432 Class 10

https://thomaselove.github.io/432-2023/

2023-02-16

Today's Agenda

Fitting and evaluating logistic regression models with 1rm

- The framingham example
 - Outcome: chd10 = Developed coronary heart disease in next 10 years?
 - Creating "complete case" data: fram_cc
 - Single Imputation of Missing Values: fram_sh
- Use 1rm to predict chd10 using glucose, smoker, sbp and educ
 - on the complete cases (fram_cc)
 - accounting for missingness via single imputation (fram_sh)
 - accounting for missingness via multiple imputation
- Consider adding non-linear terms, refit and re-evaluate

Today's R Setup

```
knitr::opts chunk$set(comment = NA)
library(janitor)
library(knitr)
library(naniar)
library(simputation)
library(ROCR)
library(rms)
library(tidyverse)
theme_set(theme_bw())
```

Section 1

The "Framingham" Data

The Data

See https://www.framinghamheartstudy.org/ for more details.

 This particular data set, purportedly from the Framingham study, has been used by lots of people, in varied settings, with variations all over the net. I don't know who the originators were.

Data Cleanup

```
fram <- fram_raw |>
   mutate(educ =
               fct_recode(factor(education),
                          "Some HS'' = "1".
                          "HS grad" = "2",
                          "Some Coll" = "3",
                           "Coll grad" = "4")) |>
    rename(smoker = "current smoker",
           cigs = "cigs per day",
           stroke = "prevalent stroke",
           highbp = "prevalent hyp",
           chol = "tot chol".
           sbp = "sys bp", dbp = "dia bp",
           hrate = "heart_rate",
           chd10 = "ten_year_chd") |>
    select(subj_id, chd10, educ, glucose, sbp, smoker,
           everything()) |> select(-education)
```

Data Descriptions (Main Variables Today)

The variables describe n=4238 adults examined at baseline, then followed for 10 years to see if they developed incident coronary heart disease.

The main variables we'll use today in developing outcome models are:

Variable	Description
subj_id	identifying code added by Dr. Love
chd10	1=coronary heart disease in next 10 years
educ	four-level factor: educational attainment
glucose	blood glucose level in mg/dl
sbp	systolic blood pressure (mm Hg)
smoker	$1 = {\sf current \; smoker \; at \; time \; of \; examination, \; else \; 0}$

Data Descriptions (Other 11 variables)

Here are the other 11 variables in the fram data.

Variable	Description
male	$1={\sf subject}$ is male, else 0
age	in years (range is 32 to 70)
cigs	number of cigarettes smoked per day
bp_meds	1 = using anti-hypertensive medication at time of exam
stroke	$1 = history\ of\ stroke,\ else\ 0$
highbp	$1=under\ treatment\ for\ hypertension,\ else\ 0$
diabetes	1 = history of diabetes, else 0
chol	total cholesterol (mg/dl)
dbp	diastolic blood pressure (mm Hg)
bmi	body mass index in kg/m^2
hrate	heart rate in beats per minute

Missing Data?

Our outcome chd10 has no missing values.

- 3656 (86.3%) of the 4238 subjects in the fram data are complete.
- The remaining 582 observations have something missing.

```
n_case_complete(fram); pct_complete_case(fram)
```

- [1] 3656
- [1] 86.26711

Which variables are missing data?

gg_miss_var(fram)

Counts of Missing Data, by Variable

```
miss_var_summary(fram) |>
  filter(n_miss > 0)
```

```
# A tibble: 7 \times 3
 variable n_miss pct_miss
 <chr>
           <int> <dbl>
1 glucose
             388 9.16
2 educ
          105 2.48
3 bp_meds
          53
                  1.25
            50
                   1.18
4 chol
5 cigs
              29
                  0.684
              19
6 bmi
                  0.448
                  0.0236
7 hrate
```

Single Imputation

We will impute:

- 5 quantitative variables (glucose, bmi, cigs, chol and hrate)
- 1 binary variable (bp_meds), and
- 1 multi-categorical variable (educ)

```
fram sh <- bind shadow(fram)</pre>
fram_sh <- fram_sh |>
    data.frame() |>
    impute_pmm(bp_meds ~ highbp + sbp + dbp) |>
    impute_cart(educ ~ age + smoker + male) |>
    impute_pmm(cigs ~ smoker) |>
    impute rlm(glucose + chol + hrate + bmi ~
                sbp + diabetes + age + highbp + stroke) |>
    tibble()
```

Check multi-categorical single imputation?

```
fram_sh |> count(educ_NA, educ)
```

```
# A tibble: 6 x 3
educ_NA educ n
<fct> <fct> <fct> <int>
1 !NA Some HS 1720
2 !NA HS grad 1253
3 !NA Some Coll 687
4 !NA Coll grad 473
5 NA Some HS 80
6 NA HS grad 25
```

Do the values seem reasonable?

Data Sets for the rest of our work

- fram_start includes all 4238 rows and the 6 columns we'll use, including 388 rows missing glucose and 105 missing educ.
- fram_cc includes only the 3753 complete rows on the 6 columns.
- fram_sh uses single imputation to get 4238 complete rows, on 8 columns, including the useful missingness indicators.

Modeling Plan

Use 1rm to fit a four-predictor logistic regression model to predict chd10 using glucose, smoker, sbp and educ

- Using the complete cases (fram_cc)
- Accounting for missingness via single imputation (fram_sh)
- Accounting for missingness via multiple imputation

Then, we'll consider adding several non-linear terms to the "four-predictor" models, and refit.

Section 2

Fitting a Four-Predictor Model using Complete Cases

A "Four Predictor" model

First, we'll use the fram_cc data to perform a complete-case analysis and fix ideas.

This works very nicely when $\mathtt{chd10} = 1$ (for Yes) or 0 (for No), as it does here. What if your outcome was actually a factor with values Yes and No? Use the following...

Main Output for mod_cc

```
Logistic Regression Model
 lrm(formula = chd10 ~ glucose + smoker + sbp + educ, data = fram_cc,
    x = TRUE. y = TRUE
                      Model Likelihood
                                         Discrimination
                                                          Rank Discrim.
                            Ratio Test
                                                Indexes
                                                               Indexes
Obs
                               223.29
             3753
                    LR chi2
                                         R2
                                                 0.100
                                                          С
                                                                 0.682
 0
             3174
                    d.f.
                                         a
                                                 0.689
                                                          Dxv
                                                                 0.363
                    Pr(> chi2) <0.0001
 1
              579
                                         gr
                                                 1.992
                                                          gamma
                                                                 0.364
 max |deriv| 2e-11
                                                 0.092
                                                          tau-a
                                                                 0.095
                                         ap
                                                 0.122
                                         Brier
                      S.E. Wald Z Pr(>|Z|)
              Coef
 Intercept
              -5.5622 0.3217 -17.29 <0.0001
 alucose
        0.0081 0.0016 4.93 < 0.0001
 smoker 0.3126 0.0955 3.27 0.0011
             0.0237 0.0020 12.05 < 0.0001
ada
 educ=HS grad -0.4674 0.1157 -4.04 <0.0001
 educ=Some Coll -0.3924 0.1423 -2.76 0.0058
 educ=Coll grad -0.1356 0.1549 -0.88 0.3815
```

- We'll walk through these summaries in the next few slides.
- Notes Section 21.2 provides additional details.

Deconstructing the mod_cc summaries (1/5)

- Obs = The number of observations used to fit the model, with 0 = the number of zeros and 1 = the number of ones in our outcome, chd10.
- Also specified is the maximum absolute value of the derivative at the point where the maximum likelihood function was estimated.

All you're likely to care about is whether the iterative function-fitting process converged, and R will warn you in other ways if it doesn't.

Deconstructing the mod_cc summaries (2/5)

```
Model Likelihood
Ratio Test
LR chi2 223.29
d.f. 6
Pr(> chi2) <0.0001
```

- This is a global likelihood ratio test (drop in deviance test.)
- Likelihood Ratio χ^2 statistic = null deviance residual deviance
 - ullet d.f. = null degrees of freedom residual degrees of freedom
- \bullet Pr(> chi2) is a p value obtained from comparison to a χ^2 distribution with appropriate d.f.

It's not saying much to suggest that some part of this logistic regression model has some detectable predictive value.

 The null hypothesis here (that the model has no predictive value at all) is rarely interesting in practical work.

Deconstructing the mod_cc summaries (3/4)

```
Coef S.E. Wald Z Pr(>|Z|)
Intercept -5.5622 0.3217 -17.29 <0.0001
glucose 0.0081 0.0016 4.93 <0.0001
smoker 0.3126 0.0955 3.27 0.0011
sbp 0.0237 0.0020 12.05 <0.0001
educ=HS grad -0.4674 0.1157 -4.04 <0.0001
educ=Some Coll -0.3924 0.1423 -2.76 0.0058
educ=Coll grad -0.1356 0.1549 -0.88 0.3815
```

- How does each predictor appear to relate to 10-year risk?
 - Which is the baseline educ category?
 - Remember that these estimates are on the logit scale.
 - See the effect size discussion linked in today's README.

Plot of Effects using mod_cc

plot(summary(mod_cc))

Effect Size Summary for mod_cc

Effects			Respon	se : chd1	0		
Factor	Low	High	Diff.	Effect	S.E.	Lower 0.95	Upper 0.95
glucose	71	87	16	0.12912	0.026171	0.077828	0.18041
Odds Ratio	71	87	16	1.13780	NA	1.080900	1.19770
smoker	0	1	1	0.31259	0.095453	0.125510	0.49968
Odds Ratio	0	1	1	1.36700	NA	1.133700	1.64820
sbp	117	144	27	0.63907	0.053053	0.535080	0.74305
Odds Ratio	117	144	27	1.89470	NA	1.707600	2.10230
educ - HS grad:Some HS	1	2	NA	-0.46740	0.115720	-0.694220	-0.24059
Odds Ratio	1	2	NA	0.62663	NA	0.499470	0.78616
educ - Some Coll:Some HS	1	3	NA	-0.39238	0.142310	-0.671310	-0.11346
Odds Ratio	1	3	NA	0.67544	NA	0.511040	0.89274
educ - Coll grad:Some HS	1	4	NA	-0.13556	0.154910	-0.439180	0.16806
Odds Ratio	1	4	NA	0.87323	NA	0.644570	1.18300

Predict results for mod_cc

Deconstructing the mod_cc summaries (4/4)

Discrin	nination	Rank Discrim.		
	Indexes	Indexes		
R2	0.100	С	0.682	
g	0.689	Dxy	0.363	
gr	1.992	gamma	0.364	
gp	0.092	tau-a	0.095	
Brier	0.122			

The key indexes for our purposes are:

- ullet Nagelkerke \mathbb{R}^2 , symbolized $\mathbb{R}2$ here.
- The Brier score, symbolized Brier.
- The area under the ROC curve, or C statistic, shown as C.
- Somers' d statistic, symbolized Dxy here.

Let's walk through each of those, in turn.

Key Indexes (Nagelkerke R^2)

• In our model, Nagelkerke $R^2=0.100$

There are at least three ways to think about \mathbb{R}^2 in linear regression, but when you move to a categorical outcome, not all of those ways can be expressed in the same statistic. See our Course Notes Section 21.2 for details.

The Nagelkerke R^2 :

- reaches 1 if the fitted model shows as much improvement as possible over the null model (which just predicts the mean response on the 0-1 scale for all subjects).
- is 0 for the null model
- is larger (closer to 1) as the fitted model improves, although it's been criticized for being misleadingly high,
- AND a value of 0.100 no longer means 10% of anything.

A value of 0.100 indicates a model of pretty poor quality.

An Alternative: McFadden's \mathbb{R}^2

Consider the McFadden R-square, which can be defined as 1 minus the ratio of (the model deviance over the deviance for the intercept-only model.)

To obtain this for our mod_cc run with lrm, we can use:

```
1 - (mod_cc$deviance[2] / mod_cc$deviance[1])
```

[1] 0.069174

This McFadden \mathbb{R}^2 corresponds well to the proportionate reduction in error interpretation of an \mathbb{R}^2 , but some people don't like it as well.

Key Indexes (Brier Score = 0.122)

- The lower the Brier score, the better the predictions are calibrated.
- The maximum (worst) score is 1, the best is 0.

From Wikipedia: Suppose you're forecasting the probability P that it will rain on a given day.

- If the forecast is P = 1 (100%) and it rains, the Brier Score is 0.
- If the forecast is $P=1\ (100\%)$ and it doesn't rain, the Brier Score is 1.
- If the forecast is P=0.7 and it rains, $Brier=(0.70-1)^2=0.09$.
- \bullet If the forecast is P = 0.3 and it rains, $\mathrm{Brier} = (0.30-1)^2 = 0.49.$
- If the forecast is P = 0.5, the Brier score is $(0.50-1)^2=0.25$ regardless of whether it rains.

The Brier score can also be decomposed to assess calibration and discrimination separately.

Receiver Operating Characteristic Curve Analysis

One way to assess the predictive accuracy within the model development sample in a logistic regression is to consider analyses based on the receiver operating characteristic (ROC) curve. ROC curves are commonly used in assessing diagnoses in medical settings, and in signal detection applications.

The accuracy of a test can be evaluated by considering two types of errors: false positives and false negatives.

See Section 20.10 of our Course Notes for more details.

The C statistic (area under ROC curve) = 0.682

The C statistic and Somers' d (Dxy) are connected:

$$C = 0.5 + \frac{d}{2}, d = 2(C - .5)$$

The C statistic ranges from 0 to 1.

- ullet C = 1 indicates a perfect prediction model, one that guesses "yes" for all patients with chd10 = 1 and which guesses "no" for all patients with chd10 = 0.
- Most of the time, the closer to 1, the happier we are:
 - $C \ge 0.8$ usually indicates a moderately strong model (good discrimination)
 - ullet $C \geq 0.9$ indicates a very strong model (excellent discrimination)

So 0.682 isn't good.

ROC Curve for our mod_cc

Code for Previous Slide

```
## requires ROCR package
prob <- predict(mod cc, type="fitted")</pre>
pred <- prediction(prob, fram cc$chd10)</pre>
perf <- performance(pred, measure = "tpr", x.measure = "fpr")</pre>
auc <- performance(pred, measure="auc")</pre>
auc <- round(auc@y.values[[1]],3)</pre>
roc.data <- data.frame(fpr=unlist(perf@x.values),</pre>
                        tpr=unlist(perf@v.values),
                        model="GLM")
ggplot(roc.data, aes(x=fpr, ymin=0, ymax=tpr)) +
    geom_ribbon(alpha=0.2, fill = "blue") +
    geom line(aes(y=tpr), col = "blue") +
    geom abline(intercept = 0, slope = 1, lty = "dashed") +
    labs(title = paste0("Model A: ROC Curve w/ AUC=", auc))
```

ROC Curve for a Simple Model (glucose only)

Validate Summary Statistics for mod_cc

 Usual approach (as in ols) to correcting for over-optimism through bootstrap validation, now using 50 bootstrap resamples instead of 40.

```
set.seed(432)
validate(mod_cc, B = 50)
```

```
index.orig training
                               test optimism index.corrected
Dxy
             0.3634
                      0.3655
                              0.3583
                                      0.0072
                                                      0.3562 50
R2
             0.1001
                      0.1007
                              0.0977
                                      0.0029
                                                      0.0972 50
             0.0000
                     0.0000 -0.0196
                                      0.0196
Intercept
                                                     -0.0196 50
Slope
             1.0000
                     1.0000
                             0.9873
                                     0.0127
                                                      0.9873 50
Emax
             0.0000
                     0.0000
                             0.0064
                                     0.0064
                                                      0.0064 50
             0.0592
                     0.0596
                             0.0578
                                      0.0018
                                                      0.0574 50
                     -0.0005
                                     -0.0006
            -0.0005
                             0.0000
                                                      0.0000 50
             0.0598
                     0.0601
                             0.0577
                                     0.0024
                                                     0.0574 50
                     0.1215 0.1219
             0.1216
                                     -0.0004
                                                     0.1220 50
             0.6892
                     0.6933
                             0.6829
                                      0.0105
                                                      0.6787 50
             0.0917
                      0.0918
                              0.0907
                                      0.0011
                                                      0.0906 50
```

- Summaries we'll focus on here are Dxy, R2 and B
- Remember that $C=0.5+\frac{Dxy}{2}$, so our validated C statistic would be 0.5+(0.3562/2)=0.6781

ANOVA for mod_cc

Model mod_cc uses 6 degrees of freedom.

anova(mod_cc)

Wald Statistics

Response: chd10

```
Factor
          Chi-Square d.f. P
           24.34
                          <.0001
glucose
smoker
           10.72
                          0.0011
          145.10
sbp
                          <.0001
educ
           19.45
                     3
                          0.0002
TOTAL.
          208.87
                          < .0001
```

ANOVA for Model mod_cc

plot(anova(mod_cc))

Nomogram for mod_cc

Section 3

Using the Singly Imputed Data to fit the 4-predictor Model

Fit mod_si which is mod_cc after single imputation

Model mod_si with single imputation

```
Logistic Regression Model
 lrm(formula = chd10 ~ glucose + smoker + sbp + educ, data = fram_sh,
     x = TRUE, y = TRUE
                       Model Likelihood
                                           Discrimination
                                                             Rank Discrim.
                             Ratio Test
                                                  Indexes
                                                                   Indexes
 Obs
                      LR chi2
                                 238.36
                                           R2
                                                    0.095
                                                             С
                                                                     0.677
             4238
                     d.f.
  0
             3594
                                      6
                                           а
                                                    0.673
                                                             Dxv
                                                                     0.354
              644
                      Pr(> chi2) <0.0001
                                                    1.961
                                                                     0.354
                                           gr
                                                             gamma
 max |deriv| 4e-12
                                           ap
                                                    0.089
                                                             tau-a
                                                                     0.091
                                           Brier
                                                    0.121
               Coef
                       S.E.
                              Wald Z Pr(>|Z|)
 Intercept
                -5.5649 0.3068 -18.14 < 0.0001
 alucose
              0.0086 0.0016 5.32 < 0.0001
 smoker
              0.3205 0.0901 3.56 0.0004
 sbp
             0.0231 0.0019 12.40 < 0.0001
 educ=HS grad -0.4707 0.1098 -4.29 <0.0001
 educ=Some Coll -0.3055 0.1336 -2.29 0.0222
 educ=Coll grad -0.0816 0.1470 -0.56 0.5787
```

Comparing the Coefficients (exponentiated)

• Comparing the slopes as odds ratios

```
round_half_up(exp(mod_cc$coefficients),3)
```

```
Intercept glucose smoker sbp 0.004 1.008 1.367 1.024 educ=Some Coll educ=Coll grad 0.675 0.873
```

```
round_half_up(exp(mod_si$coefficients),3)
```

```
Intercept glucose smoker sbp
0.004 1.009 1.378 1.023
educ=Some Coll educ=Coll grad
0.737 0.922
```

Edited Summaries Comparing The Models

Summary	mod_si value	mod_cc value
Obs	4238	3753
0	3594	3174
1	644	579
Nagelkerke \mathbb{R}^2	0.095	0.100
Brier Score	0.121	0.122
C	0.677	0.682
Dxy	0.354	0.363

• All of these results came from

mod_cc
mod_si

Validate mod_si Summary Statistics

```
set.seed(432)
validate(mod_si, B = 50)
```

	index.orig	training	test	optimism	index.corrected	n
Dxy	0.3538	0.3555	0.3496	0.0058	0.3480	50
R2	0.0954	0.0966	0.0933	0.0033	0.0921	50
Intercept	0.0000	0.0000	-0.0256	0.0256	-0.0256	50
Slope	1.0000	1.0000	0.9860	0.0140	0.9860	50
Emax	0.0000	0.0000	0.0079	0.0079	0.0079	50
D	0.0560	0.0568	0.0548	0.0021	0.0539	50
U	-0.0005	-0.0005	0.0000	-0.0005	0.0000	50
Q	0.0565	0.0573	0.0548	0.0026	0.0539	50
В	0.1206	0.1207	0.1208	-0.0001	0.1207	50

• Again, $C=0.5+\frac{Dxy}{2}$, so the corrected C statistic estimate will be 0.5+(0.348/2)=0.674

Plot of Effects using mod_si

plot(summary(mod_si))

Predict results for mod_si

Nomogram for mod_si

50 10 20 70 80 100 **Points** glucose 150 100 150 200 250 300 350 400 smoker ada 120 140 160 180 200 220 240 260 280 300 educ HS grad Total Points 20 40 60 80 100 120 140 160 Linear Predictor -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 Pr(CHD) 0.2 0.3 0.4 0.5 0.6 0.7 0.05 0.1 0.8 0.9 0.95

• fun.at used to show us specific Pr(CHD) cutpoints

Section 4

Using Multiple Imputation: The 4-predictor Model

Fit the Imputation Model first

We'll use aregImpute here, and create 30 imputed sets.

```
set.seed(432)
dd <- datadist(fram)
options(datadist = "dd")

fit_imp <-
    aregImpute(~ chd10 + glucose + smoker + sbp + educ,
        nk = c(0, 3:5), tlinear = FALSE, data = fram,
        B = 10, n.impute = 30)</pre>
```

```
Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5
Iteration 6
Iteration 7
```

Imputation Results (abbreviated output)

```
Multiple Imputation using Bootstrap and PMM
aregImpute(formula = ~chd10 + glucose + smoker + sbp + educ,
   data = fram, n.impute = 30, nk = c(0, 3:5), tlinear = FALSE,
   B = 10)
        p: 5 Imputations: 30 nk: 0
n: 4238
Number of NAs:
  chd10 glucose smoker
                       sbp
                                 educ
     0
           388
                                  105
R-squares for Predicting Non-Missing Values for Each Variable
Using Last Imputations of Predictors
alucose educ
  0.046
         0.024
```

Multiply Imputed Values, via plot(fit_imp)

What do we need to do our multiple imputation?

• Imputation Model

Outcome Model will be of the following form...

```
lrm(chd10 ~ glucose + smoker + sbp + educ,
    x = TRUE, y = TRUE)
```

Fitting mod_mi (mod_cc with multiple imputation)

- data = fram_start (which includes NA values)
- xtrans = fit_imp (results from multiple imputation)
- fitter = lrm (we could actually use glm too)
- pr = FALSE avoids a long printout we don't need

Model mod_mi with multiple imputation

```
Logistic Regression Model
 fit.mult.impute(formula = chd10 ~ glucose + smoker + sbp + educ,
    fitter = 1rm, xtrans = fit_imp, data = fram_start, pr = FALSE,
    x = TRUE. y = TRUE
                                           Discrimination
                       Model Likelihood
                                                            Rank Discrim.
                             Ratio Test
                                                  Indexes
                                                                  Indexes
Obs
             4238
                     LR chi2
                                 237.84
                                           R2
                                                   0.095
                                                            C
                                                                    0.677
  0
             3594
                     d.f.
                                                   0.670
                                                            DXV
                                                                    0.354
                                           g
              644
                     Pr(> chi2) <0.0001
                                                   1.955
                                                                    0.354
                                           ar
                                                             aamma
 max |deriv| 2e-11
                                                   0.088
                                                                    0.091
                                           gр
                                                            tau-a
                                                   0.121
                                           Brier
               Coef
                       S.E. Wald Z Pr(>|Z|)
 Intercept
               -5.5542 0.3083 -18.02 < 0.0001
 alucose
               0.0083 0.0016 5.12 < 0.0001
 smoker
              0.3188 0.0902 3.54 0.0004
 ada
          0.0232 0.0019 12.40 < 0.0001
 educ=HS grad -0.4551 0.1120 -4.06 <0.0001
 educ=Some Coll -0.3002 0.1340 -2.24 0.0251
 educ=Coll grad -0.0845 0.1478 -0.57 0.5674
```

Comparing the Coefficients (exponentiated)

• I'll just compare the two models using imputation...

```
round_half_up(exp(mod_mi$coefficients),3)
```

```
Intercept glucose smoker sbp
0.004 1.008 1.376 1.023
educ=Some Coll educ=Coll grad
0.741 0.919
```

```
round_half_up(exp(mod_si$coefficients),3)
```

```
Intercept glucose smoker sbp
0.004 1.009 1.378 1.023
educ=Some Coll educ=Coll grad
0.737 0.922
```

Plot of Effects using mod_mi

plot(summary(mod_mi))

Edited Summaries Comparing Our 3 Models

Summary	mod_mi value	mod_si value	mod_cc value
Obs	4238	4238	3753
0	3594	3594	3174
1	644	644	579
Nagelkerke \mathbb{R}^2	0.095	0.095	0.100
Brier Score	0.121	0.121	0.122
C	0.677	0.677	0.682
Dxy	0.354	0.354	0.363

- It's just a coincidence that the mod_mi and mod_si values are identical to the level of precision provided in this table.
- What might cause the values to look meaningfully different?

Validate mod_mi Summary Statistics

```
set.seed(432)
validate(mod_mi, B = 50)
```

```
index.orig training test optimism index.corrected
             0.3535
                     0.3551
                             0.3493
                                      0.0058
Dxy
                                                     0.3477 50
R2
             0.0952
                     0.0958
                             0.0925
                                      0.0033
                                                     0.0919 50
Intercept 0.0000
                     0.0000 -0.0259
                                      0.0259
                                                    -0.0259 50
Slope
        1.0000
                     1.0000
                             0.9858
                                      0.0142
                                                     0.9858 50
                                      0.0080
Emax
             0.0000
                     0.0000
                             0.0080
                                                     0.0080 50
D
             0.0559 0.0564
                             0.0543
                                      0.0021
                                                     0.0538 50
U
            -0.0005
                     -0.0005
                             0.0000
                                     -0.0005
                                                     0.0000 50
Q
B
             0.0564
                     0.0569
                             0.0543
                                      0.0026
                                                     0.0538 50
             0.1207
                     0.1208
                             0.1209
                                     -0.0001
                                                     0.1208 50
```

• Optimism-corrected C statistic estimate is 0.5 + (0.3477/2) = 0.674

Predict results for mod_mi

ggplot(Predict(mod_mi, fun = plogis))

Nomogram for mod_mi

Section 5

Considering Non-Linear Terms

Spearman ρ^2 Plot

Adding some non-linear terms

- We'll add a restricted cubic spline with 5 knots in sbp
- and an interaction between the educ factor and the linear effect of sbp,
- and a quadratic polynomial in glucose

to our main effects model, just to show how to do them...

• I'll just show the results including the multiple imputation, since if you can get those, you should have little difficulty instead applying the single imputation or the complete case analysis.

mod_big incorporating multiple imputation

Our mod_big will incorporate several non-linear terms.

The mod_big model with non-linear terms

```
Logistic Regression Model
fit.mult.impute(formula = chd10 ~ rcs(sbp. 5) + pol(glucose.
    2) + smoker + educ + educ %ia% sbp, fitter = lrm, xtrans = fit_imp,
    data = fram_start, pr = FALSE, x = TRUE, y = TRUE)
                     Model Likelihood
                                        Discrimination
                                                          Rank Discrim.
                           Ratio Test
                                               Indexes
                                                               Indexes
0bs
            4238
                   LR chi2
                               245.28
                                        R2
                                                 0.098
                                                                 0.679
                                                          С
 0
            3594
                   d.f.
                                                 0.710
                                                                 0.357
                                   13
                                        g
                                                          DXV
             644
                   Pr(> chi2) <0.0001
                                                 2.034
                                                          aamma
                                                                 0.357
                                        ar
max |deriv| 0.02
                                                 0.092
                                                                 0.092
                                        ap
                                                         tau-a
                                        Brier
                                                 0.120
                     Coef
                            S.E.
                                  Wald Z Pr(>|Z|)
Intercept
                    -3.2646 2.1123 -1.55 0.1222
sbp
                     0.0034 0.0190 0.18 0.8565
sbp'
                     0.1756 0.1837 0.96 0.3390
sbp''
                    -0.5056 0.6402 -0.79 0.4296
sbp'''
                     0.3651 0.6492 0.56 0.5738
alucose
                     0.0061 0.0054 1.12 0.2612
alucose^2
                     0.0000 0.0000 0.45 0.6495
smoker
                    0.3218 0.0903 3.56 0.0004
educ=HS grad -0.4033 0.6438 -0.63 0.5310
educ=Some Coll -1.4405 0.8055 -1.79 0.0737
educ=Coll grad -1.1027 0.9379 -1.18 0.2397
educ=HS grad * sbp -0.0004 0.0045 -0.09 0.9246
 educ=Some Coll * sbp 0.0083 0.0057 1.44 0.1485
 educ=Coll grad * sbp 0.0075 0.0068 1.10 0.2697
```

mod_big vs. mod_mi comparison

Summary	mod_big	mod_mi
Obs	4238	4238
0	3594	3594
1	644	644
Nagelkerke \mathbb{R}^2	0.098	0.095
Brier Score	0.120	0.121
C	0.679	0.677
Dxy	0.357	0.354

ROC Curve for mod_big

What does ANOVA suggest about the fit?

Wald Statistics	Response:	chd10	
Factor	Chi-Squ	are d.f.	Р
sbp (Factor+Higher Order Factors)	160.07	7	<.0001
All Interactions	3.24	3	0.3557
Nonlinear	3.03	3	0.3869
glucose	25.92	2	<.0001
Nonlinear	0.21	1	0.6495
smoker	12.71	1	0.0004
educ (Factor+Higher Order Factors)	21.68	6	0.0014
All Interactions	3.24	3	0.3557
educ * sbp (Factor+Higher Order Factors)	3.24	3	0.3557
TOTAL NONLINEAR	3.18	4	0.5280
TOTAL NONLINEAR + INTERACTION	7.14	7	0.4145
TOTAL	222.84	13	<.0001

plot(anova(mod_big)) (model includes 13 df)

plot(anova(mod_big))

Validate mod_big Summary Statistics

```
set.seed(432)
validate(mod_big, B = 50)
```

	index.orig	training	test	optimism	index.corrected	n
Dxy	0.3577	0.3650	0.3507	0.0143	0.3434	50
R2	0.0980	0.1022	0.0922	0.0100	0.0880	50
Intercept	0.0000	0.0000	-0.0911	0.0911	-0.0911	50
Slope	1.0000	1.0000	0.9456	0.0544	0.9456	50
Emax	0.0000	0.0000	0.0296	0.0296	0.0296	50
D	0.0576	0.0603	0.0541	0.0062	0.0515	50
U	-0.0005	-0.0005	0.0003	-0.0007	0.0003	50
Q	0.0581	0.0607	0.0538	0.0069	0.0512	50
В	0.1204	0.1202	0.1209	-0.0007	0.1211	50

• Optimism-Corrected C = 0.5 + (.3434/2) = .672

Plot of Effects using mod_big

plot(summary(mod_big))

Adjusted to:sbp=128 educ=Some HS

Predict results for mod_big

ggplot(Predict(mod_big, fun = plogis)) Coll grad 0.6 Some Coll educ 0.4 HS grad 0.2 Some HS -0.0 100 200 300 0.4 0.0 0.2 0.6 glucose 0.6 0.6 0.4 0.4 0.2 0.2 -

120

150

sbp

0.0

210

180

smoker

Nomogram for mod_big

Next Time

- Variable Selection in Linear Regression
- Ridge Regression and the Lasso
- K-fold Cross-Validation in a Linear Regression Model