Twitter in the Parliament - A Text-based Analysis of German Political Entities

Patrick Schulze, Simon Wiegrebe

Supervisors:

Prof. Dr. Christian Heumann, Prof. Dr. Paul W. Thurner

7. Juli 2020

Outline

- Introduction
- 2 Topic Modeling: Motivation and Theory
- 3 Data
- 4 Model Selection and Global Characteristics
- 5 Covariate-level Topic Analysis
- 6 Causal Inference
- 7 Discussion

Introduction

- Huge amounts of data, especially text, produced by social media
- Field of particular interest in the context of social media and big data: Politics (e.g., Brexit, 2016 presidential election in the US, Facebook data scandal)
- Tools of analysis for such data simultaneously provided by advances in Natural Language Processing (NLP)
- Topic analysis: analytical tool for discovery and exploration of latent thematic clusters within text

Introduction

Key contributions of this project:

- Construction of dataset containing Twitter posts by members of the German Bundestag and a variety of metadata
- Application of the Structural Topic Model (STM), introduced by Roberts, Stewart, and Airoldi (2016), to German MPs' Twitter communication
- Development of new tools for estimation of relationship between topic proportions and metadata
- Application of STM-specific train-test split to enable causal inference

Motivating example: excerpt from a scientific article (Blei, 2012a)

• Question at hand: how to assign colored words to topics?

Notation and Terminology (I)

- Words w: instances of a vocabulary of V unique terms
- Documents $d \in \{1, ..., D\}$: sequences of words of length N_d ; $w_{d,n}$ denoting n-th word of document d
- Corpus: collection (or set) of D documents
- Topics $k \in \{1, ..., K\}$: latent thematic clusters within a text corpus; (implicit) representation of a corpus
- Topic-word distributions β : probability distributions over words; β_k denoting the word distribution corresponding to the k-th topic

Notation and Terminology (II)

- Topic assignments $\mathbf{z}_{d,n}$: assignment of $w_{d,n}$ to a specific topic $k \in \{1,\ldots,K\}$; $\boldsymbol{\beta}_{d,n}$ representing the (assigned) word distribution for $w_{d,n}$
- Topic proportions θ_d : proportions of document d's words assigned to each of the topics; $\sum_{k=1}^K \theta_{d,k} = 1$, for all $d \in \{1, \dots, D\}$
- Bag-of-word assumption: only words themselves meaningful, unlike word order or grammar; equivalent to assuming exchangeability

Latent Dirichlet Allocation (LDA) (I)

- First topic model with entirely probabilistic generating process: LDA (Blei, Ng, and Jordan, 2003)
- Generative process for each document $d \in \{1, ..., D\}$:
 - 1) Draw topic proportions $heta_d \sim \operatorname{Dir}_K(lpha)$.
 - 2) For each word $n \in \{1, \dots, N_d\}$:
 - a) Draw a topic assignment $z_{d,n} \sim \mathsf{Multinomial}_K(\theta_d)$.
 - b) Draw a word $w_{d,n} \sim \text{Multinomial}_V(\beta_{d,n})$.
- Graphical model representation of LDA (Blei, Ng, and Jordan, 2003):

Latent Dirichlet Allocation (LDA) (II)

 Illustration of topic assignment for the words of a document (Blei, 2012b):

Structural Topic Model (STM)

- Topic model that incorporates document-level metadata:
 - Topical prevalence covariates $\mathbf{X} = [\mathbf{x_1}| \dots | \mathbf{x_D}]^T \in \mathbb{R}^{D \times P}$
 - Categorical *topical content* variable $Y \in \mathbb{R}^D$ with A levels, i.e., $Y_d \in \{1, \dots, A\}$, for all $d \in \{1, \dots, D\}$
- Generative process for each document $d \in \{1, ..., D\}$:
 - 1) Draw $\eta_d \sim \mathcal{N}_{K-1}(\mathbf{\Gamma}^T \mathbf{x_d}^T, \mathbf{\Sigma})$, with $\eta_{d,K} = 0$ for model identifiability.
 - 2) Normalize η_d , for all $k \in \{1, \dots, K\}$: $\theta_{d,k} = \frac{\exp(\eta_{d,k})}{\sum_{i=1}^K \exp(\eta_{d,i})}$.
 - 3) For each word $n \in \{1, \dots, N_d\}$:
 - a) Draw topic assignment $z_{d,n} \sim \mathsf{Multinomial}_K(\theta_d)$.
 - b) If no topical content variable specified: $w_{d,n} \sim \text{Multinomial}_V(\beta_{d,n})$. Otherwise, determine document-specific word distributions $B_a := [\beta_1^a|\dots|\beta_K^a]$ based on $Y_d = a$, for all topics $k \in \{1,\dots,K\}$; select $\beta_{d,n} := B_a z_{d,n}$; and draw word $w_{d,n} \sim \text{Multinomial}_V(\beta_{d,n})$.

Graphical Model of the STM

• Visualization of the generative process again through graphical model (Roberts, Stewart, and Airoldi, 2016):

Inference and Parameter Estimation

- (Hierarchical) Bayesian model \Rightarrow exact inference impossible due to marginal distributions in the denominator of posterior distribution p
- ullet Variational inference: positing a simple distribution family q for latent variables ullet and z
- Mean-field variational inference: positing full factorizability of approximating posterior q, i.e., $q(\theta, z) = q(\theta)q(z)$
- Then: minimizing Kullback-Leibler divergence between q and p
- STM uses a mean-field variational EM algorithm:
 - ullet E-step: update posterior distributions of latent variables $oldsymbol{ heta}$ and $oldsymbol{z}$
 - M-step: update model parameters Γ , Σ , and if present topical content parameters

Data

Data Collection (I)

 MP-level data: from www.bundestag.de/abgeordnete using BeautifulSoup (Richardson, 2007) and a selenium web driver in Python (Van Rossum and Drake Jr, 1995)

- Twitter profiles: from official party homepages
- Socioeconomic data and 2017 German federal election results: from www.bundeswahlleiter.de

Data

Data Collection (II)

- Tweets (and further Twitter features): via the official Twitter API using Python's tweepy library(Roesslein, 2020)
- Monthly tweets (after dropping MPs without electoral district) for our period of analysis, September 24, 2017 through April 24, 2020:

In the following: grouping each MP's tweets on a monthly basis

Data

Data Preprocessing

- Preprocessing: in R (R Core Team, 2020), using the quanteda package (Benoit et al., 2018)
- \bullet Transcription of German umlauts (e.g. $\ddot{a} \rightarrow a)$ and ligature (B \rightarrow ss)
- Removal of hyphens: relevant for compound words (e.g., Corona-Krise vs Coronakrise)
- Transformation of text data into document-feature matrix (DFM);
 conversion to lowercase; removal of stopwords, units (kg, uhr),
 interjections (aaahhh, ufff), etc.
- Word stemming, i.e., cutting off word endings (e.g., $politisch \rightarrow polit$) (Lucas et al., 2015)

Model Selection and Global Characteristics

Model Selection

Model evaluation metrics for hyperparameter K (number of topics):

• "Best" trade-off: K = 15

Model Selection and Global Characteristics

Labeling (I)

- Three-step procedure for labeling
- First step: top words for different weighting methodologies

Topic 1 Top Words:

Highest Prob: buerg, link, merkel, frau, sich

FREX: altpartei, islam, linksextremist, asylbewerb, linksextrem Lift: eitan, 22jaehrig, abdelsamad, abgehalftert, afdforder

Score: altpartei, linksextremist, frauenkongress, islamist, boehring

Topic 3 Top Words:

Highest Prob: brauch, wichtig, leid, dank, klar

FREX: emissionshandel, soli, marktwirtschaft, feedback, co2steu

Lift: aequivalenz, altersvorsorgeprodukt, bildungsqualitaet, co2limit, co2meng

Score: emissionshandel, co2limit, basisrent, euet, technologieoff

Topic 4 Top Words:

Highest Prob: sozial, miet, kind, arbeit, brauch

FREX: mindestlohn, miet, wohnungsbau, mieterinn, loehn

Lift: auseinanderfaellt, baugipfel, bestandsmiet, billigflieg, binnennachfrag

Score: miet, mieterinn, mietendeckel, grundsicher, bezahlbar

Topic 6 Top Words:

Highest Prob: gruen, klimaschutz, brauch, klar, euro

FREX: fossil, erneuerbar, kohleausstieg, verkehrsminist, verkehrsw Lift: abgasbetrug, abgebaggert, abschalteinricht, abschaltet, ammoniak

Score: erneuerbar, fossil, zdebel, verkehrsminist, klimaschutz

Model Selection and Global Characteristics Labeling (II)

• Word cloud of *Highest Prob* top words (for topic 1):

Word size corresponding to word frequency in topic 1

Model Selection and Global Characteristics Labeling (III)

 Second step: looking at documents (i.e., original tweets) with highest proportion of topic 1

Ehem. Verfassungsrichter bestätigt AfD-Forderung: Zurückweisung illegaler Migranten dringend geboten. Gegenwärtige Politik widerspricht dem Verstand und auch der Verfassung. Wir müssen zurück zu Recht & Ordnung, wie die #AfD seit fast 3 Jahren fordert!

Hans-Jürgen Papier hält Zurückweisung von Migranten an deutscher Grenze für ... Im Asyktreit meldet sich nun Ex-Verfassungsrichter Papier zu Wort. Die Zurückweisung von Migranten an den Grenzen sei zwingend nötig, schreibt er in... Ø welt.de

Model Selection and Global Characteristics Labeling (IV)

Third step: assigning labels

Topic 1	Right/Nationalist
Topic 2	Miscellaneous 1
Topic 3	Climate Economics
Topic 4	Social/Housing
Topic 5	Digital/Future
Topic 6	Climate Protection
Topic 7	Europe
Topic 8	Corona
Topic 9	Left/Anti-war
Topic 10	Twitter/Politics 1
Topic 11	Twitter/Politics 2
Topic 12	Miscellaneous 2
Topic 13	Twitter/Politics 3
Topic 14	Right-wing Extremism
Topic 15	Society/Solidarity

Model Selection and Global Characteristics

Global Topic Proportions

• Illustration of global topic proportions:

Model Selection and Global Characteristics

Global Topic Correlations

• Vocabulary overlap (left) and topic correlations (right):

Overview

- Explore estimated topical structure with respect to different dimensions, e.g. membership in political party, time, ...
- Precisely: examine relationship between document-level prevalence covariates x_d and topic proportions θ_d
- Natural idea: regress topic proportions on prevalence covariates
- Problem: θ_d is *latent* variable and has to be estimated itself!
- In following two approaches to address this problem:
 - ① Regression that takes into account uncertainty about θ_d : perform sampling technique known as "method of composition" in social sciences
 - 2 Direct assessment of STM output via logistic normal distribution with estimated topical prevalence parameters $\hat{\Gamma}$ and $\hat{\Sigma}$

Method of Composition

- Let $\theta_{(k)} := (\theta_{1,k}, \dots, \theta_{D,k})^T \in [0,1]^D$ denote proportion of k-th topic for all D documents
- Method of Composition (repeat m times):
 - ① Sample $heta_{(k)}^*$ from (variational) posterior of $heta_{(k)}$ estimated by STM
 - 2 Run regression model with response $\theta_{(k)}^*$ and covariates \boldsymbol{X} to obtain estimate $\hat{\boldsymbol{\xi}}^*$ of regression coefficients $\boldsymbol{\xi}^*$ and covariance of $\hat{\boldsymbol{\xi}}^*$, $\hat{\boldsymbol{V}}_{\boldsymbol{\xi}}^*$
 - 3 Sample $\tilde{\boldsymbol{\xi}}^*$ from $F(\hat{\boldsymbol{\xi}}^*, \hat{\boldsymbol{V}}_{\varepsilon}^*)$, where F is (asymptotic) distribution of $\hat{\boldsymbol{\xi}}^*$
- ullet Idea: samples $ilde{oldsymbol{\xi}}^*$ take into account uncertainty in $heta_{(k)}$
- Visualization of topic-metadata relationship: For observation x_{pred} , plot x_{pred} vs. predicted response with $x_{\text{pred}}^T \tilde{\xi}^*$ as linear predictor

Method of Composition: Problems

Several problems with method of composition:

- In STM, regression model in step 2 is OLS; however OLS not appropriate to model (sampled) proportions in open unit interval
- Mixing of Bayesian and frequentist approach questionable:
 - From Bayesian perspective, $\tilde{\boldsymbol{\xi}}^*$ can only be considered sample from posterior of $\boldsymbol{\xi}$ in certain Bayesian regression models with questionable (uniform) prior assumptions
 - Using $\mathbf{x}_{\text{pred}}^T \tilde{\mathbf{\xi}}^*$ as linear predictor does *not* yield sample of posterior predictive distribution
- Separate modeling of topic proportions neglects dependence of different topics among each other

Problem 1: OLS Regression

Method of Composition: Usage within R Package stm

- Problem: OLS regression not suitable for (sampled) proportions,
 which are restricted to interval (0,1)
- Estimated relationship between proportions and prevalence covariates might even involve negative proportions:

Method of Composition: Extension of existing approach

 Instead of OLS regression, we can use a beta regression or a quasibinomial GLM (both with logit-link) to adequately model proportions

Problem 2: Mixing of Bayesian and Frequentist Approach

Mixing of Bayesian and Frequentist Approach

- Regression within of method of composition is frequentist regression
- ullet However, in STM $ilde{\xi}^*$ considered samples from (marginal, i.e., integrated over latent topic proportions) posterior of regression coefficients; only true by assuming uniform priors for $oldsymbol{\xi}$
- Caution: uncertainty from previous plots with respect to prediction of mean ⇒ does not reflect variation of topic proportions in data!
- Better idea: fully Bayesian approach with more realistic priors and sampling from posterior predictive distribution to reflect variation of data

Fully Bayesian Approach: Idea

- Idea: explicitly perform Bayesian regression in second step of each iteration of method of composition
- Modeling via beta regression (with normal priors centered around zero) in order to model proportions in (0,1)
- Visualization: Sample proportions from posterior predictive distribution at end of each step of method of composition (i.e., conditioning on previously sampled $\theta^*_{(k)}$) with covariate values \mathbf{x}_{pred}

Fully Bayesian Approach: Results

- Predicted (empirical) mean mostly in line with results from previous analysis
- Uncertainty now w.r.t. variation of topic proportions in data
- Observed variation for topic proportions corresponds well to variation according to predictive posterior

Problem 3: Univariate Modeling of Topic Proportions

Approach to Multivariate Modeling of Proportions (I)

- ullet Remember, by assumption: $oldsymbol{ heta}_d \sim \mathsf{LogisticNormal}(oldsymbol{\Gamma}^T oldsymbol{x}_d^T, oldsymbol{\Sigma})$
- Logistic normal distribution assumes high dependence among individual components ⇒ not fully taken into account in univariate modeling via, e.g., the beta distribution
- Inference within STM involves finding estimates $\hat{\Gamma}$ and $\hat{\Sigma} \Rightarrow$ Idea: plug estimates into logistic normal distribution
- For given covariate value \mathbf{x}_{pred} , obtain topic proportion as $\boldsymbol{\theta}_d^* \sim \text{LogisticNormal}(\hat{\boldsymbol{\Gamma}}^T \mathbf{x}_{\text{pred}}^T, \hat{\boldsymbol{\Sigma}})$

Approach to Multivariate Modeling of Proportions (II)

- Plugging in Γ and $\hat{\Sigma}$ is "naïve" method: ideally sample prevalence parameters from their posterior \Rightarrow would yield higher variation
- However, not easily possible ⇒ should be addressed in future implementations

Correlation vs. Causality (I)

Correlation vs. Causality (II)

- In previous section: assessment of relationship between metadata and topic proportions
- Framework to be used to explore topics with respect to different dimensions
- In particular, causal interpretation of results generally not justified ("correlation vs. causality")
- When making causal inference, need to consider that topic proportions are *latent* variables
- Possible solution: conducting a train-test split

Identification Problem and Overfitting

- Setup: two groups (treatment and control), individuals otherwise similar
- Objective: quantifying treatment effect, in our case effect of treatment on prevalence of specific topic.
- Necessary assumption: response of an individual depending only on their treatment
- Identification problem: estimating topic model to discover latent topic proportions can introduce additional dependency among individuals
 ⇒ response of each individual not only determined by treatment of that individual!
- Overfitting: fitted topic model might mistake noise for patterns in some way

 response again not solely determined by treatment of an individual, but additionally by specific characteristics of other individuals

Train-test split

- ullet Idea: splitting data ${\cal D}$ into training set ${\cal D}_{\sf train}$ and test set ${\cal D}_{\sf test}$
- \bullet Training set $\mathcal{D}_{\text{train}}$ used to determine a model that infers latent topic proportions from a given text
- ullet Test set $\mathcal{D}_{\text{test}}$ used to assess relation between *predicted* test set topic proportions and test set prevalence covariates
- Identification problem solved: model used for prediction determined by training set observations ⇒ treatment of test set observations not dependent on other individuals' treatment from test set.
- Overfitting also solved: noise from training set very unlikely to be replicated on test set

Implementation within the STM

- Inputting documents, i.e., words and metadata from the training set $\mathcal{D}_{\text{train}}$, to obtain estimates $(\hat{\boldsymbol{\beta}}_{\text{train}}, \hat{\boldsymbol{\Gamma}}_{\text{train}}, \hat{\boldsymbol{\Sigma}}_{\text{train}})$ using the STM
- Then, estimating (variational) posterior of test set topic proportions, conditional on the model parameters $(\hat{\beta}_{train}, \hat{\Gamma}_{train}, \hat{\Sigma}_{train})$ from training set \mathcal{D}_{train} as well as words \mathbf{W}_{test} from test set \mathcal{D}_{test}
- Estimation of (variational) posterior conditional on data and training set parameters via E-step of (variational) EM algorithm
- Benefit of using the STM: covariate information from training set directly used to predict topic proportions on test set
- Important: Covariate information from test set must not be used!
 - Otherwise: predicting different topic proportions for two documents from test set with exact same words if prevalence covariates differ
 - However, causal effect should be zero in such a case!

Results (I)

Results (II)

- UN Climate Action Summit 2019 held on September 23, 2019
- As observed, topic associated with climate issues much more prevalent during that time than the year before
- MAP estimates for different prior specifications on test set rather similar, yet estimated effect for training data much larger
- Similar results for effect of political party on topic labeled as 'Emancipation': average difference of estimated topic proportions between both parties larger for the training data
- Additionally: credible intervals on the training data different from those on the test data in both cases

Results (III)

 Estimation of treatment effect: determining the average difference of predicted topic proportions between both groups

 Treatment effect larger if "naïvely" estimated solely on training data in both cases!

Discussion

Summary

- Creation of broad dataset including large-scale unstructured text and variety of metadata ⇒ use in future (politological) analyses
- Exemplification of topic analysis for German parliamentarians' Twitter communication
- Critical discussion of existing tools and development of new approaches regarding estimation of topic-metadata relationships
- Detailed illustration of train-test framework for causal inference within the STM

Discussion

Suggestions for Future Research

- Holistic framework for estimation of topic-metadata relationships investigation of effect size and especially importance, for instance through fully Bayesian approach using MCMC
- Identification of natural experiments for causal inference
- Research into alternative model designs, beyond STM (and LDA)

Bibliography I

- Benoit, Kenneth et al. (2018). "quanteda: An R package for the quantitative analysis of textual data". In: Journal of Open Source Software 3.30, p. 774. DOI: 10.21105/joss.00774. URL: https://quanteda.io.
- Blei, David M (2012a). Probabilistic topic models. URL: http://www.cs.columbia.edu/~blei/talks/Blei_ICML_2012.pdf (visited on 07/14/2020).
- (2012b). "Probabilistic topic models". In: Communications of the ACM 55.4, pp. 77–84.
- Blei, David M, Andrew Y Ng, and Michael I Jordan (2003). "Latent dirichlet allocation". In: *Journal of machine Learning research* 3.Jan, pp. 993–1022.
- Lucas, Christopher et al. (2015). "Computer-assisted text analysis for comparative politics". In: *Political Analysis* 23.2, pp. 254–277.

Bibliography II

- R Core Team (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. URL: https://www.R-project.org.
- Richardson, Leonard (2007). "Beautiful soup documentation". In: April.
- Roberts, Margaret E., Brandon M. Stewart, and Edoardo M. Airoldi (2016). "A model of text for experimentation in the social sciences". In: *Journal of the American Statistical Association* 111.515, pp. 988–1003.
- Roesslein, Joshua (2020). "Tweepy: Twitter for Python!". In: *URL:* https://github.com/tweepy/tweepy.
- Van Rossum, Guido and Fred L Drake Jr (1995). *Python reference manual*. Centrum voor Wiskunde en Informatica Amsterdam.