

Common Linear Operations

- Correlation / Convolution
 - Correlation/convolution is the process of moving a filter mask over the image and computing the sum of products at each location.
 - We use Correlation to check similarity between two images
- difference between convolution and correlation is that the convolution process rotates the matrix by 180 degrees.

O / B P

01:56

Common Linear Operations

- Correlation / Convolution
 - Correlation/convolution is the process of moving a filter mask over the image and computing the sum of products at each location.
 - We use Correlation to check similarity between two images
- difference between convolution and correlation is that the convolution process rotates the matrix by 180 degrees.

单文量单

product

05:44

image 8 x 8

when mask and image value same : you get the highest value like above..

09:03

<u>10:18</u>

Convolution

 Same as correlation except that the mask is <u>flipped</u>, both horizontally and vertically.

For symmetric masks (i.e., h(i,j)=h(-i,-j)), convolution is equivalent to correlation!

Notation:

h * f = f * h

10:35

Convolution

 Same as correlation except that the mask is <u>flipped</u>, both horizontally and vertically.

	1	2	3
	4	5	6
	7	8	9

For symmetric masks (i.e., h(i,j)=h(-i,-j)), convolution is equivalent to correlation!

Notation:

h * f = f * h

11:04

<u>11:16</u>

