Кафедра статистического моделирования Дипломная работа студентки 522-й группы Ротенко Марии Михайловны

Оценивание параметров степенного гамма распределения с приложениями

Научный руководитель: к.ф.-м.н., доц. Алексеева Н. П. Рецензент: к.ф.-м.н., доц. Пепелышев А. Н.

Санкт-Петербург 2006 г.

Введение

- $\xi_0 \sim \gamma(\alpha, \lambda) \ \mathrm{c} \ f(x|\alpha, \lambda) = \frac{\alpha^{\lambda}}{\Gamma(\lambda)} x^{\lambda 1} e^{-\alpha x}, \ \mathrm{где} \ \alpha$ -параметр масштаба, λ -параметр формы $\Rightarrow \xi_1 = \xi_0^{\frac{1}{\kappa}} \sim G(\alpha, \lambda, \kappa) \ \mathrm{c} \ f_1(x|\alpha, \lambda, \kappa) = \frac{\kappa \alpha^{\lambda}}{\Gamma(\lambda)} x^{\kappa \lambda 1} e^{-\alpha x^{\kappa}}.$ При этом, $\nu = \alpha \xi_1^{\kappa} \sim \gamma(1, \lambda), \ \mathbf{cov}(\xi_1^{\kappa}, \ln \xi_1^{\kappa}) = \alpha^{-1}.$
- $f_2(x) \overset{\delta_1}{\rhd} f_1(x)$, если $H_{12} H_{11} < \delta_1$. $H_{ij} = -\int\limits_{-\infty}^{\infty} \ln f_j(x) \ f_i(x) dx$ –смешанная дифференциальная энтропия.
- Если $f_2(x) \stackrel{\delta_1}{\rhd} f_1(x)$, а $f_2(x) \stackrel{\delta_2}{\lhd} f_1(x)$ одновременно, то: $f_1(x) \stackrel{\delta}{\bowtie} f_2(x)$, $\delta = \delta_1 + \delta_2$
- Информационные метрики разнообразия распределений $I_1 = (H_{12} H_{11}) + (H_{21} H_{22}), I_2 = (H_{12} H_{21}) + (H_{11} H_{22}).$

 $H_{12} - H_{21} \approx H_{11} - H_{22}$

Параметры синонимичных распределений

Смешанная дифференциальная энтропия для степенных гамма распределений $\xi_1 \sim G(\alpha_1, \lambda_1, \kappa_1), \, \xi_2 \sim G(\alpha_2, \lambda_2, \kappa_2).$

$$H_{12} = \ln \Gamma(\lambda_2) - \ln \kappa_2 - \lambda_2 \ln \alpha_2 - (\kappa_2 \lambda_2 - 1) \mathbf{E} \ln \xi_1 + \alpha_2 \mathbf{E} \xi_1^{\kappa_2}$$

Теорема (Алексеевой): Система нормальных уравнений имеет тривиальное точное решение при $\kappa_2 = \kappa_1$.

$$\begin{cases}
\frac{\partial H_{12}}{\partial \alpha_2} = 0 \\
\frac{\partial H_{12}}{\partial \lambda_2} = 0
\end{cases}
\Leftrightarrow
\begin{cases}
\frac{\lambda_2}{\alpha_2} = \mathbf{E} \xi_2^{\kappa_2} = \mathbf{E} \xi_1^{\kappa_2} \\
\mathbf{E} \ln \xi_1 = \mathbf{E} \ln \xi_2 \\
\alpha_2^{-1} = \mathbf{cov}(\xi_2^{\kappa_2}, \ln \xi_2^{\kappa_2}) = \mathbf{cov}(\xi_1^{\kappa_2}, \ln \xi_1^{\kappa_2}).
\end{cases} (1)$$

Следствие: $G(\alpha_2, \lambda_2, \kappa_2) \triangleright G(\alpha_1, \lambda_1, \kappa_1)$. Тогда α_2 и λ_2 выражаются для любого $\kappa_2 > 0$ через α_1, λ_1 и κ_1 следующим образом:

$$\lambda_2 = \left(\frac{\kappa_2}{\kappa_1} \left(\psi \left(\lambda_1 + \frac{\kappa_2}{\kappa_1} \right) - \psi(\lambda_1) \right) \right)^{-1}, \ \alpha_2 = \frac{\lambda_2 \alpha_1^{\frac{\kappa_2}{\kappa_1}} \Gamma(\lambda_1)}{\Gamma(\lambda_1 + \frac{\kappa_2}{\kappa_1})},$$

где
$$\Gamma(z)=\int\limits_0^\infty x^{z-1}e^{-x}dx$$
 гамма-функция, $\psi(z)=rac{\Gamma'(z)}{\Gamma(z)}$ дигамма-функция.

Вычисление параметра κ номинативного распределения

- **Т**еорема (Алексеевой): Пусть $G(\alpha, \lambda, \kappa)$ синонимично $\gamma(\alpha_0, \lambda_0)$. $H(\kappa, \alpha, \lambda)$ энтропия $G(\alpha, \lambda, \kappa)$, $\alpha = \alpha(\kappa, \alpha_0, \lambda_0)$, $\lambda = \lambda(\kappa, \alpha_0, \lambda_0)$. Тогда
 - $H(\kappa, \alpha_0, \lambda_0) = \lambda + \ln \Gamma(\lambda) \lambda \psi(\lambda) \ln \kappa + \frac{\psi(\lambda) \ln \alpha}{\kappa}$,
 - $\frac{d}{d\kappa}H(\kappa,\alpha_0,\lambda_0)$ не зависит от α_0 ,
 - $H(\kappa, \alpha_0, \lambda_0)$ имеет локальный минимум в точке $\kappa = \tilde{\kappa}, \ \tilde{\kappa} < 1$ при $\lambda_0 > 1,$ $\tilde{\kappa} > 1$ при $\lambda_0 < 1$ и $\tilde{\kappa} = 1$ при $\lambda_0 = 1,$
 - $\frac{dI_2}{d\kappa}(\tilde{\kappa}) = 0$ при $\lambda \to \infty$.

Параметр κ ищется как решение уравнения $\frac{d}{d\kappa}H(\kappa,\alpha_0,\lambda_0)=0.$

Алгоритмы вычисления специальных функций

 \blacksquare Гамма функция $\Gamma(x)$

$$\ln \Gamma(x) = -\sum_{k=0}^{\theta-1} \ln(x+k) + (x+\theta - \frac{1}{2}) \ln(x+\theta) - (x+\theta) + \frac{1}{2} \ln(2\pi) + \sum_{m=1}^{N} \frac{B_{2m}}{2m(2m-1)(x+\theta)^{2m-1}}$$

 \blacksquare Ди-гамма функции $\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$

$$\psi(x) = -\sum_{k=0}^{\theta-1} \frac{1}{x+k} + \ln(x+\theta) - \frac{1}{2(x+\theta)} - \sum_{m=1}^{N} \frac{B_{2m}}{2m(x+\theta)^{2m}}$$

■ Три-гамма функции $\varphi(x) = \psi'(x)$

$$\varphi(x) = \sum_{k=0}^{\theta-1} \frac{1}{(x+k)^2} + \frac{1+\sqrt{1+4(x+\theta)^2}}{2(x+\theta)^2}$$

 B_{2m} – числа Бернулли,

N — точность ассимптотического выражения,

 θ — точность приближения к ассимптотическому выражению.

Описание программы

Гистограмма и вычисление параметров номинативного распределения

Графики плотностей и функций распределенния синонимичных распределений

Пример использования номинативного распределения в психологии

- Проверка однородности данных уровня самооценки депрессии по методу Зунга.
 - (1) Студенты ср. возраст: 18.18 ± 0.82 , ср. уровень самооценки: 40.89 ± 7.69
 - (2) Работающие ср. возраст: 41.69 ± 9.77 , ср. уровень самооценки: 39.83 ± 8.65
 - (3) Пенсионеры ср. возраст: 61.29 ± 9.43 , ср. уровень самооценки: 51.34 ± 9.21

Проверка однородности параметров распределения

Параметр формы λ $\nu = \alpha \xi^{\kappa}$

Параметр масштаба $\beta = \alpha^{-1}$ $\zeta = (\xi^{\kappa} - \mathbf{E}\xi^{\kappa})(\ln \xi^{\kappa} - \mathbf{E}(\ln \xi^{\kappa}))$

- Интерпретация параметров λ и α
 - параметр формы самооценка количества источников депрессии,
 - параметр масштаба мера реакции на эти источники.

Влияние простагландина на лактацию

- Исследование влияния простагландина на лактацию у лабораторных мышей Исходными являются данные (1638 измерений) о высоте секреторного эпителия альвеолы молочной железы 9 лактирующих мышей, которым в разные периоды лактации вводился простагландин $F_{2\alpha}$.
 - (1) контрольная группа
 - (2) состоит из трёх животных, которым вводился простагландин в период лактопоэза (на 13 день)
 - (3) состоит из четырёх животных, которым вводился простагландин в период лактогенеза (на 3 день)

Интерпретация параметров α^{-1} , λ и κ ($\mathbf{E}\xi^{\kappa} = \alpha^{-1}\lambda$)

 α (scale parameter) – интенсивность, λ (shape parameter) – экстенсивность, κ (power parameter) – энергичность.

Степень воздействия простагландина: 0 - гр (1), 1 - гр (3), 2 - гр (2).