Matematickou analýzou za dodržování Ženevských konvencí IV: derivace a jejich aplikace

Hypotéza k otestování: Kvalitním derivováním si lze nahradit zavřené hospody a kulturu.

Derivace šťavnatějších funkcí

- 1. Určete derivace následujících funkcí a pro která $x \in \mathbb{R}$ to platí typicky (pro naše pěkné funkce) tedy definiční obor výchozí funkce. (Připomeňme si, že funkce tvaru $f(x)^{g(x)}$ bereme jako ekvivalentní funkcím $e^{g(x)\ln f(x)}$.)
 - (a) $x \cdot \cos x \cdot \arctan x$
 - (b) $\sqrt{x^5+2}$
 - (c) $\sqrt{\ln^2 x + 1}$
 - (d) $\ln^2(x^3)$
 - (e) $\ln \ln \sin x$
 - (f) x^x
 - (g) $\sqrt[x-3]{x^2+1}$

Ta byla, co?! Pro silné žaludky je připravena i následující (dobrovolná):

(h) $\arctan^{\ln x}(1-x^2)$

Pokud si nejste derivováním úplně na beton jistí, doporučuju opět nakouknout do sbírky přednášejícího - derivace budeme ještě hodně potřebovat.

- 2. Wrčete druhou derivaci funkce xe^{x^2} .
- 3. Wkažte, že derivací liché funkce je funkce sudá.
- 4. Je derivace sudé funkce lichá funkce?

Derivace cosi říká nejen o "okamžité změně" funkce, ale i o tečně, a tím i k normále, k jejímu grafu (str. 5 nahoře v textu k přednášce).

- 5. Napište rovnice tečny, resp. normály ke grafu funkce $2x^2-1$ v bodě $\left[-\frac{1}{2};?\right]$.
- 6. Napište rovnici vodorovné tečny ke grafu funkce x^x a normály k ní.

