NUMÉRICALMETHODS

$$(\lambda + \mu)\nabla(\nabla \cdot u) + \mu\nabla^{2}u = \alpha(3\lambda + 2\mu)\nabla T - \rho b$$
Lecture 5

 $\rho \left(\frac{\partial u}{\partial t} + V \cdot \nabla u \right) =$ $- \frac{\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + \rho f_x$

$$\nabla^2 u = f$$

Given the system of equations

$$12x_1 + 3x_2 - 5x_3 = 1$$

$$x_1 + 5x_2 + 3x_3 = 28$$

$$3x_1 + 7x_2 + 13x_3 = 76$$

With an initial guess of

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

The coefficient matrix is:

$$[A] = \begin{bmatrix} 12 & 3 & -5 \\ 1 & 5 & 3 \\ 3 & 7 & 13 \end{bmatrix}$$

Will the solution converge using the **JACOBI ITERATION** method?

Checking if the coefficient matrix is diagonally dominant

$$[A] = \begin{bmatrix} 12 & 3 & -5 \\ 1 & 5 & 3 \\ 3 & 7 & 13 \end{bmatrix}$$

$$|a_{11}| = |12| = 12 \ge |a_{12}| + |a_{13}| = |3| + |-5| = 8$$

$$|a_{22}| = |5| = 5 \ge |a_{21}| + |a_{23}| = |1| + |3| = 4$$

$$|a_{33}| = |13| = 13 \ge |a_{31}| + |a_{32}| = |3| + |7| = 10$$

The inequalities are all true and at least one row is strictly greater than:

Therefore: The solution should converge using the JACOBI ITERATION Method

Rewriting each equation

$$\begin{bmatrix} 12 & 3 & -5 \\ 1 & 5 & 3 \\ 3 & 7 & 13 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 28 \\ 76 \end{bmatrix}$$

$$x_1 = \frac{1 - 3x_2 + 5x_3}{12}$$

$$x_2 = \frac{28 - x_1 - 3x_3}{5}$$

$$x_3 = \frac{76 - 3x_1 - 7x_2}{13}$$

With an initial guess of

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$x_1 = \frac{1 - 3(0) + 5(1)}{12} = 0.50000$$

$$x_2 = \frac{28 - (0.5) - 3(1)}{5} = 4.9000$$

$$x_3 = \frac{76 - 3(0.50000) - 7(4.9000)}{13} = 3.0923$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

The absolute relative approximate error

$$\left| \epsilon_{a} \right|_{1} = \left| \frac{0.50000 - 1.0000}{0.50000} \right| \times 100 = 67.662\%$$

$$\left| \epsilon_{a} \right|_{2} = \left| \frac{4.9000 - 0}{4.9000} \right| \times 100 = 100.00\%$$

$$\left| \epsilon_{a} \right|_{3} = \left| \frac{3.0923 - 1.0000}{3.0923} \right| \times 100 = 67.662\%$$

The maximum absolute relative error after the first iteration is 100%

 $x_1 = 0.50000$

 $x_2 = 4.9000$

 $x_3 = 3.0923$

After Iteration #1

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0.5000 \\ 4.9000 \\ 3.0923 \end{bmatrix}$$

Substituting the x values into the equations

$$x_1 = \frac{1 - 3(4.9000) + 5(3.0923)}{12} = 0.14679$$

$$x_2 = \frac{28 - (0.14679) - 3(3.0923)}{5} = 3.7153$$

$$x_3 = \frac{76 - 3(0.14679) - 7(4.900)}{13} = 3.8118$$

After Iteration #2

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0.14679 \\ 3.7153 \\ 3.8118 \end{bmatrix}$$

Iteration #2 absolute relative approximate error

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0.14679 \\ 3.7153 \\ 3.8118 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0.5000 \\ 4.9000 \\ 3.0923 \end{bmatrix}$$

$$\left| \epsilon_a \right|_1 = \left| \frac{0.14679 - 0.50000}{0.14679} \right| \times 100 = 240.62\%$$

$$\left| \epsilon_a \right|_2 = \left| \frac{3.7153 - 4.9000}{3.7153} \right| \times 100 = 31.887\%$$

$$\left| \epsilon_a \right|_3 = \left| \frac{3.8118 - 3.0923}{3.8118} \right| \times 100 = 18.876\%$$

The maximum absolute relative error after the first iteration is 240.62%.

This is much larger than the maximum absolute relative error obtained in iteration #1. Is this a problem?

Repeating more iterations, the following values are obtained

Iteration	a_1	$\left oldsymbol{\mathcal{E}}_a ight _1$	a_2	$\left oldsymbol{\mathcal{E}}_a ight _2$	a_3	$\left oldsymbol{arepsilon}_{a} ight _{3}$
1	0.50000	67.662	4.900	100.00	3.0923	67.662
2	0.14679	240.62	3.7153	31.887	3.8118	18.876
3	0.74275	80.23	3.1644	17.409	3.9708	4.0042
4	0.94675	21.547	3.0281	4.5012	3.9971	0.65798
5	0.99177	4.5394	3.0034	0.82240	4.0001	0.07499
6	0.99919	0.74260	3.0001	0.11000	4.0001	0.00000

The solution obtained

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0.99919 \\ 3.0001 \\ 4.0001 \end{bmatrix}$$

is close to the exact solution of

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$$

JACOBI ITERATION Method

Consider 4x4 case

$$\begin{bmatrix} 10 & -1 & 2 & 0 \\ -1 & 11 & -1 & 3 \\ 2 & -1 & 10 & -1 \\ 0 & 3 & -1 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 6 \\ 25 \\ -11 \\ 15 \end{bmatrix}$$

Example

$$10x_{1} - x_{2} + 2x_{3} = 6$$

$$-x_{1} + 11x_{2} - x_{3} + 3x_{4} = 25$$

$$2x_{1} - x_{2} + 10x_{3} - x_{4} = -11$$

$$3x_{2} - x_{3} - 8x_{4} = 15$$

$$x_{1} = (x_{2} - 2x_{3} + 6)/10$$

$$x_{2} = (x_{1} + x_{3} - 3x_{4} + 25)/11$$

$$x_{3} = (-2x_{1} + x_{2} + x_{4} - 11)/10$$

$$x_{4} = (-3x_{2} + x_{3} + 15)/(-8)$$

given
$$x^{(0)} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

given
$$x^{(0)} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$x_1^{(1)} = (x_2^{(0)} - 2x_3^{(0)} + 6)/10$$
$$x_2^{(1)} = (x_1^{(0)} + x_3^{(0)} - 3x_4^{(0)} + 25)/11$$
$$x_3^{(1)} = (-2x_1^{(0)} + x_2^{(0)} + x_2^{(0)} + x_4^{(0)} - 11)/10$$
$$x_4^{(1)} = (NM - 3x_2^{(0)} + W_3^{(0)} + W_3^{(0)} + 15)/(-8)$$
$$x^{(1)} = \begin{bmatrix} 0.6000 \\ 2.2727 \\ -1.1000 \\ 1.8750 \end{bmatrix}$$

Note that in the Jacobi iteration one does not use the most recently available information.

JACOBITERATION Method
$$x_1^{(k+1)} = (x_2^{(k)} - 2x_3^{(k)} + 6)/10$$

Note that in the Jacobi iteration one does not use the most recently available information. $x_1^{(k+1)} = (x_2^{(k)} - 2x_3^{(k)} + 6)/10$
 $x_2^{(k+1)} = (x_1^{(k)} + x_3^{(k)} - 3x_4^{(k)} + 25)/11$
 $x_3^{(k+1)} = (-2x_1^{(k)} + x_2^{(k)} + x_3^{(k)} + x_4^{(k)} - 11)/10$

$$x_1^{(k+1)} = (x_2^{(k)} - 2x_3^{(k)} + 6)/10$$

$$x_2^{(k+1)} = (x_1^{(k+1)} + x_3^{(k)} - 3x_4^{(k)} + 25)/11$$

$$x_3^{(k+1)} = (-2x_1^{(k+1)} + x_2^{(k+1)} + x_3^{(k+1)} + x_4^{(k)} - 11)/10$$

$$x_4^{(k+1)} = (-3x_2^{(k+1)} + x_3^{(k+1)} + 15)/(-8)$$

	K=1	K=2	K=3	K=4	K=5
x1	0.6000	1.0302	1.0066	1.0009	1.0001
x2	2.2730	2.0369	2.0036	2.0003	2.0000
x 3	-1.1000	-1.0145	-1.0025	-1.0003	-1.0000
X4	1.8750	0.9843	0.9984	0.9998	1.0000
$\left\ r^{(k)} ight\ $	5.6930	0.4300		0.0082 r P V Raman	

$$x^* = \begin{bmatrix} 1 \\ 2 \\ -1 \\ 1 \end{bmatrix}$$

JACOBI ITERATION Method

Gauss-Seidel iteration for general n:

for i = 1: n
$$x_i^{(k+1)} = \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)}\right) / a_{ii}$$
end

$$\begin{bmatrix} a_{11} & \Lambda & a_{1n} \\ \mathbf{M} & \mathbf{O} & \mathbf{M} \\ a_{n1} & \Lambda & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \mathbf{M} \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ \mathbf{M} \\ b_n \end{bmatrix}$$

MATLAB CODE

Ex:

Write a Matlab function for JI

```
function [sol,X]=gs(A,b,x0)
n=length(b);
maxiter=10;
x=x0;
for k=1:maxiter
for i=1:n
  sum1=0;
  for i=1:i-1
     sum1=sum1+A(i,j)*x(j);
  end
   sum2=0:
  for j=i+1:n
     sum2=sum2+A(i,j)*x(j);
  end
  x(i)=(b(i)-sum1-sum2)/A(i,i)
end
X(1:n,k)=x;
end
sol=x;
```

JACOBI ITERATION Method **iteration for general n:**

for i = 1: n
$$x_i^{(k+1)} = \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)}\right) / a_{ii}$$
end

NM

Iterative Methods

Jacobi Iteration Method

Gauss – Siedel Method

Gauss — Siedel Method

GS Iterative methods provide an alternative to the elimination methods.

$$\mathbf{A}\mathbf{x} = \mathbf{b} \qquad \mathbf{A} = \begin{bmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \mathbf{a}_{13} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \mathbf{a}_{23} \\ \mathbf{a}_{31} & \mathbf{a}_{32} & \mathbf{a}_{33} \end{bmatrix} \qquad \mathbf{D} = \begin{bmatrix} \mathbf{a}_{11} & 0 & 0 \\ 0 & \mathbf{a}_{22} & 0 \\ 0 & 0 & \mathbf{a}_{33} \end{bmatrix}$$

$$[D+(A-D)]x=b \Rightarrow Dx=b-(A-D)x \Rightarrow x=D^{-1}[b-(A-D)x]$$

$$\begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix} = \begin{bmatrix} 1/\mathbf{a}_{11} & 0 & 0 \\ 0 & 1/\mathbf{a}_{22} & 0 \\ 0 & 0 & 1/\mathbf{a}_{33} \end{bmatrix} * \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \end{bmatrix} - \begin{bmatrix} 0 & \mathbf{a}_{12} & \mathbf{a}_{13} \\ \mathbf{a}_{21} & 0 & \mathbf{a}_{23} \\ \mathbf{a}_{31} & \mathbf{a}_{32} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix}$$

$$x_1^k = \frac{b_1 - a_{12}x_2^{k-1} - a_{13}x_3^{k-1}}{a_{11}} \quad x_2^k = \frac{b_2 - a_{21}x_1^{k-1} - a_{23}x_3^{k-1}}{a_{22}} \quad x_3^k = \frac{b_3 - a_{31}x_1^{k-1} - a_{32}x_2^{k-1}}{a_{33}}$$

Choose an initial guess (i.e. all zeros) and Iterate until the equality is satisfied. No guarantee for convergence! Each iteration takes O(n²) time!

NM

Dr P V Ramana

Gauss - Siedel Method

- The Gauss-Seidel method is a commonly used iterative method.
- It is same as **Jacobi technique** except with one important difference:

A newly computed x value (say x_k) is substituted in the subsequent equations (equations k+1, k+2, ..., n) in the same iteration.

Example: Consider the 3x3 system below:

$$x_{1}^{new} = \frac{b_{1} - a_{12}x_{2}^{old} - a_{13}x_{3}^{old}}{a_{11}}$$
 $x_{2}^{new} = \frac{b_{2} - a_{21}x_{1}^{new} - a_{23}x_{3}^{old}}{a_{22}}$
 $x_{3}^{new} = \frac{b_{3} - a_{31}x_{1}^{new} - a_{32}x_{2}^{new}}{a_{33}}$
 $\{X\}_{old} \leftarrow \{X\}_{new}$ NM

- First, choose initial guesses for the x's.
- A simple way to obtain initial guesses is to assume that they are all **zero**.
- Compute **new** x_1 using the previous iteration values.
- New x_1 is substituted in the equations to calculate x_2 and x_3

• The process is repeated for $\mathbf{x_2}, \mathbf{x_3}, \ldots$

Gauss - Siedel Method

$$a_{11}x_{1} + a_{12}x_{2} + \Lambda + a_{1n}x_{n} = b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + \Lambda + a_{2n}x_{n} = b_{2}$$

$$M$$

$$a_{n1}x_{1} + a_{n2}x_{2} + \Lambda + a_{nr}x_{n} = b_{n}$$

$$x^0 = \begin{bmatrix} x_1^0 \\ x_2^0 \\ \mathbf{M} \\ x_n^0 \end{bmatrix}$$

$$x_1^1 = \frac{1}{a_{11}}(b_1 - a_{12}x_2^0 - \Lambda - a_{1n}x_n^0)$$

$$x_i^{k+1} = \frac{1}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^k - \sum_{j=i+1}^n a_{ij} x_j^k \right]$$

$$x_{2}^{1} = \frac{1}{a_{22}} (b_{2} - a_{21}x_{1}^{0} - a_{23}x_{3}^{0} - \Lambda - a_{2n}x_{n}^{0})$$

$$x_{n}^{1} = \frac{1}{a_{nn}} (b_{n} - a_{n1}x_{1}^{0} - a_{n2}x_{2}^{0} - \Lambda - a_{nn-1}x_{n-1}^{0})$$

NM Dr P V Ramana

Gauss - Siedel Method

x^{k+1}=Ex^k+f iteration for Jacobi method

A can be written as A=L+D+U (not decomposition)

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ a_{21} & 0 & 0 \\ a_{31} & a_{32} & 0 \end{bmatrix} + \begin{bmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{33} \end{bmatrix} + \begin{bmatrix} 0 & a_{12} & a_{13} \\ 0 & 0 & a_{23} \\ 0 & 0 & 0 \end{bmatrix}$$

$$Ax=b \Rightarrow (L+D+U)x=b$$

$$x_{i}^{k+1} = \frac{1}{a_{ii}} \left[b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j}^{k} - \sum_{j=i}^{n} a_{ij} x_{j}^{k} \right]$$

$$Lx^{k} \qquad Ux^{k}$$

$$Dx^{k+1} = -(L+U)x^k + b$$

$$x^{k+1}=-D^{-1}(L+U)x^k+D^{-1}b$$

 $E=-D^{-1}(L+U)$
 $f=D^{-1}b$

NM Dr P V Ramana

JACOBITERATION & GAUSS SEIDEL Method

$$x_1^{new} = \frac{b_1 - a_{12} x_2^{old} - a_{13} x_3^{old} \dots}{a_{11}}$$

$$x_2^{new} = \frac{b_2 - a_{21} x_1^{old} - a_{23} x_3^{old} \dots}{a_{22}}$$

$$x_3^{new} = \frac{b_3 - a_{31} x_1^{old} - a_{32} x_2^{old} \dots}{a_{33}}$$

$$x_n^{new} = \frac{b_n - a_{n1} x_1^{old} - a_{n2} x_2^{old} \dots}{a_{nn}}$$

$$\{X\}_{old} \Longrightarrow \{x_1, x_2, \dots, x_n\}_{old}$$

$$x_1^{new} = \frac{b_1 - a_{12} x_2^{old} - a_{13} x_3^{old} \dots}{a_{11}}$$

$$x_2^{new} = \frac{b_2 - a_{21} x_1^{new} - a_{23} x_3^{old} \dots}{a_{22}}$$

$$x_3^{new} = \frac{b_3 - a_{31} x_1^{new} - a_{32} x_2^{new} \dots}{a_{33}}$$

•

$$x_{nn}^{new} = \frac{b_n - a_{n1} x_1^{new} - a_{n2} x_2^{new} \dots}{a_{nn}}$$

$$\{X\}_{old} \leftarrow \{X\}_{new}$$

NM Dr P V Ramana

Consider a circuit shown in figure here; currents i₁, i₂, and i₃ are given by

$$4i_1 + 0i_2 + 5(i_1 - i_3) = 10$$

$$0i_1 + 8i_2 + 12(i_2 - i_3) = -2$$

$$5(i_3 - i_1) + 12(i_3 - i_2) + 3i_3 = 0$$

$$9i_1 + 0i_2 - 5i_3 = 10$$

$$0i_1 + 20i_2 - 12i_3 = -2$$

$$-5i_1 - 12i_2 + 20i_3 = 0$$

$$9i_1 + 0i_2 - 5i_3 = 10$$

$$0i_1 + 20i_2 - 12i_3 = -2$$

$$-5i_1 - 12i_2 + 20i_3 = 0$$

The matrix form is:

$$\begin{bmatrix} 9 & 0 & -5 \\ 0 & 20 & -12 \\ -5 & -12 & 20 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \\ i_3 \end{bmatrix} = \begin{bmatrix} 10 \\ -2 \\ 0 \end{bmatrix}$$

Notice that magnitude of any diagonal element is greater than the sum of the magnitudes of other elements in that row

A matrix with this property is said to be Diagonally dominant.

The set of equations:

$$9i_1 + 0i_2 - 5i_3 = 10$$

 $0i_1 + 20i_2 - 12i_3 = -2$
 $-5i_1 - 12i_2 + 20i_3 = 0$

Let us write for i_1 , i_2 and i_3 as

$$i_1 = (10 + 5i_3)/9 = 1.11111 + 0.5556i_2$$
 (1)

$$i_2 = (-2 + 12i_3)/20 = -0.1000 + 0.6000i_2$$
 (2)

$$i_3 = (5i_1 + 12i_3)/20 = 0.2500 \ i_1 + 0.6000 \ i_2$$
 (3)

Let us make an initial guess as $i_1 = 0.0$; $i_2 = 0.0$ and $i_3 = 0.0$

First iteration results: $i_1 = 1.1111$; $i_2 = -0.1000$ and $i_3 = 0.0$

 $i_2 = -0.1000$

 $i_3 = 0.0$

and

$$i_1 = (10 + 5i_3)/9 = 1.11111 + 0.5556i_2$$
 (1)

$$i_2 = (-2 + 12i_3)/20 = -0.1000 + 0.6000i_2$$
 (2)

$$i_3 = (5i_1 + 12i_3)/20 = 0.2500 \ i_1 + 0.6000 \ i_2$$
 (3)

 $i_1 = 1.11111;$

First iteration results:

results: $i_1 = 1.11111;$ $i_2 = -0.1000$ and $i_3 = 0.22$

3rd iteration results: $i_1 = 1.23$; $i_2 = 0.03$ and $i_3 = 0.22$

4th iteration results: $i_1 = 1.23$; $i_2 = 0.03$ and $i_3 = 0.33$

5th iteration results: $i_1 = 1.29$; $i_2 = 0.1$ and $i_3 = 0.33$

6th iteration results: $i_1 = 1.29$; $i_2 = 0.1$ and $i_3 = 0.38$

$$4X_1 + 2X_2 = 2$$

$$2X_1 + 10X_2 + 4X_3 = 6$$

$$4X_2 + 5X_3 = 5$$

Solution: $(X_1, X_2, X_3) = (0.41379, 0.17241, 0.86206)$

$$\begin{bmatrix} 4 & 2 & 0 \\ 2 & 10 & 4 \\ 0 & 4 & 5 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \\ 5 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} + \begin{bmatrix} 0 & 2 & 0 \\ 2 & 0 & 4 \\ 0 & 4 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \\ 5 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \\ 5 \end{bmatrix} - \begin{bmatrix} 0 & 2 & 0 \\ 2 & 0 & 4 \\ 0 & 4 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \\ 5 \end{bmatrix} - \begin{bmatrix} 0 & 2 & 0 \\ 2 & 0 & 4 \\ 0 & 4 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 5 \end{bmatrix} = \begin{bmatrix} 0.25 & 0 & 0 \\ 0 & 0.1 & 0 \\ 0 & 0 & 0.2 \end{bmatrix}$$

$$\begin{bmatrix} 0.25 & 0 & 0 \\ 0 & 0.1 & 0 \\ 0 & 0 & 0.2 \end{bmatrix} \begin{bmatrix} 4 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} 0.25 & 0 & 0 \\ 0 & 0.1 & 0 \\ 0 & 0 & 0.2 \end{bmatrix} \begin{bmatrix} 2 \\ 6 \\ 5 \end{bmatrix} - \begin{bmatrix} 0.25 & 0 & 0 \\ 0 & 0.1 & 0 \\ 0 & 0 & 0.2 \end{bmatrix} \begin{bmatrix} 0 & 2 & 0 \\ 2 & 0 & 4 \\ 0 & 4 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

The actual Solution:

(X1, X2, X3) = (0.41379, 0.17241, 0.86206)

Iteration	1	2	3	4	5	6	7
X ₁	0.5	0.2	0.45	0.324	0.429	0.376	0.42
X ₂	0.6	0.1	0.352	0.142	0.248	0.16	0.204
X ₃	1	0.52	0.92	0.718	0.886	0.802	0.872

Consider the following set of equations.

$$10x_1 - x_2 + 2x_3 = 6
-x_1 + 11x_2 - x_3 + 3x_4 = 25
2x_1 - x_2 + 10x_3 - x_4 = -11
3x_2 - x_3 + 8x_4 = 15$$

Convert the set Ax = b in the form of x = Tx + c.

$$x_{1} = \frac{1}{10}x_{2} - \frac{1}{5}x_{3} + \frac{3}{5}$$

$$x_{2} = \frac{1}{11}x_{1} + \frac{1}{10}x_{2} + \frac{1}{10}x_{4} + \frac{25}{11}$$

$$x_{3} = -\frac{1}{5}x_{1} + \frac{1}{10}x_{2} + \frac{1}{10}x_{4} - \frac{11}{10}$$

$$x_{4} = -\frac{3}{8}x_{2} + \frac{1}{8}x_{3} + \frac{15}{8}$$

Jacobi - Iterative Method: Example 3

$$x_{1}^{(1)} = \frac{1}{10} x_{2}^{(0)} - \frac{1}{5} x_{3}^{(0)} + \frac{3}{5}$$

$$x_{2}^{(1)} = \frac{1}{11} x_{1}^{(0)} + \frac{1}{10} x_{2}^{(0)} - \frac{3}{11} x_{4}^{(0)} + \frac{25}{11}$$

$$x_{3}^{(1)} = -\frac{1}{5} x_{1}^{(0)} + \frac{1}{10} x_{2}^{(0)} + \frac{1}{8} x_{3}^{(0)} + \frac{1}{10} x_{4}^{(0)} - \frac{11}{10}$$

$$x_{4}^{(1)} = -\frac{3}{8} x_{2}^{(0)} + \frac{1}{8} x_{3}^{(0)} + \frac{15}{8}$$

$$x_1^{(0)} = 0$$
, $x_2^{(0)} = 0$, $x_3^{(0)} = 0$ and $x_4^{(0)} = 0$.

$$x_{1}^{(1)} = \frac{1}{10}(0) - \frac{1}{5}(0) + \frac{3}{5}$$

$$x_{2}^{(1)} = \frac{1}{11}(0) + \frac{1}{10}(0) - \frac{3}{11}(0) + \frac{25}{11}$$

$$x_{3}^{(1)} = -\frac{1}{5}(0) + \frac{1}{10}(0) + \frac{1}{10}(0) - \frac{3}{11}(0) - \frac{11}{10}$$

$$x_{4}^{(1)} = -\frac{3}{8}(0) + \frac{1}{8}(0) + \frac{1}{8}(0) + \frac{1}{8}(0)$$

$$x_{1}^{(1)} = 0.6000,$$

$$x_{1}^{(1)} = 0.6000,$$

$$x_{2}^{(1)} = 2.2727,$$

$$x_{3}^{(1)} = -1.1000$$

$$x_1^{(1)} = 0.6000,$$
 $x_2^{(1)} = 2.2727,$
 $x_3^{(1)} = -1.1000$
 $x_4^{(1)} = 1.8750$

Jacobi - Iterative Method: Example 3

$$x_{1}^{(2)} = \frac{1}{10} x_{2}^{(1)} - \frac{1}{5} x_{3}^{(1)} + \frac{3}{5}$$

$$x_{2}^{(2)} = \frac{1}{11} x_{1}^{(1)} + \frac{1}{10} x_{2}^{(1)} - \frac{3}{11} x_{4}^{(1)} + \frac{25}{11}$$

$$x_{3}^{(2)} = -\frac{1}{5} x_{1}^{(1)} + \frac{1}{10} x_{2}^{(1)} + \frac{1}{8} x_{3}^{(1)} + \frac{1}{10} x_{4}^{(1)} - \frac{11}{10}$$

$$x_{4}^{(2)} = -\frac{3}{8} x_{2}^{(1)} + \frac{1}{8} x_{3}^{(1)} + \frac{1}{8} x_{3}^{(1)}$$

Jacobi - Iterative Method: Example 3

$10x_1$	$-x_2$	$+2x_{3}$	= 6
$-x_1$	$+11x_{2}$	$-x_3$	$+3x_4 = 25$
$2x_1$	$-x_2$	$+10x_{3}$	$-x_4 = -11$
	$3x_2$	$-x_2$	$+8x_{*} = 15$

Results:

iteration	0	1	2	3
$X_1^{(k)}$	0.0000	0.6000	1.0473	0.9326
$x_2^{(k)}$	0.0000	2.2727	1.7159	2.0530
$X_3^{(k)}$	0.0000	-1.1000	-0.8052	-1.0493
$X_4^{(k)}$	0.0000	1.8750	0.8852	1.1309

Jacobi – Iterative Method: Example 4 (Gauss - Siedel)

A diverging case study:

$$\begin{bmatrix} -2 & 1 & 5 \\ 4 & -8 & 1 \\ 4 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 15 \\ -21 \\ 7 \end{bmatrix} \qquad x^0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
$$\begin{vmatrix} b - Ax^0 \\ 2 = 26.7395 \end{vmatrix}$$

$$x^0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$||b - Ax^0||_2 = 26.7395$$

The matrix is not diagonally dominant

$$x_{1}^{1} = \frac{-15 + x_{2}^{0} + 5x_{3}^{0}}{2} = \frac{-15}{2} = -7.5$$

$$x_{2}^{1} = \frac{21 + 4x_{1}^{0} + x_{3}^{0}}{8} = \frac{21}{8} = 2.625$$

$$x_{3}^{1} = 7 - 4x_{1}^{0} + x_{2}^{0} = 7.0$$

$$||b - Ax^1||_2 = 54.8546$$

$$x_1^1 = \frac{-15 + 2.625 + 5 \times 7}{2} = 11.3125$$

$$x_2^1 = \frac{21 - 4 \times 7.5 + 7}{8} = -0.25$$

$$x_3^1 = 7 + 4 \times 7.5 + 2.625 = 39.625$$

$$\left\| b - Ax^2 \right\|_2 = 208.3761$$

The residual term is increasing at each iteration, so the iterations are *diverging*.

Note that the matrix is not diagonally dominant

Pseudo-Code For GS Method

- 1) build **A**, **b**
- 2) build modified **A** with diagonal zero \rightarrow **Q**
- 3) set initial guess **x=0**
- 4) do {
 a) compute:

$$\mathcal{R}_{i} = \frac{1}{\mathbf{A}_{ii}} \left(b_{i} - \sum_{j=1}^{j=N} \mathbf{Q}_{ij} x_{j} \right)$$

b) compute error:

$$err = \frac{\max\limits_{i=1,\dots,N} (|x_i - \hat{x_i}|)}{\max\limits_{i=1,\dots,N} (|b_i|)}$$

c) update x: }while err>tol

$$x_i = \mathcal{R}_i$$

Solve
$$6x_1 - 2x_2 + x_3 = 11(1)$$

 $x_1 + 2x_2 - 5x_3 = -1$ (2)
 $-2x_1 + 7x_2 + 2x_3 = 5$ (3)

$$6x_1 - 2 x_2 + x_3 = 11 (1)$$

$$-2x_1 + 7 x_2 + 2x_3 = 5 (2)$$

$$x_1 + 2 x_2 - 5x_3 = -1 (3)$$

Steb L

Re-write the equations such that each equation has the unknown with largest coefficient

on the left hand side:

$$x_{1} = \frac{2x_{2} - x_{3} + 11}{6}$$

$$x_{2} = \frac{2x_{1} - 2x_{3} + 5}{7}$$

$$x_{3} = \frac{x_{1} + 2x_{2} + 1}{5}$$

Step 2:

Assume the initial guesses $(x_2)^0 = (x_3)^0$ = 0, then calculate $(x_1)^1$:

Step 2a: Use the updated value $(x_1)^1 = 1.833$ and $(x_3)^0 = 0$ to calculate $(x_2)^1$

Step 2b: Similarly, use
$$(x_1)^1 = 1.833$$
 and $(x_2)^1 = 1.238$ to calculate $(x_3)^1$

$$(x_1)^1 = \frac{2(x_2)^0 - (x_3)^0 + 11}{6} = \frac{2(0) - (0) + 11}{6} = 1.833$$

$$(x_2)^1 = \frac{2(x_1)^1 - 2(x_3)^0 + 5}{7} = \frac{2(1.833) - 2(0) + 5}{7} = 1.238$$

$$(x_3)^1 = \frac{(x_1)^1 + 2(x_2)^1 + 1}{5} = \frac{(1.833) + 2(1.238) + 1}{5} = 1.062$$

Dr P V Ramana

$$6x_1 - 2 x_2 + x_3 = 11$$
 (1)
 $-2x_1 + 7 x_2 + 2x_3 = 5$ (2)
 $x_1 + 2 x_2 - 5x_3 = -1$ (3)

Step 3:

Repeat the same procedure for the 2nd iteratior

$$(x_1)^2 = \frac{2(x_2)^1 - (x_3)^1 + 11}{6} = \frac{2(1.238) - (1.062) + 11}{6} = 2.069$$

$$(x_2)^2 = \frac{2(x_1)^2 - 2(x_3)^1 + 5}{7} = \frac{2(2.069) - 2(1.062) + 5}{7} = 1.002$$

$$(x_3)^2 = \frac{(x_1)^2 + 2(x_2)^2 + 1}{5} = \frac{(2.069) + 2(1.002) + 1}{5} = 1.015$$

$$(x_1)^{i+1} = \frac{2(x_2)^i - (x_3)^i + 11}{6}$$

$$(x_2)^{i+1} = \frac{2(x_1)^i - 2(x_3)^i + 5}{7}$$

$$(x_3)^{i+1} = \frac{(x_1)^i + 2(x_2)^i + 1}{5}$$

Step 4:

the next iterations so that the next values are calculated using the current values:

continue the above iterative procedure until $[(x_k)^{i+1} - (x_k)^i]/(x_k)^{i+1} < \varepsilon_s$ for k=1,2 and 3.

Unknown – Iteration	→ X ₁	X ₂	X ₃	
1	1.833	1.238	1.062	
2	2.069	1.002	1.015	
3	1.998	0.995	0.998	
4	1.999	1.000	1.000	
5	2.000	1.000	1.000	

JACOBI / Gauss – Siedel Method: Example 2

$$\begin{bmatrix} 4 & -1 & 1 \\ 4 & -8 & 1 \\ -2 & 1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7 \\ -21 \\ 15 \end{bmatrix}$$

$$x^0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$||b - Ax^0||_2 = 26.7395$$

Diagonally dominant matrix

$$x_{1}^{1} = \frac{7 + x_{2}^{0} - x_{3}^{0}}{4} = \frac{7}{4} = 1.75$$

$$x_{2}^{1} = \frac{21 + 4x_{1}^{0} + x_{3}^{0}}{8} = \frac{21}{8} = 2.625$$

$$x_{3}^{1} = \frac{15 + 2x_{1}^{0} - x_{2}^{0}}{5} = \frac{15}{5} = 3.0$$

$$||b - Ax^{1}||_{2} = 10.0452$$

$$x_{1}^{1} = \frac{7 + x_{2}^{0} - x_{3}^{0}}{4}$$

$$x_{2}^{1} = \frac{21 + 4x_{1}^{1} + x_{3}^{0}}{8}$$

$$x_{3}^{1} = \frac{15 + 2x_{1}^{1} - x_{2}^{1}}{5}$$

$$= \frac{7}{4} = 1.75$$

$$= \frac{28}{8} = 3.5$$

$$= \frac{15}{5} = 3.0$$

Dr P V Ramana

JACOBI / Gauss – Siedel Method: Example 2

$$x_1^2 = \frac{7 + x_2^1 - x_3^1}{4}$$

$$x_2^2 = \frac{21 + 4x_1^1 + x_3^1}{8}$$

$$x_3^2 = \frac{15 + 2x_1^1 - x_2^1}{5}$$

$$= \frac{7 + 2.625 - 3}{4} = 1.65625$$

$$= \frac{21 + 4 \times 1.75 + 3}{8} = 3.875$$

$$= \frac{15 + 2 \times 1.75 - 2.625}{5} = 4.225$$

$$\left\| b - Ax^2 \right\|_2 = 6.7413$$

$$x_1^3 = \frac{7 + 3.875 - 4.225}{4} = 1.6625$$

$$x_2^3 = \frac{21 + 4 \times 1.65625 + 4.225}{8} = 3.98125$$

$$x_3^3 = \frac{15 + 2 \times 1.65625 - 3.875}{5} = 2.8875$$

$$||b - Ax^2||_2 = 1.9534$$

Matrix is diagonally dominant, Jacobi iterations are converging

NM Dr P V Ramana

Jacobi – Iterative Method: Example 4

Consider 4x4 case

$$\begin{bmatrix} 10 & -1 & 2 & 0 \\ -1 & 11 & -1 & 3 \\ 2 & -1 & 10 & -1 \\ 0 & 3 & -1 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 6 \\ 25 \\ -11 \\ 15 \end{bmatrix}$$

$$10x_{1} - x_{2} + 2x_{3} = 6$$

$$-x_{1} + 11x_{2} - x_{3} + 3x_{4} = 25$$

$$2x_{1} - x_{2} + 10x_{3} - x_{4} = -11$$

$$3x_{2} - x_{3} - 8x_{4} = 15$$

$$x_{1} = (x_{2} - 2x_{3} + 6)/10$$

$$x_{2} = (x_{1} + x_{3} - 3x_{4} + 25)/11$$

$$x_{3} = (-2x_{1} + x_{2} + x_{4} - 11)/10$$

$$x_{4} = (-3x_{2} + x_{3} + 15)/(-8)$$

given
$$x^{(0)} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

given
$$x^{(0)} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$x_1^{(1)} = (x_2^{(0)} - 2x_3^{(0)} + 6)/10$$
$$x_2^{(1)} = (x_1^{(0)} + x_3^{(0)} - 3x_4^{(0)} + 25)/11$$
$$x_3^{(1)} = (-2x_1^{(0)} + x_2^{(0)} + x_2^{(0)} + x_4^{(0)} - 11)/10$$
$$x_4^{(1)} = (NM - 3x_2^{(0)} + W_8^{(0)} + 25)/(-8)$$

Gauss – Siedel Method: Example 4

$$x_1^{(k+1)} = (x_2^{(k)} - 2x_3^{(k)} + 6)/10$$

$$x_2^{(k+1)} = (x_1^{(k)} + x_3^{(k)} - 3x_4^{(k)} + 25)/11$$

$$x_3^{(k+1)} = (-2x_1^{(k)} + x_2^{(k)} + x_4^{(k)} - 11)/10$$

$$x_4^{(k+1)} = (-3x_2^{(k)} + x_3^{(k)} + 15)/(-8)$$

	K=1	K=2	K=3	K=4	K=5
x1	0.6000	1.0473	0.9326	1.0152	0.9890
x2	2.2727	1.7159	2.0533	1.9537	2.0114
x3	-1.1000	-0.8052	-1.0493	-0.9681	-1.0103
X4	1.8750	0.8852	1.1309	0.9738	1.0214
$\left\ r^{(k)} ight\ $	11.3537	4.9910	2.0299	0.8911	0.3686

	K=6	K=7	K=8	K=9	K=10
x1	1.0032	0.9981	1.0006	0.9997	1.0001
x2	1.9922	2.0023	1.9987	2.0004	1.9998
x 3	-0.9945	-1.0020	-0.9990	-1.0004	-0.9998
X4	0.9944	1.0036	0.9989	1.0006	0.9998
				D D V D	
$\left\ r^{(k)}\right\ $	0.1605	0.0671	0.0290	Dr P V Ram 0.0122	0.0053

MATLAB CODE

Ex:

Write a Matlab function for Jacobi

```
function [sol,X]=jacobi(A,b,x0)
n=length(b);
maxiter=10;
x=x0;
for k=1:maxiter
for i=1:n
  sum1=0;
  for j=1:i-1
     sum1=sum1+A(i,j)*x(j);
  end
   sum2=0:
  for j=i+1:n
     sum2=sum2+A(i,j)*x(j);
  end
  xnew(i)=(b(i)-sum1-sum2)/A(i,i)
end
X(1:n,k)=xnew;
x=xnew;
end
sol=xnew;
```

GS for general n:

for i = 1: n
$$x_i^{(k+1)} = \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)}\right) / a_{ii}$$
end

NM

Convergence for Gauss — Siedel Method

$$E=-D^{-1}(L+U)$$

$$E = \begin{bmatrix} 0 & -\frac{a_{12}}{a_{11}} & \Lambda & \Lambda & -\frac{a_{1n}}{a_{11}} \\ -\frac{a_{21}}{a_{22}} & 0 & -\frac{a_{23}}{a_{22}} & \Lambda & -\frac{a_{2n}}{a_{22}} \\ M & O & O & O & M \\ & & O & O & -\frac{a_{n-1n}}{a_{n-1n-1}} \\ -\frac{a_{n1}}{a_{nn}} & \Lambda & \Lambda & -\frac{a_{nn-1}}{a_{nn}} & 0 \end{bmatrix}$$

NM Dr P V Ramana

Convergence for Gauss — Siedel Method

Evaluate the infinity(maximum row sum) norm of E

$$||E||_{\infty} < 1 \Rightarrow \sum_{\substack{j=1 \ i \neq j}}^{n} \frac{|a_{ij}|}{|a_{ii}|} < 1$$
 for $i = 1, 2, ..., n$

$$\Rightarrow |a_{ii}| > \sum_{\substack{j=1 \ i \neq j}}^{n} |a_{ij}|$$
 Diagonally dominant matrix

If A is a diagonally dominant matrix, then Jacobi iteration converges for any initial vector

NM Dr P V Ramana

Example (Gauss-Seidel & Jacobi Iterations)

$$\begin{bmatrix}
4 & -1 & 1 \\
4 & -8 & 1 \\
-2 & 1 & 5
\end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7 \\ -21 \\ 15 \end{bmatrix} \qquad x^0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \qquad \|b - Ax^0\|_2 = 26.7395$$

$$x^0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$||b - Ax^0||_2 = 26.7395$$

Diagonally dominant matrix

$$x_{1}^{1} = \frac{7 + x_{2}^{0} - x_{3}^{0}}{4}$$

$$x_{2}^{1} = \frac{21 + 4x_{1}^{1} + x_{3}^{0}}{8}$$

$$x_{3}^{1} = \frac{15 + 2x_{1}^{1} - x_{2}^{1}}{5}$$

$$x_{1}^{1} = \frac{7 + x_{2}^{0} - x_{3}^{0}}{4} = \frac{7}{4} = 1.75$$

$$x_{2}^{1} = \frac{21 + 4x_{1}^{1} + x_{3}^{0}}{8} = \frac{21 + 4 \times 1.75}{8} = 3.5$$

$$x_{3}^{1} = \frac{15 + 2x_{1}^{1} - x_{2}^{1}}{5} = \frac{15 + 2 \times 1.75 - 3.5}{5} = 3.0$$

$$||b - Ax^1||_2 = 3.0414$$
 $||b - Ax^1||_2 = 10.0452$
GS iteration

Example (Gauss-Seidel & Jacobi Iterations)

$$x_{1}^{2} = \frac{7 + x_{2}^{1} - x_{3}^{1}}{4} = \frac{7 + 3.5 - 3}{4} = 1.875$$

$$x_{2}^{2} = \frac{21 + 4x_{1}^{2} + x_{3}^{1}}{8} = \frac{21 + 4 \times 1.875 + 3}{8} = 3.9375$$

$$x_{3}^{2} = \frac{15 + 2x_{1}^{2} - x_{2}^{2}}{5} = \frac{15 + 2 \times 1.875 - 3.9375}{5} = 2.9625$$

$$||b - Ax^2||_2 = 0.4765$$
 $||b - Ax^2||_2 = 6.7413$

GS iteration

When both Jacobi and Gauss-Seidel iterations converge, Gauss-Seidel converges faster

$$m=W/g = (386.4k)/(396.4 in/sec^2) = 1.0 kip-sec^2/in$$

$$[m] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad [k] = \begin{bmatrix} 500 & -250 & 0 \\ -250 & 500 & -250 \\ 0 & -250 & 250 \end{bmatrix}$$

$$[k] - \omega_n^2[m] = \begin{bmatrix} 500 - \omega_n^2 & -250 & 0 \\ -250 & 500 - \omega_n^2 & -250 \\ 0 & -250 & 250 - \omega_n^2 \end{bmatrix} \xrightarrow{\text{MASS}} = 4500$$

$$k_{\perp} + = 1600 \text{ kNgm}.$$
NM Dr F

$\mathbf{M}\frac{d^2\mathbf{x}}{dt^2} + \mathbf{K}\mathbf{x} = \mathbf{0}$

$$-\frac{\partial^2 u}{\partial x^2} \approx \frac{-u_{i+1} + 2u_i - u_{i-1}}{h^2} = [K] \cdot u = Ax$$

NM Dr P V Ramana

64

Device Hamiltonian

Dr P V Ramana

Tridiagonal Matrix

$$\begin{bmatrix} f_1 & g_1 & & & & & & \\ e_2 & f_2 & g_2 & & & & & \\ & e_3 & f_3 & g_3 & & & & \\ & & O & O & O & & \\ & & & e_i & f_i & g_i & & \\ & & & O & O & O & \\ & & & e_{n-1} & f_{n-1} & g_{n-1} \\ & & & e_n & f_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ M \\ x_i \\ M \\ x_{n-1} \\ x_n \end{bmatrix} = \begin{bmatrix} r_1 \\ r_2 \\ r_3 \\ M \\ r_i \\ M \\ r_{n-1} \\ r_n \end{bmatrix}$$

- > Special case of banded matrix with bandwidth = 3
- Save storage, 3 × n instead of n × n NM Dr P V Ramana

Tridiagonal Systems

Tridiagonal Systems:

- The non-zero elements are in the main diagonal, super diagonal and subdiagonal.
- $a_{ij}=0$ if |i-j|>1

Tridiagonal Systems

- Occur in many applications
- Needs less storage (4n-2 compared to n² +n for the general cases)
- Selection of pivoting rows is unnecessary (under some conditions)
- Efficiently solved by Gaussian elimination

Algorithm to Solve Tridiagonal Systems

- Based on Naive Gaussian elimination.
- As in previous Gaussian elimination algorithms
 - Forward elimination step
 - Backward substitution step
- Elements in the super diagonal are not affected.
- Elements in the main diagonal, and B need updating

Tridiagonal System

All the a elements will be zeros, need to update the d and b elements

The c elements are not updated

$$\begin{bmatrix} d_{1} & c_{1} & & & \\ a_{1} & d_{2} & c_{2} & & \\ & a_{2} & d_{3} & O & \\ & & O & O & c_{n-1} \\ & & & a_{n-1} & d_{n} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ M \\ x_{n} \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \\ M \\ b_{n} \end{bmatrix} \Rightarrow \begin{bmatrix} d_{1} & c_{1} & & & \\ & d_{2} & c_{2} & & \\ & & d_{3} & O & \\ & & & & d_{n} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ M \\ x_{n} \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \\ M \\ b_{n} \end{bmatrix}$$

Solving Tridiagonal System

Forward

Eliminatio

n

$$d_{i} \leftarrow d_{i} - \left(\frac{a_{i-1}}{d_{i-1}}\right)c_{i-1}$$

$$b_{i} \leftarrow b_{i} - \left(\frac{a_{i-1}}{d_{i-1}}\right) b_{i-1}$$

$$2 \leq i \leq n$$

Backward

Substituti

on

$$x_n = \frac{b_n}{d_n}$$

$$x_i = \frac{1}{d_i} (b_i - c_i x_{i+1})$$

for i = n - 1, n - 2, ..., 1

$$\begin{cases} f_{k} = f_{k} - \frac{e_{k}}{f_{k-1}} g_{k-1} \\ r_{k} = r_{k} - \frac{e_{k}}{f_{k-1}} r_{k-1} \end{cases} k = 2,3,K,n$$

Use factor = e_k / f_{k-1}

to eliminate subdiagonal element

Apply the same matrix operations to right hand side

Back substitution

$$x_n = \frac{r_n}{f_n}$$

$$x_k = \frac{r_k - g_k x_{k+1}}{f_k} \quad k = n-1, n-2, \text{K }, 3, 2, 1$$
NM Dr P V Ramana

- Certain matrices have particular structures that can be exploited to develop efficient solution schemes (e.g. banded, symmetric)
- A banded matrix is a square matrix that has all elements equal to zero, with the exception of a **band** centered on the main diagonal.
- Standard Gauss Elimination is inefficient in solving banded equations because unnecessary space and time would be expended on the storage and manipulation of zeros.
- There is no need to store or process the zeros (off of the band)

Solving Tridiagonal Systems (Thomas Algorithm)

A tridiagonal system has a bandwidth of 3

$$\begin{bmatrix} f_1 & g_1 \\ e_2 & f_2 & g_2 \\ & e_3 & f_3 & g_3 \\ & & e_4 & f_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{cases} r_1 \\ r_2 \\ r_3 \\ r_4 \end{bmatrix}$$
DECOMPOSITION
$$\begin{aligned} & \text{DO} \quad k = 2, n \\ & e_k = e_k / f_{k-1} \\ & f_k = f_k - e_k g_{k-1} \end{aligned}$$

$$A = L * U = \begin{bmatrix} 1 & 0 & 0 & 0 \\ e'_2 & 1 & 0 & 0 \\ 0 & e'_3 & 1 & 0 \\ 0 & 0 & e'_4 & 1 \end{bmatrix} \begin{bmatrix} f_1 & g_1 \\ f'_2 & g_2 \\ f'_3 & g_3 \\ f'_4 \end{bmatrix}$$
 END DO

Time Complexity?
O(n)

DO
$$k = 2, n$$

 $e_k = e_k / f_{k-1}$
 $f_k = f_k - e_k g_{k-1}$

vs. $O(n^3)$

Tridiagonal Systems

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ e'_{2} & 1 & 0 & 0 \\ 0 & e'_{3} & 1 & 0 \\ 0 & 0 & e'_{4} & 1 \end{bmatrix} \begin{bmatrix} f_{1} & g_{1} \\ f'_{2} & g_{2} \\ f'_{3} & g_{3} \\ f'_{4} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} = \begin{bmatrix} r_{1} \\ r_{2} \\ r_{3} \\ r_{4} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ \mathbf{e'}_2 & 1 & 0 & 0 \\ 0 & \mathbf{e'}_3 & 1 & 0 \\ 0 & 0 & \mathbf{e'}_4 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{d}_1 \\ \mathbf{d}_2 \\ \mathbf{d}_3 \\ \mathbf{d}_4 \end{bmatrix} = \begin{bmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \\ \mathbf{r}_3 \\ \mathbf{r}_4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ e'_2 & 1 & 0 & 0 \\ 0 & e'_3 & 1 & 0 \\ 0 & 0 & e'_4 & 1 \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \\ d_3 \\ d_4 \end{bmatrix} = \begin{bmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \end{bmatrix} \begin{bmatrix} f_1 & g_1 \\ f_2' & g_2 \\ r_3 \\ r_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ f_3' & g_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \\ d_4 \end{bmatrix}$$

Forward Substitution

$$d_1 = r_1$$
DO $k = 2$, n

$$d_k = r_k - e_k d_{k-1}$$
END DO

Back Substitution

$$X_n = d_n / f_n$$
DO $k = n-1, 1, -1$

$$X_k = (d_k - g_k \cdot X_{k+1}) / f_k$$
Dr PN Ramana

Hand Calculations: Tridiagonal Matrix

$$\begin{cases} f_{k} = f_{k} - \frac{e_{k}}{f_{k-1}} g_{k-1} \\ r_{k} = r_{k} - \frac{e_{k}}{f} r_{k-1} \end{cases}$$

$$\begin{cases} f_{k} = f_{k} - \frac{e_{k}}{f_{k-1}} g_{k-1} \\ r_{k} = r_{k} - \frac{e_{k}}{f_{k-1}} r_{k-1} \end{cases} \begin{bmatrix} 1 & -2 & 0 & 0 \\ -2 & 5 & -1 & 0 \\ 0 & -1 & 2 & -0.5 \\ 0 & 0 & -0.5 & 1.25 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} = \begin{bmatrix} -3 \\ 5 \\ 2 \\ 3.5 \end{bmatrix} \begin{bmatrix} f_{1} & g_{1} & \begin{bmatrix} x_{1} \\ e_{2} & f_{2} & g_{2} \\ e_{3} & f_{3} & g_{3} \\ x_{4} \end{bmatrix} \begin{bmatrix} r_{1} \\ r_{2} \\ r_{3} \\ r_{4} \end{bmatrix} \\ x_{n} = \frac{r_{n}}{f_{n}} \end{cases}$$

$$\begin{bmatrix} f_1 & g_1 & & & & \\ e_2 & f_2 & g_2 & & & x_2 \\ & e_3 & f_3 & g_3 & x_3 \\ & & e_4 & f_4 & x_4 \end{bmatrix} = \begin{bmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \end{bmatrix}$$

 $x_n = \frac{r_n}{f_n}$

(a) Forward elimination

$$\begin{cases} f_2 = f_2 - \frac{e_2}{f_1} g_1 = 5 - \frac{-2}{1} (-2) = 1 \\ r_2 = r_2 - \frac{e_2}{f_1} r_1 = 5 - \frac{-2}{1} (-3) = -1 \end{cases}$$

$$\begin{cases} f_3 = f_3 - \frac{e_3}{f_2} g_2 = 2 - \frac{-1}{1} (-1) = 1 \\ r_3 = r_2 - \frac{e_2}{f_1} r_1 = 2 - \frac{-1}{1} (-1) = 1 \end{cases}$$

$$\begin{cases} f_4 = f_4 - \frac{e_4}{f_3} g_3 = 1.25 - \frac{-0.5}{1} (-0.5) = 1 \end{cases}$$

$$\begin{cases} r_4 = r_4 - \frac{e_4}{f_3} r_3 = 3.5 - \frac{-0.5}{1} (1) \text{ NAM} \text{ Dr P V Ramana} \end{cases}$$

(b) Back substitution

$$x_{4} = \frac{r_{4}}{f_{4}} = \frac{4}{1} = 4$$

$$x_{3} = \frac{r_{3} - g_{3}x_{4}}{f_{3}} = \frac{1 - (-0.5)(4)}{1} = 3$$

$$x_{2} = \frac{r_{2} - g_{2}x_{3}}{f_{2}} = \frac{-1 - (-1)(3)}{1} = 2$$

$$x_{1} = \frac{r_{1} - g_{1}x_{2}}{f_{1}} = \frac{-3 - (-2)(2)}{1} = 1$$

MATLAB M-file: Tridiag

```
function x = Tridiag(e, f, g, r)
% Tridiag(e,f,g,r):
     Tridiagonal system solver
% Input:
% e = subdiagonal vector
f = diagonal vector
% q = superdiagonal vector
% r = right hand side vector
8 Output:
% x = solution vector
n = length(f);
% forward elimination
for k = 2 : n
   factor = e(k)/f(k-1);
   f(k) = f(k) - factor * g(k-1);
   r(k) = r(k) - factor * r(k-1);
end
%back substitution
x(n) = r(n) / f(n);
for k = n-1: -1: 1
   x(k) = (r(k) - g(k) * x(k+1)) / f(k);
end
```

Example: Tridiagonal matrix

```
\begin{bmatrix} 1 & -2 \\ -2 & 6 & 4 \\ & 4 & 9 & -0.5 \\ & & -0.5 & 3.25 & 1.5 \\ & & & 1.5 & 1.75 & -3 \\ & & & & -3 & 13 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} -3 \\ 22 \\ 35.5 \\ = 7.75 \\ 4 \\ -33 \end{bmatrix}
```

```
function [e,f,g,r] = example

e=[ 0 -2      4   -0.5     1.5   -3];
f=[ 1  6      9     3.25     1.75     13];
g=[-2      4   -0.5      1.5      -3     0];
r=[-3      22     35.5   -7.75      4   -33];
```

```
» [e,f,g,r] = example
            -2.0000 4.0000
                              -0.5000
                                        1.5000
                                                 -3.0000
   1.0000
            6.0000
                   9.0000
                            3.2500
                                         1.7500
                                                 13.0000
                            1.5000
  -2.0000
          4.0000
                     -0.5000
                                        -3.0000
  -3.0000
          22,0000
                     35.5000
                                        4.0000
                              -7.7500
                                                -33.0000
 > x = Tridiag (e, f, g, r)
```

Note: e(1) = 0 and g(n) = 0

Example 2

Solve

$$\begin{bmatrix} 5 & 2 & & & \\ 1 & 5 & 2 & & \\ & 1 & 5 & 2 \\ & & 1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 12 \\ 9 \\ 8 \\ 6 \end{bmatrix} \implies D = \begin{bmatrix} 5 \\ 5 \\ 5 \end{bmatrix}, A = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}, B = \begin{bmatrix} 12 \\ 9 \\ 8 \\ 6 \end{bmatrix}$$

Forward Eliminatio n

$$d_i \leftarrow d_i - \left(\frac{a_{i-1}}{d_{i-1}}\right) c_{i-1}, \quad b_i \leftarrow b_i - \left(\frac{a_{i-1}}{d_{i-1}}\right) b_{i-1} \qquad 2 \le i \le 4$$

Backward Substituti on

$$x_n = \frac{b_n}{d_n}, \quad x_i = \frac{1}{d_i} (b_i - c_i x_{i+1})$$
 for $i = 3, 2, 1$

Example 2

$$D = \begin{bmatrix} 5 \\ 5 \\ 5 \end{bmatrix}, A = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}, B = \begin{bmatrix} 12 \\ 9 \\ 8 \\ 6 \end{bmatrix}$$

Forward Elimination

$$d_2 = d_2 - \left(\frac{a_1}{d_1}\right)c_1 = 5 - \frac{1 \times 2}{5} = 4.6, \quad b_2 = b_2 - \left(\frac{a_1}{d_1}\right)b_1 = 9 - \frac{1 \times 12}{5} = 6.6$$

$$d_3 = d_3 - \left(\frac{a_2}{d_2}\right)c_2 = 5 - \frac{1 \times 2}{4.6} = 4.5652, \quad b_3 = b_3 - \left(\frac{a_2}{d_2}\right)b_2 = 8 - \frac{1 \times 6.6}{4.6} = 6.5652$$

$$d_4 = d_4 - \left(\frac{a_3}{d_3}\right)c_3 = 5 - \frac{1 \times 2}{4.5652} = 4.5619, \quad b_4 = b_4 - \left(\frac{a_3}{d_3}\right)b_3 = 6 - \frac{1 \times 6.5652}{4.5652} = 4.5619$$

Example 2

Backward Substitution

- After the Forward Elimination:
- Backward Substitution:

$$D^{T} = \begin{bmatrix} 5 & 4.6 & 4.5652 & 4.5619 \end{bmatrix}, B^{T} = \begin{bmatrix} 12 & 6.6 & 6.5652 & 4.5619 \end{bmatrix}$$

$$x_{4} = \frac{b_{4}}{d_{4}} = \frac{4.5619}{4.5619} = 1,$$

$$x_{3} = \frac{b_{3} - c_{3}x_{4}}{d_{3}} = \frac{6.5652 - 2 \times 1}{4.5652} = 1$$

$$x_{2} = \frac{b_{2} - c_{2}x_{3}}{d_{2}} = \frac{6.6 - 2 \times 1}{4.6} = 1$$

$$x_{1} = \frac{b_{1} - c_{1}x_{2}}{d_{1}} = \frac{12 - 2 \times 1}{5_{\text{NM}}} = 2$$
Dr P V Ramana

Gauss-Seidel Method Algorithm

$$\begin{pmatrix} a_{11} & a_{12} & L & a_{1n} \\ a_{21} & a_{22} & & \\ M & O & & \\ a_{n1} & & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_n \end{pmatrix}$$

Split A into an upper component, a diagonal component and a lower component

Upper triangular, U

Gauss-Seidel Method Algorithm

Split A into an upper component, a diagonal component and a

lower component

Diagonal, D

Gauss-Seidel Method Algorithm

$$\begin{pmatrix} a_{11} & a_{12} & \mathbf{L} & a_{1n} \\ a_{21} & a_{22} \\ \mathbf{M} & \mathbf{O} \\ a_{n1} & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_n \end{pmatrix}$$

Split A into an upper component, a diagonal component and a lower component

Lower triangular, L