CPS815/CP8201 - Assignment 5

- 1. (50 marks) Recall the 3-SAT problem: given n variables x_1, \ldots, x_n and k clauses C_1, \ldots, C_k where each C_i is a disjunction of exactly 3 variables, the problem is to decide whether there is a truth assignment for x_1, \ldots, x_n that satisfies all the clauses C_1, \ldots, C_k . We proved in the class that 3-SAT is NP-complete. The 5-SAT problem is defined similar to the 3-SAT problem: there are n variables x_1, \ldots, x_n and k clauses C_1, \ldots, C_k where each clause C_i is a disjunction of 5 variables. For example, a clause is of the form $x_2 \vee x_5 \vee \overline{x_6} \vee x_7 \vee \overline{x_9}$. The parameters n, k are general parameters and are not related to the parameters n, k in 3-SAT. Prove that 5-SAT is polynomial-time equivalent to 3-SAT. That means you have to show that 5-SAT \leq_P 3-SAT and 3-SAT \leq_P 5-SAT.
- 2. (50 marks) Recall the graph coloring problem: given a graph G = (V, E) of n vertices, decide whether G is k-colorable. The graph G is said to be k-colorable if, using at most k colors, we can assign a color to each vertex of G such that the following holds: if $(u, v) \in E$ is an edge then u and v must have different colors. Assume you have access to an oracle O that can solve the 3-coloring problem. Write an algorithm using O as a subroutine to obtain the actual coloring of the graph. The inputs and outputs of the your algorithm should be

Input: a graph G of n vertices.

Output: "no 3-coloring" if G is not 3-colorable. If G is 3-colorable return the actual coloring of the vertices.

Remember that the oracle O accepts a graph as an input and returns 1 or 0 if the graph is 3-colorable or not, respectively. Your algorithm should call O only a polynomial number of times.

3. (Bonus, 30 marks) Generalize your proof of Question 1 to show that for any constant ℓ , 3-SAT is polynomial-time equivalent to ℓ -SAT.