第十四周作业参考解答

练习7.2

1, 5, 6, 8, 9, 10, 11, 12, 13, 14

练习7.3

4, 5, 6, 16, 17, 18

练习7.4

2, 4, 7

练习 7.2.1. 把数域 ₣ 看作自身上的线性空间, 求它的一组基和维数.

 $\{1\}, 1.$

练习 7.2.5. 判断 \mathbb{R} 上的线性空间 $C[-\pi,\pi]$ 内的下列向量组是否线性相关,并求其秩.

- 1. cos^2x , sin^2x .
- ◀ 否. 2.▶
- 2. $\cos^2 x, \sin^2 x, 1$.
- ◀ 是. 2.▶
- $3. \cos 2x, \sin 2x.$
- ◀ 否. 2.▶
- 4. $1, sinx, sin2x, \cdots, sinnx$.
- **◆** 否. *n* + 1. ▶
- 5. $1, sinx, sin^2x, \cdots, sin^nx$.
- **◆** 否. *n* + 1. **▶**

练习 7.2.6. 考虑练习 7.1.9 中的线性空间 Com(A),对下列 A 求 Com(A) 的一组基.

$$\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}.$$

$$\blacktriangleleft I, A, A^2. \blacktriangleright$$

$$\blacktriangleleft I, A, A^2. \blacktriangleright$$

$$\begin{bmatrix}
0 & 1 & & \\
& \ddots & \ddots & \\
& & 0 & 1 \\
& & & 0
\end{bmatrix}_{n \times n}$$

$$\blacktriangleleft I, A, A^2, \cdots, A^{n-1}. \blacktriangleright$$

 $4. diag(a_i)$, 其中 a_i 各不相同.

$$\blacktriangleleft e_1 e_1^T, \cdots, e_n e_n^T. \ (\vec{\boxtimes} I, A, \cdots, A^{n-1}.) \blacktriangleright$$

- 5. $diag(a_i)$.
- 用置换矩阵进行相似,不妨设 A 相似到 $B = diag(b_1I, \dots, b_kI)$. 与 B 交换的矩阵形如 $diag(B_1, \dots, B_k)$, 容易给出一组基. ▶

- 练习 7.2.8. 证明,n 维线性空间中任意多于 n 个的向量都线性相关.
 - **■** 这是由于其极大线性无关组中向量的个数不大于 n. **▶**

- 练习 7.2.9. 考虑练习 7.1.8 中的线性空间 P(A).
 - 1. 判断其维数是否有限.
 - ◀ 有限. 由其是有限维线性空间 $\mathbb{F}^{n\times n}$ 的子空间, 故其维数不大于 n^2 . ▶
 - 2. 证明存在次数不大于 n^2 的多项式 $f(x) \in \mathbb{F}[x]$, 使得 f(A) = 0.
 - **⋖** 这是由于 $1, A, A^2, \dots, A^{n^2}$ 线性相关. ▶
 - 3. 令 $A = diag(1, \omega, \omega^2)$, 其中 $\omega = \frac{-1+\sqrt{3}i}{2}$, 求 P(A) 的维数和一组基.

练习 7.2.10. 证明连续函数空间的子集 $span(f(x) = k_0 + k_1 cos x + k_2 cos 2x | f(0) = 0)$ 是一个子空间, 并 求一组基.

■ 验证加法和数乘封闭. 一组基为 $\{cosx-1, cos2x-1\}$. ▶

练习 7.2.11. 给定
$$A = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$
 和 $\mathbb{R}^{3 \times 3}$ 上的线性变换 $f: X \to AX$. 分别求 $N(f)$ 和 $R(f)$ 的维数和一组基.

【 维数分别是 3,6. 易给出二者的基. ► $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$

■ 维数分别是
$$3,6$$
. 易给出二者的基. ►
$$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$

练习 7.2.12. 设 M_1, M_2 是 \mathbb{R}^n 的两个子空间, 且 $M_1 \subseteq M_2$. 证明, 如果 $\dim M_1 = \dim M_2$, 则 $M_1 = M_2$.

■ 取 M_1 的一组基. 由维数相同知其也生成了 M_2 . \blacktriangleright

练习 7.2.13. 设 M 是 \mathbb{R}^n 的子空间, M^{\perp} 是其正交补空间, 证明, $\mathbb{R}^n = M \oplus M^{\perp}$.

■ 由维数关系,只需验证两个子空间的交为 0. ▶

练习 7.2.14. 证明,练习 7.1.7 中的 $\mathbb{F}^{n\times n} = \mathbb{F}_0^{n\times n} \oplus span(I_n)$.

■ 由维数关系,只需验证两个子空间的交为 0. ▶

练习 7.3.4. 给定 $a \in \mathbb{F}$,判断下面定义的 $\mathbb{F}[x]$ 上的变换 T_a 是否是线性变换: $T_a(f(x)) = f(x + a), \forall f(x) \in \mathbb{F}[x]$.

▼ 是的.▶

练习 7.3.5. 在光滑函数空间 $C^{\infty}(\mathbb{R})$ 上定义变换: $A(f(x)) = (f'(x))^2$. 判断 A 是否是线性变换.
◀ 不是. ▶

练习 7.3.6. 计算例 7.3.2 中线性映射的核与像集,并求二者的维数.

- ■1. 以矩阵 A 左乘或右乘给出的线性映射 L_A 和 R_A . 容易直接描述核与像,如 $Ker(L_A) = \{X \in \mathbb{F}^{m \times n} | AX = 0\}$. 利用相抵标准形可以求出核与像的维数. 设 rank(A) = r, 则 $dimKer(L_A) = (m-r)p$, $dimIm(L_A) = rp$, $dimKer(R_A) = (n-r)l$, $dimIm(R_A) = rl$.
 - 2. 转置. 核为 0, 像为全空间.
 - 3. 迹. 容易直接描述. 核的维数是 n^2-1 , 像的维数是 1.
 - 4. 函数在某些点处的赋值. 容易直接描述. ▶

练习 7.3.16. 原题目表述有误,可以定义一个 $R^{2\times 2}$ 的二维子空间 $\mathbb{V} = \{aI + bA\}$ 则复数域 \mathbb{C} 和 \mathbb{V} 同构.

in the pan(1),
$$A \neq 0$$
, $A = \lambda I_2(\lambda \neq 0) \lambda \in \mathbb{R}$.
 $A^2 = \lambda^2 I_2 = -I_2 + \lambda i \beta_1$ if $A \notin Span(I_2)$, $Bp = Span(A) \cap Span(B)$ (I_2) = fo , which span(A) + $Span(I) + \Delta i \beta_1$.
 $A \notin Span(A) + Span(I) + \Delta i \beta_1$.
 $A \notin Span(A) + Span(I) + \Delta i \beta_2$.
 $A \notin Span(A) + Span(I) + \Delta i \beta_1$.
 $A \notin Span(A) + Span(I) + \Delta i \beta_2$.
 $A \notin Span(A) + Span(I_2) + \Delta i \beta_2$.
 $A \notin Span(A) + Span(I_2) + \Delta i \beta_2$.
 $A \notin Span(A) + Span(I_2) + \Delta i \beta_2$.
 $A \notin Span(A) + Span(I_2) + \Delta i \beta_2$.
 $A \notin Span(A) + Span(I_2) + \Delta i \beta_2$.
 $A \notin Span(A) + Span(I_2) + \Delta i \beta_2$.
 $A \notin Span(A) + Span(I_2) + \Delta i \beta_2$.
 $A \notin Span(A) + Span(I_2) + \Delta i \beta_2$.
 $A \notin Span(A) + Span(I_2) + \Delta i \beta_2$.
 $A \notin Span(A) + Span(I_2) + \Delta i \beta_2$.
 $A \notin Span(A) + Span(I_2) + \Delta i \beta_2$.
 $A \notin Span(A) + Span(I_2) + \Delta i \beta_2$.
 $A \notin Span(A) + \Delta i \beta_2$.
 $A \notin Span(A$

A形如
$$\left[\begin{array}{cc} a & b \\ -\frac{a^2+1}{b} & -a \end{array} \right], (b \neq 0)$$

- 练习 7.3.17. 证明矩阵空间 $\mathbb{F}^{m \times n}$ 与 \mathbb{F}^{mn} 同构.
 - 二者均为 \mathbb{F} 上的 mn 维线性空间. \mathbb{P}

- 练习 7.3.18. 证明多项式空间 $\mathbb{F}[x]_n$ 与 \mathbb{F}^n 同构.
 - 二者均为 \mathbb{F} 上的 n 维线性空间. \mathbb{P}

练习 7.4.2. 求 \mathbb{F}^4 中由基 e_1, e_2, e_3, e_4 到基 t_1, t_2, t_3, t_4 的过渡矩阵,并分别求向量 a 在两组基下的坐标.

$$1. \ e_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \ e_{2} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \ e_{3} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \ e_{4} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}; \ t_{1} = \begin{bmatrix} 2 \\ 1 \\ -1 \\ 1 \end{bmatrix}, \ t_{2} = \begin{bmatrix} 0 \\ 3 \\ 1 \\ 0 \end{bmatrix}, \ t_{3} = \begin{bmatrix} 5 \\ 3 \\ 2 \\ 1 \end{bmatrix}, \ t_{4} = \begin{bmatrix} 6 \\ 6 \\ 1 \\ 3 \end{bmatrix}; \ a = \begin{bmatrix} a_{1} \\ a_{2} \\ a_{3} \\ a_{4} \end{bmatrix}.$$

◀ 我们欲求的过渡矩阵 (记为 A) 满足 $(t_1,t_2,t_3,t_4)=(e_1,e_2,e_3,e_4)A$. 在 $e_1,e_2,e_3,e_4,t_1,t_2,t_3,t_4$ 均为列向量时,我们有 $\begin{bmatrix} t_1 & t_2 & t_3 & t_4 \end{bmatrix}=\begin{bmatrix} e_1 & e_2 & e_3 & e_4 \end{bmatrix}A$. 故这里过渡矩阵

$$A = \begin{bmatrix} e_1 & e_2 & e_3 & e_4 \end{bmatrix}^{-1} \begin{bmatrix} t_1 & t_2 & t_3 & t_4 \end{bmatrix} = \begin{bmatrix} t_1 & t_2 & t_3 & t_4 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 5 & 6 \\ 1 & 3 & 3 & 6 \\ -1 & 1 & 2 & 1 \\ 1 & 0 & 1 & 3 \end{bmatrix}.$$

向量
$$a = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix} = (e_1, e_2, e_3, e_4) \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix}$$
 在 e_1, e_2, e_3, e_4 下的坐标就是 $\begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix}$. 由 $a = (e_1, e_2, e_3, e_4) \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix}$

$$\begin{bmatrix} t_1 & t_2 & t_3 & t_4 \end{bmatrix} A^{-1} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix}$$
, a 在基 t_1, t_2, t_3, t_4 下的坐标为 $A^{-1} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix}$. \blacktriangleright

练习 7.4.2. 求 \mathbb{F}^4 中由基 e_1, e_2, e_3, e_4 到基 t_1, t_2, t_3, t_4 的过渡矩阵,并分别求向量 a 在两组基下的坐标.

$$2. \ e_{1} = \begin{bmatrix} 1 \\ 2 \\ -1 \\ 0 \end{bmatrix}, e_{2} = \begin{bmatrix} 1 \\ -1 \\ 1 \\ 1 \end{bmatrix}, e_{3} = \begin{bmatrix} -1 \\ 2 \\ 1 \\ 1 \end{bmatrix}, e_{4} = \begin{bmatrix} -1 \\ -1 \\ 0 \\ 1 \end{bmatrix}; t_{1} = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 1 \end{bmatrix}, t_{2} = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 2 \end{bmatrix}, t_{3} = \begin{bmatrix} -2 \\ 1 \\ 1 \\ 2 \end{bmatrix}, t_{4} = \begin{bmatrix} 1 \\ 3 \\ 1 \\ 2 \end{bmatrix}; a = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

$$\blacktriangleleft \ \, \Box \bot, A = \begin{bmatrix} e_1 & e_2 & e_3 & e_4 \end{bmatrix}^{-1} \begin{bmatrix} t_1 & t_2 & t_3 & t_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

■ 同上,
$$A = \begin{bmatrix} e_1 & e_2 & e_3 & e_4 \end{bmatrix}^{-1} \begin{bmatrix} t_1 & t_2 & t_3 & t_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
. 设 a 在基 e_1, e_2, e_3, e_4 下的坐标为
$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix}$$
, 即 $a = (e_1, e_2, e_3, e_4) \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix}$. 由于 e_1, e_2, e_3, e_4 是列向

量,我们有
$$a = \begin{bmatrix} e_1 & e_2 & e_3 & e_4 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix}$$
. a 在基 e_1, e_2, e_3, e_4 下的坐标 $\begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix} = \begin{bmatrix} e_1 & e_2 & e_3 & e_4 \end{bmatrix}^{-1} a =$

$$\begin{bmatrix} \frac{3}{13} \\ \frac{5}{13} \\ -\frac{2}{13} \\ -\frac{3}{13} \end{bmatrix} \cdot a \stackrel{\text{def}}{=} t_1, t_2, t_3, t_4 \stackrel{\text{row}}{=} t_1 \qquad t_2 \qquad t_3 \qquad t_4 \end{bmatrix}^{-1} a = \begin{bmatrix} \frac{4}{13} \\ \frac{2}{13} \\ -\frac{3}{13} \\ -\frac{1}{13} \end{bmatrix} \cdot \blacktriangleright$$

练习 7.4.4.

3. 26, 10, 10

练习 7.4.7. 矩阵空间 $\mathbb{F}^{2\times 2}$ 有两组基 $e_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, e_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, e_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix},$ 和

 $t_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, t_2 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, t_3 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, t_4 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}.$ 求从基 e_1, e_2, e_3, e_4 到基 t_1, t_2, t_3, t_4 的过渡