Problems to Practice Module - 3 Complex Differentiation

Test whether the following are analytic.

Q:
$$f(z) = e^{2z}$$

(Hant: $e^{z} = e^{x+2y} = e^{x} = e^{x$

b.
$$f(z) = \cos z$$

c.
$$f(z) = \overline{z}$$

$$d. f(z) = z^2$$

e.
$$f(z) = SinZ$$

g.
$$f(z) = (x^2 - y^2 + 2xy) + i(x^2 - y^2 - 2xy)$$

$$h. f(z) = \cosh z$$

2. Dans Test whether the following are houmonic.

a.
$$U = 3x^2y + 2x^3 - y^3 - 2y^2$$

c.
$$u = \int_{2}^{109} (x^2 + y^2)$$

d.
$$U = x^4 - 6x^2y^2 + y^4$$
.

- 3. Find the analytic function whose imaginary part is $V=\chi^3-3\chi y^2+y+1$.
- 4. Construct an analytic function where $U = e^{2x} \left[x \cos 2y y \sin 2y \right]$. Also find 9ts harmonic conjugate.
- 5. If $u = e^{\alpha cosy}$, find f(z) = 4 + iv.
- b. Find the analytic function f(z) whose real point $95 \ u = \chi^2 y^2 + 2\chi y 3\chi 2y$ and also f and g to hormonic conjugate.
- 7. Find the bilinean transformation which maps

 1, i, -1 onto the points 0,1,00.
- 8. Find the bilinear transformation which maps Z = 0, 2,0 gate the points W = 0, 2,0.
- 9. And the bilinear transformation which maps $Z_1=2$, $Z_2=1$, $Z_3=-2$ onto $W_1=1$, $W_2=1$, $W_3=-1$.
- 10. Find the 9mage of the circle, under the transformation W=Z+2+3i
- 11. Find the image of the circle 121=3 under the transformation W=52.

$$\frac{2700}{Z-4i}$$

13. Find the critical points of

$$(6)$$
 $w^2 = z^4$

$$\omega = e^{z^2}$$

14. Prooper Prove the following

(a)
$$\nabla^2 \log|f(z)| = 0$$

(b)
$$\nabla^2 |f(z)| = 4 |f'(z)|^2$$

a.
$$\int \frac{z^2+3}{z-3} dz$$
 where Cais the circle $|z|=4$.

b.
$$\int \frac{1}{2z-3} dz$$
 where C is the rivide $|z|=1$.

c.
$$\int_{C} \frac{3z^2+7z+1}{z+1} dz \quad \text{where cfs the circle } \frac{1z1=\frac{1}{2}}{0}$$

d.
$$\int_{C} \frac{Z}{(z-3)(z-4)} dz \quad \text{where} \quad C = 3$$

e.
$$\int \frac{\sin(z)}{(z-1)(z-2)} + \cos(z) = 0$$
 where $c: |z|=3$. "477"

$$f \cdot \frac{1}{2} \left(\frac{1}{z-1}\right)^{(z-1)}$$
 where $c:|z|=2$ $\frac{8}{3}$ Trie $\frac{1}{3}$

h.
$$\int \frac{z^3 - z}{(z-2)^3} dz$$
 where $C: |z| = 3$ "Ans = 12Ti

$$2 \int \frac{Z}{(z-1)(z-2)^3} dz$$
 where $C = \frac{1}{2} |z| = \frac{5}{2}$

2. Find residue of
$$f(z) = \frac{1-e^{2z}}{z^3}$$
.

3. Calculate residue of
$$f(z) = \frac{z}{(z-1)^2}$$
 at its pole.

4. Find residue of
$$f(z) = \frac{z^3}{(z-1)^4(z-2)(z-3)}$$
 at 7ts symple poles.

"-8 $\times \frac{27}{16}$ "

5. Evaluate the following using Cauchy Residue Theorem.

a.
$$\int \frac{1-2z}{z(z-1)(z-2)} dz$$
 where C is $|z|=1.5$ "3TTi"

b.
$$\int \frac{e^{-z}}{z^2} dz$$
 where C is $|z|=1$ $-2\pi i''$

6. Evaluate the following. (use cauchy Residue Theorem or cauchy Integral formula)

a.
$$\int (z^2+2)dz$$
 where C is $|z|=2$.

b.
$$\int \frac{4z^2-4z+1}{(z-2)(4+z^2)} dz$$
 where cis $|z|=1$

7. Evaluate the following by Taylor's Series.

a. f(z) = Sinz about z = T/4.

a.
$$f(z) = S9nZ$$
 about $z = T/4$

b.
$$f(z) = \log(1+z)$$
 about $z = 0$.

C.
$$f(z) = \frac{z}{(z+4)(z+5)}$$
 at $|z| < 4$

$$\frac{1}{5-3\cos\theta}$$

b)
$$\int_{0}^{2\pi} \frac{1}{a+bsin\theta} d\theta \neq e$$

c).
$$\int_{0}^{2\pi} \frac{d\theta}{5 + 4 \sin \theta}$$

d)
$$\int \frac{\cos 2\theta}{5 - 4\cos \theta} d\theta$$

$$\int \frac{\cos 2\theta}{5 - 4\cos \theta} d\theta$$
What Replace $\cos 2\theta = \text{Real post } 9 \in -Z$

$$\int_{0}^{2\pi} \frac{\cos 2\theta}{5 - 4 \cos \theta} d\theta = R.P. \int_{0}^{2\pi} \frac{z}{5 - 4(\frac{z^2 + 1}{2z})} dz$$