Examenul de bacalaureat naţional 2014

Proba E. d) Fizică

Filiera teoretică – profilul real, Filiera vocaţională – profilul militar

• Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TRMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ

Se acordă 10 puncte din oficiu.

Timpul de lucru efectiv este de 3 ore.

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

Se consideră sarcina electrică elementară $e = 1.6 \cdot 10^{-19} \, \text{C}$

Model

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

1. Unitatea de măsură echivalentă cu cea a intensității curentului electric, exprimată în unități din S.I., este:

a.
$$\sqrt{J \cdot \Omega \cdot s^{-1}}$$

b.
$$J \cdot V^{-1} \cdot s^{-1}$$

c.
$$\sqrt{J \cdot \Omega^{-1} \cdot s}$$

d.
$$J \cdot V \cdot s^{-1}$$

(3p)

2. În graficul din figura alăturată este reprezentată dependența tensiunii la bornele unei grupări serie, formate din trei rezistoare identice, de intensitatea curentului ce străbate gruparea. Valoarea rezistentei electrice a unui singur rezistor este:

a. 60Ω

- **b**. 30Ω
- $d.5\Omega$

3. Două generatoare caracterizate de parametrii (E_1,r_1) și (E_2,r_2) sunt conectate, în paralel, la bornele unui rezistor de rezistență R. Expresia corectă a intensității curentului ce străbate rezistorul este:

a.
$$I = \frac{E_1 + E_2}{R + r_1 + r_2}$$
 b. $I = \frac{E_1 r_1 + E_2 r_2}{R(r_1 + r_2) + r_1 \cdot r_2}$ **c.** $I = \left(\frac{E_1}{r_1} + \frac{E_2}{r_2}\right) \cdot R$ **d.** $I = \frac{E_1 r_2 + E_2 r_1}{R(r_1 + r_2) + r_1 \cdot r_2}$

$$\mathbf{c.} \ I = \left(\frac{E_1}{r_1} + \frac{E_2}{r_2}\right) \cdot F$$

d.
$$I = \frac{E_1 r_2 + E_2 r_1}{R(r_1 + r_2) + r_1 \cdot r_2}$$
 (3p)

4. Randamentul unui circuit electric simplu format dintr-o baterie cu rezistența interioară r și un consumator cu rezistența R este:

b.
$$\frac{r}{R}$$

c.
$$\frac{R}{R+r}$$

d.
$$\frac{r}{R+r}$$
 (3p)

5. Un conductor de lungime $\ell = 6.28 \,\mathrm{m} \, (\cong \, 2 \,\pi \,\mathrm{m})$ este confecționat din nichelină având rezistivitatea $\rho = 0.4 \,\mu\Omega \cdot m$. Ştiind că rezistența electrică a conductorului este $R = 20\,\Omega$, diametrul secțiunii transversale a acestuia este egal cu:

a. 4 mm

- **b.** 2mm
- **c.** 0.4 mm
- **d.** 0,2mm
- (3p)

II. Rezolvaţi următoarea problemă:

În circuitul electric reprezentat în figura alăturată, bateriile sunt caracterizate prin parametrii $E_1 = 12 \text{ V}$, $r_1 = 2\Omega$ şi $E_2 = 16 \text{ V}$, $r_2 = 2\Omega$. Rezistenţele electrice ale rezistoarelor conectate în circuit au valorile $R_1 = R_2 = 12\Omega$. Când întrerupătorul K este deschis, intensitatea curentului prin ampermetrul ideal ($R_A \cong 0$) este I = 1A. Determinaţi:

- a. intensitatea curentului indicat de ampermetru în cazul în care întrerupătorul *K* este închis;
- **b.** valoarea rezistenței R_3 ;
- c. numărul purtătorilor de sarcină ce străbat secțiunea transversală a conductorului din ramura ce conține rezistorul R_1 în timp de 10 min, în cazul în care întrerupătorul K este deschis;
- **d.** indicația unui voltmetru ideal ($R_V \to \infty$) conectat în locul ampermetrului.

III. Rezolvaţi următoarea problemă:

(15 puncte)

Intensitatea curentului de scurtcircuit al unei baterii este $I_{sc} = 10 \,\mathrm{A}$. La bornele bateriei se conectează un rezistor cu rezistența R căruia bateria îi furnizează puterea maximă. În aceste condiții tensiunea la bornele bateriei este U = 12 V.

- a. Calculați tensiunea electromotoare a bateriei.
- **b.** Determinați valoarea rezistenței R.
- c. În serie cu rezistorul R se conectează un bec având intensitatea nominală $I_n = 2$ A . Determinați tensiunea la bornele becului stiind că acesta funcționează la parametri nominali.
- d. Calculați energia consumată de bec în timp de 10 min în condițiile punctului c.