Proiect Tehnici de Optimizare

Bondoc Ion-Tudor
321AA

Descrierea aplicatiei:

O companie produce echipamente sportive sub forma unor greutati pentru sportivi la sala, mai exact haltere si gantere, acestea urmand a fi redistribuite catre marile lanturi de Sali din tara. Pe saptamana se produc x1 gantere si x2 haltere. Pentru o gantera, se folosesc in medie 1 kg plastic si 3kg metal, in timp ce pentru o haltera se folosesc in medie 3 kg plastic si 4 kg metal. Profitul/bucata pentru o gantera este 2-0.0001*x1 (profitul scade pe masura ce numarul de gantere produse creste foarte mult, intrucat nu toate vor fi cumparate). In mod asemanator, profitul/bucata pentru o haltera este de 4-0.001*x2.

Compania este aprovizionata saptamanal cu 200 kg plastic si 480 kg metal. Se doreste sa se maximizeze profitul obtinut pe saptamana din productia de gantere si haltere.

	Plastic (kg)	Metal (kg)	Profit
Gantera	1	3	2-(10^-4)*x1
Haltera	3	4	4-(10^-3)*x2
Supply	200	480	

Formularea matematica a problemei

Maximize profit (minimize -profit) ->obiectivul problemei

Functia obiectiv: minimize -x1*(2-0.0001*x1) - x2*(4-0.001*x2)

 \Rightarrow Minimize $f(x) = 10^{-4}x1^2 + 10^{-3}x2^2 - 2x1 - 4x2$ cu urmatoarele constrangeri:

De unde obtinem C=
$$\begin{pmatrix} 1 & 3 \\ 3 & 4 \end{pmatrix}$$
 si d= $\begin{pmatrix} 200 \\ 480 \end{pmatrix}$, cu C*x<=d.

N=2; %dimensiunea lui x

De altfel, f(x) se scrie ca
$$\frac{1}{2}x'Hx + q'x$$
 (forma QP), unde
$$H = \begin{pmatrix} 2 \cdot 10^{-4} & 0 \\ 0 & 2 \cdot 10^{-3} \end{pmatrix} \text{ iar q=(-2-4)'}.$$

Solutia implementata

Implementare cu CVX:

```
C=[1 3; 3 4];
d=[200;480]; %constrangerile de inegalitate

%% cvx
cvx_begin
variable x(N)
maximize x(1)*(2-0.0001*x(1))+x(2)*(4-0.001*x(2))
subject to
C*x<=d;
cvx_end
%%</pre>
```

Implementare cu quadprog:

```
%% Definirea formei QP
H=[0.0002 0; 0 0.002];
q=[-2; -4];
xx=quadprog(H,q,C,d);
```

Implementare cu metoda Gradient Proiectat:

```
%% Gradient Proiectat

L=max(eig(H)); %constanta Lipschitz
alfa=1/L; %pasul constant
x_0=[0;0];
xgp=x_0; %x gradient proiectat
xbar=x_0+1;
eps=1e-5;
]while (norm(xbar-xgp)>=eps) %conditia de oprire
     [f,g]=f_proj(xgp); %calculez functia si gradientul la fiecare pas
     grad_step=xgp-alfa*g; %metoda gradient
     xbar=quadprog(2*eye(2),-2*grad_step, C, d); %proiectia
     xgp=xgp+0.5*(xbar-xgp);
end
```

Compararea rezultatelor obtinute

```
valoarea optima a profitului gasita cu CVX:

cvx_optval =
   349.7861

valoarea optima a lui x gasita cu quadprog:

xx =
   128.0000
   24.0000

valoarea optima a lui x gasita cu Gradient Proiectat:

xgp =
   128.0000
   24.0000
   24.0000
```

In concluzie, pentru a obtine profit maxim, trebuie realizate 128 de gantere, respectiv 24 de haltere / saptamana. Astfel, profitul optim maxim obtinut este de aproximativ 350 (unitati monetare).