Analysis

Huang LiChuang of Wie-Biotech

Contents

1	题目	3
2	摘要	3
3	前吉	3
4	研究设计流程图	4
5	材料和方法	4
	5.1 Methods	. 4
	5.2 meterials	. 4
6	分析结果	5
	6.1 结直肠癌细胞的特定药物化疗差异分析	. 5
	6.2 TCGA 临床样本的泛型化疗差异分析	. 6
	6.3 肌少症的基因共表达分析	. 7
	6.4 结直肠癌与肌少症的综合分析	. 8
	6.5 线粒体自噬基因的表达	. 9
7	结论	10
8	附: 分析流程	10
	8.1 相关文献	. 10
	8.2 GEO 结直肠癌(细胞样本)	. 11
	8.2.1 GSE142340: six CRC cell lines treated with CTRL and optimized drug combinations	
	$(\mathrm{ODCs}) \dots \dots \dots \dots \dots \dots \dots \dots \dots $. 11
	8.2.2 GSE153412: radio-chemoresistance in colorectal cancer cell lines $\dots \dots \dots$	
	8.3 TCGA 结肠癌(TCGA-READ)	. 15
	8.4 TCGA 直肠癌(TCGA-COAD)	
	8.5 GEO 肌少症	
	8.5.1 GSE167186: transcriptome profiling on lower limb muscle biopsies from 72 young, old	
	and sarcopenic subjects	. 18
	8.6 综合:结直肠癌和肌少症	. 25

	8.6.1 (结直肠癌)数据整合	25
	8.6.2 (结直肠癌与肌少症)交集基因	25
	8.6.3 富集分析	26
	8.6.4 通路可视化	27
8.7	验证: 线粒体自噬基因是否差异表达	29
	8.7.1 肌少症	29
	8.7.2 结直肠癌	29
Refere	ence	31
List	of Figures	
		0
1	MAIN DEGs obtained from two GEO datasets about colorectal chemotherapy	6
2	MAIN DEGs obtained from two TCGA project datasets about colorectal chemotherapy	7
3	MAIN significant genes obtained by WGCNA analysis of GEO Sarcopenia dataset	8
4	MAIN The intersected genes enriched in mitochondrial and autophagy related pathway	9
5 c	MAIN The expression of mitophy related genes in colorectal cancer or sarcopenia	10
6	DEGs in different cell types with chemotherapy or not GSE142340	12
7	DEGs in different cell types with chemotherapy or not GSE153412	14
8	READ whether with chemotherapy	16
9	READ difference expressed genes	16
10	COAD whether with chemotherapy	17
11	COAD difference expressed genes	18
12	Filtering of Sarcopenia datasets	19
13	Nomalization of Sarcopenia datasets	19
14	Whether with Sarcopenia	21
15	Soft threshold	22
16	Clustering of gene modules	23
17	Correlation of gene modules and traits data	24
18	Intersection of genes significant and module memberships	25
19	All colorectal DEGs	25
20	Intersection of colorectal DEGs with Sarcopenia significant genes	26
21	Go enrichment	26
22	Kegg enrichment	27
23	Hits in autophagy	28
24	Hits in Mitophagy	28
25 26	Wilcox test of mitophyy related genes in Sarcopenia	29
26	Wilcox test of mitophgy related genes in READ	30
27	Wilcox test of mitophy related genes in COAD	31

List of Tables

1	Metadata of GSE142340	12
2	Metadata of GSE153412	14
3	READ clinical data	15
4	COAD clinical data	17
5	Metadata of samples used in GEO Sarcopenia data	20

1 题目

转录组数据集结合差异分析与基因共表达分析筛选结直肠癌化疗与肌少症的关联通路

2 摘要

结直肠癌(colorectal cancer)的化疗(Chemotherapy)可能导致或加重肌少症(Sarcopenia),然而其内在机制尚不明朗。为了筛选共通的通路,本研究选取了 2 个 GEO 的结直肠癌细胞系数据集,2 个 TCGA 结肠癌或直肠癌数据集,1 个肌少症的 GEO 数据集,结合了差异分析、基因共表达分析、富集分析等方式,探究可能的内在机制。通路富集表明,自噬(Autophagy)和线粒体自噬(Mitophagy)是共同通路,与 Autophagy和 Mitophagy的共交集基因为 RAB7A,CALCOCO2,BNIP3,ATG9A。其中,BNIP3 在 Sarcopenia 的数据集和 TCGA 直肠数据集中同时差异表达(P < 0.05)。

PS: 结果未找到与 KEAP1-NRF2 通路的关联。

3 前言

应用化疗治疗可刺激癌症细胞施放内源性危险信号,以诱导发生免疫反应¹。然而,化疗过程可伴随副作用的发生,例如肌少症²。肌少症是一种在老年人中常见的,一种进行性、全身性骨骼肌疾病,涉及肌肉质量和功能的加速丧失,与跌倒、功能下降、虚弱和死亡等不良后果³。肌少症的发生发展涉及多种机制,诸如激素(IGF-1 和胰岛素等)的功能、线粒体功能过程中的细胞内机制等⁴。在恶性肿瘤的进展中,和相关的营养不良本身就会侵蚀肌肉质量,诱发肌少症,而化疗会发生类似的机制,并且会加重这个过程²。尽管已有文献报导恶性肿瘤、化疗、肌少症之间的相关性,然而其内在的分子机制尚不明朗。本研究从结直肠癌(CRC) 出发,选用公共数据库的多个数据集,分别以 CRC 细胞系层面、临床样本层面筛选化疗的差异表达基因,结合肌少症的转录组数据的基因共表达分析,探究潜在的结直肠癌化疗与肌少症的共通通路。

4 研究设计流程图

5 材料和方法

5.1 Methods

主要 R 包:

- GEOquery
- $\bullet \ \ TCGAbiolinks$
- \bullet edgeR
- limma
- clusterProfiler
- pathview
- ...

5.2 meterials

数据集:

- GSE142340
- GSE153412
- TCGA-READ
- TCGA-COAD
- GSE167186

具体见8

6 分析结果

6.1 结直肠癌细胞的特定药物化疗差异分析

为了探究化疗所致的癌症共性的生理或病理变化,此处首先从细胞层面探究化疗导致的差异表达基因。两个来源于 GEO 的数据集被采用,分别是 GSE142340 (Geo1) 和 GSE153412 (Geo2)。Geo1 包含六种 CRC (colorectal cancer) 细胞系的化疗的对比分析,涉及药物 Regorafenib、Selumetinib、Vemurafenib、Vatalanib、AZD-4547、GDC-0994 混合应用(Tab. 1) 5 。Geo2 包含三种 CRC 细胞系的化疗对比分析,涉及药物 5-fluorouracil (和 Uracil 对照)(Tab. 2) 6 。将数据预处理、经差异分析后,Geo1 和 Geo2 的各组差异表达基因(p-value <0.05, $|\log 2(FC)|>0.3$)的 UpSet 图分别见 Fig. 1a 和 b。在 Fig. 1b 中,相比于药物敏感型,耐受型几乎不发生基因转录水平的变化。分别取 Geo1 和 Geo2(不包括药物耐受组的差异基因)的共交集基因,以供后续分析。

Figure 1为图 MAIN DEGs obtained from two GEO datasets about colorectal chemotherapy 概览。

(对应文件为 ./Figure+Table/fig1.pdf)

Figure 1: MAIN DEGs obtained from two GEO datasets about colorectal chemotherapy

6.2 TCGA 临床样本的泛型化疗差异分析

为了从个体水平探究化疗对于癌症转录水平上的影响,从 TCGA 数据库获取结肠癌(READ)和直肠癌(COAD)转录组数据以及相应的临床数据,根据是否药物化疗进行分组。TCGA-READ 共包含 135 个患者的数据(Tab. 3),其化疗分布占比见 Fig. 2; TCGA-COAD 共包含 388 个患者的数据(Tab. 4),其化疗分布占比见 Fig. 2c。分别将两批数据去除未记录是否化疗的样本后,标准化数据后,以未化疗组和化疗组进行差异分析(Fig. 2b 和 d),供后续使用。需要注意的是,该 TCGA 的临床数据未记录患者的用药种类、周期等信息,相对于细胞层面的差异分析,更具不稳定性,但也更贴近实际化疗情形。筛选所得的差异基因(p-value < 0.05, |log2(FC)| > 0.3)数见 Fig. 4a。

Figure 2为图 MAIN DEGs obtained from two TCGA project datasets about colorectal chemotherapy 概览。
(对应文件为 ./Figure+Table/fig2.pdf)

Figure 2: MAIN DEGs obtained from two TCGA project datasets about colorectal chemotherapy

6.3 肌少症的基因共表达分析

肌少症的数据集来源于 GEO 的 GSE167186。选取肌少症患者组和对照组的样本 (Old Sarcopenia, Old Healthy),以筛选肌少症的潜在标志基因 (Tab. 5)。该数据集包含肌少症指标的临床数据,故采用 WGCNA⁷ 替代差异分析,以避免多重比较的 p 值矫正问题。选择 Soft Threshold 为 2 (Fig. 3a),建立基因共表达模块 (Fig. 3b)。随后,结合临床数据筛选显著基因模块 (Fig. 3d)。临床数据显著关联的基因集 (GS, gene significant) 和显著的基因模块关系 (MM, module membership) 的交集 (Fig. 3c),共有 1779 个基因。

Figure 3为图 MAIN significant genes obtained by WGCNA analysis of GEO Sarcopenia dataset 概览。

(对应文件为 ./Figure+Table/fig3.pdf)

Figure 3: MAIN significant genes obtained by WGCNA analysis of GEO Sarcopenia dataset

6.4 结直肠癌与肌少症的综合分析

以转录组数据库串连肌少症(Sarcopenia)、结直肠癌(colorectal cancer)、化疗(Chemotherapy)筛选共同的通路,取上述结直肠癌差异基因(6.1 和 6.2)(Fig. 4a)的合集,与肌少症的潜在标志基因取交集(6.3)(Fig. 4c)。共有 184 个交集基因。KEGG 富集分析表明(Fig. 4d),自噬(Autophagy)通路为首要富集的通路;此外,线粒体自噬(Mitophagy)也是显著的通路。GO 富集分析同样揭示了(Fig. 4b)线粒体相关的通路,如,BP: 'mitochondrial protein processing',CC: 'mitochondrial inner membrane',CC: 'autophagosome'等。自噬通路(Autophagy)(Fig. 4e)与 Hypoxia、Low energy、ROS等肿瘤微环境因素相关。事实上,已有文献综述了线粒体(线粒体失调、氧化应激等)、衰老、肿瘤、肌少症⁸⁻¹⁰ 之间的关联。PS: The Cellular Component (CC), the Molecular Function (MF) and the Biological Process (BP).

Figure 4为图 MAIN The intersected genes enriched in mitochondrial and autophagy related pathway 概览。

(对应文件为 ./Figure+Table/fig4.pdf)

Figure 4: MAIN The intersected genes enriched in mitochondrial and autophagy related pathway

6.5 线粒体自噬基因的表达

聚焦于线粒体自噬通路(Mitophagy)的 6 个交集基因(Fig. 5a)。这 6 个基因与自噬通路有 4 个交集基因,分别为 RAB7A, CALCOCO2, BNIP3, ATG9A。在上述分析中,我们以多重数据的差异分析的合集,结合WGCNA 分析的方式取得基因集(Fig. 4c),接下来,为了验证 Mitophagy 的 6 个基因的显著性,重新回到对应的数据集检查。在 Sarcopenia 的数据集中,BNIP3,JUN 为差异表达的基因(Fig. 5b)。随后,可以在TCGA-COAD 数据集中可以发现 BNIP3 的差异表达(Fig. 5d);然而,BNIP3 在 TCGA-READ 数据集为非差异表达基因(Fig. 5c)。显然,该 6 个基因的其余基因是来自于纯细胞系的转录组数据筛选,与复杂的临床样本有所不同。上述分析表明,基因 BNIP3 在直肠癌的化疗治疗中,可能与肌少症的发生发展机制关联,并且与线粒体自噬通路相关。然而,BNIP3 与肌少症的关联机制是否存在于结肠癌或者其它癌症的化疗过程中,需要进一步验证。

Figure 5为图 MAIN The expression of mitophgy related genes in colorectal cancer or sarcopenia 概览。

(对应文件为 ./Figure+Table/fig5.pdf)

Figure 5: MAIN The expression of mitophgy related genes in colorectal cancer or sarcopenia

7 结论

结直肠癌(colorectal cancer)的化疗(Chemotherapy)与肌少症(Sarcopenia)的关联通路为自噬(Autophagy)和线粒体自噬(Mitophagy)。Autophagy和Mitophagy的共交集基因为RAB7A, CALCOCO2, BNIP3, ATG9A。其中,BNIP3在直肠癌的化疗治疗和肌少症患者中的表达均显著升高。

8 附:分析流程

8.1 相关文献

- Skeletal muscle-specific Keap1 disruption modulates fatty acid utilization and enhances exercise capacity in female mice¹¹
- Mitochondrial dysfunction and oxidative stress in aging and cancer⁸
- Sarcopenia in the Older Adult With Cancer⁹
- Danger signals: Chemotherapy enhancers?¹
- Current Targeted Therapy for Metastatic Colorectal Cancer¹²

• The role of aging in $cancer^{10}$

8.2 GEO 结直肠癌(细胞样本)

8.2.1 GSE142340: six CRC cell lines treated with CTRL and optimized drug combinations (ODCs)

- RNA sequencing was conducted for six CRC cell lines treated with CTRL and optimized drug combinations (ODCs), providing samples in duplicate
 - GSE142340

data_processing:

Illumina Casava2.2 software used for basecalling.

data_processing.1:

Sequenced reads were mapped to rn6 whole genome using STAR v2.5.3a with default parameters

data_processing.2:

Raw counts are produced by htseq-count (HTSeq v.0.9.1)

data_processing.3:

Normalization and differential expression analysis were performed with edgeR v.3.24.3

data processing.4:

Genome_build: hg38

data_processing.5:

Supplementary_files_format_and_content: tab-delimited text files include rawcount values for each Sample

data_processing.6:

Supplementary_files_format_and_content: tab-delimited text files include normalized expression values (cpm = count per millions) for each Sample

Table 1为表格 metadata of GSE142340 概览。

(对应文件为 Figure+Table/metadata-of-GSE142340.csv)

注: 表格共有 24 行 7 列,以下预览的表格可能省略部分数据;表格含有 12 个唯一'group'。

Table 1: Metadata of GSE142340

rownames	group	lib.size	norm	sample	cell	treat
DLDCTR2	DLD1	22435	1.002	DLDCTR2	DLD1	CTRL
DLDCTRL1	DLD1	19842	0.982	DLDCTRL1	DLD1	CTRL
DLDODC1	DLD1	22132	0.979	DLDODC1	DLD1	ODC
DLDODC2	DLD1	21319	1.007	DLDODC2	DLD1	ODC
HCTCTRL1	HCT11	21546	0.980	HCTCTRL1	HCT116	CTRL
HCTCTRL2	HCT11	23262	0.972	HCTCTRL2	HCT116	CTRL
HCTODC1	HCT11	24506	0.995	HCTODC1	HCT116	ODC
HCTODC2	HCT11	22573	0.991	HCTODC2	HCT116	ODC
HTCTRL1	HT29	21553	0.930	HTCTRL1	HT29	CTRL
HTCTRL2	HT29	22492	0.953	HTCTRL2	HT29	CTRL
HTODC1	$\mathrm{HT}29\$	16252	0.819	HTODC1	HT29	ODC
$\rm HTODC2$	HT29	20979	0.964	HTODC2	HT29	ODC
LSCTRL1	LS174	22752	0.986	LSCTRL1	LS174T	CTRL
LSCTRL2	LS174	21163	1.014	LSCTRL2	LS174T	CTRL
LSODC1	LS174	21870	0.979	LSODC1	LS174T	ODC

Figure 6为图 DEGs in different cell types with chemotherapy or not GSE142340 概览。

(对应文件为 Figure+Table/DEGs-in-different-cell-types-with-chemotherapy-or-not-GSE142340.pdf)

Figure 6: DEGs in different cell types with chemotherapy or not GSE142340 $\,$

8.2.2 GSE153412: radio-chemoresistance in colorectal cancer cell lines

• RNAseq analysis of radio-chemoresistance in colorectal cancer cell lines

- GSE153412

data_processing:

FASTQ files were generated using bcl2fastq version v2.20.0.422

data_processing.1:

FASTQ files were filtered using Trimmomatic 0.36 (PE ILLUMINA-CLIP:adapters.fa:2:30:10 LEADING:5 TRAILING:5 MINLEN:45).

data_processing.2:

The quality was assessed with FastQC 0.11.8.

data_processing.3:

The transcriptome was generated with gffread, using the GRCh38.p13 genome and the latest Ensembl annotation (Homo sapiens version 98).

data_processing.4:

Complete read pairs were aligned and quantified on a human transcriptome using Kallisto 0.44.0 (index built with –kmer-size=31).

data_processing.5:

Genome_build: GRCh38.p13

$data_processing.6:$

Supplementary_files_format_and_content: Kallisto output tsv file with transcripts abundance (raw counts and tpm).

data_processing.7:

Supplementary_files_format_and_content: Matrix table with raw gene counts for every gene and every sample

data_processing.8:

Supplementary_files_format_and_content: Matrix table with tpm values for every gene and every sample

Table 2为表格 metadata of GSE153412 概览。

(对应文件为 Figure+Table/metadata-of-GSE153412.csv)

注: 表格共有54行8列, 以下预览的表格可能省略部分数据; 表格含有18个唯一'group'。

rownames	group	lib.size	norm	sample	X5.fu	cell	treat
DSU1	Sensi	52675	0.940	DSU1	Sensi	DLD.1	Uraci
DSU2	Sensi	20781	0.951	DSU2	Sensi	DLD.1	Uraci
DSU3	Sensi	54236	0.945	DSU3	Sensi	DLD.1	Uraci
DS51	Sensi	89157	1.029	DS51	Sensi	DLD.1	X5FU
DS52	Sensi	61094	1.016	DS52	Sensi	DLD.1	X5FU
DS53	Sensi	49329	1.014	DS53	Sensi	DLD.1	X5FU
DS5I1	Sensi	68251	1.022	DS5I1	Sensi	DLD.1	X5FU
DS5I2	Sensi	40788	1.047	DS5I2	Sensi	DLD.1	X5FU
DS5I3	Sensi	58964	1.035	DS5I3	Sensi	DLD.1	X5FU
X116SU1	Sensi	50504	0.973	X116SU1	Sensi	HCT.116	Uraci
X116SU2	Sensi	52524	1.004	X116SU2	Sensi	HCT.116	Uraci
X116SU3	Sensi	49999	0.981	X116SU3	Sensi	HCT.116	Uraci
X116S51	Sensi	55051	1.065	X116S51	Sensi	HCT.116	X5FU
X116S52	Sensi	81542	1.033	X116S52	Sensi	HCT.116	X5FU
X116S53	Sensi	57667	1.043	X116S53	Sensi	HCT.116	X5FU

Table 2: Metadata of GSE153412

Figure 7为图 DEGs in different cell types with chemotherapy or not GSE153412 概览。

(对应文件为 Figure+Table/DEGs-in-different-cell-types-with-chemotherapy-or-not-GSE153412.pdf)

Figure 7: DEGs in different cell types with chemotherapy or not GSE153412 $\,$

8.3 TCGA 结肠癌 (TCGA-READ)

Table 3为表格 READ clinical data 概览。

(对应文件为 Figure+Table/READ-clinical-data.xlsx)

注: 表格共有 135 行 113 列,以下预览的表格可能省略部分数据;表格含有 135 个唯一'sample'。

Table 3: READ clinical data

group	lib.size	norm	sample	barcode	patient	short7	defin	sampl9	sampl10	
yes	60935	1.250	TCGA	TCGA	TCGA	TP	Prima	TCGA	01	
yes	52344	0.910	TCGA	TCGA	TCGA	NT	Solid	TCGA	11	
no	48571	1.031	TCGA	TCGA	TCGA	TP	Prima	TCGA	01	
no	50713	0.857	TCGA	TCGA	TCGA	NT	Solid	TCGA	11	
yes	60107	0.945	TCGA	TCGA	TCGA	NT	Solid	TCGA	11	
no	47905	0.993	TCGA	TCGA	TCGA	TP	Prima	TCGA	01	
yes	19924	0.898	TCGA	TCGA	TCGA	TP	Prima	TCGA	01	
yes	63999	1.069	TCGA	TCGA	TCGA	TP	Prima	TCGA	01	
yes	21927	1.060	TCGA	TCGA	TCGA	TP	Prima	TCGA	01	
yes	51616	0.974	TCGA	TCGA	TCGA	TP	Prima	TCGA	01	
no	33491	0.871	TCGA	TCGA	TCGA	NT	Solid	TCGA	11	
yes	33640	1.124	TCGA	TCGA	TCGA	TP	Prima	TCGA	01	
no	38780	1.124	TCGA	TCGA	TCGA	TP	Prima	TCGA	01	
yes	41384	1.106	TCGA	TCGA	TCGA	TP	Prima	TCGA	01	
yes	53539	1.104	TCGA	TCGA	TCGA	TP	Prima	TCGA	01	

统计是否化疗:

Figure 8为图 READ whether with chemotherapy 概览。

(对应文件为 Figure+Table/READ-whether-with-chemotherapy.pdf)

Figure 8: READ whether with chemotherapy

Figure 9为图 READ difference expressed genes 概览。

(对应文件为 Figure+Table/READ-difference-expressed-genes.pdf)

Figure 9: READ difference expressed genes

8.4 TCGA 直肠癌 (TCGA-COAD)

Table 4为表格 COAD clinical data 概览。

(对应文件为 Figure+Table/COAD-clinical-data.xlsx)

注: 表格共有 388 行 112 列,以下预览的表格可能省略部分数据;表格含有 388 个唯一'sample'。

Table 4: COAD clinical data

group	lib.size	norm	sample	barcode	patient	short7	defin	sampl9	sampl10	
no	50725	1.167	TCGA	TCGA	TCGA	TP	Prima	TCGA	01	
yes	46391	1.030	TCGA	TCGA	TCGA	TP	Prima	TCGA	01	
no	29081	0.988	TCGA	TCGA	TCGA	TP	Prima	TCGA	01	
no	51150	1.097	TCGA	TCGA	TCGA	TP	Prima	TCGA	01	
yes	33677	1.080	TCGA	TCGA	TCGA	TP	Prima	TCGA	01	
no	31679	1.073	TCGA	TCGA	TCGA	TP	Prima	TCGA	01	
yes	44720	0.781	TCGA	TCGA	TCGA	NT	Solid	TCGA	11	
no	21922	1.073	TCGA	TCGA	TCGA	TP	Prima	TCGA	01	
yes	22321	1.326	TCGA	TCGA	TCGA	TP	Prima	TCGA	01	
no	35916	0.872	TCGA	TCGA	TCGA	NT	Solid	TCGA	11	
yes	19466	0.969	TCGA	TCGA	TCGA	TP	Prima	TCGA	01	
yes	30802	1.147	TCGA	TCGA	TCGA	TP	Prima	TCGA	01	
yes	52195	0.909	TCGA	TCGA	TCGA	NT	Solid	TCGA	11	
no	40206	0.831	TCGA	TCGA	TCGA	NT	Solid	TCGA	11	
no	46895	0.751	TCGA	TCGA	TCGA	NT	Solid	TCGA	11	

统计是否化疗:

Figure 10为图 COAD whether with chemotherapy 概览。

(对应文件为 Figure+Table/COAD-whether-with-chemotherapy.pdf)

Figure 10: COAD whether with chemotherapy

使用 Limma 计算差异表达基因。

Figure 11为图 COAD difference expressed genes 概览。

(对应文件为 Figure+Table/COAD-difference-expressed-genes.pdf)

Figure 11: COAD difference expressed genes

8.5 GEO 肌少症

8.5.1 GSE167186: transcriptome profiling on lower limb muscle biopsies from 72 young, old and sarcopenic subjects

- We performed transcriptome profiling on lower limb muscle biopsies from 72 young, old and sarcopenic subjects using bulk RNA-seq (N = 72) and single-nuclei RNA-seq (N = 17).
 - GSE167186

8.5.1.1 edgeR 对数据进行标准化处理。

Figure 12为图 filtering of Sarcopenia datasets 概览。

(对应文件为 Figure+Table/filtering-of-Sarcopenia-datasets.pdf)

Figure 12: Filtering of Sarcopenia datasets

Figure 13为图 nomalization of Sarcopenia datasets 概览。

(对应文件为 Figure+Table/nomalization-of-Sarcopenia-datasets.pdf)

Figure 13: Nomalization of Sarcopenia datasets

8.5.1.2 WGCNA Table 5为表格 metadata of samples used in GEO Sarcopenia data 概览。
(对应文件为 Figure+Table/metadata-of-samples-used-in-GEO-Sarcopenia-data.csv)

注: 表格共有 53 行 16 列,以下预览的表格可能省略部分数据;表格含有 53 个唯一'sample'。

Table 5: Metadata of samples used in GEO Sarcopenia data

rownames	group	lib.size	norm	sample	X6.mi	age.ch1	biode	grip	group	leg.p	
X_10	OLD_S	23299	1.064	X_10	1.010	68	166.2	41.8	Sarco	130.5	
X_11	OLD_H	24242	1.078	X_11	1.088	87	136.4	24.2	Old H	129.55	
X_13	OLD_S	17915	0.968	X_13	1.425	83	143.1	40	Sarco	127.27	
X_14	OLD_H	22048	0.932	X_14	0.918	77	222.1	35.5	Old H	229.5	
X_15	OLD_H	21527	0.916	X_15	NA	82	127.9	35.1	Old H	94.5	
X_16	$\mathrm{OLD}_{-}\mathrm{H}$	15754	0.949	X_16	NA	73	202.7	49.1	Old H	145.5	
X_17	OLD_S	23226	1.116	X_17	0.886	77	171.7	45.5	Sarco	87.5	
X_18	OLD_H	22781	0.998	X_18	1.086	64	203.9	42.7	Old H	112.5	
X_19	OLD_S	21202	1.092	X_19	1.041	77	143.8	33.7	Sarco	112.5	
X_1	OLD_S	25372	0.994	X_1	NA	67	148.7	41.3	Sarco	NA	
X_20	OLD_S	21469	1.085	X_20	1.136	78	152.3	54.7	Sarco	148.5	
X_21	OLD_S	23263	1.041	X_21	0.970	83	100.6	25.8	Sarco	67.5	
X_22	$\mathrm{OLD}_{-}\mathrm{H}$	22763	1.059	X_22	1.025	78	207.2	45.1	Old H	139.5	
X_23	OLD_H	26356	1.114	X_23	1	76	236.8	42.4	Old H	112.5	
X_24	OLD_H	30075	1.185	X_24	0.745	65	120.8	23.6	Old H	103.5	
						•••					

Figure 14为图 whether with Sarcopenia 概览。

(对应文件为 Figure+Table/whether-with-Sarcopenia.pdf)

Figure 14: Whether with Sarcopenia

data_processing:

Bulk RNA-seq was aligned using the STAR software, and counted using featureCounts.

data_processing.1:

Single-nuclei RNA-seq was aligned using the CellRanger software (10x).

data_processing.2:

Genome_build: Homo_sapiens.GRCh38

data_processing.3:

Supplementary_files_format_and_content: counts.csv: Counts data for bulk RNA-seq.

$data_processing.4:$

Supplementary_files_format_and_content: HM*.csv: Counts for single-nuclei RNA-seq.

Figure 15为图 soft threshold 概览。

(对应文件为 Figure+Table/soft-threshold.pdf)

Figure 15: Soft threshold

Figure 16为图 clustering of gene modules 概览。

(对应文件为 Figure+Table/clustering-of-gene-modules.pdf)

Cluster Dendrogram 96.0 06.0 98.0 92.0 Module colors

Figure 16: Clustering of gene modules

Figure 17为图 correlation of gene modules and traits data 概览。

(对应文件为 Figure+Table/correlation-of-gene-modules-and-traits-data.pdf)

Figure 17: Correlation of gene modules and traits data

Figure 18为图 intersection of genes significant and module memberships 概览。

(对应文件为 Figure+Table/intersection-of-genes-significant-and-module-memberships.pdf)

Figure 18: Intersection of genes significant and module memberships

8.6 综合:结直肠癌和肌少症

8.6.1 (结直肠癌)数据整合

Figure 19为图 all colorectal DEGs 概览。

(对应文件为 Figure+Table/all-colorectal-DEGs.pdf)

Figure 19: All colorectal DEGs

8.6.2 (结直肠癌与肌少症) 交集基因

Figure 20为图 intersection of colorectal DEGs with Sarcopenia significant genes 概览。

(对应文件为 Figure+Table/intersection-of-colorectal-DEGs-with-Sarcopenia-significant-genes.pdf)

Figure 20: Intersection of colorectal DEGs with Sarcopenia significant genes

8.6.3 富集分析

The Cellular Component (CC), the Molecular Function (MF) and the Biological Process (BP). Figure 21为图 go enrichment 概览。

(对应文件为 Figure+Table/go-enrichment.pdf)

Figure 21: Go enrichment

Figure 22为图 kegg enrichment 概览。

(对应文件为 Figure+Table/kegg-enrichment.pdf)

Figure 22: Kegg enrichment

8.6.4 通路可视化

Figure 23为图 hits in autophagy 概览。

(对应文件为 Figure+Table/hsa04140.pathview.png)

Figure 23: Hits in autophagy

Figure 24为图 hits in Mitophagy 概览。

(对应文件为 Figure+Table/hsa04137.pathview.png)

Figure 24: Hits in Mitophagy

8.7 验证:线粒体自噬基因是否差异表达

8.7.1 肌少症

Figure 25为图 wilcox test of mitophgy related genes in Sarcopenia 概览。

(对应文件为 Figure+Table/wilcox-test-of-mitophgy-related-genes-in-Sarcopenia.pdf)

Figure 25: Wilcox test of mitophgy related genes in Sarcopenia

8.7.2 结直肠癌

Figure 26为图 wilcox test of mitophyy related genes in READ 概览。

(对应文件为 Figure+Table/wilcox-test-of-mitophgy-related-genes-in-READ.pdf)

Figure 26: Wilcox test of mitophgy related genes in READ

Figure 27为图 wilcox test of mitophgy related genes in COAD 概览。

(对应文件为 Figure+Table/wilcox-test-of-mitophgy-related-genes-in-COAD.pdf)

Figure 27: Wilcox test of mitophgy related genes in COAD

Reference

- 1. Vargas, T. R. & Apetoh, L. Danger signals: Chemotherapy enhancers? *Immunological Reviews* **280**, (2017).
- 2. Bozzetti, F. Chemotherapy-induced sarcopenia. Current treatment options in oncology 21, (2020).
- 3. Cruz-Jentoft, A. J. & Sayer, A. A. Sarcopenia. Lancet (London, England) 393, 2636-2646 (2019).
- 4. Wiedmer, P. et al. Sarcopenia molecular mechanisms and open questions. Ageing research reviews 65, (2021).
- 5. Zoetemelk, M. et al. Optimized low-dose combinatorial drug treatment boosts selectivity and efficacy of colorectal carcinoma treatment. *Molecular oncology* 14, 2894–2919 (2020).

- 6. Chauvin, A. et al. Downregulation of krab zinc finger proteins in 5-fluorouracil resistant colorectal cancer cells. BMC cancer 22, (2022).
- Langfelder, P. & Horvath, S. WGCNA: An r package for weighted correlation network analysis. BMC Bioinformatics 9, (2008).
- 8. Kudryavtseva, A. V. *et al.* Mitochondrial dysfunction and oxidative stress in aging and cancer. *Oncotarget* 7, 44879–44905 (2016).
- 9. Williams, G. R., Dunne, R. F., Giri, S., Shachar, S. S. & Caan, B. J. Sarcopenia in the older adult with cancer. *Journal of Clinical Oncology* **39**, (2021).
- 10. Havas, A., Yin, S. & Adams, P. D. The role of aging in cancer. Molecular Oncology 16, (2022).
- 11. Onoki, T. et al. Skeletal muscle-specific keap1 disruption modulates fatty acid utilization and enhances exercise capacity in female mice. Redox biology 43, (2021).
- 12. Ohishi, T. et al. Current targeted therapy for metastatic colorectal cancer. International Journal of Molecular Sciences 24, (2023).