Common mistakes in Problem Set 5

- 1. When Epp uses the term 'universal set', she is referring to something to which we have been referring throughout COMP9020 with a different term. What is this different term? Hint if you can see what Epp actually means by her use of 'universal set', then this should be obvious.
- Explain the relationship between deductive validity and the subset relation.
- 3. Consider the following two sets, A and B:

$$A = \{ m \in \mathbb{Z} : m = 3r - 2 \text{ for some } r \in \mathbb{Z} \}$$

 $B = \{ n \in \mathbb{Z} : n = 2s - 2 \text{ for some } s \in \mathbb{Z} \}$

Is it the case that $B\subseteq A$? If yes, provide a proof. If no, then provide a counterexample with a detailed justification.

4. Take the "universal set" U to be:

Consider the following two sets, $P \subseteq U$ and $Q \subseteq U$:

$$P = \{1, 2, 3, 4\}$$

$$Q = \{3, 4, 5, 6\}$$

Let it be the case that $P \cap Q \subseteq O$ where $O \nsubseteq P \cap Q$ but $O \subseteq Q$. Find O. Explain your reasoning.

5. Is it possible to recover the truth-function f₃² from the truth-functions f₁¹ and f₂²? If so, then show how. If not, then explain why not/provide a counterexample.

Question 2

• Your answer generally reflects your correct understanding, but it is not comprehensive.

In general, both are partial orders. In particular, the subset relation tracks satisfaction in models for valid arguments.

Question 4

• Partial correct. Find O means find all the cases of set O!

Question 5

• What do f_1^1 , f_2^2 , and f_3^2 mean?

Relations

Property and Relation

One-place predicates are properties

n-place predicates (where n > 1) are **relations**

- 2-place relations (binary relation) include **next to** and **greater than** etc.
- 3-place relations (ternary relation) include...?

Excitingly, relations can possess properties!

- Example: next to is symmetric but non-transitive.
- Example: greater than is transitive but non-symmetric.

We write a bears relation R to b as aRb

Three place relations are written **Rabc** but let us not speak of these...

Exercise 1 Define a relation L from $\mathbb R$ to $\mathbb R$ as follows: For all real numbers x and y,

$$x L y \iff x < y$$

a. Is
$$57 L 53$$
? b. Is $(-17) L (-14)$? c. Is $143 L 143$? d. Is $(-35) L 1$?

Directed Graph of a Relation

A **relation on a set** A is a relation from A to A.

When a relation R is defined on a set A, the arrow diagram of the relation can be modified so that it becomes a **directed graph**. Instead of representing A as two separate sets of points, represent A only once, and draw an arrow from each point of A to each related point. As with an ordinary arrow diagram,

For all points x and y in A,

• there is an arrow from x to $y \iff x R y \iff (x,y) \in R$.

If a point is related to itself, a *loop* is drawn that extends out from the point and goes back to it.

Exercise 2 Let $A=\{3,4,5,6,7,8\}$ and define a relation R on A as follows: For every $x,y\in A$, $x\,R\,y\iff 2\mid (x-y).$

Draw the directed graph of R.

Properties of Relations

Reflexive, Symmetric and Transitive

Let R be a relation on a set A.

- 1. R is **reflexive** if, and only if, for every $x \in A$, x R x.
- 2. R is **symmetric** if, and only if, for every $x, y \in A$, if x R y then y R x.
- 3. R is **transitive** if, and only if, for every $x, y, z \in A$, if x R y and y R z then x R z.

What do non-reflexive, non-symmetric, and non-transitive means?

Exercise 3.1 Let $A = \{0, 1, 2, 3\}$ and define relations R, S, and T on A as follows:

$$R = \{(0,0), (0,1), (0,3), (1,0), (1,1), (2,2), (3,0), (3,3)\},\$$

$$S = \{(0,0), (0,2), (0,3), (2,3)\},\$$

$$T = \{(0,1), (2,3)\}.$$

- a. Is R reflexive? symmetric? transitive?
- b. Is *S* reflexive? symmetric? transitive?
- c. Is T reflexive? symmetric? transitive?

Exercise 3.2 Define a relations E, L on \mathbb{R} as follows: For all real numbers x and y,

$$x E y \iff x = y.$$

 $x L y \iff x < y.$

a. Is ${\cal E}$ reflexive? symmetric? transitive?

Antireflexive and Antisymmetric

- 1. R is **antireflexive** if, and only if, for every $x \in S$: $(x, x) \notin R$.
- 2. R is **antisymmetric** if, and only if, for every $x, y \in S$: If (x, y) and $(y, x) \in R$ then x = y.

Are non-reflexive and non-symmetric the same as antireflexive and antisymmetric?

Exercise 3.3 Are the relations E and L defined in *Exercise 3.2* antireflexive? antisymmetric?

Equivalence and Partial Order

Let A be a set and R a relation on A. R is an **equivalence relation** if, and only if, R is reflexive, symmetric, and transitive.

Let R be a relation defined on a set A. R is a **partial order relation** if, and only if, R is reflexive, antisymmetric, and transitive.

Exercise 4.1 Define a relations L_e on $\mathbb R$ as follows: For all real numbers x and y,

 $x L_e y \iff x \leq y$.

Let the relations E and L be the same definations as those in *Exercise 3.2*.

- a. Is E an equivalence relation? a partial order relation?
- b. Is L an equivalence relation? a partial order relation?
- c. Is L_e an equivalence relation? a partial order relation?

Notation for partial order: Because of the special paradigmatic role played by the \leq relation in the study of partial order relations, the symbol \leq is often used to refer to a general partial order relation, and the notation $x \leq y$ is read "x is less than or equal to y" or "y is greater than or equal to x."

Exercise 4.2 Show that the *subset* relation is a partial order.

Partition and Class

Partition

A partition in a set A is a (finite or infinite) collection of subsets of A such that these subsets are nonempty, mutually exclusive, and jointly exhaustive.

Example: Let $A = \{1, 2, 3\}$, and Let $A_1 = \{1, 2\}$ and $A_2 = \{3\}$

 A_1 and A_2 form a **partition** on A, since $A_1 \cap A_2 = \emptyset$ and $A_1 \cup A_2 = A$.

Given a partition on A, the **relation induced by the partition**, R, is defined in A as:

 $\forall x \forall y : x \in A \land y \in A, \ xRy \iff$ there is a subset A_i of the partition s.t. $x \in A_i$ and $y \in A_i$.

Equivalence Class

Suppose A is a set and R is an equivalence relation on A. For each element a in A, the **equivalence class of** a, denoted [a] and called the **class of** a for short, is the set of all elements x in A such that x is related to a by A.

In symbols:

$$[a] = \{x \in A \mid x R a\}$$

The procedural version of this definition is

for every $x \in A$, $x \in [a] \iff x R a$.

Counting Mathods

Basic Counting Rules

Principles

- Union rule ("or"): If S and T are disjoint |S ∪ T| = |S| + |T|
- Product rule ("followed by"): $|S \times T| = |S| \cdot |T|$

Common strategies

- Direct application of the rule
- Relate unknown quantities to known quantities (e.g. $|S| + |T| = |S \cup T| + |S \cap T|$)
- Find a bijection to a set that can be counted

Exercise 5.1 Suppose there are k elements in set A. How many elements in $\mathcal{P}(A)$?

Exercise 5.2 How many different Boolean functions with k arguments (i.e., $f:\{0,1\}^k \to \{0,1\}$)?

Permutation and Combination

A **permutation** of a set of objects is an *ordering* of the objects in a row.

An **r-permutation** of a set of n elements is an ordered selection of r elements taken from the set of n elements. The number of r-permutations of a set of n elements is denoted P(n,r).

•
$$P(n,r) = \frac{n!}{(n-r)!}$$
.

Exercise 6.1

- a. How many different ways can three of the letters of the word BYTES be chosen and written in a row?
- b. How many different ways can this be done if the first letter must be B?

A **combination** of a set of objects is an *disordering* of the objects in a row.

Let n and r be nonnegative integers with $r \le n$. An r-combination of a set of n elements is a subset of r of the n elements. The symbol $\binom{n}{r}$, read "n choose r," denotes the number of subsets of size r (or r-combinations) that can be formed from a set of n elements.

$$\bullet \quad \binom{n}{r} = \frac{n!}{r!(n-r)!}.$$

Exercise 6.2 Consider again the problem of choosing five members from a group of twelve to work as a team on a special project. How many distinct five-person teams can be chosen?

Exercise 6.3 Prove that
$$(a+b)^n = \sum\limits_{k=0}^n \binom{n}{k} \cdot a^k b^{n-k}$$
.

Exercise 6.4 Suppose the group of twelve consists of five men and seven women.

- a. How many five-person teams can be chosen that consist of three men and two women?
- b. How many five-person teams contain at least one man?
- c. How many five-person teams contain at most one man?