Пусть $A: H \to H$ — линейный и непрерывный оператор. Тождественный оператор I: $H \to H \ (If = f \ \forall f \in H). \ \forall \lambda \in \mathbb{C} \ A_{\lambda} = A - \lambda I.$ Резольвентное множество $\rho(A) = \{\lambda \in \mathbb{C} \mid A_{\lambda} \in \mathbb{C} \mid A_{$ по теореме Банаха об обратном операторе

$$\exists \qquad (A_{\lambda})^{-1} \qquad : H \to H \} \qquad \stackrel{\frown}{=} \qquad \{\lambda \in \mathbb{C} \mid \ker A_{\lambda} = 0, \operatorname{Im} A_{\lambda} = 0, \operatorname{Im}$$

$$H$$
}. Тогда $\sigma(A)=\mathbb{C}\setminus \rho(A)$ — спектр, $\sigma(A)=\left\{\lambda\in\mathbb{C}\mid \left\{egin{array}{l} \ker A_\lambda
eq 0 \\ \ker A_\lambda=0 \\ \operatorname{Im} A_\lambda
eq H \end{array}\right\}$. Точечный спектр

 $A \ \lambda \in \sigma_p(A) = \{\lambda \in \mathbb{C} \mid \ker A_\lambda \neq 0\}$ называют собственными значениями A. Непрерывный спектр в свою очередь $\sigma_C(A) = \left\{ \lambda \in \mathbb{C} \mid \begin{cases} \ker A_{\lambda} = 0 \\ \operatorname{Im} A_{\lambda} \neq H \end{cases} \right\}$. Очевидно $\sigma(A) = \sigma_p(A) \cup \sigma_C(A)$. Рзольвента $R_A(\lambda) = (I - \lambda A)^{-1} : H \to H$, также используется определение $\forall \lambda \neq 0 : \frac{1}{\lambda} \in \rho(A)$

 $-\frac{1}{\lambda} (A - \frac{I}{\lambda})^{-1} = -\frac{1}{\lambda} (A_{\frac{1}{\lambda}})^{-1}$

Теорема

Пусть $A: H \to H$ — линейный и непрерывный, тогда

- 1. $\forall \lambda \in \mathbb{C}$ такой, что $|\lambda| > \|A\| \Rightarrow \lambda \in \rho(A)$. При этом $(A_{\lambda})^{-1} = -\sum\limits_{n=0}^{\infty} \frac{A^k}{\lambda^{k+1}}$, причём ряд сходиться по операторной норме.
- 2. $\rho(A)$ открыто в \mathbb{C} (очевидно следует, что спект замкнутое множество, а так же $\sigma(A) \subset \{\lambda \in \mathbb{C} \mid |\lambda \leq ||A||\}$, поэтому спектр — компакт).
- 3. Функция от λ $(A_{\lambda})^{-1}$ непрерывна на $\rho(A)$ по операторной норме

4.
$$\forall \lambda \in \rho(A) \; \exists \lim_{\text{по операторной норме}} \frac{(A_{\lambda + \Delta \lambda})^{-1} - (A_{\lambda})^{-1}}{\Delta \lambda} = ((A_{\lambda})^{-1})^2$$

Доказательство

1. $|\lambda|>\|A\|$, то $A_{\lambda}=-\lambda(I-\underbrace{\frac{A}{\lambda}}_{T},\|T\|=\frac{\|A\|}{|\lambda|}<1$, следовательно по теореме Неймана \exists оператор непрерывный в $H(A_{\lambda})^{-1} = -\frac{1}{\lambda}(I - \frac{A}{\lambda})^{-1} = -\sum_{n=0}^{\infty} \frac{A^n}{\lambda^{n+1}}$ ряд сходится по операторной норме.

2.
$$\forall \lambda \in \rho(A)$$
 рассмотрим $A_{\lambda+\Delta\lambda} = A_{\lambda} - \Delta\lambda I = A_{\lambda}$
$$\underbrace{\left(I - \overline{\Delta\lambda(A_{\lambda})^{-1}}\right)}_{\text{т. к. существует } \exists (A_{\lambda})^{-1} \text{ линейный и непрерывный}}_{\exists \Delta\lambda: \|T\| = |\Delta\lambda| \|(A_{\lambda})^{-1}\| < 1. \text{ Тогда } \Delta\lambda < \frac{1}{(A_{\lambda})^{-1}}, \text{ следовательно } \exists (A_{\lambda+\Delta\lambda})^{-1} : H \to H$$

линейный и непрерывный, следовательно $\lambda + \Delta \lambda \in \rho(A)$.

3.
$$\lambda \in \rho(A)$$
: $\lambda \to (A_{\lambda})^{-1}$. $(A_{\lambda+\Delta\lambda})^{-1} - (A_{\lambda})^{-1} = (I - \Delta\lambda(A_{\lambda})^{-1})(A_{\lambda})^{-1} - (A_{\lambda})^{-1}$ расскладываем по Нейману $= \sum_{n=1}^{\infty} (\Delta\lambda)^n ((A_{\lambda})^{-1})^{n+1}$. Отсюда $\|(A_{\lambda+\Delta\lambda})^{-1} - (A_{\lambda})^{-1}\| \le \sum_{n=1}^{\infty} |\Delta\lambda|^n \underbrace{\|((A_{\lambda})^{-1})^{n+1}\|}_{\leq \|(A_{\lambda})^{-1}\|^{n+1}} \le |\Delta\lambda| \underbrace{\frac{\|(A_{\lambda})^{-1}\|^2}{1 - |\Delta\lambda\|(A_{\lambda})^{-1}\|}}_{O(|\Delta\lambda|) \to 0, \Delta\lambda \to 0}$. Следовательно непрерывен по опе-

раторной норме

4.
$$\lambda \in \rho(A) \ |\Delta \lambda| < \frac{1}{\|(A_{\lambda})^{-1}\|}$$
, тогда $(A_{\lambda + \Delta \lambda})^{-1} - (A_{\lambda})^{-1}$ $=$ $(A_{\lambda})^{-1} \underbrace{(A_{\lambda} - A_{\lambda + \Delta \lambda})}_{\Delta \lambda I} (A_{\lambda + \Delta \lambda})^{-1} = \Delta \lambda (A_{\lambda})^{-1} (A_{\lambda + \Delta \lambda})^{-1}$. $\lim_{\Delta \lambda \to 0 \text{ по операторной норме}} = \underbrace{(A_{\lambda + \Delta \lambda})^{-1} - (A_{\lambda})^{-1}}_{\Delta \lambda} = \lim_{\Delta \lambda \to 0 \text{ по операторной норме}} = (A_{\lambda})^{-1} \underbrace{(A_{\lambda + \Delta \lambda})^{-1}}_{\Delta \lambda 1} = (A_{\lambda})^{-1} (A_{\lambda})^{-1}.$

Следствие

 $\sigma(A) \neq \varnothing$, иначе говоря спектр — непустой компакт в $\mathbb C$ и спектральный радиус r(A) = $\max_{-} |\lambda| \widehat{\ } = \lim_{n \to \infty} \sqrt[n]{\|A\|^n} \le \|A\|.$

Доказательство:

1) Если вдруг спектр пуст $\sigma(A)=\varnothing$, тогда $\forall f,g\in H\ \forall \lambda\in \rho(A)=\mathbb{C}.$ Рассмотрим $F(\lambda)=\emptyset$ $((A_{\lambda})^{-1}f,g)$ при $|\lambda|>\|A\|$ $\equiv (-\sum_{n=0}^{\infty}\frac{A^nf}{\lambda^{n+1}},g)$ \equiv по непрерывности скалярного произведенение H

ния в $H \equiv -\sum_{n=0}^{\infty} \frac{(A^n f, g)}{\lambda^{n+1}} = O(\frac{1}{\lambda}, \lambda \to \infty)$, но в силу п. 4 $F(\lambda)$ регулярная. Действительно, $\forall \lambda \in \mathbb{C}, \forall \Delta \lambda \neq 0 \lim_{\Delta \lambda \to 0} \frac{F(\lambda + \Delta \lambda) - F(\lambda)}{\Delta \lambda} = \lim_{\Delta \lambda \to 0} (\underbrace{\frac{(A_{\lambda + \Delta \lambda})^{-1} f - (A_{\lambda})^{-1} f}{\Delta \lambda}}_{\text{сходится по операторной норме к } ((A_{\lambda})^{-1})^2 f$

 $(((A_{\lambda})^{-1})^2 f, g)$ — непрерывно в \mathbb{C} . Следовательно $F(\lambda)$ — целая функция, далее $F(\lambda) \to 0$ $\lambda \to \infty$, тогда по теореме Лиувиля из ТФКП $F(\lambda) \equiv 0$, следовательно $\ker(A_{\lambda})^{-1} = H$, с другой стороны $\ker(A_{\lambda})^{-1}=0$ так как $(A_{\lambda})^{-1}$ имеет обратный A_{λ} на H, следовательно H=0, полу-

чили противоречие. 2) По определению $r(A) = \max_{\lambda \in \sigma(A)} |\lambda|$ $= \lim_{n \to \infty} \sqrt[n]{\|A^n\|}$ существует в \mathbb{R} . Шаг

1. $\forall \lambda \in \sigma(A) \xrightarrow{?} \lambda^n \in \sigma(A^n)$. Если вдруг это не так, тогда $\lambda^n \in \rho(A^n) \Rightarrow \exists \underbrace{((A^n)_{\lambda^n})^{-1}}_{\mathbb{R}} : H \to H$

линейный непрерывный оператор. $(A^n - \lambda^n I) = (A - \lambda I) \underbrace{(A^{n-1} + \lambda A^{n-2} + \dots + \bar{\lambda}^{n-2} A + \lambda^{n-1} I)}_{C:H \to H}$.

 $B = C(A - \lambda I), A^n - \lambda^n I = A_{\lambda}C \Rightarrow (A^n - \lambda^n I)B = I = A_{\lambda}CB \Rightarrow \operatorname{Im} A_{\lambda} = H.$ Далее $A_{\lambda}CBf = f \in H, \forall f \in H, A^n - \lambda^n I = CA_{\lambda},$ тогда $B(A^n - \lambda^n I) = I = BCA_{\lambda} \Rightarrow A_{\lambda}CBf = A$ $\ker A_{\lambda}=0.\ F\in\ker A_{\lambda}\Rightarrow f=BCA_{\lambda}f=BC(0)=0.$ Из $\operatorname{Im}A_{\lambda}=H$ и $\ker A_{\lambda}=0$ следует по определению, что $\lambda \in \rho(A)$. Получили противоречие условию, что λ в спектре. Отсюда $|\lambda^n| \leq \|A^n\|$ так как $\rho(A^n) \supset \{\mu \in \mathbb{C} \mid |\mu| > \|A^n\| \}$. Очевидно тогда, что $|\lambda| \leq \sqrt[n]{\|A^n\|} \Rightarrow |\lambda| \leq \sqrt[n]{\|A^n\|}$ $\underline{\lim} \sqrt[n]{\|A^n\|} \Rightarrow r(A) \leq \underline{\lim} \sqrt[n]{\|A^n\|}$. Шаг 2. Утверждаем, что $\overline{\lim} \sqrt[n]{\|A\|^n} \leq r(A)$. $\forall f, g \in H$ рассмотрим $F(\lambda) = ((A_{\lambda})^{-1}f, g), F(\lambda) \to 0, \lambda \to \infty$, регулярная во внешности круга $|\lambda| < r(A)$. $|\lambda| > r(A) \Rightarrow \lambda \in \rho(A)$. Так как $|\lambda| > ||A|| \ge r(A)$, то по теореме Неймана $F(\lambda) = -\sum_{0}^{\infty} \frac{(A^n f, g)}{\lambda^{n+1}}$. $F(\lambda) = \sum_{0}^{\infty} \frac{c_n}{\lambda^{n+1}}, \ |\lambda| > r(A) \Rightarrow$ по теореме единственности разложения в ряд Лорана $c_n = -(A^n f, g) \ \forall n \in \mathbb{N} \cup \{0\}$. Таким образом $\forall |\lambda| > r(A)$ получаем $\frac{A^n f, g}{\lambda^n}$ — член сходящегося ряда, следовательно $\frac{(A^n f,g)}{\lambda^n} \to 0, n \to \infty$, что равносильно $\forall g \in H \left(g, \frac{A^n f}{\underline{\lambda^n}}\right) \to 0, n \to \infty$.

 $\Phi_n: H \to C$ линейный и непрерывный оператор. $\|\Phi_n\| = \frac{\|A^n f\|}{|\lambda^n|}$ сходится к 0 поточечно

на H. Отсюда по теореме Банаха-Штейнгаусса $\|\Phi_n\|$ — ограниченная числа последовательность. $\forall f \in H \ \exists M_f > 0 \colon \|\frac{A_n f}{\lambda^n}\| \leq M_f \Rightarrow \left\{\frac{A_n}{\lambda_n}\right\}$ — поточечно сходящаяся на H ограниченная последовательность операторов, следовательно по теореме Банаха-Штейнгаусса $\|\frac{A^n}{\lambda^n}\|$ ограниченная числовая последовательность. Следовательно $\exists M > 0 \colon \|\frac{A^n}{\lambda^n}\| \leq M \Rightarrow \forall |\lambda| > r(A)$ $\sqrt[n]{\|A^n\|} \leq \sqrt[n]{M}|\lambda|$. $\overline{\lim}_{n \to \infty} \sqrt[n]{\|A^n\|} \leq |\lambda| \to r(A) + 0$. Получаем $\overline{\lim}_{n \to \infty} \sqrt[n]{\|A^n\|} \leq r(A) \leq \underline{\lim}_{n \to \infty} \sqrt[n]{\|A^n\|}$, что и требовалось доказать.

Определение: $A: H \to H$ линейно непрерывный оператор, то $A^*: H \to H$ называется сопряжённым к A (эрмитов оператор), если $(Af, g) = (f, A^*g) \ \forall f, g \in H$.

Утверждение

 $\forall A: H \to H$ линейный непрерывный оператор $\exists ! A^* = T \colon (Af,g) = (f,Tg) \ \forall f,g \in H$ и $\|T\| = \|A\|$.

Доказательство

 $\forall g \in H$ рассмотрим $f \in H$ $f \to (Af,g) = \Phi_g(f)$. $\Phi_g : H \to \mathbb{C}$ линейный и непрерывный. Тогда по теореме Риса-Фреше $\exists ! h \in H : \Phi_g(f) = (f,h) \Rightarrow \exists ! T : H \to H : \forall g \in H \ Tg = h_g$ и $(Af,g) = (f,h_g) = (f,Tg)$. Далее $(Af,\alpha_1g_1+\alpha_2g_2) = (f,T(\alpha_1g_1+\alpha_2g_2)) = \overline{\alpha}_1(Af,g_1) + \overline{\alpha}_2(Af,g_2) = (f,\alpha_1Tg_1) + (f,\alpha_2Tg_2), \forall f \in H$. Следовательно $T(\alpha_1g_1+\alpha_2g_2) = \alpha_1T(g_1) + \alpha_2T(g_2), T$ — линейный оператор.

 $\|Tg\|=\sup_{\|f\|=1}|(f,Tg)|=\sup_{\|f\|=1}|(Af,g)|\leq\sup_{\|f\|=1}\|Af\|\|g\|\leq\|A\|\|g\|.$ С другой стороны $\|Af\|=\sup_{\|g\|=1}|(Af,g)|=\sup_{\|g\|=1}|(f,Tg)|\leq\sup_{\|g\|=1}\|f\|\|Tg\|\leq\|f\|\|T\|.$ Получаем, что T — линейный и непрерывный оператор и $\|T\|=\|A\|.$

Упражнение $A^{**} = A \ \forall A : H \rightarrow H$.

Теорема (Фредгольма)

Пусть $A: H \to H$ линейный и непрерывный оператор. Тогда $\ker A = (\operatorname{Im} A^*)^{\perp}$ и $(\operatorname{Im} A)^{\perp} = \ker A^*$.

Доказательство:

Пусть $f \in \ker A \Leftrightarrow Af = 0 \Leftrightarrow \forall g \in H \ (Af,g) = 0 \Leftrightarrow (f,A^*g) = 0. \ \forall h \in \operatorname{Im} A^* \ (f,h) = 0 \Leftrightarrow f \in (\operatorname{Im} A^*)^{\perp}$. Второе утверждение доказывается аналогично.

Утверждение

 $L\subset H$ — подпространство, тогда $L\subseteq L^{\perp\perp}=\overline{L}$. Доказательство

 $\forall f \in L^{\perp \perp} \overline{L} \oplus (\overline{L})^{\perp} = H$ по теореме Риса об ортогональном дополнении. Пусть последовательность $h_n \in L$ такая, что $h_n \to \Phi \in \overline{L}$. Пусть $g \in L^{\perp}$, тогда $(h_n, g) = 0$, $h_n \to \Phi$, поэтому $(\Phi, g) = 0$ по непрерывности скалярного произведения. Тогда пусть $f = f_1 + f_2$, $f_1 \in \overline{L}$, $f_2 \in L^{\perp}$ и f перпендикулярен f_2 . $0 = (f, f_2) = (f_1, f_2) + \|f_2\|^2$ следовательно $\|f_2\| = 0\|$, следовательно $f = f_1 = \overline{L} \Rightarrow L^{\perp \perp} \subset \overline{L}$.