# Deep Learning: Recommender Systems & Embeddings

\$ echo "Data Sciences Institute"

### **Outline**

- Embeddings
- Dropout Regularization
- Recommender Systems

# **Embeddings**

### From Real to Symbolic

- Previously, we have looked at models that deal with real-valued inputs
- This means that the input is already a number, or can be easily converted to a number
- But what if the input is a symbol?

### Symbolic variable

- Text: characters, words, bigrams...
- Recommender Systems: item ids, user ids
- Any categorical descriptor: tags, movie genres, visited URLs, skills on a resume, product categories...

#### **Notation:**

Symbol s in vocabulary V

### **One-hot representation**

$$onehot( ext{'salad'}) = [0,0,1,\ldots,0] \in 0,1^{|V|}$$



- ullet Sparse, discrete, large dimension |V|
- Each axis has a meaning
- Symbols are equidistant from each other:

euclidean distance = 
$$\sqrt{2}$$

### **Embedding**

$$embedding('salad') = [3.28, -0.45, \dots 7.11]$$

- Continuous and dense
- Can represent a huge vocabulary in low dimension, typically:  $d \in 16, 32, \ldots, 4096$
- Axis have no meaning a priori
- Embedding metric can capture semantic distance

**Neural Networks compute transformations on continuous vectors** 



### Implementation with Keras

Size of vocabulary  $n=\lvert V 
vert$ , size of embedding d

```
# input: batch of integers
Embedding(output_dim=d, input_dim=n, input_length=1)
# output: batch of float vectors
```

• Equivalent to one-hot encoding multiplied by a weight matrix  $\mathbf{W} \in \mathbb{R}^{n \times d}$ :

$$embedding(x) = onehot(x).$$
 **W**

- W is typically randomly initialized, then tuned by backprop
- W are trainable parameters of the model

### Distance and similarity in Embedding space

#### **Euclidean distance**

$$d(x,y) = ||x - y||_2$$

- Simple with good properties
- Dependent on norm (embeddings usually unconstrained)

#### **Cosine similarity**

$$cosine(x,y) = rac{x \cdot y}{||x|| \cdot ||y||}$$

- Angle between points, regardless of norm
- $cosine(x, y) \in (-1, 1)$
- Expected cosine similarity of random pairs of vectors is 0

### Visualizing Embeddings

- Visualizing requires a projection in 2 or 3 dimensions
- Objective: visualize which embedded symbols are similar

#### **PCA**

 Limited by linear projection, embeddings usually have complex high dimensional structure

#### t-SNE

Visualizing data using t-SNE, L van der Maaten, G Hinton, *The Journal of Machine Learning Research*, 2008



### t-Distributed Stochastic Neighbor Embedding

- Unsupervised, low-dimension, non-linear projection
- Optimized to preserve relative distances between nearest neighbors
- Global layout is not necessarily meaningful

#### t-SNE projection is non deterministic (depends on initialization)

- Critical parameter: perplexity, usually set to 20, 30
- See http://distill.pub/2016/misread-tsne/

### **Example word vectors**



excerpt from work by J. Turian on a model trained by R. Collobert et al. 2008

# **Visualizing Mnist**



# **Dropout Regularization**

### **Overfitting**

- When we have a large number of parameters, we can fit the training data very well
- In fact, a model with enough parameters can fit any dataset perfectly
- Liken this to memorizing every answer to a test, rather than learning the material
- When this happens, our model's ability to generalize to new data is compromised
- This is called overfitting

### **Bias - Variance Tradeoff**

- Overfitting is a symptom of a model that has too much capacity
- A model with a a lot of parameters can fit the training data very well
- We call this a high variance model
- A model with too few parameters can't fit the training data well
- We call this a high bias model it relies more on the structure of the model than the data



### Regularization

- Width of the network
- Depth of the network
- $L_2$  penalty on weights
- Dropout
  - $\circ$  Randomly set activations to 0 with probability p
  - Typically only enabled at training time

### **Dropout**



Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al., Journal of Machine Learning Research 2014

### **Dropout**

#### Interpretation

- Reduces the network dependency to individual neurons
- More redundant representation of data

#### **Ensemble interpretation**

- Equivalent to training a large ensemble of shared-parameters, binary-masked models
- Each model is only trained on a single data point

### **Dropout**



At test time, multiply weights by p to keep same level of activation

Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al., Journal of Machine Learning Research 2014

### **Overfitting Noise**





### A bit of Dropout







### **Too much: Underfitting**



### Implementation with Keras

```
model = Sequential()
model.add(Dense(hidden*size, input*shape, activation='relu'))
model.add(Dropout(p=0.5)) # ?
model.add(Dense(hidden_size, activation='relu'))
model.add(Dropout(p=0.5)) # ?
model.add(Dense(output_size, activation='softmax'))
```



## **Recommender Systems**

### Recommender Systems

#### Recommend contents and products

Movies on Netflix and YouTube, weekly playlist and related Artists on Spotify, books on Amazon, related apps on app stores, "Who to Follow" on twitter...

- Prioritized social media status updates
- Personalized search engine results
- Personalized ads

### RecSys 101

#### Content-based vs Collaborative Filtering (CF)

Content-based: user metadata (gender, age, location...) and

item metadata (year, genre, director, actors)

Collaborative Filtering: past user/item interactions: stars, plays, likes, clicks

Hybrid systems: CF + metadata to mitigate the cold-start problem

### **Explicit vs Implicit Feedback**

**Explicit**: positive and negative feedback

- Examples: review stars and votes
- Regression metrics: Root Mean Squared Error (RMSE), Mean Absolute Error (MAE)...

**Implicit**: positive feedback only

- Examples: page views, plays, comments...
- Ranking metrics: ROC AUC, precision at rank, NDCG...

### **Explicit vs Implicit Feedback**

Implicit feedback much more abundant than explicit feedback Explicit feedback does not always reflect actual user behaviors

Self-declared independent movie enthusiast but watch a majority of blockblusters

#### Implicit feedback can be negative

- Page view with very short dwell time
- Click on "next" button

Implicit (and Explicit) feedback distribution **impacted by UI/UX changes** and the **RecSys deployment** itself.

### **Ethical Considerations of Recommender Systems**

#### **Ethical Considerations**

#### Amplification of existing discriminatory and unfair behaviors / bias

- Example: gender bias in ad clicks (fashion / jobs)
- Using the firstname as a predictive feature

#### Amplification of the filter bubble and opinion polarization

- Personalization can amplify "people only follow people they agree with"
- Optimizing for "engagement" promotes content that causes strong emotional reaction (and turns normal users into haters?)
- RecSys can exploit weaknesses of some users, lead to addiction
- Addicted users clicks over-represented in future training data

#### Call to action

#### **Designing Ethical Recommender Systems**

- Wise modeling choices (e.g. use of "firstname" as feature)
- Conduct internal audits to detect fairness issues: SHAP, Integrated Gradients, fairlearn.org
- Learning representations that enforce fairness?

#### **Transparency**

- Educate decision makers and the general public
- How to allow users to assess fairness by themselves?
- How to allow for independent audits while respecting the privacy of users?



Next: Lab 3!