

Practical Session 1

Foundations Spatial Data Science

How are we going to work?

- Practical session, every week 2 hours Don't switch group!
- 1h "Lecture Tips & Tricks" 10min break 50min "Self-Work"
- Questions Raise your hand or Write in the Zoom chat!

Keep in Mind

- It will be challenging
 - Theory and practice are different!
- Type, don't copy paste
 - Examples help build muscle memory, tweak and change them
- We am here to help
 - Be active on Slack Help each other out
- Keep it simple
 - Building blocks after building blocks

Today Goals & Aims

- Command Line Tools & Terminal
- Git & GitHub Get started
- Markdown file Write your own and edit it
- Docker What, Why, How

Today Goals & Aims

Term Calendar						
	Weekly Topic		WORKSHOP		PRACTICAL Date	
			Lead	Date	Groups 1,2,3	Groups 4,5,6
				(Monday)	(Tuesday)	(Wednesday)
1	Getting Oriented	initiate	David, Nicolas	4 Oct	4 Oct	5 Oct
2	Foundations (Part 1)	initiate	Nicolas	11 Oct	11 Oct	12 Oct
3	Foundations (Part 2)	initiate	Nicolas	18 Oct	18 Oct	19 Oct
4	Objects & Classes	İnitiate	David	25 Oct	25 Oct	26 Oct
5	Numeric Data	engage	David	1 Nov	1 Nov	2 Nov
	Reading Week					
6	Spatial Data	engage	Nicolas	15 Nov	15 Nov	16 Nov
7	Textual Data	engage	Nicolas	22 Nov	22 Nov	23 Nov
8	Visualising Data	solve	David	29 Nov	29 Nov	30 Nov
9	Classifying Data	solve	David	6 Dec	6 Dec	7 Dec
10	Clustering Data	solve	Nicolas	13 Dec	13 Dec	14 Dec

Terminal

Damn! Linux is so violent

root@terminal:~

root@terminal:~# love

-bash: love: not found

root@terminal:~# happiness

-bash: happiness: not found

root@terminal:~# peace

-bash: peace: not found

root@terminal:~# kill

-bash: you need to specify whom to kill

Terminal - Basic Commands

- Is
- cd
- cd..
- mkdir
- touch file_name
- nano file_name
- cat file_name

- # list files in directory
- # change directory
- # move back up one directory
- # create new directory (folder)
- # create a new file "file_name"
- # open "file_name" to edit it
- # output contents of "file_name"

Git - What is it?

Git - Free and open source distributed version control system.

- 1. Track changes to files over time
- 2. Record project changes and go back to any specific version at any time
- 3. Help to collaborate on team projects

GitHub - What is it?

GitHub - Development platform using Git.

- 1. Cloud-based storage
- 2. Host *Git* repositories on the web
- 3. Interact with other developer's code, make changes, edit
- 4. Fork Pull Merge

GitHub - Why do we use it?

"Piled Higher and Deeper" by Jorge Cham, <u>www.phdcomics.com</u>

GitHub - Workflow

Diagram: Dough Mahugh, https://www.dougmahugh.com/envisioning-github

GitHub - Understanding the basics

- 1. Go to GitHub and make a new repository
- 2. Connect your GitHub repo to your local repo
- 3. Create, edit code and push it to GitHub

GitHub - Practical Task 1

Create a new repository A repository contains all project files, including the revision history. Already have a project repository elsewhere? repository. Repository name * Owner * audevuilli -**FSDS** Great repository names are short and memorable. Need inspiration? How about solid-doodle? Description (optional) Anyone on the internet can see this repository. You choose who can commit. Private You choose who can see and commit to this repository. Initialize this repository with: Skip this step if you're importing an existing repository. Add a README file This is where you can write a long description for your project. Learn more. Choose which files not to track from a list of templates. Learn more. Choose a license A license tells others what they can and can't do with your code. Learn more. This will set as the default branch. Change the default name in your settings. Create repository **CLICK CREATE**

GitHub - Practical Task 1

```
CASA0013 — -bash — 120×23
                   :CASA0013 home directory :$ pwd
                       /Documents/CASA UCL/CASA0013
/Users/ home directory
                   :CASA0013 home directory $ git clone your github repository url
Cloning into 'FSDS'...
remote: Enumerating objects: 3, done.
remote: Counting objects: 100% (3/3), done.
remote: Total 3 (delta 0), reused 0 (delta 0), pack-reused 0
Unpacking objects: 100% (3/3), done.
                   :CASA0013 home directory
                                             $ git config --global user.email your github email
                                             $ git config --global user.name "your github username"
                   :CASA0013 home directory
                   :CASA0013 home directory
```


GitHub - Account Security

- Enable 2-factor authentication
- Create personal access tokens (PATs) to authenticate programmatically
- Config GitHub on your local machine ->
 git config --global user.email "myemail@ucl.ac.uk"
 git config --global user.name "my GitHub username"
 git config credential.helper store

GitHub - git clone

git clone <github-repo-url>

This will clone a GitHub repo to your local machine.

- You can clone any public repository
- Use the repository **url** to clone it

GitHub - Basic Commands

- git status # get status of git
- git pull origin master
- git add file_name # staged file_name
- git commit -m "Short message What is the change?"
- git push # push to main branch (GitHub repo)

Markdown - What is it?

Markdown (.md) - A way to style text on the web.

- Control the formatting of words as **bold** or *italic*
- Add images, lists, tables, code
- Create headers, insert quotes
- Directty link to someone with @mentions

Docker

Docker Blog, Illustration, https://www.docker.com/

Docker - What is it?

Docker - Platform to develop, deploy, and run applications with **containers**, describe as "containerization".

- Lightweight
- Don't have a full OS
- Portable, build locally, deploy to any docker environment
- Solve "it works on my machine" headache

Docker - Understanding the basics

Docker - Understanding the basics

Docker Images - Contain everything that is need to run an application as a container (code, runtime, libraries, configuration files, environment variables).

Docker Containers - Unit of software that packages up code and all its dependencies. Runtime instance of an image. Run as a discrete process from one computing environment to another. Have their own memory.

Docker - Get Started

- 1. Download and install Docker
- 2. Save "download a script" as *docker.sh* in your home directory
- 3. Open Terminal in your home directory -> sh ~/docker.sh start
- 4. Open your web browser -> *localhost:8888*
- 5. Enter password ...

Docker - Run & Check!

- Start docker -> sh ~/docker.sh start
- Navigate to your CASA/modules/fsds
- Create a new IPython Notebook file called Practical 1, Save it
- Stop docker -> sh ~/docker.sh stop

Recap - What did we learn today?

- Terminal Allow you to access any files from your computer.
- **GitHub** Platform to host git repo. Allow to share, edit others developer's code.
- .md -> Markdown file & .ipynd -> Python Notebook
- Docker Images Contain all the codes, dependencies that you need to run application (here Jupyter Notebook)

Time to practice!

References

GitHub

- Molly Nemerever, "Git, GitHub, & Workflow Fundamentals", <u>https://dev.to/mollynem/git-github--workflow-fundamentals-5496</u>
- Colt Steele, "Learn GitHub in 20 Minutes", <u>https://www.youtube.com/watch?v=nhNq2klvi9s</u>
- Codepath, "Using Git with Terminal", <u>https://guides.codepath.com/ios/Using-Git-with-Terminal</u>

Markdown

 GitHub Guides, "Mastering Markdown", <u>https://guides.github.com/features/mastering-markdown/</u>

References

Docker

- NetworkChuck, "Docker Containers",
 https://www.youtube.com/watch?v=eGz9DS-aleY
- Sebastian Eschweiler, "Docker Beginner's Guide Part 1: Images & Containers", <u>https://medium.com/codingthesmartway-com-blog/docker-beginners-guide-part-1-images-containers-6f3507fffc98</u>
- Prakhar Srivastav, "Docker for beginners", <u>https://docker-curriculum.com/</u>