CS409: Neural Networks (Semester II - 2021/22)

Backpropagation Algorithm – Calculations Example

Dr. Ruwan Nawarathna
Department of Statistics & Computer Science
Faculty of Science
University of Peradeniya

Backpropagation – Example 01

Backpropagation – Example 01

- Initializations
 - Initialize weights as shown
 - Example (Input) E = (10,30,20)
 - Stipulate that E should have been categorised as O1 (Node 1 of the output layer)
 - Use a learning rate of $\alpha = 0.1$
 - Stochastic gradient descent is used for updating the weights

$$|0 = 0|_{1} = x_{1} \qquad |w|_{11} = 0.2$$

$$|0 = 0|_{2} = x_{1} \qquad |w|_{11} = 0.2$$

$$|0 = 0|_{2} = x_{2} \qquad |w|_{12} = 0.1$$

$$|0 = 0|_{2} = x_{2} \qquad |w|_{13} = 0.1$$

$$|0 = 0|_{2} = x_{2} \qquad |w|_{13} = 0.1$$

$$|0 = 0|_{2} = x_{2} \qquad |w|_{13} = 0.1$$

$$|0 = 0|_{2} = x_{2} \qquad |w|_{13} = 0.1$$

$$|0 = 0|_{2} = x_{2} \qquad |w|_{13} = 0.1$$

$$|0 = 0|_{2} = x_{2} \qquad |w|_{13} = 0.1$$

$$|0 = 0|_{2} = x_{2} \qquad |w|_{13} = 0.1$$

$$|0 = 0|_{2} = x_{2} \qquad |w|_{13} = 0.1$$

$$|0 = 0|_{2} = x_{2} \qquad |w|_{13} = 0.1$$

$$|0 = 0|_{2} = x_{2} \qquad |w|_{13} = 0.1$$

$$|0 = 0|_{2} = x_{2} \qquad |w|_{13} = 0.1$$

$$|0 = 0|_{2} = x_{2} \qquad |w|_{13} = 0.1$$

$$|0 = 0|_{2} = x_{2} \qquad |w|_{13} = 0.1$$

$$|0 = 0|_{2} = x_{2} \qquad |w|_{13} = 0.1$$

$$|0 = 0|_{2} = x_{2} \qquad |w|_{13} = 0.1$$

$$|0 = 0|_{2} = x_{2} \qquad |w|_{13} = 0.1$$

$$|0 = 0|_{2} = x_{2} \qquad |w|_{13} = 0.1$$

$$|0 = 0|_{2} = x_{2} \qquad |w|_{13} = 0.1$$

$$|0 = 0|_{2} = x_{2} \qquad |w|_{13} = 0.1$$

$$|0 = 0|_{2} = x_{2} \qquad |w|_{13} = 0.1$$

$$|0 = 0|_{2} = x_{2} \qquad |w|_{13} = 0.1$$

$$|0 = 0|_{2} = x_{2} \qquad |w|_{13} = 0.1$$

$$|0 = 0|_{2} = x_{2} \qquad |w|_{13} = 0.1$$

$$|0 = 0|_{2} = x_{2} \qquad |w|_{13} = 0.1$$

$$|0 = 0|_{2} = x_{2} \qquad |w|_{13} = 0.1$$

$$|0 = 0|_{2} = x_{2} \qquad |w|_{13} = 0.1$$

$$|0 = 0|_{2} = x_{2} \qquad |w|_{13} = 0.1$$

$$|0 = 0|_{2} = x_{2} \qquad |w|_{13} = 0.1$$

$$|0 = 0|_{2} = x_{2} \qquad |w|_{13} = 0.1$$

$$|0 = 0|_{2} = x_{2} \qquad |w|_{13} = 0.1$$

$$|0 = 0|_{2} = x_{2} \qquad |w|_{13} = 0.1$$

$$|0 = 0|_{2} = x_{2} \qquad |w|_{13} = 0.1$$

$$|0 = 0|_{2} = x_{2} \qquad |w|_{13} = 0.1$$

Forward Propagation - calculating Zi and at of all neurons

$$Z_{1}^{2} = 10 \times 0.2 + 30 \times -0.1 + 20 \times 0.4$$

$$Z_{1}^{2} = 7$$

$$\alpha_{1}^{2} = \frac{1}{1 + e^{-7}}$$
 $\alpha_{1}^{2} = 0.999$

$$2^{2}_{1} = 10 \times 6.7 + 30 \times -1.2 + 20 \times 1.2$$

$$= 5$$

$$O_{2}^{2} = \frac{1}{1 + e^{-5}}$$

$$G_2^2 = 0.007$$

$$Z_{1}^{3} = \alpha_{1}^{2} \times 1.1 + \alpha_{1}^{2} \times 0.1$$

$$= (0.999 \times 1.1) + (0.007 \times 0.1)$$

$$= 1.0996$$

$$a^{3} = \frac{1}{1 + e^{-1.0996}}$$

$$a^{3} = 0.750$$

$$2^{3} = \alpha_{1}^{2} \times 3.1 + \alpha_{2}^{2} \times 1.17$$

$$= (0.999 \times 3.1) + (0.007 \times 1.17)$$

$$= 3.106$$

$$\alpha_{2}^{3} = \frac{1}{1 + e^{-3.106}}$$

$$\alpha_{2}^{3} = 0.957$$

2=1

1=2

Backword Propagation - calculating Si and DWZ;

ONTPUT MENLONS.

$$\frac{3}{8^{3}} = (\alpha^{3} - y_{1})g'(z^{3}, z^{3})$$

$$= (\alpha^{3} - y_{1}$$

Similarly.

$$8^{3}_{2} = (\alpha^{3}_{2} - 9_{2})(\alpha^{3}_{2}(1 - \alpha^{3}_{2}))$$

$$= (0.957 - 0)[0.957(1 - 0.957)]$$

$$= 0.0394$$

Hidden Nearonz

Backward Propagation - concolating (82 and AW2) Hidden Neutons PSI = -0.0469

$$8_{2}^{2} = [0.1 \times -0.0469 + 1.17 \times 0.0394](0.957(1-0.957)]$$

$$= 0.0132$$

) 8 = 0.0394

$$\Delta w_{11} = \alpha_{1}^{1} \times 8^{2},$$

$$\Delta w_{11} = \alpha_{1}^{1} \times 8^{2},$$

$$= (0 \times 0.0132)$$

$$= 0.13200$$

Similarly, the other Aws can be calculated.

 $0.990 = 0^{2}, 1$ $W_{21}^{2} = 31$

$$\Delta W_{12}^{2} = \alpha_{1}^{2} \times 8_{2}^{3}$$

$$= 0.990 \times 0.0394$$

$$= 0.03936$$

$$8_{2}^{3} = 0.0394$$

Amount of weight updates (ΔW_{ij}^l)

Amount of weight Update (ΔW_{ij}^l)	$\Delta W_{ij}^l = a_j^l \delta_i^{l+1}$	
ΔW^1_{11}	10*0.0132	= 0.13200
ΔW^1_{21}	10*0.0017	= 0.01700
ΔW^1_{12}	30*0.0132	= 0.39600
ΔW^1_{22}	30*0.0017	= 0.05100
ΔW^1_{13}	20*0.0132	= 0.26400
ΔW^1_{23}	20*0.0017	= 0.03400
ΔW_{11}^2	0.999*-0.0469	= -0.04685
ΔW_{21}^2	0.999*0.0394	= 0.03936
ΔW_{12}^2	0.007*-0.0469	= -0.00033
ΔW_{22}^2	0.007*0.0394	= 0.00028

Updated weights with stochastic gradient approach $(\boldsymbol{W_{ij}^{l}})$

If the stochastic gradient descent is used to update the weights, all weights are updated after each example

$$W'_{11} = W'_{11} - \alpha \Delta W'_{11}$$
 (x = 0.1)
= 0.2 - (0.1× 0.132)
= 0.1868
Likewise, all weights should be updated.

Updated weights with stochastic gradient approach (W_{ij}^l)

Updated weights with stochastic gradient approach (W_{ij}^l)	$W_{ij}^l = W_{ij}^l - lpha \Delta W_{ij}^l$	
W_{11}^1	0.2 - (0.1*0.13200)	= 0.1868
W_{21}^{1}	0.7 - (0.1*0.01700)	= 0.6983
W_{12}^{1}	(-0.1) - (0.1*0.39600)	= -0.1396
W_{22}^{1}	(-1.2) - (0.1*0.05100)	= -1.2051
W_{13}^1	0.4 - (0.1*0.26400)	= 0.3736
W_{23}^{1}	1.2 - (0.1*0.03400)	= 1.2034
W_{11}^2	1.1 - (0.1*-0.04685)	= 1.104685
W_{21}^2	3.1 - (0.1*0.03936)	= 3.096064
W_{12}^2	0.1 - (0.1*-0.00033)	= 0.100033
W_{22}^2	1.17 - (0.1*0.00028)	= 1.169972