

法律声明

本课件包括演示文稿、示例、代码、题库、视频和声音等内容,深度之眼和讲师 拥有完全知识产权;只限于善意学习者在本课程使用,不得在课程范围外向任何 第三方散播。任何其他人或者机构不得盗版、复制、仿造其中的创意和内容,我 们保留一切通过法律手段追究违反者的权利。

课程详情请咨询

■ 微信公众号: 深度之眼

■ 客服微信号: deepshare0920

公众号

微信

BN, LN, IN and GN

导师: 余老师

关注公众号深度之眼,后台回复论文,获取60篇AI必读经典前沿论文

1 为什么要Normalization?

2/常见的Normalizaton——BN、LN、IN and GN

3/ Normalization 小结

Normalization in DL

Why Normalization

Internal Covariate Shift (ICS): 数据尺度/分布异常,导致训练困难

$$H_{11} = \sum_{i=0}^{n} X_i * W_{1i}$$
 $D(H_{11}) = \sum_{i=0}^{n} D(X_i) * D(W_{1i})$
 $= n * (1 * 1)$
 $= n$
 $std(H_{11}) = \sqrt{D(H_{11})} = \sqrt{n}$
 $D(H_1) = n * D(X) * D(W)$

Normalization in DL

常见的Normalization

- 1. Batch Normalization (BN)
- 3. Instance Normalization (IN)

4. Group Normalization (GN)

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$
$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathbf{N}_{\gamma,\beta}(x_i)$$

均值和方差求取方式

Normalization in DL

1. Layer Normalization

起因: BN不适用于变长的网络,如RNN

思路: 逐层计算均值和方差

注意事项:

- 1. 不再有running_mean和running_var
- 2. gamma和beta为逐元素的

Normalization in DL

nn.LayerNorm

主要参数:

- normalized_shape: 该层特征形状
- eps: 分母修正项
- elementwise_affine: 是否需要affine transform

nn.LayerNorm(
normalized_shape,
eps=1e-05,
elementwise_affine=True)

Normalization in DL

2. Instance Normalization

起因: BN在图像生成 (Image Generation) 中不适用

思路: 逐Instance (channel) 计算均值和方差

Figure 1: Artistic style transfer example of Gatys et al. (2016) method.

特征数

3	3		3	3		3	3							
3	3		3	3		3	3							
2	2		2	2		2	2							
2	2		2	2		2	2							
1	1		1	1		1	1							
1	1		1	1		1	1							

《Instance Normalization: The Missing Ingredient for Fast Stylization》 《Image Style Transfer Using Convolutional Neural Networks》 **Batch Size**

Normalization in DL

nn.InstanceNorm

主要参数:

- num_features: 一个样本特征数量(最重要)
- eps: 分母修正项
- momentum: 指数加权平均估计当前mean/var
- affine: 是否需要affine transform
- track_running_stats: 是训练状态,还是测试状态

nn.InstanceNorm2d(
num_features,
eps=1e-05,
momentum=0.1,
affine=False,
track_running_stats=False)

deepshare.net 深度之眼

Normalization in DL

3. Group Normalization

起因: 小batch样本中, BN估计的值不准

思路:数据不够,通道来凑

注意事项:

- 1. 不再有running_mean和running_var
- 2. gamma和beta为逐通道 (channel) 的

应用场景:大模型 (小batch size) 任务

Batch Size

Normalization in DL

nn.GroupNorm

主要参数:

- num_groups: 分组数
- num_channels: 通道数 (特征数)
- eps: 分母修正项
- affine: 是否需要affine transform

nn.GroupNorm(
num_groups,
num_channels,
eps=1e-05,
affine=True)

Normalization in DL

小结: BN、LN、IN和GN都是为了克服Internal Covariate Shift (ICS)

Normalization in DL

小结: BN、LN、IN和GN都是为了克服Internal Covariate Shift (ICS)

BN						LN						IN						GN							
		4	4		4	4		4	4					4	4		4	4		4	4		4	4	
特征数		4	4		4	4		4	4					4	4		4	4		4	4		4	4	
							•																		
		3	3		3	3		3	3		3	3		3	3		3	3		3	3		3	3	
		3	3		3	3		3	3		3	3		3	3		3	3		3	3		3	3	
							•																		
		2	2		2	2		2	2		2	2		2	2		2	2		2	2		2	2	
		2	2		2	2		2	2		2	2		2	2		2	2		2	2		2	2	
		1	1		1	1		1	1		1	1		1	1		1	1		1	1		1	1	
		1	1		1	1		1	1		1	1		1	1		1	1		1	1	1,	1	1	
				_		-	Batch Size		大	注2	C N	(5	涂度乙能	Ł, J	пÉ	门旦	[复]		C,	Aly	分误	全:	严 目	97口	

结语-

在这次课程中,学习了深度学习中的Normalization

在下次课程中,我们将会学习

模型序列化与加载

deepshare.net

深度之眼

联系我们:

电话: 18001992849

邮箱: service@deepshare.net

Q Q: 2677693114

公众号

客服微信