Próbny Egzamin Maturalny z Matematyki

ZESTAW PRZYGOTOWANY PRZEZ SERWIS

WWW.ZADANIA.INFO

POZIOM PODSTAWOWY

13 KWIETNIA 2019

CZAS PRACY: 170 MINUT

Zadania zamkniete

ZADANIE 1 (1 PKT)

Różnica 2 $\log_{\sqrt{3}}\sqrt[4]{3} - \log_{\sqrt{2}} 8$ jest równa

A)
$$-2$$

B)
$$\log_{6} \frac{9}{4}$$

C)
$$-5$$

ZADANIE 2 (1 PKT)

Liczba
$$3^{26} - 24 \cdot 3^{23}$$
 jest równa A) -3^{23} B) 3^3

A)
$$-3^{23}$$

B)
$$3^{3}$$

C)
$$3^{23}$$

ZADANIE 3 (1 PKT)

Jacek kupił 8 bułek po 0,65 zł za sztukę oraz 1,5 kilograma ogórków po 4,40 zł za kilogram. Oszacował, że za zakupy zapłacił w przybliżeniu 12 zł. Błąd względny tego przybliżenia wynosi:

A)
$$\frac{1}{59}$$

C)
$$\frac{20}{118}$$

ZADANIE 4 (1 PKT)

Narty po serii obniżek ceny o 5% kosztują 2606,42 zł. Oblicz ile razy obniżono cenę nart o 5% jeżeli ich cena po drugiej obniżce wynosiła 2888 zł.

ZADANIE 5 (1 PKT)

Zbiorem wszystkich rozwiązań nierówności $\frac{3-2x}{5} \leqslant \frac{1}{3}$ jest przedział A) $\left(-\infty,\frac{7}{3}\right)$ B) $\left\langle\frac{2}{3},+\infty\right)$ C) $\left(-\infty,\frac{2}{3}\right)$ D) $\left\langle\frac{7}{3},+\infty\right)$

A)
$$\left(-\infty,\frac{7}{3}\right)$$

B)
$$\left\langle \frac{2}{3}, +\infty \right)$$

C)
$$\left(-\infty, \frac{2}{3}\right)$$

D)
$$\left\langle \frac{7}{3}, +\infty \right\rangle$$

ZADANIE 6 (1 PKT)

Równość $\left(a+\sqrt{2}\right)^{-2}=3+2\sqrt{2}$ jest prawdziwa dla A) $a=\sqrt{13}$ B) a=-1 C) a=2 D) $a=\sqrt{13}+1$

A)
$$a = \sqrt{13}$$

B)
$$a = -1$$

C)
$$a = 2$$

D)
$$a = \sqrt{13} + 1$$

ZADANIE 7 (1 PKT)

Liczbę 673/333 można zapisać w postaci nieskończonego ułamka dziesiętnego okresowego. Trzydziestą cyfrą po przecinku jego rozwinięcia jest

ZADANIE 8 (1 PKT)

Rozwiązaniem równania $\frac{x-4}{3(x+4)} = -\frac{1}{9}$ jest liczba A) -2 B) 2 C)

A)
$$-2$$

B)
$$\stackrel{3(x)}{2}$$

D)
$$-4$$

ZADANIE 9 (1 PKT)

Wykresem funkcji kwadratowej f(x) = 1019 - (x - 3019)(2019 + x) jest parabola, której wierzchołek leży na prostej

A)
$$y = 3019$$

B)
$$\dot{x} = 2019$$

C)
$$x = 500$$

D)
$$y = 1019$$

ZADANIE 10 (1 PKT)

Rysunek przedstawia wykres funkcji y = f(x).

Wskaż rysunek, na którym przedstawiony jest wykres funkcji y = f(-x).

ZADANIE 11 (1 PKT)

Wykres funkcji liniowej $f(x) = 2s^2x + s - 1 - 2x$ nie ma punktów wspólnych z prostą y =−2. Zatem

A)
$$s = -2$$

B)
$$s = 0$$

B)
$$s = 0$$
 C) $s = -1$

D)
$$s = 1$$

ZADANIE 12 (1 PKT)

Największą wartością funkcji
$$y=-(x^2-2)^2+(x^2+2)^2$$
 w przedziale $\left\langle -\frac{1}{2},\frac{1}{2}\right\rangle$ jest A) 0 B) 8 C) 4 D) 2

ZADANIE 13 (1 PKT)

Dany jest ciąg geometryczny (a_n) , określony dla $n \ge 1$, w którym $a_1 = 4\sqrt{2}$, $a_2 = 2\sqrt{2}$, $a_3 = \sqrt{2}$. Wzór na *n*-ty wyraz tego ciągu ma postać

A)
$$a_n = \left(\sqrt{2}\right)^n$$

B)
$$a_n = \frac{2^n}{\sqrt{2}}$$

B)
$$a_n = \frac{2^n}{\sqrt{2}}$$
 C) $a_n = \left(\frac{\sqrt{2}}{2}\right)^n$ D) $a_n = \frac{\sqrt{2}}{2^{n-3}}$

D)
$$a_n = \frac{\sqrt{2}}{2^{n-3}}$$

ZADANIE 14 (1 PKT)

Układ równań $\begin{cases} 2x + py = 3 \\ qx + 3y = 6 \end{cases}$ z niewiadomymi x i y ma nieskończenie wiele rozwiązań.

Zatem liczba p + q jest równa

C)
$$\frac{13}{2}$$

D)
$$\frac{11}{2}$$

ZADANIE 15 (1 PKT)

Odcinek *AB* jest średnicą okręgu o środku *O* i promieniu *r*. Na tym okręgu wybrano punkt C, taki, że |OB| = 2|BC| (zobacz rysunek).

Pole trójkąta AOC jest równe

A)
$$\frac{r^2\sqrt{15}}{8}$$

B)
$$\frac{1}{2}r^2$$

C)
$$\frac{r^2\sqrt{15}}{16}$$

D)
$$\frac{\sqrt{3}}{4}r^2$$

ZADANIE 16 (1 PKT)

Dany jest trapez równoramienny KLMN, którego podstawy mają długości |KL|=a, |MN|=b, a > b. Kąt KLM ma miarę 60° . Długość ramienia LM tego trapezu jest równa

- A) 2(a b)
- B) a b
- C) $a + \frac{1}{2}b$

ZADANIE 17 (1 PKT)

Ciąg arytmetyczny (a_n) , określony dla $n \ge 1$, spełnia warunek $a_5 + a_6 + a_7 = 51$. Wtedy

A)
$$a_6 = 19$$

B)
$$a_6 = 15$$

C)
$$a_6 = 51$$

D)
$$a_6 = 17$$

ZADANIE 18 (1 PKT)

Wartość wyrażenia $\frac{\cos 129^{\circ}\cos 51^{\circ}}{\sin 51^{\circ}\sin 129^{\circ}}$ wynosi

A) 1

B)
$$-1$$

C)
$$\frac{1}{\text{tg}^2 51^{\circ}}$$

D)
$$1 - \frac{1}{\sin^2 51^\circ}$$

ZADANIE 19 (1 PKT)

Miary dwóch kątów trapezu równoramiennego pozostają w stosunku 5:7. Wynika stąd, że największy kąt tego trapezu ma miarę

A) 105°

B) 15°

C) 75°

D) 125°

ZADANIE 20 (1 PKT)

Boki równoległoboku *ABCD* zwierają się w prostych o równaniach:

$$x + (2 - m)y + 2 = 0,$$

 $mx - my + 3 = 0,$
 $y = x - 7,$
 $2x + my - 7 = 0$

Zatem

A)
$$m = -\frac{4}{3}$$

B)
$$m = \frac{3}{4}$$

C)
$$m = \frac{4}{3}$$

C)
$$m = \frac{4}{3}$$
 D) $m = -\frac{3}{4}$

ZADANIE 21 (1 PKT)

Podstawą graniastosłupa prostego jest prostokąt o bokach długości 3 i 4. Kąt α , jaki przekątna tego graniastosłupa tworzy z jego podstawą, jest równy 30° (zobacz rysunek).

Wysokość graniastosłupa jest równa

- A) $5\sqrt{3}$
- B) $\frac{5\sqrt{3}}{2}$
- C) $\frac{5\sqrt{3}}{3}$
- D) $5\sqrt{2}$

ZADANIE 22 (1 PKT)

Wśród 200 osób przeprowadzono ankietę, w której zadano pytanie o liczbę filmów kinowych obejrzanych w ostatnim roku. Wyniki ankiety zebrano w poniższej tabeli.

Liczba filmów						
Liczba osób	57	79	38	17	7	2

Średnia liczba obejrzanych filmów przez jedną ankietowaną osobę jest równa

- A) 2,44
- B) 1,22
- C) 1,88
- D) 2,5

ZADANIE 23 (1 PKT)

Przekrój osiowy walca jest prostokątem o przekątnej $4\sqrt{5}$ i polu 20. Pole powierzchni bocznej tego walca jest równe

- A) 20π
- B) 24π
- C) 40π
- D) 30π

ZADANIE 24 (1 PKT)

Punkty A=(-7,10) i B=(1,4) są końcami średnicy AB okręgu o. Długość okręgu o jest równa

- A) 5π
- B) 25π
- C) 10π
- D) 20π

ZADANIE 25 (1 PKT)

W pewnej loterii fantowej przygotowano dwie urny z losami, przy czym w drugiej urnie było trzy razy więcej losów niż w pierwszej urnie. Prawdopodobieństwo wybrania losu wygrywającego z pierwszej urny jest równe $\frac{1}{6}$, a prawdopodobieństwo wybrania losu wygrywającego z drugiej urny jest równe $\frac{1}{4}$. Przed rozpoczęciem loterii losy z obu urn zmieszano i umieszczono w jednej urnie. Po tej operacji prawdopodobieństwo wybrania losu wygrywającego jest równe

A) $\frac{1}{6}$

B) $\frac{1}{4}$

C) $\frac{11}{48}$

D) $\frac{7}{24}$

ZADANIE 26 (2 PKT)

Jeżeli do licznika i do mianownika dodatniego ułamka dodamy jego licznik, to otrzymamy $\frac{2}{5}$, a jeżeli do licznika i do mianownika dodamy 6, to otrzymamy $\frac{1}{2}$. Wyznacz ten ułamek.

ZADANIE 27 (2 PKT)

Wykaż, że dla dowolnych liczb rzeczywistych x,y prawdziwa jest nierówność

$$1 + \frac{x^6 + y^6}{2} \geqslant x^3 + y^3$$

ZADANIE 28 (2 PKT)

Wykresem funkcji kwadratowej $f(x)=ax^2+bx+c$ jest parabola styczna do prostej y=8 w punkcie A=(5,8) oraz przechodząca przez punkt B=(-1,-8). Wyznacz wartości współczynników a,b i c.

ZADANIE 29 (2 PKT)

Okręgi o środkach odpowiednio A i B są styczne zewnętrznie i każdy z nich jest styczny do obu ramion danego kąta prostego (zobacz rysunek). Promień okręgu o środku A jest równy 1.

Uzasadnij, że promień okręgu o środku B jest większy niż $2+2\sqrt{2}$.

ZADANIE 30 (2 PKT)

Kat *α* jest ostry i sin $\alpha + \cos \alpha = \frac{\sqrt{5}}{2}$. Oblicz wartość wyrażenia tg $\alpha + \frac{1}{\operatorname{tg}\alpha}$.

ZADANIE 31 (2 PKT)

Punkty A=(3,5), $B=\left(-\frac{1}{2},\frac{1}{2}\right)$, C=(2,-2) są kolejnymi wierzchołkami równoległoboku ABCD. Wyznacz równanie przekątnej BD tego równoległoboku.

ZADANIE 32 (4 PKT)

Ze zbioru $\{9,10,11,\ldots,48\}$ losujemy dwa razy po jednej liczbie ze zwracaniem. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że suma wylosowanych liczb będzie podzielna przez 3.

ZADANIE 33 (5 PKT)

Krawędź podstawy graniastosłupa prawidłowego trójkątnego ABCDEF jest równa 6 (zobacz rysunek). Punkt P dzieli krawędź boczną CF w stosunku |CP|:|PF|=2:3. Pole trójkąta ABP jest równe $15\sqrt{3}$. Oblicz objętość tego graniastosłupa.

ZADANIE 34 (4 PKT)

Pole prostokąta ABCD jest równe 60, a promień okręgu wpisanego w trójkąt BCD jest równy 2. Oblicz obwód tego prostokąta.

