souji

souji ∕ − ト

ii

aaaaaaaaaa

目次

第I部	研究ノート	1
第1章	帽子パズル概要	5
1.1	帽子パズルとは?	5
	1.1.1 この章の今後の流れの説明	12
1.2	バリエーション	12
	1.2.1 帽子パズルの構成要素	12
	1.2.2 囚人数・色の数と帽子をどう見分けるか?	17
	1.2.3 帽子に付く色の個数	18
	1.2.4 帽子の見え方	20
	1.2.5 帽子についての情報	22
	1.2.6 発言方法	23
	1.2.7 色以外の発言	24
	1.2.8 発言回数	26
	1.2.9 勝利条件	26
1.3	帽子パズルの歴史	27
	1.3.1 パズルとしての帽子パズルの歴史	27
	泥んこの子供たちのパズルの祖先「笑わずにつまむ」	28
	1935 年の 2 つのパズル	29
	1935 年の Dirac 来日	30
	そのあとのパズル史概観	36
	1936 年から 1960 年	38
	1961 年から 1999 年	39
	2000 年から現在まで	39
	1.3.2 数学的対象としての帽子パズルの歴史	39
1.4	帽子パズルの形式化	39
	Hardin-Taylor の帽子パズルの形式化	39
	Hardin-Taylor の帽子パズルにない要素の形式化	45
	非協力的な帽子パズルの形式化	45
1.5	帽子パズルの限界	45
第2章	有限な帽子パズル	47
2.1	Hardin-Taylor の帽子パズル	47
	2.1.1 Smullyan の帽子パズル	47
笋々音	無限な帽子パズル	49
	概略と節案内	49
		49
第4章	他のパズルとの関係	51
第5章	論文精読と文献調査	53
5.1	100 人の囚人と 1 個の電球 知識と推論にまつわる論理パズル	53

	•	1
SOUIII	ノー	卜

1	V

第6章	記号リスト	55
第 II 音	羽 帽子パズル本精読ノート	57
第 III	部 不完全性定理勉強会ノート	59
第0章	集合についての予備知識	63
笙 1 章	文論理	83
	形式言語についての, 非形式的な注意	
1.1	文論理の言語	
1.2	真理値割り当て	. 98
1.3	構文解析のアルゴリズム	. 104
1.4	帰納法と再帰	. 105
	文結合記号	
	スイッチング回路	
1.7	コンパクト性と実効性	. 105
第2章	記号リスト	107
第 IV i	部 基礎固めノート	109
	基礎数学	113
3.0	数学をするための準備・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	3.0.0 数学の議論中の言葉の定義	
	3.0.1 論理式	
	3.0.2 証明の書き方・読み方	
2.1	素朴集合論	
0.1	3.1.1 集合の基礎	
	3.1.2 関係	_
	3.1.3 写像・関数	
	3.1.4 集合族	. 114
	3.1.5 色々な用語	. 114
	3.1.6 選択公理と直積の一般化	. 115
3.2	位相空間論	. 116
	3.2.1 距離空間入門事項	. 116
	3.2.2 距離空間の例	
	3.2.3 位相空間の定義と閉集合	
	3.2.4 開基と準基	
	3.2.5 直積位相	
	3.2.6 compact な位相空間	. 127
第4章	その他細かなテーマ	133
4.0	Ideal と Filter 入門事項まとめ	
	4.0.1 ideal と filter の定義と例	
	4.0.2 もっと filter について	. 134

	4.0.3 ω 上の ultra filter	137
4.1	Cantor 空間と Baire 空間まとめ	137
	4.1.1 Cantor 空間と Baire 空間の開集合	138
	4.1.2 Cantor 空間と Baire 空間の別の開基表現	139
	4.1.3 Cantor 空間と Baire 空間の開基についてさらに詳しく	142
第5章	記号リスト	145
第Ⅴ部	部でその他	147
	このノートの Tips	151
6.1	- 自作マクロ・環境紹介	151
	6.1.1 自作マクロ	
	6.1.2 自作環境	153
6.2	も助け白佐ツ _ー ル紹介	159

第I部 研究ノート

3

自分の研究についてまとめるノートです。1章の最初の節にて、今後のこのノートの流れについて説明しています。またこれ以外の研究に関わる部・章と、その部・章の分け方の理由についてもそこに書いてあります。

第1章 帽子パズル概要

1.1 帽子パズルとは?

私の自身の研究テーマであるパズルを**帽子パズル**とよんでいます.様々なバリエーションがありますが,最も簡単なものは以下のようなものです.まずはこれを題材に話を進めていきます.

Puzzle 1.1.1.

Two prisoners are told that they will be brought tot a room and seated so that each can see the other. Hats will be placed on their heads and each hat is either red or green. The two prisoners must simultaneously submit a guess of their own hat color, and they both go free if at least one of them guesses correctly. While no communication is allowed once the hats have a strategy session before being brought to the room. Is there a strategy ensuring their release?

これは[39]の冒頭で紹介されたパズルをそのまま引用したものです。そしてこれをテキトーに和訳すると以下のようになります。

Puzzle 1.1.2.

2人の囚人が, ある部屋に連れて行かれ, それぞれが相手を見ることができるように座らされることを告げられる. 2人の頭には帽子が被せられ, それぞれの帽子は赤か緑のどちらかである. 2人の囚人は同時に自分の帽子の色を当てなければならず, 少なくともどちらかが正しく当てれば 2人とも自由の身となる. 一旦コミュニケーションをとることは許されないが, 帽子は部屋に運ばれる前に作戦会議が行われる. 果たして, 二人を確実に解放する作戦はあるのだろうか?

このパズルには少し不明瞭な部分があります. 冗長になってしまいましたが, 答えが変わらない範囲で, 記述を少し変えたり加えたりしたり, ゲームのルールも分かりやすいように箇条書きに変えてみたものが以下のパズルです. あと個人的な好みから,帽子の色を赤・緑から白・黒に変更しています.

Puzzle 1.1.3.

釈放を望む囚人が2人と彼らを処刑したいと思っている看守がいます。看守は囚人たちに対して、これから行うゲームのルールについて説明しました。その内容は、

- 1. 看守は囚人たちに目隠しと耳栓をつけたあと、ある部屋へ連れていく. この耳栓は特別製で看守の声以外は何も聞こえないようになっている.
- 2. 入室後, 看守は囚人たちを向かい合うように距離をあけて立たせる.
- 3. その部屋には白色・黒色どちらかで塗られた帽子が、それぞれ2つずつ置かれている.
- 4. 看守は帽子を1人に1つずつ囚人たちに被せていく. 囚人たちは目隠しによって, どの色の帽子を被ったのかも, 誰にも被せなかったものとして何色の帽子がいくつ残ったのかもわからない.
- 5. 全員に帽子を被せたあと、看守は彼らの中から1人ずつ目隠しを外しては再装着する作業を全員分繰り返す.
- 6. 目隠しを外されたどの囚人も、もう1人の囚人が目隠しされたまま帽子を被って立っている様子が見え、相変わらず自身の帽子の色は分からないが、向かい合って立っていることによって、もう1人の囚人が被っている帽子の色は分かる.
- 7. 上記の作業後、つまり再度囚人たちが全員目隠しをしている状態に戻ったあと、看守は彼らに考える時間を十分に与えたのち、囚人たち全員に帽子に塗られた色(黒か白)のうちいずれか1つを発言させる.

8. 被っている帽子の色とその発言とが一致していれば、その囚人は正解したことになる。2 人の囚人の中にそんな正解者が 1 人でもいれば、囚人たちが勝利したことになり、2 人とも釈放される。もし 2 人とも正解者でなければ、囚人たちが敗北したことになり、2 人とも即座に処刑される。

というものです。当然ですが看守が入室後どのように帽子を被せるかは、囚人たちには分かりません。このルールの説明を受けたあと、看守はゲーム開始までに囚人たちに作戦を相談する十分な時間が与えました。しかし看守はその作戦相談の様子を盗聴するなどして、囚人たちがどのような作戦でゲームに挑むか知っているとします。このとき囚人たちには、入室後に看守が2人にどのように帽子を被せても1人以上が正解する、つまり囚人たちがゲームに必ず勝利する作戦は存在するでしょうか?存在するならば、それはどのような作戦でしょうか?

このルールの書き方はこれからたくさんのパズルを紹介していくさいの1つのフォーマットとして使用します.

最初のパズルの何が不明瞭で、Puzzle 1.1.3 の記述方法にてそれが解消されたのかを解説します。まず1つは囚人たちが釈放を願っているという説明です。もし自殺願望があるなどして処刑を望む囚人がいたならば、そんな囚人は作戦を話し合う場面で不真面目になるか、もしくは作戦は承知しつつもゲーム開始後に裏切るかもしれません。パズルとしてなるべく状況を簡単にするためには、そのような面従腹背行為なども含めて非協力的な行動はしない、つまり釈放を願っていて、このような機会が得られたならば、ルールの範囲内で全ての囚人が全力を注ぐと分かるような記述があってもよいのではないかと思いました。同様に看守は彼らの処刑を望んでいるという設定も付け加えました。これによって看守が彼らに忖度することなく、ルールの範囲内で彼らがゲームに負けるように行動するということが分かります。

続く改良点はルール説明とそれを受けた後にどのようにゲームが始まるのかを明確にした点です。これによってゲーム開始前に 囚人たちができるのはあくまで相談だけで、そしてその相談の時間は囚人たちが望むだけ与えられるということが分かります。 またそれぞれの発言の前にも十分な時間が与えられることも追記しました。もし目隠しをとったあとに即答を求められれば、い くら良い作戦を考えていても慌てて使えない可能性を考えさせてしまう(少なくては私は考える)からです。

そして帽子の数についての言及が加わりました.よく帽子パズルを誰かに出題したときに受ける質問として、帽子への色の塗り方に何かしらの規則があるのかと聞かれることがあります.例えば「2人の囚人たちの帽子は必ず白黒1つずつあるように被せるのか?」と具合にです.そういった疑問を出題側が先に回避するには、帽子が各色それぞれ囚人分用意されていること、つまり帽子の被せ方は、2人に2色の帽子を被せる全ての組み合わせの数だけその可能性があることが伝わりやすくなったと思います.しかしこれだと被せなかった帽子がもし囚人たちに見られてしまった場合、自分たちがどの帽子を被せられたのかヒントを与えてしまいます.たとえばもし白の帽子が2つ余っていることを囚人が分かってしまった場合、相手の帽子を見るまでもなく自分たちは2人とも黒を被っていることが分かってしまいます.それを防ぐために目隠しをする設定とそれを外す適切なタイミングの説明を追加しています.目隠し設定の代わりに帽子はどの色もたくさんある、もっと細かくいえば最低3つずつ以上あるとすれば、仮に被せた後に残った帽子を見られたとて、その情報は囚人たちには自身の色の推測にはなんら役立たないようにすることができます.しかしこの後で帽子のそれぞれの色の個数が重要になるパズルたちも登場します.なのでそんなパズルたちも考慮しなるべく同じ枠組みでパズルを紹介するためにも、目隠しの設定を採用していきます.

また目隠しと耳栓の設定を加え、離れて立つことを明記したことで、囚人たちでコミュニケーションを取りたくとも取れない状況が想像しやすくなったと思います。他の囚人たちがどのように帽子を被っている様子を確認するのをわざわざ 1 人ずつにした理由は、もし例えば 2 人同時に行えば、たとえ耳栓をしていたとしてもアイコンタクトなどが情報伝達できるかもしれないと考えたからです。この修正で囚人たちは会話どころか、いかなるボディランゲージも使用することができなくなり、それが回答者にも伝わりやすくなったのではないでしょうか。また部屋の中で看守から囚人へ向かい合って立つように命令したことを書いたことで、どのように帽子が見えているのかも伝わりやすくなったと思っています。

そして看守が囚人たちがどのような作戦でゲームに臨むのかを知っている設定を加えました. つまり看守はそのとき気分で帽子を被せることも, 囚人たちの作戦に対して彼らが敗北するように帽子を被せることができます. つまりこの設定を加えることで, このゲームは囚人たちがより不利になっているイメージを与えることができます. つまりこのパズルには偶然囚人たちが勝つということがなく, 囚人たちはかなり綿密に作戦を練らなくてはいけないということも伝わると思います.

ではパズルそのものについて考えていきます。まず看守がどのように帽子を被せるかは規則性も全くなく、言うなれば看守のそのときの気分ということもありえます。そうなると以下にゲーム前に作戦を練っても、ゲーム開始後に得られる情報は、もう1人の帽子の色という自分の帽子の色とは関係のない情報だけで、本当に自身の色を当てることができるのか疑問に思います。

しかし、このパズルの答えは、囚人たちが勝利する、つまり「最低でも 1 人は正解する作戦は存在する」であり、その一例は「片方の囚人は相手と同じ色を、もう片方の囚人は相手と異なる方の色を発言する」というものです。このような役割で発言すれば、囚人たちは看守がどのように帽子を被せようとも、最低でも 1 人が正解することになります。つまり囚人たちはどちらがどの役割で発言するかをゲーム前に決めておけばよいだけになります。そしてこの作戦は看守に聞かれたとて有効という、看守の後出しさえ許さない非常に強固な作戦になっています。これを確かめるために 2 人の囚人を a, b とおくことにします。たとえば a が(何色の帽子が見えてとしても)常に黒と発言する、b は常に白と発言する、という作戦で臨んだとします。もちろん看守が彼らの作戦を逆手にとって、a に白を b に黒を被せた場合、どちらも正解せず囚人側の負けになります。しかし、このパズルの答えになっている作戦は、囚人側は必ず勝つことができ、ゆえに必勝作戦とよぶにふさわしいものになっています。

ではこの作戦が必勝になるのか論理的な・数学的な理由を説明します.

まずは本当に必勝になっているかを確認してみます。2 人の囚人に黒白の2 色の帽子を被せる組み合わせは以下の表のように計4 つです。

	f_1	f_2	f_3	f_4
a	黒	黒	自	白
b	黒	自	黒	自

Table 1.1: 2人2色パズルの帽子の被せ方

4 つの帽子の被せ方にそれぞれ f_1, f_2, f_3, f_4 と名前を付けておきました. つまり f_1 は看守が 2 人ともに黒と被せた場合にあたります.

そして2人の相談によって,aは見えた色と同じ色を,bは見えた色と異なる色を発言することになったとします.

例えば f_1 では囚人 a は,自分が見えた相手の帽子の色,つまり囚人 b が被っている帽子の色と同じ色を発言したいので,「黒」と発言します.そして囚人 b は,自分が見えた相手の帽子の色と違う色,つまり囚人 a が被っている帽子の色と違う方の色を発言したいので,「白」と発言します.すると囚人 a は被っている帽子の色と発言した色が一致しているので正解となり,残念ながら囚人 b は不正解でしたが,勝利条件「1 人以上正解である」はみたしているので,囚人側の勝利となります.

これは f_1 だから勝利できたわけではありません。その他の 3 つの状況においても,必ず 1 人は正解することができています。各帽子の被せ方と,各囚人がどのような色を発言したかをまとめた表は以下のようになります。正解した囚人の行には色が付いています。

	$ f_1 $		f_1 f_2		f_3		f_4	
	帽子色	発言色	帽子色	発言色	帽子色	発言色	帽子色	発言色
\overline{a}	黒	黒	黒	白	白	黒	白	白
b	黒	白	白	白	黒	黒	白	黒

Table 1.2: 必勝戦略における 2 人 2 色パズルの帽子の被せ方とその発言

それぞれの場合を見てもらえれば、確かに1人は正解していることがわかります。 ではこの作戦が必勝になる理由を2通りで説明します。

必勝の理由その1

帽子の被せ方のパターン4つ(表1.1)を見ると、

- 2人が同じ色を被っているもの (f_1 と f_4)と
- 2人が別々の色を被っているもの $(f_2 \ \ \ f_3)$

の 2 つに分かれます。そして看守がどのように帽子を被せても、2 人が同じ色を被っているか、別々の色を被っているかのどちらかになります。 つまり

- 見えた色と同じ色を答えていた囚人 a は、2 人は同じ色を被っていると思って発言している
- 見えた色と違う色を答えていた囚人 b は、2 人は違う色を被っていると思って発言している

ということになり、必ずどちらかの思惑通りになるわけですから、常に1人が正解することになります。 先ほどの表 1.1 に、各囚人の思惑を書いたものが以下のようになります。

	f	f_1 f_2 f_3		f_2		f_4		
	帽子色	発言色	帽子色	発言色	帽子色	発言色	帽子色	発言色
<i>a</i> 2 人は同じ色	黒	黒	黒	白	白	黒	白	白
b 2 人は違う色	黒	白	白	白	黒	黒	白	黒

続けて先ほどの表 1.1 に, 発言した色の情報を一旦抜いて, 2 人の囚人の帽子の様子がどうなっているかの情報を最下段に追加した表が以下のようになります.

	f_1		f_1 f_2		f_3		f_4	
	帽子色	発言色	帽子色	発言色	帽子色	発言色	帽子色	発言色
\overline{a}	黒		黒		白		白	
b	黒		白		黒		白	
色の状態	色の状態 2人は同じ色		2人は違う色		2人は違う色		2人は同じ色	

この2つの表を合体させ、さらにその被せ方ごとに正解した囚人の行に色を付けたものが以下のようになります.

	\parallel f	1	f	2	f	3	f_4		
	帽子色	発言色	帽子色	発言色	帽子色	発言色	帽子色	発言色	
a 2 人は同じ色	黒	黒	黒	白	白	黒	白	白	
b 2 人は違う色	黒	白	白	白	黒	黒	白	黒	
色の状態	2 人は	同じ色	2人は	違う色	2人は	違う色	2 人は	同じ色	

この表を見れば、その囚人の思惑と帽子の色の状態が一致したときに、その囚人が正解していることが分かります。なので、この戦略が必勝になる理由を改めて述べると、色の状態は

- 2人は同じ
- 2人は違う(2人は同じ色ではないともいえる)

の2つのパターンしかなく,2人の囚人でどちらのパターンになっていてもよいように役割を分けられているからです.

必勝の理由その2

これまで 2 人の囚人を a,b と名付けてきましたが、ここからはあえて a_0,a_1 とすることにします.別にそのまま a,b でも問題ないのですが、この変更の意図は、その添え字によって偶数か奇数かで区別できるからです(あとでも詳しく述べます).そしてここからは色を黒・白ではなく、数の 0,1 に置き換えます.ここまでの名前の置き換えによって、先ほどの帽子の被せ方の表 1.1 は以下のように変わります.

	f_1	f_2	f_3	f_4
a_0	0	0	1	1
a_1	0	1	0	1

帽子の色が数に置き換わったことで、囚人の発言した色という情報も数に置き換わります。

	\parallel f	^r 1	f_2		\int	⁵ 3	f_4		
	帽子色	発言色	帽子色	発言色	帽子色	発言色	帽子色	発言色	
a_0	0	0	0	1	1	0	1	1	
a_1	0	1	1	1	0	0	1	0	

そこから、各囚人ごとにその見えていた色(数)と発言した色(数)の合計という情報を先ほどの表に追加します.

		f_1		f_2				f_3		f_4		
	帽子色	発言色	合計	帽	発	合	帽	発	合	帽	発	合
a_0	0	0	0	0	1	2	1	0	0	1	1	2
a_1	0	1	1	1	1	1	0	0	1	1	0	1

例えば、なぜ f_2 の a_0 部分の「合計」項目に 2 という数が入っているかというと、 a_0 が見えた a_1 の被っている色(数)である 1 と、 a_0 の発言した色(数)である 1 の和が 2 だからです。同様の理由ですが、同じ f_2 の a_1 部分の「合計」項目に 1 が書かれているのは、 a_1 が見えた a_0 の被っている色(数)である 0 と、 a_1 の発言した色(数)である 1 の和が 1 だからです。他の部分にも同じように計算して書き込んであります。その計算過程を分かりやすいように色を付けたのが以下の表になります。

		f_1		f_1 f_2		f_2			f_3		f_4		
	帽子色	発言色	合計	帽	発	合	帽	発	合	帽	発	合	
a_0	0	0	0	0	1	2	1	0	0	1	1	2	
a_1	0	1	1	1	1	1	0	0	1	1	0	1	

つまり f_1 の a_0 部分の「合計」項目は色が付いていませんが、それは f_1 内の色が付いていない数字を足したものになっています。逆に色が付いてある「合計」項目は、同じく色が付いている数字を足したものになっています。 さらに各帽子の被せ方ごとに、その帽子の色(数)の合計という情報も最下段に追加したものが以下の表です。

		f_1			f_2			f_3		f_4		
	帽子色	発言色	合計	帽	発	合	帽	発	合	帽	発	合
a_0	0	0	0	0	1	2	1	0	0	1	1	2
a_1	0	1	1	1	1	1	0	0	1	1	0	1
帽子色の合計		0			1			1			2	

これについても、その計算過程が分かりやすくなるように色をつけたものが以下のようになります.

		f_1			f_2		f_3			f_4		
	帽子色	発言色	合計	帽	発	合	帽	発	合	帽	発	合
a_0	0	0	0	0	1	2	1	0	0	1	1	2
a_1	0	1	1	1	1	1	0	0	1	1	0	1
帽子色の合計		0			1			1			2	

つまり f_3 の「帽子色の合計」部分に 1 が書いてあるのは、その上にある色の付いた数字を足したからになっています.ここでは帽子色の合計に書かれている数字は、その合計は 0,1,2 のいずれかになっていることを確認してください.

そして各帽子の被せ方における正解者を見ると、その正解者の先ほど追加した「合計」項目と、「帽子色の合計」項目が一致しています。それが分かりやすくなるように、その被せ方においての正解者の「合計」項目と、「帽子色の合計」項目に色を付けた表が以下のようになります。

		f_1			f_2		f_3			f_4		
	帽子色	発言色	合計	帽	発	合	帽	発	合	帽	発	合
a_0	0	0	0	0	1	2	1	0	0	1	1	2
a_1	0	1	1	1	1	1	0	0	1	1	0	1
帽子色の合計		0			1			1			2	

これはどういうことかというと、まず事実として数値に置き換えた帽子色の合計は必ず偶数(2 で割り切れる数)か奇数(2 で割って 1 余る数)のいずれかになります。そしてそれぞれ

- \bullet 囚人 a_0 は自分と相手の帽子色の合計が偶数になると思って発言している
- \bullet 囚人 a_1 は自分と相手の帽子色の合計が奇数になると思って発言している

ということになります.

先ほど囚人の名前を a,b から a_0,a_1 に変えたのは、それぞれの添え字 0,1 が、2 で割って 0 余る数・2 で割って 1 余る数、つまり偶数・奇数を表しています。よって囚人たちは作戦会議では、各色への 0,1 の数の割り当てと、それぞれが偶数か奇数かの担当を決めておけばよい、ということになります。もっというと a_0 は帽子色の合計が 2 で割って余り 0 になる場合を担当し、 a_1 は帽子色の合計が 2 で割って余り 1 になる場合を担当しています。

以上の理由で,囚人たちには必勝作戦が存在します.

またその必勝である理由を見てもらえれば分かる通り、その理由は論理的・数学的です。またこれ以外の数学的理由でもって説明することもできると思います。ゆえにこのパズルは単なる論理パズルを超えて、さまざまな数学が役立つ可能性を持ったパズルの1つです。

Puzzle 1.1.3 はよく知られたパズルで、プレイヤーが囚人で、彼らに帽子を被せる設定からか**囚人と帽子のパズル**と呼ばれています. 英語では **Hat Puzzle** や **Hat (Guessing) Game**, **Hat Problem** などと呼ばれています.

このパズルの一番の特徴は、各プレイヤーは自身の帽子の色を言い当てる必要があり、その推理のために使える情報が自身の色とは直接は関係ない自分以外の帽子の色のみ、という点にあります。この特徴を際立たせるために、部屋に入って以降は囚人同士はコミュニケーションがとれない設定になっています。コミュニケーションには会話だけでなく、アイコンタクトや手話などのボディランゲージも含めた、とにかく情報を伝達する術を全て封じています。これを禁止にしておかないと、作戦を考えるさいに会話ではない囚人たちだけに伝わるサインを考案して使用することができるからです。またもともとのパズルにあった、同時に発言しなくてはいけないというルールも、仮に同時でなければ、片方が相手の色を発言して教えてあげ、もう片方が言い当てるという、パズルとしては面白くない作戦が必勝になってしまいます。よってこの同時に発言しなくてはいけないというのも、コミュニケーションがとれないという制約の一種とも捉えられます。それを際立たせるために改良したパズルでは、耳栓をした

まま発言させて、発言の前後でも何も情報が得られないようにしています.

Puzzle 1.1.2 や Puzzle 1.1.3 では、ゲームに挑むプレイヤーが囚人となっていますが、別に囚人でなくても構いません。ただプレイヤーたちが囚人たちならば、ゲームに対して(処刑を免れたいという)積極的になる理由が説明しやすい・想像させやすいでしょうし、またプレイヤーたちに命令しゲームを設定できる立場に看守という役割が使える点でも、この設定を選ぶ利点はあると思います。似たような使いやすい設定として、動画ですが [37] では、プレイヤーが捕えられた人というのは同じであるものの、捕えたのは人間を食べようとした宇宙人で、彼らの倫理では協調的かつ論理的行動ができる生物は食べないとしているため、協調的かつ論理的かどうかを試すためにゲームを行う、みたいなものもあります。ただプレイヤーが開放を臨んでいる捕まえられた人であるという点は同じなので、やはりこのような設定がパズルの説明には便利なのかもしれません。

またプレイヤーに帽子を被せるという設定も必須ではありません。この設定がよく使われる理由は、帽子に色がついていて、それを被っていれば、被っている当人にとってその色が分からないということと、そして他人の色が向かい合って立つだけで分かるという場面も想像しやすくなります。他の設定としては、この自分の色が分からないという点を強調するために、背中に色付きのモノ、トランプや円盤をつけるというものもあります。しかしこれだとどのように立っていても、全員が自分以外のプレイヤーの色が分かるように立つことはできません。なのでゲームの手順を追加するなどが必要になってパズルの説明が少し長くなってしまいます。例えば額に色付きシールをつけるというものがありますが、Puzzle 1.1.3 をこの設定に変えても全く問題はありませんが、プレイヤーが向かい合って立たないことが重要なパズルもあります。例えば全てのプレイヤーが階段の一段ずつに下の段に向かって立つというものがあります。つまり自分よりも下の段にいるプレイヤーが全て見えているという設定です。視覚的に分かりやすいものとして、先に挙げた [37] もそうですし、同じ動画形式のものならば [1] もそのようなゲーム設定の帽子パズルの例になっています。このようなプレイヤーの配置だと、額にシールを貼っていても他のプレイヤーからは見えないので、帽子を被っているとした方が説明が楽になります。逆にこの場合だと背中に何か色付きのモノをつける設定でもいいかもしれません。しかし色付きの帽子を被せるとした方が、Puzzle 1.1.3 のような向かい合って立つようなパズルでも、これから紹介するどんな似たようなパズルでも、共通して使える設定です。英語にて似たようなパズルの名前として Hat がつくものが多いのも、そのような便利さがあるからなのかもしれません。

また帽子に色がついていて、その色を当てなくてはいけないという設定も必須ではありません。Puzzle 1.1.3 のように 2 色が色の候補でかつ帽子を被せる設定ならば、「同じ帽子が 2 つあって、そのうち何個かに目印のような意味で飾りがついている」としてもよいです。つまり各プレイヤーは自分の帽子にその飾りがついているか否かを当てることが求められるというゲームに変わります。つまり 2 色ならば、何かが有る無し(オンオフ)という設定と同じです。ゆえに似たようなパズルとして、プレイヤーの顔が泥や煤で汚れていてるという設定もあります。これだと自分自身では汚れているかどうかが確認できないという点で非常に伝わりやすくなります。これから研究するにあたって、このようなパズルを一般化していきます。その 1 つが色の候補を(無限も含めて)2 色より多く増やすというものがあります。よって上記のように何かの有り無しでは少し説明がめんどくさくなります。帽子に色をつける設定ならば、つける色の候補を増やせば簡単にルールを拡張できるので便利です。同様の設定として帽子に色をつけるのではなく、数や記号を書いておくという案もあります。たとえば Puzzle 1.1.3 では 0,1 のどちらかが書いてあるとか、 \bigcirc ×のどちらかが書いてあるとか、とくに帽子の色の候補が非常に大きな数ないし無限にあるという設定の場合は色よりも数の方が説明は容易いと思います。

よって Puzzle 1.1.3 にて、パズルとして一番大事だと思われる設定は、

- プレイヤーは何かが描かれている帽子を被せられて、
- プレイヤーは自分の帽子に何が描かれているかは分からず、
- プレイヤーは自分の帽子に何が描かれているかを、自分の帽子を(脱いだりして)見ることなく当てなくてはいけない

というものです。この要素をもつパズルをこのノートでは**帽子パズル**と呼ぶことにします。そして上記の設定のうち「帽子を被せる」の部分のみを別のものに変えたパズルを、雑ですが**帽子パズルっぽいパズル**と呼ぶことにします。帽子パズルっぽいパズルも設定を上手に変えることで帽子パズルにすることができます。よってこのノートではこれらを区別することなく、**自分につ**

souji / - ŀ

いての情報を、自分以外の情報から推測しなくてはいけないという性質のパズルをなるべく多く研究対象にしていきたいと思います。 ちなみにこのようなパズルの別の総称として Induction Puzzles というものもあります。それについての Wikipedia[9] を参考にしてください。

1.1.1 この章の今後の流れの説明

Puzzle 1.1.3(5ページ)は様々な種類のある帽子パズルの中で最もシンプルなものです。ここからルールや設定を変えることで様々なバリエーションが生まれます。どのような設定の変え方があるのか、それによってどのように考察方法が変わるのかなどを 1.2 節(12ページ)で紹介します。

帽子パズルは最初から同じ設定で知られていたわけではありません. つまり帽子パズルっぽいものが先に現れ, それが人々に知られていくうちに帽子パズルの形になって登場しました. そんな帽子パズル・帽子パズルっぽいパズルの歴史についての調査・研究結果を 1.3 節(27 ページ)にてまとめます.

帽子パズルを数学的に研究するためには、パズルに登場する様々な概念、例えばゲームのルールや囚人たちの作戦といったものを、数学概念を使って書き直す必要がでてきます。こういった作業は「形式化」と呼ばれますが、そのやり方の一例を、上記でまとめてバリエーションにも考慮しながら 1.4 節(39 ページ)にてまとめていきます。

そして形式化が完了すると、帽子パズルについての様々な限界が見えてきます。たとえば Puzzle 1.1.3(5ページ)では、どのような作戦で臨んでも常に 2 人正解させることはできません。そういった数学的事実のいくつかを、形式化とそれに対しての数学的論証に慣れる例として 1.5 節(45ページ)で紹介します。

帽子パズルは様々な方法で分類できますが、その1つに、Puzzle 1.1.3(5ページ)のようにパズルに登場するプレイヤー数も帽子に付いている色の候補の数も有限なものか、そのどちらか一方が無限になっているものです。前者を単に**有限帽子パズル**と、後者を無限帽子パズルと呼ぶことにします。それぞれについて様々な先行研究が既にあります。私の最も関心のある帽子パズルは無限帽子パズルですが、有限パズルもその研究が無限パズルに応用出来る可能性はかなり高いです。なので有限帽子パズルについてもなるべく多く勉強していきたいと思っています。これらをまとめるために、有限・無限とで研究動機や使用する概念・手法も異なることから、これらはある程度分けておいて、有限パズルについては第2章(47ページ)で、無限パズルについては第3章(49ページ)にてまとめていこうと思っています。

帽子パズル以外にも数学者が注目しているパズルはたくさんあります。帽子パズルを他のパズルと関連付けるような結果も見つかっています。そんな結果については第4章(51 ページ)で紹介します。

帽子パズルや, 関連性があるパズルについての論文はこれからたくさん読んでいくことになります. それらのメモや要約を文献 ごとにまとめて紹介しているのが, 第 5 章 (53 ページ)です.

そして帽子パズルを主にテーマにした数学書 [39] が存在します。そのテキストはとくに無限帽子パズルを研究するうえで最も重要なものになります。他の文献以上にこのテキストは精読してきたいので、もとの章構成そのままに自分で読んでみて考えたことなどもまとめていきたかったので、そのためのパートが第 Π 部(59ページ)です。

1.2 バリエーション

1.2.1 帽子パズルの構成要素

帽子パズル・帽子パズルっぽいパズルには様々なバリエーションがあります。今なお新しい設定のパズルが生まれている中で、将来も見据えて網羅的にまとめることは難しいとは思いますが、今時点での研究成果として、帽子パズルがどのようなバリエー

ションが考えられるかまとめていきます.

他のバリエーションと比較するため、前述した一番シンプルな帽子パズルを再掲します.これと新しいバリエーションと比較して、違いがよりわかりやすくなると思います.

- Puzzle 1.1.3 の再掲 ----

看守は釈放を望む 2 人の囚人に対して, これから行うあるゲームのルールについて説明しました. その内容は,

- 1. 囚人たちはこれからある部屋へ移動する.
- 2. 部屋に入ってからは囚人たちは一切のコミュニケーションがとれない。
- 3. その部屋には白黒に塗られた帽子がそれぞれ2つずつ置かれている.
- 4. 囚人 1 人に 1 つずつ,当人にはどの帽子か分からないようにしながらその帽子を被せる.また囚人たちはどの帽子を被せなかったのかも知ることはできない.
- 5. 囚人2人はそれぞれ自分が被っている帽子の色は分からないが、もう1人の囚人の帽子の色は見えている.
- 6. 帽子を被せられたあと, 帽子の色のどちらかのみを, つまり「黒」か「白」のみを2人同時に発言させる.
- 7. その発言とその被っている帽子の色が一致していれば正解となり、そんな正解者が 1 人でもいれば囚人たちの勝利として 2 人とも釈放される。もし 2 人とも不正解ならば囚人たちの敗北として 2 人とも処刑される。

というものです。当たり前ですが看守が入室後どのように帽子を被せるかは、囚人たちには秘密です。このルールの説明を受けた後、ゲーム開始までに囚人たちには作戦を相談する十分な時間が与えられました。このとき入室後にどのように帽子を被せられても、囚人たちが勝利する作戦は存在するでしょうか?

さっそく異なるタイプの帽子パズルを紹介します.

Puzzle 1.2.1.

看守は3人の囚人に対して、これから行うあるゲームのルールについて説明しました. その内容は、

- 1. 囚人たちはこれからある部屋へ移動する.
- 2. 入室後囚人たちは一切のコミュニケーションがとれない.
- 3. その部屋には白黒に塗られた帽子がそれぞれ3つずつ置かれている.
- 4. 囚人 1 人に 1 つずつ, 当人にはどの帽子か分からないようにしながらその帽子を被せる. また囚人たちはどの帽子を被せなかったのかも知ることはできない.
- 5. どの囚人もそれぞれ自分が被っている帽子の色は分からないが、ほかの2人の囚人の帽子の色は見えている.
- 6. 帽子を被せたあと他の全ての帽子を見てもらい黒色が1つでも見えたら手を挙げる.
- 7. そのあと自分の色が何であるかを考えさせたあとに、全員同時に黒白どちらかの色か「分からない」のいずれかを発言させ、そのさい自分以外の発言は聞こえる.
- 8. もし1人でも「分からない」と発言すれば、もう一度考えさせたあとに、同じように3択の中から発言させる. これを繰り返していき、その中で自分の帽子の色を言い当てることができれば、その囚人は釈放され、間違った色を発言すれば処刑される.

というものです。当たり前ですが看守が入室後どのように帽子を被せるかは、囚人たちには秘密です。また囚人は正直なので自分の色が分かっているのに「分からない」とは発言しないものとします。

ルール説明後, 看守は囚人たちをその部屋へ移動させ, 囚人全員に黒色の帽子を被せました. そしてルールに従って全員手を挙げました. そのあと全員が「分からない」と発言しました. しかしもう一度発言させると全員「黒」と発言し正解だったので釈放されました. なぜどの囚人も自分の色が分かったのでしょうか?

<u>Answer</u> 3 人の囚人たちを a,b,c とおく. まず囚人 a の立場にたって考えます. 1 回目の発言を終えたあと囚人 a は自分が白色を被っていると考えると、見えている帽子の色とあわせて今自分たちの帽子の色の様子は以下のようになっていると考えるはずです.

こういう被せ方でも最初に全員が手を挙げたことに矛盾はしません.

そして囚人 a は囚人 b の立場にたって考えてみます.すると囚人 c が手を挙げたことと,b からは a の白と c の黒が見えていることから,囚人 b は自分が黒を被っているとわかるはずです.しかし 1 回目の発言で b は「分からない」と発言したことから,囚人 a は自身が白色でない,つまり自分は黒色を被っていると分かり,2 回目の発言で黒を発言して正解しました.a 以外の囚人も 1 回目の発言後に同様に考えたことで自分が黒を被っていると分かりました.

まず囚人たちに作戦があるかどうかを我々回答者に問うてきた Puzzle 1.1.3 とは, 問題の出題の仕方・出題内容が違うという点があります. しかしそもそも囚人たちが挑むゲームの内容が変わっています. それによって出題方法が変わっています. なぜ出題方法まで変わったのかという考察についてはこの節の最後に行いますが, 今後さらに出題内容は変わっていくので, それについては一旦気にせず進めていきます.

出題内容以外の、囚人たちが挑むゲームの内容について注目して、Puzzle 1.1.3 と Puzzle 1.2.1 との違いをまとめてみると、

- 1. 囚人が 3 人になっていること.
- 2. 色以外に「分からない」という発言もできること.
- 3. 二度以上発言できることと、それによって1つ前の自分以外の発言という情報も、自身の色の推測に使うことができること.
- 4. 発言前に「黒が手を挙げさせる」というルールの追加と、それによって自分以外の囚人から見て黒が見えるかどうかを知ることができること.

などがありますが、私が考える最大の違いは、囚人たちはチームでゲームに挑むのではなく、あくまで個人で挑む点です。なので入室前に作戦を相談するという行程が無くなっています。詳しく説明すると、Puzzle 1.1.3 では仮に自分が不正解だったとしても、もう 1 人が正解すれば自分も助かります。つまり個人個人の不正解はその囚人の処刑と直接は関係しません。しかし Puzzle 1.2.1 では、個人の不正解は直接その囚人の処刑につながります。この違いはこれから帽子パズルを分類するうえで最も大きな区分けになります。

続いて Puzzle 1.2.1 を少し変形させたパズルを紹介します. ゲームのルールにおいて Puzzle 1.2.1 から変更した部分は, テキストの色を変えて分かりやすくしています.

Puzzle 1.2.2.

看守は3人の囚人(以下彼らをa,b,cとおく)に対して、これから行うあるゲームのルールについて説明しました。その内容は、

- 1. 囚人たちはこれからある部屋へ移動する.
- 2. 入室後囚人たちは一切のコミュニケーションがとれない.
- 3. その部屋には白黒に塗られた帽子がそれぞれ3つずつ置かれている.
- 4. 囚人 1 人に 1 つずつ, 当人にはどの帽子か分からないようにしながらその帽子を被せる. また囚人たちはどの帽子を被せなかったのかも知ることはできない.
- 5. どの囚人もそれぞれ自分が被っている帽子の色は分からないが、ほかの2人の囚人の帽子の色は見えている.
- 6. 帽子を被せたあと他の全ての帽子を見てもらい黒色が1つでも見えたら手を挙げる.

- 7. そのあと自分の色が何であるかを考えさせたあとに, a,b,c の順に黒白どちらかの色か「分からない」のいずれかを発言させ、そのさい自分以外の発言は聞こえる.
- 8. もし 1 人でも「分からない」と発言すれば、もう一度考えさせたあとに、同じように再度 a,b,c の順に 3 択の中から発言させる。これを繰り返していき、その中で自分の帽子の色を言い当てることができれば、その囚人は釈放され、間違った色を発言すれば処刑される。

というものです。当たり前ですが看守が入室後どのように帽子を被せるかは、囚人たちには秘密です。また囚人は正直なので自分の色が分かっているのに「分からない」とは発言しないものとします。

ルール説明後,看守は囚人たちをその部屋へ移動させ,囚人全員に黒色の帽子を被せました.そしてルールに従って全員手を挙げました.最初の発言では 3 人は「分からない」と答えましたが,2 度目の発言が回ってきた囚人 a は「黒」と発言して正解し釈放されました.なぜ囚人 a は自分の色が分かったのでしょうか?

またこの後 b,c も順に発言させていっても, a と同じように考え発言することで, Puzzle 1.2.1 同様, 全員正解することができます.

Puzzle 1.2.1 と Puzzle 1.2.1 との違いは囚人たちの発言が全員同時ではなく順番になった点だけです.

もう 1 つ囚人たちが協力しないパズルの例を挙げます。Puzzle 1.2.2 をさらに変形させたものになります。こちらも Puzzle 1.2.2 との違いを分かりやすくするために、Puzzle 1.2.2 と異なる部分はテキストの色を変更しました。

Puzzle 1.2.3.

看守は3人の囚人(以下彼らをa,b,cとおく)に対して、これから行うあるゲームのルールについて説明しました。その内容は、

- 1. 囚人たちはこれからある部屋へ移動する.
- 2. 入室後囚人たちは一切のコミュニケーションがとれない.
- 3. その部屋には5つの帽子があり、うち2つは白色に、残り3つは黒色に塗られている.
- 4. 囚人 1 人に 1 つずつ, 当人にはどの帽子か分からないようにしながらその帽子を被せる. また囚人たちはどの帽子を被せなかったのかも知ることはできない.
- 5. どの囚人もそれぞれ自分が被っている帽子の色は分からないが、ほかの2人の囚人の帽子の色は見えている.
- 6. 囚人たちにそれぞれ自分の色が何であるかを考えさせたあとに, a,b,c の順に黒白どちらかの色か「分からない」のいずれかを発言させ, そのさい自分以外の発言は聞こえる.
- 7. もし1人でも「分からない」と発言すれば、もう一度考えさせたあとに、同じように再度 a,b,c の順に 3 択の中から発言させる.これを繰り返していき、その中で自分の帽子の色を言い当てることができれば、その囚人は釈放され、間違った色を発言すれば処刑される.

というものです。当たり前ですが看守が入室後どのように帽子を被せるかは、囚人たちには秘密です。また囚人は正直なので自分の色が分かっているのに「分からない」とは発言しないものとします。

ルール説明後、看守は囚人たちをその部屋へ移動させ、ルール通りに帽子を被せました。そのあと a,b は考えたのち順番に「分からない」と答えましたが、それを聞いた c は「黒」と発言して正解し釈放されました。なぜ囚人 c は自分の色が分かったのでしょうか?

Answer 囚人 c は、まず a が「分からない」と答えたことから b と自分の帽子の組み合わせの候補が以下のように絞れます.

b	c
黒	黒
黒	白
白	黒

なぜならもしb,cがどちらも白を被っていれば,aは自分が黒だと分かったはずだからです.なのでその可能性は無くなり上記のような組み合わせだけが候補に残ります.またこれはbも同じことを考えつくことになります.

続けてbも「分からない」と発言したことから, c は自分が黒だと分かります。なぜならばbも自分(b)と c は以下の組み合わせしかないと a の発言から分かっており、そしてもしc が白を被っていれば自分が黒を被っていると発言できたはずです。しかし分からないと答えたということは、b から見てc は黒を被っていたことになります。

一見するとここまでのパズルとの違いに見えるのは、私たち回答者には最後まで全ての囚人が何を被っているかは分からないという点と、帽子の数が色ごとに決まっているという点でしょうか。1 点目はあくまで出題形式の違いです。これについては前述した通り、この節でのちに考察します。2 点目についてですが、これまでのパズルのゲームでは、色付きの帽子は各色それぞれ全囚人分用意されていました。しかしこれは Puzzle 1.2.1 と Puzzle 1.2.2 と比べると、実は大した違いではありません。上記 2つのパズルではそのゲームの中で黒が見えたら手を挙げさせるというものがありました。そしてゲーム開始後に全員が手を挙げたことで、どの囚人も誰から見ても 1 つは黒色帽子が見えていることが分かります。つまり自分たちの帽子の被せ方として本来は $2^3=8$ パターンの可能性があったわけですが、黒が最低でも 2 つは被せられていることが分かり、帽子の被せ方の可能性は 4 パターンにまで減少しています。よって Puzzle 1.2.1 と Puzzle 1.2.2 の「発言前に黒が見えたら手を挙げる」というルールを無くし、そもそも部屋には「帽子は黒色が 3 つ、白色が 1 つだけある」という風にルールを変更することと同じことになるからです。よって Puzzle 1.2.1・Puzzle 1.2.2・Puzzle 1.2.3 は、帽子が全色囚人分用意されていないという点では同じであり、異なるのはその色の配分だけということになります。つまり Puzzle 1.1.3 と、Puzzle 1.2.1・Puzzle 1.2.2・Puzzle 1.2.3 は、各色の帽子が全囚人分用意されているか否かの視点でグループ分けすることができます。

さて、このパズルにはこれまでとは異なる最大の違いがあります。これまでのパズルでは自分以外の帽子が全て見えていました。しかし Puzzle 1.2.3 はその解答を見れば分かる通り、実は囚人b はa の、囚人c はa,b の帽子が見えている必要がありません。つまりc はどの発言が誰の発言なのか、そして各囚人がどのように見えているのかさえ知っていれば、部屋に入ったあとそれ以外に何も情報を得られなくとも正解することができます。

これらのパズルは説明しやすいように私なりに設定を変えていますが、Puzzle 1.2.3 は物理学者の Paul Dirac が考案した可能性があり、Puzzle 1.2.2 はパズル作家でもあった数学者 Martin Gardner がその著作にて紹介したものです。この情報や証拠となる文献については 1.3 節(27 ページ)で紹介します。上でも説明したとおり Puzzle 1.1.3 とこれら 3 つのパズルの最大の違いは、囚人たちが協力するか・できるかという点にあると考えています。よって囚人たちが協力する帽子パズルをこれまで通り Hardin-Taylor の帽子パズルと呼ぶことにし、新たに紹介した囚人たちが協力しない帽子パズルを 2 人の名前をとって、Dirac-Gardner の帽子パズルと呼ぶことにしました。

よって私はすべての帽子パズルは囚人が協力するか否かで、この Hardin-Taylor のものか、Dirac-Gardner のものかに大別可能だと考えています.

Hardin-Taylor の帽子パズルの方が Dirac-Gardner の帽子パズルよりもシンプルだと感じます. なぜならば後者では囚人は個人でゲームに挑んでおり,自分以外の帽子が見えたところでそれだけでは自分の色を推測することは不可能なため,追加の情報がいくつも必要になるからだと思います. つまり自分も含めた帽子の様子についての情報(誰から見ても最低 1 人は黒がいるとか,帽子の個数は色ごとに同じではないなど)や,他の囚人たちの推論の結果という情報などが必要になり,ゆえに問題文も長くなるということです.

Hardin-Taylor の帽子パズルでは協力しているゆえに、最低でも 1 人は正解するというような「囚人たちの勝利条件」というものが必要になり、その部分では Dirac-Gardner の帽子パズルよりは複雑になります.

2つのパズルでは帽子パズル特有の「見えない自分の帽子を色を推測する」という要素を持ちますが、協力するか否かで、囚人たちの正解者数に注目するか、ここの囚人の推論の推移に注目するかという違いが生まれています。そしてそれゆえにパズルを研究するさいの使用する学問分野も、またパズルの結果の応用先の学問分野も変わってきます。

私の興味をもっている数学の分野は数理論理学・数学基礎論,とくに公理的集合論であり、この数学が応用できるのは囚人たちが協力する Hardin-Taylor の帽子パズルだと考えています。それは先行研究が既にそうなっているからだということに他なりませんが、だからといって Dirac-Gardner の帽子パズルを調査対象から外すわけではありません。なぜならば協力しない点は除いても、それ以外の設定は Hardin-Taylor の帽子パズルにも導入できることがあるからです。またその逆もありえます。

上でも少し述べましたが、各帽子パズルを構成する要素を、今時点で私が知っている限り挙げてみます。ここにない要素も、私が新たなパズルを知ることで追加されるかもしれませんし、協力・非協力以外の分類方法も生まれるかもしれません。

各要素の具体例を分かりやすくするために、これまで登場したパズルではどうだったのかを以下の表のようにしてまとめてあります.

	Puzzle 1.1.3	Puzzle 1.2.1 Puzzle 1.2.2 Puzzle 1.2.3						
協力	協力		非協力					
囚人数	2 人		3 人					
色の数			2色					
帽子の見分け方			色					
帽子に付く色の個数		1個						
帽子の見え方		自分以外全員見える						
帽子についての情報	黒白2つずつある	有(誰からも黒が1つは見える) 有(白 ×2 黒 ×3)						
発言方法	全員同時	時 1人ずつ順番に						
色以外の発言	無		「分からない」も	可能				
発言回数	全員1回		全員2度以上可	能				

例えば要素の1つである囚人数を増やすと、Hardin-Taylorの帽子パズルでの勝利条件の変更の考察をすることができます。2人の囚人がプレイヤーであった Puzzle 1.1.3(5 ページ)では、囚人たちの勝利条件は最低でも1人が正解することでした。このままでもたとえば勝利条件を「2 人正解すること」にするとどうなるのか考察することができます。これはのちに示す定理より不可能であると分かります。

このようにして人数を増やすだけでも様々な勝利条件が考察対象に加わります。また単なる正解者の要求でない勝利条件も考案されています。そして Dirac-Gardner の帽子パズルでは囚人数や色数が増えても個々の囚人が自身の色を推測するようなものしかないと思われますが、たとえば「自分に被せられていない色を言い当てる」というものもあります。つまり個々の囚人の勝利条件を変えたものもあります。

よって「囚人たちが協力するかどうか」と以下のような要素をそれぞれ設定することで1つのパズルが生まれます.

 囚人数 色の数 帽子の見分け方 帽子に付く色の個数 帽子の見え方 帽子についての情報 発言方法 色以外の発言 発言回数 勝利条件

ここからは各要素について具体例なども挙げながら、さらにどのような多様なパズルが作成可能か見ていきます.

1.2.2 囚人数・色の数と帽子をどう見分けるか?

囚人の人数や色の数というのはもっとも分かりやすいパズル間の違いで、また一般化も考えやすい要素になっています. たとえば 2 人 2 色であった Puzzle **??**は、2 人 3 色、2 人 4 色、2 人 5 色、1 、1 という風に様々な組み合わせを考えることができます.

また囚人数・色の数は上記のように 2 人, 3 人, 4 人, ..., 2 色, 3 色, 4 色, ... という有限同士の組み合わせだけでなく, 囚人が無限にいる, 帽子に付いている色の種類が無限にある, というものも考えることができます.

改めて有限帽子パズル・無限帽子パズルという言葉について定義しておきます.

souji / - \

Definition 1.2.4.

帽子パズルのうち、登場するプレイヤー(囚人)と、プレイヤーに被せる帽子の色の候補が共に有限なパズルを**有限帽子パズル**と、どちらか 1 つ以上が無限になっているパズルを無限帽子パズルとよぶ.

野暮なツッコミをすると、そもそも囚人が無限にいるとはどんな世界なのかというものでしょうか. ただ何度か説明しているとおり、ゲームのプレイヤーを囚人とするのは、勝利することに全力を出す動機が説明しやすい、想像しやすくなるから、が一番簡単に思いつく理由です. また帽子パズルのプレイヤーは当初囚人ではありませんでした. 帽子パズルを広めた第1人者と見てよい Gardner でさえ、その著作では単なる人間で、囚人のような属性は付与されていません. いつから帽子パズルが「囚人と帽子のパズル」として紹介されたかの考察は、1.3.1 節(36ページ)についてすることにします.

ただ集合論ではこのような現実的に考えると突飛な例え話はたくさんあります。その例として挙げるなら「ヒルベルトの無限ホテルのパラドックス」(Wikipedia の該当ページとして [13])で登場する, 無限の部屋を持つホテルがあります。これもツッコみだせばキリがない設定です。無限に部屋があるということは無限に清掃員が必要とか。

しかし無限にいるという設定でも,数学的な無限として扱うことは必要です.必要ならば無限といっても,可算無限なのか,それとも連続体濃度と同等の無限なのか,はたまたそれよりも大きい基数と同等の無限なのか,などなどです.これらについて厳密に議論にしていかないと禅問答になりかねません.この時点では曖昧さがありますが,集合論を使って帽子パズルを形式化することで,曖昧さは排除することができます.それについては1.4節(39ページ)を見てください.

帽子に付ける色の候補の無限化に対しても同様なツッコミが可能です。囚人たちは各帽子の違いを色で見分けています。そもそも色とは何か?という問いに対しては分かりやすい解説として [?] を挙げておきます。そのうえで(人間が見分けることのできる)色は何種類あるのか?という問いに対しての答えは一番大きいもので 1000 万です。答えの理由として [?] を挙げておきます。登場人物の囚人が単なる人間であるとするならば,彼らに無限に色を見分けることもできないため,帽子に付ける色の候補が無限にある無限帽子パズルは不思議な設定に感じます。単に 2, 3 色ならばそのままでもいいかもしれませんが,10 色くらいになるとパズルとして説明するのも煩わしくなります。

これらの解決方法としては帽子には色が付いているのではなく数字が書いてあるとすればよいです。そうすると見分けも簡単につくと想像できますし、パズルの説明も楽になります。

またパズルによっては帽子に数字が書いてあることが重要なものもあります。たとえば囚人は2人で、その2つの帽子に書かれている数字が連続するようにするとか、囚人は3人で、1つの帽子に書かれている数は他の2つの数の合計になっている、などです。これは色では表現できない情報です。これについては1.2.5節(22ページ)で具体例をあげることにします。

他には帽子は全て赤色であるが、その濃さが違うというものもあります。しかもその濃さは各正の実数に対応しているという設定でした。つまりこの場合は囚人に被せる帽子の候補は実数の数だけあるという設定です。この設定を活かした帽子パズルとして

1.2.3 帽子に付く色の個数

1.2.1 節(12 ページ)で紹介した 4 つのパズルはどれも囚人たちに被せた帽子は色が 1 つだけ付いていました. 複数の色が付いているというのは右のようなイラスト 1 が想像できます.ただ 2 個よりも

多いと、もう帽子では考えにくくなりそうです。 これについて Smullyan はあるパズルを提案しています。それは帽子を被るのではなく、色付きのシールを複数枚額に貼るという設定のパズルです。これだと個々の囚人に3色以上の色

を対応させることも簡単に説明できそうです。しかし無限枚、いや十分に大きな枚数を貼るとなると、シールで顔が埋め尽くされた囚人を想像することになるので、そこは囚人の顔の表面積は無限になっているとしましょう。Smullyan はそれまでの帽子パズルを拡張しようとしてこのパズルを考えたのかどうかは不明です。Gardner はその著作 [51] にて、Gardner が考えていた帽子パズルの設定の曖昧さを排除できたものとしてこのパズルを紹介していました。おそらく帽子が単色でないことには、その書籍の中ではとくに注目していなかったのかもしれません。

図 1.1: いらすとや「紅白帽を縦 にかぶった男の子のイラスト」

¹https://www.irasutoya.com/2020/08/blog-post_27.html より入手.

Puzzle 1.2.5.

看守があるゲームをするために3人の囚人a,b,cを同じ部屋に入れたあと、以下のルールを説明します。そのルールとは、

- 1. 黒白のシールが 4 枚ずつある。全ての囚人の額に 2 枚ずつ貼っていく。自分がどの帽子を被っているのか知ることはできないが、自分以外の囚人がどのシールを付けているかは見える。
- 2. そのあと自分に貼られた 2 つのシールの色が何であるかを考えさせたあとに, a,b,c の順に黒黒・黒白・白白か「分からない」のいずれかを発言させ, そのさい自分以外の発言は聞こえる.
- 3. もし1人でも「分からない」と発言すれば、もう一度考えさせたあとに、同じように再度 a,b,c の順に3択の中から発言させる。これを繰り返していき、その中で自分の帽子の色を言い当てることができれば、その囚人は釈放され、間違った色の組み合わせを発言すれば処刑される。

というものです。また囚人は自分の色が分かっているのに「分からない」とは発言しないものとします。

1回目の発言では a,b,c は順番に「分からない」と答え、そのあとさらに a は「分からない」と発言しました。そのあと囚人 b は自分の色の組み合わせを言い当てることができました。なぜ囚人 b は自分の色が分かったのでしょうか?

<u>Answer</u> まず全員が 1 度発言した後とします。そして囚人 b の立場にたって考えます。囚人 b の額に貼ってあるシールの組み合わせは黒黒・黒白・白白のいずれかです。いま,囚人 b は自身に黒黒とシールが貼ってあるとしてみます。そこから囚人 b は a の立場に立って考えると,囚人 a は自身の額には黒白と貼ってあると発言するはずだと考えます。

: 囚人 a は自身が黒黒だったと考えてみます。しかしそれならば c からは黒が 4 つ見えていることになるので, c は自身が白白であると分かるはずですが, c は 1 度目に「分からない」と発言していたので,囚人 a は自身が黒黒ではないと分かります。

次に囚人 a は自身が自白だったと考えてみます.さらに囚人 c に立場にたつと,もし囚人 c が自白ならば,囚人 b から見て白が 4 つ見えています.しかし囚人 b が「分からない」と発言したことから,囚人 c は自身が白白ではないと分かります.つまり囚人 c は a と同じ理由で自身が黒黒でないとも分かっているはずなので,囚人 c は白白でも黒黒でもないことから黒白だと分かるはずです.しかし囚人 c は「分からない」と発言したことから,a は白白でないと分かります.

よって残された候補から囚人aは自身が黒白しかないと分かります.

しかし囚人 a が 2 度目の機会で「分からない」と発言したことから、囚人 b は自身は黒黒ではないと分かります。 同様に囚人 b が自身には白白と貼ってあると考えてみると、これも囚人 a が 2 度目の機会で「分からない」と発言したことから、この貼り方ではないと分かります.

よって残された可能性である黒白のみが残り, b は自身のシールの組み合わせが分かります.

[51] に書いてある通り、この問題は上記のような(ややこしい)推論をしなくても解くことができます.

Answer この問題では黒と白のシールの数は同じである。もし囚人bが自身の色が黒黒だと分かったのならば、黒黒だと分かった議論の中での白黒を反転させることで、白白も答えになるはずです。しかしbが一意な答えを見つけたことから黒黒も白白も候補から外れて、黒白だと分かったはずです。

このパズルは非協力型の Dirac-Gardner の帽子パズルの拡張です.しかし複数の帽子を被せるという設定だけでも,協力型の Hardin-Taylor の帽子パズルへ応用可能です. Hardin-Taylor の帽子パズルにて,各囚人に2つ以上の色付き帽子を被せる帽子パズルのことを,考案者の名前をとって Smullyan の帽子パズルとよぶことにします. これについての考察は2.1.1 節(47ページ)ですることにします. 今のところは Smullyan の名前を使っていますが,彼が別の彼由来らしきパズルを考案している可能性も高い(なにせ論理パズル多産者としても有名)ので,そのようなパズルが見つかれば,この名前は再考することにします.

1.2.4 帽子の見え方

ここまでに見てきたパズルは全て、どの囚人も自分以外の全ての帽子が見えていた。新たなバリエーションとしては、何人かの囚人がいくつかの帽子を見えなくする、というものです。一般的に見えない帽子が増えるということは、使える情報が減ることになるので、見えなくなる帽子が増えるほど(そして他のルールは変えなければ)、それだけ囚人は不利になります。たとえば Puzzle ??を以下のように改造してみます。

Puzzle 1.2.6.

看守があるゲームをするために 2 人の囚人 a,b を同じ部屋に入れ、帽子を 1 人に 1 つずつ被せます.その帽子は黒白どちらかの色で塗られています.囚人 a は b の帽子の色が分かりますが,囚人 b は(目隠しするなどして)a の帽子の色は分かりません.また部屋に入ってからは互いに一切のコミュニケーションが取れません.この状態で帽子の色のどちらかのみを,つまり「黒」か「白」のみを 2 人同時に発言させ,その発言とその発言者が被っている帽子の色が一致していれば正解となり,そんな正解者が 1 人でもいれば囚人側の勝利として 2 人とも釈放されます.もし 2 人とも不正解ならば囚人側の敗北として 2 人とも処刑されます.当たり前ですが看守がどのように帽子を被せるかは,囚人たちは入室するまで知りません.このゲームのルールや勝利条件については,部屋に入る前に囚人たちに伝えられ,ゲーム開始までに 2 人で戦略を相談することが可能です.このとき入室後にどのように帽子を被せられても,常に囚人側が勝利する戦略は存在するでしょうか?

もともとのパズルでは囚人側に必勝戦略が存在しましたが、このパズルでは存在しません。つまり看守は囚人たちの作戦を知っていれば、常に囚人2人ともが不正解になるように帽子を被せることができます。

Answer 囚人 b は部屋に入ってからとりうる行動は、常に黒と発言する、常に白と発言するのどちらかしかありません。テキトーにその時の囚人 b の気分で黒白の好きな方を発言するというのは、論理的な行動でもないので 2 人の作戦には組み込めないとしておきます。ちなみに囚人たちの戦略を数学的に定義した場合でも、このような作戦は排除でき、このように何も見えていないような囚人は、決まられた色を発言するくらいしか行動できないということも分かります。これについては 1.4 節(39 ページ)を見てください。

例えば囚人bは常に黒と発言するという行動をすることにしたとします。すると看守はbに白の帽子を被せることに決めます。そうすることでbは必ず不正解になります。すると囚人aがどのような作戦をとろうが,bの色が決まったことでaが何を発言するかも分かります。なので看守はaが発言しない方の色を被せればaも不正解になります。

つまり看守はそのように被せたときには 2 人とも間違えることになり、囚人たちは常に 1 人以上正解させることは不可能になります.

Puzzle ??では囚人たちは看守に作戦がバレていても常に勝利することができましたが,このパズルでは看守は上記の答えのようにして囚人たちが勝利しないようにすることができますし,仮に作戦を知らなくてもたまたま上記の答えのように被せた場合でも囚人たちは敗北します.

さらに複雑な見え方をしているパズルは既にたくさん知られています. Dirac-Gardner の帽子パズルの例を1つあげます.

Puzzle 1.2.7.

看守があるゲームをするために3人の囚人a,b,c,dを同じ部屋に入れたあと、以下のルールを説明します。そのルールとは、

- 1. 囚人 a,b,c は一列に並べて, a は b,c の帽子のみが, b は c の帽子のみが, c,d はどちらも自分も含めてどの囚人の帽子も見えないように立たせる.
- 2. 4 つある帽子のうち 1 つずつを囚人全員に被せていく. 4 つのうち 2 つは白色に, 残り 2 つは黒色に塗られている.
- 3. そのあと自分の色が何であるかを考えさせたあとc, a, b, c, d の順に黒白どちらかの色か「分からない」のいずれかを発言させ、そのさい自分以外の発言は聞こえる.
- 4. もし1人でも「分からない」と発言すれば、もう一度考えさせたあとに、同じように再度 a,b,c,d の順に3択の中から発言させる。これを繰り返していき、その中で自分の帽子の色を言い当てることができれば、その囚人は釈放され、間違った色を発言すれば処刑される。

というものです。また囚人は自分の色が分かっているのに「分からない」とは発言しないものとします。

まず a は「分からない」と答えましたが、それを聞いた b は自身の色を言い当てることができて釈放されました。なぜ囚人 c は自分の色が分かったのでしょうか?

図 1.2: 囚人の立ち位置のイメージ画像

囚人たちは上の画像 2 のように立っていると考えられます. a,b,c の見え方は階段上に下の段に向かって立っているように表現できます. d は誰からも見えていないし誰の帽子も見えていないので, 画像のように目の前に壁があるように捉えることができます.

Answer 囚人 a はもし b,c を見て同じ色が 2 つ見えていれば, 自身が何色を被っているか分かるはずです. しかし「分からない」と発言したことから b,c は黒白を 1 つずつ被っていると分かります. よって c が見えている b は, c が被っていない方の色を被っていると分かります.

続いて Hardin-Taylor の帽子パズルで例を1つ出します.

Puzzle 1.2.8.

看守があるゲームをするために3人の囚人a,b,c,dを同じ部屋に入れたあと,以下のルールを説明します.そのルールとは,

- 1. 囚人 a,b,c,d は一列に並べて, a は b,c,d の帽子のみが, b は c,d の帽子のみが, d は自分も含めてどの囚人の帽子も見えないように立たせる.
- 2. 各囚人に黒白どちらかの帽子を被せていく. この帽子はどちらも全囚人分あるとする.
- 3. そのあと自分の色が何であるかを考えさせたあとに, a,b,c,d の順に黒白どちらかの色を発言させ, そのさい自分以外の発言は聞こえる.
- 4. 全囚人の発言が終わったあと, 不正解者が1人以下, つまり3人以上が正解していれば囚人側の勝利として全員釈放される.

というものです。当たり前ですが看守がどのように帽子を被せるかは、囚人たちは入室するまで知りません。このゲームのルールや勝利条件については、部屋に入る前に囚人たちに伝えられ、ゲーム開始までに4人で戦略を相談することが可能です。このとき入室後にどのように帽子を被せられても、常に囚人側が勝利する戦略は存在するでしょうか? ■

このパズルでは1つ前のパズルのa,b,cのように4人が階段上に並んで立っていると捉えることができます。この場合はaが最上段に、dが最下段に立っていて、ゆえにdは誰の帽子も見えていません。

このパズルは色の数は Puzzle \ref{Puzzle} $\ref{Puzz$

²http://nazo-nazo.com/sp/cat400/post-78.html より入手.

<u>Answer</u> このゲームでは必勝戦略が存在します。まず囚人 a は黒が奇数個見えたら黒と,偶数個見えたら白と発言するようにし,そのことを他の囚人にも教えておきます。囚人 b はその発言を聞けば自分含めた囚人たちに被せられた帽子の黒の数の偶奇を知ることができます。そして見えている c, d の帽子の黒の数から自分が黒か白か判定することができます。そして囚人 c は直前の b の発言が正解だったと仮定して(実際に正解していますが),b と同じように自分含めた a 人の囚人の黒の帽子の数の偶奇の情報と,a の発言と見えている a の色から自身の帽子の色が分かります。最後に a は直前 a 人の発言と a の発言から黒の帽子の数について考えれば,a も自身の色が分かります。

黒の帽子の数は必ず偶数・奇数にどちらかになることから囚人 a は必ずその個数を伝えることができ、そして a 以外の囚人は上記のようにして必ず正解するため、この作戦は必勝になっています.

つまり囚人 a は他の囚人へ彼らのための情報を伝える役に徹することで、残りの囚人が正解するようにする作戦です。ただそのまま黒の偶奇を伝えることはできないので、自分が発言できる色を使って、その情報を暗号にするわけです。囚人たちはその暗号の意味さえ分かっていれば、上記のように正解することができます。また別に黒の偶奇ではなく白の偶奇としても問題ありません。より分かりやすいのは帽子を白黒という色ではなく、0,1 の数に置き換えて、囚人 a は b,c,d の帽子の数を合計し、それを2 で割った余り(必ず 0,1 どちらかになる)を発言する、というものすることができます。こちらの方が囚人にとっても覚えやすく間違えにくいと思われます。まぁ帽子パズルでは囚人はどのような作戦もきっちり暗記でき、ゲーム本番でも間違えることなく計算や判断をすることができると仮定されているわけですが。

上記の 2 つのパズルはどちらも発言に順番があるパズルでした。この要素については 1.2.6 節(23 ページ)にて解説しますが、発言を全員同時にしなくてはいけないパズルでも、このような階段上に囚人が立っていると思えるようなパズルは考えることができます。

囚人がa,bという2人の場合は以下のような帽子の見え方の可能性があります.

- 1. 2人とも互いに誰の帽子も見えていない.
- 2. a は b の帽子が見えているが, b は a の帽子が見えない.
- 3. bはaの帽子が見えているが, aはbの帽子が見えない.
- 4. 2人とも互いに相手の帽子が見えている.

つまり2人という設定でもこれだけの見え方の候補があって、それにあわせてまた別のパズルを作ることができます.

一般的に囚人がn人の場合は $2^{n(n-1)}$ パターンの帽子の見え方があります。この数だけ帽子パズルを考えることができるということです。さらにこれらはグラフ理論の言葉を使うことでより効率良く考察しやすくなります。それについては帽子パズルの用語を数学の言葉を使って定義していく、1.4節(39 ページ)を見てください。

また囚人が無限にいる場合では、帽子の見え方のパターンも無限に増えます。そんな中でも特徴的なものを扱っていくとになります。たとえば囚人が自然数と同じだけいる、つまり各囚人に1つずつ自然数が割り振られているようなパズルにて、Puzzle?? (??ページ)と同じように自分以外の帽子が全て見えているような設定とか、自分より大きな番号を割り振られている囚人は全て見えて自分以下の番号の囚人は全て見えないような設定(これは階段上に並んでいるパズルの一般化です)とか、さらに自分が奇数なら自分より大きな偶数だけ見える、自分が偶数なら自分より大きな奇数だけが見えるなんて設定も考えることができます。これらも日常言語ではなく数学の言葉を使うことで分かりやすくなると思います。どのような無限帽子パズルがあるかについては、無限帽子パズルの概略説明の節、3.1節(49ページ)に書くことにします。

1.2.5 帽子についての情報

帽子パズルにて「帽子についての情報」として基本的なものは、色の付いた帽子がそれぞれいくつあるかというものです。またこの情報があればあるほど囚人たちは有利になります。一番囚人たちにとって役に立ちづらい情報は、全ての色の帽子が囚人の数だけ用意されている場合です。この場合は帽子の被せ方の全てのパターンがありえることになります。Hardin-Taylor の帽子パズルの一番シンプルな場合である Puzzle ?? (??ページ) がそのようなパズルの代表例です。囚人たちが協力できない帽子パズルでは、この情報が重要になります。なぜなら被せ方の全てのパターンがありえるという情報だけならば、囚人はもはや色の数だけ発言の可能性を持つことになり、一向にその自身の色の繋がる推論をすることができないからです。

この情報が増えるだけで、正解数という点で囚人たちが有利になることを、Puzzle??を改造することで確かめてみます.

Puzzle 1.2.9.

看守があるゲームをするために 2 人の囚人 a,b を同じ部屋に入れ、帽子を 1 人に 1 つずつ被せます.その帽子は黒白どちらかの色で塗られています.しかし黒で塗られた帽子は 1 つしかありません.白のものは 2 つあります.囚人 2 人はそれぞれ自分が被っている帽子の色は分かりませんが,もう 1 人の囚人の帽子の色は見えています.また部屋に入ってからは互いに一切のコミュニケーションが取れません.この状態で帽子の色のどちらかのみを,つまり「黒」か「白」のみを 2 人同時に発言させ,その発言とその発言者が被っている帽子の色が一致していれば正解となり,そんな正解者が 1 人ならば囚人側の勝利として 2 人とも釈放されます.もし正解者が 2 人ならば釈放した上に賞金がもらえます.もし 2 人とも不正解ならば囚人側の敗北として 2 人とも処刑されます.当たり前ですが看守がどのように帽子を被せるかは,囚人たちは入室するまで知りません.このゲームのルールや勝利条件については,部屋に入る前に囚人たちに伝えられ,ゲーム開始までに 2 人で戦略を相談することが可能です.このとき入室後にどのように帽子を被せられても,最低でも 1 人正解,帽子の被せ方次第では 2 人が正解するような戦略は存在するでしょうか?

つまりこのパズルは正解数に応じてボーナスが付くようになりました。もちろん囚人は最低限負けることはなく、あわよくばボーナスも得られるような作戦を考えるはずです。そしてそんな作戦はもとのパズルでの必勝戦略を改造することで得られます。ちなみに元のパズルでの必勝戦略とはaが見えた色と同じ色を、bが見えた色と違う方の色を発言するというものでした。

<u>Answer</u> 囚人たちは以下のように作戦を立てます. a も b も基本的には Puzzle ??のときと同じように発言しますが, もし黒色が見えた場合は元の作戦は気にせず白と発言します. これは黒黒という組み合わせがありえないということを考慮したうえでの作戦です. すると個々の被せ方パターンにおける発言は以下のようになります. 比較のために元のパズル通りの作戦での発言も併記しておきます. ※は「Puzzle ??での発言」の省略です.

			パ:	ターン	× 2	パターン 3			
	帽子色	Puzzle ?? での発言	発言色	帽子	*	発言	帽子	*	発言
a	黒	白	白	白	黒	白	白	白	白
	1 .			黒	黒	黒	白白	黒	黒

また Puzzle ??ではありえた 2 人とも黒を被っているというパターンがなくなっています.

パターン 1 と 3 の場合は Puzzle ??と同じような発言をするので, 正解者は 1 人のままですが, パターン 2 の場合に a が黒が見えたために, 元の作戦通りに黒と発言せず白と発言しています。そうすることでこの場合には 2 人が正解しています。よってこのような作戦で囚人たちは最低でも 2 人, パターン 2 のような場合だけ 2 人正解するような作戦を立てることができます。 \Box

もし Puzzle ??にも、2人正解した場合のボーナスを設定したとします。しかしどのような戦略で臨んでも、最低 1 人の正解を保証しつつ上手くいけば 2 人が正解するような作戦は存在しないことを証明することができます。つまりどんな必ず釈放される作戦もパターンごとの平均正解者数は 1 人ちょうどになります。上記のパズルでは平均正解者数は $\frac{4}{3}$ 人になっており、その観点からも囚人たちは有利になっています。

1.2.2 節(17 ページ)でも紹介した,帽子に色ではなく数字が書いてあるという設定を考えると,囚人たちに与える帽子について情報はより多彩になります.たとえば全ての囚人の数字は連続しているとかはどうでしょうか?また全ての囚人の数字の和は誰か 1 人の数字に一致するとか,1 人の囚人の数字は他の囚人の和に等しいとか,色では表現できなかった情報を囚人たちに与えることができます.

囚人も色の数も無限になれば、さらに数学的な情報も検討できます。たとえば各囚人に自然数が1つずつ割り振られていて、帽子に書かれる数字の候補も全ての自然数から選ばれるとすれば、全ての囚人に1つずつ帽子を被せれば、それは1つの自然数列を与えたことと同じ意味になります。ここで看守からその数列(つまり帽子の様子)は収束するというヒントを与えられたらどうでしょうか?このようにして無限の場合は数学概念を用いたより多彩で複雑な帽子パズルを考えることもできます。

1.2.6 発言方法

ここまでで発言方法は、Puzzle ??(??ページ)や Puzzle ??(??ページ)のように全員が同時に発言するものと、Puzzle ??(??ページ)や Puzzle ??(??ページ)のように順番に発言していくものがあった.このノートの作成段階ではもう 1 つの発言方法

も知られている。なのでここでは主にこれら3つについて扱っていくことにする。まずは発言方法についてまとめて定義しておく。

Definition 1.2.10.

帽子パズルにて囚人たちの発言の仕方を発言方法と呼ぶ、よく知られている発言方法に以下のように名前をつける、

1. 同時発言型

囚人たちは全員同時に発言する. 同時ゆえに他の囚人の発言を聞くことはできない.

2. 1 人先行型

1人が最初に発言し、そのあと残りの囚人が同時に発言する. 最初に発言する囚人を**先行発言者**と呼ぶことにする. 先行発言者以外の囚人は、先行発言者の発言が聞こえている.

誰が先行発言者になるかはゲーム開始前のルール説明時点で看守より伝えられるものとする.

3. 順次発言型

一列に整列できるように囚人たち全員に順番が割り振られており、その順番の中で一番小さい囚人から順に1人ずつ発言していく. どの囚人も自分より前の発言は全て聞こえている.

どのような順番で発言するかはゲーム開始前のルール説明時点で看守より伝えられるものとする.

つまり Puzzle ??と Puzzle ??は同時発言型をゲームに採用しており, Puzzle ??と Puzzle ??は順次発言型を採用している. 同時発言型以外は, 発言前の情報が増えるので協力型ならば正解者の数は増えやすい傾向があり, 非協力型ならば個々の囚人は正解しやすくなります. 1 人先行型における先行発言者と, 順次発言型における一番最初に発言する囚人は, 誰の発言を聞くことがないので, その意味では同時発言型の囚人たちと同じです. つまり正解のしやすさは同時発言と変わりない状況です.

Puzzle 1.2.8(21ページ)も順次発言型の例ですが、この場合囚人たちの帽子の見え方と発言の順番が密接に関係していました。 つまり自分が見えていない囚人の発言は全て聞こえるという関係がありました。よく一般に紹介される順次発言型のパズルではこの設定が多いですが、Puzzle ??のように自分以外の囚人が見えていて、かつ順番に発言するというものも設定としてはありえます。

同時発言型と順次発言型は帽子パズルが現れた初期から登場する設定です。しかし最初に考案したのが誰かを特定するのは難しいと思います。なぜなら例えば Puzzle ??は同時発言型ですが,これは元々Puzzle ??を知った私が同時発言型になるように改良したものになります。そしてさらに元になったパズルはここまで細かくゲームについて説明されていませんでした。つまりパズルをより正確に伝えるためにどちらの発言型も採用できたということで,どちらの発言方法が先に考案されたかを考えることは難しいです。よくよく考えればこの区分を考えたのは私なので,これ以前のパズルに適用しにくいのは当然です。しかし1人先行型については最初に考案したのは Hardin と Taylor かもしれません。なぜならば彼らの著作にて [39] にて登場する以前の文献でまだ発見できていないからです。これについては 23ページの Theorem 3.2.2 を見てください。ただこの本で登場するさいは無限帽子パズルに採用されており,有限帽子パズルではもしかしたら彼ら以前に発表しているかもしれません。

また非同時発言型の2つでは、誰がどの順番で発言するかはゲーム開始前に伝えられると定義しましたが、さらなるバリエーションとして「順番に発言するというルールは伝えるが、誰がどの順番で発言するかは部屋に入った後に伝えられる」というものも考えることができます。つまり囚人たちは自分がどの順番で発言することになったとしても勝利条件を満たすような作戦を練っておく必要があります。ただこのルール変更は有限の場合ではどちらでも大差がないように思われます。それについて研究が進んだ場合にはここに結果への案内を書くことにします。

1.2.7 色以外の発言

これまでのパズルでは囚人たちの色以外の発言としては「(自分の色が)分からない」というものだけでした。またそのパズルではこの発言を他の囚人も聞くことができたため、これがヒントして役に立つこともありました。

色以外の発言である「分からない」は私が沈黙という行為を発言に置き換えたものです. もともと私がアレンジする前は, Puzzle ?? (??ページ) は Gardner が紹介した以下のようなものでした(そのまま [51] の 138 ページより引用しています).

Puzzle 1.2.11.

A,B,C の 3 人が目隠しされて、これから赤い帽子か緑の帽子を被せられると告げられる。彼らに帽子が被されたあとで目隠し

が外される。そして彼らは、赤い帽子を見たら手を挙げるように、また、自分の帽子の色が確信できたら部屋を退出するように告げられる。帽子は3つとも赤だったので、3人とも手を挙げた。数分後、他の2人より賢かったCは、部屋を出ていった。彼は、どのようにして自分の帽子の色を推測できたのだろうか?

このパズルは Gardner 自身がその本で指摘しているとおり曖昧な点が 2 つあります。1 つは数分後という部分です。つまりその間は誰も発言しない沈黙の時間帯だったということです。そしてその沈黙が全ての囚人にとってのヒントになっています。これを Puzzle ??では,同時に「分からない」と発言し,その発言を他の囚人にも聞こえたことにしました。これ以外にも沈黙がヒントになっているものはたくさんあります。それらもこのように「分からない」という発言をしたことに変更可能だと思います。いま話題にしている色以外の発言という要素とは関係ありませんが,曖昧なもう 1 つの点は「他の 2 人より賢かった」という部分です。この曖昧さを排除するために全員が同じ賢さ(論理的思考力?)を持っているとして(もしくは賢さに言及しないで),全員が同時に自分の色が分かり部屋を出ていったというアレンジをしているものもあります。

どの囚人にとっても必要な情報は、最初に帽子を見ただけでは自分も含めて誰も自分の帽子が分からなかったというものです。なので Puzzle ??(??ページ)では、それを聞いて推論していくようなイメージが付きやすいよう、順番で発言させるという私のアレンジが入っています.

まとめると本来は色以外の発言しかできないようなルールにしておきながら、囚人が沈黙してしまったという情報を色以外の発言という捉え方をすることにしました。おそらく私が初出なアレンジでも設定でもないとは思います。しかし他の帽子パズルでは沈黙という意味ではない、色以外の発言をするものもあります。前置きが長くなりましたが、この節ではこのノート執筆時点で知られている色以外の発言をするパズルをいくつか紹介します。

まず Puzzle ?? (??ページ) のルールを変えたものと捉えることができるパズルを紹介します. ルールの変更部分は色を変えておきます.

Puzzle 1.2.12.

看守があるゲームをするために 2 人の囚人を同じ部屋に入れ,帽子を 1 人に 1 つずつ被せます.その帽子は黒白どちらかの色で塗られています.囚人 2 人はそれぞれ自分が被っている帽子の色は分かりませんが,もう 1 人の囚人の帽子の色は見えています.また部屋に入ってからは互いに一切のコミュニケーションが取れません.この状態で帽子の色のどちらかか,発言拒否を意味する「パス」を発言します.つまり「黒」か「白」のみを 2 人同時に発言させ,その発言とその発言者が被っている帽子の色が一致していれば正解となり,そうでなければ不正解,「パス」と発言した場合は正解にも不正解とも扱いません.「そして正解者が 1 人以上いて,かつ不正解者が 0 人ならば囚人側の勝利として 2 人とも釈放されます.当たり前ですが看守がどのように帽子を被せるかは,囚人たちは入室するまで知りません.このゲームのルールや勝利条件については,部屋に入る前に囚人たちに伝えられ,ゲーム開始までに 2 人で戦略を相談することが可能です.囚人たちは勝利する確率を最大どれくらいまで上げることが可能でしょうか?

Puzzle ??との違いは発言のパスが許されているところです。それゆえに囚人たちの勝利条件やパズルの問いも変わっています。「パス」は正解にも不正解にもなりません。Puzzle ??での必勝戦略では常に正解者も不正解者も1人ずる発生することが分かるので、このパズルでは必勝戦略にはなりません。そしてこのパズルには必勝戦略は存在しません。ゆえに確率は100%になることはありません。そして最大確率は50%です。そのときの戦略は1人は常に「パス」を発言し、もう1人は黒か白か決めた色を(もう一人の色がなんであろうと)発言するというものです。

一見囚人数が増えても、1 人がどちらかの色を、それ以外の全員がパスをするという 50 %勝率の戦略が最適化と思われますが、実は囚人数が $n=2^k-1$ 人ならば Hamming 符号を用いることで、勝率 n/n+1 となる戦略を作ることができます. つまり 3 人ならば 75 %の、7 人ならば 87.5 %という勝利の戦略が存在します.

よって以下の要素を持つパズルを Eber の帽子パズルと呼ぶことします.

- 1. 囚人たちは協力してゲームに臨む.
- 2. 色以外の発言として「パス」が可能.

ちなみにこのように考案者の名前を借りて帽子パズルを命名する行為は, [39] の 1 ページ目にて著者である Hardin と Taylor が「Ebert' Hat problem」という記述を参考にしています。帽子パズルと総称するには種類が豊富過ぎると感じているので, 特徴的なものでかつ考案者が分かっており, そして考案者が特別な名前を付けていない場合に, このように勝手ではありますが名前を付けていきたいと思います。もし考案者が何か特別な名前を付けていれば, それに従うことにします。例えば下の deterministic coin flip 帽子パズルとかがそれにあたります。

色以外の発言が可能なパズルは、発言が多様になったことで勝利条件という要素が正解数とは違う多様性を持ちます。その例が 以下のパズルです。

Puzzle 1.2.13.

看守があるゲームをするために 8 人の囚人を同じ部屋に入れ,帽子を 1 人に 1 つずつ被せます.その帽子には実数が 1 つずつ書いてあります.どの囚人も自分以外の囚人が被っている帽子の数が見えています.そして部屋に入ってからは互いに一切のコミュニケーションが取れません.部屋に入った後囚人たち全員に聞こえるように看守が 1 つの実数を発言します.そのあと囚人たちは同時に 0, 1 のどちらかを発言します.看守が発言した実数よりも大きい数の帽子を被った m 人の囚人たちの中で,0 を発言した囚人と 1 を発言した囚人の数がそれぞれ $\lfloor m/2 \rfloor$ を超えていた場合,囚人たちの勝利として全員釈放されます.そうでなければ敗北となって全員処刑されます.当たり前ですが看守がどのように帽子を被せるかとどの実数を発現するかは,囚人たちは入室するまで知りません.このゲームのルールや勝利条件については,部屋に入る前に囚人たちに伝えられ,ゲーム開始までに 2 人で戦略を相談することが可能です.このとき入室後にどのように帽子を被せられても,看守がどの実数を発現したとしても,常に囚人側が勝利する戦略は存在するでしょうか?

このパズルも私のアレンジが入っています。元ネタは [27] の 15 ページにて紹介された「Hat Puzzle 2 (deterministic coin flip)」です。これまでの例では発現できるものの候補は、色のみか、色に色以外の「分からない」や「パス」を加えたものでしたが、このパズルでは色は発現できず数字の 0,1 しか発現できない点がこれまでのパズルと異なる点です。それにあわせてルールと勝利条件が変わっています。

1.2.8 発言回数

1.2.9 勝利条件

あるパズルがあったとき、その勝利条件を変えて別のゲームを作ることは容易です。協力型のゲームの場合、ある正解者数が囚人たちの勝利条件であり、かつその勝利条件に対して囚人側に必勝戦略が存在した場合、さらに要求される正解者数を(プレイヤーの人数を上限に)増やした新たなゲームに、囚人側にまた必勝戦略があるか考察することは妥当な議論展開です。逆にその勝利条件に対して囚人側に必勝戦略が存在しない場合、要求される正解者数を減らしてみて考察することもありえます。

すでに例にあげたとおり、Puzzle ?? (??ページ)を「最低 1 人正解」から「最低 2 人正解(つまりこの場合は全員正解と同意味)」へと変更できます。そしてその場合は必勝戦略はないことを示すことができます。看守より要求される最低正解者数を変更するパターンは、このパズルで他の要素を変えない限りはこれだけですが、最低正解者数でない別の勝利条件も既に考えられています。勝利条件のみが変わったので、その部分だけ文字の色を変えておきます。

Puzzle 1.2.14.

看守があるゲームをするために 2 人の囚人を同じ部屋に入れ,帽子を 1 人に 1 つずつ被せます.その帽子は黒白どちらかの色で塗られています.囚人 2 人はそれぞれ自分が被っている帽子の色は分かりませんが,もう 1 人の囚人の帽子の色は見えています.また部屋に入ってからは互いに一切のコミュニケーションが取れません.この状態で帽子の色のどちらかのみを,つまり「黒」か「白」のみを 2 人同時に発言させ,その発言とその発言者が被っている帽子の色が一致していれば正解となり,そんな正解者が 2 人もしくは 0 人のとき囚人側の勝利として 2 人とも釈放されます.もし正解者・不正解者 1 人ずついるようならば囚人側の敗北として 2 人とも処刑されます.当たり前ですが看守がどのように帽子を被せるかは,囚人たちは入室するまで知りません.

このゲームのルールや勝利条件については、部屋に入る前に囚人たちに伝えられ、ゲーム開始までに2人で戦略を相談することが可能です。このとき入室後にどのように帽子を被せられても、常に囚人側が勝利する戦略は存在するでしょうか? ■

つまり正解数が全員か0人かの極端な場合のみが勝利するというものです。この勝利条件に対しても必勝戦略は存在します。1つは2人とも見えた色と同じ色を発言するというものです。もう1つは2人とも見えた色を異なる方の色を発言するというものです。

1.3 帽子パズルの歴史

帽子パズルは数学的対象としてはまだまだ歴史は浅いものの、単なるパズルとしては歴史はかなり長いです。誰がどのように興味をもってきたのか、自分なりにまとめていきたいと思います。

1.3.1 節(27ページ)では帽子パズルの要素をもつパズルが、いつから人々に楽しまれてきたのかまとめていきます.

1.3.2 節(39 ページ)では帽子パズルが数学的対象となり、どのように研究されてきたのかをまとめていきたいと思います。1.3.1 節があくまで一般の書籍を主に調べているならば、この節は学術的論文を対象に調べています。

帽子パズルはいつからかプレイヤーが囚人となり、囚人と帽子のパズルと呼ばれるようになりました. ??節(??ページ)では、いつからそうなったのかを上記の節をまとめる傍らまとめてみたいと思っています.

1.3.1 パズルとしての帽子パズルの歴史

ここでは帽子パズルの重要な要素, 自身の色とは直接関係のない情報から自身の色を推測する, という要素をもったパズルの歴史をまとめていきます.

帽子パズルのパズルとしての歴史を探るには泥んこの子供たちのパズルの歴史を追うのが最善かもしれません。なぜなら、『100人の囚人と 1 個の電球 知識と推論にまつわる論理パズル』[55] の 44ページ, そしてこの本が引用している『The Freudenthal problem and its ramifications (Part III)』[30] を参考にすると、この著者たちは主に**泥んこの子供たちのパズル(Muddy Children Puzzle**)に注目しており、帽子パズルはこれの亜種・変形であるという見方をしています。

泥んこの子供たちのパズルとは以下のようなものです. ここでは [55] を参考にします. この本では最初に一般的なパズルを紹介し, そのあと設定を簡略化したパズルを出して, 徐々に難しくしていくという形式をとっています. それに従って, まずは [55] の27ページの一般的なパズルを引用します.

<u>Puzzle</u> 1.3.1([55]3章「泥んこの子供たち」冒頭のパズル).

外で遊んでいた子供の一団が、父親に呼ばれて家に戻ってきた.父親の周りに集まると、思ってたとおり、子供たちの中の何人かは、遊んでいる間に汚れていて、とくに顔に泥がついている.子供たちは、それぞれ他の子供の顔に泥がついているかどうかは見えるが、自分自身の顔に泥がついているかどうかは見えない.このことは全員が分かっているし、子供たちが完璧な論理的思考をすることは一目瞭然である.ここで、父親はこう言う.「君らのうち、少なくとも一人は泥で汚れている」そして、こう続ける.「自分が泥で汚れている分かった者は、前に進み出なさい」これで誰も前に進み出なければ、父親は、この指示を繰り返す.何回かこれを繰り返した時点で、泥で汚れた子供全員が前に進み出る.全員でk人の子供のうち、m人が泥で汚れているとき、何回目でこうなるか、そして、その理由は.

続けて同じ本から順に簡単バージョンのパズルを2つ紹介します.

Puzzle 1.3.2 ([55] の Puzzle 8 (28ページ)) .

外で遊んでいたアリスとボブが家に戻ってくる. 二人の父親は, ボブの顔が汚れているのを見て, 二人が泥遊びをしていたことに気づく. 二人は, それぞれ相手の顔が泥で汚れているのを見ることはできるが, 自分自身の顔が汚れているかは見ることができない. もちろん, 鏡を覗き込めば自分の顔を見ることができる. ここで, 父親は「二人のうち一人の顔は泥で汚れている」と言う. ボブはすぐに顔を洗いに向かった. しかし, ボブは鏡を見たわけではない. ボブはどのようにして自分が泥で汚れていると分かったのか.

以降この本では顔が泥で汚れている子供のことを「泥んこ」と呼ぶことにしています.

Puzzle 1.3.3 ([55] の Puzzle 9 (29ページ)) .

その翌日, アリスとボブはまた外で遊んでいたが, 今度は二人とも泥んこになった. 家に帰ったとき, 父親は, またしても, 「二人のうち少なくとも一人は泥んこだ」と言う. そして, 父親はボブにこう尋ねる. 「自分は泥んこかどうか分かるかな」ボブは「いや, 分からない」と答える. そこで, 父親はアリスにこう尋ねる. 「自分は泥んこか分かるかな」するとアリスは「ええ. 分かるわ. 私は泥んこね」どうして, 自分が泥んこだとアリスは分かったのに, ボブには分からなかったということが起こりうるのだろうか.

彼らが帽子パズルを泥んこの子供たちのパズルの亜種・変形と捉えている理由は, [55] に「泥で汚れているのではなく帽子を被っているという変形は, ある週刊誌に見ることができる」部分や, [30]216 ページの「この頃から, パズルコーナーや問題集に「泥んこ問題」が登場するようになった. 子供たちは哲学者, 囚人, 学生, 修道士に変身し, 泥だらけの額は塗り潰された顔, 黒い十字架, 緑の切手, 赤い帽子, 青い塊に変身することもある.」からも分かります. 彼らの帽子パズルは泥んこの子供たちのパズルの変形・亜種という見方は正しいと思います. なぜなら帽子パズルっぽい要素をもつものは 1832 年に現れており, そしてそれは泥んこの子供たちのパズルのように「顔が汚れる」という設定であり, 色付き帽子を被るという設定のものは, 今現在ではまだそれ以前には見つけられていないからです. つまり今現在, 1832 年のそれは帽子パズル・泥んこの子供たちのパズルの祖先です.

泥んこの子供たちのパズルの祖先「笑わずにつまむ」

ではそれはどのようなものだったのか. [30](そしてそれを参考にしている [55])によると、1832 年にドイツの作家で翻訳家の Gottlob Regis(ゴットロープ・レジス)(1791-1854)が、フランス文学の古典である、François Rabelais(フランソワ・ラブレー)『ガルガンチュアとパンタグリュエル』(参考までに [11])のフランス語からドイツ語への翻訳 [?] を完成させました、Regis は訳すさいにかなりの量の注釈をつけたようです。そしてその 103 ページには、フランス語の「pincer sans rire」をドイツ語の「ungelacht pfetz ich dich」と訳したことについて、以下のような彼のコメントが掲載されています。

Gesellschaftsspiel. Jeder zwickt seinenrechten Nachbar an Kinn oder Nase; wenn er lacht, giebt er ein Pfand. Zwei von der Gesellschaft sind nämlich im Complot und haben einenverkohlten Korkstöpsel, woran sie sich die Finger, und mithin denen, die sie zupfen, die Gesichter schw?rzen. Diese werden nun um sol?cherlicher, weil jeder glaubt, man lache über den anderen.

これを [30] で英語に訳し、それをさらに日本語に訳すと [55]44 ページにあるとおり以下のようになります.

「笑わずにつまむ」は室内遊戯の一つ. 全員が右隣の人の顎か鼻をつまむ. 笑ったら, その人は罰として何かをしなくてはならない. つまむ人の中の二人はこっそり指に消し炭をつけておくので, 彼らの隣の人の顔が黒くなる. 消し炭をつけられた二人は互いに, 全員がもう一人を見て笑っているのだと考えるので, 笑いものにされる.

消し炭を何人の指につけたのか全員が知っていれば、仮に汚れている他人が見えたとしても「自分も汚れているかも」と考えるので笑うのを躊躇いますが、彼らはそれを知らないので、汚れた1人以上を見て笑っているというわけです。そして一番笑いものにされているのは、自分も汚れているのに笑っている人ということです。

これはパズルではなく室内遊戯であり、それゆえにこれをパズルにしたとしても曖昧な点は多々あります。例えば個々の参加者が笑い出すのはいつなのか?という点です。[55] の著者はこれを「同期がとれていない」と表現しています。しかし顎であれ鼻であれ、自分に見えない汚れがついていて、それを各人見ることができない。そして他の人が汚れているかどうか分かるという点で、かなり帽子パズル・泥んこの子供たちのパズルと同様の要素を持っていることが分かります。

[55] の著者は、この遊びがフランスでいうところの「山羊ひげ」という、二人が互いにあごをつまんで見つめ合い、笑った方が負けという一種のにらめっこを装ったいたずらであると表現してます。そして彼らはこれがフランスの大人気漫画『Asterix the Gaul(アステリックスの冒険)』(参考までに [20])シリーズの、第 1 巻 [?] に登場しているとも補足しています。確認してみると、確かに 19 ページにそのような遊びが登場しています。ちなみにこの第 1 巻は 1959 年に出版されたもののようです。

この室内遊戯がきっかけになったかどうか定かではありませんが、帽子パズル含めて似たようなパズルが後年たくさん登場します.

しかし現在見つかっているもので最も古いパズルの体裁を持っているものは, 1935 年まで進みます. つまり「笑わずにつまむ」

の登場から 100 年以上経ったあとのことです。もちろん調べられていないだけで・調べる手段がないだけで、「笑わずにつまむ」以前に、1832 年と 1935 年の間に似たパズルは紹介されていた可能性は大いにあります。後者の可能性が高いこと、もしくは紹介されていたであろうということは、その 1935 年に登場したパズルたちについて調べることで分かります。

そしてその 100 年の間にも似た遊びはいくつも登場していたようです。 [30] はそんな例を 1 つ挙げています。その例は、当時のアメリカの子供たちに人気のあったゲームや歌のルールやメロディや動きなどを紹介している、 1883 年に William Wells Newell が出版した『Games and Songs of American Children』 [?] から引用されています。それは 77 番目の項目「Laughter games」で紹介されている以下のような遊びです。

Each child pinches his neighbor's ear; but by agreement the players blacken their fingers, keeping two of the party in ignorance. Each of the two victims imagines it to be the other who is the object of the uproarious mirth of the company.

訳すとまさしく上の「笑わずにつまむ」と同じ遊びになっています。違いはつまむ場所が耳になっているのと,何で指が黒くなっているのか分からない点くらいで,大した違いではありません。

私は同じ本から帽子パズルっぽい要素を持つ遊びを見つけました. それは 80 番目の項目「What Color?」です. ルールは以下のようなものです.

A tumbler of water and a thimble are required. One child is sent out of the room, and to each of the others a different color is allotted. The first is then expected to name the color of some child. If she succeeds in her guess, a thimbleful of water is thrown in her face. The guessing is continued till this takes place, when the thrower becomes the guesser for the next turn.

どういう遊びなのか私はあまり分かっていませんが、プレイヤーに色が割り当てられる点、そしてプレイヤーは割り当てられた色が分からず、それを当てなくてはいけない点が、帽子パズルと似ています。もし最初に帽子パズルっぽいものを考えた人の中には、上の遊びよりもこちらの影響を受けたということもありえそうです。またここから考えられることは、知ることのできない自分の状態について推測しなくてはいけないギミックをもつ遊びは、古今東西存在していたということかもしれません。

1935 年の 2 つのパズル

では 1935 年にどのようなパズルが登場したのかですが、実は帽子パズル的・泥んこの子供のパズル的なパズルが、この年に 2 つ同時に現れています.これらは [30] にて紹介されているものです.

まず 1 つ目は, 1901 年より出版されている, 学校現場での科学・数学の教育をテーマにした論文誌³ 『School Science and Mathematics』に, 1935 年 2 月に, ピッツバーグ公立高校の Werner E. Buker が投稿した『A puzzler for the thinkers』[31] に登場します. そのパズルは以下のようなものです.

<u>Puzzle</u> 1.3.4.

ある王が 3 人の臣下に目隠しをし、それぞれの額を触った.臣下たちは、触った指がランプブラック 4 で覆われているかもしれないし、そうでないかもしれないことを知っていた.目隠しをはずすと、「黒い点が一つでも見えたら口笛を吹くように」との指示が出された.そして、自分の額にランプブラックがついているかどうかがわかったら、すぐに口笛をやめるようにと指示された.3 人全ての額に黒点がついたため、そのうちの 1 人はやがて口笛を吹くことを止めた.なぜ彼は自分の額に黒点があるとわかったのだろうか.

このパズルの答えは同じ雑誌の後の号に掲載されました [32]. またこのパズルを紹介したとき, Buker は以下のような文章を添えてありました.

発案者が誰かは知りませんが、それほど悪い問題ではないので、「School Science and Mathematics」の読者で知らない人はやってみるのもいいかもしれませんね.

 $^{^3}$ https://onlinelibrary.wiley.com/journal/19498594 の説明を参考にしました.

⁴黒色絵の具のことらしい.

つまり彼は自身が発案者ではないと申告しており、彼自身も誰かから・どこかで見知ったことが分かります. よって 1935 年以前のこのパズルないし. 同類のパズルを考えた人がいることを分かります.

2つ目は、数学者 Albert Arnold Bennett(このときはブラウン大学所属) 5 が、雑誌『American Mathematical Monthly』に投稿したもの [28] です。American Mathematical Monthly の各号はいくつかのパートに分かれており、その 1 つに問題コーナーがあります。そこにはその名のとおり問題が投稿され、誰か解答が思いつき、その解答を投稿したならば、後の号にそれが載るという仕組みです。無限帽子パズルの先駆けとなったと考えられている問題も、このコーナーに投稿されたものだったりします。この 2 つ目のパズルもそのように投稿されたもので、以下のような内容でした。

Puzzle 1.3.5.

精神反応速度 6 の異なる n>2 の乗客を乗せた車がトンネルを通過し、そのため各乗客は無意識に自分の額にすすが付くことがある。どの乗客も以下の条件を満たします。

- (1). 他の乗客の額が汚れていると笑い出して止まらなくなってしまうこと.
- (2). 他の乗客の額はすべて見えること.
- (3). 正しく推論すること.
- (4). 推論して自分の額に汚れがあると判断したときだけ自分の額を拭くこと.
- (5). これまでの条件を他の乗客も満たすことを知っていること.

最終的にはどの乗客も自身の顔を拭くことを示せ.

さきほどの Puzzle 1.3.4 に比べれば、かなり一般的な問いになっていることが分かります. Bennett はこの問題のあとに、以下のようなコメントを書いています.

n=3 の場合は、プリンストン大学の Church 博士との対談で提案されたものです.

つまり、Church との対談によって Bennett はこのパズルを知った、もしくは思いつき、より一般的なパズルの問題に昇華させた ということになります。ちなみにこれを紹介した [30] では、この Church とは、「プリストン大学の Church と書いてあるから、 Alonzo Church のことだろうけど、明確な証拠はない」というようなコメントを添えています。 Bennett が誰とどのような対談 をしたのかはさておき、このようなコメントを書いたことからも、彼が完全なる考案者というわけではなさそうです。このパズルに対する解答は、2 年後同じ雑誌に投稿されています [29].

1935 年の Dirac 来日

1935 年にはもう 1 つパズルに関する逸話があります。それは、先の節のように論文などで紹介されたというものではなく、この年に人から聞いたという話が残っているものです。それは物理学者 Paul Adrien Maurice Dirac から、日本の物理学者の竹内 時男(参考までに彼の Wikipedia[5] を)と、大脳生理学者そして(推理)小説家であった木々 高太郎(参考までに彼の Wikipedia[26]を)に伝えられたというものです。ちなみに高太郎はたかたろうとよみ、木々 高太郎はペンネームで本名は林 髞(はやし たかし)です。

Dirac が具体的にどのようなパズルを彼らに出題したかは不明ですが、木々は1956年に『光とその影』という探偵小説の中で、そのパズルを出題し、このパズル(クイズ)は Dirac より、友である竹内と一緒に聞いたものだとコメントしています.以下がその『光とその影』に登場したパズルです([?] の 228 ページを参考にしました).引用元との細かな違いは、引用するさいに句読点をこのノートの記法にあわせてカンマとピリオドに変えたことだけです.

Puzzle 1.3.6.

ここに三人の人が居る. 課長と係長と巡査部長としてもよい. トランプが 5 枚, そのうち三枚は黒で, 二枚は赤, 私が三人の人の背中に一枚ずつ貼りつける. 三枚入り用. 二枚はかくしてしまう. そこで, まず課長さんに, 係長と巡査部長の背中をみてくれ

⁵彼については https://www.mathgenealogy.org/id.php?id=4344&fChrono=1 をメモしておきます.

⁶原文の speeds of mental reaction を訳すとこうなるのだけれど, 感度が違うということかな.

給え、そして自分の背中のトランプの色が判るかとたずねる. いいですかな. 課長は、かくした二枚を知っていればすぐ答えられるが、そうでないなら答えられない. じっくり考えて、よく考えたが判りませんと答えた. そこで今度は係長に、つまり神田さん、あんたに、他の二人の背中をみて、自分の背中のトランプの色が判りますか、と聞いた. すると係長は、課長と巡査部長の背中をじっくりみて考えたが、結局、判りませんと答えた. よしかね. さて今度は巡査部長に、他の二人のせなっかをみて下さい. キミの背中には既に二人の人に見られているが、あんたは他の二人の背中の色をみて、自分の背中のトランプの色が判りますか、と聞いた. するてえと、巡査部長はやがて眼をつむって、課長さんと係長さんがよく考えて、完全な推理の上で判らぬと仰言ったのがまちがいなければ、私にはよく判る. 私の背中の色は X 色ですと答えた. よしかな. 何色でありましたか、そしてどうして判りましたかってんですよ.

パズルの中の神田さんは、小説の登場人物の名前ですが、とくに気にしなくて大丈夫です。上でも書いたととおり、木々はこのパズルを紹介したすぐあとに小説内にて以下のようにコメントを書いています。

(読者諸君はここで本をふせて,この問題を解いて下さい.これは実際にディラックが日本に来た時に著者及著者の一人の友に与えたもので、著者は今までに知ったクイズのうち一番興味あるものと思っています.)

この「著者の一人の友」は以下の内容から分かるとおり、竹内 時男のことです.

『数学史研究』という雑誌にて 1970 年に『光と影と赤い帽子』[70] という論文が、パズル研究家である高木 茂男によって投稿されました。この論文は二部構成になっていて、第一部が「「光とその影」の波紋」、第二部が「赤い帽子の波紋」という題になっています。第一部は、『光とその影』出版後の、パズルの最初の考案者が誰かという争いをきっかけに、高木がディラック来日以後のパズルの歴史を整理したものになっています。

その争いとは以下のようなものでした. まず高木の『光とその影』出版後の 1958 年, 推理小説雑誌『宝石』(参考までに Wikipedia[19] を) の昭和 33 年 6 月号に, 「推理小説早慶戦」と題する座談会記事 [?] が載りました. この記事は慶応大学の推理小説同会と, 新しくでき早大のワセダ・ミステリ・クラブの両メンバーが, 探偵小説について語り合うという趣向で, 探偵小説で有名な高木も参加していたのだろうか, この記事の中で高木はこのパズルについて以下のように述べたらしいです.

(前略)このナゾはね. 僕が知っている限り最初にいったのはディラックというノーベル賞をとった物理学者ですが、これが戦前日本へきまして、当時生きていた⁴ 竹内時男というジャーナリズムでもちょっと名のあった物理学者ですが、この竹内がどっかへ案内したんですよ. なにかゆっくり山か何か上るようなところを歩きながら、ディラックが竹内君にこのナゾを解いてみろといって出した. ところがなかなかこれが解けない. ところが解けてしまっても非常にこれは面白いナゾなんだ. そのナゾをかけてみましょうね. 何日かかかってお解きになれば面白いだろう。(下略)

^a[5] によると, 竹内 時男は 1944 年に亡くなっている.

この記事は読者の反響を呼び、パズルの解答もいくつか寄せられましたが、その中に原寒(H.S)と名乗る人物から、次のような投書があったそうです。投書そのものの内容は不明ですが、高木はその内容を以下のように要約しています。

今月号の『宝石』で、キミはまた『光と影』の謎を言い出している。ところが君が『光と影』を創作した 1,2 年前(或いは 3 年前か)の『宝石』の新人応募作品の一篇にこの謎と殆ど同様のものがあり、(中略)それを知らないで得々としているのは、君が非常に無知で無恥に見える

仮に原寒の主張が正しいとすると、彼が見た同様のパズルは 1955 年から 1957 年の間に存在したということになります。これに対して高木は反論として、『宝石』の 1958 年の 9 月号に『光と影の謎』という題で一文を載せました [?]。その内容は 1955 年のはるかに前から、同等のパズルは存在した証拠を 2 つ挙げて、原寒の主張を否定したものです。

1つ目の証拠は、『光と影』よりもはるかに前に高木自身が同類のパズルを扱った小説を書いていることです。それは『海の見える窓』という短い小説で、『大洋』という雑誌の 1940 年の 4 月号に掲載されたようです。この事実は 1957 年の 12 月出版の『宝石』別冊第 72 号の 267 ページの、永瀬三吾のまとめた年譜から分かるそうです。

2つ目の証拠は、1943年に出版された、藤村 幸三郎が書いた『最新数学パヅルの研究』[52]です。文献によっては「数学」が「数學」になっていたり、「パヅル」が「パズル」になっていたりとはっきりしません。またこれは 1948年に再販されているらしく、いまのところインターネットで見つかるのも、その再販されたものばかりです。ただどちらにせよ原寒の主張の否定になります。この本のなかで、「赤い帽子と白い帽子」という題で、似たようなパズルが紹介されています。その中で藤村はこのパズルのことを

souji ノート

最近友人から聞いたもので、その出典は不明

と書いているらしいです。こう書いた理由を高木は説明しており、1つ目の証拠にあった『海の見える窓』出版後に、藤村は高木へ手紙を送っており、自分がこのパズルについて研究していることと伝え、このパズルはどこで知ったのかと質問してきたようです。

ちなみに似たパズルならば、[70] でも挙げられているとおり、海外でもこの時期に 2 つ発表されています.どちらも 1942 年の Maurice Kraitchik(参考までに Wikipedia[22] を)による『Mathematical recreations』[41][42](和訳は『100 万人のパズル (上)』[71])の、第 1 章「Mathematics Without Numbers」で紹介されています.これらがどんなパズルだったかは 1.3.1 節(38 ページ)を見てください.

というわけで、帽子パズルっぽいパズルは原寒が主張する年以前から存在することは分かりました。ではそれがいつからか気になりますが、この時系列で一番古い出来事は、Dirac が竹内・高木の二人にパズルを伝えたときになります。 [55] の訳者あとがきでは、それは昭和 13 年、つまり 1938 年だとされています。しかし私はこれは間違っていると考えています。 [55] は [70] を参考にしたと思われますが、 [55] の訳者が 1938 年だと考えた理由は、おそらく [70] の以下の部分だと推測しています。

この原寒の文に対する反論として、「光と影の謎」という題で木々高太郎は「宝石」の昭和 33 年 9 月号に一文を載せた、それは要するに、(1)あの は 20 年前に英国のノーベル賞受賞者ディラックが直接筆者と竹内時男(理博、物理学者)とに出題したものであるから、新人応募者が考えたものではないこと.

補足していくと、昭和 33 年とは 1958 年になります。このコメント内の「筆者」とは高木を指しています。「あの」は」部分は決して私の打ち損ねではなく、資料でこう書かれているからです。おそらく空白の部分にはパズルという単語が入ると思われます。そして [55] の訳者は昭和 33 年の 20 年前ということで、1938 年と考えたのではないでしょうか。しかしこの文章ではどの20 年前かは少し曖昧に思われます。もちろんこの部分だけではそう考えても仕方ないとは思うのですが、他の部分に対しても、この [70] はところどころ数字や文章に疑いを持ってしまう箇所が個人的にはあります。例えば、この論文の17 ページにて以下の文章があります。

さて、このパズル入りの探偵小説が発表されてから 3 年たった、「宝石」の昭和 33 年 6 月号に「推理小説早慶戦」と題する座談会記事が載った。

ここの「パズル入りの探偵小説」とは『光と影』のことだと思われますが, 他の箇所では『光と影』は 1956 年に出版されたことになっています.そして昭和 33 年とは 1958 年ですから, 年数は 2 年であるべきです.

さらに、31の「(前略)」で始まるコメントにおいて

このナゾはね. 僕が知っている限り最初にいったのはディラックというノーベル賞をとった物理学者ですが,これが戦前日本へきまして,当時生きていた竹内時男というジャーナリズムでもちょっと名のあった物理学者ですが,この竹内がどっかへ案内したんですよ. なにかゆっくり山か何か上るようなところを歩きながら,ディラックが竹内君にこのナゾを解いてみろといって出した.

において、ここでは高木・竹内二人に対して Dirac が教えたというよりは、竹内 1 人にしか伝えていないように捉えられると思います。しかし他の部分でも、『光と影』内でのコメントでも、まるで 2 人同時に Dirac から聞いたような書き方をしています。よって [70] は、よくよく読み込めば、少し疑問に思ってしまう箇所があるので、他の部分においてもある程度気を付けて読むべきだと思われます。なので私は上記の 20 年前もそのまま受け取ることはしませんでした。

もう 1 つ重大な疑問として、Dirac は 1938 年にはおそらく来日していないということです。つまりそもそも竹内とは日本では会っていない可能性が高いということです。Dirac の生涯をかなり細かく綴った『The Strangest Man -The Hidden Life of Paul Dirac,Quantum Genius-』[?],和訳は『量子の海、ディラックの深淵 天才物理学者の華々しき業績と寡黙なる生涯』[?] がありますが,この本は Dirac の生涯を描く文献としては,かなり信頼がおけるものだと思っています。なぜなら Dirac の生涯を数か月・数年ごとに分け,それを章にあてて,多くの文章をもって説明しているからです。なので彼の物理学者として充実していて,かつ彼の周りの人物から彼に対する証言を得やすかった時期においては,彼がどこか外国に滞在したというような,比較的大きなニュースは見逃していないと考えられます。

この文献では [?] の 211 ページには、Werner Karl Heisenberg(参考までに Wikipedia [23])と 2 人で、日本へ出発した話が始ま

ります。彼の来日はこれが 1 度目で、日本での滞在は 1929 年 9 月上旬からです。これは [?] の 211 ページにて 8 月中旬にサンフランシスコ港から 2 週間かけて日本にたどり着いたことからも、『長岡半太郎の新資料について』 [?] の 10 ページにおいて、「ハイゼンベルク・ディラック両氏最近物理学講演会日程」という資料に、彼の最終公演の日にちが 1929 年の 9 月 7 日であったことからも分かります。続く 2 度目の来日は [?] の 340 ページの以下の部分から 1935 年だったことが分かります。

一九三五年六月三日, ディラックはオッペンハイマーに別れを告げ, 大日本帝国海軍艦船に乗り込んだ.

彼は日本, 中国, に寄り道しながら, ソビエト連邦を目指していたようで, 出発から 6 週間後にはモスクワ駅に到着したらしいです. なのでこの期間の間に, Dirac の 2 度目の来日があったということになります. 『仁科記念財団案内』[?] という資料の「ディラックの逸話(仁科先生の帝大新聞への寄稿)」部分には, ディラックの 2 度目の来日についての新聞記事の切り抜きが提示されています. そして来日予定は 6 月 19 日であることも書いてあり, 上記の本とも矛盾しないと思います.

そして 1938 年までに, それ以降 Dirac が短期間滞在目的でも日本へ出発したような記述は [?] にはありませんし, また 3 度目の来日があった事実も見つけられていません.

よって戦前である 1938 年までの Dirac の来日は、まず 1929 年、そして 1935 年の 2 回のみです。 つまり Dirac が日本にて誰かにパズルのことを伝えられた機会は、この 2 回のみ、また、竹内の Wikipedia[5] によれば、彼は 1928 年から 1930 年においては渡欧していたらしいので、必然的に Dirac と竹内が日本で会えたのは 1935 年ということになります。 ただ 1935 年に竹内が日本にいたという証拠もまだ見つけられていません。 ただもしそんな資料が見つかれば、高木の発言はすべて嘘になってしまいますので、そこまでは疑うことは止めておきます。

よって私は各資料を比較することで、Dirac は 1935 年に来日したさいに登山ないしハイキングに参加し、そのさい竹内にパズルを教える。そのあとに登山には参加していなかった高木に、竹内から伝えたのではないかと考えています。これで 1938 年ということ以外は、これまでの資料とも一致する推測になっていると思います。

この推察の証拠をいくつか挙げます。まず私の疑問としては、この調査をする前の Dirac の印象は寡黙で、物理学以外にはまり 興味を持っていない人物というものでした。それはあながち間違っていなくて、彼についての周囲の人の評判も似たようなもの です。寡黙であるということを表すエピソードとしては、[?] の 121 ページにケンブリッジ大学での彼の同僚が作った「ディラック」という単位です。これは 1 時間あたり 1 語という単位で、つまりそれくらい彼は話さなかった、もしくは無駄な会話はしな かったという評判だったと思われます。そんな彼が異国に来たからといって、登山の最中にパズルを他人に話すということをし そうでしょうか。また、登山・パズルという物理学以外のものに彼は興味は持っていたのでしょうか。

まず彼は散歩やハイキング・登山といったものは好きだったようです. [?] の 210 ページにはそれを示す以下のような箇所があります.

(前略) 六月, 彼は趣味と実益を兼ねることにして, アイオワとミシガンで量子力学に関する一連の講演を行ったのと並行して, グランド・キャニオンの高低差の激しい地勢を歩きまわったり, ヨセミテ国立公園やカナディアン・ロッキーでハイキングしたりした. 北アメリカの壮大な景色に始めて触れたわけだが, ディラックはその後数十年のあいだに数回北アメリカを訪問する, その都度, そんな壮大な風景のなかを徒歩で探るのだった.

そして [?] の 212 ページによると、当時の学者が日本に来たさいのおもてなしのお決まりのコースがあって、まず東京に滞在して、続いて京都に訪れるというものだったそうです。なので、その旅程の中で、どこかでハイキングを行っても不思議ではありません。事実、『生命情報科学の源流『第 3 回 1937 年:仁科芳雄とニールス・ボーア』』 [?] という WEB 記事によると、ディラックの 1 度目の来日では、彼を日光に案内したことが書いてありますし、[?] の 13 ページには以下のような記述があります。

この物理学界の大立て者である Dirac は、昨年来米国プリンストン大学に招璃せられて居たのであるが、ケンプリッヂ、への帰途来る六月十九日の浅間丸でやって来る。来朝はこれで二度目で、昭和四年の九月に Heisenberg と一緒に来て、わが理論物理学界を賑わした。その影響か文は偶然かどうか解らないが、その頃量子論を始めた人々は我国の新しい理論の方で最も活躍して居られる様に思う。前に来られた時もやはり三週間の滞在ではあったが、伊勢神宮詣で迄やって日本の風物に余程興味を持って居た様であった。比叡山に登った時、「富士山が見えるか」という聞から、「もし中間に遮るものが無いとした時に、富士を比叡の頂から見て、水平線に隠れるか隠れぬか」で、Dirac と Heisenberg とが議論したのもツィ昨日の様な気がする。(下略)

つまり彼は登山中においては上記のように饒舌に議論している様子から, 2 度目の来日のさいにも同様の滞在行程だったならば, 登山中にパズルについて説明したとしても不思議ではありません. そして彼がパズルに興味を持っていたかどうかですが、これには直接的な証拠はありません. しかし彼は囲碁が非常に好きだったというエピソードがあります.

1 つは 1980 年の東京大学教養学部で催された第 26 回定例仁科記念講演会における, 戸田 盛和の講演資料『自然現象と非線形数理』[?] の, 「仁科先生と私」という朝永 振一郎と藤岡 由夫との対談記事です. この中で以下のような部分があります.

(前略)

- 藤岡 それで碁をネ, やったしネ. それからディラックは碁を自分で研究して, 右のはじと左のはじとつながる碁を発明 した.
- 朝永 ところがネ, 実は今日, 学士院で水島三一郎さんとディラックの碁の話がでてネ, かれはどこかから聞いてきたらしいんですけど, ディラックが発明したんじゃないんだって.
- 藤岡 ああそう.
- 朝永 マックス・ニューマンとかいう数学者が、考えたんだって、そう言ってましたヨ.
- 藤岡 そうですか.
- 朝永 だけど, ひろめたのはおそらくディラックでしょう. 日本までやってきたんだから.
- 藤岡 それからネ, ディラックが, 二度目に日本に来るという電報があったけど, ベックと二人で来るより前に一人で来たのかしら. ディラックとベックと一緒だったかしら.
- 朝永 いや, あれは偶然一しょになった. だから, ディラック一人で来たんでしょ. あのときは碁ばかり打ってた.
- 藤岡 ええ, 仁科さんは宇宙線の話をしようと. 予告は cosmic rays という演題なんだ. ところが宇宙線の話をいくらして見えても, フンフンと言っているだけで, ちっとも興味を示さないで, 碁ばかりやっていた.
- 朝永 そう.
- 藤岡 それが 1935 年だったですね. で、ベックとはこっちで一しょになった.
- 朝永 そう、そのときぼくおぼえているのは、ディラックは、帝国ホテルに泊っていたんですが、仁科先生がネ、ディラックがあそこに泊っている、一緒にめしでもたべに行くから一緒に来ないかって言う。それで行ったんですが、そしてロビーでしばらく話をしていたら、仁科さんに碁をうつかってディラックがきいたんです。仁科さんがキミはどうだいっていうけど、ぼくは全然だめですってことわるとディラックがやろうやろうって言うんで仁科さん断れない。そしてディラックはボーイ呼んで碁盤持って来いって言っちゃって、ボーイが持って来た。そしてサァやろうっていうわけで、仁科さんもサスガ弱ったらしいんだけどね、そいじゃやる、とかなんとか言って、仁科先生が先手黒を持って真ん中へポイと置いた。

藤岡 ハハハ

- 朝永 碁盤の真ん中へ置いた. ディラックがどこかへ置くとそれと対称のところに置く. そんなことやって, そして仁科さんニヤニヤしてる.
- 藤岡 そういう手があるんだネ.
- 朝永 あるんだ. 太閤さんがやったとかいう.
- 藤岡 一つ先に打っておけば、きっと勝つという.
- 朝永 それでディラックもこれじゃダメだと思ったのか、しまいまでやったんじゃない、途中でやめたんだと思いますがネ.
- 藤岡 仁科さん、そんなこと、本当に太閤の碁の話を知っててやったんだな.
- 朝永 ディラックは、理研へやってきてミナガワ(皆川理氏)とか杉浦(義勝)さんとかああいいう連中、それから西川 (公治) 先生も碁のお相手したらしいんだ、それで例のあの端のないのをやり、はじめ日本人はみな勝手がちがうん で負けてたらしいけど、そのうち勝ちだしたらいいですね。(下略)

彼が囲碁が好きだったというエピソードはもう 1 つあり, 物理学者田崎 晴明の彼の個人 HP の日記にあります.そのページの

3/6/2004(土) 部分において、以下のような記述があります.

ただ,この話は、それほど華々しいものではなく、

地球物理学者(だっけ?)の竹内均氏が Oxford に滞在したとき Dirac に碁を教えろと言われて教えた. 何度対戦しても竹内氏が勝つのだが、ある日、Dirac は周期境界の碁盤でやろうと提案し、それ以降は、ずっと Dirac が勝った.

ということだそうです. これだと, 竹内氏の碁の腕がどれほどのものか, わからないので, どの程度 Dirac がすごいのかは わからない. (いや、Dirac はすごいんですけどね.) 実際, 囲碁に詳しい K さんからは,

初手を黒がど真ん中に打ち、それに白が絡んでいく、天元碁というのがある。この場合、しばらくは境界の影響はないので、周期境界碁と実質的には同じ。これは例外的な打ち方ではあるが、とうぜん、ある程度の定石などはある。すぐ攻め合いになってしまい、「生き死に」ついての経験と知識がものを言うはずだ。いくら頭のよい人でも、周期境界にしただけで、経験者を負かすというのはきわめて考えにくい。

という, ジャンプを毎週買いつづけ「ヒカルの碁」を読むことでのみ仕入れた知識にもとづく, ご意見をいただきました. もし, それが正しいとすると, 竹内氏の碁の腕前はそれほどではなかった, ということなのでしょうか? それとも, Dirac が ゲームの天才でもあったのか?

この話は1つ上の逸話とあわせると、その内容からもかなりの信ぴょう性を持っています。しかし1つだけ疑問があります。竹内均が Oxford にて Dirac に囲碁を教えたという部分です。1つ上の対談記事を参考にすると、Dirac は1935年の来日時点で碁を知っていたことになります。なので、竹内均が Dirac に碁を教えたのはそれ以前ということになります。ただ彼の Wikipedia[24]によると、彼は1920年生まれです。なので1935年時点でも15歳です。そんな彼がそれ以前に Oxford に行き、Dirac に会って碁を教えたというのはかなり不思議に思えます。

上記の話はパズルを好んでいなかったという証拠にはならないでしょうし, またそれらのエピソードから, 彼は囲碁を誰かと楽しむことも好きだったことも分かっていますから, 彼がパズルなどを人に披露して, それについて対話することを行ったとしても不思議ではないような気がします.

もう一度まとめると, Dirac は 1935 年に来日したさいに登山ないしハイキングに参加し, そのさい竹内にパズルを教える. そのあとに登山には参加していなかった高木に, 竹内から伝えたのではないかと, 私は考えています.

最後の疑問は, 登山中に Dirac が竹内に教えたパズルは, Dirac が考えたものなのかどうかです. [70] によると, 高木は以下のようなコメントを, 何らかの文献(多分上記の「光と影の謎」のことだろうか)の中でしていたようです.

ディラックがつくったものかどうかたしかめてはいない. 然し, それなら英国へ問合せの手紙を出すとよかったが, それはしてないし, 先年英国へ行った時は, 謎のことなど忘れていたのでさがしてみなかった.

ここで彼が問い合わせていれば、パズルの歴史についての調査も前進していたかもしれません.

さらに [70] では上記の藤村 幸三郎のコメントも引用しています.

年代的に正確なところは判明しないので、私の憶測にすぎないが、これはどうもディラックの創作ではないかと思う.

そして [70] の著者の高木 茂男も、この論文のなかでディラック創作説を支持していました.

ただ前節の 2 つのパズルの登場があったことを考えると、仮に Dirac が考えたものだったにせよ、彼が最初だったか可能性はかなり低いです。Werner E. Buker の『A puzzler for the thinkers』 [31] の出版は 1935 年の 2 月で、Dirac が来日した 6 月よりも前ですし、そして [31] の中で、Buker は自身が思いついたのではなく伝聞だったと書いてあるからです.

そのあとのパズル史概観

前の2つの節で分かったことは、1935年に3つの、パズルが世間に現れた話があったということです。しかし、そのどれもそれ以前にパズルを考えていた人、もしくはパズルを載せた出版物があった可能性を示唆しています。今時点では、そんな文献やエピソードは見つけられていません。

souji / - ト

次の節から 1935 年以降の帽子パズルや, それっぽいパズルに関する情報を年代順にまとめていくことにします。ただこの節では、2つのテーマがあって、1つは、1935 年以降の論文でない文献の中で、とくにおさえておくべきと私が思うものを 4つ挙げるものです。これで帽子パズルの歴史を概観しようと思います。2つ目は、帽子パズルがいつから、色付き帽子を被った囚人が主人公になったのかを考察するものです。

では1つ目のテーマとした、おさえておくべき文献を挙げていくことにします.

1つ目はパズル作成者としても大変有名な数学者 Martin Gardner の、1961 年の『The 2nd Scientific American Book of Mathematical Puzzles & Diversions』 [35] です。これに Gardner によって加筆されたものとして『Origami, Eleusis, and the Soma Cube Martin Gardner's Mathematical Diversions (The New Martin Gardner Mathematical Library, Series Number 2)』 [36] が,そして [36] を岩沢 宏和と上原 隆平の 2 人が和訳したものとして『ガードナーの数学娯楽(完全版 マーティン・ガードナー数学ゲーム全集 2)』 [51] があります。これを挙げる理由として,多くの帽子パズル研究者が帽子パズルとは何かを紹介するさいに,この 1961 年の本を引用するからです。もちろん帽子パズルの歴史の中では,これまで説明したとおりかなり後発に位置するものですが,彼のパズル作家として知名度もあって,この本をきっかけにさらにパズルが広まったのではないかと推測できます. Gardner がパズル作家として有名なことは,例えば Wikipedia『List of Martin Gardner Mathematical Games columns』 [21] に書いてある,彼が 1957 年 1 月から 1980 年 12 月の 24 年間にわたって,計 300 近いパズルに関するコラムを執筆していることからも分かります.ここでどのように帽子パズルが紹介されていたかは,1.3.1 節(39 ページ)にて後述します.ちなみに泥んこの子供たちのパズルや帽子パズルのようなパズルは,Induction Puzzle と総称することもあるらしく,その Wikipedia[9] では帽子パズルは 1961 年のこの本にさかのぼると書いてありますが,ここまで書いたり説明してきたことからも,帽子パズルはさらに昔までさかのぼることができます.

2つ目は 2001 年 4 月 10 日の New York Times 誌に掲載された、『Why Mathematicians Now Care About Their Hat Color』 [46] という記事です。これを書いたのは Sara Robinson という方ですが、この人についての情報はまだ得られていません。この記事の数年前に帽子パズルを扱った論文が執筆されており、それについて着目して、関係者や学者にインタビューした記事です。これによって、帽子パズルは再度ブームになったと思われます。また帽子パズルが単なるパズルではなく、学者が研究対象にするようなものであることも、一般の人たちに広まったはずです。その意味でも、この記事は帽子パズルの普及にとって、大きな影響があったと思っています。これがどのような内容の記事だったかは、1.3.1 節(39 ページ)にて後述します。

3つ目は 2013 年 10 月 28 日に発売された『The Mathematics of Coordinated Inference -A Study of Generalized Hat Problems』 [39] です。数理論理学・集合論研究者の 2 人,Christopher S. Hardin と Alan D. Taylor によって書かれた数学書です。なのでこれまで挙げた文献のように一般向けというわけではありません。しかし,このノート執筆時点で(そしておそらくしばらく先まで)唯一の,帽子パズルだけをテーマに書かれた数学書です。また学術書としても唯一だと思われます。この本の登場で,帽子パズルが研究テーマとして意義のあるものだということが世間にも伝わるはずです。またこれ以後の帽子パズルがテーマの論文では大抵これが引用されています。またこの本によって無限化した帽子パズルという研究テーマが存在することが,とくに数学者には広まるきっかけになったのはないかと思います。この本は私の研究にとっても重要なもので,かつ内容もかなり豊富なので,そのためのパートを作ってまとめていくことにしています。そのパートは第 Π 部(59 ページ)です。ちなみに,現在帽子パズルを扱う学術書として唯一であることを利用して,私や指導教官である先生はこの本を「帽子パズル本」と呼んでいます。この本との出会いや帽子パズルが私の研究テーマになったきっかけについては,1.3.1 節(39 ページ)にて書いてあります。

4つ目は1つ上と同じ年の2013年の11月30日に出版された『チューリングと超パズル:解ける問題と解けない問題』[49]です。これは数理論理学者である田中一之によって書かれたもので、帽子パズル以外にも様々なパズルが取り上げられています。日本語で書かれた帽子パズルを紹介しているものは、これ以前にもたくさんありましたが、この本が重要な点は、この本が日本語で書かれた、囚人の人数を無限人に拡張した結果を紹介した最初の本であるということです。この本によって、囚人と帽子のパズルは無限に拡張できること、それが単なる禅問答で終わるのではなく、数学を用いて厳密に研究できることを日本の人たちに知らせる機会を与えたと思います。現在調査中ではありますが、無限な帽子パズルを紹介した一般向けの本として、日本を除いても最初だった可能性があります。この本では有限・無限含めて多くの帽子パズルが紹介されているので、それがどのようなものであったかは、1.3.1節(39 ページ)にて書くことにします。

souji / − ト

以上までで、帽子パズルの歴史の中で私が重要だと思う文献を挙げました。もちろん学術的な論文として重要なものは多々ありますが、それについては 1.3.2 節(39 ページ)に書くことにします。

次のテーマは帽子パズルのようなパズルにて、プレイヤーが色付き帽子を被った囚人になったのは、いつが初めてなのかという 疑問に対する考察です.

まずプレイヤーが囚人になったパズルはいつ登場したかというと、1942年の Maurice Kraitchik(参考までに Wikipedia[22]を)による『Mathematical recreations』[41][42](和訳は『100万人のパズル(上)』[71])の、第 1 章「Mathematics Without Numbers」で紹介されたパズルが、いま現在見つかっているもので一番古いものです。具体的にどんなパズルだったかは、Puzzle 1.3.8(38 ページ)を見てください。このパズルは確かにプレイヤーは囚人でしたが、色付き帽子を被せるのではなく、色付きの円盤を背中に貼り付けるというものでした。ちなみにこのパズルは、囚人たちがなぜ逮捕されたのかのストーリーまで説明されていたりします。

続いてプレイヤーに被せるものが色付きの帽子になったパズルがいつ登場したのかというと, 1943 年に出版された, 藤村 幸三郎が書いた『最新数学パヅルの研究』[52] に登場した, 「赤い帽子と白い帽子」として紹介されたパズルが, いま現在見つかっているもので一番古いものです. ただ現在この文献は入手できていないのですが, [70] ではプレイヤーに色付きの帽子を被せたと書かれています.

1936年から1960年

1.3.1 節(29 ページ)と 1.3.1 節(30 ページ)に書いた内容とも被るところもありますが, 1936 年以降に現れた帽子パズルっぽ いものたちを紹介している文献を年代順にまとめていきます.

まずは 1940 年の木々 高太郎によって書かれた短編探偵小説『海の見える窓』です。これは Dirac ないし竹内 時男から聞いたパズルを木々がこの小説に登場させたというものです。この事実は [70] に書かれています。しかし木々の Wikipedia[26] によると、このような短編を書いた事実は見当たりません。ただ Wikipedia には短編集の出版もいくつか明記されているため、そのようなものに含まれているのかもしれません。またこの短編は [70] によると、『大洋』という雑誌の昭和 15 年 4 月号にて発表されたということであり、どのような内容か知るのは難しくとも存在したのは間違いなさそうです。

続いては、1942年の Maurice Kraitchik(参考までに Wikipedia[22] を)が書いた『Mathematical recreations』[41][42](和訳は『100万人のパズル(上)』[71])です。その第1章「Mathematics Without Numbers」では帽子パズルのようなパズルが2つ紹介されています。1つ目はその章の3番目のパズル「the problem of the three philosophers」、いわゆる「3人の哲学者の問題」という呼ばれているパズルです。

Puzzle 1.3.7.

ギリシャの3人の哲学者は、論争に疲れ、夏の暑さに耐えかねて、アカデミーの木の下で少し昼寝をしていた。ところが、ある悪戯者が彼らの顔に黒いペンキを塗ってしまった。やがて彼らは一斉に目を覚まし、それぞれ相手を笑い始めた。突然、一人が自分の顔にペンキが塗られていることに気づき、笑うのをやめました。彼はなぜ笑うのをやめたのでしょうか. ■

2つ目は、上のパズルに続く無題のパズル(和訳版だと「白は自由の色」と名付けられています)で、以下のような内容です.

Puzzle 1.3.8.

革命に失敗した 3 人が国境を越えて脱出し、ある小さな町の留置場に収容された。保安官は囚人たちに同情し、彼らを自由にする方法を探した。ある日、保安官は白い円盤を 3 枚、黒い円盤を 2 枚持って刑務所に入り、囚人たちに言った。「お前たちの背中に、この円盤を一枚ずつ貼ろう。お前たちは仲間の円盤を見ることができるが、自分の円盤は誰も見ることができない。白い円盤を貼られた者が、自分の円盤が白であることを正しく当てることができれば、彼は自由を得ることができる。そうでなければ、その者は無期限に拘留される。」こう言って、彼はそれぞれの背中に白い円盤を貼り付け、彼らを監視係の部下に預けた。3 人の囚人 A,B,C は、それぞれ自分の円盤が白いかどうかをどのように推論すれば言い当てることができるだろうか?

つまりこの本では泥んこの子供たちのパズルと帽子パズルの2つが同時に収録されていたことになります.

souji ノート 39

1961年から 1999年

2000年から現在まで

1.3.2 数学的対象としての帽子パズルの歴史

1.4 帽子パズルの形式化

では帽子パズルを数学的対象にするため、帽子パズルに登場する用語たちを、数学概念を使って定義していきます.

しかしいきなり全てのパズルを対象にしてしまうと分かりにくくなりそうなので,一番シンプルな Hardin-Taylor の帽子パズルを形式化して, Hardin-Taylor の帽子パズルになかった要素を続けて形式化していくことにします.

まず, 1.2.1 節 (12ページ) でも紹介したとおり, 帽子パズルの要素とは以下のものでした.

囚人たちが協力する
×

囚人数 色の数

帽子の見分け方

帽子に付く色の個数

帽子の見え方

帽子についての情報

発言方法

色以外の発言

発言回数

勝利条件

そして再掲しますが、Hardin-Taylor の帽子パズルとは以下のようなものでした.

· Puzzle ??の再掲 -

看守があるゲームをするために 2 人の囚人を同じ部屋に入れ、帽子を 1 人に 1 つずつ被せます.その帽子は黒白どちらかの色で塗られています.囚人 2 人はそれぞれ自分が被っている帽子の色は分かりませんが、もう 1 人の囚人の帽子の色は見えています.また部屋に入ってからは互いに一切のコミュニケーションが取れません.この状態で帽子の色のどちらかのみを、つまり「黒」か「白」のみを 2 人同時に発言させ、その発言とその発言者が被っている帽子の色が一致していれば正解となり、そんな正解者が 1 人でもいれば囚人側の勝利として 2 人とも釈放されます.もし 2 人とも不正解ならば囚人側の敗北として 2 人とも処刑されます.当たり前ですが看守がどのように帽子を被せるかは、囚人たちは入室するまで知りません.このゲームのルールや勝利条件については、部屋に入る前に囚人たちに伝えられ、ゲーム開始までに 2 人で戦略を相談することが可能です.このとき入室後にどのように帽子を被せられても、常に囚人側が勝利する戦略は存在するでしょうか?

このパズルがシンプルだと私が思う理由は、帽子に付く色の個数は帽子 1 つにつき 1 つであり、帽子についての情報はなく、色以外の発言は不可能で、発言回数も全員 1 回のみという点です。つまり特別な定義が他のパズルに比べて一番少ない点にあります。またこのパズルは囚人たちが協力するタイプですが、囚人たちが協力しないタイプのパズルを研究するさい、協力するタイプとは研究目的も変わることがあり、それによってその形式化も大きく異なります。協力しないタイプのパズルを研究するうえで、どのように形式化するのかについては 1.4 節(45 ページ)で書いてみることにします。

Hardin-Taylor の帽子パズルの形式化

では Hardin-Taylor の帽子パズルのようなパズルを形式化していきます.ここでは『The mathematics of Coordinated Inference』 [39] の 2 ページの形式化をベースにして個人的な考えから少し手を加えていきます.

まず囚人たち、帽子に付ける色たちの範囲を定めるために集合を使います.

Definition 1.4.1 (囚人と色の集合).

集合 A,K と書いたとき, A を囚人集合といい, A の要素を囚人(prisoner)または agent とよぶ. K を色集合といい, K の要素を色(color)とよぶ.

agent という呼び方は [39] にあったものです。囚人の集合ならば A ではなく P とすべきだと思いますが,[39] の意図としては P はのちに predictor という重要な概念に使用するために,P という記号が先に予約されたのではと思います。同様に色の集合ならば K ではなく C とすべきでしょうが,これも同じテキストではのちに coloring の集合という概念のために使用するからだと思います.しかし,例えば素直に囚人集合に P,色集合に C を使っている文献もあります.例えば [33] などです.

補足すると色集合とは、囚人に被せる帽子に付く色の候補の集合というべきかもしれません.

Puzzle ??の場合は、囚人が二人なので、囚人 2 人を a,b で表現すると $A=\{a,b\}$ となります。帽子には白黒の色がつくので、 $K=\{$ 白,黒 $\}$ となります.

ゲームに参加する囚人の人数,使用する帽子の色の数は,それぞれ A と K の濃度で表現できます.ゲームに参加する囚人が 1 人のものは考える意義があまりありません.なぜならとくに追加要素などがなければ,その囚人は運でしか勝敗が決まらないからです.同様にどれだけたくさん囚人がゲームに参加しても,帽子につく色が 1 つだけなら(その色を答えるだけでいいので)ゲームが成立しません.なので,とくに断らなくともいつでも A, K は一元集合でないとしておきます. 同じことですが,いつでも A, K の濃度は 2 以上だとしておきます.

ゲームにおいて部屋に入ったあとに、全囚人に色付きの帽子を 1 つずつ被せますが、この操作は A の各要素に対して K の中から 1 つずつ選ぶ操作に等しいです。これは A から K への写像を 1 つ与えることと同じことです。すなわち、各帽子の被せ方 1 つ 1 つは、それぞれ何らかの写像 $f:A\to K$ で表現できます。それに対して呼び名を与えることにします。

Definition 1.4.2 (coloring).

A,K に対して写像 $f:A \to K$ を coloring とよぶ. あるゲームにおいて、囚人たちが被せられる可能性のある帽子の被せ方、つまり coloring の集合を C で表す.

再度 Puzzle ??を例に出します。囚人の集合を $A=\{a,b\}$ と、色の集合は白と黒の集合なので $K=\{W,B\}$ とおきます。このパズルでは全ての帽子の被せ方があり得るので、A から K への写像全ての集合が C になります。集合 X,Y に対して X から Y への写像全ての集合 $\{f\mid f\colon X\to Y\}$ を XY で表すことがあります。なので Puzzle ??の場合は、 $C=^AK$ です。一般的にどんな帽子パズルでも $C\subseteq^AK$ となりますが,Hardin と Taylor の帽子パズルではいつでも $C=^AK$ です。Puzzle ??における coloring は 4 種類あります。その 4 種類の coloring を f_1,f_2,f_3,f_4 とおき,それぞれの coloring の対応規則を以下の表に定めます。

Table 1.3: Puzzle ??における coloring の一覧

たとえば f_1 は a,b 二人とも黒色を被せたものになります.

各囚人がどのように他の囚人が見えているかを表現するためには, 有向グラフという概念が便利です.

Definition 1.4.3 (視野グラフ).

囚人集合 A に対して、A 上の有向グラフ V がループを持たないとき、V を(A 上の)**視野グラフ**(visibility graph)とよぶ。 $a,b \in A$ と A 上のなんらかの視野グラフに対して、

- V において a から b への辺が存在するとき, a は b の帽子が見えている, もしくは単に a は b が見えているといい, $a\overrightarrow{V}b$ と表す.
- V において a が見えている囚人全体の集合を V(a) で表す. つまり $V(a) = \{b \in A : a\overrightarrow{V}b\}$ であり,この V(a) を囚人 a の視野と呼ぶ.

[39] では, $a\overrightarrow{V}b$ ではなく単に $a\to b$ や aVb などと書いていたりしますが, このノートでは, どの視野グラフで, どちらが見えているのかが分かりやすいと思ったので. 私が考えた $a\overrightarrow{V}b$ で統一します.

あるパズルにおいて囚人たちがどのように他の囚人を見えているかを定めるとは、その囚人集合上の視野グラフを 1 つ与えることに対応します。V を A 上の二項関係と捉えれば、ループを持たないとは二項関係 V が非反射的、つまり以下を満たすと表現できます。

$$\forall a \in A(\langle a, a \rangle \notin V).$$

なぜ視野グラフがいつでもループが存在しないと仮定するかというと、もしa な囚人 $a \in A$ がいたとすると、そんな囚人は自分自身の帽子が見えています。そんな囚人は必ず自身の色を言い当てることができるので、正解数という観点では考える意味のない存在になってしまいます。よってどのようなパズルでももつ「全ての囚人は自分自身の帽子が見えない」という設定を表現するために、どんな視野グラフもループをもたないとします。

視野グラフを導入する最大の利点として考えられるのは、帽子の見え方をグラフ理論の言葉で表現できるからだと思います.例えば Puzzle ??の帽子の見え方は「自分以外の帽子が全て見えている」と表現できます(2 人しかいないので自分以外全員といってもたった 1 人なので少し強めの主張に見えてしまいますが).見えているというのは視野グラフにおいて有向辺があるということでしたから,グラフ理論の言葉で言い換えると「その視野グラフにおける全ての頂点は他の頂点へ有向辺がある」となります.そしてあるグラフが「全ての頂点は他の頂点へ有向辺がある」を満たすとき,そんなグラフはグラフ理論では完全グラフであると呼ばれます.すなわち,Puzzle ??は「視野グラフが完全グラフであるような帽子パズルである」と表現できます.別の見方として Puzzle ??には, $a \to b \to a$ という始点と終点が同じになっている path が存在します.このような path のことを cycle といい,1 つの cycle からなるグラフのことを閉路グラフと呼ぶそうです([8] を参考にしました).なので Puzzle ??は「視野グラフが閉路グラフであるような帽子パズルである」とも表現できます.もちろん頂点数(囚人数)が 2 のときに完全グラフと閉路グラフが同じ意味になるので,Puzzle ??ではたまたまこのようになりました.

Table 1.4 において, f_1 と f_3 は関数として異なりますが, 囚人 a から見て黒が見えていることに変わりにはなく, 囚人 a は黒が見えたとしても, 自分たちの帽子の様子がどちらの coloring になっているかは判定できません. こういった状況を 1 つ上の視野の定義を借りて定義します.

<u>Definition</u> 1.4.4 (coloring の「見分けがつかない」関係).

囚人集合 $A \, \succeq a \in A$, $A \, \succeq n$ 視野グラフ V に対して, $C \, \succeq n$ 二項関係 $\equiv_a \epsilon$

$$f \equiv_{a} g \iff \forall b \in V(a) (f(b) = g(b))$$
$$\iff f \upharpoonright V(a) = g \upharpoonright V(a)$$

と定義する. 2 つの $\operatorname{coloring} f,g \in C$ に対して, $f \equiv_a g$ であるとき, f,g は a にとって**見分けがつかない**という.

| は関数の定義域の部分集合への制限を表す記号です.

Table 1.4 を参考にすると、Puzzle ??では、 $f_1 \equiv_a f_3$ 、 $f_2 \equiv_a f_4$ であり、 $f_1 \equiv_b f_2$ 、 $f_3 \equiv_b f_4$ です.この定義はこのあとのそれぞれの囚人の戦略を定義するときに役立ちます.

Example ??(??ページ))のように、全ての囚人が同時に発言する様式のことを**同時発言型**と呼びます。Example ??(??ページ)のように、囚人の集合 A がなんらかの順序関係によって整列順序付けされているとき、その順序で最小な囚人から発言していく様式のことを**順次発言型**と呼びます。例えに出しませんでしたが、ある決まった 1 人が先に発言しその次に残りの囚人が同

時に発言するような様式を 1 人先行型と呼んでいます。同時でない発言様式では各囚人は発言前に聞いた他の囚人の発言も自身の発言の参考にすることができます。発言様式は囚人数・色数・視野グラフといったこれまでの定義と絡めて形式化するのは難しいですが、戦略を定義するさいには意識することになります。

ここまでの用語を用いれば Example ??(??ページ)は 2 **人** 2 **色視野完全同時発言型パズル**, Example ??(??ページ)は 5 **人** 2 **色前方完全順次発言型パズル**と(ちょっと長いですが)一言で言いあわらすことができます. このように呼称しているのは私だけですが、個人的にはパズルの結果を体系的に分類するために便利だと考えています.

部屋に囚人が入れられ帽子を被せられているような状況だとします。ここから各囚人は見えている帽子の様子、つまり coloring から自身の色を推測して発言するわけですが、その作業は C から K への関数で表現できます。 $A,\ K,\ C,\ V$ を固定します。 $a\in A$ の戦略((guessing)strategy) G_a とは関数 $G_a:C\to K$ のことで

$$\forall f, g \in C (f \equiv_a g \rightarrow G_a(f) = G_a(g))$$

を満足するとします。囚人 $a\in A$ にとって見分けがつかない 2 つの coloring に対して,エスパーでもない限り別々の色を発言することは出来ないので満たすべき条件はそれを表現しています.この戦略の定義は同時発言型パズルの囚人や,順番がついていて 1 番最初に発言する囚人にしか当てはまりません.発言前に 1 人の発言,つまり色をヒントに使えるような囚人の戦略 G は $G:C\times K\to K$ で

$$\forall f, g \in C \ \forall k_1, k_2 \in K \big(\ (f \equiv_a g \land k_1 = k_2) \ \to \ G_a(\langle f, k_1 \rangle) = G_a(\langle g, k_2 \rangle) \ \big)$$

A, K, C, V と各囚人 $a \in A$ それぞれに戦略 G_a が固定されているとします。 $\mathbf{predictor}$ (あえて和訳するならば**発言予測**とかだろうか)とは写像 $P: C \to C$ で $\forall a \in A \big(P(f)(a) = G_a(f) \big)$ を満たすものとします。なぜこれを予測と呼ぶのかですが,各 囚人 a,b,c,\cdots の戦略 G_a,G_b,G_c,\cdots が定まっていれば $f \in C$ が一つ与えられたとき各発言 $G_a(f),G_b(f),G_c(f),\cdots$ が定まります。すると $\{\langle a,G_a(f)\rangle\mid a\in A\}$ は 1 つの coloring でもありますし,囚人たちの発言の様相という見方もできます。なのでperdictor とは「各囚人が \triangle な戦略で来て,この状況(coloring)ならば,こういう発言をするはず」という予測を形式化したものなります。このことから定義にある $\forall a \in A \big(P(f)(a) = G_a(f) \big)$ とは

$$\forall f \in C(P(f) = \{\langle a, G_a(f) \rangle \mid a \in A\})$$

とも言えます.

predictor を C から C への写像という見方ではなく、単に戦略の集合と捉えて $P=\{G_a\mid a\in A\}$ や $P=\{\langle a,G_a\rangle\mid a\in A\}$ と扱うこともあります。帽子パズルとは「 \triangle なパズルに対して \diamondsuit な predictor は存在するか?」と問われていると考えられます。この時点では説明するのは難しいですが、なにゆえ個々の戦略と、戦略の集合に対して別の用語を与えているかというと、Example ?? (??ページ) の解答となる predictor は最初に発言する囚人以外の全員が(きちんと形式化すれば)同じ戦略をとっているので個々の戦略の区別が特になく、個々の戦略 G_a に注目せず predictor で議論した方が証明が見やすくなります。しかし Example ?? (??ページ) の解答になる predictor のようにそれぞれの囚人が異なる戦略を取るならば、それぞれの戦略 G_a に注目する必要があります(しかしこの戦略も上手く形式化すれば同じように記述できたりします). predictor と戦略 G_a に注目する必要があります(しかしこの戦略も上手く形式化すれば同じように記述できたりします). predictor と戦略 G_a の、 G_b の、 G_c 、・・・ は互いに依存しています。つまり「個々の戦略が定まっているならば発言も予測出来るだろうし、発言が予測できるならば個々の戦略が特定出来る」ということです。よってこれから証明などにおいて「任意に predictor をとる」とは「各囚人の戦略を固定する」の言い換えとも思えます。視野グラフと同様に特徴的な predictor には名前が付いています。例えば example 1.1.1 で求められたようなどのように帽子を被せても必ず 1 人以上が正解するような predictor を minimal predictor と呼びます. predictor P が minimal であることは

$$\forall f \in C \exists a \in A(P(f)(a) = f(a))$$

や

$$\forall f \in C \big(|\{a \in A \mid P(f)(a) = f(a)\}| \ge 1 \big)$$

などとより具体的に書けます. 次に example 1.1.2 で求められたどのように帽子を被せても不正解者が 1 人以下になるような predictor を **up to one error predictor** と呼んでいます. その定義は同様に

$$\forall f \in C(\mid \{ a \in A \mid P(f)(a) \neq f(a) \} \mid \leq 1)$$

と具体的に記述できます.

パズルに対する共通な定義はこれで終わりです。これで十分な理由は??節(??ページ)において、各パズルの特徴、つまり違いは以下の5つであると述べたからです。

- · 囚人数
- ・色数
- ・各囚人の帽子の見え方
- · 発言方法
- ・ どのように帽子を被せた場合でも要求される正解者数, もしくは不正解者数

ここまでの用語を用いれば Example ??(??ページ)の結果は「2 人 2 色視野完全同時発言型パズルに minimal predictor が存在する」, Example ??(??ページ)の結果は「5 人 2 色前方完全順次発言型パズルに up to one error predictor が存在する」と言い換えられます。このようにパズルに関する数学的定理の基本的な形は「 \triangle なパズルに対して \diamondsuit な predictor は存在する(しない)」となります.

ここまで抽象的な定義だけだったので、最後に example 1.1.1 を題材に形式化してみます.

囚人の集合を $A = \{a, b\}$ と、色の集合は赤と白の集合なので $K = \{R, W\}$ とおきます.

4 種類の coloring を f_1, f_2, f_3, f_4 : $A \to K$ とおき, 各 coloring の対応規則を

Table 1.4:

	f_1	f_2	f_3	f_4
a	R	R	W	W
b	R	W	R	W

とします. つまり f_1 は二人とも赤色が被せられています. coloring の集合 C は $\{f_1, f_2, f_3, f_4, \}$ となります.

視野グラフ V は $V = \{\langle a,b \rangle, \langle b,a \rangle\}$ となっていて、それぞれの視野は $V(a) = \{b\}, V(b) = \{a\}$ です.すると f_1 と f_3 は a から見て両方 R なので見分けが付きません.つまり $f_1 \equiv_a f_3$ です.同様に $f_2 \equiv_a f_4, f_1 \equiv_b f_2, f_3 \equiv_b f_4$ です.

a,b がとれる戦略は 4 つずつあります。a の 4 つの戦略を G_a^1 、 G_a^2 、 G_a^3 、 G_a^4 と b の 4 つの戦略を G_b^1 、 G_b^2 、 G_b^3 、 G_b^4 とおきます。戦略を単なる関数として表現してしまうと、その戦略の意味が分かりづらいので表にして意味を付け加えました。

Table 1.5:

	f_1, f_3	f_2, f_4	戦略の意味
G_a^1	R	R	いつでも赤を宣言
G_a^2	R	W	見えた色と同じ色を宣言
G_a^3	W	R	見えた色と違う色を宣言
G_a^4	W	w	いつでも白を宣言

Table 1.6:

	f_1, f_2	f_3, f_4	戦略の意味
G_b^1	R	R	いつでも赤を宣言
G_b^2	R	W	見えた色と同じ色を宣言
G_b^3	W	R	見えた色と違う色を宣言
G_b^4	W	W	いつでも白を宣言

 $f_1 \equiv_a f_3$ なのでどの G_a も f_1, f_3 に対しては同じ色を返します.なので表でも他の戦略も同様にまとめて書いています. G_a^1 と f_1, f_3 の位置に R が書いてあるのは, f_1, f_3 に対して戦略 G_a^1 で a は R と発言することを表しています.

先の coloring の表と見比べれば、coloring f_1 の下で戦略 G_a^1 で $G_a^1(f_1)=\mathrm{R}=f_1(a)$ より a は正解しています.しかし $G_a^1(f_3)=\mathrm{R}\neq\mathrm{W}=f_3(a)$ より、 f_3 の下で G_a^1 では a は不正解です.

このとき戦略の組み合わせは $4 \times 4 = 16$ パターンあるので predictor も 16 個あります.

Table 1.7:

	G_a^1	G_a^2	G_a^3	G_a^4
G_b^1	P_1	P_2	P_3	P_4
G_b^2	P_5	P_6	P_7	P_8
G_b^3	P_9	P_{10}	P_{11}	P_{12}
G_b^4	P_{13}	P_{14}	P_{15}	P_{16}

表の見方ですが G_a^1 と G_b^1 の位置にある P_1 は囚人 a が戦略 G_a^1 を、囚人 b が G_b^1 をとるような predicotr $\{G_a^1,G_b^1\}$ であることを表しています.

最後に各 predictor がそれぞれの coloring に対してどのような発言をするか, すなわち C から C への関数と考えたときにどのような coloring を返すかを表にします.

Table 1.8:

	P_1	P_2	P_3	P_4	P_5	P_6	P_7	P_8	P_9	P_{10}	P_{11}	P_{12}	P_{13}	P_{14}	P_{15}	P_{16}
f_1	f_1	f_1	f_3	f_3	f_1	f_1	f_3	f_3	f_2	f_2	f_4	f_4	f_2	f_2	f_4	f_4
f_2	f_1	f_3	f_1	f_3	f_1	f_3	f_1	f_3	f_2	f_4	f_2	f_4	f_2	f_4	f_2	f_4
f_3	f_1	f_1	f_3	f_3	f_2	f_2	f_4	f_4	f_1	f_1	f_3	f_3	f_2	f_2	f_4	f_4
f_4	f_1	f_3	f_1	f_3	f_2	f_4	f_2	f_4	f_1	f_3	f_1	f_3	f_2	f_4	f_2	f_4

souji / − ト 45

 f_1 のとき predictor の値が f_1, f_2, f_3 のいずれかであれば一人でも正解者がいることになります. f_2 のときは f_1, f_2, f_4, f_3 のときは f_1, f_3, f_4, f_4 のときは f_2, f_3, f_4 です. するといかなる coloring でも一人以上正解者がいる, つまり minimal な predictor は P_7 , P_{10} だけです. 表 1.7 より P_7 は G_a^3 , G_b^2 , P_{10} は G_a^2 , G_b^3 という戦略を組み合わせた predictor でした. 各戦略の意味を表 1.5, 1.6 を参考にすれば, パズルの答えである「一人は見えた色と同じ色を, もう一人は見えた色と違う色を発言する」と一致 します.

Hardin-Taylor の帽子パズルにない要素の形式化

非協力的な帽子パズルの形式化

1.5 帽子パズルの限界

第2章 有限な帽子パズル

- 2.1 Hardin-Taylor の帽子パズル
- 2.1.1 Smullyan の帽子パズル

第3章 無限な帽子パズル

3.1 概略と節案内

第4章 他のパズルとの関係

第5章 論文精読と文献調査

説明文です.

5.1 100人の囚人と1個の電球 知識と推論にまつわる論理パズル

基本情報

タイトル:100人の囚人と1個の電球知識と推論にまつわる論理パズル

著者・作者:川辺 治之

年月日:2016年11月22日,出版元:日本評論社

所持?: 所持, 公式 HP または入手場所: ここ, Amazon の URL: ここ

メモ: [48] の和訳版.

タグ: Puzzle009, 文献番号: [55]

非数学的情報まとめ

この本は『One Hundred Prisoners and a Light Bulb』[48] の和訳です. 動的認識論理を応用できる, 様々な論理パズルが扱われています. 構成としては, まずいろいろなパズルが紹介され, 個々にその解答や発展問題などが続きます. 最後にこれまでのパズルを振り返りつつ, 形式化しながら動的認識論理の入門事項の説明が始まります. 単なるパズル本に見えて, 後半いきなり記号論理学が始めるのは、パズル本と思って買った人はビックリするかも.

この本の特徴はもう1つあって、どのパズルにも、その歴史がかなり詳細に調べられている点です。また和訳にあたって訳者の川辺氏がさらに帽子パズルについて調べた結果を訳者あとがきに載せています。これがあったからこそ日本にてどのようにパズルが知られていったかが調べやすくなりました。

著者の 2 人がオランダ人かどうかは分かりませんが、この本は最初オランダ語で書かれています。そのことは [48] の商品レビュー欄にも書かれています。そのタイトルは『Honderd Gevangenen en een Gloeilamp』 [47] でした。これは訳すとそのままこの本のタイトルになります。そのあと英訳されたものが『One Hundred Prisoners and a Light Bulb』 [48] であると思います。そしてそれを和訳したのがこの本であると思われます(時系列的に判断すると)。

著者や訳者についての情報をまとめておくと、Hans van Ditmarsch(ハンス・ファン・ディトマーシュ)氏は専門は多岐に渡るようで、認識論理の研究もその 1 つだと思われます。それはロレーヌ計算機科学・応用研究所において認識論理に関する研究チームを率いていることからも判断できます。彼は博士号をオランダ北部の University of Groningen(フローニンゲン大学) [14] で取得しています。エルデシュ数 [10] は 2 らしい。彼の個人 HP はこちら [?] です。

もう 1 人の著者 Barteld Kooi(バーテルド・クーイ)氏は University of Groningen にてモンティホール問題について修士論文を書いています。おそらくその中でディトマーシュ氏とも知り合ったのかもしれない。彼の個人サイト [?] には彼との出会いについては書かれていないので、はっきりしたことは分からなかったです。

訳者の川辺 治之氏は個人サイトを持っていないと思われるので、詳しいことは分からないが 1985 年に東京大学理学部数学科卒業、そして 2016 年時点では日本ユニシス株式会社上席研究員だったようです。日本ユニシス株式会社は金融系を主とするシステムインテグレータらしい([25] によると)。つまり何か学位を持っているわけでないっぽい。しかし彼の Twitter アカウント (https://twitter.com/p314159265) には、彼の出版歴へのリンクが書いてあり、かなりの量のパズルに関する本を和訳していることが分かります。

souji / − ト 54

ちなみに訳者あとがきにて、川辺氏は編集にあたってお世話になった人として、日本評論社の飯野 玲氏を挙げているが、この方は数学セミナーにて帽子パズル記事([65])を書くときに私もお世話になった.

この本では主に 1 章「連続する自然数」, 3 章「泥んこの子供たち」, 7 章「和と積」を読みました. 3 章はまさに帽子パズルと同様のパズルですし, それ以外も帽子パズルと同じ要素を持っています。各節では発展問題なども出題されますが, 1 章・7 章では帽子パズル的にアレンジされた問題も出されています。

数学的事実まとめ

得られた知見・考察

各節では、そのパズルの歴史も詳細に書かれています.

3章「泥んこの子供たち」では、このパズルの起源について書かれていますが、この部分は主に [30] を参考にしていると思われます。ただ [30] の方がさらに詳しいので、「泥んこの子供たち」パズルの起源を知るには、こちらの方がいいと思います。訳者あとがきではさらに帽子パズルの歴史について追記されていますが、この部分で川辺氏はおそらく [70] を参考にしていると思われます。この部分で得た歴史に関する知識は 1.3.1 節(27 ページ)で活かされています。

第6章 記号リスト

記号	初登場ページ	記号	初登場ページ	記号	初登場ページ
K	40	C	40	V	40
\overrightarrow{V}	40	V(a)	40	\equiv_a	41

第II部 帽子パズル本精読ノート

第III部 不完全性定理勉強会ノート

このノートはとある不完全性定理の証明を目標としたゼミ形式勉強会にて、メイン発表者が予習・発表した内容をまとめたものです.

この勉強会では不完全性定理の証明という目標に対して、数理論理学の入門書である『A Mathematical Introduction to Logic, Second Edition』[34] を、ゼミ形式で読み進めていくことにしました。このテキストは嘉田先生による和訳版『論理学への数学的手引き』[59] もあります。その他さまざまなテキストを参考しています。

ノートの見方としては、基本的には課題図書に沿って進めていますが、節をスキップしたり、また行間を埋めたり、数理論理学を学んだ立場から補足を入れたりしています。またそれに伴って、テキストにない定義や定理・補題、記法の導入をしています。例えば地の文にて「 $\bigcirc\bigcirc$ 」は明らか」とか書いてあった場合でも証明する価値があると判断した場合、 $\bigcirc\bigcirc$ 」という主張に Propositionや Corollaryのどちらかで名前を付けて証明しています。Theoremや Lemmaは元のテキストでも使われているので、私がこの言葉を使うと著者が名付けた意味が薄れてしまうので使わないようにしました。自分で証明したことに Propositionや Corollaryのどちらかを付けるかは、[68]の76ページからを参考にしています。ただ自分で用意した Propositionや Corollaryにも採番しているので、テキストにある定理の番号とはズレていることがあります。そうなるとテキストを読みながらの勉強には不便だと思い、テキストにも載っている定義・定理などは、テキストのどの定義・定理に対応してるか、そして原著(E)・和訳(K)のどのページに載っているか記載しています。このノートを参考にする方は、是非テキストを購入して見比べてもらえればと思います。また個人的な好みとして、定理の主張部分とその証明では「である調」で、それ以外では「です・ます調」で書いています。もしこのルールに当てはまらない場合を記述を見つけた場合、是非教えてください。その他ノートについてのご指摘は大歓迎します。

また基礎的な数学知識の補足は、自分用の基礎知識学習まとめノートの第 IV 部(111ページ)から引用しています.

第0章 集合についての予備知識

このテキストを用いた勉強会の最初の注意として、論理式という言葉をよく使います。これは数学においてよく現れる述語論理における記号を拝借して書いた、日本語に翻訳可能な記号列のことを指します。より形式的な定め方をすれば、2つの量化子と呼ばれる記号「 \forall 」と「 \exists 」と変数を指す記号の記号列である主部と、主部に用いた量化子以外の変数を指す記号を用いて書かれた記号列である述部からなります。数学に現れる「 \bigcirc 0でない」「 \bigcirc 0または $\times\times$ 」「 \bigcirc 0かつ \times 1「 \bigcirc 0ならば \times 1」という表現は、論理式における述部において使用されますが、それらは「 \neg 」「 \lor 1」「 \lor 1」に変換して記述します。さらに述部においてはそれまでの議論において定義された記号などが登場します。

主部と述部の区切りを明確にするために「(,)」を用いることにします。人によっては「、」を使う人もいます。例えば「 $\forall x \exists y (x+y=0)$ 」を「 $\forall x \exists y .x+y=0$ 」と書きます。さらに人によっては主部の先頭以外の量化記号の左に書いたりします。例えば「 $\forall x \exists y \forall z .x+y=z$ 」は「 $\forall x .\exists y .\forall z .x+y=z$ 」と書きます。個人的にはこれはやり過ぎに感じますし、主部と述部の近いが分かりにくくなっていると思うので私は使用しません(あと単純にノートや板書の際に目立たなさすぎるという気もします)。「(,)」は述部内において文章の結合をより明確にするためも使います。例えば P,Q,R を何らかの数学的主張とするとき「 $P \land Q \rightarrow R$ 」は「 $P \land Q \rightarrow R$ が \land で結合されたもの」と読むか、「 $P \land Q \land R$ が \rightarrow で結合されたもの」と読むかで意味は大きく異なります。どちらの意図で書いたのかを明確にするために「(,)」を用いて、「 $P \land (Q \rightarrow R)$ 」と「 $(P \land Q) \rightarrow R$ 」として書き分けることができます。

日常言語で書かれた数学的主張をわざわざ論理式に書き変えるメリットとして、その主張の理解が捗り、定義の理解の補助となったり、証明するときの目的が明確になるという点が挙げられます。よって数学では日常言語と論理式の相互翻訳する力が非常に重要になります。これについては数学をする中で、数学的な議論に慣れていく仮定で形成されていく能力かもしれませんが、それを意識的に学ぶことについて書かれたテキスト、例えば『数学は言葉』[50] もあります。このテキストでは論理式のことを数文、日常言語で書かれた主張のことを和文とよび、各々への翻訳のことをそれぞれ数文和訳、和文数訳と呼称しています。この作業について私個人はとくに名前を付けたりはしませんが、その大事さへの共感はあります。よって、この勉強会の発表でも、その内容のまとめノートであるこのノートでも論理式は活用していこうと思っています。

しかし1つ問題もあります.数学基礎論・数理論理学以外の数学では、おそらくその数学の対象として数学的主張に用いられる記号が登場することはありません.それゆえにこの分野以外の数学では論理式、もしくはここでいう論理式で用いる記号を日常言語を省略するために用いても何ら混乱を生むことはありません.しかしこの分野の対象は数学であり、もっといえば数学を記述しているその記号もその対象になります.つまり「日常言語の略記」として用いている論理式に使用する記号と、「対象としている記号列」としての論理式に使用する記号が被ってしまいます。ありえない主張ではありますが、「任意の全称量化子について~」という主張もそれ自体は許容されており、その場合、これを論理式に雑に翻訳した場合「∀∀(~)」となり、(並び順などで分かるといえば分かるんですが)混乱します。つまりその対象に論理式に用いる記号が登場する可能性が高い分野では、論理式の使用は非常に注意しなくてはなりません。私たちが略記として用いる論理式に使用する記号のことをメタ記号、対象となっている記号のことをオブジェクト記号という名付けて区別することもあり、それに合わせてメタ記号としての量化記号には○で囲む、オブジェクト記号の方はそのまま使用するという方法もありますが、それはこの勉強会に必要がでてきたタイミングで導入する可能性があります。今現在は慎重に用いればメタとオブジェクトの混乱はないだろうと思っています。

ここでは論理式に翻訳するさいに、何もかも日本語の混ざっていない文章にしなくてはいけないという制約はないことにします。 もちろん定義したあらゆる述語に対して日本語以外の文字(主にアルファベット)での略記方法を導入することも可能ですが、 それだと記法を増やすだけです。なのでなるべく定義する記号を減らしつつ、論理式を記述するために以下の述語用の記号を用意します。

Notation 0.0.1 (コロン記法).

「○○は××である」という数学的主張の略記として「○○:××」と書く.

上記の $\bigcirc\bigcirc$ には大抵変数として使用する記号が入ります.例えば「pを素数とする」という数学的主張を「p:素数」と略記し

ます.これだけだと大した略記になっていないと思われるかもしれませんが、「素数は無限に存在する」つまり「任意の素数に対してそれより大きい素数が存在する」という主張は、「 $\forall n \ (n: \texttt{素数} \to \exists p (p: \texttt{素数} \land n < p))$ 」と表現できます.

数学では「 $\forall x(x \in A \to x \in B)$ 」や「 $\exists x(x > 0 \land x - 1 = 0)$ 」という形の論理式を、「 $\forall x \in A(x \in B)$ 」や「 $\exists x > 0(x - 1 = 0)$ 」と省略することがあります。もっと抽象的に省略規則を定めます。

Notation 0.0.2 (論理式の省略).

ここではP(x) をx を用いた何らかの数学的主張, Q を何らかの数学的主張とします.

- 1. 「 $\forall x (P(x) \to Q)$ 」という形の論理式があったとき、これを「P(x) の x に \forall をつけた記号列 (Q)」と略記できる.
- 2. 「 $\exists x (P(x) \land Q)$ 」という形の論理式があったとき、これを「P(x) の x に \exists をつけた記号列 (Q)」と略記できる.

たとえば P(x) が x>0 だったとき, $\forall x(x>0\to Q)$ を $\forall x>0(Q)$ と, $\exists x(x>0\land Q)$ を $\exists x>0(Q)$ と略記できます。また P(x) が 0< x だった場合は愚直に $0<\forall x$ とせずに,P(x) を同値な言い換えを行って x が最左側に来るように,つまりすぐ上のように 0 と x を入れ替えて表現します。

ただどんな P(x) でもできるとは限らないことには注意です. P(x) が 0 < x < 1 だったときは規則通りに略記するならば $0 < \forall x < 1$ となりますが、私はなんとなくこの書き方は好みません(採用している人はいます).

この略記が向く P(x) は、x しか変数が登場しない短い数学的主張であることが多いと思います。よくあるのは < や \in などですが、先に定義したコロン記法はこのとき非常に便利なものになります。例えば先ほどの「 $\forall n \ (n: \text{素数} \to \exists p \ (p: \text{素数} \land n < p)$)」は、「 $\forall n: \text{素数} \ (\exists p: \text{素数} \ (n < p)$)」と非常に短く、分かりやすくなります。

テキストの内容に入るまでの自前の定義はここまでです. 次はテキストに書いてある内容に注目していきます.

Notation 0.0.3 (ジャーゴン(E:p1 2, K:p1 2)) .

数学用語になかで、このノートを通じて用いるものを4つ挙げる.

- 1. 定義や定理の主張の終わりを表す記号として を, 証明の終わりを表す記号として □ を用いる. 1
- 2. 「 \bigcirc ならば \times ×である」という含意を表す文章を「 $\bigcirc\bigcirc$ \Rightarrow \times \times 」と略記する. 2 逆向きの含意を表すのに \Leftarrow を使うこともあります.
 - 「 \bigcirc ○であるのは、 $\times \times$ であるとき、かつそのときに限る」を「 \bigcirc ○は $\times \times$ と同値である」と述べたり、記号 \Leftrightarrow を、「 \bigcirc \Leftrightarrow $\times \times$ 」のように使ったりする.
- 3. 「したがって」という言葉の代わりに省略記号:を、「なぜなら」という言葉の代わりに省略記号:を用いる。とくに証明中に:を用いる場合はぶら下げを使って、その理由部分を書く。 3
- 4. 関係を表す記号に斜線を重ねることでその関係の否定を表すことがある。例えば「x=y」の否定として「 $x \neq y$ 」や「 $x \in y$ 」の否定として「 $x \notin y$ 」と書く。このテキストで新たに導入する記号,例えば \models に対しても同様に $\not\models$ のようにして,このルールを適用する.

テキストでは「 \Rightarrow 」と「 \Leftrightarrow 」の2つの日常言語文の省略用記号の使い方も紹介しています。しかしこれらは「 \to 」や「 \leftrightarrow 」という記号を数学的対象として証明中に扱う、これからの議論においては利用方法次第では混乱を招くと考えました。私なりのこのノートでの利用方法については Notation 0.0.16(66 ページ)にて紹介します。

Definition 0.0.4 (集合 (E:p1 2, K:p2)).

ものの集まりのことを set (集合) という.

集合という集まりに属する「もの」のことをその集合の member (要素) または element (元) と呼ぶ. この「もの」のこと

¹原書でも和訳でも ⊣となっていますが, 私が普段使わないので □ にさせてもらうことにしました.

 $^{^2}$ 「 $\bigcirc\bigcirc\bigcirc$ \Rightarrow \times \times 」のような形の命題があったとき、 $\bigcirc\bigcirc\bigcirc$ の部分をこの命題の前件、 \times \times \times \times の部分をこの命題の後件と読んだりします.原著でも和訳でも「... ならば... である」と前件も貢献も「...」で表現されていますが,細かいことをいうと,これだと前件も後件も同じ主張が入るのかなと誘導しそうだと思い,自分では $\bigcirc\bigcirc$ と \times \times を使ってみました.

 $^{^3}$.. は普段から使わないのでこのノートでも使わないと思います.それとは別に.. は普段から積極的に使っているので,ここに載せました.また.. を使ったときにどこからどこまでがその理由であるか,理由が長ければ長いほど分かりにくくなるので,ぶら下げを使うことにしています.これの利点は証明を読む場合にその理由を読む必要がなければ,ぶら下げ部分全体を目で飛ばしてしまえばいいからです.これと同じで証明中の場合分けや,同値証明を含意方向別に見やすくするため,つまり必要条件確認と十分条件確認を分けて見やすくするため。

をオブジェクトとも呼んだりする. 4 オブジェクト x,y が同一のものであるとき, x=y と表す. もの t が集合 A の要素であることを $t \in A$ で表す.

集合 A, B に対して

どのオブジェクトtについても, $t \in A$ であれば $t \in B$ であり, かつ $t \in B$ であれば $t \in A$ である

(論理式で書けばたとえば $\forall t (t \in A \rightarrow t \in B \land t \in B \rightarrow t \in A)$ や、 $\forall t (t \in A \Leftrightarrow t \in B)$ となる) をみたすとき、集合 A, B は等しいと言い、A = B で表す.

ここでいうオブジェクトとは集合として集めるべき価値のあるもの, すなわち数学的対象ともいうべきものだと思えます. 日常言語的に用いる「もの」とオブジェクトを指す「もの」の区別を付けるために, オブジェクトを指す「もの」は以降「モノ」と書いたりもします.

Definition 0.0.5 (E:p2, K:p2).

モノtと集合Aに対して、その要素がtかAに属する要素のみであるような集合をA:tで表す.

のちに定義する和集合記号 \cup を用いて定義しなおせば, $A; t \stackrel{\mathrm{def}}{=} A \cup \{t\}$ となる. 「 $\stackrel{\mathrm{def}}{=}$ 」という表記に関してはすぐ下の Notation を参照のこと. 5

Notation 0.0.6 (定義するための記号).

モノ(数学的対象)を定義するさいに「 $\stackrel{\text{def}}{=}$ 」、 6 (数学的な)述語を定義するさいに「 $\stackrel{\text{def}}{\Longleftrightarrow}$ 」を用いる. 使い方としてはこれらに記号の左側に変数などを利用した新たな述語を記述し、右側に日常言語で書かれたそれらの定義を書く. ここまでの定義を使用例を出すと

- $A;t \stackrel{\text{def}}{=}$ その要素が t か A に属する要素のみであるような集合(Definition 0.0.5)
- $A = B \iff \texttt{Eontium}$ Eontium $\texttt{$

Proposition 0.0.7.

モノ t と集合 A に対して, $t \in A \Leftrightarrow A; t = A$.

 $t \in A \Rightarrow A; t = A$ の証明

 $t \in A$ とすると, t はすでに A の要素であるため, A; t のどの要素も A の要素であり t も含めてそれ以外の要素が含まれることがない. つまり A: t = A.

 $A: t = A \Rightarrow t \in A$ の証明

A; t = A とすると、集合 A; t のどの要素も A の要素であるから、A; t に属する t もまた A の要素でなくてはならない. つまり $t \in A$.

Definition 0.0.8 (空集合 (E:p2, K:p2 3)).

要素を全く持たない集合を empty set(空集合)といい、 \emptyset で表す. 集合 A が空であることは $A = \emptyset$ で表せ、(論理式で書けば 例えば $\forall x (x \notin A)$ となる)空集合でない集合を non empty な(空でない)集合と呼ぶ.

Notation 0.0.9 (E:p2, K:p3).

自然数全体の集合 $\{0,1,2,\ldots\}$ を $\mathbb N$ で、 7 整数全体の集合 $\{\ldots,-2,-1,0,1,2,\ldots\}$ を $\mathbb Z$ で、実数全体の集合を $\mathbb R$ で表す。 8

 5 この A:t という記法はここで初めて見た. どこまでメジャーなんだろうか.

 6 この記号はテキストでは導入されていないが,ほかの数学書でもよく使うし表現を簡略化するためにも積極的に使っていく.また「 $\stackrel{\mathrm{def}}{=}$ 」の代わりに「:=」はよく使われている印象がある.ただこれは証明内での一時的な定義にも使用している人もいるような気がする. 7 ところで「 $\mathbb N$ を自然数の集合とする」だと,自然数の集合というものを定義して,それに $\mathbb N$ という記号を割り当てたという定義の主張に見えますが,ここに

⁷ところで「N を自然数の集合とする」だと、自然数の集合というものを定義して、それに N という記号を割り当てたという定義の主張に見えますが、ここにあるように「自然数全体の集合を N で表す」だと、単に今後その記号を使うという記法の導入にも見えます。なのでここでは定義ではなく記法としてみました。 ⁸実数全体集合は今後も必要なので導入しておいた。

Definition 0.0.10 (外延的記法 (E:p2, K:p3)).

モノ x, x_1, \ldots, x_n に対して、

- 1. x のみを要素にもつ集合を $\{x\}$ で表す.
- 2. $x_1, ..., x_n$ のみを要素にもつ集合を $\{x_1, ..., x_n\}$ で表す.
- 3. {0,1,2,...} は自然数全体の集合 № を表し, {..., -2, -1,0,1,2,...} は整数全体の集合 ℤ を表す.

集合は要素の表現の順番を変えても同じ集合です. 以下の主張を示せばそれが分かります.

Proposition 0.0.11 (E:p2, K:p3).

モノx,yに対して, $\{x,y\} = \{y,x\}$ である.

Proof 証明略.

Definition 0.0.12 (内包的記法 (E:p2, K:p3)).

 $\{x \mid x_{-}\}$ と書いて x_{-} をみたす全てのモノの集合を表す. 9

テキストでは「この書き方はめいっぱい柔軟に用いることにする」とあり、その使用例として $\{\langle m,n\rangle\mid m,n$ は $\mathbb N$ の要素で $m< n\}$ が挙げられています。論理式で書けば $\{\langle m,n\rangle\mid m,n\in\mathbb N\land m< n\}$ となります.ここにおいて「柔軟」という言い方も曖昧だと思います.定義にある書き方になぞるならこの集合は $\{x\mid \exists m,n\in\mathbb N(\ x=\langle m,n\rangle\land m< n\}$ と書くべきでしょうか.ちなみに『論理と集合から始める数学の基礎』 [58] では内包的記法における | の左に変数一文字ではなく,いくつかの変数を用いた表現が使われている記法を,内包的記法と区別して置換型記法と呼んでいたりします.たしかにこの 2 つの記法は同じではないので,区別する必要があると思われます(普通の数学書でそう区別はしないことは多いと思いますが).なのでここの柔軟さはかなり曖昧に思えました.置換型記法とはノート冒頭で論理式に対して定義した略記(Notation 0.0.2(64 ページ))の,集合を定義するための応用と思うこともできます.

後々のための以下のような整数の部分集合を定義します.

Definition 0.0.13 (整数の区間集合).

m < n な整数 m, n に対して、 $\{m, ..., n\} \stackrel{\text{def}}{=} \{x \in \mathbb{Z} \mid m < x < n\}^{10}$.

よく使うのは自然数 n に対して, $\{0, \ldots, n\}$ や $\{0, \ldots, n-1\}$ などですが, ここで n=0 の場合, 前者は $\{0\}$, 後者はその定義から 0 < x < -1 を満たす整数が存在しないため空集合になります.

Definition 0.0.14 (部分集合 (E:p2, K:p3)).

集合 A,B に対して集合 A の要素がすべて B の要素でもあるとき, A は B の subset(部分集合)であるといい, $A\subseteq B$ で表す. (論理式で書けば $\forall x(x\in A\to x\in B)$ となる)

Proposition 0.0.15 ((E:p2, K:p3)) .

∅はどんな集合に対しても部分集合となる.

Proof 証明略.

ここで改めて二重矢印記号の使い方について説明します. 私なりの運用方法は以下のようになっています.

Notation 0.0.16 (二重矢印).

ある定理の証明中において、何らかの数学的主張、もしくはそのそれを表す記号である P,Q に対し、「P を仮定し Q を証明する」という宣言の略記として「 $P \Rightarrow Q$ 」を用いる.

数学的主張の同値な言い換えをつなぐ記号として ⇔を用いる.

 $^{^9}$ ここはテキストにならったのですが、 $_x$ - はかなり曖昧だと思いました. $_x$ に関する命題とか文と言ってしまえば、これから命題や文という単語を対象につけることがあるような当分野においては避けたい表現ではある(そして表現という単語も今後登場する………). $_x$ - の代わりに $_x$ 0 代かりに $_x$ 0 を変数とする命題かのように表現することもありますが、それもこの場合は意図的に避けたのだろうと思います。避けた理由としては、今度は主張における変数とは何かを説明しなくてはならないからでしょうか。

 $^{^{10}}$ 細かいことをいうと m < x < n とは $m < x \land x < n$ の略記です.

「⇒」は例えば、定理の主張内において (1), (2) と名付けられた主張に対しその 2 つが同値であることを示せというものがあったとき、その証明のどこからどこまでがどちらを仮定してどちらを示したのかを分かりやすくするために、「(1) ⇒ (2)」「(2) ⇒ (1)」を書き、その間にぶら下げを用いて証明を書きます。証明の中では使用されていますが、証明の議論展開が分かりやすくなるのと、二重でない矢印記号との同レベルでの使用ではないため混乱をしにくいと思って活用しています。

「⇔」はその左右に数学的主張, もしくはそれを表す記号が入り, また主張は日常言語や論理式のどちらでもあり得ます. 例えば証明中に定義の確認をする目的で先の定義のための記号と併用して以下のような記述が可能です.

$$A \subseteq B \iff \forall x (x \in A \to x \in B)$$

- \Leftrightarrow 任意のxに対して $x \in A$ ならば $x \in B$
- \Leftrightarrow 全ての A の要素は B の要素でもある.

<u>Definition</u> 0.0.17 (べき集合 (E:p2, K:p3)).

集合 A に対して A のすべての部分集合からなる集合を A の power set(べき集合)とよぶ, $\mathcal{P}(A)$ で表す.より正確には $\mathcal{P}(A) \stackrel{\mathrm{def}}{=} \{X \mid X \subseteq A\}$. 11

Example 0.0.18 (E:p3, K:p4).

 $\mathcal{P}(\emptyset) = \{\emptyset\}$

 $\mathcal{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}$

Definition 0.0.19 (和集合と共通部分 (E:p3, K:p4 5)).

A,B を集合, A を全ての要素が集合であるような集合とする. 12 13 さらに各自然数 n に対して集合 A_n が定まっているとする.

- 1. $A \cup B \stackrel{\text{def}}{=} \{x \mid x \in A \text{ または } x \in B\} \ (= \{x \mid x \in A \lor x \in B\}) \text{ とし, これを } A \text{ と } B \text{ \mathcal{O} union } ($ 和集合) という.
- 2. $A \cap B \stackrel{\text{def}}{=} \{x \mid x \in A \text{ かつ } x \in B\} \ (= \{x \mid x \in A \land x \in B\}) \ \text{とし, } \text{これを } A \text{ と } B \text{ O intersection } (共通部分) \text{ という.}$
- 3. $A \cap B = \emptyset$ であるとき, $A \in B$ は disjoint(**交わらない**)という. $\emptyset \notin A$ な集合族 A のどの異なる 2 個の要素も交わらないとき, A は pairwise disjoint(互いに素)という.
- 4. $\bigcup A \stackrel{\text{def}}{=} \{x \mid x \text{ は } A \text{ on } \text{virth} \text{non } \text{gen} \text{ and } \{x \mid \exists A (x \in A \land A \in A)\} \}$ とし、これを A on union (和集合) という.
- 5. $A \neq \emptyset$ なとき、 $\bigcap A \stackrel{\text{def}}{=} \{x \mid x \text{ it } A \text{ optotrooge} \}$ (= $\{x \mid \forall A (x \in A rightarrow A \in A)\}$) とし、これを A の intersection (共通部分) という.
- 6. $\bigcup_{n\in\mathbb{N}}A_n\stackrel{\mathrm{def}}{=}\bigcup\{A_n\mid n\in\mathbb{N}\}$ とする. これを単に \bigcup_nA_n と表すこともある. ¹⁴

ここで集合族の共通部分に関して、テキストでは空でないことを要求していなかった。もし雑に万有集合を扱ってよいならば、空な集合族の共通部分は万有集合になるとすればいいです。しかしそのような集合をモノとして扱うことのできない *ZF* 集合論のような立場では、共通部分とは空でない集合族にしか定義できないと定めることが定石です。ここでいう「モノとして扱うことができない」とは、公理から存在を保証できなかったり、存在を仮定すると公理に対して矛盾したりすることをいいます。

Example 0.0.20 (E:p3, K:p4 5).

モノt, 集合A, B, 集合族 $A = \{\{0,1,5\},\{1,6\},\{1,5\}\}$ に対して以下が成立.

1. $A; t = A \cup \{t\}.$

 $^{^{11}}$ テキストでは $\mathcal{P}A$ だが個人的には $\mathcal{P}(A)$ が好きなのでこちらを使っていくことにしました.

¹²テキストではいきなりこんな集合が登場したけど、なんで「集合族」のような語を用意しなかったのだろうか.

 $^{^{13}}$ テキストでは集合でも集合族でも単なる A で表現していた。個人的には集合族には記号の衝突が起こらない(つまり理論を展開するさいに必須な記号と被らない)かぎり、集合族には筆記体(カリグラフィーとどう違うのか分からないけれども………)を使うのが好み。ただ要素が集合であろうが(集合に見えない)モノであろうが、もし全てが集合である ZF 集合論のような世界では、集合と集合族に区別がないという意味でこの記法を採用しているならば、集合論研究者としては好感のもてる一貫性です。

 $^{^{14}}$ これは添え字付き集合族の和集合ともいえるものだけど、なぜ添え字付き集合族の共通部分は定義しなかったのだろう(単に今後使わないだけ?).

- 2. $\bigcup A = \{0, 1, 5, 6\}.$ $\bigcap A = \{1\}.$
- 3. $A \cup B = \bigcup \{A, B\}.$

 $4. \bigcup \mathcal{P}(A) = A.$

Definition 0.0.21 (順序対 (E:p3 4, K:p5)).

モノ $x, y, z, x_1, \ldots, x_n, x_{n+1}$ に対して

- 1. $\langle x,y \rangle \stackrel{\text{def}}{=} \{\{x\},\{x,y\}\}$ とし、これを x と y の **ordered pair**(**順序対**)という. ¹⁵ 順序対 $\langle x,y \rangle$ における x,y をこの順序 対の成分といい、とくに x を第一成分、y を第二成分と呼んだりする. ¹⁶
- 2. $\langle x, y, z \rangle \stackrel{\text{def}}{=} \langle \langle x, y \rangle, z \rangle$ とし、より一般的に n > 1 に対して $\langle x_1, \ldots, x_{n+1} \rangle \stackrel{\text{def}}{=} \langle \langle x_1, \ldots, x_n \rangle, x_{n+1} \rangle$ と帰納的に定義する.
- 3. とくに $\langle x \rangle = x$ と定義する. ¹⁷

Definition 0.0.22 (有限列 (E:p4, K:p5)).

集合 *A* に対して

1. S が A の要素からなる finite sequence(有限列)(あるいは string(列))であるとは、ある正の整数 n について $S = \langle x_1, \ldots, x_n \rangle$ で各 x_i が A の要素であるときとする.(論理式で書くと $\exists n \in \mathbb{Z} (n > 0 \land x_1, \ldots, x_n \in A \land S = \langle x_1, \ldots, x_n \rangle$))

またこのときのnを有限列Aの長さとよぶ. 18

2. A の要素からなる有限列 $S = \langle x_1, \ldots, x_n \rangle$ に対し、 $1 \le k \le m \le n$ な k, m でもって $\langle x_k, x_{k+1}, \ldots, x_{m-1}, x_m \rangle$ な形の有限 列を S の segment(区間)という.とくに k = 1 な区間を S の initial segment(始切片)といい、 $m \ne n$ な始切片を S の proper initial segment(真の始切片)という.

有限列には空列という長さ0の列という概念もありますが、ここでは有限列といったとき、そのような列は考慮しないこととします。

Proposition 0.0.23 (E:p4, K:p6).

モノ
$$x_1,\ldots,x_n,y_1,\ldots,y_n$$
 に対して $\langle x_1,\ldots,x_n\rangle=\langle y_1,\ldots,y_n\rangle$ ならば, $1\leq i\leq n$ な各 i について $x_i=y_i$.

Proof 示すべきことを論理式で書くと

$$\forall n \in \mathbb{N} \left(\ \forall x_1, \dots, x_n, y_1, \dots, y_n \left(\ \langle x_1, \dots, x_n \rangle = \langle y_1, \dots, y_n \rangle \ \rightarrow \ \forall i \left(\ 1 \leq i \leq n \rightarrow x_i = y_i \ \right) \ \right) \right)$$

となる. よって $n \in \mathbb{N}$ について数学的帰納法を用いて証明する.

(Basis)

その定義より $\langle x \rangle = x$ だから, $\langle x_1 \rangle = \langle y_1 \rangle$ ならば $x_1 = y_1$ である.

(Induction step)

n のときに成立しているとする. 任意に取った $x_1,\ldots,x_n,x_{n+1},y_1,\ldots,y_n,y_{n+1}$ に対して, $\langle x_1,\ldots,x_n,x_{n+1}\rangle=\langle y_1,\ldots,y_n,y_{n+1}\rangle$ だったとする. 一般的な順序 n 個組の定義から

$$\langle x_1, \dots, x_n, x_{n+1} \rangle = \langle \langle x_1, \dots, x_n \rangle, x_{n+1} \rangle,$$

 $\langle y_1, \dots, y_n, y_{n+1} \rangle = \langle \langle y_1, \dots, y_n \rangle, y_{n+1} \rangle$

 $^{^{15}}$ これは順序対の Kuratowski 流の定義と言われています. 他の流儀などは Wikipedia 『順序対』[3] も参考に.

¹⁶定義されていなかった言葉遣いだったのでなんとなく定義しておいた.

 $^{^{17}}$ これの妥当性として、すぐ後ろで $\langle x,y \rangle$ とは x,y とオブジェクトが並んだ列と見なすので、 $\langle x \rangle$ とは x1 つが並んでいる初項のみの列と思えば $\langle x \rangle = x$ であるほうが自然に見える。また Kuratowski 流の定義によれば $\langle x,x \rangle = \{\{x\}\}$ となりこれと単なる x とを区別しやすくなる。

 $^{^{-18}}$ テキストにおいて写像における有限列の定義について言及しています \vec{m} 、これは例えば長さ n の A の有限列 S は $\{1,\dots,n\}$ から A への写像として定義できます.

であり、今順序対の定義から第一成分・第二成分同士が等しいので、

$$\langle x_1, \dots, x_n \rangle = \langle y_1, \dots, y_n \rangle,$$

 $x_{n+1} = y_{n+1}$

となる. 今に任意に取られた n 個の要素たちについては

$$\langle x_1, \dots, x_n \rangle = \langle y_1, \dots, y_n \rangle \rightarrow \forall i (1 \le i \le n \rightarrow x_i = y_i)$$

が成立しているので, $x_{n+1}=y_{n+1}$ とまとめると, $\forall i (1 \leq i \leq n+1 \rightarrow x_i=y_i)$ となるので, n+1 の場合も OK.

ここで初めて登場した数学的帰納法の証明について補足します。数学的帰納法は自然数全てに対しての主張もしくは、ある自然数以降の全ての自然数に対しての主張の証明に用いるものです。自然数の性質として(場合によっては公理として要請される)数学的帰納法の原理とは、ある自然数に対しての数学的主張を P(n) と書くことにしたとき、どんな主張 P(n) に対しても

$$\left(P(0) \wedge \forall n (P(n) \to P(n+1))\right) \to \forall n (P(n))$$

が成立するというものです. より一般的な数学的帰納法の原理とは, どんな主張 P(n) に対しても

$$\left(P(k) \land \forall n \ge k \big(P(n) \to P(n+1) \big) \right) \to \forall n \ge k (P(n))$$

が成立することとなります。先の原理は k=0 としたときの場合です。つまり「 $\forall n(P(n))$ 」や「 $\forall n \geq k(P(n))$ 」を証明したい場合は,「 $P(0) \land \forall n \big(P(n) \to P(n+1)\big)$ 」や「 $P(k) \land \forall n \geq k \big(P(n) \to P(n+1)\big)$ 」を示せばよいということです。つまり証明は 2 つの部分に分かれるわけですが,大抵は以下のように書きます。

Proof

(P(0)) ($\forall n (P(n) \rightarrow P(n+1))$) ...19

ただ証明によって「P(0)」や(何らかの具体的な k について)「P(k)」などと書きわけるのも面倒です。どちらにしても証明の構造は変わらないですし、今示そうとしているのが P(0) なのか P(k) なのかは文脈から明らかであると思うので、私は先の証明のように「P(0)」や「P(k)」については「 \mathbf{Basis} 」、もう 1 つの部分の証明に関しては「 $\mathbf{Induction\ step}$ 」と名付けています。Basis ではなく Base step という(より統一感のある)呼び名もありますが、私が好きな『論理学をつくる』 [73] に合わせています。以降の数学的帰納法を用いる証明も先の証明同様この表現方法で証明を記述していきます。

Lemma 0.0.24 (E:p4 LEMMA 0A, K:p6 補題 0A).

$$\langle x_1,\ldots,x_m\rangle=\langle y_1,\ldots,y_m,\ldots,y_{m+k}\rangle$$
 ならば $x_1=\langle y_1,\ldots,y_{k+1}\rangle$.

Proof 示すべきことを論理式で書けば

$$\forall k \in \mathbb{N} \left(\forall m \in \mathbb{N} \forall x_1, \dots, x_m, y_1, \dots, y_{m+k} \left(\langle x_1, \dots, x_m \rangle = \langle y_1, \dots, y_m, \dots, y_{m+k} \rangle \right. \rightarrow x_1 = \langle y_1, \dots, y_{k+1} \rangle \right) \right)$$

となる. 任意に $k \in \mathbb{N}$ をとる. このあとの主張に対して $m \in \mathbb{N}$ についての数学的帰納法を用いる.

(Basis)

m=1 を仮定に代入すると $\langle x_1 \rangle = \langle y_1, y_2, \dots, y_{1+k} \rangle$ となり、定義より $\langle x_1 \rangle = x_1$ から成立.

 $^{^{19}}$ 高校数学ではこのステップが「n=k が成り立つとして n=k+1 とすると〜」なんて書き出したりしますが,今にして思えば非常に気持ち悪い文章です.ですがおそらく高校数学においては n はいつでも自然数を表すグローバル変数のようなもので,k は 1 つの証明の中で用いるローカル変数のような気分で使っているとも思えるので,そこまで不思議でもなかったり.

(Induction step)

m のときに成立しているとする. $\langle x_1,\ldots,x_{m+1} \rangle = \langle y_1,\ldots,y_m,\ldots,y_{m+1+k} \rangle$ を仮定する. 一般順序組の定義から

$$\langle x_1, \dots, x_{m+1} \rangle = \langle \langle x_1, \dots, x_m \rangle, x_{m+1} \rangle,$$
$$\langle y_1, \dots, y_m, \dots, y_{m+1+k} \rangle = \langle \langle y_1, \dots, y_{m+k} \rangle, x_{m+k+1} \rangle$$

となっている. つまり各第一成分が等しいということなので

$$\langle x_1, \dots, x_m \rangle = \langle y_1, \dots, y_{m+k} \rangle$$

が分かり, m のときに成立していたことから $x_1 = \langle y_1, \dots, y_{k+1} \rangle$ であることが分かる.

テキストでは例えとして「たとえば、A は集合で、A のどの要素も他の要素からなる有限列とは一致しないと仮定します.そのとき、 $\langle x_1,\ldots,x_m\rangle=\langle y_1,\ldots,y_n\rangle$ であって、 x_i や y_i それぞれが A に属する場合、上の補題によって m=n です.さらに、結果的に、それぞれの i について $x_i=y_i$ となります.」とありますが個人的に分かりづらかったので具体例を挙げます.

Example 0.0.25.

集合 A を $A = \{0, 1, \langle 2, 3 \rangle\}$ とすると、この A の要素で(集合として)等しくなるようなどんな 2 つの n 個組を作っても、それが等しい限りはその長さも構成成分の順番も等しくなる.

逆に $A = \{0, 1, \langle 0, 1 \rangle, \langle 0, 1, 0 \rangle\}$ として, A の有限列 S_1, S_2 を

$$S_1 = \langle \langle 0, 1, 0 \rangle, 1 \rangle,$$

 $S_2 = \langle \langle 0, 1 \rangle, 0, 1 \rangle$

とすると, この 2 つは(集合として) $S_1=S_2$ ではあるが, S_1 の長さは 2 で S_2 の長さは 3, よって長さは一致せず, ゆえに構成成分も一致しない.

ここで有限列の長さの定義の曖昧さが少し影響がでてきます。たとえば Example 0.0.25 の S_1 は $\langle\langle 0,1,0\rangle,1\rangle=\langle\langle 0,1\rangle,0,1\rangle$ でもあるので、これの長さとして 2 か 3 のどちらを採用すればよいか混乱します。 テキストに書いてある注意事項のように、写像で定義すれば問題は解決できます。 関数の定義の先取りにはなってしまいますが、たとえば S_1 を S_1 : $\{1,2\}\to A$ として、 $S_1(1)=\langle 0,1,0\rangle,\ S_1(2)=1$ とすればよいです。すると S_1 と S_2 はそもそも定義域が違う別の関数となるので混乱がなくなります。 しかしながら 1 章以降は $\{0,1,\langle 0,1\rangle,\langle 0,1,0\rangle\}$ のような集合から有限列を構成したりはしなません。 つまり $\{0,1,\langle 2,3\rangle\}$ のような「どの要素も他の要素からなる有限列とは一致しない」集合を扱うときには、長さの定義に曖昧さがでることはないので、特に長さの定義を意識する必要はないということです。最初にこれの注意に該当することは Theorem 0.0.40 (75 ページ)や、Definition 1.1.1 (84 ページ)下の注意事項 7 があてはまります。

Definition 0.0.26 (直積集合 (E:p4, K:p6)).

集合 A, B と n > 1 な $n \in \mathbb{N}$ に対し

- 1. $A \times B \stackrel{\text{def}}{=} \{ \langle a, b \rangle \mid a \in A \text{ かつ } b \in B \} \text{ とし, } これを A と B の Cartesian product (直積集合) という.$
- 2. $A^n \stackrel{\text{def}}{=} A^{n-1} \times A$ と帰納的に定義する. たとえば $A^3 = (A \times A) \times A$ である.

Definition 0.0.27 (関係 (E:p4 5, K:p6 7)).

集合 A, B, R と n > 0 な $n \in \mathbb{N}$ に対し

- 1. R のすべての要素が順序対であるとき, R を relation (関係) という.
- 2. 関係 R に対して $\mathrm{dom}(R) \stackrel{\mathrm{def}}{=} \{x \mid \mathsf{bso}\ y$ について $\langle x,y \rangle \in R\}$ とし、これを関係 R の domain (定義域) という. さらに $\mathrm{ran}(R) \stackrel{\mathrm{def}}{=} \{y \mid \mathsf{bso}\ x$ について $\langle x,y \rangle \in R\}$ とし、これを関係 R の range (値域) という. さらに $\mathrm{fld}(R) \stackrel{\mathrm{def}}{=} \mathrm{dom}(R) \cup \mathrm{ran}(R)$ とし、これを関係 R の field (領域) という. $^{20\ 21}$

 $^{2^{0}}$ テキストでは dom(R), ran(R), fld(R) ではなく dom(R), ran(R), fld(R) ではなく dom(R), ran(R), fld(R) ではなく dom(R), ran(R), fld(R) というものはここで初めて見ました。 $2^{1}fld(R)$ というものはここで初めて見ました.

- 3. $R \subset A^n$ であるとき、そんな R を A 上の n 項関係という.
- 4. $B \subset A$ かつ R が A 上の n 項関係であるとき, $R \cap B^n$ を R の B への restriction (制限) という.

Example 0.0.28 (E:p4 5, K:p6 7).

集合 $R_1, R_2 \subseteq \mathbb{N}^2$ に対し

- 1. $R_1 = \{\langle 0,1 \rangle, \langle 0,2 \rangle, \langle 0,3 \rangle, \langle 1,2 \rangle, \langle 1,3 \rangle, \langle 2,3 \rangle\}$ とおくと、 R_1 は 0 から 3 までの数の間の大小関係となる.さらに $\mathrm{dom}(R) = \{0,1,2\}, \ \mathrm{ran}(R) = \{1,2,3\}, \ \mathrm{fld}(R) = \{0,1,2,3\}$ となる.
- 2. $R_2 = \{ \langle m, n \rangle \mid m < n \}$ とおくと、 R_2 は \mathbb{N} 上の大小関係となり、 $B = \{0, 1, 2, 3\}$ とすれば $R_1 = R_2 \cap B^2$ となるから R_1 は R_2 の B への制限である.

Definition 0.0.29 (写像 (E:p5, K:p7 8)).

集合 A, B と関係 F に対して

- 1. Fが「dom(F) のそれぞれの要素 x について、 $\langle x,y\rangle \in F$ なる y がただひとつ存在する」(論理式で書くと $\forall x \in dom(F)$ ∃! $y(\langle x,y\rangle \in F)$)をみたすとき,F は function(写像)であるという. 22 このとき $x \in dom(F)$ に対して一意的に存在している y のことを F(x) で表し,F の x における value(値)という.
- 2. 写像 F が dom(F) = A かつ $ran(F) \subseteq B$ をみたすとき, F は A を B に**写す**といい, $F: A \to B$ で表す. ²³
- 3. $F: A \to B$ であるとき, $\operatorname{ran}(F) = B$ をみたすとき, F は A から B への surjection (全射)²⁴ であるといい, $F: A \xrightarrow{\operatorname{onto}} B$ で表す. ²⁵

「 $\operatorname{ran}(F)$ のそれぞれの要素 y について、 $\langle x,y \rangle \in F$ をみたす x がただひとつ存在する」(論旨式で書くと $\forall y \in \operatorname{ran}(F) \exists ! x (\langle x,y \rangle \in F))^{26}$ をみたすとき,F は A から B への injection(単射) 27 であるといい, $F: A \xrightarrow{1-1} B$ で表す. 28 全射かつ単射な写像を bijection(全単射)といい, 29 $F: A \xrightarrow{\operatorname{orto}} B$ で表す. 30

- 4. オブジェクト x,y とその順序対 $\langle x,y \rangle$ と写像 F に対して, $\langle x,y \rangle \in \text{dom}(F)$ であるとき $F(\langle x,y \rangle)$ を単に F(x,y) で表す. より一般的に $F(\langle x_1,\ldots,x_n \rangle)$ を $F(x_1,\ldots,x_n)$ で表す. S1
- 5. $F = \{\langle x, x \rangle \mid x \in A\}$ であるとき, F を A 上の identity function(恒等写像)といい, この F を id_A で表す. 32

Definition 0.0.30 (演算 (E:p5, K:p8)).

集合 A, B と関係 f, g に対して

- 1. $f: A^n \to A$ であるとき f を $A \perp 0$ n-ary operation (n 項演算) であるという.
- 2. A 上の n 項演算 f と $B \subseteq A$ な集合 B に対して, $g = f \cap (B^n \times A)$ をみたす g を f の B への restriction(制限)という。 33

 $^{^{22}}$ 個人的には map は写像, function は関数と訳すのが好みですが, ここはテキストとその和訳に合わせて function を写像と訳すことにします.

 $^{^{23}}$ これを見たときもしかしたら $\operatorname{ran}(R)$ の部分集合関係に合わせて $\operatorname{dom}(F)\subseteq A$ としなくてはいいのかと,疑問に思う人もいるかもしれません.もしそうすると定義域に対応要素のない要素が存在することを許してしまいます.それを許したうえで $\operatorname{dom}(F)=A$ なる写像に**全域写像**と名付ける流儀もあります.たとえば『論理と集合から始める数学の基礎』 [58] では $\operatorname{dom}(F)\subseteq A$ かつ $\operatorname{ran}(F)\subseteq B$ なるものを「A から B への部分写像」,F による x の値が存在しないとき「F(x) は未定義」といい,部分写像が $\operatorname{dom}(F)=A$ を満たした場合にそれを全域写像もしくは単に写像と呼んでいます.

 $^{^{24}}$ このテキストでは「B全体へ写す」と表現しています。それならまだしも「上への写像」という言い方もありますが、これは何が「上」なのか個人的にイメージしづらく使わないようにしています。

²⁵これはテキストでは導入されていなかったけれど, あると便利なので導入しました.

 $^{2^6}$ ここでの単射の定義は初見では違和感がありました。なぜなら普段私は $F\subseteq A\times B$ かつ $\forall a\in A\exists!b\in B(\langle a,b\rangle\in F)$ をみたすものを、A から B への写像とよび $F\colon A\to B$ と表し、 $\operatorname{ran}(F)=B$ としていたためです。ここでの定義ならこれでよいと思われるが、個人的にはやはり「 $\forall x_1,x_2,y(\ \langle x_1,y\rangle\in F\wedge\langle x_2,y\rangle\in F\to x_1=x_2$)」もっと分かりやすくして「 $\forall x_1,x_2(\ F(x_1)=F(x_2)\to x_1=x_2$)」か、「 \to 」部分で対偶をとった「 $\forall x_1,x_2(\ x_1\neq x_2\to F(x_1)\neq F(x_2)$)」の方が好みです。

 $^{2^7}$ このテキストでは「F が 1 対 1 である」と表現している。しかし全単射に対してこの言い方を使うテキストもあるし,個人的には全単射の方が 1 対 1 なるイメージを持っているためここでは「単射」を使うことにしました.

²⁸これも上に同様。 先の脚注で単射には「1 対 1」なるイメージがないためこの言葉を使わないと言いつつ,単射であることに略記にはそれを意味するような「1-1」を使ってしまっている点で,私の記法もそこまで一貫性があるわけではないとゼミ発表中に思いました.

²⁹テキストでは定義されていなかったので用意しておいた.

³⁰同上.

 $^{^{31}}$ つまり普段 2 変数関数で使う記法を導入したことになります.

 $^{^{32}}$ テキストでは Id と書いていますが「A 上の」というからにはせめて Id_A と書く方が好き.そして Id より id が好きなのでこのように定義しました.

 $^{^{33}}$ この g のことを $f \! \mid \! B$ や $f \! \mid \! B$ で表すことがあります.個人的には $f \! \mid \! B$ が好き(初めて見た記法がこれだったからという理由で).

3. $A \perp 0$ n 項演算 f に対して、集合 $B \subseteq A$ が f について閉じているとは、どの $b_1, \ldots, b_n \in B$ についても $f(b_1, \ldots, b_n) \in B$ をみたす(論理式で書くと $\forall b_1, \ldots, b_n \in B$ $(f(b_1, \ldots, b_n) \in B)$)ときをいう.

Example 0.0.31 (E:p5, K:p8).

- 1. S_1 が任意の $m,n \in \mathbb{N}$ に対し $S_1(m,n) = m+n$ をみたすとすると, S_1 は \mathbb{N} 上の加法という \mathbb{N} 上の 2 項演算となる.
- 2. S_2 が任意の $n \in \mathbb{N}$ に対し $S_2(n) = n+1$ をみたすとすると、 S_2 は \mathbb{N} 上の直後の自然数を与えるという \mathbb{N} 上の 1 項(単項) 演算となる. 34
- 3. $P: \mathbb{R}^2 \to \mathbb{R}$ が任意の $r_1, r_2 \in \mathbb{R}$ に対し $p(r_1 + r_2) = r_1 + r_2$ をみたすとすると, P は \mathbb{R} 上の加法という \mathbb{R} 上の 2 項演算となり, 1. の S_1 は P の \mathbb{N} への制限, つまり $S_1 = P \cap \mathbb{N}^3$ となっている.

Example 0.0.32 (E:p5, K:p8).

集合 A, B に対して

- 1. f を A 上の n 項演算, $B \subseteq A$ とし, g を f の B への制限とする. g が B 上の n 項演算となることと, B が f について閉じていることは同値である.
- 2. A上の恒等写像 id_A は(何もしない・作用しないという)A上の単項演算である.

Proof 1. のみ示す. 主張「g が B 上の n 項演算となること」を (1), 「B が f について閉じている」を (2) とおいて, (1) ⇒ (2) と (2) ⇒ (1) の 2 つを示す.

 $(1) \Rightarrow (2)$

f の B への制限 g が今 B 上の n 項演算であることから, $dom(g) = B^n$ かつ $ran(g) \subseteq B$ をみたしている, もっというと $g = f \cap B^{n+1} = f \cap (B^n \times B)$ をみたしている, これはつまり (2) をみたしていることになる.

 $(2) \Rightarrow (1)$

B が f について閉じている、つまり $g=f\cap B^{n+1}=f\cap (B^n\times B)$ となっているので、 $\mathrm{dom}(g)=B^n$ かつ $\mathrm{ran}(g)\subseteq B$ を みたしている、これはつまり(1)をみたしていることになる.

普段閉じている演算ばかりを見ているので、逆に閉じてない演算とはどんな例があるかという議論があったのでここにまとめます.

 \mathbb{R} 上の 2 項演算 $+,-,\times$ にて \mathbb{R} は閉じている. 有理数全体の集合を \mathbb{Q} とすると, \mathbb{Q} 上のこれらの演算は \mathbb{R} の演算の \mathbb{Q} への制限となる. そして \mathbb{Q} についても,そして \mathbb{Z} についても閉じている. しかし演算 - は \mathbb{N} については閉じていない.

 \div についてはそもそもどう定義するか(0 で割ることをどう避けるか)によって議論が変わりそうでありますが、通常通り掛け 算の逆演算として定義すれば $\mathbb R$ と $\mathbb Q$ については閉じていますが、 $\mathbb N$ や $\mathbb Z$ については閉じていません.

Definition 0.0.33 (同値関係と順序関係 (E:p5 6, K:p8 9)).

集合Aと関係Rに対して

- 1. R が A 上で reflexive(反射的)とは、任意の $x \in A$ について $\langle x, x \rangle \in R$ であるこという.
- 2. R が symmetric (対称的) とは、任意の x,y に対して $\langle x,y \rangle \in R$ ならば $\langle y,x \rangle \in R$ であるこという.
- 3. R が transitive (推移的) とは、任意の x, y, z に対して $\langle x, y \rangle \in R$ かつ $\langle y, z \rangle \in R$ ならば $\langle x, z \rangle \in R$ であるこという.
- 4. R が A 上で **trichotomy**(**三分律**)をみたすとは、任意の $x,y \in A$ に対して $\langle x,y \rangle \in R$, x=y, $\langle y,x \rangle \in R$ のいずれか 1 つをみたすこという.
- 5. R が A 上の equivalence relation(同値関係)であるとは, R が A 上の 2 項演算でかつ A 上で反射的・対称的・推移的であるときをいう.

³⁴これはよく**後者関数**と呼ばれています.

6. R が A 上の ordering relation(順序関係)であるとは, R が A 上の 2 項演算でかつ推移的であり A 上で三分律をみた すときをいう.

ここで上の定義は「A 上の」という言葉が付いたりそうでなかったりと一貫性がありません。これについてゼミ中に出た意見をまとめると、対称的、推移的という 2 つの概念は、関係 R がどんな集合から作ったものか、つまり $\mathrm{fld}(R)$ がどのようなものか意識せずとも議論できる性質になっています。一方で反射的や三分律をみたすといった概念はどの集合で議論するかでその定義を満たすかどうかが変わります。仮に $x,y \notin \mathrm{fld}(R)$ かつ $x \neq y$ なモノ x,y とそれを要素としても持つ集合 A があったとき、この集合上では常に反射的にも三分律をみたしません。なのでどの集合上で議論しているかがこの性質たちを満足するかどうかに関係してきます。例えば何らかの集合上に定められた二項関係についてしか議論することがないならば、この「A 上の」のような文言は全て除外する、もしくは全てに書くことで一貫性を与えることができます。おそらく著者はここでは関係を単なる順序対の集合という素朴な定義にしたため、このような定義になったのではと思われます。確かに定義に不要な単語を使用しないという点では、ここでの定義も一貫性があるといえます。

かねてよりの疑問として、この特別な関係についての用語は「 $\bigcirc\bigcirc$ 0的」と「 $\bigcirc\bigcirc$ 0律をみたす」が混在することが不思議に思っています。例えばここでは「三分律をみたす」のみが仲間外れなのでこれを「三分的」という用語に変えることも可能なはずです。和訳がこうなっているわけではなく、原著からこうなっています。つまり海外でもこの言葉たちの統一感のなさは当たり前である可能性があります。もし自分が何かテキストを書く機会があれば「 $\bigcirc\bigcirc$ 0的」か「 $\bigcirc\bigcirc$ 0律をみたす」のどちらかに(その時の好みに合わせて)統一してみたいと思っています。

ちなみに今現在持っている本を参考にすると、議論の進め方によっては「三分律をみたす」に相当する定義が不要なため「 $\bigcirc\bigcirc$ 律」に統一できている場合もありそうです。例えば、『集合と位相 (数学シリーズ)』[67] や『大学数学ベーシックトレーニング』[66] や『集合・位相・測度』[53] がそうです。

または議論の流れ上,同値関係について扱うものの各定義に名前をつけない流儀・議論の進め方もありました. 例えば『数学の基礎 集合・数・位相 (基礎数学 14)』[63] や『集合・位相入門』[74] や『現代集合論の探検』[57] などです.

もちろんこのテキストと同じように三分律だけは「みたす」という言葉遣いになっているものもあります。例えば『The Foundations of Mathematics』 [44](その和訳『キューネン数学基礎論講義』 [?])などです。

また変わったものとして『論理と集合から始める数学の基礎』[58] では同値類の議論の前に, 演習問題として各定義が紹介されますが, その中で各定義に上のように「○○律」と統一的に命名していますが, 三分律だけはあえて名前をつけていないパターンでした. ちなみにここでは他では見たことがない「非反射的反対称律」という名前が登場しています.

色々とあるのは分かりましたが、まだ「○○的」で統一されているものは見つけられていません. その他の流儀も含めて発見すればここに追記することにします.

またもう 1 つ細かい話として三分律の定義の揺れという問題もあるようです.ここでは三分律をみたすとは,任意の $x,y \in A$ に対して $\langle x,y \rangle \in R, \ x=y, \ \langle y,x \rangle \in R$ の「いずれか 1 つをみたす」という定義ですが,文献によっては「いずれか 1 つをみたす」ではなく「いずれか 1 つ以上をみたす」というものもあるようです.「いずれか 1 つをみたす」は論理式としては表現するのはめんどくさいですが,「いずれか 1 つ以上をみたす」ならば「 $\forall x,y (\ \langle x,y \rangle \in R \ \lor \ x=y \ \lor \ \langle y,x \rangle \in R \)$ 」と書き表せます.勉強会中に出た意見として「いずれか 1 つをみたす」は例えば

$$\forall x, y ((\langle x, y \rangle \in R \leftrightarrow x = y \leftrightarrow \langle y, x \rangle \in R) \land \neg (\langle x, y \rangle \in R \land x = Y \land \langle y, x \rangle \in R))$$

と表せます. ここで ↔ は双条件記号です.

ここで「いずれか 1 つをみたす」という三分律を強三分律,「いずれか 1 つ以上をみたす」という三分律を弱三分律を呼ぶことにしてみます。もちろんこの命名理由は強三分律から弱三分律を導出できることが明らかだからです。

Definition 0.0.34 (同値類 (E:p6, K:p9)).

集合 A 上の同値関係 R と $x \in A$ に対して $[x] \stackrel{\text{def}}{=} \{ y \mid \langle x, y \rangle \in R \}$ とし、これを x の equivalence class(同値類)という. さらに集合 $\{ [x] \mid x \in A \}$ を $A \setminus R$ で表し、集合 A の同値関係 R による quotient set(商集合)という. 35

Proposition 0.0.35 (E:p6, K:p9).

集合 A 上の同値関係 R に対して, A の各要素の同値類全体, つまり R による A の商集合は A の分割となる.

³⁵テキストでは定義してなかったですが、すぐ下の補題を示すときに記法として欲しかったので定義しておきました.

Proof $A \subseteq \mathcal{P}(A)$ が A の分割であるとは、A が $\emptyset \notin A$ かつ互いに素で、さらに $\bigcup A = A$ をみたすこととし、これを $\{[x] \mid x \in A\} \subseteq \mathcal{P}(A)$ 、つまり先に定義した $A \setminus R$ に対してこれを示す.

$\emptyset \notin A \backslash R$ であること

同値類の定義から $\forall x(x \in [x])$, つまりどの同値類も空でないので $A \setminus R$ のどの要素も空でない.

A\R が互いに素であること

任意に $X \neq Y$ な $X,Y \in A \setminus R$ をとると、それぞれに対し $x,y \in A$ が存在して X = [x], Y = [y] となっている.

 $[x]\cap [y]=\emptyset$ であることを示すため, $z\in [x]\cap [y]$ なる z が存在したとする. $z\in [x]$ より $\langle x,z\rangle\in R$, 同様に $\langle y,z\rangle\in R$. $\langle y,z\rangle\in R$ と R が A 上の同値関係より対称的であることから $\langle z,y\rangle\in R$. さらに $\langle x,z\rangle\in R$ と R が推移的であることから $\langle x,y\rangle\in R$.

ここで $\forall a,b \in A(\ \langle a,b \rangle \in R \rightarrow [a] = [b] \)$ である. (この証明には必要ないが $\forall a,b \in A(\ [a] = [b] \rightarrow \langle a,b \rangle \in R \)$ 、つまり $\forall a,b \in A(\ \langle a,b \rangle \in R \Leftrightarrow [a] = [b] \)$ も示せる)

: 任意に $a,b \in A$ をとり $\langle a,b \rangle \in$ とする. $[a] \subseteq [b]$ を示すためさらに任意に $c \in [a]$ をとる. $\langle a,b \rangle \in R$, $\langle a,c \rangle \in R$ より R が対称的かつ推移的なので $\langle b,c \rangle \in R$, つまり $c \in [b]$. 同様にして $[b] \subseteq [a]$ であることもわかる. つまり [a] = [b].

よって $\langle x,y\rangle \in R$ から [x]=[y] であるが、これは仮定の $[x]\neq [y]$ 、つまり $X\neq Y$ に矛盾.

 $\bigcup A \backslash R \subseteq A$ であることは明らか. $A \subseteq \bigcup A \backslash R$ を示すため任意に $x \in A$ をとる. R が A 上反射的であることから $x \in [x]$ 、そして $[x] \subseteq A \backslash R$ より $x \in \bigcup A \backslash R$.

ここからはテキスト通り、集合の濃度の話に移ります(可算までしかでてこないけど).

Notation 0.0.36 (E:p6, K:p9).

自然数全体の集合 $\{0,1,2,\ldots\}$ を \mathbb{N} で表す³⁶

ここに「個々の自然数そのものを集合を使って定義する方法もあります」とあって、テキストにある通り、それに触れている○○節を見ると、*ZF* 公理系からの数学展開でよくやる Neumann 流の順序数の定義の仕方を使うものでした.

Definition 0.0.37 (E:p6, K:p9).

集合 A に対して

- 1. 集合 A が finite(有限)であるとは、ある自然数 $n \in \mathbb{N}$ と A から $\{0,1,\ldots,n-1\}$ 写像 f があって、f が全単射になって いることをいう(論理式で書くと $\exists n \in \mathbb{N} \exists f(\ f \colon A \xrightarrow[\text{onto}]{1-1}]{1-1} \{0,1,\ldots,n-1\}$)).
- 2. 集合 A が infinite(無限)であるとは、有限でないときをいう. つまり任意の $n \in \mathbb{N}$ に対して A から $\{0,1,\ldots,n-1\}$ への全単射写像が存在しないことをいう. 言い換えればどんな A から $\{0,1,\ldots,n-1\}$ の写像も全単射にならないともいえる. 37
- 3. 集合 A が at most countable (高々可算) であるとは, A から \mathbb{N} への単射写像が存在するこという.
- 4. 集合 A が countable (**可算**) であるとは, A から \mathbb{N} への全単射写像が存在するこという. ³⁸

³⁶テキストではなぜか二度目の記法の導入でした.

³⁷よくよく見てみれば「無限」であるということはキチンと定義されていなかったので追加しました。一般的には無限とは有限でないという定義なので(それゆうに説明する必要がなかったのかも)。ここでいる有限の完美の不完をその完美とすることにしました。

れゆえに説明する必要がなかったのかも),ここでいう有限の定義の否定をその定義とすることにしました. 38テキストではここでいう「高々可算」を「可算」と呼んでいます.つまり「高々可算」と「可算」を区別してません.個人的には高々可算は便利な言葉だと思っているのと,他のノートとの整合性をとるためにも高々可算と可算は区別しておこうと思います.ちなみに高々可算の「高々」は数学特有の言葉として説明しているものもあります.もし「高々有限」をこれと同じように定義すると、 $\exists n \in \mathbb{N} \exists f(\ f\colon A \xrightarrow{1-1} \{0,1,\dots,n-1\})$ となります.なので個別に「高々〇〇」を定義することも可能でしょうし,「高々〇〇」は〇〇であることを強調する,特有の言葉遣いとして説明する方法もありそうです.日常言語的には「せいぜい」とか「しょせん」とかそういう使い方です.「高々」を説明しているものとしては,例えば『Wikipedia 『高々(数学)』』 [4] や『数学ビギナーズマニュアル 第 2 版』 [68] の 37 ページなどです.

勉強会中にでた指摘として、英語圏ではここでいう高々可算を countable、可算の方を denumerable などと呼ぶ人もいたり、またはその逆だったりとまだ用語として統一されている様子ではないようです.

Proposition 0.0.38 (E:p6, K:p9).

有限集合は高々可算. ■

Proof A を有限集合とすると、その定義より A に対し存在する $n \in \mathbb{N}$ と $f: A \to \{0,1,\ldots,n-1\}$ をそれぞれ固定します. $f_{\mathbb{N}}: A \to \mathbb{N}$ を $f_{\mathbb{N}}(a) = f(a)$ で定義すれば、 $f_{\mathbb{N}}$ は確かに A から \mathbb{N} への写像であり、f が単射であることから $f_{\mathbb{N}}$ が単射であることも明らかである.

Proposition 0.0.39 (E:p6, K:p9).

高々可算な無限集合 A に対して A から \mathbb{N} への全単射写像が存在する.

Proof 高々可算な無限集合 A に対して、その定義から存在する単射写像 $f: A \to \mathbb{N}$ を 1 つ固定する。もし f が全射ならばそれで証明終わりなので、f は全射でない、つまり $\operatorname{ran}(f) \neq \mathbb{N}$ とする。 $n_i \in \mathbb{N}$ を $\operatorname{ran}(f)$ の中での i 番目に小さい数、つまり $n_0 = \min \operatorname{ran}(f)$ 、 $n_{i+1} = \min (\operatorname{ran}(f) \setminus \{n_0, \dots, n_i\})$ と帰納的に定義する。ここで A が無限であることと f が単射であることから、 $\operatorname{ran}(f)$ は無限集合なので、 n_i をとる操作が有限で止まったりはしないことに注意。

そして $\operatorname{ran}(f) = \{n_i \mid i \in \mathbb{N}\}$ である. $g: \mathbb{N} \to A$ を $g(i) = f^{-1}(n_i)$ で定めると, g はその作り方から全単射であり, $f': A \to \mathbb{N}$ を $f'(a) = g^{-1}(a)$ で定めると, これもその作り方から A から \mathbb{N} への全単射である.

テキストの口語的な説明の方が分かりやすいとは思ったけれど、あえて厳密に書くとこんな感じなのかなと、ようは A の要素を並び替えたいわけですが、そのときの並べ方として f による値域の中で小さいもの順に並べている感じです。

Theorem 0.0.40 (E:p6 THEOREM 0B, K:p10 定理 0B).

Aを高々可算集合とするとき、Aの要素からなる有限列全体の集合も高々可算.

Proof S を A の要素からなる有限列全体の集合とすると、有限列の定義 Definition 0.0.22 (68 ページ) から $S = \bigcup_{n \in \mathbb{N}} A^{n+1}$ となる. A が高々可算集合であるから、A から \mathbb{N} への単射 f を 1 つ固定する. S から \mathbb{N} への写像 g を、 $s = \langle a_0, \ldots, a_m \rangle \in S$ に対して

$$g(s) = \min \{ 2^{f(b_0)+1} \cdot 3^{f(b_1)+1} \dots p_n^{f(b_n)+1} \mid s = \langle b_0, \dots, b_n \rangle \land \langle b_0, \dots, b_n \rangle \in \mathcal{S} \}$$

で定める. ここで p_i は i 番目の素数を表しているとする.

ここで $g' \colon \mathcal{S} \to \mathbb{N}$ を, $g'(\langle a_0, \dots, a_m \rangle) = 2^{f(a_0)+1} \cdot 3^{f(a_1)+1} \dots p_m^{f(a_m)+1}$ と定めると, g はこの g' を用いて, $g(s) = \min\{g'(s') \mid s' \in \mathcal{S} \land s' = s\}$ や, $g(s) = \min g'[\{s' \mid s' \in \mathcal{S} \land s' = s\}]$ と書くことができる.

そしてgは well-defined である(これについてのさらなる議論は証明後に).

:: S のような集合は、Example 0.0.25(70 ページ)の 2 つ目の A のように $s_1 = \langle a_0, \ldots, a_m \rangle, s_2 = \langle b_0, \ldots, b_n \rangle \in S$ で、その長さが異なる、つまり $m \neq m$ であるにも関わらず、(集合として) $s_1 = s_2$ となる場合がある。そのような場合でも $g(s_1) = g(s_2)$ となることを確かめればよい。そしてそんな s_1, s_2 に対しても

$$g(s_1) = \min\{g'(s) \mid s \in \mathcal{S} \land s = s_1\}$$
$$= \min\{g'(s) \mid s \in \mathcal{S} \land s = s_2\}$$
$$= g(s_2)$$

となって, $g(s_1) = g(s_2)$ である.

写像 g は単射である.

: 任意に $s_1 \neq s_2$ なる $s_1, s_2 \in \mathcal{S}$ をとり, $g(s_1) = g(s_2)$ だったとする. $g(s_1) = g(s_2)$ より $\min g'[\{s \in \mathcal{S} \mid s = s_1\}] = \min g'[\{s \in \mathcal{S} \mid s = s_2\}]$ だから, $n \in g'[\{s \in \mathcal{S} \mid s = s_1\}] \cap g'[\{s \in \mathcal{S} \mid s = s_2\}]$ なる $n \in \mathbb{N}$ が存在することになる. そんな n に対して g(s) = n かつ $s = s_1$ かつ $s = s_2$ なる $s \in \mathcal{S}$ が存在することになる. するとこの s を介して $s_1 = s_2$ となるが、これは矛盾.

よってそんな単射写像 g の存在から S は高々可算である.

証明に関するさらなる議論として、テキストでは $g(s)=g(\langle a_0,\dots,a_m\rangle)=2^{f(a_0)+1}\cdot 3^{f(a_1)+1}\dots p_m^{f(a_m)+1}$ と定義してしまうと、つまり g' を g の定義としておくと、(こちらの方が各有限列を 1 つの自然数に対応させようと、素数を使ってコーディングしようとしている意図が伝わって分かりやすいものの)、g は well-defined にならないことが書いてあります.どのような場合に well-defined にならないか具体的な例を挙げてみると、well-defined 性を確かめている部分にも書いてある通り、 $A=\{0,1,\langle 0,1\rangle,\langle 0,1,0\rangle\}$ とし、その要素からなる以下のような 2 つの有限列 s_1,s_2 を、

$$s_1 = \langle \langle 0, 1, 0 \rangle, 1 \rangle,$$

 $s_2 = \langle \langle 0, 1 \rangle, 0, 1 \rangle$

としてみる. すると 2 つの列は見かけ(の長さ)は違うものの、 $Example\ 0.0.25$ (70 ページ)で説明した通り、集合としては同じものです。そして $\mathbb N$ への単射を

$$f(0) = 0, \ f(1) = 1, \ f(\langle 0, 1 \rangle) = 2, \ f(\langle 0, 1, 0 \rangle) = 3$$

のように定めてみれば,

$$g(s_1) = 2^{f(\langle 0,1,0\rangle)+1}3^{f(1)+1} = 2^43^2,$$

$$g(s_2) = 2^{f(\langle 0,1\rangle)+1}3^{f(0)+1}5^{f(1)+1} = 2^33^15^2$$

となり $g(s_1) \neq g(s_2)$ となりますが、集合としては $s_1 = s_2$ であるため、 $g(s_1) = g(s_2)$ とならなくてはならず、口語的には写る先が 1 つに定まらないともいえて、これでは g が写像としては矛盾しています。

Example 0.0.25 (70 ページ) のすぐ下でも書きましたが、有限列は写像でもって定義することもできます。例えば上の例にだした s_1, s_2 も、 $s_1 : \{0, 1\} \rightarrow A, s_2 : \{0, 1, 2\} \rightarrow A$ で、

$$s_1(0) = \langle 0, 1, 0 \rangle, \ s_1(1) = 1,$$

 $s_2(0) = \langle 0, 1 \rangle, \ s_2(1) = 0, \ s_2(2) = 1$

と定めれば、(写像として) $s_1 \neq s_2$ です.すると写像 g を、s: $\{0,\ldots,m\} \to A$ に対し s(i)=a なる $a \in A$ を a_i と表すことに すれば、つまり

$$g(s) = 2^{s^{-1}(a_0)+1} \cdot 3^{s^{-1}(a_1)+1} \dots p_m^{s^{-1}(a_m)+1}$$

と定めれば、 39 $g(s_1) \neq g(s_2)$ となって写像としても well-defined となり、上のように min を使う必要もなくなります。つまり写像で定義すれば、順序対の入れ子構造で定義したときのように長さが違うがモノとして異なるような例は、A がどんな集合でも生まれることはありません。なぜなら写像で定義した場合の「列の長さ」とは定義域の要素の数のことであり、つまり長さが違えば、それはつまり写像として定義域が異なることになって、その対応規則がどうあれ一致することはないからです。

そうは言い切ったものの、そのあとで本当にそうなのか疑問に思ってしまいました。なぜなら写像も順序対の集合であり、そうなると順序対を集合で書き直せば、集合だけを用いて書き直すことができます(順序対よりも構造がかなり複雑にはなっていると思うが)。そうなると長さが異なるが集合として一致する順序対の例があるように、定義域が異なる(つまり含まれる順序対の数が一致しない)が、集合としては一致することはあるのだろうか?今後の課題としておきます。

 $^{^{39}}$ テキストでは導入されていないけれど, s^{-1} は s の逆写像を表しています.

Future research topics 0.0.41.

対応規則(の数や内容)が異なる(写像としては異なるように見える)が,要素になっている順序対も全て集合に書き直したとき,集合として一致するような写像の組み合わせは存在するか?

ここから tree (木) についての話題が始まりますが、今後どれほど大事なのか分からないので、一旦飛ばすことにします。

続いて選択公理の話題が入ります.テキストでは「問題となる定理を可算な言語の場合に制限することで,選択公理の使用はたいてい回避できます」とあります.

Definition 0.0.42 (E:p7, K:p12).

集合族 \mathcal{C} が chain(鎖)であるとは、任意の $X,Y \in \mathcal{C}$ に対して $X \subseteq Y$ か $Y \subseteq X$ のいずれかが成立することをいう.

Lemma 0.0.43 (E:p7 ZORN'S LEMMA, K:p12 ツォルンの補題).

集合族 Aが

任意の $C \subseteq A$ が鎖ならば $\bigcup C \in A$

を満たすとき, A には超集合関係にて極大な要素 A が存在する, つまり A はどの $X \in A$ に対しても $A \subsetneq X$ となることはない.

基数

<u>Definition</u> 0.0.44 (E:p8, K:p12).

集合 A,B に対して A から B への全単射写像が存在するとき, A と B は equinumerous(**対等**)であるといい, $A \sim B$ で表す.

Proposition 0.0.45 (E:p8, K:p12).

№ と整数全体の集合は対等である.

Proposition 0.0.46 (E:p8, K:p12).

任意の集合 A, B, C に対して以下の 3 つが成立する.

- 1. $A \sim A$.
- 2. $A \sim B$ $\Leftrightarrow B \Leftrightarrow A$.
- 3. $A \sim B$ かつ $B \sim C$ ならば $A \sim C$.

テキストでは単純に「対等である関係が反射的、対称的かつ推移的であることは容易に確かめられる」と書いてあり、この記述は少し雑だと思いました。前の定義を見ると「関係〇〇が反射的」というのは本来ある集合 A を用いて「関係〇〇が集合 A 上で反射的」という風に、「何の集合上で」かを語るべき述語です。ここでの対称的と推移的は「どの集合上かは」記述する必要はなかったです。もちろん何を証明すればよいかが伝わるかどうかで見えれば、伝わるとは思います。なので雑というのは、この「反射的」という言葉遣いに対しての感想なのですが、なぜ何故書かなかったかも推測することはできます。かなり細かいことをいえば、オブジェクトな「関係」とメタな「関係」が公理的集合論には存在します。実際に存在を保証されている集合 A を用いて B となっているような B は、集合でもあるからオブジェクトな「関係」です。一方この対応関係 B というのは、同値関係と同じような論理式を満たしはするものの、上の B における集合 B に相当するものが存在ません。なぜなら対等関係とはある意味「全ての集合の集合」上の同値関係ということになりますが、公理的集合論において「全ての集合の集合」とは集合にはなりません(こういうのは真のクラスと呼んだりします)。なのでそのような説明を避けるために、ある意味雑に書くしかなかったのでは推測します。

Definition 0.0.47 (E:p8, K:p13).

集合 A に対して card(A) を、任意の集合 B に対して

$$card(A) = card(B) \leftrightarrow A \sim B$$

を満たすものとし、 40 これを A の cardninal numger(基数)または cardinality(濃度)という.

ここの基数の定義は(数学的な)基数を始めて見る人にとってはかなり分かりにくいのではないでしょうか?また逆に一度でも具体的なモノとして基数を定義したことがあるならば,それこそここに書いてあるように順序数を厳密に定義した上で,その中で特別な順序数として基数を定めたことがあるならば,この定義は本当に自分が知っている基数と同じものなのか不安に思うかもしれないです。著者自身はこの定義で問題ないと書いてあります。ならば,この定義のやり方で納得できるよう,もう少し補足してみます。この定義の最大の不満点は基数というモノを,具体的に構成することなく,その性質でもって定義していることだと思われます。テキストにある通り,よくよく考えれば,私たちは 2 が「何か」は具体的に知らないのに,2 のその性質「1 の次の数である」とか,関係する事実「1+1 の演算結果」といったものから捉えて,上手に 2 を利用できています。「数」はある種極端な例としても,そのようなことは数以上に抽象的な数学の議論の中でも行われています。私が思い浮かぶ例としては「順序対」です。このテキストでは x と y の順序対 $\langle x,y\rangle$ を, $\langle x,y\rangle$ = $\{\{x\},\{x,y\}\}$ でもって具体的に(集合でもって)定義しています。しかし、テキストによっては

$$\forall x' \ y' \ (\langle x, y \rangle = \langle x', y' \rangle \rightarrow x = x' \land y = y')$$

をみたす組 $\langle x,y \rangle$ のこととして、つまり順序対が満たしてほしい性質でもって定義しているものもあります(例えば [58] の 50 ページ、[67] の 14 ページ、[61] の 75 ページなど). 単純に平面上の 1 点の座標の表現としてとか、直積集合の要素としてとかで順序対を必要としている場合は、これで十分です。著者の専門分野的に基数の理解が浅いということはありえないので、このテキストにおける基数の扱いも、先の [67] での順序対と同じようなもので、著者なりの基数についての必要最低限がこの定義だと思います。

Definition 0.0.48 (E:p8, K:p13).

集合 A, B に対して、ある $B' \subseteq B$ があって $A \sim B'$ であるとき、A dominated by B (A は B で**おさえられている**) といい、 $A \prec B$ で表す.

Proposition 0.0.49 (E:p8, K:p13).

 $A \prec B$ であるとき, A から B への単射写像が存在する.

Definition 0.0.50 (E:p8, K:p14).

集合 A, B に対して $A \leq B$ であるとき, $card(A) \leq card(B)$ であるとする. ⁴¹

原著では上記の定義は「 $\operatorname{card}(A) \leq \operatorname{card}(B)$ 」で、和訳では「 $\operatorname{card}(A) \leqslant \operatorname{card}(B)$ 」になっています.これはおそらくこの部分だけでなく、原著は前者で統一されていて、和訳は後者で統一されています.これはなぜかと和訳者である嘉田氏に聞いたところ、版元の仕様らしいです.つまり嘉田氏のソースファイルでは「 \leq 」となっていますが、印刷物として出力したときに「 \leqslant 」となるようです.今後このノートでは原著にあわせて(特に不都合もなさそうなので) \leq で統一することにします.

Proposition 0.0.51 (E:p9, K:p14).

任意の集合 A, B, C に対して以下の 2 つが成立する.

- 1. $A \leq A$.
- 2. $A \leq B$ かつ $B \leq C$ ならば $A \leq C$.

Proposition 0.0.46 (77 ページ) と同様ここもテキストでは、「「おさえられる」という関係は反射的かつ推移的」と書いてあります。しかし Proposition 0.0.46 (77 ページ) 下の注意事項が同じように当てはまることに注意します。

 $^{^{40}}$ テキストでは「 $\operatorname{card}(A)$ 」は「 $\operatorname{card}A$ 」と書いていますが、手書きでの見やすさも考慮して、また普段の自分の記法ともあわせて、このノートでも「 $\operatorname{card}(A)$ 」と書くことにしました.

 $^{^{41}}$ 欧米では「大きい(小さい)かまたは等しい」という記号を書くとき、イコールを表す部分が「 \leq 」のように二重線になっているものは使わないと聞いたことがあります。Wikipedia にもそう書いてあったり(例えば [18] とか)。また同じ二重線でないものとして「 \leqslant 」も使われるようです。これは使用者の好みに寄るのかな。

Proposition 0.0.52 (E:p9, K:p14).

 $A \prec \mathbb{N}$ であることと, A が高々可算であることは同値.

Theorem 0.0.53 (E:p9 SCHÖDER-BERNSTEIN THEOREM,

K:p14 シュレーダー・ベルンシュタイン (Schröder-Bernstein) の定理).

集合 A, B と, 基数 κ, λ に対して,

- (a) $A \leq B$ かつ $B \leq A$ ならば $A \sim B$.
- (b) $\kappa \leq \lambda \text{ bol } \lambda \leq \kappa \text{ bol } \kappa = \lambda.$

Theorem 0.0.54 (E:p9 THEOREM 0C, K:p14 定理 0C).

集合 A, B と、基数 κ, λ に対して、

- (a) $A \leq B$ または $B \leq A$ の少なくとも一方が成り立つ.
- (b) $\kappa \leq \lambda$ または $\lambda \leq \kappa$ の少なくとも一方が成り立つ.

Notation 0.0.55 (E:p9, K:p14) .

 $\operatorname{card}(\mathbb{N})$ を \aleph_0 で, $\operatorname{card}(\mathbb{R})$ を 2^{\aleph_0} で表す.

Definition 0.0.56 (E:p9, K:p15).

集合 A, B とその基数 $\operatorname{card}(A) = \kappa, \operatorname{card}(B) = \lambda$ に対して、その演算 $+, \cdot$ を以下のように定める.

- 1. $A \cap B = \emptyset$ のとき, $\kappa + \lambda = \operatorname{card}(A \cup B)$.
- $2. \kappa \cdot \lambda = \operatorname{card}(A \times B).$

Theorem 0.0.57 (E:p9, K:p15).

選択公理を仮定する. どんな無限集合も可算な無限部分集合をもつ.

Proof 任意に無限集合をとり、それを A とおく、 $A = \mathcal{P}(A) \setminus \{\emptyset\}$ とおくと、A は空でない集合の空でない集合族である。よって選択公理より A には選択関数 $f: A \to A$ が存在する、つまり $\forall X \in \mathcal{A}(f(X) \in X)$ をみたす f が存在するので、そんな f を 1 つとって固定する。 $a_i \in A$ を帰納的に以下のように定める。

$$a_0 = f(A),$$

 $a_{i+1} = f(A \setminus \{a_0, a_1, \dots, a_i\})$

 $A' = \{a_i \mid i \in \mathbb{N}\}$ とおくと, A が無限集合であることから A' も無限集合であり, 明らかに A' は可算な A の部分集合である. \square

Theorem 0.0.58 (E:p9 CARDINAL ARITHMETIC THEOREM, K:p15 基数算術の定理) . $\kappa \le \lambda$ かつ λ が無限な基数 κ , λ に対して,

- 1. $\kappa + \lambda = \lambda$.
- $2. \kappa \neq 0$ $\lambda \in \mathcal{K}$ $\kappa \cdot \lambda = \lambda$.
- $3. \kappa$ が無限ならば $\aleph_0 \cdot \kappa = \kappa$.

Theorem 0.0.59 (E:p10 THEOREM 0D, K:p15 定理 0D).

無限集合 A に対して, A の要素からなる有限列全体の集合 $\bigcup_{n\in\mathbb{N}}A^{n+1}$ の濃度は $\operatorname{card}(A)$ と同じ.

Proof 任意の $n \in \mathbb{N}$ に対して $\operatorname{card}(A^{n+1}) = \operatorname{card}(A)$ である.

souji ノート 80

:: これは $n \in \mathbb{N}$ についての数学的帰納法から示せる.

(Basis) $A^{0+1} = A$ より明らか.

(Induction step)

ある $n \in \mathbb{N}$ について $\operatorname{card}(A^{n+1}) = \operatorname{card}(A)$ が成立しているとする. その定義から $A^{(n+1)+1} = A^{n+1} \times A$ であり, Definition 0.0.56 (79 ページ) から

$$\operatorname{card}(A^{n+1} \times A) = \operatorname{card}(A^{n+1}) \cdot \operatorname{card}(A)$$

= $\operatorname{card}(A) \cdot \operatorname{card}(A^{n+1})$

Theorem 0.0.58 (79ページ) における κ, λ を $\kappa = \operatorname{card}(A), \lambda = \operatorname{card}(A^{n+1})$ とすると,

$$= \operatorname{card} A^{n+1} = \operatorname{card}(A)$$

よって $\operatorname{card}(A^{(n+1)+1}) = \operatorname{card}(A)$ である.

すると
$$\bigcup_{n\in\mathbb{N}} A^{n+1} = A \cup A^2 \cup A^3 \cup \dots$$
 より、

$$\operatorname{card}(\bigcup_{n \in \mathbb{N}} A^{n+1}) = \operatorname{card}(A) + \operatorname{card}(A^2) + \operatorname{card}(A^3) + \dots$$
$$= \operatorname{card}(A) + \operatorname{card}(A) + \operatorname{card}(A) + \dots$$
$$= \aleph_0 \cdot \operatorname{card}(A)$$

そしてもう一度 Theorem 0.0.58 (79 ページ) より

$$= \operatorname{card}(A).$$

Example 0.0.60 (E:p10, K:p16).

実数における代数数的数全体の集合の濃度は № である.

普段研究対象とするようなものでないので, ここで代数的数について定義しておきます(定義は [17] を参考にした).

Definition 0.0.61.

複素数 α が algebraic number(代数的数)であるとは、ある整数係数 n 次多項式 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ $(a_n \neq 0 \text{ かつどの } a_i \text{ も整数})$ があって、 α が f(x) の根になっている、つまり $f(\alpha) = 0$ をみたすことをいう.代数的数でない複素数は transcendental number(超越数)とよぶ.

ただテキストでは実数の中での複素数にだけ注目しているように思われるので, 実数の中での代数的数のみに注目して, そんな数の集合が可算であることを示します.

Proof 実数かつ代数的数全ての集合を A とおく. この A が可算であることを示す. ある $n \in \mathbb{N}$ に対して, 全ての n 次多項式の全ての実数根を集めた集合を A_n とおく. つまり,

$$A_{0} = \{ \alpha \in \mathbb{R} \mid \exists f(x) = a_{0}(f(\alpha) = 0) \} = \mathbb{Z},$$

$$A_{1} = \{ \alpha \in \mathbb{R} \mid \exists f(x) = a_{1}x + a_{0}(f(\alpha) = 0) \},$$

$$\vdots$$

$$A_{n} = \{ \alpha \in \mathbb{R} \mid \exists f(x) = a_{n}x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0}(f(\alpha) = 0) \},$$

$$\vdots$$

と定めると, $\mathcal{A} = \bigcup_{n \in \mathbb{N}} (A_n)$ となる. そして各 A_n は可算集合である.

:: n 次多項式は $a_0, \ldots, a_n \in \mathbb{Z}$ (ただし $a_n \neq 0$) の組み合わせの数だけ存在する. つまり n 次多項式全体の集合 の濃度は $\operatorname{card}(\mathbb{Z} \setminus \{0\} \times \mathbb{Z}^{n-1})$ であり、これまでの定理を用いて計算を進めると

$$\begin{split} \operatorname{card}(\mathbb{Z} \setminus \{0\} \times \mathbb{Z}^{n-1}) &= \operatorname{card}(\mathbb{Z} \setminus \{0\}) \cdot \operatorname{card}(\mathbb{Z}^{n-1}) \\ &= \operatorname{card}(\mathbb{Z}) \cdot \operatorname{card}(\mathbb{Z}) &= \operatorname{card}(\mathbb{Z}) &= \operatorname{card}(\mathbb{N}) &= \aleph_0 \end{split}$$

であり、つまりn次多項式はどれも可算無限に存在する.

そして各n次多項式の実数根は高々n 個であり、つまり $\operatorname{card}(A_n) \leq \aleph_0^n = \aleph_0$. よって $\operatorname{card}(A_n) = \aleph_0$ である. すると $\operatorname{card}(A) = \aleph_0 \cdot \ker(A_n) = \aleph_0 \cdot \aleph_0 = \aleph_0$ より、A も可算集合である.

第1章 文論理

1.0 形式言語についての、非形式的な注意

とくにテキストの内容に対してコメントすることはありませんでした(そもそも節名通り、厳密な数学的議論を展開する箇所でもないわけで)。

1.1 文論理の言語

この章は文論理が対象です。ではそもそも sentential logic(文論理)とはなにものなんでしょうか? さらに何を学べば文論理を学んだことになるのでしょうか?またこれ以降に登場する一階述語論理(もっといえば他の論理と)とは何が違うのか・何が共通しているのか?そもそも論理を対象にした学問は何をやるべきなのでしょうか?これには私はまだ自分の言葉で答えることはできません。なので私の好きな本である [73] からそんな答えを引用してみます。論理学がどのような学問なのかという問いを,この本の 1 章にて多くの言葉を用いて答えています。続く 2 章にて 1 章で説明したような学問である(現代)論理学がなぜ人工言語を用いるのかが最初から書いてあります。全てを引用すると長くなるので,大事な部分だけ 17 ページから引用すると(句読点はこちらに合わせたが,強調は引用元まま)

「自然言語では命題の論理形式が文法形式におおい隠されてしまうことがある。したがって、自然言語をそのまま使って論理学を展開することは得策ではない。これに対し、記号論言語は、命題内容に気を取られずにその形式を浮かび上がらせるのに好都合だ。なぜなら、記号言語はこれから作るのだから、我々の目的に応じて好きにつくってよいからだ。自然言語を使って我々はいろいろなことをやっている。その様々な用途のうち、「論証の妥当性とは何かを明確にする」という目的だけに役立るように思い切って単純化した言語をつくってしまえばいいわけだ。

さらにこの本によれば「現代論理学とは記号論理学ともよばれるくらいにやたらと記号を使う」とあります。すなわち「○○論理」という対象があったとき、それが記号論理学の対象ならば、上記にあるようにその論理を検証するのに最適な人工言語を用意するところから始まる。また二つの全く別な論理という対象があったとき、この論理たちの最大の違いはその言語にあります(と思われます)。だからこそ上記の本でも「命題論理(このテキストでいう文論理のこと)」という言葉が初めて導入されるのは、一階述語論理という二つ目の人工言語が登場し、それとの違いを比較できるようになってからです。

改めて先の問いに答えると「そもそも文論理とはなにものだろうか?」には他の論理と比較することで、初めて答えれるようになると思われます。もちろんこの時点で上記の本を参考にして、「単純命題の内部構造は問わない論理」と(単純命題とは何かを説明したうえで)答えることもできるかもしれませんが、これはやはりそうでない論理と比較して初めてより分かりやすい答えに近づくと思われます。続いて「何を学べば文論理を学んだことになるのか?」に答えてみると、まずは文論理に適した言語を定め、さらにその言語について構文論・意味論を定める。記号論理学もしくは数理論理学ならばそこからさらに演繹体系を定める。そして構文論・意味論・演繹体系それぞれに関する数学的な定理や、それらを横断するような(たとえば完全性定理など)数学的な定理を証明していくことになります。このステップを踏めば文論理について学んだことになるのかもしれません。そして最後の問い「これ以降に登場する一階述語論理(もっといえば他の論理と)とは何が違うのか・何が共通しているのか?」に答えてみると、まず共通しているのは1つ上の問いの答えにあるステップの踏み方であると思われます。もちろん言語によって出てくる定理の数や内容は異なると思いますが、テキストの進め方は順番を除いて共通しています(と個人的経験から推測する)。そして異なる点は先にも述べた通り、議論の最初に用意する人工言語になると思われます。

学ぶ動機などについてもう一度再確認した理由は、例えばこのテキストでは文論理から一階述語論理へと進みますが、その際に 用意する言語には共通の名前(たとえば整式など)を用いることがあります. つまり整式といったとき、どの論理の(ないし言 語の)整式なのか意識する必要があると思いました.そして例えば「これは文論理の整式だ」と書くときに,「ではその文論理とは?」と聞かれたときに答える用意も必要だと思います.もちろん自分できちんと答えたわけでもないし,明確に答えたわけでもないですが,勉強会の参加者へ道しるべは示せたと思います.数理論理学の数学的な分析・議論が目的の1つである当勉強会において,いささか寄り道に思われる話題ではあったものの,(数学的な議論ではないにしろ)参加者へ向けて答える必要があると思ったので,ここに書いてみました.

ではここから定義する言語についての定義や定理にはすべて「文論理の」という言葉がつくことを注意しておきます.

まずはこれから使う記号という単語を定義します.

<u>Definition</u> 1.1.1 (記号 (E:p13 14, K:p20)).

互いに区別できる無限個のオブジェクトの列を用意し固定する.その列の成分となっているオブジェクトをそれぞれ symbol (記号) とよぶ.

これらの記号のどれもが他の記号の有限な長さの列とは一致しないと仮定したうえで,列の第一成分から以下の表の通りに記号に名前をつける.

記号	名称	注意
(left parenthesis (左括弧)	区切り記号
)	right parenthesis(右括弧)	区切り記号
\neg	negation symbol(否定記号)	日本語でいう「~でない」
\wedge	conjunction symbol(連言記号)	日本語でいう「かつ」
\vee	disjunction symbol(選言記号)	日本語でいう「(包含的な) または」
\rightarrow	conditional symbol(条件記号)	日本語でいう「○○ならば××」
\leftrightarrow	biconditional symbol(双条件記号)	日本でいう「○○のとき, かつ, そのときに限り××
A_1	1個目の sentence symbol(文記号)	
A_2	2個目の sentence symbol(文記号)	
A_n	n 個目の sentence symbol(文記号)	

Table 1.1: (E:p14 TABLE II, K:p21 表 II)

ここでテキストにあるものも含めていくつか注意を述べます. 順番や内容はテキストとは異なっています.

- 1. Table 1.2 の「(」や「)」における注意事項「区切り文字」について これはこの記号を区切り文字として使うということです。区切り文字とは日常言語における「,」や「.」などのことで,文 の読みやすさや文意が伝わりやすくするために用いる文字のことです。すなわちこの文論理の言語においては読みやすく するために「(」や「)」を使うということです。
- 2. Table 1.2 の「∨」の注意事項における「包含的な」について これは日本語における「または」にも排他的なものと包含的なものと二種類あり、この場合の「または」はそのうちの包含的なものの方であるという意味です.排他的な「または」とは、(ざっくり書くと)つなげられた2つの主張が同時に満たされることのない「または」の用法です.たとえば「このランチにはコーヒーまたは紅茶がつきます」といったときの「または」を聞いてコーヒーと紅茶両方を注文する人はいません.つまり注文者はこの「または」を聞いてどちらか1つだけしかもらえないことを理解しています.一方銀行 ATM での通帳とカードのどちらでもできる操作(たとえば入金とか)において、「通帳またはカードを入れてください」といわれたとき、片方だけでも両方入れても同じように動作する(もちろん記帳するかどうかの結果は違いはあるかもしれないけれど).よってこのときの「または」は包含的な方の

souji ノート

「または」です. 1

3. いくつかの記号の総称について

Table 1.2 の中の 5 つの記号 \neg , \lor , \land , \rightarrow , \leftrightarrow ε sentential connective symbol (文結合記号) とよびます.

とくに \lor , \land , \rightarrow , \leftrightarrow たちを 2 項結合記号とよびます. ²

さらに括弧記号2つを総称して単に**括弧記号**とよびます.3

括弧記号と文結合記号をあわせて sentential connective symbol (論理記号) とよびます.

文記号は parameter (パラメータ) (または nonlogivcal symbol (非論理記号)) ともよびます.

また文記号 A_n を n **番目の命題記号**とよぶこともあります.個人的にはこのテキストのように文論理ではなく命題論理, そして命題記号の方がよくみてきたので,このテキストに従い命題記号という単語は使わず文記号とよぶことにする. 4

4. 「互いに区別できる」部分について

ここでの「互いに区別できる」とは数学用語ではなく日常言語的な・メタ理論的な意味であると推測します。ではどのような意味で用いられているかと考えてみると、「それらの記号の運用者によって区別ができる」と意味だと思います。この運用者とは、今まさに紙とペンを持って記号を書きながら勉強している私たちのことかもしれませんし、文論理の言語をプログラミング言語のように実装されたマシン(とそれを処理するアプリケーション)のことを指しています。5

5. オブジェクトについて

このオブジェクトとはテキストにある通り、なんでもよく文論理の展開には無限個あるならばなんでもよいと思います。 6 文論理の展開とは今テキストでやっていることを「実装する」ということを意味していると思います。 実装するとはすなわちこの文論理の記号たちとそれの使い方などを、プログラミング言語を用いて別のプログラミング言語を作るように実装するといったことを意味しています。 べつにプログラミング言語同士の話だけでなく、例えば「ZFC から自然数論を展開可能」を簡単に証明するときに、集合(のように人間にとって思われる)という ZFC におけるオブジェクトを使って、ペアノの公理を満たす集合たちとその上の演算や述語を作って自然数(と人間にとって思われている)を構成する作業も、その作業が似ていることから「ZFC における自然数論の実装」ともよべます。

自然数を使った文論理の簡単な(雑な)実装方法を挙げると、自然数列 $0,1,2,3,\ldots$ を用意して、0,1 に括弧記号、2 から 6 に論理記号、7 以降にパラメータを割り振る。 7 すると記号列 $\langle \neg,A_2\rangle$ は対応した自然数が並んだ $\langle 2,9\rangle$ となります。 つまり人にとっては単なる数字の羅列ではありますが、その解釈は私たちにとって目的としている文論理の記号列と思うわけです。

こういうことは世の中にありふれたことだと思います。現代のコンピュータは0,1のバイナリ情報しかやりとりできない (と思える) わけで、8 画像ファイルも音楽ファイルも0,1 が大量に書き込まれたテキストファイルでしかなく、どのアプ

 $^{^1}$ とはいえ昔とある銀行 ATM に同じように案内されて通帳とカード両方を入れてみたら「最初からやりなおしてください」と言われたことがあったり、つまりこの機械はおそらくいまでは珍しい?排他的な ATM だった。

 $^{^2}$ テキストでは定義していない言葉でしたが、なんとなく意味はわかるし不要かとも思ったけどもあえて定義しておきました.また \neg は1項結合記号とよぶべきかもですが、そんな記号は1つしかないため、そのような総称は必要ないと判断しました.

³これも2項結合記号同様テキストでは定義していない言葉ではあるけれど、なんとなく意味はわかるし不要かとも思ったけどもあえて定義しておきました. ⁴テキストに書いてある命題記号の方の呼び名を使いたい理由はさておき、このノートの説明事項(61)にも書いた通り、新たに自分で証明した内容については proposition(命題)や corollary(系)など名前と番号を付けていくことになっています。とくに proposition は訳すと「命題」なため、「命題」を対象の名前につける数理論理学とは相性が悪いのかもしれません。ただここでの proposition は証明すべき主張にしか使わないようにして、このノートでは他の定義や定理たちと同じように下線を引いていたり太字にしたりして、紛らわしさを排除しているので、併用しても問題はないと思います、脚注部分のような理由で「命題記号」という言葉は使わないようにしておきます。

 $^{^5}$ とは書いてみたもののあまり自信がありません。なぜなら人によって区別できない記号って「字が汚い」場合以外どんなことがあるのだろうかと。でも外国人からすると日本語の漢字の似たものの区別はつきにくいとも聞くし,そんな場合を指しているのだろうか。よくよく考えると数学の手書きの議論において小文字と大文字の c は同時に使うことを避けるか,どちらかにアレンジを加えると思われるので,こういうときに区別がつきにくい記号の用意の仕方といえるのかも。でもマシンによって区別がつきにくい記号とはいったいなんなのだろうか。画像認識しながら数学をやっている機械ならまだしも,それだって画像の解像度や画像処理アプリの性能の問題だと思うし。

⁶そういう意味ではテキストに書いてある通りおはじきは、現実のものに限れば無限個用意できないため不適と思いました.仮に無限個用意できても別の注意にある「互いに区別できる」部分が人にとっては難しそうに感じました.日本語での色の名前が有限しかない([6])ことから、人間が見分けできる色が高々有限種類しかないのでは?名前のない色は RGB 値で表現できるのかもしれないけれどそれでもたかだけ有限でしょう?(256³ くらい?)また色以外で違いをつけようにも大きさや形にも限度はあろうし.まぁ野暮なツッコミかもしれません.

そんなことをする人がいたらかなり変人だと思うが、文論理の言語にある記号をオブジェクトとして使ってもいいと思う。そのままの対応では当たり前すぎるので例えば記号「(」に「 A_1 」を割り当てるといったように。これもやってもよいとはいってもやる人はまずいない、かなり天邪鬼な例え話です。

[「]運用者が人間の場合は、その自然数をその記号だと「思い込む」「頭の中では数を記号に変換する」といった方がいいだろうか。マシンだとその対応でもって変換してくれるアプリケーションを用意するといった感じだろうか。

 $^{^8}$ もちろん 3 進法コンピュータとかもあるんだろうけどあんまり聞かないし…だからここらへんの例え話もコンピュータに関する教養が足りず少し自信がありません.

リで開くかによって出力が変わります(だからこそどのアプリで開くべきかを教えてくれる拡張子に存在意義がある). そうなると $\langle 2,9 \rangle$ と $\langle 29 \rangle$ は人間にとってはかなり見分けがつきにくいですが,機械にとってそもそも列の成分数も違うことから簡単に見分けがつき,そしてその記号の解釈も別のものになります(この実装方法で行くと $\langle 29 \rangle$ は 22 番目の文記号 A_{22} となるから).

集合による実装は、まず集合論内の議論によって自然数を構築する。よく知られた方法としては順序数理論を展開し順序数の中でも特別なものを自然数とする方法です。 すると集合としての自然数を得ることができたので、それを使って(雑なものでよければ)さきの自然数を使ったものと同様にすればよいです。

大事なことはこのテキストでは、定義にある条件をみたしていればどのようなオブジェクトが使われているか、もしくは どのようなオブジェクトで実装されているかは意識しないし、またそれに依存しない理論の話が続いていきます.

ではなぜ、するかどうかも分からない「実装する上での注意」なんてものを著者は併記したのでしょうか?それはおそらく実際に自然数論や集合論を使って文論理の理論を展開することがあるからだと思います. また今後、記号が割り振られたオブジェクトとその記号とを、とくに区別せずに割り振られた方の記号を使って使っていきます. つまり仮に自然数を使って上記のように実装したとしても、オブジェクトとしての0は使わず、それに割り振られた記号「(」を議論のさいには使っていくということです.

6. 「無限個のオブジェクトの列」部分と「列の第一成分から」部分について

単に「無限個のオブジェクト」でも問題なさそうに思えますが、なぜ「無限個のオブジェクト**の列**」としたのでしょうか. これも注意事項 5 と同じように、実装上の注意事項だろうと思います.列にすると並んだ記号たちに、0 から自然数を全て使って番号が付属していると思えます.それこそ数学における数列や、プログラミングにおけるハッシュ関数の返り値のようにです.9 もし使いたい記号(というかその概念や名称)が有限個しかない言語ならば、無限個もオブジェクトが要らず、また列でないなくともよいのかもしれませれ.しかし今から私たちが用意したい記号は無限個の文記号を含むため、オブジェクトも無限個必要です.よってそんな文記号用に無限の空きスペースが必要なので、さきに有限個で済む文記号以外の記号を、オブジェクトの番号の小さいものから割り当てていき、残った無限個のオブジェクトにその番号が小さいものから文記号についている番号の小さいものから割り当てていきます.それが一番分かりやすいと思いますし、だからこそ Definition 1.1.1 において、「列の第一成分から」とテキストにはないものを追加してみました.1 つ上の注意に書いた通り実装方法にはこだわらないので、別にこの注意は不要とは思いましたが、勉強会で話した「お気持ち」をこの時点で伝えるためにも付記しておきました.

また別の実装方法もいくつも存在することを注意しておきます. 自然数を用いた実装方法として 0,1,2,3,... を使って, それぞれに $(,A_1,),A_2,\neg,A_3,\land,A_4,\lor,A_5,\rightarrow,A_6,\leftrightarrow,A_7,A_8,...$ という実装も可能です. しかしこれよりは最初の例の方が分かりやすいし実装しやすいと思います.

ここでの最も気になったポイントは「無限個のオブジェクトの列」, つまり無限個のモノが並んだ列, 無限の長さの列を使っている点です。前章であれだけ(有限)列について厳密に議論していたのに, 無限列については未定義です。上記のような実装方法への注意を気にするならば, 無限列にも言及すべきと思います。おそらく数列や点列のように自然数からオブジェクトの集合への写像でいいと思います。もしかしたら上記の「互いに区別できる」のように, 日常言語的な・メタ理論的な雑な議論であって, そこまで気にするポイントでもないのかもしれません。

7. 「これらの記号のどれもが他の記号の有限な長さの列とは一致しない」部分について

この条件も注意事項 5 と同じように実装上の注意事項だろうと思います。例えば Example 0.0.25 に出したものを使って、こちらで用意したオブジェクトの列を(有限ではあるがいまは気にしない) $\langle 0,1,\langle 0,1\rangle,\langle 0,1,0\rangle\rangle$ として、これに \neg,\to,A_1,A_2 を割り当てたとすると、 $A_1=\langle 0,1\rangle=\langle \neg,\to\rangle$ 、 $A_2=\langle 0,1,0\rangle=\langle \neg,\to,\neg\rangle$ となってしまい、 $S_1=\langle (0,1,0\rangle,1\rangle=\langle A_2,\to\rangle$ \rangle 、 $S_2=\langle (0,1\rangle,0,1\rangle=\langle A_1,\neg,\to\rangle$ となります。つまり意図としては列 S_1,S_2 は異なる列であってほしいのですが、列を集合として扱うこの運用方法からすれば、この 2 つの列は集合として一致しているので同じものとして扱わなくてはい

⁹プログラミングを知っている人に向けて用意した例え話なのだけれど,もしかしたらハッシュを使えないプログラミング言語ってあったりするのかな.かりに基本文法になかったとしてもライブラリや自作関数などで対応できそうだけれども.ちなみにハッシュ関数という言葉は Wikipedia『ハッシュ関数』[12]より拝借した(自分は普段は単にハッシュと呼んでるけれども).

souji ノート 87

けません. よってこのようなことが起こらないためにもこの条件は必要です. この条件と Lemma 0.0.24 (69 ページ) や Example 0.0.25 (70 ページ) の議論もあわせて, もし 2 つの記号の列が $\langle a_1,\ldots,a_m\rangle=\langle b_1,\ldots,b_n\rangle$ で Definition 1.1.1 の 条件をみたす記号ならば, m=n かつ $a_i=b_i$, つまり長さもその成分も同じ列となります.

8. 無限の文記号を用意しない方法

テキストでは無限個の文記号を使う以外の方法が提示されています。1 個の文記号 A とプライム記号 I を使って A_1, A_2, A_3, \ldots の代わりに、 A, A', A'', \ldots とします。こうするとたった 2 個の記号で無限個の記号を用意することができます。なるべくコンパクト(日常言語的な意味)な定義をしようとするならば、これは良い方法に思います。ただ実装するときになると、各文記号に「A にどれだけのプライム記号をつけたのか」という情報を追加しなくてはならないように思いますし、そうなったとき、他の実装方法と比べてどれほど楽になるのかはこの時点では分かっていません。

今後議論するときに「任意の文記号をとる」ということをしていきますが、そのさいに、その任意に取った文記号を表すための記号(つまりメタ文字)として A_1,A_2,\ldots などは使えないので、A や A_n または A' などを使うことにします.ちなみに上記の表の A_n は、それこそ定義を書くためのメタ的な表現であって、実際に n という文字を使った A_n という記号が文論理の記号であるという意味ではありません.

9. オブジェクトの数について

この定義によると、文記号として用意すべきは可算無限個のオブジェクトです。そして文記号以外の記号(つまり論理記号)の数は有限なので、全ての記号を定めるのに必要な個数は結局可算無限個で十分です。可算無限個よりより多くのオブジェクトがあっても構いません。例えば文記号全てを濃度が可算より大きい集合 $\mathbb R$ を使って定めてもよいです。つまり各実数を文記号だと扱うわけです。

テキストにはないが便利のため以下の記法を用意しておきます.

Notation 1.1.2.

その文論理の文記号の集合を PVAR で表す.

上の注意事項より、何が文記号なのかはその時の議論によって変わるので、 $PVAR = \{A_0, A_1, A_2, \dots\}$ や $PVAR = \{A, A', A'', \dots\}$ となったりします.また文記号は常に無限個用意されるので、 $card(PVAR) \ge \aleph_0$ です.

つぎに「表現」という言葉を定義するため、以降日常言語としての表現は使わないよう気をつけます.

Definition 1.1.3 (表現 (E:p15, K:p23)).

Definition 0.0.22 (68 ページ) の用語を用いる.

- 1. 文論理の記号の集合を以降 SYMB で表すことにする.
- 2. SYMB の要素からなる有限列を expression (表現) とよぶ.

またすべての表現の集合を EXPR で表すことにする¹⁰.

また表現 $\langle s_1, \ldots, s_n \rangle$ (ここで各 s_i は SYMB の要素である)をその成分を順番に並べて $s_1 s_2 \ldots s_{n-1} s_n$ と書くこともある.以降どちらの使い方も柔軟に使っていくことにする.

3. $\alpha, \beta \in \text{EXPR}$ に対してそれぞれ $\alpha = \langle a_1, \dots, a_m \rangle$, $\beta = \langle b_1, \dots, b_n \rangle$ とするとき, $\alpha\beta \stackrel{\text{def}}{=} \langle a_1, \dots, a_m, b_1, \dots, b_n \rangle$ として, これを α と β の string concatenation(文字列連結)とよぶ.

さらに 3 つの表現の連結も帰納的に定義する.つまり $\alpha_0,\alpha_1,\ldots,\alpha_{n+1}$ に対して,その全ての結合を $(\alpha_0\ldots\alpha_n)\alpha_{n+1}$ で定義します. 11

明らかに PVAR \subseteq SYMB で, EXPR = $\bigcup_{n\in\mathbb{N}}$ SYMBⁿ です.

表現の 2 通りの表し方についてですが、当然私たちにとって分かりやすいのは $s_1s_2 \dots s_{n-1}s_n$ の方です.なのでその定義に踏み込んで議論する必要がないときには $s_1s_2 \dots s_{n-1}s_n$ の方を優先的に使っていきます.

 $^{^{10}}$ EXPR のような定められた記号の有限列の集合のことは、形式言語理論において記号の集合 A に対して A^* で表すことが多いようです.よって EXPR は SYMB* とも書けます.[54] ではこれのことを SYMB の連接閉包とよんでいます.

¹¹ これはテキストでは定義されていない言葉ではありますが、定義しておくと便利かと思ったのでプログラミングにおける文字列結合演算(例えば [7])を参考に定義しておきました.

souji ノート 88

この文字列結合は EXPR 上の 2 項演算, つまり演算結果 $\alpha\beta$ も表現です. またその意味もその名前のごとく α の列の後ろに β の列をそのまま並べたものになっています.

Example 1.1.4 (E:p15, K:p23).

表現 α, β に対して

- 1. $(\neg A_1)$ という(私たちにとって見やすい表し方をした)表現は厳密には有限列 $\langle (,\neg,A_1,) \rangle$ のことである.
- $2. \alpha = (\neg A_1), \beta = A_2$ とおくとその文字列結合 $\alpha\beta$ は $(\neg A_1)A_2$ に, $(\alpha \to \beta)$ は $((\neg A_1) \to A_2)$ となる.

例の 2 つ目における $((\neg A_1) \to A_2)$ とは, $(\alpha \to \beta)$ の α, β 部分にその表現を代入したものです。Definition 1.1.3 でも使いましたが改めて注意すると, α, β は文論理の記号ではなく, 文論理について議論している表現を変数のように使いたいための私たちの記号です。テキストにない文字列結合の定義をしたのも,そんな変数を用いてより正確に述べるためです。そうでないと(後にでてくるような)代入みたいな概念を用意しなくてはならないと思えたので,そんなめんどくさそうな作業を避けるためにも定義しておきました。

Definition 1.1.5 (式構成操作 (E:p17, K:p25)).

 $\alpha, \beta \in EXPR$ と論理記号に対して

- $\mathcal{E}_{\neg}(\alpha) = (\neg \alpha)$ と定める. より厳密には $\mathcal{E}_{\neg}(\alpha) \stackrel{\text{def}}{=} \langle (, \neg \rangle \alpha \langle) \rangle$ であり、これは Definition 1.1.3 で定義した表現の文字列連結 である. つまり \mathcal{E}_{\neg} は EXPR 上の 1 変数関数である.
- $\mathcal{E}_{\wedge}(\alpha,\beta) = (\alpha \wedge \beta)$ と定める. より厳密には $\mathcal{E}_{\wedge}(\alpha,\beta) \stackrel{\text{def}}{=} \langle (\langle \alpha \langle \wedge \rangle \beta \langle \rangle) \rangle$ であり, \mathcal{E}_{\wedge} は EXPR 上の 2 変数関数である. 同様にして EXPR 上の 2 変数関数として $\mathcal{E}_{\vee}, \mathcal{E}_{\rightarrow}, \mathcal{E}_{\leftrightarrow}$ を定義する.

これらの5つの演算をあわせて formula-building operation(式構成操作)とよぶ.

次に私たちにとって議論する価値のある表現である整式の定義を行います。テキストでは整式のよくある定義を先に行い、そのあとに別の定義を紹介しています。最初に述べた方の定義は帰納的な定義ともよべます。

Definition 1.1.6 (帰納的な整式の定義 (E:p16 17, K:p25)).

well-formed formula (整式) とは以下のように帰納的に定義される. ¹²

- (a) 個々の文記号は整式である.
- (b) α, β が整式ならば, $(\neg \alpha), (\alpha \land \beta), (\alpha \lor \beta), (\alpha \to \beta), (\alpha \leftrightarrow \beta)$ は整式である.
- (c) (a)(b) にあてはまるものだけが整式である.
- (b) の主張とは, すでに整式があったとき, それらの式構成操作の結果もまた整式であると主張しています.

次に紹介する別の定義では、式構成操作を EXPR 上の関数として捉えることに意味があります. 簡単にいうと, 整式とは文記号から始めて式構成操作を有限回適用して構成できる表現のことだと言えますが、この「有限回適用して」の部分を構成列というものを使って厳密に定義できます.

Definition 1.1.7 (構成列と整式 (E:p17 18, K:p26 27)).

表現の集合 EXPR の有限列 $\langle \varepsilon_1, \dots, \varepsilon_n \rangle$ が construction sequence (構成列) であるとは, 各 $i \leq n$ に対して (1) から (3) の いずれかをみたすときをいう.

- (1) ε_i は文記号.
- (2) $\delta \delta j < i \delta \delta \delta \tau \subset \varepsilon_i = \mathcal{E}_{\neg}(\varepsilon_j)$.
- (3) ある j,k < i があって $\varepsilon_i = \mathcal{E}_{\square}(\varepsilon_j, \varepsilon_k)$. ここで \square は 2 項結合記号のいずれかを表す.

 $^{^{12}}$ テキストでは単に「式(formula)」とか,原著だと「wff」などの呼び方も提示されていますが,個人的な理由で整式のみで統一しようと思います.

souji / - ト

ある表現 α で終わる(つまり末項が α である)ような構成列が存在するとき, そんな表現を well-formed formula(整式)とよぶ.

すべての整式の集合は今後 WFF で表すことにします. 13

明らかに WFF ⊂ EXPR です.

 \mathcal{E}_2 を 2 項結合記号の集合とするとき, 有限列 $\langle \varepsilon_1, \dots, \varepsilon_n \rangle$ が構成列であることは論理式で

$$\forall i < n \big(\varepsilon_i \in \text{PVAR} \ \lor \ \exists j < i(\varepsilon_i = \mathcal{E}_{\neg}(\varepsilon_j)) \ \lor \ \exists j, k < i \exists \square \in \mathcal{E}_2(\varepsilon_i = \mathcal{E}_{\square}(\varepsilon_j, \varepsilon_k) \ \big)$$

と書けます. ここで \mathcal{E}_{\square} という書き方は直感的にはわかりやすいですが, まるで \mathcal{E}_{\square} という \square を変数とした関数のようにも見えてしまうので, $\exists j,k < i\exists \square \in \mathcal{E}_{2}(\varepsilon_{i} = \mathcal{E}_{\square}(\varepsilon_{i},\varepsilon_{k})$ の部分は本当は

$$\exists j,k < i \big(\ \varepsilon_i = \mathcal{E}_{\land}(\varepsilon_j,\varepsilon_k) \ \lor \ \varepsilon_i = \mathcal{E}_{\lor}(\varepsilon_j,\varepsilon_k) \ \lor \ \varepsilon_i = \mathcal{E}_{\rightarrow}(\varepsilon_j,\varepsilon_k) \ \lor \ \varepsilon_i = \mathcal{E}_{\leftrightarrow}(\varepsilon_j,\varepsilon_k) \ \big)$$

と書くとよいのかもしれませんが、このノートの前章の論理式の扱いについて述べたような注意事項が活きてきます。つまりここで初めて \mathcal{E}_{\vee} に含まれている \vee と、各論理式をつないでいる \vee とで記号の衝突が起きています。頭の中で完全に区別できている人たち同士で、議論のさいに簡単のためこう書くなら問題はありませんが(それでも多分良い顔はしないと思うけれど)、初学者には余計な誤解やそれによる遠回りを与える可能性があります。ゆえにテキストでは(おそらく意図的に)一貫して(第0章(63ページ)のような、別に論理学に直接関係する概念でなくても)何かを定義するさいには、日常言語で述べることにしたのではと推測します。

Example 1.1.8.

整式 α を ($(A_1 \land A_{10}) \rightarrow ((\neg A_3) \lor (A_8 \leftrightarrow A_3))$) とすると、以下の有限列は

$$\langle A_1, A_3, A_8, A_{10}, (A_1 \wedge A_{10}), (\neg A_3), (A_8 \leftrightarrow A_3), ((\neg A_3) \vee (A_8 \leftrightarrow A_3)), \alpha \rangle$$

その構成列の一例である.

ここでテキストでは系統樹による説明があります(これより前から何度か登場しているけれど). 第0章(63ページ)によると木概念は非形式的な議論にしか使わないと書いてあります. つまり系統樹を使って説明されている事柄は、すべて定義に戻ればより厳密な数学的議論をすることができるということなので、このノートでは系統樹を使った説明は必要だと思ったときにします. 14

Example 1.1.8 で私が書いた構成列には「先に使う文記号は列先頭からすべて書いておく」という、個人的な好みが現れています。ですが、ある整式に対する構成列は 1 つではありません。例えば(私の好みに反する)以下のような(必要になったときに文記号を挿入するような)整式の有限列も

$$\langle A_1, A_{10}, (A_1 \wedge A_{10}), A_3, (\neg A_3), A_8, (A_8 \leftrightarrow A_3), ((\neg A_3) \vee (A_8 \leftrightarrow A_3)), \alpha \rangle$$

整式 α の構成列です.

ここからさらに(この時点で)テキストにない注意を例え話を入れながら追加します.

1. たとえば整式 $(A_1 \wedge A_2)$ の構成列として最も単純なものは $\langle A_1, A_2, (A_1 \wedge A_2) \rangle$ ですが、別に $\langle A_2, A_1, (A_1 \wedge A_2) \rangle$ でもよいです。つまり構成列の定義をみたす範囲で文記号が現れる順番を変えても、また構成列の定義をみたす範囲で余計な整式を構成列に混ぜても大丈夫です。たとえば

$$S_1 = \langle A_1, A_2, A_3, (A_1 \wedge A_2) \rangle,$$

 $S_2 = \langle A_1, A_2, A_3, (\neg A_3), (A_1 \wedge A_2) \rangle$

とおくと、 S_1, S_2 どちらも $(A_1 \land A_2)$ の構成列です.しかし $\langle A_1, A_2, A_3, (A_1 \land A_2), A_3 \rangle$ は整式 A_3 の構成列です.さらに $\langle A_1, A_2, A_3 \rangle$ も $\langle A_3, A_3, A_3 \rangle$ も A_3 の構成列です.

¹⁴決して系統樹を IAT_FX で書くのがめんどくさいとかそういうことではない……もちろん視覚的には系統樹の方が分かりやすいのは知っているのだけれど.

2. ある構成列の始切片もまた構成列で、ゆえになんらかの整式に対応した構成列となります. 例えば

$$S'_{1} = \langle A_{1} \rangle,$$

$$S'_{2} = \langle A_{1}, A_{2} \rangle,$$

$$S'_{3} = \langle A_{1}, A_{2}, A_{3} \rangle,$$

$$S'_{4} = \langle A_{1}, A_{2}, A_{3}, (\neg A_{3}) \rangle$$

とおくと、それぞれ S_2 の始切片で、 S_1' は A_1 の、 S_2' は A_2 の、 S_3' は A_3 の、 S_4' は $(\neg A_3)$ の構成列である.これは単なるたまたまな観察結果ではなく、つまりこの整式だけにあてはまる現象ではなく、すべての整式に対して成立します.これは Proposition 1.1.10(91 ページ)で示してみました.

- 3. また例えば $\langle A_1 \rangle$ は A_1 という整式の構成列ですが, 1 つ組の定義から $\langle A_1 \rangle = A_1$ でもあるから, A_1 そのものは整式でもあり, かつ自分自身の構成列でもあります. 当然これは他の文記号に関しても同様です.
- 4. A_3 , $(\neg A_3)$ という $(A_1 \land A_2)$ に含まれていない文記号からなる整式を S_2 から取り除いても、つまり構成列 $\langle A_2, A_1, (A_1 \land A_2) \rangle$ は依然として $(A_1 \land A_2)$ の構成列のままです。例えば Example 1.1.18(96 ページ)にて、似たような問題を解いています。上記の事をより一般的に証明してみたいので、今後の課題としておきます。

Future research topics 1.1.9.

ある整式の構成列があったとき、その末項整式に含まれていない文記号を持つ整式がその構成列に含まれていた場合に、そのような整式全てを構成列から除いても、その末項整式の構成列であることには変わらない. ■

5. またこの注意たちの前に整式に対応する構成列は 1 つではないと述べましたが,もっといえば無数にあります.例えば単に A_1 という整式の構成列でも,長さが 2 のものに限っても, $\langle A_1, A_1 \rangle$, $\langle A_2, A_1 \rangle$, $\langle A_3, A_1 \rangle$,... など無限にあります.つまり ある整式に対しての構成列は無限に存在しますが,それぞれの構成列は 1 つの整式に対応しています.これを使えば「任意の整式に対して」という形の主張の証明に役立てることができます.どういうことかというと「任意の整式に対して〇〇」ということを示す代わりに,いつでもそうできるとは限りませんが,「任意の構成列に対して〇〇」を示してもよい ということです.15 .

そして構成列は有限列ゆえにどの構成列にもその「長さ」という情報が備わっています。これを利用して「任意の構成列に対して〇〇」を示す代わりに、「任意の長さの構成列に対して〇〇」を証明してもよいことも分かります。こういう風に証明内容を変更する最大のメリットは、証明目標が長さという 0 より大きい自然数に対しての主張に変わったことにより、自然数に関する種々の証明法、それこそ数学的帰納法のような論法を使用可能になったことです。もっと具体的にどのように示すかというと「任意の $n \in \mathbb{N}$ と構成列に対して、その構成列の長さが n ならば〇〇」を示すことになります。つまり証明の最初は任意に長さ n の構成列をとるところからはじまります。

このほかにも表現や整式の単なる長さや整式に含まれる文記号の個数など,表現・整式に備わる様々な「数」を使って証明していくことが可能です.

6. Definition 1.1.6(88ページ)にある定義を採用するテキストもよく見ます. この定義のメリットとしては「任意の整式に対して○○」という主張に対して、**構成に関する帰納法**を使うことができることです. 構成に関する帰納法は **structural induction(構造的帰納法**)と呼ばれることもあるそうです. なので以降は(カッコいい方の)構造的帰納法という呼び名を使っていきます. ¹⁶ これは次の 2 つのことを示すやり方です.

(Basis) すべての文記号が○○をみたすことを示す.

(Induction step) 整式 α, β が○○をみたしているとして, $(\neg \alpha), (\alpha \land \beta), (\alpha \lor \beta), (\alpha \to \beta), (\alpha \leftrightarrow \beta)$ が○○をみたして いることを示す.

 $^{^{15}}$ これまでの観察により構成列の個数は整式の個数よりもはるかに多いため,この証明は整式に対して証明するものと加えるとかなり無駄が多いように思ってしまう.でも証明のやりやすさが上がることもあるし, まぁダブっていても足りなくなっていないのならばそれで OK なのだ.

でも「任意の構成列に対して○○」という形の主張を示すときに,「任意の整式に対して○○」という主張を証明してはいけない. これは明らかに構成列をすべて取りつくしていないから, ということになる.

¹⁶この呼び方は Wikipedia 『構造的帰納法』[15] より知りました.

証明すべきことの名前(Basis とかのこと)は [73] から拝借しました. もちろん [73] では整式の定義は Definition 1.1.6 (88 ページ)と同じようになされています.

ときどき余裕があればこちらのやり方でも証明してみることにします。もしかしたら主張によってはこちらの方が証明がやりやすくなることもあるかもしれません。

では練習がてら自分で簡単な主張を用意して証明してみます.

Proposition 1.1.10.

構成列のどのその真の始切片もまた構成列である.

Proof 証明すべきことは「任意にとった構成列に対して、さらに任意にその構成列の始切片をとると構成列になっている」である。任意に構成列をとるかわりに任意の長さの構成列をとることにすると証明目的は「任意にとった $n \in \mathbb{N}$ と構成列に対して、その構成列の長さが n ならば、さらに任意にその構成列の始切片をとると構成列になっている」となる。この任意にとる n に対して、つまり構成列の長さに関して累積帰納法を使って示す。任意に $n \in \mathbb{N}$ をとる。この帰納法の仮定は「長さが n 未満であるような全ての構成列が、そのどの始切片も構成列になっている」である。いま任意に長さ n の構成列 $\langle \varepsilon_1, \ldots, \varepsilon_n \rangle$ をとり、さらにその真の始切片として $\langle \varepsilon_1, \ldots, \varepsilon_m \rangle$ をとる。つまり m < n である。ここで ε_m は構成列 $\langle \varepsilon_1, \ldots, \varepsilon_n \rangle$ の成分の 1 つなので、

- (1') $\varepsilon_m \in \text{PVAR}$.
- (2') $\exists j < m (\varepsilon_m = \mathcal{E}_{\neg}(\varepsilon_i)).$
- (3') $\exists j, k < m(\varepsilon_m = \mathcal{E}_{\square}(\varepsilon_j, \varepsilon_k))$. ここで \square は 2 項結合記号のいずれかを表す.

を満たしている. つまり「 ε_m は (1') または (2') または (3') をみたす」となっている.

いま有限列 $\langle \varepsilon_1, \dots, \varepsilon_{m-1} \rangle$ は $\langle \varepsilon_1, \dots, \varepsilon_m \rangle$ の真の始切片でかつ帰納法の仮定から構成列なので、任意の $i \leq m-1$ に対して

- (1") $\varepsilon_i \in \text{PVAR}$.
- $(2'') \exists j < i (\varepsilon_m = \mathcal{E}_{\neg}(\varepsilon_i)).$
- (3'') $\exists j, k < i (\varepsilon_m = \mathcal{E}_{\square}(\varepsilon_i, \varepsilon_k))$. ここで \square は 2 項結合記号のいずれかを表す.

を満たしている. つまり「任意の $i \le m-1$ に対して (1'') または (2'') または (3'') をみたす」となっている. ここまでの議論をまとめて「」で囲った 2 つの主張を合わせると, 任意の $i \le m$ に対して

- (1) $\varepsilon_m \in \text{PVAR}$.
- (2) $\exists j < m (\varepsilon_m = \mathcal{E}_{\neg}(\varepsilon_j)).$
- (3) $\exists j, k < m(\varepsilon_m = \mathcal{E}_{\square}(\varepsilon_j, \varepsilon_k))$. ここで \square は 2 項結合記号のいずれかを表す.

を満たしていることになり, これは $\langle \varepsilon_1, \ldots, \varepsilon_m \rangle$ が構成列になっていることを表している.

勉強会ででたコメントとして、整式の定義として最初に登場したのは構成列による定義であり、帰納的な定義は後発であるということです。またそれを紹介しているテキストでは、これらの 2 つの整式の定義が同値であることも証明していると聞きました。それをここでも証明しておきます。 つまり 2 つの定義による整式の集合が同値であることを示すのですが、ややこしさ回避のために、帰納的な定義による整式の集合を CL(SYMB) 17 で、そして構成列によって定義された整式の集合をテキストそのままに WFF を使用することにします。よって以下を示します。

Proposition 1.1.11.

(2 つの整式の定義は同値) CL(SYMB) = WFF.

Proof 互いに部分集合であることを示す.

($CL(SYMB) \subseteq WFF$)

これは上の注意にあった構造的帰納法を使って証明する. つまり以下の2つを示す.

¹⁷これはコメントしてくれた参加者の方の提案. そのテキストでも記号の集合を用いてこのように書かれていたらしい.

任意の文記号は WFF に属する.

任意に文記号 A をとる. すると $\langle \alpha \rangle$ という長さが 1 の表現の列は明らかに構成列であり、その末項が A であることから、そんな構成列の存在によって $A \in WFF$.

任意に $\alpha_0, \alpha_1 \in \text{WFF}$ をとったとき, $(\neg \alpha_0), (\alpha_0 \land \alpha_1), (\alpha_0 \lor \alpha_1), (\alpha_0 \to \alpha_1), (\alpha_0 \leftrightarrow \alpha_1)$ も WFF に属する. i=0,1 に対して $\alpha_i \in \text{WFF}$ より,構成列 $\langle \varepsilon_1^i, \ldots, \varepsilon_{n_i}^i \rangle$ があって,それぞれの末項 $\varepsilon_{m_i}^i$ は α_i になっています.ここで表現の列 $\langle \varepsilon_1^0, \ldots, \varepsilon_{n_0}^0, (\neg \alpha_0) \rangle$ は,明らかの構成列であり,末項が $(\neg \alpha_0)$ であることから,そんな構成列の存在によって $(\neg \alpha_0) \in \text{WFF}$.

続いて表現の列 $\langle \varepsilon_1^0,\dots,\varepsilon_{n_0}^0,\varepsilon_1^1,\dots,\varepsilon_{n_1}^1,(\alpha_0\wedge\alpha_1)\rangle$ は、明らかに構成列であり、末項が $(\alpha_0\wedge\alpha_1)$ があることから、そんな構成列の存在によって $(\alpha_0\wedge\alpha_1)\in {\rm WFF}$. 他の α_i が 2 項結合記号による表現に対しても同様に証明できるので省略.

(WFF $\subseteq CL(SYMB)$)

これは上の注意にあったように,「全ての整式 $\alpha \in \mathrm{WFF}$ に対して $\alpha \in CL(\mathrm{SYMB})$ 」を示す代わりに,「全ての構成列に対してその末項となる表現が $CL(\mathrm{SYMB})$ に属する」を示す.そしてそのために構成列の長さに関して累積帰納法を使って証明する.そのために任意に $n \in \mathbb{N}$ にとる.帰納法の仮定は「長さ n 未満の全ての構成列に対してその末項である表現は $CL(\mathrm{SYMB})$ に属する」となる.任意に長さが n である構成列 $\langle \varepsilon_1, \ldots, \varepsilon_n \rangle$ をとる.これが構成列であることから,その定義より ε_n は以下のいずれかを満たす.

- (1) $\varepsilon_n \in \text{SYMB}$.
- (2) $\exists j < n(\ \varepsilon_n = \mathcal{E}_{\neg}(\varepsilon_j)\).$
- (3) $\exists j, k < n(\varepsilon_n = \mathcal{E}_{\square}(\varepsilon_j, \varepsilon_k)).$
- (1) のとき, $\varepsilon_n \in \text{SYMB}$ から明らかに $\varepsilon_n \in CL(\text{SYMB})$.
- (2) のとき、ある j < n があって $\varepsilon_n = \mathcal{E}_{\neg}(\varepsilon_j)$ となっています.ここで表現の $\langle \varepsilon_1, \dots, \varepsilon_j \rangle$ は構成列 $\langle \varepsilon_1, \dots, \varepsilon_n \rangle$ の始切片であり,Proposition 1.1.10(91 ページ)より $\langle \varepsilon_1, \dots, \varepsilon_j \rangle$ も構成列である.そしてその長さは j, つまり n 未満であることから帰納法の仮定より $\varepsilon_j \in CL(\mathrm{SYMB})$. すると $CL(\mathrm{SYMB})$ は各種の式構成操作で閉じているので, $(\neg \varepsilon_j)$ も $CL(\mathrm{SYMB})$ に属する,つまり $\varepsilon_n \in CL(\mathrm{SYMB})$ である.
- (3) のときも上記とほぼ同様に証明できるので割愛する.

Theorem 1.1.12.

帰納法の原理 (E:p18 INDUCTION PRINCIPLE, K:p27 帰納法の原理) すべての文記号が属し, かつすべての式構成操作について閉じている整式の集合は, すべての整式からなる集合である.

証明の前にいくつか注意事項を書いておく

- 1. 定理の主張の条件をみたしている整式の集合を A で表すことにすると、集合として A = WFF を示すことが証明の目的となる. $A \subseteq WFF$ であることは明らかなので $WFF \subseteq A$ を示すだけでよい. 部分集合の定義に戻ると、これは「任意の整式 α に対して $\alpha \in A$ 」を示すことになったため、Example 1.1.8 下の注意事項 5 にある通り、構成列の長さに関する帰納法、とくにこの場合は累積帰納法を用いて証明する.
- 2. Aがすべての文記号が属するとは、論理式で書けば $A \in PVAR(A \in A)$ となる. また全ての式構成操作について閉じるということをもう少し厳密に見ると、 \mathcal{E}_{\neg} は EXPR 上の 1 項演算、それ以外の式構成操作は EXPR 上の 2 項演算であり、 $A \subseteq EXPR$ である.たとえば \mathcal{E}_{\neg} : EXPR $\rightarrow EXPR$ について、この演算の A への制限と考えることもできる.さらにこの A は \mathcal{E}_{\neg} について閉じている、つまり $\forall \alpha \in A(\mathcal{E}_{\neg}(\alpha) \in A)$ と表すことができる.2 項演算である \mathcal{E}_{\wedge} についても A が \mathcal{E}_{\wedge} について閉じているとは、 $\forall \alpha, \beta \in A(\mathcal{E}_{\wedge}(\alpha, \beta) \in A)$ と表すことができる.他の 2 項演算についても同様である.

Proof 証明すべきことは「任意にとった $n \in \mathbb{N}$ と任意にとった構成列に対して、その構成列の長さがn ならば、その構成列に対する整式(構成列の末項)はAに属する」である。任意にとるnに対して累積帰納法を用いて示す。

任意に $n \in \mathbb{N}$ をとる. 帰納法の仮定は「長さがn未満であるような全ての構成列に対して、それに対応する整式がAに属する」

となる. いま長さ n な任意の構成列 $\langle \varepsilon_1, \dots, \varepsilon_n \rangle$ をとる. この ε_n が A に属することを示すことが目的である. 構成列の定義から ε_n は以下のいずれかをみたす.

- (1) $\varepsilon_n \in \text{PVAR}$.
- (2) $\exists j < n (\varepsilon_n = \mathcal{E}_{\neg}(\varepsilon_i)).$
- (3) $\exists j, k < n (\varepsilon_n = \mathcal{E}_{\square}(\varepsilon_j, \varepsilon_k))$. ここで \square は 2 項結合記号のいずれかを表す.

それぞれの場合について $\varepsilon_n \in A$ であることを示す.

- (1) $\varepsilon_n \in \text{PVAR}$ のとき. 整式 ε_n は文記号一文字の整式であり、仮定より PVAR $\subseteq A$ だから $\varepsilon_n \in A$ である.
- (2) $\exists j < n \big(\varepsilon_n = \mathcal{E}_{\neg}(\varepsilon_j) \big)$ のとき. そのような ε_j を固定する. $\langle \varepsilon_1, \dots, \varepsilon_j \rangle$ は、構成列 $\langle \varepsilon_1, \dots, \varepsilon_n \rangle$ の真の始切片であり、Proposition 1.1.10(91 ページ)より 構成列である. この構成列は ε_j に対応する構成列でその長さは n 未満なので、帰納法の仮定より $\varepsilon_j \in A$ である. そして 仮定より \mathcal{E}_{\neg} が A 上閉じていることから $\mathcal{E}_{\neg}(\varepsilon_j) \in A$ である. つまりこれは $\varepsilon_n \in A$ を表す.
- (3) $\exists j,k < n \big(\varepsilon_n = \mathcal{E}_{\square}(\varepsilon_j,\varepsilon_k) \big)$ (\square は 2 項結合記号のいずれか) のとき. たとえば \square を \wedge として、そんな $\varepsilon_j,\varepsilon_k$ を固定する. $\langle \varepsilon_1,\ldots,\varepsilon_j \rangle$, $\langle \varepsilon_1,\ldots,\varepsilon_k \rangle$ は、構成列 $\langle \varepsilon_1,\ldots,\varepsilon_n \rangle$ の真の始切片であり、 Proposition 1.1.10 (91 ページ) より構成列である.この 2 つの構成列はどちらも長さが n 未満なので、帰納法の仮定より $\varepsilon_j,\varepsilon_k \in \mathcal{A}$ である.そして仮定より \mathcal{E}_{\wedge} が \mathcal{A} 上閉じていることから $\mathcal{E}_{\wedge}(\varepsilon_j,\varepsilon_k) \in \mathcal{A}$ である.つまりこれは $\varepsilon_n \in \mathcal{A}$ を表す. ほかの 2 項結合記号について同様である.

この証明を構造的帰納法にて証明することも可能か確かめてみます.

Theorem 1.1.12 の構造的帰納法による証明 Theorem 1.1.12 の下に書いた注意事項を参考にして, WFF $\subseteq A$, つまり任意に取った整式が A に属することを示す.これについて構造的帰納法を用いる.

(Basis)

任意に文記号 A をとる. 仮定より $A \in A$.

(Induction step)

任意に整式 α, β をとり, $\alpha, \beta \in A$ とする. 仮定よりすべての式構成操作について A が閉じているので $(\neg \alpha), (\alpha \land \beta), (\alpha \lor \beta), (\alpha \to \beta), (\alpha \leftrightarrow \beta)$ はすべて A に属する.

整式全体に関する定理の証明に対して帰納法の原理を使うことができます.

Example 1.1.13 (E:p18 EXAMPLE, K:p28 例).

どの整式もそれに含まれる右括弧・左括弧の個数は同じである. 18

 ${f Proof}$ A を含まれる両括弧記号の数が同じな整式の集合とする. A が全ての整式の集合であることを示せばよい. 以下の 2 点を示せば

- 1. A には全ての文記号 (1 つのみの整式) を含むこと
- 2. A は全ての式構成操作について閉じていること

Theorem 1.1.12 (92ページ) より A = WFF であることがわかる.

1. (A には全ての文記号(1 つのみの整式)を含むこと) 任意に $A \in PVAR$ をとる. A はそれぞれの括弧記号の数は 0 個, つまり両括弧記号の数は同じなので $A \in A$ である.

 $^{^{18}}$ テキストでは「左括弧の数が右括弧の数より多い表現は整式ではない」となっていますが、実際に証明している、テキストにて証明末尾に書いてある主張は、同じ意味ではあるものの、ここに書いたものになっていたので、こちらに合わせました。この例は後で Lemma $^{1.3.1}$ (104 ページ)にて再度登場するけれど、そのときの主張の書き方はこちらの書き方に変わっているので、この書き方でも問題ないと思いました。

2. (*A* は全ての式構成操作について閉じていること)

任意に $\alpha, \beta \in A$ をとり、それぞれの左括弧記号の個数を k_{α}, k_{β} とおくと、 $\alpha, \beta \in A$ より右括弧記号の個数も k_{α}, k_{β} 個である.

 $\mathcal{E}_{\neg}(\alpha) = (\neg \alpha)$ より整式 $\mathcal{E}_{\neg}(\alpha)$ の左右の括弧の数はどちらも $k_{\alpha} + 1$ となって, つまり両括弧記号の数は同じであるので, $\mathcal{E}_{\neg}(\alpha) \in \mathcal{A}$ である. つまり演算 \mathcal{E}_{\neg} について \mathcal{A} は閉じている.

次に $\mathcal{E}_{\wedge}(\alpha,\beta)=(\alpha\wedge\beta)$ より整式 $\mathcal{E}_{\wedge}(\alpha,\beta)$ の左右の括弧の数はどちらも $k_{\alpha}+k_{\beta}+1$ となって, つまり両括弧記号の数は同じであるので, $\mathcal{E}_{\wedge}(\alpha,\beta)\in\mathcal{A}$ である. つまり演算 \mathcal{E}_{\wedge} について \mathcal{A} は閉じている. 他の 2 項結合記号に関しても同様に証明できる.

演習問題

Exercise 1.1.14 (E:p19 1., K:p29 1.) .

日本語の文をみっつ挙げ、それらの文を私たちの形式言語に翻訳しなさい. 文は、なんらかの意味のある構造を持つように、また、翻訳が 15 個以上の記号からなる列になるように選びなさい. ■

Answer 5つの文記号とその日本語での意味を以下のように定める.

 $P_1: \bigcirc \bigcirc$ 月××日の $\triangle \triangle$ 小学校周辺の天気は晴れ

 $P_2: \bigcirc \bigcirc$ 月××日に $\triangle \triangle$ 小学校には運動場がある

 $P_3: \bigcirc \bigcirc$ 月××日に $\triangle \triangle$ 小学校には生徒が1人以上いる

 $P_4:\bigcirc\bigcirc$ 月××日に $\triangle\triangle$ 小学校には教師が1人以上いる

 $Q: \bigcirc\bigcirc$ 月 $\times \times$ 日に $\triangle\triangle$ 小学校にて運動会が開催されている

これらを使って以下のように3つの整式を作る

$$\varphi_{1} = ((((P_{1} \wedge P_{2}) \wedge P_{3}) \wedge P_{4}) \rightarrow Q)$$

$$\varphi_{2} = ((\neg Q) \rightarrow ((((\neg P_{1}) \vee (\neg P_{2})) \vee (\neg P_{3})) \vee (\neg P_{4}))$$

$$\varphi_{1} = ((((P_{1} \wedge P_{2}) \wedge P_{3}) \wedge P_{4}) \wedge (\neg Q))$$

すると φ_1 は「〇〇月××日に△△小学校周辺の天気は晴れで、△△小学校に運動場があり、△△小学校に生徒も教員も 1 人以上いれば、運動会が開催されている」となり、 φ_2 は「〇〇月××日に△△小学校にて運動会が開催されていないならば、同日に△
△小学校周辺の天気が晴れでないか、△△小学校に運動場・生徒・教員のいずれかが存在しない」となり、 φ_3 は「〇〇月××日に△△小学校周辺の天気は晴れで、△△小学校に運動場・生徒・教員も存在するが、運動会は開催されていない」となる. 19 \Box

次の Exercise を証明するための Proposition を証明しておく.

Proposition 1.1.15.

いずれかの式構成操作の結果となっている整式は長さが4以上である. つまり文記号1文字という表現でない整式は, その長さは4以上となる. ■

Proof α は文記号 1 文字という表現でないとする. ある表現 β_1,β_2 があって, $\alpha = \mathcal{E}_{\neg}(\beta_1)$ となっていたとすると, β_1 の長さは 1 以上であるから, α の長さは (,), \neg の 3 つ分長さが増えて 4 以上となる.

 $\alpha = \mathcal{E}_{\wedge}(\beta_1, \beta_2)$ となっていたとすると、 β_1, β_2 のいずれの長さも 1 以上であるから、 α の長さは (,)、 \neg の 3 つ分と β_1, β_2 を合わせて 5 以上となる。 つまりこの場合でも長さは 4 以上となり、他の 2 項結合記号による式構成操作でも同様である。

Exercise 1.1.16 (E:p19 2., K:p29 2.) .

長さが 2,3,6 の整式は存在しないこと、そして、それら以外のすべての正整数の長さをもつ整式は存在することを示しなさい. ■

Proof 以下のように細かく分けて証明する.

 $^{^{19}}$ 問題文によれば、何も同じ記号で 3 つの文章を作れとはなっていないが、めんどくさかったので……また意味のある文章を作るためにもすでに作った φ_1 の、 φ_2 はその対偶に、 φ_3 はその否定とすることで楽をさせてもらった.こういうのはそれこそ教養があると面白い回答を出せるのだろう.

souji ノート

● 長さが2または3のどんな表現も整式でないこと

 α を長さが 2 である表現とする. α はその長さから文記号 1 文字だけの表現ではないため, 何らかの式構成操作の結果であるが, Proposition 1.1.15(94 ページ)よりいずれの式構成操作の結果も長さが 4 以上になり, 長さが 2 である α は整式ではない.

 α の長さが 3 である場合も同様なので省略する.

● どんな長さが6の表現も整式でないこと

 α を長さが 6 である表現とする. よって構成列 $\langle \varepsilon_1,\ldots,\varepsilon_n \rangle$ が存在して $\alpha=\varepsilon_n$ となっている. 構成列の定義から ε_n は以下のいずれかをみたす.

- (1) $\varepsilon_n \in \text{SYMB}$.
- (2) $\exists j < n(\varepsilon_n = \mathcal{E}_{\neg}(\varepsilon_i)).$
- (3) $\exists j, k < n(\varepsilon_n = \mathcal{E}_{\square}(\varepsilon_j, \varepsilon_k)).$

 ε_n の長さが 6 であることから $\varepsilon_n \notin \text{SYMB}$, つまり (1) ではない. そして (2) でもない.

:: もし (2) だったとしてそんな ε_j を固定する. Proposition 1.1.10(91 ページ)より $\langle \varepsilon_1, \dots, \varepsilon_j \rangle$ も構成列 であり, ゆえに ε_i は以下のいずれかを満たす

(2-1) $\varepsilon_j \in \text{SYMB}.$

 $(2-2) \exists j' < n(\varepsilon_j = \mathcal{E}_{\neg}(\varepsilon_{j'})).$

 $(2-3) \exists j', k' < n(\varepsilon_j = \mathcal{E}_{\square}(\varepsilon_{j'}, \varepsilon_{k'})).$

 ε_j は ε_n よりも (,), \neg の 3 つ分長さが短い, つまり長さが 3 なので, 先ほどと同じ理由で (2-1) ということはない.

もし (2-2) だったとしてそんな $\varepsilon_{j'}$ が存在したとすると, 先ほどと同じ理由で $\varepsilon_{j'}$ は ε_j よりもさらに長さが 3 短くなるが, そうなると $\varepsilon_{j'}$ は長さが 0 になり, 整式とはならず矛盾.

もし (2-3) だったとしてそんな $\varepsilon_{j'}, \varepsilon_{k'}$ が存在したとすると、上と同じ理由でどちらも長さが 0 となった同じ理由で矛盾.

そして(3)でもない.

: もし (3) だったとして、そんな ε_j 、 ε_k が存在したとする. するとどちらかの長さが 2 になるが、Proposition 1.1.15 (94 ページ) よりそんな整式は存在しないため矛盾.

長さが1,4,5の整式が存在すること

A,A' を文記号のいずれかとする. 表現 $\alpha_1,\alpha_4,\alpha_5$ を, $\alpha_1=A,\ \alpha_4=(\neg A),\ \alpha_5=(A\wedge A')$ とおくと, それぞれ長さが 1,4,5 で, いずれも構成列を構築できることから整式である.

• 長さが 7,8,9 の整式が存在すること

1つ上で示したことより長さが 1,4,5 の整式が存在するので、それらの中から 1 つとり $\alpha_1,\alpha_4,\alpha_5$ とおく(添え字はその長さを表している). 表現 $\alpha_7,\alpha_8,\alpha_9$ を、 $\alpha_7=(\neg\alpha_4),\ \alpha_8=(\neg\alpha_5),\ \alpha_9=(\alpha_1\wedge\alpha_5)$ とおくと、それぞれ長さが 7,8,9 で、いずれも構成列を構築できることから整式である.

• 10 以上の任意の長さの整式が存在すること

任意に 10 以上の自然数 n をとる. n に対してある自然数 $m \ge 1$ があって, n = 7 + 3m また n = 8 + 3m または n = 9 + 3m のいずれかである. n = 7 + 3m な n に対しては, 表現 α を $\alpha = \mathcal{E}_{-}^{m}(\alpha_{7})$ とおく. ここで α_{7} は 1 つ上で示したことにより

存在する長さが 7 の何らかの整式で、 $\mathcal{E}_{\neg}^{m}(\alpha_{7})$ は α_{7} に \mathcal{E}_{\neg} 演算を m 回施したものとする. すると表現 α は長さが n であり、構成列を構築できることから整式である.

n=8+3m または n=9+3m であっても長さが 8,9 の整式を用いることで同様に示せるので省略する.

上の証明で長さが2,3,6の整式が存在しないことは帰納法の原理を用いて示すこともできそうなのでやってみることにします.

$\underline{\mathbf{Proof}} \quad \mathcal{A} \subseteq \mathrm{WFF} \ \mathcal{E}$

$$\mathcal{A} = \{ \alpha \mid \alpha$$
の長さは 2,3,6 でない \}

と定め、A = WFFであることを帰納法の原理を用いて示す.

PVAR \subseteq A は明らかなので、A が式構成操作で閉じていることを示す.任意に $\alpha, \beta \in A$ をとる. $\gamma = \mathcal{E}_{\neg}(\alpha)$ とおくと、 γ の長さは α よりも 3 長い.すると γ の長さは 4 以上,つまり 2,3 ではなく,そして α の長さが 3 でなくことから, γ の長さは 6 でもない,よって $\gamma \in A$,つまり $\mathcal{E}_{\neg}(\alpha) \in A$ である.続いて $\gamma = \mathcal{E}_{\neg}(\alpha,\beta)$ とおくと,先ほど同じ理由で γ の長さは 2,3 ではない.そして γ の長さが 6 ならば α,β のどちらかの長さが 2 となるが,これはどちらも A に属することに矛盾する.よって γ の長さは 2,3,6 のいずれでもなく,ゆえに $\mathcal{E}_{\neg}(\alpha,\beta) \in A$ である.残りの式構成操作についても同様に示せるので省略する.

Exercise 1.1.17 (E:p19 3., K:p29 3.) .

 α を整式として, α の中で 2 項結合記号が出現する箇所の数を c で, α の中で文記号が出現する箇所の数を s で表します. (たとえば, α が $(A \to (\neg A))$ の場合は, c=1, s=2 です.)帰納法の原理を使って, s=c+1 であることを示しなさい.

Proof 整式の集合 A を $A = \{\alpha | s_\alpha = c_\alpha + 1\}$ とする.ここで s_α は α の中で文記号が出現する箇所の数, c_α は α の中で 2 項 結合記号が出現する箇所の数とする.以下の 2 つのことを示せば帰納法の原理である Theorem 1.1.12(92 ページ)より証明完了となる.

- Aにはすべての文記号が属すること
 - 任意に文記号をとり A とおく。A1 文字だけという表現は整式でもある。A という整式の 2 項結合記号の数は 0, 文記号の数は 1 より A に属する条件をみたす。
- A がすべての式構成操作について閉じていること

任意に $\alpha, \beta \in A$ をとる. それぞれの整式に対する A の条件にある数を $c_{\alpha}, s_{\alpha}, c_{\beta}, s_{\beta}$ とおくと, $s_{\alpha} = c_{\alpha} + 1$, $s_{\beta} = c_{\beta} + 1$ をみたしている. 整式 γ に対して同様に c_{γ}, s_{γ} を定めておく.

 $\gamma = \mathcal{E}_{\neg}(\alpha)$ とすると、 γ は α から 2 項結合記号も文記号も増えていない、つまり $c_{\gamma} = c_{\alpha}$ 、 $s_{\gamma} = s_{\alpha}$ であり、仮定より $s_{\gamma} = c_{\gamma} + 1$ をみたし $\gamma \in \mathcal{A}$ 、つまり \mathcal{A} は式構成操作 \mathcal{E}_{\neg} について閉じている.

続けて $\gamma=\mathcal{E}_{\wedge}(\alpha,\beta)$ とすると、 γ はその作り方から 2 項結合記号の出現する箇所の個数は α,β の 2 つのものに加えて $\wedge 1$ つが増えているので、 $c_{\gamma}=c_{\alpha}+c_{\beta}+1$ である。 γ は α,β の 2 つに含まれるもの以外には文記号が増えていないので、 $s_{\gamma}=s_{\alpha}+s_{\beta}$ である。すると

$$s_{\gamma} = s_{\alpha} + s_{\beta}$$

= $(c_{\alpha} + 1) + (c_{\beta} + 1)$
= $(c_{\alpha} + c_{\beta} + 1) + 1 = c_{\gamma} + 1$

より $\gamma \in A$, つまり A は式構成操作 \mathcal{E}_{Λ} について閉じている.

他の2項結合記号に関する式構成操作について同様なので省略する.

Exercise 1.1.18 (E:p19 4., K:p29 4.) .

 φ で終わる構成列があって, φ は記号 A_4 を含んでいないとします. この構成列から A_4 を含む表現をすべて取り去ったとしても, その結果はやはり正しい構成列になっていることを示しなさい.

Proof $\langle \varepsilon_1, \dots, \varepsilon_n \rangle$ を $\varepsilon_n = \varphi$ な構成列とし、 φ は記号 A_4 を含んでいないとする。 $\langle \varepsilon_1', \dots, \varepsilon_m' \rangle$ を $\langle \varepsilon_1, \dots, \varepsilon_n \rangle$ から A_4 を含む表現をすべて取り去った表現の有限列とする。 φ は A_4 を含んでいないので上記の取り去る作業のあとも構成列に残っており、列ので位置も末項のまま、つまり $\varepsilon_m' = \varphi$ である。ここで m = n ならば 「 $\forall i (\varepsilon_i = \varepsilon_i')$ 」となって、もともと $\langle \varepsilon_1, \dots, \varepsilon_n \rangle$ のどの表現にも A_4 が含まれていなかったことになり、やはり以前として構成列のままである。

よって次は m < n としておく. Definition 1.1.7 (88 ページ) より $\langle \varepsilon_1, \ldots, \varepsilon_n \rangle$ は「 $\forall i \leq n ((1) \lor (2) \lor (3))$ 」をみたしている.

П

いま、 $\langle \varepsilon_1', \dots, \varepsilon_m' \rangle$ が構成列でなかったとする. つまり「 $\exists i' \leq m(\neg(1') \land \neg(2') \land \neg(3'))$ 」として、そんな i' を 1 つ固定する. ここでそれぞれの主張は

- $\neg (1') \ \varepsilon'_{i'} \notin \text{PVAR}.$
- $\neg (2') \ \forall j < i' (\varepsilon'_{i'} \neq \mathcal{E}_{\neg}(\varepsilon'_i)).$
- $\neg(3') \ \forall j,k < i' \big(\ \varepsilon'_{i'} \neq \mathcal{E}_{\square}(\varepsilon'_j,\varepsilon'_k) \ \big).$ ここで \square は 2 項結合記号のいずれかを表す.

である. $\varepsilon_{i'}' = \varepsilon_i$ なる $\langle \varepsilon_1, \dots, \varepsilon_n \rangle$ に含まれる表現が存在するので、それも固定する.

 ε_i が (1) をみたす、つまり文記号だったとすると、 $\langle \varepsilon_1', \dots, \varepsilon_m' \rangle$ の作り方から文記号だったものがそうでない表現に変わることはないので、 $\varepsilon_{i'}'$ も文記号となるが、これは $\varepsilon_{i'}'$ が $\neg (1')$ をみたすことに反する.

つぎに ε_i が (2) をみたす、つまり $\exists j < i (\varepsilon_i = \mathcal{E}_{\neg}(\varepsilon_j))$ だったすると、 $\varepsilon'_{i'}$ が $\neg (2')$ をみたすことから、 $\langle \varepsilon_1, \ldots, \varepsilon_n \rangle$ のときに存在していた ε_j が $\langle \varepsilon'_1, \ldots, \varepsilon'_m \rangle$ を作ったさいに取り去られた、つまりそのような ε_j は A_4 を含んでいたことになる.すると $\varepsilon_i = \mathcal{E}_{\neg}(\varepsilon_j)$ より ε_i も,そして $\varepsilon'_{i'}$ も A_4 記号を含んでいることになるが、これは $\langle \varepsilon'_1, \ldots, \varepsilon'_m \rangle$ の作り方に矛盾.

 ε_i が (3) をみたすときも同様に示せるので省略.

Exercise 1.1.19 (E:p19 5., K:p29 5.) .

- α は否定記号 \neg を含まない整式とします.
 - (a) α の長さ(記号列を構成する記号の個数)は奇数であることを示しなさい.
 - (b) α を構成する記号のうち, 文記号が占める割合が 1/4 を超えることを示しなさい.

Proof (a),(b) に関してテキストのヒントを使って同時に示す.

 $A\subseteq WFF$ を否定記号 \neg を含まない整式の集合とする. 整式に含まれる左括弧記号の個数 20 に関する累積帰納法を用いる. 任意に $n\in\mathbb{N}$ をとる. 帰納法の仮定は \neg 個未満の左括弧記号を含む任意のの整式に対して, ある $k\in\mathbb{N}$ があって, その長さは 4k+1 で、文記号の数は k+1 になっている」とする.

任意に左括弧記号の個数が n 個な整式 $\varphi \in A$ をとる. いま n=0, つまり φ が文記号 1 文字という形の整式ならば明らか.

よって n>0 とすると, φ は否定記号以外の記号による式構成操作によって出来上がったものであるため, ある $\alpha,\beta\in A$ があって $\varphi=\mathcal{E}_{\wedge}(\alpha,\beta)$ となっていたとすると, φ は $(\alpha\wedge\beta)$ という形になっている. φ の左括弧記号の個数が n 個であることから, α,β はそれぞれそれ未満, つまり n 個未満であるため, 帰納法の仮定からそれぞれに対してある $k_{\alpha},k_{\beta}\in\mathbb{N}$ があって, α,β のそれぞれの長さは $4k_{\alpha}+1,4k_{\beta}+1$ となっていて, それぞれに含まれる文記号の個数は $k_{\alpha}+1,k_{\beta}+1$ 個である. すると φ の長さは, その形から α と β の長さに加えて, $(.\wedge,)$ の 3 つの記号があることから, $k\in\mathbb{N}$ を $k=k_{\alpha}+k_{\beta}+1$ とおけば,

$$(4k_{\alpha} + 1) + (4k_{\beta} + 1) + 3 = 4(k_{\alpha} + k_{\beta} + 1) + 1$$

= $4k + 1$

である.

 φ に含まれる文記号の個数は α,β に含まれるものから増えていないので, $(k_{\alpha}+1)+(k_{\beta}+1)=(k_{\alpha}+k_{\beta}+1)+1=k+1$ である. よってそんな k の存在から左括弧記号が n 個のときも成立. そして φ が他の式構成操作によって出来上がったものであっても同様に示せるので省略する.

これまでに示したことにより, A に属する任意の整式 φ の長さは何らかの自然数 k をもって 4k+1 となっているので, その長さは奇数, つまり (a) は成立する.

そして φ を構成する記号の個数とはその長さと同じだから 4k+1 個, そして文記号の個数は k+1 であるから, 文記号の占める 割合とは

 $(\varphi$ に含まれる文記号の個数)/ $(\varphi$ を構成する記号の個数) = (k+1)/(4k+1) > 1/4

となって 1/4 を超えているため (b) も成立している.

 $^{^{20}}$ 別の言い方をすれば、その整式に対して施された否定記号以外の式構成操作の回数ともいえる。また Example 1.1.13(93 ページ)にある通り、どんな整式に含まれる左括弧と右括弧記号の数は同じということを知っていれば、別に右括弧記号の個数でも一緒である。また個人的にはもう少し証明に有利になるような帰納法の回し方はないものかとも思っている。

私は勉強会にて上記の証明を発表しましたが、参加者の方からのコメントで帰納法の原理でも示すやり方を提案されたので、そ ちらも証明を書いてみます.

Proof $\alpha \in WFF$ と $k \in \mathbb{N}$ に対して, 2 つの主張 $(a)_{\alpha,k}$, $(b)_{\alpha,k}$ を以下のように定める.

 $(a)_{\alpha,k}$ は「 α の長さは 4k+1 である」の略記とする.

 $(b)_{\alpha,k}$ は「 α を構成する記号のうち、文記号の個数は k+1 個である」の略記とする.

そして A \subseteq WFF

$$\mathcal{A} = \{ \alpha \mid \alpha : \neg$$
を含まない $\rightarrow \exists k \in \mathbb{N} ((a)_{\alpha,k} \wedge (b)_{\alpha,k}) \}$

と定める. A = WFF であることを示せば, 先の証明と同じ理由から証明完了となる. そして A = WFF であることを帰納法の原理を用いて示す.

- A にはすべての文記号が属すること 任意に文記号 A をとる.整式 α を A1 文字の整式とする. α は明らかに \neg を含んでいない.すると k=0 とすれば $(a)_{\alpha,k},(b)_{\alpha,k}$ のどちらも真であり,そんな k の存在から $\alpha \in A$,つまり $A \in A$.
- A がすべての式構成操作について閉じていること 任意に $\alpha, \beta \in A$ をとる. $\gamma = \mathcal{E}_{\neg}(\alpha)$ とおくと, γ は \neg 記号を含むため

$$\gamma: \neg$$
 を含まない $\rightarrow \exists k \in \mathbb{N}((a)_{\gamma,k} \wedge (b)_{\gamma,k})$

は真であり、よって $\gamma \in A$ 、つまり $\mathcal{E}_{\neg}(\alpha) \in A$.

続いて $\gamma = \mathcal{E}_{\wedge}(\alpha, \beta)$ とおく. もし α, β のどちらかに¬が含まれていれば, γ にも含まれているので上と同じ理由で $\mathcal{E}_{\wedge}(\alpha, \beta) \in \mathcal{A}$. α, β のどちらもに¬が含まれていないとすると γ にも含まれていない. そして $\alpha \in \mathcal{A}$ より $\exists k \in \mathbb{N} \Big((a)_{\alpha,k} \wedge (b)_{\alpha,k} \Big)$ が成り立っているので、そんなk を改めて k_{α} として固定する. 同様に k_{β} も固定する. そして $k_{\gamma} = k_{\alpha} + k_{\beta} + 1$ とおく. すると γ の長さは α, β の長さの合計に加えて $(, \wedge,)$ の 3 つ分長くなっている,つまり

$$(4k_{\alpha} + 1) + (4k_{\beta} + 1) + 3 = 4(k_{\alpha} + k_{\beta} + 1) + 1$$

= $4k_{\gamma} + 1$

つまり $(a)_{\gamma,k_{\gamma}}$ が成立. そして γ を構成する記号のうち文記号の個数は α,β のそれの合計なので,

$$(k_{\alpha}+1) + (k_{\beta}+1) = k_{\gamma}+1$$

よって $(b)_{\gamma,k_{\gamma}}$ が成立. 上記の 2 つの主張が成り立つような k_{γ} の存在から $\gamma \in \mathcal{A}$, つまり $\mathcal{E}_{\wedge}(\alpha,\beta) \in \mathcal{A}$. 他の式構成操作に関しても同様に示せるので省略する.

1.2 真理値割り当て

<u>Definition</u> 1.2.1(真理値割り当て (E:p20 21, K:p30 32)).

 $\mathcal{A} \subseteq PVAR \ \mathcal{E}$ \mathcal{F} \mathcal{A} \mathcal{A}

- 1. Definition 1.1.1(84 ページ)とは別に新たに 2 つの記号を用意する. それらを F(これを falsity(偽)とよぶ), T(これを truth(真)とよぶ)とする.
- 2. $v: A \to \{F, T\}$ なる v を文記号の集合 A に対する truth assignment (真理値割り当て) という.
- $3. \bar{A}$ を A から始めて 5 種類の式構成操作を使って構成できる整式全体の集合とする.
- 4. 真理値割り当て $v: A \to \{F,T\}$ に対して, $\bar{v}: \bar{A} \to \{F,T\}$ を各 $A \in A$ と $\alpha, \beta \in \bar{A}$ について以下の 6 条件をみたすものとする.

souji ノート

$$4\text{-}0.\ ar{v}(A) = v(A)$$
 $4\text{-}1.\ ar{v}((\neg lpha)) = \begin{cases} T & ar{v}(lpha) = F \text{ のとき} \\ F & \text{それ以外のとき} \end{cases}$
 $4\text{-}2.\ ar{v}((lpha \wedge eta)) = \begin{cases} T & ar{v}(lpha) = T \text{ かつ} ar{v}(eta) = T \text{ のとき} \\ F & \text{それ以外のとき} \end{cases}$
 $4\text{-}3.\ ar{v}((lpha \vee eta)) = \begin{cases} T & ar{v}(lpha) = T \text{ または} ar{v}(eta) = T \text{ (もしくはその両方) obs} \\ F & \text{それ以外のとき} \end{cases}$
 $4\text{-}4.\ ar{v}((lpha \to eta)) = \begin{cases} F & ar{v}(lpha) = T \text{ かつ} ar{v}(eta) = F \text{ obs} \\ T & \text{それ以外のとき} \end{cases}$
 $4\text{-}5.\ ar{v}((lpha \leftrightarrow eta)) = \begin{cases} T & ar{v}(lpha) = ar{v}(eta) \text{ obs} \\ F & \text{それ以外のとき} \end{cases}$

テキストにあるなし関わらず気になったことを注意しておくと,

1. 上記定義 1. では新たな記号が定義されたが、Definition 1.1.1(84 ページ)では記号を割り当てるもの(それを今後記号と同一視して使っていくもの)として、オブジェクトの列を使用したが、ここでは列であるようなことは書かれていない。 それは Definition 1.1.1(84 ページ)の注意事項 6 でも書いたように、今から無限個の記号を用意するわけでもないので、列でもなくともよいということなのかもしれない.

もっというともし議論の進め方次第では先にすべての使う記号を定義しておく流儀もありえて、そのような場合には表 1.2 の括弧記号の前にこの T, F を追加してやればよい。ただその場合、記号の有限列であるという表現の定義にて「真理値を表す記号は除く」と付け加えなくてはいけないだろう。これ以外にも定義や議論の中で煩わしい問題が増えるのかもしれない。ならばこのタイミングで新たな記号として用意するのが妥当なのかもしれない。

2. 真理値は記号なのか?

このテキストでは文記号の表現を構成するモノも、真理値として使用するモノもどちらも初めに用意された「記号」とい う同じ種類のものである. 他のテキストだと真理値とは何と定めているかを, 勉強会運営時点で所持していたロジックの 入門書などをまとめて眺めてみた結果をこれから記す. 文論理の記号としては真理値を定めていないもの、つまり文記号 や論理記号と真理値を同じ種類のものである(このテキストのようにどちらも記号であるなどと言い切っている)として いないものとして、[73]、[69]、[72]、[60]、[64] があった. 細かく見ていくと [73] ではここでいう文論理の記号を記号とは呼 ばず語彙と呼んでいる. そして真偽を表すものとして 1,0 を使うとしている. [69] でも真偽を表すものとして 1,0 を使っ ているが、ここでいう文記号を命題変数、それ以外の記号を論理記号と呼ぶ流儀で、文論理の表現を構成するものは全て記 号であるというこのテキストと異なる点が興味深い. [72],[60] ではこのテキストとほぼ同じ形で文論理の記号を記号とし て導入している. しかし特徴的なのは. 真偽を表すものとして 1.0 といった数学の記号ではなく. 日本語の漢字そのまま 真, 偽を使っている点だろうか. ある種英語圏の人が 1,0 ではなく T, F を使うような感覚と似たようなものかもしれない. ただしこのテキストは真理値割り当てをこのテキストのように変数記号から真理値への関数であるというような数学的に 厳密な定義をしていない(なんなら真理値割り当てという言葉の定義も明瞭でない)、そんな議論の進め方をするテキス トだからこそ、とくに真理値が漢字であっても困らないのであろう. むしろそれによって日本人にとって分かりやすい部 分もあるように思える. [64] では真理値とは記号であると書いている. そして単なる記号でもないと表すためか T,F では なく ▼. ▼ としている. ただここでいう文記号とは何らかの集合の要素であるとし. 記号とは捉えず命題変数と呼んでいる. 「文記号や論理記号と真理値を同じ種類のものであるとしていない」という共通点はあれど、それ以外の定義の仕方も様々 なことが分かる.これはいま気になっていることがそこまで大きな問題でないことを表しているし、そのときの議論の進 めやすさや、その人それぞれのキャラクター・教育的配慮の表れに過ぎないのかもしれない。

ちなみに私がこの時点で所持していた本の中で明確に「文記号や論理記号と真理値を同じ種類のものである」という議論の進め方をしているものはなかった. 21

 $^{^{21}}$ 私は初めてこの本を読んだとき、真理値を文論理の記号として扱うことに驚きました.それは単にそのような流儀を初めて見たからです.使い方として真

souji / − ト 100

3. 真理値が2値でない論理

テキストでは「このテキストでは 2 値論理だけを考える」としているが、別の、つまりもっと真理値が多い論理についても言及されている。例えば 3 値論理、真理値が \aleph_0 個の論理、さらには真理値の集合を単位区間 [0,1] や適当な空間とするものなどがある。

- 4. 3. ではテキストの書き方に合わせたが、「式構成操作を**有限回**施した整式全体」などと言ってもよいと思われる。そうすると 0 回の操作をした(なにもしていない)、つまり文記号 1 文字だけの整式も \bar{A} に属することが明瞭になる。そうすると $A\subseteq \bar{A}$ であり、 $A=\operatorname{dom} v\subseteq\operatorname{dom}(\bar{v})=\bar{A}$ となって、 $v=\bar{v}\upharpoonright A$ と分かるから、v は \bar{v} の A への制限であるし、 \bar{v} は v の 拡大である。 22
- テキストにあるとおり、条件 4-1. から 4-5. までは以下のような表で表すこともできる。

α	β	$(\neg \alpha)$	$(\alpha \wedge \beta)$	$(\alpha \vee \beta)$	$(\alpha \to \beta)$	$(\alpha \leftrightarrow \beta)$
T	T	F	T	T	T	T
T	F	F	F	T	F	F
F	T	T	F	T	T	F
F	F	T	F	F	T	T

Table 1.2: (E:p21 TABLE Ⅲ, K:p32 表 Ⅲ)

Example 1.2.2 (E:p21 23, K:p32 34) .

整式 α を

$$((A \rightarrow (A_1 \rightarrow A_6)) \leftrightarrow ((A_2 \land A_1) \rightarrow A_6))$$

とし、 $dom(v) = \{A_1, A_2, A_6\}$ な真理値割り当て v を、 $v(A_1) = T$ 、 $v(A_2) = T$ 、 $v(A_6) = F$ で定めると、 $\bar{v}(\alpha) = T$ である.

この例はテキストにて木を用いて解説されているし, とくに付け加えることもないので次の話題に移る.

Theorem 1.2.3 (E:p23 THEOREM 12A, K:p34 定理 12A).

集合 $A \subseteq PVAR$ へのどんな真理値割り当て v についても、Definition 1.2.1(98 ページ)の条件 4-0. から 4-5. までに合致する 写像 \bar{v} : $\bar{A} \to \{T, F\}$ がただひとつ存在する.

次の記法は今後便利に思えたので導入する.

<u>Definition</u> 1.2.4.

 $\Sigma \subseteq \mathrm{WFF}$ に対して、その全ての要素である整式に含まれる文記号の集合を $\mathrm{PVAR}(\Sigma)$ で表す.またある $\alpha \in \mathrm{WFF}$ でもって $\Sigma = \{\alpha\}$ となっていた場合は、 $\mathrm{PVAR}(\Sigma) = \mathrm{PVAR}(\{\alpha\})$ を単に $\mathrm{PVAR}(\alpha)$ と略記する.

例えば $\Sigma = \{ (A_1 \land A_2), (\neg A_2), A_3, (A_1 \to A_9) \}$ だったとき, $\text{PVAR}(\Sigma) = \{A_1, A_2, A_3, A_9\}$ となる. これを用いるとテキストよりは(記号は増えるものの)以下の定義の主張が少しは見やすくなるのではと考えた.

Definition 1.2.5 (充足関係 (E:p23 24, K:p34 36)).

整式の集合 Σ と整式 τ , σ に対して,

1. $PVAR(\tau) \subseteq dom(v)$ な真理値割り当て v に対して $\bar{v}(\tau) = T$ であるとき, v satisfies τ (v は τ を充足する) という.

理値以外の記号は文論理の表現を構成するためのもので、真理値はそれらを充足関係などで評価するためのものという印象がありました。しかしこれまで何度か意識してきた通り、これから何らかの公理系の上にこれから文論理を実装していこうしているならば、例えば集合論の公理系から文論理の議論を展開しようとしているのならば、文論理の定義を記述するためのモノも全て同じ集合になる(集合論の公理系で扱えるものは集合だけなのだから)から、もともとから特に身分差を付け辛いという点では、真理値も同じ記号(の仲間)としてしまう方が分かりやすいのかもと思いました。そうなると1つ上の注意事項後半の事柄を意識する必要があるとも思います。

 2^{22} テキストでは拡張と書いてありますが、写像の拡張概念はこのテキストでは定義されているわけではありません。もちろん単なる日常会話として十分に理解はできるのだけれど、私が拡大とよぶ概念を拡張とよぶ流儀もあるので、言葉として使うならば定義しておくべきだと思いました。かなり揚げ足ぎみなツッコミではあるとは承知しつつ、そのセットとして語られそうな制限概念については定義していたので、なおさら書いた次第です。

- 2. $PVAR(\Sigma) \cup PVAR(\tau)$ を定義域として含むすべての真理値割り当てに対して、それが Σ のすべての要素を充足するならば τ をも充足するとき、 Σ tautologically implies τ (Σ は τ をトートロジー的に含意する) といい、 $\Sigma \models \tau$ で表す.
- 3. $\emptyset \models \tau$ であるとき, つまり PVAR(τ) を定義域として含むどんな真理値割り当ても τ を充足するとき, τ は tautology(トートロジー)であるといい, 単に $\models \tau$ で表す.
- 4. Σ が一元集合であるとき、つまり $\{\sigma\} \models \tau$ であるとき単に $\sigma \models \tau$ と表すことにする。 $\sigma \models \tau$ かつ $\tau \models \sigma$ であるとき、 σ と τ は tautologically equivalent(トートロジー的に同値)であるといい、 $\sigma \models \exists \tau$ で表す.

Example 1.2.6 (E:p23, K:p35 36).

- 1, Example 1.2.2(100 ページ)で挙げた整式 α と真理値割り当て v について, v は α を充足すると述べたが, それ以外のどの真理値割り当ても α を従属する. つまり α はトートロジーである.
- 2. $\{A, (\neg A)\} \models B \ \text{cbs}$.
- $\{A,(A o B)\} \models B$ である.

Proof テキストより少し詳しく解説・証明する.

1. 改めて、整式 α は

$$((A \rightarrow (A_1 \rightarrow A_6)) \leftrightarrow ((A_2 \land A_1) \rightarrow A_6))$$

となっていた. $\{A_1,A_2,A_6\}\subseteq \mathrm{dom}(v)$ な真理値割り当て v は, $v|\{A_1,A_2,A_6\}$ を考えると, 以下の v_1 から v_8 のいずれかになるので,

	A_1	A_2	A_6
v_1	T	T	T
v_2	T	T	F
v_3	T	F	T
v_4	T	F	F
v_5	F	T	T
v_6	F	T	F
v_7	F	F	T
v_8	F	F	F

 α がトートロジーであることを示すには v_1 から v_8 のいずれも α を充足することを確かめればよい. 1.2 節(102 ページ)を参考にして真理値表を書いて作業的に確かめることもできるが、ここではあえて真理値表を使わずに確かめてみる.

 α_1 を $(A \to (A_1 \to A_6))$ と, α_2 を $((A_2 \land A_1) \to A_6)$ とおくと, α は $(\alpha_1 \leftrightarrow \alpha_2)$ で表せる. もし真理値割り当て v が $\bar{v}(\alpha) = T$ ならば $\bar{v}(\alpha_1) = \bar{v}(\alpha_2)$ でなくてはならない.

いまある真理値割り当て v が $v(A_2)=F$ ならば A_1,A_6 の値に関わらず $\bar{v}(\alpha_1)=T=\bar{v}(\alpha_2)$ となることが分かるので、 v_3,v_4,v_7,v_8 は OK.

つぎに $v(A_2)=T$ とすると, $\bar{v}(\alpha_1)=T$ とするには $v(A_1)=F$ か, $v(A_1)=T$ かつ $v(A_6)=T$ とすればよい. $v(A_1)=F$ な v は $\bar{v}(\alpha_2)=T$ であるし, $v(A_1)=T$ かつ $v(A_6)=T$ な v も $\bar{v}(\alpha_2)=T$ である。よって $v(A_1)=F$ な v_5,v_6 も, $v(A_1)=T$ かつ $v(A_6)=T$ な v_1 も OK.

残るは v_2 だが、これは Example 1.2.2(100 ページ)で確かめているので OK.

2. 示すべき $\{A, (\neg A)\} \models B$ を定義に戻って論理式も使って書くと, $\{A, B\} \subseteq \operatorname{dom}(v)$ な任意の真理値割り当て v に対して

$$\forall \varphi \in \{A, (\neg A)\} (\ \bar{v}(\varphi) = T \ \to \ \bar{v}(B) = T \) \tag{\dagger}$$

となる. そして $\{A,B\}$ に対するどのような真理値割り当ても, $\{A,(\neg A)\}$ の全ての要素を同時に充足することはない, つまり式 (\dagger) の前件は常に成立しないので, v が B を充足するかどうかに関係なく, $\{A,(\neg A)\} \models B$ である.

- $3. A, (A \rightarrow B)$ のどちらも充足する真理値割り当て v は, v(A) = v(B) = T となるものだけである.
 - :: \models の左右に現れる整式に含まれる文記号は A,B だけなので,A,B に関する割り当てだけ,つまり 4 種類だけに注目すればよい.そのすべてについて真理値表などで確かめてもよいが,議論だけで確かめると,まず \models の左の集合に A という整式があるので,探すべき割り当て v は v(A) = T でなくてはならない.そして v(A) = T かつ $\bar{v}((A \to B)) = T$ とするには v(B) = T でなくてはならない.そして他の値の組み合わせはどれも $A, (A \to B)$ を同時に充足することはない.

そしてそんな v はすでに v(B) = T であるから, $\{A, (A \rightarrow B)\} \models B$ である.

ここで以下の定理が紹介されていますが、テキストにある通りこの定理の証明は1.7節(105ページ)にて出てきます.

Theorem 1.2.7 (コンパクト性定理 (E:p24 COMPACTNESS THEOREM, K:p36 コンパクト性定理)).

 Σ は無限個の整式からなる集合で、いかなる Σ の有限な部分集合 Σ_0 についても、 Σ_0 のすべての要素を同時に充足する真理値割り当てが存在するとする.このとき、 Σ のすべての要素を同時に充足する真理値割り当てが存在する.

真理值表

主要なトートロジーの一覧

- 1. $\land, \lor, \leftrightarrow$ の結合律と交換律. ²³ ここでは \land のみ記す associative laws(結合律):($((A \land B) \land C) \leftrightarrow (A \land (B \land C))$). commutative laws(交換律):($(A \land B) \leftrightarrow (B \land A)$).
- 2. distributive laws (分配律)

$$((A \land (B \lor C)) \leftrightarrow ((A \land B) \lor (A \land C))).$$
$$((A \lor (B \land C)) \leftrightarrow ((A \lor B) \land (A \lor C))).$$

3. 否定

$$((\neg(\neg A)) \leftrightarrow A)$$
.
$$((\neg(A \to B)) \leftrightarrow (A \land (\neg B)))$$
.
$$((\neg(A \leftrightarrow B)) ((A \land (\neg B)) \lor ((\neg A) \land B)))$$
. de Morgan' laws (ド・モルガンの法則)
$$((\neg(A \land B)) \leftrightarrow ((\neg A) \lor (\neg B)))$$
.

 $((\neg(A \lor B)) \leftrightarrow ((\neg A) \land (\neg B))).$

 $^{2^3}$ テキストでは結合律と交換律と書いてあるだけでした. いくらある程度数学に慣れている学部 3 年から 4 年の学生向け(このことは原著のまえがきに書いてあります)とはいえ,一例だけでも書いてあげた方が丁寧かなと思い,追記しました.

souji / − ト 103

4. その他

```
excluded middle (排中律): (A \lor (\neg A)). contradiction (矛盾律): (\neg(A \land (\neg A))). 対偶: ((A \to B) \leftrightarrow ((\neg B) \to (\neg A))). 移出: (((A \land B) \to C) \leftrightarrow (A \to (B \to C))).
```

演習問題

Exercise 1.2.8 (E:p27 1., K:p41 1.) .

Exercise 1.2.9 (E:p27 2., K:p41 2.) .

<u>Exercise</u> 1.2.10 (E:p27 3., K:p41 3.) .

Exercise 1.2.11 (E:p27 4., K:p42 4.) .

<u>Exercise</u> 1.2.12 (E:p27 5., K:p42 5.) .

<u>Exercise</u> 1.2.13 (E:p27 6., K:p42 6.) .

<u>Exercise</u> 1.2.14 (E:p28 7., K:p42 7.) .

<u>Exercise</u> 1.2.15 (E:p28 8., K:p43 8.) .

<u>Exercise</u> 1.2.16 (E:p28 9., K:p43 9.) .

<u>Exercise</u> 1.2.17 (E:p28 10., K:p43 10.) .

<u>Exercise</u> 1.2.18 (E:p28 11., K:p44 11.) .

<u>Exercise</u> 1.2.19 (E:p29 12., K:p44 12.) .

Exercise 1.2.20 (E:p29 13., K:p44 13.) .

<u>Exercise</u> 1.2.21 (E:p29 14., K:p45 14.) .

Exercise 1.2.22 (E:p29 15., K:p45 15.) .

1.3 構文解析のアルゴリズム

構文解析のアルゴリズム

<u>Lemma</u> 1.3.1 (E:p30 LEMMA 13A, K:p46 補題 13A). どの整式もそれに含まれる右括弧・左括弧の個数は同じである.

Lemma 1.3.2 (E:p30 LEMMA 13B, K:p46 補題 13A).

ポーランド記法

括弧の省略

演習問題

Exercise 1.3.3 (E:p33 1., K:p51 1.) .

Exercise 1.3.4 (E:p33 2., K:p52 2.) .

Exercise 1.3.5 (E:p34 3., K:p52 3.) .

Exercise 1.3.6 (E:p34 4., K:p52 4.) .

Exercise 1.3.7 (E:p34 5., K:p52 5.) .

Exercise 1.3.8 (E:p34 6., K:p52 6.) .

Exercise 1.3.9 (E:p34 7., K:p52 7.) .

104

-

souji / − ト 105

1.4 帰納法と再帰

帰納法

再帰

演習問題

1.5 文結合記号

演習問題

1.6 スイッチング回路

演習問題

1.7 コンパクト性と実効性

帰納法

再帰

演習問題

第2章 記号リスト

記号	初登場ページ	記号	初登場ページ	記号	初登場ページ
def =	65	$\stackrel{\text{def}}{\Longleftrightarrow}$	65	Ø	65
N	65	Z	65	\mathbb{R}	65
$A \subseteq B$	66	$\mathcal{P}(X)$	67	$A \cup B$	67
$A \cap B$	67	$\bigcup \mathcal{A}$	67	$\bigcap \mathcal{A}$	67
$\langle x, y \rangle$	68	$X \times Y$	70	dom(R)	70
$\operatorname{ran}(R)$	70	$\operatorname{fld}(R)$	70	$f \colon X \to Y$	71
$f \colon X \xrightarrow{1-1} Y$	71	$f \colon X \xrightarrow{\operatorname{onto}} Y$	71	$f \colon X \xrightarrow[\text{onto}]{1-1} Y$	71
id_X	71	[x]	73	$A \backslash R$	73
~	77	card(A)	78	$A \preceq B$	78
<	78	\aleph_0	79	2^{\aleph_0}	79
+	79		79	(84
)	84	_	84	^	84
V	84	\rightarrow	84	\leftrightarrow	84
A_n	84	PVAR	87	SYMB	87
EXPR	87	\mathcal{E}_{\lnot}	88	\mathcal{E}_{\wedge}	88
\mathcal{E}_{\lor}	88	$\mathcal{E}_{ ightarrow}$	88	$\mathcal{E}_{\leftrightarrow}$	88
WFF	88	T	98	F	98
$\Sigma \models \tau$	100	$\models \tau$	100	 =	100

第IV部 基礎固めノート

色々な基礎的なことをまとめるノートです. また他のノートの参照先としても機能させるつもりです.

第3章 基礎数学

ここではある程度テキストなどでまとまっている、学部レベルの分野を勉強したものをまとめています.

3.0 数学をするための準備

ここでは数学をするための自分なりの決まりごとや言葉の定義をします。またここで紹介したルールやテクニックはこのノート内で特に言及せずに使用します。それくらい数学をするうえで当たり前なことをまとめています。

- 3.0.0 数学の議論中の言葉の定義
- 3.0.1 論理式
- 3.0.2 証明の書き方・読み方
- 3.0.3 数学のための論理学

3.1 素朴集合論

ここでは(素朴)集合論の範囲内の知識や用語を整理します.基本的には[58]や[56]を参考にしています.

3.1.1 集合の基礎

3.1.2 関係

あとでまとめるけど今は必要なものだけ.

Definition 3.1.1 (帰納的半順序集合と Zorn の補題).

半順序集合 (X, \leq) (つまり反射律, 推移律, 反対称律を満たす) に対して

- $\cdot (X, <)$ が**帰納的** $\stackrel{\text{def}}{\Longleftrightarrow}$ 全ての全順序部分集合(上記3つに加えて三分律が成立)が上界をもつ
- $a \in X$ が (X, <) において極大 $\iff \neg \exists x \in X (a < x \land a \neq x)$

Zorn の補題とは「帰納的半順序集合は少なくとも1つの極大元をもつ」という主張のこと.

3.1.3 写像・関数

Definition 3.1.2.

集合 X,Y に対して、「f が X から Y への**写像**(mapping または map)」であるとは、以下の 2 つの条件を満たすことをいう.

- (f1) $f \subseteq X \times Y$.
- (f2) $\forall x \in X \exists ! y \in Y (\langle x, y \rangle \in f).$

「f が X から Y への写像」であることを $f: X \to Y$ で表す.

 $f: X \to Y$ のとき

- ・X を写像 f の定義域(domain), または始域(こちらも domain)と呼び, dom(f) で表す.
- ・ Y を写像 f の値域(range), または終域(codomain)と呼び, ran(f) で表す.

文献によっては(どの文献かは忘れた), $f: X \to Y$ で値域である Y が \mathbb{N} や \mathbb{R} といった数の集合であるときに**関数**(function)と呼んで、写像と関数を使い分けたりするが、このノートでは特に使い分けせず、 どちらも混ぜて使います(でも関数が多いと思う).

上の順序対での写像の定義に、普段よく使う記法を適用します.

Notation 3.1.3.

 $f: X \to Y$ であるとき、「 $\langle x, y \rangle \in f$ 」を「f(x) = y」で表し「f は x を y へ写す」や「x の f による値は y」と言ったりする、f(x) を「x の f による値」と呼ぶ.

この記法を用いれば写像の定義(£2)は以下のように書き換えられる.

$$\forall x \in X \exists ! y (f(x) = y)$$

つまり定義域の任意の要素は一意的な値域の要素に対応していると言える.

ここでは写像を(順序対の)集合として定義したため、集合に関する記法を使って議論することができます。それを踏まえて、 様々な用語を定めておきます。

Definition 3.1.4.

2 つの関数 f,g に対して、この 2 つを単なる順序対の集合とみて、 $f \subseteq g$ が成立しているとき f を g の部分関数、g を f の拡大と呼ぶ。

さらに集合として f と g が等しいとき、つまり $f \subseteq g$ かつ $g \subseteq f$ なとき(写像として)f と g は**等しい**といい、集合と同じで f = g で表す.

定義域や値域にまで踏み込んだ定義が続きます.

- (1) 関数 $f: X \to Y$ と $A \subseteq X$ に対し $f \upharpoonright A = (A \times Y) \cap f$ とおく. つまり $f \upharpoonright A$ は f の対応規則はそのままに定義域を A へ 狭めた A から Y への関数のことです. $f \upharpoonright A$ は関数 f の A への制限と呼びます. つまり $f \upharpoonright A$ は f の部分関数, f は $f \upharpoonright A$ の拡大といえます.
- (2) $\operatorname{dom}(f) = \operatorname{dom}(g)$ な 2 つの関数 f, g があったとき, $f \triangle g \stackrel{\operatorname{def}}{=} \{x \in \operatorname{dom}(f) \mid f(x) \neq g(x)\}.$
- (3) XY は $\mathrm{dom}(f)=X,\,\mathrm{ran}(f)\subseteq Y$ なる関数全体の集合を表します. つまり ${}^XY\ \stackrel{\mathrm{def}}{=}\ \{f\mid f:X\to Y\}.$

写像が集合として表現できれば、2 つの写像に集合演算を適用することができます。しかしその演算結果もまた写像になるかどうかはわかりません。 例えば $f(x) \neq g(x)$ な $x \in \text{dom}(f) \cap \text{dom}(g)$ が存在したときです。 f,g の定義域が互いに素なとき、つまり $\text{dom}(f) \cap \text{dom}(g) \neq \emptyset$ なとき、 $f \cup g$ は $\text{dom}(f) \cup \text{dom}(g)$ から $\text{ran}(f) \cup \text{ran}(g)$ への関数になります。 つまり対応規則が

$$(f \cup g)(x) = \begin{cases} f(x) & x \in \text{dom}(f) \\ g(x) & x \in \text{dom}(g) \end{cases}$$

な関数です.

3.1.4 集合族

3.1.5 色々な用語

様々な分野で現れる用語をまとめておきます.

Definition 3.1.5.

集合 X と X の部分集合の族 $\{Y_{\lambda}\}_{\lambda \in \Lambda}$ に対し, $\{Y_{\lambda}\}_{\lambda \in \Lambda}$ が X の**分割**(partition)であるとは以下の 3 つの条件を満たすことをいう.

souji ノート 115

- $\emptyset \notin \{Y_{\lambda}\}_{{\lambda} \in \Lambda}$.
- $\forall \lambda, \lambda' \in \Lambda(\lambda \neq \lambda' \to Y_{\lambda} \cap Y_{\lambda'} = \emptyset).$

•
$$X = \bigcup_{\lambda \in \Lambda} Y_{\lambda}$$
.

Definition 3.1.6.

集合族 $\{X_{\lambda}\}_{\lambda\in\Lambda}$ が有限交叉性(finite intersection property)をもつ $\stackrel{\text{def}}{\Longleftrightarrow} \forall L\in [\Lambda]^{<\omega} (\bigcap_{i\in L} X_i \neq \emptyset)$.

compact 位相空間について述べる時のための定義を用意します.

Definition 3.1.7.

集合 X, $A \subseteq X$, $\{Y_{\lambda}\}_{{\lambda} \in {\Lambda}} \subseteq \mathcal{P}(X)$ に対して

- ・ $\{Y_{\lambda}\}_{{\lambda}\in\Lambda}$ が A の被覆(covering) $\stackrel{\text{def}}{\Longleftrightarrow} A\subseteq\bigcup_{{\lambda}\in\Lambda}Y_{\lambda}$.
- ・ A の被覆 $\{Y_{\lambda}\}_{\lambda \in \Lambda}$ と $\Lambda' \subseteq \Lambda$ に対して, $\{Y_{\lambda}\}_{\lambda \in \Lambda'}$ もまた A の被覆のとき $\{Y_{\lambda}\}_{\lambda \in \Lambda'}$ を $\{Y_{\lambda}\}_{\lambda \in \Lambda}$ の部分被覆という. とくに $|\Lambda'| < \omega$ のとき, $\{Y_{\lambda}\}_{\lambda \in \Lambda'}$ は $\{Y_{\lambda}\}_{\lambda \in \Lambda}$ の有限部分被覆とよぶ.

3.1.6 選択公理と直積の一般化

有限個の集合の直積を一般化する.

Definition 3.1.8.

 Λ を添え字集合とした集合族 $\{X_{\lambda}\}_{\lambda\in\Lambda}$ の直積 $\prod_{\lambda\in\Lambda}X_{\lambda}$ を以下のように定義する.

$$\prod_{\lambda \in \Lambda} X_{\lambda} \stackrel{\text{def}}{=} \{ f : \lambda \to \bigcup_{\lambda \in \Lambda} X_{\lambda} \mid \forall \lambda \in \Lambda (f(\lambda) \in X_{\lambda}) \}.$$

 $\prod_{\lambda \in \Lambda} X_{\lambda}$ の要素は**選択関数**と呼びます. $\forall \lambda \in \Lambda (\ X_{\lambda} \neq \emptyset\)$ であれば $\prod_{\lambda \in \Lambda} X_{\lambda}$ も空にならないように思えますが, それについては 選択公理で保証しなくてはいけません. また $\prod_{\lambda \in \Lambda} X_{\lambda}$ が空でないという主張は選択公理と同値になります.

Lemma 3.1.9.

集合族 $A = \{A_{\lambda}\}_{\lambda \in \Lambda}$ はどの要素も空でないとする. つまり $\forall \lambda \in \Lambda(A_{\lambda} \neq \emptyset)$. このとき以下は同値.

(1) (選択公理) A に選択関数が存在する.

$$(2)$$
 (直積定理)直積集合 $\prod_{\lambda \in \Lambda} A_{\lambda}$ が空でない.

 $\underline{\mathbf{Proof}} \qquad (1) \ \Rightarrow \ (2)$

$$\underline{\Omega}$$
 (1) \Rightarrow (2)
$$A \perp \mathcal{O}$$
 選択関数を $f_{AC}: \mathcal{A} \rightarrow \bigcup_{\lambda \in \Lambda} A_{\lambda}$ とおく.つまり $\forall \lambda \in \Lambda (f_{AC}(A_{\lambda}) \in A_{\lambda})$ が成立しています. $\prod_{\lambda \in \Lambda} A_{\lambda} = \{ f: \mathcal{A} \rightarrow \bigcup_{\lambda \in \Lambda} A_{\lambda} \mid \forall \lambda \in \Lambda (f(A_{\lambda}) \in A_{\lambda}) \}$ という定義から $f_{AC} \in \prod_{\lambda \in \Lambda} A_{\lambda}$ より $\prod_{\lambda \in \Lambda} A_{\lambda} \neq \emptyset$.

$$\prod_{\lambda \in \Lambda} A_{\lambda} \neq \emptyset \text{ よりある } f \in \prod_{\lambda \in \Lambda} A_{\lambda} \neq \emptyset \text{ が存在するが, これは \mathcal{A} 上の選択関数です.}$$

よって以降は選択公理は常に仮定します.ですが、その公理を明記した場合には明記するようにします.

souji ノート 116

Definition 3.1.10.

 Λ を添え字集合とした集合族 $\{X_{\lambda}\}_{\lambda\in\Lambda}$ とその直積 $\prod_{\lambda\in\Lambda}X_{\lambda}$ があったとき, $\lambda\in\Lambda$ に対して, $p_{\lambda}:\prod_{\lambda\in\Lambda}X_{\lambda}\to X_{\lambda}$ を $p_{\lambda}(f)=f(\lambda)$ で定義して p_{λ} を $\prod_{\lambda\in\Lambda}X_{\lambda}$ の λ 成分への射影と呼ぶ

で定義して,
$$p_{\lambda}$$
 を $\prod_{\lambda \in \Lambda} X_{\lambda}$ の λ 成分への射影と呼ぶ.

簡単に分かることを示しておきます.

Lemma 3.1.11.

 $\forall \lambda \in \Lambda(X_{\lambda} \neq \emptyset)$ ならば, どの射影 p_{λ} は全射.

Proof 選択公理によって $\prod_{\lambda \in \Lambda} X_{\lambda} \neq \emptyset$ です.よって 1 つ $f \in \prod_{\lambda \in \Lambda} X_{\lambda}$ をとり固定します.全射であることを示すため,任意に $x_{\lambda} \in X_{\lambda}$ をとります.関数 $g: \lambda \to \bigcup_{\lambda \in \Lambda} X_{\lambda}$ を

$$g = \{\langle \lambda, x_{\lambda} \rangle\} \cup f \upharpoonright (\Lambda \setminus \{\lambda\})$$

で定義すると,
$$g \in \prod_{\lambda \in \Lambda} X_{\lambda}$$
 で, $p_{\lambda}(g) = x_{\lambda}$ です. そんな g の存在から p_{λ} は全射です.

3.2 位相空間論

この節では位相空間の基本事項をまとめていきます。基本的には [56] を(かなり)参考にしています。ゆえにここに書いている証明は、そのノートを自分なりに整理したものになっています。

3.2.1 距離空間入門事項

ここでは距離空間に関する定義をまとめておく.

Definition 3.2.1.

集合 X に対して $A: X \times X \to \mathbb{R}$ が X 上の**距離関数**(\mathbf{metric})であるとは, 以下の 3 条件を満たすことをいう.

- (d1) (i) $\forall x, y \in X (d(x, y) \ge 0)$ (ii) $\forall x, y \in X (d(x, y) = 0 \leftrightarrow x = y)$
- (d1) $\forall x, y \in X (d(x, y) = d(y, x))$
- (d1) $\forall x, y, z \in X (d(x, z) \leq d(x, y) + d(y, z))$

d が X 上の距離関数のとき, 組 (X,d) を**距離空間(metric space**)という. d が文脈から明らかならば単に「距離空間 X」と呼ぶ.

続いて部分空間について定義しておく.

Definition 3.2.2.

距離空間 (X,d) と $A\subseteq X$ に対して、組 $(A,d\upharpoonright A\times A)$ を (X,d) の部分距離空間(metric subspace)、あるいは単に部分空間という.

続いて距離空間の構造を調べるための写像を定義します.

Definition 3.2.3.

距離空間 (X, d_X) と (Y, d_Y) に対して,

・ $f: X \to Y$ が距離を保つ、あるいは等長写像(isometry) $\stackrel{\text{def}}{\Longleftrightarrow} \forall x, x' \in X(\ d_X(x, x') = d_Y(f(x), f(x'))\)$

・ X と Y が距離空間として**等長(isometric)**,あるいは**同型(isomorphic)**であるとは, X から Y への全射等長写像が存在することをいう.

通常「同型」とは構造(この場合は距離)が同じで、全単射写像が存在する場合に使う言葉ですが、上記の定義では全射であることしか要求していません。これは等長写像が常に単射であることが示せるからです。それを含めた細かな主張をまとめておきます。

Proposition 3.2.4.

距離空間 (X, d_X) , (Y, d_Y) , (Z, d_Z) と $f: X \to Y$, $g: Y \to Z$ に対して

- (1) f が等長写像ならば単射.
- (2) f,g が等長写像ならば、その合成 $g \circ f: X \to Z$ も等長写像
- (3) f が全射等長写像ならば、その逆写像も等長写像
- (4) f が全射等長写像ならば、X と f[X] は距離空間として等長、つまり同型.
- (5) X と Y が同型ならば、等長写像 $f': X \to Y$ 、 $g': Y \to Z$ が存在して $g' \circ f' = id_X$ 、 $f' \circ g' = id_Y$ が成立する.
- (6) $A \subseteq X$ に対して、包含写像 $i_A: X \to X$ は (X, d_X) から部分空間 $(A, d \mid A \times A)$ への等長写像.

$\underline{\mathbf{Proof}}$

- (1) $f(x) = f(x') \land x \neq x'$ なる $x, x' \in X$ が存在したとします. x' より d(x, x') > 0, f(x) = f(x') より $d_Y(f(x), f(x')) = 0$ で すが、これは f が等長写像であることに矛盾.
- (2) 任意に $x, x' \in X$ をとります. $d_Z(g \circ f(x), g \circ f(x')) = d_Z(g(f(x)), g(f(x')))$ で、g が等長写像であることから $d_Z(g(f(x)), g(f(x'))) = d_Y(f(x), f(x'))$. そして f が等長写像であることから $d_Y(f(x), f(x')) = d_X(x, x')$. まとめると $d_Z(g \circ f(x), g \circ f(x')) = d_X(x, x')$ より $g \circ f$ は等長写像.
- (3) (1) より f は単射でもあるので, f は全単射より逆写像 f^{-1} が存在. ある $y,y' \in Y$ に対して $d_Y(y,y') = d_X(f^{-1}(y),f^{-1}(y'))$ でなかったとします. f は等長写像なので $d_X(f^{-1}(y),f^{-1}(y')) = d_Y(f(f^{-1}(x)),f(f^{-1}(x'))) = d_Y(y,y')$ となって矛盾.
- (4) $f': X \to f[X]$ を f'(x) = f(x) とすれば、f' は X から f[X] への等長写像で、f' はその作り方から全射、そんな全射等長写像の存在から X と f[X] は同型です.
- (5) X と Y が同型なので、その間の等長写像を f とおく、(1) より f は単射、X と Y が同型なので f は全射、故に逆写像 f^{-1} が存在する。(3) より f^{-1} も等長写像で、 f^{-1} が逆写像であることから $f^{-1} \circ f = id_X$ 、 $f \circ f^{-1} = id_Y$ です.等長写像 $f': X \to Y, \ g': Y \to Z$ が存在して $g' \circ f' = id_X$ 、 $f' \circ g' = id_Y$ が成立する.
- (6) 包含写像の定義と, 恒等写像が明らかに等長写像であることから, ここまでの議論より明らか.

Definition 3.2.5.

距離空間 $(X,d),x \in X, \varepsilon > 0$ に対して

- ・ $U_{\varepsilon}(x) \stackrel{\text{def}}{=} \{ y \in X \mid d(x,y) < \varepsilon \}$ として、これを x を中心とする半径 ε の開球(open ball),開円盤(open disc) あるいは ε 近傍と呼ぶ.
- ・ $S_{\varepsilon}(x) \stackrel{\text{def}}{=} \{ y \in X \mid d(x,y) = \varepsilon \}$ として、これを x を中心とする半径 ε の球面(sphere)と呼ぶ.

Definition 3.2.6.

距離空間 (X,d) と空でない $A \subseteq X$ に対して、 $\delta(A) \stackrel{\text{def}}{=} \sup\{ d(x,y) \mid x,y \in A \}$ として、これを A の**直径**(diameter)と呼ぶ、必要ならば $\delta(\emptyset) = -\infty$ と約束する.

 $\delta(A) < +\infty$ のとき, A は**有界(bounded**)という.

Proposition 3.2.7.

距離空間 (X,d) と $A,B \subseteq X,A$ は空でないとするとき

- (1) $A \subseteq B$ ならば $\delta(A) \leq \delta(B)$.
- (2) A が有界 $\leftrightarrow \forall x \in X \exists r > 0 (A \subseteq U_r(x))$
- (3) A が有界 $\leftrightarrow \exists x \in X \exists r > 0 (A \subseteq U_r(x))$
- (4) $A \in [X]^{<\omega}$ ならば A は有界.
- (5) $\forall x \in X \forall r > 0 (\delta(U_r(x)) \leq 2r)$

Proof

- (1) 実数の 2 つの部分集合 R, R' に対して $R \subseteq R'$ ならば $\sup R \le \sup R'$ です. $A \subseteq B$ だから $\{d(x,y) \mid x,y \in A\} \subseteq \{d(x,y) \mid x,y \in B\}$ なので、両方の \sup をとれば $\delta(A) \le \delta(B)$ です.
- (2) (\rightarrow) A が有界なので、ある $s \in \mathbb{R}$ でもって $\delta(A) = s$ です.任意にとった x に対して、もう 1 つ $a \in A$ をとっておく. r = s + d(x, a) + 1 とおくと、 $A \subseteq u_r(x)$ です.なぜならば任意に $b \in A$ をとると

つまり $b \in U_r(x)$ なので, $A \subseteq U_r(x)$ です.

- (←) 任意に $x \in X$ をとり、それに対して存在する r > 0 を固定します. $A \subseteq U_r(x)$ より (1) より $\delta(A) \le \delta(U_r(x))$ 、そして その定義から $\delta(U_r(x)) \le 2r$ 、つまり $\delta(A) \le 2r < +\infty$ より A は有界です.
- (3) (2) より明らか.
- (4) A は有限なので、集合 $\{d(x,y) \mid x,y \in A\}$ も有限です。するとこれは実数の有限集合なので最大元が存在し、故に有界です。
- (5) 任意の $y, z \in U_r(x)$ に対して

$$d(y,z) \leq d(y,x) + d(x,z) < r+r = 2r$$

より、その定義から $\delta(U_r(x)) \leq 2r$.

(5) についてですが、これは距離空間やそのrの取り方によって等号が成立したりしなかったりします。例えばn次元ユークリッド空間(Example 3.2.10)ならば、 $\delta(U_r(x))=2r$ (Proposition 3.2.11(8))となり、離散距離空間(Example 3.2.12)ならば、あるrに対して $\delta(U_r(x))<2r$ (Proposition 3.2.13(3))となります。

Definition 3.2.8.

距離空間 (X,d) と空でない $A,B\subseteq X$ に対して, $d(A,B)\stackrel{\mathrm{def}}{=}\inf\{\ d(a,b)\mid a\in A\land b\in B\ \}$ として, これを A と B の距離と呼ぶ.

とくにAが一元集合のとき $A=\{a\}$ とおくならば, $d(\{a\},B)$ を単にd(a,B) と書いて,a とB の距離という. つまり $d(a,B)\stackrel{\mathrm{def}}{=}\inf\{d(a,b)\}$ B

Proposition 3.2.9.

距離空間 (X,d) と空でない $A,B\subseteq X$ に対して $A\cap B\neq\emptyset$ ならば d(A,B)=0.

 $\underline{\mathbf{Proof}} \quad A \cap B \neq \emptyset \text{ なので } x \in A \cap B \text{ を } 1 \text{ つ取れば, } d(x,x) \in \{ \ d(a,b) \mid a \in A \land b \in B \ \}, \ \mathcal{F} \ \mathsf{し} \ \mathsf{て} \ d(x,x) = 0 \ \mathsf{よ} \ b, d(A,B) \text{ の定 } \\ \widehat{\mathbf{a}} \text{ から } d(A,B) = 0 \text{ です.}$

しかしこの命題の逆は一般的には成立しません. Proposition 3.2.11(7) を見てください.

souji ノート 119

3.2.2 距離空間の例

ここでは3.2.1 節の用語を使いながら、距離空間の例をいくつか挙げていきます。

Example 3.2.10.

 $n \in \omega$, $\mathbb{R}^n = \{ (x_1, x_2, \cdots, x_n) \mid x_i \in \mathbb{R} \}, x = (x_1, \cdots, x_n), y = (y_1, \cdots, y_n) \in \mathbb{R}^n$ に対して, $d : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ を

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

とおくと, d は \mathbb{R}^n 上の距離関数である.

 (\mathbb{R}^n, d) は n 次元ユークリッド空間(n-dimensional Euclidian space)と呼ばれる.

Proof 距離空間の3条件をdが満たすか確かめる.

- (d1) (i) 各 $(x_i y_i)^2$ は 0 以上, 非負なので, 故に d(x, y) もいかなる $x, y \in \mathbb{R}^n$ に対しても $d(x, y) \ge 0$ である.
 - (ii) ある $x, y \in \mathbb{R}^n$ があって d(x, y) = 0 とすると、各 i に対して

$$0 \le (x_i - y_i)^2 \le \sqrt{\sum_{i=1}^n (x_i - y_i)^2} = 0$$

より $(x_i - y_i)^2 = 0$, つまり $x_i - y_i = 0$ だから $x_i = y_i$. これが各 i について成立し、ゆえに x = y.

- (d2) 各 i に対して $(x_i y_i)^2 = (y_i x_i)^2$ だから, d の定義より明らか.
- (d3) 任意に $x,y,z \in \mathbb{R}^n$ をとって、z も $z=(z_1,\cdots,z_n)$ とおく、 $d(x,z) \leq d(x,y)+d(y,z)$ 、つまり $d(x,y)+d(y,z)-d(x,z) \geq 0$ を示すことが目標になりますが、(d1) より d(x,z)、d(x,y)、d(y,z) は非負なので、 $\left(d(x,y)+d(y,z)\right)^2-\left(d(x,z)\right)^2 \geq 0$ を示せば、目標の証明になっている。 $a_i=x_i-y_i,b_i=y_i-z_i$ とおくと、 $x_i-z_i=a_i+b_i$ となる。すると

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (a_i)^2} , \ d(y.z) = \sqrt{\sum_{i=1}^{n} (b_i)^2} , \ d(x,z) = \sqrt{\sum_{i=1}^{n} (a_i + b_i)^2}$$

となって

$$\left(\begin{array}{c} (d(x,y) + d(y.z) \, \right)^2 - \left(\begin{array}{c} d(x,z) \, \right)^2 \\ = \left(\begin{array}{c} (d(x,y)^2 + 2d(x,y)d(y,z) + d(y,z)^2 \, \right) - \left(\begin{array}{c} d(x,z) \, \right)^2 \\ = \left(\begin{array}{c} \sum_{i=1}^n (a_i)^2 + 2 \sqrt{\sum_{i=1}^n (a_i)^2} \sqrt{\sum_{i=1}^n (b_i)^2} + \sum_{i=1}^n (b_i)^2 \, \right) - \sum_{i=1}^n (a_i + b_i)^2 \\ = \left(\begin{array}{c} 2 \sqrt{\sum_{i=1}^n (a_i)^2} \sqrt{\sum_{i=1}^n (b_i)^2} + \sum_{i=1}^n (a_i)^2 + \sum_{i=1}^n (b_i)^2 \, \right) - \sum_{i=1}^n (a_i^2 + 2a_ib_i + b_i^2) \\ = 2 \sqrt{\sum_{i=1}^n (a_i)^2} \sqrt{\sum_{i=1}^n (b_i)^2} + \sum_{i=1}^n (a_i)^2 + \sum_{i=1}^n (b_i)^2 - \left(\begin{array}{c} \sum_{i=1}^n (a_i)^2 + 2 \sum_{i=1}^n (a_ib_i) + \sum_{i=1}^n (b_i)^2 \, \right) \\ = 2 \sqrt{\sum_{i=1}^n (a_i)^2} \sqrt{\sum_{i=1}^n (b_i)^2} - 2 \sum_{i=1}^n (a_ib_i) \, = \, 2 \left(\sqrt{\sum_{i=1}^n (a_i)^2} \sqrt{\sum_{i=1}^n (b_i)^2} - \sum_{i=1}^n (a_ib_i) \right) \\ \updownarrow \, b \, , \sqrt{\sum_{i=1}^n (a_i)^2} \sqrt{\sum_{i=1}^n (b_i)^2} - \sum_{i=1}^n (a_ib_i) \, \geq \, 0 \, \, \not \approx \, \vec{\pi} \, \vec{\tau} \, . \, \not \in \mathcal{O} \not \approx \, \vec{b} \, \not \in \mathcal{O}$$

souji ノート

を示します. 上記の式は Schwarz の不等式(の別表現)と呼ばれています.

 $\sum_{i=1}^{n} (b_i)^2 = 0$ ならば、全ての b_i が 0 だと分かり、両辺 0 になって成立.

 $\sum_{i=1}^{n}(b_i)^2 \neq 0$ とする. どの b_i^2 も非負なので, $\sum_{i=1}^{n}(b_i)^2 > 0$ です. 任意に $t \in \mathbb{R}$ をとり, $\sum_{i=1}^{n}(a_i+tb_i)^2$ を考えるとこれ も非負, そして

$$0 \le \sum_{i=1}^{n} (a_i + tb_i)^2 = \sum_{i=1}^{n} (a_i)^2 + 2t \sum_{i=1}^{n} (a_ib_i) + t^2 \sum_{i=1}^{n} (b_i)^2$$

で, $\sum_{i=1}^{n} (b_i)^2 > 0$ より, これを t を変数とした不等式とすると, その判別式は

$$\left(2\sum_{i=1}^{n}(a_{i}b_{i})\right) - 4\left(\sum_{i=1}^{n}(a_{i})^{2}\right)\left(\sum_{i=1}^{n}(b_{i})^{2}\right) \leq 0$$

つまり

$$\left(\sum_{i=1}^{n} (a_i b_i)\right) - \left(\sum_{i=1}^{n} (a_i)^2\right) \left(\sum_{i=1}^{n} (b_i)^2\right) \le 0$$

よって,
$$\left(\sum_{i=1}^n (a_ib_i)\right)^2 \leq \left(\sum_{i=1}^n (a_i)^2\right) \left(\sum_{i=1}^n (b_i)^2\right)$$
が証明できた.

この空間について前節の用語を振り返ります.

Proposition 3.2.11.

1次元ユークリッド空間 (\mathbb{R} , d) と $x, y \in \mathbb{R}$, $\varepsilon > 0$ に対して

(1)
$$d(x,y) = \sqrt{(x-y)^2} = |x-y|$$

- (2) $U_{\varepsilon}(x) = (x \varepsilon, x + \varepsilon)$
- (3) $S_{\varepsilon}(x) = \{x \varepsilon, x + \varepsilon\}$
- (4) 何らかの $r \in \mathbb{R}$ に対して, $f, g : \mathbb{R} \to \mathbb{R}$ を $f(x) = x_r, g(x) = x r$ とすれば, f, g は 1 次元ユークリッド空間から自身への等長写像になっている.
- (5) $d \upharpoonright \mathbb{Z} \times \mathbb{Z}$ や $d \upharpoonright \mathbb{Q} \times \mathbb{Q}$ は \mathbb{Z}, \mathbb{Q} 上の距離関数となり、この距離により \mathbb{Z}, \mathbb{Q} は 1 次元ユークリッド空間 \mathbb{R} の部分距離空間になる.

2 次元ユークリッド空間 (\mathbb{R}^2,d) と $\langle x,y \rangle \in \mathbb{R}^2$ (\mathbb{R} の要素を (x,y) と書くと区間に見えるので、ここでは $\langle x,y \rangle$ と書くことにした), $\varepsilon > 0$ に対して

(6)
$$U_{\varepsilon}(\langle x, y \rangle) = \{ \langle x', y' \rangle \mid (x' - x)^2 + (y' - y)^2 < \varepsilon^2 \}$$

(7) $A, B \subseteq \mathbb{R}^2$ を $A = \{\langle 0, x \rangle | x \in \mathbb{R}\}, B = \{\langle x, \frac{1}{x} \rangle | x \in \mathbb{R}\}$ とおくと, $A \cap B = \emptyset$ かつ d(A, B) = 0 が成立.

n 次元ユークリッド空間 (\mathbb{R}^n, d) と $x \in \mathbb{R}^n, r > 0$ に対して

(8)
$$\delta(U_r(x)) = 2r$$
.

Example 3.2.12.

集合 X に対して, $d: X \times X \to \mathbb{R}$ を

$$d(x,y) = \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases}$$

で定めると, d は X 上の距離関数で, 距離空間 (X,d) は**離散距離空間**($discrete\ metric\ space$)と呼ぶ.

Proof (d1), (d2) はその定義より明らか. (d3) に関しては任意にとった 3 点 $x,y,z \in X$ を, $x = y \land y = z$, $x \neq y \land y = z$, … など場合分けすれば、その全てにおいて成立することが確かめられる.

Proposition 3.2.13.

離散距離空間 (X,d) と $x \in X, \varepsilon > 0$ に対して

$$(1) \ U_{\varepsilon}(x) = \begin{cases} \{x\} & \varepsilon \le 1 \\ X & \varepsilon > 1 \end{cases}$$

(2)
$$S_{\varepsilon}(x) = \begin{cases} \emptyset & \varepsilon \neq 1 \\ X \setminus \{x\} & \varepsilon = 1 \end{cases}$$

(3)
$$r \le 1$$
 のとき, $\delta(U_r(x)) = 0$, つまり $\delta(U_r(x)) < 2r$.

3.2.3 位相空間の定義と閉集合

位相空間を以下のように定義する.

Definition 3.2.14.

空でない集合 X に対して、そのべき集合の部分集合 $\mathcal{O} \subseteq \mathcal{P}(X)$ が X 上の**位相(topology**)であるとは、以下の 3 条件をみた すことである.

- (O1) $\emptyset, X \in \mathcal{O}$.
- (O2) $\forall O_1, O_2 \in \mathcal{O}(O_1 \cap O_2 \in \mathcal{O}).$
- (O3) $\forall \{O_{\lambda}\}_{{\lambda} \in {\Lambda}} \subseteq \mathcal{O}(\bigcup_{{\lambda} \in {\Lambda}} O_{\lambda} \in \mathcal{O}).$

X と X 上の位相 \mathcal{O} の組 (X,\mathcal{O}) を**位相空間**(topological space)という.

 (X,\mathcal{O}) が位相空間であるとき, \mathcal{O} の要素を(その位相空間の)**開集合(open set**)という.

また位相空間 (X,\mathcal{O}) における $\mathcal O$ のことを位相ではなく, その空間の**開集合系**(system of open sets)とよぶこともある.

ある集合に位相を入れるとか, 位相を定めるというのは, 上の3条件をみたす集合たちを定めること, つまり開集合全体を定めるという意味になる.

位相を入れられた集合、つまり (X,\mathcal{O}) における X のことを、位相空間 (X,\mathcal{O}) の台集合(underlying set)と呼ぶこともある¹

位相空間によっては開集合はなんであるかを提示しにくい場合もあるそのために位相の定め方は他にもいくつかある.

開集合の双対概念として閉集合がある.

Definition 3.2.15.

位相空間 (X, \mathcal{O}) に対して, $F \subseteq X$ が**閉集合**(closed set)であるとは, $X \setminus F$ が X の開集合, つまり $X \setminus F \in \mathcal{O}$ となることである.

位相空間 (X,\mathcal{O}) の閉集合全体の集合をその位相空間の**閉集合系**(system of closed sets)とよび, \mathcal{F} や \mathcal{C} などで表す².

閉集合が開集合の双対概念である由縁は以下のような開集合と似た(対照的な)性質を持つことにある.

Proposition 3.2.16.

 \mathcal{F} を位相空間 (X,\mathcal{O}) の閉集合系とするとき, \mathcal{F} は以下の 3 つの性質をみたす.

- (F1) $\emptyset, X \in \mathcal{F}$.
- (F2) $\forall F_1, F_2 \in \mathcal{F}(F_1 \cup F_2 \in \mathcal{F}).$

 $^{^1}$ 台集合とは Wikipedia の「数学的構造」[16] によると、(何の構造も持たない) 単なる「はだか」の集合という意味で使い、とくにその構造は位相でなくても使うことができる。個人的には便利な言葉だと思うので以降も使っていく。

²ここらへんはテキストによっても変わるので,自分もその時々の記号の使われ具合によって変えることにする.

souji / − ト 122

(F3)
$$\forall \{F_{\lambda}\}_{{\lambda} \in {\Lambda}} \subseteq \mathcal{F}(\bigcap_{{\lambda} \in {\Lambda}} F_{\lambda} \in \mathcal{F}).$$

Proof 証明は省略する.

集合 X に位相を定めるとき、開集合が何かを定めるのではなく、閉集合とは何かを定めた上でその補集合全体を開集合と定める方法もある。これは Definition 3.2.14(121 ページ)の下の文章にも書いた、開集合を直接定める以外の位相を定める方法の 1 つである。これは以下のような定理を示すことで分かる。

Theorem 3.2.17.

集合 X に対して $\mathcal{F} \subseteq \mathcal{P}(X)$ が Proposition 3.2.16(121 ページ)の (F1)~(F3) をみたしているとする. このとき $\mathcal{O} \subseteq \mathcal{P}(X)$ を

$$\mathcal{O} = \{ O \subseteq X \mid X \setminus O \in \mathcal{F} \}$$

で定めると,

- (1) O は X の位相となり、
- (2) F は O の閉集合系になっている.
- (3) また位相空間の開集合系から定めた位相はもとの位相と一致する.

Proof (1) と (2) の証明は省略する.

位相空間 (X,\mathcal{O}) とその閉集合系 \mathcal{F} に対して、 $\mathcal{O}_{\mathcal{F}} = \{\ O \subseteq X \mid X \setminus O \in \mathcal{F}\ \}$ とおく、証明すべきことは $\mathcal{O} = \mathcal{O}_{\mathcal{F}}$ である、 $\mathcal{O} \subseteq \mathcal{O}_{\mathcal{F}}$ を示すため任意に $O \in \mathcal{O}$ をとる、 $F = X \setminus O$ とおくと、 $X \setminus F = X \setminus (X \setminus O) = O$ より $X \setminus F \in \mathcal{O}$ 、つまり F は位相空間 (X,\mathcal{O}) の閉集合より $F \in \mathcal{F}$. すると $X \setminus O = F \in \mathcal{F}$ より $O \in \mathcal{O}_{\mathcal{F}}$.

 $\mathcal{O}_{\mathcal{F}} \subseteq \mathcal{O}$ も同様に示せるので省略する.

3.2.4 開基と準基

$\underline{\text{Definition}} \ 3.2.18.$

 (X,\mathcal{O}) を位相空間とする. $\mathcal{B}\subseteq\mathcal{O}$ が \mathcal{O} の**開基**(open base)であるとは, 任意の開集合が \mathcal{B} に属する集合の和集合で表現できるときをいう. 論理式で書くと $\forall O\in\mathcal{O}\exists\{B_\lambda\}_{\lambda\in\Lambda}\subseteq\mathcal{B}\big(\ O=\bigcup_{\lambda\in\Lambda}B_\lambda\ \big)$ です.

Definition 3.2.19.

 (X,\mathcal{O}) を位相空間が**第二可算公理**(second axiom of countability)を満たすとは, (X,\mathcal{O}) に高々可算な開基が存在するときをいう.

Definition 3.2.20.

集合 X と $G \subseteq \mathcal{P}(X)$ に対し, G が生成する位相とは, G を含む位相全ての共通部分, すなわち G の元が全て開集合になるような 最弱の位相のことをいい, $\mathcal{O}(G)$ で表す.

Definition 3.2.21.

 (X,\mathcal{O}) を位相空間とする. $\mathcal{B}\subseteq\mathcal{O}$ が \mathcal{O} の**準基**(sub base)であるとは, \mathcal{B} の有限個の元の共通部分として表される集合全体が \mathcal{O} の開基になること, つまり $\{\bigcap_{i\in[n]}B_i\mid\{B_i\}_{i\in[n]}\subseteq\mathcal{B}\}$ が \mathcal{O} が開基になっているということです.

 \mathcal{B} の 0 個の元の共通部分は X であると決めておきます.

ある集合族で生成される位相は、どんな集合が開集合になっているか分かりにくい. 以下の補題で少しは分かりやすくなると思います.

Lemma 3.2.22.

集合 X と $\mathcal{G} \subseteq \mathcal{P}(X)$ に対し, \mathcal{G} は $\mathcal{O}(\mathcal{G})$ の準基になっている. つまり $\mathcal{O}(\mathcal{G})$ における開集合とは, 「 \mathcal{G} の元の有限個の共通部分」たちの和集合で表せます.

$$\hat{\mathcal{G}} = \{ \bigcap_{i \in [n]} G_i \mid \{G_i\}_{i \in n} \subseteq \mathcal{G} \}$$

です. さらに \hat{g} の元の和集合全体として表せる集合全体をOで表す、つまり

$$\hat{\mathcal{O}} = \{ \bigcup_{\lambda \in \Lambda} O_{\lambda} \mid \{O_{\lambda}\}_{\lambda \in \Lambda} \subseteq \hat{\mathcal{G}} \}$$

示すべきをここまでの定義を使って書けばO = O(G)です.

- $\mathcal{O} \subseteq \mathcal{O}(\mathcal{G})$
 - $\mathcal{G} \subseteq \mathcal{O}(\mathcal{G})$ で, $\mathcal{O}(\mathcal{G})$ は定義から位相です. すると位相は, 有限共通部分で閉じているから $\hat{\mathcal{O}} \subseteq \mathcal{O}(\mathcal{G})$, そしてそれらの和集合で閉じているから $\mathcal{O} \subseteq \mathcal{O}(\mathcal{G})$ です.
- $\mathcal{O}(\mathcal{G}) \subseteq \mathcal{O}$

その定義から $\mathcal{G} \subseteq \mathcal{O}$ なので, \mathcal{O} が位相であることを示せば OK です. なぜならば $\mathcal{O}(\mathcal{G})$ は \mathcal{G} を含む最小の位相だからです.

- $\emptyset, X \in \mathcal{O}$
 - \emptyset は $\hat{\mathcal{O}}$ の 0 個の元の和集合として表現できます. X は \mathcal{B} の 0 個の元の共通部分として $\hat{\mathcal{O}}$ に属し, それの 1 つの和集合として \mathcal{O} に属します.
- ・有限共通部分で閉じること

任意に $O_1,O_2\in\mathcal{O}$ をとると、 $\{O_\lambda^1\}_{\lambda\in\Lambda_1},\ \{O_\lambda^2\}_{\lambda\in\Lambda_2}\subseteq\hat{\mathcal{G}}$ があって、 $O_i=\bigcup_{\lambda\in\Lambda_i}O_\lambda^i\ (i=1,2)$ です. $O_1\cap O_2=\bigcup_{\lambda\in\Lambda_i}O_\lambda^i$

 $\bigcup_{\langle \lambda_1, \lambda_2 \rangle \in \Lambda_1 \times \Lambda_2} O_{\lambda_1} \cap O_{\lambda_2} \ \text{で}, \ \Lambda = \Lambda_1 \times \Lambda_2 \ \texttt{とおけば}, \{O_{\lambda_1} \cap O_{\lambda_2}\}_{\langle \lambda_1, \lambda_2 \rangle \in \Lambda} \ \text{は,} \ \text{各} \ O_{\lambda_1} \cap O_{\lambda_2} \ \text{が} \ \hat{\mathcal{G}} \ \text{に属することから},$

 $\hat{\mathcal{G}}$ の部分集合族であり, つまり $O_1\cap O_2$ は $\{O_{\lambda_1}\cap O_{\lambda_2}\}_{\langle\lambda_1,\lambda_2\rangle\in\Lambda}$ の和集合なので \mathcal{O} に属します.

・和集合で閉じること

任意に $\{O_{\lambda}\}_{\lambda\in\Lambda}\subseteq\mathcal{O}$ をとります. 各 O_{λ} に対し、 Λ^{λ} を添え字集合とした集合族 $\{O_{\mu}\}_{\mu\in\Lambda^{\lambda}}\subseteq\hat{\mathcal{G}}$ があって $O_{\lambda}=\bigcup_{\mu\in\Lambda^{\lambda}}O_{\mu}$ です. $\Lambda'=\bigcup_{\lambda\in\Lambda}\Lambda^{\lambda}$ とおくと、 $\{O_{\mu}\}_{\mu\in\Lambda'}$ も $\hat{\mathcal{G}}$ の集合族で $\bigcup_{\mu\in\Lambda}O_{\mu}\in\mathcal{O}$ です. そして $\bigcup_{\lambda\in\Lambda}O_{\lambda}=\bigcup_{\mu\in\Lambda}O_{\mu}$ より、 $\bigcup_{\lambda\in\Lambda}O_{\lambda}\in\mathcal{O}$ です.

開基の双対概念として閉基というものがあります. これについて性質も含めて簡単にまとめておきます.

Definition 3.2.23.

X を位相空間とし, C をその閉集合全体の集合とする. $\mathcal{B} \subseteq \mathcal{C}$ が \mathcal{C} の**閉基**(base for the closed sets)であるとは, 任意の閉集合が \mathcal{B} に属する集合の共通部分で表現できるときをいう. $\mathcal{B} \subseteq \mathcal{C}$ が \mathcal{C} の**閉基**(base for the closed sets)であるとは, 任意の閉

定義だけなら [63] にも載っていましたが, 閉基にどのような性質があるかは Wikipedia の『開基』のページ [2] を参考にしました. 以下の命題はそれに載っていたものです.

Proposition 3.2.24.

 (X,\mathcal{O}) を位相空間, \mathcal{C} をその閉集合全体の集合とするとき, 以下は同値.

- (1) $\mathcal{B} \subseteq \mathcal{C}$ が \mathcal{C} の閉基である.
- (2) $\mathcal{F} = \{F | \exists C \in \mathcal{B}(F = X \setminus C)\}$ が \mathcal{O} の開基.

Proof

³開基が open base なので閉基は closed base なのかと思ったが、どうやらそのような呼び方は定着していないっぽい.

 $(1) \Rightarrow (2)$

F がその定義から開集合の族であることは明らか. 開基であることを示すため, 任意に開集合 $O \in \mathcal{O}$ をとる. $C = X \setminus O$ とすると, C は閉集合であることと \mathcal{B} が C の閉基であることから,

$$\exists \{C_{\lambda}\}_{\lambda \in \Lambda} \subseteq \mathcal{B}(\ C = \bigcap_{\lambda \in \Lambda} C_{\lambda}\)$$

が成立するので、そんな $\{C_{\lambda}\}_{\lambda\in\Lambda}$ を 1 つとって固定する. そして $X\setminus O=\bigcap_{\lambda\in\Lambda}C_{\lambda}$ より, $O=X\setminus\bigcap_{\lambda\in\Lambda}C_{\lambda}=\bigcup_{\lambda\in\Lambda}(X\setminus C_{\lambda})$.ここで $F_{\lambda}=X\setminus C_{\lambda}$ とおくと,各 F_{λ} は F に属し,これは O が F の要素の和集合で表せた,つまり F が O の開基であることを示したことになる.

 $(2) \Rightarrow (1)$

開基・閉基について成り立つことで、証明がパラレルに済みそうなものをまとめてみます。

Proposition 3.2.25.

位相空間 X の開集合全体を \mathcal{O} , 閉集合全体を \mathcal{C} とおき, さらに $\mathcal{B} \subseteq \mathcal{P}(X)$ に対して, 以下の (1-1) と (1-2), (2-1) と (2-2) はそれ ぞれ同値である.

- (1-1) Вが Оの開基.
- (1-2) 任意の $O \in \mathcal{O}$ と $x \in O$ に対して、ある $U \in \mathcal{B}$ が存在して、 $x \in U$ かつ $U \subseteq O$ となる.
- (2-1) βが Cの閉基.
- (2-2) 任意の $C \in \mathcal{C}$ と $x \notin \mathcal{C}$ に対して、ある $F \in \mathcal{B}$ が存在して、 $A \subseteq F$ かつ $x \notin F$ となる.

Proof

 $(1-1) \Rightarrow (1-2)$

任意に $O \in \mathcal{O}$ と $x \in O$ をとる. この O に対して \mathcal{B} が \mathcal{O} の開基であることから, $\mathcal{B}_O \subseteq \mathcal{B}$ があって $O = \bigcup \mathcal{B}_O$ となっている. すると $x \in O$ より $x \in \bigcup \mathcal{B}_O$ より, ある $U \in \mathcal{B}_O$ があって $x \in U$. そして $U \in \mathcal{B}_O$ より $U \subseteq O$. そんな U の存在から (1-2) は成立.

 $(1-2) \Rightarrow (1-1)$

任意の $O \in \mathcal{O}$ をとる. (1-1) より各 $x \in O$ に対して存在する \mathcal{B} の要素を U_x とおく. すると $O = \bigcup_{x \in O} U_x$ であり、 $\{U_x\}_{x \in O} \subseteq \mathcal{B}$ の存在から \mathcal{B} は \mathcal{O} の開基である.

 $(2-1) \Rightarrow (2-2)$

任意に $C \in \mathcal{C}$ と $x \notin C$ をとる. \mathcal{BC} の閉基であることから, ある $\mathcal{B}_C \subseteq \mathcal{B}$ があって $C = \bigcap \mathcal{B}_C$ となっている. ここで $\exists B \in \mathcal{B}_C (x \notin B)$ が成立する.

: もし $\forall B \in \mathcal{B}_C(x \in B)$ とすると、 $x \in \bigcap \mathcal{B}_C$ より、 $C = \bigcap \mathcal{B}_C$ と $x \notin C$ に矛盾する.

そんな B を 1 つとると, $C = \bigcap \mathcal{B}_C \subseteq B$ と $x \notin B$ より, そんな B の存在から (2-2) が成立.

 $(2-2) \Rightarrow (2-1)$

任意に $C \in \mathcal{C}$ をとる. 各 $x \in X \setminus C$ に対して (2-2) より存在する F を F_x とおく. すると $\{F_x\}_{x \in X \setminus C}$ は $C = \bigcap_{x \in X \setminus C} F_x$ をみたす. そんな $\{F_x\}_{x \in X \setminus C} \subseteq \mathcal{B}$ の存在から \mathcal{B} は \mathcal{C} の閉基.

さきの命題を利用して集合族が開基・閉基になる別の同値条件を紹介する.

Proposition 3.2.26.

 $X \neq \emptyset, \mathcal{B} \subseteq \mathcal{P}(X)$ に対して以下の (1) と「(2-1) かつ (2-2)」は同値. さらに (3) が成立する.

- (1) \mathcal{B} は集合 X のある位相の開基である.
- (2-1) $X = \bigcup \mathcal{B}$.
- (2-2) 任意の $B_1, B_2 \in \mathcal{B}$ と $x \in B_1 \cap B_2$ に対して、ある $B \in \mathcal{B}$ が存在して $x \in B$ かつ $B \subseteq B_1 \cap B_2$.
 - (3) 「(2-1) かつ(2-2)」をみたす \mathcal{B} を開基とする集合Xの位相は一意的である.

Proof

 $(1) \Rightarrow (2-1) かつ (2-2)$

 \mathcal{B} を X の位相 \mathcal{O} の開基とする.

(2-1) であること.

 $X \in \mathcal{O}$ より \mathcal{B} が \mathcal{O} の開基であることから, $\mathcal{B}_X \subseteq \mathcal{B}$ があって $X = \bigcup \mathcal{B}_X$ となっている. $\bigcup \mathcal{B}_X \subseteq \bigcup \mathcal{B}$ より $X = \bigcup \mathcal{B}$.

(2-2) であること.

任意に $B_1, B_2 \in \mathcal{B}$ をとると、 \mathcal{B} が \mathcal{O} の開基であることから $B_1, B_2 \in \mathcal{O}$ より $B_1 \cap B_2 \in \mathcal{O}$. このときある x が $x \in B_1 \cap B_2$ ならば $\exists B \in \mathcal{B}(x \in B \land B \subseteq B_1 \cap B_2)$. これは Proposition 3.2.25(124 ページ)より明らか.

(2-1) かつ $(2-2) \Rightarrow (1)$

 $\mathcal{B} \subseteq \mathcal{P}(X)$ が (2-1) かつ (2-2) をみたしているとする.

$$\mathcal{O} = \{ \bigcup \mathcal{A} \mid \mathcal{A} \subseteq \mathcal{B} \}$$
 (†)

するとこの $\mathcal O$ は X の位相になっている. それを確かめるため位相の定義の 3 条件(Definition 3.2.14(121 ページ))を示す.

(O1) $\emptyset, X \in \mathcal{O}$.

 $A \subseteq \mathcal{B}$ を $A = \emptyset$ とすれば, $\bigcup A = \bigcup \emptyset = \emptyset$ より, そんな A の存在から, $\emptyset \in \mathcal{O}$. $X = \bigcup \mathcal{B}$ より $A = \mathcal{B}$ とすれば, $A \subseteq \mathcal{B}$ で $\bigcup A = X$ より, そんな A の存在から, $X \in \mathcal{O}$.

(O2) $\forall O_1, O_2 \in \mathcal{O}(O_1 \cap O_2 \in \mathcal{O}).$

任意に $O_1, O_2 \in \mathcal{O}$ をとると、 $A_i \subseteq \mathcal{B}$ があって $O_i = \bigcup A_i$ となっている(i = 1, 2).x を $x \in O_1 \cap O_2$ とすると、 $x \in O_i = \bigcup A_i$ より、ある $B_i \in A_i$ があって $x \in B_i$ かつ $B_i \subseteq O_i$ となっている.そんな B_1, B_2 を 1 つ固定する.すると $x \in B_1 \cap B_2$ となっていて、(2-2) よりある $B_x \in \mathcal{B}$ があって $x \in B_x$ かつ $B_x \subseteq B_1 \cap B_2 \subseteq O_1 \cap O_2$ である.各 x ごとに存在するそんな B_x を集めた集合を A とおくと、つまり

$$\mathcal{A} = \{ B_x \mid x \in O_1 \cap O_2 \land x \in B_x \land B_x \subseteq O_1 \cap O_2 \}$$

であり、その定義から $A \subseteq \mathcal{B}$ であり、 $\bigcup A = \bigcup_{x \in O_1 \cap O_2} B_x$ であることに注意すれば、 $\bigcup A = O_1 \cap O_2$ である.そんな A の存在から、 $O_1 \cap O_2 \in \mathcal{O}$.

(O3) $\forall \{O_{\lambda}\}_{{\lambda} \in {\Lambda}} \subseteq \mathcal{O}(\bigcup_{{\lambda} \in {\Lambda}} O_{\lambda} \in \mathcal{O}).$

任意に $\{O_{\lambda}\}_{\lambda\in\Lambda}\subseteq\mathcal{O}$ をとると、 $\{A_{\lambda}\}_{\lambda\in\Lambda}$ があって、各 A_{λ} が $A_{\lambda}\subseteq\mathcal{B}$ かつ $O_{\lambda}=\bigcup A_{\lambda}$ となっている。すべての A_{λ} が $A_{\lambda}\subseteq\mathcal{B}$ より、 $A=\bigcup_{\lambda\in\Lambda}A_{\lambda}$ とおくと $A\subseteq\mathcal{B}$ である。すると $\bigcup_{\lambda\in\Lambda}O_{\lambda}=\bigcup_{\lambda\in\Lambda}\bigcup A_{\lambda}=\bigcup A$ となるので、A の存在から、 $\bigcup_{\lambda\in\Lambda}O_{\lambda}\in\mathcal{O}$.

明らかにBはこの位相Oの開基である.

(3)

「(2-1) かつ (2-2)」をみたす $\mathcal B$ を開基とする位相を $\mathcal O$ とおくと、 開基の定義から $\mathcal O = \{\ O \mid \exists \mathcal A \subseteq \mathcal B (O = \bigcup \mathcal A)\ \}$ である. これは † での $\mathcal O$ と同じもの、 つまり $\mathcal B$ を開基とする位相はこの $\mathcal O$ のみである.

同様の事実が閉基についても成立する.

Proposition 3.2.27.

 $X \neq \emptyset$, $\mathcal{B} \subseteq \mathcal{P}(X)$ に対して以下の (1) と「(2-1) かつ (2-2)」は同値. さらに (3) が成立する.

- (1) \mathcal{B} は集合 X のある位相の閉基である.
- $(2-1) \emptyset = \bigcap \mathcal{B}.$
- (2-2) 任意の $B_1, B_2 \in \mathcal{B}$ と $x \notin B_1 \cup B_2$ に対して、ある $B \in \mathcal{B}$ が存在して $x \notin B$ かつ $B_1 \cup B_2 \subseteq B$.
 - (3) 「(2-1) かつ(2-2)」をみたす \mathcal{B} を閉基とする集合Xの位相は一意的である.

Proof $\lceil (1) \Rightarrow (2-1)$ かつ (2-2)」は Proposition 3.2.26 (124 ページ)と同様にできるので省略する.

(2-1) かつ $(2-2) \Rightarrow (1)$

 $\mathcal{B} \subseteq \mathcal{P}(X)$ が (2-1) かつ (2-2) をみたしているとする.

$$\mathcal{F} = \{ \bigcap \mathcal{A} \mid \mathcal{A} \subseteq \mathcal{B} \}$$
 (†)

するとこの F は X の閉集合系になっている. それを確かめるため閉集合系の 3 つの性質(Proposition 3.2.16(121 ページ)の $(F1)\sim(F3)$)を確かめる.

(F1) $\emptyset, X \in \mathcal{F}$.

 $\emptyset = \bigcap \mathcal{B}$ より $\mathcal{A} = \mathcal{B}$ とおけば、 $\mathcal{A} \subseteq \mathcal{B}$ かつ $\emptyset = \bigcap \mathcal{A}$ より、そんな \mathcal{A} の存在から $\emptyset \in \mathcal{F}$. なんらかの \mathcal{A} に対して集合族の共通部分の定義から $\bigcap \mathcal{A} = \{\ x \in X \mid \forall A \in \mathcal{A}(x \in A)\ \}$ より、 $\mathcal{A} = \emptyset$ とおくと、 $\forall A \in \emptyset (x \in A)$ はどんな x についても成立する、つまり $\bigcap \mathcal{A} = \bigcap \emptyset = X$ となる.そんな \mathcal{A} の存在から $X \in \mathcal{F}$.

(F2) $\forall F_1, F_2 \in \mathcal{F}(F_1 \cup F_2 \in \mathcal{F}).$

任意に $F_1, F_2 \in \mathcal{F}$ をとると、 $\mathcal{A}_i \subseteq \mathcal{B}$ があって $F_i = \bigcap \mathcal{A}_i$ となっている(i=1,2).x を $x \notin F_1 \cup F_2$ とすると、 $x \notin F_i = \bigcap \mathcal{A}_i$ より、ある $B_i \in \mathcal{A}_i$ があって $x \notin B_i$ かつ $F_i \subseteq B_i$ となっている.そんな B_1, B_2 を 1 つ固定する.すると $x \notin B_1 \cup B_2$ となっていて、(2-2) よりある $B_x \in \mathcal{B}$ があって $x \notin B_x$ かつ $F_1 \cup F_2 \subseteq B_1 \cup B_2 \subseteq B_x$ となっている.各 x ごとに存在するそんな B_x を集めた集合を \mathcal{A} とおくと、つまり

$$\mathcal{A} = \{ B_x \mid x \notin F_1 \cup F_2 \land x \notin B_x \land F_1 \cup F_2 \subseteq B_x \}$$

であり、その定義から $A \subseteq \mathcal{B}$ であり、 $\bigcap A = \bigcap_{x \notin F_1 \cup F_2} B_x$ であることに注意すれば、 $\bigcap A = F_1 \cup F_2$ である.

:: どの B_x も $F_1 \cup F_2 \subseteq B_x$ より $F_1 \cup F_2 \subseteq \bigcap \mathcal{A}$ は明らかである. $\bigcap \mathcal{A} \subseteq F_1 \cup F_2$ を示すために $X \setminus F_1 \cup F_2 \subseteq X \setminus \bigcap \mathcal{A}$ を確かめる. 任意に $x \in X \setminus F_1 \cup F_2$ な x, つまり $x \notin F_1 \cup F_2$ な $x \in X$ をとると $x \notin B_x$ かつ $B_x \in \mathcal{A}$ なる B_x がある. そんな B_x の存在から $x \in \mathcal{A}$ である.

そんな A の存在から, $F_1 \cup F_2 \in \mathcal{F}$.

(F3) $\forall \{F_{\lambda}\}_{{\lambda} \in {\Lambda}} \subseteq \mathcal{F}(\bigcap_{{\lambda} \in {\Lambda}} F_{\lambda} \in \mathcal{F}).$

これは Proposition 3.2.26 (124 ページ) の (O3) を反転させればできるので省略する.

Theorem 3.2.17 (122 ページ) のようにこの F を用いて位相を定めれば、明らかに F はその位相の閉基である.

(3)

すぐ上のように X に位相を定めたとすると、あとは Proposition 3.2.26 (124 ページ) と同様にできる.

souji ノート 127

3.2.5 直積位相

有限個の集合の直積集合には以下のように位相を入れるのが一般的です.

Definition 3.2.28.

 $(X, \mathcal{O}_X), (Y, \mathcal{O}_Y)$ を位相空間とする. X と Y の**直積空間(product space**)とは, $X \times Y$ に $\{O_X \times O_Y \mid O_X \in \mathcal{O}_X, O_Y \in \mathcal{O}_Y\}$ が生成する位相を入れた位相空間のことで、この位相を**直積位相(product topology**)という.

より一般的な直積集合に対しては以下のように位相を定義します. ??節(??ページ)の Definition 3.1.8 とそのあとの議論も参考にしてください.

Definition 3.2.29.

 $\{(X_{\lambda}, \mathcal{O}_{\lambda})\}_{\lambda \in \Lambda}$ を位相空間の族とする. この集合族の**直積空間**とは, $\prod_{\lambda \in \Lambda} X_{\lambda}$ に $\{p_{\lambda}^{-1}[O] \mid O \in \mathcal{O}_{\lambda}\}$ が生成する位相を入れた空間のこと, この位相を**直積位相**という.

直積空間を構成する X,Y や X_{λ} のことを**因子空間**と呼びます.

直積位相は以下の補題から、どのような集合が開集合になっているか分かりやすくなります.

Lemma 3.2.30.

直積位相空間 $\prod_{\lambda \in \Lambda} X_{\lambda}$ に対して

$$\{ \prod_{\lambda \in \Lambda} B_{\lambda} \mid \exists L \in [\Lambda]^{<\omega} (\lambda \in L \to B_{\lambda} \in \mathcal{O}_{\lambda} \lor \lambda \notin L \to B_{\lambda} = X_{\lambda}) \}$$

は直積位相の開基になっている.

Proof 証明はLemma 3.2.22 より明らかです.

3.2.6 compact な位相空間

被覆の定義,Definition 3.1.7 も参考にしてください.

Definition 3.2.31.

 (X, \mathcal{O}) を位相空間として

- ・ $\{O_{\lambda}\}_{\lambda \in \Lambda} \subseteq \mathcal{O}$ が $A \subseteq X$ の被覆のとき, $\{O_{\lambda}\}_{\lambda \in \Lambda}$ を A の開被覆(open covering)とよぶ.
- $\cdot (X, \mathcal{O})$ が **compact** $\stackrel{\text{def}}{\iff} \forall \{O_{\lambda}\}_{\lambda \in \Lambda} \colon X$ の開被覆 $(\{O_{\lambda}\}_{\lambda \in \Lambda})$ が有限部分被覆をもつ)
- ・ $A \subseteq X$ が **compact** $\stackrel{\text{def}}{\Longleftrightarrow} (X, \mathcal{O})$ の部分空間 A が compact.

その定義からどんな有限集合上の位相も compact になります.

Lemma 3.2.32.

集合 X が $|X|<\omega$ ならば、任意の X 上の位相 $\mathcal O$ に対し $(X,\mathcal O)$ は compact.

Proof $|X| < \omega$ より $X = \{x_0, \dots, x_n\}$ とおきます.任意に X の開被覆 $\{O_{\lambda}\}_{\lambda \in \Lambda}$ をとると,X の被覆なので各 $i \leq n$ に対して $x_i \in O_{\lambda}$ なる λ が存在するので,それを λ_i とおき, $\Lambda' = \{\lambda_0, \dots, \lambda_n\}$ とします. $X = \bigcup_{0 \leq i \leq n} \{x_i\} \subseteq \bigcup_{\lambda_i \in \Lambda'} O_{\lambda_i}$ より $\{O_{\lambda}\}_{\lambda \in \Lambda'}$ は $\{O_{\lambda}\}_{\lambda \in \Lambda}$ の有限部分被覆だから,その存在から (X, \mathcal{O}) は compact.

有限交叉性と compact 性の関係について述べます.

Lemma 3.2.33.

位相空間 X に対して, 以下は同値.

- (1) $X \not \supset \text{compact}$.
- $(2) \ \forall \{F_{\lambda}\}_{\lambda \in \Lambda}$: 閉集合の族 $(\{F_{\lambda}\}_{\lambda \in \Lambda})$: FIP をもつ $\rightarrow \bigcap_{\lambda \in \Lambda} F_{\lambda} \neq \emptyset$.

Proof

 $(1) \rightarrow (2)$

任意に有限交叉性をもつ閉集合の族 $\{F_{\lambda}\}_{\lambda\in\Lambda}$ をとる. $\bigcap_{\lambda\in\Lambda}F_{\lambda}=\emptyset$ だったとすると, $\bigcup_{\lambda\in\Lambda}F_{\lambda}^{C}=X$ より $\{F_{\lambda}^{C}\}_{\lambda\in\Lambda}$ は X の開被覆です. ここで F^{C} とは F の補集合を表しています. (1) より $\{F_{\lambda}^{C}\}_{\lambda\in\Lambda}$ は有限部分被覆をもつので, それを $\{F_{i}^{C}\}_{i\in L}$ とおけば $X=\bigcup_{i\in L}F_{i}^{C}$, つまり $\emptyset=\bigcap_{i\in L}F_{i}$ となりますが, これは $\{F_{\lambda}\}_{\lambda\in\Lambda}$ の有限交叉性に矛盾.

 $(2) \to (1)$

任意に X の開被覆 $\{O_{\lambda}\}_{\lambda\in\Lambda}$ をとる. X が有限部分被覆を持たなかった、つまり $\forall L\in[\lambda]^{<\omega}$ ($X\neq\bigcup_{i\in L}O_{i}$) です.任意に $L\in[\lambda]^{<\omega}$ をとると、 $X\neq\bigcup_{i\in L}O_{i}$ より $\exists x\in X$ ($\forall i\in L(x\notin O_{i})$) です.そんな x を 1 つとれば $\forall i\in L(x\in O_{i}^{C})$ が成立、つまり $x\in\bigcap_{i\in L}O_{i}^{C}$ なので $\bigcap_{i\in L}O_{i}^{C}\neq\emptyset$ です.これは閉集合の族 $\{O_{\lambda}^{C}\}_{\lambda\in\Lambda}$ が有限交叉性を持つことを表しているので、(2) より $\bigcap_{\lambda\in\Lambda}O_{\lambda}^{C}\neq\emptyset$ でなくてはいけませんが、 $X=\bigcup_{\lambda\in\Lambda}O_{\lambda}$ より $\bigcap_{\lambda\in\Lambda}O_{\lambda}^{C}=\emptyset$ よりこれは矛盾、つまり X は有限交叉性をもちます.

因子空間が有限個であるような直積空間は、因子空間全てが compact ならば compact になります.

<u>Theorem</u> 3.2.34.

位相空間 (X, \mathcal{O}_X) , (Y, \mathcal{O}_Y) が共に compact ならば, 直積位相空間 $X \times Y$ も compact

Proof $\mathcal{O} = \{O_{\lambda}\}_{\lambda \in \Lambda}$ を $X \times Y$ の開被覆として, \mathcal{O} の有限部分被覆を構成します.

$$\mathcal{A} = \{O_{\lambda}^{X}\}_{\lambda \in \Lambda_{\mathcal{A}}} = \{O_{\lambda}^{X} \in \mathcal{O}_{X} \mid \exists G_{1}, \cdots, G_{n} \in \mathscr{O}\left(O_{\lambda}^{X} \times Y \subseteq \bigcup_{1 \leq i \leq n} G_{i}\right)\}$$

とおくと、AはXの開被覆です.

: 各点 $x \in X$ が何らかの A の要素に属することを示す. 任意に $x \in X$ をとる. この x に対し Y の部分集合族 \mathcal{B}_x を以下のように定義する.

$$\mathcal{B}_x = \{ O^Y \in \mathcal{O}_Y \mid \exists O^X \in \mathcal{O}_X \ \exists G \in \mathscr{O} \left(x \in O^X \ \land \ O^X \times O^Y \subseteq G \right) \}$$

このとき \mathcal{B}_x は Y の開被覆.

: 各点 $y \in Y$ が何らかの \mathcal{B}_x の要素に属することを示す. 任意に $y \in Y$ をとる. この y と先に 固定されている x に対して, \mathcal{O} は $X \times Y$ の開被覆だから $\langle x,y \rangle$ はある要素 $G \in \mathcal{O}$ に属する のでその 1 つを改めて G として固定する. つまり $\langle x,y \rangle \in G$. ここで G は $X \times Y$ の開集合 なので直積位相の定義から, ある $O^X \in \mathcal{O}_X$, $O^Y \in \mathcal{O}_Y$ があって $G = O^X \times O^Y$ となっている. この O^Y は O^X , G の存在から $O^Y \in \mathcal{B}_x$ で, $y \in O^Y$.

Yのcompact性より

$$\exists V_1, \cdots, V_m \in \mathcal{B}_x \left(Y = \bigcup_{1 \le i \le m} V_i \right)$$

この V_i を固定すると、それぞれに対して \mathcal{B}_x の定義から $U_i \in \mathcal{O}_X$ 、 $G_i \in \mathcal{O}$ ($1 \leq i \leq m$)があって $U_i \times V_i \subseteq G_i$

となっている. $U_x = U_1 \cap \cdots \cap U_m$ とおけば, $x \in U_x$ と $U_x \in \mathcal{O}_X$ が成立する.

$$\bigcup_{1 \le i \le m} (U_x \times V_i) = U_x \times \left(\bigcup_{1 \le i \le m} V_i\right) = U_x \times Y$$

そして $\forall i(U_x \times V_i \subseteq G_i)$ が分かるから

$$U_x \times Y \subseteq \bigcup_{1 \le i \le m} G_i$$

よって $u_x \in A$ で、この U_x がxが属するAの要素になる.

Xのcompact 性より

$$\exists O_1^X, \cdots, O_m^X \in \mathcal{A} \left(X = \bigcup_{1 \le i \le m} O_i^X \right)$$

が成立. 各 O_i^X に対してAの定義から

$$\exists O_{i_1}, \cdots, O_{i_n} \in \mathscr{O} \left(O_i^X \times Y \subseteq \bigcup_{1 \le j \le n} O_{i_j} \right).$$

すると

$$\begin{split} X \times Y &= \left(\bigcup_{1 \leq i \leq m} O_i^X \right) \times Y = \bigcup_{1 \leq i \leq m} (O_i \times Y) \\ &\subseteq \bigcup_{1 \leq i \leq m} \left(\bigcup_{1 \leq j \leq n} O_{i_j} \right) \end{split}$$

よって $X \times Y$ が $m \times n$ 個の, すなわち有限個の \mathcal{O} の要素で被覆できた.

しかし上記の定理の一般系(Tychonoff の定理)を示すには選択公理が必要です。またその主張は選択公理と同値になります。この証明は [67](117 ページあたりから)を参考にした。

Lemma 3.2.35 (選択公理は Tychonoff の定理と同値).

以下は同値.

- (1) 選択公理
- (2) (Tychonoff の定理)

 $\{(X_{\lambda}, \mathcal{O}_{\lambda})\}_{\lambda \in \Lambda}$ を compact 位相空間の族とし, (Y, \mathcal{O}) をその直積位相空間とすれば,Y は compact.

Proof

 $(1) \Rightarrow (2)$

 $A \subset \mathcal{P}(Y)$ を有限交叉性をもつ閉集合の族として、 $\bigcap A \neq \emptyset$ であることを示す.

$$\mathcal{F} = \{ A' \subset \mathcal{P}(Y) \mid A \subset A' \land A' : 有限交叉性をもつ \}$$

と定義すれば、 (\mathcal{F}, \subseteq) は帰納的半順序集合です.

 (\mathcal{F},\subseteq) が半順序集合であることの確かめは省略します. 任意に全順序部分集合 $C\subseteq \mathcal{F}$ をとれば, その和集合 $\bigcup C$ は C の上界になっています. その存在から (\mathcal{F},\subseteq) は帰納的です.

選択公理より Zorn の補題をこの (\mathcal{F},\subseteq) に適用できるので (\mathcal{F},\subseteq) は少なくとも 1 つの極大元を持つから、それを \mathcal{B} とおきます.この \mathcal{B} に対して以下の 2 つが成立.

- (i) $\forall F_1, \dots, F_n \in \mathcal{B}(F_1 \cap \dots \cap F_n \in \mathcal{B})$
- (ii) $\forall A \subseteq Y (\ \forall F \in \mathcal{B}(A \cap F \neq \emptyset) \rightarrow A \in \mathcal{B})$
 - :: (i) は \mathcal{B} が有限交叉性を持つ範囲で \mathcal{A} を大きくしていった集合であることから, (ii) は \mathcal{B} の極大性より明らかです.

 $p_{\lambda}: Y \to X_{\lambda}$ を射影とすると以下が成立.

$$\exists y = \langle x_{\lambda} \in X_{\lambda} \rangle_{\lambda \in \Lambda} \in Y (\forall F \in \mathcal{B} \ \forall \lambda \in \Lambda (x_{\lambda} \in (p_{\lambda}[F])^{a}))$$

:: ある $\lambda \in \Lambda$ に対して $\mathcal{B}_{\lambda} \subseteq \mathcal{P}(X_{\lambda})$ を

$$\mathcal{B}_{\lambda} = \{ (p_{\lambda}[F])^a \mid F \in \mathcal{B} \}$$

と定義すれば $\mathcal{B}_{\lambda} \subset X_{\lambda}$ で、閉包の定義から閉集合の族になっていて、有限交叉性をもちます.

: 任意に \mathcal{B}_{λ} の 2 要素をとり、定義からそれに対応する \mathcal{B} の 2 要素を F_1, F_2 とおきます. つまり $(p_{\lambda}[F_1])^a$, $(p_{\lambda}[F_2])^a \in \mathcal{B}_{\lambda}$ です. \mathcal{B} は有限交叉性をもつので $F_1 \cap F_2 \neq \emptyset$. ここから $\emptyset \neq p_{\lambda}[F_1 \cap F_2] \subseteq p_{\lambda}[F_1] \cap p_{\lambda}[F_2]$ より $p_{\lambda}[F_1] \cap p_{\lambda}[F_2] \neq \emptyset$ です.閉包の定義から $p_{\lambda}[F_i] \subseteq (p_{\lambda}[F_i])^a$ なので $(p_{\lambda}[F_1])^a \cap (p_{\lambda}[F_2])^a \neq \emptyset$ です.

 $(X_{\lambda}, \mathcal{O}_{\lambda})$ の compact 性から $\bigcap \mathcal{B}_{\lambda} \neq \emptyset$ が成立する. 集合族 $\{\bigcap \mathcal{B}_{\lambda} \mid \lambda \in \Lambda \}$ に選択公理を適用して $\langle x_{\lambda} \in X_{\lambda} \rangle_{\lambda \in \Lambda}$ を作れば、これが求めるべき y になっています.

この y は全ての $\mathcal B$ の要素の触点になっています. つまり $\forall F \in \mathcal B (\ y \in F^a\)$

: 任意に $F \in \mathcal{B}$ をとる. y が F の触点であるとは, 任意の y の近傍が F と交わることなので任意に y の近傍 N をとる. 近傍の定義からこの N に対して O の開集合 O があって $y \in O \subseteq N$ となっている. ここで直積位相の定義から, この O に対して $\lambda_1, \dots, \lambda_n \in \Lambda$ とそれに対応する $U_i \in \mathcal{O}_{\lambda_i}$ $(1 \le i \le n)$ があって, $O = \bigcap_{i=1}^n p_{\lambda_i}^{-1}[U_{\lambda_i}]$ となっている, つまり以下が成立しています.

$$y \in \bigcap_{i=1}^{n} p_{\lambda_i}^{-1}[U_{\lambda_i}] \subseteq N$$

 $p_{\lambda_i}^{-1}[U_{\lambda_i}]$ とは U_{λ_i} と λ_i 以外の X_{λ} との直積だから、 $y \in \bigcap_{i=1}^n p_{\lambda_i}^{-1}[U_{\lambda_i}]$ より, $p_{\lambda_i}(y) = x_{\lambda_i} \in U_{\lambda_i}$ が成立しています.

 $F \cap N \neq \emptyset$ を示すため $F \cap p_{\lambda_1}^{-1}[U_{\lambda_1}] \cap \cdots \cap p_{\lambda_n}^{-1}[U_{\lambda_n}] \neq \emptyset$ を示す.そのためにまず以下が成立することを確かめる.

$$\forall i (p_{\lambda_i}^{-1}[U_{\lambda_i}] \in \mathcal{B})$$

 $∵~\{~p_{\lambda_i}^{-1}[U_{\lambda_i}]~\}_{i\leq n}$ は有限交叉性を持ちます.なので $\mathcal B$ の極大性より, $\{~p_{\lambda_i}^{-1}[U_{\lambda_i}]~\}_{i\leq n}\subseteq \mathcal B$ です

よって \mathcal{B} の性質 (i) から $F \cap p_{\lambda_1}^{-1}[U_{\lambda_1}] \cap \cdots \cap p_{\lambda_n}^{-1}[U_{\lambda_n}] \neq \emptyset$ が成立します. つまり $F \cap N \neq \emptyset$.

任意に $A \in \mathcal{A}$ をとると A は閉集合なので $A^a = A$ で, \mathcal{B} の定義からどの A も \mathcal{B} に属する. そして y の性質からどの A^a にも y は属する, つまり A に属する. よって $\forall A \in \mathcal{A}(y \in A)$ という y の存在から $\bigcap \mathcal{A} \neq \emptyset$.

 $(2) \Rightarrow (1)$

選択公理そのものではなく同値な直積定理を証明します.示すことは Lemma 3.1.9 より各要素が空でない集合族 $\{A_\lambda\}_{\lambda\in\Lambda}$ に対して, $\prod A_\lambda \neq \emptyset$ を示す.

まずどの A_{λ} にも属さない、つまり $\bigcup_{\lambda \in \Lambda} A_{\lambda}$ に属さない元を 1 つとり、それを α とおきます.各 $\lambda \in \Lambda$ に対して $X_{\lambda} = A_{\lambda} \cup \{\alpha\}$ とします. $\mathcal{O}_{\lambda} = \{\ B \subseteq X_{\lambda} \mid |X_{\lambda} \setminus B| < \omega\ \} \cup \{\emptyset,\ \{\alpha\}\}$ とおくと \mathcal{O}_{λ} は X_{λ} 上の compact な位相です.

: 補有限位相での証明を参考にしてください(まだ書いてない).

 $Y = \prod_{\lambda \in \Lambda} X_{\lambda}$ とおくと, $f: X_{\lambda} \to \{\alpha\}$ という要素があるので $Y \neq \emptyset$ です. $Y \neq \emptyset$ と因子空間全てが compact であることより, 仮定の Tychonoff の定理(Theorem 3.2.35)から直積空間 Y も compact です. 射影 $p_{\lambda}: Y \to X_{\lambda}$ を用いて各 $\lambda \in \Lambda$ に対し $F_{\lambda} = p_{\lambda}^{-1}[A_{\lambda}]$ とおくと, どの F_{λ} も Y において閉集合です.

: 直積位相は各射影 $p_{\lambda}: Y \to X_{\lambda}$ が連続になる位相で、各 A_{λ} は X_{λ} において $\{\alpha\}$ が開集合であることより 閉集合だから、連続写像 p_{λ} による逆像 $p_{\lambda}^{-1}[A_{\lambda}]$ もまた閉集合です.

さらに $\{F_{\lambda}\}_{\lambda \in \Lambda}$ は有限交叉性をもちます.

: 有限個の $\lambda_1, \dots, \lambda_n \in \Lambda$ を任意にとる. $y = \langle x_\lambda \in X_\lambda \rangle_{\lambda \in \Lambda}$ を

$$x_{\lambda} = \begin{cases} \alpha & \lambda \notin \Lambda \setminus \{\lambda_{1}, \dots, \lambda_{n}\} \\ x_{\lambda} \in A_{\lambda} & \exists i(\ \lambda = \lambda_{i}\) \end{cases}$$

な点とすれば, $y \in Y$ であることは明らか、また $\forall i (y \in F_{\lambda_i})$ が成立します、なぜなら $x_{\lambda_i} \in A_{\lambda_i}$ より $p_{\lambda_i}(y) \in A_{\lambda_i}$, つまり $y \in p_{\lambda_i}^{-1}[A_{\lambda_i}] = F_{\lambda_i}$ だからです、すなわち $\bigcap_{1 \le i \le n} F_{\lambda_i} \neq \emptyset$ です.

よって $\{F_{\lambda}\}_{\lambda\in\Lambda}$ は compact 空間 Y の有限交叉性をもつ閉集合の族だから $\bigcap_{\lambda\in\Lambda}F_{\lambda}\neq\emptyset$ です. そして $\bigcap_{\lambda\in\Lambda}F_{\lambda}=\bigcap_{\lambda\in\Lambda}p_{\lambda}^{-1}[A_{\lambda}]=$

$$\prod_{\lambda \in \Lambda} A_{\lambda}$$
 なので $\prod_{\lambda \in \Lambda} A_{\lambda} \neq \emptyset$ です.

第4章 その他細かなテーマ

ここでは教科書一冊になるほどではないが、 重要なテーマ・勉強したテーマをまとめいます.

4.0 Ideal と Filter 入門事項まとめ

ここでは ideal や filter についてまとめておきます。また filter に対しては ultra filter についてもまとめておきます。[43] の基礎 部分を参考にしています。

4.0.1 ideal と filter の定義と例

ideal と filter の定義をして、名前がついているものを紹介していきます.

Definition 4.0.1.

集合 A に対して $\mathcal{I} \subseteq \mathcal{P}(A)$ が集合 A 上の **ideal** $\stackrel{\text{def}}{\Longleftrightarrow}$ 以下の 3 条件を満たすもののこと.

- 1. $\mathcal{I} \neq \emptyset$.
- 2. $\forall X, Y \in \mathcal{I}(X \cup Y \in \mathcal{I}).$
- 3. $\forall X, Y(X \subseteq Y \land Y \in \mathcal{I} \rightarrow X \in \mathcal{I})$.

集合 A に対して $\mathcal{F} \subseteq \mathcal{P}(A)$ が集合 A 上の filter $\stackrel{\text{def}}{\Longleftrightarrow}$ 以下の 3 条件を満たすもののこと.

- 1. $\mathcal{F} \neq \emptyset$.
- 2. $\forall X, Y \in \mathcal{F}(X \cap Y \in \mathcal{F}).$
- 3. $\forall X, Y (X \subseteq Y \land X \in \mathcal{F} \rightarrow Y \in \mathcal{F}).$

いくつかの例を紹介します. それが ideal であること, filter であることの証明は省略します.

Example 4.0.2.

集合 A に対して、

- (1) $\mathcal{P}(A)$ は A 上の ideal かつ filter.
- (2) $\{\emptyset\}\$ $\forall A \perp \mathcal{O}\$ ideal, $\{A\}\$ $\forall A \perp \mathcal{O}\$ filter.
- (3) $x \in A$ に対して、 $\{X \subseteq A | x \notin X\}$ は $A \perp \mathcal{O}$ ideal, $\{X \subseteq A | x \in X\}$ は $A \perp \mathcal{O}$ filter. このような ideal を **principal ideal**, **principal filter** と呼んだりする.
- (4) $S \subseteq A$ に対して、 $\{X \subseteq A | X \subseteq S\}$ は $A \perp \mathcal{D}$ ideal, $\{X \subseteq A | S \subseteq X\}$ は $A \perp \mathcal{D}$ filter.

以降 A は無限集合として

- (5) A の有限部分集合全体 $[A]^{<\omega}$ は A 上の ideal, A の補有限集合全体 $\{X\subseteq A\mid |A\setminus X|<\omega\}$ は A 上の filter. $|A\setminus X|<\omega$ とは $A\setminus X\in [A]^{<\omega}$ とも表現できる. またこのような filter を **Fréchet filter** とも呼ぶ.
- (6) 上の例を拡張して、基数 κ に対して $[A]^{<\kappa}$ は A 上の ideal.

ideal, filter には proper と呼ばれるものがあり、大抵 proper であることは仮定されます.

Definition 4.0.3.

集合 A 上の ideal \mathcal{I} , filter \mathcal{F} に対して

- \mathcal{I} \not proper $\stackrel{\text{def}}{\Longleftrightarrow} A \notin \mathcal{I}$.
- $\mathcal{F} \not \! \mathbb{D}^{3}$ proper $\stackrel{\text{def}}{\Longleftrightarrow} \emptyset \notin \mathcal{F}$.

proper であることを仮定するのは, proper でないとすると ideal も filter も P(A) という自明なものになってしますからです.このノートでも以降 proper なものだけ扱います.

また Example 4.0.2(3) に対応して, non-principal と呼ばれる性質があります.

Definition 4.0.4.

集合 A 上の ideal \mathcal{I} , filter \mathcal{F} に対して,

- $\mathcal{I} \not \mathbb{D}^{\tilde{s}}$ non-principal $\stackrel{\text{def}}{\iff} \forall a \in A(\{a\} \in \mathcal{I}).$
- \mathcal{F} $\not \supset$ non-principal $\iff \forall X \subseteq A (A \setminus X \in [A]^{<\omega} \to X \in \mathcal{F}).$

その定義から Fréchet filter は non-principal です.

ideal と filter は双対な概念です. どういうことかというと, ある ideal $\mathcal I$ があったとき, 補集合が $\mathcal I$ に属するような集合全体は同じ集合上の filter になります. そういったものを表現するための用語を定義します.

Definition 4.0.5.

集合 A 上の ideal \mathcal{I} に対して

- $X \subseteq A$ $\not \supset \mathcal{I}$ -measure zero $\stackrel{\text{def}}{\Longleftrightarrow} X \in \mathcal{I}$.
- $X \subseteq A$ $\not \! \text{D}^{\sharp} \mathcal{I}$ —measure one $\stackrel{\text{def}}{\Longleftrightarrow} A \backslash X \in \mathcal{I}$.

さらに

- $\mathcal{I}^+ \stackrel{\text{def}}{=} \{ X \subseteq A \mid X \notin \mathcal{I} \}$: positive \mathcal{I} -measure 全体.
- $\mathcal{I}^* \stackrel{\text{def}}{=} \{ X \subseteq A \mid A \setminus X \in \mathcal{I} \} : \mathcal{I}$ -measure one 全体.

これらの定義は filter に対しても用いる.

この定義や記法は[39]の4ページを参考にしました.

A上の ideal \mathcal{I} に対して \mathcal{I}^* は A上の filter になります。このとき \mathcal{I}^* は ideal \mathcal{I} の dual filter と呼びます。その逆で A上の filter \mathcal{F} に対して、 $\mathcal{F}^* = \{X \subseteq A \mid A \setminus X \in \mathcal{F}\}$ は A上の ideal となり、それを \mathcal{F} の dual ideal と呼びます。

4.0.2 もっと filter について

ここでは filter に関する話題をさらに掘り下げていきます.

proper な filter はその定義から有限交叉性を持ちます.しかし A の部分集合族 $\mathcal{S} \subseteq \mathcal{P}(A)$ が有限交叉性をもつからといって filter になるとは限りません.有限交叉性をもつ集合族から filter を作る方法を提示します.

Proposition 4.0.6.

集合 A に対して, $S \subseteq \mathcal{P}(A)$ は $S \neq \emptyset$ かつ S は有限交叉性をもつとします. $F = \{X \subseteq A \mid \exists E \in [S]^{<\omega}(\bigcap E \subseteq X)\}$ は filter であり, S を含み, S を含む filter の中で極小なものになっている.

Proof 先に $S \subseteq \mathcal{F}$ であることを示します.そのために任意に $X \in S$ をとります. $E = \{X\} \in [S]^{<\omega}$ とおけば, $X = \bigcap E$ より,そんな E の存在から $X \in \mathcal{F}$ です.

続けて \mathcal{F} が filter であることを示します. $\mathcal{F} \neq \emptyset$ であることは, $\emptyset \neq \mathcal{S} \subseteq \mathcal{F}$ より分かります. 続いて任意に $X,Y \in \mathcal{F}$ をとります. \mathcal{F} の定義から X,Y に対して存在する $[\mathcal{S}]^{<\omega}$ の要素をそれぞれ E_X,E_Y とおきます. $E=E_X\cup E_Y$ とおくと, $E\in[\mathcal{S}]^{<\omega}$ で, $E_X,E_Y\subseteq E$ より $\bigcap E\subseteq \bigcap E_X \land \bigcap E\subseteq \bigcap E_Y$ です. よって $\bigcap E\subseteq ((\bigcap E_X)\cap (\bigcap E_Y))\subseteq X\cap Y$ だから, そんな E の存在より $X\cap Y\in \mathcal{F}$ です. filter の最後の定義, 超集合関係で閉じることは \mathcal{F} の定義より明らかなので割愛します.

最後に F の極小性を確かめるために, $S \subseteq F'$ なる filter F' を任意にとります。さらに任意に $X \in F$ をとると, $\exists E \in [S]^{<\omega}(\bigcap E \subseteq X)$ な E を 1 つ固定します。 $S \subseteq F'$ より $E \subseteq F'$ です。 $|E| < \omega$ と F' が filter であることから $\bigcap E \in F'$ です。もう一度 F' が filter であることと $\bigcap E \subseteq X$ から, $X \in mathcal F'$ です。 $F \subseteq F'$, つまり S を含むような filter の中で極小になっています. \square

このような作り方をした filter のことを, S が生成する filter という呼び方があります. 有限交叉性を持たない S から生成した filter は, proper にならず, つまり $\mathcal{P}(A)$ という自明な filter になってしまいます.

ある集合上の filter 全体は部分集合関係で半順序集合になります.この順序での極大な filter のことを maximal filter と呼びます.

つまり A 上の filter \mathcal{F} が maximal であることの定義は

$$\forall A \subseteq \mathcal{P}(A) (A: \text{filter} \rightarrow \neg (\mathcal{F} \subseteq A))$$

を満足することになります.

それとは別に ultra という性質もあります.

Definition 4.0.7.

A 上の filter F が ${\bf ultra}$ であるとは、任意の $X \subseteq A$ に対して $X \in F$ か $A \setminus X \in F$ のどちらか一方が成立するときをいう. \vee を排他的論理和を表すための記号とするならば

$$\mathcal{F}: \text{ultra} \iff \forall X \subseteq A(X \in \mathcal{F} \ \lor \ A \setminus X \in \mathcal{F})$$

$$\tag{4.1}$$

と表現できます. ■

proper な filter を考えている範囲では、maximal であること ultra であることは同値になります。故に書き手によっては極大であることを ultra であることの定義として、上記の定義は性質の 1 つとして挙げているものもあったりします。その定理の証明の前に ultra filter について分かることをまとめておきます。

Proposition 4.0.8.

集合 *A* に対して

- ・ $A \perp \mathcal{O}$ proper filter \mathcal{F} が ultra でない $\iff \exists X \subseteq A(X \notin \mathcal{F} \land A \setminus X \notin \mathcal{F}).$
- ・ \mathcal{F} が $A \perp \mathcal{O}$ proper ideal \mathcal{I} \mathcal{O} dual filter (つまり $\mathcal{F} = \mathcal{I}^*$) ならば, \mathcal{F} が ultra でない $\iff \exists X \subseteq A (X \notin \mathcal{I} \land A \setminus X \notin \mathcal{I})$.

A 上の ultra filter \mathcal{U} と $X,Y\subseteq A$ と $\{X_i\}_{i\in[n]}\subseteq\mathcal{P}(A)$ に対して

- $X, Y \notin \mathcal{U} \rightarrow X \cup Y \notin \mathcal{U}$.
- $X \in \mathcal{U} \land Y \notin \mathcal{U} \rightarrow X \setminus Y \in \mathcal{U}$.
- $\bigcup_{i \in [n]} X_i \in \mathcal{U} \rightarrow \exists i \in [n](X_i \in \mathcal{U}).$

Proof (1) 排他的論理和 \lor を用いた論理式について考えます. P,Q を命題を表す記号として $P \lor Q$ とは, 他の論理記号を用いて論理的同値な式に書き換えると, $(P \land \neg Q) \lor (\neg P \land Q)$ です. さらに論理的同値なものとして $(P \lor Q) \land (\neg P \lor \neg Q)$ があるので, 今回はこれを使います. すると U が ultra であることを書き直せば,

$$\forall X \subseteq A ((X \in \mathcal{U} \vee A \setminus X \in \mathcal{U}) \wedge (X \notin \mathcal{U} \vee A \setminus X \notin \mathcal{U}))$$

となり、それを否定すれば

$$\exists X \subseteq A \big((X \notin \mathcal{U} \land A \setminus X \notin \mathcal{U}) \land (X \in \mathcal{U} \land A \setminus X \in \mathcal{U}) \big)$$

です. $X \in \mathcal{U} \land A \setminus X \in \mathcal{U}$ とすると, \mathcal{U} が filter より $X \cap (A \setminus X) \in \mathcal{U}$ ですが, これは $\emptyset \in \mathcal{U}$ となって \mathcal{U} が proper であることに矛盾します. よって成立するのは $X \notin \mathcal{U} \land A \setminus X \notin \mathcal{U}$ となります.

- (2) (1) にそのまま当てはめると、 $\exists X \subseteq A(X \notin \mathcal{I}^* \land A \setminus X \notin \mathcal{I}^*)$ です. $X \notin \mathcal{I}^*$ とは、その定義から $A \setminus X \notin \mathcal{I}^*$ とは $X \notin \mathcal{I}^*$ です.
- (3) $X \cup Y \notin \mathcal{U}$ を示すため, $A \setminus (X \cup Y) \in \mathcal{U}$ を示します. $A \setminus (X \cup Y) = (A \setminus X) \cap (A \setminus Y)$, そして仮定より $A \setminus X$, $A \setminus Y \in \mathcal{U}$ なので, $(A \setminus X) \cap (A \setminus Y) \in \mathcal{U}$, つまり $A \setminus (X \cup Y) \in \mathcal{U}$ です.
- (4) $X \setminus Y \notin \mathcal{U}$ とすると, \mathcal{U} が ultra より $A \setminus (X \setminus Y) \in \mathcal{U}$ です. $A \setminus (X \setminus Y) = (A \setminus X) \cup Y$ で, 仮定からの $A \setminus X, Y \notin \mathcal{U}$ と, (3) より $(A \setminus X) \cup Y \notin \mathcal{U}$ でなくてはなりませんが, これは矛盾です.
- (5) $\forall i \in [n] (X_i \notin \mathcal{U})$ だったとします. \mathcal{U} が ultra より $\forall i \in [n] (A \setminus X_i \in \mathcal{U})$ です. \mathcal{U} が filter であることから $\bigcap_{i \in [n]} (A \setminus X_i) \in \mathcal{U}$ です. すると $A \setminus \big(\bigcap_{i \in [n]} (A \setminus X_i)\big) = \bigcup_{i \in [n]} X_i \notin \mathcal{U}$ ですが、これは仮定に矛盾です.

では maximal であること ultra であることが同値であることを証明します.

Proposition 4.0.9.

A上の filter F に対して、以下は同値

- (1) \mathcal{F} は A 上の proper filter の中で極大(maximal).
- (2) Fはultra.

Proof

 $(1)\rightarrow(2)$

任意に $X \subseteq A$ をとります. $\mathcal{F} \cup \{X\}$ が有限交叉性をもつかどうかで場合分けします. $\mathcal{F} \cup \{X\}$ が有限交叉性をもっていたとします. $\mathcal{F} \cup \{X\}$ から生成される filter を \mathcal{F}' とおくと, その定義から $\mathcal{F} \subseteq \mathcal{F} \cup \{X\}$ と, $\mathcal{F} \cup \{X\} \subseteq \mathcal{F}'$ より, $\mathcal{F} \subseteq \mathcal{F}'$ ですが, \mathcal{F} は maximal より $\mathcal{F} \subsetneq \mathcal{F}'$ となることはない, つまり $\mathcal{F} = \mathcal{F}'$ です. すなわち \mathcal{X} は最初から \mathcal{F} に属していた, つまり $\mathcal{X} \in \mathcal{F}$ です.

 $\mathcal{F} \cup \{X\}$ が有限交叉性をもっていなかったとします. \mathcal{F} は filter なので有限交叉性をもちますが, X を加えると有限交叉性をもたなくなったということなので、 $\exists \{Y_i\}_{i\in[n]}\subseteq\mathcal{F}\big(\left(\bigcap_{i\in[n]}Y_i\right)\cap X=\emptyset\big)$ です. $Y=\bigcap_{i\in[n]}Y_i$ とおくと、 \mathcal{F} が filter であることより $Y\in mathcal F$. $Y\cap X=\emptyset$ より $Y\subseteq A\setminus X$ で、 \mathcal{F} が filter であることから $A\setminus X\in \mathcal{F}$ です.

 $(2) \to (1)$

対偶「F が maximal でないならば、F が ultra でない」を示します。F が maximal でないことから、 $F \subsetneq F'$ なる proper filter F' が存在します。 $X \in F' \setminus F$ を 1 つとると、 $A \setminus X \notin F$ です。なぜならば $A \setminus X \in F$ だとすると、 $A \setminus X \in F'$ となって、 $X \cap A \setminus X \in F'$ ですが、これは $\emptyset \in F'$ となって、F' が proper であることに矛盾します。よって $X, A \setminus X \notin F$ なる X の存在から F は ultra ではありません.

maximal な、つまり ultra な filter の形は2つに定まります.

Proposition 4.0.10.

集合 A 上の maximal filter は principal か non-principal のいずれか一方になる.

Proof $A \perp \mathcal{O}$ maximal filter \mathcal{F} が $\exists D \in [A]^{<\omega}(D \in \mathcal{F})$ か $\forall D \in [A]^{<\omega}(D \notin \mathcal{F})$ かどうかで場合分けします. $\exists D \in [A]^{<\omega}(D \in \mathcal{F})$ だったとき, そんな有限集合 D を固定すれば $\exists ! x \in D(\{x\} \in \mathcal{F})$ です.

 $\forall x \in D(\{x\} \notin \mathcal{F})$ だったとすれば、filter が \mathcal{F} であることから $\forall x \in D(X \setminus \{x\} \in \mathcal{F})$ です. \mathcal{F} は filter なので $\bigcap_{x \in D}(X \setminus \{x\}) \in \mathcal{F}$ ですが、 $\bigcap_{x \in D}(X \setminus \{x\}) = X \setminus D$ より、これは $D \in \mathcal{F}$ に矛盾. 一意性については $x, x' \in D$ に対して $\{x\}, \{x'\} \in \mathcal{F}$ とすれば、 $\{x\} \cap \{x'\} = \emptyset \in \mathcal{F}$ となって、 \mathcal{F} が proper であることに矛盾です.

そんな $x \in D$ を固定すれば, $\mathcal{F} = \{X \subseteq A \mid x \in X\}$ であること, つまり \mathcal{F} が principal であることは明らかです. $\forall D \in [A]^{<\omega}(D \notin \mathcal{F})$ だったとき, \mathcal{F} が ultra より $\forall D \in [A]^{<\omega}(A \setminus D\mathcal{F})$ です. 任意に取った $X \subseteq A$ が補有限集合とするならば, $\exists D \in [A]^{<\omega}(X = A \setminus D)$ です. つまり $X \in \mathcal{F}$ より, \mathcal{F} がどの補有限集合も要素に持つことから \mathcal{F} は non-principal です. \square

ここまでの証明と同じようにして極大な ideal についても同様のことを示すことができます. ただ慣習なのか ultra filter と同様の性質をもつ ideal を ultra ideal と呼んだりはしないようです.

Corollary 4.0.11.

A上の ideal \mathcal{I} に対して、以下は同値

- (1) *I* は A 上の proper ideal の中で極大 (maximal).
- (2) $\forall X \subseteq A (X \in \mathcal{I} \subseteq A \setminus X \in \mathcal{I}).$

Corollary 4.0.12.

集合 A 上の maximal ideal は principal か non-principal のいずれか一方になる.

最後に ultra filter は存在するのかを確かめます. それを示すためには選択公理, それと同値な Zorn の補題を必要とします.

Lemma 4.0.13 (ultra filter の補題).

選択公理を仮定する. 集合 A 上の任意の filter F に対して, F を含むような A 上の ultra filter が存在する.

Proof 任意に A 上の filter \mathcal{F} をとります。 $\mathfrak{F} = \{A \subseteq \mathcal{P}(A) \mid A$: filter $\land \mathcal{F} \subseteq A\}$ とおくと, $(\mathfrak{F}, \subseteq)$ は半順序集合で,帰納的です. なぜならば任意に $(\mathfrak{F}, \subseteq)$ の全順序部分集合 \mathfrak{C} をとると, $\bigcup \mathfrak{C}$ が \mathfrak{C} の極大要素になっているからです. Zorn の補題から, $(\mathfrak{F}, \subseteq)$ には極大要素,つまり maximal filter が存在しますが,Proposition 4.0.9 より,それは \mathcal{F} を含む A 上の ultra filter です.

Corollary 4.0.14.

集合 A に対して $S \subset \mathcal{P}(A)$ が有限交叉性をもつならば, S を含むような A 上の ultra filter が存在する.

Proof S より生成された filter F に対して、Lemma 4.0.13 と同様にして証明できます.

4.0.3 ω 上の ultra filter

ここでは ω 上の ultra filter についてまとめます. まずは p-filter について定義します.

Definition 4.0.15.

ある集合上の filter \mathcal{F} が **P-filter** \iff $\forall \{X_n\}_{n\in\omega}\subseteq\mathcal{F}\ \exists X\in\mathcal{F}\big(\ \forall n\in\omega(\ X\subseteq^\star X_n\)\ \big).$ ここで $X\subseteq^\star X_n$ とは $|X\setminus X_n|<\omega$ ということです.ある filter か P-filter かつ ultra だったとき,そんな filter を **P-point** と呼ぶ.

4.1 Cantor 空間と Baire 空間まとめ

Cantor 空間と Baire 空間は公理的集合論の基本的な対象です. しかし丁寧な解説を私はあまり見たことがありませんでした. なので自分なりに位相空間論をベースにして, この 2 つの空間についての知識をまとめておきます.

まずここで定義だけ簡単にまとめておきます. そのさい 3.2.5 節(127ページ)での直積位相の知識を用います.

souji ノート

 $\{ (X_{\lambda}, \mathcal{O}_{\lambda}) \}_{\lambda \in \Lambda}$ を位相空間の族とします. $\forall \lambda, \lambda' \in \Lambda (X_{\lambda} = X_{\lambda'} \land \mathcal{O}_{\lambda} = \mathcal{O}_{\lambda'})$ の場合, つまり因子空間が全て同じだった場合を考えます. このとき同じ位相空間の Λ 個の直積と思えます. すると

$$\prod_{\lambda \in \Lambda} X_{\lambda} \ = \ {}^{\Lambda}X_{\lambda} \ = \ \{ \ f \mid f \colon \Lambda \to X_{\lambda} \ \}$$

となります. つまり $\prod_{\lambda \in \Lambda} X_{\lambda}$ は Λ から X_{λ} への関数全体と一致します. よってこの位相空間の点は, すべて同じ定義域・値域の関数になっています.

 $\{X_{\lambda}\}_{\lambda\in\Lambda}$ が全ての要素が空でなく異なる要素が属す可能性がある一般的な場合には, $\prod_{\lambda\in\Lambda}X_{\lambda}\neq\emptyset$ であることを主張するには選択公理が必要(直積定理,Lemma 3.1.9)でしたが, この場合 $\prod_{\lambda\in\Lambda}X_{\lambda}$ は単なる関数の集合なので, それが空であることを主張するのに選択公理は必要ありません.

また X_{λ} は λ ごとに区別する必要がないため, ${}^{\Lambda}X_{\lambda}$ を単に ${}^{\Lambda}X$ と書くことにします.

X を離散位相空間とし, $\Lambda = \omega$, $X = 2 = \{0,1\}$ とした直積位相空間を $^{\omega}2$ と, $\Lambda = \omega$, $X = \omega$ とした直積位相空間を $^{\omega}\omega$ と表すことにします. この 2 つの空間に以下のように名前が付いています.

Definition 4.1.1 (Cantor 空間と Baire 空間).

Cantor 空間とは, 直積位相空間 $\omega 2$ のことで, ここで各 $2 = \{0,1\}$ には離散位相が入っているものとする.

同様に Baire 空間とは、直積位相空間 ω のことで、ここで各 ω には離散位相が入っているものとする.

4.1.1 Cantor 空間と Baire 空間の開集合

何らかの位相空間が与えられたとき、どんな集合がその空間の開集合になっているかは、1 つの(もしかしたら一番大事な)関心事だと思います。Definition 4.1.1 (138 ページ) で定義した 2 つの位相空間の開集合はどのようなものか説明します。まずは以下のような関数の集合を定義します。

Definition 4.1.2.

集合 *A* に対して

$$^{<\omega}A \stackrel{\mathrm{def}}{=} \{ s \mid \exists X \subseteq \omega (\mid X \mid < \omega \land s \colon X \to A) \}$$

$$= \{ s \colon X \to A \mid X \subseteq \omega \land \mid X \mid < \omega \}.$$

A=2 とした $^{<\omega}2$ について考えると, $s\in ^{<\omega}2$ とはその定義から, 定義域が ω の有限部分集合で, 値域が 2 であるような, 何らかの関数のことです. $t\in ^{<\omega}\omega$ も同様に定義域が ω の有限部分集合で, 値域が ω であるような, 何らかの関数のことです. このような関数には以下のような名前が付いています.

Definition 4.1.3.

 $s\in {}^{<\omega}2$ と $t\in {}^{<\omega}\omega$ に対して

- s は ω から 2 への有限部分関数(finite partial function)という.
- t は ω から ω への有限部分関数(finite partial function)という.

ゆえに $^{<\omega}2$ は $_{\omega}$ から $_{2}$ への有限部分関数全体の集合に $_{,}$ $^{<\omega}\omega$ は $_{\omega}$ から $_{\omega}$ への有限部分関数全体の集合になります.

finite partial function という名前は [45] の 173 ページを参考にして, 有限部分関数はそれを訳したものです. 各 $s \in {}^{<\omega}2$ や $t \in {}^{<\omega}\omega$ を用いることで, ${}^{\omega}2$ や ${}^{\omega}\omega$ の部分集合を定義します.

Definition 4.1.4.

 $s \in {}^{<\omega}2$ と $t \in {}^{<\omega}\omega$ に対して

$$O(s) \stackrel{\text{def}}{=} \{ f \in {}^{\omega}2 \mid \forall n \in \text{dom } s (s(n) = f(n)) \}$$
$$= \{ f \in {}^{\omega}2 \mid s = f \upharpoonright \text{dom}(s) \}$$
$$= \{ f \in {}^{\omega}2 \mid f \bowtie s の拡大 \}.$$

同様に $O(t) \stackrel{\text{def}}{=} \{ f \in {}^{\omega}2 \mid \forall n \in \text{dom } t(t(n) = f(n)) \}.$

O(s) を s を元にした $\omega 2$ の basic set とよぶ. 同様に O(t) を t を元にした $\omega \omega$ の basic set とよぶ. 1

- O(s) という記法は [40] を参考にしています.この O(s) はテキストによっては [s] と表したりします(例えば [62] など).
- O(s) や O(t) は s,t を拡大した関数全体の集合であり、その定義から $O(s)\subseteq {}^\omega 2,\ O(t)\subseteq {}^\omega \omega$ です.
- この basic set でもって $^{\omega}2$ や $^{\omega}\omega$ の開集合を表現します.

Proposition 4.1.5.

集合 β に対して

- $\mathcal{B} = \{ O(s) \mid s \in {}^{<\omega}2 \}$ のとき, $\mathcal{B} \subseteq {}^{\omega}2$ は Cantor 空間の開基である.
- $\mathcal{B} = \{ O(s) \mid s \in {}^{<\omega}\omega \}$ のとき, $\mathcal{B} \subseteq {}^{\omega}\omega$ は Baire 空間の開基である.

この証明は○○にてやることにします(今はこの空間たちを使えるようになることだけを目的としてます).

つまり集合 $O \subseteq {}^{\omega_2}$ が ${}^{\omega_2}$ の開集合ならば, ある $A \subseteq \mathcal{B}$ があって $O = \bigcup A$ となっている. よって $O \subseteq \mathcal{P}({}^{\omega_2})$ を ${}^{\omega_2}$ の開集合系とすると, $O = \{\bigcup A \mid A \subseteq \mathcal{B}\}$ となります. Baire 空間も同様です.

開基の定義から basic set は Cantor 空間や Baire 空間の開集合です. よって一般的には basic set は basic open set と呼ばれることが多いです.

位相空間の定義から \emptyset , "2 は "2 の開集合です. $\emptyset \in \mathcal{O}$ であるとは $A \subseteq \mathcal{B}$ を $A = \emptyset$ とすれば明らかです.

 $^{\omega}2\in\mathcal{O}$ であることを示すために、ある $n\in\omega$ を用いて s_0,s_1 : $\{n\}\to 2$ を $s_i(n)=i$ な、たった 1 つの対応規則のみの関数とします。関数を順序対の集合としてとらえるなら $s_i=\{\langle n,i\rangle\}$ です。すると $O(s_i)$ は n の値が i になる ω から 2 への関数全体の集合になり、 $O(s_0)\cup O(s_1)$ は n の値が 0 か 1 かの ω から 2 への関数全体の集合、つまり ω から 2 への関数全体の集合、すなわち $^{\omega}2$ になります。よって $^{\omega}2\in\mathcal{O}$ を示すためには $\mathcal{A}=\{O(s_0),O(s_1)\}$ とすればよいです。

同様にして $\mathcal{O} \subseteq {}^{\omega}\omega$ を Baire 空間の開集合系とすると, $\emptyset \in \mathcal{O}$ も同様に明らかで, ${}^{\omega}\omega \in \mathcal{O}$ はある n を用いて

$$\mathcal{A} = \{ O(s_i) \mid i \in \omega \land s_i(n) = i \}$$

とすれば, $\bigcup A = \bigcup O(s_i) = {}^{\omega}\omega$ となります.

実は Proposition 4.1.5 (139 ページ) よりも要素が少なくなった別の開基が存在します. 次節にてそれについてと, 有限部分関数とそれを元にした basic set との関係を紹介します.

4.1.2 Cantor 空間と Baire 空間の別の開基表現

Cantor 空間と Baire 空間は Proposition 4.1.5(139 ページ)にあるような開基で議論されることは少ない(ような気がします). これからの議論に使うための basic set の集合を定義しておきます.

Definition 4.1.6.

 $\mathcal{B}_{\triangleleft} \subseteq {}^{\omega}2, {}^{\omega}\omega$ を以下のように定める.

- $\mathcal{B}_{\triangleleft} = \{ O(s) \mid \exists n \in \omega (s: n \rightarrow 2) \}.$
- $\mathcal{B}_{\triangleleft} = \{ O(s) \mid \exists n \in \omega (s: n \to \omega) \}.$

同じ用語を 2 つの意味で使うことになりますが, 2 つの空間を同時に扱わなければ混乱はないと思うので, このまま使っていくことにします.

ある $n \in \omega$ について, $s: n \to 2, t: n \to \omega$ は確かに ω から $2 \Leftrightarrow \omega$ への有限部分関数, つまり $s \in {}^{<\omega}2, t \in {}^{<\omega}\omega$ ですが, $n \in \omega$ より定義域が単なる ω の有限部分集合ではなく, 何らかの(順序数の意味での)自然数 $n = \{0, 1, \ldots, n-1\}$ となっています. つまり $\mathcal{B}_{\lhd} \subseteq \mathcal{B}$ であり, 元の定義の開基よりも明らかの要素が減っているため, これもまた開基になるのか一見明らかではないですが, 確かに \mathcal{B}_{\lhd} もまた, Cantor 空間や Baire 空間の開基となります.

 $^{^{1}}$ 一般的には「s を元にした」は付けない。ただ言葉の成り立ちからそのような前置きが必要ではと感じてこのように名前を付けました。

Proposition 4.1.7.

 $\mathcal{B}_{\triangleleft}$ は Cantor 空間の開基である.

また $\mathcal{B}_{\triangleleft}$ は Baire 空間の開基である.

Proof まずは Cantor 空間について示します。 $\mathcal{B}_{\lhd} \subseteq \mathcal{B}$ であるので,任意の \mathcal{B} の要素を \mathcal{B}_{\lhd} の要素の和で表現できることを示せばよいので,任意に $O(s) \in \mathcal{B}$ をとります。 $s \in {}^{<\omega}2$ の定義域 $\mathrm{dom}(s)$ を $\mathrm{dom}(s) = \{a_0, a_1, \ldots, a_{m-1}\}$ とおくと, $\mathrm{dom}(s) \subseteq a_m = \{0, 1, \ldots, a_{m-1}\}$ です。s に対して $T_s \subseteq {}^{<\omega}2$ を $T_s = \{t : a_m \to 2 \mid t \upharpoonright \mathrm{dom}(s) = s\}$ と定めます。 T_s とは s の拡大で,s の定義域の中で a_{m-1} までの足りない自然数を全て補った関数全体の集合です。あとは $O(s) = \bigcup_{t \in T_s} O(t)$ を示せば証明終わりです。

集合の等号関係を示す.

 $O(s) \subseteq \bigcup_{t \in T_s} O(t)$ の証明

任意に $f \in O(s)$ をとる. $t = f \upharpoonright a_m$ とおくと $\operatorname{dom}(s) \subseteq a_m$ より $t \upharpoonright \operatorname{dom}(s) = s$ より $t \in T_s$ です. よって $f \in O(t)$, つまり $f \in \bigcup_{t \in T_s} O(t)$ です.

 $\bigcup_{t \in T_s} O(t) \subseteq O(s)$ の証明

任意に $f \in \bigcup_{t \in T_s} O(t)$ をとると、ある $t \in T_s$ があって $f \in O(t)$ 、つまり $f \upharpoonright \text{dom}(t) = t$ です. $\text{dom}(s) \subseteq \text{dom}(t)$ より $f \upharpoonright \text{dom}(s) = t \upharpoonright \text{dom}(s) = s$ なので、 $f \in O(s)$ です.

ここまで特に各 s,t などの値域が 2 であることに依存した証明をしていないので, Baire 空間についても同様に示すことができます.

この証明によって Proposition 4.1.5(139 ページ)の \mathcal{B} も \mathcal{B}_{\lhd} のどちらも Cantor 空間, Baire 空間の開基なので, どちらを証明 に用いても問題なく, そのときの議論や証明にあわせて使いやすい方を適宜選択します.

便利の為以下のような定義をしておきます. 記法は(多分) オリジナルです.

<u>Definition</u> 4.1.8.

 $<\omega_2$ や $<\omega_\omega$ の部分集合として以下のようなものを定義する.

- $\triangleleft \omega 2 \stackrel{\text{def}}{=} \{ s \in {}^{<\omega} 2 \mid \exists n \in \omega (n = \text{dom}(s)) \}.$
- $\triangleleft \omega \omega \stackrel{\text{def}}{=} \{ s \in \triangleleft \omega \mid \exists n \in \omega (n = \text{dom}(s)) \}.$

どのような点に便利かというと上の議論での開基 $\mathcal{B}_{\triangleleft}$ を, 簡単に $\{O(t) \mid t \in {}^{\triangleleft}\omega_2\}$ と書き表すことができます. またこれらの 集合は有限列の集合ともとらえることができます.

この節の最後の話題として, $\triangleleft \omega 2$, $\triangleleft \omega \omega$ の性質をまとめおきます.

 $^{<\omega}2$ などとの違いとして、どの $s,t\in ^{\lhd\omega}2$ に対しても, $\mathrm{dom}(s)\subseteq \mathrm{dom}(t)$ か $\mathrm{dom}(t)\subseteq \mathrm{dom}(s)$ のどちらかもしくは両方が成立します. $s,t\in ^{<\omega}2$ ならば $\mathrm{dom}(s)\cap \mathrm{dom}(t)=\emptyset$ となって,上記のようにはならないことがありえます.

続いて $< \omega 2$ や $\omega 2$ の要素に関する用語を定義します.ここからは [40] や [45] を主に参考にしています.

<u>Definition</u> 4.1.9.

 $s,t \in {}^{<\omega}2$ と $f \in {}^{\omega}2$ に対して、

- (1) $dom(s) \subseteq dom(t)$ かつ $\forall n \in dom(s) (s(n) = t(n))$ を満たすとき, s を t の initial segment(始切片)と呼び, $s \le t$ で表す.
- (2) $\forall n \in \text{dom}(s) (s(n) = f(n))$ と満たすときも, $s \in f$ の initial segment (始切片) と呼び, $s \subseteq f$ で表す.

 $s,t\in {}^{<\omega}\omega$ や $f\in {}^{\omega}\omega$ に対しても同様に定義し、同じように initial segment と呼び、 \unlhd を使って表す.

 $s,t \in {}^{\omega_2}, {}^{\omega_\omega}$ だった場合, s,t を有限列ととらえると initial segment という言葉遣いにも納得してもらえると思います. initial segment とは整列集合のある条件を満たす部分集合のことを指したりもしますが, その場合とは区別が容易なので, ここでは特に別の呼び方を考えたりはしません.

initial segment を表す記号として [40] では \triangleleft を用いていますが, そこの定義でも s=t の場合を含んでいたので, \trianglelefteq を使うことにしました.

s,t が $\triangleleft \omega 2$ や $\triangleleft \omega \omega$ の要素だけで議論しているときに, s,t を順序対の集合と見れば, $s \unlhd t$ とは単に $s \subseteq t$ となります.

そして \unlhd という関係は推移的です.つまり $s,t,u\in {}^{<\omega}2$ と $f\in {}^{\omega}2$ に対して, $s\unlhd t$ かつ $t\unlhd u$ ならば $s\unlhd u$,そして $s\unlhd t$ かつ $t\unlhd f$ ならば $s\unlhd f$ です.

△を用いた定義を1つ用意します. これも [40] にあったものです.

Definition 4.1.10.

 $s,t \in {}^{<\omega}2$ に対して、 $s||t \iff s \le t \lor t \le s$.

また $s,t \in {}^{<\omega}\omega$ に対しても同様に定義する.

これは有限列同士のどちらかがどちらかの始切片であるという関係になります.もちろん s||t には $s \unlhd t \land t \unlhd s$, つまり s=t である場合も含まれています.

[40] では s||t を s,t が compatible, s||t でないことを $s\perp t$ で表し incompatible と呼んでいます.私自身この言葉は強制法の議論のさいに見たことがあるもので,その定義は似ていますが少し異なります.その理由の考察としては,本来の $s,t\in ^{<\omega}\omega$ が compatible (これは $s\not\perp t$ で表す) であるとは,s,t が共通拡大を持つことになっています.そして [40] ではそもそも $^{<\omega}\omega$ の要素しか議論しないため, $s,t\in ^{<\omega}\omega$ が共通拡大を持つとはそもそもどちらかがもう一方の拡大になっているときになります.よって s||t に compatible という言葉を充てるのは,それほど間違ってはいません.このノートでは強制法も扱うかもしれないので,ここでは s||t には呼び方を与えず,このまま使っていくことにします.

これまでの用語と basic set に関する簡単な命題を紹介します. [40] に載っていたものです.

Proposition 4.1.11.

 $s,t \in \triangleleft \omega 2$ に対して

- (1) $s \le t \iff O(t) \subseteq O(s)$
- (2) $s||t \iff (O(t) \subseteq O(s) \lor O(s) \subseteq O(t))$
- (3) $\neg s||t \iff O(s) \cap O(t) = \emptyset$
- (4) $O(s) \cap O(t)$ は何らかの basic open となるか, または \emptyset のどちらかになる

また $s,t \in {}^{\triangleleft \omega}\omega$ に対して同様に成立する.

Proof $s, t \in {}^{\triangleleft \omega}2$ についてのみ示す.

- (1) 両辺が同値であることを示す.
 - (⇒) 任意に $f \in O(t)$ をとる. $f \upharpoonright \text{dom}(t) = t$ と $\text{dom}(s) \subseteq \text{dom}(t)$ より $f \upharpoonright \text{dom}(s) = t \upharpoonright \text{dom}(s) = s$ だから, $f \in O(s)$.
 - (秦) 先の議論より $s,t \in {}^{\triangleleft\omega}2$ に対して $\mathrm{dom}(t) \subsetneq \mathrm{dom}(s)$ か $\mathrm{dom}(s) \subseteq \mathrm{dom}(t)$ のいずれかが成立. まず $\mathrm{dom}(t) \subsetneq \mathrm{dom}(s)$ だったとすると, $n = \min \big(\mathrm{dom}(s) \setminus \mathrm{dom}(t)\big)$ とおき, $t' = t \cup \{\langle n, 1 s(n) \rangle\}$ とすると $t' \in {}^{\triangleleft\omega}2$ です. そして t^{prime} の何らかの拡大を f とおくと, $t \unlhd t'$ と $t' \unlhd f$ より $t \unlhd f$,つまり $f \in O(t)$ と仮定より $f \in O(s)$ だが, $f(n) \neq s(n)$ より $f \notin O(s)$ となって矛盾.

続けて $\operatorname{dom}(s) \subseteq \operatorname{dom}(t)$ として $\exists n \operatorname{dom}(s) \big(s(n) \neq t(n) \big)$ だったとし、そんな n を 1 つ固定しておく.任意に $f \in O(t)$ をとると、 $f \upharpoonright \operatorname{dom}(t) = t$ 、そして $n \in \operatorname{dom}(s) \subseteq \operatorname{dom}(t)$ より $t(n) = f(n) \neq s(n)$ 、よって f は s の拡大ではない、つまり $f \notin O(s)$ だが、これは仮定に矛盾.

- (2) これはs||tと(1)より明らか.
- (3) 両辺が同値であることを示す.

(⇒) 先の議論より $\operatorname{dom}(s) \subseteq \operatorname{dom}(t)$ か $\operatorname{dom}(t) \subseteq \operatorname{dom}(s)$ のどちらかが成立するので、 $\operatorname{dom}(s) \subseteq \operatorname{dom}(t)$ だとすると 仮定と合わせて $n\operatorname{dom}(s) \big(s(n) \neq t(n) \big)$ となるので、そんな n を 1 つ固定します.いま, $f \in O(s) \cap O(t)$ とすると $s \unlhd f \wedge t \unlhd f$ と, $n \in \operatorname{dom}(s) \subseteq \operatorname{dom}(t)$ より, $s(n) = f(n) \wedge t(n) = f(n)$ から s(n) = t(n) となるが、これは n の定義に矛盾.

(4) s||t だったとすると (2) より $O(s) \subseteq O(t) \lor O(t) \subseteq O(s)$ となり、そして仮に $O(s) \subseteq O(t)$ だとすると $O(s) \cap O(t) = O(s)$ 、つまり basic open になっている.

 $\neg s||t|$ だとすると (3) より $O(s) \cap O(t)$ は \emptyset となる.

4.1.3 Cantor 空間と Baire 空間の開基についてさらに詳しく

この節ではこれまで使用してきた Proposition 4.1.5 (139 ページ) の証明を目標とします. つまり何故全ての basic open set の 集合が、 どちらの空間においてもその空間の開基になるのかをまとめてみます.

もう一度一般的に議論すると, 添え字集合が ω , 各因子空間の台集合が X であるような直積位相空間 ωX において, その位相は $\mathcal{G}\subseteq\mathcal{P}(^\omega X)$ を

$$\mathcal{G} = \{ p_i^{-1}[O] \mid i \in \omega \land O \ \text{lt } X \ \mathcal{O} \text{ open set } \}$$

とおいたときの, G が生成する位相のことでした. ここで各 $\in \omega$ において p_i は第i 成分の射影です.

 $^{\omega}2$ において g がどのような集合になるか見てみます. $^{\omega}2$ において各因子空間 2 には離散位相が入っています. よって位相空間 2 では \emptyset , $\{0\}$, $\{1\}$, 2 の 4 つが開集合です. それぞれの開集合の, 各射影での逆像がどのようになるのかというと, ある $i \in \omega$ において $p_i^{-1}[\emptyset] = \emptyset$ です. $p_i^{-1}[\{0\}]$ とは, $^{\omega}2$ の各要素を 0, 1 の可算列と捉えた場合第 i 成分が 1 になっているような, $^{\omega}2$ の各要素を 1 から 1 への関数と捉えた場合 1 を 1 に写すような, そんなものたちの集合になっています. つまり後者でとらえた場合は,

$$p_i^{-1}[\{0\}] = \{ f \in {}^{\omega}2 \mid f(i) = 0 \}$$

です. $\{1\}$ も同様にして $p_i^{-1}[\{1\}] = \{f \in {}^\omega 2 \mid f(i) = 1\}$ となります. そして $p_i^{-1}[2]$ とは ${}^\omega 2$ の要素の中で i の値が 0 または 1 になっているもの全体ということで、つまり $p_i^{-1}[2] = {}^\omega 2$ となります.一般的には $O \subseteq 2$ に対して

$$p_i^{-1}[O] = \{ f \in {}^{\omega}2 \mid f(i) \in O \}$$

となります.

 $^\omega\omega$ においても同様に各因子空間 ω には離散位相が入っている, つまり ω のどの部分集合も ω の開集合です. なので $O\subseteq\omega$ に対して

$$p_i^{-1}[O] = \{ f \in {}^{\omega}\omega \mid f(i) \in O \}$$

となります.

開集合Oが一元集合のときは, $p_i^{-1}[O]$ は1つの basic set になります. それを元にする有限部分関数のための記法を用意します.

Definition 4.1.12.

 $i, i_0, \ldots, i_n \in \omega$ に対して

- $k \in 2$ に対して $[i \mapsto k] = \{\langle i, k \rangle\}$ と定めます.つまり i を k に写すというたった 1 つの対応規則のみの関数のことです. $k \in \omega$ に対しても同様に $[i \mapsto k]$ を定めます.
- $k_0, \ldots, k_n \in 2$ に対して

$$[i_0,\ldots,i_n\mapsto k_0,\ldots,k_n] = \{\langle i_m,k_m\rangle \mid 0\leq m\leq n\}$$

として定め, $k_0, \ldots, k_n \in \omega$ についても同様に定める.

つまり $k \in 2$ に対して $p_i^{-1}[\{k\}] = O([i \mapsto k])$ となります. $k \in \omega$ の場合も同様です. より一般的には以下のようになります.

Proposition 4.1.13.

 $A\subseteq 2$ に対して $p_i^{-1}[A]=\bigcup_{a\in A}O([i\mapsto a]).$ $A\subseteq \omega$ の場合も同様. とくに

$$\begin{array}{cccc} p_i^{-1}[2] &=& O([i\mapsto 0]) \cup O([i\mapsto 1]) &=& {}^{\omega}2. \\ & & & & \\ p_i^{-1}[\omega] &=& \bigcup_{k\in\omega} O([i\mapsto k]) &=& {}^{\omega}\omega. \end{array}$$

よって ω_2 の場合, Gは

$$\begin{split} \mathcal{G} &= \; \{ \, p_i^{-1}[\emptyset] \mid i \in \omega \, \} \; \cup \; \{ \, p_i^{-1}[\{0 \;] \mid i \in \omega \, \} \; \cup \; \{ \, p_i^{-1}[\{1 \;] \mid i \in \omega \, \} \; \cup \; \{ \, p_i^{-1}[2] \mid i \in \omega \, \} \\ &= \; \{ \emptyset, \emptyset, \ldots \} \; \cup \; \{ \; O([0 \mapsto 0]), O([0 \mapsto 1]), \ldots \, \} \; \cup \; \{ \; O([1 \mapsto 0]), O([1 \mapsto 1]), \ldots \, \} \; \cup \; \{ ^\omega 2, ^\omega 2, \ldots \} \\ &= \; \{ \emptyset, ^\omega 2 \} \; \cup \; \{ \; O([i \mapsto 0]) \mid i \in \omega \, \} \; \cup \; \{ \; O(^{<)i}1 \mid i \in \omega \, \} \\ &= \; \{ \emptyset, ^\omega 2 \} \; \cup \; \{ \; O([i \mapsto k]) \mid i \in \omega \wedge k \in 2 \, \} \end{split}$$

となります. ω_{ω} の場合 G は同様にして

$$\mathcal{G} = \{\emptyset, {}^{\omega}\omega\} \cup \{O([i \mapsto k]) \mid i \in \omega \land k \in \omega\}$$

となります.

ここまでの議論をまとめておきます.

Proposition 4.1.14.

 $\mathcal{G}_2 \subseteq \mathcal{P}(^{\omega}2), \mathcal{G}_{\omega} \subseteq \mathcal{P}(^{\omega}\omega) \ \mathcal{E}$

$$\begin{split} \mathcal{G}_2 &= \{\emptyset, {}^\omega 2\} \ \cup \ \{ O([i \mapsto k]) \mid i \in \omega \land k \in 2 \}, \\ \mathcal{G}_\omega &= \{\emptyset, {}^\omega \omega\} \ \cup \ \{ O([i \mapsto k]) \mid i \in \omega \land k \in \omega \} \end{split}$$

とすると, Cantor 空間の位相は \mathcal{G}_2 が生成する位相, Baire 空間の位相は \mathcal{G}_ω が生成する位相である.

もう一度位相空間論に戻ると、ある集合 G が生成する位相とは、G の全ての要素を開集合とするような最弱の位相で、それは Lemma 3.2.22(122 ページ)より G を準基とするような、つまり開基の G の要素の有限個の共通部分全体になります。よって そんな開基を G とおくと

$$\mathcal{B} = \{ \bigcap_{0 \le i \le n} G_i \mid n \in \omega \land G_0, \dots, G_n \in \mathcal{G} \}$$

です.

よって先ほどの Proposition 4.1.14 (143 ページ) での \mathcal{G}_2 や \mathcal{G}_ω の有限個の要素で共通部分をとるとどのようになるか調べます.

Proposition 4.1.15.

互いに異なる $i, i_0, \ldots, i_n \in \omega$ と $A_0, \ldots, A_n \subseteq \omega$ に対して

- 1. $k_0, k_1 \in 2$ が $k_0 \neq k_1$ ならば $O([i \mapsto k_0]) \cap O([i \mapsto k_1]) = \emptyset$. より一般的には $O([i \mapsto k]) \cap O([i \mapsto 1 - k]) = \emptyset$.
- 2. $k_0,\ldots,k_n\in 2$ は対して $\bigcap_{0\leq m\leq n}O([i_m\mapsto k_m])=O([i_0,\ldots,i_n\mapsto k_0,\ldots,k_n]).$
- 3. $k_0, \ldots, k_n \in \omega$ に対して $\bigcap_{0 \le m \le n} O([i \mapsto k_m]) = \emptyset$.
- $$\begin{split} 4. \ \ (\bigcup_{a \in A_0} O([i \mapsto a])) \cap (\bigcup_{a \in A_1} O([i \mapsto a])) &= \bigcup_{a \in A_0 \cap A_1} O([i \mapsto a]). \\ \mathcal{L} \leqslant \mathcal{K} \ A_0 \cap A_1 &= \emptyset \ \mathcal{O} \ \mathcal{L} \ \mathcal{E} \ (\bigcup_{a \in A_0} O([i \mapsto a])) \cap (\bigcup_{a \in A_1} O([i \mapsto a])) = \emptyset. \end{split}$$

5.
$$\bigcap_{0 \le m \le n} \left(\bigcup_{a \in A_m} O([i_m \mapsto a]) \right) = \bigcup_{a_0 \in A_0, \dots, a_n \in A_n} O([i_0, \dots, i_n \mapsto a_0, \dots, a_n]).$$

第5章 記号リスト

記号	初登場ページ	記号	初登場ページ	記号	初登場ページ
\mathcal{I}^*	134	ω2	138	ω_{ω}	138
$<\omega_A$	138	O(s)	138	$\triangleleft \omega_2$	140
$\lhd \omega$	140	⊴	140		141
$[i \mapsto k]$	142	$[i_0,\ldots,i_n\mapsto k_0,\ldots,k_n]$	142		

第V部

その他

このパートは、数学の研究や学習に直接は関係しないものの、学問全般に関係あったり、傲慢ながら他人に共有する価値のあると思われるものについてまとめていく、雑多なパートになっています.

第6章(151ページ)では、このノートを作成するにあたって使用した小技や工夫などをまとめています.

第6章 このノートのTips

6.1 自作マクロ・環境紹介

この節ではこのノートで使用していた, 自前で定義した TeX のマクロや環境について紹介しています. コンパイルされて PDF になると見えない部分なので, それなりに価値はあると思います. 大抵あれこれ色んなインターネットのサイトを見ながら作っているので, どこを参考にしたか分からないものをあるかもです. なるべく参考になったサイトなどは参考文献にも載せておこうかと思っています.

6.1.1 自作マクロ

使用分野別にまとめておきます.

1. 共通

(a) 太字命令の簡略化

基礎的な用語は基本的にその英語と日本語を併記しているので, その太字命令が並んでいるのが煩わしいという理由で導入してみたもの.

```
\newcommand{\textgtbf}[2]{\textgt{#1} (\textbf{#2}) }
\newcommand{\textbfgt}[2]{\textbf{#1} (\textgt{#2}) }
```

例えば\textgtbf{集合}{set}で「集合(set)」, \textbfgt{set}{集合}で「set(集合)」となる.

(b) 各種参照系

ノートの一部分を参照した場合は、そのページ数も併記した方が親切かと考えて、このように参照先の記入は一回で済むようなマクロたちを作ってみた.

```
\newcommand{\PartRef}[1]{第\ref{#1}部(\pageref{#1}ページ)}
\newcommand{\ChapRef}[1]{第\ref{#1}章(\pageref{#1}ページ)}
\newcommand{\SecRef}[1]{\ref{#1}節(\pageref{#1}ページ)}
\newcommand{\DefRef}[1]{Definition_\ref{#1}(\pageref{#1}ページ)}
\newcommand{\ExRef}[1]{Example_\ref{#1}(\pageref{#1}ページ)}
\newcommand{\LemRef}[1]{Lemma_\ref{#1}(\pageref{#1}ページ)}
\newcommand{\ThRef}[1]{Theorem_\ref{#1}(\pageref{#1}ページ)}
\newcommand{\FactRef}[1]{Fact_\ref{#1}(\pageref{#1}ページ)}
\newcommand{\PropRef}[1]{Proposition_\ref{#1}(\pageref{#1}ページ)}
```

(c) 定義するための記号

こういうのこそマクロにすべきだよねって.

```
\label{textdef} $$\operatorname{defarr}_{\u\mbox{$\star el{\text{def}}}_{\newcommand{\defeq}_{\u\mbox{$\star ext{def}}}_{=}$}} $$
```

2. 基礎数学系

(a) 集合の外延的記法に関するもの

見栄えを整えることが多く見辛くなりやすいのでマクロにしてみた(流石にやり過ぎな気がしなくもない). 2 種類の外延的記法にあわせて 2 つ用意している.

(b) 順序対や有限列に関するもの

「langle」や「rangle」がたくさんあると見辛くなるので.

```
\label{langle} $$\operatorname{\triple}[3]_{\triple}_{\triple}[3]_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_{\triple}_
```

(c) 関数に関するもの

まずは「f は A から B への(単射・全射・全単射)写像である」という述語の略記をマクロにする。人によっては\colonではなく:を使う人もいるので、それぞれの状況にあわせてマクロで一括変換出来る方がいいかもと思った(そんなときがあるのか分からんけど).

```
\newcommand{\map}[3]{
\upunu=\pi\to\upunu=\pi\to\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\upunu=\pi\up
```

そして写像・関数に関係する定義のためのコマンド一覧.写像の定義域の制限の記号は単なる \parallel を使う人もいるけれど、私はこれが好き.そして\upharpoonright が人によっては何を指しているのか分かりづらいし、連発するとかなり 1 行が長くなってしまうので、省略したい意図もある.

```
\newcommand{\restric}{\mbox{$\upharpoonright$}}
\DeclareMathOperator{\dom}{dom}
\DeclareMathOperator{\ran}{ran}
\DeclareMathOperator{\fld}{fld}
\DeclareMathOperator{\id}{id}
```

souji / − ト 153

6.1.2 自作環境

1. ぶら下げと背景変更

証明中の不要ならば読み飛ばしてほしい部分やテキストでは行間に相当する部分などを, ここに記述して分かりやすくするためのもの.

```
\definecolor{BIP-back}{gray}{0.9}
\newenvironment{sub-block}[1]
⊔⊔{
□□□□\begin{tcolorbox}[
⊔⊔⊔⊔colback⊔=⊔BIP-back,
\sqcup \sqcup \sqcup \sqcup \sqcup \mathsf{colframe} \sqcup = \sqcup \mathsf{white},
\sqcup \sqcup \sqcup \sqcup boxrule \sqcup = \sqcup 10pt,
⊔⊔⊔⊔fonttitle⊔=⊔\bfseries,
⊔⊔⊔⊔breakable⊔=⊔true]
___}
⊔⊔{
\verb| uuuu = \{itemize\}|
\square\square\square \end{tcolorbox}
⊔⊔⊔⊔\vspace{-5pt}
___}
以下のように変数に何も入れないと
\begin{sub-block}{}
」」こんな感じ」\\
」」になって,
\end{sub-block}
```

こんな 感じになって,

例えば変数に{\boldmath」\$\because\$}\,とか入れてみると,

: こんな感じになる.

6.2 お助け自作ツール紹介

このノートを作成するにあたり、自分の作業を効率化するため、作ってみたツールたち. また効率化だけでなく、ノートの内容をよりよくするためのものも作れたらなと思っています。簡単なファイル処理などは書き慣れている言語 Perl で書いています. 文献管理は別のフォルダでやっていて、それをサポートするためのツールの開発もやってます. そちらは別のリポジトリになっています. 詳しくはこちらから

◆ 全角「、」「。」変換ツール

ツールのコードはこちらから.このノートでは「、」「。」は使わず、「、」「.」で統一しています.しかし日本語を打っている際についつい「、」「。」を打ってしまってそのままということもあります. note tex から再帰的に subfile で呼びだしている tex ファイルを探し出し、その全てのファイルの中にある「、(改行)」「。(改行)」を「、(改行)」「.(改行)」「.(改行)」に置換します.また置換前のファイルは同じ場所にバックアップをとります.もともと「、(改行)」「。(改行)」が含まれていなかったファイルはバックアップはとりません.

しかしこれだと「、」「。」が行の途中に含まれている場合は検知できません. ただこの場合は, このツールの説明文や意図的に書いたものや, 私が改行を忘れている場合があります. なのでそれらを検知した場合は, そのファイル名と行番号・その行の内容をコンソールに表示するようにしてあり, それで自分がわざと書いたのか, 改行忘れかを判断する材料にするようにしています.

「あとで書く」メモのリスト化ツール

ツールのコードはこちらから、勉強していると「ここはあとで示しておこう」とか、「この〇〇については後のページで説明すると書いてあるからメモしておこう」という部分は多々ある。これらを現実のノートにメモっておいてもよいけど、何かにまとめておいておかないと忘れてしまう。なのでその箇所の勉強ノート TeX ファイルにメモっておき、いつでもそのメモのリストが見れるようにしておきたい、そんな思いを叶えるためのツールです。例えば「C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_導入.tex」の 782 行目から、以下のようにメモったとします。

%あとで書く

\begin{comment}

」」この補題に関してはあとで示しておく.

\end{comment}

これなら出力には影響しません.ただしこの部分の前後は改行しておかないと「! Bad space factor」というエラーがでることがあります.そしてこのツールを実行すると,ノート用フォルダに「あとで書くリスト.txt」が作成され,ファイルを開くと以下のように書かれています.

C:/souji/all-note/part/part_不完全性定理勉強会ノート/chapter_導入.tex で見つけたメモ------

782 行で発見。↓その内容

」」この補題に関してはあとで示しておく.

他のファイルにもメモっていれば, もっと内容は増えます. ツールではコメントアウトした「あとで書く」, そしてその後にあるコメントアウト環境に囲まれた部分を読み込みます. なので「あとで書く」メモはこの記法を守っていくことにします.

参考文献

- [1] Prisoner hat puzzle —— 10 prisoners —— red & blue hats, 1 2017. https://www.youtube.com/watch?v=RtidKw-qDxY.
- [2] Wikipedia 『基底 (位相空間論)』, 6 2018. https://ja.wikipedia.org/wiki/%E5%9F%BA%E5%BA%95_(%E4%BD%8D%E7%9B%B8%E7%A9%BA%E9%96%93%E8%AB%96).
- [3] Wikipedia 『順序対』, 5 2019. https://ja.wikipedia.org/wiki/%E9%A0%86%E5%BA%8F%E5%AF%BE.
- [4] Wikipedia 『高々 (数学)』, 4 2020. https://ja.wikipedia.org/wiki/%E9%AB%98%E3%80%85_(%E6%95%B0%E5%AD%A6).
- [5] Wikipedia 『竹内時男』, 3 2020. https://ja.wikipedia.org/wiki/%E7%AB%B9%E5%86%85%E6%99%82%E7%94%B7.
- [6] Wikipedia 『日本の色の一覧』, 11 2020. https://ja.wikipedia.org/wiki/%E6%97%A5%E6%9C%AC%E3%81%AE%E8%89% B2%E3%81%AE%E4%B8%80%E8%A6%A7.
- [7] Wikipedia 『文字列結合』, 1 2020. https://ja.wikipedia.org/wiki/%E6%96%87%E5%AD%97%E5%88%97%E7%B5%90%E5%90%88.
- [8] Wikipedia 『cycle graph』, 12 2021. https://en.wikipedia.org/wiki/Cycle_graph.
- [9] Wikipedia <code>[induction puzzles]</code>, 7 2021. https://en.wikipedia.org/wiki/Induction_puzzles#cite_note-8.
- [10] Wikipedia 『エルデシュ数』, 12 2021. https://ja.wikipedia.org/wiki/%E3%82%A8%E3%83%AB%E3%83%87%E3%82%B7% E3%83%A5%E6%95%B0.
- [11] Wikipedia 『ガルガンチュワとパンタグリュエル』, 4 2021. https://ja.wikipedia.org/wiki/%E3%82%AC%E3%83%AB% E3%82%AC%E3%83%81%E3%83%A5%E3%83%AF%E3%81%A8%E3%83%91%E3%83%B3%E3%82%BF%E3%82%B0%E3%83%AA% E3%83%A5%E3%82%A8%E3%83%AB#%E6%97%A5%E6%9C%AC%E8%AA%9E%E8%A8%B3.
- [12] Wikipedia 『ハッシュ関数』, 9 2021. https://ja.wikipedia.org/wiki/%E3%83%8F%E3%83%83%E3%82%B7%E3%83%A5% E9%96%A2%E6%95%B0#%E8%AA%9E%E6%BA%90.
- [13] Wikipedia 『ヒルベルトの無限ホテルのパラドックス』, 10 2021. https://ja.wikipedia.org/wiki/%E3%83%92%E3%83%AB%E3%83%8B%E3%83%88%E3%81%AE%E7%84%A1%E9%99%90%E3%83%9B%E3%83%86%E3%83%AB%E3%81%AE%E3%83%89%E3%83%89%E3%83%89%E3%83%88%E3%82%AF%E3%82%B9.
- [14] Wikipedia 『フローニンゲン大学』, 10 2021. https://ja.wikipedia.org/wiki/%E3%83%95%E3%83%AD%E3%83%BC%E3%83%B8%E3%83%B3%E3%83%B3%E5%A4%A7%E5%AD%A6.
- [15] Wikipedia 『構造的帰納法』, 4 2021. https://ja.wikipedia.org/wiki/%E6%A7%8B%E9%80%A0%E7%9A%84%E5%B8%B0% E7%B4%8D%E6%B3%95.
- [16] Wikipedia 『数学的構造』, 7 2021. https://ja.wikipedia.org/wiki/%E6%95%B0%E5%AD%A6%E7%9A%84%E6%A7%8B%E9%80%A0.
- [17] Wikipedia 『代数的数』, 8 2021. https://ja.wikipedia.org/wiki/%E8%B6%85%E8%B6%8A%E6%95%B0.
- [18] Wikipedia 『不等号』, 8 2021. https://ja.wikipedia.org/wiki/%E4%B8%8D%E7%AD%89%E5%8F%B7.
- [19] Wikipedia 『宝石 (雑誌)』, 12 2021. https://ja.wikipedia.org/wiki/%E5%AE%9D%E7%9F%B3_(%E9%9B%91%E8%AA%8C).

- [20] Wikipedia 『asterix』, 1 2022. https://en.wikipedia.org/wiki/Asterix.
- [21] Wikipedia 『list of martin gardner mathematical games columns』, 1 2022. https://en.wikipedia.org/wiki/List_of_Martin_Gardner_Mathematical_Games_columns.
- [22] Wikipedia 『maurice kraitchik』, 1 2022. https://en.wikipedia.org/wiki/Maurice_Kraitchik.
- [23] Wikipedia 『werner heisenberg』, 1 2022. https://en.wikipedia.org/wiki/Werner_Heisenberg.
- [24] Wikipedia 『竹内均』, 1 2022. https://ja.wikipedia.org/wiki/%E7%AB%B9%E5%86%85%E5%9D%87.
- [25] Wikipedia 『日本ユニシス』, 1 2022. https://ja.wikipedia.org/wiki/%E6%97%A5%E6%9C%AC%E3%83%A6%E3%83%8B% E3%82%B7%E3%82%B9.
- [26] Wikipedia 『木々高太郎』, 1 2022. https://ja.wikipedia.org/wiki/%E6%9C%A8%E3%80%85%E9%AB%98%E5%A4%AA%E9%83%8E.
- [27] Amos Fiat Andrew V. Goldberg Jason D. Hartline Nicole Immorlica Aggarwal, Gagan and Madhu Sudan. Derandomization of auctions. *Games and Economic Behavior*, Vol. 72, No. 1, 6 2010. https://dspace.mit.edu/handle/1721. 1/99342.
- [28] Albert A. Bennett. Problem no. 3734. American Mathematical Monthly, Vol. 42, , 1935.
- [29] Albert A. Bennett, E.P. Starke, and G.M. Clemence. Solution to problem no. 3734. American Mathematical Monthly, Vol. 44, No. 5, 1937.
- [30] Axel Born, Cor A.J. Hurkens, and Gerhard J. Woeginger. The freudenthal problem and its ramifications (part iii). Bulletin of the European Association for Theoretical Computer Science, EATCS, Vol. 95, , 2008. https://research.tue.nl/en/publications/the-freudenthal-problem-and-its-ramifications-part-iii.
- [31] Werner E. Buker. A puzzler for the thinkers. School Science and Mathematics, Vol. 35, No. 2, 2 1935. https://onlinelibrary.wiley.com/doi/10.1111/j.1949-8594.1935.tb12823.x.
- [32] Werner E. Buker, R. Wood, and O.B. Rose. Solution to science question 686: A puzzler for the thinkers. *School Science and Mathematics*, Vol. 35, , 1935.
- [33] Holly Crider. Finite and infinite hat problems. 5 2010. https://www.siue.edu/~aweyhau/teaching/seniorprojects/crider_final.pdf.
- [34] Herbert Enderton. A Mathematical Introduction to Logic, Second Edition. Academic Press, 12 2000. https://www.elsevier.com/books/a-mathematical-introduction-to-logic/enderton/978-0-08-049646-7
 Amazon O URL.
- [35] Martin Gardner. The 2nd Scientific American Book of Mathematical Puzzles & Diversions. Simon & Schuster, 5 1961. https://bobson.ludost.net/copycrime/mgardner/gardner02.pdf
 Amazon O URL.
- [36] Martin Gardner. Origami, Eleusis, and the Soma Cube Martin Gardner's Mathematical Diversions (The New Martin Gardner Mathematical Library, Series Number 2). Cambridge University Press, 11 2008. [36] の海賊版?

 https://www.amazon.co.jp/gp/product/0521735246/ref=ppx_yo_dt_b_asin_title_o01_s00?ie=UTF8&psc=1.
- [37] Alex Gendler. Can you solve the prisoner hat riddle? alex gendler, 10 2015. https://www.youtube.com/watch?v= N5vJSNXPEwA&t=58s.
- [38] Christopher S Hardin and Alan D Taylor. The Mathematics of Coordinated Inference -A Study of Generalized Hat Problems-. 11 2012. おそらく [39] の出版前原稿. http://qcpages.qc.cuny.edu/~rmiller/abstracts/Hardin-Taylor.pdf.

[39] Christopher S Hardin and Alan D Taylor. *The Mathematics of Coordinated Inference -A Study of Generalized Hat Problems*-. Springer, 10 2013. 本当はタイトルに「-」は入っていないがファイル名として採用できるようにこのように修正した.[38] も同様.

https://www.springer.com/gp/book/9783319013329 Amazon O URL.

- [40] Yurii Khomskii. Infinite games-summer course at the university of sofia, bulgaria, 7 2010. https://www.math.uni-hamburg.de/home/khomskii/infinitegames2010/Infinite%20Games%20Sofia.pdf.
- [41] Maurice Kraitchik. Mathematical recreations. Dover Publications, 1942.
- [42] Maurice Kraitchik. Mathematical recreations. Dover Publications, 1953.
- [43] Alex Kruckman. Notes on ultrafilters, 7 2011. 著者の HP (https://akruckman.faculty.wesleyan.edu/notes-slides/) から発見したもの.toolbox seminar という企画で発表したものらしい. 他にも面白そうな PDF がたくさん配置されている.
 - https://akruckman.faculty.wesleyan.edu/files/2019/07/ultrafilters.pdf.
- [44] Kenneth Kunen. The Foundations of Mathematics (Studies in Logic: Mathematical Logic and Foundations). College Publications, 9 2009. https://www.collegepublications.co.uk/logic/mlf/?00012 Amazon O URL.
- [45] Kenneth Kunen. Set Theory (Studies in Logic: Mathematical Logic and Foundations). College Publications, 11 2011. https://www.collegepublications.co.uk/logic/mlf/?00016 Amazon O URL.
- [46] Sara Robinson. Why mathematicians now care about their hat color, 4 2001. https://www.nytimes.com/2001/04/10/science/why-mathematicians-now-care-about-their-hat-color.html.
- [47] Hans van Ditmarsch and Barteld Kooi. Honderd gevangenen en een gloeilamp. Epsilon Uitgaven, 2013.
- [48] Hans van Ditmarsch and Barteld Kooi. One Hundred Prisoners and a Light Bulb. Copernicus, 7 2015. https://www.springer.com/gp/book/9783319166933
 Amazon Ø URL.
- [49] 田中一之. チューリングと超パズル: 解ける問題と解けない問題. 東京大学出版会, 11 2013. http://www.utp.or.jp/book/b306613.html Amazon の URL.
- [50] 新井紀子. 数学は言葉. 東京図書, 9 2009. http://www.tokyo-tosho.co.jp/books/ISBN978-4-489-02053-7.html Amazon の URL.
- [51] 岩沢宏和, 上原隆平. ガードナーの数学娯楽 (完全版 マーティン・ガードナー数学ゲーム全集 2). 日本評論社, 4 2015. [35] の和訳.

https://www.nippyo.co.jp/shop/book/6820.html Amazon Ø URL.

- [52] 藤村幸三郎. 最新数学パヅルの研究. 研究社, 1943.
- [53] 志賀浩二. 集合・位相・測度. 朝倉書店, 3 2006. https://www.asakura.co.jp/detail.php?book_code=11110 Amazon の URL.
- [54] 渡辺治, 北野晃朗, 木村泰紀, 谷口雅治. 現代基礎数学 1 数学の言葉と論理. 朝倉書店, 9 2008. https://www.asakura.co.jp/detail.php?book_code=11751 Amazon の URL.

- [55] 川辺治之. 100人の囚人と 1 個の電球 知識と推論にまつわる論理パズル. 日本評論社, 11 2016. [48] の和訳版. https://www.nippyo.co.jp/shop/book/7303.html Amazon の URL.
- [56] 佃修一. 幾何学序論講義ノート, 4 2013. http://www.math.u-ryukyu.ac.jp/~tsukuda/lecturenotes/note_2013.
- [57] 寺澤順. 現代集合論の探検. 日本評論社, 5 2013. https://www.nippyo.co.jp/shop/book/6223.html Amazon の URL.
- [58] 嘉田勝. 論理と集合から始める数学の基礎. 日本評論社, 12 2008. https://www.nippyo.co.jp/shop/book/4116.html Amazon の URL.
- [59] 嘉田勝. 論理学への数学的手引き. 1 月と 7 月, 11 2020. [34] の和訳. Amazon の URL.
- [60] 佐野勝彦, 倉橋太志, 薄葉季路, 黒川英徳, 菊池誠. 数学における証明と真理 様相論理と数学基礎論. 共立出版, 3 2016. https://www.kyoritsu-pub.co.jp/bookdetail/9784320111486 Amazon の URL.
- [61] 中島匠一. 集合・写像・論理 -数学の基本を学ぶ. 共立出版, 2 2012. https://www.kyoritsu-pub.co.jp/kenpon/bookDetail/9784320110182 Amazon の URL.
- [62] 渕野昌. 実数の集合論の基礎の基礎, 10 2003. https://fuchino.ddo.jp/notes/set-th-of-reals-kiso-no-kiso.pdf.
- [63] 齋藤正彦. 数学の基礎 集合・数・位相 (基礎数学 14). 東京大学出版会, 8 2002. http://www.utp.or.jp/book/b302226.html Amazon の URL.
- [64] 菊池誠. 不完全性定理. 共立出版, 10 2014. https://www.kyoritsu-pub.co.jp/bookdetail/9784320110960 Amazon の URL.
- [65] 静間荘司. 囚人と帽子のパズル もし囚人が無限にいたら, 6 2021. https://www.nippyo.co.jp/shop/magazine/8572.html Amazon の URL.
- [66] 和久井道久. 大学数学ベーシックトレーニング. 日本評論社, 3 2013. https://www.nippyo.co.jp/shop/book/6113.html Amazon の URL.
- [67] 内田伏一. 集合と位相 (数学シリーズ). 裳華房, 11 1986. https://www.shokabo.co.jp/mybooks/ISBN978-4-7853-1401-9.htm Amazon の URL.
- [68] 佐藤文広. 数学ビギナーズマニュアル 第 2 版. 日本評論社, 2 2014. https://www.nippyo.co.jp/shop/book/6447.html Amazon の URL.
- [69] 坪井明人. 数理論理学の基礎・基本. 牧野書店, 3 2012. Amazon の URL.
- [70] 高木茂男. 光と影と赤い帽子. 数学史研究, Vol. 8, No. 2, 4 1970. http://www.wasan.jp/sugakusipdf/sugakusi45.pdf.
- [71] 金沢養. 100万人のパズル(上). 白揚社, 1968. Amazon の URL.
- [72] 鹿島亮. 数理論理学 現代基礎数学 15. 朝倉書店, 10 2009. https://www.asakura.co.jp/detail.php?book_code=11765 Amazon の URL.
- [73] 戸田山和久. 論理学をつくる. 名古屋大学出版会, 10 2000. https://www.unp.or.jp/ISBN/ISBN4-8158-0390-0.html Amazon の URL.
- [74] 松坂和夫. 集合・位相入門. 岩波書店, 6 1968. Amazon の URL.

索引

associative laws, 102	measure, 134
at most countable, 75	non-principal filter, 134
	p-filter, 137
Baire Space, 138	P-pont filter, 137
basic open set, 139	principal filter, 134
basic set, 139	proper filter, 134
biconditional symbol, 84	ultra filter の補題, 137
bijection, 71	urtra filter, 135
Cantor Space, 138	finite, 75
cardinal arithmetic theorem, 79	finite partial function, 138
cardinality, 78	finite sequence, 68
cardinal numger, 78	formula-building operation, 88
Cartesian product, 70	function, 71, 114
	domain, 114
color, 40	range, 114
coloring, 40 commutative laws, 102	<i>0 </i>
,	Hat (Guessing) Game, 10
conditional symbol, 84	Hat Problem, 10
conjunction symbol, 84	Hat Puzzle, 10
construction sequence, 88	11 1 100
contradiction, 103	ideal, 133
countable, 75	dual ideal, 134
de Morgan' laws, 102	\mathcal{I} -measure one, 134
disjoint, 67	\mathcal{I} -measure zero, 134
disjunction symbol, 84	non-principal ideal, 134
distributive laws, 102	positive \mathcal{I} -measure, 134
domain, 71	principal ideal, 134
dominated by, 78	proper ideal, 134
	identity map, 71
empty set, 65	infinite, 75
equinumerous, 77	initial segment, 141
equivalence class, 73	initial segment of finite sequence, 68
equivalence relation, 73	injection, 71
excluded middle, 103	intersection, 67
expression, 87	left parenthesis, 84
falsity, 99	map, 71
field, 71	
filter, 133	metric space, 116
dual filter, 134	bounded, 117
Fréchet filter, 134	diameter, 117
maxmal filter, 135	discrete metric space, 120

souji / − ト 160

Euclidian space, 119	sentence symbol, 84
isometric, 117	sentential connective symbol, 85
isometry, 116	string concatenation, 87
metric, 116	symbol, 84
metric subspace, 116	tautologically equivalent, 101
open ball, 117	tautologically imply, 101
sphere, 117	tautology, 101
Muddy Children Puzzle, 27	truth, 99
	truth assignment, 99
negation symbol, 84	well-formed formula, 88, 89
nonlogivcal symbol, 85	set, 65
appropriate 79	string, 68
operation, 72	string concatenation, 87
ordered pair, 68	subset, 66
ordering relation, 73	surjection, 71
parameter, 85	symbol, 84
power set, 67	symmetric, 73
prisoner, 40	,
proper segment of finite sequence, 68	tautologically equivalent, 101
,	tautologically imply, 101
range, 71	tautology, 101
reflexive, 73	the problem of the three philosophers, 38
relation, 71	topological space, 121
restriction, 71	base for the closed sets, 123
right parenthesis, 84	closed set, 121
	compact, 127
satisfy, 101	opan base, 122
Schröder-Bernstein Theorem, 79	open covering, 127
segment of finite sequence, 68	open set, 121
sentence symbol, 84	product space, 127
sentential connective symbol, 85	product topology, 127
sentential logic, 83	second axiom of countability, 122
biconditional symbol, 84	sub base, 122
Compactness Theorem, 102	system of closed sets, 121
conditional symbol, 84	system of open sets, 121
conjunction symbol, 84	topology, 121
construction sequence, 88	underlying set, 121
disjunction symbol, 84	transitive, 73
expression, 87	trichotomy, 73
falsity, 99	$\operatorname{truth}, 99$
formula-building operation, 88	truth assignment, 99
Induction Principle, 92	
left parenthesis, 84	union, 67
negation symbol, 84	visibility graph, 41
nonlogivcal symbol, 85	Totality Stopii, 11
parameter, 85	well-formed formula, 88, 89
right parenthesis, 84	// Jackson
satisfy, 101	位相空間, 121

位相, 121	等長, 117
因子空間, 127	等長写像, 116
開基, 122	部分距離空間, 116
開集合, 121	(集合が)有界, 117
開集合系, 121	ユークリッド空間, 119
開被覆, 127	離散距離空間, 120
コンパクト, 127	
準基, 122	空集合, 65
(集合族から) 生成する位相, 122	(有限列の)区間, 68
台集合, 121	(女妹会司里の) 妹会往 100
第二可算公理, <u>122</u>	(文結合記号の)結合律, 102
Tychonoff の定理, 129	(文結合記号の)交換律, 102
。 (2 個の位相の)直積位相, 127	構成列, 88
(位相空間の族の)直積位相, 127	恒等写像, 71
(2 個の空間の) 直積空間, 127	,
(位相空間の族の)直積空間, 127	3 人の哲学者の問題, 38
閉基, 123	(二項関係の)三分律, 73
閉集合, 121	-0.44.84.44.44.44.44.44.44.44.44.44.44.44.
閉集合系, 121	式構成操作, 88
色, 40	整式, 88, 89
L, 40	始切片, 141
演算, 72	(有限列の)始切片, 68
	視野グラフ, 41
(集合がある集合に) おさえられている, 78	視野, 41
可算(集合),75	しゃぞう, 71
	集合, 65
関係, 71	囚人, 40
写像・関数, 114	囚人と帽子のパズル $,10$
(関数の) 拡大, 114	Ebert の帽子パズル, 25
(関数の)制限, 114	Smullyan の帽子パズル, 19
值域, 114	Dirac-Gardner の帽子パズル, 16
定義域, 114	Hardin-Taylor の帽子パズル, 16
(2 つの関数が) 等しい, 114	無限帽子パズル, 18
部分関数, 114	有限帽子パズル, 18
関数, 71	充足する, 101
Cantor 空間, 138	シュレーダー・ベルンシュタインの定理, 79
偽, 99	順序関係, 73
記号, 84	順序対, 68
基数, 78	条件記号, 84
基数算術の定理, 79	真, 99
共通部分,67	(有限列の) 真の始切片, 68
(集合族の) 共通部分, 67	真理値割り当て,99
	,
距離空間, 116	(二項関係が)推移的, 73
開球, 117	
球面, 117	(関係の)制限,71
(2 つの集合の) 距離, 118	選言記号, 84
距離関数, 116	先行発言者, 24
(集合の)直径, 117	全射(写像), 71

souji / − ト 162

全単射(写像), 71	充足する, 101
	条件記号,84
双条件記号,84	真, 99
(二項関係が)対症的, 73	真理値割り当て, 99
(集合が) 対等である, 77	選言記号, 84
高々可算(集合),75	双条件記号,84
単射(写像), 71	トートロジー, 101
+41 (718), 11	トートロジー的に含意する, 101
(関係の) 値域, 71	トートロジー的に同値, 101
直積集合, 70	2 項結合記号, 85
(m) (a) (b) (b) (b)	パラメータ, 85
(関係の)定義域, 71	左括弧, 84
同值関係, 73	否定記号, 84
同値類, 73	表現, 87
トートロジー, 101	非論理記号,85
トートロジー的に含意する, 101	文記号, 84
トートロジー的に同値, 101	文結合記号,85
(文結合記号の) ド・モルガンの法則, 102	右括弧, 84
泥んこの子供たちのパズル, 27	文字列結合,87
他がこの「 景たらのバスル、21	連言記号, 84
(集合の) 濃度, 78	論理記号,85
排中律, 103	Baire 空間, 138
発言方法, 24	べき集合, 6 7
順次発言型, 24	帽子パズル, 11
同時発言型, 24	無限帽子パズル, 12
1 人先行型, 24	有限帽子パズル, 12
パラメータ, 85	相子パズルっぽいパズル, 11
(二項関係が)反射的,73	
	(2 つの集合が)交わらない $,67$
左括弧, 84	右括弧, 84
否定記号, 84	(coloring が) 見分けがつかない, 41
表現, 87	(Coloring ガー) 元力()ガーンガーない、41
非論理記号,85	無限(集合), 75
部分集合, 66	矛盾律, 103
文記号, 84	文字列結合, 87
文結今, 84 文結合記号, 85	文于列和口,87
	有限(集合), 75
(文結合記号の)分配律, 102 文論理 82	(定義域が ω である)有限部分関数, 138
文論理,83	有限列, 68
括弧記号, 85	(明核の) 管柱 71
偽, 99 司具 04	(関係の)領域, 71
記号, 84 	列, 68
帰納法の原理, 92	連言記号, 84
構成列, 88	=∆1⊞=1 □ oF
コンパクト性定理, 102	論理記号, 85
式構成操作, 88	和集合, 67
整式, 88, 89	(集合族の) 和集合 67