Geometric Algebra Pen Note

Kion Conio

August 20, 2021

Chapter 1

Vector algebra

1.1 The Algebra of vectors

1.1.1 Vectors and its Algebraic Operations

Vectors

Definition A quantity with both magnitude and direction is called a vector. e.g. Force, velocity, acceleration, displacement, etc.

Notation Directed line segment: \rightarrow . We could draw a graph to make our proof.

- A directed line segment has a Initial point and a Terminal point.
- \overrightarrow{AB} . An arrow upper the letters.
- $\vec{\alpha}$: bold and lower case Roman letter.
- Sometimes, \vec{a}, u
- Magnitude, size, length: $|\vec{\alpha}|, |\overrightarrow{AB}|$

Relevent Concepts Two vectors are equal if and only if their magnitude and direction are the same. No matter where they start.

The vector with zero magnitude is called the **zero vector**, denoted by $\vec{0}$. $\vec{0}$ is the only vector is the only vector with specific direction. We have:

$$\overrightarrow{AB} = \overrightarrow{0} \iff A = B$$

A vector with magnitude 1 is called **unit vector**.

A vector having the same length, but opposite direction of \vec{a} , is called the negative of \vec{a} , denoted by $-\vec{a}$. Its a whole notation, not an operation. Thus

$$\overrightarrow{AB} = -\overrightarrow{BA}$$

Operations

Addition of vectors The sum of two vectors \vec{a} and \vec{b} written as

$$\vec{a} + \vec{b} = \vec{c}$$

 \vec{c} is a vector.

Defined by **triangle method**, that is

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

Defined by **parallelogram method** ...

Proposition of Vectors For vectors \vec{a} , \vec{b} , and \vec{c} , the addition satisfies:

- $\vec{a} + \vec{b} = \vec{b} + \vec{a}$, commutative law,
- $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$, association law.
- $\vec{a} + \vec{0} = \vec{a}$
- $\bullet \ \vec{a} + (-\vec{a}) = \vec{0}$
- Vectors with addition is an abel group.

First two we draw a graph to prove it. Then we prove the rest ones.

- 3. Set $\vec{a} = \overrightarrow{AB}$ and $\vec{0} = \overrightarrow{BB}$. Then $\vec{a} + \vec{0} = \overrightarrow{AB} + \overrightarrow{BB} = \overrightarrow{AB} = \vec{a}$ 4. Set $\vec{a} = \overrightarrow{AB}$. Then $-\vec{a} = \overrightarrow{BA}$. Thus, $\vec{a} + (-\vec{a}) = \overrightarrow{AB} + \overrightarrow{BA} = \vec{0}$

Definition We can define the difference of two vectors \vec{a} and \vec{b} to be $\vec{a} - \vec{b} = \vec{a} + (-\vec{b})$

Triangular Inequality For any vectors \vec{a} and \vec{b} , we have

$$|\vec{a} + \vec{b}| \le |\vec{a}| + |\vec{b}|$$

1.1.2 Scalar multiplication

Definition The product of vector \vec{a} and a scalar λ , wirtten as $\lambda \vec{a}$, is a vector, defined by

$$|\lambda \vec{a}| = |\lambda| |\vec{a}|$$

Direction

- $\lambda > 0$, $\lambda \vec{a}$ has the same direction as \vec{a}
- $\lambda < 0$, $\lambda \vec{a}$ has the opposite direction as \vec{a}

Proposition

- $\lambda \vec{a} = \vec{0} \iff \lambda = 0 \quad or \quad \vec{a} = \vec{0}$
- $1 \ \vec{a} = \vec{a}, \quad (-1)\vec{a} = -\vec{a}$
- $\lambda \mu \vec{a}$) = $(\lambda \mu) \vec{a}$
- $(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a}$ distributive law
- $\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}$ distributive law

Proof

- •
- ...
- $\bullet \ |\lambda(\mu\vec{a})| = |\lambda||\mu\vec{a}|$
 - $= |\lambda| |\mu| |\vec{a}|$
 - $=(|\lambda||\mu|)|\vec{a}|$
 - $= |(\lambda \mu)\vec{a}|$

That is, $\lambda(\mu \vec{a})$ and $(\lambda \mu)\vec{a}$ has the same **length**.

Then we consider the **direction**.

Case 1.
$$\lambda \mu = 0$$
, $\vec{0} = (\lambda \mu)\vec{a} = \lambda(\mu \vec{a})$

Case 2. $\lambda \mu > 0$, Trivially, $\lambda(\mu \vec{a})$ has the same direction as \vec{a} ;

 $(\lambda \mu)\vec{a}$ has the same direction as \vec{a} ;

Case 3. $\lambda \mu < 0$, Trivially, $\lambda(\mu \vec{a})$ has the opposite direction of \vec{a} ; $(\lambda \mu) \vec{a}$ has the opposite direction of \vec{a} ;

Thus, we can see that $\lambda(\mu \vec{a})$ has the same direction as $(\lambda \mu)\vec{a}$. Hence,

$$(-\lambda)\vec{a} = (-1)\lambda\vec{a} = (-1)(\lambda\vec{a}) = -\lambda\vec{a}$$

If $\lambda = 0$ or $\mu = 0$ or $\vec{a} = \vec{0}$, it is easily to see that $(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a}$.

 $\text{consider } \lambda \neq 0 \quad or \quad \mu \neq 0 \quad or \quad \vec{a} \neq \vec{0}.$

 1° assume that $\lambda>0, \mu>0$ then,

$$\begin{aligned} |(\lambda + \mu)\vec{a}| &= |\lambda + \mu||\vec{a}| \\ &= (\lambda + \mu)|\vec{a}| \\ &= \lambda|\vec{a}| + \mu|\vec{a}| \\ &= |\lambda||\vec{a}| + |\mu||\vec{a}| \\ &= |\lambda\vec{a}| + |\mu\vec{a}| \quad (for \quad \vec{a} \parallel \vec{a}) \\ &= |\lambda\vec{a} + \mu\vec{a}| \end{aligned}$$

 2° If one of λ, μ is negative, we can put the terms containing the negative scalars to the other side of the equation.

For example:

$$\lambda > 0, \mu < 0, \lambda + \mu < 0$$

$$(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a} \iff -\mu \vec{a} = \lambda \vec{a} + [-(\lambda + \mu)\vec{a}]$$

$$\iff \lambda \vec{a} + (-(\lambda + \mu))\vec{a} = (-\mu)\vec{a}$$

(which back to the case of $\lambda>0, \mu>0, \lambda+\mu>0)$

• Case 1: $\lambda = 0$, or $\vec{a} = \vec{0}$, or $\vec{b} = \vec{0}$ Case 2: $\lambda \neq 0$, or $\vec{a} \neq \vec{0}$, or $\vec{b} \neq \vec{0}$ $\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b} \text{(Graph...(similarity of triangle))}$

1.1.3 Collinear and Coplanar Vectors

Definition When we move some vectors to the same initial point, if they are on the same line or plane, then we say these vectors are **collinear** or **coplanar**.

Trivially,

- $\vec{0}$ Is collinear with any vector.
- Collinear vectors must be coplanar.
- Any two vectors must be coplanar.

Collinear Vectors

Notation two vectors are collinear \iff their directions are the same or opposite. We write $\vec{a} \parallel \vec{b}$

Proposition For vectors \vec{a} and \vec{b} , if there exists a scalar λ s.t. $\vec{b} = \lambda \vec{a}$, then \vec{a}, \vec{b} are collinear.

Theorem (Existence): Assume that $\vec{a} \neq \vec{0}$. If \vec{a}, \vec{b} collinear, then there exists scalar λ s.t. $\vec{b} = \lambda \vec{a}$.

Proof If $\vec{b} = \vec{0}$, then $\lambda = 0$ Consider $\vec{b} \neq \vec{0}$, then

$$\vec{b} = |\vec{b}| \frac{\vec{b}}{|\vec{b}|} = \left\{ \begin{array}{l} \frac{\vec{b}}{|\vec{a}|}, & \vec{a} and \vec{b} have the same direction \\ \frac{-|\vec{b}|}{|\vec{a}|}, & \vec{a} and \vec{b} have the opposite direction \end{array} \right.$$

(Uniqueness): Assume that $\vec{b} = \lambda' \vec{a}$ Then

$$(\lambda - \lambda')\vec{a} = \vec{0}For \quad \vec{a} \neq \vec{0} \Rightarrow \quad \lambda = \lambda'$$

Three coplanar Vectors

Proposition For vectors $\vec{a}, \vec{b}, \vec{c}$ if there exists scalar λ, μ , such that $\vec{c} = \lambda \vec{a} + \mu \vec{b}$, then $\vec{a}, \vec{b}, \vec{c}$ are coplanar. (Graph...)

Proof If $\vec{a} = \vec{0}$, then $\vec{c} = \lambda \vec{b}$, so vectors $\vec{b} \parallel \vec{c}$, then $\vec{a}, \vec{b}, \vec{c}$ are Coplanar;

If $\vec{a} \neq \vec{0}$, then consider two cases:

Case 1: $\vec{a} \parallel \vec{b}$. Thus, there exist k s.t. $\vec{b} = k\vec{a}$.

Hence, $\vec{c} = \lambda \vec{a} + \mu \vec{b} = \lambda \vec{a} + \mu k \vec{a} = (\lambda + \mu k) \vec{a}$.

Therefore, $\vec{c} \parallel \vec{a}$.

Case 2: $\vec{a} \parallel \vec{b}$, then \vec{c} is the diagrod of the parallelogram formed by $\lambda \vec{a}, \mu \vec{b}$

Theorem Assume that \vec{a}, \vec{b} are **not collinear**, then for any vector \vec{c} on the plane determined by \vec{a} and \vec{b} , there exist **unique** scalars λ, μ s.t.

$$\vec{c} = \lambda \vec{a} + \mu \vec{b}$$

Proof 1°We first prove the existence of λ, μ .

(Graph...)

We can wrote $\vec{c} = \vec{c_1} + \vec{c_2}, \vec{c_1} \parallel \vec{a}, \vec{c_2} \parallel \vec{b},$

Since $\vec{a}, \vec{b} \neq \vec{0}$,

 $\exists \lambda, \mu, \quad \vec{c}_1 = \lambda \vec{a}, \vec{c}_2 = \mu \vec{b}$ Then, $\vec{c} = \lambda \vec{a} + \mu \vec{b}$

2°Suppose that $\vec{c} = \lambda' \vec{a} + \mu' \vec{b}$

We see that $(\lambda - \lambda')\vec{a} + (\mu - \mu')\vec{b} = \vec{0}$

If $\lambda \neq \lambda'$, then

$$\vec{a} = -\frac{\mu - \mu'}{\lambda - \lambda'} \vec{b}$$

then $\vec{a} \parallel \vec{b}$, which is a contradiction.

thus, $\lambda = \lambda'$, we have $(\mu - \mu')\vec{b} = \vec{0}$

Since $\vec{b} \neq \vec{0}, \mu = \mu'$

Three Non-coplanar Vectors

Theorem If $\vec{a}, \vec{b}, \vec{c}$ are not coplaner, then or any vector \vec{u} , there exist unique scalars $\lambda, \mu, \nu, \text{s.t.}$

$$\vec{u} = \lambda \vec{a} + \mu \vec{b} + \nu \vec{c}$$

Proof 1°Existence of λ, μ, ν

(Graph...)

2°Assume that

$$\vec{u} = (\lambda - \lambda^*)\vec{a} + (\mu - \mu^*)\vec{b} + (\nu - \nu^*)\vec{c}$$

Suppose $\lambda \neq \lambda^*$, then

$$\vec{a} = -\frac{\mu - \mu^*}{\lambda - \lambda^*} \vec{b} - \frac{\nu - \nu^*}{\lambda - \lambda^*} \vec{c}$$

Showing that $\vec{a}, \vec{b}\vec{c}$ are coplaner. This is a contradiction.

Hence, $\lambda = \lambda^*$, We have

$$(\mu - \mu^*)\vec{b} + (\nu - \nu^*)\vec{c} = \vec{0}$$

Using the similar argument in the proof of the last theorem, we know that $\mu = \mu^*, \nu = \nu^*$ $(\vec{b} \parallel \vec{c})$

Three Points on the same line

Point C is on the line segment AB if and only if there exist scalar $\lambda, \mu \geq 0$ $(\lambda + \mu = 1)$ s.t.

 $\overrightarrow{OC} = \lambda \overrightarrow{OA} + \mu \overrightarrow{OB}$

for any point O.

Proof Point C is on $AB \iff \overrightarrow{AC} \parallel \overrightarrow{AB}$.

$$\iff |\overrightarrow{AC}| \le |\overrightarrow{AB}|$$

$$\iff \exists \mu \in [0,1] \quad s.t. \quad \overrightarrow{AC} = \mu \overrightarrow{AB}$$

$$\iff \overrightarrow{OC} - \overrightarrow{OA} = \mu(\overrightarrow{OB} - \overrightarrow{OA})$$

$$\iff \overrightarrow{OC} = (1-\mu)\overrightarrow{OA} + \mu \overrightarrow{OB}$$

$$\iff \overrightarrow{OC} = \lambda \overrightarrow{OA} + \mu \overrightarrow{OB}, \quad (\lambda + \mu = 1)$$

1.1.4 Affine Coordinate System

Coordinate System

By a theorem of **1-2**, if $\vec{e}_1, \vec{e}_2, \vec{e}_3$ are not coplanar, then for any vector \vec{a} , there exist unique scalar a_1, a_2, a_3 s.t.

$$\vec{a} = a_1 \vec{e}_1 + a_2 \vec{e}_2 + a_3 \vec{e}_3$$

The ordered tripe (a_1, a_2, a_3) is called the coordinate of \vec{a} .

It can be show that the mapping $\vec{a} \mapsto (a_1, a_2, a_3)$ is a one-to-one correspondence.

We simply write $\vec{a} = (a_1, a_2, a_3)$ Obviously, $\vec{e_1} = (1, 0, 0)$, $\vec{e_2} = (0, 1, 0)$, $\vec{e_3} = (0, 0, 1)$ Origin + Basis = Coordinate System

$$[O, \vec{e}_1, \vec{e}_2, \vec{e}_3]$$

If $\vec{e}_1 \perp \vec{e}_2$, $\vec{e}_2 \perp \vec{e}_3$, $\vec{e}_1 \perp \vec{e}_3$ and \vec{e}_1 , \vec{e}_2 , \vec{e}_3 are unit vectors, then $[O, \vec{e}_1, \vec{e}_2, \vec{e}_3]$ is called the Cartesian coordinate system.

Algebraic Operations Using Coordinate

Theorem In an affine coordinate system $[O, \vec{e}_1, \vec{e}_2, \vec{e}_3]$, assume that $\vec{a} = (a_1, a_2, a_3)$ and $\vec{b} = (b_1, b_2, b_3)$, then,

$$\vec{a} + \vec{b} = (a_1 + b_1, a_2 + b_2, a_3 + b_3)$$

Proof

$$\vec{a} + \vec{b}$$

$$= (a_1\vec{e}_1 + a_2\vec{e}_2 + a_3\vec{e}_3) + (b_1\vec{e}_1 + b_e\vec{b}_2 + b_3\vec{e}_3)$$

$$= (a_1 + b_1)\vec{e}_1 + (a_2 + b_2)\vec{e}_2 + (a_3 + b_3)\vec{e}_3$$

$$k\vec{a} = (ka_1, ka_2, ka_3)$$

Proof

$$k\vec{a} = k(a_1\vec{e}_1 + a_2\vec{e}_2 + a_3\vec{e}_3) = ka_1\vec{e}_1 + ka_2\vec{e}_2 + ka_3\vec{e}_3$$
 Corollary Coordinary of $\overrightarrow{AB} = \text{Coordinate of } B$ - Coordinate A
$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

now let's assume that we have three vectors $\vec{a}, \vec{b}, \vec{c},$

Scalar Products of Vectors

Definition The scalar product (or inner product, or dot product) of two vectors \vec{a} and \vec{b} is a scalar, denoted by $\vec{a} \cdot \vec{b}$, and is defined by

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos < \vec{a}, \vec{b} >$$

where $<\vec{a},\vec{b}>\in[0,\pi]$

1.1. THE ALGEBRA OF VECTORS

11

Proposition

•
$$\vec{a} \cdot \vec{a} = |\vec{a}|^2 \ge 0 \Rightarrow |\vec{a}| = \sqrt{\vec{a} \cdot \vec{a}}$$

- $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$ (commutative)
- $\vec{a} \cdot \vec{b} = 0 \iff \vec{a} \perp \vec{b}$ ($\vec{0}$ is perpendicular to any vectors)
- Cauchy-Schwarz inequality $|\vec{a} \cdot \vec{b}| \leq |\vec{a}| |\vec{b}|$, the equation holds if and only if \vec{a} is collinear with \vec{b} .

Theorem

$$\bullet \ (\lambda \vec{a}) \cdot \vec{b} = \lambda (\vec{a} \cdot \vec{b}) = \vec{a} \cdot (\lambda \vec{b})$$

•
$$\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$$

Example Law of Cosine

In triangle ABC

$$\vec{c} \cdot \vec{c} = (\vec{a} + \vec{b})^2 = |\vec{a}|^2 + |\vec{b}|^2 + \vec{a} \cdot \vec{b} = |\vec{a}|^2 + |\vec{b}|^2 - 2|\vec{a}||\vec{b}|\cos C$$

Example Three height of $\triangle ABC$ concurrent. Claim that $\overrightarrow{CO} \perp \overrightarrow{AB}$.

$$\overrightarrow{CO} \cdot \overrightarrow{AB} = \dots = 0$$

Calculate $\vec{a} \cdot \vec{b}$ Using Coorinates In an affine coordinate system $[O, \vec{e}_1, \vec{e}_2, \vec{e}_3]$. Assume that $\vec{a} = (a_1, a_2, a_3), \vec{b} = (b_1, b_2, b_3)$, Then

$$\vec{a} \cdot \vec{b} = \sum a_i \vec{e_i} \cdot \sum b_i \vec{e_i} = \dots$$

In particular, in the Cartesian coordinate system,

$$\vec{a} \cdot \vec{b} = \sum a_i b_i$$

Moreover,

$$|\vec{a}| = \sqrt{\sum a_i^2}$$

$$\cos \langle \vec{a}, \vec{b} \rangle = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \frac{\sum a_i b_i}{\sqrt{\sum a_i^2} \sqrt{\sum b_i^2}}$$

Example In a regular tentrahedron ABCD, E is the midpoint of AB and F is the midpoint of CD. Every length equals to a. Find $|\overrightarrow{EF}|$.

Construct an affine c.s. $[A, \overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}]$. Write

$$\vec{e}_1 = \overrightarrow{AB}, \vec{e}_2 = \overrightarrow{AC}, \vec{e}_3 = \overrightarrow{AD}$$

$$\overrightarrow{AF} = \frac{1}{2}(\vec{e}_2 + \vec{e}_3) = (0, \frac{1}{2}, \frac{1}{2})$$

$$\overrightarrow{AE} = \dots$$

Since $\vec{e}_i^2 = a^2, \vec{e}_i \cdot \vec{e}_j = \frac{1}{2}a^2$

$$\overrightarrow{EF}^2 = (-\frac{1}{2}, \frac{1}{2}, \frac{1}{2})^2 = \frac{a^2}{2}$$

Thus $|\overrightarrow{EF}| = \frac{\sqrt{2}}{2}a$

Vector Product of Vectors

Definition The vector product (or cross product) of two vectors \vec{a} and \vec{b} is a vector, denoted by $\vec{a} \times \vec{b}$, and is defined by

 $magnitude: |\vec{a}\times\vec{b}| = |\vec{a}||\vec{b}|\sin < \vec{a}, \vec{b}> \quad direction: Righthandrule$

Note: $|\vec{a} \times \vec{b}| = \text{area of parallelogram formed by } \vec{a}, \vec{b}$

Proposition

- \bullet $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$
- $\vec{a} \times \vec{b} = \vec{0} \iff \vec{a} \parallel \vec{b}$
- $(\lambda \vec{a}) \times \vec{b} = \lambda (\vec{a} \times \vec{b}) = \vec{a} \times (\lambda \vec{b})$
- $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$

Introdection to Determinant

$$\left| \begin{array}{cc} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{array} \right| = a_{1,1}a_{2,2} - a_{1,2}a_{2,1}$$

$$\begin{vmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{vmatrix} = a_{1,1}a_{2,2}a_{3,3} + a_{1,2}a_{2,3}a_{3,1} + a_{1,3}a_{2,1}a_{3,2} - a_{1,3}a_{2,2}a_{3,1} - a_{1,1}a_{2,3}a_{3,2} - a_{1,2}a_{2,1}a_{3,3}$$

...(missed a class)...

1.2 Planes and straight Lines

1.2.1 Equation and its Graphs

Example In the Cartesian c.s.

- Sphere centered at (a, b, c) with radius r: $(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$.
- Unit circle centered at the origin on the xy plane: $x^2 + y^2 = 1, z = 0$.

Graph - Point/coordinate - equation In general,

- Surface F(x, y, z) = 0.
- Curve $\begin{cases} F(x, y, z) = 0 \\ G(x, y, z) = 0 \end{cases}$
- Parametric equation $\begin{cases} x = f(t) \\ y = g(t) \\ z = h(t) \end{cases}$ circle on the xy plane center at the origin $\begin{cases} x = a\cos\theta \\ y = a\sin\theta \\ z = 0 \end{cases}$

Helix
$$\begin{cases} x = a \cos \theta \\ y = a \sin \theta \\ z = \theta \end{cases}$$

1.2.2 Planes in an Affine Coordinate System

Equation of a Plane

In an affine coordinate system, assume that plane π passes through point $M_0(x_0, y_0, z_0)$, and is paralleled to two vectors $\vec{u}_1 = (X_1, Y_1, Z_1)$ and $\vec{u}_2 = (X_2, Y_2, Z_2)$. Point M(x, y, z) is on the plane π .

$$\iff \overrightarrow{M_0M}, \vec{a}, \vec{b} \quad are coplanar$$

$$\iff \begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ X_1 & Y_1 & Z_1 \\ X_2 & Y_2 & Z_2 \end{vmatrix} = 0$$

$$\Rightarrow Ax + By + Cz + D = 0$$

where

$$A = \left| \begin{array}{cc} Y_1 & Z_1 \\ Y_2 & Z_2 \end{array} \right|, B = \left| \begin{array}{cc} Z_1 & X_1 \\ Z_2 & X_2 \end{array} \right|, \quad C = \left| \begin{array}{cc} X_1 & Y_1 \\ X_2 & Y_2 \end{array} \right| D = - \left| \begin{array}{cc} x_0 & y_0 & z_0 \\ X_1 & Y_1 & Z_1 \\ X_2 & Y_2 & Z_2 \end{array} \right|$$

Conclusion Now We have shown that every plane in an affine coordinate system has the equation in the form of

$$Ax + By + Cz + D = 0.$$

Since $\vec{a} \times \vec{b} \neq \vec{0}$, A, B, C are not all 0s.

On the other hand, consider kx + my + nz + p = 0,

$$\Rightarrow \begin{vmatrix} x + \frac{p}{k} & y & z \\ -m & k & 0 \\ -\frac{n}{k} & 0 & 1 \end{vmatrix} = 0$$

showing that the point on this surface that passes through point $(-\frac{p}{k}, 0, 0)$ and is parallel to vectors (-m, k, 0) and (-n, 0, k). This surface is a plane.

Example In an affine c.s., plane π passes $M_1(a, 0, 0), M_2(0, b, 0), M_3(0, 0, c)(a, b, c \neq 0),$

Solution

$$\begin{vmatrix} x - a & y & z \\ -a & b & 0 \\ -a & 0 & c \end{vmatrix} = 0$$
$$\Rightarrow \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

Alternatively, assume the equation of π is Ax + By + Cz + D = 0,

$$A = -\frac{D}{a}, \quad B = -\frac{D}{b}, \quad C = -\frac{D}{c}$$

$$\Rightarrow \frac{Dx}{a} + \frac{Dy}{b} + \frac{Dz}{c} = D$$

If $D=0, \pi$ passes through the origin. Thus $D\neq 0$

$$\Rightarrow \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

Theorem In an afifne coordinate system, vector (a, b, c) is parallel to plane $\pi: Ax + By + Cz + D = 0$ if and only if

$$Aa + Bb + Cc = 0$$

Proof Pick a point $M_0(x_0, y_0, z_0)$ on the plane π ,

$$Ax_0 + By_0 + Cz_0 + D = 0$$

Pick $M(x_0 + k, y_0 + m, z_0 + n)$ and a vector $\vec{r} = \overline{M_0 M}$, then $r \parallel \pi \iff M \in \pi$, which is

$$A(x_0 + k) + B(y_0 + m) + C(z_0 + n) + D = 0$$

Thus Aa + Bb + Cc = 0.

Consequently

- $\pi \parallel x$ $axis \iff A = 0$
- $\pi \parallel y$ axis $\iff B = 0$
- $\pi \parallel z$ $axis \iff C = 0$
- $\pi \parallel xy \quad plane \iff A = 0, B = 0$

Theorem In an affine c.s., plane

$$\pi_1: A_1x + B_1y + C_1z + D_1 = 0$$

$$\pi_2: A_2x + B_2y + C_2z + D_2 = 0$$

- $\pi_1 \parallel \pi_2 \iff A_1 : A_2 = B_1 : B_2 = C_1 : C_2;$
- $\pi_1 = \pi_2 \iff A_1 : A_2 = B_1 : B_2 = C_1 : C_2 = D_1 : D_2$
- π_1 intersect $\pi_2 \iff (A_1, B_1, C_1)$ is not proportional to A_2, B_2, C_2 .

Proof Set

$$\vec{u}_1 = (-B_1, A_1, 0)$$

$$\vec{v}_1 = (-C_1, 0, A_1)$$

which are all parallel to π_1 ,

Without loss of genrealarity, assume $A_1 \neq 0 \quad (A_2 \neq 0)$

If
$$(A_1, B_1, C_1) = k(A_2, B_2, C_2)$$
, Then
$$(-B_1)A_2 + A_1B_2 + 0 \cdot C_2 = 0 \Rightarrow \vec{u}_1 \parallel \pi_2$$

$$(-C_1)A_2 + 0 \cdot B_2 + A_1C_2 = 0 \Rightarrow \vec{v}_1 \parallel \pi_2$$

$$\vec{u}_1 \parallel \vec{v}_1 \Rightarrow \pi_1 \parallel \pi_2$$

Relation of three Planes

Theorem In an affine c.s. let

$$\pi_1: A_1x + B_1y + C_1z + D_1 = 0$$

$$\pi_2: A_2x + B_2y + C_2z + D_2 = 0$$

$$\pi_3: A_3x + B_3y + C_3z + D_3 = 0$$

 π_1, π_2, π_3 are concurrent at one point if and only if

$$\begin{vmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_2 & B_3 & C_3 \end{vmatrix} \neq 0$$

Proof π_1, π_2, π_3 concurrent at one point if and only if

$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \\ A_3x + B_3y + C_3z + D_3 = 0 \end{cases}$$

1.3 Straight lines in an Affine Coordinate System

1.3.1 Equation of lines

Assume that line l passes through point $M_0(x_0, y_0, z_0)$ and parallel to the vector $\vec{u} = (a, b, c)$. Point M(X, Y, Z) is on line l,

$$\iff \overrightarrow{MM_0} \parallel \overrightarrow{u}$$

$$\iff \overrightarrow{MM_0} = \lambda \overrightarrow{u}$$

So we got the Parametric equation of the line (A point and a direction)

$$\begin{cases} x = x_0 + \lambda X \\ y = y_0 + \lambda Y \\ z = z_0 + \lambda Z \end{cases}$$

if $a, b, c \neq 0$

$$\frac{x - x_0}{X} = \frac{y - y_0}{Y} = \frac{z - z_0}{Z}$$

Aline can also be determined by two non-parallel planes. ... q

$$\left\{ \begin{array}{l} A \ Plane \\ Another \ Plane \end{array} \right.$$

1.3.2 Relationship between a Plane and a Line

$$l: \frac{x - x_0}{X} = \frac{y - y_0}{Y} = \frac{z - z_0}{Z}$$
$$\pi: Ax + By + Cz + D = 0$$

...

1.4 Relationship between two lines

$$l_1 \parallel l_2 \Longleftrightarrow u_1 \parallel u_2$$

$$l_1, l_2 \quad coplanar \Longleftrightarrow \left(\overrightarrow{M_1M_2}, u_1, u_2\right) = 0,$$

$$l_1, l_2are \ the \ same \ line \Longleftrightarrow \overrightarrow{M_1M_2}, u_1, u_2are \ collinear.$$

kk//

1.4.1 Sheef of Planes

Assume that line l is given by

$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$$

Since $\pi_1 \neq \pi_2$, we know (A_1, B_1, C_1) is not proportional to (A_2, B_2, C_2) . Thus, for any λ, μ , there are not both 0s

$$\lambda A_1 + \mu A_2$$
, $\lambda B_1 + \mu B_2$, $\lambda C_1 + \mu C_2$

Hence, the equation

$$\lambda (A_1x + B_1y + C_1z + D_1) + \mu (A_2x + B_2y + C_2z + D_2) = 0$$

... which is a plane.

Definiton $\{S = planes \ in \ the \ form \ of \ \lambda \left(A_1x + B_1y + C_1z + D_1\right) + \mu \left(A_2x + B_2y + C_2z + D_1\right), \mu \in \{A_2x + B_2y + C_2z + D_1\}, \mu \in \{A_2x + B_2y + C_2z + D_2\}, \mu \in \{A_2x + B_2x + D_2x + D_$

Definition $T = \{ planes that passes through l \}.$ We will prove S = T

Proof 1. Claim S ...

1.4.2 An Example

..

1.5 Planes and Lines in the Cartesian Coordinate system