Recommendation system for scientific tools and workflows

Master's thesis

07/08/2018

Anup Kumar

Adviser: Dr. Björn Grüning

Motivation

- Galaxy biological data analysis
- Tools and workflows
- Large number of tools (> 1,000)
- Complex workflows
- Need guidance recommendation system

Workflow

Recommendation system

1. Find similar scientific tools

2. Predict tools in workflows

1. Find similar scientific tools

1. Read tool XML files

Tool + Input and output files + Name + Description + Help text + Authors + ...

- 2. Clean metadata
 - Stopwords: "at, in, for ..."
 - Stemming

 Mapper

 Mapping

3. Vectors for tools

4. Similarity between vectors

5. Combine similarity matrices

2. Predict tools in workflows

Approach

Path preprocessing

Recurrent neural network

- Classifier to learn on sequential data
- Recurrent neural network Gated recurrent units

Recurrent neural network: https://arxiv.org/pdf/1412.3555.pdf
Gated recurrent units: https://arxiv.org/pdf/1412.3555v1.pdf

Prediction and precision

Score for each predicted tool

- Absolute precision
- Compatible precision

Precision and loss for decomposition of train and test paths

Conclusion and future work (part 1)

- Collect and clean tools metadata (~ 1,050 tools)
- Learn vectors for each tool
- Compute and combine similarity matrices
- Run analysis on larger set of tools
- Compute similar tools using workflows

Summary and conclusion (part 2)

- Workflows directed acyclic graphs (193,000)
- Paths (167,000 unique)
- Recurrent neural network (gated recurrent units)
- Absolute precision ~ 89%, compatible precision ~ 99% (~ 48 hrs)
- More workflows, better precision
- Recommendation system using similar and predicted tools

Future work (part 2)

- Restore original distribution
- Decay prediction over time
- Integrate into Galaxy

Thank you all!

- Prof. Dr. Rolf Backofen
- Prof. Dr. Wolfgang Hess
- Dr. Björn Grüning
- Dr. Anika Erxleben
- Helena Rasche
- Nate Coraor (Galaxy team, Penn State University)
- Freiburg Galaxy team and Bioinformatics Group Freiburg

Thank you for your attention Questions?

Supplementary material

Stemming and stopwords

- Stemming converge all forms of a word into one basic form
- "Operate, operating, operates, operation, operative, operatives, operational" into "oper" [1]
- Stopwords "a, about, above, would, could ..." [2]

2. https://www.ranks.nl/stopwords

^{1. &}lt;a href="https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html">https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html

Bestmatch25 (bm25)

- Token frequency (tf)
- Document and inverted document frequency (idf)

$$egin{align} idf &= \log rac{N}{df} \ lpha &= (1-b) + rac{b \cdot |D|}{|D|_{avg}} \ tf^* &= tf \cdot rac{k+1}{k \cdot lpha + tf} \ bm25 &= tf^* \cdot idf \ \end{cases}$$

Bestmatch25 (bm25) scores

Tools/Tokens	Regress	Linear	Gap	Mapper	Perform
LinearRegression	5.22	4.1	0.0	0.0	3.84
LogisticRegression	3.54	0.0	0.0	0.0	2.61
Tophat2	0.0	0.0	1.47	1.47	0.0
Hisat	0.0	0.0	0.0	0.0	0.0

Latent Semantic Analysis

- Document-token matrix (*X*)
- Singular value decomposition

$$egin{aligned} X_{n imes m} &= U_{n imes n} \cdot S_{n imes m} \cdot V_{m imes m}^T \ U^T \cdot U &= I_{n imes n} \ V^T \cdot V &= I_{m imes m} \ X_{n imes m} &= U_k \cdot S_k \cdot V_k^T \end{aligned}$$

Paragraph (document) vector

- A dense vector for each paragraph
- Paragraph a collection of tokens
- Similar paragraphs, similar vectors
- Encode variable length paragraphs
- Each tool has three paragraphs (documents)

Paragraph vectors

- Softmax classifier
- Backpropagation
- Stochastic gradient descent
- Gensim*
- 800 iterations, 10 epochs

$$rac{1}{T} \cdot \sum_{t=k}^{T-k} \log p(w_t|w_{t-k},\dots,w_{t+k})$$

^{*}https://radimrehurek.com/gensim/models/doc2vec.html Image adapted from: https://cs.stanford.edu/~quocle/paragraph_vector.pdf

Similarity scores

• Jaccard index (input and output file types)

$$j = \frac{A \cap B}{A \cup B}$$

- Cosine angle (name and description and help text)
- Compute similarity matrix

$$x \cdot y = |x| \times |y| \times \cos \theta$$

- Three similarity matrices
- Simple average the matrices
- Better learn weights

Document-token and paragraph matrices

- Gradient descent
- Learn weights on similarity scores
- Mean squared error

$$Error(w^k) = rac{1}{N} imes \sum_{j=1}^N [w^k imes SM^k - SM_{ideal})^2]_j$$

- Each tool, 3 weights
- Obtain a weighted average similarity matrix

- Gradient descent
- Learn weights on similarity scores

$$Error(w^k) = \frac{1}{N} \times \sum_{j=1}^{N} [w^k \times SM^k - SM_{ideal})^2]_j$$
(1)
$$Gradient(w^k) = \frac{\partial Error}{\partial w^k} = \frac{2}{N} \times ((w^k \times SM^k - SM_{ideal}) \cdot SM^k)$$
(2)
$$w^k = w^k - \eta \times Gradient(w^k)$$
(3)

• Obtain a weighted average similarity matrix

$$egin{aligned} Error_{io}(w_{io}^k) &= rac{1}{N} imes \sum_{j=1}^N [(w_{io}^k imes SM_{io}^k - SM_{ideal})^2]_j \ Error_{nd}(w_{nd}^k) &= rac{1}{N} imes \sum_{j=1}^N [(w_{nd}^k imes SM_{nd}^k - SM_{ideal})^2]_j \ Error_{ht}(w_{ht}^k) &= rac{1}{N} imes \sum_{j=1}^N [(w_{ht}^k imes SM_{ht}^k - SM_{ideal})^2]_j \ Error(w^k) &= Error_{io}(w_{io}^k) + Error_{nd}(w_{nd}^k) + Error_{ht}(w_{ht}^k) \ argmin_{w^k} Error(w^k) \ &= w_{io}^k + w_{nd}^k + w_{ht}^k = 1 \ SM^k &= w_{io}^k \cdot SM_{io}^k + w_{nd}^k \cdot SM_{nd}^k + w_{ht}^k \cdot SM_{ht}^k \end{aligned}$$

1	0.34	0.65	0.44
0.34	1		
0.65		1	•••
0.44	•••		1

1	0.76	0.63	0.85
0.76	1		***
0.63		1	
0.85		•••	1

1	0.06	0.1	0.17
0.06	1		
0.1		1	
0.17			1

- Initial learning rate 0.05
- Decay learning rate
- Nesterov's accelerated gradient

$$update_{t+1} = \gamma \cdot update_t - \eta \cdot Gradient(w_t + \gamma \cdot update_t)$$

$$w_{t+1} = w_t + update_{t+1}$$

Visualisers

- Paragraph vectors
- Latent Semantic Analysis (5% of full-rank)

Workflows

- Workflow a directed acyclic graph
- ~ 193,000 workflows
- ~ 900,000 paths (~ 167,000 unique)
- Maximum 25 tools in a path

Directed acyclic graph:

https://cran.r-project.org/web/packages/ggdag/vignettes/intro-to-dags.html https://galaxyproject.org/learn/advanced-workflow/

Paths statistics

• No decomposition:

Total paths (111,386), train paths (89,109) and test paths (22,277).

• Decomposition:

Total paths (210,983), train paths (168,787) and test paths (42,196).

Embedding and label vectors

Dimensions:

- o Embedding 512
- o Label vector 1,800
- o Tool sequence 25

Network configuration

- Cross-entropy loss
- Root mean square propagation (rmsprop) optimiser
- 80% training paths, 20% test paths
- 20% of training paths as validation paths
- 1 Embedding layer, 2 hidden layers and 1 output layer

Recurrent neural network

$$h_t = (1-z_t) imes h_{t-1} + z_t imes h_t^{'}$$

$$z_t = \sigma(W_z imes x_t + U_z imes h_{t-1})$$

$$r_t = \sigma(W_r imes x_t + U_r imes h_{t-1})$$

$$h_t^{'} = anh(W imes x_t + U imes (r_t \odot h_{t-1}))$$

$$p(x_T|x_1,x_2,\ldots,x_{T-1})$$

Recurrent neural network

- One embedding layer, two hidden layer and one output layer
- Recurrent layer activation exponential linear unit

$$f(x) = egin{cases} x, & ext{if } x > 0 \ lpha imes (e^x - 1), & ext{if } x \leq 0, lpha > 0 \end{cases}$$

ullet Output activation is sigmoid $f(x)=rac{1}{1+e^{-x}}$

Recurrent neural network

Optimiser - Root mean square propagation (rmsprop)

$$MeanSquare(w,t) = 0.9 imes MeanSquare(w,t-1) + 0.1 imes (rac{\partial E}{\partial w}(t))^2$$

$$w_{t+1} = w_t - rac{\eta}{\sqrt{MeanSquare(w,t)+\epsilon}} imes rac{\partial E}{\partial w}(t)$$

Binary cross-entropy loss

$$loss_{mean} = -rac{1}{N}(\sum_{i=1}^{N}y_i imes log(p_i) + (1-y_i) imes log(1-p_i))$$

RMSProp: https://arxiv.org/pdf/1609.04747.pdf

Binary cross-entropy: https://www.tensorflow.org/api docs/python/tf/keras/losses/binary crossentropy

Workflow preprocessing

- No decomposition
- Last tool is a label

Precision and loss for no decomposition of paths

Precision and loss for various optimisers

Precision and loss using neural network with dense layers

Precision and loss using less data

Precision and loss for various sizes of embedding layer

Precision and loss for various activations

Precision and loss for various learning rates

Precision and loss for various batch sizes

Precision and loss for various dropout values

Precision and loss for various number of memory units

Higher order dependency

- Not dependent only on immediate parent
- Dependent on all previous tools

Bayesian network

- Explain workflows
- Predict missing nodes
- Compute joint and conditional probabilities
- High computational cost with large number of nodes
- Prediction by probabilistic network is a hard problem

Hidden markov models

- Transition and prior probabilities
- Transition matrix is large
- Current state depends only on previous state (first-order)
- Higher number of parameters
- Higher order markov models

Distribution of weights

