Neur2SP: Neural Two-Stage Stochastic Programming

Justin Dumouchelle* · Rahul Patel* · Elias B. Khalil · Merve Bodur

Two-stage Stochastic Programming (2SP)

Objective: Determine optimal first-stage decisions that minimize sum of first-stage cost and expected second-stage cost.

Challenge: Exact optimization becomes exponentially harder with the number of observed samples (scenarios), *K*.

Second-Stage Problem

$$Q(\mathbf{x}, \boldsymbol{\xi_k}) := \min_{\mathbf{y}} \left\{ F(\mathbf{y}, \boldsymbol{\xi}) : \mathbf{y} \in \mathcal{Y}(\mathbf{x}, \boldsymbol{\xi}) \right\}$$
Second-stage Second-stage decisions cost

Stochastic Server Location Problem

Objective: Determine the optimal set of servers to construct given uncertainty in client requests.

Potential clients and servers

Scenario Scenario-optimal alization location + assignment

Expected optimal server location

Neural Network Architecture

Can we predict the expected second-stage cost?

A set-based, permutation-invariant model can predict the expected second-stage cost for a variable number of scenarios.

Surrogate Optimization Model

Can we use the trained model to obtain a first-stage solution?

- The ReLU network can be embedded into an integer program.
- This formulation mitigates the curse of dimensionality from the number of scenarios.

Results

Gap: Mean % difference in solution quality relative to baseline (lower is better).

Bars: Reduction in computing time over baseline (higher is better).

Capacitated Facility Location Problem (Gap: -2.93%)

Scenarios

Investment Problem (Gap: 3.82%)

Scenarios

