- T1) a) Defina derivada direccional.
- Siendo $f(x,y) = \frac{x^2y + y^2sen(x)}{x^2 + y^2}$ $si(x,y) \neq (0,0), f(x,y) = 0$ si(x,y) = (0,0), analice si existe $f'((0,0),\check{r})$ para distintos $\check{r} \in \mathbb{R}^2$
- b) Siendo x-y+z=4 la ecuación del plano tangente a la superficie de ecuación z=f(x,y) en el punto $(2,1,z_0)$, halle las direcciones de derivada direccional máxima, mínima y nula de f en (2,1) indicando para cada caso, cual es el correspondiente valor de la derivada.
- T2) a)Sea el campo f diferenciable en el punto $\bar{A} \in \mathbb{R}^2$, demuestre que existe $f'(\bar{A}, \check{r})$ para todo $\check{r} \in \mathbb{R}^2$
- b) La superficie Σ tiene ecuación z=h(x,y) donde $h(x,y)=f(xy,2x^2)$ con $f\in \mathcal{C}^1$, halle la ecuación del plano tangente a Σ en $(1,1,z_0)$ sabiendo que $\nabla f(1,2)=(2,3)$ y que f(1,2)=4
- P1)Dada f(x,y) definida implícitamente por $x + z ln(yz 5) + e^{xz} + xy 1 = 0$, calcule aproximadamente f(0.3,1,9)
- P2) Dado $f(x,y)=a^2xy^2-x^2y-3ay$, halle a para que $f'((1,1),\check{r})$ sea máxima si $\check{r}=\frac{\bar{r}}{\|r\|}$ con $\bar{r}=(2,1)$
- P3) Dada la superficie Σ parametrizada por $\emptyset(\rho,\theta)=(\rho cos\theta,\rho sen\theta,\rho^2)$, verifique que $(\sqrt[2]{2}/2,\sqrt[2]{2}/2,1)$ es punto regular de Σ y si lo es halle la ecuación del plano tangente a Σ en dicho punto y expréselo en forma cartesiana y paramétrica
- P4) Dada $z = x^2/y$ $si(x,y) \neq (x,0)$ y 0 en cualquier otro caso, analice continuidad, derivabilidad y diferenciabilidad en el origen.