3° de Secundaria Unidad 2 2024-2025

— Practica la reposición a la Unidad 2

Nombre del alumno: Fecha:

Aprendizajes:	Puntuación:										
Deduce información acerca de la estructura atómica	Pregunta	1	2	3	4	5	6	7	8	9	
datos experimentales sobre propiedades atómicas pe	Puntos	5	4	4	5	5	5	5	5	5	
Representa y diferencia mediante esquemas, modelos	s y simbolo-	Obtenidos									
gía química, elementos y compuestos, así como átor	nos y molé-	Pregunta	10	11	12	13	14	15	16		Total
culas.	Puntos Obtenidos	8	5	5	15	15	5	4		100	
Explica y predice propiedades físicas de los materia se en modelos submicroscópicos sobre la estructura moléculas o iones, y sus interacciones electrostáticas	de átomos,										
Ejercicio 1						_		de	5 ρ	un	tos
Señala en cada uno de los enunciados si la sentencia es f	alsa o verdad	lera.									
• Los electrones de valencia se encuentran siempre en el último nivel de energía.	f La ma	ısa de un n	eutr	ón (es si	mila	ar a	la d	el p	rote	ón.
□ Verdadero □ Falso	☐ Vei	□ Verdadero □ Falso En la fórmula de la Taurina, $4C_2H_7NO_3S$, el número 4 indica que hay 4 átomos de carbono. □ Verdadero □ Falso									
b La fórmula H ₂ O expresa que la molécula de agua está constituida por dos átomos de oxígeno y uno de hidrógeno.	ro 4 in										
□ Verdadero □ Falso		úmero de masa representa la suma de protone								ones	
Los subíndices expresan el número de átomos de		y neutrones.									
los elementos presentes en una molécula o unidad fórmula.	☐ Verdadero ☐ Falso										
☐ Verdadero ☐ Falso		imero total de electrones en un átomo lo deter- el grupo al que pertenece.									
d El neutrón es una partícula subatómica que se en-	□ Vei	erdadero 🗖 Falso									
cuentra girando alrededor del núcleo atómico.		una fórmula química, los coeficientes indicad ero de moléculas o unidades fórmula; así co									
	-									sí c	omo
cuentra girando alrededor del núcleo atómico.	númer		culas	ου	ınid	ades	s fór	mula	a; as		

Ejercicio 2

de 4 puntos

Identifica en las siguientes reacciones cuáles son de combinación, de descomposición, de desplazamiento o desplazamiento doble.

- \bigcirc 3 O_2 + energía $\uparrow \longrightarrow$ 2 O_3
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- **b** $C_6H_{12}O_6(ac) \longrightarrow 2C_2H_5OH(ac) + 2CO_2(g)$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - Doble desplazamiento

- $oxed{c}$ Ba(NO₃)₂ + K₂SO₄ \longrightarrow BaSO₄ + KNO₃
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- d CaCO₃(s) \longrightarrow CaO(s) + CO₂
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - Doble desplazamiento

Ejercicio 3

_ de 4 puntos

Identifica en las siguientes reacciones si es de síntesis o combinación, descomposición, desplazamiento simple o desplazamiento doble.

- $2 \text{ Na} + \text{H}_2\text{O} \longrightarrow 2 \text{ NaOH} + \text{H}_2$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- **b** $2 \operatorname{Al}(s) + 3 \operatorname{S}(s) \longrightarrow \operatorname{Al}_2 \operatorname{S}_3(s)$
 - A Descomposición
 - B Combinación
 - © Desplazamiento
 - Doble desplazamiento

- $\mathsf{C} \ \mathrm{Mg}(\mathrm{s}) + \mathrm{H}_2\mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{Mg}(\mathrm{OH})_2(\mathrm{s})$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - (D) Doble desplazamiento
- d $Al + H_2SO_4 \longrightarrow Al_2(SO_4)_3 + H_2$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - Doble desplazamiento

Ejercicio 4

de 5 puntos

Balancea la siguiente ecuación química:

$$\mathrm{N_2H_4} + \mathrm{O_2} \longrightarrow \mathrm{NO_2} + \mathrm{H_2O}$$

de 5 puntos Ejercicio 5

Balancea la siguiente ecuación química

$$Fe + H_2O \longrightarrow Fe_3O_4 + H_2$$

Ejercicio 6

de 5 puntos

Balancea la siguiente ecuación química:

$$C_2H_6O+O_2 \longrightarrow CO_2+H_2O$$

Ejercicio 7 de 5 puntos

Balancea la siguiente ecuación química:

$$NH_4NO_3 \longrightarrow N_2 + H_2O + O_2$$

Ejercicio 8	de 5 puntos
-------------	-------------

Balancea la siguiente ecuación química:

$$HgO \longrightarrow Hg + O_2$$

Ejercicio 9 de 5 puntos

Balancea la siguiente ecuación química:

$$H_2SO_4 + Pb(OH)_4 \longrightarrow Pb(SO_4)_2 + H_2O$$

Ejercicio 10 de 8 puntos

Contesta a las siguientes preguntas, argumentando ampliamente tu respuesta.

Explica bajo qué condiciones el número atómico permite deducir el número de electrones presentes en un átomo.

b En términos generales, el radio de un átomo es aproximadamente 10,000 veces mayor que su núcleo. Si un átomo pudiera amplificarse de manera que el radio de su núcleo midiera 2 mm (lo que mide un grano de sal), ¿cuál sería el radio del átomo en metros?

1					

Ejercicio 11 de 5 puntos Relaciona cada elemento con las características que le corresponden. a _ Titanio (A) Elemento metaloide del grupo III, subgrupo A de la tabla periódica. **b** _ Oro (B) Elemento metálico con Z = 31. c _ Helio (C) Elemento metaloide, ubicado en el tercer período de la tabla periódica. d Boro D Elemento conocido como gas noble y se encuentra en el período 1 de la tabla periódica. e _ Radón (E) Elemento con 22 protones y 22 electrones. f _ Yodo (F) Elemento de la familia de los Halógenos con 74 neutrones. __ Bismuto (G) Elemento de la familia de metales alcalino-terreos con 138 neutrones. h _ Radio (H) Elemento con Z = 83. (I) Gas inerte (gas noble) que se encuentra en el período 6 de la tabla periódica. i _ Galio j _ Silicio (J) Metal brillante utilizado en joyería.

Ejercicio 12 de 5 puntos Relaciona la especie química con la cantidad de protones y electrones de valencia. a _____ 10 protones y 8 electrones de valencia. (A) Ión oxígeno (O^-) **b** ______ 7 protones y 5 electrones de valencia. (B) Nitrógeno (N) c _____ 9 protones y 8 electrones de valencia. (C) Silicio (Si) d ______ 8 protones y 7 electrones de valencia. (D) Calcio (Ca) e _____ 3 protones y 2 electrones de valencia. (E) Ión Fluor (F⁻) f _____ 20 protones y 2 electrones de valencia. (F) Oxígeno (O) 9 _____ 34 protones y 6 electrones de valencia. (G) Neón (Ne) h _____ 14 protones y 4 electrones de valencia. (H) Ión Litio (Li⁺) i _____ 15 protones y 5 electrones de valencia. (I) Fósforo (P) j _____ 8 protones y 6 electrones de valencia. (J) Selenio (Se)

Escribe el grupo (familia), el período y el tipo de clasificación de los siguientes elementos. Después de realizar este ejercicio, ubica a cada elemento en la tabla Elemento Grupo/Familia Período Tipo Paladio Oro Argón Samario Talio

Ejercicio 15 de 5 puntos

Señala la opción que responde correctamente a la pregunta de cada uno de los siguientes incisos:

- Qué propiedades periódicas aumentan al recorrer un grupo de arriba hacia abajo en la tabla periódica?
 - (A) El potencial de Ionización y el carácter metálico
 - B El carácter no metálico y el potencial de ionización
 - C La electronegatividad y la afinidad electrónica
 - D El carácter metálico y la electronegatividad
 - E Ninguna de las anteriores
- b ¿Qué propiedades periódicas aumentan al desplazarnos en un período de izquierda a dere- cha en la tabla periódica?
 - A El radio atómico y el radio iónico
 - B El carácter metálico y la afinidad electrónica
 - (C) La electronegatividad y el radio atómico
 - D Potencial de ionización y electronegatividad
 - (E) Ninguna de las anteriores
- c En la tabla periódica, el tamaño atómico tiende a aumentar hacia la:
 - (A) Derecha y hacia arriba
 - B Derecha y hacia abajo
 - (C) Izquierda y hacia arriba
 - D Izquierda y hacia abajo

- d El tamaño de los átomos aumenta cuando:
 - A Se incrementa el número de período
 - B Disminuye el número de período
 - © Se incrementa el número de grupo
 - D Disminuye el número de bloque
 - (E) Ninguna de las anteriores
- e El radio atómico es la distancia que hay del núcleo de un átomo a su electrón más lejano ¿Cómo varía esta propiedad atómica en los elementos de la tabla periódica?
 - A Disminuye conforme nos desplazamos de izquierda a derecha a lo largo de un período
 - B Aumenta conforme nos desplazamos de arriba hacia abajo a lo largo de un grupo
 - C Aumenta conforme nos desplazamos de derecha a izquierda a lo largo de un período
 - (D) Todos son correctos

Ejercicio 16 ____ de 4 puntos

Relaciona cada **concepto** con su definición.

- O ____ Diagrama de esferas y barras.
- b ____ Diagrama de esferas.
- c ____ Fórmula condensada.
- d ____ Fórmula estructural.

- (A) Las sustancias se representan sólo con símbolos atómicos.
- B Esquema tridimensional en el que es posible identificar a los enlaces químicos.
- C Las sustancias se representan con símbolos atómicos y líneas que simbolizan a los enlaces químicos.
- (D) Esquema tridimensional en el que no es posible identificar a los enlaces químicos.

Tabla 1: Tabla Periódica de los Elementos.

18 VIIIA	$\overset{\text{2}}{H}\overset{\text{4.0025}}{\text{Helio}}$	$\overset{\text{10}}{\overset{\text{20.180}}{\overset{\text{20.180}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}}{\overset{\text{Neón}}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}}}}}{\overset{N}}}}}}}}$	$\stackrel{18}{A}_{\Gamma}^{39.948}$	$\overset{36}{K}\overset{83.8}{\Gamma}$	$\sum_{\text{Xenón}}^{54} \mathbf{E}$	$\mathop{Radon}\limits^{86}$	$0 \frac{118}{O} \frac{294}{S}$	$\overset{n}{\overset{174.97}{\text{Luterio}}}$	$\frac{103}{L}$ 262 Lawrencio	
	17 VIIA	9 18.998 Fluor	$\bigcap_{Cloro}^{17} \bigcup_{Cloro}^{35.453}$	$\Pr_{Bromo}^{35-79.904}$	53 126.9 T Yodo	$\mathop{\rm At}\limits_{\mathop{\sf Astato}}^{210}$	$\frac{117}{\mathrm{Teneso}}$	$\sum_{\text{Yterbio}}^{70 173.04}$	102 259 Nobelio	
	16 VIA	8 15.999 Oxígeno	$\overset{16}{\mathbf{S}}\overset{32.065}{\mathbf{S}}$	$\overset{34}{\mathrm{Se}}^{78.96}$	$\prod_{\text{Tellurio}}^{52}$	$\overset{84}{P0}$	$\frac{116}{L} \frac{293}{V}$ Libermonio	69 168.93 Tulio	$\overset{\text{101}}{\text{NId}}\overset{258}{\text{d}}$	
		7 14.007 Nitrógeno	$\sum_{F\'osforo}^{30.974}$	${\overset{33}{A}}_{\text{Arsénico}}^{74.922}$	$\overset{51}{S}\overset{121.76}{b}$ Antimonio	$\overset{83}{\underset{Bismuto}{208.98}}$	$\underset{\text{Moscovio}}{\overline{115}}$	$\frac{68}{\text{Erbio}}$	$\overset{\text{100}}{Fm}$	
	14 IVA	$\bigcup_{\text{Carbono}}^{6}$	$\overset{14}{S}\overset{28.086}{:}$ Silicio	$\overset{32}{\text{Germanio}}$	$\mathop{Sn}\limits_{\text{Estaño}}^{118.71}$	$\overset{82}{Pb}^{207.2}_{b}$	114 289 Flerovio	$\displaystyle \underset{\text{Holmio}}{\overset{67}{\text{Hols}}}$	$\frac{99}{ES}$	
	13 IIIA	$\overset{5}{\mathbf{B}}$	$\underset{\text{Aluminio}}{A13}$	$\overset{31}{\overset{69.723}{\text{Galio}}}$	$\overset{49}{\text{Indo}}_{\text{Indo}}$	81 204.38 Talio	$\prod_{\text{Nihonio}}^{113} \sum_{\text{Nihonio}}^{284}$	$\bigcup_{Disprosio}^{66-162.50}$	$\underset{\text{Californio}}{\overset{98}{\text{C}}}$	
			12 IIB	$\overset{30}{Z}\overset{65.39}{n}$	$\overset{48}{\text{Cadmio}}$	$\underset{Mercurio}{\overset{80}{-}} \overset{200.59}{-}$	$\bigcup_{\text{Copernicio}}^{112} \bigcup_{\text{Soft}}^{285}$	$\prod_{\text{Terbio}}^{65-158.93}$	$\underset{\text{Berkelio}}{\underline{97}}$	
			11 IB	$\overset{29}{\overset{63.546}{\mathbf{U}}}_{Cobre}$	$^{47}_{ m Ag}$	$\overset{79}{\mathrm{Au}}_{\mathrm{Oro}}^{196.97}$	$\underset{\text{Roentgenio}}{\text{III}} \text{ 280}$	$\overset{64}{\text{Gadolinio}}$	$\overset{96}{Cm}^{247}$	
			10 VIIIB	$\sum_{\text{Niquel}}^{28} \sum_{i=1}^{58.693}$	$\Pr^{46 106.42}_{\textbf{P}}$	$\Pr^{78}_{\text{P}} \stackrel{195.08}{\text{T}}$	$\mathop{DS}\limits_{\text{Darmstadtio}}^{281}$	$\overset{\textbf{63}}{\textbf{Europio}}$	$\underset{\text{Americio}}{\underbrace{Am}}$	
			9 VIIIB	$ \bigcup_{\text{Cobalto}}^{27} \bigcup_{\text{Cobalto}}^{58.933} $	$\mathop{Rh}\limits^{45~102.91}_{\text{Rodio}}$	$\overline{\Gamma}$ 192.22 $\overline{\Gamma}$ Iridio	$\underset{\text{Meitnerio}}{109}$	$\overset{62}{S}\overset{150.36}{m}$	$\overset{94}{Pu}\overset{244}{u}$	
		ø	8 VIIIB	$\overset{26}{F}\overset{55.845}{\bullet}$ Hiero	$\mathop{Ruthenio}^{44~101.07}$	$ \bigcup_{\text{Osmio}}^{76} $	$\overset{\text{108}}{\text{Hassio}}^{277}$	$\overset{\text{61}}{P}\overset{\text{145}}{m}$	93 237 Neptunio	
	gía:	Negro: Naturales Gris: Sintéticos	7 VIIB	$\overset{25}{N}\overset{54.938}{\mathbf{m}}$ Manganeso	$\prod_{ ext{Tecnecio}}^{43}$	$\mathop{Renio}_{\text{Renio}}^{75 186.21}$	$\underset{\text{Bohrio}}{\underline{\text{107}}}$	$\sum_{N \in \text{odimio}}^{60 144.24}$	$\bigcup_{\text{Uranio}}^{92 238.03}$	
	Simbología:	Negro:] Gris: S	6 VIB	$ \bigcup_{\text{Cromo}}^{24} \sum_{\text{Cromo}}^{51.996}$	$\sum_{\text{Molybdeno}}^{42}$	$\sum_{\text{Tungstenio}}^{74}$	$\overset{106}{S}\overset{266}{8}$	$\Pr_{Praseodymio}^{59}$	$\overset{91}{Pa}^{231.04}_{a}$	
	Sin	$\sum_{ ext{Simbolo}}^{ ext{Z}}$	5 VB	$\sum_{\text{Vanadio}}^{\textbf{23}} 50.942$	$\sum_{\text{Niobio}}^{41~92.906}$	$\overset{73}{\text{Tantalo}}$	$\bigcup_{\text{Dubnio}}^{105}$	C_{errio}^{58}	$\prod_{\text{Torio}}^{90-232.04}$	
			4 IVB	$\prod_{\text{Titanio}}^{22} \frac{47.867}{}$	$\sum_{{ m Circonio}}^{40}$	72 178.49 Hafnio	$\underset{\text{Rutherfordio}}{\text{104}}$	$\overset{57}{La}_{antánido}^{138.91}$	$\overset{89}{Ac}_{\text{ctinio}}^{227}$	
			3 IIIB	$\overset{21}{S}\overset{44.956}{c}$ Escandio	$\sum_{\text{ltrio}}^{39 88.906}$	57-71	.: 89-103 .: ** Actinido	s -terreos		nidos
	2 IIA	$\mathop{Berilio}^{4}$	$\overline{\mathrm{Mg}}^{24.305}$	$\overset{20}{\text{Calcio}}^{40.078}$	$\overset{38}{S}\overset{87.62}{\Gamma}$ Stroncio	$\overset{56}{\text{Bario}}_{\text{Bario}}$	$\overset{88}{\text{Radio}}$	Metales Alcalinos Metales Alcalino-terreos Metal	le Ll o	Gases Nobles Lantámidos/Actínidos
1 IA	1 1.0079 Hidrógeno	3 6.941 Lit io	$\overset{11}{N}\overset{22.990}{\mathrm{Sodio}}$	$\overset{19}{\mathrm{K}}\overset{39.098}{\mathrm{K}}$	$\mathop{Rb}^{37}_{\text{Rubidio}}$	$\mathbf{\hat{C}}_{\mathbf{S}}$	$\overset{87}{Fr}^{223}$	Metales Metales Metal	Metaloide No metal Halógeno	Gases Nobles Lantánidos/A
	1	7	ĸ	4	വ	9	2			