# **Species**

#### To Cite:

Makanur NS, Pyarasabadi LI, Mirashi MM, Patgar VG, Betageri S, Kotresha K. Comparative account and diversity of lower and higher plants in two lakes of Haliyal Taluk, Uttara Kannada District, Karnataka. Species 2024; 25: e20s1655

doi: https://doi.org/10.54905/disssi.v25i75.e20s1655

#### Author Affiliation:

Taxonomy and Floristic Laboratory, Department of UG, PG and Research Botany, Karnatak University's, Karnatak Science College, Dharwad-580001, Karnataka, India

#### 'Corresponding Author

Taxonomy and Floristic Laboratory, Department of UG, PG and Research Botany, Karnatak University's, Karnatak Science College, Dharwad-580001, Karnataka,

#### Peer-Review History

Received: 04 February 2024 Reviewed & Revised: 08/February/2024 to 26/April/2024 Accepted: 30 April 2024 Published: 09 May 2024

#### Peer-Review Model

External peer-review was done through double-blind method.

Species pISSN 2319-5746; eISSN 2319-5754



© The Author(s) 2024. Open Access. This article is licensed under a Creative Commons Attribution License 4.0 (CC BY 4.0)., which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.



Ningaraj S Makanur, Laxmi I Pyarasabadi, Megha M Mirashi, Vanaja G Patgar, Shreyas Betageri\*, Kotresha K

## **ABSTRACT**

Vascular plant diversity was conducted in the year 2022-2023 of two lakes in Haliyal taluk, Uttara kannada district with some water and soil parameters to show the diversity in two lakes. Totally 100 plant species were recorded in which lower plants and higher plants were differentiated. More species diversity is in Antrolli lake than Guttigere lake. Antrolli lake records 82 species out of 100 species and Guttigere lake records 48 species out of 100 species. 30 species are common in both lakes. 11 species are endemic and others are exotic. One algae is recorded in both the lakes.

Keywords: Antrolli lake, Guttigere lake, Higher plants, Lower plants, Soil parameters

## 1. INTRODUCTION

Macrosystems limnology is a framework for studying and managing freshwater ecosystems (rivers, streams, lakes, reservoirs, wetlands, and groundwater) that explicitly recognizes that freshwater ecosystems are shaped by terrestrial, aquatic, and atmospheric components and processes operating at multiple spatial and temporal scales (Ian et al., 2022). Hydrobiological study of two ponds (Laxman Singh Pond and Kyarakoppa Pond) and two lakes (Nuggikeri lake and Devaragudihal lake) situated in Dharwad. Both Kyarakoppa pond and Nuggikeri lake were disturbed by cattle-bathing, washing of clothes and occasional duck hunters. These water bodies supported macrophytes including species of *Hydrilla*, *Vallisneria*, *Najas* and *Nymphaea* (Hegde, 1985). Limnological Study of Lentic Ecosystems in Bodhgaya Block in Gaya District Bihar reports result showed that there is variation in the physicochemical parameters at different spots. His may be due to difference in topography and the nearby soil.

Seasonal variation was also observed regarding some parameters at some spots. Various zooplanktons like rotifers, Protozoans like *Amoeba* and *Paramoecium* along

1 of 18



with guppy fish, frogs, crabs and fresh water snails, Hydra were also observed. Some Aquatic algae *Chara, Spirogyra* and *Hydrilla* were also observed (Rajesh, 2020). Recorded limonological study of Nagaral Dam, Chincholi, Kalaburgi, Karnataka, India by monthly analysis of physio-chemical and heavy metal parameters of Calcium, magnesium, Chloride, Nitrate, concluded that too good for drinking and agricultural purpose (Bhat, 2004). Bharathi et al., (2013) records concluded that there is close relation between locations of water body and a level of water pollution. It is studied that there is inverse proportion between quantity of water in the water body or tanks and level of pollution at Anekere, Hassan in the year 2013.

Survey of Wet Land Macrophytes from Wetlands of Haliyal Taluk reported Dicotyledons were predominant in the study areas, from the diversity point of view Cyperaceae was the dominant family, followed by Commelinaceae, Lentibularaceae and Scropulariaceae. *Azolla bipinnata* was the most common taxa in the studied areas. Eight species documented, have medicinal value. Among the morpho-ecological groups, emergent anchored were the dominant and the least were submerged rooted group. Shannon diversity index revealed comparatively high diversity in the riparian wetland of Bomanahalli dam. WMI scores reveals Yadoga and Murukwad in fairly goodcondition, whereas Sambrani and Ajgaoh are highly polluted and not suitable for fishing (Singh and Rajan, 2015). Limnological studies of two rivers in Uttara Kannada District, Karnataka state reported 25 physico-chemical factors were analyzed turbidity, dissolved oxygen and sulphate were higher in river Aghanashini than in river Kali.

Bhat, 2004 reported monthly study of phytoplankton for two years in river Aghanashini and Kali revealed that there were 7 phytoplankton groups consisting 40 genera comprising 226 taxa. Among the total genera and species, baillariophyceae (diatoms) was the dominant group comprising 18 (45%) genera and 116 (51.32%) species. Among these rivers, Aghanashini supported more number of genera (39) and species (191), while Kali had less number of genera (25) and species (74). An Ecological Study of Phytoplankton of Four Freshwater Bodies of Dharwad recorded Nuggikeri lake, Mugad lake, Rayapur pond & Kotur pond reported such as topography, climatic conditions, physico-chemical factors, rate of reproduction, death and water movement. In natural waters algae generally show a periodicity corresponding to the different seasons of the year (Dodagoudar, 1989).

Lakes and ponds sustain a rich diversity of large flora and fauna. A reason for biodiversity depletion is destruction of these natural habitats due to urbanization and pollution. Study of biodiversity facilitates in understanding the current scenario and accordingly take action plans to prevent and preserve further environment depletion. The present investigation aimed to study the floral diversity of three lakes of Bangalore - Agara, Madiwala and Kaikondrahalli. Some aquatic plants are sensitive to pollution and used as bioindicator. All the three lakes had abundant growth of *Eichhorina carassipes*, *Ricinus communis* and *Cynodon dactylon*. Excessive growth of *E. carassipes* and *C. dactylon* indicated metal pollution and salinity of water, respectively. The leaf colour of *R. communis* in Madiwala lake was observed to be pale yellow indicating the pollution of the area more compared to Agara region. The establishment of lake restoration projects have restored habitats and biodiversity to some extent. However, a joint effort by ecologists, hydrologists, policy makers, and local residents is required to minimize negative human impacts, maximize the effectiveness of nature reserves and lake restoration (Shloka et al., 2022).

Kukkarahalli lake (Mysuru, Karnataka) diversity of angiosperms has been found to be very rich both in population and species richness (290 species) that show seasonal variation. Among angiosperms, dominance shown by the families such as Poaceae, Fabaceae, Asteraceae, Amaranthaceae, Malvaceae. The present study is highly significant since study finds 129 species of angiosperm which were not recorded in the "Flowering Plants of the Mysore University Campus" (1974) which recorded angiosperms. Lake has large number of herbs than other forms of plants that indicates a high rate of anthropogenic disturbances. Presence of large number of invasive species and weeds are leading to the loss of species diversity in the lake area (Manjunatha et al., 2019).

Mallappa and Takrya, (2022), reported species composition of aquatic macrophytes, seasonal distribution in four lakes in Holalkere that is Gangasamudra lake, Gowdihalli lake, Talikatte lake and Kudineerakatte lake were studied during 2019–2021. Fifteen different species of aquatic macrophytes were recorded from the studied lakes which include one free-floating, Eight Submerged, and Six Emergent Macrophytes present in the lake basin. *Hydrilla certicilliate, Polygonum glabrum, Cyperus longus* and *Ipomea fistulosa* occur throughout the year.

It indicates that aquatic macrophyte species are species to environmental quality. Aquatic Plant Diversity of Lakes in Somwarapete Taluk, Kodagu, Karnataka reported total of 43 species were recorded, belonging to 28 families and 41 genera. The most dominant families were found to be Araceae, Hydrocharitaceae, Asteraceae, and Amranthaceae. After initial identification, the plants were classified according to their habitats, life spans, and IUCN status. Jaccard's index and Sorenson's index were used to learn about the similarity coefficient between the sample sites (Thrupthi and Deviprasad, 2023).

Species 25, e20s1655 (2024) 2 of 18

# 2. MATERIAL AND METHODS

#### Study Area

Haliyal is a town panchayat city and Taluka in Uttara Kannada District Malenadu region of Karnataka. It is located 103km towards East from district headquarters Karwar. It can be classified as main-road town, Haliyal pin code is 581329. The Sarkar Kere is also known as Guttigere kere situated about 1.1 km north to Haliyal. And water spread area is about 15.4 acre. It is situated at DMS 15°20'31.5"N 74°45'51.9"E. As the lake records 550 m altitude above sea level. Lake is surrounded by farms for agriculture purpose, also constructed canals around the lake for Agriculture usage. It is primarily used as a source of irrigation and secondary for fishery purpose.

In this way lake is characterized by submerged vegetation in absence noted to decline in water level during summer and some anthropogenic activities. Antrolli Kere is situated in Antrolli village right in front of the Muttalmari village. This is about 5.9 km North to Haliyal. The total area of this lake is 5 acre and has lush greenery surrounding. It is situated at DMS 15°20'31.5"N 74°45'51.9"E. As the lake records 550 m altitude above sea level. As the lake records 550 m altitude above sea level. The waster of this lake used for agricultural and fish culture. Lake seems to records some anthropogenic activities (Figure 1).



Figure 1 Map of study area showing Guttigere and Antrolli lakes

# Collection & Identification of Samples

Angiosperms species were collected two times in a month of two sets for assessment of diversity and documentation (Herbarium preparation). Angiosperms were identified with the following flora: Cooke (1906) (Flora of Bombay Presidency); Gamble & Fischer (1928) (Flora of Madras presidency); Saldanha, (1984), Saldanha, (1996) (Flora of Karnataka); Bhat, (2014) (Flora of South Kanara); Seethram et al., (2000) (Flora of Gulberga).

Species 25, e20s1655 (2024) 3 of 18

### **Herbarium Preparation**

The specimen will pressed and dried with the help of Rao and Jain method (1976). The dried specimens was poisoned with mercuric chloride mixture (2%) to keep away from fungal attack. Than the specimens submitted to the Herbarium of Karnatak Science College (HKSCD) for future references.

### Soil & Water Analysis

Soil was collected from various different spots of two lakes separately. Water was collected in different seasons and was analyzed in ICAR Science Centre, University of Agricultural Sciences, Dharwad.

# 3. RESULTS

Angiospermic survey was conducted monthly two times during summer and rainy season recorded 100 species of Angiosperms (Dicots and Monocots) (Table 1 & Figure 2). Top 10 families are reported in Asteraceae (16), Poaceae (7), Fabaceae (7), Amaranthaceae (4), Boraginaceae (3), Cyperaceae (4), Hydrocharitaceae (4), Euphorbiaceae (3), Menyanthaceae (2), (Table 2). As the plants are diversified more in Antrolli lake than Guttigere Lake. Antrolli Lake records 82 species out of 101 species and Guttigere Lake records 48 species out of 101 species (Figures 3 to 7). 27 species are common Guttigere lake and Antrolli lake. 11 are endemic species (Azolla pinnata R. Br., Elodea canadensis Michx., Elodea densa (Planch.) Casp., Ipomea aquatica Forsk., Lemna sp., Ludwigia adscendens (L.) H. Hara, Nelumbo nucifera Gaertn., Nymphaea pubescens Willd., Nymphoides aquatica (J. F. Gmel.) Kuntze, Nymphoides indica (L.) Kuntze, Vallisneria natans (Lour.) H. Hara) and others are exotic.



Figure 2 Habit wise plant distribution in Guttigere and Antrolli lakes

Table 1 Habit Wise distribution of Plants from Guttigere Lake & Antrolli Lake

| Tree     | 6   |
|----------|-----|
| Shrub    | 6   |
| Herbs    | 68  |
| Climbers | 7   |
| Aquatic  | 13  |
| Total    | 100 |

Species 25, e20s1655 (2024) 4 of 18

Table 2 Dominant families of Angiosperms in Guttigere Lake & Antrolli Lake

| Family           | Number of species |
|------------------|-------------------|
| Asteraceae       | 16                |
| Poaceae          | 7                 |
| Fabaceae         | 7                 |
| Hydrocharitaceae | 4                 |
| Cyperaceae       | 4                 |
| Amaranthaceae    | 4                 |
| Euphorbiaceae    | 3                 |
| Boraginaceae     | 3                 |
| Menyanthaceae    | 2                 |

Out of 100 species, 10 are aquatic, 90 species are in (when water becomes less) and around lake, 6 are higher floating and submerged plants (*Azolla pinnata* R. Br., *Ceratophyllum demersum* L., *Chara sp.*, *Hydrilla verticiliata* (L.f.) Royle, *Vallisneria natans* (Lour.) H. Hara, *Lemna sp.*) (Fig. 6) (Table 3). *Chara sp.* (Characeae) is collected from both lakes. Soil Sample Analysis and Water Analysis in ICAR Science Centre, Dharwad reported that water and soil test results are good for the growth of plants and fit for drinking. Guttigere lake has black soil and Antrolli lake has red soil. Soil is one of the most valuable resources on the earth, a quality soil is characterized by several physical, chemical and biological properties such as soil colour, soil moisture, soil PH, soil nutrients, soil microorganisms. The quality of bottom lake soil affects water quality, and acts as source of nutrients, also act as biological filter, adsorbing fish excrements, sedimentation of dead planktons, algal products, fresh organic matter settles to the bottom of lake.

In Guttigere lake observed black colour soil on top layer because of sedimentation, in depth observed red colour because of the presence of ferrous iron. Soil moisture content decreased with depth, because of low water holding capacity of red soil. In Antrolli lake observed red colour, sandy clay texture have more (moisture) water holding capacity, which influences crop growth, highly suitable for aquaculture. Soil PH in both Guttigere and Antrolli lakes 7.45 and 7.48 respectively. Ministry of agriculture has reported slightly alkaline soil with PH 7.5 is the more suitable for fish yield. Water PH of both lakes 6.52 in Guttigere and 6.8 in Antrolli. According to Bureau of Indian Standard PH in drinking water is 6.5 to 8.5. Electrical conductivity(S/m) of soil 0.43 and 0.42 in Guttigere and Antrolli lakes, according to (NRCS soil survey hand book) 0<2 electrical conductivity of soil is non saline. Electrical conductivity of water 0.3 in both the lakes, good for irrigation.

Organic carbon act as source of energy for beneficial microorganisms that releases nutrients through biochemical process. <5% of organic carbon in soil consider as very low productivity and 0.5-1.0% of organic carbon in the soil consider as medium productivity, low fertilized lakes, but excellent for ponds with feeding, this range is acceptable for aquaculture. The amount of organic carbon in Guttigere lake 0.6 mg/L is a high and compare to Antrolli lake 0.36 mg/L. The Mineral nitrogen from decomposition of organic matter by micro-organism, is most important element which influence the productivity of fish pond and very essential for plant growth and production. In moderate level nitrogen is 25-50mg/kg in soil. High level nitrogen 50 -70 mg/kg in soil, very high level is above 70-125mg/kg. Guttigere lake has 207 mg/kg and Antrolli lake has 103 mg/kg of nitrogen both soil sample are very high content can delay the crop maturity and prolong the growth period.

Phosphorus pentoxide, source of phosphorus is important nutrients, which regulates productivity of natural bodies, bottom soil in Guttigere lake phosphorus medium range is 14.5kg per acre and Antrolli lake have 18.6kg per acre all algae and plants require phosphorus to grow. Improves resistance against disease in some plants, its deficiency leads to the depigmentation of older leaves and leaf edges. Potassium oxide source of potassium (K) content in soil of Guttigere lake 404.7 per acre is higher than Antrolli lake 109 per acre. Potassium requires for many organisms because its play important role in nervous system. Calcium (Ca) play very important role in the soil fertility. Guttigere Lake is high 19.8mg/100gm and in Antrolli lake 6.8mg/100gm. Magnesium (MG) is present in chlorophyll molecule, it activates the number of plants enzymes, if soil has deficiency of Mg which leads to necrotic of plants in soil of Guttigere lake is 8.5mg/100gm and in Antrolli lake 3.1mg/100gm.

Species 25, e20s1655 (2024) 5 of 18



Fig. 3: A. Alternanthera ficoidea (L.) P. Beauv.; B. Amaranthus viridis L.; C. Anacardium occidentale L.; D. Causonis trifolia (L.) Mabb. & J. Wen,; E. Chamaecrista mimosoides (L.) Greene,: F. Chloris barbata Sw.; G. Coldenia procumebns L.; H. Crotalaria juncea L.; I. Cryptolepis buchananii R.Br. ex Roem. & Schult.; J. Cyperus articulatus L.; K. Cyperus difformis L.; L. Cyperus squarrosus L.

Species 25, e20s1655 (2024) 6 of 18



Fig. 4: A. Dentella repens var. repens,; B. Digitaria ciliaris (Retz.) Koeler; C. Duranta erecta L; D. Echinochloa colonum (L.) Linn.; E. Eclipta prostrata (L.) L.; F. Euphorbia hirta L.; G. Euphorbia prostrata Aiton,; H. Euploca ovalifolia (Forsk.) Diane & Hilger,; I. Fimbristylis dichotoma (L.) Vahl; J. Glinus oppositifolius (L.) Aug. DC.; K. Gomphrena serrata L.; L. Grangea maderaspatana (L.) Poir.

Species 25, e20s1655 (2024) 7 of 18



Fig. 5. A. Heliotropium indicum L.; B. Hygrophila auriculata (Schumach.) Heine; C. Ipomoea obscura (L.) Ker Gawl.; D. Ludwigia adscendens (L.) H. Hara; E. Ludwigia perennis L.; F. Martynia annua L.; G. Mecardonia procumbens (Mill.) Small; H. Nelumbo nucifera Gaertn.; I. Nymphaea pubescens Willd.; J. Nymphoides aquatica (J. F. Gmel.) Kuntze; K. Nymphoides indica (L.) Kuntze; L. Passiflora foetida L.

Species 25, e20s1655 (2024) 8 of 18



Fig. 6. A. Physalis angulata L.; B. Plumbago zeylanica L.; C. Polygonum plebeium R. Br.; D. Portulaca oleracea L.; E. Psidium guajava L.; F. Scoparia dulcis L.; G. Senna obtusifolia (L.) H.S. Irwin & Barenby; H. Solanum nigrum L.; I. Solanum torvum Sw.; J. Zizipus oenophila (L.) Miller

Species 25, e20s1655 (2024) 9 of 18



Fig. 7: Higher floating and submerged plants of two lakes: A. Azolla pinnata R. Br.; B. Hydrilla verticiliata (L.f.) Royle; C. Lemna sp.; D. Vallisneria natans (Lour.) H. Hara; Lower plants of two lakes: E. Ceratophyllum demersum L.; F. Chara sp;

Species 25, e20s1655 (2024) 10 of 18

 $\textbf{Table 3} \ \text{List of vascular plant species collected from Guttigere lake \& Antrolli \ lake}$ 

| Sl no. | Scientific name                                       | Family           | Common name                | spot- | spot- | Vernacular<br>name   | Flowering season   | Accession no. |
|--------|-------------------------------------------------------|------------------|----------------------------|-------|-------|----------------------|--------------------|---------------|
| 1      | Acemella paniculata                                   | Asteraceae       | Tooth ache plant           |       | +     | Aachaara jondi       | May-July           | 20136         |
| 2      | Aeschynomene aspera L.                                | Fabaceae         | Budda pea                  | -     | +     | Tanakali             | December-<br>March | 20167         |
| 3      | Ageratum conyzoides L.                                | Asteraceae       | Billygoat-weed, chick weed | -     | +     | Nayi Tulasi,         | May-July           | 20168         |
| 4      | Alternanthera ficoidea (L.)<br>P. Beauv.              | Amaranthaceae    | Brazilian Snow<br>Flower   | -     | +     | Kusal                | May-July           | 20169         |
| 5      | Alternanthera<br>philoxeroides (Mart.)<br>Griseb.     | Amaranthaceae    | Alligator weed             | +     | -     | Phakchet             | March-<br>May      | 20211         |
| 6      | Alternanthera sessilis (L.) DC.                       | Acanthaceae      | Sessile Joyweed            | +     | +     | Honagone<br>soppu    | May-July           | 20170         |
| 7      | Amaranthus viridis L.                                 | Amaranthaceae    | Slender<br>amarthus        | -     | +     | Kere soppu           | May-July           | 20171         |
| 8      | Anacardium occidentale L.                             | Anacardiaceae    | Cashew tree                | +     | -     | Godambi              | -                  | 20132         |
| 9      | Anaphalis lawii Gamble                                | Asteraceae       | Pearly everlasting         | -     | +     | -                    | May-July           | 20134         |
| 10     | Azolla pinnata R. Br.                                 | Salvinaceae      | Water valvet               | +     | +     | -                    | March-<br>May      | 20139         |
| 11     | Butea monosperma (Lam.)<br>Kuntze                     | Fabaceae         | Flame-of-the-<br>forest    | -     | +     | Dhak, palash         | June-<br>August    | 20185         |
| 12     | Calotropis procera (Aiton)<br>W.T.Aiton               | Apocynaceae      | Giant milkweed             | -     | +     | Bili aekkada<br>gida | March-<br>August   | 20157         |
| 13     | Causonis trifolia (L.)<br>Mabb. & J. Wen              | Vitaceae         | Bagh Grape                 | -     | +     | Heggoli              | January-<br>April  | 20172         |
| 14     | Ceratophyllum<br>demersum L.                          | Ceratophyllaceae | Hornworts                  | +     | +     | -                    | -                  | 20135         |
| 15     | Chamaecrista mimosoides (L.) Greene                   | Fabaceae         | Tea Senna,<br>Japanese Tea | -     | +     | Nela thangadi        | July-<br>August    | 20173         |
| 16     | Chloris barbata Sw.                                   | Poaceae          | Swollen<br>fingergrass     | +     | -     | Uppu Gaddi           | May-July           | 20201         |
| 17     | Chromolaena odorata (L.)<br>R. M. King & H. Rob.      | Asteraceae       | Siam weed                  | -     | +     | Kamyunisț<br>sasya   | May-July           | 20158         |
| 18     | Coldenia procumebns L.                                | Boraginaceae     | Creeping coldenia          | +     | +     | Hamsapaadi           | May-July           | 20213         |
| 19     | Commelina forskaolii Vahl                             | Commelinaceae    | Forsskal's<br>Dayflower    | -     | +     | Kanpet               | July-<br>August    | 20206         |
| 20     | Conyza sp.                                            | Asteraceae       | Horseweed,<br>butterweed   | +     | -     | Bettada Davana       | May-July           | 20215         |
| 21     | Crotalaria juncea L.                                  | Fabaceae         | devil-bean,<br>rattleweed  | +     | -     | Senabu               | March-<br>May      | -             |
| 22     | Cryptolepis<br>buchananii R.Br. ex Roem.<br>& Schult. | Apocynaceae      | Indian<br>sarasparilla     | -     | +     | Metaguli             | June-<br>August    | 20137         |

Species 25, e20s1655 (2024) 11 of 18

| 23 | Cucumis sp.                                   | Cucurbitaceae    | -                              | + | - | -            | July-<br>August        | 20219 |
|----|-----------------------------------------------|------------------|--------------------------------|---|---|--------------|------------------------|-------|
| 24 | Cyperus articulatus L.                        | Cyperaceae       | Priprioca                      | + | + | -            | May-July               | 20138 |
| 25 | Cyperus difformis L.                          | Cyperaceae       | Rice sedge                     | + | + | _            | May-July               | 20140 |
| 26 | Cyperus haspan L.                             | Cyperaceae       | Dwarf papyorus                 | - | + | -            | May-July               | 20187 |
| 27 | Cyperus squarrosus L.                         | Cyperaceae       | Bearded<br>flatsedge           | - | + | -            | May-July               | 20141 |
| 28 | Dentella repens var. repens                   | Rubiaceae        | Creeping<br>denetlla           | - | + | -            | May-<br>August         | 20142 |
| 29 | Digitaria ciliaris (Retz.)<br>Koeler          | Poaceae          | Tropical finger-<br>grass      | + | + | -            | June-<br>August        | 20202 |
| 30 | Digitaria radicosa (J.Presl)<br>Miq.          | Poaceae          | Trailing crabgrass             | + | + | -            | June-<br>August        | 20203 |
| 31 | Duranta erecta L.                             | Verbenaceae      | Pigeon berry                   | - | + | Neelakantha  | May-<br>August         | 20143 |
| 32 | Echinochloa colonum (L.)<br>Link              | Poaceae          | Jungle Rice                    | + | + | -            | May-<br>August         | 20207 |
| 33 | Eclipta prostrata (L.) L.                     | Asteraceae       | False daisy                    | - | + | Bhringraj    | May-<br>August         | 20166 |
| 34 | Eleusine indica (L.)<br>Gaertn.               | Poaceae          | Wire grass                     | + | - | Mandla       | May-July               | -     |
| 35 | Elodea canadensis Michx.                      | Hydrocharitaceae | Canadian<br>pondweed           | + | - | -            | -                      | 20130 |
| 36 | Elodea densa (Planch.)<br>Casp.               | Hydrocharitaceae | Brazilian<br>waterweed         | + | - | -            | -                      | 20128 |
| 37 | Emilia sonchifolia (L.) DC.                   | Asteraceae       | Lilac<br>lasselflower          | + | + | Elikivi Gida | March-<br>May          | 20144 |
| 38 | Erigeron bonariensis L                        | Asteraceae       | Hairy fleabane                 | - | + | Chigathaari  | May-July               | 20159 |
| 39 | Euphorbia hirta L.                            | Euphorbiaceae    | Hairy Spurge                   | + | - | Hachchedida  | March-<br>May          | 20214 |
| 40 | Euphorbia prostrata Aiton                     | Euphorbiaceae    | Prostrate Spurge               | - | + | -            | May-July               | 20174 |
| 41 | Euphorbia sp.                                 | Euphorbiaceae    | Spurge                         | + | - | -            | March-<br>May          | -     |
| 42 | Euploca ovalifolia (Forsk.)<br>Diane & Hilger | Boraginaceae     | Payto leche                    | - | + | -            | May-July               | 20186 |
| 43 | Evolvulus alsinoides (L.) L.                  | Convolvulaceae   | dwarf morning-<br>glory        | - | + | Vishnukranti | September-<br>December | 20205 |
| 44 | Fimbristylis dichotoma (L.)<br>Vahl           | Cyperaceae       | Eight Day Grass                | - | + | -            | May-July               | 20145 |
| 45 | Glinus oppositifolius (L.)<br>Aug. DC.        | Molluginaceae    | Bitter<br>Cumin Bitter<br>Leaf | - | + | Kadvi Bhaji  | May-July               | 20165 |
| 46 | Gomphrena serrata L.                          | Amaranthaceae    | Globe<br>Amaranth              | - | + | -            | May-July               | 20189 |
| 47 | Gnaphalium indicum                            | Asteraceae       | -                              | + | - | -            | July-<br>August        | 20210 |
| 48 | Grangea<br>maderaspatana (L.) Poir.           | Asteraceae       | Madras Carpet                  | - | + | Mashipatri   | May-July               | 20175 |

Species 25, e20s1655 (2024) 12 of 18

| 49 | Heliotropium indicum L.                      | Boraginaceae     | Indian<br>heliotrophe      | + | - | Chelubalada<br>Gida       | June-<br>August        | 20133 |
|----|----------------------------------------------|------------------|----------------------------|---|---|---------------------------|------------------------|-------|
| 50 | Hydrilla verticiliata (L.f.)<br>Royle        | Hydrocharitaceae | Waterthyme                 | + | + | -                         | -                      | 20131 |
| 51 | Hygrophila auriculata (Schumach.) Heine      | Acanthaceae      | Margh barbel               | + | + | Gokulakanta               | September-<br>November | 20208 |
| 52 | Ipomea aquatica Forsk.                       | Convolvulaceae   | Water morning glory        | + | + | Neeru Bili<br>gadde hambu | March-<br>May          | 20121 |
| 53 | <i>Ipomoea obscura</i> (L.) Ker<br>Gawl.     | Convolvulaceae   | Small white morning glory  | + | + | Ker-gawl                  | May-July               | 20176 |
| 54 | Lantana camara L.                            | Verbenaceae      | Lantana                    | + | - | Caturang                  | March-<br>August       | 20177 |
| 55 | Lemna sp.                                    | Araceae          | Duck weed                  | + | + | -                         | -                      | 20204 |
| 56 | Ludwigia adscendens (L.)<br>H.Hara           | Onagraceae       | Water primrose             | + | - | Jagal (Oria)              | February-<br>May       | 20125 |
| 57 | Ludwigia perennis L.                         | Onagraceae       | Perennial water primrose   | - | + | Neerkarayambu             | May-<br>August         | 20146 |
| 58 | Martynia annua L.                            | Martyniaceae     | Cats claw                  | - | + | Garuda Mugu<br>Mullu      | June-<br>August        | 20190 |
| 59 | Mecardonia<br>procumbens (Mill.) Small       | Plantaginaceae   | Baby jump-up               | + | - | Makardana                 | March-<br>May          | 20122 |
| 60 | Mesosphaerum suaveolens (L.) Kuntze          | Lamiacae         | Pignut                     | - | + | Ganga tulasi              | June-<br>August        | 20160 |
| 61 | Mimosa pudica L.                             | Fabaceae         | Sensitive plant            | + | + | Muttidre Muni             | June-<br>August        | 20191 |
| 62 | Nelumbo nucifera Gaertn.                     | Nelumbonaceae    | Sacred lotus               | + | + | Tavare                    | March-<br>August       | 20123 |
| 63 | Nymphaea<br>pubescens Willd.                 | Nymphaceae       | Hairy water lily           | - | + | Kamal                     | May-<br>Septemebr      | 20124 |
| 64 | Nymphoides<br>aquatica (J.F.Gmel.)<br>Kuntze | Menyanthaceae    | Banana lily                | + | + | -                         | March-<br>June         | 20126 |
| 65 | Nymphoides indica (L.)<br>Kuntze             | Menyanthaceae    | Water snow<br>flake        | + | + | Barachuli                 | March-<br>June         | 20127 |
| 66 | Ocimum tenuiflorum L.                        | Lamiceae         | Holy basil/ Tulsi          | + | + | Tulsi                     | March-<br>June         | 20178 |
| 67 | Oxalis corniculata L.                        | Oxalidaceae      | Creeping<br>woodsorrel     | + | + | Amrit Sak                 | March-<br>August       | 20179 |
| 68 | Parthenium<br>hysterophorus L.               | Asteraceae       | Carrot grass               | + | + | Gajar ghas                | June-<br>August        | 20192 |
| 69 | Paspalum canarae (Steud.)<br>Veldkamp        | Poaceae          | Crowngrasses               | + | + | -                         | June-<br>August        | 20200 |
| 70 | Passiflora foetida L.                        | Passifloraceae   | Bush passion fruit         | - | + | Jhumka Lata               | June-<br>August        | 20193 |
| 71 | Persicaria maculosa Gray                     | Polygonaceae     | Spotted ladys thumb        | - | + | Sorale                    | June-<br>August        | 20150 |
| 72 | Phyla nodiflora (L.) Greene                  | Verbenaceae      | Turkey Tangle<br>fog fruit | - | + | Jala hippali              | June-<br>August        | 20147 |

Species 25, e20s1655 (2024) 13 of 18

| 73 | Phyllanthus reticulatus                        | Phyllanthaceae   | Black honey                  | _ | + | Karihuli                | June-            | 20148 |
|----|------------------------------------------------|------------------|------------------------------|---|---|-------------------------|------------------|-------|
|    | Poir.                                          | ,                | shrub                        |   |   |                         | August           |       |
| 74 | Physalis angulata                              | Solanceae        | Baloon cherry                | - | + | Njodinjotta             | June-<br>August  | 20149 |
| 75 | Plumbago zeylanica L.                          | Plumbaginaceae   | Ceylon leadwort              | - | + | Chita Chitrak           | June-<br>August  | 20194 |
| 76 | Polygonum plebeium R.Br.                       | Polygonaceae     | Common<br>knotweed           | - | + | Gulabi Godhadi          | June-<br>August  | 20180 |
| 77 | Portulaca oleracea L.                          | Portulaceaea     | Common purslane              | - | + | Khursa Kulfa            | June-<br>August  | 20151 |
| 78 | Pseudoconyza viscosa<br>(Mill.) D'Arcy         | Asteraceae       | Viscid conayza               | - | + | -                       | March-<br>August | 20195 |
| 79 | Pseudognaphalium viscosum (Kunth) Anderb.      | Asteraceae       | Cudweeds                     | - | + | -                       | March-<br>August | 20152 |
| 80 | Psidium guajava L.                             | Myrtaceae        | Yellow guava                 | - | + | Peru gida               | June-<br>August  | 20153 |
| 81 | Ruellia tuberosa L.                            | Acanthaceae      | Minnieroot                   | - | + | Potpoti Ruwel           | June-<br>August  | 20161 |
| 82 | Samanea saman (Jacq.)<br>Merr.                 | Caesalpinaceae   | Rain tree                    | + | - | Male mara               | March-<br>May    | 20129 |
| 83 | Scoparia dulcis L.                             | Plantaginaceae   | licorice weed                | + | + | Mruganmhi<br>Gida       | May-<br>August   | 20181 |
| 84 | Senna obtusifolia (L.) H.S.<br>Irwin & Barenby | Fabaceae         | Sickpool                     | + | + | -                       | March-<br>August | 20182 |
| 85 | Solanum lycopersicum L.                        | Solanceae        | Tomato                       | - | + | Tamati                  | March-<br>May    | 20154 |
| 86 | Solanum nigrum L.                              | Solanceae        | Balck berry<br>nightshade    | - | + | Mokoi                   | June-<br>August  | 20196 |
| 87 | Solanum torvum Sw.                             | Solanceae        | Devil's fig                  | - | + | Sundekkayi              | June-<br>August  | 20198 |
| 88 | Sonchus wightianus DC.                         | Asteraceae       | Wights jaw<br>thistle        | + | - | Sahadevi bari           | March-<br>May    | 20220 |
| 89 | Sorghum bicolor (L.) Moench                    | Poaceae          | Grrom corn                   | - | + | Jwari                   | June-<br>August  | 20216 |
| 90 | Streblus asper Lour.                           | Moraceae         | Tooth brush tree             | - | + | Akhor mara              | June-<br>August  | 20183 |
| 91 | Synedrella nodiflora (L.)<br>Gaertn.           | Asteraceae       | Nodeweed                     | + | + | Mudianpacha             | June-<br>August  | 20199 |
| 92 | Syzygium jambos (L.)<br>Alston                 | Myrtaceae        | Black palm                   | + | - | Neerle hannu<br>mara    | June-<br>August  | 20197 |
| 93 | Tectona grandis L.f.                           | Lamiaceae        | Teak                         | + | + | Thega/<br>Saguvani      | June-<br>August  | 20218 |
| 94 | Tridax procumbens L.                           | Asteraceae       | Coatbuttons<br>/tridax daisy | - | + | Gabbusanner<br>savanthi | June-<br>August  | 20162 |
| 95 | Triumfetta sp.                                 | Malavaceae       | -                            | - | + | -                       | -                | 20164 |
| 96 | Vallisneria natans (Lour.)<br>H.Hara           | Hydrocharitaceae | Eelgrass, tape<br>grass      | + | + | -                       | -                | 20155 |
| 97 | Vitex negundo L.                               | Vitaceae         | Chinese chase tree           | - | + | Nirgundi                | June-<br>August  | 20184 |

Species 25, e20s1655 (2024) 14 of 18

| 98  | Zizaniopsis Sp.                  | Poaceae    | Water millet  | - | + | -           | June-<br>August | 20163 |
|-----|----------------------------------|------------|---------------|---|---|-------------|-----------------|-------|
| 99  | Zizipus oenophila (L.)<br>Miller | Rhamanceae | Indian pulm   | - | + | Karkandhauh | March-<br>June  | 20156 |
| 100 | Zizipus sp.                      | Rhamanceae | Indian jujube | - | + | -           | June-<br>August | 20212 |

A. - Antrolli Lake, G. - Guttigere Lake, + = Present, - = Absent

Available sulphur in both Guttigere and Antrolli lakes is 11.5mg/100gm. sulphur is essential for plant growth. Zinc is used in agriculture and crop production. Guttigere Lake is 0.31 mg/kg and in the Antrolli lake 0.41 mg/kg. Deficiency of zinc leads to loss in production of grain nutrient content for Agriculture land zinc range between 10-300mg/kg. Copper (Cu) content soil of Guttigere lake 0.61mg/kg and Antrolli lake 0.71mg/kg both soil samples have low amount of copper because of high organic matter, sandy clay soil and high PH is 5-30 mg/kg is required to plant tissue. Iron content in the soil of Guttigere lake is 4.81mg/kg and Antrolli lake is 5.61mg/kg, for good soil at least more than 7.5mg/kg of iron is required to support the growth of plants.

Manganese (Mn) is important micronutrient for plant growth. Mn content in the soil of Guttigere lake is 5.16mg/kg and Antrolli lake is 4.81 mg/kg.at least 20-40mg/kg is required to plant tissue. Mn content in bottom soil of lake not high so did not pose any threat to living organisms. Sodium carbonate mm/L in the Guttigere lake is -3.8 and in Antrolli lake -2.6mm/L, residual Sodium carbonate less than 1.25mm/L is safe for agriculture usage. Sodium is major salt in water content 1.67 and 2.09 mm/L In both Guttigere and Antrolli lake respectively (Table 4).

Table 4 Soil and Water Analysis (Guttigere & Antrolli Lakes) in ICAR Science Centre, Dharwad

| Parameters                  | Guttigere lake | Antrolli lake |
|-----------------------------|----------------|---------------|
| Soil color                  | Black          | Red           |
| рН                          | 7.45           | 7.48          |
| Electric conductivity (S/m) | 0.43           | 0.42          |
| Organic Carbon mg/ L        | 0.6            | 0.36          |
| Mineralization Nitrogen     | 207            | 103.5         |
| P2O5 per acre               | 14.5           | 18.6          |
| K2O per acre                | 404.7          | 109           |
| Ca per 100gm                | 19.8           | 6.8           |
| Mg per 100gm                | 8.5            | 3.1           |
| Available Sulphur           | 11.5           | 11.5          |
| Zn mg per Kg                | 0.31           | 0.41          |
| Cu mg per Kg                | 0.61           | 0.71          |
| Fe mg per Kg                | 4.81           | 5.61          |
| Mn mg per Kg                | 5.16           | 4.81          |
| Water                       | Guttigere lake | Antrolli lake |
| рН                          | 6.52           | 6.8           |
| Electric conductivity(S/m)  | 0.3            | 0.3           |
| Sodium carbonate mm/L       | -3.8           | -2.6          |
| Sodium                      | 1.67           | 2.09          |

Guttigere and Antrolli lake water is used for agricultural purposes. Soil from the Guttigere lake is digged out for various uses during summer season only. Washing clothes during summer and rainy season is common in Antrolli pond as it does not have protection around it. Washing cattle's and vehicles is also regularly done in this pond. Guttigere pond have fencing around it so fewer

Species 25, e20s1655 (2024) 15 of 18

activities observed like washing clothes and cattle washing. But people visit there for morning and evening walk around the pond. Fishing is done during February to June when water becomes less. Fishes include Katla, Kannadi, Miragal, Rahoo, Gaskarp, Murgod, Chillapilli and Crabs (Figure 8).



Fig. 8: Antropogenic activites in Two lakes: Atrolli Lake: A. Washing clothes; B. Cattle washing; C. Cattle raring in pond; D. Fishing; E. Plastic wastage; Guttigere Lake: F. Cattle raring; G. Digging in pond; H. Plastic wastage; I. Washing clothes; J. K. & L. Types of Fishes present in two ponds

Species 25, e20s1655 (2024) 16 of 18

# 4. CONCLUSION

Soil from the Guttigere lake is dig out for various uses during summer season. Washing clothes during summer and rainy season is common in Antrolli lake as it does not have protection around it. Washing cattle's and vehicles is also regularly done in this lake. Guttigere lake have fencing around it so fewer activities observed like washing clothes and cattle washing. Fishing is done during February to June when water becomes less. Fishes include Katla, Kannadi, Miragal, Rahoo, Gaskarp, Murgod, Chillapilli and Crabs. Soil of Antrolli (Red) and Guttigere (Black) is good for plants to grow. But major diversity of angiosperms is recorded in Red soil (Antrolli) lake which is goof for the growth of plants, as lake is surrounded by farm lands which is useful from this lake.

#### Conflicts of interests:

The authors declare that there are no conflicts of interests.

### **Funding:**

The study has not received any external funding.

### Ethical approval

The ethical guidelines for plants & plant materials are followed in the study for species collection & identification.

## Data and materials availability

All data associated with this study are present in the paper.

### REFERENCES

- Bharathi HR, Manjappa S, Suresh B. Physio chemical parameters of Anekere Water body Hassan district (Karnataka). Intertional Journal Pharm Life Sciences 2013; 4(12):3200-3204.
- Bhat DM, Limnological studies of two rivers in Uttara Kannada District, Karnataka. Karnataka University Dharwad. 2004.
- 3. Bhat KG. Flora of South Kanara: Dakshina Kannada and Udupi Districts of Karnataka. Udupi: Taxonomy Research Centre, Chitpady, Udupi, 2014.
- 4. Cooke T. Flora of the presidency of Bombay. Vol. I. II. III. Botanical Survey of India. 1906.
- Dodagoudar SF. An ecological study of phytoplankton of four freshwater Bodies of Dharwad. Karnataka University Dharwad. 1989.
- 6. Gamble JS, & Fischer CEC. Flora of Presidency of Madras. Vol. I. II. III. Secretary of State for India in Council. 1928.
- Hegde GR. Comparison of phytoplankton biomass in four water bodies of Dharwad, Karnataka State (India). Proceedings Indian Academic Science (Plant Science) 1985; 94(4-6):583-587.
- Ian Mm, Emi FC, & Caren S. Macrosystems Limnology and Beyond: Re-Envisioning the Scale of Limnology. Encyclopedia of Inland Waters (Second Edition): 2022. 4. 539-548 https://doi.org/10.1016/B978-0-12-819166-8.00026-8

- Mallappa P, Takrya PN. Diversity and Identification of Aquatic Macrophytes of Four Lakes of Holalkere, Chitradurga District, Karnataka, India. Research Square 2022; 1-9. doi: 10.21203/rs.3. rs-2232093/v1
- 10. Manjunatha S, Devabrath AJ, Ramakrishna PP, Chandrashekar R, Amruthesh KN. Diversity of Angiosperms in the Kukkarahalli Lake, Mysuru, Karnataka, India. Plant Achieves 2019; 19(2):3555-3564.
- Rajesh K. Limnological Study of Lentic Ecosystems in Bodhgaya Block in Gaya District Bihar. Intertional Journal Advances Engineering Management 2020; 2(11):333-335.
- 12. Rao R, & JAIN SK. A Handbook of Field and Herbarium Methods. Scholarly Publications. 1977.
- 13. Saldanha CJ. Flora of Karnataka. Vol. 1. Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi, 1984.
- 14. Saldanha CJ. Flora of Karnataka. Vol. 2. Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi, 1996.
- 15. Shloka G, Divyashree, Ginjupalli J, Deepa G. Study of Floral Biodiversity of Water Bodies near HSR Layout, Bangalore, to Evaluate Water Pollution. Appl Ecol Environ Sci 2022; 10(6):4 17-423. doi: 10.12691/aees-10-6-12.
- Seetharam, YN, Kotresh K. & Uploankar SB. Flora of Gulbarga district. Gulbarga University, Gulbarga, Karnataka. India. 2000.

Species 25, e20s1655 (2024) 17 of 18

- 17. Singh DM, Rajan SGD. Survey of Wet Land Macrophytes from Wetlands of Haliyal Taluk. International Journal Pure Applied Biosciences 2015; 3(4):16 6-172.
- 18. Thrupthi GN, Deviprasad AG. Aquatic Plant Diversity of Lakes in Somwarapete Taluk, Kodagu, Karnataka. Asian Journal Environmental Ecology 2023; 20(3):1-10. doi: 10.9734/ajee/2023/v20i3438

Species 25, e20s1655 (2024) 18 of 18