Can we define a standard interface for the measurement and monitoring plane?

Jordan Augé, Marc-Olivier Buob, Loïc Baron, Serge Fdida, Timur Friedman (UPMC)

FIRE-GENI workshop - October 14-15, 2013 - Leuven, Belgium

Integration of measurements

USER TOOLS CONTROL FRAMEWORKS **TESTBEDS** MySlice + per testbed Control plane **RSpecs SFA** NEPI + per testbed Exp. plane OMF/OML configuration OMF EC Measurement plane etc.

An ecosystem with a standard interface

Standard interfaces allow for an ecosystem to emerge. It decouples data producers and consumers.

Data producers

• Testbeds, Instrumentation services, Users' measurements, ...

Data consumers

• Resource selection tools, Experiment control, Operations, ...

Support for: Peerings, Policies, Trust relationships, etc.

Handling large heterogeneous and distributed datasets

The MANIFOLD proposal

- Protocol & data model
 - allows different entities to communicate (mandatory)
 - use of adapters to accommodate for heterogeneity
 - eg: SFA, PLE monitoring, PostgreSQL, OML, perfSONAR, etc.
- Ontologies: common language (optional)

Intelligent mediator, grounded on work from networking and distributed databases communities

Handling large heterogeneous and distributed datasets

Simple requirements from platforms

- Assumes use of ontologies at the edge
- Platforms expose data through a table-like data model. . .
- ...and describe their "processing" capabilities

Aggregation

A typical experiment (eg. on PLE) might want

- to retrieve consistently:
 - slice measurements in OML database(s)
 - traceroute from TopHat/TDMI + BW from SONoMA
 - system measurements from CoMon
 - geolocalization from a webservice
 - etc.
- to issue cross-testbed snapshots of current cpu and network usage
 - each testbeds might use different monitoring tools

Composition and contextualization

Composition to enhance the value of individual platforms:

- traceroute + IP-to-ASN mapping = AS level traceroute
- testbed activity + geolocalization = usage monitoring on a map

Contextualization of M&M information

Usage monitoring related to users

Measurements and monitoring information related to slices

System & pairwise topology information about resources

Portal integration

Examples:

- Resource selection with respect to their properties
 - transparent in the portal: new columns
 - eg. geography (map), AS-level information, system data, etc.
 - pairwise measurements (in progress)

• Display all measurements related to a slice (in progress)

TopHat, MySlice, MANIFOLD

Supports testbed users throughout the experimental lifecycle Targets federated experimental facilities

5TopHat

Measurement aggregation service Supports the measurement community Feeds measurements to MySlice

TopHat, MySlice, MANIFOLD

Supports testbed users throughout the experimental lifecycle Targets federated experimental facilities

Measurement aggregation service Supports the measurement community Feeds measurements to MySlice

MANIFOLD

Interconnection framework component

Library, web GUI and API.

Supports both MySlice and TopHat

Conclusion

A simple interface for users and platforms. . .

- metadata describing information and processing capabilities
- simple query language

...thanks to an intelligent mediator (manifold)

- enhanced by the shared use of ontologies
- A base on which to build additional functionalities: alerts, reactive monitoring, auth(Z), provenance, . . .
- Adopted or under discussion in several EU projects

Website: http://trac.myslice.info/wiki/Manifold

Contact: info@onelab.eu

