# FIGURE 1

# CBH1-E1 Fusion Construct

T. reesei chhl core, linker (no CBD)

Acidothermus cellulolyticus endoglucanase 1 core (E1



Figure 2
DNA sequence of *T. reesei cbh1* signal sequence+catalytic domain+linker (1570 bases)

<u>ATGTATCGGAAGTTGGCCGTCATCTCGGCCTTCTTGGCCACAGCTCGTGCT</u>CA GTCGGCCTGCACTCTCCAATCGGAGACTCACCCGCCTCTGACATGGCAG AAATGCTCGTCTGGTGGCACTTGCACTCAACAGACAGGCTCCGTGGTCA TCGACGCCAACTGGCGCTGGACTCACGCTACGAACAGCAGCACGAACTG CTACGATGGCAACACTTGGAGCTCGACCCTATGTCCTGACAACGAGACC TGCGCGAAGAACTGCTGTCTGGACGGTGCCGCCTACGCGTCCACGTACG GAGTTACCACGAGCGGTAACAGCCTCTCCATTGGCTTTGTCACCCAGTC ACCTACCAGGAATTCACCCTGCTTGGCAACGAGTTCTCTTTCGATGTTGA TGTTTCGCAGCTGCCGTAAGTGACTTACCATGAACCCCTGACGTATCTTC TTGTGGGCTCCCAGCTGACTGGCCAATTTAAGGTGCGGCTTGAACGGAG CTCTCTACTTCGTGTCCATGGACGCGGATGGTGGCGTGAGCAAGTATCC CACCAACACCGCTGGCGCCAAGTACGGCACGGGGTACTGTGACAGCCAG TGTCCCCGCGATCTGAAGTTCATCAATGGCCAGGCCAACGTTGAGGGCT GGGAGCCGTCATCCAACACGCAAACACGGGCATTGGAGGACACGGAA GCTGCTGCTCTGAGATGGATATCTGGGAGGCCAACTCCATCTCCGAGGC TCTTACCCCCACCCTTGCACGACTGTCGGCCAGGAGATCTGCGAGGGT GATGGGTGCGGCGGAACTTACTCCGATAACAGATATGGCGGCACTTGCG ATCCCGATGGCTGCGACTGGAACCCATACCGCCTGGGCAACACCAGCTT CTACGGCCCTGGCTCAAGCTTTACCCTCGATACCACCAAGAAATTGACC GTTGTCACCCAGTTCGAGACGTCGGGTGCCATCAACCGATACTATGTCC AGAATGGCGTCACTTTCCAGCAGCCCAACGCCGAGCTTGGTAGTTACTC TGGCAACGAGCTCAACGATGATTACTGCACAGCTGAGGAGGCAGAATTC GGCGGATCCTCTTTCTCAGACAAGGGCGGCCTGACTCAGTTCAAGAAGG CTACCTCTGGCGGCATGGTTCTGGTCATGAGTCTGTGGGATGATGTGAG ATGTTACAGTACTACGCCAACATGCTGTGGCTGGACTCCACCTACCCGA CAAACGAGACCTCCTCCACACCCGGTGCCGTGCGCGGAAGCTGCTCCAC CAGCTCCGGTGTCCCTGCTCAGGTCGAATCTCAGTCTCCCAACGCCAAG GTCACCTTCTCCAACATCAAGTTCGGACCCATTGGCAGCACCGGCAACC CCGCCCAGCCACTACCACTGGAAGCTCTCCCGGACCTACTAGT

# Figure 3

Amino acid sequence of *T. reesei cbh1* signal sequence + catalytic domain + linker (480 amino acids)

MYRKLAVISAFLATARAQSACTLQSETHPPLTWQKCSSGGTCTQQTGSVVID ANWRWTHATNSSTNCYDGNTWSSTLCPDNETCAKNCCLDGAAYASTYGVT TSGNSLSIGFVTQSAQKNVGARLYLMASDTTYQEFTLLGNEFSFDVDVSQLP CGLNGALYFVSMDADGGVSKYPTNTAGAKYGTGYCDSQCPRDLKFINGQA NVEGWEPSSNNANTGIGGHGSCCSEMDIWEANSISEALTPHPCTTVGQEICE GDGCGGTYSDNRYGGTCDPDGCDWNPYRLGNTSFYGPGSSFTLDTTKKLT VVTQFETSGAINRYYVQNGVTFQQPNAELGSYSGNELNDDYCTAEEAEFGG SSFSDKGGLTQFKKATSGGMVLVMSLWDDYYANMLWLDSTYPTNETSSTP GAVRGSCSTSSGVPAQVESQSPNAKVTFSNIKFGPIGSTGNPSGGNPPGGNPPG TTTTRRPATTTGSSPGPTS

# Figure 4

DNA sequence of *Acidothermus cellulolyticus GH5A* endoglucanase *1* catalytic domain (1077 bases)

GCGGCGGCGCTATTGGCACACGAGCGGCCGGGAGATCCTGGACGCGAAC AACGTGCCGGTACGGATCGCCGGCATCAACTGGTTTGGGTTCGAAACCTGCA ATTACGTCGTGCACGGTCTCTGGTCACGCGACTACCGCAGCATGCTCGACCA GATAAAGTCGCTCGGCTACAACACAATCCGGCTGCCGTACTCTGACGACATT CTCAAGCCGGGCACCATGCCGAACAGCATCAATTTTTACCAGATGAATCAGG ACCTGCAGGGTCTGACGTCCTTGCAGGTCATGGACAAAATCGTCGCGTACGC GGGCAGTCGGCGCTGTGGTACACGAGCAGCGTCTCGGAGGCTACGTGGATTT CCGACCTGCAAGCGCTGGCGCAGCGCTACAAGGGAAACCCGACGGTCGTCG GCTTTGACTTGCACAACGAGCCGCATGACCCGGCCTGCTGGGGCTGCGGCGA TCCGAGCATCGACTGGCGATTGGCCGCCGAGCGGCCGGAAACGCCGTGCTC TCGGTGAATCCGAACCTGCTCATTTTCGTCGAAGGTGTGCAGAGCTACAACG GAGACTCCTACTGGTGGGGCGGCAACCTGCAAGGAGCCGGCCAGTACCCGGT CGTGCTGAACGTGCCGAACCGCCTGGTGTACTCGGCGCACGACTACGCGACG AGCGTCTACCCGCAGACGTGGTTCAGCGATCCGACCTTCCCCAACAACATGC CCGGCATCTGGAACAAGAACTGGGGATACCTCTTCAATCAGAACATTGCACC TGGCTGAAGACGCTCGTCCAGTACCTACGGCCGACCGCGCAATACGGTGCGG ACAGCTTCCAGTGGACCTTCTGGTCCTGGAACCCCGATTCCGGCGACACAGG AGGAATTCTCAAGGATGACTGGCAGACGGTCGACACAGTAAAAGACGGCTAT CTCGCGCCGATCAAGTCGTCGATTTTCGATCCTGTCGGC

Figure 5

Amino acid sequence of *Acidothermus cellulolyticus* GH5A endoglucanase 1 catalytic domain (359 amino acids)

AGGGYWHTSGREILDANNVPVRIAGINWFGFETCNYVVHGLWSRDYRSMLDQI KSLGYNTIRLPYSDDILKPGTMPNSINFYQMNQDLQGLTSLQVMDKIVAYAGQIG LRIILDRHRPDCSGQSALWYTSSVSEATWISDLQALAQRYKGNPTVVGFDLHNEP HDPACWGCGDPSIDWRLAAERAGNAVLSVNPNLLIFVEGVQSYNGDSYWWGG NLQGAGQYPVVLNVPNRLVYSAHDYATSVYPQTWFSDPTFPNNMPGIWNKNW GYLFNQNIAPVWLGEFGTTLQSTTDQTWLKTLVQYLRPTAQYGADSFQWTFWS WNPDSGDTGGILKDDWQTVDTVKDGYLAPIKSSIFDPVG

### FIGURE 6

DNA sequence of *Acidothermus cellulolyticus GH48 cellulase* catalytic domain (1914 bases)

AACGACCCGTACATCCAGCGGTTCCTCACGATGTACAACAAGATTCACGACC CAGCGAACGCTACTTCAGCCCGCAGGGAATTCCCTACCACTCGGTAGAAAC GCTCATCGTTGAGGCACCGGACTACGGGCACGAGACAACTTCGGAGGCGTAC AGCTTCTGGCTCTGGCTCGAAGCGACGTACGGCGCAGTGACCGGCAACTGGA CGCCGTTCAACAACGCCTGGACGACGATGGAAACGTACATGATCCCGCAGCA CGCGGACCAGCCGAACAACGCGTCGTACAACCCCAACAGCCCGGCGTCGTAC GCTCCGGAAGAGCCGCTGCCCAGCATGTACCCGGTTGCCATCGACAGCAGCG TGCCGGTTGGGCACGACCCGCTCGCCGCAATTGCAGTCGACGTACGCCAC TCCGGACATTTACGGCATGCACTGGCTGGCCGACGTTGACAACATCTACGGA TACGGCGACAGCCCCGGCGGTGGTTGCGAACTCGGTCCTTCCGCTAAGGGCG TCTCCTACATCAACACATTCCAGCGCGCTCGCAGGAGTCCGTCTGGGAGAC GGTCACCCAGCCGACGTGCGACAACGGCAAGTACGGTGGGGCGCACGGCTA CGTCGACCTGTTCATCCAGGGTTCGACGCCGCCGCAGTGGAAGTACACCGAT GCCCGGACGCCGACGCCGTGCCGTCCAGGCTGCGTACTGGGCCTACACCT GGGCATCGGCGCAGGCAAGGCAAGCGCGATTGCCCCGACGATCGCCAAGG CGGCCAAACtCGGCGACTACCTGCGGTACTCGCTCTTTGACAAGTACTTCAAG CAGGTCGGCAACTGCTACCCGGCCAGCTCCTGCCCTGGAGCAACCGGACGCC AGAGCGAGACCTACCTGATCGGCTGGTACTACGCCTGGGGCGGCTCAAGCCA AGGCTGGGCCTGGCGCATTGGTGACGGCGCCGCGCACTTCGGCTACCAGAAT CCGCTTGCCGCGTGGGCGATGTCGAACGTGACACCGCTCATTCCGCTCTCGCC CACGCCAAAGAGCGACTGGGCGCGAGCTTGCAGCGCCAGCTGGAGTTCTAC CAGTGGTTGCAATCCGCGGAAGGAGCCATTGCGGGCGCGCCCACCAACAGCT GGAACGGCAATTACGGGACCCCGCCGGCCGGAGACTCGACCTTCTACGGCAT GGCGTACGACTGGGAGCCGGTCTACCACGACCCGCCGAGCAACAACTGGTTC GGCTTCCAGGCGTGGTCCATGGAACGGGTTGCCGAGTACTACTACGTCACCG GCGACCCGAAGGCCAAGGCGCTGCTCGACAAGTGGGTCGCATGGGTGAAGC CGAATGTCACCACCGGTGCCTCATGGTCGATTCCGTCGAATTTGTCCTGGAGC GGCCAACCGGATACCTGGAATCCGAGCAACCCAGGAACGAATGCCAACCTG CGAAGACACTCGAGTACTACGCGGCAAAATCCGGCGATACGGCCTCGCGCGA CCTCGCGAAGGGATTGCTCGACTCCATGTGGAACAACGACCAGGACAGCCTC GGTGTGAGCACACCGGAGACGCGGACCGACTACTCTCGGTTCACTCAGGTGT ACGACCCGACGACTGGTGACGGCCTCTACATCCCGTCGGGTTGGACGGGGAC CATGCCCAACGGTGACCAAATCAAGCCGGGTGCGACCTTCCTGAGCATCCGG TCCTGGTACACCAAGGATCCGCAGTGGTCGAAGGTGCAGGCGTACCTCAACG GCGGGCCTGCTCCGACGTTCAACTACCACCGGTTCTGGGCGGAGTCCGACTT CGCGATGGCGAACGCCGATTTTGGCATGCTCTTCCCATCCGGG

### FIGURE 7

Amino acid sequence of *Acidothermus cellulolyticus 48* catalytic domain (638 amino acids)

NDPYIQRFLTMYNKIHDPANGYFSPQGIPYHSVETLIVEAPDYGHETTSEAYSFW LWLEATYGAVTGNWTPFNNAWTTMETYMIPQHADQPNNASYNPNSPASYAPEE PLPSMYPVAIDSSVPVGHDPLAAELQSTYGTPDIYGMHWLADVDNIYGYGDSPG GGCELGPSAKGVSYINTFQRGSQESVWETVTQPTCDNGKYGGAHGYVDLFIQGS TPPQWKYTDAPDADARAVQAAYWAYTWASAQGKASAIAPTIAKAAKLGDYLR YSLFDKYFKQVGNCYPASSCPGATGRQSETYLIGWYYAWGGSSQGWAWRIGD GAAHFGYQNPLAAWAMSNVTPLIPLSPTAKSDWAASLQRQLEFYQWLQSAEGA IAGGATNSWNGNYGTPPAGDSTFYGMAYDWEPVYHDPPSNNWFGFQAWSMER VAEYYYVTGDPKAKALLDKWVAWVKPNVTTGASWSIPSNLSWSGQPDTWNPS NPGTNANLHVTITSSGQDVGVAAALAKTLEYYAAKSGDTASRDLAKGLLDSMWNNDQDSLGVSTPETRTDYSRFTQVYDPTTGDGLYIPSGWTGTMPNGDQIKPGAT FLSIRSWYTKDPQWSKVQAYLNGGPAPTFNYHRFWAESDFAMANADFGMLFPS G

### FIGURE 8A

DNA sequence of Acidothermus cellulolyticus GH74 catalytic domain

TTTGTCGACGGGATCGTCTTCAATGAAGGTGCACCGGGAATTCTGTACGTGCG GACGGACATCGGGGGGATGTATCGATGGGATGCCGCCAACGGGCGGTGGAT CCCTCTTCTGGATTGGGTGGGATGGAACAATTGGGGGTACAACGGCGTCGTC AGCATTGCGGCAGACCCGATCAATACTAACAAGGTATGGGCCGCCGTCGGAA TGTACACCAACAGCTGGGACCCAAACGACGAGCGATTCTCCGCTCGTCTGA TCAGGGCGCAACGTGGCAAATAACGCCCCTGCCGTTCAAGCTTGGCGGCAAC ATGCCCGGGCGTGGAATGGGCGAGCGGCTTGCGGTGGATCCAAACAATGACA ACATTCTGTATTTCGGCGCCCCGAGCGCAAAGGGCTCTGGAGAAGCACAGA TTCCGGCGCGACCTGGTCCCAGATGACGAACTTTCCGGACGTAGGCACGTAC ATTGCAAATCCCACTGACACGACCGGCTATCAGAGCGATATTCAAGGCGTCG TCTGGGTCGCTTTCGACAAGTCTTCGTCATCGCTCGGGCAAGCGAGTAAGACC ATTTTTGTGGGCGTGGCGGATCCCAATAATCCGGTCTTCTGGAGCAGAGACG GCGCCGACGTGCCAGCGTGCCGGTGCCGACCGCCTTCATCCCGCA CAAGGGCGTCTTTGACCCGGTCAACCACGTGCTCTATATTGCCACCAGCAAT ACGGGTGGTCCGTATGACGGGAGCTCCGGCGACGTCTGGAAATTCTCGGTGA CCTCCGGGACATGGACGCGAATCAGCCCGGTACCTTCGACGGACACGGCCAA CGACTACTTTGGTTACAGCGGCCTCACTATCGACCGCCAGCACCCGAACACG ATAATGGTGGCAACCCAGATATCGTGGTGGCCGGACACCATAATCTTTCGGA GCACCGACGCGGTGCGACGTGGACGCGGATCTGGGATTGGACGAGTTATCC CAATCGAAGCTTGCGATATGTGCTTGACATTTCGGCGGAGCCTTGGCTGACCT TGAAGCGATGGCAATCGATCCGTTCAACTCTGATCGGATGCTCTACGGAACA GGCGCGACGTTGTACGCAACAAATGATCTCACGAAGTGGGACTCCGGCGGCC AGATTCATATCGCGCCGATGGTCAAAGGATTGGAGGAGACGGCGGTAAACG ATCTCATCAGCCCGCCGTCTGGCGCCCCCGCTCATCAGCGCTCTCGGAGACCTC GGCGGCTTCACCCACGCCGACGTTACTGCCGTGCCATCGACGATCTTCACGTC

### FIGURE 8B

ACCGGTGTTCACGACCGGCACCAGCGTCGACTATGCGGAATTGAATCCGTCG ATCATCGTTCGCGCTGGAAGTTTCGATCCATCGAGCCAACCGAACGACAGGC ACGTCGCGTTCTCGACAGACGGCGCAAGAACTGGTTCCAAGGCAGCGAACC TGGCGGGGTGACGACGGCGGCACCGTCGCCGCATCGGCCGACGGCTCTCGT TTCGTCTGGGCTCCCGGCGATCCCGGTCAGCCTGTGGTGTACGCAGTCGGATT TGGCAACTCCTGGGCTGCTTCGCAAGGTGTTCCCGCCAATGCCCAGATCCGCT CAGACCGGGTGAATCCAAAGACTTTCTATGCCCTATCCAATGGAACCTTCTAT CGAAGCACGGACGCGCGTGACATTCCAACCGGTCGCGGCCGGTCTTCCGA GCAGCGGTGCCGTCGTGTCATGTTCCACGCGGTGCCTGGAAAAGAAGCCGA TCTGTGGCTCGCTGCATCGAGCGGGCTTTACCACTCAACCAATGGCGGCAGC AGTTGGTCTGCAATCACCGGCGTATCCTCCGCGGTGAACGTGGGATTTGGTA AGTCTGCGCCCGGGTCGTCATACCCAGCCGTCTTTGTCGTCGGCACGATCGGA GGCGTTACGGGGGCGTACCGCTCCGACGACGGTGGGACGACCTGGGTACGG ATCAATGATGACCAGCACCAATACGGAAATTGGGGACAAGCAATCACCGGTG ACCCGCGAATTTACGGGCGGGTGTACATAGGCACGAACGGCCGTGGAATTGT CTACGGGGACATTGGTGGTGCGCCGTCCGGATCG

### FIGURE 9

Amino acid sequence of *Acidothermus cellulolyticus 74* catalytic domain (741 amino acids)

ATTQPYTWSNVAIGGGGFVDGIVFNEGAPGILYVRTDIGGMYRWDAANGRWIPL LDWVGWNNWGYNGVVSIAADPINTNKVWAAVGMYTNSWDPNDGAILRSSDQ GATWQITPLPFKLGGNMPGRGMGERLAVDPNNDNILYFGAPSGKGLWRSTDSG ATWSQMTNFPDVGTYIANPTDTTGYQSDIQGVVWVAFDKSSSSLGQASKTIFVG VADPNNPVFWSRDGGATWQAVPGAPTGFIPHKGVFDPVNHVLYIATSNTGGPY DGSSGDVWKFSVTSGTWTRISPVPSTDTANDYFGYSGLTIDRQHPNTIMVATQIS WWPDTIIFRSTDGGATWTRIWDWTSYPNRSLRYVLDISAEPWLTFGVQPNPPVPS PKLGWMDEAMAIDPFNSDRMLYGTGATLYATNDLTKWDSGGQIHIAPMVKGLE ETAVNDLISPPSGAPLISALGDLGGFTHADVTAVPSTIFTSPVFTTGTSVDYAELNP SIIVRAGSFDPSSQPNDRHVAFSTDGGKNWFQGSEPGGVTTGGTVAASADGSRFV WAPGDPGQPVVYAVGFGNSWAASQGVPANAQIRSDRVNPKTFYALSNGTFYRS TDGGVTFQPVAAGLPSSGAVGVMFHAVPGKEGDLWLAASSGLYHSTNGGSSWS AITGVSSAVNVGFGKSAPGSSYPAVFVVGTIGGVTGAYRSDDGGTTWVRINDDQ HOYGNWGQAITGDPRIYGRVYIGTNGRGIVYGDIGGAPSGS

Figure 10

DNA sequence of *Thermobifida fusca* E3 (TfE3) cellulase including the cellulose binding domain - linker – cataltyic domain but lacking a TfE3 signal sequence. (1677 bases)

GCCGGCTGCTCGGTGGACTACACGGTCAACTCCTGGGGTACCGGGTTCACCG CCAACGTCACCATCACCAACCTCGGCAGTGCGATCAACGGCTGGACCCTGGA GTGGGACTTCCCCGGCAACCAGCAGGTGACCAACCTGTGGAACGGGACCTAC ACCCAGTCCGGGCAGCACGTGTCGGTCAGCAACGCCCCGTACAACGCCTCCA TCCCGGCCAACGGAACGGTTGAGTTCGGGTTCAACGGCTCCTACTCGGGCAG CAACGACATCCCCTCCTTCAAGCTGAACGGGGTTACCTGCGACGGCTCG GACGACCCCGACCCCAGCCCAGCCCCAGCCCCAGCCCCA CAGACCCGGATGAGCCGGGCGGCCCGACCAACCCGGCCG AGAAGGTCGACAACCCGTTCGAGGGCGCCAAGCTGTACGTGAACCCGGTCTG GTCGGCCAAGGCCGCTGAGCCGGGCGGTTCCGCGGTCGCCAACGAGTCC ACCGCTGTCTGGCTGGACCGTATCGGCGCCATCGAGGGCAACGACAGCCCGA CCACCGGCTCCATGGGTCTGCGCGACCACCTGGAGGAGGCCGTCCGCCAGTC CGGTGGCGACCCGCTGACCATCCAGGTCGTCATCTACAACCTGCCCGGCCGC GACTGCGCCGCGCTGGCCTCCAACGGTGAGCTGGGTCCCGATGAACTCGACC GCTACAAGAGCGAGTACATCGACCCGATCGCCGACATCATGTGGGACTTCGC AGACTACGAGAACCTGCGGATCGTCGCCATCATCGAGATCGACTCCCTGCCC AACCTCGTCACCAACGTGGGCGGGAACGGCGCACCGAGCTCTGCGCCTACA TGAAGCAGAACGGCGGCTACGTCAACGGTGTCGGCTACGCCCTCCGCAAGCT GGGCGAGATCCCGAACGTCTACAACTACATCGACGCCGCCCACCACGGCTGG ATCGGCTGGGACTCCAACTTCGGCCCCTCGGTGGACATCTTCTACGAGGCCG CCAACGCCTCCGGCTCCACCGTGGACTACGTGCACGGCTTCATCTCCAACAC GGCCAACTACTCGGCCACTGTGGAGCCGTACCTGGACGTCAACGGCACCGTT AACGGCCAGCTCATCCGCCAGTCCAAGTGGGTTGACTGGAACCAGTACGTCG ACGAGCTCTCCTTCGTCCAGGACCTGCGTCAGGCCCTGATCGCCAAGGGCTTC CGGTCCGACATCGGTATGCTCATCGACACCTCCCGCAACGGCTGGGGTGGCC CGAACCGTCCGACCGGACCGACCTCCACCGACCTCAACACCTACGTTGA CGAGAGCCGTATCGACCGCCGTATCCACCCCGGTAACTGGTGCAACCAGGCC GGTGCGGGCCTCGGCGAGCGGCCCACGGTCAACCCGGCTCCCGGTGTTGACG CCTACGTCTGGGTGAAGCCCCCGGGTGAGTCCGACGGCGCCAGCGAGGAGAT CCCGAACGACGAGGCAAGGGCTTCGACCGCATGTGCGACCCGACCTACCAG GGCAACGCCCGCAACGCCAACACCCCTCGGGTGCGCTGCCCAACGCCCCCA TCTCCGGCCACTGGTTCTCTGCCCAGTTCCGCGAGCTGCTGGCCAACGCCTAC **CCGCCTCTGTAA** 

Figure 11

Amino acid sequence of the *Thermobifida fusca E3* - cellulase including the cellulose binding domain - linker – cataltyic domain but lacking the TfE3 signal sequence. (558 amino acids)

AGCSVDYTVNSWGTGFTANVTITNLGSAINGWTLEWDFPGNQQVTNLWNGTYT QSGQHVSVSNAPYNASIPANGTVEFGFNGSYSGSNDIPSSFKLNGVTCDGSDDPD PEPSPSPSPSPSPTDPDEPGGPTNPPTNPGEKVDNPFEGAKLYVNPVWSAKAAAEP GGSAVANESTAVWLDRIGAIEGNDSPTTGSMGLRDHLEEAVRQSGGDPLTIQVVI YNLPGRDCAALASNGELGPDELDRYKSEYIDPIADIMWDFADYENLRIVAIIEIDS LPNLVTNVGGNGGTELCAYMKQNGGYVNGVGYALRKLGEIPNVYNYIDAAHH GWIGWDSNFGPSVDIFYEAANASGSTVDYVHGFISNTANYSATVEPYLDVNGTV NGQLIRQSKWVDWNQYVDELSFVQDLRQALIAKGFRSDIGMLIDTSRNGWGGP NRPTGPSSSTDLNTYVDESRIDRRIHPGNWCNQAGAGLGERPTVNPAPGVDAYV WVKPPGESDGASEEIPNDEGKGFDRMCDPTYQGNARNGNNPSGALPNAPISGH WFSAOFRELLANAYPPL

Figure 12

DNA sequence of *Thermobifida fusca E5* (TfE5) endoglucanase including the cellulose binding domain - linker and catalytic domain but lacking a TfE5 signal sequence. (1293 bases)

GCCGGTCTCACCGCCACAGTCACCAAAGAATCCTCGTGGGACAACGGCTACT CCGCGTCCGTCACCGTCCGCAACGACACCTCGAGCACCGTCTCCCAGTGGGA GGTCGTCCTCACCCTGCCCGGCGCACTACAGTGGCCCAGGTGTGGAACGCC CAGCACACCAGCAGCGGCAACTCCCACACCTTCACCGGGGTTTCCTGGAACA GCACCATCCCGCCCGGAGGCACCGCCTCTTCCGGCTTCATCGCTTCCGGCAGC GGCGAACCCACCACTGCACCATCAACGGCGCCCCCTGCGACGAAGGCTCCG AGCCGGGCGCCCCGGCGTCCCGGAACCCCCTCCCCGACCCCGGCACGCA GCCCGCCACCGCCCCGGTCGAGCGGTACGGCAAAGTCCAGGTCTGCGGC ACCCAGCTCTGCGACGAGCACGGCAACCCGGTCCAACTGCGCGGCATGAGCA CCCACGGCATCCAGTGGTTCGACCACTGCCTGACCGACAGCTCGCTGGACGC CCTGGCCTACGACTGGAAGGCCGACATCATCCGCCTGTCCATGTACATCCAG CTCATCGACATGGCCACGGCGCGCGCCTGTACGTGATCGTGGACTGGCACA TCCTCACCCGGGCGATCCCCACTACAACCTGGACCGGGCCAAGACCTTCTTC GCGGAAATCGCCCAGCGCCACGCCAGCAAGACCAACGTGCTCTACGAGATCG CCAACGAACCCAACGGAGTGAGCTGGGCCTCCATCAAGAGCTACGCCGAAG AGGTCATCCCGGTGATCCGCCAGCGCGACCCCGACTCGGTGATCATCGTGGG CACCGCGGCTGGTCGTCGCTCGGCGTCTCCGAAGGCTCCGGCCCCGAG ATCGCGGCCAACCCGGTCAACGCCTCCAACATCATGTACGCCTTCCACTTCTA CGCGCCTCGCACCGCGACAACTACCTCAACGCGCTGCGTGAGGCCTCCGAG CTGTTCCCGGTCTCGTCACCGAGTTCGGCACCGAGACCTACACCGGTGACG GCGCCAACGACTTCCAGATGGCCGACCGCTACATCGACCTGATGGCGGAACG GAAGATCGGGTGGACCAAGTGGAACTACTCGGACGACTTCCGTTCCGGCGCG GTCTTCCAGCCGGCACCTGCGCGTCCGGCGCCCGTGGAGCGGTTCGTCGC TGAAGGCGTCCGGACAGTGGGTGCGGAGCAAGCTCCAGTCCTGA

Figure 13

Amino acid sequence of the *Thermobifida fusca E5*—cellulase including the cellulose binding domain - linker - catalytic domain but lacking a TfE5 signal sequence. (430 amino acids)

AGLTATVTKESSWDNGYSASVTVRNDTSSTVSQWEVVLTLPGGTTVAQVWNAQ HTSSGNSHTFTGVSWNSTIPPGGTASSGFIASGSGEPTHCTINGAPCDEGSEPGGP GGPGTPSPDPGTQPGTGTPVERYGKVQVCGTQLCDEHGNPVQLRGMSTHGIQW FDHCLTDSSLDALAYDWKADIIRLSMYIQEDGYETNPRGFTDRMHQLIDMATAR GLYVIVDWHILTPGDPHYNLDRAKTFFAEIAQRHASKTNVLYEIANEPNGVSWA SIKSYAEEVIPVIRQRDPDSVIIVGTRGWSSLGVSEGSGPAEIAANPVNASNIMYAF HFYAASHRDNYLNALREASELFPVFVTEFGTETYTGDGANDFQMADRYIDLMA ERKIGWTKWNYSDDFRSGAVFQPGTCASGGPWSGSSLKASGQWVRSKLQS

### Figure 14

DNA sequence of CBH1-E1 fusion (2656 bases)

T.reesei cbh1 signal sequence+catalytic domain+linker+added amino acids

SKR+Acidothermus cellulolyticus GH5A catalytic domain

ATGTATCGGAAGTTGGCCGTCATCTCGGCCTTCTTGGCCACAGCTCGTGCTCA GTCGGCCTGCACTCTCCAATCGGAGACTCACCCGCCTCTGACATGGCAGAAA TGCTCGTCTGGTGGCACTTGCACTCAACAGACAGGCTCCGTGGTCATCGACG CCAACTGGCGCTGGACTCACGCTACGAACAGCAGCACGAACTGCTACGATGG CAACACTTGGAGCTCGACCTATGTCCTGACAACGAGACCTGCGCGAAGAAC TGCTGTCTGGACGGTGCCGCCTACGCGTCCACGTACGGAGTTACCACGAGCG GTAACAGCCTCTCCATTGGCTTTGTCACCCAGTCTGCGCAGAAGAACGTTGGC GCTCGCCTTTACCTTATGGCGAGCGACACGACCTACCAGGAATTCACCCTGCT TGGCAACGAGTTCTCTTTCGATGTTGATGTTTCGCAGCTGCCGTAAGTGACTT ACCATGAACCCCTGACGTATCTTCTTGTGGGCTCCCAGCTGACTGGCCAATTT AAGGTGCGGCTTGAACGGAGCTCTCTACTTCGTGTCCATGGACGCGGATGGT GGCGTGAGCAAGTATCCCACCAACACCGCTGGCGCCCAAGTACGGCACGGGGT ACTGTGACAGCCAGTGTCCCCGCGATCTGAAGTTCATCAATGGCCAGGCCAA CGTTGAGGGCTGGGAGCCGTCATCCAACAACGCAAACACGGGCATTGGAGG ACACGGAAGCTGCTCTGAGATGGATATCTGGGAGGCCAACTCCATCTCC GAGGCTCTTACCCCCCACCCTTGCACGACTGTCGGCCAGGAGATCTGCGAGG GTGATGGGTGCGGCGGAACTTACTCCGATAACAGATATGGCGGCACTTGCGA TCCCGATGGCTGCGACTGGAACCCATACCGCCTGGGCAACACCAGCTTCTAC GGCCCTGGCTCAAGCTTTACCCTCGATACCACCAAGAAATTGACCGTTGTCAC CCAGTTCGAGACGTCGGGTGCCATCAACCGATACTATGTCCAGAATGGCGTC ACTTTCCAGCAGCCCAACGCCGAGCTTGGTAGTTACTCTGGCAACGAGCTCA ACGATGATTACTGCACAGCTGAGGAGGCAGAATTCGGCGGATCCTCTTTCTC AGACAAGGGCGGCCTGACTCAGTTCAAGAAGGCTACCTCTGGCGGCATGGTT CTGGTCATGAGTCTGTGGGATGATGTGAGTTTGATGGACAAACATGCGCGTT GACAAAGAGTCAAGCAGCTGACTGAGATGTTACAGTACTACGCCAACATGCT GTGGCTGGACTCCACCTACCCGACAAACGAGACCTCCTCCACACCCGGTGCC GTGCGCGGAAGCTGCTCCACCAGCTCCGGTGTCCCTGCTCAGGTCGAATCTC AGTCTCCCAACGCCAAGGTCACCTTCTCCAACATCAAGTTCGGACCCATTGGC AGCACCGGCAACCTAGCGGCGGCAACCCTCCCGGCGGAAACCCGCCTGGCA CCACCACCACCGCCGCCCAGCCACTACCACTGGAAGCTCTCCCGGACCTAC TAGTAAGCGGCGGCGGCGGCTATTGGCACACGAGCGGCCGGGAGATCCT GGACGCGAACAACGTGCCGGTACGGATCGCCGGCATCAACTGGTTTGGGTTC GAAACCTGCAATTACGTCGTGCACGGTCTCTGGTCACGCGACTACCGCAGCA TGCTCGACCAGATAAAGTCGCTCGGCTACAACACAATCCGGCTGCCGTACTC TGACGACATTCTCAAGCCGGGCACCATGCCGAACAGCATCAATTTTTACCAG ATGAATCAGGACCTGCAGGGTCTGACGTCCTTGCAGGTCATGGACAAAATCG TCGCGTACGCCGGTCAGATCGGCCTGCGCATCATTCTTGACCGCCACCGACC GGATTGCAGCGGCAGTCGGCGCTGTGGTACACGAGCAGCGTCTCGGAGGCT ACGTGGATTTCCGACCTGCAAGCGCTGGCGCAGCGCTACAAGGGAAACCCGA

CGGTCGTCGGCTTTGACTTGCACAACGAGCCGCATGACCCGGCCTGCTGGGG
CTGCGGCGATCCGAGCATCGACTGGCGATTGGCCGCCGAGCGGGCCGGAAAC
GCCGTGCTCTCGGTGAATCCGAACCTGCTCATTTTCGTCGAAGGTGTGCAGAG
CTACAACGGAGACTCCTACTGGTGGGGCGGCAACCTGCAAGGAGCCGGCCA
GTACCCGGTCGTGCTGAACGTGCCGAACCGCCTGGTGTACTCGGCGCACGAC
TACGCGACGAGCGTCTACCCGCAGACGTGGTTCAGCGATCCGACCTTCCCCA
ACAACATGCCCGGCATCTGGAACAAGAACTGGGGATACCTCTTCAATCAGAA
CATTGCACCGGTATGGCTGGGCGAATTCGGTACGACACTGCAATCCACGACC
GACCAGACGTGGCTGAAGACGCTCGTCCAGTACCTACGGCCGACCGCGCAAT
ACGGTGCGGACAGCTTCCAGTGGACCTTCTGGTCCTGGAACCCCGATTCCGG
CGACACAGGAGGAATTCTCAAGGATGACTGCAGACGGTCGACACACGTAAA
AGACGCTATCTCGCGCCGATCAAGTCGTCGATTTTCGATCCTGTCGGCTAA

Figure 15

Amino acid sequence of CBH1-E1 fusion (841 amino acids)

T.reesei cbh1 signal sequence+catalytic domain+linker+added amino acids

SKR+Acidothermus cellulolyticus GH5A catalytic domain

MYRKLAVISAFLATARAQSACTLQSETHPPLTWQKCSSGGTCTQQTGSVVIDAN WRWTHATNSSTNCYDGNTWSSTLCPDNETCAKNCCLDGAAYASTYGVTTSGNS LSIGFVTQSAQKNVGARLYLMASDTTYQEFTLLGNEFSFDVDVSQLPCGLNGAL YFVSMDADGGVSKYPTNTAGAKYGTGYCDSQCPRDLKFINGQANVEGWEPSSN NANTGIGGHGSCCSEMDIWEANSISEALTPHPCTTVGQEICEGDGCGGTYSDNRY GGTCDPDGCDWNPYRLGNTSFYGPGSSFTLDTTKKLTVVTQFETSGAINRYYVQ NGVTFQQPNAELGSYSGNELNDDYCTAEEAEFGGSSFSDKGGLTQFKKATSGGM VLVMSLWDDYYANMLWLDSTYPTNETSSTPGAVRGSCSTSSGVPAQVESQSPN AKVTFSNIKFGPIGSTGNPSGGNPPGGNPPGTTTTRRPATTTGSSPGPTSKRAGGG YWHTSGREILDANNVPVRIAGINWFGFETCNYVVHGLWSRDYRSMLDQIKSLGY NTIRLPYSDDILKPGTMPNSINFYQMNQDLQGLTSLQVMDKIVAYAGQIGLRIILD RHRPDCSGQSALWYTSSVSEATWISDLQALAQRYKGNPTVVGFDLHNEPHDPAC WGCGDPSIDWRLAAERAGNAVLSVNPNLLIFVEGVQSYNGDSYWWGGNLQGA GOYPVVLNVPNRLVYSAHDYATSVYPQTWFSDPTFPNNMPGIWNKNWGYLFN QNIAPVWLGEFGTTLQSTTDQTWLKTLVQYLRPTAQYGADSFQWTFWSWNPDS GDTGGILKDDWQTVDTVKDGYLAPIKSSIFDPVG

Figure 16



Figure 17

DNA sequence of pTrex4 (10239 bases)

AAGCTTAACTAGTACTTCTCGAGCTCTGTACATGTCCGGTCGCGACGTACGCG TATCGATGCCCCGCTGCAGCCGCCTGCAGCCACTTGCAGTCCCGTG GAATTCTCACGGTGAATGTAGGCCTTTTGTAGGGTAGGAATTGTCACTCAAGC ACCCCCAACCTCCATTACGCCTCCCCATAGAGTTCCCAATCAGTGAGTCATG GCACTGTTCTCAAATAGATTGGGGAGAAGTTGACTTCCGCCCAGAGCTGAAG GTCGCACAACCGCATGATATAGGGTCGGCAACGGCAAAAAAGCACGTGGCT CACCGAAAAGCAAGATGTTTGCGATCTAACATCCAGGAACCTGGATACATCC ATCATCACGCACGACCACTTTGATCTGCTGGTAAACTCGTATTCGCCCTAAAC CGAAGTGACGTGGTAAATCTACACGTGGGCCCCTTTCGGTATACTGCGTGTGT AGTCCGAGCTGTAACTACCTCTGAATCTCTGGAGAATGGTGGACTAACGACT ACCGTGCACCTGCATCATGTATATAATAGTGATCCTGAGAAGGGGGGTTTGG AGCAATGTGGGACTTTGATGGTCATCAAACAAAGAACGAAGACGCCTCTTTT GCAAAGTTTTGTTTCGGCTACGGTGAAGAACTGGATACTTGTTGTCTTCTG TGTATTTTGTGGCAACAAGAGGCCAGAGACAATCTATTCAAACACCAAGCT TGCTCTTTTGAGCTACAAGAACCTGTGGGGTATATATCTAGAGTTGTGAAGTC GGTAATCCCGCTGTATAGTAATACGAGTCGCATCTAAATACTCCGAAGCTGCT TAGCATGAAAGGCTATGAGAAATTCTGGAGACGGCTTGTTGAATCATGGCGT TCCATTCTTCGACAAGCAAAGCGTTCCGTCGCAGTAGCAGGCACTCATTCCCG AAAAACTCGGAGATTCCTAAGTAGCGATGGAACCGGAATAATATAATAGGC AATACATTGAGTTGCCTCGACGGTTGCAATGCAGGGGTACTGAGCTTGGACA TAACTGTTCCGTACCCCACCTCTTCTCAACCTTTGGCGTTTCCCTGATTCAGCG TACCCGTACAAGTCGTAATCACTATTAACCCAGACTGACCGGACGTGTTTTGC CCTTCATTTGGAGAAATAATGTCATTGCGATGTGTAATTTGCCTGCTTGACCG ACTGGGGCTGTTCGAAGCCCGAATGTAGGATTGTTATCCGAACTCTGCTCGTA GAGGCATGTTGTGAATCTGTGTCGGGCAGGACACGCCTCGAAGGTTCACGGC

AAGGGAAACCACCGATAGCAGTGTCTAGTAGCAACCTGTAAAGCCGCAATGC AGCATCACTGGAAAATACAAACCAATGGCTAAAAGTACATAAGTTAATGCCT AAAGAAGTCATATACCAGCGGCTAATAATTGTACAATCAAGTGGCTAAACGT ACCGTAATTTGCCAACGGCTTGTGGGGTTGCAGAAGCAACGGCAAAGCCCCA CTTCCCCACGTTTGTTTCTTCACTCAGTCCAATCTCAGCTGGTGATCCCCCAAT TGGGTCGCTTGTTTGTTCCGGTGAAGTGAAAGAAGACAGAGGTAAGAATGTC TGACTCGGAGCGTTTTGCATACAACCAAGGGCAGTGATGGAAGACAGTGAAA TGTTGACATTCAAGGAGTATTTAGCCAGGGATGCTTGAGTGTATCGTGTAAG GAGGTTTGTCTGCCGATACGACGAATACTGTATAGTCACTTCTGATGAAGTGG TCCATATTGAAATGTAAGTCGGCACTGAACAGGCAAAAGATTGAGTTGAAAC TGCCTAAGATCTCGGGCCCTCGGGCCTTCGGCCTTTGGGTGTACATGTTTGTG CTCCGGGCAAATGCAAAGTGTGGTAGGATCGAACACACTGCTGCCTTTACCA AGCAGCTGAGGGTATGTGATAGGCAAATGTTCAGGGGCCACTGCATGGTTTC GAATAGAAAGAGAAGCTTAGCCAAGAACAATAGCCGATAAAGATAGCCTCA TTAAACGGAATGAGCTAGTAGGCAAAGTCAGCGAATGTGTATATAAAAGGT TCGAGGTCCGTGCCTCCTCATGCTCTCCCCATCTACTCATCAACTCAGATCC TCCAGGAGACTTGTACACCATCTTTTGAGGCACAGAAACCCAATAGTCAACC GCGGACTGCGCATCATGTATCGGAAGTTGGCCGTCATCTCGGCCTTCTTGGCC ACAGCTCGTGCTCAGTCGGCCTGCACTCTCCAATCGGAGACTCACCCGCCTCT GTGGTCATCGACGCCAACTGGCGCTGGACTCACGCTACGAACAGCAGCACGA ACTGCTACGATGGCAACACTTGGAGCTCGACCCTATGTCCTGACAACGAGAC CTGCGCGAAGAACTGCTGTCTGGACGGTGCCGCCTACGCGTCCACGTACGGA GTTACCACGAGCGGTAACAGCCTCTCCATTGGCTTTGTCACCCAGTCTGCGCA GAAGAACGTTGGCGCTCGCCTTTACCTTATGGCGAGCGACACGACCTACCAG GAATTCACCCTGCTTGGCAACGAGTTCTCTTTCGATGTTGATGTTTCGCAGCT GCCGTAAGTGACTTACCATGAACCCCTGACGTATCTTCTTGTGGGCTCCCAGC TGACTGGCCAATTTAAGGTGCGGCTTGAACGGAGCTCTCTACTTCGTGTCCAT GGACGCGGATGGTGGCGTGAGCAAGTATCCCACCAACACCGCTGGCGCCAA GTACGGCACGGGTACTGTGACAGCCAGTGTCCCCGCGATCTGAAGTTCATC AATGGCCAGGCCAACGTTGAGGGCTGGGAGCCGTCATCCAACAACGCAAAC

ACGGGCATTGGAGGACACGGAAGCTGCTGCTCTGAGATGGATATCTGGGAGG CCAACTCCATCTCCGAGGCTCTTACCCCCCACCCTTGCACGACTGTCGGCCAG GAGATCTGCGAGGGTGATGGGTGCGGCGGAACTTACTCCGATAACAGATATG GCGGCACTTGCGATCCCGATGGCTGCGACTGGAACCCATACCGCCTGGGCAA CACCAGCTTCTACGGCCCTGGCTCAAGCTTTACCCTCGATACCACCAAGAAAT TGACCGTTGTCACCCAGTTCGAGACGTCGGGTGCCATCAACCGATACTATGTC CAGAATGGCGTCACTTTCCAGCAGCCCAACGCCGAGCTTGGTAGTTACTCTG GCAACGAGCTCAACGATGATTACTGCACAGCTGAGGAGGCAGAATTCGGCGG ATCCTCTTTCTCAGACAAGGGCGGCCTGACTCAGTTCAAGAAGGCTACCTCTG GCGGCATGGTTCTGGTCATGAGTCTGTGGGATGATGTGAGTTTGATGGACAA ACATGCGCGTTGACAAAGAGTCAAGCAGCTGACTGAGATGTTACAGTACTAC GCCAACATGCTGTGGCTGGACTCCACCTACCCGACAAACGAGACCTCCTCCA CACCGGTGCCGTGCGCGAAGCTGCTCCACCAGCTCCGGTGTCCCTGCTCA GGTCGAATCTCAGTCTCCCAACGCCAAGGTCACCTTCTCCAACATCAAGTTCG GACCCATTGGCAGCACCGGCAACCCTAGCGGCGCAACCCTCCCGGCGAAA CCCGCCTGGCACCACCACCACCGCCGCCCAGCCACTACCACTGGAAGCTCT AAGCCTGACGCACCGGTAGATTCTTGGTGAGCCCGTATCATGACGGCGGCGG CAAATATACGGTCAACTCATCTTTCACTGGAGATGCGGCCTGCTTGGTATTGC GATGTTGTCAGCTTGGCAAATTGTGGCTTTCGAAAACACAAAACGATTCCTTA GTAGCCATGCATTTTAAGATAACGGAATAGAAGAAGAAGAAGAAATTAAAAAA AAAAAAAAAAAACAAACATCCCGTTCATAACCCGTAGAATCGCCGCTCTTCGTG TATCCCAGTACCAGTTTATTTTGAATAGCTCGCCCGCTGGAGAGCATCCTGAA TGCAAGTAACAACCGTAGAGGCTGACACGGCAGGTGTTGCTAGGGAGCGTCG AGGCTGCTCAGCGACGACAGTCAAGTTCGCCCTCGCTGCTTGTGCAATAATC  ${\tt GCAGTGGGGAAGCCACACCGTGACTCCCATCTTTCAGTAAAGCTCTGTTGGT}$ GTTTATCAGCAATACACGTAATTTAAACTCGTTAGCATGGGGCTGATAGCTTA ATTACCGTTTACCAGTGCCGCGGTTCTGCAGCTTTCCTTGGCCCGTAAAATTC GGCGAAGCCAGCCAATCACCAGCTAGGCACCAGCTAAACCCTATAATTAGTC

TCTTATCAACACCATCCGCTCCCCGGGATCAATGAGGAGAATGAGGGGGAT GCGGGGCTAAAGAAGCCTACATAACCCTCATGCCAACTCCCAGTTTACACTC GTCGAGCCAACATCCTGACTATAAGCTAACACAGAATGCCTCAATCCTGGGA AGAACTGGCCGCTGATAAGCGCGCCCCGCCTCGCAAAAACCATCCCTGATGAA TGGAAAGTCCAGACGCTGCCTGCGGAAGACAGCGTTATTGATTTCCCAAAGA AATCGGGGATCCTTTCAGAGGCCGAACTGAAGATCACAGAGGCCTCCGCTGC AGATCTTGTGTCCAAGCTGGCGGCCGGAGAGTTGACCTCGGTGGAAGTTACG CTAGCATTCTGTAAACGGGCAGCAGCAGCAGCAGTTAGTAGGGTCCCCTC TACCTCTCAGGGAGATGTAACAACGCCACCTTATGGGACTATCAAGCTGACG CTGGCTTCTGTGCAGACAAACTGCGCCCACGAGTTCTTCCCTGACGCCGCTCT CGCGCAGGCAAGGGAACTCGATGAATACTACGCAAAGCACAAGAGACCCGT TGGTCCACTCCATGGCCTCCCCATCTCTCAAAGACCAGCTTCGAGTCAAGG TACACCGTTGCCCCTAAGTCGTTAGATGTCCCTTTTTGTCAGCTAACATATGC CACCAGGGCTACGAAACATCAATGGGCTACATCTCATGGCTAAACAAGTACG ACGAAGGGGACTCGGTTCTGACAACCATGCTCCGCAAAGCCGGTGCCGTCTT CTACGTCAAGACCTCTGTCCCGCAGACCCTGATGGTCTGCGAGACAGTCAAC AACATCATCGGGCGCACCGTCAACCCACGCAACAAGAACTGGTCGTGCGGCG GCAGTTCTGGTGGTGAGGGTGCGATCGTTGGGATTCGTGGTGGCGTCATCGG CTGTACGGTCTAAGGCCGAGTCATGGGCGGCTGCCGTATGCAAAGATGGCGA ACAGCATGGAGGGTCAGGAGACGGTGCACAGCGTTGTCGGGCCGATTACGCA CTCTGTTGAGGGTGAGTCCTTCGCCTCTTCCTTCTTTTCCTGCTCTATACCAGG CCTCCACTGTCCTCCTTTCTTGCTTTTTATACTATATACGAGACCGGCAGTCAC TGATGAAGTATGTTAGACCTCCGCCTCTTCACCAAATCCGTCCTCGGTCAGGA GCCATGGAAATACGACTCCAAGGTCATCCCCATGCCCTGGCGCCAGTCCGAG TCGGACATTATTGCCTCCAAGATCAAGAACGGCGGGCTCAATATCGGCTACT ACAACTTCGACGGCAATGTCCTTCCACACCCTCCTATCCTGCGCGGCGTGGAA ACCACCGTCGCCGCACTCGCCAAAGCCGGTCACACCGTGACCCCGTGGACGC CATACAAGCACGATTTCGGCCACGATCTCATCTCCCATATCTACGCGGCTGAC GGCAGCGCCGACGTAATGCGCGATATCAGTGCATCCGGCGAGCCGGCGATTC CAAATATCAAAGACCTACTGAACCCGAACATCAAAGCTGTTAACATGAACGA

GCTCTGGGACACGCATCTCCAGAAGTGGAATTACCAGATGGAGTACCTTGAG AAATGGCGGGAGGCTGAAGAAAAGGCCGGGAAGGAACTGGACGCCATCATC GCGCCGATTACGCCTACCGCTGCGGTACGGCATGACCAGTTCCGGTACTATG GGTATGCCTCTGTGATCAACCTGCTGGATTTCACGAGCGTGGTTGTTCCGGTT ACCTTTGCGGATAAGAACATCGATAAGAAGAATGAGAGTTTCAAGGCGGTTA GTGAGCTTGATGCCCTCGTGCAGGAAGAGTATGATCCGGAGGCGTACCATGG GGCACCGGTTGCAGTGCAGGTTATCGGACGGAGACTCAGTGAAGAGAGAC GTTGGCGATTGCAGAGGAAGTGGGGAAGTTGCTGGGAAATGTGGTGACTCCA TAGCTAATAAGTGTCAGATAGCAATTTGCACAAGAAATCAATACCAGCAACT GTAAATAAGCGCTGAAGTGACCATGCCATGCTACGAAAGAGCAGAAAAAAA CCTGCCGTAGAACCGAAGAGATATGACACGCTTCCATCTCTCAAAGGAAGAA TCCCTTCAGGGTTGCGTTTCCAGTCTAGACACGTATAACGGCACAAGTGTCTC TCACCAAATGGGTTATATCTCAAATGTGATCTAAGGATGGAAAGCCCAGAAT CTAGGCCTATTAATATTCCGGAGTATACGTAGCCGGCTAACGTTAACAACCG GTACCTCTAGAACTATAGCTAGCATGCGCAAATTTAAAGCGCTGATATCGAT CGCGCGCAGATCCATATATAGGGCCCGGGTTATAATTACCTCAGGTCGACGT CCCATGGCCATTCGAATTCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAAT TGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTA AAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTC ACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCG GCCAACGCGCGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTC GCTCACTGACTCGCTCGCTCGTTCGGCTGCGCGAGCGGTATCAGCTC ACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAA AGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCG CGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCTGACGAGCATCACAAAAAT CGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAG GCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCT TACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATA GCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGC TGTGTGCACGAACCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTA TCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCC

ACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCT TGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTG CGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCG ACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGT CTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATT ATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAAT CAATCTAAAGTATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATC AGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTG ACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCC AGTGCTGCAATGATACÇGCGAGACCCACGCTCACCGGCTCCAGATTTATCAG CAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTT CGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTG TCACGCTCGTCTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAG GCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTC CTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATG GCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGT GACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCG AGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAA CTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAG GATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACT GATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGA AGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATA CTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTC ATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTC CGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTAT CATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTCGCGC GTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGT CACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCG TCAGCGGGTGTTGGCGGGTGTCGGGGCTTAACTATGCGGCATCAGAGC

AGATTGTACTGAGAGTGCACCATAAAATTGTAAACGTTAATATTTTGTTAAAA
TTCGCGTTAAATTTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAAT
CGGCAAAATCCCTTATAAATCAAAAGAATAGCCCGAGATAGGGTTGAGTGTT
GTTCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCA
AAGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCATCACC
CAAATCAAGTTTTTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCT
AAAGGGAGCCCCCGATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCG
AGAAAGGAAGGGAAAAGCGAAAGGAGCGGCGCTAGGGCGCTGGCAAG
TGTAGCGGTCACGCTGCGCGTAACCACCACACCCGCCGCGCTTAATGCGCCG
CTACAGGGCGCGTACTATGGTTGCTTTGACGTATGCGCGTGTGAAATACCGCA
CAGATGCGTAAGGAGAAAATACCGCATCAGGCGCCATTCAGGCTG
CGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGC
TGGCGAAAGGGGGATTGTCAAAGCGCGATTAAGTTGGGTAACGCCAGGCTT
TTCCCAGTCACGACGTTGTAAAAACGACGCCAGTGCC

SDS-PAGE gel of supernate samples of shake flask grown T. reesei delete strain transformed with the fusion expression construct *cbh1-E1* Figure 18

Lane Sample

1 Mark12 Ladder

2 Transformant 1

3 Transformant 2

4 Transformant 4

6 Transformant 6

7 Transformant 6

8 Transformant 7

9 parent delete strain

10 Mark12 Ladder

| 0        |                  |              |                  | 0.0 |
|----------|------------------|--------------|------------------|-----|
|          |                  |              | 1                |     |
|          |                  |              |                  |     |
| $\infty$ |                  |              |                  |     |
|          |                  |              |                  |     |
| 9        |                  |              |                  |     |
| 4        |                  |              |                  |     |
| 4        |                  |              |                  |     |
| n        |                  | A Section 18 |                  |     |
| 7        | 4                |              |                  |     |
|          |                  |              |                  |     |
| 200      | 1116<br>97<br>66 | 55           | 36.<br>31<br>21. | 14  |

The fusion protein is indicated by the upper arrow, the cleaved E1 catalytic domain is indicated by the lower arrow

SDS-PAGE gel of supernate samples of shake flask grown T. reesei delete strain transformed with the fusion expression construct cbh1-GH48 Figure 19





The fusion protein is indicated by the arrow

SDS-PAGE gel of supernate samples of shake flask grown T. reesei delete strain transformed with the fusion expression construct cbh1-GH74 Figure 20



The fusion protein is indicated by the upper arrow, the cleaved GH74 catalytic domain is indicated by the lower arrow

SDS-PAGE gel of supernate samples of shake flask grown T. reesei delete strain transformed with the fusion expression construct *cbh1-E3* Figure 21





arrow indicates new protein expressed in cbh1-E3 transformants

SDS-PAGE gel of supernate samples of shake flask grown T. reesei delete strain transformed with the fusion expression construct cbh1-E5 Figure 22

| Sample | Mark12 Ladder | parent delete strain | Transformant 1 | Transformant 2 | Transformant 3 | Transformant 4 | Transformant 5 | Transformant 6 | Transformant 7 | Transformant 8 | Transformant 9 | Transformant 10 |
|--------|---------------|----------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|
| Lane   | T             | 2                    | 3              | 4              | 5              | 9              | . 7            | 8              | 6              | 10             | 11             | 12              |

200
116
66
55
36.5
31.5
21.5
21.5

E5 is indicated by the lower arrows

# FIGURE 23

