CHAPTER 6

Sampling of Continuous-Time Signals

Basic Problems

- 21.
- 22. Solution:

The spectra of the continuous signal $x_c(t)$ is

$$X_{c}(j2\pi F) = \begin{cases} 3, & F = 0\\ j, & F = 8\\ -j, & F = -8\\ 5, & F = 12\\ 5, & F = -12\\ 0, & \text{otherwise} \end{cases}$$

The spectra of sampled sequence x[n] is:

$$X(e^{j\omega})\big|_{\omega=2\pi F/F_s} = F_s \sum_{n=-\infty}^{\infty} X_c[j2\pi(F-nF_s)]$$

 $x_{\rm c}(t)$ can be recovered if (a) $F_{\rm s}=30$ Hz, and can NOT be recovered if (b) $F_{\rm s}=20$ Hz, (c) $F_{\rm s}=15$ Hz.

FIGURE 6.1: Spectra of $X(e^{\mathrm{j}\omega})$ as a function of (a) ω in $\frac{\mathrm{rad}}{\mathrm{sam}}$ and (b) F in Hz when the sample rate is $F_{\mathrm{s}}=30$ KHz.

FIGURE 6.2: Spectra of $X(e^{j\omega})$ as a function of (a) ω in $\frac{\rm rad}{\rm sam}$ and (b) F in Hz when the sample rate is $F_{\rm s}=20$ KHz.

FIGURE 6.3: Spectra of $X(e^{j\omega})$ as a function of (a) ω in $\frac{\rm rad}{\rm sam}$ and (b) F in Hz when the sample rate is $F_{\rm s}=15$ KHz.

The spectra of the continuous signal $x_c(t)$ is:

$$X_{\rm c}(\mathrm{j}\Omega) = \begin{cases} 5, & \Omega = 40\\ 3, & \Omega = -70 \end{cases}$$

The spectra of the sampled sequence x[n] is:

$$X(e^{j\omega})|_{\omega=\Omega T} = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_{r}[j(\Omega - k\Omega_{s})]$$

The continuous signal $x_c(t)$ can be recovered if the sampling interval is (a) T=0.01, (b) T=0.04, and can NOT be recovered if the sampling interval is (c) T=0.1.

FIGURE 6.4: Magnitude and phase responses of $X(e^{j\omega})$ as a function of ω in $\frac{\text{rad}}{\text{sam}}$ when the sampling interval is T=0.01.

FIGURE 6.5: Magnitude and phase responses of $X(e^{j\omega})$ as a function of ω in $\frac{\text{rad}}{\text{sam}}$ when the sampling interval is T=0.04.

The spectra of the continuous signal $x_c(t)$ is:

$$X_{c}(j2\pi F) = \begin{cases} \frac{2}{5}|F| + 2, & |F| \le 5\\ -\frac{4}{5}|F| + 8, & 5 < |F| \le 10\\ 0, & \text{otherwise} \end{cases}$$

The spectra of the sampled sequence x[n] is:

$$X(e^{j\omega})\big|_{\omega=2\pi F/F_s} = F_s \sum_{k=-\infty}^{\infty} X_c[j2\pi(F-kF_s)]$$

The signal $x_{\rm c}(t)$ can NOT be recovered from x[n] if the sampling rate is (a) $F_{\rm s}=10$ Hz and (b) $F_{\rm s}=15$ Hz and can be recovered if the sampling rate is (c) $F_{\rm s}=30$ Hz.

FIGURE 6.6: Magnitude and phase responses of $X(\mathrm{e}^{\mathrm{j}\omega})$ as a function of ω in $\frac{\mathrm{rad}}{\mathrm{sam}}$ when the sampling interval is T=0.1.

FIGURE 6.7: Magnitude response of $X(\mathrm{e}^{\mathrm{j}\omega})$ as a function of ω in $\frac{\mathrm{rad}}{\mathrm{sam}}$ when the sampling rate is $F_{\mathrm{s}}=10$.

FIGURE 6.8: Magnitude response of $X(\mathrm{e}^{\mathrm{j}\omega})$ as a function of ω in $\frac{\mathrm{rad}}{\mathrm{sam}}$ when the sampling rate is $F_{\mathrm{s}}=15$.

FIGURE 6.9: Magnitude response of $X(\mathrm{e}^{\mathrm{j}\omega})$ as a function of ω in $\frac{\mathrm{rad}}{\mathrm{sam}}$ when the sampling rate is $F_{\mathrm{s}}=30$.

The spectra of the continuous signal $x_c(t)$ is:

$$X_{c}(j2\pi F) = \begin{cases} -5|F| + 10, & 0 \le |F| \le 1\\ 5|F|, & 1 \le |F| \le 2\\ 10, & 2 \le |F| \le 3 \end{cases}$$

The spectra of the sampled sequence x[n] is:

$$X(e^{j2\pi F/F_s}) = F_s \sum_{k=-\infty}^{\infty} X_c[j2\pi(F - kF_s)]$$

The signal $x_{\rm c}(t)$ can NOT be recovered from x[n] when the sampling interval is (a) T=0.2, (b) T=0.25, (c) T=0.5.

FIGURE 6.10: Magnitude response of $X(e^{j\omega})$ as a function of F in Hz when the sampling interval is T=0.2.

FIGURE 6.11: Magnitude response of $X(e^{j\omega})$ as a function of F in Hz when the sampling interval is T=0.25.

FIGURE 6.12: Magnitude response of $X(e^{j\omega})$ as a function of F in Hz when the sampling interval is T=0.5.

26. (a) Solution:

The sampled sequence x[n] is:

$$x[n] = 3\cos(0.3\pi n + \pi/4) + 3\sin(0.8\pi n)$$

(b) Solution:

The constructed signal $y_r(t)$ is:

$$y_{\rm r}(t) = 3\cos(300\pi t + \pi/4) + 3\sin(800\pi t)$$

(c) Solution:

The sampled sequence x[n] is:

$$x[n] = 3\cos(0.6\pi n + \pi/4) + 3\sin(1.4\pi n)$$

The constructed signal $y_r(t)$ is:

$$y_{\rm r}(t) = 3\cos(600\pi t + \pi/4) - 3\sin(600\pi t)$$

 $F_1 = 150, \ F_2 = 400$

FIGURE 6.13: (a) Plot of x[n] and $x_{\rm c}(t)$ and (b) plot of $y_{\rm r}(t)$ when $F_1=150$ Hz and $F_2=400$ Hz.

27. (a) Solution:

The quantizer step is:

$$\frac{10v}{2^8} = 0.0390625v$$

(b) Solution:

The SQNR is:

$$SQNR = 49.92dB$$

(c) Solution:

The folding frequency is $F_s/2 = 4k$.

(d) Solution:

The reconstructed signal $x_{\rm r}(t)$ is:

$$x_{\rm r}(t) = -5\sin[6000\pi t - \pi/2]$$

28. Solution:

The minimum sampling frequency is:

$$\min F_{\rm s} = 4 {\rm KHz}$$

FIGURE 6.14: (a) Plot of x[n] and $x_{\rm c}(t)$ and (b) plot of $y_{\rm r}(t)$ when $F_1=300$ Hz and $F_2=700$ Hz.

The minimum sampling rate can be computed by

$$\min F_{\!\scriptscriptstyle \rm S} = 95.2727273 {\rm KHz}$$

FIGURE 6.15: Baseband signal spectrum after sampling.

- 30. (a) Solution:
 - (i) when $\Delta x = \Delta y = 0.5$ meter, the reconstructed signal is:

$$s_{\rm r}(x,y) = 4\cos(2\pi y)$$

(ii) when $\Delta x = \Delta y = 0.2$ meter, the reconstructed signal is:

$$s_{\rm r}(x,y) = 4\cos(4\pi x)\cos(4\pi y)$$

- (b) tba
- 31. tba.