CYBERBULLYING TWEET ANALYSIS

EDI_Group No:- 2 Div:-AI-B

Day:-Friday

Date:-16 | 12 | 22

Presented by

45 - Samved Patil

12110152

48 - Siddhi Patil

12111408

55 - Vaishnavi Petkar

12110717

56 - Mrunmayee Phadke

12110650

oject Guide

Prof. Puja Cholke

Department of Multidisciplinary Engineering

VISHWAKARMA INSTITUE OF TECHNOLOGY, PUNE

Contents

- 1 Introduction
- 2 Literature Survey
- 3 Problem Statment
- 4 Objectives
- 5 System Architecture

- 7 System Requirments
- 8 Demo of Our Project
- 9 Advantages and challenges
- 10 Conclusion and Future Scope

12 References

Introduction

- People spend more time on social media, that keeps them constantly connected to other people, giving room for cyberbullying and creating the need of cybersecurity.
- 85% of Indian children are cyberbullied making it global highest.

 Cyberstalking, impersonation, and harassment are types of cyberbullying.

• Cyberbullies can communicate with their victims through text messaging, social networking websites, and instant messaging over the Internet.

Literature Survey

Title of Paper	Authors	Methodology	Demerits	Publication Year
 AI-Enabled Cyberbullying-Fre e Online Social Networks in Smart Cities Cyber Bullying Detection using NLP and Text Analytics 	 Abdulsamad Al-Marghilani Yeo Khang Hsien, Zailan Arabee Abdul Salam, Vinothini Kasinathan 	 AI-enabled cyberbullying-free OSN (AICBF-ONS) technique in smart cities. NLP and python based application removes inappropriate tweet and informs guardian about the case via email. 	 Performance of the AICBF-ONS technique could be extended to the design of outlier detection and data clustering approaches in big data environment Domain-specific, ambiguity 	• 2022

Title of Paper	Authors	Methodology	Demerits	Publication Year
 An NLP-Assisted Bayesian Time Series Analysis for Prevalence of Twitter cyberbullying during COVID-19 pandemic 	 Christopher Perez,Sayar Karmarkar 	 A Pre-trained NLP Model for Pre-processing Data, Sub setting Truly Offensive or Hateful Tweets, Visual Analysis on the Raw and Filtered Counts 	 It's necessary to develop a model with a new set of data without using a pre- trained model, It can take weeks to achieve a good performance depending on the amount of data. 	• 2022
 Analysing Cyberbullying using Natural Language Processing by Understanding Jargon in Social Media 	• Bhumika Bhatia, Anuj Verma, Anjum, Rahul Katarya	 This paper explores binary classification on multiple datasets. It uses multiple models suchas Bi-LSTM, GloVe, state-of-the-art models like BERT and unique pre-processing technique 	 This model detects various types of cyberbullying but does not classify them. 	• 2021

Title of Paper	Authors	Methodology	Demerits	Publication Year
 Crime Detection and Analysis from Social Media Messages Using Machine Learning and Natural Language Processing Technique 	 Xolani Lombo, Oyelade Olaide, Absalom El- Shamir Ezugwu 	 The system can detect various crimes using Natural language processing algorithms, SVM and classifiers to classify texts. 	 The accuracy of the models could be increased. 	• 2022
Analysis of fake news comments in social media	 Yulia M. Kuznetsova, Maxim Stankevich 	 The paper trained model on a huge dataset that was non- biased. 		• 2022

Title of Paper	Authors	Methodology	Demerits	Publication Year
 Cyberbullying Detection in Social media using Machine Learning 	 Aditya Desai, Shashank Kalaskar, Omkar Kumbhar, Rashmi Dhumal 	 Proposed model based to be considered while detecting cyberbullying and implement bidirectional deep learning model - BERT. Propose solution for automatic detection of bully traces over a social network, using techniques 	 Models have not considered all the necessary features that can be used to identify or classify a statement or 	• 2021
Unsupervised Cyber Bullying Detection in Social Networks	Michele Di Capua, Emanuel Di Nardo	derived from NLP.	post as bullying • Clustering efficiency of documents containing bully traces, built upon semantic and syntactic features of textual sentences.	• 2020

Title of Paper	Authors	Methodology	Demerits	Publica tion Year
 Cyberbullying detection using fairness constraints. 	• Oguzhan Gencoglu	 A cyberbully detection model where instead of manipulating dataset. They use fairness constraints of multiple rules to make a model that is context- based. 	 The datasets used are common ones. and the Twitter dataset has the lowest accuracy of 11.33% 	• 2020
Linking textual and contextual features for intelligent cyberbullying detection in social media	• Nabi Rezvani, Amin Beheshti, Alireza Tablordbar	This paper provides a pipeline for cyberbully detection that is i. Extraction of features ii. Contextualizing the features using crowdsourced feedback in a loop iii. Combing features using the fully connected network to identify and build potential useful features.	This model appears to be specifically designed for Twitter and Instagram. They haven't thought about using any other social media sites.	• 2020

Problem Statement

CYBERSECURITY AND CYBERBULLYING ANALYSIS IN SOCIAL MEDIA TO PREVENT A HOSTILE ENVIRONMENT THAT ERODES ENGAGEMENT AND COLLABORATION OF PEOPLE AND TO MITIGATE THE HEAVY SOCIAL PROBLEM OF CYBER BULLYING.

Objectives

- To construct literature survey.
- To find unbiased, large and suitable datasets.
- To study appropriate data preprocessing techniques.
- To research various algorithms for the problem statement.
- To detect:

Cyberbullying attack vectors Cybersecure elements

System Architecture

••••

System Architecture of Cyberbullying

System Requirements

Demo of Our Project

Prediction

Religion Cyberbullying!

Cyberbulling Tweet Analysis App

This app predicts the nature of the tweet into the following Categories.

- Bullying
- Non-Bullying
- Age
- Ethnicity
- Gender
- Not Cyberbullying
- Other Cyberbullying
- Religion

Enter Tweet

Tweet Input

But for u its Hinduphobia isnt it? When kashmiri pandits get killed, when a hindu girl gets raped by islamists, when radical islamic terrorism kill people in the world,u still keep quiet as if nothing is happening; but jump on when some 1 says anything against islam!! #Hinduphobid

Entered Tweet text

But for u its Hinduphobia isnt it? When kashmiri pandits get killed, when a hindu girl gets raped by islamists, when radical islamic terrorism kill people in the world,u still keep quiet as if nothing is happening; but jump on when some 1 says anything against islam!! #Hinduphobic

Demo of Our Project

```
[46]: # Model
from sklearn.svm import SVC
svm_model_linear = SVC(kernel= 'linear', C = 1).fit(X_train, y
svm_predictions = svm_model_linear.predict(X_test)
accuracy = svm_model_linear.score(X_test, y_test)
print(accuracy)
```

[49]: print(classification_report(y_test,svm_predictions))
 print(confusion_matrix(y_test,svm_predictions))
 print('Accuracy',accuracy_score(y_test,svm_predictions))

0.8212674323215751

				ı	precis	ion	rec	call	f1-score	support
		-	Bully:	ing	6	.53	(3.37	0.43	90
	-	Von-I	Bully:	ing	0	.60	(0.22	0.32	123
				age	0	.92	6	9.99	0.95	1574
		e	thnic:	ity	0	. 95	(9.99	0.97	1639
			gene	der	9	.91	6	3.87	0.89	1631
n	ot_cy	berl	oully:	ing	8	. 62	6	3.49	0.55	1588
oth	er_cy	berl	oully:	ing	0	. 59	(0.69	0.63	1521
			relig:	ion	0	.93	9	9.96	0.95	1586
			accur	асу					0.82	9752
		m.	acro a	avg	0.76		(0.70	0.71	9752
	3	weigh	nted :	avg	0	. 82	(3.82	0.82	9752
11	33	11	1	7	8	4	23	3]		
Î	15	27	2	11	8	12	46	2]		
	0	0	1554	1	2	6	11	0]		
]	1	0	1	1621	4	4	8	0]		
[5	1	8	14	1419	89	87	8]		
[3	5	99	20	58	781	551	71]		
	5	1	29	19	63	332	1047	25]		
Ĩ	0	θ	3	9	5	32	10	1527]]	
Acc	unacy	0.1	32126	743232	215751					

0]: print(classification_report(y_test,y_pred1))
 print(confusion_matrix(y_test,y_pred1))
 print('Accuracy',accuracy_score(y_test,y_pred1))

			Contract of the				-			
				- 1	precis	ion	red	call	f1-score	
			Bully:	ing	0	.36	(3.31	0.33	
		Non-I	Bully:	ing	0	.38	(0.24	0.30	
				age	0	.98	(3.97	0.97	
		e ⁴	thnic:	ity	0	.97	(0.96 0.97		
			geni	der	0	.83	(3.81	0.82	
n	ot_	cyberl	bully:	ing	0	.46	(0.45	0.45	
		cyberl			0	.46	(0.54	0.50	
			relig:	ion	0	.94	(9.90	0.92	
			accur	асу					0.76	
		m	acro .	avg	0	.67	(0.65	0.66	
		weigh	hted :	avg	0	.77	(9.76	0.76	
]]	28	10	1	4	9	8	27	31	la.	
]	23	30	1	4	3	24	32	6]		
Ĩ	0	0	1522	1	2	29	20	0]		
Ī	5	5	1	1571	11	16	23			
ĺ	3	7	2	6	1321	125				
Ī	6	7	19	14	120	709	660	53]		
Ī	7	9	9	7	110	548	823	8]		
Ī	6	10	2	9	20	78	39	1422]]	

2011010020000000

Advantages

- Helps identify various forms of cyberbullying and threats to cybersecurity that can be used in different collaborations.
- Helps create a safe environment for people of all age, gender and race.

Challenges

- The access restrictions on highquality data limit the applicability of state-of-the-art techniques.
- Compiling various types of cyberbullying ways under one general head.

Conclusion

Cybersecurity and tackling cyberbullying is the need of the hour.

Future Scope

We can collaborate with various social media platforms like twitter or reddit and integrate our algorithm with theirs. We can also collaborate with the government to reduce cyber crime and harrasement.

EXTENSION

We can create a chrome extension. Using web scrapping we can collect the data on user's screen and implement our model on it to alert the user.

AWARENESS AND REPORTS

We can collect reports and statistics around the current scenario of cybersecurity and cyberbullying in social media. We can create awareness and take measures in required areas based on these statistics.

References

- Oguzhan Gencoglu, Cyberbullying Detection with Fairness Constraints, IEEE Xplore, 2020
- Nabi Rezvani, Amin Beheshti, Alireza Tablordbar, Linking textual and contextual features for intelligent cyberbullying detection in social media, Association for Computing Machinery New York, NY, United States, 2021 [1]
- Aditya Desai, Shashank Kalaskar, Omkar Kumbhar, Rashmi Dhumal, Cyberbullying Detection in Social media using Machine Learning, ITM web of conferences, 2021 [2]
- Michele Di Capua, Emanuel Di Nardo, Unsupervised Cyber Bullying Detection in Social Networks, 2016 23rd International Conference on Pattern Recognition (ICPR), 2020[3]
- Yeo Khang Hsien, Zailan Arabee Abdul Salam, Vinothini Kasinathan, Cyber Bullying Detection using NLP and Text Analytics, IEEE International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE),2022[4]
- Christopher Perez, Sayar Karmarkar, An NLP-Assisted Bayesian Time Series Analysis for Prevalence of Twitter cyberbullying during COVID-19 pandemic, Cornell university, 2022[5]
- Yulia M. Kuznetsova, Maxim Stankevich, Analysis of fake news comments in social media, Journal of Retailing and Consumer Services, Volume 57, November 2020[6]

Thank You!

We are open to questions.

