

Exercícios de processamento de imagem. Exercises of image processing.

1. Qual o espaço mínimo de armazenamento em bytes (1 byte = 8 bits) para uma imagem de dimensões 512×512, com pixels de 16 bits? What is the minimum storage space in bytes (1 byte = 8 bits) for an image of dimensions 512 × 512, with 16-bit pixels?

2. Determine a escala de um objecto quadrangular com 3 metros de lado e com 50 pixels de lado na imagem, sendo que esta tem uma resolução geométrica de 150 dpi (1 polegada = 2,5400051 cm). Determine the scale of a quadrangular object with 3 meters of side and 50 pixels of side in the image, which has a geometric resolution of 150 dpi (1 inch = 2.5400051 cm).

3. Considere a imagem binária 7×7 seguinte, contendo o conjunto X (representado em tom branco). Para as malhas digitais de conexidade 4 e 8 diga: *Consider the next* 7×7 *binary image, containing the set* X (represented in white tone). For digital connectivity meshes 4 and 8 say:

- a) Quantos objectos conexos há na imagem. How many connected objects are in the image.
- b) Qual a distância grafológica entre os pixels: What is the graphological distance between pixels:
 - (2,2) e (3,5).
 - (5,3) e (3,3).

4. Sendo f(z) uma operação de Expansão Linear de Contraste, calcule o valor de f(63), sem saturação, a partir da imagem com uma resolução radiométrica de 8-bits. If f(z) is a Linear Contrast Stretching operation, calculate the value of f(63), without saturation, from the following 8-bit radiometric resolution image.

$$f_{\text{(8x8)}} = \begin{bmatrix} 52 & 55 & 61 & 66 & 70 & 61 & 64 & 73 \\ 63 & 59 & 55 & 90 & 109 & 85 & 69 & 72 \\ 62 & 59 & 68 & 113 & 144 & 104 & 66 & 73 \\ 63 & 58 & 71 & 122 & 154 & 106 & 70 & 69 \\ 67 & 61 & 68 & 104 & 126 & 88 & 68 & 70 \\ 79 & 65 & 60 & 70 & 77 & 68 & 58 & 75 \\ 85 & 71 & 64 & 59 & 55 & 61 & 65 & 83 \\ 87 & 79 & 69 & 68 & 65 & 76 & 78 & 94 \end{bmatrix}$$

$$z_{out} = (z_{in} - a) \times \left(\frac{d - c}{b - a}\right) + c$$

......

5. Considere a seguinte imagem de 3 bits: *Consider the following 3-bit image:*

7	7	7	7	7	7	3
7	7	7	7	7	6	4
5	6	6	6	7	7	2
3	4	4	4	5	7	6
3	2	3	3	4	3	5
2	2	3	2	2	3	4
2	2	2	2	2	2	1

a) Construa, em forma de tabela, os histogramas de frequências absolutas e cumulativas. *Construct, in table form, histograms of absolute and cumulative frequencies.*

6. Considere uma rotação de 30°, no sentido dos ponteiros do relógio, de uma dada imagem com dimensões Linhas \times Colunas = 10×20 . Quais as dimensões da nova imagem? Consider a 30 ° clockwise rotation of a given image with dimensions Lines \times Columns = 10×20 . What are the dimensions of the new image?

7. Dados os seguintes quatro níveis de cinzento, f(7,200) = 136; f(8,200) = 137; f(7,201) = 140; e f(8,201) = 146, calcule o valor na posição (7.4, 200.8) usando o método de interpolação bilinear. Given the following four gray levels, f(7,200) = 136; f(8,200) = 137; f(7,201) = 140; and f(8,201) = 146, calculate the value at the position (7.4, 200.8) using the bilinear interpolation method.

8. Se à imagem X for aplicada uma operação de convolução com o kernel H, e fossem representados os valores absolutos dos valores resultantes, qual será a imagem resultante mais provável de entre as imagens a), b), c) e d)? Justifique. If a convolution operation with the kernel H was applied to the X image and the absolute values of the resulting values were represented, what would be the most likely resulting image between images a), b), c) and d)? Justify.

$$H = \frac{1}{8} \times \begin{bmatrix} 0 & 1 & 0 \\ 1 & 4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

b)

9. Na matriz 3×3 seguinte, que valor deve ser colocado na posição em falta para que possa ser considerada um filtro passa-alta? Qual o nome do filtro em causa? In the next 3×3 matrix, what value should be placed in the missing position so that it can be considered a high-pass filter? What is the name of the filter in question?

$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & \cdots & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

10. Para a ilustração seguinte, qual o resultado da convolução entre a máscara M e imagem F, no pixel

central de F? For the following illustration, what is the result of the convolution between the mask M and the image F, in the central pixel of F?

10	100	110	40	80
90	20	190	25	20
50	210	220	190	150
30	240	255	200	130
140	110	150	60	90

M -2 -1 4 -1 -2

11. Deduza a expressão geral resultante da convolução do operador de Sobel bidirecional (N-S e E-W) com a função 3×3 genérica a seguir representada. Considere, para o efeito, apenas as posições em que o kernel está totalmente incluído na janela da referida imagem. Represente a função resultante. Derive the general expression resulting from the convolution of the bidirectional Sobel operator (N-S and E-W) with the generic 3×3 function shown below. Consider, for this purpose, only the positions where the kernel is fully included in the window of that image. Represent the resulting function.
