Anatomy of a Term Symbol

A term symbol is a unique "nickname" for an electronic state

 $\vec{L} = \Sigma \vec{\ell}_i$ degeneracy $g_L = 2L + 1$: $M_L = -L,..., 0,...$ L Total orbital angular momentum:

 $\vec{S} = \Sigma \vec{s}_i$ degeneracy $g_S = 2S + 1 : M_S = -S, ..., 0, ... S$ Total spin angular momentum:

 $\vec{J} = \Sigma \vec{i}_i$ Total angular momentum: $\vec{J} = \vec{L} + \vec{S}$ degeneracy $g_J = 2J + 1 : M_J = -J, ..., 0, ..., J$

L: 4 Term: S P D F G Η

<u>Clebsch-Gordan Series</u>: $L = \ell_1 + \ell_2, \ell_1 + \ell_2 - 1, ..., |\ell_1 - \ell_2|$ $M_L = \sum m_L$ $L = |M_L|_{max}$

J = L + S, L + S - 1, ..., |L - S|

Term Symbol:

multiplicity_ total angular momentum Orbital angular momentum

Example: $C : p^2$ $\ell_1=1,\ \ell_2=1:\ L=2,\,1,\,0$ gives D, P, and S terms

 $s_1 = \frac{1}{2}$, $s_2 = \frac{1}{2}$: S = 1, 0gives triplet and singlet states

¹D: L = 2, S = 0: J = 2:

 ${}^{1}D_{2}$ ${}^{3}P_{2}$, ${}^{3}P_{1}$, ${}^{3}P_{0}$ 3 P: L = 1, S = 1: J = 2, 1, 0:

¹S: L = 0, S = 0: J = 0:

Term Symbols for Selected Configurations*

 s^1p^1 1,3**P** p^1d^1 p^1, p^5 $^{2}\mathbf{P}$

 d^1 , d^9 2 D

 d^{2}, d^{8} ¹S,D,G; ³P,F

 d^3 , d^7 ²P,D,D,F,G,H; ⁴P,F

 d^4 , d^6 ¹S,S,D,D,F,G,G,I; ³P,P,D,F,F,G,H; ⁵D ²S,P,D,D,D,F,F,G,G,H,I; ⁴P,D,F,G; ⁶S

* J. S. Winn, Physical Chemistry, Harper Collins, 1995

Fr Ra

Ac Rf/Ku