Econ 7010 Midterm Formula Sheet

standard regression model: $y = X\beta + \epsilon$

vector differentiation rules:
$$\frac{\frac{\partial \left(a'\boldsymbol{x}\right)}{\partial \boldsymbol{x}} = a}{\frac{\partial \left(\boldsymbol{x}'A\boldsymbol{x}\right)}{\partial \boldsymbol{x}} = 2A\boldsymbol{x}}$$

LS estimator: $\boldsymbol{b} = (X'X)^{-1} X' \boldsymbol{y}$

residual vector: $\mathbf{e} = (\mathbf{y} - \hat{\mathbf{y}}) = \mathbf{y} - X\mathbf{b}$

estimator of error variance: $s^2 = (e'e)/(n-k)$

covariance matrix for a random vector \mathbf{x} : $\mathbb{V}(\mathbf{x}) = \mathbb{E}\left[(\mathbf{x} - \mathbb{E}(\mathbf{x}))(\mathbf{x} - \mathbb{E}(\mathbf{x}))'\right]$

covariance matrix for errors: $\mathbb{V}(\boldsymbol{\epsilon}) = \sigma^2 I_n$

covariance matrix for errors: $\mathbb{V}(\boldsymbol{\epsilon}) = \sigma^2 I_n$

"residual maker" matrix: $M_X = I_n - X (X'X)^{-1} X'$

"fitted values maker" matrix $P_X = X (X'X)^{-1} X'$

deviations about means matrix: $M_{\pmb{i}} = I_n - \frac{1}{n} \pmb{i} \pmb{i}'$

partitioned LS estimator: $\boldsymbol{b}_1 = (X_1' M_2 X_1)^{-1} X_1' M_2 \boldsymbol{y}$

R-square: $R^2 = \frac{\hat{\pmb{y}}' M_i \hat{\pmb{y}}}{\pmb{y}' M_i \pmb{y}} = 1 - \frac{\pmb{e}' \pmb{e}}{\pmb{y}' M_i \pmb{y}}$

adjusted R-square: $\bar{R}^2 = 1 - \frac{e'e/(n-k)}{y'M_iy/(n-1)}$

mean squared error: $MSE(\hat{\theta}) = V(\hat{\theta}) + [Bias(\hat{\theta})]^2$

t-statistic: $t_j = \frac{b_j - \beta_j}{\text{s. e. } (b_j)} \sim t_{n-k}$

confidence interval: $b_j \pm t_c \times \text{s. e. } (b_j)$