Линейная алгебра

Бобень Вячеслав, Сиренева Ника @darkkeks, @nih3kwo, GitHub

Благодарность выражается Левину Александру (@azerty1234567890) и Милько Андрею (@andrew_milko) за видеозаписи лекций.

2024 - 2025

Дисклеймер: с 19 лекции конспект может содержать большее количество ошибок, так как обновился недавно. Просьба сообщить о них в issues или самим исправить их в pull requests.

"К коллоку можете даже не готовиться".

— Роман Сергеевич Авдеев

Содержание

1	Лег	кция 1	8
	1.1	Матрицы	8
	1.2	Операции над матрицами	8
	1.3	Пространство \mathbb{R}^n , его отождествление с матрицами-столбцами высоты $n\ldots\ldots\ldots\ldots$	8
	1.4	Транспонирование матриц, его простейшие свойства	9
	1.5	Умножение матриц	9
2	Лен	кция 2	11
	2.1	Отступление о суммах	11
	2.2	Основные свойства умножения матриц	11
	2.3	Диагональные матрицы	12
	2.4	Единичная матрица и её свойства	12
	2.5	След квадратной матрицы и его свойства	13
	2.6	Системы линейных уравнений.	13
		2.6.1 Совместные и несовместные системы	14
		2.6.2 Матричная форма записи СЛУ	14
3	Лег	кция 3	15
	3.1	Расширенная матрицы системы линейных уравнений	15
	3.2	Эквивалентные системы	15
	3.3		15
		3.3.1 Элементарные преобразования СЛУ и соответствующие преобразования строк её расширенной	
			15
		3.3.2 Сохранение множества решений системы линейных уравнений при элементарных преобразованиях	16
	3.4		16
			16
	3.5	Реализация элементарных преобразований строк матрицы при помощи умножения слева на подходящую	
		матрицу	17
4	Лен	кция 4	18
	4.1		18
	4.2		19
	4.3	Связь между множеством решений системы линейных уравнений и множеством решений соответствую-	
			19
	4.4		19
	4.5		20
	4.6	Перестановки на множестве $\{1, 2,, n\}$	20

5	Лекция 5	21
	5.1 Инверсии в перестановке	. 21
	5.2 Знак и чётность перестановки	. 21
	5.3 Произведение перестановок	. 21
	5.4 Ассоциативность произведения перестановок	
	5.5 Тождественная перестановка	
	5.6 Обратная перестановка и её знак	
	5.7 Теорема о знаке произведения перестановок	
	5.8 Транспозиции, знак транспозиции	. 22
	5.9 Определитель квадратной матрицы	. 23
	5.10 Определители порядков 2 и 3	. 23
6	Лекция 6	24
	6.1 Свойства определителей	
	6.2 Поведение определителя при элементарных преобразованиях строк (столбцов)	. 26
-	H 7	97
7	Лекция 7	2' . 2'
	7.1 Определитель с углом нулей	
	7.2 Определитель произведения матриц	
	7.3 Дополнительные миноры и алгебраические дополнения к элементам квадратной матрицы	
	7.4 Лемма об определителе матрицы, содержащей ровно один ненулевой элемент в некоторой строке	. 28
	7.5 Разложение определителя по строке (столбцу)	. 28
	7.6 Лемма о фальшивом разложении определителя	
	7.7 Обратная матрица, её единственность	
	7.8 Невырожденные матрицы	
	7.9 Определитель обратной матрицы	
	7.10 Присоединённая матрица	
	7.11 Критерий обратимости квадратной матрицы, явная формула для обратной матрицы	. 29
0	T 0	0.
8	Лекция 8	3
	8.1 Следствия из критерия обратимости квадратной матрицы	
	8.2 Формулы Крамера	. 31
	8.3 Понятие поля	. 31
	8.4 Простейшие примеры	. 31
	8.5 Построение поля комплексных чисел	
	$8.5.1$ Формальная конструкция поля $\mathbb C$	
	8.5.2 Проверка аксиом	
	8.6 Алгебраическая форма комплексного числа, его действительная и мнимая части.	
	8.7 Комплексное сопряжение	
	8.7.1 Свойства комплексного сопряжения	. 33
	8.8 Геометрическая модель комплексных чисел, интерпретация сложения и сопряжения в этой модели	. 33
_	T. O	
9	Лекция 9	34
	9.1 Модуль комплексного числа, его свойства	
	9.2 Аргумент комплексного числа	
	9.3 Тригонометрическая форма комплексного числа	
	9.4 Умножение и деление комплексных чисел в тригонометрической форме	. 35
	9.5 Возведение в степень комплексных чисел в тригонометрической форме, формула Муавра	. 35
	9.6 Извлечение корней из комплексных чисел	. 35
	9.7 Основная теорема алгебры комплексных чисел (без доказательства)	
	9.8 Деление многочленов с остатком	
	9.9 Теорема Безу	
	9.10 Кратность корня многочлена	. 36
	9.11 Утверждение о том, что всякий многочлен степени n с комплексными коэффициентами имеет ровно n	
	корней с учётом кратностей	. 30
10	Лекция 10	3′
	10.1 Векторные пространства, простейшие следствия из аксиом	
	10.1.1 Определение векторного пространства	. 37
	10.1.2 Простейшие следствия из аксиом	. 3'
	10.2 Подпространства векторных пространств	
	10.3 Утверждение о том, что множество решений однородной системы линейных уравнений с n неизвестными	~,
	является подпространством в F^n	. 38
	10.4 Линейная комбинация конечного набора векторов	
	тога выплания комониция коно шого наобра вокторов телетелетелетелетелетелетелетелетелетел	. 0

10.5 Линейная оболочка подмножества векторного пространства, примеры	38
11 Лекция 11	39
11.1 Утверждение о том, что линейная оболочка системы векторов является подпространством объемлюще	го
векторного пространства	
11.2 Линейно зависимые и линейно независимые системы векторов	
11.3 Критерий линейной зависимости конечного набора векторов	
11.4 Основная лемма о линейной зависимости	
11.5 Базис векторного пространства	
11.7 Независимость числа элементов в базисе векторного пространства от выбора базиса	
11.8 Размерность конечномерного векторного пространства	
12 Лекция 12	42
12.1 Характеризация базисов в терминах единственности линейного выражения векторов	
12.2 Фундаментальная система решений однородной системы линейных уравнений	
12.3 метод построения фундаментальной системы решении 12.4 Утверждение о возможности выбора из конечной системы векторов базиса её линейной оболочки	
12.4 У гверждение о возможности выоора из конечной системы векторов оазиса ее линеиной осолочки	
пространства	
12.6 Лемма о добавлении вектора к конечной линейной независимой системе	
10 H 10	
13 Лекция 13 13.1 Размерность подпространства конечномерного векторного пространства	45 45
13.2 Ранг системы векторов	
13.3 Связь ранга системы векторов с размерностью её линейной оболочки	
13.4 Ранг матрицы: столбцовый и строковый	
13.5 Сохранение линейных зависимостей между столбцами матрицы при элементарных преобразованиях ст	рок 46
13.6 Инвариантность столбцового и строкового рангов матрицы при элементарных преобразованиях строк	
столбцов	
13.7 Столбцовый и строковый ранги матрицы, имеющей улучшенный ступенчатый вид	
13.8 Равенство столбцового и строкового рангов матрицы	
13.9 Связь ранга квадратной матрицы с её определителем	
13.11Связь рангов матрицы и её подматрицы	
14 Лекция 14	48
14.1 Миноры	
14.2 Теорема о ранге матрицы	
14.3 Приложения ранга матрицы к исследованию СЛУ 14.3.1 Теорема Кронекера-Капелли	
14.3.2 Критерий существования единственного решения у совместной системы линейных уравнений	
терминах ранга её матрицы коэффициентов	
14.3.3 Критерий существования единственного решения у системы линейных уравнений с квадратно)Й
матрицей коэффициентов в терминах её определителя	
14.3.4 Размерность пространства решений однородной системы линейных уравнений в терминах ран	
её матрицы коэффициентов	
14.5.5 Реализация подпространства в <i>г</i> в качестве множества решении однороднои системы линеины уравнений	
14.4 Координаты вектора по отношению к фиксированному базису векторного пространства	
14.5 Описание всех базисов конечномерного векторного пространства в терминах одного базиса и матри	
координат	
14.6 Матрица перехода от одного базиса конечномерного векторного пространства к другому	
14.7 Формула преобразования координат вектора при замене базиса	50
15 Лекция 15	52
15.1 Сумма двух подпространств векторного пространства	
15.2 Связь размерностей двух подпространств с размерностями их суммы и пересечения	
15.3 Сумма нескольких подпространств векторного пространства	
15.4 Линейно независимые подпространства, пять эквивалентных условий	
15.5 Разложение векторного пространства в прямую сумму нескольких подпространств	
15.6 Проекция вектора на подпространство вдоль дополнительного подпространства	54

16		55
	16.1 Линейные отображения векторных пространств	55
	16.2 Примеры линейных отображений	55
	16.2.1 Пример 0	55
	16.2.2 Пример 1	55
	16.2.3 Пример 2	55
	16.2.4 Пример 3	56
	16.2.5 Пример 4	56
	16.2.6 Пример 5	56
	16.3 Простейшие свойства линейных отображений	56
	16.4 Изоморфизм векторных пространств	56
	16.5 Отображение, обратное к изоморфизму	57
	16.6 Композиция двух линейных отображений, композиция двух изоморфизмов	57
	16.7 Изоморфные векторные пространства	57
	16.8 Отношение изоморфности на множестве всех векторных пространств	57
	16.9 Классы изоморфизма векторных пространств	57
	16.10Критерий изоморфности двух конечномерных векторных пространств	58
	16.11Задание линейного отображения путём задания образов векторов фиксированного базиса	58
17	Лекция 17	59
		59
	17.2 Примеры	59
	17.3 Связь координат вектора и его образа при линейном отображении	60
	17.4 Формула изменения матрицы линейного отображения между векторными пространствами V и W при	
		60
	17.5 Операции сложения и умножения на скаляр на множестве всех линейных отображений между двумя	
		61
	17.6 Матрица суммы двух линейных отображений и произведения линейного отображения на скаляр	61
	17.7 Изоморфизм между пространством $\text{Hom}(V,W)$ и пространством $(m \times n)$ -матриц, где $n = \dim V$, $m = \dim W$	61
	17.8 Матрица композиции двух линейных отображений	61
	17.9 Ядро и образ линейного отображения; утверждение о том, что они являются подпространствами в со-	
	ответствующих векторных пространствах	62
10	Лекция 18	63
18		63
	18.1 Критерий инъективности линейного отображения в терминах его ядра	63
	18.3 Связь размерности образа линейного отображения с рангом его матрицы	63
	18.4 Инвариантность ранга матрицы относительно умножения на квадратную невырожденную матрицу слева	03
		63
	или справа	64
	18.6 Теорема о связи размерностей ядра и образа линейного отображения	64
	18.7 Приведение матрицы линейного отображения к диагональному виду с единицами и нулями на диагонали	
		64
	18.9 Примеры	64
	18.10Двойственное (сопряжённое) векторное пространство, его размерность в конечномерном случае	65
	18.11Двойственный базис	65
	10.11/ДВОИСТВЕННЫЙ ОФЗИС	00
19	Лекция 19	66
	19.1 Утверждение о том, что всякий базис сопряжённого пространства двойствен некоторому базису исход-	
	ного пространства	66
	19.2 Билинейные формы на векторном пространстве	66
	19.3 Примеры	66
	19.3.1	66
	19.3.2	66
	19.3.3	66
	19.4 Матрица билинейной формы по отношению к фиксированному базису	67
	19.5 Существование и единственность билинейной формы с заданной матрицей	67
	19.6 Формула изменения матрицы билинейной формы при переходе к другому базису	67
	19.7 Ранг билинейной формы	68
	19.8 Симметричные билинейные формы	68
	19.9 Критерий симметричности билинейной формы в терминах её матрицы в каком-либо базисе	68
	19.9 Критерий симметричности билинейной формы в терминах её матрицы в каком-либо базисе	

	19.12Симметричный алгоритм Гаусса	69
20	Лекция 20	71
20	20.1 Угловые миноры матрицы квадратичной формы	71
	20.2 Метод Якоби для симметричных билинейных форм	71
		72
	20.3 Квадратичные формы на векторном пространстве	
		72
	20.4.1	72
	20.4.2	72
	20.4.3	72
	20.5 Соответствие между симметричными билинейными формами и квадратичными формами	72
	20.6 Симметризация билинейной формы и поляризация квадратичной формы	72
	20.7 Канонический вид квадратичной формы	73
	20.8 Теорема о приведении квадратичной формы к каноническому виду	73
	20.9 Нормальный вид квадратичной формы над полем \mathbb{R}	73
	20.10Π риведение квадратичной формы над $\mathbb R$ к нормальному виду	73
0.1	П 01	71
21	Лекция 21	74
	21.1 Положительный и отрицательный индексы инерции квадратичной формы над \mathbb{R}	74
	21.2 Закон инерции	74
	21.3 Следствие метода Якоби о вычислении индексов инерции квадратичной формы над $\mathbb R$	74
	21.4 Положительно определённые, отрицательно определённые, неотрицательно определённые, неположи-	
	тельно определённые, неопределённые квадратичные формы над $\mathbb R$	75
	21.5 Примеры	75
	21.6 Одно применение квадратичных форм над $\mathbb R$	76
	21.6.1 Знаем из курса математического анализа	76
	21.6.2 Применение квадратичных форм	76
	21.7 Критерий Сильвестра положительной определённости квадратичной формы	77
	21.8 Критерий отрицательной определённости квадратичной формы	77
	21.9 Евклидово пространство и скалярное произведение	77
	21.10Примеры	77
00	П 00	7 0
44	Лекция 22	78
	22.1 Длина вектора евклидова пространства	78
	22.2 Неравенство Коши–Буняковского	78
	22.3 Угол между ненулевыми векторами евклидова пространства	78
	22.4 Матрица Грама системы векторов евклидова пространства	78
	22.5 Определитель матрицы Грама: неотрицательность, критерий положительности	
	22.6 Ортогональные векторы	79
	22.7 Ортогональные и ортонормированные системы векторов	79
	22.8 Ортогональный и ортонормированный базис	79
	22.9 Координаты вектора в ортогональном (ортонормированном) базисе	79
	22.10Теорема о существовании ортонормированного базиса	79
	22.11Метод ортогонализации Грама-Шмидта	80
99	Лекция 05.03.2020	81
43		91
	23.1 Описание всех ортонормированных базисов в терминах одного ортонормированного базиса и матриц	01
	перехода	81
	23.2 Ортогональные матрицы и их свойства	81
	23.3 Ортогональное дополнение подмножества евклидова пространства	81
	23.4 Размерность ортогонального дополнения подпространства, ортогональное дополнение к ортогональному	0.1
	дополнению подпространства	81
	23.5 Разложение евклидова пространства в прямую сумму подпространства и его ортогонального дополнения	81
	23.6 Ортогональная проекция вектора на подпространство, ортогональная составляющая вектора относи-	
	тельно подпространства	82
	23.7 Формула для ортогональной проекции вектора на подпространство в терминах его ортогонального (ор-	_
	тонормированного) базиса	82
	23.8 Явная формула для ортогональной проекции вектора на подпространство в \mathbb{R}^n , заданное своим базисом	83
	23.9 Теорема Пифагора в евклидовом пространстве	83
	23.10Расстояние между векторами евклидова пространства	83
	23.11Неравенство треугольника	83
	23.12Расстояние между двумя подмножествами евклидова пространства	83
	23.13 Теорема о расстоянии от вектора до подпространства	83
	23.14Псевдорешение несовместной системы линейных уравнений (метод наименьших квадратов)	84

24	Я Лекция 12.03.2020	85
	24.1 Метод наименьших квадратов для несовместных систем линейных уравнений: постановка задачи и её	
	решение	85
	24.2 Единственность псевдорешения и явная формула для него в случае линейной независимости столбцов	
	матрицы коэффициентов	85
	24.3 Формула для расстояния от вектора до подпространства в терминах матриц Грама	85
	$24.4\ k$ -мерный параллелепипед	86
	24.5 Объём k -мерного параллелепипеда в евклидовом пространстве	86
	24.6 Вычисление объёма k -мерного параллеленинеда при помощи определителя матрицы Грама задающих	
	его векторов	86
	24.7 Формула для объёма <i>п</i> -мерного параллелепипеда в <i>п</i> -мерном евклидовом пространстве в терминах ко-	
	ординат задающих его векторов в ортонормированном базисе	86
	24.8 Отношение одинаковой ориентированности на множестве базисов евклидова пространства	86
	24.9 Ориентация в евклидовом пространстве	87
	24.10Ориентированный объём n-мерного параллелепипеда в n -мерном евклидовом пространстве	87
2 5	5 Лекция 19.03.2020	88
	25.1 Трёхмерное евклидово пространство	88
	25.2 Векторное произведение, его выражение в координатах	88
	25.3 Смешанное произведение трёх векторов, его свойства	88
	25.4 Критерий коллинеарности двух векторов в терминах векторного произведения	89
	25.5 Геометрические свойства векторного произведения	89
	25.6 Антикоммутативность и билинейность векторного произведения	89
	25.7 Линейные многообразия в \mathbb{R}^n	90
	25.8 Характеризация линейных многообразий как сдвигов подпространств	90
	25.9 Критерий равенства двух линейных многообразий	90
	25.10Направляющее подпространство и размерность линейного многообразия	90
26	Howard 00 04 2020	91
40	5 Лекция $09.04.2020$ 26.1 Теорема о плоскости, проходящей через любые $k+1$ точек в \mathbb{R}^n , следствия для двух и трёх точек	91
	20.1 Теорема о плоскости, проходящей через любые $\kappa+1$ точек в κ , следствия для двух и трех точек	91
	20.2 Понятия репера и аффинной системы координат на линеином многообразии \mathbb{R}^2 и \mathbb{R}^3 : совпадают, одно содержится	91
		01
	в другом, параллельны, скрещиваются	91 91
	20.4 Прямые в \mathbb{R} : различные способы задания, уравнение плоскости, проходящей через три точки, не	91
	лежащие на одной прямой	91
	лежащие на однои прямои 26.6 Прямые в \mathbb{R}^3 : различные способы задания, уравнение прямой, проходящей через две различные точки .	91
	20.0 Прямые в № : различные спосооы задания, уравнение прямои, проходящей через две различные точки : 26.7 Взаимное расположение двух плоскостей, двух прямых, прямой и плоскости	92
	26.7.1 Двух плоскостей	92
	26.7.2 Двух прямых	92
	26.7.3 Прямой и плоскости	92
	20.7.5 Прямой и плоскости	34
27	7 Лекция 11.04.2020	93
	27.1 Метрические задачи в \mathbb{R}^3	93
	$27.1.1$ Расстояния от точки v до прямой $l=v_0+at$	93
	27.1.2 Расстояние от точки v до плоскости P с направляющей нормалью n и направляющим подпро-	
	странством S $(S=n^{\perp})$	93
	27.1.3 Расстояние между двумя скрещивающимися прямыми $l_1 = v_1 + a_1 t$ и $l_2 = v_2 + a_2 t$	93
	27.1.4 Угол между прямой l с направляющим вектором a и плоскостью P с нормалью n	93
	$27.1.5$ Угол между двумя прямыми l_1 с направляющим вектором a_1 и l_2 с направляющим вектором a_2	93
	$27.1.6$ Угол между двумя плоскостями P_1 с нормалью n_1 и P_2 с нормалью n_2	93
	27.2 Линейные операторы	93
	27.3 Матрица линейного оператора в фиксированном базисе	94
	27.4 Примеры линейных операторов	94
	27.5 Следствия общих фактов о линейных отображениях	94
	27.6 Инвариантность определителя и следа матрицы линейного оператора относительно замены базиса	94
	27.7 Подобные матрицы, отношение подобия на множестве квадратных матриц фиксированного порядка	94
	27.8 Критерий обратимости линейного оператора в терминах его ядра, образа и определителя	95
	27.9 Подпространства, инвариантные относительно линейного оператора	95
	27.10Примеры	95
	27.11Наблюдения	95 95
	Billitteoniogonin	55

28 Ле	екция 16.04.2020	97
	1 Собственные векторы, собственные значения и спектр линейного оператора	97
	2 Диагонализуемые линейные операторы	97 97
	3 критерии диагонализуемости линеиного оператора в терминах сооственных векторов 4 Собственное подпространство, отвечающее фиксированному собственному значению линейного оператора	
	4 Сооственное подпространство, отвечающее фиксированному сооственному значению линеиного оператора 5 Характеристический многочлен линейного оператора	98
	6 Связь спектра линейного оператора с его характеристическим многочленом	98
28.	7 Существование собственного вектора для линейного оператора в комплексном векторном пространстве 8 Алгебраическая и геометрическая кратности собственного значения линейного оператора, связь между	99
	ними	99
28.	9 Линейная независимость собственных подпространств линейного оператора, отвечающих попарно раз-	
	личным собственным значениям	99
28.	10Диагонализуемость линейного оператора, у которого число корней характеристического многочлена равно размерности пространства	100
	по размерности пространства	100
		101
29.	1 Критерий диагонализуемости линейного оператора в терминах его характеристического многочлена, а	
20		101
29.	2 Существование одномерного или двумерного инвариантного подпространства у линейного оператора в	100
29.	действительном векторном пространстве	102
	ных и паре ортонормированных базисов	102
29.	4 Сопряжённый оператор в евклидовом пространстве	103
	The state of the s	103
		103
29.	7 Инвариантность ортогонального дополнения к подпространству, инвариантному относительно самосо-	100
	пряжённого оператора	103
		104
30.	1 Теорема о существовании у самосопряжённого оператора ортонормированного базиса из собственных	
		104
		104
		104
	The state of the s	104
		105
30.	6 Инвариантность ортогонального дополнения к подпространству, инвариантному относительно ортого-	
		106
		106
30.	8 Классификация ортогональных операторов в трёхмерном евклидовом пространстве	106

1.1 Матрицы

Определение 1. *Матрица размера* $n \times m$ — это прямоугольная таблица высоты m и ширины n.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

 a_{ij} – элемент на пересечении i-й строки и j-го столбца

Краткая запись – $A = (a_{ij})$

Множество всех матриц размера $m \times n$ с коэффициентами из \mathbb{R} (множество всех действительных чисел) — $\mathrm{Mat}_{n \times m}(\mathbb{R})$ или $\mathrm{Mat}_{n\times m}$

Определение 2. Две матрицы $A\in \mathrm{Mat}_{n\times m}$ и $B\in \mathrm{Mat}_{p\times q}$ называются равными, если $m=p,\, n=q$, и соответствующие

$$Пример. \ \begin{pmatrix} \circ & \circ & \circ \\ \circ & \circ & \circ \end{pmatrix} \neq \begin{pmatrix} \circ & \circ \\ \circ & \circ \\ \circ & \circ \end{pmatrix}$$

1.2 Операции над матрицами

Для любых $A, B \in \mathrm{Mat}_{m \times n}$

• Сложение
$$A+B:=(a_{ij}+b_{ij})=\begin{pmatrix} a_{11}+b_{11}&a_{12}+b_{12}&\dots&a_{1n}+b_{1n}\\ a_{21}+b_{21}&a_{22}+b_{22}&\dots&a_{2n}+b_{2n}\\ \vdots&\vdots&\ddots&\vdots\\ a_{m1}+b_{m1}&a_{m2}+b_{m2}&\dots&a_{mn}+b_{mn} \end{pmatrix}$$

• Сложение
$$A+B:=(a_{ij}+b_{ij})=\begin{pmatrix} a_{11}+b_{11} & a_{12}+b_{12} & \dots & a_{1n}+b_{1n} \\ a_{21}+b_{21} & a_{22}+b_{22} & \dots & a_{2n}+b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}+b_{m1} & a_{m2}+b_{m2} & \dots & a_{mn}+b_{mn} \end{pmatrix}$$
• Умножение на скаляр $\lambda \in \mathbb{R} \implies \lambda A:=(\lambda a_{ij})=\begin{pmatrix} \lambda a_{11} & \lambda a_{12} & \dots & \lambda a_{1n} \\ \lambda a_{21} & \lambda a_{22} & \dots & \lambda a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{m1} & \lambda a_{m2} & \dots & \lambda a_{mn} \end{pmatrix}$

Свойства суммы и произведения на скаляр

 $\forall A, B, C \in \mathrm{Mat}_{m \times n} \quad \forall \lambda, \mu \in \mathbb{R}$

- 1) A + B = B + A (коммутативность)
- 2) (A + B) + C = A + (B + C) (ассоциативность)
- 3) A + 0 = 0 + A = A, где

$$0 = egin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}$$
 — нулевая матрица.

- 4) A + (-A) = 0
- $-A = (-a_{ij})$ противоположная матрица 5) $(\lambda + \mu)A = \lambda A + \mu A$
- 6) $\lambda(A+B) = \lambda A + \lambda B$
- 7) $\lambda(\mu A) = \lambda(\mu A)$
- 8) 1A = A

Упражнение на дом. Доказать эти свойства.

Замечание. Из свойств 1) – 8) следует, что $\mathrm{Mat}_{n\times m}(\mathbb{R})$ является векторным пространством над \mathbb{R}

Пространство \mathbb{R}^n , его отождествление с матрицами-столбцами высоты n

$$\mathbb{R}^n := \{(x_1, \dots, x_n) \mid x_i \in \mathbb{R} \ \forall i = 1, \dots, n\}$$

 \mathbb{R} – числовая прямая

 \mathbb{R}^2 – плоскость

 \mathbb{R}^3 – трехмерное пространство

Договоримся отождествлять \mathbb{R}^n со столбцами высоты n

$$(x_1,\ldots,x_n) \leftrightarrow egin{pmatrix} x_1 \ dots \ x_n \end{pmatrix}$$
 — вектор столбец
$$\mathbb{R}^n = \left\{ \begin{pmatrix} x_1 \ x_2 \ dots \ x_n \end{pmatrix} \mid x \in \mathbb{R} \ \forall i = 1,\ldots,n \right\} = \mathrm{Mat}_{n \times 1}(\mathbb{R})$$

$$\left[x = \begin{pmatrix} x_1 \ dots \ x_n \end{pmatrix} \in \mathbb{R}^n, y = \begin{pmatrix} y_1 \ dots \ y_n \end{pmatrix} \in \mathbb{R}^n \right] \implies [x = y \iff x_i = y_i \ \forall i]$$

$$x + y := \begin{pmatrix} x_1 + y_1 \ dots \ x_n + y_n \end{pmatrix}$$

$$\lambda \in \mathbb{R} \implies \lambda x_i := (\lambda x_1, \ldots, \lambda x_n)$$

1.4 Транспонирование матриц, его простейшие свойства

$$A \in \mathrm{Mat}_{m \times n} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$
$$A^T \in \mathrm{Mat}_{n \times m} := \begin{pmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{pmatrix} - mpанспонированная матрица.$$

Свойства:

1)
$$(A^T)^T = A^T$$

1)
$$(A^T)^T = A$$

2) $(A + B)^T = A^T + B^T$
3) $(\lambda A)^T = \lambda A^T$

$$(\lambda \Delta)^T - \lambda \Delta^T$$

Пример.
$$(x_1 \dots x_n)^T = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Пример.
$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}^T = \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix}$$

Пример.
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}^T = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix}$$

1.5 Умножение матриц

Пусть
$$A = (a_{ij}) \in \mathrm{Mat}_{m \times n}$$

$$A_{(i)} = \begin{pmatrix} a_{i1}, a_{i2}, \dots, a_{in} \end{pmatrix} - i$$
-я строка матрицы $A_{(i)} = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mn} \end{pmatrix} - j$ -й столбец матрицы $A_{(i)} = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mn} \end{pmatrix}$

1) Частный случай: умножение строки на столбец той же длинны

$$\underbrace{(x_1,\ldots,x_n)}_{1\times n}\underbrace{\begin{pmatrix}y_1\\\vdots\\y_n\end{pmatrix}}_{n\times 1}=x_1\cdot y_1+\cdots+x_n\cdot y_n$$

2) Общий случай:

A – матрица размера $m \times \underline{n}$

B – матрица размера $\underline{n} \times p$

 $AB := C \in \mathrm{Mat}_{m \times p}$, где

$$C_{ij} = A_{(i)}B^{(j)} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}.$$

Количество столбцов матрицы A равно количеству строк матрицы B — условие согласованности матриц.

Пример.
$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix} := \begin{pmatrix} x_1 y_1 & x_2 y_1 & \dots & x_n y_1 \\ x_1 y_2 & x_2 y_2 & \dots & x_n y_2 \\ \vdots & \vdots & \ddots & \vdots \\ x_1 y_n & x_2 y_m & \dots & x_n y_m \end{pmatrix}$$

Пример.
$$\begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 3 \end{pmatrix} \times \begin{pmatrix} 2 & -1 \\ 0 & 5 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 \cdot 2 + 0 \cdot 0 + 2 \cdot 1 & 1 \cdot (-1) + 0 \cdot 5 + 2 \cdot 1 \\ 0 \cdot 2 + (-1) \cdot 0 + 3 \cdot 1 & 0 \cdot (-1) + (-1) \cdot 5 + 3 \cdot 1 \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ 3 & -2 \end{pmatrix}$$

2.1 Отступление о суммах

Пусть S_p, S_{p+1}, \dots, S_q – набор чисел.

Тогда, $\sum_{i=p}^q S_i := S_p + S_{p+1} + \cdots + S_q$ – сумма по i от p до q

Например, $\sum_{i=1}^{100} i^2 = 1^2 + 2^2 + \dots + 100^2$

Свойства сумм:

1.
$$\lambda \sum_{i=1}^{n} S_i = \sum_{i=1}^{n} \lambda S_i$$

2.
$$\sum_{i=1}^{n} (S_i + T_i) = \sum_{i=1}^{n} S_i + \sum_{i=1}^{n} T_i$$

3.
$$\sum_{i=1}^m \sum_{j=1}^n S_{ij} = \sum_{j=1}^n \sum_{i=1}^m S_{ij}$$
 — сумма всех элементов матрицы $S = (S_{ij})$

2.2 Основные свойства умножения матриц

Пусть $A \in \operatorname{Mat}_{m \times n}, B \in \operatorname{Mat}_{n \times p}$

1.
$$\underline{\underline{A(B+C)}} = \underline{\underline{AB+AC}}$$
 — левая дистрибутивность.

Доказательство.

$$x_{ij} = A_{(i)}(B+C)^{(j)} = \sum_{k=1}^{n} a_{ik}(b_{kj} + c_{kj})$$

$$= \sum_{k=1}^{n} (a_{ik}b_{kj} + a_{ik}c_{kj})$$

$$= \sum_{k=1}^{n} a_{ik}b_{kj} + \sum_{k=1}^{n} a_{ik}c_{kj}$$

$$= A_{(i)}B^{(j)} + A_{(i)}C^{(j)} = y_{ij}.$$

2. (A+B)C = AC + BC — правая дистрибутивность, доказывается аналогично.

3.
$$\lambda(AB) = (\lambda A)B = A(\lambda B)$$

4.
$$(AB)C = A(BC)$$
 — ассоциативность.

Доказательство. (AB)C = x, A(BC) = y.

$$x_{ij} = \sum_{k=1}^{n} u_{ik} \cdot c_{kj} = \sum_{k=1}^{n} \left(\sum_{l=1}^{p} a_{il} b_{lk} \right) c_{kj} = \sum_{k=1}^{n} \sum_{l=1}^{p} \left(a_{il} b_{lk} c_{kj} \right)$$
$$= \sum_{l=1}^{p} \sum_{k=1}^{n} \left(a_{il} b_{lk} c_{kj} \right) = \sum_{l=1}^{p} a_{il} \sum_{k=1}^{n} \left(b_{lk} c_{kj} \right) = \sum_{l=1}^{p} a_{il} v_{lj} = y_{ij}.$$

$$5. \ \underline{(AB)^T} = \underline{B^T A^T}.$$

Доказательство.

$$x_{ij} = [AB]_{ji} = A_{(j)}B^{(i)} = \sum_{k=1}^{n} a_{jk} \cdot b_{ki}$$
$$= \sum_{k=1}^{n} b_{ki} \cdot a_{jk} = B_{(i)}^{T}(A^{T})^{(j)} = y_{ij}.$$

Умножение матриц не коммутативно.

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, BA = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Определение 3. $A \in \mathrm{Mat}_{n \times n}$ называется κ вадратной матрицей порядка n

Обозначение $M_n := \operatorname{Mat}_{n \times n} A \in M_n$

2.3 Диагональные матрицы

Определение 4. Матрица $A \in M_n$ называется *диагональной* если все ее элементы вне главной диагонали равны нулю $(a_{ij} = 0 \text{ при } i \neq j)$

$$A = \begin{pmatrix} a_1 & 0 & \dots & 0 \\ 0 & a_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_n \end{pmatrix} \implies A = \operatorname{diag}(a_1, a_2, \dots, a_n).$$

Лемма 2.1. $A = diag(a_1, \ldots, a_n) \in M_n \implies$

1.
$$\forall B \in \operatorname{Mat}_{n \times p} \implies AB = \begin{pmatrix} a_1 B_{(1)} \\ a_2 B_{(2)} \\ \vdots \\ a_n B_{(n)} \end{pmatrix}$$

2.
$$\forall B \in \operatorname{Mat}_{m \times n} \implies BA = \begin{pmatrix} a_1 B^{(1)} & a_2 B^{(2)} & \dots & a_n B^{(n)} \end{pmatrix}$$

Доказательство.

1.
$$[AB]_{ij} = \begin{pmatrix} 0 & \dots & 0 & a_i & 0 & \dots & 0 \end{pmatrix} \begin{pmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{nj} \end{pmatrix} = a_i b_{ij}$$

2.
$$[BA]_{ij} = \begin{pmatrix} b_{i1} & b_{i2} & \dots & b_{im} \end{pmatrix} \begin{pmatrix} \vdots \\ 0 \\ a_j \\ 0 \\ \vdots \end{pmatrix} = b_{ij}a_j$$

2.4 Единичная матрица и её свойства

Определение 5. Матрица $E = E_n = diag(1, 1, ..., 1)$ называется единичной матрицей порядка n.

$$E = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Свойства:

1.
$$EA = A \quad \forall A \in \operatorname{Mat}_{n \times p}$$
.

2.
$$AE = A \quad \forall A \in \operatorname{Mat}_{p \times n}$$
.

3.
$$AE = EA = A \quad \forall A \in M_n$$
.

2.5 След квадратной матрицы и его свойства

Определение 6. Следом матрицы $A \in M_n$ называется число $trA = a_{11} + a_{22} + \dots + a_{nn} = \sum_{i=1}^n a_{ii}$.

Свойства:

1.
$$\operatorname{tr}(A+B) = \operatorname{tr} A + \operatorname{tr} B$$
.

2.
$$\operatorname{tr} \lambda A = \lambda \operatorname{tr} A$$
.

3.
$$\operatorname{tr} A^T = \operatorname{tr} A$$
.

4.
$$\operatorname{tr}(AB) = \operatorname{tr}(BA)$$
.

 $\forall A \in \mathrm{Mat}_{m \times n}, B \in \mathrm{Mat}_{n \times m}.$

Доказательство. $AB = x \in M_m, BA = y \in M_n$.

$$\operatorname{tr} x = \sum_{i=1}^{m} x_{ii} = \sum_{i=1}^{m} \sum_{j=1}^{n} (a_{ij}b_{ji})$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{m} (b_{ji}a_{ij}) = \sum_{j=1}^{n} y_{jj} = \operatorname{tr} y.$$

Пример.
$$A = (1, 2, 3), B = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$$

$$tr(AB) = tr(1 \cdot 4 + 2 \cdot 5 + 3 \cdot 6) = 32$$

$$tr(BA) = tr \begin{pmatrix} 4 & 8 & 12 \\ 5 & 10 & 15 \\ 6 & 12 & 18 \end{pmatrix} = 4 + 10 + 18 = 32$$

2.6 Системы линейных уравнений.

Линейное уравнение: $a_1x_1 + \cdots + a_nx_n = b$. $a_1, a_2, \ldots, a_n, b \in \mathbb{R}$ — коэффициенты. x_1, x_2, \ldots, x_n — неизвестные.

Система линейных уравнений (СЛУ):

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

т уравнений, п неизвестных

Определение 7.

- 1. Решение одного уравнения это такой набор значений неизвестных x_1, x_2, \ldots, x_n , при подстановке которого в уравнение получаем тождество.
- 2. Peшение CЛУ такой набор значений неизвестных, который является решением каждого уравнения СЛУ.

Основная задача: решить СЛУ, т.е. найти все решения.

$$\Pi puмep. \ n=m=1$$
 $ax=b,\ a,b\in\mathbb{R},\ {\rm x}$ – неизвестная

1.
$$a \neq 0 \implies x = \frac{b}{a}$$
 – единственное

$$2. \ a=0 \implies 0x=b$$

$$b \neq 0 \implies$$
 решений нет.

$$b=0 \implies x$$
 – любое \implies бесконечно много решений.

2.6.1 Совместные и несовместные системы

Определение 8. СЛУ называется

- совместной, если у нее есть хотя бы одно решение,
- несовместной, если решений нет.

2.6.2 Матричная форма записи СЛУ

$$AX = B$$
.

$$A \in Mat_{m \times n}(R) = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$
 — матрица коэффициентов

$$B\in \mathrm{Mat}_{m imes 1}=egin{pmatrix} b_1\ b_2\ dots\ b_n \end{pmatrix}-$$
 столбец правых частей $\begin{pmatrix} x_1 \end{pmatrix}$

$$X\in \mathrm{Mat}_{m imes 1}=egin{pmatrix} x_1\\x_2\\ \vdots\\x_n \end{pmatrix}$$
 — столбец неизвестных

3.1 Расширенная матрицы системы линейных уравнений

$$Ax = b, A \in \mathrm{Mat}_{m \times n}, b \in \mathbb{R}^m$$

Полная информация о СЛУ содержится в её расширенной матрице.

$$(A \mid b) = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{pmatrix}$$

3.2 Эквивалентные системы

Определение 9. Две системы уравнений от одних и тех же неизвестных называются *эквивалентными*, если они имеют одинаковые множества решений.

Пример. Рассмотрим несколько СЛУ

A)
$$\begin{cases} x_1 + x_2 = 1 \\ x_1 - x_2 = 0 \end{cases} \iff \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix}$$

B)
$$\begin{cases} 2x_1 = 1 \\ 2x_2 = 1 \end{cases} \iff \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \end{pmatrix}$$

C)
$$x_1 + x_2 = 1 \iff (1 \ 1 \mid 1)$$

А и В эквиваленты, так как обе имеют единственное решение $(\frac{1}{2},\frac{1}{2})$.

А и С не эквивалентны, так как С имеет бесконечно много решений.

3.3 Как решить СЛУ?

Идея: выполнить преобразование СЛУ, сохраняющее множество её решений, и привести её к такому виду, в котором СЛУ легко решается.

Пример.
$$\begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix} \leftrightarrow \begin{cases} x_1 = b_1 \\ x_2 = b_2 \\ \vdots \\ x_n = b_n \end{cases}$$

3.3.1 Элементарные преобразования СЛУ и соответствующие преобразования строк её расширенной матрицы

тип	СЛУ	расширенная матрица
1.	К i -му уравнению прибавить j -ое, умноженное на $\lambda \in \mathbb{R} \ (i \neq j)$	$\Theta_1(i,j,\lambda)$
2.	Переставить i -е и j -е уравнения $(i \neq j)$	$\mathfrak{I}_2(i,j)$
3.	Умножить i -ое уравнение на $\lambda \neq 0$	$\Theta_3(i,\lambda)$

1. $\Theta_1(i,j,\lambda)$: к *i*-ой строке прибавить *j*-ую, умноженную на λ (покомпонентно),

$$a_{ik} \mapsto a_{ik} + \lambda a_{jk} \ \forall k = 1, \dots, n,$$

 $b_i \mapsto b_i + \lambda b_i.$

$$\theta_i \mapsto \theta_i + \lambda \theta_j$$
.

- 2. $\Theta_2(i,j)$: переставить і-ую и ј-ую строки.
- 3. $\Theta_3(i,\lambda)$: умножить і-ю строку на λ (покомпонентно).

 $\Theta_1, \Theta_2, \Theta_3$ называются элементарными преобразованиями строк расширенной матрицы.

3.3.2 Сохранение множества решений системы линейных уравнений при элементарных преобразованиях

Лемма 3.1. Элементарные преобразования СЛУ не меняют множество решений

Доказательство. Пусть мы получили СЛУ(★★) из СЛУ(★) путем применения элементарных преобразований.

- 1. Всякое решение системы (\star) является решением $(\star\star)$.
- 2. (*) получается из (**) путем элементарных преобразований.

$$\begin{array}{c|cccc} (\star) \rightarrow (\star\star) & (\star\star) \rightarrow (\star) \\ \hline \Theta_1(i,j,\lambda) & \Theta_1(i,j,-\lambda) \\ \hline \Theta_2(i,j) & \Theta_2(i,j) \\ \hline \Theta_3(i,\lambda) & \Theta_3(i,\frac{1}{\lambda}) \\ \end{array}$$

Следовательно, всякое решение (**) является решением (*) \implies множества решений совпадают.

3.4 Ступенчатые матрицы

Определение 10. Строка (a_1, a_2, \dots, a_n) называется *нулевой*, если $a_1 = a_2 = \dots = a_n = 0$ и *ненулевой* иначе $(\exists i : a_i \neq 0)$.

Определение 11. Ведущим элементом ненулевой строки называется первый её ненулевой элемент.

Определение 12. Матрица $M \in \mathrm{Mat}_{m \times n}$ называется *ступенчатой*, или имеет ступенчатый вид, если:

- 1. Номера ведущих элементов её ненулевых строк строго возрастают.
- 2. Все нулевые строки стоят в конце.

$$M = \begin{pmatrix} 0 & \dots & 0 & \diamond & * & * & * & * & * & * \\ 0 & \dots & 0 & 0 & \dots & \diamond & * & * & * & * \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & \diamond & * & * \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & 0 & \diamond & * \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & 0 & 0 & \diamond \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & 0 & 0 & 0 \end{pmatrix},$$

где $\diamond \neq 0$, * – что угодно.

3.4.1 Улучшенный ступенчатый вид матрицы

Определение 13. М имеет улучшенный ступенчатый вид, если:

- 1. М имеет обычный ступенчатый вид.
- 2. Все ведущие элементы равны 1.
- 3. В одном столбце с любым ведущим элементом стоят только нули.

Теорема 3.2. 1) Всякую матрицу элементарными преобразованиями можно привести к ступенчатому виду.

2) Всякую ступенчатую матрицу элементарными преобразованиями строк можно привести к улучшенному ступенчатому виду.

Следствие. Всякую матрицу элементарными преобразованиями строк можно привести к **улучшенному** ступенчатому виду.

Доказательство.

- 1. Алгоритм. Если М нулевая, то конец. Иначе:
- Шаг 1: Ищем первый ненулевой столбец, пусть j его номер.
- Шаг 2: Переставляем строки, если нужно, добиваемся того, что $a_{1j} \neq 0$
- Шаг 3: Зануляем элементы в этом столбце используя первую строку $\Theta_1(2,1,-\frac{a_{2j}}{a_{1j}}),\ldots,\Theta_1(m,1,-\frac{a_{mj}}{a_{1j}})$. В результате $a_{ij}=0$ при $i=2,3,\ldots m$.

Дальше повторяем все шаги для подматрицы M' (без первой строки и столбцов $1,\ldots,j$).

- 2. Алгоритм. Пусть $a_{1j_1}, a_{2j_2}, \dots, a_{rj_r}$ ведущие элементы ступенчатой матрицы.
- Шаг 1: Выполняем $\mathfrak{I}_3(1,\frac{1}{a_{1j_1}}),\dots,\mathfrak{I}_3(r,\frac{1}{a_{rj_r}})$, в результате все ведущие элементы равны 1.
- Шаг 2: Выполняем $\mathfrak{I}_1(r-1,r,-a_{r-1,\;j_r}), \mathfrak{I}_1(r-2,r,-a_{r-2,\;j_r}),\ldots,\mathfrak{I}_1(1,r,-a_{1,\;j_r}).$ В результате все элементы над a_{rj_r} равны 0.

Аналогично обнуляем элементы над всеми остальными ведущими.

Итог: матрица имеет улучшенный ступенчатый вид.

3.5 Реализация элементарных преобразований строк матрицы при помощи умножения слева на подходящую матрицу

Всякое элементарное преобразование строк матрицы реализуется умножением как умножение слева на подходящую "элементарную матрицу".

• Э₁ (i, j, λ) : $A \mapsto U_1(i, j, \lambda)A$, где

(на диагонали стоят единицы, на i-м j-м месте стоит λ , остальные элементы нули)

• $\Im_2(i,j)$: $A \mapsto U_2(i,j)A$, где

$$U_2(i,j) = \begin{pmatrix} i & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 1 \end{pmatrix}$$

(на диагонали стоят единицы, кроме i-го и j-го столбца (на i-м j-м и j-м i-м местах стоит 1, остальные нули)

• Э₃ (i, λ) : $A \mapsto U_3(i, \lambda)A$, где

$$U_3(i,\lambda) = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & \lambda & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 1 \end{pmatrix}$$

(на диагонали стоят единицы, кроме i-го столбца, там λ , остальные элементы нули)

Элементарные преобразования столбцов — умножение на соответствующую матрицу справа.

Упражнение на дом. Доказательство.

Дана СЛУ с расширенной матрицей $(A \mid b)$.

Было: элементарные преобразования строк в $(A \mid b)$ сохраняют множество решений.

4.1 Метод Гаусса решения систем линейных уравнений

Прямой ход метода Гаусса.

Выполняя элементарные преобразования строк в (A|b), приведем A к ступенчатому виду:

$$\begin{pmatrix} 0 & \dots & 0 & a_{ij_1} & * & \dots & \dots & b_1 \\ 0 & \dots & 0 & 0 & a_{2j_2} & * & \dots & b_2 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & 0 & 0 & 0 & a_{rj_r} & b_r \\ 0 & \dots & 0 & 0 & 0 & 0 & 0 & b_{r+1} \\ 0 & \dots & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Случай 1 $\exists i \geqslant r+1 : b_i \neq 0$ (в A есть нулевая строка с $b_i \neq 0$)

Тогда в новой СЛУ i-е уравнение $0 \cdot x_1 + \dots + 0 \cdot x_n = b_i$, т.е. $0 = b_i \implies$ СЛУ несовместна.

Случай 2 либо r=m, либо $b_i=0 \quad \forall i\geqslant r+1$

Выполняя элементарные преобразования строк приводим матрицу к улучшенному ступенчатому виду – обратный ход метода Гаусса

$$\begin{pmatrix} 0 & \dots & 0 & 1 & * & 0 & * & 0 & 0 & b_1 \\ 0 & \dots & 0 & 0 & \dots & 1 & * & 0 & 0 & b_2 \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & 1 & 0 & b_3 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & 0 & 1 & b_r \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Неизвестные $x_{j_1}, x_{j_2}, \ldots, x_{j_r}$ называются главными, а остальные свободными, где j_i – индексы столбцов с ведущими элементами.

Подслучай 2.1 r=n, т.е. все неизвестные – главные

$$\begin{pmatrix} 1 & 0 & \dots & 0 & b_1 \\ 0 & 1 & \dots & 0 & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & b_r \\ 0 & 0 & \dots & 0 & 0 \end{pmatrix} \leftrightarrow \begin{cases} x_1 = b_1 \\ x_2 = b_2 \\ \vdots \\ x_r = b_r \end{cases} -$$
единственное решение.

Подслучай 2.2 r < n, т.е. есть хотя бы одна свободная неизвестная.

Перенесем в каждом уравнении все члены со свободными неизвестными в правую часть, получаем выражения всех главных неизвестных через свободные, эти выражения называется общим решением исходной CЛУ.

Пример. Улучшенный ступенчатый вид:

$$\begin{pmatrix}
1 & 3 & 0 & 1 & | & -1 \\
0 & 0 & 1 & -2 & | & 4
\end{pmatrix}$$

Главные неизвестные: x_1, x_3 . Свободные неизвестные: x_2, x_4 .

 $x_2 = t_1, x_4 = t_2$ – параметры.

$$\begin{cases} x_1 = -1 - 3t_1 - t_2 \\ x_2 = t1 \\ x_3 = 4 + 2t_2 \\ x_4 = t_2 \end{cases} \iff \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -1 - 3t_1 - t_2 \\ t_1 \\ 4 + 2t_2 \\ t_2 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 4 \\ 0 \end{pmatrix} + t_1 \begin{pmatrix} -3 \\ 1 \\ 0 \\ 0 \end{pmatrix} + t_2 \begin{pmatrix} -1 \\ 0 \\ 2 \\ 1 \end{pmatrix}$$

Общее решение:

$$\begin{cases} x_1 = -1 - 3x_2 - x_4 \\ x_3 = 4 + 2x_4 \end{cases}$$

Следствие. Всякая СЛУ с коэффициентами из \mathbb{R} имеет либо 0 решений, либо одно решение, либо бесконечно много решений.

4.2 Однородные системы линейных уравнений

Определение 14. СЛУ называется однородной (ОСЛУ), если все её правые части равны 0. Расширенная матрица: $(A \mid 0)$.

Очевидный факт. Всякая ОСЛУ имеет нулевое решение $(x_1 = x_2 = \cdots = x_n = 0)$.

Следствие. Всякая ОСЛУ либо имеет ровно 1 решение (нулевое), либо бесконечно много решений.

Следствие. Всякая ОСЛУ, у которой число неизвестных больше числа уравнений, имеет ненулевое решение (бесконечно много ненулевых решений).

Доказательство. В ступенчатом виде будет хотя бы одна свободная неизвестная. Придавая ей ненулевое значение, получим ненулевое решение. ■

4.3 Связь между множеством решений системы линейных уравнений и множеством решений соответствующей однородной системы.

Частное решение СЛУ — это какое-то одно её решение.

Утверждение 4.1. Пусть Ax = b – совместная СЛУ,

 x_0 – частное решение Ax = b,

 $S \subset \mathbb{R}^n$ – множество решений ОСЛУ Ax = 0,

 $L \subset \mathbb{R}^n$ – множество решений Ax = b.

Тогда, $L = x_0 + S$, где $x_0 + S = \{x_0 + v \mid v \in S\}$.

Доказательство.

1. Пусть $u \in L$ (u – решение Ax = b), положим $v = u - x_0$.

Тогда, $Av = A(u - x_0) = Au - Ax_0 = b - b = 0 \implies v \in S \implies L \subseteq x_0 + S$.

2. Пусть $v \in S$ (v – решение Ax = 0), положим $u = x_0 + v$.

Тогда, $Au = A(x_0 + v) = Ax_0 + Av = b + 0 = b \implies u \in L \implies x_0 + S \subseteq L$.

Значит, $x_0 + S = L$.

4.4 Матричные уравнения вида AX = B и XA = B, общий метод их решения

Два типа матричных уравнений:

1. AX = B

A и B известны, X – неизвестная матрица.

2. XA = C

A и C известны, X – неизвестная матрица.

Из второго типа получается первый транспонированием матриц: $XA = C \iff A^TX^T = B^T$, то есть достаточно уметь решать только уравнения первого типа.

 $A \underset{n \times m}{X} = \underset{n \times p}{B}$ – это уравнение равносильно системе

$$\begin{cases} AX^{(1)} = B^{(1)} \\ AX^{(2)} = B^{(2)} \\ \vdots \\ AX^{(p)} = B^{(p)} \end{cases}$$

Этот набор СЛУ надо решать одновременно методом Гаусса.

Записываем матрицу $(A \mid B)$ и элементарными преобразованиями строк с ней приводим A к улучшенному ступенчатому виду.

Получаем $(A' \mid B')$, где A' имеет улучшенный ступенчатый вид.

Остается выписать общее решение для каждой СЛУ

$$\begin{cases} A'x^{(1)} = B'^{(1)} \\ A'x^{(2)} = B'^{(2)} \\ \vdots \\ A'x^{(p)} = B'^{(p)} \end{cases}$$

4.5 Обратные матрицы

Определение 15. Матрица $B \in M_n$ называется *обратной*, к A, если AB = BA = E. Обозначение: $B = A^{-1}$.

Факты:

1. Если $\exists A^{-1}$, то она определена однозначно

Доказательство. Пусть B, B' – две матрицы, обратные к A. Тогда B = B(AB') = (BA)B' = B'.

2. Если AB=E для некоторой $B\in M_n,$ то BA=E автоматически и тогда $B=A^{-1}$

Замечание. Доказывается на Лекции 8.

Следствие. A^{-1} является решение матричного уравнения AX = E (если решение существует).

4.6 Перестановки на множестве $\{1, 2, ..., n\}$

Определение 16. *Перестановкой (подстановкой)* на множестве $\{1, 2, \dots, n\}$ называется всякое биективное (взаимно однозначное) отображение множества $\{1, 2, \dots, n\}$ в себя.

$$\sigma \colon \{1, 2, \dots, n\} \to \{1, 2, \dots, n\}.$$

 S_n – множество всех перестановок на множестве $\{1, 2, ..., n\}$.

Запись:

$$\begin{pmatrix} 1 & 2 & 3 & \dots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \dots & \sigma(n) \end{pmatrix} \text{ либо } \begin{pmatrix} i_1 & i_2 & i_3 & \dots & i_n \\ \sigma(i_1) & \sigma(i_2) & \sigma(i_3) & \dots & \sigma(i_n) \end{pmatrix}.$$

Здесь, $\{i_1, i_2, \dots, i_n\} = \{1, 2, \dots, n\}.$

Замечание. Количество всех перестановок длины n: $|S_n| = n!$

5.1 Инверсии в перестановке

Обозначение: S_n – множество всех перестановок из ${\bf n}$ элементов.

Пусть
$$\sigma \in S_n$$
, $i, j \in \{1, 2, ..., n\}$, $i \neq j$

Определение 17. Пара $\{i,j\}$ (неупорядоченная) образует *инверсию* в σ , если числа i-j и $\sigma(i)-\sigma(j)$ имеют разный знак (то есть либо i < j и $\sigma(i) > \sigma(j)$, либо i > j и $\sigma(i) < \sigma(j)$).

5.2 Знак и чётность перестановки

Определение 18. Знак перестановки σ – это число $\mathrm{sgn}(\sigma) = (-1)^{<\mathrm{число}}$ инверсий в $\sigma>$.

Определение 19. Перестановка σ называется четной, если $\text{sgn}(\sigma) = 1$ (четное количество инверсий), и нечетной если $\text{sgn}(\sigma) = -1$ (нечетное количество инверсий).

Примеры.

σ	$\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$	
число инверсий	0	1	
$sgn(\sigma)$	1	-1	
четность	четная	нечетная	

σ	$ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} $	$\left \begin{array}{ccc} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \right $	$ \left \begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array} \right $	$\left \begin{array}{ccc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array} \right $	$\left \begin{array}{ccc} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \right $	$\left \begin{array}{ccc} 1 & 2 & 3 \\ 1 & 3 & 2 \end{array} \right $
число инверсий	0	1	2	3	2	1
$\operatorname{sgn}(\sigma)$	1	-1	1	-1	1	-1
четность	четная	нечетная	четная	нечетная	четная	нечетная

Замечание. число инверсий в $\sigma \in S_n \leqslant \binom{n}{2} = \frac{n(n-1)}{2}$, равенство достигается при $\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ n & n-1 & \dots & 1 \end{pmatrix}$

5.3 Произведение перестановок

Определение 20. Произведением (или композицией) двух перестановок $\sigma, \rho \in S_n$ называется такая перестановка $\sigma \rho \in S_n$, что $(\sigma \rho)(x) := \sigma(\rho(x)) \quad \forall x \in \{1, ..., n\}.$

Пример.

$$\frac{11\rho \text{max}\rho}{\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}}, \rho = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$$

$$\sigma \rho = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$

$$\rho \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix}$$
Proved the second of the province of

Видно, что $\sigma \rho \neq \rho \sigma \implies$ произведение перестановок не обладает свойством коммутативности.

5.4 Ассоциативность произведения перестановок

Утверждение 5.1. Умножение перестановок ассоциативно, то есть $\sigma(\tau\pi) = (\sigma\tau)\pi \ \forall \sigma, \tau, \pi \in S_n$.

Доказательство. $\forall i \in \{1, 2, ..., n\}$ имеем: $[\sigma(\tau\pi)](i) = \sigma((\tau\pi)(i)) = \sigma(\tau(\pi(i))).$ $[(\sigma\tau)\pi](i) = (\sigma\tau)(\pi(i)) = \sigma(\tau(\pi(i))).$

5.5 Тождественная перестановка

Определение 21. Перестановка $id = \begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{pmatrix} \in S_n$ называется тождественной перестановкой.

Свойства:

$$\forall \sigma \in S_n \quad id \cdot \sigma = \sigma \cdot id = \sigma.$$

 $\operatorname{sgn}(id) = 1.$

5.6 Обратная перестановка и её знак

Определение 22. $\sigma \in S_n, \ \sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix} \implies$ подстановка $\sigma^{-1} := \begin{pmatrix} \sigma(1) & \sigma(2) & \dots & \sigma(n) \\ 1 & 2 & \dots & n \end{pmatrix}$ называ-

Свойства: $\sigma \cdot \sigma^{-1} = id = \sigma^{-1} \cdot \sigma$

5.7 Теорема о знаке произведения перестановок

Теорема 5.2. $\sigma, \rho \in S_n \implies \operatorname{sgn}(\sigma \rho) = \operatorname{sgn} \sigma \cdot \operatorname{sgn} \rho$.

Доказательство. Для каждой пары i < j введем следующие числа:

$$\alpha(i,j) = egin{cases} 1, & \text{если } \{i,j\} \text{ образует инверсию в } \rho \\ 0, & \text{иначе} \end{cases}$$

$$eta(i,j) = egin{cases} 1, & \text{если } \{
ho(i),
ho(j) \} \ \text{образует инверсию в } \sigma \ 0, & \text{иначе} \end{cases}$$

$$\gamma(i,j) = \begin{cases} 1, & \text{если } \{i,j\} \text{ образует инверсию в } \sigma \rho \\ 0, & \text{иначе} \end{cases}$$

"число инверсий в ρ " = $\sum_{1\leqslant i < j\leqslant n} \alpha(i,j)$ "число инверсий в $\sigma \rho$ " = $\sum_{1\leqslant i < j\leqslant n} \gamma(i,j)$ "число инверсий в σ " = $\sum_{1\leqslant i < j\leqslant n} \beta(i,j)$ – Почему?

Когда $\{i,j\}$ пробегает все неупорядоченные пары в $\{1,2,\ldots,n\}$, пара $\{\rho(i),\rho(j)\}$ тоже пробегает все неупорядоченные пары в $\{1, 2, \ldots, n\}$.

Зависимость $\gamma(i,j)$ от $\alpha(i,j)$ и $\beta(i,j)$:

Вывод: $\alpha(i,j) + \beta(i,j) \equiv \gamma(i,j) \pmod{2}$.

Тогда
$$\operatorname{sgn}(\sigma\rho) = (-1)^{\sum \gamma(i,j)} = (-1)^{\sum \beta(i,j) + \sum \alpha(i,j)} = (-1)^{\sum \alpha(i,j)} \cdot (-1)^{\sum \beta(i,j)} = \operatorname{sgn}\sigma \cdot \operatorname{sgn}\rho.$$

Следствие. $\sigma \in S_n \implies \operatorname{sgn}(\sigma^{-1}) = \operatorname{sgn}(\sigma)$.

Доказательство.
$$\sigma \sigma^{-1} = id \implies \operatorname{sgn}(\sigma \sigma^{-1}) = \operatorname{sgn}(id) \implies \operatorname{sgn} \sigma \operatorname{sgn} \sigma^{-1} = 1 \implies \operatorname{sgn} \sigma = \operatorname{sgn} \sigma^{-1}.$$

Упражнение на дом: Показать, что число инверсий в σ^{-1} такое же, как в σ .

5.8 Транспозиции, знак транспозиции

Пусть $i, j \in \{1, 2, \dots, n\}, i \neq j$.

Рассмотрим перестановку $\tau_{ij} \in S_n$, такую что

 $\tau_{ij}(j) = i.$

 $\tau_{ij}(k) = k \ \forall k \neq i, j.$

Определение 23. Перестановки вида au_{ij} называются *танспозициями*.

Замечание. τ – траспозиция $\implies \tau^2 = id, \tau^{-1} = \tau$.

Определение 24. Перестановки вида $au_{i,i+1}$ называются элементарными траспозициями.

Лемма 5.3. $\tau \in S_n$ – транспозиция \implies $sgn(\tau) = -1$.

Доказательство. Пусть $\tau = \tau_{ij}$, можем считать, что i < j.

$$\tau := \begin{pmatrix} 1 & \dots & i-1 & i & i+1 & \dots & j-1 & j & j+1 & \dots & n \\ 1 & \dots & i-1 & j & i+1 & \dots & j-1 & i & j+1 & \dots & n \end{pmatrix}$$

Посчитаем инверсии:

 $\{i, j\}$

$$\{i, k\}$$
 при $i + 1 \le k \le j - 1$, всего $= j - i - 1$

$$\{k,j\}$$
 при $i+1\leqslant k\leqslant j-1,$ всего $=j-i-1$

Значит, всего инверсий
$$2(j-i-1)+1\equiv 1\pmod 2\implies \operatorname{sgn}(\tau)=-1.$$

Следствие. При $n \geqslant 2$ отображение $\sigma \to \sigma \tau_{12}$ является биекцией между множеством четных перестановок в S_n и множеством нечетных перестановок в S_n .

Следствие. При $n \ge 2$ количество нечетных перестановок в S_n равно количеству четных перестановок в S_n и равно $\frac{n!}{2}$.

Теорема 5.4. Всякая перестановка $\sigma \in S_n$ может быть разложена в произведение конечного числа элементарных транспозиций.

Доказательство.

$$\sigma \in S_n := \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$$

Тогда

$$\sigma \tau_{i,i+1} = \begin{pmatrix} 1 & 2 & \dots & i & i+1 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(i+1) & \sigma(i) & \dots & \sigma(n) \end{pmatrix}$$

При умножении справа на $\tau_{i,i+1}$ в нижней строке меняются местами i-ый и (i+1)-ый элементы.

Тогда, домножив σ на подходящее произведение $\tau_1 \cdot \tau_2 \cdot \dots \cdot \tau_k$ элементарных траспозиций, можем добиться, что нижняя строка есть $(1, 2, \dots, n) \implies \sigma \tau_1 \tau_2 \dots \tau_k = id$.

Теперь, домножая справа на $\tau_k \tau_{k-1} \dots \tau_1$, получим $\sigma = \tau_k \tau_{k-1} \dots \tau_1$.

5.9 Определитель квадратной матрицы

Определение 25. Определителем матрицы $A \in M_n$ называется число

$$\det A = \sum_{\sigma \in S_{-}} \operatorname{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)}.$$

 $(\sum_{\sigma \in S_n}$ – сумма по всем перестановкам)

Другие обозначения:
$$|A|, \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$

5.10 Определители порядков 2 и 3

•
$$n = 2$$

$$S_2 = \left\{ \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \right\}$$

$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

$$n = 3$$

$$S_3 = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \right\}$$

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}.$$

Напомним что такое определитель:

$$\sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)}. \tag{*}$$

Замечание. Каждое слагаемое содержит ровно 1 элемент из каждой строки и ровно 1 элемент из каждого столбца.

6.1 Свойства определителей

Свойство Т $\det A = \det A^T$.

Доказательство. Пусть $B = A^T$, тогда $b_{ij} = a_{ji}$.

$$\det A^T = \det B = \sum_{\sigma \in S_n} \mathrm{sgn}(\sigma) b_{1\sigma(1)} b_{2\sigma(2)} \dots b_{n\sigma(n)} = \sum_{\sigma \in S_n} \mathrm{sgn}(\sigma) a_{\sigma(1)1} a_{\sigma(2)2} \dots a_{\sigma(n)}$$

$$= \sum_{\sigma \in S_n} \mathrm{sgn}(\sigma) a_{1\sigma(1)^{-1}} a_{2\sigma(2)^{-1}} \dots a_{n\sigma(n)^{-1}} \quad /\!/ \text{ замена } \sigma^{-1} = \rho \ /\!/$$

$$= \sum_{\rho \in S_n} \mathrm{sgn}(\rho) a_{1\rho(1)} a_{2\rho(2)} \dots a_{n\rho(n)} = \det A.$$

Свойство 0 Если в A есть нулевая строка или нулевой столбец, то $\det A = 0$.

Доказательство. В связи со свойством Т можно доказать только для строк.

Так как в каждом слагаемом (\star) присутствует элемент из каждой строки, то все слагаемые в (\star) равны $0 \implies det A = 0$.

Свойство 1 Если в A все элементы одной строки или одного столбца домножить на одно и то же число λ , то $\det A$ тоже умножается на λ .

$$\begin{vmatrix} * & * & \dots & * \\ \dots & \dots & \dots & \dots \\ \lambda * & \lambda * & \lambda * & \lambda * \\ \dots & \dots & \dots & \dots \\ * & * & \dots & * \end{vmatrix} = \lambda \begin{vmatrix} * & * & \dots & * \\ \dots & \dots & \dots & \dots \\ * & * & * & * \\ \dots & \dots & \dots & \dots \\ * & * & \dots & * \end{vmatrix}$$

Доказательство. В связи со свойством Т можно доказать только для строк.

 $A_{(i)} o \lambda A_{(i)} \implies a_{ij} o \lambda a_{ij} \ \forall j \implies \mathrm{B} \ (\star)$ каждое слагаемое умножается на $\lambda \implies \det A$ умножается на λ .

Свойство 2 Если
$$A_{(i)} = A_{(i)}^1 + A_{(i)}^2$$
, то $\det A = \det \begin{pmatrix} A_{(1)} \\ \vdots \\ A_{(i)}^1 \\ \vdots \\ A_{(n)} \end{pmatrix} + \det \begin{pmatrix} A_{(1)} \\ \vdots \\ A_{(i)}^2 \\ \vdots \\ A_{(n)} \end{pmatrix}$.

Пример:

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 + c_1 & b_2 + c_2 & b_3 + c_3 \\ d_1 & d_2 & d_3 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ d_1 & d_2 & d_3 \end{vmatrix} + \begin{vmatrix} a_1 & a_2 & a_3 \\ c_1 & c_2 & c_3 \\ d_1 & d_2 & d_3 \end{vmatrix}$$

Аналогично, если $A^{(j)} = A_1^{(j)} + A_2^{(j)}$, то $\det A = \det(A^{(1)} \cdots A_1^{(j)} \cdots A^{(n)}) + \det(A^{(1)} \cdots A_2^{(j)} \cdots A^{(n)})$.

Доказательство. В связи со свойством Т можно доказать только для строк.

Пусть
$$A^1_{(i)} = (a'_{i1}a'_{i2}\cdots a'_{in}), \ A^2_{(i)} = (a''_{i1}a''_{i2}\dots a''_{in}) \implies a_{ij} = a'_{ij} + a''_{ij}.$$

$$\det A = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)}$$

$$= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots (a'_{i\sigma(i)} + a''_{i\sigma(i)}) \dots a_{n\sigma(n)}$$

$$= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots a'_{i\sigma(i)} \dots a_{n\sigma(n)} + \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots a''_{i\sigma(i)} \dots a_{n\sigma(n)}$$

$$= \det A_1 + \det A_2.$$

Свойство 3 Если в A поменять местами две строки или два столбца, то $\det A$ поменяет знак.

Пусть $A=(a_{ij})\in M_n,\ B=(b_{ij})\in M_n$ – матрица, полученная из A перестановкой p-ой и q-ой строк. Так же, $\tau=\tau_{pq}$.

$$b_{ij} = a_{ au(i)j} = egin{cases} a_{ij}, & ext{если } i
eq p, q \ a_{qj}, & ext{если } i = p \ a_{pj}, & ext{если } i = q \end{cases}$$

$$b_{ij} = a_{\tau(i)j} \implies b_{i\sigma(i)} = a_{\tau(i)\sigma(i)} = a_{\tau(i),(\sigma\tau\tau)(i)}$$

$$\det B = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \cdot b_{1\sigma(1)} \cdot b_{2\sigma(2)} \dots b_{n\sigma(n)}$$

$$= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \cdot a_{\tau(1),\sigma(1)} \cdot a_{\tau(2),\sigma(2)} \dots a_{\tau(n),\sigma(n)}$$

$$= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \cdot a_{\tau(1),(\sigma\tau\tau)(1)} \cdot a_{\tau(2),(\sigma\tau\tau)(2)} \dots a_{\tau(n),(\sigma\tau\tau)(n)}$$

$$// \text{ уберем } \tau(i), \text{ переупорядочив элементы в произведении } //$$

$$= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \cdot a_{1,(\sigma\tau)(1)} \cdot a_{2,(\sigma\tau)(2)} \dots a_{n,(\sigma\tau)(n)}$$

$$= -\sum_{\sigma \in S_n} \operatorname{sgn}(\sigma\tau) \cdot a_{1,(\sigma\tau)(1)} \cdot a_{2,(\sigma\tau)(2)} \dots a_{n,(\sigma\tau)(n)}$$

$$// \text{ замена } \rho = \sigma\tau //$$

$$= -\sum_{\rho \in S_n} \operatorname{sgn}(\rho) \cdot a_{1,\rho(1)} \cdot a_{2,\rho(2)} \dots a_{n,\rho(n)}$$

$$= -\det A.$$

Свойство 4 Если к строке (столбцу) прибавить другую строку (столбец), умноженный на скаляр, то $\det A$ не изменится.

Доказательство. В связи со свойством Т можно доказать только для строк.

$$A \to A' = \begin{pmatrix} \dots \\ A_{(i)} + \lambda A_{(j)} \\ \dots \\ A_{(j)} \\ \dots \end{pmatrix}$$

$$|A'| = \begin{vmatrix} \dots \\ A_{(i)} \\ \dots \\ A_{(j)} \\ \dots \end{vmatrix} + \begin{vmatrix} \dots \\ \lambda A_{(j)} \\ \dots \\ A_{(j)} \\ \dots \end{vmatrix} = |A| + \lambda \begin{vmatrix} \dots \\ A_{(j)} \\ \dots \\ A_{(j)} \\ \dots \end{vmatrix} = |A| + \lambda 0 = |A|.$$

Свойство 5 Если в A есть две одинаковые строки (столбца), то $\det A = 0$.

Доказательство. В связи со свойством Т можно доказать только для строк.

При перестановке двух одинаковых строк (столбцов):

- A не изменится \implies det A не изменится
- по свойству 3: $\det A$ меняет знак

Значит, $\det A = -\det A \implies \det A = 0$.

Определение 26. Матрица называется верхнетреугольной, если $a_{ij} = 0$ при i > j, нижнетреугольной, если $a_{ij} = 0$ i < j.

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2n} \\ 0 & 0 & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{mn} \end{pmatrix} - \text{верхнетреугольная}$$

$$\begin{pmatrix} a_{11} & 0 & 0 & \dots & 0 \\ a_{21} & a_{22} & 0 & \dots & 0 \\ a_{31} & a_{32} & a_{33} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{pmatrix} - \text{нижнетреугольная}$$

Замечание. Всякая ступенчатая квадратная матрица верхнетреугольна.

Свойство 6 Если A верхнетреугольная или нижнетреугольная, то $\det A = a_{11}a_{22}\dots a_{nn}$.

Доказательство. В связи со свойством Т можно доказать только для строк.

Выделим в (*) слагаемые, которые могут быть отличны от нуля.

$$a_{1,\sigma(1)} \dots a_{n-1,\sigma(n-1)} a_{n,\sigma(n)} \neq 0$$

$$\implies a_{n\sigma(n)} \neq 0 \implies \sigma(n) = n.$$

$$\implies a_{n-1,\sigma(n-1)} \neq 0 \implies \sigma(n-1) \in \{n-1,n\},$$

но n уже занято, значит $\sigma(n-1)=n-1$, и так далее.

Рассуждая аналогично, получаем $\sigma(k) = k \ \forall k \implies \sigma = id$ – это единственное слагаемое в (*), которое может быть не равно 0.

$$\operatorname{sgn}(id) = +1 \implies \det A = a_{11}a_{22}\dots a_{nn}.$$

Следствие. det diag $(a_1, a_2, \dots, a_n) = a_1 a_2 \dots a_4$.

Следствие. $\det E = 1$.

6.2 Поведение определителя при элементарных преобразованиях строк (столбцов)

 $\Theta_1(i,j,\lambda)$: det A не меняется.

 $\Theta_2(i,j)$: det A меняет знак.

 $\Theta_3(i,\lambda)$: det A умножается на λ .

Aлгоритм. Элементарными преобразованиями строк A приводится к ступенчатому (\rightarrow верхнетреугольному) виду, в котором $\det A$ легко считается.

7.1 Определитель с углом нулей

Предложение.

$$A = \left(\begin{array}{c|c} P & Q \\ \hline 0 & R \end{array} \right)$$
 или $A = \left(\begin{array}{c|c} P & 0 \\ \hline Q & R \end{array} \right), \ P \in M_k, \ R \in M_{n-k} \implies \det A = \det P \det R.$

Матрица с углом нулей:

$$\left(\begin{array}{c|cccc}
* & * & * & * \\
\hline
0 & * & * & * \\
0 & * & * & * \\
0 & * & * & *
\end{array}\right)$$

НЕ матрица с углом нулей:

$$\begin{pmatrix}
* & * & * & * \\
* & * & * & * \\
\hline
0 & * & * & * \\
0 & * & * & *
\end{pmatrix}$$

Доказательство. В силу свойства Т достаточно доказать для строк.

- 1. Элементарными преобразованиями строк в A, приведем $(P \mid Q)$ к виду $(P' \mid Q')$, в котором P' имеет ступенчатый вид. При этом $\det A$ и $\det P$ умножаются на один и тот же скаляр $\alpha \neq 0$.
- 2. Элементарными преобразованиями строк в A, приведем $(0 \mid R)$ к виду $(0 \mid R')$, в котором R' имеет ступенчатый вид. При этом $\det A$ и $\det R$ умножаются на один и тот же скаляр $\beta \neq 0$.

$$\begin{pmatrix} P' & Q' \\ 0 & R' \end{pmatrix} - \text{верхнетреугольная} \implies \det \begin{pmatrix} P' & Q' \\ 0 & R' \end{pmatrix} = \det P' \det R'.$$

$$\alpha\beta \det A = \det \begin{pmatrix} P' & Q' \\ 0 & R' \end{pmatrix} = \det P' \det R' = (\alpha \det P)(\beta \det R) = \alpha\beta \det P \det R.$$

7.2 Определитель произведения матриц

Теорема 7.1. $A, B \in M_n \implies \det(AB) = \det A \det B$.

Доказательство. Выполним с матрицей A одно элементарное преобразование строк, получим матрицу A'.

$$A \leadsto A' = UA.$$

Такое же преобразование строк с AB.

$$AB \leadsto U(AB) = (UA)B = A'B.$$

Таким образом, сначала выполнив элементарное преобразование и домножив на матрицу B, либо домножив на B и затем применив элементарное преобразование, получим тот же результат.

Тогда, цепочка элементарных преобразований строк:

 $A \leadsto C$ – улучшенный ступенчатый вид.

Так же цепочка для AB:

$$AB \leadsto CB$$
.

При этом, $\det A$ и $\det AB$ умножились на один и тот же скаляр $\alpha \neq 0$

$$\det C = \alpha \det A.$$

$$\det CB = \alpha \det AB.$$

Случай 1 Последняя строка состоит из нулей:

$$C_{(n)} = (0 \dots 0)$$

$$\implies [CB]_{(n)} = C_{(n)}B = (0 \dots 0)$$

$$\implies \det CB = 0 = 0 \cdot \det B = \det C \det B.$$

$$C_{(n)} \implies C = E,$$

так как матрица C имеет улучшенный ступенчатый вид.

Значит

$$\det CB = \det B = 1 \cdot \det B = \det C \cdot \det B.$$

Из этих двух случаем следует, что $\det CB = \det C \det B$.

Сокращая α получаем,

$$\det CB = \det C \det B \implies \det AB = \det A \det B.$$

Замечание. Пусть $A \in M_n$, A_{yn} – её улучшенный ступенчатый вид.

$$\det A \neq 0 \iff A_{y\pi} = E.$$

7.3 Дополнительные миноры и алгебраические дополнения к элементам квадратной матрицы

Определение 27. Дополнительным минором к элементу a_{ij} называется определитель $(n-1) \times (n-1)$ матрицы, получающейся из A вычеркиванием i-ой строки и j-го столбца.

Обозначение: \overline{M}_{ij} .

Определение 28. Алгебраическим дополнением κ элементу a_{ij} называется число $A_{ij} = (-1)^{i+j} \overline{M}_{ij}$.

7.4 Лемма об определителе матрицы, содержащей ровно один ненулевой элемент в некоторой строке

Лемма 7.2. Пусть $a_{ik}=0$ при всех $k\neq j$. Тогда $\det A=a_{ij}\cdot A_{ij}$.

Доказательство.

$$A = \begin{pmatrix} P & U & Q \\ \hline 0 \dots 0 & a_{ij} & 0 \dots 0 \\ \hline R & V & S \end{pmatrix}.$$

Переставляя соседние строки i-1 раз, вытолкнем i-ю строку наверх.

$$A' = \begin{pmatrix} 0 \dots 0 & a_{ij} & 0 \dots 0 \\ \hline P & U & Q \\ \hline R & V & S \end{pmatrix}$$

Переставляя соседние столбцы j-1 раз, переместим j-й столбец на первое место.

$$A'' = \begin{pmatrix} a_{ij} & 0 \dots 0 & 0 \dots 0 \\ \hline U & P & Q \\ \hline V & R & S \end{pmatrix}$$

$$\det A'' = a_{ij} \det \left(\frac{P \mid Q}{R \mid S} \right) = a_{ij} \overline{M}_{ij}.$$

$$\implies det A = (-1)^{i-1+j-1} \det A'' = (-1)^{i+j} a_{ij} \overline{M}_{ij} = a_{ij} A_{ij}.$$

7.5 Разложение определителя по строке (столбцу)

Теорема 7.3. При любом фиксированном $i \in \{1, 2, ..., n\}$,

$$\det A = a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in} = \sum_{j=1}^{n} a_{ij}A_{ij}$$
 – разложение по i-й строке.

Аналогично, для любого фиксированного $j \in \{1, 2, ..., n\}$,

$$\det A = a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{nj}A_{nj} = \sum_{i=1}^{n} a_{ij}A_{ij}$$
 – разложение по j-у столбцу.

Доказательство. В силу свойства Т достаточно доказать для строк.

$$A_{(i)} = (a_{i1}, 0, \dots, 0) + (0, a_{i2}, 0, \dots, 0) + \dots + (0, \dots, 0, a_{in}).$$

Требуемое следует из свойства 2 определителей и леммы.

7.6 Лемма о фальшивом разложении определителя

Лемма 7.4.

1. При любых $i, k \in \{1, 2, \dots, n\} : i \neq k \implies \sum_{j=1}^{n} a_{ij} A_{kj} = 0$,

2. При любых $j, k \in \{1, 2, \dots, n\} : j \neq k \implies \sum_{i=1}^{n} a_{ij} A_{ik} = 0.$

Доказательство. В силу свойства Т достаточно доказать для строк.

Пусть $B \in M_n$ – матрица, полученная из A заменой k-й строки на i-ю.

$$B = \begin{pmatrix} A_{(1)} \\ \vdots \\ A_{(i)} \\ \vdots \\ A_{(i)} \\ \vdots \\ A_{(n)} \end{pmatrix}$$

В B есть две одинаковые строки $\implies \det B = 0$.

Разлагая $\det B$ по k-й строке, получаем

$$\det B = \sum_{j=1}^{n} b_{kj} B_{kj} = \sum_{j=1}^{n} a_{ij} A_{kj}.$$

7.7 Обратная матрица, её единственность

Пусть дана $A \in M_n$.

Определение 29. Матрица $B \in M_n$ называется *обратной* к A, если AB = BA = E. Обозначение: A^{-1} .

Лемма 7.5. Если $\exists A^{-1}$, то она единственна.

Доказательство. Пусть $B, C \in M_n$ такие, что AB = BA = E и AC = CA = E. Тогда,

$$B = BE = B(AC) = (BA)C = EC = C \implies B = C.$$

7.8 Невырожденные матрицы

Определение 30. Матрица $A \in M_n$ называется невырожденной, если $\det A \neq 0$, и вырожденной иначе (то есть $\det A = 0$).

7.9 Определитель обратной матрицы

Лемма 7.6. Если $\exists A^{-1}$, то det $A \neq 0$.

Доказательство.
$$AA^{-1} = E \implies \det(AA^{-1}) = \det E \implies \det A \det(A^{-1}) = 1.$$

7.10 Присоединённая матрица

Определение 31. Присоединенной к A матрицей называется матрица $\widehat{A} = (A_{ij})^T$.

$$\widehat{A} = \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix}$$

7.11 Критерий обратимости квадратной матрицы, явная формула для обратной матрицы

Теорема 7.7. A обратима (то есть $\exists A^{-1}$) \iff A невырождена ($\det A \neq 0$), при этом $A^{-1} = \frac{1}{\det A} \widehat{A}$.

Доказательство. Утверждение в одну сторону следует из леммы 2.

Пусть $\det A \neq 0$. Покажем, что $\frac{1}{\det A} \widehat{A} = A^{-1}$. Для этого достаточно доказать, что $A\widehat{A} = \widehat{A}A = \det A \cdot E$. Для $X = A\widehat{A}$ имеем

$$x_{ij} = \sum_{k=1}^n a_{ik} [\widehat{A}]_{kj} = \sum_{k=1}^n a_{ik} A_{jk} = \begin{cases} \det A, & \text{при } i = j \\ 0, & \text{при } i \neq j \end{cases}.$$

Для $Y = \widehat{A}A$ имеем

$$y_{ij} = \sum_{k=1}^n [\widehat{A}]_{ik} a_{kj} = \sum_{k=1}^n A_{ki} a_{kj} = \begin{cases} \det A, & \text{при } i = j \\ 0, & \text{при } i \neq j \end{cases}.$$

8.1 Следствия из критерия обратимости квадратной матрицы

Следствие. Если AB = E, то BA = E (и тогда $A = B^{-1}$, $B = A^{-1}$).

Доказательство.

$$AB = E \implies \det A \det B = 1 \implies \det A \neq 0 \implies \exists A^{-1}.$$

 $BA = EBA = (A^{-1}A)BA = A^{-1}(AB)A = A^{-1}A = E.$

Следствие. $A, B \in M_n \implies AB$ обратима \iff обе A, B обратимы. При этом $(AB)^{-1} = B^{-1}A^{-1}$.

Доказательство. Эквивалентность (\iff) следует из условия $\det AB = \det A \det B$.

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AA^{-1} = E.$$

8.2 Формулы Крамера

Пусть есть СЛУ
$$Ax=b(\star),\ A\in M_n,\ x=\begin{pmatrix}x_1\\\ldots\\x_n\end{pmatrix}\in\mathbb{R}^n,\ b=\begin{pmatrix}b_1\\\ldots\\b_n\end{pmatrix}\in\mathbb{R}^n.$$
 Также, $\forall i\in\{1,2,\ldots,n\},\ A_i=(A^{(1)},\ldots,A^{(i-1)},b,A^{(i+1)},\ldots,A^{(n)}).$

Теорема 8.1. Если $\det A \neq 0$, то СЛУ (*) имеет единственное решение и его можно найти по формулам:

$$x_i = \frac{\det A_i}{\det A}.$$

Доказательство. $\det A \neq 0 \implies \exists A^{-1} \implies (\star) \iff x = A^{-1}b$ – единственное решение.

$$b = A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x_1 A^{(1)} + x_2 A^{(2)} + \dots + x_n A^{(n)}.$$

$$\det A_i = \det \left(A^{(1)}, \dots, A^{(i-1)}, x_1 A^{(1)} + \dots + x_n A^{(n)}, A^{(i+1)}, \dots, A^{(n)}\right)$$

$$= x_1 \det \left(A^{(1)}, \dots, A^{(i-1)}, A^{(1)}, A^{(i+1)}, \dots A^{(n)}\right)$$

$$+ x_2 \det \left(A^{(1)}, \dots, A^{(i-1)}, A^{(2)}, A^{(i+1)}, \dots, A^{(n)}\right)$$

$$+ \dots +$$

$$+ x_n \det \left(A^{(1)}, \dots, A^{(i-1)}, A^{(n)}, A^{(i+1)}, \dots, A^{(n)}\right)$$

$$= x_i \det A \quad /\!/ \text{ Все слагаемые кроме i-го равны 0.}$$

8.3 Понятие поля.

Определение 32. Полем называется множество F, на котором заданы две операции "сложение" $((a,b) \to a+b)$ и "умножение" $((a,b) \to a \cdot b)$, причем $\forall a,b,c \in F$ выполнены следующие условия:

- 1. a + b = b + a (коммутативность сложения)
- 2. (a+b)+c=a+(b+c) (ассоциативность сложения)
- 3. $\exists 0 \in F : 0 + a = a + 0 = a$ (нулевой элемент)
- 4. $\exists (-a) \in F : a + (-a) = (-a) + a = 0$ (противоположный элемент) \uparrow абелева группа \uparrow
- 5. a(b+c) = ab + ac (дистрибутивность)
- 6. ab = ba (коммутативность умножения)
- 7. (ab)c = a(bc) (ассоциативность умножения)
- 8. $\exists 1 \in F \setminus \{0\} : 1a = a1 = a$ (единица)
- 9. Если $a \neq 0$, $\exists a^{-1} \in F : aa^{-1} = a^{-1}a = 1$ (обратный элемент)

8.4 Простейшие примеры.

- \mathbb{Q} Рациональные числа.
- \mathbb{R} Действительные числа.

 $F_2 = \{0, 1\}$, сложение и умножение по модулю 2.

8.5 Построение поля комплексных чисел.

Ближайшая цель — построить поле $\mathbb C$ комплексных чисел. Неформально, $\mathbb C$ – это наименьшее поле со следующими свойставми:

- 1. $\mathbb{C} \supset \mathbb{R}$.
- 2. Многочлен $x^2 + 1$ имеет корень, то есть $\exists i : i^2 = -1$.

8.5.1 Формальная конструкция поля $\mathbb C$

$$\mathbb{C} = \mathbb{R}^2 = \{(a, b) \mid a, b \in \mathbb{R}\}.$$

- $(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2)$
- $(a_1,b_1)(a_2,b_2) = (a_1a_2 b_1b_2, a_1b_2 + a_2b_1)$

Неформально, каждой такой паре (a,b) соответствует комплексное число a+bi:

- $(a,b) \iff a+bi$
- $(a_1 + b_1 i) + (a_2 + b_2 i) = (a_1 + a_2) + (b_1 + b_2)i$
- $(a_1 + b_1 i)(a_2 + b_2 i) = a_1 a_2 + a_1 b_2 i + a_2 b_1 i + b_1 b_2 \underbrace{i^2}_{=-1} = (a_1 a_2 b_1 b_2) + (a_1 b_2 + a_2 b_1) i$

8.5.2 Проверка аксиом

- 1, 2. Очевидны.
 - 3. 0 = (0,0).
 - 4. -(a,b) = (-a,-b).
 - 5. Дистрибутивность

$$(a_1 + b_1 i)((a_2 + b_2 i) + (a_3 + b_3 i)) = (a_1 + b_1 i)((a_2 + a_3) + (b_2 + b_3)i)$$

$$= (a_1(a_2 + a_3) - b_1(b_2 + b_3)) + (a_1(b_2 + b_3) + b_1(a_2 + a_3))i$$

$$= a_1 a_2 + a_1 a_3 - b_1 b_2 - b_1 b_3 + (a_1 b_2 + a_1 b_3 + b_1 a_2 + b_1 a_3)i$$

$$= ((a_1 a_2 - b_1 b_2) + (a_1 b_2 + b_1 a_2)i) + ((a_1 a_3 + b_1 b_3) + (b_1 a_3 + a_1 b_3)i)$$

$$= (a_1 + b_1 i)(a_2 + b_2 i) + (a_1 + b_1 i)(a_3 + b_3 i)$$

6. Коммутативность умножения – из явного вида формулы.

$$(a_1 + b_1 i)(a_2 + b_2 i) = (a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1)i$$

7. Ассоциативность умножения

$$(a_1, b_1)(a_2, b_2)(a_3, b_3) = (a_1a_2 - b_1b_2, a_1b_2 + a_2b_1)(a_3, b_3)$$

$$= (a_1a_2a_3 - b_1b_2a_3 - a_1b_2b_3 - b_1a_2b_3, a_1a_2b_3 - b_1b_2b_3 + a_1b_2a_3 + b_1a_2a_3)$$

$$= (a_1, b_1)(a_2a_3 - b_2b_3, a_2b_3 + b_2a_3)$$

$$= (a_1, b_1)(a_2, b_2)(a_3, b_3).$$

8. 1 = (1,0).

$$\begin{split} 9.\ \ (a,b) \neq 0 \implies a^2 + b^2 \neq 0. \ \text{Тогда,} \ (a,b)^{-1} &= \left(\frac{a}{a^2 + b^2}, -\frac{b}{a^2 + b^2}\right). \\ (a,b) \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right) &= \left(\frac{a^2}{a^2 + b^2} + \frac{b^2}{a^2 + b^2}, \frac{-ab}{a^2 + b^2} + \frac{ba}{a^2 + b^2}\right) = (1,0). \end{split}$$

Итак, \mathbb{C} – поле.

Проверка свойств

1.
$$a \in \mathbb{R} \leftrightarrow (a,0) \in \mathbb{C}$$
.
 $a+b \leftrightarrow (a,0)+(b,0)=(a+b,0)$.
 $ab \leftrightarrow (a,0)(b,0)=(ab,0)$

Значит, \mathbb{R} отождествляется в \mathbb{C} .

2.
$$i = (0,1) \implies i^2 = (0,1)(0,1) = (-1,0) = -1$$
.

8.6 Алгебраическая форма комплексного числа, его действительная и мнимая части.

Определение 33. Представление числа $z \in \mathbb{C}$ в виде a+bi, где $a,b \in \mathbb{R}$ называется его алгебраической формой. Число i называется мнимой единицей.

a=:Re(z) – действительная часть числа z.

b =: Im(z) – мнимая часть числа z.

Числа вида bi, где $b \in \mathbb{R} \setminus \{0\}$, называются *чисто мнимыми*.

8.7 Комплексное сопряжение.

Определение 34. Число $\overline{z} := a - bi$ называется комплексно сопряженным к числу z = a + bi.

Операция $z \to \overline{z}$ называется комплексным сопряжением.

8.7.1 Свойства комплексного сопряжения

- $\bullet \ \ \overline{\overline{z}}=z.$
- $\bullet \ \overline{z+w} = \overline{z} + \overline{w}.$
- $\bullet \ \overline{zw} = \overline{z} \cdot \overline{w}.$

Доказательство.

- $\overline{\overline{z}} = \overline{\overline{a + bi}} = \overline{a bi} = a + bi = z$.
- $\bullet \ \overline{z+w} = \overline{(a_1+b_1i)+(a_2+b_2i)} = \overline{(a_1+a_2)+(b_1+b_2)i} = (a_1+a_2)-(b_1+b_2)i = (a_1-b_1i)+(a_2-b_2i) = \overline{z}+\overline{w}.$
- $\overline{z} \cdot \overline{w} = (a_1 b_1 i)(a_2 b_2 i) = (a_1 a_2 b_1 b_2) (a_1 b_2 + a_2 b_1)i = \overline{zw}$.

8.8 Геометрическая модель комплексных чисел, интерпретация сложения и сопряжения в этой модели.

Числу z=a+bi соответствует точка (или вектор) на плоскости \mathbb{R}^2 с координатами (a,b). Сумме z+w соответствует сумма соответствующих векторов. Сопряжение $z\to \overline{z}$ – это отражение z относительно действительной оси.

Модуль комплексного числа, его свойства

Определение 35. Число $|z| = \sqrt{a^2 + b^2}$ называется модулем числа $z = a + bi \in \mathbb{C}$ (то есть длина соответствующего вектора).

Свойства

- 1. $|z| \ge 0$, причем $|z| = 0 \iff z = 0$.
- 2. $|z+w| \leq |z| + |w|$ (неравенство треугольника).

Пусть z = a + bi, w = c + di.

$$|z+w| \leq |z| + |w|$$

$$\sqrt{(a+c)^2 + (b+d)^2} \leq \sqrt{a^2 + b^2} + \sqrt{c^2 + d^2}$$

$$(a+c)^2 + (b+d)^2 \leq a^2 + b^2 + c^2 + d^2 + 2\sqrt{(a^2 + b^2)(c^2 + d^2)}$$

$$ac + bd \leq \sqrt{(a^2 + b^2)(c^2 + d^2)}$$

$$ac + bd \leq \sqrt{(ac)^2 + (ad)^2 + (bc)^2 + (bd)^2}$$

$$(ac)^2 + (bd)^2 + 2acbd \leq (ac)^2 + (ad)^2 + (bc)^2 + (bd)^2$$

$$2acbd \leq (ad)^2 + (bc)^2$$

$$0 \leq (ad)^2 + (bc)^2 - 2abcd$$

$$0 \leq (ad - bc)^2$$

3.
$$z\overline{z} = |z|^2$$
.
 $z\overline{z} = (a+bi)(a-bi) = a^2 - (bi)^2 = a^2 + b^2 = |z|^2$

4.
$$|zw| = |z||w|$$
.
 $|zw|^2 = (zw) \cdot (\overline{zw}) = z \cdot w \cdot \overline{z} \cdot \overline{w} = |z|^2 |w|^2$.

Замечание. Из 3) следует, что для $\forall z \neq 0, z^{-1} = \frac{\overline{z}}{|z|^2}$, то есть $(a+bi)^{-1} = \frac{a-bi}{a^2+b^2}$

9.2 Аргумент комплексного числа

Пусть
$$z=a+bi\in\mathbb{C},\,z\neq0.$$
 Тогда, $z=|z|\left(\frac{a}{|z|}+\frac{b}{|z|}i\right)$, при этом $\left(\frac{a}{|z|}\right)^2+\left(\frac{b}{|z|}\right)^2=1$ Значит, $\frac{a}{|z|}$ и $\frac{b}{|z|}$ являются синусом и косинусом некоторого угла.

Определение 36. Аргументом числа $z=a+bi\in\mathbb{C}\setminus\{0\}$ называется число $\varphi\in\mathbb{R}$, такое что

$$\cos \varphi = \frac{a}{|z|} = \frac{a}{\sqrt{a^2 + b^2}}.$$

$$\sin \varphi = \frac{b}{|z|} = \frac{b}{\sqrt{a^2 + b^2}}.$$

В геометрических терминах, φ есть угол между осью Ox и соответствующим вектором.

Замечание. При $z \neq 0$, аргумент определен с точностью до $2\pi k, k \in \mathbb{Z}$.

Замечание. При z=0, удобно считать что любое φ является аргументом.

9.3 Тригонометрическая форма комплексного числа

Arg(z) := множество всех аргументов числа z.

arg(z) := единственное значение из Arg(z), лежащее в $[0; 2\pi)$.

 $Arg(z) = arg(z) + 2\pi k, k \in \mathbb{Z}$

 $Arg(z) = \{ \varphi \in \mathbb{R} \mid \cos \varphi = \frac{a}{|z|}, \sin \varphi = \frac{b}{|z|} \}$

Тогда, $\forall z \in \mathbb{C}, \ z = |z| \left(\frac{a}{|z|} + \frac{b}{|z|} i \right) = |z| \left(\cos \varphi + i \sin \varphi \right)$, где $\varphi \in Arg(z)$.

Определение 37. Представление числа $z \in \mathbb{C}$ в виде $z = |z|(\cos \varphi + i \sin \varphi)$ называется его тригонометрической формой.

Умножение и деление комплексных чисел в тригонометрической форме

Предложение. Пусть $z_1 = |z_1|(\cos\varphi_1 + i\sin\varphi_1)$ и $z_2 = |z_2|(\cos\varphi_2 + i\sin\varphi_2)$, тогда

$$z_1 z_2 = |z_1||z_2|(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2)).$$

Доказательство.

$$z_1 z_2 = |z_1||z_2|(\cos\varphi_1 + i\sin\varphi_1)(\cos\varphi_2 + i\sin\varphi_2)$$

= $|z_1||z_2|((\cos\varphi_1\cos\varphi_2 - \sin\varphi_1\sin\varphi_2) + i(\cos\varphi_1\sin\varphi_2 + \sin\varphi_1\cos\varphi_2))$
= $|z_1||z_2|(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2)).$

Следствие. В условиях предложения, предположим, что $z_2 \neq 0$.

Тогда
$$\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} (\cos(\varphi_1 - \varphi_2) + i\sin(\varphi_1 - \varphi_2)).$$
 В частности, $\frac{1}{|z_2|} (\cos(-\varphi_2) + i\sin(-\varphi_2)) = \frac{1}{|z_2|} (\cos\varphi_2 - i\sin\varphi_2) = \frac{\overline{z}_2}{|z_2|^2}.$

9.5Возведение в степень комплексных чисел в тригонометрической форме, формула Муавра

Следствие. Пусть $z = |z|(\cos \varphi + i \sin \varphi)$. Тогда $\forall n \in \mathbb{Z}$,

$$z^n = |z|^n(\cos(n\varphi) + i\sin(n\varphi))$$
 – формула Муавра.

Замечание. В комплексном анализе функция $\exp: \mathbb{R} \to \mathbb{R}, x \to e^x$, доопределяется до функции $\exp: \mathbb{C} \to \mathbb{C}, z \to e^z$ с сохранением всех привычных свойств.

Доказывается $e^{i\varphi}=\cos\varphi+i\sin\varphi,\,\forall\varphi\in\mathbb{C}$ – формула Эйлера.

Тогда $\forall z \in \mathbb{C}$ представляется в виде $z = |z|e^{i\varphi}$, где $\varphi \in Arg(z)$ – показательная форма.

Извлечение корней из комплексных чисел 9.6

Пусть $z \in \mathbb{C}$, $n \in \mathbb{N}$, $n \geqslant 2$.

Определение 38. Корнем степени n (или корнем n-й степени) из числа z называется всякое число $w \in \mathbb{C}$, что $w^n = z$.

Положим $\sqrt[n]{z} := \{ w \in \mathbb{C} \mid w^n = z \}.$

Опишем множество $\sqrt[n]{z}$.

$$w=\sqrt[n]{z} \Longrightarrow w^n=z \Longrightarrow |w|^n=|z|.$$
 Если $z=0$, то $|z|=0 \Longrightarrow |w|=0 \Longrightarrow w=0 \Longrightarrow \sqrt[n]{0}=\{0\}.$

Далее считаем, что $z \neq 0$.

$$z = |z|(\cos\varphi + i\sin\varphi)$$

$$w = |w|(\cos\psi + i\sin\psi)$$

$$z = w^n = |w|^n (\cos(n\psi) + i\sin(n\psi))$$

Отсюда,

$$z=w^n\iff egin{cases} |z|=|w|^n \ n\psi=arphi+2\pi k,$$
 для некоторого $k\in\mathbb{Z} \end{cases}\iff egin{cases} |w|=\sqrt[n]{|z|} \ \psi=rac{arphi+2\pi k}{n},$ для некоторого $k\in\mathbb{Z}$

С точностью до $2\pi l,\ l\in\mathbb{Z},$ получается ровно n различных значений для $\psi,$ при $k=0,1,\ldots,n-1.$

В результате
$$\sqrt[n]{z} = \{w_0, w_1, \dots, w_{n-1}\}$$
, где $w_k = \sqrt[n]{|z|} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n}\right)$

Замечание. Числа w_0, w_1, \dots, w_{n-1} лежат в вершинах правильного n-угольника с центром в начале координат.

Примеры.

$$\sqrt{1} = \{\pm 1\}$$

$$\sqrt{-1} = \{\pm i\}$$

$$\sqrt[3]{1} = \{1, -\frac{1}{2} \pm i\frac{\sqrt{3}}{2}\}$$

$$\sqrt[4]{1} = \{\pm 1, \pm i\}$$

Основная теорема алгебры комплексных чисел (без доказательства)

 $\sqrt[n]{z} = \{$ корни многочлена $x^n - z\}.$

Теорема 9.1. Всякий многочлен степени $\geqslant 1$ с комплексными коэффициентами имеет комплексный корень.

Пусть
$$f = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z_1 + a_0, n \geqslant 1, a_n \neq 0, a_i \in \mathbb{C}$$
, тогда $\exists c \in \mathbb{C} : f(c) = 0$.

Замечание. Свойство поля С, сформулированное в теореме, называется алгебраической замкнутостью.

9.8 Деление многочленов с остатком

Пусть \mathbb{F} – поле.

 $\mathbb{F}[x] :=$ все многочлены от переменной x с коэффициентами из \mathbb{F} .

$$f(x) = a_n x^n + \dots + a_1 x + a_0, \ a_n \neq 0 \implies \deg f = n.$$

 $\deg(f \cdot g) = \deg f + \deg g.$

Определение 39. Многочлен $f(x) \in F[x]$ делится на $g(x) \in F[x]$, если $\exists h(x) \in F[x]$, такой что f(x) = g(x)h(x).

Если f(x) не делится на g(x), то можно поделить с остатком.

Предложение (деление с остатком). Если $f(x), g(x) \in F[x], g(x) \neq 0$, то $\exists ! q(x), r(x) \in F[x]$, такие что

$$\begin{cases} f(x) = q(x)g(x) + r(x) \\ \text{либо } r(x) = 0, \text{ либо } \deg r(x) < \deg g(x) \end{cases}$$

Пример.
$$f(x) = x^3 - 2x$$
, $g(x) = x + 1$.
$$f(x) = (x^2 - x - 1)(x + 1) + 1$$
, $q(x) = (x^2 - x - 1)$, $r(x) = 1$.

9.9 Теорема Безу

Частный случай деления многочлена f(x) на многочлен g(x) с остатком: g(x) = x - c, $\deg g(x) = 1$: f(x) = q(x)(x-c) + r(x), где либо r(x) = 0, либо $\deg r(x) < g(x) = 1$ Значит, $r(x) \equiv r = const \in F$.

Теорема 9.2. r = f(c).

Доказательство. Подставить x = c в f(x) = (x - c)g(x) + r(x).

Следствие. Элемент $c \in F$ является корнем многочлена $f(x) \in F[x]$ тогда и только тогда, когда f(x) делится на (x-c).

9.10 Кратность корня многочлена

Определение 40. *Кратностью* корня $c \in F$ многочлена f(x) называется наибольшее целое k такое что, f(x) делится на $(x-c)^k$.

9.11 Утверждение о том, что всякий многочлен степени n с комплексными коэффициентами имеет ровно n корней с учётом кратностей

Следствие. Пусть $f(z) \in F[z]$, deg $f = n \geqslant 1$.

$$f(x) = a_n z^n + \dots + a_1 z + a_0.$$

$$c_1, \ldots c_s$$
 – корни f, k_1, \ldots, k_s – их кратности.

Любой многочлен с комплексными коэффициентами разлагается в произведение линейных множителей:

$$f(x) = a_n(x - c_1)^{k_1}(x - c_2)^{k_2} \dots (x - c_s)^{k_s}.$$

Иными словами, f(z) имеет ровно n корней с учетом кратностей.

10.1 Векторные пространства, простейшие следствия из аксиом

10.1.1 Определение векторного пространства

Фиксируем поле F (можно считать, что $F = \mathbb{R}$ или \mathbb{C})

Определение 41. Множество V называется векторным (линейным) пространством над полем F, если на V заданы две операции

- "сложение": $V \times V \to V$, $(x,y) \mapsto x+y$.
- "умножение на скаляр": $F \times V \to V$, $(\alpha \in F, x \in V) \mapsto \alpha x$.

а также, $\forall x, y, z \in V$ и $\alpha, \beta \in F$ выполнены следующие условия (называются аксиомами векторного пространства):

- 1. x + y = y + x.
- 2. (x + y) + z = x + (y + z).
- $3. \ \exists \overrightarrow{0} \in V : x + \overrightarrow{0} = \overrightarrow{0} + x = x$ (нулевой элемент).
- 4. $\exists -x : -x + x = x + (-x) = \overrightarrow{0}$ (противоположный элемент).
- 5. $\alpha(x+y) = \alpha x + \alpha y$.
- 6. $(\alpha + \beta)x = \alpha x + \beta x$.
- 7. $(\alpha\beta)x = \alpha(\beta x)$.
- 8. $1 \cdot x = x$.

Определение 42. Элементы векторного пространства называются (абстрактными) векторами.

Пример.

- 1. \mathbb{R} над \mathbb{R} (или F над F).
- 2. Пространство \mathbb{R}^n над \mathbb{R} (или F^n над F) реализованное как пространство столбцов или строк длины n.
- 3. $\operatorname{Mat}_{m \times n}(F)$.
- 4. F[x] многочлены то переменной x с коэффициентами в \mathbb{R} .
- 5. Пространство функций на множестве M с значениями в F:

 $f: M \to \mathbb{R}$

- сложение $(f_1 + f_2)(x) := f_1(x) + f_2(x)$.
- умножение на скаляр $(\alpha f)(x) := \alpha f(x)$.
- это векторное пространство над F.

Например, множество всех функций $[0,1] \to R$.

10.1.2 Простейшие следствия из аксиом

 $\forall \alpha \in F, x \in V.$

1. Элемент $\overrightarrow{0}$ единственный.

Если $\overrightarrow{0}'$ – другой такой ноль, то $\overrightarrow{0}' = \overrightarrow{0}' + \overrightarrow{0} = \overrightarrow{0}$.

2. Элемент -x единственный.

Если (-x)' – другой такой противоположный элемент, то

$$(-x)' = (-x)' + \overrightarrow{0} = (-x)' + (x + (-x)) = ((-x)' + x) + (-x) = \overrightarrow{0} + (-x) = -x.$$

3. $\alpha \overrightarrow{0} = \overrightarrow{0}$.

Рассмотрим равенство $\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0}$. Домножив на α получаем $\alpha(\overrightarrow{0}+\overrightarrow{0})=\alpha\overrightarrow{0}$.

Раскроем скобки, $\alpha \overrightarrow{0} + \alpha \overrightarrow{0} = \alpha \overrightarrow{0}$.

Прибавим к обоим частям обратный элемент к $\alpha\overrightarrow{0}$, получим $\alpha\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0}\implies \alpha\overrightarrow{0}=\overrightarrow{0}$.

4. $\alpha(-x) = -(\alpha x)$.

Рассмотрим равенство $x + (-x) = \overrightarrow{0}$.

$$x + (-x) = \overrightarrow{0} \implies ax + a(-x) = 0 \implies a(-x) = -(ax).$$

37

5. $0 \cdot x = \overrightarrow{0}$.

Доказывается так же, как пункт 3, но с 0 вместо $\overrightarrow{0}$.

6. $(-1) \cdot x = -x$.

Рассмотрим равенство 1 + (-1) = 0. Домножив на x получаем (1 + (-1))x = 0x.

Раскроем скобки и воспользуемся пунктом 5 - 1x + (-1)x = 0 или x + (-1)x = 0.

Прибавим к обоим частям -x, получим 0 + (-1)x = -x или (-1)x = -x.

10.2 Подпространства векторных пространств

Пусть V – векторное пространство над F.

Определение 43. Подмножество $U \subseteq V$ называется *подпространством* (в V), если

- 1. $\overrightarrow{0} \in U$.
- $2. \ x,y \in U \implies x+y \in U.$
- 3. $x \in U, \alpha \in F \implies \alpha x \in U$.

Замечание. Всякое подпространство само является векторным пространством относительно тех же операций.

Пример.

- 1. $\{\overrightarrow{0}\}$ и V всегда подпространства в V. они называются neco6cmeenhumu подпространствами, остальные называются co6cmeenhumu.
- 2. Множество всех верхнетреугольных, нижнетреугольных, диагональных матриц в $M_n(F)$.
- 3. $F[x]_{\leqslant n}$ все многочлены в F[x] степени $\leqslant n$ подпространство в F[x].

10.3 Утверждение о том, что множество решений однородной системы линейных уравнений с n неизвестными является подпространством в F^n

Предложение. Множество решений любой ОСЛУ Ax = 0 ($A \in \mathrm{Mat}_{m \times n}(F), x \in F^n$) является подпространством в F^n .

Доказательство. Пусть S – множество решений ОСЛУ Ax = 0.

1.
$$\overrightarrow{0} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \in S$$
.

$$2. \ x,y \in S \implies Ax = \overrightarrow{0} \ \text{if} \ Ay = \overrightarrow{0} \implies A(x+y) = Ax + Ay = \overrightarrow{0} + \overrightarrow{0} = \overrightarrow{0} \implies x+y \in S.$$

3.
$$x \in S, \alpha \in F \implies Ax = \overrightarrow{0} \implies A(\alpha x) = \alpha(Ax) = \alpha \overrightarrow{0} = \overrightarrow{0} \implies \alpha x \in S.$$

10.4 Линейная комбинация конечного набора векторов

Пусть V – векторное пространство над F и $v_1, \ldots, v_k \in V$ – набор векторов.

Определение 44. Линейной комбинацией векторов v_1, \ldots, v_k называется всякое выражение вида $\alpha_1 v_1 + \cdots + \alpha_k v_k$, где $\alpha_i \in F$.

10.5 Линейная оболочка подмножества векторного пространства, примеры

Пусть $S \subseteq V$ — подмножество векторного пространства.

Определение 45. Линейной оболочкой множества S называются множество всех векторов из V, представимых в виде линейной комбинации какого-то конечного набора векторов из S.

Обозначение: $\langle S \rangle$.

Если $S = \{v_1, \dots, v_k\}$ конечно и состоит из векторов v_1, \dots, v_k , то еще пишут $\langle v_1, \dots, v_k \rangle$ и говорят "линейная оболочка векторов v_1, \dots, v_k ".

Cоглашение: $\langle \varnothing \rangle = \{ \overrightarrow{0} \}$.

Пример.

- 1. $\langle \overrightarrow{0} \rangle = \{ \overrightarrow{0} \}.$
- 2. $V=\mathbb{R}^2,\,v\neq 0,\,\langle v\rangle=\{\alpha v\mid \alpha\in\mathbb{R}\}$ прямая.
- 3. $V = \mathbb{R}^3, \, v_1, v_2$ пара неколлинеарных векторов.

Тогда, $\langle v_1,v_2\rangle=\{a_1v_1+a_2v_2\mid a_1,a_2\in\mathbb{R}\}$ – плоскость натянутая на $v_1,v_2.$

Напомним, если V – векторное пространство над полем F, то при $S\subseteq V$, линейная оболочка $\langle S\rangle=\{$ все линейные комбинации конечных наборов векторов из $S\}$

Пример.

4.
$$V = F^n$$
, $S = \{e_1, \ldots, e_n\}$, где

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \dots \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \\ \dots \\ 0 \end{pmatrix}, \dots, e_n = \begin{pmatrix} 0 \\ 0 \\ \dots \\ 1 \end{pmatrix}.$$

Тогда $\langle S \rangle = \langle e_1, \dots, e_n \rangle = F^n$.

Так как для любого
$$x \in F^n \implies x = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ 0 \\ \dots \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 0 \\ 1 \\ \dots \\ 0 \end{pmatrix} + \dots + x_n \begin{pmatrix} 0 \\ 0 \\ \dots \\ 1 \end{pmatrix} = x_1e_1 + x_2e_2 + \dots + x_ne_n.$$

11.1 Утверждение о том, что линейная оболочка системы векторов является подпространством объемлющего векторного пространства

Пусть V – векторное пространство, $S \subseteq V$.

Предложение. $\langle S \rangle$ является подпространством в V.

Доказательство.

1. Два случая:

$$\begin{split} S &= \varnothing \implies \langle \varnothing \rangle = \{ \overrightarrow{0} \} \implies \overrightarrow{0} \in \langle S \rangle. \\ S &\neq \varnothing \implies \exists V \in S \implies \underbrace{0V}_{\in \langle S \rangle} = \overrightarrow{0} \implies \overrightarrow{0} \in \langle S \rangle. \end{split}$$

2. Пусть $v, w \in \langle S \rangle$:

$$\begin{split} v &= \alpha_1 v_1 + \dots + \alpha_m v_m, \\ w &= \beta_1 w_1 + \dots + \beta_n w_n, \text{ где } v_i, w_i \in S, \ \alpha_i, \beta_i \in F. \end{split}$$
 Тогда, $v + w = \alpha_1 v_1 + \dots + \alpha_m v_m + \beta_1 w_1 + \dots + \beta_n w_n \in \langle S \rangle.$

(если
$$v_i = w_i$$
, то $\alpha_i v_i + \beta_i w_i = (\alpha_i + \beta_i) w_i$)

3.
$$v \in \langle S \rangle$$
, $\alpha \in F \implies v = \alpha_1 v_1 + \dots + \alpha_m v_m$
 $\implies \alpha v = (\alpha \alpha_1) v_1 + \dots + (\alpha \alpha_m) v_m \in \langle S \rangle$.

11.2 Линейно зависимые и линейно независимые системы векторов

Определение 46. Линейная комбинация $\alpha_1 v_1 + \dots + \alpha_n v_n$ называется тривиальной, если $\alpha_1 = \dots = \alpha_n = 0$ и нетривиальной иначе (то есть $\exists i : a_i \neq 0$ или $(\alpha_1, \dots, \alpha_n) \neq (0, \dots, 0)$).

 $\Pi pumep. \ v + (-v)$ – нетривиальная линейная комбинация векторов v и -v.

Определение 47.

- 1. Векторы $v_1, \ldots, v_n \in V$ называются линейно зависимыми если существует их нетривиальная линейная комбинация, равная $\overrightarrow{0}$ (то есть $\exists (\alpha_1, \ldots, \alpha_n) \neq (0, \ldots, 0)$, такие что $\alpha_1 v_1 + \cdots + \alpha_n v_n = \overrightarrow{0}$) и линейно независимыми иначе (то есть из условия $\alpha_1 v_1 + \ldots \alpha_n v_n = \overrightarrow{0}$ следует $\alpha_1 = \cdots = \alpha_n = 0$).
- 2. Множество $S \subseteq V$ (возможно бесконечное, возможно с повторяющимися элементами) называется *линейно зависимым* если существует конечное линейно зависимое подмножество, и *линейно независимым* если любое конечное подмножество линейно независимо.

Соглашение. Система векторов – множество векторов, в котором возможны повторения.

 Πp имеp.

1. $S = \{\overrightarrow{0}\}$ 1 · $\overrightarrow{0}$ – нетривиальная линейная комбинация \Longrightarrow $\overrightarrow{0}$ линейно зависимо.

2. $S = \{v\}, v \neq \overrightarrow{0}$ — линейно независимо. Пусть $\lambda v = \overrightarrow{0} \implies \overrightarrow{0} = \lambda^{-1} \overrightarrow{0} = \lambda^{-1} (\lambda v) = (\lambda^{-1} \lambda) v = 1 v = v$ — противоречие.

3. $S=\{v_1,v_2\}\implies S$ линейно зависимо тогда и только тогда, когда v_1 и v_2 пропорциональны (то есть либо $v_2=\lambda_1v_1,\,\lambda_1\in F$, либо $v_1=\lambda_2v_2,\,\lambda_2\in F$).

Доказательство.

 (\Longrightarrow) $\mu_1v_1+\mu_2v_2=\overrightarrow{0},\ (\mu_1,\mu_2)\neq (0,0).$ Если $\mu_1\neq 0,\ \text{то}\ v_1=-\frac{\mu_2}{\mu_1}v_2.$ Аналогично для $\mu_2\neq 0.$

(\iff) $v_2=\lambda_1v_1 \implies \lambda_1v_1+(-1)v_2=\overrightarrow{0} \implies v_1,v_2$ линейно зависимы. Аналогично для $v_1=\lambda_2v_2.$

4. $V = F^n, S = \{e_1, \dots, e_n\} \implies S$ линейно независимо.

$$\alpha_1 e_1 + \dots + \alpha_n e_n = \overrightarrow{0} \iff \begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} 0 \\ \dots \\ 0 \end{pmatrix} \iff \alpha_1 = \dots = \alpha_n = 0.$$

11.3 Критерий линейной зависимости конечного набора векторов

Предложение. Пусть $v_1, \ldots, v_n \in V$, $i \in \{1, \ldots, n\}$, тогда следующие условия эквивалентны:

1.
$$\exists (\alpha_1, \dots, \alpha_n) \in F^n$$
, такой что $\alpha_1 v_1 + \dots + \alpha_n v_n = \overrightarrow{0}(\star)$ и $\alpha_i \neq 0$.

2.
$$v_i \in \langle v_1, \dots, v_{i-1}, v_{i+1}, \dots, v_n \rangle$$
.

Доказательство.

$$(1) \implies (2) \ \alpha_i \neq 0 \ \mathbf{B} \ (\star) \implies v_i = -\frac{\alpha_1}{\alpha_i} v_1 - \dots - \frac{\alpha_{i-1}}{\alpha_i} v_{i-1} - \frac{\alpha_{i+1}}{\alpha_i} v_{i+1} - \dots - \frac{\alpha_n}{\alpha_i} v_n \in \langle v_1, \dots v_{i-1}, v_{i+1}, \dots, v_n \rangle.$$

$$(2) \implies (1) v_i = \beta_1 v_1 + \dots + \beta_{i-1} v_{i-1} + \beta_{i+1} v_{i+1} + \dots + \beta_n v_n \implies$$

$$\beta_1 v_1 + \dots + \beta_{i-1} v_{i-1} + \underbrace{(-1)}_{\neq 0} v_i + \beta_{i+1} v_{i+1} + \dots + \beta_n v_n = \overrightarrow{0}.$$

(нетривиальная линейная комбинация с *i*-м скаляром $\neq 0$).

Следствие. Векторы v_1, \ldots, v_n линейно зависимы тогда и только тогда, когда $\exists i \in \{1, \ldots, n\}$, такое что $v_i \in \langle v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n \rangle$.

11.4 Основная лемма о линейной зависимости

Лемма 11.1. Пусть есть две системы векторов v_1, \ldots, v_m и w_1, \ldots, w_n , причем m < n и $w_i \in \langle v_1, \ldots, v_m \rangle$ $\forall i = 1, \ldots, n$. Тогда векторы w_1, \ldots, w_n линейно зависимы.

Доказательство.

$$w_1 = a_{11}v_1 + a_{21}v_2 + \dots + a_{m1}v_m = (v_1, \dots, v_m) \begin{pmatrix} a_{11} \\ a_{21} \\ \dots \\ a_{m1} \end{pmatrix}$$

. . .

$$w_n = a_{1n}v_1 + a_{2n}v_2 + \dots + a_{mn}v_m = (v_1, \dots, v_m) \begin{pmatrix} a_{1n} \\ a_{2n} \\ \dots \\ a_{mn} \end{pmatrix}.$$

$$\implies (w_1, \dots, w_n) = (v_1, \dots, v_m)A,\tag{*}$$

где $A = (a_{ij}) \in \operatorname{Mat}_{m \times n}(F)$.

Так как m < n, то ОСЛУ $Ax = \overrightarrow{0}$ имеет ненулевое решение $z = \begin{pmatrix} z_1 \\ \dots \\ z_n \end{pmatrix} \in F^n$.

Тогда умножим (\star) справа на z:

$$(w_1,\ldots,w_n)\cdot z=(v_1,\ldots,v_m)\cdot\underbrace{A\cdot z}_{=\overrightarrow{0}}=(v_1,\ldots,v_m)\begin{pmatrix}0\\\ldots\\0\end{pmatrix}=\overrightarrow{0}.$$

$$\implies (w_1, \dots, w_n) \begin{pmatrix} z_1 \\ \dots \\ z_n \end{pmatrix} = \overrightarrow{0} \implies z_1 w_1 + \dots z_n w_n = \overrightarrow{0}.$$

Это нетривиальная линейная комбинация, так как $z \neq 0$.

Следовательно, w_1, \dots, w_n линейно зависимы.

Пример. Любые n+1 векторов в F^n линейно зависимы, так как $F^n = \langle e_1, \dots, e_n \rangle$.

11.5 Базис векторного пространства

Определение 48. Подмножество $S \subseteq V$ называется *базисом* пространства V, если

- 1. S линейно независимо,
- 2. $\langle S \rangle = V$.

Пример. e_1, \ldots, e_n – это базис в F^n . Он называется стандартным базисом в F^n .

Замечание. Всякая линейно независимая система векторов является базисом своей линейной оболочки.

11.6 Конечномерные и бесконечномерные векторные пространства

Определение 49. Векторное пространство V называется конечномерным, если в нем есть конечный базис, и бесконечномерным иначе.

11.7 Независимость числа элементов в базисе векторного пространства от выбора базиса

Предложение. V – конечномерное векторное пространство. Тогда, все базисы в V содержат одно и то же количество элементов.

 $Доказательство.\ V$ конечномерно, тогда существует конечный базис $e_1,\ldots,e_n.$

Пусть $S \subseteq V$ – другой базис. Так как $\langle e_1, \dots, e_n \rangle = V$, то $\forall v \in S \implies v \in \langle e_1, \dots, e_n \rangle$. Тогда любые n+1 векторов в S линейно зависимы по основной лемме о линейной зависимости. Но S линейно независимо, значит $|S| \leqslant n$.

Пусть $S = \{e'_1, \dots, e'_m\}$, где $m \leqslant n$. Тогда $\forall i = 1, \dots, n$ $e_i \in \langle e'_1, \dots, e'_m \rangle$, по основной лемме о линейной зависимости получаем $n \leqslant m$.

To есть m=n.

11.8 Размерность конечномерного векторного пространства

Определение 50. *Размерностью* конечномерного векторного пространства называется число элементов в (любом) его базисе.

Обозначение: $\dim V$.

Пример.

- 1. $\dim F^n = n$,
- 2. $V = \{\overrightarrow{0}\} \implies \dim V = 0$ так как базисом V будет \varnothing .

Пусть V — векторное пространство над полем F. Обозначение $\dim V < \infty$ — V конечномерно.

12.1 Характеризация базисов в терминах единственности линейного выражения векторов

Утверждение 12.1. Пусть $\dim V < \infty, e_1, \dots, e_n \in \langle V \rangle$.

 e_1,\ldots,e_n — базис V тогда и только тогда, когда, $\forall v \in V$ единственным образом представим в виде

$$v = x_1 e_1 + \dots + x_n e_n \quad x_i \in F.$$

Доказательство.

 \implies Пусть есть два представления $v=x_1e_1+\ldots x_ne_n=x_1'e_1+\cdots+x_n'e_n.$

Тогда,
$$(x_1 - x_1')e_1 + \dots + (x_n - x_n')e_n = \overrightarrow{0}$$
.

Так как e_1, \dots, e_n линейно независимы, то $(x_1 - x_1') = \dots = (x_n - x_n') = 0$.

Значит, $x_i = x'_i \quad \forall i$.

 $\iff \forall v \in V \text{ имеем } v \in \langle e_1, \dots, e_n \rangle.$

Значит, $\langle e_1, \ldots, e_n \rangle = V$.

Для $v = \overrightarrow{0}$ существует единственное представление $\overrightarrow{0} = \lambda_1 e_1 + \dots + \lambda_n e_n$.

Ho мы знаем, что $\overrightarrow{0} = 0e_1 + \cdots + 0e_n$.

Следовательно $\alpha_1 = \dots \alpha_n = 0$, то есть e_1, \dots, e_n линейно независимо.

Итог: e_1, \ldots, e_n – базис V.

12.2 Фундаментальная система решений однородной системы линейных уравнений

$$Ax = 0 - \text{OC}\Pi Y. \tag{*}$$

 $A \in \mathrm{Mat}_{m \times n}(F), x = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} \in F^n.$

 $S \subseteq F^n$ – множество решений.

Знаем, что S – подпространство в F^n .

Определение 51. Φ ундаментальной системой решений (Φ CP) для ОСЛУ (\star) называется всякий базис пространства её решений.

Замечание. У одной ОСЛУ может быть много разных ФСР.

12.3 Метод построения фундаментальной системы решений

Приведем матрицу к улучшенному ступенчатому виду элементарными преобразовиями строк.

$$(A|\overrightarrow{0}) \leadsto (B|\overrightarrow{0}) \quad \leftarrow \,$$
улучшенный ступенчатый вид.

Пусть r – число ненулевых строк в B.

Тогда будет r главных неизвестных и n-r свободных.

Выполнив перенумерацию будем считать что,

 x_1, \ldots, x_r – главные неизвестные,

 x_{r+1},\ldots,x_n – свободные.

Тогда, общее решение для (⋆) имеет вид

$$x_1 = c_{11}x_{r+1} + c_{12}x_{r+2} + \dots + c_{1,n-r}x_n$$

$$x_2 = c_{21}x_{r+1} + c_{22}x_{r+2} + \dots + c_{2,n-r}x_n$$

. . .

$$x_r = c_{r1}x_{r+1} + c_{r2}x_{r+2} + \dots + c_{r,n-r}x_n.$$

Предъявим некоторую систему решений

$$u_{1} = \begin{pmatrix} c_{11} \\ c_{21} \\ \vdots \\ c_{r1} \\ \frac{1}{0} \\ \vdots \\ 0 \end{pmatrix}, u_{2} = \begin{pmatrix} c_{12} \\ c_{22} \\ \vdots \\ c_{r2} \\ 0 \\ \frac{1}{0} \\ \vdots \\ 0 \end{pmatrix}, \dots, u_{n-r} = \begin{pmatrix} c_{1,n-r} \\ c_{2,n-r} \\ \vdots \\ c_{r,n-r} \\ 0 \\ \vdots \\ 0 \\ \frac{1}{2} \end{pmatrix}.$$

$$u_1, \ldots, u_{n-r} \in S$$

Предложение. $u_1, ..., u_{n-r}$ – это ФСР для ОСЛУ (★).

Доказательство.

1. Линейная независимость.

Пусть $\alpha_1 u_1 + \dots + \alpha_{n-r} u_{n-r} = \overrightarrow{0}$.

При любом $k \in \{1,\dots,n-r\},\,(r+k)$ -я координата левой части равна α_k , значит $\alpha_k=0.$

Следовательно $\alpha_1 = \cdots = \alpha_{n-r} = 0$.

 $2. \langle u_1, \dots, u_{n-r} \rangle = S.$

" \subseteq " Верно, так как $u_1, \ldots, u_{n-r} \in S$.

">" Пусть $u \in S$, тогда

$$u = \begin{pmatrix} * \\ \dots \\ * \\ \alpha_1 \\ \alpha_2 \\ \dots \\ \alpha_{n-r} \end{pmatrix}$$
 для некоторых $\alpha_1, \dots, \alpha_{n-r} \in F$.

Положим $v := u - \alpha_1 u_1 - \dots - \alpha_{n-r} u_{n-r}$.

Тогда, $v \in S$, но

$$v = \begin{pmatrix} * \\ \dots \\ * \\ 0 \\ \dots \\ 0 \end{pmatrix}.$$

Тогда формулы для общего решения дают $v = \overrightarrow{0}$.

Поэтому $u = \alpha_i u_1 + \dots + \alpha_{n-r} u_{n-r}$.

Значит $\langle u_1, \ldots, u_{n-r} \rangle = S$.

 $\Pi puмep.$

$$A = \begin{pmatrix} 1 & -3 & 0 & 1 \\ 0 & 0 & 1 & -2 \end{pmatrix}$$

Общее решение:

$$\begin{cases} x_1 = 3x_2 - x_4 \\ x_3 = 2x_4 \end{cases}$$

Тогда ФСР:

$$u_1 = \begin{pmatrix} 3 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \ u_2 = \begin{pmatrix} -1 \\ 0 \\ 2 \\ 1 \end{pmatrix}.$$

12.4 Утверждение о возможности выбора из конечной системы векторов базиса её линейной оболочки

Пусть V – векторное пространство над F.

Наблюдение: если $v, v_1, \ldots, v_m \in V$ и $v \in \langle v_1, \ldots, v_m \rangle$, тогда $\langle v, v_1, \ldots, v_m \rangle = \langle v_1, \ldots, v_m \rangle$

Предложение. Из всякой конечной системы векторов $S \subseteq V$ можно выбрать подсистему, которая является базисом в линейной оболочке $\langle S \rangle$.

Доказательство. Пусть $S = \{v_1, \ldots, v_m\}$.

Индукция по m.

База m = 1: $S = \{v_1\}$.

Если $v_1 = \overrightarrow{0}$, то $\langle S \rangle = \{ \overrightarrow{0} \}$, значит в качестве базиса берем \varnothing .

Если $v_1 \neq 0$, то S линейно независимо.

Следовательно S – базис в $\langle S \rangle$.

Шаг Пусть доказано для < m, докажем для m.

Если v_1, \ldots, v_m линейно независимо, то v_1, \ldots, v_m – это уже базис в $\langle S \rangle$.

Иначе, $\exists i : v_i \in \langle S \setminus \{v_i\} \rangle$.

Положим $S' := S \setminus \{v_i\}.$

Тогда, $\langle S' \rangle = \langle S \rangle$.

Так как |S'| = m - 1 < m, то по предположению индукции в S' можно выбрать базис для $\langle S' \rangle = \langle S \rangle$.

12.5 Дополнение конечной линейно независимой системы векторов до базиса конечномерного векторного пространства

Предложение. Пусть $\dim V < \infty$, тогда всякую линейно независимую систему векторов в V можно дополнить до базиса всего пространства V.

Доказательство. Пусть v_1, \dots, v_m – данная линейно независимая система.

Так как $\dim V < \infty$, в V есть конечный базис e_1, \ldots, e_n .

Рассмотрим систему векторов $v_1, ..., v_m, e_1, ..., e_n$.

Пройдемся по этим векторам слева направо и выбросим те, которые линейно выражаются через предыдущие (не выброшенные).

При этом:

- 1) линейная оболочка системы сохраняется и равна $\langle v_1, \ldots, v_m, e_1, \ldots, e_n \rangle = V;$
- 2) v_1, \ldots, v_m останутся в системе, так как они линейно независимы;
- 3) в новой системе никакой вектор линейно не выражается через предыдущие.

Пусть новая система - это $S' = \{v_1, \dots, v_m, e_{i_1}, \dots, e_{i_t}\}.$

Докажем, что S' – базис в V.

По свойству 1) имеем, что $\langle S' \rangle = V$.

Осталось доказать, что S' линейно независимо.

Пусть $\alpha_1 v_1 + \dots + \alpha_n v_n + \beta_1 e_{i_1} + \dots + \beta_t e_{i_t} = \overrightarrow{0}$.

Предположим, что эта линейная комбинация нетривиальна.

Так как v_1, \ldots, v_m линейно независимы, то $\exists k : \beta_{i_k} \neq 0$.

Выберем k максимальным с этим свойством.

Тогда, e_{i_k} линейно выражается через предыдущие — противоречие.

Следствие. Если $\dim V = n$ и v_1, \dots, v_n – линейно независимая система, тогда v_1, \dots, v_n – базис V.

12.6 Лемма о добавлении вектора к конечной линейной независимой системе

Лемма 12.2. Пусть $v, v_1, \dots, v_m \in V$ и v_1, \dots, v_m линейно независимы, тогда либо v, v_1, \dots, v_m линейно независимы, либо $v \in \langle v_1, \dots, v_m \rangle$.

Доказательство. Пусть v, v_1, \ldots, v_m линейно зависимы, тогда $\exists (\alpha, \alpha_1, \ldots, \alpha_m) \neq (0, \ldots, 0)$, такой что

$$\alpha v + \alpha_1 v_1 + \dots + \alpha_m v_m = \overrightarrow{0}.$$

Но, так как v_1, \ldots, v_m линейно независимы, то $\alpha \neq 0$. Значит, $v \in \langle v_1, \ldots, v_m \rangle$ по предложению.

13.1Размерность подпространства конечномерного векторного пространства

Пусть V – конечномерное векторное пространство.

Предложение. Если $U \subseteq V$ – подпространство V, тогда U тоже конечномерно, причем $\dim U \leqslant \dim V$. Кроме того, $\dim U = \dim V \iff U = V$.

Доказательство. Пусть $n = \dim V$.

Построим в U конечный базис.

Если $U = \{\overrightarrow{0}\}$, то в качестве базиса берем \varnothing .

Далее считаем, что $U \neq \{\overrightarrow{0}\}.$

Выберем $v_1 \in U \setminus \{\overline{0}'\}$. Если $\langle v_1 \rangle = U$, то конец. Иначе, выберем $v_2 \in U \setminus \langle v_1 \rangle$.

Если $\langle v_1, v_2 \rangle = U$, то конец.

Иначе, выберем $v_3 \in U \setminus \langle v_1, v_2 \rangle$, и так далее.

Получаем систему векторов v_1, v_2, \ldots Она линейно независима по <u>лемме</u>.

По основной лемме о линейной зависимости процесс закончится не позднее шага n, значит U конечномерно и $\dim U \leq \dim V$.

Если $\dim U = n$, то v_1, \ldots, v_n – базис U. По следствию, если v_1, \ldots, v_n – базис U, то U = V.

13.2Ранг системы векторов

Пусть $\dim V < \infty$ и $S \subseteq V$ – система векторов.

Определение 52. Panrom системы векторов S называется число $\operatorname{rk} S$, равное наибольшему числу векторов в линейно независимой подсистеме из S.

 $\operatorname{rk} S = \max\{|S'| \mid S' \subseteq S - \text{линейно независимая подсистема}\}.$

Связь ранга системы векторов с размерностью её линейной оболочки

Предложение. $\operatorname{rk} S = \dim \langle S \rangle$.

Доказательство. Пусть rk S = r.

Тогда существует линейно независимая подсистема $S' = \{v_1, \dots, v_r\}.$

По определению ранга и лемме получаем $S \subseteq \langle v_1, \dots, v_r \rangle$.

Значит, $\langle S \rangle = \langle v_1, \dots, v_r \rangle$ (так как $v_1, \dots, v_r \in S$).

Следовательно $\dim S = r$.

13.4 Ранг матрицы: столбцовый и строковый

Пусть $A \in \operatorname{Mat}_{m \times n}(F)$.

Определение 53. Столбцовым рангом (или просто рангом) матрицы А называется ранг системы её столбцов

$$A^{(1)},\ldots,A^{(n)}\subseteq F^n$$
.

Обозначение: $\operatorname{rk} A = \operatorname{rk} \{A^{(1)}, \dots, A^{(n)}\}.$

Определение 54. Строковым рангом матрицы A называется число $\operatorname{rk} A^T$, то есть ранг системы строк

$$A_{(1)},\ldots,A_{(n)}\in F^n$$
.

Пример.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

Любые два столбца линейно независимы (не пропорциональны), то есть $\operatorname{rk} A \geqslant 2$. Но, $A^{(2)} = \frac{1}{2} \left(A^{(1)} + A^{(3)} \right)$, значит $A^{(1)}, A^{(2)}, A^{(3)}$ линейно зависимы $\implies \operatorname{rk} A = 2$.

13.5 Сохранение линейных зависимостей между столбцами матрицы при элементарных преобразованиях строк

Предложение. Элементарные преобразования строк сохраняют линейные зависимости между столбцами матрицы. Если $A \leadsto B$ элементарным преобразованиями строк, то

$$\alpha_1 A^{(1)} + \dots + \alpha_n A^{(n)} = \overrightarrow{0} \iff \alpha_1 B^{(1)} + \dots + \alpha_n B^{(n)} = \overrightarrow{0}.$$

В частности, при $1 \leqslant i_1 < \dots < i_k \leqslant n$

 $A^{(i_1)},\ldots,A^{(i_k)}$ линейно независимы $\iff B^{(i_1)},\ldots,B^{(i_k)}$ линейно независимы.

Доказательство.

$$\alpha_1 A^{(1)} + \dots + \alpha_n A^{(n)} = \overrightarrow{0} \iff A \cdot \begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_n \end{pmatrix} = \overrightarrow{0}$$

$$\iff \begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_n \end{pmatrix} - \text{решение ОСЛУ } Ax = \overrightarrow{0}$$

$$\iff \begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_n \end{pmatrix} - \text{решение ОСЛУ } Bx = \overrightarrow{0}$$

$$\iff B \cdot \begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_n \end{pmatrix} = \overrightarrow{0} \iff \alpha_1 B^{(1)} + \dots + \alpha_n B^{(n)} = \overrightarrow{0}.$$

13.6 Инвариантность столбцового и строкового рангов матрицы при элементарных преобразованиях строк и столбцов

Следствие. При элементарных преобразованиях строк (столбцовый) ранг матрицы сохраняется.

Предложение. При элементарных преобразованиях столбцов линейная оболочка $\langle A^{(1)}, \dots, A^{(n)} \rangle$ сохраняется.

Доказательство. Пусть $A \leadsto B$ элементарными преобразованиями столбцов.

Тогда,

$$B^{(1)}, \dots, B^{(n)} \in \langle A^{(1)}, \dots, A^{(n)} \rangle.$$

Значит,

$$\langle B^{(1)}, \dots, B^{(n)} \rangle \subseteq \langle A^{(1)}, \dots, A^{(n)} \rangle.$$

Так как элементарные преобразования обратимы, то включение верно и в другую сторону.

Следствие. При элементарных преобразованиях столбцов (столбцовый) ранг матрицы сохраняется.

Следствие. Строковый ранг матрицы сохраняется при элементарных преобразованиях строк и столбцов.

13.7 Столбцовый и строковый ранги матрицы, имеющей улучшенный ступенчатый вид

Предложение. Если A имеет улучшенный ступенчатый вид, то оба числа $\operatorname{rk} A$ и $\operatorname{rk} A^T$ равны числу ненулевых строк в A.

Доказательство. Пусть r – число ненулевых строк в A и пусть $i_1 < \cdots < i_r$ – номера ведущих элементов строк.

$$\begin{pmatrix} 0 & \dots & 0 & 1 & 0 & 0 & 0 & 0 \\ & 0 & \dots & 1 & 0 & 0 & \vdots \\ & \vdots & & 0 & \dots & 1 & 0 & \vdots \\ & \vdots & & \vdots & & 0 & \dots & 1 & 0 \\ & & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Тогда,
$$\{A^{(1)}, \dots, A^{(n)}\} \ni e_1, \dots, e_r$$
, где

$$e_i = \begin{pmatrix} 0 \\ \dots \\ 0 \\ 1 \\ 0 \\ \dots \\ 0 \end{pmatrix} \leftarrow i.$$

Значит,
$$\langle A^{(1)}, \dots, A^{(n)} \rangle \supseteq \langle e_1, \dots, e_r \rangle$$
. Заметим, что $A^{(1)}, \dots, A^{(n)} \in \langle e_1, \dots, e_r \rangle$, то есть $\langle A^{(1)}, \dots, A^{(n)} \rangle \subseteq \langle e_1, \dots, e_r \rangle$.

Теперь покажем, что строки $A_{(1)},\dots,A_{(r)}$ линейно независимы.

Пусть
$$\alpha_1 A_{(1)} + \cdots + \alpha_r A_{(r)} = \overrightarrow{0}(\star)$$
.

 $\forall k=1,\ldots,r$ на месте i_k в левой части (*) стоит α_k , значит $\alpha_k=0$.

То есть $\alpha_i = 0 \ \forall i,$ следовательно $A_{(1)}, \dots, A_{(r)}$ линейно независимы.

$$\implies \operatorname{rk} A^T = r.$$

13.8 Равенство столбцового и строкового рангов матрицы

Теорема 13.1. Пусть $A \in Mat_{m \times n}(F)$, тогда $\operatorname{rk} A = \operatorname{rk} A^T$, причем оба числа равны количеству строк в ступенчатом виде матрицы A.

Доказательство. rk $A = \text{rk } A^T$ следует из следствий, предыдущего предложения и теоремы о приведении матрицы к улучшенному ступенчатому виду.

Остальное вытекает из предложения и того, что при переходе от ступенчатого виду к улучшенному ступенчатому виду число ненулевых строк сохраняется.

13.9 Связь ранга квадратной матрицы с её определителем

Следствие. Пусть $A \in M_n(F)$ – квадратная матрица. Тогда,

$$\operatorname{rk} A = n \iff \det A \neq 0,$$

$$\operatorname{rk} A < n \iff \det A = 0.$$

Доказательство. При элементарных преобразованиях строк ${\rm rk}\,A$ сохраняется, условия $\det A \neq 0$ и $\det A = 0$ тоже. Следовательно, достаточно доказать для ступенчатых матриц. В этом случае

$$\operatorname{rk} A = n \iff n \text{ ненулевых строк} \iff \det A \neq 0,$$

$$\operatorname{rk} A < n \iff \operatorname{eсть}$$
 нулевые строки $\iff \det A = 0$.

13.10 Подматрицы

Определение 55. Подматрицей матрицы A называется всякая матрица, получающаяся из A вычёркиванием какихто строк и какихто столбцов.

13.11 Связь рангов матрицы и её подматрицы

Предложение. S подматрица \implies rk $S \leqslant$ rk A.

Доказательство. Пусть rk S = r, значит в S есть линейно независимая система из r столбцов. Но тогда соответствующие r столбцов в матрице A будут и подавно линейно независимы.

14.1 Миноры

Пусть $A \in \operatorname{Mat}_{m \times n}(F)$.

Определение 56. $\mathit{Минором}$ матрицы A называется определитель всякой квадратной подматрицы в A.

Пример.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}.$$

- 6 миноров порядка 1,
- 3 минора порядка 2

$$\begin{vmatrix} 1 & 2 \\ 4 & 5 \end{vmatrix}, \quad \begin{vmatrix} 1 & 3 \\ 4 & 6 \end{vmatrix}, \quad \begin{vmatrix} 2 & 3 \\ 5 & 6 \end{vmatrix}.$$

14.2 Теорема о ранге матрицы

Теорема 14.1. Для любой $A \in Mat_{m \times n}(F)$ следующие 3 числа равны:

- (1) rk A (столбцовый ранг),
- (2) rk A (строковый ранг),
- (3) наибольший порядок ненулевого минора в А.

Доказательство. (1) = (2) – уже знаем.

Пусть S – квадратная подматрица в A порядка r и $\det S \neq 0$. Тогда $r = \operatorname{rk} S \leqslant \operatorname{rk} A$. Отсюда, $(3) \leqslant (1)$.

Пусть теперь $\operatorname{rk} A = r$. Найдем в A ненулевой минор порядка r.

Так как $\operatorname{rk} A = r$, в A есть r линейно независимых столбцов $A^{(i_1)}, \ldots, A^{(i_r)}$.

Составим из них матрицу B. Тогда $\mathrm{rk}\,B = r$.

Так как (1) = (2) для B, то в B можно найти r линейно независимых строк.

Пусть S – подматрица в B, составленная из этих строк.

S – квадратная подматрица порядка r и rk $S=r \implies \det S \neq 0 \implies$ нашли. Значит, (3) \geqslant (1).

Итог:
$$(3) = (1)$$
.

14.3 Приложения ранга матрицы к исследованию СЛУ

Пусть $A \in \operatorname{Mat}_{m \times n}(F), b \in F^m, x \in F^n$ – столбец неизвестных.

$$Ax = b. (\star)$$

 $(A \mid b)$ – расширенная матрица.

14.3.1 Теорема Кронекера-Капелли

Теорема 14.2 (Кронекера-Капелли). $\mathit{CЛY}(\star)$ совместна $\iff \mathrm{rk}(A \mid b) = \mathrm{rk}\,A.$

Доказательство. При элементарных преобразованиях строк

- сохраняется множество решений,
- сохраняются числа $\operatorname{rk}(A \mid b)$ и $\operatorname{rk} A$.

Следовательно, вопрос сводится к ситуации когда A имеет ступенчатый вид.

В ступенчатом виде СЛУ совместна тогда и только тогда, когда нет строк вида $(0, \dots, 0 \mid \underbrace{\star})$.

То есть матрицы $(A \mid b)$ и A имеют одно и то же число ненулевых строк.

Значит, $\operatorname{rk}(A \mid b) = \operatorname{rk} A$.

Критерий существования единственного решения у совместной системы линейных уравнений в терминах ранга её матрицы коэффициентов

Теорема 14.3. Пусть СЛУ (⋆) совместна. Тогда, она имеет единственное решение тогда и только тогда, ко $r\partial a \operatorname{rk} A = n$, $r\partial e n - число неизвестных.$

Доказательство. Снова все сводится к ситуации, когда $(A \mid b)$ имеет ступенчатый вид.

Тогда, единственное решение \iff нет свободных неизвестных \iff ступенек ровно $n \iff$ rk A=n.

14.3.3 Критерий существования единственного решения у системы линейных уравнений с квадратной матрицей коэффициентов в терминах её определителя

Следствие. Пусть A квадратна (то есть m=n). Тогда СЛУ (\star) имеет единственное решение \iff $\det A \neq 0$.

Доказательство. Единственное решение \iff rk $A=n \iff$ det $A\neq 0$.

Замечание. Это единственное решение равно $x = A^{-1}b$.

14.3.4 Размерность пространства решений однородной системы линейных уравнений в терминах ранга её матрицы коэффициентов

Пусть теперь СЛУ однородна, то есть b = 0.

$$Ax = 0. (\star)$$

Пусть $S \subseteq F^n$ – множество её решений. Знаем, что S – подпространство в F^n .

Предложение. $\dim S = n - \operatorname{rk} A$.

Доказательство. Пусть r – число ненулевых строк в ступенчатом виде матрицы A. Тогда $r = \operatorname{rk} A$.

Мы уже строили ФСР для (★) из n-r векторов.

Значит, dim $S = n - r = n - \operatorname{rk} A$.

14.3.5 Реализация подпространства в F^n в качестве множества решений однородной системы линейных уравнений

Пусть $b_1, \ldots, b_n \in F^n$,

$$B := (b_1, \ldots, b_p) \in \operatorname{Mat}_{n \times p}(F).$$

Пусть $a_1, \dots, a_q \in F^n$ — ФСР для ОСЛУ $B^T x = 0$.

$$A := (a_1, \dots, a_q) \in \operatorname{Mat}_{n \times q}(F).$$

Предложение. $\langle b_1, \dots, b_p \rangle$ есть множество решений ОСЛУ $A^T x = 0$.

Доказательство. Пусть $S = \{x \in F^n \mid A^T x = 0\}.$

$$\forall i = 1, \dots, q \quad B^T a_i = 0 \implies B^T A = 0$$
$$\implies A^T B = 0 \implies A^T b_j = 0 \quad \forall j = 1, \dots, p.$$

Значит, $b_j \in S \quad \forall j = 1, \dots, p$.

Ho тогда, $\langle b_1, \ldots, b_p \rangle \subseteq S$.

Пусть $r = \operatorname{rk}\{b_1, \ldots, b_p\} = \dim \langle b_1, \ldots, b_p \rangle = \operatorname{rk} B$.

При этом, $\operatorname{rk} A = q = n - r$.

Тогда, dim $S = n - \operatorname{rk} A = n - (n - r) = r$.

Следовательно, $\langle b_1, \ldots, b_p \rangle = S$.

Следствие. Всякое подпространство в F^n является решением некоторой ОСЛУ.

14.4 Координаты вектора по отношению к фиксированному базису векторного пространства

Пусть V — векторное пространство, $\dim V = n, \ e_1, \ldots, e_n$ — базис.

Знаем, что $\forall v \in V \exists ! \alpha_1, \dots, \alpha_n \in F$, такие что, $v = \alpha_1 e_1 + \dots + \alpha_n e_n$.

Определение 57. Скаляры $\alpha_1, \dots, \alpha_n$ называются координатами вектора v в базисе e_1, \dots, e_n .

 Π ример. $V = F^n$.

$$v = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}.$$

Тогда, x_1, \ldots, x_n – координаты вектора v в стандартном базисе пространства F^n .

14.5 Описание всех базисов конечномерного векторного пространства в терминах одного базиса и матриц координат

Пусть теперь e_1',\dots,e_n' – какой то другой набор векторов в V. Тогда,

$$e_1' = c_{11}e_1 + c_{21}e_2 + \dots + c_{n1}e_n$$
 $e_2' = c_{12}e_1 + c_{22}e_2 + \dots + c_{n2}e_n$
 \dots
 $e_n' = c_{1n}e_1 + c_{2n}e_2 + \dots + c_{nn}e_n$.
 $(e_1', \dots, e_n') = (e_1, \dots, e_n) \cdot C$, где $C = (c_{ij})$.

в j-м столбце матрицы C стоят координаты вектора e_i' в базисе $e_1,\ldots,e_n.$

Предложение. (e'_1,\ldots,e'_n) – базис в $V\iff \det C\neq 0.$

Доказательство.

 $\Rightarrow e'_1, \dots, e'_n$ – базис, значит $(e_1, \dots, e_n) = (e'_1, \dots, e'_n) \cdot C' = (e_1, \dots, e_n) \cdot C \cdot C'$.

Так как e_1, \ldots, e_n линейно независимы, то $C \cdot C' = E \implies \det C \neq 0$.

 $\iff \det C \neq 0 \implies \exists C^{-1}.$

Достаточно доказать, что e'_1, \ldots, e'_n линейно независимы.

Пусть

$$\alpha_1 e_1' + \dots + \alpha_n e_n' = 0.$$

Тогда,

$$(e'_1, \dots, e'_n) \begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_n \end{pmatrix} = 0 \implies (e_1, \dots, e_n) \cdot C \cdot \begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_n \end{pmatrix} = 0.$$

Так как e_1, \ldots, e_n линейно независимы, то

$$C\begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_n \end{pmatrix} = 0.$$

Домножаем слева на C^{-1} , получаем

$$\begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} 0 \\ \dots \\ 0 \end{pmatrix}.$$

14.6 Матрица перехода от одного базиса конечномерного векторного пространства к другому

Пусть (e_1, \ldots, e_n) и (e'_1, \ldots, e'_n) — два базиса в V,

$$(e'_1, \ldots, e'_n) = (e_1, \ldots, e_n) \cdot C,$$

при этом $\det C \neq 0$.

Определение 58. Матрица C называется матрицей перехода от базиса (e_1, \ldots, e_n) к базису (e'_1, \ldots, e'_n) .

Замечание. Матрица перехода от (e'_1,\dots,e'_n) к (e_1,\dots,e_n) — это C^{-1} .

14.7 Формула преобразования координат вектора при замене базиса

Пусть $v \in V$, тогда

$$v = x_1 e_1 + \dots + x_n e_n$$
$$v = x_1' e_1' + \dots + x_n' e_n'.$$

Предложение.

$$\begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = C \cdot \begin{pmatrix} x_1' \\ \dots \\ x_n' \end{pmatrix}.$$

Доказательство. Имеем

$$v = (e_1, \dots, e_n) \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}$$

С другой стороны,

$$v = (e'_1, \dots, e'_n) \begin{pmatrix} x'_1 \\ \dots \\ x'_n \end{pmatrix} = (e_1, \dots, e_n) \cdot C \begin{pmatrix} x'_1 \\ \dots \\ x'_n \end{pmatrix}$$

Так как e_1,\ldots,e_n линейно независимы, то

$$\begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = C \begin{pmatrix} x_1' \\ \dots \\ x_n' \end{pmatrix}.$$

15.1 Сумма двух подпространств векторного пространства

Пусть V – векторное пространство над F.

 $U,W\subseteq V$ — подпространства.

Тогда, $U \cap W$ – тоже подпространство. (можно проверить по определению)

Определение 59. $\mathit{Суммой}$ подпространств U, W называется множество

$$U + W := \{u + w \mid v \in U, w \in W\}.$$

Упражнение. U + W – подпространство.

Замечание. Имеем $U \cap W \subseteq U = U + 0 \subseteq U + W$.

Значит, $\dim(U \cap W) \leqslant \dim U \leqslant \dim(U + W)$.

15.2 Связь размерностей двух подпространств с размерностями их суммы и пересечения

Теорема 15.1. $\dim(U \cap W) + \dim(U + W) = \dim U + \dim W$.

 $\Pi puмер.$ Всякие две плоскости в \mathbb{R}^3 (содержащие 0) имеют общую прямую.

Здесь $V = \mathbb{R}^3$, dim U = 2, dim W = 2.

При этом $\dim(U+W) \leqslant 3$.

Тогда, $\dim(U \cap W) = \dim U + \dim W - \dim(U + W) \ge 2 + 2 - 3 = 1$.

Доказательство. Пусть $\dim(U \cap W) = p$, $\dim U = q$, $\dim W = r$.

Пусть $a = \{a_1, \ldots, a_p\}$ – базис в $U \cap W$.

Тогда, a можно дополнить до базиса в U и в W:

 $b = \{b_1, \dots, b_{q-p}\}$ – такая система, что $a \cup b$ – базис в U.

 $c = \{c_1, \dots, c_{r-p}\}$ – такая система, что $a \cup c$ – базис в W.

Докажем, что $a \cup b \cup c$ – базис в U+W.

1. $\langle a \cup b \cup c \rangle = U + W$:

 $v \in U + W \implies \exists u \in U, w \in W$, такие что v = u + w.

 $u \in U = \langle a \cup b \rangle \subseteq \langle a \cup b \cup c \rangle.$

 $w \in W = \langle a \cup c \rangle \subseteq \langle a \cup b \cup c \rangle.$

Значит, $v \in \langle a \cup b \cup c \rangle$.

2. $a \cup b \cup c$ линейно независимо.

Пусть
$$\underbrace{\alpha_1 a_1 + \dots + \alpha_p a_p}_x + \underbrace{\beta_1 b_1 + \dots + \beta_{q-p} b_{q-p}}_y + \underbrace{\gamma_1 c_1 + \dots + \gamma_{r-p} c_{r-p}}_z = 0$$
, где $\alpha_i, \beta_j, \gamma_k \in F$.

Тогда, $z = -\underset{\in U}{x} - \underset{\in U}{y} \in U$.

Ho, $z \in W$, значит $z \in U \cap W$.

To есть $z = \lambda_1 a_1 + \cdots + \lambda_p a_p, \lambda_i \in F$.

Тогда, $\lambda_1 a_1 + \cdots + \lambda_p a_p - \gamma_1 c_1 - \cdots - \gamma_{r-p} c_{r-p} = 0$

Так как $a \cup c$ линейно независимо, то $\lambda_1 = \cdots = \lambda_p = \gamma_1 = \cdots = \gamma_{r-p} = 0$ и z = 0.

Следовательно, x + y = 0, то есть $\alpha_1 a_1 + \dots + \alpha_p a_p + \beta_1 b_1 + \dots + \beta_{q-p} b_{q-p} = 0$.

Так как $a \cup b$ линейно независимо, то $\alpha_1 = \cdots = \alpha_p = \beta_1 = \cdots = \beta_{q-p} = 0$.

Получаем, что $a \cup b \cup c$ линейно независимо.

Итог: $a \cup b \cup c$ – базис в U + W.

$$\dim(U+W) = |a|+|b|+|c|$$

$$= p+q-p+r-p$$

$$= q+r-p$$

$$= \dim U + \dim W - \dim(U \cap W).$$

52

15.3 Сумма нескольких подпространств векторного пространства

Пусть $U_1, \dots U_k \subseteq V$ – подпространства.

Определение 60. *Суммой* подпространств $U_1, \dots U_k$ называется множество

$$U_1 + \cdots + U_k = \{u_1 + \cdots + u_k \mid u_i \in U_i\}.$$

Упражнение. Доказать, что $U_1 + \cdots + U_k$ – подпространство.

Замечание. $\dim(U_1 + \cdots + U_k) \leq \dim U_1 + \cdots + \dim U_k$.

15.4 Линейно независимые подпространства, пять эквивалентных условий

Определение 61. Подпространства U_1, \ldots, U_k называются линейно независимыми, если $\forall u_1 \in U_1, \ldots, u_k \in U_k$ из условия $u_1 + \cdots + u_k = 0$ следует $u_1 = \cdots = u_k = 0$.

 Π ример. Если $\dim U_i=1$ и $U_i=\langle u_i \rangle \ \forall i,$ то U_1,\ldots,U_k линейно независимы $\iff u_1,\ldots,u_k$ линейно независимы.

Теорема 15.2. Следующие условия эквивалентны:

- (1) U_1, \ldots, U_k линейно независимы.
- (2) всякий $u \in U_1 + \dots + U_k$ единственным образом представим в виде $u = u_1 + \dots + u_k$, где $u_i \in U_i$.
- (3) Если e_i базис в U_i $\forall i, mo$ $\underbrace{e_1 \sqcup e_2 \sqcup \cdots \sqcup e_k}_{\text{объединение мильтимножеств}}$ базис в $U_1 + \cdots + U_k$.
- (4) $\dim(U_1 + \dots + U_k) = \dim U_1 + \dots + \dim U_k.$
- (5) $\forall i = 1, \dots, k$ $U_i \cap (U_1 + \dots + U_{i-1} + U_{i+1} + \dots + U_k) = 0.$

 Π ример. Если $e_1 = \{e_1, e_2\}, e_2 = \{e_2, e_3\},$ то

- $e_1 \cup e_2 = \{e_1, e_2, e_3\} 3$ элемента,
- $e_1 \sqcup e_2 = \{e_1, e_2, e_2, e_3\} 4$ элемента.

Доказательство. Пусть $\hat{U}_i = U_1 + \dots + U_{i-1} + U_{i+1} + \dots + U_k$.

- (1) \Longrightarrow (2) Пусть $u_1 + \dots + u_k = u'_1 + \dots + u'_k$, где $u_i, u'_i \in U_i$.

 Тогда, $(u_1 u'_1) + (u_2 u'_2) + \dots + (u_k u'_k) = 0 \implies u_i u'_i = \dots = u_k u'_k = 0$.

 То есть, $u_1 = u'_1, \dots, u_k = u'_k$.
- $(2) \Longrightarrow (3)$ Пусть $u \in U_1 + \cdots + U_k$ произвольный.

u единственным образом представим в виде $u = u_1 + \cdots + u_k$, где $u_i \in U_i$,

 u_i единственным образом представим в виде линейной комбинации векторов из $\mathfrak{e}_i.$

Следовательно, u единственным образом представим в виде линейной комбинации векторов из $e_1 \sqcup \cdots \sqcup e_k$.

То есть, $e_1 \sqcup \cdots \sqcup e_k$ — базис в $U_1 + \cdots + U_k$.

- $(3) \Longrightarrow (4)$ Очевидно.
- $(4) \Longrightarrow (5)$

$$\dim(U_i \cap \widehat{U}_i) = \dim U_i + \dim \widehat{U}_i - \dim(U_1 + \dots + U_k)$$

$$\leq \dim U_i + (\dim U_1 + \dots + \dim U_{i-1} + \dim U_{i+1} + \dots + \dim U_k) - (\dim U_1 + \dots + \dim U_k)$$

$$= 0.$$

$$(5) \Longrightarrow (1) \ u_1 + \dots + u_k = 0, \, \text{где } u_i \in U_i.$$

Тогда,
$$u_i = \underbrace{-u_1 - \dots - u_{i-1} - u_{i+1} - \dots - u_k}_{\in \widehat{U}_i}$$

Следовательно, $u_i \in U_i \cap \widehat{U}_i = 0 \implies u_i = 0.$

Следствие. Пусть k = 2, тогда

 U_1, U_2 линейно независимы $\iff U_1 \cap U_2 = 0.$

15.5 Разложение векторного пространства в прямую сумму нескольких подпространств

Определение 62. Говорят, что векторное пространство V разлагается в *прямую сумму* U_1, \ldots, U_k , если

1.
$$V = U_1 + \cdots + U_k$$
,

 $2. U_1, \ldots, U_k$ линейно независимы.

Обозначение:
$$V = U_1 \oplus U_2 \oplus \cdots \oplus U_k$$
.

$$\Pi$$
ример. Если e_1, \ldots, e_n – базис V , то $V = \langle e_1 \rangle \oplus \langle e_2 \rangle \oplus \cdots \oplus \langle e_n \rangle$

15.6 Проекция вектора на подпространство вдоль дополнительного подпространства

Замечание. При k = 2:

1.
$$V = U_1 \oplus U_2 \iff \begin{cases} V = U_1 + U_2, \\ U_1 \cap U_2 = 0, \end{cases}$$

2. $V=U_1\oplus U_2 \implies \forall v\in V \; \exists !u_1\in U_1,u_2\in U_2,$ такие что $v=u_1+u_2.$

Тогда, u_1 называется проекцией вектора v на U_1 вдоль U_2 .

Так же, u_2 называется проекцией вектора v на U_2 вдоль $U_1.$

16.1 Линейные отображения векторных пространств

Пусть V, W — векторные пространства над F.

Определение 63. Отображение $\varphi \colon V \to W$ называется *линейным*, если

- 1. $\varphi(v_1 + v_2) = \varphi(v_1) + \varphi(v_2)$,
- 2. $\varphi(\lambda v) = \lambda \varphi(v)$.

 $\forall v_1, v_2, v \in V, \forall \lambda \in F.$

Упражнение. 1 и 2 эквивалентны тому, что $\varphi(\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1 \varphi(v_1) + \lambda_2 \varphi(v_2).$ $\forall v_1, v_2 \in V, \ \forall \lambda_1, \lambda_2 \in F.$

16.2 Примеры линейных отображений

Презентация (продублирована ниже)

16.2.1 Пример 0

 $\begin{array}{ll} \varphi\colon V\to \stackrel{}{W} - \text{ нулевое отображение}, \\ \varphi(v):=\stackrel{}{0} & \forall v\in V \end{array}$

1) $\varphi(v_1 + v_2) = \overrightarrow{0} = \overrightarrow{0} + \overrightarrow{0} = \varphi(v_1) + \varphi(v_2),$ 2) $\varphi(\lambda \cdot v) = \overrightarrow{0} = \lambda \overrightarrow{0} = \lambda \cdot \varphi(v).$

16.2.2 Пример 1

 $arphi\colon V o V$ — тождественное отображение, $arphi(v):=v\quad \forall v\in V.$ Обозначение: arphi=: Id.

1) $\varphi(v_1 + v_2) = v_1 + v_2 = \varphi(v_1) + \varphi(v_2),$ 2) $\varphi(\lambda \cdot v) = \lambda \cdot v = \lambda \cdot \varphi(v).$

16.2.3 Пример 2

 $arphi\colon \mathbb{R}^2 o \mathbb{R}^2$ — поворот на угол lpha вокруг начала координат.

Два красных вектора v_1, v_2 и их сумму $v_1 + v_2$ повернули на угол α , получив $\varphi(v_1), \varphi(v_2)$ а так же точку A. Свойство 1 говорит нам, что точка A это не просто сумма образов, она так же является образом суммы $v_1 + v_2$. То есть точку A можно получить двумя разными способами: сложить $\varphi(v_1)$ и $\varphi(v_2)$ или повернуть $v_1 + v_2$.

Вторая картинка показывает свойство 2: точка B это с одной стороны $\varphi(v) \cdot \lambda$, а с другой — образ $\lambda \cdot v$.

1) $\varphi(v_1) + \varphi(v_2) = A = \varphi(v_1 + v_2),$

2) $\varphi(\lambda \cdot v) = B = \lambda \cdot \varphi(v)$.

16.2.4 Пример 3

 $\varphi \colon \mathbb{R}^3 \to \mathbb{R}^2$ — ортогональная проекция на плоскость Oxy.

⟨ Конкурс на лучшую картинку ⟩

16.2.5 Пример 4

 $\mathbb{R}[x]_{\leqslant n}$ — пространство многочленов от x степени $\leqslant n$ с коэффициентами из \mathbb{R} . $\Delta \colon f(x) \mapsto f'(x)$ — отображение дифференциирования.

1)
$$(f+g)' = f' + g'$$
,

1)
$$(f+g)' = f' + g'$$
,
2) $(\lambda \cdot f)' = \lambda \cdot f' \quad \forall \lambda \in \mathbb{R}$.

1) и 2)
$$\implies \Delta$$
 — линейное отображение $\mathbb{R}[x]_{\leqslant n} \to \mathbb{R}[x]_{\leqslant n-1}$.

16.2.6 Пример 5

V — векторное пространство над F, dim V = n.

$$(e_1,\ldots,e_n)$$
 — базис V .

$$\varphi \colon V \to F^n$$

$$v = x_1 e_1 + \dots + x_n e_n \implies \varphi(v) := \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

Покажем, что оно линейно:

Пусть

$$v = x_1 e_1 + \dots + x_n e_n \implies \varphi(v) := \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix},$$

$$w = y_1 e_1 + \dots + y_n e_n \implies \varphi(w) = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}.$$

Тогда,

1)
$$v + w = (x_1 + y_1)e_1 + \dots + (x_n + y_n)e_n \implies \varphi(v + w) = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \varphi(v) + \varphi(w),$$

2)
$$\lambda \cdot v = (\lambda x_1)e_1 + \dots + (\lambda x_n)e_n \implies \varphi(\lambda \cdot v) = \begin{pmatrix} \lambda x_1 \\ \vdots \\ \lambda x_n \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \lambda \varphi(v).$$

16.3 Простейшие свойства линейных отображений

Здесь $\overrightarrow{0_V}$ — нулевой вектор в векторном пространстве V.

1.
$$\varphi(\overrightarrow{0_V}) = \overrightarrow{0_W}$$
.

Доказательство:
$$\varphi(\overrightarrow{0_V}) = \varphi(0 \cdot \overrightarrow{0_V}) = 0 \cdot \varphi(\overrightarrow{0_V}) = \overrightarrow{0_W}$$
.

$$2. \ \varphi(-v) = -\varphi(v).$$

Доказательство:
$$\varphi(-v) + \varphi(v) = \varphi(-v+v) = \varphi(0) = \varphi(\overrightarrow{0_V}) = \overrightarrow{0_W} \implies \varphi(-v) = -\varphi(v)$$
.

Изоморфизм векторных пространств

Определение 64. Отображение $\varphi \colon V \to W$ называется *изоморфизмом* если оно линейно и биективно. Обозначение: $\varphi: V \xrightarrow{\sim} W$.

В примерах выше:

0.
$$\varphi$$
 — изоморфизм \iff $\begin{cases} V = \{\overrightarrow{0}\}, \\ W = \{\overrightarrow{0}\} \end{cases}$

- 1. да
- 2. да
- 3. нет
- 4. φ изоморфизм $\iff n=0$
- 5. да!

16.5 Отображение, обратное к изоморфизму

Предложение. Если $\varphi: V \to W$ — изоморфизм, то φ^{-1} — тоже изоморфизм.

Доказательство. Биективность есть, так как φ^{-1} — обратное отображение. Проверим линейность

1) $w_1, w_2 \in W \implies w_1 = \varphi(\varphi^{-1}(w_1)), w_2 = \varphi(\varphi^{-1}(w_2))$

$$\varphi^{-1}(w_1 + w_2) = \varphi^{-1}\left(\underbrace{\varphi\left(\varphi^{-1}(w_1)\right)}_{w_1} + \underbrace{\varphi\left(\varphi^{-1}(w_2)\right)}_{w_2}\right)$$
$$= \underbrace{\varphi^{-1}\left(\varphi\left(\varphi^{-1}(w_1) + \varphi^{-1}(w_2)\right)\right)}_{Id}$$
$$= \varphi^{-1}(w_1) + \varphi^{-1}(w_2).$$

2)

$$\varphi^{-1}(\lambda \cdot w_1) = \varphi^{-1} \left(\lambda \cdot \varphi \left(\varphi^{-1} \left(w_1\right)\right)\right)$$
$$= \underbrace{\varphi^{-1} \left(\varphi \left(\lambda \cdot \varphi^{-1} \left(w_1\right)\right)\right)}_{Id}$$
$$= \lambda \varphi^{-1}(w_1).$$

16.6 Композиция двух линейных отображений, композиция двух изоморфизмов

Пусть $U \xrightarrow{\psi} V \xrightarrow{\varphi} W$, тогда $\varphi \circ \psi : U \to W$ — композиция.

Предложение.

- 1. Если φ , ψ линейны, то $\varphi \circ \psi$ тоже линейна.
- 2. Если φ , ψ изоморфизмы, то $\varphi \circ \psi$ тоже изоморфизм.

Доказательство.

- 1. (1) $(\varphi \circ \psi)(u_1 + u_2) = \varphi(\psi(u_1 + u_2)) = \varphi(\psi(u_1) + \psi(u_2)) = \varphi(\psi(u_1)) + \varphi(\psi(u_2)) = (\varphi \circ \psi)(u_1) + (\varphi \circ \psi)(u_2)$. (2) $(\varphi \circ \psi)(\lambda u) = \varphi(\psi(\lambda u)) = \varphi(\lambda \psi(u)) = \lambda \varphi(\psi(u)) = \lambda (\varphi \circ \psi)(u)$.
- 2. из 1 следует, что $(\varphi \circ \psi)$ линейно, но при этом биективно как композиция двух биекций.

16.7 Изоморфные векторные пространства

Определение 65. Два векторных пространства V, W называются *изоморфными*, если существует изоморфизм $\varphi \colon V \xrightarrow{\sim} W.$

Обозначается: $V \simeq W$ (либо $V \cong W$).

16.8 Отношение изоморфности на множестве всех векторных пространств

Теорема 16.1. Отношение изоморфности является отношением эквивалентности на множестве всех векторных пространств над фиксированным полем F.

Доказательство.

- 1. Рефлексивность: $Id: V \xrightarrow{\sim} V$.
- 2. Симметричность: $V \simeq W \implies W \simeq V$ следует из Предложения 1.
- 3. Транзитивность: $U \simeq V, \ V \simeq W \implies U \simeq W$ следует из Предложения 2.

16.9 Классы изоморфизма векторных пространств

Определение 66. Классы эквивалентности называются классами изоморфизма.

Пример. $F[x] \leq n \simeq F^{n+1}$:

$$a_0 + a_1 x + \dots + a_n x^n \longleftrightarrow \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix}.$$

16.10 Критерий изоморфности двух конечномерных векторных пространств

Теорема 16.2. Пусть V, $W-\partial \epsilon a$ конечномерных векторных пространства над F. $Tor\partial a$, $V\simeq W\iff \dim V=\dim W$.

Лемма 16.3. dim $V = n \implies V \simeq F^n$.

Доказательство. Фиксируем базис (e_1, \dots, e_n) в V. Тогда, отображение $\varphi \colon V \to F^n$ из Примера 5 — изоморфизм.

Лемма 16.4. Пусть $\varphi: V \xrightarrow{\sim} W$ и e_1, \ldots, e_n — базис V, тогда $\varphi(e_1), \ldots, \varphi(e_n)$ — базис W.

Доказательство. Пусть $w \in W$. Тогда $\exists x_1, \dots, x_n \in F$, такие что $\varphi^{-1}(w) = x_1 e_1 + \dots + x_n e_n$. Тогда, $w = \varphi\left(\varphi^{-1}(w)\right) = \varphi(x_1 e_1 + \dots + x_n e_n) = x_1 \varphi(e_1) + \dots + x_n \varphi(e_n) \Longrightarrow W = \langle \varphi(e_1), \dots, \varphi(e_n) \rangle$.

Теперь докажем линейную независимость:

Пусть $\alpha_1 \varphi(e_1) + \cdots + \alpha_n \varphi(e_n) = \overline{0}$.

Тогда, $\varphi(\alpha_1 e_1 + \dots + \alpha_n e_n) = \overrightarrow{0}$.

Применяя φ^{-1} получаем, $\alpha_1 e_1 + \cdots + \alpha_n e_n = \varphi^{-1}(\overrightarrow{0}) = \overrightarrow{0}$. Значит, $\alpha_1 = \cdots = \alpha_n = 0$.

Итог: $\varphi(e_1), \ldots, \varphi(e_n)$ — базис в V.

Доказательство теоремы.

- \longleftarrow Пусть $\dim V = \dim W = n$. Тогда по лемме 1 $V \simeq F^n, W \simeq F^n$, значит $V \simeq W$.
- \implies Пусть $V \simeq W.$ Фиксируем изоморфизм $\varphi \colon V \xrightarrow{\sim} W.$

Тогда по лемме 2 получаем, что $\varphi(e_1), \ldots, \varphi(e_n)$ — базис W, а значит $\dim V = n = \dim W$.

Упражнение. Если $\dim V = n$, то все изоморфизмы $V \xrightarrow{\sim} F^n$ находятся в биекции с базисами пространства V.

16.11 Задание линейного отображения путём задания образов векторов фиксированного базиса

Пусть V, W — векторные пространства над F и (e_1, \ldots, e_n) — фиксированный базис в V.

Предложение.

- 1. Если $\varphi: V \to W$ линейное отображение, то φ однозначно определяется векторами $\varphi(e_1), \dots, \varphi(e_n)$,
- 2. $\forall w_1, \ldots, w_n \in W \exists !$ линейное отображение φ , такое что, $\varphi(e_1) = w_1, \ldots, \varphi(e_n) = w_n$.

Доказательство.

- 1. $v \in V \implies v = x_1 e_1 + \dots + x_n e_n \implies \varphi(v) = x_1 \varphi(e_1) + \dots + x_n \varphi(e_n)$.
- 2. Зададим $\varphi \colon V \to W$ формулой $\varphi(x_1e_1 + \dots + x_ne_n) = x_1w_1 + \dots + x_nw_n$.

Тогда φ — линейное отображение из V в W (упражнение).

Единственность следует из 1

17.1 Матрица линейного отображения

Пусть V, W — векторные пространства над F.

$$e = (e_1, \dots, e_n)$$
 — базис V ,

$$\mathbb{f} = (f_1, \dots, f_m)$$
 — базис W .

Пусть $\varphi \colon V \to W$ — линейное отображение.

$$\forall j = 1, \ldots, n$$

$$\varphi(e_j) = a_{1j}f_1 + a_{2j}f_2 + \dots + a_{mj}f_m = (f_1, \dots, f_m) \begin{pmatrix} a_{1j} \\ a_{2j} \\ \dots \\ a_{mj} \end{pmatrix}.$$
 Тогда, $(\varphi(e_1), \dots, \varphi(e_n)) = (f_1, \dots, f_m) \cdot A$, где $A = (a_{ij}) \in \operatorname{Mat}_{m \times n}(F)$.

Определение 67. A называется матрицей линейного отображения φ в базисах $\mathfrak e$ и $\mathfrak f$.

Обозначение: $A = A(\varphi, \mathfrak{e}, \mathfrak{f})$.

В j-м столбце матрицы A стоят координаты вектора $\varphi(e_i)$ в базисе \mathbb{f} .

Обозначение 1. Hom(V,W) := множество всех линейных отображений из V в W.

Следствие (из предложения 16.11). При фиксированных базисах \mathfrak{e} и \mathfrak{l} отображение $\varphi \mapsto A(\varphi, \mathfrak{e}, \mathfrak{l})$ является биекцией между $\mathrm{Hom}(V, W)$ и $\mathrm{Mat}_{m \times n}(F)$.

17.2 Примеры

$$0. \ \varphi(v) = 0 \ \forall v \implies \forall \mathbf{e}, \mathbb{f} \ A(\varphi, \mathbf{e}, \mathbb{f}) = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}.$$

3.
$$\mathbb{R}^3 \to \mathbb{R}^2$$
 — проекция на Oxy .

$$\mathbb{C}$$
 — стандартный базис в \mathbb{R}^3 $\Longrightarrow A(\varphi,\mathbb{C},\mathbb{F}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

4.
$$\Delta \colon \mathbb{R}[x]_{\leqslant n} \to \mathbb{R}[x]_{\leqslant n-1}, f \to f'$$
.

$$e = (1, x, \dots, x^n), f = (1, x, \dots, x^{n-1}).$$

$$A(\varphi, \mathbf{e}, \mathbf{f}) = \begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 2 & 0 & \dots & 0 \\ 0 & 0 & 0 & 3 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & n \end{pmatrix}$$

5.
$$x_1e_1 + \dots + x_ne_n \mapsto \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}$$
.

$$e=(e_1,\ldots,e_n)$$
 $f=$ стандартный базис $A(\varphi,e,\mathbb{F})=E.$

6.
$$\varphi \colon F^n \to F^m$$
.

$$\varphi(x) = A \cdot x, A \in \mathrm{Mat}_{m \times n}(F).$$

$$\mathbb{f} = \text{стандартный базис.}$$

$$A(\varphi, e, f) = A.$$

17.3 Связь координат вектора и его образа при линейном отображении

Предложение. Пусть $\varphi \colon V \to W$ — линейное отображение,

$$e = (e_1, \dots, e_n)$$
 — базис V ,

$$\mathbb{F}=(f_1,\ldots,f_m)$$
 — базис W

$$A=A(\varphi,\mathbf{e},\mathbb{f}).$$

$$v \in V \implies v = x_1 e_1 + \dots + x_n e_n,$$

$$\varphi(v) = y_1 f_1 + \dots + y_m f_m.$$

Тогда,

$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

Доказательство. $v = (e_1, \dots, e_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$.

Значит,

$$\varphi(v) = (\varphi(e_1), \dots, \varphi(e_n)) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = (f_1, \dots, f_m) \cdot A \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

При этом,

$$\varphi(v) = (f_1, \dots, f_m) \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}.$$

Так как f_1, \ldots, f_m линейно независимы, то

$$A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}.$$

17.4 Формула изменения матрицы линейного отображения между векторными пространствами V и W при замене их базисов

Пусть теперь \mathfrak{E}' — другой базис в V, \mathbb{I}' — другой базис в W.

$$e' = e \cdot C_{\in M_n}$$

$$\mathbb{f}' = \mathbb{f} \cdot D_{\in M_m}.$$

$$A=A(\varphi,\mathbf{e},\mathbb{f}),$$

$$A' = A(\varphi, e', f').$$

Предложение. $A' = D^{-1}AC$.

Доказательство.

$$(e'_1, \dots e'_n) = (e_1, \dots, e_n) \cdot C.$$

Применим φ ,

$$(\varphi(e_1'), \dots, \varphi(e_n')) = (\varphi(e_1), \dots, \varphi(e_n)) \cdot C = (f_1, \dots, f_m) \cdot A \cdot C$$

При этом,

$$(\varphi(e'_1), \dots, \varphi(e'_n)) = (f'_1, \dots, f'_m) \cdot A' = (f_1, \dots, f_m) \cdot D \cdot A'.$$

Отсюда,

$$A \cdot C = D \cdot A' \implies A' = D^{-1} \cdot A \cdot C.$$

17.5 Операции сложения и умножения на скаляр на множестве всех линейных отображений между двумя векторными пространствами

Пусть $\varphi, \psi \in \text{Hom}(V, W), \lambda \in F$.

Определение 68.

- 1. Суммой линейных отображений φ и ψ называется линейное отображение $\varphi + \psi \in \mathrm{Hom}(V,W)$, такое что $(\varphi + \psi)(v) := \varphi(v) + \psi(v)$.
- 2. Произведение φ на λ это линейное отображение $\lambda \varphi \in \text{Hom}(V, W)$, такое что $(\lambda \varphi)(v) := \lambda \varphi(v)$.

Упражнение. $\varphi + \psi$ и $\lambda \varphi$ — действительно линейные отображения.

Упражнение. Hom(V,W) с этими операциями является векторным пространством над F.

17.6 Матрица суммы двух линейных отображений и произведения линейного отображения на скаляр

Зафиксируем базисы $e = (e_1, ..., e_n)$ в V и $f = (f_1, ..., f_m)$ в W.

Предложение.

$$\begin{split} 1. \ \ \varphi, \psi \in \mathrm{Hom}(V,W), \ A_{\varphi} &= A(\varphi, \mathbf{e}, \mathbf{f}) \\ A_{\psi} &= A(\psi, \mathbf{e}, \mathbf{f}) \\ A_{\varphi+\psi} &= A(\varphi+\psi, \mathbf{e}, \mathbf{f}) \quad \Longrightarrow \ A_{\varphi+\psi} = A_{\varphi} + A_{\psi} \end{split}$$

$$\begin{array}{ccc} 2. \ \lambda \in F, \varphi \in \operatorname{Hom}(V,W), \ A_{\varphi} = A(\varphi, \operatorname{e}, \operatorname{\mathbb{f}}) \\ & A_{\lambda \varphi} = A(\lambda \varphi, \operatorname{e}, \operatorname{\mathbb{f}}) & \Longrightarrow \ A_{\lambda \varphi} = \lambda A_{\varphi} \end{array}$$

Доказательство.

1.

$$(f_1, \dots, f_m) \cdot A_{\varphi + \psi} = ((\varphi + \psi)(e_1), \dots, (\varphi + \psi)(e_n))$$

$$= (\varphi(e_1), \dots, \varphi(e_n)) + (\psi(e_1), \dots, \psi(e_n))$$

$$= (f_1, \dots, f_m)A_{\varphi} + (f_1, \dots, f_m)A_{\psi}$$

$$= (f_1, \dots, f_m)(A_{\varphi} + A_{\psi}).$$

Следовательно, $A_{\varphi+\psi} = A_{\varphi} + A_{\psi}$.

2. Аналогично.

17.7 Изоморфизм между пространством $\mathrm{Hom}(V,W)$ и пространством $(m \times n)$ -матриц, где $n = \dim V$, $m = \dim W$

Следствие. При фиксированном е и \mathbb{F} отображение $\varphi \mapsto A(\varphi, e, \mathbb{F})$ является изоморфизмом между $\operatorname{Hom}(V, W)$ и $\operatorname{Mat}_{m \times n}(F)$.

Доказательство. Биективность была выше. Линейность — из предыдущего предложения.

Следствие. dim $\text{Hom}(V, W) = m \cdot n$.

17.8 Матрица композиции двух линейных отображений

Пусть $U \xrightarrow{\psi} V \xrightarrow{\varphi} W$ — цепочка линейных отображений, а $\varphi \circ \psi : U \to W$ — их композиция, $\mathfrak{e} = (e_1, \dots, e_n)$ — базис V, $\mathfrak{f} = (f_1, \dots, f_m)$ — базис W, $\mathfrak{g} = (g_1, \dots, g_k)$ — базис U.

$$A_{\varphi} = A(\varphi, \mathbb{e}, \mathbb{f}),$$

$$A_{\psi} = A(\psi, \mathfrak{g}, \mathfrak{e}),$$

$$A_{\varphi \circ \psi} = A(\varphi \circ \psi, \mathfrak{g}, \mathfrak{f}).$$

Тогда,
$$A_{\varphi \circ \psi} = A_{\varphi} \cdot A_{\psi}$$
.

Доказательство. $(\psi(g_1),\ldots,\psi(g_k))=(e_1,\ldots,e_n)A_{\psi}$. Тогда применяя φ ,

$$(\varphi(\psi(g_1)), \ldots, \varphi(\psi(g_k))) = (\varphi(e_1), \ldots, \varphi(e_n)) A_{\psi} = (f_1, \ldots, f_m) A_{\varphi} A_{\psi}.$$

С другой стороны,

$$(\varphi(\psi(g_1)),\ldots,\varphi(\psi(g_k)))=(f_1,\ldots,f_m)A_{\varphi\circ\psi}.$$

Значит, $A_{\varphi} \cdot A_{\psi} = A_{\varphi \circ \psi}$.

17.9 Ядро и образ линейного отображения; утверждение о том, что они являются подпространствами в соответствующих векторных пространствах

Пусть $\varphi \colon V \to W$.

Определение 69. Ядро линейного отображения φ — это $\ker \varphi := \{v \in V \mid \varphi(v) = 0\} \subseteq V$. Образ линейного отображения φ — это $\operatorname{Im} \varphi := \varphi(V) \subseteq W$.

Пример.
$$\Delta \colon \mathbb{R}[x]_{\leqslant n} \to \mathbb{R}[x]_{\leqslant n}, \ f \mapsto f',$$

 $\ker \Delta = \{f \mid f = \text{const}\},$
 $\operatorname{Im} \Delta = \mathbb{R}[x]_{\leqslant n-1}.$

Предложение.

- 1. Ядро подпространство в V.
- 2. Образ подпространство в W.

Доказательство.

- 1. (a) $\varphi(0_V) = 0_W$,
 - (b) $v_1, v_2 \in \ker \varphi \implies \varphi(v_1 + v_2) = \varphi(v_1) + \varphi(v_2) = 0 + 0 = 0 \implies v_1 + v_2 \in \ker \varphi$
 - (c) $\lambda \in F, v \in V \implies \varphi(\lambda v) = \lambda \varphi(v) = \lambda 0 = 0 \implies \lambda v \in \ker \varphi$.
- 2. (a) $0_W = \varphi(0_V) \in \operatorname{Im} \varphi$,
 - (b) $w_1, w_2 \in \operatorname{Im} \varphi \implies \exists v_1, v_2 : w_1 = \varphi(v_1), w_2 = \varphi(v_2) \implies w_1 + w_2 = \varphi(v_1) + \varphi(v_2) = \varphi(v_1 + v_2) \in \operatorname{Im} \varphi$
 - (c) $\varphi \in F, w \in \operatorname{Im} \varphi \implies \exists v \in V : w = \varphi(v) \implies \lambda w = \lambda \varphi(v) = \varphi(\lambda v) \in \operatorname{Im} \varphi.$

18.1 Критерий инъективности линейного отображения в терминах его ядра

Пусть V,W — векторные пространства над F, $\varphi\colon V\to W$ — линейное отображение. Ядро: $\ker \varphi:=\{v\in V\mid \varphi(v)=0\}\subseteq V.$ Образ: $\operatorname{Im}\varphi:=\varphi(V)\subseteq W.$

Предложение.

- (a) φ инъективно \iff ker $\varphi = \{0\}$,
- (b) φ сюръективно \iff Im $\varphi = W$.

Доказательство.

- (а) \implies очевидно $\iff \text{Пусть } v_1, v_2 \in V \text{ таковы, что } \varphi(v_1) = \varphi(v_2). \text{ Тогда } \varphi(v_1 v_2) = 0, \text{ а значит } v_1 v_2 \in \ker \varphi.$ Но тогда, $v_1 v_2 = 0$, то есть $v_1 = v_2$.
- (b) очевидно.

Следствие. φ изоморфизм $\iff \begin{cases} \ker \varphi = \{0\}, \\ \operatorname{Im} \varphi = W. \end{cases}$

18.2 Характеризация изоморфизмов в терминах их ядер и образов

Пусть $U \subseteq V$ — подпространство, u_1, \ldots, u_k — базис в U.

Лемма 18.1. Тогда, $\varphi(U) = \langle \varphi(u_1), \dots, \varphi(u_k) \rangle$. В частности, $\dim \varphi(U) \leqslant \dim U$ и $\dim \operatorname{Im} \varphi \leqslant \dim V$.

Доказательство. $u \in U \implies u = \alpha_1 u_1 + \dots + \alpha_k u_k, \ \alpha_i \in F$, тогда

$$\varphi(u) = \alpha_1 \varphi(u_1) + \dots + \alpha_k \varphi(u_k) \in \langle \varphi(u_1), \dots, \varphi(u_k) \rangle.$$

18.3 Связь размерности образа линейного отображения с рангом его матрицы

Пусть
$$\mathbf{e}=(e_1,\ldots,e_n)$$
 — базис $V,$
$$\mathbf{f}=(f_1,\ldots,f_m)$$
 — базис $W,$ $A=A(\varphi,\mathbf{e},\mathbf{f}).$

Теорема 18.2. $\operatorname{rk} A = \dim \operatorname{Im} \varphi$.

Доказательство. По лемме, $\operatorname{Im} \varphi = \langle \varphi(e_1), \dots, \varphi(e_n) \rangle$. Поэтому, $\dim \operatorname{Im} \varphi = \operatorname{rk} \{ \varphi(e_1), \dots, \varphi(e_n) \}$. Так как j-й столбец матрицы A составлен из координат вектора $\varphi(e_j)$ в базисе \mathbb{F} , то

$$\alpha_1 \varphi(e_1) + \dots + \alpha_n \varphi(e_n) = 0 \iff \alpha_1 A^{(1)} + \dots + \alpha_n A^{(n)} = 0.$$

Значит, dim Im $\varphi = \text{rk}\{\varphi(e_1), \dots, \varphi(e_n)\} = \text{rk}\{A^{(1)}, \dots, A^{(n)}\} = \text{rk }A.$

Замечание. Число dim Im φ называется рангом линейного отображения φ , обозначается $\operatorname{rk} \varphi$.

Следствие. $\operatorname{rk} A$ не зависит от выбора пары базисов $\mathfrak e$ и $\mathfrak f$.

18.4 Инвариантность ранга матрицы относительно умножения на квадратную невырожденную матрицу слева или справа

Обозначение 2. $M_n^0(F) := \{ C \in M_n(F) \mid \det C \neq 0 \}.$

Следствие. Ранг матрицы не меняется при умножении слева и/или справа на невырожденную матрицу.

Доказательство. Если $A \in \text{Mat}_{m \times n}, C \in M_n^0, D \in M_m^0$, то A и $D^{-1}AC$ — это матрицы одного и того же линейного отображения в разных парах базисов. По теореме, $\operatorname{rk} A = \operatorname{rk} \left(D^{-1}AC \right)$.

18.5 Свойство образов векторов, дополняющих базис ядра до базиса всего пространства

Предложение. Пусть e_1, \ldots, e_k — базис $\ker \varphi$ и векторы e_{k+1}, \ldots, e_n дополняют его до базиса всего V. Тогда, $\varphi(e_{k+1}), \ldots, \varphi(e_n)$ образуют базис в $\operatorname{Im} \varphi$.

 \mathcal{A} оказательство. Іт $\varphi = \langle \varphi(e_1), \dots, \varphi(e_k), \varphi(e_{k+1}), \dots, \varphi(e_n) \rangle = \langle \varphi(e_{k+1}), \dots, \varphi(e_n) \rangle$. (так как $\varphi(e_1) = \dots = \varphi(e_k) = 0$). Осталось показать, что $\varphi(e_{k+1}), \dots, \varphi(e_n)$ линейно независимы.

Пусть $\alpha_{k+1}\varphi(e_{k+1}) + \cdots + \alpha_n\varphi(e_n) = 0$, где $\alpha_i \in F$.

Тогда $\varphi(\alpha_{k+1}e_{k+1}+\dots\alpha_ne_n)=0 \implies \alpha_{k+1}e_{k+1}+\dots+\alpha_ne_n\in\ker\varphi.$

Но тогда $\alpha_{k+1}e_{k+1} + \dots + \alpha_n e_n = \beta_1 e_1 + \dots + \beta_k e_k$, где $\beta_j \in F$.

Так как (e_1, \ldots, e_n) — базис V, то $\alpha_i = \beta_i = 0 \ \forall i, j$.

18.6 Теорема о связи размерностей ядра и образа линейного отображения

Теорема 18.3. dim Im φ + dim ker φ = dim V.

Доказательство. Вытекает из предыдущего предложения так как в его доказательстве:

 $\dim V = n$,

 $\dim \ker \varphi = k$,

 $\dim \operatorname{Im} \varphi = n - k.$

18.7 Приведение матрицы линейного отображения к диагональному виду с единицами и нулями на диагонали

Предложение. Пусть $\operatorname{rk} \varphi = r$. Тогда существует базис е в V и базис $\mathbb F$ в W, такие что

$$A(\varphi, \mathbf{e}, \mathbf{f}) = \left(\begin{array}{c|cccc} & r & & n-r \\ 1 & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & \ddots & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 0 \end{array} \right).$$

Доказательство. Пусть e_{r+1}, \ldots, e_n — базис $\ker \varphi$. Дополним его векторами e_1, \ldots, e_r до базиса всего V.

Положим $f_1 = \varphi(e_1), \ldots, f_r = \varphi(e_r)$, тогда (f_1, \ldots, f_r) — базис $\operatorname{Im} \varphi$.

Дополним f_1, \ldots, f_r до базиса f_1, \ldots, f_m всего W.

Тогда, $\mathbf{e}=(e_1,\ldots,e_n)$ и $\mathbf{f}=(f_1,\ldots,f_m)$ — искомые базисы.

Следствие. Если $A \in \operatorname{Mat}_{m \times n}(F)$, $\operatorname{rk} A = r$, то $\exists C \in M_n^0(F)$ и $D \in M_m^0(F)$, такие что

$$D^{-1}AC = \left(\begin{array}{c|c} E & 0 \\ \hline 0 & 0 \end{array}\right) = B.$$

$$(\iff A = DBC^{-1}).$$

Доказательство. Реализуем A как матрицу линейного отображения $\varphi \colon F^n \to F^m$ в некоторой паре базисов, тогда утверждение вытекает из предложения и формулы изменения матрицы линейного отображения при замене базисов.

18.8 Линейные функции на векторном пространстве

Определение 70. Линейной функцией (или линейной формой, или линейным функционалом) на V называется всякое линейное отображение $\alpha \colon V \to F$.

Обозначение 3. $V^* := \text{Hom}(V, F)$ — множество всех линейных функций на V.

18.9 Примеры

1. $\alpha \colon F^n \to F$.

$$a egin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = (a_1,\dots,a_n) egin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = a_1x_1 + \dots + a_nx_n,$$
 где $a_i \in F$ — фиксированные скаляры.

2. $F(X,\mathbb{R})$ — все функции из линейного пространства X в $\mathbb{R}, x_0 \in X$,

$$\alpha \colon F(X, \mathbb{R}) \to \mathbb{R},$$

$$\alpha(f) := f(x_0).$$

3. $\alpha \colon C[0,1] \to \mathbb{R}$

$$\alpha(f) := \int_0^1 f(x) \, dx$$

4. $\alpha: M_n(F) \to F$

$$\alpha(X) := \operatorname{tr} X$$

18.10 Двойственное (сопряжённое) векторное пространство, его размерность в конечномерном случае

Из общей теории линейных отображений:

- 1. V^* векторное пространство (оно называется сопряженным или двойственным).
- 2. Если $e = (e_1, \dots, e_n)$ фиксированный базис в V, то есть изоморфизм $V^* \simeq \operatorname{Mat}_{1 \times n}(F)$ (а это ни что иное, как строки длины n).

$$\alpha \to (\alpha_1, \ldots, \alpha_n)$$

$$v = x_1 e_1 + \dots + x_n e_n$$

$$\alpha(v) = (\alpha_1, \dots, \alpha_n) \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = \alpha_1 x_1 + \dots + \alpha_n x_n.$$

 $\alpha_i = \alpha(e_i)$ — коэффициенты линейной функции α в базисе $\mathfrak e$.

Следствие. $\dim V^* = \dim V \ (\Longrightarrow V^* \simeq V)$.

18.11 Двойственный базис

При $i=1,\ldots,n$ рассмотрим линейную функцию $\varepsilon_i\in V^*$, соответствующую строке $(0\ldots 1\ldots 0)$. Тогда $\varepsilon_1,\ldots,\varepsilon_n$ — базис V^* , он однозначно определяется условием $\varepsilon_i(e_j)=\delta_{ij}=\begin{cases} 1, & i=j,\\ 0, & i\neq j. \end{cases}$. $(\delta_{ij}-\text{символ Кронекера})$

Определение 71. Базис $(\varepsilon_1, \dots, \varepsilon_n)$ пространства V^* , определенный условием выше, называется базисом, *двойственным* (сопряженным) к базису ε .

Удобная запись условия:

$$\begin{pmatrix} \varepsilon_1 \\ \dots \\ \varepsilon_n \end{pmatrix} (e_1, \dots, e_n) = E.$$

19.1 Утверждение о том, что всякий базис сопряжённого пространства двойствен некоторому базису исходного пространства

 $\varepsilon_i(x_1e_1+\cdots+x_ne_n)=x_i$, поэтому ε_i называется i-й координатной функцией в базисе ε .

Предложение. Всякий базис пространства V^* двойствен некоторому базису пространства V.

 \mathcal{A} оказательство. Пусть $\varepsilon = \begin{pmatrix} \varepsilon_1 \\ \dots \\ \varepsilon_n \end{pmatrix}$ — базис пространства V^* . Фиксируем какой-то базис $\mathfrak{e}' = (e'_1, \dots, e'_n)$ пространства

V, и пусть $\varepsilon' = \begin{pmatrix} \varepsilon_1' \\ \dots \\ \varepsilon_n' \end{pmatrix}$ — соответствующий ему двойственный базис V^* .

Тогда, $\begin{pmatrix} \varepsilon_1 \\ \dots \\ \varepsilon_n \end{pmatrix} = C \cdot \begin{pmatrix} \varepsilon_1' \\ \dots \\ \varepsilon_n' \end{pmatrix}$ для некоторой матрицы $C \in M_n^0(F)$.

Положим $(e_1, \ldots, e_n) = (e'_1, \ldots, e'_n) \cdot C^{-1}$. Тогда,

$$\begin{pmatrix} \varepsilon_1 \\ \dots \\ \varepsilon_n \end{pmatrix} (e_1, \dots, e_n) = C \begin{pmatrix} \varepsilon_1' \\ \dots \\ \varepsilon_n' \end{pmatrix} (e_1', \dots, e_n') C^{-1} = CEC^{-1} = E.$$

Значит, ε двойствен к $\mathfrak e$.

Упражнение. е определён однозначно.

19.2 Билинейные формы на векторном пространстве

Пусть V — векторное пространство над F.

Определение 72. *Билинейная форма* на V — это отображение $\beta \colon V \times V \to F$, линейное по каждому аргументу.

Линейность по 1-му аргументу

- $\beta(x_1 + x_2, y) = \beta(x_1, y) + \beta(x_2, y) \quad \forall x_1, x_2, y \in V$,
- $\beta(\lambda x, y) = \lambda \beta(x, y) \quad \forall x, y \in V, \ \lambda \in F.$

Линейность по 2-му аргументу

- $\beta(x, y_1 + y_2) = \beta(x, y_1) + \beta(x, y_2) \quad \forall x, y_1, y_2 \in V$,
- $\beta(x, \lambda y) = \lambda \beta(x, y) \quad \forall x, y \in V, \ \lambda \in F.$

19.3 Примеры

19.3.1

$$V = F^n, x = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}, y = \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix};$$
$$\beta(x, y) := x_1 y_1 + \dots + x_n y_n = (x_1 \dots x_n) \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix} = x^T y.$$

19.3.2

$$V = F^2, x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix};$$
$$\beta(x, y) := \det \begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix}.$$

19.3.3

$$V = C[a, b];$$

$$\beta(f, g) := \int_a^b f(x)g(x) dx.$$

19.4 Матрица билинейной формы по отношению к фиксированному базису

Далее считаем, что $\dim V = n < \infty$. Пусть $e = (e_1, \dots, e_n)$ — базис V.

Определение 73. Матрицей билинейной формы β в базисе e называется такая матрица $B \in M_n$, что $b_{ij} = \beta(e_i, e_j)$. Обозначение: $B(\beta, e)$.

Примеры Матрицы билинейных форм из примеров выше:

- 1. Пусть е стандартный базис, тогда $B(\beta, e) = E$.
- 2. Пусть е стандартный базис, тогда $B(\beta, \mathbf{e}) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

Формула вычисления значений билинейной формы в координатах

Пусть $x = x_1e_1 + \dots + x_ne_n$, $y = y_1e_1 + \dots + y_ne_n$. Тогда,

$$\beta(x,y) = \beta \left(\sum_{i=1}^{n} x_i e_i, \sum_{j=1}^{n} y_j e_j \right) = \sum_{i=1}^{n} x_i \cdot \beta \left(e_i, \sum_{j=1}^{n} y_j e_j \right)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} x_i y_j \underbrace{\beta(e_i, e_j)}_{\beta_{ij}} = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i \beta_{ij} y_j$$

$$= (x_1, \dots, x_n) B \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix}.$$

19.5 Существование и единственность билинейной формы с заданной матрицей

Предложение. Пусть e — фиксированный базис V.

- 1. Всякая билинейная форма β на V однозначно определяется матрицей $B(\beta, e)$.
- 2. $\forall B \in M_n(F)$ $\exists !$ билинейная форма β на V, такая что $B(\beta, \mathbf{e}) = B$.

Доказательство.

- 1. Следует из формулы выше.
- 2. Единственность следует из формулы выше. Докажем существование:

Определим β по формуле выше.

Тогда β — билинейная форма на V (упражнение).

$$\beta(e_i, e_j) = \begin{pmatrix} 0 & \dots & 0 & 1 & 0 & \dots & 0 \end{pmatrix} \cdot B \cdot \begin{pmatrix} 0 \\ \dots \\ 0 \\ 1 \\ 0 \\ \dots \\ 0 \end{pmatrix} j = \beta_{ij}.$$

Действительно, $B(\beta, e) = B$.

19.6 Формула изменения матрицы билинейной формы при переходе к другому базису

$$B=B(\beta,\mathfrak{e}).$$
 Пусть $\mathfrak{e}'=(e'_1,\dots e'_n)$ — другой базис $V.$ $\mathfrak{e}'=\mathfrak{e}\cdot C,$ где $C\in M^0_n(F).$ $\beta\colon V\times V\to F$ — билинейная форма. $B':=B(\beta,\mathfrak{e}').$

Предложение. $B' = C^T B C$.

Доказательство.

$$x = x_1 e_1 + \dots + x_n e_n = x_1' e_1' + \dots + x_n' e_n',$$

$$y = y_1 e_1 + \dots + y_n e_n = y'_1 e'_1 + \dots + y'_n e'_n$$

$$\begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = C \cdot \begin{pmatrix} x_1' \\ \dots \\ x_n' \end{pmatrix} \quad \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix} = C \cdot \begin{pmatrix} y_1' \\ \dots \\ y_n' \end{pmatrix}.$$

Тогда,

$$\beta(x,y) = (x_1 \dots x_n) B \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix} = (x'_1 \dots x'_n) C^T B C \begin{pmatrix} y'_1 \\ \dots \\ y'_n \end{pmatrix}$$
$$\beta(x,y) = (x'_1 \dots x'_n) B' \begin{pmatrix} y'_1 \\ \dots \\ y'_n \end{pmatrix}.$$

Получаем, что $B' = C^T B C$.

 \mathbf{C} ледствие. Величина $\mathrm{rk}\,B$ не зависит от выбора базисов.

19.7 Ранг билинейной формы

Определение 74. Число $\operatorname{rk} B := \operatorname{rk} B(\beta, \mathfrak{e})$ называется *рангом* билинейной формы β .

19.8 Симметричные билинейные формы

Определение 75. Билинейная форма β называется *симметричной*, если $\beta(x,y) = \beta(y,x) \ \forall x,y \in V$.

19.9 Критерий симметричности билинейной формы в терминах её матрицы в какомлибо базисе

Пусть e — произвольный базис V.

Предложение. β симметрична $\iff B = B^T$.

Доказательство.

$$\implies b_{ji} = \beta(e_j, e_i) = \beta(e_i, e_j) = b_{ij},$$

$$\iff x = x_1 e_1 + \dots + x_n e_n,$$

$$y = y_1 e_1 + \dots + y_n e_n,$$

Тогда,

$$\beta(y,x) = (y_1 \dots y_n) B \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = (x_1 \dots x_n) B^T \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix} = (x_1 \dots x_n) B \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix} = \beta(x,y).$$

19.10 Теорема о диагонализации симметричной билинейной формы

Пусть в поле F выполнено условие $1+1\neq 0$ (то есть в F сложение двух единиц поля не даёт нам нулевой элемент поля).

Теорема 19.1. \forall симметричной билинейной формы $\beta \colon V \times V \to F \; \exists \; \textit{базис e'} \; \textit{6} \; V, \; \textit{такой что матрица} \; B(\beta, e')$ диагональна.

Доказательство. Фиксируем какой-нибудь базис е в V, пусть $B=B(\beta, \mathfrak{e})$. Тогда, согласно предложению, достаточно показать, что $\exists C \in M_n^0(F)$, такая что матрица $B'=C^TBC$ — диагональная.

 Θ то возможно для любой B благодаря симметричному алгоритму Гаусса, который описан ниже.

19.11 Симметричные элементарные преобразования

$$B \overset{\text{одио эл.}}{\leadsto} B' = \underbrace{U}_{\text{элементарная}} \cdot B \implies (B')^T = B^T \cdot U^T = B \cdot U^T$$

То есть такое же элементарное преобразование, но уже столбцов, реализуется умножением матрицы билинейной формы на U^T справа.

Определение 76. $B \leadsto B' = UBU^T$ — симметричное элементарное преобразование.

Сначала выполняется элементарное преобразование строк, а затем ровно такое же элементарное преобразование столбцов, или наоборот, в силу ассоциативности.

Заметим, что согласно предложению, если мы применим симметричное элементарное преобразование к матрице симметричной билинейной формы, мы получим матрицу той же симметричной билинейной формы, но в другом базисе.

Обозначение 4. $\widehat{\Im}_i := \Im_i \ \& \ \Im_i' -$ симметричное элементарное преобразование, где $\Im_i -$ элементарное преобразование строк. $\Im_i' -$ соответствующее элементарное преобразование столбцов.

19.12Симметричный алгоритм Гаусса

Шаг 1: Если
$$B^{(1)}=0(\implies B_{(1)}=0)$$
, то матрица имеет вид $B=\left(\begin{array}{c|c}0&0\\\hline 0&\widetilde B\end{array}\right)\implies$ идём на шаг 2.

Иначе: Случай 1 $b_{11} \neq 0$.

Тогда выполняем
$$\widehat{\Im}_1(2,1,-\frac{b_{21}}{b_{11}}),\dots,\widehat{\Im}_1(n,1,-\frac{b_{n1}}{b_{11}}),\ B_{\text{новая}}=\left(\begin{array}{c|c}b_{11}&0\\\hline 0&\widetilde{B}\end{array}\right)$$

Случай 2 $b_{11} = 0$.

Подслучай 2.1
$$\exists b_{ii} \neq 0 \implies egin{pmatrix} 0 & \dots & \star & \dots \\ \hline \vdots & \ddots & \vdots & \vdots \\ \star & \dots & b_{ii} & \dots \\ \vdots & \vdots & \vdots & \dots \end{pmatrix}$$

Выполняем $\widehat{\Im}_2(1,i)$, получаем $b_{11} \neq 0 \implies$ случай

Подслучай 2.2
$$b_{ii}=0 \ \forall i, \ \text{но} \ \exists j \colon b_{j1} \neq 0 \implies egin{pmatrix} 0 & \star & \ldots & b_{j1} & \ldots & \star \\ \hline \star & 0 & \ldots & \star & \ldots & \star \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ b_{j1} & \star & \ldots & 0 & \ldots & \star \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \star & \star & \ldots & \star & \ldots & 0 \end{pmatrix}$$

Выполняем $\widehat{\Im}_1(1,j,1) \implies$ на позиции (1,1) возникает $2 \cdot b_{j1} \neq 0$ (ведь мы работаем с полем, где $2 \neq 0$)

Шаг 2: Новая матрица имеет вид
$$B = \left(\begin{array}{c|c} b_{11} & 0 \\ \hline 0 & \widetilde{B} \end{array}\right)$$
,

повторяем всё для \widetilde{B} .

В результате получаем цепочку элементарных матриц U_1,\dots,U_k , такую что матрица $B'=U_k\dots U_1BU_1^T\dots U_k^T$

Положим
$$C = U_1^T \dots U_k^T \implies C^T = U_k, \dots, U_1 \implies B' = C^T \cdot B \cdot C.$$

Замечание. Матрицу С можно вычислить модифицировав алгоритм. Припишем единичную матрицу Е справа от В и будем выполнять с ней только элементарные преобразования строк.

$$(B \mid E) \leadsto (B' \mid P), P = U_k \dots U_2 U_1 = C^T \implies C = P^T$$

Пример.

$$B = \left(\begin{array}{cc|c} 0 & 1 & 1 & 0 \\ 1 & -2 & 0 & 1 \end{array}\right) \leadsto \left(\begin{array}{cc|c} -2 & 0 & 0 & 1 \\ 0 & \frac{1}{2} & 1 & \frac{1}{2} \end{array}\right)$$

Итог:
$$B' = \begin{pmatrix} -2 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}, C = \begin{pmatrix} 0 & 1 \\ 1 & \frac{1}{2} \end{pmatrix}$$
 $B' = C^T \cdot B \cdot C.$

Замечание. Базис \mathfrak{E}' в котором матрица билинейного отображения β имеет диагональный вид, а также сам этот вид определены неоднозначно.

 Π ример.

$$B' = \begin{pmatrix} b_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & b_n \end{pmatrix}, C' = \begin{pmatrix} c_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & c_n \end{pmatrix} \in M_n^0 \implies B'' = C'^T \cdot B' \cdot C' = \begin{pmatrix} b_1 c_1^2 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & b_n c_n^2 \end{pmatrix}$$

20.1 Угловые миноры матрицы квадратичной формы

 $G \in M_n, k \in \{1, \dots, n\} \leadsto G_k :=$ левый верхний $k \times k$ блок матрицы G

Определение 77. Величина $\delta_k(G) := \det G_k$ называется k-м угловым минором матрицы G

$$G = \begin{pmatrix} g_{11} & g_{12} & g_{13} & \dots \\ g_{21} & g_{22} & g_{23} & \dots \\ g_{31} & g_{32} & g_{33} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

20.2 Метод Якоби для симметричных билинейных форм

Пусть $\beta\colon V\times V\to F$ — симметричная билинейная форма, $\mathfrak e$ — базис $V,\,B=B(\beta,\mathfrak e),\delta_k=\delta_k(B)$

Теорема 20.1. Предположим, что $\delta_k \neq 0 \ \forall k=1,\ldots,n-1,\ mor\partial a \ \exists C \in M_n^0 \ вида$

$$C = \begin{pmatrix} 1 & \star & \dots & \star & \star \\ 0 & 1 & \ddots & \star & \star \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & \star \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

Такая что матрица $B' = C^T B C$ имеет вид $B' = \operatorname{diag}\left(\delta_1, \frac{\delta_2}{\delta_1}, \dots, \frac{\delta_n}{\delta_{n-1}}\right)$.

Доказательство. Анализ симметричного алгоритма Гаусса.

На каждой итерации в случае 1 все симметричные элементарные преобразования имеют вид $\Im_1(i,j,\lambda)$, причём всегда при i>j. При этом все угловые миноры сохраняются. Благодаря условию i>j это элементарные преобразования 1 типа, не меняющие определителя для каждой G_k

Если на какой-то итерации возник не случай 1, то получаем

$$\begin{pmatrix}
b_{11} & 0 & \dots & 0 & 0 & | & \dots & 0 \\
0 & b_{22} & \dots & 0 & 0 & | & \dots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & | & \dots & \vdots \\
0 & 0 & \dots & b_{k-1,k-1} & 0 & | & \dots & 0 \\
0 & 0 & \dots & 0 & 0 & | & \dots & 0 \\
\vdots & \vdots & \dots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \dots & 0 & 0 & \dots & \star
\end{pmatrix} k \leqslant n-1$$

Но тогда $\delta_k = 0 \implies$ противоречие.

Итог: на всех итерациях возникает случай $1 \implies$ алгоритм приводит к диагональному виду $B' = \operatorname{diag}(d_1, \dots, d_n)$.

$$\delta_k(B') = d_1 \cdot \dots \cdot d_k = \delta_k(B) \implies d_k = \frac{\delta_k}{\delta_{k-1}} \implies B' = \operatorname{diag}(\delta_1, \frac{\delta_2}{\delta_1}, \dots, \frac{\delta_n}{\delta_{n-1}})$$

Причём при $i>j,\ \widehat{\Im}_1(i,j,\lambda)\colon B\mapsto UBU^T,$ где U — единичная матрица с λ на i-ой строке в j-ом столбце.

$$C = U_1^T U_2^T \dots U_S^T$$

Очевидно, что перемножение матриц такого типа будет давать верхнюю унитреугольную матрицу C.

Замечание. Матрица вида $\begin{pmatrix} 1 & \dots & \star \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{pmatrix}$ называется верхней унитреугольной

Замечание. В доказательстве не использовалось свойство $1+1 \neq 0$, то есть свойство работает для любого поля.

20.3 Квадратичные формы на векторном пространстве

Пусть $\beta: V \times V \to F$ — билинейная форма на V.

Определение 78. Отображение $Q_{\beta} \colon V \to F, \, Q_{\beta}(x) = \beta(x,x)$, называется *квадратичной формой*, ассоциированной с билинейной формой β .

Пусть e — базис V, $x = x_1 e_1 + \dots x_n e_n$, $B = B(\beta, e)$.

$$Q_{\beta}(x) = (x_1 \dots x_n) B \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = \sum_{i=1}^n \sum_{j=1}^n b_{ij} x_i x_j = \sum_{i=1}^n b_{ii} x_i^2 + \sum_{1 \le i < j \le n}^n (b_{ij} + b_{ji}) x_i x_j.$$

20.4 Примеры

20.4.1

$$V = F^n, \ \beta(x,y) = x_1 y_1 + \dots + x_n y_n \implies Q_{\beta}(x) = x_1^2 + \dots + x_n^2.$$

20.4.2

$$V=F^2,\, eta(x,y)=2x_1y_2\implies Q_{eta}(x)=2x_1x_2.$$
 Если е — стандартный базис, то $B(eta,\mathbf{e})=egin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}.$

20.4.3

$$V = F^2, \ \beta(x,y) = x_1y_2 + x_2y_1 \implies Q_{\beta}(x) = 2x_1x_2.$$

Если е — стандартный базис, то $B(\beta, e) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$

20.5 Соответствие между симметричными билинейными формами и квадратичными формами

Предложение. Пусть в поле F выполнено условие $1+1 \neq 0$. Тогда отображение $\beta \mapsto Q_{\beta}$ является биекцией между симметричными билинейными формами на V и квадратичным формами на V.

Доказательство.

Сюръективность Q — квадратичная форма $\implies Q = Q_{\beta}$ для некоторой билинейной формы на V.

To есть $Q(x) = \beta(x, x) \ \forall x \in V$.

Положим $\sigma(x,y) = \frac{1}{2} [\beta(x,y) + \beta(y,x)]$, тогда σ — симметричная билинейная форма.

$$Q_{\sigma}(x) = \sigma(x, x) = \frac{1}{2} \left[\beta(x, x) + \beta(x, x) \right] = \beta(x, x) = Q_{\beta}(x) \implies Q_{\sigma} = Q_{\beta}.$$

Инъективность Пусть Q_{β} — квадратичная форма, соответствующая симметричной билинейной форме β .

$$Q_{\beta}(x+y) = \beta(x+y,x+y) = \underbrace{\beta(x,x)}_{Q_{\beta}(x)} + \underbrace{\beta(x,y) + \beta(y,x)}_{\text{равны между собой}} + \underbrace{\beta(y,y)}_{Q_{\beta}(y)} \implies \beta(x,y) = \frac{1}{2} \left[Q_{\beta}(x+y) - Q_{\beta}(x) - Q_{\beta}(y) \right].$$

20.6 Симметризация билинейной формы и поляризация квадратичной формы

Замечание

- 1. Билинейная форма $\sigma(x,y)=\frac{1}{2}\left(\beta(x,y)+\beta(y,x)\right)$ называется симметризацией билинейной формы β . Если B и S матрицы билинейных форм β и σ в некотором базисе, то $S=\frac{1}{2}(B+B^T)$.
- 2. Симметричная билинейная форма $\beta(x,y)=\frac{1}{2}\left[Q(x+y)-Q(x)-Q(y)\right]$ называется поляризацией квадратичной формы Q.

Далее считаем, что $1+1 \neq 0$ в F если не оговорено обратное.

Определение 79. Матрицей квадратичной формы Q в базисе e называется матрица соответствующей симметричной билинейной формы (поляризации) в базисе e.

Обозначение: B(Q, e).

Пример. Пусть $Q(x_1, x_2) = x_1^2 + x_1 x_2 + x_2^2$.

Если е — стандартный базис, то
$$B(Q, e) = \begin{pmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{pmatrix}$$
.

20.7 Канонический вид квадратичной формы

Определение 80. Квадратичная форма Q имеет в базисе е *канонический вид*, если B(Q, e) диагональна. Если $B(Q, e) = \operatorname{diag}(b_1, b_2, \dots, b_n)$, то $Q(x_1, \dots, x_n) = b_1 x_1^2 + b_2 x_2^2 + \dots + b_n x_n^2$.

20.8 Теорема о приведении квадратичной формы к каноническому виду.

Теорема 20.2. \forall квадратичной формы $Q(x) \exists$ базис, в котором она принимает канонический вид.

Доказательство. ∀ квадратичной формы ∃ ассоциированная с ней симметричная билинейная форма. Для симметричной билинейной формы по теореме ∃ базис, где она имеет диагональный вид. Соответственно, ассоциированная с ней квадратичная форма в этом базисе будет иметь канонический вид. ■

20.9 Нормальный вид квадратичной формы над полем $\mathbb R$

Определение 81. Квадратичная форма над \mathbb{R} имеет *нормальный вид* в базисе \mathfrak{e} , если в этом базисе

$$Q(x_1, \dots, x_n) = \varepsilon_1 x_1^2 + \dots + \varepsilon_n x_n^2,$$

где $\varepsilon_i \in \{-1, 0, 1\}.$

20.10 Приведение квадратичной формы над $\mathbb R$ к нормальному виду

Следствие. Для всякой квадратичной формы Q над $\mathbb R$ существует базис, в котором Q имеет нормальный вид.

Доказательство. Знаем, что \exists базис е, такой что $B(Q, e) = \text{diag}(b_1, \dots, b_n)$, то есть в координатах это $Q(x) = b_1 x_1^2 + \dots + b_n x_n^2$.

Положим $C = \operatorname{diag}(c_1, \ldots, c_n)$, где

$$c_i = \begin{cases} \frac{1}{\sqrt{|b_i|}}, & b_i \neq 0\\ 1, & b_i = 0 \end{cases}.$$

Тогда, взяв $B(Q, \mathfrak{E}') = C^T B C = \operatorname{diag}(c_1^2 b_1, \dots, c_n^2 b_n) = \operatorname{diag}(\varepsilon_1, \dots, \varepsilon_n)$, где

$$\varepsilon_i = \operatorname{sgn} b_i = \begin{cases} 1, & b_i > 0 \\ 0, & b_i = 0 \\ -1, & b_i < 0 \end{cases}$$

Это соответствует замене координат $x_i = c_i \cdot x_i'$

Замечание. Для $F = \mathbb{C}$ аналогичные рассуждения показывают, что \exists базис, в котором Q имеет вид (2), где $k = \operatorname{rk} Q$.

$$Q(x_1, \dots, x_n) = x_1^2, \dots, x_k^2.$$
(2)

21 Лекция 21

21.1 Положительный и отрицательный индексы инерции квадратичной формы над $\mathbb R$

Пусть $F = \mathbb{R}$.

Пусть $Q: V \to \mathbb{R}$ — квадратичная форма.

Можно привести к нормальному виду

$$Q(x_1, \dots, x_n) = x_1^2 + \dots + x_s^2 - x_{s+1}^2 - \dots - x_{s+t}^2.$$

Здесь $i_+ := s$ — положительный индекс инерции квадратичной формы Q,

 $i_{-} := t$ — отрицательный индекс инерции квадратичной формы Q.

21.2 Закон инерции

Теорема 21.1. Числа i_+ и i_- не зависят от базиса в котором Q принимает нормальный вид.

Доказательство. $s+t=\mathrm{rk}\,Q$, то есть не зависит от выбора базиса. Следовательно, достаточно показать, что число s определено однозначно.

Пусть $e = (e_1, \dots, e_n)$ — базис, в котором Q принимает нормальный вид

$$Q = x_1^2 + \dots + x_s^2 - x_{s+1}^2 - \dots - x_{s+t}^2.$$

Пусть $\mathfrak{E}'=(e'_1,\ldots,e'_n)$ — другой базис, в котором Q принимает нормальный вид

$$Q = x_1'^2 + \dots + x_{s'}'^2 - x_{s'+1}'^2 - \dots - x_{s'+t'}'^2.$$

Предположим, что $s \neq s'$, можно считать что s > s'.

Положим $L := \langle e_1, \dots, e_s \rangle$, dim L = s,

$$L' := \langle e'_{s'+1}, \dots, e'_n \rangle, \dim L' = n - s'.$$

Так как $L+L'\subseteq V$, то $\dim\left(L+L'\right)\leqslant n$.

Тогда, dim $(L \cap L') \geqslant s + (n - s') - n = s - s' > 0$.

Значит, \exists вектор $v \in L \cap L'$, такой что $v \neq 0$.

Теперь:

- 1. Так как $v \in L$, то Q(v) > 0,
- 2. Tak kak $v \in L'$, to $Q(v) \leq 0$.

Противоречие.

21.3 Следствие метода Якоби о вычислении индексов инерции квадратичной формы над ${\mathbb R}$

Пусть $Q: V \to \mathbb{R}$ — квадратичная форма,

$$e = (e_1, \ldots, e_n)$$
 — базис,

$$B = B(Q, e),$$

 $\delta_k - k$ -й угловой минор матрицы B.

Следствие (из метода Якоби). Пусть $\delta_k \neq 0 \ \forall k$. Тогда:

Число i_+ равно количеству сохранений знака в последовательности $1, \delta_1, \dots, \delta_n$.

Число i_{-} равно количеству перемен знака в последовательности $1, \delta_{1}, \ldots, \delta_{n}$.

 \mathcal{A} оказательство. Метод Якоби $\implies \exists$ базис, в котором Q принимает канонический вид

$$Q = \delta_1 x_1^2 + \frac{\delta_2}{\delta_1} x_2^2 + \dots + \frac{\delta_n}{\delta_{n-1}} x_n^2.$$

Здесь, знак отношения $\frac{\delta_i}{\delta_{i-1}}$ соответствует смене либо сохранению знака в рассматриваемой последовательности. По закону инерции, количества знаков + и - не изменяются от выбора базиса.

21.4 Положительно определённые, отрицательно определённые, неотрицательно определённые, неположительно определённые, неопределённые квадратичные формы над $\mathbb R$

Определение 82. Квадратичная форма Q над $\mathbb R$ называется

Термин	Обозначение	Условие	Нормальный вид	Индексы инерции
Положительно определённой	Q > 0	$Q(x) > 0 \ \forall x \neq 0$	$x_1^2 + \dots + x_n^2$	$i_{+} = n, i_{-} = 0$
Отрицательно определённой	Q < 0	$Q(x) < 0 \ \forall x \neq 0$	$-x_1^2 - \dots - x_n^2$	$i_+ = 0, i = n$
Неотрицательно определённой	$Q \geqslant 0$	$Q(x) \geqslant 0 \ \forall x$	$x_1^2 + \dots + x_k^2, \ k \leqslant n$	$i_{+} = k, i_{-} = 0$
Неположительно определённой	$Q \leqslant 0$	$Q(x) \leqslant 0 \ \forall x$	$-x_1^2 - \dots - x_k^2, \ k \leqslant n$	$i_{+} = 0, i_{-} = k$
Неопределённой	_	$\exists x : Q(x) > 0$	$x_1^2 + \dots + x_s^2 - x_{s+1}^2 - x_{s+t}^2$	$i_+ = s, i = t$
		$\exists y: Q(y) < 0$	$s, t \geqslant 1$	

21.5 Примеры

$$V = \mathbb{R}^2$$
.

1.
$$Q(x,y) = x^2 + y^2$$
, $Q > 0$.

2.
$$Q(x,y) = -x^2 - y^2$$
, $Q < 0$.

3.
$$Q(x,y) = x^2, Q \ge 0.$$

4. $Q(x,y) = -x^2, Q \leq 0.$

5. $Q(x,y) = x^2 - y^2$.

21.6 Одно применение квадратичных форм над $\mathbb R$

Презентация (продублирована ниже)

21.6.1 Знаем из курса математического анализа

Пусть $f: \mathbb{R} \to \mathbb{R}$ — некоторая функция, $x_0 \in \mathbb{R}$ — некоторая точка.

Если f дважды дифференцируема в точке x_0 , то для малого приращения y имеем

$$f(x_0 + y) = f(x_0) + ay + by^2 + o(y^2),$$

где $a = f'(x_0), b = f''(x_0)/2.$

Предложение (необходимое условие локального экстремума). Если f в точке x_0 имеет локальные экстремум, то $f'(x_0) = 0$.

Предложение (достаточные условия локального экстремума). Пусть $f'(x_0) = 0$. Тогда

- если $f''(x_0) > 0$, то f в точке x_0 имеет локальный минимум;
- если $f''(x_0) < 0$, то f в точке x_0 имеет локальный максимум.

21.6.2 Применение квадратичных форм

Пусть $f \colon \mathbb{R}^n \to \mathbb{R}$ — некоторая функция, $x_0 \in \mathbb{R}^n$ — некоторая точка.

Если f «дважды дифференциируема» в точке x_0 , то для малого приращения $y=\begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix} \in \mathbb{R}^n$ имеем

$$f(x_0 + y) = f(x_0) + \underbrace{a_1 y_1 + \dots + a_n y_n}_{l(y)} + \underbrace{\sum_{i=1}^n b_{ii} y_i^2 + \sum_{1 \leqslant i < j \leqslant n} 2b_{ij} y_i y_j}_{Q(y)} + o(|y|^2).$$

l(y) — линейная форма, (называется «дифференциал»)

Q(y) — квадратичная форма.

Предложение (необходимое условие локального экстремума). Если f в точке x_0 имеет локальный экстремум, то $l(y) \equiv 0$ (то есть $a_1 = \cdots = a_n = 0$).

Предложение (достаточные условие локального экстремума или его отсутствия). Пусть $l(y) \equiv 0$. Тогда:

- если Q > 0, то f в точке x_0 имеет локальный минимум;
- если Q < 0, то f в точке x_0 имеет локальный максимум;
- \bullet если Q неопределённа, то f в точке x_0 не имеет локального экстремума.

21.7 Критерий Сильвестра положительной определённости квадратичной формы

Пусть V — векторное пространство над \mathbb{R} , dim V = n,

$$e = (e_1, \ldots, e_n)$$
 — базис V ,

$$B = B(Q, e),$$

 B_k — левый верхний $k \times k$ блок,

$$\delta_k = \det B_k.$$

Теорема 21.2 (Критерий Сильвестра положительной определенности).

$$Q > 0 \iff \delta_k > 0 \ \forall k = 1 \dots n.$$

Доказательство.

По следствию из метода Якоби, $i_{+} = n$, то есть Q > 0.

$$\implies Q > 0 \implies \exists C \in M_n^0(\mathbb{R})$$
, такая что $C^TBC = E$.

Тогда,
$$\det C^T \cdot \det_{=\delta_n} B \cdot \det C = 1$$
. Отсюда, $\delta_n = \frac{1}{(\det C)^2} > 0$.

Теперь, для любого k ограничение Q на $\langle e_1, \ldots, e_k \rangle$ тоже положительно определённо, а его матрица в базисе e_1, \ldots, e_k равна B_k . Следовательно, $\det B_k > 0$.

21.8 Критерий отрицательной определённости квадратичной формы

Следствие.

$$Q < 0 \iff \delta_k \begin{cases} > 0 & \text{при } k \vdots 2, \\ < 0 & \text{при } k \not \vdots 2. \end{cases}$$

Доказательство. $Q < 0 \iff -Q > 0$

$$\iff \det(-B_k) > 0 \ \forall k$$

$$\iff (-1)^k \delta_k > 0 \ \forall k$$

21.9 Евклидово пространство и скалярное произведение

Определение 83. *Евклидово пространство* — это векторное пространство \mathbb{E} над \mathbb{R} , на котором задано *скалярное произведение*, то есть такое отображение $(\bullet, \bullet) \colon \mathbb{E} \times \mathbb{E} \to \mathbb{R}$, что

- 1. (\bullet, \bullet) симметричная билинейная форма,
- 2. Квадратичная форма (x, x) положительно определённая.

21.10 Примеры

1.
$$\mathbb{E} = \mathbb{R}^n$$
, $x = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}$, $y = \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix}$.

 $(x,y) := x_1y_1 + \cdots + x_ny_n \leftarrow$ стандартное скалярное произведение в \mathbb{R}^n .

$$(x,x) = x_1^2 + \dots + x_n^2 > 0.$$

2.
$$\mathbb{E} = \operatorname{Mat}_{m \times n}(\mathbb{R}),$$

$$(A,B) := \operatorname{tr}(A^T B),$$

$$(A, A) = \operatorname{tr}(A^T A) = \sum_{i=1}^m \sum_{j=1}^m a_{ij}^2.$$

3.
$$\mathbb{E} = C[a, b],$$

$$(f,g) := \int_a^b f(x)g(x) \, dx,$$

$$(f,f) = \int_a^b f^2(x) dx > 0.$$

22 Лекция 22

Замечание. Всякое подпространство $U\subseteq E$ тоже является евклидовым пространством со скалярным произведением $(\bullet, \bullet)|_{U} \leftarrow$ ограничение на U.

Длина вектора евклидова пространства

Определение 84. Длина вектора $x \in \mathbb{E}$ — это $|x| := \sqrt{(x,x)}$.

Свойства:

- $\begin{array}{ll} 1. \ |x|\geqslant 0, \text{ причем } |x|=0 \Longleftrightarrow x=0. \\ 2. \ \lambda \in \mathbb{R} \implies |\lambda \cdot x| = \underbrace{|\lambda|}_{\text{модуль}} \cdot \underbrace{|x|}_{\text{длина}} \end{array}$

Пример. Если $\mathbb{E} = \mathbb{R}^n$ со стандартным скалярным произведением, то $|x| = \sqrt{x_1^2 + \dots + x_n^2}$

Замечание. Если $\mathbb{E} = \operatorname{Mat}_{m \times n}(\mathbb{R}), (A, B) = \operatorname{tr}(A^T B)$

Тогда, $|A| = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}^2} \leftarrow$ это обозначается как $\|A\|_F$ и называется нормой Фробениуса, фробениусовой нормой.

22.2Неравенство Коши-Буняковского

Предложение (неравенство Коши-Буняковского). $\forall x,y \in \mathbb{E}$ верно $|(x,y)| \leqslant |x| \cdot |y|$, причём равенство $\iff x,y$ пропорциональны.

Доказательство. Случаи:

1. x, y пропорциональны. Тогда, можно считать, что $y = \lambda x, \lambda \in \mathbb{R}$.

$$|(x,y)| = |(x,\lambda x)| = |\lambda||(x,x)| = |\lambda||x|^2 = |x| \cdot |\lambda x| = |x| \cdot |y|.$$

 $2. \, x, y$ не пропорциональны. Тогда x, y линейно независимы.

Значит они образуют базис в $\langle x, y \rangle$

Получаем

$$\begin{vmatrix} (x,x) & (x,y) \\ (y,x) & (y,y) \end{vmatrix} > 0$$
 (критерий Сильвестра).

Отсюда, $(x, x) \cdot (y, y) - (x, y)^2 > 0 \implies (x, y)^2 < |x|^2 \cdot |y|^2$.

Пример. Пусть $\mathbb{E} = \mathbb{R}^n$ со стандартным скалярным произведением, тогда

$$|x_1y_1 + \dots + x_ny_n| \le \sqrt{x_1^2 + \dots + x_n^2} \cdot \sqrt{y_1^2 + \dots + y_n^2}$$

Угол между ненулевыми векторами евклидова пространства

Пусть
$$x, y \in \mathbb{E} \setminus \{0\}$$
, тогда $-1 \leqslant \frac{(x,y)}{|x| \cdot |y|} \leqslant 1$.

Определение 85. Угол между ненулевыми векторами $x,y\in\mathbb{E}$, это такой $\alpha\in[0,\pi]$, что $\cos\alpha=\frac{(x,y)}{|x|\cdot|y|}$. Тогда $(x, y) = |x||y|\cos \alpha$.

22.4 Матрица Грама системы векторов евклидова пространства

Пусть v_1,\ldots,v_k — произвольная система векторов.

Определение 86. $\it Mampuųa$ $\it \Gamma \it pama$ этой системы — это

$$G(v_1, \dots, v_k) = \begin{pmatrix} (v_1, v_1) & (v_1, v_2) & \dots & (v_1, v_k) \\ (v_2, v_1) & (v_2, v_2) & \dots & (v_2, v_k) \\ \vdots & \vdots & \ddots & \vdots \\ (v_k, v_1) & (v_k, v_2) & \dots & (v_k, v_k) \end{pmatrix}.$$

 Π ример. $\mathbb{E} = \mathbb{R}^n$ со стандартным скалярным произведением.

$$a_1, \dots, a_k \in \mathbb{R}^n \leadsto A := (\underline{a_1}, \dots, a_k) \in \operatorname{Mat}_{n \times k}(\mathbb{R}).$$

Тогда, $G(a_1,\ldots,a_k)=A^T\cdot A$.

22.5Определитель матрицы Грама: неотрицательность, критерий положительности

Предложение. $\forall v_1, \dots, v_k \in \mathbb{E} \implies \det G(v_1, \dots, v_k) \geqslant 0.$

Более того, $\det G(v_1,\ldots,v_k)>0\iff v_1,\ldots,v_k$ линейно независимы.

Доказательство. Пусть $G := G(v_1, \ldots, v_k)$. Случаи:

- 1. v_1,\ldots,v_k линейно независимы. Тогда, G матрица билинейной формы $(ullet,ullet)_{\langle v_1,\ldots,v_k\rangle}$ в базисе v_1,\ldots,v_k подпространства $\langle v_1, \dots, v_k \rangle$, а значит det G > 0 по критерию Сильвестра.
- 2. v_1, \ldots, v_k линейно зависимы. Тогда, $\exists (\alpha_1, \ldots, \alpha_k) \in \mathbb{R}^k \setminus \{0\}$, такие что $\alpha_1 v_1 + \cdots + \alpha_k v_k = 0$.

A значит, $\forall i = 1, \ldots, k \implies \alpha_1(v_1, v_i) + \cdots + \alpha_k(v_k, v_i) = 0.$

Отсюда, $a_1G_{(1)} + \cdots + a_kG_{(k)} = 0 \implies$ строки в G линейно зависимы $\implies \det G = 0$.

22.6Ортогональные векторы

Определение 87. Векторы $x, y \in \mathbb{E}$ называются *ортогональными*, если (x, y) = 0.

22.7Ортогональные и ортонормированные системы векторов

Определение 88. Система ненулевых векторов v_1, \ldots, v_k называется

- 1. ортогональной, если $(v_i, v_j) = 0 \ \forall i \neq j \ (\text{то есть } G(v_1, \dots, v_k) \ диагональна),$
- 2. ортонормированной, если $(v_i, v_j) = 0 \ \forall i \neq j$ и $(v_i, v_i) = 1 \ (\iff |v_i| = 1)$. То есть $G(v_1, \ldots, v_k) = E$.

Замечание. Всякая ортогональная (и в частности ортонормированная) система векторов автоматически линейно независима.

$$\det G(v_1, \dots, v_k) = |v_1|^2 \cdot |v_2|^2 \cdots |v_k|^2 \neq 0.$$

22.8 Ортогональный и ортонормированный базис

Определение 89. Базис пространства называется ортогональным (соответственно ортонормированным), если он является ортогональной (ортонормированной) системой векторов.

 Π ример. $\mathbb{E} = \mathbb{R}^n$ со стандартным скалярным произведением.

Тогда, стандартный базис является ортонормированным.

$$\begin{pmatrix} 1 \\ 0 \\ \dots \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ \dots \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ 0 \\ \dots \\ 1 \end{pmatrix}.$$

22.9Координаты вектора в ортогональном (ортонормированном) базисе

Пусть \mathbb{E} — евклидово пространство, (e_1, \dots, e_n) — ортогональный базис. $v \in \mathbb{E}$.

Предложение.
$$v=\dfrac{(v,e_1)}{(e_1,e_1)}e_1+\dfrac{(v,e_2)}{(e_2,e_2)}e_2+\cdots+\dfrac{(v,e_n)}{(e_n,e_n)}e_n.$$
 В частности, если e_1,\ldots,e_n ортонормирован, то $v=(v,e_1)e_1+\cdots+(v,e_n)e_n.$

Доказательство. $v = \lambda_1 e_1 + \lambda_2 e_2 + \dots \lambda_n e_n$.

$$\forall i = 1, \dots, n \quad (v, e_i) = \lambda_1(e_1, e_i) + \dots + \lambda_n(e_n, e_i).$$

Так как базис ортогонален, то $(v,e_i)=\lambda_i(e_i,e_i) \implies \lambda_i=\frac{(v,e_i)}{(e_i,e_i)}$.

22.10 Теорема о существовании ортонормированного базиса

Теорема 22.1. Во всяком конечномерном евклидовом пространстве существует ортонормированный базис.

Доказательство. Следует из теоремы о приведении квадратичной формы (x,x) к нормальному виду (который будет E в силу положительной определённости).

Следствие. Всякую ортогональную (ортонормированную) систему векторов можно дополнить до ортогонального (ортонормированного) базиса.

Доказательство. Пусть e_1, \ldots, e_k — данная система.

Пусть e_{k+1}, \ldots, e_n — это ортогональный (ортонормированный) базис в $\langle e_1, ..., e_k \rangle^{\perp}$.

Тогда e_1, \ldots, e_n — искомый базис.

22.11Метод ортогонализации Грама-Шмидта

Как построить ортогональный (ортонормированный) базис в **E**?

Если f_1, \ldots, f_n — ортогональный базис, то $\left(\frac{f_1}{|f_1|}, \ldots, \frac{f_n}{|f_n|}\right)$ — ортонормированный базис. Тогда, достаточно построить ортогональный базис.

Пусть e_1, \ldots, e_k — линейно независимая система векторов.

i-й угловой минор в $G(e_1,\ldots,e_k)$ — это $\det G(e_1,\ldots,e_k)>0.$

Следовательно, применим метод Якоби:

 $\exists!$ система векторов f_1,\ldots,f_k , такая что

$$f_1 = e_1,$$

$$f_2 \in e_2 + \langle e_1 \rangle,$$

$$f_3 \in e_3 + \langle e_1, e_2 \rangle,$$

$$\dots,$$

$$f_k \in e_k + \langle e_1, \dots, e_{k-1} \rangle$$

И выполнены следующие свойства $\forall i=1,\ldots,k$:

- $0. f_1, \ldots, f_k$ ортогональны.
- 1. $\langle e_1, \dots, e_i \rangle = \langle f_1, \dots, f_i \rangle$ 2. $f_i = e_i \sum_{j=1}^{i-1} \frac{(e_i, f_j)}{(f_j, f_j)} f_j (\star)$ 3. $\det G(e_1, \dots, e_i) = \det G(f_1, \dots, f_i) (\heartsuit)$

Построение базиса f_1, \ldots, f_k по формулам (\star) называется методом (процессом) ортогонализации Грамма-Шмидта.

23 Лекция 05.03.2020

23.1 Описание всех ортонормированных базисов в терминах одного ортонормированного базиса и матриц перехода

Пусть $\mathfrak{E} = (e_1, \dots, e_n)$ — ортонормированный базис в E. Пусть $\mathfrak{E}' = (e'_1, \dots, e'_n)$ — какой-то другой базис. $(e'_1, \dots, e'_n) = (e_1, \dots, e_n) \cdot C, C \in M_n^0(\mathbb{R}).$

Предложение. e' — ортонормированный базис $\iff C^T \cdot C = E$.

Доказательство. $G(e'_1,\ldots,e'_n)=C^T\underbrace{G(e_1,\ldots,e_n)}_EC=C^TC.$ C ортонормированный $\iff G(e'_1,\ldots,e'_n)=E \iff C^TC=E.$

23.2 Ортогональные матрицы и их свойства

Определение 90. Матрица $C \in M_n(\mathbb{R})$ называется ортогональной если $C^TC = E$.

Замечание. $C^TC = E \iff CC^T = E \iff C^{-1} = C^T$.

Свойства.

- $1. \ C^TC = E \implies$ система столбцов $C^{(1)}, \dots, C^{(n)}$ это ортонормированный базис в $\mathbb{R}^n,$
- 2. $CC^T = E \implies$ система строк $C_{(1)}, \dots, C_{(n)}$ это тоже ортонормированный базис в \mathbb{R}^n ,

В частности, $|c_{ij}| \leq 1$.

3. $\det C = \pm 1$.

 $\Pi puмер. \ n = 2.$ Ортогональный матрицы:

$$\begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} \qquad \begin{pmatrix} \cos \varphi & \sin \varphi \\ \sin \varphi & -\cos \varphi \end{pmatrix}.$$

$$\det = 1 \qquad \qquad \det = -1$$

23.3 Ортогональное дополнение подмножества евклидова пространства

Определение 91. $\mathit{Opmoronaльнoe}\ \mathit{dono}\mathit{лнениe}\ \mathit{м}\mathit{ножествa}\ S\subseteq \mathbb{E}\ -\ \mathit{этo}\ \mathit{м}\mathit{ножествo}\ S^\perp:=\{x\in \mathbb{E}\ |\ (x,y)=0\ \forall y\in S\}.$

Упражнение.

- 1. S^{\perp} подпространство в \mathbb{E} .
- 2. $S^{\perp} = \langle S \rangle^{\perp}$.

23.4 Размерность ортогонального дополнения подпространства, ортогональное дополнение к ортогональному дополнению подпространства

23.5 Разложение евклидова пространства в прямую сумму подпространства и его ортогонального дополнения

Далее считаем, что $\dim \mathbb{E} = n < \infty$.

Предложение. Пусть $S \subseteq \mathbb{E}$ — подпространство. Тогда:

- 1. $\dim S^{\perp} = n \dim S$.
- $2. \ \mathbb{E} = S \oplus S^{\perp}.$
- 3. $(S^{\perp})^{\perp} = S$.

Доказательство.

1. Пусть $\dim S = k$ и e_1, \ldots, e_k — базис S.

Дополним e_1, \ldots, e_k до базиса e_1, \ldots, e_n всего \mathbb{E} .

Тогда, $\forall x = x_1 e_1 + \dots + x_n e_n \in \mathbb{E}$.

$$x \in S^{\perp} \iff (x, e_i) = 0 \ \forall i = 1, \dots, k$$

$$\iff \begin{cases} (e_1, e_1)x_1 + \dots + (e_n, e_1)x_n = 0 \\ (e_1, e_2)x_1 + \dots + (e_n, e_2)x_n = 0 \\ \dots \\ (e_1, e_k)x_1 + \dots + (e_n, e_k)x_n = 0 \end{cases}.$$

Это ОСЛУ с матрицей $G\in \mathrm{Mat}_{k\times n}(\mathbb{R})$, причём левый $k\times k$ блок в G — это $\underbrace{G(e_1,\ldots,e_k)}_{\det\neq 0}$.

Это означает, что $\operatorname{rk} G = k$.

Следовательно, пространство решений этой ОСЛУ имеет размерность n-k.

Отсюда, $\dim S^{\perp} = n - k = n - \dim S$.

2. (a) $\dim S + \dim S^{\perp} = k + (n-k) = n = \dim E$.

(b)
$$v \in S \cap S^{\perp} \implies (v, v) = 0 \implies v = 0 \implies S \cap S^{\perp} = \{0\}.$$

A значит, $E = S \oplus S^{\perp}$.

3. Заметим, что $S \subseteq (S^{\perp})^{\perp}$ (по определению).

$$\dim(S^{\perp})^{\perp} = n - \dim S^{\perp} = n - (n - \dim S) = \dim S.$$

Следовательно, $S = (S^{\perp})^{\perp}$.

23.6 Ортогональная проекция вектора на подпространство, ортогональная составляющая вектора относительно подпространства

$$S-\text{подпространство} \implies \mathbb{E} = S \oplus S^\perp$$

$$\forall v \in \mathbb{E} \ \exists! \ x \in S, y \in S^\perp, \text{ такие что } x+y=v.$$

Определение 92.

1. x называется ортогональной проекцией вектора v на подпространство S.

Обозначение: $x = \operatorname{pr}_S v$.

 $2. \ y$ называется ортогональной составляющей вектора v относительно подпространства S.

Обозначение: $y = \operatorname{ort}_S v$.

23.7 Формула для ортогональной проекции вектора на подпространство в терминах его ортогонального (ортонормированного) базиса

Пусть $S \subseteq \mathbb{E}$ — подпространство.

 e_1, \ldots, e_k — ортогональный базис в S.

Предложение. $\forall v \in \mathbb{E} \quad \operatorname{pr}_S v = \sum_{i=1}^k \frac{(v, e_i)}{(e_i, e_i)} e_i$.

В частности, если e_1,\ldots,e_k ортонормирован, то $\operatorname{pr}_S v = \sum_{i=1}^k (v,e_i)e_i$.

Доказательство. Пусть e_{k+1}, \ldots, e_n — ортогональный базис в S^{\perp} . Тогда e_1, \ldots, e_n — ортогональный базис в \mathbb{E} .

$$v = \underbrace{\sum_{i=1}^{k} \frac{(v, e_i)}{(e_i, e_i)}}_{\in S} e_i + \underbrace{\sum_{i=k+1}^{n} \frac{(v, e_i)}{(e_i, e_i)}}_{\in S^{\perp}} e_i.$$

Отсюда,

$$\operatorname{pr}_{S} v = \sum_{i=1}^{k} \frac{(v, e_{i})}{(e_{i}, e_{i})}.$$

Замечание. Свойство 2 из метода Грама-Шмидта говорит, что

$$f_i = e_i - \operatorname{pr}_{\langle f_1, \dots, f_{i-1} \rangle} e_i = \operatorname{ort}_{\langle f_1, \dots, f_{i-1} \rangle} e_i.$$

23.8 Явная формула для ортогональной проекции вектора на подпространство в \mathbb{R}^n , заданное своим базисом

Пусть $\mathbb{E} = \mathbb{R}^n$ со стандартным скалярным произведением.

 $S \subseteq \mathbb{E}$ — подпространство, a_1, \ldots, a_k — базис S.

Пусть
$$A := (a_1, \ldots, a_k) \in \operatorname{Mat}_{n \times k}(\mathbb{R}), A^{(i)} = a_i.$$

Предложение. $\forall v \in \mathbb{R}^n \quad \operatorname{pr}_S v = A(A^T A)^{-1} A^T v$.

Доказательство. Корректность: $A^TA = G(a_1, \dots, a_k) \in M_k^0(\mathbb{R})$.

Положим $x := \operatorname{pr}_S v, y := \operatorname{ort}_S v.$

Так как
$$x \in S, \ x = A \cdot \begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_k \end{pmatrix}, \ \alpha_i \in \mathbb{R}.$$
 $y \in S^\perp \implies A^T y = 0.$

$$A(A^{T}A)^{-1}A^{T}v = A(A^{T}A)^{-1}A^{T}(x+y)$$

$$= A(A^{T}A)^{-1}A^{T}A \begin{pmatrix} \alpha_{1} \\ \dots \\ \alpha_{k} \end{pmatrix} + A(A^{T}A)^{-1}A^{T}y$$

$$= A\begin{pmatrix} \alpha_{1} \\ \dots \\ \alpha_{k} \end{pmatrix} = x = \operatorname{pr}_{S} v.$$

23.9 Теорема Пифагора в евклидовом пространстве

Теорема 23.1. Пусть $x, y \in \mathbb{E}$, (x, y) = 0. Тогда $|x + y|^2 = |x|^2 + |y|^2$.

Доказательство.

$$|x+y|^2 = (x+y,x+y) = \underbrace{(x,x)}_{|x|^2} + \underbrace{(x,y)}_{0} + \underbrace{(y,x)}_{0} + \underbrace{(y,y)}_{|y|^2} = |x|^2 + |y|^2.$$

23.10 Расстояние между векторами евклидова пространства

Определение 93. *Расстояние* между векторами $x, y \in \mathbb{E}$ — это $\rho(x, y) = |x - y|$.

23.11 Неравенство треугольника

Предложение. $\forall a, b, c \in \mathbb{E} \implies \rho(a, b) + \rho(b, c) \geqslant \rho(a, c)$.

Доказательство. Пусть x = a - b, y = b - c. Тогда, a - c = x + y. Достаточно доказать, что $|x| + |y| \geqslant |x + y|$.

$$|x+y|^2 = |x|^2 + \underbrace{2(x,y)}_{\leq |x||y|} + |y|^2 \leq |x|^2 + 2|x||y| + |y|^2 = (|x| + |y|)^2.$$

23.12 Расстояние между двумя подмножествами евклидова пространства

Пусть $P,Q\subseteq \mathbb{E}$ — два подмножества.

Определение 94. Paccmoshue между P и Q — это

$$\rho(P,Q) := \inf_{x \in P, y \in Q} \rho(x,y).$$

23.13 Теорема о расстоянии от вектора до подпространства

Теорема 23.2. Пусть $x \in \mathbb{E}$, $S \subseteq \mathbb{E}$ — подпространство. Тогда, $\rho(x,S) = |\operatorname{ort}_S x|$, причем $\operatorname{pr}_S x$ — это ближайший κ x вектор из S.

Доказательство. Положим $y = \operatorname{pr}_S x$, $z = \operatorname{ort}_S x$. Тогда, x = y + z. Для любого $y' \in S$, $y' \neq 0$ имеем

$$\rho(x, y + y')^2 = |x - y - y'|^2 = |z - y'|^2 = |z|^2 + |y'|^2 > |z|^2 = |x - y|^2 = \rho(x, y)^2.$$

23.14 Псевдорешение несовместной системы линейных уравнений (метод наименьших квадратов)

СЛУ
$$Ax = b, A \in \text{Mat}_{m \times n}(\mathbb{R}), x \in \mathbb{R}^n, b \in \mathbb{R}^m$$
.

$$x_0$$
 — решение системы $\iff Ax_0 = b \iff Ax_0 - b = 0 \iff |Ax_0 - b| = 0 \iff \rho(Ax_0, b) = 0.$

Если СЛУ несовместна, то x_0 называется nceedopeumenuem, если $\rho(Ax_0,b)$ минимально.

$$\rho(Ax_0, b) = \min_{x \in R^n} \rho(Ax, b).$$

$$x_0$$
 — решение задачи оптимизации $\rho(Ax,b)\xrightarrow[x\in\mathbb{R}^n]{}$ min.

24 Лекция 12.03.2020

24.1 Метод наименьших квадратов для несовместных систем линейных уравнений: постановка задачи и её решение

Пусть $S\subseteq \mathbb{R}^n$ — подпространство натянутое на столбцы матрицы A. $S=\left\langle A^{(1)},\ldots,A^{(n)}\right\rangle$.

Положим $c := \operatorname{pr}_S b$.

Предложение.

- 1. x_0 псевдорешение $Ax=b\iff x_0$ решение для Ax=c.
- 2. Если столбцы $A^{(1)}, \dots, A^{(n)}$ линейно независимы, то псевдорешение единственно и может быть найдено по формуле $x_0 = (A^T A)^{-1} A^T b$.

24.2 Единственность псевдорешения и явная формула для него в случае линейной независимости столбцов матрицы коэффициентов

Доказательство.

1.

$$\forall x \in \mathbb{R}^n \quad Ax = x_1 A^{(1)} + \dots + x_n A^{(n)} \implies \{Ax \mid x \in \mathbb{R}^n\} = S \implies \min_{x \in \mathbb{R}^n} \rho(Ax, b) = \rho(S, b).$$

По теореме о расстоянии от вектора до подпространства минимум достигается при $Ax = c = \operatorname{pr}_S b$.

2. Так как $A^{(1)}, \dots, A^{(n)}$ линейно независимы, то c единственным образом представим в виде линейной комбинации этих столбцов.

Следовательно, x_0 единственно.

Знаем, что
$$A\underbrace{(A^TA)^{-1}A^Tb}=c.$$
 Значит, $x_0=(A^TA)^{-1}A^Tb.$

Пример. $\begin{cases} x = 0, \\ x = 1. \end{cases}$

Здесь
$$A = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, b = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Тогда,
$$x_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}^{-1} \begin{pmatrix} 1 \\ 1 \end{bmatrix}^{-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{2}.$$

Здесь должна была быть картинка, но мне лень. Пинать можно @darkkeks.

24.3 Формула для расстояния от вектора до подпространства в терминах матриц Грама

Пусть \mathbb{E} — евклидово пространство, $\dim \mathbb{E} = n < \infty$.

 $S \subseteq \mathbb{E}$ — подпространство, e_1, \ldots, e_k — базис в S.

Теорема 24.1.
$$\forall x \in \mathbb{E} \quad \rho(x,S)^2 = \frac{\det G(e_1,\ldots,e_k,x)}{\det G(e_1,\ldots,e_k)}.$$

Доказательство. Пусть $z:=\operatorname{ort}_S x$, тогда $\rho(x,S)^2=|z|^2$.

1. $x \in S \implies \rho(x, S) = 0$:

так как $e_1, ..., e_k$ линейно независимы, то $\det G(e_1, ..., e_k, x) = 0$.

 $2. \ x \notin S.$

Ортогонализация Грама-Шмидта: $e_1, \ldots, e_k, x \leadsto f_1, \ldots, f_k, z$.

По свойству ?? получаем

$$\frac{\det G(e_1,\ldots,e_k,x)}{\det G(e_1,\ldots,e_k)} = \frac{\det G(f_1,\ldots,f_k,z)}{\det G(f_1,\ldots,f_k)} = \frac{|f_1|^2 \ldots |f_k|^2 |z|^2}{|f_1|^2 \ldots |f_k|^2} = |z|^2 = \rho(x,S)^2.$$

24.4 к-мерный параллелепипед

Определение 95. k-мерный параллелепипеd, натянутый на векторы a_1, \ldots, a_k , это множество

$$P(a_1, \dots, a_k) := \left\{ \sum_{i=1}^k x_i a_i \mid 0 \leqslant x_i < 1 \right\}.$$

Основание: $P(a_1, \ldots, a_{k-1})$. Высота: $h := |\operatorname{ort}_{\langle a_1, \ldots, a_{k-1} \rangle} a_k|$.

 Π ример.

 $k=1 \;\; h=|a_1| \;$ здесь картинка, тоже лень :(

 $k=2\,$ основание — $P(a_1),\,$ высота — $h\,$ дада, люблю картинки делать

24.5 Объём к-мерного параллелепипеда в евклидовом пространстве

Определение 96. k-мерный объем k-мерного параллелепипеда $P(a_1, \ldots, a_k)$ — это величина $\operatorname{vol} P(a_1, \ldots, a_k)$, определяемая индуктивно:

$$k = 1 \implies \operatorname{vol} P(a_1) := |a_1|.$$

 $k > 1 \implies \operatorname{vol} P(a_1, \dots, a_k) := \operatorname{vol} P(a_1, \dots, a_{k-1}) \cdot h.$

24.6 Вычисление объёма k-мерного параллелепипеда при помощи определителя матрицы Грама задающих его векторов

Теорема 24.2. vol $P(a_1, \ldots, a_k)^2 = \det G(a_1, \ldots, a_k)$.

Доказательство. Индукция по k:

$$k=1: |a_1|^2=(a_1,a_1)$$
 — верно.

$$k > 1$$
: vol $P(a_1, \dots, a_k)^2 = \text{vol } P(a_1, \dots, a_{k-1})^2 \cdot h^2 = \det G(a_1, \dots, a_{k-1}) \cdot h^2 = (\star)$.

Если
$$a_1, \ldots, a_{k-1}$$
 линейно независимы, то $h^2 = \frac{\det G(a_1, \ldots, a_k)}{\det G(a_1, \ldots, a_{k-1})}$. Тогда, $(\star) = \det G(a_1, \ldots, a_k)$.

Если же a_1, \ldots, a_{k-1} линейно зависимы, то $\det G(a_1, \ldots, a_{k-1}) = 0 \implies (\star) = 0$. Но a_1, \ldots, a_k тоже линейно зависимы, а значит $\det G(a_1, \ldots, a_k) = 0$.

Следствие. vol $P(a_1,\ldots,a_k)$ не зависит от выбора основания.

 Π ример. Пусть a_1, \ldots, a_k ортогональны, тогда $P(a_1, \ldots, a_k)$ — «прямоугольный параллелепипед».

$$vol P(a_1, ..., a_k) = \sqrt{\det G(a_1, ..., a_k)} = \sqrt{|a_1|^2 ... |a_k|^2} = |a_1| ... |a_k|.$$

24.7 Формула для объёма n-мерного параллелепипеда в n-мерном евклидовом пространстве в терминах координат задающих его векторов в ортонормированном базисе

Пусть (e_1, \ldots, e_n) — ортонормированный базис в \mathbb{E} , $(a_1, \ldots, a_n) = (e_1, \ldots, e_n) \cdot A, A \in M_n(\mathbb{R}).$

Предложение. $\operatorname{vol} P(a_1, \ldots, a_n) = |\det A|$.

Доказательство.

$$G(a_1, \dots, a_n) = A^T \cdot A \implies \operatorname{vol} P(a_1, \dots, a_n)^2 = \det(A^T A) = (\det A)^2$$

24.8 Отношение одинаковой ориентированности на множестве базисов евклидова пространства

Пусть
$$e = (e_1, \dots, e_n)$$
 и $e' = (e'_1, \dots, e'_n)$ — два базиса в \mathbb{E} . $(e'_1, \dots, e'_n) = (e_1, \dots, e_n) \cdot C, C \in M_n^0(\mathbb{R}).$

Определение 97. Говорят, что e и e' одинаково ориентированы, если $\det C > 0$.

Упражнение.

- 1. Отношение одинаковой ориентированности является отношением эквивалентности на множестве всех базисов в Е.
- 2. Имеется ровно 2 класса эквивалентности.

24.9 Ориентация в евклидовом пространстве

Определение 98. Говорят, что в \mathbb{E} задана ориентация, если все базисы одного класса объявлены положительно ориентированными, а все базисы другого класса объявлены отрицательно ориентированными.

Пример. Стандартный выбор ориентации в \mathbb{R}^3 :

Положительно ориентированные: «правые» тройки.

Отрицательно ориентированные: «левые» тройки.

Тут показывать надо, но попробую описать словами: берем правую руку, и нумеруем пальцы начиная с большого (большой — первый вектор, указательный — второй, средний — третий). Такую тройку векторов назовём «правой». Аналогично можно сделать для левой руки. Суть в том, что никакую правую тройку векторов невозможно перевести в левую непрерывным преобразованием (так чтобы в процессе тройка оставалось базисом).

24.10 Ориентированный объём n-мерного параллелепипеда в n-мерном евклидовом пространстве

Фиксируем ориентацию в \mathbb{E} .

Фиксируем положительно ориентированный ортонормированный базис $e = (e_1, \dots, e_n)$ в \mathbb{E} .

Пусть $a_1, \ldots, a_n \in \mathbb{E}, (a_1, \ldots, a_n) = (e_1, \ldots, e_n) \cdot A.$

Определение 99. Ориентированным объемом параллелепипеда $P(a_1, \ldots, a_n)$ называется величина

$$Vol(a_1,\ldots,a_n) = \det A.$$

Предложение. Vol $P(a_1, \ldots, a_n)$ определён корректно, то есть не зависит от выбора положительно ориентированного ортонормированного базиса в \mathbb{E} .

Доказательство. Пусть \mathfrak{E}' — другой положительно ориентированный ортонормированный базис, тогда $\mathfrak{E}' = \mathfrak{E}C$, где C — ортогональная матрица. В частности, $\det C = \pm 1$. Так как \mathfrak{E} и \mathfrak{E}' одинаково ориентированны, то $\det C = 1$. Тогда,

$$(a_1,\ldots,a_n)=(e'_1,\ldots,e'_n)\cdot C^{-1}\cdot A\implies \operatorname{Vol}(a_1,\ldots,a_n)_{\operatorname{новый}}=\det\left(C^{-1}A\right)=\det A=\operatorname{Vol}(a_1,\ldots,a_n)_{\operatorname{старый}}.$$

Свойства ориентированного объема:

- 1. $Vol(a_1, \ldots, a_n)$ линеен по каждому аргументу.
- 2. $Vol(a_1, \ldots, a_n)$ кососимметрична (то есть меняет знак при перестановке любых двух аргументов).
- 3. $Vol(a_1,\ldots,a_n)>0\iff (a_1,\ldots,a_n)$ положительно ориентированный базис в \mathbb{E} .
- 4. $\operatorname{Vol}(a_1,\ldots,a_n) < 0 \iff (a_1,\ldots,a_n)$ отрицательно ориентированный базис в \mathbb{E} .
- 5. $\operatorname{Vol}(a_1,\ldots,a_n)=0 \iff (a_1,\ldots,a_n)$ линейно зависимы.

25 Лекция 19.03.2020

Записки с лекции

Лемма 25.1. Пусть $v_1, v_2 \in \mathbb{E}$. Тогда, $(v_1, x) = (v_2, x) \ \forall x \in \mathbb{E} \implies v_1 = v_2$.

Доказательство. Имеем $(v_1 - v_2, x) = 0 \ \forall x \in \mathbb{E}$. Тогда, $v_1 - v_2 \in \mathbb{E}^{\perp} = \{0\} \implies v_1 - v_2 = 0 \implies v_1 = v_2$.

25.1 Трёхмерное евклидово пространство

Теорема 25.2. Пусть $a, b \in \mathbb{R}^3$. Тогда

- 1. $\exists ! v \in \mathbb{E}$, такой что $(v, x) = \operatorname{Vol}(a, b, x) \quad \forall x \in \mathbb{R}^3$.
- 2. Если $e = (e_1, e_2, e_3)$ положительно ориентированный ортонормированный базис $u = a_1e_1 + a_2e_2 + a_3e_3$, то $b = b_1e_1 + b_2e_2 + b_3e_3$

$$v = \begin{vmatrix} e_1 & e_2 & e_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} := \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} e_1 - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} e_2 + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} e_3. \tag{\star}$$

Доказательство.

Единственность если v' — другой такой вектор, то $(v,x) = (v',x) \ \forall x \in \mathbb{R}^3$, а значит v' = v по лемме.

Существование Покажем, что v, заданный формулой (\star) подойдёт.

$$x = x_1 e_1 + x_2 e_2 + x_3 e_3 \implies (v, x) = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} x_1 - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} x_2 + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} x_3$$

$$= \begin{vmatrix} x_1 & x_2 & x_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ x_1 & x_2 & x_3 \end{vmatrix} = \operatorname{Vol}(a, b, x).$$

25.2 Векторное произведение, его выражение в координатах

Определение 100. Вектор v из теоремы выше называется векторным произведением векторов a и b. Обозначение: [a,b] или $a \times b$.

25.3 Смешанное произведение трёх векторов, его свойства

Определение 101. $\forall a,b,c \in \mathbb{E}$ число (a,b,c) := ([a,b],c) называется *смешанным произведением* векторов a,b,c.

Замечание. Из теоремы видно, что (a, b, c) = Vol(a, b, c).

Свойства смешанного произведения.

1. $(a,b,c)>0\iff a,b,c$ — положительно ориентированный базис, $(a,b,c)<0\iff a,b,c$ — отрицательно ориентированный базис.

Критерий компланарности (= линейной зависимости)

$$a,b,c$$
 компланарны $\iff (a,b,c)=0.$

- 2. Линейность по каждому аргументу.
- 3. Кососимметричность (меняет знак при перестановке любых двух векторов).
- 4. Если e_1, e_2, e_3 положительно ориентированный ортонормированный базис, то

$$\begin{vmatrix} a = a_1e_1 + a_2e_2 + a_3e_3 \\ b = b_1e_1 + b_2e_2 + b_3e_3 \\ c = c_1e_1 + c_2e_2 + c_3e_3 \end{vmatrix} \implies (a, b, c) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

25.4 Критерий коллинеарности двух векторов в терминах векторного произведения

Предложение. $a,b \in \mathbb{E}$ коллинеарны $\iff [a,b] = 0.$

Доказательство.

 \Longrightarrow

$$(a,b,x) = 0 \ \forall x \implies ([a,b],x) = 0 \ \forall x \implies [a,b] = 0.$$

 \leftarrow

$$[a,b] = 0 \implies ([a,b],x) = 0 \ \forall x \implies (a,b,x) = 0 \ \forall x \in \mathbb{R}^3.$$

Если a, b линейно независимы, то можно взять x, который дополняет их до базиса в \mathbb{R}^3 .

Тогда, $(a, b, x) \neq 0$ — противоречие. Значит a, b линейно зависимы \implies коллинеарны.

25.5 Геометрические свойства векторного произведения

Предложение.

- 1. $[a,b] \perp \langle a,b \rangle$.
- 2. $|[a, b]| = \operatorname{vol} P(a, b)$.
- 3. $Vol(a, b, [a, b]) \ge 0$.

Доказательство.

- 1. ([a,b],a) = (a,b,a) = 0 = (a,b,b) = ([a,b],b).
- 2. Если $a,\,b$ коллинеарны, то обе части равны 0.

Пусть $[a, b] \neq 0$.

$$\begin{split} \left| [a,b] \right|^2 &= ([a,b],[a,b]) = (a,b,[a,b]) = (\#) > 0. \\ [a,b] \perp \langle a,b \rangle \implies (\#) &= \operatorname{vol} P(a,b,[a,b]) = \operatorname{Vol}(a,b,[a,b]) = \operatorname{vol} P(a,b,) \cdot \left| [a,b] \right|. \end{split}$$

Сокращая на $|[a,b]| \neq 0$, получаем требуемое.

3.
$$Vol(a, b, [a, b]) = ([a, b], [a, b]) \ge 0.$$

Упражнение. [a,b] однозначно определяется свойствами 1)-3).

25.6 Антикоммутативность и билинейность векторного произведения

Пример. Пусть e_1, e_2, e_3 — положительно ориентированный ортонормированный базис в \mathbb{R}^3 .

$[e_i, e_j]$	e_1	e_2	e_3
e_1	0	e_3	$-e_2$
e_2	$-e_3$	0	e_1
e_3	e_2	$-e_1$	0

Предложение.

- 1. $[a, b] = -[b, a] \quad \forall a, b \text{ (антикоммутативность)}.$
- 2. [•,•] билинейно (то есть линейно по каждому аргументу).

Доказательство.

1.
$$([a,b],x) = (a,b,x) = -(b,a,x) = -([b,a],x) = (-[b,a],x) \quad \forall x \in \mathbb{R}^3 \implies [a,b] = -[b,a]$$

2. Пусть
$$u = [\lambda_1 a_1 + \lambda_2 a_2, b], v = \lambda_1 [a_1, b] + \lambda_2 [a_2, b].$$
 Тогда $\forall x \in \mathbb{R}^3$:

$$(u, x) = (\lambda_1 a_1 + \lambda_2 a_2, b, x)$$

$$= \lambda_1(a_1, b, x) + \lambda_2(a_2, b, x)$$

$$= \lambda_1([a_1, b], x) + \lambda_2([a_2, b], x)$$

$$= (\lambda_1[a_1, b] + \lambda_2[a_2, b], x) = (v, x).$$

Значит u = v. Аналогично линейность по второму аргументу.

25.7 Линейные многообразия в \mathbb{R}^n

Определение 102. Линейное многообразие в \mathbb{R}^n — это множество решений некоторой совместной СЛУ.

25.8 Характеризация линейных многообразий как сдвигов подпространств

Пусть Ax=b- СЛУ, $\varnothing\neq L\subseteq\mathbb{R}^n-$ множество решений, $x_z\in L-$ частное решение. Было: Лемма: $L=x_z+S$, где S- множество решений ОСЛУ Ax=0.

Предложение. Множество $L \subseteq \mathbb{R}^n$ является линейным многообразием $\iff L = v_0 + S$ для некоторых $v_0 \in \mathbb{R}^n$ и подпространства $S \subseteq \mathbb{R}^n$.

Доказательство.

- ⇒ Из леммы.
- $\longleftarrow L = v_0 + S$. Значит существует ОСЛУ Ax = 0, для которой S является множеством решений. Тогда, L множество решений СЛУ $Ax = Av_0$ (по лемме).

25.9 Критерий равенства двух линейных многообразий

Предложение. Пусть $L_1=v_1+S_1$ и $L_2=v_2+S_2$ — два линейных многообразия в \mathbb{R}^n . Тогда,

$$L_1 = L_2 \iff \begin{cases} S_1 = S_2 \ (=S) \\ v_1 - v_2 \in S \end{cases}.$$

Доказательство.

$$\longleftarrow L_1 = v_1 + S_1 = v_1 + S_2 = v_2 + (v_1 - v_2) + S = v_2 + S = L_2.$$

$$\implies v_1=v_1+0\in L_1=L_2=v_2+S_2\implies v_1-v_2\in S_2,$$

$$v\in S_1\implies v+v_1\in L_1=L_2=v_2+S_2\implies v\in (v_2-v_1)+S_2=S_2\implies S_1\subseteq S_2.$$
 Аналогично, $v_1-v_2\in S_1$ и $S_2\subseteq S_1$.

25.10 Направляющее подпространство и размерность линейного многообразия

Если L — линейное многообразие, то $L = v_0 + S$, где S определено однозначно.

Определение 103. S называется направляющим подпространством линейного многообразия L.

Определение 104. *Размерностью* линейного многообразия называется размерность его направляющего подпространства.

26 Лекция 09.04.2020

Если у вас ощущение, что в конспекте баг, можете проверить снимок доски и/или запись.

Теорема о плоскости, проходящей через любые k+1 точек в \mathbb{R}^n , следствия для 26.1двух и трёх точек

Теорема 26.1.

- а) Через любые k+1 точек в \mathbb{R}^n проходит плоскость размерности $\leqslant k$.
- b) Если это точки не лежат в плоскости размерности < k, то через них проходит ровно одна плоскость размерности k.

Доказательство.

- а) Пусть v_0, v_1, \dots, v_k данные точки. Тогда через них проходит плоскость $P = v_0 + \langle v_1 v_0, \dots, v_k v_0 \rangle$. Ясно, что dim $P \leq k$.
- b) Из условия следует, что $\dim P = k \implies v_1 v_0, \dots, v_k v_0$ линейно независимы. Если $P'=v_0+S$ — другая плоскость размерности k, содержащая v_0,\ldots,v_k , то $v_1-v_0,\ldots,v_k-v_0\in S\implies S=0$ $\langle v_1 - v_0, \dots, v_k - v_0 \rangle \implies P' = P.$

Следствие.

- 1. Через любые две различные точки проходит ровно одна прямая.
- 2. Через любые три точки, не лежащие на одной прямой, проходит ровно одна плоскость.

Понятия репера и аффинной системы координат на линейном многообразии 26.2

Пусть $L \subseteq \mathbb{R}^n$ — линейное многообразие, S — его направляющее подпространство, (e_1, \dots, e_k) — базис $S, v_0 \in L$.

Определение 105. Набор (v_0, e_1, \dots, e_k) называется репером линейного многообразия L. Всякий репер (v_0, e_1, \dots, e_k) задает на L аффинную систему координат. $\forall v \in L \exists !$ набор $(\alpha_1, \ldots, \alpha_k) \in \mathbb{R}^k$, такой что $v = v_0 + \alpha_1 e_1 + \cdots + \alpha_k e_k$. $(\alpha_1,\ldots,\alpha_k)$ называется координатами точки v в репере (v_0,e_1,\ldots,e_k) .

Случаи взаимного расположения двух линейных многообразий в \mathbb{R}^2 и \mathbb{R}^3 : совпадают, одно содержится в другом, параллельны, скрещиваются

Пусть L_1, L_2 — два линейных многообразия.

 $L_1 \cap L_2 \neq \varnothing \implies L_1 \cap L_2$ — тоже линейное многообразие.

Пусть S_i — направляющее подпространство для L_i , i = 1, 2.

$$L_1 \cap L_2 \neq \emptyset$$
1. $L_1 - L_2 \iff S_1 - S_2$

$$L_1 \cap L_2 = \varnothing$$

- 3. Остальные.

3. Остальные.

26.4 Прямые в \mathbb{R}^2 : различные способы задания, уравнение прямой, проходящей через две различные точки

Способы задания:

1.
$$Ax + By = C$$
 $(A, B) \neq (0, 0)$ — нормаль.

- 2. векторное уравнение $(v v_0, n) = 0$, где n нормаль.
- 3. параметрическое уравнение $v = v_0 + at$, где a направляющий вектор.

$$\begin{cases} x = x_0 + a_1 t, & a = (a_1, a_2) \\ y = y_0 + a_2 t, & v_0 = (x_0, y_0) \end{cases}$$

$$\begin{vmatrix} x - x_0 & y - y_0 \\ x_1 - x_0 & y_1 - y_0 \end{vmatrix} = 0 \qquad \frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0} \qquad x_1 = x_0 \implies x = x_0, \\ y_1 = y_0 \implies y = y_0.$$

Плоскости в \mathbb{R}^3 : различные способы задания, уравнение плоскости, проходящей 26.5через три точки, не лежащие на одной прямой

Способы задания:

- 1. Ax + By + Cz = D $(A, B, C) \neq (0, 0, 0)$ — нормаль.
- 2. векторное уравнение $(v v_0, n) = 0$.
- 3. параметрическое уравнение $v = v_0 + at + bs$, где a, b направляющие векторы (базис в направляющем подпространстве).

Уравнение плоскости, проходящей через 3 точки, не лежащие на одной прямой $(x_0, y_0, z_0), (x_1, y_1, z_1), (x_2, y_2, z_2)$

$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ x_1 - x_0 & y_1 - y_0 & z_1 - z_0 \\ x_2 - x_0 & y_2 - y_0 & z_2 - z_0 \end{vmatrix} = 0.$$

Прямые в \mathbb{R}^3 : различные способы задания, уравнение прямой, проходящей через 26.6 две различные точки

Способы задания:

1.
$$\begin{cases} A_1x + B_1y + C_1z = D_1, \\ A_2x + B_2y + C_2z = D_2 \end{cases} \text{ rk} \begin{pmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{pmatrix} = 2$$

$$\operatorname{rk} \begin{pmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{pmatrix} = 2$$

2. векторное уравнение $[v-v_0,a]=0$, где $v-v_0$ — точка, a — направляющий вектор.

3. параметрическое уравнение $v = v_0 + at$.

$$v_0 = (x_0, y_0, z_0) \\ a = (a_1, a_2, a_3) \longrightarrow \begin{cases} x = x_0 + a_1 t, \\ y = y_0 + a_2 t, \\ z = z_0 + a_3 t. \end{cases}$$

$$\boxed{\frac{x - x_0}{a_1} = \frac{y - y_0}{a_2} = \frac{z - z_0}{a_3}}$$

 $v_0 = (x_0, y_0, z_0) \\ a = (a_1, a_2, a_3) \longrightarrow \begin{cases} x = x_0 + a_1 t, \\ y = y_0 + a_2 t, \\ z = z_0 + a_3 t. \end{cases} \Longleftrightarrow \boxed{\frac{x - x_0}{a_1} = \frac{y - y_0}{a_2} = \frac{z - z_0}{a_3}}$ — каноническое уравнение прямой Если, например $a_1 = 0$, то пишут $\begin{cases} \frac{y - y_0}{a_2} = \frac{z - z_0}{a_3} \\ x = x_0 \end{cases}$

Уравнение прямой, проходящей через (x_0, y_0, z_0) и (x_1, y_1, z_1)

$$\frac{x-x_0}{x_1-x_0} = \frac{y-y_0}{y_1-y_0} = \frac{z-z_0}{z_1-z_0}.$$

Взаимное расположение двух плоскостей, двух прямых, прямой и плоскости

26.7.1Двух плоскостей

- 1. Совпадают.
- 2. Параллельны.
- 3. Пересекаются по прямой.

$$1), 2) \iff [u_1, u_2] = \overrightarrow{0}.$$

26.7.2 Двух прямых

- 1. Совпадают.
- 2. Параллельны.
- 3. Пересекаются в точке.
- 4. Скрещиваются.

1), 2)
$$\iff$$
 $[a_1, a_2] = \overrightarrow{0}$

1), 2)
$$\iff$$
 $[a_1, a_2] = \overrightarrow{0}$.
1), 2), 3) \iff $(a_1, a_2, v_1 - v_2) = 0$.

26.7.3 Прямой и плоскости

Пусть l — прямая, P — плоскость.

- 1. $l \subseteq P$.
- $2. l \parallel P.$
- 3. Пересекаются в точке.

1), 2)
$$\iff$$
 $(a, n) = 0$.

27 Лекция 11.04.2020

Если у вас ощущение, что в конспекте баг, можете проверить снимок доски, запись и слайды.

27.1 Метрические задачи в \mathbb{R}^3

27.1.1 Расстояния от точки v до прямой $l = v_0 + at$

$$\rho(v, l) = \frac{|[v - v_0, a]|}{|a|}$$

27.1.2 Расстояние от точки v до плоскости P с направляющей нормалью n и направляющим подпространством S ($S=n^{\perp}$)

$$\rho(v, P) = |\operatorname{ort}_S(v - v_0)| = \left| \operatorname{pr}_{\langle n \rangle}(v - v_0) \right| = \left| \frac{(v - v_0, n)}{(n, n)} n \right| = \frac{|(v - v_0, n)|}{|n|}.$$

27.1.3 Расстояние между двумя скрещивающимися прямыми $l_1 = v_1 + a_1 t$ и $l_2 = v_2 + a_2 t$

$$p_1 = v_1 + \langle a_1, a_2 \rangle$$

$$p_2 = v_2 + \langle a_1, a_2 \rangle$$

$$\rho(l_1, l_2) = \rho(p_1, p_2)$$

$$\rho(l_1, l_2) = \frac{|(a_1, a_2, v_1 - v_2)|}{|[a_1, a_2]|}$$

27.1.4 Угол между прямой l с направляющим вектором a и плоскостью P с нормалью n

$$\angle(l,P) = \frac{\pi}{2} - \min\left(\angle(a,n), \angle(a,-n)\right)$$

Tal m

 ${f 27.1.5}$ Угол между двумя прямыми l_1 с направляющим вектором a_1 и l_2 с направляющим вектором a_2

$$\angle(l_1, l_2) = \min(\angle(a_1, a_2), \angle(a_1, -a_2)).$$

27.1.6 Угол между двумя плоскостями P_1 с нормалью n_1 и P_2 с нормалью n_2

$$\angle(P_1, P_2) = \min(\angle(n_1, n_2), \angle(n_1, -n_2)).$$

27.2 Линейные операторы

Пусть V — векторное пространство над F, dim V = n.

Определение 106. Линейным оператором (или линейным преобразованием) на/в V называется всякое линейное отображение $\varphi \colon V \to V$ (то есть из V <u>в себя</u>).

L(V) := Hom(V, V) — все линейные операторы на/в V.

27.3 Матрица линейного оператора в фиксированном базисе

Пусть $\varphi \in L(V)$, $e = (e_1, \dots, e_n)$ — базис V.

Тогда, $(\varphi(e_1), \ldots, \varphi(e_n)) = (e_1, \ldots, e_n) \cdot A, \quad A \in M_n(F).$

А называется матрицей линейного оператора в базисе с.

Обозначение: $A(\varphi, e)$.

В столбце $A^{(j)}$ записаны координаты вектора $\varphi(e_j)$ в базисе $\mathfrak e$.

27.4 Примеры линейных операторов

1. (скалярный оператор) $\lambda \in F \leadsto \varphi = \lambda \cdot \mathrm{Id}$.

$$\varphi(v) = \lambda \cdot v$$
 для всех $v \in V$.

Для любого базиса e имеем $A(\varphi, e) = \lambda \cdot E$.

2. $V = \mathbb{R}^2$, φ — поворот на угол α (вокруг 0)

 $e = (e_1, e_2)$ положительно ориентированный ортонормированный базис $\implies A(\varphi, e) = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$.

3. $V=F[x]_{\leqslant n},\, \varphi\colon f\mapsto f'$ (отображение дифференцирования)

(при $F \neq \mathbb{R}$ полагают по определению $x^k \mapsto kx^{k-1}, k = 0, \dots, n$)

Если
$$\mathbf{e}=(1,x,x^2,\ldots,x^n),$$
 то $A(\varphi,\mathbf{e})=\begin{pmatrix} 0 & 1 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 2 & 0 & \ldots & 0 \\ 0 & 0 & 0 & 3 & \ldots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \ldots & n \\ 0 & 0 & 0 & 0 & \ldots & n \end{pmatrix}.$

27.5 Следствия общих фактов о линейных отображениях

- 1. е базис $V \implies$ отображение $\mathrm{L}(V) \to M_n(F), \ \varphi \mapsto A(\varphi, \mathrm{e}),$ является изоморфизмом векторных пространств. В частности:
 - а) φ однозначно определяется своей матрицей в любом базисе.
 - b) Если е фиксированный базис V, то $\forall A \in M_n(F) \exists ! \varphi \in L(V) : A(\varphi, e) = A$.
- 2. $\varphi \in L(V)$, $e = (e_1, \dots, e_n)$ базис $V, A = A(\varphi, e)$,

$$\begin{cases} v = x_1 e_1 + \dots + x_n e_n \\ \varphi(v) = y_1 e_1 + \dots + y_n e_n \end{cases} \implies \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix} = A \cdot \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}$$

3. e' — другой базис $V, e' = e \cdot C, C \in M_n^0(F)$

$$A = A(\varphi, e), A' = A(\varphi, e') \implies A' = C^{-1}AC.$$

Следствия из 3:

- а) $\det A$ не зависит от выбора базиса $(\det(C^{-1}AC) = \det A)$.
- b) $\operatorname{tr} A$ не зависит от выбора базиса $(\operatorname{tr}(C^{-1}AC) = \operatorname{tr}(ACC^{-1}) = \operatorname{tr} A)$.

27.6 Инвариантность определителя и следа матрицы линейного оператора относительно замены базиса

Замечание. $\det A$ и $\operatorname{tr} A$ являются инвариантами самого линейного оператора φ .

Обозначаются: $\det \varphi$, $\operatorname{tr} \varphi$.

27.7 Подобные матрицы, отношение подобия на множестве квадратных матриц фиксированного порядка

Определение 107. Матрицы $A, A' \in M_n$ называются *подобными*, если $\exists C \in M_n^0(F)$, такая что $A' = C^{-1}AC$.

Замечание. Отношение подобия является отношением эквивалентности на $M_n(F)$.

 $M_n(F)$ разбивается на классы подобных матриц.

27.8 Критерий обратимости линейного оператора в терминах его ядра, образа и определителя

Пусть $\varphi \in L(V)$.

Предложение. Следующие условия эквивалентны:

- 1. $\ker \varphi = \{0\}.$
- 2. Im $\varphi = V$.
- 3. φ обратима (то есть φ изоморфизм V на себя).
- 4. $\det \varphi \neq 0$.

Доказательство.

- 1) \iff 2) так как $\dim V = \dim \ker \varphi + \dim \operatorname{Im} \varphi$.
- $1)\&2) \iff 3$
- 2) \iff 4) Im $\varphi = V \iff \operatorname{rk} \varphi = \dim V \iff \det \varphi \neq 0$.

Определение 108. Линейный оператор $\varphi \in L(V)$ называется *вырожденным*, если $\det \varphi = 0$, *невырожденным*, если $\det \varphi \neq 0$.

27.9 Подпространства, инвариантные относительно линейного оператора

Определение 109. Подпространство $U \subseteq V$ называется инвариантным относительно φ (или φ -инвариантным), если $\varphi(U) \subseteq U$ (то есть $\varphi(u) \in U \ \forall u \in U$).

В этой ситуации корректно определён линейный оператор $\varphi\Big|_U:U\to U,\,u\mapsto \varphi(u)$ называется ограничением φ на инвариантное подпространство U.

27.10 Примеры

- 1. Подпространства $\{0\}$ и V всегда φ -инвариантны.
- 2. $\ker \varphi \varphi$ -инвариантно, так как $\varphi(\ker \varphi) = \{0\} \subseteq \ker \varphi$.
- 3. $\operatorname{Im} \varphi \varphi$ -инвариантно, так как $\varphi(\operatorname{Im} \varphi) \subseteq \varphi(V) = \operatorname{Im} \varphi$.

27.11 Наблюдения

Пусть $\varphi \in L(V)$.

1. Пусть $U \subseteq V - \varphi$ -инвариантное подпространство, (e_1, \dots, e_k) — базис U, дополним его до базиса (e_1, \dots, e_n) всего V.

Тогда $A(\varphi, e)$ имеет вид

$$\begin{array}{ccc}
k & n-k \\
k & A & B \\
n-k & 0 & C
\end{array}
\right).$$
(3)

При этом $A\left(\varphi\big|_{U}, (e_1, \dots, e_k)\right) = A.$

Если $U = \ker \varphi \implies A = 0$,

$$U = \operatorname{Im} \varphi \implies C = 0.$$

Обратно, если для некоторого базиса $e = (e_1, \dots, e_k)$ $A(\varphi, e)$ имеет вид (3), то векторы e_1, \dots, e_k порождают φ -инвариантное подпространство.

2. Аналогично: e_{k+1}, \ldots, e_n порождают φ -инвариантное подпространство $\iff A(\varphi, \mathbf{e})$ имеет вид

$$\begin{array}{ccc} k & n-k \\ k & A & 0 \\ n-k & B & C \end{array} \right).$$

3. Пусть $U_1,U_2\subseteq V$ — два φ -инвариантных подпространства, такие что $V=U_1\oplus U_2$. Пусть (e_1,\ldots,e_k) — базис $U_1,\,(e_{k+1},\ldots,e_n)$ — базис U_2 . Тогда, $\mathfrak{e}=(e_1,\ldots,e_n)$ — базис V и $A(\varphi,\mathfrak{e})$ имеет вид

$$\begin{array}{ccc}
k & n-k \\
k & \begin{pmatrix} \star & 0 \\
0 & \diamond \end{pmatrix}.
\end{array}$$

4. $A(\varphi, e)$ имеет блочно-диагональный вид

Тогда и только тогда, когда подпространства U_1,\dots,U_s φ -инвариантны, где $U_1=\langle e_1,\dots e_{k_1}\rangle$

$$U_2 = \langle e_{k_1+1}, \dots, e_{k_2} \rangle$$

 \vdots $U_s = \langle e_{n-k_s+1}, \dots, e_n \rangle$

Предел мечтаний: найти такой базис є, что $A(\varphi, \varepsilon)$ диагональна.

К сожалению, это не всегда возможно.

28 Лекция 16.04.2020

Если у вас ощущение, что в конспекте баг, можете проверить снимок доски, запись и слайды.

28.1 Собственные векторы, собственные значения и спектр линейного оператора Определение 110.

- 1. Вектор $v \in V$ называется собственным для φ , если $v \neq 0$ и $\varphi(v) = \lambda v$ для некоторого $\lambda \in F$.
- 2. Элемент $\lambda \in F$ называется собственным значением для φ , если $\exists v \in V$, такой что $v \neq 0$ и $\varphi(v) = \lambda v$.

Множество всех собственных значений линейного оператора называется его cnempom и обозначается $Spec \varphi$.

В ситуации $\varphi(v) = \lambda v, v \neq 0$ говорят, что

- v является собственным вектором, отвечающим собственному значению $\lambda.$
- λ является собственным значением, отвечающим собственному вектору v.

Примеры

- 1. $\varphi = \lambda \cdot \operatorname{Id}$ скалярный оператор \Longrightarrow всякий вектор $v \neq 0$ является собственным с собственным значением λ . $\operatorname{Spec} \varphi = \{\lambda\}.$
- 2. $V=\mathbb{R}^2,\, \varphi$ ортогональная проекция на прямую $l\ni 0.$

Собственные векторы:

$$0 \neq v \in l \implies \varphi(v) = 1 \cdot v \implies \lambda = 1$$
$$0 \neq v \in l^{\perp} \implies \varphi(v) = 0 = 0 \cdot v \implies \lambda = 0$$
$$\operatorname{Spec} \varphi = \{0, 1\}.$$

3. $V=\mathbb{R}^2,\, \varphi$ — поворот на угол $\alpha\neq\pi k$. $(\alpha=2\pi k\implies\varphi=\mathrm{Id};\quad \alpha=\pi+2\pi k\implies\varphi=-\mathrm{Id})$ Собственных векторов нет.

$$\operatorname{Spec} \varphi = \varnothing$$
.

4. $V = F[x]_{\leq n}$, $\varphi \colon f \mapsto f'$. $0 \neq f \in V$ — собственный вектор \iff $\deg f = 0$, при этом $\varphi(f) = 0 = 0 \cdot f \implies \lambda = 0$. Spec $\varphi = \{0\}$.

Предложение. $v \in V \setminus \{0\}$ — собственный вектора для $\varphi \iff \langle v \rangle - \varphi$ -инвариантное подпространство.

Доказательство.

$$\implies \varphi(v) = \lambda v \implies \varphi(\mu v) = \mu \varphi(v) = \mu \lambda v \in \langle v \rangle \implies \langle v \rangle \text{ φ-инвариантно.}$$

$$\iff \varphi(v) \in \langle v \rangle \implies \exists \lambda \in F : \varphi(v) = \lambda v.$$

28.2 Диагонализуемые линейные операторы

Определение 111. Линейный оператор φ называется *диагонализуемым*, если существует базис в V, в котором матрица линейного оператора φ диагональна.

28.3 Критерий диагонализуемости линейного оператора в терминах собственных векторов

Предложение. Линейный оператор φ диагонализуем \iff в V есть базис из собственных векторов.

Доказательство. Пусть $e = (e_1, \ldots, e_n)$ — базис V.

$$A(\varphi, \mathbf{e}) = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix} \iff \varphi(e_i) = \lambda_i e_i \ \forall i = 1, \dots, n \iff \text{все } e_i - \text{собственные векторы для } \varphi$$

Примеры

- 1. $\varphi = \lambda \cdot \mathrm{Id}$ скалярный оператор $v \in V \setminus \{0\} \implies v$ собственный вектор.
 - φ диагонализуем: любой базис состоит из собственных векторов.
- 2. $V = \mathbb{R}^2$, φ ортогональная проекция на прямую $l \ni 0$.

Собственные векторы: $v \in l \setminus \{0\}$ или $v \in l^{\perp} \setminus \{0\}$.

- φ диагонализуем: $e_1 \in l \setminus \{0\}, e_2 \in l^{\perp} \setminus \{0\} \implies (e_1, e_2)$ базис из собственных векторов.
- 3. $V = \mathbb{R}^2$, φ поворот на угол $\alpha \neq \pi k$.

Собственных векторов нет $\implies \varphi$ не диагонализуем.

4. $V = F[x]_{\leq n}, \varphi \colon f \mapsto f'$.

 $0 \neq f \in V$ — собственный вектор \iff deg f = 0.

Собственных векторов «мало»: φ диагонализуем $\iff n=0$.

28.4 Собственное подпространство, отвечающее фиксированному собственному значению линейного оператора

Пусть
$$\varphi \in L(V)$$
, $\lambda \in F$. $V_{\lambda}(\varphi) := \{ v \in V \mid \varphi(v) = \lambda v \}.$

Упражнение. $V_{\lambda}(\varphi)$ — подпространство в V.

Лемма 28.1. $V_{\lambda}(\varphi) \neq \{0\} \iff \lambda \in \operatorname{Spec} \varphi$.

Доказательство. Следует из определения.

Определение 112. $\lambda \in \operatorname{Spec} \varphi \implies V_{\lambda}(\varphi)$ называется собственным подпространством линейного оператора φ , отвечающим собственному значению λ .

Замечание. $V_{\lambda}(\varphi)$ φ -нивариантно, $\varphi\Big|_{V_{\lambda}(\varphi)} = \lambda \cdot \operatorname{Id}\Big|_{V_{\lambda}(\varphi)}$.

Предложение. $\forall \lambda \in F \quad V_{\lambda}(\varphi) = \ker(\varphi - \lambda \cdot \mathrm{Id}).$

Доказательство. $v \in V_{\lambda}(\varphi) \iff \varphi(v) = \lambda v \iff \varphi(v) - \lambda v = 0 \iff (\varphi - \lambda \cdot \operatorname{Id})v = 0 \iff v \in \ker(\varphi - \lambda \cdot \operatorname{Id}).$

Следствие. $\lambda \in \operatorname{Spec} \varphi \iff \det(\varphi - \lambda \cdot \operatorname{Id}) = 0.$

Доказательство. $\lambda \in \operatorname{Spec} \varphi \iff V_{\lambda}(\varphi) \neq \{0\} \iff \ker(\varphi - \lambda \cdot \operatorname{Id}) \neq \{0\} \iff \det(\varphi - \lambda \cdot \operatorname{Id}) = 0.$

28.5 Характеристический многочлен линейного оператора

Определение 113. Многочлен $\chi_{\varphi}(t) := (-1)^n \det(\varphi - t \cdot \operatorname{Id}) \in F[t]$ называется характеристическим многочленом линейного оператора φ .

28.6 Связь спектра линейного оператора с его характеристическим многочленом

Если е — какой-либо базис V и $A = (a_{ij}) = A(\varphi, e)$, то

$$\chi_{\varphi}(t) = (-1)^n \det(A - tE) = (-1)^n \begin{vmatrix} a_{11} - t & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} - t & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} - t & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} - t \end{vmatrix}$$

$$\chi_{\varphi}(t) = t^n + c_{n-1}t^{n-1} + \dots + c_1t + c_0$$
, где $c_{n-1} = -\operatorname{tr} \varphi$, $c_0 = (-1)^n \det \varphi$.

Следствие. $\lambda \in \operatorname{Spec} \varphi \iff \chi_{\varphi}(\lambda) = 0$, то есть λ — корень характеристического многочлена.

Следствие. $|\operatorname{Spec} \varphi| \leq n$.

28.7 Существование собственного вектора для линейного оператора в комплексном векторном пространстве

Следствие. $F = C \implies$ всякий линейный оператор φ обладает собственным вектором.

Доказательство. По основной теореме алгебры комплексных чисел $\chi_{\varphi}(t)$ имеет корень.

28.8 Алгебраическая и геометрическая кратности собственного значения линейного оператора, связь между ними

Пусть $\lambda \in \operatorname{Spec} \varphi$.

Пусть $a_{\lambda}=a_{\lambda}(\varphi):=$ кратность λ как корня многочлена $\chi_{\varphi}(t)$. То есть $\chi_{\varphi}(t)$ \vdots $(t-\lambda)^{a_{\lambda}}$ и $\chi_{\varphi}(t)$ \not $(t-\lambda)^{a_{\lambda}+1}$.

Определение 114. a_{λ} называется *алгебраической кратностью* собственного значения λ .

Определение 115. Число $g_{\lambda} = g_{\lambda}(\varphi) := \dim V_{\lambda}(\varphi)$ называется геометрической кратностью собственного значения λ .

Замечание. $a_{\lambda} \geqslant 1, g_{\lambda} \geqslant 1 \ \forall \lambda \in \operatorname{Spec} \varphi$.

Предложение. $g_{\lambda} \leqslant a_{\lambda} \ \forall \lambda \in \operatorname{Spec} \varphi$.

Доказательство. Выберем в $V_{\lambda}(f)$ базис $e_1,\ldots,e_{g_{\lambda}}$ и дополним его до базиса $(e_1,\ldots,e_n)=\mathfrak{e}$ всего V. Тогда $A(\varphi,\mathfrak{e})$ имеет вид

$$\begin{pmatrix}
\lambda & 0 & 0 & \dots & 0 \\
0 & \lambda & 0 & \dots & 0 \\
0 & 0 & \lambda & \dots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \dots & \lambda
\end{pmatrix}
\xrightarrow{g_{\lambda}}$$

$$\begin{pmatrix}
A & 0 & 0 & \dots & 0 \\
0 & \lambda & 0 & \dots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \dots & \lambda
\end{pmatrix}
\xrightarrow{n-g_{\lambda}}$$

Следовательно,

$$\chi_{\varphi}(t) = (-1)^n \cdot \det \begin{pmatrix} \frac{\lambda^{-t} & \cdots & 0}{\vdots & \ddots & \vdots & B} \\ \frac{\lambda^{-t} & \cdots & \lambda^{-t}}{0} & B \\ 0 & C - tE \end{pmatrix}$$
$$= (-1)^n (\lambda - t)^{g_{\lambda}} \cdot \det(C - tE) \vdots (t - \lambda)^{g_{\lambda}} \implies a_{\lambda} \geqslant g_{\lambda}.$$

28.9 Линейная независимость собственных подпространств линейного оператора, отвечающих попарно различным собственным значениям

Предложение. Пусть $\{\lambda_1,\ldots,\lambda_s\}\subseteq \operatorname{Spec}\varphi,\,\lambda_i\neq\lambda_j$ при $i\neq j$. Тогда собственные подпространства $V_{\lambda_1}(\varphi),\ldots,V_{\lambda_s}(\varphi)$ линейно независимы.

Доказательство. Индукция по s.

База s = 1 -ясно.

Шаг Пусть для < s доказано, докажем для s.

Возьмем $v_i \in V_{\lambda_i}(\varphi) \ \forall i=1,\ldots,s$ и предположим, что $v_1+\cdots+v_s=0 \ (\star)$.

Тогда
$$\varphi(v_1 + \cdots + v_s) = \varphi(0) = 0 \implies$$

$$\varphi(v_1) + \dots + \varphi(v_s) = 0 \implies$$

$$\lambda_1 v_1 + \dots + \lambda_s v_s = 0.$$

Вычтем отсюда (\star) · λ_s :

$$(\lambda_1 - \lambda_s)v_1 + \dots + (\lambda_{s-1} - \lambda_s)v_{s-1} = 0.$$

$$\neq 0$$

По предположению индукции получаем $v_1 = \cdots = v_{s-1} = 0$, а значит и $v_s = 0$.

28.10Диагонализуемость линейного оператора, у которого число корней характеристического многочлена равно размерности пространства

Следствие. Если $\chi_{\varphi}(t)$ имеет ровно n различных корней, то φ диагонализуем.

Доказательство. Пусть $\lambda_1, \ldots, \lambda_n$ — все корни многочлена $\chi_{\varphi}(t)$.

Тогда $\forall i=1,\ldots,n \dim V_{\lambda_i}(\varphi)=1$. Для каждого i выберем $e_i \in V_{\lambda_i}(\varphi) \setminus \{0\}$. Тогда e_1,\ldots,e_n линейно независимы по предложению, а значит (e_1,\ldots,e_n) — базис из собственных векторов. Следовательно, φ диагонализуем.

Теорема 28.2. (критерий диагонализуемости) φ диагонализуемо \iff выполнены одновременно следующие условия:

1. $\chi_{\varphi}(t)$ разлагается на линейные множители.

2. если
$$\chi_{\varphi}(t) = (t - \lambda_1)^{k_1} \cdot \ldots \cdot (t - \lambda_s)^{k_s}$$
, то $g_{\lambda_i} = a_{\lambda_i} \, \forall i$. (то есть $\lambda_i \neq \lambda_j$ при $i \neq j$)

Замечание. Если выполнено только 1), то φ можно привести к жордановой нормальной форме:

 \exists базис e, такой что $A(\varphi, e)$ имеет вид

$$\begin{pmatrix} J_{\mu_1}^{m_1} & 0 & \dots & 0 \\ 0 & J_{\mu_2}^{m_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & J_{\mu_r}^{m_s} \end{pmatrix},$$

где $J_{\mu}^{m}\in M_{n}(F)$ — жорданова клетка порядка m с собственным значением $\mu.$

$$J_{\mu}^{m} = \begin{pmatrix} \mu & 1 & 0 & \dots & 0 & 0 \\ 0 & \mu & 1 & \dots & 0 & 0 \\ 0 & 0 & \mu & \ddots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \mu & 1 \\ 0 & 0 & 0 & \dots & 0 & \mu \end{pmatrix}$$

29 Лекция 23.04.2020

Конспект полностью написан по снимку доски, записи лекции и слайдам, возможны баги при переписывании. Если хочется понять точно ли что-то правда, лучше смотреть туда.

29.1 Критерий диагонализуемости линейного оператора в терминах его характеристического многочлена, а также алгебраической и геометрической кратностей его собственных значений

Пусть V — векторное пространство над F, dim V = n, $\varphi \in L(V)$ — линейный оператор.

Теорема 29.1. (критерий диагонализуемости) φ диагонализуемо \iff выполняются одновременно следующие 2 условия:

- 1. $\chi_{\varphi}(t)$ разлагается на линейные множители.
- 2. $\forall \lambda \in \operatorname{Spec} \varphi \quad g_{\lambda} = a_{\lambda}$.

Доказательство.

 $\implies \varphi$ диагонализуемо $\implies \exists$ базис $\mathbf{e} = (e_1, \dots, e_n)$, такой что $\chi_{\varphi}(t)$ разлагается на линейные множители:

$$A(\varphi, \mathbf{e}) = \begin{pmatrix} \mu_1 & 0 & \dots & 0 \\ 0 & \mu_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \mu_n \end{pmatrix} \implies \chi_{\varphi}(t) = (-1)^n \begin{vmatrix} \mu_1 - t & 0 & \dots & 0 \\ 0 & \mu_2 - t & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \mu_n - t \end{vmatrix} = (t - \mu_1) \cdot \dots \cdot (t - \mu_n).$$

Перепишем $\chi_{\varphi}(t)$ в виде $\chi_{\varphi}(t) = (t - \lambda_1)^{k_1} \cdot \ldots \cdot (t - \lambda_s)^{k_s}$, где $\{\mu_1, \ldots, \mu_n\} = \{\lambda_1, \ldots, \lambda_s\}$, $\lambda_i \neq \lambda_j$ при $i \neq j$. $\forall i = 1, \ldots, s$ имеем $V_{\lambda_i}(\varphi) \supseteq \langle e_j \mid \mu_j = \lambda_i \rangle \implies \dim V_{\lambda_i}(\varphi) \geqslant k_i$, то есть $g_{\lambda_i} \geqslant a_{\lambda_i}$.

Но мы знаем, что $g_{\lambda_i} \leqslant a_{\lambda_i}$. Следовательно, $a_{\lambda_i} = g_{\lambda_i}$.

 \longleftarrow Пусть $\chi_{\varphi}(t) = (t - \lambda_1)^{k_1} \cdot \ldots \cdot (t - \lambda_s)^{k_s}, \ \lambda_i \neq \lambda_j$ при $i \neq j$.

Так как подпространства $V_{\lambda_1}(\varphi), \dots, V_{\lambda_s}(\varphi)$ линейно независимы, то

$$\dim(V_{\lambda_1}(\varphi) + \dots + V_{\lambda_s}(\varphi)) = \dim V_{\lambda_1}(\varphi) + \dots + \dim V_{\lambda_s}(\varphi) = k_1 + \dots + k_s = n = \dim V.$$

Следовательно, $V = V_{\lambda_1}(\varphi) \oplus \cdots \oplus V_{\lambda_s}(\varphi)$.

Если e_i — базис в $V_{\lambda_i}(\varphi)$, то $e = e_1 \sqcup \cdots \sqcup e_s$ — базис всего V, состоящий из собственных векторов, а значит φ диагонализуем.

Примеры

1. $\varphi = \lambda \cdot \mathrm{Id} - \mathrm{скалярный}$ оператор.

Для всякого базиса е в V имеем $A(\varphi, e) = \operatorname{diag}(\lambda, \dots, \lambda)$.

$$\chi_{\varphi}(t) = (t - \lambda)^n$$
.

 $\operatorname{Spec} \varphi = \{\lambda\}, \ a_{\lambda} = n = g_{\lambda} \implies \operatorname{условия} 1)$ и 2) выполнены.

2. $V = \mathbb{R}^2$, φ — ортогональная проекция на прямую $l \ni 0$.

$$e_1 \in l \setminus \{0\}, e_2 \in l^{\perp} \setminus \{0\}, e = (e_1, e_2) \implies A(\varphi, e) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\chi_{\varphi}(t) = t(t-1) \implies \operatorname{Spec} \varphi = \{0, 1\}.$$

 $\lambda=0,1\implies a_{\lambda}=1=g_{\lambda}\implies$ условия 1) и 2) выполнены.

3. $V = \mathbb{R}^2$, φ — поворот на угол $\alpha \neq \pi k$.

 $e = (e_1, e_2)$ — положительно ориентированный базис $\implies A(\varphi, e) = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$.

$$\chi_{\varphi}(t) = \begin{vmatrix} \cos \alpha - t & -\sin \alpha \\ \sin a & \cos \alpha - t \end{vmatrix} = t^2 - 2\cos \alpha \cdot t + 1.$$

 $\frac{D}{4}=\cos^2\alpha-1=-\sin^2a<0\implies$ нет корней в $\mathbb{R}\Longrightarrow\chi_{\varphi}(t)$ не разлагается на линейные множители над $\mathbb{R}\Longrightarrow1)$ не выполнено $\implies\varphi$ не диагонализуем над $\mathbb{R}.$

Однако φ диагонализуем над $\mathbb{C}!$

4. $V = F[x]_{\leq n}, n \geq 1; \quad \varphi \colon f \mapsto f'.$

Техническое условие: char F=0 (\iff ord $1=\infty$ в группе (F,+)), например, $F=\mathbb{Q},\mathbb{R},\mathbb{C}$ подходят.

$$\mathbf{e} = (1, x, \dots, x^n) \implies A(\varphi, \mathbf{e}) = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & n \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}$$

 $\chi_{\varphi}(t)=t^{n+1} \implies \operatorname{Spec} \varphi=\{0\} \implies 1)$ выполнено.

 $\lambda=0 \implies a_{\lambda}=n+1; \quad V_{\lambda}(\varphi)=\langle 1 \rangle \implies g_{\lambda}=1 < a_{\lambda} \implies 2)$ не выполнено $\implies \varphi$ не диагонализуем.

$$\mathbf{e}' = \left(1, x, \frac{x^2}{2}, \dots, \frac{x^n}{n!}\right) \implies A(\varphi, \mathbf{e}') = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix} = J_0^{n+1} -$$
это жорданова клетка

29.2 Существование одномерного или двумерного инвариантного подпространства у линейного оператора в действительном векторном пространстве

Теорема 29.2. $F = \mathbb{R} \implies \forall \varphi \in L(V) \; \exists \; \text{либо 1-мерное, либо 2-мерное } \varphi$ -инвариантное подпространство.

Доказательство. Если $\chi_{\varphi}(t)$ имеет действительные корни, то в V есть собственный вектор \implies 1-мерное φ -инвариантное подпространство.

Пусть $\chi_{\varphi}(t)$ не имеет корней в \mathbb{R} . Возьмем какой-нибудь комплексный корень $\lambda + i\mu, \, \mu \neq 0$.

Фиксируем базис е в V и положим $A=A(\varphi, e)$. Для $\lambda+i\mu$ у матрицы A существует комплексный собственный вектор, то есть такое $u,v\in\mathbb{R}^n$, что

$$A(u+iv) = (\lambda + i\mu)(u+iv) \implies Au + iAv = \lambda u - \mu v + i(\lambda v + \mu u) \implies \begin{cases} Au &= \lambda u - \mu v \\ Av &= \lambda v + \mu u \end{cases}.$$

Значит, векторы в V с координатами u,v порождают φ -инвариантное подпространство $U\subseteq V$ размерности $\leqslant 2$. Упражнение. $\dim U=2$.

29.3 Отображение, сопряжённое к линейному отображению между двумя евклидовыми пространствами: определение, существование и единственность. Матрица сопряжённого отображения в паре произвольных и паре ортонормированных базисов

Пусть \mathbb{E} — евклидово пространство со скалярным произведением (\cdot, \cdot) , dim $\mathbb{E} = n$,

 \mathbb{E} — другое евклидово пространство со скалярным произведением $(\cdot, \cdot)'$, dim $\mathbb{E}' = m$, $\varphi \colon \mathbb{E} \to \mathbb{E}'$.

Определение 116. Линейное отображение $\psi \colon \mathbb{E}' \to \mathbb{E}$ называется сопряженным к φ , если

$$(\varphi(x), y)' = (x, \psi(y)) \quad \forall x \in \mathbb{E}, y \in \mathbb{E}'.$$
 (\star)

Обозначение: φ^* .

Предложение.

1. ψ существует и единственно.

2. Если е — базис
$$\mathbb{E}$$
, \mathbb{F} — базис \mathbb{E}' , $G = G(e_1, \dots, e_n)$ и $A_{\varphi} = A(\varphi, \mathbb{e}, \mathbb{f})$ то $A_{\psi} = G^{-1}A_{\varphi}^TG'$.

В частности, если е и \mathbb{F} ортонормированы, то $A_{\psi} = A_{\varphi}^{T}$.

Доказательство. $x = x_1e_1 + \cdots + x_ne_n \in \mathbb{E}, y = y_1f_1 + \cdots + y_mf_m \in \mathbb{E}'.$

$$(\varphi(x), y)' = \left(A_{\varphi} \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}\right)^T \cdot G' \cdot \begin{pmatrix} y_1 \\ \dots \\ y_m \end{pmatrix} = (x_1 \dots x_n) \cdot A_{\varphi}^T \cdot G' \cdot \begin{pmatrix} y_1 \\ \dots \\ y_m \end{pmatrix}.$$

$$(x, \psi(y)) = (x_1 \dots x_n) \cdot G \cdot A_{\psi} \cdot \begin{pmatrix} y_1 \\ \dots \\ y_m \end{pmatrix}.$$

Так как $\forall B \in \operatorname{Mat}_{m \times n} \quad b_{ij} = (0 \dots 0 \ 1 \ 0 \dots 0) \cdot B \cdot (0 \dots 0 \ 1 \ 0 \dots 0)^T$, то $(\star) \iff A_{\varphi}^T G' = G A_{\psi} \iff A_{\psi} = G^{-1} A_{\varphi}^T G'$. Отсюда следуют сразу оба утверждения.

29.4 Сопряжённый оператор в евклидовом пространстве

29.5 Самосопряжённые (симметрические) операторы

Пусть теперь $\mathbb{E}' = \mathbb{E}$.

$$\varphi \colon \mathbb{E} \to \mathbb{E}$$
 — линейный оператор $\Longrightarrow \exists !$ линейный оператор $\varphi^* \colon \mathbb{E} \to \mathbb{E}$, такой что $(\varphi(x), y) = (x, \varphi^*(y)) \quad \forall x, y \in \mathbb{E}$.

Определение 117. Линейный оператор $\varphi \in L(\mathbb{E})$ называется *самосопряженным* (или *симметричным*), если $\varphi = \varphi^*$, то есть $(\varphi(x), y) = (x, \varphi(y)) \quad \forall x, y \in \mathbb{E}^*$.

29.6 Существование собственного вектора у самосопряжённого оператора

Если е — ортонормированный базис в
$$\mathbb{E}$$
, $A_{\varphi} = A(\varphi, e)$, $A_{\varphi^*} = A(\varphi^*, e)$, то $A_{\varphi^*} = A_{\varphi}^T$. Следовательно, $\varphi = \varphi^* \iff A_{\varphi} = A_{\varphi}^T$.

Предложение. Если $\varphi = \varphi^*$, то \exists собственный вектор для φ .

Доказательство. Было: \exists либо 1) 1-мерное φ -инвариантное подпространство, либо 2) 2-мерное φ -инвариантное подпространство.

- 1. ок.
- 2. $U\subseteq \mathbb{E}-\varphi$ -инвариантное подпространство, $\dim U=2.$

Фиксируем ортонормированный базис $e = (e_1, e_2)$. Пусть $\psi = \varphi|_{U}$.

Значит,
$$\psi = \psi^* \implies A(\psi, \mathbf{e}) = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$$
.

Отсюда,
$$\chi_{\psi}(t) = \begin{vmatrix} a-t & b \\ b & c-t \end{vmatrix} = t^2 - (a+c)t + ac - b^2.$$

$$D = (a+c)^2 - 4(ac - b^2) = (a-c)^2 + 4b^2 \geqslant 0.$$

Следовательно, $\chi_{\psi}(t)$ имеет корни в \mathbb{R} , то есть в U есть собственный вектор для ψ , он же собственный вектор для φ .

29.7 Инвариантность ортогонального дополнения к подпространству, инвариантному относительно самосопряжённого оператора

Предложение. $\varphi = \varphi^*, U \subseteq \mathbb{E} - \varphi$ -инвариантное подпространство, тогда U^{\perp} — тоже φ -инвариантное подпространство.

Доказательство. $\varphi(U) \subseteq U$, хотим $\varphi(U^{\perp}) \subseteq U^{\perp}$. $\forall x \in U^{\perp} \quad \forall y \in U \quad (\varphi(x), y) = (x, \varphi(y)) = 0 \implies \varphi(x) \in U^{\perp}$.

30 Лекция 23.04.2020

Конспект полностью написан по снимку доски и записи лекции, возможны баги при переписывании. Если хочется понять точно ли что-то правда, лучше смотреть туда.

30.1 Теорема о существовании у самосопряжённого оператора ортонормированного базиса из собственных векторов

Теорема 30.1. $\varphi = \varphi^* \implies \varepsilon \mathbb{E}$ существует ортонормированный базис из собственных векторов. В частности, φ диагонализуем над \mathbb{R} и $\chi_{\varphi}(t)$ разлагается на линейные множители над \mathbb{R} .

Доказательство. Индукция по n:

База n = 1 -ясно.

Шаг n>1. Тогда существует собственный вектор v для φ . Положим $e_1=\frac{v}{|v|}\implies |e_1|=1$.

 $U = \langle e_1 \rangle^{\perp} - \varphi$ -инвариантное подпространство, $\dim U < n \implies$ по предположению индукции в U существует ортонормированный базис (e_2, \ldots, e_n) из собственных векторов. Тогда (e_1, e_2, \ldots, e_n) — искомый базис.

30.2 Попарная ортогональность собственных подпространств самосопряжённого оператора

Предложение. $\varphi = \varphi^*, \lambda, \mu \in \operatorname{Spec} \varphi, \lambda \neq \mu \implies \mathbb{E}_{\lambda}(\varphi) \perp \mathbb{E}_{\mu}(\varphi).$

Доказательство.

$$x \in \mathbb{E}_{\lambda}(\varphi), y \in \mathbb{E}_{\mu}(\varphi) \implies \lambda(x, y) = (\lambda x, y) = (\varphi(x), y) = (x, \varphi(y)) = (x, \mu y) = \mu(x, y).$$

Так как $\lambda \neq \mu$, то (x,y) = 0.

30.3 Приведение квадратичной формы в евклидовом пространстве к главным осям

Теорема 30.2. (приведение квадратичной формы к главным осям) Для любой квадратичной формы $Q: \mathbb{E} \to \mathbb{R}$ существует ортонормированный базис $e = (e_1, \dots, e_n)$, в котором Q принимает канонический вид $Q(x) = \lambda_1 x_1^2 + \dots + \lambda_n x_n^2$. Более того, набор $\lambda_1, \dots, \lambda_n$ определен однозначно, c точностью до перестановки.

Доказательство. Пусть $\mathbb{F}=(f_1,\ldots,f_n)$ — какой-то ортонормированный базис. Рассмотрим линейный оператор $\varphi\colon\mathbb{E}\to\mathbb{E}$, такой что $A(\varphi,\mathbb{F})=B(Q,\mathbb{F})$ ($\varphi=\varphi^*$, так как $B(Q,\mathbb{F})$ симметрична).

Если $\mathbb{F}'=(f'_1,\ldots,f'_n)$ — другой ортонормированный базис, то $\mathbb{F}'=\mathbb{F}\cdot C$, где C — ортонормированная матрица $(C^TC=\mathbb{E}\iff C^T=C^{-1})$. Тогда $A(\varphi,\mathbb{F}')=C^{-1}A(\varphi,\mathbb{F})C=C^TB(Q,\mathbb{F})C=B(Q,\mathbb{F}')$.

Значит, в любом ортонормированном базисе φ и Q имеют одинаковые матрицы,

По теореме, существует ортонормированный базис е, такой что $A(\varphi, e) = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$.

Тогда $B(Q, e) = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$.

Единственность для $\{\lambda_i\}$ следует из того, что набор $\lambda_1, \dots, \lambda_n$ – это спектр φ (с учетом кратностей).

Следствие. $A = M_n(\mathbb{R}), A = A^T \implies \exists$ ортогональная матрица $C \in M_n(\mathbb{R})$, такая что $C^{-1}AC = C^TAC = D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$, причем $\lambda_1, \ldots, \lambda_n$ определены однозначно с точностью до перестановки.

30.4 Ортогональные линейные операторы, пять эквивалентных условий

Определение 118. Линейный оператор $\varphi \in L(\mathbb{E})$ называется *ортогональным*, если $(\varphi(x), \varphi(y)) = (x, y) \quad \forall x, y \in \mathbb{E}$ (то есть φ сохраняет скалярное произведение).

Теорема 30.3. $\varphi \in L(\mathbb{E}) \implies$ следующие условия эквивалентны:

- (1) φ ортогонален.
- (2) $|\varphi(x)| = |x| \quad \forall x \in \mathbb{E}$ (то есть φ сохраняет длины векторов).
- (3) $\exists \varphi^{-1} \ u \ \varphi^{-1} = \varphi^* \ (mo \ ecmb \ \varphi^* \varphi = \varphi \varphi^* = \mathrm{Id}).$
- (4) \forall ортонормированного базиса е матрица $A(\varphi, e)$ ортогональна.
- (5) \forall ортонормированного базиса $e = (e_1, \dots, e_n)$ векторы $(\varphi(e_1), \dots, \varphi(e_n))$ образуют ортонормированный базис.

Доказательство.

(1)
$$\Longrightarrow$$
 (2) $|\varphi(x)| = \sqrt{(\varphi(x), \varphi(x))} = \sqrt{(x, x)} = |x|.$

(2)
$$\Longrightarrow$$
 (1) $(\varphi(x), \varphi(y)) = \frac{1}{2} [(\varphi(x+y), \varphi(x+y)) - (\varphi(x), \varphi(x)) - (\varphi(y), \varphi(y))]$
= $\frac{1}{2} [|\varphi(x+y)|^2 - |\varphi(x)|^2 - |\varphi(y)|^2] = \frac{1}{2} [|x+y|^2 - |x|^2 - |y|^2] = (x,y)$

(1) & (2)
$$\Longrightarrow$$
 (3) $|\varphi(x)| = 0 \Longrightarrow |x| = 0 \Longrightarrow x = 0 \Longrightarrow \ker \varphi = \{0\} \Longrightarrow \exists \varphi^{-1}.$
 $(\varphi^{-1}(x), y) = (\varphi(\varphi^{-1}(x)), \varphi(y)) = (x, \varphi(y)) \Longrightarrow \varphi^{-1} = \varphi^*.$

(3)
$$\Longrightarrow$$
 (4) е — ортонормированный базис, $A=A(\varphi, e)$ \Longrightarrow $A(\varphi^{-1}, e)=A^{-1}$ $A(\varphi^*, e)=A^T$ Так как $\varphi^{-1}=\varphi^*$, то $A^{-1}=A^T$ \Longrightarrow A ортогональная.

(4)
$$\Longrightarrow$$
 (5) $e = (e_1, \dots, e_n)$ — ортонормированный базис, $A = A(\varphi, e) \implies (\varphi(e_1), \dots, \varphi(e_n)) = (e_1, \dots, e_n) \cdot A$. Так как A ортогональная, то $(\varphi(e_1), \dots, \varphi(e_n))$ — ортонормированный базис.

$$(5)\Longrightarrow (1) \ (e_1,\ldots,e_n)$$
 — ортонормированный базис $\Longrightarrow (\varphi(e_1),\ldots,\varphi(e_n))$ — тоже ортонормированный базис.

$$\begin{aligned} x &= x_1 e_1 + \dots + x_n e_n \\ y &= y_1 e_1 + \dots + y_n e_n \end{aligned} \Longrightarrow \begin{aligned} \varphi(x) &= x_1 \varphi(e_1) + \dots + x_n \varphi(e_n) \\ \varphi(y) &= y_1 \varphi(e_1) + \dots + y_n \varphi(e_n) \end{aligned} \Longrightarrow \\ (\varphi(x), \varphi(y)) &= (x_1, \dots, x_n) \cdot \underbrace{G(\varphi(e_1), \dots, \varphi(e_n))}_{=E} \cdot \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix} = (x_1, \dots, x_n) \cdot \underbrace{G(\mathfrak{E})}_{=E} \cdot \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix} = (x, y). \end{aligned}$$

30.5 Описание ортогональных операторов в одномерном и двумерном евклидовых пространствах

- 1. $\dim \mathbb{E} = 1$. φ ортогонально $\iff \varphi = \pm \mathrm{Id}$.
- 2. $\dim \mathbb{E} = 2$, $\mathfrak{e} = (e_1, e_2)$ ортонормированный базис $\implies \varphi(e_1), \varphi(e_2)$ тоже ортонормированный базис. Два случая:

(а)
$$\varphi$$
 — поворот на угол α .
$$A(\varphi, \mathbf{e}) = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

(b) φ — поворот на угол α и отражение относительно $\langle \varphi(e_1) \rangle$.

$$A(\varphi, \mathbf{e}) = \begin{pmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{pmatrix}$$

Если l — биссектриса угла $\angle(e_1, \varphi(e_1))$, то $\varphi(x) = x \quad \forall x \in l$,

$$\varphi(x) = -x \quad \forall x \in l^{\perp}.$$

$$e_1' \in l, e_2' \in l^{\perp}, |e_1'| = |e_2'| = 1, \mathbf{e}' = (e_1', e_2') \implies A(\varphi, \mathbf{e}') = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Значит φ — отражение относительно l.

Инвариантность ортогонального дополнения к подпространству, инвариантному относительно ортогонального оператора

Предложение. Если $\varphi \in L(\mathbb{E})$ — ортогональный оператор, $U \subseteq \mathbb{E} - \varphi$ -инвариантное подпространство, то U^{\perp} тоже φ -инвариантно.

 Доказательство. Пусть $\psi := \varphi \big|_U$. Тогда ψ — ортогональный оператор в U, в частности ψ обратим. Хотим: $\varphi(U^{\perp}) \subseteq U^{\perp} \quad \forall x \in U^{\perp} \quad \forall y \in U.$

$$(\varphi(x), y) = (x, \varphi^*(y) = (x, \varphi^{-1}(y)) = (\underbrace{x}_{\in U^{\perp}}, \underbrace{\psi^{-1}(y)}_{\in U}) = 0.$$

30.7Теорема о каноническом виде ортогонального оператора

Теорема 30.4. Если $\varphi \in L(\mathbb{E})$ — ортогональный оператор, то существует ортонормированный базис $e = (e_1, \dots, e_n)$, такой что

$$A(\varphi, \mathbf{e}) = \begin{pmatrix} \Pi(\alpha_1) & 0 & \dots & 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & \Pi(\alpha_2) & \dots & 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \Pi(\alpha_k) & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & -1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & 0 & \dots & -1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & -1 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 & 0 & \dots & 1 \end{pmatrix}, \qquad \Pi(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}. \qquad (\star)$$

Доказательство. Индукция по n:

n = 1, 2 — было.

n>2 Существует 1-мерное или 2-мерное φ -инвариантное подпространство. В нём требуемый базис найдется.

Так как U^{\perp} φ -инвариантно и $\dim U^{\perp} < n$, то по предположению индукции в U^{\perp} тоже найдется такой базис. Объединяя эти базисы U и U^{\perp} , получаем ортонормированный базис, в котором матрица φ имеет требуемый вид с точностью до перестановки блоков.

Классификация ортогональных операторов в трёхмерном евклидовом простран-30.8 стве

Следствие. $\dim \mathbb{E} = 3 \implies \exists$ ортонормированный базис $\mathfrak{e} = (e_1, e_2, e_3)$, такой что $A(\varphi, \mathfrak{e}) = \begin{pmatrix} \Pi(\alpha) & 0 \\ 0 & 1 \end{pmatrix}$ или

$$\begin{pmatrix} \Pi(\alpha) & 0 \\ 0 & -1 \end{pmatrix}$$
 для некоторого α .

Доказательство. Применяя теорему, получаем (\star). Если в (\star) есть блок $\Pi(\alpha)$, то ОК.

Иначе,
$$A(\varphi, e) = \begin{pmatrix} \pm 1 & 0 & 0 \\ 0 & \pm 1 & 0 \\ 0 & 0 & \pm 1 \end{pmatrix}$$
. Ho $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \Pi(0)$ и $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = \Pi(\pi)$.

Тип 1 $\begin{pmatrix} \Pi(\alpha) & 0 \\ 0 & 1 \end{pmatrix}$ — поворот на угол α вокруг прямой, натянутой на $\langle e_3 \rangle$. **Тип 2** $\begin{pmatrix} \Pi(\alpha) & 0 \\ 0 & -1 \end{pmatrix}$ — тоже самое + отражение относительно плоскости относительно плоскости $\langle e_1, e_2 \rangle$. ("зеркальный поворот")