condensation

April 6, 2022

1 Guided Study: The Condensation Lemma

1.1 The condensation lemma

"'{admonition} Condensation lemma

There is a finite set T of axioms of $\mathsf{ZF}-\mathsf{Power}$ Set so that if M is a transitive set with $M \models T + \mathsf{VL}$, then $M = L_{\lambda}$ for some limit ordinal λ . "'

Define: L= VL = conjunction of the axioms in T and the axiom VL.

1.2 First application: VL implies GCH

"'{admonition} Key Lemma

Suppose V = L. If κ is a cardinal and $x \subseteq \kappa$, then $x \in L_{\kappa^+}$. "

Guide to proof: Verify each of following steps.

- There exists limit $\lambda > \kappa$ such that $x \in L_{\lambda}$ and such that $L_{\lambda} \models \varphi_{VL}$
- Let $X = \kappa \cup \{x\}$. What do we know about X at this stage?
- There exists an **elementary substructure** $N \leq L_{\lambda}$ such that

$$X\subseteq N\subseteq L_{\lambda}\quad \text{ and }\quad |N|=|X|. \tag{*}$$

Use a famous theorem from logic.

- Can we apply the condensation lemma to N? What are the possible obstacles?
- Apply a Mostowski collapse to N. This gives us a transitive M isomorphic to N. Now we have a new problem. What is it? (Hint: where does $x ext{ go?}$)
- Argue that the Mostowski isomorphism fixes x. Hint: What does it do with ordinals?
- Now we can apply condensation. This yields $M=L_{\beta}$ for some β . Where does this put x now?

• Key argument: $|\beta| = \kappa$. *Hint: Proposition 53*

• Finish: $x \in L_{\kappa^+}$

"` $\{admonition\}\ VL \to GCH$

If VL, then for all cardinals κ , $2^{\kappa} = \kappa^{+}$. "'

"'{admonition} Corollary

If ZF is consistent, so is ZF + GCH. "

1.3 Second application: the complexity of constructible reals

The set of all constructible reals is defined by a Σ_1 formula over set theory:

 $\varphi(x_0) \; \equiv \; \exists y \; [y \; \text{is an ordinal} \; \; \wedge \; x_0 \in L_y \; \wedge \; x_0 \; \text{is a set of natural numbers} \;].$

Can we "convert" this into a formula of second order arithmetic?

How could the condensation lemma help with this?

Key ideas:

- every constructible real shows up at a countable stage of L. Why?
- Hence if $\alpha \in L \cap \mathbb{N}^{\mathbb{N}}$, there exists a countable ξ such that $x \in L_{\xi}$.
- Then L_{ξ} is countable, too. Why?
- Hence we can hope to replace L_{ξ} by something like > "there exists a real that codes a model that looks like L_{ξ} "

Key ingredients:

• Condensation lemma and Mostowski collapse Can you think why these are important here?

This is the formula:

$$\alpha \in L \cap \mathbb{N}^{\mathbb{N}} \iff \exists \beta \exists m \ [E_{\beta} \text{ is extensional and well-founded} \\ \wedge \ (\omega, E_{\beta}) \models \phi_{VL} \ \wedge \ \pi_{\beta}(m) = \alpha],$$
 (**)

where π_{β} is the Isomorphism of the Mostowski collapse of E_{β} .

- Why does this work?
- What do we still need to verfiy to make sure this is in second order arithmetic?

Ingredient 1:

For any $n \in \mathbb{N}$, the following set is Σ_1^0 :

$$\{(m,\sigma,\gamma)\in\mathbb{N}\times\mathbb{N}^{<\mathbb{N}}\times\mathbb{N}^{\mathbb{N}}\colon m=\lceil\varphi\rceil \land \varphi \text{ is } \Sigma_1 \land (\omega,E_\gamma)\models\varphi[\sigma]\}$$

- You don't need to prove this fully. Just think about **how** you would prove it. In particular, how would you arithmetize the truth relation $(\omega, E_{\beta}) \models \psi$?
- Since we work with relations over $\mathbb N$ now instead of arbitrary sets, it is not that easy anymore to keep quantifiers bounded. Think of an example for this difficulty. Why can't we just convert a bounded quantifier $\exists x \in y$ to a bounded quantifier in arithmetic $\exists m < n$?
- But since we are only interested in the complexity of \models for Σ_1 -formulas, this helps us bound the overall complexity at Σ_1^0

Ingredient 2:

If $\alpha \in \mathbb{N}^{\mathbb{N}}$ and E_{α} is well-founded and extensional, then the following set is arithmetic in α :

$$\{(m,\gamma)\in\mathbb{N}\times\mathbb{N}^{\mathbb{N}}\colon\pi_{\alpha}(m)=\gamma\}$$

• Again, you do not need to fully prove this, just think about **how** you would do it. In particular, how would you arithmetize π_{α} ?

Now put everything together and show

"'{admonition} Theorem

The set $L \cap \mathbb{N}^{\mathbb{N}}$ is Σ_2^1 . "'

In a similar way we can show

"'{admonition} Theorem

The set
$$\{(\alpha,\beta)\in (L\cap\mathbb{N}^{\mathbb{N}})^2\colon \alpha<_L\beta\}$$
 is Σ^1_2 . "'

If VL, then the set is actually Δ_2^1 , since then

$$\alpha <_L \beta \iff \alpha \neq \beta \land \neg (\beta <_L \alpha).$$

This has consequences for the existence of non-measurable sets. Find or recall the corresponding theorem and formulate a theorem under the hypothesis VL.

[]:	
[]:	