Κεφάλαιο 3 - Διανυσματικές συναρτήσεις

3.1 Διανυσματικές συναρτήσεις

Είδαμε ότι οι παραμετρικές καμπύλες στο επίπεδο αντιστοιχούν σε ζεύγη εξισώσεων

$$x = x(t), y = y(t)$$

Αντίστοιχα ορίζουμε **παραμετρικές καμπύλες στον χώρο** μέσω τριών εξισώσεων

$$x = x(t), y = y(t), z = z(t)$$

Παράδειγμα

$$x = 1 - t, y = 3t, z = 2t (t \in \mathbb{R})$$

$$x = a \cos t$$
, $y = a \sin t$, $z = t$ $(t \in \mathbb{R}, a > 0)$

Η καμπύλη τομής δύο επιφανειών μπορεί επίσης να περιγραφεί ως παραμετρική καμπύλη.

Παράδειγμα

Να οριστεί παραμετρικά ή καμπύλη τομής των επιφανειών $z=x^3$ και $y=x^2$.

Για να μελετήσουμε ιδιότητες των παραμετρικών καμπυλών (εφαπτομένες, καμπυλότητα, ...) τις θεωρούμε ως συναρτήσεις.

Ορισμός

Μια συνάρτηση $r: X \to \mathbb{R}^2$ ή $r: X \to \mathbb{R}^3$, όπου $X \subseteq \mathbb{R}$ ονομάζεται διανυσματική συνάρτηση.

$$x = x(t), y = y(t) \leftrightarrow r(t) = (x(t), y(t))$$

= $x(t)i + y(t)j$

$$x = x(t), y = y(y), z = z(t) \leftrightarrow r(t) = (x(t), y(t), z(t))$$

= $x(t)i + y(t)j + z(t)k$

Οι x(t), y(y), z(t) λέγονται συνιστώσες της r(t).

Αν δεν δίνεται πεδίο ορισμού για μια διανυσματική συνάρτηση, θα εννοείται ότι είναι η τομή των πεδίων ορισμού των συνιστωσών της.

Παράδειγμα

Να βρεθεί το πεδίο ορισμού της $r(t)=(\ln|1-t|,e^t,\sqrt{t}).$

Για να παραστήσουμε γραφικά μια διανυσματική συνάρτηση σχεδιάζουμε την αντίστοιχη παραμετρική καμπύλη. Το r(t) είναι το διάνυσμα θέσης των σημείων της καμπύλης.

Παράδειγμα

Nα γίνει το γράφημα της $r(t) = \cos t \mathbf{i} + \sin t \mathbf{j} + 2 \mathbf{k}$.

Να βρεθεί η διανυσματική μορφή του ευθύγραμμου τμήματος με άκρα P_0 και P_1 .

Να βρεθεί διανυσματική συνάρτηση που περιγράφει το ευθύγραμμο τμήμα PQ.

Να γίνει αντιστοίχιση των διανυσματικών συναρτήσεων με τα γραφήματά τους.

(a)
$$\mathbf{r} = t\mathbf{i} - t\mathbf{j} + \sqrt{2 - t^2}\mathbf{k}$$

(b)
$$\mathbf{r} = \sin \pi t \mathbf{i} - t \mathbf{j} + t \mathbf{k}$$

(c)
$$\mathbf{r} = \sin t \mathbf{i} + \cos t \mathbf{j} + \sin 2t \mathbf{k}$$

(d)
$$\mathbf{r} = \frac{1}{2}t\mathbf{i} + \cos 3t\mathbf{j} + \sin 3t\mathbf{k}$$

III

IV