Linear Algebra

Question 1

Let two matrices be

$$A = \begin{bmatrix} 1 & -1 \\ -2 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 3 \\ 5 & 8 \end{bmatrix}$

What is A + B?

- $\boxed{\begin{array}{c|c} \boxed{1} & -1 \\ 3 & 9 \end{array}}$
- $\begin{bmatrix}
 1 & -1 \\
 7 & 9
 \end{bmatrix}$
- $\begin{bmatrix}
 1 & 7 \\
 7 & 9
 \end{bmatrix}$
- $\begin{bmatrix}
 1 & -7 \\
 -7 & -7
 \end{bmatrix}$

To add two matrices, add them element-wise.

Question 2

Let
$$x = \begin{bmatrix} 8 \\ 2 \\ 5 \\ 1 \end{bmatrix}$$

What is 2 * x?

- $\begin{bmatrix} 4 \\ 1 \\ \frac{5}{2} \\ \frac{1}{2} \end{bmatrix}$
- $\begin{array}{|c|c|}
 \hline
 & 16 \\
 & 4 \\
 & 10 \\
 & 2 \\
 \end{array}$
- \square [16 4 10 2]

To multiply the vector x by 2, take each element of x and multiply that element by 2.

Question 3

Let u be a 3-dimensional vector, where specifically

$$u = egin{bmatrix} 2 \ 1 \ 8 \end{bmatrix}$$

What is u^T ?

- \square [8 1 2]
- $\begin{bmatrix} 2 \\ 1 \\ 8 \end{bmatrix}$
- $\begin{bmatrix}
 8 \\
 1 \\
 2
 \end{bmatrix}$

Question 4

Let u and v be 3-dimensional vectors, where specifically

$$u = \begin{bmatrix} 4 \\ -4 \\ -3 \end{bmatrix}$$

and

$$u = \begin{bmatrix} 4 \\ 2 \\ 4 \end{bmatrix}$$

What is $u^T v$?

(Hine: \boldsymbol{u}^T is a

 1×3 dimensional matrix, and v can also seen as a 3×1

matrix. The answer you want can be obtained by taking

the matrix product of \boldsymbol{u}^T and \boldsymbol{v} .) Do not add brackets to your answer.

-4

Question 5

Let A and B be 3×3 (square) matrices. Which of the following

must necessarily hold true? Check all that apply.

lacksquare If B is the 3 imes 3 identity matrix, then A*B=B*A

Even though matrix multiplication is not commutative in general $(A*B \neq B*A)$ for general matrices A, B, for the special case where B = I, we have A*B = A*I = A, and also B*A = I*A = A. So A*B = B*A.

- ightharpoonup If <math>C = B*A, then C is a 3×3 matrix.

Since A and B are both 3×3 matrices, their product is 3×3 . More generally, if A were an $m\times n$ matrix, and B a $n\times o$ matrix, then C would be $m\times o$. (In our example, m=n=o=3.)