МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ Кафедра технологий программирования

Толкун Кирилл Юрьевич

Отчёт по лабораторным работам по курсу "Имитационное и статистическое моделирование"

студента 4 курса 8 группы

Вариант 10

Преподаватель: Лобач Сергей Викторович ассистент кафедры ММАД

Работа сдана	2020 г.
Зачтена 2020	г.
(подпись преподавателя)	

1 Лабораторная 1

1.1 Условие

Согласно варианту: $X_0 = \alpha = 16807, K = 64.$

Используя метод Маклерена-Марсальи построить датчик БСВ (1 датчик должен быть мультипликативно конгруэнтный, второй – на выбор). Исследовать точность построенной БСВ.

- 1. Осуществить моделирование n=1000 реализаций БСВ с помощью мультипликативного конгруэнтного метода (МКМ) с параметрами $X0, \alpha, m=231$;
- 2. Осуществить моделирование n=1000 реализаций БСВ с помощью метода Макларена-Марсальи (один датчик должен быть мультипликативно конгруэнтный (п. 1), второй на выбор). K объем вспомогательной таблицы;
- 3. Проверить точность моделирования обоих датчиков (п. 1 и п. 2) с помощью критерия согласия Колмогорова и χ^2 критерия Пирсона с уровнем значимости $\varepsilon=0.05$.

1.2 Теория

1.2.1 Датчики БСВ

Для моделирования на ЭВМ реализаций *Базовой случайной величины* используются специальные программы, называемые программными датчиками БСВ. В основе программных датчиков БСВ лежат рекуррентные формулы вида:

$$x_n = \varphi(x_{n-1}, \dots, x_{n-p}), n = 1, 2, \dots,$$
 (1.1)

где $x_{1-p}, x_{2-p}, \ldots, x_0$ $(p \geqslant 1)$ - заданные стартовые значения. Описанное соотношение (1.1) описывает детерминированный алгоритм, однако при соответствующем подборе преобразования $\varphi(\cdot)$ получаемые на его основе псевдослучайные числа x_n по своим функциональным и числовым характеристикам близки к БСВ.

Алгоритмы моделирования вида (1.1) обладают общим недостатком: начиная с некоторого момента $\mathbf{t_0}$, последовательность псевдослучайных чисел образует цикл, который повторяется бесконечное число раз. Длина \mathbf{T} циклически повторяющейся последовательности называется *периодом датчика* БСВ ($T \leq m-1$).

Период $\mathbf T$ и *коэффициент использования* БСВ $\mathbf k$ являются основными показателями качества программных датчиков БСВ. Лучшим датчикам соответствуют большие значения $\mathbf T$ и $\mathbf k$.

1.2.2 Линейный конгруэнтный метод

Линейный конгруэнтный метод - один из методов генерации псевдослучайных чисел. Применяется в простых случаях и не обладает криптографической стойкостью. Входит в библиотеки различных компиляторов.

Суть метода заключается в вычислении последовательности случайных чисел X_n следующим образом:

$$X_{n+1} = \frac{\alpha X_n + c) \bmod m}{m},\tag{1.2}$$

где:

1.
$$X_0$$
 - начальное значение $(0 \leqslant X_0 < 1)$ 2. α - множитель $(0 \leqslant \alpha < m)$ 3. c - приращение $(0 \leqslant c < m)$ 4. $m \geq 2$ - модуль

Типовые значения параметров: $m=2^{31}, x_0=\alpha=65539.$

1.2.3 Мультипликативный конгруэнтный метод

Метод генерации линейной конгруэнтной последовательности (раздел 1.2.2) при $\mathbf{c} = \mathbf{0}$ называют мультипликативным конгруэнтным методом.

1.2.4 Метод Макларена-Марсальи

Генератор Макларена-Марсальи - криптографически стойкий генератор псевдослучайных чисел, который основан на комбинации двух конгруэнтных генераторов и вспомогательной матрице, с помощью которой происходит перемешивание двух последовательностей, полученных от двух генераторов.

Данный генератор псевдослучайных чисел оперирует с тремя объектами: двумя конгруэнтными генераторами, которые порождают последовательности $\langle \mathbf{X_n} \rangle, \langle \mathbf{Y_n} \rangle$, и массива \mathbf{V} , состоящей из \mathbf{k} элементов, обычно $k \in \{64, 28, 256\}$. На выходе последовательность $\langle \mathbf{Z_n} \rangle$.

Генератор состоит из четырёх основных стадий:

- 1. Инициализация ${\bf V}$ и ${\bf Z}$ первыми ${\bf k}$ элементами последовательности $\langle {\bf X_n} \rangle$ выполняется один раз;
- 2. Выборка \mathbf{X}, \mathbf{Y} из $\langle \mathbf{X_n} \rangle, \langle \mathbf{Y_n} \rangle$, то есть \mathbf{X}, \mathbf{Y} очередные члены последовательностей $\langle \mathbf{X_n} \rangle, \langle \mathbf{Y_n} \rangle;$
- 3. Вычисление $\mathbf{j} = \lfloor \mathbf{k} \cdot \mathbf{Y} \rfloor$, где $\mathbf{j} \in [\mathbf{0}, \mathbf{k})$ случайное число, определяемое Y;
- 4. Присвоение $\mathbf{Z_i} = \mathbf{V_i}$ и замена $\mathbf{V_j} = \mathbf{X}$.

Последние три стадии могут повторяться необходимое число раз.

Данный метод позволяет ослабить зависимость между членами последовательности $\mathbf{Z_n}$ и получить сколь угодно большие значения её периода T при условии, что периоды T_1, T_2 исходных датчиков являются взаимно простыми числами. Коэффициент использования БСВ для данного датчика $\mathbf{k} = \frac{1}{2}$ (за исключением первой реализации, для моделирования которой используется K+1 реализация).

1.2.5 χ^2 критерий согласия Пирсона

Критерий согласия Пирсона - это непараметрический метод, который позволяет оценить значимость различий между фактическим (выявленным в результате исследования) количеством исходов или качественных характеристик выборки, попадающих в каждую категорию, и теоретическим количеством, которое можно ожидать в изучаемых группах при справедливости нулевой гипотезы. Метод позволяет оценить статистическую значимость различий двух или нескольких относительных показателей (частот, долей).

Данный критерий применяют для проверки гипотезы о соответствии эмпирического распределения предполагаемому теоретическому распределению F(X) при большом объёме выборки ($n \ge 100$). Критерий применим для любых видов функции F(x), даже при неизвестных значениях их параметров, что обычно имеет место при анализе результатов механических испытаний.

Статистика критерия проверки гипотез имеет вид:

$$\chi^2 = \sum_{i=1}^p \frac{(n_i - n \cdot p_i)^2}{n \cdot p_i},\tag{1.3}$$

где n_i - наблюдаемые частоты, $n \cdot p_i$ - ожидаемые частоты.

Чем больше χ^2 , тем сильнее выборка X не согласуется с гипотезой H_0 (**нулевая** гипотеза: наблюдаемые частоты соответствуют ожидаемым).

Чтобы проверить гипотезу по *критерию Пирсона* необходимо сравнить *статисти- ку критерия* с *критическим значения*, которой находится в таблице для соответствующего *уровня значимости* и количеству *степеней свободы*.

Пример: при уровне значимости $\alpha=0.05$ и количестве степеней свободы $\nu=9$ критерий Пирсона согласуется с нулевой гипотезой при $\chi^2<16.919$.

$\nu \setminus \alpha$	0,99	0,98	0,95	0,90	0,80	0,70	0,50	0,30	0,20	0,10	0,05	0,02	0,01	α / ν
1	0,00016	0,00628	0,00393	0,0158	0,0642	0,148	0,455	1,074	1,642	2,706	3,841	5,412	6,635	1
2	0,0201	0,0404	0,103	0,211	0,446	0,713	1,386	2,408	3,219	4,605	5,991	7,824	9,210	2
3	0,115	0,185	0,352	0,584	1,005	1,424	2,366	3,605	4,642	6,251	7,815	9,837	11,345	3
4	0,297	0,429	0,711	1,064	1,649	2,195	3,357	4,878	5,989	7,779	9,488	11,668	13,277	4
5	0,554	0,752	1,145	1,610	2,343	3,000	4,351	6,064	7,289	9,236	11,070	13,388	15,086	5
6	0,872	1,134	1,635	2,204	3,070	3,828	5,348	7,231	8,558	10,645	12,592	15,033	16,812	6
7	1,239	1,564	2,167	2,833	3,822	4,671	6,346	8,383	9,803	12,017	14,067	16,622	18,475	7
8	1,646	2,032	2,733	3,490	4,594	5,527	7,344	9,524	11,030	13,362	15,507	18,168	20,090	8
9	2,088	2,532	3,325	4,168	5,380	6,393	8,343	10,656	12,242	14,684	16,919	19,679	21,666	9
10	2,558	3,059	3,940	4,865	6,179	7,267	9,342	11,781	13,442	15,987	18,307	21,161	23,209	10
11	3,053	3,609	4,575	5,578	6,989	8,148	10,341	12,899	14,631	17,275	19,675	22,618	24,725	11
12	3,571	4,178	5,226	6,304	7,807	9,034	11,340	14,011	15,812	18,549	21,026	24,054	26,217	12
13	4,107	4,765	5,892	7,042	8,634	9,926	12,340	15,119	16,985	19,812	22,362	25,472	27,688	13
14	4,660	5,368	6,571	7,790	9,467	10,821	13,339	16,222	18,151	21,064	23,685	26,873	29,141	14
15	5,229	5,985	7,261	8,547	10,307	11,721	14,339	17,322	19,311	22,307	24,996	28,259	30,578	15
16	5,812	6,614	7,962	9,312	11,152	12,624	15,338	18,418	20,465	23,542	26,296	29,633	32,000	16
17	6,408	7,255	8,672	10,085	12,002	13,531	16,338	19,511	21,615	24,769	27,587	30,995	33,409	17
18	7,015	7,906	9,390	10,865	12,857	14,440	17,338	20,601	22,760	25,989	28,869	32,346	34,805	18
19	7,633	8,567	10,117	11,651	13,716	15,352	18,338	21,689	23,900	27,204	30,144	33,687	36,191	19
20	8,260	9,237	10,851	12,443	14,578	16,266	19,337	22,775	25,038	28,412	31,410	35,020	37,566	20

Рис. 1: Значения χ^2 при различных P_{χ^2} в зависимости от числа степеней свобод ν .

1.2.6 Критерий согласия Колмогорова

Критерий согласия Колмогорова предназначен для проверки гипотезы о принадлежности выборки некоторому закону распределения, то есть проверки того, что эмпирическое распределение соответствует предполагаемой модели.

Эмпирическая функция распределения $\mathbf{F_n}$, построенная по выборке $X = (X_1, \dots, X_n)$, имеет вид:

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n I_{X_i \le x}$$
 (1.4)

где $I_{X_i \leqslant x}$ указывает, попало ли наблюдение X_i в область $(-\infty, x]$:

$$I_{X_i \leqslant x} = \begin{cases} 1, X_i \leqslant x \\ 0, X_i > x \end{cases} \tag{1.5}$$

Статистика критерия для эмпирической функции распределения $F_n(x)$ определяется следующим образом:

$$D_n = \sup_{x \in R} |F_n(x) - F(x)| \tag{1.6}$$

Принятие решения по критерию Колмогорова: В случае справедливости ny-левой гипотезы (H_0) при $n \to +\infty$ статистика D_n имеет распределение Колмогорова:

$$\lim_{n \to \infty} P(\sqrt{n}D_n < x) = K(x) \tag{1.7}$$

здесь

$$K(x) = \sum_{k=-\infty}^{+\infty} (-1)^k e^{-2k^2 x^2} \approx 1 - 2e^{-2x^2}, x \geqslant 0$$
 (1.8)

- функция Колмогорова.

При *уровне значимости* α пороговое значение C_{α} , находится из соотношения:

$$K(C_{\alpha}) = 1 - \alpha \tag{1.9}$$

Таким образом, для проверки гипотезы о виде распределения получаем:

$$\rho(X) = \begin{cases} H_0, \sqrt{n}D_n \leqslant \alpha, \\ H_1, \sqrt{n}D_n > \alpha. \end{cases}$$
 (1.10)

C_{α}	α	C_{α}	α	C_{α}	α	C_{α}	α	C_{α}	α	C_{α}	α	C_{α}	α
$\alpha \leq 0,29$	1,00000	0,62	0,8368	0,95	0,3275	1,28	0,0755	1,61	0,0112	1,94	0,0011	2,27	0,0001
0,30	0,99999	0,63	0,8222	0,96	0,3154	1,29	0,0717	1,62	0,0105	1,95	0,0010	2,28	0,0001
0,31	0,99998	0,64	0,8073	0,97	0,3036	1,30	0,0681	1,63	0,0098	1,96	0,0009	2,29	0,0001
0,32	0,99995	0,65	0,7920	0,98	0,2921	1,31	0,0646	1,64	0,0092	1,97	0,0009	2,30	0,0001
0,33	0,99991	0,66	0,7764	0,99	0,2809	1,32	0,0613	1,65	0,0086	1,98	0,0008	2,31	0,000046
0,34	0,99993	0,67	0,7604	1,00	0,2700	1,33	0,0582	1,66	0,0081	1,99	0,0007	2,32	0,000042
0,35	0,9997	0,68	0,7442	1,01	0,2594	1,34	0,0551	1,67	0,0076	2,00	0,0007	2,33	0,000038
0,36	0,9995	0,69	0,7278	1,02	0,2492	1,35	0,0522	1,68	0,0071	2,01	0,0006	2,34	0,000035
0,37	0,9992	0,70	0,7112	1,03	0,2392	1,36	0,0495	1,69	0,0066	2,02	0,0006	2,35	0,000032
0,38	0,9987	0,71	0,6945	1,04	0,2296	1,37	0,0469	1,70	0,0062	2,03	0,0005	2,36	0,000030
0,39	0,9981	0,72	0,6777	1,05	0,2202	1,38	0,0444	1,71	0,0058	2,04	0,0005	2,37	0,000027
0,40	0,9972	0,73	0,6609	1,06	0,2111	1,39	0,0420	1,72	0,0054	2,05	0,0004	2,38	0,000024
0,41	0,9960	0,74	0,6440	1,07	0,2024	1,40	0,0397	1,73	0,0050	2,06	0,0004	2,39	0,000022
0,42	0,9945	0,75	0,6272	1,08	0,1939	1,41	0,0375	1,74	0,0047	2,07	0,0004	2,40	0,000020
0,43	0,9926	0,76	0,6104	1,09	0,1857	1,42	0,0354	1,75	0,0044	2,08	0,0004	2,41	0,000018
0,44	0,9903	0,77	0,5936	1,10	0,1777	1,43	0,0335	1,76	0,0041	2,09	0,0003	2,42	0,000016
0,45	0,9874	0,78	0,5770	1,11	0,1700	1,44	0,0316	1,77	0,0038	2,10	0,0003	2,43	0,000014
0,46	0,9840	0,79	0,5605	1,12	0,1626	1,45	0,0298	1,78	0,0035	2,11	0,0003	2,44	0,000013
0,47	0,9800	0,80	0,5441	1,13	0,1555	1,46	0,0282	1,79	0,0033	2,12	0,0002	2,45	0,000012
0,48	0,9753	0,81	0,5280	1,14	0,1486	1,47	0,0266	1,80	0,0031	2,13	0,0002	2,46	0,000011
0,49	0,9700	0,82	0,5120	1,15	0,1420	1,48	0,0250	1,81	0,0029	2,14	0,0002	2,47	0,000010
0,50	0,9639	0,83	0,4962	1,16	0,1356	1,49	0,0236	1,82	0,0027	2,15	0,0002	2,48	0,000009
0,51	0,9572	0,84	0,4806	1,17	0,1294	1,50	0,0222	1,83	0,0025	2,16	0,0002	2,49	0,000008
0,52	0,9497	0,85	0,4653	1,18	0,1235	1,51	0,0209	1,84	0,0023	2,17	0,0002	2,50	0,0000075
0,53	0,9415	0,86	0,4503	1,19	0,1177	1,52	0,0197	1,85	0,0021	2,18	0,0001	2,55	0,0000044
0,54	0,9325	0,87	0,4355	1,20	0,1122	1,53	0,0185	1,86	0,0020	2,19	0,0001	2,60	0,0000026
0,55	0,9228	0,88	0,4209	1,21	0,1070	1,54	0,0174	1,87	0,0019	2,20	0,0001	2,65	0,0000016
0,56	0,9124	0,89	0,4067	1,22	0,1019	1,55	0,0164	1,88	0,0017	2,21	0,0001	2,70	0,0000010
0,57	0,9013	0,90	0,3927	1,23	0,0970	1,56	0,0154	1,89	0,0016	2,22	0,0001	2,75	0,0000006
0,58	0,8896	0,91	0,3791	1,24	0,0924	1,57	0,0145	1,90	0,0015	2,23	0,0001	2,80	0,0000003
0,59	0,8772	0,92	0,3657	1,25	0,0879	1,58	0,0136	1,91	0,0014	2,24	0,0001	2,85	0,00000018
0,60	0,8643	0,93	0,3527	1,26	0,0836	1,59	0,0127	1,92	0,0013	2,25	0,0001	2,90	0,00000010
0,61	0,8508	0,94	0,3399	1,27	0,0794	1,60	0,0120	1,93	0,0012	2,26	0,0001	2,95	0,00000006

Рис. 2: Значения C_{α} при различных α .

Пример: при уровне значимости $\alpha=0.05$ и пороговое значение из соотношений (1.8), (1.9) $\mathbf{C}_{\alpha} \approx \mathbf{1.359}$.

Критерий согласия Колмогорова для непрерывного равномерное распределения

Непрерывное равномерное распределение - распределение случайной вещественной величины, принимающей значения, принадлежащие некоторому промежутку конечно длины, характеризующая тем, что плотность вероятности на этом промежутке почти всюду постоянна.

Функция распределения:

$$F_X(x) \equiv P(X \leqslant x) = \begin{cases} 0, x < a \\ \frac{x-a}{b-a}, a \leqslant x < b \\ 1, x \geqslant b \end{cases}$$
 (1.11)

Значения теоретическая функция распределения для интервала [0,1):

$$F(x) = \frac{x-0}{1-0} = x \tag{1.12}$$

Значения эмпирической функции распределения.

Для x_i из выборки X, значение эмпирической функции распределения:

$$F_n(x) = \frac{n_i}{n} \tag{1.13}$$

где n - количество элементов в выборке, n_i - количество элементов в выборке меньших x_i .

1.3 Код программы

```
import math
 2
   import matplotlib.pyplot as plt
 5
   def linear_congruential_generator(x, alpha, c, m):
 6
 7
       while (True):
           x = (alpha * x + c) % m
 8
9
           yield x / m
10
11
12
   def multiplexial_congruential_generator(x, alpha, m):
13
       generator = linear_congruential_generator(x, alpha, 0, m)
14
       while (True):
15
           yield next(generator)
16
17
   def mclaren_marsaglia_generator(x_generator, y_generator, k):
18
19
       V = [next(x_generator) for _ in range(k)]
20
       while (True):
           X = next(x_generator)
21
22
           Y = next(y_generator)
           j = math.floor(k * Y)
23
24
           yield V[j]
25
           V[j] = X
26
27
28
   def hi_squared_test(values, k, critical_value):
29
       nu = [0] * k
30
       for value in values:
31
           nu[math.floor(value * k)] += 1
32
       p_k = len(values) / k
33
       hi_squared = 0
34
       for value in nu:
35
           hi_squared += ((value - p_k) ** 2) / p_k
36
                                    0.05 прити 9- степеняхсвободы.
       # Дляуровнязначимости
37
       return hi_squared < critical_value, hi_squared</pre>
```

```
38
39
40 def kolmogorov_test(values, critical_value):
41
       values.sort()
42
       Dn = 0
43
       i = 0
44
       n = len(values)
45
       for value in values:
           i += 1
46
47
           \# F(X) = (x-a)/(b-a) = для[a = 0 иb = 1] = x.
48
          theoretical_func_res = value
49
           # колво- значениеввыборкеменьшихтекущегозначенияизвыборки
50
           empirical_function_result = i / n
51
           Dn = max(Dn, abs(theoretical_func_res - empirical_function_result))
52
       Dn *= math.sqrt(n)
53
       return Dn < critical_value, Dn</pre>
54
55
56 \times 0 = 16807
57 \text{ alpha0} = 16807
58 K = 64
59
60 	 x1 = 8195
61 alpha1 = 8195
62 c = 46
63 k = 64
64
65 m = 2 ** 31
66
67 hi_squared_critical_value = 16.919
68 kolmogorov_critical_value = 1.359
69
70 mult_congr_gen = multiplexial_congruential_generator(x0, alpha0, m)
71 x = [next(mult_congr_gen) for _ in range(1000)]
72 # print('\n'.join(map(str, x)))
73 hi_squa_test1 = hi_squared_test(x, 10, hi_squared_critical_value)
74 kolm_test1 = kolmogorov_test(x, kolmogorov_critical_value)
75
76 print('Multiplexial congruential generator:')
77    print('Hi Squared Pirson criteria: ' + str(hi_squa_test1[1]) + ' <= '
         + str(hi_squared_critical_value) if hi_squa_test1[0] else
78
79
         'Zero hypothesis fails by Hi Squared Pirson criteria.')
  print('Kolmogorov criteria: ' + str(kolm_test1[1]) + ' <= '</pre>
80
         + str(kolmogorov_critical_value) if kolm_test1[0]
81
82
         else 'Zero hypothesis fails by Kolmogorov criteria.')
83
84 plt.hist(x, 10, ec='#993300', facecolor='#ff9900')
85 plt.title('Multiplexial congruential generator')
86 plt.show()
87
88 x = linear_congruential_generator(x0, alpha0, 0, m)
89 y = linear_congruential_generator(x1, alpha1, c, m)
90 mclar_mars_gen = mclaren_marsaglia_generator(x, y, k)
91 z = [next(mclar_mars_gen) for _ in range(1000)]
92 # print('\n'.join(map(str, z)))
```

```
93 hi_squa_test2 = hi_squared_test(z, 10, hi_squared_critical_value)
94 kolm_test2 = kolmogorov_test(z, kolmogorov_critical_value)
95
96
   print('\nMcLaren marsaglia generator:')
    print('Hi Squared Pirson criteria: ' + str(hi_squa_test2[1]) + ' <= '</pre>
97
98
          + str(hi_squared_critical_value) if hi_squa_test2[0]
99
          else 'Zero hypothesis fails by Hi Squared Pirson criteria.')
    print('Kolmogorov criteria: ' + str(kolm_test2[1]) + ' <= '</pre>
100
          + str(kolmogorov_critical_value) if kolm_test2[0]
102
          else 'Zero hypothesis fails by Kolmogorov criteria.')
103
104 plt.hist(z, 10, ec='#666633', facecolor="#99ff33")
105 plt.title('McLaren marsaglia generator')
106 plt.show()
```

Результат выполнения 1.4

101

```
Multiplexial congruential generator:
Hi Squared Pirson criteria: 7.30000000000001 <= 16.919
Kolmogorov criteria: 0.12043782997824995 <= 1.359
McLaren marsaglia generator:
Hi Squared Pirson criteria: 4.84000000000001 <= 16.919
Kolmogorov criteria: 0.1608008491673147 <= 1.359
```

Рис. 3: Результат выполнения программы: проверка критерием согласия Пирсона и критерием согласия Колмогорова.

(а) Диаграмма выборки, полученной мультипликативным конгруэнтным методом.

(b) Диаграмма выборки, полученной методом Макларена-Марсальи.

2 Лабораторная 2

2.1 Условие

Согласно варианту 10:

- 1. Пуассона $\Pi(\lambda), \lambda = 0.7$; Геометрическое G(p), p = 0.2;
- 2. Бернулли Bi(1, p), p = 0.75; Пуассона $\Pi(\lambda), \lambda = 1$;

Смоделировать дискретную случайную величину. Исследовать точность моделирования.

- 1. Осуществить моделирование n=1000 реализаций CB из заданных дискретных распределений;
- 2. Вывести на экран несмещённые оценки математического ожидания и дисперсии, сравнить их с истинными значениями;
- 3. Для каждой из случайных величин построить свой χ^2 -критерий Пирсона с уровнем значимости $\varepsilon=0.05$. Проверить, что вероятность ошибки I рода стремится к 0.05;
- 4. Осуществить проверку каждой из сгенерированных выборок каждым из построенных критериев.

2.2 Теория

2.2.1 Датчик случайной величины распределения Пуассона

Распределение Пуассона - распределение дискретного типа случайной величины, представляющей собой число событий, произошедших за фиксированное время, при условии, что данные события происходят с некоторой фиксированной средней интенсивностью и независимо друг от друга.

Функция распределения:

$$\frac{\Gamma(k+1,\lambda)}{k!}.\tag{2.1}$$

Функция вероятности:

$$\frac{e^{-\lambda}\lambda^k}{k!}. (2.2)$$

Математическое ожидание: λ .

Дисперсия: λ .

Алгоритм моделирования:

При моделировании будем использовать свойство пуассоновского процесса, состоящего в том, что время ожидания появления события имеет показательное распределение:

$$F_{\tau}(t) = 1 - e^{-\lambda t}.$$
 (2.3)

Следовательно, последовательность наступления событий в пуассоновском процессе можно задать через последовательность времён ожидания этих событий. При этом надо проверять, чтобы суммарное время суммарное время ожидания событий в цепочке не превышала единицы.

Последовательность времён ожидания можно получить методом обратных функций:

$$\tau_i = -\frac{1}{\lambda} \cdot \ln(1 - u_i), \tag{2.4}$$

где $u_i = rnd(1)$ - cлучайные числа, т.е. значения случайной величины (CB), равномерно распределённой на [0, 1].

Последовательность (2.4) следует продолжать, пока не нарушается условие:

$$\sum_{i=1}^{j} \tau_i = \sum_{i=1}^{j} \left(-\frac{1}{\lambda} \cdot \ln(1 - u_i \leqslant 1)\right)$$
 (2.5)

Максимально возможное количество слагаемых в сумме (2.5) и будет равно числу появления событий в данной серии, т.е. эти числа и есть значения случайной величины, имеющей распределение Пуассона.

- 1. Во-первых, в (2.5) заменим выражение $1 u_i$ просто на u_i , поскольку они имеют один и тот же закон распределения;
- 2. Во-вторых, избавимся от операций логарифмирования в каждом слагаемом, для чего пропотенциируем выражение (2.5).

Таким образом, определим случайную величину:

$$\xi = \max\left\{j: \prod_{i}^{j} u_{i} \geqslant e^{-\lambda}\right\}, \lambda > 0, \tag{2.6}$$

которая описывается распределением Пуассона. Элемент выборки можно получить последовательно увеличивая число членов (j) в произведении до тех пор, пока не нарушится условие:

$$\prod_{i}^{j} u_{i} \geqslant e^{-\lambda},\tag{2.7}$$

максимальное значение (j), удовлетворяющее этому условию и есть очередное значение случайной величины.

Программа создания выборки:

$$D(\lambda, N) := \begin{vmatrix} d \leftarrow \exp(-\lambda) \\ j \leftarrow 0 \\ for & k \in 0 ..N \\ x \leftarrow rnd(1) \\ while & x > d \\ x \leftarrow x \cdot rnd(1) \\ j \leftarrow j + 1 \\ P_k \leftarrow j \\ j \leftarrow 0 \\ P \end{vmatrix}$$

Рис. 5: Псевдоалгоритм генерации СВ распределения Пуассона.

2.2.2 Датчик случайной величины геометрического распределения

Под **Геометрическим распределением** в теории вероятностей подразумевают одно из двух распределений дискретной случайной величины:

- ullet распределение вероятностей случайной величины X равное номеру первого "успеха" в серии испытания Бернулли и принимающей значения $n=1,2,3,\ldots$;
- ullet распределение вероятностей случайной величины Y=X-1, равное количеству "неудач" до первого "успеха" и принимающей значения $n=0,1,2,\ldots$

Функция распределения:

$$1 - q^{n+1}. (2.8)$$

Функция вероятности:

$$q^n p. (2.9)$$

Математическое ожидание:

$$\frac{q}{p}.\tag{2.10}$$

Дисперсия:

$$\frac{q}{p^2}. (2.11)$$

Алгоритм моделирования:

1. Моделирование реализации α БСВ;

2. Принятие решения о том, что реализация ξ является значением x, определяемым соотношением:

$$x = \left[\frac{\ln \alpha}{\ln q}\right],\tag{2.12}$$

где [z] - округление числа z в большую сторону до ближайшего целого значения.

2.2.3 Датчик случайной величины распределения Бернулли

Распределение Бернулли - дискретное распределение вероятностей, моделирующее случайный эксперимент произвольной природы, при заранее известной вероятности успеха или неудачи.:

Функция распределения:

$$\begin{cases} 0, k < 0 \\ q, 0 \le k < 1 \\ 1, k \ge 1 \end{cases}$$
 (2.13)

Функция вероятности:

$$\begin{cases} q, k = 0 \\ p, k = 1 \end{cases}$$
 (2.14)

Математическое ожидание:

$$p. (2.15)$$

Дисперсия:

$$pq. (2.16)$$

Алгоритм моделирования:

- 1. Моделирование реализации α БСВ;
- 2. Принятие решения о том, что реализация ξ является значением x, определяемым по правилу:

$$x = \begin{cases} 1, \alpha \leqslant p \\ 0, \alpha > p \end{cases} \tag{2.17}$$

2.3 Код программы

import math

```
from collections import Counter
from functools import partial

import matplotlib.pyplot as plt

def linear_congruential_generator(x, alpha, c, m):
    while True:
```

```
10
           x = (alpha * x + c) % m
11
           yield x / m
12
13
14
  def poisson_generator(l, linear_gen):
15
       d = math.exp(-1)
       while True:
16
17
           x = 1
18
           j = 0
19
           while x > d:
20
              x *= next(linear_gen)
21
               j += 1
22
           yield j - 1
23
24
25
   def geometric_generator(p, linear_gen):
26
       while True:
           yield math.floor(math.log(next(linear_gen)) / math.log(1 - p))
27
28
29
30 def bernoulli_generator(p, linear_gen):
31
       while True:
32
           yield int(next(linear_gen) <= p)</pre>
33
34
35 def hi_squared_test(values, distribution_func, critical_value):
36
       distinct_map = Counter(values).most_common()
37
       exampling_size = len(values)
38
       hi_squared = 0
39
       for pair in distinct_map:
40
           empiric_freq = pair[1]
41
           random_value = pair[0]
42
           theoretic_freq = math.ceil(
               exampling_size * distribution_func(random_value))
43
44
           hi_squared += ((empiric_freq - theoretic_freq) ** 2) / theoretic_freq
                                   0.05 прити 9- степеняхсвободы.
45
       # Дляуровнязначимости
       return hi_squared < critical_value, hi_squared</pre>
46
47
48
49
   def empirical_expectation_func(values):
       return sum(values) / len(values)
50
51
52
53
  def empirical_dispersion_func(values):
54
       expectation = empirical_expectation_func(values)
55
       result = 0
       for value in values:
56
           result += (value - expectation) ** 2
57
58
       return result / len(values) - 1
59
60
   def poisson_distribution_func(l, value):
61
62
       return 1 ** value * math.exp(-1) / math.factorial(value)
63
64
```

```
65 def geometric_distribution_func(p, unique_x_geometric, value):
66
        return (1 - p) ** unique_x_geometric.index(value) * p
69 def bernoulli_distribution_func(p, value):
        return p if value == 1 else 1 - p
73 \times 0 = 79507
74 alpha0 = 79507
75 m = 2 ** 31
76
77 # POISSON SAMPLE, LAMBDA = 0.7.
78 \quad 1 = 0.7
79 poisson_gen = poisson_generator(1, linear_congruential_generator(x0, alpha0,
80
                                                                0, m)
81 x_poisson = [next(poisson_gen) for _ in range(1000)]
82 # print('\n'.join(map(str, x_poisson)))
83
84 unique_x_poisson = sorted(list(Counter(x_poisson).keys()))
85 # Колво- степенейсвободыдля ( 10 варианта 6 - 1 = 5 степенейсвободы)
86 k_poisson = len(unique_x_poisson)
87 critical_value_poisson = 11.07
88 hi_squa_test1 = hi_squared_test(x_poisson,
89
                                 partial(poisson_distribution_func, 1),
90
                                 critical_value_poisson)
91 print('Poisson generator, lambda = 0.7:')
92 print('Hi Squared Pirson criteria: ' + str(hi_squa_test1[1]) + ' <= '</pre>
         + str(critical_value_poisson) if hi_squa_test1[0] else
93
94
          'Zero hypothesis fails by Hi Squared Pirson criteria.')
96 theoretical_expectation = 1
97 empirical_dispersion = empirical_dispersion_func(x_poisson)
98 theoretical_dispersion = 1
99 empirical_expectation = empirical_expectation_func(x_poisson)
100\, print('theoretical expectation: ', theoretical_expectation)
101 print('empirical expectation: ', empirical_expectation)
102 print('theoretical dispersion: ', theoretical_dispersion)
103 print('empirical dispersion: ', empirical_dispersion)
104 print('')
105
106 unique_x_poisson.append(unique_x_poisson[k_poisson - 1] + 1)
107 plt.hist(x_poisson, bins=unique_x_poisson, ec='#666633',
            facecolor="#99ff33")
108
109 plt.title('Poisson generator, $\lambda = 0.7$')
110 plt.show()
112 # POISSON SAMPLE, LAMBDA = 1
113 1 = 1
114 poisson_gen = poisson_generator(1, linear_congruential_generator(x0, alpha0,
115
                                                                0, m)
116 x_poisson = [next(poisson_gen) for _ in range(1000)]
117 # print('\n'.join(map(str, x_poisson)))
119 unique_x_poisson = sorted(list(Counter(x_poisson).keys()))
```

67 68

70

71 72

95

111

118

```
120 # Колво- степенейсвободыдля ( 10 варианта 6 - 1 = 5 степенейсвободы)
121 k_poisson = len(unique_x_poisson)
122 critical_value_poisson = 11.07
123 hi_squa_test2 = hi_squared_test(x_poisson,
124
                                 partial(poisson_distribution_func, 1),
125
                                  critical_value_poisson)
126 print('Poisson generator, lambda = 1:')
127 print('Hi Squared Pirson criteria: ' + str(hi_squa_test2[1]) + ' <= '
128
          + str(critical_value_poisson) if hi_squa_test2[0] else
129
          'Zero hypothesis fails by Hi Squared Pirson criteria.')
130
131 theoretical_expectation = 1
132 empirical_dispersion = empirical_dispersion_func(x_poisson)
133 theoretical_dispersion = 1
134 empirical_expectation = empirical_expectation_func(x_poisson)
135 print('theoretical expectation: ', theoretical_expectation)
136 print('empirical expectation: ', empirical_expectation)
137 print('theoretical dispersion: ', theoretical_dispersion)
138 print('empirical dispersion: ', empirical_dispersion)
139 print('')
140
141 unique_x_poisson.append(unique_x_poisson[k_poisson - 1] + 1)
142 plt.hist(x_poisson, bins=unique_x_poisson, ec='#666633',
143
            facecolor="#99ff33")
144 plt.title('Poisson generator, $\lambda = 1$')
145 \text{ plt.show()}
146
147
    # GEOMETRIC SAMPLE.
148 p = 0.2
149 geometric_gen = geometric_generator(p, linear_congruential_generator(x0, alpha0,
150
                                                                    0, m)
151 x_geometric = [next(geometric_gen) for _ in range(1000)]
152 # print('\n'.join(map(str, x_geometric)))
153
154 unique_x_geometric = sorted(list(Counter(x_geometric).keys()))
155\, # Колво- степенейсвободыдля ( 10\, варианта 27\, - 1\, = \,26\, степенейсвободы)
156 k_geometric = len(unique_x_geometric)
157 critical_value_geometric = 38.89
158 hi_squa_test3 = hi_squared_test(x_geometric,
159
                                 partial(geometric_distribution_func, p,
160
                                         unique_x_geometric),
161
                                  critical_value_geometric)
162 print('Geometric generator, p = 1:')
163 print('Hi Squared Pirson criteria: ' + str(hi_squa_test3[1]) + ' <= '
164
          + str(critical_value_geometric) if hi_squa_test3[0] else
165
          'Zero hypothesis fails by Hi Squared Pirson criteria.')
166 theoretical_expectation = 1 / p
167 empirical_dispersion = empirical_dispersion_func(x_geometric)
168 theoretical_dispersion = (1 - p) / p ** 2
169 empirical_expectation = empirical_expectation_func(x_geometric)
170 print('theoretical expectation: ', theoretical_expectation)
171 print('empirical expectation: ', empirical_expectation)
172 print('theoretical dispersion: ', theoretical_dispersion)
173 print('empirical dispersion: ', empirical_dispersion)
174 print('')
```

```
175
176 unique_x_geometric.append(unique_x_geometric[k_geometric - 1] + 1)
177 plt.hist(x_geometric, bins=sorted(list(unique_x_geometric)), ec='#666633',
            facecolor="#99ff33")
178
179 plt.title('Geometric generator, $p = 0.2$')
180 plt.show()
181
182 # BERNOULLI SAMPLE.
183 p = 0.75
184 bernoulli_gen = bernoulli_generator(p, linear_congruential_generator(x0, alpha0,
                                                                   0, m)
185
186 x_bernoulli = [next(bernoulli_gen) for _ in range(1000)]
187 # print('\n'.join(map(str, x_bernoulli)))
188
189 critical_x_bernoulli = 10
190 unique_x_bernoulli = sorted(list(Counter(x_bernoulli).keys()))
191 # Колво- степенейсвободыдля ( 10 варианта 2 - 1 = 1 степенейсвободы)
192 k_bernoulli = len(unique_x_bernoulli)
193 critical_value_bernoulli = 3.841
194 hi_squa_test4 = hi_squared_test(x_bernoulli,
195
                                 partial(bernoulli_distribution_func, p),
196
                                 critical_value_bernoulli)
197 print('Geometric generator, p = 1:')
198 print('Hi Squared Pirson criteria: ' + str(hi_squa_test4[1]) + ' <= '</pre>
199
         + str(critical_value_bernoulli) if hi_squa_test4[0] else
200
          'Zero hypothesis fails by Hi Squared Pirson criteria.')
201
202 theoretical_expectation = p
203 empirical_dispersion = empirical_dispersion_func(x_poisson)
204 theoretical_dispersion = p * (1 - p)
205 empirical_expectation = empirical_expectation_func(x_poisson)
206 print('theoretical expectation: ', theoretical_expectation)
207 print('empirical expectation: ', empirical_expectation)
208 print('theoretical dispersion: ', theoretical_dispersion)
209 print('empirical dispersion: ', empirical_dispersion)
210
211 unique_x_bernoulli.append(unique_x_bernoulli[k_bernoulli - 1] + 1)
212 plt.hist(x_bernoulli, bins=unique_x_bernoulli, ec='#666633',
213
            facecolor="#99ff33")
214 plt.title('Bernoulli generator, $p = 0.75$')
215 plt.show()
```

2.4 Результат выполнения

Poisson generator, lambda = 0.7: Geometric generator, p = 1: Hi Squared Pirson criteria: 1.4769448422208398 <= 11.07 Hi Squared Pirson criteria: 20.886693627653305 <= 38.89 theoretical expectation: 0.7 theoretical expectation: 5.0 empirical expectation: 0.71 empirical expectation: 4.121 theoretical dispersion: 0.7 theoretical dispersion: 19.99999999999996 empirical dispersion: -0.3101000000000315 empirical dispersion: 20.328358999999953 Poisson generator, lambda = 1: Geometric generator, p = 1: theoretical expectation: 1 theoretical expectation: 0.75 empirical expectation: 1.021 empirical expectation: 1.021 theoretical dispersion: 1 theoretical dispersion: 0.1875 empirical dispersion: 0.008559000000012418 empirical dispersion: 0.008559000000012418

Рис. 6: Результат выполнения программы: проверка критерием согласия Пирсона и подсчёт несмещённых оценок математического ожидания и дисперсии.

(a) Диаграмма выборки, полученной генератором распределения Пуассона при $\lambda = 0.7$.

(с) Диаграмма выборки, полученной генератором геометрического распределения.

(b) Диаграмма выборки, полученной генератором распределения Пуассона при $\lambda=1.$

(d) Диаграмма выборки, полученной генератором распределения Бернулли.

3 Лабораторная 3

3.1 Условие

Согласно варианту 10:

- 1. Нормальное $N(m, s^2), m = 1, s^2 = 9$; Логонормальное $LN(m, s^2), m = 1, s^2 = 9$; Экспоненциальное $E(\alpha), \alpha = 2$;
- 2. Нормальное $N(m,s^2), m=0, s^2=1;$ Лапласа $L(\alpha), \alpha=0.5;$ Вейбула W(a,b), a=1, b=0.5;

Смоделировать непрерывную случайную величину. Исследовать точность моделирования.

- 1. Осуществить моделирование n=1000 реализаций СВ из нормального закона распределения $N(m,s^2)$ с заданными параметрами. Вычислить несмещённые оценки математического ожидания и дисперсии, сравнить их с истинными;
- 2. Смоделировать n = 1000 CB из заданных абсолютно непрерывных распределений. Вычислить несмещённые оценки математического ожидания и дисперсии, сравнить их с истинными значениями (если это возможно);
- 3. Для каждой из случайных величин построить свой критерий Колмогорова с уровнем значимости $\varepsilon=0.05$. Проверить, что вероятность ошибки I рода стремится к 0.05;
- 4. Для каждой из случайных величин построить свой χ^2 -критерий Пирсона с уровнем значимости $\varepsilon = 0.05$. Проверить, что вероятность ошибки I рода стремится к 0.05;
- 5. Осуществить проверку каждой из сгенерированных выборок каждым из построенных критериев.

3.2 Теория

3.2.1 Датчик случайной величины нормального распределения

Нормальное распределение - распределение вероятностей, которое в одномерном случае задаётся функцией плотности вероятности, совпадающей с функцией Гаусса.

Функция распределения:

$$\frac{1}{2}(1 + erf\left[\frac{x - \mu}{\sqrt{2\sigma^2}}\right]. \tag{3.1}$$

Функция плотности:

$$\frac{1}{\sigma\sqrt{2\pi}} \cdot \exp\left[\frac{(x-\mu)^2}{2\sigma^2}\right]. \tag{3.2}$$

Математическое ожидание: μ.

Дисперсия: σ^2 .

Алгоритм моделирования:

При моделировании будем использовать **преобразование Бокса-Мюллера**. Пусть r b ϕ - независимые случайные величины, равномерно распределённые на интервале (0,1]. Вычислим z_0, z_1 по формулам:

$$z_0 = \cos(2\pi\phi)\sqrt{-2\ln(r)}, z_1 = \sin(2\pi\phi)\sqrt{-2\ln(r)}.$$
 (3.3)

Тогда z_0, z_1 будут независимы и распределены нормально с математическим ожиданием 0 и дисперсией 1.

3.2.2 Датчик случайной величины логнормального распределения

Логнормальное распределение - это двухпараметрическое семейство абсолютно непрерывных распределений. Если СВ имеет логнормальное распределение, то её логарифм имеет нормальное распределение.

Функция распределения:

$$\frac{1}{2} + \frac{1}{2}Erf\left[\frac{\ln(x) - \mu}{\sigma\sqrt{2}}\right]. \tag{3.4}$$

Функция плотности:

$$\exp\left[\frac{\left(\frac{\ln(x)-\mu}{\sigma}\right)^2}{2}\right] / \left(x\sigma\sqrt{2\pi}\right). \tag{3.5}$$

Математическое ожидание: $e^{\mu + \sigma^2/2}$.

Дисперсия: $(e^{\sigma^2} - 1) \cdot e^{2\mu + \sigma^2}$.

Алгоритм моделирования:

Для моделирования обычно используется связь с нормальным распределением. Поэтому, достаточно сгенерировать нормально распределённую СВ, например, используя преобразование Бокса-Мюллера, и вычислить её экспонент.

3.2.3 Датчик случайной величины экспоненциального распределения

Экспоненциальное распределение - абсолютно непрерывное распределение, моделирующее время между двумя последовательными свершениями одного и того же события.

Функция распределения:

$$1 - e^{\lambda x}. (3.6)$$

Функция плотности:

$$\lambda e^{-\lambda x}. (3.7)$$

Математическое ожидание:

$$\lambda^{-1}. (3.8)$$

Дисперсия:

$$\lambda^{-2}. (3.9)$$

Алгоритм моделирования:

- 1. Моделирование реализации α БСВ;
- 2. Вычисление экспоненциально распределённой СВ:

$$x = -\frac{1}{\lambda} \ln(\alpha) \tag{3.10}$$

3.2.4 Датчик случайной величины распределения Лапласа

Распределение Лапласа - в теории вероятностей это непрерывное распределение случайной величины, при котором плотность вероятности есть $f(x) = \frac{\alpha}{2} \cdot e^{-\alpha|x-\beta|}, -\infty < x < +\infty$, где $\alpha > 0$ - параметр масштаба, $-\infty < \beta < +\infty$ - параметр сдвига.

Функция распределения:

$$\begin{cases} \frac{1}{2}e^{\alpha(x-\beta)} \\ 1 - \frac{1}{2}e^{\alpha(x-\beta)} \end{cases}$$
 (3.11)

Функция плотности:

$$\frac{\alpha}{2}e^{-\alpha|x-\beta|}. (3.12)$$

Математическое ожидание:

$$\beta. \tag{3.13}$$

Дисперсия:

$$\frac{2}{\alpha^2}. (3.14)$$

Алгоритм моделирования:

Алгоритм моделирования $\xi \sim L(\lambda)$ основан на методе обратной функции. Обратная для функции распределения $F_{\xi}(x)$ функция имеет вид:

$$\begin{cases} x = F_{\xi}^{-1}(y) = \frac{1}{\lambda} \ln(2y) < 0, y \in [0, 0.5) \\ x = F_{\xi}^{-1}(y) = \frac{1}{\lambda} \ln(2(1-y)) < 0, y \in [0.5, 1) \end{cases}$$
(3.15)

Для моделирования реализация $x \in \mathbb{R} \in L(\lambda)$ выполняются следующие действия:

- 1. Моделирование реализации α БСВ;
- 2. Принимается решение о том, что реализацией СВ ξ является величина x, вычисляемая по формулам (3.15) согласно отрезку, которому принадлежит y.

3.2.5 Датчик случайной величины распределения Вейбула

Распределение Вейбула - в теории вероятностей это двухпараметрическое семейство абсолютно непрерывных распределений.

Функция распределения:

$$1 - e^{-(x/\lambda)^k}. (3.16)$$

Функция плотности:

$$\frac{k}{\lambda} \cdot \left(\frac{x}{\lambda}\right)^{k-1} \cdot e^{-(x/\lambda)^k}.\tag{3.17}$$

Математическое ожидание:

$$\lambda\Gamma\left(1+\frac{1}{k}\right).\tag{3.18}$$

Дисперсия:

$$\lambda^2 \Gamma \left(1 + \frac{2}{k} \right) - \mu^2. \tag{3.19}$$

Алгоритм моделирования:

Алгоритм моделирования $\xi \sim WG(\lambda, k)$ основан на методе обратной функции. Обратная для функции распределения $F_{\xi}(x)$ функция имеет вид:

$$x = F_{\xi}^{-1}(y) = \left(-\frac{1}{\lambda}\ln(y)\right)^{1/k}.$$
 (3.20)

Для моделирования реализация $x \to L(\lambda)$ выполняются следующие действия:

- 1. Моделирование реализации α БСВ;
- 2. Принимается решение о том, что реализацией СВ ξ является величина x, вычисляемая по формулам (3.20), где $y = \alpha$.

3.3 Код программы

```
import math
 2 import random
 3 from functools import partial
 4
 5
   import matplotlib.pyplot as plt
   from scipy.stats import norm, chi2, kstwobign, lognorm, expon, laplace, \
 6
 7
       weibull_min
 8
9
10
   def linear_congruential_generator(x, alpha, c, m):
11
       while True:
12
           x = (alpha * x + c) % m
13
           yield x / m
14
15
16
   def normal_generator(mu, sigma, linear_gen):
17
       while True:
18
           u1 = next(linear_gen)
19
           u2 = next(linear_gen)
20
           z0 = math.sqrt(-2.0 * math.log(u1)) * math.cos(2 * math.pi * u2)
21
           \# z1 = math.sqrt(-2.0 * math.log(u1)) * math.sin(2 * math.pi * u2)
22
           yield mu + z0 * sigma
23
24
25
   def exponential_generator(1, linear_gen):
26
       while True:
27
           yield -1 / 1 * math.log(next(linear_gen))
28
29
30 def lognormal_generator(mu, sigma, linear_gen):
31
       normal_gen = normal_generator(mu, sigma, linear_gen)
32
       while True:
33
           yield math.exp(next(normal_gen))
34
35
36 def laplace_generator(alpha, linear_gen):
37
       while True:
38
           y = next(linear_gen)
39
           if 0 \le y \le 0.5:
40
              yield 1 / alpha * math.log(2 * y)
41
           else:
42
              yield -1 / alpha * math.log(2 * (1 - y))
43
44
45
   def weibull_generator(l, k, linear_gen):
46
       while True:
           yield 1 * ((-math.log(next(linear_gen))) ** (1 / k))
47
48
49
50 def hi_squared_test(frequencies, borders, distribution_func, p_value):
51
       exampling_size = sum(frequencies)
52
       hi_squared = 0
```

```
53
        for i in range(1, len(frequencies) + 1):
54
            empiric_freq = frequencies[i - 1]
            theoretic_freq = (distribution_func(borders[i]) - distribution_func(
55
56
               borders[i - 1])) * exampling_size
57
            if theoretic_freq:
58
               hi_squared += ((
59
                                     empiric_freq - theoretic_freq) ** 2) / theoretic_freq
60
        degrees_of_freedom = len(frequencies) - 1
        critical_value = chi2.ppf(1 - p_value, degrees_of_freedom)
61
62
        return hi_squared < critical_value, hi_squared, critical_value</pre>
63
64
65 def kolmogorov_test(values, distribution_func, p_value):
66
        values.sort()
67
        Dn = 0
68
        i = 0
69
        n = len(values)
70
        for value in values:
71
            i += 1
72
           theoretical_func_res = distribution_func(value)
73
            empirical_function_res = i / n
74
           Dn = max(Dn, abs(theoretical_func_res - empirical_function_res))
75
        Dn *= math.sqrt(n)
76
        critical_value = kstwobign.ppf(1 - p_value)
77
        return Dn < critical_value, Dn, critical_value</pre>
 78
79
80 def empirical_expectation_func(values):
81
        return sum(values) / len(values)
82
83
84 def empirical_dispersion_func(values):
85
        expectation = empirical_expectation_func(values)
86
        result = 0
87
        for value in values:
            result += (value - expectation) ** 2
88
        return result / len(values) - 1
89
90
91
92 def cumulative_norm_distrib_func(mu, sigma, value):
        return norm.cdf(value, mu, sigma)
93
94
95
96 def cumulative_lognorm_distrib_func(mu, sigma, value):
97
        return lognorm.cdf(value, scale=math.exp(mu), s=sigma)
98
99
100 def cumulative_exponential_distrib_func(1, value):
101
        return expon.cdf(value, scale=1 / 1)
102
103
104 def cumulative_laplace_distrib_func(alpha, betta, value):
105
        return laplace.cdf(value, scale=1 / alpha, loc=betta)
106
107
```

```
108 def cumulative_weibull_distrib_func(1, k, value):
109
        return weibull_min.cdf(value, k, scale=1)
110
111
112 def built_in_random():
113
        while True:
114
           yield random.random()
115
116
   x0 = 79507
117
118 \text{ alpha0} = 79507
119 c = 63
120 m = 2 ** 31
121 p_{value} = 0.05
122
123
    generator = linear_congruential_generator(x0, alpha0, c, m)
124
125 # NORMAL SAMPLE, MU = 1, SIGMA^2 = 9
126 \text{ mu} = 1
127 sigma = 3
128
129 normal_gen = normal_generator(mu, sigma, generator)
130 x_normal = [next(normal_gen) for _ in range(1000)]
131 # print('\n'.join(map(str, x_normal)))
132
133 freq_normal, borders_normal, _ = plt.hist(x_normal, bins='auto',
134
                                            ec='#666633',
135
                                            facecolor="#99ff33")
136
    plt.title('Normal generator, $\mu = 1, \sigma^2=9$')
137
    plt.show()
138
   hi_squa_test1 = hi_squared_test(freq_normal,
139
140
                                  borders_normal,
141
                                  partial(cumulative_norm_distrib_func,
142
                                          mu, sigma),
                                  p_value)
143
144
    print('Normal generator, mu = 1, sigma^2 = 9:')
    print('Hi Squared Pirson criteria: ' + str(hi_squa_test1[1]) + ' <= '</pre>
145
146
          + str(hi_squa_test1[2]) if hi_squa_test1[0] else
147
          'Zero hypothesis fails by Hi Squared Pirson criteria.')
148
    kolm_test1 = kolmogorov_test(x_normal,
149
                               partial(cumulative_norm_distrib_func, mu, sigma),
150
                               p_value)
    print('Kolmogorov criteria: ' + str(kolm_test1[1]) + ' <= '</pre>
151
          + str(kolm_test1[2]) if kolm_test1[0]
152
153
          else 'Zero hypothesis fails by Kolmogorov criteria.')
154
155 theoretical_expectation = mu
156 empirical_dispersion = empirical_dispersion_func(x_normal)
157 theoretical_dispersion = sigma ** 2
158 empirical_expectation = empirical_expectation_func(x_normal)
159 print('theoretical expectation: ', theoretical_expectation)
160 print('empirical expectation: ', empirical_expectation)
161 print('theoretical dispersion: ', theoretical_dispersion)
162 print('empirical dispersion: ', empirical_dispersion)
```

```
163 print('')
164
165 # NORMAL SAMPLE, MU = 0, SIGMA^2 = 1
166 \text{ mu} = 0
167 \text{ sigma} = 1
168
169 normal_gen = normal_generator(mu, sigma, generator)
170 x_normal = [next(normal_gen) for _ in range(1000)]
171 # print('\n'.join(map(str, x_normal)))
172
173 freq_normal, borders_normal, _ = plt.hist(x_normal, bins='auto',
174
                                            ec='#666633',
175
                                            facecolor="#99ff33")
176 plt.title('Normal generator, $\mu = 0, \sigma^2=1$')
177
    plt.show()
178
179 hi_squa_test2 = hi_squared_test(freq_normal,
180
                                  borders_normal,
181
                                  partial(cumulative_norm_distrib_func,
182
                                          mu, sigma),
183
                                  p_value)
184 print('Normal generator, mu = 0, sigma^2 = 1:')
185 print('Hi Squared Pirson criteria: ' + str(hi_squa_test2[1]) + ' <= '
186
          + str(hi_squa_test2[2]) if hi_squa_test2[0] else
187
          'Zero hypothesis fails by Hi Squared Pirson criteria.')
188 kolm_test2 = kolmogorov_test(x_normal,
189
                                partial(cumulative_norm_distrib_func, mu, sigma),
                                p_value)
190
191 print('Kolmogorov criteria: ' + str(kolm_test2[1]) + ' <= '
192
          + str(kolm_test2[2]) if kolm_test2[0]
193
          else 'Zero hypothesis fails by Kolmogorov criteria.')
194
195 theoretical_expectation = mu
196 empirical_dispersion = empirical_dispersion_func(x_normal)
197 theoretical_dispersion = sigma ** 2
198 empirical_expectation = empirical_expectation_func(x_normal)
199 print('theoretical expectation: ', theoretical_expectation)
200 print('empirical expectation: ', empirical_expectation)
201 print('theoretical dispersion: ', theoretical_dispersion)
202 print('empirical dispersion: ', empirical_dispersion)
203 print('')
204
205 # LOGNORMAL SAMPLE, MU = 1, SIGMA<sup>2</sup> = 9
206 \quad \mathbf{mu} = \mathbf{1}
207 \text{ sigma} = 3
208
209 lognormal_gen = lognormal_generator(mu, sigma, generator)
210 x_lognormal = [next(lognormal_gen) for _ in range(1000)]
211 # print('\n'.join(map(str, x_lognormal)))
212
213 freq_lognormal, borders_lognormal, _ = plt.hist(x_lognormal, bins='auto',
214
                                                  ec='#666633',
215
                                                  facecolor="#99ff33")
216 plt.title('Lognormal generator, $\mu = 1, \sigma^2=9$')
217 plt.show()
```

```
218
219
   hi_squa_test3 = hi_squared_test(freq_lognormal,
220
                                  borders_lognormal,
221
                                  partial(cumulative_norm_distrib_func,
222
                                          mu, sigma),
223
                                  p_value)
224
225
    print('Lognormal generator, mu = 1, sigma^2 = 9:')
226
    print('Hi Squared Pirson criteria: ' + str(hi_squa_test3[1]) + ' <= '</pre>
227
          + str(hi_squa_test3[2]) if hi_squa_test3[0] else
228
          'Zero hypothesis fails by Hi Squared Pirson criteria.')
229 kolm_test3 = kolmogorov_test(x_lognormal,
230
                               partial(cumulative_lognorm_distrib_func, mu,
231
                                       sigma),
232
                               p_value)
233 print('Kolmogorov criteria: ' + str(kolm_test3[1]) + ' <= '
234
          + str(kolm_test3[2]) if kolm_test3[0]
235
          else 'Zero hypothesis fails by Kolmogorov criteria.')
236
237 theoretical_expectation = math.exp(mu + sigma ** 2 / 2)
238 empirical_dispersion = empirical_dispersion_func(x_lognormal)
239 theoretical_dispersion = (math.exp(sigma ** 2) - 1) * math.exp(
240
        2 * mu + sigma ** 2)
241 empirical_expectation = empirical_expectation_func(x_lognormal)
242 print('theoretical expectation: ', theoretical_expectation)
243 print('empirical expectation: ', empirical_expectation)
244 print('theoretical dispersion: ', theoretical_dispersion)
245 print('empirical dispersion: ', empirical_dispersion)
246 print('')
247
248 # EXPONENTIAL SAMPLE, LAMBDA = 2
249 \quad 1 = 2
250
251 exponential_gen = exponential_generator(1, generator)
252 x_exponential = [next(exponential_gen) for _ in range(1000)]
253 # print('\n'.join(map(str, x_exponential)))
254
255 freq_exponential, borders_exponential, _ = plt.hist(x_exponential, bins='auto',
256
                                                     ec='#666633',
257
                                                     facecolor="#99ff33")
258
    plt.title('Exponential generator, $\lambda= 2$')
259
    plt.show()
260
261
    hi_squa_test4 = hi_squared_test(freq_exponential,
262
                                  borders_exponential,
263
                                  partial(cumulative_exponential_distrib_func, 1),
264
                                  p_value)
265
266
    print('Exponential generator, lambda = 2:')
    print('Hi Squared Pirson criteria: ' + str(hi_squa_test4[1]) + ' <= '</pre>
267
          + str(hi_squa_test4[2]) if hi_squa_test4[0] else
268
269
          'Zero hypothesis fails by Hi Squared Pirson criteria.')
270 kolm_test4 = kolmogorov_test(x_exponential,
271
                               partial(cumulative_exponential_distrib_func, 1),
272
                               p_value)
```

```
273 print('Kolmogorov criteria: ' + str(kolm_test4[1]) + ' <= '
274
         + str(kolm_test4[2]) if kolm_test4[0]
275
         else 'Zero hypothesis fails by Kolmogorov criteria.')
276
277 theoretical_expectation = 1 / 1
278 empirical_dispersion = empirical_dispersion_func(x_exponential)
279 theoretical_dispersion = 1 / 1 ** 2
280 empirical_expectation = empirical_expectation_func(x_exponential)
281 print('theoretical expectation: ', theoretical_expectation)
282 print('empirical expectation: ', empirical_expectation)
283 print('theoretical dispersion: ', theoretical_dispersion)
284 print('empirical dispersion: ', empirical_dispersion)
285 print('')
286
287 # LAPLACE SAMPLE, ALPHA = 0.5, BETTA = 0
288 \text{ alpha} = 0.5
289 \text{ beta} = 0
290
291 laplace_gen = laplace_generator(alpha, generator)
292 x_laplace = [next(laplace_gen) for _ in range(1000)]
293 # print('\n'.join(map(str, x_laplace)))
294
295 freq_laplace, borders_laplace, _ = plt.hist(x_laplace, bins='auto',
296
                                           ec='#666633',
297
                                           facecolor="#99ff33")
298 plt.title(r'Laplace generator, $\alpha = 0.5, \beta = 0$')
299 plt.show()
300
301 hi_squa_test5 = hi_squared_test(freq_laplace,
302
                                borders_laplace,
303
                                partial(cumulative_laplace_distrib_func, alpha,
304
                                        beta),
305
                                p_value)
306
307 print('Laplace generator, alpha = 0.5, betta = 0:')
309
         + str(hi_squa_test5[2]) if hi_squa_test5[0] else
310
         'Zero hypothesis fails by Hi Squared Pirson criteria.')
311 kolm_test5 = kolmogorov_test(x_laplace,
312
                              partial(cumulative_laplace_distrib_func, alpha,
313
                                     beta),
314
                              p_value)
315 print('Kolmogorov criteria: ' + str(kolm_test5[1]) + ' <= '
         + str(kolm_test5[2]) if kolm_test5[0]
316
317
         else 'Zero hypothesis fails by Kolmogorov criteria.')
318
319 theoretical_expectation = beta
320 empirical_dispersion = empirical_dispersion_func(x_laplace)
321 theoretical_dispersion = 2 / alpha ** 2
322 empirical_expectation = empirical_expectation_func(x_laplace)
323 print('theoretical expectation: ', theoretical_expectation)
324 print('empirical expectation: ', empirical_expectation)
325 print('theoretical dispersion: ', theoretical_dispersion)
326 print('empirical dispersion: ', empirical_dispersion)
327 print('')
```

```
329 # WEIBULL SAMPLE, LAMBDA = 1, K = 0.5
330 1 = 1
331 k = 0.5
333 weibull_gen = weibull_generator(1, k, generator)
334 x_weibull = [next(weibull_gen) for _ in range(1000)]
335 # print('\n'.join(map(str, x_weibull)))
337 freq_weibull, borders_weibull, _ = plt.hist(x_weibull, bins='auto',
                                            ec='#666633',
                                            facecolor="#99ff33")
340 plt.title(r'Weibull generator, $\lambda = 1, k = 0.5$')
341 plt.show()
343 hi_squa_test = hi_squared_test(freq_weibull,
                                borders_weibull,
                                partial(cumulative_weibull_distrib_func, 1, k),
                                p_value)
348 print('Weibull generator, lambda = 1, k = 0.5:')
349 print('Hi Squared Pirson criteria: ' + str(hi_squa_test[1]) + ' <= '
350
         + str(hi_squa_test[2]) if hi_squa_test[0] else
         'Zero hypothesis fails by Hi Squared Pirson criteria.')
352 kolm_test = kolmogorov_test(x_weibull,
                             partial(cumulative_weibull_distrib_func, 1, k),
                             p_value)
355 print('Kolmogorov criteria: ' + str(kolm_test[1]) + ' <= '
         + str(kolm_test[2]) if kolm_test[0]
         else 'Zero hypothesis fails by Kolmogorov criteria.')
359 theoretical_expectation = weibull_min.mean(k, scale=1)
360 empirical_dispersion = empirical_dispersion_func(x_weibull)
361 theoretical_dispersion = weibull_min.var(k, scale=1)
362 empirical_expectation = empirical_expectation_func(x_weibull)
363 print('theoretical expectation: ', theoretical_expectation)
364 print('empirical expectation: ', empirical_expectation)
365 print('theoretical dispersion: ', theoretical_dispersion)
366 print('empirical dispersion: ', empirical_dispersion)
367 print('')
```

328

332

336

338

339

342

344

345

346

347

351

353

354

356

357

358

3.4 Результат выполнения

Normal generator, mu = 1, sigma^2 = 9: Hi Squared Pirson criteria: 28.358119998727172 <= 33.92443847144381 Kolmogorov criteria: 0.9679439050529556 <= 1.3580986393225505 theoretical expectation: 1 empirical expectation: 0.9294316472943027 theoretical dispersion: 9 empirical dispersion: 7.4959786131342 Normal generator, mu = 0, $sigma^2 = 1$: Hi Squared Pirson criteria: 21.488365965347455 <= 33.92443847144381 Kolmogorov criteria: 0.729460343122114 <= 1.3580986393225505 theoretical expectation: 0 empirical expectation: -0.0021933952374124295 theoretical dispersion: 1 empirical dispersion: -0.0879810652662405 Lognormal generator, mu = 1, sigma^2 = 9: Zero hypothesis fails by Hi Squared Pirson criteria. Kolmogorov criteria: 0.45996235601524604 <= 1.3580986393225505 theoretical expectation: 244.69193226422038 empirical expectation: 214.6402940382709 theoretical dispersion: 485105321.26807505 empirical dispersion: 6708849.993968649

Exponential generator, lambda = 2:

Zero hypothesis fails by Hi Squared Pirson criteria.

Kolmogorov criteria: 0.865617143544657 <= 1.3580986393225505

theoretical expectation: 0.5

empirical expectation: 0.4964390006492622

theoretical dispersion: 0.25

empirical dispersion: -0.7272060875253951

Laplace generator, alpha = 0.5, betta = 0:

Hi Squared Pirson criteria: 42.81270564557594 <= 70.99345283378227

Kolmogorov criteria: 0.8620742035777464 <= 1.3580986393225505

theoretical expectation: 0

empirical expectation: 0.012242333617161668

theoretical dispersion: 8.0

empirical dispersion: 6.039302085513919

Weibull generator, lambda = 1, k = 0.5:

Hi Squared Pirson criteria: 118.4822098553722 <= 118.75161175336736

Kolmogorov criteria: 0.4340890407142095 <= 1.3580986393225505

theoretical expectation: 2.0

empirical expectation: 1.9964551645252555

theoretical dispersion: 20.0

empirical dispersion: 17.104799371406074

Рис. 8: Результат выполнения программы: проверка критерием согласия Пирсона и Колмогорова. Вывод теоретических и подсчёт эмпирических математических ожиданий и дисперсийё.

(a) Диаграмма выборки, полученной генератором нормального распределения при $\mu = 1, \sigma^2 = 9$.

(b) Диаграмма выборки, полученной генератором нормального распределения при $\mu=0, \sigma^2=1.$

(a) Диаграмма выборки, полученной генератором логнормального распределения при $\mu=1,\sigma^2=9.$

(c) Диаграмма выборки, полученной генератором распределения Лапласа при $\alpha=0.5, \beta=0.$

(b) Диаграмма выборки, полученной генератором экспоненциального распределения при $\lambda=2.$

(d) Диаграмма выборки, полученной генератором распределения Вейбула при $\lambda=1, k=0.5.$

4 Лабораторная 4

4.1 Условие

Согласно варианту 10:

1.
$$I_1 = \int_{-\infty}^{\infty} e^{-x^4\sqrt{1+x^4}} dx;$$

2.
$$I_2 = \iint_{1 \le x^2 + y^2 \le 4} \frac{dxdy}{x^2 + y^2}$$
.

Вычислить значение интеграла, используя метод Монте-Карло. Оценить точность.

- 1. По методу Монте-Карло вычислить приближённое значение интегралов;
- 2. Сравнить полученное значение либо с точным значением (если его получится вычислить), либо с приближённым, полученным в каком-либо математическом пакете (например, в mathematica). Для этого построить график зависимости точности вычисленного методом Монте-Карло интеграла от числа итераций n.

4.2 Теория

4.2.1 Метод Монте-Карло для вычисления интегралов

В основе метода лежит нахождение такой случайно величины ξ , математическое ожидание которой совпадает с искомым интегралом:

$$\int_{a}^{b} f(x)dx = E(\xi) = \int_{a}^{b} x \rho_{\xi}(x)dx. \tag{4.1}$$

Для этого выбирается такая СВ ξ_1 с плотностью $\rho_{\xi_1}(x)$, определённая на той же области, что и интеграл, тогда ξ определяется, как

$$\xi = g(\xi_1) = \frac{f(\xi_1)}{\rho_{\xi_1}(\xi_1)}. (4.2)$$

Тогда

$$E(\xi) = E(g(\xi_1)) = \int_a^b g(x)\rho_{\xi_1}(x)dx = \int_a^b \frac{f(x)}{\rho_{\xi_1}(x)}\rho_{\xi_1}(x)dx = \int_a^b f(x)dx.$$
 (4.3)

Для нахождения математического ожидания необходимо смоделировать n реализаций x_i СВ ξ :

$$E(\xi) \approx \frac{1}{n} \sum_{i=0}^{n} x_i. \tag{4.4}$$

Алгоритм моделирования:

- 1. Для вычисления I_1 использовалось нормальное распределение N(0,1), область которого совпадает с областью интегрирования;
- 2. При вычислении I_2 производился переход к полярной системе координат и использовать равномерное распределение на отрезке [0, 2].

4.3 Код программы

```
import math
 3
   import matplotlib.pyplot as plt
 4
 5
 6
   def linear_congruential_generator(x, alpha, c, m):
 7
       while True:
 8
          x = (alpha * x + c) % m
 9
          yield x / m
10
11
   def normal_generator(mu, sigma, linear_gen):
12
13
       while True:
14
          u1 = next(linear_gen)
15
          u2 = next(linear_gen)
          z0 = math.sqrt(-2.0 * math.log(u1)) * math.cos(2 * math.pi * u2)
16
17
          z1 = math.sqrt(-2.0 * math.log(u1)) * math.sin(2 * math.pi * u2)
18
          yield mu + z0 * sigma, mu + z1 * sigma
19
20
21 def integral_function(x):
22
       return (math.exp(-x ** 4) * math.sqrt(1 + x ** 4))
23
24
25 def double_integral_function(x, y):
       return (2 * math.pi) / ((1 + x) * (math.cos(2 * math.pi * y) ** 2 + (
26
27
              1 + x) ** 2 * math.sin(2 * math.pi * y) ** 4))
28
29
30 def cumulative_norm_distrib_func(value, mu, sigma):
31
       return 1 / (sigma * math.sqrt(2 * math.pi)) * math.exp(
32
           - (value - mu) ** 2 / (2 * sigma ** 2))
33
34
35 def calc_integral(x_sample, from_num, to_num):
36
       return sum(
37
           integral_function(x) / cumulative_norm_distrib_func(x, mu, sigma) for x
           in x_sample[from_num:to_num]) / (to_num - from_num)
38
39
40
41 def calc_double_integral(xy_sable, from_num, to_num):
42
       return sum(
43
           double_integral_function(x, y) for x, y in
```

```
44
           xy_sample_in_area[from_num: to_num]) / (to_num - from_num)
45
46
47 \times 0 = 79507
48 \text{ alpha0} = 79507
49 c = 63
50 m = 2 ** 31
51
52 \text{ mu} = 0
53 \text{ sigma} = 1
54
55 linear_gen = linear_congruential_generator(x0, alpha0, c, m)
56 normal_gen = normal_generator(mu, sigma, linear_gen)
57
58 # Task 1
59 exact_result = 2.000057
60 exampling_size = 1000000
61 x_sample = [next(normal_gen)[0] for _ in range(exampling_size)]
62
63 step = exampling_size // 100
64 \text{ steps} = []
65 \text{ results} = []
66
67 \text{ sum\_res} = 0
68 for size in range(step, exampling_size + 1, step):
69
       sum_res += calc_integral(x_sample, size - step, size)
70
       results.append(sum_res)
71
       steps.append(size)
72
73 results = [x / (i + 1) for x, i in zip(results, range(0, len(results)))]
74
75 discrepancy = [abs(x - exact_result) for x in results]
76 plt.plot(steps, discrepancy)
77 plt.show()
78 print("Task 1: " + str(results[len(results) - 1]))
79
80 # Task2
81 \text{ exact_result} = 3.8579
82 exampling_size = 1000000
83 	ext{ x_from = 0}
84 \text{ x_to} = 2 \text{ * math.pi}
85 \text{ y\_from} = 1
86 \text{ y_to} = 2
87
88 xy_sample = [next(normal_gen) for _ in range(exampling_size)]
89 xy_sample_in_area = list(
90
       filter(lambda xy: 0 < xy[0] < 1 and 0 < xy[1] < 1, xy_sample))
91
92 step = len(xy_sample_in_area) // 100 # 10 segments
93 steps = []
94 \text{ results} = []
95
96 \text{ sum\_res} = 0
97 for size in range(step, len(xy_sample_in_area) + 1, step):
98
       sum_res += calc_double_integral(xy_sample_in_area, size - step, size)
```

```
results.append(sum_res)
99
100
        steps.append(size)
101
    results = [x / (i + 1) for x, i in zip(results, range(0, len(results)))]
102
103
    discrepancy = [abs(x - exact_result) for x in results]
104
    plt.plot(steps, discrepancy)
105
    plt.show()
106
    print("Task 2: " + str(results[len(results) - 1]))
107
```

4.4 Результат выполнения

Task 1: 2.0005711732875366 Task 2: 4.045023607968606

Рис. 11: Результат выполнения программы: значения интегралов I_1, I_2 соответственно.

(а) График зависимости точности вычисленного методом Монте-Карло интеграла I_1 от числа итераций n.

(b) График зависимости точности вычисленного методом Монте-Карло интеграла I_2 от числа итераций n.

5 Лабораторная 5

5.1 Условие

Согласно варианту 10:

$$A = \begin{pmatrix} 1.2 & 0.1 & -0.3 \\ -0.3 & 0.9 & -0.2 \\ 0.4 & 0.5 & 1.0 \end{pmatrix}, f = \begin{pmatrix} 2 \\ 3 \\ 3 \end{pmatrix}.$$
 (5.1)

Решить систему линейных уравнений, используя метод Монте-Карло.

- 1. Решить систему линейных алгебраических уравнений Ax=f методом Монте-Карло;
- 2. Сравнить с решением данного уравнения, полученным в произвольном математическом пакете;
- 3. Построить график зависимости точности решения от длины цепи Маркова и числа смоделированных цепей Маркова.

5.2 Теория

5.2.1 Метод Монте-Карло для решения СЛАУ

Для необходимо привести СЛАУ к виду

$$x = Ax + f. (5.2)$$

Предположим, что наибольшее по модулю характеристическое число матрицы A меньше единицы, так что сходиться метод последовательных приближений:

$$x^{(k)} = Ax^{(k-1)} + f, k = 1, 2, \dots$$
(5.3)

Достаточным условием для того, чтобы все характеристические числа матрицы A лежали внутри единичного круга на комплексной плоскости, то есть $|\lambda_i| < 1, i = \overline{1,n}$ может служить одно неравенств:

$$\sum_{i,j=1}^{n} a_{ij}^{2} < 1$$

$$\max_{1 \le i \le n} \sum_{j=1}^{m} |a_{ij}| < 1$$
(5.4)

Пусть размерность вектора x равна n. Для нахождения компоненты x_i вектора x определим вектор:

$$h = \begin{cases} h_j = 0, j \neq i \\ h_i = 1, j = \overline{1, n} \end{cases}$$
 (5.5)

Моделирование цепи Маркова выглядит следующим образом:

$$i_0 \to i_1 \to \ldots \to i_{N-1}, i_k \in \overline{1, n}.$$
 (5.6)

Вектор вероятностей начальных состояний цепи Маркова:

$$\pi = \left\{ \pi_i = \frac{1}{n}, i = \overline{1, n} \right\}. \tag{5.7}$$

Матрица переходных вероятностей имеет вид:

$$P = \left\{ P_{ij} = \frac{1}{n}, i, j = \overline{1, n} \right\}. \tag{5.8}$$

Каждому состоянию цепи Маркова приписываем веса, которые вычисляются по формулам:

$$Q_{i_0} = g_{i_0} = \begin{cases} \frac{h_{i_0}}{\pi_{i_0}}, \pi_{i_0} > 0, \\ 0, \pi_{i_0} = 0 \end{cases}$$

$$\dots$$

$$Q_{i_k} = Q_{i_{k-1}} g_{i_{k-1}} = \begin{cases} \frac{a_{i_{k-1}i_k}}{p_{i_{k-1}i_k}}, p_{i_{k-1}i_k} > 0, \\ 0, p_{i_{k-1}i_k} = 0 \end{cases}$$

$$(5.9)$$

Алгоритм моделирования:

Моделировать СВ ξ_N будем по формуле:

$$\xi_N^{(l)} = \sum_{n=0}^N = Q_{i_n} f_{i_n} \tag{5.10}$$

где $l=\overline{1,L}$ - номер реализации цепи Маркова. Тогда приближённое решение вычисляется по формуле:

$$x_i \approx \frac{1}{L} \sum_{l=1}^{L} \xi_N^{(l)}, i = \overline{1, n}.$$
 (5.11)

5.3 Код программы

import math

```
2 import random
3
4 import matplotlib.pyplot as plt
5 import numpy as np
6
7 # ДлинацепиМаркова
8 min_chain_length = 100
9 max_chain_length = 1000
10 # Шаг
11 length_step = 100
12 # КоличествореализацийцепиМаркова
```

```
13 min_chain_count = 1000
14 max_chain_count = 10000
15 # ∐ar
16 \text{ count\_step} = 1000
18 # Исходнаяматрица
19 g_A_real = ((1.2, 0.1, -0.3), (-0.3, 0.9, -0.2), (0.4, 0.5, 1),)
20 # Преобразованнаяматрица
g_A = ((-0.2, -0.1, 0.3), (0.3, 0.1, 0.2), (-0.4, -0.5, 0),)
22 # Праваячастьсистемы
23 \text{ g_f} = (2, 3, 3)
26 def built_in_random():
       while True:
          yield random.random()
   generator = built_in_random()
34 def solve(A, f, chain_length, chain_count):
       # Размерностьсистемы
       n = len(f)
       # Решениесистемы
       X = [0.0] * n
       # Векторнач . вероятностейцепиМаркова
       pi = [1 / n] * n
       # Матрицапереходных состояний цепи Маркова
       P = [[1 / n] * n] * n
       # ВесасостоянийцепиМаркова
       Q = [0.0] * (chain_length + 1)
       # CB
       ksi = [0.0] * chain_count
       # БСВ
       alpha = 0
       for k in range(n):
          h = [0.0] * n
          h[k] = 1
          for j in range(chain_count):
              chain = [math.floor(next(generator) * 3) for _ in
                       range(chain_length + 1)]
              Q[0] = h[chain[0]] / pi[chain[0]]
              for i in range(1, chain_length + 1):
                  Q[i] = Q[i - 1] * A[chain[i - 1]][chain[i]] / P[chain[i - 1]][
                      chain[i]]
              ksi[j] = sum(q * f[state] for q, state in zip(Q, chain))
          X[k] = sum(ksi) / chain_count
```

17

24 25

27

28

29 30 31

32 33

35

36

37

38

39 40

41

42

43

44 45

46 47 48

49

50

51

52 53

54

55 56 57

58

59

60 61

62 63

64

65 66

67

```
68
       return X
69
70
71 X_{real} = np.linalg.solve(np.array(g_A_real), np.array(g_f))
72
73 R = np.array([[np.linalg.norm(np.array(solve(g_A, g_f, length, count)) - X_real)
74
                 for length in
75
                 range(min_chain_length, max_chain_length + 1, length_step)]
76
                for count in
77
                range(min_chain_count, max_chain_count + 1, count_step)])
78 x, y = np.meshgrid(range(min_chain_length, max_chain_length + 1, length_step),
79
                     range(min_chain_count, max_chain_count + 1, count_step), )
80 plt.figure()
81 plt.title('||R||')
82 p = plt.pcolormesh(x, y, R, shading='nearest')
83 plt.colorbar(p)
84 plt.show()
```

5.4 Результат выполнения

Рис. 13: График зависимости точности решения от длины цепи маркова - ось Ox и числа цепей Маркова - ось Oy.