Propagación de ondas en medios continuos

- 1. Verifique si las siguientes expresiones matemáticas cumplen la ecuación de las ondas unidimensional. Grafique las funciones dadas.
 - $\Psi(x,t) = Ae^{-\lambda(x-vt)^2}$
 - $\Psi(x,t) = \beta(x+vt)$
 - $\Psi(x,t) = A \sin\left[k(x-vt)\right]$
 - $\Psi(x,t) = B\sin^2(kx \omega t)$
 - $\Psi(x,t) = C\cos(kx)\sin(\omega t)$
 - $\Psi(x,t) = De^{i(kx \omega t)}$

Propagación en medios no dispersivos

2. Se tiene una perturbación que se propaga en una cuerda infinita con velocidad v. Se toman dos "fotografías" de la perturbación, a t=0 s y t=4 s:

- a) Hallar v.
- b) Hallar $\Psi(x,t)$.
- 3. Se tiene una cuerda infinita. Se sabe que la velocidad de propagación de las ondas en ella es v = 100 m/s (consideramos que dicha cuerda es un medio no dispersivo). A t = 0 se la deforma de la manera que se indica en la figura, y se la suelta (desde el reposo).

- a) Hallar $\Psi(x,t) = \Psi_1(x-vt) + \Psi_2(x+vt)$. Dar explícitamente (en cada intervalo de interés) la expresión de $\Psi(x,t)$.
- b) Comparar esta situación con la del problema anterior.
- 4. Se tiene una cuerda homogénea de longitud L y densidad μ , a una tensión T, con sus dos extremos fijos (x=0 y x=L). A t=0 se la perturba de forma tal que

$$\Psi(x,0) = \begin{cases} 0 & \text{si } 0 < x < a \\ h\frac{x-a}{L/2-a} & \text{si } a < x < L/2 \\ h\frac{L-a-x}{L/2-a} & \text{si } L/2 < x < L-a \\ 0 & \text{si } L-a < x < L. \end{cases}$$

Se suelta la cuerda desde el reposo; considerar $h \ll L$.

a) Hallar $\Psi(x,t)$ y demostrar que siempre es posible escribir esta solución como una superposición de una onda que se propaga hacia la derecha y una que se propaga hacia la izquierda.

- b) Hacer un esquema cualitativo del movimiento de la cuerda para los instantes $t_n = n \frac{L}{8v}$, donde v es la velocidad de propagación de las ondas en la cuerda y n es un número natural.
- 5. En un gas, a t=0, se produce la perturbación indicada en la figura. Sabiendo que $(\rho_1-\rho_0)/\rho_0\ll 1$ y que v(x,0)=0, calcule $\rho(x,t)$.

Datos: ρ_1 , ρ_0 , v_s (velocidad de propagación de las ondas en el gas).

Ecuación de onda

- 6. La ecuación de una onda transversal en una cuerda está dada por: y(x,t) = 0, $1 \text{ m sin } \left[\pi \left(x \text{ m}^{-1} 4 \text{t s}^{-1}\right)\right]$ (x e y en metros y t en segundos). Determine:
 - a) La amplitud de la onda.
 - b) La frecuencia de vibración de la cuerda.
 - c) La velocidad de propagación de la onda.
 - d) En t=1 s, evaluar el desplazamiento, la velocidad y la aceleración de un segmento pequeño de cuerda ubicado en x=2 m.
- 7. Sea una onda transversal plana y armónica, cuya frecuencia angular vale $\omega = 10 \text{ s}^{-1}$ y cuyo número de onda es $k = 100 \text{ m}^{-1}$. En $x_1 = 1 \text{ km}$ y $t_1 = 1 \text{ s}$ la fase de la onda es $\nu(1 \text{ km}, 1 \text{ s}) = 3\pi/2$.
 - a) ¿Cuánto vale la fase en x_1 para t=0 s?
 - b) Considerando que $\nu(x,t)=kx-\omega t+\nu_0$, ¿cuánto vale ν_0 ?
 - c) ¿A qué velocidad se propaga la onda?
 - d) ¿Cuánto tiempo debe transcurrir para que el frente de onda que se hallaba en x_1 llegue a $x=2x_1$?
- 8. Una cuerda larga con $\mu = 0.005$ kg/m se tensa aplicando una fuerza de 0,25 N. El extremo izquierdo se mueve hacia arriba y hacia abajo con movimiento armónico simple de período 0,5 s y amplitud 0,2 m; se supone que la tensión permanece constante en todo el movimiento. Encontrar:
 - a) La velocidad de la onda generada en la cuerda, la frecuencia y la longitud de onda.
 - b) La expresión matemática para el desplazamiento: y(x,t).
 - c) La energía cinética media por unidad de longitud, de una partícula del medio.
 - d) La energía potencial media por unidad de longitud, de una partícula.

Reflexión y transmisión de ondas

- 9. Se tienen dos cuerdas semi-infinitas, de densidades lineales ρ_1 y ρ_2 , unidas en un punto. El sistema está sometido a una tensión T. Sobre la primera cuerda (la de densidad ρ_1) incide una onda de la forma: $\phi_i(x,t) = A_i \cos(k_1 x \omega t)$. Se conocen: ρ_1 , ρ_2 , T, ω y A_i .
 - a) Calcule k_1 y k_2 , es decir, los números de onda de cada lado de la unión.
 - b) Plantee la solución más general para $\phi(x,t)$ de cada lado de la unión.

- c) ¿Qué condiciones deben verificarse en el punto de unión de las cuerdas?
- d) Usando (b) y (c), calcule la perturbación $\phi(x,t)$ en cada una de las cuerdas.
- 10. Se tienen dos caños semi-infinitos de distinta sección y unidos, como se muestra en la figura. Una onda acústica de la forma $\delta p_i(x,t) = A_i \cos(k_1 x \omega t)$ incide desde el primer caño hacia x > 0. Hallar las amplitudes de presión y elongación de las ondas reflejadas y transmitidas.

Datos: A_1 , A_2 , presión media P_0 , densidad media ρ_0 , v_s , ω , A_i . Suponer despreciables los efectos de la viscosidad.

11. Considere la siguiente configuración:

Suponga que desde la izquierda incide una onda cuya expresión es la misma del problema anterior (las secciones y el resto de los datos son los mismos también). Hallar $\delta p(x,t)$ y $\Psi(x,t)$ en cada tramo.

12. Se tiene una interfase plana e infinita entre aire y agua (ver figura).

Desde el aire incide una onda acústica plana cuya dirección de propagación es normal a la interfase; se escribe $\delta p_i(y,t) = A_i \cos{(k_1 y - \omega t)}$. Hallar las ondas reflejadas y transmitidas $\delta p_r(y,t)$ y $\delta p_t(y,t)$.

- 13. a) Demuestre que la función: $\Psi(\mathbf{r},t) = Ae^{i(\mathbf{k}\cdot\mathbf{r}\pm\omega t)}$, con $\mathbf{k} = k_x\hat{x} + k_y\hat{y} + k_z\hat{z}$ un vector constante y $\mathbf{r} = x\hat{x} + y\hat{y} + z\hat{z}$, es solución de la ecuación de ondas tridimensional. Sugerencia: exprese el laplaciano en coordenadas cartesianas.
 - b) Analice el significado físico de $\Psi(\mathbf{r},t)$. ¿Cómo son los frentes de onda? ¿Cuál es la relación entre el vector \mathbf{k} y los frentes de onda? ¿Hacia dónde se desplazan los frentes de onda al transcurrir t? ¿A qué velocidad?
 - c) Rehaga el problema anterior suponiendo que la onda incidente (desde el aire) forma un ángulo θ con la normal a la interfase (ver figura).

Por lo tanto la onda de presión incidente se escribe, si usamos notación compleja: $\delta p_i(\mathbf{r},t) = A_i e^{i(\mathbf{k}_i \cdot \mathbf{r} - \omega t)}$, siendo $\mathbf{k}_i = \frac{\omega}{v_s} \left(\sin \theta \hat{x} + \cos \theta \hat{y} \right)$. Hallar las ondas reflejadas y transmitidas, $\delta p_r(\mathbf{r},t) = A_r e^{i(\mathbf{k}_r \cdot \mathbf{r} - \omega t)}$ y $\delta p_t(\mathbf{r},t) = A_t e^{i(\mathbf{k}_t \cdot \mathbf{r} - \omega t)}$.

Velocidad de fase y velocidad de grupo

- 14. En lo que sigue, encuentre con cuál de estos métodos se determina la velocidad de fase y con cuál la de grupo.
 - a) Medir la velocidad del sonido en el aire, golpeando las manos y determinando el tiempo que transcurre entre el aplauso y el eco de un reflector ubicado a una distancia conocida.
 - b) Medir la longitud de un tubo que resuena a una frecuencia conocida (y corregir por efectos de borde).
 - c) Determinar la velocidad de la luz midiendo el tiempo que tarda un haz colimado en recorrer una distancia conocida.
 - d) Encontrar la longitud de una cavidad resonante que oscila en un modo conocido a una frecuencia conocida.
- 15. Demuestre que la velocidad de grupo v_g y la velocidad de fase v_f están relacionadas por:

$$v_g = v_f - \lambda \frac{dv_f}{d\lambda}$$

¿Cómo es $\frac{dv_f}{d\lambda}$ en un medio no dispersivo? En ese caso, ¿cómo se relacionan la velocidad de grupo y la de fase?

Trasformada de Fourier

- 16. Se quiere investigar la relación entre el ancho de un paquete y el desfasaje de las frecuencias que lo componen.
 - a) Tome el siguiente pulso con un espectro gaussiano de ancho Δk centrado en k_0 (note que las frecuencias están en fase):

$$F(k) = A \exp \left[-\frac{(k - k_0)^2}{4\Delta k^2} \right].$$

Calcule f(x) y vea que tiene una envolvente gaussiana que modula una portadora de frecuencia k_0 . Note que el pulso está centrado en x=0 y que se cumple la relación $\Delta x \Delta k = 1/2$ (el paquete gaussiano es el de mínima incerteza).

b) Ahora desfase las distintas frecuencias en forma lineal, tal que:

$$F(k) = A \exp \left[-\frac{(k-k_0)^2}{4\Delta k^2} \right] \exp \left[i\alpha(k-k_0) \right].$$

Calcule f(x) y vea que es el mismo pulso que en la parte (a), pero desplazado en α hacia la derecha (una fase lineal sólo corre la función).

c) Ahora agregue una fase cuadrática, es decir:

$$F(k) = A \exp\left[-\frac{(k-k_0)^2}{4\Delta k^2}\right] \exp\left[i\beta(k-k_0)^2\right].$$

Calcule f(x) y vea que es un pulso gaussiano centrado en x=0 pero con un ancho Δx que cumple:

$$\Delta x \Delta k = \frac{1}{2} \sqrt{1 + 16\beta^2 \Delta k^4}.$$

¿Es cierto que si se quiere disminuir el ancho de un paquete siempre se debe aumentar Δk ? Derive Δx con respecto a Δk de la expresión anterior y analice lo pedido.

Ayuda:
$$\int_{-\infty}^{\infty} e^{-\alpha x^2} dx = \sqrt{\frac{\pi}{\alpha}}, \int_{-\infty}^{\infty} e^{-(x+a)^2} dx = \sqrt{\pi}$$

17. Si $\Psi(\omega)$ corresponde a un espectro de frecuencias cuadrado, o sea $\Psi(\omega) = 1/\Delta\omega$ para ω comprendida en el intervalo de ancho $\Delta\omega$ alrededor de ω_0 , y cero en otra parte; vea que $\phi(t)$ está dada por:

$$\phi(t) = \frac{1}{\sqrt{\pi}} \left[\frac{\sin(t\Delta\omega/2)}{t\Delta\omega/2} \right] e^{i\omega_0 t}$$

- a) Grafique $\Psi(\omega)$ y $|\phi(t)|$.
- b) Sea T un tiempo más prolongado que la duración de cualquier experimento que pueda idear. Muestre que si $\Delta \omega$ es suficientemente pequeño como para que $\Delta \omega T \ll 1$, entonces durante un tiempo menor que T, $\phi(t)$ es una función armónica de amplitud y fase casi constante.
- 18. Sea $\phi(t)$ una función real.
 - a) Muestre que su transformada de Fourier $\Psi(\omega)$ cumple $\Psi(\omega) = \Psi^*(-\omega)$ ($\Psi(\omega) = |\Psi(-\omega)|$). Use esto para escribir a $\phi(t)$ como superposición de senos y cosenos.
 - b) Muestre que la transformada de Fourier ${\mathcal F}$ es lineal, esto quiere decir que

$$\mathcal{F}(af + bg) = a\mathcal{F}(f) + b\mathcal{F}(g)$$

donde f y g son funciones de x y a y b son constantes.

c) Tomemos una pulsación que se repite N veces:

Vea que la transformada de Fourier de un único pulso situado entre $(n\tau, n\tau + \Delta t)$ es igual a la transformada del pulso $(0, \Delta t)$ multiplicado por la fase $e^{in\phi}$. Calcule entonces la transformada de la pulsación cuadrada que se repite en un tiempo largo $T_{largo} = N\tau$.

- d) Muestre que para un valor finito de T_{largo} el análisis de Fourier de esta pulsación cuadrada repetida casi periódicamente, consiste en una superposición de armónicos casi discretos de la frecuencia fundamental $\nu_1=1/T_1$, siendo realmente cada armónico un continuo de frecuencias que se extiende sobre una banda de ancho $\delta\nu\approx 1/T_{largo}$. Las armónicas más importantes caen entre 0 y $\Delta\nu=1/\Delta t$.
- e) ¿Por qué vale $\Delta t \Delta \nu \approx 1$ si, en principio, podría valer $\Delta t \Delta \nu \gg 1$? ¿La misma pregunta es aplicable a $\delta \nu$ y T_{largo} ?

Progación en medios dispersivos

19. Se tiene un pulso de ancho Δk centrado en k_0 tal que la siguiente es una buena aproximación para la relación de dispersión:

$$\omega(k) = \omega_0(k_0) + \omega'(k_0)(k - k_0) + \frac{1}{2}\omega''(k_0)(k - k_0)^2$$

Si en t = 0 el pulso se propaga hacia x < 0, y se escribe:

$$\Psi(x,0) = A \int_{-\infty}^{+\infty} \exp\left[-\frac{(k-k_0)^2}{4\Delta k^2}\right] \exp(ikx) dk + c.c.$$

Calcule $\Psi(x,t)$. Vea cuál es la posición y el ancho del paquete como función del tiempo. ¿Es cierto que al viajar por un medio dispersivo cualquier paquete se ensancha?

20. Se tienen dos cuerdas semi-infinitas de distinta densidad lineal de masa, ρ_1 y ρ_2 , unidas en un punto y sometidas a una tensión T. Sobre la primera se propaga hacia la derecha una perturbación de la forma indicada en la figura. Se conocen ρ_1 , ρ_2 , T, L y h. También se considera que los medios son no dispersivos.

- a) Hallar el desplazamiento y(x,t).
- b) Explique cualitativamente como cambian estos resultados si el medio es dispersivo.

Efecto Doppler — Ondas de choque

- 21. **Efecto Doppler.** Una fuente de sonido que emite en una frecuencia de 1000 Hz se mueve hacia la derecha a 40 m/s. Un observador, que está a la derecha de la fuente, también se mueve hacia la derecha a 20 m/s.
 - a) ¿Cuál será la frecuencia detectada por el observador? El aire se encuentra en reposo.
 - b) Repita el punto anterior si hay viento hacia la derecha a 20 m/s.
 - c) Repita todo lo hecho si el observador se encuentra inicialmente a la izquierda de la fuente.
- 22. **Ondas de choque.** Un avión a retropropulsión en vuelo horizontal a 5000 m de altura pasa sobre un observador con velocidad 2,2 Mach (o sea, 2,2 veces la velocidad del sonido). Calcular:
 - a) El ángulo formado por el frente de la onda sonora y la dirección del movimiento.
 - b) ¿Cuánto tiempo después de haber pasado el avión sobre el observador la onda llega a éste?
 - c) Si el piloto hace sonar una bocina en el instante en que pasa justo sobre el observador, ¿cuánto tiempo después escucha el observador ese sonido?