Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

General Certificate of Education Advanced Level Examination June 2015

Physics A

PHYA5/1R

Unit 5 Nuclear and Thermal Physics Section A

Thursday 18 June 2015 9.00 am to 10.45 am

For this paper you must have:

- a calculator
- a pencil and a ruler
- a question paper/answer book for Section B (enclosed).

Time allowed

• The total time for both sections of this paper is 1 hour 45 minutes. You are advised to spend approximately 55 minutes on this section.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Answers written in margins or on blank pages will not be marked.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- Show all your working.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this section is 40.
- You are expected to use a calculator, where appropriate.
- A Data and Formulae Booklet is provided as a loose insert in Section B.
- You will be marked on your ability to:
 - use good English
 - organise information clearly
 - use specialist vocabulary where appropriate.

Section A

The maximum mark for this section is 40. You are advised to spend approximately 55 minutes on this section.

1 (a) Which ionizing radiation produces the greatest number of ion pairs per mm in air? Tick (\checkmark) the correct answer.

[1 mark]

α particles	
β particles	
γ rays	
X-rays	

1 (b) (i) Complete **Table 1** below showing the typical maximum range in air for α and β particles. [2 marks]

Table 1

Type of radiation	Typical range in air / m
α	
β	

1 (b) (ii)	γ rays have a range of at least $1~\mathrm{km}$ in air.
	However, a γ ray detector placed $0.5~\mathrm{m}$ from a γ ray source detects a noticeably smaller
	count-rate as it is moved a few centimetres further away from the source

Explain this observation.	[1 mark]

1 (c)	Following an accident, a room is contaminated with dust containing americium which is an α -emitter.	
	Explain the most hazardous aspect of the presence of this dust to an unprotected human entering the room. [2 marks]]
		-
		-
		-
		.

Turn over for the next question

- 2 (a) Scattering experiments are used to investigate the nuclei of gold atoms. In one experiment, alpha particles, all of the same energy (monoenergetic), are incident on a foil made from a single isotope of gold.
- 2 (a) (i) State the main interaction when an alpha particle is scattered by a gold nucleus.

[1 mark]

2 (a) (ii) The gold foil is replaced with another foil of the same size made from a mixture of isotopes of gold. Nothing else in the experiment is changed.

Explain whether or not the scattering distribution of the monoenergetic alpha particles remains the same.

[1 mark]

Data from alpha-particle scattering experiments using elements other than gold allow scientists to relate the radius R, of a nucleus, to its nucleon number, A.

Figure 1 shows the relationship obtained from the data in a graphical form, which obeys the relationship $R = r_0 A^{\frac{1}{3}}$.

Figure 1

								14	-
2	(b) (i)	Use information from Figure	1	to show that r_0	յ is	about	$1.4 \times$	10^{-13}	' m

[1 mark]

2 (b) (ii) Show that the radius of a
$$^{51}_{23}V$$
 nucleus is about $5\times 10^{-15}~m.$

[2 marks]

2 (c) Calculate the density of a $^{51}_{23}$ V nucleus.

State an appropriate unit for your answer.

[3 marks]

density unit unit

8

- A rod made from uranium-238 ($^{238}_{92}$ U) is placed in the core of a nuclear reactor where it absorbs free neutrons.
 - When a nucleus of uranium-238 absorbs a neutron it becomes unstable and decays to neptunium-239 ($^{239}_{93}$ Np), which in turn decays to plutonium-239 ($^{239}_{94}$ Pu).
- **3 (a)** Write down the nuclear equation that represents the decay of neptunium-239 into plutonium-239.

[2 marks]

3 (b) A sample of the rod is removed from the core and its radiation is monitored from time t = 0 s.

The variation of the activity with time is shown in Figure 2.

Figure 2

3 (b) (i)	Show that the decay constant of the sample is about $3.4 \times 10^{-6}~{\rm s}^{-1}$.
	[2 marks]
3 (b) (ii)	Assume that the activity shown in Figure 2 comes only from the decay of neptunium.
	Estimate the number of neptunium nuclei present in the sample at
	time $t = 5.0 \times 10^5 \text{ s.}$ [1 mark]
	number of nuclei
	Question 3 continues on the next page

3 (c) (i)	A chain reaction is maintained in the core of a thermal nuclear reactor that is operating normally.
	Explain what is meant by a chain reaction, naming the materials and particles involved. [2 marks]
3 (c) (ii)	Explain the purpose of a moderator in a thermal nuclear reactor. [2 marks]
	Substantial shielding around the core protects nearby workers from the most hazardous radiations. Radiation from the core includes α and β particles, γ rays, X–rays, neutrons and neutrinos.
	Explain why the shielding becomes radioactive. [2 marks]

11

4 (a)	Lead has a specific heat capacity of $130~\mathrm{J~kg^{-1}~K^{-1}}.$				
	Explain what is meant by this statement.	[1 mark]			
4 (b)	Lead of mass $0.75~{\rm kg}$ is heated from $21~{\rm ^oC}$ to its melting point and continues to heated until it has all melted.	b be			
	Calculate how much energy is supplied to the lead. Give your answer to an appropriate number of significant figures.				
	melting point of lead = 327.5 $^{\rm o}C$ specific latent heat of fusion of lead = 23 $000~\rm J~kg^{-1}$	[3 marks]			
	energy supplied	J			

5 (a) The concept of an absolute zero of temperature may be explained by reference to the behaviour of a gas.

Discuss **one** experiment that can be performed using a gas which would enable you to explain absolute zero and determine its value.

It is not necessary to give full details of the apparatus. Your answer should:

- include the quantities that are kept constant
- identify the measurements to be taken
- explain how the results may be used to find absolute zero
- justify why the value obtained is absolute zero.

T	he quality of your written communication will be assessed in your answer. [6 m	arks]

Question 5 continues on the next page

5 (b) (i)	State two assumptions about the move the equation of state, $pV = \frac{1}{3} N m (c_{\rm rms})$		when deriving [2 marks]
	1		
	2		
5 (b) (ii)	Three molecules move at the speeds s	hown in Table 2 .	
	Tabl	e 2	
	molecule	speed / m s ⁻¹	
	1	2000	
	2	3000	
	3	7000	
	Calculate their mean square speed.		[1 mark]
			[
	mear	square speed	m² s ⁻²

5 (c)	The average molecular kinetic energy of an ideal gas is 6.6×10^{-21} J.
	Calculate the temperature of the gas.

[2 marks]

 $temperature \ \dots \dots K$

11

END OF SECTION A

