# BADM 372 Applied Analytics

BADM 372

2022-02-09

# Contents

| 1 | Abo      | out this course                                                  | 5  |  |  |
|---|----------|------------------------------------------------------------------|----|--|--|
| 2 | Syllabus |                                                                  |    |  |  |
|   | 2.1      | Course Objectives and Learning Outcomes                          | 7  |  |  |
|   | 2.2      | Text and Resources                                               | 8  |  |  |
|   | 2.3      | Performance Evaluation (Grading) $\dots \dots \dots \dots \dots$ | 8  |  |  |
|   | 2.4      | Class Participation:                                             | 9  |  |  |
|   | 2.5      | Phones                                                           | 9  |  |  |
|   | 2.6      | Attendance                                                       | 9  |  |  |
|   | 2.7      | Accommodations                                                   | 10 |  |  |
|   | 2.8      | Honor Code and Plagiarism:                                       | 10 |  |  |
|   | 2.9      | First-Generation Version:                                        | 10 |  |  |
|   | 2.10     | Continuing Advocate Version                                      | 11 |  |  |
| 3 | Our      | Class Rhythm                                                     | 13 |  |  |
| 4 | End      | in Mind                                                          | 15 |  |  |
| 5 | Sch      | edule                                                            | 17 |  |  |
|   | Spri     | ng 2022                                                          | 17 |  |  |
| 6 | Lab      | 1 Excercises                                                     | 19 |  |  |
| 7 | Lab      | 1 in Rmarkdown                                                   | 21 |  |  |
|   | 7 1      | R Markdown                                                       | 21 |  |  |

4 CONTENTS

| 8  | Lab  | 2: Pretty pictures!                                                    | 27 |
|----|------|------------------------------------------------------------------------|----|
|    | 8.1  | ggplot package and code                                                | 27 |
|    | 8.2  | Packages                                                               | 27 |
|    | 8.3  | Excercises                                                             | 28 |
|    | 8.4  | Airbnb listings in Edinburgh                                           | 30 |
|    | 8.5  | Instructional staff employment trends                                  | 32 |
|    | 8.6  | More Excercises                                                        | 32 |
| 9  | Lab  | 2 - ggplot without dsbox                                               | 33 |
|    | 9.1  | Excercises using the data sets mpg or diamonds $\ldots \ldots \ldots$  | 33 |
|    | 9.2  | palmerpenguins                                                         | 35 |
| 10 | Lab  | 3: coronavirus visualization, data wrangling, and dates                | 37 |
|    | 10.1 | Let'slook like Applied Analytics Superstars and make some neat visuals | 37 |

# About this course

This website serves as headquarters for BADM 372 Applied Analytics.

Content here will be updated with any changes made during the semester, so if at any point you are told there was a change in the schedule or an assignment, you can come here to get the updated version.

Also, this website has benefited greatly from lots of free, readily available resources posted on the web and we leverage these extensively. I would encourage you to review these resources in your analytics journey. Some that we specifically use with great frequency are these (and I say a loud THANK YOU to the authors!):

- R for Data Science
- An Introduction to Statistical Learning with Applications in R
- Data Science in a Box
- stackoverflow.com, for example

# **Syllabus**

Instructor: Tobin Turner

Office Hours: mutually convenient time arranged by email e-mail: jtturner@

presby.edu

# 2.1 Course Objectives and Learning Outcomes

This course is designed to introduce to data science. Students will apply statistical knowledge and techniques to both business and non-business contexts.

At the end of this course students should be able to:

By the end of the course, you will be able to...

- gain insight from data
- gain insight from data, reproducibly
- gain insight from data, reproducibly, using modern programming tools and techniques
- gain insight from data, reproducibly and collaboratively, using modern programming tools and techniques
- gain insight from data, reproducibly (with literate programming and version control) and collaboratively, using modern programming tools and techniques
- communicate results effectively

This course will be focused on both understanding and applying key business analytical concepts. Although the text serves as a useful foundation for the concepts covered in the class, simple memorization of the material in the text will not be sufficient. Class participation, discussion, and application are critical.

#### 2.2 Text and Resources

- This course website (primary resource)
- R for Data Science
- An Introduction to Statistical Learning with Applications in R
- Data Science in a Box
- stackoverflow.com, for example
- Other free, publicly available datasets and publications.

# 2.3 Performance Evaluation (Grading)

- Quizzes and Assignments 40%
- Exam 1 20%
- Exam 2 20%
- Final Exam 20%

#### 2.3.1 Exams

Exams will cover assigned chapters in the textbook, other assigned readings, lectures, class exercises, class discussions, videos, and guest speakers. I will typically allocate time prior to each exam to clearly identify the body of knowledge each test will cover and to answer questions about the format and objectives of the exam.

# 2.3.2 Quizzes – DON'T MISS CLASS

- The average of all quizzes and assignments will comprise the Quizzes and Assignments 40% portion of your final grade
- Quizzes and Assignments are designed to prepare you for your exams and to ensure you stay up with the course material
- Missed Quizzes and Assignments cannot be made up later. Be present.

Quizzes rule. LISTEN. - Missed Quizzes and Assignments cannot be made up later. Be present.

#### 2.3.3 Final Average

- Final Average Grade
  - 90-100 A

- -88-89 B+
- -82-87 B+
- 80-81 B-
- -78-79 C+
- 72-77 C+
- 70-71 C-
- 60-69 D
- 59 and below F

# 2.4 Class Participation:

I will frequently give readings or assignments for you to complete prior to the next class meeting. I expect you to fully engage the material: answer questions, pose questions, provide insightful observations. Keep in mind that quality is an important component in "participation." Periodic cold calls will take place. I will also put students in the "hot seat" on occasion. In these class sessions, I may select a random group of students to lead us in the discussion and debate. Because the selection of participants will not be announced until class begins, everyone will be expected to prepare for the discussion. Reading the assigned chapters and articles are the best way to prepare for the discussion. If you have concerns about being called on in class, please see me to discuss. The purpose of the "hot seat" is not to stress or embarrass students, but to encourage students to actively engage the material.

#### 2.5 Phones

Phones are not allowed to be used in class without the instructor's prior consent. If you have a need of a phone during class please let me know before class. Unauthorized use of electronic devices may result in the lowering of the grade or dismissal from the class. I mean this.

The phone thing? I mean this.

#### 2.6 Attendance

You are expected to be regular and punctual in your class attendance. Students are responsible for all the material missed and homework assignments made. If class is missed, notes/homework should be obtained from another student. If I am more than 15 minutes late, class is considered cancelled. No more than 4 absences are allowed during a semester. Exceeding the absence policy may result in receiving an F for the course. The professors roll is the official roll and students not present when roll is taken will be counted as absent. If a

student must miss an exam, she or he must work out an agreeable time with the instructor to take the test prior to the exam being given. If a student misses a test due to an emergency, the student must inform the instructor as soon as is possible. In special cases, the instructor may allow the student to take a make-up exam.

#### 2.7 Accommodations

Presbyterian College is committed to providing reasonable accommodations for all students with documented disabilities. If you are seeking academic accommodations under the Americans with Disabilities Act, you must register with the Academic Success Office, located on 5th Avenue (beside Campus Police). To receive these accommodations, please obtain the proper Accommodations Approval Form from that office, and then meet with me at the beginning of the semester to discuss how we may deliver your approved accommodations. I especially encourage you to meet with me well in advance of the actual accommodations being provided, as it may not be feasible to offer immediate accommodations without sufficient advance notice (such as in the case of tests). I can assure you that all discussions will remain confidential. Disability Services information is located at this link http://bit.ly/PCdisabilityservices

Additionally, it is the student's responsibility to give the instructor one week's notice prior to each instance where accommodation will be required.

# 2.8 Honor Code and Plagiarism:

All assignments/exams must be your own work. Any copying or use of unauthorized assistance will be treated as a violation of PC's Honor Code. If you are unsure of what resources are allowed, please ask. Please note that all text longer than 7 words taken from ANY other source must be placed in quotations and cited. Also, summarizing ANY other source must also be cited. Using ANY other source and showing work to be your own is a violation of plagiarism and the honor code.

#### 2.9 First-Generation Version:

I am a Presby First+ Advocate. I am here to support our current first-generation students. At Presbyterian College, first-generation students are those in which neither parent nor legal guardian graduated from a four-year higher education institution with a bachelor's degree. If you are a first-generation college student, please contact me. For more information about support for first-generation college students on our campus visit our Presby First+ webpage.

# 2.10 Continuing Advocate Version

I am a Presby First+ Advocate. I am committed to supporting first-generation students at Presbyterian College. At Presbyterian College, first-generation students are those in which neither parent nor legal guardian graduated from a four-year higher education institution with a bachelor's degree. If you are a first-generation college student, please contact me anytime or visit me during my office hours. For more information about support for first-generation college students on our campus visit our Presby First+ webpage.

# Our Class Rhythm

**Monday:** Wrap up previous topic and introduce what you've pre-read about. Chat. Play. Work some examples. Make sure the topics applies to real-life.

Wednesday: Work more examples. Chat as needed. Live our best lives. :).

**Friday:** Apply what we've learned – demonstrate your mastery (typically in the form of a quiz, lab, or assignment). Rinse. Repeat.

# End in Mind

Dana Simmons: "Can you predict which students will enroll at PC?"

Christina Miller: ??? Well, can you? ???

# Schedule

This is a tentative schedule, and it will change. **BUT** I will do my very best to review this often so that we all stay on the same page and so that you may plan accordingly!

# Spring 2022

| Date                         | Topic                                    |
|------------------------------|------------------------------------------|
| Monday, January 10, 2022     | Intro and A1 review                      |
| Wednesday, January 12, 2022  | Rmarkdown                                |
| Friday, January 14, 2022     | Lab 1: Rmarkdown                         |
| Monday, January 17, 2022     | MLK Holiday                              |
| Wednesday, January 19, 2022  | ggplot                                   |
| Friday, January 21, 2022     | Lab 2: ggplot                            |
| Monday, January 24, 2022     | EDA & ggplot                             |
| Wednesday, January 26, 2022  | EDA & ggplot                             |
| Friday, January 28, 2022     | Lab 3: EDA & ggplot                      |
| Monday, January 31, 2022     | TIDY SPREAD AND GATHER (R4DS CH 9 DPLYR) |
| Wednesday, February 2, 2022  | RELATIONAL DATA (R4DS CH 10 DPLYR)       |
| Friday, February 4, 2022     | QUIZ                                     |
| Monday, February 7, 2022     | STRINGS (R4DS CH 11 stringr)             |
| Wednesday, February 9, 2022  | STRINGS (R4DS CH 12 factors)             |
| Friday, February 11, 2022    | QUIZ                                     |
| Monday, February 14, 2022    | Dates and Times                          |
| Wednesday, February 16, 2022 | Dates and Times                          |
| Friday, February 18, 2022    | QUIZ                                     |
| Monday, February 21, 2022    | Functions                                |
| Wednesday, February 23, 2022 | Functions                                |

| Date                      | Topic                           |
|---------------------------|---------------------------------|
| Friday, February 25, 2022 | QUIZ                            |
| Monday, February 28, 2022 | Itertation                      |
| Wednesday, March 2, 2022  | Itertation                      |
| Friday, March 4, 2022     | QUIZ                            |
| Monday, March 7, 2022     | LAUNCH PROJECT                  |
| Wednesday, March 9, 2022  | INDEPENDENT PROJECT             |
| Friday, March 11, 2022    | INDEPENDENT PROJECT             |
| Monday, March 14, 2022    | SPRING BREAK                    |
| Wednesday, March 16, 2022 | SPRING BREAK                    |
| Friday, March 18, 2022    | SPRING BREAK                    |
| Monday, March 21, 2022    | INDEPENDENT PROJECT             |
| Wednesday, March 23, 2022 | PRESENTATIONS                   |
| Friday, March 25, 2022    | PRESENTATIONS                   |
| Monday, March 28, 2022    | Model Builiding/ADVISING WEEK   |
| Wednesday, March 30, 2022 | Model Builiding/ADVISING WEEK   |
| Friday, April 1, 2022     | QUIZ                            |
| Monday, April 4, 2022     | regrssion                       |
| Wednesday, April 6, 2022  | stepwise addition/deletion      |
| Friday, April 8, 2022     | QUIZ                            |
| Monday, April 11, 2022    | logistic regression             |
| Wednesday, April 13, 2022 | trees & forests                 |
| Friday, April 15, 2022    | Easter Holidays                 |
| Monday, April 18, 2022    | Easter Holidays                 |
| Wednesday, April 20, 2022 | Model Builiding                 |
| Friday, April 22, 2022    | QUIZ                            |
| Monday, April 25, 2022    | PRESENTATIONS                   |
| Wednesday, April 27, 2022 | PRESENTATIONS                   |
| Friday, April 29, 2022    | LAST DAY                        |
| Monday, May 2, 2022       | Final Exam 8:30 p.m. – F period |

# Lab 1 Excercises

Let's make sure we feel good about BADM 371 material.

All open notes/internet/R4DS/etc., but all work must be your own.

Use the starwars data (dplyr package) to answer/do:

- 1. Who is the tallest individual? Shortest?
- 2. How many homeworlds are there?
- 3. Which homeworld has the most individuals? Fewest? Average # of idividuals per homeworld?
- 4. Make a plot of all individuals with mass on the x axis and height on the y axis.
- 5. Put a best fit line on this plot.
- 6. Who is the biggest outlier in this dataset?
- 7. Calculate BMI for all these individuals. What is the average BMI for all individuals?
- 8. What is the average BMI for each homeworld?
- 9. Which homeworlds have the greatest percentage of individuals with BMI's greater than the average you found in #8 above?
- 10. How many individuals have no missing data? Which variables have the most missing data?

# Lab 1 in Rmarkdown

# 7.1 R Markdown

#### library(dplyr)

1. Who is the tallest individual? Shortest?

```
#> Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
#> 66.0 167.0 180.0 174.4 191.0 264.0 6
```

2. How many homeworlds are there?

```
#> # A tibble: 49 x 1
#> homeworld
#> <chr>
#> 1 Tatooine
#> 2 Naboo
#> 3 Alderaan
#> 4 Stewjon
#> 5 Eriadu
#> 6 Kashyyyk
#> 7 Corellia
#> 8 Rodia
#> 9 Nal Hutta
#> 10 Bestine IV
#> # ... with 39 more rows
```

3. Which homeworld has the most individuals? Fewest? Average # of individuals per homeworld?

```
#> # A tibble: 49 x 2
      homeworld
                    n
#>
      <chr>
                <int>
#>
   1 Naboo
                   11
#>
   2 Tatooine
                   10
   3 <NA>
                   10
#>
   4 Alderaan
                    3
#>
    5 Coruscant
                    3
                     3
    6 Kamino
#>
   7 Corellia
                     2
                     2
#>
   8 Kashyyyk
                     2
   9 Mirial
#>
#> 10 Ryloth
#> # ... with 39 more rows
#> # A tibble: 49 x 2
      homeworld
#>
                         n
#>
      <chr>>
                      <int>
#>
   1 Aleen Minor
                          1
   2 Bespin
#>
                          1
#>
   3 Bestine IV
                          1
   4 Cato Neimoidia
#>
   5 Cerea
                          1
    6 Champala
#>
#>
   7 Chandrila
                          1
   8 Concord Dawn
                          1
#> 9 Dathomir
                          1
#> 10 Dorin
#> # ... with 39 more rows
```

4-6. Make a plot of all individuals with mass on the x axis and height on the y axis. Put a best fit line on this plot. Who is the biggest outlier in this dataset?



#> 1 Jabba Desilijic Tiure 1358 175

7. Calculate BMI for all these individuals. What is the average BMI for all individuals?

Via google: With the metric system, the formula for BMI is weight in kilograms divided by height in meters squared. Since height is commonly measured in centimeters, an alternate calculation formula, dividing the weight in kilograms by the height in centimeters squared, and then multiplying the result by 10,000, can be used

| #> | # A tibble: 59 x 4   |             |             |              |
|----|----------------------|-------------|-------------|--------------|
| #> | name                 | BMI         | height      | ${\tt mass}$ |
| #> | <chr></chr>          | <dbl></dbl> | <int></int> | <dbl></dbl>  |
| #> | 1 Luke Skywalker     | 26.0        | 172         | 77           |
| #> | 2 C-3PO              | 26.9        | 167         | 75           |
| #> | 3 R2-D2              | 34.7        | 96          | 32           |
| #> | 4 Darth Vader        | 33.3        | 202         | 136          |
| #> | 5 Leia Organa        | 21.8        | 150         | 49           |
| #> | 6 Owen Lars          | 37.9        | 178         | 120          |
| #> | 7 Beru Whitesun lars | 27.5        | 165         | 75           |

```
8 R5-D4
                           34.0
                                     97
                                           32
#> 9 Biggs Darklighter
                           25.1
                                    183
                                           84
#> 10 Obi-Wan Kenobi
                           23.2
                                    182
                                           77
#> # ... with 49 more rows
#> # A tibble: 1 x 1
#>
     `mean(BMI)`
#>
           <dbl>
#> 1
            32.0
```

8. What is the average BMI for each homeworld?

```
#> # A tibble: 40 x 2
      homeworld avg.BMI
#>
      <chr>
                    <dbl>
#>
   1 Nal Hutta
                    443.
#>
   2 Vulpter
                    50.9
    3 Kalee
                     34.1
#>
   4 Bestine IV
                    34.0
#>
    5 <NA>
                     32.6
                    31.9
#>
   6 Malastare
                    31.3
#>
   7 Trandosha
   8 Tatooine
                     29.3
#>
#>
  9 Sullust
                     26.6
#> 10 Dathomir
                     26.1
#> # ... with 30 more rows
```

9. Which homeworlds have the greatest percentage of individuals with BMI's greater than the average you found in #8 above? How many individuals have no missing data? Which variables have the most missing data?

10. How many individuals have no missing data? Which variables have the most missing data?

Via google: https://stackoverflow.com/questions/22353633/filter-for-complete-cases-in-data-frame-using-dplyr-case-wise-deletion

```
#> # A tibble: 29 x 14
                  height mass hair_color skin_color eye_color
#>
      name
#>
      <chr>>
                   <int> <dbl> <chr>
                                           <chr>
                                                       <chr>>
                            77 blond
#> 1 Luke Skywa~
                     172
                                           fair
                                                       blue
                     202
#> 2 Darth Vader
                           136 none
                                           white
                                                       yellow
#> 3 Leia Organa
                     150
                            49 brown
                                           light
                                                       brown
#> 4 Owen Lars
                     178
                           120 brown, grey light
                                                      blue
#> 5 Beru White~
                     165
                            75 brown
                                           light
                                                      blue
#> 6 Biggs Dark~
                     183
                            84 black
                                           light
                                                      brown
                            77 auburn, wh~ fair
#> 7 Obi-Wan Ke~
                     182
                                                      blue-gray
#> 8 Anakin Sky~
                     188
                            84 blond
                                           fair
                                                      blue
#> 9 Chewbacca
                     228
                           112 brown
                                           unknown
                                                      hlue
                     180
#> 10 Han Solo
                            80 brown
                                           fair
                                                      brown
\#> \# ... with 19 more rows, and 8 more variables:
       birth_year <dbl>, sex <chr>, gender <chr>,
       homeworld <chr>, species <chr>, films <list>,
       vehicles <list>, starships <list>
#> Warning: `funs()` was deprecated in dplyr 0.8.0.
#> Please use a list of either functions or lambdas:
#>
     # Simple named list:
#>
     list(mean = mean, median = median)
#>
#>
#>
     # Auto named with `tibble::lst()`:
     tibble::lst(mean, median)
#>
#>
#>
     # Using lambdas
     list(~ mean(., trim = .2), ~ median(., na.rm = TRUE))
#> This warning is displayed once every 8 hours.
#> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated.
#> # A tibble: 1 x 14
#>
      name height mass hair_color skin_color eye_color
#>
     <int> <int> <int>
                             <int>
                                        <int>
         0
#> # ... with 8 more variables: birth_year <int>, sex <int>,
       gender <int>, homeworld <int>, species <int>,
       films <int>, vehicles <int>, starships <int>
```

# Lab 2: Pretty pictures!

Please make sure you have read and understood R4DS Chapter on data visulization. Also check out the *Data Visualization with ggplot2 Cheat Sheet* from RStudio. and

**Think DEEPLY:** Why is being able to generate good data vislization in R important *even* with awesome tools like PowerBI and Tableau around?

# 8.1 ggplot package and code

# 8.2 Packages

We'll use the **tidyverse** packages for this analysis, and the data is in the **dsbox** package. Run the following code in the Console to load these packages.

library(tidyverse)
library(dsbox)

# 8.3 Excercises

1. Create these figures using the data sets  ${\tt mpg}$  or  ${\tt diamonds}$  as needed:











#### 8.4 Airbnb listings in Edinburgh

This data comes from the dsbox package. Recent development in Edinburgh regarding the growth of Airbnb and its impact on the housing market means a better understanding of the Airbnb listings is needed. Using data provided by Airbnb, we can explore how Airbnb availability and prices vary by neighborhood.

The data come from the Kaggle database. It's been modified to better serve the goals of this exploration.

#### 8.4.1 Learning goals

The goal of this assignment is not to conduct a thorough analysis of Airbnb listings in Edinburgh (yet?), but instead to give you a chance to practice your workflow, data visualization, and interpretation skills.

#### 8.4.2 Data

2. The dataset you'll be using is called edibnb the data is in the dsbox package. Run View(edibnb) in your Console to view the data in the data viewer. What does each row in the dataset represent?

**Hint:** The Markdown, ggplot2, and dplyr Quick Reference sheets has an example of inline R code that might be helpful. You can access it from the Help menu in RStudio.

3. How many observations (rows) does the dataset have? What interesting data is present? What was the purpose of this data being collected in the first place? Visit the kaggle site if needed.

Each column represents a variable. We can get a list of the variables in the data frame using the names() function. How else can we find out details of about these variables?

You can find descriptions of each of the variables in the help file for the dataset, which you can access by running ?edibnb in your Console.

- 4. Create a faceted histogram where each facet represents a neighborhood and displays the distribution of Airbnb prices in that neighborhood. Your histogram may be similar (or better! than the example below.)
- 5. Create a faceted histogram where each facet represents a neighborhood and displays the distribution of Airbnb prices in that neighborhood. You histogram may be similar (or better! than the example below.)

**Note:** The plot will give a warning about some observations with non-finite values for price being removed. Don't worry about the warning, it simply means that 199 listings in the data didn't have prices available, so they can't be plotted.

#> Warning: Removed 199 rows containing non-finite values
#> (stat\_bin).



- 6. Create a similar visualization, this time showing the distribution of review scores (review\_scores\_rating) across neighborhoods. In your answer, include a brief interpretation of how Airbnb guests rate properties in general and how the neighborhoods compare to each other in terms of their ratings.
- 7. Create another informative visualization of your choosing. Be prepared to share it with the class although the visualization should need no explaining!

# 8.5 Instructional staff employment trends

The next dataset is about instructional staff employee hiring trends between 1975 and 2011.

The dataset is called **instructors** found in **dsbox**. You can find descriptions of each of the variables in the help file for the dataset, which you can access by running ?instructors in your Console.

The American Association of University Professors (AAUP) is a nonprofit membership association of faculty and other academic professionals. This report compiled by the AAUP shows trends in instructional staff employees between 1975 and 2011, and contains an image very similar to the one given below.

#### 8.6 More Excercises

- 8. Recreate a graph similar to the one above.
- 9. Discuss how you would improve upon this visualization if the main objective was to communicate that the proportion of part-time faculty have gone up over time compared to other instructional staff types. Implement the improvements and provide your improved visualization as part of your answer. Also write a few sentences about why you chose to make these improvements and how they address the main goal stated above.

# Lab 2 – ggplot without dsbox

# 9.1 Excercises using the data sets mpg or diamonds

1. Create these figures using the data sets  ${\tt mpg}$  or  ${\tt diamonds}$  as needed:









# 9.2 palmerpenguins

palmerpenguins is a realtively new package on CRAN, so you can install it from CRAN instead of Github.

Install it like a normal package. After successful installation, you can find out that there are two datasets attached with the package – penguins and penguins\_raw. You can check out their help page (?penguins\_raw and ?penguins\_raw) to understand more about respective datasets.

1. Please make a well-labeled, meangingful plot that show how many missing variables there are for each variable in the dataset. Your results shoul look something like this:



- 2. Make a plot showing a count of penguins of each species.
- 3. Create a plot that illustrates the relationship between flipper\_length\_mm and body\_mass\_g with respect to each species.
- 4. Create a plot that illustrates the relationship between flipper\_length\_mm and body\_mass\_g with respect to each species for each island.
- 5. Create a few plots of your own using new/interesting geoms and make sure the plots have meangiful, imprimfative labels, too. For possible examples:

# Violinplot Body mass of three penguin species per sex



#### Violinplot with points (dotplot)





# Lab 3: coronavirus visualization, data wrangling, and dates

The package is available on GitHub here and is updated daily.

I use the coronavirus package and use the coronavirus::update\_data() function to keep the data current.

# 10.1 Let'slook like Applied Analytics Superstars and make some neat visuals.

```
library(coronavirus)

head(coronavirus)

#> date province country lat long type

#> 1 2020-01-22 Alberta Canada 53.9333 -116.5765 confirmed

#> 2 2020-01-23 Alberta Canada 53.9333 -116.5765 confirmed

#> 3 2020-01-24 Alberta Canada 53.9333 -116.5765 confirmed

#> 4 2020-01-25 Alberta Canada 53.9333 -116.5765 confirmed

#> 5 2020-01-26 Alberta Canada 53.9333 -116.5765 confirmed

#> 6 2020-01-27 Alberta Canada 53.9333 -116.5765 confirmed

#> 6 2020-01-27 Alberta Canada 53.9333 -116.5765 confirmed

#> cases uid iso2 iso3 code3 combined_key population

#> 1 0 12401 CA CAN 124 Alberta, Canada 4413146

#> 2 0 12401 CA CAN 124 Alberta, Canada 4413146

#> 3 0 12401 CA CAN 124 Alberta, Canada 4413146
```

```
#> 4
        0 12401
                   CA CAN
                            124 Alberta, Canada
                                                    4413146
#> 5
         0 12401
                   CA
                      CAN
                            124 Alberta, Canada
                                                   4413146
#> 6
         0 12401
                  CA
                      CAN
                            124 Alberta, Canada
                                                   4413146
    continent_name continent_code
#> 1 North America
#> 2 North America
                               NA
#> 3 North America
                               NA
#> 4 North America
                               NA
#> 5 North America
                               NA
#> 6 North America
                               NA
library(dplyr)
library(ggplot2)
```

I'd recommend you always start by trying to understand a bit about the data.

```
head(coronavirus)
          date province country
                                   lat
                                            long
                                                      type
#> 1 2020-01-22 Alberta Canada 53.9333 -116.5765 confirmed
#> 2 2020-01-23 Alberta Canada 53.9333 -116.5765 confirmed
#> 3 2020-01-24 Alberta Canada 53.9333 -116.5765 confirmed
#> 4 2020-01-25 Alberta Canada 53.9333 -116.5765 confirmed
#> 5 2020-01-26 Alberta Canada 53.9333 -116.5765 confirmed
#> 6 2020-01-27 Alberta Canada 53.9333 -116.5765 confirmed
   cases uid iso2 iso3 code3
                                  combined_key population
#> 1
       0 12401 CA CAN
                          124 Alberta, Canada
                                                4413146
#> 2
        0 12401 CA CAN 124 Alberta, Canada
                                                 4413146
#> 3
        0 12401
                CA CAN
                           124 Alberta, Canada
                                                4413146
#> 4
        0 12401 CA CAN
                           124 Alberta, Canada
                                                 4413146
#> 5
        0 12401
                  CA CAN
                           124 Alberta, Canada
                                                 4413146
                           124 Alberta, Canada
#> 6
        0 12401
                  CA CAN
                                                 4413146
   continent_name continent_code
#> 1 North America
                              NA
#> 2 North America
                              NA
#> 3 North America
                              NA
#> 4 North America
                              NA
#> 5 North America
                              NA
#> 6 North America
                              NA
```

For exmple, what does this summary let us know?

#### 10.1. LET'SLOOK LIKE APPLIED ANALYTICS SUPERSTARS AND MAKE SOME NEAT VISUALS.39

 Can you create a visual showing the cases over time for China, Russia, Spain, US, and Venezuela? Also, why might filter(cases >= 0) be worth using?



2. Can you show deaths over time for Russia, Spain, US, and Venezuela? And can you play with your geoms and make something neat?

#### 40CHAPTER 10. LAB 3: CORONAVIRUS VISUALIZATION, DATA WRANGLING, AND DATES



3. Now lets do a plot of COVID rate (# cases / population). Something like this.



4. What is not useful about the previous illustration?

#### 10.1. LET'SLOOK LIKE APPLIED ANALYTICS SUPERSTARS AND MAKE SOME NEAT VISUALS.41

5. Make a chart with cumulative cases. Something like this:



- 6. Now let's **really** have some fun. Let's illustrate death rates relative to confirmed cases. Why is this more challenging than anything we've done so far in this lab? We're going to have to make this data **tidy**.
- 7. One way to play this game.

 $knitr::opts\_chunk\$set(echo = FALSE)$ 

Let's make a little table of just deaths.

```
#>
           date country deaths
#> 1 2020-01-22
                 Russia
#> 2 2020-01-23
                              0
                 Russia
  3 2020-01-24
                 Russia
#> 4 2020-01-25
                              0
                 Russia
#> 5 2020-01-26
                 Russia
                              0
#> 6 2020-01-27
                 Russia
                              0
#>
       country
                 n
#> 1
        Russia 748
#> 2
         Spain 745
#> 3
            US 748
#> 4 Venezuela 747
```

#### 42CHAPTER 10. LAB 3: CORONAVIRUS VISUALIZATION, DATA WRANGLING, AND DATES

Let's make a little table of just confirmed cases.

```
#>
      country n
#> 1
     Russia 748
#> 2
        Spain 748
#> 3
          US 748
#> 4 Venezuela 748
         date country confirmed
#> 1 2020-01-22 Russia
#> 2 2020-01-23 Russia
                             0
#> 3 2020-01-24 Russia
                             0
#> 4 2020-01-25 Russia
#> 5 2020-01-26 Russia
                            0
#> 6 2020-01-27 Russia
```

Let's join these together. I use left\_join.

```
date country deaths confirmed
#> 1 2020-01-22 Russia 0
#> 2 2020-01-23 Russia 0
#> 3 2020-01-24 Russia 0
#> 4 2020-01-25 Russia 0
#> 5 2020-01-26 Russia 0
#> 6 2020-01-27 Russia 0
                                                      0
                                                   0
                                                    0
                                                    0
#>
          country n
           Russia 748
#> 1
#> 2
            Spain 748
#> 3
                US 748
#> 4 Venezuela 748
```

#### 10.1. LET'SLOOK LIKE APPLIED ANALYTICS SUPERSTARS AND MAKE SOME NEAT VISUALS.43



```
#>
     Min. 1st Qu. Median Mean 3rd Qu.
                                                   NA's
                                          {\tt Max.}
        0 16728 97790 132138 240231 358016
#>
                                                   2120
          date province country lat long
#>
                                                    cases
#> 1 2022-01-10
                   <NA>
                            US 40 -100 confirmed 1369637
    uid iso2 iso3 code3 combined_key population
#> 1 840
         US USA
                   840
                                 US 329466283
    continent_name continent_code
#> 1 North America
```

#### 44CHAPTER 10. LAB 3: CORONAVIRUS VISUALIZATION, DATA WRANGLING, AND DATES



| #> | da      | date        |        | $\operatorname{country}$ |        |     | deaths |  |  |
|----|---------|-------------|--------|--------------------------|--------|-----|--------|--|--|
| #> | Min.    | :2020-01-22 | Lengtl | h:2992                   | Min.   | :   | 0.0    |  |  |
| #> | 1st Qu. | :2020-07-26 | Class  | :character               | 1st Qu | . : | 5.0    |  |  |
| #> | Median  | :2021-01-29 | Mode   | :character               | Median | :   | 123.0  |  |  |
| #> | Mean    | :2021-01-29 |        |                          | Mean   | :   | 447.5  |  |  |

#### 10.1. LET'SLOOK LIKE APPLIED ANALYTICS SUPERSTARS AND MAKE SOME NEAT VISUALS.45

#> 3rd Qu.:2021-08-04 3rd Qu.: 633.0 #> Max. :2022-02-07 Max. :4442.0 #> NA's :4 #> cumulative\_deaths confirmed cumulative\_cases : -74937 Min. : 0 Min. : 0 #> Min. #> 1st Qu.: 450 1st Qu.: 12782791 1st Qu.: 16728 #> Median : 7723 Median : 23178262 Median : 97790 : 33599 Mean : 41557773 :132138 #> Mean Mean 3rd Qu.: 27682 3rd Qu.:100031030 3rd Qu.:240231 #> #> Max. :1369637 Max. :100527313 Max. :358016 #> NA's :2120 #> rate

Min. :-0.036576 #> 1st Qu.: 0.004592 #> Median: 0.012829 Mean : 0.021843 #> #> 3rd Qu.: 0.023418 : 3.840391 #> Max. #> NA's :4

#### Cumulative deaths from COVID-19, selected countries Data as of Mon, Feb 7, 2022



Source: github.com/RamiKrispin/coronavirus