BACALAUREAT 2011 SESIUNEA SPECIALĂ M1

Proba E c)

Filiera teoretică, profilul real, specializarea matematică - informatică. Filiera vocațională, profilul militar, specializarea matematică - informatică.

SUBIECTUL I

- 1. Calculați modulul numărului complex z = (3+4i)(5-12i).
- **2.** Punctul V(2,3) este vârful parabolei asociate funcției $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2 + ax + b$. Calculați f(3).
- 3. Rezolvați în mulțimea numerelor reale ecuația $|\sqrt{x}-1|=2$.
- **4.** Determinați numerele naturale $n, n \geq 2$, pentru care $C_n^2 \leq 4 \cdot A_n^1$.
- 5. Fie G(1,0) centrul de greutate al triunghiului ABC, unde A(2,5) și B(-1,-3). Determinați cordonatele punctului C.
- 6. Calculați raza cercului înscris în triunghiul ABC știind că AB = AC = 5 și BC = 8.

SUBIECTUL II

- **1.** Se consideră matricea $A=\begin{pmatrix}1&2&-1\\a&1&1\\3&0&2\end{pmatrix}$, unde $a\in\mathbb{Z}.$
 - a) Calculati $\det A$.
 - **b)** Arătați că rang A = 3, oricare ar fi $a \in \mathbb{Z}$.
 - c) Determinați valorile întregi ale lui a știind că matricea A^{-1} are toate elementele numere întregi.
- **2.** Se consideră numerele reale a, b, c și polinomul $f = X^4 + aX^3 + bX^2 + cX + 36 \in \mathbb{R}[X]$, cu rădăcinile $x_1, x_2, x_3, x_4 \in \mathbb{C}$.
 - a) Calculați a+b+c în cazul în care restul împărțirii lui f la X-1 este 40.
 - b) Determinați $c \in \mathbb{R}$ astfel încât $\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \frac{1}{x_4} = \frac{1}{3}$.
 - c) Arătați că dacă a = 6 și b = 18, atunci polinomul f nu are toate rădăcinile reale.

- 1. Se consideră functia $f:(0,\infty)\to\mathbb{R}, f(x)=x^4-4\ln x$.
 - a) Arătați că funcția f este strict descrescătoare pe (0,1].
 - b) Determinați asimptotele verticale ale graficului funcției f.
 - c) Demonstrați că, pentru orice $n \in \mathbb{N}^*$, există un unic număr $x_n \in (0,1]$ pentru care $f(x_n) = n$.
- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \cos x$.
 - a) Calculați aria suprafeei determinate de graficul funcției f, axa Ox și de dreptele de ecuații $x=0, x=\frac{\pi}{2}$.
 - **b)** Calculați $\lim_{x \to +\infty} \frac{1}{x} \int_0^x f(t) dt$.
 - c) Demonstrați că șirul $(I_n)_{n\geq 1}$, $I_n=\int_0^{\frac{\pi}{2}}f^n(x)\ dx$ este convergent.

M2

Proba E c)

Filiera teoretică, profilul real, specializarea științele naturii.

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale.

SUBIECTUL I

- 1. Comparați numerele $a = \log_2 4$ și $b = \sqrt[3]{27}$.
- 2. Rezolvați în mulțimea numerelor reale inecuația $3x^2 11x + 6 \le 0$.
- 3. Rezolvați în mulțimea numerelor reale ecuația $3^{x^2+x+1} = 3^{5x-2}$
- **4.** Determinați $n \in \mathbb{N}, n \geq 2$, pentru care $C_n^1 + C_n^2 = 15$.
- 5. Determinați numerele reale m pentru care punctul $A(2m-1,m^2)$ se află pe dreapta d: x-y+1=0.
- 6. Calculați $\cos x,$ știind că 0° < $x < 90^\circ$ și $\sin x = \frac{12}{13}$

SUBIECTUL II

- 1. Se consideră mulțimea $G = \left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix} \middle| a, b \in \mathbb{N} \right\}.$
 - a) Determinați numerele naturale m și n pentru care matricea $\begin{pmatrix} 4 & m^2 \\ 9 & n^2 \end{pmatrix} \in G$.
 - b) Arătați că dacă $U, V \in G$, atunci $U \cdot V \in G$.
 - c) Calculați suma elementelor matricei $U \in G$, știind că suma elementelor matricei U^2 este egală cu 8.

2

- 2. Se consideră polinomul $f = X^4 X^3 4X^2 + 2X + 4$.
 - a) Arătați că restul împărțirii polinomului f prin polinomul $g = X \sqrt{2}$ este egal cu 0.
 - b) Rezolvați în mulțimea numerelor reale ecuația f(x) = 0.
 - c) Rezolvați în mulțimea numerelor reale ecuația $16^x 8^x 4 \cdot 4^x + 2 \cdot 2^x + 4 = 0$.

- 1. Se consideră funcția $f:(0,\infty)\to\mathbb{R},$ $f(x)=\begin{cases} \dfrac{x+1}{x}, & x\in(1,\infty)\\ x+1, & x\in(0,1] \end{cases}.$
 - a) Demonstrați că funcția f este continuă în punctul $x_0 = 1$.
 - **b)** Arătați că funcția f este convexă pe intervalul $(1, \infty)$.
 - c) Demonstrați că $f(x) + f\left(\frac{1}{x}\right) \le 4$, pentru orice $x \in (0, \infty)$.
- **2.** Se consideră funcțiile $f:(0,\infty)\to\mathbb{R}, \ f(x)=e^x\cdot\ln x \ \text{si} \ g:(0,\infty)\to\mathbb{R}, \ g(x)=\frac{e^x}{x}$
 - a) Calculați $\int_{1}^{2} x \cdot g(x) \ dx$.
 - **b)** Calculați $\int_{e}^{e^2} \frac{f(x)}{x \cdot e^x} dx$.
 - c) Demonstrați că $\int_1^e (f(x) + g(x)) dx = e^e$.

BACALAUREAT 2011 SESIUNEA IUNIE M1

Proba E c)

Filiera teoretică, profilul real, specializarea matematică - informatică. Filiera vocațională, profilul militar, specializarea matematică - informatică.

SUBIECTUL I

- 1. Arătați că $(\sqrt{2}, \sqrt{5}) \cap \mathbb{Z} = \{2\}.$
- 2. Determinați valorile reale ale lui m pentru care dreapta x=2 este axa de simetrie a parabolei $y=x^2+mx+4$.
- 3. Rezolvați în mulțimea $[0,2\pi)$ ecuația $\sin\left(x-\frac{\pi}{6}\right)=\frac{1}{2}$
- 4. Determinați $n \in \mathbb{N}, n \ge 2$, pentru care $C_n^2 + A_n^2 = 18$.
- **5.** Determinați $a \in \mathbb{R}$ pentru care dreptele $d_1: ax + y + 2011 = 0$ și $d_2: x 2y = 0$ sunt paralele.
- 6. Fie x un număr real care verifică egalitatea $\tan x + \cot x = 2$. Arătați că $\sin 2x = 1$.

SUBIECTUL II

- 1. Se consideră matricea $A(x) = \begin{pmatrix} 1 & x & x^2 \\ 0 & 1 & 2x \\ 0 & 0 & 1 \end{pmatrix}$, unde $x \in \mathbb{R}$.
 - a) Arătați că $A(x) \cdot A(y) = A(x+y)$, oricare ar fi $x, y \in \mathbb{R}$.
 - **b)** Arătați că $(A(x) A(y))^{2011} = O_3$, pentru orice $x, y \in \mathbb{R}$.
 - c) Determinați inversa matricei A(x), unde $x \in \mathbb{R}$.
- **2.** Se consideră $\alpha \in \mathbb{C}$ și polinomul $f = X^3 + (1 \alpha)X^2 + (\alpha 2)iX + \alpha + (\alpha 2)i \in \mathbb{C}[X]$.
 - a) Arătați că polinomul f are rădăcina -1.
 - b) Arătați că, dacă p, q sunt numere complexe și polinomul $g = X^2 + pX + q \in \mathbb{C}[X]$ are două rădăcini distincte, complex conjugate, atunci p și q sunt numere reale și $p^2 < 4q$.
 - c) Determinați $\alpha \in \mathbb{C}$ pentru care polinomul f are două rădăcini distincte, complex conjugate.

- 1. Se consideră funcția $f:(1,\infty)\to\mathbb{R}, f(x)=\ln(x+1)-\ln(x-1)$.
 - a) Arătați că funcția f este strict descrescătoare pe $(1, \infty)$.
 - **b)** Determinați asimptotele graficului funcției f.
 - c) Calculați $\lim_{x \to \infty} x f(x)$.
- 2. Se consideră funcția $f:[1,2]\to\mathbb{R}, f(x)=x^2-3x+2$.
 - a) Calculați $\int_{1}^{4} f(\sqrt{x}) dx$.
 - b) Calculați aria suprafeței determinate de graficul funcției $g:[1,2]\to\mathbb{R},\ g(x)=\frac{f(x)}{x}$ și de axa Ox.
 - c) Arătați că $(4n+2)\int_{1}^{2} f^{n}(x) dx + n \int_{1}^{2} f^{n-1}(x) dx = 0.$

Proba E c)

Filiera teoretică, profilul real, specializarea științele naturii.

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale.

SUBIECTUL I

- 1. Determinati $x \in \mathbb{R}$ pentru care numerele x-1, x+1 si 3x-1 sunt termeni consecutivi ai unei progresii aritmetice.
- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 5 x. Calculați $f(0) \cdot f(1) \cdot f(2) \cdot \ldots \cdot f(10)$.
- 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{x-1} = x-3$.
- 4. Determinați numărul submulțimilor ordonate cu 2 elemente ale unei mulțimi cu 7 elemente.
- 5. Calculați distanța de la punctul A(2,3) la punctu de intersecție a dreptelor $d_1: 2x-y-6=0$ și $d_2: -x+2y-6=0$.
- 6. Calculați cosinusul unghiului M al triunghiului MNP, știind că MN=4, MP=5 și NP=6.

SUBIECTUL II

- **1.** Se consideră matricele $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $A = \begin{pmatrix} 1 & -1 \\ -2 & 2 \end{pmatrix}$ și $X(a) = I_2 + aA$, unde $a \in \mathbb{Z}$.
 - a) Calculati $A^2 3A$.
 - **b)** Demonstrați că $X(a) \cdot X(b) = X(a+b+3ab)$, oricare ar fi $a, b \in \mathbb{Z}$.
 - c) Arătați că X(a) este matrice inversabilă, oricare ar fi $a \in \mathbb{Z}$.
- **2.** Polinomul $f = X^3 + 2X^2 5X + m$, cu $m \in \mathbb{R}$, are rădăcinile x_1, x_2 și x_3 .
 - a) Calculați $x_1^2 + x_2^2 + x_3^2$.
 - **b)** Determinați $m \in \mathbb{R}^*$ pentru care $x_1 + x_2 + x_3 = \frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3}$
 - c) Arătați că determinantul $\Delta = \begin{vmatrix} x_1 & x_2 & x_3 \\ x_2 & x_3 & x_1 \\ x_3 & x_1 & x_2 \end{vmatrix}$ este număr natural, oricare ar fi $m \in \mathbb{R}$.

SUBIECTUL III

- **1.** Se consideră funcția $f:[1,\infty)\to\mathbb{R}, f(x)=e^x-\frac{1}{x}$
 - a) Calculați $\lim_{x\to 2} \frac{f(x) f(2)}{x 2}$.
 - b) Arătați că f(x) > 0, oricare ar fi $x \in [1, \infty)$.
 - c) Arătați că graficul funcției f nu admite asimptotă spre $+\infty$.
- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = \sqrt{x^2 + 10}$.
 - a) Calculați volumul corpului obținut prin rotația, în jurul axei Ox, a graficului funcției $g:[0,3]\to\mathbb{R},$ g(x)=f(x).

4

- b) Demonstrați că orice primitivă F a funcției f este crescătoare pe mulțimea \mathbb{R} .
- c) Demonstrați că $\int_{-10}^{10} f(x) \ dx = 2 \cdot \int_{0}^{10} f(x) \ dx$.

M4

Proba E c)

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

SUBIECTUL I

- 1. Se consideră o progresie aritmetică $(a_n)_{n\geq 1}$, în care $a_2=5$ și $a_4=11$. Calculați a_6 .
- **2.** Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$, f(x) = ax + b și $g: \mathbb{R} \to \mathbb{R}$, g(x) = cx + d, unde a, b, c, d sunt numere reale. Arătați că, dacă f(1) = g(1) și f(3) = g(3), atunci f(5) = g(5).
- 3. Se notează cu x_1 și x_2 soluțiile reale ale ecuației $x^2 5x + 3 = 0$. Calculați $\frac{1}{x_1} + \frac{1}{x_2}$
- 4. Determinați mulțimea soluțiilor reale ale ecuației $\log_2(x^2 + x + 2) = 2$.
- 5. Se consideră un triunghi ABC și punctele M, N, astfel încât $\overrightarrow{AM} = 3 \cdot \overrightarrow{MB}$ și $\overrightarrow{AN} = 3 \cdot \overrightarrow{NC}$. Arătați că dreptele MN și BC sunt paralele.
- 6. Se consideră un triunghi ABC în care unghiurile A și C au măsurile egale cu 30°, respectiv 90°. Știind că BC = 6, calculați lungimea laturii AC.

SUBIECTUL II

Pe mulțimea \mathbb{R} se definește legea de compoziție $x \star y = xy - 2x - 2y + 6$.

- a) Arătați că legea "★" este comutativă.
- b) Arătați că legea "★" este asociativă.
- c) Determinați numărul real a pentru care are loc egalitatea $x \star y = (2-x)(2-y) + a$, oricare ar fi $x, y \in \mathbb{R}$.

5

- d) Rezolvați în mulțimea \mathbb{R} ecuația $x \star x = x$.
- e) Determinați elementul neutru al legii "★".
- f) Arătați că $(x+2)\star\left(\frac{1}{x}+2\right)=3$, pentru orice $x\in\mathbb{R}^*$.

SUBIECTUL III

Se consideră matricele $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ și $A = \begin{pmatrix} 0 & a & 0 \\ 0 & 0 & -a \\ -a & 0 & 0 \end{pmatrix}$, unde $a \in \mathbb{R}$.

- a) Determinați numărul real a pentru care $\det(A + I_3) = 1$.
- **b)** Calculați $\det(A + {}^tA)$, unde tA este transpusa matricei A.
- c) Pentru a = 1, determinați inversa matricei A.
- **d)** Arătați că $A^3 = a^3 \cdot I_3$.
- e) Pentru a=1, verificați egalitatea $(A+I_3)(A^2-A+I_3)=2I_3$.
- f) Determinați valorile numărului real a pentru care $\det(A + {}^{t}A + I_3) = 1$.

SESIUNEA AUGUST M1

Proba E c)

Filiera teoretică, profilul real, specializarea matematică - informatică. Filiera vocațională, profilul militar, specializarea matematică - informatică.

SUBIECTUL I

- 1. Calculați rația progresiei geometrice $(b_n)_{n\geq 1}$, cu termeni pozitivi, dacă $b_1+b_2=6$ și $b_3+b_4=24$.
- **2.** Determinați $a \in \mathbb{R}$ pentru care funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = (1 a^2)x + 4$ este constantă.
- 3. Rezolvați în mulțimea numerelor reale inecuația $\left(\frac{3}{2}\right)^x < \left(\frac{2}{3}\right)^x$.
- 4. Determinați numărul termenilor raționali ai dezvoltării $(1+\sqrt{2})^{10}$.
- 5. Calculați distanța de la punctul A(2,2) la dreapta determinată de punctele B(1,0) și C(0,1).
- **6.** Triunghiul ABC are măsura unghiului A de 60° , AB = 4 și AC = 5. Calculati $\overrightarrow{AB} \cdot \overrightarrow{AC}$.

SUBIECTUL II

- 1. Se consideră mulțimea $H = \{A \in \mathcal{M}_2(\mathbb{R}) \mid A^2 = A\}.$
 - a) Arătați că $\begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} \in H$.
 - b) Demonstrați că, dacă $A \in H$, atunci $A^n \in H$, pentru orice număr natural nenul n.
 - c) Arătați că multimea H este infinită.
- 2. Se consideră polinomul $f = (X+i)^{10} + (X-i)^{10}$, având forma algebrică $f = a_{10}X^{10} + a_9X^9 + \cdots + a_1X + a_0$, unde $a_0, a_1, \ldots, a_{10} \in \mathbb{C}$.
 - a) Determinați restul împărțirii polinomului f la X?i.
 - **b)** Arătati că toți coeficienții polinomului f sunt numere reale.
 - c) Demonstrați că toate rădăcinile polinomului f sunt numere reale.

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = x^5 5x + 4$.
 - a) Calculați $\lim_{x\to 2} \frac{f(x) f(2)}{x-2}$.
 - **b)** Arătați că graficul funcției f are un punct de inflexiune.
 - c) Arătați că, pentru orice $m \in (0, \infty)$, ecuația f(x) = m are exact trei soluții reale distincte.
- **2.** Se consideră funcția $g: \mathbb{R} \to \mathbb{R}$, $g(x) = e^{-x}$.
 - a) Calculați $\int_0^1 g(x) dx$.
 - **b)** Calculați $\int_0^1 x^5 g(x^3) dx$.
 - c) Demonstrați că șirul $(I_n)_{n\geq 1}$ definit prin $I_n = \int_1^n g(x^3) dx$ este convergent.

Proba E c)

Filiera teoretică, profilul real, specializarea științele naturii.

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale.

SUBIECTUL I

- 1. Într-o progresie aritmetică $(a_n)_{n\geq 1}$ se cunosc $a_2=6$ și $a_3=5$. Calculați a_6 .
- **2.** Determinați soluțiile întregi ale inecuației $2x^2 x 3 \le 0$.
- 3. Rezolvați în mulțimea numerelor reale ecuația $\log_3(x+2) \log_3(x-4) = 1$.
- 4. După o scumpire cu 5%, prețul unui produs crește cu 12 lei. Calculați prețul produsului înainte de scumpire.
- 5. În reperul cartezian xOy se consideră punctele A(1,4) și B(5,0). Determinați ecuația mediatoarei segmentului [AB].
- **6.** Calculați raza cercului circumscris triunghiului ABC, știind că BC = 9 și $m(\triangleleft BAC) = 120^{\circ}$.

SUBIECTUL II

- 1. Se consideră determinantul $D(x,y)=\begin{vmatrix} 1 & 1 & 1 \\ 1 & x & y \\ 1 & x+1 & y+1 \end{vmatrix}$, unde $x,y\in\mathbb{Z}$.
 - a) Calculați D(-1,1).
 - **b)** Determinați $x \in \mathbb{Z}$ pentru care D(x, 2010) = 1.
 - c) Demonstrati că $D(x,y) \cdot D(x,-y) = D(x^2,y^2)$, oricare ar fi $x, y \in \mathbb{Z}$.
- 2. Pe mulțimea numerelor reale se definește legea de compoziție $x \star y = 2xy 6x 6y + 21$.
 - a) Arătați că $x \star y = 2(x-3)(y-3) + 3$, oricare ar fi $x, y \in \mathbb{R}$.
 - b) Arătați că legea "★" este asociativă.
 - c) Calculați $1 \star 2 \star \ldots \star 2011$.

SUBIECTUL III

- 1. Se consideră functia $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 + x^2 + x + 3^x$.
 - a) Calculați f'(0).
 - b) Arătați că funcția f este crescătoare pe \mathbb{R} .
 - c) Arătați că $a^3 + a^2 + a b^3 b^2 b \le 3^b 3^a$, oricare ar fi numerele reale a, b cu $a \le b$.

7

- **2.** Pentru fiecare număr natural nenul n se consideră funcția $f_n:[0,1]\to\mathbb{R}, f_n(x)=x^ne^x$.
 - a) Calculați $\int_0^1 \frac{f_1(x)}{e^x} dx$.
 - **b)** Calculați $\int_0^1 f_1(x) dx$.
 - c) Arătați că $\int_0^1 f_n(x^2) dx \ge \frac{1}{2n+1}$, pentru orice $n \in \mathbb{N}, n \ge 1$.

Proba E c)

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

SUBIECTUL I

- 1. Calculați $\log_2(5+\sqrt{17}) + \log_2(5-\sqrt{17})$.
- 2. Calculați $\frac{P_4 C_4^1}{A_5^1}$.
- 3. Graficul unei funcții de gradul al II-lea este o parabolă care are abscisa vârfului egală cu 2 și intersectează axa Ox în două puncte distincte. Dacă unul dintre acestea are abscisa egală cu 5, atunci determinați abscisa celuilalt punct de intersectie.
- 4. Rezolvați în mulțimea numerelor întregi ecuația $2^{x+3} = \frac{1}{4}$
- 5. Arătați că dreapta determinată de punctele A(1, ?2) și B(?2, 4) este perpendiculară pe dreapta d de ecuație x?2y+3=0.
- 6. Calculati lungimea razei cercului circumscris unui triunghi ABC în care AB = 6 si $m(\triangleleft BCA) = 60^{\circ}$.

SUBIECTUL II

Pe mulțimea \mathbb{R} se definesc legile de compoziție $x \star y = x + y - 1$ și $x \circ y = \frac{1}{2}(xy - x - y + 3)$.

- a) Arătați că legea "* este asociativă.
- b) Determinați elementul neutru al mulțimii \mathbb{R} în raport cu legea " \star ".
- c) Arătați că $x \circ y = \frac{1}{2}(x-1)(y-1) + 1$, pentru orice $x, y \in \mathbb{R}$.
- **d)** Rezolvați în \mathbb{R} ecuația $2^x \circ 3 = 1$.
- e) Rezolvați în mulțimea numerelor reale sistemul $\begin{cases} (x+1) \star y = 3 \\ (2x) \circ (y-1) = xy 1 \end{cases}.$
- **f)** Demonstrați că $(x \star y) \circ z = (x \circ z) \star (y \circ z)$, pentru orice $x, y, z \in \mathbb{R}$.

SUBIECTUL III

Se consideră matricele $A = \begin{pmatrix} 1 & 2 & a \\ 2 & a & 1 \\ a & 1 & 2 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ și sistemul de ecuații liniare

8

- (S) $\begin{cases} x + 2y + az = 6 \\ 2x + ay + z = 6 \\ ax + y + 2z = 6 \end{cases}$, unde a este un parametru real.
 - a) Determinati numărul real a pentru care tripletul (1,1,1) este solutie a sistemului (S).
 - **b)** Arătați că $A^2 (a^2 + 5)I_3 = (3a + 2)B$.
 - c) Determinați numărul real a pentru care suma elementelor matricei A^2 este egală cu 0.
 - d) Arătați că, pentru a = ?3, sistemul (S) este incompatibil.
 - e) Pentru a = 0, rezolvați sistemul (S).
 - \mathbf{f}) Determinați inversa matricei B.