Implementation of KD Trees and KNN Algorithm

Instructor: Dr. Swapnil Dhamal

Teaching Assistant: Miss Shradha

Sharma

Presented by:

Team Unsupervised Learning

[Atharv Srivastava (2022MEB1301)

Arjun Rana (2022EEB1370)

Atharva Sharma (2022MEB1302)]

Introduction

What is a KD Tree?

- •A KD (K-dimensional) tree is a data structure used for organizing and searching points in a multi-dimensional space.
- •It's a binary tree that partitions space into half-spaces, useful for efficiently indexing k-dimensional data.

Applications:

•Used in computer graphics, vision, data mining, spatial databases, and other fields.

Problem and Objectives

Problem Statement:

- •With the growth of digital data, efficiently retrieving relevant information has become challenging.
- •Nearest Neighbor (NN) search is a simple, effective way to locate data points closest to a query in high-dimensional space.

Objectives:

- •Implement the KD Tree data structure.
- Perform nearest neighbor searches for efficient data retrieval.

Insertion and Search in KD Trees

•Insertion:

- •The tree is partitioned based on alternating dimensions (e.g., x and y for a 2D KD Tree).
- Each node splits space based on its dimension's coordinate value, creating left and right subtrees.
- •Search:
- •Traverses similar to a binary tree, switching between dimensions at each level.
- Efficiently reduces search space by excluding large portions of irrelevant data points.

Consider an example of insert in the 2-D plane: (3, 6), (17, 15), (13, 15), (6, 12), (9, 1), (2, 7), (10, 19)

Insertion Pseudo code

Algorithm 1 Insertion

```
1: node* Insert(node* x,int point[],int depth)
2: if x is NULL then
     temp=Allocate memory()
     for i = 0 upto k - 1 do
       temp.point_i = point_i
5:
     end for
     x=temp
     return temp
9: end if
10: if point_{depth\%k} < x.point_{depth\%k} then
     return Insert(x.left,point,depth)
11:
12: else
     return Insert(x.right,point,depth)
14: end if
15: return x
```

It has an average of O(log n) time complexity and O(n) space complexity.

Search

Search Pseudocode

Algorithm 2 Search 1: node* Search(node* x,int point[],int depth) 2: if x is NULL then return NULL 4: end if 5: if $point_{depth\%k} = x.point_{depth\%k}$ then if point=x.point then 6: return x 7: else if $point_{(depth+1)\%k} < x.point_{(depth+1)\%k}$ then 8: return Search(x.left,point,depth+1) 9: else 10: return Search(x.right,point,depth+1 11: end if 12: 13: else if $point_{depth\%k} < x.point_{depth\%k}$ then return Search(x.left,point,depth) 14: 15: **else** return Search(x.right,point,depth) 16: 17: **end if**

It has an average of O(log n) time complexity.

Traversal

INORDER: (2,7),(3,6),(6,12),(9.1),(17,15),(10,19),(13,15)

Algorithm 3 Inorder Traversal

- 1: void Inorder(node* x)
- 2: **if** x is NULL **then**
- return NULL
- 4: end if
- 5: Inorder(x.left)
- 6: print x.point
- 7: Inorder(x.right)

Nearest Neighbour

- 1.We traverse the tree looking for the nearest neighbor of the query point.
- 2.Explore the branch of the tree that is closest to the query point first.
- 3.When we reach a leaf node, compute the distance to each point in the node.

Nearest Neighbour

- 4.Then we can backtrack and try the other branch at each node visited.
- 5.Each time a new closest node is found, we can update the distance bounds.
- 6.Using the distance bounds and the bounds of the data below each node, we can prune parts of the tree that could NOT include the nearest neighbour.

Time Complexity Analysis

Insertion

- •Similar to a Binary Tree: Compares with root and inserts in left/right subtree.
- •Time Complexity: O(logN) on average, where N is the number of nodes.

Search

- •Similar to insertion; traverses tree to locate point if it exists.
- •Time Complexity: O(logN) on average.

Traversal

- •In-order traversal visits each node once.
- •Time Complexity: O(N).

Nearest Neighbor (NNS)

- Traverses to leaf node, backtracks for pruning.
- •Complexity: Ranges from O(logN) (best case, with pruning) to O(N) (worst case, no pruning).

Test Case

