17. Интерполяционный многочлен Лагранжа

Теорема

Многочлен f(x) степени n однозначно определяется своими значениями в n+1 попарно различных точках.

Доказательство

Единственность: пусть f(x) и g(x) имеют степень n и совпадают в точках x_0, x_1, \ldots, x_n . Тогда если f(x) = g(x), то h(x) = f(x) - g(x) равен 0 в этих точках. Но тогда это многочлен степени не выше n, и он имеет как минимум n+1 корень. Но т.к. ненулевой многочлен не может иметь корней больше, чем его степень, то $h(x) = 0 \implies f(x) = g(x)$

Существование: можно показать, что

$$f(x) = f(x_0) \cdot \left(rac{(x-x_1)(x-x_2)\dots(x-x_n)}{(x_0-x_1)(x_0-x_2)\dots(x_0-x_n)}
ight) + \ + f(x_1) \cdot \left(rac{(x-x_0)(x-x_2)\dots(x-x_n)}{(x_1-x_0)(x_1-x_2)\dots(x_1-x_n)}
ight) + \ + f(x_2) \cdot \left(rac{(x-x_0)(x-x_1)(x_3-x_0)\dots(x-x_n)}{(x_2-x_1)(x_2-x_3)\dots(x_2-x_n)}
ight) + \dots$$

Найдём $f(x_0)$: в первом слагаемом все скобки сократятся и останется $f(x_0)$, а остальные слагаемые обнулятся из-за множителя $(x-x_0)$.

Когда подставляется $x=x_1$, остаётся только второе слагаемое, равное $f(x_1)$, остальные обнуляются.

Получаем многочлен, который в точках x_0, x_1, \ldots, x_n совпадает со значениями f(x), и поэтому равен f(x).

Многочлен, построенный в доказательстве теоремы, называется интерполяционным многочленом Лагранжа.