

Universidad de Buenos Aires

FACULTAD DE INGENIERÍA

2DO CUATRIMESTRE DE 2023

Análisis Numérico

Ecuaciones Diferenciales Ordinarias

Curso:

Sassano

Integrantes:

integrante 1 mail padrón

integrante 2 mail padrón

integrante 3 mail padrón

integrante 4 mail padrón

Lenguaje Elegido: lenguaje

1. Enunciado

1. Resolución de EDOs

Los modelos depredador-presa se desarrollaron de manera independiente en la primera parte del siglo XX, gracias al trabajo del matemático italiano Vito Volterra y del biólogo estadounidense Alfred Lotka. Estas ecuaciones se conocen como las ecuaciones de LotkaVolterra.

El ejemplo más simple es el sistema:

$$\frac{\delta x}{\delta t} = ax - bxy \tag{1}$$

$$\frac{\delta y}{\delta t} = dxy - cy \tag{2}$$

Dónde:

x número de presas.

y número de depredadores.

a es la razón de crecimiento de las presas.

c es la razón de muerte del depredador.

b y d es la razón que caracteriza el efecto de interacción presa-depredador sobre la muerte de presas y el crecimiento del depredador respectivamente.

Los términos que se multiplican (es decir los que involucran) hacen que las ecuaciones sean no lineales.

Utilice los siguientes valores de los parámetros para la simulación depredador - presa:

- a = 1.2
- b = 0.6
- c = 0.8
- d = 0.3

Emplee como condiciones iniciales en t = 0, x(0) = 2 e y(0) = 1

(a) Realice la discretización a través del método de Runge-Kutta de orden dos(en cuaderno), dejar planteada la respuesta en función de las condiciones iniciales y el paso a definir.

Resolver dos avances con un paso de 0.1.

(b) Realice una simulación a través del método de Runge-Kutta de orden cuatro (en computadora) con paso 0.1, para obtener las soluciones.

Se pide obtener la solución desde t = 0 hasta t = 30.

(c) Grafique las soluciones obtenidas con un graficador deberá obtener un gráfico similar al siguiente:

Referencias

- [1] Cheney, W.; Kincaid, D. Numerical Mathematics and Computing. 6ta ed. EE.UU.: Thomson Brooks/Cole, 2008.
- [2] Burden, R. L.; Faires, J.D. Análisis Numéirco. 2da ed. México: Iberoamérica, 1996.