

EMITTER-STABILIZED BIAS

BJT DC BIASING

prepared by:

Gyro A. Madrona

........

Electronics Engineer

TOPIC OUTLINE

Emitter-Stabilized Bias Circuit

- Base-Emitter Loop
- Collector-Emitter Loop
- Load Line Analysis

EMITTER-STABILIZED BIAS CIRCUIT

CURRENT GAIN

The <u>current gain</u> parameters <u>alpha</u> (α) and <u>beta</u> (β) describe the relationship between currents in the transistor's three terminals (emitter, base, and collector).

Alpha (α) is the ratio of the collector current to the emitter current.

Formula

$$\alpha = \frac{i_C}{i_E}$$

 α is always less than 1 (typically 0.95 to 0.995)

Beta (β) is the ratio of the collector current to the base current.

Formula

$$\beta = \frac{i_C}{i_B}$$

EMITTER-STABILIZED BIAS CIRCUIT

The <u>emitter-stabilized bias</u> is an improved biasing method by adding <u>resistor in the emitter</u> (R_E). This resistor introduces negative feedback, which helps stabilize the operating point against variations in temperature and transistor beta (β).

BASE-EMITTER LOOP

KVL @B-E

$$-v_{CC} + v_{RB} + v_{BE} + v_{RE} = 0$$

$$v_{RB} + v_{RE} = v_{CC} - v_{BE}$$

$$i_B R_B + i_E R_E = v_{CC} - v_{BE}$$

$$i_E = i_B + i_C$$

$$i_E = i_B + \beta i_B$$

$$i_E = i_B(\beta + 1)$$

BASE-EMITTER LOOP

KVL @B-E

$$-v_{CC} + v_{RB} + v_{BE} + v_{RE} = 0$$

$$v_{RB} + v_{RE} = v_{CC} - v_{BE}$$

$$i_B R_B + i_E R_E = v_{CC} - v_{BE}$$

$$i_B R_B + i_B (\beta + 1) R_E = v_{CC} - v_{BE}$$

$$i_B(R_B + (\beta + 1)R_E) = v_{CC} - v_{BE}$$

$$i_B = \frac{v_{CC} - v_{BE}}{R_B + (\beta + 1)R_E}$$

COLLECTOR-EMITTER LOOP

KVL @C-E

$$-v_{CC} + v_{RC} + v_{CE} + v_{RE} = 0$$

$$v_{CE} = v_{CC} - v_{RC} - v_{RE}$$

$$v_{CE} = v_{CC} - i_C R_C - i_E R_E$$

$$i_E \approx i_C$$

$$v_{CE} = v_{CC} - i_C (R_C + R_E)$$

For the given emitter-stabilized bias network, determine:

- Base current (i_{BQ})
- Collector current (i_{CO})
- Collector-Emitter voltage (v_{CEQ})
- Collector voltage (v_C)

Solution

LOAD LINE ANALYSIS

SATURATION POINT

The <u>saturation point</u> is the operating state where BJT conducts the <u>maximum collector curren</u>t ($i_{C(sat)}$) with zero collector-emitter voltage ($v_{CE} = 0$).

In this region the transistor acts like a <u>closed switch</u> (zero resistance between collector-emitter).

SATURATION POINT

Mentally Short

CUTOFF POINT

The <u>cutoff point</u> is the operating state where BJT conducts zero collector current ($i_C = 0$) with v_{CE} at its maximum ($v_{CE} = V_{CC}$).

In this region the transistor acts like an <u>open switch</u> (infinite resistance between collector-emitter).

CUTOFF POINT

Mentally Open

QUIESCENT POINT

The <u>Q-point</u> is the stable DC operating condition characterized by specific value of collector current (i_C) and collector-emitter voltage (v_{CE}) .

Plot the DC load line analysis for the emitterstabilized bias network, indicating:

- Saturation current $(i_{C(sat)})$
- Cutoff voltage ($v_{CE(cutoff)}$)
- Operating Point (Q-Point)

Solution

Load Line Analysis

For the given emitter-stabilized bias network, determine:

- Base current (i_{BQ})
- Collector current (i_{CO})
- Collector-Emitter voltage (v_{CEO})
- Emitter voltage (v_E) and plot the DC load line analysis indicating:
- Saturation current $(i_{C(sat)})$
- Cutoff voltage ($v_{CE(cutoff)}$)
- Operating Point (Q-Point)

Solution

Load Line Analysis

IMPROVE STABILITY

Bias	β	$i_B(\mu A)$	$i_C(mA)$	$v_{CE}(V)$	$\%\Delta v_{\it CE}$
Fixed-Bias	50	47.08	2.35	6.83	-76%
	100	47.08	4.71	1.64	
Emitter- Stabilized					
Voltage- Divider Bias					

LABORATORY

