EECS 127/227AT Optimization Models in Engineering Spring 2020

Homework 6

This homework is due Friday, March 6, 2020 at 23:00 (11pm). Self grades are due Friday, March 13 2020 at 23:00 (11pm).

This version was compiled on 2020-02-29 07:12.

Submission Format: Your homework submission should consist of a single PDF file that contains all of your answers (any handwritten answers should be scanned) as well as your IPython notebook with solutions saved as a PDF.

1. Proof of Hölder's Inequality In this question, we will prove Hölder's Inequality using convexity and verify that the ℓ_p norms (defined subsequently) indeed satisfy the properties of a norm. Let $\vec{x} \in \mathbb{R}^n$, we now define the ℓ_p norm, denoted by $\|\cdot\|_p$ as follows:

$$\|\vec{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

for $p \ge 1$. Note, that when p=2, the ℓ_p norm corresponds to the standard Euclidean norm of the vector \vec{x} . Hölder's states that for any $\vec{x}, \vec{y} \in \mathbb{R}^n$ and p, q > 1 satisfying $\frac{1}{p} + \frac{1}{q} = 1$, we have:

$$\vec{x}^{\top} \vec{y} \leq \|\vec{x}\|_p \|\vec{y}\|_q.$$

Notice that when p = q = 2, Hölder's Inequality recovers the standard Cauchy Schwarz inequality. We will now prove Hölder's Inequality via the following sequence of steps:

(a) Let $a, b \ge 0$. Using the concavity of the function, $f(x) = \log x$, prove the following statement:

$$a \cdot b \le \frac{a^p}{p} + \frac{b^q}{q}.$$

The above inequality is also known as Young's Inequality.

Hint 1: For the case where a, b > 0 it might be useful to denote $u = a^p, w = b^q$ and consider $\log\left(\frac{1}{p} \cdot u + \frac{1}{q} \cdot w\right)$.

Hint 2: We have,

$$\frac{1}{p} + \frac{1}{q} = 1.$$

(b) Use Young's inequality to conclude the proof of Hölder's Inequality.

Hint: When $\vec{x}, \vec{y} \neq 0$, define the vectors $\vec{u} = \frac{\vec{x}}{\|\vec{x}\|_p}$ and $\vec{w} = \frac{\vec{y}}{\|\vec{y}\|_q}$. Now, showing Hölder's Inequality is equivalent to proving:

$$\vec{u}^{\top}\vec{w} \leq 1.$$

(c) Now, we will show that Hölder's Inequality is tight i.e we can find \vec{x}, \vec{y} such that $\vec{x}^{\top}\vec{y} = \|\vec{x}\|_p \|\vec{y}\|_p$. Let p > 1 and let q be such that $\frac{1}{p} + \frac{1}{q} = 1$. Prove that:

$$\|\vec{x}\|_{p} = \max_{\vec{y}: \|\vec{y}\|_{q} = 1} \vec{x}^{\top} \vec{y}. \tag{1}$$

Note that this is equivalent to showing that Hölder's Inequality is tight because the optimal \vec{y}^* from Equation (1) and \vec{x} will satisfy Hölder's Inequality with equality.

Hint 1: That the right-hand side is a less than the left-hand side follows from Hölder's Inequality.

Hint 2: To show equality, choose vector \vec{y} appropriately satisfying $\|\vec{y}\|_q = 1$, such that $\vec{x}^\top \vec{y} = \|\vec{x}\|_p$. Can you construct the entries of this \vec{y} ? You might want to make sure that the sign of y_i matches that of x_i , and then appropriately pick the magnitude of x_i to have $\vec{x}^\top \vec{y} = \|\vec{x}\|_p$. Then check that $\|\vec{y}\|_q = 1$.

- (d) Use part (c) to conclude that $\|\cdot\|_p$ indeed defines a norm. Recall that $\|\cdot\|: \mathbb{R}^n \to \mathbb{R}$ is a valid norm if it satisfies the following three properties:
 - i. $\vec{x} = 0 \iff ||\vec{x}|| = 0$
 - ii. $\forall \alpha \in \mathbb{R}, \ \vec{x} \in \mathbb{R}^n : \|\alpha \vec{x}\| = |\alpha| \|\vec{x}\|$
 - iii. $\forall \vec{x}, \vec{y} \in \mathbb{R}^n : ||\vec{x} + \vec{y}|| \le ||\vec{x}|| + ||\vec{y}||$.
- 2. Convex or Concave Determine whether the following functions are convex, strictly convex, concave, strictly concave, both or neither.
 - (a) $f(x) = e^x 1$ on \mathbb{R}
 - (b) $f(x_1, x_2) = x_1 x_2$ on \mathbb{R}^2_{++}
 - (c) The log-likelihood of a set of points $\{x_1, \ldots, x_n\}$ that are normally distributed with mean μ and finite variance $\sigma > 0$ is given by:

$$f(\mu, \sigma) = n \log \left(\frac{1}{\sqrt{2\pi}\sigma}\right) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2$$

i. Show that if we view the log likelihood for fixed σ as a function of the mean, i.e

$$g(\mu) = n \log \left(\frac{1}{\sqrt{2\pi}\sigma}\right) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2$$

then g is strictly concave (equivalently, we say f is strictly concave in μ).

ii. (Optional) Show that if we view the log likelihood for fixed μ as a function of the inverse of the variance, i.e

$$h(z) = n \log \left(\frac{\sqrt{z}}{\sqrt{2\pi}}\right) - \frac{z}{2} \sum_{i=1}^{n} (x_i - \mu)^2$$

then h is strictly concave (equivalently, we say f is strictly concave in $z = \frac{1}{\sigma^2}$). Note that we have used the dummy variable z to denote $\frac{1}{\sigma^2}$.

iii. (Optional) Show that f is not jointly concave in μ , $\frac{1}{\sigma^2}$. Hint: We say a function w(x,y) with $x \in \mathbb{R}^m$ and $y \in \mathbb{R}^n$ is jointly convex if

$$w(\lambda(x_1, y_1) + (1 - \lambda)(x_2, y_2)) \le \lambda w((x_1, y_1)) + (1 - \lambda)w((x_2, y_2)).$$

This is the same as letting z = (x, y) and saying f is convex in z. We can define joint concavity in a similar fashion by reversing the inequalities.

(d) $f(x) = \log(1+e^x)$. Note that this implies that $g(x) = -f(x) = \log \frac{1}{(1+e^x)}$ is concave. Compare this to $h(x) = \frac{1}{(1+e^x)}$, is h(x) convex or concave?

3. Quadratic inequalities

Consider the set S defined by the following inequalities:

$$(x_1 \ge -x_2 + 1 \text{ and } x_1 \le 0) \text{ or } (x_1 \le -x_2 + 1 \text{ and } x_1 \ge 0).$$

To be more precise,

$$S_1 = \{ \vec{x} \in \mathbb{R}^2 \mid x_1 \ge -x_2 + 1, x_1 \le 0 \}$$

$$S_2 = \{ \vec{x} \in \mathbb{R}^2 \mid x_1 \le -x_2 + 1, x_1 \ge 0 \}$$

$$S = S_1 \cup S_2.$$

- (a) Draw the set S. Is it convex?
- (b) Show that the set S, can be described as a single quadratic inequality of the form $q(\vec{x}) = \vec{x}^{\top} A \vec{x} + 2 \vec{b}^{\top} \vec{x} + c \leq 0$, for matrix $A = A^{\top} \in \mathbb{R}^{2 \times 2}$, $\vec{b} \in \mathbb{R}^2$ and $c \in \mathbb{R}$ i.e S can be written as $S = \{\vec{x} \in \mathbb{R}^2 \mid q(\vec{x}) \leq 0\}$). Find A, \vec{b}, c .

Hint: Can you combine the constraints to make one quadratic constraint?

- (c) What is the convex hull of this set?
- (d) We will now consider some convex optimization problems over S_1 that illustrate the role of the constraints in the optimization problem. For each of the following optimization problems find the optimal point, \vec{x}^* . Describe the constraints that are active in attaining the optimal value. Hint: Suppose that there exists a point \vec{x} such that $\nabla f(\vec{x}) = 0$. From the first order characterization of a convex function \vec{x} would be an optimum value for f subject to no constraints. If \vec{x} is not in the constraint set S_1 , then the optimum point must be on the boundary of the set, i.e. it satisfies at least one of the constraints defining S_1 with equality.
 - i. Minimize $f(\vec{x}) = (x_1 + 1)^2 + (x_2 3)^2$ subject to $\vec{x} \in S_1$.
 - ii. Minimize $f(\vec{x}) = (x_1 + 2)^2 + (x_2 2)^2$ subject to $\vec{x} \in S_1$.
 - iii. Minimize $f(\vec{x}) = x_1^2 + x_2^2$ subject to $\vec{x} \in S_1$.

4. Gradient Descent Algorithm

Given a continuous and differentiable function $f: \mathbb{R}^n \to \mathbb{R}$, the gradient of f at any point x, $\nabla f(x)$, is orthogonal to the level curve of f at point x, and it points in the increasing direction of f. In other words, moving from point x in the direction $\nabla f(x)$ leads to an increase in the value of f, while moving in the direction of $-\nabla f(x)$ decreases the value of f. This idea gives an iterative algorithm to minimize the function f: the gradient descent algorithm.

This problem is a light introduction to the gradient descent algorithm, which we will cover in more detail later in the class.

(a) Consider $f(x) = \frac{1}{2}(x-2)^2$, and assume that we use the gradient descent algorithm:

$$x[k+1] = x[k] - \eta \nabla f(x[k]) \quad \forall k \ge 0,$$

- with some random initialization x[0], where $\eta > 0$ is the step size (or the learning rate) of the algorithm. Write (x[k] 2) in terms of (x[0] 2), and show that x[k] converges to 2, which is the unique minimizer of f, when $\eta = 0.2$.
- (b) What is the largest value of η that we can use so that the gradient descent algorithm converges to 2 from all possible initializations in \mathbb{R} ? What happens if we choose a larger step size?
- (c) Now assume that we use the gradient descent algorithm to minimize $f(\vec{x}) = \frac{1}{2} ||A\vec{x} \vec{b}||_2^2$ for some $A \in \mathbb{R}^{m \times n}$ and $\vec{b} \in \mathbb{R}^m$, where A has full column rank. First show that $\nabla f(\vec{x}) = A^{\top}A\vec{x} A^{\top}\vec{b}$. Then, write $(\vec{x}[k] (A^{\top}A)^{-1}A^{\top}\vec{b})$ in terms of $(\vec{x}[0] (A^{\top}A)^{-1}A^{\top}b)$ and find the largest step size that we can use (in terms of A and \vec{b}) so that the gradient descent algorithm converges for all possible initializations. Your largest step size should be a function of $\lambda_{\max}(A^{\top}A)$, the largest eigenvalue of $A^{\top}A$.

5. Homework process

Whom did you work with on this homework? List the names and SIDs of your group members.