

GEOS 639 – INSAR AND ITS APPLICATIONS GEODETIC IMAGING AND ITS APPLICATIONS IN THE GEOSCIENCES

Lecturer:

Franz J Meyer, Geophysical Institute, University of Alaska Fairbanks, Fairbanks; fimeyer@alaska.edu

Lecture 11: Motion Mapping using Template Matching and Feature Tracking

RECAP: WHY A SECOND CONCEPT TO MOTION MAPPING

Why Do We Need A Second Concept for Measuring Motion?

Limitation of InSAR

• InSAR-based motion tracking requires that the two images of an InSAR pair are aligned at a sub-pixel level ($\approx 1/_{100}$ of a pixel)

ullet Assume pixel size of 80m (Sentinel-1 image after 20 imes 4 multi-looking)

- Maximum allowed movement between images: $\Delta x_{max} = {}^{80}/_{100} \ [m] = 0.8 \ [m]$
- For images 12 days apart \rightarrow maximum measurable velocity: $v_{max}=24~[m/yr]$

• Example: Glacier velocity Malaspina Glacier

Topic 3: Surface Displacement from Images

Fast(er) Motion Monitoring [m/y to km/y] Using Feature Tracking and Optical Flow

- Lot's of surface motions can be too fast for InSAR to work (see lectures later on):
 - Glacier motion (and variations thereof)
 - Sea Ice motion
 - Large earthquake motion
- We will use feature tracking and optical flow techniques to estimate motion velocities and directions

Bryan Riel. 2020. <u>Animation of time-dependent velocity magnitudes for Sermeq Kujalleq</u> (Jakobshavn Isbræ) from 2009 - 2019. Arctic Data Center. doi:10.18739/A2W66990B.

TEMPLATE AND FEATURE MATCHING PRINCIPLES

Image Matching Use Cases

UNIVERSITY OF

Matching entities

- Images from different viewpoints (e.g. stereo parallax matching; tie points)
- Images from different times
 (e.g. change detection; terrain displacements)
- Images from different sensors/sensor channels (multi-modal; e.g. co-registration; co-registration of channels or sub-systems; fusion)
- Images of different ground, illumination and atmospheric conditions
- Images and templates / models (reference pattern, image chips) (e.g. fiducial marks, ground control point data base, objects)
- **DEMs** or other spatial datasets

Image Matching Approaches

Image Matching Approaches

Cross Correlation-Based Image Matching

Cross Correlation:

- Cross correlation is a powerful tool to:
 - Find certain image content in an image
 - Determine its location in the image
- Key assumption: Images differ only by
 - Translation
 - Brightness
 - Contrast
- Cross correlation is a template matching approach
 - Find the location of a small template image within a (larger) image
 - Usually: size of template << size of image

Cross Correlation Principle

Cross Correlation:

• Given image $g_1(i,j)$ and template $g_2(p,q)$, find offset $[\hat{u},\hat{v}]$ between g_1 and g_2

Assumptions:

Geometric Transformation

$$T_G: \begin{bmatrix} p \\ q \end{bmatrix} = \begin{bmatrix} i \\ j \end{bmatrix} - \begin{bmatrix} u \\ v \end{bmatrix}$$

- Two unknown parameters: $p_g = [u, v]^T$
- Radiometric transformation

$$T_I: g_2(p,q) = a + bg_1(i,j)$$

- Intensities of each pixel in g_2 are linearly dependent on those of g_1
- Two additional unknown parameters: $p_R = [a, b]^T$

Task: Find the offset $[\hat{u}, \hat{v}]$ that maximizes the similarities of the corresponding intensity value

Cross Correlation quantifies image template similarity

Examples of Template-Based Similarity Measures

f	Standard	Normalised
Absolute	$\sum A-B $	$\frac{\sum A-B }{\sqrt{(\sum A)(\sum B)}}$
Square	$\sum (A-B)^2$	$\frac{\sum (A-B)^2}{\sqrt{(\sum A^2)(\sum B^2)}}$
Power	$\sum A-B ^p$	$\frac{\sum A-B ^p}{\sqrt{\left(\sum A ^p\right)\left(\sum B ^p\right)}}$
Correlation	$\sum AB - \frac{(\sum A)(\sum B)}{N}$	$\sum AB - \frac{(\sum A)(\sum B)}{N}$
		$\sqrt{\left(\sum A^2 - \frac{\left(\sum A\right)^2}{N}\right)\left(\sum B^2 - \frac{\left(\sum B\right)^2}{N}\right)}$

Cross Correlation: Search Strategy

How to Find the Offset that Maximizes Similarity?

Exhaustive Search

- For all offsets [u, v] compute Cross Correlation $\rho(u, v)$
- Select offset [u, v] for which $\rho(u, v)$ is maximized

More Efficient Approach: Use Image Pyramid

- Iteratively use resized images from small to large
- Start on top of the pyramid → match gives initialization for next level

Cross Correlation: Sub-Pixel Estimation of Offsets

- Result of template matching by cross correlation provides initially only integer-valued offsets
- More precise estimate can be obtained through subpixel estimation

Procedure:

- Fit a locally smooth surface through $\rho(u, v)$ around the initial position $[\hat{u}, \hat{v}]$
- Estimate it's local maximum using leastsquares matching to arrive at subpixel estimate of offsets $[u^*, v^*]$

Image matching

original image
image derivatives

(e.g. edges, gradients)

Side Note: Image Matching In the Frequency Domain

- Image matching
 original image
- image derivatives (e.g. edges, gradients)

 Correlation is a time demanding process when done in the spatial domain, but in the frequency domain this process can be done much more efficiently with a single multiplication (convolution theorem):

$$CC(i,j) = IFFT(F(u,v)G^*(u,v))$$

- Image normalization cannot be done easily in frequency domain
- Approaches of normalization:
 - Phase correlation
 - Orientation images

Feature-Based Image Matching

- Feature-based approaches use easily identifiable image features such as corners, edges, street corners ...
- Identification and matching of features was addressed in Lecture 5 and include techniques such as SIFT = Scale Invariant Feature Transform

IMAGE PRE- AND POST-PROCESSING ERROR SOURCES

Image Pre-Processing and Product Post-Processing

Pre-Processing:

- Image enhancements / transforms such as gradient calculation and noise filtering
- Image pyramid calculation to speed up processing
- Image allignment
- Interest point extraction for feature-based methods

Post-Processing:

- Outlier-detection and removal (e.g., using geometric constraints; neighborhoods; quality metrics)
- Filtering
- Derivatives
- Extraction of streamlines and trajectories

Flow-line extraction

Outlier Removal through gridding

Error Sources and Problematic Areas for Image Matching

Error Sources

- Image alignment
- Matching error (mismatch; e.g. similar features, lack of contrast)
- Matching accuracy
- Self similar objects

Time 1 Change in thickness Welocity Horizontal velocity

Accurate alignment is essential Geocoding approaches can be used for this task

Problem Areas:

- Areas with low contrast (accumulation areas)
- Areas with much surface transformation
- Cloudy areas

Self-similar objects can be an issue in image matching

Accuracy of Cross-Correlation Estimates in SAR Images

Speckle Tracking

- SAR images lend themselves well for template-based offset tracking because
 - SAR images have speckle noise → images are very noisy
 - Noise can be tracked with high accuracy if noise remains coherent
- Speckle tracking can be implemented either through
 - Complex Cross-Correlation, OR
 - Amplitude-only Cross-Correlation (see previous discussion)
- Speckle tracking accuracy can be calculated for coherent (σ_{CR}) & amplitude (σ_C) CC as function of interferometric coherence γ & the window size N used in CC calculation

- Coherent CC accuracy:
$$\sigma_C = \sqrt{\frac{3}{2N}} \cdot \frac{\sqrt{1-\gamma^2}}{\pi \gamma}$$

- Amplitude CC accuracy:
$$\sigma_A = \sqrt{\frac{3}{2N}} \cdot \frac{\sqrt{1-\gamma^2}}{\pi\gamma} \cdot \sqrt{2}$$

Amplitude CC uses only half of the available information \rightarrow factor of $\sqrt{2}$ less accurate

FEATURE MATCHING — AN EXAMPLE [PREPARATION FOR LECTURE 11]

Why We Measure Displacements

Monitoring Surge of Malaspina Glacier, Alaska using Optical and SAR Data

Think – Pair – Share:

Explore Glacier Velocity Information generated by ITS_LIVE

- <u>Activity #1</u>: Explore ITS_LIVE archive
 - Go to https://github.com/nasa-jpl/its_live and start the ITS_LIVE Binder Notebook (click on [Blaunch binder)
 - Follow the instructions to access the glacier velocity information
 - Pick your favorite glacier
 - Select points and plot velocity time series information
 - Look up some background on your glacier to understand what is happening at the site you picked

 Activity #2: Once we are all back in the room each group will present what they found

What's Next?

This is what awaits next:

Thursday: Guest Lecture by ITS_LIVE PI Alex Gardner (JPL; https://science.jpl.nasa.gov/people/AGardner/)

