CS 316: Introduction to Deep Learning

Linear Regression Week 4

Dr Abdul Samad

Lecture Outline

- Linear Regression Model
- Single Layer Neural Network
- Evaluating Linear Regression Model
- Training Linear Regression Model
- Optimization
 - Gradient Descent
 - Learning Rate
 - Mini Batch Stochastic Gradient Descent

House Price Prediction

Predict price of the house based on its features.

The features in consideration are:

- Total Area
- Number of Bedrooms
- Number of Bathrooms

Figure Source: <u>House Price Prediction</u>

Simple Linear Model

The simple linear model makes the following assumptions:

- Area, number of bedrooms, and number of bathrooms are key factors influencing house price and are denoted by x_1, x_2, x_3 .
- The sale price \hat{y} is the weighted sum of the key factors and the bias.

$$\hat{y} = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$$

where w_1, w_2 and w_3 are the weights and b is the bias term.

Linear Model

Given n dimensional input $\mathbf{x} = [x_1, x_2, \cdots, x_n]^\top$, the Linear Model has n weights $\mathbf{w} = [w_1, w_2, \cdots, w_n]^\top$ and bias b. The output \hat{y} is the weighted sum of the inputs and the bias.

$$\hat{y} = w_1x_1 + w_2x_2 + \cdots + w_nx_n + b$$

In vectorized notation, the output \hat{y} can be expressed as the following:

$$\hat{y} = \langle \mathbf{w}, \mathbf{x} \rangle + b$$

Single Layer Neural Network

Figure Source: Single Neuron

Biological Neuron versus Artificial Neural Network

Figure Source: <u>Biological-Neuron-versus-Artificial-Neural-Network</u>

Evaluating Accuracy of the Model

- Compare the actual and predicted values. For example, compare the actual price of the house to the expected price of a house.
- Let \hat{y} be the truth value, and \hat{y} be the predicted value, we can compare the loss.

$$l(y,\hat{y}) = (\hat{y} - y)^2$$

• $l(y, \hat{y})$ is called the square loss.

Training Data

$$\mathbf{X} = [\mathbf{x_1}, \mathbf{x_2}, \cdots, \mathbf{x_n}]^{\top}$$

where $\mathbf{x_i}$ is the i^{th} input vector i.e. i^{th} house features.

 \mathbf{x}_{i}^{j} is the j^{th} feature of the i^{th} input vector. i.e. Total Area of the House.

$$\mathbf{y} = [y_1, y_2, \cdots, y_n]^{\top}$$

where y_i is the i^{th} output value i.e. i^{th} house price.

Training Loss of a Linear Regression Model

$$l_i(\mathbf{w},b) = rac{1}{2}(\mathbf{w}^ op \mathbf{x}_i + b - y_i)^2$$
 $l_i(\mathbf{w},b) = rac{1}{2}(\hat{y}_i - y_i)^2$

$$L(\mathbf{w},b) = rac{1}{n} \sum_{i=1}^n l_i(\mathbf{w},b)$$

$$L(\mathbf{w},b) = rac{1}{n} \sum_{i=1}^n rac{1}{2} (\mathbf{w}^ op \mathbf{x}_i + b - y_i)^2$$

$$L(\mathbf{w},b) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} (\hat{y}_i - y_i)^2$$

Figure Source: Fit Data with linear model

Vectorized Training Loss

• Concatenate a column of ones to the input and bias into the weights. $\mathbf{X}=[1\quad \mathbf{X}], \mathbf{w}=\begin{bmatrix}b\\\mathbf{w}\end{bmatrix}$

$$L(\mathbf{w}) = \frac{1}{n} ||\mathbf{X}\mathbf{w} - \mathbf{y}||^2$$

Minimize the loss

$$\mathbf{w}^{\star} = argmin_{\mathbf{w}} L(\mathbf{w})$$

Compute
$$\frac{\delta L(\mathbf{w})}{\delta \mathbf{w}}$$
 where $L(\mathbf{w}) = ||\mathbf{X}\mathbf{w} - \mathbf{y}||^2$

Compute
$$\frac{\delta L(\mathbf{w})}{\delta \mathbf{w}}$$
 where $L(\mathbf{w}) = ||\mathbf{X}\mathbf{w} - \mathbf{y}||^2$

$$\mathbf{a} = \mathbf{X}\mathbf{w}$$

 $\mathbf{b} = \mathbf{a} - \mathbf{y}$

$$z = ||\mathbf{b}||^2$$

$$rac{\delta z}{\delta \mathbf{b}} = 2 \mathbf{b}^{ op}$$

$$rac{\delta \mathbf{b}}{\delta \mathbf{a}} = \mathbf{I}$$

$$\frac{\delta \mathbf{a}}{\delta \mathbf{w}} = \mathbf{X}$$

$$rac{\delta L(\mathbf{w})}{\delta \mathbf{w}} = rac{\delta z}{\delta \mathbf{b}} imes rac{\delta \mathbf{b}}{\delta \mathbf{a}} imes rac{\delta \mathbf{a}}{\delta \mathbf{w}}$$

$$rac{\delta L(\mathbf{w})}{\delta \mathbf{w}} = 2\mathbf{b}^{ op} \cdot \mathbf{I} \cdot \mathbf{X}$$

$$rac{\delta L(\mathbf{w})}{\delta \mathbf{w}} = 2(\mathbf{X}\mathbf{w} - \mathbf{y})^{ op} \cdot \mathbf{I} \cdot \mathbf{X}$$

Set
$$rac{\delta L(\mathbf{w})}{\delta \mathbf{w}} = 0$$
 and find \mathbf{w}^{\star}

Set
$$\frac{\delta L(\mathbf{w})}{\delta \mathbf{w}} = 0$$
 and find \mathbf{w}^{\star}

 $2(\mathbf{X}\mathbf{w} - \mathbf{y})^{\top}\mathbf{X} = 0$

Expand and simplify

 $\mathbf{w}^{\top}\mathbf{X}^{\top}\mathbf{X} - \mathbf{y}^{\top}\mathbf{X} = 0$

 $\mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{X} = \mathbf{y}^{\top} \mathbf{X}$ Take transpose on both sides

 $\mathbf{X}^{\top}\mathbf{X}\mathbf{w} = \mathbf{X}^{\top}\mathbf{v}$

Multiply both sides with the inverse of $\mathbf{X}^{\top}X$

$$\mathbf{w}^{\star} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

Gradient Descent

- Choose starting point \mathbf{W}_0
- Update weights $t=1,2,3,\cdots$

$$\mathbf{w}_t = \mathbf{w}_{t-1} - \alpha \frac{\delta L(\mathbf{w})}{\delta \mathbf{w}_{t-1}}$$

where α is a hyperparameter called learning rate that specifies step length.

Visualization of Gradient Descent

Loss function

Parameter Value

In an alternate notation J(w, b) is equal to $L(\mathbf{w})$

In an alternate notation J(w, b) is equal to $L(\mathbf{w})$

In an alternate notation J(w, b) is equal to $L(\mathbf{w})$

In an alternate notation J(w, b) is equal to $L(\mathbf{w})$

In an alternate notation J(w, b) is equal to $L(\mathbf{w})$

In an alternate notation J(w, b) is equal to $L(\mathbf{w})$

Learning Rate

Too small: converge very slowly

Too big: overshoot and even diverge

Mini-Batch Stochastic Gradient Descent

- If the number of samples is large, a single iteration over the entire data set is not a viable technique.
- We can choose a fixed number of instances from set at random, call it a batch, and perform one step of gradient descent, known as mini-batch stochastic gradient descent.
- An extreme case would be to choose one sample at random and then perform a gradient descent step.

Mini-Batch Stochastic Gradient Descent

- Randomly initialize the w model parameters.
- Iteratively sample random mini-batch β from the data.
- Update the parameters in the direction of the negative gradient.

$$\mathbf{w} \leftarrow \mathbf{w} - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}_t} \partial_{\mathbf{w}} l^{(i)}(\mathbf{w}, b) = \mathbf{w} - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}_t} \mathbf{x}^{(i)} \left(\mathbf{w}^{\top} \mathbf{x}^{(i)} + b - y^{(i)} \right) \\ b \leftarrow b - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}_t} \partial_b l^{(i)}(\mathbf{w}, b) = b - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}_t} \left(\mathbf{w}^{\top} \mathbf{x}^{(i)} + b - y^{(i)} \right).$$

Choosing Batch Size

Not too small

Workload is low, making it hard to fully utilize computational power.

Not too big

Memory problem. Wasted computation, i.e. if all x_i are identical.