

Supporting Online Material for

Explaining the Relation Between Birth Order and Intelligence

Petter Kristensen,* Tor Bjerkedal

*To whom correspondence should be addressed. E-mail: petter.kristensen@stami.no

Published 22 June 2007, *Science* **316**, 1717 (2007) DOI: 10.1126/science.1141493

This PDF file includes:

Materials and Methods SOM Text Fig. S1 References

Material and Methods

Data sources

We have established a database in order to study the relations between perinatal factors and intelligence in adult age. Information on all live and still births in 1967-98 were extracted from the Medical Birth Registry of Norway. The unique national identification number of child and parents allowed linkage with the education register of Statistics Norway and the National Conscripts Service routine registration of draft board examinations.

We selected women with a first birth in 1967-76. This provided a minimum follow-up of 22 years. We then extracted a sample including all mothers with single births, excluding 2.3% of women with multiple births. The sample comprised 248 162 mothers with a total of 580 198 births. Only sibships with at least one male of birth order 1-3 and a test result for intellectual performance (N=243 939) were included.

Study variables

The main outcome variable was intellectual performance score obtained since 1953 as part of a compulsory military board examination of all Norwegian males aged 18 or 19 years (SI). The scores, recorded between 1985 and 2004, are standard nine ("stanine"), i.e. single-digit scores with values 1-9, based on a normal distribution with mean 5.0 and standard deviation 2. This score is highly correlated with WAIS (r=0.73) (SI). We transformed the scores into IQ equivalents (mean=100, SD=15), which provided an IQ score of 100 for stanine 5 scores, and an increment/decrement of 7.5 IQ units for each stanine unit deviating from 5.

The main determinant under study was based on the mother's reproductive history. We classified birth order two men into two categories depending on vital status of the elder sibling (stillborn or died in infancy, or alive at age 1 year). Birth order three men were accordingly classified into three groups, depending on number of deaths among elder siblings.

We considered five other factors that both correlated with early child loss and were associated with IQ level. These were parental educational attainment (five categories based on the parent with the highest education level), maternal age at birth (five categories), sibship size (mother's number of live children, five categories), birthweight (parity-specific z-score, seven categories), and year of conscription (20 categories).

More details on the material can be found in (S2).

Analysis

Analyses were performed with the Stata SE9.2 package. A total of 241 310 men were analyzed after exclusion of 2629 (1.1%) of subjects with missing values on either of the study variables. We estimated IQ scores in separate strata of birth order and social order (elder sibling loss). Adjusted effects of birth order and social order on mean IQ scores with corresponding 95% confidence limits were obtained in multiple linear regression. All covariates were included as categorical variables. Standard diagnostic procedures were run to ensure that the assumptions of the regression method were not violated.

Text

The full output of the analyses can be found in (S3).

Mean IQ among first-born men was 103.2 (SEM 0.04). Birth order two men without (social order two) and with (social order one) early loss of an elder sibling had means of 101.2 (0.04) and 102.9 (0.32), respectively. For third born means were 100.0 (0.07), 100.8 (0.26) and 102.6 (1.61) for conscripts with zero, one, and two early losses among elder siblings.

Separate analyses of birth order and social order effects in adjusted models show that both were negatively associated with IQ (Table S1, models 1 and 2). Model 3 with both birth order and social order included shows that social order remained associated with IQ, whereas birth order had only marginal and non-significant effect. The likelihood ratio test (S3) shows that model 2

provides a better fit than model 3, and that the effect of birth order is no longer significant when social order is accounted for.

Table S1. Effects of birth order and social order on mean IQ scores for male conscripts born in Norway to mothers with single births only and first birth 1967-1976.

Category	Coefficient	SE	t-score	P-value
Model 1*				
Birth order one	Reference			
Birth order two	-2.82	0.068	-41.43	0.000
Birth order three	-4.03	0.106	-37.91	0.000
Model 2*				
Social order one	Reference			
Social order two	-2.92	0.068	-42.80	0.000
Social order three	-4.26	0.111	-38.48	0.000
Model 3*				
Birth order one	Reference			
Birth order two	-0.21	0.288	-0.72	0.474
Birth order three	-0.24	0.368	-0.64	0.519
Social order one	Reference			
Social order two	-2.71	0.290	-9.37	0.000
Social order three	-4.03	0.378	-10.67	0.000

^{*}Adjusted for parental educational attainment, maternal age, sibship size, birthweight, and year of conscription

References

- S1. J. M. Sundet, D. G. Barlaug, T. M. Torjussen, Intelligence, 32, 349 (2004).
- S2. T. Bjerkedal, P. Kristensen, G. A. Skjeret, J. I. Brevik, *Intelligence*, (2007), doi:10.1016/j.intell.2007.01.004.
- S3. Output of the analyses follows.

```
* Comments in blue
       log: Y:\dat\ulikhet\IQ_loss_results_output.log
log type: text
opened on: 9 Apr 2007, 13:10:39
. set more off
          Outcome variable IQ
          Main determinant BO(birth order) 1-3 and SO(social order) 1-3 or categorical
variable BO_SO with levels
           0 (BO=1, SO=1; reference); 1 (BO=2, SO=2); 2 (BO=2, SO=1); 3 (BO=3, SO=3), 4
(BO=3, SO=2), 5 (BO=3, SO=1)
          Covariates in categories:
            i.par_edu5 (parental education, 5 categories)
            i.mat_age5 (maternal age, 5 categories);
            i.siblive5 (live children in family, 5 categories);
            i.BWzcat7 (birthweight parity-specific z score, 7 categories) BO 1 mean 3477 g
(SD 524 q), BO 2 3645 (522) BO 3 3687 (545);
            i.year (conscript year, 20 categories 1985-2004, reference 1994);
          Parental education
                                 0= graduate tertiary (reference)
. *
                                 1= undergraduate tertiary
                                 2= final upper secondary
                                  3= basic upper secondary
                                 4= lower secondary or less
          Maternal age at birth 1= below 20 years
                                  2 = 20 - 24 \text{ years}
                                  3 = 25 - 29 \text{ years}
                                 4= 30-34 years
                                 0= 35 years or more (reference)
                                 1= 1 (reference)
          Children in family
                                 3 = 3
                                 4 = 4
                                 5= 5 or more
          Birthweight
                                 1= more than 3 SD below mean
                                 2 = 2 - 3 SD below mean
                                 3= 1-2 SD below mean
                                 4 = 0 - 1 SD below mean
                                  5 = 0 - 1 SD above mean
                                  6= 1-2 SD above mean
                                 0= 2 or more SDs above mean (reference)
. use "Y:\dat\ulikhet\IQ_loss_analysis_3.dta", clear
 * Comment 1: Fig. 1 results
        First, computing IQ means across BO-SO categories, reference in the
following model is BO=1 SO=1 (IQ=103.2354).
      mean IQ, over (BO SO)
Mean estimation
                                   Number of obs = 241310
        Over: BO SO
   _subpop_1: 1 1
   _subpop_2: 2 1
   _subpop_3: 2 2
```

_subpop_4: 3 1

Over	Mean	Std. Err.	[95%	Conf. In	nterval]	
IQ	+ 					
_subpop_1	103.2354	.0410141	103	.155	103.3158	
_subpop_2	102.8648	.3233658			103.4985	
_subpop_3	101.2387	.0436571	101.		101.3242	
_subpop_4	102.5926	1.609221	99.4		105.7466	
_subpop_5	100.7953	.2548083	100.		101.2947	
_subpop_6	100.0381	.0728798	99.8		100.1809	
	nd, multipl					
. xi: reg	gress IQ i.BO_	SO i.par_ed			siblive5 i.BWz	
i.BO_SO	_IBO_SO_0				; _IBO_SO_0 om	
i.par_edu5	_Ipar_edu				; _Ipar_edu5_0	
i.mat_age5	_Imat_age	5_0-4			; _Imat_age5_0	
i.siblive5	_Isiblive				; _Isiblive5_1	
i.BWzcat7	_IBWzcat7		(natural	ly coded	; _IBWzcat7_0	omitted)
i.year	_Iyear_0-	2004	(natural	ly coded	; _Iyear_0 omi	tted)
Source	l ss	df	MS		Number of obs	= 241310
	+				F(42,241267)	= 1043.00
Model	6776291.98	42 1613	340.285		Prob > F	= 0.0000
Residual	37321223.22	41267 154	.688471		R-squared	= 0.1537
	+				Adj R-squared	= 0.1535
Total	44097515.22	41309 182	.742936		Root MSE	= 12.437
		C+3 T			 [95% Conf.	11
IQ	Coef. +	Std. Err.	t 	P> t	[95% COIII.	Intervar]
_IBO_SO_1	-2.920248	.0686824	-42.52	0.000	-3.054864	-2.785633
_IBO_SO_2	2268971	.294009	-0.77	0.440	803147	.3493528
_IBO_SO_3	-4.269396	.1110595	-38.44	0.000	-4.487069	-4.051722
 _IBO_SO_4	-2.965913	.2465733	-12.03	0.000	-3.44919	-2.482636
_IBO_SO_5	.2327036	1.383167	0.17	0.866	-2.478267	2.943675
_Ipar_edu5_1	-4.557467	.1054163	-43.23	0.000	-4.764081	-4.350854
_Ipar_edu5_2	-9.244755	.1065748	-86.74	0.000	-9.453639	-9.035871
_Ipar_edu5_3	-11.99603	.1007749	-119.04	0.000	-12.19354	-11.79851
_Ipar_edu5_4	-17.15533	.1227794	-139.72	0.000	-17.39598	-16.91469
_Imat_age5_1	6756009	.1481424	-4.56	0.000	9659562	3852456
_Imat_age5_2	-1.529418	.1429959	-10.70	0.000	-1.809686	-1.24915
_Imat_age5_3	-3.270981	.1476527	-22.15	0.000	-3.560377	-2.981586
_Imat_age5_4	-5.395775	.1710056	-31.55	0.000	-5.730942	-5.060609
_Isiblive5_2	.8267366	.1085314	7.62	0.000	.6140178	1.039455
_Isiblive5_3	.9925834	.1144031	8.68	0.000	.7683564	1.21681
_Isiblive5_4	.8476345	.1386903	6.11	0.000	.5758052	1.119464
_Isiblive5_5	.2007077	.2015271	1.00	0.319	1942802	.5956956
_IBWzcat7_1	1062321	.1939244	-0.55	0.584	4863188	.2738546
_IBWzcat7_2	6107282	.184842	-3.30	0.001	9730138	2484426
_IBWzcat7_3	-1.431767	.1851703	-7.73	0.000	-1.794696	-1.068838
_IBWzcat7_4	-2.253075	.195491	-11.53	0.000	-2.636232	-1.869917
_IBWzcat7_5	-2.899021	.2497119	-11.61	0.000	-3.38845	-2.409593
_IBWzcat7_6	-4.419876	.3482175	-12.69	0.000	-5.102373	-3.737379
_Iyear_1985	6803454	.2034391	-3.34	0.001	-1.079081	28161
_Iyear_1986	.3830407	.1563388	2.45	0.014	.0766209	.6894606
_Iyear_1987	.0677215	.1351494	0.50	0.616	1971677	.3326108
_Iyear_1988	.4115894	.1302453	3.16	0.002	.1563121	.6668668
_Iyear_1989	.0246319 .2895135	.1260414	0.20 2.43	0.845 0.015	2224059	.2716697 .5226736
_Iyear_1990	.4093133	.1189609	4.43	0.015	.0563533	.5440/30

_Iyear_1991	.2381113	.1143312	2.08	0.037	.0140253	.4621974
_Iyear_1992	0194008	.1124742	-0.17	0.863	2398474	.2010457
_Iyear_1993	.4637993	.1112478	4.17	0.000	.2457564	.6818421
_Iyear_1995	3534644	.1331673	-2.65	0.008	6144688	09246
_Iyear_1996	301849	.1444794	-2.09	0.037	585025	0186731
_Iyear_1997	-1.024216	.1541261	-6.65	0.000	-1.326299	7221327
_Iyear_1998	-1.722283	.1716026	-10.04	0.000	-2.05862	-1.385947
_Iyear_1999	-1.823012	.1983832	-9.19	0.000	-2.211838	-1.434186
_Iyear_2000	-1.382823	.2358007	-5.86	0.000	-1.844986	9206594
_Iyear_2001	-1.339878	.2815566	-4.76	0.000	-1.891722	7880348
_Iyear_2002	-1.798741	.2741985	-6.56	0.000	-2.336162	-1.261319
_Iyear_2003	-1.346069	.3008819	-4.47	0.000	-1.93579	7563486
_Iyear_2004	-1.987844	.3333219	-5.96	0.000	-2.641146	-1.334542
_cons	115.884	.2640766	438.83	0.000	115.3664	116.4016

. * Comment 2: Table S1 results

. * Model 1

. xi:	regress IQ i.BO i.par_edu5	i.mat_age5	i.siblive5 i.BWzcat7 i.year
i.BO	_IBO_1-3	(naturally	<pre>coded; _IBO_1 omitted)</pre>
i.par_edu5	_Ipar_edu5_0-4	(naturally	<pre>coded; _Ipar_edu5_0 omitted)</pre>
i.mat_age5	_Imat_age5_0-4	(naturally	<pre>coded; _Imat_age5_0 omitted)</pre>
i.siblive5	_Isiblive5_1-5	(naturally	<pre>coded; _Isiblive5_1 omitted)</pre>
i.BWzcat7	_IBWzcat7_0-6	(naturally	<pre>coded; _IBWzcat7_0 omitted)</pre>
i.year	_Iyear_0-2004	(naturally	<pre>coded; _Iyear_0 omitted)</pre>

Source	SS df	MS	Number of obs = 241310
+			F(39,241270) = 1119.67
Model	6758005.43 39	173282.19	Prob > F = 0.0000
Residual	37339509.8241270	154.76234	R-squared = 0.1533
+			Adj R-squared = 0.1531
Total	44097515.2241309	182.742936	Root MSE = 12.44

IQ	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_IBO_2	-2.815647	.0679573	-41.43	0.000	-2.948842	-2.682452
_IBO_3	-4.03274	.106375	-37.91	0.000	-4.241232	-3.824248
_Ipar_edu5_1	-4.558509	.1054414	-43.23	0.000	-4.765171	-4.351846
_Ipar_edu5_2	-9.249193	.1065995	-86.77	0.000	-9.458125	-9.040261
_Ipar_edu5_3	-12.00142	.1007976	-119.06	0.000	-12.19898	-11.80386
_Ipar_edu5_4	-17.16323	.122806	-139.76	0.000	-17.40392	-16.92253
_Imat_age5_1	6856608	.1481742	-4.63	0.000	9760784	3952433
_Imat_age5_2	-1.52189	.1430037	-10.64	0.000	-1.802174	-1.241607
_Imat_age5_3	-3.23884	.1476276	-21.94	0.000	-3.528186	-2.949493
_Imat_age5_4	-5.355325	.1709803	-31.32	0.000	-5.690442	-5.020208
_Isiblive5_2	.773589	.1082765	7.14	0.000	.5613698	.9858081
_Isiblive5_3	.8817159	.1139663	7.74	0.000	.6583449	1.105087
_Isiblive5_4	.7223428	.1382261	5.23	0.000	.4514233	.9932622
_Isiblive5_5	.0609714	.2011402	0.30	0.762	3332582	.4552009
_IBWzcat7_1	1087662	.1939699	-0.56	0.575	488942	.2714097
_IBWzcat7_2	6144002	.1848846	-3.32	0.001	9767692	2520312
_IBWzcat7_3	-1.430054	.1852122	-7.72	0.000	-1.793065	-1.067043
_IBWzcat7_4	-2.236864	.195528	-11.44	0.000	-2.620094	-1.853635
_IBWzcat7_5	-2.855229	.2497366	-11.43	0.000	-3.344706	-2.365751
_IBWzcat7_6	-4.327781	.3481838	-12.43	0.000	-5.010213	-3.64535
_Iyear_1985	6648781	.2034823	-3.27	0.001	-1.063698	2660582
_Iyear_1986	.4000313	.1563682	2.56	0.011	.0935537	.7065088
_Iyear_1987	.0963185	.1351537	0.71	0.476	1685792	.3612163
_Iyear_1988	.432938	.1302615	3.32	0.001	.1776289	.6882471

_Iyear_1989	.041901	.1260609	0.33	0.740	2051751	.2889772
_Iyear_1990	.3018317	.1189836	2.54	0.011	.068627	.5350365
_Iyear_1991	.2444362	.1143567	2.14	0.033	.0203002	.4685723
_Iyear_1992	0143357	.1124997	-0.13	0.899	2348322	.2061607
_Iyear_1993	.4658002	.1112742	4.19	0.000	.2477057	.6838948
_Iyear_1995	3926497	.1331422	-2.95	0.003	6536049	1316946
_Iyear_1996	3630634	.1443883	-2.51	0.012	6460607	0800661
_Iyear_1997	-1.097292	.1540161	-7.12	0.000	-1.39916	7954246
_Iyear_1998	-1.800725	.1714832	-10.50	0.000	-2.136828	-1.464623
_Iyear_1999	-1.910714	.1982223	-9.64	0.000	-2.299225	-1.522203
_Iyear_2000	-1.48119	.2355913	-6.29	0.000	-1.942943	-1.019438
_Iyear_2001	-1.446006	.2813399	-5.14	0.000	-1.997425	8945873
_Iyear_2002	-1.909534	.2739315	-6.97	0.000	-2.446433	-1.372636
_Iyear_2003	-1.458809	.300631	-4.85	0.000	-2.048038	8695803
_Iyear_2004	-2.104685	.3330705	-6.32	0.000	-2.757495	-1.451876
_cons	115.9171	.2640541	438.99	0.000	115.3996	116.4347

_Imat_age5_1

_Imat_age5_2

_Imat_age5_3 _Imat_age5_4

_Isiblive5_2

_Isiblive5_3

 $_{\rm Isiblive5_4}$

_Isiblive5_5

_IBWzcat7_1

_IBWzcat7_2

_IBWzcat7_3

_IBWzcat7_4

_IBWzcat7_5

_IBWzcat7_6

_Iyear_1985

_Iyear_1986

_Iyear_1987 |

-.6747614

-1.527864

-3.268202

-5.39043

.8270263

.9928474

.847899

.2010557

-.1058823

-.6102282

-1.431749

-2.253887

-2.901581

-4.424572

-.6760155

.3867253

.0689713

.1481368

.1429692

.1475798

.1708386

.1085178

.11439

.138681

.2015184

.1939226

.1848388

.1851657

.1954781

.2496661

.3480949

.203352

.1562555

.1351288

. estimat	. estimates store ml						
. * Mode . xi: reg i.SO i.par_edu5 i.mat_age5 i.siblive5 i.BWzcat7 i.year	gress IQ i.SO _ISO_1-3 _Ipar_edu _Imat_age _Isiblive	5_0-4 5_0-4 5_1-5 _0-6	<pre>(naturall (naturall (naturall (naturall (naturall)</pre>	y coded y coded y coded y coded y coded	live5 i.BWzcat'; _ISO_1 omitte; _Ipar_edu5_0; _Imat_age5_0; _Isiblive5_1; _IBWzcat7_0 o; _Iyear_0 omit	ed) omitted) omitted) omitted) omitted)	
Source Model	6776189.86	 39 173			Number of obs F(39,241270) Prob > F	= 1123.23 = 0.0000	
Residual Total	37321325.42 44097515.22				R-squared Adj R-squared Root MSE	= 0.1535	
IQ	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	
_ISO_3	-4.263926	.0681441 .1108126	-38.48	0.000	-4.481116	-4.046737	
_Ipar_edu5_2	-4.557923 -9.245719 -11.99735	.1054132 .1065608 .1007505	-43.24 -86.76 -119.08		-4.76453 -9.454576 -12.19482	-4.351315 -9.036863 -11.79988	
_Ipar_edu5_4	-17.15731	.1227443	-139.78	0.000	-17.39788	-16.91673	

-4.55

-10.69

-22.15

-31.55

7.62

8.68

6.11

1.00

-0.55

-3.30

-7.73

-11.53

-11.62

-12.71

-3.32

2.47

0.51

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.318

0.585

0.001

0.000

0.000

0.000

0.000

0.001

0.013

0.610

-.9651056

-1.80808

-3.557454

-5.725269

.6143343

.5760879

-.193915

-.4859655

-.9725074

-1.794669

-2.637019

-3.39092

-5.106828

-1.07458

.0804687

-.1958776

.768646

-.3844171

-1.247648

-2.978949

-5.05559

1.039718

1.217049

1.11971

.5960265

.274201

-.2479489

-1.068829

-1.870755

-2.412242

-3.742315

-.2774509

.6929819

.3338201

_Iyear_1988	.4121557	.1302348	3.16	0.002	.156899	.6674125
_Iyear_1989	.0248625	.1260344	0.20	0.844	2221615	.2718866
_Iyear_1990	.2894548	.1189589	2.43	0.015	.0562985	.5226111
_Iyear_1991	.2382263	.11433	2.08	0.037	.0141425	.4623101
_Iyear_1992	0196205	.1124733	-0.17	0.862	2400653	.2008243
_Iyear_1993	.4636503	.111247	4.17	0.000	.245609	.6816916
_Iyear_1995	3533725	.1331663	-2.65	0.008	614375	09237
_Iyear_1996	3018271	.1444771	-2.09	0.037	5849985	0186558
_Iyear_1997	-1.023998	.154125	-6.64	0.000	-1.326079	7219169
_Iyear_1998	-1.722159	.1715982	-10.04	0.000	-2.058487	-1.385831
_Iyear_1999	-1.822956	.1983735	-9.19	0.000	-2.211763	-1.434149
_Iyear_2000	-1.382629	.2357957	-5.86	0.000	-1.844782	9204758
_Iyear_2001	-1.339438	.2815539	-4.76	0.000	-1.891276	7875996
_Iyear_2002	-1.798143	.2741958	-6.56	0.000	-2.33556	-1.260727
_Iyear_2003	-1.345361	.3008788	-4.47	0.000	-1.935076	7556466
_Iyear_2004	-1.987086	.3333187	-5.96	0.000	-2.640382	-1.33379
_cons	115.8779	.2639382	439.03	0.000	115.3605	116.3952

. estimates store m2

. * Mode . xi: reg		i.SO i.par	_edu5 i.ma	ıt_age5 i	siblive5 i.BV	Wzcat7 i.year
i.BO	_IBO_1-3		(naturall	y coded;	_IBO_1 omitte	ed)
i.SO	_ISO_1-3		(naturall	y coded;	_ISO_1 omitte	ed)
i.par_edu5	_Ipar_edu	5_0-4	(naturall	y coded;	_Ipar_edu5_0	omitted)
i.mat_age5	_Imat_age	5_0-4	(naturall	y coded;	_Imat_age5_0	omitted)
i.siblive5	_Isiblive	5_1-5	(naturall	y coded;	_Isiblive5_1	omitted)
i.BWzcat7	_IBWzcat7	_0-6	(naturall	y coded;	_IBWzcat7_0 o	omitted)
i.year	_Iyear_0-	2004	(naturall	y coded;	_Iyear_0 omit	cted)
Source	SS	df 	MS		Number of obs F(41,241268)	
Model	6776272.75	41 165	274.945		Prob > F	= 0.0000
Residual	37321242.52		.687909			= 0.1537
	+				Adj R-squared	
Total	44097515.22	41309 182	.742936		Root MSE	= 12.437
IQ	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_IBO_2	2061426	.2880554	-0.72	0.474	7707237	.3584386
_IBO_3	2373697	.3682831	-0.64	0.519	959195	.4844556
_ISO_2	-2.714444	.2895943	-9.37	0.000	-3.282042	-2.146847
_ISO_3	-4.031887	.3779142	-10.67	0.000	-4.772589	-3.291185
_Ipar_edu5_1	-4.557437	.1054161	-43.23	0.000	-4.76405	-4.350825
_Ipar_edu5_2	-9.244739	.1065746	-86.74	0.000	-9.453622	-9.035855
_Ipar_edu5_3	-11.99599	.1007746	-119.04	0.000	-12.19351	-11.79848
_Ipar_edu5_4	-17.15545	.1227787	-139.73	0.000	-17.39609	-16.91481
_Imat_age5_1	6755481	.1481421	-4.56	0.000	9659027	3851935
_Imat_age5_2	-1.529247	.1429948	-10.69	0.000	-1.809513	-1.248981
_Imat_age5_3	-3.270775	.1476513	-22.15	0.000	-3.560168	-2.981383
_Imat_age5_4	-5.395635	.1710048	-31.55	0.000	-5.7308	-5.06047
_Isiblive5_2	.8263189	.1085247	7.61	0.000	.6136132	1.039025
_Isiblive5_3	.9921609	.1143966	8.67	0.000	.7679466	1.216375
_Isiblive5_4	.8472569	.1386859	6.11	0.000	.5754362	1.119078
_Isiblive5_5	.2002671	.2015229	0.99	0.320	1947125	.5952467
_IBWzcat7_1	1061607	.1939239	-0.55	0.584	4862465	.2739251
_IBWzcat7_2	6106178	.1848414	-3.30	0.001	9729022	2483334
_IBWzcat7_3	-1.431659	.1851697	-7.73	0.000	-1.794587	-1.068732
_IBWzcat7_4	-2.252869	.1954898	-11.52	0.000	-2.636024	-1.869714
_IBWzcat7_5	-2.898902	.2497112	-11.61	0.000	-3.38833	-2.409475

_IBWzcat7_6	-4.418689	.3482006	-12.69	0.000	-5.101153	-3.736225
_Iyear_1985	6803414	.2034387	-3.34	0.001	-1.079076	2816068
_Iyear_1986	.3830095	.1563384	2.45	0.014	.0765902	.6894287
_Iyear_1987	.0675905	.1351486	0.50	0.617	1972972	.3324783
_Iyear_1988	.411568	.130245	3.16	0.002	.1562911	.6668449
_Iyear_1989	.0247685	.1260405	0.20	0.844	2222676	.2718047
_Iyear_1990	.2894714	.1189606	2.43	0.015	.0563118	.5226311
_Iyear_1991	.2381763	.1143308	2.08	0.037	.0140909	.4622616
_Iyear_1992	0194489	.112474	-0.17	0.863	239895	.2009971
_Iyear_1993	.4637996	.1112476	4.17	0.000	.2457571	.681842
_Iyear_1995	3533897	.1331669	-2.65	0.008	6143933	0923861
_Iyear_1996	3018946	.1444791	-2.09	0.037	5850699	0187192
_Iyear_1997	-1.024223	.1541258	-6.65	0.000	-1.326305	7221403
_Iyear_1998	-1.722347	.1716022	-10.04	0.000	-2.058683	-1.386012
_Iyear_1999	-1.823121	.1983826	-9.19	0.000	-2.211946	-1.434296
_Iyear_2000	-1.382908	.2358001	-5.86	0.000	-1.84507	9207456
_Iyear_2001	-1.339905	.281556	-4.76	0.000	-1.891747	7880621
_Iyear_2002	-1.798751	.274198	-6.56	0.000	-2.336172	-1.261331
_Iyear_2003	-1.346072	.3008813	-4.47	0.000	-1.935791	7563521
_Iyear_2004	-1.987835	.3333213	-5.96	0.000	-2.641136	-1.334534
_cons	115.8841	.2640761	438.83	0.000	115.3665	116.4017

. estimates store m3

. * Explanations: ll=log likelihood; AIC=Akaike's information criterion; BIC=Schwarz' information criterion

. estimates stats m1 m2

Model		, ,	ll(model)	df	AIC	BIC
m1	241310	-970784.5 -970784.5	-950713.4	40 40	1901507 1901389	1901922 1901805

. estimates stats m2 m3

Model		11(null)	11(model)	df	AIC	BIC
m2 m3	241310	-970784.5	-950654.6 -950654.3	40 42	1901389 1901393	1901805 1901829

lrtest m2 m3

Likelihood-ratio test LR chi2(2) = 0.54 (Assumption: m2 nested in m3) Prob > chi2 = 0.7649

.

. log close

log: Y:\dat\ulikhet\IQ_loss_results_output.log

log type: text

closed on: 9 Apr 2007, 13:13:55