Bode Plots

Arnav Gupta

April 5, 2024

Contents

1	Frequency Response															1							
2	Bode Plots															2							
	2.1	Decibels																					2
	2.2	Finding																					2

1 Frequency Response

If $S:f\to y$ is an LTI with transfer function H(s), then for any $s\in\mathbb{C},$

$$e^{st} \xrightarrow{S} H(s)e^{st}$$

If $s=j\omega$, then $H(j\omega)$ can be written in polar form. $H(j\omega)$ is then the frequency response.

If S is an LT with transfer function H(s), then

$$\sin(\omega t) \xrightarrow{S} |H(j\omega)| \sin(\omega t + \angle_{H(j\omega)})$$

This means that the system reponse of an LTI to a sin wave of frequency ω :

- has an amplitude scaled by $H(j\omega)$
- has the same frequency
- has a phase shifted by $\angle_{H(j\omega)}$

If S is an LT with transfer function H(s), then as $t \to \infty$

$$\sin(\omega t)u(t) \xrightarrow{S} |H(j\omega)|\sin(\omega t + \angle_{H(j\omega)})$$

Fourier series/transforms allow decomposing functions as a sum/integral of sin and cos waves.

2 Bode Plots

Bode plots: a graphical representation of the frequency response One plot for magnitude and one for phase.

2.1 Decibels

$$|H(j\omega)|$$
 in decibels is $20\log_{10}(|H(j\omega)|)$

This means magnitude curves for multiplied frequency responses can be found by adding magnitude curves for each factor.

2.2 Finding

If given a transfer function $H(s) = H_1(s) \cdot H_2(s) \cdots H_k(s)$, then the Bode plot for $H(j\omega)$ is found by

- finding the magnitude and phase curves for each $H_i(j\omega)$
- adding the magnitude and phase curves