東京工業大学理工学研究科 電気電子工学専攻・電子物理工学専攻 大学院修士課程入試問題 平成 26 年 8 月 19 日実施

専門科目 電気電子工学・電子物理工学(午後1) 27 大修

時間 13:30 ~ 15:00

電気回路

注意事項

- 1. 大問1の解答は答案用紙綴りの1枚目,大問2の解答は答案用紙綴りの2枚目,大問3の解答は答案用紙綴りの3枚目に記入せよ。
- 2. すべての答案用紙に受験番号を記入せよ。
- 3. 電子式卓上計算機などの使用は認めない。

- 1. 図 1.1~図 1.3 の交流回路について以下の間に答えよ。ただし,変圧器の一次側と二次側の巻線抵抗は無視でき, $L_1L_2\neq M^2$,M>0 とする。また,電源角周波数を ω とする。
- 1) 図 1.1 の変圧器の V_1 , I_1 , V_2 , I_2 の関係を行列で表せ。ただし、電圧・電流の向きに注意せよ。
- 2) 問 1)で求めた行列から、電流制御電圧源を用いて図 1.1 の等価回路を描け。
- 3) 図 1.2 の Z_A , Z_B , Z_C に流れる電流を I_A , I_B , I_C とする。これらを使用して閉路方程式を行列で表せ。
- 4) 図 1.3 の変圧器の V_1 , I_1 , V_2 , I_2 の関係を行列で表せ。ただし、黒丸の位置に注意せよ。

図 1.1

図 1.3

- $egin{align*} 2$. 図 2.1 に示す長さ ℓ で特性インピーダンス Z_o の無損失の分布定数線路を用意した。分布定数線路上での伝搬速度は v とする。内部抵抗 $\dfrac{Z_o}{2}$,電圧 V_0 の直流電圧源を分布定数線路に時刻 t=0 で接続した。分布定数線路の出力端は抵抗 $2Z_o$ で終端してある。
- 1) t>0 における分布定数線路の両端での反射係数をそれぞれ求めよ。
- 2) $0 < t < \frac{\ell}{v}$ における分布定数線路の入力端での電圧を求めよ。
- 3) $\frac{\ell}{v} < t < 3 \frac{\ell}{v}$ における分布定数線路の出力端での電圧を求めよ。
- 4) 分布定数線路の出力端での電圧の時間変化を, $0 < t < 6 \frac{\ell}{v}$ の範囲で図示せよ。
- 5) 充分時間が経過した後に、分布定数線路の出力端での電圧を求めよ。

図 2.1

- **3.** 図 3.1 のゲート接地回路について,下記の間に答えよ。ただし,MOSFET は小信号等価回路としては図 3.2 であらわされ,出力コンダクタンスは無視する。基板電位によるしきい値電圧変動も無視する。使用している MOSFET のしきい値電圧 $V_{th}=0.3~\rm V$ であり,MOSFET のドレイン電流の直流(バイアス)成分は,ゲートーソース間電圧 V_{GS} としきい値電圧 V_{th} の差である実効ゲート電圧 V_{eff} の二乗に比例する。 $V_{eff}=V_{GS}-V_{th}=0.2~\rm V$ の時のドレイン電流の直流(バイアス)成分 $I_{DS}=1~\rm mA$ とする。電源電圧 $V_{DD}=5~\rm V$ とする。
- 1) I_{DS} = 4 mA, V_{OUT} = 3 V に設定したい。そのための V_{eff} , R, V_{G} を求めよ。
- 2) 問 1)での MOSFET の伝達コンダクタンス g_m を求めよ。
- 3) 図 3.1 の小信号等価回路を描け。
- 4) 小信号に対する電圧増幅率 $A_{\!\scriptscriptstyle V}=rac{v_{\scriptscriptstyle out}}{v_{\scriptscriptstyle in}}$ を求めよ。

