Calcolatori Elettronici (12AGA) Esame del 21.6.2016

Traccia per la correzione

Domanda #10

 Si progetti un circuito combinatorio minimo avente 4 ingressi a, b, c e d e un'uscita u che va a 1 se e solo se a=c oppure b=d.

Tavola della verità

abcd	u	abcd	u
0000	1	1000	1
0001	1	1001	0
0010	1	1010	1
0011	0	1011	1
0100	1	1100	0
0101	1	1101	1
0110	0	1110	1
0111	1	1111	1

Mappa di Karnaugh

Mappa di Karnaugh

Mappa di Karnaugh

$$u = \overline{a} \cdot \overline{b} + b \cdot d + a \cdot c + \overline{b} \cdot \overline{d}$$

Circuito finale

Domanda #8

Unità Controllo di Controllo Microprogrammata

Vantaggi:

- Progettazione più semplice nel caso di CPU complessa (ad es. con molte istruzioni, molti modi di indirizzamento, istruzioni complesse, ecc.)
- Flessibilità (modifiche progettuali sono eseguibili in modo semplice)

Svantaggi:

- Maggiore area occupata
- Più lenta.

Domanda #9 A

Segnali di controllo

- STB (Strobe Input): un valore basso carica il dato nell'input latch
- IBF (*Input Buffer Full*): un valore alto indica che il dato è stato caricato nell'input latch (funziona da acknowledge)
- INTR (*Interrupt Request*): un valore alto può essere usato come richiesta di interrupt per la CPU

Temporizzazioni

Domanda #9 B

Segnali di controllo

- -OBF (*Output Buffer Full*): un valore basso indica che la CPU ha scritto il dato sulla porta
- -ACK (*Acknowledge Input*): un valore basso informa l'8255 che il dato è stato ricevuto dalla periferica
- -INTR (*Interrupt Request*): un valore alto può essere usato come richiesta di interrupt per la CPU

Temporizzazioni

Domanda #11 - A

- Si consideri una cache direct mapped composta da 8 linee
- Si identifichi per ogni linea il blocco contenuto nella cache ad un certo istante, assumendo che la memoria sia composta da 64 blocchi e nel periodo immediatamente precedente il processore abbia fatto accesso nell'ordine ai seguenti blocchi: 21, 28, 30, 10, 7, 60, 30, 31, 32, 33, 60, 61, 25, 28, 27, 14.

Soluzione

 In una cache direct mapped, la linea i in cui un blocco k è memorizzato è data da

 $i = k \mod N$

dove N è il numero di linee della cache

Nel nostro caso

 $i = k \mod 8$

Ovviamente i assume valori tra 0 e 7.

Passaggio intermedio

							linea	
21:	0	1	0	1	0	1	5	
28:	0	1	1	1	0	0	4	
30:	0	1	1	0	1	0	2	
10:	0	0	1	0	1	0	2	miss
7:	0	0	0	1	1	1	7	
60:	1	1	1	1	0	0	4	miss
30:	0	1	1	1	1	0	6	hit
31:	0	1	1	1	1	1	7	miss
32:	1	0	0	0	0	0	0	
33:	1	0	0	0	0	1	1	
60:	1	1	1	1	0	0	4	hit
61:	1	1	1	1	0	1	5	miss
25:	0	1	1	0	0	1	1	miss
28:	0	1	1	1	0	0	4	miss
27:	0	1	1	0	1	1	3	
14:	00	0	1	1	1	0	6	miss

Soluzione

	Finale
0	32
1	25
2	10
3	27
4	28
5	61
6	14
7	31

Domanda #11 - B

- Si consideri una cache direct mapped composta da 8 linee
- Si identifichi per ogni linea il blocco contenuto nella cache ad un certo istante, assumendo che la memoria sia composta da 64 blocchi e nel periodo immediatamente precedente il processore abbia fatto accesso nell'ordine ai seguenti blocchi: 21, 28, 30, 10, 7, 60, 30, 31, 32, 33, 60, 61, 25, 29, 27, 14.

Soluzione

 In una cache direct mapped, la linea i in cui un blocco k è memorizzato è data da

 $i = k \mod N$

dove N è il numero di linee della cache

Nel nostro caso

 $i = k \mod 8$

Ovviamente i assume valori tra 0 e 7.

Passaggio intermedio

							linea	
21:	0	1	0	1	0	1	5	
28:	0	1	1	1	0	0	4	
30:	0	1	1	0	1	0	2	
10:	0	0	1	0	1	0	2	miss
7:	0	0	0	1	1	1	7	
60:	1	1	1	1	0	0	4	miss
30:	0	1	1	1	1	0	6	hit
31:	0	1	1	1	1	1	7	miss
32:	1	0	0	0	0	0	0	
33:	1	0	0	0	0	1	1	
60:	1	1	1	1	0	0	4	hit
61:	1	1	1	1	0	1	5	miss
25:	0	1	1	0	0	1	1	miss
29:	0	1	1	1	0	0	5	miss
27:	0	1	1	0	1	1	3	
14:	0	0	1	1	1	0	6	miss

Soluzione

