

N SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 45, NO. 3, MARCH 2015

# Iultiobjective Reinforcement Learnin A Comprehensive Overview

ınming Liu, Xin Xu, Senior Member, IEEE, and Dewen Hu, Senior Member, I.

# 【强化学习 64】Multiobjective RL



张楚珩 💙

清华大学 交叉信息院博士在读

18 人赞同了该文章

一篇综述。

#### 原文传送门

<u>Liu, Chunming, Xin Xu, and Dewen Hu. "Multiobjective reinforcement learning: A comprehensive overview."</u> IEEE Transactions on Systems, Man, and Cybernetics: Systems 45.3 (2014): 385-398.

## 特色

因为最近想了解一下multiobjective RL,就从读一篇综述开始吧。但是这篇综述写的实在不咋地,读起来比较难受,费了一下午。记录一下其中可能有帮助的点吧。

#### 过程

Multiobjective讲的就是RL里面的奖励由之前的一个标量变成一个矢量(即存在多个可能相互冲突的目标)时应该如何去解。这种情况下可能没有一个确定的最优解。解决这类问题主要有两大类方法,一种是学习单个策略,另一种是学习多个策略。

学习单个策略的框架大体如下,看文章中的描述应该是针对于每个奖励的分量,都去学习其相应的在当前策略下的Q函数,当前的策略通过一个综合的Q函数 ro 来得到,不同的单策略方法提出不同 ro 计算方法,以此产生相应的策略(或者直接提出某个策略)。(由此看来,图中红线部分应该替换成SARSA这样的on-policy更新公式,而不是图中的Q-learning更新公式)

# **Algorithm 3** Naïve Solution of Single-Policy Approaches to MORL

```
    W: The number of objectives
    Initialize TQ(s, a) arbitrarily;
    repeat (for each episode j)
    Initialize s;
    repeat (for each step of episode)
    Choose a from s using policy derived from TQ(s, a);
    Take action a, observe r<sub>1</sub>, r<sub>2</sub>,..., s';
```

7: **for** 
$$i = 1, 2, ..., N$$
 **do**

 $\K$ : The maximum number of episodes

8: 
$$Q_i(s, a) \leftarrow Q_i(s, a) + \alpha[r_i + \gamma \max_{a'} Q(s', a') - Q_i(s, a)];$$

- 9: **end for**
- 10: Compute TQ(s, a);
- 11:  $s \leftarrow s'$ ;
- 12: **until** *s* is terminal
- 13: **until** j = K

知子の光質的

Single policy approach for MORL

#### 1. Weighted-sum approach

一种最直接的方式就是直接把各个奖励分量的Q函数加权相加得到 rq 函数(given加权系数)。

$$TQ(s, a) = \sum_{i=1}^{N} w_i Q_i(s, a).$$

这种方法目测应该等效于直接观察到的就是加权之后的标量奖励,因此这种方法实际上不是一个multiobjective RL,或者说转化成了一个普通的RL问题。

#### 2. W-learning approach

这种方法下取所有奖励分量里面Q函数最大的那个,它能够保证其结果至少对于某一个分量上来说 是最优的策略。

$$TQ(s, a) = \max_{i} Q_i(s, a) \quad 1 \le i \le N.$$
 (13)

这种方法的问题是它对于各个reward的数值缩放敏感,即要求各个reward之间绝对数值大小是要可比的。

#### 3. Analytic hierarchy process approach

这里假设不同的奖励分量之间有定性的重要性程度排序关系,假设第 i 个奖励分量相对于第 j 个奖励分量的相对重要性为  $\alpha_{ij}$  ,可以计算一个重要性因子  $\alpha_{ij}$  。

$$I_i = \frac{SL_i}{\sum\limits_{j=1}^{N} SL_j}$$

where

$$SL_i = \sum_{j=1, j \neq i}^{N} c_{i,j}$$
 知乎 @张楚珩

文中提到,根据这个重要性因子和两个动作的相对 Q 函数值

$$D_i(a_p, a_q) = Q_i(s, a_p) - Q_i(s, a_q)$$

可以使用一个 fuzzy system 去判断这两个动作的相对好坏。(这里讲的 fuzzy system 我不是太懂,同时我猜这里说的判断 action 的好坏这个环节等价于相对于 au 函数的 greedy policy)。

这种方法的劣势在于它需要关于问题的先验知识。

#### 4. Ranking approach

这种方法先对于不同的奖励分量排个序,并且对于每个奖励分量设置一个阈值。为了在每轮迭代的时候,基于现在各个Q函数的数值得到一个策略,当遇到一个状态。的时候,采取如下方法来得到一个 action。按照顺序去比较各个奖励分量上的Q函数,如果不同的 action 在该分量上的Q函数小于设定的阈值,就按照它们的大小关系来选择 action。如果都大于这个阈值,或者它们数值相同,那么再比较它们后一个分量上的Q函数。即,(我截取了原论文上的算法示意图,这篇文章

$$CQ_{s,a,j} \leftarrow \min(Q_{s,a,j}, C_j)$$

In state s, the greedy action a' is selected such that superior( $CQ_{s,a'}, CQ_{s,a}, 1$ ) is true  $\forall a \in A$  where superior( $CQ_{s,a'}, CQ_{s,a}, i$ ) is recursively defined as:

```
if CQ_{s,a',i} > CQ_{s,a,i}

return true

else if CQ_{s,a',i} = CQ_{s,a,i}

if i = n

return true

else

return superior(CQ_{s,a'}, CQ_{s,a}, i + 1)

else

return false
```

#### 5. Geometric approach

文中说该方法认为 10 需要服从某些几何约束,其他的没读懂了。



Fig. 5. Predicted target set (two objectives).

知乎 @张楚珩

知乎 @张楚珩

# 6. Convex hull approach

# 7. Varying parameter approach

这个比较好理解,就是使用不同的参数(表征不同的对于各个奖励分量的偏好程度)来训练多个策略,把这些策略的结果作为 Pareto 前沿上的解。

## 总结

TABLE I REPRESENTATIVE APPROACHES TO MORL

| MORL Approaches            |                                | Basic Principle                                                                                                                         |
|----------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Single-policy approaches   | The weighted sum approach      | A linear weighted sum of<br>Q-values is computed as the<br>synthetic objective function.                                                |
|                            | The<br>W-learning<br>approach  | Each objective has its own recommendation for action selection and the final decision is based on the objective with the largest value. |
|                            | The AHP approach               | The analytic hierarchy process (AHP) is employed to derive a synthetic objective function.                                              |
|                            | The ranking approach           | "Partial policies" are used as the synthetic objective function.                                                                        |
|                            | The geometric approach         | A target set satisfying certain geometric conditions in multi-dimensional objective space is used as the synthetic objective function.  |
| Multiple-policy approaches | The convex hull approach       | Learn optimal value functions or<br>policies for all linear preference<br>settings in the objective space.                              |
|                            | The varying parameter approach | Performing any single-policy<br>algorithm for multiple runs with<br>different parameters, objective<br>threshold values and orderings.  |

知乎 @张楚珩

#### 最后贴一个关于 Pareto 前沿的东西



Fig. 4. Concave region of the weighted sum approach.

知乎 @张楚珩

考虑两个优化目标,图上的五个点都是 Pareto 前沿,但是行程了一个 concave 的形状。如果对于不同的权重,优化两个目标的线性组合,只能得到  $\alpha_1$  和  $\alpha_2$  而不能得到中间的点。这个例子告诉我们通过采集不同的线性组合权重是不能够得到整个 Pareto 前沿的。

发布于 2019-05-28

读呀读paper

