Коллоквиум №1 по математическому анализу II

186

Update 4

Билет 1. Понятие числового ряда, его частичной суммы. Сходимость и расходимость числовых рядов. Примеры сходящихся и расходящихся числовых рядов. Необходимый признак сходимости числового ряда.

Определение. Символ $a_1 + a_2 + a_3 + ...$ или $\sum_{k=1}^{\infty} a_k$, где $a_k \in \mathbb{R}$, называется числовым рядом. Определение. a_k – члены (слагаемые) ряда. Определение. $S_n = \sum_{k=1}^n a_k$ – частичная сумма ряда. Определение. Если существует конечное число $S = \lim_{n \to \infty} S_n$, то ряд называется сходящимся, а S = суммой разга

а S — суммой ряда.

Определение. Если такого числа не существует или $\lim_{n\to\infty} S_n = \infty$, то ряд называется расходящимся.

дящимся.
Пример.
$$1-1+\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+\dots$$
 сходится, т.к. $S_n=\begin{cases} 0, \text{ если } n-\text{чётное} \\ \frac{2}{n+1}\to 0 \text{ при } n\to\infty, \text{ если } n-\text{нечётное} \end{cases}$ Пример. $1-1+1-1+1-1+\dots$ расходится, т.к. $S_n=\begin{cases} 0, \text{ если } n-\text{чётное} \\ 1, \text{ если } n-\text{нечётное} \end{cases}$ \Rightarrow предела

частичных сумм не существует.

Теорема. Необходимое условие сходимости числового ряда.

Если ряд $\sum_{n=1}^{\infty} a_n$ сходится, то $\lim_{n\to\infty} a_n=0$. Доказательство. Заметим, что $S_n-S_{n-1}=a_n$. Знаем, что ряд сходится \Rightarrow существует предел частичных сумм $S = \lim_{n \to \infty} S_n$, но также верно, что $S = \lim_{n \to \infty} S_{n-1} \Rightarrow \lim_{n \to \infty} a_n = \lim_{n \to \infty} (S_n - S_{n-1}) = \lim_{n \to \infty} S_n - \lim_{n \to \infty} S_{n-1} = S - S = 0$. **Замечание.** Данное условие не является достаточным для сходимости числового ряда.

Билет 2. Критерий Коши сходимости числового ряда. Доказать расходимость гармонического ряда.

Теорема. Критерий Коши.

Для сходимости $\sum_{k=1}^{\infty} a_k$ необходимо и достаточно выполнения условия Коши:

$$\forall \varepsilon > 0 \; \exists N = N(\varepsilon) \; \forall n \ge N \; \forall p > 0 \colon \left| \sum_{k=n+1}^{n+p} a_k \right| < \varepsilon$$

Доказательство. Заметим, что

$$\sum_{k=n+1}^{n+p} a_k = S_{n+p} - S_n$$

где S_n – частичные суммы.

Утверждение следует из критерия Коши для последовательностей, если его применить к последовательности $\{S_n\}$.

Напоминание (критерий Коши для последовательностей).

Определение. Последовательность $\{x_n\}$ называют фундаментальной, если для нее выполнено условие Коши:

$$\forall \varepsilon > 0 \ \exists n_0 = n_0(\varepsilon) \ \forall n, m \ge n_0 \colon |x_n - x_m| < \varepsilon$$

Теорема. Критерий Коши. Последовательность $\{x_n\}$ сходится и имеет предел \Leftrightarrow она фундаментальна.

Доказательство.

1. Докажем, что если $\lim_{n\to\infty} x_n = c$, то она фундаментальна. Из существования предела следует, что

$$\forall \varepsilon > 0 \ \exists n_0 = n_0 \left(\frac{\varepsilon}{2}\right) \ \forall n \ge n_0 \colon \ |x_n - c| < \frac{\varepsilon}{2} \ \forall \varepsilon > 0 \ \exists n_0 = n_0 \left(\frac{\varepsilon}{2}\right) \ \forall m \ge n_0 \colon \ |x_m - c| < \frac{\varepsilon}{2}$$

Значит,

$$|x_n - x_m| \le |x_n - c| + |x_m - c| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

2. Если $\{x_n\}$ – фундаментальная последовательность, то она имеет конечный предел. $\{x_n\}$ фундаментальная, значит, по теореме Больцано-Вейерштрасса она имеет некоторую сходящуюся подпоследовательность $\{x_{n_k}\}$. Пусть тогда $\lim_{k\to\infty} x_{n_k} = c$. Из фундаментальности следует:

$$\forall \varepsilon > 0 \ \exists n_0 = n_0(\varepsilon) \ \forall n, m \ge n_0 \colon |x_n - x_m| < \frac{\varepsilon}{2}$$

Тогда положим $m = n_k$:

$$\forall \varepsilon > 0 \ \exists n_0 = n_0(\varepsilon) \ \exists k_0 = k_0(\varepsilon) \ \forall n \ge n_0 \ \forall k \ge k_0 \colon |x_n - x_{n_k}| < \frac{\varepsilon}{2}$$

Тогда с учетом $\lim_{k \to \infty} x_{n_k} = c$ получим, что

$$\forall \varepsilon > 0 \ \exists n_0 = n_0(\varepsilon) \ \forall n \ge n_0 \colon |x_n - c| < \frac{\varepsilon}{2}$$

Утверждение. Гармонический ряд $\sum_{n=1}^{\infty} \frac{1}{n}$ расходится.

Доказательство. Ряд расходится \Rightarrow по определению предел частичных сумм ряда бесконечен (или не существует): $\lim_{n\to\infty} S_n = +\infty$. Применим отрицание критерия Коши к последовательно-

сти частичных сумм ряда:

$$\exists \varepsilon > 0 \ \forall N \ \exists n, m \geqslant N : \ |S_n - S_m| \geqslant \varepsilon$$

Пусть n = 2N, m = N, тогда:

$$|S_n - S_m| = |S_{2N} - S_N| = \left| 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{N} + \dots + \frac{1}{2N} - \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{N} \right) \right| =$$

$$= \left| \frac{1}{N+1} + \frac{1}{N+2} + \dots + \frac{1}{2N} \right| = \frac{1}{N+1} + \frac{1}{N+2} + \dots + \frac{1}{2N}$$

Далее заметим, что всего слагаемых в сумме N и что наименьшее из слагаемых – это $\frac{1}{2N}$. Тогда можем ограничить сумму снизу следующим образом:

$$\frac{1}{N+1} + \frac{1}{N+2} + \dots + \frac{1}{2N} \geqslant \frac{1}{2N} \cdot N = \frac{1}{2} = \varepsilon$$

Билет 3. Критерий сходимости ряда с неотрицательными членами через частичные суммы. Теорема о сравнении и предельный признак сравнения.

Теорема. Сходимость числового ряда с неотрицательными членами $(\sum_{k=1}^{\infty} a_k, a_k \ge 0 \ \forall k)$ эквивалентна ограниченности последовательности $\{S_k\}$ его частичных сумм.

Доказательство. $S_{n+1} = S_n + a_{n+1} \ge S_n$, значит $\{S_n\}$ монотонно нестрого возрастает. Теперь утверждение следует из теоремы Вейерштрасса о монотонной ограниченной последовательно-

Если $\{x_n\}$ ограничена, то $\exists \sup\{x_n\}$ (свойство множества вещественных чисел);

Если $\{x_n\}$ монотонно возрастает и ограничена, то $\exists \lim_{n \to \infty} x_n = \sup\{x_n\}$ (сама теорема). Достаточно взять в качестве x_n частичные суммы S_n .

Теорема. Признак сравнения рядов с неотрицательными членами.

Пусть $\exists k_0 \ \forall k \geq k_0 : 0 \leq a_k \leq b_k$.

- 1)Если $\sum_{k=1}^{\infty} b_k$ сходится, то $\sum_{k=1}^{\infty} a_k$ тоже сходится.
- 2) Если $\sum_{k=1}^{\infty} a_k$ расходится, то $\sum_{k=1}^{\infty} b_k$ тоже расходится.

Доказательство. Пусть $\sum\limits_{k=1}^{\infty}b_k$ сходится, тогда $\{\sum\limits_{k=1}^{n}b_k\}$ ограничена, значит $\{\sum\limits_{k=1}^{n}a_k\}$ ограничена тем же числом. По предыдущей теореме $\sum_{k=1}^{\infty} a_k$ сходится. \blacktriangleleft

Теорема. Предельный признак сравнения.

Пусть $a_k>0,\ b_k>0$ и $\exists\lim_{n\to\infty} \frac{a_n}{b_n}=L\in(0;+\infty),$ тогда $\sum\limits_{k=1}^\infty a_k$ и $\sum\limits_{k=1}^\infty b_k$ сходятся/расходятся одновременно

Доказательство. $\lim_{k\to\infty}\frac{a_k}{b_k}=L$ (в определении предела возьмем $\varepsilon=\frac{L}{2}>0$) $\exists\, K\,\,\forall k\geq K\colon \frac{L}{2}\leq \frac{a_k}{b_k}\leq \frac{3}{2}L\iff \frac{L\cdot b_k}{2}\leq_\# a_k\leq_*\frac{3b_k\cdot L}{2}.$ Если сходится $\sum_{k=1}^\infty b_k$, то сходится $\sum_{k=1}^\infty \frac{3}{2}Lb_k$. Тогда из (*) и признака сравнения следует, что сходится $\sum_{k=1}^{\infty} a_k$.

A если сходится $\sum_{k=1}^{\infty} a_k$, то из (#) следует, что сходится $\sum_{k=1}^{\infty} b_k$.

Билет 4. Интегральный признак сходимости числового ряда. Сходимость ряда $\sum_{k=0}^{\infty} \frac{1}{k^{\alpha} \ln^{\beta} k}$ в зависимости от значений α и β .

Теорема. Пусть $f \in C([1;+\infty)), f$ монотонно убывает на $[1;+\infty), \lim_{x\to\infty} f(x) = 0$ (а значит $f(x) \ge 0$). Тогда ряд $\sum_{k=1}^{\infty} f(k)$ и $\int_{1}^{+\infty} f(x) dx$ сходятся/расходятся одновременно.

 $\forall x \geq k: f(x) \leq f(k)$ - следует из того, что f монотонно убывает. $\int\limits_{k}^{k+1} f(x) dx \leq \int\limits_{k}^{k+1} f(k) dx = \int\limits_{k}^{k+1} f(x) dx$ $f(k) \cdot \int_{1}^{k+1} 1 dx$, где (f(k) - константа).

Из неравенства $f(k) \ge \int_{k}^{k+1} f(x) dx \ge f(k+1)$ получаем, что $\sum_{k=1}^{n} f(k) \ge \int_{1}^{n+1} f(x) dx \ge \sum_{k=2}^{n+1} f(k)$.

Сходимость $\sum_{k=1}^{\infty} f(x) \iff$ ограниченности последовательности $\{\sum_{k=1}^{n} f(k)\} \iff$ (из написан-

ных выше неравенств) ограниченности последовательности интегралов $\{\int\limits_{1}^{n+1}f(x)dx\}_{n}\iff$

ограниченности функции $F(b) = \int_{a}^{b} f(x)dx \iff$ (было в теме «несобственные интегралы») сходимости $\int_{1}^{+\infty} f(x)dx$. \blacktriangleleft

Утверждение. Ряд $\sum_{k=2}^{\infty} \frac{1}{k^{\alpha} \ln^{\beta} k}$ сходится, если $\begin{vmatrix} \alpha > 1, \forall \beta \\ \alpha = 1, \beta > 1 \end{vmatrix}$ и расходится иначе.

Билет 5. Признак Д'Аламбера в простой и предельных формах. Примеры.

Теорема. Признак Д'Аламбера о сходимости ряда.

Пусть есть ряд с положительнами членами ряда. Тогда:

1. Если
$$\exists \ 0 < q < 1$$
 такое, что $\exists k_0 \ \forall k \ge k_0 \quad \frac{a_{k+1}}{a_k} \le q$, то $\sum_{k=1}^{\infty} a_k$ сходится.

2. Если $\exists k$ такое, что $\forall k \geq k_0 \quad \frac{a_{k+1}}{a_k} > 1$, то $\sum_{k=1}^{\infty} a_k$ расходится.

Замечание. Конечное число первых членов ряда не влияет на сходимость (хотя, конечно, влияет на сумму ряда), их можно отбросить.

Доказательство.

- 1. Возьмем тот момент, когда ряд начал удовлетворять условию. При $k \geq k_0$ $a_{k+1} \geq q a_k \Rightarrow$ заметим, что каждый член ряда меньше предыдущего $\Rightarrow 0 \leq a_k \leq q^{k-k_0} a_{k_0}$ (оценка получена путем поэтапного сранения, пока не дошли до a_{k_0}). Получили оценку: $\forall a_k \ k > k_0 \ a_k \leq q^{k-k_0} a_{k_0} = c_0 q^k$. Следовательно, если q < 1, $c_0 q^k$ член убывающей геометрической прогрессии с знаменателем q, значит, ряд сверху ограничен членами убывающей геометрической прогрессии сходящимся рядом, значит, ряд сходится по признаку сравнения. \blacktriangleleft
- 2. Начиная с k_0 $a_{k_0} \le a_{k_0+1} \le a_{k_0+2} \le ...$ Значит, последовательность $\{a_k\}$ не стремится к нулю, и ряд расходится по необходимому признаку. \blacktriangleleft

Теорема. Признак Д'Аламбера в предельной форме.

Пусть есть ряд, причем:

$$\forall k \ a_k > 0, \ \exists \lim_{k \to \infty} \frac{a_{k+1}}{a_k} = q, \ \text{тогда}$$
:

- ullet Если q < 1 то ряд сходится.
- Если q > 1 то ряд расходится.
- Если q = 1, то ряд может как сходиться, так и расходиться.

Доказательство.

1. Выберем вокруг q окрестность $(q - \varepsilon, q + \varepsilon)$, $\varepsilon = \frac{1-q}{2}$, тогда такая окрестность строго лежит в интеравле (0;1). Так как по условию предел отношения существует и равен q, то можем переписать условие предела так:

 $\exists k_0 = k_0(\varepsilon) \quad \forall k \geq k_0 \; \frac{a_{k+1}}{a_k} \in (q-e,q+e) \Rightarrow \frac{a_{k+1}}{a_k} < q+\varepsilon < 1 \; \text{по предыдущей теореме}$ (признак Д'Аламбера о сходимости ряда) ряд сходится. ◀

2. Аналогично пункту 1 перепишем условие предела:

 $\lim_{k\to\infty} \frac{a_{k+1}}{a_k} > 1 \Rightarrow \exists k_0 = k_0(e) \quad \forall k \geq k_0 \quad \frac{a_{k+1}}{a_k} > r > 1$ по предыдущей теореме (признак Д'Аламбера о сходимости ряда) ряд расходится. \blacktriangleleft

- 3. Для доказательства достаточно привести два примера:
 - (a) Гармонический ряд $\sum\limits_{k=1}^{\infty} \frac{1}{k}$ расходится $(\alpha=1).$

(b)
$$\sum_{k=1}^{\infty} \frac{1}{k^3}$$
 - сходится $(\alpha > 1)$

Но в обоих случаях $\lim_{k\to\infty} \frac{a_{k+1}}{a_k} = 1$. ◀

Билет 6. Признак Коши в простой и предельной формах. Примеры.

Теорема. Признак Коши сходимости ряда в простой форме.

Пусть требуется установить сходимость ряда $\sum_{k=0}^{\infty} a_k$ Пусть $\forall \ k \ a_k \geqslant 0$. Тогда:

- 1) Если $\exists \ 0\leqslant q<1$ такое, что $\exists \ k_0 \ \forall \ k\geqslant k_0 \ \sqrt[\kappa]{a_k}\leqslant q<1$, тогда ряд сходится.
- 2) Если $\forall k_0 \exists k \geqslant k_0 \sqrt[k]{a_k} \geqslant 1$. (Сколь угодно далеко существуют общие члены в ряде, для которых выполнено написанное неравенство). Тогда ряд расходится.

Доказательство.

- 1) $\sqrt[k]{a_k} \leqslant q$. Значит $a_k \leqslant q^k$. Получили, что a_k ограничено общим членом ряда сходящейся бесконечной убывающей геометрической прогрессии. $\sum\limits_{k=0}^{\infty}q^k$ сходится при |q|<1. Значит $\sum\limits_{k=0}^{\infty}a_k$ тоже сходится.
- 2) Имеем (возводя неравенство $\sqrt[k]{a_k} \geqslant 1$ в k-ую степень) $\forall k_0 \; \exists k \geqslant k_0 : a_k \geqslant 1$. Сколь угодно далеко есть общие члены, не меньшие 1. Последовательность из общих членов такого ряда не стремится к 0. Не выполнено необходимое условие сходимости ряда. Ряд $\sum_{k=0}^{\infty} a_k$ расходится. **Замечание.** Чтобы проверять сходимость ряда по этому признаку Коши, требуется доказать бесконечно много неравенств. Это бывает не очень удобно. Проще проверять какое-нибудь одно неравенство. Поэтому у признака Коши есть предельная форма.

Теорема. Признак Коши сходимости ряда в предельной форме

Пусть требуется установить сходимость ряда $\sum_{k=0}^{\infty} a_k$ Пусть $\forall k \ a_k \geqslant 0$ и $\overline{\lim}_{k \to \infty} \sqrt[k]{a_k} = q$. (Почти всегда на практике считают обычный предел, но если есть обычный предел, то он же будет и верхним). Тогда:

- 1) $0 \le q < 1$, то ряд сходится
- (2) q > 1, то ряд расходится
- 3) q = 1, возможны оба случая

Доказательство.

- 1) Пусть $q < q_0 < 1$ (подбираем число). Тогда, $\exists k_0 \ \forall k \geqslant k_0 \ \sqrt[k]{a_k} \leqslant q_0$ (если бы было верно обратное, то есть сколь угодно далеко были бы общие члены последовательности $\sqrt[k]{a_k}$, что $\sqrt[k]{k_0} > q_0$, то существовала бы подпоследовательность, предел которой был бы $> q_0$, то есть множество частичных пределов последовательности $\sqrt[k]{a_k}$ содержало бы число $> q_0 > q$, но тогда супремум не мог бы равнятся q и верхний предел последовательности не мог быть равен q)
- И ряд $\sum\limits_{k=0}^{\infty}a_k$ сходится по предыдущей теореме.
- 2) Пусть q > 1. Из определения верхнего предела следует, что $\forall k_0 \exists k \geqslant k_0 \sqrt[k]{a_k} \geqslant 1$ (сколь угодно далеко есть общие члены ряда, для которых написанное неравенство верно). То есть $\forall k_0 \exists k \geqslant k_0 \ a_k \geqslant 1$. В ряде есть подпоследовательность, которая не сходится к 0. Значит и сам предел последовательности общего члена ряда не равен 0. Ряд расходится $\sum_{k=0}^{\infty} a_k$ по необходимому условию сходимости ряда
- 3) Покажем, что существуют ряд, для которого $\varlimsup_{k \to \infty} \sqrt[k]{a_k} = 1$ и который расходится:

 $\sum_{k=1}^{\infty} \frac{1}{k}$ - гармонический ряд. Он расходится как канонический ряд $(\sum_{k=1}^{\infty} \frac{1}{k^{\alpha} \cdot \ln^{\beta} k})$ расходится, когда

 $\sum_{k=1}^{\infty} \frac{1}{k^2}$. Он сходится как канонический ряд $\left(\sum_{k=1}^{\infty} \frac{1}{k^{\alpha} \cdot \ln^{\beta} k} \right)$ сходится, когда $\alpha=2$, а $\beta=0$

Билет 7. Абсолютно сходящиеся ряды. Докажите, что абсолютно сходящийся ряд сходится.

Определение. Ряд $\sum_{k=1}^{\infty} a_k$ называется абсолютно сходящимся, если сходится ряд $\sum_{k=1}^{\infty} |a_k|$. **Теорема.** Абсолютно сходящийся ряд сходится.

Доказательство. Знаем, что ряд $\sum\limits_{k=1}^{\infty}|a_k|$ сходится \Rightarrow для него выполнено условие Коши:

 $\forall \varepsilon > 0 \ \exists N \ \forall n \geqslant N \ \forall p > 0 : \sum_{k=n+1}^{n+p} |a_k| < \varepsilon$. Заметим, что по неравенству треугольника

$$\left|\sum\limits_{k=n+1}^{n+p}a_k\right|\leqslant \sum\limits_{k=n+1}^{n+p}\left|a_k\right| выполнено условие Коши для ряда $\sum\limits_{k=n+1}^{n+p}a_k$ \Rightarrow ряд сходится. $\blacktriangleleft$$$

Билет 8. Определение перестановки членов ряда. Теорема о перестановке членов абсолютно сходящегося ряда.

Определение. Пусть $\sigma\colon \mathbb{N} \to \mathbb{N}$ – биекция. Ряд $\sum\limits_{k=1}^\infty a_{\sigma(k)}$ называется рядом с переставленными членами по отношению к $\sum_{k=0}^{\infty} a_k$.

Теорема. Если ряд сходится абслютно, то и ряд $\sum_{k=1}^{\infty} a_k^* = \sum_{k=1}^{\infty} a_{\sigma(k)}$ тоже сходится абсолютно и при этом их суммы равны.

Доказательство.

1. $\sum\limits_{k=1}^{\infty}|a_k|$ сходится \Rightarrow его частичные суммы ограничены сверху числом $M\Rightarrow$ для любого конечного подмножества $A \subseteq \mathbb{N}$:

$$\sum_{k \in A} |a_k| \le M \Rightarrow \sum_{k=1}^{\infty} |a_k^*| \le M$$

Получили, что частичные суммы $\sum\limits_{k=1}^{n}|a_{k}^{*}|$ ограничены и ряд нестрого возрастает, значит, он сходится.

2. Осталось доказать, что $\sum_{k=1}^{\infty} |a_k^*| = \sum_{k=1}^{\infty} |a_k|$.

Пусть
$$S := \sum_{k=1}^{\infty} a_k$$
 и $S_n = \sum_{k=1}^n a_k$, $S_n^* = \sum_{k=1}^n a_k^*$.

Пусть $S:=\sum\limits_{k=1}^{\infty}a_k$ и $S_n=\sum\limits_{k=1}^na_k,$ $S_n^*=\sum\limits_{k=1}^na_k^*.$ Для каждого $n\in\mathbb{N}$ найдется такое N(n)>1, что все слагаемые суммы S_n^* содержатся в S_N . Тогда при $m \geq N$:

$$|S_m - S_n^*| = |a_{k_1}^* + a_{k_2}^* + \dots + a_{k_{m-n}}^*| \le |a_{n+1}^*| + |a_{n+2}^*| + \dots = \rho_n^*, \forall i \ k_i > n$$

Полученный ρ_n^* — остаток после n-ого члена ряда ряда $\sum_{k=1}^\infty |a_k^*|$. Иными словами, $\rho_n^* = \sum_{k=n+1}^\infty |a_k^*|$.

Перейдем к пределу при $m \to \infty$:

$$|S - S_n^*| \le \rho_n^*$$

Мы доказали, что $\sum_{k=1}^{\infty} |a_k^*|$ сходится. Значит, $\rho_n^* \to 0$ при $n \to \infty$. И тогда $S_n^* \to S$ при $n \to \infty$, поэтому $\sum_{k=1}^{\infty} a_k^* = \sum_{k=1}^{\infty} a_k$.

Билет 9. Теорема о перестановке членов абсолютно сходящегося ряда (без доказательства). Теорема о произведении двух абсолютно сходящихся рядов.

Теорема. Если ряд $\sum_{k=1}^{\infty} a_k$ сходится абсолютно, то и ряд $\sum_{k=1}^{\infty} a_k^* = \sum_{k=1}^{\infty} a_{\sigma(k)}$ тоже сходится абсолютно, и при этом

$$\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} a_k^*$$

Теорема. Пусть $\sum_{k=1}^{\infty} a_k$ и $\sum_{k=1}^{\infty} b_k$ сходятся абсолютно. Тогда ряд $\sum_{j=1}^{\infty} a_{k_j} b_{m_j}$, составленный из всевозможных попарных произведений, сходится абсолютно и $\sum_{j=1}^{\infty} a_{k_j} b_{m_j} = (\sum_{k=1}^{\infty} a_k) \cdot (\sum_{k=1}^{\infty} b_k)$

Доказательство. 1) Абсолютная сходимость следует из ограниченности частичных сумм:

$$\sum_{j=1}^{n} |a_{k_j}| |b_{m_j}| \le \left(\sum_{k=1}^{\infty} |a_k|\right) \cdot \left(\sum_{k=1}^{\infty} |b_k|\right)$$

Значит, $\sum\limits_{j=1}^{\infty} |a_{k_j} b_{m_j}|$ сходится.

2) По предыдущей теореме можно перегруппировать члены $\sum_{j=1}^{\infty} a_{k_j} b_{m_j}$ так, чтобы было выполнено

$$\sum_{j=1}^{n^2} a_{k_j} b_{m_j} = \left(\sum_{k=1}^n a_k\right) \cdot \left(\sum_{k=1}^n b_k\right)$$

При $n \to \infty$ получаем, что

$$\sum_{j=1}^{\infty} a_{k_j} b_{m_j} = (\sum_{k=1}^{\infty} a_k) \cdot (\sum_{k=1}^{\infty} b_k)$$

8

Билет 10. Условно сходящийся числовой ряд. Признак Лейбница сходимости ряда вместе с оценкой на его остаток.

Определение. $\sum_{k=1}^{\infty} a_k$ называется условно сходящимся, если он сходится, а $\sum_{k=1}^{\infty} |a_k|$ расходится.

Теорема. Признак Лейбница.

Пусть $a_k \ge 0$, $a_{k+1} \le a_k$, $\lim_{k \to \infty} a_k = 0$. Тогда ряд $\sum_{k=1}^{\infty} (-1)^k a_k$ сходится.

Доказательство. Пусть $S_n = \sum_{k=1}^n (-1)^{k+1} a_k$, тогда $S_{2n} = (a_1 - a_2) + (a_3 - a_4) + ... + (a_{2n-1} - a_{2n}) = (a_1 - a_2) + (a_3 - a_4) + ... + (a_{2n-1} - a_{2n}) = (a_1 - a_2) + (a_3 - a_4) + ... + (a_{2n-1} - a_{2n}) = (a_1 - a_2) + (a_3 - a_4) + ... + (a_{2n-1} - a_{2n}) = (a_1 - a_2) + (a_3 - a_4) + ... + (a_{2n-1} - a_{2n}) = (a_1 - a_2) + (a_3 - a_4) + ... + (a_{2n-1} - a_{2n}) = (a_1 - a_2) + (a_3 - a_4) + ... + (a_{2n-1} - a_{2n}) = (a_1 - a_2) + (a_3 - a_4) + ... + (a_{2n-1} - a_{2n}) = (a_1 - a_2) + (a_2 - a_3) + ... + (a_{2n-1} - a_{2n}) = (a_1 - a_2) + (a_2 - a_3) + ... + (a_{2n-1} - a_{2n}) = (a_1 - a_2) + (a_2 - a_3) + ... + (a_{2n-1} - a_{2n}) = (a_1 - a_2) + (a_2 - a_3) + ... + (a_{2n-1} - a_{2n}) = (a_1 - a_2) + (a_2 - a_3) + ... + (a_{2n-1} - a_{2n}) = (a_1 - a_2) + (a_2 - a_3) + ... + (a_{2n-1} - a_{2n}) = (a_1 - a_2) + (a_2 - a_3) + ... + (a_{2n-1} - a_{2n}) = (a_1 - a_2) + (a_2 - a_3) + ... + (a_{2n-1} - a_{2n}) = (a_1 - a_2) + ... + (a_{2n-1} - a_{2n}) + ... + (a_{2n-1} - a_{2n}) = (a_1 - a_2) + ... + (a_{2n-1} - a_{2n}) + ... + (a_{2n-1} - a_{2n}) = (a_1 - a_2) + ... + (a_{2n-1} - a_{2n}) + ... + (a_{2n-1} - a_{2n}) + ... + (a_{2n-1} - a_{2n}) = (a_1 - a_2) + ... + (a_{2n-1} - a_{2n}) + ... + (a_{2n$ $a_1 - (a_2 - a_3) - (a_4 - a_5) - \dots - (a_{2n-2} - a_{2n-1}) - a_{2n}.$

Видно, что S_{2n} возрастает и $0 \le S_{2n} \le a_1$, значит $\exists \lim_{n \to \infty} S_{2n} =: S$. $S_{2n-1} = S_{2n} + a_{2n}, \ a_{2n} \to 0, \ S_{2n} \to S => S_{2n-1} \to S$.

$$S_{2n-1} = S_{2n} + a_{2n}, \ a_{2n} \to 0, \ S_{2n} \to S = > S_{2n-1} \to S$$

Значит $S_n \to S$, т.е. ряд сходится. \blacktriangleleft

Замечание. $S = \sum_{k=1}^{\infty} (-1)^{k+1} a_k$. Оценим скорость сходимости.

$$r_n = |S - S_n| = \sum_{k=n+1}^{\infty} (-1)^{k+1} a_k \Rightarrow |r_n| \le a_{n+1}.$$

Билет 11. Преобразования Абеля. Объясните, почему это преобразованние является дискретным аналогом формулы интегрирования по частям.

Преобразования Абеля для конечных сумм.

$$S_n = \sum_{k=1}^n a_k b_k = a_n B_n - a_1 B_0 - \sum_{k=1}^{n-1} (a_{k+1} - a_k) B_k$$

Вывод преобразования.

Рассмотрим следующую сумму $S_n = \sum_{k=1}^n a_k b_k$, где a_k и b_k какие-то числа. (Только в данном примере, на самом деле преобразование Абеля вещь универсальная и ее также можно использовать, например, с функциями). Преобразование Абеля - это модификация данной суммы.

Введем произвольное число B_0 и положим $B_k=B_0+\sum\limits_{i=1}^kb_j(1\leq k\leq n).$ Тогда: $B_k-B_{k-1}=$

$$b_k \Rightarrow S_n = \sum_{k=1}^n a_k (B_k - B_{k-1}) = \sum_{k=1}^n a_k (B_k) - \sum_{k=1}^n a_k (B_{k-1}) =$$
[во второй сумме поменяем индекс

сумирования с
$$k$$
 на $k+1$] = $\sum_{k=1}^{n} a_k(B_k) - \sum_{k=0}^{n-1} a_{k+1}(B_k) = a_n B_n - a_1 B_0 - \sum_{k=1}^{n-1} (a_{k+1} - a_k) B_k$.

Замечание. Преобразование Абеля - это дискретный аналог формулы интегрирования по частям:

Понятие	Дискретный аналог
f	$\{a_n\}_{n=1}^{\infty}$
f'	$\{a_n - a_{n-1}\}_{n=2}^{\infty}$
$\int_{a}^{b} f dx$	$A(n_2) = \sum_{k=n_1}^{n_2} a_k$
$\left(\int_{a}^{b} f dx\right)_{x}' = f(x)$	$A_{n_2} - A_{n_2 - 1} = a_{n_2}$
Функции f,g и $G(x) = \int_a^x g(t)dt + C$	j=1
$\int_{a}^{b} fg dx = \int_{a}^{b} f dG = fG \Big _{a}^{b} - \int_{a}^{b} Gf' dx$	$\sum_{k=1}^{n} a_k b_k = aB_n - a_1 B_0 - \sum_{k=1}^{n-1} (a_{k+1} - a_k) B_k$

Билет 12. Признаки Дирихле и Абеля сходимости рядов.

Теорема. Признак Дирихле сходимости ряда.

Пусть требуется установить сходимость ряда $\sum\limits_{k=1}^{\infty}a_k\cdot b_k$ Пусть a_k - неотрицательна и монотонно убывает к 0. И пусть последовательность частичных сумм $\sum\limits_{k=1}^{n}b_k$ ограничена. Тогда ряд $\sum\limits_{k=1}^{\infty}a_k\cdot b_k$ сходится.

Замечание. Если $b_k = (-1)^{k+1}$ и a_k монотонно убывает к 0, то условие признака Дирихле выполнено. Получаем признак Лейбница.

Возьмём частичную сумму ряда $\sum\limits_{k=1}^{\infty}a_k\cdot b_k$ и применим к ней преобразование Абеля $\sum\limits_{k=1}^{n}a_k\cdot b_k=$

Доказательство.

 $a_n \cdot B_n - a_1 \cdot B_0 - \sum\limits_{k=1}^{n-1} (a_{k+1} - a_k) B_k$ знаем, что B_n ограничена, а a_n - бесконечно малая, значит первое слагаемое в преобразовании Абеля, по свойствам предела последовательности, стремится к 0 при n, стремящемся к бесконечности, второе слагаемое - const, осталось понять, что последнее слагаемое куда-то стремится при n, стремящемся к бесконечности. Для сходимости $\sum\limits_{k=1}^{n-1} (a_{k+1} - a_k) B_k$ достаточно доказать сходимость ряда $\sum\limits_{k=1}^{\infty} (a_{k+1} - a_k) B_k$. Проверим абсолютную сходимость (из абсолютной сходимости следует сходимость) этого ряда. Надо проверить сходимость ряда $\sum\limits_{k=1}^{\infty} |a_{k+1} - a_k| |B_k|$. Последовательность B_k ограничена. Поэтому \exists M такое, что \forall k $|B_k| \leqslant M$, значит $\sum\limits_{k=1}^{\infty} |a_{k+1} - a_k| |B_k| \leqslant \sum\limits_{k=1}^{\infty} |a_{k+1} - a_k| M$. В этом ряду все выражения $(a_{k+1} - a_k)$ неположительны $(a_k$ - монотонно убывает), значит этот ряд равен ряду $-M \cdot \sum\limits_{k=1}^{\infty} (a_{k+1} - a_k)$. Этот ряд является телескопическим (у его всех частичных сумм сокращается большое количество слагаемых, за исключением константного числа). И при любом n частичная сумма S_n просто равна $(a_1 - a_n) \cdot M$. Тогда, так как a_n стремится к 0, то $\sum\limits_{k=1}^{\infty} |a_{k+1} - a_k| M$ сходится к $a_1 \cdot M$, что означает, что и ряд $\sum\limits_{k=1}^{\infty} |a_{k+1} - a_k| |B_k|$ сходится по признаку сравнения, а значит сходится и ряд $\sum\limits_{k=1}^{\infty} (a_{k+1} - a_k) B_k$ (так как он сходится абсолют

но, это в точности означает сходимость ряда $\sum_{k=1}^{\infty} |a_{k+1} - a_k| |B_k|$) а значит и $\sum_{k=1}^{n-1} (a_{k+1} - a_k) B_k$ сходится как последовательность частичных сумм этого ряда, из этого и доказанного выше (и арифметических свойств предела последовательности (показано, что все слагаемые сходятся)) следует сходимость последовательности $a_n \cdot B_n - a_1 \cdot B_0 - \sum_{k=1}^{n-1} (a_{k+1} - a_k) B_k$, а это в свою очередь означает, по преобразованию Абеля, что равная ей последовательность $\sum_{k=0}^{n} a_k \cdot b_k$ тоже сходится, а значит сходится и ряд $\sum_{k=1}^{\infty} a_k \cdot b_k$

Замечание. Использованное в доказательстве преобразование Абеля и оценка абссолютного ряда супремумом частичных сумм и первым членом ряда.

Теорема. Признак Абеля сходимости ряда.

Пусть $\{a_k\}$ монотонна и ограничена. И $\sum_{k=1}^{\infty} b_k$ сходится. Тогда, $\sum_{k=1}^{\infty} a_k \cdot b_k$ сходится.

Доказательство.

Последовательность $\{a_k\}$ монтонна и ограничена, значит эта последовательность имеет предел (назовём его a). Тогда последовательность $\widetilde{a_k} = a_k - a$ монотонна, ограничена, и стремится к 0. Без ограничения общности, считаем, что последовательность неотрицательна и убывает к 0. (аналогично, если последовтаельность отрицательна и возрастает к 0, тогда возмём противоположную по знаку последовательность). Значит $\sum_{k=1}^{\infty} a_k \cdot b_k = \sum_{k=1}^{\infty} \widetilde{a_k} \cdot b_k + \sum_{k=1}^{\infty} a \cdot b_k = \sum_{k=1}^{\infty} \widetilde{a_k} \cdot b_k + a \sum_{k=1}^{\infty} b_k$. К первой сумме применим признак Дирихле (a_k монотонно убывает и стремится к 0, \forall n $\sum_{k=1}^{n} b_k$ ограничены, так как $\sum_{k=1}^{\infty} b_k$ сходится), а вторая сходится по условию. Значит, ряд $\sum_{k=1}^{\infty} \widetilde{a_k} \cdot b_k + a \sum_{k=1}^{\infty} b_k$ сходится, тогда и ряд $\sum_{k=1}^{\infty} a_k \cdot b_k$ сходится \blacksquare

Билет 13. Теорема Римана о перестановке членов условно сходящегося ряда, идея доказательства.

Определение. Положительные члены ряда: $a_k^+ = \begin{cases} a_k, \text{ если } a_k \geqslant 0 \\ 0, \text{ если } a_k < 0 \end{cases}$ Определение. Отрицательные члены ряда: $a_k^- = \begin{cases} 0, \text{ если } a_k \geqslant 0 \\ a_k, \text{ если } a_k < 0 \end{cases}$ Лемма. Если ряд $\sum_{k=1}^{\infty} a_k$ сходится условно (но не абсолютно), то ряды $\sum_{k=1}^{\infty} a_k^+, \sum_{k=1}^{\infty} a_k^-$ расходятся. Доказательство. $\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} a_k^+ + \sum_{k=1}^{\infty} a_k^-$. Пусть не так, тогда один из рядов $\sum_{k=1}^{\infty} a_k^+, \sum_{k=1}^{\infty} a_k^-$ сходится и второй, т.к. сходится их сумма, т.е. ряд $\sum_{k=1}^{\infty} a_k$ (ссылаемся на утверждение о том, что сумма сходящихся рядов сходится, а сумма сходящегося и расходящегося рядов расходится). Тогда $\sum_{k=1}^{\infty} a_k^+ - \sum_{k=1}^{\infty} a_k^- = (a_1^+ + a_2^+ + ...) - (a_1^- + a_2^- + ...) = \sum_{k=1}^{\infty} |a_k|$ тоже сходится \Rightarrow противоречие с условной сходимостью. \blacktriangleleft

Теорема. О перестановке членов условно сходящегося ряда (Риман).

Пусть ряд $\sum_{k=1}^{\infty} a_k$ сходится условно (но не абсолютно). Тогда для $\forall A \in \mathbb{R} \cup \{\pm \infty\}$ можно так переставить члены этого ряда, чтобы его сумма была равна A.

Идея доказательства.

- 1. Берём из ряда $\sum_{k=1}^{\infty} a_k$ положительные члены, пока сумма выбранных слагаемых не станет больше A. Можем так сделать, т.к. по лемме ряд $\sum_{k=1}^{\infty} a_k^+$ расходится \Rightarrow последовательность частичных сумм этого ряда не ограничена сверху.
- 2. Берём из ряда $\sum_{k=1}^{\infty} a_k$ отрицательные члены, пока сумма выбранных слагаемых (с учётом выбранных на предыдущем шаге) не станет меньше A. Можем так сделать, т.к. по лемме ряд $\sum_{k=1}^{\infty} a_k^-$ расходится \Rightarrow последовательность частичных сумм этого ряда не ограничена снизу.
- 3. Повторяем шаг 1.
- 4. Повторяем шаг 2.
- 5

Знаем, что условная сходимость ряда $\sum_{k=1}^{\infty} a_k$ влечёт выполнение необходимого условия сходимости числовых рядов \Rightarrow в конце каждого шага |Сумма выбранных слагаемых -A| \leqslant \leqslant |Последнее добавленное слагаемое| \to 0 по необходимому условию сходимости. \blacktriangleleft Замечание. В условиях теоремы Римана существует перестановка σ такая, что сумма ряда из переставленных членов $\sum_{k=1}^{\infty} a_{\sigma(k)} = +\infty$ (аналогично для $-\infty$).

Билет 14. Дайте определение поточечной и равномерной сходимости функциональных последовательностей и рядов. Необходимое условие равномерной сходимости функционального ряда.

Рассмотрим $E\subseteq \mathbb{R}^d$ и $\{f_n\}_{n=1}^\infty$ – последовательность функций, причем $\forall n\ f_n\colon E\to\mathbb{C}.$

Определение. Последовательность $\{f_n\}$ сходится (поточечно) на множестве E, если числовая последовательность $\{f_n(x)\}$ сходится при каждом $x \in E$.

Определение. Последовательность $\{f_n\}$ сходится равномерно на множестве E к функции $f\colon E\to \mathbb{C},$ если $\sup_{x\in E}|f_n(x)-f(x)|\to 0.$

Определение. Рассмотрим функциональный ряд $\sum_{k=1}^{\infty} u_k$, где $u_k \colon E \to \mathbb{C}$ и $E \subseteq \mathbb{R}^d$. Говорят, что $\sum_{k=1}^{\infty} u_k$ поточечно сходится на множестве E, если $\forall x \in E$ сходится числовой ряд $\sum_{k=1}^{\infty} u_k(x)$. Иными словами, функциональная последовательность $\{S_n = \sum_{k=1}^n u_k\}_{n=1}^{\infty}$ сходится поточечно.

Определение. Ряд $\sum_{k=1}^{\infty} u_k$ сходится равномерно на E, если последовательность $\{S_n = \sum_{k=1}^n u_k\}_{n=1}^{\infty}$ сходится равномерно. Иными словами, $\sum_{k=1}^{\infty} u_k$ сходится поточечно и $\sup_{x \in E} \left| \sum_{k=n+1}^{\infty} u_k(x) \right| \to 0$ при $n \to \infty$.

Теорема. Необходимое условие равномерной сходимости ряда. Если $\sum_{k=1}^{\infty} u_k$ равномерно сходится, то $u_k \rightrightarrows_E 0$.

Доказательство. Пусть $S_n = \sum_{k=1}^{n} u_k$.

Заметим, что

1.
$$u_n = S_n - S_{n-1}$$
.

$$2. S_n \rightrightarrows_E S$$

3.
$$S_{n-1} \rightrightarrows_E S$$

$$\Rightarrow u_n = S_n - S_{n-1} \Longrightarrow_E S - S = 0.$$

Билет 15. Критерий сходимости функциональных последовательностей и рядов.

Условие Коши для функциональных последовательностей.

$$\forall \varepsilon > 0 \ \exists N_0 = N_0(\varepsilon) \ \forall n, m \geqslant N_0 : \sup_{\varepsilon} |f_n(x) - f_m(x)| < \varepsilon$$

Теорема. Критерий Коши равномерной сходимости функциональных последовательностей.

Последовательность $\{f_n\}_{n=0}^{\infty}, f_n: E \to \mathbb{C}$ равномерно сходится на $E \iff$ выполнено условие Коши.

Доказательство.

Пусть $f_n
ightharpoonup_E f$. Тогда по определению равномерной сходимости:

$$\forall \varepsilon > 0 \quad \exists N_0 = N_0(\varepsilon) \quad \forall n \ge N_0 : \sup_{\varepsilon} |f_n - f| < \frac{\varepsilon}{2}$$

 $\forall \varepsilon>0 \quad \exists N_0=N_0(\varepsilon) \quad \forall n\geq N_0: \sup_E|f_n-f|<\frac{\varepsilon}{2}$ Заметим, что $\sup_E|f_n-f|=d_\infty(f_n,f)$ (в метрике Чебышёва). Теперь перепишем определение для m:

 $\forall m \geq N_0: \sup_{\Gamma} |f_m - f| = d_{\infty}(f_m, f) < \frac{\varepsilon}{2}$. Воспользуемся свойствами метрики (неравенство треугольника) для оценки расстояния между f_n и f_m :

$$d_{\infty}(f_n,f_m) \leq d_{\infty}(f_n,f) + d_{\infty}(f_m,f) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$
. Получили $\sup_E (f_n - f_m) = d_{\infty}(f_n,f_m) < \varepsilon$, т.е. условие Коши выполнено. \blacktriangleleft

Пусть выполнено условие Коши, тогда $\forall x \in E$ выполнено:

$$\forall \varepsilon > 0 \quad \exists N_0 \forall n, m \ge N_0 : \sup_{\varepsilon} |f_n(x) - f_m(x)| < \varepsilon.$$

То есть числовая последовательность $\{f_n(x)\}$ (при фиксированном x для всех функций) удовлетворяет условию Коши для числовых последовательностей. Значит, $\forall x \; \exists \; \lim \; f_n(x) =: f(x)$ (применили критерий Коши для числовых последовательностей). По условию:

 $\forall \varepsilon > 0 \quad \exists N_0 \forall n,m \geq N_0 \forall x \in E : \sup_E |f_n(x) - f_m(x)| < \varepsilon.$ В условии устремим $m \to \infty$, тогда можно заменить в модуле f_m f(x) так как ранее было доказано, что существует предел:

$$\forall \varepsilon > 0 \quad \exists N_0 \forall n \geq N_0 \forall x \in E : \sup_E |f_n(x) - f(x)| < \varepsilon$$
 - это и означает, что $f_n \rightrightarrows_E f$. \blacktriangleleft

Условие Коши для функциональных рядов:

$$\forall \varepsilon > 0 \quad \exists N_0 \forall n > N_0, p > 0 : \sup_{x \in E} \left| \sum_{k=n+1}^{n+p} u_k(x) \right| < \varepsilon.$$

Можно переписать:

$$\forall \varepsilon > 0 \quad \exists N_0 \forall n > N_0, p > 0 \forall x \in E \left| \sum_{k=n+1}^{n+p} u_k(x) \right| < \varepsilon$$

Теорема. Критерий Коши равномерной сходимости функциональных рядов.

Ряд $\sum_{n=1}^{\infty} u_n(x)$ равномерно сходится на множестве $E \subset \mathbb{R}^n \iff$ выполнено условие Коши.

Доказательство.

Следует из критерия Коши для функциональных последовательностей. В качестве последовательности надо взять функциональную последовательность частичных сумм ряда и применить к ней критерий для функциональных последовательностей. ◀

Билет 16. Признак сравнения для функциональных рядов. Признак Вейерштрасса равномерной сходимости функционального ряда.

Теорема. Признак сравнения для функциональных рядов.

Пусть $u_k : E \to \mathbb{C}, \ v_k : E \to [0; +\infty)$ и $\forall x \in E \ \forall k : |u_k(x)| \le v_k(x)$. Если ряд $\sum_{k=1}^{\infty} v_k$ равномерно сходится, то ряд $\sum_{k=1}^{\infty} u_k$ тоже равномерно сходится.

Доказательство. $\left|\sum_{k=n+1}^{n+p}u_k(x)\right| \leq \sum_{k=n+1}^{n+p}|u_k(x)| \leq \sum_{k=n+1}^{n+p}v_k(x) < \varepsilon$ (можно сделать меньше ε по критерию Коши). Получается, из условия Коши для $\sum_{k=n+1}^{n+p}v_k(x)$ следует условие Коши для

$$\left| \sum_{k=n+1}^{n+p} u_k(x) \right|. \blacktriangleleft$$

Теорема. Признак Вейерштрасса равномерной сходимости функционального ряда. Пусть u_k : $E \to \mathbb{C}$ и $\forall x \in E \ \forall k \in \mathbb{N}$ выполнено $|u_k(x)| \le a_k$. Если $\sum_{k=1}^\infty a_k$ сходится, то ряд $\sum_{k=1}^\infty u_k$ сходится на E равномерно и абсолютно.

Доказательство. Следует из признака сравнения если в качестве $v_k(x)$ взять постоянную функцию, равную a_k .

Билет 17. Дайте определение равномерной ограниченности последовательности функций. Сформулируйте признаки Дирихле и Абеля равномерной сходимоости ряда (без доказательства).

Определение. Последовательность функций $\{f_n\}_{n=1}^{\infty}$ $E \to \mathbb{C}$ называется равномерно ограниченной на E, если $\exists M \in \mathbb{R}$ $\forall n \in N \ \forall x \in E \ |f_n(x)| \leq M$.

Сеттинг. Хотим иследовать на сходимость ряд вида $\sum_{k=1}^n a_k u_k$, где a_k и u_k какие-то функции, причём $a_k: E \to \mathbb{R}, u_k: E \to \mathbb{C}$

Теорема. Признак Дирихле.

Пусть последовательность $\{a_k(x)\}_{k=1}^\infty$ монотонна $\forall x$ и $a_k \rightrightarrows_E 0$. Пусть последовательность частичных сумм ряда $\sum_{k=1}^\infty u_k(x)$ равномерно ограничена на Е. Тогда $\sum_{k=1}^n a_k u_k$ сходится равномерно на Е.

Теорема. Признак Абеля.

Пусть последовательность вещественнозначных функций $\{a_k(x)\}_{k=1}^{\infty}$ равномерно ограничена на E и $\forall x \in E$ $\{a_k(x)\}_{k=1}^{\infty}$ монотонна. Пусть ряд $\sum\limits_{k=1}^{\infty}u_k$ равномерно сходится на E. Тогда $\sum\limits_{k=1}^{n}a_k(x)u_k(x)$ сходится равномерно на E.

Билет 18. Пример последовательности непрерывных функций, которая поточечно сходится к разрывной функции. Теорема об интеграле от равномерного предела непрерывных функций и её следствие для равномерно сходящихся рядов.

Пример. 1. Пусть $f_n(x) = \cos^{2n} x$. Тогда, если x равно $\pi k, k \in \mathbb{Z}$, то каждый член последовательности равен 1, а иначе меньше 1, а значит стремится к 0, как бесконечно малая последовательность, то есть имеем такую поточечную сходимость

$$\forall x \in \mathbb{R} f_n(x) \xrightarrow[n \to \infty]{} f(x) = \begin{cases} 1 &, x = \pi k, k \in \mathbb{Z} \\ 0 &, \text{ иначе} \end{cases}$$

При этом $f_n(x)$ непрерывна $\forall n \in \mathbb{N}$. А f(x) нет.

Теорема. Об интеграле от равномерного предела непрерывных функций.

Пусть последовательность непрерывных на отрезке [a,b] функций $f_n(x)$ равномерно сходится к функции f(x) на отрезке [a,b]. Тогда $\int\limits_a^x f_n(t)\,dt$ равномерно сходится к $\int\limits_a^x f(t)\,dt$ на отрезке [a,b]. В частности, это последовательность поточечно сходится к той же предельной функции.

Доказательство.

Из теоремы о непрерывности предельной функции, следует, что f(x) непрерывна на отрезке [a,b]. В частности, f интегрируема по Риману на любом подотрезке [a,x], если $a\leqslant x\leqslant b$. Поскольку $f_n(x)$ равномерно сходится к f(x) на отрезке [a,b], то $\forall\ \varepsilon\ \exists\ N=N(\frac{\varepsilon}{b-a})\ \forall\ n\geqslant N\ \forall\ x\in [a,b]: |f_n(x)-f(x)|<\frac{\varepsilon}{b-a}$.

$$x \in [a, b]: |J_n(x) - J(x)| < \frac{1}{b-a}$$
. Следовательно, при $n \geqslant N \sup_{x \in [a, b]} \left| \int_a^x f_n(t) \, dt - \int_a^x f(t) \, dt \right| \leqslant \int_a^b |f_n(t) - f(t)| dt \leqslant \int_a^b \frac{\varepsilon}{b-a} dt = \varepsilon$. То есть $\int_a^x f_n(t) \, dt$ равномерно сходится к $\int_a^x f(t) \, dt$ на отрезке $[a, b]$.

Следствие. О почленном интегрировании функционального ряда.

Пусть $u_k \in C([a,b])$ и ряд $\sum_{k=1}^{\infty} u_k(x)$ равномерно сходится на отрезке [a,b]. Тогда $\sum_{k=1}^{\infty} \int_a^x u_k(t)dt$ тоже равномерно сходится на [a,b] и его сумма равна $\int\limits_{a}^{x}(\sum\limits_{k=1}^{\infty}u_{k}(t))dt$ \forall $x\in[a,b]$

Доказательство.

Применяем теорему об интеграле от равномерного предела непрерывных функций к последовательности частичных сумм. <

Замечание. Говорят, что функциональный ряд $\sum_{k=1}^{\infty} u_k(x)$ можно почленно интегрировать, если $\int\limits_a^b(\sum\limits_{k=1}^\infty u_k(t))dt=\sum\limits_{k=1}^\infty\int\limits_a^bu_k(t)dt$ (и соотвествующие ряды и интегралы существуют). Равномерная сходимость является достаточным условием почленного интегрирования. Но не необходимым.

Билет 19. Теорема о производной функционального предела и её следствие для рядов.

Теорема. О производной функционального предела.

Пусть $\forall n \ f_n \in C^1([a,b]) \ (f_n$ непрерывно дифференцируема на [a,b], т.е. существует непрерывная производная). Пусть числовая последовательность $\{f_n(c)\}_{n=1}^\infty$ сходится к A (для некоторой точки $c \in [a,b]$) и пусть $f_n' \rightrightarrows \varphi$ на [a,b]. Тогда функциональная последовательность $\{f_n\}_{n=1}^{\infty}$ сходится равномерно на [a,b] к некоторой функции $f\in C^1([a,b])$ и $f'(x)=\varphi(x)$, т.е. $\left(\lim_{n\to\infty}f_n\right)'=\lim_{n\to\infty}f_n'$.

Доказательство. По теореме о непрерывности равномерного предела: функция φ непрерывна на [a,b] (т.к. производные непрерывны и равномерно сходятся к φ).

По формуле Ньютона-Лейбница: $f_n(x) - f_n(c) = \int_{-\infty}^{x} f'_n(t) dt$.

По теореме об интеграле от равномерного предела: $\int_{-\infty}^{x} f'_n(t)dt \Rightarrow \int_{-\infty}^{x} \varphi(t)dt =: g(x)$ на [a,b].

Тогда $f_n(x)-f_n(c) \rightrightarrows g(x), \ f_n(c) \rightrightarrows A,$ следовательно $f_n(x) \rightrightarrows g(x)+A=:f(x)$ Дифференцируем: $f'(x)=g'(x)=(\int\limits_x^x \varphi(t)dt)_x'=\varphi(x)$

Следствие. О почленном дифференцировании функционального ряда.

Пусть числовой ряд $\sum_{k=1}^{\infty} u_k$ сходится (для некоторой точки $c \in [a,b]$), а функциональный ряд

 $\sum_{k=1}^{\infty} u'_k$ сходится равномерно на [a,b]. Тогда функциональный ряд $\sum_{k=1}^{\infty} u_k$ сходится равномерно

на [a,b] и $\left(\sum\limits_{k=1}^{\infty}u_{k}\right)^{'}=\sum\limits_{k=1}^{\infty}u_{k}'.$

Доказательство. Применяем доказанную теорему к последовательности частичных сумм. ◀

Билет 20. Определение степенного ряда, его радиуса и круга сходимости (формула Коши-Адамара). Докажите, что степенной ряд поточечно сходится строго внутри круга сходимости, и расходится строго вне круга сходимости.

Работаем с $f \colon E \to \mathbb{C}$, где $E \subseteq \mathbb{C} \simeq \mathbb{R}^2$.

Определение. Функциональный ряд $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ (где $a_n, z_0 \in \mathbb{C}$) называется степенным рядом.

Определение. Радиус сходимости ряда – это число $R = \frac{1}{\overline{\lim_{n \to \infty}}} \sqrt[n]{|a_n|}$ (число или $+\infty$). Данная формула называется формулой Коши-Адамара.

Определение. Кругом сходимости ряда $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ называется множество $\{z \in \mathbb{C} | |z-z_0| < c \}$.

Далее предполагаем замену $z=z-z_0$ и сводим вопрос к $\sum\limits_{n=0}^{\infty}a_nz^n$

Теорема. Пусть R – радиус сходимости ряда $\sum_{n=0}^{\infty} a_n z^n$. Тогда

- 1. При |z| < R ряд сходится, причем абсолютно.
- 2. При |z| > R ряд расходится, и даже его общий член не стремится к 0.
- 3. При |z| = R может быть что угодно.

Доказательство.

Признак Коши: ряд $\sum_{n=1}^{\infty} b_n$, $b_n \geq 0$, сходится, если $l = \overline{\lim_{n \to \infty}} \sqrt[n]{b_n} < 1$, а если l > 1, то ряд расходится и его общий член не стремится к 0.

Теперь этот признак применяем к $\sum_{n=0}^{\infty} |a_n z^n| = \sum_{n=0}^{\infty} |a_n| |z|^n$.

Теперь:

$$l = \overline{\lim_{n \to \infty}} \sqrt[n]{|a_n| \, |z|^n} = |z| \overline{\lim_{n \to \infty}} \sqrt[n]{a_n} = [\Pi$$
о определению радиуса] = $\frac{|z|}{R}$

Если |z| < R, то l < 1 и ряд $\sum_{n=0}^{\infty} a_n z^n$ сходится абсолютно. Если |z| > R, то l > 1 и ряд расходится, а также общий член не стремится к 0.

Билет 21. Определение радиуса и круга сходимости степенного ряда. Докажите, что степенной ряд сходится равномерно на любом замкнутом круге, лежащем строго внутри круга сходимости.

Определение. Радиус сходимости ряда – это число $R = \frac{1}{\overline{\lim_{n \to \infty}}} \sqrt[n]{a_n}$ (число или $+\infty$). Данная формула называется формулой Коши-Адамара.

Определение. Кругом сходимости ряда $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ называется множество $\{z \in \mathbb{C} \mid |z-z_0| < R\}$.

Теорема. О равномерной сходимости степенного ряда.

R - радиус сходимости ряда $\sum_{n=0}^{\infty} a_n z^n$ и 0 < r < R. Тогда в замкнутом круге $\{z \in \mathbb{C} \mid |z| \leqslant r\}$

Доказательство. При $|z|\leqslant r$ имеем $|a_nz^n|\leqslant |a_n|\,r^n$, а ряд $\sum_{n=0}^\infty |a_n|\,r^n$ сходится по теореме из билета 20, т.к. $r < R \Rightarrow$ по признаку равномерной сходимости Вейерштрасса ряд $\sum_{n=1}^{\infty} a_n z^n$ сходится равномерно. ◀

Билет 22. Приведите 3 примера степенных рядов: (1) сходится везде на границе круга сходимости, (2) не сходится на границе круга сходимости, (3) в некоторых точках границы круга сходимости ряд сходится, а в некоторых - нет. Дайте определение функции, аналитической в точке x_0 .

Пример. $\sum_{n=1}^{\infty} \frac{z^n}{n}$ - в некоторых точках границы круга сходимости ряд сходится, а в некоторых

 $R=rac{1}{\lim\limits_{n o\infty}\sqrt[n]{rac{1}{n}}}=1$. При |z|<1 ряд сходится, при |z|>1 ряд расходится. Исследуем |z|=1.

$$1)z=1,$$
 ряд $\sum\limits_{n=1}^{\infty} rac{1}{n}$ расходится.

$$(2)z = -1$$
, ряд $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ сходится по признаку Лейбница.

3)* Можно рассмотреть
$$z \in \mathbb{C}$$
, $|z| = 1$, $z = \cos \phi + i \sin \phi$, пусть $\phi \neq 2\pi k$
$$\sum_{n=1}^{\infty} \frac{z^n}{n} = \sum_{n=1}^{\infty} \frac{(\cos \phi + i \sin \phi)^n}{n} = (\text{по формуле Муавра}) = \sum_{n=1}^{\infty} \frac{\cos n \phi + i \sin n \phi}{n} = \sum_{n=1}^{\infty} \frac{\cos n \phi}{n} + i \sum_{n=1}^{\infty} \frac{\sin n \phi}{n} - \text{схо-дятся по признаку Дирихле (при $\phi \neq 2\pi k$).}$$

Пример. $\sum\limits_{n=1}^{\infty} \frac{z^n}{n^2}$ - сходится везде на границе круга сходимости. $R = \frac{1}{\lim\limits_{n \to \infty} \sqrt[n]{\frac{1}{n^2}}} = 1.$

$$R = \frac{1}{\frac{1}{\lim_{n \to \infty} \sqrt[n]{\frac{1}{n^2}}}} = 1$$

$$1)z = 1$$
, ряд $\sum_{n=1}^{\infty} \frac{1}{n^2}$ сходится.

$$(2)z = -1$$
, ряд $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ сходится по признаку Лейбница.

Пример. $\sum_{n=0}^{\infty} z^n$ - не сходится на границе круга сходимости.

При z=1 и z=-1, ряды не сходятся, т.к. не выполнен необходимый признак сходимости.

Определение. Функция $f: E \to \mathbb{C}, E \subseteq \mathbb{C}$ называется аналитической в точке $z_0 \in E$, если $\exists \, \rho > 0$, для которого f представляется степенным рядом $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ при $|z-z_0| < \rho$. Для вещественной аналитической функции определение аналогично

Билет 23. Лемма о сохранения радиуса сходимости при почленном дифференцировании степенного ряда. Теорема о почленном дифференцировании и интегрировании степенного ряда.

Лемма. О сохранении радиуса сходимости при почленном дифференцировании степенного ряда.

Радиусы сходимости степенных рядов $\sum_{k=0}^{\infty} a_k (x_1 - x_0)^k$ и $\sum_{k=1}^{\infty} a_k k (x_1 - x_0)^{k-1}$ совпадают.

Доказательство.

Заметим, что ряды $\sum_{k=1}^{\infty} a_k k(x_1-x_0)^{k-1}$ и $\sum_{k=1}^{\infty} a_k k(x_1-x_0)^k$ имеют одинаковые радиусы сходимости (один от другого отличается домножением на (x_1-x_0)). Найдём радиус сходимости ряда $\sum_{k=1}^{\infty} a_k k(x_1-x_0)^k$.

$$R\left(\sum_{k=1}^{\infty}a_kk(x_1-x_0)^k\right)=\left[\begin{array}{c} \text{формула Коши}-\text{Адамара}\end{array}\right]=\frac{1}{\overline{\lim_{k\to\infty}}\sqrt[k]{|ka_k|}}=\frac{1}{\left(\overline{\lim_{k\to\infty}}\sqrt[k]{|a_k|}\right)\left(\overline{\lim_{k\to\infty}}\sqrt[k]{|a_k|}\right)\left(\overline{\lim_{k\to\infty}}\sqrt[k]{|a_k|}\right)}=\frac{1}{\left(\overline{\lim_{k\to\infty}}\sqrt[k]{|a_k|}\right)}=R\left(\sum_{k=1}^{\infty}a_k(x_1-x_0)^k\right)\blacktriangleleft$$

Лемма. О сохранении радиуса сходимости при почленном интегрировании степенного ряда.

Радиусы сходимости степенных рядов $\sum_{k=1}^{\infty} a_k (x_1 - x_0)^k$ и $\sum_{k=1}^{\infty} \frac{a_k (x_1 - x_0)^{k+1}}{k+1}$ совпадают.

Доказательство.

Аналогично первой лемме:

$$R\left(\sum_{k=1}^{\infty} \frac{(x_1 - x_0)^{k+1}}{k+1}\right) = [\text{ формула Коши - Адамара }] = \frac{1}{\overline{\lim_{k \to \infty}}} \sqrt[k]{\left|\frac{a_k}{k+1}\right|} = \frac{\lim_{k \to \infty} \sqrt[k]{k}}{\overline{\lim_{k \to \infty}}} \sqrt[k]{|a_k|} = 1 = \frac{1}{(\overline{\lim_{k \to \infty}} \sqrt[k]{|a_k|})} = [\text{ формула Коши - Адамара }] = R\left(\sum_{k=1}^{\infty} a_k (x_1 - x_0)^k\right) \blacktriangleleft$$

Теорема. Почленное дифференцирование и интегрирование степенного ряда.

Пусть R>0 – радиус сходимости вещественного ряда $\sum\limits_{k=0}^{\infty}a_k(x_1-x_0)^k=:f(x).$ Тогда при $|x-x_0|< R$:

- 1. f имеет производные всех порядков, которые можно вычислить почленным дифференцированием.
- 2. Возможно почленное интегрирование ряда при $|x-x_0| < R$: $\int\limits_{x_0}^x f(t)dt = \sum\limits_{k=0}^\infty a_k \frac{(x_1-x_0)^{k+1}}{k+1}$
- 3. Ряды, полученные почленным дифференцированием и интегрированием, имеют такой же R.

Доказательство. Все пункты следуют из предыдущих утверждений. ◀

Билет 24. Единственность разложения в ряд для аналитической функции. Ряд Тейлора

Пусть $f \in A(x_0)$ (является аналитической функцией в точке x_0). Тогда её представление в виде ряда $f(x) = \sum_{k=0}^{\infty} a_k (x-x_0)^k$ единственно. Более того $a_k = \frac{f^{(k)}(x_0)}{k!} \ \forall \ k \in \mathbb{N} \cup \{0\}$

Доказательство.

У почленной производной такой же радиус сходимости как и у самого ряда. Применим теорему о почленном дифференцировании функционального ряда. Тогда внутри круга сходимости $f^{(n)}(x) = \sum_{k=0}^{\infty} (a_k(x-x_0)^k)^{(n)}$. Тогда $f^{(n)}(x_0) = n!a_n$. (Слагаемые с k < n при дифференцировании равны 0. Слагаемые с k > n равны 0 при подстановке вместо x x_0 , а при k = n имеем при дифференцировании $n!a_n$ (это следует из того, что $(x^n)^{(n)} = n!$)). Значит, $a_n = \frac{f^{(n)}(x_0)}{n!}$. Отсюда (производные все определены однозначно) следует единственность этого разложения. \blacktriangleleft

Замечание. Всё работает и в случае, когда $x, x_0 \in \mathbb{C}$. Надо пользоваться тем, что $\frac{d}{dx}x^n = nx^{n-1}$ $n \in \mathbb{N}$

Определение. Ряд $\sum\limits_{k=0}^{\infty}a_k(x-x_0)^k$, где $a_k=\frac{f^{(k)}(x_0)}{k!}$, называется рядом Тейлора функции f в точке x_0

Замечание. Из теоремы о единственности разложения в ряд для аналитической функции, следует, что если f как-то представляется степенным рядом, то этот ряд - её ряд Тейлора.

Билет 25. Вычислите ряды Маклорена для функций $\frac{1}{1-x}$ и $\frac{1}{(1-x)^2}$ и докажите, что эти функции аналитические в точке 0. Приведите пример неаналитической функции (без доказательства).

Утверждение. $f(x) = \frac{1}{1-x} = 1 + x + x^2 + \dots = \sum_{k=0}^{\infty} x^k$ при |x| < 1 и $f(x) \in A(0)$. Доказательство. Заметим, что $S_n = 1 + x + x^2 + \dots + x^{n-2} + x^{n-1}$ — сумма геометрической прогрессии. Умножим обе части на x: $x \cdot S_n = x + x^2 + x^3 + \dots + x^{n-1} + x^n$. Далее заметим, что $x + x^2 + x^3 + \dots + x^{n-1} = S_n - 1 \Rightarrow x \cdot S_n = S_n - 1 + x^n \Rightarrow S_n = \frac{1-x^n}{1-x}$. Перейдём к пределу: $1 - x^n$

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{1 - x^n}{1 - x}$$
. Заметим, что $\lim_{n \to \infty} x^n = 0$, т.к. $|x| < 1 \Rightarrow \lim_{n \to \infty} S_n = \frac{1}{1 - x}$. Тогда $f(x) = \frac{1}{1 - x}$ суть сумма бесконечно убывающей геометрической прогрессии (при $|x| < 1$),

Тогда $f(x) = \frac{1}{1-x}$ суть сумма бесконечно убывающей геометрической прогрессии (при |x| < 1), следовательно разложение верное и функция совпадает со своим степенным рядом, т.е. аналитическая на интервале (-1,1). Это разложение есть ряд Тейлора (Маклорена) для f(x) по теореме о единственности разложения аналитической функции в степенной ряд. \blacktriangleleft

Утверждение.
$$g(x) = \frac{1}{(1-x)^2} = 1 + 2x + 3x^2 + \dots = \sum_{k=0}^{\infty} (k+1) \cdot x^k$$
 при $|x| < 1$ и $g(x) \in A(0)$.

Доказательство. Заметим, что $g(x) = \frac{1}{(1-x)^2} = \left(\frac{1}{1-x}\right)^2 = (f(x))^2$. Далее ссылаемся на предыдущее утверждение. \blacktriangleleft

Пример (без доказательства) неаналитической функции (Коши).

$$f(x) = \begin{cases} 0, \text{ если } x = 0 \\ e^{-\frac{1}{x^2}}, \text{ если } x \neq 0 \end{cases}$$

Замечание. Доказательство есть в Ёжике на стр. 184.

Билет 26. Запишите ряд Маклорена для функций e^x , $\cos x$, $\sin x$, $\ln(1+x)$, $\arctan x$, $(1+x)^{\alpha}$. Докажите аналитичность функций e^x и $\ln(1+x)$ в точке 0

Определение. Функция $f: E \to \mathbb{C}, E \subseteq \mathbb{C}$ называется аналитической в точке $z_0 \in E$, если $\exists \rho > 0$, для которого $f(z) = \sum_{k=1}^{\infty} a_n (z-z_0)^n$ при $|z-z_0| < \rho$. Аналогичное определение для вещественной аналитической функции.

1.
$$e^x = \sum_{k=0}^{\infty} \frac{x^n}{n!}$$
.

2.
$$\cos x = \sum_{k=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$
.

3.
$$\sin x = \sum_{k=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$
.

4.
$$\ln(1+x) = \sum_{k=1}^{\infty} \frac{(-1)^{n+1}x^n}{n}$$
.

5.
$$\operatorname{arctg} x = \sum_{k=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}$$
.

6.
$$(1+x)^{\alpha} = \sum_{k=0}^{\infty} {n \choose k} x^{n}$$
, где ${n \choose \alpha} = \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!}$.

Теорема. $f(x) = e^x \in A(0)$, причем $e^x = \sum_{k=0}^{\infty} \frac{x^n}{n!}$.

Доказательство. Имеем $r_{n,f}(x) = \frac{f^{(n+1)}(c)}{(n+1)!}x^{n+1} = \frac{e^c}{(n+1)!}x^{n+1}$ для некоторого $c \in [0,x]$.

 $|r_{n,f}(x)| \leq \frac{e^c |x|^{n+1}}{(n+1)!} \to 0$ при $n \to \infty$. Поскольку $(n+1)! \geq \left(\frac{n}{2}\right)^{n/2} \Rightarrow (n+1)!$ растет быстрее, чем x^{n+1} .

Теорема. $f(x) = \ln(1+x) \in A(0)$.

Доказательство. Явно выведем ряд Тейлора: $\ln(1+x) = \sum_{k=1}^{\infty} \frac{(-1)^{n+1}x^n}{n}$ при |x| < 1.

Знаем про бесконечно убывающую геометрическую прогрессию $\frac{1}{1+x} = 1-x+x^2-x^3+\ldots = (\ln(1+x))'$ при |x| < 1. Тогда $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \ldots = \sum_{i=1}^{\infty} \frac{(-1)^{n+1}x^n}{n}$.

Билет 27. Определение квадрируемости плоской фигуры по Жордану. Критерий квадрируемости. Свойство конечной аддитивности меры Жордана.

Определение. Множество $M \subset \mathbb{R}^2$ называется элементарным, если его можно представить в виде объединения конечного числа непересекающихся прямоугольников с вычислимой площадью.

Определение. Пусть $E \subset \mathbb{R}^2$ — ограниченное множество. Числа $S_*(E) = \sup_{A \subset E} S(A)$, $S^*(E) = \inf_{E \subset B} S(B)$, где верхняя и нижняя грани берутся по всем элементарным множествам A и B ($A \subset E \subset B$), называются соответственно нижней и верхней мерой множества E.

Определение. Ограниченное множество $E \subset \mathbb{R}^2$ называется квадрируемым по Жордану, если его нижняя и верхняя меры совпадают (т.е. $S_*(E) = S^*(E)$).

Теорема. Критерий квадрируемости.

Плоская фигура E квадрируема $\iff \forall \, \varepsilon > 0 \,\, \exists \, Q, P \,\, (P \subset E \subset Q) \colon S(Q) - S(P) < \varepsilon$ Доказательство.

1) Необходимость: Пусть E квадрируема, т.е. $S_*(E) = S^*(E)$. По определению верхней и нижней меры для любого фиксированного $\varepsilon > 0$ найдутся такие P и Q ($P \subset E \subset Q$), что $S_* - \frac{\varepsilon}{2} < S(P) \le S_*, \, S^* < S(Q) \le S^* + \frac{\varepsilon}{2}$. Получается, что $S(Q) - S(P) < \varepsilon$.

2) Достаточность: Пусть $\forall \, \varepsilon > 0 \, \exists \, Q, P \, (P \subset E \subset Q) \colon S(Q) - S(P) < \varepsilon$ $S(P) \leq S_* \leq S^* \leq S(Q) => 0 \leq S^* - S_* \leq S(Q) - S(P) < \varepsilon$ Так как ε - произвольное положительное число, то получаем, что $S_* = S^*$. \blacktriangleleft

Определение. Измеримость по Жордану обладает свойством конечной аддитивности, т.е. если

$$F = \bigcup_{i=1}^{n} F_i,$$

а для любых $i \neq j$ выполняется $F_i \cap F_j = \emptyset$, причем все F_i измеримы, то и F измерима, причем

$$S(F) = \sum_{i=1}^{n} S(F_i)$$

Билет 28. Определение кратного интеграла от функции двух переменных по компактному квадрируемому множеству, со всеми необходимыми определениями (разбиение, диаметр разбиения, размеченное разбиение, измельчение, интегральная сумма).

Пусть дана функция z = f(x,y), G - область изменения переменных x и y (G - компактно и квадрируемо).

Определение. Разбиение σ множества G - набор попарно непересекающихся подмножеств $\sigma = \{G_i \subset G\}$, которые в объединении дают все G.

Определение. Диаметр разбиения d - наибольший диаметр множеств G_i . $d = \max_i (\sup_{M_1, M_2 \in G_i} \rho(M_1, M_2)).$

Определение. Размеченное разбиение - разбиение множества G вместе с конечной последовательностью $M_1,...,M_n$, с условием, что $M_i \in G_i$

Определение. Измельчение разбиения.

Возьмем более мелкое разбиение по x, y, т.е. каждая клетка мелкого разбиения будет содержаться в более крупной => получим разбиение "мельче исходного".

Определение. Интегральная сумма.

Сумма $S_{f,(\sigma,M)} = \sum_{i=1}^n f(M_i)S(G_i)$ называется интегральной суммой для функции f, соответствующей разбиению σ и заданному выбору точек M_i . $(S(G_i)$ - площадь сегмента $G_i)$

Определение. Кратным интегралом функции f на множестве G называется число I, т.ч. $I = \int\limits_C f(x,y) dx dy = \lim_{|\sigma| \to 0} S_{f,(\sigma,M)}.$

$$I=\int\limits_G f(x,y)dxdy=\lim_{|\sigma|\to 0} S_{f,(\sigma,M)}.$$
 Обозначение: $I=\iint\limits_G f(x,y)dxdy=\int\limits_G f(M)dS$

Билет 29. Докажите, что интеграл от любой функции по множеству с нулевой жордановой мерой равен нулю. Докажите, что если ФМП интегрируема на множестве, то она ограничена на этом множестве

Утверждение. Если множество G имеет меру нуль по Жордану, то для любой функции f, определенной на G, кратный интеграл $\int\limits_G f(M)dS$ существует и равен 0.

Доказательство.

Так как мера Жордана равна нулю, то для любого сегмента этого множества мера Жордана тоже равна нулю. Запишем интегральную суммы для функции f и разбиения $\sigma(M_i)$ выбранные точки при разбиении, S_i - площадь G_i сегмента):

Сумма: $\sum\limits_{k=1}^N f(M_i) \Delta S(G_i) = 0$ Равенство верно для любого разбиения σ и любой функции f,

определённой на множестве G. Значит, предел $\lim_{d_r\to 0}\sum_{k=1}^N f(M_i)\Delta Si=0$ и $I=\int_G f(M)dS$ существует и равен 0. \blacktriangleleft

Теорема. Об ограниченности интегрируемой ФМП на множестве.

Если функция интегрируема на множестве G, то она на нем ограничена.

Доказательство.

Интеграл $I = \lim_{\Delta \to 0} I(M_i, G_i)$. Пусть функция неограничена в области G, тогда она неограничена в какой-то области G_i .

$$I(M_i, G_i) = \sum_{i} f(M_i) \Delta S_i = f(M_j) \Delta S_j + \sum_{i!=j} f(M_i) \Delta S_i$$

 ΔS_j - константа, а $f(M_j)$ можно делать сколь угодно большим, значит не будет существовать предела $I(M_i, G_i)$, что означает, что функция f неинтегрируема на G. \blacktriangleleft

Билет 30. Определение верхней и нижней сумм Дарбу. Сформулируйте критерий Дарбу интегрируемости ФМП на измеримом плоском множестве.

Определение. Пусть G - замкнутая измеримая область, такая что $G = \bigcup_i G_i$, где G_i - также замкнутая область. $m_i = \inf_{G_i} f(x,y)$. $M_i = \sup_{G_i} f(x,y)$. Тогда нижняя сумма Дарбу - это $S = \sum_i m_i \cdot \Delta S_i(G_i)$, а верхняя сумма Дарбу - это $S = \sum_i M_i \cdot \Delta S_i(G_i)$, где $S_i(G_i)$ - площадь области G_i

Теорема. Критерий Дарбу интегрируемости Функции Многих Переменных на измеримом множестве. Для того, чтобы ФМП была интегрируема на измеримом множестве по Риману необходимо и достаточно, чтобы её Верхний и Нижний интеграл Дарбу совпадали $(\overline{I_f} = I_f)$.

Верхний интеграл Дарбу = $\inf_{\tau} \overline{S_{f,\tau}} =: \overline{I_f}$ Нижний интеграл Дарбу = $\sup_{\tau} \underline{S_{f,\tau}} =: \underline{I_f}$

Билет 31. Сформулируйте ключевые идеи дкоазательства критерия Дарбу.

Теорема. Критерий Дарбу интегрируемости Функции Многих Переменных на измеримом множестве. Для того, чтобы ФМП была интегрируема на измеримом множестве по Риману необходимо и достаточно, чтобы её Верхний и Нижний интеграл Дарбу совпадали $(\overline{I_f} = I_f)$.

Доказательство.

=>f - интегрируема, следовательно существует предел $\lim_{|\tau\to 0|}S_{f,(\tau,c)}$

Идея: возьмем в качестве $c_i \in A_i$ такие точки, где достигается $\sup_{x \in A_i} f(x)$, тогда интегральная сумма превратится в Верхнюю интегральную сумму Дарбу. Получается, при таком выборе точек, предел верхних интегральных сумм Дарбу будет совпадать с нашим интегралом (Верхний интеграл Дарбу будет совпадать с интегралом): $S_{f,(\tau,c)} = \overline{S_{f,\tau}}$.

Раз уж $\exists\lim_{| au|\to 0} S_{f,(au,c)},$ то он же равен $\lim_{| au|\to 0} \overline{S_{f, au}}.$

По лемме(#)
$$(\lim_{|\tau|\to 0} \overline{S_{f,\tau}} = \inf_{\tau} \overline{S_{f,\tau}}).$$

По аналогии взяв точки, где достигается $\inf_{x \in A_i} f(x)$, получаем:

$$\overline{I_f} = \inf_{\tau} \overline{S_{f,\tau}} = \lim_{|\tau| \to 0} S_{f,(\tau,c)} = \sup_{\tau} \underline{S_{f,\tau}} =: \underline{I_f}$$

$$<=$$
 Дано: $\overline{I_f}=I_f$

Лемма: $\forall \, \tau, \sigma$ разбиений A имеем $S_{f,\tau} \leq \overline{S_{f,\tau}}$

Доказательство. Утверждение верно, если $\tau = \sigma$ (так как inf \leq sup). \blacktriangleleft

В общем случае выберем общее размельчение ρ , т.е. такое что $\rho \prec \tau$ и $\rho \prec \sigma$. ρ состоит из A_{ii} , где A_i - элемент σ , B_i - элемент τ .

Утверждение. Если $\rho \prec \sigma$, то $\overline{S_{f,\rho}} \leq \overline{S_{f,\sigma}}$ и если $\rho \prec \tau$, то $\underline{S_{f,\rho}} \geq \underline{S_{f,\tau}}$ (как в случае функции от 1 переменной)

Получаем $S_{f,\tau} \leq S_{f,\rho} \leq \overline{S_{f,\rho}} \leq \overline{S_{f,\sigma}}$

Значит $\exists I$, т.ч. $\forall \overline{\sigma, \tau} : \underline{S_{f,\tau}} \leq I \leq \overline{S_{f,\sigma}}$

Нам дано $\sup_{\tau} \underline{S_{f,\tau}} = \inf_{\sigma} \overline{\overline{S_{f,\tau}}}$, они же равны I.

Кроме того $S_{f,\tau} \leq S_{f,(\tau,c)} \leq \overline{S_{f,\tau}}$, сл-но при $|\tau| \to 0$ т.к. левая и правая суммы стремятся к I, то и $S_{f,(\tau,c)} \to I$, сл-но функция интегрируема. \blacktriangleleft

Билет 32. Докажите, что функция, непрерывная на компакте, равномерно непрерывна на нём.

Определение. Функция $f: D \to \mathbb{R}$ непрерывна на множестве D, если $\forall x \in D$ f непрерывна в точке x (т.е. непрерывна в каждой точке множества); то же самое в кванторах:

$$\forall x \in D \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in D: \ |x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$$

Определение. Функция $f:D\to\mathbb{R}$ равномерно непрерывна на множестве D, если

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x, y \in D : \; |x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$$

Замечание. Равномерная непрерывность влечёт непрерывность, но обратное не выполнено.

Пример. Функция f(x) = x на множестве $\mathbb R$ равномерно непрерывна.

Доказательство. Заметим, что |f(x)-f(y)|=|x-y|, поэтому достаточно выбрать $\delta<\varepsilon$. \blacktriangleleft **Пример.** Функция $f(x)=x^2$ на множестве $\mathbb R$ не является равномерно непрерывной (хотя и непрерывна), т.к. $|f(x)-f(y)|=|x-y|\cdot|x+y|$. Говоря без строгости: модуль разности может быть сколь угодно большим из-за множителя |x+y|, даже если выбирать сколь угодно близкие x и y такие, что $|x-y|<\delta$.

Доказательство. Запишем отрицание равномерной непрерывности:

$$\exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x,y \in D: \ |x-y| < \delta \wedge |f(x) - f(y)| \geqslant \varepsilon$$

Пусть
$$\varepsilon = 1$$
, $x = \frac{1}{\delta}$, $y = \frac{1}{\delta} + \frac{\delta}{2}$. Тогда $|x - y| = \left| \frac{1}{\delta} - \frac{1}{\delta} - \frac{\delta}{2} \right| = \frac{\delta}{2} < \delta$,

$$|f(x) - f(y)| = \left| \left(\frac{1}{\delta} \right)^2 - \left(\frac{1}{\delta} + \frac{\delta}{2} \right)^2 \right| = 1 + \frac{\delta^2}{4} > 1 = \varepsilon \blacktriangleleft$$

Определение. Подмножество $K \subset \mathbb{R}^n$ называется компактом, если K замкнуто и ограничено. **Пример.**

- 1. Отрезок $[a, b] \subset \mathbb{R}$ замкнут и ограничен, т.е. компакт;
- 2. Полуинтервал $[a,b) \subset \mathbb{R}$ не замкнут и ограничен, т.е. не компакт;
- 3. Область $\{x^2 + y^2 \le 1\} \subset \mathbb{R}^2$ замкнута и ограничена, т.е. компакт.
- 4. Область $\{x^2 + y^2 < 1\} \subset \mathbb{R}^2$ не замкнута и ограничена, т.е. не компакт.

Теорема. О функции, непрерывной на компакте (Кантор).

Если функция f непрерывна на компакте K, то f равномерно непрерывна на K.

Доказательство. Пусть не так, т.е. функция f непрерывна на K, но не равномерно непрерывна. Запишем отрицание равномерной непрерывности:

$$\exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x, y \in K : \ |x - y| < \delta \land |f(x) - f(y)| \geqslant \varepsilon$$

Пусть $\delta = \frac{1}{n}$, тогда найдутся такие $x_n, y_n \in K$, что $|x_n - y_n| < \frac{1}{n}$ и $|f(x_n) - f(y_n)| \geqslant \varepsilon$. Из того, что $x_n \in K$ и K - компакт: существует подпоследовательность x_{n_k} , которая сходится к некоторому $x_0 \in K$.

Из того, что $|x_{n_k} - y_{n_k}| < \frac{1}{n_k}$: выполнена сходимость $y_{n_k} \to x_0$ (т.к. $\frac{1}{n_k} \to 0$). Из непрерывности: $f(x_{n_k}) \to f(x_0)$ и $f(y_{n_k}) \to f(x_0)$, но тогда $0 < \varepsilon \leqslant |f(x_{n_k}) - f(y_{n_k})| \to 0$ противоречие. \blacktriangleleft

Билет 33. Докажите, что функция, непрерывная на компакте, интегрируема на нем.

Теорема. Пусть G – компакт. $f(x,y) \in C(G) \Rightarrow \exists \iint_{C} f(x,y) dx dy$.

Доказательство. $f(x,y) \in C(G) \Rightarrow f(x,y)$ равномерно непрерывна на G, иными словами

$$\forall \, \varepsilon > 0 \, \, \exists \, \delta > 0 \colon \, \forall \, M'(x',y'), M''(x'',y'') \colon \rho(M',M'') < \delta \Rightarrow |f(M') - f(M'')| < \varepsilon$$

Теперь рассмотрим такое разбиение T(G), что $\Delta = \max_i d_i < \delta$, где $d_i = \sup_{M_1, M_2 \in G_i} \rho(M_1, M_2)$ – диаметр соответствующей области G_i .

Пусть $M_1, M_2 \in G_i$. Тогда в силу того, что максимальный из диаметров меньше δ , имеем:

$$\rho(M_1, M_2) \le d_i \le \Delta < \delta$$

 $\Rightarrow |f(M_1) - f(M_2)| < \varepsilon$ (из равномерной непрерывности).

 $\Rightarrow M_i - m_i$, где $M_i = \sup_{G_i} f(M)$, $m_i = \inf_{G_i} f(M)$ – это следует из того, что мы можем подобрать M_1 и M_2 сколь угодно близкие к супремуму и инфимуму.

Для верхней (S) и нижней (s) сумм Дарбу и $\Delta S_i = S(G_i)$:

$$S - s = \sum_{i} M_{i} \Delta S_{i} - \sum_{i} m_{i} \Delta S_{i} = \sum_{i} (M_{i} - m_{i}) \Delta S_{i} < \sum_{i} \varepsilon \Delta S_{i} = \varepsilon \sum_{i} \Delta S_{i} = \varepsilon S = S(G)$$

Заменив $\varepsilon' = \frac{\varepsilon}{S}$, получим искомое: $S-s < \varepsilon'$. \blacktriangleleft

Билет 34. Свойства кратных интегралов: аддитивность, линейность, интеграл от модуля, монотонность.

Аддитивность. Пусть G квадрируема и $G = G_1 \cup G_2$, причём мера Жордана $S(G_1 \cap G_2) = 0$. Пусть также f(x,y) интегрируема по Риману на G. Тогда f(x,y) интегрируема по Риману на G_1 и f(x,y) интегрируема по Риману на G_2 , причём:

$$\iint\limits_{G} f(x,y)dxdy = \iint\limits_{G_1} f(x,y)dxdy + \iint\limits_{G_2} f(x,y)dxdy$$

Линейность. Пусть f, g интегрируемы по Риману на G. Тогда $\forall \alpha, \beta \in \mathbb{R}$ линейная комбинация $\alpha f(x, y) \pm \beta g(x, y)$ интегрируема по Риману на G, причём:

$$\iint_{G} (\alpha f(x,y) \pm \beta g(x,y)) dxdy = \alpha \iint_{G} f(x,y) dxdy + \beta \iint_{G} g(x,y) dxdy$$

Монотонность. Пусть f, g интегрируемы по Риману на G и $\forall (x,y) \in G \Rightarrow f(x,y) \leqslant g(x,y)$. Тогда:

$$\iint\limits_C f(x,y)dxdy \leqslant \iint\limits_C g(x,y)dxdy$$

Интегрируемость модуля. Пусть f(x, y) интегрируема по Риману на G. Тогда модуль |f(x, y)| тоже интегрируем по Риману на G, причём:

$$\left| \iint_{G} f(x,y) dx dy \right| \leqslant \iint_{G} |f(x,y)| dx dy$$

Замечание. Обратное неверно: из интегрируемости по Риману модуля |f(x,y)| не следует интегрируемость по Риману f(x,y).

Билет 35. Теорема о среднем для кратного интеграла.

Теорема. 1) Если f интегрируема на $A\subseteq R^2$ и если $\forall x\in A\ m\leq f(x,y)\leq M,$ то $m\cdot S(A)\leq \iint\limits_A f(x,y)dxdy\leq M\cdot S(A)$

- 2) Если f непрерывна, а мн-во A связно, то $\exists (x_0.y_0) \in A: f(x_0,y_0) = \frac{\int \int f(x,y)dxdy}{S(A)}$ Доказательство.
- 1) Просто навесить интеграл \iint_{Λ} на данное неравенство.
- 2) $A\subseteq R^2$ называется связным, если $\forall (x_1,y_1), (x_2,y_2)\in A$ существует непрерывная кривая $x=\phi(T), y=\psi(t), t\in [0;1],$ т.ч. $(\phi(0),\psi(0))=(x_1,y_1), (\phi(1),\psi(1))=(x_2,y_2).$ Пусть $R:=\frac{A}{S(A)}$ среднее значение функции на множестве A.

Пусть $m = \min_{A} f$ (достигается в точке $(x_1, y_1) \in A$), $M = \max_{A} f$ (достигается в точке $(x_2, y_2) \in A$) A). Из пункта 1: $m \le R \le M$.

Т.к. A - связное, то существует непрерывная кривая $(\phi(t), \psi(t))$, т.ч. $(\phi(0), \psi(0)) = (x_1, y_1)$, $(\phi(1),\psi(1)) = (x_2,y_2).$

рассмотрим функцию от переменной t: $g(t) = f(\phi(t), \psi(t))$. Она непрерывная на отрезке [0;1]. g(0) = m, g(1) = M. Значит $\exists c \in [0; 1] : f(\phi(c), \psi(c)) = g(c) = R$ (по теореме о промежуточном значении).∢

Билет 36. Теорема о сведении двойного интеграла к повторному (доказательство для прямоугольной области).

Теорема. Теорема о сведении двойного интеграла к повторному (доказательство для прямоугольной области).

Пусть функция f(x,y) интегрируема на прямоугольнике $G=[a;b]\times [c;d],$ и пусть $\forall x\in$ [a,b] $\exists I(x) = \int_{a}^{d} f(x,y)dy.$

Тогда существует повторный интеграл
$$\exists \int\limits_a^b I(x) dx = \int\limits_a^b dx \int\limits_c^d f(x,y) dy$$
 И справедливо равенство

$$\int_{a}^{b} dx \int_{c}^{d} f(x,y)dy = \iint_{G} f(x,y)dxdy$$

Произведем разбиение $a = x_0 < x_1 < ... < x_n = b$ и $c = y_0 < y_1 < ... < y_p = d$.

Обозначим $\Delta x_k = x_k - x_{k-1}$ и $\Delta y_l = y_l - y_{l-1}$

$$G_{kl} = [x_{k-1}; x_k] \times [y_{l-1}; y_l]$$

Т.к. f интегрируема на G, то:

Обозначим $M_{kl} = \sup_{G_{kl}} f(x,y), m_{kl} = \inf_{G_{kl}} f(x,y)$. Тогда всюду на прямоугольнике G_{kl} :

$$m_{kl} \le f(x,y) \le M_{kl}$$

Проинтегрируем неравество $m_{kl} \le f(x,y) \le M_{kl}$ по у в пределах от y_{l-1} до y_l . Получим :

$$m_{kl}\Delta y_l \le \int\limits_{y_{l-1}}^{y_l} f(x,y)dy \le M_{kl}\Delta y_l$$

Умножим предыдущее неравенство на Δx_k , и просуммируем полученные неравенства сначала по всем l от 1 до p, а затем по всем k от 1 до n. В качестве точки на k-ом отрезке разбиения по х выберем некоторое ε_k Получим:

$$\sum_{k=1}^{n} \sum_{l=1}^{p} m_{kl} \Delta y_l \Delta x_k \le \sum_{k=1}^{n} \Delta x_k \sum_{l=1}^{p} \int_{y_{l-1}}^{y_l} f(\varepsilon_k, y) dx \le \sum_{k=1}^{n} \sum_{l=1}^{p} M_{kl} \Delta y_l \Delta x_k.$$

$$\sum_{k=1}^{n} \sum_{l=1}^{p} m_{kl} \Delta y_l \Delta x_k \leq \sum_{k=1}^{n} I(\varepsilon_k) \Delta x_k \leq \sum_{k=1}^{n} \sum_{l=1}^{p} M_{kl} \Delta y_l \Delta x_k.$$

Устремим диаметр разбиения к 0. При этом левая и правая часть стремятся к двойному ин-

тегралу $\iint_G f(x,y)dx,dy$. Следовательно по лемме о двух милиционерах

$$\lim_{d(G)\to 0} \sum_{k=1}^{n} I(\varepsilon_k) \Delta x_k = \iint_{C} f(x,y) dx, dy$$

Мы рассматриваем интегральную сумму, поэтому, с другой стороны:

$$\lim_{d(G)\to 0} \sum_{k=1}^{n} I(\varepsilon_k) \Delta x_k = \int_{a}^{b} I(x) dx$$

Билет 37. Теорема о сведении двойного интеграла к повторному для произвольной области.

Теорема. Теорема Лебега. Если A - измеримый компакт (есть площадь) и если множество точек разрыва функции f (на A) имеет меру Жордана 0 и f ограничена, то f интегрируема на A.

Теорема. Теорема о сведении двойного интеграла к повторному для произвольной области Если f непрерывна на A, то для области $A=\{(x,y)\in\mathbb{R}^2|a\leqslant x\leqslant b, \varphi(x)\leqslant y\leqslant \psi(x)\}$ имеем $\iint\limits_G f(x,y)dx\ dy=\int\limits_a^b dx\int\limits_{\varphi(x)}^{\psi(x)} f(x,y)dy$

Доказательство.

Заключаем фигуру в прямоугольник [a;b]х[c;d], где $c \leq \inf \varphi(x), d \geq \sup \psi(x)$ и определяем функцию g на прямоугольнике. g на точках из данной области равна f, а вне данной области равна 0. Получаем, что функция g может рваться только в точках на функциях $\varphi(x)$ и $\psi(x)$, а это прямые => имеют меру Жордана 0 => (по теореме Лебега) g интегрируема на данном прямоугольнике => применяем теорему о сведении двойного интеграла к повторному на прямоугольной области к функции g. \blacktriangleleft