Module optimisation non lisse pour le machine learning Pas de document autorisé

	Sujet d'examen	méthode sous-gradient	et prox : 21	février	2020
Nom:					

Prénom :

Exercice : convergence de la méthode de sous-gradient

On suppose que la fonction $f: \mathbb{R}^n \to \mathbb{R}$, $x \mapsto f(x)$ est convexe. On suppose aussi que $\exists G > 0, \forall x \in \mathbb{R}^n, \ \forall g \in \partial f(x), \|g\| \leq G$ On utilise la méthode du sous-gradient pour résoudre le problème $\min_{x \in \mathbb{R}^n} f(x)$. On suppose que ce problème admet une solution notée x_* , on note $R = \|x_0 - x_*\|$, et on pose $f_{\text{best}}^K = \min_{0 \leq k \leq K} f(x_k)$.

1. Montrer (3 lignes) que pour tout k, $||x_{k+1} - x_*||^2 \le ||x_k - x_*||^2 - 2\alpha_k g_k^\top (x_k - x_*) + \alpha_k^2 ||g_k||^2$ puis que (2 lignes) $||x_{k+1} - x_*||^2 \le ||x_k - x_*||^2 - 2\alpha_k (f(x_k) - f_*) + \alpha_k^2 ||g_k||^2$. Réponse :

2. En déduire que $f_{\mathrm{best}}^K - f(x^\star) \leq \frac{R^2 + G^2 \sum_{k=0}^K \alpha_k^2}{2 \sum_{k=0}^K \alpha_k}$ et que la méthode converge pour $\alpha_k = 1/(k+1)$. Réponse :

3. Utiliser la question 2. pour le cas où $\alpha_k=1/\sqrt{k+1}.$ Réponse :

On rappelle que $\text{prox}_h(x)=\text{argmin}_u h(u)+\frac{1}{2}\|u-x\|^2.$ On suppose les fonctions citées ci-dessous convexes. Montrer que

4. si f(x) = ag(x) + b avec a > 0, alors $\mathrm{prox}_f(x) = \mathrm{prox}_{ag}(x).$ Réponse :

5. si $f(x) = g(x) + a^T x - b$, alors $\operatorname{prox}_f(x) = \operatorname{prox}_g(x - a)$. Réponse :

6. si f(x) = g(ax + b), avec $a \neq 0$, alors $\operatorname{prox}_f(x) = \frac{1}{a} \left(\operatorname{prox}_{a^2 g}(ax + b) - b \right)$. Réponse :