CS641

Modern Cryptology Indian Institute of Technology, Kanpur

Group Name: Enciphered Anindya Ganguly (21111261), Gargi Sarkar, Utkarsh Srivastva

End Semester Examination

Submission Deadline: May 5, 2022, 11:55hrs

Solution 1

Lattice

• Method: 1

Idea: Since \hat{L} is a non singular, so it has a n basis element each of them has length n. So, in hand we have basis. Also note that \hat{L} is matrix having coefficient from $\mathbb{Q} \subset \mathbb{R}$. Apply GSO to get an orthogonal basis. This completes the proof. Here we use l_2 norm.

We know that $\hat{L} = U \cdot L \cdot R$. In addition we also have $R \cdot R^T = 1$, and L = nI. So

$$\det(\hat{L}) = \det(U) \cdot \det(L) \cdot \det(R) = 1 \cdot (n.1) \cdot \pm 1 = \pm n$$

Since n is nonzero, thus \hat{L} is a $n \times n$ non-singular matrix. Suppose $\{a_1, a_2, \cdots, a_n\}$ is the basis of the corresponding matrix. Now we use the Gram Schmidt Orthogonalization (GSO) mechanism to construct an orthogonal basis[1]. Suppose $\{v_1, v_2, \cdots, v_n\}$ denotes the orthogonal basis computed via GSO.

Here we are explaining the GSO.

$$v_1 = a_1$$

$$v_2 = a_2 - \frac{\langle a_2, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1$$

$$v_3 = a_3 - \frac{\langle a_3, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 - \frac{\langle a_3, v_2 \rangle}{\langle v_2, v_2 \rangle} v_2$$

:
$$v_n = a_n - \frac{\langle a_n, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 - \dots - \frac{\langle a_n, v_{n-1} \rangle}{\langle v_{n-1}, v_{n-1} \rangle} v_n$$

Each v_i has length n, since a_i has length n. Thus \hat{L} has a basis consisting of n orthogonal vectors, each of length n.

• Method: 2

Statement: Two bases $B_1, B_2 \in \mathbb{R}^{m \times n}$ are equivalent if and only if $B_2 = B_1 U$ for some unimodular matrix U.

Proof: First assume that $\mathcal{L}(B_1) = \mathcal{L}(B_2)$. Then for each of the n columns b_i of B_2 , $b_i \in \mathcal{L}(B_1)$. This implies that there exists an integer matrix $U \in \mathbb{Z}^{nn}$ for which $B_2 = B_1U$. Similarly, there exists a $V \in \mathbb{Z}^{n \times n}$ such that $B_1 = B_2V$. Hence $B_2 = B_1U = B_2VU$, and we get $B_2^TB_2 = (VU)^TB_2^TB_2(VU)$. Taking determinants, we obtain that $\det(B_2^TB_2) = (\det(VU))^2 \det(B_2^TB_2)$ and hence $\det(V) \det(U) = \pm 1$. Since V, U are both integer matrices, this means that $\det(U) = \pm 1$, as required. For the other direction, assume that $B_2 = B_1U$ for some unimodular matrix U. Therefore each column of B_2 is contained in $\mathcal{L}(B_1)$ and we get $\mathcal{L}(B_2) \subseteq \mathcal{L}(B_1)$. In addition, $B_1 = B_2U^{-1}$, and since U^{-1} is unimodular we similarly get that $\mathcal{L}(B_1) \subseteq \mathcal{L}(B_2)$. We conclude that $\mathcal{L}(B_1) = \mathcal{L}(B_2)$ as required. (Proof is available in Oded Regev's class notes.)

Now we apply it. Since L and R^T are already orthogonal matrix, so it has an orthogonal basis, that is $L \cdot R^T$ has an orthogonal basis. Marked this product matrix as L_1 . Thus $\hat{L} = U \cdot L_1$, where $U \in \mathbb{Z}^{n \times n}$ is an unitary matrix, that is, $\det U = 1$. Thus we have $\hat{L} = U \cdot L_1$. Now apply above theorem here. This says that \hat{L} and L_1 has same basis, as L_1 has an orthogonal basis of length n so \hat{L} has also an orthogonal basis of length n.

GP 261 2

Decryption

Goal is to establish the relation $m = \hat{d} \cdot R^T$

- 1. Given that ciphertext $c = v \cdot \hat{L} + m$
- 2. In decryption part receiver computes $d = c \cdot R^T$.
- 3. Now mathematically simplify above equation.

$$d = (v\hat{L} + m) \cdot R^{T}$$
$$= v \cdot \hat{L} \cdot R^{T} + mR^{T}$$

- 4. From key generation phase we know that $\hat{L} = U \cdot L \cdot R$
- 5. In addition we also have $R \cdot R^T = 1$, and L = nI
- 6. We deploy these knowledge,

$$d = v \cdot (U \cdot L \cdot R) \cdot R^{T} + mR^{T}$$
$$= v \cdot U \cdot n(I * I) + mR^{T}$$
$$= nvU + mR^{T}$$

7. Reduce every entry of d modulo n so that the entry becomes < n/2 in absolute value. Let the resulting vector be \hat{d} .

$$\hat{d} = (nvU + mR^T) \mod n$$
$$= mR^T$$

- 8. Compute $\hat{d} \cdot R = mR^T \cdot R = m$
- $9.\,$ Hence this establishes the correctness of the decryption algorithm

Cryptosystem Security

• **Part:** 1 Encryption scheme tells us that $c = v\hat{L} + m$. Now assuming that we have an orthogonal basis $\{e_i\}_{i=1}^n$ of lattice generated by \hat{L} this tells us that

$$< c, e_i > = < v\hat{L} + m, e_i >, \forall i \in \{1, 2...n\}$$

where \langle , \rangle is the Euclidean inner product l_2 in \mathbb{R}^n

$$\Rightarrow \langle c, e_i \rangle = \langle v\hat{L}, e_i \rangle + \langle m, e_i \rangle \text{ due to the linearity of ip}$$

$$\Rightarrow c_i = v_i + \langle m, e_i \rangle, \forall i \in \{1, 2...n\} \text{ where } c_i = \langle c, e_i \rangle, v_i = \langle v\hat{L}, e_i \rangle$$

as $\{e_i\}_{i=1}^n$ is a orthogonal basis of lattice \hat{L} and as $v\hat{L}$ is an element in the lattice, hence

$$v\hat{L} = \sum_{i=1}^{n} v_i e_i$$

as $\{e_i\}_{i=1}^n$ is known, we can represent $v\hat{L}$ in term of $m=(m_1,m_2...m_n)$ and thus obtained a system of n linear equations in $m=(m_1,m_2...m_n)$. This trick can be handled by Gaussian Elimination in polynomial time. Now, we came to retrieve m, one should know $v\hat{L}$ or in other words we have to know v but to $v\hat{L}$ we basically need to know its reciprocal in an orthogonal basis of \hat{L} .

So the problem reduces to finding an orthogonal basis of lattice generated by \hat{L} . Finding an orthogonal basis essentially involves solving a no linear system of equation with integral solution, which is a Hard Problem.

• Part: 2 Here we are putting some important observations. These help us to break the cryptosystem.

 \mathcal{O} : denotes the encryption oracle.

 ${\cal A}$: denotes adversary who wants to break the cryptosystem.

Suppose m_1 and m_2 are two plaintexts/messages. Now call \mathcal{O} for encryption and get

$$c_1 = v \cdot \hat{L} + m_1$$
$$c_2 = v \cdot \hat{L} + m_2$$

GP 261

So, v is fixed for both the encryption the retrieving the message is easy with one message-ciphertext pair. Because, the relation tells $c_1 - c_2 = m_1 - m_2$. If (m_1, c_1) is the known message-ciphertext pair, then $m_2 = m_1 - (c_1 - c_2)$.

We know that $\hat{L} = U \cdot L \cdot R$. Goal is to retrieve U or R from \hat{L} . Knowing one matrix helps to get back another matrix. We now decompose the matrix \hat{L} . Apply singular value decomposition on \hat{L} . Since $\det(U) = 1$, so eigen values of U has modula 1, similarly for R also. So the diagonal matrix L has the eigen values L which are n. $\hat{L} \cdot \hat{L}^T = (U \cdot L \cdot R) \cdot (R^T \cdot L^T \cdot U^T) = U \cdot L^2 \cdot U^T$. Now clearly L^2 has eigen values n^2 and U is orthonormal eigen vector of $\hat{L} \cdot L$, similarly R^T has orthonormal eigen vectors of $\hat{L}^T \cdot \hat{L}$. So with the knowledge of \hat{L} and \hat{L}^T we can able to decompose the matrix \hat{L} . IN addition the singular value decomposition is "almost unique".

GP 261 5

References

[1] Von Zur Gathen, Joachim, and Jürgen Gerhard. Modern computer algebra. Cambridge university press, 2013.

GP 261 6