BMS COLLEGE OF ENGINEERING, BENGALURU-19 Autonomous Institute, Affiliated to VTU

DEPARTMENT OF MATHEMATICS

Sem & Branch:			Subject: HIGHER ENGINEERING MATHEMATICS	Sub Code:	19MA	4BSHEM				
Duration	75 MINUTES		Test Date:	20.06.2020	Max Marks:			40		
Test No.	Q. No.	SCHRIVIR AIND SCHOOL					Marks	СО		
	PART - A									
	1	If $f(z) = u(r,\theta) + i v(r,\theta)$ is an analytic function, then prove that $v(r,\theta)$ is harmonic function.					5			
		Solution:- Given $f(z) = u(r,\theta) + i v(r,\theta)$ is an analytic function, by CR equations, $u_r = \frac{1}{r} v_\theta \rightarrow (1)$ and $v_r = -\frac{1}{r} u_\theta \rightarrow (2)$ $\rightarrow 1M$ $(2) \Rightarrow v_{rr} = -\left[\frac{1}{r} u_{r\theta} - \frac{u_\theta}{r^2}\right] \rightarrow 2M$								
		From (1), $v_{\theta} = ru_{r} \Rightarrow v_{\theta\theta} = ru_{\theta r}$ $\therefore \nabla^{2}v = v_{rr} + \frac{1}{r}v_{r} + \frac{1}{r^{2}}v_{\theta\theta} = -\frac{1}{r}u_{r\theta} + \frac{u_{\theta}}{r^{2}} + \frac{1}{r}\left[-\frac{1}{r}u_{\theta}\right] + \frac{1}{r^{2}}ru_{\theta r} = 0 \rightarrow 2M$					5			
Test -3	PART - B							-		
Те	2	(a) Evaluate $\oint_C \frac{z^4}{(3z+1)^4} dz$, where c is the circle $ z = 1$.				5	3			
			$=\frac{2}{3}$	$\frac{1}{3^4} \oint_C \frac{z^4}{(z+1/3)^4} dz$ $\frac{2\pi i}{3^4 3!} f''' \left(-\frac{1}{3}\right) \longrightarrow 2M$ $f''' \left(-\frac{1}{3}\right) = -8 \longrightarrow 2M$ $\therefore I = \frac{-8\pi i}{3^5} \longrightarrow 1M$			5			
		(b) Find the harmonic conjugate of $u(x, y) = e^{2x} (x \cos 2y - y \sin 2y)$.				5				
		Solution:- Give equations are s	` ′	+iv is analytic function to find $v()$	(x, y) such that	CR	5			

	$dv = v_x dx + v_y dy$			
	$=-u_{y}dx+u_{x}dy$			
	$= e^{2x} (2x \sin 2y + 2y \cos 2y + \sin 2y) dx + e^{2x} (2x \cos 2y - 2y \sin 2y + \cos 2y) dy \rightarrow 3M$			
	$\therefore v(x,y) = (\sin 2y) \int_{y-\text{constant}} (2x+1)e^{2x}dx + (2y\cos 2y) \int_{y-\text{constant}} e^{2x}dx + c$ $= e^{2x} (x\sin 2y + y\cos 2y) + c \longrightarrow 2M$			
	$= e^{2x} (x \sin 2y + y \cos 2y) + c \longrightarrow 2M$			
	(c) Find the orthogonal trajectories of the family of curves $-r^3 \sin 3\theta = c_1$.			
	Solution:- Let $u(r,\theta) = -r^3 \sin 3\theta$ then			
	$f(z) = u(r,\theta) + i v(r,\theta)$ is an analytic function.			
	$dv = v_r dr + v_\theta d\theta$			
	$= -\frac{1}{r}u_{\theta}dr + ru_{r}d\theta \longrightarrow 2M$	5		
	RHS is of the form $M(r,\theta)dr + N(r,\theta)d\theta$ and $M_{\theta} = N_r$, hence exact. $\rightarrow 1M$			
	$\therefore v(r,\theta) = \int_{\theta-\text{constant}} 3r^2 \cos 3\theta dr = r^3 \cos 3\theta + c$			
	The required orthogonal trajectories are $r^3 \cos 3\theta = c_2 \longrightarrow 2M$			
	PART-C			
	(a) If $f(z) = u + iv$ is an analytic function, then prove that			
	$\left \left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right] \left \operatorname{Re} \{ f(z) \} \right ^2 = 2 f'(z) ^2 \text{, where } \operatorname{Re} \{ f(z) \} \text{ denotes the real part of } f(z).$			
	Solution:- Let $\phi = \left \operatorname{Re} \left\{ f(z) \right\} \right ^2 = u^2 \longrightarrow 1M$			
	Then $\phi_x = 2uu_x$, $\phi_{xx} = 2(u_x^2 + uu_{xx})$ $\longrightarrow 2M$			
	$\therefore \phi_{yy} = 2(u_y^2 + uu_{yy}) \longrightarrow 1M$			
3	and $\nabla^2 \phi = 2(u_x^2 + uu_{xx} + u_y^2 + uu_{yy}) = 2(u_x^2 + v_x^2) :: u_{xx} + u_{yy} = 0 \text{ and } v_x = -u_y$			
	$=2 f'(z) ^2 = RHS. \longrightarrow 2M$			
	OR			
	(b) Determine the analytic function $f(z)$ as function of z ,whose imaginary part is			
	$\frac{x-y}{x^2+y^2}.$			
	Solution:- $v_x = \frac{(x^2 + y^2) - 2x(x - y)}{(x^2 + y^2)^2}$ and $v_y = \frac{-(x^2 + y^2) - 2y(x - y)}{(x^2 + y^2)^2} \rightarrow 2M$			
	$f'(z) = u_x + iv_y$			
	$= v_y + i v_x \text{ using CR equations} \longrightarrow 2M$	6		
	Replacing x by z and y by zero,			
		1		
	$f'(z) = \frac{-z^2}{z^4} - i\frac{z^2}{z^4} = \frac{-(1+i)}{z^2}$			

	$\therefore f(z) = -\int \frac{1+i}{z^2} dz = \frac{1+i}{z} + c \longrightarrow 2M$				
4	 (a) Find the bilinear transformation which maps the points ∞, i, 0 of the Z-plane onto the points -1,-i, 1 of the W-plane respectively. Also find the invariant points of the transformation. Solution:- The bilinear transform which maps the points z₁ = ∞, z₂ = i, z₃ = 0 on to the points w₁ = -1, w₂ = -i, w₃ = 1 is, 				
	$\frac{(w-w_1)(w_2-w_3)}{(w-w_3)(w_2-w_1)} = \frac{(z-z_1)(z_2-z_3)}{(z-z_3)(z_2-z_1)} = \frac{(z/z_1-1)(z_2-z_3)}{(z-z_3)(z_2/z_1-1)} \to 2M$ $\Rightarrow \frac{(w+1)(-i-1)}{(w-1)(-i+1)} = \frac{-i}{-z} or \frac{w+1}{1-w} = \frac{1}{z} \Rightarrow w = \frac{1-z}{1+z} \to 3M$				
	Invariant points are $z = -1 \pm \sqrt{2}$. $\rightarrow 2M$				
	OR				
	(b) Discuss the transformation $w = z + \frac{a^2}{z}, (z \neq 0)$.				
	then $u + iv = re^{i\theta} + \frac{a^2}{r}e^{-i\theta}$ $\Rightarrow u + iv = \left(r + \frac{a^2}{r}\right)\cos\theta + i\left(r - \frac{a^2}{r}\right)\sin\theta$ $\therefore u = \left(r + \frac{a^2}{r}\right)\cos\theta \to (1) \text{ and } v = \left(r - \frac{a^2}{r}\right)\sin\theta \to (2) \to 1\text{M}$ $Case(i) : \text{Eliminating } \theta \text{ between } (1) \text{ and } (2), \text{ using } \cos^2\theta + \sin^2\theta = 1$ $\frac{u^2}{\left(r + \frac{a^2}{r}\right)^2} + \frac{v^2}{\left(r - \frac{a^2}{r}\right)^2} = 1 \to (3)$ When r is a constant (a circle in the Z- plane with center at the origin). (3) represents				
	When r is a constant (a circle in the Z- plane with center at the origin), (3) represents an ellipse in the W-plane. $\rightarrow 2M$				
	Case(ii): Eliminating r between (1) and (2), using $(A+B)^2 - (A-B)^2 = 4AB$				
	$\frac{u^2}{\left(2 \operatorname{a} \cos \theta\right)^2} - \frac{v^2}{\left(2 \operatorname{a} \sin \theta\right)^2} = 1 \to (4)$				
	When θ is a constant (a radial line in the Z- plane passing through the origin), (4) represents a hyperbola in the W-plane. $\rightarrow 2M$				
		1			

5	(a) Evaluate $\oint_C \frac{z}{(z^2+1)(z^2-9)} dz$, where c is the circle $ z =2$.		
	Solution:- The points $z = i$ and $-i$ lie inside $c: z = 2$.		
	$\therefore I = \oint_C \frac{f(z)}{(z+i)(z-i)} dz, where f(z) = \frac{z}{z^2 - 9} \longrightarrow 2M$		
	$\frac{1}{(z+i)(z-i)} = \frac{1}{2i} \left[\frac{1}{z-i} - \frac{1}{z+i} \right] \longrightarrow 2M$		
	$\therefore \mathbf{I} = \frac{1}{2i} \left[\oint_C \frac{f(z)}{z - i} dz - \oint_C \frac{f(z)}{z + i} dz \right] = \frac{1}{2i} \left[2\pi i f(i) - 2\pi i f(-i) \right] \rightarrow 1\mathbf{M}$		
	$I = \frac{-\pi i}{5} \longrightarrow 2M$		
	OR		
	(b) Verify Cauchy's theorem for the integral of z^3 taken over the boundary of the		
	triangle having vertices $(1, 2)$, $(1, 4)$ and $(3, 2)$.		
	Solution:- Figure - triangle ABC, $A = (1,2), B = (3,2)$ and $C = (1,4)$ $\rightarrow 1M$		
	Along AB:- $y = 2$, $dy = 0$ and $x \rightarrow 1$ to 3,		
	$\int_{AB} z^3 dz = \int_{1}^{3} (x+2i)^3 dz = \frac{(3+2i)^4}{4} - \frac{(1+2i)^4}{4} \to (1) $ $\to 1M$		
	Along BC:- $y = 5 - x$, $dy = -dx$ and $x \rightarrow 3$ to 1,		
	$\int_{BC} z^3 dz = \int_{3}^{1} \left[x + i (5 - x) \right]^3 (dx - i dx) = \frac{(1 + 4i)^4}{4} - \frac{(3 + 2i)^4}{4} \to (2) $ $\to 2M$		
	Along CA:- $x = 1, dx = 0$ and $y \rightarrow 4$ to 2,		
	$\int_{CA} z^3 dz = \int_{4}^{2} (1+iy)^3 i dy = \frac{(1+2i)^4}{4} - \frac{(1+4i)^4}{4} \to (3) \to 1M$		
	$\oint_{ABC} z^3 dz = \int_{AB} z^3 dz + \int_{BC} z^3 dz + \int_{CA} z^3 dz = 0, \text{ using } (1), (2) \text{ and } (3).$		
	Hence Cauchy's theorem is verified. $\rightarrow 2M$		

Course Outcome:

Demonstrate an understanding of analytic functions and their application to evaluate integrals. Note:- Award full marks for alternate methods. CO 3