Семинар 2 Линейная регрессия

8 сентября 2017 г.

1 Линейные модели

В этом семинаре речь пойдёт о таком базовом инструменте анализа данных, как линейная регрессия. Несмотря на простоту, материал важен для изучения, так как содержит интересные приёмы анализа данных.

В качестве разминки предлагается самостоятельно вывести формулу линейной регрессии для одномерного случая. Задача ставится следующим образом:

Задача 1.1. Дано множество наблюдений $\{(x_i, y_i)\}_{i=1}^{\ell}$. Необходимо найти вещественные параметры k, b в уравнении прямой a(x) = kx + b, которые минимизируют ошибку RMSE на множестве наблюдений.

$$RMSE = \sqrt{\frac{1}{\ell} \sum_{i=1}^{\ell} (y_i - a(x_i))^2} \to \min_{k,b}$$

Решение. Заметим, что извлечение корня и домножение на положительную константу не меняют аргумент, при котором достигается искомый экстремум:

$$\underset{k,b}{\operatorname{arg\,min}} \sqrt{\frac{1}{\ell} \sum_{i=1}^{\ell} (y_i - a(x_i))^2} = \underset{k,b}{\operatorname{arg\,min}} \sum_{i=1}^{\ell} (y_i - a(x_i))^2 = \underset{k,b}{\operatorname{arg\,min}} \sum_{i=1}^{\ell} (y_i - kx_i - b)^2.$$

Для нахождения минимума данного квадратичного функционала продифференцируем по каждому из аргументов и приравняем полученное выражение к нулю:

$$\frac{\partial}{\partial b} \sum_{i=1}^{\ell} (y_i - kx_i - b)^2 = \sum_{i=1}^{\ell} 2(b + kx_i - y_i) = \sum_{i=1}^{\ell} 2b + \sum_{i=1}^{\ell} 2(kx_i - y_i) = 0,$$

$$b = \frac{1}{\ell} \sum_{i=1}^{\ell} (y_i - kx_i).$$

Аналогично для k:

$$\frac{\partial}{\partial k} \sum_{i=1}^{\ell} (y_i - kx_i - b)^2 = \sum_{i=1}^{\ell} 2x_i (b + kx_i - y_i) = \sum_{i=1}^{\ell} 2kx_i^2 + \sum_{i=1}^{\ell} 2x_i (b - y_i) = 0,$$

$$k = \frac{1}{\sum_{i=1}^{\ell} x_i^2} \sum_{i=1}^{\ell} x_i (y_i - b).$$

Получили систему

$$\begin{cases} b = \frac{1}{\ell} \sum_{i=1}^{\ell} (y_i - kx_i), \\ k = \frac{1}{\sum_{i=1}^{\ell} x_i^2} \sum_{i=1}^{\ell} x_i (y_i - b). \end{cases}$$

Для удобства введём обозначения $\frac{1}{\ell} \sum_{i=1}^\ell y_i = \bar{y}, \quad \frac{1}{\ell} \sum_{i=1}^\ell x_i = \bar{x}$ и подставим выражение для b во второе уравнение:

$$k = \frac{1}{\sum_{i=1}^{\ell} x_i^2} \sum_{i=1}^{\ell} x_i (y_i - \bar{y} + k\bar{x}) = \frac{1}{\sum_{i=1}^{\ell} x_i^2} \left(\sum_{i=1}^{\ell} x_i (y_i - \bar{y}) + k\bar{x} \sum_{i=1}^{\ell} x_i \right).$$

Домножая на $\sum_{i=1}^{\ell} x_i^2$ и группируя слагаемые, получаем

$$k = \frac{\sum_{i=1}^{\ell} x_i (y_i - \bar{y})}{\sum_{i=1}^{\ell} x_i (x_i - \bar{x})},$$

$$b = \bar{y} - k\bar{x}.$$

Для нахождения решения в многомерном случае нам потребуется изучить некоторые приёмы векторного дифференцирования.

§1.1 Векторное дифференцирование

Иногда при взятии производных по вектору или от вектор-функций удобно оперировать матричными операциями. Это сокращает запись и упрощает вывод формул. Введём следующие определения:

• При отображении вектора в число $f(x): \mathbb{R}^n \to \mathbb{R}$

$$\nabla_x f(x) = \left[\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right]^T.$$

• При отображении матрицы в число $f(A): \mathbb{R}^{n \times m} \to \mathbb{R}$

$$\nabla_A f(A) = \left(\frac{\partial f}{\partial A_{ij}}\right)_{i,j=1}^{n,m}.$$

Мы хотим оценить, как функция изменяется по каждому из аргументов по отдельности. Поэтому производной функции по вектору будет вектор, по матрице — матрица. Теперь поупражняемся в дифференцировании:

Задача 1.2. Пусть $a \in \mathbb{R}^n$ — вектор параметров, а $x \in \mathbb{R}^n$ — вектор переменных. Необходимо найти производную их скалярного произведения по вектору переменных $\nabla_x a^T x$.

Решение.

$$\frac{\partial}{\partial x_i} a^T x = \frac{\partial}{\partial x_i} \sum_j a_j x_j = a_i,$$

поэтому $\nabla_x a^T x = a$.

Заметим, что $a^T x$ — это число, поэтому $a^T x = x^T a$, следовательно,

$$\nabla_x x^T a = a.$$

Задача 1.3. Пусть теперь $A \in \mathbb{R}^{n \times n}$. Необходимо найти $\nabla_x x^T A x$.

Решение.

$$\frac{\partial}{\partial x_i} x^T A x = \frac{\partial}{\partial x_i} \sum_j x_j (A x)_j = \frac{\partial}{\partial x_i} \sum_j x_j \left(\sum_k a_{jk} x_k \right) = \frac{\partial}{\partial x_i} \sum_{j,k} a_{jk} x_j x_k =$$

$$= \sum_{j \neq i} a_{ji} x_j + \sum_{k \neq i} a_{ik} x_k + 2a_{ii} x_i = \sum_j a_{ji} x_j + \sum_k a_{ik} x_k = \sum_j (a_{ji} + a_{ij}) x_j.$$

Поэтому $\nabla_x x^T A x = (A + A^T) x$.

Задача 1.4. Пусть $A \in \mathbb{R}^{n \times n}$. Необходимо найти $\nabla_A \det A$.

Решение. Воспользуемся теоремой Лапласа о разложении определителя по строке:

$$\frac{\partial}{\partial A_{ij}} \det A = \frac{\partial}{\partial A_{ij}} \left[\sum_{k} (-1)^{i+k} A_{ik} M_{ik} \right] = (-1)^{i+j} M_{ij},$$

где M_{ik} — дополнительный минор матрицы A. Также вспомним формулу для элементов обратной матрицы

$$(A^{-1})_{ij} = \frac{1}{\det A} (-1)^{i+j} M_{ji}.$$

Подставляя выражение для дополнительного минора, получаем ответ $\nabla_A \det A = (\det A)A^{-T}$.

Задача 1.5. Пусть $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times n}$. Необходимо найти $\nabla_A tr(AB)$.

Решение.

$$\frac{\partial}{\partial A_{ij}} \operatorname{tr}(AB) = \frac{\partial}{\partial A_{ij}} \sum_{k} (AB)_{kk} = \frac{\partial}{\partial A_{ij}} \sum_{k,l} A_{kl} B_{lk} = B_{ji}.$$

To есть, $\nabla_A \operatorname{tr}(AB) = B^T$.

Задача 1.6. Пусть $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times m}$, $y \in \mathbb{R}^m$. Необходимо найти $\nabla_A x^T A y$.

Решение. Воспользовавшись циклическим свойством следа матрицы (для матриц подходящего размера):

$$tr(ABC) = tr(BCA) = tr(CAB)$$

и результатом предыдущей задачи, получаем

$$\nabla_A x^T A y = \nabla_A \operatorname{tr}(x^T A y) = \nabla_A \operatorname{tr}(A y x^T) = x y^T.$$

§1.2 Решение задачи регрессии для многомерного случая

Вспомним, зачем мы хотели научиться дифференцировать. В общем случае мы имеем выборку $\{(x_i,y_i)\}_{i=1}^\ell$, где $x_i\in\mathbb{R}^d\ \forall i,\ y_i\in\mathbb{R}\ \forall i,\ u$ хотим найти наилучшие параметры модели $a(x)=\langle w,x\rangle$ с точки зрения минимизации функции ошибки

$$Q(w) = (y - Xw)^T (y - Xw).$$

Здесь $X \in \mathbb{R}^{\ell \times d}$ — матрица «объекты-признаки» для обучающей выборки, $y \in \mathbb{R}^\ell$ — вектор значений целевой переменной на обучающей выборке, $w \in \mathbb{R}^d$ — вектор параметров. Выпишем градиент функции ошибки по w:

$$\nabla_w Q(w) = \nabla_w [y^T y - y^T X w - w^T X^T y + w^T X^T X w] = 0 - X^T y - X^T y + (X^T X + X^T X) w = 0.$$

Таким образом, искомый вектор параметров выражается как

$$w = (X^T X)^{-1} X^T y.$$

Заметим, что это общая формула, и нет необходимости выводить формулу для регрессии вида $a(x) = Xw + w_0$, т.к. мы всегда можем добавить признак (столбец матрицы X), который всегда будет равен 1, и по уже выведенной формуле найдём параметр w_0 .

Покажем, почему найденная точка — точка минимума, если матрица X^TX обратима. Из курса математического анализа мы знаем, что если матрица Гессе функции положительно определёна в точке, градиент которой равен нулю, то эта точка является локальным минимумом.

$$\nabla^2 Q(w) = 2X^T X.$$

Необходимо понять, является ли матрица X^TX положительно определённой. Запишем определение положительной определённости матрицы X^TX :

$$z^T X^T X z > 0, \ \forall z \in \mathbb{R}^d, z \neq 0.$$

Видим, что тут записан квадрат нормы вектора Xz, то есть это выражение будет не меньше нуля. В случае, если матрица X имеет «книжную» ориентацию (строк не меньше, чем столбцов) и имеет полный ранг (нет линейно зависимых столбцов), то вектор Xz не может быть нулевым, а значит выполняется

$$z^T X^T X z = ||Xz||^2 > 0, \ \forall z \in \mathbb{R}^d, z \neq 0.$$

То есть X^TX является положительно определённой матрицей. Также, по критерию Сильвестра, все главные миноры (в том числе и определитель) положительно определённой матрицы положительны, а, следовательно, матрица X^TX обратима, и решение существует. Если же строк оказывается меньше, чем столбцов, или X не является полноранговой, то X^TX необратима и решение w определено неоднозначно.

2 Градиентный спуск

Ситуации, когда нам удаётся найти решение оптимизационной задачи в явном виде, — большая удача. В общем случае оптимизационные задачи можно решать итерационно с помощью градиентных методов (или же методов, использующих как градиент, так и информацию о производных более высокого порядка). Для понимания работы этих методов давайте ознакомимся со свойствами градиента.

§2.1 Градиент и его свойства

Антиградиент $(-\nabla f)$ является направлением наискорейшего убывания функции в заданной точке. Это ключевое свойство градиента, обосновывающее его использование в методах оптимизации. Докажем эквивалентное утверждение.

Утв. 1. Градиент является направлением наискорейшего роста функции.

Доказательство.

Пусть $v \in \mathbb{R}^d$ — произвольный вектор, лежащий на единичной сфере: ||v|| = 1. Пусть $x_0 \in \mathbb{R}^d$ — фиксированная точка пространства. Скорость роста функции в точке x_0 вдоль вектора v характеризуется производной по направлению $\frac{\partial f}{\partial v}$:

$$\frac{\partial f}{\partial v}(x_0) = \frac{d}{dt} f(x_{0,1} + tv_1, \dots, x_{0,d} + tv_d)|_{t=0}.$$

Из курса математического анализа известно, что данную производную сложной функции можно переписать следующим образом:

$$\frac{\partial f}{\partial v}(x_0) = \sum_{j=1}^d \frac{\partial f}{\partial x_j}(x_0) \frac{d}{dt} (x_{0,j} + tv_j) = \sum_{j=1}^d \frac{\partial f}{\partial x_j}(x_0) v_j = \langle \nabla f(x_0), v \rangle.$$

Распишем скалярное произведение:

$$\langle \nabla f(x_0), v \rangle = \|\nabla f(x_0)\| \|v\| \cos \varphi = \|\nabla f(x_0)\| \cos \varphi,$$

где φ — угол между градиентом и вектором v. Таким образом, производная по направлению будет максимальной, если угол между градиентом и направлением равен нулю, и минимальной, если угол равен 180 градусам. Иными словами, производная по направлению максимальна вдоль градиента и минимальна вдоль антиградиента.

Напоследок докажем ещё одно фундаментальное свойство градиента.

Утв. 2. Градиент ортогонален линиям уровня.

Доказательство.

Пусть x_0 — некоторая точка, $S(x_0) = \{x \in \mathbb{R}^d \mid f(x) = f(x_0)\}$ — соответствующая линия уровня. Разложим функцию в ряд Тейлора на этой линии в окрестности x_0 :

$$f(x_0 + \varepsilon) = f(x_0) + \langle \nabla f(x_0), \varepsilon \rangle + o(\|\varepsilon\|),$$

где $x_0 + \varepsilon \in S(x_0)$. Поскольку $f(x_0 + \varepsilon) = f(x_0)$ (как-никак, это линия уровня), получим

$$\langle \nabla f(x_0), \varepsilon \rangle = o(\|\varepsilon\|).$$

Поделим обе части на $\|\varepsilon\|$:

$$\left\langle \nabla f(x_0), \frac{\varepsilon}{\|\varepsilon\|} \right\rangle = o(1).$$

Устремим $\|\varepsilon\|$ к нулю. При этом вектор $\frac{\varepsilon}{\|\varepsilon\|}$ будет стремится к касательной к линии уровня в точке x_0 . В пределе получим, что градиент ортогонален этой касательной.