

CS230: Digital Logic Design and Computer Architecture

Lecture 5: The D-Day@Digital logic

https://www.cse.iitb.ac.in/~biswa/courses/CS230/autumn23/main.html

Phones (smart/non-smart) on silence plz, Thanks

Computer Architecture 2

Example: When CLK is high, output of master is allowed to change with D; when CLK is low (falling edge), the output of the master is fixed and propagated through to the output of the slave ⇒ this flipflop triggers on falling or negative edge.

CLK	D	Q*	Q*
Į.	0	0	1
Ŧ	1	1	0

Example: When CLK is high, output of master is allowed to change with D; when CLK is low (falling edge), the output of the master is fixed and propagated through to the output of the slave ⇒ this flipflop triggers on falling or negative edge.

Example: When CLK is high, output of master is allowed to change with D; when CLK is low (falling edge), the output of the master is fixed and propagated through to the output of the slave ⇒ this flipflop triggers on falling or negative edge.

Example: When CLK is high, output of master is allowed to change with D; when CLK is low (falling edge), the output of the master is fixed and propagated through to the output of the slave ⇒ this flipflop triggers on falling or negative edge.

Example: When CLK is high, output of master is allowed to change with D; when CLK is low (falling edge), the output of the master is fixed and propagated through to the output of the slave ⇒ this flipflop triggers on falling or negative edge.

Delay to make sure all is well

- Setup time, t_{su}, is the time period prior to the clock becoming active (edge or level) during which the flip-flop inputs must remain stable.
- Hold time, t_h, is the time after the clock becomes inactive during which the flip-flop inputs must remain stable.
- Setup time and hold time define a window of time during which the flip-flop inputs cannot change – quiescent interval.

More Delay

- Propagation delay, t_{pHL} and t_{pLH}, has the same meaning as in combinational circuit – beware propagation delays usually will not be equal for all input to output pairs. There can be two propagation delays: t_{C-Q} (clock→Q delay) and t_{D-Q} (data→Q delay).
- For a level or pulse triggered latch:
 - Data input should remain stable till the clock becomes inactive.
 - Clock should remain active till the input change is propagated to Q output. That is, active period of the clock,

$$t_{\rm w}$$
 > max { $t_{\rm pLH}$, $t_{\rm pHL}$ }

All in One

Computer Architecture

Revisiting sequential circuit: A complete picture

Computer Architecture 11

Present state		Input	Next state		Output
A	В	x	A	В	y
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

$$A(t+1) = Ax + Bx$$
, $B(t+1) = A^x$, $y = Ax + Bx$

State Diagram

x/y where x is input and y is output after the transition

Computer Architecture 13

Try it for a binary counter ©

Lab-1

World of State machines (FSMs)
Moore and Mealy
Machines

Moore vs Mealy

Moore machine: Output depends on the current state

Mealy machine: Output depends on the current state and inputs

Odd Parity Checker

Moore

- Serial input string
 - OUT=1 if odd # of 1s in input
 - OUT=0 if even # of 1s in input
- Let's do this for Moore and Mealy

Mealy

State Transitions

Output changes only when the state changes Appears after the state transition takes place outputs change at clock edge

Even = 0

Odd = 1

Moore

Present State	Input	Next	Present State	Output changes when the state and input chang Appears before the state transition is completed			
Output Even Even Odd	0 1 0	Even Odd Odd	0 0 1	•	ster to ir ealy	nputs — do	on't wait for clock
Odd	1	Even	1 Present State	Input	Next	Present State	
			Output Even	0	Even	0	
			Even	1	Odd	1	
			Odd	0	Odd	1	
			Odd	1	Even	0	

01/10 detector: Moore Machine

01/10 detector: Mealy Machine

	reset	input	current state	next state	current output
_	1	_	_	Α	0
	0	0	Α	В	0
	0	1	Α	С	0
	0	0	В	В	0
	0	1	В	С	1
	0	0	С	В	1
	0	1	С	С	0

PAUSE

Next Few Lectures

HOW CAN A
PROGRAMME
R INTERACT
WITH THE
PROCESSOR?

THE
LANGUAGE
OF
COMPUTER:
INSTRUCTION
S

INSTRUCTION
S HAVE A
VOCABULARY
CALLED
INSTRUCTION
SET

DRIVEN BY
INSTRUCTION
SET
ARCHITECTUR
E (ISA)

ISA: X86, ARM, RISC-V, MIPS

Coffee Credits

- Anirrudh + 1
- Tejas +1

