NANOPHYSIQUE INTRODUCTION PHYSIQUE AUX NANOSCIENCES

Ch 5. Carbon Structres

James Lutsko

Lecture 5, 2019-2020

Carbon Structures

- Introduction
 - Histoire
 - Carbone
 - Hybridization
- Tight-binding calculations
 - Principe
 - Example: trans
 - Graphene π-liens
 - Graphene σ-liens
- Structure de carbone nanotubes
- Structure Electronique
- Synthesis
- Transport
- Multi-walled nanotubes

Carbon Structures

- Introduction
 - Histoire
 - Carbone
 - Hybridization
- Tight-binding calculations
 - Principe
 - Example: trans
 - Graphene π -liens
 - Graphene σ-liens
- Structure de carbone nanotubes
- Structure Electronique
- Synthesis
- Transport
- Multi-walled nanotubes

Une petite histoire

- La première fibre de carbone: Edison, 1879
- Recherche lente jusqu'à ce que les années 1950
- Aéronautique -> recherche de matériaux légers et résistants → "carbon whisker"
- Découverte de fullerenes (Kroto, Smalley 1985)
- → Recherche invité à l'échelle du nanomètre fibres
- Spéculation théorique sur la forme et symétrie de carbone nanotubes (Smalley, Dresselhaus, ...)
- Observation de carbone nanotubes (Iijima, 1992 utilisant TEM).

Propriétés du carbone

graphite

Nano materials

Carbon nanotubes(CNT) (Iijima Nature 354 56 (1992))

Electron microscope image

Interpretation of the images

diameter 65 ms, which has the smallest formy denoter (22 ms).

Current-voltage characteristics of CNT (S.J. Tans et al.

Nature 386 474 (1997))

Electron microscope image of the system

• thin filament: Single-wall CNT

hills: electrodes

a.Nonlinear conductance(Coulomb staircase)b.Controlling the number of electrons

Carbone

Carbone:

$$Z = 6$$

¹²C, ¹³C--> stable
¹⁴C--> half-life = 5,730 an
(carbon dating)

Configuration Electronique:

*Lanthanide	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Series	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
+ Actinide	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Series	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

1s 2p

Covalent bonds: sharing electrons

T (kinetic energy) : lower energy by delocalizing electrons

V (potential energy): lower energy by localizing electrons near ions

Hybridization

$$C \quad \frac{\uparrow\downarrow}{1s} \, \frac{\uparrow\downarrow}{2s} \, \frac{\uparrow}{2p_x} \, \frac{\uparrow}{2p_y} \, \frac{1}{2p_z}$$

$$C^* \quad \frac{\uparrow \downarrow}{1s} \, \frac{\uparrow}{2s} \, \frac{\uparrow}{2p_x} \frac{\uparrow}{2p_y} \frac{\uparrow}{2p_z}$$

$$C^* \quad \frac{\uparrow\downarrow}{1s} \, \frac{\uparrow}{sp} \, \frac{\uparrow}{sp} \frac{\uparrow}{p} \frac{\uparrow}{p}$$

$$C^*$$
 $\frac{\uparrow\downarrow}{1s} \frac{\uparrow}{sp^2} \frac{\uparrow}{sp^2} \frac{\uparrow}{sp^2} \frac{\uparrow}{2p}$

$$C^*$$
 $\frac{\uparrow\downarrow}{1s} \frac{\uparrow}{sp^2} \frac{\uparrow}{sp^2} \frac{\uparrow}{sp^2} \frac{\uparrow}{2p}$ C^* $\frac{\uparrow\downarrow}{1s} \frac{\uparrow}{sp^3} \frac{\uparrow}{sp^3} \frac{\uparrow}{sp^3} \frac{\uparrow}{sp^3}$

SP Hybridization

$$|sp_a\rangle = C_1|s\rangle + C_2|p_x\rangle$$

$$|sp_b\rangle = C_3|s\rangle + C_4|p_x\rangle$$

Orthonormality:

$$\langle sp_i | sp_j \rangle = \delta_{ij}$$

$$C_1^2 + C_2^2 = 1$$

$$C_3^2 + C_4^2 = 1$$

$$C_1C_3 + C_2C_4 = 0$$

$$C_4 = \pm C_{1}$$

$$C_3 = \mp C_2 = \mp \sqrt{1 - C_1^2}$$

$$|sp_a\rangle = \frac{1}{\sqrt{2}}(|s\rangle + |p_x\rangle)$$

$$|sp_b\rangle = \frac{1}{\sqrt{2}}(|s\rangle - |p_x\rangle)$$

ORBITALES & LEURS HYBRIDATIONS

Structure électronique d'un atome de carbone = $1s^2 2s^2 2p^2$ coeur = $1s^2$ 4 électrons de valence = $2s^2 2p^2$

Hybridation sp:

acétylène: HCCH liaison triple: 1 lien σ + 2 liens π

1 lien σ = orbitale moléculaire sp +sp

2 liens π = orbitales moléculaires $2p_y$, $2p_z$

 $sp = hybridation 2s + 2p_x$

$$|sp_a\rangle = \frac{1}{\sqrt{2}}(|2s\rangle + |2p_x\rangle)$$

 $|sp_{b}\rangle = \frac{1}{\sqrt{2}} ||2s\rangle - |2p_{x}\rangle|$

Hybridation sp²:

polyacétylène: $(HCCH)_n$ liaison double: 1 lien $\sigma + 1$ lien π

1 lien σ = orbitale moléculaire sp² +sp²

1 lien π = orbitale moléculaire $2p_z$

 $sp^2 = hybridation 2s + 2p_x + 2p_y$

$$|sp_a^2\rangle = \frac{1}{\sqrt{3}}|2s\rangle - \frac{\sqrt{2}}{\sqrt{3}}|2p_x\rangle$$

$$|sp_{b,c}^{2}\rangle = \pm \frac{1}{\sqrt{3}}|2s\rangle \pm \frac{1}{\sqrt{2}}|2p_{x}\rangle + \frac{1}{\sqrt{6}}|2p_{y}\rangle$$

Hybridation sp³:

méthane: CH_4 liaison simple: 1 lien σ

1 lien σ = orbitale moléculaire sp³ +sp³

 sp^3 = hybridation $2s + 2p_x + 2p_y + 2p_z$

$$|sp_a^3\rangle = \frac{1}{2}(|2s\rangle \pm |2p_x\rangle \pm |2p_y\rangle \pm |2p_z\rangle)$$

Carbon Structures

- Introduction
 - Histoire
 - Carbone
 - Hybridization
- Tight-binding calculations
 - Principe
 - Example: trans
 - Graphene π -liens
 - Graphene σ-liens
- Structure de carbone nanotubes
- Structure Electronique
- Synthesis
- Transport
- Multi-walled nanotubes

1. Théorème de Bloch: Donné d'un potentiel qui est périodique sur un réseau de Bravais, $U(\mathbf{r}+\mathbf{R})=U(\mathbf{r})$, la solution de l'équation Schrodinger d'un électron est

$$\psi(\mathbf{r})$$
 avec $\psi(\mathbf{r}+\mathbf{R})=e^{i\mathbf{k}\cdot\mathbf{R}}\psi(\mathbf{r})\forall\mathbf{R}$ dans le reseaux.

Preuve: Soit T_p etre l'opérateur de translation. Puis,

$$T_R H \psi = H(r+R) \psi(r+R) = H(r) \psi(r+R) = H(r) T_R \psi(r) \rightarrow [H, T_R] = 0$$

Et c'est evident que

$$T_{R_1}T_{R_2} = T_{R_2}T_{R_1} = T_{R_1+R_2}$$
 (*)

Alors, il ya vecteurs propres simultanés:

$$H \psi = E \psi$$
$$T_{R} \psi = c(R) \psi$$

Puis, (*) implique que $c(\mathbf{R}_1)c(\mathbf{R}_2)=c(\mathbf{R}_1+\mathbf{R}_2)$

$$c(\mathbf{R}_{n}) = c(n_{1}\mathbf{a}_{1} + n_{2}\mathbf{a}_{2} + n_{3}\mathbf{a}_{3}) = c(\mathbf{a}_{1})^{n_{1}}c(\mathbf{a}_{2})^{n_{2}}c(\mathbf{a}_{3})^{n_{3}} = e^{2\pi i(n_{1}x_{1} + n_{2}x_{2} + n_{3}x_{3})}, \qquad x_{j} = \frac{\ln c(\mathbf{a}_{j})}{2\pi i}$$

 $= e^{i(x_1\boldsymbol{b}_1 + x_2\boldsymbol{b}_2 + x_3\boldsymbol{b}_3)\cdot\boldsymbol{R}_n}, \quad \boldsymbol{a}_i \cdot \boldsymbol{b}_j = 2\pi \delta_{ij}$

Conditions à la limite periodique

$$\psi(\mathbf{r}+N_i\mathbf{a}_i)=\psi(\mathbf{r}), \quad i=1,2,3$$

$$\rightarrow x_i = \frac{m_i}{N}$$
, m_i nombre entier $\leq N_i$

2. Tight-binding fonctions de base

$$\Phi_{jk}(\mathbf{r}) = \frac{1}{\sqrt{N}} \sum_{\mathbf{R}_n \in B}^{N} e^{i\mathbf{k} \cdot \mathbf{R}_n} \phi_j(\mathbf{r} - \mathbf{R}_n), \text{ o } \dot{\mathbf{u}} \phi_j \text{ sont les fonctions atomique est } \mathbf{k} \in \tilde{B}$$

Vérification:
$$\Phi_{jk}(\mathbf{r}+\mathbf{R}_m) = \frac{1}{\sqrt{N}} \sum_{\mathbf{R}_n \in B}^{N} e^{i\mathbf{k}\cdot\mathbf{R}_n} \Phi_j(\mathbf{r}+\mathbf{R}_m-\mathbf{R}_n)$$
$$= \frac{1}{\sqrt{N}} \sum_{\mathbf{R}_l \in B}^{N} e^{i\mathbf{k}\cdot(\mathbf{R}_l+\mathbf{R}_m)} \Phi_j(\mathbf{r}-\mathbf{R}_l)$$
$$= \Phi_{jk}(\mathbf{r}) e^{i\mathbf{k}\cdot\mathbf{R}_m}$$

3. Tight-binding fonction d'onde

$$\psi(\mathbf{r};\mathbf{k}) = \sum_{j=1}^{n} C_{j}(\mathbf{k}) \Phi_{j\mathbf{k}}(\mathbf{r})$$

4. <u>Tight-binding éléments de matrice</u>

$$H_{jj'}(\mathbf{k}) = \langle \Phi_{j\mathbf{k}} | H | \Phi_{j'\mathbf{k}} \rangle$$
 transfer integral matrix $S_{jj'}(\mathbf{k}) = \langle \Phi_{j\mathbf{k}} | \Phi_{j'\mathbf{k}} \rangle$ overlap integral matrix

Principe de variation pour l'équation de Schrodinger.

La fonctionelle

$$E[\psi] \equiv \frac{\int d\mathbf{r} \frac{h^2}{2m} (\nabla \psi(\mathbf{r}))^2 + V(\mathbf{r}) |\psi(\mathbf{r})|^2}{\int d\mathbf{r} |\psi(\mathbf{r})|^2}$$

est minimisé pour *tous* function d'onde qui satisfie l'équation de Schrodinger.

Preuve: Définir

$$F[\psi,\phi] = \int d\mathbf{r} \left(\frac{h^2}{2m} (\nabla \psi(\mathbf{r})) \cdot (\nabla \phi^*(\mathbf{r})) + V(\mathbf{r}) \psi(\mathbf{r}) \phi^*(\mathbf{r}) \right)$$
$$(\psi,\phi) = \int d\mathbf{r} \left(\psi(\mathbf{r}) \phi^*(\mathbf{r}) \right)$$

Soit $H \psi = E \psi$ il s'ensuite que

D'après Ashcroft et Mermin, "Solid State Physics", HRW, 1976

$$F[\psi+\delta\psi,\psi+\delta\psi] = E[(\psi,\psi)+(\psi,\delta\psi)+(\delta\psi,\psi)]+O(\delta\psi)^{2}$$
$$(\psi+\delta\psi,\psi+\delta\psi) = (\psi,\psi)+(\psi,\delta\psi)+(\delta\psi,\psi)+O(\delta\psi)^{2}$$
$$E[\psi+\delta\psi] = \frac{F[\psi+\delta\psi,\psi+\delta\psi]}{(\psi+\delta\psi,\psi+\delta\psi)} = E+O(\delta\psi)^{2}$$

5. <u>Tight-binding energies</u>

Parce-que le calcul "tight-binding" est faite avec un ensemble restreint de fonctions de base, il s'agit d'un ansatz et non un calcul complet. Alors, on emploi le principe de variation:

$$E_{0}(\mathbf{k}) \leq E_{TB}(\mathbf{k}) = \frac{\langle \Psi_{\mathbf{k}} | H | \Psi_{\mathbf{k}} \rangle}{\langle \Psi_{\mathbf{k}} | \Psi_{\mathbf{k}} \rangle} = \frac{\sum_{j,j'} \bar{C}_{j} H_{jj'}(\mathbf{k}) C_{j'}}{\sum_{j,j'} \bar{C}_{j} S_{jj'}(\mathbf{k}) C_{j'}}$$

Minimizer:

$$\frac{\partial E_{TB}(\mathbf{k})}{\partial \bar{C}_{j}} = 0 = \frac{\sum_{j'} H_{jj'}(\mathbf{k}) C_{j'}}{\sum_{j,j'} \bar{C}_{j} S_{jj'}(\mathbf{k}) C_{j'}} - \frac{\sum_{j,j'} \bar{C}_{j} H_{jj'}(\mathbf{k}) C_{j'}}{\sum_{j,j'} \bar{C}_{j} S_{jj'}(\mathbf{k}) C_{j'}} \frac{\sum_{j'} S_{jj'}(\mathbf{k}) C_{j'}}{\sum_{j,j'} \bar{C}_{j} S_{jj'}(\mathbf{k}) C_{j'}}$$

$$\Rightarrow \sum_{j'} H_{jj'}(\mathbf{k}) C_{j'} = \lambda(\mathbf{k}) \sum_{j'} S_{jj'}(\mathbf{k}) C_{j'}$$

$$C_{j} \neq 0 \Rightarrow \det(H(\mathbf{k}) - \lambda(\mathbf{k}) S(\mathbf{k})) = 0$$

Example: trans-polyacétylène

Vecteur de reseau: $a=a \hat{x}$

Vecteur de reseau reciproque: $b = \frac{2\pi}{a} \hat{x}$

sp² hybridization \rightarrow σ -liens dans le plan, π -lien (p-p) dehors le plan On cherche les niveau pour les π -electrons.

$$\begin{split} \Phi_{A}(\boldsymbol{r}\,;\boldsymbol{k}) &= \frac{1}{\sqrt{N}} \sum\nolimits_{\boldsymbol{R}_{n} \in B}^{N} e^{i\,\boldsymbol{k}\cdot\boldsymbol{R}_{n}} \boldsymbol{\varphi}_{2\,p_{z}}(\boldsymbol{r}-\boldsymbol{R}_{n}) = \frac{1}{\sqrt{N}} \sum\nolimits_{n=0}^{N} e^{ikna} \boldsymbol{\varphi}_{2\,p_{z}}(\boldsymbol{r}-na\,\boldsymbol{\hat{x}}) \\ \Phi_{B}(\boldsymbol{r}\,;\boldsymbol{k}) &= \frac{1}{\sqrt{N}} \sum\nolimits_{\boldsymbol{R}_{n} \in B}^{N} e^{i\,\boldsymbol{k}\cdot(\boldsymbol{R}_{n}+\boldsymbol{R}_{B})} \boldsymbol{\varphi}_{2\,p_{z}}(\boldsymbol{r}-\boldsymbol{R}_{n}+\boldsymbol{R}_{B}) = \frac{1}{\sqrt{N}} \sum\nolimits_{n=0}^{N} e^{ikna+ik\boldsymbol{R}_{x}} \boldsymbol{\varphi}_{2\,p_{z}}(\boldsymbol{r}-\boldsymbol{R}_{B}-na\,\boldsymbol{\hat{x}}) \end{split}$$

$$H_{AA}(\mathbf{k}) = \langle \Phi_{A\mathbf{k}} | H | \Phi_{A\mathbf{k}} \rangle = \frac{1}{N} \sum_{n,m=0}^{N} e^{ik(n-m)a} \langle \Phi_{2p_z}(\mathbf{r} - ma\,\mathbf{\hat{x}}) | H | \Phi_{2p_z}(\mathbf{r} - na\,\mathbf{\hat{x}}) \rangle$$

$$= \langle \Phi_{p_z}(\mathbf{r}) | H | \Phi_{p_z}(\mathbf{r}) \rangle + \underbrace{\frac{1}{N} \sum_{n \neq m}^{N} e^{ik(n-m)a} \langle \Phi_{2p_z}(\mathbf{r} - ma\,\mathbf{\hat{x}}) | H | \Phi_{2p_z}(\mathbf{r} - na\,\mathbf{\hat{x}}) \rangle}_{\text{Cith}}$$

faible

Example: trans-polyacétylène

Vecteur de reseau:

$$a=a \hat{x}$$

Vecteur de reseau reciproque:

$$\boldsymbol{b} = \frac{2\pi}{a} \hat{\boldsymbol{x}}$$
 Unité cellulaire

sp² hybridization \rightarrow σ -liens dans le plan, π -lien (p-p) dehors le plan On cherche les niveau pour les π -electrons.

$$\begin{split} & \Phi_{A}(\boldsymbol{r}\,;\boldsymbol{k}) \!=\! \frac{1}{\sqrt{N}} \sum\nolimits_{\boldsymbol{R}_{n} \in B}^{N} e^{i\,\boldsymbol{k}\cdot\boldsymbol{R}_{n}} \boldsymbol{\varphi}_{2\,p_{z}}(\boldsymbol{r}\!-\!\boldsymbol{R}_{n}) \!=\! \frac{1}{\sqrt{N}} \sum\nolimits_{n=0}^{N} e^{ikna} \boldsymbol{\varphi}_{2\,p_{z}}(\boldsymbol{r}\!-\!na\,\boldsymbol{\hat{x}}) \\ & \Phi_{B}(\boldsymbol{r}\,;\boldsymbol{k}) \!=\! \frac{1}{\sqrt{N}} \sum\nolimits_{\boldsymbol{R}_{n} \in B}^{N} e^{i\,\boldsymbol{k}\cdot(\boldsymbol{R}_{n}\!+\!\boldsymbol{R}_{B})} \boldsymbol{\varphi}_{2\,p_{z}}(\boldsymbol{r}\!-\!\boldsymbol{R}_{n}\!+\!\boldsymbol{R}_{B}) \!=\! \frac{1}{\sqrt{N}} \sum\nolimits_{n=0}^{N} e^{ikna+ik\boldsymbol{R}_{x}} \boldsymbol{\varphi}_{2\,p_{z}}(\boldsymbol{r}\!-\!\boldsymbol{R}_{B}\!-\!na\,\boldsymbol{\hat{x}}) \end{split}$$

$$k=2\pi\frac{p_i}{N}\frac{1}{a}, \quad 0 \le p_i < N \quad \longrightarrow \quad 0 \le k \le 2\pi/a$$

Example: trans-polyacétylène

Vecteur de reseau: $a=a \hat{x}$

Vecteur de reseau reciproque: $b = \frac{2\pi}{a} \hat{x}$

$$H_{AB}(k\,\hat{\boldsymbol{x}}) = \langle \Phi_{Ak} | H | \Phi_{Bk} \rangle = \frac{1}{N} \sum_{n,m=0}^{N} e^{ik(n-m)+ik\,R_x} \langle \Phi_{2\,p_z}(\boldsymbol{r}-ma\,\hat{\boldsymbol{x}}) | H | \Phi_{2\,p_z}(\boldsymbol{r}-\boldsymbol{R_B}-na\,\hat{\boldsymbol{x}}) \rangle$$

$$= e^{ik\,R_x} \langle \Phi_{2\,p_z}(\boldsymbol{r}) | H | \Phi_{2\,p_z}(\boldsymbol{r}-\boldsymbol{R_B}) \rangle + e^{ik(R_x-a)} \langle \Phi_{2\,p_z}(\boldsymbol{r}) | H | \Phi_{2\,p_z}(\boldsymbol{r}-\boldsymbol{R_B}+\boldsymbol{a}) \rangle$$

$$+ \frac{1}{N} \sum_{m=0;n\neq0,-1}^{N} e^{ik\,R_x+ik(n-m)} \langle \Phi_{2\,p_z}(\boldsymbol{r}-ma\,\hat{\boldsymbol{x}}) | H | \Phi_{2\,p_z}(\boldsymbol{r}-\boldsymbol{R_B}-na\,\hat{\boldsymbol{x}}) \rangle$$

$$= 2t\cos(ka/2), \quad t \equiv \langle \Phi_{2\,p_z}(\boldsymbol{r}) | H | \Phi_{2\,p_z}(\boldsymbol{r}-\boldsymbol{a}/2) \rangle$$
if $R_x = a/2$

Example: trans-polyacétylène

Vecteur de reseau:

 $a=a\hat{x}$

Vecteur de reseau reciproque:

$$b = \frac{2\pi}{a} \hat{x}$$
Unité cellulaire

Alors:
$$H_{ij} = \begin{pmatrix} \epsilon_{2p} & 2t\cos(ka/2) \\ 2t\cos(ka/2) & \epsilon_{2p} \end{pmatrix} \quad S_{ij} = \begin{pmatrix} 1 & 2s\cos(ka/2) \\ 2s\cos(ka/2) & 1 \end{pmatrix}$$

$$0 = det \begin{pmatrix} \epsilon_{2p} - E & 2(t - sE)\cos(ka/2) \\ 2(t - sE)\cos(ka/2) & \epsilon_{2p} - E \end{pmatrix}$$
$$= (\epsilon_{2p} - E)^2 - 4(t - sE)^2 \cos^2(ka/2)$$

$$E_{\pm}(k) = \frac{\epsilon_{2p} \pm 2t \cos(ka/2)}{1 \pm 2s \cos(ka/2)}, -\frac{\pi}{a} < k < \frac{\pi}{a}$$

Graphene 1

graphène = un seul feuillet de graphite

Structure électronique d'un atome de carbone = $1s^2 2s^2 2p^2$ coeur = $1s^2$ 4 électrons de valence = $2s^2 2p^2$

Chaque atome de carbone offre 3 orbitales atomiques sp^2 et une orbitale $2p_z$ Les orbitales atomiques sp^2 forment les liens σ Les orbitales atomiques $2p_z$ forment les liens π

Graphene 2

R. Saito, G. Dresselhaus & M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

Graphene Tight-binding: π-bands

$H_{AA} = H_{BB} = \epsilon_{2D}$

$$H_{AB} = t(e^{i \mathbf{k} \cdot \mathbf{R}_1} + e^{i \mathbf{k} \cdot \mathbf{R}_2} + e^{i \mathbf{k} \cdot \mathbf{R}_3})$$

$$\equiv tf(\mathbf{k})$$

$$f(\mathbf{k}) = e^{-ik_x a/\sqrt{3}} + 2e^{ik_x a/2\sqrt{3}}\cos\left(\frac{k_y a}{2}\right)$$

$$S_{AB} = sf(\mathbf{k})$$

$$E_{\pi\pi} = \frac{\epsilon_{2p} \pm tw(\mathbf{k})}{1 \pm sw(\mathbf{k})}$$

réseau

zone de Brillouin

$$a_1 = \left(\frac{\sqrt{3}}{2}a, +\frac{a}{2}\right)$$
 $b_1 = \left(\frac{2\pi}{\sqrt{3}a}, +\frac{2\pi}{a}\right)$

$$a_2 = \left(\frac{\sqrt{3}}{2}a, -\frac{a}{2}\right) \qquad b_2 = \left(\frac{2\pi}{\sqrt{3}a}, -\frac{2\pi}{a}\right)$$

$$b_1 = \left(\frac{2\pi}{\sqrt{3}a}, +\frac{2\pi}{a}\right)$$

$$b_2 = \left(\frac{2\pi}{\sqrt{3}a}, -\frac{2\pi}{a}\right)$$

$$w(\mathbf{k}) = \sqrt{\left[f(\mathbf{k})\right]^2} = \sqrt{1 + 4\cos\left(\frac{\sqrt{3}k_x a}{2}\right)\cos\left(\frac{k_y a}{2}\right) + 4\cos^2\left(\frac{k_y a}{2}\right)}$$

 $s = 0 \Leftrightarrow$ "Slater-Koster approximation"

R. Saito, G. Dresselhaus & M. S. Dresselhaus,

Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

Graphene Tight-binding : σ-bands

Basis: $(2s^{A}, 2p_{x}^{A}, 2p_{y}^{A}, 2s^{B}, 2p_{x}^{B}, 2p_{y}^{B})$

$$H_{AA} = \begin{pmatrix} \epsilon_{2s} & 0 & 0 \\ 0 & \epsilon_{2p} & 0 \\ 0 & 0 & \epsilon_{2p} \end{pmatrix}, \quad S_{AA} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Alors,
$$|2p_x\rangle = \cos\left(\frac{\pi}{3}\right)|2p_\sigma\rangle + \cos\left(\frac{2\pi}{3}\right)|2p_\pi\rangle = \frac{1}{2}|2p_\sigma\rangle + \frac{\sqrt{3}}{2}|2p_\pi\rangle$$

Car l'état de l = 1 se transforme comme un vecteur sous rotations.

R. Saito, G. Dresselhaus & M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

Graphene Tight-binding: σ-bands

Basis:
$$(2s^{A}, 2p_{x}^{A}, 2p_{y}^{A}, 2s^{B}, 2p_{x}^{B}, 2p_{y}^{B})$$

$$|2p_{x}\rangle = \frac{1}{2}|2p_{\sigma}\rangle + \frac{\sqrt{3}}{2}|2p_{\pi}\rangle$$

$$= \left(\frac{1}{2}\right)^{2} + \left(\frac{\sqrt{3}}{2}\right)^{2}$$

$$+ \left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right) + \left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right) + \left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right)$$

$$|2p_{\pi}^{B}|H|2p_{\sigma}^{A}\rangle$$

$$+ \left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right) + \left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right) + \left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right)$$

$$|2p_{\pi}^{B}|H|2p_{\sigma}^{A}\rangle$$

$$+ \left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right) + \left(\frac{\sqrt{3}}{2}\right) + \left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right) + \left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right) + \left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right) + \left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right) + \left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right) + \left(\frac{\sqrt{3}}{2}\right) + \left(\frac{\sqrt{3}$$

Graphene Tight-binding: σ-bands

Basis: $(2s^{A}, 2p_{x}^{A}, 2p_{y}^{A}, 2s^{B}, 2p_{x}^{B}, 2p_{y}^{B})$

R. Saito, G. Dresselhaus & M. S. Dresselhaus, *Physical Properties of Carbon Nanotubes* (Imperial College Press, London, 1998)

$$\langle 2s^{B}|H|2p_{x}^{A}\rangle = H_{sp}\left(-e^{ik_{x}a/\sqrt{3}} + e^{ik_{x}a/(2\sqrt{3})}\right)$$

$$\langle 2 p_x^B | H | 2 p_y^A \rangle = \frac{i\sqrt{3}}{2} (H_{\sigma\sigma} + H_{\pi\pi}) e^{-ik_x a/2\sqrt{3}} \sin \frac{k_y a}{2}$$

component	H (eV)	S			
SS	-6.7969	0.212			
sp	-5.580	0.102			
σσ	-5.037	0.146			
ππ	-3.033	0.129			
ε _s -ε _p	-8.868				

R. Saito, G. Dresselhaus & M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

Carbon Structures

- Introduction
 - Histoire
 - Carbone
 - Hybridization
- Tight-binding calculations
 - Principe
 - Example: trans
 - Graphene π -liens
 - Graphene σ-liens
- Structure de carbone nanotubes
- Structure Electronique
- Synthesis
- Transport
- Multi-walled nanotubes

Nanotube structure

Rayon: 0.7-10 nm (pour la plupart < 2nm)

Longeur: 1-100 µm

Chapeau ("cap"): fullerene avec 6 pentagons +plusieurs hexagon

Antonio Ferreira Ávila*; Guilherme Silveira Rachid Lacerda, "Molecular mechanics applied to single-walled carbon nanotubes", Mat. Res. vol.11 no.3 São Carlos July/Sept. 2008

Nanotube structure

Antonio Ferreira Ávila*; Guilherme Silveira Rachid Lacerda, "Molecular mechanics applied to single-walled carbon nanotubes", Mat. Res. vol.11 no.3 São Carlos July/Sept. 2008

Division fondamentale:

- "achiral": possédant une symétrie miroir (seulement la "zigzag" et la "armchair"
- "chiral": pas de symétrie miroir

Nanotube structure: vecteur chiral

Les points O,A et B,B' sont identifiés

Ligne OA est la vecteur chiral

Vecteur chiral: $C_h = n a_1 + m a_2 \Leftrightarrow (n, m), \quad 0 \le |m| \le n$

N.B.: $a_1 \cdot a_1 = a_2 \cdot a_2 = a^2, a_1 \cdot a_2 = \frac{a^2}{2}$ $a = 0.144 \text{ nm} \times \sqrt{3} = 0.249 \text{ nm}$

Diamètre: $d_t = L/\pi = ||C_h||/\pi = \sqrt{n^2 + m^2 + nm} \times 0.079 \text{ nm}$

Angle chiral: $\cos \theta = \frac{C_h \cdot a_1}{|C_h||a_1|} = \frac{2n + m}{2\sqrt{n^2 + m^2 + nm}}$

R. Saito, G. Dresselhaus & M. S. Dresselhaus, *Physical Properties of Carbon Nanotubes* (Imperial College Press, London, 1998)

Nanotube structure : vecteur de translation

Les points O,A et B,B' sont identifiés

R. Saito, G. Dresselhaus & M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

$$C_h = (4,2)$$

Ligne OB est la vecteur de translation

La vecteur de translation définit le unité cellulaire le long de la nanotube.

Vecteur de translation: $T = t_1 a_1 + t_2 a_2 \Leftrightarrow (n, m)$

$$C_h \cdot T = 0 \Leftrightarrow t_1(2n+m) + t_2(n+2m) = 0 \Leftrightarrow t_1 = \frac{2m+n}{\gcd(2m+n, m+2n)}, \quad t_2 = -\frac{m+2n}{\gcd(2m+n, m+2n)}$$

Dans l'example: $gcd(8,10)=2 \Leftrightarrow t_1 = \frac{8}{2} = 4$, $t_2 = -\frac{10}{2} = -5$

Le nombre d'hexagônes par unite cellulaire est: $N = \frac{2L^2}{a^2 \gcd(2m+n, m+2n)}$ (exercise)

$$N = \frac{2L^2}{a^2 \gcd(2m+n, m+2n)}$$

2N Le nombre d'atoms par unite cellulaire est:

Nanotube structure : vecteur de symétrie

Les points O,A et B,B' sont identifiés

R. Saito, G. Dresselhaus & M. S. Dresselhaus, *Physical Properties of Carbon Nanotubes* (Imperial College Press, London, 1998)

$$C_h = (4,2)$$

Les positions de tous les atomes dans la maille élémentaire peut être représenté en tant que n**R** avec les bords periodique.

Ligne OR est la vecteur de symétrie.

R est la site d'atom avec la plus petite non-zero projection sur C.

$$R = p a_1 + q a_2 \Leftrightarrow (p,q)$$
 $R \cdot \frac{C_h}{|C_h|} = \frac{p(m + \frac{n}{2}) + q(\frac{m}{2} + n)}{\sqrt{m^2 + n^2 + mn}} = \frac{p(2m + n) + q(m + n2)}{2\sqrt{m^2 + n^2 + mn}}$

La valeur minimale possible pour le numérateur est

$$p(2m+n)+q(m+2n)=\gcd(2m+n,2n+m)$$

Aussi
$$0 < \frac{R \cdot T}{|T|} < T \Leftrightarrow 0 < (p(t_1 + t_2/2) + q(t_2 + t_1/2)) < t_1^2 + t_2^2 + t_1 t_2$$

 $\Leftrightarrow 0 < mp - nq \le N$

Nanotube structure : vecteur de symétrie

Les points O,A et B,B' sont identifiés

R. Saito, G. Dresselhaus & M. S. Dresselhaus, *Physical Properties of Carbon Nanotubes* (Imperial College Press, London, 1998)

$$C_h = (4,2)$$

Ligne OR est la vecteur de symétrie.

R est la site d'atom avec la plus petite non-zero projection sur C.

$$\mathbf{R} = p \, \mathbf{a}_1 + q \, \mathbf{a}_2 \Leftrightarrow (p, q) \qquad \qquad \frac{\mathbf{R} \cdot \mathbf{C}_h}{|\mathbf{C}_h|} = \frac{|\mathbf{R} \times \mathbf{T}|}{|\mathbf{T}|} = \frac{(t_1 q - t_2 p)(\mathbf{a}_1 \times \mathbf{a}_2)}{|\mathbf{T}|} \Rightarrow t_1 q - t_2 p = 1$$

Aussi
$$0 < \frac{\mathbf{R} \cdot \mathbf{T}}{|\mathbf{T}|^2} = \frac{|\mathbf{C}_h \times \mathbf{R}|}{|\mathbf{C}||\mathbf{T}|} = \frac{mp - nq}{N} < 1$$

$$\Leftrightarrow 0 < mp - nq \le N$$

Nanotube structure : vecteur de symétrie

Les points O,A et B,B' sont identifiés

R. Saito, G. Dresselhaus & M. S. Dresselhaus, *Physical Properties of Carbon Nanotubes* (Imperial College Press, London, 1998)

$$C_h = (4,2)$$

Ligne OR est la vecteur de symétrie.

Les positions de tous les atomes dans la maille élémentaire peut être représenté en tant que n ${\bf R}$ avec les bords periodique car

$$NR \cdot \frac{C_h}{|C_h|} = N \frac{|R \times T|}{|T|} = N \frac{|a_1 \times a_2|}{|T|} = |C_h|$$

$$\mathbf{R} = p \, \mathbf{a}_1 + q \, \mathbf{a}_2 \Leftrightarrow (p, q)$$
$$t_1 \, q - t_2 \, p = 1$$

$$0 < mp - nq \le N$$

Structure

	zigzag	armchair	chiral
С	(n,0)	(n,n)	(n,m)
Т	(1,-2)	(1,-1)	$\left(\frac{2m+n}{d_{P}}, -\frac{2n+m}{d_{P}}\right)$
R	(1,-1)	(1,0)	R
L/a	n	$\sqrt{3} n$	$\sqrt{m^2 + n^2 + nm}$
Т	$\sqrt{3}$	1	$\sqrt{3}L/d_R$
N	2n	2n	$2L^2/(a^2d_R)$

$$d_{R} = gcd(2m+n, 2n+m)$$

$$= \begin{pmatrix} d & \text{if } n-m \text{ is not a multiple of } 3d \\ 3d & \text{if } n-m \text{ is a multiple of } 3d \end{pmatrix}, \quad d = gcd(n, m)$$

Nanotube structure

réseau

zone de Brillouin

« armchair » (n,n)

 \ll zigzag \gg (n,0)

R. Saito, G. Dresselhaus & M. S. Dresselhaus,

Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

Nanotubes de carbone

- Introduction
 - Histoire
 - Carbone
 - Hybridization
- Tight-binding calculations
 - Principe
 - Example: trans
 - Graphene π -liens
 - Graphene σ-liens
- Structure de carbone nanotubes
- Structure Electronique
- Synthesis
- Transport
- Multi-walled nanotubes

Nanotubes

"High-density integration of carbon nanotubes via chemical self-assembly", Hongsik Park, Ali Afzali, Shu-Jen Han, George S. Tulevski, Aaron D. Franklin, Jerry Tersoff, James B. Hannon & Wilfried Haensch, Nature Nanotechnology (Oct, 2012)

Bandes d'energie du nanotube : zone folding

L'idée:

La géométrie de la CN est un sous-ensemble d'une feuille infinie de graphène avec des frontières périodiques. Par conséquent, les ondes vecteurs de la CN sont un sous-ensemble de ceux pour le graphène et les bandes de l'energie sont:

$$E_{CN}(\boldsymbol{k}_{CN}) = E_{GR}(\boldsymbol{k}_{CN})$$

C'est ce qu'on appelle "pliage de bande" car ce n'est pas necessaire que $k_{CN} \in$ first Brillouin zone of Graphene.

Donc, nous avons besoin de les vecteurs disponible pour le CN.

Théorème de Bloch

$$\psi(\mathbf{r}) = \sum_{j} e^{i\mathbf{k}\cdot\mathbf{R}_{j}} \phi(\mathbf{r} + \mathbf{R}_{j}), \quad \mathbf{R}_{j} \text{ dans le reseaux}.$$

Bohr- von Karman conditions conditions à la limite

<u>Graphene</u>

$$\psi(\mathbf{r} + N_{l}\mathbf{a}_{l}) = e^{-i\mathbf{k} \cdot N_{l}\mathbf{a}_{l}} \sum_{j} e^{i\mathbf{k} \cdot \mathbf{R}_{j}} \phi(\mathbf{r} + \mathbf{R}_{j}) = \psi(\mathbf{r})$$

$$\rightarrow \mathbf{k} \cdot N_{l}\mathbf{a}_{l} = 2n_{l}\pi, \quad n_{l} \in \mathbb{Z}$$

$$\rightarrow \mathbf{k} \cdot \mathbf{a}_{l} = 2\pi \frac{n_{l}}{N_{l}}, \quad 0 \le n_{l} \le N_{l}$$

Nanotube

Reseaux avec unité cellulaire (C_h,T) est base de 2N points.

$$\boldsymbol{K} \cdot \boldsymbol{C}_h = 2 n_C \pi$$
 $\boldsymbol{K} \cdot \boldsymbol{N}_T \boldsymbol{T} = 2 n_T \pi$

(si la tube est un tore de longeur $N_{_{\!\!\!\!\! T}}$)

<u>Graphene</u>

Vecteurs de base du réseau

$$a_1 = (\frac{\sqrt{3}a}{2}, \frac{a}{2}), a_2 = (\frac{\sqrt{3}a}{2}, -\frac{a}{2})$$

Vecteurs de base du réseau réciproque $b_1 = (\frac{2\pi}{\sqrt{3}a}, \frac{2\pi}{a}), b_2 = (\frac{2\pi}{\sqrt{3}a}, -\frac{2\pi}{a})$

$$\boldsymbol{b}_1 = (\frac{2\pi}{\sqrt{3}a}, \frac{2\pi}{a}), \boldsymbol{b}_2 = (\frac{2\pi}{\sqrt{3}a}, -\frac{2\pi}{a})$$

<u>Nanotube</u>

Vecteurs de base du réseau

$$C_h = n a_1 + m a_2$$
, $T = t_1 a_1 + t_2 a_2$

Vecteurs de base du réseau réciproque

$$K_1, K_2$$
 $C_h \cdot K_1 = 2\pi \quad T \cdot K_1 = 0$
 $C_h \cdot K_2 = 0 \quad T \cdot K_2 = 2\pi$

$$K_1 = K_{11} b_1 + K_{12} b_2$$

$$K_{11}n + K_{12}m = 1$$
 $K_{11}t_1 + K_{12}t_2 = 0$
 $t_1K_{11}n + t_1K_{12}m = t_1$
 $K_{12}(-t_2n + t_1m) = t_1$

$$K_{12} = \frac{t_1}{-t_2 n + t_1 m} = \frac{t_1}{N}$$

$$\boldsymbol{K}_{1} = \frac{1}{N} \left(-t_{2} \boldsymbol{b}_{1} + t_{1} \boldsymbol{b}_{2} \right)$$
$$\boldsymbol{K}_{2} = \frac{1}{N} \left(m \boldsymbol{b}_{1} - n \boldsymbol{b}_{2} \right)$$

$$\begin{aligned} \boldsymbol{K}_{1} &= \frac{1}{N} \left(-t_{2} \boldsymbol{b}_{1} + t_{1} \boldsymbol{b}_{2} \right) & |\boldsymbol{K}_{1}| &= \frac{2 \pi}{|\boldsymbol{C}_{h}|} \\ \boldsymbol{K}_{2} &= \frac{1}{N} \left(m \boldsymbol{b}_{1} - n \boldsymbol{b}_{2} \right) & |\boldsymbol{K}_{2}| &= \frac{2 \pi}{|\boldsymbol{T}|} \end{aligned}$$

$$K = n_C K_1 + \frac{n_T}{N_T} K_2, \quad 0 \le n_T \le N_T$$

$$= n_C K_1 + k \frac{K_2}{|K_2|}, \quad 0 \le k \le \frac{2\pi}{|T|}, \text{ si } N_T \gg 1$$

$$n_C \mathbf{K}_1 = \left(-\frac{n_C t_2}{N} \mathbf{b}_1 + \frac{n_C t_1}{N} \mathbf{b}_2 \right)$$

$$\frac{n_C t_2}{N} = r \in \mathbb{Z} \text{ et } \frac{n_C t_1}{N} = s \in \mathbb{Z} \rightarrow n_C t_2 = rN \text{ , } n_C t_1 = sN$$

$$\text{mais } \gcd(t_1, t_2) = 1 \rightarrow N \text{ divise } n_C$$

$$\rightarrow 0 \leq n_C < N$$

$$C_h = (4,2), T = (4,-5), N = 28$$

 $K_1 = (5b_1 + 4b_2)/28$
 $K_2 = (4b_1 - 2b_2)/28$

R. Saito, G. Dresselhaus & M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

vecteurs de base du réseau réciproque:

$$\boldsymbol{K}_1 = \frac{1}{N} \left(-t_2 \boldsymbol{b}_1 + t_1 \boldsymbol{b}_2 \right)$$

$$\boldsymbol{K}_2 = \frac{1}{N} (m \, \boldsymbol{b}_1 - n \, \boldsymbol{b}_2)$$

Bandes d'énergie du nanotube à partir de la bande d'énergie du graphène:

$$E_{\rm gr}(k) = \pm t \sqrt{1 + 4\cos\left(\frac{\sqrt{3}k_x a}{2}\right)\cos\left(\frac{k_y a}{2}\right) + 4\cos^2\left(\frac{k_y a}{2}\right)}$$

$$E = E_{gr} \left(n_C K_1 + k \frac{K_2}{|K_2|} \right), \quad 0 \le n_C < N, \quad -\frac{\pi}{|T|} \le k \le \frac{\pi}{|T|}$$

métallique si la point "K" est permi

R. Saito, G. Dresselhaus & M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

vecteurs de base du réseau réciproque:

$$\boldsymbol{K}_1 = \frac{1}{N} \left(-t_2 \boldsymbol{b}_1 + t_1 \boldsymbol{b}_2 \right)$$

$$\boldsymbol{K}_2 = \frac{1}{N} (m \boldsymbol{b}_1 - n \boldsymbol{b}_2)$$

métallique si la point "K" est permi:

$$Y\overline{K} = n K_1, n \in \mathbb{Z}$$

Mais:
$$Y\bar{K} = \frac{2n+m}{3}K_1$$

Alors, métallique si
$$\frac{2n+m}{3} \in \mathbb{Z} \Leftrightarrow \frac{n-m}{3} \in \mathbb{Z}$$

Notez: "armchair" (n,n) toujour métallique.

R. Saito, G. Dresselhaus & M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

Nanotubes Semiconducteurs

Bande d'énergie du graphène

Bandes d'énergie semiconductrices pour le nanotube

sections des conditions aux bords périodiques

← niveau de Fermi : E = 0

Nanotubes Metalliques

Bande d'énergie du graphène

Bandes d'énergie **métalliques** pour le nanotube

sections des conditions aux bords périodiques

← niveau de Fermi : E = 0

Nanotubes « Armchair » (n,n)

$$C_{h} = n \mathbf{a}_{1} + n \mathbf{a}_{2} \equiv (n, n)$$

$$T = \mathbf{a}_{1} - \mathbf{a}_{2}$$

$$N = 2n$$

$$K_{1} = \frac{1}{2n} (\mathbf{b}_{1} + \mathbf{b}_{2}) = \left(\frac{2\pi}{\sqrt{3} a n}, 0\right)$$

$$K_{2} = \frac{1}{2} (\mathbf{b}_{1} - \mathbf{b}_{2}) = \left(0, \frac{2\pi}{a}\right)$$

π bande d'énergie du graphène: $E_{gr} = \pm t \sqrt{1 + 4\cos\left(\frac{\sqrt{3}k_x a}{2}\right)\cos\left(\frac{k_y a}{2}\right) + 4\cos^2\left(\frac{k_y a}{2}\right)}$

 π bandes d'énergie du nanotube:

$$E_{q}(k) = E_{gr}\left(k_{x} = \frac{2\pi q}{\sqrt{3}an}, k_{y} = k\right), \quad q = 0, 1, \dots, 2n - 1, \quad -\frac{\pi}{a} \le k \le +\frac{\pi}{a}$$

$$= \pm t\sqrt{1 + 4\cos\left(\frac{\pi q}{n}\right)\cos\left(\frac{ka}{2}\right) + 4\cos^{2}\left(\frac{ka}{2}\right)}$$

$$E_q\left(ka=\pm\frac{2\pi}{3}\right)=\pm t\sqrt{2+2\cos\left(\frac{\pi q}{n}\right)}$$
 métallique car pas de « gap » (q=n)

R. Saito, G. Dresselhaus & M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

Nanotubes « zigzag» (n,0)

$$K_1 = \frac{1}{2n} (2 \boldsymbol{b}_1 + \boldsymbol{b}_2) = \frac{1}{2n} \left(\frac{6\pi}{\sqrt{3} a}, \frac{2\pi}{a} \right)$$

$$K_2 = -\frac{1}{2} \boldsymbol{b}_2 = \frac{1}{2} \left(-\frac{2\pi}{\sqrt{3} a}, \frac{2\pi}{a} \right)$$

$$K_3 = \frac{1}{2n} \left(\frac{6\pi}{\sqrt{3} a}, \frac{2\pi}{a} \right)$$

 π bandes d'énergie du nanotube:

$$E_{q}(k) = E_{gr} \left(\frac{\sqrt{3}\pi q}{n a} - \frac{k}{2}, \frac{\pi q}{n a} + \frac{\sqrt{3}k}{2} \right), \quad -\frac{\pi}{a\sqrt{3}} \le k \le \frac{\pi}{a\sqrt{3}}$$

$$0 \le q < 2n$$

$$+ t\sqrt{1 + 4\cos\left(\frac{\sqrt{3}k a}{2}\right)\cos\left(\frac{q\pi}{n}\right) + 4\cos^{2}\left(\frac{q\pi}{n}\right)}$$

$$E_q(k=0) = \pm t \sqrt{1 + 4\cos\left(\frac{q\pi}{n}\right) + 4\cos^2\left(\frac{q\pi}{n}\right)} = 0 \Leftrightarrow \frac{q\pi}{n} = \frac{2\pi}{3} \Leftrightarrow q = \frac{2n}{3}$$

Possible seulement si n est un multiple de 3.

Si n est un nombre pair $E_{n/2}(k) = \pm t$ "dispersionless"

R. Saito, G. Dresselhaus & M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

Nanotube : bandes d'énergie

R. Saito, G. Dresselhaus & M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

Resume: bandes d'energie du nanotube

vecteurs de base du réseau réciproque:

$$\boldsymbol{K}_{1} = \frac{1}{N} \left(-t_{2} \boldsymbol{b}_{1} + t_{1} \boldsymbol{b}_{2} \right)$$

$$\boldsymbol{K}_{2} = \frac{1}{N} \left(m \boldsymbol{b}_{1} - n \boldsymbol{b}_{2} \right)$$

Bandes d'énergie du nanotube à partir de la bande d'énergie du graphène:

$$E_{\rm gr}(k) = \pm t \sqrt{1 + 4\cos\left(\frac{\sqrt{3}\,k_{_{X}}a}{2}\right)}\cos\left(\frac{k_{_{y}}a}{2}\right) + 4\cos^{2}\left(\frac{k_{_{y}}a}{2}\right)$$

$$E = E_{\rm gr}\left(n_{_{C}}K_{_{1}} + k\frac{K_{_{2}}}{|K_{_{2}}|}\right), \quad 0 \le n_{_{C}} < N \;, \quad 0 \le k \le \frac{2\pi}{|T|} \;, \text{ si } N_{_{T}} \gg 1$$

$$\frac{\text{propriét\'e}}{\text{gcd}[n-m,3]} \frac{d_{_{R}} \quad \text{multiplicit\'e}}{d} \qquad 0 \quad \left(\text{gap d'\'energie} = |t|a_{C-C}/d_{_{t}}\right)$$

$$\text{m\'etal I} \qquad 3 \qquad d \qquad 4 \quad \text{en } k = 0$$

$$\text{m\'etal II} \qquad 3 \qquad 3d \qquad 2 \quad \text{en } k = \pm 2\pi/3 \; T$$

R. Saito, G. Dresselhaus & M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

Nanotubes de carbone

- Introduction
 - Histoire
 - Carbone
 - Hybridization
- Tight-binding calculations
 - Principe
 - Example: trans
 - Graphene π -liens
 - Graphene σ-liens
- Structure de carbone nanotubes
- Structure Electronique
- Synthesis
- Transport
- Multi-walled nanotubes

Histoire de synthesis

- La découverte de nanotubes de carbone
 - Nanotubes Multifeuillets (Iijima, Nature, 1991)
 - Nanotubes Monofeuillets (Iijima & Ichihashi Nature 1993, Bethune et al Nature 1993)
- La découverte de méthodes efficaces de production des nanotubes monofeuillets (quantité de 1 gramme).
 - Laser vaporisation (Thess et al, Science, 1996).
 - Carbon arc method (Journet et al, Nature 1997).

Je présente seulement deux méthodes - il ya beaucoup d'autres.

Laser vaporisation

Cible: graphite + catalyseur métallique à base de Ni, Co et Fe (pour produit des nanotubes monofeuillets).

R. Saito, G. Dresselhaus & M. S. Dresselhaus, *Physical Properties of Carbon Nanotubes* (Imperial College Press, London, 1998)

Température élevée empêche crystallziation

Le gaz inerte agit pour transporter les tubes au collecteur.

Propriétés très spécifiques: par exemple, presque seulement les nanotubes (10,10), (9,9) et (12,8)

Arc vaporisation

R. Saito, G. Dresselhaus & M. S. Dresselhaus, *Physical Properties of Carbon Nanotubes* (Imperial College Press, London, 1998)

Le graphite se sublime à 3200C

Arc electrique: ~30V, 50-120A avec deux electrode de graphite (plus catalyseur pour faire les nanotubes monofeuillet).

L'anode se consume pour former un plasma.

Le plasma se condense sur la cathode.

Le gaz inerte fonction seulement pour contrôle la température.

Un method qui n'est pas cher, qui est flexible, et qui produit le grand quantitie.

Transport: les échelles

- La moyenne parcours libre: L_m
 - La distance moyenne un électron se déplace avant qu'il répand à partir d'un centre de diffusion.
- La longueur d'onde Fermi: $\lambda_F = 2\pi/k_F$
 - La longueur d'onde de Broglie pour les électrons à le niveau Fermi.
- La longueur de relaxation de phase: L_{ϕ}
 - La distance dans laquelle la phase d'un électron est préservée. Les collisions élastiques ne change pas le phase: seules les collisions qui changent l'énergie de l'électron. Donc, c'est la longueur moyenne entre des collisions inélastiques.

Pour transport, c'est seul les électrons près de l'énergie Fermi qui participes. Donc, on introduit les éschelles de temps

$$L_m = v_F t_m$$
, $L_{\phi} = v_F t_{\phi}$

Le temps de relaxation de la quantité de mouvement et le temps de relaxation de phase: ce sont les temps pour un changement cumulatif de la quantité de mouvement de $\hbar k_F$ et de phase de π .

Vitesse dans l'etats Bloch

États de Bloch sont des états étendus et ont une vitesse typique. En effet,

$$\langle \mathbf{v} \rangle = \hbar^{-1} \frac{\partial E}{\partial \mathbf{k}}$$

Preuve:

L'action de la Hamiltonian sur un état de Bloch est

$$H \psi = E \psi \wedge \psi(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}} u(\mathbf{r}) \rightarrow H(\mathbf{k}) u(\mathbf{r}) = E(\mathbf{k}) u(\mathbf{r}) \qquad H(\mathbf{k}) = H + \frac{\hbar^2}{im} \mathbf{k} \cdot \nabla + \frac{\hbar^2}{2m} k^2$$

On demande le développement de l'énergie comme:

$$E(\mathbf{k}+\mathbf{q})=E(\mathbf{k})+\mathbf{q}\cdot\frac{\partial E}{\partial \mathbf{k}}+\frac{1}{2}\mathbf{q}\mathbf{q}\cdot\frac{\partial^2 E}{\partial \mathbf{k}\partial \mathbf{k}}+\dots$$

Notez que la Hamiltonian peut être écrit comme

$$H(\mathbf{k}+\mathbf{q}) = H(\mathbf{k}) + \frac{\hbar^2}{m} \mathbf{q} \cdot \left(\frac{1}{i} \nabla + \mathbf{k}\right) + \frac{\hbar^2}{2m} q^2$$

Donc, on peut developper l'effet de "q" avec la theorie de perturbation

Vitesse dans l'etats Bloch

Alors, il suit que

$$E(\mathbf{k}+\mathbf{q})=E(\mathbf{k})+\int \overline{u}(\mathbf{r})\left(\mathbf{q}\cdot\frac{\hbar^{2}}{m}\left(\frac{1}{i}\nabla+\mathbf{k}\right)\right)u(\mathbf{r})d\mathbf{r}+O(q^{2})$$

On prende la limite $q \rightarrow 0$ de sorte que

$$\frac{\partial E}{\partial \mathbf{k}} = \lim_{\mathbf{q} \to 0} \frac{\partial E(\mathbf{k} + \mathbf{q})}{\partial \mathbf{q}} = \int \bar{u}(\mathbf{r}) \left(\frac{\hbar^2}{m} \left(\frac{1}{i} \nabla + \mathbf{k} \right) \right) u(\mathbf{r}) d\mathbf{r}$$

$$= \int \bar{\psi}(\mathbf{r}; \mathbf{k}) \left(\frac{\hbar^2}{m} \frac{1}{i} \nabla \right) \psi(\mathbf{r}; \mathbf{k}) d\mathbf{r}$$

$$= \langle \psi_k | \frac{\hbar^2}{im} \nabla | \psi_k \rangle$$

Mais, l'opérateur de vitesse est défini par

$$\mathbf{v} = \frac{d\mathbf{r}}{dt} = (1/i\hbar)[\mathbf{r}, H] = \mathbf{p}/m = \hbar \nabla/mi$$

Donc, on voit que

$$\frac{\partial E}{\partial \mathbf{k}} = \hbar \langle \mathbf{v} \rangle_{\mathbf{k}}$$

Ballistic transport ↔ pas le diffusion des électrons; le libre mouvement des électrons.

Le courant est transporté par des électrons ayant des énergies entre les deux resevoirs: $\mu_1 > E_q(k) > \mu_2$

$$L\!\ll\!L_{m}$$
 , $L_{\scriptscriptstyle \Phi}$

$$\mu_2 - \mu_1 = eV$$

$$I = \sum_{\substack{\mu_1 > E_q(k) > \mu_2}} \frac{e}{\underbrace{t(q,k)}} \left(\underbrace{\underbrace{f(E_q(k) - \mu_1)(1 - f(E_q(k) - \mu_2))}_{\text{prob. qu'il y a un electron dans 1 et un trou dans 2 avec } \underbrace{E_q(k)}_{\text{prob. pour la courant inverse}} - \underbrace{\underbrace{f(E_q(k) - \mu_2)(1 - f(E_q(k) - \mu_1))}_{\text{prob. pour la courant inverse}} \right)$$

$$= \sum_{\substack{\mu_1 > E_q(k) > \mu_2}} \frac{e}{L/v(q,k)} \left[f(E_q(k) - \mu_1) - f(E_q(k) - \mu_2) \right]$$

$$= \frac{e}{L} \sum_{\mu_1 > E_q(k) > \mu_2} v(q, k) \left(f(E_q(k) - \mu_1) - f(E_q(k) - \mu_2) \right)$$

$$L\!\ll\!L_{m}$$
 , $L_{\scriptscriptstyle \Phi}$

$$\mu_2 - \mu_1 = eV$$

$$\begin{split} I &= \frac{e}{L} \sum_{\mu_{1} > E_{q}(k) > \mu_{2}} v(q, k) \big(f(E_{q}(k) - \mu_{1}) - f(E_{q}(k) - \mu_{2}) \big) \\ &= \frac{e}{L} \sum_{\mu_{1} > E_{q}(k) > \mu_{2}} \hbar^{-1} \frac{\partial E_{q}(k)}{\partial k} \big(f(E_{q}(k) - \mu_{1}) - f(E_{q}(k) - \mu_{2}) \big) \end{split}$$

Repellez-vous que $\Delta k = \frac{2\pi}{L}$ donc

$$\begin{split} I = & \frac{e}{L} \times \sum_{\text{dégénérescence spin}} \times \frac{L}{2 \, \pi} \times \sum_{q} \int_{k>0} \hbar^{-1} \frac{\partial \, E_q(k)}{\partial \, k} \big(\, f \, \big(E_q(k) - \mu_1 \big) - f \, \big(E_q(k) - \mu_2 \big) \big) dk \\ = & \frac{2 \, e}{h} \int \big(\, f \, \big(E - \mu_1 \big) - f \, \big(E - \mu_2 \big) \big) M \, (E) \, dE \end{split}$$

$$L\!\ll\!L_m$$
 , L_ϕ

$$\mu_2 - \mu_1 = eV$$

$$I = \frac{2e}{h} \int \left(f(E - \mu_1) - f(E - \mu_2) \right) M(E) dE$$

$$\sim \frac{2e}{h} M(\mu_1 - \mu_2)$$

$$\sim \frac{2e^2}{h} M V_C$$

$$R_C = \frac{h}{2e^2} \frac{1}{M} = R_0 \frac{1}{M} = \frac{12.9}{M} \text{ k } \Omega$$
 resistence sans diffuseur

$$G_C = G_0 M = M \times 77.5 \times 10^{-6} \Omega^{-1}$$

"Contact resistence":

"Contact conductance"

$$L_{\phi} \ll L_{m} \ll L$$

Limite incohérentes: grande changement de phase dans le moyenne parcours libre

$$\mu_2 - \mu_1 = eV$$

Avec un seul diffuseur $(L \sim L_m)$

$$G = \frac{2e^2}{h} M \mathcal{T} = \frac{2e^2}{h} \sum_{ij}^{M} |t_{ij}|^2$$
 "Landauer formula" $\mathcal{T} = \text{transmission probability}$

$$R = R_0 \frac{1}{M \mathcal{T}}$$
 $R_{fil} = R - R_c = R_0 \frac{1 - \mathcal{T}}{M \mathcal{T}} = R_0 \frac{\mathcal{R}}{M \mathcal{T}}$ $\mathcal{R} = 1 - \mathcal{T} = \text{reflection probability}$

 $(L\gg L_m)$

$$L_{\phi} \ll L_m \ll L$$

$$R_{fil} = R_c \frac{1 - T}{T}$$

Avec deux diffuseur

$$T_1$$

$$T_{12} = T_1 T_2 \Big[1 + \mathcal{R}_1 \mathcal{R}_2 + (\mathcal{R}_1 \mathcal{R}_2)^2 + \dots \Big]$$

$$+$$
 T_1
 R_2
 $+$
 R_1

$$T_1$$
 R_2
 R_1
 T_2

$$\mathcal{T}_{12} = \frac{\mathcal{T}_{1}\mathcal{T}_{2}}{1 - \mathcal{R}_{1}\mathcal{R}_{2}}$$

$$\frac{1 - \mathcal{T}_{12}}{\mathcal{T}_{12}} = \frac{1 - \mathcal{T}_{1}}{\mathcal{T}_{1}} + \frac{1 - \mathcal{T}_{2}}{\mathcal{T}_{2}}$$

Limite incohérentes: pas d'interférence donc, les probabilités somme.

$$L_{\phi} \ll L_m \ll L$$

$$\mu_2 - \mu_1 = eV$$

Avec deux diffuseur $(L \gg L_m)$

$$\frac{1-\mathcal{T}_{12}}{\mathcal{T}_{12}} = \frac{1-\mathcal{T}_{1}}{\mathcal{T}_{1}} + \frac{1-\mathcal{T}_{2}}{\mathcal{T}_{2}}$$

$$R_{fil} = R_{0} \frac{1-\mathcal{T}}{M \,\mathcal{T}}$$
(M constante)
$$R_{2 \, scatterer_{2}} = R_{scatterer_{1}} + R_{scatterer_{2}}$$
(N diffuseur)

$$R_N = R_0 \frac{1}{M} \times \sum_{j=1}^N \frac{1 - \mathcal{T}_j}{\mathcal{T}_i} = R_0 \frac{1}{M} \frac{L}{L_m} \frac{1 - \mathcal{T}}{\mathcal{T}}$$
, $\mathcal{T} = \text{transmission probabilite per } L_m$

$$R_{fil} = \frac{R_0}{M L_m} \frac{1 - \mathcal{T}}{\mathcal{T}} L$$
, $\mathcal{T} = \text{transmission probabilite per } L_m$

Résultat classique: constante résistance pour unité de longueur

"Ohm's law"

Localization

$$L_m \ll L_\phi \ll L$$

Limite cohérentes: l'interférence est importante donc, les amplitudes somme.

$$\mu_2 - \mu_1 = eV$$

$$t_{12} = \frac{t_1 t_2}{1 - r_1 r_2 e^{i\theta}}$$

 $t_{12} = \frac{t_1 t_2}{1 - r_1 r_2 e^{i\theta}}$ ou θ est le décalage de phase

$$\begin{split} \mathcal{T}_{12} &= |t_{12}|^2 = \frac{\mathcal{T}_1 \mathcal{T}_2}{1 - 2\sqrt{\mathcal{R}_1 \mathcal{R}_2} \cos \theta + \mathcal{R}_1 \mathcal{R}_2} \\ R_{12} &= \frac{R_0}{M} \langle \frac{1 - \mathcal{T}_{12}}{\mathcal{T}_{12}} \rangle_{\theta} = \frac{R_0}{M} \frac{1 + \mathcal{R}_1 \mathcal{R}_2 - \mathcal{T}_1 \mathcal{T}_2}{\mathcal{T}_1 \mathcal{T}_2} \\ R_{12} &= R_1 + R_2 + 2R_1 R_2 (M/R_0) \end{split}$$

Localization

$$L_m \ll L_\phi \ll L$$

Limite cohérentes: l'interférence est importante donc, les amplitudes somme.

$$\mu_2 - \mu_1 = eV$$

$$R_{12} = R_1 + R_2 + 2R_1 R_2 (M/R_0)$$

Soit partie 1 a longueur L est partie 2 longueur $\Delta L \sim L_m \ll L_{\phi}$

$$R(L+\Delta L)=R(L)+R(\Delta L)+2R(L)R(\Delta L)(M/R_0)$$

$$\rightarrow \Delta L \frac{dR(L)}{dL}=R(\Delta L)+2R(L)R(\Delta L)(M/R_0)$$

$$\rightarrow \Delta L \frac{dR}{dL}=(R_0/M)+2R$$

$$\Rightarrow R(L)=(R_0/2M)(e^{2L/\Delta L}-1)$$
"Localization"

Résumé: Types de Transport

$$L \ll L_m, L_{\phi}$$
 Ballistique

$$L_{\phi} \ll L_{m} \ll L$$
 Classique

$$L_m \ll L_{\phi} \ll L$$
 Localization

 L_m diminue par rapport de la concentration d'impurities.

 L_{ϕ} diminue par rapport de la concentration de phonons (e g la température).