

LIII Olimpiada Matemática Española

Primera Fase Primera sesión

Viernes tarde, 13 de enero de 2017

1. Describir todas las soluciones enteras positivas (m, n) de la ecuación

$$8m - 7 = n^2$$

y dar el primer valor de m (si existe) mayor que 1959.

2. Se colorean los números $1,2,\ldots,n$ de dos colores, azul y rojo. Probar que si n=2017 existe una coloración tal que la ecuación

$$8(x+y) = z$$

no tiene soluciones monocromáticas. Determinar el menor n para el que nunca es posible colorear los números de forma tal que no haya soluciones monocromáticas.

3. Calcular el número máximo de raíces reales distintas que puede tener un polinomio P que verifique la siguiente propiedad: el producto de dos raíces distintas de P sigue siendo una raíz de P.

No está permitido el uso de calculadoras. Cada problema se puntúa sobre 7 puntos. El tiempo de cada sesión es de 3 horas y media.

LIII Olimpiada Matemática Española

Primera Fase

Segunda sesión

Sábado mañana, 14 de enero de 2017

4. Encontrar todas las soluciones enteras positivas de

$$\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} + \frac{1}{a+b+c-2} = 1$$

- 5. Probar que hay infinitos números primos cuyo resto al dividirlos entre 3 es
- 6. En un triángulo acutángulo ABC consideramos su ortocentro, H. Sean A', B' y C' los simétricos de H con respecto a los lados BC, CA y AB, respectivamente. Probar que si los triángulos ABC y A'B'C' tienen un ángulo igual, entonces también tienen un lado igual. ¿Es cierto el recíproco?

No está permitido el uso de calculadoras. Cada problema se puntúa sobre 7 puntos. El tiempo de cada sesión es de 3 horas y media.