```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
df=pd.read_csv("blinkit.csv")
df.head()
```

Out[52]:		Item Fat Content	Item Identifier	Item Type	Outlet Establishment Year	Outlet Identifier	Outlet Location Type	Outlet Size	Outlet Type
	0	Regular	FDX32	Fruits and Vegetables	2012	OUT049	Tier 1	Medium	Supermarke Type
	1	Low Fat	NCB42	Health and Hygiene	2022	OUT018	Tier 3	Medium	Supermarke Type2
	2	Regular	FDR28	Frozen Foods	2010	OUT046	Tier 1	Small	Supermarke Type
	3	Regular	FDL50	Canned	2000	OUT013	Tier 3	High	Supermarke Type
	4	Low Fat	DRI25	Soft Drinks	2015	OUT045	Tier 2	Small	Supermarke Type
	4								•
In [54]:	df	.shape							
Out[54]:	(8	523, 12)							
In [56]:	df	.columns							
Out[56]:	<pre>Index(['Item Fat Content', 'Item Identifier', 'Item Type',</pre>							ility',	
In [58]:	df	.info()							

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8523 entries, 0 to 8522
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	Item Fat Content	8523 non-null	object
1	Item Identifier	8523 non-null	object
2	Item Type	8523 non-null	object
3	Outlet Establishment Year	8523 non-null	int64
4	Outlet Identifier	8523 non-null	object
5	Outlet Location Type	8523 non-null	object
6	Outlet Size	8523 non-null	object
7	Outlet Type	8523 non-null	object
8	Item Visibility	8523 non-null	float64
9	Item Weight	7060 non-null	float64
10	Sales	8523 non-null	float64
11	Rating	8523 non-null	float64

dtypes: float64(4), int64(1), object(7)

memory usage: 799.2+ KB

In [60]: df.describe()

Out[60]:

	Outlet Establishment Year	Item Visibility	Item Weight	Sales	Rating
count	8523.000000	8523.000000	7060.000000	8523.000000	8523.000000
mean	2010.831867	0.066132	12.857645	140.992782	3.965857
std	8.371760	0.051598	4.643456	62.275067	0.605651
min	1998.000000	0.000000	4.555000	31.290000	1.000000
25%	2000.000000	0.026989	8.773750	93.826500	4.000000
50%	2012.000000	0.053931	12.600000	143.012800	4.000000
75%	2017.000000	0.094585	16.850000	185.643700	4.200000
max	2022.000000	0.328391	21.350000	266.888400	5.000000

float64

In [43]: df.dtypes

object Out[43]: Item Fat Content Item Identifier object Item Type object Outlet Establishment Year int64 Outlet Identifier object Outlet Location Type object Outlet Size object Outlet Type object Item Visibility float64 Item Weight float64 Sales float64

dtype: object

Rating

```
In [ ]:
                                                             DATA CLEANING
In [62]: df.isnull().sum()
                                          0
Out[62]: Item Fat Content
                                          0
          Item Identifier
          Item Type
                                          0
          Outlet Establishment Year
                                          0
          Outlet Identifier
                                          0
          Outlet Location Type
                                          0
          Outlet Size
                                          0
          Outlet Type
                                          0
          Item Visibility
                                          0
          Item Weight
                                       1463
          Sales
                                          0
          Rating
                                          0
          dtype: int64
In [64]: df.fillna(0,inplace=True)
In [66]: df.isnull().sum()
Out[66]: Item Fat Content
                                       0
          Item Identifier
          Item Type
          Outlet Establishment Year
          Outlet Identifier
                                       0
          Outlet Location Type
                                       0
          Outlet Size
                                       0
          Outlet Type
                                       0
          Item Visibility
                                       0
          Item Weight
                                       0
          Sales
                                       0
          Rating
                                       0
          dtype: int64
In [68]: df['Item Fat Content'].unique()
Out[68]: array(['Regular', 'Low Fat', 'low fat', 'LF', 'reg'], dtype=object)
In [70]: df['Item Fat Content']=df['Item Fat Content'].replace({"LF":"Low Fat",
                                                                "low fat":"Low Fat",
                                                                 "reg":"Regular"})
         df
```

Out[70]:

	Item Fat Content	Item Identifier	Item Type	Outlet Establishment Year	Outlet Identifier	Outlet Location Type	Outlet Size	Outlet 1
0	Regular	FDX32	Fruits and Vegetables	2012	OUT049	Tier 1	Medium	Superma T <u>'</u>
1	Low Fat	NCB42	Health and Hygiene	2022	OUT018	Tier 3	Medium	Superma T ₁
2	Regular	FDR28	Frozen Foods	2010	OUT046	Tier 1	Small	Superma T <u>'</u>
3	Regular	FDL50	Canned	2000	OUT013	Tier 3	High	Superma T <u>'</u>
4	Low Fat	DRI25	Soft Drinks	2015	OUT045	Tier 2	Small	Superma T <u>'</u>
•••	•••	•••						
8518	Low Fat	NCT53	Health and Hygiene	1998	OUT027	Tier 3	Medium	Superma T <u>'</u>
8519	Low Fat	FDN09	Snack Foods	1998	OUT027	Tier 3	Medium	Superma T <u>'</u>
8520	Low Fat	DRE13	Soft Drinks	1998	OUT027	Tier 3	Medium	Superma T <u>'</u>
8521	Regular	FDT50	Dairy	1998	OUT027	Tier 3	Medium	Superma T <u>'</u>
8522	Regular	FDM58	Snack Foods	1998	OUT027	Tier 3	Medium	Superma T <u>'</u>

8523 rows × 12 columns

```
In [72]: df['Item Fat Content'].unique()
Out[72]: array(['Regular', 'Low Fat'], dtype=object)
In []: BUSINESS REQUIREMENT
In [51]: total_sales=df['Sales'].sum()
total_sales
Out[51]: 1201681.4808
In [53]: avg_sales=df['Sales'].mean()
avg_sales
```

sales by fat content


```
In [48]: grouped= df.groupby(['Outlet Location Type', 'Item Fat Content']) ['Sales'].sum().u
    ax=grouped.plot(kind='bar', figsize=(8, 5), title='Outlet Tier by Item Fat Content'
    plt.xlabel('Outlet Location Tier')
    plt.ylabel('Total Sales')
    plt.legend(title='Item Fat Content')
    plt.show()
```

Outlet Tier by Item Fat Content


```
In [163... sales_by_year = df.groupby ('Outlet Establishment Year') ['Sales'].sum()
    plt.figure(figsize=(9,5))
    plt.plot(sales_by_year.index, sales_by_year, marker='o', linestyle='-')
    plt.xlabel('Outlet Establishment Year')
    plt.ylabel('Total Sales')
    plt.title('Outlet Establishment')
    plt.show()
```



```
In [167... sales_by_size=df.groupby('Outlet Size') ['Sales'].sum()
    plt.figure(figsize=(4, 4))
    plt.pie(sales_by_size, labels=sales_by_size.index, autopct='%1.1f%%', startangle=90
    plt.title('Outlet Size')
    plt.show()
```

Outlet Size


```
In [81]: sales_by_location= df.groupby('Outlet Location Type') ['Sales'].sum().reset_index()
    sales_by_location=sales_by_location.sort_values('Sales', ascending=False)
    plt.figure(figsize=(8,3))
    sns.barplot(x='Sales', y='Outlet Location Type', data=sales_by_location)
    plt.title('Total Sales by Outlet Location Type')
    plt.xlabel('Total Sales')
    plt.ylabel('Outlet Location Type')
    plt.show()
```

Total Sales by Outlet Location Type


```
# Step 3: Plotting Total Sales by Item Type & Fat Content as a Bar Chart
plt.figure(figsize=(14, 7))
sns.barplot(data=grouped, x='Item Type', y='Total_Sales', hue='Item Fat Content')
plt.title('Total Sales by Item Type and Fat Content')
plt.xticks(rotation=45, ha='right')
plt.xlabel('Item Type')
plt.ylabel('Total Sales')
plt.legend(title='Fat Content')
plt.show()
```


In []: