Computer Organization & Design实验与课程设计

Lab04-3 CPU设计—指令集扩展

Ma De (马德)

made@zju.edu.cn

2022

College of Computer Science, Zhejiang University

Course Outline

- 一、实验目的
- 二、实验环境
- 三、实验目标及任务

实验目的

- 1. 运用寄存器传输控制技术
- 2. 掌握CPU的核心: 指令执行过程与控制流关系
- 3. 设计数据通路和控制器
- 4. 设计测试程序

2022/3/2

实验环境

□实验设备

- 1. 计算机(Intel Core i5以上,4GB内存以上)系统
- 2. Sword 2.0/Sword4.0开发板
- 3. Xilinx Vivado14.7及以上开发工具

□材料

无

实验目标及任务

- 目标: 熟悉RISC-V RV32I的指令特点,了解控制器和数据通路的原理,扩展实验lab4-2 CPU指令集,设计并测试CPU
- 任务一: 重新设计数据通路和控制器,在lab4-2的基础上完成
 - □兼容lab4-1、 lab4-2的数据通路和控制器
 - □替换lab4-1、lab4-2的数据通路控制器核
 - □扩展不少于下列指令

R-Type: add, sub, and, or, xor, slt, sltu, srl, sra, sll;

I-Type: addi, andi, ori, xori, slti, sltiu, srli, srai, slli, lw, jalr;

S-Type: sw;

B-Type: beq,bne;

J-Type: Jal;

U-Type: lui;

■ 任务二:设计指令集测试方案并完成测试

2022/3/2 Chapter 6

5

RISC-V RV32I指令集扩展的原理介绍

CPU organization

□ Digital circuit

General circuits that controls logical event with logical gates Hardware

□ Computer organization

Special circuits that processes logical action with instructions
 Software

数据通路。兼容lab4-2需要增加哪些通路与操作控制

Adding JALR (I-Format)

jalr rd, (immediate) rs1 无条件跳转-链接(寄存器地址)

功能: rd = pc+4,pc←rs1 + immediate

2022/3/2 Chapte 5

Adding JALR to Datapath

2022/3/2 Chapte 5 10

Control unit---jalr

Adding U-Format

lui rd, immediate

功能: rd = immediate <<12

Eg: lui x5,0x12345

X5 = 0x12345000 取左移12位的20位立即数

2022/3/2 Chapte 5 12

Adding LUI to Datapath

2022/3/2 Chapte 5 13

Control unit-- LUI

Adding bne to Datapath

Control unit-- bne

控制信号定义□兼容lab4-2需要增加哪些操作控制

信号	源数 目	功能定义	赋值0时动作	赋值1时动作	赋值2时动作	赋值3时动作
ALUSrc_B	2	ALU端口B输入选择	选择源操作数寄 存器2数据	选择32位立即数 (符号扩展后)	-	-
MemToReg	4	寄存器写入数据选择	选择ALU输出	选择存储器数据	选择PC+4	选择imm
Branch	2	Beq指令目标地址选择	选择PC+4地址	选择转移目的地址 PC+imm(zero=1)	-	-
BranchN	2	Bne指令目标地址选择	选择PC+4地址	选择转移目的地址 PC+imm(zero=0)	-	-
Jump	3	J指令目标地址选择	由Branch决定输 出	选择跳转目标地址 PC+imm(JAL)	选择跳转目标 地址ALU输出 (JALR:rs1+im m)	-
RegWrite	-	寄存器写控制	禁止寄存器写	使能寄存器写	-	-
MemRW	-	存储器读写控制	存储器 读使能 , 存储器写禁止	存储器 写使能 , 存储器读禁止	-	-
ALU_Control	0000 - 1111	4位ALU操作控制	参考表 ALU_Control			
ImmSel	000- 111	3位立即数组合控制	参考表ImmSel			

控制信号真值表

□根据数据通路重新设计控制器输出信号真值表

	ALU Src_B	Mem toReg	Reg Write	Mem RW	ImmSe1	Branch	BranchN	Jump	ALUCon trol
R-格式									
I-格式									
S-格式								1	
B-格式				1		真値る			
J-格式			需	要增加	加控制	讨信号	吗?		
U-格式									

控制信号真值表

Inst[31:0]	Banch	Branch N	Jump	ImmSel	ALUSrc_B	ALU_Control	MemRW	RegWrite	MemtoReg
add	0	0	0	*	Reg (0)	Add	Read	1	ALU(0)
sub	0	0	0	*	Reg (0)	Sub	Read	1	ALU(0)
(R-R Op)	0	0	0	*	Reg (0)	(Op)	Read	1	ALU(0)
addi	0	0	0	[Imm (1)	Add	Read	1	ALU(0)
lw	0	0	0	I	lmm (1)	Add	Read	1	Mem(1)
sw	0	0	0	S	lmm (1)	Add	Write	0	*
beq	0	0	0	В	Reg (0)	sub	*	0	*
beq	1	*	0	В	Reg (0)	sub	*	0	*
bne	0	0	0	В	Reg (0)	sub	*	0	*
bne	*	1	0	В	Reg (0)	sub	*	0	*
jalr	*	*	2	I	lmm (1)	Add	*	1	PC+4(2)
jal	*	*	1	J	Imm (1)	*	*	1	PC+4(2)
lui	0	0	0	U	*	*	*	1	Imm(3)

ImmSel

Instruction type	Instruction opcode[6:0]	Instruction operation	(sign-extend)immediate	lmm Sel	
	0000011	Lw;lbu;lh; lb;lhu			
I-type	0010011	Addi;slti;slti u;xori;ori;a ndi;slli;srai	(sign-extend) instr[31:20]	001	
	1100111	jalr			
S-type	0100011	Sw;sb;sh	(sign-extend) instr[31:25],[11:7]	010	
B-type	1100011	Beq;bne;blt ;bge;bltu;b geu	(sign-extend) instr[31],[7],[30:25],[11:8], 1'b0	011	
J-type	1101111	jal	(sign-extend) instr[31],[19:12],[20],[30:21],1 'b0	100	
II tuno	0010111	auipc	inotr[21:12] 12'h000	.000	
U-type2	0110111	lui	instr[31:12],12'h000	CIGRO 6	

Instruction opcode	ор	Instruction operation	Funct 3	Funct7	ALUop	Desired ALU action	ALUControl
		add	000	0000000		add	0010
		sub	000	0100000		sub	0110
		sll	001	0000000		sll	1110
		slt	010	0000000	10	slt	0111
R-type	0110011	sltu	011	0000000		sltu	1001
		xor	100	0000000		xor	1100
		srl	101	0000000		srl	1101
		sra	101	0100000		sra	1111
		or	110	0000000		or	0001
		and	111	0000000		and	0000

Instruction opcode	ор	Instruction operation	Funct 3	Funct7	ALUop	Desired ALU action	ALUControl
		sb	000	-		add	0010
S-Type	0100011	sh	001	-	00	add	0010
		sw	010	-		add	0010
Instruction opcode	op	Instruction operation	Funct 3	Funct7	ALUop	Desired ALU action	ALUControl
		Beq	000	-		sub	0110
		Bne	001	-		sub	0110
D. Turno	1100011	Blt	100	_	04	slt	0111
B-Type	1100011	Bge	101	_	01	slt	0111
		Bltu	110	_		sltu	1001
		bgeu	111	-		sltu	1001

Instruction opcode	ор	Instruction operation	Funct 3	Funct7	ALUop	Desired ALU action	ALUControl
U-Type	0110111	lui	-	-		-	-
О-туре	0010111	auipc	-	-	-	-	-
Instruction opcode	ор	Instruction operation	Funct 3	Funct7	ALUop	Desired ALU action	ALUControl
J-Type	1101111	jal	-	-	-	-	-

Instruction opcode	ор	Instruction operation	Funct 3	Funct7	ALUop	Desired ALU action	ALUControl
		Lb	-	-		add	0010
	0000011	Lh	-	-	00	add	0010
1.7		Lw	-	-		add	0010
I-Type		Lbu	-	-		add	0010
		lhu	-	-		add	0010
	1100111	jalr			00	add	0010

Instruction opcode	ор	Instruction operation	Funct 3	Funct7	ALUop	Desired ALU action	ALUControl
		addi	000	-	11	add	0010
		slti	010	-		slt	0111
		sltiu	011	-		sltu	1001
		xori	100	-		xor	1100
I-Type	0010011	ori	110	-		or	0001
		andi	111	-		and	0000
		slli	001	0000000		sll	1110
		srli	101	0000000		srl	1101
		srai	101	0100000		sra	1111

重新设计数据通路与控制器接口:

□重新设计接口

- ■扩展后增加了控制信号
- 数据通路参考接口如右图
- 控制器参考接口信号如下图

数据通路功能控制器接口信号标准

```
SCPU ctrl more(input[6:0]OPcode,
                                                //OPcode
module
                    input[2:0]Fun3, //Function
                    input Fun7, //Function
                    input MIO ready, //CPU Wait
                    output reg [2:0]ImmSel,
                    output reg ALUSrc B,
                    output reg [1:0] MemtoReg,
                    output reg [1:0] Jump,
                    output reg Branch,
                    output reg BranchN,
                    output reg RegWrite,
                    output reg MemRW,
                    output reg [3:0]ALU Control,
                    output reg CPU MIO
```

endmodule

27

数据通路功能控制器接口信号标准

module

```
//寄存器时钟
Data path more (input clk,
                              //寄存器复位
         input rst,
                              //指令数据域[31:7]
         input[31:0]inst field,
                              //ALU端口B输入选择
         input ALUSrc B,
                              //Regs写入数据源控制
          input [1:0]MemtoReg,
                              //J指令
         input [1:0] Jump,
                              //Beq指令
         input Branch,
                              //Bne指令
          input BranchN,
                              //寄存器写信号
         input RegWrite,
         input[31:0]Data in, //存储器输入
         input[3:0]ALU Control, //ALU操作控制
                              //ImmGen操作控制
         input[2:0]ImmSel,
          output[31:0]ALU out,
                              //ALU运算输出
                              //CPU数据输出
          output[31:0]Data out,
          output[31:0]PC out
                              //PC指针输出
```

■ 任务一: 重新设计数据通路和控制器,在Exp4-2的基础上完成

□兼容Exp4-1、Exp4-2的数据通路和控制器

□替换Exp4-1、Exp4-2的数据通路控制器核

设计工程: OExp04-ExtSCPU

◎扩展不少于下列指令

```
R-Type: add, sub, and, or, xor, slt, sltu, srl, sra, sll;
```

I-Type: addi, andi, ori, xori, slti, sltiu, srli, srai, slli, lw, jalr;

S-Type: sw;

B-Type: beq,bne;

J-Type: Jal;

U-Type: lui;

◎ 集成替换验证通过的新CPU

- € 替换 (Exp4-2)中的SCPU模块
- € 替换 (Exp4-2)中的SCPU ctrl模块
- € 替换 (Exp4-2)中的Data Path模块
- ₠ 顶层模块延用Exp04
 - ⊙ 模块名: ExtSCPU.v

◎测试扩展后的CPU功能

2022/3 设计测试程序(RISCV汇编)测试

设计要点

- ◎ 设计指令扩展后DataPath结构
 - € 在实验4-1的基础上扩展
- ◎ 根据新DataPath结构设计控制器
 - € 建议用HDL结构化描述
- ◎设计CPU调用模块
 - € 根据新的控制器和数据通路接口信号设计CPU模块
- ◎仿真新设计的模块
 - & 独立仿真DataPath和控制器
- ◎集成替换CPU及子模块
 - € 仿真正确后
 - ○集成替换CPU、数据通路和控制器模块

2022/3/2 Chapter 6

31

设计要点

◎设计指令扩展后的ALU

£ 在实验四的原理图上扩展

ALU

A[31:0] res[31:0]

B[31:0] zero

ALU_operation[3:0]

控制信号增加,内部实现了 sra,sll等R型扩展指令的算数 单元

◎设计指令扩展后的ImmGen

€ 在实验五的结构描述上扩展

控制信号增加 内部实现了U型 扩展指令的立 即数生成

扩展指令后的CPU参考模块

Datapath参考设计

控制器描述参考结构

```
'define CPU ctrl signals {ALUSrc_B,MemtoReg,RegWrite,MemRW,Branch,Jump, ALU Control
, .....}
         always @* begin
                  case(OPcode)
                  5'b01100:
                                                                         //ALU
                    case(Fun)
                     4'b0000: begin CPU ctrl signals = ?; end
                                                               //add
                     4'b0001: begin CPU ctrl signals = ?; end //sub
                                begin CPU ctrl signals = ?; end;
                     default:
                    endcase
                  5'b00000: begin CPU ctrl_signals = ?; end
                                                                         //load
                  5'b01000: begin CPU ctrl signals = ?; end
                                                                         //store
                  default:
                             begin CPU ctrl signals = ?; end
                  endcase
         end
```

CPU调试与测试

调试

- SCPU ctrl more模块仿真
 - □设计测试激励代码仿真测试*
- Data path more模块仿真
 - □设计测试激励代码仿真测试*
- CPU功能仿真(仿真测试平台参见lab04-2)

若含有提供的 EDF格式IP则无 法仿真

> 直接调用.v形 式的子模块

> > 36

□集成替换

- 仿真正确后逐个替换Exp04-2的相应模块
- 使用DEMO程序(或另外编写)目测控制器正常运行

memory initialization radix=16; memory initialization vector= 00007293, 00007313, 88888137, 00832183, 0032A223, 00402083, 01C02383, 00338863, 555550B7, 0070A0B3,FE0098E3, 007282B3, 00230333, 00531463, 40000033, 40530433, 405304B3, 0080006F, 00007033, 0072F533,

00157593, 00B51463, 00006033, 00A5E5B3, 0015E513, 00558463, 00004033, 00A5C633, 00164613, 00B61463,

00000013, 0012D293, 00060463, 40000033, 00129293, 00B28463, 00000013, 001026B3, 00503733, F65FF06F;

2022/3/2 Chapter 6

设计测试记录表格

- □ CPU指令测试结果记录
 - ■自行设计记录表格

思考题

- □ 指令扩展时控制器用二级译码设计存在什么问题?
- □设计bne指令需要增加控制信号吗?
- □ 设计srai时需要增加新的数据通道吗?

