CORRIGÉ DU DS°7

Problème 1 E3A PSI 2002

Préliminaire.

La série de Riemann définissant $\zeta(x)$ converge si et seulement si x > 1, donc

L'ensemble de définition de la fonction ζ est $]1,+\infty[$.

Partie 1.

Question 1.

1.1. Par concavité de la fonction ln, on a $\forall t > 0$, $\ln t \le t - 1$, d'où, avec $t = 1 + \frac{x}{n}$:

$$\forall n \in \mathbb{N} , \forall x > 0, u_n(x) \ge 0.$$

1.2. Du développement limité de $t\mapsto \ln(1+t)$ en 0, on déduit, pour x>0 fixé :

$$\ln\left(1+\frac{x}{n}\right) \underset{n\to\infty}{=} \frac{x}{n} - \frac{1}{2} \cdot \left(\frac{x}{n}\right)^2 + o\left(\frac{1}{n^2}\right) \quad \text{d'où} \quad u_n(x) \underset{n\to\infty}{\sim} \frac{x^2}{2n^2};$$

il en résulte, par comparaison à une série de Riemann, que la série numérique $\sum u_n(x)$ converge, cela pour tout x > 0, autrement dit :

La série de fonctions de terme général u_n converge simplement sur $]0,+\infty[$.

Question 2.

2.1. Les fonctions u_n sont de classe \mathscr{C}^1 sur [a,b], avec

$$\forall x \in [a,b], \ u_n'(x) = \frac{1}{n} - \frac{1}{n+x} \quad \text{d'où} \quad \left| u_n'(x) \right| = \frac{x}{n(x+n)} \leqslant \frac{b}{n^2} \quad \text{puis } \left\| u_n \right\|_{\infty} \leqslant \frac{b}{n^2}.$$

Or, la série numérique $\sum \frac{b}{n^2}$ converge. Ainsi, la série de fonctions $\sum u'_n$ converge normalement, donc uniformément, sur [a,b]; on a déjà vu que $\sum u_n$ converge simplement sur [a,b], donc on peut appliquer le théorème de dérivation terme à terme d'une série de fonctions :

S est dérivable sur
$$[a,b]$$
 (et $S' = \sum_{n=1}^{\infty} u'_n$).

2.2. Le résultat précédent est établi pour tout couple (a, b) tel que 0 < a < b; par conséquent :

S est dérivable sur
$$]0, +\infty[$$
 et : $\forall x > 0$, $\frac{dS}{dx}(x) = \sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+x}\right).$

Question 3.

Par définition des u_n , on a :

$$\sum_{n=1}^{p} u_n(1) = \sum_{n=1}^{p} \frac{1}{n} - \sum_{n=1}^{p} \left(\ln(n+1) - \ln n \right) = \sum_{n=1}^{p} \frac{1}{n} - \ln(p+1)$$

d'où, puisque $\gamma = S(1)$,

$$\sum_{n=1}^{p} \frac{1}{n} - \ln p - \gamma = \sum_{n=1}^{p} u_n(1) + \ln(p+1) - \ln p - S(1) = \sum_{n=1}^{p} u_n(1) - S(1) + \ln\left(1 + \frac{1}{p}\right),$$

qui tend vers 0 lorsque p tend vers l'infini, puisque $S(1) = \sum_{n=1}^{\infty} u_n(1)$. Autrement dit :

$$\sum_{n=1}^{p} \frac{1}{n} = \lim_{p \to \infty} \ln p + \gamma + o(1).$$

Question 4.

4.1. Pour $p \in \mathbb{N}^*$ et x > 0 on a :

$$\forall n \in [1, p], u_n(x+1) - u_n(x) = \frac{x+1}{n} - \ln\left(1 + \frac{x+1}{n}\right) - \frac{x}{n} + \ln\left(1 + \frac{x}{n}\right)$$
$$= \frac{1}{n} - \ln(n+x+1) + \ln(n+x)$$

En sommant, il reste après télescopage :

$$\sum_{n=1}^{p} \left(u_n(x+1) - u_n(x) \right) = \sum_{n=1}^{p} \frac{1}{n} + \ln(1+x) - \ln(p+1+x).$$

4.2. Soit x > 0 fixé; on a pour $p \in \mathbb{N}^*$, d'après les résultats précédents :

$$\sum_{n=1}^{p} u_n(x+1) - \sum_{n=1}^{p} u_n(x) = \lim_{p \to \infty} \ln p + \gamma + o(1) + \ln(1+x) - \ln(p+1+x)$$
$$= \lim_{p \to \infty} \gamma + \ln(1+x) - \ln\left(1 + \frac{1+x}{p}\right) + o(1),$$

d'où, en faisant tendre p vers l'infini : $S(x+1) - S(x) = \gamma + \ln(1+x)$, soit :

$$\forall x > 0$$
, $S(x+1) = S(x) + \gamma + \ln(1+x)$.

Question 5.

5.1. Soit x > 0; d'après le résultat précédent,

$$\varphi(x+1) = \frac{1}{x+1} \exp\left(-\gamma(x+1) + S(x+1)\right)$$

$$= \frac{1}{x+1} \exp\left(-\gamma(x+1) + S(x) + \gamma + \ln(x+1)\right)$$

$$= \frac{1}{x+1} \exp\left(-\gamma x + S(x)\right) \exp\left(\ln(x+1)\right)$$

$$= \exp\left(-\gamma x + S(x)\right),$$

soit:

$$\forall x > 0 , \ \varphi(x+1) = x \, \varphi(x).$$

5.2. Nous avons vu que S était dérivable sur $]0,+\infty[$, donc, exp étant dérivable sur \mathbb{R} , en vertu des théorèmes classiques :

$$\varphi$$
 est dérivable sur $]0,+\infty[$.

On calcule:

$$\forall x > 0, \ \varphi'(x) = -\frac{1}{x^2} \exp\left(-\gamma x + S(x)\right) + \frac{1}{x} \left(-\gamma + S'(x)\right) \exp\left(-\gamma x + S(x)\right),$$

soit

$$\forall x > 0$$
, $\varphi'(x) = \left(-\frac{1}{x} - \gamma + S'(x)\right) \cdot \varphi(x)$.

Comme $S(1) = \gamma$, $\varphi(1) = 1$; de plus, d'après **2.2.**,

$$S'(1) = \lim_{p \to \infty} \left(\sum_{n=1}^{p} \left(\frac{1}{n} - \frac{1}{n+1} \right) \right) = \lim_{p \to \infty} \left(1 - \frac{1}{p+1} \right) = 1,$$

d'où finalement:

$$\varphi'(1) = -\gamma.$$

Question 6.

Soient $n \ge 1$ et x > 0. Par définition de φ_n on a :

$$\ln \varphi_n(x) = x \ln n + \sum_{k=1}^n \ln k - \ln x - \sum_{k=1}^n \ln(x+k)$$

$$= x \ln n - \sum_{k=1}^n \ln\left(1 + \frac{x}{k}\right) - \ln x$$

$$= x \ln n + \sum_{k=1}^n u_n(x) - \sum_{k=1}^n \frac{x}{n} - \ln x$$

$$= \sum_{k=1}^n u_n(x) - x \left(\sum_{k=1}^n \frac{1}{k} - \ln n\right) - \ln x$$

D'où, par définition de S et grâce au 3.,

$$\forall x > 0$$
, $\ln (\varphi_n(x))$ tend vers $S(x) - x\gamma - \ln x$ quand n tend vers $+\infty$.

Question 7.

7.1. Soient $p \in \mathbb{N}^*$ et x > 0; π_p est dans \mathbb{R}_+^* et

$$\ln \pi_p = \sum_{n=1}^p \frac{x}{n} - \sum_{n=1}^p \ln \left(1 + \frac{x}{n} \right) = \sum_{n=1}^p u_n(x) \underset{p \to \infty}{\longrightarrow} S(x).$$

D'où, par continuité de la fonction exp:

La suite
$$(\pi_p)_{p\geq 1}$$
 converge vers $L(x) = \exp(S(x))$.

7.2. Alors, par définition même de φ :

$$\forall x > 0$$
, $\varphi(x) = \frac{L(x)}{x} \exp(-x\gamma)$.

Partie 2.

Question 1.

1.1. Pour x réel, la fonction $f_x: t \mapsto t^{x-1} e^{-t}$ est continue sur $]0, +\infty[$, à valeurs strictement positives et

$$f_x(t) \underset{t \to 0}{\sim} \frac{1}{t^{1-x}}$$
 et $t^2 f_x(t) \underset{t \to +\infty}{\longrightarrow} 0$ donc $f_x(t) \underset{t \to +\infty}{=} o\left(\frac{1}{t^2}\right)$.

Par conséquent, par comparaison aux intégrales de Riemann, f_x est intégrable sur]0,1] si et seulement si 1-x<1(c'est-à-dire x > 0) et f_x est intégrable sur $[1, +\infty[$ pour tout x. Par conséquent :

L'ensemble de définition de la fonction Γ est $]0,+\infty[$.

1.2.
$$\Gamma(1) = \int_0^{+\infty} e^{-t} dt = \lim_{x \to +\infty} \int_0^x e^{-t} dt = \lim_{x \to +\infty} \left[-e^{-t} \right]_{t=0}^{t=x} = \lim_{x \to +\infty} (1 - e^{-x}) = 1$$
.

1.3. Soient x > 0 et a, b tels que 0 < a < b; on intègre par parties sur le segment [a, b]:

$$x \int_a^b t^{x-1} e^{-t} dt = \left[t^x e^{-t} \right]_{t=a}^{t=b} + \int_a^b t^x e^{-t} dt.$$

Comme x > 0, quand $a \to 0$ et $b \to +\infty$: $x\Gamma(x) = \Gamma(x+1)$, soit: $\forall x > 0$, $\Gamma(x+1) = x\Gamma(x)$.

$$\forall x > 0 , \ \Gamma(x+1) = x \, \Gamma(x).$$

Question 2.

2.1. Par convexité de la fonction exp, on a : $\forall x \in \mathbb{R}$, $\exp x \geqslant 1 + x$; d'où, avec x = -t:

$$\forall t \geq 0$$
, $\exp(-t) \geqslant 1 - t$.

Soient alors $t \ge 0$ et $n \ge 1$; si $t \ge n$, $g_n(t) = 0$ et on a bien $0 \le g_n(t) \le \exp(-t)$; si $0 \le t < n$, on applique le résultat ci-dessus à t/n:

$$0 \le 1 - \frac{t}{n} \le \exp\left(-\frac{t}{n}\right)$$
 d'où $0 \le \left(1 - \frac{t}{n}\right)^n \le \exp(-t)$.

Ainsi:

$$\forall t \geqslant 0$$
, $\forall n \geqslant 1$, $0 \leqslant g_n(t) \leqslant \exp(-t)$.

2.2. Soit x > 0 fixé; $f_n : t \mapsto t^{x-1}g_n(t)$ est nulle sur $[n, +\infty[$, continue sur]0, n], avec $f_n(t) \sim \frac{1}{t^{1-x}}$, donc, par comparaison à une intégrale de Riemann (1 - x < 1), f_n est intégrable sur $]0, +\infty[$, avec :

$$\int_0^{+\infty} f_n(t) dt = \int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt.$$

On applique alors le théorème de convergence dominée à la suite de fonction (f_n) , sur l'intervalle $]0,+\infty[$: les f_n sont continues par morceaux sur $]0,+\infty[$, la suite (f_n) converge simplement sur $]0,+\infty[$ vers $f:t\mapsto t^{x-1}\exp(-t)$; en effet, pour t>0 fixé, j'ai t< n pour n assez grand (précisément pour n>t!) et

$$\forall n > t$$
, $f_n(t) = \left(1 - \frac{t}{n}\right)^n t^{x-1} \underset{n \to \infty}{\longrightarrow} \exp(-t)t^{x-1}$

car

$$\left(1 - \frac{t}{n}\right)^n = \exp\left(n\ln\left(1 - \frac{t}{n}\right)\right) \quad \text{et} \quad n\ln\left(1 - \frac{t}{n}\right) \underset{n \to \infty}{\sim} -t$$

f est continue sur $]0,+\infty[$, il ne reste qu'à vérifier l'hypothèse de domination. Or, d'après la question précédente, on a

$$\forall t > 0$$
, $\forall n \ge 1$, $|f_n(t)| \le f(t)$,

qui ne dépend pas de n et enfin, d'après le 1.1., f est intégrable sur $]0,+\infty[$; le théorème de convergence dominée me permet alors de conclure que

$$\int_0^{+\infty} f_n(t)dt \xrightarrow[n\to\infty]{} \int_0^{\infty} f(t)dt,$$

autrement dit:

$$\forall x > 0 , \lim_{n \to +\infty} \int_0^n \left(1 - \frac{t}{n} \right)^n t^{x-1} dt = \Gamma(x).$$

Question 3.

3.1. Pour tout réel x, la fonction $t \mapsto (1-t)^n t^{x-1}$ est continue sur]0,1], à valeurs positives, équivalente à $t \mapsto \frac{1}{t^{1-x}}$ au voisinage de 0, donc intégrable sur]0,1] si et seulement si x>0:

L'ensemble de définition de la fonction I_n est $]0, +\infty[$.

3.2. Soient x > 0. On effectue le changement de variable u = t/n qui est une \mathcal{C}^1 -difféomorphisme de [0, n] sur [0, 1]:

$$\int_0^1 (1-u)^n u^{x-1} du = \int_0^n \left(1 - \frac{t}{n}\right)^n \frac{t^{x-1}}{n^{x-1}} \cdot \frac{1}{n} dt = \frac{1}{n^x} \int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt.$$

Donc:

$$\forall x > 0$$
, $\forall n \ge 1$, $\int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt = n^x I_n(x)$.

3.3. Pour x > 0 et $n \ge 2$, on intègre par parties sur $[\varepsilon, 1]$, où ε est un réel de [0, 1]:

$$\int_{c}^{1} (1-t)^{n} t^{x-1} dt = \left[(1-t)^{n} \frac{t^{x}}{x} \right]_{t=c}^{t=1} + \frac{n}{x} \int_{c}^{1} (1-t)^{n-1} t^{x} dt$$

Pour ε tendant vers 0, comme x > 0, on obtient

$$I_n(x) = \frac{n}{x}I_{n-1}(x+1).$$

Par une récurrence immédiate, il vient, compte tenu du fait que la relation ci-dessus reste correcte pour n=1 (en étendant la définition de I_n à I_0) :

$$I_n(x) = \frac{n!}{x(x+1)...(x+n-1)} I_0(x+n) = \frac{n!}{x(x+1)...(x+n)}$$

et donc, d'après 3.2. :

$$\int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt = \frac{n^x n!}{x(x+1)...(x+n)} = \varphi_n(x).$$

Dans la partie 1., on a déterminé la limite de $(\ln \varphi_n(x))$, qui donne, par continuité de la fonction exp, $\varphi_n(x) \underset{n \to \infty}{\longrightarrow} \varphi(x)$; finalement, grâce au 2.2., par unicité de la limite :

$$\forall x > 0$$
, $\Gamma(x) = \varphi(x)$.

Partie 3.

Question 1.

La fonction $h: t \mapsto \exp(-t)\ln^2 t$ est continue sur $]0, +\infty[$, à valeurs positives et, d'après les croissances comparées des fonctions usuelles, on a

$$h(t) \underset{t \to 0^+}{=} o\left(\frac{1}{\sqrt{t}}\right)$$
 et $h(t) \underset{t \to +\infty}{=} o\left(\frac{1}{t^2}\right)$,

donc, par comparaison aux intégrales de Riemann, h est intégrable sur]0,1] et sur $[1,+\infty[$:

$$\int_0^{+\infty} \exp(-t) \ln^2 t \, dt \text{ existe.}$$

Question 2.

2.1. Soit u > 1 fixé. Pour $n \in \mathbb{N}$ et $t \in \left[u, \frac{1}{u}\right]$, $|\ln t| \le \ln u$ et $e^{-t} \le 1$, d'où

$$\sup_{\left[u,\frac{1}{u}\right]}\left|v_{n}\right| \leqslant \frac{x^{n}(\ln u)^{n}}{n!};$$

or la série numérique (x et u étant fixés) $\sum \frac{(x \ln u)^n}{n!}$ converge (série exponentielle, de somme $\exp(x \ln u)$). Par conséquent :

La série de fonctions de terme général v_n converge normalement sur $\left[\frac{1}{u},u\right]$.

2.2. *A fortiori*, la série de fonctions $\sum v_n$ converge uniformément sur $\left[u, \frac{1}{u}\right]$, d'où, grâce au théorème d'intégration terme à terme sur un segment :

$$\forall u > 1, \sum_{n=0}^{+\infty} T_n(u) = \int_0^u \left(\sum_{n=0}^{+\infty} v_n(t) \right) dt.$$

Question 3.

3.1. Pour tout n de \mathbb{N} , l'existence de a_n et b_n se justifie comme celle de l'intégrale du $\mathbf{1}$., et

$$a_n + b_n = \frac{x^n}{n!} \int_0^{+\infty} \exp(-t) |\ln t|^n dt$$

d'où, par linéarité de l'intégrale, pour $p \in \mathbb{N}$,

$$\sum_{n=0}^{p} (a_n + b_n) \le \int_0^{+\infty} \exp(-t) \sum_{n=0}^{p} \frac{(x|\ln t|)^n}{n!} dt.$$

Or, pour tout t > 0, x étant fixé, la série numérique de terme général $\frac{(x|\ln t|)^n}{n!}$ est convergente, de somme $\exp(x|\ln t|)$; comme elle est à termes positifs, ses sommes partielles sont majorées par sa somme, d'où

$$\forall t > 0 \quad \exp(-t) \sum_{n=0}^{p} \frac{(x|\ln t|)^n}{n!} \le \exp(-t) \exp(x|\ln t|) = \exp(-t + x|\ln t|).$$

Pour
$$t \in]0,1]$$
, $\exp(-t + x|\ln t|) = \exp(-t - x\ln t) = \frac{\exp(-t)}{t^x} \underset{t\to 0^+}{\sim} \frac{1}{t^x}$ et,

pour
$$t \ge 1$$
, $\exp(-t + x |\ln t|) = \exp(-t + x \ln t) = t^x \exp(-t) = o\left(\frac{1}{t^2}\right)$.

On en déduit, par comparaison aux intégrales de Riemann, que la fonction $t \mapsto \exp(-t + x|\ln t|)$ est intégrable sur $]0, +\infty[$, d'où finalement, par croissance de l'intégrale :

$$\forall p \ge 0 , \sum_{n=0}^{p} (a_n + b_n) \le \int_{0}^{+\infty} \exp(-t + x |\ln t|) dt$$

3.2. Pour tout u > 1, $\left| \mathsf{T}_n(u) \right| \leqslant a_n + b_n$, d'où $\sup_{]1,+\infty[} \left| \mathsf{T}_n \right| \leqslant a_n + b_n$. Or on vient de voir que la suite des sommes partielles de la série numérique de terme général $a_n + b_n$ est majorée. Comme cette série est à termes positifs, il en résulte qu'elle converge et, par conséquent :

La série de fonctions de terme général T_n converge normalement sur $]1,+\infty[$.

Question 4.

- **4.1.** Par définition, $\Gamma(1+x) = \int_0^{+\infty} t^x \exp(-t) dt$, où, pour tout t > 0: $t^x = \exp(x \ln t) = \sum_{n=0}^{\infty} \frac{x^n (\ln t)^n}{n!}$. Ainsi: $\forall x \in]0,1[, \Gamma(1+x) = \int_0^{+\infty} \left(\sum_{n=0}^{+\infty} \frac{x^n}{n!} \exp(-t) (\ln t)^n\right) dt.$
- **4.2.** Autrement dit, d'après **2.2.**, $\Gamma(1+x) = \lim_{u \to +\infty} \sum_{n=0}^{\infty} T_n(u)$. Or, on vient de voir que la série de fonctions $\sum T_n$ converge uniformément sur $]1, +\infty[$; comme par ailleurs, pour tout n, $T_n(u) \underset{u \to +\infty}{\longrightarrow} \int_0^{+\infty} v_n(t) dt$ (car v_n est intégrable sur $]0, +\infty[$), le théorème de la double limite s'applique : la série numérique de terme général $\int_0^{+\infty} v_n(t) dt$ converge et

$$\lim_{u \to +\infty} \sum_{n=0}^{\infty} T_n(u) = \sum_{n=0}^{\infty} \lim_{u \to +\infty} T_n(u).$$

Autrement dit:

$$\forall x \in]0,1[, \Gamma(1+x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} \left(\int_0^{+\infty} \exp(-t)(\ln t)^n dt \right).$$

Question 5.

5.1. D'après les questions **2.2.** et **5.2.** de la partie **1**, on a :

$$\varphi'(x) = \left(-\frac{1}{x} - \gamma + \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+x}\right)\right) \cdot \varphi(x),$$

soit, puisque $\varphi = \Gamma$ d'après la dernière question de la partie 2 :

$$\frac{\frac{d\Gamma}{dx}(x)}{\Gamma(x)} = -\gamma - \frac{1}{x} + \sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+x}\right).$$

Par ailleurs, pour tout $n \ge 1$, puisque $x \in]0,1[$, on a $\left|-\frac{x}{n}\right| < 1$ et la formule pour la somme de la série géométrique de raison $-\frac{x}{n}$ donne :

$$\frac{1}{n+x} = \frac{1}{n} \cdot \frac{1}{1 - \left(-\frac{x}{n}\right)} = \frac{1}{n} \cdot \sum_{k=0}^{\infty} \left(-\frac{x}{n}\right)^k$$

ďoù

$$\frac{1}{n} - \frac{1}{n+x} = \frac{1}{n} - \frac{1}{n} \cdot \sum_{k=0}^{\infty} (-1)^k \frac{x^k}{n^k} = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^k}{n^{k+1}},$$

soit, d'après le résultat précédent :

$$\frac{\frac{d\Gamma}{dx}(x)}{\Gamma(x)} = -\gamma - \frac{1}{x} + \sum_{n=1}^{+\infty} \left(\sum_{k=1}^{+\infty} \frac{(-1)^{k+1}}{n^{k+1}} x^k \right).$$

6/16

5.2. L'énoncé autorise à admettre que

$$\forall x \in]0,1[\ ,\, \frac{\Gamma'(x)}{\Gamma(x)} = -\gamma - \frac{1}{x} + \sum_{k=1}^{\infty} \left(\sum_{n=1}^{\infty} \frac{(-1)^{k+1}}{n^{k+1}} x^k \right) = -\frac{1}{x} - \gamma + \sum_{k=1}^{\infty} (-1)^{k+1} x^k \left(\sum_{n=1}^{\infty} \frac{1}{n^{k+1}} \right),$$

(*Rem* : cela découle d'un théorème qui au programme MP mais pas PSI...) soit, en réindexant et en changeant le nom de la variable :

$$\forall t \in]0,1[, \frac{\Gamma'(t)}{\Gamma(t)} = -\frac{1}{t} - \gamma + \sum_{k=2}^{\infty} (-1)^k t^{k-1} \zeta(k).$$

Soit $\varepsilon \in]0,1[$; en intégrant sur le segment $[\varepsilon,x]$, on obtient, sachant que Γ est à valeurs strictement positives :

$$[\ln \Gamma(t)]_{t=\varepsilon}^{t=x} = -\ln x + \ln \varepsilon - \gamma x + \sum_{k=2}^{\infty} (-1)^k \frac{x^k}{k} \zeta(k).$$

L'intégration terme à terme de la série est justifiée, du fait qu'il s'agit de la fonction somme d'une série entière de rayon de convergence au moins égal à $1-\cos\left|(-1)^k\frac{\zeta(k)}{k}\right| \leq \frac{\zeta(2)}{2}$ pour tout $k\geq 2-$ et que l'on intègre sur un segment inclus dans l'intervalle ouvert de convergence de cette série entière, où elle converge normalement donc uniformément. On a donc :

$$\ln\left(x\Gamma(x)\right) = -\gamma x + \sum_{k=2}^{\infty} (-1)^k \frac{x^k}{k} \zeta(k) + \ln\left(\varepsilon\Gamma(\varepsilon)\right),$$

cela pour tout ϵ de]0,1[; or $\epsilon\Gamma(\epsilon)=\Gamma(1+\epsilon)\underset{\epsilon\to 0}{\longrightarrow}\Gamma(1)=1$, puisque $\Gamma=\phi$ est continue en 1 (on a vu dans la partie 1 qu'elle était dérivable sur $]0,+\infty[$). A la limite, lorsque ϵ tend vers 0, j'obtiens donc

$$\ln\Gamma(1+x) = -\gamma x + \sum_{k=2}^{\infty} (-1)^k \frac{x^k}{k} \zeta(k),$$

soit, en appliquant la fonction exp:

$$\forall x \in]0,1[, \Gamma(1+x) = \exp\left(-\gamma x + \sum_{k=2}^{+\infty} (-1)^k \frac{x^k}{k} \zeta(k)\right).$$

5.3. Un résultat du cours sur les séries entières permet d'écrire

$$\sum_{k=2}^{\infty} (-1)^k \frac{x^k}{k} \zeta(k) \underset{x \to 0}{=} \frac{\zeta(2)}{2} x^2 + o(x^2)$$

ďoù

$$\Gamma(1+x) = \sup_{x \to 0} \left(-\gamma x + \frac{\zeta(2)}{2} x^2 + o(x^2) \right) = 1 - \gamma x + \frac{\gamma^2 + \zeta(2)}{2} x^2 + o(x^2)$$

Par ailleurs, on a vu au 4.2. que

$$\forall x \in]0,1[, \Gamma(1+x) = \sum_{n=0}^{\infty} \lambda_n x^n \quad \text{où} \quad \forall n \in \mathbf{N} , \lambda_n = \int_0^{+\infty} \exp(-t) \frac{(\ln t)^n}{n!} dt.$$

Ainsi, la série entière $\sum \lambda_n x^n$ a un rayon de convergence au moins égal à 1, sa fonction somme admet en 0 le développement limité $\lambda_0 + \lambda_1 x + \lambda_2 x^2 + o(x^2)$. D'où, par unicité de ce développement limité :

$$\lambda_0=1$$
 , $\,\lambda_1=-\gamma$, $\,\lambda_2=\frac{\gamma^2+\zeta(2)}{2}.$

En particulier, sachant que $\zeta(2) = \frac{\pi^2}{6}$:

$$\int_0^{+\infty} \exp(-t) \ln^2 t \, \mathrm{d}t = \gamma^2 + \frac{\pi^2}{6}.$$

...

Problème 2 : CENTRALE MP 2009)

Partie I: Questions préliminaires

- I.1) $\Gamma(1) = \Gamma(2) = 1$. Comme Γ est continue sur [1,2] et dérivable sur [1,2], d'après le théorème de Rolle, il existe $c \in]1,2[$ tel que $\Gamma'(c) = 0$.
- I.2) Pour x > 0, $\Gamma''(x) = \int_0^{+\infty} (\ln t)^2 e^{-t} t^{x-1} dt$ est l'intégrale d'une fonction continue, positive, non identiquement nulle, donc $\Gamma''(x) > 0$. Donc Γ' est strictement croissante sur $]0, +\infty[$. On en déduit que Γ' est strictement positive sur $]c, +\infty[$ et Γ strictement croissante sur cet intervalle ; *a fortiori* sur $[2, +\infty[$.
- I.3) Comme $(\Gamma(n))_{n\geqslant 1}$ tend vers $+\infty$ et que Γ est croissante au voisinage de $+\infty$, Γ tend vers $+\infty$ en $+\infty$. On peut donc limiter l'étude à $\gamma > 1$.

Pour $x \ge 2$, on notera n_x sa partie entière.

On a alors : $0 \le \frac{\gamma^x}{\Gamma(x)} \le \frac{\gamma^{n_x+1}}{\Gamma(n_x)} = \gamma^2 \frac{\gamma^{n_x-1}}{(n_x-1)!}$. Comme n_x tend vers $+\infty$ quand x tend vers $+\infty$ et que la suite $\left(\frac{\gamma^{n-1}}{(n-1)!}\right)_{x>1}$ converge vers 0, $\frac{\gamma^x}{\Gamma(x)} \xrightarrow[x \to +\infty]{} 0$, i.e $\gamma^x = o(\Gamma(x))$ au voisinage de $+\infty$.

Partie II : Comportement asymptotique de la somme d'une série entière au voisinage de la borne supérieure de son intervalle de convergence

II.A -

II.A.1) On suppose que ϕ n'est pas positive sur $[t_0, +\infty[$. Il existe alors $t_1 \geqslant t_0$ tel que $\phi(t_1) < 0$; par décroissance de ϕ , sur $[t_1, +\infty[$, $\phi(t) \leqslant \phi(t_1) < 0$. Or la fonction constante $\phi(t_1)$ n'est pas intégrable sur l'intervalle non borné $[t_1, +\infty[$; donc ϕ n'est pas intégrable sur cet intervalle : contradiction. Donc ϕ est positive sur $[t_0, +\infty[$.

Autre solution possible : ϕ étant décroissante sur $[t_0, +\infty[$, elle admet une limite en $+\infty$; comme ϕ est intégrable, cette limite est nulle ; par décroissance, ϕ est positive sur $[t_0, +\infty[$.

II.A.2

II.A.2.a) Pour $n \geqslant \frac{t_0}{h} + 1$, l'intervalle [(n-1)h, nh] est inclus dans $[t_0, +\infty[$ donc ϕ est décroissante sur cet intervalle et, $\forall t \in [(n-1)h, nh], \phi(t) \geqslant \phi(nh)$.

Donc
$$\int_{(n-1)h}^{nh} \varphi(t) dt \geqslant \int_{(n-1)h}^{nh} \varphi(nh) dt = h\varphi(nh) \geqslant 0.$$

- II.A.2.b) Comme ϕ est intégrable sur $[0,+\infty[$, la série $\sum \int_{(n-1)h}^{nh} \phi(t) \, dt$ converge (et a pour somme $\int_0^{+\infty} \phi(t) \, dt$); on déduit de II.A.2.a et du théorème de comparaison pour les séries à termes positifs à partir d'un certain rang, la convergence de la série $\sum h\phi(nh)$.
- II.A.3) Soit $\varepsilon > 0$ donné. La fonction φ étant intégrable sur \mathbb{R}_+ et de limite nulle en $+\infty$, il existe un réel A tel que $A > t_0 + 1$ et $\int_{A-1}^{+\infty} \varphi(t) \, \mathrm{d}t < \varepsilon$ et $\varphi(A-1) < \varepsilon$.

Soit $h \in]0,1[$ et n_0 la partie entière de $\frac{A}{h}$.

• Pour $n \ge n_0 + 1$, on a $n \ge \frac{t_0}{h} + 1$ donc, d'après II.A.2.a, il vient $0 \le h \phi(nh) \le \int_{(n-1)h}^{nh} \phi(t) dt$, puis en sommant

$$0 \leqslant \sum_{n=n,+1}^{+\infty} h \phi(nh) \leqslant \int_{n \circ h}^{+\infty} \phi(t) dt < \varepsilon$$

puisque $n_0 h \ge A - 1$.

• D'autre part, les points $0, h, \ldots, n_0 h$, A forment une subdivision de l'intervalle [0, A] de pas h, donc $\sum_{n=0}^{n_0-1} h \phi(nh) + (A - n_0 h) \phi(n_0 h)$ est une somme de Riemann associée à ϕ qui est continue sur [0, A]. Il existe donc $\alpha > 0$ tel que, pour tout $h < \alpha$, on ait

$$\left| \int_0^{\mathbf{A}} \phi(t) dt - \sum_{n=0}^{n_0 - 1} h \phi(nh) - (\mathbf{A} - n_0 h) \phi(n_0 h) \right| < \varepsilon$$

ďoù

$$\left| \int_0^{\mathbf{A}} \phi(t) \, \mathrm{d}t - \sum_{n=0}^{n_0} h \phi(nh) \right| < 3\varepsilon$$

puisque h < 1 et $\phi(n_0 h) \leq \phi(A - 1) < \varepsilon$.

Finalement

$$\left| \int_{0}^{+\infty} \phi(t) dt - \sum_{n=0}^{+\infty} h \phi(nh) \right| \leq \left| \int_{0}^{A} \phi(t) dt - \sum_{n=0}^{n_{0}} h \phi(nh) \right| + \left| \int_{A}^{+\infty} \phi(t) dt - \sum_{n=n_{0}+1}^{+\infty} h \phi(nh) \right|$$
$$< 3\varepsilon + \int_{A}^{+\infty} \phi(t) dt + \sum_{n=n_{0}+1}^{+\infty} h \phi(nh) < 5\varepsilon$$

pour
$$0 < h < \alpha$$
, ce qui prouve bien $\lim_{h \to 0, h > 0} h \sum_{n=0}^{+\infty} \phi(nh) = \int_0^{+\infty} \phi(t) dt$.

II.B -

II.B.1) Puisque $\alpha \ge 1$, g_{α} est continue sur $[0,+\infty[$ et intégrable sur $[0,+\infty[$ (d'intégrale $\Gamma(\alpha)$). Elle est dérivable sur $]0,+\infty[$ et $g'_{\alpha}(t)=\mathrm{e}^{-t}t^{\alpha-2}(-t+\alpha-1)$. Donc g'_{α} est négative sur $[\alpha-1,+\infty[$ et g_{α} est décroissante sur cet intervalle. Les hypothèses du (II.A) sont donc satisfaites par g_{α} , $\alpha \ge 1$.

Pour
$$x \in]0,1[$$
, $h=-\ln x>0$ et $h\sum_{n=0}^{+\infty}g_{\alpha}(nh)=(-\ln x)\sum_{n=0}^{+\infty}g_{\alpha}(-n\ln x))$; comme h tend vers 0^+ quand x tend vers 1^- , d'après II.A, $(-\ln x)\sum_{n=0}^{+\infty}g_{\alpha}(-n\ln x))\xrightarrow[x\to 1,x<1]{}\int_0^{+\infty}g_{\alpha}=\Gamma(\alpha).$

II.B.2) -

II.B.2.a) On étudie la convergence absolue de la série $\sum n^{\alpha-1}x^n$ pour $x \neq 0$:

$$\frac{\left|(n+1)^{\alpha-1}x^{n+1}\right|}{\left|n^{\alpha-1}x^{n}\right|} = \left(1 + \frac{1}{n}\right)^{\alpha-1}|x| \xrightarrow[n \to +\infty]{} |x| \text{ ; d'après la règle de d'Alembert, comme } \left|n^{\alpha-1}x^{n}\right| > 0 \text{ pour tout } n \geqslant 1, \text{ si } |x| < 1, \text{ la série } \sum \left|n^{\alpha-1}x^{n}\right| \text{ converge, si } |x| > 1, \text{ elle diverge.}$$

Donc le rayon de convergence de la série entière $\sum n^{\alpha-1}x^n$ vaut 1.

II.B.2.b) Pour $x \in]0,1[$, $g_{\alpha}(-n \ln x) = (-\ln x)^{\alpha-1}n^{\alpha-1}x^n = (-\ln x)^{\alpha-1}S_{\alpha}(x)$. Puisque $\alpha \ge 1$:

$$-\ln x\,g_\alpha(-n\ln x)=(-\ln x)^\alpha S_\alpha(x)\xrightarrow[x\to 1,x<1]{}\Gamma(\alpha)\neq 0\;;\; \text{donc }S_\alpha(x)\sim\frac{\Gamma(\alpha)}{(-\ln x)^\alpha}\;\; \text{au voisinage de }1^-.$$
 Comme $\ln x\sim x-1$ au voisinage de $1:S_\alpha(x)\sim\frac{\Gamma(\alpha)}{(1-x)^\alpha}\;\; \text{au voisinage de }1^-.$

Partie III : La première fonction eulérienne

III.A -

III.A.1) La fonction $t\mapsto t^{\alpha-1}(1-t)^{\beta-1}$ est continue sur]0,1[. Équivalente en 0^+ à $t^{\alpha-1}$, elle est intégrable sur]0,1/2] si et seulement si $\alpha-1>-1$, *i.e* $\alpha>0$. Équivalente en 1^- à $(1-t)^{\beta-1}$, elle est intégrable sur [1/2,1[si et seulement si $\beta-1>-1$, *i.e* $\beta>0$. Elle est donc intégrable sur]0,1[si et seulement si α et β sont strictement positifs.

III.A.2) -

III.A.2.i) L'égalité s'obtient facilement avec le changement de variable affine $t\mapsto u=1-t$, qui est un \mathscr{C}^1 difféomorphisme de]0,1[sur lui-même.

III.A.2.ii)
$$u = \frac{t}{1-t} \iff t = \frac{u}{u+1} \; ; \; u \mapsto t = \frac{u}{1+u} \; \text{est un } \mathscr{C}^1\text{-diff\'eomorphisme de }]0,1[\; \text{sur }]0,+\infty[\; ; \\ \frac{\mathrm{d}t}{\mathrm{d}u} = \frac{1}{(1+u)^2} \; ; \; t^{\alpha-1}(1-t)^{\beta-1} = \left(\frac{t}{1-t}\right)^{\alpha-1}(1-t)^{\alpha+\beta-2} = u^{\alpha-1}\frac{1}{(1+u)^{\alpha+\beta-2}}.$$

$$\mathrm{Donc}\; \mathrm{B}(\alpha,\beta) = \int_0^{+\infty} u^{\alpha-1}\frac{1}{(1+u)^{\alpha+\beta-2}}\frac{1}{(1+u)^2} \; \mathrm{d}u = \int_0^{+\infty} \frac{u^{\alpha-1}}{(1+u)^{\alpha+\beta}} \; \mathrm{d}u.$$

III.A.2.iii) Soit 0 < a < b < 1; en intégrant par parties :

$$\int_a^b t^{\alpha} (1-t)^{\beta-1} dt = \left[t^{\alpha} \frac{-(1-t)^{\beta}}{\beta} \right]_a^b + \frac{\alpha}{\beta} \int_a^b t^{\alpha-1} (1-t)^{\beta} dt.$$

Comme α et β sont strictement positifs, $t^{\alpha} \frac{-(1-t)^{\beta}}{\beta}$ tend vers 0 quand t tend vers 0 ou 1;

$$\operatorname{donc} \left[t^{\alpha} \frac{-(1-t)^{\beta}}{\beta} \right]_{a}^{b} \xrightarrow[\alpha \to 0, \to 1]{} 0.$$
De plus, $t^{\alpha-1}(1-t)^{\beta} = t^{\alpha-1}(1-t)^{\beta-1}(1-t) = t^{\alpha-1}(1-t)^{\beta-1} - t^{\alpha}(1-t)^{\beta-1}$;
$$\operatorname{donc} \int_{a}^{b} t^{\alpha-1}(1-t)^{\beta} dt \xrightarrow[\alpha \to 0, b \to 1]{} B(\alpha, \beta) - B(\alpha+1, \beta).$$
On en déduit : $B(\alpha+1, \beta) = \frac{\alpha}{\beta} (B(\alpha, \beta) - B(\alpha+1, \beta))$; puis : $B(\alpha+1, \beta) = \frac{\alpha}{\alpha+\beta} B(\alpha, \beta)$.

III.B -

III.B.1) On suppose que
$$\forall \alpha, \beta > 2$$
, $B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}$. Soit $\alpha, \beta > 0$;

$$\begin{split} B(\alpha,\beta) &= \frac{\alpha+\beta}{\alpha}B(\alpha+1,\beta) = \frac{\alpha+\beta}{\alpha}\frac{\alpha+1+\beta}{\alpha+1}B(\alpha+2,\beta) = \frac{\alpha+\beta}{\alpha}\frac{\alpha+1+\beta}{\alpha+1}B(\beta,\alpha+2) \\ &= \frac{\alpha+\beta}{\alpha}\frac{\alpha+1+\beta}{\alpha+1}\frac{\alpha+\beta+2}{\beta}B(\beta+1,\alpha+2) = \frac{\alpha+\beta}{\alpha}\frac{\alpha+1+\beta}{\alpha+1}\frac{\alpha+\beta+2}{\beta}\frac{\alpha+\beta+3}{\beta+1}B(\beta+2,\alpha+2). \end{split}$$

Comme $\alpha + 2$ et $\beta + 2$ sont strictement supérieurs à 2 :

$$B(\beta+2,\alpha+2) = \frac{\Gamma(\alpha+2)\Gamma(\beta+2)}{\Gamma(\alpha+\beta+4)} = \frac{(\alpha+1)\alpha\Gamma(\alpha)(\beta+1)\beta\Gamma(\beta)}{(\alpha+\beta+3)(\alpha+\beta+2)(\alpha+\beta+1)(\alpha+\beta)\Gamma(\alpha+\beta)}.$$

Après substitution et simplification : $B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}$.

III.B.2) -

III.B.2.a) Comme $\alpha-1$ et $\beta-1$ sont strictement plus grands que 1, $\psi_{\alpha,\beta}$ est de classe \mathscr{C}^1 sur le segment [0,1], donc sa dérivée est bornée. Donc $\psi_{\alpha,\beta}$ est lipschitzienne (d'après l'inégalité des accroissements finis).

III.B.2.b) Soit
$$n \in \mathbb{N}^*$$
; $B(\alpha, \beta) - u_n(\alpha, \beta) = \sum_{k=0}^{n-1} \int_{k/n}^{(k+1)/n} \left(\psi_{\alpha,\beta}(t) - \psi_{\alpha,\beta}(\frac{k}{n}) \right) dt$.

Comme, sur $\left[\frac{k}{n}, \frac{k+1}{n} \right]$, $\left| \psi_{\alpha,\beta}(t) - \psi_{\alpha,\beta}(\frac{k}{n}) \right| \leq A_{\alpha,\beta} \left| t - \frac{k}{n} \right| = A_{\alpha,\beta}(t - \frac{k}{n})$, on a:
$$\left| \int_{k/n}^{(k+1)/n} \left(\psi_{\alpha,\beta}(t) - \psi_{\alpha,\beta}(\frac{k}{n}) \right) dt \right| \leq \int_{k/n}^{(k+1)/n} A_{\alpha,\beta}(t - \frac{k}{n}) dt = A_{\alpha,\beta} \cdot \frac{1}{2n^2}.$$

On en déduit: $\left| B(\alpha,\beta) - u_n(\alpha,\beta) \right| \leq \sum_{k=0}^{n-1} \left| \int_{k/n}^{(k+1)/n} \left(\psi_{\alpha,\beta}(t) - \psi_{\alpha,\beta}(\frac{k}{n}) \right) dt \right| \leq n \cdot \frac{A_{\alpha,\beta}}{2n^2} = \frac{A_{\alpha,\beta}}{2n}.$

III.B.2.c) Pour $x \in [0,1[$, les séries $\sum n^{\alpha-1}x^n$ et $\sum n^{\beta-1}x^n$ convergent absolument (séries entières de rayon de convergence 1), donc la série produit converge absolument et sa somme est le produit des sommes, soit $S_{\alpha}(x)S_{\beta}(x)$.

Le terme d'ordre n de la série produit vaut :

$$\sum_{k=0}^{n} k^{\alpha-1} (n-k)^{\beta-1} x^n = n^{\alpha+\beta-2} \sum_{k=0}^{n} \left(\frac{k}{n}\right)^{\alpha-1} \left(1 - \frac{k}{n}\right)^{\beta-1} x^n = n^{\alpha+\beta-1} u_n(\alpha, \beta) x^n$$

On en déduit que : $S_{\alpha}(x)S_{\beta}(x) = \sum_{n=0}^{+\infty} n^{\alpha+\beta-1}u_n(\alpha,\beta)x^n$.

$$\text{Par diff\'erence}: \ S_{\alpha}(x)S_{\beta}(x) - B(\alpha,\beta)S_{\alpha+\beta}(x) = \sum_{n=0}^{+\infty} n^{\alpha+\beta-1} \left(u_n(\alpha,\beta) - B(\alpha,\beta)\right) x^n \,.$$

Avec la majoration du 2.b, on obtient :

$$\left| S_{\alpha}(x)S_{\beta}(x) - B(\alpha,\beta)S_{\alpha+\beta}(x) \right| \leqslant \sum_{n=0}^{+\infty} n^{\alpha+\beta-1} \left| u_n(\alpha,\beta) - B(\alpha,\beta) \right| x^n \leqslant \frac{A_{\alpha,\beta}}{2} \sum_{n=0}^{+\infty} n^{\alpha+\beta-2} x^n = \frac{A_{\alpha,\beta}}{2} S_{\alpha+\beta-1}(x).$$

En multipliant par $(1-x)^{\alpha+\beta}$:

$$\left| (1-x)^{\alpha} S_{\alpha}(x).(1-x)^{\beta} S_{\beta}(x) - B(\alpha,\beta).(1-x)^{\alpha+\beta} S_{\alpha+\beta}(x) \right| \leq \frac{A_{\alpha,\beta}}{2} (1-x).(1-x)^{\alpha+\beta-1} S_{\alpha+\beta-1}(x)$$

Comme α , β , $\alpha + \beta$ et $\alpha + \beta - 1$ sont tous supérieurs à 1, on peut utiliser la question II.B.2:

$$(1-x)^{\alpha}S_{\alpha}(x).(1-x)^{\beta}S_{\beta}(x) - B(\alpha,\beta).(1-x)^{\alpha+\beta}S_{\alpha+\beta}(x) \xrightarrow[x \to 1, x < 1]{} \Gamma(\alpha)\Gamma(\beta) - B(\alpha,\beta)\Gamma(\alpha+\beta)$$

et
$$\frac{A_{\alpha,\beta}}{2}(1-x).(1-x)^{\alpha+\beta-1}S_{\alpha+\beta-1}(x)\xrightarrow[x\to 1,x<1]{}0$$
;

$$donc \ \left| \Gamma(\alpha) \Gamma(\beta) - B(\alpha,\beta) \Gamma(\alpha+\beta) \right| \leqslant 0, \text{ i.e } \Gamma(\alpha) \Gamma(\beta) - B(\alpha,\beta) \Gamma(\alpha,\beta) = 0.$$

III.C -

III.C.1) Pour $\alpha \in]0,1[$, $1-\alpha \in]0,1[$, donc $B(\alpha,1-\alpha)$ existe bien.

$$B(\alpha, 1 - \alpha) = \int_0^1 f(\alpha, t) dt \text{ avec } f : (\alpha, t) \mapsto t^{\alpha} (1 - t)^{-\alpha}.$$

- Pour tout $\alpha \in]0,1[$, $t \mapsto f(\alpha,t)$ est continue (par morceaux) sur]0,1[.
- Pour tout $t \in]0,1[$, $\alpha \mapsto f(\alpha,t)$ est continue sur]0,1[.
- Domination de f sur le segment $[a,b] \subset]0,1[: \forall t \in]0,1[, \forall \alpha \in [a,b], 0 \leq f(\alpha,t) \leq t^{a-1}(1-t)^{-b}$ et $t \mapsto t^{a-1}(1-t)^{-b}$ est indépendante de α et intégrable sur]0,1[(comme au III.A.1).

D'après le théorème de continuité d'une intégrale à paramètres, $\alpha \mapsto B(\alpha, 1 - \alpha)$ est continue sur]0,1[.

Rem: plus simplement, on pouvait remarquer, à l'aide de III.B, que l'on a $B(\alpha, 1 - \alpha) = \Gamma(\alpha)\Gamma(1 - \alpha)$, donc la continuité résulte de clle de la fonction Γ .

III.C.2) -

III.C.2.a) D'abord, on a bien, compte tenu des hypothèses, $\frac{2p+1}{2a} \in]0,1[$.

D'après le III.A.2.ii, B
$$\left(\frac{2p+1}{2q}, 1 - \frac{2p+1}{2q}\right) = \int_0^{+\infty} \frac{t^{(2(p-q)+1)/2q)}}{1+t} dt$$
.

Le changement de variable
$$u\mapsto t=u^{2q}$$
, difféomorphisme de $]0,+\infty[$ sur lui-même, permet d'obtenir :
$$B\left(\frac{2p+1}{2q},1-\frac{2p+1}{2q}\right)=\int_0^{+\infty}\frac{u^{2(p-q)+1}}{1+u^{2q}}.2qu^{2q-1}\ \mathrm{d}u=2q\int_0^{+\infty}\frac{u^{2p}}{1+u^{2q}}\ \mathrm{d}u.$$

III.C.2.b) Les z_k , pour k compris entre 0 et q-1 et leurs opposés sont les 2q zéros de $X^{2q}+1$ (et ils sont simples). Comme $A = X^{2p}$ a un degré strictement inférieur à $B = X^{2q} + 1$, la partie entière de la fraction rationnelle $\frac{X^{2p}}{1+X^{2q}}$ est nulle. Le développement en éléments simples de $\frac{X^{2p}}{1+X^{2q}}$ s'écrit donc :

$$\frac{\mathbf{X}^{2p}}{1+\mathbf{X}^{2q}} = \sum_{k=0}^{+\infty} \left(\frac{a_k}{\mathbf{X}-z_k} + \frac{b_k}{\mathbf{X}+z_k} \right), \text{ où les } a_k \text{ et les } b_k \text{ sont des nombres complexes définis par} : a_k = \frac{\mathbf{A}(z_k)}{\mathbf{B}'(z_k)}$$
 et $b_k = \frac{\mathbf{A}(-z_k)}{\mathbf{B}'(-z_k)}$.

Or $B'=2qX^{2q-1}$ et $z_k^{2q}=-1$; donc $B'(z_k)=-\frac{2q}{z_k}$ et $B'(-z_k)=\frac{2q}{z_k}$; d'où la formule de l'énoncé.

III.C.2.c) • On peut vérifier ce qui est demandé par simple dérivation ... Mais on le trouve aussi en écrivant c = a + ib avec a, b réels et $b \neq 0$:

$$\frac{1}{t-c} = \frac{t-a+ib}{(t-a)^2+b^2} = \frac{t-a}{(t-a)^2+b^2} + i\frac{b}{(t-a)^2+b^2}$$

et en utilisant les primitives usuelles..

• Pour tout k comprisentre 0 et q-1, la fonction :

$$\begin{split} \omega_k : t \mapsto & \left(\frac{1}{2} \ln \left((t - \mathcal{R}ez_k)^2 + (\mathcal{I}mz_k)^2 \right) + \mathrm{i} \arctan \left(\frac{t - \mathcal{R}ez_k}{\mathcal{I}mz_k} \right) \right) \\ & - \left(\frac{1}{2} \ln \left((t + \mathcal{R}ez_k)^2 + (-\mathcal{I}mz_k)^2 \right) + \mathrm{i} \arctan \left(\frac{t + \mathcal{R}ez_k}{-\mathcal{I}mz_k} \right) \right) \\ & = \frac{1}{2} \ln \frac{(t - \mathcal{R}ez_k)^2 + (\mathcal{I}mz_k)^2}{(t + \mathcal{R}ez_k)^2 + (\mathcal{I}mz_k)^2} + \mathrm{i} \left(\arctan \left(\frac{t - \mathcal{R}ez_k}{\mathcal{I}mz_k} \right) + \arctan \left(\frac{t + \mathcal{R}ez_k}{\mathcal{I}mz_k} \right) \right) \end{split}$$

est une primitive de $t \mapsto \frac{1}{t - z_k} - \frac{1}{t + z_k}$.

Comme
$$\mathcal{I}mz_k = \sin \pi \frac{2k+1}{2q} > 0$$
, $\omega_k(t) \xrightarrow[t \to +\infty]{} \pi i$; et $\omega_k(0) = 0$.

La fonction $\omega = -\frac{1}{2q}\sum_{k=0}^{q-1}z_k^{2p+1}\omega_k$ est une primitive de $t\mapsto \frac{t^{2p}}{1+t^{2q}}$

De plus,
$$\omega(0) = 0$$
 et $\omega(t) \xrightarrow[t \to +\infty]{} -\frac{1}{2q} \sum_{k=0}^{q-1} z_k^{2p+1} \pi i = -i \frac{\pi}{2q} \sum_{k=0}^{q-1} z_k^{2p+1}$.

On en déduit que :
$$\int_0^{+\infty} \frac{t^{2p}}{1+t^{2q}} dt = \lim_{+\infty} \omega - \omega(0) = -i \frac{\pi}{2q} \sum_{k=0}^{q-1} z_k^{2p+1}.$$

$$\begin{aligned} &\text{Or } z_k^{2p+1} = \mathrm{e}^{\mathrm{i}\pi\frac{2p+1}{2q}} \cdot \left(\mathrm{e}^{\mathrm{i}\pi\frac{2p+1}{q}} \right)^k \text{ et } \mathrm{e}^{\mathrm{i}\pi\frac{2p+1}{q}} \neq 1 \; ; \\ &\text{donc } \sum_{k=0}^{q-1} z_k^{2p+1} = \mathrm{e}^{\mathrm{i}\pi\frac{2p+1}{2q}} \cdot \frac{\mathrm{e}^{\mathrm{i}\pi\frac{2p+1}{q}} \cdot -1}{\mathrm{e}^{\mathrm{i}\pi\frac{2p+1}{q}} - 1} = \mathrm{e}^{\mathrm{i}\pi\frac{2p+1}{2q}} \cdot \frac{\mathrm{e}^{\mathrm{i}\pi(2p+1)} - 1}{\mathrm{e}^{\mathrm{i}\pi\frac{2p+1}{2q}} \cdot \left(\mathrm{e}^{\mathrm{i}\pi\frac{2p+1}{2q}} - \mathrm{e}^{-\mathrm{i}\pi\frac{2p+1}{2q}}\right)} = \frac{-2}{2\mathrm{i}\sin\pi\frac{2p+1}{2q}} \cdot \\ &\text{Finalement, } \int_0^{+\infty} \frac{t^{2p}}{1+t^{2q}} \; \mathrm{d}t = \frac{\pi}{2q} \frac{1}{\sin\pi\frac{2p+1}{2q}} \; . \end{aligned}$$

 $\int_{0}^{\infty} 1 + t^{2q} = 2q \sin \pi \frac{2p+1}{2q}$

III.C.3) Pour tout α de la forme $\alpha = \frac{2p+1}{2q}$, avec $0 , <math>p,q \in \mathbb{N}$, on a ainsi :

$$B(\alpha, 1 - \alpha) = 2q \int_0^{+\infty} \frac{t^{2p}}{1 + t^{2q}} dt = \frac{\pi}{\sin \pi \alpha}.$$

Comme $\alpha \mapsto \mathrm{B}(\alpha, 1-\alpha)$ et $\alpha \mapsto \frac{\pi}{\sin \pi \alpha}$ sont continues sur]0,1[et que l'ensemble des $\frac{2p+1}{2q}$, avec $0 , <math>p,q \in \mathbb{N}$, est dense dans]0,1[(vérifiez que, si a et b sont des réels tels que 0 < a < b < 1, on peut toujours trouver un rationnel de la forme $\frac{2p+1}{2a}$ dans l'intervalle]a,b[), on peut affirmer :

$$\forall \alpha \in]0,1[, B(\alpha, 1-\alpha) = \frac{\pi}{\sin \pi \alpha}.$$

De plus, $\Gamma(\alpha)\Gamma(1-\alpha) = B(\alpha, 1-\alpha)\Gamma(\alpha+(1-\alpha)) = B(\alpha, 1-\alpha)$.

Partie IV: L'opérateur d'Abel

IV.A -

IVA.1) La fonction $t \mapsto \frac{f(t)}{(x-t)^{\alpha}}$ est continue sur [0,x[et, pour tout $t \in [0,x[$, on a $\left|\frac{f(t)}{(x-t)^{\alpha}}\right| \le \frac{\|f\|}{(x-t)^{\alpha}}$; comme $t \mapsto \frac{1}{(x-t)^{\alpha}}$ est intégrable sur [0,x[(intégrale de référence, avec $\alpha < 1$), $t \mapsto \frac{f(t)}{(x-t)^{\alpha}}$ est intégrable sur [0,x[, donc sur]0,x[.

IV.A.2) -

- IVA.2.a) Pour $x \in]0,1]$, on effectue le changement de variable affine $u \mapsto t = ux$, qui est un \mathscr{C}^1 -difféomorphisme de]0,1[sur]0,x[. La formule reste encore valable pour x=0 $(1-\alpha>0)$.
- IVA.2.b) Comme $x \mapsto x^{1-\alpha}$ est continue sur [0,1], il suffit de montrer la continuité de la fonction $x \mapsto \int_{0}^{1} \frac{f(xt)}{(1-t)^{\alpha}} dt$.
 - Pour tout $x \in [0,1]$, $t \mapsto \frac{f(xt)}{(1-t)^{\alpha}}$ est continue (par morceaux) sur [0,1[;
 - pour tout $t \in [0,1[, x \mapsto \frac{f(xt)}{(1-t)^{\alpha}}]$ est continue sur [0,1];
 - domination sur [0,1]: pour tout $t \in [0,1[$ et tout $x \in [0,1]$, on a: $\left| \frac{f(xt)}{(1-t)^{\alpha}} \right| \le \frac{\|f\|}{(1-t)^{\alpha}}$; la fonction $t \mapsto \frac{\|f\|}{(1-t)^{\alpha}}$ est continue, intégrable sur [0,1[et indépendante de x.

Donc $x \mapsto \int_0^1 \frac{f(xt)}{(1-t)^{\alpha}} dt$ est continue sur [0,1]; donc $A_{\alpha}f$ est continue sur [0,1].

IV.A.2.c) Par linéarité de l'intégrale, A_{α} est linéaire. D'après IV.A.2.b, A_{α} est bien un endomorphisme de E.

Continuité

$$\forall f \in E, \ \forall x \in [0,1], \ \left| A_{\alpha} f(x) \right| \leqslant x^{\alpha - 1}. \int_0^1 \frac{\left| f(xt) \right|}{(1-t)^{\alpha}} \ \mathrm{d}t \leqslant 1. \int_0^1 \frac{\left\| f \right\|}{(1-t)^{\alpha}} \ \mathrm{d}t = \left\| f \right\| \int_0^1 \frac{\mathrm{d}t}{(1-t)^{\alpha}} = \frac{1}{1-\alpha} \ \left\| f \right\|.$$

Donc, $\forall f \in E$, $\|A_{\alpha}f\| \leq \frac{1}{1-\alpha} \|f\|$. On en déduit que l'endomorphisme A_{α} est continu et que $\|A_{\alpha}\| \leq \frac{1}{1-\alpha}$.

De plus, si f est la fonction constante 1, $\|A_{\alpha}f\| = \frac{1}{1-\alpha} \|f\|$. Donc $\|A_{\alpha}\| = \frac{1}{1-\alpha}$.

IV.B -

IV.B.1) -

IV.B.1.a) Pour n = 1, on reprend la méthode de majoration du IV.A.2.c :

pour tout
$$x \in [0,1]$$
, $\left| A_{\alpha} f(x) \right| \leq x^{\beta} \left\| f \right\| \int_{0}^{1} \frac{\mathrm{d}t}{(1-t)^{\alpha}} = x^{\beta} \left\| f \right\| \frac{1}{\beta} = x^{\beta} \left\| f \right\| \frac{\Gamma(\beta)}{\Gamma(\beta+1)}$.

Soit $n \ge 1$; on suppose l'inégalité vraie au rang $n : \forall x \in [0,1], \left| A_{\alpha}^n f(x) \right| \le x^{n\beta} \frac{(\Gamma(\beta))^n}{\Gamma(1+n\beta)} \|f\|$. Soit $x \in [0,1]$;

$$\left| \mathsf{A}_{\alpha}^{n+1} f(x) \right| = x^{\beta} \left| \int_{0}^{1} \frac{\mathsf{A}_{\alpha}^{n} f(xt)}{(1-t)^{\alpha}} \, \mathrm{d}t \right| \leqslant x^{\beta} \int_{0}^{1} \frac{\left| \mathsf{A}_{\alpha}^{n} f(xt) \right|}{(1-t)^{\alpha}} \, \mathrm{d}t \leqslant x^{\beta} x^{n\beta} \frac{(\Gamma(\beta))^{n}}{\Gamma(1+n\beta)} \left\| f \right\| \int_{0}^{1} \frac{t^{n\beta}}{(1-t)^{\alpha}} \, \mathrm{d}t$$

Donc

$$\left| A_{\alpha}^{n+1} f(x) \right| \leq x^{(n+1)\beta} \frac{(\Gamma(\beta))^n}{\Gamma(1+n\beta)} B(n\beta+1,1-\alpha) \left\| f \right\| = x^{(n+1)\beta} \frac{(\Gamma(\beta))^n}{\Gamma(1+n\beta)} B(n\beta+1,\beta) \left\| f \right\| \\
= x^{(n+1)\beta} \frac{(\Gamma(\beta))^n}{\Gamma(1+n\beta)} \frac{\Gamma(n\beta+1)\Gamma(\beta)}{\Gamma((n+1)\beta+1)} \left\| f \right\| = x^{(n+1)\beta} \frac{\Gamma(\beta)^{n+1}}{\Gamma((n+1)\beta+1)} \left\| f \right\|.$$

ce qui établit le résultat à l'ordre n + 1.

On a donc montré par récurrence : $\forall n \in \mathbb{N}^*, \ \forall x \in [0,1], \ \left| A_{\alpha}^n f(x) \right| \leq x^{n\beta} \frac{(\Gamma(\beta))^n}{\Gamma(1+n\beta)} \| f \|.$

IV.B.1.b) On en déduit : $\forall n \in \mathbb{N}^*$, $\left\|A_{\alpha}^n f\right\| \leq \frac{(\Gamma(\beta))^n}{\Gamma(1+n\beta)} \left\|f\right\|$. Autrement dit, l'endomorphisme A_{α}^n de E est continu (d'ailleurs, il s'agit de la composée d'applications continues!) et

$$\|A_{\alpha}^n\| \leq \frac{(\Gamma(\beta))^n}{\Gamma(1+n\beta)}.$$

IV.B.2) Soit
$$\gamma > 0$$
; alors $\gamma^n \frac{(\Gamma(\beta))^n}{\Gamma(1+n\beta)} = \frac{(\gamma\Gamma(\beta))^n}{\Gamma(1+n\beta)} = \frac{1}{(\gamma\Gamma(\beta))^{(1/\beta)}} \frac{((\gamma\Gamma(\beta))^{(1/\beta)})^{n\beta+1}}{\Gamma(1+n\beta)} \xrightarrow[n \to +\infty]{} 0$, d'après I.3.

IV.B.3) -

IV.B.3.a) Soit $\lambda \in \mathbb{C}$.

Pour tout
$$n \in \mathbb{N}^*$$
, $\|\lambda^n A_\alpha^n f\| \le |\lambda|^n \frac{(\Gamma(\beta))^n}{\Gamma(1+n\beta)} \|f\|$.
Or $|\lambda|^n \frac{(\Gamma(\beta))^n}{\Gamma(1+n\beta)} \|f\| = \left(\frac{1}{2}\right)^n (2|\lambda|)^n \frac{(\Gamma(\beta))^n}{\Gamma(1+n\beta)} \|f\| = o\left(\left(\frac{1}{2}\right)^n\right)$; donc la série $\sum |\lambda|^n \frac{(\Gamma(\beta))^n}{\Gamma(1+n\beta)} \|f\|$ converge et la série $\sum \lambda^n A_\alpha^n f$ converge normalement donc uniformément sur $[0,1]$.

$$\begin{split} \text{IV.B.3.b.)} \ \ \text{Pour tout N} \in \mathbb{N}^*, & (id_{\mathbb{E}} - \lambda A_{\alpha}) \sum_{n=0}^N \lambda^n A_{\alpha}^n f = f - \lambda^{N+1} A_{\alpha}^{N+1} f \,. \\ \text{Or } \left(\sum_{n=0}^N \lambda^n A_{\alpha}^n f \right)_{\mathbb{N}} \ \text{converge uniformément sur [0,1] vers } g \ ; \\ \left(\sum_{n=0}^N \lambda^n A_{\alpha}^n f \right)_{\mathbb{N}} \ \text{est une suite d'éléments de E} \ \text{E.} \\ \text{E.} (i.e. \ \text{de fonctions continues}), \ \text{donc } g \ \text{est continue} \ (g \in \mathbb{E}) \ \text{et} \left(\sum_{n=0}^N \lambda^n A_{\alpha}^n f \right)_{\mathbb{N}} \ \text{converge vers } g \ \text{dans E.} \\ \text{Comme } id_{\mathbb{E}} - \lambda A_{\alpha} \ \text{est continue dans E,} \ \left((id_{\mathbb{E}} - \lambda A_{\alpha}) \sum_{n=0}^N \lambda^n A_{\alpha}^n f \right)_{\mathbb{N}} \ \text{converge dans E, i.e. uniformément sur [0,1] vers } (id_{\mathbb{E}} - \lambda A_{\alpha})g \,. \\ \text{D'autre part,} \ \left(\lambda^{N+1} A_{\alpha}^{N+1} f \right)_{\mathbb{N}} \ \text{converge uniformément vers 0 sur [0,1], i.e. converge vers 0 dans E.} \end{split}$$

IV.B.3.c) D'après la question précédente,
$$(id_{\rm E}-\lambda {\rm A}_{\alpha})\sum_{n=0}^{+\infty}\lambda^n{\rm A}_{\alpha}^n=id_{\rm E}$$
. On montre de même : $\forall f\in {\rm E}, \left(\sum_{n=0}^{+\infty}\lambda^n{\rm A}_{\alpha}^n\right)(id_{\rm E}-\lambda {\rm A}_{\alpha})f=f$, i.e $\left(\sum_{n=0}^{+\infty}\lambda^n{\rm A}_{\alpha}^n\right)(id_{\rm E}-\lambda {\rm A}_{\alpha})=id_{\rm E}$. Donc $id_{\rm E}-\lambda {\rm A}_{\alpha}$ est inversible dans E, d'inverse $\sum_{n=0}^{+\infty}\lambda^n{\rm A}_{\alpha}^n$.

IV.C -

IV.C.1) -

IV.C.1.a)
$$\begin{aligned} &\mathbf{A}_{\alpha}e_{n}(x)=x^{\beta}\int_{0}^{1}\frac{(xt)^{n}}{(1-t)^{\alpha}}\;\mathrm{d}t=x^{\beta+n}\mathbf{B}(n+1,\beta)=x^{\beta+n}\frac{\Gamma(n+1)\Gamma(\beta)}{\Gamma(n+1+\beta)}\;;\\ &\mathrm{donc}\;\mathbf{A}_{\alpha}e_{n}=\mathbf{B}(n+1,\beta)e_{n+\beta}=\frac{\Gamma(n+1)\Gamma(\beta)}{\Gamma(n+1+\beta)}e_{n+\beta}\;\mathrm{en\;prolongeant\;la\;d\acute{e}finition\;des}\;e_{k}\;\grave{\mathbf{a}}\;k\;\mathrm{r\acute{e}el\;positif.} \end{aligned}$$

IV.C.1.b)

$$\begin{split} (\mathbf{A}_{1-\alpha} \circ \mathbf{A}_{\alpha})e_n & = \quad \frac{\Gamma(n+1)\Gamma(\beta)}{\Gamma(n+1+\beta)} \mathbf{A}_{1-\alpha}(e_{n+\beta}) = \frac{\Gamma(n+1)\Gamma(\beta)}{\Gamma(n+1+\beta)} \cdot \frac{\Gamma((n+\beta)+1)\Gamma(1-\beta)}{\Gamma((n+\beta)+1+(1-\beta))} e_{(n+\beta)+1-\beta} \\ & = \quad \Gamma(\beta)\Gamma(1-\beta) \frac{\Gamma(n+1)}{\Gamma(n+2)} e_{n+1} = \frac{\Gamma(\beta)\Gamma(1-\beta)}{n+1} e_{n+1} = \frac{\pi}{\sin \pi \alpha} \frac{e_{n+1}}{n+1} \end{split}$$

IV.C.2) Vrai par linéarité ...

IV.C.3) -

Donc $(id_E - \lambda A_\alpha)g = f$.

- IV.C.3.a) Pour tout $f \in E$, Pf est bien continu; de plus, P est linéaire. Soit $f \in E$; alors $\forall x \in [0,1], \left| Pf(x) \right| \leq \int_0^x \left| f(t) \right| \, \mathrm{d}t \leq \int_0^x \left\| f \right\| \, \mathrm{d}t = \left\| f \right\| x \leq \left\| f \right\| \, ;$ donc $\left\| Pf \right\| \leq \left\| f \right\| .$ Donc P est linéaire continu et $\left\| P \right\| \leq 1$. De plus, si f est l'application constante 1, alors $Pf: x \mapsto x$; donc $\left\| Pf \right\| = \left\| f \right\| .$ Donc $\left\| Pf \right\| = 1$.
- IV.C.3.b) L'ensemble \mathscr{P} des fonctions polynômiales sur [0,1] est dense dans E pour la norme $\|.\|$ (théorème de Weierstrass). Comme B_{α} et $\frac{\pi}{\sin\pi\alpha}P$ sont deux applications continues sur E coïncidant sur \mathscr{P} , elles sont égales.
- IV.C.3.c) Comme P est à valeurs dans $\mathscr{C}([0,1],\mathbb{C})$, $D \circ B_{\alpha}$ est bien défini. Comme $D \circ P = id_{\mathbb{E}}$, on a la formule de l'énoncé.
- IV.C.3.d) Soit $f \in E$ tel que $A_{\alpha}f = 0$; alors $B_{\alpha}f = 0$, donc $P \circ B_{\alpha}f = 0$; avec la relation du (IV.C.3.c), f = 0. Donc l'opérateur (linéaire) A_{α} est injectif.

* * * * * * * * * *