Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

STATISTICAL METHODS COMMONLY USED IN WATER QUALITY DATA ANALYSIS

DEVELOPED BY
STANLEY L. PONCE

WSDG Technical Paper
WSDG-TP-00001
December 1980

Watershed Systems Development Group
USDA Forest Service
3825 East Mulberry Street
Fort Collins, Colorado 80524

USDA, National Agricultural Library NAL Bidg 10301 Baltimore Blvd Beltsville, MD 20705-2351

417286

Table of Contents

	Page
1.0 Introduction	1
2.0 Basic Definitions	3
3.0 Underlying Assumptions and Data Requirements Parametric Statistical Testing	for 4
4.0 Descriptive Statistics	5
5.0 Important Theoretical Probability Density Fu	nctions 19
5.1 Normal Distribution	19
5.1.1 Introduction	19
5.1.2 Skewness and Kurtosis	26
5.1.3 Testing the Normality of the Distribution	26
5.1.4 Transformations	41
5.2 Student's t-Distribution	44
5.3 The Chi-square Distribution	45
5.4 The F Distribution	45
6.0 Confidence Limits About the Sample Mean	46
7.0 Hypothesis Testing	50
8.0 Testing for Homogeneity of the Variance	54
9.0 Comparison of Two Population Means or a Popu Mean and a Constant	lation 58
10.0 Analysis of Variance	72
10.1 Introduction	72
10.2 Assumptions Underlying Analysis of Variance	72
10.3 Nonparametric Methods of Analysis of Varian	ce 75
10.4 One-Way Classification Analysis of Variance	75
10.5 Evaluating the Difference Between Means Whe Sample Sizes are Equal	n the

Table of Contents

			Page
10.6		valuating the Difference Between Means When the ample Sizes are Not Equal	94
10.7	T۷	wo-Level Nested Analysis of Variance	94
10.8	T۷	wo-Way Classification Analysis of Variance	101
11.0	Re	egression and Correlation	108
11.1	Ir	ntroduction	108
11.2	Si	imple Linear Regression	108
11.2.1	l	Assumptions	108
11.2.2	2	Least Squares Determination of the Simple Linear Regression Line	112
11.2.3	3	Testing the Significance of the Simple Linear Regression Line	115
11.2.4	1	Correlation	116
11.2.5	5	Setting Confidence Intervals About a Simple Linear Regression Line and a Point Estimate	117
11.2.6	ô	Example	119
11.2.7	7	Analysis of Covariance to Compare the Simple Linear Regression Lines Developed from Several Groups of Data	124
11.3	Μι	ultiple Regression	127
11.3.1	L	Assumptions	127
11.3.2	2	Least Squares Determination of the Multiple Regression Line	127
11.3.3	3	Testing the Significance of the Multiple Regression Line	132
11.3.4	ļ	Coefficient of Multiple Determination	133
11.4	Cı	urvilinear Regression	134
12.0	Li	iterature Cited	136
	Δr	opendix A = Statistical Tables	

List of Tables

	Page
Table 1 - A Summary of the Characteristics, Advantages and Disadvantages of the Arithmetic Mean, Median and Mode	7
Table 2 - A Summary of the Characteristics, Advantages and Disadvantages of the Range, Standard Deviation and Coefficient of Variation	10
Table 3 - Populations of Specific Conductance and Fecal Coliform, Ranked in Order of Increasing Magnitude	11
Table 4 - SAS Output for the Specific Conductance Portion of Part 2, Example 1a	14
Table 5 - SAS Output for the Fecal Coliform Portion of Part 2, Example 1a	15
Table 6 - SAS Output for the Specific Conductance Portion of Part 2, Example 1b	17
Table 7 - SAS Output for the Fecal Coliform Portion of Part 2, Example 1b	18
Table 8 - SAS Output for the Specific Conductance Portion of Example 4a	36
Table 9 - SAS Output for the Fecal Coliform Portion of Example 4a	37
Table 10 - SAS Output for the Specific Conductance Portion of Example 4b	39
Table 11 - SAS Output for the Fecal Coliform Portion of Example 4b	40
Table 12 - SAS Output for Example 5	43
Table 13 - Probability Levels for Various Degrees of Significant Differences	52
Table 14 - Statistical Decisions and Their Outcomes, with Special Reference to the Type of Error	54
Table 15 - SPSS Output for Example 8a	62
Table 16 - SPSS Output for Example 8b	66
Table 17 - SPSS Output for Example 8c	71

List of Tables

				Page
Table	18	-	96-Hour LD50 Concentration (mg/l) for Test Fish	74
Table	19	-	Data Arranged for a One-way Classification Anova	75
Table	20	-	A Typical ANOVA Table for the One-way Classification with Equal Sample Sizes	77
Table	21	-	Results of the Analysis of Variance for Example 9a Using the ONEWAY Subprogram from SPSS (1975)	81
Table	22	-	Results of the Analysis of Variance for Example 9b Using the ONEWAY Subprogram from SPSS (1975)	84
Table	23	-	A Typical ANOVA Table for the One-Way Classification with Unequal Sample Size	85
Table	24	-	Results of the Analysis of Variance for Example 9c Using the ANOVA Procedure from SAS (1979)	89
Table	25	-	Data Arranged for a Two-Level Nested Anova	95
Table	26	-	The Anova Table for the Two-Level Nested Anova	96
Table	27	-	Results of the Analysis of Variance for Example 9e Using the NESTED Procedure from SAS (1979)	100
Table	28	-	Basic Design of the Two-Level Nested Anova	101
Table	29	-	Basic Design of a Two-Way Anova	102
Tablę	30	-	Total Dissolved Solids Concentration (mg/l) at Stations 001 and 002 on Eagle Creek During the Spring and Fall of 1980	103
Table			The Anova Table for the Two-Way Anova with Replicate Samples	104
Table	32	-	Results of the Analysis of Variance for Example 9f Using the ANOVA Subprogram from SPSS (1975)	107
Table	33	-	Data for Two Water Quality Variables, X and Y	113
Table	34	-	The Anova Table for the Significance of Regression Line Test	116
Table	35	-	The GLM Output from SAS (1979) for Example 10	123
Table	36	_	Analysis of Covariance Table	125

List of Tables

	Page
Table 37 - Data for the Example Illustrating the Least Squares Determination of the Multiple Regressio	n Line 129
Table 38 - ANOVA Results for the Test of Significance of t Multiple Regression Developed from the Data Given in Table 36	he 133
Table 39 - Transformations of Linearization of Different Functions	135

List of Figures

	Page
Figure 1 - Relative Position of the Mean, Median and Mode for an Asymetrical Distribution	8
Figure 2 - The Standardized Normal Curve	21
Figure 3 - Examples of Several Frequency Distributions and Their Respective Cumulative Frequency Distributions	28
Figure 4 - The Cumulative % f Versus Class Interval for the Specific Conductance and Coliform Data from Table 3 on Normal Probability Paper	31
Figure 5 - Frequency Diagram for the Conductivity Data from Table 3	32
Figure 6 - Frequency Plot of the Fecal Coliform Data from Table 3	33
Figure 7 - Rejection and Acceptance Regions	52
Figure 8 - The Relationship Between the Type I and Type II Errors	53
Figure 9 - Testing for Independence of the Residuals	110
Figure 10 - Plots Testing for Homogeneity in the Variances	111
Figure 11 - Scatter Diagram of X vs. Y for the Data from Table 33	113
Figure 12 - Several Different Examples of Coefficients of Correlation	118
Figure 13 - The Scatter Diagram of the Data from Example 10, the Simple Linear Regression Line through the Data and the 95% Confidence Limits About the Regression Line	122

List of Examples

	<u>Page</u>
Example 1a - Descriptive Statistics	12
Example 1b - Descriptive Statistics	16
Example 2 - Application of the Normal Curve	22
Example 3 - Graphical Test for Normality	29
Example 4a - Kolmogorov-Smirnov Test for Normality	35
Example 4b - Shapiro-Wilk Test for Normality	38
Example 5 - Log (X) Transformation	42
Example 6 - Setting Confidence Limits for the Popu	lation Mean 48
Example 7a - Testing for Homogeneity Between Two Va	ariances 55
Example 7b - Bartlett's Test of Homogeneity of Var	iances 56
Example 8a - Comparison of the Population Mean and When the Variance is Unknown	a Constant 60
Example 8b - Comparison of the Means from Two Popu the Population Variance is Unknown and Data Unpaired	
Example 8c - Comparison of the Means from Two Popu When the Population Variance is Unknow the Data Paired	
Example 9a - One-Way Classification ANOVA with Equa Sample Size	al 78
Example 9b - One-Way Classification ANOVA with Equal Size and Data Transformed by Log (X)	al Sample 82
Example 9c - One-Way Classification ANOVA with Une Sample Size	qua 1 86
Example 9d - Evaluating the Differences Between Mea Snedecor's Q-test	ans Using 92
Example 9e - Two-Level Nested ANOVA	97
Example 9f - Two-Way Classification ANOVA	105
Example 10 - Simple Linear Regression Analysis	120

PREFACE

The purpose of this WSDG Technical Paper is to review several statistical methods commonly used in water quality data analysis. It is not intended to be another detailed statistical text, but rather, provide Forest Hydrologists with a concise review of basic statistics. Throughout the paper the assumptions underlying the various statistical tests have been emphasized. In addition, water quality examples have been included throughout. Although it is anticipated that you will perform most of your statistical analyses on programmable calculators or computers, the basic formula and procedures involved in the various statistical tests have been included to help give you a better perspective of what is going on in the "canned" programs.

This Technical Paper was designed to be used in conjunction with WSDG
Technical Paper 00002, "Water Quality Monitoring Programs," and WSDG
Application Documents 00001 and 00002, Statistical Analysis Using SAS at
the USEPA National Computer Center" and "Statistical Analysis Using SPSS at
the USDA Fort Collins Computer Center," respectively. Together, these two
Technical Papers and two Support Documents form the "Water Quality
Handbook" scheduled for release late winter of 1981 by the USDA Forest
Service.

I would like to acknowledge all the people that contributed to the development of this Technical Paper. A very special thanks is given to Dave Ryn, Computer Specialist and Statistician, WSDG; Walt Hivner, Statistician, Colorado State University, and Bob Averett, Hydrologist, USGS-WRD, who performed the detailed technical review. I would like to extend my appreciation to Jim Ingwersen, Cindi Eiching Gordon Snyder, Eric

AUG 2 4 1989

CATALOGING PREP.

Siverts, and all the Forest Hydrologists who provided many helpful suggestions concerning content and format.

U.S. Department of Agriculture Hational Agricultural Library Landing Branch Posterally, Marchan's 20095

1450

STATISTICAL METHODS COMMONLY USED IN WATER QUALITY DATA ANALYSIS

1.0 Introduction

The proper use of statistical methods in the reduction and analysis of water quality data is very important. These methods allow us to take an objective view of the data and, hopefully, keep us from making fools of ourselves by claiming that a favorite theory is substantiated by observations that do nothing of the sort (Colquhoun, 1971). This is not to imply that field observations are not important in the interpretive process, for indeed they are. However, these observations should be tempered with the objectivity of statistical methods. Averett (1979) states

"data interpretation is an intellectual activity; statistical application is a mechanical activity. Good experimental design eases the interpretation burden, and statistical methods are best applied in evaluating the adequacy or applicability of the selected experimental design. Statistical methods are, therefore, extremely useful tools in the reduction and analysis of data, and as such, can be used as an <u>aid</u> in data interpretation. The statistical testing of data can provide 'yes' or 'no' answers at a given probability level--nothing more."

The purpose of this WSDG Technical Paper is to review several selected statistical methods. It is not intended to be another detailed statistical text. If you feel you need more information concerning a specific statistical method, two texts recommended are <u>Biometry</u> by Sokal and Rohlf (1969) and <u>Statistical Analysis of Samples of Benthic Invertebrates</u> by Elliott (1977).

This paper begins with a series of definitions of common statistical terms followed by (1) a brief discussion of the underlying assumptions and data requirements for parametric statistical testing, (2) descriptive statistics, (3) important theoretical probability density functions, (4) confidence limits about the mean, (5) hypothesis testing, and (6) testing the homogeneity of the variance. It is important that you understand these concepts before proceeding, for they are fundamental to an understanding of the subsequent statistical methods. Next, the powerful tools of (1) analysis of variance and (2) regression and correlation are covered. Throughout this paper, emphasis has been placed on the assumptions underlying the various methods and the utility of these methods for the analysis of water quality data.

To enhance your understanding of the various statistical methods presented, water quality-related examples have been included throughout. It is realized that you will be doing most of your data analysis using statistical packages designed for hand-held calculators or computers. However, it is important that you clearly understand what the "canned" programs are doing. Therefore, I have outlined the basic "number crunching" operations associated with each method. The statistical package that you use for your data analysis is generally a function of availability. Two packages which are readily available to Forest Hydrologists are SAS (Statistical Analysis System, 1979) and SPSS (Statistical Package for Social Sciences, 1975). You can address SAS through the EPA NCC-IBM (where STORET data is retained), and SPSS through the USDA Fort Collins Computer Center. Many of the examples have been solved using SAS and SPSS. A detailed discussion of the procedures necessary to address the various statistical methods using SAS and SPSS is presented by Ingwersen (1981a and 1981b).

2.0 Basic Definitions

It seems that any discussion of statistics always begins with a series of definitions. It helps to get everyone into the same framework for statistical thinking and, as such, is necessary. What follows is a brief journey through some of the basic definitions fundamental to the science of statistics. Only the ones necessary to get us on our way are presented here. As we proceed into the maze of statistical methods and concepts, this list of definitions will grow.

In a narrow sense, <u>statistics</u> refers to any of the various computed or estimated statistical quantities, such as the mean, standard deviation, or variance. In a broad sense, it can be thought of as the scientific study of numerical data from natural phenomena, concerned with making inferences about a <u>population</u> based upon information on a <u>sample</u> taken from the population.

A collection of <u>individual observations</u> obtained by a specified procedure, such as random sampling, is commonly referred to as a sample or a sample of observations. If the sample has been collected properly, it can be considered to be representative of a population containing all possible observations. The specific property measured by the individual observations is called the <u>variable</u>. Variables are subdivided into several categories, two of which concern us. <u>Continuous variables</u>, such as calcium or total dissolved solids concentrations, theoretically can assume an infinite number of values between any two fixed points and are limited only by the precision of the instrument used to make the measurement.

<u>Discontinuous</u> or <u>discrete variables</u>, such as fecal coliform or stonefly nymph counts, are those that have only certain fixed numerical values with no intermediate values possible inbetween. Usually, discrete data take on integral numerical values, such as 1, 2, 3, 100, or 200.

3.0 <u>Underlying Assumptions and Data Requirements for Parametric Statistical Testing</u>

Most water quality data analysis performed by Forest Hydrologists will employ <u>parametric statistical methods</u>. These methods are the ones commonly taught at the undergraduate level in college and are characterized by using tests whose models specify conditions about the parameters of the population from which the sample was drawn. There are several basic assumptions underlying parametric statistical tests of which you should be aware whenever you apply these procedures. These are:

- 1. the observations are independent;
- 2. the distribution of the population is known;
- 3. the variances of the populations being compared are equal or of known ratio.

In addition, these statistical tests require that the data:

- were collected in a random manner;
- 2. have error variation independent of the means, normally distributed and homogeneous; and
- 3. have variance components which are additive.

The data commonly encountered in water quality studies rarely satisfy all the assumptions and requirements of parametric statistical methods. However, as Glass and others (1972) state, the relevant question is not whether the assumptions and requirements are met exactly, but rather whether the plausible violations of the assumptions and requirements have serious consequences on the validity of the probability statements based upon them. At this point, it is only important that you keep these assumptions and requirements in mind. As we develop our statistical arsenal, I will illustrate procedures which can be applied to the raw data to test if the requirements are met and to point out the pitfalls you may encounter in your inferences when these assumptions and requirements are violated.

4.0 Descriptive Statistics

Data analysis generally begins with numerical summary or description of the data set. Two types of descriptive statistics are addressed here: statistics of central tendency and statistics of dispersion.

The statistics of central tendency or location include the <u>mean</u>, <u>median</u>, and <u>mode</u>. The mean is the one we are most familiar with and is a statistic of great importance since many statistical tests center around comparison of the sample means. The arithmetic mean (\bar{X}) is calculated by summing all the individual observations (ΣX_1) of a sample and dividing it by the number of observations (n) in the sample (Equation 1).

$$\bar{X} = \frac{\Sigma X_i}{n} \tag{1}$$

As you recall, sample statistics are designed to be estimators of population parameters. In this case \overline{X} is an estimate of μ , the population mean. (Note: As a matter of convention in statistics, Greek letters are used to denote population parameters while Roman letters are used to denote sample statistics.)

The median divides a frequency distribution into two halves and is defined as that value of a variable (in an array ordered from the smallest to the largest) that has an equal number of observations on either side of it. The median is easily determined when the sample array has an odd number of observations. However, when the number of observations is even, it is determined by calculating the mean of the (n/2)th and [(n/2) + 1]th observations. In certain cases, when the distribution is asymmetric, as is generally the case with coliform data, the median is a more representative measure of location than the arithmetic mean.

The mode is defined as the value or class interval having the greatest number of individuals. In some cases, a mode will not exist, such as when several values or frequency classes have the same number of observations.

Table 1 summarizes the characteristics, advantages and disadvantages of the arithmetic mean, median and mode. In symmetrical distributions, such as the normal distribution, the mean, median and mode are all identical. In asymmetrical distributions the mean is relatively closer to the drawn-out tail of the distribution, while the mode is farthest from the mean and the median lies between the two (Figure 1).

The statistics of dispersion include the <u>range</u>, <u>variance</u> and <u>standard</u> <u>deviation</u>. The range is simply the difference between the largest and smallest observations in a sample. Since the range can be affected greatly by an extreme value, it should be considered only as a rough estimate of the dispersion of all the observations in a sample.

Both the variance and standard deviation take all observations of a sample into consideration and weigh each observation by its distance (deviation) from the calculated center (mean) of the distribution. The deviation (x_i) of the ith observation (X_i) from the mean (X_i) can be expressed as

$$X_i = X_i - \bar{X}$$

The variance (s^2) is a modified average of the sum of the deviations squared (ΣX_i^2) (Equation 2). The variance is expressed in squared units.

$$s^2 = \frac{\sum x_i^2}{n-1} \tag{2}$$

Table 1. A summary of the characteristics, advantages and disadvantages of the arithmetic mean, median and mode.

MODE	1. It is a measure of central tendency based on position. 2. It is the most typical value. 3. It is entirely independent of extreme values.	1. It is considered to be the most descriptive measure of central tendency since it is the most typical value.	1. If none of the values occur more than once, the mode does not exist. 2. A sample may have more than one mode.
MEDIAN	1. It is a measure of central tendency based on position. 2. It is affected by the number of items, not by the size of the extreme values. 3. The sum of the absolute value of the deviations about the median will be less than any other point.	 It is not distorted by extreme values, and therefore, may be more representative of central tendency than other measures. 	1. It is not as commonly used nor understood as the arithmetic mean. 2. The observations must be ranked by magnitude before the median can be computed. 3. It has a larger standard error than the arithmetic mean. 4. It cannot be manipulated algebraically.
MEAN	1. It is a calculated average. 2. It is affected greatly by extreme values. 3. The sum of the deviations about the arithmetic mean is zero. 4. The sum of the squares of the deviations from the arithmetic mean is less than those computed about any other point. 5. The sum of the means equals the mean of the sums. 6. It has a smaller standard error than other statistics of	1. It is the most commonly used, easily understood and generally recognized average. 2. It is simple to calculate and uses all observations in the sample. 3. It may be treated algebraically.	1. It may be greatly distorted by extreme values and therefore may not be a typical value.

SBBATNAVOA

DISADVANTAGES

CHARACTERISTICS

Figure 1. Relative position of the mean, median and mode for an asymmetrical distribution.

The sum of the deviations is divided by "n-1" in order to obtain an unbiased estimate of the population variance. Statisticians have shown that when the sums of squares (the deviations squared) are divided by "n-1" rather than "n" a more accurate estimate of the population variance will be obtained, no matter what the sample size. Calculations that divide the sum of squares by "n" tend to underestimate the variance, especially when "n" is small, and result in a biased estimate of the population variance. Consequently, you should always use "n-1" in your calculation of the estimate of the population variance. The quantity "n-1" is generally referred to as the degrees of freedom (df). As you will see later, the degrees of freedom are used with many other statistics besides the variance.

The standard deviation (s) is calculated by taking the square root of the variance (Equation 3).

$$s = \sqrt{\frac{\sum x_i^2}{n-1}}$$

(3)

The advantage of the standard deviation (s) over the variance (s^2) is that the units are not squared and, therefore, tend to be more meaningful.

Sometimes we wish to compare the amount of variation in populations having different means. To accomplish this we use the <u>coefficient of variation</u> (CV) which is simply the standard deviation expressed as a percentage of the mean (Equation 4).

$$CV = \frac{s(100)}{\bar{x}} \tag{4}$$

A summary of the characteristics, advantages and disadvantages of the range, standard deviation and coefficient of variation is presented in Table 2.

Use of the descriptive statistics described in this section is illustrated in Examples 1a and 1b. The examples utilize a population of specific conductance values and fecal coliform counts, ranked in order of increasing magnitude (Table 3).

Table 2. A summary of the characteristics, advantages and disadvantages of the range, standard deviation and coefficient of variation.

COEFFICIENT OF VARIATION	1. It is a relative measure of variation.	1. Simple and easy to determine. 2. It is independent of the unit of measurement used.	1. To know whether or not a particular value of the coefficient of variation is unusually large or small requires experience with similar data.
STANDARD DEVIATION	1. It is a measure of the dispersion of observations based on their distribution.	 Simple and easy to determine. It is affected by the value of every observation. It is commonly used and understood. 	1. Standard deviations of constituents with different units, such as ppm and counts/100 ml, cannot be readily compared.
RANGE	1. It is dependent only on the two extremes; i.e. the highest and lowest observations.	1. Simple and easily understood. 2. Readily determined. 3. No information about the distribution is required to determine the range.	1. It yields no information about how the items are dispersed.
SOI	CHARACTERIST I	SƏÐATNAVQA	SƏÐATNAVDASID

Table 3. Populations of specific conductance (SC) and fecal coliform (FC) ranked in order of increasing magnitude, with means (μ) of 81.5 μ mhos/cm and 23.6 counts/100 ml and standard deviations (σ) of 12.1 μ mhos/cm and 12.5 counts/100 ml, respectively.

Rank	SC	FC	Rank	SC	FC	Rank	SC	FC	 Rank	SC	FC	Rank	SC	FC
1 2	51 56	7 8	11 12	67 67	12 13	21 22	72 72	15 15	31 32	75 75	16 17	41 42	79 79	18 19
3 4	58 59	9 10	13 14	68 68	13 13	23 24	73 73	15 15	33 34	76 77	17 17	43 44	79 79	19 19
5	61 62	10 11	15 16	68 69	13 14	25 26	74 74	15 16	35 36	77 78	17 17	45 46	80 80	19 19
7 8	63 64	11 11	17 18	69 70	14 14	27 28	74 74	16 16	37 38	78 78	18 18	47 48	80 81	20 20
9 10	65 66	12 12	19 20	71 72	14 14	29 30	75 75	16 16	39 40	78 78	18 18	49 50	81 82	20
Rank	SC	FC	Rank	SC	FC									
51	82	21	61	84	23	71	88	26	81	92	29	91	98	40
52 53	82 82	21 21	62 63	85 85	23 24	72 73	88 88	26 27	82 83	92 93	30 30	92 93	99 100	44 45
54 55	82 83	21 22	64 65	86 86	24 24	74 75	89 89	27 27	84 85	93 94	31 31	94 95	100 101	46 49
56 57	83 83	22 22	66 67	86 86	24 25	76 77	89 90	28 28	86 87	94 95	32 32	96 97	103 105	54 59
58 59	83 83	22 23	68 69	87 87	25 25	78 79	90 91	28 29	88 89	95 96	33 37	98 99	107 108	61 67
60	84	23	70	87	26	80	92	29	90	97	38	100	111	75

EXAMPLE 1a Descriptive Statistics

.....

Problem:

Obtain two random samples, containing 15 observations each, from the specific conductance and fecal coliform populations tabulated in Table 3. For each sample determine the (a) mean, (b) standard deviation, and (c) coefficient of variation.

Solution:

The samples were obtained with the aid of a random number (RN) table.

RN	SC.	FC	RN	SC	FC	RN	SC	FC
59	83	23	38	78	18	24	73	15
34	77	17	9	65	12	27	74	16
46	80	19	95	101	49	65	86	24
81	92	29	60	84	23	48	81	20
55	83	22	78	90	28	35	77	17

(a) Mean

$$\overline{SC} = \Sigma SC_i/n = 1224/15 = 81.6 \,\mu mhos/cm$$

 $\overline{FC} = \Sigma FC_i/n = 331/15 = 22.1 \,counts/100 mJ$

(b) Standard Deviation

$$s_{(SC)} = \sqrt{\frac{\Sigma(SC_i - \overline{SC})^2}{n - 1}} = 8.7 \,\mu\text{mhos/cm}$$

$$s_{(FC)} = \sqrt{\frac{\Sigma(FC_i - \overline{FC})^2}{n - 1}} = 8.8 \,\text{counts/100ml}$$

(c) Coefficient of Variation

$$CV_{(SC)} = \frac{s_{SC} \times 100}{\overline{SC}} = 10.6\%$$

$$CV_{(FC)} = \frac{s_{FC} \times 100}{FC} = 39.8\%$$

The UNIVARIATE procedure from SAS (1979) or the CONDESCRIPTIVE subprogram from SPSS (1975) could be used to solve this example problem. The UNIVARIATE procedure was used and the results are presented in Tables $^{\it L}$ and 5.

VARTARIE SC			VIN()	UNIVARTATE.					
				OUANT-LES	ES			EXTREMES	
N 15 51	SUM-WGTS	1224	1.00% - MAX-75% 03	101	99%	99.65		LOWEST	HIGHEST 84
PEV 8.6586	VARIANCE	74.9714	50% MFD	80.5	*06	9.1		73	96
WNFSS 0.409897	KURT0S1S	1.01194	25% 01	76.25	10%	69		74	06
SS 10092865 CV 10.611 S1	STO MEAN	1049.6	00 -MIW	65	28.28	65		7.7	101
4FAN=0 369996	PP08>1.T	0,0001	PANGE	36					
0.976867	PROB <w< td=""><td>0.95</td><td>03-01 MRHF</td><td>8.25</td><td></td><td></td><td></td><td></td><td></td></w<>	0.95	03-01 MRHF	8.25					
10 1			ROXPLOT	100+	N	NORMAL—PROBA BILITY -PLOT	14.17Y-Pt.01	*	
R 013346			*	90		*	* * * *		
6 5			0	+09	+ =	0			
MULTIPLY SIEM. LEAF BY 10**+01	LEAF BY]	0+++01		2-)	÷	+ + + + + + + + + + + + + + + + + +	+2	
The state of the s			FRFOUEN	FREGUENCY TABLE					
PERCEN	· C	L	S.F.			PERCENTS	L	PERCEN	,
	60H	76 1		84 1		73.3	101	1 6.7 100.0	E 0
1 6.7	0	81 1	6.7 53.3	06	1 6.7	86.7			
C C C C C C C C C C C C C C C C C C C		CO		CC	1 9 1	000			

SAS output for the specific conductance portion of Part 2, Example la. Table 4.

15 32 95 17 17 17 17 17 17 17 17 17 17
15 100%—MAX— 32 75% 03 75% 03 75% 03 17 75% 03 17 75% 03 17 75% 03 17 75% 03 17 75% 03 17 75% 04 10 17 75% 04 10 17 75% 04 10 17 75% 04 10 17 75% 04 10 17 75% 04 10 17 75% 04 10 17 75% 04 17 75% 0
h 0000 # h 4 A

Table 5. SAS output for the fecal coliform portion of Part 2, Example 1a.

EXAMPLE 1b Descriptive Statistics

Problem:

For the specific conductance and fecal coliform populations tabulated in Table 3 determine the (a) median, (b) mode, and (c) range.

Solution:

(a) Median

The median for the specific conductance population is the mean of ranks 50 and 51, which is $82 \mu mhos/cm$.

The median for the fecal coliform population is 20.5 counts/100 ml.

(b) Mode

The specific conductance population does not have a mode; 82 and 83 are both observed five times.

The mode of the fecal coliform population is 16 counts/100 ml.

(c) Range

Specific conductance: $111 - 51 = 60 \mu \text{mhos/cm}$ Fecal coliform: 75 - 7 = 68 counts/100 ml.

The UNIVARIATE procedure from SAS (1979) was also used to develop the required descriptive statistics (Tables 6 and 7). Note that there is no data entry for the mode of the specific conductance since it does not exist. The CONDESCRIPTIVE subprogram from SPSS (1975) could also have been used, however, it will not determine the median and mode.

à	
-	L
1	Γ
•	Ŧ
	۲
	1
	ı
	ı
	l
	ŀ
	ı
	ı
-2	E
	ı
L	h
-	Г
	L
	Г
	L
U	p
	1
>	1
1 + U × U	6
41	k
4	ľ
	[
	L
	L
- E	h
	ļ
-	h
	ľ
	L
-	ľ
	1
	Г
	ĺ.
-	
	L
4	įπ
	١
2	Ł
_	Ţ
4	k
	ī
	Ł
	i
	ı
-	μ
	1
4	k
	Γ
•	Ь
4	٢
	1
-	۲
_	
-	T
	1
6	r,
	Ĺ
-	L
ĺ	1
b	L
-	Ī
	L

-UNIVARIATE

SUM WG1S 100. 1009 MAX 13 SUM WG1S 1000 MAX 13 SUM WG1S 1445,949	OUANTILES EXTREMES	-1-10HESTHIGHEST		800	ROA	10%		1% 51		Į.		NORMAL PROBABILITY-PLOT	1			*		Lei	PERCENTS	VALUE COUNT CELL CUM VALUE COUNT CELL CUM	5.0 59.0 96 1 1.0	2 200 6100 97 1-100	2 2.0 63.0 9R 1 1.0	4 4.0 67.0 99 1.0	3 3.0 70.0 100 2 2.0	3 3.0 73.0 101 1.00	3 3.0 76.0 103 1 1.0	2 2.0 78.0 105 1 1.0	1 1.0 79.0 107 1 1.0	3 3.0 82.0 1.0		93 2 2.0 84.0 111 1 1.0 100.0
мом о с с с с с с с с с с с с с с с с с	MOMENTS		200 200 200 200 200 200 200 200 200 200	DO AND TOTAL	これ からい からい からいってす 一	rosis -0.120319	NIW #0	MEAN 1.20818	-0.0001	03-01	• HODE				67788889999 27 +	24	- 1	FREQUENCY TABLE	PERCENTS	YALTIE-GOUNTCELLCUM	1.0 18.0	2.0 1-0.0 10.0 10.0 10.0 10.0 10.0 10.0 1	3.0 72 3 3.0 22.0	4.0 24.0	5.0 74 4 4.0 28.0	f.0 32.0	7.00 76 1 1.00 33.00	R.0 35.0	9.0 40.0	79 4 40 7	12.0 R0 3 3.0 47.0	0 0 0

Table 6. SAS output for the specific conductance portion of Part 2, Example 1b.

MOMENTS	\$			OUANTTLES	3.		EXTREMES	S
-100	-SUM-WGT-S-	1.00	100%-MAX	75	866	6666 99	LOWEST	-HIGHEST
73.55	VARIANCE	2355	75% 03	100	95%	3.9	~ a	4 0 H
87556	KURTOSIS	4.1614	25% 01	15	10%	12	. 0) ly
71043	-656	15582.8	NIN 60	7	58	10	10	67
53.2738	STO MEAN	1.2546			2%	7	10	75
1.47602	PP08>D	0.0256269	03-01 MODE	2 2 2				
			BOXDI UT			TO IG VIT ITAR DOG INMON	DLOT.	
				+04			4	*
							*	
001122378		00000	6			* 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	******	•
3334444	0001112223333444455556666667777788 789	0000111222333344444555566666677777888809 789	43 *	- *	***	************		
STEMPLE	MULTIPLY STEMPLEAF DY 10***01	MULTIPLY STEM.LEAF RY 10***01		•	+ + + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + + +	
			FPEQUENCY TAPLE	Y TAPLE				
PERCENTS	SIN		PERCENTS		PERCENTS	15	PERCENTS	S
CELL	CUM	VALUE COUNT		VALUE COUNT	CELL	M VALUE	COUNT CELL C	₩ CO
	0.0	18		588		78.0 45	1 1.0 93	93.0
2.0	0.0			30	2.0		1 1.0 95	95.0
	11.0			32	200		1 1.0 97	97.0
	20.0	45.		37	0.0	89.0	1.0 99	0.66
	(3)	- c)	3.0 64.0	38	06-00	90.06	1.00 0.100	

SAS output for the fecal coliform portion of Part 2, Example 1b. Table 7.

5.0 Important Theoretical Probability Density Functions

Statisticians have developed several theoretical probability density functions which can be used as models for samples from a population. If the frequency distribution of observations from a sample fits one of these models, then (1) errors of the population parameters can be estimated, (2) temporal and spatial changes in frequency can be compared and (3) the effect of environmental factors and management practices can be examined.

The models commonly applied to discontinuous or count data are the $\underline{\text{Binomial}}$ and the $\underline{\text{Poisson}}$ distributions. A detailed discussion and illustration of the application of each of these models is given by Elliott (1977). The most important theoretical probability density functions for continuous or measured data are the $\underline{\text{normal}}$, $\underline{\text{t}}$, $\underline{\text{chi-square}}$ and $\underline{\text{F}}$ distributions. The balance of this Section will address these distributions. It is very important that you have a clear understanding of these distributions since many of the procedures that follow are based on a knowledge of these models.

5.1 Normal Distribution

5.1.1 Introduction

The normal distribution is also referred to as the "Gausian" distribution. We are all familiar with the symmetrical bell-shaped curve of this distribution. However, we should note that not all symmetrical distributions are normally distributed since the normal distribution is defined by a specific equation and has its own distinctive set of properties. The equation for the normal curve is:

$$Y = \frac{1}{\sigma\sqrt{2\pi}} e^{-1/2\left(\frac{x-\mu}{\sigma}\right)^2} \tag{5}$$

where Y is the height of the curve corresponding to an assigned value of X

(which represents the frequency of observations of a given X_i); π and e are constants nearly equal to 3.1416 and 2.7183, respectively; and the other parameters are as previously defined. The properties of normal distributions are: (1) they are symmetrical about the mean (the mean, median and mode are all equal); (2) they all have a concave downward trend when $X < \pm \sigma$ of the mean and a concave upward trend when $X > \pm \sigma$ of the mean; and (3) the proportion of the area between two X values is completely governed by μ and σ .

Generally, we are interested in the area under the curve since we can relate it to the probability of occurrence of an interval of observations. (This concept of probability is generally denoted: Pr (argument) = area.) The area contained under the curve between two observations, such as X_a and X_b , can be determined by using Table A-1 (found in Appendix A).

In order that the same table can be used for any value of μ and σ , which vary with different normal populations, Equation 5 was standardized by substituting z for σ prior to integration. Table A-1 is entered with the value of z which is simply the deviation of X from μ measured in σ units. The area between any two X_i 's can be found by using the symmetry of the curve about z=0. The standardized normal curve is illustrated in Figure 2. It is apparent that 68.3% of the observations lie within \pm σ of the mean, 95.5% within \pm 2 σ of the mean and 99.7% within \pm 3 σ of the mean. Application of the normal distribution is illustrated in Example 2.

Figure 2. The standardized normal curve.

The relationship between z and σ is illustrated by the use of two ordinate scales.

EXAMPLE 2 Application of the Normal Curve

Problem:

For the specific conductance population presented in Table 3, which is assumed to be normally distributed with mean 81.5 $\mu mhos/cm$ and standard deviation 12.1 $\mu mhos/cm$, determine (a) the probability of an observation falling between the mean and 91 $\mu mhos/cm$, (b) the probability of a value being less than 87 $\mu mhos/cm$, (c) the probability of a value occurring between 77 and 94 $\mu mhos/cm$, (d) the 90% value of X, and (e) the probability of X_i = 54 $\mu mhos/cm$.

Solution:

(a) Probability of an observation falling between the mean and 91 $\mu\text{mhos/cm.}$

First, it is necessary to convert 91 µmhos/cm to z units.

$$z = \frac{X - \mu}{\sigma} = \frac{91 - 81.5}{12.1} = 0.79$$

Second, determine the area from z=0 to z=0.79 using Table A-1. Area = 0.2852 (0.5000 - 0.2148 = 0.2852). The area we are interested in is illustrated below.

Therefore, the Pr $(81.5 < X_i < 91) = 0.2852$

(b) Probability of a value being less than 87 µmhos/cm.

First, convert 87 µmhos/cm to z units.

$$z = \frac{87 - 81.5}{12.1} = 0.45$$

Second, determine the area from Table A-1. Area = 0.5 + 0.1736 = 0.6736. The area we are interested in is illustrated below.

Since both sides of the curve are included in the argument, we must add 0.5000 to the value obtained from Table A-1.

Therefore, $Pr(X_i \le 87) = 0.6736$

(c) Probability of a value occurring between 77 and 94 µmhos/cm.

In this case, the argument falls on both sides of the mean.

The area is calculated in three steps:

First, determine the z values.

$$z = \frac{94 - 81.5}{12.1} = 1.03$$

$$z = \frac{77 - 81.5}{12.1} = -0.37$$

Second, determine the area and apply the concept of symmetry to the curve (Table A-1). The area to the right of the center is equal to 0.3485 while the area to the left of the center is 0.1443 (see figure below).

Third, add the two areas.

$$Pr (77 < X_i < 94) = 0.3485 + 0.1443 = 0.4928$$

(d) The 90% value of X.

To determine the value of X_i for which 90% (0.9000) of the observations will fall below, you must first find the 0.4000 value in Table A-1, then determine z and solve for X_i .

The 0.4000 value was obtained by applying the concept of symmetry (0.4000 = 0.9000 - 0.5000).

From Table A-1 we find that z is nearly equal to 1.28.

Since: $z = (X - \mu)/\sigma$

It follows that:

$$X = 2\sigma + \mu$$

Substituting and solving we get:

$$X = 1.28 (12.1) + 81.5$$

 $X = 97.0 \mu mhos/cm$

(e) Probability of $X_i = 54 \mu mhos/cm$.

To apply the normal distribution to discrete data it is necessary to treat the data as if it were continuous. Thus, the value 54 is considered as 53.5 to 54.5 $\mu mhos/cm$.

Now the problem becomes similar to that presented in item (c).

$$Pr(53.5 < X < 54.5) = 0.0025$$

5.1.2 Skewness and Kurtosis

Many times an observed frequency distribution will depart markedly from a normal distribution. There are two types of departures with which we need to be familiar: skewness and kurtosis.

Skewness refers to the asymmetry of the data where one tail is drawn out more than the other. A distribution skewed to the right has a long right tail. Kurtosis refers to the degree of peakedness of the curve. A distribution that has more observations near the mean and at the tails with fewer observations in the intermediate regions relative to the normal distribution with the same mean and variance is called Leptokurtic. A Platykurtic curve is the opposite of the leptokurtic curve and has more observations in the intermediate regions than at the mean or in the tails relative to the normal distribution.

In general, these statistics are seldom used in water quality data analysis. However, they are presented here simply as definitions for use in future discussions.

5.1.3 Testing the Normality of the Distribution

As you recall, one of the assumptions underlying parametric statistics is that the distribution of the population is known. Many water quality problems have statistical answers based on the <u>assumption</u> that the distribution of the population is normal. There are several methods you can use to check this assumption. Three procedures are presented here: (1) the graphic method, (2) the Kolmogorov-Smirnov test, and (3) the Shapiro-Wilk test. (It should be noted that most statistics books suggest the use of the chi-square test for goodness of fit. However, because the Kolmogorov-Smirnov and Shapiro-Wilk tests are more powerful and are the

ones commonly contained in computer statistical packages, they are the ones addressed here to test for normality.)

The graphic method is based on a cumulative frequency distribution. When data from a normal distribution are plotted in a cumulative manner on arithmetic graph paper, the result is a sigmoid curve. This curve can be linearized by plotting the cumulative distribution on normal probability graph paper. Figure 3 illustrates a series of frequency distributions departing from normality. You will find these as useful guides when examining the distributions of your data on probability paper. The graphic method is illustrated in Example 3.

Figure 3. Examples of several frequency distributions and their respective cumulative frequency distributions (after Sokal and Rohlf, 1969).

EXAMPLE 3 Graphical Test for Normality

Problem:

Graphically test the populations presented in Table 3 for normality of their frequency distribution.

Solution:

(a) Prepare a frequency distribution and cumulative frequency distribution for (1) specific conductance and (2) fecal coliform.

SPECIFIC CONDUCTANCE

==========		==========		=======================================
LOWER LIMIT		FREQUENCY (f)	CUMULATIVE FREQUENCY (F)	CUMULATIVE PERCENT FREQUENCY (% F) 2/
50.5	55.5	1	1	1
55.5	60.5	3	4	4
60.5	65.5	5	9	9
65.5	70.5	9	18	18
70.5	75.5	14	32	32
75.5	80.5	15	47	47
80.5	85.5	16	63	63
85.5	90.5	15	78	78
90.5	95.5	10	88	88
95.5	100.5	6	94	94
100.5	105.5	3	97	97
105.5	110.5	2	99	99
110.5	115.5	1	100	100

- 1/ Steel and Torrie (1960) suggest some guidelines for determining the size of the class interval: A rule of use in determining the size of the class interval when high precision is required in calculations made from the resulting frequency table is to make the interval not greater than one-quarter of the standard deviation. If this rule is strictly adhered to, the data are sometimes not sufficiently summarized for graphical presentation. If the size of the class interval is increased to one-third to one-half of a standard deviation, the resulting frequency table will usually be a sufficient summary for graphical presentation and adequate for most data; the lack of precision in any statistics calculated from the table will be small enough to be ignored.
- 2/ Take care to note that since 100 observations are contained in the example population, the cumulative frequency (f) and cumulative percent frequency (% F) columns are identical. However, in the case where the cumulative frequency (F) is not equal to 100, the cumulative percent frequency (% F) is determined by dividing the observations in each class interval (f) by the total number of observations in the sample.

FECAL COLIFORM

CLASS IN LOWER LIMIT (counts)	UPPER LIMIT	FREQUENCY (%)	CUMULATIVE FREQUENCY (F)	CUMULATIVE PERCENT FREQUENCY (% F)
6.5	10.5	5	5	5
10.5 14.5	14.5 18.5	15 21	20 41	20 41
18.5	22.5	17	58	58
22.5	26.5	14	72	72
26.5	30.5	11	83	83
30.5	34.5	5	88	88
34.5	38.5	2	90	90
38.5	42.5	1	91	91
42.5	46.5	3	94	94
46.5	50.5	1	95	95
50.5	54.5	1	96	96
54.5	58.5	0	96	96
58.5	62.5	2	98	98
62.5	66.5	0	98	98
66.5	70.5	1	99	99
70.5	74.5	0	99	99
74.5	78.5	1	100	100

(b) Graph the cumulative % F versus class interval (Figure 4) for specific conductance and fecal coliform on normal probability paper. Fit a

straight line to each data set giving weight to those points occurring between cumulative frequencies of 25% to 75%.

(c) The specific conductance data follow the straight pretty well, strongly suggesting a normal distribution, while the trend of the fecal coliform population suggests that it is skewed to the right (Figure 4). A plot of the actual frequency distribution is included for your reference (Figure 5 and 6).

Figure 5. Frequency diagram for the conductivity data from Table 3. Note that the lines connecting the plot points have been added to the SPSS plot. Frequency diagram for the conductivity data from Table 3.

Figure 6. Frequency plot of the fecal coniform data from Table 3. Note that the lines connecting the plot points have been added to the SPSS plot.

The Shapiro-Wilk and Kolmogorov tests for goodness of fit are both computational procedures which allow us to compare an observed frequency distribution with the expected normal frequency distribution. The Shapiro-Wilk test (Shapiro and Wilk, 1965) should be used when the number of observations is less than or equal to 50 while the Kolmogorov-Smirnov test (Stephens, 1974) should be applied when the number of observations is greater than 50.

The Shapiro-Wilk test produces a W-statistic. The null hypothesis (no difference between the observed and the expected normal frequency distribution) is rejected (see Section 7.0) for small values of W. The Kolmogorov-Smirnov test yields a D-statistic. The null hypothesis, in this case, is rejected for large values of D.

Since both of these procedures are rather involved, the computational steps are not outlined here. Both methods are readily accessible through SAS and the Kolmogorov-Smirnov D-statistic in SPSS. These are illustrated in Examples 4a and 4b.

EXAMPLE 4a Kolmogorov-Smirnov Test for Normality

.....

Problem:

Use the UNIVARIATE procedure from SAS (1979), which applies the Kolmogorov-Smirnov test when n > 50, to test the specific conductance and fecal coliform populations presented in Table 3 for normality.

Solution:

The SAS output for this example is presented in Tables 8 and 9. The Kolmogorov-Smirnov test for normality results in a D-statistic (bottom of column 1 in the upper left portion of the output) and the probability of a larger D (bottom of column 2 in the upper left portion of the output). The PROB > D ranges from 0 to 1 which is the likelihood of obtaining a D value greater than the one printed. In other words, as long as PROB > D is equal to or greater than 0.95 we can readily accept the hypothesis that the observed distribution is no different from a normal distribution. In the case of the specific conductance data (Table 8) we would accept it as normally distributed since PROB > D = 1 while in the case of the fecal coliform data (Table 9) we would reject it as being normally distributed (PROB > D = 0.0256269). If we accept the fecal coliform data as normally distributed there is a 97.4% chance we have made the wrong decision.

14155 MONDAY. MARCH 24. 1980 - - 1 5 1. 4 1 4 5 1 1 C A 1 A N. A L Y S 1 S ... S Y-5-T E-M--

INIVARIATE

	HIGHEST 103 107 107 111			:
FXTRFMES		• •		PERCENTS 1.0 89.0 1.0 92.0 1.0 95.0 1.0 95.0 1.0 95.0 1.0 95.0
FXTF	LOWFST 51 56 56 56 59 611	* *	+5	CELL C
:	3			COLINI
		NORMAL PROBABILITY PLOT		2000 0000 0000 0000 0000 0000 0000 000
	008 97 97 56 61 51	ROBARIL	6+	
	101 101 97 66 61 51	MAL PR		NIS CCUM 551.0 551.0 757.0 775
	No. 16 16 16 16	NOR		PERCFNTS SELL CU Sen 59 120 61 120 61 130 61 130 73 130 76 130 76 130 76 130 86
E5-	9008 1008 188 188			# 10 01 01 4 10 10 10 10 10 10 10 10 10 10 10 10 10
OUANT ILES	274 774 511	•	-2	P # # # # # # # # # # # # # # # # # # #
0		901		V TAB
	A CHO	÷		S S S S S S S S S S S S S S S S S S S
1	75% 03 75% 03 50%-MFB 25% 01 0% MIN PANGE	HOYEL 01		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1		0H		7.000 44 - W 4 W 7
	100 969 319 001 001	11 11 12 12 12 12 12 12 12 12 12 12 12 1		E00MM
,	145.969 -0.120319 14450.9 1.20818	9 A B B B B B B B B B B B B B B B B B B	10	VALUE CO 70 71 72 73 74 74 75 76 76 76 78 78 78 78 78 78 78 78 78 78 78 78 78
	TAN SEE	6667778 8889999	10**	
	SUM WG1S SUM VARIANCE KURTOSIS CSS STD MEAN PRQREIT	9 445566 577888	AF BY	CC 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
-MOMENTS	33773332	Lf AF 1 0013578 00112223344556789 0122233444555567788889999 11274567788889999	MULTIPLY STFM.LEAF BY 10**+01	PFRCENIS CFL CLI 1.0 3.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1
	100 12.0818 0.0417951 679165 14.8188 0.42124	LF AF 1 10013578 0012223344556 01222334444551 129456778899	IPLY S	
	0.040		MUL T	UE CONINT 556 559 655 665 666 7
:	MEAN SID DEV SKFWNFSS SS CV TIMFAN=D	7 1 1 1 1 1 1 1 2 2 3 3 4 5 5 5 5 5 7 5 7 5 7 7 7 7 7 7 7 7 7 7		VALUE 55 50 63 64 65 65 66 66

SAS output for the specific conductance portion of Example 4a. Table 8.

--- 14155 MONDAY, MARCH 24, 1980 5 1 A T-1 S 1 1 C A 1, --- A - N - A - L Y S 1 S --- S Y - S - T E- H---

UNIVAPIATE

···· FXTRFMES	LOWEST HIGHEST 54 9 61 10 67 75 10 75	•		PERCFNTS
	101	TY PLOT	* + + + + + + + + + + + + + + + + + + +	
	66,9999 49 49 38 12 10	NORMAL-PROBABILITY PLUT		ENTS
ES	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		# 6 # 1 # Cu	PERC
OUANTILES	27027	+04	c	
	100% MAX 75% 03 50% MFB 75% 01 0% UIN	10.ldx0.u	43 # +	PERCENTS
	5 100 2355 5 4.1614 N 1.2546 N 1.2546 1 0.0246249		001122378 0011122333344445556667777788999 001112223333444455556666777777889999 769 	
S	SUM MGTS SUM VARIANGE KURTOSIS CSS STO MEAN PROBALII		34445556 44555556 +	5 12
NOMENTS	100 23.55 12.546 1.87556 11043 53.771 13.77602		0.1122378 0.00111222333344445556667777788988 0.0111222333344445555666667777788988 769 multiply Stfwleaf-RY-10**01	PERCENTS
	MEAN STD DEV SKI PINESS SS CV TISHEANED	STFH LEAF 1 5 6 17 5 43	482-5	

PERCFNTS	VI CFLL CUM		1 1.0 93.0	1 .1.094.0	1 1.0 95.0	1-1.0.96.0	1 1.0 97.0	-11.009R.0	1 1.0 99.0	1 .1.0 .100.0	
	VALUE COUNT	44	45	95	67	24	59	14	24	22	
GENTS -	CELL CUM	75.0	78.0		83.n	65.0	0.70	RA.0	0.68	0.06-	0.10
PER		- 1		- 1		- 1		- 1		- 7	
	HE COUNT	57	2A 3	£62	30 2	31	32 2	33	37 1	38-1	1
PERCENTS.	UNT CELL CIIM	- E 5 0 34 0	5 5.0 41.0	- 5 .0 . 44 .0	4 4.0 50.0	4.0. 54.0	4.0 5A.0	4.0 -62.0	4 4.0 66.0	7 . 3.0 . KO. n	0 CL 0 1 C
	VALUE CO	11	18		90					52	
PFRCENTS	CFI L CUM	1.0 1.0 0	1.0 2.0	100-300-	7.0 5.0	- 3.0 - A.0 -	3.0 11.0	4.0-15.0-	5°0 20°0	5.0 25.0	6.0 31.0
	TALLOS COUNT		£		10 2	-E	12 3	134-	14 5	ۍ	10

SAS output for the fecal coliform portion of Example 4a. Table 9.

EXAMPLE 4b Shapiro-Wilk Test for Normality

................

Problem:

Use the UNIVARIATE procedure from SAS (1979) which applies the Shapiro-Wilk test when n \leq 50, to test the specific conductance and fecal coliform samples used in Example 1 for normality.

Solution:

The SAS output for this example is presented in Tables 10 and 11. The procedure produces the Shapiro-Wilk W-statistic and the probability of a smaller W (located in the upper left of the output at the bottom of columns 1 and 2). The PROB < W ranges from 0 to 1 which is the likelihood of obtaining a W value less than the one calculated. As long as the PROB < W is 0.95 or greater we can readily accept the hypothesis that the sample has been obtained from a population which is normally distributed. In the case of the specific conductance sample, we accept it as coming from a normally distributed population since PROB < W = 0.95. The fecal coliform sample, on the other hand, has a PROB < W = 0.01 which results in the rejection of the hypothesis that it was obtained from a normally distributed population.

STATUSEICAL

,	
1	
i	
ŧ	
Ì	
1	
t	
1	
15	
*	
<u> </u>	
≪ .	
IVA	
UNIVA	
INIVA	
INIVA	
INIVA	
NAIVA	
AVIVI	
AVINI	
NATA	
AVIVA	
NAINI	
INIVA	
AVINI	

EXTREMES	99% 99,65 - LOWFST HIGHEST 95% 94,25 65 84,25 90% 91 73 84,25 90% 94,25 90%	NORMAL PROBABILITY PLOT	2+ [+	PERCFNTS CELL. GUM 6,7 73,3 101 1 6,7 100.0 6,7 86,7
OUANTILES	754 73 84.5 504- MFU 80.5 759 01 76.25 09 MIN 65 03-01	100+	- 5-	PERCENTS CELL CIM 6.7 40.0 6.7 44.7 6.7 44.7 6.7 57.3
	15 1224 CE 74.9714 15 1.01194 1049.6 AN 7.27364 TI - 0.0001	# ROXPLOT	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PFR PR COUNT CELL 76 76 1 6.7
MOHENTS	15 SIIM WGTS 18 SIIM WGTS 18 SIIM MGTS 18 SIIM MGTS 18 SIIM MGTS 18 SIIM MGTS MG	STEM LEAF 10 1 9 02 8 013346	HULTIPLY SIEM.IEAF BY IN**+01	OFRCENTS VALUE COUNT CF11 CHH 65 1 6.7 6.7 73 1 6.7 13.3
	MEAN STD OF V SKEWNESS SS CV T BMF AN= II W BNORMAL			VAL

Table 10. SAS output for the specific conductance portion of Example 4b.

13133 MONDAY, MARCH 24, 1980

SYSTEM

ANALYSIS

STATISTICAL

UNIVAPIATE

FXTRFMES

LOWFST

HIGHEST

2A,5-13.5 34

908 108 58

ال. ب 37

RANIGE 03-01 MONF --

0.0

POXPLOT

+--+ ******

MILTIPLY SIEM, LEAF -- BY -- 10**+01

2 0233489

958

23.25 19-5 16.75

LOUS MAX

GUG MFU 71× 30

77 44095 6.14815

VARIANCE KURTOSIS SUP WGTS

22.1337 FEE1.337 H.79827 P.1673A R412

MUMFNTS

VAPTAREF FG.

10A3.73 2.2717 0.000

CSS STD MEAN PROBALL PPOB < W

39.7512

I SMF AN=0 WILLINDMAL

SKF WNFSS SS

SIU NFV ME AN

12196151

75% 03 25% D1

OUANT ILES

74552

24603

.... NORMAL PROBABILITY PLOT

7

2

-10+

- FREDUENCY TARLE -

SE -40 E 0-46.7 54.3 60.0

CE.L.

COHINT

VAI UE 1 19

S S -6.67 13.3

CELL

VALUE COUNT

15

PERGENTS

-6-7

37,3

PERCENTS-

+

-73.3-SCUM CUM CUM 80.0 PERCENTS 13.3

CFLL CUM 6.7 100.0

VALUE COUNT

64

PERCFNTS

93,3 86.7 VALUE COUNT

2260

SAS output for the fecal coliform portion of Example 4b.

Table 11.

40

STEM LEAF

5

5.1.4 Transformations

Now that we know how to test our data for normality, the question arises, "What do we do if our data are not normally distributed?"

Basically, there are three options available: (1) determine what theoretical frequency distribution it follows, such as the binomial or the Poisson, and proceed accordingly; or (2) use nonparametric statistical methods; or (3) transform the data.

We suggest you apply a data transformation first unless you have strong reason to believe the data follow another theoretical frequency distribution. In general, a log (X) transformation will normalize a water quality data set composed of continuous or measured data. This is especially true if the data are skewed to the right. In the case where zero values are present, then the transformation to use is $\log (X + 1)$. This avoids the problem of taking the log of zero. There are other transformations available; however, the $\log (X)$ or $\log (X + 1)$ will generally correct your problem of nonnormality. If it does not, then we suggest you consult a statistician before proceeding with your analysis. Example 5 illustrates the use of the $\log (X)$ transformation.

EXAMPLE 5 Log (X) Transformation

Problem:

Transform the fecal coliform data contained in Table 3 by log (X) and test it for normality, using SAS (1979) or SPSS (1975).

Solution:

1. Transform each FC_i in Table 3 to log (FC_i).

===	:=======	========	=========		=======================================
FC	Log (FC)	FC Log (FC)	FC Log (FC)	FC Log (FC)	FC Log (FC)
7 8 9 10 10 11 11 12 12 12 13	0.8451 0.9031 0.9542 1.0000 1.0414 1.0414 1.0792 1.0792 1.0792 1.1139	FC Log (FC) 15 1.1761 15 1.1761 15 1.1761 15 1.1761 16 1.2041 16 1.2041 16 1.2041 16 1.2041 16 1.2041 16 1.2041 17 1.2304	FC Log (FC) 18 1.2553 19 1.2798 19 1.2798 19 1.2798 19 1.2798 19 1.2798 20 1.3010 20 1.3010 20 1.3010 21 1.3222 21 1.3222	FC Log (FC) 23 1.3617 24 1.3802 24 1.3802 24 1.3802 24 1.3802 25 1.3979 25 1.3979 25 1.3979 26 1.3979 26 1.4150 26 1.4150	FC Log (FC) 29 1.4624 30 1.4771 31 1.4914 31 1.4914 32 1.5051 32 1.5051 33 1.5185 37 1.5682 38 1.5798 40 1.6021 44 1.6435
13 13 13 14 14 14 14 14	1.1139 1.1139 1.1139 1.1461 1.1461 1.1461 1.1461	17 1.2304 17 1.2304 17 1.2304 17 1.2304 17 1.2304 18 1.2553 18 1.2553 18 1.2553	21 1.3222 21 1.3222 22 1.3424 22 1.3424 22 1.3424 22 1.3424 23 1.3617 23 1.3617	27 1.4314 27 1.4314 27 1.4314 28 1.4472 28 1.4472 28 1.4472 29 1.4624 29 1.4624	45 1.6532 46 1.6628 49 1.6902 54 1.7324 59 1.7709 61 1.7853 67 1.8261 75 1.8751

2. The UNIVARIATE procedure from SAS (1979) was used to test the transformed data for normality. If SPSS (1975) was selected, the NPAR TESTS subprogram would have been applied. The SAS output is presented in Table 12. Since the PROB > D = 1, we accept the hypothesis that the data come from a population following a normal distribution.

It should be noted that prior to the log (X) transformation, the fecal coliform population was not normally distributed (Example 4a). However, the transformation made it conform to the normal frequency distribution. This will generally occur when the data are moderately skewed, as in this example problem.

10147 WENNESDAY. MARCH 26, 1980 SYSTEM ANALYSIS SIAIISTICAL

	EXTREMES	ST HIGHEST 98 1.77239 09 1.77085 42 1.78533 1 1.87506	PERCFNTS CELL CUM 1.0 92.0 1.0 94.0 1.0 95.0 1.0 95.0 1.0 96.0 1.0 99.0 1.0 99.0	
		LOWEST 0.845098 0.954242 0.954242		
			S	
		1.6902 1.6902 1.57978 1.07918 1 0.845098	75 CENT	0.16 0.
:	QUANTILES	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	+ * I I E E E C C C C C C C C C C C C C C C	-
IINIVARIATE	QUAN	1.87506 1.43136 1.30103 1.17609 0.845096 0.255272	آ ق	1.60206
		100% 44A 75% 03 50% MED 25% 01 0% MIN RANGE 03-01 MODE	N	0.2/ 0.
		85.22.25	HINT C C 2 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6	7
		137.325 137.325 0.33874 0.020060	1222244446666 123045 123045 127875 137945 13794 13671 13673 13671	1 . 4 I 4 . I
	NTS	SUM WGTS SUM VARIANCE KURTOSIS CSS STD MEAN PROB> IEI	55666889911278 3665588888000 115555588888 115555588888 1150 150 150 150 250 3.0 11.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	31.0
9	MOMF NTS	100 1.32325 0.290608 0.398642 179.084 15.1602 65.962	COUNT	200
VARJAHLF LF		MEAN STO DEV SKEWNFSS SS CV TIMEAN=0	18 14 14 16 16 16 16 16 16 16 16 16 16 16 16 16	1 + 0.0 • 1

SAS output for Example 5. Table 12.

5.2 Student's t-Distribution

The student's t-distribution was introduced by William Gosset who wrote several statistical papers under the pseudonym of "Student." This distribution was developed for problems involving the sample mean when the population variance is not known and the sample size is small (n < 30). With this distribution, we can make statistical statements about the population mean using only the sample variance and the sample mean.

If our sample has been <u>randomly drawn</u> from a <u>normal</u> population with mean μ and variance σ , then the statistic

$$t = \frac{\overline{X} - \mu}{s_{\overline{X}}} \tag{6}$$

is distributed as the student's t-distribution with "n-1" degrees of freedom. $s_{\overline{\chi}}$ denotes the standard error of the mean. A reliable estimate of the standard error of the mean is obtained by:

$$s_{\overline{X}} = \sqrt{\frac{s^2}{n}} = \sqrt{\frac{\sum (X_i - \overline{X})^2/n - 1}{n}}$$

The theoretical t-distribution is similar to the normal distribution in that it extends from negative to positive infinitely but differs in shape depending on the number of degrees of freedom (ν). As the number of observations approaches infinity, the student's t-distribution approaches the normal distribution with mean 0 and variance 1.

Table A-2 lists the percent of the area in both tails of the curve using degrees of freedom (ν) and probability (α) as arguments. It is important that you remember this is a <u>two-tailed table</u>. Consequently, a probability of 0.05 means that 0.025 of the area is in each tail. For a single-tail test, you need to halve the probability argument prior to entering Table A-2. Values of t are commonly denoted as t_{α} (ν) = area;

for example, the t-value of α = 0.05 and ν = 8 is t.05(8) = 2.306. It is very important that you understand how to use Table A-2 since you will use it often.

5.3 The Chi-square Distribution

The chi-square distribution has application for problems involving the sample variance. If a sample is <u>randomly drawn</u> from a <u>normal</u> population with mean μ and variance σ , then the statistic

$$\chi^{2} = \frac{\Sigma(X_{i} - \bar{X})^{2}}{\sigma^{2}} = \frac{(n-1)s^{2}}{\sigma^{2}}$$
 (7)

follows the chi-squared distribution with "n-1" degrees of freedom. It should be apparent from Equation 7 that there is a relation between χ^2 and s^2 , which is similar to the relation between t and X just discussed.

The chi-square distribution is similar to the t-distribution in that for each number of degrees of freedom, there is a specific chi-square curve. However, unlike the normal and t-distributions, the chi-square cannot be negative since it involves the square of the sum of squares.

In general, only a few values for each of the many chi-square curves are tabulated. Table A-3 presents chi-square values for given probability levels and degrees of freedom. The table is designed so that we can determine the likelihood that a calculated x_s^2 will exceed the theoretical x_s^2 in other words

$$P(\chi_s^2 > \chi_\alpha^2) = \alpha$$

5.4 The F Distribution

The chi-square distribution allows us to test various statements concerning a single variance. However, if we want to test statements concerning the variances of two populations, we must use the F statistic.

It is given by the formula

$$F = \frac{S_1^2}{S_2^2} \tag{8}$$

and has a sampling distribution called the F distribution. There are two sample variances involved, s_1^2 and s_2^2 representing the variances of populations 1 and 2, respectively. Associated with each variance is its degrees of freedom, v_1 (n_1 -1) for the numerator and v_2 (n_2 -1) for the denominator. Appendix Table A-4 gives critical values of F. The table is entered with three values, α, v_1 , and v_2 . Critical F values are commonly denoted by $F_{\alpha(v_1,v_2)}$. The percentages listed in the table refer to the proportion of the area under the curves to the <u>right</u> of the values given in the tables. For example, for $F_{\cdot,01(10,12)} = 4.30$, one percent of the area is to the right of 4.30.

6.0 Confidence Limits About the Sample Mean

When we estimate a population parameter with a sample statistic, such as μ with \overline{X} , we should ask: "How reliable is our estimate?" Since the real values of the population parameters in our various water quality studies will always remain unknown to us, we cannot evaluate our estimate with a direct comparison. However, with the statistical methods we now have available to us, we can predict the reliability of our estimate by setting a confidence interval about it.

A confidence interval consists of two <u>confidence limits</u> which set an upper (U) and lower (L) bound to the interval. The level of confidence is expressed as a probability (P) or percent and indicates the likelihood that the interval obtained from a particular sample brackets the true parameter value (P'). This concept can be expressed as

$$P(L \leq P' \leq U) = 1 - \alpha$$

where α denotes the level of reliability. In other words, there is a 1- α chance that the sample is representative of the population and that the confidence interval covers the population parameter.

Confidence limits for the sample statistics X and S^2 are determined using the t and X distributions. Confidence limits for a mean of a normally distributed population whose standard deviation is not known can be determined from a random sample using the equations:

(9)

and

$$L = \bar{X} - t_{\alpha(n-1)} s_{\bar{X}}$$

$$U = \bar{X} + t_{\alpha(n-1)} s_{\bar{X}}$$
(10)

An application of setting confidence limits is illustrated in Example 6.

EXAMPLE 6 Setting Confidence Limits for the Population Mean

Problem:

Twenty-one water samples were collected in a random manner at the mouth of Gypsum Creek and analyzed for total dissolved solids (TDS). The data were tested and found to be normally distributed with a mean TDS of 517 mg/l and a standard deviation of 67 mg/l. Determine the 95% and 99% confidence limits for the population mean, μ .

Solution:

Case I. Determination of the 95% confidence interval about the mean.

a. Lower Limit

$$L \, = \, \bar{X} - t_{.05(n-1)} \, \frac{s}{\sqrt{n}}$$

$$L = \bar{X} - t_{.05(20)} \frac{s}{\sqrt{n}}$$

$$L = 517 - 2.086 \left(\frac{67}{\sqrt{21}}\right) = 517 - 30.5$$

 $L = 486.5 \,\text{mg/l}$

b. Upper Limit

$$U = \bar{X} + t_{.05(n-1)} \frac{s}{\sqrt{n}}$$

$$U = 517 + 30.5$$

 $U = 547.5 \,\text{mg/l}$

Conclusion: There is a 95% chance that the population mean, μ , will be covered by the interval 486.5 to 547.5 mg/l.

Case II: Determine the 99% confidence interval about the mean.

a. Lower Limit

$$L = \bar{X} - t_{.01(n-1)} \frac{s}{\sqrt{n}}$$

$$L = 517 - 2.845 \left(\frac{67}{\sqrt{21}} \right) = 517 - 41.6$$

$$L = 475.4 \, \text{mg/l}$$

Upper Limit b.

$$U = \bar{X} + t_{.01(n-1)} \frac{s}{\sqrt{n}}$$

$$U = 517 + 41.6$$

 $U = 558.6 \,\text{mg/l}$

There is a 99% chance that the interval 475.4 to 558.6 mg/l will cover the population mean. Note that the 99% confidence interval is larger than the 95% one. Conclusion:

7.0 Hypothesis Testing

Hypothesis testing plays an integral role in statistical decision-making. A statistical hypothesis is simply a statement made about the expected results of a study, such as $\mu = \mu_0$, or $\mu_1 < \mu_2$. The fundamental hypothesis is the <u>null hypothesis</u>, denoted by H₀. In some cases, the null hypothesis is one of no difference. In others, it states that a given parameter does not exceed some standard or other value. In practice, we may seriously doubt the truth of H₀ from the moment it is proposed. However, its purpose is to give us a starting point from which we can calculate a meaningful test statistic and come to an objective decision.

Any hypothesis that differs from the null hypothesis is called an alternate hypothesis, denoted by ${\rm H}_a$.

Once we have established our hypotheses, H_0 and H_a , we proceed to sample the population in question. These data are then analyzed statistically and a decision is made to either accept or reject the H_0 . Unfortunately, there is no guarantee that our decision will be correct. In fact, there are two mistakes possible: (1) if the stated hypothesis is true, we might erroneously call it false (Type I error) and (2) if the stated hypothesis is false, we might erroneously call it true (Type II error). Our decision to accept or reject a hypothesis will be based on two factors: (1) the information we obtain from our sample and (2) the risk that we are willing to take that our decision may be wrong.

The Type I error is generally expressed as a <u>probability</u> and is denoted by " α ". When it is expressed as a percentage, it is termed <u>significance level</u>. Consequently, a Type I error of $\alpha = 0.05$ is equivalent to a significance level of 5%. The level of significance should be established prior to data collection with the following guidelines in mind.

If it is a matter of serious concern when a true hypothesis is rejected, such as evidence to shut down a logging operator, the risk of making this error, α , should be small. However, if it is important that the hypothesis be rejected when there is slight evidence against it, such as contamination of a public water supply, we should choose a larger α .

The concept of rejection or acceptance of the null hypothesis can best be illustrated with an example. Suppose we hypothesize that a body of water has a mean TDS concentration equal to or less than 80 mg/l. Therefore, H_0 : $\mu \le 80$ mg/l and H_a : $\mu > 80$ mg/l are the null and alternate hypotheses. We choose a significance level of 5% as the basis for rejection of H_0 . It is assumed that the TDS in the water body are normally distributed. A sample of 14 observations is collected from the water body in a random manner and found to have a mean of 89 mg/l and a variance of 36. The question now is do we accept or reject H_0 ? Before we can do this we need to determine the critical region. As we will see later, the critical point in this case is defined by \overline{X} + t.05(13)s which is equal to 83.5 (80 + 2.16 $\sqrt{36/14}$). The critical region is illustrated in Figure 7. Since 89 falls to the right of 82.6, we reject H_0 which means it is not very likely that the sample obtained came from a water body with a mean TDS of 80 mg/l.

When H_0 has been rejected at a given significance level, we say the sample is <u>significantly different</u>. The degree of statistical significance is a function of the probability level at which the difference is detected (Table 13).

The significant levels of 5, 1 and 0.1% are arbitrary. However, in the case of small samples (n < 30), it is not likely that H $_0$ will be rejected if these levels are required, unless a very large difference

Figure 7. Rejection and acceptance regions.

exists. If this is the case, a significance level of 10% may be more appropriate (Steel and Torrie, 1960). If the null hypothesis is not rejected, it is considered not significant and is denoted by "ns".

TABLE 13. Probability levels for various degrees of significant differences.

Probability Level	Degree of Significance	Superscript Notation 1/
.01 < p < .05	Significant	*
$.001$	Highly Significant	**
p < 0.001	Very Significant	***

 $[\]frac{1}{T}$ Superscript notation is commonly used with a test statistic to denote the degree of significance, such as t = 2.05** to denote a highly significant difference.

At this point, we would like to caution you about your use of the word "significant". Sokal and Rohlf (1969) summarize this point very well.

"Since statistical significance has special technical meaning, H_0 rejected at $P \leq \alpha$, we should use the adjective significant only in this sense; its use in scientific papers and reports, unless such a technical meaning is clearly implied, should be discouraged. For general descriptive purposes, synonyms such as important, meaningful, marked, noticeable, and others can serve to underscore differences and effects".

The Type II error, which is accepting the null hypothesis when it is false, is commonly denoted by β . The probability of a β error is determined by the choice of α and distance between μ_1 , and μ_2 , as illustrated in Figure 8. It is apparent that in the case of a fixed sample size, a reduction of α will be accompanied by an increase in β . Consequently, we need to consider very carefully the consequences of the different types of error when we choose a level of significance (Table 14).

Figure 8. The relationship between the Type I and Type II errors (after Steel and Torrie, 1960).

Table 14. Statistical decisions and their outcomes, with special reference to the type of error (after Steel and Torrie, 1960).

Data is from a	a population for which	Decision r	elative to		Probability
Null Hypothesis	Alternative hypothesis	H _o is	H _a is	Decision is 	should be
True True	False False	Accept Reject	Reject Accept	Right Wrong; Type	High Low
False False	True True	Accept Accept Reject	Reject Accept	I error Wrong; Type II error Right	 Low High

The basic steps for statistical hypothesis testing can be summarized as follows:

- 1. Establish H_0 and H_a .
- 2. Ideally, specify α and β . However, in practice α and β are generally specified.
- Determine the critical region for rejection of the null hypothesis.
- 4. Compute the test statistic from the observed values obtained through sampling.
- 5. Accept or reject the hypothesis depending on the position of the test statistic relative to the critical region.

8.0 <u>Testing for Homogeneity of the Variance</u>

Homogeneity, or equality, of variances in a group of samples is an important prerequisite for many of the statistical tests which follow. There are two basic procedures for testing equality of the variances: (1) when only two samples are involved we use the F test and (2) when there are more than two groups involved, Bartlett's test provides a means for evaluating the assumption. Examples 7a and 7b illustrate the computations involved in each of these procedures.

EXAMPLE 7a Testing for Homogeneity Between Two Variances

Problem:

For the data given below determine whether the two variances can be considered equal at a significance level of 5%.

Given:

Sampling Station	Constituent	<u>n</u>	<u>X</u>	_s ²
Α	TDS	12	68	8
В	TDS	11	54	34

Solution:

1. Establish the hypothesis to be tested.

$$H_0$$
: $\sigma_A^2 = \sigma_B^2$

$$H_a: \sigma_A^2 \neq \sigma_B^2$$

2. Select the significance level.

As stated in the problem, $\alpha = 0.05$

3. Use the test statistic $F_s = \frac{S_B^2}{S_A^2}$ to test the hypothesis.

$$F_s = \frac{S_B^2}{S_A^2} = \frac{34}{8} = 4.25$$

It should be noted here that since only the right tail of the F-distribution is tabulated in Table A-4, we calculate ${\sf F}_{\sf S}$ as the ratio of the greater variance over the lesser one.

4. Define the critical region.

Since the test is two-tailed, we look up the critical value F where $\frac{\alpha}{2}$ is the Type I error and $\nu_B=n_B-1$ and $\nu_A=n_A-1$ are the degrees of freedom of samples B and A, respectively. From Table A-4 we find

$$F_{0.025(10,11)} = 3.53$$

5. Reject or accept the null hypothesis.

Since F_S > F we reject the null hypothesis that the variances are equal at the 5% level of significance.

EXAMPLE 7b Bartlett's Test of Homogeneity of Variances

Problem:

For the data given below determine whether the variances can be considered equal at a significance level of 5%.

Given:

Sampling station	<u>n</u>	<u>s</u> 2	Corrected sum of of squares (SS)
A B C	8 15 9	54.1 65.3 78.9	378.7 914.2 631.2
D	12	69.7	766.7

Solution:

1. Establish the hypothesis to be tested.

$$H_o$$
: $\sigma_A^2 = \sigma_B^2 = \sigma_C^2 = \sigma_D^2$

$$H_a$$
: $\sigma_A^2 \neq \sigma_B^2 \neq \sigma_C^2 \neq \sigma_D^2$

2. Select the significance level.

From the problem statement, α = 0.05.

3. Transform the variances to log (s²) and compute $\Sigma((n_i-1)\log(s_i^2))$

Station	<u>log (s²)</u>	$(n-1) \log (s^2)$
A B C D	1.7332 1.8149 1.8971 1.8432	12.132 25.409 15.177 20.275
		$\Sigma = 72.993$

4. Sum the degrees of freedom, i.e. Σ (n_i - 1), and the corrected sum of squares.

$$\Sigma(n_i - 1) = 40$$

$$\Sigma(SS_i) = 2690.80$$

5. Determine the log of the pooled within-group variance, log (s^2) .

$$\log(\overline{s}^2) = \log \left[\frac{\Sigma SS_i}{\Sigma(n_i - 1)} \right] = \log \left[\frac{2690.8}{40} \right] = 1.8278$$

6. Determine $\chi^2_{(a-1)}$ d.f. where a is the sum of the number of stations or groups considered; in this example a = 4.

$$\chi_{s}^{2} = 2.3026 \left[\left((log(\bar{s}^{2})\Sigma(n_{i} - 1) \right) - \Sigma\left((n_{i} - 1) log(\bar{s}_{i}^{2}) \right) \right]$$

$$\chi_{\rm s}^2 = 2.3026 \left[1.8278(40) - 72.993 \right] = 0.27598$$

Note: 2.3026 transforms the common logarithms to natural logarithms.

$$\chi_s^2 = 0.27598$$

7. Define the critical region and accept or reject Ho.

The critical chi-square is defined as $\chi^2_{\alpha(a-1)}$, which in this example (from Table Λ -3) is

$$\chi^2_{.05(3)} = 7.815$$

Since $\chi_s^2 < \chi_{.05(3)}^2$ we do not reject H_0 .

Conclusion:

The data from stations A, B, C and D cannot be considered to have equal variances at the 5% level of significance.

It should be noted that the equation for x_s^2 is biased slightly upward. If x_s^2 is nonsignificant, the bias is not important. However, if the computed x_s^2 is just a little above the threshold value for significance, a correction (C) for the bias should be applied as follows:

$$\chi_{s'}^2 = \frac{\chi_s^2}{C}$$

where $\chi_{\rm s}^2$ is the corrected $\chi_{\rm s}^2$ for the bias and

$$C = \frac{3(a-1) + \left[\sum \left(\frac{1}{n_i - 1}\right) - \frac{1}{\sum (n_i - 1)}\right]}{3(a-1)}$$

The SAS(BMDP) examples described by Ingwersen (1981a) show how to obtain the Bartlett chi-square test statistic of equal variances using SAS.

9.0 <u>Comparison of Two Population Means or a Population Mean and a Constant</u>

In many instances, we need to determine if a population mean is significantly different from an established value, such as a fixed water quality standard, or whether two populations are significantly different in an above-versus-below or treatment-versus-control study. In this section, three distinct cases are reviewed: (1) comparison of the population mean and a constant when the variance is unknown, (2) comparison of the means from two populations when the variance is unknown and the data are unpaired and (3) comparison of the means from two populations when the variance is unknown and the data are paired. In each case, a brief description of the utility of the technique, the procedure used in testing the hypothesis and a water quality example are presented.

<u>Case I</u>. Comparison of the population mean and a constant when the variance is unknown.

This particular case should be applied in situations where we wish to compare the mean value of a water quality constituent at a given sampling site with a specified constant, such as a nonvariable water quality standard. It is assumed that the data were collected in a random manner from a normally distributed population. The procedure for testing the hypothesis is as follows:

1. Establish H_0 and H_a .

If we want to test that the population mean (μ) is equal to a specified constant (c), then Ho and Ha are:

$$H_0$$
: $\mu = C$

$$H_a$$
: $\mu \neq C$.

However, if we want to test that the population mean is not greater than the specified constant, then H_0 and H_a are:

 H_0 : $\mu \leq C$

 H_a : $\mu > c$.

- 2. Test the data for normality.
- 3. Select the significance level (α).
- 4. Compute the test statistic. $t_s = \frac{\bar{X} c}{s_{\bar{x}}}$.
- Define the critical t value, t_C . In the instance where we are testing H_0 : μ = c, the test is \underline{two} -tailed while for the situation where H_0 : $\mu \leq c$ the test is \underline{one} tailed.
- 6. Reject or accept the null hypothesis.

An illustration of Case I is presented in Example 8a.

EXAMPLE 8a Comparison of the Population Mean and a Constant When the Variance is Unknown

Problem:

Twenty suspended solids samples were collected at a sampling station over three months. The concentrations of SS were determined and are as follows: 16, 29, 75, 7, 15, 24, 26, 12, 10, 23, 49, 22, 13, 14, 18, 17, 19, 31, 27 and 14. Is there reason to believe, at the 5% level of significance, that the mean SS concentration is significantly different from 28 mg/l?

Solution:

In general, SS data is strongly skewed. To test the assumption of normality, the data was subjected to the Shapiro-Wilk test using the UNIVARIATE procedure from SAS (1979). The result was a PROB < W = 0.01. Consequently, the data was transformed using Log (X) and retested for normality. The result of the log (X) transformation was a PROB < W = 0.90. This was much better, but there is still a 10% chance of Type I error if we accept the sample as being from a normal population. However, since the sample is small, we decide to accept it coming from a normally distributed population and proceed with the problem at hand.

1. Establish H_0 and H_a .

$$H_o$$
: $\mu = \log (28)$

$$H_a$$
: $\mu \neq log (28)$

Select the significance level.

From the problem statement, $\alpha = 0.05$.

Compute the test statistic, t_s.

$$t_s = \frac{\bar{X} - c}{s_{\bar{v}}}$$

$$t_s = \frac{1.2962 - 1.4472}{0.2348/\sqrt{20}} = -2.8760$$

4. Define the critical region.

Using Table A-2 we find:

$$t < t.025(19)$$
; therefore $t < 2.093$

and

$$t > t.975(19)$$
; therefore $t > 2.093$

5. Reject or accept Ho.

> Since t_S lies to the left of -2.093 we do not accept the null hypothesis.

6. Conclusion.

> At the 5% level of significance, the mean SS concentration is significantly different from 28 mg/l.

This example problem can also be solved using either the MEANS (T,PRT) procedure from SAS (1979) or the T-TEST (PAIRS=) subprogram from SPSS (1975). The SPSS output for this problem is presented in Table 15. It should be noted that the mean values are in terms of log (X).

		1
		1
		- 1
		- 1
Λ.		8
		ı
PArif		- 1
2		6
		-
		0
A 0		8
4/0H/A0		- 1
/ 40		1
		ı
		1
		1
		-
		S
		Ù.
		+
		}-
		i
		8
	0	0
	A/A	
	6/1	1
	0	1
	w	0
	DAT	1
	N	1
SN	TI	0
MED	REA	1
O _A	(CREATION DATE = 04/08/80)	
⊢	ليا	1
0	AM	1
SOF	ON	0
CUMPARISON OF TWO MEANS	FILE NONAME	
OMP	ILE	
(1)	Sa.	-

CUMPARISON

PEON.	C 	0 0 1 1 1
PERPESSON 2-TAIL FUFFING PROFE	: : : : : :	
TVALHE	1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
* *	 * * * * *	0 0
* 2-TAIL * T DEGRES OF Z-TAIL * CORR. PROP. * VALIE FUFFING PENE	53 * * -1509 * 535 • 0.53 * 499.00.099.00.0 * + -1509 * * * 0.0 * * * * 0.0 * * * * * 0.0 * * * *	
STANDARD	. 153	
JFFERENCE) STAMDARD MEAN DEVIATION	. 235	
STANDARD *(DIFFERENCE) STANDARD FEROR	* * + - 1509	
STANDARD ERROR	. 053	
STAMDARD MEAN DEVIATION	. 235	
MEAN	1.2962	100000000000000000000000000000000000000
NUMBER OF CASES	LA 1.2962 .235 .0° .0° .1.4472 .000 .000 .0°	
VARIARLE	اد لا 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 15. SPSS output for Example 8a.

Case II: Comparison of the means from two populations when the variance is unknown and the data are unpaired.

In some water quality studies we want to know if two population means are statistically different. An example might be assessing the impact of a road when sampling above and below was performed or evaluating the effect of a treated watershed against a control watershed. In addition to the assumptions for Case I, it is assumed that the variances of both populations are equal, although unknown, and that the data are not paired. The procedure for testing the hypothesis is as follows:

- 1. Establish H_0 and H_a . H_o : $\mu_1 = \mu_2$ H_a : $\mu_1 \neq \mu_2$
- 2. Test the data for normalilty and homogeneity among variances.
- 3. Select the significance level (α) .
- 4. Compute the test statistic, t_S , to test the hypothesis where

$$t_s = \; \frac{\vec{d}}{s_{\vec{d}}} \,, \quad \vec{d} = \; \vec{X}_1 - \vec{X}_2 \,, \quad s_{\vec{d}} = \; \sqrt{s_w^2 \, \left(\frac{n_1 + \, n_2}{n_1 n_2}\right)} \label{eq:ts}$$

and s_{W} which is the weighted variance, is determined by

$$s_w^2 = \frac{s_1^2(n_1 - 1) + s_2^2(n_2 - 1)}{n_1 + n_2 - 2}$$

5. Determine the critical t value, t_c . This is a two-tailed test.

$$t_c = \pm t_{1/2\alpha(n_1 + n_2 - 2)}$$

6. Reject or accept the hypothesis.

An example of Case II is given in Example 8b.

EXAMPLE 8b

Comparison of the Means from Two Populations When the Population Variance is Unknown and the Data Unpaired

Problem:

Water temperature (°F) was measured at the mouths of two different tributaries, A and B, to Whitefish Creek during the summer of 1980. The data obtained are summarized below.

Station A: 66, 59, 74, 60, 62, 69, 78, 71, 52, 78, 44, 50, 64

Station B: 61, 69, 67, 63, 39, 80, 63, 78, 47, 67, 72, 80, 41, 52, 64, 66, 74, 65, 67, 62

Is there a significant difference, α = 0.05, between the population means of Stations A and B? It can be assumed that the populations are normally distributed and have equal variances.

Solution:

1. Establish H_0 and H_a .

 H_0 : $\mu_1 = \mu_2$

 H_a : $\mu_1 \neq \mu_2$

2. Select the significance level.

From the problem statement we know $\alpha = 0.05$.

3. Compute the test statistic, t_s .

First, compute \overline{X} and s for Stations A and B.

 $\bar{X}_A = 63.62$

 $s_A = 10.62$

 $\bar{X}_B = 63.85$

 $s_B = 11.54$

Now, determine t_S as follows:

$$t_s = \frac{\bar{d}}{s_{\bar{d}}}$$

$$\bar{d} = \bar{X}_A - \bar{X}_B$$

$$\bar{d} = 63.62 - 63.85 = -0.23$$

$$s_{\bar{d}} = \sqrt{s_w^2 \left(\frac{n_A + n_B}{n_A n_B}\right)}$$

$$s_w^2 = \frac{s_A^2(n_A - 1) + s_B^2(n_B - 1)}{n_A + n_B - 2}$$

$$s_w^2 = \frac{(10.62)^2 (12) + (11.54)^2 (19)}{31}$$

$$s_w^2 = 125.3$$

$$s_{\bar{d}} = \sqrt{125.3 \left(\frac{13 + 20}{13 \times 20}\right)}$$

$$t_s = \frac{-0.23}{3.988}$$

$$t_s = -0.058$$

4. Define the critical regions.

The critical regions for this example are defined by:

 $t_c < t.025(31)$

and

$$t_c > t(1 - 0.025)(31)$$

Therefore, the rejection regions are:

t < -2.042

and

t > 2.042

5. Reject or accept the null hypothesis.

Since t_S lies between the t values of -2.042 and 2.042 we do not reject the null hypothesis.

 $\underline{\text{Conclusion}}$: There is no difference between the mean water temperatures at the mouths of streams A and B at the 5% level of significance.

This example problem could also be solved using the T-TEST program from SAS (1979) or the T-TEST (GROUPS=) subprogram from SPSS (1975). The SPSS output for the solution of example problem is presented in Table 16.

COMPARISON OF TWO MEANS

(CREATION DATE = 04/14/80)

NONAME

FILE

8 1 8 1 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		<u>,</u>	14. 14.	1 - 1 - 5			8 8 8	1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
GROUP 2 - STATION EN	TION ED TION ED	2			*			⇒ *	200LE0	VAPTANCF ES	* 11/1/11	SFDAHAT	* POOLED VARIANCE ESTINATE * SFRANATE VAVIANCE ESTINATE	AL MATE
VARIABLE	NUMBER OF CASES	NE A M		STANDARD FRROR		F /ALUF	2-TAIL PROP.	* * *	T VALUE	POSTER OF	2-TAH # PRD4. #	1 V A L HF	* F 2-TAIL & T DEGHEFS OF 2-TAIL & T DEGUFFS OF 2-TAIL * VALUE PROPE & VALUE PROPE * VALUE CALITION FOOM.	2-1 A FL PEOR.
SS GROUP 1 20 63.4500 11.54]	20	63.8500		2.5A]	 * * *				0 0 0 5 0	0 0 0 0 0 0 0 0 7			•	8 C 8 S 1
6หกุบР 2	13	63.6154	10.619	2.945	* * *	-	61.1	* * *		16		.		
· · · · · · · · · · · · · · · · · · ·	P	5 5 8 8 8 8 8				5 5 5 7			1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

Table 16. SPSS output for Example 8b.

Case III: Comparisons of the means from two populations when the variance is unknown and the data are paired.

In some instances, extraneous factors which have no direct relation to the effect we are attempting to measure can cause significant difference between the means. We can overcome this problem somewhat by designing our sampling program so that observations are collected in pairs, i.e. when a sample is collected at Station A, one is also collected at Station B. In this type of a study, we are striving to obtain a pair of observations that are alike in all respects except the one we are trying to measure. This method has the same underlying assumptions as Case II, with the exception of equal variances for each population. In other words, with this method we need not assume the two population variances are equal. The procedure for testing the hypothesis is as follows:

1. Establish H_0 and H_a .

$$H_0: \mu_1 = \mu_2$$

$$H_a: \mu_1 \neq \mu_2$$

- Test the data for normality.
- 3. Select the significance level (α).
- 4. Use the statistic, t_s , to test the hypothesis:

$$t_s = \frac{\bar{d}}{s_{\bar{d}}/\sqrt{n}}$$

where

$$\vec{d} = \vec{X}_1 - \vec{X}_2$$

and $s_{\overline{d}}$ is the standard deviation of the differences.

5. Determine the critical t value, t_c . This is a two tailed test.

$$t_c = \pm t_{(\alpha/2)(n-1)}$$

6. Compute the value of the test statistic, t_{S} , and accept or reject the hypothesis.

An example of Case III is presented in Example 8c.

EXAMPLE 8c

Comparison of the Means from Two Populations When the Population Variance is Unknown and the Data Paired

Problem:

Water samples were collected in pairs above (A) and below (B) a clearcut in western Oregon. The samples were analyzed for dissolved oxygen concentration in the field. The results are tabulated below. Determine if there is a significant difference (α = 0.05) in the mean dissolved oxygen concentration above and below the clearcut. It can be assumed that both populations are normally distributed.

Dissolved Station A	0xygen	Concentration (mg/l) Station B	D <u>i</u> fference d = A - B
6.2 6.5 6.8 7.0 6.9 7.0 6.8 6.7 6.8		5.2 5.4 5.3 5.7 5.6 6.2 5.7 5.6 5.8	$ \begin{array}{c} 1.0 \\ 1.1 \\ 1.5 \\ 1.3 \\ 1.3 \\ 0.8 \\ 1.1 \\ 1.1 \\ 1.0 \\ 0.6 \\ \underline{d} = 10.08 \\ \underline{d} = 1.08 \end{array} $
			$s_d = 0.257$

Solution:

1. Establish H_0 and H_a .

$$H_o$$
: $\mu_A = \mu_B$

$$H_a$$
: $\mu_A \neq \mu_B$

2. Select the significance levels.

From the problem statement we know $\alpha = 0.05$.

3. Compute the test statistic, t_s.

$$t_s = \frac{\bar{d}}{s_{\bar{d}}/\sqrt{n}}$$

$$t_s = \frac{1.008}{0.257/\sqrt{10}}$$

$$t_s = 12.40$$

4. Define the critical regions

 $t_{c} < t.025(9)$

and

 $t_c > t.975(9)$

Therefore, the rejection regions are:

t < -2.262

and

t > 2.262

5. Reject or accept the null hypothesis.

Since t_S is greater than 2.262, the null hypothesis is rejected.

Conclusion: The dissolved oxygen concentration is significantly different above and below the clearcut at the 5% level.

This example problem can also be solved using the MEANS(T,PRT) procedure from SAS (1979) or the T-TEST (PAIRS=) subprogram from SPSS (1975). The SPSS output for the solution of this example is presented in Table 17.

~

. . .

DEGREES OF 2-TAIL FREEDOM PROB. * CORR. PROB. * VALUE 13,27 .603 .065 # 0 STANDARD O B .081 . * (DIFFERENCE) STANDARD
* MEAN DEVIATION ,257 - T - T E S T 1.0800 STANDARD ERROR *60* .089 (CREATION DATE = 03/31/80) STANDARD MEAN DEVIATION •296 .281 0069.9 5.6100 COMPARISON OF TWO MEANS NUMBER OF CASES 10 NONAME VARIABLE FILE 00

0000

0

SPSS output for Example 8c. Table 17.

10.0 Analysis of Variance

10.1 Introduction

Analysis of variance, commonly abbreviated "anova," is a statistical method with which we can test whether two or more sample means are significantly different. This section begins with a discussion of the assumptions underlying the anova tests. Emphasis has been placed on what these assumptions mean and how violations of them affect the validity of the probability statements resulting from the anova tests. This is followed by a discussion, with examples, of several of the more commonly used anova tests: the one-way anova; the two-level nested anova; and the two-way anova. In addition, methods for evaluating the difference between means is also covered.

10.2 Assumptions Underlying Analysis of Variance

There are several assumptions underlying the anova tests. Violations of one or more of these assumptions can affect both the level of significance and sensitivity of the test.

a. Random Sampling

It is assumed that the observations were obtained by random sampling. If our sampling procedure is biased, such as always collecting samples from riffles when we are interested in the substrate composition of an entire stream bed, we are likely to have problems meeting the other assumptions that follow here. If the other assumptions hold, the lack of random sampling will probably have little effect on the level of significance and sensitivity of the anova test. However, the chances of the other assumptions being valid when random sampling was not used are not very good. Consequently, as a precautionary measure, we should consider the

concept of random sampling very carefully when we design our monitoring program.

b. Independence

It is assumed that the error terms for each variate are independently and identically distributed. If the error terms are not independent, the validity of the usual F-test of significance can be seriously impaired (Sokal and Rohlf, 1969). In general, if the samples were collected in a random manner, there should be no problem with independence of the error terms. If lack of independence is suspected, such as when evaluating spatial distribution of macroinvertebrates in a stream channel, it can be tested using the "Runs" test (Sokal and Rohlf, 1969). If the errors are not independent, there is no simple way to correct the problem short of redesigning the study.

c. Homogeneity of Variances

The assumption of homogeneity of variances is very important in the anova test because each sample variance is considered to be an estimate of the same parametric error variance. You are likely to encounter the problem of nonhomogeneity of variances when the means of one or two groups are much larger than the others, such as mean $S0\frac{\pi}{4}$ concentration in a lake draining an area underlain by granitics as opposed to one draining an area high in gypsum.

Two methods you can use to test for homogeneity of variances between two sample means have already been discussed (Section 8.0). In addition, Bartlett's test can also be used in situations where more than two means are involved. For a quick "first inspection" of this assumption, you can simply check the correlation between the means and variances of the samples. If the variances increase with the means, the coefficient of

variation [s(100)/X] will be approximately constant for each sample. If the means and variances are independent, however, this ratio will vary widely.

If moderate heterogeneity of variances exists, the effect on the overall test of significance is probably not too serious. However, if this condition exists and you are making comparisons with one degree of freedom, you can expect serious problems.

d. Additivity

It is assumed that the treatment (group) and environmental effects are additive. The assumption of additivity can be evaluated using Turkey's test (Sokal and Rohlf, 1969). In general, if this assumption is not met by the data it can be corrected with a data transformation.

Consider the data presented in Table 18. Here we have two fish tanks, A and B, in which the concentration of a heavy metal required to kill 50 percent of the test fish at two different pH levels was determined. Prior to the log (X) transformation, the effects were multiplicative (3 x 10 = 30 and 3 x 20 = 60). However, after the transformation, the effects became additive (1.00 + 0.48 = 1.48 and 1.30 + 0.48 = 1.78).

Table 18. 96-hour LD₅₀ concentration (mg/l) for test fish.

	Untra	nsformed	Log tra	nsformed
	ļ	рΗ	pl	1
Tank	4.0	6.0	4.0	6.0
A B	10 (3x) 30	20 (3x) 60	1.00 (+0.48) 1.48	1.30 (+0.48) 1.78

10.3 Nonparametric Methods of Analysis of Variance

If we cannot transform our data to meet the assumptions of the analysis of variance, we may have to resort to a similar nonparametric method. These methods are not concerned with specific parameters, but only with the distribution of the variates. Although not discussed here, a detailed description of many of these methods is covered by Sokal and Rohlf (1969).

10.4 One-Way Classification Analysis of Variance

The most basic anova test is the one-way anova. Higher order anova tests are merely extensions of the one-way anova. The one-way anova has only one criterion for classification, such as sampling stations, and, in its simplest form, has an equal number of data observations in each group.

The conceptual framework of the one-way classification anova with equal sample sizes is straightforward and easy to follow. Consider "a" sampling stations ("a" groups) along a stream. Suppose we have measured specific conductance "n" times ("n" observations) at each station. Each specific conductance observation can be denoted by X_{ij} which is the jth observation of the ith station. The data may be arranged as in Table 19.

Table 19. Data arranged for a one-way classification anova.

			,	'a'	, (gro	ups				
	1	2	3	•	•	•	i	•	•	•	a
1 2 3	X11 X12 X13	X ₂₁ X ₂₂ X ₂₃	X31 X32 X33	•		•	Xi1 Xi2 Xi3	•			X _{a1} × _{a2} X _{a3}
j	X _{1j}	X _{2j}	X _{3j}	•	•	•	X _{ij}	•	•	•	Xaj
n	X _{1n}	X _{2n}	X _{3n}	•	•	•	Xin	•	•	•	X _{an}

The null hypothesis that we wish to test can be stated as follows

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = \ldots = \mu_1 = \ldots = \mu_a$

The alternative hypothesis, therefore, is

$$H_a$$
: $\mu_1 \neq \mu_2 \neq \mu_3 \neq \ldots \neq \mu_i \neq \ldots \neq \mu_a$

The test for differences in means is based on the fact that if the means of each group are greatly different, the variance of the combined groups is much larger than the variances of the separate groups. Consequently, to test for differences in means we test for differences in variances. With the one-way anova we obtain two independent estimates of the population variance; one is based on the variance within groups while the other is based on the variances among groups.

To test the null hypothesis stated above, the following calculations are required. The correction term, C, is determined by Equation 13.

$$C = \frac{1}{an} \left(\sum_{i=1}^{a} \sum_{j=1}^{n} X_{ij} \right)^{2}$$
 (13)

The $\underline{\text{total sum of squares}}$ (SS $_{\text{total}}$), adjusted for the mean, is found using Equation 14. The sum of squares attributable to groups is commonly

$$SS_{total} = \sum_{i=1}^{a} \sum_{j=1}^{n} X_{ij}^{2} - C$$
 (14)

called the <u>between groups sum of squares</u> (SS_{groups}) or groups sum of squares and calculated using Equation 15. The sum of squares within a

$$SS_{groups} = \frac{1}{n} \sum_{i=1}^{a} \left(\sum_{j=1}^{n} X_{ij} \right)^{2} - C$$
 (15)

group is referred to as the within group sum of squares (SS_{within}) , as well as residual sum of squares and/or error sum of squares, and is generally found by subtracting the between groups sum of squares from the total sum of squares, Equation 16. This can be done because the sums of squares are additive.

$$SS_{within} = SS_{total} - SS_{groups}$$
 (16)

The results of a one-way classification anova with equal sample sizes are generally presented in an anova table similar to Table 20. Table 20 is divided into five columns. Column (1) identifies the source of variation as among groups, within groups and total. Column (2) gives the degrees of freedom by which the various sums of squares must be divided in order to yield estimates of the variances. Column (3) lists the sums of squares (SS) for the respective sources of variation. Column (4) contains the mean square (MS). The mean square is obtained by dividing the sum of squares by the degrees of freedom. The two mean squares obtained are the two estimates of the variance discussed earlier. Column 5 presents the calculated F statistic, F_s. It is defined as the ratio of the two independent estimates of the same population variance. The mean square obtained from the means (between groups) is always placed in the numerator since we wish to state that the means are significantly different only if they are significantly more spread out than would be expected for samples from the same population.

Two examples of the one-way classification anova with equal sample size are presented in Examples 9a and 9b.

Table 20. A typical ANOVA table for the one-way classification with equal sample sizes.

(1) Source of Variation	(2) Degrees of Freedom	(3) SS	(4) MS	(5) F _S
among groups	a - 1	SS _{groups}	SS _{qroups} (a-1)	MSgroups MSwithin
within groups	a(n-1)	SSwithin	SS _{within} a(n-1)	
total	an-1	SStotal		

Problem:

Nitrate concentrations were monitored at four stations within a watershed over a one-year period (see illustration below). The results have been tabulated below the watershed illustration. Determine if there is a significant difference, at the 5% level, in the mean NO3 concentration between stations.

NITRATE CONCENTRATIONS (mg/1)

STATIONS

1	2	3	4
8.7	9.8	11.9	8.8
8.0	8.6	15.1	7.9
8.9	8.8	11.2	8.5
8.0	8.3	11.9	8.1
6.8	7.4	13.9	10.0
6.4	9.4	13.7	7.6
7.8	7.9	12.6	10.1
8.4	8.9	16.3	9.2
7.8	8.3	15.4	10.0
7.7	11.1	14.4	8.5
8.3	8.9	13.2	12.7
8.3	8.2	11.8	9.6
9.7	10.7	12.6	8.5
6.9	7.2 7.2	12.1	10.2
ΣX 119.10	130.70	199.40	136.30
\$\bar{X}\$ 7.94	8.71	13.29	9.09
\$ 0.85	1.16	1.50	1.44

Solution:

1. Establish the hypothesis to be tested.

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = \mu_4$
 H_a : $\mu_1 \neq \mu_2 \neq \mu_3 \neq \mu_4$

2. Selected the significance level.

From the problem statement, $\alpha = 0.05$.

3. Develop the anova table and determine the test statistic, F_s .

The data were analyzed using the ONEWAY subprogram from SPSS (1975). It should be noted that either the ANOVA procedure from SAS (1979) or the ANOVA subprogram from SPSS (1975) could have been used to solve for the test statistic. The results of the analysis are presented in Table 21. From Table 21 it can be seen that $F_{\rm S}$ = 54.133.

4. Define the critical region, F_c .

From Table A-4 we find that

$$F_c = F.05(3.56) \approx 2.76$$

5. Reject or accept the null hypothesis.

Since $F_S > F_C$, we do not accept the null hypothesis. This means that the mean $N0\bar{3}$ concentrations at the four stations cannot be considered equal (i.e. having come from the same population) with our $\alpha = 0.05$.

It should be noted that at this point we have no statistical insight as to which mean or means differ from each other. All we know is that they are not all equal.

N.

PAGE

ONEWAY AHALYSTS OF VAPIANCE

(CREATION DATE = 05/12/80) FILE MONAME

	•
	- 1
	•
	- 1
	•
	0
	0
	- 1
	0
	-
	1
	1
	- 1
	1
	- 1
	- 1
	1
	0
	. 8
	•
	- 1
	·
	0
	>
	•
	_
	3
	la i
	_
	2
	_
	2
	2
	2
	2 0 1
	2 0 1
	2 0 1
	2011
	2 0 1 1 1 1
	20111
	2 0 1 1 1 1
	2 0 1 1 1 1
() ()	2 0 1 1 1 1
	2 0 1 1 1 1
100.000	201111111
10	201111111111111111111111111111111111111
	201111111
10727	201111111111111111111111111111111111111
101.721.770 - 21.17	201111111111111111111111111111111111111
	201111111111111111111111111111111111111
	201111111111111111111111111111111111111
	201111111111111111111111111111111111111
	201111111111111111111111111111111111111
	201111111111111111111111111111111111111
	201111111111111111111111111111111111111
	201111111111111111111111111111111111111
	201111111111111111111111111111111111111
	201111111111111111111111111111111111111
The state of the s	
The state of the s	201111111111111111111111111111111111111

VARIANLE NITRATE

AMALYSIS OF VARIANCE

				IT FOR MEAN	R.4131	9.3577	14.1225	9.AA50	10,3874	10.0457	13,5845	
F PROH.	0000			95 PCT CONF INT FOR MEAN	7.4669 TO	8.0689 TO		8.2875 TO	9.1292 TO	9.4310 TO	5.4322 TO	
F RATTO F	54.133 *** .6000						_			0.6	7°.	
				MAXIMUM	9.7000	11.1000	16.300	12.7000	16.3000			
MEAN SOUARES	46.7286	1.6021		MUMINIM	6.4000	7.2000	11.2000	6.4000	6.4000			5.6751
SUM OF SQUARES	250.1858	89.7200	340.9058	STANDARD EPROR	.2206	-300E	• 3866	.3726	.3144	,1634	1.2023	ETWEEN COMPONENT VARIANCE
O.F. St	m	5.6	59	STANDARD DEVLATION	54545	1.1637	1.4974	1.4431	2.4353	1.2658		30
le.	S			P. A E.	7.9400	8,7131	13,2933	9.03r7	9.7583	CTS MODEL	CTS MODEL	- FSTIMATE
SOUACE	HET FFN GROUPS	WITHIN GROUPS	TOTAL	COUNT	15	15	r.	15	94	FIXED EFFEGTS MODEL	RANGOM EFFECTS MONEL	RANDOM EFFECTS MODEL - FSTI-MATE OF
				GROUP	GRP01	GRPO2	GRP03	GRP 04	TOTAL.			RANDOM

TESTS FOR HO-10GENEITY OF VARIANCES

.469 (APPROX.) H H 3499. P 3 COCHRAIS C = MAX. VARIANCE/SIM(VARIANCES) = MARTIETT-HOX F = MAXIMIM VARIANCE = MAXIMIM VARIANCE =

Table 21. Results of the Analysis of Variance for Example 9a using the ONEWAY subprogram from SPSS (1975).

EXAMPLE 9b One-Way Classification ANOVA with Equal Sample Size and Data Transformed by Log (X)

Problem:

Stonefly Nymphs were collected at three stations along a stream (see illustration below). The sample results are tabulated below. Determine if the mean counts are significantly different (P = 0.05) between sampling stations.

RESULTS OF STONEFLY NYMPH SAMPLES STATIONS

1		2		3	
Counts	log (counts)	Counts	log (Counts)	Counts	log (Counts)
91	1.96	120	2.08	8	0.90
77	1.89	110	2.04	17	1.23
86	1.93	93	1.97	20	1.30
52	1.72	150	2.18	15	1.18
80	1.90	<u>82</u>	1.91	<u>10</u>	1.00
ΣΧ 386	9.40	555	10.18	70	5.61
Χ 77.2	1.88	111.00	2.04	14.00	1.12
s 15.09	0.09	26.31	0.10	4.95	0.17

Solution:

A common problem with count data, such as that presented here, is that the variance of the sample is not independent of the mean. Generally, this can be corrected with a log (X) or log (X+1) transformation. This transformation does not affect the validity of the anova and, in fact in this case, makes the results more reliable. The calculations are carried out in the same manner as with the nontransformed data.

The solution procedure is as follows.

1. Establish the hypothesis to be tested.

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3$

$$H_a$$
: $\mu_1 \neq \mu_2 \neq \mu_3$

2. Select the significance level.

From the problem statement, $\alpha = 0.05$.

3. Develop the anova table and determine the test statistic, F_{S} .

The data were analyzed using the same procedures outlined in step 3 of the solution of Example 9a. However, in this case, the log-transformed data were input into the program rather than the raw data. The results of the analysis are presented in Table 22. From Table 22, it can be seen that $F_S = 75.97$.

4. Define the critical region, Fc.

From Table A-4 we find that

$$F_c = F.05(2,12) = 3.88$$

5. Reject or accept the null hypothesis.

Since $F_S > F_C$, we do not accept the null hypothesis. This means that the mean Stonefly Nymph counts at the three stations are not equal for $\alpha = 0.05$.

~		1 1 1							INT FUR MFAN	1.9961 2.1646 1.3287	1,9170	1.7499	2° 4036			
PAGE		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			F PROM.	0000			95 PCT COMF J	1.7639 TO 1.9074 TO .9153 TO	1.4416 10	1.608R TO	.464H TO			,
05/12/80		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			F RATIO	(75.969)			MAXIMUM	1.9400 2.1800 1.3000	2.1900					
		t t t t t t t t		VARTANCE	MEAN SOUARES	1.1952	.0157		MINIMIM	1.7200	900ë•			•2359		.292 (APPROX.)
	: !	- 0 4 E W A		AMALYSIS OF VAR	SUM OF SQUARES	2.3905	.1888	2.5793	STANDARD ERROR	.0418 .0463 .0745	.1108	.0324	. 2823	RETWEEN COMPONENT VARIANCE		3.168
	_	1 1 2 3 2 8		«	n.F. SUM	٨	12	14	STANDARD DEVIATION	.0935 .1036 .1665	.4292	1254			10	= MAX. VARIANCE/SUM(VARIANCES) X F = HANCE / MINIMUM VARIANCE =
RIANCE	B be	1 6 1 1 1	S		Ĺ	v			× EAN	1.8866 2.6360 1.1220	1.6793	CTS MODEL	CTS MODEL	- FSTIMATE OF	OF VAPIANCES	X. VARIANCEZ
ONEWAY ANALYSTS OF VARIANCE		1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	VARIABLE NYMPHS		SOURCE	RETWEEN GROUPS	WITHIN GROUPS	TOTAL	COUNT	വവയ	<u>ن</u> .	FIXED EFFECTS MODEL	RANDOM EFFECTS MODEL	RANDOM EFFECTS MODEL	FOR HOMOGENEITY OF VAPIANCES	COCHPANS C = MAX. VARIANCE/SUM(VARI PARTLETT-HOX F = MAXIMUM VARIANCE / WINIPUM VARIANCE
ONEWAY A	ILE	t 1 1	۷ >						GROUP	GRPU1 GRPU2 GRPU3	TUTAL			RANDOM E	TESTS FO	CO

Results of the Analysis of Variance for Example 9b using the ONEWAY subprogram from SPSS (1975). Table 22.

In the case when groups are not composed of samples of equal size, the required computations for the one-way classification anova are as follows.

Correction term, C.

$$C = \left(\sum_{i=1}^{a} \sum_{j=1}^{n} X_{ij}\right)^{2} / \sum_{i=1}^{a} n_{i}$$
 (17)

Total sum of squares adjusted for the mean, SStotal.

$$SS_{total} = \sum_{i=1}^{a} \sum_{j=1}^{n} X_{ij}^{2} - C$$
 (18)

Between groups sum of squares, SSgroups.

$$SS_{groups} = \sum_{i=1}^{a} \frac{\left(\sum_{j=1}^{n} X_{ij}\right)^{2}}{n_{i}} - C$$
 (19)

Within groups sum of squares, SSwithin.

$$SS_{within} = SS_{total} - SS_{groups}$$
 (20)

The results of a one-way anova with unequal sample sizes are generally presented in an anova table similar to Table 23.

Table 23. A typical ANOVA table for the one-way classification with unequal sample size.

Source of Variation	Degrees of Freedom	SS	MS	FS
among groups	a-1	SSgroups	SS _{groups}	MS groups MS within
within groups	n-a	SS _{Within}	SS _W ithin n-a	WICHIN
total	n-1	SS _{tota} 1		

An example of the one-way classification anova with unequal sample sizes within groups is presented in Example 9c.

EXAMPLE 9c One-Way Classification ANOVA with Unequal Sample Size

Problem:

Suspended solids concentration was monitored at three stations within a watershed (see illustration). The results are tabulated below the illustration. Determine if there is a significant difference (P = 0.10) in the mean SS concentration between stations.

;	1		2	;	3
mg/l	<u>log (X)</u>	mg/l	<u>log (X)</u>	mg/l	log (X)
27 29 24 48 69 30 21 68 21 20 30 74 26 Σχ 487 X 37.5 s 20.1	1.43 1.46 1.38 1.68 1.84 1.48 1.32 1.32 1.30 1.48 1.87 1.41 19.80 1.52 0.21	49 25 13 29 46 15 29 23 15 28 ΣΧ 272 X 27.2 s 12.3		17 30 25 18 23 18 17 10 20 21 37 236 X 21.4 s 7.3	1.23 1.48 1.40 1.26 1.36 1.23 1.00 1.32 1.57 14.40 1.31 0.15

Solution:

It is obvious that initially the sample variances and means do not vary independently. However, after the log (X) transformation, this problem was corrected.

1. Establish the hypothesis to be tested.

 H_0 : $\mu_1 = \mu_2 = \mu_3$

H_a: at least one mean is not equal to the other means

2. Select the significance level.

From the problem statement, $\alpha = 0.10$.

3. Develop the anova table and determine the test statistic, F_{S} .

The log-transformed data were analyzed using the ANOVA procedure from SAS (1979). It should be noted that either the ONEWAY or ANOVA subprograms from SPSS (1975) could have been used to solve for the test statistic. The results of the analysis are presented in Table 24 where it can be seen that $F_S = 3.95$.

4. Define the critical region, F_{C} .

From Table A-4 we find that

$$F_c = F_{.05(2,31)} = 2.49$$

5. Accept or reject the null hypothesis.

Since $F_S > F_C$ we do not accept the null hypothesis.

, DEPENDENT VARIABLE 1 55LUG	55c06						
SOURCE	96	SUM OF SOURRES	MEAN SQUARE	FVALUE	PR. F	R-SQUARE	C.V.
HODEL	2	0.27704955	0.13852477	3005	0.0296	0.203208	13,2158
ERROR	31	1.08632692	0.03504280		STD DEV		SSLOG MEAN
" CORRECTED TOTAL	33	1.36337647			0.18719723		1-41647059
SOURCE	DF.	ANOVA SS	F VALUE PR > F				
STATION	2	0.27704955	3.95 0.0296				

Table 24. Results of the analysis of variance for Example 9c using the ANOVA procedure from SAS (1979).

10.5 Evaluating the Difference Between Means When the Sample Sizes are Equal

If we reject the null hypothesis after performing the anova test, all we know is that there is a significant difference (at the α level selected) between treatment means. We have no idea which group (or groups) is responsible for our rejection of the null hypothesis. In some cases we may want to isolate the group (or groups) which causes us to reject the null hypothesis.

A simple method of evaluating the difference between means has been developed by Snedecor (1956) and is called the Q-test. (Much of what follows has been taken from Nash, 1965.) The procedure is outlined using a hypothetical data set. Initially, the means of the groups are ranked in order from highest to lowest.

<u>Order</u>	Group	Mean
1	С	5.3
2	А	4.8
3	В	4.4
4	D	4.0

Next, we determine the difference, D, using Equation 21, for each value of \mathbb{Q}_{\bullet}

$$D = Qs_{\bar{x}} = Q \sqrt{\frac{s^2}{n}}$$
 (21)

where s² is the mean square of the error or within groups term, n is the number of observations in each group and Q is a factor obtained from Table A-5 which gives the upper five percent of the range for different degrees of freedom and for the number of groups. To determine which group (or groups) is causing a significant difference between means, we use a different value of Q depending on whether the group means are 2, 3, . . ., or n ranks apart. In our hypothetical example, assume we have 12 degrees of freedom associated with the error term (SSwithin), a MSwithin of

0.1923 and four observations per group. Now, we can determine D for each value of Q.

$$s_{\bar{x}} = \sqrt{\frac{0.1923}{4}} = 0.2193$$
 $a = 2$ $D = 3.08(0.2193) = 0.6754$
 $a = 3$ $D = 3.77(0.2193) = 0.8268$
 $a = 4$ $D = 4.20(0.2193) = 0.9211$

Next, we rank the means in order and determine the differences between the highest and lowest. For simplicity, and to demonstrate the differences between means and the comparisons with D, the values of D have been inserted in parentheses. If the difference between means is greater than the value of D for a particular difference, the difference between means is significant at the 5% level. For example, X - 4.0 = 1.3 is greater than D = 0.9211; therefore the difference between the means of Group C and D is significant. However, the difference between the means of groups A and D is not significant, and so on.

Group	Mean	X - 4.0	X - 4.4	x - 4.8
С	5.3	1.3 (0.9211)	0.9 (0.8268)	0.5 (0.6754)
Α	4.8	0.8	0.4 (0.6754)	(0.0754)
В	4.4	(0.8268) 0.4 (0.6754)	(0.0754)	
D	4.0	(0.6754) -		

An example of the Snedecor Q-test is presented in Example 9d.

Problem:

When we evaluated the NO3 data presented in Example 9a, it was determined that there was a significant difference, at the 1% level, in the mean NO3 concentrations between stations. Now, evaluate the differences between the means and determine which ones differ significantly (P = 0.05) using Snedecor's Q-test.

Solution:

Rank the means in order from highest to lowest. 1.

Rank	Station	Mean
1	3	13.29
2 -	4	9.09
3	2	8.71
4	1	7.91

2. Determine the difference, D, using Equation 21 for each value of Q. Q is obtained from Table A-5.

$$D = Qs_{\bar{x}}$$

where

$$s_{\bar{x}} = \frac{1.60}{15} = 0.3266$$

$$a = 2$$
 $D = 2.83(0.3266)$

$$a = 4$$
 $D = 3.74(0.3266)$

Note: Since Table A-5 does not list 56 df, 60 was used to obtain Q. The difference in Q between 40 and 60 df is very minor.

Rank the means in order and determine the differences between the highest and lowest.

Rank	Station	Mean	X - 7.94	X - 8.71	X - 9.09
1	3	13.29	5.35 (1.22)**	4.58 (1.11)**	4.20 (0.92)**
2	4	9.09	1.15 (1.11)**	0.38 (0.92)**	(0.52)
3	2	8.71	0.77 (0.92)	-	-
4	1	7.94	(0.92)	60	-

4. Interpret the results.

As you recall, if the difference between means is greater than the value of D for a particular difference, the difference between means is significant at the 5% level. The results of this analysis indicate the mean at Station 3 is significantly different from the means at all the other stations while the mean at Station 4 is significantly different from the means at Stations 1 and 3. In other words, the intensely grazed pasture is yielding an average NO3 concentration significantly greater than any of the other treatments, while the second home development is significantly different from the pasture and one of the forest stations at the 5% level.

.....

10.6 Evaluating the Difference Between Means When the Sample Sizes are Not Equal

In some cases you may want to evaluate the difference between means when the sample sizes are not equal. Although this cannot be done easily by hand, it can be performed very readily on SAS using PROC DUNCAN or on SPSS using the Duncan option with subprogram ONEWAY, both of which are the Duncan's multiple range test. These methods are summarized in SAS (1979) and SPSS (1975).

10.7 Two-Level Nested Analysis of Variance

In studies where we only take a single water quality measurement at a station per visit, we can never be certain that the observed differences in water quality between stations are due <u>solely</u> to environmental or treatment factors alone. There may also be some experimental error as well. The only way to separate these two effects is to take two or more measurements (replicate samples) at a station per visit. If we do not find any significant differences among the replicate samples at a station, we can then ascribe the differences among the stations to environmental or treatment factors.

In the two-level nested anova each group is subdivided into $\underline{randomly}$ chosen subgroups. Consider the situation where we have three sampling stations, 1, 2, and 3, on a stream where we are studying dissolved solids concentration. Each time we sampled at a station, we obtained three replicate water samples (these samples represent our randomly chosen subgroups) for total dissolved solids determination. The data are symbolized in Table 25. Each dissolved solids determination is denoted by $X_{i,jk}$ where i represents the group or station (i = 1, 2, . . . , a), j the

Table 25. Data arranged for a two-level nested anova.

					Statio	n or (Groups	(a=3))			
		:	L			2				3		
				S	ubgroup	s (b=	4)					
	1	2	3	4	1	2	3	4	1	2	3	4
Samples 1	X ₁₁₁	X ₁₁₂	X ₁₁₃	X ₁₁₄	X ₂₁₁	X ₂₁₂	X ₂₁₃	X ₂₁₄	X ₃₁₁	X ₃₁₂	X ₃₁₃	X ₃₁₄
2	X ₁₂₁	X ₁₂₂	X ₁₂₃	X ₁₂₄	X ₂₂₁	X ₂₂₂	X ₂₂₃	X ₂₂₄	X ₃₂₁	X ₃₂₂	X ₃₂₃	X ₃₂₄
3	^X 131	X ₁₃₂	^X 133	^X 134	X ₂₃₁	X ₂₃₂	X ₂₃₃	X ₂₃₄	X ₃₃₁	X ₃₃₂	^X 333	X ₃₃₄
4		X ₁₄₂					X ₂₄₃				X ₃₄₃	
5	X ₁₅₁	X ₁₅₂	^X 153	^X 154	^X 251	X ₂₅₂	X ₂₅₃	^X 254	X ₃₅₁	X ₃₅₂	X ₃₅₃	^X 354

sample number (j = 1, 2, ..., n), and k the randomly chosen subgroup (k = 1, 2..., b).

The equations required for the two-level nested anova with equal sample size are as follows:

Correction term, C.

$$C = \left(\sum_{i=1}^{a} \sum_{k=1}^{b} \sum_{j=1}^{n} X_{ikj}\right)^{2} / nba$$
 (22)

Total sum of squares, SStotal.

$$SS_{total} = \sum_{i=1}^{a} \sum_{k=1}^{b} \sum_{j=1}^{n} X_{ikj}^{2} - C$$
 (23)

Between groups sum of squares, SSgroups.

$$SS_{groups} = \left[\frac{\sum_{i=1}^{a} \left(\sum_{k=1}^{b} \sum_{j=1}^{n} X_{ikj} \right)^{2}}{nb} \right] - C$$
 (24)

Subgroups within groups sum of squares, SS_{subgr}.

$$SS_{subgr} = \left[\frac{\sum_{i=1}^{a} \sum_{k=1}^{b} \left(\sum_{j=1}^{n} X_{ikj} \right)^{2}}{n} \right] - \left[\frac{\sum_{i=1}^{a} \left(\sum_{k=1}^{b} \sum_{j=1}^{n} X_{ikj} \right)^{2}}{nb} \right]$$
(25)

Within groups sum of squares, SSwithin.

$$SS_{within} = SS_{total} - \left[\frac{\sum_{i=1}^{a} \sum_{k=1}^{b} \left(\sum_{j=1}^{n} X_{ikj} \right)^{2}}{n} \right]$$
 (26)

The anova table for the two-level nested anova is illustrated in Table 26.

Table 26. The anova table for the two-level nested anova.

Source of Variation	Degrees of Freedom	SS	MS	Fs
among groups	a-1	SSgroups	SS _{groups}	MS _{groups} MSsubgr
among subgroups within groups	a(b-1)	SS _{subgr}	SSsubgr a(b-1)	MS <u>subgr</u> MSwithin
within subgroups	ab(n-1)	SS _{Within}	SS _{within} ab(n-1)	
total	abn-1	SS _{total}		

In the case of unequal sample sizes, the required computations for the two-level nested analysis of variance are somewhat different. The equations to use can be readily found in any good statistics book, such as Sokal and Rohlf (1969).

An example of the two-level nested anova is presented in Example 9e.

Problem:

Nitrate concentration was monitored at two stations along Trout Creek. One station was located above and the other below the outfall from a sewage lagoon servicing a campground (see illustration below). The objective of the study was to determine the onsite effect of the outfall on the nitrate concentration of Trout Creek. At the outset of the study there was some concern over the precision of the analytical method as well as the sample collection procedures. As a result, it was decided that the samples would be collected in replicate in order to separate the treatment effect from the experimental error. The sample results are presented below. Determine if there is a significant difference (P = 0.05) between stations and within stations.

Nitrate Concentrations (mg/l)

	Above		E	Below	
Replicat	e sample	e number	Replicate	e sample	number
1	2	3	<u>1</u>	2	3
1.0 1.6 1.3 1.4 1.5 2.0 2.1 1.7	1.1 1.5 1.3 1.5 1.8 2.0 1.8	1.1 1.6 1.3 1.3 1.6 1.9 2.0 1.7	5.1 6.0 5.8 6.5 6.7 6.1 6.9 5.5	5.3 5.8 5.9 6.5 6.6 6.1 6.8 5.5	5.1 6.1 5.9 6.4 6.8 6.1 6.9 5.6 5.4

Solution:

- 1. Establish the hypotheses to be tested.
 - a. Site (stations).

$$H_o$$
: $\mu_A = \mu_B$

$$H_a$$
: $\mu_A \neq \mu_B$

b. Experimental error.

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3$

$$H_a: \mu_1 \neq \mu_2 \neq \mu_3$$

2. Select the level of significance.

From the problem statement, $\alpha = 0.05$.

3. Develop the anova table and determine the test statistics, F_{S} .

The data were analyzed using the NESTED procedure from SAS (1979). The results of the analysis are presented in Table 27. The test statistic for the stations (site) is

$$F_{s(site)} = \frac{266.66667}{0.22181} = 1202.25$$

while the test statistic for the replications (num) is

$$F_{s(num)} = \frac{0.00370}{0.22181} = 0.02$$

4. Define the critical regions, F_c .

From Table A-4 we find that

a. Site

$$F_{c(site)} = F_{.05(1,43)} = 4.04$$

b. Replications

$$F_{c(num)} = F_{.05(4,48)} = 2.56$$

5. Accept or reject the null hypothesis.

Since $F_s(site) > F_c(site)$, we reject the null hypothesis that the mean NO3 concentrations between sites are equal. However, since $F_s(num) < F_c(num)$, we do not reject the null hypothesis stating the mean NO3 concentrations within samples are equal.

		ANAL	ANALYSIS-OF-VARIABLE-NITRATE	BLE-NITRATE	
VAR1ANCE SOURCE	0.F.	SOUARES	SQUARES	COMPONENT	PERCENT
TOTAL	53	277.32815	5.23261	10.09821	100.00
SITE	1	266.66667	266.66667	9.87641	97.80
NUM	4	0.01481	0.00370	-0.02423	0.0
ERROR	48	10.64667	0.22181	0.22181	2.20
MEAN STANDARD DEVIATION COEFFICIENT OF VARIATION	DEVIATION VA	RIATION	3.785185		

Table 27. Results of the analysis of variance for Example 9e using the NESTED procedure from SAS (1979).

10.8 Two-Way Classification Analysis of Variance

The two-way classification anova allows us to evaluate the effects of two factors, such as stations and seasons, simultaneously. It is assumed in this method that each factor contributes to the water quality and that the two factors add their effects without influencing each other.

Care should be taken in the design of your data analysis so that you do not confuse a two-level nested anova with a two-way anova. Consider Table 28. Here we have several sampling stations for which we have replicate samples, denoted by 1 and 2. Replicate samples 1 and 2 are simply arbitrary designations for two randomly selected samples at each station. Replicate sample 1 at station 1 has no closer relation to replicate sample 1 at station 2 than it does to replicate sample 2 station 1.

Table 28. Basic design of the two-level nested anova.

Now, consider Table 29 an example of a two-way anova. Here we have several sampling stations for which we have collected samples during two seasons, spring and fall. Why can we not rearrange the seasons into a nested design? The reason we cannot do this is because the seasons are common to all sites within the study. If we nested the seasons at each station, this would imply that the two seasons per station were random samples from all possible seasons and that spring at Station 1 is not the same as spring at Station 2.

Table 29. Basic design of a two-way anova.

Station

		2	2	3	• •	a
Spring						
Fall						

Sokal and Rohlf (1969) state that the critical question to be asked is always, "Does the arrangement of the data into a two-way table falsely imply a correspondence across classes?" If it does, and we recognize that the factor represents only <u>random</u> subdivisions of the groups of another factor, then we have a nested anova. If there is correspondence across groups, the two-way design is appropriate.

Although there are many different designs of a two-way anova, the one you are most likely to need is the two-way anova with replicate samples. The basic design of the two-way anova with replicate samples is illustrated in Table 30. The data are classified two ways, by station (column) and by season (row). In this test we want to test for differences in the means among stations and among seasons, and assess the interaction of the two factors.

The equations required for the two-level anova with replicate samples are as follows.

Correction term, C.

$$C = \frac{\left(\sum_{i=1}^{a} \sum_{k=1}^{b} \sum_{j=1}^{n} X_{ikj}\right)^{2}}{abn}$$
 (27)

Total sum of squares, SStotal.

$$SS_{total} = \sum_{i=1}^{a} \sum_{k=1}^{b} \sum_{j=1}^{n} X_{ikj}^{2} - C$$
 (28)

Table 30. Total dissolved solids concentration (mg/l) at Stations 001 and 002 on Eagle Creek during the spring and fall of 1980.

	Station	(c = 2)
Season (r = 2)	001	002
Spring	340 390 381	512 560 550
Fall	612 630 633	917 920 915

Subgroups within groups sum of squares, SS_{subgr}.

$$SS_{subgr} = \frac{\sum_{i=1}^{a} \sum_{k=1}^{b} \left(\sum_{j=1}^{n} X_{ikj}\right)^{2}}{n} - C$$
 (29)

Sum of squares of columns, SSA.

$$SS_{A} = \frac{\sum_{i=1}^{a} \left(\sum_{k=1}^{b} \sum_{j=1}^{n} X_{ikj} \right)^{2}}{bn} - C$$
 (30)

Sum of squares of rows, SSB.

$$SS_{B} = \frac{\sum_{k=1}^{b} \left(\sum_{i=1}^{a} \sum_{j=1}^{n} X_{ikj}\right)^{2}}{bn} - C$$
 (31)

Interaction sum of squares, SSA X B.

$$SS_{AxB} = SS_{subgr} - SS_A - SS_B$$
(32)

Within subgroups sum of squares, SSwithin.

$$SS_{within} = SS_{total} - SS_{subgr}$$
 (33)

The anova table for the two-way anova with replicate samples is illustrated in Table 31.

Table 31. The anova table for the two-way anova with replicate samples.

Source of variation	Degrees of freedom	SS	MS	F _S
Subgroups	ab-1	SS _{subgr}	SS _{subgr} ab-1	
A (columns)	a-1	SSA	SS _A a-1	MS _A MS _{within}
B (rows)	b-1	SSB	SS _B	MS _B MS _{within}
A X B (interaction)	(a-1)(b-1)	SSA X B	SS _A X B a-1)(b-1)	MS _{A X B} MS _{within}
Within Subgroups	ab(n-1)	SS _{Within}	SS _{within} ab(n-1)	
Total	abn-1	SS _{total}		

An example of the two-way anova with replication is presented in Example 9f.

EXAMPLE 9f Two-Way Classification ANOVA

Problem:

Suspended solids concentration was monitored at the mouths of two adjacent watersheds, A and B, over a period of one year. Watershed A has been 30% clearcut while Watershed B is fully vegetated. The results are tabulated below. Determine if there is a significant difference (α = 0.01) in the mean SS concentration between watersheds (1) on an annual basis and (2) by season (spring-summer vs. fall-winter).

Sust	nended	Solids	Concentration
Just	Jenueu	3011U3	Concentration

	Water	shed
Season	А	В
Spring-Summer	60 75 83 69 58 89	27 22 25 24 26 29
Fall-Winter	57 45 59 61 38 40	20 21 17 15 18 19

Solution:

- 1. Establish the hypothesis to be tested:
 - a. Stations

 H_o : $\mu_A = \mu_B$

 H_a : $\mu_A \neq \mu_B$

b. Seasons

 H_o : $\mu_{SS} = \mu_{FW}$

 H_a : $\mu_{SS} \neq \mu_{FW}$

Select the significance level.

From the problem statement, $\alpha = 0.05$.

3. Develop the anova table and determine the test statistics, F_s .

The data were analyzed using the ANOVA subprogram from SPSS (1975). It should be noted that the ANOVA procedure from SAS could have been used to solve for the test statistics. The results of the analysis are presented in Table 32. From Table 32 it can be seen that the test statistic for the seasons is equal to 19.481, the test statistic for the stations is 137.944 and the test statistic for the interaction between station and season is 5.149.

4. Define the critical regions, Fc.

Since the degrees of freedom for the season, station and interaction are all equal to 1, we find from Table A-4

$$F_c = F.01(1,20) = 8.10$$

5. Reject or accept the null hypothesis.

Since $F_S > F_C$ for both the seasons and the stations, we do not accept the null hypothesis established in step 1 of the solution. These results indicate that the sediment concentration differs significantly (α = 0.01) between stations and between seasons. The interaction effect between season and station is not significant.

Table 32. Results of the analysis of variance for Example 9f using the ANOVA subprogram from SPSS (1975).

	/19/80)	* * * * * * * * * * * * * * * * * * *		***	SUM OF MEAN SIGNIF SQUARES OF SQUARE F OF F	1305-375 1 1305-375 (9.481) 000 9243-375 1 9243-375 (137-944) 000	345.042 1 345.042 5.149 .034 345.042 1 345.042 5.149 .034	10893,792 3 3631,264 54,191 ,000	1340,166 20 67,008	12233,958 23 531,911
TWOWAY ANALYSIS OF VARIANCE	FILE NONAME (CREATION DATE = 05/19/80)	LC SIS> 1424 * * * * * * * *	BY SEASON OTATION	*** ** * * * * * * * * * * * * * * * * *	SOURCE OF VARIATION	MAIN EFFECTS 16 SEASON STATION	2-WAY INTERACTIONS SEASON STATION	EXPLAINED 10	RESIDUAL	TOTAL 24 CASES WERE PROCESSED.

11.0 Regression and Correlation

11.1 Introduction

Regression and correlation are powerful statistical methods which are commonly used in water quality data analysis. With <u>regression</u>, we establish a functional relation of one variable upon another. <u>Correlation</u>, which is often confused with regression, is a measurement of the amount of association between two variables.

This section begins with a detailed discussion of simple linear regression. Initially, the assumptions underlying simple linear regression are examined. Next, the procedures of how to compute the (1) regression line, (2) significance of the regression line, (3) correlation coefficients and (4) confidence limits about the regression line and a point estimate are clearly outlined. This is followed by a brief discussion of covariance in which I review how it can be used to test (1) if the simple linear regression lines are significantly different, and (2) if their slopes are the same.

Next, multiple linear regression is covered. The procedures of how to compute (1) the regression line, (2) the significance of the regression line and (3) the coefficient of multiple determination are covered. Finally, a brief discussion of curvilinear regressions is presented.

11.2 <u>Simple Linear Regression</u>

11.2.1 <u>Assumptions</u>

There are several assumptions underlying the method of simple linear regression. They are listed below along with the methods to test each.

- 1. The relationship of the two variables, Y to X, is linear, that is Y = a + bX. To test this assumption, the first step is to develop a scatter diagram. A scatter diagram is simply a plot of the raw data. By observation, you should be able to tell whether or not a strong linear relationship exists between Y and X. If the relationship does not appear to be linear, then another model should be considered. However, if it does appear to follow a linear relation, then the next step is to develop the regression line and test its significance (these procedures are outlined in Sections 11.2.2 and 11.2.3, respectively).
- 2. The departures (errors or residuals) of the sample observations from the regression line are independent. To test this assumption, a time-sequence plot of departures, commonly called a residual plot, is developed (Figure 9). If the residuals are independent, then the points should be evenly scattered around the zero residual line.
- 3. The variance of the observed Y values around the regression line is constant over the range of X values. This assumption can be tested by observation of a plot of the residuals (errors) against the predicted Y values, commonly denoted \hat{Y} (Figure 10). If the variance is homogeneous over the range of X values, the points should be evenly scattered around the zero residual line.
- 4. The values of X are assumed to be measured without error.
- 5. Although normality of the data is not required for the regression procedure, the F test for significance of the regression line and the t-test for computation of the confidence limits about the

Figure 9. Testing for independence of the residuals. Case A represents independence while case B illustrates non-independence of the residuals.

Predicted Y

-10

Figure 10. Plots testing for homogeneity in the variances. Plot A represents homogeneity while Plot B is heterogeneous.

regression line do assume that the variation of the observed Y values about the regression line follows a normal distribution. This can be tested using the standard tests for normality discussed in Section 5.1.3.

11.2.2 Least Squares Determination of the Simple Linear Regression Line

The purpose of regression, as you recall, is to establish a functional relationship of one variable with one or more other variables. In <u>simple linear regression</u>, we estimate the relationship of one variable, Y, with another, X, by expressing Y in terms of a linear function of X. For illustrative purposes, consider the data for two water quality variables, X and Y, which are paired by sampling date and were collected at the same station (Table 33). Because of budgetary cutbacks we can no longer afford to sample both parameters as frequently as in the past. We would like to know if we can predict Y accurately if we only measure X.

It is obvious from Figure 11, which is a scatter diagram of the data from Table 33, that a strong linear relationship exists between X and Y. A straight line could be fit through this data by eye to show the relationship between the two variables. However, this method is not very accurate.

A simple mathematical procedure we can use to establish the regression line is the <u>method of least squares</u>. As you recall, the general equation of a straight line is

$$\hat{Y} = a + bX$$

where: a = the value of the Y intercept when X = 0, andb = a coefficient establishing the slope of the line.

Table 33. Data for two water quality variables, X and Y.a/

Sample Number	<u>X</u>	<u>Y</u>	XY	<u>x</u> 2
1	16	18	288	256
2	78	68	5304	6084
3	89	92	8188	7921
4	45	48	2160	2025
5	63	45	2835	3969
6	71	65	4615	5041
7	97	80	7760	9409
8	112	105	11760	12544
9	34	28	952	1156
<u>10</u>	120	108	12960	14400
1.0	705	657	5,000	50005
10	725	657	56822	62805

The objective of the least squares method is to establish the values for the coefficients "a" and "b," which will yield a line for which the sum of the squared deviations from the observed Y values to the straight line

Figure 11. Scatter diagram of X vs. Y for the data from Table 33.

 \underline{a} / Also included is other information, XY and X², necessary to determine the linear regression line.

is the least possible. The method involves the use of two normal equations (Equations 34 and 35) which are solved simultaneously. The procedure for solving for the coefficients "a" and "b" is as follows.

$$Y = an + bx \tag{34}$$

$$XY = a \quad \Sigma X + b\Sigma X^2 \tag{35}$$

1. Substitute the appropriate values from Table 33 into the normal equations.

$$657 = 10a + 725 b$$
 (36a)

$$56822 = 725a + 62805 b$$
 (36b)

2. Divide Equation 36a by 10 and Equation 36b by 725 to bring the value of "a" to 1.0 in each.

$$65.7 = a + 72.5 b$$
 (36c)

$$78.375 = a + 86.628 b$$
 (36d)

3. Subtract Equation 36d from Equation 36c and solve for b.

$$65.7 = a + 72.5 b$$
 (36c)

$$-78.375 = a + 86.628 b$$
 (36d)

$$-12.675 = -14.128 b$$
 (37)

Therefore:

$$b = 0.897$$

4. Now, substitute the value of "b" into either Equation 36a or 36b and solve for "a".

$$a = 0.656$$

 $\hat{Y} = 0.656 + 0.897 X$ (38)

Using Equation 38 we can now predict a Y value for any value of X. A <u>note</u> of caution is in order here. You should be very careful about extrapolating your estimates beyond the region in which the linear relation was developed.

11.2.3 Testing the Significance of the Simple Linear Regression Line

At this point in our regression analysis we should ask "How well does the regression line fit the data?" To answer this question we need to consider the total variation in the Y data about its mean. By fitting the regression line to the data we have, in effect, attempted to explain part of this variation by the linear association of Y with X. The portion of the variation that remains, that of Y about the regression line, is called the residual or unexplained variation. When we test significance of the regression line, we are seeking to find if the portion of the variation of Y that is explained by the regression line is <u>significantly greater</u> than the portion of the variation of Y that is unexplained.

To test the significance of the regression line we use anova. The total sum of squares for Y, corrected for the mean, is denoted by SS_{total} and estimates the amount of variation of individual Y_i 's about Y. The amount of variation in Y that is associated with the regression on X is called the reduction or <u>regression sum of squares</u>, SS_{req} (Equation 39).

$$SS_{reg} = \frac{(\Sigma xy)^2}{\Sigma x^2}$$
 (39)

where

$$\Sigma xy = \Sigma(XY) - \frac{(\Sigma X)(\Sigma Y)}{D}$$

$$\Sigma X^2 = \Sigma X^2 - \frac{(\Sigma X)^2}{D}$$

The portion of the total variation in Y that is not associated with the regression is called the residual sum of squares, SS_{res} (Equation 40).

$$SS_{res} = SS_{total} - SS_{reg}$$
 (40)

The anova table for the significance of regression line test is given in Table 34. As in the anova testing discussed earlier, we use the

Table 34. The anova table for the significance of regression line test.

Source of Variation	Degrees of Freedom	SS	MS	F _S
Regression	1	SS _{reg}	s ² Ŷ	s ² /s ² Ŷ YX
Residual (error) n-2	SS _{res}	$s_{\gamma\chi}^2$	
Total	n-1	SS _{tot}	s_{YX}^2	

residual or error variation as the standard for testing the variation explained by the regression. The calculated F statistic, F_s , is compared with the tabular F, $F_{\alpha}(v_1, v_2)$, to test for significance.

Freese (1962) points out that if there is a significant difference, this does not mean that the line we fitted gives the best possible description of the data nor does it mean we have found the true mathematical relationship between the two variables. All it allows us to do is state, with a particular degree of probability $(1 - \alpha)$, that the part of the variation in Y that is explained by the fitted line is significantly greater than the part that is unexplained.

11.2.4 Correlation

The term used to indicate the degree of correlation is the <u>coefficient</u> of correlation, r. The coefficient of correlation varies between -1.0 and 1.0 and measures the amount of association between two variables. If all the observed Y values lie on the regression line, then $r = \pm 1.0$ depending on the slope of the line. If r = 0, there is no correlation at all between the two variables. In other words, when r = 0, a straight line

equal to \P or \P would describe the relationship equally well. Figure 12 illustrates several different examples of coefficients of correlation.

Closely associated with the coefficient of correlation is the coefficient of determination, denoted by r^2 . It is a measure of the proportion of the total variation in Y that is associated with the regression of Y on X. Consequently, a $r^2 = 0.64$ means that 64 percent of the variance in variable Y was associated with X. The coefficient of determination can be found using Equation 41.

$$r^2 = \frac{SS_{reg}}{SS_{tot}} \tag{41}$$

11.2.5 <u>Setting Confidence Intervals About a Simple Linear Regression</u> Line and a Point Estimate.

Confidence limits on the regression line can be established by specifying several values over the range of X and computing the lower (L) and upper (U) limit using Equations 42 and 43.

$$L = \hat{Y}_i - t_{\alpha(\nu)} \sqrt{s_{YX}^2 \left(\frac{1}{n} + \frac{(X_i - \bar{X})^2}{\Sigma X^2}\right)}$$
 (42)

$$U = \hat{Y}_i + t_{\alpha(\nu)} \sqrt{s_{YX}^2 \left(\frac{1}{n} + \frac{(X_i - \bar{X})^2}{\Sigma x^2}\right)}$$
(43)

where Y_i is the predicted value of Y for a particular X_i , ν is the degrees of freedom for the residual mean square (s_{YX}^2) and the other terms are as previously defined.

It should be pointed out that these are confidence limits on the regression of Y on X. In other words, they indicate the limits for a band which will cover the true mean of Y for a given X, unless the α in-one

r = 1.0

Figure 12. Several different examples of coefficients of correlation.

chance has occurred (Freese, 1962). These limits do not apply to a single predicted value of Y. The limits which will cover a single Y are given by Equations 44 and 45.

$$L = \hat{Y} - t_{\alpha(\nu)} \sqrt{s_{YX}^2 \left(1 + \frac{1}{n} + \frac{(X_i - \bar{X})^2}{\sum X^2}\right)}$$
 (44)

r = -1.0

$$U = \hat{Y} + t_{\alpha(\nu)} \sqrt{s_{YX}^2 \left(1 + \frac{1}{n} + \frac{(X_i - \bar{X})^2}{\sum X^2}\right)}$$
 (45)

11.2.6 Example

An example of how to apply simple linear regression analysis is presented in Example 10.

EXAMPLE 10 Simple Linear Regression Analysis

Problem:

Suspended solids concentrations were monitored at Stations A and B (see illustration below) over a two-year period. The results are tabulated below the illustration. You are to (1) develop a scatter diagram using the raw data (data from Watershed B are to be assigned X values), (2) fit a simple linear regression line to the data, (3) test the significance of the regression (P = 0.05), (4) determine the coefficient of determination and (5) set the 95% confidence limits about the predicted values.

Suspended Solids Concentrations (mg/l)

Subwatershed A	Subwatershed B
14	41
92	260
54	230
66	170
109	351
62	249
28	61
36	87
41	180
23	104
5	20
97	289

Solution:

- 1. The scatter diagram was constructed by hand and is illustrated in Figure 14. It is readily apparent that a linear regression can be fit to these data.
- 2. Parts (2) through (5) of the Example were solved using the GLM program from SAS (1979). [It should be noted that the REGRESSION program from SPSS (1975) could also have been used to solve this problem. However, REGRESSION will not calculate the confidence limits about the predicted values like GLM does.] The results of the GLM program are presented in Table 35.

The simple linear regression line for this example problem is

$$SSA = 1.5844 + 0.2977 SSB.$$

The output clearly indicates that the regression is highly significant. $F_S = 84.08$ while $F_C = F_{.05}(1,10) = 4.96$.

The coefficient of determination, r^2 , is equal to 0.89.

The confidence limits about the predicted values are tabulated at the bottom of Table 35 and have been plotted in Figure 13. The plotted confidence limits are not straight lines because the greater the distance from the mean of X and Y the wider the range at a given probability level.

Figure 13. The scatter diagram of the data from Example 10, the simple linear regression line through the data and the 95% confidence limits about the regression line.

- 1
- 1
. 1
w
4
8
w
g
ğ
ă
٦
9
7
ਰ
- 3
_
4
u
2
7
-4
_
4
94
¥
W
Ö

SOURCE	O.F.	SUM OF SOUADES	MEAN SOUARE	ARE F VALUE	PR > F	R-SQUARE C.V
MODEL		11278,87920991	11278,87920991	1991	0.0001	(0.893713) 22.1660
ERROR	10	1341.37079009	134,13707901	100	STD DEV	SWA MEAN
CORRECTED TOTAL	1	12620.25000000			11,58175630	52.2500000
SOURCE	0F	TYPE I SS	F VALUE	PR > F 0F	TYPE IV SS	F VALUE PR >
SWB		11278.87920991	84.08	0.0001	11278.87920991	84.08 0.0001
PARAMETER	ESTIMATE	T FOR HOL	PR > 171	SID ERROR OF ESTIMATE		
INTERCEPT	0.29774109	0.25	0.8112	6.45808557 0.03246985		
OBSERVATION	SWB	ORSERVED VALUE	PREDICTED VALUE	RESIDUAL	LOWER 95% CL INDIVIDUAL	UPPER 95% CL INDIVIDUAL
1	41	14,00000000	13,79177550	0.20822450	-14.64707095	42,23062196
2	260	00000000026	78,99707484	13,00292516	51,36230293	106-63184675
C	230	54.0000000	70.06484206	-16.06484206	42,85860976	97.27107436
ও ।	170	66.0000000	52,20037648	13,79962352	25.34072920	79.06002377
2	351	109,0000000	106.09151430	2.90848570	76.21506255	135.96796605
D 11	642	62.000000	15.72192282	-13.72192282	48.26341887	103-14042677
a	A7	36.000000	27.48786578	8 512134020	*0.02746520	55.0131067E
: 6	180	41,0000000	55,17778741	-14-17778741	28.3087296	82.04685187
10	104	23.0000000	32,54946435	-9,54946435	5.26657659	59.83235212
	20	5,00000000	7,53921255	-2,53921255	-21.43442693	36.51285203
12	289	97.00000000	87,63156654	9,36843346	59.42953671	115.83359637
	SUM OF R	RESIDUALS SQUARED RESIDUALS		0000000000-		
	OF		ERROR SS	0.00000000-		
	FIRST ORDER AUT	FIRST ORDER AUTOCORRFLATION	Z	-0.33956081		

Table 35. The GLM output from SAS (1979) for Example 10.

11.2.7 Analysis of Covariance to Compare the Simple Linear Regression Lines Developed from Several Groups of Data.

In some cases, we may want to compare two or more simple linear regression lines and determine if they differ in either their slope or in their level. The statistical method to use in this situation is the analysis of covariance. The procedures necessary for this analysis can best be described using an illustrative example. Much of the discussion that follows has been taken directly from Freese (1967).

Consider two groups, A and B, composed of X and Y data. This could represent a control watershed and a treated watershed (X and Y, respectively) where data were collected prior to and following treatment (groups A and B, respectively). Linear regressions of Y on X were fitted for each of the two groups. The basic data and the fitted regressions were as follows:

n = 9,
$$\Sigma Y^2$$
 = 848, ΣXY = 609, ΣX^2 = 480, Σy^2 = 100.8889, Σxy = 80.5556, Σx^2 = 106.2222, Y = 4.224 + 0.7584 X Residual SS = 39.7980, with 7 df.

Group B Sum Mean
$$\frac{Y}{X} = \frac{4}{6} = \frac{6}{12} = \frac{2}{2} = \frac{8}{7} = \frac{7}{0} = \frac{5}{9} = \frac{9}{2} = \frac{11}{11} = \frac{3}{10} = \frac{79}{79} = \frac{6.077}{6.077} = \frac{13}{10} = \frac{10}{10} = \frac{10}{10}$$

In testing for common regressions the procedure is to test first for common slopes. If the slopes differ significantly, the regressions are different and no further testing is needed. If the slopes are not significantly different, the difference in level is tested. The analysis table is as follows:

Table 36. Analysis of Covariance Table (after Freeze, 1967).

						Residual	!8
Group	df	Σy^2	Σxy	Σx^2	df	SS	MS
A B	8 12	100.8889 172.9231	80.5556 151.3846	106.2222 197.0769	7 11	39.7980 56.6370	
	erence	for testing of			18	96.4350 0.0067	5.3575 0.0067
Common	20	273.8120	231.9402	303.2991	19	96.4417	5.0759
Single regression	Differ 21	ence for test 322.7727	ting levels 213.0455	310.5909	1 20	80.1954 176.6371	80.1954
	A B Diffe Common slope Single	A 8 B 12 Difference Common 20 slope Differ Single 21	A 8 100.8889 B 12 172.9231 Difference for testing of the common 20 273.8120 Slope Difference for test Single 21 322.7727	A 8 100.8889 80.5556 B 12 172.9231 151.3846 Poolec Common 20 273.8120 231.9402 Single 21 322.7727 213.0455	A 8 100.8889 80.5556 106.2222 B 12 172.9231 151.3846 197.0769 Difference for testing common slopes	A 8 100.8889 80.5556 106.2222 7 B 12 172.9231 151.3846 197.0769 11 Pooled residuals Common 20 273.8120 231.9402 303.2991 19 slope Difference for testing levels Single 21 322.7727 213.0455 310.5909 20	A 8 100.8889 80.5556 106.2222 7 39.7980 B 12 172.9231 151.3846 197.0769 11 56.6370 Pooled residuals Difference for testing common slopes Common 20 273.8120 231.9402 303.2991 19 96.4417 slope Difference for testing levels Single 21 322.7727 213.0455 310.5909 20 176.6371

The first two lines in this table contain the basic data for the two groups. To the left are the total df for the groups (8 for A and 12 for B). In the center are the corrected sums of squares and products. The right side of the table gives the residual sums of squares and df. Since only simple linear regressions have been fitted, the residual df for each group is one less than the total df. The residual sum of squares is obtained by first computing the reduction sum of squares (SS due to regression) for each group (Equation 46). This reduction is then subtracted from the total sum of squares (Σy^2) to give the residuals.

$$SS_{reg} = \frac{(\Sigma xy)^2}{\Sigma x^2}$$
 (46)

Line 3 is obtained by pooling the residual df and residual sums of squares for the groups. Dividing the pooled sum of squares by the pooled df gives the pooled mean square.

The left side and center of line 5 are obtained by pooling the total df and the corrected sums of squares and products for the groups. These

are the values that are obtained under the assumption of no difference in the slopes of the group regressions. If the assumption is wrong, the residuals about this common slope regression will be considerably larger than the mean square residual about the separate regressions. The residual df and sum of squares are obtained by fitting a straight line to this pooled data. The residual df is one less than the total df. The residual sum of squares is

$$SS_{res} = 273.8120 = \frac{(231.9402)^2}{303.2991} = 96.4417$$

Now the difference between these residuals (line 4 = line 5 - line 3) provides a test of the hypothesis of common slopes. The error term for this test is the pooled mean square from line 3.

Test of common slopes:
$$F(1,18) = \frac{0.0067}{5.3575}$$

The difference is not significant.

If the slopes differed significantly, the groups would have different regressions, and we would stop here. Since the slopes did not differ, we now go on to test for a difference in the levels of the regression.

Line 7 is what we would have if we ignored the groups entirely, lumped all the original observations together and fitted a single linear regression. The combined data are as follows:

$$n = (9 + 13) = 22 \text{ (so the df for total} = 21)$$

$$\Sigma Y = (82 + 79) = 161, \ \Sigma Y^2 = (848 + 653) = 1,501$$

$$\Sigma y^2 = 1,501 - \frac{(161)^2}{22} = 322.7727$$

$$\Sigma X = (58 + 99) = 157, \ \Sigma X^2 = (480 + 951) = 1,431$$

$$\Sigma x^2 = 1,431 - \frac{(157)^2}{22} = 310.5909$$

$$\Sigma XY = (609 + 753) = 1,362, \ \Sigma xy = 1,362 - \frac{(157)(161)}{22} = 213.0455$$

From this we obtain the residual values on the right side of line 7.

$$SS_{res} = 322.7727 - \frac{(213.0455)^2}{310.5909} = 176.6371$$

If there is a real difference among the levels of the groups, the residuals about this single regression will be considerably larger than the mean square residual about the regression that assumed the same slopes but different levels. This difference (line 6 = line 7 - line 5) is tested against the residual mean square from line 5.

Test of levels:
$$F_{s(1,19)} = \frac{80.1954}{5.0759} = 15.80**$$

As the levels differ significantly, the groups do not have the same regressions.

11.3 Multiple Regression

11.3.1 Assumptions

The assumptions underlying the methods of fitting a multiple regression are the same as those for a simple linear regression (Section 11.2.1).

11.3.2 Least Squares Determination of the Multiple Regression Line

In some situations, the dependent variable (Y) is related to more than one independent variable $(X_1, X_2, X_3, \ldots, X_n)$. As we have shown, we could fit a simple linear regression to the data using only one independent variable. However, the amount of variation explained by a regression would probably be much better if we used all the independent variables together. The statistical method which enables us to do this is called multiple regression.

As was the case with simple linear regression, the best regression line can be determined using the method of least squares. Again, a series

of normal equations are established and solved simultaneously. For the general linear model with a constant term

$$Y = a + b_1 X_1 + b_2 X_2 + \dots + b_n X_n$$
 (47)

it is very easy to develop the normal equations, once you recognize the pattern. Each term in the <u>first row</u> contains an x_1 ; each term in the <u>second row</u> contains an x_2 ; and so on through the nth row. Each term in the <u>first column</u> has an x_1 and b_1 ; each term in the <u>second column</u> has a x_2 and x_3 and so on through the nth column. Each ith row will contain a term of the form $(\sum x_1^2)b_1$. On the right side of the equations, every equation has a term of $\sum x_1y$. For the general model presented above (Equation 47) the normal equations would be as follows:

$$(\Sigma x_1^2)b_1 + (\Sigma x_1 x_2)b_2 + (\Sigma x_1 x_3)b_3 + \dots + (\Sigma x_1 x_n)b_n = \Sigma x_n y$$
(48)

$$(\Sigma x_1 x_2)b_1 + (\Sigma x_2^2)b_2 + (\Sigma x_2 x_3)b_3 + \dots + (\Sigma x_2 x_n)b_n = \Sigma x_2 y$$
(49)

$$(\Sigma x_1 x_3) b_1 + (\Sigma x_2 x_3) b_2 + (\Sigma x_3^2) b_3 + \ldots + (\Sigma x_3 x_n) b_n = \Sigma x_3 y$$
(50)

$$(\Sigma x_1 x_n) b_1 + (\Sigma x_2 x_n) b_2 + (\Sigma x_3 x_n) b_3 + \ldots + (\Sigma x n^2) b_n = \Sigma x_n y$$
(51)

Once we have obtained the "b" coefficients, the constant term can be found using the general equation

$$a = \bar{Y} - b_1 \bar{X}_1 - b_2 \bar{X}_2 - b_3 \bar{X}_3 - \dots - b_n \bar{X}_n.$$
 (52)

The mechanics of the least squares determination of the multiple regression line are outlined using an illustrated example. (The example presented here has been taken directly from Freese, 1967. It is included with only minor modification because I feel it presents the concept in a very clear and concise manner.) Consider the data presented in Table

37. With this data we would like to fit an equation of the form $Y = a + b_1X_1 + b_2X_2 + b_3X_3$

Table 37. Data for the example illustrating the least squares determination of the multiple regression line (after Freese, 1967).

	Y	Х1	Х2	Х3
	65	41	79	75
	78	90	48	83
	85	53	67	74
	50	42	52	61
		42 57		01
	55	57	52	59
	59	32	82	73
	82	71	80	72
				66
	66	60	65	66
	113	98	96	99
	86	80	81	90
	104	101	78	86
	92		59	88
		100		
	96	84	84	93
	65	72	48	70
	81	55	93	85
	77	77	68	71
	83	98	51	84
	97	95	82	81
			70	78
	90	90		
	87	93	61	89
	74	45	96	81
	70	50	80	77
	75	60	76	70
	/ S	60		76
	75	68	74	
	93	75	96	85
	76	82	58	80
	76 71	72	58	68
	61	46	69	65
	01	40	03	0.3
Sums	2,206	1,987	2,003	2,179
Means (n = 28)	78.7857	70.9643	71.5357	77.8214

According to the principle of least squares, the best estimates of the "b" coefficients can be obtained by solving the set of least squares normal equations.

b₁ equation:
$$(\Sigma x_1^2)b_1 + (\Sigma x_1x_2)b_2 + (\Sigma x_1x_3)b_3 = \Sigma x_1y$$

b₂ equation: $(\Sigma x_1x_2)b_1 + (\Sigma x_2^2)b_2 + (\Sigma x_2x_3)b_3 = \Sigma x_2y$
b₃ equation: $(\Sigma x_1x_3)b_1 + (\Sigma x_2x_3)b_2 + (\Sigma x_3^2)b_3 = \Sigma x_3y$

where:
$$\Sigma x_i x_j = \Sigma X_i X_j - \frac{(\Sigma X_i)(\Sigma X_j)}{\Omega}$$

The corrected sums of squares and products are computed in the familiar manner:

$$\Sigma y^{2} = \Sigma Y^{2} - \frac{(\Sigma Y)^{2}}{n} = (65^{2} + \dots + 61^{2}) - \frac{(2206)^{2}}{28} = 5,974.7143$$

$$\Sigma x_{1}^{2} - \Sigma X_{1}^{2} - \frac{(\Sigma X_{1})^{2}}{n} = (41^{2} + \dots + 46^{2}) - \frac{(1987)^{2}}{28} = 11,436.9643$$

$$\Sigma x_{1}y = \Sigma X_{1}y - \frac{(\Sigma X_{1})(\Sigma Y)}{n} = (41)(65) + \dots + (46)(61) - \frac{(1,987)(2,206)}{28} = 6,428.7858$$

Similarly,
$$\Sigma x_1 x_2 = -1,171.4642$$

$$\Sigma x_1 x_3 = 3,458.8215$$

$$\Sigma x_2^2 = 5,998.9643$$

$$\Sigma x_2 x_3 = 1,789.6786$$

$$\Sigma x_2 y = 2,632.2143$$

$$\Sigma x_3^2 = 2,606.1072$$

$$\Sigma x_3 y = 3,327.9286$$

Putting these values in the normal equations gives:

$$11,436.9643b_1 - 1,171.4642b_2 + 3,458.8215b_3 = 6,428.7858$$

$$-1,171.4642b_1 + 5,998.9643b_2 + 1,789.6786b_3 = 2,632.2143$$

$$3,458.8215b_1 + 1,789.6786b_2 + 2,606.1072b_3 = 3,327.9286$$

These equations can be solved by any of the standard procedures for simultaneous equations. One approach is as follows:

1. Divide through each equation by the numerical coefficient of b_1 .

$$b_1 - 0.102,427,897b_2 + 0.302,424,788b_3 = -0.562,105,960$$

$$b_1 - 5.120,911,334b_2 - 1,527,727,949b_3 = -2.246,943,867$$

$$b_1 + 0.517,424,389b_2 + 0.753,466,809b_3 = 0.962,156,792$$

2. Subtract the second equation from the first and the third from the first so as to leave two equations in b₂ and b₃.

$$5.018,483,437b_2 + 1.830,152,737b_3 = 2.809,049,827$$

$$-0.619,852,286b_2 - 0.451,042,021b_3 = -0.400,050,832$$

3. Divide through each equation by the numerical coefficient of b₂.

$$b_2 + 0.364,682,430b_3 = 0.559,740,779$$

$$b_2 + 0.727,660,494b_3 = 0.645,397,042$$

4. Subtract the second of these equations from the first, leaving one equation in b3.

$$-0.362,978,064b_3 = -0.085,656,263$$

5. Solve for b3.

$$b_3 = \frac{-0.085,656,263}{-0.362,978,064} = 0.235,981,927$$

6. Substitute this value of b₃ in one of the equations (say the first) of step 3 and solve for b₂.

$$b_2 + (0.364,682,430)(0.235,981,927) = 0.559,740,779$$

 $b = 0.473,682,316$

7. Substitute the solutions for b_2 and b_3 in one of the equations (say the first) of step 1, and solve for b_1 .

 $b_1 = 0.539,257,459$

8. As a check, add up the original normal equations and substitute the solutions for b_1 , b_2 and b_3 .

$$13,724.3216b_1 = 6,617,1787b_2 + 7,854.6073b_3 = 12,388.9287$$

 $12,388.92869 = 12,388.9287$, check.

Given the values of b₁, b₂, and b₃ we can now compute

$$a = \hat{Y} - b_1 \bar{X}_1 - b_2 \bar{X}_2 - b_3 \bar{X}_3 = -11.7320$$

Thus, after rounding of the coefficients, the regression equation is

$$Y = -11.732 + 0.539 X_1 + 0.474 X_2 + 0.236 X_3$$

It should be noted that in solving the normal equations more digits have been carried than would be justified by the rules for number of significant digits. Unless this is done, the rounding errors may make it difficult to check the computations.

11.3.3 Testing the Significance of the Multiple Regression Line

At this point in our regression analysis we should ask, "How well does the regression line fit the data?" The analysis of variance procedure to be used here is similar to that outlined for the significance test of the simple linear regression line. However, in this case the degrees of freedom for the reduction are equal to the number of independent variables fitted. The reduction sum of squares for any least squares regression can be found using the general equation:

Therefore, for Freese's example

$$SS_{reg} = b_1(\Sigma x_1 y) + b_2(\Sigma x_2 y) + b_3(\Sigma x_2 y)$$

The anova table for the test of significance is as follows in Table 38:

Table 38. ANOVA results for the test of significance of the multiple regression developed from the data given in Table 36 (after Freese, 1967).

Source	df	SS	MS
Reduction due to X_1 , X_2 , and X_3 Residuals	. 3	5,498.9389 475.7754	1,832.9796 19.8240
Total	. 27	5,974.7143	

To test the significance of the regression we compute F_S where

$$F_S = \frac{\text{Reduction MS}}{\text{Residual MS}}$$

For the case at hand $F_s = 92.46$, which is significant at the 0.01 level.

In some instances we would like to know the contribution each independent variable makes in the prediction of the dependent variable. In other words, what portion of the total SS can be attributed to each individual independent variable. The statistical method to use for this type of analysis is stepwise regression. The procedures for stepwise regression are not outlined here, but can be found in any good statistics text.

11.3.4 <u>Coefficient of Multiple Determination</u>

The coefficient of multiple determination is calculated in the same manner as that for the simple linear regression.

$$r^2 = \frac{SS_{reg}}{SS_{tot}}$$
 (54)

For our illustrative example, $r^2 = 0.92$, which means 92 percent of the variation in Y is associated with the regression.

11.4 Curvilinear Regression

Only a very brief discussion of curvilinear regression is presented here. In general, many of the curvilinear relationships can be handled using the regression methods already presented. Consider the simple power function

$$Y = aX^b$$
 (55)

Water quality data collected from streams will very often follow this relationship. This function can be linearized using a simple log transformation (Equation 56). In addition, many other curvilinear relationships can be linearized. Chow (1964) presents a very extensive tabulation of transformations for linearization of different equations (Table 39).

$$\log Y = \log a + b \log X \tag{56}$$

However, some curvilinear functions, such as

$$Y = a + b^X$$

or

$$Y = a(X-b)^2$$

cannot be fitted by the methods already described. To regress these functions requires procedures beyond the scope of this paper.

Table 39. Transformations of linearization of different functions (after Chow, 1967).

	Type of function	Straight-lin	e coordinate	Equation in linear form
	13 pe or ranction	Absciasa	Ordinate	Equation in thear form
1 2 3 4 5 6 7	$y = a + bx$ $y = be^{-x}$ $y = ax^{b}$ $y = a_{0} + a_{1}x + a_{2}x^{2}$ $y = a + b/x$ $y = x/(a + bx)$ $y = a/(b + cx)$	z	y log y log y y y y y y y y y y y y y y y y y y y	$\begin{aligned} y &= a + b x \\ \log y &= \log b + (a \log c) x \\ \log y &= \log a + b \log x \\ &\left[\frac{y - y \cdot b}{x - x \cdot b}\right] = a_1 + 2a_1x \cdot b + a_1(x - x \cdot b) \\ y &= a + b 1/x \\ x/y &= a + b x \\ 1/y &= (b/a) + (c/a) x \end{aligned}$
8	$y = c + be^{az}$	z	$\log \frac{\Delta y}{\Delta x}$	$\left[\log \frac{dy}{dx}\right] = \log (ab) + (a \log \epsilon) x $
	$y = c + ax^{b}$ $y = c + \frac{b}{x - a}$ $y = c + \frac{x}{a + bx}$	log x x x0 x	$ \begin{array}{c} \Delta y \\ \Delta z \\ z - z_0 \\ y - y_0 \\ z - z_0 \\ y - y_0 \end{array} $	$\begin{bmatrix} \log \frac{dy}{dx} \end{bmatrix} = \log (ab) + (b-1)[\log x]$ $\begin{bmatrix} \frac{x-x_0}{y-y_0} \end{bmatrix} = -\frac{a-x_0}{c-y_0} + \frac{1}{c-y_0}[x-x_0]$ $\begin{bmatrix} \frac{x-x_0}{y-y_0} \end{bmatrix} = (a+bx_0) + \frac{b(a+bx_0)}{a}[x]$
12	$y = d + cx + be^{ax}$	z .	$\log \frac{\Delta^2 y}{\Delta x^2}$	
13	$y = dc^x b^m$, where $m = a^x$	z	$\log \frac{\Delta^2(\log y)}{\Delta x^2}$	$\begin{bmatrix} y - be^{ax} \end{bmatrix} = d + c[x] \\ \begin{bmatrix} \frac{\log d^2(\log y)}{dx^2} \end{bmatrix} = \log \begin{bmatrix} \frac{(\log b)(\log a)^2}{(\log c)^2} \end{bmatrix} + (\log a)[x]$
14	$y = de^{cx} + he^{us}$	<u> </u>	<u>Vh+2</u> V k	$\begin{bmatrix} \log y - a^x \log b \end{bmatrix} = \log d + (\log e) x $ $\begin{bmatrix} \frac{y_{k+1}}{y_k} \end{bmatrix} = -e^{(a+e)\Delta x} + (e^{a\Delta x} + e^{-\Delta x}) \begin{bmatrix} \frac{y_{k+1}}{y_k} \end{bmatrix}$ $\lim_{x \to \infty} d + b e^{(a-e)x} $
15	$y = e^{ax}(d\cos bx + c\sin bx)$	<u>V±+1</u>	N#	$\begin{bmatrix} \frac{y_{k+1}}{y_k} \end{bmatrix} = -e^{za\Delta x} = (2e^{a\Delta x}\cos b \Delta x) \left[\frac{y_{k+1}}{y_k} \right]$ $\begin{bmatrix} \frac{ye^{-ax}}{\cos bx} \end{bmatrix} = d + c \tan bx $

REMARK: In types 14 and 15, ys, ys+1, and ys+2 are consecutive values for an increment 4s.

12.0 Literature Cited

- Averett, R. 1979. The use of select parametric statistical methods for the analysis of water quality data. Presented at USGS - BLM Conference on Water-Quality in Energy Areas. January 10-11, Denver, Colorado. 16p.
- Calquhoun, D. 1971. Lectures on biostatistics. Claredon Press.
- Elliott, J.M. 1971. Some methods for the statistical analysis of Benthic Invertebrates. Fresh Water Biol. Assoc. Sci. Pub. 25. 144p.
- Freese, F. 1967. Elementary statistical methods for foresters.

 Agriculture Handbook 317. USDA Forest Service. 87p.
- Glass, G.V., P.D. Peckham and J.R. Sanders. 1972. Consequences of failure to meet assumptions underlying the fixed effects analysis of variance and covariance. Rev. Educ. Res. 42:237-288.
- Ingwersen, J.B. 1981a. Statistical analysis using SAS at the USEPA National Computer Center. WSDG Application Document WSDG-AD-00001, USDA Forest Service, 51p.
- Ingwersen, J.B. 1981b. Statistical analysis using SPSS at the USDA-Fort Collins Computer Center. WSDG Application Document WSDG-AD-00002, USDA Forest Service, 9p.
- Nash, A.J. 1965. Statistical techniques in forestry. Lucas Brothers Publishers. Columbia, Missouri. 146 p. Statistical Analysis System. 1979.
- SAS Users Guide. SAS Institute Inc., 1980. P.O. Box 10066, Raleigh, North Carolina 17605. 494 p.
- Shapiro, S.S. and M.B. Wilk. 1965. An analysis of variance test for normality (complete samples). Biometrika. Vol. 52, pp. 591-611.
- Sokal, R.R. and F.J. Rohlf. 1969. Biometry. W.H. Freeman and Company. San Francisco. 776 p.
- Statistical Package for the Social Sciences. 1975. SPSS: Statistical Package for the Social Sciences. McGraw-Hill, Inc. New York, NY 675p.
- Stephans, M.A. 1974. Use of the Kolmogorov-Smirnov, Cramer-Von Mises and related statistics without extensive tables. J. American Statistical Association, 69:730.
- Steel, R.G.D. and J. H. Torrie. 1960. Principles and procedures of statistics with special reference to the biological sciences. McGraw-Hill Book Company, Inc. 481 p.

APPENDIX A

STATISTICAL TABLES

Table A-1. Probability of a random value of z = $(X-\mu)/\sigma$ being greater than the values tabulated in the margins (Steel and Torrie, 1960).

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641
.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
••	10110	10.05				.520 .	.0220	.0.52	.5150	.0121
.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
.5			.1700	.1702	.1750	,	.1005	.1000	.1055	.1011
1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
	0000	.0755	.0770	.0701	.0743	.0755	.0721	.0700	.0034	.0001
1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
1.5	.0207	.0201	.0274	.0200	.0202	.0230	.0230	.0277	.0239	.0233
2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
2.2	.0179	.0136	.0132	.0129	.0102	.0122	.0119	.0116	.0113	.0110
2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0067	.0064
4.7	.0002	.0000	.0070	.0075	.0075	.0071	.0003	.0000	.0000	.0004
2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
2.6	.0047	.0045	.0044	.0043	.0033	.0040	.0032	.0031	.0037	.0036
2.7	.0035	.0043	.0033	.0032	.0031	.0030	.0039	.0038	.0037	.0026
2.8	.0026	.0025	.0024	.0032	.0023	.0022	.0023	.0020	.0020	.0019
2.9	.0019	.0023	.0018	.0023	.0016	.0016	.0015	.0015	.0014	.0014
2.9	.0019	.0010	.0016	.0017	.0010	.0010	.0015	.0015	.0014	.0014
3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
3.1	.0010	.0013	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
3.2	.0007	.0003	.0003	.0005	.0006	.0006	.0006	.0005	.0007	.0005
3.3	.0007	.0007	.0005	.0004	.0004	.0004	.0004	.0003	.0003	.0003
3.4	.0003	.0003	.0003	.0003	.0003	.0004	.0004	.0004	.0004	.0003
J.Y	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
3.6	.0002	.0002	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001
3.9	.0000									

Table A-2. Values of t (Steel and Torrie, 1960).

df 0.5 0.4 0.3 0.2 0.1 0.05 0.02 0.01 0.001 1 1.000 1.376 1.963 3.078 6.314 12.706 31.821 63.657 636.319 2 .816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 31.598 3 .765 .973 1.250 1.638 2.353 3.182 4.541 5.841 12.941 4 .741 .941 1.190 1.533 2.132 2.776 3.747 4.604 8.610 5 .727 .920 1.156 1.476 2.015 2.571 3.365 4.032 6.859 7 .711 .896 1.119 1.415 1.895 2.365 2.998 3.499 5.405 8 .706 .889 1.108 1.345 1.383 1.822 2.288 3.355 5.041 10 .700 .879 1.093		Probability of a larger value of t, sign ignored											
1 1.000 1.376 1.963 3.078 6.314 12.706 31.821 63.657 636.319 2 .816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 31.598 3 .765 .975 1.250 1.638 2.353 3.182 4.541 5.841 12.941 4 .741 .941 1.190 1.533 2.132 2.776 3.747 4.604 8.610 5 .727 .920 1.156 1.476 2.015 2.571 3.365 4.032 6.859 6 .718 .906 1.134 1.440 1.943 2.447 3.143 3.707 5.958 7 .711 .596 1.110 1.415 1.895 2.365 2.998 3.499 5.405 8 .706 .589 1.108 1.397 1.860 2.306 2.896 3.355 5.041 9 .703 .533 1.100 1.383 1.833 2.262 2.821 3.250 4.781 10 .700 .579 1.093 1.372 1.812 2.228 2.764 3.169 4.587 11 .697 .576 1.088 1.363 1.796 2.201 2.718 3.106 4.437 12 .695 .573 1.083 1.356 1.782 2.179 2.681 3.055 4.318 13 .694 .570 1.079 1.350 1.771 2.160 2.550 3.012 4.221 14 .692 .548 1.076 1.345 1.761 2.145 2.624 2.977 4.140 15 .691 .566 1.074 1.341 1.753 2.131 2.602 2.947 4.073 16 .690 .565 1.074 1.341 1.753 2.131 2.602 2.947 4.073 17 .689 .563 1.066 1.323 1.730 2.100 2.553 2.998 3.965 18 .688 .562 1.067 1.333 1.740 2.110 2.557 2.898 3.965 18 .688 .561 1.066 1.323 1.729 2.093 2.539 2.861 3.883 20 .687 .540 1.064 1.325 1.725 2.086 2.528 2.345 3.850 21 .686 .555 1.066 1.323 1.714 2.009 2.500 2.807 3.745 22 .686 .555 1.066 1.323 1.714 2.009 2.500 2.807 3.745 24 .685 .557 1.058 1.315 1.706 2.056 2.479 2.779 3.745 25 .684 .556 1.058 1.315 1.706 2.056 2.479 2.779 3.745 26 .684 .556 1.058 1.315 1.706 2.056 2.479 2.779 3.745 27 .684 .556 1.058 1.315 1.706 2.056 2.479 2.779 3.745 28 .683 .554 1.055 1.311 1.609 2.045 2.485 2.787 3.725 29 .683 .554 1.055 1.311 1.609 2.045 2.467 2.763 3.674 29 .683 .554 1.055 1.311 1.609 2.045 2.467 2.763 3.674 29 .683 .554 1.055 1.311 1.609 2.045 2.467 2.763 3.674 29 .683 .554 1.055 1.311 1.609 2.045 2.447 2.753 3.666 20 .677 .545 1.041 1.289 1.658 1.980 2.338 2.617 3.373 20 .674 .542 1.036 1.282 1.645 1.980 2.338 2.617 3.373 20 .674 .542 1.036 1.282 1.645 1.980 2.336 2.358 2.617 3.373 20 .674 .542 1.036 1.282 1.645 1.980 2.338 2.617 3.373 20 .674 .542 1.036 1.282 1.645 1.980 2.358 2.567 3.291	df		0.4							0.001			
2		0.5	0.7	0.5	0.2	0.1	0.03	0.02	0.01	0.001			
3		1.000	1.376	1.963						636.619			
4 .741 .941 1.190 1.533 2.132 2.776 3.747 4.604 8.610 5 .727 .920 1.156 1.476 2.015 2.571 3.365 4.032 6.859 6 .718 .906 1.134 1.440 1.943 2.447 3.143 3.707 5.959 7 .711 .896 1.119 1.415 1.895 2.365 2.998 3.499 5.408 8 .706 .859 1.108 1.397 1.860 2.306 2.896 3.355 5.041 9 .703 .853 1.100 1.383 1.833 2.262 2.821 3.250 4.781 10 .700 .879 1.093 1.372 1.812 2.2228 2.764 3.169 4.587 11 .697 .876 1.088 1.363 1.796 2.201 2.718 3.106 4.437 12 .699 .873 1.079													
5 .727 .920 1.156 1.476 2.015 2.571 3.365 4.032 6.859 6 .718 .906 1.134 1.440 1.943 2.447 3.143 3.707 5.959 7 .711 .896 1.119 1.415 1.895 2.365 2.998 3.499 5.405 8 .706 .889 1.108 1.397 1.860 2.306 2.896 3.355 5.041 9 .703 .883 1.100 1.383 1.833 2.262 2.821 3.255 5.041 10 .700 .873 1.093 1.372 1.812 2.222 2.764 3.169 4.587 11 .697 .56 1.088 1.363 1.796 2.201 2.718 3.106 4.437 12 .695 .573 1.083 1.356 1.771 2.160 2.654 3.055 4.318 13 .691 .868 1.077										1			
7 .711 .S96 1.119 1.415 1.895 2.365 2.998 3.499 5.405 8 .706 .S89 1.108 1.397 1.860 2.306 2.986 3.355 5.041 9 .703 .S83 1.100 1.383 1.833 2.262 2.821 3.250 4.781 10 .700 .879 1.093 1.372 1.812 2.228 2.764 3.169 4.587 11 .697 .576 1.088 1.363 1.796 2.201 2.718 3.106 4.437 12 .695 .873 1.083 1.365 1.782 2.179 2.681 3.055 4.318 13 .694 .870 1.079 1.350 1.771 2.160 2.650 3.012 4.221 14 .692 .868 1.076 1.345 1.761 2.145 2.624 2.977 4.140 15 .691 .865 1.071 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>1</th> <th></th> <th></th> <th>6.859</th>							1			6.859			
8	6	.718	.906	1.134		1.943	2.447			5.959			
9													
10													
12 .695 .ST3 1.083 1.356 1.782 2.179 2.681 3.055 4.318 13 .694 .ST0 1.079 1.350 1.771 2.160 2.650 3.012 4.221 14 .692 .S68 1.076 1.345 1.761 2.145 2.624 2.977 4.140 15 .691 .S66 1.074 1.341 1.753 2.131 2.602 2.947 4.073 16 .690 .S65 1.071 1.337 1.746 2.120 2.583 2.921 4.015 17 .689 .S63 1.069 1.333 1.740 2.110 2.567 2.898 3.965 18 .688 .S61 1.066 1.328 1.729 2.093 2.530 2.861 3.883 20 .687 .S60 1.064 1.325 1.725 2.086 2.528 2.345 3.850 21 .686 .S59 1.061 1.323 1.721 2.080 2.518 2.31 3.712 <td< th=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4.587</td></td<>										4.587			
13	11	. 697								4.437			
14 .692 .568 1.076 1.345 1.761 2.145 2.624 2.977 4.140 15 .691 .566 1.074 1.341 1.753 2.131 2.602 2.947 4.073 16 .690 .865 1.071 1.337 1.746 2.120 2.583 2.921 4.015 17 .689 .863 1.069 1.333 1.740 2.110 2.567 2.898 3.965 18 .688 .862 1.067 1.330 1.734 2.101 2.552 2.878 3.922 19 .688 .861 1.066 1.328 1.729 2.093 2.539 2.861 3.830 20 .687 .860 1.064 1.323 1.721 2.080 2.518 2.831 3.819 21 .686 .859 1.063 1.323 1.721 2.080 2.518 2.831 3.819 22 .686 .855 1.061 </th <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>í</td> <td></td> <td></td> <td></td>							í						
15								1					
17		1								4.073			
18 688 .862 1.067 1.330 1.734 2.101 2.552 2.878 3.922 19 1688 .861 1.066 1.328 1.729 2.093 2.539 2.861 3.883 20 .687 .860 1.064 1.325 1.725 2.086 2.528 2.345 3.880 21 .686 .859 1.063 1.323 1.721 2.080 2.518 2.831 3.819 22 .686 .853 1.061 1.321 1.717 2.074 2.508 819 3.792 23 .685 .853 1.060 1.319 1.714 2.069 2.500 2.807 3.767 24 .685 .855 1.059 1.318 1.711 2.064 2.492 2.797 3.745 25 .684 .856 1.058 1.315 1.706 2.056 2.479 2.779 3.707 27 .684 .855 1.057 1.314 1.703 2.052 2.473 2.771 3.690 28 .683 .853 1.056 1.313 1.701 2.042 2.467 2.756 3.674 29 .683		.690								4.015			
19					1.333								
20										3.883			
22										3.850			
23										3.819			
24 .685 .857 1.059 1.318 1.711 2.064 2.492 2.797 3.745 25 .684 .856 1.058 1.316 1.708 2.060 2.485 2.787 3.725 26 .684 .856 1.058 1.315 1.706 2.056 2.479 2.779 3.707 27 .684 .855 1.057 1.314 1.703 2.052 2.473 2.771 3.690 28 .683 .855 1.056 1.313 1.701 2.048 2.467 2.763 3.674 29 .683 .854 1.055 1.311 1.699 2.045 2.462 2.756 3.659 30 .683 .854 1.055 1.310 1.697 2.042 2.457 2.750 3.646 40 .681 .851 1.050 1.303 1.684 2.021 2.423 2.704 3.551 60 .679 .843 1.046 1.296 1.671 2.000 2.390 2.660 3.460 120 .677 .845 1.041 1.289 1.658 1.980 2.358 2.617 3.373 .674 .842)											
25 .684 .856 1.058 1.316 1.708 2.060 2.485 2.787 3.725 26 .684 .856 1.058 1.315 1.706 2.056 2.479 2.779 3.707 27 .684 .853 1.057 1.314 1.703 2.052 2.473 2.771 3.690 28 .683 .853 1.056 1.313 1.701 2.048 2.467 2.763 3.674 29 .683 .854 1.055 1.311 1.699 2.045 2.462 2.756 3.659 30 .683 .854 1.055 1.310 1.697 2.042 2.457 2.750 3.646 40 .681 .851 1.050 1.303 1.684 2.021 2.423 2.704 3.551 60 .679 .848 1.046 1.296 1.671 2.000 2.390 2.660 3.460 120 .677 .845 1.041 1.289 1.658 1.980 2.358 2.617 3.373 60 .674 .842 1.036 1.282 1.645 1.960 2.326 2.576 3.291 4f 0.25 0.2 0.15 0.1 0.05 0.025 0.01 0.005 0.0009										3.745			
27										3.725			
28								1		3.707			
29													
30													
60 .679 .543 1.046 1.296 1.671 2.000 2.390 2.660 3.460 120 .677 .545 1.041 1.289 1.658 1.980 2.358 2.617 3.373 ∞ .674 .542 1.036 1.282 1.645 1.960 2.326 2.576 3.291 df 0.25 0.2 0.15 0.1 0.05 0.025 0.01 0.005 0.0009		t .		i						3.646			
120										3.351			
0.25 0.2 0.15 0.1 0.05 0.025 0.01 0.005 0.0005													
df 0.25 0.2 0.15 0.1 0.05 0.025 0.01 0.005 0.0005								1					
df		.01-2		2.50,0	1.202	2.040	1.000	2.02.7	1				
	10	0.25	0.2	0.15	0.1	0.05	0.025	0.01	0.005	0.0005			
	df		F	robabilit	y of a lar	ger value	of t, sign	considere	:d				

Source: This table is abridged from Table III of Fisher and Yates, Statistical Tables for Biological, Agricultural, and Medical Research, published by Oliver and Boyd Ltd., Edinburgh, 1949, by permission of the authors and publishers.

Table A-3. Values of χ^2 (Steel and Torrie, 1960).

	1				Prob	ability of a la	rger value of	72 ²				· · · · · · · · · · · · · · · · · · ·	
df	.995	.990	.975	.950	.900	.750	.500	.250	.100	.050	.025	.010	.005
1 2 3 4 5	.04393 .0100 .0717 .207 .412	.0157 .0201 .115 .297 .554	.03982 .0506 .216 .484 .831	.0*393 .103 * .352 .711 1.15	.0158 .211 .584 1.06 1.61	. 102 .575 1.21 1.92 2.67	. 455 1.39 2.37 3.36 4.35	1.32 2.77 4.11 5.39 6.63	2.71 4.61 6.25 -7.78 9.24	3.84 5.99 7.81 9.49	5.02 7.38 9.35 11.1 12.8	6.63 9.21 11.3 13.3 15.1	7.88 10.6 12.8 14.9 16.7
6 7 8 9	.676 .989 1.34 1.73 2.16	. 872 1.24 1.65 2.09 2.56	1.24 1.69 2.18 2.70 3.25	1.64 2.17 2.73 3.33 3.94	2.20 2.83 3.49 4.17 4.87	3.45 4.25 5.07 5.90 6.74	5.35 6.35 7.34 8.34 9.34	7.84 9.04 10.2 11.4 12.5	10.6 12.0 13.4 14.7 16.0	12.6 14.1 15.5 16.9 18.3	14.4 16.0 17.5 19.0 20.5	16.8 18.5 20.1 21.7 23.2	18.5 20.3 22.0 23.6 25.2
11	2.60	3.05	3.82	4.57	5.58	7.58	10.3	13.7	17.3	19.7	21.9	24.7	26.8
12	3.07	3.57	4.40	5.23	6.30	8.44	11.3	14.8	18.5	21.0	23.3	26.2	28.3
13	3.57	4.11	5.01	5.89	7.04	9.30	12.3	16.0	19.8	22.4	24.7	27.7	29.8
14	4.07	4.66	5.63	6.57	7.79	10.2	13.3	17.1	21.1	23.7	26.1	29.1	31.3
15	4.60	5.23	6.26	7.26	8.55	11.0	14.3	18.2	22.3	25.0	27.5	30.6	32.8
16	5.14	5.81	6.91	7.96	9.31	11.9	15.3	19.4	23.5	26.3	28.8	32.0	34.3
17	5.70	6.41	7.56	8.67	10.1	12.8	16.3	20.5	24.8	27.6	30.2	33.4	35.7
18	6.26	7.01	8.23	9.39	10.9	13.7	17.3	21.6	26.0	28.9	31.5	34.8	37.2
19	6.84	7.63	8.91	10.1	11.7	14.6	18.3	22.7	27.2	30.1	32.9	36.2	38.6
20	7.43	8.26	9.59	10.9	12.4	15.5	19.3	23.8	28.4	31.4	34.2	37.6	40.0
21	8.03	8.90	10.3	11.6	13.2	16.3	20.3	24.9	29.6	32.7	35.5	38.9	41.4
22	8.64	9.54	11.0	12.3	14.0	17.2	21.3	26.0	30.8	33.9	36.8	40.3	42.8
23	9.26	10.2	11.7	13.1	14.8	18.1	22.3	27.1	32.0	35.2	38.1	41.6	44.2
24	9.89	10.9	12.4	13.8	15.7	19.0	23.3	28.2	33.2	36.4	39.4	43.0	45.6
25	10.5	11.5	13.1	14.6	16.5	19.9	24.3	29.3	34.4	37.7	40.6	44.3	46.9
26	11.2	12.2	13.8	15.4	17.3	20.8	25.3	30.4	35.6	38.9	41.9	45.6	48.3
27	11.8	12.9	14.6	16.2	18.1	21.7	26.3	31.5	36.7	40.1	43.2	47.0	49.6
28	12.5	13.6	15.3	16.9	18.9	22.7	27.3	32.6	37.9	41.3	44.5	48.3	51.0
29	13.1	14.3	16.0	17.7	19.8	23.6	28.3	33.7	39.1	42.6	45.7	49.6	52.3
30	13.8	15.0	16.8	18.5	20.6	24.5	29.3	34.8	40.3	43.8	47.0	50.9	53.7
40	20.7	22.2	24.4	26.5	29.1	33.7	39.3	45.6	51.8	55.8	59.3	63.7	66.8
50	28.0	29.7	32.4	34.8	37.7	42.9	49.3	56.3	63.2	67.5	71.4	76.2	79.5
60	35.5	37.5	40.5	43.2	46.5	52.3	59.3	67.0	74.4	79.1	83.3	88.4	92.0

Source: This table is abridged from "Table of percentage points of the χ^2 distribution," Biometrika, 32: 188-189 (1941), by Catherine M. Thompson. It is published here with kind permission of the author and the editor of Biometrika.

Table A-4. Values of F (Steel and Torrie, 1960).

Denomi-	Probability				N	umerator a	y			
nator	of a larger	1	2	3	4	5	6	7	8	9
1	.100 .050 .025 .010	39,86 161,4 647,8 4052 16211	49.50 199.5 799.5 4999.5 20000	53.59 21.5.7 864.2 5403 21615	55.83 224.6 899.6 5625 22500	57.24 230.2 921.8 5764 23056	58.20 234.0 937.1 5859 23437	58.91 236.8 948.2 5928 23715	59.44 238.9 956.7 5982 23925	59.86 240.5 963.3 6022 24091
2	.100	8.53	9.00	9.16	9.24	9.29	9.33	9.35	9.37	9.38
	.050	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38
	.025	38.51	39.00	39.17	39.25	39.30	39.33	39.36	39.37	39.39
	.010	98.50	99.00	99.17	99.25	99.30	99.33	99.36	99.37	99.39
	.005	198.5	199.0	199.2	199.2	199.3	199.3	199.4	199.4	199.4
3	.100	5.54	5.46	5.39	5.34	5.31	5.28	5.27	5.25	5.24
	.050	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81
	.025	17.44	16.04	15.44	15.10	14.88	14.73	14.62	14.54	14.47
	.010	34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49	27.35
	.005	55.55	49.80	47.47	46.19	45.39	44.84	44.43	44.13	43.88
4	.100	4.54	4.32	4.19	4.11	4.05	4.01	3.98	3.95	3.94
	.050	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00
	.025	12.22	10.65	9.98	9.60	9.36	9.20	9.07	8.98	8.90
	.010	21.20	18.00	16.69	15.98	15.52	15.21	14.98	14.80	14.66
	.005	31.33	26.28	24.26	23.15	22.46	21.97	21.62	21.35	21.14
5	.100	4.06	3.78	3.62	3.52	3.45	3.40	3.37	3.34	3.32
	.050	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77
	.025	10.01	8.43	7.76	7.39	7.15	6.98	6.85	6.76	6.68
	.010	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	10.16
	.005	22.78	18.31	16.53	15.56	14.94	14.51	14.20	13.96	13.77
6	.100	3.78	3.46	3.29	3.18	3.11	3.05	3.01	2.98	2.96
	.050	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10
	.025	8.81	7.26	6.60	6.23	5.99	5.82	5.70	5.60	5.52
	.010	13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.98
	.005	18.63	14.54	12.92	12.03	11.46	11.07	10.79	10.57	10.39
7	.100 .050 .025 .010	3.59 5.59 8.07 12.25 16.24	3.26 4.74 6.54 9.55 12.40	3.07 4.35 5.89 8.45 10.88	2.96 4.12 5.52 7.85 10.05	2.88 3.97 5.29 7.46 9.52	2.83 3.87 5.12 7.19 9.16	2.78 3.79 4.99 6.99 8.89	2.75 3.73 4.90 6.84 8.68	2.72 3.68 4.82 6.72 8.51
8	.100	3.46	3.11	2.92	2.81	2.73	2.67	2.62	2.59	2.56
	.050	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39
	.025	7.57	6.06	5.42	5.05	4.82	4.65	4.53	4.43	4.36
	.010	11.26	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91
	.005	14.69	11.04	9.60	8.81	8.30	7.95	7.69	7.50	7.34
9	.100	3.36	3.01	2.81	2.69	2.61	2,55	2.51	2.47	2.44
	.050	5.12	4.26	3.86	3.63	3.48	3,37	3.29	3.23	3.18
	.025	7.21	5.71	5.08	4.72	4.48	4,32	4.20	4.10	4.03
	.010	10.56	8.02	6.99	6.42	6.06	5,80	5.61	5.47	5.35
	.005	13.61	10.11	8.72	7.96	7.47	7,13	6.88	6.69	6.54
10	.100	3.29	2.92	2.73	2.61	2.52	2.46	2.41	2.38	2.35
	.050	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02
	.025	6.94	5.46	4.83	4.47	4.24	4.07	3.95	3.85	3.78
	.010	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94
	.005	12.83	9.43	8.08	7.34	6.87	6.54	6.30	6.12	5.97
11	.100	3.23	2.86	2.66	2.54	2.45	2.39	2.34	2.30	2.27
	.050	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90
	.025	6.72	5.26	4.63	4.28	4.04	3.88	3.76	3.66	3.59
	.010	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.63
	.005	12.23	8.91	7.60	6.88	6.42	6.10	5.86	5.68	5.54
12	.100	3.18	2.81	2.61	2.48	2.39	2.33	2.28	2.24	2.21
	.050	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80
	.025	6.55	5.10	4.47	4.12	3.89	3.73	3.61	3.51	3.44
	.010	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39
	.005	11.75	8.51	7.23	6.52	6.07	5.76	5.52	5.35	5.20
13	.100	3.14	2.76	2.56	2.43	2.35	2.28	2.23	2.20	2.16
	.050	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71
	.025	6.41	4.97	4.35	4.00	3.77	3.60	3.48	3.39	3.31
	.010	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	4.19
	.005	11.37	8.19	6.93	6.23	5.79	5.48	5.25	5.08	4.94
14	.100	3.10	2.73	2.52	2.39	2.31	2.24	2.19	2.15	2.12
	.050	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65
	.025	6.30	4.86	4.24	3.89	3.66	3.50	3.38	3.29	3.21
	.010	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	4.03
	.005	11.06	7.92	6.68	6.00	5.56	5.26	5.03	4.86	4.72

	Numerator df										
10	12	15	20	24	30	40	60	120	\$	P	df
60.19	60.71	61.22	61.74	62.00	62.26	62.53	62.79	63.06	63.33	.100	1
241.9	243.9	245.9	248.0	249.1	250.1	251.1	252.2	253.3	254.3	.050	
968.6	976.7	984.9	993.1	997.2	1001	1006	1010	1014	1018	.025	
6056	6106	6157	6209	6235	6261	6287	6313	6339	6366	.010	
24224	24426	24630	24836	24940	25044	25148	25253	25359	25465	.005	
9,39	9.41	9,42	9,44	9.45	9.46	9.47	9,47	9.48	9.49	.100	2
19,40	19.41	19,43	19,45	19.45	19.46	19.47	19,48	19.49	19.50	.050	
39,40	39.41	39,43	39,45	39.46	39.46	39.47	39,48	39.49	39.50	.025	
99,40	99.42	99,43	99,45	99.46	99.47	99.47	99,48	99.49	99.50	.010	
199,4	199.4	199,4	199,4	199.5	199.5	199.5	199,5	199.5	199.5	.005	
5.23	5.22	5.20	5.18	5.18	5.17	5.16	5.15	5.14	5.13	.100	3
8.79	8.74	8.70	8.66	8.64	8.62	8.59	8.57	8.55	8.53	.050	
14.42	14.34	14.25	14.17	14.12	14.08	14.04	13.99	13.95	13.90	.025	
27.23	27.05	26.87	26.69	26.60	26.50	26.41	26.32	26.22	26.13	.010	
43.69	43.39	43.08	42.78	42.62	42.47	42.31	42.15	41.99	41.83	.005	
3.92 5.96 8.84 14.55 20.97	3.90 5.91 8.75 14.37 20.70	3,87 5,86 8,66 14,20 20,44	3.84 5.80 8.56 14.02 20.17	3.83 5.77 8.51 13.93 20.03	3.82 5.75 8.46 13.84 19.89	3.80 5.72 8.41 13.75 19.75	3.79 5.69 8.36 13.65 19.61	3.78 5.66 8.31 13.56 19.47	3.76 5.63 8.26 13.46 19.32	.100 .050 .025 .010	4
3.30	3.27	3.24	3.21	3.19	3.17	3.16	3.14	3.12	3.10	.100	5
4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.43	4.40	4.36	.050	
6.62	6.52	6.43	6.33	6.28	6.23	6.18	6.12	6.07	6.02	.025	
10.05	9.89	9.72	9.55	9.47	9.38	9.29	9.20	9.11	9.02	.010	
13.62	13.38	13.15	12.90	12.78	12.66	12.53	12.40	12.27	12.14	.005	
2.94	2.90	2.87	2.84	2.82	2.80	2.78	2.76	2.74	2.72	.100	6
4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.74	3.70	3.67	.050	
5.46	5.37	5.27	5.17	5.12	5.07	5.01	4.96	4.90	4.85	.025	
7.87	7.72	7.56	7.40	7.31	7.23	7.14	7.06	6.97	6.88	.010	
10.25	10.03	9.81	9.59	9.47	9.36	9.24	9.12	9.00	8.88	.005	
2.70	2.67	2.63	2.59	2.58	2.56	2.54	2.51	2.49	2.47	.100	7
3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.30	3.27	3.23	.050	
4.76	4.67	4.57	4.47	4.42	4.36	4.31	4.25	4.20	4.14	.025	
6.62	6.47	6.31	6.16	6.07	5.99	5.91	5.82	5.74	5.65	.010	
8.38	8.18	7.97	7.75	7.65	7.53	7.42	7.31	7.19	7.08	.005	
2.54	2.50	2.46	2.42	2.40	2.38	2.36	2.34	2.32	2.29	.100	8
3.35	3.28	3.22	3.15	3.12	3.08	3.04	3.01	2.97	2.93	.050	
4.30	4.20	4.10	4.00	3.95	3.89	3.84	3.78	3.73	3.67	.025	
5.81	5.67	5.52	5.36	5.28	5.20	5.12	5.03	4.95	4.86	.010	
7.21	7.01	6.81	6.61	6.50	6.40	6.29	6.18	6.06	5.95	.005	
2.42	2.38	2.34	2.30	2.28	2.25	2.23	2.21	2.18	2.16	.100	9
3.14	3.07	3.01	2.94	2.90	2.86	2.83	2.79	2.75	2.71	.050	
3.96	3.87	3.77	3.67	3.61	3.56	3.51	3.45	3.39	3.33	.025	
5.26	5.11	4.96	4.81	4.73	4.65	4.57	4.48	4.40	4.31	.010	
6.42	6.23	6.03	5.83	5.73	5.62	5.52	5.41	5.30	5.19	.005	
2.32	2.28	2.24	2.20	2.18	2.16	2.13	2.11	2.08	2.06	.100°	10
2.98	2.91	2.85	2.77	2.74	2.70	2.66	2.62	2.58	2.54	.050	
3.72	3.62	3.52	3.42	3.37	3.31	3.26	3.20	3.14	3.08	.025	
4.85	4.71	4.56	4.41	4.33	4.25	4.17	4.08	4.00	3.91	.010	
5.85	5.66	5.47	5.27	5.17	5.07	4.97	4.86	4.75	4.64	.005	
2.25	2.21	2.17	2.12	2.10	2.08	2.05	2.03	2.00	1.97	.100	11
2.85	2.79	2.72	2.65	2.61	2.57	2.53	2.49	2.45	2.40	.050	
3.53	3.43	3.33	3.23	3.17	3.12	3.06	3.00	2.94	2.88	.025	
4.54	4.40	4.25	4.10	4.02	3.94	3.86	3.78	3.69	3.60	.010	
5.42	5.24	5.05	4.86	4.76	4.65	4.55	4.44	4.34	4.23	.005	
2.19	2.15	2.10	2.06	2.04	2.01	1.99	1.96	1.93	1.90	.100	12
2.75	2.69	2.62	2.54	2.51	2.47	2.43	2.38	2.34	2.30	.050	
3.37	3.28	3.18	3.07	3.02	2.96	2.91	2.85	2.79	2.72	.025	
4.30	4.16	4.01	3.86	3.78	3.70	3.62	3.54	3.45	3.36	.010	
5.09	4.91	4.72	4.53	4.43	4.33	4.23	4.12	4.01	3.90	.005	
2.14	2.10	2.05	2.01	1.98	1.96	1.93	1.90	1.88	1.85	.100	13
2.67	2.60	2.53	2.46	2.42	2.38	2.34	2.30	2.25	2.21	.050	
3.25	3.15	3.05	2.95	2.89	2.84	2.78	2.72	2.66	2.60	.025	
4.10	3.96	3.82	3.66	3.59	3.51	3.43	3.34	3.25	3.17	.010	
4.82	4.64	4.46	4.27	4.17	4.07	3.97	3.87	3.76	3.65	.005	
2.10	2.05	2.01	1.96	1.94	1.91	1.89	1.86	1.83	1.80	.100	14
2.60	2.53	2.46	2.39	2.35	2.31	2.27	2.22	2.18	2.13	.050	
3.15	3.05	2.95	2.84	2.79	2.73	2.67	2.61	2.55	2.49	.025	
3.94	3.80	3.66	3.51	3.43	3.35	3.27	3.18	3.09	3.00	.010	
4.60	4.43	4.25	4.06	3.96	3.86	3.76	3.66	3.55	3.44	.005	

Denomi-	Probability		· · · · · · · · · · · · · · · · · · ·		N	umerator a	lf.			
nator df	of a larger	1	2	3	4	5	6	7	8	9
15	.100	3.07	2.70	2.49	2.36	2.27	2.21	2.16	2.12	2.09
	.050	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59
	.025	6.20	4.77	4.15	3.80	3.58	3.41	3.29	3.20	3.12
	.010	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89
	.005	10.80	7.70	6.48	5.80	5.37	5.07	4.85	4.67	4.54
16	.100	3.05	2.67	2.46	2.33	2.24	2.18	2.13	2.09	2.06
	.050	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54
	.025	6.12	4.69	4.08	3.73	3.50	3.34	3.22	3.12	3.05
	.010	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.78
	.005	10.58	7.51	6.30	5.64	5.21	4.91	4.69	4.52	4.38
17	.100	3.03	2.64	2.44	2.31	2.22	2.15	2.10	2.06	2.03
	.050	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49
	.025	6.04	4.62	4.01	3.66	3.44	3.28	3.16	3.06	2.98
	.010	8.40	6.11	5.18	4.67	4.34	4.10	3.93	3.79	3.68
	.005	10.38	7.35	6.16	5.50	5.07	4.78	4.56	4.39	4.25
18	.100	3.01	2.62	2.42	2.29	2.20	2.13	2.08	2.04	2.00
	.050	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46
	.025	5.98	4.56	3.95	3.61	3.38	3.22	3.10	3.01	2.93
	.010	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.60
	.005	10.22	7.21	6.03	5.37	4.96	4.66	4.44	4.28	4.14
19	.100	2.99	2.61	2.40	2.27	2.18	2.11	2.06	2.02	1.98
	.050	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42
	.025	5.92	4.51	3.90	3.56	3.33	3.17	3.05	2.96	2.88
	.010	8.18	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.52
	.005	10.07	7.09	5. 92	5.27	4.85	4.56	4.34	4.18	4.04
20	.100	2.97	2.59	2.38	2.25	2.16	2.09	2.04	2.00	1.96
	.050	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39
	.025	5.87	4.46	3.86	3.51	3.29	3.13	3.01	2.91	2.84
	.010	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46
	.005	9.94	6.99	5.82	5.17	4.76	4.47	4.26	4.09	3.96
21	.100	2:96	2.57	2.36	2.23	2.14	2.08	2.02	1.98	1.95
	.050	4:32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37
	.025	5:83	4.42	3.82	3.48	3.25	3.09	2.97	2.87	2.80
	.010	8:02	5.78	4.87	4.37	4.04	3.81	3.64	3.51	3.40
	.005	9:83	6.89	5.73	5.09	4.68	4.39	4.18	4.01	3.88
22	.100	2.95	2.56	2.35	2.22	2.13	2.06	2.01	1.97	1.93
	.050	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34
	.025	5.79	4.38	3.78	3.44	3.22	3.05	2.93	2.84	2.76
	.010	7.95	5.72	4.62	4.31	3.99	3.76	3.59	3.45	3.35
	.005	9.73	6.81	5.65	5.02	4.61	4.32	4.11	3.94	3.81
23	.100	2.94	2.55	2.34	2.21	2.11	2.05	1.99	1.95	1.92
	.050	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32
	.025	5.75	4.35	3.75	3.41	3.18	3.02	2.90	2.81	2.73
	.010	7.88	5.66	4.76	4.26	3.94	3.71	3.54	3.41	3.30
	.005	9.63	6.73	5.58	4.95	4.54	4.26	4.05	3.88	3.75
24	.100	2.93	2.54	2.33	2.19	2.10	2.04	1.98	1.94	1.91
	.050	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30
	.025	5.72	4.32	3.72	3.38	3.15	2.99	2.87	2.78	2.70
	.010	7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.26
	.005	9.55	6.66	5.52	4.89	4.49	4.20	3.99	3.83	3.69
25	.100	2.92	2.53	2.32	2.18	2.09	2.02	1.97	1.93	1.89
	.050	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28
	.025	5.69	4.29	3.69	3.35	3.13	2.97	2.85	2.75	2.68
	.010	7.77	5.57	4.68	4.18	3.85	3.63	3.46	3.32	3.22
	.005	9.48	6,60	5.46	4.84	4.43	4.15	3.94	3.78	3.64
26	.100	2.91	2.52	2.31	2.17	2.08	2.01	1.96	1.92	1.88
	.050	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27
	.025	5.66	4.27	3.67	3.33	3.10	2.94	2.82	2.73	2.65
	.010	7.72	5.53	4.64	4.14	3.82	3.59	3.42	3.29	3.18
	.005	9.41	6.54	5.41	4.79	4.38	4.10	3.89	3.73	3.60
27	.100	2,90	2.51	2.30	2.17	2.07	2.00	1.95	1.91	1.87
	.050	4,21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25
	.025	5,63	4.24	3.65	3.31	3.08	2.92	2.80	2.71	2.63
	.010	7,68	5.49	4.60	4.11	3.78	3.56	3.39	3.26	3.15
	.005	9,34	6.49	5.36	4.74	4.34	4.06	3.85	3.69	3.56
28	.100	2.89	2.50	2.29	2.16	2.06	2.00	1.94	1.90	1.87
	.050	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24
	.025	5.61	4.22	3.63	3.29	3.06	2.90	2.78	2.69	2.61
	.010	7.64	5.45	4.57	4.07	3.75	3.53	3.36	3.23	3.12
	.005	9.28	6.44	5.32	4.70	4.30	4.02	3.81	3.65	3.52

	Numerator df										
10	12	15	20	24	30	40	60	120	æ	P	df
2.06	2.02	1.97	1.92	1.90	1.87	1.85	1.82	1.79	1.76	.100	15
2.54	2.48	2.40	2.33	2.29	2.25	2.20	2.16	2.11	2.07	.050	
3.06	2.96	2.86	2.76	2.70	2.64	2.59	2.52	2.46	2.40	.025	
3.80	3.67	3.52	3.37	3.29	3.21	3.13	3.05	2.96	2.87	.010	
4.42	4.25	4.07	3.88	3.79	3.69	3.58	3.48	3.37	3.26	.005	
2.03	1.99	1.94	1.89	1.87	1.84	1.81	1.78	1.75	1.72	.100	16
2.49	2.42	2.35	2.28	2.24	2.19	2.15	2.11	2.06	2.01	.050	
2.99	2.89	2.79	2.68	2.63	2.57	2.51	2.45	2.38	2.32	.025	
3.69	3.55	3.41	3.26	3.18	3.10	3.02	2.93	2.84	2.75	.010	
4.27	4.10	3.92	3.73	3.64	3.54	3.44	3.33	3.22	3.11	.005	
2.00	1.96	1.91	1.86	1.84	1.81	1.78	1.75	1.72	1.69	.100	17
2.45	2.38	2.31	2.23	2.19	2.15	2.10	2.06	2.01	1.96	.050	
2.92	2.82	2.72	2.62	2.56	2.50	2.44	2.38	2.32	2.25	.025	
3.59	3.46	3.31	3.16	3.08	3.00	2.92	2.83	2.75	2.65	.010	
4.14	3.97	3.79	3.61	3.51	3.41	3.31	3.21	3.10	2.98	.005	
1.98	1.93	1.89	1.84	1.81	1.78	1.75	1.72	1.69	1.66	.100	18
2.41	2.34	2.27	2.19	2.15	2.11	2.06	2.02	1.97	1.92	.050	
2.87	2.77	2.67	2.56	2.50	2.44	2.38	2.32	2.26	2.19	.025	
3.51	3.37	3.23	3.08	3.00	2.92	2.84	2.75	2.66	2.57	.010	
4.03	3.86	3.68	3.50	3.40	3.30	3.20	3.10	2.99	2.87	.005	
1.96	1.91	1.86	1.81	1.79	1.76	1.73	1.70	1.67	1.63	.100	19
2.38	2.31	2.23	2.16	2.11	2.07	2.03	1.98	1.93	1.88	.050	
2.82	2.72	2.62	2.51	2.45	2.39	2.33	2.27	2.20	2.13	.025	
3.43	3.30	3.15	3.00	2.92	2.84	2.76	2.67	2.58	2.49	.010	
3.93	3.76	3.59	3.40	3.31	3.21	3.11	3.00	2.89	2.78	.005	
1.94	1.89	1.84	1.79	1.77	1.74	1.71	1.68	1.64	1.61	.100	20
2.35	2.28	2.20	2.12	2.08	2.04	1,99	1.95	1.90	1.84	.050	
2.77	2.68	2.57	2.46	2.41	2.35	2.29	2.22	2.16	2.09	.025	
3.37	3.23	3.09	2.94	2.86	2.78	2.69	2.61	2.52	2.42	010	
3.85	3.68	3.50	3.32	3.22	3.12	3.02	2.92	2.81	2.69	.005	
1.92	1.87	1.83	1.78	1.75	1.72	1.69	1.66	1.62	1.59	.100	21
2.32	2.25	2.18	2.10	2.05	2.01	1.96	1.92	1.87	1.81	.050	
2.73	2.64	2.53	2.42	2.37	2.31	2.25	2.18	2.11	2.04	.025	
3.31	3.17	3.03	2.88	2.80	2.72	2.64	2.55	2.46	2.36	.010	
3.77	3.60	3.43	3.24	3.15	3.05	2.95	2.84	2.73	2.61	.005	
1.90	1.85	1.81	1.76	1.73	1.70	1.67	1.64	1.60	1.57	.100	2 2
2.30	2.23	2.15	2.07	2.03	1.98	1.94	1.89	1.84	1.78	.050	
2.70	2.60	2.50	2.39	2.33	2.27	2.21	2.14	2.08	2.00	.025	
3.26	3.12	2.98	2.83	2.75	2.67	2.58	2.50	2.40	2.31	.010	
3.70	3.54	3.36	3.18	3.08	2.98	2.88	2.77	2.66	2.55	.005	
1.89 2.27 2.67 3.21 3.64	1.84 2.20 2.57 3.07 3.47	1.80 2.13 2.47 2.93 3.30	1.74 2.05 2.36 2.78 3.12	1.72 2.01 2.30 2.70 3.02	1.69 1.96 2.24 2.62 2.92	1.66 1.91 2.18 2.54 2.82	1.62 1.86 2.11 2.45 2.71	1.59 1.81 2.04 2.35 2.60	1.55 1.76 1.97 2.26 2.48	.100 .050 .025 .010	23
1.88	1.83	1.78	1.73	1.70	1.67	1.64	1.61	1.57	1.53	.100	241
2.25	2.18	2.11	2.03	1.98	1.94	1.89	1.84	1.79	1.73	.050	
2.64	2.54	2.44	2.33	2.27	2.21	2.15	2.08	2.01	1.94	.025	
3.17	3.03	2.89	2.74	2.66	2.58	2.49	2.40	2.31	2.21	.010	
3.59	3.42	3.25	3.06	2.97	2.87	2.77	2.66	2.55	2.43	.005	
1.87 2.24 2.61 3.13 3.54	1.82 2.16 2.51 2.99 3.37	1.77 2.09 2.41 2.85 3.20	1.72 2.01 2.30 2.70 3.01	1.69 1.96 2.24 2.62 2.92	1.66 1.92 2.18 2.54 2.82	1.63 1.87 2.12 2.45 2.72	1.59 1.82 2.05 2.36 2.61	1.56 1.77 1.98 2.27 2.50	1.52 1.71 1.91 2.17 2.38	.100 .050 .025 .010	25
1.86	1.81	1.76	1.71	1.68	1.65	1.61	1.58	1.54	1.50	.100	26
2.22	2.15	2.07	1.99	1.95	1.90	1.85	1.80	1.75	1.69	.050	
2.59	2.49	2.39	2.28	2.22	2.16	2.09	2.03	1.95	1.88	.025	
3.09	2.96	2.81	2.66	2.58	2.50	2.42	2.33	2.23	2.13	.010	
3.49	3.33	3.15	2.97	2.87	2.77	2.67	2.56	2.45	2.33	.005	
1.85	1.80	1.75	1.70	1.67	1.64	1.60	1.57	1.53	1.49	.100	27
2.20	2.13	2.06	1.97	1.93	1.88	1.84	1.79	1.73	1.67	.050	
2.57	2.47	2.36	2.25	2.19	2.13	2.07	2.00	1.93	1.85	.025	
3.06	2.93	2.78	2.63	2.55	2.47	2.38	2.29	2.20	2.10	.010	
3.45	3.28	3.11	2.93	2.83	2.73	2.63	2.52	2.41	2.29	.005	
1.84	1.79	1.74	1.69	1.66	1.63	1.59	1.56	1.52	1.48	.100	28
2.19	2.12	2.04	1.96	1.91	1.87	1.82	1.77	1.71	1.65	.050	
2.55	2.45	2.34	2.23	2.17	2.11	2.05	1.98	1.91	1.83	.025	
3.03	2.90	2.75	2.60	2.52	2.44	2.35	2.26	2.17	2.06	.010	
3.41	3.25	3.07	2.89	2.79	2.69	2.59	2.48	2.37	2.25	.005	

Denomi-	Probability			Nu	merator df					
nator df	of a larger F	1	2	3	4	5	6	7	8	9
29	.100	2.89	2.50	2.28	2.15	2.06	1.99	1.93	1.89	1.86
	.050	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22
	.025	5.59	4.20	3.61	3.27	3.04	2.88	2.76	2.67	2.59
	.010	7.60	5.42	4.54	4.04	3.73	3.50	3.33	3.20	3.09
	.005	9.23	6.40	5.28	4.66	4.26	3.98	3.77	3.61	3.48
30	.100	2.88	2.49	2.28	2.14	2.05	1.98	1.93	1.88	1.85
	.050	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21
	.025	5.57	4.18	3.59	3.25	3.03	2.87	2.75	2.65	2.57
	.010	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.07
	.005	9.18	6.35	5.24	4.62	4.23	3.95	3.74	3.58	3.45
40	.100	2.84	2.44	2.23	2.09	2.00	1.93	1.87	1.83	1.79
	.050	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12
	.025	5.42	4.05	3.46	3.13	2.90	2.74	2.62	2.53	2.45
	.010	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.89
	.005	8.83	6.07	4.98	4.37	3.99	3.71	3.51	3.35	3.22
60	.100	2.79	2.39	2.18	2.04	1.95	1.87	1.82	1.77	1.74
	.050	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04
	.025	5.29	3.93	3.34	3.01	2.79	2.63	2.51	2.41	2.33
	.010	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.72
	.005	8.49	5.79	4.73	4.14	3.76	3.49	3.29	3.13	3.01
120	.100	2.75	2.35	2.13	1.99	1.90	1.82	1.77	1.72	1.68
	.050	3.92	3.07	2.68	2.45	2.29	2.17	2.09	2.02	1.96
	.025	5.15	3.80	3.23	2.89	2.67	2.52	2.39	2.30	2.22
	.010	6.85	4.79	3.95	3.48	3.17	2.96	2.79	2.66	2.56
	.005	8.18	5.54	4.50	3.92	3.55	3.28	3.09	2.93	2.81
3 3	.050 .025 .010 .005	2.71 3.84 5.02 6.63 7.88	2.30 3.00 3.69 4.61 5.30	2.08 2.60 3.12 3.78 4.28	1.94 2.37 2.79 3.32 3.72	1.85 2.21 2.57 3.02 3.35	1.77 2.10 2.41 2.80 3.09	1.72 2.01 2.29 2.64 2.90	1.67 1.94 2.19 2.51 2.74	1.63 1.88 2.11 2.41 2.62

Source: A portion of "Tables of percentage points of the inverted beta (F) distribution," Biometrika, vol. 33 (1943) by M. Merrington and C. M. Thompson and from Table 18 of Biometrika Tables for Statisticians, vol. 1, Cambridge University Press, 1954, edited by E. S. Pearson and H. O. Hartley. Reproduced with permission of the authors, editors, and Biometrika trustees.

	Numerator df												
10	12	15	20	24	30	40	60	120	60	P	df		
1.83 2.18 2.53 3.00 3.38	1.78 2.10 2.43 2.87 3.21	1.73 2.03 2.32 2.73 3.04	1.68 1.94 2.21 2.57 2.86	1.65 1.90 2.15 2.49 2.76	1.62 1.85 2.09 2.41 2.66	1.58 1.81 2.03 2.33 2.56	1.55 1.75 1.96 2.23 2.45	1.51 1.70 1.39 2.14 2.33	1.47 1.64 1.81 2.03 2.21	.100 .050 .025 .010 .005	29		
1.82 2.16 2.51 2.98 3.34	1.77 2.09 2.41 2.84 3.18	1.72 2.01 2.31 2.70 3.01	1.67 1.93 2.20 2.55 2.82	1.64 1.89 2.14 2.47 2.73	1.61 1.84 2.07 2.39 2.63	1.57 1.79 2.01 2.30 2.52	1.54 1.74 1.94 2.21 2.42	1.50 1.68 1.87 2.11 2.30	1.46 1.62 1.79 2.01 2.18	.100 .050 .025 .010	30		
1.76 2.08 2.39 2.80 3.12	1.71 2.00 2.29 2.66 2.95	1.66 1.92 2.18 2.52 2.78	1.61 1.84 2.07 2.37 2.60	1.57 1.79 2.01 2.29 2.50	1.54 1.74 1.94 2.20 2.40	1.51 1.69 1.88 2.11 2.30	1.47 1.64 1.80 2.02 2.18	1.42 1.58 1.72 1.92 2.06	1.38 1.51 1.64 1.80 1.93	.100 .050 .025 .010	10		
1.71 1.99 2.27 2.63 2.90	1.66 1.92 2.17 2.50 2.74	1.60 1.84 2.06 2.35 2.57	1.54 1.75 1.94 2.20 2.39	1.51 1.70 1.88 2.12 2.29	1.48 1.65 1.82 2.03 2.19	1.44 1.59 1.74 1.94 2.08	1.40 1.53 1.67 1.84 1.96	1.35 1.47 1.58 1.73 1.83	1.29 1.39 1.48 1.60 1.69	.100 .050 .025 .010 .005	60		
1.65 1.91 2.16 2.47 2.71	1.60 1.83 2.05 2.34 2.54	1.55 1.75 1.94 2.19 2.37	1.48 1.66 1.82 2.03 2.19	1.45 1.61 1.76 1.95 2.09	1.41 1.55 1.69 1.86 1.98	1.37 1.50 1.61 1.76 1.87	1.32 1.43 1.53 1.66 1.75	1.26 1.35 1.43 1.53 1.61	1.19 1.25 1.31 1.38 1.43	.100 .050 .025 .010	120		
1.60 1.83 2.05 2.32 2.52	1.55 1.75 1.94 2.18 2.36	1.49 1.67 1.83 2.04 2.19	1.42 1.57 1.71 1.88 2.00	1.38 1.52 1.64 1.79 1.90	1.34 1.46 1.57 1.70 1.79	1.30 1.39 1.48 1.59 1.67	1.24 1.32 1.39 1.47 1.53	1.17 1.22 1.27 1.32 1.36	1.00 1.00 1.00 1.00 1.00	.100 .050 .025 .010 .005	Œ		

Table A-5. Upper 5% points, Q (Nash, 1965).

Number of treatments, a

Doggood of									
Degrees of freedom	2	3	_4	5	6	7	8	9	10
1	18.0	26.98	32.82	37.08	40.41	43.12	45.40	47.36	49.07
2	6.08	8.33	9.80	10.88	11.74	12.44	13.03	13.54	13.99
3	4.50	5.91	6.82	7.50	8.04	8 48	8.85	9.18	9.46
4	3.93	5.04	5.76	6.29	6.71	7.05	7.35	7.60	7.83
5	3.64	4.60	5.22	5.67	6.03	6.33	6.58	6.80	6.9 9
6	3.46	4.34	4.90	5.30	5.63	5.90	6.12	6.32	6.49
7	3.34	4.16	4.68	5.06	5.36	5.61	5.82	6.00	6.16
8	3.26	4.04	4.53	4.89	5.17	5.40	5.60	5.77	5.92
9	3.20	3.95	4.44	4.76	5.02	5.24	5.43	5.59	5.74
10	3.15	3.88	4.33	4.65	4.91	5.12	5.30	5.46	5.60
11	3.11	3.82	4.26	4.57	4.82	5.03	5.20	5.35	5.49
12	3.08	3.77	4.20	4.51	4.75	4.95	5.12	5.27	5.39
13	3.06	3.73	4.15	4.45	4.69	4.88	5.05	5.19	5.32
14	3.03	3.70	4.11	4.41	4.64	4.83	4.99	5.13	5.25
15	3.01	3.67	4.08	4.37	4.59	4.78	4.94	5.08	5.20
16	3.00	3.65	4.05	4.33	4.56	4.74	4.90	5.03	5.15
17	2.98	3.63	4.02	4.30	4.52	4.70	4.86	4.99	5.11
18	2.97	3.61	4.00	4.28	4.49	4.67	4.82	4.96	5.07
19	2.96	3.59	3.98	4.25	4.47	4.65	4.79	4.92	5.04
20	2.95	3.58	3.96	4.23	4.45	4.62	4.77	4.90	5.01
30	2.89	3.49	3.85	4.10	4.30	4.46	4.60	4.72	4.82
40	2.86	3.44	3.79	4.04	4.23	4.39	4.52	4.63	4.73
60	2.83	3.40	3.74	3.98	4.16	4.31	4.44	4.55	4.65
120	2.80	3.36	3.68	3.92	4.10	4.24	4.36	4.47	4.56
00	2.77	3.31	3.63	3.86	4.03	4.17	4.29	4.39	4.47

Table 9.3 is taken from J. Parchares "Table of the Upper 10% Pcints of the Studentized Range", Biometrika 46: 461-466 (1959) with additional table by Dr. Leon Harter by permission of Professor E. S. Pearson, Editor of Biometrika.

☆U.S. GOVERNMENT, PRINTING OFFICE:1983-776-976 / 66

