Nikita Kazeev

Decision Trees

2021

Lecture overview

After the lecture, you will be able to:

- Use the decision tree algorithm for classification and regression;
- Tune the algorithm parameters improve its performance.

Arbor Porphyrii

Picture credit: R. Lull, showing the Arbor Elementalis to monk

Decision making at a bank

Decision tree formalism

- Decision tree is a binary tree V
- ▶ Internal nodes $u \in V$: predicates $\beta_u : \mathcal{X} \to \{0, 1\}$
- ▶ Leaves $v \in V$: predictions $\beta_v : \mathcal{X} \to \mathcal{Y}$

Decision tree formalism

- Decision tree is a binary tree V
- ▶ Internal nodes $u \in V$: predicates

$$\beta_{\mathsf{u}}:\mathcal{X}\to\{0,1\}$$

- ▶ Leaves $v \in V$: predictions $\beta_v : \mathcal{X} \to \mathcal{Y}$
- ▶ Algorithm $h(\mathbf{x})$ starts at $u = u_0$
 - Compute $b = \beta_u(\mathbf{x})$
 - If *u* is a leaf, return *b*
 - If b = 0, $u \leftarrow \text{LeftChild}(u)$
 - If b = 1, u ← RightChild(u)

Decision tree formalism

- Decision tree is a binary tree V
- Internal nodes $u \in V$: predicates

$$\beta_{\mathsf{u}}:\mathcal{X}\to\{0,1\}$$

- ▶ Leaves $v \in V$: predictions $\beta_v : \mathcal{X} \to \mathcal{Y}$
- Algorithm $h(\mathbf{x})$ starts at $u = u_0$
 - Compute $b = \beta_u(\mathbf{x})$
 - If *u* is a leaf, return *b*
 - If b = 0, $u \leftarrow \text{LeftChild}(u)$
 - If b = 1, $u \leftarrow \text{RightChild}(u)$
- ▶ In ML practice: $\beta_u(\mathbf{x}; j, t) = [\mathbf{x}^j < t]$

Decision surface

Picture credit: https://www.classes.cs.uchicago.edu/archive/2015/winter/12200-1/assignments/pa5/index.html

Decision tree training

Greedy algorithm – on each iteration partition the data as if the split was final

Decision tree training

- Greedy algorithm on each iteration partition the data as if the split was final
- There are two key components:
 - Split criterion to compare different ways to partition the data
 - Stopping condition to decide when to stop building the tree

- ▶ Input: training set $D = \{(\mathbf{x}_i, y_i)\}$
- Let R_u be the data subset corresponding to node u

- ▶ Input: training set $D = \{(\mathbf{x}_i, y_i)\}$
- Let R_u be the data subset corresponding to node u
 - 1. Greedily split R_u into R_l and R_r :

$$R_I(j,t) = \{\mathbf{x} \in R_u | \mathbf{x}^j \le t\}, \qquad R_r(j,t) = \{\mathbf{x} \in R_u | \mathbf{x}^j > t\}$$

optimising a given loss: $Q(R_u, j, t) \rightarrow \min_{(j,t)}$

- ▶ Input: training set $D = \{(\mathbf{x}_i, y_i)\}$
- Let R_u be the data subset corresponding to node u
 - 1. Greedily split R_u into R_l and R_r :

$$R_I(j,t) = \{\mathbf{x} \in R_u | \mathbf{x}^j \le t\}, \qquad R_r(j,t) = \{\mathbf{x} \in R_u | \mathbf{x}^j > t\}$$

optimising a given loss: $Q(R_u, j, t) \rightarrow \min_{(j,t)}$

2. If a stopping criterion is satisfied for u, declare it a leaf

- ▶ Input: training set $D = \{(\mathbf{x}_i, y_i)\}$
- Let R_u be the data subset corresponding to node u
 - 1. Greedily split R_u into R_l and R_r :

$$R_I(j,t) = \{\mathbf{x} \in R_u | \mathbf{x}^j \le t\}, \qquad R_r(j,t) = \{\mathbf{x} \in R_u | \mathbf{x}^j > t\}$$

optimising a given loss: $Q(R_u, j, t) \rightarrow \min_{(j,t)}$

- 2. If a stopping criterion is satisfied for u, declare it a leaf
- 3. If not, create internal node u corresponding to the predicate $[\mathbf{x}^j \leq t]$ and repeat 1–3 for $R_u \equiv R_l(j,t)$ and $R_u \equiv R_r(j,t)$

- ▶ Input: training set $D = \{(\mathbf{x}_i, y_i)\}$
- Let R_u be the data subset corresponding to node u
 - 1. Greedily split R_u into R_l and R_r :

$$R_I(j,t) = \{\mathbf{x} \in R_u | \mathbf{x}^j \le t\}, \qquad R_r(j,t) = \{\mathbf{x} \in R_u | \mathbf{x}^j > t\}$$

8 / 17

optimising a given loss: $Q(R_u, j, t) \rightarrow \min_{(j,t)}$

- 2. If a stopping criterion is satisfied for u, declare it a leaf
- 3. If not, create internal node u corresponding to the predicate $[\mathbf{x}^j \leq t]$ and repeat 1–3 for $R_u \equiv R_l(j,t)$ and $R_u \equiv R_r(j,t)$
- Output: a decision tree V

The idea: maximize purity

Picture credit: https://alanjeffares.wordpress.com/tutorials/decision-tree/

 $ightharpoonup R_u$: the subset of *D* corresponding to node *u*

- $ightharpoonup R_u$: the subset of *D* corresponding to node *u*
- With the current split, let $R_l \subseteq R_u$ go left and $R_r \subseteq R_u$ go right

- $ightharpoonup R_u$: the subset of *D* corresponding to node *u*
- ▶ With the current split, let $R_l \subseteq R_u$ go left and $R_r \subseteq R_u$ go right
- Choose a predicate to optimise

$$Q(R_u, j, t) = H(R_u) - \frac{|R_I|}{|R_u|}H(R_I) - \frac{|R_r|}{|R_u|}H(R_r) \to \max$$

- $ightharpoonup R_u$: the subset of *D* corresponding to node *u*
- ▶ With the current split, let $R_l \subseteq R_u$ go left and $R_r \subseteq R_u$ go right
- Choose a predicate to optimise

$$Q(R_u, j, t) = H(R_u) - \frac{|R_I|}{|R_u|}H(R_I) - \frac{|R_r|}{|R_u|}H(R_r) \to \max$$

ightharpoonup H(R): impurity criterion

- $ightharpoonup R_u$: the subset of *D* corresponding to node *u*
- ▶ With the current split, let $R_l \subseteq R_u$ go left and $R_r \subseteq R_u$ go right
- Choose a predicate to optimise

$$Q(R_u, j, t) = H(R_u) - \frac{|R_I|}{|R_u|}H(R_I) - \frac{|R_r|}{|R_u|}H(R_r) \to \max$$

- ightharpoonup H(R): impurity criterion
- ▶ Generally, $H(R) = \min_{c \in \mathcal{Y}} |R|^{-1} \sum_{(\mathbf{x}_i, y_i) \in R} L(y_i, c)$

$$- H(R) = \min_{c \in \mathcal{Y}} |R|^{-1} \sum_{(\mathbf{x}_i, y_i) \in R} (y_i - c)^2$$

- $H(R) = \min_{c \in \mathcal{Y}} |R|^{-1} \sum_{(\mathbf{x}_i, y_i) \in R} (y_i c)^2$
- Sum of squared residuals is minimised by $c = |R|^{-1} \sum_{(\mathbf{x}_i, y_i) \in R} y_i$

- $H(R) = \min_{c \in \mathcal{V}} |R|^{-1} \sum_{(\mathbf{x}_i, y_i) \in R} (y_i c)^2$
- Sum of squared residuals is minimised by $c = |R|^{-1} \sum_{(\mathbf{x}_i, y_i) \in R} y_i$
- Impurity \equiv variance of the target

Regression:

- $H(R) = \min_{c \in \mathcal{V}} |R|^{-1} \sum_{(\mathbf{x}_i, y_i) \in R} (y_i c)^2$
- Sum of squared residuals is minimised by $c = |R|^{-1} \sum_{(\mathbf{x}_i, y_i) \in R} y_i$
- Impurity ≡ variance of the target

Regression:

- $H(R) = \min_{c \in \mathcal{V}} |R|^{-1} \sum_{(\mathbf{x}_i, y_i) \in R} (y_i c)^2$
- Sum of squared residuals is minimised by $c = |R|^{-1} \sum_{(\mathbf{x}_i, y_i) \in R} y_i$
- Impurity ≡ variance of the target

▶ Classification:

- Let's enumerate $\mathcal{Y} = \{\dots, y_k, \dots, y_N\}$

Regression:

- $H(R) = \min_{c \in \mathcal{V}} |R|^{-1} \sum_{(\mathbf{x}_i, y_i) \in R} (y_i c)^2$
- Sum of squared residuals is minimised by $c = |R|^{-1} \sum_{(\mathbf{x}_i, y_i) \in R} y_i$
- Impurity ≡ variance of the target

- Let's enumerate $\mathcal{Y} = \{\dots, y_k, \dots, y_N\}$
- Let $p_k = |R|^{-1} \sum_{(\mathbf{x}_i, y_i) \in R} [y_i = y_k]$ (share of examples belonging to the k'th class)

Regression:

- $H(R) = \min_{c \in V} |R|^{-1} \sum_{(\mathbf{x}_i, y_i) \in R} (y_i c)^2$
- Sum of squared residuals is minimised by $c = |R|^{-1} \sum_{(\mathbf{x}_i, y_i) \in R} y_i$
- Impurity ≡ variance of the target

- Let's enumerate $\mathcal{Y} = \{\dots, y_k, \dots, y_N\}$
- Let $p_k = |R|^{-1} \sum_{(\mathbf{x}_i, y_i) \in R} [y_i = y_k]$ (share of examples belonging to the *k*'th class)
- Miss rate (inaccuracy): $H(R) = \min_{c \in \mathcal{Y}} |R|^{-1} \sum_{(\mathbf{x}_i, y_i) \in R} [y_i \neq c]$

Regression:

- $H(R) = \min_{c \in V} |R|^{-1} \sum_{(\mathbf{x}_i, y_i) \in R} (y_i c)^2$
- Sum of squared residuals is minimised by $c = |R|^{-1} \sum_{(\mathbf{x}_i, y_i) \in R} y_i$
- Impurity ≡ variance of the target

- Let's enumerate $\mathcal{Y} = \{\dots, y_k, \dots, y_N\}$
- Let $p_k = |R|^{-1} \sum_{(\mathbf{x}_i, y_i) \in R} [y_i = y_k]$ (share of examples belonging to the *k*'th class)
- Miss rate (inaccuracy): $H(R) = \min_{c \in \mathcal{Y}} |R|^{-1} \sum_{(\mathbf{x}_i, y_i) \in R} [y_i \neq c]$
- Gini index: $H(R) = \sum_{k=1}^{N} p_k (1 p_k)$

Regression:

- $-H(R) = \min_{c \in V} |R|^{-1} \sum_{(\mathbf{x}_i, y_i) \in R} (y_i c)^2$
- Sum of squared residuals is minimised by $c = |R|^{-1} \sum_{(\mathbf{x}_i, y_i) \in R} y_i$
- Impurity ≡ variance of the target

- Let's enumerate $\mathcal{Y} = \{\dots, y_k, \dots, y_N\}$
- Let $p_k = |R|^{-1} \sum_{(\mathbf{x}_i, y_i) \in R} [y_i = y_k]$ (share of examples belonging to the k'th class)
- Miss rate (inaccuracy): $H(R) = \min_{c \in \mathcal{Y}} |R|^{-1} \sum_{(\mathbf{x}_i, y_i) \in R} [y_i \neq c]$
- Gini index: $H(R) = \sum_{k=1}^{N} p_k (1 p_k)$
- Cross-entropy: $H(R) = -\sum_{k=1}^{N} p_k \log p_k$

Stopping rules for decision tree learning

What will happen if we build a decision tree to minimise the impurity to the greatest possible extent?

Kazeev et al. Decision Trees 12 / 17

Stopping rules for decision tree learning

What will happen if we build a decision tree to minimise the impurity to the greatest possible extent?

The tree will be built until all leaves are 100% pure, up to single-example leaves.

Kazeev et al. Decision Trees 12 / 17

With decision trees, overfitting is easy!

Kazeev et al. Decision Trees 13 / 17

With decision trees, overfitting is easy!

Kazeev et al. Decision Trees 13 / 17

With decision trees, overfitting is easy!

Kazeev et al. Decision Trees 13 / 17

Significantly impacts learning performance

- Significantly impacts learning performance
- Multiple choices available:

- Significantly impacts learning performance
- Multiple choices available:
 - Maximum tree depth
 - Minimum number of objects in leaf
 - Maximum number of leaves in tree
 - Stop if all objects fall into same leaf
 - Constrain quality improvement
 (stop when improvement gains drop below a defined threshold)

- Significantly impacts learning performance
- Multiple choices available:
 - Maximum tree depth
 - Minimum number of objects in leaf
 - Maximum number of leaves in tree
 - Stop if all objects fall into same leaf
 - Constrain quality improvement
 (stop when improvement gains drop below a defined threshold)
- Typically selected via exhaustive search and cross-validation

Decision tree pruning

Picture credit: https://alanjeffares.wordpress.com/tutorials/decision-tree/

- Learn a large tree (effectively overfit the training set)
- Remove the least important nodes
- Often leads to better results than simply learning a smaller tree. Why?

▶ The good things. Decision trees:

- ► The good things. Decision trees:
 - ... are interpretable, you can show why an algorithm made the prediction it did and what you need to do to make the decision different

- The good things. Decision trees:
 - ... are interpretable, you can show why an algorithm made the prediction it did and what you need to do to make the decision different
 - ... require little preprocessing, don't depend on the features' scale

- The good things. Decision trees:
 - ... are interpretable, you can show why an algorithm made the prediction it did and what you need to do to make the decision different
 - ... require little preprocessing, don't depend on the features' scale
- The bad thing:
 - sub par performance. But that can be improved with ensembles, stay tuned for the next lecture!

Acknowledgements

These slides are based on the slides for for the previous edition of the MLHEP school by Alexey Artemov.