

Transparent Bridging

Basic functions of Switch

스위치에서는 데이터를 어떻게 처리하는지 기본적인 동작원리를 배워보자.

- Address learning
- Forwarding/Filtering
- Loop avoidance

Transmitting Frames

Transmitting Frames

Transmitting Frames

■ 초기에는 MAC Address Table이 비어 있다

Transparent Bridging

■ Host A가 Host B에게 Frame을 전달하려고 한다

Transparent Bridging

■ Host B가 Host A에게 Frame을 전달하려고 한다

Forwarding Frames

D-mac 0260.8C01.2222 S-mac 0260 8C01.1111

- Host A가 Host C에게 Frame을 전달하려고 한다
- E2에 대한 Aging Time이 초기화 된다

Filtering Frames

■ Host A가 Host B에게 Frame을 전달하려고 한다

Broadcast and Multicast Frames

■ Host B가 Broadcast 또는 Multicast Frame을 전달하려고 한다

Configuration a Switch

How can I Configure switch?

기본적인 스위치 설정에 대해서 알아보자.

Setting Speed and Duplex options

📝 Switch의 interface에서 duplex와 speed 설정

Switch(config)# interface fastethernet 0/1 Switch(config-if)# duplex { auto | full | half } Switch(config-if)# speed { 10 | 100 | auto }

Showing the Duplex options

Duplex 설정 확인

Switch# show interface fastethernet 0/1

FastEthernet0/3 is up, line protocol is down

Hardware is Fast Ethernet, address is 0000.0000.0003 (bia 0000.0000.0003)

MTU 1500 bytes, BW 100000 Kbit, DLY 100 usec,

reliability 255/255, txload 1/255, rxload 1/255

Encapsulation ARPA, loopback not set

Keepalive set (10 sec)

Half-duplex, 100Mb/s

input flow-control is off, output flow-control is off

ARP type: ARPA, ARP Timeout 04:00:00

Last input never, output never, output hang never

Last clearing of "show interface" counters never

Queueing strategy: fifo

Output queue 0/40, 0 drops; input queue 0/75, 0 drops

5 minute input rate 0 bits/sec, 0 packets/sec

5 minute output rate 0 bits/sec, 0 packets/sec

Managing the MAC Address Table

Switch의	MAC Address	Table 확인
----------------	-------------	----------

Switch# show mac-address- table

Dynamic Address Count: 1
Secure Address Count: 0

Static Address (User-defined) Count: 0

System Self Address Count: 25

Total MAC addresses: 26

Maximum MAC addresses: 8192

Non-static Address Table:

Destination Address Address Type VLAN Destination Port

Setting a MAC Address Static

Switch에서 MAC Address를 수동으로 설정

Switch(config)# mac-address-table static {mac-address} vlan {vlan-id} interface type {slot/port}

MAC Address 수동 설정 확인

Switch(config)# mac-address-table static 1111.1111.1111 vlan 1 interface fastethernet 0/1

Switch# show mac-address-table

Dynamic Address Count: Secure Address Count:

Static Address (User-defined) Count:

Destination Address Address Type **Destination Port VLAN** 0050.0f02.3372 Dynamic FastEthernet 0/2 1111.1111.1111 Static Fastethernet 0/1

Clearing NVRAM

📝 Switch의 Startup-config 삭제

Switch# erase startup-config

- Startup-config 파일을 제거하면 모든 구성 정보가 제거된다
- Reload를 하면 초기화 된 상태로 부팅하게 된다

VLAN VLAN Concep 사용자의 증가로 I 되면서 많은 양의 하는 스위치로써보

LAN

- 동일한 LAN 영역에 있는 장치들은 서로 통신을 할 수 있다.
- LAN 영역에 있는 장치의 수가 늘어나게 되면서 브로드캐스트 트래픽이 폭발적으로 증가하고 이로 인해 전체 네트워크의 가용성이 떨어지게 되었다.
- 서로 다른 부서간에 불필요한 통신을 하게 되면서 보안성도 문제가 되었다.

Local Area Network

VLAN

- Switch가 가지고 있는 Port를 VLAN ID 그룹에 소속 시켜 운영 한다.
- VLAN을 통해 영역을 나눔으로 인해 불필요한 브로드캐스트 트래픽을 제한하여 네트워크의 가용성이 높아지게 된다.
- 트래픽이 제한되기 때문에 보안성이 증가 된다.

Virtual - LAN

VLAN Overview

V

VLAN Table

- MAC Address Table에는 Mac 주소와 Port의 정보 뿐만 아니라 VLAN ID 정보까지 기록 되어 있다.
- 이를 통해서 서로 다른 VLAN ID 그룹에 속해 있는 장치와의 통신을 차단 할 수 있게 된다.

VLAN 테이블

VLAN 정리

Virtual LAN 특징

- 하나의 LAN 영역을 여러 개의 가상의 구역으로 나누는 기술이다.
- VLAN으로 나누어진 영역은 독립된 브로드캐스트 도메인 영역으로 나누어지게 된다.
- VLAN으로 나누어진 영역은 같은 그룹에 속해 있어야 통신을 할 수 있다.
- VLAN은 VLAN ID로 구분을 지으며, 같은 VLAN ID 그룹에 속해야 통신을 할 수 있다.
- Switch에서는 Port 별로 각각의 VLAN 그룹에 소속시켜 운영한다.
- 특정 VLAN 그룹에 속하여 운영되는 Port를 Access Port라 한다.
- VLAN ID는 번호로 구분이 되며, 2^12 = 4096개의 구분 번호가 있다.
- 서로 다른 VLAN간에 통신을 하기 위해서는 Routing 기능이 있는 라우터나 멀티레이어 스위치가 필요 하다.

VLAN Configuration

Virtual LAN

VLAN Configure

▼ VLAN 생성 및 이름 설정

SW1(config)# vlan vlan-id SW1(config-vlan) # name name

VLAN 삭제

SW1(config)# no vlan vlan-id

Access port 설정

SW1(config)# interface fastethernet slot / port

SW1(config-if) # switchport mode access

SW1(config-if) # switchport access vlan vlan-id

Interface 범위 설정

SW1(config)# interface range fastethernet slot / port – port

SW1(config)# interface range fastethernet slot / port, fastethernet slot / port SW1(config-if-range)#

VLAN Verification

SW1# show vlan brief

VLAN	Name	Status	Ports
1	default	active	Fa0/5, Fa0/6, Fa0/7, Fa0/8 Fa0/9, Fa0/10, Fa0/11, Fa0/12 Fa0/13, Fa0/14, Fa0/15, Fa0/16 Fa0/17, Fa0/18, Fa0/19, Fa0/20 Fa0/21, Fa0/22, Fa0/23, Fa0/24
10	Red	active	Fa0/1, Fa0/2
20	Blue	active	Fa0/3, Fa0/4
1002	fddi-default	active	
1003	token-ring-default	active	
1004	fddinet-default	active	
1005	trnet-default	active	

VLAN Verification

MAC Address Table과 VLAN

SW1# show mac-address-table

Mac Address Table

Vlan	Mac Address	Type	Ports
		->	
10	0002.17b6.a643	DYNAMIC	5 Fa0/1
10	0010.1189.7862	DYNAMIC	C Fa0/2
20	0001.6416.aa88	DYNAMIO	C Fa0/3
20	0002.4ac5.9230	DYNAMIC	C Fa0/4

Spanning Tree Protocol Concept

LAN 이중화 구성에서 발생되는 Loop 문제를 파악하고 이를 해결 할 수 있는 기술인 STP에 대해서 알아보자.

in the second

Redundancy

- 단일 경로만 존재하는 네트워크 구성은 평소에는 문제 없이 통신을 할 수 있다.
- 하지만 만일 케이블에 문제가 생겨서 더 이상 통신을 할 수 없게 되었을 경우 이 문제를 확인하고 다시 복구 하기 까지 많은 시간이 소요가 된다.

SPOF(Single Point Of Failure)

- 단일 경로에 문제가 발생하게 되면 대체 수단이 없어 통신이 안 되는 문제가 발생하게 된다.
- 어떤 하나의 문제로 인해 서비스가 중단되는 요소를 단일 장애점(SPOF) 이라 한다. SPOF를 해결 하기 위한 추가 작업과 이로 인한 서비스 지연의 시간이 길어 질 수록 서비스 품질 이 떨어지는 결과를 가지게 된다.

단일 장애점

in the second

HA(High Availability)

- 이러한 문제를 해결 하기 위해 대체 경로를 추가로 증설하여 지속적으로 통신을 할 수 있도록 하여 고가용성을 위한 구성을 하게 된다.
- 고가용성이란 끊김 없는 서비스를 구현 함으로써 서비스의 품질 또한 높아지게 하는 것이다.
- 고가용성을 위해서는 이중화 구성이 필수 조건이다.

Redundancy

이중화 특징

- 대체 경로의 수단을 제공 함으로 인해 지속적인 서비스를 유지 할 수 있게 된다.
- 경로 뿐만 아니라 장비 자체를 이중화 함으로 인해 혹시 모를 문제에 대비 할 수 있다.
- 이중화 구성을 하는 것은 고가용성(HA)을 높이기 위함이며, 이를 통해 99.999%의 서비스 가 동률을 구성 할 수 있다.
- 이중화를 구성하기 때문에 비용 역시 많이 소모되게 된다.
- 이중화 구성을 통해 대체 경로를 확보하게 될 경우 L2의 특성상 Loop가 발생 되는 문제가 존재한다.

Broadcast Storm

- 단말 장치들은 ARP, DHCP Discover, NetBIOS 등과 같은 브로드캐스트 트래픽을 발생 시킨다.
- 브로드캐스트를 받은 스위치는 In-Bound Port를 제외한 모든 Port로 Flooding을 하게 되며, 결과 적으로 스위치 사이에서 브로드캐스트 트래픽이 빙글빙글 돌게 된다.
- 이러한 현상이 누적 될 경우 가용 대역폭이 줄어 들어 실제 통신에서의 속도가 줄어들게 된다.

브로드캐스트 스톰

Multiple Frame Copy

- 단말 장치는 유니캐스트 통신을 시도하지만 스위치에서 목적지에 대한 MAC 주소를 모르고 있
- 을 경우 Flooding을 통해 트래픽을 전달 하게 된다. (Unknown Unicast Frame) 하나의 프레임이 Flooding을 통해 복사가 이루어져 전달 되어 동일한 프레임을 2번 이상 받는 이 상한 현상이 발생 된다.

프레임 다중 복사

Mac Database Instability

- 다중 프레임 복사와 같이 Unknown Unicast Frame이 전달 될 경우 발생 된다.
- In-Bound Port를 제외한 모든 Port로 프레임이 전달 되기 때문에 특정 목적지로 가기 위한 MAC Address Table의 학습이 부정확하게 이루어지게 된다.

MAC 데이터베이스 불안정

STP Process

Spanning Tree Protocol

S

STP

- 물리적 Loop 환경을 인지하고 특정 Link에 대해 사용 하지 않도록 차단(Block)하여 Loop를 방지 한다.
- 지속적으로 네트워크 환경을 모니터링 하면서 특정 포트의 장애나 토폴로지에 변화가 발생 시재 설정을 통해 연결의 손실이나 새로운 Loop를 막는다.

Spanning Tree Protocol

BPDU

- 현재 네트워크 환경이 Loop 환경이 구성 되어 있는지 또는 네트워크의 변화가 있는지 감시하기 위한 도구
- 지속적인 감시를 위해서 Root Bridge는 매 2초 간격으로 BPDU를 전송을 한다.
- 기본 적으로 모든 스위치는 BPDU를 생성하고 전달하지만 Root Bridge가 존재하게 될 경우 Root를 제외한 모든 스위치는 BPDU를 생성하지 못한다.

Bridge Protocol Data Unit

المالية

Root Bridge

- Loop를 감지하기 위해서는 기준이 될 스위치가 필요하며, 이 기준의 역할을 하는 스위치를 Root Bridge라고 한다.
- 여러 스위치들 중에서 하나의 Root Bridge를 선출하기 위해 모든 장비들이 공통적으로 가지고 있는 MAC 주소를 통해 Root Bridge(가장 낮은 MAC 주소)를 선출하게 된다.

루트 브릿지

Loop Monitoring

스위치는 하나 이상의 Port를 통해 동일한 BPDU가 감지 될 경우 Loop가 발생 되었다고 감지를 하게 되어 하나의 Port를 제외한 나머지 Port를 차단(Block)하게 된다.

Loop 모니터링

Loop Monitoring

스위치는 자신이 특정 Port를 통해서 BPDU를 전달했는데 동일한 Port로 동일한 BPDU가 감지 될 경우 해당 Port를 차단(Block)하게 된다.

Loop 모니터링

Summary

- Graph 구조 또는 Mesh 형 토폴로지에서는 하나의 장치에 문제가 발생이 되어도 대체 할 수 있는 수단이 존재한다.
- L2 네트워크의 특성상 이런 구조의 네트워크 환경에서는 Loop가 필연적으로 발생이 될 수 밖에 없다.

in the second

Summary

- Loop 가 발생 되는 구간을 BPDU를 통해 미리 감지를 하고 감지 된 Link를 사용 못 하도록 차단 (Block) 함으로 Loop가 발생 될 소지를 막아 버린다.
- 이렇게 구성을 하게 됨으로 인해서 Graph 구조 또는 Mesh 형 네트워크의 Loop 환경을 Loop가 없는 Tree 구조로 바꾸게 된다.

STP Verification

Spanning Tree Protocol

STP Verification

🛃 STP 확인 (Root Bridge)

SW1# show spanning-tree

VLAN0001

Spanning tree enabled protocol ieee

Root ID Priority 32769

> Address 000C.85A3.D246

This bridge is the root

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Bridge ID (priority 32768 sys-id-ext 1) Priority 32769

> Address 000C.85A3.D246

Hello Time 2 sec Forward Delay 15 sec Max Age 20 sec

Aging Time 20

Interface	Role	Sts	Cost	Prio.Nbr	Type
Fa0/1	Desg	FWD	19	128.1	P2p
Fa0/2	Desg	FWD	19	128.2	P2p

STP Verification

STP 확인 (non-Root Bridge)

SW2# show spanning-tree

VLAN0001

Spanning tree enabled protocol ieee

Root ID Priority 32769

Address 000C.85A3.D246

Cost 19

Port 1(FastEthernet0/1)

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Bridge ID Priority 32769 (priority 32768 sys-id-ext 1)

Address 0050.0FCB.7CDD

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Aging Time 20

Interface	Role	Sts	Cost	Prio.Nbr	Type
Fa0/1	Root	FWD	19	128.1	P2p
Fa0/2	Altn	BLK	19	128.2	P2p