NVAE: A Deep Hierarchical Variational Autoencoder

Vanilla VAE

Hierarchical VAE

h - trainable parameter r - residual neural network

 $z_1 - 8x8$ $z_2 - 16x16$... $z_n - 128x128$

Residual Cells

(a) Residual Cell for NVAE Generative Model

(b) Residual Cell for NVAE Encoder

Depthwise convolutions for generative part.

BN hurts performance for vanilla VAE, but it's "hacked" in NVAE.

Swish activation: $f(u) = \frac{u}{1 + e^{-u}}$

Squeeze and Excitation: channel-wise gating layer.

Depthwise convolution

Memory requirement.

1) NVIDIA APEX

Mixed precision training ~40%

2) Gradient check-pointing

Fuse BN and Swish

CIFAR-10 ~18%

Taming the Unbounded KL Term

Residual Normal Distributions.

Let $p(z_l^i \mid z_{< l}) := \mathcal{N}(\mu_i(z_{< l}), \sigma_i(z_{< l}))$ be a Normal distribution for the ith variable in z_l prior.

$$q\left(z_{l}^{i}\mid z_{< l},\ x\right) := \mathcal{N}\left(\mu_{i}\left(z_{< l}\right) + \Delta\mu_{i}\left(z_{< l},\ x\right),\ \sigma_{i}\left(z_{< l}\right) \cdot \Delta\sigma_{i}\left(z_{< l},\ x\right)\right)$$

$$\text{KL term in L_{VAE}:} \quad \text{$KL(q(z^{i}\mid x)\parallel p(z^{i}))$} = \frac{1}{2}\left(\frac{\Delta\mu_{i}^{2}}{\sigma_{i}^{2}} + \Delta\sigma_{i}^{2} - \log\Delta\sigma_{i}^{2} - 1\right)$$

2. Spectral Regularization.

Formally, we add $L_{SR} = \lambda \sum_{i} s^{(i)}$ to L_{VAE} , where $s^{(i)}$ is the largest singular value of the ith conv layer.

	Method	MNIST 28×28	CIFAR-10 32×32	ImageNet 32×32	CelebA 64×64	CelebA HQ 256×256	FFHQ 256×256		
	NVAE w/o flow	78.01	2.93	-	2.04	-	0.71		
Quantitative results	NVAE w/ flow	78.19	2.91	3.92	2.03	0.70	0.69		
	VAE Models with an Unconditional Decoder								
	BIVA [36]	78.41	3.08	3.96	2.48	9	Η.		
	IAF-VAE [4]	79.10	3.11	-	×	-	π.		
The performance is measured	DVAE++ [20]	78.49	3.38	-	2		2		
in bits/dimension (bpd) for all	Conv Draw [42]	-	3.58	4.40	7	-	Ξ.		
` ' '	Flow Models without any Autoregressive Components in the Generative Model								
the datasets but MNIST in	VFlow [59]	1 25	2.98	-	말		2		
which negative log-likelihood in	ANF [60]	-	3.05	3.92	-	0.72	-		
nats is reported (lower is better	Flow++ [61]	-	3.08	3.86	*	7	×		
in all cases).	Residual flow [50]	-	3.28	4.01	-	0.99	=		
	GLOW [62]	-	3.35	4.09	-	1.03	-		
	Real NVP [63]		3.49	4.28	3.02	æ	H 70		
For large image datasets such	VAE and Flow Models with Autoregressive Components in the Generative Model								
as CelebA HQ and FFHQ,	δ-VAE [25]	-	2.83	3.77	-		2		
•	PixelVAE++ [35]	78.00	2.90	_	2	2			
NVAE consists of 36 groups of	VampPrior [64]	78.45	-		Ε.		π.		
latent variables starting from 8 × 8 dims, scaled up to	MAE [65]	77.98	2.95	-	*	-	~		
	Lossy VAE [66]	78.53	2.95	_	2	2	2		
	MaCow [67]	-	3.16	0.50	=	0.67	=		
128 × 128 dims with two	Autoregressive Models								
residual cells per latent	SPN [68]	-	-	3.85	-	0.61	8		
•	PixelSNAIL [34]		2.85	3.80	-	-	-		
variable groups.	Image Transformer [69]	-	2.90	3.77	2	-	Ψ.		
	PixelCNN++ [70]	_	2.92	-	21	2	U.		
	PixelRNN [41]		3.00	3.86	=		=		
	Gated PixelCNN [71]	-	3.03	3.83	×	-	×		

Normalization and Activation Functions

Table 2	: N	lorma !	lization	&	activation
---------	-----	---------	----------	---	------------

Functions	L = 10	L = 20	L = 40
WN + ELU	3.36	3.27	3.31
BN + ELU	3.36	3.26	3.22
BN + Swish	3.34	3.23	3.16

Residual Cells

Table 3: Residual cells in NVAE

Bottom-up model	Top-down model			
Regular	Regular	3.11	43.3	6.3
Separable	Regular	3.12	49.0	10.6
Regular	Separable	3.07	48.0	10.7
Separable	Separable	3.07	50.4	14.9

Residual Normal Distributions

Table 4: The impact of residual dist.

Mod	del		# Act.	Т	raini	ng	Test
			z	KL	Rec.	\mathcal{L}_{VAE}	LL
w/	Res.	Dist.	53	1.32	1.80	3.12	3.16
w/o	Res.	Dist.	54	1.36	1.80	3.16	3.19

The effect of SR and SE

Table 5: SR & SE

Model	Test NLL
NVAE	3.16
NVAE w/o SR	3.18
NVAE w/o SE	3.22

Qualitative Results

(f) MaCow [67] trained on CelebA HQ (t = 0.7)

(g) Glow [62] trained on CelebA HQ (t = 0.7)

No Fixed Scale

As we can see, the 20 global long-range correlations are captured mostly at the top of the hierarchy, and the local variations are recorded at the lower groups.

Top Scale Fixed

Questions

- 1. Why does NVAE need residual cells, what do they look like, and why is each element needed?
- 2. Depthwise convolution: what is it for, what problems arise, how are they solved?
- 3. What is the Residual Normal Distributions approach?
- 4. What is the Spectral Regularisation approach?

References

https://arxiv.org/abs/2007.03898 - A. Vahdat, J. Kautz. NVAE: A Deep Hierarchical Variational Autoencoder. 2020