Cours de Mathématiques - ASINSA-1 Les polynômes

Frédéric STURM

Pôle de Mathématiques, INSA de Lyon

Année académique 2012-2013

Document téléchargé à l'URL suivante :

http://maths.insa-lyon.fr/~sturm/

Les polynômes Polynôme formel

Définition 1.1

Un polynôme formel à coefficients dans \mathbb{K} est une suite $(a_n)_{n\in\mathbb{N}}$ sur K dont les termes à partir d'un certain rang sont égaux à 0, c'est-à-dire : il existe $N \in \mathbb{N}$ tel que

$$\forall n \in \mathbb{N} \quad (n > N \implies a_n = 0).$$

On note $P \stackrel{\text{not.}}{=} (a_0, a_1, a_2, \dots, a_N, 0, 0, \dots)$ où $a_0, a_1, a_2, \dots, a_N$ se nomment les coefficients du polynôme et $P \in \mathbb{K}[X]$.

On appelle polynôme nul le polynôme dont tous les coefficients sont nuls et on le note

$$0_{\mathbb{K}[X]} \stackrel{\text{not.}}{=} (0, 0, \dots, 0, \dots).$$

Deux polynômes sont égaux s'ils ont mêmes coefficients.

AŞNÎ,

F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques - Première Année ASINSA

Les polynômes

Définition 1.4

Soit $P = (a_n)_{n \in \mathbb{N}}$ un polynôme non nul de $\mathbb{K}[X]$.

- Le coefficient a_{deq(P)} se nomme coefficient de plus haut degré de P.
- Le polynôme P est dit normalisé si $a_{deq(P)} = 1$.

Exemple 1.3

Soit P = (0, 0, 12i, 20, 1, 0, ...). val (P) = 2 et deg (P) = 4. Ce polynôme est normalisé.

Remarque

- Par convention, deg $(0_{\mathbb{K}[X]}) = -\infty$ et val $(0_{\mathbb{K}[X]}) = +\infty$.
- On a : val $(P) \leq \deg(P)$ pour tout $P \in \mathbb{K}[X]$ non nul.

Pour plus de compléments, voir les deux ouvrages suivants parus aux Presses Polytechniques et Universitaires Romandes (PPUR) dans la collection METIS LvonTech :

www.ppur.org

- Algèbre et analyse, 2e édition revue et augmentée, Cours de mathématiques de première année avec exercices corrigés, S. Balac, F. Sturm, 1110 pages, paru en 2009.
- Exercices d'algèbre et d'analyse, 154 exercices corrigés de première année, S. Balac, F. Sturm, 448 pages, paru en 2011.

Les polynômes

Fonction polynomiale

Définition 1.2

À tout polynôme $P = (a_0, a_1, a_2, \dots, a_N, 0, 0, \dots)$ de $\mathbb{K}[X]$ on associe l'application $x \in \mathbb{K} \longmapsto \widetilde{P}(x) \in \mathbb{K}$ appelée fonction polynomiale associée définie par

$$\widetilde{P}(x) = \underbrace{a_0 + a_1 x + \ldots + a_N x^N}_{puissances\ croissantes} = \underbrace{a_N x^N + \ldots + a_1 x + a_0}_{puissances\ décroissantes}$$

Exemple 1.1

■ Si $P = (1, 0, 0, 5 + i, 0, ...) \in \mathbb{C}[X]$ alors

$$\forall x \in \mathbb{C} \quad \tilde{P}(x) = 1 + (5+i)x^3.$$

■ Si $P = (0, 0, 12i, 20, 1, 0, ...) \in \mathbb{C}[X]$ alors

$$\forall x \in \mathbb{C} \quad \tilde{P}(x) = 12ix^2 + 20x^3 + x^4.$$

F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques - Première Année ASINSA

Les polynômes

Monôme

Définition 1.5

■ Un polynôme $P \in \mathbb{K}[X]$ non nul est appelé un monôme si

$$val(P) = deg(P)$$
.

La fonction polynomiale $\widetilde{P}: \mathbb{K} \longrightarrow \mathbb{K}$ associée à un monôme P s'appelle fonction monôme.

Exemple 1.4

P = (0, 0, 5, 0, ...) est un monôme car val (P) = deg(P) = 2. Sa fonction monôme est $x \mapsto \tilde{P}(x) = 5x^2$.

Soient $P, Q \in \mathbb{K}[X]$. On a l'implication :

$$P = Q \implies \left\{ \operatorname{val}(P) = \operatorname{val}(Q) \text{ et deg}(P) = \operatorname{deg}(Q) \right\}.$$

Plan du cours

Les polynômes

1 Définition de l'ensemble des polynômes

Opérations sur les polynômes

3 Arithmétique pour les polynômes

4 Dérivation des polynômes

5 Zéros d'un polynôme

6 Polynômes à coefficients complexes ou réels

INSA

F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques - Première Année ASINSA

Les polynômes

Valuation et degré d'un polynôme

Définition 1.3

Soit $P = (a_n)_{n \in \mathbb{N}}$ un polynôme non nul de $\mathbb{K}[X]$.

Le plus grand entier naturel n tel $a_n \neq 0$ est appelé le degré de P. II se note deg (P). Autrement dit,

$$\deg(P) = \max\{n \in \mathbb{N} \mid a_n \neq 0\}.$$

Le plus petit entier naturel n tel $a_n \neq 0$ est appelé la valuation de P. Elle se note val(P). Autrement dit,

$$val(P) = \min\{n \in \mathbb{N} \mid a_n \neq 0\}.$$

Exemple 1.2

Soit
$$P = (1, 0, 0, 5 + i, 0, ...) \in \mathbb{C}[X]$$
. val $(P) = 0$ et deg $(P) = 3$.

F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques - Première Année ASINSA

Les polynômes

Plan du cours

Définition de l'ensemble des polynômes

Opérations sur les polynômes

4 Dérivation des polynômes

5 Zéros d'un polynôme

6 Polynômes à coefficients complexes ou réels

F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques - Pre F. STURM, Pôle de Mathématiques, INSA de Lyon

Cours de Mathématiques - Première Année ASINSA

INSA

F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques - Première Année

Addition de polynômes

Définition 2.1

Soient $P=(a_n)_{n\in\mathbb{N}}$, $Q=(b_n)_{n\in\mathbb{N}}$ deux polynômes de $\mathbb{K}[X]$. On définit le polynôme P+Q de $\mathbb{K}[X]$ comme suit :

$$P+Q\stackrel{\text{def.}}{=}(a_n+_{\mathbb{K}}b_n)_{n\in\mathbb{N}}$$
.

Exemple 2.1

Soient P = (1, 1, 1, 0, 0, ...) et Q = (0, 2, 3, -1, 0, 0, ...). Alors, P + Q = (1, 3, 4, -1, 0, 0, ...). Remarquons que l'on a :

$$(\widetilde{P+Q})(x) = 1 + 3x + 4x^2 - x^3 = \underbrace{1 + x + x^2}_{=\widetilde{P}(x)} + \underbrace{2x + 3x^2 - x^3}_{=\widetilde{Q}(x)}.$$

F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques - Première Année ASINSA

Les polynômes

Multiplication par un scalaire

Définition 2.2

Soient $P = (a_n)_{n \in \mathbb{N}}$ un polynôme de $\mathbb{K}[X]$ et $\alpha \in \mathbb{K}$. On définit le polynôme $\alpha \cdot P$ de $\mathbb{K}[X]$ comme suit :

$$\alpha \cdot P \stackrel{\text{déf.}}{=} (\alpha \times_{\mathbb{K}} a_0, \alpha \times_{\mathbb{K}} a_1, \dots, \alpha \times_{\mathbb{K}} a_n, \dots).$$

Remarque

Pour tous $P \in \mathbb{K}[X]$ et $\alpha \in \mathbb{K}^*$,

$$deg(\alpha \cdot P) = deg(P)$$
 et $val(\alpha \cdot P) = val(P)$.

Cette loi possède les propriétés suivantes :

- Pour tous $\alpha \in \mathbb{K}$, $P, Q \in \mathbb{K}[X]$, $\alpha \cdot (P + Q) = \alpha \cdot P + \alpha \cdot Q$.
- Pour tous $(\alpha, \beta) \in \mathbb{K}^2$, $P \in \mathbb{K}[X]$,

$$(\alpha +_{\mathbb{K}} \beta) \cdot P = \alpha \cdot P + \beta \cdot P$$
 et $\alpha \cdot (\beta \cdot P) = (\alpha \times_{\mathbb{K}} \beta) \cdot P$.

Pour tout $P \in \mathbb{K}[X]$. $1 \cdot P = P$.

F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques - Première Année ASINSA

Les polynômes

Considérons les fonctions polynomiales associées :

$$P = (1, 2i, 2, 0, 0, \ldots) \in \mathbb{C}[X] \quad \rightsquigarrow \quad \forall x \in \mathbb{C} \quad \widetilde{P}(x) = 1 + 2ix + 2x^2$$

$$Q = (1, 2, 0, 0, 0, \ldots) \in \mathbb{C}[X] \quad \rightsquigarrow \quad \forall x \in \mathbb{C} \quad \widetilde{Q}(x) = 1 + 2x.$$

Soit $x \in \mathbb{C}$. On a alors :

$$\widetilde{P}(x) \times \widetilde{Q}(x) = (1 + 2ix + 2x^2) \times (1 + 2x)$$

= 1 + (2 + 2i)x + (2 + 4i)x² + 4x³.

Or, $P \times Q = (1, 2 + 2i, 2 + 4i, 4, 0, 0, ...)$. Par conséquent,

$$\forall x \in \mathbb{C} \quad (\widetilde{P \times Q})(x) = \widetilde{P}(x) \times \widetilde{Q}(x).$$

Ainsi, la fonction polynomiale associée au produit de polynômes est égale au produit des fonctions polynomiales associées à chacun des polynômes.

16

Les polynômes Addition, degré et valuation

Proposition 2.1

Soient P et Q deux polynômes non nuls de $\mathbb{K}[X]$. On a :

- $deg(P + Q) \leq max\{deg(P), deg(Q)\}.$

Remarques

■ Si deg $(P) \neq$ deg (Q) alors

$$\deg\left(P+Q\right)=\max\left\{\deg\left(P\right),\deg\left(Q\right)\right\}.$$

■ Si val $(P) \neq \text{val}(Q)$ alors

$$\mathsf{val}\left(P+\mathsf{Q}\right)=\mathsf{min}\left\{\mathsf{val}\left(P\right),\mathsf{val}\left(\mathsf{Q}\right)\right\}$$

INSA

14

F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques - Première Année ASINSA

Les polynômes

Multiplication de polynômes

Définition 2.3

Soient $P = (a_n)_{n \in \mathbb{N}}$ et $Q = (b_n)_{n \in \mathbb{N}}$ deux polynômes de $\mathbb{K}[X]$. On définit le polynôme $P \times Q = (c_n)_{n \in \mathbb{N}}$ avec

$$\forall n \in \mathbb{N} \quad c_n \stackrel{\text{def.}}{=} a_0 b_n + a_1 b_{n-1} + \ldots + a_n b_0$$

On a le résultat suivant :

Proposition 2.2

Soient P et Q deux polynômes non nuls de $\mathbb{K}[X]$. On a :

- \blacksquare $deg(P \times Q) = deg(P) + deg(Q)$.
- \blacksquare $val(P \times Q) = val(P) + val(Q).$

INSA

17

F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques - Première Année ASINSA

Les polynômes

Structure d'anneau commutatif sur $\mathbb{K}[X]$

En plus d'être un groupe commutatif pour +, l'ensemble $\mathbb{K}[X]$ possède les propriétés suivantes :

- Pour tous P, Q, $R \in \mathbb{K}[X]$, $(P \times Q) \times R = P \times (Q \times R)$.
- Pour tous P, Q, $R \in \mathbb{K}[X]$,

$$\begin{cases}
P \times (Q + R) = (P \times Q) + (P \times R), \\
(Q + R) \times P = (Q \times P) + (R \times P).
\end{cases}$$

■ Pour tout $P \in \mathbb{K}[X]$, $P \times 1_{\mathbb{K}[X]} = 1_{\mathbb{K}[X]} \times P = P$ où

$$\mathbf{1}_{\mathbb{K}[X]}\stackrel{\textit{not.}}{=} (1,0,0,\ldots,0,\ldots).$$

■ Pour tous P, $Q \in \mathbb{K}[X]$, $P \times Q = Q \times P$.

En résumé, on dit que $(\mathbb{K}[X], +, \times)$ est un anneau commutatif.

Les polynômes

Structure de groupe commutatif sur $\mathbb{K}[X]$

On vérifie les points suivants :

- Pour tous P, Q, $R \in \mathbb{K}[X]$, (P + Q) + R = P + (Q + R).
- Pour tout $P \in \mathbb{K}[X]$, $P + 0_{\mathbb{K}[X]} = 0_{\mathbb{K}[X]} + P = P$.
- Tout polynôme $P = (a_n)_{n \in \mathbb{N}} \in \mathbb{K}[X]$ admet un opposé qui est le polynôme noté -P défini par :

$$-P=(-a_n)_{n\in\mathbb{N}}.$$

En effet, $P + (-P) = (-P) + P = 0_{\mathbb{K}[X]}$ pour tout $P \in \mathbb{K}[X]$.

Pour tous $P, Q \in \mathbb{K}[X], P + Q = Q + P$.

En résumé, on dit alors que l'ensemble $\mathbb{K}[X]$ muni de l'addition possède une structure de groupe commutatif.

F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques - Première Année ASINSA

Les polynômes

Exemple 2.2

Soient P = (1, 2i, 2, 0, 0, ...) et Q = (1, 2, 0, 0, ...) dans $\mathbb{C}[X]$.

$$\begin{cases} c_0 &= a_0b_0 = 1, \\ c_1 &= a_0b_1 + a_1b_0 = 2 + 2i, \\ c_2 &= \underbrace{a_0b_2}_{=0} + a_1b_1 + a_2b_0 = 2 + 4i, \\ c_3 &= \underbrace{a_0b_3}_{=0} + \underbrace{a_1b_2}_{=0} + a_2b_1 + \underbrace{a_3b_0}_{=0} = 4, \\ c_4 &= \underbrace{a_0b_4}_{=0} + \underbrace{a_1b_3}_{=0} + \underbrace{a_2b_2}_{=0} + \underbrace{a_3b_1}_{=0} + \underbrace{a_4b_0}_{=0} = 0, \\ c_n &= 0 \text{ pour tout } n \geqslant 4. \end{cases}$$

On a donc : $P \times Q = (1, 2 + 2i, 2 + 4i, 4, 0, 0, ...)$.

F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques - Première Année ASINSA

Les polynômes

Intégrité de $\mathbb{K}[X]$

Remarque

De plus, pour tous P, Q de $\mathbb{K}[X]$,

$$\left\{\; P \neq 0_{\mathbb{K}[X]} \;\; \text{et} \;\; Q \neq 0_{\mathbb{K}[X]} \right\} \implies P \times Q \neq 0_{\mathbb{K}[X]}.$$

ou, par contraposition,

$$P \times Q = 0_{\mathbb{K}[X]} \implies \left\{ P = 0_{\mathbb{K}[X]} \text{ ou } Q = 0_{\mathbb{K}[X]} \right\}$$

F. STURM, Pôle de Mathématiques, INSA de Lyon

Cours de Mathématiques - Première Année ASINSA

On dit que l'anneau ($\mathbb{K}[X], +, \times$) est intègre.

F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques - Première Année ASINSA

F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques - Première Année

Notion d'indéterminée et notation

Définition 2.4

On appelle indéterminée le polynôme de $\mathbb{K}[X]$ noté X défini par $X = (0, 1, 0, 0, \dots, 0, \dots),$

On vérifie alors que

$$X^2 = X \times X = (0,0,1,0,0,0,...,0,...),$$

 $X^3 = X^2 \times X = (0,0,0,1,0,0,...,0,...).$

Par récurrence, on montre :

$$\forall n \in \mathbb{N}^* \quad X^n = (0, 0, 0, \dots, 0, 1, 0, \dots)$$

où le coefficient 1 est placé au (n+1)-ième rang.

On convient que $X^0 = 1_{K[X]}$.

" INSA

F. STURM, Pôle de Mathématiques, INSA de Lyon

Cours de Mathématiques - Première Année ASINSA

Les polynômes

Division euclidienne

Théorème 3.1

Soient deux polynômes A et B de $\mathbb{K}[X]$ avec $B \neq 0$. Il existe un unique couple (Q, R) de polynômes de $\mathbb{K}[X]$ tels que

$$A = BQ + R$$
 et $deg(R) < deg(B)$.

Déterminer ce couple (Q, R) de polynômes, c'est effectuer la division euclidienne de A par B.

- Les polynômes A et B se nomment respectivement dividende et diviseur.
- Les polynômes Q et R se nomment respectivement Quotient et Reste.

25

F. STURM, Pôle de Mathématiques, INSA de Lyon

Cours de Mathématiques - Première Année ASINSA

Les polynômes

Divisibilité dans $\mathbb{K}[X]$

Définition 3.1

Soient A et B deux polynômes de $\mathbb{K}[X]$. On dit que B divise A (ou que A est divisible par B) s'il existe $Q \in \mathbb{K}[X]$ tel que

$$A = B \times Q$$
.

Autrement dit. B divise A si le reste de la division euclidienne

- Le polynôme nul est divisible par n'importe quel polynôme
- Pour tout $\alpha \in \mathbb{K}^*$, αA divise A puisque $A = (\alpha A) \frac{1}{\alpha}$.

Ainsi le polynôme $P = (a_0, a_1, a_2, \dots, a_N, 0, 0, \dots)$ s'écrit aussi

$$P = a_0 1_{\mathbb{K}[X]} + a_1 X + a_2 X^2 + \ldots + a_N X^N$$

ou encore

$$P = \underbrace{a_0 + a_1 X + \ldots + a_N X^N}_{\text{puissances croissantes}} = \underbrace{a_N X^N + \ldots + a_1 X + a_0}_{\text{puissances décroissantes}}$$
.

Remarque

On a convenu de la notation suivante (abus d'écriture!) :

$$X - \alpha \stackrel{\text{not.}}{=} X - \alpha \mathbf{1}_{\mathbb{K}[X]}.$$

Ainsi, $P = (a_0, 0, 0, ...)$ s'écrit : $P = a_0 1_{\mathbb{K}[X]} \stackrel{not.}{=} a_0$.

INSA

23

20

F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques - Première Année ASINSA Les polynômes

Illustration

Soient $A = X^4 + 2X^3 - X + 6$ et $B = X^3 - 6X^2 + X + 4$ dans $\mathbb{R}[X]$. Effectuons la division euclidienne de A par B. On a :

Dividende

$$A = X^4 + 2X^3 - X + 6$$
 $-Q_1 \times B = -(X^4 - 6X^3 + X^2 + 4X)$
 $R_1 = 8X^3 - X^2 - 5X + 6$
 $-Q_2 \times B = -(8X^3 - 48X^2 + 8X + 32)$
 $R = R_2 = \underbrace{47X^2 - 13X - 26}_{Reste}$

Reste

On a ainsi obtenu que deg(R) = 2 < deg(B) = 3 et

$$A = B \times (X + 8) + 47X^2 - 13X - 26$$
.

" INSA

26

F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques - Première Année ASINSA

Les polynômes

Polynôme irréductible

Définition 3.2

Soit $P \in \mathbb{K}[X]$ tel que deg $(P) \ge 1$. Le polynôme P est dit irréductible (ou premier) dans K[X] s'il admet pour diviseur uniquement les polynômes de la forme $\alpha 1_{\mathbb{K}[X]}$ et αP où $\alpha \in \mathbb{K}$. Dans le cas contraire, on dit qu'il est réductible.

Exemple 3.1

Le polynôme $X^2 + 1$ est irréductible dans $\mathbb{R}[X]$ mais il est réductible dans $\mathbb{C}[X]$ car $X^2 + 1 = (X - i)(X + i)$.

Remarque

- Si $P \in \mathbb{K}[X]$ est irréductible alors $P \neq 0_{\mathbb{K}[X]}$.
- Tout polynôme $P = a_1X + a_0 \in \mathbb{K}[X]$ avec $a_1 \neq 0$ est irréductible dans $\mathbb{K}[X]$.

INSA

Les polynômes

- 1 Définition de l'ensemble des polynômes
- 2 Opérations sur les polynômes
- 3 Arithmétique pour les polynômes
- Dérivation des polynômes
- 5 Zéros d'un polynôme
- 6 Polynômes à coefficients complexes ou réels

AZNI,

F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques - Première Année ASINSA

Les polynômes

Plan du cours

Attention aux écritures!

ATTENTION Lorsque l'on pose la division euclidienne, il est impératif d'écrire ces deux polynômes A et B dans le sens des puissances décroissantes. La division euclidienne est d'ailleurs appelée aussi division suivant les puissances décroissantes.

Remarque

Si deg(A) < deg(B) alors $Q = 0_{K[X]}$ et R = A puisque

$$A = B \underbrace{0_{\mathbb{K}[X]}}_{= Q} + \underbrace{A}_{= R}$$
 et $\underbrace{\deg(A)}_{= \deg(R)} < \deg(B)$.

F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques - Première Année ASINSA

Les polynômes Division selon les puissances croissantes

Théorème 3.2

Soit $k \in \mathbb{N}$. Soient A et B deux polynômes de $\mathbb{K}[X]$ avec val(B) = 0. Il existe un unique couple (Q_k, R_k) de polynômes $de \mathbb{K}[X]$ tels que :

$$A = BQ_k + X^{k+1}R_k$$
 et $deg(Q_k) \leqslant k$.

Pour $k \in \mathbb{N}$ donné, trouver Q_k et R_k , c'est effectuer la division de A par B selon les puissances croissantes à l'ordre k.

- Les polynômes A et B se nomment respectivement dividende et diviseur.
- Les polynômes Q_k et $X^{k+1}R_k$ se nomment respectivement Quotient à l'ordre k et Reste.

INSA

F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques

de A par B est nul.

Remarque

■ Si B divise $A \neq 0$ alors deg $(B) \leq \deg(A)$.

de $\mathbb{K}[X]$.

F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques - Première Année ASINS

F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques - Première Année ASINSA

Illustration

Soient $A = 4 + X^2$ et $B = 1 + X + X^2$ deux polynômes de $\mathbb{R}[X]$. Effectuons la division selon les puissances croissantes à l'ordre k=2 de A par B. On obtient : deg (Q_2) = 2 $\leq k=2$ et

$$A = B(\underbrace{4 - 4X + X^2}_{= Q_2}) + \underbrace{X^3(\underbrace{3 - X}_{= R_2})}_{= R_2}.$$

Mais, fichtre, comment avons-nous procédé?

ATTENTION Lorsque l'on pose une division selon les puissances croissantes (à n'importe quel ordre) de A par B, il est cette fois-ci impératif d'écrire les polynômes A et B dans le sens des puissances croissantes.

F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques - Première Année ASINSA

31

Les polynômes

Remarques

F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques - Première Année ASINSA

F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques - Première Année ASINSA

" INSA

Les polynômes

Définition d'un polynôme dérivé

Définition 4.1

Soient $n \ge 1$ et $P = a_0 + a_1 X + a_2 X^2 + \ldots + a_n X^n$ un polynôme de K[X]. On appelle polynôme dérivé de P le polynôme de $\mathbb{K}[X]$ noté P' défini par

$$P' \stackrel{\text{def.}}{=} a_1 + 2a_2X + 3a_3X^2 + \ldots + na_nX^{n-1}$$

et on convient que si $P = \alpha$ avec $\alpha \in \mathbb{K}$ alors $P' \stackrel{\text{def.}}{=} 0_{\mathbb{K}[X]}$.

Exemple 4.1

Si
$$P = 3 + 2X^3 + 4X^5$$
 alors $P' = 6X^2 + 20X^4$.

Soit
$$n \ge 1$$
. Si $P = \sum_{k=0}^{n} a_k X^k$ alors $P' \stackrel{\text{\tiny def.}}{=} \sum_{k=1}^{n} k a_k X^{k-1}$.

"# INSA

34

F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques - Première Année ASINSA

Les polynômes

Soit k un entier. Étudions dans un premier temps les dérivées successives du monôme X^k . On vérifie que :

$$\begin{cases} (X^{k})^{(1)} &= kX^{k-1}, \\ (X^{k})^{(2)} &= k(k-1)X^{k-2}, \\ (X^{k})^{(3)} &= k(k-1)(k-2)X^{k-3}, \\ (X^{k})^{(4)} &= k(k-1)(k-2)(k-3)X^{k-4}, \\ &\vdots \\ (X^{k})^{(h)} &= k(k-1)(k-2)\dots(k-h+1)X^{k-h}, \end{cases}$$

où h désigne un entier inférieur ou égal à k. En particulier :

$$(X^k)^{(k)} = \underbrace{(k \times (k-1) \times (k-2) \times \ldots \times 2 \times 1)}_{-k!} X^0 = k!.$$

C'est un polynôme constant. Ainsi

$$\forall h \in \mathbb{N} \quad (h > k \implies (X^k)^{(h)} = 0).$$

On pose la division comme suit :

Dividende
$$A = 4 + X^{2}$$

$$-(4 + 4X + 4X^{2})$$

$$-4X - 3X^{2}$$

$$-(-4X - 4X^{2} - 4X^{3})$$

$$X^{2} + 4X^{3}$$

$$-(X^{2} + X^{3} + X^{4})$$

INSA

32

INSA

35

2 Opérations sur les polynômes

4 Dérivation des polynômes

5 Zéros d'un polynôme

3 Arithmétique pour les polynômes

6 Polynômes à coefficients complexes ou réels

Les polynômes

Les polynômes

Plan du cours

Dérivées successives

Définition 4.2

Soit $P \in \mathbb{K}[X]$. On définit par récurrence le polynôme dérivé d'ordre n du polynôme P comme suit :

$$\left\{ \begin{array}{l} P^{(0)} \stackrel{\text{def.}}{=} P \\ \forall n \in \mathbb{N}^* \quad P^{(n+1)} \stackrel{\text{def.}}{=} \left(P^{(n)} \right)'. \end{array} \right.$$

Ainsi, on a successivement:

$$P^{(0)} = P$$
, $P^{(1)} = P'$, $P^{(2)} = (P')'$, $P^{(3)} = (P'')'$, ...

et on note souvent :

Les polynômes

$$P^{(2)} \stackrel{\text{not.}}{=} P''$$
 et $P^{(3)} \stackrel{\text{not.}}{=} P'''$.

F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques - Première Année ASINSA

Formules de Mac-Laurin et Taylor pour les polynômes

Proposition 4.1

(P + Q)' = P' + Q'.

(PQ)' = P'Q + PQ'.

F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques - Première Année ASINSA

Les polynômes

 $(\lambda P)' = \lambda P'.$

Étudions à présent temps les dérivées successives d'un polynôme quelconque de $\mathbb{K}[X]$. Si

■ Soit $n \in \mathbb{N}^*$. Si deg (P) = n alors deg (P') = n - 1.

polynomiale P(x), autrement dit :

Si $\mathbb{K} = \mathbb{R}$ alors $\widetilde{P}'(x)$ correspond à la dérivée de la fonction

 $\forall x \in \mathbb{R} \quad \widetilde{P}'(x) = \frac{\mathrm{d}P}{\mathrm{d}x}(x).$

Soient P, Q deux polynômes de $\mathbb{K}[X]$ et $\lambda \in \mathbb{K}$. On a alors :

$$P = \sum_{k=0}^{n} a_k X^k$$

alors, pour tout entier $h \leq n$, on a :

$$P^{(h)} = \sum_{k=h}^{n} \left\{ k(k-1)(k-2) \dots (k-h+1) a_k X^{k-h} \right\}.$$

En particulier:

$$P^{(n)} = \underbrace{(n \times (n-1) \times (n-2) \times \ldots \times 2 \times 1)}_{= n!} a_n X^0 = n! \times a_n$$

C'est un polynôme constant, Ainsi.

F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques

$$\forall h \in \mathbb{N} \quad (h > n \implies P^{(h)} = 0).$$

INSP

F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques - Première Année ASINSA

Proposition 4.2 (Formule de Mac-Laurin pour les polynômes)

Soit $P = a_0 + a_1 X + a_2 X^2 + ... + a_n X^n$ un polynôme de $\mathbb{K}[X]$. Alors, pour tout $k \in \{0, 1, ..., n\}$, $a_k = P^{(k)}(0)/k!$. En d'autres

termes, si P est un polynôme de degré n alors

$$P = \widetilde{P}(0) + \frac{\widetilde{P}'(0)}{1!}X + \frac{\widetilde{P}''(0)}{2!}X^2 + \ldots + \frac{\widetilde{P}(n)}{n!}X^n.$$

Corollaire 4.1 (Formule de Taylor pour les polynômes)

Soient $c \in \mathbb{K}$ et $P \in \mathbb{K}[X]$ tel que deg(P) = n. Alors

$$P = \widetilde{P}(c) + \frac{\widetilde{P}'(c)}{1!}(X-c) + \ldots + \frac{\widetilde{P}(n)}{n!}(X-c)^n.$$

Les polynômes Les polynômes Les polynômes Plan du cours Définition d'un zéro On appelle équation algébrique d'inconnue x sur \mathbb{K} une équation de la forme : Définition 5.1 $\widetilde{P}(x)=0$ Soit P un polynôme de $\mathbb{K}[X]$. On dit que $\alpha \in \mathbb{K}$ est un zéro (ou 1 Définition de l'ensemble des polynômes où $\widetilde{P}:\mathbb{K}\longrightarrow\mathbb{K}$ est la fonction polynomiale associée à un une racine) de P si polynôme P de $\mathbb{K}[X]$. 2 Opérations sur les polynômes Proposition 5.1 où P est la fonction polynomiale associée à P. Soit P un polynôme de $\mathbb{K}[X]$. L'élément α de \mathbb{K} est une racine 3 Arithmétique pour les polynômes de P si. et seulement si. $X - \alpha$ divise P. Exemple 5.1 Dérivation des polynômes ■ $X^2 - 2 \in \mathbb{Q}[X]$ n'admet aucun zéro (dans \mathbb{Q}). Exemple 5.2 $X^2 - 2 \in \mathbb{R}[X]$ admet un zéro (dans \mathbb{R}) car $(\sqrt{2})^2 - 2 = 0$ 5 Zéros d'un polynôme Le polynôme $P = 5X^2 - 25X + 30$ de $\mathbb{R}[X]$ admet pour racine avec $\sqrt{2} \in \mathbb{R} \setminus \mathbb{O}$. les deux réels 2 et 3 puisque $\widetilde{P}(2) = \widetilde{P}(3) = 0$. Il est donc ■ $X^2 + 1 \in \mathbb{R}[X]$ n'admet aucun zéro (dans \mathbb{R}). 6 Polynômes à coefficients complexes ou réels divisible à la fois par X - 2 et par X - 3. On obtient : $X^2 + 1 \in \mathbb{C}[X]$ admet un zéro (dans \mathbb{C}) car $i^2 + 1 = 0$ avec P = 5(X - 2)(X - 3). " INSA $i \in \mathbb{C} \setminus \mathbb{R}$. ÎNSA F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques - Première Année ASINSA F. STURM, Pôle de Mathématiques, INSA de Lyon

Cours de Mathématiques - Première Année ASINSA F. STURM, Pôle de Mathématiques, INSA de Lyon

Cours de Mathématiques - Première Année ASINSA Les polynômes 41 Les polynômes Les polynômes Multiplicité d'un zéro Proposition 5.2 Exemple 5.3 Soit $P \in \mathbb{K}[X]$. Si les scalaires $\alpha_1, \alpha_2, \ldots, \alpha_m$ de \mathbb{K} sont des Considérons le polynôme $P = X^5 - X^3 - X^2 + 1$ de $\mathbb{R}[X]$. racines distinctes de P, de multiplicités respectives h₁, h₂, ..., Définition 5.2 ■ Il admet un zéro simple qui est -1 car il existe $Q_1 \in \mathbb{R}[X]$ h_m , alors il existe un polynôme Q de $\mathbb{K}[X]$ tel que Soient $P \in \mathbb{K}[X]$ et $\alpha \in \mathbb{K}$. On dit que α est une racine de avec $Q_1(-1) \neq 0$ tel que multiplicité h de P s'il existe un polynôme Q de $\mathbb{K}[X]$ tel que $P = \left[\prod_{k=1}^{m} (X - \alpha_k)^{h_k}\right] Q$ $P = (X + 1)(\underbrace{X^4 - X^3 - X + 1}).$ $P = (X - \alpha)^h Q$ et $\widetilde{Q}(\alpha) \neq 0$. avec $\widetilde{Q}(\alpha_k) \neq 0$ pour tout $k \in \{1, \dots, m\}$. L'entier naturel h s'appelle l'ordre de multiplicité de la racine α . Le polynôme Q₁ s'obtient en effectuant la division euclidienne de P par X + 1. En particulier: Exemple 5.4 ■ Il admet un zéro double qui est 1 car il existe $Q_2 \in \mathbb{R}[X]$ ■ la racine est appelée racine simple de P lorsque h = 1, Soit $P = X^5 - X^3 - X^2 + 1 \in \mathbb{R}[X]$. Il admet -1 pour zéro avec $\widetilde{Q}_2(1) \neq 0$ tel que ■ la racine est appelée racine multiple de P lorsque h > 1. simple et 1 pour zéro double car il existe $Q \in \mathbb{R}[X]$ tel que $P = (X - 1)^{2} (\underbrace{X^{3} + 2X^{2} + 2X + 1}_{= Q_{2}}).$ Si h = 2 alors α est une racine double, si h = 3 alors α est une $P = (X+1)(X-1)^2(\underbrace{X^2+X+1}_{Q}) \ \ \text{et} \ \ \widetilde{Q}(-1) \neq 0, \ \ \widetilde{Q}(1) \neq 0.$ racine triple. INSA F. STURM, Pôle de Mathématiques, INSA de Lyon

Cours de Mathématiques - Première Année ASINSA F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques - Première Année ASINSA F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques - Première Année ASINSA Les polynômes 43 Les polynômes Les polynômes Lien entre multiplicité d'un zéro et polynômes dérivés Plan du cours Remarque Lemme 5.1 Si $P = \left[\prod_{k=4}^{m} (X - \alpha_k)^{h_k}\right]$ Q alors, en passant aux degrés, on a : Soit P un polynôme de $\mathbb{K}[X]$. Si α est une racine de multiplicité 1 Définition de l'ensemble des polynômes h > 1 de P alors α est une racine de multiplicité h - 1 de P'. $deg(P) = h_1 + h_2 + ... + h_m + deg(Q)$ 2 Opérations sur les polynômes Proposition 5.3 Ainsi, la somme des multiplicités des racines distinctes d'un Soit $P \in \mathbb{K}[X]$. Le scalaire $\alpha \in \mathbb{K}$ est une racine de multiplicité h 3 Arithmétique pour les polynômes polynôme est inférieure ou égale au degré de ce dernier : de P si, et seulement si, on a à la fois : $h_1 + h_2 + \ldots + h_m \leq \deg(P)$. $\left(\ \forall k \in \{0, \dots, h-1\} \quad \widetilde{P^{(k)}}(\alpha) = 0 \ \right) \quad \text{et} \quad \widetilde{P^{(h)}}(\alpha) \neq 0.$ 4 Dérivation des polynômes Par conséquent : 5 Zéros d'un polynôme Exemple 5.5 ■ Tout polynôme $P \in \mathbb{K}[X]$ de degré $n \ge 1$ possède au plus n zéros distincts. Il peut bien-sûr n'en posséder aucun : Soit $P = X^3 - 3X + 2 \in \mathbb{R}[X]$. On a : $P' = 3X^2 - 3$ et P'' = 6X. 6 Polynômes à coefficients complexes ou réels P admet 1 pour racine double car $\tilde{P}(1) = \tilde{P}'(1) = 0$ et ■ Tout polynôme $P \in \mathbb{K}[X]$ de degré n possédant n+1 zéros distincts est nécessairement nul. $\tilde{P}''(1) = 6 \neq 0.$ F. STURM, Pôle de Mathématiques, INSA de Lyon

Cours de Mathématiques - Première Année ASINSA F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques - Première Année ASINSA F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques - Première Année ASINS

Théorème 6.1 (de d'Alembert-Gauss)

Tout polynôme de $\mathbb{C}[X]$ de degré $n \ge 1$ admet au moins une racine dans \mathbb{C} .

Jean Le Rond d'Alembert

(1717, Paris - 1783, Paris)

Ainsi, tout polynôme de $\mathbb{C}[X]$ de degré $n \ge 1$ possède n racines dans C, distinctes ou confondues. En ce sens, on dit que C est un corps algébriquement clos.

Conséquence : les seuls polynômes irréductibles dans $\mathbb{C}[X]$ sont les polynômes de degré 1.

F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques - Première Année ASINSA

Les polynômes

49

" INSA

Proposition 6.2

Tout polynôme de $\mathbb{R}[X]$ de degré impair admet au moins un zéro réel.

Dans $\mathbb{R}[X]$, les polynômes irréductibles sont :

- les polynômes de degré 1,
- les polynômes de degré 2 ne possédant aucune racine réelle.

Tout polynôme de $\mathbb{R}[X]$ de degré $n \ge 3$ est nécessairement réductible.

INSA

Les polynômes

F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques - Première Année ASINSA

Relations entre coefficients et racines d'un polynôme

Soit $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{K}[X]$ de degré n. On suppose que Padmet *n* racines $\alpha_1, \ldots, \alpha_n$ (distinctes ou conf.) sur \mathbb{K} . Alors

$$P = a_n \prod_{k=1}^n (X - \alpha_k).$$

On dit alors que P est scindé sur \mathbb{K} . Il existe des relations entre ses coefficients et ses n racines.

Exemple 6.3

Si P est un polynôme scindé de degré 2 alors

$$a_2X^2 + a_1X + a_0 = a_2(X - \alpha_1)(X - \alpha_2)$$
.

D'où les deux relations (formules de Viète) :

$$\alpha_1 + \alpha_2 = -a_1/a_2$$
 et $\alpha_1 \alpha_2 = a_0/a_2$.

Les polynômes

Soit $P = (a_k)_{k \in \mathbb{N}} \in \mathbb{C}[X]$ tel que deg(P) = n. Si $\alpha_1, \ldots, \alpha_m$ sont les *m* racines distinctes de *P*, de multiplicités respectives h_1, \ldots, h_m , alors

$$m \leqslant n$$
 et $h_1 + \ldots + h_m = n$.

Le polynôme *P* se factorise alors sous la forme suivante :

$$P = a_n \prod_{k=1}^m (X - \alpha_k)^{h_k}.$$

Exemple 6.1

Les polynômes

Les zéros de $P = X^5 - X^3 - X^2 + 1 \in \mathbb{C}[X]$ sont les complexes -1, j, \bar{j} (zéros simples) et 1 (zéro double). La factorisation de Pen produit de polynômes irréductibles dans $\mathbb{C}[X]$ s'écrit :

$$P = (X + 1)(X - 1)^{2}(X - j)(X - \bar{j}).$$

F. STURM, Pôle de Mathématiques, INSA de Lyon

Cours de Mathématiques - Première Année ASINSA

Les polynômes Factorisation irréductible dans $\mathbb{R}[X]$.

Nous ne nous intéressons ici qu'aux racines distinctes.

- Certaines de ces racines sont réelles, notées $\alpha_1, \ldots, \alpha_m$ de multiplicités h_1, \ldots, h_m .
- Les autres racines appartiennent à $\mathbb{C} \setminus \mathbb{R}$, classées par couples de zéros conjugués $(\beta_1, \overline{\beta}_1), \ldots, (\beta_{m'}, \overline{\beta}_{m'})$ de multiplicités $s_1, \ldots, s_{m'}$.

On a alors: $h_1 + ... + h_m + 2(s_1 + ... + s_{m'}) = n$.

Le polynôme $P \in \mathbb{R}[X]$ se factorise alors sur \mathbb{C} comme suit :

$$P = a_n \underbrace{\left[\prod_{k=1}^m (X - \alpha_k)^{h_k} \right]}_{\text{racines dans } \mathbb{R}} \underbrace{\left[\prod_{k=1}^{m'} (X - \beta_k)^{s_k} (X - \overline{\beta}_k)^{s_k} \right]}_{\text{racines dans } \mathbb{C} \setminus \mathbb{R}}$$

F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques - Première Année ASINSA

Plus généralement, si *P* est un polynôme scindé de degré *n* alors il y a *n* formules reliant les coefficients et les racines de *P*. Elles s'écrivent :

$$\forall k \in \{1, 2, \dots, n\} \qquad \sum_{1 \le i_1 \le i_2 \le \dots \le i_k \le n} \alpha_{i_1} \alpha_{i_2} \dots \alpha_{i_k} = (-1)^k \frac{a_{n-k}}{a_n}.$$

Chacune d'elles fait apparaître la somme des produits de k racines parmi les *n* racines de *P*.

- Cette somme contient donc autant de termes que de parties à k éléments parmi n éléments.
- Elle comporte ainsi $\binom{n}{k}$ termes et chacun des termes est constitué d'un produit de k racines.

En particulier, lorsque k = 1 et k = n, on a :

$$\sum_{i=1}^{n} \alpha_i = -\frac{a_{n-1}}{a_n} \quad \text{et} \quad \prod_{i=1}^{n} \alpha_i = (-1)^n \frac{a_0}{a_n}.$$

F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques - Première An

Les polynômes

Polynômes de $\mathbb{R}[X]$

47

INSA

50

"HINSA

53

Puisque $\mathbb{R} \subset \mathbb{C}$, tout polynôme de $\mathbb{R}[X]$ de degré n possède n zéros (distincts ou confondus) dans \mathbb{C} .

Proposition 6.1

Soit $P \in \mathbb{R}[X]$. $\alpha \in \mathbb{C}$ est un zéro de multiplicité h de P dans \mathbb{C} si, et seulement si, $\overline{\alpha}$ est un zéro de multiplicité h de P dans \mathbb{C} .

Les zéros d'un polynôme de $\mathbb{R}[X]$ ne sont pas toujours tous réels. Si $P = aX^2 + bX + c$ avec $(a, b, c) \in \mathbb{R}^3$, $a \neq 0$, Alors

- le polynôme P possède des zéros réels seulement dans le cas où $b^2 - 4ac \ge 0$.
- Dans le cas où $b^2 4ac < 0$ les zéros du polynôme P appartiennent à $\mathbb{C} \setminus \mathbb{R}$.

Contrairement à \mathbb{C} , le corps \mathbb{R} n'est pas algébriquement clos.

F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques - Première Année ASINSA

Les polynômes

Le polynôme $P \in \mathbb{R}[X]$ se factorise sur \mathbb{R} comme suit :

$$P = a_n \left[\prod_{k=1}^m (X - \alpha_k)^{h_k} \right] \left[\prod_{k=1}^{m'} (X^2 + p_k X + q_k)^{s_k} \right]$$
racines réelles py irréductibles sur \mathbb{R}

avec $p_k^2 - 4q_k < 0$ pour $k \in \{1, ..., m'\}$ et où $X^2 + p_k X + q_k$ admet β_{ν} et $\overline{\beta}_{\nu}$ pour zéros dans \mathbb{C} .

Exemple 6.2

La factorisation de $P = X^5 - X^3 - X^2 + 1 \in \mathbb{R}[X]$ en produit de polynômes irréductibles dans $\mathbb{R}[X]$ s'écrit :

$$P = (X+1)(X-1)^2(X^2+X+1)$$

F. STURM, Pôle de Mathématiques, INSA de Lyon Cours de Mathématiques - Première Année ASINSA Les polynômes

Exemple 6.4

■ Soit $P = a_0 + a_1X + a_2X^2 + a_3X^3$ un polynôme scindé de degré 3. On a :

$$\begin{cases} \alpha_1 + \alpha_2 + \alpha_3 = -\mathbf{a}_2/\mathbf{a}_3, \\ \alpha_1\alpha_2 + \alpha_1\alpha_3 + \alpha_2\alpha_3 = \mathbf{a}_1/\mathbf{a}_3, \\ \alpha_1\alpha_2\alpha_3 = -\mathbf{a}_0/\mathbf{a}_3. \end{cases}$$

■ Soit $P = a_0 + a_1X + a_2X^2 + a_3X^3 + a_4X^4$ un polynôme scindé de degré 4. On a :

$$\begin{cases} \begin{array}{l} \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = -a_3/a_4, \\ \alpha_1\alpha_2 + \alpha_1\alpha_3 + \alpha_1\alpha_4 + \alpha_2\alpha_3 + \alpha_2\alpha_4 + \alpha_3\alpha_4 = a_2/a_4, \\ \alpha_1\alpha_2\alpha_3 + \alpha_1\alpha_2\alpha_4 + \alpha_1\alpha_3\alpha_4 + \alpha_2\alpha_3\alpha_4 = -a_1/a_4, \\ \alpha_1\alpha_2\alpha_3\alpha_4 = a_0/a_4. \end{array} \end{cases}$$