1 Обязательные задачи к лекциям

1.1 Задачи к лекции от 08.02.17

Задача 1. Пусть $S = \{S_n, n \ge 0\}$ — простое случайное блуждание в \mathbb{Z} , имеющее начальной точкой нуль. Доказать, что для любых $a, b \in \mathbb{Z}$ таких, что a < 0 < b, с вероятностью единица блуждание не останется в полосе, ограниченной прямыми y = a и y = b.

Решение. Разобьем линию времени на промежутки длины |a-b|. Тогда для того чтобы случайное блуждание не вышло из полосы, необходимо, чтобы ни на одном из этих промежутков оно не принимало ни только значение 1, ни только значение -1 (иначе точно выскочит). Вероятность того, что на одном промежутке будут встречаться оба значения, равна

$$P := 1 - p^{|a-b|} - q^{|a-b|} < 1.$$

Соответственно, для N промежутков получаем вероятность P^N ; по непрерывности вероятностной меры заключаем, что вероятность события, что на всех промежутках будут встречаться как значение 1, так и значение -1, равна

$$\lim_{N \to \infty} P^N = 0.$$

Задача 2. Пусть $S = \{S_n, n \geqslant 0\}$ и $S' = \{S'_n, n \geqslant 0\}$ — независимые простые случайные блуждания в \mathbb{Z}^d , имеющие начальной точкой нуль, т.е. образованные независимыми последовательностями $(X_n)_{n\geqslant 1}$ и $(X'_n)_{n\geqslant 1}$, состоящими из независимых векторов таких, что

$$P(X_1 = e_k) = P(X_1 = -e_k) = P(X_1' = e_k) = P(X_1' = -e_k) = \frac{1}{2d}$$

Здесь e_k — вектор в \mathbb{R}^d , у которого k-я координата равна единице, а остальные равны нулю, $k=1,\ldots,d$. Введем (вообще говоря, расширенную) случайную величину

$$N := \sum_{n,m=0}^{\infty} \mathbb{I}\left\{S_n = S'_m\right\},\,$$

 $ede\ \mathbb{I}(A)-u$ ндикатор события $A.\ Haйти\ все\ d\in\mathbb{N},\ для\ которых\ \mathsf{E}N<\infty.$

Решение. Сначала заметим, что

$$N = \sum_{n,m=0}^{\infty} \mathbb{I} \{ S_n = S'_m \} = \sum_{n,m=0}^{\infty} \mathbb{I} \{ S_n - S'_m = 0 \}.$$

Увидим, что индикатор можно переписать в виде

$$\mathbb{I}\left\{S_n - S_m' = 0\right\} = \prod_{k=1}^d \mathbb{I}\left\{S_n^k - S_m^{k'} = 0\right\} = \prod_{k=1}^d \int_{[-\pi,\pi]} \frac{e^{i\left(S_n^k - S_m^{k'}\right)t_k}}{2\pi} dt_k = \\
= \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} e^{i\left(S_n - S_m', t\right)} dt,$$

поскольку

$$\int\limits_{[-\pi,\pi]} \frac{e^{inx}}{2\pi} \, dx \; = \; \mathbb{I} \left\{ n = 0 \right\}.$$

Тогда

$$\mathbb{EI}\left\{S_{n} - S'_{m} = 0\right\} = \frac{1}{(2\pi)^{d}} \int_{[-\pi,\pi]^{d}} \mathbb{E}e^{i\left(S_{n} - S'_{m}, t\right)} dt =
= \frac{1}{(2\pi)^{d}} \int_{[-\pi,\pi]^{d}} \varphi^{n}(t)\varphi^{m}(-t) dt = \frac{1}{(2\pi)^{d}} \int_{[-\pi,\pi]^{d}} \varphi^{n+m}(t) dt,$$

где

$$\varphi(t) = \mathsf{E}e^{i(X_1,t)}.$$

Получаем, что

$$\mathsf{E} N = \sum_{n,m=0}^{\infty} \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \varphi^{n+m}(t) \, dt \; = \; \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \frac{1}{\left(1-\varphi(t)\right)^2} \, dt.$$

Видно, что этот интеграл является несобственным из-за особенности в нуле. Поймем, как ведет себя подынтегральное выражение в окрестности нуля.

$$1 - \varphi(t) = 1 - \frac{1}{d} \sum_{k=1}^{d} \cos t_k \sim \frac{1}{2d} \sum_{k=1}^{d} t_k^2$$

по формуле Тейлора. Таким образом, получаем, что в окрестности нуля

$$\frac{1}{\left(1-\varphi(t)\right)^2} = \Theta\left(\frac{1}{\|t\|^4}\right).$$

Поскольку якобиан при переходе к сферической системе координат содержит множитель R в степени d-1, то интеграл сходится $\Leftrightarrow d \geqslant 5$.

1.2 Задачи к лекции от 15.02.17

Задача 3. Пусть в модели Гальтона-Ватсона $P(\xi = 0) = 1/4$, $P(\xi = 2) = 1/2$, $P(\xi = 6) = 1/4$. Определить, будет ли вероятность вырождения процесса больше или меньше 1/2.

Peweнue. Выпишем производящую функцию данного процесса:

$$\psi_{\xi}(z) = \frac{1}{4} + \frac{1}{2}z^2 + \frac{1}{4}z^6.$$

Будем рассматривать функцию $\psi_{\xi}(z) - z$. Заметим, что

$$\left(\psi_{\xi}(z) - z\right)\Big|_{z=0} = \frac{1}{4}, \ \left(\psi_{\xi}(z) - z\right)\Big|_{z=\frac{1}{2}} = -\frac{31}{256}.$$

Поскольку $\psi_{\xi}(z)-z$ — непрерывная функция, то уравение $\psi_{\xi}(z)-z=0$ будет иметь корень на интервале $(0,\,1/2)$. Поскольку вероятность вырождения процесса Гальтона—Ватсона— это наименьший корень этого уравнения, эта вероятность будет меньше 1/2.

Задача 4. Пусть $Z = \{Z(t), t \geqslant 0\}$ — процесс восстановления, построенный по последовательности неотрицательных независимых одинаково распределенных случайных величин X_1, X_2, \ldots таких, что $\mathsf{E} X_1 = \mu \in (0,\infty)$ и $var X_1 = \sigma^2 \in (0,\infty)$. Доказать, что

$$\frac{Z(t) - \frac{1}{\mu}}{\sigma \sqrt{\frac{t}{\mu^3}}} \xrightarrow{law} N(0, 1), \ t \to \infty.$$

Решение. Введем следующее обозначение:

$$P_n := \frac{S_n - n\mu}{\sigma\sqrt{n}},$$

где

$$S_n := X_1 + \ldots + X_n.$$

Тогда по ЦПТ

$$P_n \xrightarrow{\text{law}} N(0, 1).$$

Запишем

$$\mathsf{P}\left(\frac{Z(t) - \frac{t}{\mu}}{\sigma\sqrt{\frac{t}{\mu^3}}} < x\right) \, = \, \mathsf{P}\left(Z(t) < x\sigma\sqrt{\frac{t}{\mu^3}} + \frac{t}{\mu}\right).$$

Введем обозначение

$$n(t) := \left[x\sigma\sqrt{\frac{t}{\mu^3}} + \frac{t}{\mu} \right],$$

где

$$\lceil x \rceil := \begin{cases} x, & x \in \mathbb{Z}; \\ [x] + 1, & x \notin \mathbb{Z}. \end{cases}$$

Заметим, что

$$P(Z(t) < n) = P(S_n > t) \quad \forall n \in \mathbb{Z}.$$

Тогда продолжим цепочку равенств:

$$\begin{split} \mathsf{P}\left(Z(t) < n(t)\right) &= \mathsf{P}\left(Z(t) < x\sigma\sqrt{\frac{t}{\mu^3}} + \frac{t}{\mu}\right) = \mathsf{P}\left(S_{n(t)} > t\right) = \\ &= \mathsf{P}\left(\frac{S_{n(t)} - n(t)\mu}{\sigma\sqrt{n(t)}} > \frac{t - n(t)\mu}{\sigma\sqrt{n(t)}}\right) = \mathsf{P}\left(P_{n(t)} > \frac{t - n(t)\mu}{\sigma\sqrt{n(t)}}\right). \end{split}$$

Ищем асимптотику правой части неравенства. Подставляем вместо n(t) его значение (с точностью до не влияющей на асимптотику целой части):

$$\mathsf{P}\left(P_{n(t)} > \frac{t - n(t)\mu}{\sigma\sqrt{n(t)}}\right) = \mathsf{P}\left(P_{n(t)} > \frac{-x\sigma\mu\sqrt{\frac{t}{\mu^3}}}{\sigma\sqrt{x\sigma\sqrt{\frac{t}{\mu^3}} + \frac{t}{\mu}}}\right).$$

Поскольку нас интересует асимптотика при $t \to \infty$, получаем, что

$$\mathsf{P}\left(P_{n(t)} > \frac{-x\sigma\mu\sqrt{\frac{t}{\mu^3}}}{\sigma\sqrt{x\sigma\sqrt{\frac{t}{\mu^3}} + \frac{t}{\mu}}}\right) = \mathsf{P}\left(P_{n(t)} > -xA(t)\right),$$

где

$$A(t) \to 1, \ t \to \infty.$$

Перепишем:

$$\mathsf{P}\left(P_{n(t)} > -xA(t)\right) = \mathsf{P}\left(\frac{P_{n(t)}}{A(t)} > -x\right).$$

Воспользуемся леммой Слуцкого и теоремой о наследовании сходимости: поскольку

$$P_{n(t)} \xrightarrow{\text{law}} N(0, 1), A(t) \to 1, t \to \infty,$$

ТО

$$\frac{P_{n(t)}}{A(t)} \xrightarrow{\text{law}} N(0, 1).$$

Тогда получаем, что в каждой точке x непрерывности функции распределения $\Phi(x)$ случайной величины, распределенной по стандартному нормальному закону (то есть в каждой точке x),

$$\mathsf{P}\left(\frac{P_{n(t)}}{A(t)} > -x\right) \to 1 - \Phi(-x) = \Phi(x).$$

Итак, получили, что

$$\mathsf{P}\left(\frac{Z(t) - \frac{t}{\mu}}{\sigma\sqrt{\frac{t}{\mu^3}}} < x\right) \to \Phi(x),$$

что и означает, что

$$\frac{Z(t) - \frac{1}{\mu}}{\sigma \sqrt{\frac{t}{\mu^3}}} \xrightarrow{\text{law}} N(0, 1), \ t \to \infty.$$

1.3 Задачи к лекции от 22.02.17

Задача 5. Можно ли утверждать, что не только пуассоновский процесс, но и любой процесс восстановления является процессом с независимыми приращениями?

Решение. Вообще говоря, это неверно. Приведем контрпример. Пусть случайная величина ξ равновероятно (с вероятностью 1/3) принимает значения 0, 1 и 2. Построим на последовательности независимых одинаково распределенных случайных величин $\xi_n \sim \xi$ процесс восстановления:

$$Z(t) := \sup \{n : \xi_1 + \ldots + \xi_n \le t\}.$$

Покажем, что его приращения не являются независимыми: рассмотрим $Z(2)-Z(1),\,Z(1).$

$$P(Z(2) - Z(1) = 0, Z(1) = 0) = 0,$$

поскольку $\xi_n \leqslant 2$. Вместе с этим

$$P(Z(2) - Z(1) = 0) \ge P(\xi_1 = 1, \xi_2 = 2) = \frac{1}{9}, \ P(Z(1) = 0) = \frac{1}{3}.$$

Таким образом, показано, что приращения не являются независимыми.

Задача 6. Найти ковариационную функцию процесса $Z(t) = \{Z(t), t \ge 0\}$ (называемого телеграфной волной), где $Z(t) = \xi_0(-1)^{N(t)}$, $N = \{N(t), t \ge 0\}$ — пуассоновский процесс интенсивности λ , случайная величина ξ_0 принимает значения 1 и -1 с вероятностью 1/2, причем ξ_0 не зависит от процесса N.

Peшение. Сначала предположим, что t>s. Вычислим ковариационную функцию:

$$\begin{split} cov\left(Z(t),\,Z(s)\right) &= cov\left(\xi_0(-1)^{N(t)},\,\xi_0(-1)^{N(s)}\right) = \\ &= \mathsf{E}\xi_0^2(-1)^{N(t)+N(s)} - \mathsf{E}\xi_0(-1)^{N(t)}\,\mathsf{E}\xi_0(-1)^{N(s)}. \end{split}$$

Поскольку

$$\mathsf{E}\xi_0 = 0, \; \xi_0^2 = 1, \; (-1)^{N(t)+N(s)} = (-1)^{N(t)-N(s)},$$

то

$$\mathsf{E}\xi_0^2(-1)^{N(t)+N(s)} - \mathsf{E}\xi_0(-1)^{N(t)}\,\mathsf{E}\xi_0(-1)^{N(s)} = \mathsf{E}(-1)^{N(t)-N(s)}.$$

Известно, что пуассоновский процесс интенсивности λ является процессом с независимыми приращениями, причем эти приращения распределены по следующему закону:

$$N(t) - N(s) \sim \text{Poiss} (\lambda(t - s))$$
.

Тогда получаем, что

$$\mathsf{E}(-1)^{N(t)-N(s)} = \sum_{k=0}^{\infty} (-1)^k \frac{\left(\lambda(t-s)\right)^k}{k!} e^{-\lambda(t-s)} = e^{-2\lambda(t-s)}.$$

Случай $t\leqslant s$ рассматривается аналогично. Таким образом, итоговый ответ:

$$cov(Z(t), Z(s)) = e^{-2\lambda|t-s|}.$$