Algebraic geometry 2 Exercise sheet 8

Solutions by: Esteban Castillo Vargas and David Čadež

June 13, 2024

Exercise 3.

1.

2. We can show that $j_!$ is exact. We know it preserves epimorphisms because it has a right adjoint. But monomorphisms are preserved because they can be checked on stalks.

Let $0 \to A \to B \to C \to 0$ be exact. We want to show $0 \to j_!A \to j_!B \to j_!C \to 0$ is exact. For $x \in V$ we clearly have $(j_!A)_x = A_x$ and for $x \not N$ we have $(j_!A)_x = 0$ (for this we use explicit definition of sheafification from alggeo1). So $j_!A \to j_!B$ is a monomorphism.

Now we show that j^* preserves injectives.

Let F be injective \mathcal{O}_X -module. Let $0 \to A \to B \to C \to 0$ be exact sequence of \mathcal{O}_V -modules. Then $0 \to j_!A \to j_!B \to j_!C \to 0$ is exact. By injectiveness of F we have exact sequence $0 \to \operatorname{Hom}(j_!A, F) \to \operatorname{Hom}(j_!B, F) \to \operatorname{Hom}(j_!C, F) \to 0$ is exact. Then we use that $j_!$ and j^* are adjoint pair and we get that $0 \to \operatorname{Hom}(A, j^*F) \to \operatorname{Hom}(B, j^*F) \to \operatorname{Hom}(C, j^*F) \to 0$ is exact. So $\operatorname{Hom}(j_!F) \to \operatorname{Hom}(j_!F) \to 0$ is exact sequences, which is what we wanted to show.

3. We can take $X = \operatorname{Spec}(\mathbb{Z})$ and $V = X \setminus \{p\}$ for prime p. We will show that $j_! \mathcal{O}_V$ has no global sections.

Denote the presheaf defined in the exercise by F.

At alggeo1 we constructed sheafification of a presheaf ${\cal F}$ explicitly as the sheaf

$$\tilde{F}: U \mapsto \{(s_x)_{x \in U} \in \Pi_{x \in U} F_x \mid (s_x)_{x \in U} \text{ satisfies condition below}\}$$

for all $x \in U$ there exists a neighbourhood V_x and $t \in F(V_x)$ such that for all $y \in V_x$ we have $s_y = t_y$.

So global sections of $j_!\mathcal{O}_V$ are $(s_x)_{x\in X}$ (that satisfy the condition). But for any neighbourhood V_p of p we have $F(V_p)=0$, so there has to be

an open set V_p such that $s_y=0$ for all $y\in V_p$. But then $s_y=0$ for all $y\in X$, since any non-zero section of $(j_!\mathcal{O}_V)\mid_V$ is zero only on finitely many points.

The map $0 = (j_! \mathcal{O}_V)(X)[p^{-1}] \to \mathbb{Z}[p^{-1}]$ is is therefore not an isomorphism, and $j_! \mathcal{O}_V$ not a quasi-coherent sheaf.