## Simulação Computacional de Curvas

#### **Daniel Ruhman e Marcelo Terreiro Prado**

O projeto a seguir foi realizado para a disciplina de Matemática Multivariada ministrada pelo Professor Fabio Orfali no curso de Engenharia do INSPER. Ele tem como objetivo o desenvolvimento de uma simulação computacional baseada em métodos numéricos (mais especificamente a aproximação de uma curva por uma linha poligonal composta por *n* segmentos) para calcular o tempo aproximado que um objeto, sujeito apenas à força da gravidade, leva para percorrer uma trajetória dada por curvas parametrizadas e pontos iniciais e finais ou domínio.

### Dedução geométrica da parametrização da cicloide

Considere uma circunferência C de raio *r* com um ponto P, fixo. Ao rolar a circunferência sobre uma reta (eixo x), o ponto P percorre uma curva chamada de ciclóide. Queremos descobrir quanto a curva "caminhou" em cada eixo. A seguir, apresentamos a dedução geométrica para sua parametrização, partindo dos seguintes pressupostos:

- $\theta = 0$  no início, gira  $\theta$  radianos;
- o ponto P coincide com a origem do sistema de coordenadas no início do movimento;



Podemos então escrever:

$$x = OT - PQ$$
 (eq. 1)

$$y = TC - QC (eq. 2)$$

Com os deslocamentos de x e y em mãos, precisamos descobrir os segmentos de reta para determinar as parametrizações em relação ao parâmetro  $\theta$ . Comecemos por IOTI . Como C está em contato com a reta, deduzimos que:

```
|OT| = comprimento do arco \widehat{PT} = r \cdot \theta
```

Podemos deduzir pela figura as medidas dos outros 3 segmentos restantes:

$$\begin{aligned} & \text{TC} = r \\ sen\theta &= \frac{\text{PQ}}{r} \rightarrow \text{PQ} = r \cdot sen\theta \\ &cos\theta &= \frac{\text{QC}}{r} \rightarrow \text{QC} = r \cdot cos\theta \end{aligned}$$

Agora resta substituir as medidas dos segmentos encontrados nas equações 1 e 2 e obtemos a parametrização final:

```
x = r(\theta - \sin \theta) y = r(1 - \cos \theta) \theta \in \mathbb{R}
```

# **Modelo Computacional**

O modelo desenvolvido pelo grupo encontra-se explicado abaixo. Inicialmente, declaramos as variáveis que irão armazenar as parametrizações, além de definir alguns parâmetros e algumas burocracias de código. Também definimos o domínio (ex: de 0 a 2π) das parametrizações.

#### Coloque a sua parametrização e o domínio nas variáveis abaixo

```
def retornaParametrizacao (t):
    # Parametrização em X
    xParam = np.cos(t)
    # Parametrização em Y
    yParam = np.sin(t)
    return (xParam, yParam)
dominioMin = np.pi
dominioMax = (3*np.pi) / 2
v0 = 0
tTotal = 0
distTotal = 0
precisao = 0.01
delta = np.arange(dominioMin,dominioMax, precisao)
gravidade = 9.81
xMax, yMax = retornaParametrizacao(dominioMin)
listaX = []
listaY = []
```

Depois, declaramos uma função cujo objetivo é achar os comprimentos dos segmentos de reta que usaremos para aproximar a curva. Esses segmentos são, como mostra a imagem, a hipotenusa entre dois pontos da curva. A diferença entre esses pontos é a precisão do cálculo. Quanto menor a diferença entre eles, melhor a aproximação. A função recebe os pontos para os quais calcular o segmento de reta, obtidos através da função acima. Além disso, ela retorna o ângulo de inclinação das retas que irá nos ajudar a calcular o tempo.



```
def findHipotenusa (x0, x1, y0, y1):
    deltaX = x1 - x0
    deltaY = y1 - y0
# Em radiano
    angulo = np.arctan(deltaY/deltaX)
    return np.sqrt((deltaX**2) + (deltaY**2)), angulo
```

Então, declaramos uma função que irá nos retornar o tempo de percurso de cada segmento de reta. Ela recebe como parâmetros o ângulo de inclinação, a distância (hipotenusa) e a velocidade inicial. E ela retorna o tempo de percurso e a velocidade final (que será utilizada como inicial para a próxima iteração, e

assim por diante). Para calcular o tempo, utilizamos a equação:  $s = s_0 + v_0 t + \frac{1}{2} a t^2$  Como já possuimos os parâmetros  $\Delta S$  (comprimento do segmento/hipotenusa), vO (inicialmente 0, depois igual à velocidade final no segmento anterior) e a (aceleração da gravidade), só precisamos isolar o t.

```
# Formula usada
# dist = v0*t + (a*(t**2))/2
def retornaTempo (teta, dist, v0):
    a = gravidade * np.cos(teta)
    delta = v0**2 + 2*a*dist

if (delta < 0):
    print('err0')
    return (0,0)
else:
    t1 = (-v0 + np.sqrt(delta))/a
    t2 = (-v0 - np.sqrt(delta))/a
    v = v0 + a*t1
    return (t1,v)</pre>
```

Por fim, contruímos o loop que junta todas essa funções. Ele roda para cada intervalo de precisão definido, e tem o seguinte comportamento: \* Primeiro, descobre as coordenadas dos dois pontos do segmento aproximado por um segmento de reta, com base na precisão pré definida \* Depois, descobre o comprimento desse segmento de reta (hipotenusa) e o seu ângulo de inclinação, usando seu ponto inicial e final. \* Então, calcula o tempo necessário para percorrer tal segmento e o adiciona ao tempo total para percorrer a curva. \* Isso é repetido para cada intervalo de precisão definido, até percorrer a curva inteira.

```
consequeSubir = True
for t in delta:
    x0, y0 = retornaParametrizacao(t)
    listaX.append(x0)
    listaY.append(y0)
    x1, y1 = retornaParametrizacao(t + precisao)

if (y1 > yMax):
    consequeSubir = False

hip, angulo = findHipotenusa(x0,x1,y0,y1)
    distTotal += hip
    t1, v = retornaTempo(angulo, hip, v0)
    v0 = v
    tTotal += t1

if consequeSubir:
    print("Tempo total (s)")
    print(tTotal)
    print(tTotal)
    print(tTotal)
    print(distTotal)
else:
    print('A bolinha não conseque subir essa curva. O Y máximo é {0}'.format(yMax))
plt.plot(listaX,listaY)
plt.title('Figura 1: Quarto de circunferncia')
plt.show()
```

Por fim, imprime os valores (nesse caso, um quarto de circunferência):

```
Tempo total (s)
2.26049822885
Distância total (m)
1.57999341667
```



# Validação

Abaixo está a validação da nossa simulação computacional. Nela, utilizamos uma reta parametrizada. Olhando seu domínio, fica claro que a distância percorrida faz sentido. Utilizando pitágoras, pode-se perceber que a distância vale raiz quadradada de 200, o que bate com nosso resultado.

A bolinha não conseque subir essa curva. O Y máximo é 10



Tempo total (s)



Vale ressaltar que nossa

implementação também considera o caso da bolinha não ter energia suficiente para subir a curva (Figura 2).

Para o cálculo do tempo, utilizamos uma reta vertical definida com x constante. Em seguida, calculamos o tempo que levaria para a bolinha percorrer o trajeto inteiro e validamos utilizando a física. Esse tempo precisa ser igual ao tempo necessário para ela cair em queda-livre.

Tivemos bastante dificuldade para validar o tempo que a bolinha leva para percorrer determinada curva. Abaixo estão descritas as tentativas realizadas.

- 1. Calcular o tempo que a bolinha leva para percorrer uma reta. Tivemos problemas para calcular o tempo teórico que levaria (tanto pela literatura matemática quanto pela física), e por isso acabamos trocando de tentativa.
- 2. Calcular o tempo que a bolinha leva para percorrer uma reta vertical, com x constante. Da mesma forma que na tentativa acima, tivemos problemas. Dessa vez foi com o código. Ele reclamava de nossa equação utilizada na função retornaTempo, provavelmente devido a maneira com que dividimos a curva e distribuímos as forças. Sabendo esse tempo, utilizaríamos a fórmula da cinemática de posição em função do tempo para checarmos por valores iguais. Acreditamos ser por conta da utilização de cosseno e não seno na função retornaTempo. Entretanto, não conseguimos fazer a função funcionar com o seno.
- 3. Descobrir o tempo real de uma ciclóide e comparar com o tempo calculado pela simulação. Conversamos nosso colega (Eduardo Ferrari) e testamos com a ciclóide construída por ele. Tivemos muita dificuldade para medir o tempo, que da menos de 1 segundo na rampa construída. Além disso, tivemos dificuldade em descobrir os parâmetros exatos da ciclóide construída para equacionar uma semelhante.

#### Plots de Curvas Parametrizadas

Abaixo estão exemplos de plots que fizemos para algumas curvas parametrizadas. As imagens à esquerda são as funções utilizadas e o domínio. As imagens à direita são o resultado do plot.

#### 1. Curva de um oscilador massa-mola

```
def retornaParametrizacao (t):
    # Parametrização em X
    xParam = t
    # Parametrização em Y
    yParam = np.sin(t) / t
    return (xParam, yParam)

dominioMin = 1
dominioMax = 100
```

#### 2. Curva de uma ciclóide

```
def retornaParametrizacao (t):
    # Parametrização em X
    xParam = (t - np.sin(t))
    # Parametrização em Y
    yParam = -(t -np.cos(t))
    return (xParam, yParam)

dominioMin = np.pi
dominioMax = 3*np.pi/2
```

#### 3. Curva de uma elipse

```
def retornaParametrizacao (t):
    # Parametrização em X
    xParam = 8 * np.sin(t)
    # Parametrização em Y
    yParam = 5 * np.cos(t)
    return (xParam, yParam)

dominioMin = np.pi
dominioMax = 3*np.pi/2
```

```
Tempo total (s)
4.54522367649
Distância total (m)
99.2361320764
```



```
Tempo total (s)
0.767815164148
Distância total (m)
2.66911308936
```



Tempo total (s)
1.48227279029
Distância total (m)
10.3925447961



## Conclusões

Um dos objetivos do projeto era identificar se a bolinha caía mais rápido em uma ciclóide do que em outra curva qualquer. Comparando as figuras 1 e 5, percebemos que de fato a ciclóide apresenta um menor tempo de queda, com 0.767 segundos em comparação aos 2.260 segundos da circunferência. Entretanto, precisamos analisar os eixos. Tivemos problemas na hora de plotá-las com ponto final e inicial definidos, já que nosso código foi estruturado com base em domínios. Dessa forma, não podemos comparar seus tempos com exatidão.

O modelo computacional criado é válido. Entretanto, tivemos algumas dificuldades em validá-lo usando a física e a matemática. Por conta disso não conseguimos corrigir alguns problemas, principalmente os relacionados com a física do projeto. Acreditamos ter criado um método correto, porém não podemos ter certeza pela falta de uma validação coerente. Em uma segunda iteração desse projeto, iremos verificar a equação utilizada na função retornaTempo e nos aprofundar em alguma validação.