第四章 半导体器件概述

—— 4.3 半导体场效应管

李泳佳 东南大学电子系国家ASIC工程中心 yongjia.li@outlook.com

4.3 半导体场效应管

本节内容

- 4.3.1 结型场效应管
- 4.3.2 绝缘栅场效应管
- 4.3.3 主要参数及电路模型

4.3.0 PN结回顾

✓ 载流子与电流:

- 正偏
- 反偏

✓ 双极型和单极型:

- 双极型晶体管: 两种载流子导电

- 单极型晶体管: 一种载流子导电

- 场效应管(Field Effect Transister): 依靠电场效应来控制电流的器件

- 结型场效应管(Junction FET)

- 金属氧化物半导体场效应管(Metal Oxide Semiconductor FET)

✓ JFET结构:

- N型和P型: 沟道类型不同

- 以N型为例: N型沟道的两侧扩散出高浓度P型区, P即为栅极, N沟道—端引出漏极, 另—端引出源极

✓ JFET工作原理:栅源电压V_{GS}对沟道的控制作用(V_{DS}=0)

- V_{GS}=0: 耗尽层较窄, 导电沟道最宽

- V_{GS}<0: PN结反偏,耗尽层变宽,源漏间沟道变窄

- $V_{GS} > V_{GS (off)}$: 耗尽层展宽到相碰,沟道被夹断,沟道电阻趋于无穷大

✓ JFET工作原理:漏源电压V_{DS}对沟道的控制作用(V_{GS}=0)

 $-0 < V_{DS} < |V_{GS (off)}|$: 电流 i_D 流过导电沟道产生压降,使反偏电压从漏到源递减

 $-V_{DS} = |V_{GS (off)}|$: 沟道不等宽更明显,耗尽层在漏极附近相碰,发生**预夹断**

- V_{DS}> | V_{GS (off)} |: 夹断区变长,承受额外电场,电流i_D趋于饱和

✓ JFET工作原理:漏源电压V_{DS}和栅源电压V_{GS}对沟道的控制作用

- 如果V_{GS (off)} < V_{GS} < 0, V_{DS} > 0, 耗尽层如何变化?

✓ **JFET特性曲线:** N沟道JFET

- 漏极输出特性曲线
- 转移特性曲线

✓ JFET缺点:

- 参数一致性不如BJT
- 高温下PN结的反向电流增大,栅源电阻会显著下降
- 栅源极之间PN结施加正向电压时,会出现较大栅极电流

✓ 优点:

- 噪声低
- 栅源电阻可达10⁷以上,好于BJT

✓ 绝缘栅型场效应管: MOSFET (Metal Oxide Semiconductor FET)

- 增强型: N沟道, P沟道

- 耗尽型: N沟道, P沟道

✓ 增强型NMOS工作原理: V_{GS}

- 开启电压(阈值)
- V_{GS(TH)} < V_{GS} , DS之间相当于两个背靠背的二极管 , DS加上偏压不会形成电流
- $-0 < V_{GS} < V_{GS(TH)}$ 时,通过G和B间的电容排斥G下方的空穴,耗尽层出现
- V_{GS(TH)} < V_{GS}时,G下方聚集较多电子形成**反型层**,DS加上偏压会形成电流

✓ 增强型NMOS的转移特性曲线: V_{GS}

- 跨导g_m: 曲线斜率反映了 V_{GS} 对 I_{D} 的控制, $g_m = \Delta I_D/\Delta U_{GS}|_{U_{DS}=const}$

✓ 增强型NMOS的转移特性曲线: V_{DS}

- V_{GS(TH)} < V_{GS}, 且V_{GS}固定,改变V_{DS}时, i_D如何变化

✓ 耗尽型NMOS的转移特性曲线:

- V_{GS}=0, V_{DS}>0时也存在电流,注意与增强型的对比

✓ 特性曲线对比:

4.3.3 场效应管的主要参数和电路模型

✓ 直流参数:

- **开启电压V_{GS(th)}:** 增强型器件, V_{GS}小于V_{GS(th)}时, 器件不导通
- **夹断电压V_{GS(off)}:** 耗尽型器件, V_{GS}等于V_{GS(off)}时, 沟道夹断
- 饱和漏极电流Ipss: 耗尽型器件, Vgs等于0时, 发生预夹断的漏极电流
- **直流输入电阻R_{GS}:** JFET大于10⁷Ω,MOSFET大于10⁹Ω
- 最大漏极功耗 P_{DM} : 由 $P_{DM} = V_{DS}I_D$ 决定,温度达到其极限温度 t_i 时所对应的漏极功耗

✓ 交流参数:

- 低频跨导gm: 栅压对漏极电流的控制
- 极间电容: 电极之间存在的电容
- **输出电阻r_{ds}:** V_{GS}一定时, V_{DS}与i_D微变量之比

4.3.3 场效应管的主要参数和电路模型

✓ 电路模型:

4.3.3 场效应管的主要参数和电路模型

✓ 电路模型:

- 输出阻抗随工艺尺寸减小, 会怎么变化?
- 最高工作频率随工艺尺寸减小,会怎么变化?

4.3.4 双极型和场效应型晶体管的比较

	双极型	场效应型
结构	NPN、PNP (C极和E极不能倒置)	JFET N沟道、P沟道 MOS增强型 N沟道、P沟道 MOS耗尽型 N沟道、P沟道 (D极与S极一般可以倒置)
载流子	多子扩撒,少子漂移	多子或者少子漂移
栅输入	电流	电压
控制类型	电流控制电流源	电压控制电流源
噪声	较大	较小
输入电阻	几十到几千欧姆	几兆欧姆以上
静电影响	几乎不受静电影响	易受静电影响,栅击穿
集成工艺	不易大规模集成	适合大规模集成

4.3.4 双极型和场效应型晶体管的结合

✓ 典型CMOS工艺里一个NMOS和一个PMOS的剖面图:

