Question Number	Answer		Mark
13(a)			4
	Use of eV to J conversion factor	(1)	
	• Use of $\Delta E = c^2 \Delta m$	(1)	
	• Determines mass of Z boson = 1.62×10^{-25} (kg)		
	Or mass of proton = 9.39×10^8 (eV/c ²)	(1)	
	Mass is 97 times greater	(1)	
	Example of calculation		
	$ \frac{1.62 \times 10^{-25} \text{ kg}}{1.67 \times 10^{-27} \text{kg}} = 1.62 \times 10^{-25} \text{ kg} $ $ \frac{1.62 \times 10^{-25} \text{ kg}}{1.67 \times 10^{-27} \text{kg}} $		
	1.62×10^{-25} kg		
	mass = $\frac{3}{1.67 \times 10^{-27} \text{kg}}$		
	mass = 97 times that of a proton		
	Alternative: mass of proton = $\frac{1.67 \times 10^{-27} \text{kg} \times (3 \times 10^8)^2 \text{ (m s}^{-1})^2}{1.6 \times 10^{-19} \text{JeV}^{-1}} = 0.939 \text{ GeV/c}^2$		
	$100 \times 0.939 \text{ GeV/c}^2 = 94 \text{ GeV/c}^2 \text{ which is just a bit more than mass of Z boson.}$		
13(b)	• Mass-energy is conserved Or refers to $\Delta E = c^2 \Delta m$	(1)	3
	Need for large amounts of energy to create a high-mass particle		
	Or Need more energy because mass of Z much greater than mass of	(4)	
	proton(s) [accept 97 times]	(1)	
	(Additional) energy comes from the <u>kinetic</u> energy of colliding particles	(1)	
13(c)	At speeds close to the speed of light	(1)	2
	there is a relativistic increase in lifetime	(4)	
	Or time dilation occurs [do not accept dilution]	(1)	
	Total for question 13		9