CLASS NOTES E-COMM & E-SECURITY TEACHING PHASE -II

RSA

Used for 3	purpose:
------------	----------

- i) Key generation
- ii) Key exchange
- iii) Encryption/decryption
- (i) RSA for key generation
- 1) Take 2 prime numbers p and q: p=7, q=11
- 2) Compute $n = p \times q = 11 \times 7 = 77$
- 3) Compute $\phi(n)=(p-1)x(q-1)=(7-1)x(11-1)=60$
- 4) Select e such that it is relatively prime to $\phi(n)$ and $1 < e < \phi$; $\gcd(e, \phi(n)) = 1$
 - $60 = 2 \times 3 \times 3 \times 5 \rightarrow$ it is not present in table of 2,3 or 5
 - e = 13
- 5) Find **d** (d is private)

 $d = e^{-1} (1 \mod \emptyset)$

Condition for d:

If $d > \emptyset$, then $d = d \mod \emptyset$

If d is –ve , then $d = d + \emptyset$

compute d using <u>Extended Euclid's algorithm</u>

The equation is
$$ax + by = gcd(a,b)$$
.....(2)
Where $a = \emptyset$, $b = e$
 $60x + 13y = gcd(60,13) = 1$

row	a _i	b _i	d	k
1	1	0	60 (<mark>ø)</mark>	_
2	0	1	13(e	(d1/d2)
			public)	(d1/d2) 60/13 = 4
3	1	-4	8	1
4	-1	5	5	1
5	2	-9	3	1
6	-3	14	2	1
7	5	-23	1	1
		(private		
		key)		

$$a3 = a1 - a2 \times k2 = 1 - 0 \times 4 = 1$$

 $b3 = b1 - b2 \times k2 = 0 - 1 \times 4 = -4$
 $d3 = d1 - d2 \times k2 = 60 - 13 \times 4 = 8$

Solve till $d = 1 \rightarrow$ corresponding value of b is private

key "d"

D = -23

E = 13

N = 77

 $\emptyset = 60$

Condition for d:

If $d > \emptyset$, then $d = d \mod \emptyset$

If d is –ve , then $d = d + \emptyset$

d = -23 = -23+60 = 37

decryption key d= 37

Public key : $\{e,n\}$: $\{13,77\} \rightarrow \text{ published }$

Private key: $\{d,n\}$: $\{37,77\} \rightarrow$ secret

ii) RSA Encryption/ Decryption

public key: 13(e), 77(n)

private key: 37(d), 77(n)

plain text M: 8

cipher text C = M ^ e (mod n)

C = 8^13 mod 77 →

Decryption:

M = C^d (mod n) → C ³⁷ mod 77 →

Public key , msg → private key , C

Q: Seema publishes her RSA public key {37, 77}

Janki wants to send a msg M=20 to seema using RSA algo.

What cipher text does Janki sends to Seema?

And how seema will retrieve the plain text from the received cipher text?

Janki : \rightarrow refer to the directory where public keys are stored \rightarrow {37,77}, {e, n}

1) C = M^e mod n \rightarrow 20^37 mod 77

Find \rightarrow value of d

2) =
$$C^d \mod n$$

Q: Perform encryption and decryption using RSA algorithm for the following:

Find d (private key) and C (cipher text)

Fast Modular Exponentiation Algorithm

Algorithm to compute ab mod n
C← 0; d← 1
For I ← k down to 0
do c ← 2*c
d ← (d x d) mod n // 160 * 160 mod 561 = 355
if b_i = 1 // true
then c← c+1 //
d ← (d x a) mod n // (355 * 7) mod 561
return d
Ex: a=7, b=560, n = 561
Compute: 7⁵⁶⁰ mod 561 = 1
1) Compute binary of b = 560
→ 1000 110000

i	9	8	7	6	5	4	3	2	1	0
bi	1	0	0	0	1	1	0	0	0	0
С	1	2	4	8	17	35	70	140	280	560
d	7	49	157	526	160	241	298	166	67	1

Ex: Solve the following using Fast Modular Exponentiation Algorithm 5¹¹⁷ mod 19.

Ex: Solve the following using Fast Modular Exponentiation Algorithm 7²³⁴ mod 37.

Diffie – Hellman Key exchange algorithm

Two global element

q → prime number

 $a \rightarrow a < q$, primitive root of q

a^0 mod q

a^1 mod q

a^2 mod q

Α

- Key generation
 Select a private key Xa
 Xa<q
- 2) Calculate its public key
 Ya→ a^Xa mod q
 Xa-private,Ya-pulic

В

- 1) Select private key Xb; Xb < q
- 2) Caculate its public info Yb→a^Xb mod q

Xb-private, Yb-public

Exchange public information: A →B; Ya	B →A; Yb			
3) Yb	3) Ya			
Calculate Session key independently; K = (Yb)^Xa mod q	Calculate Session key independently; K = (Ya)^Xb mod q			
q=353 , a(alpha) = 3 Xa=97 Ya=? 3^97 mod 353	q=353 , a(alpha) = 3 Xb=233 Yb=? 3^233 mod 353			
yb K=? K = (Yb)^Xa mod q	ya K=? K = (Ya)^Xb mod q			

- 1) User A & B uses the D-H key exchange algorithm with common prime q=71, primitive root alpha = 7
- i) If A's private key Xa=5, find public key Ya?
- ii) If B's private key Xb=12, find Yb?
- iii) What is shared secret key K?
- 2) Q=11, a=2
- i) Ya=9; Xa=?
- ii) Yb=3; Xb=?
- iii) K=?

Message Autentication and Hash

- 2) Msg auth & Conf : auth to plain text $M \rightarrow M + mac(M) \rightarrow Encryption(k2) ----- \rightarrow Decrypt(k2) \rightarrow M+ Mac(M) \rightarrow M-(fk1)--- Mac(M) == received mac$
- 3) Msg auth & Conf: auth tied to CT

Msg: late

 $H(Msg) \rightarrow x$ (hash value)

Msg2: lete

 $H(Msg2) \rightarrow x1(hash value)$

Weak collision: Msg != Msg2 , hash value : x != x1

Any of the hash func does not follow this property, then attack can be possible.

How?

A: sender

h= x, M= late C(attacker) (lite + Ek(x)
$$\rightarrow$$
 Late + Ek(x) \rightarrow (lite + Ek(x)

Sender A Rec B

Strong collision: any pair of msg (x,y)

M1: hi how are you;

M2: how you are hi

Msg Digest Algo

MD5 algorithm

- Takes variable length input, & produces 128 bit output
- Variable length input → blocks → size 512 bit blocks

Step1: Append padding bits

- Msg is padded so that its length is congruent to 448 mod 512
- B1 B2 Blst(auth) → md5 last 128 bit auth, sha1 last 160 auth
- 101010 10(padding) 0000 0110
- -64 bits are reserved for length of data
- Data + padding +length of msg = L * 512
 - Padding bit sare always added.
 Padding bits range → 1 to 512 bits
 100000000000000.....

Step 2: append legth

64 bit representation of original msg

If original msg is > 2^64 → low order 64 bit

Step 3: initialize MD buffer

- Buffer 128 bit
- Used to hold intermediate and final result of hash func.
- 4 buffers each of 32 bits registers

A, B, C, D

A= 67452301

B= EFCDAB89

C=98BADCFE

D=10325476

LITTLE ENDIAN STORAGE ORDER IS USED BY THE MD5 BUFFER

Step 4: Process msg in 512 bits / 16 words block

- Heart of the algo is <u>compression function</u>, that consist of 4 rounds of processing
- This module is referred as MD5
- Rounds have similar structure but they are diff in logical func
- Lets refer the func as F,G,H,I
- T is table consist of 64 elements , table is constructed from sine function.
- The ith value of T is integer part of 2^32 x abs(sin(i)) i is given in radians

Table provides radomized set of 32 bits pattern

Step5: all the blocks are processed → 128 bit msg digest/hash value/hashcodes

Summary:

CVq+1 = SUM32(CVq(Yq, I(Yq,H(Yq,G(Yq,F(Yq,CVq))))))

Blocks : 0 - L-1

MD = CV(L-1) : 128 bit

```
DATA | | MD -------
```

Detail of Compression function:

HMAC

- 3) Si = (k+) XOR (ipad)
- 4) ipad = 0011 0110 \rightarrow b/8 times where b is block length
- 5) main Key K → 0's appeneded to the left of key K → derived key k+
- 6) key legth == block length (b)
- 7) opad = 0101 1100 \rightarrow b/8 times
- 8) So = opad XOR k+
- 9) HMACk(M) → hash value/hash code/ msg digest

ARBITRATED DIGITAL SIGNATURE

1) Conventional encryption, arbiter sees the msg

```
Step 1: X \rightarrow A: M || Exa [IDx || H(M)]
```

Step 2: A
$$\rightarrow$$
 Y: Eay [IDx || M || Exa [IDx || H(M) || T]]

2) Conventional encryption, arbiter cannot see the msg

Step 1:
$$X \rightarrow A$$
: Exy[M] || IDx || Exa [IDx || H (Exy(M))]

Step 2: A
$$\rightarrow$$
 Y: Eay [Exy[M] | | IDx | | Exa [IDx | | H (Exy(M)) | | T]]

3) Public-encryption, arbiter does not see the msg

Step 1:
$$X \rightarrow A$$
: $IDx \mid | Eprx [IDx \mid | Kpuy [Kprx[M]]]$

Step 2:
$$A \rightarrow Y$$
: Epra [IDx | Kpuy [Kprx[M]] | T]