Chapitre 4: Thème: ÉNERGIE

Circuits et grandeurs électriques

TP : Se re-familiariser avec les montages électriques

Tous les câblages, décâblages et modifications de montages doivent être effectués HORS TENSION.

La mise sous tension d'un montage s'effectue après contrôle et autorisation du professeur.

Document 1 : Rappels sur la schématisation en électricité

—G—	Générateur de tension continue		Pile
+	Générateur idéal de tension continue		Interrupteur ouvert Interrupteur fermé
	Conducteur ohmique (résistance)		Lampe
M	Moteur	—COM ✓ Ω	Ohmmètre
COM	Voltmètre	COM A	Ampèremètre
	Diode		Diode électroluminescente (DEL)

Document 2 : Rappel sur la mesure d'une tension continue dans un circuit électrique

La fonction **voltmètre**

Pour brancher le multimètre en fonction "voltmètre", il faudra :

* Tourner le sélecteur dans la zone V en choisisant le calibre qui convient.

ATTENTION : sur ce multimètre, il y a 2 zones V . Nous n'utiliserons ici que celle V ---- (tension continue).

- * Brancher la borne notée "COM"
- * Brancher la borne notée "V" avec un fil rouge

Il reste à l'insérer dans le circuit ... en <u>dérivation</u>!

Document 3 : Rappel sur la mesure d'une intensité continue dans un circuit électrique

A - Modélisation du fonctionnement d'un four

On étudie un circuit modélisant un four avec voyant lumineux (modélisé par une résistance $R=100\,\Omega$ en série avec une lampe) et son alimentation (ici $6\,V$ continu).

•	Faire un	schéma	du montage	équivalent.
---	----------	--------	------------	-------------

- → Réaliser le circuit (APPEL PROFESSEUR AVANT DE METTRE SOUS TENSION)
- Placer les multimètres nécessaires sur le schéma afin de mesurer les tensions aux bornes des composants du circuit.
 - → Une fois les multimètres en place, procéder aux mesures nécessaires pour répondre aux questions ci-dessous.
- Donner la valeur des tensions aux bornes du générateur G et de la résistance U_R
-

.....

- Les composants sont-ils parcourus par une même intensité I dans un circuit série ?
- Quelle est la valeur de l'intensité I qui parcourt les composants du circuit ? (Il faut déplacer les multimètres)
- Quelle est la relation entre U_R et I aux bornes d'une résistance ? (loi d'Ohm)

.....

B - Modélisation du fonctionnement d'une guirlande de Noël

On étudie un circuit modélisant une mini guirlande de Noël (modélisée par deux lampes en dérivation ou parallèles) et son alimentation (ici $6\ V$ continu).

•	Faire un schéma du montage équivalent.
	→ Réaliser le circuit (APPEL PROFESSEUR AVANT DE METTRE SOUS TENSION)
	Placer les multimètres nécessaires sur le schéma afin de mesurer les intensités dans les différentes branches de circuit.
	Une fois ces multimètres validés par le professeur procéder aux mesures nécessaires pour répondre aux questions ci- ssous.
•	Les composants sont-ils parcourus par une même intensité I dans un circuit en dérivation ?
•	Indiquer l'intensité qui parcourt chaque branche
•	Qu'est-ce que la loi des nœuds ou loi d'additivité des courants ?
•••	
• • •	

Chapitre 4: Thème: ÉNERGIE

Circuits et grandeurs électriques

Activité : Les conventions dans un circuit électrique

Sur un schéma élec	ctrique, le sens convent	ionnel du couran	it électrique est to	oujours indiqué par	
	placée <u>sur</u> le schéma ((sur un fil) et sort	ant par la borne .	du générate	ır.

Représenter en vert l'intensité I du courant électrique dans le circuit ci-dessous.

Sur un schéma, la tension U_{AB} est représentée parplacée <u>à côté</u> du schéma dont la pointe est du côté du point
Pour avoir une tension positive aux bornes d'un générateur, on trace une flèche à côté du générateur,
orientée dans le même sens / le sens inverse que l'intensité du courant : c'est la convention
Pour avoir une tension positive aux bornes d'un récepteur, on trace une flèche à côté du récepteur, orientée
dans le même sens / le sens inverse de l'intensité du courant qui le traverse : c'est la convention

 ${\mathscr P}$ Représenter en bleu les tensions U_G aux bornes du générateur et U_{AB} aux bornes de la lampe.

Un ampèremètre se branche toujours en série / dérivation dans un circuit

Pour que l'intensité du courant soit positive, le courant doit entrer par la borne de l'ampèremètre et sortir par la borne de l'ampèremètre.

Un voltmètre se branche toujours en série / dérivation dans un circuit

1. Calculer P le produit entre la tension $U_L=6.0~V$ aux bornes de la lampe et l'intensité $I=0.2~A$ traversant la lampe.	
	•
	•

2. Conclure.
3. En déduire la valeur de l'énergie électrique E_{lampe} reçue par la lampe en $30 \ s$.
c i tumpe s i i
##
\bigstar Avec un, on mesure l'énergie consommée par la lampe pendant $30 \ s$: $E=\dots$
4. Est-ce cohérent avec la valeur prévue dans la question 3. ?
4. Est-ce conferent avec la valeur prevue dans la question 3. :
Données : On rappelle que : $1 kWh = 3.6 MJ$

Que faire avec l'énergie électrique ?

Que peut-on faire avec $1\ kWh$?				
	On peut regarder la TV entre 3h et 5h selon la taille et la technologie de son téléviseur			
Dans le salon	On peut utiliser un ordinateur pendant 10 h			
	On peut aussi laisser son lecteur DVD ou son décodeur en marche pendant une semaine. Par contre, on ne peut jouer qu'une journée avec sa console de jeux			
Dans la cuisine	on peut faire fonctionner son réfrigérateur combiné pendant une journée et son congélateur de 200 litres pendant 2 jours			
Dans la cuisine	On peut aussi cuire un poulet au four à pyrolyse et faire fonctionner une plaque vitrocéramique ou un four à micro-ondes pendant 1h			
Dans la salle de bain	Avec $1kWh$, on ne fait pas grand-chose dans la salle de bain : il faut $2kWh$ pour prendre une douche et $4kWh$ pour prendre un bain			
Dans la buanderie	Avec $1kWh$, on peut lancer un cycle de lavage du linge. Par contre, il faudra $3kWh$ pour un cycle de sèche-linge			
	On peut s'éclairer entre une journée et une journée et demie : cela dépend si l'on habite en maison ou en appartement			
Éclairage	Il faut bien veiller au choix des luminaires, car avec $1kWh$, on fait fonctionner une lampe à halogène pendant seulement $2h$ alors qu'on peut s'éclairer pendant $7h$ avec 7 lampes basse consommation			
Confort thermique	On peut améliorer le confort thermique de son logement en se chauffant entre 45 minutes et 1h l'hiver ou en climatisant son foyer pendant à peu près 6h l'été			

Circuits et grandeurs électriques

Activité : Lois générales de l'électricité en courant continu

1. Description d'un circuit électrique - Vocabulaire.

Un circuit électrique peut comporter plusieurs récepteurs, ce qui peut constituer un ensemble relativement complexe (voir figure ci-contre) dont la description impose *la définition de plusieurs termes.*

On appelle:

- Branche : C'est une portion de circuit dont les éléments sont parcourus par la Intensité.
- Nœud : C'est un du circuit intersection d'au moins fils.
- Maille : C'est une portion de circuit fermée sur elle-même.

On dit aussi de dipôles, qu'ils sont associés en :

-, quand les dipôles sont parcourus par le même courant.
-, quand les dipôles ont la même tension électrique à leurs bornes.

Loi des mailles

Placer 3 voltmètres pour mesurer U_{AB} , U_{BC} et U_{BM} , flécher ces tensions

Loi des mailles

Comment appliquer correctement la loi des mailles ?

1)	 	
2)	 	
3)	 	

Dans l'exemple précédent, $E_1=10\ V$, $E_2=5\ V$ et $U_{BM}=3\ V$

- Déterminer U_{AB} :
- Déterminer U_{BC} :

Exemples d'application

$$U_{AC} = 15 V; \ U_{BC} = 5 V; \ U_{AB} = ?$$

$$U_{AD} = 15 V$$
; $U_{BC} = 6 V$; $U_{AB} = -2 V$; $U_{CD} = ?$; $U_{BD} = ?$

$$U_{AD} = 12 V; \quad U_{DC} = -5 V; \quad U_{BC} = 6 V; \quad U_{AB} = ?$$

• Schéma de montage

Le circuit ci-dessus est constitué de ... branches, mises en entre les nœuds ... et ...

⇒ Il existe ... intensités de courant différentes

A l'aide de 3 ampèremètres, on mesure les intensités de courant I_1 , I_2 et I_3 . Les placer sur le circuit

Loi des nœuds

Dans l'exemple précédent, au nœud B:

Exemples d'application

$$I_1 = 5 A$$
; $I_2 = 2 A$; $I_3 = ?$

$$I_1 = 2 A$$
; $I_3 = 5 A$; $I_4 = 1 A$;

$$I_1 = 5 A; I_2 = 2 A; I_3 = ?$$
 $I_1 = 2 A; I_3 = 5 A; I_4 = 1 A;$ $I_1 = 10 A; I_2 = -3 A; I_4 = 2 A;$

$$I_2 = ?$$

$$I_5 = ?$$

8

$I_1 = -5 A;$	$I_2=2 A;$	$I_3 = -1 A;$	$I_4=6A;$
	$I_5 = ?$		

Thème : ÉNERGIE

Circuits et grandeurs électriques

TP : Réalisation d'un montage électrique Bilan de puissance dans un circuit électrique

1. Deux composants couramment utilisés en électronique.

Exemples : les 3 couleurs d'une résistance de 10 k Ω = Ω sont : _____ _____

Une résistance dont les anneaux sont de couleur - bleu, gris, rouge - vaut : Ω = $k\Omega$

	Schéma :

2. Alimentation électrique d'un montage.

En règle générale, un montage a besoin, pour fonctionner convenablement, d'être relié à une alimentation (générateur).

3. Utilisation d'une platine de câblage.

<u>Dessiner</u> les composants permettant de réaliser le montage précédent (sans oublier de relier l'alimentation qui est placée en dehors de la platine)

4. Réalisation du montage.

- On utilise un fil rouge pour se brancher sur la borne + du générateur.
- On utilise un fil noir pour se brancher sur la borne du générateur

Faire le montage avec les valeurs suivantes :

- alimentation : $U_{PN} = 15 V$;
- $R_1 = 100 \,\Omega$ soit : ____, ___,

• D₁: LED jaune

 $R_2 = 220 \,\Omega$ soit : _____, ____, ____

D₂: LED rouge

Vérification du fonctionnement : les LED doivent être allumées ; retourner une des 2 LED : elle doit rester éteinte.

5. Mesure de grandeurs physiques électriques dans un montage

5.1. La tension électrique

Cette mesure s'effectue à l'aide d'un qui se connecte sur les 2 points dont on veut connaître la tension.

Pour mesurer la tension U_{AB} on relie la borne V du voltmètre à A et la borne COM à B Placer sur le schéma les voltmètres permettant de mesurer U_{GM} et U_{BC}

a. Mesures:

Mesurer dans le montage les tensions suivantes :

$$U_{FM} = \dots$$
 $U_{NP} = \dots$
 $U_{BF} = \dots$

$$U_{BC} = \dots \dots \dots \dots U_{PN} = \dots \dots \dots \dots$$

- Trouver la relation entre U_{NP} et U_{PN}
- ullet Trouver la relation entre U_{FM} et U_{GM}
- ullet Trouver la relation entre $U_{BF}+U_{FM}$ à U_{BM}
- En utilisant U_{BC} et U_{BF} , déduire la tension U_{CF} , vérifier à l'aide d'une mesure

5.2. L'intensité du courant électrique

Cette mesure s'effectue à l'aide d'un qui mesure l'intensité du courant électrique qui <u>le</u> traverse.

Pour brancher l'ampèremètre, il faut donc réaliser une dans le circuit.

Les bornes d'un ampèremètre numérique sont souvent repérées " " et " ".

Pour mesurer une intensité la flèche orientant le courant doit entrer par la borne mA et sortir par la borne COM

Flécher sur le schéma les intensités I_C , I_F , I_G et I_K Placer sur le schéma 2 ampèremètres afin de mesurer I_C et I_K

Mesures:

Mesurer dans le montage les intensités suivantes :

→ énoncé de la loi des nœuds : La somme des intensités des courants arrivants à un nœud est égale à la somme des intensités qui en repartent

exemple :

A l'aide des mesures effectuées, vérifier LA LOI DES NŒUDS

→ vérification :

Exercices

Exercice 1: Loi des nœuds

On mesure les intensités suivantes :

$$I_1 = -3 A$$

$$I_2 = 8 A$$

$$I_3 = 4 A$$

$$I_4 = -5 A$$

 $I_6 = 7 A$

Calculer I_5 .

Exercice 2: Loi des nœuds

Calculer I_1 ; I_5 ; I_6 .

 $I_1 = 2 A$

 $I_3 = 3 A$

 $I_4 = 1 A$

Exercice 3: Loi des nœuds

Soit le schéma de la figure ci-dessous :

Déterminer l'intensité du courant I_6 dans la branche CE puis l'intensité du courant I_5 dans la branche BE.

Exercice 4: Loi des mailles

<u>Données:</u>

$$U_{AB} = 24 V$$

$$U_{BD} = 6 V$$

$$U_{AC} = 14 V$$

Calculer U_{CB} et U_{CD}

Exercice 5: Loi des mailles

Soit le schéma ci-dessous :

<u>Données :</u>

$$E = 15 V$$

$$U_1 = 2 V$$

$$U_2 = 4 V$$

$$U_4 = 3 V$$

$$U_6 = 1 V$$

$$U_7 = 3 V$$

Calculer U_3 , U_5 et U_8

Exercice 6 : Association de générateurs

Données : résistances et tensions :

$$E_1 = 130 V$$

$$r_1=3~\Omega$$

$$r_2 = 3 \Omega$$

$$R=20\,\Omega$$

On mesure : u = 100 V

1. Calculer l'intensité i.

- 2. Calculer l'intensité i_1 et i_2
- 3. En déduire la valeur de E_2
- 4. Calculer la puissance P_1 fournie par le dipôle D_1 . Fonctionne-t-il en récepteur ou générateur ?
- 5. Calculer la puissance P_2 fournie par le dipôle D_2 . Fonctionne-t-il en récepteur ou générateur ?