Insper

Computação embarcada 2023-1

Apresentação do curso - LAB 1

https://insper.github.io/ComputacaoEmbarcada/

Home

Bem vindo a disciplina de Computação
Embarcada

- Curso: Engenharia Da Computação - Quinto Semestre - Insper
- Disciplina: Computação Embarcada
- Repositório: http://github.com/Insper/ComputacaoEmbarcada
- Local: Laboratórios de Arquitetura de Computadores e Laboratório de Informática
- Equipe:

Ferramental

Ferramental

Sobre o hardware e software utilizados no curso.

- ♦ Software: Microchip Studio
- ♦ Hardware: SAME70 (Cortex M7)

Ferramental

Windows 10

reservar 2h para instalação

Instalar os seguintes softwares no Windows:

- 1. Microchip Studio 7 Instalar a versão WEB
- 2. Serial Port for MicrochipStudio
- 3. git/github

l	Segunda	Quarta	Quinta		Final de semana
Multirão	6/2	8/2	9/2	Multirão	
LAB 1 - PIO	13/2	15/2	16/2	LAB 2 - DRIVER	
	20/2	22/2	23/2	LAB 3 - IRQ	
APS 1	27/2	1/3	2/3	APS 1	
APS 1	6/3	8/3	9/3	LAB 4 - RTOS	Entrega APS1
PROJ	13/3	15/3	16/3	LAB 5 - HS-SR04	1
PROJ	20/3	22/3	23/3	LAB 6 - IMU - 120	
PROJ	27/3	29/3	30/3	AI / AV 1	
	3/4	5/4	6/4		
PROJ	10/4	12/4	13/4	PROJ	Entrega Projeto
AB 7 - LCD - LVGL	17/4	19/4	20/4	LAB 7 - LCD - LV	/GL
AV 2	24/4	26/4	27/4	LAB 8 - TC - RTC - RTT	
	1/5	3/5	4/5	LAB 9 - Mutex /	APS 2
APS 2	8/5	10/5	11/5	LAB 10 - Wifi	
APS 2	15/5	17/5	18/5	APS 2	
APS 2	22/5	24/5	25/5	tbd	Entrega APS 2
tbd	39/5	31/5	1/6	AF / AV 3	
	5/6	7/6			

Laboratórios

Projeto

◆ Pode ser feita em dupla!!

Neste projeto vocês terão que criar um controle remoto bluetooth, controlado pelo kit de desenvolvimento usado na disciplina (SAME70-XPLD), com a adição de um módulo externo bluetooth HC-05.

APS

- APS
 - ► APS 1 Musical
 - ▼ APS 2 Ciclocomputador

◆ Pode ser feita em dupla!!

Critério de aprovação

Nota maior que 5 em ao menos uma das avaliações individuais

Critério de Avaliação

Nome da Avaliação	Sigla	Peso em %
APS1	APS1	15
APS2	APS2	30
projeto1	P1	30
Laboratórios	LABS	25

LAB 1 - PIO

CONTROLANDO PINOS

 Instance
 ID

 PIOA
 10

 PIOB
 11

 PIOC
 12

 PIOD
 16

 PIOE
 17

O SAME70 possui internamente 5 PIOs: PIO **A**, PIO **B**, PIO **C**, PIO **D** e PIO **E**. Cada um é responsável por gerenciar até 32 pinos.

Os I/Os são classificados por sua vez em grandes grupos: A, B,C (exe: PA01, PB22, PC12) e cada grupo é controlado por um PIO (PIOA, PIOB, PIOC, ...).

Cada PIO possui controle independente de energia via o PMC, sendo necessário ativar o clock de cada PIO para que o periférico passe a funcionar.

O SAME70 possui internamente 5 PIOs: PIO **A**, PIO **B**, PIO **C**, PIO **D** e PIO **E**. Cada um é responsável por gerenciar até 32 pinos.

Os I/Os são classificados por sua vez em grandes grupos: A, B,C (exe: PA01, PB22, PC12) e cada grupo é controlado por um PIO (PIOA, PIOB, PIOC, ...).

Cada PIO possui controle independente de energia via o PMC, sendo necessário ativar o clock de cada PIO para que o periférico passe a funcionar.

Como configurar esses pinos?

ASF - advanced software framework


```
sysclk_init();
                 WDT->WDT_MR = WDT_MR_WDDIS; // Disable WatchDog Timer
                 pmc_enable_periph_clk(ID_PIOA); //energiza PIO A
                 pmc_enable_periph_clk(ID_PIOB); //energiza PIO B
pmc_enable_periph_clk(ID_PIOC); //energiza PIO C
                 pmc_enable_periph_clk(ID_PIOD); //energiza PIO D
                 /*configura as saidas conectadas eos leds*/
pio_set_output(LED_PIO, LED_PIO_IDX_MASK, 0,0,0); // valor inicial nulo, sem open drain e sem pullup
                 pio_set_output(LED_1_PIO, LED_1_PIO_IDX_MASK, 0,0,0); // valor inicial nulo, sem open drain e sem pullup pio_set_output(LED_2_PIO, LED_2_PIO_IDX_MASK, 0,0,0); // valor inicial nulo, sem open drain e sem pullup
                 pio_set_output(LED_3_PIO, LED_3_PIO_IDX_MASK, 0,0,0); // valor inicial nulo, sem open drain e sem pullup
                /* configure as entradas que leem es bother*/
pio_set_input(BUT_PIO, BUT_PIO_IDX_MASK,PIO_DEFAULT); // define como input // PIO_DEFAULT mag é imediato...
pio pull up(BUT_PIO.BUT_PIO_IDX_MASK.PIO_PULLUP); // aciona o pull up
Configurações
O PIO suporta as seguintes configurações:
                                                                                                                                HAL

    Interrupção ao nível ou borda em qualquer I/O

◆ Filtragem de "glitch"
                                                                                                                                Hardware Abstraction Layer (HAL)

    Deboucing

♦ Open-Drain

    Pull-up/Pull-down

    Capacidade de trabalhar de forma paralela

Iremos ver para que serve algumas dessas configurações ao longo do curso.
```

NO LAB 2 FAREMOS NOSSA PRÓPRIA CAMADA DE ABSTRAÇÃO!

Cada PIO possui 89 registradores!

Exemplo de um registrador

32.6.22 PIO Pull-Up Enable Register

Name: PIO_PUER

Address: 0x400E0E64 (PIOA), 0x400E1064 (PIOB), 0x400E1264 (PIOC), 0x400E1464 (PIOD), 0x400E1664 (PIOE)

Access: Write-only

31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

· P0-P31: Pull-Up Enable

0: No effect.

1: Enables the pull-up resistor on the I/O line.

Preface

Atmel® OLED1 Xplained Pro is an extension board to the Atmel Xplained Pro evaluation platform. The board enables the user to experiment with user interface applications with buttons, LEDs, and a display.

Pin Number	Function	Description
1	ID	Communication line to ID chip
2	GND	Ground
3	BUTTON2	Push button 2, active low
4	BUTTON3	Push button 3, active low
5	DATA_CMD_SEL	Data / command select for OLED display. High = data, low = command.
6	LED3	LED3, active low
7	LED1	LED1, active low
8	LED2	LED2, active low
9	BUTTON1	Push button 1, active low
10	DISPLAY_RESET	Reset line for OLED display, active low
11	NC	

AUTO AVALIAÇÃO DOS LABORATÓRIOS (CORREÇÃO POR AMOSTERAGEM)

Atraso na submissão dos códigos

2.5/semana

Inconsistência severa entre código e auto avaliação!

MÃOS À OBRA!!!

≡ 5s - Computação Embarcada

Sobre o curso

SAME70-Examples

Vídeos

A Regras de firmware

- ► Util
- ▼ Labs
 - ► Lab 1 PIO
- ► Lab 2 PIO Driver
- ► Lab 3 PIO IRQ
- ► Lab 4 RTOS

Lab 5 - RTOS HC-SR04

Lab 6 - RTOS IMU

Lab 7 - RTOS - LCD - LVGL

Lab 8 - TC - RTC - RTT

Lab 9 - RTOS - Mutex

Lab 10 - WIFI

- ► Labs extras
- ► Projeto
- ► APS
- Avaliações e Simulados

Labs » Lab 1 - PIO » Teoria

Lab 1 - Digital 10

Leitura extra ecomendada

- * Renesas GPIO
- ◆ ARM

Periféricos

Leitura Manual

Utilize o manual encontrado em: Manuais/SAME70 para mais informações nesse assunto.

MENU ASSINE

FOLHA DE S.PAULO

F S f P D D D CHINCOS (N. # 7.327) C geologos e geolisicos (N. # 7.230).

Ocupações com maior salário médio de admissão em 2022, em R\$

Engenheiros em computação	13.281
Engenheiros de minas	11.560
Engenheiros químicos	9.652
Engenheiros mecânicos	9.572
Médicos clínicos	9.527
Geólogos e geofísicos	9.236
Pesquisadores de engenharia e tecnologia	8.741
Engenheiros metalurgistas e de materiais	8.515
Engenheiros industriais, de produção e segurança	8.401
Enge <mark>n</mark> heiros eletroeletrônicos e afins	8.352