Instituto Hardware BR Programa Embarca Tech

Projeto Final: Idoso Seguro - Etapa 2

Luana Maria da Silva Menezes Vinicius de Souza Caffeu

1. Arquitetura do Sistema Idoso Seguro	1
1.1. Dispositivo corporal	1
1.1.1. Diagrama de Hardware e Blocos Funcionais	1
Microcontrolador	2
Sensores	2
Sensor de Movimento (MPU6050)	2
Botão de Emergência	2
GPS	
Atuadores	
Buzzer	
LEDs	2
Comunicação	2
WiFi	2
GSM/GPRS	2
Telegram Bot	3
1.1.2. Fluxograma do Software	3
1.2. Dispositivo de monitoramento de gases	5
1.2.1. Diagrama de Hardware e Blocos Funcionais	
1.2.2. Fluxograma do Software	8
-	

1. Arquitetura do Sistema Idoso Seguro

1.1. Dispositivo corporal

O dispositivo corporal é estruturado em blocos funcionais que trabalham juntos para detectar emergências e alertar cuidadores. A arquitetura é modular para facilitar a manutenção e futuras expansões.

1.1.1. Diagrama de Hardware e Blocos Funcionais

O diagrama de hardware apresenta a arquitetura do dispositivo corporal wearable, mostrando como o microcontrolador Raspberry Pi Pico W se conecta com os diferentes componentes do sistema. Os sensores (MPU6050, botão de emergência e GPS) capturam dados que são processados pelo microcontrolador, enquanto os atuadores (buzzer e LEDs) fornecem feedback local ao usuário. A comunicação com cuidadores acontece via WiFi/Telegram como canal principal e GSM/SMS como backup, garantindo que alertas de emergência sempre cheguem aos destinatários mesmo em falhas de conectividade.

Figura 1 - Blocos funcionais do sistema de monitoramento corporal

Microcontrolador

O Pico W é o cérebro do sistema, baseado no chip RP2040 dual-core a 133MHz com WiFi integrado. Tem GPIO suficientes para todos os sensores e atuadores, além de 264KB de RAM e 2MB de flash para o firmware. Tem baixo consumo, WiFi nativo e boa documentação.

Sensores

Sensor de Movimento (MPU6050)

Conectado via I2C, o MPU6050 mede aceleração e rotação em 3 eixos para detectar quedas.

Botão de Emergência

Usa GPIO com pull-up interno - fica em HIGH normalmente e vai para LOW quando pressionado. O software faz debounce e detecta por interrupção para resposta imediata.

GPS

Conectado via UART, recebe dados no formato NMEA. Fornece coordenadas precisas para localização em emergências.

Atuadores

Buzzer

Controlado por PWM, gera diferentes padrões sonoros: 1 beep para boot, 3 beeps para queda detectada.

LEDs

Indicam status visual: verde (normal) e vermelho (erro). Fornece feedback imediato independente da conectividade.

Comunicação

WiFi

Canal principal de comunicação através da interface SDIO nativa. Mais rápido e econômico que GSM. Suporta WPA2/WPA3 para segurança.

GSM/GPRS

Sistema de backup quando WiFi falha. Usa comandos AT via UART. Garante comunicação mesmo sem WiFi doméstico.

Telegram Bot

Escolhido por ter API gratuita, suporte a GPS, mensagens instantâneas e apps em todas as plataformas. Transmite via HTTPS as coordenadas, tipo de emergência, timestamp e status do dispositivo.

1.1.2. Fluxograma do Software

O diagrama a seguir apresenta o fluxo de funcionamento do sistema embarcado para detecção de quedas e envio de alertas. Ele mostra as etapas de inicialização, monitoramento dos sensores, análise de eventos e comunicação via Wi-Fi ou GSM para a notificação no Telegram.

Figura 2 - Fluxograma do sistema de monitoramento corporal

O software inicia conectando-se ao Wi-Fi, configurando o acelerômetro MPU6050 e iniciando os módulos GPS e GSM. Em seguida, entra em um loop contínuo de monitoramento, no qual lê os dados do acelerômetro e verifica se o botão de emergência foi pressionado. Caso o botão seja acionado, o sistema emite três beeps no buzzer e prossegue para obter a localização atual via GPS, registrando também o horário do evento.

Se o botão não estiver pressionado, o sistema analisa os dados de movimento para detectar quedas. Caso uma queda seja identificada, também emite três beeps e obtém a localização GPS com timestamp. Se não houver queda, o sistema aguarda alguns milissegundos e retorna à leitura dos sensores.

Após obter a localização, o sistema verifica se há conexão Wi-Fi disponível. Se houver, envia a mensagem de alerta pelo Telegram via requisição HTTPS; caso contrário, envia a mensagem via GSM utilizando comandos AT. Se a mensagem for enviada com

sucesso, o sistema volta ao ciclo de monitoramento. Se houver falha no envio, aguarda 30 segundos e tenta novamente, iniciando a verificação de conectividade Wi-Fi antes de reenviar.

1.2. Dispositivo de monitoramento de gases

1.2.1. Diagrama de Hardware e Blocos Funcionais

O sistema proposto é um módulo fixo de segurança para cozinhas, desenvolvido para operação contínua em residências de idosos ou casas de repouso. Ele realiza a detecção de vazamentos de gás e fumaça e atua de forma automática para prevenir acidentes.

A solução utiliza a placa BitDogLab integrada à Raspberry Pi Pico W como unidade de controle, processando os sinais dos sensores de gás e fumaça. Quando um vazamento é detectado, o microcontrolador aciona um relé que energiza uma válvula solenóide normalmente fechada. Essa configuração foi escolhida por segurança: em caso de falha de energia ou do sistema, a válvula permanece fechada, impedindo o fluxo de gás e reduzindo o risco de explosões ou incêndios.

O projeto possui conectividade IoT, utilizando a interface Wi-Fi da Pico W para comunicação com um bot no Telegram via API, permitindo o envio de notificações instantâneas a familiares ou responsáveis sobre a ocorrência do vazamento. Essa abordagem garante resposta rápida e remota, aliando automação, segurança e monitoramento em tempo real.

- Placa BitDogLab + Raspberry Pi Pico W Unidade de controle do sistema, processa sinais dos sensores e aciona os atuadores; responsável pela comunicação via Wi-Fi com o bot no Telegram.
- Sensor de gás (MQ-02) Detecta a presença de gases inflamáveis no ambiente.
- Módulo relé Interface de acionamento que controla a energização da válvula solenóide.
- Válvula solenóide normalmente fechada Bloqueia o fluxo de gás quando desenergizada, garantindo segurança em caso de falha.

Figura 1 - Blocos funcionais do sistema de monitoramento de vazamento de gás

Um diagrama já com as conexões de hardware feitas e seu respectivo esquemático são apresentados a seguir. Todas as válvulas solenóide apresentadas são meramente ilustrativas e para efeito de demonstração, já que para operar com gases inflamáveis, é necessário a utilização de válvulas homologadas.

Figura 2 - Blocos funcionais do sistema de monitoramento de vazamento de gás com conexões

Figura 3 - Esquemático do sistema de monitoramento de vazamento de gás

1.2.2. Fluxograma do Software

