ECE 697 Modeling and High-Performance Control of Electric Machines HW 11 Solutions Spring 2022

Problem 1 1

Problem 2 2

Problem 3 3

Problem 4 4

Problem 5 5

Problem 6 6

Problem 7 7

Problem 8 8

Problem 9 9

Problem 10 10

Problem 11 11

Problem 12 12

Problem 13 13

Problem 14 14

Problem 15 15

Problem 16 i_{dref} With

$$\psi_{dref} = \left\{ \begin{array}{ll} \psi_{d0} & \text{for} \quad |\omega| < \omega_{base} \\ \psi_{d0} \omega_{base} / \left|\omega\right| & \text{for} \quad |\omega| \ge \omega_{base} \end{array} \right.$$

it follows that

$$\frac{\partial \psi_{dref}}{\partial \omega} = \begin{cases} 0 & \text{for } |\omega| < \omega_{base} \\ -\psi_{d0}\omega_{base}/|\omega|^2 & \text{for } |\omega| \ge \omega_{base}. \end{cases}$$

 i_{dref} must be chosen to satisfy

$$\frac{d\psi_{dref}}{dt} = -\frac{1}{T_R}\psi_{dref} + \frac{M}{T_R}i_{dref}$$

or

$$\frac{\partial \psi_{dref}}{\partial \omega_{ref}} \frac{d\omega_{ref}}{dt} = -\frac{1}{T_R} \psi_{dref} + \frac{M}{T_R} i_{dref}$$

so that

$$i_{dref} \triangleq \frac{T_R}{M} \left(\frac{\partial \psi_{dref}}{\partial \omega_{ref}} \alpha_{ref} + \frac{1}{T_R} \psi_{dref} \right).$$

Problem 17 Nested Loop Control Structure

Field Energy and Torque

Problem 18 Torque from Conservation of Energy

(a) Multiplying the fourth equation by $\sigma L_S i_d$, the fifth equation by $\sigma L_S i_q$, and adding gives

$$\frac{1}{2}\sigma L_S \frac{d}{dt} \left(i_d^2 + i_q^2 \right) + \sigma L_S \gamma \left(i_d^2 + i_q^2 \right) - (\eta M / L_R) \psi_d i_d + (n_p M / L_R) \omega \psi_d i_q = i_d u_d + i_q u_q. \tag{1}$$

Substituting $\gamma = \frac{M^2 R_R}{\sigma L_R^2 L_S} + \frac{R_S}{\sigma L_S}$, this becomes

$$\frac{1}{2}\sigma L_S \frac{d}{dt} \left(i_d^2 + i_q^2 \right) + \left(\frac{M^2 R_R}{L_R^2} + R_S \right) \left(i_d^2 + i_q^2 \right) - \left(R_R M / L_R^2 \right) \psi_d i_d + \left(n_p M / L_R \right) \omega \psi_d i_q = i_d u_d + i_q u_q. \tag{2}$$

(b) The field energy is given by

$$W_{\text{field}}(i_{Sa}, i_{Sb}, i_{Ra}, i_{Rb}, \theta_R) \triangleq \frac{1}{2} L_S(i_{Sa}^2 + i_{Sb}^2) + \frac{1}{2} L_R(i_{Ra}^2 + i_{Rb}^2) + M i_{Sa} \left(+i_{Ra} \cos(\theta_R) - i_{Rb} \sin(\theta_R) \right) + M i_{Sb} \left(+i_{Ra} \sin(\theta_R) + i_{Rb} \cos(\theta_R) \right)$$

Using

$$\left[\begin{array}{c} \psi_{Ra} \\ \psi_{Rb} \end{array} \right] = L_R \left[\begin{array}{cc} \cos(n_p\theta) & -\sin(n_p\theta) \\ \sin(n_p\theta) & \cos(n_p\theta) \end{array} \right] \left[\begin{array}{c} i_{Ra} \\ i_{Rb} \end{array} \right] + M \left[\begin{array}{c} i_{Sa} \\ i_{Sb} \end{array} \right]$$

or, equivalently,

$$\frac{1}{L_R} \left[\begin{array}{c} \psi_{Ra} - M i_{Sa} \\ \psi_{Rb} - M i_{Sb} \end{array} \right] = \left[\begin{array}{cc} \cos(n_p \theta) & -\sin(n_p \theta) \\ \sin(n_p \theta) & \cos(n_p \theta) \end{array} \right] \left[\begin{array}{c} i_{Ra} \\ i_{Rb} \end{array} \right]$$

it follows that

$$W_{\text{field}} \triangleq \frac{1}{2} L_S(i_{Sa}^2 + i_{Sb}^2) + \frac{1}{2} L_R(i_{Ra}^2 + i_{Rb}^2) + \frac{M}{L_R} i_{Sa} \left(\psi_{Ra} - M i_{Sa} \right) + \frac{M}{L_R} i_{Sb} \left(\psi_{Rb} - M i_{Sb} \right)$$

$$= \frac{1}{2} L_S(i_{Sa}^2 + i_{Sb}^2) + \frac{1}{2} \frac{1}{L_R} \left((\psi_{Ra} - M i_{Sa})^2 + (\psi_{Rb} - M i_{Sb})^2 \right) + \frac{M}{L_R} i_{Sa} \left(\psi_{Ra} - M i_{Sa} \right)$$

$$+ \frac{M}{L_R} i_{Sb} \left(\psi_{Rb} - M i_{Sb} \right)$$

$$= \frac{1}{2} L_S(i_{Sa}^2 + i_{Sb}^2) + \frac{1}{2} \frac{1}{L_R} \left(\psi_{Ra}^2 + \psi_{Rb}^2 \right) + \frac{1}{2} \frac{M^2}{L_R} \left(i_{Sa}^2 + i_{Sb}^2 \right) - \frac{M}{L_R} \left(\psi_{Ra} i_{Sa} + \psi_{Rb} i_{Sb} \right)$$

$$+ \frac{M}{L_R} i_{Sa} \left(\psi_{Ra} - M i_{Sa} \right) + \frac{M}{L_R} i_{Sb} \left(\psi_{Rb} - M i_{Sb} \right)$$

$$= \frac{1}{2} L_S(i_{Sa}^2 + i_{Sb}^2) + \frac{1}{2} \frac{1}{L_R} \left(\psi_{Ra}^2 + \psi_{Rb}^2 \right) - \frac{1}{2} \frac{M^2}{L_R} \left(i_{Sa}^2 + i_{Sb}^2 \right)$$

$$= \frac{1}{2} \sigma L_S(i_{Sa}^2 + i_{Sb}^2) + \frac{1}{2} \frac{1}{L_R} \left(\psi_{Ra}^2 + \psi_{Rb}^2 \right)$$

$$= \frac{1}{2} \sigma L_S(i_{A}^2 + i_{A}^2) + \frac{1}{2} \frac{1}{L_R} \left(\psi_{Ra}^2 + \psi_{Rb}^2 \right)$$

$$= \frac{1}{2} \sigma L_S(i_{A}^2 + i_{A}^2) + \frac{1}{2} \frac{1}{L_R} \psi_{A}^2. \tag{3}$$

(c) By conservation of energy (power) it must be that

$$\frac{d}{dt}W_{\text{field}} + R_S \left(i_{Sa}^2 + i_{Sb}^2\right) + R_R (i_{Ra}^2 + i_{Rb}^2) + \tau \omega = i_{Sa} u_{Sa} + i_{Sb} u_{Sb}$$
(4)

where $\tau\omega$ is the mechanical power produced.

Note that by (3),

$$\frac{d}{dt}W_{\text{field}} = \frac{1}{2}\sigma L_S \frac{d}{dt}(i_d^2 + i_q^2) + \frac{1}{2}\frac{1}{L_R}\frac{d}{dt}\psi_d^2 = \frac{1}{2}\sigma L_S \frac{d}{dt}(i_d^2 + i_q^2) - \frac{R_R}{L_R^2}\psi_d^2 + R_R \frac{M}{L_R^2}\psi_d i_d.$$

Also, the power lost in the rotor windings can be written in the field-oriented coordinates as

$$R_{R}(i_{Ra}^{2} + i_{Rb}^{2}) = \frac{1}{L_{R}^{2}} R_{R} \left((\psi_{Ra} - Mi_{Sa})^{2} + (\psi_{Rb} - Mi_{Sb})^{2} \right)$$

$$= \frac{1}{L_{R}^{2}} R_{R} \left(\psi_{Ra}^{2} + \psi_{Rb}^{2} \right) + \frac{M^{2}}{L_{R}^{2}} R_{R} (i_{Sa}^{2} + i_{Sb}^{2}) - 2 \frac{M}{L_{R}^{2}} R_{R} (\psi_{Ra} i_{Sa} + \psi_{Rb} i_{Sb})$$

$$= \frac{1}{L_{R}^{2}} R_{R} \psi_{d}^{2} + \frac{M^{2}}{L_{R}^{2}} R_{R} (i_{d}^{2} + i_{q}^{2}) - 2 \frac{M}{L_{R}^{2}} R_{R} \psi_{d} i_{d}.$$

Using these two expressions, equation (4) can be written in the field-oriented coordinate system as

$$\frac{d}{dt}W_{\text{field}} + R_S \left(i_d^2 + i_q^2\right) + \frac{1}{L_R^2} R_R \psi_d^2 + \frac{M^2}{L_R^2} R_R (i_d^2 + i_q^2) - 2 \frac{M}{L_R^2} R_R \psi_d i_d + \tau \omega = i_d u_d + i_q u_q$$

$$\implies \frac{1}{2} \sigma L_S \frac{d}{dt} (i_d^2 + i_q^2) + R_S \left(i_d^2 + i_q^2\right) + \frac{M^2}{L_R^2} R_R (i_d^2 + i_q^2) - \frac{M}{L_R^2} R_R \psi_d i_d + \tau \omega = i_d u_d + i_q u_q$$

$$\implies \frac{1}{2} \sigma L_S \frac{d}{dt} \left(i_d^2 + i_q^2\right) + \left(\frac{M^2 R_R}{L_R^2} + R_S\right) \left(i_d^2 + i_q^2\right) - \frac{M}{L_R^2} R_R \psi_d i_d + \tau \omega = i_d u_d + i_q u_q.$$

Comparing this last expression with (2) gives

$$\tau\omega = (n_p M/L_R)\omega\psi_d i_q$$

so that the mechanical torque is given by

$$\tau = \frac{n_p M}{L_R} \psi_d i_q$$

and the back-emf voltage is

$$\frac{n_p M}{L_R} \psi_d \omega.$$

Observers

Problem 19 Discretization of the Flux Observer Simulation problem

Problem 20 Stability of a Discrete Flux Observer

The solution is essentially in the statement of the problem.

Problem 21 Discretization of the Flux Observer in the Field-Oriented Coordinate System Simulation problem.

Problem 22 Discretization of the Flux Observer Equations

The solution is essentially in the statement of the problem.

Problem 23 Flux Observer Based on Position Measurements

Consider the flux observer (5)

$$\frac{d\hat{\rho}}{dt} = n_p \omega + \eta M \left(-i_{Sa} \sin(\hat{\rho}) + i_{Sb} \cos(\hat{\rho}) \right) / \hat{\psi}_d$$

$$\frac{d\hat{\psi}_d}{dt} = -\eta \hat{\psi}_d + \eta M \left(i_{Sa} \cos(\hat{\rho}) + i_{Sb} \sin(\hat{\rho}) \right).$$
(5)

Let

$$s \triangleq \rho - n_p \theta$$

so that

$$\frac{ds}{dt} = \eta M \left(-i_{Sa} \sin(\rho) + i_{Sb} \cos(\rho) \right) / \psi_d$$
$$= \eta M \left(-i_{Sa} \sin\left(s(t) + n_p \theta(t)\right) + i_{Sb} \cos\left(s(t) + n_p \theta(t)\right) \right) / \psi_d$$

and

$$\frac{d\psi_d}{dt} = -\eta \psi_d + \eta M \left(i_{Sa} \cos \left(s(t) + n_p \theta(t) \right) + i_{Sb} \sin \left(s(t) + n_p \theta(t) \right) \right)$$

Define an estimator by

$$\frac{d\hat{s}}{dt} = \eta M \left(-i_{Sa} \sin(\hat{\rho}) + i_{Sb} \cos(\hat{\rho}) \right) / \hat{\psi}_d$$

$$\frac{d\hat{\psi}_d}{dt} = -\eta \hat{\psi}_d + \eta M \left(i_{Sa} \cos(\hat{\rho}) + i_{Sb} \sin(\hat{\rho}) \right)$$

where

$$\hat{\rho}(t) \triangleq n_p \theta(t) + \hat{s}(t).$$

Note that this flux estimator requires the stator currents and rotor position, but not the rotor speed.