The Gödel fibration

Davide Trotta

j.w.w. M. Spadetto and V. de Paiva

University of Pisa

5-2021

Davide Trotta The Gödel fibration 5-2021 1/21

Introduction: Dialectica interpretation

Gödel's Dialectica Interpretation: an interpretation of intuitionistic arithmetic HA in a quantifier-free theory of functionals of finite type, called system T.

Idea: translate every formula A of HA to $A^D = \exists x \forall y A_D$, where A_D is quantifier-free.

Application: if HA proves A, then system T proves $A_D(t, y)$, where y is a string of variables for functionals of finite type, and t a suitable sequence of terms (not containing y).

Goal: to be as constructive as possible, while being able to interpret all of classical arithmetic.

Davide Trotta The Gödel fibration 5-2021 2 / 21

Gödel (1958), Über eine bisher noch nicht benützte erweiterung des finiten standpunktes, Dialectica, 12(3-4):280–287.

Introduction: Dialectica interpretation

Dialectica category: given a category C with finite limits, one can build a new category $\mathfrak{Dial}(\mathsf{C})$, the objects of which have the form (X,U,α) where α is a subobject of $X\times U$ in C; such an object is thought of as the formula

$$\exists x \forall u \alpha(x, u).$$

An arrow from $\exists x \forall u \alpha(x, u)$ to $\exists y \forall v \beta(y, v)$ can be thought of as a pair (f, f_0) of terms, subject to the condition

$$\alpha(x, f_0(x, v)) \vdash \beta(f(x), v).$$

The definition of morphism is motivated by the way the dialectica interpretation acts on implicational formulae.

de Paiva (1991), The Dialectica categories, PhD Thesis.

Davide Trotta The Gödel fibration 5-2021 3 / 21

Introduction: Dialectica interpretation

Dialectica pseudo-monad: given a fibration p, one can construct the Dialectica fibration $\mathfrak{Dial}(p)$. Moreover, under the assumption that the base category of p is cartesian closed, this construction is monadic.

Davide Trotta The Gödel fibration 5-2021 4 / 21

Hyland (2002), *Proof theory in the abstract*, Annals of Pure and Applied Logic, 114(1):43 - 78 Hofstra (2011), *The dialectica monad and its cousins*, Models, logics, and higherdimensional categories: A tribute to the work of Mihály Makkai, 53:107-139

Our contributions

- Given a fibration p, when is there a fibration p' such that $\mathfrak{Dial}(p')\cong p$?
- When such fibration p' exists, how is it done?

Davide Trotta The Gödel fibration 5-2021 5 / 21

Background

Definition

Let p: E \longrightarrow B be a functor and $X \xrightarrow{f} Y$ an arrow in E. Let us call $A \xrightarrow{u:=p(f)} B$ the arrow p(f) of B. We say that f is **Cartesian over u** if, for every morphism $Z \xrightarrow{g} Y$ in E such that p(g) factors through u, p(g) = uw, there exists a unique $Z \xrightarrow{h} X$ of E such that g = fh and p(h) = w.

Definition

A **fibration** is a functor p: E \longrightarrow B such that, for every Y in E and every $I \stackrel{u}{\rightarrow} pY$, there exists a Cartesian arrow $X \stackrel{f}{\rightarrow} Y$ over u.

Jacobs (1999), Categorical Logic and Type Theory, Studies in Logic and the foundations of mathematics. 141

Davide Trotta The Gödel fibration 5-2021 6 / 21

Background

Definition

We say a fibration p: E \longrightarrow B over a category B with finite products has **simple coproducts** when the weakening functors π^* have left adjoints \coprod_{π} satisfying the *Beck-Chevalley Condition* (abbreviated as BCC).

Dually, we say that a fibration p: E \longrightarrow B has **simple products** when the weakening functors π^* have right adjoints \prod_{π} satisfying BCC.

Davide Trotta The Gödel fibration 5-2021 7 / 21

The logical intuition behind the next definition is that an element α is quantifier-free if it satisfies the following universal property: if there is a proof π of a statement $\exists i \ \beta(i)$ assuming α , then there exists a witness t, which depends on the proof π , together with a proof of $\beta(t)$. Moreover, we require that this holds for every re-indexing $\alpha(f)$ because in logic quantifier-free propositions are stable under substitution.

8 / 21

Davide Trotta The Gödel fibration 5-2021

Definition

Let $p \colon E \longrightarrow B$ be a fibration with simple coproducts. An object α of the fibre E_I is said to be \coprod -quantifier-free if it enjoys the following universal property: for every pair of arrows

$$A \times B \xrightarrow{\pi_A} A \xrightarrow{f} I$$

and every vertical arrow:

$$f^*\alpha \xrightarrow{h} \coprod_{\pi_A} \beta$$

of E_A , where β is an object of the fibre $E_{A\times B}$, there exist a unique arrow $A\xrightarrow{g} B$ of B and a unique vertical arrow $f^*\alpha \xrightarrow{\overline{h}} \langle 1_A, g \rangle^*\beta$ of E_A such that:

$$h = \left(f^* \alpha \xrightarrow{\overline{h}} \langle 1_A, g \rangle^* \beta \xrightarrow{\langle 1_A, g \rangle^* \eta_\beta} \langle 1_A, g \rangle^* \left(\pi_A^* \coprod_{\pi_A} \beta \right) = \coprod_{\pi_A} \beta \right)$$

Definition

We say that a fibration with simple coproducts $p: E \longrightarrow B$ has **enough** \coprod -**quantifier-free objects** if, for every object I of B and for every element $\alpha \in E_I$, there exist an object A and a \coprod -quantifier-free object β in $E_{I \times A}$ such that $\alpha \cong \coprod_{\pi_I} \beta$.

Davide Trotta The Gödel fibration 5-2021 10 / 21

Definition

Let p: E \longrightarrow B be a fibration with simple products. An object α of the fibre E_I is said to be \prod -quantifier-free if it enjoys the following universal property: for every arrow f and every projection π_A in B as follows:

$$A \times B \xrightarrow{\pi_A} A \xrightarrow{f} I$$

and every vertical arrow:

$$\prod_{\pi_A} \beta \xrightarrow{h} f^* \alpha$$

of E_A , where β is an object of the fibre $E_{A\times B}$, there exist a unique arrow $A\xrightarrow{g} B$ of B and a unique vertical arrow $\langle 1_A, g \rangle^* \beta \xrightarrow{\overline{h}} f^* \alpha$ of E_A such that:

$$h = \left(\prod_{\pi_A} \beta = \langle 1_A, g \rangle^* \left(\pi_A^* \prod_{\pi_A} \beta \right) \xrightarrow{\langle 1_A, g \rangle^* \varepsilon_\beta} \langle 1_A, g \rangle^* \beta \xrightarrow{\overline{h}} f^* \alpha \right)$$

Davide Trotta The Gödel fibration 5-2021

11/21

Definition

We say that a fibration with simple products $p: E \longrightarrow B$ has **enough**- \prod -**quantifier-free objects** if, for every object I of B and for every element $\alpha \in E_I$, there exist an object A and a \prod -quantifier-free object B in $E_{I \times A}$ such that $\alpha \cong \prod_{\pi_I} (B)$.

12 / 21

Davide Trotta The Gödel fibration 5-2021

Skolem fibration

Definition

A fibration p: $E \longrightarrow B$ is called a **Skolem fibration** if:

- its base category B is cartesian closed;
- the fibration p has simple products and simple coproducts;
- the fibration p has enough ∐-quantifier-free objects.
- \coprod -quantifier-free objects are stable under simple products, i.e. if $\alpha \in \mathsf{E}_I$ is a \coprod -quantifier-free object, then $\prod_{\pi}(\alpha)$ is a \coprod -quantifier-free object for every projection π from I.

Davide Trotta The Gödel fibration 5-2021 13 / 21

Skolem fibration

Theorem (Skolemization)

Every Skolem fibration p validates the principle:

$$\forall x \exists y \alpha(i, x, y) \cong \exists f \forall x \alpha(i, x, fx).$$

14 / 21

Davide Trotta The Gödel fibration 5-2021

Gödel fibration

Definition

A Skolem fibration $p \colon E \longrightarrow B$ is called a **Gödel** fibration if the sub-fibration $\bar{p} \colon \bar{E} \longrightarrow B$, whose elements are \coprod -quantifier-free objects, has enough \prod -quantifier-free objects.

Davide Trotta The Gödel fibration 5-2021 15 / 21

Gödel fibration

Theorem (Prenex normal form)

In a Gödel fibration p: E \longrightarrow B, for every element α of a fibre E_I there exists an element β such that

$$\alpha(i) \cong \exists x \forall y \beta(x, y, i)$$

and β is \prod -quantifier-free in the sub-fibration \bar{p} of \coprod -quantifier-free objects of p.

16 / 21

Davide Trotta The Gödel fibration 5-2021

The Dialectica fibration

Dialectica construction. Let $p: E \longrightarrow B$ be a fibration, whose base category is cartesian closed. Define a category $\mathfrak{Dial}(p)$ as follows:

- **objects** are quadruples (I, X, U, α) where I, X and U are objects of the base category B and $\alpha \in E_{I \times X \times U}$ is an objects of the fibre of p over $I \times X \times U$;
- a morphism from (I, X, U, α) to (J, Y, V, β) is a quadruple (f, f_0, f_1, ϕ) where

 - $\alpha(i, x, f_1(i, x, v)) \xrightarrow{\phi} \beta(f(i), f_0(i, x), v)$ is an arrow in the fibre over $I \times X \times V$.

◆ロト ◆問ト ◆意ト ◆意ト · 意 · 幻久(*)

5-2021

17 / 21

Skolemization

Theorem

When the base category B of a fibration p is cartesian closed, the fibration $\mathfrak{Dial}(p)$ satisfies the principle

$$\forall x \exists y \alpha(i, x, y) \cong \exists f \forall x \alpha(i, x, fx)$$

for every α .

Hofstra (2011), The dialectica monad and its cousins, Models, logics, and higherdimensional categories: A tribute to the work of Mihály Makkai, 53:107-139

Davide Trotta The Gödel fibration 5-2021 18 / 21

Our contribution

Theorem

Let $p: E \longrightarrow B$ be a fibration with simple products, coproducts and such that B is cartesian closed. Then there exists a fibration p' such that $\mathfrak{Dial}(p') \cong p$ if and only if p is a Gödel fibration.

Davide Trotta The Gödel fibration 5-2021 19/21

Sketch of the proof

The original Dialectica construction \mathfrak{Dial} can be seen as the composition of two free constructions \mathfrak{Sum} and \mathfrak{Prod} , which are the simple sum (or co-product) and the simple product completions, respectively.

Lemma

There is an isomorphism of fibrations, natural in p:

$$\mathfrak{Dial}(p) \cong \mathfrak{Sum}(\mathfrak{Prod}(p)).$$

These completions are fully dual, in particular $\mathfrak{Prod}(p)\cong\mathfrak{Sum}(p^{op})^{op}$, so we only need to study one and can then deduce results for the other construction.

Davide Trotta The Gödel fibration 5-2021 20 / 21

Sketch of the proof

Theorem

A fibration $p: E \longrightarrow B$ with simple coproducts is an instance of simple coproduct completion if and only if it has enough \coprod -quantifier-free objects. Moreover, in this case $p \cong \mathfrak{Sum}(p')$ where p' is the subfibration of \coprod -free-quantifiers objects of p.

Theorem

A fibration $p: E \longrightarrow B$ with simple products is an instance of simple product completion if and only if it has enough- \prod -quantifier-free objects. Moreover, in this case $p \cong \mathfrak{Ptod}(p'')$ where p'' is the subfibration of \prod -free-quantifiers objects of p.

Davide Trotta The Gödel fibration 5-2021 21/21