PATVIRTINTA Nacionalinio egzaminų centro direktoriaus 2012 m. birželio 12 d. įsak. Nr. (6.1)-S1-31

2012 m. matematikos valstybinio brandos egzamino užduoties VERTINIMO INSTRUKCIJA

Pagrindinė sesija

I dalis

1–14 uždavinių atsakymai

Užd. Nr.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Ats.	D	E	В	В	C	E	D	D	C	D	E	A	В	E

II dalis

15	10,5 Lt (arba 10,5, arba 10 Lt 50 ct)
16	$9 - 8\sqrt{2}$ (arba $9 + (-8)\sqrt{2}$)
17	3
18	$\frac{1}{7}\left(\operatorname{arba}\frac{4}{28}\right)$
19	6 proc. (arba 6)
20	$\frac{9}{10}$ (arba 0,9)
21	$4,5 \text{ (arba } 4\frac{1}{2}, \text{ arba } \frac{9}{2})$
22	$2\pi + 4$ (arba 10,28)
23	45° (arba 45, arba $\frac{\pi}{4}$)
24	2
25	Nėra sprendinių (arba ∅)

III dalis

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
26		2	
	$f'(x) = 4x^3 + 6x^2 - 6x,$	• 1	Už teisingai apskaičiuotą išvestinę.
	f'(-1) = 8. Ats.: 8.	• 1	Už gautą teisingą atsakymą.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
27		3	
	$2(x^2+1)=5x,$	• 1	Už teisingą lygties sudarymą.
	$2x^2 - 5x + 2 = 0.$	• 1	Už teisingai lygties pertvar- kymą į $ax^2 + bx + c = 0$ pavidalo lygtį.
	D = 9, $x_1 = 2; x_2 = \frac{1}{2}.$ Ats.: 2; $\frac{1}{2}$.	• 1	Už gautą teisingą atsakymą.

Pastaba. Jei kvadratinė lygtis sudaryta neteisingai, bet išspręsta teisingai, skiriami 2 taškai.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
28		3	
	$O \longrightarrow X$ $C(x;y)$ $B(5;3)$		
	<i>I būdas</i> D(3; 3), C(3; y).	• 1	Už pagrįstai nustatytą teisingą taško C abscisę.
	$S_{ABC} = \frac{AB \cdot CD}{2},$ $10 = \frac{4 \cdot CD}{2},$	• 1	Už trikampio ploto panaudojimą taško <i>C</i> ordinatei apskaičiuoti.
	CD = 5. y = 3 - 5 = -2. Ats.: C(3; -2).	• 1	Už gautą teisingą atsakymą.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
29		2	
	$I b\bar{u}das. \underbrace{2+2++2}_{225 \text{ kartai}} =$	• 1	Už teisingą gretimų narių skirtumų skaičiaus (225) nustatymą.
	= 2 · 225 = 450. Ats.: 450.	• 1	Už gautą teisingą atsakymą.
	II būdas. 999 – 997 + 995 – 993 + + 103 – 101 =		

= (999 + 995 + + 103) - 225 demenys $- (997 + 993 + + 101) = 225 demenys$	• 1	Už teisingą teigiamų ar neigiamų dėmenų skaičiaus (225) nustatymą.
$= \frac{999 + 103}{2} \cdot 225 - \frac{997 + 101}{2} \cdot 225 =$ $= 450.$ $Ats.: 450.$	• 1	Už gautą teisingą atsakymą.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
30		5	
30.1		3	
	P(n) – tikimybė "Ištrauktas rutuliukas užrašytu skaičiumi n "; čia $n = 1, 2, 3, 4$.		
	$P(3) = x.$ $\frac{1}{5} + \frac{2}{5} + x + \frac{1}{10} = 1;$	• 1	Už teisingo sprendimo būdo pasirinkimą (pvz., sudaro lygtį).
	x = 0.3. P(1) = 0.2, P(2) = 0.4, P(3) = 0.3, P(4) = 0.1.	• 1	Už teisingai apskaičiuotą tikimybę $P(3)$.
	Ats.: Daugiausia yra rutuliukų su skaičiumi 2.	• 1	Už gautą teisingą atsakymą.
30.2		2	
	Skaičių suma bus lygi 4, kai bus ištraukti rutuliukai su skaičiais 1 ir 3 arba su skaičiais 3 ir 1, arba su skaičiais 2 ir 2.	• 1	Už teisingą įvykiui palankių baigčių nustatymą.
	$P(1) \cdot P(3) + P(3) \cdot P(1) + P(2) \cdot P(2) =$ $= \frac{1}{5} \cdot \frac{3}{10} + \frac{3}{10} \cdot \frac{1}{5} + \frac{2}{5} \cdot \frac{2}{5} = 0,28.$ $Ats.: 0,28.$	• 1	Už gautą teisingą atsakymą.

Pastabos. 1. Jei spręsdamas uždavinį mokinys teisingai pasirenka konkretų galimą rutuliukų skaičių (skaičiaus 10 kartotinį) ir gauna teisingą atsakymą, jam skiriami visi taškai.

2. Sprendžiant 30.1 uždavinį tikimybė P(3) = 0.3 gali būti apskaičiuota 30.2 dalyje.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
31		9	
31.1		3	
	$y = \sqrt{x} + 1$ $A\left(\frac{1}{4};1\right)$ $-\frac{1}{4}O$ 1 x		

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
	$AB^{2} = \left(x - \frac{1}{4}\right)^{2} + (y - 1)^{2} =$ $= \left(x - \frac{1}{4}\right)^{2} + \left(\sqrt{x} + 1 - 1\right)^{2} =$ $= x^{2} - \frac{1}{2}x + \frac{1}{16} + x = x^{2} + \frac{1}{2}x + \frac{1}{16} =$ $= \left(x + \frac{1}{4}\right)^{2}$	• 1	Už teisingai apskaičiuotą reiškinį AB^2 arba AB .
	$BC = x + \frac{1}{4}.$	• 1	Už teisingai užrašytą reiškinį atkarpos <i>BC</i> ilgiui apskaičiuoti.
	$AB^{2} = BC^{2}.$ $AB = x + \frac{1}{4} = BC.$ Įrodyta.	• 1	Už teisingą įrodymą, kad $AB^2 = BC^2$ arba $AB = BC$.
31.2		3	
	$I b \bar{u} das$ $II b \bar{u} das$ $f'(x_0) = k$.	• 1	Už teisingo sprendimo būdo pasirinkimą.
		• 1	Už teisingai apskaičiuotą taško <i>D</i> abscisę.
	$y_0 = 3.$ $y_0 = 3.$ $Ats.: (4; 3).$ $Ats.: (4; 3).$	• 1	Už užrašytą taško <i>D</i> teisingą ordinatę.
	Pastaba. Už teisingą atsakymą be pagrindimo skiria	mas <i>1 taško</i>	as.
31.3		3	
	$S_1 = \int_0^1 (\sqrt{x} + 1) dx = \frac{5}{3}.$	• 1	Už teisingai gautą vieną plotą.
	$S_2 = S_\Delta = \frac{\frac{1}{2} \cdot 2}{2} = \frac{1}{2}.$	• 1	Už teisingai gautą antrą plotą.
	$S = S_1 - S_2 = \frac{5}{3} - \frac{1}{2} = \frac{7}{6} = 1\frac{1}{6}.$	• 1	Už gautą teisingą atsakymą.