National Textile University, Faisalabad

Department of Computer Science

Name:	Samar Khalid
Class:	BSCS_5B
Registration No:	23-NTU-CS-1091
Assignment:	1 (task a)
Course Name:	Embedded IoT systems
Submitted To:	Sir Nasir Mahmood
Submission Date:	23-10-2025

Assignment 1

Task A

Task Explanation:

This ESP32 code controls three LEDs and an OLED display using two buttons. There are four modes: All OFF, Alternate Blink, All ON, and PWM Fade. Button 1 changes the mode, and Button 2 resets to "All OFF." The OLED shows the current mode. In Alternate Blink, LEDs 1 and 3 blink opposite LED 2; in All ON, all LEDs stay lit and in PWM Fade, all LEDs smoothly fade in and out. The program provides easy control of LED patterns with clear OLED feedback.

Pin Diagram:

Device Name	Device Pin	ESP-32 pin
OLED	vcc	3.3 V
OLED	GND	GND
OLED	SDA	GPIO21
OLED	SCL	GPIO22
LED1	Cathode (Short leg)	GND
LED1	Anode (Long leg)	GPIO14
LED2	Cathode (Short leg)	GND
LED2	Anode (Long leg)	GPIO16
LED3	Cathode (Short leg)	GND
LED3	Anode (Long leg)	GPIO17
Button1	One leg	GND
Button1	Other leg	GPIO25
Button2	One leg	GND
Button2	Other leg	GPIO26

Circuit Diagram:

Code Screenshot:

```
task-a > src > € main.cpp > ♦ onTimer()
  1 //Week3 Assignment_1 Task_a
  2 //Use one button to cycle through LED modes ans use second button to reset to OFF
                                       Reg no:23-NTU-CS-1091
  6 #include <Arduino.h>
  7 #include <Wire.h>
  8 #include <Adafruit_GFX.h>
     #include <Adafruit_SSD1306.h>
 //OLED Setup
 #define SCREEN_WIDTH 128
 #define SCREEN_HEIGHT 64
 14 Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire, -1);
 16 //Define Pin numbers
 17 #define LED1 14
 18 #define LED2 16
 19 #define LED3 17
 20 #define BTN1 25 //Mode button
 21 #define BTN2 26 //Reset button
 23 //PWM Setup
 24 #define PWM_CH1 0
 25 #define PWM CH2 1
 26 #define PWM_CH3 2
 27 #define FREQ 5000
 28 #define RES 8
```

```
hw_timer_t *My_timer = nullptr;
volatile bool toggleState = false;
//Global variable
int mode = 0; // 0=OFF, 1=Alternate Blink, 2=All ON, 3=PWM Fade
bool lastBtn1 = HIGH, lastBtn2 = HIGH;
unsigned long lastDebounce = 0;
const int debounceDelay = 200;
void showMode() {
 display.clearDisplay();
 display.setTextSize(2);
 display.setTextColor(SSD1306_WHITE);
 display.setCursor(10, 20);
 switch (mode) {
   case 0: display.print("All OFF"); break;
    case 1: display.print("Alternate Blink"); break;
case 2: display.print("All ON"); break;
    case 3: display.print("PWM Fade"); break;
  display.display();
void IRAM ATTR onTimer() {
 if (mode != 1) return;
```

```
toggleState = !toggleState;
  ledcWrite(PWM_CH1, toggleState ? 255 : 0);
  ledcWrite(PWM_CH2, toggleState ? 0 : 255);
  ledcWrite(PWM_CH3, toggleState ? 255 : 0);
//Setup
void setup() {
  Serial.begin(115200);
  pinMode(LED1, OUTPUT);
  pinMode(LED2, OUTPUT);
  pinMode(LED3, OUTPUT);
  pinMode(BTN1, INPUT_PULLUP);
  pinMode(BTN2, INPUT_PULLUP);
  //OLED setup
  if (!display.begin(SSD1306_SWITCHCAPVCC, 0x3C)) {
    Serial.println(F("SSD1306 allocation failed"));
    for (;;);
  display.clearDisplay();
  display.display();
```

```
ledcSetup(PWM_CH1, FREQ, RES);
  ledcSetup(PWM_CH2, FREQ, RES);
  ledcSetup(PWM_CH3, FREQ, RES);
  ledcAttachPin(LED1, PWM_CH1);
  ledcAttachPin(LED2, PWM_CH2);
  ledcAttachPin(LED3, PWM_CH3);
 My_timer = timerBegin(0, 80, true);
  timerAttachInterrupt(My_timer, &onTimer, true);
 timerAlarmWrite(My_timer, 500000, true);
 timerAlarmEnable(My_timer);
  ledcWrite(PWM_CH1, 0);
 ledcWrite(PWM_CH2, 0);
 ledcWrite(PWM_CH3, 0);
 showMode();
void loop() {
bool btn1 = digitalRead(BTN1);
 bool btn2 = digitalRead(BTN2);
```

```
if (millis() - lastDebounce > debounceDelay) {
 if (btn1 == LOW && lastBtn1 == HIGH) {
   mode = (mode + 1) \% 4;
   showMode();
   lastDebounce = millis();
  if (btn2 == LOW && lastBtn2 == HIGH) {
   mode = 0;
    showMode();
    lastDebounce = millis();
lastBtn1 = btn1;
lastBtn2 = btn2;
switch (mode) {
 case 0: // All OFF
   ledcWrite(PWM_CH1, 0);
   ledcWrite(PWM_CH2, 0);
   ledcWrite(PWM_CH3, 0);
   break;
  case 1: //Alternate Blink (handled by timer)
    //nothing in loop
    break;
```

```
case 1: //Alternate Blink (handled by timer)
  //nothing in loop
  break;
case 2: // All ON
  ledcWrite(PWM_CH1, 255);
  ledcWrite(PWM_CH2, 255);
  ledcWrite(PWM_CH3, 255);
  break;
case 3: //PWM Fade (all together)
  for (int d = 0; d <= 255 && mode == 3; d++) {
   ledcWrite(PWM_CH1, d);
    ledcWrite(PWM_CH2, d);
    ledcWrite(PWM_CH3, d);
    delay(10);
   if (digitalRead(BTN1) == LOW || digitalRead(BTN2) == LOW) return;
  for (int d = 255; d >= 0 && mode == 3; d--) {
    ledcWrite(PWM_CH1, d);
    ledcWrite(PWM_CH2, d);
    ledcWrite(PWM_CH3, d);
   delay(10);
    if (digitalRead(BTN1) == LOW || digitalRead(BTN2) == LOW) return;
  break;
```

VS code Build success:

```
Ф
                                                                    task-a > src > & main.cpp > & onTimer()

14 Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire, -1);
        V UNTITLED (WORKSPACE)
                                                                              #define LED2 16
            > week4_lecture2
                                                                              #define BTN1 25  //Mode button
#define BTN2 26  //Reset buttor
            > week4_lecture3
            > week5_lecture2
            > week6 hometask
                                                                              //PWM Setup
#define PWM_CH1 0
            > week6 lecture1
            > week6 lecture2
                                                                             #define PWM_CH3 2
#define FREQ 5000
 ₫
                                                                              #define RES 8
                                                                              volatile bool toggleState = false;
                                                                                                                                                                            oxed{oldsymbol{oxed}} PlatformIO: Build (task-a) - Task \checkmark + \checkmark oxed{oxed{oxed{oxed}} \cdots \overline{oxed{oxed}} \times
                                                                     Flash: [== ] 23.7% (used 310793 bytes from 1310720 bytes)
Building .pio\build\nodemcu-32s\firmware.bin
                                                                     esptool.py v4.9.0
Creating esp32 image...
Merged 2 ELF sections
Successfully created esp32 image.
                                                                                                                       ======== [SUCCESS] Took 6.15 seconds :
        > OUTLINE
                                                                      * Terminal will be reused by tasks, press any key to close it.
        > TIMELINE
                                                                      ☑ ☑ Default (task-a) Ö Auto
```

Upload on ESP-32 success:

Wokwi Link:

https://wokwi.com/projects/445509046222119937

Output on kit:

Button 1 Functionalities:

Alternate Blink:

All LEDS ON:

PWM Fade:

Full Glow:

FADE:

All OFF:

Button 2:
On pressing button 2, all LEDS reset to OFF.

Output on Wokwi:

Alternate Blink:

All LEDS ON:

PWM Fade:

All OFF:

Handwritten code:

	Hardwritten code	
	# include < Auxduino.h>	
	# include < Wire.h>	-
	# include < Adafquit_GFX.h>	
	# include < Adafruit _ SSD1306.h >	-
	// OLED Setup	1
	# define SCREEN-WIDTH 128	-
	# define SCREEN-HEIGHT 64	-
	Adaproit_SSD1306 display (SCREEN WIDTH)	-
	SCREEN_HEIGHT, & WISE, -1);	
	·	
	11 Define Pin numbers	1
	# define LED1 14	
	# define LED 2 16	-
	# define LED3.17	_
	# define BTN1 25 /1 Mode button	
$-\parallel$	# define BTN2 26 // Reset butlon	
	11 PWM Setup	
	# define PMM_CHI O	
- 11	# define PWM_CH2 1	
$\perp \parallel$	# define PWM_CH3 2	
	# define FREQ 5000	
11	# define RES 8	

1/ Time8	
hw_timex_t "My_timex = nullptx;	
volatile bool togglestate = false;	
11 Global Variable	
int mode = 0 // O=OFF, 1= Alternate BIII	nk_
1/ 2= All ON , 3 = PWM F	ade
bool last Btn1 = HIGH, last Btn2 = HIG	
unsigned long lastDebance = 0;	
const int debource Delay = 200;	
11 Display Helper	
void showmode () {	
display clear Display ();	•
display. Set Text Size (2);	_
display. Set Text Colox (SSD1306-WHITE);	
display. Set Cuxsor (10, 20);	_
Switch (mode) {	
case 0: display-print ("All OFF"); break;	
(ase 1: display. print ("Alternate Blink")	; k
case a: display point ("All ON"); borg	k ;-
case 3: display : print ("PWM Fade");	bYe
3	
display. display ();	
3.	
	1

```
11 Timer ISR
void IRAM ATTR ONTIMES () {
  if (model=1) return;
    toggle state = 1-toggle state;
  led c. Wire (PWM - CH1, toggle State ? 255:0);
   ledc wife (PNM_CH2, toggle State ? 0:255);
   lede Wife (PNM_CH3, toggle state ? 255:0);
// Setup
void setup () {
  Serial begin (115200);
  PinMade (LEDI, OUTPUT);
  PinMode (LED2, OUTPUT);
  pin Made ( [ED3, OUTPUT);
  pin Mode (BTN 1, INPUT_PULLUP);
  PINMODE (BIN 2, IN PUT PULLUP);
1/ OLED Setup
if (Idisplay, begin (SSD 1306-SWITCHAPVCC, DX3C)) {
    Serial println (F ("SSD1306 allocation failed"));
    for (;;);
display . clear Display ();
display display ():
```

```
11 Debounce Logic
if (millis () - last Debource > de bource Delay) &
  if (btn1 == LOW && last Btn1 == HIGH) {
     mode = (modet1) %4;
     ShowMode ();
     last Debounce = millis ();
 if (btn 2 == LOW && last Btn 2 == HIGH) {
     ShowMode ();
     last Debounce = millis();
 last-Btn 1 = btn 1;
 last Btn 2 = btn 2;
11 Mode Logic
switch (mode) {
  case 0: // All OFF
     lede Write (PWM_CH1,0);
     lede Write (PWM_(H 2,0);
     lede write ( PWM_CH3,0);
    break;
  case 1 . // Alkinate Blink (handled by
                               timer)
    // nothing in losp
    break.
```

		117
	(ase 2: // All ON CH2 5251);	
-	lede Write (pwm (H2)255);	1/3
	1. / //////	
	lede Write (provide ciny)	-
	break;	
*	case 3: 1/ PWM Fade (all together)	
	(a)e 3: $1/PNNIFADE (acc acc acc acc acc acc acc acc acc ac$	2==3;
-	ledc Write (PWM-(H1)d);	-
	lede Noite (PWM-CH2)	
	lede Write (PMM - CH3)	· · · · ·
	delay(10);	
	if (digitallead (BTN1) == LON 1/	
	digital Read (BTNZ) == LOW) Yetusn	,
-	for (int d=255; d>=0 4& male=3;d)5
	lede Write (PWM-CH1,d);	
	ledc Write (PWM-(H2,d);	
	lede Write (PMM-CH3);	
	delay (10)3	
	if (digital lead (BTN1) == LOW !	
	digital Read (BTN 2) == LOW) Yetvon.	
	la Ya-1	
	break;	
	}	
Alba.		-
CS		