Нижегородский государственный университет им. Н. И. Лобачевского Институт информационных технологий, математики и механики

Направление подготовки Прикладная математика и информатика

Магистерская программа Вычислительные методы и суперкомпьютерные технологии

Образовательный курс «Методы глубокого обучения для решения задач компьютерного зрения»

Отчёт

по лабораторной работе № 2

«Разработка полностью связанной нейронной сети с использованием библиотеки MXNet»

задача

«Классификация персонажей Симпсонов»

Выполнили:

студенты гр. 381603м4 Вершинина О. Розанов А. Рой В.

Нижний Новгород 2017

Оглавление

Постановка задачи	3
Формат данных для предоставления нейронной сети	4
Тестовые конфигурации нейронных сетей	5
Результаты экспериментов	7

Постановка задачи

Необходимо получить базовые навыки работы с библиотекой глубокого обучения MXNet и протестировать полностью связанную нейронную сеть, используя сначала набор данных MNIST, а затем набор персонажей из мультфильма «Симпсоны».

В ходе работы необходимо решить следующие задачи:

- 1. Установить библиотеку MXNet на свой локальный компьютер и на кластер.
- 2. Запустить тестовый пример сети, соответствующей логистической регрессии, для решения задачи классификации рукописных цифр набора данных MNIST.
- 3. Разработать программы/скрипты для подготовки тренировочных и тестовых данных для задачи классификации персонажей Симпсонов.
- 4. Разработать, обучить и протестировать различные полностью связанные нейронные сети, варьируя количество слоев и виды функций активации на каждом слое.

Формат данных для предоставления нейронной сети

Исходные данные представляют собой набор jpg изображений, различного разрешения. Несколько примеров представлены на рис. 1.

Рис.1. Персонажи из Симпсонов. Слева-направо: Гомер Симпсон, Лиза Симпсон, Барт Симпсон, Мардж Симпсон.

Для предварительной обработки данных использован скриптовый язык Python. Интерпретатор языка входит в дистрибутив Anaconda, который содержит ряд пакетов для анализа данных и машинного обучения.

Библиотека глубокого обучения MXNet может работать с различными типами входных данных, в том числе с однородными многомерными массивами ndarray из пакета NumPy. Для того, чтобы привести входные данные к такому формату, необходимо использовать библиотеку OpenCV для Python (opency-python).

Был разработан скрипт, в котором с помощью функции сv2.imread считываются трёхканальные .jpg изображения в формате BGR (стандартное цветовое пространство OpenCV) и конвертируются в формат RGB; нормализуются (значение каждого пикселя делится на 255) и масштабируются до размера 28х28. Формируется массив меток от 0 до 17, соответствующих восемнадцати персонажам. Затем данные случайным образом делятся на обучающую и тестовую выборки в отношении 85% к 15%. Полученные пdarray-массивы X_train, X_test, y_train, y_test сохраняются в файлы для последующего использования нейронной сетью.

Тестовые конфигурации нейронных сетей

Конфигурация №1. Batch size = 10, optimizer = 'sgd', learning rate = 0.01.

Конфигурация №2. Batch size = 10, optimizer = 'sgd', learning rate = 0.01.

Конфигурация №3. Batch size = 10, optimizer = 'sgd', learning rate = 0.01.

Конфигурация №4. Batch size = 10, optimizer = 'sgd', learning rate = 0.01.

Конфигурация №5. Batch size = 10, optimizer = 'sgd', learning rate = 0.01.

Результаты экспериментов

Эксперименты проводились на компьютере со следующей конфигурацией: процессор Intel® CoreTM i3-5005U CPU @ 2.00GHz 2.00GHz, установленная память (ОЗУ) 4.00 ГБ, 64-разрядная операционная система Windows 8.1, интерпретатор Python 2.7.

Обучение проводилось до тех пор, пока точность на обучающей выборке не становилась равной 1.

Таблица 1. Результаты экспериментов

Конфигурация №	Время обучения модели, с	Точность классификации на
		тестовой выборке
1	874	0.8068
2	855	0.8194
3	525	0.7947
4	754	0.8167
5	860	0.8327

Полностью связанная нейронная сеть показала хороший результат в задаче классификации персонажей из Симпсонов.