

Report No: CCIS15060045605

FCC REPORT

Applicant: HUNG WAI PRODUCTS LIMITED

Address of Applicant: Unit 11, 12/F., New Commerce Centre, 19 On Sum Street,

Shatin, Hong Kong

Equipment Under Test (EUT)

Product Name: Android player Main board with wireless module

Model No.: ASSY-1859ATMBA-00

FCC ID: 2AB6Z-1859ATMB

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: 15 Jun., 2015

Date of Test: 15 Jun., to 21 Jul., 2015

Date of report issued: 21 Jul., 2015

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	21 Jul., 2015	Original

Prepared by: Date: 21 Jul., 2015

Report Clerk

Reviewed by: Date: 21 Jul., 2015

Project Engineer

3 Contents

			Page
1	CO	VER PAGE	1
2	VER	RSION	2
3	COI	NTENTS	3
4	TES	ST SUMMARY	4
5	GEN	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST ENVIRONMENT AND MODE	7
	5.4	LABORATORY FACILITY	7
	5.5	LABORATORY LOCATION	7
	5.6	TEST INSTRUMENTS LIST	8
6	TES	ST RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT	9
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	
	6.6	BAND EDGE	
	6.7	Spurious Emission	
	6.7.		
	6.7.		
	6.8	FREQUENCY STABILITY	67
7	TES	ST SETUP PHOTO	69
8	FUT	CONSTRUCTIONAL DETAILS	71

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.407 (g)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.407 (a)	Pass
26dB Occupied Bandwidth	15.407 (a)	Pass
6dB Emission Bandwidth	15.407(e)	Pass
Power Spectral Density	15.407 (a)	Pass
Band Edge	15.407(b)	Pass
Spurious Emission	15.205/15.209	Pass
Frequency Stability	15.407(g)	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.4:2009.

5 General Information

5.1 Client Information

Applicant:	HUNG WAI PRODUCTS LIMITED
Address of Applicant:	Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin, Hong Kong
Manufacturer:	HUNG WAI ELECTRONICS (HUIZHOU) LTD.
Address of Manufacturer:	3 rd floor, NO. 3, Minfeng Road, Huinan High and New Technology Industry Park, Huiao Avenue, Huizhou City, Guangdong, China

5.2 General Description of E.U.T.

•	T
Product Name:	Android player Main board with wireless module
Model No.:	ASSY-1859ATMBA-00
Operation Frequency:	Band 1: 5180MHz-5240MHz Band 4: 5745MHz-5825MHz
Operation mode:	Indoor used
Channel numbers:	Band 1: 802.11a/802.11n20: 4, 802.11n40: 2 Band 4: 802.11a/802.11n20: 5, 802.11n40: 2
Channel separation:	802.11a/802.11n20: 20MHz, 802.11n40: 40MHz
Modulation technology: (IEEE 802.11a)	BPSK, QPSK,16-QAM, 64-QAM
Modulation technology: (IEEE 802.11n)	BPSK, QPSK, 16-QAM, 64-QAM
Data speed(IEEE 802.11a)	6Mbps, 9Mbps,12Mbps,18Mbps, 24Mbps,36Mbps,48Mbps, 54Mbps
Data speed (IEEE 802.11n20):	MCS0: 6.5Mbps, MCS1:13Mbps, MCS2:19.5Mbps, MCS3:26Mbps, MCS4:39Mbps, MCS5:52Mbps, MCS6:58.5Mbps, MCS7:65Mbps
Data speed (IEEE 802.11n40):	MCS0:15Mbps, MCS1:30Mbps, MCS2:45Mbps, MCS3:60Mbps, MCS4:90Mbps, MCS5:120Mbps, MCS6:135Mbps, MCS7:150Mbps
Antenna Type:	Omni-directional
Antenna gain:	2.5 dBi
Power supply:	AC 120V/ 60Hz

Operation Frequency each of channel

Band 1				
802.11a/	802.11a/802.11n20		1n40	
Channel	Frequency	Channel	Frequency	
36	5180MHz	39	5190MHz	
40	5200MHz	45	5230MHz	
44	5220MHz			
48	5240MHz			
	Bai	nd 4		
802.11a/	802.11n20	802.11n40		
Channel	Frequency	Channel	Frequency	
149	5745MHz	151	5755MHz	
153	5765MHz	159	5795MHz	
157	5785MHz			
161	5805MHz			
165	5825MHz			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Band 1					
802.11a/802	2.11n20	802.11n	40		
Channel	Frequency	Channel	Frequency		
The lowest channel	5180MHz	The lowest channel	5190MHz		
The middle channel	5200MHz	The highest channel	5230MHz		
The highest channel	nannel 5240MHz				
	Band 4				
802.11a/802	2.11n20	802.11n40			
Channel	Frequency	Channel	Frequency		
The lowest channel	5745MHz	The lowest channel	5755MHz		
The middle channel	5785MHz	The highest channel	5795MHz		
The highest channel	5825MHz				

Report No: CCIS15060045605

5.3 Test environment and mode

Operating Environment:		
Temperature:	24.0 °C	
Humidity:	54 % RH	
Atmospheric Pressure:	1010 mbar	
Test mode:		
Continuously transmitting mode	Keep the EUT in 100% duty cycle transmitting with modulation.	

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.				
Mode	Data rate			
802.11a	6 Mbps			
802.11n20	6.5 Mbps			
802.11n40	13 Mbps			

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 6 Mbps for 802.11a, 6.5 Mbps for 802.11n20 and 13 Mbps for 802.11n40. All test items for 802.11a and 802.11n were performed with duty cycle above 98%, meet the requirements of KDB789033.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

● IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.6 Test Instruments list

Radia	Radiated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m Semi - Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	03-28-2015	03-28-2016
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	03-28-2015	03-28-2016
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-08-2015	04-08-2016

Cond	Conducted Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 E Section 15.203 /407(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

E.U.T Antenna:

The antenna of EUT is a reverse-SMA connector, which cannot be replaced by end-user. And the antenna gain is 2.5 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10: 2013					
Test Frequency Range:	150 kHz to 30 MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9 kHz, VBW=30 kHz					
Limit:	Fraguency range (MHz)	Limit (d	lBuV)			
	,	Prequency range (MHZ) Quasi-peak Average				
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logarithm					
Test procedure	 The E.U.T and simulators a line impedance stabili 50ohm/50uH coupling imp The peripheral devices through a LISN that provided with 50ohm termination. (test setup and photograph) Both sides of A.C. line are interference. In order to fin positions of equipment and changed according to ANS measurement. 	ization network (L.I.S edance for the measur are also connected trides a 500hm/50uH of (Please refer to the blas). checked for maximum and the maximum emissing all of the interface call	.N.). It provides a ing equipment. o the main power coupling impedance lock diagram of the conducted on, the relative bles must be			
Test setup:	Reference LISN 40cm AUX Equipment E.U Test table/Insulation plan Remarkc E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	EMI Receiver	r — AC power			
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details.					
Test results:	Passed					

Measurement Data

Line:

Trace: 3

Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Condition

: 456RF Job No.

: Android player Main board with wireless : ASSY-1859ATMBA-00 EUT

Model Test Mode : 5G-Wifi mode
Power Rating : AC120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: MT

Kemark								
	Freq	Read	LISN Factor	Cable Loss	Level	Limit Line	Over	Remark
	ried	rever	ractor	LOSS	rever	Line	LIMIC	Remark
	MHz	dBu∀	d₿	₫B	dBu∀	dBu∀	d₿	
1	0.150	48.67	0.27	10.78	59.72	66.00	-6.28	QP
2	0.166	21.92	0.27	10.77	32.96	55.16	-22.20	Average
3	0.170	48.10	0.27	10.77	59.14	64.94	-5.80	QP
4	0.202	41.49	0.28	10.76	52.53	63.54	-11.01	QP
4 5 6 7	0.219	21.24	0.28	10.76	32.28	52.88	-20.60	Average
6	0.234	37.75	0.27	10.75	48.77	62.30	-13.53	QP
7	0.343	30.99	0.27	10.73	41.99	59.13	-17.14	QP
8	0.350	18.56	0.27	10.73	29.56	48.96	-19.40	Average
8	0.595	27.71	0.25	10.77	38.73		-17.27	
10	0.595	19.55	0.25	10.77	30.57	46.00	-15.43	Average
11	2.869	4.64	0.27	10.92	15.83	46.00	-30.17	Average
12	16.055	18.49	0.32	10.91	29.72	50.00	-20.28	Average

Neutral:

Trace: 1

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

: 456RF Job No.

: Android player Main board with wireless EUT

Model : ASSY-1859ATMBA-00 Test Mode : 5G-Wifi mode
Power Rating : AC120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: MT

Kemark								
		Read	LISN	Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
2000	MHz	dBu∀	<u>dB</u>	₫B	dBu₹	dBu∀	dB	
1	0.162	49.29	0.25	10.77	60.31	65.34	-5.03	QP
1 2 3	0.162	19.93	0.25	10.77	30.95	55.34	-24.39	Average
3	0.182	43.94	0.25	10.77	54.96	64.42	-9.46	QP
4 5	0.190	18.66	0.25	10.76	29.67	54.02	-24.35	Average
5	0.214	15.89	0.25	10.76	26.90	53.05	-26.15	Average
6 7	0.230	38.18	0.25	10.75	49.18	62.44	-13.26	QP
7	0.266	32.28	0.26	10.75	43.29	61.25	-17.96	QP
8	0.310	27.43	0.26	10.74	38.43	59.97	-21.54	QP
8 9	0.585	19.95	0.24	10.77	30.96	56.00	-25.04	QP
10	0.589	9.66	0.24	10.77	20.67	46.00	-25.33	Average
11	2.540	8.00	0.29	10.94	19.23	46.00	-26.77	Average
12	15.635	12.00	0.25	10.91	23.16			Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (ii) & (a) (3)				
Test Method:	ANSI C63.10: 2013, KDB 789033				
Limit:	Band 1: 1 W (For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.); Band 4: 1W.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Band 1

	Dana i						
Mode	Test CH	Conducted Output power (dBm)	Limit (dBm)	Result			
	Lowest	5.56	30.00	Pass			
802.11a	Middle	2.91	30.00	Pass			
	Highest	1.90	30.00	Pass			
802.11n20	Lowest	4.06	30.00	Pass			
	Middle	3.20	30.00	Pass			
	Highest	2.27	30.00	Pass			
000 44=40	Lowest	2.43	30.00	Pass			
802.11n40	Highest	1.97	30.00	Pass			

Band 4

Dana 4							
Mode	Test CH	Conducted Output power (dBm)	Limit (dBm)	Result			
	Lowest	9.34	30.00	Pass			
802.11a	Middle	9.52	30.00	Pass			
	Highest	9.14	30.00	Pass			
	Lowest	10.07	30.00	Pass			
802.11n20	Middle	10.24	30.00	Pass			
	Highest	10.82	30.00	Pass			
000 44 40	Lowest	9.12	30.00	Pass			
802.11n40	Highest	9.38	30.00	Pass			

Test plot as follows:

Band 1

Lowest channel

Middle channel

Highest channel

Highest channel

Lowest channel

Highest channel

Band 4:

Highest channel

Middle channel

Highest channel

Lowest channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 E Section 15.407 (a) (5) and Section 15.407 (e)				
Test Method:	ANSI C63.10:2013 and KDB 789033				
Limit:	Band 1: N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: >500kHz(6dB Bandwidth)				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Band 1:

Test Channel	26dB I	Limit	Result		
	802.11a	802.11n20	802.11n40	LIIIII	Result
Lowest	22.08	24.40	44.32		
Middle	22.08	22.56		N/A	N/A
Highest	24.16	24.48	45.12		

Test Channel	99% (Limit	Result		
	802.11a	802.11n20	802.11n40	Limit	Result
Lowest	17.04	18.24	36.64		
Middle	17.12	18.08		N/A	N/A
Highest	17.36	18.24	36.64		

Band 4:

Toot Channal	26dB I	Limit	Dogult			
Test Channel		802.11a	802.11n20	802.11n40	LITTIIL	Result
	Lowest	21.84	22.48	44.16		
	Middle	21.84	22.56		N/A	N/A
	Highest	21.84	22.40	43.52		

Test Channel	99%	Limit	Result		
	802.11a	802.11n20	802.11n40	LIIIII	Result
Lowest	17.04	18.00	36.64		
Middle	16.96	18.08		N/A	N/A
Highest	16.96	18.00	36.64		

Test Channel	6dB E	Limit	Dogult		
	802.11a	802.11n20	802.11n40	Limit	Result
Lowest	16.72	17.84	36.96		
Middle	16.72	17.84		>500kHz	N/A
Highest	16.72	17.84	36.96		

Test plot as follows:

Band 1:

26 dB EBW - 802.11a

Date: 1.JUL.2015 15:44:27

Lowest channel

Date: 1.JUL.2015 15:45:40

Middle channel

Date: 1.JUL.2015 15:46:04

Highest channel

Date: 1.JUL.2015 15:47:23

Date: 1.JUL.2015 15:47:44

Date: 1.JUL.2015 15:48:13

Highest channel

Date: 1.JUL.2015 15:49:01

Lowest channel

Date: 1.JUL.2015 15:49:29

Highest channel

Date: 1.JUL.2015 15:59:05

Lowest channel

Date: 1.JUL.2015 15:59:32

#REW 300 kHz Marker 1 [T1] *VSW 1 MHz Marker 1 [T1] *VSW 1 MHz Marker 1 [T1] *VSW 1 MHz Marker 1 [T1] *O Office 0.4 dB SWT 20 mm 5.24416000 GHz *SWT 20 mm 5.24416000 GHz *Temp 1 [T1 OSK] -20 -20 -20 GHz Marker 1 [T1] *Temp 2 [T1 OSK] -21 JS GHZ Marker 1 [T1] *Temp 2 [T1 OSK] -22 JS GHZ MARKER 1 [T1] *Temp 2 [T1 OSK] -24 JS GHZ MARKER 1 [T1] *Temp 2 [T1 OSK] -25 JS GHZ MARKER 1 [T1] *Temp 2 [T1 OSK] -26 JS GHZ MARKER 1 [T1] *Temp 2 [T1 OSK] -27 JS GHZ MARKER 1 [T1] *Temp 2 [T1 OSK] -28 JS GHZ MARKER 1 [T1] *Temp 2 [T1 OSK] *Temp 2 [T1 OSK] -28 JS GHZ MARKER 1 [T1]

Date: 1.JUL.2015 15:59:56

Highest channel

Date: 1.JUL.2015 16:00:51

Date: 1.JUL.2015 16:01:11

Date: 1.JUL.2015 16:01:48

Highest channel

Date: 1.JUL.2015 16:02:21

Lowest channel

Date: 1.JUL.2015 16:02:45

Highest channel

Band 4:

Date: 1.JUL.2015 15:51:20

Lowest channel

Date: 1.JUL.2015 15:52:49

Middle channel

Date: 1.JUL.2015 15:53:23

Highest channel

Date: 1.JUL.2015 15:56:05

Date: 1.JUL.2015 15:55:12

Date: 1.JUL.2015 15:54:34

Highest channel

Date: 1.JUL.2015 15:57:04

Lowest channel

Date: 1.JUL.2015 15:57:56

Highest channel

Date: 1.JUL.2015 15:51:58

Lowest channel

Date: 1.JUL.2015 15:52:35

Middle channel

Date: 1.JUL.2015 15:53:37

Highest channel

Date: 1.JUL.2015 15:55:53

Date: 1.JUL.2015 15:55:23

Date: 1.JUL.2015 15:54:23

Highest channel

Date: 1.JUL.2015 15:57:16

Lowest channel

Date: 1.JUL.2015 15:57:45

Highest channel

Date: 1.JUL.2015 16:25:27

Lowest channel

Date: 1.JUL.2015 16:26:35

Middle channel

Date: 1.JUL.2015 16:28:11

Highest channel

Date: 1.JUL.2015 16:36:01

Date: 1.JUL.2015 16:35:07

Date: 1.JUL.2015 16:29:19

Highest channel

Date: 1.JUL.2015 16:37:23

Date: 1.JUL.2015 16:38:16

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (ii) & (a) (3)				
Test Method:	ANSI C63.10:2013, KDB 789033				
Limit:	Band 1: 17 dBm/MHz (The maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.); Band 4: 30dBm/500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Band 1

Mode	Test CH	PSD (dBm)	Limit (dBm)	Result
	Lowest	-13.00	17.00	Pass
802.11a	Middle	-13.34	17.00	Pass
	Highest	-13.68	17.00	Pass
	Lowest	-13.71	17.00	Pass
802.11n20	Middle	-13.43	17.00	Pass
	Highest	-13.59	17.00	Pass
802.11n40	Lowest	-16.66	17.00	Pass
	Highest	-16.94	17.00	Pass

Band 4

Mode	Test CH PSD Limit (dBm) (dBm)			Result
	Lowest	-4.24	30.00	Pass
802.11a	Middle	-4.73	30.00	Pass
	Highest	-5.43	3.000	Pass
	Lowest	-3.55	30.00	Pass
802.11n20	Middle	-5.11	30.00	Pass
	Highest	-5.37	30.00	Pass
802.11n40	Lowest	-8.07	30.00	Pass
	Highest	-8.36	30.00	Pass

Test plot as follows:

Band 1:

Date: 1.JUL.2015 16:54:32

#REW 1 MHZ Marker 1 [T1] *VEW 3 MHZ MARKER 1 [T1] *VEW 4 MHZ MARKER

Date: 1.JUL.2015 16:55:01

Date: 1.JUL.2015 16:55:29

Highest channel

Date: 1.JUL.2015 16:56:54

%

Lowest channel

Date: 1.JUL.2015 16:56:28

Middle channel

Date: 1.JUL.2015 16:56:03

Highest channel

Date: 1.JUL.2015 16:52:25

Lowest channel

Date: 1.JUL.2015 16:53:06

Highest channel

Band 4:

Highest channel

Highest channel

Lowest channel

Date: 21.JUL.2015 11:06:41

Highest channel

6.6 Band Edge

6.6 Band Edge							
Test Requirement:	FCC Part15 E S	ection 15.4	07 (b)				
Test Method:	ANSI C63.10:20	13 , KDB 7	89033				
Receiver setup:	Detector Quasi-peak RMS	RBW 120kHz 1MHz	VBW 300kHz 3MHz	Remark Quasi-peak Va Average Val			
Limit:							
Littie		_		BuV/m @3m) 68.20	Remark Peak Value		
	Band	1		54.00	Average Value		
	Band	1		78.20	Peak Value		
	Dallu	4		54.00	Average Value		
	Remark: 1. Band 1 limit: E[dBµV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]= -27dBm. 2. Band 4 limit: E[dBµV/m] = EIRP[dBm] + 95.2=78.2 dBuV/m, for EIPR[dBm]= -17dBm.						
Test Procedure:	 E[dBµV/m] = EIRP[dBm] + 95.2=78.2 dBuV/m, for EIPR[dBm]= -17dBm. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 						
Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer Amplifier						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Band 1:

				802.11a					
Test c	hannel		Lowest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	37.15	32.07	9.13	40.06	38.29	68.20	-29.91	Horizontal	
5150.00	36.69	32.07	9.13	40.06	37.83	68.20	-30.37	Vertical	
802.11a									
Test c	hannel		Lowest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	27.12	32.07	9.13	40.06	28.26	54.00	-25.74	Horizontal	
5150.00	26.52	32.07	9.13	40.06	27.66	54.00	-26.34	Vertical	
				802.11a					
Test c	hannel	Highest			Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	37.52	31.78	9.15	40.18	38.27	68.20	-29.93	Horizontal	
5350.00	37.65	31.78	9.15	40.18	38.40	68.20	-29.80	Vertical	
				802.11a					
Test c	hannel		Highest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	27.85	31.78	9.15	40.18	28.60	54.00	-25.40	Horizontal	
5350.00	27.54	31.78	9.15	40.18	28.29	54.00	-25.71	Vertical	

			8	02.11n-HT20						
Test cl	nannel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	37.12	32.07	9.13	40.06	38.26	68.20	-29.94	Horizontal		
5150.00	36.69	32.07	9.13	40.06	37.83	68.20	-30.37	Vertical		
	802.11n-HT20									
Test cl	nannel		Lowest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	27.83	32.07	9.13	40.06	28.97	54.00	-25.04	Horizontal		
5150.00	27.98	32.07	9.13	40.06	29.12	54.00	-24.88	Vertical		
			8	02.11n-HT20						
Test cl	nannel		Highest			vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	36.69	31.78	9.15	40.18	37.44	68.20	-30.76	Horizontal		
5350.00	36.19	31.78	9.15	40.18	36.94	68.20	-31.26	Vertical		
			8	02.11n-HT20						
Test cl	nannel		Highest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	27.54	31.78	9.15	40.18	28.29	54.00	-25.71	Horizontal		
5350.00	28.62	31.78	9.15	40.18	29.37	54.00	-24.63	Vertical		

			8	302.11n-HT40					
Test cl	hannel		Lowest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	36.35	32.07	9.13	40.06	37.49	68.20	-30.71	Horizontal	
5150.00	36.14	32.07	9.13	40.06	37.28	68.20	-30.92	Vertical	
802.11n-HT40									
Test cl	hannel		Lowest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	26.54	32.07	9.13	40.06	27.68	54.00	-26.32	Horizontal	
5150.00	25.37	32.07	9.13	40.06	26.51	54.00	-27.49	Vertical	
			8	02.11n-HT40					
Test cl	hannel	Highest			Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	36.32	31.78	9.15	40.18	37.07	68.20	-31.13	Horizontal	
5350.00	36.77	31.78	9.15	40.18	37.52	68.20	-30.68	Vertical	
			8	02.11n-HT40					
Test cl	hannel		Highest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	26.36	31.78	9.15	40.18	27.11	54.00	-26.89	Horizontal	
5350.00	26.74	31.78	9.15	40.18	27.49	54.00	-26.51	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

				802.11a					
Test cl	hannel		Lowest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	40.25	32.27	9.30	40.54	41.28	78.20	-36.92	Horizontal	
5725.00	40.11	32.27	9.30	40.54	41.14	78.20	-37.06	Vertical	
802.11a									
Test cl	hannel		Lowest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	30.47	32.27	9.30	40.54	31.50	54.00	-22.50	Horizontal	
5725.00	30.62	32.27	9.30	40.54	31.65	54.00	-22.35	Vertical	
				802.11a					
Test cl	hannel	Highest			Le	vel	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	40.35	32.71	9.37	40.69	41.74	78.20	-36.46	Horizontal	
5850.00	39.55	32.71	9.37	40.69	40.94	78.20	-37.26	Vertical	
				802.11a					
Test cl	hannel		Highest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	29.65	32.71	9.37	40.69	31.04	54.00	-22.96	Horizontal	
5850.00	30.21	32.71	9.37	40.69	31.60	54.00	-22.40	Vertical	

			8	302.11n-HT20					
Test c	hannel	Lowest			Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	40.12	32.27	9.30	40.54	41.15	78.20	-37.05	Horizontal	
5725.00	40.14	32.27	9.30	40.54	41.17	78.20	-37.03	Vertical	
802.11n-HT20									
Test c	hannel		Lowest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	30.85	32.27	9.30	40.54	31.88	54.00	-22.12	Horizontal	
5725.00	30.24	32.27	9.30	40.54	31.27	54.00	-22.73	Vertical	
			8	02.11n-HT20					
Test c	hannel	Highest			Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	40.12	32.71	9.37	40.69	41.51	78.20	-36.69	Horizontal	
5850.00	39.66	32.71	9.37	40.69	41.05	78.20	-37.15	Vertical	
			8	02.11n-HT20					
Test c	hannel		Highest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	30.21	32.71	9.37	40.69	31.60	54.00	-22.40	Horizontal	
5850.00	29.87	32.71	9.37	40.69	31.26	54.00	-22.74	Vertical	

			8	302.11n-HT40					
Test cl	hannel		Lowest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	39.65	32.27	9.30	40.54	40.68	78.20	-37.52	Horizontal	
5725.00	40.47	32.27	9.30	40.54	41.50	78.20	-36.70	Vertical	
802.11n-HT40									
Test cl	hannel		Lowest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	29.35	32.27	9.30	40.54	30.38	54.00	-23.62	Horizontal	
5725.00	30.28	32.27	9.30	40.54	31.31	54.00	-22.69	Vertical	
			8	02.11n-HT40					
Test cl	hannel	Highest			Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	40.35	32.71	9.37	40.69	41.74	78.20	-36.46	Horizontal	
5850.00	39.98	32.71	9.37	40.69	41.37	78.20	-36.83	Vertical	
			8	02.11n-HT40					
Test cl	hannel		Highest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	30.47	32.71	9.37	40.69	31.86	54.00	-22.14	Horizontal	
5850.00	29.48	32.71	9.37	40.69	30.87	54.00	-23.13	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Restricted Band

0.7.1	Restricted Band								
	Test Requirement:	FCC Part15 E S	Section 15.40	7(b)					
	Test Method:	ANSI C63.10: 2	2013						
	Test Frequency Range:	Band 1: 4.5 GH Band 4: 5.35 G			z to 5.46Gł	·lz			
	Test site:	Measurement [Distance: 3m						
	Receiver setup:								
		Frequency	Detector	RBW	VBW	Remark			
		Above 1GHz	Peak RMS	1MHz 1MHz	3MHz 3MHz	Peak Value Average Value			
	Limit:		1 (1/10	1111112	0111112	7 (Volugo Valuo			
		Freque	ency	Limit (dBuV/		Remark			
		Above 1	GHz	74.0		Peak Value			
				54.0	0	Average Value			
	Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 							
	τες: νειυμ.	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Amplifier							
	Test Instruments:	Refer to section	5.6 for detai	ils					
	Test mode:	Refer to section 5.3 for details							
	Test results:	Passed							

Report No: CCIS15060045605

Band 1:

802.11a

Test c	hannel	Lowest		Level		F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	36.24	30.72	8.54	40.67	34.83	74.00	-39.17	Horizontal
4500.00	37.02	30.72	8.54	40.67	35.61	74.00	-38.39	Vertical
Test c	hannel		Lowest		Le	vel	Average	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	26.54	30.72	8.54	40.67	25.13	54.00	-28.87	Horizontal
4500.00	26.40	30.72	8.54	40.67	24.99	54.00	-29.01	Vertical
Test cl	hannel	Highest			Level		F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	37.26	31.99	9.16	40.23	38.18	74.00	-35.82	Horizontal
5460.00	37.05	31.99	9.16	40.23	37.97	74.00	-36.03	Vertical
Test cl	hannel		Highest		Level		Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	27.12	31.99	9.16	40.23	28.04	54.00	-25.96	Horizontal
5460.00	27.00	31.99	9.16	40.23	27.92	54.00	-26.08	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT20

Test c	hannel		Lowest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4500.00	36.87	30.72	8.54	40.67	35.46	74.00	-38.54	Horizontal	
4500.00	36.38	30.72	8.54	40.67	34.97	74.00	-39.03	Vertical	
Test cl	hannel		Lowest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4500.00	26.54	30.72	8.54	40.67	25.13	54.00	-28.87	Horizontal	
4500.00	26.36	30.72	8.54	40.67	24.95	54.00	-29.05	Vertical	
Test cl	hannel		Highest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	37.28	31.99	9.16	40.23	38.20	74.00	-35.80	Horizontal	
5460.00	37.89	31.99	9.16	40.23	38.81	74.00	-35.20	Vertical	
Test cl	hannel		Highest		Le	vel	Av	Horizontal	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	27.52	31.99	9.16	40.23	28.44	54.00	-25.56	Horizontal	
5460.00	27.18	31.99	9.16	40.23	28.10	54.00	-25.90	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT40

Test c	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	37.50	30.72	8.54	40.67	36.09	74.00	-37.91	Horizontal
4500.00	37.55	30.72	8.54	40.67	36.14	74.00	-37.86	Vertical
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	27.55	30.72	8.54	40.67	26.14	54.00	-27.86	Horizontal
4500.00	27.36	30.72	8.54	40.67	25.95	54.00	-28.05	Vertical
Test c	hannel		Highest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	36.28	31.99	9.16	40.23	37.20	74.00	-36.80	Horizontal
5460.00	37.29	31.99	9.16	40.23	38.21	74.00	-35.80	Vertical
Test c	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	27.32	31.99	9.16	40.23	28.24	54.00	-25.76	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

802.11a

Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	43.21	31.78	9.15	40.18	43.96	74.00	-30.04	Horizontal
5460.00	43.65	31.99	9.16	40.23	44.57	74.00	-29.43	Horizontal
5350.00	42.85	31.78	9.15	40.18	43.60	74.00	-30.40	Vertical
5460.00	43.26	31.99	9.16	40.23	44.18	74.00	-29.82	Vertical
Test cl	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	33.65	31.78	9.15	40.18	34.40	54.00	-19.60	Horizontal
5460.00	32.85	31.99	9.16	40.23	33.77	54.00	-20.23	Horizontal
5350.00	32.38	31.78	9.15	40.18	33.13	54.00	-20.87	Vertical
5460.00	33.97	31.99	9.16	40.23	34.89	54.00	-19.11	Vertical

802.11n-HT20

Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	43.12	31.78	9.15	40.18	43.87	74.00	-30.13	Horizontal
5460.00	42.25	31.99	9.16	40.23	43.17	74.00	-30.83	Horizontal
5350.00	42.11	31.78	9.15	40.18	42.86	74.00	-31.14	Vertical
5460.00	43.26	31.99	9.16	40.23	44.18	74.00	-29.82	Vertical
Test cl	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	33.69	31.78	9.15	40.18	34.44	54.00	-19.56	Horizontal
5460.00	32.85	31.99	9.16	40.23	33.77	54.00	-20.23	Horizontal
5350.00	32.54	31.78	9.15	40.18	33.29	54.00	-20.71	Vertical
5460.00	33.87	31.99	9.16	40.23	34.79	54.00	-19.21	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT40

Test c	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	42.68	31.78	9.15	40.18	43.43	74.00	-30.57	Horizontal
5460.00	43.57	31.99	9.16	40.23	44.49	74.00	-29.51	Horizontal
5350.00	43.99	31.78	9.15	40.18	44.74	74.00	-29.26	Vertical
5460.00	44.87	31.99	9.16	40.23	45.79	74.00	-28.21	Vertical
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	33.47	31.78	9.15	40.18	34.22	54.00	-19.78	Horizontal
5460.00	34.52	31.99	9.16	40.23	35.44	54.00	-18.56	Horizontal
5350.00	33.85	31.78	9.15	40.18	34.60	54.00	-19.40	Vertical
5460.00	34.12	31.99	9.16	40.23	35.04	54.00	-18.96	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7.2 Unwanted Emissions in the Restricted Bands

Test Requirement:	FCC Part15 C S	Section 15.209 a	and 15.205		
Test Method:	ANSI C63.10:20)13			
Test Frequency Range:	30MHz to 40GH	lz			
Test site:	Measurement D	istance: 3m			
Receiver setup:					
	Frequency	Detector	RBW	VBW	Remark
	30MHz-1GHz	Quasi-peak	100kHz	300kHz	Quasi-peak Value
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
Limit:					
	Freque		Limit (dBuV/		Remark
	30MHz-8		40.0		Quasi-peak Value
	88MHz-21		43.5		Quasi-peak Value
	216MHz-9		46.0		Quasi-peak Value
	960MHz-	1GHZ	54.0)	Quasi-peak Value
	Freque	ncv	Limit (dBn	n/MHz)	Remark
		•	68.2	•	Peak Value
	Above 1	GHz	54.0		Average Value
		RP[dBm] + 95.2=			
Test Procedure:	the ground determine to determine the determine to determine the determine to determine the determ	at a 3 meter cathe position of the position of the ras set 3 meters hich was mountained height is varied tetermine the mand vertical polaries. Uspected emissive antenna was a table was turneading, ceiver system was an additional to the reported by the resting ould be reported.	amber. The she highest research away from the don the ted from one aximum valuations of the ted from 0 cours set to Paximum Haximum Ha	table was reladiation. If the interference op of a variation of the first the antennation of the antennation of the entertool	s 10dB lower than the the peak values of ions that did not have g peak, quasi-peak or

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : 456RF Condition

Job No.

JOD NO. : 450KF
EUT : Android player Main board with wireless
Model : ASSY-1859ATMBA-00
Test mode : 55Wifi mode
Power Rating : AC 120V/50Hz
Environment : Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: MT REMARK :

THEFT									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
777	MHz	dBu₹		₫B	dB	dBuV/m	dBuV/m	<u>dB</u>	
1	94.760	44.18		0.93				-15.10	
1 2 3	183.201	50.08	8. 56 9. 92	1.36	28.95	32.41	43.50	-11.09	QP
4 5 6	236.645 463.970	51.51 47.40	11.93 15.71	1.56 2.30		36. 39 36. 52		-9.61 -9.48	
6	533.832	45.26	17.26	2.49	29.05	35.96	46.00	-10.04	QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : 456RF Condition

Job No.

EUT : Android player Main board with wireless
Model : ASSY-1859ATMBA-00
Test mode : 5GWifi mode
Power Rating : AC 120V/50Hz

Temp: 25.5°C Huni: 55% 101KPa Environment :

Test Engineer: MT

REMARK

THUMBE										
	Freq		Antenna Factor					Over Limit	Remark	
-	MHz	dBu∇	dB/m	<u>dB</u>	dB	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>		
1	37.416	43.85	12.92	0.50	29.92	27.35	40.00	-12.65	QP	
2	94.428	43.24	12.75	0.93	29.55	27.37	43.50	-16.13	QP	
2	184.490	45.69	10.08	1.36	28.94	28.19	43.50	-15.31	QP	
4	235.816	44.42	11.88	1.56	28.62	29.24	46.00	-16.76	QP	
4 5	533.832	48.56	17.26	2.49	29.05	39.26	46.00	-6.74	QP	
6	798.980	40.27	20.06	3.17	28.20	35.30	46.00	-10.70	QP	

Above 1GHz:

Band 1:

	802.11a mode Lowest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10360.00	45.62	39.23	13.84	41.34	57.35	68.20	-10.85	Vertical		
10360.00	44.12	39.23	13.84	41.34	55.85	68.20	-12.35	Horizontal		
		802.11	a mode Lowe	est channe	I (Average V	/alue)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10360.00	32.52	39.23	13.84	41.34	44.25	54.00	-9.75	Vertical		
10360.00	33.69	39.23	13.84	41.34	45.42	54.00	-8.58	Horizontal		

	802.11a mode Middle channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10400.00	44.62	39.36	13.85	41.27	56.56	68.20	-11.64	Vertical		
10400.00	44.95	39.36	13.85	41.27	56.89	68.20	-11.31	Horizontal		
		802.11	a mode Mido	lle channel	(Average V	alue)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10400.00	34.52	39.36	13.85	41.27	46.46	54.00	-7.54	Vertical		
10400.00	35.01	39.36	13.85	41.27	46.95	54.00	-7.05	Horizontal		

	802.11a mode Highest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10480.00	43.62	39.56	13.90	41.06	56.02	68.20	-12.18	Vertical		
10480.00	42.35	39.56	13.90	41.06	54.75	68.20	-13.45	Horizontal		
		802.11a	a mode High	est channe	I (Average \	/alue)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10480.00	33.15	39.56	13.90	41.06	45.55	54.00	-8.45	Vertical		
10480.00	32.54	39.56	13.90	41.06	44.94	54.00	-9.06	Horizontal		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

	802.11n20 mode Lowest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10360.00	45.32	39.23	13.84	41.34	57.05	68.20	-11.15	Vertical		
10360.00	44.21	39.23	13.84	41.34	55.94	68.20	-12.26	Horizontal		
		802.11n2	20 mode Lov	vest chann	el (Average	Value)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10360.00	35.62	39.23	13.84	41.34	47.35	54.00	-6.65	Vertical		
10360.00	34.85	39.23	13.84	41.34	46.58	54.00	-7.42	Horizontal		

	802.11n20 mode Middle channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	45.62	39.36	13.85	41.27	57.56	68.20	-10.64	Vertical			
10400.00	44.23	39.36	13.85	41.27	56.17	68.20	-12.03	Horizontal			
		802.11n	20 mode Mic	ldle chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	35.62	39.36	13.85	41.27	47.56	54.00	-6.44	Vertical			
10400.00	34.85	39.36	13.85	41.27	46.79	54.00	-7.21	Horizontal			

	802.11n20 mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	43.35	39.56	13.90	41.06	55.75	68.20	-12.45	Vertical			
10480.00	44.01	39.56	13.90	41.06	56.41	68.20	-11.79	Horizontal			
		802.11n2	20 mode Higl	hest chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	32.14	39.56	13.90	41.06	44.54	54.00	-9.46	Vertical			
10480.00	31.11	39.56	13.90	41.06	43.51	54.00	-10.49	Horizontal			

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

	802.11n40 mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10380.00	43.25	39.29	13.84	41.31	55.07	68.20	-13.13	Vertical			
10380.00	44.57	39.29	13.84	41.31	56.39	68.20	-11.81	Horizontal			
		802.11n	40 mode Lov	vest chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10380.00	31.47	39.29	13.84	41.31	43.29	54.00	-10.71	Vertical			
10380.00	32.20	39.29	13.84	41.31	44.02	54.00	-9.98	Horizontal			

		802.11	n40 mode Hi	ghest char	nnel (Peak V	alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10460.00	43.25	39.54	13.88	41.17	55.50	68.20	-12.70	Vertical
10460.00	42.28	39.54	13.88	41.17	54.53	68.20	-13.67	Horizontal
		802.11n ²	10 mode Hig	hest chann	el (Average	Value)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10460.00	33.25	39.54	13.88	41.17	45.50	54.00	-8.50	Vertical
10460.00	32.28	39.54	13.88	41.17	44.53	54.00	-9.47	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

		802.1	1a mode Lov	west chann	iel (Peak Val	ue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	43.68	40.25	13.82	40.75	57.00	68.20	-11.20	Vertical
11490.00	43.11	40.25	13.82	40.75	56.43	68.20	-11.77	Horizontal
		802.11	a mode Lowe	est channe	l (Average V	'alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	30.23	40.25	13.82	40.75	43.55	54.00	-10.45	Vertical
11490.00	30.15	40.25	13.82	40.75	43.47	54.00	-10.53	Horizontal

	802.11a mode Middle channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11570.00	43.24	40.17	13.78	40.91	56.28	68.20	-11.92	Vertical			
11570.00	43.35	40.17	13.78	40.91	56.39	68.20	-11.81	Horizontal			
		802.11	a mode Mido	dle channe	l (Average V	alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11570.00	31.23	40.17	13.78	40.91	44.27	54.00	-9.73	Vertical			
11570.00	30.25	40.17	13.78	40.91	43.29	54.00	-10.71	Horizontal			

	802.11a mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11650.00	44.21	39.89	13.74	41.06	56.78	68.20	-11.42	Vertical			
11650.00	43.68	39.89	13.74	41.06	56.25	68.20	-11.95	Horizontal			
		802.11a	a mode High	est channe	l (Average \	/alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11650.00	33.58	39.89	13.74	41.06	46.15	54.00	-7.85	Vertical			
11650.00	31.25	39.89	13.74	41.06	43.82	54.00	-10.18	Horizontal			

Remark:

Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
 The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n20 mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11490.00	43.25	40.25	13.82	40.75	56.57	68.20	-11.63	Vertical			
11490.00	42.14	40.25	13.82	40.75	55.46	68.20	-12.74	Horizontal			
		802.11n2	20 mode Lov	vest chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11490.00	30.25	40.25	13.82	40.75	43.57	54.00	-10.43	Vertical			
11490.00	29.74	40.25	13.82	40.75	43.06	54.00	-10.94	Horizontal			

	802.11n20 mode Middle channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11570.00	43.68	40.17	13.78	40.91	56.72	68.20	-11.48	Vertical			
11570.00	43.20	40.17	13.78	40.91	56.24	68.20	-11.96	Horizontal			
		802.11n	20 mode Mid	ddle chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11570.00	30.21	40.17	13.78	40.91	43.25	54.00	-10.75	Vertical			
11570.00	30.45	40.17	13.78	40.91	43.49	54.00	-10.51	Horizontal			

	802.11n20 mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11650.00	42.35	39.89	13.74	41.06	54.92	68.20	-13.28	Vertical			
11650.00	42.70	39.89	13.74	41.06	55.27	68.20	-12.93	Horizontal			
		802.11n2	20 mode Higl	hest chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11650.00	32.62	39.89	13.74	41.06	45.19	54.00	-8.81	Vertical			
11650.00	30.44	39.89	13.74	41.06	43.01	54.00	-10.99	Horizontal			

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
 The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n40 mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11510.00	41.21	40.26	13.83	40.77	54.53	68.20	-13.67	Vertical			
11510.00	42.87	40.26	13.83	40.77	56.19	68.20	-12.01	Horizontal			
		802.11n	40 mode Lov	vest chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11510.00	29.65	40.26	13.83	40.77	42.97	54.00	-11.03	Vertical			
11510.00	29.40	40.26	13.83	40.77	42.72	54.00	-11.28	Horizontal			

	802.11n40 mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11590.00	41.54	40.08	13.77	40.95	54.44	68.20	-13.76	Vertical			
11590.00	42.30	40.08	13.77	40.95	55.20	68.20	-13.00	Horizontal			
		802.11n4	40 mode Hig	hest chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11590.00	29.35	40.08	13.77	40.95	42.25	54.00	-11.75	Vertical			
11590.00	29.74	40.08	13.77	40.95	42.64	54.00	-11.36	Horizontal			

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.8 Frequency stability

Test Requirement:	FCC Part15 E Section 15.407 (g)	
Limit:	Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.	
Test setup:	Spectrum analyzer EUT Att. Variable Power Supply	
Test procedure:	 Note: Measurement setup for testing on Antenna connector The EUT is installed in an environment test chamber with external power source. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT. A sufficient stabilization period at each temperature is used prior to each frequency measurement. When temperature is stabled, measure the frequency stability. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions. 	
Test Instruments:	Refer to section 5.6 for details	
Test mode:	Refer to section 5.3 for details, and all channels have been tested, only shows the worst channel data in this report.	
Test results:	Passed	

Measurement Data (the worst channel):

Band 1:

Voltage vs. Frequency Stability (Lowest channel=5180MHz)

Test conditions		Francisco (MUL)	Man Davieties (com)
Temp(°C)	Voltage(AC /60Hz)	Frequency(MHz)	Max. Deviation (ppm)
20	138	5179.984500	2.99
	120	5179.987800	2.36
	102	5179.987400	2.43

Temperature vs. Frequency Stability (Lowest channel=5180MHz)

Test conditions		F	May Davistian (nom)
Voltage(AC /60Hz)	Temp(°C)	Frequency(MHz)	Max. Deviation (ppm)
120	-20	5179.985100	2.88
	-10	5179.987400	2.43
	0	5179.988200	2.28
	10	5179.988400	2.24
	20	5179.988700	2.18
	30	5179.986800	2.55
	40	5179.984700	2.95
	50	5179.983500	3.19

Band 4:

Voltage vs. Frequency Stability (Lowest channel=5745MHz)

Test conditions		F	Man Davidtan (mmm)
Temp(°C)	Voltage(AC /60Hz)	Frequency(MHz)	Max. Deviation (ppm)
20	138	5744.986584	2.34
	120	5744.988745	1.96
	102	5744.987548	2.17

Temperature vs. Frequency Stability (Lowest channel=5745MHz)

Test conditions		Francisco (MIII-)	May Deviation (name)
Voltage(AC /60Hz)	Temp(°C)	Frequency(MHz)	Max. Deviation (ppm)
120	-20	5744.993550	1.12
	-10	5744.998471	0.27
	0	5744.989878	1.76
	10	5744.997884	0.37
	20	5744.988875	1.94
	30	5744.998541	0.25
	40	5744.986784	2.30
	50	5744.990247	1.70