Loan Default Prediction with Explainable AI

How-to make effective Decisions using Machine Intelligence

Arian Mohammadi Mina Mohammadi

Data Understanding

About DataSet

Summary	
shape	252000
NaN values	0
Duplicated values	208810
feature count	13
Categorical features	8
Problem type	Binary classification

	Features	Description
1	income	Income of the user
2	age	Age of the user
3	experience	Professional experience of the user in years
4	profession	Profession
5	married	Whether married or single
6	house_ownership	Owned or rented or neither
7	car_ownership	Does the person own a car
8	current_job_years	Years of experience in the current job
9	current_house_years	Number of years in the current residence
10	city	City of residence
11	state	State of residence
12	risk_flag	Defaulted on a loan

Data Preprocessing

Sampling + Feature Engineering

Exploratory Data Analysis

BoxPlot for OutLiers

['Bhubaneswar', 'Yamunanagar']

Up:['Puducherry', 'Manipur']
Down: ['Mizoram']

Up: these 2 states have more records with a target label of class 1

Comprehensive scheme of data distribution

correlation

Risk Flag (Target Features)

Class distribution besed on features

Age

Тор	op 5 with Most Default Rate: AGE				
	age	risk_flag	total_records	Average_@risk	
16	37	161	773	0.208279	
45	66	162	776	0.208763	
35	56	159	761	0.208936	
55	76	160	765	0.209150	
36	57	165	769	0.214564	

STATE wise Loan At Risk

State

Top	Top 5 with LeasT Default Rate: STATE				
	state	risk_flag	total_records	Average_@risk	
16	Mizoram	20	133	0.150376	
19	Punjab	133	773	0.172057	
26	Uttarakhand	51	290	0.175862	
2	Bihar	607	3365	0.180386	
21	Sikkim	28	155	0.180645	

Top	5 with Most	Default Ra		
	state	risk_flag	total_records	Average_@risk
9	Jammu	63	291	0.216495
12	Kerala	216	992	0.217742
24	Tripura	34	150	0.226667
18	Puducherry	61	262	0.232824
15	Manipur	31	127	0.244094

CITY wise Loan At Risk

City

Top	5 with LeasT	Default Rate: CITY			
	city	risk_flag	total_records	Average_@risk	
312	Vijayawada	24	161	0.149068	
218	0rai	24	156	0.153846	
120	Howrah	24	154	0.155844	
173	Ludhiana	24	154	0.155844	
24	Aurangabad	40	253	0.158103	

Top 5 with Most Default Rate: CITY

-	city	risk_flag	total_records	Average_@risk
291	Thiruvananthapuram	35	157	0.222930
282	Surat	35	155	0.225806
152	Kavali	37	153	0.241830
159	Kochi	38	154	0.246753
111	Gwalior	41	164	0.250000

profession

Тор	5 with LeasT De	fault Rate	: PROFE	SSION	
	profes	sion risk	_flag	total_record	s Average_@risk
44	Statisti	.cian	151	88	6 0.170429
50	Web_desi	.gner	148	863	3 0.171495
36	Petroleum_Engi	neer	138	79	1 0.174463
29	Industrial_Engi	.neer	154	87	5 0.176000
33	Mechanical_engi	neer	153	863	3 0.177289

	profession	risk_flag	total_records	Average_@risk
7	Chartered_Accountant	177	828	0.213768
38	Police_officer	189	881	0.214529
3	Army_officer	172	801	0.214732
48	Technician	188	859	0.218859
40	Psychologist	188	836	0.224880

Experience

Тор	5 with LeasT	⊓ Default R	ate: EXPERIENCE	
	experience	risk_flag	total_records	Average_@risk
10	10	380	2103	0.180694
13	13	380	2069	0.183664
20	20	372	1994	0.186560
18	18	376	1999	0.188094
16	16	390	2061	0.189229

Top	5 with Most	Default Ra	te: EXPERIENCE	
	experience	risk_flag	total_records	Average_@risk
6	6	423	2119	0.199622
7	7	424	2076	0.204239
1	1	424	2054	0.206426
11	11	430	2023	0.212556
2	2	431	1980	0.217677

Current job yrs

Тор	5 with LeasT Def	fault Rate:	CURRENT_JOB_YRS	
	current_job_yrs	risk_flag	total_records	Average_@risk
4	4	854	4571	0.186830
14	14	222	1176	0.188776
10	10	499	2637	0.189230
12	12	357	1883	0.189591
9	9	551	2904	0.189738

Top	5 with Most Default Rate: CURRENT_JOB_YRS					
	current_job_yrs	risk_flag	total_records	Average_@risk		
7	7	702	3535	0.198586		
6	6	794	3973	0.199849		
11	11	465	2262	0.205570		
1	1	424	2054	0.206426		
2	2	431	1980	0.217677		

Current house yrs

То	p 5 with LeasT De	efault Rate:	CURRENT_HOUSE_Y	RS
	current_house_yr	s risk_flag	g total_records	Average_@risk
2	1	.2 1628	8640	0.188426
3	1	.3 168	7 8713	0.193619
4	1	.4 1694	4 8652	0.195793
0	1	.0 170	4 8561	0.199042
1	1	.1 1730	8624	0.200603

5 with Most Default Rate: CURRENT_HOUSE_YRS current_house_yrs risk_flag total_records Average_@risk 0.188426 0.193619 0.195793 0.199042 0.200603

Model Evaluation

Decision Tree balancing methods

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

max depth

0.58

0.56

0.54

Undersampling

Under over sampling

Evaluation results of models

Algorithms	Best sampling method	Accuracy	Cross val	F1 score	Precision	Recall
KNN	Smote	69%	62%	68%	69%	68%
Decition Tree	Smote	80%	79%	79%	81%	80%
LogisticRegresion	In all sampling method accuracy is not acceptable	49%	13%	33%	25%	50%
RandomForest	Smote	78%	78%	78%	78%	78%
Naivebayes(Gaussian)	SmoteENN	51%	50%	48%	51%	51%
Naivebayes(Multinomial)	Smote	60%	55%	58%	62%	60%
Naivebayes(Bernoulli)	Smote	62%	62%	60%	63%	62%
XGBOOST	SmoteENN	88%	87%	88%	90%	88%

Evaluation results of models

XGBOOST – Best Model

parameters	Best parameters
objective	Binary hinge
Max depth	16
Nestimators	400
gamma	0.1
subsample	0.9
Colsample bytree	0.7
Learning rate	0.01

Learning Curve + ROC + confusion matrix of XGBOOST

Feature importance xgboost

Feature importance shaply values

Drop "Current job yrs "and "house ownership "based on all of feature importances but accuracy and cross-validation did not improved

Shaply values class 1

Shaply values class 0

Recommendations

- According to shap values, you can see the features that are effective in predicting the first class that has loan risk along with the summary plot of whole dataset importances of features and characteristics of loan borrowers which contributes the most for the selected model.
- For better results, special attention should be paid to these highlighted features
- You can also add features like (in data collection):
- 1. Financial Reserves
- 2. Loan Repayment History
- 3. Loan Term (Loan repayment period, Loan amount received)
- 4. the amount of expenses and the ratio of expenses to income should be measured
- 5. The purpose of the loan(what will it be used for)

The End