Primary Productivity in Ocean

Primary Production The conversion of the inorganic carbon, usually in the form of carbon dioxide, into organic compounds by autotrophs.

Primary Productivity The rate of primary production, that is, the amount of carbon fixed under a square meter of sea surface in a day or in a year.

So marine primary producers include:

Cyanobacteria Microalgae Macroalgae Seagrasses

. . . .

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Sunlight Water column under 1 square meter of sea surface **Organic** matter o₂

Sea bottom

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

photosynthetically available radiation (PAR)

Chloroplast

Photosynthesis consists of light and dark reactions:

- The light reactions are associated with the thylakoid membranes and consist of the activities of photosystems I and II. These activities use the energy of photons to produce a proton gradient and reducing power.
- The dark reactions use the energy of the light reactions to fix carbon dioxide and synthesize carbohydrates. These reactions are referred to as the Calvin cycle, and take place in the stroma.

Photosynthesis

Light reaction:

$$H_2O \rightarrow Photo systems I & II ---> O_2 + NADP^+ + ATP$$

Dark reaction:

$$CO_2 + NADP^+ + ATP \longrightarrow Calvin cycle \longrightarrow (CH_2O)_6$$

The overall equation for photosynthesis is:

Limiting factors for photosynthesis

$$PP = f(L, N, T, G)$$

Light intensity
Nutrients: N, P, S_i & Fe
Temperature
Grazing (zooplankton)

Copyright 2001 by Benjamin Cummings, an imprint of Addison Wesley Longman.

Light intensity ($\mu E/m^2/s$)

Copyright 2001 by Benjamin Cummings, an imprint of Addison Wesley Longman.

Euphotic zone depth varies with suspended particles and dissolved organic matter in the water column

 K_I I; Light intensity ($\mu E/m^2/s$)

$$\mathbf{P}^{\mathbf{B}} = \mathbf{P}^{\mathbf{B}}_{\mathbf{max}} \times [\mathbf{I} / (\mathbf{K}_{\mathbf{I}} + \mathbf{I})]$$

Which P vs I curve would favor a sunny as opposed to shady habitat?

'Sun' vs 'Shade' leaf

http://www.marietta.edu/~spilatrs/biol103/photolab/sunexpl.gif

Copyright 2001 by Benjamin Cummings, an imprint of Addison Wesley Longman.

Primary production $(mgC/m^3/d)$

Types of nutrient NO₃

 PO_4^{-3}

 SiO_2

minor nutrients (for example, Fe^{+2})

Depth (m)

NO_3 concs. (μM)

Surface depletion

Witracline; ≈ euphotic zone depth

Measuring primary production

O₂ method

decreases in dissolved oxygen are used to estimate cellular respiration in the absence of light
these decreases are subtracted from the oxygen content in the light bottles to provide a measure of net photosynthesis (i.e., excess of phytoplankton production after respiration)

¹⁴C method

production

- paired light and dark bottles are injected with a known quantity of bicarbonate containing labeled ¹⁴C amount of assimilated radioactive carbon is measured and net primary productivity is then computed using a conversion factor; is much more accurate than the oxygen measurements, particularly when the productivity is very low measures something between gross and net
- buoy transparent bottle bottle _ pair 2 Phytoplankton in the transparent bottles can form sugars and carbon during photosynthesis; those in the opaque bottles can only respire

Gross production = net production + respiration

O₂ method

- Net production = $[O_2]_L [O_2]_I = \Delta[O_2]_L$
- Respiration = $[O_2]_D [O_2]_I = \Delta [O_2]_D$
- Gross production = $\Delta[O_2]_L + \Delta[O_2]_D$

¹⁴C method

- $-2H_2O + {}^{14}CO_2 \rightarrow H_2O + ({}^{14}CH_2O) + O_2$
- ¹⁴CH₂O → POC(sugars+lipids+proteins) + DOC
- ${}^{14}C_{\text{organic}} = [{}^{14}C \text{ POC} + {}^{14}C \text{ DOC}]_{L} [{}^{14}C \text{ POC} + {}^{14}C \text{ DOC}]_{D}$

- Rates of ¹⁴C photosynthesis fall between Gross and Net Production because of 2 forms of error associated with respiratory processes:
 - 1) Respiration of ¹⁴C-labeled photysynthate
 - 2) Recycling of ¹²CO₂ into photosynthate

Geographical variations in productivity

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 10.1 Typical Rates of Primary Production in Various Marine Environments

Environment	Rate of Production (Grams of Carbon Fixed/M ² /YR)
PELAGIC ENVIRONMENTS	
Arctic Ocean	<1-100
Southern Ocean (Antarctica)	40-260
Subpolar seas	50-110
Temperate seas (oceanic)	70–180
Temperate seas (coastal)	110-220
Central ocean gyres*	4–40
Equatorial upwelling areas*	70–180
Coastal upwelling areas*	110–370
BENTHIC ENVIRONMENTS	
Salt marshes	250-2,000
Mangrove forests	370-450
Seagrass beds	550-1,100
Kelp beds	640-1,800
Coral reefs	1,500–3,700
TERRESTRIAL ENVIRONMENTS	
Extreme deserts	0–4
Temperate farmlands	550-700
Tropical rain forests	460-1,600

Note: Production rates can be much higher at certain times or in specific locations, especially at high latitudes. Values for some selected terrestrial environments are given for comparison.

[&]quot;See "Patterns of Production," p. •••.

Typical primary production rates

Regions	Rates (mgC m ⁻² d ⁻¹)
Oligotrophic ocean	50-200
Shelves	500-2000
Coastal upwelling	2000-5000
Estuaries, Polar blooms	2000-10,000

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Seasonal changes in net short-wave radiation, net long-wave radiation/sensible heat exchange, and latent heat exchange, and the total at 35°N 48°W

© Copyright 2001 by Benjamin Cummings, an imprint of Addison Wesley Longman.

Figure 3.6 An illustration of the relationships among the compensation light depth, the critical depth, and the depth of mixing. At the compensation depth (D_c) , the light intensity (I_c) is such that the photosynthesis of a single cell (P_c) is equal to its respiration (R_c) ; above this depth there is a net gain from photosynthesis $(P_c > R_c)$ and below it there is a net loss $(P_c < R_c)$. As phytoplankton cells are mixed above and below the compensation depth, they experience an average light intensity (I_c) in the water column. The depth at which I_c equals I_c is the critical depth (D_{cr}) where photosynthesis throughout the water column (P_w) equals phytoplankton respiration throughout the water column (R_w) . The area bounded by points A, C and D represents phytoplankton respiration, and the area bounded by points A, C and E represents photosynthesis; these two areas are equal at the critical depth. When the critical depth is less than the depth of mixing (D_m) (as illustrated in this figure), no net production takes place because $P_w < R_w$. Net production of the phytoplankton $(P_w > R_w)$ only occurs when the critical depth lies below the depth of mixing.

$$D_C : P = R (mgC m^{-3} d^{-1})$$

$$\mathbf{D_{CR}}: \int \mathbf{P} = \int \mathbf{R} \ (\mathbf{mgC} \ \mathbf{m}^{-2} \ \mathbf{d}^{-1})$$

$$\mathbf{D_{m}} < \mathbf{D_{CR}} \quad \Rightarrow \int \mathbf{P} > \int \mathbf{R}$$
$$\Rightarrow \quad \mathbf{Bloom}$$

$$D_{m} > D_{CR} \rightarrow \int P < \int R$$

$$\rightarrow \text{No bloom}$$

Ekman Transport

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Estuarine and coastal sea

Eutrophic

High production

Large cells (microplankton) dominant

Open ocean

Oligotrophic

Low production

Small cells (picoplankton) dominant

Picoplankt on versus nano- and microphyt oplankt on biomass and production

Agawin et al., 2000

 Why picophytoplankton dominate in oligotrophic oceanic waters?

Surface to Volume Ratio

As a cell increases in size, the *volume* increases at a greater rate than the *surface area*. This will have profound functional consequences for the cell. Since nutrients and gas exchange must occur across the cell membrane, an increase in size will result in a reduction of exchange functions per a unit volume. Eventually, the size will become so large that exchange across the membrane will be inadequate to support life. For this reason, cell size is "small" and cannot increase.

The smaller the cell, the larger surface-to-volume ratio.....

Consequently, the larger surface-to-volume ratio, the higher diffusive rate for a given volume.

So small cell has competitive advantages in low nutrient environment.