General Goals of Evaluation Design: Accuracy, Coverage, Confidence and Trust, Novelty, Serendipity, Diversity, Scalability, Segmenting the Ratings for Training and Testing, Accuracy Metrics in Offline Evaluation.

General Goals of Evaluation Design in Recommender Systems

• Recommender systems are evaluated based on several key factors beyond just accuracy. Below are the main evaluation goals:

Accuracy

- Measures how well a recommender system predicts ratings or rankings.
- Entry-specific error: $e_{uj} = \hat{r}_{uj} r_{uj}$ (difference between predicted and actual rating).
- Common accuracy metrics:
 - . Mean Squared Error (MSE): Measures squared differences.

$$MSE = rac{\sum_{(u,j) \in E} e_{uj}^2}{|E|}$$

Root Mean Squared Error (RMSE): Square root of MSE.

$$RMSE = \sqrt{rac{\sum_{(u,j) \in E} e_{uj}^2}{|E|}}$$

Accuracy of rankings: Uses rank correlation and utility-based measures.

$$R = egin{bmatrix} 5 & 3 & ? \ 4 & ? & 1 \ ? & 2 & 3 \end{bmatrix}$$

$$\hat{R} = \begin{bmatrix} 4.8 & 3.2 & 4.2 \\ 3.9 & 3.1 & 1.2 \\ 3.8 & 2.1 & 3.1 \end{bmatrix}$$

For observed values, we calculate the error:

$$e_{uj} = \hat{r}_{uj} - r_{uj}$$

Extracting observed values:

$$e = \begin{bmatrix} (4.8 - 5) & (3.2 - 3) & - \\ (3.9 - 4) & - & (1.2 - 1) \\ - & (2.1 - 2) & (3.1 - 3) \end{bmatrix}$$
$$e = \begin{bmatrix} -0.2 & 0.2 & - \\ -0.1 & - & 0.2 \\ - & 0.1 & 0.1 \end{bmatrix}$$

Mean Squared Error (MSE):

$$MSE = rac{1}{|E|}\sum_{(u,j)\in E}e_{uj}^2$$

$$MSE = rac{(-0.2)^2 + (0.2)^2 + (-0.1)^2 + (0.2)^2 + (0.1)^2 + (0.1)^2}{6}$$

$$MSE = 0.025$$

Root Mean Squared Error (RMSE):

$$RMSE = \sqrt{MSE} = \sqrt{0.025} = 0.1581$$

Note: Lower MSE and RMSE indicate better prediction accuracy.

Coverage

- Measures the proportion of users or items for which meaningful recommendations can be made.
- User-space coverage: Fraction of users for whom at least k ratings can be predicted.
- Item-space coverage: Fraction of items that can be recommended to users.
- Catalog coverage: Fraction of unique items appearing in at least one recommendation list.

$$CC = rac{|igcup_{u=1}^m T_u|}{n}$$

Confidence and Trust

- Confidence: System's certainty in its predictions (e.g., providing confidence intervals).
- Trust: User's faith in the system, which can be increased with explanations.
- Comparison of confidence estimates:
 - If two systems provide 95% confidence intervals, the one with a smaller width is better.
 - Cannot compare confidence intervals if different levels (e.g., 95% vs. 99%) are used.

$$R = egin{bmatrix} 5 & 3 & ? & 4 & ? \ 4 & ? & 1 & ? & 2 \ ? & 2 & 3 & 5 & ? \ 1 & ? & 4 & 3 & 5 \end{bmatrix}$$

- The "?" represents missing ratings, meaning the user has not rated that item.
- Our goal is to evaluate coverage, confidence, and trust metrics.

1. User-Space Coverage

- User-space coverage refers to the fraction of users for whom at least k ratings can be predicted.
- Assume that the recommendation system can predict missing values based on collaborative filtering.
- If we set k=3, and check which users have at least 3 ratings predicted:

User	Predicted Ratings ≥ 3
User 1	
User 2	
User 3	
User 4	

• User-Space Coverage =
$$\frac{4}{4}=100\%$$

2. Item-Space Coverage

- ullet Item-space coverage is the fraction of items for which ratings of at least k users can be predicted.
- If we set k=2, we check which items can be rated by at least two users:

Item	Predicted Ratings ≥ 2
Item 1	
Item 2	
Item 3	
Item 4	
Item 5	

• Item-Space Coverage = $\frac{5}{5}=100\%$

3. Catalog Coverage

· This metric is calculated as:

$$CC = \frac{|\bigcup_{u=1}^{m} T_u|}{n}$$

where T_u is the list of top k recommended items for each user.

• Suppose we generate the following top-3 recommended lists for each user:

User	Top-3 Recommended Items
User 1	{2, 3, 5}
User 2	{1, 4, 5}
User 3	{1, 2, 3}
User 4	{2, 3, 4}

• The total unique recommended items:

$$\{1, 2, 3, 4, 5\}$$

• Catalog Coverage = $\frac{5}{5} = 100\%$ (since all 5 items appear in at least one recommendation list)

Step 3: Confidence Estimation

- Confidence represents the system's certainty in its recommendations.
- Suppose we estimate confidence intervals for predicted ratings:

User	Item	Predicted Rating \hat{r}	95% CI
1	3	4.2	(3.8, 4.6)
2	2	3.1	(2.7, 3.5)
3	1	3.8	(3.4, 4.2)

- Comparison of Confidence:
 - If two systems provide 95% confidence intervals, the system with the smaller width is considered more reliable.
 - Example: System A has CI width of 0.8, while System B has CI width of 0.6. System B is better.

Step 4: Trust Estimation

- Trust is the user's faith in the system.
- If explanations are provided (e.g., "You might like this because you rated a similar item"), users may trust recommendations more.
- A user survey could be used to measure trust:

User	Do you trust the recommendations? (Yes/No)
1	Yes
2	No
3	Yes
4	Yes

• Trust Score = $\frac{3}{4} = 75\%$

Novelty

- Measures the system's ability to recommend items that the user has never seen before.
- Evaluation methods:
 - Online experiments: Users are asked if they were previously aware of an item.
 - Offline approximation:
 - Hide ratings after a certain timestamp t₀.
 - ullet Penalize recommendations for items rated before t_0 and reward those rated after.

Serendipity

- Measures the surprise factor in recommendations.
- Difference from novelty:
 - · Novel items = Items the user has never seen.
 - Serendipity = Unexpected but useful items.
- Example:
 - A user who likes Indian food gets a recommendation for Pakistani food (novel but not surprising).
 - A recommendation for Ethiopian food is serendipitous.

- Evaluation methods:
 - . Online: Ask users if recommendations are both useful and unexpected.
 - Offline: Compare against "obvious" recommendations from a simple content-based model.

Diversity

- Ensures that the recommendations are varied across genres, styles, etc.
- Example: A user gets three movie recommendations:
 - · Low diversity: All are horror movies.
 - · High diversity: Horror, comedy, and action.
- Measurement:
 - Compute pairwise similarity between items in the recommendation list.
 - Lower average similarity = Higher diversity.

Robustness and Stability

- · A recommender system should remain stable when exposed to:
 - Fake ratings (spam attacks, biased ratings).
 - Evolving user preferences (changing trends over time).
- Example:
 - A book's author might enter fake positive ratings.
 - A competitor might add fake negative ratings.

- Evaluation:
 - Measure how much recommendations change when fake ratings are added.

Scalability

- Recommender systems should handle large datasets efficiently.
- Key scalability measures:
 - 1. Training time: Should be reasonable (hours, not days).
 - 2. Prediction time: Should be low-latency for real-time recommendations.
 - Memory requirements: System should handle large rating matrices without excessive RAM usage.

Segmenting the Ratings for Training and Testing in Recommender Systems

- Recommender systems require training, validation, and test datasets for evaluation.
- Since real-world datasets are not pre-partitioned, they must be split systematically.
- The two most common methods are **hold-out** and **cross-validation**.

1. Hierarchical Division of Ratings Data

- The dataset is first split into training and testing sets.
- The training set is further divided into:
 - Model-building data
 - Validation set (optional)
- This helps evaluate models without overfitting.

2. Hold-Out Method

- A fraction of the dataset is hidden (test set), and the rest is used for training.
- Accuracy is measured on the held-out test set.
- Prevents overfitting since the model doesn't see test data during training.
- Drawbacks:
 - Underestimates true accuracy (as all data is not used for training).
 - Bias issue: If the hidden ratings are higher than the dataset's average, accuracy evaluation is pessimistic.

3. Cross-Validation Method

- The dataset is divided into q equal sets.
- Each fold is used as the **test set** once, while the remaining q-1 folds are used for **training**.
- Accuracy is averaged across all q experiments.
- Special Case: Leave-One-Out Cross-Validation (LOO-CV)
 - Uses all data except one entry for training.
 - Evaluates performance for each missing rating individually.
 - Downside: Expensive when dataset is large (requires |S| training runs).

4. Comparison with Classification Design

- Collaborative filtering is similar to classification, as both predict missing values.
- Key difference:
 - Classification: Splits data row-wise (some users for training, some for testing).
 - Collaborative Filtering: Splits data entry-wise (some ratings for training, some for testing).
- Challenge: Sample selection bias.
 - Hidden ratings are from items users chose to consume, meaning they are higher than randomly missing ratings.
 - · Results in optimistic performance estimates compared to real-world settings.

Accuracy Metrics in Offline Evaluation

- Offline evaluation measures a recommendation system's performance using historical data before real-world deployment.
- It helps refine algorithms without exposing users to poor recommendations.

Two major categories of accuracy metrics:

- **Prediction accuracy metrics**: Focus on how close predicted ratings are to actual ratings (e.g., RMSE, MAE).
- Ranking accuracy metrics: Evaluate how well a model ranks relevant items for users.

Measuring the Accuracy of Ratings Prediction

- Many recommender systems predict numerical ratings (e.g., Netflix ratings from 1-5 stars).
- The quality of these predictions is assessed using metrics like RMSE and MAE.

RMSE versus **MAE**

1. Root Mean Square Error (RMSE)

- RMSE measures how much the predicted ratings deviate from actual ratings.
- It squares the errors, meaning larger errors are penalized more heavily than smaller ones.
- RMSE is more sensitive to outliers (large prediction mistakes).

* Formula:

$$RMSE = \sqrt{rac{1}{N}\sum_{i=1}^{N}(r_i - \hat{r}_i)^2}$$

where:

- N = total number of ratings
- r_i = actual rating given by the user
- r̂_i = predicted rating

2. Mean Absolute Error (MAE)

- MAE measures the absolute differences between predicted and actual ratings.
- It treats all errors equally (unlike RMSE, which penalizes large errors more).

★ Formula:

$$MAE = rac{1}{N} \sum_{i=1}^{N} |r_i - \hat{r}_i|$$

Impact of the Long Tail

What is the Long Tail?

- In recommender systems, a few popular items (head) get most of the engagement, while many less popular items (long tail) have very few interactions.
- Example: On Netflix, a few blockbuster movies dominate while thousands of niche movies are rarely watched.

Why is the Long Tail Important?

- Most recommender systems favour popular items, which can lead to a lack of diversity.
- Users might **never discover** rare but relevant items.

Evaluation Approach:

Instead of just RMSE/MAE, use **diversity and novelty metrics** to ensure **long-tail items** are recommended.

Evaluating Ranking via Correlation

- Instead of just predicting ratings, recommendation systems should rank items in the correct order.
- Ranking correlation measures **how similar** the predicted ranking is to the actual user preferences.
- 1. Spearman's Rank Correlation (ρ)
- **♦** Formula:

$$ho=1-rac{6\sum d_i^2}{N(N^2-1)}$$

where:

- d_i = difference between predicted and actual ranking for item i
- N = total number of items
- ightharpoonup means a better ranking match.

2. Kendall's Tau (τ)

- Measures how often item pairs are ranked correctly or incorrectly.
- If Item A should be ranked above Item B but isn't, it lowers Kendall's Tau.
- ✓ Why Correlation Metrics?
- Even if RMSE is low, the ranking of items might still be incorrect.
- Correlation metrics focus on ranking quality, not just rating prediction accuracy.

Evaluating Ranking via Utility

Utility-based evaluation measures how valuable recommendations are to users.

Discounted Cumulative Gain (DCG)

★ Formula:

$$DCG = \sum_{i=1}^{N} rac{ ext{relevance}_i}{\log_2(i+1)}$$

- Rewards highly relevant items appearing earlier in the ranked list.
- $\log_2(i+1)$ penalizes items that appear lower in the ranking.
- Better DCG means the system ranks useful items higher in the list.
- Normalized DCG (NDCG):
- Adjusts DCG to a scale of 0 to 1.
- Helps compare rankings across different datasets.

Evaluating Ranking via Receiver Operating Characteristic (ROC)

ROC evaluation is used when recommendations are binary (e.g., recommend or not).

1. True Positive Rate (TPR)

$$TPR = \frac{\text{True Positives}}{\text{True Positives} + \text{False Negatives}}$$

Measures how many relevant items were correctly recommended.

2. False Positive Rate (FPR)

$$FPR = rac{ ext{False Positives}}{ ext{False Positives} + ext{True Negatives}}$$

Measures how many irrelevant items were wrongly recommended.

3. Area Under the Curve (AUC)

- AUC = 1 means perfect recommendations.
- AUC = 0.5 means random recommendations (bad).
- ✓ Use AUC when recommendations are treated as a classification problem (e.g., "Should we recommend this item or not?").

Which Ranking Measure is Best?

Each metric serves different purposes:

Metric	Use Case
RMSE / MAE	Best for rating prediction accuracy
Spearman's $ ho$	Best for ranking correlation
DCG / NDCG	Best for ranking relevance
AUC	Best for binary recommendations (e.g., recommend or not)

- Choosing the best metric depends on the goal:
- If rating accuracy is the focus → Use RMSE/MAE.
- If ranking quality matters more → Use DCG, Spearman's, or Kendall's Tau.
- If recommendations are binary decisions → Use AUC.

Conclusion

Offline evaluation is crucial in **fine-tuning** recommender systems before real deployment. No single metric is **perfect**—choosing the right one depends on the **objective** of the recommendation system.