relu-analysis

The following code trains and tests models on the XOR dataset using ReLu and then not using ReLu, and then plots graphs of Loss Value against Epoch Count.

```
[1]: import os
     import matplotlib.pyplot as plt
     import numpy as np
     from school_project.models.cpu.xor import XORModel as Model
     # Change to root directory of project
     os.chdir(os.getcwd())
     # Set width and height of figure
     plt.rcParams["figure.figsize"] = [10, 5]
     figure, axis = plt.subplots(nrows=1, ncols=2)
     model = Model(hidden_layers_shape=[100, 100],
                     train_dataset_size=4,
                     learning_rate=0.1,
                     use_relu=True)
     model.create_model_values()
     model.train(epoch_count=4_700)
     model.test()
     axis[0].set_title("Use ReLu: True")
     axis[0].set_xlabel("Epoch Count")
     axis[0].set_ylabel("Loss Value")
     axis[0].plot(np.squeeze(model.train_losses))
     model = Model(hidden_layers_shape=[100, 100],
                     train_dataset_size=4,
                     learning_rate=0.1,
                     use_relu=False)
     model.create_model_values()
     model.train(epoch_count=4_700)
     model.test()
```

```
axis[1].set_title("Use ReLu: False")
axis[1].set_xlabel("Epoch Count")
axis[1].set_ylabel("Loss Value")
axis[1].plot(np.squeeze(model.train_losses))

plt.tight_layout()
plt.show()
```


As shown above, when using the ReLu transfer function along with the Sigmoid transfer function, the loss value decreases at a much faster rate than without. The model without the ReLu transfer function does reach the same accuracy but takes far more training epochs to do so.