NU-2000 광학모듈 개선안

2021. 08. 15

1. 개발경과

Confidential

월	개발내용
3	 계약 A/V방안 및 layout 설계 공유
4	 1차 구동형 A/V 포함, 2차 추가 광원 A/V 방안 검토 및 협의 진행 1차 Module 설계 안 리뷰, 제작 진행
5	 광부품 및 기구 가공품 입고 / 시제품 조립 Test 시작 : 기본 신호, 약액 test(기성품 flow cell 적용, 과수 및 황산) 회로 개선(증폭비 검토, 발진 및 노이즈, Photovoltaic mode, 커넥터 등), IR collimator lens 추가 PD 회로보드 개선 작업(노이즈 저감, impedance matching, 발진 방지 마련 등) SMPS 교체(발진 및 주요 노이즈 원인) Sapphire cell 입고
6	 장기 경향성 시험 UV measure/reference 반대 경향성 확인 Photovoltaic mode 회로 적용 BS coating 손상 발견 및 원인분석 광 효율 검증 및 검토

1. 개발경과 Confidential

 BS coating crack 확인 후 교체 진행 UV/MIR LED 구동조건 변경 UV : 50mA 50%duty → 20mA 50%duty(Fraunhofer 샘플 구동 조건) MIR : 40mA 50%duty(유지) MIR BS 투과율 실측 진행 실측 T가 65%에 가까움 → MIR BS 사양이 넓은 편(±20%, 장파장 특성으로 파악) UV ratio는 지속적으로 상승 / UV ratio는 지속적으로 하상 PD 신호 경향성을 제거 필요성 LED 영향 배제 후 dark current 측정 간헐적 PD 신호의 발진 및 전압강하 측정 PD 보드 스왑 후 측정 스왑 후 간헐적 PD 신호의 발진 및 전압강하 측정됨 	 월	개발내용
- 글전 공지공 (4,3 데ㅡ드(0.3p, 1p, 2p) 후 제기 - 보드 클리닝(플럭스 제거제) - 데이터 경향성 크게 변화 없음 • 2차 module 디자인 리뷰 진행 - 약액 leak에 대한 추가 대책 요청 - Peltier 선정 협의 - 추가 aperture 적용 검토		 BS coating crack 확인 후 교체 진행 UV/MIR LED 구동조건 변경 UV: 50mA 50%duty → 20mA 50%duty(Fraunhofer 샘플 구동 조건) MIR: 40mA 50%duty(유지) MIR BS 투과율 실측 진행 실측 T가 65%에 가까움 → MIR BS 사양이 넓은 편(±20%, 장파장 특성으로 파악) UV ratio는 지속적으로 상승 / UV ratio는 지속적으로 하상 PD 신호 경향성을 제거 필요성 LED 영향 배제 후 dark current 측정 간혈적 PD 신호의 발진 및 전압강하 측정 PD 보드 스왑 후 측정 스왑 후 간혈적 PD 신호의 발진 및 전압강하 측정됨 발진 방지용 C4,5 테스트(0.5p, 1p, 2p) 후 제거 보드 클리닝(플릭스 제거제) 데이터 경향성 크게 변화 없음 오차 module 디자인 리뷰 진행 약액 leak에 대한 추가 대책 요청 Peltier 선정 협의

1. 개발경과 Confidential

월	개발내용
7	 BS 제거 후 테스트 진행 BS의 영향성 검토 2mm 추가 aperture 적용 온도 충격 시 발진 발생, 신호 안정석 회복이 어려움 동일 조건에서 LED 출력 테스트 진행 테스트 결과 온도 충격 시의 출력 신호 회복 확인 온도 충격 시의 PD 신호 발진 및 전압강하는 LED 출력과 무관한 것으로 판단 PD 보드 방수코팅제 도포 진행 장기 경향성 테스트 항온조 + 2mm aperture + BS 제거 + 방수코팅제 도포 UV M signal : 2mV 수준의 진폭, 경향성 없음(양호) MIR M signal : 10mV 수준의 진폭, 2mV 수준의 상승 경향성(0.5%수준임) Peltier module 적용 테스트 LED 주변 온도 설정 : 23.5℃ → 25℃ 23.5℃ 테스트 시 미세한 데이터 경향성이 보임(테스트 당시 PID 제어 불완전) Peltier module 제거 테스트 Peltier module 제거 테스트 Peltier 미구동 시 LED 주변 온도 확인 : 23.5~23.6℃ 부근 Heatsink가 cooling 역할을 하는 것으로 판단 / peltier module 배제 가능성 검토

1. 개발경과 Confidential

	개발내용
8 • ма	eltier module 제거 테스트 - 2mm aperture 제거 → 기존 aperture 대체 - 항온조 조건에서 외부 온도가 유지될 경우 heatsink 역할에 따라 LED 내부온도가 일정하게 유지됨(peltier module 제거 가능성) lain 컨트롤 보드 항온조 이동 - 장기 경향성 및 진폭 신호 개선됨 - LED 구동은 module내에서 구동하는 것으로 검토 - 열 구배 관련 개선 안 검토 - PD 신호를 아날로그에서 디지털로 변경 검토

• 주요 내용

- 광 효율 테스트 : Beamsplitter의 사양 및 실제 성능에서 차이가 있음(장파장 coating의 특성으로 판단)
- LED 출력 테스트, BS제거 및 PD 보드 스왑 테스트 : Reference/measure PD 신호의 경향성이 발생하며 ratio의 경향성을 유발하도록 서로 반대의 경향성을 가짐
- Heatsink의 부착 테스트: LED 주변 온도는 Heatsink plate가 영향을 주고 있으며 LED 주변 온도가 일정하게 유지될 경우 큰 폭으로 데이터 경향성이 해소됨을 확인
- 다만 활성소자의 온도구배에 영향을 받는 reference PD에 대한 구조적인 대책이 필요

2. 온도변화 테스트

Confidential

온도

- 주변 온도 변화에 따른 신호 변화 측정
 - 항온조 온도 25도→ 23도(3분이동, 30분유지)→ 27도(6분이동,30분유지)
 - UV ratio는 매우 안정적임
 - UV LED는 온도에 따른 파장변화가 적은 편임
 - Level변화는 온도에 따른 출력이 변해서 발생
 - IR ratio의 변화폭은 +/-2%이내임
 - IR LED는 온도에 따라 peak 파장이 변화하고, 2개의 PD에서 파장에 따른 감도 기울기가 다르기 때문에 발생
 - Level 변화는 온도에 따른 출력 변화와 파장 변화가 복합적이나, reference만 보면 출력 변화가 dominant한 것으로 보임

3. 해석 Confidential

[UV reference saturation]

- Measure 신호와 reference 신호의 장기 특성은 PD/PD board의 온도에 따른 특성으로 유추
- UV reference 신호의 saturation시기의 레벨 변화율 ~0.7% 보다 낮게 관리하기 위해서는 PD위치 변경, 방열조건 변경등으로 열구배가 빠르고 낮은 수준으로 안정화할 필요가 있음

[신호의 온도특성]

- Heat sink 온도에 따른 레벨 변화를 보면 대략 1.5℃당 2%정도 변화가 있음 UV/IR 모두, IR measure는 신호안정화후 분석이 필요하나 이전 데이타도 IR measure의 변화는 매우 작은 수준
- 광학 모듈의 주변 온도에 따른 reference/measure 레벨 변화는 온도에 따른 LED의 출력변화를 반영하고, ratio 변화는 방열특성이라기 보다는 LED 고유의 특성임
- UV LED는 온도에 따른 파장 이동이 거의 없어서 변화가 없음
- IR LED는 온도에 따른 파장 이동이 있으며, <mark>파장에 따른 감도의 기울기가 개별 PD마다 다르기 때문에</mark> measure와 reference의 비율이 달라져서 보상이 되지 않을 수도 있음

(주) IR module의 BS도 파장이동에 따라 투과 반사율이 달라지므로 이 부분도 레벨 변화율에 기여할 수 있음

4. 개선안 Confidential

- Monitoring PD의 위치 이동
 - 열원으로부터 PD까지의 위치를 일치시켜서 열구배가 동일하게 발생하도록 함
 - 방열판 구조 개선

- LED 구동 전류원은 main board에서 module 내 전류원 사용
- LED/PD board 품질 개선
 - Pattern 두께나 형태, 동박 두께, Wire connector 개선

5. 일정 Confidential

• 2차 개선 module 제작 일정

주요 내용	8월			9월			10월			
• 광학 부품 선정 및 구매										
• 광기구 설계 및 제작										
• 회로부 설계 및 제작										
• 조립 및 성능 테스트										

