Midsegment of a Trapezoid

Definition

The midsegment of a trapezoid is the line segment which connects the midpoints of the non-parallel sides.

Properties of the Midsegment of a Trapezoid

Theorem 1 The midsegment of the trapezoid is parallel to the bases of the trapezoid and is equal to half of their sum.

Proof

Let MN be the midsegment of trapezoid (Figure 1). Let's prove that $MN \parallel AD$ and $MN = \frac{AD + BC}{2}$.

Using the properties of vector addition we get:

$$\overrightarrow{MN} = \overrightarrow{MB} + \overrightarrow{BC} + \overrightarrow{CN}$$

But we also can get that:

$$\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AD} + \overrightarrow{DN}$$

Let's add these two equations to get:

$$2\overrightarrow{MN} = (\overrightarrow{MB} + \overrightarrow{MA}) + (\overrightarrow{BC} + \overrightarrow{AD}) + (\overrightarrow{CN} + \overrightarrow{DN})$$

Points M and N are the mid points of the non-parallel sides. Hence:

$$\overrightarrow{\underline{MB}} + \overrightarrow{\underline{MA}} = 0$$

$$\overrightarrow{CN} + \overrightarrow{DN} = 0$$

Substitute this into equation above:

$$2\overrightarrow{MN} = \overrightarrow{BC} + \overrightarrow{AD}$$

$$\overrightarrow{MN} = 1(\overrightarrow{BC} + \overrightarrow{AD})$$

 $\overrightarrow{MN} = \frac{1}{2}(\overrightarrow{BC} + \overrightarrow{AD})$ Since vectors \overrightarrow{AD} and \overrightarrow{BC} are co-directional vectors, then \overrightarrow{MN} and

 \overrightarrow{AD} are also co-directional vectors. Hence the length of vector $(\overrightarrow{AD} + \overrightarrow{BC}) = AD + BC$. From here we get that: $MN \parallel AD$ and $MN = \frac{AD + BC}{2}$

Figure 1