

REPORTE DE PRÁCTICA NO. 2

NOMBRE DE LA PRÁCTICA: 1.8 Práctica 2. AFD y AFND ALUMNO:

Daniel Martínez Escamilla

Dr. Eduardo Cornejo-Velázquez

Introducción

En esta sección, se presentan los resultados obtenidos al construir autómatas finitos deterministas (AFD) y no deterministas (AFND) a través de la resolución de 10 ejercicios prácticos. El proceso de construcción de estos autómatas se llevó a cabo utilizando el razonamiento lógico, lo que nos permitió comprender mejor el funcionamiento y las transiciones de cada uno de los autómatas propuestos. Para facilitar la comprensión y el desarrollo de las soluciones, se utilizaron video tutoriales disponibles en plataformas como YouTube, que guiaron paso a paso la implementación de los ejercicios en un simulador. El simulador proporcionado fue esencial para validar las construcciones realizadas, permitiendo la observación de las simulaciones de las máquinas de manera interactiva y visual

Herramientas empleadas

Para llevar a cabo la construcción de los autómatas finitos, se utilizaron dos herramientas principales: un simulador de AFD y AFND y videos tutoriales de YouTube. El simulador de AFD y AFND proporcionó un entorno práctico y visual donde se pudieron implementar y verificar los autómatas construidos. Esta herramienta permitió la simulación de las transiciones y el comportamiento de los autómatas ante diversas entradas, asegurando que las soluciones fueran correctas. Por otro lado, los videos tutoriales de YouTube fueron fundamentales para comprender los conceptos clave relacionados con los AFD y AFND, ofreciendo explicaciones claras y ejemplos prácticos que complementaron la teoría aprendida y facilitaron la resolución de los ejercicios.

Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma = \{0, 1\}$, que acepte el conjunto de palabras que inician en "0".

Σ	$\{0, 1\}$
Q	$\{start, s0\}$
q0	start
F	s0

Cuadro 1: Tupla

Figura 1: Diagrama de transiciones

Figura 2: Simulación de la máquina

Estado	0	1
start	s0	-
*s0	s0	s0

Cuadro 2: Tabla de transiciones

Palabra Aceptada	Palabra Rechazada
0, 00, 000, 01, 010	1, 10, 100, 100,11

Cuadro 3: Palabras Aceptadas y Rechazadas

Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma = \{0, 1\}$, que acepte el conjunto de palabras que terminan en "1".

Σ	$\{0, 1\}$
Q	$\{start, s0, s1\}$
q0	start
F	s1

Cuadro 4: Tupla

Figura 3: Diagrama de transiciones

Figura 4: Simulación de la máquina

Estado	0	1
start	s0	s0
s0	s0	s1
*s1	-	s1

Cuadro 5: Tabla de transiciones

Palabra Aceptada	Palabra Rechazada
01, 11, 101,001,1001	0, 1, 100, 110,1110

Cuadro 6: Palabras Aceptadas y Rechazadas

Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma = \{0, 1\}$, que acepte el conjunto de palabras que contienen la subcadena "01".

Σ	{0,1}
Q	$\{start, s0, s1\}$
q0	start
F	s1

Cuadro 7: Tupla

Figura 5: Diagrama de transiciones

Figura 6: Simulación de la máquina

Estado	0	1
start	s0	s0
s0	s0	s1
*s1	s1	s1

Cuadro 8: Tabla de transiciones

Palabra Aceptada	Palabra Rechazada
01, 0101, 1001, 0110, 011001	0, 00, 10, 100,000

Cuadro 9: Palabras Aceptadas y Rechazadas

Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma = \{0, 1\}$, que acepte el conjunto de palabras que no contienen la subcadena "01".

Σ	$\{0, 1\}$
Q	$\{start, s0, s1\}$
q0	start
F	s1

Cuadro 10: Tupla

Figura 7: Diagrama de transiciones

Figura 8: Simulación de la máquina

Estado	0	1
start	s0	s0
s0	s0	s1
*s1	s1	s1

Cuadro 11: Tabla de transiciones

Palabra Aceptada	Palabra Rechazada
00, 000, etc.	1, 10, 100, etc.

Cuadro 12: Palabras Aceptadas y Rechazadas

Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma = \{a, b, c\}$, que acepte el conjunto de palabras que inician con la subcadena 'ac' o terminan con la subcadena 'ab'.

Σ	$\{a,b,c\}$
Q	$\{start, s0, s1, s2\}$
q0	start
F	s1,s2

Cuadro 13: Tupla

Figura 9: Diagrama de transiciones

Figura 10: Simulación de la máquina

Estado	a	b	\mathbf{c}
start	s0	start	s2
s0	s0	s2	s1
*s1	s1	s1	s1
*s2	s0	start	-

Cuadro 14: Tabla de transiciones

Palabra Aceptada	Palabra Rechazada	
ac, bc, acb, aab, acac, bab	ba, bcc, cabc, aabb, cc	

Cuadro 15: Palabras Aceptadas y Rechazadas

Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma = \{a, b, c\}$, que acepte el conjunto de palabras que inician con la subcadena 'ac' y no terminan con la subcadena 'ab'.

Σ	$\{a,b,c\}$
Q	$\{start, s0, s1, s2, \}$
q0	start
F	s1

Cuadro 16: Tupla

Figura 11: Diagrama de transiciones

Figura 12: Simulación de la máquina

Estado	a	b	c
start	s0	start	start
s0	s0	start	s1
*s1	s1	s2	s1
s2	s1	s1	-

Cuadro 17: Tabla de transiciones

Palabra Aceptada	Palabra Rechazada
ac, acba, accc, acaa, acbb	ab, acab, abab,aaab

Cuadro 18: Palabras Aceptadas y Rechazadas

Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma = \{a, b, c\}$, que acepte el conjunto de palabras que inician con la subcadena 'ac' o no terminan con la subcadena 'ab'.

Σ	$\{a,b,c\}$
Q	$\{start, s0, s1, s2, s3\}$
q0	start
F	s1, s3

Cuadro 19: Tupla

Figura 13: Diagrama de transiciones

Figura 14: Simulación de la máquina

Estado	a	b	c
start	s0	start	start
s0	s2	s2	s1
*s1	s1	s1	s1
s2	s3	s3	s3
*s3	s3	s3	s3

Cuadro 20: Tabla de transiciones

Palabra Aceptada	Palabra Rechazada	
ac, aca, acb, acc, aab	bca, ab, bbc, ccb, cca	

Cuadro 21: Palabras Aceptadas y Rechazadas

Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma = \{a, b, c\}$, que acepte el conjunto de palabras que no inician con la subcadena 'ac' y no terminan con la subcadena 'ab'.

Σ	$\{a,b,c\}$
Q	$\{start, s1, s2, s3, s5, s6\}$
q0	start
F	s5

Cuadro 22: Tupla

Figura 15: Diagrama de transiciones

Figura 16: Simulación de la máquina

Estado	a	b	С
start	s1	s5	s5
s1	s1	s3	s2
s2	s1	s1	s1
s3	s1	s6	s5
*s5	s3	s5	s5
s6	s5	-	s5

Cuadro 23: Tabla de transiciones

Palabra Aceptada	Palabra Rechazada
b, babc, cbac, abc, aabc	aa,ac,acb,accb,acca

Cuadro 24: Palabras Aceptadas y Rechazadas

Obtenga un Autómata Finito No Determinista (AFND) dado el lenguaje definido en el alfabeto $\Sigma = \{0, 1\}$, que acepte el conjunto de palabras que no contienen a la subcadena "01".

Σ	$\{0,1\}$
Q	$\{start, s0, s1\}$
q0	start
F	start, s0

Cuadro 25: Tupla

Figura 17: Diagrama de transiciones

Estado	0	1
*start	s1	start
*s0	s1	s0
s1	s1	s1

Cuadro 26: Tabla de transiciones

Figura 18: Simulación de la máquina

Palabra Aceptada	Palabra Rechazada	
0, 1, 00, 10, 11	01, 1001, 0101, 1101	

Cuadro 27: Palabras Aceptadas y Rechazadas

Obtenga un Autómata Finito No Determinista (AFND) dado el lenguaje definido en el alfabeto $\Sigma = \{a, b, c\}$, que acepte el conjunto de palabras que inician en la subcadena 'ac' y terminan en la subcadena 'ab'.

Σ	$\{a,b,c\}$
Q	$\{start, s0, s1, s2, s3\}$
q0	start
F	s3

Cuadro 28: Tupla

Figura 19: Diagrama de transiciones

Estado	a	b	c	ϵ
start	s0	start	start	-
s0	s0	s1	s0	-
s1	s1	s1	-	s2
s2	s2	s3	s2	-
*s3	s3	s3	s3	_

Cuadro 29: Tabla de transiciones

Figura 20: Simulación de la máquina

Palabra Aceptada	Palabra Rechazada	
acb, acabab, acacab, accbcbab, acbab	ab,ac,ccab,abac,acca	

Cuadro 30: Palabras Aceptadas y Rechazadas

Conclusiones

La realización de los ejercicios propuestos para la construcción de autómatas finitos deterministas (AFD) y no deterministas (AFND) nos ha permitido profundizar en la comprensión de estos modelos de computación y su aplicabilidad en la resolución de problemas lógicos. A través de la resolución de 10 ejercicios, adquirimos habilidades para construir y simular estos autómatas, utilizando el razonamiento lógico para determinar sus estados, transiciones y configuraciones. El uso del simulador fue crucial para validar nuestras soluciones, ya que proporcionó una representación visual que facilitó la observación de las transiciones y el comportamiento de las máquinas.

Además, el apoyo de los video tutoriales de YouTube fue esencial para complementar nuestra comprensión teórica con ejemplos prácticos, lo que contribuyó a una mejor ejecución de los ejercicios. En resumen, la experiencia fue enriquecedora, y nos permitió adquirir una visión más clara de cómo los AFD y AFND son herramientas fundamentales en la teoría de lenguajes y autómatas.

Referencias

- [1] Dickerson, K. (n.d.). Automaton Simulator. https://automatonsimulator.com/
- [2] Codemath. (2023, December 4). Operaciones con palabras Lenguajes Formales II [Video]. YouTube. https://www.youtube.com/watch?v=MXDl4Ts $_EZ0$
- [3] Codemath. (2023, December 15). Operaciones con lenguajes y aplicaciones Lenguajes Formales III [Video]. YouTube. https://www.youtube.com/watch?v=uU-fNuwbmZg
- [4] Codemath. (2024, February 4). Qué es un autómata finito determinista (AFD) [Video]. YouTube. https://www.youtube.com/watch?v=d9aEE-uLmNE
- [5] Codemath. (2024, April 23). Qué es un autómata finito no determinista (AFND) [Video]. YouTube. https://www.youtube.com/watch?v=dIgKBNuaglE
- [6] Codemath. (2024, April 29). Convertir un autómata NO determinista (AFND) a determinista (AFD) [Video]. YouTube. https://www.youtube.com/watch?v=hzJ8CNdPElc
- [7] Codemath. (2024, May 5). Qué es un autómata con transiciones épsilon [Video]. YouTube. https://www.youtube.com/watch?v=71P3daDZWlQ