MA4199 Project – Bias Variance Tradeoff

Ng Wei Le

1 Kernels

Notation: we use the symbol \mathbb{K} when it can refer to both \mathbb{R} or \mathbb{C} . Also, let z^* or $(z)^*$ denote the conjugate of z for any $z \in \mathbb{C}$. The sections covering Kernels and reproducing kernel Hilbert spaces are heavily referenced using Steinwart, Christman [1].

Definition 1. For a non-empty set X, let $k: X \times X \to \mathbb{K}$ be known as a kernel if there exists a function $\phi: X \to \mathcal{H}$ (known as a feature map of k) where \mathcal{H} is a \mathbb{K} -Hilbert space (known as a feature space of k) such that

$$k(x_1, x_2) = \langle \phi(x_2), \phi(x_1) \rangle_{\mathcal{H}}.\tag{1}$$

Lemma 1. For any kernel k on X, $k(x_1, x_2) = k(x_2, x_1)^*$.

From the properties of the inner product, we know that $k(x_1, x_2) = \langle \phi(x_1), \phi(x_2) \rangle^* = k(x_2, x_1)^*$. Therefore, for kernels on \mathbb{R} , the symmetric property: $k(x_1, x_2) = k(x_2, x_1)$ holds.

Below, we define the Gaussian RBF kernel:

Definition 2. Let the complex Gaussian RBF kernel be:

$$k_{\gamma,\mathbb{C}^d}(z,z') := e^{-\gamma^{-2} \sum_{i=1}^d (z_i - z_i'^*)^2}.$$

We then define the real Gaussian RBF kernel (or simply the Gaussian RBF kernel for short) as:

$$k_{\gamma}(x, x') = e^{-\gamma^{-2} \|x - x'\|_{2}^{2}}$$

Lemma 2. Let k_1, k_2 be kernels on a non-empty set X. Then $k_1 + k_2$ and $ak_1, a \in \mathbb{R}^+ \cup \{0\}$ are kernels.

Definition 3. For a non-empty set X, a function $k: X \times X \to \mathbb{R}$ is said to be a positive definite if, for any $m \in \mathbb{Z}^+ \cup \{0\}$ and all $x_1, ..., x_n \in X$, we have the following matrix (called the Gram matrix) being positive semi-definite:

$$K := (k(x_i, x_i))_{i,i}$$

Equivalently: for all $a_1, ..., a_n \in \mathbb{R}$, we have:

$$\sum_{j=1}^{n} \sum_{i=1}^{n} a_j a_i k(x_j, x_i).$$

Definition 4. The positive definite function $k: X \times X \to \mathbb{R}$ is said to be symmetric if $k(x_1, x_2) = k(x_2, x_1)$ for all $x_1, x_2 \in X$

Theorem 1. A real function $k: X \times X \to \mathbb{R}$ is a kernel if and only if k is a positive definite symmetric function (also known as a positive definite kernel).

2 Reproducing Kernel Hilbert Spaces

Initially introduced by Stanislaw Zaremba, reproducing kernel Hilbert spaces have many applications in the fields such as Statistical Learning and complex analysis. An RKHS is a K-Hilbert function space where point evaluation is continuous linear functional.

Definition 5. (RKHS). Let \mathcal{H} be a \mathbb{K} -Hilbert space of functions over a non-empty set X. \mathcal{H} is called an RKHS over X if the Dirac function $\delta_x : \mathcal{H} \to \mathbb{K}$ defined as:

$$\delta_x(f) := f(x), \ x \in X, \ f \in \mathcal{H}$$

is continuous. Equivalently, there exists $0 < M_x < \infty$ such that

$$\delta_x(f) \leq M_x \|f\|_{\mathcal{H}}$$
, for all $f \in \mathcal{H}$.

 δ_x is called a bounded operator on \mathcal{H} .

This is not easy to put into practice, hence the reproducing kernel is defined.

Definition 6. (Reproducing Kernel). For a non-empty set X and a function $k: X \times X \to \mathbb{K}$ where $k(\cdot, x) \in \mathcal{H}$ for all $x \in X$ and the following property hold for all xinX and $f \in \mathcal{H}$:

$$f(x) = \langle f, k(\cdot, x) \rangle \tag{2}$$

The condition in equation (2) is also known as the reproducing property.

Definition 7. (Canonical Feature Maps). Let \mathcal{H} be an RKHS over X with reproducing kernel k. Let the function $\Phi: X \to \mathcal{H}$ be defined such that for all $x \in X$,

$$\Phi(x) = k(\cdot, x).$$

We call Φ the canonical feature map of k.

Lemma 3. (A reproducing kernel of an RKHS is a kernel). Let \mathcal{H} be an RKHS over X with reproducing kernel k. Then k is a kernel.

Proof. We simply proof that Φ is a feature map of k.

$$\langle \Phi(x_2), \Phi(x_1) \rangle = \langle k(\cdot, x_2), k(\cdot, x_1) \rangle$$

= $k(x_1, x_2)$ (: Reproducing Property (2))

So $\mathcal{H}is also a feature space of k$.

Lemma 4. Let \mathcal{H} be an \mathbb{K} -Hilbert functional RKHS over X with reproducing kernel k. Then H is a Reproducing Kernel Hilbert Space.

Proof. Recall the Dirac functional $\delta_x: H \to \mathbb{K}$ where:

$$\delta_x(f) = f(x), \ x \in X, \ f \in H.$$

Then we have:

$$\begin{aligned} |\delta_x(f)| &= |f(x)| \\ &= |\langle f, k(\cdot, x) \rangle| \text{ ($\cdot :$ Reproducing Property (2))} \\ &\leq \|k(\cdot, x)\|_{\mathcal{H}} \|f\|_{\mathcal{H}} \text{ ($\cdot :$ Cauchy-Schwarz Inequality)} \end{aligned}$$

This shows that the Dirac functionals are continuous.

2.1 Representer Theorem

Representer Theorem ensures that the *argmin* of an empirical risk expression involving a function over an RKHS can be expressed as a linear combination of kernels applied on the training data points as proven in [7].

Theorem 2. Given a non-empty set X, training data $\{(x_1, y_1), ...(x_n, y_n)\} \in X \times \mathbb{R}$, and RKHS \mathcal{H} be an \mathbb{R} -Hilbert function space over X with reproducing kernel $k: X \times X \to \mathbb{R}$. Let g be a strictly increasing function $g: [o, \infty] \to \mathbb{R}$, and l be an arbitrary loss function, where $l: (X \times \mathbb{R}^2)^n \to \mathbb{R} \cup \{\infty\}$. We want to minimize the following empirical risk term:

$$E(f,(x_1,y_1),...,(x_n,y_n)) := l((x_1,y_1,f(x_1)),...,(x_n,y_n,f(x_n))) + g(||f||).$$

For $\hat{f} = argmin_{f \in \mathcal{H}} E(f, (x_1, y_1), ..., (x_n, y_n))$, \hat{f} can be represented in the form:

$$\hat{f}(\cdot) = \sum_{i=1}^{n} a_i k(\cdot, x_i)$$

with $a_i \in \mathbb{R}$ for all i.

Proof. First we let Φ be the canonical feature map of k as defined in 7. Recall: function $\Phi: X \to \mathcal{H}$ where $\Phi(x)(\cdot) = k(\cdot, x)$. Due to the reproducing property where $\Phi(x)(x') = \langle \Phi(x), k(\cdot, x') \rangle$, we have:

$$\Phi(x)(x') = k(x', x)$$

$$= \langle \Phi(x), k(\cdot, x') \rangle$$

$$= \langle \Phi(x), \Phi(x') \rangle.$$

So Φ is a feature space of k. Using orthogonal decomposition, we decompose $f \in \mathcal{H}$ into a component projected onto the span of $\Phi(x_i), ..., \Phi(x_n)$, and the other component orthogonal to this span. We will then prove this orthogonal component is 0 for any f that reduces the empirical risk term, hence completing the

prove.

$$f = \sum_{i=1}^{n} a_i \Phi(x_i) + \gamma,$$

where $\gamma \in \mathcal{H}$, $\langle \Phi(x_i), \gamma \rangle = 0$ for all i.

Next, applying the reproducing property again,

$$\begin{split} f(x_j) &= \langle f, k(\cdot, x_j) \rangle \\ &= \langle \sum_{i=1}^n a_i \Phi(x_i) + \gamma, \Phi(x_j) \rangle \\ &= \langle \sum_{i=1}^n a_i \Phi(x_i), \Phi(x_j) \rangle + \langle \gamma, \Phi(x_j) \rangle \\ &= \sum_{i=1}^n a_i \langle \Phi(x_i), \Phi(x_j) \rangle. \end{split}$$

Now, consider:

$$||f||^2 = \left\| \sum_{i=1}^n a_i \Phi(x_i) + \gamma \right\|^2 \quad (\because \text{ orthogonality})$$

$$= \left\| \sum_{i=1}^n a_i \Phi(x_i) \right\|^2 + \|\gamma\|^2$$

$$\geq \left\| \sum_{i=1}^n a_i \Phi(x_i) \right\|^2$$

$$\implies g(||f||) \geq g(\left\| \sum_{i=1}^n a_i \Phi(x_i) \right\|)$$

Therefore, if we have $\gamma = 0$, since $f(x_i)$ is unaffected by this for all i, $l((x_1, y_1, f(x_1)), ..., (x_n, y_n, f(x_n)))$ is also unaffected by γ . For the term g(||f||), it decreases if we have $\gamma = 0$. Hence, $\hat{f} = argmin_{f \in \mathcal{H}} E(f, (x_1, y_1), ..., (x_n, y_n))$, \hat{f} must have $\gamma = 0$, and

$$\hat{f} = \sum_{i=1}^{n} a_i \Phi(x_i)$$
$$= \sum_{i=1}^{n} a_i k(\cdot, x_i)$$

3 Approximation Theorem

Definition 8. The fill distance for a set of points $X = \{x_1, ..., x_N\} \subseteq \Omega$ for a bounded domain Ω is defined to be

$$h_{X,\Omega} \coloneqq \sup_{x \in \Omega} \min_{1 \le j \le N} \|x - x_j\|_2$$

.

The below theorem gives us some justification as to why the minimum norm interpolating function was chosen, though this only works under noiseless conditions:

Theorem 3. Fix $h^* \in \mathcal{H}_{\infty}$. Let $(x_1, y_1), ..., (x_n, y_n)$ be i.i.d. random variables where x_i drawn randomly from a compact cube $\Omega \subseteq \mathbb{R}^d$, $y_i = h^*(x_i) \, \forall i$. There exists A, B > 0 such that for any interpolating $h \in \mathcal{H}_{\infty}$ with high probability

$$\sup_{x \in \Omega} |h(x) - h^*(x)| < Ae^{-B(n/\log n)^{1/d}} (\|h^*\|_{\mathcal{H}_{\infty}} + \|h\|_{\mathcal{H}_{\infty}})$$

Theorem 11.22 in [8]:

Let Ω be a cube in \mathbb{R}^d . Suppose ... There exists a constant c > 0 such that the error between a function $f \in N(\Omega)$ and its interpolant $s_{f,X}$ can be bounded by:

$$||f - s_{f,X}||_{L_{\infty}(\Omega)} \le \exp(-c/h_{X,\Omega})|f|_N(\Omega)$$

for all data sites X with sufficiently small $h_{X,\Omega}$.

With $h_{X,\Omega}$ as the fill on the order of $O(n/\log n)^{-1/d}$ (using the theorem S1 in Belkin's paper which wasn't proved). We consider f(x) := h(x) - h * (x). Since h is interpolating, we have $f(x_i) = 0$ for all x_i . We then let $s_{f,X}$ be the zero function, since it is an interpolant of f. Thus, we have: $s_{f,X}$ can be bounded by:

$$||f||_{L_{\infty}(\Omega)} = \sup_{x \in \Omega} |h(x) - h^*(x)| < \exp(-c(n/\log n)^{1/d})|f|_N(\Omega)$$

$$\leq \exp(-c(n/\log n)^{1/d})(||h^*||_{\mathcal{H}_{\infty}} + ||h||_{\mathcal{H}_{\infty}})$$

Another form we can have is using proposition 14.1 in [8]:

Proposition 1. Let $\Omega \subseteq \mathbb{R}^d$ be bounded and measurable. Suppose $X = \{x_1, ..., x_N\} \subseteq \Omega$ is quasi-uniform with respect to $c_{qu} > 0$. Then there exists constants $c_1, c_2 > 0$ depending only on space dimension d, on Ω and on c_{qu} such that:

$$c_1 N^{-1/d} \le h_{X,\Omega} \le c_2 N^{-1/d}$$

.

With the definition of quasi-uniformness being:

Definition 9. For the separation distance of $X = \{x_1, ..., x_N\}$ being defined as $q_x := \frac{1}{2} \min_{i \neq j} \|x_i - x_j\|_2$.

We can then use the above proposition with n replacing $n/\log n$.

In either case, by choosing a the smallest norm for h, we can see that it corresponds to the smallest upperbound for $|h(x) - h^*(x)|$.

4 Existing Bounds Provide No Guarantees for Interpolated Kernel Classifiers

Steps are:

- Find lower bound on function norm of t-overfitted classifiers in RKHS corresponding to Gaussian Kernels
- Show loss for available bounds for kernel methods based on function norm (can perhaps use this to explain approximation theorem as well?)

Interpolation: 0 regression error. Overfitting: 0 classification error. Interpolation implies overfitting.

Definition 10. We say $h \in H$ t-overfits data, if it achieves zero classification loss (overfits) and $\forall_i y_i h(x_i) > t > 0$.

The below shows a theorem on how the function norm changes with respect to t-overfitting.

Theorem 4. Let (\mathbf{x}_i, y_i) be data sampled from P on $\Omega \times \{-1, 1\}$ for i = 1, ..., n. Assume that y is not a deterministic function of x on a subset of non-zero measure. Then, with high probability, any h that t-overfits the data, satisfies

$$||h||_{H} > Ae^{Bn^{1/d}}$$

for some constants A, B > 0 depending on t.

We define the γ -shattering and fat-shattering dimension below:

Definition 11. Let F be a set of functions mapping from a domain X to \mathbb{R} . Suppose $S = \{x_1, x_2, ..., x_m\} \subseteq X$. Suppose also that γ is a positive real number. Then S is γ -shattered by F if there are real numbers $r_1, r_2, ..., r_m$, such that for each $b \in \{0, 1\}^m$ there is a function f_b in F with

$$f_b(x_i) > r_i + \gamma$$
 if $b_i = 1$, and $f_b(x_i) < r_i - \gamma$ if $b_i = 0$, for $1 < i < m$.

We say $r=(r_1,r_2,...,r_m)$ witnesses the shattering. Suppose that F is a set of functions from a domain X to \mathbb{R} and that $\gamma>0$. Then F has γ -dimension d if d is the maximum cardinality of a subset S of X that is γ -shattered by F. If no such maximum exists, we say that F has infinite γ -dimension. The γ -dimension of F is denoted $fat_F(\gamma)$. This defines a function $fat_F: \mathbb{R} \to N \cup \{0, \infty\}$, which we call the fat-shattering dimension of F.

Proof. Let $B_R = \{f \in \mathcal{H}, ||f||_{\mathcal{H}} < R\}$ be a ball of radius R in RKHS \mathcal{H} . Suppose the data is γ -overfitted, [4] gives us a high probability of a bound of

$$L(f) < O(\frac{\ln(n)^2}{\sqrt{n}} \sqrt{fat_{B_R}(\gamma/8)})$$

for L(f) the expected classification error. Also, from [2] we have

$$fat_{B_{\mathcal{P}}}(\gamma) < O((log(R/\gamma))^d)$$

. We then have B_R containing no function that γ overfits the data unless

$$(log(R/\gamma))^d > O(n) \implies R > c_1 \exp(c_2(\frac{n}{\ln n})^{1/d})$$

for some positive constants c_1, c_2 .

Classical bounds for kernel methods ([3]) are in the form:

$$\left|\frac{1}{n}\sum_{i}l(f(x_{i}),y_{i})-L(f)\right| \leq C\frac{\|f\|_{\mathcal{H}}^{a}}{n^{b}}, \quad C,a,b\geq 0$$

The right side on this will tend to infinity for bigger $||f||_{\mathcal{H}}$, which is suggested by Theorem 4.

5 Random Fourier Features

For a feature map $\phi: \mathbb{R}^d \to \mathbb{R}^{d'}$ the kernel trick allows easy computation for positive definite kernel k where $k(x,y) = \langle \phi(x), \phi(y) \rangle$. We want to find a randomized feature map $z: \mathbb{R}^d \to \mathbb{R}^{\bar{d}}$ such that

$$k(x,y) = <\phi(x), \phi(y)> \approx < z^{\mathrm{T}}(x), z(y)>$$

. As suggested by [5], for a shift-invariant kernel k: k(x,y) = k(x-y), we consider the mapping $z(x) = cos(w^{T}x + b)$, where w is drawn from the probability distribution p:

$$p(w) = \frac{1}{2\pi} \int k(h) \exp(-iw^{\mathrm{T}}h) \,\mathrm{d}h \tag{3}$$

when we compute the Fourier transform of the kernel k, and b is drawn from the uniform distribution on $[0, 2\pi]$.

We know that the fourier transform of $k(\cdot)$ is a probability distribution from Bochner's theorem:

Theorem 5. (Bochner [6]). For a continuous kernel k(x - y) it is a positive definite kernel if and only if $k(\cdot)$ is the fourier transform of a non-negative measure.

We now have:

$$k(x - y) = \int_{\mathbb{R}^d} p(w) \exp(iw^{\mathrm{T}}(x - y)) dw = \mathbb{E}_w[e^{iw^{\mathrm{T}}x}(e^{iw^{\mathrm{T}}y})^*]$$

. Therefore, we can use $e^{iw^Tx}(e^{iw^Ty})^*$ as an estimate (unbiased) of k(x,y). Let $\phi_w(x) = e^{iw^Tx}$ We can also use $z_w(x) = \sqrt{2}cos(w^Tx + b)$ instead of $\phi_w(x)$, as suggested by [5].

Proposition 2. For $z_w(x) = \sqrt{2}cos(w^Tx + b)$, where w is drawn from probability distribution p in (3) and b drawn from a uniform random variable on $[0, 2\pi]$.

$$E(z_w(x))z_w(y) = k(x,y)$$

Proof.

$$z_w(x) = 2 \frac{\sqrt{2}}{2} cos(w^{\mathrm{T}} x + b)$$

$$= \frac{1}{\sqrt{2}} (e^{i(w^{\mathrm{T}} x + b)} + e^{-i(w^{\mathrm{T}} x + b)})$$

$$= \frac{1}{\sqrt{2}} (\phi_w(x) e^{ib} + \phi_w(x)^* e^{-ib})$$

Where $\phi_w(x) = e^{iw^T x}$.

$$z_w(x)z_y(y) = \frac{1}{2}[\phi_w(x)\phi_w(y)e^{i2b} + \phi_w(x)^*\phi_w(y)^*e^{-i2b} + \phi_w(x)\phi_w(y)^* + \phi_w(x)^*\phi_w(y)]$$

$$\mathbb{E}[z_w(x)z_y(y)] = \frac{1}{2}\mathbb{E}[\phi_w(x)\phi_w(y)e^{i2b} + \phi_w(x)^*\phi_w(y)^*e^{-i2b}] + \frac{1}{2}\mathbb{E}[\phi_w(x)\phi_w(y)^*] + \frac{1}{2}\mathbb{E}[\phi_w(x)^*\phi_w(y)]$$

As mentioned earlier in Theorem 5, $\mathbb{E}_w[\phi_w(x)\phi_w(y)^*] = k(x-y)$. Also $\phi_w(x)\phi_w(y)^* = (\phi_w(x)^*\phi_w(y))^*$.

$$\mathbb{E}[z_w(x)z_y(y)] = \frac{1}{2}\mathbb{E}[\phi_w(x)\phi_w(y)e^{i2b} + \phi_w(x)^*\phi_w(y)^*e^{-i2b}] + \frac{1}{2}k(x-y) + \frac{1}{2}[k(x-y)]^*$$

$$= \frac{1}{2}\mathbb{E}[\phi_w(x)\phi_w(y)e^{i2b} + \phi_w(x)^*\phi_w(y)^*e^{-i2b}] + k(x-y)$$

For real kernel , $k(x - y) = (k(x - y))^*$.

$$\mathbb{E}_{w,b}[\phi_w(x)\phi_w(y)e^{i2b}] = \frac{1}{2\pi} \int_{\mathbb{R}^d} \int_0^{2\pi} p(w)\phi_w(x)\phi_w(y)e^{i2b} db dw$$
$$= \frac{1}{2\pi} \int_{\mathbb{R}^d} p(w)\phi_w(x)\phi_w(y) \int_0^{2\pi} e^{i2b} db dw$$
$$= 0$$

Since $\int_0^{2\pi} e^{i2b} db = 0$. Similarly, $\mathbb{E}_{w,b}[\phi_w(x)^*\phi_w(y)^*e^{-i2b}] = 0$.

$$\therefore \mathbb{E}[z_w(x)z_y(y)] = k(x-y).$$

As suggested by [5], the variance of the estimate is decreased by using z, a D dimensional vector by concatenating D of z_w and normalizing by a constant \sqrt{D} . We let:

$$z(x) = \sqrt{\frac{2}{D}} [cos(w_1^{\mathrm{T}} x + b_1)...cos(w_D^{\mathrm{T}} x + b_D)]$$

with randomly drawn w_i and b_i as described previously.

Theorem 6. For N the number of random features, and $x_1, x_2, ..., x_n$ the data points, when N > n and as N increases, the norm of the minimizer tends to the norm of the minimum norm RKHS interpolant.

Proof. Let f(x) be the minimum norm RKHS interpolant function for the datapoints.

$$f(x) = \sum_{i} \alpha_{i} k(x_{i}, x) \approx \sum_{i} \alpha_{i} z(x_{i})^{\mathrm{T}} z(x) = \beta^{\mathrm{T}} z(x) = \hat{f}(x)$$

(the first equality holds due to Representer Theorem) Where $\beta = \sum_i \alpha_i z(x_i)$. The norm of the function from the random fourier features approximation is:

$$\|\beta\| = \beta^{\mathrm{T}} \bar{\beta} = (\sum_{i} \alpha_{i} z^{\mathrm{T}}(x_{i}))(\sum_{i} \bar{\alpha}_{i} \bar{z}(x_{i})) = \sum_{i} \sum_{j} \alpha_{i} \bar{\alpha}_{j} z^{\mathrm{T}}(x_{i}) \bar{z}(x_{j}) \approx \sum_{i} \sum_{j} \alpha_{i} \bar{\alpha}_{j} k(x_{i}, x_{j}) = \|f\|$$

References

- [1] Support Vector Machines. Springer New York, 2008.
- [2] Mikhail Belkin. Approximation beats concentration? an approximation view on inference with smooth radial kernels. arxiv:1801.03437, 2018.
- [3] Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we need to understand kernel learning. arxiv:1802.01396, 2018.
- [4] Balázs Kégl, Tamás Linder, and Gábor Lugosi. Data-dependent margin-based generalization bounds for classification. In *Lecture Notes in Computer Science*, pages 368–384. Springer Berlin Heidelberg, 2001.
- [5] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems, volume 20, pages 1177–1184. Curran Associates, Inc., 2008.
- [6] Walter Rudin. Fourier Analysis on Groups. John Wiley & Sons, Inc., jan 1990.
- [7] Bernhard SchĶlkopf, Ralf Herbrich, and Alex J. Smola. A generalized representer theorem. In *Lecture Notes in Computer Science*, pages 416–426. Springer Berlin Heidelberg, 2001.
- [8] Holger Wendland. Scattered Data Approximation. Cambridge Monographs on APplied and Computational Mathematics. Cambridge University Press, 2004.

Appendix