

Examen 2004/05-1

Asignatura	Código	Fecha	Hora inicio
Lógica	75.056	22/01/2005	16:30

 \subset 75.056\R22\R01\R05\RE\E\ \in 75.056\ 22\ 01\ 05\ EX

Espacio para la etiqueta identificativa con el código personal del **estudiante**.

Examen

Ficha técnica del examen

- Comprueba que el código y nombre de la asignatura corresponde a la asignatura de la cual estas matriculado.
- Debes adjuntar una sola etiqueta de estudiante en el espacio de esta hoja destinado a ello.
- No se pueden realizar las pruebas con lápiz o rotulador.
- Tiempo total 2 horas
- En caso que los estudiantes puedan consultar algún material durante el examen, ¿cuál o cuáles pueden consultar?: No se puede consultar ningún tipo de material
- Valor de cada pregunta:
- En caso que haya preguntas tipo test: ¿Descuentan las preguntas erróneas? NO ¿Cuánto?
- Indicaciones específicas para la realización de este examen

Enunciados

Pregunta 1

Formalizad, **indicando el dominio**, las siguientes frases **utilizando únicamente** los predicados atómicos que se indican a continuación:

M(x): x es una comida F(x): x es una fruta S(x): x es saludable E(x): x es fresca T(x,y): x tiene y

- a) Hay comidas que no tienen fruta.
 - $\exists x \{ M(x) \land \neg \exists y (F(y) \land T(x,y)) \}$
- b) La fruta fresca es una comida saludable.

 $\forall x (F(x) \land E(x) \rightarrow M(x) \land S(x))$

c) Hay comidas que sólo tienen fruta fresca.

Examen 2004/05-1

Asignatura	Código	Fecha	Hora inicio
Lógica	75.056	22/01/2005	16:30

$$\exists x \{ M(x) \land \forall y (T(x,y) \rightarrow F(y) \land E(y)) \}$$

- d) No todas las comidas saludables tienen fruta fresca.
 - $\neg \forall x \{ M(x) \land S(x) \rightarrow \exists y (F(y) \land E(y) \land T(x,y)) \}$
- e) No hay ninguna comida que no tenga alguna fruta fresca.

$$\neg \exists x \{ M(x) \land \forall y (F(y) \land E(y) \rightarrow \neg T(x,y)) \}$$

Pregunta 2

Considérese el siguiente conjunto de cláusulas (en negrita las que forman parte del conjunto de apoyo):

$$\{ \neg P \lor \neg Q \lor \neg R, \neg Q \lor P, \neg S \lor P, \neg R \lor S, \neg R \lor Q, R, P \lor T \}$$

Justificando todos los pasos utilizados, ¿cuál de estas afirmaciones es cierta?

- a) El razonamiento es válido y las premisas son inconsistentes.
- b) El razonamiento no es válido y las premisas son consistentes.
- c) El razonamiento es válido y las premisas son consistentes.
- d) El razonamiento no es válido y las premisas son inconsistentes.

Tened en cuenta que:

- Para demostrar la inconsistencia de las premisas es necesario que deis un árbol de resolución que lo muestre.
- Para demostrar la consistencia de las premisas es necesario que mostréis como se aplican las reglas oportunas que os permiten demostrar que no se puede obtener la cláusula vacía.
- Para demostrar la validez del razonamiento es necesario que deis un árbol de resolución que lo muestre.
- Para demostrar que el razonamiento no es válido es necesario que mostréis como se aplican las reglas oportunas que os permiten demostrar que no se puede obtener la cláusula vacía.

Solución:

La cláusula ($P \vee T$) se puede eliminar porque no hay ninguna cláusula que la contenga $\neg T$ (literal puro).

Esta cláusula es una parte de la conclusión que se quiere demostrar a partir de las premisas. Por tanto, si el razonamiento es válido, únicamente una parte de la conclusión interviene realmente en la validación.

Habiendo eliminado la cláusula (P v T) el conjunto de cláusulas resultante es:

$$\{ \neg P \vee \neg Q \vee \neg R, \quad \neg Q \vee P, \ \neg S \vee P, \ \neg R \vee S, \neg R \vee Q, \ \textbf{\textit{R}} \ \}$$

Resolución:

Troncales	Laterales
R	$\neg P \lor \neg Q \lor \neg R$
$\neg P \lor \neg Q$	$\neg Q \lor P$
$\neg Q$	$\neg R \lor Q$
¬R	R

Examen 2004/05-1

Asignatura	Código	Fecha	Hora inicio
Lógica	75.056	22/01/2005	16:30

Hemos obtenido la cláusula vacía. Por tanto, el razonamiento es válido.

Probaremos la consistencia de las premisas: $\{\neg P \lor \neg Q \lor \neg R \ , \ \neg Q \lor P \ , \ \neg R \lor Q \} \ , \ \neg R \lor Q \}$. No hay ninguna cláusula que contenga el literal R afirmado; por tanto no es posible llegar a la cláusula vacía si utilizamos en algún momento las cláusulas primera, cuarta y quinta (que son las que contienen $\neg R$). Quedan: $\{\neg Q \lor P \ , \ \neg S \lor P\}$. Resulta evidente que tampoco llegaremos a una contradicción (cláusula vacía) a partir de únicamente estas dos cláusulas. Así pues no es posible obtener la cláusula vacía. Por tanto, las premisas son consistentes.

Por tanto la respuesta correcta es: "El razonamiento es válido y las premisas son consistentes"

Pregunta 3

Justificando la respuesta y los pasos utilizados contestad a la siguiente pregunta: ¿qué cláusula se obtiene la forma normal de skolem de la fórmula siguiente?

$$\forall x \; \mathsf{P}(x) \to (\; \forall x \; \forall y \; \exists z \; [\; \mathsf{Q}(x,\,y,\,z) \to \forall u \; \mathsf{R}(x,\,y,\,z,\,u) \;] \;)$$

- a) $\neg P(a) \lor \neg Q(w, f(w), a) \lor R(w, f(w), a, u)$
- b) $\neg P(x) \lor \neg Q(w, y, a) \lor R(w, y, a, u)$
- c) $\neg P(a) \lor \neg Q(w, y, f(w, y)) \lor R(w, y, f(w, y), u)$
- d) $\neg P(a) \lor \neg Q(w, y, f(w, y)) \lor R(w, y, f(w, y), g(w))$

Solución:

Eliminamos los condicionales: $\neg \forall x P(x) \lor (\forall x \forall y \exists z [\neg Q(x, y, z) \lor \forall u R(x, y, z, u)])$

Introducimos las negaciones: $\exists x \neg P(x) \lor (\forall x \forall y \exists z [\neg Q(x, y, z) \lor \forall u R(x, y, z, u)])$

Independizamos las variables con el mismo nombre (cambiando x por w):

$$\exists x \neg P(x) \lor (\forall w \forall y \exists z [\neg Q(w, y, z) \lor \forall u R(w, y, z, u)])$$

Eliminamos los cuantificadores existenciales, para lo cual introduciremos la constante a de Skolem en lugar de x y la función de Skolem f(w, y) en lugar de z (ya que se encuentra dentro del ámbito de dos cuantificadores universales, w e y):

$$\neg P(a) \lor \forall w \ \forall y \ (\ \neg Q(w, y, f(w, y))) \lor \forall u \ R(w, y, f(w, y), u)$$

Ya sólo resta eliminar los cuantificadores universales pasándolos hacia la izquierda:

$$\forall w \ \forall y \ \forall u \ [\ \neg P(a) \lor \neg Q(w, y, f(w, y)) \lor R(w, y, f(w, y), u)]$$

Luego la respuesta correcta será la (c).