jee LIVE daily

Paaras Thakur

Mentored 1 lakh+ Students

Content Partner in MHRD DIKSHA Project

10 Yrs Teaching experience

Electrochemistry

LECTURE 3

Topics we will learn today

Measurement of electrode potential

Standard Hydrogen electrode

Electrochemical Series

Using electrochemical Series

tinyurl.com/jeelivechat

unacademy.com/plus

- Tests
- Quizzes
- Doubt Sessions
- More Personalized

Choose a goal

UPSC CSE

CDS / AFCAT

Kerala PSC

CAT

IIT JEE

NTA-UGC NET

Railway Exams

Bank Exams

IIT JEE Subscription

1 mo

₹5,000/month

3 mo

₹4,167/month

₹15,000 ₹12,500 for 3 months

6 mo

₹3,333/month

₹30,000 ₹20,000 for 6 months

12 mo

₹2,083/month

58% OFF

₹60,000 ₹25,000 for 12 months

IIT JEE Subscription - (12 months)

((*)) 30+ hours of live lessons every day

Live courses in English and Hindi

29 36+ top educators

+

New courses published every month

JEELIVE

Apply

Referral code applied successfully

Subscription Fee ₹19,068

CGST ₹1,716

SGST ₹1,716

Payable amount (Inclusive of all taxes)

₹22,500

Use Referral Code

jeelive

GET 10% OFF!

on your next Unacademy Plus Subscription

Which cell will measure standard electrode potential of copper electrode?

- Pt (s) H₂ (g,0.1 bar) H⁺ (aq.,1 M) Cu²⁺(aq.,1M) Cu
- (ii) Pt(s) H_{2} (g, 1 bar) H^{+} (aq.,1 M) Cu^{2+} (aq.,2 M) Cu
- Pt(s) H₂ (g, 1 bar) H⁺ (aq.,1 M) Cu²⁺ (aq.,1 M) Cu
 - Pt(s) H_2 (g, 1 bar) H^+ (aq.,0.1 M) Cu^{2+} (aq.,1 M) Cu

Which of the following statement is correct?

- (i) E_{Cell} and $\Delta_r G$ of cell reaction both are extensive properties.
- (ii) E_{Cell} and $\Delta_r G$ of cell reaction both are intensive properties.
- (iii) E_{Cell} is an intensive property while $\Delta_{r}G$ of cell reaction is an extensive property.
- (iv) E_{Cell} is an extensive property while $\Delta_r G$ of cell reaction is an intensive property.

A variable opposite external potential $(E_{\rm ext})$ is applied to the cell ${\rm Zn|Zn^{2+}(1M)||Cu^{2+}(1M)||Cu}$, of potential 1.1 V. When $E_{\rm ext} < 1.1$ V and potential 1.2 V, respectively, electron flow from

- (1) anode to cathode and cathode to anode.
- (2) cathode to anode and anode to cathode.
- (3) cathode to anode in both cases.

(4) anode to cathode in both cases.

JEE Main 2015 Online

Measurement of electrode potential

The potential of individual half-cell can't be measured. We can only measure the difference between two half-cell potentials that gives the E_{cell}.

Electron flow if metal M has a high negative potential

Electrone flow if metal M has positive potential

Standard hydrogen electrode

It's a convenient reference electrode against which the potentials of all other half-cells can be measured.

half-reaction at Pt surface: $2H^+(aq) + 2e^- \rightleftharpoons H_2(g)$

Standard hydrogen electrode

Can we use any other electrode as reference electrode?

Example

Consider the following E° values:

$$E^{\circ}_{Fe^{3+}/Fe^{2+}} = +0.77 \text{ V}$$
 $E^{\circ}_{Sn^{2+}/Sn} = -0.14 \text{ V}$

Under standard conditions the potential for the reaction

Under standard conditions the potential for the reaction
$$Sn(s) + 2Fe^{3+}(aq) \longrightarrow 2Fe^{2+}(aq) + Sn^{2+}(aq)$$
 is

(1) 1.68 V (2) 0.63 V
(4) 1.40 V

$$= 0.91 \text{ V}$$
(athode $-E$ anode $= 0.77 - (-0.14)$

Electrochemical series

Values of SRP of various half-cells arranged in decreasing order.

values of SRP of various Half-Cells arranged in decreasing order.

$$\Rightarrow SHE \parallel Unknown \text{ half-Cells}$$

$$E^{\circ}_{Cell} = E^{\circ}_{RHS} - E^{\circ}_{LHS} = SRP = 2nd \text{ half-Cells}$$

$$Cathoole \quad Anode$$

$$e \cdot g \cdot Pt |s| |H_2(g, 1 \text{ bar})| |H^{+}(N, 1M)| || |u|^{2+} (N, 1M)| |u| (s)$$

$$SHE$$

$$0.34$$

P	Stronger oxidizing agent	SRP	
-XOO	Half-Reaction	<i>E</i> ° (V)	
50	$F_2(g) + 2e^- \rightleftharpoons 2F^-(aq)$	+2.87	
01	$S_2O_8^{2-}(aq) + 2e^- \rightleftharpoons 2SO_4^{2-}(aq)$	+2.01	
\mathscr{I}	$PbO_2(s) + HSO_4^-(aq) + 3H^+(aq) + 2e^- \rightleftharpoons PbSO_4(s) + 2H_2O$	+1.69	
	$2HOCI(aq) + 2H^{+}(aq) + 2e^{-} \rightleftharpoons Cl_{2}(g) + 2H_{2}O$	+1.63	
	$MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightleftharpoons Mn^{2+}(aq) + 4H_2O$	+1.51	
	$PbO_2(s) + 4H^+(aq) + 2e^- \rightleftharpoons Pb^{2+}(aq) + 2H_2O$	+1.46	
	$BrO_3^-(aq) + 6H^+(aq) + 6e^- \rightleftharpoons Br^-(aq) + 3H_2O$	+1.44	
	$Au^{3+}(aq) + 3e^{-} \rightleftharpoons Au(s)$	+1.42	
	$Cl_2(g) + 2e^- \rightleftharpoons 2Cl^-(aq)$	+1.36	
	$O_2(g) + 4H^+(aq) + 4e^- \rightleftharpoons 2H_2O$	+1.23	
	$Br_2(aq) + 2e^- \rightleftharpoons 2Br^-(aq)$	+1.07	
	$NO_3^-(aq) + 4H^+(aq) + 4e^- \rightleftharpoons 2H_2O$	+0.96	

	$Ag^{+}(aq) + e^{-} \rightleftharpoons Ag(s)$	+0.80	
//	$Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq)$	+0.77	
	$I_2(s) + 2e^- \rightleftharpoons 2I^-(aq)$	+0.54	
	$NiO_2(s) + 2H_2O + 2e^- \rightleftharpoons Ni(OH)_2(s) + 2OH^-(aq)$	+0.49	
	$Cu^{2+}(aq) + 2e^- \rightleftharpoons Cu(s)$	+0.34	
	$SO_4^{2-}(aq) + 4H^+(aq) + 2e^- \rightleftharpoons H_2SO_3(aq) + H_2O$	+0.17	
	$AgBr(s) + e^{-} \rightleftharpoons Ag(s) + Br^{-}(aq)$	+0.07	
/	$2H^{+}(aq) + 2e^{-} \rightleftharpoons H_{2}(g)$	0	1

y iee
_ 100

Stronger oxidizing agent						
Half-Reaction	<i>E</i> ° (V)					
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightleftharpoons \operatorname{Sn}(\operatorname{s})$	-0.14					
$Ni^{2+}(aq) + 2e^- \Longrightarrow Ni(s)$	-0.25					
$Co^{2+}(aq) + 2e^{-} \rightleftharpoons Co(s)$	-0.28					
$PbSO_4(s) + H^+(aq) + 2e^- \Longrightarrow Pb(s) + HSO_4^-(aq)$	-0.36					
$Cd^{2+}(aq) + 2e^{-} \rightleftharpoons Cd(s)$	-0.40					
$Fe^{2+}(aq) + 2e^- \rightleftharpoons Fe(s)$	-0.44					
$Cr^{3+}(aq) + 3e^- \rightleftharpoons Cr(s)$	-0.74					
$Zn^{2+}(aq) + 2e^- \rightleftharpoons Zn(s)$	-0.76					
$2H_2O + 2e^- \rightleftharpoons H_2(g) + 2OH^-(aq)$	-0.83					
Al^{3+} aq) + 3 $e^- \rightleftharpoons Al(s)$	-1.66					
$Mg^{2+}(aq) + 2e^{-} \rightleftharpoons Mg(s)$	-2.37					
Na^{+} aq) + $e^{-} \rightleftharpoons Na(s)$	-2.71					

Using electrochemical series

• Predicting the oxidising or reducing ability.

$$Cu^{2+} + 2e^{-} \rightarrow Cu \qquad E^{e} = +0.34V$$

$$2H^{+} + 2e^{-} \rightarrow H_{2} \qquad E^{e} = 0.00V$$

$$Ni^{2+} + 2e^{-} \rightarrow Ni \qquad E^{e} = -0.25V$$

$$Zn^{2+} + 2e^{-} \rightarrow Zn \qquad E^{e} = -0.76V$$

Using electrochemical series

$$Cu^{2+} + 2e^{-} \rightarrow Cu \qquad E^{0} = +0.34V$$

$$2H^{+} + 2e^{-} \rightarrow H_{2} \qquad E^{0} = 0.00V$$

$$Ni^{2+} + 2e^{-} \rightarrow Ni \qquad E^{0} = -0.25V$$

$$Zn^{2+} + 2e^{-} \rightarrow Zn \qquad E^{0} = -0.76V$$

Standard reduction electrode potentials of three metals A, B and C are, respectively, +0.5 V, -3.0 V and -1.2 V. The reducing powers of these metals are

 $(1) \quad B > C > A$

 $(2) \quad A > B > C$

 $(3) \quad C > B > A$

(4) A > C > B

Given
$$E_{\text{Cr}^{3+}/\text{Cr}}^{\text{o}} = -0.74 \text{ V}; \quad E_{\text{MnO}_{4}^{-}/\text{Mn}^{2+}}^{\text{o}} = 1.51 \text{ V}, \quad E_{\text{Cr}_{2}\text{O}_{7}^{2-}/\text{Cr}^{3+}}^{\text{o}}$$
$$= 1.33 \text{ V}; \quad E_{\text{Cl/Cl}^{-}}^{\text{o}} = 1.36 \text{ V}$$

Based on the data given above, strongest oxidising agent will be

(1)
$$Cr^{3+}$$
 (2) Mn^{2+}

$$(3) \quad MnO_4^- \qquad (4) \quad Cl^-$$