LLLiuye

不积跬步无以至千里

新随笔 联系 订阅 管理 随笔 - 59 文章 - 0 评论 - 55 博客园 首页

决策树算法之ID3与C4.5的理解与实现

github: 代码实现

本文算法均使用python3实现

1. 决策树

决策树 (decision tree) 是一种基本的分类与回归方法 (本文主要是描述分类方法), 是基于树结构进行决 策的,可以将其认为是if-then规则的集合。一般的,一棵决策树包含一个根节点、若干内部节点和若干叶节点。 其中根节点包含所有样本点,内部节点作为划分节点(属性测试),叶节点对应于决策结果。

用决策树进行分类,是**从根节点开始**,对实例的某一特征进行测试,根据测试结果,将实例分配到其子节 点,若该子节点仍为划分节点,则继续进行判断与分配,直至将实例分到叶节点的类中。

若对以上描述不太明白,可以结合以下图进行理解。

根据以上决策树, 现在给你一个实例: {色泽:青绿,根蒂:稍蜷,敲声:清脆,纹理:清晰,脐部:稍 凹, 触感: 光滑}, 来判断该瓜是否是好瓜。其过程是: 脐部 (稍凹) -->根蒂 (稍蜷) -->色泽 (青绿) -->好 瓜。

以上是由决策树来进行分类的过程。而决策树的学习(构建)通常是一个递归地选择最优特征的过程。那么 构建决策树时如何选择特征作为划分点(即选择哪个特征作为根节点或者选择哪个特征作为非叶子节点)?当训 练数据量大、特征数量较多时构建的决策树可能很庞大,这样的决策树用来分类是否好?

由这些问题我们可以知道,构建决策树的三个要点:

- (1) 特征选择
- (2) 决策树的生成
- (3) 决策树修剪

2. ID3算法

基于ID3算法的决策树构建,其选择特征的准则是信息增益。信息增益(information gain)表示得知特征 X的信息而使得类 Y 的信息的不确定性减少的程度。也就是说,信息增益越大,通过特征 X ,就越能够准确地 将样本进行分类;信息增益越小,越无法准确进行分类。

在介绍信息增益之前,我们需要先对熵进行一下讲解。

公告

昵称: LLLiuve 园龄: 2年5个月 粉丝: 54 关注: 8 +加关注

<		2020年3月							
日	_	=	Ξ	四	五	$\overrightarrow{\wedge}$			
1	2	3	4	5	6	7			
8	9	10	11	12	13	14			
15	16	17	18	19	20	21			
22	23	24	25	26	27	28			
29	30	31	1	2	3	4			
5	6	7	8	9	10	11			

搜索

常用链接

我的随笔 我的评论 我的参与 最新评论 我的标签

随笔分类

Deep Learning(2) Machine Learning(15) python(9) TensorFlow(5) 高级软件工程作业(1) 基础算法--python实现(1) 论文分享 数据结构--python实现(3)

随笔档案

刷题(18)

2019年3月(3) 2018年12月(1) 2018年9月(1) 2018年8月(8) 2018年7月(1) 2018年6月(22) 2018年5月(10) 2018年4月(1)

2.1 熵 (Entropy)

熵是度量样本集合纯度最常用的一种指标,它是信息的期望值。我们首先了解一下什么是信息。由《机器学习实战》中定义:

如果待分类的事务可能划分在多个分类之中,则符号(特征) k 的信息定义为:

$$l(k) = -\log_2 p(k)$$

其中 p(k) 为选择该分类的概率。

而熵计算的是所有类别所有可能值包含的信息期望值, 其公式为:

$$Ent(D) = -\sum_{k=1}^N p(k) \log_2 p(k)$$

其中 N 为类别个数。

现在我们使用例子,来理解熵的计算:

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	清晰	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	蜷缩	河河	稍糊	稍凹	硬滑	否

(1) 对于最终分类 (是否为好瓜) , 计算其信息熵:

由上表可看出,一共有17个样本,属于好瓜的有8个样本,坏瓜的有9个样本,因此其熵为:

$$Ent(D) = -\sum_{k=1}^{2} p_k \log_2 p_k = -(rac{8}{17} \log_2 rac{8}{17} + rac{9}{17} \log_2 rac{9}{17}) = 0.998$$

(2) 对于特征"色泽", 计算其信息熵:

由于特征"色泽"取值有: {青绿,乌黑,浅白}。若使用该属性对 D 进行划分,可得到3个子集,分别记为: D_1 (色泽=青绿) , D_2 (色泽=乌黑) , D_3 (色泽=浅白) 。

其中 D_1 包含样本 1,4,6,10,13,17 ,其中类别为好瓜的比例为 $p_1=\frac{3}{6}$,坏瓜的比例为 $p_2=\frac{3}{6}$; D_2 包含样本 2,3,7,8,9,15 ,其中类别为好瓜的比例 $p_1=\frac{4}{6}$,坏瓜的比例为 $p_2=\frac{2}{6}$; D_3 包含样本 5,11,12,14,16 ,其中类别为好瓜的比例 $p_1=\frac{1}{5}$,坏瓜的比例为 $p_2=\frac{4}{5}$,因此其三个分支点的信息熵为:

$$Ent(D_1) = -\left(\frac{3}{6}\log_2\frac{3}{6} + \frac{3}{6}\log_2\frac{3}{6}\right) = 1.000$$

$$Ent(D_2) = -\left(\frac{4}{6}\log_2\frac{4}{6} + \frac{2}{6}\log_2\frac{2}{6}\right) = 0.918$$

$$Ent(D_3) = -\left(\frac{1}{5}\log_2\frac{1}{5} + \frac{4}{5}\log_2\frac{4}{5}\right) = 0.722$$

2.2 信息增益 (information gain)

信息增益,由《统计学习方法》中定义:

2018年3月(5)

2018年2月(2)

2017年12月(1)

2017年11月(1)

2017年10月(2) 2017年9月(1)

最新评论

1. Re:神经网络的理解与实现 学习了,楼主写的很清楚~

--源氏丿信仰

2. Re:几种常见的损失函数

楼主您好,想问一下cost function 的具体作用是什么,比如说loss的作用是判断一组的训练集预测值和真实值的差值,从而预测函数模型的好坏,cost是计算训练集的损失函数的平均值,对于这个我不…

--Jack-sun

3. Re:《剑指offer》---左旋转字符串与右旋转字符串

都用到了python3了,切片不香吗?

--CJ-CC

4. Re:TensorFlow问题"Attempting to use uninitialized value"

@ LLLiuye目前我验证过可行的方法是不读meta文件,在restore之前把建图的操作执行一次(可以把建图的步骤封装成类,后续一行代码就可以建图)至于文中的方法,不知为什么会是这样,明明操作起来...

--网络神经

5. Re:TensorFlow问题"Attempting to use uninitialized value"

@ 网络神经请问正确的方法是什么呢?请 赐教一下...

--LLLiuye

阅读排行榜

1. kmeans算法理解及代码实现(45013)

2. 批量梯度下降(BGD)、随机梯度下降(SGD)以及小批量梯度下降(MBGD)的理解(42656)

学习率(Learning rate)的理解以及如何调整学习率(38970)

4. 神经网络的理解与实现(37045)

5. 神经网络中常用的几种激活函数的理解(3 0658)

评论排行榜

1. 批量梯度下降(BGD)、随机梯度下降(SGD)以及小批量梯度下降(MBGD)的理解(17)

2. 神经网络的理解与实现(14)

3. 极大似然估计理解与应用(4)

4. 高级软件工程第二次作业 (四则运算生成器) (3)

5. TensorFlow问题"Attempting to use uninit ialized value"(3)

推荐排行榜

1. 批量梯度下降(BGD)、随机梯度下降(SGD)以及小批量梯度下降(MBGD)的理解(18)

2. 神经网络的理解与实现(6)

3. 神经网络中常用的几种激活函数的理解(4)

4. 决策树算法之ID3与C4.5的理解与实现(2)

5. 朴素贝叶斯算法的理解与实现(2)

特征 a 对训练数据集 D 的信息增益 Gain(D,a) ,定义为集合 D 的经验熵(即为熵)与特征 a 给定条件下的经验条件熵 Ent(D|a) 之差,即:

$$Gain(D, a) = Ent(D) - Ent(D|a)$$

其中特征 a 将数据集划分为: D_1, D_2, \ldots, D_v ,而经验条件熵为:

$$Ent(D|a) = \sum_{i=1}^{v} \frac{|D_i|}{|D|} Ent(D_i)$$

我们根据例子对其进行理解:

对于特征"色泽",我们计算其信息增益,由2.1中,集合 D 的熵为: Ent(D)=0.998 ,对于特征"色泽" 的三个分支点的熵为: $Ent(D_1)=1.000$, $Ent(D_2)=0.918$, $Ent(D_3)=0.722$,则"色泽"特征的信息增益为:

$$Gain(D,$$
色泽 $)=Ent(D)-\sum_{i=1}^{3}rac{|D_i|}{|D|}Ent(D_i)=0.998 \ -(rac{6}{17} imes1.000+rac{6}{17} imes0.918+rac{5}{17} imes0.722)=0.109$

2.3 算法步骤

ID3算法递归地构建决策树,从根节点开始,对所有特征计算信息增益,选择信息增益最大的特征作为节点的特征,由该特征的不同取值建立子节点;再对子节点递归地调用以上方法构建决策树;知道所有特征的信息增益均很小或者没有特征可以选择为止。最后得到一个决策树。

在算法中(C4.5也是),有三种情形导致递归返回:

- (1) 当前节点包含的样本全属于同一类别,无需划分。
- (2) 当前属性集为空,或是所有样本在所有属性上取值相同,无法划分。 (此时将所含样本最多的类别设置为该叶子节点类别)
- (3) 当前节点包含的样本集合为空,不能划分。(将其父节点中样本最多的类别设置为该叶子节点的类别)

```
输入: 训练数据集 D ,特征集 A , 阈值 \epsilon ;
```

过程: 函数 TreeGenerate(D, A).

1: 计算节点信息增益 Gain(D,a):

2: 节点a的熵: Ent(D,a)

3: 节点D的熵: Ent(D)

4: 节点信息增益: Gain(D,a) = Ent(D) - Ent(D,a)

5: 生成节点node:

6: if D 中样本全属于同一类别 C then

7: 将node标记为 C 类叶节点; **return**

8: end if

9: if $A=\emptyset$ OR D 中样本在 A 上取值相同then

10: 将node标记为叶节点,期类别标记为 D 中样本数最多的类;return

11: **end if**

12: 按照节点信息增益,从 A 中选择最优划分属性 a_{st}

13: **for** a_* 中的每一个值 a_*^i **do**

14: 为node生成一个分支; 令 D_i 表示 D 中在 a_* 上取值为 a_*^i 的样本子集;

15: **if** D_i 为空, **then**

将分支节点标记为叶节点,其类别标记为 D 中样本最多的类; ${f return}$

17: **else**

16:

18: 以 $TreeGenerate(D_i, A/a_*)$ 为分支节点

19: **end if** 20: **end for**

输出:以node为根节点的一棵决策树

3. C4.5算法

实际上,信息增益准则对可取值书目较多的属性有所偏好,例如如果将前面表格中的第一列ID也作为特征的话,它的信息增益将达到最大值,而这样做显然不对,会造成过拟合。为了减少这种偏好可能带来的不利影响,

- C4.5算法中将采用信息增益比来进行特征的选择。信息增益比准则对可取值数目较少的属性有所偏好。接下
- 来,我们首先对信息增益比进行介绍。

3.1 信息增益比 (增益率)

信息增益比的定义为:

$$Gain_ratio(D,a) = rac{Gain(D,a)}{IV(a)}$$

其中:

$$IV(a) = -\sum_{i=1}^v rac{|D_i|}{|D|} \mathrm{log}_2 \; rac{|D_i|}{|D|}$$

我们根据例子对其进行理解:

对于特征"色泽",我们计算其信息增益比,由2.2计算得 $Gain(D, \mathbb{A})=0.109$,而

$$IV$$
(色泽) = $-(rac{6}{17} imes \log_2rac{6}{17}+rac{6}{17} imes \log_2rac{6}{17}+rac{5}{17} imes \log_2rac{5}{17})=1.580$

则 $Gain_ratio(D,$ 色泽 $)=rac{0.109}{1.580}=0.069$ 。

3.2 算法步骤

C4.5算法同ID3算法过程相似,仅在选择特征时,使用信息增益比作为特征选择准则。

输入:训练数据集 D ,特征集 A , 阈值 ϵ ;

过程: 函数 TreeGenerate(D, A).

1: 计算节点信息增益比 $Gain_ratio(D,a)$:

2: 节点a的熵: Ent(D,a)

3: 节点D的熵: Ent(D)

4: 节点信息增益: Gain(D,a) = Ent(D) - Ent(D,a)

5: 节点固定值: *IV(a)*

6: 节点信息增益比: $Gain_ratio(D,a) = \frac{Gain(D,a)}{IV(a)}$

7: 生成节点node:

8: if D 中样本全属于同一类别 C then

9: 将node标记为 C 类叶节点; **return**

10: end if

11: if $A=\emptyset$ OR D 中样本在 A 上取值相同then

12: 将node标记为叶节点,期类别标记为 D 中样本数最多的类; return

13: end if

14:按照节点信息增益,从 A 中选择最优划分属性 a_*

15: $\mathbf{for}\ a_*$ 中的每一个值 a_*^i \mathbf{do}

16: 为node生成一个分支; 令 D_i 表示 D 中在 a_* 上取值为 a_*^i 的样本子集;

17: if D_i 为空,then

18: 将分支节点标记为叶节点,其类别标记为 D 中样本最多的类;return

19: **else**

20: 以 $TreeGenerate(D_i, A/a_*)$ 为分支节点

21: end if22: end for

输出: 以node为根节点的一棵决策树

4. 剪枝处理

针对于在第1部分提到的最后一个问题: 当训练数据量大、特征数量较多时构建的**决策树可能很庞大**,这样的决策树用来分类是否好? 答案是否定的。决策树是依据训练集进行构建的,当决策树过于庞大时,可能对训练集依赖过多,也就是对训练数据**过度拟合。**从训练数据集上看,拟合效果很好,但对于测试数据集或者新的实例来说,并不一定能够准确预测出其结果。因此,对于决策树的构建还需要最后一步----即决策树的修剪。

决策树的修剪, 也就是剪枝操作, 主要分为两种:

- (1) 预剪枝 (Pre-Pruning)
- (2) 后剪枝 (Post-Pruning)

接下来我们将详细地介绍这两种剪枝方法。

4.1 预剪枝 (Pre-Pruning)

预剪枝是指在决策树**生成过程**中,对每个节点在划分前先进行估计,若当前节点的划分不能带来决策树泛化性能的提升,则停止划分并将当前节点标记为叶节点。

我们使用例子进一步理解预剪枝的过程:

将本文开始的西瓜数据集表划分成两部分,一部分作为训练集用来构建决策树,一部分作为验证集用来进行 决策树的剪枝。具体划分见下图:

1	编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
	1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
	2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是是
	3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
	6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
集一	7	乌黑	稍蜷	浊响	稍糊	稍凹.	软粘	是
	10	青绿	硬挺	清脆	清晰	平坦	软粘	否
	14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
	15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
	16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
	17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否
	编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
	4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
	5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
	8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
集	9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
	11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
	12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
	13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否

使用**ID3算法**进行决策树的构建,即使用**信息增益**进行特征的选择。首先选择特征"脐部"作为决策树根节点,如何判断该节点是否需要剪枝,需要对剪枝前后验证集精度进行比较。由"脐部"这个特征将产生三个分支"凹陷"、"稍凹"、"平坦",并认定其分支结果(可采用多数表决法,当分类数量相当时,任选一类即可),如下图:

查看验证集,若将"脐部"看做节点,并将其标记为"好瓜",那么划分前的精度为: $\frac{3}{7}=0.429$ 。符合"脐部" = "凹陷"的样本有: 4,5,13 ,其中正样本(是好瓜)为 4,5 ,**正样本**个数为2,按照上图预测正确数为2;同理"脐部"="稍凹"的样本中**正样本**个数为1,预测正确数为1;"脐部"="平坦"的样本中**负样本**个数为2,预测正确个数为2。因此使用"脐部"这个特征进行划分,划分后的精度为: $\frac{5}{7}=0.714$ 。由于预测后精度大于预测前精度,因此不对"脐部"进行剪枝,即将其作为划分点进行划分。

同理我们"色泽"以及"根蒂"特征进行划分前后精度的计算。对于"色泽",划分后的精度为 0.571 ,而划分前为 0.714 ,划分使得结果变差,因此不以该特征进行划分,即将该节点记为叶子节点并标记为"好瓜";同理"根蒂"特征划分前后的精度都为 0.714 ,效果并未提升,因此也不将该特征进行划分,而是将其作为叶子节点并标

记为"好瓜"。由此,决策树构建完毕。此时的决策树为只有一层的树。

可有由图中看出,该决策树有点过于简单,虽然降低的过拟合的风险,但是由于其基于"贪心"的本质禁止了 其它分支的展开,给预剪枝决策树带来了欠拟合的风险。

4.1 后剪枝 (Post-Pruning)

后剪枝是指先从训练集生成一棵完整的决策树,然后自底向上地对非叶节点进行考察,若将该节点对应的子树替换为叶节点能带来决策能力的提升,则将该子树替换成叶节点。

我们使用例子进一步理解后剪枝的过程:

同样适用4.1中的划分数据集。针对已建立好的决策树,我们首先对"纹理"特征节点进行处理,判断其是否需要剪枝,见下图。

首先,使用整个决策树对验证集进行预测,并将其预测结果与真实结果进行对比,可得到如下结果(预测结果与真实结果相同,标记为"正确",否则标记为"不正确"):

 $\{(4, \text{ E}, 6), (5, \text{ A}, 6), (8, \text{ A}, 6), (9, \text{ A}, 6), (11, \text{ E}, 6), (12, \text{ E}, 6), (13, \text{ A}, 6)\}$

首先我们判断是否需要对"纹理"进行剪枝:剪枝前精确度由上结果可以得到为 $\frac{3}{7}=0.429$,剪枝后(即将该节点标记为"好瓜"),此时对于样本($(8, \mathbb{H}^{6})$),其它样本结果不变,其精度提升到 $\frac{4}{7}=0.571$,因此对该节点进行剪枝。对节点5"色泽",剪枝前精确度为 0.571 ,剪枝后仍旧为 0.571 ,对此我们可以不进行剪枝(但在实际情况下仍旧会需要剪枝);同理对"根蒂"、节点2"色泽"进行计算,所得结果见上图。由此得到后剪枝决策树。

后剪枝决策树通常比预剪枝决策树保留了更多的分支,一般情况下,后剪枝决策树欠拟合的风险很小,其泛 化能力往往优于预剪枝预测数。但由于其是基于创建完决策树之后,再对决策树进行自底向上地剪枝判断,因此 训练时间开销会比预剪枝或者不剪枝决策树要大。

引用及参考:

- [1]《机器学习》周志华著
- [2]《统计学习方法》李航著
- [3]《机器学习实战》Peter Harrington著

写在最后:本文参考以上资料进行整合与总结,属于原创,文章中可能出现理解不当的地方,若有所见解或异议可在下方评论,谢谢!

n

若需转载请注明: http://www.cnblogs.com/lliuye/p/9008901.html

+加关注

- «上一篇: <u>k邻近算法理解及代码实现</u>
- » 下一篇: 《剑指offer》---两个栈实现队列

posted @ 2018-05-09 20:17 LLLiuye 阅读(6103) 评论(2) 编辑 收藏

评论列表

查看验证集,若将"脐部"看做节点,并将其标记为"好瓜",那么划分前的精度为: 3/7 这里有个小问题, 精度写错了

支持(0) 反对(0)

#2楼 [楼主] 2019-11-20 16:41 LLLiuye

@ dadadashuaifei 已修改,多谢指正~

支持(0) 反对(0)

刷新评论 刷新页面 返回顶部

注册用户登录后才能发表评论,请登录或注册,访问网站首页。

【推荐】超50万行VC++源码: 大型组态工控、电力仿真CAD与GIS源码库

【推荐】达摩院大咖直播(王刚): 自动驾驶路上的"能"与"不能" 【推荐】独家下载电子书 | 前端必看! 阿里这样实现前端代码智能生成

【推荐】精品问答: 微服务架构 Spring 核心知识 50 问

- 相关博文: · 决策树模型 ID3/C4.5/CART算法比较
- ·数据挖掘算法之决策树算法
- · 决策树算法以及matlab实现ID3算法
- ·统计学习方法之决策树 (2) 信息增益比,决策树的生成算法
- ·决策树与熵
- » 更多推荐...

《Flutter in action》开放下载!闲鱼Flutter企业级实践精选

最新 IT 新闻:

- ·苹果通过突出女性制作的App、电视节目、播客等来庆祝国际妇女节
- ·微软宣布取消2020年度最有价值专家 (MVP) 峰会
- · 华为高管回应拨款替换华为设备事件: 美国不能失去华为
- · Chrome OS更新支持环境光自适应调节和Netflix视频画中画功能
- · Firefox 75从地址栏结果中删除HTTPS 和 WWW
- » 更多新闻...

Copyright © 2020 LLLiuye Powered by .NET Core on Kubernetes