Training The Logistic Regression Model on The "Pimaindiansdiabetes" Data And Interpreting The Performance of The Model

Merve Topdemir

18 03 2021

CONTENTS

Introduction	
Descriptive Statistics	2
Logistic Regression Model	2
Interpretation of Odds Ratio	4
Splitting Data	4
Train a LRM on Train Set	5
Performance of The Model on Train and Test Set	6
Confusion Matrix	7

I'll be using the PimaIndiansDiabetes dataset from the mlbench package to build a logistic regression model that predicts whether subjects have diabetes or not based on a set of variables.

PimaIndiansDiabetes dataset includes 768 observations and 9 variables.

```
#install.packages("mlbench") #To install the data package
library(mlbench)
data(PimaIndiansDiabetes) #for calling the data from mlbench
head(PimaIndiansDiabetes, 10)
##
       pregnant glucose pressure triceps insulin mass pedigree age diabetes
## 1
                                                           0.627
              6
                    148
                               72
                                       35
                                                 0 33.6
                                                                   50
                                                                           pos
## 2
              1
                     85
                               66
                                       29
                                                 0 26.6
                                                           0.351
                                                                   31
                                                                           neg
                                                 0 23.3
## 3
              8
                    183
                               64
                                        0
                                                           0.672
                                                                  32
                                                                           pos
## 4
              1
                     89
                               66
                                       23
                                                94 28.1
                                                           0.167
                                                                   21
                                                                           neg
## 5
                                               168 43.1
              0
                    137
                               40
                                       35
                                                           2.288
                                                                  33
                                                                           pos
              5
                                                 0 25.6
                                                           0.201
## 6
                    116
                               74
                                        0
                                                                   30
                                                                           neg
              3
## 7
                     78
                               50
                                       32
                                                88 31.0
                                                           0.248
                                                                   26
                                                                           pos
## 8
            10
                    115
                               0
                                                 0 35.3
                                                           0.134
                                                                   29
                                        0
                                                                           neg
                               70
                                       45
## 9
              2
                    197
                                               543 30.5
                                                           0.158
                                                                   53
                                                                           pos
## 10
              8
                    125
                               96
                                                 0.0
                                                           0.232
                                                                   54
```

pos

```
#To see the rate of diabetes variable which is categorical
table <- table(PimaIndiansDiabetes$diabetes)</pre>
table
##
## neg pos
## 500 268
```

Descriptive Statistics of the Data

#summary() function gives you a simple summary (descriptive statistics) of each of the variables on the PimaIndiansDiabetes data

summary(PimaIndiansDiabetes)						
##	<mark>pregnant</mark>	glucose	<mark>pressure</mark>	<mark>triceps</mark>		
##	Min. : 0.000	Min. : 0.0	Min. : 0.00	Min. : 0.00		
##	1st Qu.: 1.000	1st Qu.: 99.0	1st Qu.: 62.00	1st Qu.: 0.00		
##	Median : 3.000	Median :117.0	Median : 72.00	Median :23.00		
##	Mean : 3.845	Mean :120.9	Mean : 69.11	Mean :20.54		
##	3rd Qu.: 6.000	3rd Qu.:140.2	3rd Qu.: 80.00	3rd Qu.:32.00		
##	Max. :17.000	Max. :199.0	Max. :122.00	Max. :99.00		
##	<mark>insulin</mark>	<mark>mass</mark>	<mark>pedigree</mark>	<mark>age di</mark> a	<mark>abetes</mark>	
##	Min. : 0.0	Min. : 0.00	Min. :0.0780	Min. :21.00 ne	eg:500	
##	1st Qu.: 0.0	1st Qu.:27.30	1st Qu.:0.2437	1st Qu.:24.00 pc	os:268	
##	Median : 30.5	Median :32.00	Median :0.3725	Median :29.00		
##	Mean : 79.8	Mean :31.99	Mean :0.4719	Mean :33.24		
##	3rd Qu.:127.2	3rd Qu.:36.60	3rd Qu.:0.6262	3rd Qu.:41.00		
##	Max. :846.0	Max. :67.10	Max. :2.4200	Max. :81.00		

Logistic Regression Model

Response (Target) variable: Diabetes

Explanatory (Feature) variables: Pregnant, Glucose, Pressure, Triceps, Insülin, Mass, Pedigree, Age

Model:

```
logit(p) = -8.4046964 + 0.1231823Pregnant + 0.0351637Glucose - 0.0132955Pressure
         +0.0006190Triceps -0.0011917Insulin +0.0897010Mass +0.9451797Pedigree
         +0.0148690Age
```

```
#Use the glm () function to create a logistic regression model
#Family function refers to the level of the response variable.
model <- glm(diabetes ~ pregnant + glucose + pressure + triceps + insulin +
mass + pedigree + age, data = PimaIndiansDiabetes, family = "binomial")
summary(model)
##
## Call:
## glm(formula = diabetes ~ pregnant + glucose + pressure + triceps +
      insulin + mass + pedigree + age, family = "binomial", data = PimaInd
iansDiabetes)
##
## Deviance Residuals:
               1Q
##
      Min
                   Median
                               3Q
                                      Max
## -2.5566 -0.7274 -0.4159
                           0.7267
                                   2.9297
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -8.4046964 0.7166359 -11.728 < 2e-16 ***
## pregnant 0.1231823 0.0320776 3.840 0.000123
              ## glucose
             ## pressure
              0.0006190 0.0068994
                                  0.090 0.928515
## triceps
## insulin
            -0.0011917 0.0009012 -1.322 0.186065
             0.0897010 0.0150876 5.945 2.76e-09 ***
## mass
            ## pedigree
              0.0148690 0.0093348 1.593 0.111192
## age
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 993.48 on 767
                                  degrees of freedom
## Residual deviance: 723.45 on 759
                                  degrees of freedom
## AIC: 741.45
##
## Number of Fisher Scoring iterations: 5
```

Hypothesis tests on individual regression coefficients:

```
H_0=\beta_j=0 H_1=\beta_j\neq 0 or H_0=\mbox{Variables have an effect on diabetes}.
```

 H_1 = Variables have no effect on diabetes.

Looking at the summary, we can see which variables are significant by comparing the p-values.

Pregnant, glucose, pressure, mass and pedigree variables having a significant effect on the response variable (diabetes).

Triceps, insulin and age variables do not have a significant effect on the response variable (diabetes).

Interpretation of Odds Ratio

```
exp(coef(model)) #For odds ratio

## (Intercept) pregnant glucose pressure triceps

## 0.0002238137 1.1310905981 1.0357892688 0.9867924485 1.0006191560

## insulin mass pedigree age

## 0.9988090108 1.0938471417 2.5732758592 1.0149800983
```

If the OR is <1, odds are decreased for an outcome; OR >1 means the odds are increased for a given outcome.

- One unit increase in pregnant variable increases the probability of having diabetes by 1.13
 times
- One unit increase in glucose variable increases the probability of having diabetes by 1.03 times.
- One unit increase in triceps variable increases the probability of having diabetes by 1 times.
- One unit increase in **mass** variable increases the probability of having diabetes by 1.09 times.
- One unit increase in age variable increases the probability of having diabetes by 1.01 times.
- One unit increase in pedigree variable increases the probability of having diabetes by 2.57 times.
- One-unit increase in the pressure variable decreases the probability of having diabetes by
 0.98 times.
- One-unit increase in the insulin variable decreases the probability of having diabetes by 0.99 times.

Splitting Pimaindiansdiabetes Data

The following code splits 80% of the data selected randomly into training set and the remaining 20% sample into test set.

Training set is implemented to build up a model, while a test set is to validate the model built.

```
set.seed(123)
index <- sample(nrow(PimaIndiansDiabetes), nrow(PimaIndiansDiabetes) * 0.8)
train <- PimaIndiansDiabetes[index,]
test <- PimaIndiansDiabetes[-index,]

table(train$diabetes) #For imbalanced problem control

##
## neg pos
## 398 216

table(test$diabetes)

##
## neg pos
## 102 52</pre>
```

The number of negative observations is higher than the number of positive observations. In this case, there may be an imbalance problem.

Train a LRM on Train Set

```
model1 <- glm(diabetes ~ pregnant + glucose + pressure + triceps + insulin</pre>
+ mass + pedigree + age, data = train, family = "binomial")
summary(model1)
##
## Call:
## glm(formula = diabetes ~ pregnant + glucose + pressure + triceps +
      insulin + mass + pedigree + age, family = "binomial", data = train)
##
## Deviance Residuals:
              1Q
                  Median
     Min
                             3Q
                                    Max
## -2.4798 -0.7300 -0.4281
                          0.7420
                                 2.9493
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -8.2130001 0.7785903 -10.549 < 2e-16 ***
             ## pregnant
             ## glucose
           ## pressure
            -0.0009585 0.0075277
                               -0.127 0.898678
## triceps
           -0.0009091 0.0009840 -0.924 0.355526
## insulin
## mass
            ## pedigree
             0.7810790 0.3211506 2.432 0.015010 *
## age
             0.0152288 0.0102926 1.480 0.138982
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
## Null deviance: 796.42 on 613 degrees of freedom
```

```
## Residual deviance: 583.55 on 605 degrees of freedom
## AIC: 601.55
##
## Number of Fisher Scoring iterations: 5
```

Performance of The Model on Train And Test Set

The accuracy rate is used to interpret the performance of the model.

Logistic regression returns probability values (between 0 and 1) as the response variable.

If the probabilities are less than 0.5, it is assigned as negative, if greater than 0.5, it is assigned as positive.

```
predicted_probs_train <- predict(model,train,type ="response" )
predicted_class_train <- ifelse ( predicted_probs_train > 0.5,"pos","neg" )
head(predicted_class_train,10)

## 415 463 179 526 195 118 299 229 244 14
## "neg" "neg" "pos" "neg" "neg" "neg" "pos" "neg" "pos"

#gives the value of accuracy
mean(predicted_class_train==train$diabetes)

## [1] 0.7801303
```

According to the result, the response variables in the train data are classified correctly by 78%.

```
predicted_probs_test <- predict(model1,test,type ="response" )
predicted_class_test <- ifelse ( predicted_probs_test > 0.5,"pos","neg" )
head(predicted_class_test,10)

## 1 3 9 17 22 27 28 32 42 43
## "pos" "pos" "pos" "neg" "pos" "neg" "pos" "pos" "neg"

#gives the value of accuracy

mean(predicted_class_test == test$diabetes)

## [1] 0.7922078
```

According to the result, the response variables in the test data are classified correctly by 79%

The train set accuracy is 0.78, while the test set accuracy is 0.79. Therefore, there might be a underfitting problem.

Underfittig Problem - Solution:

- Get more training data.
- Increase the size or number of parameters in the model.
- Increase the complexity of the model.

Confusion Matrix

```
table(predicted = predicted_class_test, actual=test$diabetes)

## actual

## predicted neg pos

## neg 92(TN) 22(FN)

## pos 10(FP) 30(TP)
```

True negatives (TN) are the number of negative instances the classifier correctly identified as negative.

False negatives (FN) are, the number of instances classified as negative but in reality, are positive.

False positives (FP) are the number of instances in which the classifier identified as positive but in reality, are negative.

True positives (TP) are the number of positive instances the classifier correctly identified as positive.

- TP and TN are the correct guesses. A good classifier should have large TP and TN and small (ideally zero) numbers for FP and FN.
- FN and FP are large. This may be due to an imbalanced classification problem.
- The model mispredicted the positive because it learned the negative better.

```
table(test$diabetes) #For imbalanced problem control

##
## neg↑ pos ↓
## 102 52
```

Accurancy =
$$\frac{\text{TN} + \text{TP}}{\text{TN} + \text{FN} + \text{FP} + \text{TP}} = \frac{92 + 30}{92 + 22 + 10 + 30} = \frac{122}{154} = 0.79$$

Sensitivity =
$$\frac{\text{TP}}{\text{TP} + \text{FN}} = \frac{30}{30 + 22} = 0.57$$

Specificity =
$$\frac{\text{TN}}{\text{TN} + \text{FP}} = \frac{92}{92 + 10} = 0.90$$