeh

Section: 1

Date: 14/6/2022

Contents

Question 1	4
Question 2	5
Part A:	5
Part B	7
Part c:	8
Part D:	9

Table of Figures

Figure 1: circuit for Question one	. 4
Figure 2: circuit for Q2 part A	
Figure 3: The simulation Q2 part A	. 6
Figure 4: circuit for Q2 part B	
Figure 5: The simulation Q2 part B	. 7
Figure 6 :circuit for Q2 part C	. 8
Figure 7: The simulation Q2 part C	
Figure 8: Average power	

Question 1

Construct a PSPICE schematic for the circuit shown in the figure below. Simulate the schematic and show voltages at each node and current in each branch.

Figure 1: circuit for Question one

For 5i2 I used the current controlled voltage source (H) in PSpice, and for 0.2v3 I used voltage-controlled voltage source(E) in PSpice, and for 0.02v1 I used voltage controlled current source.

Question 2

The circuit shown in Figure below has two inputs, vs(t) and is(t), and one output, v(t). When inputs are given by $Vs(t) = Vm \sin 6t \, V$ and $is(t) = Im \, A$ the output will be $vo(t) = A \sin(6t + \theta) + B \, V$ 3Linearity requires that A be proportional to Vm and that B be proportional to Im. Consequently, we can write A = k1.Vm and B = k2.Im, where k1 and k2 are constants yet to be determined.

- (a) Use PSpice to determine the value of k1 by simulating the circuit, using Vm = 1 V and Im= 0.
- (b) Use PSpice to determine the value of k2 by simulating the circuit, using Vm =0 V and Im= 1.
- (c) Knowing k1 and k2, specify the values of Vm and Im that are required to cause $vo(t)=5sin(6t+\theta)+5$ V. Simulate the circuit, using PSpice to verify the specified values of Vm and Im.
- (d) Determine the average power delivered by vs(t) using Pspice.

Part A:

Circuit

Vm=1v, Im=0A

Figure 2: circuit for Q2 part A

The simulation:

Figure 3: The simulation Q2 part A

K1=0.4 V/A

Part B

Circuit

Vm=0v, Im=0A

Figure 4: circuit for Q2 part B

The simulation:

Figure 5: The simulation Q2 part B

K2=-3 V/A

Part c:

Circuit

Vm=5/k1=5/0.405=12.35v, Im=5/k2=5/-3=-1.67 A

Figure 6 :circuit for Q2 part C

The simulation:

Figure 7: The simulation Q2 part C

Part D:

Figure 8:Average power

 $P = 0.5 \text{ Vm Im} = 0.5 (12.5) (-1.67) = -10.418 \text{ watt} \frac{\text{(deliver power)}}{\text{(deliver power)}}$