

Exercise 3

Keyword Spotting using Dynamic Time Warping (DTW)

Data and Info on Github:

https://github.com/lunactic/PatRec17_KWS_Data

Also see slides 27+ from lecture 7

What to do first

Analyze the data

Preprocessing

Binarization

Create Word Images

Compute some features

Pre-processing

Crop

Easiest: bounding box

Polygon as clipping mask

Binarization

Otsu, Sauvola, Difference-of-Gaussian

Keyword Spotting

Digitizing historical manuscripts for cultural heritage preservation

Textual content: searching and browsing scanned page images

Widely unsolved for historical handwriting too many writing styles and languages

Keyword spotting is a "shortcut": identify individual search terms

of Flour, for the two Companies of Rangers; twelve hundred of which to be delivered Captain Ashly and Company, at the Plantation of Charles Sellars - the rest to Captain Cocked Company at Nicholas Reasmers. October 26.

Query-By-Example

"one-shot learning": provide one example word image

Goal: find similar word images in the manuscript

Usually constrained to a single-writer scenario (sample from the same manuscript)

twelve hundred of which to be captain takey and bompany, charles Sellars - ches bompany at Nicholas Reas October 26.

Data Set

WashingtonDB

Letters of George Washington

Library of Congress

18th century, longhand script

Data


```
/ground-truth/transcription.txt
Character based transcription
```

```
/ground-truth/locations/*.svg
Polygons of word segments
```

```
/images/*.jpg
The page images
```

/task

Splitting into train and validation set

Keywords.txt -> words that are contained in both sets

Exemplary Dissimilarity Approaches

Global: extract global features, compute the Euclidean distance between the feature vectors

Grid-based: extract features for each cell, compute the sum of Euclidean distances over all cells

Sliding window-based: extract features for each window, compute the dynamic time warping (DTW) distance between two sequences of feature vectors --> your task!

$$d(x,y) = \sum IIx_i - y_iII$$

$$d(x,y) = DTW(x,y)$$

Dynamic Time Warping (DTW)

Dissimilarity between two feature vector sequences

$$Q = q_1, ..., q_N; q_i \in R^n$$

$$C = c_1, ..., c_M; c_i \in R^n$$

Dynamic time warping aligns two sequences $(q_i \rightarrow c_j)$, along a common time axis usually with Euclidean cost:

$$\phi(q_i \to c_j) = ||q_i - c_j|| = \sqrt{\sum_{k=1}^n (q_{i,k} - c_{j,k})^2}$$

DTW - How To (1)

Non-linear mapping between 2 sequences minimizing the distance between them

$$Q = q_1, ..., q_N; q_i \in R^n$$

$$C = c_1, ..., c_M; c_i \in \mathbb{R}^n$$

N-by-M matrix, where (ith, jth) element alignment between points q_i and c_j

$$d(q_i, c_j) = \sqrt{(q_i - c_j)^2}$$

Find the best match: retrieve a path through the matrix that minimizes the total cumulative distance

DTW - How To (2)


```
Start from (1,1) and end in (n,m)
At each step, increase i, j, or both
   (never go back)
   Jumping not allowed!
                                       S
Sum distances in the path
     i, j++
           i, j++
```


DTW – Computational Efficiency

Sakoe-Chiba Band: Reduce the number of paths to consider

Excludes abnormal edit paths
Speeds up the computation
Sequences of same length

	7				43	24	17
% ←	3			7	11	8	8
	4		6	9	18	8	7
	5	10	5	11	18	7	
	2	1	2	2	3		
	1	1	5	6			
	DTW	2	3	2	1	3	4
q							

Features for DTW

Normalize

- Image dimensions (scale to same size, e.g. 100 px x 100 px)
 → same-length sequence
- Feature vectors (e.g. $\frac{x_i \mu}{\sigma}$)

Features for DTW – Suggestions ... \triangle

Sliding window (suggestion: width 1 px, offset 1px)

- Lower contour (LC)
- Upper contour (UC)
- # b/w transitions
- Fraction of black px in the window
- Fraction of black px between LC and UC
- Gradient: difference LC_i, UC_i to LC_{i+1}, UC_{i+1}

Evaluation: Recall – Precision

Retrieval-Task: two main questions

How many selected items are relevant?

$$Precision = \frac{TP}{TP + FI}$$

How many of the relevant are selected?

$$Recall = \frac{TP}{TP + FN}$$

Recall-Precision Curve / AP

For image, each threshold, compute the

- True Positives (TP)
- False Positives (FP)
- False Negatives (FN)

Recall =
$$\frac{TP}{TP + FN}$$
 = True Positive Rate (TPR)

$$Precision = \frac{TP}{TP + FP}$$

Average Precision (AP)

Area under the Recall-Precision curve

