

```
Esercizio 2
                                                    $ ({1}) = {(1,n) /n E N*}
                                      f (0) = p
$ (N x N*) = N
                       f (Ø) = Ø
皇({5}) = {(5,1)
(ii)
f non \tilde{e} injettiva in quanto ci sono coppie che Alanno la stessa immagine, ad esempio (4,1) e (2,2). Infatti f((4,1)) = 4 = f((2,2)).
f & suriettiva in quanto im (f) = N
Non è biettiva di consequenza alla non iniettivita.
(iii)
Sia (5, p) un insieme ordinato. E' un reticolo => (
Vx, y E 5 (3inf ({x,y}) ^ 3 sup ({x,y}))
(iv)
· Hinimo = (x,4) E N * N * E minimo <=> V(a,b) E N x N * ((x,4) ~ (a,b))
(x,4) 7 (a,6)<-> ((x,4) = (a,6) 4 $((0x,4) & divisore proprio di $((a,6)))
l'unico elemento possibile è (1,1) in quanto f(1,1) = 1 e divide propri.
qualsiasi altro numero
· Hassimo = (x, y) E N*N* = massimo (=> V(0, b) E N*N*((a,b) ~ (x,y))
Man sesse L'unico elemento possibile sarrebbe O ma non esiste alcuna
coppia la cui immagine é 0 avindi non cé massimo
· Hinimali = (x,4) E N×N* é minimale (=> Va,b) E N×N* ((a,b) x (x,4) ^
  (x,4) ?(a,b) => (x,4) ?(a,b))
Il minimo (1,1) è anche l'unico minimale
· Massimali = (x, y) E M × M * & massimale <+> V(a, b) E M × M * ((a, b) T (x, y) A
 (x,y) ~(a,b) => (x,y) ~(x,y))
Potendo prendere valori simpre maggiori, dato che N non é superiormente
limitato, non esistono elementi massimali
La struttura NON é un reticolo in quanto, prendendo ad esempio due
elementi (1,2) e (2,1):
     \{(1,2), (2,1)\}^{\uparrow} = \{(2,2), (4,1)\}
Non é possibile al eterminare un esser minimo, avvero non é possibile
determinare l'estremo superiore.
```


Exta 210 5		
(i)		
		0 00 (0 0)
Siano 3 e 5 rad Svi Buppando otteni	amo $(x-3)(x-5) =$	Ruffini (x-3) (x-5) divide f.
Analogamente, se	fē multiplo di x² i suoi multipli.	- 8x+2, le sue radici soro tutte e
(11)		
No in quanto \$ x	$x^2 - 8x + 2 = (x - 3)(x$	(===)
(iii)		
Vero in quanto non	n ammette radici in	Z3.
(iv)		
Folso in quanto 3	3 e 5 sono primi.	
(v)		
Folso perché ad en	empio 7 non ē radio	ce del polinomio.
(vi)		
Per verificare se o esiste una costan esplicitamente l'e	nte c E 713 ? 203 to	in $\mathbb{Z}_{163}(z)$ dobbiano determinare se ale che $g(x) \equiv 13 c \cdot l(x)$. Scriviano
	$\equiv 13 C (7 x^2 + 9x -$	12) 4=>
3x2-11x+6=	13 7 cx2 + 9 cx - 2	12 c
Affinché i due pos	linomi siano ugual	li, i coefficienti corrispondenti devono
	in modulo 13. Or	1 1
3 = 13 7c -	17 =139 € 6	7-13 T12 c
Partendo da 3 Quindi otteniamo	=13 7c troviamo	l'in verso molti plicativo di 7:2.
Per il resto otteni	amo lo stesso rise	ultato- avindi ge la sono associati
e la costante d	i associatione ē c	= 6. d
Esercizio 6		
(i)		
E' una tautologi	ia .	
(ii)		
Non é una tauto	logia.	
	0	