Exercise 3

December 28, 2020

1. Consider the linear mapping

$$\phi = R^3 \to R^4$$

$$\phi = R^3 \to R^4$$

$$\phi(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}) = \begin{bmatrix} 3x_1 + 2x_2 + x_3 \\ x_1 + x_2 + x_3 \\ x_1 - 3x_2 \\ 2x_1 + 3x_2 + x_3 \end{bmatrix}$$

- (a) Find the transformation matrix A_{ϕ}
- (b) Determine $rk(A_{\phi})$
- (c) Compute the kernel and image of ϕ . What are $dim(ker(\phi))$ and $dim(Im(\phi))$
- 2. Find the matrix to rotate the vectors

$$x_1 := \begin{bmatrix} 2 \\ 3 \end{bmatrix}, x_2 := \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$
 by $\pi/6$

3. Are the following mappings linear:

(a)
$$\phi: R \to R$$

(a)
$$\phi: R \to R$$

 $x \to \phi(x) = \cos(x)$

(b)
$$\phi: R^3 \to R^2$$

$$x \to \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 3 \end{bmatrix} x$$

4. Consider an endomorphism $\phi: R^3 \to R$ whose transformation matrix (with respect to the standard basis in R^3 is :

$$A_{\phi} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

- (a) Determine $ker(\phi)$ and $Im(\phi)$
- (b) Determine the transformation matrix C_{ϕ} with respect to the basis

$$B = \left(\begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right)$$

perform a basis change toward the new basis B

5. Let us consider $b_1, b_2, b'_1, b'_2, 4$ vectors of \mathbb{R}^2 expressed in the standard basis of \mathbb{R}^2 as:

basis of
$$R^2$$
 as:
$$b_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, b_2 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}, b'_1 = \begin{bmatrix} 2 \\ -2 \end{bmatrix}, b'_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

and let us define two ordered bases $B = (b_1, b_2), B' = (b'_1, b'_2)$ of R^2

- (a) Show that B and B' are two bases of \mathbb{R}^2 and draw those basis vectors.
- (b) . Compute the matrix P_1 that performs a basis change from B' to B
- (c) We consider c_1, c_2, c_3 three vectors of \mathbb{R}^3 defined in the standard basis of \mathbb{R}^3 as:

c₁ =
$$\begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$
, c₂ = $\begin{bmatrix} 0 \\ -1 \\ 2 \end{bmatrix}$, c₃ = $\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$

and we define $C = (c_1, c_2, c_3)$

- i. Show that C is a basis of \mathbb{R}^3 , e.g., by using determinants
- ii. Let us call $C'=(c_1',c_2',c_3')$ the standard basis of R^3 . Determine the matrix P_2 that performs the basis change from C to C'
- (d) We consider a homomorphism $\phi: \mathbb{R}^2 \to \mathbb{R}^3$, such that:

$$\phi(b_1 + b_2) = c_2 + c_3$$

$$\phi(b_1 - b_2) = 2c_1 - c_2 + 3c_3$$

where $B = (b_1, b_2 \text{ and } C = c_1, c_2, c_3 \text{ are ordered bases of } R^2 \text{ and } R_3 \text{ respectively.}$

Determine the transformation matrix A_{ϕ} of ϕ with respect to the ordered bases B and C

(e) Determine A', the transformation matrix of ϕ with respect to the bases B' and C'