

Context-aware Fast Food Recommendation with Ray on Apache Spark at Burger King

LUYANG WANG Burger King Corporation
KAI HUANG Intel Corporation

Agenda

LUYANG WANG

- Food recommendation use case
- TxT model in detail

KAI HUANG

- Al on big data
- Distributed training pipeline with Ray on Apache Spark

Food Recommendation Use Case

Food Recommendation Use Case

Food Recommendation Use Case

Use Case Challenges

Challenges

- Lack of user identifiers
- Same session food compatibilities
- Other variables in our use case: locations, weathers, time, etc.
- Deployment challenges

Use Case Challenges

Solutions

- Session based recommendation model
- Able to take complex context features into consideration
- Able to be deployed anywhere, both edge / cloud

Transformer Cross Transformer (TxT)

TxT Model Overview

Model Components

- Sequence Transformer
 - Taking item order sequence as input
- Context Transformer
 - Taking multiple context features as input
- Latent Cross Joint Training
 - Element-wise product for both transformer outputs

Model Comparison

TxT

RNN Latent Cross

Offline Evaluation

Offline Training Loss

Offline Training Result

Model	Top1 Accuracy	Top3 Accuracy
RNN	29.98%	46.24%
Contextual ItemCF	32.18%	48.37%
RNN Latent Cross	33.10%	49.98%
TxT	34.52%	52.37%

Online Performance

Inference Performance

A/B Testing Result

Model	Conversation Rate Gain	Add-on Sales Gain
RNN Latent Cross (control)	-	-
TxT	+7.5%	+4.7%

Model Training Architecture

Previous

Current

Al on Big Data

Al on Big Data

Accelerating Data Analytics + Al Solutions At Scale

Big III

BigDL: Distributed Deep Learning Framework for Apache Spark

https://github.com/intel-analytics/BigDL

ANALYTICSZO

Analytics Zoo: Distributed TensorFlow, Keras and PyTorch on Apache Spark/Flink &

Ray https://github.com/intel-analytics/analytics-zoo

- We develop Project Orca in Analytics Zoo based on Spark and Ray to allow users to easily scale out single node Python notebook across large clusters, by providing:
 - Data-parallel preprocessing for Python AI (supporting common Python libraries such as Pandas, Numpy, PIL, TensorFlow Dataset, PyTorch DataLoader, etc.)
 - Sklearn-style APIs for transparently distributed training and inference (supporting TensorFlow, PyTorch, Keras, MXNet, Horovod, etc.)

https://github.com/intel-analytics/analytics-zoo/tree/master/pyzoo/zoo/orca

Ray

Ray is a fast and simple framework for building and running distributed applications.

 Ray Core provides easy Python interface for parallelism by using remote functions and actors.

Ray is packaged with several high-level libraries to accelerate machine learning workloads.

- <u>Tune</u>: Scalable Experiment Execution and Hyperparameter Tuning
- RLlib: Scalable Reinforcement Learning
- RaySGD: Distributed Training Wrappers
- https://github.com/ray-project/ray/

Distributed Training Pipeline on Big Data

RayOnSpark

Seamlessly integrate Ray applications into Spark data processing pipelines.

- Runtime cluster environment preparation.
- Create a SparkContext on the drive node and use Spark to perform data cleaning, ETL, and preprocessing tasks.
- RayContext on Spark driver launches Ray across the cluster.
- Similar to RaySGD, we implement a lightweight shim layer around native MXNet modules for easy deployment on YARN cluster.
- Each MXNet worker takes the local data partition of Spark RDD or DataFrame from the plasma object store used by Ray.

End-to-end Distributed Training Pipeline

Project Orca provides a user-friendly interface for the pipeline.

- Minimum code changes and learning efforts are needed to scale the training from single node to big data clusters.
- The entire pipeline runs on a single cluster. No extra data transfer needed.

Conclusion

Context-Aware Fast Food Recommendation at Burger King with RayOnSpark

https://arxiv.org/abs/2010.06197

https://medium.com/riselab/context-aware-fast-food-recommendation-at-burger-king-with-rayonspark-2e7a6009dd2d

- For more details of RayOnSpark: https://databricks.com/session_na20/running-emerging-ai-applications-on-big-data-platforms-with-ray-on-apache-spark
- More information for Analytics Zoo at:

https://github.com/intel-analytics/analytics-zoo

https://analytics-zoo.github.io/

Feedback

Your feedback is important to us.

Don't forget to rate and review the sessions.

