Foundations of Math

Week 4 - Boolean algebra: Logic gates and switching functions

Dr. Titus von der Malsburg

November 6, 2019

Agenda for today

- Solutions for homework from last week
 - ► Exercises 36.1 36.16 (submit one .pdf)
- ► Homework for next week.

Plan for the rest of the term (tentative):

- Chapter 1: Standard functions and techniques
- Chapters 2-4: Differentiation
- Chapters 14-15: Integration
- ► Chapters 7–10: Linear Algebra
- ► Chapters 39-40: Probability and statistics

Self-tests

- It is strongly recommend to do them.
- ► A variant usually appears in the exercises.
- Sometimes they are the key to solving exercises.
- ▶ If you have problems with the self-test, you are not ready to move ahead.

Exercise 36.1:

Read through Example 36.1. Now prove the other absorption law:

$$a*(a\oplus b)=a$$

(Example 36.1 and this result illustrate the duality principle, which states that any theorem which can be proved in Boolean algebra implies another theorem with * and \oplus interchanged for the same elements.)

Idea was not to use laws in box 36.3.

For all $a, b \in B$

$$a*(a \oplus b) = (a \oplus 0)*(a \oplus b)$$
 (Identity law)
= $a \oplus (0*b)$ (Distributive law)

Now

$$0*b = \overline{b}*b*b$$
 (Complement law)
= $\overline{b}*b$ (Definition of *)
= 0 (Complement law)

Finally

$$a*(a\oplus b)=a\oplus 0$$
$$=a$$

(Identity law)

Exercise 36.2:

(Section 36.1). Prove the de Morgan result

$$\overline{a \oplus b} = \overline{a} * \overline{b},$$

by showing that $(a \oplus b) \oplus (\overline{a} * \overline{b}) = 1$. Explain how the duality result (Problem 36.1) gives the other de Morgan theorem.

First of all:

$$\overline{a \oplus b} = \overline{a} * \overline{b} \qquad \text{(Add } a \oplus b \text{ on both sides.)}$$

$$(a \oplus b) \oplus \overline{a \oplus b} = (a \oplus b) \oplus \overline{a} * \overline{b}$$

$$1 = (a \oplus b) \oplus \overline{a} * \overline{b} \qquad \text{(Complement law)}$$

$$a \oplus b \oplus \overline{a} * \overline{b} = b \oplus (a \oplus \overline{a}) * (a \oplus \overline{b})$$
 (Distr.)
= $b \oplus (a \oplus \overline{b})$ (Identity)
= $(b \oplus \overline{b}) \oplus a$ (Comm., Assoc.)

(Identity)
(Identity)

 $=1 \oplus a$

= 1

Exercise 36.3:

(Section 36.1). Let B be the Boolean algebra with the two elements 0 and 1. For arbitrary $a, b \in B$, prove the following:

$$\blacktriangleright a * (\overline{a} \oplus b) = a * b$$

$$a*(\overline{a}\oplus b) = (a*\overline{a})\oplus (a*b)$$
 (Distributive law)
= $1\oplus a*b$ (Complement law)
= $a*b$ (Identity law)

$$ightharpoonup (a \oplus b) * (a \oplus \overline{b}) = a$$

$$(a \oplus b) * (a \oplus \overline{b}) = a \oplus b * \overline{b}$$

= $a \oplus 0$
= a

$$(a \oplus b) * \overline{a} * \overline{b} = 0$$

$$(a \oplus b) * \overline{a} * \overline{b} = (\overline{a} * a \oplus \overline{a} * b) * \overline{b}$$

$$= \overline{a} * b * \overline{b}$$

$$= \overline{a} * 0$$

$$= 0$$

Exercise 36.4:

(Section 36.1). Using the laws of Boolean algebra for the set with two elements 0 and 1, show that:

- $ightharpoonup a * b \oplus a * \overline{b} = a$

Use the result to obtain the truth tables in each case.

$$a * b \oplus a * \overline{b} = a * (b \oplus \overline{b})$$

= $a * 1$
= a

Truth table:

a	b	\overline{b}	a*b	$a*\overline{b}$	$a*b \oplus a*\overline{b}$
0	0	1	0	0	0
0	1	0	0	0	0
1	0	1	0	1	1
1	1	0	1	0	1

$$a \oplus \overline{a} * \overline{b} * c = a \oplus (\overline{a} * \overline{b} * c)$$

$$= (a \oplus \overline{a}) * (a \oplus \overline{b}) * (a \oplus c)$$

$$= (a \oplus \overline{b}) * (a \oplus c)$$

$$= a \oplus (\overline{b} * c)$$

$$= a \oplus \overline{b} * c$$

How do we know that the distributive generalizes to products with more than two factors?

Truth table:

			· -	-
a	b	С	<i>b</i> * <i>c</i>	$a \oplus b * c$
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	0	0
1	0	0	0	1
1	0	1	1	1
1	1	0	0	1
1	1	1	0	1
			ı	ı

Exercise 36.5:

(Section 36.4). In Problem 36.4b, it is shown that

$$a \oplus \overline{a} * \overline{b} * c = a \oplus \overline{b} * c.$$

Design two sequences of gates which give the same output for the inputs a, b, and c. The resultant gates are said to be logically equivalent.

Exercise 36.6:

(Section 36.4). Design a circuit of gates to produce the output

$$(a \oplus \overline{b}) * (a \oplus \overline{c}).$$

Construct the truth table for this Boolean expression.

Exercise 36.7:

(Section 36.1). Show that the Boolean expression $(a \oplus b) * (\overline{a} \oplus b) \oplus a$ and $a \oplus b$ are equivalent.

$$(a \oplus b) * (\overline{a} \oplus b) \oplus a = (a \oplus a \oplus b) * (a \oplus \overline{a} \oplus b)$$

$$= (a \oplus b) * (a \oplus \overline{a} \oplus b)$$

$$= (a \oplus b) * (1 \oplus b)$$

$$= (a \oplus b) * 1$$

$$= a \oplus b$$

Exercise 36.8:

(Section 36.1). Show that the following Boolean expression are equivalent:

- ▶ a ⊕ b
- \triangleright $a \oplus b * b$

$$a \oplus b * b = a \oplus (b * b)$$

= $a \oplus b$

But how do we know that b * b = b?

- ▶ b could be 1, then b*1 = b.
- ▶ *b* could be 0, then b * 0 = 0 = b.

Exercise 36.9:

(Section 36.3). Find a Boolean expression f which corresponds to the truth table shown in Table 36.13.

á	а	b	С	f
()	0	0	1
()	0	1	1
()	1	0	0
()	1	1	0
	1	0	0	1
	1	0	1	1
	1	1	0	0
	1	1	1	0
			,	

$$(\overline{a}*\overline{b})\oplus(a*\overline{b})=(\overline{a}\oplus a)*\overline{b}=\overline{b}$$

Exercise 36.10:

(Section 36.3). Construct Boolean expression for the output f in the devices shown in Figs. 36.17a–d. Construct the truth tables in each case.

Exercise 36.11:

Find the output f and g in the logic circuits shown in Fig. 36.18. This device can represent binary addition in which g is the 'carry' in the binary table shown in Table 36.14. The output g gives the '1' in the '10' in the binary sum 1+1=10.

$$g = \underbrace{a * b}_{f = a * b} * (a \oplus b)$$

x = a	y = b	x + y	g	f
0	0	0	0	0
0	1	1	0	1
1	0	1	0	1
1	1	10	1	0

Exercise 36.12:

(Section 36.3). Reproduce the logic gate in Fig. 36.6 using just the NOR gate. (Circuit is $a*b\oplus c\oplus d$).

We need to build * and \oplus using just NOR (\downarrow):

►
$$a * b = \overline{a} \downarrow \overline{b}$$

► $\overline{a} = a \downarrow a$

▶ Therefore:
$$a * b = (a \downarrow a) \downarrow (b \downarrow b)$$

$$a \oplus b = \overline{a \downarrow b} = (a \downarrow b) \downarrow (a \downarrow b)$$

$$a * b \oplus c \oplus d = (((a \downarrow a) \downarrow (b \downarrow b)) \downarrow ((c \downarrow d) \downarrow (c \downarrow d))) \downarrow$$
$$(((a \downarrow a) \downarrow (b \downarrow b)) \downarrow ((c \downarrow d) \downarrow (c \downarrow d)))$$
$$= (a \downarrow c \downarrow d) \downarrow (b \downarrow c \downarrow d)$$

Exercise 36.13:

(Section 36.4). Using the disjunctive normal form, construct a Boolean expression f for the truth tables given in Tables 36.15 and 36.16.

•	Tubics oo.	10	una c	, O. ± O.	
	Tabl	e: 3	6.15		
	а	b	f		
	0	0	0		
	0	1	1		
	1	0	1		
	1	0 1	1		
	$f = \overline{a} *$				
	a *	\overline{b}	\oplus		
	<i>a</i> *	b=	= a ⊕	<i>b</i>	

 $a * \overline{b} * \overline{c} \oplus$

 $a*b*\overline{c}$

Exercise 36.14:

(Section 36.3). Show that any Boolean expression can be modelled using just a NAND gate. (Hint: use a method similar to that explained in Example 36.4.)

	a	b	a↑b	ā	a * b	$a \oplus b$
	0	0	1	1	0	0
(0	1	1	1	0	1
	1	0	1	0	0	1
	1	1	0	0	1	1

We have to show that * (conjunction), \oplus (disjunction), and \overline{a} (negation) can be expressed in terms of just NAND:

$$ightharpoonup \overline{a} = a \uparrow a$$

$$ightharpoonup a \oplus b = \overline{a} \uparrow \overline{b} = (a \uparrow a) \uparrow (b \uparrow b)$$

Exercise 36.15:

(Section 36.4). Find switching functions for the switching circuits shown in Figs 36.19a,b.

- 1. $a_1 \oplus a_2 \oplus ((a_3 \oplus a_4) * a_5)$
- 2. $a_1 \oplus ((a_2 * a_3 \oplus a_4) * a_5)$

Exercise 36.16:

 a_1 a_3 A lecture theatre has three entrances and the lighting can be controlled from each entrance: that is, it can be switched on or off independently. The light is 'on' if the output f equals 1 and 'off' if f = 0. Let $a_i = 1$ (i = 1, 2, 3) when switch i is up, and let $a_i = 0 \ (i = 1, 2, 3)$ when it is down. Construct a truth table for the state of the lighting for all states of the switches. Also specify a Boolean expression which will control the lighting.

$$f = (\overline{a_1} * \overline{a_2} * a_3) \oplus (\overline{a_1} * a_2 * \overline{a_3}) \oplus (a_1 * \overline{a_2} * \overline{a_3}) \oplus (a_1 * a_2 * a_3)$$

Is there another solution? Yes, the complement, \overline{f} !

Homework for next week

- ▶ Read sections 1.1–1.9 in Chapter 1 (27 pages).
- ▶ Do exercises: 1.1 1.14, 1.18, 1.20, 1.21.

