LITERATURE SURVEY

S.NO	TITLE	YEAR	TECHNIQUE USED	ADVANTAGES	DRAWBACKS
1.	Automated Irrigation System Using a wireless Sensor Network and GPRS Module.	2014	WSUs and a WIU, based on micro controller, ZigBee, and GPRS technologies.	Feasible and cost effective for optimizing water resources for agricultural production.	The investment in electric power supply is expensive.
2.	Real - Time Automation and Monitoring System for Modernized Agriculture	2013	Bus concept, ZigBee protocols based on IEEE802.15.4, Hybrid network.	Monitoring and control of greenhouse parameter in precision agriculture.	Not energy saving and data fusion, directions are left for future research.
3.	Smart Drip Irrigation System using Raspberry pi and Arduino.	2015	Raspberry pi, arduino microcontrollers, xbee modules.	Automates and regulates the watering without any manual intervention. Sending the emails to the system.	Failure of any particular part or device is not informed and has to be tested manually.
4.	Multidisciplinary Model for Smart Agriculture using Internet-of-Things (IoT), Sensors, Cloud-Computing, Mobile-Computing & Big-Data Analysis	2015	(IoT), Sensors, Cloud- Computing, Mobile Computing, Big- Data analysis.	Beneficial for increase in agricultural production and for cost control of Agro- products.	Different soil nutrient sensors are not used.

5.	A Model for Smart Agriculture Using IOT.	2016	ZigBee with Wings.	A complete real- time and historical environment information, efficient management and utilization of resources.	The technique can achieve convenient wireless connection only within a short-distance.
6.	Automatic Control of Agricultural Pumps Based on Soil Moisture Sensing.	2015	For testing NI MULTISM simulation software is used.DIAC and TRIAC technique.	Achieves proper water management, saves human power and enhances crop or Productivity.	Does not support several water levels and uses old techniques.