DECODING TECHNIQUES SUBTITLE

PRE-TRAINING

- Process of learning linguistic patterns & world knowledge from massive text datasets
- Trains models to predict text sequences, building foundational language understanding

LLMS

- Output model from Pre-training severe billion parameters
- Develop emergent capabilities through scale:
- Contextual word representations
- Cross-domain knowledge retention
- Pattern recognition across languages

ADVANTAGES OF LLMS

- State-of-the-art performance on NLP benchmarks:
 - Text generation (most transformative)
 - Semantic understanding
 - Few-shot learning
 - Particularly effective for generative tasks
 - Summarization
 - Machine Translation
 - Question Answering
 - Chatbot Interactions

DECODING TECHNIQUES

- Selecting next token from probability distribution
- + Key components:
 - Context window (prior generated text)
 - Vocabulary probability scores
 - Decoding strategy algorithm
- Repeatedly choosing the next word conditioned on the previous choices - autoregressive/causal generation

RANDOM SAMPLING

- Generates sensible, high-probability words but also includes odd, low-probability words, resulting in weird sentences
- Will it effectively generate sentences with adequate and fluent structure?
- We look for quality and diversity in the generated text
- We want techniques that emphasize the most probable words

GREEDY APPROACH

- Model is computed using conditional probabilities. We want to generate a sentence $w_1, w_2, w_3, \dots, w_n$ using
- ◆ The approach makes a locally optimal choices - Highest probability token is chosen
- Generate words that are likely in the context and less likely to generate equivalent words that are unlikely

- Generates sentences that are
 - More accurate
 - More coherent
 - More factual
 - Boring and more repetitive
- ♦ What happens if we choose the next word from the the middle of the distribution
 - → May be more creative and diverse
 - Less factual and incoherent and no adequate

TEMPERATURE

- LLM Temperature Impact: Significantly affects text coherence
 - Controls token selection randomness
- Quality of decoding: Impacts the quality of the output generated by the

$$P(w_t) = \frac{\exp(z_i/T)}{\sum \exp(z_j/T)}$$

 \star $z = \mathbf{h} \cdot W_{\text{Vocab}} + \mathbf{b}$, represents raw logit score before applying any activation function

BEAM SEARCH I

- Selects a few candidate hypothesis from |V|. It reduces memory requirement by using only a M<|V| candidates using a score.
 - lack Maintain M candidates/hypothesis at each time step

$$+ C_t = (x_1^1, \dots x_t^1) \dots (x_1^M \dots x_t^M)$$

lacktriangle Compute C_{t+1} by expanding C_t and keeping the best Mcandidates

$$\stackrel{\leftarrow}{\leftarrow} \tilde{C} = \bigcup_{i=1}^{M} C_{t-1}^{i}$$

Typical Beam width = 5-10

BEAM SEARCH II

BEAM EXAMPLE (M = 2)

TOP-K SAMPLING

- → Truncate the distribution to the top-k most likely words.
- Renormalized to produce a probability distribution
- ◆ A word is randomly sampled from within the top-k words according to their renormalized probabilities
- When k = 1, top-k sampling is identical to greedy decoding
- Setting k to a larger number
 - More diverse but still high-quality text
 - Impact on fluency Low risk
- Selecting to the middle-probability words
 - More creative and more diverse
 - Impact on fluency High risk

Use case	Top-k	Rationale
Technical writing	5-10	High-confidence tokens
Creative writing	20-50	Controlled generation for
		creativity
Conversational Al	10-30	Safety and engagement

N. N. Minh, A. Baker, C. Neo, A. G. Roush, A. Kirsch, and R. Shwartz-Ziv. Turning up the heat:Min-p sampling for creative and coherent LLM outputs. In The Thirteenth International Conference on Learning Representations, 2025.

TOP-P SAMPLING

- ◆ Keeps the top-p percent of the probability mass
 - Tokens selected = $\underset{k}{\operatorname{arg min}} \sum_{i=1}^{K} P(w_i) \le p$
 - lack Selects the smallest set of tokens whose cumulative probability exceeds threshold p
 - Removes very unlikely words
- Measures probability rather than the number of words
- Balances creativity and coherence by dynamically adjusting the candidate pool
- Rescales probability of the selected tokens so that

$$\sum_{i} p_i = 1$$

ChatGpt uses top-p sampling

Figure 3: Example generations continuing an initial sentence. Maximization and top-k truncation methods lead to copious repetition (highlighted in blue), while sampling with and without temperature tends to lead to incoherence (highlighted in red). Nucleus Sampling largely avoids both issues.

MIN-P SAMPLING

- Adjusts cutoff threshold based on model confidence in real-time
 - \rightarrow Threshold_t = max($P(x_t | x_{1:t-1})$) × min_p Where:
 - \rightarrow max $(P(x_t|x_{1:t-1}))$ = highest token probability at step
 - $\rightarrow min_p$ = user-defined ratio (e.g., 0.05-0.2)

- At each generation step:
 - lack Compute token probabilities $P(x_t | x_{1:t-1})$ over vocabulary V
 - lack Identify top probability p_{max}
 - Calculate adaptive threshold:
 - + Threshold = $p_{\text{max}} \times \text{min_p3}$. Retain tokens where $p_i \ge \text{Threshold}$
 - Sample from filtered distribution

TEMPERATURE BASED SAMPLING

- → T=0.2: [Top token dominates | Top token do
- →T=1.0: [************** □□□□□□□ Balanced **exploration**
- Use Temperature When:
 - Creativity response is required (e.g., brainstorming, storytelling)
 - Balancing exploration/exploitation (e.g., chatbots)
- Avoid Temperature When:
 - Maximum determinism is required (e.g., legal contracts)
 - Using pure greedy/beam search

Decoding approach	Temperature used
Greedy	No
Beam search	No
Temperature Sampling	Yes
Top-K	Yes
Top-P	Yes
Min-P	Yes