Deep Learning

Ulf Brefeld + SottAM MATUMDER !
build: June 17, 2024

Machine Learning Group Leuphana University of Lüneburg

Variational Autoencoders

Autoencoders learn latent representations of data by a fairly straightforward procedure: encode data into the latent representation then attempt to reconstruct the original inputs from them.

A problem is that this *latent space* has no inherent structure: in principle, no assumption is made on which properties it should have beyond its dimensionality.

By reframing the problem from a probabilistic perspective, we can see how to induce a specific distribution for the latent space. In generative modeling, we develop and use methods that learn the data generation process: a model of the data we observe.

As done previously, we start by considering a maximum likelihood problem: we model the true data distribution p(x) with a parametrized distribution $p_{\theta}(x)$ and optimize θ such that $p_{\theta}(x)$ is maximimized under the data we observe.

A *latent variable model* addresses this problem by introducing unobserved (latent) variables z.

Consider the distribution $p_{\theta}(x,z)$: the joint distribution of the input space ${\mathcal X}$ (where our data comes from) and the latent space ${\mathcal Z}$ of latent (unbserved) variables. This distribution is also parametrized by θ .

According to our joint distribution, we can calculate $p_{\theta}(x)$ as:

$$p_{\theta}(x) = \int p_{\theta}(x, z) dz,$$

which is also referred to as a marginal likelihood

-s Expostation Maximazation

Madel for p(x)!?

D(5/16/7...)

One advantage of deep neural networks is that they can model very complex functions.

As such, they seem a natural candidate to model $p_{\theta}(x, z)$. The most straightforward factorization (assumption) for this distribution is:

$$p_{\theta}(x,z) = p_{\theta}(z)p_{\theta}(x|z)$$

• $p_{\theta}(z)$: prior distribution over z

A model of p(x, z) using a neural network for x representing independent binary variables following a Bernoulli distribution:

$$z \sim \mathcal{N}(0, I)$$

$$(p_1, p_2, \dots, p_D) = \text{NeuralNet}_{\theta}(z)$$

$$\log p(x|z) = \sum_{j=1}^{D} \log p(x_j|z) = \sum_{j=1}^{D} \log \text{Ber}(x_j; p_j)$$

$$= \sum_{j=1}^{D} x_j \log p_j + (1 - x_j) \log(1 - p_j)$$

where $0 \le p_j \le 1$ (e.g., output is a sigmoid layer of NeuralNet_{θ}(·)) and Ber(·; p_j) is a Bernoulli distribution with parameter p_j .

While those allow very flexible p(x,z) to be modelled, the earlier marginal likelihood becomes intractable in this setting.

Note that this also affects the posterior $p_{\theta}(z|x)$, as per the relationship

$$p(z|x) = \frac{p(x,z)}{p(x)} \Rightarrow p(x) = \frac{p(x,z)}{p(z|x)}.$$

if p(x) is intractable, then p(z|x) is also intractable.

Variational Autoencoders solve this problem by introducing an approximation of $p_{\theta}(z|x)$, the approximate posterior $q_{\phi}(z|x)$, which is parametrized by variational parameters ϕ .

The distribution $q_{\phi}(z|x)$ is also parametrized by a neural network. For instance:

$$(\mu, \log \sigma) = \text{NeuralNet}_{\phi}(x)$$

 $q_{\phi}(z|x) = \mathcal{N}(z; \mu, \text{diag}(\sigma))$

Approximating the posterior $p_{\theta}(z|x)$ helps us optimize the marginal likelihood:

$$\log p_{\theta}(x) = \mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{\theta}(x) \right]$$

$$= \mathbb{E}_{q_{\phi}(z|x)} \left[\log \frac{p_{\theta}(x,z)}{p_{\theta}(z|x)} \right]$$

$$= \mathbb{E}_{q_{\phi}(z|x)} \left[\log \frac{p_{\theta}(x,z)q_{\phi}(z|x)}{q_{\phi}(z|x)p_{\theta}(z|x)} \right]$$

$$= \mathbb{E}_{q_{\phi}(z|x)} \left[\log \frac{p_{\theta}(x,z)}{q_{\phi}(z|x)} \right] + \mathbb{E}_{q_{\phi}(z|x)} \left[\log \frac{q_{\phi}(z|x)}{p_{\theta}(z|x)} \right]$$

$$= \mathbb{E}_{\text{BO } \mathcal{L}_{\theta,\phi}} \underbrace{D_{\text{KL}}(q_{\phi}(z|x)||p_{\theta}(z|x))}$$

Importantly, one should note that:

$$\log p_{\theta}(x) = \mathbb{E}_{q(z|x)} \left[\log \frac{p_{\theta}(x,z)}{q_{\phi}(z|x)} \right] + \mathcal{D}_{\mathrm{KL}}(q_{\phi}(z|x) \| p_{\theta}(z|x))$$

$$\mathcal{L}_{\theta,\phi}(x) = \log p_{\theta}(x) - \mathcal{D}_{\mathrm{KL}}(q_{\phi}(z|x) \| p_{\theta}(z|x))$$

$$\leq \log p_{\theta}(x) \quad \text{(since KL div. is strictly positive)}$$

This means that $\mathcal{L}_{\theta,\phi}(x)$ represents a lower bound on the log-likelihood of the data, which is why it is referred to as *evidence lower bound* (ELBO). Furthermore, maximizing it brings the aproximate posterior $q_{\phi}(z|x)$ closer to the true posterior $p_{\theta}(z|x)$ as it implies the KL divergence becomes smaller.

One problem still remains: optimizing the ELBO through SGD requires sampling from $q_{\phi}(z|x)$:

$$\mathcal{L}_{\theta,\phi}(x) = \mathbb{E}_{q(z|x)} \left[\log p_{\theta}(x,z) - \log q_{\phi}(z|x) \right],$$

which is impractical.

To solve this, we can use the *reparametrization trick*: we rewrite $z \sim q_{\phi}(z|x)$ as a function h of another random variable ϵ which is independent from x and ϕ :

$$\epsilon \sim p(\epsilon)$$

$$z = h(\phi, x, \epsilon)$$

$$\tilde{\mathcal{L}}_{\theta,\phi}(x) = \log p_{\theta}(x, z) - \log q_{\phi}(z|x).$$

The gradients $\nabla_{\theta,\phi} \tilde{\mathcal{L}}_{\theta,\phi}$ are an unbiased estimator of the gradients of $\mathcal{L}_{\theta,\phi}$.

priceptic repolate:

WE WE'N + YX

Lae: (ABAM (rimited Side effects)

2 = (2) + YX

With these, a variational autoencoder can be built by modeling $p_{\theta}(x,z)$ and $q_{\phi}(z|x)$ and optimizing $\tilde{\mathcal{L}}_{\theta,\phi}$ with respect to θ and ϕ .

Usual choices for a VAE:

• Encoder $f(\phi, \cdot)$

$$\mu^f, \sigma^f = f(\phi, x)$$

$$q_{\phi}(z|x) = \mathcal{N}(\mu^f, \operatorname{diag}(\sigma^f))$$

• Decoder $g(\theta, \cdot, \cdot)$

$$p_{ heta}(x,z) = p_{ heta}(x|z)p_{ heta}(z)$$
 $p_{ heta}(z) = \mathcal{N}(0,I)$ (prior over latent space)
 $\epsilon \sim p(\epsilon) = \mathcal{N}(0,I)$
 $z = \epsilon \circledcirc \sigma^f + \mu^f$ (reparametrization trick)
 $\mu^g, \sigma^g = g(\theta,z,\epsilon)$
 $p_{ heta}(x|z) = \mathcal{N}(\mu^g, \operatorname{diag}(\sigma^g))$

dran reconstrations

A usual interpretation for the ELBO $\mathcal{L}_{\theta,\phi}$ is:

$$\mathcal{L}_{\theta,\phi} = \mathbb{E}_{q_{\phi}(z|x)} \left[\log \underbrace{p_{\theta}(x,z)}_{p_{\theta}(x|z)p_{\theta}(z)} - \log q_{\phi}(z|x) \right]$$

$$= \mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{\theta}(x|z) + \log p_{\theta}(z) - \log q_{\phi}(z|x) \right]$$

$$= \mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{\theta}(x|z) + \log \frac{p_{\theta}(z)}{q_{\phi}(z|x)} \right]$$

$$= \mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{\theta}(x|z) - \log \frac{q_{\phi}(z|x)}{p_{\theta}(z)} \right]$$

$$= \mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{\theta}(x|z) \right] - \mathbb{E}_{q_{\phi}(z|x)} \left[\log \frac{q_{\phi}(z|x)}{p_{\theta}(z)} \right]$$

$$= \mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{\theta}(x|z) \right] - D_{\mathsf{KL}} (q_{\phi}(z|x) || p_{\theta}(z)) \right]$$
reconstruction error latent space matches prior?

12

KL term of the ELBO:

$$D_{\mathsf{KL}}(\underbrace{q_{\phi}(z|x)}_{\mathcal{N}(\mu^f,\operatorname{diag}(\sigma^f))} \| \underbrace{p_{\theta}(z)}_{\mathcal{N}(0,I)}) = -\frac{1}{2} \sum_{j=1}^{d_{\mathsf{latent}}} \left(1 + 2\log \sigma_j^f - (\mu_d^f)^2 - (\sigma_d^f)^2\right)$$

Latent space

KL term of the ELBO:

$$D_{\mathsf{KL}}(\underbrace{q_{\phi}(z|x)}_{\mathcal{N}(\mu^f,\operatorname{diag}(\sigma^f))} \| \underbrace{p_{\theta}(z)}_{\mathcal{N}(0,I)}) = -\frac{1}{2} \sum_{j=1}^{d_{\mathsf{latent}}} \left(1 + 2\log \sigma_j^f - (\mu_d^f)^2 - (\sigma_d^f)^2\right)$$

KL term of the ELBO:

$$D_{\mathsf{KL}}(\underbrace{q_{\phi}(z|x)}_{\mathcal{N}(\mu^f,\mathrm{diag}(\sigma^f))} \| \underbrace{p_{\theta}(z)}_{\mathcal{N}(0,I)}) = -\frac{1}{2} \sum_{j=1}^{d_{\mathsf{latent}}} \left(1 + 2\log\sigma_j^f - (\mu_d^f)^2 - (\sigma_d^f)^2\right)$$

$$f$$

$$\mathsf{Latent space}$$

Assuming a Gaussian with identity covariance (meaning $\sigma^g = 1$),

the other term becomes similar to a reconstruction error:
$$p(\mathbf{x}|\mathbf{z}) = \frac{1}{2} \sum_{j=1}^{d_{\text{input}}} (x_j - \mu_j^g)^2 + \text{constant}$$

$$\log p_{\theta}(x|z) = \frac{1}{2} \sum_{j=1}^{d_{\mathsf{input}}} (x_j - \mu_j^g)^2 + \mathsf{constant}$$

Assuming a Gaussian with identity covariance (meaning $\sigma^g = 1$), the other term becomes similar to a reconstruction error:

$$\log p_{\theta}(x|z) = \frac{1}{2} \sum_{j=1}^{d_{\mathsf{input}}} (x_j - \mu_j^g)^2 + \mathsf{constant}$$

Assuming a Gaussian with identity covariance (meaning $\sigma^g = 1$), the other term becomes similar to a reconstruction error:

$$\log p_{\theta}(x|z) = \frac{1}{2} \sum_{j=1}^{d_{\text{input}}} (x_j - \mu_j^g)^2 + \text{constant}$$

Original

72104149690690190159015901349665

Autoencoder reconstruction (d = 32)

Variational Autoencoder reconstruction (d = 32)

Inspecting 2 latent dimensions of autoencoders

Autoencoder sampling (d = 32)

Variational Autoencoder sampling (d = 32)

Encouraging the latent space to follow $\mathcal{N}(0,1)$ often results in "disentangled" representations.

This effect can be controlled by introducting a hyperparameter β in the ELBO:

$$\mathcal{L}_{\theta,\phi} = \mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{\theta}(x|z) \right] - \beta D_{\mathsf{KL}} (q_{\phi}(z|x) \| p_{\theta}(z)).$$

The resulting method is named β -VAE.

References

Kingma, D. P., and Welling, M. An Introduction to Variational Autoencoders (2019). arXiv preprint arXiv:1906.02691.

