BLG435E Artificial Intelligence

Lecture 2: Agents

Outline

- Agents and Environments
- Rationality
- PEAS
- Environment Types
- Agent Types

Agents

Agents

- Agents perceive their own actions
 - Effects?
- Percept: the agen't perceptual input
- Percept sequence: the complete history
- Action choices depend on the percept sequence
- Agent function, abstract mathematical description (agent's behavior)
- Agent program implements the function

Vacuum-Cleaner World

Percepts: location and contents, e.g., [A, Dirty]

Actions: Left, Right, Suck, NoOp

A Vacuum-Cleaner Agent Function

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Dirty]	Suck
:	:

What is the right way to fill out the table?

What makes an agent good, bad or stupid?

A Vacuum-Cleaner Agent Function

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Dirty]	Suck
:	:

function Reflex-Vacuum-Agent([location, status]) returns an action if status = Dirty then return Suck else if location = A then return Right else if location = B then return Left

Rationality

A rational agent does the right thing

- What is rational at any given time depends on:
 - The performance measure that defines the criterion of success
 - The agent's prior knowledge of the environment
 - The actions that the agent can perform
 - The agent's percept sequence to date

Vacuum Cleaner Agent - PM

- The amount of dirt cleaned up in a single eight-hour shift.
- Rewarding agent for having a clean floor.
- Factoring amount of electricity consumed and the amount of noise generated

Design PM according to what you want

Rational Agent

 For each possible percept sequence, a rational agent should select an action that is expected to maximize its performance measure, given the evidence provided by the percept sequence and whatever built-in knowledge the agent has.

With a rational agent, what you ask is what you get

Rationality vs. Perfection

- Omniscience is impossible in reality
- Agents don't estimate the actual outcome of actions

Rationality maximizes expected outcome, while perfection maximizes actual performance

Further Dimensions in Rationality

- Information gathering
 - Exploration
 - Helps maximize the expected outcome
- Learning

Autonomy

With or without initial knowledge

Agents <> Environments

- Task environment forms the problem
 - Rational agents are the solutions
- The task environment affects the appropriate design of the agent

The Nature of Environments

- PEAS for task environments:
 - Performance measure
 - Environment
 - Actuators
 - Sensors

PEAS for automated taxi driver

Properties of Task Environments

Fully observable vs. Partially observable

- Deterministic vs. Stochastic
 - Strategic

Episodic vs. Sequential

- Static vs. Dynamic
 - semidynamic

Properties of Task Environments

Discrete vs. Continous

- Single agent vs. Multiagent
 - competitive
 - cooperative

Task Environment	Observable	Deterministic	Episodic	Static	Discrete	Agents
Crossword puzzle						
Chess with a clock						
Poker						
Backgammon						
Taxi driving						

Task Environment	Observable	Deterministic	Episodic	Static	Discrete	Agents
Crossword puzzle	Fully	Deterministic	Sequential	Static	Discrete	Single
Chess with a clock						
Poker						
Backgammon						
Taxi driving						

Task Environment	Observable	Deterministic	Episodic	Static	Discrete	Agents
Crossword puzzle	Fully	Deterministic	Sequential	Static	Discrete	Single
Chess with a clock	Fully	Strategic	Sequential	Semi	Discrete	Multi
Poker						
Backgammon						
Taxi driving						

Task Environment	Observable	Deterministic	Episodic	Static	Discrete	Agents
Crossword puzzle	Fully	Deterministic	Sequential	Static	Discrete	Single
Chess with a clock	Fully	Strategic	Sequential	Semi	Discrete	Multi
Poker	Partially	Stochastic	Sequential	Static	Discrete	Multi
Backgammon						
Taxi driving						

Task Environment	Observable	Deterministic	Episodic	Static	Discrete	Agents
Crossword puzzle	Fully	Deterministic	Sequential	Static	Discrete	Single
Chess with a clock	Fully	Strategic	Sequential	Semi	Discrete	Multi
Poker	Partially	Stochastic	Sequential	Static	Discrete	Multi
Backgammon	Fully	Stochastic	Sequential	Static	Discrete	Multi
Taxi driving						

Task Environment	Observable	Deterministic	Episodic	Static	Discrete	Agents
Crossword puzzle	Fully	Deterministic	Sequential	Static	Discrete	Single
Chess with a clock	Fully	Strategic	Sequential	Semi	Discrete	Multi
Poker	Partially	Stochastic	Sequential	Static	Discrete	Multi
Backgammon	Fully	Stochastic	Sequential	Static	Discrete	Multi
Taxi driving	Partially	Stochastic	Sequential	Dynamic	Continuous	Multi

The Structure of Agents

The job of AI is to design the agent program

Agent architecture

Agent = Architecture + Program

Agent Types

- Simple reflex agents
- Model-based reflex agents
- Goal-based reflex agents
- Utility-based agents

All these agents can be converted into learning agents

Simple Reflex Agents

Reflex Vacuum Agent Program


```
function Reflex-Vacuum-Agent ([location, status]) returns an action
   if status = Dirty then return Suck
   else if location = A then return Right
   else if location = B then return Left
(setq joe (make-agent :name 'joe :body (make-agent-body)
                         :program (make-reflex-vacuum-agent-program))
(defun make-reflex-vacuum-agent-program ()
  #'(lambda (percept)
      (let ((location (first percept)) (status (second percept)))
         (cond ((eq status 'dirty) 'Suck)
               ((eq location 'A) 'Right)
```

((eq location 'B) 'Left)))))

Simple-Reflex Agent Program


```
function SIMPLE-REFLEX-AGENT(percept) returns an action static: rules, a set of condition—action rules state \leftarrow \text{Interpret-Input}(percept) \\ rule \leftarrow \text{Rule-Match}(state, rules) \\ action \leftarrow \text{Rule-Action}[rule] \\ \textbf{return} \ action
```


Model-based Reflex Agents

Model-based Agent Program

Goal-Based Agents

Utility-based Agents

Learning Agents

