Czujniki

Czujniki - czyli jak rozpoznać środowisko

Czujniki (sensory) - przetworniki wielkości nieelektrycznych na elektryczne np. **temperatura na napięcie**.

Rodzaje pomiarów

Pomiary bezpośrednie

czujnik temperatury

temperatura

czujnik ciśnienia

ciśnienie

Pomiary pośrednie

temperatura ciśnienie

wysokość

Czujnik ciśnienia atmosferycznego BMP280

- Zakres pomiaru ciśnienia: 300 1100 hPa (wysokość 9000 m – -500 m)
- Maksymalna rozdzielczość: 0.16 Pa (< 10 cm)

Zasilanie: 3.3 V

• Interfejs komunikacji: I²C (adres: 0x76)

Magistrala I²C

BMP280 – podłączenie

1. Podłącz czujnik ciśnienia do płytki CanSat Kit w następujący sposób:

Piny płytki CanSat Kit	Piny czujnika ciśnienia BMP280
+3.3 V	VCC
GND	GND
SCL	SCL
SDA	SDA

Wykorzystaj płytkę stykową oraz kabelki do płytki stykowej.

Wszelkie podpięcia/zmiany w podłączeniu elementów wykonuj przy odłączonej płytce od źródeł zasilania (port USB, baterie)! Sprawdź poprawność podłączenia i dopiero wtedy włącz zasilanie!

BMP280 – oprogramowanie

- Otwórz przykładowy program "File -> Examples -> CanSatKit -> PressureSensor" i wgraj go na płytkę.
- 3. Uruchom Serial Monitor (Monitor portu szeregowego)
- 4. Uruchom aplikację Serial Plotter (Kreślarka)

Analogowy czujnik temperatury LM35

 czujnik analogowy – wykorzystamy pomiar napięcia (przetwornik ADC) w komputerze pokładowym

$$U_{WY}(T) = 10 \left[\frac{mV}{_{\circ}C} \right] \cdot T \left[{^{\circ}C} \right]$$

- rozdzielczość pomiaru napięcia przez komputer pokładowy $\approx 0.81~mV~$ daje to $\sim 0.1~$ °C rozdzielczości
- dokładność czujnika 0,5 °C @ 25 °C

LM35 - podłączenie

Piny płytki CanSat Kit	Piny czujnika temperatury LM35
+5 V	(1) Vcc
AO	(2) OUT
GND	(3) GND

Wykorzystaj płytkę stykową oraz kabelki do płytki stykowej.

Wszelkie podpięcia/zmiany w podłączeniu elementów wykonuj przy odłączonej płytce od źródeł zasilania (port USB, baterie)!
Sprawdź poprawność podłączenia i dopiero wtedy włącz zasilanie!

LM35 – oprogramowanie

- Otwórz przykładowy program "File -> Examples -> CanSatKit -> TemperatureSensor" i wgraj go na płytkę.
- 2. Uruchom Serial Monitor (Monitor portu szeregowego)
- 3. Uruchom aplikację Serial Plotter (Kreślarka)

LM35 – praktyczne porady

 W celu poprawy jakości wskazań czujnika (redukcji szumów) zastosuj prosty filtr dolnoprzepustowy zbudowany z kondensatora i rezystora

- 2. Możesz mierzyć wskazanie czujnika kilka razy (pomiar jest bardzo szybki), a następnie uśrednić wynik w celu uzyskania lepszej jakości pomiaru
- 3. Jeśli czujnik wskazuje "na oko" za wysoką lub za niską temperaturę możesz spróbować go skalibrować (jego tzw. offset) użyj do tego innego termometru (referencyjnego) lub innych metod (pomyśl nad nimi!)

Czujniki analogowe vs. cyfrowe

analogowe

- często uproszczone oprogramowanie
- większa podatność na szumy
- podłączamy do pinów Ax

cyfrowe

- bardziej skomplikowane oprogramowanie
- bardziej odporne na szumy
- wiele czujników na jednej magistrali (I2C, SPI)

Drużyny mają pełną dowolność w wyborze modeli czujników także tych do misji podstawowej!

Płytka ładunku użytecznego (payload)

Umiejscowienie czujników

Misja podstawowa zakłada pomiar temperatury powietrza na zewnątrz CanSata!

Przetwarzanie danych

Lepiej unikać obróbki danych na pokładzie CanSata

w miarę możliwości i użyteczności lepiej przesyłać wartości "surowe"

np. wysokość (h) obliczana ze wzoru barometrycznego:

$$p = p_0 \cdot \exp\left(-\frac{\mu g h}{RT}\right)$$

p₀ – ciśnienie atmosferyczne na poziomie odniesienia,

μ – masa molowa powietrza,

g – przyspieszenie ziemskie,

R – stała gazowa,

T – temperatura powietrza w K.

Analiza danych

- Co mówią zebrane dane?
- Dopasowanie przewidywań teoretycznych / modelu
- Określenie poprawności danych
- Jak najlepiej przedstawić zebrane dane?
 - tabelawykres
- Wykresy do misji podstawowej:
 - w funkcji czasu: np. T(t), h(t)
 - w funkcji innych wielkości: np. T(h)

Wizualizacja i obróbka danych

- SerialPlot
- pakiety biurowe np. LibreOffice, MS Office itp.
- GNUPlot
- Python
- LabVIEW
- Matlab / Octave

Jak narysować wykres?

Jak wizualizować dane?

