Научный кружок

Воропаев Алексей Сергеевич

ЛЕММА ШПЕРНЕРА

Лемма 1 (Шпернер). Треугольник триангулирован, и вершины раскрашены в 3 цвета так, что на ребре n нет вершины цвета n. Тогда есть разноцветный треугольник.

Доказательство. Посмотрим на количество отрезков 1-2. На границе треугольника их нечётно, на границе разноцветного треугольника тоже, на границе неразноцветного — чётно. Тогда по лемме о рукопожатиях есть нечётное количество разноцветных \triangle , в частности, больше 0.

Лемма 2. 1 выполнено для триангуляции многоугольников, если количество отрезков 1-2 на границе нечётно и нет разноцветной прямой.

Определение 1. Норма — функция $f: \mathcal{X} \to \mathbb{R}_+$ со следующими свойствами:

- 1. $f(x) = 0 \iff x = 0$;
- 2. $f(x+y) \le f(x) + f(y)$;
- 3. f(xy) = f(x)f(y).

Сильной нормой называется функция, где свойство 2 заменено на неархимедово свойство — $f(x+y) \leq \max(f(x), f(y))$.

Свойства

- f(1) = 1.
- f(-1) = 1.
- $\bullet \ f(-a) = f(a).$
- Для сильных норм $f(a) < f(b) \implies f(b-a) = f(b)$. Доказательство. Подставим x = b, y = -a. Тогда $f(b-a) \le \max(f(a), f(b)) \implies f(b-a) \le f(b)$. С другой стороны, если подставить x = b - a, y = a, то получится $f(b-a) \ge f(b)$ (обе подстановки в неархимедово свойство). Значит, f(b-a) = f(b).

Определение 2. p-адическая норма N_2 — норма, определяемая для рациональных x как 2^{-n} , где n — степень вхождения 2 в x ($N_2(0)=0$ по определению; заметим, что это сильная норма над \mathbb{Q}).

Теорема 3 (Лэнг). Неархимедова норма над \mathbb{Q} продолжается на \mathbb{R} .

Теорема 4. Квадрат нельзя разрезать на нечётное количество равновеликих треугольников. Доказательство. Пусть $1 = n \cdot S$, где n — количество треугольников, S — площадь. Докажем, что у S чётный знаменатель. Заметим, что $N_2(1) = N_2(n)N_2(S)$, т.е. $N_2(S) \ge 1$, причём равно, только если n нечётно.

Покрасим все точки квадрата 1×1 в три цвета так. Красим точку (x,y) в красный, если $N_2(x) < 1, N_2(y) < 1$, в синий, если $N_2(x) \ge 1, N_2(x) \ge N_2(y)$, в зелёный, если $N_2(y) \ge 1, N_2(y) > N_2(x)$. **Лемма 5.** Пусть точка K красная. Тогда цвета точек P и P-K совпадают. **Доказательство.** Рассмотрим 2 случая:

- 1. P красная. Тогда по неархимедовости $N_2(x_P x_A)$ меньше единицы, аналогично для $y.\blacksquare$
- 2. P не красная. Пусть она синяя. Тогда x всё ещё больше единицы, а y либо не изменился, либо остался меньше единицы.

Лемма 6. Условие 2 выполнено.

Доказательство. Пусть есть точки R,G,B на одной прямой. Тогда точки 0,G-R,B-R тоже на одной прямой и тех же цветов. С другой стороны, если 2 точки и 0 на одной прямой, они не могут быть одна синей, а другая зелёной, т.к. тогда в одной $\frac{x}{y}$ больше единицы, а в другой меньше. Значит, трёхцветных прямых нет. Теперь посмотрим, например, на красно-синие отрезки. На участке R-U-U их нечётно, а на сторонах U-G и G-R их нет.

Завершение доказательства. Применением 2 мы нашли разноцветный треугольник. Его можно сдвинуть в 0, пусть его остальные вершины — (x_1,y_1) и (x_2,y_2) . Тогда его площадь — $\pm \frac{x_1y_2-x_2y_1}{2}$. Посчитаем от этой площади N_2 . Это $2N_2(x_1y_2-x_2y_1)$. Заметим, что $N_2(x_1) \geq N_2(y_2)$ и $N_2(y_2) > N_2(x_1)$ из-за цвета точек, тогда $2N_2(x_1y_2-x_2y_1) = 2N_2(x_1)N_2(y_2) \geq 2$.

Стрельва по черепашкам

Возьмём какой-нибудь многочлен (для примера, $P(x) = x^3 + 4x^2 + 5x + 2$) и пустим черепашку:

Будем пускать лазер, который отражается от стенок под углом 90° (при этом мы имеем в виду не луч, а прямую, и стенки — тоже прямые):

Лемма 7. x — корень $P(x) \iff$ лазер под углом наклона arctg(-x) попадает в голову. Доказательство. Сделаем один шаг лазера. Тогда получится $P(x) - a_n x^{n-1}(x+\alpha)$, где α — тангенс угла наклона лазера. После n шагов получим $P(x) - Q(x)(x+\alpha)$, т.е. это деление с остатком.

Следствие. Если у нечётных коэффициентов поменять знаки, то у корня поменяется знак. **Следствие.** Если коэффициенты поменять местами, то корень поменяется на обратный.

Лемма 8. Пусть α — корень P. Тогда если взять в качестве новых коэффициентов длины отрезков лазера, получится новый многочлен, у которого корни — все корни P, кроме α .

Доказательство. Следует из теоремы Безу.

Пусть P(x) квадратный. Тогда можно заметить, что корни — пересечение окружности с диаметром A_0A_3 с прямой A_1A_2 . Тогда для них y=0 и $(x-\frac{b}{2})^2+(y-\frac{a+c}{2})^2=\frac{b^2+(c-a)^2}{4}$, т.е. мы снова вывели формулу через дискриминант. Также можно найти этот корень циркулем.

Оригами

Отразим точку A_0 относительно A_1 . Получим точку, которая лежит на какой-то фиксированной прямой, и складка листа проходит через A_2 . То есть мы свели построение окружности к 5 правилу Фудзиты. Аналогично можно свести решение кубического уравнения к 6 правилу Фудзиты.

Возьмём любую точку P внутри черепашки и построим ГМТ X таких: отображаем оригами l на P, затем проводим перпендикуляр в P и пересекаем с биссектрисой. Тогда это ГМТ — парабола с фокусом P и директрисой l, а биссектриса — касательная к параболе.

Теперь мы решаем кубическое уравнение и отображаем две прямые на две точки. На самом деле, это построение общей касательной к двум параболам.

Комплексный случай

Пусть $P(x) = x^3 + 4x^2 + 9x + 10$. Тогда у него два комплексных корня. Тогда $A_i - \triangle$.

