Statistical Modeling II

Lecture 12

Motivation

Tidymodels

0

Multiple Linear Regression Models

 To model a numerical response or outcome variable using more than one explanatory variable

Multiple Linear Regression Models

- $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n$
- response ~ explanatory variables
- $response \sim variable_1 + variable_2 + \dots + variable_n$

Babies dataset in R

- The Child Health and Development Studies (USA) investigated the pregnancy in women in San Francisco, 1960-1967. Studied the relationship between mothers who smoked and weight of their babies.
- "babies" dataset available in "openintro" package in R
- 1,236 observations (rows) x 8 variables (columns)

variable	description
case	id number
bwt	birthweight, ounces
gestation	length of gestation, days
parity	binary indicator for a first pregnancy (0=first pregnancy)
age	mother's age, years
height	mother's height, inches
weight	mother's weight, pounds
smoke	binary indicator whether the mother smoked, 1=smoker

Using base R

```
babies %>%

Im(formula = bwt ~ smoke + gestation + parity +
age + height + weight)
```

- Using tidymodels
 - Step 1: Specify the model
 - Step 2: Run the model
 - Step 3: Analyze the results

- Using tidymodels
 - Step 1: Specify the model
 - linear_reg() function is equivalent to lm()
 - set_engine() function is used to specify which package or system will be used to fit the model (e.g. linear regression, random forest, etc.)

- Using tidymodels
 - Step 2: Run the model using fit() function

```
# Model formula
formula <- bwt ~ smoke + gestation + parity + age + height
+ weight
# Run the model
Im fit <- Im model %>%
          fit(formula, data = babies)
```

- Using tidymodels
 - Step 3: Access the results using the pluck() and summary()

Coefficients:

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 15.83 on 1167 degrees of freedom (62 observations deleted due to missingness)

Multiple R-squared: 0.258, Adjusted R-squared: 0.2541 F-statistic: 67.61 on 6 and 1167 DF, p-value: < 2.2e-16

How to interpret these results?

Coefficients:

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 15.83 on 1167 degrees of freedom (62 observations deleted due to missingness)

Multiple R-squared: 0.258, Adjusted R-squared: 0.2541

F-statistic: 67.61 on 6 and 1167 DF, p-value: < 2.2e-16

 β_{smoke} : "The birth weight of newborns for mothers who were smokers is associated with an 8.4 oz decrease on average in weight than nonsmokers, after adjusting for other variables."

Coefficients:

```
Estimate
                    Std. Error t value Pr(>|t|)
         -80.41085 14.34657 -5.605 2.60e-08 ***
(Intercept)
                    0.95382 -8.807 < 2e-16 ***
smoke -8.40073
                     0.02910 15.258 < 2e-16 ***
gestation 0.44398
                     1.12895 -2.947 0.00327 **
parity -3.32720
age -0.00895
                     0.08582 -0.104 0.91696
height 1.15402 0.20502 5.629 2.27e-08 ***
weight
      0.05017
                     0.02524 1.987 0.04711 *
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 15.83 on 1167 degrees of freedom (62 observations deleted due to missingness)

Multiple R-squared: 0.258, Adjusted R-squared: 0.2541 F-statistic: 67.61 on 6 and 1167 DF, p-value: < 2.2e-16

 $\beta_{gestation}$: "For each additional day of pregnancy is associated with a 0.44 oz increase on average in birth weight of newborns, holding all other variables constant."

Adjusted R² as estimate of explained variance

Coefficients:

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 15.83 on 1167 degrees of freedom (62 observations deleted due to missingness)

Multiple R-squared: 0.258, Adjusted R-squared: 0.2541 F-statistic: 67.61 on 6 and 1167 DF, p-value: < 2.2e-16

"About 25.4% of the variance in baby weight is explained by the data."

Calculating the 95% confidence interval

 Confidence intervals for coefficients in multiple regression can be computed as:

95% confidence interval =
$$b \pm t_{df}^*SE$$

- where b is coefficient; t_{df} is the t-value corresponding to the confidence level and model degrees of freedom (df); and SE is the standard error
- for example: 95% CI for smoke

$$95\%CI = -8.40073 \pm (-8.807)(0.95382) = [-16.8, 0.0]$$

"We are 95% confident that birth weight of babies from mothers who smoked on average are 16.8 oz. lighter to 0 oz. heavier than nonsmokers when controlling for other variables."

Model selection

- The best model is not always the most complicated.
- Sometimes including variables that are not evidently important can actually reduce the accuracy of predictions.
- In practice, the model that includes all available explanatory variables is often referred to as the **full model**.
- Adjusted R² describes the strength of a model fit.
- Useful tool for evaluating which predictors are adding value to the model.

Backward elimination

- 1. Start with a full model
- 2. Drop one variable at a time and a record adjusted R² of each smaller model
- 3. Pick the model with the highest increase in adjusted R²
- 4. Repeat until none of the models yield an increase in adjusted R²

Forward selection

- 1. Start with regressions of response vs. each explanatory variable
- 2. Pick the model with the highest adjusted R² value
- 3. Add variables to the existing model one at a time, and pick the model with the highest adjusted R² value
- 4. Repeat until the addition of any remaining variables does not result in a higher adjusted R² value

P-value approach

Backward elimination with the p-value approach:

- 1. Start with the full model
- 2. Drop the variable with the highest p-value and refit a smaller model
- 3. Repeat until all variables left in the model are significant

Forward selection with the p-value approach:

- 1. Start with regressions of response vs. each explanatory variable
- 2. Pick the variable with the lowest significant p-value
- 3. Add the remaining variables one at a time to the existing model, and pick the variable with the lowest significant p-value
- Repeat until any of the remaining variables does not have a significant p-value

step() function

- The step function in R does a similar backward elimination process, however it uses a different metric called AIC (Akaike Information Criterion) instead of adjusted R² to do the model selection.
- Lowest AIC value is the best-fit model

```
Im1 <- Im(bwt ~ smoke + gestation + parity + age +
height + weight, data = babies)
slm1 <- stats::step(Im1, direction = "backward")
```

step() function

Start: AIC=6491.82

bwt ~ smoke + gestation + parity + age + height + weight

	Df S	Sum of Sq	RSS	AIC
- age	1	3	292412	6489.8
<none></none>			292409	6491.8
- weight	1	990	293399	6493.8
- parity	1	2176	294586	6498.5
- height	1	7939	300348	6521.3
- smoke	1	19437	311846	6565.4
 gestation 	1	58334	350744	6703.4

Step: AIC=6489.83

bwt ~ smoke + gestation + parity + height + weight

	Df S	Sum of Sq	RSS	AIC
<none></none>			292412	6489.8
- weight	1	992	293404	6491.8
- parity	1	2396	294808	6497.4
- height	1	7968	300380	6519.4
- smoke	1	19497	311909	6563.6
- gestation	1	58421	350833	6701.7

step() function

summary(slm1)

```
Call:
```

```
Im(formula = bwt ~ smoke + gestation + parity + height + weight, data = babies)
```

Residuals:

Min 1Q Median 3Q Max -57.716 -10.150 -0.159 9.689 51.620

Coefficients:

Е	Stimate	Std. Error	t value Pr(> t)
(Intercept)	-80.71321	14.04465 -	-5.747 1.16e-08 ***
smoke	-8.39390	0.95117	-8.825 < 2e-16 ***
gestation	0.44408	0.02907	15.276 < 2e-16 ***
parity	-3.28762		-3.093 0.00203 **
height	1.15497	0.20473	5.641 2.11e-08 ***
weight	0.04983	0.02503	1.991 0.04672 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 15.82 on 1168 degrees of freedom Multiple R-squared: 0.2579, Adjusted R-squared: 0.2548 F-statistic: 81.2 on 5 and 1168 DF, p-value: < 2.2e-16

On modeling

"All models are wrong, but some are useful."

- George Box

 No model is perfect, but even imperfect models can be useful, as long as it is clear and report the model's shortcomings.

https://en.wikipedia.org/wiki/George_E._P._Box

Takeaway message

- Use multiple regression analysis to assess the relationship between a response or outcome variable and several explanatory variables simultaneously
- "All models are wrong, but some are pure garbage"