Università degli Studi di Verona

Sistemi ad eventi discreti

RIASSUNTO DEI PRINCIPALI ARGOMENTI

Giorgia Gulino, Davide Bianchi

Contents

1	Mac	echine a stati	2	
	1.1	Output-Determinismo	2	
	1.2	Non-Determinismo	2	
	1.3	Equivalenze	2	
	1.4	Bisimulazione	2	
	1.5	Rel. RAFFINAMENTO/SIMULAZIONE AFSND \rightarrow AFSD	2	
	1.6	Rel. RAFFINAMENTO/SIMULAZIONE AFSND \rightarrow AFSpseudo-nondet .	3	
	1.7	Rel. RAFFINAMENTO/SIMULAZIONE AFSND \rightarrow AFSND	3	
	1.8	Simulazione per Det $\to M_1$ da M_2	3	
	1.9	Simulazione per Output-Det	3	
	1.10	Simulazione	3	
	1.11	Bisimulazione per Det	3	
2	Linguaggi 4			
	2.1	Introduzione	4	
	2.2	Automi	4	
		2.2.1 Composizione di automi	5	
	2.3	Controllabilità e osservabilità di un linguaggio	6	
	2.4	Proprietà di Controllabilità	6	
	2.5	Riguardo il sottolinguaggio supremo	7	
	2.6	Riguardo il sovralinguaggio infimo		

1 Macchine a stati

Definizione 1.0.1 (Macchina a stati deterministica) Una macchina a stati è deterministica se valgono:

- esiste un solo uno stato iniziale;
- per ogni stato e per ogni input esiste solo un stato successivo;

Inoltre se M_2 è deterministica allora M_1 è **simulata** da M_2 sse è **equivalente** a M_2 .

1.1 Output-Determinismo

Definizione 1.1.1 Una macchina a stati è **output-deterministica** se esiste un solo stato iniziale e per ogni stato e ogni coppia di I/O c'è un solo stato successivo. Se M_2 è **output-deterministica** allora M_2 simula M_1 .

determinismo ⇒ output-determinismo, non vale il viceversa.

1.2 Non-Determinismo

In una macchina a stati non deterministica può esistere più di uno stato iniziale e per ogni stato e ogni coppia di I/O può esistere più di uno stato successivo. Se M_2 è non deterministica, M_1 è **simulata** da M_2 allora M_1 **raffina** M_2 , ma non viceversa.

Una macchina a stati è progressiva quando l'evoluzione è definita per ogni ingresso, cioè la funzione è definita come

$$States \times Inputs \Rightarrow \mathcal{P}(States \times Outputs) \setminus \emptyset$$

dove \mathcal{P} rappresenta l'insieme potenza e l'insieme vuoto impone che sia progressiva.

1.3 Equivalenze

Data una macchina a stati X:

- se X è deterministica: $input[M_1] = input[M_2]$; $output[M_1] = output[M_2]$.
- se X è non deterministica: $Behaviour[M_1] = Behaviour[M_2]$.
- $\bullet\,$ se due macchine a stati M_1 e M_2 sono bisimili, allora sono equivalenti.

Definizione 1.3.1 (Raffinamento) M_1 raffina $M_2 \Leftrightarrow \Big(Inputs[M_1] = Inputs[M_2] \land Outputs[M_1] = Outputs[M_2] \land Behaviour[M_1] \subseteq Behaviour[M_2]\Big).$

1.4 Bisimulazione

Bisimulazione tra M_1 e M_2 sse l'unione delle **simulazioni** è simmetrica e c'è **isomorfismo** tra minimize(M_1) e minimize(M_2).

1.5 Rel. RAFFINAMENTO/SIMULAZIONE AFSND \rightarrow AFSD

Se M_1 è det, M_1 è **simulata** da M_2 sse M_1 è equivalente a M_2 , cioè se M_1 raffina M_2 e viceversa.

1.6 Rel. RAFFINAMENTO/SIMULAZIONE AFSND \rightarrow AFSpseudonondet

Se M_2 è psuedo-non det, M_1 è **simulata** da M_2 sse M_1 è equivalente a M_2 , cioè se M_1 raffina M_2 .

1.7 Rel. RAFFINAMENTO/SIMULAZIONE AFSND \rightarrow AFSND

Se M_2 non è deterministica, M_1 è **simulata** da M_2 implica M_1 **raffina** M_2 , ma M_1 raffina M_2 non implica M_1 **simula** M_2 .

1.8 Simulazione per $\text{Det} \to M_1 \text{ da } M_2$

- $\forall p \in PossibiliInitialState[M_1], \exists q \in PossibiliInitialState[M_2], (p,q) \in S.$
- $\forall p \in Stati[M_1], \forall q \in Stati[M_2].$
 - if (p,q) ∈ $S \Rightarrow \forall x \in Input, \forall y \in Output, \forall p_1 \in Stati[M_1];$
 - if (p1,y) ∈ PossibiliUpdates $[M_1](p,x) \Rightarrow \exists q1 \in Stati[M_1], (q1,y) \in PossibiliUpdates<math>[M_2](q,x)$ e $(p1,q1) \in S$. (S contiene coppie di stati iniziali e coppie consultanti l'algoritmo).
 - ∀ p ∈ Stati[M_1] ∃ q ∈ Stati[M_2] per cui ∀ I/O possibili c'è corrispondenza tra I/O uguali di p e (p,q) ∈ S.

1.9 Simulazione per Output-Det

Data M ASFND trova la macchina output-det det(M) equivalente a M. SUBSET CONSTRUCTION

- InitialState[det(M)] = PossibileInitialState[M]
- States[det(M)]=InitialState[det(M)]
- Ripeti finché nuove transizioni possono essere aggiunte a det(M). Scegli
 - $P \in States[det(M)] e(x,y) \in Input x Output$
 - $-Q = q \in States[M]$ ∃ p ∈ P, (q,y) ∈ PossibleUpdates[M](p,x) Se Q ≠ 0 allora States[det(M)]= States[det(M)] ∪ Q Update[det(M)](p,x)=(q,y)

Raggruppa tutti gli stati iniziali, \forall coppia I/O raggruppa tutti gli stati per cui quest'ultima è Possibleupdate.

1.10 Simulatione

- Se $p \in PossibleInitialState[M_1]$ e $PossibleInitialState[m_2] = q \Rightarrow (p,q) \in S$.
- Se $(p,q) \in S$ e $(p_1,y) \in PossibleUpdates[M_1](p,x)$ e $PossibleUpdates[M_2](q,x) = q$.

1.11 Bisimulazione per Det

Una relazione binaria B è una bisimulazione sse:

- InitialState[M_1], InitialState[M_2] \in B
- $\forall p \in \text{Stati}[M_1], \forall q \in \text{Stati}[M_2]$:

- if $(p,q) \in B \Rightarrow \forall x \in Input[M_1]$, $Output[M_1](p,x) = Output[M_2](q,x)$ (nextState[M_1](p,x),nextState[M_2](q,x)) ∈ B. Stati iniziali di M_1 e M_2 sono in relazione e ogni coppia (p,q) relazionati, \forall input producono lo stesso output e nextState Relazionati.

2 Linguaggi

2.1 Introduzione

Definizione 2.1.1 (Linguaggio) Dato un insieme di simboli E, un traccia (ovvero una sequenza finita di simboli di E), definiamo linguaggio un qualsiasi sottoinsieme $L \subseteq E^*$.

Definiamo inoltre l'insieme dei prefissi di un linguaggio come l'insieme

$$\overline{L} := \{ s \in E^* : (\exists t \in E^*) s t \in L \}$$

2.2 Automi

In parole povere, un automa è una struttura matematica che genera un determinato linguaggio.

Definizione 2.2.1 (Automa) Un automa è un tupla di sei elementi

$$G = (X, E, f, \Gamma, x_0, X_m)$$

dove:

- X è l'insieme degli stati;
- E è l'insieme di eventi associati alle transizioni in G;
- $f: X \times E \to X$ è la **funzione di transizione**; dicendo che f(x, e) = y si sta dicendo che esiste una transizione etichettata con e che porta dallo stato x allo stato y;
- $\Gamma: X \to 2^E$ è la **funzione degli eventi attivi**; $\Gamma(x)$ indica l'insieme degli eventi per i quali f(x,e) è definita;
- x_0 è lo stato iniziale;
- $X_m \subseteq X$ è l'insieme degli **stati marcati**.

Definizione 2.2.2 (Linguaggio generato) Il linguaggio generato da un automa è definito come:

$$L(G) = \{ s \in E^* : f(x_0, s) \text{ è definita} \}$$

Definizione 2.2.3 (Linguaggio marcato) Il linguaggio marcato da un automa è definito come:

$$L_m(G) = \{ s \in L(G) : f(x_0, s) \in X_m \}$$

Definizione 2.2.4 (Equivalenza tra automi) Due automi G_1 e G_2 si dicono equivalenti se vale che

$$L(G_1) = L(G_2) \wedge L_m(G_1) = L_m(G_2)$$

2.2.1 Composizione di automi

Proiezioni naturali. Le proiezioni naturali sono funzioni del tipo

$$P_i: (E_1 \cup E_2)^* \to E_i^*$$

definite come

$$P_i(\epsilon) = \epsilon$$

$$P_i(\sigma) = \begin{cases} \sigma & \text{se } \sigma \in E_i \\ \epsilon & \text{se } \sigma \notin E_i \end{cases}$$

$$P_i(s\sigma) = P_i(s)P_i(\sigma) \text{ per } s \in (E_1 \cup E_2)^*, \sigma \in E_1 \cup E_2$$

Delle proiezioni naturali esistono anche le inverse: come le proiezioni sono estese ai linguaggi come

$$P_i(L) = \{t \in E_i^* : \exists s \in L(P_i(s) = t)\} \text{ con } L \subseteq (E_1 \cup E_2)^*$$

anche le proiezioni inverse sono estese come

$$P_i^{-1}(L_i) = \{ s \in (E_1 \cup E_2)^* : \exists t \in L_i(P_i(s) = t) \}$$

per $L_i \subseteq E_i^*$.

Prodotto di automi. Il prodotto di due automi $G_1 = (X_1, E_1, f_1, \Gamma_1, x_{01}, X_{m1})$ e $G_2 = (X_2, E_2, f_2, \Gamma_2, x_{02}, X_{m2})$ è l'automa risultato

$$G_1 \times G_2 = (X_1 \times X_2, E_1 \cap E_2, f, \Gamma_{1 \times 2}, (x_{01}, x_{02}), X_{m1} \times X_{m2})$$

dove

$$f((x_1, x_2), \sigma) = \begin{cases} (f(x_1, \sigma), f_2(x_2, \sigma)) & \text{se } \sigma \in \Gamma_1(x_1) \cap \Gamma_2(x_2) \\ \text{indefinita} & \text{altrimenti} \end{cases}$$
$$\Gamma_{1 \times 2}(x_1, x_2) = \Gamma_1(x_1) \cap \Gamma_2(x_2)$$

Le proprietà di questa composizione sono le seguenti:

- 1. $L(G_1 \times G_2) = L(G_1) \cap L(G_2)$
- 2. $L_m(G_1 \times G_2) = L_m(G_1) \cap L_m(G_2)$

Composizione parallela di automi. La composizione parallela di due automi $G_1 = (X_1, E_1, f_1, \Gamma_1, x_{01}, X_{m1})$ e $G_2 = (X_2, E_2, f_2, \Gamma_2, x_{02}, X_{m2})$ è l'automa risultato

$$G_1||G_2 = (X_1 \times X_2, E_1 \cup E_2, f, \Gamma_{1||2}, (x_{01}, x_{02}), X_{m1} \times X_{m2})$$

dove

$$f((x_1, x_2), \sigma) = \begin{cases} (f_1(x_1, \sigma), f_2(x_2, \sigma)) & \text{se } \sigma \in \Gamma_1(x_1) \cap \Gamma_2(x_2) \\ (f_1(x_1, \sigma), x_2) & \text{se } \sigma \in \Gamma_1(x_1) \setminus E_2 \\ (x_1, f(x_2, \sigma)) & \text{se } \sigma \in \Gamma_2(x_2) \setminus E_1 \\ & \text{indefinita} & \text{altrimenti} \end{cases}$$

La proiezione parallela gode delle seguenti proprietà:

1.
$$L(G_1||G_2) = P_1^{-1}[L(G_1)] \cap P_2^{-1}[L(G_2)]$$

2.
$$L_m(G_1||G_2) = P_1^{-1} [L_m(G_1)] \cap P_2^{-1} [L_m(G_2)]$$

3.
$$G_1||G_2 = G_2||G_1|$$

2.3 Controllabilità e osservabilità di un linguaggio

Diamo la definizione formale di controllabilità, poi passeremo ad una descrizione più semplice.

Definizione 2.3.1 (Controllabilità) Siano K e $M = \overline{M}$ linguaggi dell'alfabeto di eventi E, con $E_{uc} \subseteq E$. Si dice che K è controllabile rispetto a M e E_{uc} se per tutte le stringhe $s \in \overline{K}$ e per tutti gli eventi $\sigma \in E_{uc}$ vale

$$s\sigma \in M \Rightarrow s\sigma \in \overline{K}^1$$

La concezione di controllabilità si rende necessaria in quanto un evento incontrollabile può portare ad un crash o ad un fallimento del sistema.

Supponiamo che $E = E_c \cup E_{uc}$ dove:

- E_c è l'insieme di eventi controllabili;
- E_{uc} è l'insieme di eventi non controllabili.

Supponiamo inoltre che la funzione di transizione di un automa G possa essere controllata da un agente esterno, che abbia la capacità di disabilitare gli eventi incontrollabili.

Definizione 2.3.2 (Osservabilità) Si considerino i linguaggi K e $M = \overline{M}$ definiti sull'alfabeto di eventi E, con $E_c \subseteq E$, $E_o \subseteq E$ e P la proiezione naturale da $E^* \Rightarrow E_0^*$. Si dice che K è osservabile rispetto a M, E_o , E_c se per tutte le stringhe $s \in \overline{K}$ e per tutti gli eventi $\sigma \in E_c$ abbiamo:

$$(s\sigma \notin K) \land (s\sigma \in M) \Rightarrow P^{-1}[P(s)] \sigma \cap \overline{K} = \emptyset$$

L'insieme di stringhe denotato dal termine $P^{-1}[P(s)]$ $\sigma \cap \overline{K}$ contiene tutte le stringhe che hanno la medesima proiezione di s e possono essere prolungate in K con il simbolo σ . SE tale insieme non è vuoto, allora K contiene due stringhe s e s' tali che P(s)=P(s') per cui $s\sigma \notin \overline{K}$ e s' $\sigma \in \overline{K}$. Tali due stringhe richiederebbero un'azione di controllo diversa rispetto a σ (disabilitare σ nel caso di s, abilitare σ nel caso di s'), ma un supervisore non saprebbe distinguere tra s e s' per l'osservabilità ristretta. Non potrebbe quindi esistere un supervisore che ottiene esattamente il linguaggio \overline{K} .

2.4 Proprietà di Controllabilità

Esistono due tipi di linguaggi derivati da K:

- $K^{\uparrow C}$ il il sottolinguaggio supremo di K
- $K^{\downarrow C}$ il il sovralinguaggio controllabile infimo di K

Abbiamo i seguenti rapporti:

$$\emptyset \subset \mathcal{K}^{\uparrow\mathcal{C}} \subset \mathcal{K} \subset \overline{K} \subset \mathcal{K}^{\downarrow\mathcal{C}} \subset \mathcal{M}$$

- Se K_1 e K_2 sono controllabili, allora $K_1 \cup K_2$ è controllabile.
- Se K_1 e K_2 sono controllabili, allora $K_1 \cap K_2$ non ha bisogno di essere controllabile.

¹Equivalente a $\overline{K}E_{uc} \cap M \subseteq \overline{K}$.

- Se K_1 e K_2 sono non in conflitto ed entrambi controllabili, allora $K_1 \cap K_2$ è controllabile. Si ricorda che K_1 e K_2 si dicono non in conflitto qualora $\overline{K_1} \cap \overline{K_2} = \overline{K_1 \cap K_2}$
- Se K_1 e K_2 sono prefisso-chiuso e controllabili, allora $K_1 \cap K_2$ è prefisso-chiuso e controllabile.

Definiamo due classi di linguaggi:

2.5 Riguardo il sottolinguaggio supremo

- $C_{\text{in}}(K)$ è un insieme parzialmente ordinato (o poset) che è chiuso sotto unioni arbitrarie.
- $C_{\rm in}(K)$ possiede un unico elemento supremo. Definito come:

$$K^{\uparrow C} := \bigcup_{L \in C_{\mathrm{in}}(K)} L$$

che è un elemento ben-definito di $C_{\rm in}(K)$.

- \bullet K $^{\uparrow \mathrm{C}}$ è chiamato sottolinguaggio supremo controllabile di K.
 - Nel caso peggiore, $K^{\uparrow C} = \emptyset$, dal momento che $\emptyset \in C_{in}(K)$
 - Se K è controllabile, allora $K^{\uparrow C} = K$
 - -Osserviamo che $\mathrm{K}^{\uparrow\mathrm{C}}$ non necessita di essere prefisso-chiuso in generale

2.6 Riguardo il sovralinguaggio infimo

- $CC_{\text{out}}(K)$ è un(poset) che è chiuso sotto intersezioni arbitrarie (e unioni).
- $CC_{\text{out}}(K)$ possiede un unico elemento *infimo*. Definito come:

$$K^{\downarrow C} := \bigcap_{L \in CC_{\operatorname{out}}(K)} L$$

che è un elemento ben-definito di $CC_{\text{out}}(K)$.

- ullet Chiamiamo $K^{\downarrow C}$ il sovralinguaggio infimo a prefisso-chiuso e controllabile di K.
 - Nel caso peggiore, $K^{\downarrow C} = M$, dal momento che $M \in CC_{out}(K)$.
 - Se K è controllabile, allora $K^{\downarrow C} = \overline{K}$.