

Research Institute for Future Media Computing Institute of Computer Vision 未来媒体技术与研究所

计算机视觉研究所

多媒体系统导论 **Fundamentals of Multimedia System**

授课教师: 文嘉俊

邮箱: wenjiajun@szu.edu.cn

2024年春季课程

Outline of Lecture 06

- ◆ Introduction-简介
- ◆ Basics of Information Theory-信息论基础
- ◆ Run-Length Coding-游程编码
- ◆ Variable-Length Coding-变长编码
 - Shannon-Fano Algorithm-香农-凡诺算法
 - Huffman Coding-赫夫曼编码
 - Adaptive Huffman Coding-自适应赫夫曼编码
- ◆ Dictionary-Based Coding-基于字典的编码
- ◆ Arithmetic Coding-算术编码
- ◆ Lossless Image Compression-无损图像压缩
- ◆ Experiments-实验

◆ What is Compression-什么是压缩?

- ◆ What is Compression-什么是压缩?
 - The process of coding that will effectively reduce the total number of bits needed to represent certain information-
 - 有效地减少表示某种信息所需的比特总数的编码过程.

A General Data Compression Scheme.

一个通用的数据压缩方案

- ◆ What is Compression-什么是压缩?
 - If the compression and decompression processes induce no information loss, then the compression scheme is **lossless**; otherwise, it is **lossy.**
 - 如果压缩和解压过程无信息损失,则压缩方案是无损的, 否则是有损的.
 - Compression ratio-压缩率:

Compression Ratio =
$$\frac{B_0}{B_1}$$

 B_0 - number of bits before compression-压缩前比特数

 B_1 - number of bits after compression-压缩后比特数

Outline of Lecture 06

- ◆ Introduction-简介
- ◆ Basics of Information Theory-信息论基础
- ◆ Run-Length Coding-游程编码
- ◆ Variable-Length Coding-变长编码
 - Shannon-Fano Algorithm-香农-凡诺算法
 - Huffman Coding-赫夫曼编码
 - Adaptive Huffman Coding-自适应赫夫曼编码
- ◆ Dictionary-Based Coding-基于字典的编码
- ◆ Arithmetic Coding-算术编码
- ◆ Lossless Image Compression-无损图像压缩
- ◆ Experiments-实验

◆ Entropy-熵

- The *entropy* η of an information source with alphabet $S = \{s_1, s_2, \dots, s_n\}$ -一个具有符号集S的信息源的熵定义为:

 p_i - probability that symbol s_i will occur in S-符号 s_i 发生概率.

 $\log_2 \frac{1}{p_i}$ - indicates the amount of information (self-

information as defined by Shannon) contained in s_i , which corresponds to the number of bits needed to encode s_i -符号 s_i 包含的信息量(也称自信息),反映出编码 s_i 所需的比特位数.

◆ Entropy-熵

◆ Entropy-熵

很亲近: -0log0-1log1=0, 不亲近: -1log1-0log0=0, 不好说: (-0.5log0.5)+(-0.5log0.5)=1

熵是指所有可能发生事件中所包含信息的期望平均值

◆ Entropy-熵

- 实例: 一段电报中有四个字符S={A, B, C, D}, 其概率 分别为1/2, 1/6, 1/6, 1/6, 求各个字符需要多少位

来表示,总体需要多少位来表示?

$$H(S) = -\sum_{i=1}^{n} p_i \log_2 p_i$$

$$A: -\log_2 2^{-1} = 1$$

$$B: -\log_2 6^{-1} \approx 2.5850$$

$$C: -\log_2 6^{-1} \approx 2.5850$$

$$D: -\log_2 6^{-1} \approx 2.5850$$

$$H(S) = -1/2 \times \log_2 2^{-1} - 3 \times 1/6 \times \log_2 6^{-1}$$

$$\approx 1.7924$$

用ASCII传输需要多少位?

 $\log_2 \frac{1}{p_i}$ $4 \times \frac{1}{4} \times \log_2 \left| \frac{1}{\left(\frac{1}{2} \right)} \right|$

不采用编码技术四个状态需要多少个位?

◆ Entropy-熵

- The definition of entropy is aimed at identifying *often-occurring symbols* in the data stream as good candidates for *short codewords* in the compressed bitstream.
- 寻找高频率符号, 分配短码字.
- If a symbol occurs rarely, its probability $p_i = 1/100$ is low, and thus its self-information $\log_2 100$ is a relatively large number. This reflects the fact that it takes a longer bitstring to encode it.
- 低概率, 自信息大, 编码位长.

◆ Entropy-熵

$$\eta = \sum_{i=0}^{255} \frac{1}{256} \cdot \log_2 256 = 256 \cdot \frac{1}{256} \cdot \log_2 256 = 8$$

$$\eta = \frac{1}{3} \cdot \log_2 3 + \frac{2}{3} \cdot \log_2 \frac{3}{2}$$

$$= 0.33 \times 1.59 + 0.67 \times 0.59 = 0.52 + 0.40 = 0.92$$

(a) Histograms for Two Gray-level Images.

- ◆ Entropy and Code Length-熵和编码长度
 - The entropy η is a weighted sum of terms $\log_2 1/p_i$; hence it represents the *average amount of information* contained per symbol in the source S
 - 熵反映信息源S中字符的平均信息量.
 - Entropy specifies the *lower bound* for the average number of bits to code each symbol in *S.*
 - 熵指明了对S中每个符号进行编码所需的平均位数的下界.

$$\eta \leq \overline{l}$$

 \bar{l} the average length (measured in bits) of the codewords produced by the encoder-编码器码字平均长度. 理想的编码方法-尽量接近下界.

Outline of Lecture 06

- ◆ Introduction-简介
- ◆ Basics of Information Theory-信息论基础
- ◆ Run-Length Coding-游程编码
- ◆ Variable-Length Coding-变长编码
 - Shannon-Fano Algorithm-香农-凡诺算法
 - Huffman Coding-赫夫曼编码
 - Adaptive Huffman Coding-自适应赫夫曼编码
- ◆ Dictionary-Based Coding-基于字典的编码
- ◆ Arithmetic Coding-算术编码
- ◆ Lossless Image Compression-无损图像压缩
- ◆ Experiments-实验

Run-Length Coding-游程编码

◆ Run-Length Coding-游程编码

Run-Length Coding-游程编码

- ◆ Run-Length Coding-游程编码
 - It is one of the *simplest forms* of data compression.
 - The basic idea is that if the information source we wish to compress has the property that symbols tend to form *continuous groups*, instead of coding each symbol in the group individually, we can code *one such symbol* and *the length of the group-*字符连续出现,字符+连续出现长度.

Source: "dfffffeeeeettttrrrrttttt"

Coded Text: "d1f5e5t4r4t5"

- Binary Image-One dimension and Two dimension

- ◆ What is Compression-什么是压缩?-review
 - The process of coding that will effectively reduce the total number of bits needed to represent certain information-
 - 有效地减少表示某种信息所需的比特总数的编码过程.

A General Data Compression Scheme.

一个通用的数据压缩方案

- ◆ What is Compression-什么是压缩? -review
 - If the compression and decompression processes induce no information loss, then the compression scheme is **lossless**; otherwise, it is **lossy.**
 - 如果压缩和解压过程无信息损失,则压缩方案是无损的, 否则是有损的.
 - Compression ratio-压缩率:

Compression Ratio =
$$\frac{B_0}{B_1}$$

 B_0 - number of bits before compression-压缩前比特数

 B_1 - number of bits after compression-压缩后比特数

◆ Entropy-熵-review

– The *entropy* η of an information source with alphabet $S = \{s_1, s_2, \dots, s_n\}$ -一个具有符号集S的信息源的熵定义为:

$$\frac{y = \log_{a} x}{(a > 1)} \quad \eta = H(S) = \sum_{i=1}^{n} p_{i} \log_{2} \frac{1}{p_{i}}$$

$$y = \log_{a} x$$

$$(0 < a < 1) \qquad = -\sum_{i=1}^{n} p_{i} \log_{2} p_{i}$$

 p_i - probability that symbol s_i will occur in S-符号 s_i 发生概率. $\log_2 \frac{1}{p_i}$ - indicates **the amount of information** (self-information as defined by Shannon) contained in s_i , which corresponds to the number of bits needed to encode s_i -符号 s_i 包含的信息量(也称自信息),反映出编码 s_i 所需的比特 位数.

- ◆ Entropy and Code Length-熵和编码长度-review
 - The entropy η is a weighted sum of terms $\log_2 1/p_i$; hence it represents the *average amount of information* contained per symbol in the source S
 - 熵反映信息源S中字符的平均信息量.
 - Entropy specifies the *lower bound* for the average number of bits to code each symbol in *S.*
 - 熵指明了对S中每个符号进行编码所需的平均位数的下界.

$$\eta \leq \overline{l}$$

 \bar{l} the average length (measured in bits) of the codewords produced by the encoder-编码器码字平均长度. 理想的编码方法-尽量接近下界.

Run-Length Coding-游程编码

- ◆ Run-Length Coding-游程编码-review
 - It is one of the *simplest forms* of data compression.
 - The basic idea is that if the information source we wish to compress has the property that symbols tend to form *continuous groups*, instead of coding each symbol in the group individually, we can code *one such symbol* and *the length of the group-*字符连续出现,字符+连续出现长度.

Source: "dfffffeeeeettttrrrrttttt"

Coded Text: "d1f5e5t4r4t5"

- Binary Image-One dimension and Two dimension

Outline of Lecture 06

- ◆ Introduction-简介
- ◆ Basics of Information Theory-信息论基础
- ◆ Run-Length Coding-游程编码
- ◆ Variable-Length Coding-变长编码
 - Shannon-Fano Algorithm-香农-凡诺算法
 - Huffman Coding-赫夫曼编码
 - Adaptive Huffman Coding-自适应赫夫曼编码
- ◆ Dictionary-Based Coding-基于字典的编码
- ◆ Arithmetic Coding-算术编码
- ◆ Lossless Image Compression-无损图像压缩
- ◆ Experiments-实验

- ◆ Shannon-Fano Algorithm-香农-凡诺算法
 - A top-down approach-自顶向下方法.
 - a) Sort the symbols according to the frequency count of their occurrences-符号频率由大到小排序.
 - b) Recursively divide the symbols into two parts, each with approximately the same number of counts, until all parts contain only one symbol-迭代地将符号分成两部分,各部分中的符号频率的总和相近,直到所有的部分都只含有一个符号为止.
 - Binary tree with single symbol leaves-二叉树,叶结点为单个符号.

- ◆ Shannon-Fano Algorithm-香农-凡诺算法
 - An Example: coding of "HELLO"

Symbol	Н	E	L	0
Count	1	1	2	1

- ◆ Shannon-Fano Algorithm-香农-凡诺算法
 - An Example: coding of "HELLO"

$$\eta = p_L \cdot \log_2 \frac{1}{p_L} + p_H \cdot \log_2 \frac{1}{p_H} + p_E \cdot \log_2 \frac{1}{p_E} + p_O \cdot \log_2 \frac{1}{p_O}$$

$$= 0.4 \times 1.32 + 0.2 \times 2.32 + 0.2 \times 2.32 + 0.2 \times 2.32 = 1.92$$
E:(1)
O:(1)

Symbol	Count	$\log_2 \frac{1}{p_i}$	Code	Number of bits used
L	2	1.32	0	2
Н	1	2.32	10	2
E	1	2.32	110	3
O	1	2.32	111	3
TOTAL numb	er of bits:			10

- ◆ Shannon-Fano Algorithm-香农-凡诺算法
 - Shannon-Fano algorithm is not necessarily unique-香农-凡诺算法结果不唯一.

Symbol	Count	$\log_2 \frac{1}{p_i}$	Code	Number of bits used
L	2	1.32	00	4
Н	1	2.32	01	2
E	1	2.32	10	2
O	1	2.32	11	2
TOTAL numb	10			

- ◆ Huffman Coding-赫夫曼编码
 - A bottom-up approach-自底向上方法.
 - **1. Initialization**: Put all symbols on a list sorted according to their frequency counts-符号列表降排序.
 - 2. Repeat until the list has only one symbol left-迭代:
 - a) From the list pick two symbols with the lowest frequency counts. Form a Huffman subtree that has these two symbols as child nodes and create a parent node-选频率 最小的两符号.
 - b) Assign the sum of the children's frequency counts to the parent and insert it into the list such that the order is maintained-频数之和作为父结点,父结点有序插入列表.
 - c) Delete the children from the list-列表中删除选择的符号.
 - **3. Assign a codeword** for each leaf based on the path from the root-根据根到叶的路径分配码字.

◆ Huffman Coding-赫夫曼编码

After initialization: L H E O

After iteration (a): L P1 H

After iteration (b): L P2

After iteration (c): P3

赫夫曼算法:(1+1+2+3+3)/5=2, 与下界接近

- ◆ Huffman Coding-赫夫曼编码
 - 试计算如下字符集的香农-凡诺和赫夫曼编码总位数.

Symbol	A	В	С	D	E
Count	15	7	6	6	5

香农-凡诺算法:89位

赫夫曼算法:87位

- ◆ Huffman Coding-赫夫曼编码
 - 香农-凡诺算法

A	В	С	D	Е
15	7	6	6	5

- ◆ Huffman Coding-赫夫曼编码
 - 香农-凡诺算法

A	В	С	D	Е	(39)
15	7	6	6	5	0 / 1
					$(22) \qquad (17)$
				0/	$1 \qquad 0 \qquad 1$
		A	: (1	5)	B: (7) C: (6) (11)
					0/\1
					D: (6) E: (5)

15	Α	00	2
7	В	01	2
6	С	10	2
6	D	110	3
5	Ε	111	3

 $15 \times 2 + 7 \times 2 + 6 \times 2 + 6 \times 3 + 5 \times 3 = 89$

- ◆ Huffman Coding-赫夫曼编码
 - 赫夫曼编码

A	В	С	D	Е
15	7	6	6	5

A	P1	В	С
15	11	7	6

A	P2	P1
15	13	11

◆ Huffman Coding-赫夫曼编码

- 赫夫曼编码

Р3	A
24	15

15	Α	0	1
7	В	111	3
6	С	110	3
6	D	101	3
5	Ε	100	3

- ◆ Huffman Coding-赫夫曼编码
 - 图像压缩应用

压缩率 (压缩比) =
$$\frac{B_0}{B_1}$$
 编码效率= $\frac{$ 熵}{平均码长}

使用赫夫曼编码后的平均码长

- ◆ Properties of Huffman Coding-赫夫曼编码特性
 - Unique Prefix Property: No Huffman code is a prefix of any other Huffman code precludes any ambiguity in decoding-唯一前缀性(0, 10, 110, 111).
 - **Optimality**: minimum redundancy code proved optimal for a given data model (i.e., a given, accurate, probability distribution): 最优性-最小冗余编码.
 - a) 两个频率最低字符:码长一样,码字最后一位不同.
 - b) 频率高,码字短.
 - c) 平均编码长度严格小于 $\eta + 1$:

$$\eta \le \bar{l} < \eta + 1$$

局限性:?1)单个字符编码;2)数据压缩前统计信息.

- ◆ Extended Huffman Coding-扩展赫夫曼编码
 - **Motivation**: All codewords in Huffman coding have integer bit lengths. It is wasteful when p_i is very large-符号编码整数位,近似1的概率也需1位.
 - Why not group several symbols together and assign a single codeword to the group as a whole?-符号组编码
 - **Extended Alphabet**: For alphabet $S = \{s_1, s_2, \dots, s_n\}$, if k symbols are grouped together, then the extended alphabet is:

$$S^{(k)} = \{ \underbrace{s_1 s_1 \dots s_1}^{k \text{ symbols}}, \ s_1 s_1 \dots s_2, \ \dots, \ s_1 s_1 \dots s_n, \ s_1 s_1 \dots s_2 s_1, \ \dots, \ s_n s_n \dots s_n \}$$

the size of the new alphabet $S^{(k)}$ is n^k -所有可能的组合.

- ◆ Extended Huffman Coding-扩展赫夫曼编码
 - It can be proven that the average # of bits for each symbol is -理论上下界:

$$\eta \le \overline{l} < \eta + \frac{1}{k}$$

- An improvement over the original Huffman coding, but not much $(\eta + 1 \rightarrow \eta + 1/k)$.
- **Problem**: If k is relatively large (e.g., $k \ge 3$), then for most practical applications where $n \gg 1$, n^k implies a huge symbol table -- impractical-扩展符号集过大.

◆ Extended Huffman Coding-扩展赫夫曼编码

- 实例:

Symbol	A	В	С
Probability	0.6	0.3	0.1

$$\eta = -\sum_{i} p_{i} \log_{2} p_{i} = -0.6 \times \log_{2} 0.6 - 0.3 \times \log_{2} 0.3 - 0.1 \times \log_{2} 0.1 \approx 1.2955.$$

$$A: 0; B: 10; C: 11$$

平均码长: $0.6 \times 1 + 0.3 \times 2 + 0.1 \times 2 = 1.4$ 位/符号

◆ Extended Huffman Coding-扩展赫夫曼编码

- 实例:

Symbol	A	В	С
Probability	0.6	0.3	0.1

$$\eta = -\sum_{i} p_i \log_2 p_i = -0.6 \times \log_2 0.6 - 0.3 \times \log_2 0.3 - 0.1 \times \log_2 0.1 \approx 1.2955.$$

A: 0; B: 10; C: 11

平均码长: $0.6 \times 1 + 0.3 \times 2 + 0.1 \times 2 = 1.4$ 位/符号

-扩展赫夫曼编码 k=2

Symbol	AA	AB	BA	CA	AC	BB	BC	СВ	CC
Probability	0.36	0.18	0.18	0.06	0.06	0.09	0.03	0.03	0.01

画出扩展赫夫曼编码的树型表示!

◆ Extended Huffman Coding-扩展赫夫曼编码

Symbo	l AA	AB	BA	CA	AC	BB	BC	СВ	CC
Probabili	ty 0.36	0.18	0.18	0.06	0.06	0.09	0.03	0.03	0.01
AA 0.36	0.36 AB 0.18	0.64 BA 0.18	0.0	0.12 CA	0.28 AC 06	BB 0.09	0.16 0.03	0.0 BC	0.0 ²

◆ Extended Huffman Coding-扩展赫夫曼编码

Symbol group	Probability	Codeword	Bitlength
AA	0.36	0	1
AB	0.18	100	3
BA	0.18	101	3
CA	0.06	1100	4
AC	0.06	1101	4
BB	0.09	1110	4
BC	0.03	11110	5
СВ	0.03	111110	6
CC	0.01	111111	6

Average =
$$0.5 \times (0.36 + 3 \times 0.18 + 3 \times 0.18 + 4 \times 0.06 + 4 \times 0.06 + 4 \times 0.09 + 5 \times 0.03 + 6 \times 0.03 + 6 \times 0.01) = 1.3350.$$

理论最小值: 1.2955, 赫夫曼编码: 1.4

若事先不知道概率值怎么办?

- ◆ Adaptive Huffman Coding-自适应赫夫曼编码
 - The Huffman algorithm requires *prior statistical knowledge* about the information source, and such information is often not available-需要先验统计信息.
 - The solution is to use *adaptive compression algorithms*. The probabilities are no longer based on prior knowledge but *on the actual data received* so far-不基于先验概率,而是当前收到的实际数据.
 - **Adaptive** As the probability distribution of the received symbols changes, symbols will be given new (longer or shorter) codes-概率变化,码字变化.

- ◆ Adaptive Huffman Coding-自适应赫夫曼编码
 - The statistics are gathered and updated dynamically as the data stream arrives-统计信息随着数据流的到达而动态地收集和更新.

```
ENCODER
-----
Initial_code();
while not EOF

{
    get(c);
    encode(c);
    update_tree(c);
}
DECODER
-----
Initial_code();
while not EOF

{
    decode(c);
    output(c);
    update_tree(c);
}
```

- ◆ Adaptive Huffman Coding-自适应赫夫曼编码
 - Initial_code: assigns symbols with some initially agreed upon codes, without any prior knowledge of the frequency counts-分配共识码字,不含先验知识.
 - Update_tree: constructs an Adaptive Huffman tree.
 - It basically does two things:
 - a) increments the frequency counts for the symbols (including any new ones)-字符频率更新.
 - b) updates the configuration of the tree-树更新.
 - The encoder and decoder must use **exactly the same initial_code and update_tree** routines-初始码字和 树更新完全相同.

- ◆ Adaptive Huffman Coding-自适应赫夫曼编码
 - Nodes are numbered in order from left to right, bottom to top. The numbers in parentheses indicates the count-从左至右,从底至上顺序编号.
 - The tree must always maintain its *sibling property*, i.e., all nodes (internal and leaf) are arranged in the order of increasing counts-赫夫曼树保持计数递增的兄弟特性.
 - If the sibling property is about to be violated, a swap procedure is invoked-违反兄弟特性,节点交换.
 - When a swap is necessary, the farthest node with count *N* is swapped with the node whose count has just been increased to *N*+1-计数增加节点交换至最远原相同值结点.

◆ Adaptive Huffman Coding-自适应赫夫曼编码

当前赫夫曼树

接收字符A

顺序编号、兄弟特性

违反特性、节点交换

◆ Adaptive Huffman Coding-自适应赫夫曼编码

整枝下移

(c-1) A swap is needed after receiving 3rd 'A'

计数更新,保持次序 (c-2) Another swap is needed

9. (11) 8. (6) 5. A:(3) 6. (3) 4. (2) 1. D:(1) 2. B:(1)

整树更新、多次交换、自底向上

◆ Adaptive Huffman Coding-自适应赫夫曼编码

- 实例:字符串AADCCDD的自适应赫夫曼编码

- Initial_code:约定初始编码

Symbol	Initial code
NEW	0
A	00001
В	00010
С	00011
D	00100
:	:

- An additional rule: if any character/symbol is to be sent the first time, it must be preceded by a special symbol, NEW. The initial code for NEW is 0-每个新字符发送特殊符号NEW,编码为0,计数始终为0.

◆ Adaptive Huffman Coding-自适应赫夫曼编码

Symbol	NEW	A
Code	0	00001

◆ Adaptive Huffman Coding-自适应赫夫曼编码

NEW	С	С
00	00011	001

◆ Adaptive Huffman Coding-自适应赫夫曼编码

Symbol	NEW	A	A	NEW	D	NEW	С	С	D	D
Code	0	00001	1	0	00100	00	00011	001	101	101

Sequence of symbols and codes sent to the decoder 发送给解码器的编码序列

Experiments & Class Assignments

- Experiments
 - Huffman Coding--ch07_huffman_coding_demo.m
- ◆ Class Assignments (作为作业提交)
 - 1、给定字符集S={A(15), B(7), C(6), D(6), E(5)}, 利用香农-凡诺和赫夫曼算法计算编码树,并求各算法的编码总位数。
 - 2、给定字符集S={a,b,c,d},约定初始编码a=00,b=01,c=10,d=11,画出传送字符串"aabbbacc"的自适应赫夫曼树及二进制编码。