SET - 1 Code No: R1632033 **R16**

III B. Tech II Semester Supplementary Examinations, November - 2019 REFRIGERATION AND AIR CONDITIONING

(Mechanical Engineering)

	Time	: 3 hours Max. Marks	s: 70
_		Note: 1. Question Paper consists of two parts (Part-A and Part-B)	
		2. Answering the question in Part-A is compulsory	
		3. Answer any FOUR Questions from Part-B	

			Marks)
	a)	What is refrigeration? Define one ton of refrigeration.	[2M]
	b)	Mention the advantages of vapour compression refrigeration system over air	[2M]
	a)	refrigeration system. What are essential properties of a good refrigerant?	[3M]
	c) d)	Define and write the expression for entrainment efficiency in steam jet	[3M]
	u)	refrigeration system.	[211]
•	e)	Explain in brief, an adiabatic saturation process. Represent the same on a	[3M]
	,	psychrometric chart.	. ,
	f)	Explain the features required for the proper selection of a fan for a given application.	[2M]
			Marks)
	a)	An air refrigeration system operating on Bell Coleman cycle takes in air from cold room at 260 K and compresses it from 1.0 bar to 5.5 bar. The index of compression being 1.25. The compressed air is cooled to 300 K. The ambient temperature is 20°C. Air expands in an expander where the index of expansion is 1.35. Calculate: (i) C.O.P. of the system (ii) Quantity of air circulated per minute for production of 1500 kg of ice per day at 0°C from water at 20°C. (iii) Capacity of the plant in terms of kJ/s. Take cp = 4.18 kJ/kg K for water, cp = 1.005 kJ/kg K for air, Latent heat of ice = 335 kJ/kg.	[7M]
	b)	Explain Bootstrap aircraft refrigeration system.	[7M]
	a)	What is the effect of sub cooling and super heating in vapor compression	[7M]
	b)	process and show it in T-S and h-s diagram? An ammonia ice plant operates between a condenser temperature of 30°C and an evaporator temperature of -20°C. It produces 10 tons of ice per day from water at 25°C to ice at -10°C. Assuming simple saturation cycle, determine: i) the capacity of refrigerating plant ii) mass flow rate of refrigerant and iii) COP of the cycle.	[7M]
	a)	How condensers and evaporators are classified? Explain any one of the	[7M]
1	b)	condenser and evaporators with the help of neat sketch. How water, Freon-11, Freon-12 and CCl4 are designated as refrigerants? Explain.	[7M]
	a)	What are the merits and demerits of steam jet refrigeration system and name few applications?	[7M]
	b)	With a neat sketch explain the working of Vortex tube refrigerator.	[7M]
		1 of 2	

[9M]

- The following data apply to an air conditioning system: 6 a) Room sensible heat = 41778 kJ/hr; room latent heat = 41778 kJ/hr; inside design condition= 28°C, 50% RH, outside design condition=35°C, DBT, 27.6 WBT. Return air from the room is mixed with the outside air before entering the cooling coil in the ratio of 4:1. Return air from the room is mixed with the cooling air, i.e. after the cooling coil in the ratio of 1:4. Cooling coil by pass factor is 0.1. The air may be reheated if necessary before supplying to the conditioned space. Assume ADP as 12^oC and determine:
 - i) Supply air conditions into the room
 - ii) Refrigeration load due to the reheat
 - iii) Total refrigeration capacity
 - iv) The quantity of fresh air supplied.
 - b) What is an effective temperature? State and explain the factors which govern [5M]optimum effective temperature?
- 7 What is the function of a filter and how are filters classified? a)

[7M] An air-conditioned auditorium is to be maintained at 27°C DBT and 60% RH. b) [7M] The ambient condition is 40°C DBT and 30°C WBT. The total sensible heat load is 100 000 kJ/h and total latent heat load is 40000 kJ/h. 60% of the return air is re-circulated and mixed with 40% of makeup air after cooling coil. The condition of air leaving the cooling coil is at 18°C. Determine i) RSHF, ii) The condition of air entering the auditorium, iii) The amount of make-up air, iv) ADP and v) BPF of cooling coil.

2 of 2