Machine Learning 2014: Summary

Diana Ponce-Morado, Joachim Ott, Benjamin Ellenberger

December 4, 2014

Contents

0.1	Representations		
	0.1.1	Measurements and Data	2
	0.1.2	Patterns	2
	0.1.3	Data Types, Transformations, Scale	2
0.2	Regres	ssion	2
	0.2.1	Linear Regression	2
	0.2.2	Ridge Regression	2
	0.2.3	LASSO	2
	0.2.4	Nonlinear Regression by basis expansion	2
	0.2.5	Wavelet regression	2
	0.2.6	Bias variance Tradeoff	2
	0.2.7	Gaussian Processes	2
0.3	Numer	rical Estimation Techniques	2
	0.3.1	Cross-Validation	2
	0.3.2	Bootstrap	2
	0.3.3	Jackknife	2
	0.3.4	Hypothesis Testing	2
0.4	Classif	ication	2
	0.4.1	Problem Setting for Bayesian Inference	3
	0.4.2	Bayes Rule	3
	0.4.3	Parametric Models, Bayesian Learning	3
0.5	Param	etric Models	3
	0.5.1	Maximum Likelihood Method	3
	0.5.2	Efficient Estimators	3
	0.5.3	Bayesian Learning (batch/online)	3
0.6	Design	of Linear Discriminant Functions	3
	0.6.1	Perceptrons	3

	0.6.2	Fisher's linear discriminant analysis	3	
0.7	Support Vector Machines			
	0.7.1	Lagrangian optimization theory	3	
	0.7.2	Hard margin SVMs	3	
	0.7.3	Soft margin SVMs	3	
8.0	Nonline	ear Support Vector Machines	3	
0.9	Ensemble Methods for Classifier Design			
	0.9.1	PAC Learning	4	
	0.9.2	Bagging	4	
	0.9.3	Boosting	4	
	0.9.4	Arcing	4	
	0.9.5	Exponential Loss	4	
0.10	Unsupe	ervised Learning	4	
	0.10.1	Nonparametric Density Estimation	4	
	0.10.2	Histograms	4	
	0.10.3	Parzen Estimators	4	
	0.10.4	k-Nearest Neighbor Estimator	4	
0.11	Neural	Networks	4	
	0.11.1	Motivation by Computational Neuroscience	4	
	0.11.2	Multilayer Perceptrons and Backpropagation	4	
	0.11.3	NETtalk and ALVINN	4	
	0.11.4	Boltzmann machines	4	
	0.11.5	Deep Neural Networks	4	
0.12	Mixtur	e Models	4	
	0.12.1	k-Means Algorithm	5	
	0.12.2	Mixture Models	5	
	0.12.3	Expectation Maximization Algorithm	5	
	0.12.4	Convergence Proof of EM Algorithm	5	

0.1 Representations

This is the chapter on Representations.

0.2 Measurements and Data

- 0.2.1 Patterns
- 0.2.2 Data Types, Transformations, Scale

0.3 Regression

This is the chapter on Regression.

- 0.3.1 Linear Regression
- 0.3.2 Ridge Regression
- 0.3.3 LASSO
- 0.3.4 Nonlinear Regression by basis expansion
- 0.3.5 Wavelet regression
- 0.3.6 Bias variance Tradeoff
- 0.3.7 Gaussian Processes

0.4 Numerical Estimation Techniques

This is the chapter on Numerical Estimation Techniques.

- 0.4.1 Cross-Validation
- 0.4.2 Bootstrap
- 0.4.3 Jackknife
- 0.4.4 Hypothesis Testing

0.5 Classification

This is the chapter on Classification.

- 0.5.1 Problem Setting for Bayesian Inference
- 0.5.2 Bayes Rule
- 0.5.3 Parametric Models, Bayesian Learning

0.6 Parametric Models

This is the chapter on Parametric Models.

- 0.6.1 Maximum Likelihood Method
- 0.6.2 Efficient Estimators
- 0.6.3 Bayesian Learning (batch/online)

0.7 Design of Linear Discriminant Functions

This is the chapter on Linear Discriminant Functions.

- 0.7.1 Perceptrons
- 0.7.2 Fisher's linear discriminant analysis

0.8 Support Vector Machines

This is the chapter on Support Vector Machines.

- 0.8.1 Lagrangian optimization theory
- 0.8.2 Hard margin SVMs
- 0.8.3 Soft margin SVMs

0.9 Nonlinear Support Vector Machines

This is the chapter on Nonlinear Support Vector Machines.

0.10 Ensemble Methods for Classifier Design

This is the chapter on Regression.

- 0.10.1 PAC Learning
- 0.10.2 Bagging
- 0.10.3 Boosting
- 0.10.4 **Arcing**
- 0.10.5 Exponential Loss

0.11 Unsupervised Learning

This is the chapter on Unsupervised Learning.

- 0.11.1 Nonparametric Density Estimation
- 0.11.2 Histograms
- 0.11.3 Parzen Estimators
- 0.11.4 k-Nearest Neighbor Estimator

0.12 Neural Networks

This is the chapter on Neural Networks.

- 0.12.1 Motivation by Computational Neuroscience
- 0.12.2 Multilayer Perceptrons and Backpropagation
- 0.12.3 NETtalk and ALVINN
- 0.12.4 Boltzmann machines
- 0.12.5 Deep Neural Networks

0.13 Mixture Models

This is the chapter on Mixture Models.

- 0.13.1 k-Means Algorithm
- 0.13.2 Mixture Models
- 0.13.3 Expectation Maximization Algorithm
- 0.13.4 Convergence Proof of EM Algorithm