MATH235 HOMEWORK 3 SOLUTION

• Proof. 1.1. Since the rational numbers have measure 0, by monotonicity we have

$$1 \le 0 + |[0,1] \cap S|$$

Therefore S has positive Lebesgue measure. Consider any two $a,b \in S$, assume without loss of generality that a < b, by density of rational numbers there exists some q such that a < q < b. Therefore S contains no interval.

- 1.2. Consider some $x \in \partial B_i$ for some B_i . By assumption there exists some B_j , $j \neq i$ such that $x \in B_j$. For some $\epsilon > 0$ we know $B_{\epsilon}(x) \in B_j$ and therefore $B_{\epsilon}(x) \cap B_i \neq \emptyset$.
- 1.3. We can construct two finite collections of boxes such that

$$\cup_{n=1}^N f(\frac{n+1}{N}) \cdot [\frac{n-1}{N}, \frac{n}{N}] \subseteq A \subseteq \cup_{n=1}^N f(\frac{n+1}{N}) \cdot [\frac{n}{N}, \frac{n}{N}]$$

by taking limit of $N \to \infty$, we obtain $|A|_e = \frac{1}{3}$. Since A is measurable, $|A| = \frac{1}{3}$.

- 1.4. We know that A and $[0,1] \setminus A$ are disjoint subsets that form a union of [0,1]. Therefore the claim holds true.
- 3.1.16. Let E be a subset of \mathbb{R}^d . Prove that if $f: E \to [-\infty, \infty]$ is a measurable function and $\{f = -\infty\}$ is a measurable set, then E is measurable.

Proof. Notice that $\forall n \in \mathbb{R}$, $[-\infty, \infty] = (\cup (-n, \infty]) \cup \{\infty\}$. Therefore,

$$E = f^{-1}([-\infty, \infty]) = f^{-1}((\cup(-n, \infty]) \cup \{\infty\})$$

= $(\cup f^{-1}(-n, \infty]) \cup f^{-1}(\{-\infty\}).$

Since $\{f=-\infty\}$ is a measurable set and E is a countable union of measurable sets hence measurable. \Box

• 3.1.18. (a). Prove that if $f: \mathbb{R}^d \to \mathbb{R}$ is a measurable function if and only if $f^{-1}(U)$ is a measurable set for every open set $U \subseteq \mathbb{R}$. (b). Prove that if $f: \mathbb{R}^d \to \mathbb{C}$ is a measurable function if and only if $f^{-1}(U)$ is a measurable set for every open set $U \subseteq \mathbb{C}$.

Suppose that $f^{-1}(U)$ is measurable for each open set $U \subseteq \mathbb{R}$. Then for each $a \in \mathbb{R}$ we have that

$$\{f > a\} = \{x \in \mathbb{R}^d : a < f(x)\} = f^{-1}(a, \infty)$$

is measurable, so f is measurable.

"
$$\Rightarrow$$
":

Suppose that $f: \mathbb{R}^d \to \mathbb{R}$ is measurable, and let $U \subseteq \mathbb{R}$ be any open set. Then we can write U as a countable disjoint union of open intervals (possibly including infinite open intervals), say $U = \bigcup (a_i, b_i)$. Since

$$f^{-1}(a_j, b_j) = \{a_j < f < b_j\} = \{a_j < f\} \cap \{f < b_j\},\$$

we conclude that $f^{-1}\left(a_j,b_j\right)$ is measurable for each j, and hence $f^{-1}(U)=\cup f^{-1}\left(a_j,b_j\right)$ is measurable.

Suppose that $f: \mathbb{R}^d \to \mathbb{C}$ is measurable. Then its real part f_r and its imaginary part f_i are both measurable. For simplicity let us identify \mathbb{C} with \mathbb{R}^2 . In particular, with this identification we write $f(x) = (f_r(x), f_i(x))$.

Given an open strip $(a, b) \times \mathbb{R}$ in \mathbb{C} , we have

$$f^{-1}((a,b) \times \mathbb{R}) = f_r^{-1}(a,b),$$

which is measurable since f_r is measurable. Similarly,

$$f^{-1}(\mathbb{R} \times (c,d)) = f_i^{-1}(c,d)$$

is measurable. Consequently the inverse image of the open rectangle

$$(a,b) \times (c,d) = ((a,b) \times \mathbb{R}) \cap (\mathbb{R} \times (c,d))$$

is measurable. Every open subset of $\mathbb C$ can be written as a countable union of open rectangles, so it follows that $f^{-1}(U)$ is measurable for every open set $U\subseteq \mathbb C$. " \Leftarrow ":

Suppose that the inverse image of any open subset of \mathbb{C} is measurable. Again identifying \mathbb{C} with \mathbb{R}^2 , if we fix $a \in \mathbb{R}$ then the set $(a, \infty) \times \mathbb{R}$ is open in \mathbb{C} . Hence

$$\{f_r > a\} = f_r^{-1}(a, \infty) = f^{-1}((a, \infty) \times \mathbb{R})$$

is measurable. Therefore f_r is a measurable function, and similarly f_i is measurable, so we conclude that f is measurable.

• 3.1.19. Let $E \subseteq \mathbb{R}^d$ be a measurable set with |E| > 0, and assume that $f: E \to \bar{F}$ is measurable. (a). Show that if f is finite a.e., then there exists a measurable set $A \subseteq E$ such that |A| > 0 and f is bounded in A. (b). Suppose that it is not the case that f = 0 a.e. Prove that there exists a measurable set $A \subseteq E$ and a number $\delta > 0$ such that |A| > 0 and $|f| \ge \delta$ on A.

Proof. (a). Consider $E = \bigcup_{n=1}^{\infty} \{|f| < n\} = \bigcup_{n=1}^{\infty} E_n$. Then there exists some n_0 such that $|E_{n_0}| > 0$ otherwise |E| = 0. Take $A = E_{n_0}$ which satisfies the statement.

(b). Consider $E_0=\cup_{n=1}^\infty\{|f|\geq \frac{1}{n}\}$. If $|E_0|=0$ then f=0 a.e., but it is not the case. Therefore $\exists n_0\geq 1$ such that $|\{|f|\geq \frac{1}{n_0}\}|>0$. Take $\delta=\frac{1}{n_0}$ and $A=\{|f|\geq \frac{1}{n_0}\}$ we have the desired result.