How Vaccination Coverage Level Impact Cases Observed During Ebola Outbreak in Guinea, Sierra Leone, and Liberia

Comfort Jones, Nkateko Pontsho, Herman Franclin and Wisdom Aduah

Clinic on the Meaningful Modeling of Epidemiological Data African Institute for Mathematical Sciences, June 2024

* 2024 Mathematical Modeling in Medicine and Public Health Course, AIMS

Introduction

Background

This report explores how vaccination coverage influenced the 2014-2016 Ebola outbreak in Guinea, Sierra Leone, and Liberia.

Motivation

From 2014-2015 that data indicates that

- The number of infected people in Liberia over a span of 50 weeks
- The peak number of cases in the 25th week.
- The gradual decline in cases indicates the impact of interventions like vaccination.

Research Question

How does implementing the same vaccination program in different settings impact infection rates and the spread of Ebola?

Approach

Modeling framework SEIR Model

Parameter	Description	Values
β	Transmission Rate	0.710
ρ	Transmission rate due to contact with dead infected	0.089
σ	Infectious Rate	0.083
γ	Recovery Rate	0.1
ν	Birth Rate	1.7
μ	Death Rate	0.073
α	Rate of losing Immunity	2.57
ψ	Vaccination Rate	0.5
μ_I	Death Rate due to the Infection	0.1

Table 2: Parameter values for Ebola model

 The values of the parameters used on the model were found by Oduro et al. (2016)

Table 2: R_0 Values

$R_0 = \frac{\sigma \beta}{}$	Countries	R_0
$R_0 = \frac{1}{(\gamma + \mu_I)(\sigma + \mu + \psi)}$	Guinea	1.71
D () (Liberia	1.83
$\beta = \frac{R_0(\gamma + \mu_I)(\sigma + \mu + \psi)}{1 + \mu_I}$	Sierra Leone	2.02
σ		

- The transmission rate were calculated for the different countries using their Basic reproductive number.
- The equation of the model were solved using the deSolve and tidyverse library in R.

Results

Findings so far

R_0 Versus Vaccination rates

Distribution of Cases Averted with Vaccination rates

- The Basic reproductive number decrease as the vaccination rate varies.
- Increase in vaccination rate increases the number of cases averted for each country.

Results (cont'd)

Conclusions

A constant vaccination rate across the three countries shows an increase the number of averted cases.

• This shows that vaccination is an important intervention method to control the spread of Ebola in the three countries.

Further questions

 What is the impact of additional public health interventions, when combined with vaccination, on controlling Ebola outbreaks?

References

- Aylward B. et al. Ebola virus disease in west Africa - the first 9 months of the epidemic and forward projections. New England Journal of Medicine, 371(16):1481–1495, 2014.
- F. T. Oduro1 et al. Optimal control of Ebola transmission dynamics with interventions. British Journal of Mathematics Computer Science, 19(1):1–19, 2016.
- Takahashi et al. Reduced vaccination and the risk of measles and other childhood infections post-Ebola. Science, 2015:347, 2015.