Développement 19. Générateurs des isométries

Soit $n \ge 1$ un entier. On considère un espace vectoriel euclidien E de dimension n.

Lemme 1. Soit $F \subset E$ un sous-espace vectoriel stable par une isométrie $f \in O(E)$. Alors son orthogonal F^{\perp} est également stable par l'isométrie f.

Preuve Soit $x \in F^{\perp}$. On veut montrer que $f(x) \in F^{\perp}$, c'est-à-dire

$$\forall y \in F, \qquad \langle f(x), y \rangle = 0.$$

On fixe alors un vecteur $y \in F$. Comme l'application f est une isométrie stabilisant le sous-espace vectoriel F, elle induit une bijection de ce sous-espace vectoriel F vers lui-même, donc il existe un vecteur $x' \in F$ tel que y = f(x'). Enfin, l'isométrie f préserve les produits scalaires ce qui permet d'écrire

$$\langle f(x), y \rangle = \langle f(x), f(x') \rangle = \langle x, x' \rangle = 0$$

puisque $x \in F^{\perp}$ et $x' \in F$.

Théorème 2. Le groupe O(E) est engendré par les réflexions. Plus précisément, tout élément de ce dernier peut s'écrire comme la composée de p réflexions avec $p \le n$.

Notation. Pour un hyperplan vectoriel $H \subset E$, on note $\sigma_H \in O(E)$ la réflexion par rapport à ce dernier.

Preuve Effectuons une récurrence sur l'entier n.

- Initialisation. On suppose n=1. Soit $f\in {\rm O}(E)$ une isométrie. En particulier, il s'agit d'une application linéaire, donc elle est de la forme $f=\lambda\,{\rm Id}_E$ pour un certain réel $\lambda\in{\bf R}$. Mais cette dernière préservant la norme, on doit avoir $|\lambda|=1$ si bien que $\lambda=\pm 1$. Ainsi l'isométrie $f=\pm\,{\rm Id}_E$ est une réflexion.
- Hérédité. Soit $n \ge 2$ un entier. On suppose que le théorème est vrai pour tous les espaces vectoriels euclidien de dimension inférieure ou égale à n-1. Soit E un espace vectoriel euclidien de dimension n et $f \in \mathcal{O}(E)$ une isométrie. Soit $x_0 \in E \setminus \{0\}$ un vecteur. Deux cas de figure se présentent.
 - (i) On suppose que le vecteur x_0 est fixé par l'isométrie f. Grâce au lemme, l'hyperplan $S := x_0^{\perp} = (\mathbf{R} x_0)^{\perp}$ est stable par l'isométrie f. Ainsi l'endomorphisme induit $f' := f|_S$ est une isométrie de l'espace S qui est de dimension n-1. Notre hypothèse de récurrence assure donc qu'il existe des hyperplans $G_1, \ldots, G_q \subset S$ avec $q \le n-1$ tels que

$$f' = \sigma_{G_1} \circ \cdots \circ \sigma_{G_a}$$
.

Pour chaque indice $i \in [1, q]$, construisons l'hyperplan $H_i := G_i \oplus \mathbf{R} x_0 \subset E$. Montrons que

$$f = \sigma_{H_1} \circ \cdots \circ \sigma_{H_q}$$
.

Comme $E = S \oplus \mathbf{R} x_0$, il suffit de vérifier cette dernière égalité en l'évaluant en le vecteur x_0 et en un vecteur $y \in S$. Dans le premier cas, comme $x_0 \in H_i$ pour

tout indice $i \in [1, q]$, on a

$$\sigma_{H_1} \circ \cdots \circ \sigma_{H_q}(x_0) = x_0 = f(x_0).$$

Dans le second cas (faire un dessin), pour tout vecteur $y \in S$, on a

$$\sigma_{H_1} \circ \cdots \circ \sigma_{H_q}(y) = \sigma_{G_1} \circ \cdots \circ \sigma_{G_q}(y) = f'(y) = f(y).$$

Comme $q \leq n-1 \leq n$, cela termine ce premier cas.

(ii) On suppose désormais que le vecteur x_0 n'est pas fixé par l'isométrie f. Considérons alors l'hyperplan $H := (x_0 - f(x_0))^{\perp}$. On peut écrire

$$f(x_0) = \frac{f(x_0) + x_0}{2} + \frac{f(x_0) - x_0}{2}$$

avec $f(x_0) - x_0 \in H^{\perp}$ et $f(x_0) + x_0 \in H$ puisque

$$\langle f(x_0) + x_0, x_0 - f(x_0) \rangle = \langle f(x_0), x_0 \rangle - \|f(x_0)\|^2 + \|x_0\|^2 - \langle x_0, f(x_0) \rangle$$
$$= \|x_0\|^2 - \|f(x_0)\|^2 = 0,$$

On obtient alors $\sigma_H(f(x_0)) = x_0$. Ainsi l'isométrie $\sigma_H \circ f$ admet un point fixe et le cas (i) nous fournit alors des hyperplans $H_1, \ldots, H_q \subset E$ avec $q \leq n-1$ tels que

$$\sigma_H \circ f = \sigma_{H_1} \circ \dots \sigma_{H_q}$$
.

Comme les symétries sont des involutions, on obtient

$$f = \sigma_H \circ \sigma_{H_1} \circ \dots \sigma_{H_q}$$

avec
$$q+1 \leq n$$
.

◁

Corollaire 3. Soit \mathscr{E} un espace affine euclidien de dimension n. Tout élément du groupe Isom(\mathscr{E}) peut s'écrire comme la composée de p réflexions avec $p \le n+1$.

Preuve Soit $\varphi \in \text{Isom}(\mathscr{E})$ une isométrie affine. Si elle admet un point fixe $A \in \mathscr{E}$, alors on vectoriel l'espace \mathscr{E} au point A et le théorème assure qu'elle s'écrit comme une composée de p réflexions avec $p \leqslant n$.

Sinon elle admet un point $A \in \mathcal{E}$ qui n'est pas fixe. Notons $A' \in \mathcal{E}$ son image. Considérons l'hyperplan médiateur \mathcal{H} du segment [AA']. Alors l'isométrie affine $\sigma_{\mathcal{H}} \circ \varphi$ fixe le point A et on conclut comme dans le cas (ii) de la preuve du théorème.

◁

Michèle Audin. Géométrie. EDP Sciences, 2006.