

Вебинар №9. Замечательные пределы и Эквивалентности.

Непрерывность функции

Интуитивно, непрерывная функция — это такая функция, график которой можно нарисовать, не отрывая карандаша от бумаги. Строгое определение связано с понятием предела.

Определение. Пусть функция f(x) определена в некоторой окрестности точки x_0 . Тогда говорят, что f(x) непрерывна в точке x_0 , если предел функции в этой точке существует и равен значению функции в этой точке:

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Рис. 1: Функция, непрерывная в точке x_0

Как мы помним, предел не всегда равняется значению функции в точке. Бывает даже такое, что предел в точке существует, а сама функция в данной точке не определена. Поэтому, для определения непрерывности, мы рассматриваем обычную окрестность точки x_0 , а не проколотую, как при рассмотрении пределов функций ранее.

Давайте посмотрим, как это определение выглядит, если его расписать по Коши и по Гейне:

Определение непрерывности по Коши: Функция f(x) непрерывна в точке x_0 , если:

$$\forall \varepsilon > 0 \quad \exists \delta_{\varepsilon} > 0 : \forall x \text{ такого, что } |x - x_0| < \delta \hookrightarrow |f(x) - f(x_0)| < \varepsilon$$

Обратите внимание, что здесь условие $0<|x-x_0|$ исчезает, так как в точке $x=x_0$ неравенство $|f(x_0)-f(x_0)|=0<\varepsilon$ выполняется автоматически.

Определение непрерывности по Гейне: Функция f(x) непрерывна в точке x_0 , если:

$$\forall$$
 последовательности $x_n \to x_0 \hookrightarrow f(x_n) \to f(x_0)$

Здесь также исчезает условие $x_n \neq x_0$, так как значение функции в самой точке x_0 теперь учитывается.

Теорема о пределе сложной функции (непрерывность внешней функции):

Пусть существуют $\lim_{x\to x_0} f(x) = b$, и функция g(y) непрерывна в точке b. Тогда предел сложной функции g(f(x)) при $x\to x_0$ существует и равен g(b):

$$\lim_{x \to x_0} g(f(x)) = g\left(\lim_{x \to x_0} f(x)\right) = g(b)$$

Эта теорема позволяет вносить предел внутрь непрерывной функции.

Доказательство (с использованием определения по Гейне):

Пусть $\lim_{x\to x_0} f(x) = b$. По определению предела функции по Гейне, это означает, что для любой последовательности $x_n \to x_0$ (причем $x_n \neq x_0$) соответствующая последовательность значений функции $y_n = f(x_n)$ сходится к b:

$$\lim_{n\to\infty} f(x_n) = b \quad (\text{или } \lim_{n\to\infty} y_n = b)$$

Теперь, поскольку функция g(y) непрерывна в точке b, по определению непрерывности по Гейне, для любой последовательности $y_n \to b$ (в том числе и для нашей последовательности $y_n = f(x_n)$) соответствующая последовательность значений $g(y_n)$ будет сходиться к g(b):

$$\lim_{n \to \infty} g(y_n) = g(b)$$

Подставляя $y_n = f(x_n)$, получаем:

$$\lim_{n \to \infty} g(f(x_n)) = g(b)$$

Поскольку это верно для любой последовательности $x_n \to x_0$ (с $x_n \neq x_0$), то по определению предела функции по Гейне, это означает:

$$\lim_{x \to x_0} g(f(x)) = g(b)$$

Что и требовалось доказать.

Эквивалентные функции

Эквивалентные функции — это функции, которые ведут себя одинаково в окрестности некоторой точки (чаще всего нуля). Это понятие очень сильно упрощает вычисление пределов.

Определение. Говорят, что функция f(x) эквивалентна функции g(x) при $x \to x_0$, если предел их отношения равен 1. Обозначается как $f(x) \sim g(x)$.

$$f(x) \sim g(x)$$
 при $x \to x_0 \iff \lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$

Рис. 2: Примеры функций, эквивалентных y = x

Например, при $x \to 0$ выполняются следующие эквивалентности:

$$\sin x \sim x$$

$$\operatorname{tg} x \sim x$$

$$\arcsin x \sim x$$

$$\operatorname{arctg} x \sim x$$

Как показано на Рис. 2, при стремлении x к нулю все функции $\sin x$, $\operatorname{tg} x$, $\operatorname{arcsin} x$, $\operatorname{arctg} x$ ведут себя, как линейная функция y=x, это и говорит об их эквивалентности в окрестности нуля. Далее мы строго докажем каждую из эквивалентностей, записанных выше

Первый замечательный предел

Первый замечательный предел является одним из наиболее важных в математическом анализе, особенно при работе с тригонометрическими функциями.

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Геометрическое доказательство (для x > 0 и малых x): Рассмотрим единичный круг с центром в начале координат O. Пусть x — угол в радианах.

Рис. 3: Геометрический смысл неравенства

Из Рис. 3 видно, что площадь треугольника OAB меньше площади сектора OAB, которая, в свою очередь, меньше площади треугольника OCB.

$$S_{\Delta OAB} < S_{\text{cekt. }OAB} < S_{\Delta OCB}$$

Вычислим эти площади:

- $S_{\Delta OAB} = \frac{1}{2} \cdot OB \cdot OA \cdot \sin x = \frac{1}{2} \cdot R \cdot R \cdot \sin x = \frac{1}{2} \sin x$.
- $S_{\text{сект. }OAB} = \frac{1}{2}R^2x = \frac{1}{2}\cdot 1^2 \cdot x = \frac{1}{2}x$ (где x угол в радианах).
- $S_{\Delta OCB} = \frac{1}{2} \cdot OB \cdot BC = \frac{1}{2} \cdot 1 \cdot \operatorname{tg} x = \frac{1}{2} \operatorname{tg} x$.

Подставляем в неравенство:

$$\frac{1}{2}\sin x < \frac{1}{2}x < \frac{1}{2}\operatorname{tg} x$$

Умножим все части неравенства на 2:

$$\sin x < x < \operatorname{tg} x$$

Это неравенство справедливо для малых x>0. Теперь разделим все части неравенства на $\sin x$. Поскольку для малых $x\neq 0$ $\sin x>0$, знаки неравенств сохранятся:

$$1 < \frac{x}{\sin x} < \frac{\lg x}{\sin x}$$

Заметим, что $\frac{\operatorname{tg} x}{\sin x} = \frac{\sin x/\cos x}{\sin x} = \frac{1}{\cos x}$. Значит:

$$1 < \frac{x}{\sin x} < \frac{1}{\cos x}$$

Перевернем все части неравенства. При этом знаки неравенств изменятся на противоположные:

$$\cos x < \frac{\sin x}{x} < 1$$

Теперь возьмем предел всех частей неравенства при $x \to 0$:

$$\lim_{x \to 0} \cos x = \cos(0) = 1$$
$$\lim_{x \to 0} 1 = 1$$

По теореме о двух милиционерах, если $\lim_{x\to 0}\cos x=1$ и $\lim_{x\to 0}1=1$, то:

$$\implies \lim_{x \to 0} \frac{\sin x}{x} = 1$$

Что и требовалось доказать.

Из этого предела сразу следует эквивалентность:

$$\sin x \sim x$$
 при $x \to 0$

Следствия первого замечательного предела (эквивалентности при $x \to 0$):

$$\lim_{x \to 0} \frac{\operatorname{tg} x}{x} = 1 \qquad \operatorname{tg} x \sim x$$

$$\lim_{x \to 0} \frac{\arcsin(x)}{x} = 1 \qquad \arcsin(x) \sim x$$

$$\lim_{x \to 0} \frac{\arctan(x)}{x} = 1 \qquad \arctan(x) \sim x$$

$$\lim_{x \to 0} \frac{\arctan(x)}{x} = 1 \qquad \arctan(x) \sim x$$

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2/2} = 1 \qquad 1 - \cos x \sim \frac{x^2}{2}$$

Второй замечательный предел

Второй замечательный предел связан с числом Эйлера e и играет ключевую роль в дифференциальном исчислении и теории рядов.

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$
 (где $n \in \mathbb{N}$)

Эта формулировка для последовательности $n \in \mathbb{N}$. Для функции $x \in \mathbb{R}$ это также справедливо.

Доказательство для $x \in \mathbb{R}$: Пусть $x \to \infty$. Для любого такого x мы можем найти целые числа n = |x| и n+1 = |x|+1, такие что $n \le x < n+1$. Из этого следует, что:

$$n \le x < n+1$$

$$\frac{1}{n+1} < \frac{1}{x} \le \frac{1}{n}$$

$$1 + \frac{1}{n+1} < 1 + \frac{1}{x} \le 1 + \frac{1}{n}$$

Теперь возведем эти выражения в степень x. Поскольку x > 0, знаки неравенств сохранятся:

$$\left(1 + \frac{1}{n+1}\right)^x < \left(1 + \frac{1}{x}\right)^x \le \left(1 + \frac{1}{n}\right)^x$$

Теперь используем тот факт, что $n \le x < n+1$ для степеней:

$$\left(1 + \frac{1}{n+1}\right)^n \le \left(1 + \frac{1}{n+1}\right)^x < \left(1 + \frac{1}{x}\right)^x \le \left(1 + \frac{1}{n}\right)^x \le \left(1 + \frac{1}{n}\right)^{n+1}$$

Обозначим $A_n = \left(1 + \frac{1}{n+1}\right)^n$ и $B_n = \left(1 + \frac{1}{n}\right)^{n+1}$. Найдем пределы этих выражений при $n \to \infty$:

$$\lim_{n \to \infty} A_n = \lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^n = \lim_{n \to \infty} \frac{\left(1 + \frac{1}{n+1} \right)^{n+1}}{1 + \frac{1}{n+1}} = \frac{e}{1+0} = e$$

$$\lim_{n \to \infty} B_n = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n+1} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \cdot \left(1 + \frac{1}{n} \right) = e \cdot (1+0) = e$$

Поскольку обе зажимающие функции стремятся к e, то по теореме о двух милиционерах (для функций, так как $x \to \infty$):

$$\implies \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

Что и требовалось доказать.

Часто используется эквивалентная форма второго замечательного предела, если сделать замену переменной $t=\frac{1}{x}$. Тогда при $x\to\infty,\,t\to0$.

$$\lim_{t \to 0} (1+t)^{1/t} = e$$

Это и есть вторая форма второго замечательного предела, которая удобна при $x \to 0$.

Следствия второго замечательного предела (эквивалентности при $x \to 0$):

1.
$$\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$$
 или $\ln(1+x) \sim x$ при $x\to 0$

Доказательство:

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \frac{1}{x} \ln(1+x) = \lim_{x \to 0} \ln((1+x)^{1/x})$$

Поскольку функция ln(y) непрерывна, мы можем внести предел под знак логарифма:

$$= \ln\left(\lim_{x \to 0} (1+x)^{1/x}\right) = \ln(e) = 1$$

Что и требовалось доказать.

2.
$$\lim_{x\to 0} \frac{e^x - 1}{x} = 1$$
 или $e^x - 1 \sim x$ при $x \to 0$

Доказательство: Пусть $y = e^x - 1$. Тогда при $x \to 0$, $y \to e^0 - 1 = 1 - 1 = 0$. Из $y = e^x - 1$ выразим x: $e^x = 1 + y$, то есть $x = \ln(1 + y)$. Подставим в предел:

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{y \to 0} \frac{y}{\ln(1 + y)}$$

Мы знаем, что $\lim_{y\to 0} \frac{\ln(1+y)}{y} = 1$. Тогда обратная дробь также стремится к 1:

$$= \lim_{y \to 0} \frac{1}{\frac{\ln(1+y)}{y}} = \frac{1}{1} = 1$$

Что и требовалось доказать.

3.
$$\lim_{x\to 0} \frac{(1+x)^a - 1}{ax} = 1$$
 или $(1+x)^a - 1 \sim ax$ при $x\to 0$

Доказательство: Пусть $y=(1+x)^a-1$. Тогда при $x\to 0,\ y\to (1+0)^a-1=0$. Мы знаем, что $(1+x)^a=e^{a\ln(1+x)}$. Тогда $y=e^{a\ln(1+x)}-1$. Используем эквивалентность $e^z-1\sim z$ при $z\to 0$. Здесь $z=a\ln(1+x)$. Также используем эквивалентность $\ln(1+x)\sim x$ при $x\to 0$. Тогда при $x\to 0$:

$$(1+x)^a - 1 \sim a \ln(1+x) \sim ax$$

Таким образом:

$$\lim_{x \to 0} \frac{(1+x)^a - 1}{ax} = \lim_{x \to 0} \frac{ax}{ax} = 1$$

Что и требовалось доказать.

Таблица эквивалентностей при $x \to 0$

Эти эквивалентности являются мощным инструментом для упрощения вычисления пределов, особенно когда возникает неопределенность $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

$$\sin x \sim x$$

$$\operatorname{tg} x \sim x$$

$$\operatorname{arcsin}(x) \sim x$$

$$\operatorname{ln}(1+x) \sim x$$

$$e^x - 1 \sim x$$

$$(1+x)^a - 1 \sim ax$$

$$1 - \cos x \sim \frac{x^2}{2}$$

$$\log_a(1+x) \sim \frac{x}{\ln(a)}$$

$$a^x - 1 \sim x \ln(a)$$

Например,
$$\lim_{x\to 0} \frac{x-\sin x}{x^3} \neq \lim_{x\to 0} \frac{x-x}{x^3} = \begin{bmatrix} 0\\0 \end{bmatrix}$$
.

Практика вычисления пределов с использованием эквивалентностей

Давайте применим эквивалентности для упрощения вычисления пределов. **Пример 1.**

$$\lim_{x \to 0} \frac{e^{9x} - 1}{\ln(1 + 3x)}$$

При $x\to 0$ числитель $e^{9x}-1\to e^0-1=0$. При $x\to 0$ знаменатель $\ln(1+3x)\to \ln(1)=0$. Неопределенность $\left[\frac{0}{0}\right]$. Используем эквивалентности при $x\to 0$: $e^z-1\sim z$. Здесь z=9x, поэтому $e^{9x}-1\sim 9x$. $\ln(1+z)\sim z$. Здесь z=3x, поэтому $\ln(1+3x)\sim 3x$. Подставляем эквивалентности в предел:

$$\lim_{x \to 0} \frac{9x}{3x} = \lim_{x \to 0} 3 = 3$$

Ответ: 3.

Пример 2.

$$\lim_{x \to 0} \frac{\sin(5x)}{x}$$

При $x \to 0$ неопределенность $\left[\frac{0}{0} \right]$. Используем эквивалентность $\sin(z) \sim z$ при $z \to 0$. Здесь z = 5x.

$$\lim_{x \to 0} \frac{5x}{x} = \lim_{x \to 0} 5 = 5$$

Ответ: 5.

Пример 3.

$$\lim_{x\to 0}\frac{\sin(2x)}{\sqrt{1+8x}-1}\quad (\text{Опечатка в условии, предполагаем }\sqrt{1+\frac{8}{x}}\text{ как }\sqrt{1+8x}\text{ для }x\to 0)$$

При $x \to 0$ неопределенность $\left[\frac{0}{0}\right]$. Используем эквивалентности при $x \to 0$: $\sin(z) \sim z$. Здесь z = 2x, поэтому $\sin(2x) \sim 2x$. $(1+z)^a - 1 \sim az$. Здесь z = 8x и a = 1/2. Поэтому $(1+8x)^{1/2} - 1 \sim \frac{1}{2}(8x) = 4x$. Подставляем эквивалентности:

$$\lim_{x \to 0} \frac{2x}{4x} = \lim_{x \to 0} \frac{1}{2} = \frac{1}{2}$$

Otbet: $\frac{1}{2}$.

Пример 4.

$$\lim_{x \to 9} \frac{\sqrt{x} - 3}{\ln(10 - x)}$$

При $x \to 9$ числитель $\sqrt{9}-3=3-3=0$. При $x \to 9$ знаменатель $\ln(10-9)=\ln(1)=0$. Неопределенность $\left[\frac{0}{0}\right]$. Сделаем замену переменной: пусть t=x-9. Тогда при $x \to 9$, $t \to 0$. Из t=x-9 следует x=t+9. Подставляем в предел:

$$\lim_{t \to 0} \frac{\sqrt{t+9} - 3}{\ln(10 - (t+9))} = \lim_{t \to 0} \frac{\sqrt{t+9} - 3}{\ln(1-t)}$$

Теперь используем эквивалентности при $t \to 0$:

Для числителя: $\sqrt{t+9}-3=(9+t)^{1/2}-3=3\left(\left(1+\frac{t}{9}\right)^{1/2}-1\right)$. Используем эквивалентность $(1+z)^a-1\sim az$. Здесь z=t/9 и a=1/2. Значит, $3\left(\left(1+\frac{t}{9}\right)^{1/2}-1\right)\sim 3\cdot\frac{1}{2}\cdot\frac{t}{9}=\frac{t}{6}$. Для знаменателя: $\ln(1-t)\sim -t$. Подставляем эквивалентности:

$$\lim_{t \to 0} \frac{t/6}{-t} = \lim_{t \to 0} \left(-\frac{1}{6} \right) = -\frac{1}{6}$$

Other: $-\frac{1}{6}$.

Пример 5.

$$\lim_{x \to 0} \frac{\ln(\cos(2x))}{1 - \sqrt{x^2 + 1}}$$

При $x\to 0$ числитель $\ln(\cos(0))=\ln(1)=0$. При $x\to 0$ знаменатель $1-\sqrt{0^2+1}=1-\sqrt{1}=0$. Неопределенность $\begin{bmatrix} 0\\0 \end{bmatrix}$. Используем эквивалентности при $x\to 0$: Для числителя: $\ln(\cos(2x))$. Заметим, что $\cos(2x)=1+(\cos(2x)-1)$. Используем эквивалентность $\ln(1+z)\sim z$. Здесь $z=\cos(2x)-1$. Мы знаем, что $1-\cos(z)\sim\frac{z^2}{2}$, значит $\cos(z)-1\sim-\frac{z^2}{2}$. Для z=2x, $\cos(2x)-1\sim-\frac{(2x)^2}{2}=-\frac{4x^2}{2}=-2x^2$. Значит, $\ln(\cos(2x))\sim-2x^2$. Для знаменателя: $1-\sqrt{x^2+1}=1-(1+x^2)^{1/2}$. Используем эквивалентность $(1+z)^a-1\sim az$. Здесь $z=x^2$ и z=1/2. Значит, z=1/2. Подставляем эквивалентности:

$$\lim_{x \to 0} \frac{-2x^2}{-\frac{1}{2}x^2} = \lim_{x \to 0} \frac{2}{1/2} = \lim_{x \to 0} 4 = 4$$

Ответ: 4.

Пример 6.

$$\lim_{x \to 0} \frac{\cos(3x) - \cos(5x)}{2x^2}$$

При $x \to 0$ числитель $\cos(0) - \cos(0) = 1 - 1 = 0$. При $x \to 0$ знаменатель $2(0)^2 = 0$. Неопределенность $\begin{bmatrix} 0 \\ \overline{0} \end{bmatrix}$. Используем тригонометрическую формулу разности косинусов: $\cos A - \cos B = -2 \sin \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right).$

$$\cos(3x) - \cos(5x) = -2\sin\left(\frac{3x + 5x}{2}\right)\sin\left(\frac{3x - 5x}{2}\right)$$
$$= -2\sin(4x)\sin(-x) = -2\sin(4x)(-\sin x) = 2\sin(4x)\sin x$$

Теперь подставим это в предел:

$$\lim_{x \to 0} \frac{2\sin(4x)\sin x}{2x^2}$$

Сокращаем 2:

$$= \lim_{x \to 0} \frac{\sin(4x)\sin x}{x^2}$$

Теперь используем эквивалентности при $x \to 0$: $\sin(4x) \sim 4x$ и $\sin x \sim x$.

$$= \lim_{x \to 0} \frac{4x \cdot x}{x^2} = \lim_{x \to 0} \frac{4x^2}{x^2} = \lim_{x \to 0} 4 = 4$$

Ответ: 4.

Пример 7.

$$\lim_{x \to \frac{\pi}{2}} \frac{\sqrt[4]{\sin x} - \sqrt[3]{\sin x}}{\cos^2(x)}$$

При $x \to \frac{\pi}{2}$: Числитель: $\sqrt[4]{\sin(\frac{\pi}{2})} - \sqrt[3]{\sin(\frac{\pi}{2})} = \sqrt[4]{1} - \sqrt[3]{1} = 1 - 1 = 0$. Знаменатель: $\cos^2(\frac{\pi}{2}) = 0^2 = 0$. Неопределенность $\left[\frac{0}{0}\right]$. Сделаем замену переменной: пусть $t = x - \frac{\pi}{2}$. Тогда при $x \to \frac{\pi}{2}$, $t \to 0$. Из $t = x - \frac{\pi}{2}$ следует $x = t + \frac{\pi}{2}$. Подставим в предел:

$$\lim_{t \to 0} \frac{\sqrt[4]{\sin(t + \frac{\pi}{2})} - \sqrt[3]{\sin(t + \frac{\pi}{2})}}{\cos^2(t + \frac{\pi}{2})}$$

Используем формулы приведения: $\sin(t+\frac{\pi}{2})=\cos(t)$ и $\cos(t+\frac{\pi}{2})=-\sin(t)$. Значит $\cos^2(t+\frac{\pi}{2})=(-\sin(t))^2=\sin^2(t)$. Предел принимает вид:

$$\lim_{t \to 0} \frac{\sqrt[4]{\cos(t)} - \sqrt[3]{\cos(t)}}{\sin^2(t)}$$

Теперь используем эквивалентности при $t \to 0$: $\sin(t) \sim t$, поэтому $\sin^2(t) \sim t^2$. Для числителя: $\sqrt[4]{\cos(t)} - \sqrt[3]{\cos(t)}$. Мы знаем, что $\cos(t) \sim 1 - \frac{t^2}{2}$ при $t \to 0$. Пусть $z = \cos(t) - 1 \sim -\frac{t^2}{2}$. Тогда $\sqrt[4]{\cos(t)} = \cos^{1/4}(t) = (1 + (\cos(t) - 1))^{1/4} \sim 1 + \frac{1}{4}(\cos(t) - 1)$.

Аналогично $\sqrt[3]{\cos(t)} = \cos^{1/3}(t) = (1 + (\cos(t) - 1))^{1/3} \sim 1 + \frac{1}{3}(\cos(t) - 1)$. Значит, числитель:

$$\left(1 + \frac{1}{4}(\cos(t) - 1)\right) - \left(1 + \frac{1}{3}(\cos(t) - 1)\right)$$

$$= \left(\frac{1}{4} - \frac{1}{3}\right)(\cos(t) - 1) = \left(\frac{3 - 4}{12}\right)(\cos(t) - 1) = -\frac{1}{12}(\cos(t) - 1)$$

Теперь используем эквивалентность $\cos(t)-1\sim -\frac{t^2}{2}$:

$$-\frac{1}{12}(\cos(t)-1) \sim -\frac{1}{12}\left(-\frac{t^2}{2}\right) = \frac{t^2}{24}$$

Подставляем эквивалентности:

$$\lim_{t \to 0} \frac{t^2/24}{t^2} = \lim_{t \to 0} \frac{1}{24} = \frac{1}{24}$$

Ответ: $\frac{1}{24}$.

Пример 8.

$$\lim_{x \to 0} (1 + 2x)^{1/x}$$

При $x\to 0$ основание $1+2x\to 1+0=1$, показатель степени $1/x\to \infty$. Неопределенность $[1^\infty]$. Используем вторую форму второго замечательного предела: $\lim_{t\to 0} (1+t)^{1/t}=e$. Здесь вместо t у нас 2x. Чтобы получить нужную форму, умножим и разделим показатель степени на 2:

$$\lim_{x \to 0} (1+2x)^{\frac{1}{2x} \cdot 2} = \lim_{x \to 0} \left((1+2x)^{\frac{1}{2x}} \right)^2$$

Поскольку внутренняя часть стремится к e, и возведение в степень 2 является непрерывной функцией:

$$= e^{2}$$

Otbet: e^2 .

Пример 9.

$$\lim_{x \to +\infty} \left(1 + \frac{1}{2x} \right)^{3x}$$

При $x \to +\infty$: Основание $1+\frac{1}{2x} \to 1+0=1$. Показатель степени $3x \to +\infty$. Неопределенность $[1^\infty]$. Используем формулу второго замечательного предела: $\lim_{t\to 0} (1+t)^{1/t} = e$. Здесь роль t играет $\frac{1}{2x}$. Чтобы привести выражение к форме второго замечательного предела, нам нужно, чтобы в показателе был множитель, обратный к $\frac{1}{2x}$, то есть 2x. Умножим и разделим показатель степени на 2x:

$$\lim_{x \to +\infty} \left(\left(1 + \frac{1}{2x} \right)^{2x} \right)^{\frac{3x}{2x}}$$

Внутренняя часть $\left(1+\frac{1}{2x}\right)^{2x}$ стремится к e при $x\to +\infty$ (так как $\frac{1}{2x}\to 0$). Теперь вычислим предел нового показателя степени:

$$\lim_{x \to +\infty} \frac{3x}{2x} = \lim_{x \to +\infty} \frac{3}{2} = \frac{3}{2}$$

Таким образом, весь предел равен:

$$=e^{3/2}=\sqrt{e^3}$$

Ответ: $e^{3/2}$.

Пример 10.

$$\lim_{x \to \infty} \left(\frac{x+1}{x-2} \right)^{2x+1}$$

При $x \to \infty$: Основание $\frac{x+1}{x-2} = \frac{1+1/x}{1-2/x} \to \frac{1+0}{1-0} = 1$. Показатель степени $2x+1 \to \infty$.

Неопределенность [1 $^{\infty}$]. Приведем основание к виду $1 + \frac{1}{f(x)}$:

$$\frac{x+1}{x-2} = \frac{x-2+3}{x-2} = 1 + \frac{3}{x-2}$$

Теперь предел:

$$\lim_{x \to \infty} \left(1 + \frac{3}{x - 2} \right)^{2x + 1}$$

Для применения второго замечательного предела, нам нужно, чтобы в показателе был множитель, обратный к $\frac{3}{x-2}$, то есть $\frac{x-2}{3}$. Умножим и разделим показатель степени на $\frac{x-2}{3}$:

$$\lim_{x \to \infty} \left(\left(1 + \frac{3}{x-2} \right)^{\frac{x-2}{3}} \right)^{\frac{3}{x-2} \cdot (2x+1)}$$

Внутренняя часть $\left(1+\frac{3}{x-2}\right)^{\frac{x-2}{3}}$ стремится к e при $x\to\infty$ (так как $\frac{3}{x-2}\to 0$). Теперь вычислим предел нового показателя степени:

$$\lim_{x \to \infty} \frac{3(2x+1)}{x-2} = \lim_{x \to \infty} \frac{6x+3}{x-2} = \lim_{x \to \infty} \frac{6+3/x}{1-2/x} = \frac{6+0}{1-0} = 6$$

Таким образом, весь предел равен:

$$= e^{6}$$

Ответ: e^6 .

Пример 11.

$$\lim_{x \to \infty} \left(\frac{x}{1+x} \right)^x$$

При $x \to \infty$: Основание $\frac{x}{1+x} = \frac{1}{1/x+1} \to \frac{1}{0+1} = 1$. Показатель степени $x \to \infty$.

Неопределенность [1 $^{\infty}$]. Приведем основание к виду $1 + \frac{1}{f(x)}$:

$$\frac{x}{1+x} = \frac{1+x-1}{1+x} = 1 - \frac{1}{1+x} = 1 + \frac{-1}{1+x}$$

Теперь предел:

$$\lim_{x \to \infty} \left(1 + \frac{-1}{1+x} \right)^x$$

Для применения второго замечательного предела, нам нужно, чтобы в показателе был множитель, обратный к $\frac{-1}{1+x}$, то есть -(1+x). Умножим и разделим показатель степени на -(1+x):

$$\lim_{x \to \infty} \left(\left(1 + \frac{-1}{1+x} \right)^{-(1+x)} \right)^{\frac{x}{-(1+x)}}$$

Внутренняя часть $\left(1+\frac{-1}{1+x}\right)^{-(1+x)}$ стремится к e при $x\to\infty$. Теперь вычислим предел нового показателя степени:

$$\lim_{x \to \infty} \frac{x}{-(1+x)} = \lim_{x \to \infty} \frac{x}{-1-x} = \lim_{x \to \infty} \frac{1}{-1/x-1} = \frac{1}{0-1} = -1$$

Таким образом, весь предел равен:

$$=e^{-1}=\frac{1}{e}$$

Otbet: $\frac{1}{e}$.

Пример 12.

$$\lim_{x \to 0} (1 + tg^2(\sqrt{x}))^{1/2x}$$

При $x\to 0$: Основание $1+\operatorname{tg}^2(\sqrt{x})\to 1+\operatorname{tg}^2(0)=1+0=1$. Показатель степени $1/2x\to\infty$. Неопределенность $[1^\infty]$. Используем вторую форму второго замечательного предела: $\lim_{t\to 0} (1+t)^{1/t}=e$. Здесь роль t играет $\operatorname{tg}^2(\sqrt{x})$. Нам нужен показатель, обратный $\operatorname{tg}^2(\sqrt{x})$. Умножим и разделим показатель степени на $\operatorname{tg}^2(\sqrt{x})$:

$$\lim_{x\to 0} \left(\left(1 + \operatorname{tg}^2(\sqrt{x})\right)^{\frac{1}{\operatorname{tg}^2(\sqrt{x})}} \right)^{\frac{\operatorname{tg}^2(\sqrt{x})}{2x}}$$

Внутренняя часть $(1 + \operatorname{tg}^2(\sqrt{x}))^{\frac{1}{\operatorname{tg}^2(\sqrt{x})}}$ стремится к e при $x \to 0$. Теперь вычислим предел нового показателя степени:

$$\lim_{x \to 0} \frac{\operatorname{tg}^2(\sqrt{x})}{2x}$$

Используем эквивалентность $\operatorname{tg}(z) \sim z$ при $z \to 0$. Здесь $z = \sqrt{x}$. Значит, $\operatorname{tg}(\sqrt{x}) \sim \sqrt{x}$, а $\operatorname{tg}^2(\sqrt{x}) \sim (\sqrt{x})^2 = x$. Подставляем эквивалентность:

$$\lim_{x \to 0} \frac{x}{2x} = \lim_{x \to 0} \frac{1}{2} = \frac{1}{2}$$

Таким образом, весь предел равен:

$$=e^{1/2}=\sqrt{e}$$

Ответ: \sqrt{e} .

Пример 13.

$$\lim_{x \to 2} (3e^{x-2} - 2)^{\frac{x}{x-2}}$$

При $x\to 2$: Основание $3e^{2-2}-2=3e^0-2=3(1)-2=1$. Показатель степени $\frac{x}{x-2}$. При $x\to 2$, знаменатель $x-2\to 0$. Значит, $\frac{x}{x-2}\to \frac{2}{0}=\infty$. Неопределенность $[1^\infty]$. Сделаем замену переменной: пусть t=x-2. Тогда при $x\to 2$, $t\to 0$. Из t=x-2 следует x=t+2. Подставляем в предел:

$$\lim_{t\to 0} (3e^t - 2)^{\frac{t+2}{t}}$$

Приведем основание к виду 1+ малая величина: $3e^t-2=1+(3e^t-3)=1+3(e^t-1)$. Теперь предел:

$$\lim_{t \to 0} (1 + 3(e^t - 1))^{\frac{t+2}{t}}$$

Для применения второго замечательного предела, нам нужно, чтобы в показателе был множитель, обратный к $3(e^t-1)$. Умножим и разделим показатель степени на $3(e^t-1)$:

$$\lim_{t \to 0} \left(\left(1 + 3(e^t - 1) \right)^{\frac{1}{3(e^t - 1)}} \right)^{3(e^t - 1) \cdot \frac{t + 2}{t}}$$

Внутренняя часть $(1+3(e^t-1))^{\frac{1}{3(e^t-1)}}$ стремится к e при $t\to 0$. Теперь вычислим предел нового показателя степени:

$$\lim_{t \to 0} 3(e^t - 1) \cdot \frac{t+2}{t}$$

Используем эквивалентность $e^t - 1 \sim t$ при $t \to 0$.

$$\lim_{t \to 0} 3t \cdot \frac{t+2}{t} = \lim_{t \to 0} 3(t+2)$$

Применяем предел:

$$=3(0+2)=3\cdot 2=6$$

Таким образом, весь предел равен:

$$= e^{6}$$

Ответ: e^6 .