

AD-A101 667

RCA LABS PRINCETON NJ

F/6 9/5

MONOLITHIC GAAS DUAL-GATE FET PHASE SHIFTER. (U)

NO0014-79-C-0568

UNCLASSIFIED

PRRL-81-CR-13

NL

1 of 1
AD-A10167

END
DATE
FILED
8-81
DTIC

13-
ADA101667

LEVEL III
J2
SP

MONOLITHIC GaAs DUAL-GATE FET PHASE SHIFTER

RCA Laboratories
Princeton, New Jersey 08540

MAY 1981

TRI-ANNUAL REPORT NO. 2 for the period 1 January 1981 to 30 April 1981

Approved for public release; distribution unlimited.
Reproduction, in whole or in part, is permitted
for any purpose of the U.S. Government.

Prepared for
Department of the Navy
Office of Naval Research
Arlington, Virginia 22217
Contract No. N00014-79-C-0568

13-
MFC FILE COPY

81 7 21 021

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

12 15

DD FORM 1473
1 JAN 73

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

299000 fm

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

20.

through a 4-mil-thick GaAs substrate without much undercut and without an infrared microscope for backside alignment.

(3) A four-way, in-phase combiner on Al_2O_3 substrate has been developed with good performance. The same design is being modified for fabrication on GaAs semi-insulating substrates. This four-way, in-phase combiner is needed for the 0 to 360° phase shifter that will be developed in the next phase. ↗

Technical Problems

There was no major problem during this period.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

PREFACE

This Tri-annual Report describes the work performed under Contract No. N00014-79-C-0568, 1 January 1981 to 30 April 1981, in the Microwave Technology Center, F. Sterzer, Director, H. C. Huang is the project supervisor, and M. Kumar is the project scientist.

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By	
Distribution/	
Availability Codes	
Avail and/or	
Dist	Special
A	

TABLE OF CONTENTS

Section	Page
I. OBJECTIVE	1
II. PROGRESS	1
A. Development of Monolithic 90° Phase Shifter	1
B. "Via" Hole Technique	2
C. Four-Way, In-Phase Power Divider/Combiner	4

LIST OF ILLUSTRATIONS

Figure	Page
1. Chemical etch. Diameter of the original hole pattern is 25 μ m. 500X	2
2. Laser drill without photoresist. 500X	3
3. Laser drill. Diameter of the original hole pattern is 25 μ m. 500X	4
4. Schematic of a planar four-way power divider/combiner	5
5. Variation of coupling with frequency	5
6. Variation of isolation between ports with frequency	6
7. Variation of insertion loss with frequency	6
8. Variation of return loss with frequency	7

I. Objective

The objective of this four-year program (Sept. 1, 1979 to Aug. 31, 1983) is to develop a monolithic GaAs dual-gate FET phase shifter, operating over the 4- to 8-GHz frequency band and capable of a continuous programmable phase shift from 0° through N times 360° where N is an integer. The phase shift is to be controllable to within +3°. This phase shifter will be capable of delivering an output power up to 0 dBm with an input and output VSWR of less than 1.5:1.

II. Progress

In the last tri-annual report, for the period 1 September 1980 to 31 December 1980, we reported the development of a 360° GaAs dual-gate FET phase shifter using discrete components. The 360° phase shifter consists of two 90° phase shifters, a 180° hybrid, and a in-phase power combiner. The development of a truly monolithic 360° phase shifter will require all the components to be monolithically integrated on a single GaAs substrate. To achieve a 360° phase shifter, we are developing the individual components in this phase and will integrate the above-mentioned components on GaAs substrates in the next phase (1982). The development of a 360° phase shifter will require the following:

- (1) 90° monolithic dual-gate GaAs phase shifters
- (2) monolithic 180° hybrid
- (3) monolithic in-phase combiner

We have already demonstrated a 180° hybrid on an Al_2O_3 substrate (Bimonthly Report No. 6) and a monolithic dual-gate FET amplifier (Bimonthly Report No. 3).

A Development of a 90° Monolithic GaAs Dual-Gate FET Phase Shifter

The goals for the second phase of this program are to develop and demonstrate a 0 to 90° monolithic phase shifter. During this tri-annual report period 1 January 1981 to 30 April 1981, we have completed the design of a monolithic GaAs dual-gate FET phase shifter. The drawings have been sent to Photronic Labs, Inc. (Danbury, CT) which will prepare the photomasks. The 90° monolithic phase shifter includes, on the same GaAs substrate, the following components: dual-gate FETs, matching circuits, interdigitated 90° hybrid, in-phase power combiner, airbridges, thin film resistor, MIM capacitors for

bypassing the shunt-matching elements and injecting the bias to the dual-gate FET, and "via" holes for low inductance ground connection of FET sources and capacitors. The masks are expected to be delivered in June 1981.

We are in the process of fabricating the 90°, interdigitated hybrids on 100- μ m-thick GaAs substrates.

B. "Via" Hole Technique

A truly monolithic microwave integrated circuit requires the grounding of source pads, shunt capacitors, etc., through "via" holes at their appropriate locations on the GaAs chip. We have developed a technique of fabricating "vias" by front-side alignment. Chemically etched "vias" have been used and reported in literature for monolithic integrated circuits. There are distinct disadvantages and difficulties with this technique:

- (1) The backside alignment is difficult and requires the use of expensive equipment such as an infrared aligner.
- (2) Chemical etching produces considerable undercutting making the holes much larger than those defined by the hole pattern (Fig. 1). Furthermore, not all the holes are etched at the same rate.
- (3) Laser drilling of the holes directly on the surface of GaAs produces extensive damage on the surface (Fig. 2).

Figure 1. Chemical etch. Diameter of the original hole pattern is 25 μ m. 500X.

Figure 2. Laser drill without photoresist. 500A.

We have developed a technique which avoids the difficult backside alignment and nonuniform chemical etch. Although a laser is used to drill the holes, our technique involves the use of a photoresist protective layer to minimize surface damage.

The following is the step-by-step procedure.

- (1) The device with the circuits is fabricated on the front side of the GaAs wafer which is 10 mil thick. It is much easier to process a 10-mil-thick wafer than, say, a 4-mil wafer.
- (2) After the front-side-device process is completed, the wafer is thinned down to the desired thickness (about 4 mil) from the back side by suitable mechanical and chemical means.
- (3) The front surface is coated with 1- to 2- μm -thick photoresist and the hole pattern is defined. This minimizes the surface damage by laser.
- (4) Holes are drilled using a laser. A power setting of 25 to 30 kW is found to be adequate to drill 1-mil-diameter holes in a 4-mil (100 μm) thick GaAs wafer.

- (5) Figure 3 shows the front view of the hole after removing the photoresist. It can be seen that the diameter of the hole is about 35 to 40 μm . (The original hole pattern was 25 μm in diameter.)
- (6) Cr ($\sim 500 \text{ \AA}$) and Au ($\sim 3000 \text{ \AA}$) are evaporated on the backside of the wafer. Electrical plating up through the holes is carried out.

Figure 3. Laser drill. Diameter of the original hole pattern is 25 μm . 500X.

C. Development of a Four-Way, In-Phase Power Divider/Combiner

We have developed a planar, four-way, in-phase power divider/combiner. This four-way, in-phase combiner is required for combining four outputs of the dual-gate FET amplifiers in a 360° phase shifter (Tri-annual Report No. 1). The divider/combiner reported here was fabricated on alumina substrate and is compatible for monolithic integration on GaAs substrates with other passive and active components.

Figure 4 shows the schematic of a planar, four-way, in-phase power divider/combiner on Al_2O_3 substrate. The input is split into four outputs through four $\lambda/4$ sections of the transmission lines. The impedance of each $\lambda/4$ section of line is 100Ω and the value of the isolation resistance is 70.7Ω . The input

Figure 4. Schematic of a planar four-way power divider/combiner.

and output impedances are 50Ω each. The performance of the divider/combiner is shown in Figs. 5 through 8. Figure 5 shows the variation of coupling at four output ports with frequency. Figure 6 presents the isolation vs frequency between any two ports. The isolation is better than 13 dB over the band. The insertion loss and return loss of the divider/combiner are presented in Figs. 7 and 8. The overall phase variation between the ports is $\pm 6^\circ$.

Figure 5. Variation of coupling with frequency.

Figure 6. Variation of isolation between ports with frequency.

Figure 7. Variation of insertion loss with frequency.

Figure 8. Variation of return loss with frequency.

DISTRIBUTION LIST
Contract N00J14-79-C-0568

Code 427 Office of Naval Research Arlington, VA 22217	4	Dr. H. C. Nathanson Westinghouse Research and Development Center Beulah Road Pittsburgh, PA 15235	1
Naval Research Laboratory 4555 Overlook Avenue, S.W. Washington, DC 20375			
Code 6811 6580	1 1	Dr. Daniel Chen Rockwell International Science Center P. O. Box 1085 Thousand Oaks, CA 91360	1
Defense Documentation Center Building 5, Cameron Station Alexandria, VA 22314	12	Dr. C. Krumm Hughes Research Laboratory 3011 Malibu Canyon Road Malibu, CA 90265	1
Dr. Y. S. Park AFWAL/DHR Building 450 Wright-Patterson AFB Ohio, 45433	1	Mr. Lothar Wandinger ECOM/AMSEL/TL/IJ Fort Monmouth, NJ 07003	1
ERADCOM DELET-M Fort Monmouth, NJ 07703	1	Dr. Harry Wieder Naval Ocean Systems Center Code 922 271 Catalina Blvd. San Diego, CA 92152	1
Texas Instruments Central Research Lab M.S. 134 13500 North Central Expressway Dallas, TX 75265 Attn: Dr. W. Wisseman	1	Dr. William Lindley MIT Lincoln Laboratory F124 A, P.O. Box 73 Lexington, MA 02173	1
Dr. R. M. Malbon/M.S. 1C Avantek, Inc. 3175 Bowers Avenue Santa Clara, CA 94304	1	Commander U.S. Army Electronics Command V. Gelnovatch (DRSEL-TL-IC) Fort Monmouth, NJ 07703	1
Mr. R. Bierig Raytheon Company 28 Seyon Street Waltham, MA 02154	1	RCA Microwave Technology Center Dr. F. Sterzer Princeton, NJ 08540	1
Dr. R. Bell, K-101 Varian Associates, Inc. 611 Hansen Way Palo Alto, CA 94304	1		

Hewlett-Packard Corporation Dr. Robert Archer 1501 Page Road Palo Alto, CA 94306	1	D. Claxton MS/1414 TRW Systems One Space Park Redondo Beach, CA 90278	1
Watkins-Johnson Company E.J. Crescenzi, Jr./ K. Niclas 3333 Hillview Avenue Stanford Industrial Park Palo Alto, CA 94304	1	Professor L. Eastman Phillips Hall Cornell University Ithaca, NY 14853	1
Commandant Marine Corps Scientific Advisor (Code AX) Washington, DC 20380	1	AIL TECH 612 N. Mary Avenue Sunnyvale, CA 94086 Attn: G. D. Vendelin	1
Communications Transistor Corp. Dr. W. Weisenberger 301 Industrial Way San Carlos, CA 94070	1	Professor Hauser and Littlejohn Department of Electrical Engr. North Carolina State University Raleigh, NC 27607	1
Microwave Associates Northwest Industrial Park Drs. F.A. Brand/J. Saloom Burlington, MA 01803	1	Professor J. Beyer Dept. of Electrical and Computer Engineering University of Wisconsin Madison, WI 53706	1
Commander, AFAL AFWAL/AADM Dr. Don Rees Wright-Patterson AFB Ohio 45433	1	Professor Rosenbaum & Wolfe Semiconductor Research Laboratory Washington University St. Louis, MO 63130	1
Professor Walter Ku Phillips Hall Cornell University Ithaca, NY 14853	1	W. H. Perkins Electronics Lab 3-115/B4 General Electric Company P.O. Box 4840 Syracuse, NY 13221	1
Commander Harry Diamond Laboratories Mr. Horst W. A. Gerlach 2800 Powder Mill Road Adelphia, MD 20783	1		
Advisory Group on Electron Devices 201 Varick Street 9th Floor New York, NY 10014	1		