§ 5.3. Домашнее задание (письменное)

Письменно решить номера 11.4.42 - 11.3.49, 11.4.62 - 11.4.65, 11.4.67 - 11.4.77.

Найти $\frac{dz}{dt}$ (или dz) для данных функций z=z(x;y) или z=z(x;y;u) если $x=x(t),\ y=y(t),\ u=u(t)$:

11.4.42.
$$z = \operatorname{arctg} \frac{y}{x}, \ x = e^{2t} + 1, \ y = e^{2t} - 1.$$

11.4.43.
$$z = x^4 + y^4 - 4x^2y^2$$
, $x = e^{2t}$, $y = e^{2t}$.

11.4.44.
$$z = xy + \frac{x}{y}$$
, $x = \operatorname{tg} t$, $y = \ln t$.

11.4.45.
$$z = \frac{x}{y^2}, x = \operatorname{arctg} 2t, y = \arcsin t.$$

11.4.46.
$$z = \frac{x}{\sqrt{x^2 + y^2}}, \quad x = 5^{t^2}, \quad y = \arccos 2t.$$

11.4.47.
$$z = x \sin(x+y), \ x = \frac{1}{t^3}, \ y = (t-1)^2.$$

11.4.48.
$$z = \frac{\cos x^2}{y}$$
, $x = \ln(t+2)$, $y = \operatorname{tg} t$.

11.4.49.
$$z = \operatorname{tg} \frac{x^2}{y}$$
, $x = \cos^2 t$, $y = \sin 2t$.

Примечание к номерам 11.4.62 – 11.4.65. Не забудьте, что если $x = y^2$, то $y = \pm \sqrt{x}$.

Из следующих уравнений выразить явно у как функцию от х:

11.4.62.
$$y^4 - 6x^2y^2 + \operatorname{arctg} 2x = 0$$
.

11.4.63.
$$e^{-x+y^3} - 20x - 18x^3 - 1 = 0$$
.

11.4.64.
$$tg(x^2 + y^4) - 3x^2 - 17 = 0.$$

11.4.65.
$$x^2y^4 - 3y^3 - 6y^2 + 3y + x^2 = 0$$
.

11.4.67. Найти
$$\frac{\partial z}{\partial x}$$
, $\frac{\partial z}{\partial y}$, если $z=u^2\ln v$, где $u=\frac{y}{x}$, $v=x^2+y^2$.

11.4.68. Найти
$$dz$$
, если $z=f(u;v)$, где $u=\frac{2y}{x+y}$, $v=x^2-3y$.

11.4.69. Найти
$$\frac{\partial z}{\partial x},\, \frac{\partial z}{\partial y},\,$$
если $z=f(u;v),$ где $u=\ln(x^2-y^2),\, v=xy^2.$

11.4.70. Найти
$$dz$$
, если $z = u^2v - uv^2$, где $u = x \sin y$, $v = y \cos x$.

11.4.71. Найти
$$dz$$
, если $z = f(u; v)$, где $u = \cos(xy)$, $v = x^5 - 7y$.

11.4.72. Найти
$$dz$$
, если $z=f(u;v)$, где $u=\sin\frac{x}{y},\,v=\sqrt{\frac{x}{y}}.$

Выразить dz через x, y, z, dx u dy, если:

11.4.73.
$$x = \frac{u^2 + v^2}{2}$$
, $y = \frac{u^2 - v^2}{2}$, $z = uv$.

11.4.74.
$$x = \sqrt{a}(\sin u + \cos v), \quad y = \sqrt{a}(\cos u - \sin v), \quad z = 1 + \sin(u - v).$$

11.4.75.
$$x = u + v$$
, $y = u - v$, $z = u^2v^2$.

11.4.76.
$$x = u \cos v$$
, $y = u \sin v$, $z = u^2$.

11.4.77.
$$x=v\cos u-u\cos u+\sin u$$
, $y=v\sin u-u\sin u-\cos u$, $z=(u-v)^2$.