Univariate: DARWIN

Jose Tamez

2023-01-27

Contents

DARWIN Univariate	1
The Data	1
Univariate	2
Decorrelation Analysis	3
Univariate Decorrelated	8
CV ROC Analysis	10
Feature Frequency Plots	13

DARWIN Univariate

Loading the libraries

```
library("FRESA.CAD")
library(readxl)
op <- par(no.readonly = TRUE)
pander::panderOptions('digits', 3)
pander::panderOptions('table.split.table', 400)
pander::panderOptions('keep.trailing.zeros',TRUE)</pre>
```

The Data

```
DARWIN <- read.csv("~/GitHub/FCA/Data/DARWIN/DARWIN.csv")
rownames(DARWIN) <- DARWIN$ID

DARWIN$ID <- NULL

DARWIN$class <- 1*(DARWIN$class=="P")
print(table(DARWIN$class))

#>
#> 0 1
#> 85 89

DARWIN[,1:ncol(DARWIN)] <- sapply(DARWIN,as.numeric)
```

```
dataframe <- DARWIN
outcome <- "class"

pander::pander(c(rows=nrow(dataframe),col=ncol(dataframe)-1))</pre>
```

Standarize the names for the reporting

rows	col
174	450

```
pander::pander(table(dataframe[,outcome]))
```

0	1
85	89

```
varlist <- colnames(dataframe)
varlist <- varlist[varlist != outcome]
varlist <- as.data.frame(cbind(name=varlist,desc=varlist))</pre>
```

Univariate

```
100: mean_jerk_in_air6 200: disp_index12 300: mean_speed_in_air17 400: gmrt_on_paper23
pander::pander(univar$orderframe[1:20,univariate_columns])
```

	${\rm caseMean}$	caseStd	controlMean	controlStd	controlKSP	ROCAU	WilcoxRes.p	FRes.p
$total_time23$	1.70e+04	1.10e+04	1.18e+04	3.15e+04	4.26e-13	0.863	1.40e-13	9.35e-05
$total_time15$	5.34e + 04	6.17e + 04	1.48e + 04	6.66e + 03	1.42e-02	0.844	1.03e-15	0.00e+00
$\operatorname{air_time23}$	9.79e + 03	7.42e + 03	7.38e + 03	3.14e+04	5.73e-14	0.844	7.90e-11	1.57e-01
$\operatorname{air_time15}$	4.38e + 04	5.81e + 04	9.39e + 03	5.46e + 03	3.71e-02	0.829	4.82e-15	0.00e+00
$total_time17$	7.44e + 04	1.03e + 05	3.50e + 04	4.42e+04	1.39e-09	0.824	3.94e-12	6.39 e-10
paper_time23	7.24e + 03	4.56e + 03	4.43e + 03	1.08e + 03	1.45e-01	0.814	2.30e-12	1.21e-14
air_time17	5.09e+04	1.01e + 05	1.96e + 04	4.39e + 04	2.22e-11	0.806	9.71e-11	2.72e-07
paper_time17	2.35e + 04	1.31e+04	1.54e + 04	4.69e + 03	2.55e-02	0.796	5.43e-11	2.65e-12
$total_time6$	1.77e + 04	1.72e + 04	6.93e + 03	3.64e + 03	1.14e-02	0.790	6.24 e-12	7.99e-14
$\operatorname{air_time}16$	1.03e + 04	1.02e+04	2.91e + 03	2.77e + 03	2.89e-03	0.787	4.24e-12	5.01e-14
$total_time2$	2.20e+04	1.93e + 04	9.97e + 03	5.14e + 03	4.98e-01	0.787	6.85 e-12	1.88e-13
$disp_index23$	1.02e-05	2.08e-06	8.37e-06	1.45e-06	8.73e-02	0.787	4.32e-11	6.25 e-12
$total_time7$	1.78e + 04	1.52e + 04	1.77e + 04	5.43e + 04	1.78e-15	0.785	6.19e-07	4.90e-01
$total_time16$	1.45e + 04	1.24e + 04	5.81e + 03	4.54e + 03	1.21e-03	0.784	5.43e-11	5.47e-12
air_time6	1.29e + 04	1.43e + 04	4.46e + 03	3.39e + 03	2.81e-03	0.784	2.20e-11	4.92e-13

	caseMean	caseStd	controlMean	controlStd	controlKSP	ROCAU	JCWilcoxRes.p	FRes.p
$total_time22$	3.48e + 04	1.56e + 05	8.84e + 03	3.29e+03	1.25 e-01	0.780	1.30e-11	1.61e-13
air_time7	1.22e + 04	1.14e+04	1.49e + 04	5.40e + 04	5.55e-16	0.779	1.00e+00	3.26e-01
$total_time8$	1.27e + 04	1.34e + 04	4.97e + 03	3.15e + 03	6.98e-03	0.776	1.06e-10	5.11e-12
$gmrt_in_air7$	2.21e+02	9.09e+01	3.39e + 02	1.33e + 02	5.14e-01	0.775	2.21e-10	1.53e-11
$total_time9$	1.68e + 04	1.45e + 04	6.72e + 03	3.40e + 03	2.69e-01	0.774	5.06e-12	$1.23\mathrm{e}\text{-}13$

```
topfiveOrg <- rownames(univar$orderframe[1:5,])</pre>
```

Decorrelation Analysis

```
DEdataframe <- GDSTMDecorrelation(dataframe, thr=0.80, verbose = TRUE)
```

Included: 450 , Uni p: 0.005342585 , Uncorrelated Base: 275 , Outcome-Driven Size: 0 , Base Size: 275

1 < R = 1.000, w = 1, N = 116 >, Top: 58(1)1 : 58 : 0.975, < | > Tot Used: 116 , Added: 58 , Zero Std: 0 , Max Cor: $1.000 \ 2 < R = 1.000, w = 1, N = 116 >$, Top: 7(1)1 : 7: 0.975, < | > Tot Used: 123, Added: 7, Zero Std: 0, Max Cor: $1.000 \ 3 < R = 1.000, w = 2.N = 59 >$, Top: $29(1) \ 1 : 29 : 0.950, < > Tot Used: 166$, Added: 30, Zero Std: 0, Max Cor: 1.000 4 < R = 1.000, w = 2, N = 59 >, Top: 8(1) : 8 : 0.950, < | > Tot Used: 166, Added: 8, Zero Std: 0, Max Cor: 1.000 5 <R=1.000,w=2,N=59>, Top: 8(1)1:8:0.950,<|>Tot Used: 166, Added: 8, Zero Std: 0, Max Cor: 1.000 6 < R = 1.000, w = 2, N = 59 >, Top: 8(1) : 8 : 0.950, < | > Tot Used:166 , Added: 8 , Zero Std: 0 , Max Cor: 1.000 7 <R=1.000,w= 2,N= 59>, Top: 8(1)1 : 8 : 0.950,<|>Tot Used: 166, Added: 8, Zero Std: 0, Max Cor: 1.000 8 < R=1.000, w= 2, N= 59>, Top: 8(1)1:8: 0.950, <|>Tot Used: 166, Added: 8, Zero Std: 0, Max Cor: 1.000 9 < R = 1.000, w = 2, N = 59>, Top: 8(1)1: 8: 0.950, <|>Tot Used: 166, Added: 8, Zero Std: 0, Max Cor: 1.000 10 <R=1.000, w= 2,N= 59>, Top: 8(1)1:8:0.950, <|>Tot Used: 166, Added: 8, Zero Std: 0, Max Cor: 1.000 11 <R=1.000, w= 2,N= 59>, Top: 7(1)1:7:0.950,<|>Tot Used: 166, Added:7, Zero Std:0, Max Cor: 0.988 12 < R=0.988,w= 2,N = 59 >, Top: 14(1)1:14:0.944,<|>Tot Used: 176, Added: 14, Zero Std: 0, Max Cor: 0.988 13 R=0.988, w=2, N=59>, Top: 8(1)1:8:0.944,<|>Tot Used: 176, Added:8, Zero Std:0, Max Cor: $0.988\ 14 < R = 0.988, w = 2, N = 59 >$, Top: 8(1)1:8:0.944, < | > Tot Used: 176, Added:8, Zero Std:0, Max Cor: $0.988\ 15 < R = 0.988, w = 2, N = 59 >$, Top: 8(1)1:8:0.944, < > Tot Used: 176, Added: 8, Zero Std: 0, Max Cor: $0.988\ 16 < R = 0.988, w = 2, N = 59 >$, Top: 8(1)1:8:0.944, < | > Tot Used: 176, Added: 8, Zero Std: 0, Max Cor: $0.988\ 17 < R = 0.988, w = 2, N = 59 >$, Top: 8(1)1:8:0.944, < | > Tot Used: 176, Added: 8 , Zero Std: 0 , Max Cor: 0.988 18 <R=0.988,w= 2,N= 59>, Top: 8(1)1 : 8 : 0.944,<|>Tot Used: 176 , Added: 8, Zero Std: 0, Max Cor: 0.987 19 <R=0.987,w= 2,N= 59>, Top: 8(1)1:8:0.944,<|>Tot Used: 176, Added: 8, Zero Std: 0, Max Cor: 0.985, 20 < R=0.985, w= 2, N= 59 >, Top: 8(1)1:8: 0.943 < > Tot Used: 176, Added: 8, Zero Std: 0, Max Cor: $0.984\ 21 < R = 0.984, w = 2, N = 59 >$, Top: 7(1)1 : 7: 0.942, <|>Tot Used: 176, Added: 7, Zero Std: 0, Max Cor: 0.983 22 <R=0.983,w= 2,N= 59>, Top: 7(1)1:7:0.942,<|>Tot Used: 176, Added: 7, Zero Std: 0, Max Cor: 0.983 23 <R=0.983,w= 2,N= 59>, Top: 5(1)1:5:0.941,<|>Tot Used: 176, Added: 5, Zero Std: 0, Max Cor: 0.971.24 < R=0.971,w=3,N = 89 >, Top: 43(1)1:43:0.886,<|>Tot Used: 237, Added: 44, Zero Std: 0, Max Cor: 0.992 25 <R=0.992,w= 3,N= 89>, Top: 12(1)1 : 12 : 0.896,<Pot Used: 238 , Added: 12 , Zero Std: 0 , Max Cor: $0.992\ 26\ < R = 0.992, w = 3, N = 89 >$, Top: 12(1)1:12:0.896, $< | > Tot\ Used: 238$, Added: 12, Zero Std: 0, Max Cor: 0.992 27 <R=0.992,w= 3,N= 89>, Top: 12(1)1:12:0.896,<|>Tot Used: 238, Added: 12, Zero Std: 0, Max Cor: $0.992\ 28 < R = 0.992, w = 3, N = 89 >$, Top: 11(1)1: 11: 0.896, < | > Tot Used: 238, Added: 11, Zero Std: 0, Max Cor: 0.992 29 < R = 0.992, w = 3, N = 89 >, Top: 10(1) 1: 10: 0.896, < | > TotUsed: 238, Added: 10, Zero Std: 0, Max Cor: 0.992 30 <R=0.992,w=3,N=89>, Top: 10(1)1: 10: 0.896,<|>Tot Used: 238, Added: 10, Zero Std: 0, Max Cor: 0.992 31 <R=0.992,w= 3,N= 89>, Top: 10(1))1: 10: 0.896, <|>Tot Used: 238, Added: 10, Zero Std: 0, Max Cor: 0.992 32 <R=0.992, w= 3, N= 89>,Top: 10(1)1:10:0.896, <|>Tot Used: 238, Added: 10, Zero Std: 0, Max Cor: 0.992 33 <R=0.992, w= 3,N = 89 >, Top: 10(1)1:10:0.896,<|>Tot Used: 238, Added: 10, Zero Std: 0, Max Cor: 0.98634 < R = 0.986, w = 3, N = 89 >, Top: 10(1)1:10:0.893, < | > Tot Used: 238, Added: 10, Zero Std: 0, Max Cor:

 $0.984\ 35 < R = 0.984.w = 3.N = 89>$, Top: 9(1)1:9:0.892.<|>Tot Used: 238, Added: 9, Zero Std: 0, Max Cor: $0.958\ 36 < R = 0.958, w = 3, N = 89 >$, Top: 12(1)1: 12: 0.879, < | > Tot Used: 240, Added: 12, Zero Std: 0, Max Cor: $0.968 \ 37 < R = 0.968, w = 3, N = 89 >$, Top: $10(1) \ 1 : 10 : 0.884, < >$ Tot Used: 240, Added: 10, Zero Std: 0, Max Cor: $0.968 \ 38 < R = 0.968, w = 3, N = 89 >$, Top: $10(1) \ 1 : 10 : 0.884, < | > Tot$ Used: 240, Added: 10, Zero Std: 0, Max Cor: 0.968 39 < R = 0.968, w = 3, N = 89 >, Top: 10(1)1:10:0.884 < > Tot Used: 240, Added: 10, Zero Std: 0, Max Cor: $0.968 \ 40 < \text{R} = 0.968, \text{w} = 3, \text{N} = 89 >$, Top: 10(1))1: 10: 0.884, <|>Tot Used: 240, Added: 10, Zero Std: 0, Max Cor: 0.96841 < R = 0.968, w = 3, N = 89>, Top: 9(1): 9: 0.884, <|>Tot Used: 240, Added: 9, Zero Std: 0, Max Cor: 0.968: 42 < R = 0.968, w = 3, N = 0.00089>, Top: 8(1)1:8:0.884,<|>Tot Used: 240, Added: 8, Zero Std: 0, Max Cor: 0.968 43 < R=0.968,w= 4N = 91 >, Top: 45(1)1: 45: 0.834, <|>Tot Used: 289, Added: 45, Zero Std: 0, Max Cor: 0.968 44< R=0.968, w=4, N=91>, Top: 16(1)1: 16: 0.834, < |> Tot Used: 289, Added: 16, Zero Std: 0, Max Cor: $0.968\ 45\ < R = 0.968, w = 4, N = 91>$, Top: $16(1)1:16:0.834, < > Tot\ Used: 289$, Added: 16, Zero Std: 0, Max Cor: $0.968\ 46 < R = 0.968, w = 4, N = 91 >$, Top: 16(1)1: 16: 0.834, < | > Tot Used: 289, Added: 16, Zero Std: 0, Max Cor: $0.968 \ 47 < R = 0.968, w = 4, N = 91 >$, Top: $15(1) \ 1 : 15 : 0.834, < > Tot Used: 289$, Added: 15, Zero Std: 0, Max Cor: $0.968 \ 48 < R = 0.968, w = 4, N = 91 >$, Top: 14(1) : 14 : 0.834, < > TotUsed: 289, Added: 14, Zero Std: 0, Max Cor: 0.967, 49 < R=0.967, w= 4, N= 91>, Top: 12(1)1: 12: 0.834, <|>Tot Used: 289, Added: 12, Zero Std: 0, Max Cor: 0.96650 < R = 0.966, w = 4, N = 91>, Top: 12(1))1: 12: 0.833.</>
|>Tot Used: 289, Added: 12, Zero Std: 0, Max Cor: 0.945 51 <R=0.945,w= 4.N= 91>, Top: 15(1)1:15:0.823, <|>Tot Used: 292, Added: 15, Zero Std: 0, Max Cor: 0.93852 < R = 0.938, w = 0.938524N = 91 >, Top: 12(1)1:12:0.819, < >Tot Used: 292, Added: 12, Zero Std: 0, Max Cor: 0.938 53 R=0.938, w=4, N=91>, Top: 12(1)1:12:0.819, |T| Tot Used: 292, Added: 12, Zero Std: 0, Max Cor: $0.938\ 54\ < R = 0.938, w = 4, N = 91>$, Top: 12(1)1:12:0.819, < > Tot Used: 292, Added: 12, Zero Std: 0, Max Cor: $0.938\ 55 < R = 0.938, w = 4, N = 91 >$, Top: 12(1)1: 12: 0.819, < | > Tot Used: 292, Added: 12, Zero Std: 0, Max Cor: $0.938\ 56\ < R=0.938, w=4, N=91>$, Top: 12(1)1:12:0.819, <|>Tot Used: 292, Added: 12, Zero Std: 0, Max Cor: $0.938\ 57 < R = 0.938, w = 4, N = 91 >$, Top: 12(1)1: 12: 0.819, < | > TotUsed: 292, Added: 12, Zero Std: 0, Max Cor: 0.938 58 <R=0.938,w=4,N=91>, Top: 12(1)1: 12: $0.819, <|> \text{Tot Used: } 292 \text{ , Added: } 12 \text{ , Zero Std: } 0 \text{ , Max Cor: } 0.938 \text{ } 59 \text{ } < \text{R} = 0.938, \\ \text{w} = 4, \\ \text{N} = 91> \text{, Top: } 12(1.25, 1.25) \text{ } = 12(1.25, 1.25) \text{ } =$)1: 12: 0.819, <|>Tot Used: 292, Added: 12, Zero Std: 0, Max Cor: 0.938 60 <R=0.938, w=<math>4,N=91>, Top: 12(1)1:12:0.819, <|>Tot Used: 292, Added: 12, Zero Std: 0, Max Cor: 0.937 61 <R=0.937, w= 4,N=91>, Top: 11(1)1:11:0.819,<|>Tot Used: 292, Added: 11, Zero Std: 0, Max Cor: 0.932 62 <R=0.932,w= 4,N= 91>, Top: 14(1)1 : 14 : 0.816,<|>Tot Used: 298 , Added: 14 , Zero Std: 0 , Max Cor: 0.913~63 < R = 0.913, w = 4, N = 91>, Top: 19(1)1 : 19 : 0.806, < | > Tot Used: 305, Added: 20, Zero Std: 0, Max Cor: 0.901 64 < R = 0.901, w = 4, N = 91 >, Top: 18(1)1 : 18 : 0.801, < | > Tot Used: 312, Added: 19, Zero Std: 0, Max Cor: 0.890 65 < R = 0.890, w = 4, N = 91 >, Top: 10(1) : 10: 0.800, < > Tot Used: 312, Added: 10, Zero Std: 0, Max Cor: 0.872 66 < R = 0.872 ,w = 4 ,N = 91 >, Top: 10(1): 10: 0.800 < | > TotUsed: 312, Added: 10, Zero Std: 0, Max Cor: $0.870 \ 67 < R = 0.870, w = 4, N = 91 >$, Top: 9(1)1:9:0.800, <|>Tot Used: 312, Added: 9, Zero Std: 0, Max Cor: 0.869 68 <R=0.869, w=<math>5, N=16>, Top: 8(1)1 : 8: 0.800, <|>Tot Used: 312, Added: 8, Zero Std: 0, Max Cor: 0.866 69 <R=0.866, w=5, N=16>, Top: 8(1)1:8:0.800,<|>Tot Used: 312, Added: 8, Zero Std: 0, Max Cor: 0.86170 <R=0.861,w=5,N=16>, Top: 8(1)1:8:0.800, < >Tot Used: 312, Added: 8, Zero Std: 0, Max Cor: 0.852, < 71 < R=0.852, < 8=1. 16>, Top: 8(1)1:8:0.800,<|>Tot Used: 312, Added: 8, Zero Std: 0, Max Cor: 0.846 72 < R=0.846, w= 5,N= 16>, Top: 7(1)1:7:0.800,<|>Tot Used: 312, Added: 7, Zero Std: 0, Max Cor: 0.846 73 <R=0.846,w= 5,N= 16>, Top: 6(1)1 : 6 : 0.800,<|>Tot Used: 312 , Added: 6 , Zero Std: 0 , Max Cor: $0.846\ 74 < R = 0.846, w = 5, N = 16 >$, Top: 6(1)1:6:0.800, < | > Tot Used: 312, Added: 6, Zero Std: 0, Max Cor: 0.846 75 < R = 0.846, w = 5, N = 16 >, Top: 6(1)1 : 6: 0.800, < > Tot Used: 312, Added: 6, Zero Std: 0, Max Cor: $0.846\ 76 < R = 0.846, w = 5, N = 16 >$, Top: 6(1)1:6:0.800, < | > Tot Used: 312, Added: 6, Zero Std: 0, Max Cor: 0.846 77 <R=0.846,w=5,N=16>, Top: 6(1)1: 6:0.800,<|>Tot Used: 312, Added: <math>6:0.800,<|>, Zero Std: 0, Max Cor: 0.846 78 < R = 0.846, w = 5, N = 16 >, Top: 6(1)1:6:0.800, < >Tot Used: 312. Added: 6, Zero Std: 0, Max Cor: 0.84679 < R = 0.846, w = 5, N = 16 >, Top: 6(1)1:6:0.800, < | > Tot Used:312, Added: 6, Zero Std: 0, Max Cor: $0.846 \ 80 \ < R = 0.846, w = 5, N = 16 >$, Top: 6(1)1:6:0.800, < | > TotUsed: 312, Added: 6, Zero Std: 0, Max Cor: 0.846 81 <R=0.846,w= 5,N= 16>, Top: 6(1)1: 6: 0.800, <| Tot Used: 312, Added: 6, Zero Std: 0, Max Cor: 0.846.82 < R = 0.846, w = 5, N = 16 >, Top: 6(1)1 : 6: 0.800, <|>Tot Used: 312, Added: 6, Zero Std: 0, Max Cor: 0.846 83 <R=0.846, w= 5,N= 16>, Top: 6(1)1:6:0.800,<|>Tot Used: 312, Added: 6, Zero Std: 0, Max Cor: 0.846 84 <R=0.846,w=5,N=16>,

Top: 6(1): 6: 0.800, <|>Tot Used: 312, Added: 6, Zero Std: 0, Max Cor: 0.846.85 < R = 0.846, w = 5, N = 0.846, w = 0.846,16>, Top: 6(1)1:6:0.800, <|>Tot Used: 312, Added: 6, Zero Std: 0, Max Cor: 0.846.86 < R=0.846, w=0.8465,N= 16>, Top: 6(1)1:6:0.800,<|>Tot Used: 312, Added: 6, Zero Std: 0, Max Cor: 0.846 87 <R=0.846,w= 5,N= 16>, Top: 6(1)1 : 6 : 0.800,<|>Tot Used: 312 , Added: 6 , Zero Std: 0 , Max Cor: 0.846~88 < R = 0.846, w = 5, N = 16 >, Top: 6(1)1:6:0.800, <| > Tot Used: 312, Added: 6, Zero Std: 0, Max Cor: 0.846.89 < R = 0.846, w = 5, N = 16 >, Top: 6(1)1:6:0.800 < | > Tot Used: 312, Added: 6, Zero Std: 0, Max Cor: $0.846\ 90\ < R = 0.846, w = 5, N = 16 >$, Top: $6(1)1:6:0.800, < | > Tot\ Used: 312$, Added: 6, Zero Std: 0, Max Cor: $0.846\ 91 < R = 0.846, w = 5, N = 16 >$, Top: 6(1)1:6:0.800, < | > Tot Used: 312, Added: 6 , Zero Std: 0 , Max Cor: 0.846 92 < R = 0.846, w = 5, N = 16 >, Top: 6(1)1:6:0.800, < | > Tot Used: 312, Added: 6, Zero Std: 0, Max Cor: 0.846 93 <R=0.846,w=5,N=16>, Top: 6(1)1: 6:0.800,<|>Tot Used:312 , Added: 6 , Zero Std: 0 , Max Cor: 0.846 94 <R=0.846,w=5,N=16> , Top: 6(1)1 : 6:0.800,<|>TotUsed: 312, Added: 6, Zero Std: 0, Max Cor: 0.846 95 <R=0.846,w= 5,N= 16>, Top: 6(1)1: 6: 0.800, <|>Tot Used: 312 , Added: 6 , Zero Std: 0 , Max Cor: 0.845 96 <R=0.845, w=<math>5,N=16>, Top: 6(1)1 : 6: 0.800, <|>Tot Used: 312, Added: 6, Zero Std: 0, Max Cor: 0.841 97 <R=0.841, w= 5, N= 16>, Top: 6(1)1:6:0.800, <|>Tot Used: 312, Added: 6, Zero Std: 0, Max Cor: 0.837, 98, <R=0.837, w=5, N=16>, Top: 6(1): 6: 0.800, <|>Tot Used: 312, Added: 6, Zero Std: 0, Max Cor: 0.833: 99 < R = 0.833, w = 5, N = 0.833 = 0.816>, Top: 4(1)1:4:0.800, <|>Tot Used: 312, Added: 4, Zero Std: 0, Max Cor: 0.824:100 < R=0.824, w=0.8245,N=16>, Top: 4(1)1 : 4 : 0.800,<|>Tot Used: 312 , Added: 4 , Zero Std: 0 , Max Cor: 0.824-{ air time5 paper_time13 gmrt_on_paper17 disp_index18 air_time21 }- [100], 0.9949251 Decor Dimension: 312 . Cor to Base: 158, ABase: 140, Outcome Base: 0

```
demat <- attr(DEdataframe, "GDSTM")
pander::pander(c(Cols=ncol(demat), Rows=nrow(demat)))</pre>
```

Cols	Rows
312	312

```
totFe <- ncol(DEdataframe)-1
totBa <- sum(str_detect(colnames(DEdataframe), "Ba_"))
totDe <- sum(str_detect(colnames(DEdataframe), "La_"))
toUnmat <- sum(apply(demat!=0,2,sum)==1)
unaltered <- totFe - ncol(demat) + toUnmat
pander::pander(c(Features=totFe,totBa=totBa,totDe=totDe,unaltered=totFe-totBa-totDe,totuna=unaltered))</pre>
```

Features	totBa	totDe	unaltered	totuna
450	0	167	283	283

 $pander::pander(c(\underline{Decorrleated_Fraction}=sum(str_detect(colnames(\underline{DEdataframe}), "\underline{La}_"))/(ncol(\underline{DEdataframe})=ncolnames(\underline{DEdataframe}))/(ncol(\underline{DEdataframe})=ncolnames(\underline{DEdataframe}))/(ncol(\underline{DEdataframe})=ncolnames(\underline{DEdataframe}))/(ncol(\underline{DEdataframe})=ncolnames(\underline{DEdataframe}))/(ncol(\underline{DEdataframe})=ncolnames(\underline{DEdataframe}))/(ncol(\underline{DEdataframe}))/(nc$

Decorrleated_Fraction	
0.371	

pander::pander(c(Base_Fraction=sum(str_detect(colnames(DEdataframe), "Ba_"))/(ncol(DEdataframe)-1)))

Base_	_Fraction
	0

```
pander::pander(c(Unaltered_Fraction=unaltered/totFe))
```

```
Unaltered_Fraction
0.629
```

```
pander::pander(c(sparcity=(totFe-ncol(demat)+sum(abs(demat)!=0))/totFe/totFe))
```

```
sparcity 0.00322
```

```
varlistDe <- colnames(demat)[apply(demat!=0,2,sum)>1];
varlistDe <- as.data.frame(cbind(name=varlistDe,desc=varlistDe))</pre>
```

The heat maps.

Spearman Correlation Original


```
cormat <- cor(DEdataframe[,colnames(demat)],method="spearman")</pre>
cormat[is.na(cormat)] <- 0</pre>
gplots::heatmap.2(abs(cormat),
                  trace = "none",
                   scale = "none",
                  mar = c(5,5),
                  col=rev(heat.colors(5)),
                  main = "Spearman Correlation: After GDSTM",
                  cexRow = 0.35,
                  cexCol = 0.35,
                  key.title=NA,
                  key.xlab="Spearman Correlation",
                  xlab="Feature", ylab="Feature")
```


Univariate Decorrelated

 $100: La_paper_time16$

pander::pander(univarDe\$orderframe[1:20,univariate_columns])

	caseMean	caseStd	controlMea	ancontrolStd	controlKS	PROCAU	J W ilcoxRes.	pFRes.p
La_total_time9	5.78e-	5.13e-	2.47e-12	1.18e-12	1.88e-06	0.764	4.96e-11	5.79e-
	12	12						13

	caseMean	caseStd	controlMea	ncontrolStd	controlKS	PROCAU	JWilcoxRes.	pFRes.p
La_total_time7	3.96e- 12	3.25e- 12	3.70e-12	1.05e-11	1.11e-16	0.749	2.40e-06	4.05e- 01
La_mean_speed_o	n <u>-l</u> paper1: 01	3 1.67e- 01	5.98e-04	3.03e-01	7.19e-05	0.739	2.39e-08	9.79e- 06
${\rm La_total_time5}$	7.00e- 12	7.86e- 12	3.03e-12	2.41e-12	8.72e-08	0.720	2.03e-07	1.13e- 08
La_mean_speed_o	n <u>l</u> pæper2 01	3.03e- 01	2.71e-01	4.31e-01	2.26e-05	0.714	1.44e-06	2.00e- 04
La_mean_speed_o	n <u>-l</u> p 5 per9 01	3.35e- 01	3.71e-02	8.29e-02	5.69e-02	0.710	2.53e-07	1.88e- 08
La_mean_speed_o	n <u>-2</u> p64per3 02	5.38e- 01	2.76e-01	4.57e-01	5.50e-05	0.706	3.06e-06	1.48e- 05
La_mean_speed_o	n <u>-l</u> p āp er5 03	1.49e- 01	4.90e-02	5.20e-02	1.57e-04	0.706	6.43e-07	3.78e- 05
La_mean_gmrt23	2.82e+01	2.28e+01	4.21e+01	2.28e+01	6.35e-01	0.700	3.66e-06	1.76e- 05
La_mean_speed_o	n <u>-</u> pāper1 : 02	2 1.99e- 01	3.05e-02	2.32e-01	8.71e-03	0.697	3.56e-06	1.23e- 05
La_mean_speed_o	n <u>6</u> paper1 02	6 5.18e- 01	3.16e-01	4.52e-01	1.20e-02	0.690	8.74e-06	7.97e- 05
La_total_time21	3.94e + 02	1.22e+04	- 6.92e+03	6.10e+03	2.84e-01	0.679	3.36e-06	5.36e- 07
La_max_x_extensi	ion16 1.57e+03	7.01e+02	- 1.23e+03	6.40e+02	3.66e-02	0.678	2.51e-05	2.89e- 04
La_mean_speed_o	n <u>-l</u> p a iper1 01	5 4.58e-	8.06e-02	2.82e-01	3.53e-01	0.677	3.20e-05	2.27e- 04
La_paper_time17	9.43e + 03	7.32e+03	6.89e + 03	4.42e+03	1.63e-02	0.675	1.76e-05	2.08e- 03
${ m La_total_time1}$	5.59e + 03	4.03e+03	3.61e+03	2.84e + 03	9.60e-04	0.672	3.41e-05	2.32e- 05
La_mean_jerk_on_	_p3ap2er-15 03	1.76e- 03	4.24e-03	1.59e-03	9.49e-01	0.664	1.05e-04	4.16e- 05
La_mean_jerk_on_	_ paper-5 03	2.15e-03	5.76e-03	1.28e-03	7.08e-01	0.663	9.75e-05	6.15e- 04
La_mean_gmrt11	5.49e+01	3.68e + 01	7.65e + 01	3.71e+01	6.73e-01	0.663	1.32e-04	6.76e- 05
La_paper_time16	4.39e+02	2.11e+03	- 4.98e+02	9.82e+02	2.88e-03	0.663	5.19e-05	1.74e- 05

Comparing Decorrelation vs Original

```
pthr <- 0.20/(ncol(dataframe)-1)

topDecorNames <- rownames(univarDe$orderframe[univarDe$orderframe$FRes.p<pthr,])
topDecorNames <- unique(c(topDecorNames,rownames(univarDe$orderframe[1:5,])))

#topDecorNames <- rownames(univarDe$orderframe[univarDe$orderframe$FRes.p<1.0e-5,])
dc <- getLatentCoefficients(DEdataframe)
### 2a Get only the ones that in the top features
deNames_in_dc <- topDecorNames[topDecorNames %in% names(dc)]
selectedlist <- dc[deNames_in_dc]</pre>
```

```
theDeFormulas <- selectedlist

rawuniv <- univariate_Wilcoxon(dataframe,outcome,limit=-1)
deuniv <- univariate_Wilcoxon(DEdataframe,outcome,limit=-1)
matsize <- (ncol(dataframe)-1)^2
nocorrelated <- ncol(dataframe) - 1 - ncol(demat)
pander::pander(c(sparse_Fraction=(sum(demat != 0) + nocorrelated)/matsize))</pre>
```

sparse_Fraction
0.00322

pander::pander(c(raw=length(rawuniv),decor=length(deuniv)))

raw	decor
364	309

pander::pander(c(Number_Latent=length(dc)))

Number_	_Latent
16'	7

pander::pander(c(meanSize=mean(sapply(dc,length))))

```
meanSize
2.21
```

CV ROC Analysis

```
par(op)
par(mfrow=c(1,2),cex=0.9)
fraction <-0.70
repetitions <- 100

fcout <- round(fraction*nrow(dataframe)/15+1.0)
pander::pander(c(NumberofFeatures=fcout))</pre>
```

```
NumberofFeatures
9
```

```
# fitmethod= glm,
fitmethod= KNN_method,
filtermethod=mRMR.classic_FRESA,
filtermethod.control=list(feature_count= fcout),
# family="binomial"
)
```

bpraw <- predictionStats_binary(cvRaw\$medianTest,"RAW",cex=0.75)</pre>

RAW

pander::pander(bpraw\$CM.analysis\$tab)

	${\rm Outcome} \ +$	Outcome -	Total
Test +	60	3	63
Test -	29	82	111
Total	89	85	174

pander::pander(bpraw\$accc)

est	lower	upper
0.816	0.75	0.871

pander::pander(bpraw\$aucs)

est	lower	upper
0.929	0.893	0.966

pander::pander(bpraw\$berror)

50%	2.5%	97.5%
0.18	0.13	0.234

bpDecor <- predictionStats_binary(cvDe\$medianTest,"Decorrelated",cex=0.75)</pre>

pander::pander(bpDecor\$CM.analysis\$tab)

par(op)

	${\rm Outcome} \ +$	Outcome -	Total
Test +	61	9	70
Test -	28	76	104

	Outcome +	Outcome -	Total
Total	89	85	174

pander::pander(bpDecor\$accc)

est	lower	upper
0.787	0.719	0.846

pander::pander(bpDecor\$aucs)

est	lower	upper
0.914	0.874	0.953

pander::pander(bpDecor\$berror)

50%	2.5%	97.5%
0.211	0.155	0.272

Here we compute the probability that the outcome-driven decorrelation ROC is superior to the RAW RO pander::pander(roc.test(bpDecor\$ROC.analysis\$roc.predictor,bpraw\$ROC.analysis\$roc.predictor,alternative

Table 24: DeLong's test for two correlated ROC curves: bpDecor\$ROC.analysis\$roc.predictor and bpraw\$ROC.analysis\$roc.predictor

Test statistic	P value	Alternative hypothesis	AUC of roc1	$\mathrm{AUC}\ \mathrm{of}\ \mathrm{roc2}$
-1.63	0.949	greater	0.914	0.929

Feature Frequency Plots

```
par(mfrow=c(2,1),cex=0.9,cex.axis=0.8)

rawtopf <- cvRaw$featureFrequency/repetitions
crawtopf <- rawtopf

if (length(rawtopf) > 30)
{
    rawtopf <- rawtopf[1:30]
}
barplot(100*rawtopf,las=2,main="Raw Features",ylim=c(0,100.0),cex.names = 0.35,cex.axis = 0.35,ylab="Se"

detopf <- cvDe$featureFrequency/repetitions
cdetopf <- detopf
names(cdetopf) <- str_remove_all(names(cdetopf),"Ba_")
names(cdetopf) <- str_remove_all(names(cdetopf),"La_")</pre>
```

```
if (length(detopf) > 30)
{
   detopf <- detopf[1:30]
}
barplot(100*detopf,las=2,main="Decorrelated Features",ylim=c(0,100.0),cex.names = 0.35,cex.axis = 0.35,</pre>
```

Raw Features

Decorrelated Features

Final Table

```
unlistdecorr <- selectedlist
names(unlistdecorr) <- NULL
unlistdecorr <- unique(names(unlist(unlistdecorr)))
finalTableDe <- univarDe$orderframe[deNames_in_dc,univariate_columns]
finalTableOr <- univar$orderframe[unique(c(topfiveOrg,unlistdecorr,names(crawtopf)[1:2],names(cdetopf)[</pre>
```

```
finalTable <- rbind(finalTableOr,finalTableDe)</pre>
deFromula <- character(length(theDeFormulas))</pre>
names(deFromula) <- names(theDeFormulas)</pre>
for (dx in names(deFromula))
  coef <- theDeFormulas[[dx]]</pre>
  cname <- names(theDeFormulas[[dx]])</pre>
  names(cname) <- cname</pre>
  for (cf in names(coef))
    if (cf != dx)
      if (coef[cf]>0)
        deFromula[dx] <- paste(deFromula[dx],</pre>
                                   sprintf("+ %5.3f*%s",coef[cf],cname[cf]))
      }
      else
        deFromula[dx] <- paste(deFromula[dx],</pre>
                                   sprintf("%5.3f*%s",coef[cf],cname[cf]))
      }
    }
  }
orgnamez <- rownames(finalTable)</pre>
orgnamez <- str_remove_all(orgnamez,"Ba_")</pre>
orgnamez <- str_remove_all(orgnamez,"La_")</pre>
finalTable$uAUC <- univar$orderframe[orgnamez,"ROCAUC"]</pre>
finalTable$raw_Freq <- crawtopf[orgnamez]</pre>
finalTable$La_Freq <- cdetopf[orgnamez]</pre>
finalTable$DecorFormula <- deFromula[rownames(finalTable)]</pre>
fscores <- attr(DEdataframe, "fscore")</pre>
finalTable$fscores <- fscores[rownames(finalTable)]</pre>
finalTable <- finalTable[order(-finalTable$ROCAUC),]</pre>
pander::pander(finalTable)
```

caseMe as eStd:ontrolM east rolStdtrol	I RSOP CAW I Cox	RERps.puAUGaw_	_Fifeaq_1	Fr D ecorFormula fscore
total_time23.70e+0410e+0418e+03.15e+04.26e-	0.863 1.40e-	9.35e- 0.863 0.15	NA	NA NA
13	13	05		
total_time15.34e+6417e+0448e+04.66e+0B42e-	0.844 1.03e-	$0.00\mathrm{e}{+00844}0.55$	NA	NA NA
02	15			
air_time23 9.79e+0342e+\(\pi 38e+03.14e+0473e-	0.844 7.90e-	1.57e- 0.844 0.16	0.31	NA 11
14	11	01		
air_time15 4.38e+\$481e+\$489e+03.46e+03.71e-	0.829 4.82e-	0.00e+00829 NA	0.20	NA 26
	15			
total time17.44e+0403e+050e+04.42e+04.39e-	0.824 3.94e-	6.39e- 0.824 NA	NA	NA NA
	12	10		

	caseM	eanseSt	tdcontrol	M ean tro	lStothtro	I IRSOP CA		RERps.puAUC	raw_	_Fiteaq	FreegcorFormu	ıla fscores
ir_time16	1.03e+	-0402e-	+ 0 491e+	0 3 .77e+	-02389e- 03	0.787	4.24e- 12	5.01e- 0.787 14	0.77	0.81	NA	2
otal_time	7 1.78e+	-0452e-	+ 0 477e+	0 3 .43e+	-04.78e- 15	0.785	6.19e- 07	4.90e- 0.785 01	NA	NA	NA	NA
ir_time7	1.22e+	-0414e-	+ 0 449e+	0 3 .40e+	-054.55e- 16	0.779	1.00e+	0 6 .26e- 0.779	NA	0.01	NA	11
otal_time	81.27e+	-0434e-	+ 0 497e+	0 3 .15e+	-03.98e- 03	0.776	1.06e- 10	5.11e- 0.776 12	0.09	NA	NA	NA
gmrtina	i :27 21e+	- 92 09e-	+ 01 39e+	0 2 .33e+	-05214e- 01	0.775	2.21e- 10	1.53e- 0.775 11	0.72	0.89	NA	1
otal_time	91.68e+	-0445e-	+ 64 72e+	03.40e+	-0 2 869e-	0.774	5.06e- 12	1.23e- 0.774 13	0.22	0.04	NA	NA
paper_time	e 9 8.89e+	- 5 333e-	+ 43 33e+	0 3 .14e+	-0 3 .65e-	0.774	9.90e- 11	4.73e- 0.774 12	0.55	0.76	NA	29
mean_gmr	t7 2.53e+	-0220e-	+ 62 76e+	0 2 .20e+	-0 2 55e-	0.773	4.52e- 10	9.44e- 0.773 11	0.15	NA	NA	NA
La_total_t	i m@ -	5.13e- 12	2.47e- 12	1.18e- 12	1.88e- 06	0.764	4.96e- 11	5.79e- 0.774 13	0.22	0.04	1.000 air_tin	-59 $me9$
											1.000 paper_ + 1.000*to- tal_time9	
La_total_t	i in@7 e- 12	3.25e- 12	3.70e- 12	1.05e- 11	1.11e- 16	0.749	2.40e- 06	4.05e- 0.785 01	NA	NA	1.000 air_tin	-21 me7
											1.000 paper_ + 1.000*to- tal_time7	
paper_time	e 7 6.64e+	- 43 83e-	+ 03 72e+	0 3 .07e+	-0 3 26e-	0.746	3.39e- 09	1.68e- 0.746 10	NA	NA	NA	NA
ir_time5	5.98e+	- 93 38e-	+ 03 49e+	0 3 .17e+	-0 3 .55e-	0.744	2.05e- 08	8.01e- 0.744 09	0.01	NA	NA	28
La_mean_	speed_ 1.03e- 01	_ флб<u>7</u>ер 01	04	3.03e- 01	7.19e- 05	0.739	2.39e- 08	9.79e- 0.626 06	NA	0.07	- 0.021 <i>gmrt</i> +	
${ m gmrt_on_j}$	p apsoie7	-0271e-	+ 02 13e+	0 2 .46e+	-0 2 51e-	0.738	4.66e- 08	5.63e- 0.738 08	NA	0.03	1.000 mean_ NA	_speedon; 2
nean_gmr	t8 .86e+	-0227e-	+ 02 83e+	0 2 .15e+		0.725		5.59e- 0.725 06	NA	NA	NA	NA
La_total_t	i ine5 e- 12	7.86e- 12	3.03e- 12	2.41e- 12	8.72e- 08	0.720		1.13e- 0.674 08	NA	NA	- 1.000air_tin	-57 $ne5$
											1.000 paper_ + 1.000*to- tal_time5	
mean_spee	ed <u>1.3</u> 55m <u>+</u>	-фафе 01	r2 .96e+	09.38e- 01	1.63e- 01	0.720	7.59e- 07	3.39e- 0.720 07	0.16	NA	NA	NA
gmrt_on	•				01		07	4.46e- 0.716 06		0.05	NA	13
paper_time	e 3 .64e+	- 43 81e-	+ 63 68e+	0 3 .63e+	-0 8 72e-	0.715	2.65e- 07	9.87e- 0.715 08	0.01	NA	NA	NA

La_mean_	speed-	_ 810 3 9	-		2.26e-	0.714	1.44e-	2.00e-	$0.720\ 0.16$	NA	-	-1
	01	01	01	01	05		06	04			0.016 <i>gmrt</i>	
ean_gmr	t23 67e+	- 662 03e-	+ 01 11e+	0 3 .26e⊣	-0 1 .10e-	0.711	7.47e- 07	3.63e- 07	0.711 NA	NA	1.000 mean_ NA	_speedonpap NA
ir_time8	6.09e+	- 93 41e-	+ 03 77e+	0 3 .34e⊣		0.710			0.710 NA	NA	NA	1
a_mean_	speed_ 1.52e- 01	_	02	8.29e- 02	5.69e- 02	0.710	2.53e- 07	1.88e- 08	0.703 NA	0.08	- 0.020 <i>gmrt</i> +	
nean_spec	ed <u>1.9</u> 90m <u>+</u>	<u>-</u> #20ple	#3 074e+	0 0 .24e⊣	-0 6 062e-	0.709	2.24e- 06	5.39e- 06	0.709 0.01	0.01	NA	_speedonpap NA
aper_tim	e 146 21e+	- 03 21e-	+ 03 90e+	0 3 .33e⊣		0.707			0.707 NA	NA	NA	NA
a_mean_	speed_ 2.62e- 02	_	е ар76г3 01	4.57e- 01	5.50e- 05	0.706	3.06e- 06		0.709 0.01	0.01	0.017 <i>gmrt</i>	-1 on_paper3 _speed_on_pap
a_mean_	speed_ 1.73e- 03	_	02	5.20e- 02	1.57e- 04	0.706	6.43e- 07	3.78e- 05	0.635 NA	NA	- 0.019 <i>gmrt</i>	-1
ean_spe	ed <u>2.2</u> 00a±	<u>-</u> ф22ре	#B5 05e+	0 0 .26e⊣	-0 0 61e-	0.705	2.51e- 06	2.53e- 06	0.705 0.01	NA	1.000 mean_ NA	_speedonpap NA
nean_spe	ed <u>2.4</u> 90m <u>+</u>	<u>-</u> PM6e	+9 028e+	0 0. 45e⊣	_	0.703			0.703 NA	0.08	NA	NA
a_mean_	g nn12 (30 128e-	+ 01 21e+	0 2 .28e⊣	-	0.700			0.711 NA	NA	- 0.749 <i>gmrt</i> +	-1 on_paper23
ir_time9	7.89e+	- 03 12e-	+ 0 488e+	0 3 .97e⊣	-0 2 396e-	0.699	4.66e- 08	2.32e- 09	0.699 NA	NA	1.000 mean_ NA	_gmrt23 31
a_mean_	speed_ 8.58e- 02	_	02	2 2.32e- 01		0.697			0.658 NA	NA	- 0.021 <i>gmrt</i> +	-1 on_paper12
ıean_gmr		- 07 284e-	+ 01 11e+	0 2 .21e⊣	-0 4 .08e-	0.691	1.00e- 05	2.15e- 05	0.691 NA	0.01		_speedonpap NA
a_mean_	s pæd _ 02	51 8 9	9 apkir4-6 01	6 4.52e- 01		0.690			0.686 0.01	NA	- 0.016 <i>gmrt</i> +	-1 on_paper16
isp_index	2 16 .30e-	2.95e- 06	4.78e- 06	3.53e- 06	1.18e- 07	0.687	1.08e- 04	1.21e- 01	0.687 NA	NA		_speed_on_pap 3
nean_spe						0.686			0.686 0.01	NA	NA	NA
a_total_t	tim 92 4	-0222e-	+04- 6.92e+		-02884e-	0.679			0.629 NA	0.12	- 1.393 <i>paper</i> _	-1 time21

Ca	seMe an seS	t&ontrol	Meantro	lStohtro	l IKSOP CAW I Cox	:RieRps.puAUGaw_	Filexq_1	Frequencies Frequencies
La_max_x_6	exten si0h e 57e+03	1.23e+		-0 2 66e-	0.678 2.51e- 05	2.89e- 0.606 NA 04	NA	1 497092323.214 <i>disp_index16</i> +
gmrt_in_ain26	33e+0290e	+ 02 69e+	0 3 .86e+	-01268e- 03	0.677 3.99e- 05	2.47e- 0.677 NA 04	NA	1.000 max_x_extension 16 NA 13
	eed 45 <u>8e</u> 05e- 01)1	papend 02	5 2.82e- 01		0.677 3.20e- 05	2.27e- 0.705 0.01 04	NA	1 0.017 <i>gmrt_on_paper15</i> +
gmrt_on_pap		+ 02 60e+	0 2 .98e+	-0 1 .29e-	0.675 6.27e- 05	5.27e- 0.675 NA 03	NA	1.000 mean_speed_on_paper NA 14
$total_time5 2.$	48e+0478e	+ 04 60e+	0 4 .42e+			2.31e- 0.674 NA 06	NA	NA NA
La_total_tim	&9 e+ 0 303e	+ 03 51e+	0 3 .84e+	-0 3 60e-	0.672 3.41e- 05	2.32e- 0.656 NA 05	NA	1 1.207 <i>air_time1</i>
								$^+$ $1.000 \mathrm{total_time1}$
gmrt_on_pap	363e1∤57 213e	+ 01 72e+	0 2 .08e+	-051.43e- 01	0.670 9.41e- 05	1.34e- 0.670 NA 04	NA	NA 12
gmrt_on_pap	86:e2;33 214e	+ 01 26e+	0 0 .03e+	-031.34e- 01	0.670 1.19e- 04	1.34e- 0.670 NA 04	NA	NA 2
disp_index31.	06e- 3.16e 05 06	- 8.96e- 06	3.28e- 06	4.94e- 01	0.669 6.55e- 05	1.81e- 0.669 NA 04	NA	NA 2
mean_jerk_h	n 2e papre ne 02 03	15 1.92e-			0.667 5.65e- 05	1.19e- 0.667 0.01 04	0.04	NA NA
La_mean_j&	k 2e ori<u>.7</u>pa 03 03				0.664 1.05e- 04	4.16e- 0.667 0.01 05	0.04	1 0.098mean_acc_on_paper15 +
								1.000 mean_jerk_on_paper15
gmrt_on_pap	8e4e2⊢3 174e	+ 01 06e+	0 3 .45e+	-011.68e- 01	0.663 1.35e- 04	5.35e- 0.663 NA 05	0.01	NA 6
La_mean_gin	49443 168e	+ 01 65e+	0 3 .71e+	-06.73e- 01	0.663 1.32e- 04	6.76e- 0.691 NA 05	0.01	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
La_paper_ti	â⁄9d-6′02 11e	+03- 4.98e+		-0 2 288e-	0.663 5.19e- 05	1.74e- 0.707 NA 05	NA	1.000 mean_gmrt11 - 0 712146289.713 disp_index16
mean_jerk_b						9.36e- 0.662 0.01	0.02	+ 1.000 paper_time16 NA NA
La_mean_ga	03 11/48 6.01e 08 08	02 - 1.18e- 07	03 7.59e- 08	01 5.61e- 01	04 0.662 8.55e- 05	05 1.83e- 0.725 NA 04	NA	$\begin{array}{ccc} - & -25 \\ 0.500 gmrt_in_air8 \end{array}$
La_mean_j&	k 3 <u>e</u> or <u>i.1</u> pa 3 03	гр&£24 - 03	1.34e- 03	9.90e- 02	0.662 1.08e- 04	2.50e- 0.662 0.01 05	0.02	- 0.500 gmrt_on_paper8 + 1.000*mean_gmrt8 1 0.099 mean_acc_on_paper24 + 1.000 mean_jerk_on_paper24

caseMe aa seStd:ontrolM ean rolStd	htrol k 80° CAM	MCcoxR ERp s. ₁	puAUGaw_	_Fileaq_F	Fr e pecorForm	ula fscores
gmrt_in_airl145e+9280e+0188e+02.07e+01.1		.78e- 6.14e- 04 03	0.659 NA	NA	NA	2
mean_speed <u>2.4</u> 77a <u>+</u> @1006pe#B21.4e+00.49e+00.7 0	75e- 0.658 3.		0.658 NA	NA	NA	NA
total_time1 1.34e+0484e+0439e+03.21e+044		.04e- 2.11e- 04 02	0.656 NA	NA	NA	NA
La_total_tim299 3.40e- 1.71e- 9.57e- 0.0 12 12 13 13		.16e- 8.87e- 04 08	0.596 NA	0.81	1.000 air_t	-32 $ime19$
					1.000 paper + 1.000*to tal_time19	— -
La_paper_time3 2.75e+03- 1.28e+03.5 2.60e+03 3.80e+03 0	97e- 0.642 4. 1	.22e- 8.11e- 04 05	0.715 0.01	NA	+	$^{-1}_{7.512 disp_inde}$
gmrt_on_pap@e3-5297e+0146e+00.56e+07.7 0		.72e- 2.35e- 04 03	0.642 NA	NA	1.000 paper NA	$\frac{1}{7}$
La_mean_jetrk6eorl2paper729- 9.55e- 5.0	0.642 6.		0.594 NA	NA	- 0.101 <i>mean_</i> +	-1 _acc_on_pape
					$1.000\mathrm{mean}$	_jerk_on_pap
gmrt_on_pap@eH27279e+0150e+02.06e+02.0 0		.77e- 7.10e- 03 03	0.640 NA	NA	NA	10
La_mean_g4mi947+03165e+17162e+03.88e+03L0 0		.75e- 3.38e- 04 05	0.773 0.15	NA	$0.726 gmrt_\\ +$	-1 _onpaper7
nean_speed <u>l.35m+</u> \$399er5.59e+0\(\bar{0}.25e-\)9.7	72a - 0.635 <i>1</i>	75o 1.00o	0.635 NA	NA	1.000 mean NA	_gmrt7 NA
01 01 01		03 02	0.055 NA	IVA	NA	NA
air_time1 6.51e+0334e+0478e+03.19e+049 0	9	02 01	0.633 NA	NA	NA	1
gmrt_on_pdp20e4060244e+0153e+0 2 .45e+08.9 0	2	03 03	0.632 NA	NA	NA	10
otal_time25.57e+3451e+4414e+02.06e+048	1	03 04	0.629 NA	0.12	NA	NA
Daper_time5 .88e+0410e+ 0 445e+0 6 .07e+0 2 .0		.30e- 6.89e- 04 04	0.629 NA	NA	NA	29
La_total_tim\d2e+\$305e+2357e+03.52e+0B4 0		.10e- 3.41e- 04 04	0.776 0.09	NA	1.357 <i>air_ts</i>	-1 ime8
nean_speed <u>2.52a+</u> \$\$\$\$P erB\$ 08e+0\$0.35e+0\$0 0		.23e- 3.00e- 03 03	0.626 NA	0.07	$1.000\mathrm{total}_{-}$ NA	$_{ m NA}^{ m time8}$
gmrt_on_p <i>ā</i> pd r5 +0165e+17197e+0 3 .68e+07.3	B6e- 0.620 1.		0.620 NA	NA	NA	9
max_x_extension ##832e+ ##314e+0 3 .13e+0 8 0	0.606 9.	-	0.606 NA	NA	NA	NA
gmrt_on_pdp25e136228e+0147e+00.28e+01.7 0	73e- 0.606 1.		0.606 NA	NA	NA	13
-	23e- 0.597 9.		$0.597~\mathrm{NA}$	NA	NA	1

	caseM	[e aa seSt	dontro	lMeatro	l Stoh tro	l IRSO PC	AW (Icox	:RERps.puA	UGaw_	_Fifeq_Fr	DecorForm	ula fscore
total_time	e 19 .86e-	+ 07 437e+	- 0 404e+	-0 0 .83e+	-006.00e+	-000.596	4.03e- 01	1.31e- 0.5 03	96 NA	0.81	NA	NA
mean_jerl	k_b û 4e _l 02	oalpleTe19 03	92.01e- 02	2.32e- 03	9.20e- 01	0.594	7.36e-03	1.44e- 0.5 02	94 NA	NA	NA	NA
paper_tin	n e 129 55e-	⊦ 9 480e+	- 03 41e+	-0 6 .82e+	-03.17e- 02	0.589	$\begin{array}{c} 3.21 e{-} \\ 02 \end{array}$	1.48e- 0.5 01	89 NA	NA	NA	16
mean_acc	dr23p 01	а р.0824 02	1.30e-01	2.17e- 02	1.75e- 01	0.583	3.30e-02	2.32e- 0.5 02	83 NA	NA	NA	1
air_time1	9 7.31e-	+ 07 403e+	- 0 402e+	-0 Ø .82e+	-00600e+	-000.581	3.35e- 01	1.24e- 0.5 03	81 NA	NA	NA	16
mean_acc	dn <u>52</u> p	арезе9 02	1.53e- 01	2.03e- 02	9.09e- 01	0.516	3.49e- 01	3.94e- 0.5 01	16 NA	NA	NA	1
paper_tin	n e 231 97e-	+ 0 431e+	- 0 447e+	-0 4 .60e+	-034.32e- 01	0.458	1.79e- 01	5.04e- 0.4 02	58 NA	NA	NA	1