1 Teoria dos Números

Propriedades dos números inteiros \mathbb{Z} com respeito às operações elementares.

Equação diofantina: Equação polinomial que permite a duas ou mais variáveis assumirem apenas valores inteiros.

2 Algoritmos Fundamentais

2.1 Divisão Euclidiana

Sejam $a,b\in\mathbb{Z}$ com $b\neq 0$, a divisão euclidiana de a por b consiste na identidade

$$a = b \cdot q + r$$
 $q, r \in \mathbb{Z} \land 0 \le r < b$

2.2 Divisibilidade

Sejam $a,b\in\mathbb{Z}$ com $b\neq 0,$ dizemos que b divide a, denotando $b\,|\,a,$ se

$$\exists c \in \mathbb{Z}: \ a = b \cdot c$$

Propriedades:

• $\forall a \in \mathbb{Z} : a \mid 0$

• $\forall a \in \mathbb{Z} : \pm 1 \mid 0$

• $\forall a \in \mathbb{Z} : \pm a \mid a$

• $\forall c \in \mathbb{Z} : a \mid b \implies ac \mid bc$

• $\forall x, y \in \mathbb{Z} : a \mid b \land a \mid c \implies a \mid (bx + cy)$

• $\forall a, b \in \mathbb{Z} : a \mid b \land b \mid a \implies b = \pm a$

2.3 Máximo Divisor Comum

Sejam $a, b \in \mathbb{Z}$ com $(a, b) \neq (0, 0)$, o máximo divisor comum de a e b é um inteiro d tal que

$$d \mid a \wedge d \mid b$$

$$\forall d': d' | a \wedge d' | b \implies d' | d$$

Lema: Sejam $a, b \in \mathbb{Z}$ com $(a, b) \neq (0, 0)$, e $q, r \in \mathbb{Z}$ com $a = b \cdot q + r$.

O mdc(a, b), se existe, é igual a mdc(b, r).