ML Lab

Lab 10 - Submission

Name: Gauthamdev R Holla

SRN: PES2UG23CS197

Branch: CSE

Sem: V Section: C

1) Moons Dataset

SVM with LIN	EAR Kernel PE	S2UG23CS1	.97	
	precision	recall	f1-score	support
_				
Class 0	0.85	0.89	0.87	75
Class 1	0.89	0.84	0.86	75
accuracy			0.87	150
macro avg	0.87	0.87	0.87	150
weighted avg	0.87	0.87	0.87	150

SVM with RBF	Kernel PES2U precision		f1-score	support	
Class 0	0.95	1.00	0.97	75	
Class 1	1.00	0.95	0.97	75	
accuracy			0.97	150	
macro avg	0.97	0.97	0.97	150	
weighted avg	0.97	0.97	0.97	150	

SVM with POLY	Kernel PES2 precision		f1-score	support	
Class 0	0.85	0.95	0.89	75	
Class 1	0.94	0.83	0.88	75	
accuracy			0.89	150	
macro avg	0.89	0.89	0.89	150	
weighted avg	0.89	0.89	0.89	150	

Moons Dataset - SVM with LINEAR Kernel <PES2UG23CS197>

Moons Dataset - SVM with RBF Kernel < PES2UG23CS197>

Moons Dataset - SVM with POLY Kernel <PES2UG23CS197>

2) Banknote Dataset

SVM	with LI	NEAR Kernel	PES2UG23CS1	L97	
		precision	recall	f1-score	support
	Forge	d 0.90	0.88	0.89	229
	Genuin	e 0.86	0.88	0.87	183
	accurac	у		0.88	412
	macro av	g 0.88	0.88	0.88	412
wei	ghted av	g 0.88	0.88	0.88	412

SVM with RBF	Kernel PES2U	323CS197						
	precision	recall	f1-score	support				
Forged	0.96	0.91	0.94	229				
Genuine	0.90	0.96	0.93	183				
accuracy			0.93	412				
macro avg	0.93	0.93	0.93	412				
weighted avg	0.93	0.93	0.93	412				
					<u> </u>	<u> </u>	<u> </u>	

SVM with POLY	Kernel PES2 precision		f1-score	support
Forged	0.82	0.91	0.87	229
Genuine	0.87	0.75	0.81	183
accuracy			0.84	412
macro avg	0.85	0.83	0.84	412
weighted avg	0.85	0.84	0.84	412

Banknote Dataset - SVM with LINEAR Kernel < PES2UG23CS197>

Banknote Dataset - SVM with RBF Kernel < PES2UG23CS197>

Banknote Dataset - SVM with POLY Kernel <PES2UG23CS197>

3) Margin Analysis

Soft Margin SVM (C=0.1) PES2UG23CS197

Hard Margin SVM (C=100) PES2UG23CS197

4) Analysis Questions

Moons Dataset Questions:

1. Inferences about the Linear Kernel's performance.

- Overall accuracy of 87%
- Good precision and recall.
- Moons dataset is non-linearly separable. So, it misclassifies points near the overlapping regions of the two classes.

2. Comparison between RBF and Polynomial kernel decision boundaries.

- Both RBF and Polynomial kernels outperform the Linear Kernel.
- RBF Kernel Accuracy = 97%
- Polynomial Kernel Accuracy = 89%
- RBF Kernel has flexibility in modeling nonlinear relationships. So, it adapts well to the Moons dataset.
- Polynomial Kernel is less adaptive than RBF but better than Linear.

Banknote Dataset Questions:

1. Which kernel was most effective for this dataset?

- RBF Kernel is more effective with 93% accuracy.
- Outperforms both Linear and Polynomial. This indicates that the data has non-linear patterns.
- It separates "Forged" and "Genuine" classes more accurately due to its ability to model complex decision boundaries.

2. Why might the Polynomial kernel have underperformed here?

- The Banknote dataset didn't exhibit polynomial-like separation, making it less effective.
- So, the Polynomial kernel may have introduced unnecessary complexity, leading to overfitting or poor generalization.
- Unlike the Moons dataset, the Banknote dataset features are better separated with simpler, smoother boundaries.

Performance Discussion Hard vs. Soft Margin Questions:

1. Which margin (soft or hard) is wider?

Soft Margin SVM produces a wider margin.

2. Why does the soft margin model allow "mistakes"?

The primary goal is generalization. It accepts a few mistakes to perform well on future inputs too.

3. Which model is more likely to be overfitting and why?

Hard Margin as fit forces the model to avoid misclassifications at all costs, which can lead to memorizing the training data rather than learning general patterns.

4. Which model would you trust more for new data, and why?

Soft Margin as it is better suited to handle variability and uncertainty. Low C value is generally recommended when working with noisy datasets, as it encourages the model to focus on broader trends.