

AD-A104 393

HONEYWELL, INC CLEARWATER FL AVIONICS DIV
MANUFACTURING METHODS AND TECHNOLOGY ENGINEERING FOR TAPE CHIP --ETC(U)
AUG 81 W R RODRIGUES DE MIRANDA, W O PERRY DAB07-77-C-0526

F/G 9/5

DELET-TR-77-0526F

NL

UNCLASSIFIED

1 of 2
d
A104393

~~LEVEL~~

(12)

ADA104393

Research and Development Technical Report
DELET-TR-77-0526-F

**MANUFACTURING METHODS AND TECHNOLOGY
FOR TAPE CHIP CARRIER**

William R. Rodrigues de Miranda
Wilford O. Perry
Paul H. Shreve
Honeywell Inc.
Clearwater, Florida 33516

DTIC
ELECTED
SEP 18 1981
S D
H

August 1981

Final Report for Period 30 June 1977 to 31 August 1981

Approved for Public Release - Distribution Unlimited

PREPARED FOR

Electronics Technology and Devices Laboratory

ERADCOM

US ARMY ELECTRONICS RESEARCH AND DEVELOPMENT COMMAND
FORT MONMOUTH, NEW JERSEY 07703

81 9 18 07

Dmc FILE COPY

NOTICES

Disclaimers

The citation of trade names and names of manufacturers in this report is not to be construed as official Government endorsement or approval of commercial products or services referenced herein.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

19 REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER (18) DELET-TR-77-0526F	2. GOVT ACCESSION NO. A D-A104 393	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) (6) Manufacturing Methods and Technology Engineering for Tape Chip Carrier.	5. TYPE OF REPORT (9) Final Report for period 30 Jun 77 to 31 Aug 81	
6. AUTHOR(S) (10) William R. Rodrigues de Miranda Wilford O. Perry & Paul H. Shreve	7. CONTRACT OR GRANT NUMBER(S) (15) DAAB07-77-C-0526	
8. PERFORMING ORGANIZATION NAME AND ADDRESS Honeywell Inc., Avionics Division 13350 U.S. Highway 19 Clearwater, FL 33516	9. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Project 2779857	
10. CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Electronics R&D Command Fort Monmouth, NJ 07703 Attn: DELET-IA-T	11. REPORT DATE (11) August 1981	
12. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	13. NUMBER OF PAGES (12) 430	
	14. SECURITY CLASS (if this report is different from Controlling Office) UNCLASSIFIED	
	15. DECLASSIFICATION/DOWNGRADING SCHEDULE N/A	
16. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release - Distribution Unlimited		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) DTIC ELECTED SEP 1 0 1981		
18. SUPPLEMENTARY NOTES H		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Tape Chip Carrier Hybrid Microcircuit Film Carrier Inner Lead Bonding Outer Lead Bonding Tape Automated Bonding (TAB) Lead Frame Tape Slide Carrier		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This contract was aimed at establishing the feasibility of an assembly line for manufacturing hybrid microcircuits using tape automated bonding (TAB). This report describes work performed during the pilot line phase of the contract. A purpose of the MM&T work was to demonstrate the viability of the manufacturing approaches with TAB and		

3932 45**xlv**

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

the determination of the associated yield and cost factors. This report includes an overview of these factors, the methods and equipment employed in the manufacture of approximately 1200 hybrid microcircuits with TAB, and the qualification test results of the circuits using the TAB mounted devices.

Accession	Number
NTIS	Code
DTIC	Type
Unpublished	
Serial	Number
By	
Distribution	
Availability	Code
Dist	Right
A	

TABLE OF CONTENTS

<u>Section</u>		<u>Page</u>
1	INTRODUCTION	1
2	THE HYBRID MICROCIRCUIT	3
3	THE ASSEMBLY SEQUENCE	6
4	TAPE MANUFACTURE/PURCHASING	17
5	WAFERS/CHIPS	21
6	DESIGN STANDARDS	23
7	ELECTRICAL TESTING AND YIELDS	26
8	EQUIPMENT	37
9	BURN-IN	46
10	QUALIFICATION	53
11	COSTS	60
12	CONCLUSIONS	69

Appendix

I	FAILURE ANALYSIS REPORT	A1-1
II	ANALYSIS REPORT NO. V 02907	A2-1
III	COST MODEL	A3-1

LIST OF ILLUSTRATIONS

<u>Figure</u>	<u>Title</u>	<u>Page</u>
2-1	E/M Sync Counter Schematic	4
2-2	E/M Sync Counter After Assembly	5
3-1	Assembly Sequence of E/M Sync Counter	8
3-2	E/M Sync Counter as Screened - 14 Up	9
3-3	54LS161A on Slide Carrier	10
3-4	54LS165 on Slide Carrier	11
3-5	E/M Sync Counter After Epoxy Screen	12
3-6	2x2 Substrate in OLB Holder	13
3-7	Break-up of 2x2 Substrate	14
3-8	Single Substrate in OLB Holder	15
3-9	Wire Bonded Sync Counter	16
4-1	Typical 35mm Lead Frame Tape	18
4-2	Continuous Tape Plater	19
4-3	Continuous Tape Plater - Detail	20
5-1	4-Inch Wafer/1/4 Wafer	21
5-2	TAB Process Location Chart	22
6-1	Outer Portion of 35mm Tape Frame	23
6-2	Outer Lead Bond Pattern	24
6-3	Lead Forming Profile	24
6-4	Close-Up of 161A Chip on Tape	25
8-1	I-1000 (ILB)	38
8-2	Old Manual Tester	39
8-3	Lead Frame Cutter	40
8-4	Framing Fixture	41
8-5	Burn-In Tank	42
8-6	New Slide Tester	43
8-7	4810 (OLB)	44
8-8	Automatic Test Handler for Slide Mounted Tape Frames	45
9-1	Chip on Single Frame Mounted in Slide Carrier	47
9-2	Burn-In Tray Populated with 96 Slide Carriers Prior to Assembly	48
9-3	Interconnect Board Assembly	49
9-4	Interconnect PC Board Detail	50
9-5	Loaded and Assembled Tray Ready For Insertion in Fluid	51
9-6	Burn-In Tray With Vertical Chip Interconnect Board	52
10-1	Qualification	57
10-2	TAB Qualification Schedule	58
10-3	ERADCOM/Honeywell Qualification Tests	59
11-1	Comparative Cost Analysis Standard Module No. 1	66
11-2	Comparative Cost Analysis Standard Module No. 2	67
11-3	Cost Savings TAB	68

Section 1

INTRODUCTION

Tape Automated Bonding* (TAB) applications for military hybrid microcircuits have seen nearly five years of development. In the first several years, material combinations, bump and tape configurations and bonding techniques were explored under R&D contracts. Small to moderate quantities of different configurations were built and tested successfully. More recently emphasis was placed on the demonstration of production feasibility through Manufacturing Methods and Technology (MM&T) contracts.

The purpose of the MM&T work is to demonstrate the viability of the manufacturing approaches with TAB and the determination of the associated cost and yield factors. The established TAB manufacturing techniques included mounting of semiconductor chips on reels of sprocketed film or tape, burn-in and testing of these chips on tape and their placement on the hybrid substrates. The Army is interested in utilizing TAB technology for the manufacture of hybrid microcircuits for military electronic applications when advantageous for economic reasons or desirable from the viewpoint of increased reliability.

TAB technology can be implemented with a number of different materials and bonding technologies as described in the final reports of the R&D work**. At the start of the MM&T phase, specific selections of available materials and techniques were made, keeping in mind the requirements for performance and reliability. The process begins with a wafer in which all devices have gone through all the normally required semiconductor processing. The wafer is then given a protective cover of silicon nitride prior to the bumping process in order to more precisely define the bump geometry on the pads of each device and to offer greater protection of the chip surface. Barrier layer metallization of the pads on the semiconductor wafer consists of titanium, palladium and gold. The bump itself is plated of pure gold. The lead frame is electro-deposited copper, plated with 100 microinches of gold. The leads are thermocompression bonded to the bumps resulting in gold/gold bonds. The alumina substrates have been screen printed with mixed bonded gold paste. The outer lead bonds were thermocompression bonded, again resulting in gold/gold metallurgy. The chip is attached to a screened gold pad on the substrate with silver filled epoxy.

*Also referred to as TCC (Tape Chip Carrier) and TCLF (Tape Carrier Lead Frame)

**Reports ECOM-76-1401F, September 1977 and DELET-TR-2708F, September 1979 both entitled "Tape Chip Carrier for Hybrid Microcircuits".

This report is compiled as an overview of the methods and equipment employed in the successful manufacture of approximately 1,200 hybrid microcircuits with TAB technology. The manufacturing cycle included processing more than 10,000 chips, manufacturer and plating of 7,500 lead frames, inner lead bonding and testing of more than 6,000 chips on tape, and outer lead bonding of nearly 5,000 chips.

Section 2

THE HYBRID MICROCIRCUIT

The hybrid is an 8 bit synchronous counter shift register consisting of two 54LS161A synchronous 4 bit counter chips, one 54LS165 parallel load 8 bit shift register chip and one capacitor chip. The hybrid will be referred to hereafter as the "E/M Sync Counter" or "SYNC Counter".

It is designed such that it is operational at its intended frequency of 18 MHz. Any or all 8 bit word patterns may be realized in the Sync Counter. Integrity of any 8 bit word is maintained in parallel load/transfer to the shift register. The 8 bit word, loaded in parallel, is shifted out of the register with the control gated serial clock. Serial data may be loaded into and out of the register with the control gated serial clock.

This hybrid is part of an Electrically Suspended Gyro (ESG) navigation system, currently being built in a quantity of several hundred systems, including the B-52 Navigation System, the Precision Navigation System (PNG) and one or more classified programs. A circuit schematic is shown in Figure 2-1. A photograph of the completed device is shown in Figure 2-2.

1080-2468

Figure 2-1. E/M Sync Counter Schematic

A8009-220

Figure 2-2. E/M Sync Counter After Assembly

Section 3

THE ASSEMBLY SEQUENCE

Figure 3-1 shows schematically the assembly sequence as followed in the manufacture of the hybrids.

A substrate redesign/relayout took place as soon as basic circuit information became available. It was determined that the most economic screen printing configuration was a 14-up format on a 2x2 inch substrate (see Figure 3-2). The 2x2 substrates were prescribed by laser at P/M Industries in Portland Oregon, in order to allow breaking into individual substrates.

The semiconductor wafers were passivated with Si_3N_4 at Honeywell's Colorado Springs facility, followed by barrier layer metallization at Honeywell SSEC in Plymouth, Minn. Bumping was done at Honeywell Avionics Division (AvD) in Florida, with established solid photoresist (Riston 211) lamination method.

Lead frame design and production of 1:1 art was done per established methods at AvD in Florida. Lead frames were manufactured by Honeywell's Phoenix facility (LISD). Plating was accomplished on our newly installed continuous plater in Florida at a rate of 1000 frames/hour. Inner lead bonding (ILB) was done on the Jade I-1000 automatic bonder, at a rate of 1000 per hour. Chips were handled on continuous reels of tape through inner lead bonding and testing.

Testing of chips on tape was to be accomplished with the new Automatic Test Handler which has been on order from the Jade Corporation but was not delivered in time for this program. The manual reel-to-reel tester was used, allowing only room temperature testing. Test rates of up to 400 chips per hour were achieved while interfaced with the Fairchild 5000 automatic tester.

After testing, the tape was cut into frames and mounted into 35mm slide carriers (see Figures 3-3 and 3-4), designed and patented by Honeywell. A quantity of devices was tested after burn-in on the working portion of the Automatic Test Handler, which was mounted on a temporary base. (See Figure 8-6).

In preparation of outer lead bonding (OLB) the 2x2 substrates were screen printed with epoxy for chip attach (see Figure 3-5).

Outer lead bonding (OLB) was accomplished on the Jade 4810 machine at a rate of about 60 chips per hour. Initially the 2x2 substrate (14-up configuration) was mounted in the substrate holder and populated, placing rows of 161A and 165 chips (see Figure 3-6). After a problem with substrate cracking caused unacceptable losses, the 2x2 substrate was broken into individual substrates (Figure 3-7) which were bonded one at a time in a special holder (see Figure 3-8). The rate for this operation dropped to about 40 chips per hour. The approach to use a 14-up configuration on a 2x2 substrate can be used in future projects if precautions are taken with regard to substrate flatness and proper seating in the holder. Minor modification in the holder may be required. Trial bonds of the prelaser scribed substrates were performed without difficulty during test set-up. However, frequency/rep. rate of laser and/or power output of the laser to work surface was altered by the vendor causing heat build up and microcracking of substrates actually used in this work resulting in difficulties observed. It is not anticipated that properly scribed substrates would result in further difficulties of this nature.

After OLB the populated substrate was mounted in the header, the capacitor was added, followed by pin-out bonding with conventional thermosonic bonding techniques. The completed TAB Sync Counter is shown in Figure 2-2. As comparison, a wire bonded (conventional) Sync Counter is shown in Figure 3-9.

Figure 3-1. Assembly Sequence of E/M Sync Counter

A8009-216

Figure 3-2. E/M Sync Counter as Screened - 14 Up

Figure 3-3. 54LS161A on Slide Carrier.

Figure 3-4. 54LS165 on Slide Carrier

A6009-218

Figure 3-5. E/M Sync Counter After Epoxy Screen

Figure 3-6. 2x2 Substrate in OLB Holder

A8010-058

Figure 3-7. Break-up of 2x2 Substrate

Figure 3-8. Single Substrate in OLB Holder

A6010-062

Figure 3-9. Wire Bonded Sync Counter

Section 4

TAPE MANUFACTURE/PURCHASING

Lead frame tape (Figure 4-1) has been available to AvD from our LISD plant in Phoenix, where automatic equipment exposed and etched the purchased laminate (copper on prepunched polyimide). Approximately 10,000 frames have been produced during the course of this program. Because the LISD facility is set up to produce production quantities, no supply problems have been experienced. All tape used for this program is three-layer, 35mm wide polyimide, laminated to one ounce of electro deposited copper. All tape produced in Phoenix was plated with approximately 100 microinches of gold on the newly designed and installed continuous reel plater in our AvD facility in Clearwater (see Figures 4-2 and 4-3).

A7810-77

Figure 4-1. Typical 35mm Lead Frame Tape

Figure 4-2. Continuous Tape Plater

Figure 4-3. Continuous Tape Plater - Detail

Section 5

WAFERS/CHIPS

Both 54LS161A and 54LS165 chips were purchased from Motorola on the format of 4-inch wafers. Because the processing equipment in Colorado Springs could not handle 4-inch wafers they were cut into quarters prior to processing (see Figure 5-1). Subsequent difficulty in handling this irregular format caused heavy losses at silicon nitride passivation and barrier layer metallization.

Figure 5-2 gives a schematic overview of the processing required and the respective locations of the wafer bumping process.

A8010-070

Figure 5-1. 4-inch Wafer/1/4 Wafer

Figure 5-2. TAB Process Location Chart

Section 6
DESIGN STANDARDS

The tape was designed per Honeywell Standards (later incorporated into ASTM 7E45 standard for 35mm TAB carrier tape) with 40 leads and 5mm aperture (see Figure 6-1). The OLB pattern was designed per the proposed Honeywell standard (see Figure 6-2). The lead forming profile is shown in Figure 6-3. An enlargement of a 161A chip on tape, prior to OLB, is shown in Figure 6-4, where the exact lead routing is clearly distinguishable.

0278 17

Figure 6-1. Outer Portion of 35mm Tape Frame

Figure 6-2. Outer Lead Bond Pattern

0278-100B

Figure 6-3. Lead Forming Profile

A8010-064

Figure 6-4. Close-up of 161A Chip on Tape

Section 7

ELECTRICAL TESTING AND YIELDS

Yield figures are significant indications of the performance of the Sync Counter hybrid as an assembly vehicle to gauge the viability of the TAB-based assembly. Yield figures are derived at four basic operating points in the assembly and test sequence:

1. TAB preparation of wafers/chips and TAB assembly operations
2. Hybrid assembly
3. Visual inspections
4. All electrical tests

An analysis of yields at each of these points has been made and is further discussed in this section.

1. TAB Operations Yields

The TAB operations in this portion of the analysis include barrier layer metallization and bumping, wafer mounting and sawing, Inner Lead Bonding (ILB), electrical test of chips on tape, visual inspection of the chips on individual slide carriers, and finally, Outer Lead Bonding (OLB). Table 7-1 shows these yields for both the 54LS161A and 54LS165 chips.

High losses at wafer barrier layer metallization were caused by the requirement to process quartered 4-inch wafers in equipment set up to automatically handle round 3-inch wafers.

Unusual losses at wafer mounting occurred when the lot of cement turned out to be aged, after a number of quarters were already mounted. These wafers could not be inner lead bonded.

2. Hybrid Assembly Yields

The hybrid assembly yield figure is determined by the ratio of substrates started versus substrates which successfully completed assembly. It therefore includes the OLB bonding operation, except it does not take into account the number of chips, which is shown in the previous section.

Table 7-2 shows the assembly yield on a lot by lot basis. The average assembly yield of all TAB lots was 87.5 percent, the CBI* lot was 100 percent and the chip and wire lot was 99 percent. The lower TAB assembly yield was caused by the substrate breakage problem, previously described in Section 3.

3. Visual Inspections

Visual inspections were carried out at two key points in the assembly sequence. The first, the Pre-Cap Visual inspection took place just prior to seal. The second or Final visual took place just before shipment.

Table 7-3 shows the inspection yields by lot, for each of the two inspection stations. The average yields of the Pre-cap Inspection for the TAB lots was 70.7 percent, for the CBI lot 87 percent and the chip-and-wire lot 86 percent. The relatively low figure for the TAB lots was artificially created by the new and untried TAB accept/reject criteria, which were updated on several occasions. The average yields of the Final Visual Inspection for the TAB lots was 98.9 percent, for the CBI lot 100 percent and for the chip-and-wire lot 94 percent.

4. Electrical Test Yields

The most significant information with regard to the success of the TAB approach is obtained through analysis of the electrical test yields. Table 7-4 lists yields per lot for First Electrical test, ATP** at 25°C, -55°C and 100°C as well as total ATP yield for TAB, CBI and chip-and-wire devices. Lot 2 contains data taken both before and after burn-in of the hybrids in order to obtain a yield of the burn-in operation. Analysis of the First Electrical test yield data shown in Table 7-5 clearly shows the significant impact of TAB. The 86 percent yield is obtained because the chips were tested prior to assembly while mounted on tape. The 52 percent yield at the same point, of the conventional chip-and-wire devices, indicates the high losses of the final product mostly due to chips failing to meet operational specification limits. Please note that these chips originated from the same wafer as the TAB chips and were electrically wafer probe tested at the same time. Also significant is the even higher yield of the TAB devices whose chips were not only tested but also burned-in prior to assembly (CBI). This lot has an even higher first test yield of 93 percent due to marginal chips having been stressed and eliminated.

*Chips burned-in prior to assembly.

**Acceptance Test Procedure (Final).

Analysis of the ATP Electrical Tests verify the results with regard to the CBI log. Table 7-6 indicates no significant difference between the TAB and chip-and-wire devices, because the initially unoperative wirebonded chips were culled at the first electrical test. However, the marginally operative devices still escaped and were not eliminated until burn-in, therefore, the CBI lot displays the remarkably high yield of 90 percent at ATP test.

These data demonstrate that test and burn-in of chips on tape is not only feasible, but also highly profitable, and will be further manifested in significant reduction of troubleshooting, repair and retest of assembled devices.

5. Failure Analysis

A failure analysis was performed on a total of six devices. They were various electrical tests done in sequence. With exception of one device all failures were caused by chip processing defects, manifested at first electrical test. The Failure Analysis Report number 66-F covering the analysis in detail is attached as Appendix I to this report.

Table 7-1. Yield History of TAB Operations

<u>Operation</u>		(IC) 161A <u>Qty.</u>	Yield <u>%</u>	(IC) 165 <u>Qty.</u>	Yield <u>%</u>
Metal Bumping	IN: 5,560*	95(62.5)*		2,421* 2,300	95(58.2)*
Wafer Mount/Saw	IN: 5,280 OUT: 4,600	87.1		2,300 2,100	91.3
ILB	IN: 4,600 OUT: 4,270	92.8		2,100 2,021	96.2
Elect Test	IN: 4,270 OUT: 3,693	86.5		2,021 1,724	85.3
Visual on Carrier	IN: 3,693 OUT: 3,371	91.3		1,724 1,596	92.6
OLB	IN: 3,371 OUT: 2,910	86.3		1,596 1,355	84.9
Overall Yield*		52.4			56.0

* Previous experience with metallization and bumping of wafers has shown an approximate 95% yield from those processes. For this reason the quantities of dice shown as the number going "in" are calculated to indicate the number required to provide the number actually yielded coming "out". This was necessary because of the high losses experienced at those two processes due to necessity of manually handling quartered 4 inch wafers on equipment designed to automatically handle 3 inch wafers. The actual yields of 62.5% for 54LS161A chips and 58.2% for 54LS165 chips is substantially typical of the 95% figure which is based on data from processing of about 10,000 chips previously.

The actual number of 54LS161A chips committed to metallization/bumping in this effort was 8,448 and the number of 54LS165 chips was 3,946.

Table 7-2. Yield History of TAB Operations

<u>Lot No.</u>		<u>Assembly</u>
0001	In	126
	Out	118
	Yield	94%
0002	In	126
	Out	111
	Yield	88%
0003	In	84
	Out	53
	Yield	63%
0004	In	126
	Out	81
	Yield	64%
0005	In	126
	Out	86
	Yield	68%
0006	In	126
	Out	86
	Yield	68%
0007	In	126
	Out	112
	Yield	89%
0008	In	126
	Out	112
	Yield	89%
0009	In	126
	Out	122
	Yield	97%
0010	In	126
	Out	122
	Yield	97%
0011	In	126
	Out	122
	Yield	97%

Table 7-2. Yield History of TAB Operations (Continued)

<u>Lot No.</u>		<u>Assembly</u>
0012	In	73
	Out	73
	Yield	100%
0013	In	126
	Out	122
	Yield	97%
0014	In	31
	Out	31
	Yield	100%
CBI	In	84
	Out	84
	Yield	100%
Chip/Wire		155
		152
		98%

Table 7-3. Yield History of TAB Operations

<u>Lot No.</u>		<u>Visual Inspection</u>	<u>Ext. Visual Final Inspection</u>
0001	In	118	91
	Out	64	91
	Yield	54%	100%
0002	In	111	85
	Out	94	83
	Yield	85%	98%
0003	In	53	39
	Out	38	39
	Yield	72%	100%
0004	In	81	52
	Out	57	51
	Yield	70%	98%
0005	In	86	50
	Out	26	50
	Yield	30%	100%
0006	In	89	66
	Out	69	64
	Yield	77%	97%
0007	In	112	73
	Out	73	73
	Yield	65%	100%
0008	In	126	82
	Out	78	82
	Yield	62%	100%
0009	In	122	98
	Out	90	98
	Yield	74%	100%
0010	In	122	77
	Out	57	77
	Yield	47%	100%
0011	In	122	73
	Out	85	73
	Yield	70%	100%

Table 7-3. Yield History of TAB Operations (Continued)

<u>Lot No.</u>		<u>Visual Inspection</u>	<u>Ext. Visual Final Inspection</u>
0012	In	73	56
	Out	73	54
	Yield	100%	96%
0013	In	122	81
	Out	106	81
	Yield	87%	100%
0014	In	31	23
	Out	31	22
	Yield	100%	96%
CBI	In	84	69
	Out	73	69
	Yield	87%	100%
Chip/Wire		153	66
		132	62
		86%	94%

Table 7-4. Yield History of TAB Operations

<u>Lot No.</u>		Final Electrical Test Yields					
		<u>1st Electrical Test</u>	<u>ATP** @25°C</u>	<u>ATP @-55°C</u>	<u>ATP @100°C</u>	<u>Total Yield</u>	<u>Shipped</u>
0001	In	118	96	92	91		
	Out	99	92	91	91		
	Yield	84%	96%	99%	100%	95%	37
0002	In	111	89	86	86		
	Out	94	86	86	85		
	Yield	85%	97%	100%	99%	96%	35
0003	In	53	47	45	44		
	Out	47	45	44	39		
	Yield	89%	96%	98%	89%	83%	39
0004	In	81	61	57	56		
	Out	62	57	56	52		
	Yield	76%	93%	98%	93%	85%	37
0005	In	86	76	66	65		
	Out	77	66	65	50		
	Yield	89%	87%	99%	77%	66%	50
0006	In	89	72	71	69		
	Out	72	71	69	66		
	Yield	81%	99%	97%	96%	92%	65
0007	In	112	89	89	81		
	Out	90	89	81	73		
	Yield	80%	100%	91%	90%	80%	73
0008	In	125	114	112	106		
	Out	116	112	106	82		
	Yield	93%	98%	95%	77%	72%	82
	In		94	90	90		
	Out		90	90	89		
	Yield		96%	100%	99%	95%	

*Pre burn-in results Lot 0002

**Acceptance Test Procedure

Table 7-4. Yield History of TAB Operations

<u>Lot No.</u>		<u>1st Electrical Test</u>	Final Electrical Test Yields				<u>Total Yield</u>	<u>Shipped</u>
			ATP @25°C	ATP @-55°C	ATP @100°C			
0009	In	122	109	109	105		90%	98
	Out	110	109	105	98			
	Yield	90%	100%	96%	93%			
0010	In	122	104	104	103		74%	77
	Out	106	104	103	77			
	Yield	87%	100%	99%	75%			
0011	In	122	107	104	100		68%	73
	Out	107	104	100	73			
	Yield	88%	97%	96%	73%			
0012	In	73	67	65	63		84%	56
	Out	67	65	63	56			
	Yield	92%	97%	97%	89%			
0013	In	122	95	93	84		85%	81
	Out	101	93	84	81			
	Yield	83%	98%	90%	96%			
0014	In	31	27	26	26		85%	23
	Out	27	26	26	23			
	Yield	87%	96%	100%	88%			
CBI	In	84	77	73	72		90%	69
	Out	78	73	72	69			
	Yield	93%	95%	99%	96%			
Chip/ Wire*	In	153	73	73	71		90%	64
	Out	80	73	71	66			
	Yield	52%	100%	97%	93%			
	In		80	75	74			
	Out		75	74	73			
	Yield		94%	99%	99%			91%

*Pre burn-in results chip/wire.

Table 7-5. First Electrical Test Yields

	<u>Qty In</u>	<u>Rej</u>	<u>Acc</u>	<u>Yield (%)</u>
TAB	1367	192	1175	86
C/W	153	73	80	52
C.B.I.	84	6	78	93

Table 7-6. ATP Test Yields

	<u>Qty In</u>	<u>Rej</u>	<u>Acc</u>	<u>Yield (%)</u>
TAB	1158	212	946	82
C/W	80	14	66	83
C.B.I.	77	8	69	90

Section 8

EQUIPMENT

The following TAB equipment and fixtures were used in the manufacturer of the Sync Counter hybrid microcircuit.

- Continuous Tape Plater - Model No. STP, Microplate Inc. Used for reel-to-reel gold plating of copper lead frame material (see Figures 4-2 and 4-3).
- Inner Lead Bonder - Model I-1000, The Jade Corp. Used to bond all chips to the lead frame tape (see Figure 8-1).
- Manual Tape Test Handler - Model 001, The Jade Corp. Used to contact the chips on lead frame tape while electrically testing chips on the Fairchild 5000 (see Figure 8-2).
- Lead Frame Cutting Machine - Model IIB, Seary Mfg Corp. Used to cut the lead frame tape into individual frames in preparation for slide carrier mounting (see Figure 8-3).
- Framing Fixture - Model ME80C475, Honeywell Inc. Used to mount individual lead frames in standard slide carrier (see Figure 8-4).
- Burn-In Tank - Model PSK 2922, Honeywell Inc. Used to burn-in chips on tape after ILB but prior to OLB (see Figure 8-5).
- Automatic Test Handler for Slide mounted tape frames (in Manual Mode) - Model 5311, The Jade Corp. Used to test chips on tape after burn-in (see Figure 8-6).
- Outer Lead Bonder - Model 4810, The Jade Corp. Used to excise, form, place and bond chip leads on the hybrid substrate (see Figure 8-7).
- Automatic Test Handler for Slide Mounted frames, Model 5311/S/N 1, the Jade Corp. (see Figure 8-8).

C7910-200

Figure 8-1. Inner Lead Bonder (ILB) Jade I-1000

A7806-119

Figure 8-2. Manual Reel-to-Reel Tester Jade Model-001

A8010-063

Figure 8-3. Lead Frame Cutter

A8010-065

Figure 8-4. Framing Fixture

Figure 8-5. Burn-in Tank

A8010-067

Figure 8-6. New Slide Tester on Temporary Base

A7805-135

Figure 8-7. Jade 4810 Outer Lead Bonder

*Figure 8-8. Automatic Test Handler for Slide
Mounted Tape Frames Jade 5311*

Section 9

BURN-IN

When burn-in is required for hybrid devices, they are normally subjected to this screen after completion of the entire assembly process. Burn-in of individual semiconductor chips and other components prior to assembly has not been practical. TAB technology made it possible to burn-in semiconductor chips prior to assembly, as they are electrically accessible on the tape. Because the burn-in screen is most effective for semiconductor parts, applying this screen to the chips prior to assembly may, in many cases, alleviate the need for burning in the complete hybrid after assembly. Most importantly, however, it will reduce the amount of rework required after first electrical test.

The burn-in tank consists basically of an insulated reservoir filled with FC-43 which is heated, filtered and slowly circulated (see Figure 8-5). The slide carriers containing single tape frames with one chip each (Figure 9-1) are positioned on a tray having 96 positions (see Figure 9-2). The tray is married to an interconnect/contact board containing POGO pins to contact the lead frame pads (see Figure 9-3). Figure 9-4 shows a close-up of the interconnect board with the spring loaded POGO pins and the aperture allowing free flow of fluorocarbon over the chip. The completed tray assembly (Figure 9-5) is then lowered into the tank and remains there for the required period (usually 168 hours), while the fluorocarbon is heated to the desired temperature, usually 125°C. Electrical signals to operate each device are fed into the tray through a connector assembly. Upon completion of the required burn-in time, the tray is removed and disassembled. The individual chips-on-tape then undergo electrical testing. The system can be adapted to burn-in any chip type by changing the 24 plug-in interconnect boards (Figure 9-6) each of which is designed to power a specific chip type.

Eighty-four circuits were fabricated from chips which had been burned in for 168 hours at 125°C. Because of a malfunction in the Test Handler, the chips could not be electrically tested following burn-in but all available burned-in chips on tape were committed to circuits. Yields from this lot are shown in Table 7-4 as lot number "CBI". As can be seen, the Total Yield of 90% was comparable to yields from other lots and would probably have been significantly higher had testing of chips on tape following burn-in been possible.

Figure 9-1. Chip on Single Frame Mounted in Slide Carrier

Figure 9-2. Burn-in Tray Populated with 96 Slide Carriers Prior to Assembly

Figure 9-3. Interconnect Board Assembly

Figure 9-4. Interconnect PC Board Detail

Figure 9-5. Loaded and Assembled Tray Ready For Insertion in Fluid

Figure 9-6. Burn-in Tray With Vertical Chip Interconnect Board

Section 10

QUALIFICATION

The TAB E/M Sync Counter hybrid has been subjected to a military-type qualification program, which has tested every aspect of the performance capability of the device. With relatively minor exceptions the TAB hybrid has passed these qualification tests in a truly remarkable way.

The qualification program, including prior environmental screening steps is shown in detail on Figure 10-1. The qualification program consisted of five basic elements as follows: (Figure 10-2)

1. A qualification test program based on the Patriot Fuze Program requirements and imposed by U.S. Army ERADCOM for the completed hybrid devices.
2. A stringent qualification program as required by the USAF B-52 retrofit program and imposed on Honeywell Hybrid devices.
3. Qualification of materials prior to assembly.
4. Qualification of TAB equipment on a daily basis during assembly.

Items 1 and 2 are based on MIL-STD-883, Method 5008 Group B, C and D testing and are highlighted in Figures 10-1 and 10-3 as ERADCOM/Honeywell tests. The qualification requirements (quantity of devices and limits) are combined into one set of tests. A total of 81 devices were subjected to the different portions of the qualification program. Table 10-1 lists the device serial numbers and their respective lots for each of the Group B, C and D tests.

Device Qualification Results

The TAB hybrids have passed all but two of the above listed qualification tests without a single failure.

The first of the two tests failed was the Group B Die Shear Test, in which 2 out of 3 chips in every one of the five packages failed to meet the strength limit. An analysis of the failed epoxy joint indicated a high porosity level in the epoxy, plus the absence of any evidence of contamination (see Analysis Report #V02907, Appendix II). An investigation into the assembly traveller and sequence revealed that the epoxy of several lots had been thinned in unauthorized fashion, and also that several lots of screen printed epoxy had been stored over the week-end prior to die attach (OLB). This could have caused partial curing of the epoxy and resulting low bond strength. It is interesting to note that even with the low strength die bonds, the devices still met all environmental qualification tests, including mechanical, vibration and constant acceleration. This confirms the earlier theoretical analysis (Report #DELET-TR-77-2708-F, September 1979) which indicated that die attach is not required for mechanical integrity in TAB devices.

The above discussed qualification results are considered extremely positive. It appears that the TAB devices are almost indestructable under a variety of environments and stresses.

The qualification test travelers and QIIs (Quality Inspection Instructions) as well as the printed out electrical test results are included in a report titled "Qualification Test Data" and is available at ERADCOM.

Material Qualifications

In addition to device (hybrid) qualification tests after assembly and test, qualification on parts and materials was performed prior to use in assembly. These included the following:

1. Substrate qualifications, consisting of thickness profiles, TAB bond tests on the thick film gold, and gold wire bond pull strength tests.
2. Gold Paste Qualification Tests, consisting of adhesion tests and wire bond pull tests to check bondability of the gold.
3. Qualification of epoxies used to bond the chips and capacitor to the substrate.

TAB Bond/Equipment Qualification

Prior to and during each day's assembly the TAB bonding equipment was qualified by bonding all leads of one chip followed by pull strength testing. Mean (\bar{X}) and standard deviation (σ) were then calculated. If these values were such that $\bar{X}-3\sigma$ was equal to or greater than 10 grams the ILB or OLB was qualified for the day's production.

Inspection Criteria

In order to be able to visually inspect the TAB bonds, some modifications had to be made to Honeywell's Microelectronics Workmanship Standard, U-ED23036. These modifications include: rejection of devices which exhibited less than 50% of the TAB lead width on either the chip and/or the substrate bonding pads, bonds where there is no evidence of tool impression; and on the substrate, where a TAB lead tail and any adjacent metallization is closer than 0.001 inch. Acceptable rework procedures include: circular or semicircular bond imprint on TAB lead made by the wire bond capillary tool, lead bonded on remaining portion of other lead, and wirebond on top of "bump" or wirebond in place of TAB lead.

Table 10-1. Device Assignment for Qualification Tests*

Group "B" - 13 Devices

Lot 0001: 258, 209, 277

Lot 0002: 386, 392, 401, 403, 404, 417, 421, 423, 428, 431

Group "C" - 38 Devices

Lot 0001: 201, 202, 4, 5, 6, 12, 14, 16, 18, 19, 20, 21, 25, 26,
228, 233, 35, 39, 40, 41, 42, 45, 49, 50, 56, 57, 61, 65,
66, 67, 70, 72, 73, 75, 76, 80, 81, 85

Group "D" - 15 Devices

Lot 0001: 286, 93, 94, 95, 99, 302, 303, 04, 05, 06, 08, 09,
13, 14, 15

Group "D" - S/G 2

S/N: 537, 546, 547, 549, 553, 554, 558, 559, 560, 562,
566, 568, 569, 571, 572

*Results available in "Qualification Test Data" report at ERADCOM.

Figure 10-1. ERADCOM Qualification

Figure 10-2. TAB Qualification Schedule

Figure 10-3. ERADCOM/Honeywell Qualification Tests

All tests in accordance with MIL-STD-883

- (1) Method 1011 Cond B 15 cycles min
- (2) Method 1010 Cond C 100 cycles min
- (3) Method 2002 Cond C (min) Y, orientation only (3000 g's peak, 0.3 msec pulse)
- (4) Method 2007 Cond A (20 g's peak)
- (5) Method 2001 Cond A (5000 g's, Y₁ orientation only)

Section 11

COSTS

Honeywell has performed analysis of the manufacturing costs associated with TAB technology. This analysis basically consists of three different items, each one of which was addressed and reviewed separately:

- a. A theoretical cost model*, which was generated on the basis of two hypothetical standard hybrid modules, one of low and one of high complexity.
- b. Breakout of labor by task and grade employed during the build of 1604 Hybrid Sync Counter circuits, in complexity somewhat similar to Standard hybrid module number 1 of the cost module.
- c. Projected production costs of Sync Counter Hybrids build with TAB in quantities of 100, 1000, 5000 and 10,000 as compared to build with chip and wire (C&W) techniques.

Each one of the above elements will be briefly discussed below.

A. Cost Model

The purpose of the cost model was to analyze the production costs of hardware utilizing either conventional chip and wire (C&W) technology or Tape Automated Bonding.

The models prepared to predict production costs are based on two hypothetical hybrids of different complexity. Table 11-1 shows the makeup of standard hybrid modules I and II. Of interest is the break-even quantity of hybrids with wirebonding versus hybrids built with TAB. For Standard Module Number I this quantity is approximately 900 circuits, for Standard Module Number II approximately 200 circuits. These quantities are lower than anticipated on the basis of the nonrecurring costs, and are greatly influenced by the first electrical test yield.

Figure 11-1 shows a graph depicting the comparative cost analysis of Standard Module Number 1, Figure 11-2 shows this graph for Standard Module Number 2. Appendix III at the back of this report includes the entire cost model.

*Cost model developed under Contract DAAK40-76-C-1079.

B. Labor Employed by Task and Grade During the Build of the E/M Sync Counter

Nine labor categories were utilized in the build of the E/M Sync Counter circuit and the hours are broken out by task. Two engineering, three technician and four assembly labor grades were employed. The breakout of hours is shown in Table 11-2.

A total of 3459 hours, of which 533 for nonrecurring tasks, were expended in the fabrication of the 1604 circuits. The remaining 2920 hours of recurring labor provide an average of 1.82 hours expended on each of the 1604 circuits fabricated. The actual hours and those calculated in the Projected Production Costs (1.82 vs 1.88) correspond very closely and show the relative accuracy of the cost model.

C. Projected Production Costs

LABOR

A 1980 production quote for Sync Counters was used as the base for the C&W estimate. Hours were costed at an assembly labor grade. Material and support were held to the relative cost ratios of these items to assembly cost that occurred in the original production quote. This gives a recurring labor per unit of \$47.79, material per unit of \$34.82 and support per unit of \$100.00.

TAB hours were derived from process deltas to the original production quote. The areas of difference are component mount and wirebond plus inspection. Component mount was factored to 25 percent of the production effort based on a linear reduction of the effort based on one cap to mount versus one cap and three chips in chip and wire. Operation of chip separation; inner and out lead bonding, chip test, and framing based on the standards in the cost model using an EHR* of 3.0. Wirebond and inspection were limited to the manually wirebonded wires remaining in the TAB build. Overall yields through first test for C&W (52 percent) and TAB (86 percent) show a 65.4 percent improvement for TAB that was used to factor down troubleshoot and rework hours. The hours per unit show a 48 percent reduction to 1.88 hours per unit. This delta was reviewed with the Program Manager for reasonability.

MATERIAL

The material deltas were based on actual TAB material for those items primarily lead frames.

*EHR (Earned Hour Ratio) - The actual time required for performance of a task compared to a standard time derived from time and motion studies for that same task.

NONRECURRING

Nonrecurring costs are based on the cost model with a review through the Program Manager for continued cost reasonability. Lead frames design masks, IC test programs and fixturing and thermodes are the primary nonrecurring deltas.

Figure 11-3 shows the curves for production cost savings of the E/M Sync Counter built with TAB versus chip and wire. Note the crossover point at 776 devices.

Table 11-3 shows estimated costs for new production with TAB and C&W for the E/M Sync Counter in quantities of 100, 1000, 5000 and 10,000 devices.

Table 11-1. Standard Module Configurations
Used in Cost Model

<u>Configuration</u>	<u>No. 1</u>	<u>No. 2</u>
Substrates	1	1
Layers	6	8
Size	1 x 1 inch	2 x 2 inches
IC Types	3	11
No. ICs	7	32
No. IC Wires	126	359
Projected Loss (C&W/TAB)	10%/2.5%	15%/2.5%
Resistor Chip Types	2	7
No. Resistor Chips	4	20
No. Resistor Wires	72	225
Capacitor Types	3	9
No. Capacitors	8	24
Modules/Burn-In Board	21	6

Table 11-2. Analysis of Labor Requirements for TAB Sync Counter Fabrication by Task and Grade

	Engineer I	Engineer II	Technician I	Technician II	Technician III	Assembly I	Assembly II	Assembly III	Assembly IV
E/M Synchronous Counter Relayout	20	25	10	130	98				
Lead Frame and Bump Mask Design	20		40	118	128				
Plate Tape Mount and Dice Wafers	30	50	280	30	2	54	115	46	20
Substrate Fabrication (Thick Film)	12			76	63			1	
*ILB, OLB and Assembly Operations	50	18	280	243	155	541	48	5	
Circuit Electrical Test	50	64		26		20	212		
Chips-On-Tape, Burn-In	20	22	48	30	60				
Circuit Burn-In	10	40	40	84	25				
Total, by Labor Grade	212	219	698	737	531	615	376	51	20

*This task includes all visual inspections, testing of chips-on-tape, package seal and leak test operations.

Note 1. Total circuits fabricated - 1604

Note 2. Tasks 1 and 2 involve nonrecurring labor; tasks 3-7 only involve recurring labor

Note 3. In all labor categories, the highest skill labor grades are represented by Roman Numeral I and lowest skill by Roman Numeral IV.

TAble 11-3. Actual Cost - E/M Sync
Counter Circuits

(Chip and Wire Versus TAB Process)

<u>Unit Quantity</u>	<u>C&W Unit Cost \$</u>	<u>TAB Unit Cost \$</u>	<u>C&W Total Cost K\$</u>	<u>TAB Total Cost K\$</u>	<u>TAB Savings K\$</u>
100	272.61	323.14	27.3	32.3	-5
1,000	194.21	189.93	194.2	189.9	4.3
5,000	184.41	178.09	922.1	890.5	31.5
10,000	183.51	176.61	1835.1	1766.1	69

Figure 11-1.

Figure 11-2.

Figure 11-3. Cost Savings of TAB

Section 12

CONCLUSIONS

On the basis of the results of this MM&T project, Honeywell believes that TAB is a viable and successful technology. Its application will be governed by factors related to circuit design, complexity, production volume, and the final use environment.

A BIBLIOGRAPHY OF TECHNICAL PAPERS ON THE SUBJECT OF TAPE AUTOMATED BONDING WRITTEN BY HONEYWELL PERSONNEL AND RESULTING FROM THE ERADCOM/MICOM CONTRACTS.

"Application of Tape Chip Carrier Technology to Hybrid Microcircuits", Dr. Rudolph G. Oswald and William R. Rodrigues de Miranda, ECOM Hybrid Microelectronics Symposium, Ft. Monmouth, NJ, June 1976.

"Advances in TAB for Hybrids - TC Outer Lead Bonding", William R. Rodrigues de Miranda and Dr. Rudolph G. Oswald, International Microelectronics Symposium of ISHM, Baltimore, MD, October 1977.

"Wafer Bumping for Tape Automated Bonding", James M. Montante, William R. Rodrigues de Miranda, and Dr. Rudolph G. Oswald, International Microelectronics Symposium of ISHM, Baltimore, MD, October 1977.

"Lead Forming and Outer Lead Bond Pattern Design for Tape Bonded Hybrids", Dr. Rudolph G. Oswald, William R. Rodrigues de Miranda, and Don Brown of the Jade Corporation, presented at the 1978 (28th) Electronic Components Conference, Anaheim, CA, April 24, 1978.

"Outer Lead Bond Pattern Configurations for Tape Bonded Hybrids", Dr. Rudolph G. Oswald and William R. Rodrigues de Miranda, Southeast Printed Circuits and Microelectronics Conference, Orlando, FL, March 1978.

"Automated Tape Carrier Bonding for Hybrids", Dr. Rudolph G. Oswald, William R. Rodrigues de Miranda and James M. Montante, Solid State Technology Magazine, March 1978, p. 39.

"Storage and Life Tests of Thermocompression Tape Automated Bonded Leads to Various Gold Metallizations", James M. Montante, Paul R. Zipperlin, and William R. Rodrigues de Miranda, International Microelectronics Symposium of ISHM, Minneapolis, MN, September 1978.

"Automated Tape Carrier Bonding for Hybrids", Dr. Rudolph G. Oswald, James M. Montante and William R. Rodrigues de Miranda, Proceedings of the Symposium on Plastic Encapsulated/Polymer Sealed Semiconductor Devices for Army Equipment, May 1978.

"Lead Forming and Outer Lead Bond Pattern Design for Tape-Bonded Hybrids", William R. Rodrigues de Miranda, Dr. Rudolph G. Oswald and Don Brown of the Jade Corporation, IEEE. Transactions on Components, Hybrids and Manufacturing Technology, December 1978, p. 377.

"TAB (Tape Automated Bonding) for Hybrids", Dr. Rudolph G. Oswald and William R. Rodrigues de Miranda, Presented at the First Suncoast Electronics Manufacturing Conference of SME, St. Petersburg, FL, December 6, 1978.

"Hybrids with TAB - At the Threshold of Production", William R. Rodrigues de Miranda, Proceedings of the 1979 International Microelectronics Symposium (ISHM), p. 61, November 1979.

"Tape Bonding of Large Chips", William R. Rodrigues de Miranda, NEPCON West, Anaheim, CA, February 26, 1980.

"A Review of Wafer Bumping for TAB", Dr. T.S. Liu, P.R. Zipperlin, and William R. Rodrigues de Miranda, Solid State Technology Magazine, March 1980, p. 71.

"Manufacturing of Hybrid Microcircuits with TAB", William R. Rodrigues de Miranda, Southeast Printed Circuits and Microelectronics Exposition and Conference, Orlando, FL, April 1, 1980.

"Flip-TAB Process Broadens and Improves TAB Technology", Dr. T.S. Liu, C.H. McIver and William R. Rodrigues de Miranda, 1980 ERADCOM Hybrid Microcircuit Symposium, Ft. Monmouth, NJ, June 4-6, 1980.

Appendix 1
FAILURE ANALYSIS REPORT

A1-1

ANALYTICAL SERVICES LAB
WORK REQUEST

REQUEST NUMBER - CODE
66-F

Honeywell

12001 STATE HIGHWAY 55, PLYMOUTH MINNESOTA 55441. TELEPHONE 612/541-2508, 2442

PART NUMBER 34032548
PART NAME/FUNCTION SYNC Counter

REQUESTER	REQUESTER Will Perry		PHONE HVN 463-3856	DIVISION AvD - Florida	DEPARTMENT Hybrid	
	REQUEST DATE 1/23/81	CHARGE NUMBER SD545-1000	TECHNOLOGY Hybrid/Low Power Schottky T ² L			
	PART ORIGIN		ANALYSIS TYPE	WORK REQUESTED		
	<input type="checkbox"/> FEASIBILITY	<input type="checkbox"/> PRODUCTION	<input checked="" type="checkbox"/> FAILURE	<input checked="" type="checkbox"/> SEM - If Needed	<input checked="" type="checkbox"/> ELEC. TEST	
	<input type="checkbox"/> DEVELOPMENT	<input type="checkbox"/> FIELD RETURN	<input type="checkbox"/> MATERIALS	<input type="checkbox"/> EDS	<input checked="" type="checkbox"/> ELEC. PROBE	
	<input type="checkbox"/> ENGINEERING	<input type="checkbox"/> OTHER _____	<input type="checkbox"/> LINE QUALITY	<input type="checkbox"/> AUGER	<input checked="" type="checkbox"/> OPTICAL/PHOTO	
	<input checked="" type="checkbox"/> PROTOTYPE	_____	<input type="checkbox"/> CALIBRATION	<input type="checkbox"/> CROSS-SECTION	<input type="checkbox"/> OTHER _____	
	ANOTHER					
	DEVICE HISTORY					
	<input checked="" type="checkbox"/> FAILURE	APPROXIMATE HOURS TO FAILURE 0	OPERATION ENVIRONMENT (TEMP) As Indicated	OPERATION ENVIRONMENT (HUM) N/A		
<input type="checkbox"/> OTHER						
COMMENTS						
4 failed dynamic ATP test at temp (S/N 1752 - Minus 55°C; S/N 1791, 1810 & 1818 at +100°C, all "CBI" Lot). 1 chip & wire (S/N 0110) failed 100°C test - pre B.I. 1 TAB S/N 1029 first test room temperature.						
WORK REQUESTED (DETAIL)						
Check U ₂ for anomalies - Devices have been delidded. Find cause of failures.						
ANALYST	RESULTS (SUMMARY)					
	S/N 1810 and 1818 were found to have contamination in the nitride. S/N 1791 exhibited contamination in a metal contact area. S/N 1029's U ₂ chip was incorrectly bonded. S/N 1752 and 0110 contained die diffusion faults. With exception of S/N 1029, these failures were caused by processing defects, manifested at first electrical test.					
CORRECTIVE ACTION SHEET ATTACHED						
<input type="checkbox"/> YES <input checked="" type="checkbox"/> NO						
ANALYST/DATE K. Melrose c. Goepke	EST. COMP. DATE 2/14/81	DISTRIBUTION	APPROVAL John W. Wieslander	2/13/81		

ANALYTICAL SERVICES LAB
REPORT
(CONTINUATION SHEET)

REQUEST NUMBER - CODE
66-F

PART NUMBER
34032548
PART NAME/FUNCTION
SYNC Counter

Honeywell

12001 STATE HIGHWAY 55, PLYMOUTH, MINNESOTA 55441, TELEPHONE 612/541-2508, 2442

ANALYST	DATE	PAGE
R. Nelson/C. Goerke	2/11/81	2 OF 17

PROCEDURE

Optically examine for visible contamination and photograph anomalies.
Gold coat suspect devices before SEM analysis.
SEM photographs of anomalies.
Etch nitride using the LFE Plasma Asher Etcher.
Optically examine for anomalies after etch, photograph.
Curve tracer analysis.

EQUIPMENT USED

Zeiss Universal Optical Microscope
Denton Vacuum Sputter Coater - (Gold Coat Samples)
SEM - Scanning Electron Microscope - JSM T-200
LFE Plasma Asher Etcher
Tektronix 576 Curve Tracer

ANALYSIS

Device #1810 - Contamination was observed under optical analysis (Figure 1 & 2). Device was etched in the LFE Asher Etcher to remove the nitride. After nitride was removed, the contamination present in Figure 2 was gone (Figures 3 & 4). Analysis was discontinued at this point on this device.

Device #1818 - Contamination was observed under optical examination (Figure 5 & 6). The nitride contamination is similar to that found in Device 1810. Curve tracer analysis on this device revealed no failures. This contamination could have contributed to the device failing to meet specifications at high temperature.

Device #1791 - Optical examination revealed metal contamination (Figures 7 & 8) that could, when subjected to temperature changes cause failure of the device to meet specifications. After nitride removal (Figures 9 & 19), the contamination in the metal remained. SEM analysis (Figures 11-16) indicates that this contamination is on and around the metal.

Device #1752 - Optical examination (Figures 17 & 18) revealed a processing defect possibly diffusion related. SEM analysis was performed (Figures 19-22) and indicated that the defect was below 2nd metal. The anomaly extended between metal areas which under temperature conditions could possibly become conductive.

Device #0110 - Optical examination (Figures 23-26) indicates that there are diffusion faults present. These faults appear to occur between metal areas and below the nitride. Area indicated in Figures 24 are just two of the many possible anomalies present that could cause the failure when subjected to temperature changes.

ANALYTICAL SERVICES LAB
REPORT
(CONTINUATION SHEET)

REQUEST NUMBER - CODE

66-F

PART NUMBER

34032548

PART NAME/FUNCTION

Honeywell

12001 STATE HIGHWAY 55, PLYMOUTH MINNESOTA 55441 TELEPHONE 612/541-2508, 2442

ANALYST	DATE	PAGE
R. Nelson/C. Goerke	2/11/81	3 OF 17

Device #1029 - Optical analysis (Figure 27) revealed no visible contamination that could cause a failure. Curve tracer analysis on this device indicated a short from Pin 11 to ground on Pin 16. Continued optical examination indicated the failure to be that U₂ (Figure 28) was bonded incorrectly.

CONCLUSION

Two devices (S/N 1810 & 1818) were found to have contamination imbedded in the nitride. One device (S/N 1791) was found to have metal contamination which under the temperature conditions may have caused the failures. Two devices (S/N 1752 and 0110) exhibited what appears to be diffusion faults in areas between metal runs. These faults could cause the devices to fail to meet specifications under the high temperature test conditions. One sample (S/N 1029) contained incorrectly bonded wires from U₂ to the bond pads, apparently made when replacing the tabbed chip. These wires connected the output on Pin 11 to the ground pin, and thus caused the failure.

With exception of S/N 1029, the failures were all caused due to processing defects in the chip fabrication cycle and would have been detected before assembly if the chip had seen high temperature testing prior to assembly.

ANALYTICAL SERVICES LAB
REPORT
(CONTINUATION SHEET)

REQUEST NUMBER - CODE
66-F
PART NUMBER
34032548
PART NAME/FUNCTION
SYNC Counter

Honeywell

12001 STATE HIGHWAY 55 PLYMOUTH, MINNESOTA 55441, TELEPHONE 612/541-2508, 2442

ANALYST	DATE	PAGE
R. Nelson/C. Goerke	2/11/81	4 OF 17

Figure 1. Sample 1810
Overall view at 25X of U2.
Curve tracer analysis on this
device revealed no defects at
room temp.

Figure 2. Sample 1810
Optical photo at 261X of
contamination.

ANALYTICAL SERVICES LAB
REPORT
(CONTINUATION SHEET)

REQUEST NUMBER - CODE

66-F

PART NUMBER

34032548

PART NAME/FUNCTION

SYNC Counter

Honeywell

12001 STATE HIGHWAY 55, PLYMOUTH, MINNESOTA 55441, TELEPHONE 612/541-2508, 2442

ANALYST	DATE	PAGE
R. Nelson/C. Goerke	2/11/81	5 OF 17

FIG 3

Figure 3. Sample 1810
162X optical photo after
nitride has been removed.
Contamination that was present
in Figure 2 is now eliminated.

FIG 4

Figure 4. Sample 1810
437X optical photo after
nitride removal. Contamination
that was present in Figure 2
is now gone. Unable to
determine exact cause of
failure in this device.

ANALYTICAL SERVICES LAB
REPORT
(CONTINUATION SHEET)

REQUEST NUMBER - CODE

66-F

PART NUMBER

34032548

PART NAME/FUNCTION

SYNC Counter

Honeywell

12001 STATE HIGHWAY 55, PLYMOUTH, MINNESOTA 55441, TELEPHONE 612/541-2508, 2442

ANALYST	DATE	PAGE
R. Nelson/C. Goerke	2/11/81	6 OF 17

2/11/81
261X

FIG 5

Figure 5. Sample 1818
45X optical photo overall
view of U₂. Curve tracer
analysis on this device
indicated no failure at
room temperature.

FIG 6

Figure 6. Sample 1818
261X optical photo of con-
tamination imbedded in the
nitride. A similar type
contamination is in Figure
2, Sample 1810.

ANALYTICAL SERVICES LAB
REPORT
(CONTINUATION SHEET)

REQUEST NUMBER - CODE

66-F

PART NUMBER

34032548

PART NAME/FUNCTION

SYNC Counter

Honeywell

12001 STATE HIGHWAY 55, PLYMOUTH, MINNESOTA 55441, TELEPHONE 612/541-2508, 2442

ANALYST	DATE	PAGE
R. Nelson/C. Goerke	2/11/81	7 OF 17

Figure 7. Sample 1791
45X optical view of U₂.
Contamination site in the
circled area.

Figure 8. Sample 1791
707X optical photo of metal
contamination in the circled
area in Figure 7.

ANALYTICAL SERVICES LAB
REPORT
(CONTINUATION SHEET)

REQUEST NUMBER - CODE

66-F

PART NUMBER

34032548

PART NAME/FUNCTION

SYNC Counter

Honeywell

12001 STATE HIGHWAY 55, PLYMOUTH, MINNESOTA 55441, TELEPHONE 612/541-2508, 2442

ANALYST	DATE	PAGE
R. Nelson/C. Goerke	2/11/81	8 OF 17

FIG 9

Figure 9. Sample 1791
162X optical photo taken after
asher etch of the nitride.
Metal contamination remained.
Same area as Figure 8.

FIG 10

Figure 10. Sample 1791
437X optical photo taken after
asher etch of nitride with
metal contamination remaining.
Same area as in Figure 8.

A1-9

HA-343

ANALYTICAL SERVICES LAB
REPORT
(CONTINUATION SHEET)

REQUEST NUMBER - CODE
66-F
PART NUMBER
34032548
PART NAME/FUNCTION
SYNC Counter

Honeywell

12001 STATE HIGHWAY 55 PLYMOUTH MINNESOTA 55441 TELEPHONE 612/541-2508 2442

ANALYST	DATE	PAGE
R. Nelson/C. Goerke	2/11/81	9 OF 17

FIG 11

Figure 11. Sample 1791
2000X 45° tilt SEM photo
of metal contamination in
Figure 8.

FIG 12
A1-10

Figure 12. Sample 1791
2000X 0° tilt SEM photo
of metal contamination.
Same area as Figure 11.

ANALYTICAL SERVICES LAB
REPORT
(CONTINUATION SHEET)

REQUEST NUMBER - CODE

66-F

PART NUMBER

34032548

PART NAME/FUNCTION

SYNC Counter

Honeywell

12001 STATE HIGHWAY 55, PLYMOUTH, MINNESOTA 55441, TELEPHONE 612/541-2508, 2442

ANALYST	DATE	PAGE
R. Nelson/C. Goerke	2/11/81	10 OF 17

FIG 13

Figure 14. Sample 1791
7500X 45° tilt SEM photo
of same area as Figure 13.

FIG 14

A1-11

ANALYTICAL SERVICES LAB
REPORT
(CONTINUATION SHEET)

REQUEST NUMBER - CODE

66-F

PART NUMBER

34032548

PART NAME/FUNCTION

SYNC Counter

Honeywell

12001 STATE HIGHWAY 55, PLYMOUTH, MINNESOTA 55441, TELEPHONE 612/541-2508, 2442

ANALYST	DATE	PAGE
R. Nelson/C. Goerke	2/11/81	11 OF 17

FIG 15

Figure 15. Sample 1791
10,000X 45° tilt SEM
photo of the area in Figure
13.

FIG 16

Figure 16. Sample 1791
7500X 45° tilt SEM photo
of Area B-B in Figure 12.

ANALYTICAL SERVICES LAB
REPORT
(CONTINUATION SHEET)

REQUEST NUMBER - CODE
66-F

PART NUMBER
34032548
PART NAME/FUNCTION
SYNC Counter

Honeywell

12001 STATE HIGHWAY 55, PLYMOUTH, MINNESOTA 55441, TELEPHONE 612/541-2508, 2442

ANALYST	DATE	PAGE
R. Nelson/C. Goerke	2/11/81	12 OF 17

Figure 17. Sample 1752
45X optical photo of U₂.

Figure 18. Sample 1752
141X optical photo of
possible failure causing
processing defect.

ANALYTICAL SERVICES LAB
REPORT
(CONTINUATION SHEET)

REQUEST NUMBER - CODE
66-F

PART NUMBER
34032548
PART NAME/FUNCTION
SYNC Counter

Honeywell

12001 STATE HIGHWAY 55 PLYMOUTH, MINNESOTA 55441, TELEPHONE 612/541-2508, 2442

ANALYST	DATE	PAGE
R. Nelson/C. Goerke	2/11/81	13 OF 17
FIG 19		
FIG 20		
A1-14		

Figure 19. Sample 1752
5000X 0° tilt SEM photo
of processing defect in
Figure 18.

Figure 20. Sample 1752
7500X 45° tilt SEM photo
of processing defect in
Figure 19. Possible failure
causing anomie.

ANALYTICAL SERVICES LAB
REPORT
(CONTINUATION SHEET)

REQUEST NUMBER - CODE
66-F
PART NUMBER
34032548
PART NAME/FUNCTION
SYNC Counter

Honeywell

12001 STATE HIGHWAY 55, PLYMOUTH, MINNESOTA 55441, TELEPHONE 612/541-2508, 2442

ANALYST	DATE	PAGE
R. Nelson/C. Goerke	2/11/81	14 OF 17

FIG 21

FIG 22

A1-15

Figure 21. Sample 1752
7500X 40° tilt SEM photo
of processing defect in
Figure 20.

Figure 22. Sample 1752
20,000X 40° tilt SEM photo
of processing defect in
Figure 21.

ANALYTICAL SERVICES LAB
REPORT
(CONTINUATION SHEET)

REQUEST NUMBER - CODE
66-F
PART NUMBER
34032548
PART NAME/FUNCTION
SYNC Counter

Honeywell

12001 STATE HIGHWAY 55, PLYMOUTH, MINNESOTA 55441, TELEPHONE 612/541-2508, 2442

ANALYST	DATE	PAGE
R. Nelson/C. Goerke	2/11/81	15 OF 17

0110

FIG 23

Figure 23. Sample 0110
45X optical overall view
of U₂.

FIG 24

Figure 24. Sample 0110.
162X optical photo of
possible failure causing
diffusion faults. Anomalies
appear to occur below the
oxide and nitride.

ANALYTICAL SERVICES LAB
REPORT
(CONTINUATION SHEET)

REQUEST NUMBER - CODE

66-F

PART NUMBER

34032548

PART NAME/FUNCTION

SYNC Counter

Honeywell

12001 STATE HIGHWAY 55, PLYMOUTH, MINNESOTA 55441, TELEPHONE 612/541-2508, 2442

ANALYST	DATE	PAGE
R. Nelson/C. Goerke	2/11/81	16 OF 17

Figure 25. Sample 0110 437X optical photo of possible failure causing diffusion faults. Area A of Figure 24.

Figure 26. Sample 0110 437X optical photo of possible failure causing diffusion faults. Area B in Figure 24.

ANALYTICAL SERVICES LAB
REPORT
(CONTINUATION SHEET)

REQUEST NUMBER - CODE
66-F
PART NUMBER
34032548
PART NAME/FUNCTION
SYNC Counter

Honeywell

12001 STATE HIGHWAY 55, PLYMOUTH, MINNESOTA 55441, TELEPHONE 612/541-2508, 2442

ANALYST	DATE	PAGE
R. Nelson/C. Goerke	2/11/81	17 OF 17

Figure 27. Sample 1029
Overall view of 45X of U₂.
No contamination visible.

Figure 28. Sample 1029
29X optical photo of failure mode. Three bond wires are shifted over and bonded to the wrong area. Pin 11 bond wire should be on the center bond bump in this Figure. Curve tracer analysis indicated a short to ground on Pin 11. Bond wire that is connected to Pin 13 should be on Pin 12.

A1-18

Appendix II
ANALYSIS REPORT, NO. V02907

AD-A104 393

HONEYWELL INC CLEARWATER FL AVIONICS DIV
MANUFACTURING METHODS AND TECHNOLOGY ENGINEERING FOR TAPE CHIP --ETC(U)
AUG 81 W R RODRIGUES DE MIRANDA, W O PERRY DABAB07-77-C-0526

DELET-TR-77-0526F

F/G 9/5

NL

UNCLASSIFIED

2
A
2-0419r

END
DATE
FILED
OBI
DTIC

PRODUCT ASSURANCE

PAGE OF
1 2

LABORATORY

ANALYSIS NO.
V02907HONEYWELL
Avionics Division
St.Petersburg FL

ANALYSIS REPORT

DATE ISSUED
21 JANUARY 1981PART NAME AND DESCRIPTION VENDOR NAME REQUESTER
E/M SYNC. COUNTER HONEYWELL D. WRIGHTPROGRAM NAME PART NUMBER VENDOR PART NUMBER DATE CODE SAMPLE
4843 34032548 - 0423 1

CONCLUSIONS:

NO DIE/MOUNT CONTAMINATION DETECTABLE - EPOXY THIN & POROUS

REASON FOR ANALYSIS

TWO OF THE THREE PACKAGE DICE FAILED DIE SHEAR TEST. DETERMINE CAUSE.

RESULTS

A SEM/EDS ANALYSIS OF THE MATING EPOXY AND DIE SURFACES SHOWED NO DETECTABLE CONTAMINATION. THE EPOXY SURFACE UNDER THE FAILED DICE WAS FOUND TO BE MORE POROUS/VOIDED THAN UNDER THE NON-FAILURE. SEE FIGURE 1. THIS MAY HAVE PROVIDED A REDUCED BOND SURFACE AREA WHICH CONTRIBUTED TO THE FAILURE.

IT IS RECOMMENDED THAT FURTHER CONTAMINATION IDENTIFICATION TECHNIQUES BE PURSUED, PARTICULARLY IN THE ORGANIC SPECTRA.

DR FG
WH100 42PREPARED BY
W. HERIBALM

A2-2

BY

DATE

1-2-81

FAILED EPOXY SURFACE (~500X)

NON-FAILED EPOXY SURFACE (~500X)

FIGURE 1
SEM VIEWS OF EPOXY MOUNT SURFACES

A2-3

Appendix III
COST MODEL

TAPE AUTOMATED BONDING

VS.

CONVENTIONAL CHIP & WIRE

COST MODEL

CONTENTS

	PAGES
INTRODUCTION	A3-4
RECURRING PROCESS COSTS	A3-6
NON-RECURRING COSTS	A3-10
MATERIAL COSTS	A3-11
REWORK	A3-12
APPENDIX	A3-14

INTRODUCTION

The following is a cost model intended for use in calculating production costs of hardware utilizing either conventional chip and wire technology or tape automated bonding. The model is organized as follows:

Section I

This section displays 23 Recurring Process Cost Formulas which may be used in combinations to calculate the recurring assembly costs of any module. The formulas are broken into two major sections: "Conventional Processes" and "T.A.B. Processes". They are designated with the prefix letters "C" or "T", respectively. (A3-6 - A3-9)

Section II

This section displays 9 Non-Recurring Cost Formulas which may be used in combinations to calculate the non-recurring assembly costs of any module. These formulas are designated with the prefix letters "NR". (A3-10)

Section III

This section displays 11 Material Cost Formulas which may be used in combinations to calculate the material costs of any module. These formulas are designated with the prefix letter "M". (A3-11)

Section IV

Page A3-12 displays the statistical relationship between individual I.C. chip yields and overall package yields varying with the number of I.C. chips per package. This information is utilized in the following Recurring Process Cost Formulas:

<u>Process No.</u>	<u>Process</u>
C-8	Troubleshoot
C-9	Rework
C-10	Re Burn-in
C-11	Re Package Test
T-7	Rework

Page A3-13 displays the relationship between I.C. chips per module and troubleshoot hours per module. This information is utilized in Recurring Process Cost Formula C-8, Troubleshoot.

Appendix

The remaining pages contain two examples of application of the cost model.

Page A3-14 displays configuration information for two "standard modules". All of the information shown on this page is necessary for full application of the cost model.

Page A3-15 displays both the IC and Package Failure Rates associated with each of the two "standard modules". Calculations shown on this page are based on information contained in Section IV-1.

Pages A3-16 through A3-21 contain the application of the cost model to Standard Module No. 1. The model has been utilized to project costs for three methods:

1. Conventional Chip and Wire
2. T.A.B. - utilizing automatic equipment
3. T.A.B. - utilizing manual equipment

Page A3-22 displays the average cost of Standard Module No. 1 for volumes between 1 and 100K.

Page A3-23 displays the average cost information in graphical form as well as the breakeven points for the three processes.

Pages A3-24 through A3-29 display the same cost information for Standard Module No. 2.

RECURRING LABOR COSTS - CONVENTIONAL PROCESSES

<u>PROCESS NO.</u>	<u>PROCESS</u>	<u>EQUIPMENT</u>	<u>PROCESS COST</u>
C-1	Thick Film Printing	Presco Printer/Dryer Tempress Lindberg Furn.	<ul style="list-style-type: none"> o Clean Substrate .0012 hrs/substrate o Print, Dry, Fire .0019 hrs/print o Print, Dry .0014 hrs/print <p>Cost Formula: \$17.95 $(.0012 + (.0019 \times PDF) + (.0014 \times PD's))$</p>
C-2	Component Mount	Laurier Epoxy Bonder	<ul style="list-style-type: none"> o Upload substrate, position new one .0023 hrs/comp. type o Load Chip .0039 hrs/chip o Cure .0008 hrs/mod. type <p>Cost Formula: \$17.95 $(.0008 + (.0023 \times \# types) + (.0039 \times \# chips))$</p>
C-3	Capacitor Mount	Laurier Epoxy Bonder	<ul style="list-style-type: none"> o Same as C-2 above.
C-4	Wire Bonding	K&S Automatic Bonder	<ul style="list-style-type: none"> o Upload substrate, position new one .0050 hrs/substrate o Align reference points .0009 hrs/point o Initiate automatic mode o Bond wire .0001 hrs/component <p>Cost Formula: \$17.95 $(.0050 + (.0009 \times \# points) + (.0001 \times \# comp.) + (.00046 \times \# wires))$</p>
C-5	Visual Inspect & Rework	K&S Manual Bonder	<ul style="list-style-type: none"> o Inspect for component position & damage .0006 hrs/chip o Inspect wire bonds .0004 hrs/wire o Remove & replace comps. ● .20 hrs/IC x 7^{1/2} replacement o Remove & replace wire <ul style="list-style-type: none"> ● .0045 hrs/wire x 15% .0007 hrs/wire <p>Cost Formula: \$17.95 $(.0146 \times \# chips) + (.0011 \times \# wires)$</p>

RECURRING LABOR COSTS - CONVENTIONAL PROCESSES
 (cont'd)

<u>PROCESS NO.</u>	<u>PROCESS</u>	<u>EQUIPMENT</u>	<u>PROCESS COST</u>
C-6	Burn-in	Burn-in oven	<ul style="list-style-type: none"> o Load module to burn-in board .00028 hrs/module o Monitor burn-in .5 hrs/day x 7 days = 3.5 hrs/B.I. Board o Unload modules from burn-in board .00020 hrs/module <p>Cost Formula: \$17.95 $(3.5 \div \text{modules/board}) + .0048$</p>
C-7	Package Test	Automatic Test Station	<p>Cost Formula: \$17.95 x .02 hrs/module = \$0.36</p>
C-8	Troubleshoot		<p>Cost Formula: \$17.95 x T.S. hrs/pkg. x # failed packages</p>
A3-7	Rework	K&S Manual Bonder	<ul style="list-style-type: none"> o Remove and replace component, wirebond .0320 hr/failed comp. Cost Formula: \$17.95 x .2000 x # failed Comps/module
C-10	Re Burn-in	Burn-in Oven	<p>Cost Formula: Initial B.I. cost x # failed packages.</p>
C-11	Re Package Test	Automatic Test Station	<p>Cost Formula: Initial test cost x # failed packages.</p>
C-12	Seal Package	SSEC Pkg. Sealer	<p>Cost Formula: \$17.95 x .016 hrs/pkg = \$0.29</p>

RECURRING LABOR COSTS - T.A.B. PROCESSES

<u>PROCESS NO.</u>	<u>PROCESS</u>	<u>EQUIPMENT</u>	<u>PROCESS COST</u>
T-1	Chip Separation	Dicing Saw	<ul style="list-style-type: none"> o Clean Wafer .0830 hrs/wafer o Position wafer in holder o Saw .0396 hrs/wafer o Fracture Scribe Lines 2.0000 hrs/wafer o Place IC in waffle pack .0500 hrs/wafer o Place IC in wafile pack .5000 hrs/wafer $2.6726 \div 1000 \text{ IC's/wafer} = .0027 \text{ hrs/IC}$ <p>Cost Formula: \$17.95 x .0027 hrs/chip x # of chips/module</p>
T-2-A	Inner Lead Bonding (Automatic)	I/L Bonder I1000	<ul style="list-style-type: none"> o Bond IC to lead frame .0010 hr/IC Cost Formula: \$17.95 x .0010 hrs/IC x # IC's/module
A3-8	Inner Lead Bonding (Manual)	I/L Bonder Mark IV	<ul style="list-style-type: none"> o Bond IC to lead frame .0200 hr/IC Cost Formula: \$17.95 x .0200 hrs/IC x # IC's/module
T-3-A	Chip Test (Automatic)	Automatic Test Station	<ul style="list-style-type: none"> o Test IC in lead frame .0028 hr/IC Cost Formula: \$17.95 x .0028 hrs/IC x # IC/module
T-3-M	Chip Test (Manual)	Manual Test Station	<ul style="list-style-type: none"> o Test IC in lead frame .0083 hr/IC Cost Formula: \$17.95 x .0083 hrs/chip x # IC/module
T-4-A	Framing (Automatic)	Automatic Framing Machine	<ul style="list-style-type: none"> o Cut lead frame .0003 hr/IC Cost Formula: \$17.95 x .0003 hrs/IC x # IC/module
T-4-M	Framing (Manual)	Manual Framing Machine	<ul style="list-style-type: none"> o Cut lead frame .0028 hrs/IC Cost Formula: \$17.95 x .0028 hrs/IC x # IC/module

A3-8

RECURRING LABOR COSTS - T.A.B. PROCESSES
 (cont'd)

<u>PROCESS NO.</u>	<u>PROCESS</u>	<u>EQUIPMENT</u>	<u>PROCESS COST</u>
T- 5-A	Outer Lead Bonding (Automatic)	O/L Bonder #4821	<ul style="list-style-type: none"> o Bond IC to substrate Cost Formula: \$17.95 x .0020 hrs/IC # IC's/module
T- 5-M	Outer Lead Bonding (Manual)	O/L Bonder #4810	<ul style="list-style-type: none"> o Bond IC to substrate Cost Formula: \$17.95 x .0083 hrs/IC # IC's/module
T- 6	Visual Inspect & Rework	Manual O/L Bonder	<ul style="list-style-type: none"> o Inspect for component position & damage o Inspect outer lead bonds o Remove & replace IC's .2000 hrs/IC x 7% replacement = .0140 hrs/IC Cost Formula: \$17.95 [(.0146 x # IC's) + (.0003 x # O/L bonds)]
T- 7	Rework	Manual O/L Bonder	<ul style="list-style-type: none"> o Remove and replace IC Cost Formula: \$17.95 x .2000 hrs/IC # failed IC's/module

NON-RECURRING COSTS

<u>ITEM NUMBER</u>	<u>ITEM</u>	<u>COST FORMULA</u>
NR-1	Thick Film Screens	\$ 15.00/layer
NR-2	Program Automatic Wirebonder	\$ 0.15/wire
NR-3	Lead Frame/Mask Design (TAB only)	\$ 500.00/IC type
NR-4	Masks (2) (TAB only)	\$ 720.00/IC type
NR-5	Thermode (TAB only)	\$ 295.00/IC type
NR-6	Test Cabling (TAB only)	\$ 50.00/IC type
NR-7	I.C. Test Program (TAB only)	\$ 950.00/IC type
NR-8	I.C. Test Fixturing (TAB only)	\$ 215.00/IC type
NR-9	Package Level Testing, Programs, Fixturing	\$3,000.00/IC

MATERIAL COSTS

<u>MATERIAL NUMBER</u>	<u>MATERIAL</u>	<u>COST FORMULA</u>
M-1	Substrate 1" x 1"	\$0.50/substrate
M-2	Substrate 2" x 2"	\$0.75/substrate
M-3	Integrated Circuits	\$1.00/I.C.
M-4	Integrated Circuits with Bumps	\$1.10/I.C.
M-5	Lead Frame	\$0.70/I.C.
M-6	Resistor Chip	\$1.00/Resistor Chip
M-7	Capacitor	\$1.00/Capacitor
M-8	Gold Wire	\$0.01/Wire Bond
M-9	Thick Film Inks	\$0.90/Print
M-10	Package	\$9.75/Package
M-11	Lid	\$3.75/Lid

PLOT OF $Y_L = Y_p^N$

Figure 1

A3-12

A3-13

STANDARD MODULE CONFIGURATION

Substrates	1	1
Layers	6	8
Size	1" x 1"	2" x 2"
I.C. Types	3	11
No. IC's	7	32
No. IC Wires	126	359
Projected Loss (C&W/TAB)	10%/2.5%	15%/2.5%
Resistor Chip Types	2	7
No. Resistor Chips	4	20
No. Resistor Wires	72	225
Capacitor Types	3	9
No. Capacitors	8	24
Modules/Burn-in Board	21	6

PACKAGE FAILURE RATE

STD. MOD.	NO. IC's/ PKG.	CHIP & WIRE				T.A.B.			
		CHIP FAILURE RATE	TEST NO.	NO. FAILED IC'S	NO. FAILED PKG'S	CHIP FAILURE RATE	TEST NO.	NO. FAILED IC'S	NO. FAILED PKG'S
1	7	10%	1	.700	.53	.47	2.5%	.175	.17
			2	.070	.05	.48		.004	.01
			3	.007	.01	.04		.000	.016
			4	.000	.00	.01		.000	.0
				.78	.59	1.00		.18	1.0
2	32	15%	1	4.800	.99	.01	2.5%	.800	.55
			2	.720	.15	.84		.020	.01
			3	.108	.02	.13		.000	.01
			4	.016	.01	.01		.820	.56
			5	.000	.00	.01			1.00
				5.644	1.17	1.00			

A3-15

(1) Ref. Plot of $Y_t = Y_p N$

STANDARD MODULE NO. 1 - CONVENTIONAL CHIP & WIRE

RECURRING LABOR COSTS:

<u>PROCESS</u>	<u>PROCESS NUMBER</u>	<u>COST FORMULA</u>	<u>COST PER MODULE</u>
Thick Film Printing	C-1	\$17.95 [(.0012 + (.0019 x 4) + (.0014 x 2))]	\$ 0.21
Component Mount	C-2	\$17.95 [(.0008 + (.0023 x 5) + (.0039 x 11))]	0.99
Capacitor Mount	C-3	\$17.95 [(.0008 + (.0023 x 3) + (.0039 x 8))]	0.70
Wire Bonding	C-4	\$17.95 [(.0050 + (.0009 x 24) + (.0001 x 11) + (.00046 x 198))]	2.13
Visual Inspect & Rework	C-5	\$17.95 [(.0146 x 11) + (.0011 x 198)]	6.79
Burn-in	C-6	\$17.95 [(3.5 + 21) + .0048]	3.08
Package Test	C-7	\$17.95 x .02	0.36
Troubleshoot	C-8	\$17.95 x 1.0 x .59	10.59
Rework	C-9	\$17.95 x .2000 x .78	2.80
Re Burn-in	C-10	\$3.08 x .59	1.82
Re Package Test	C-11	\$0.36 x .59	0.21
Seal Package	C-12	\$17.95 x .016	<u>0.29</u>

NON-RECURRING COSTS:

<u>ITEM</u>	<u>ITEM NUMBER</u>	<u>COST FORMULA</u>	<u>TOTAL NON-RECURRING</u>
Thick Film Screens	NR-1	\$15.00/layer x 6 layers	90.00
Program Auto			
Wirebonder	NR-2	\$0.15/wire x 198 wires	30.00
Pkg. Level Test, Progs., Fixt.	NR-9	\$3000/IC x 7 IC's	<u>\$21,00.00</u>
			TOTAL NON-RECURRING = \$21,120.00

STANDARD MODULE NO. 1 - CONVENTIONAL CHIP & WIRE
 (cont'd)

MATERIAL COSTS:

<u>MATERIAL</u>	<u>MATERIAL NUMBER</u>	<u>COST FORMULA</u>
Substrate 1" x 1"	M-1	\$0.50/sub. x 1 sub./module
Integrated Circuit	M-3	\$1.00/IC x 7 IC/mod
Resistor Chip	M-6	\$1.00/chip x 4 chips/mod
Capacitor	M-7	\$1.00/cap x 8 caps/mod
Gold Wire	M-8	\$0.01/wire x 198 wires
Thick Film Inks	M-9	\$0.90/print x 6 layers
Package	M-10	\$9.75 x 1 pkg/module
Lid	M-11	\$3.75 x 1 pkg/module

TOTAL MATERIAL COST =

\$40.38

STANDARD MODULE NO. 1 - AUTOMATIC T.A.B. PROCESSES

<u>RECURRING LABOR:</u>	<u>PROCESS NUMBER</u>	<u>COST FORMULA</u>	<u>COST PER MODULE</u>
Thick Film Printing	C-1	\$17.95 C.0012 + (.0019 x 4) + (.0014 x 2)	\$ 0.21
Component Mount	C-2	\$17.95 C.0008 + (.0023 x 2) + (.0039 x 4)	0.38
Capacitor Mount	C-3	\$17.95 C.0008 + (.0023 x 3) + (.0039 x 8)	0.70
Wire Bonding	C-4	\$17.95 C(.0050 + (.0009 x 10) + (.0001 x 4) + (.0046x72))	0.85
Chip Separation	T-1	\$17.95 x .0027 x 7	0.34
Inner Lead Bonding	T-2-A	\$17.95 x .0010 x 7	0.13
Chip Test	T-3-A	\$17.95 x .0028 x 7	0.35
Framing	T-4-A	\$17.95 x .0003 x 7	0.04
Outer Lead Bonding	T-5-A	\$17.95 x .0020 x 7	0.25
Visual Inspect &	T-6	\$17.95 x ((.0146 x 7) + (.0003 x 126))	2.51
Visual Inspect &	C-5	\$17.95 x ((.0146 x 4) + (.0011 x 72))	2.47
Rework	C-6	\$17.95 x ((3.5÷21) + (.0048))	3.08
Burn in	C-7	\$17.95 x .02	0.36
Package Test	C-8	\$17.95 x 1.0 x .18	3.23
Trouble Shoot	T-7	\$17.95 x .2000 x .18	0.64
Rework	C-10	\$3.08 x .18	0.55
Re Burn - In	C-11	\$0.36 x .18	0.06
Re Package Test	C-12	\$17.95 x .016	0.29

TOTAL RECURRING COST =

\$16.44

STANDARD MODULE NO. 1 - AUTOMATIC T.A.B. PROCESSES

(cont'd)

<u>ITEM NO.</u>	<u>COST FORMULA</u>	<u>TOTAL NON RECURRING</u>
Thick Film Screens	\$15.00/Layer x 6 Layers	\$ 90
Program Auto. Wirebonder	\$ 0.15/Wire x 72 wires	11
Lead Frame/Mask Design	\$ 500/IC Type x 3 IC Types	1500
Masks	\$720/IC Type x 3	2160
Thermode	\$295	885
Test Cabling	\$50	150
IC Test Program	\$950	2850
IC Test Fixturing	\$215	645
Pkg. Level Testing, Progs., Fixt.	\$3000/IC x 7 IC	<u>21,000</u>
NR-9		\$29,291
		TOTAL NON-RECURRING

STANDARD MODULE NO. 1 - AUTOMATIC T.A.B. PROCESSES

MATERIAL COSTS:

<u>MATERIAL</u>	<u>MATERIAL NO.</u>	<u>COST FORMULA</u>	<u>MATERIAL COSTS</u>
Substrate 1" x 1"	M-1	\$0.50/sub x 1 sub/Module	\$ 0.50
Resistor Chip Integrated Circuits with Bumps	M-6	1.00/chip x 4 chips/module	4.00
Lead frame	M-4	1.10/IC x TIC/Module	7.70
Capacitor	M-5	0.70/IC x TIC/Module	4.90
	M-7	1.00/cap x 8 caps/Module	8.00
Gold Wire	M-8	0.01/wire x 72 wires/Module	.72
Thick Film Inks	M-9	0.90/print x 6 Prints	5.40
Package	M-10	9.75/Pkg x 1 Pkg/Module	9.75
Lid	M-11	3.75/Lid x 1 Lid/Module	<u>3.75</u>
		TOTAL MATERIAL COST	\$44.72

STANDARD MODULE NO. 1 - MANUAL T.A.B. PROCESSES

RECURRING LABOR:

<u>PROCESS</u>	<u>PROCESS NO.</u>	<u>PROCESS</u>	<u>COST FORMULA</u>	<u>COST PER MODULE</u>
Thick Film Printing	C-1	Reff.	TAB	\$ 0.21
Component Mount	C-2	"	"	0.38
Capacitor Mount	C-3	"	"	0.70
Wire Bonding	C-4	"	"	0.85
Chip Separation	T-1	"	"	0.34
Inner Lead Bonding	T-2-M	\$17.95 x	.0200 x 7	2.51
Chip Test	T-3-M	\$17.95 x	.0083 x 7	1.04
Framing	T-4-M	\$17.95 x	.0028 x 7	0.35
Outer Lead Bonding	T-5-M	\$17.95 x	.0083 x 7	1.04
Visual Inspect & Rework	T-6	Reff.	TAB	2.51
Visual Inspect & Rework	C-5	"	"	2.47
Burn-In	C-6	"	"	3.08
Package Test	C-7	"	"	0.36
Trouble Shoot	C-8	"	"	3.23
Rework	T-7	"	"	0.64
RE Burn-In	C-10	"	"	0.55
RE Package Test	C-11	"	"	0.06
Seal Package	C-12	"	"	0.29

TOTAL RECURRING COST =

\$20.61
TOTAL
COST
\$29,291

(Reff. TAB Automatic)

COST PER
MODULE
\$44.72

NON-RECURRING:

MATERIAL COSTS:

STANDARD MODULE NO. 1

CONVENTIONAL CHIP & WIRE

No. Units	CONVENTIONAL CHIP & WIRE				T.A.B.-AUTOMATIC				T.A.B.-MANUAL			
	Recur.	Non Recurr.	Mat.	Total Cost/ Module	Recur.	Non Recurring	Mat.	Total Cost/ Module	Recur.	Non Recurring	Mat.	Total Cost/ Module
1	\$29.97	\$21,120.00	\$40.38	\$21,190	\$16.44	\$29,291.00	\$44.72	\$29,352	\$20.61	\$29,291.00	\$44.72	\$29,356
100		211.20		281.55		292.91		354.07		292.91		328.24
500		42.24		112.59		58.58		119.74		58.58		129.91
1000		21.12		91.47		29.29		90.45		29.29		94.68
2000		10.56		80.91		14.65		75.81		14.65		79.98
5000		4.22		74.57		5.86		67.02		5.86		71.19
10000		2.11		72.46		2.93		64.09		2.93		68.26
25000		.84		71.19		1.17		62.33		1.17		66.50
50000		.42		70.77		.58		61.74		.58		65.91
100000		.21		70.56		.29		61.45		.29		65.68

COMPARATIVE COST ANALYSIS
STANDARD MODULE NO.1

B7-A-8

Ex. S. K. E.

TAB - MANUAL

TAB AUTOMATIC

CONVENTIONAL CHAIN DRIVE

DOLLARS PER MODULE

A3-23

ME LOGISTICS & ENGINEERING CO. INC.

MODULES PRODUCED

CONVENTIONAL CHAIN

TAB MANUAL

TAB AUTOMATIC

Shear force
vs. No. of modules

Initial cost

FIFO TAB AUTO

STANDARD MODULE NO. 2 - CONVENTIONAL CHIP & WIRE

RECURRING LABOR COSTS:

<u>PROCESS</u>	<u>PROCESS NO.</u>	<u>COST FORMULA</u>	<u>COST/ MODULE</u>
Thick Film Printing	C-1	\$17.95 [.0012 + (.0019x5) + (.0014x3)]	\$ 0.27
Component Mount	C-2	\$17.95 [.0008 + (.0023x18) + (.0039x52)]	4.40
Capacitor Mount	C-3	\$17.95 [.0008 + (.0023x9) + (.0039x24)]	2.07
Wire Bonding	C-4	\$17.95 [.0050 + (.0009x106) + (.001x52) + (.00046x584)]	6.72
Visual Inspect & Rework	C-5	\$17.95 [(.0146x52) + (.0011x584)]	25.16
Burn-In	C-6	\$17.95 [(3.5 ÷ 6) + .0048]	10.56
Package Test	C-7	\$17.95 x .02	0.36
Trouble Shoot	C-8	\$17.95 x 16.0 x 1.17	336.02
Rework	C-9	\$17.95 x .2000 x 5.644	20.26
Re Burn-In	C-10	\$10.56 x 1.17	12.36
Re Package Test	C-11	\$0.36 x 1.17	0.42
Seal Package	C-12	\$17.95 x .016	0.29
		TOTAL RECURRING COST =	\$418.89

NON-RECURRING COSTS:

<u>ITEM</u>	<u>ITEM NO.</u>	<u>COST FORMULA</u>	<u>NON RECURRING</u>
Thick Film Screens	NR-1	\$15.00/Layer x 8 Layers	\$ 120
Program Auto Wirebonder	NR-2	\$0.15/Wire x 584 Wires	88
Pkg.Level Test, Progs., Fixt	NR-9	\$3000/IC x 32 IC	<u>96,000</u>
		TOTAL NON-RECURRING	\$96,208

MATERIAL COSTS:

<u>MATERIAL</u>	<u>MAT. NO.</u>	<u>COST FORMULA</u>	<u>NON RECURRING</u>
Substrate 2" x 2"	M-2	\$0.75/sub x 1 sub/Module	\$ 0.75
Integrated Circuit	M-3	\$1.00/IC x 32 IC/Module	32.00
Resistor Chip	M-6	\$1.00/chip x 20 chips/Module	20.00
Capacitor	M-7	\$1.00/ cap x 24 caps/Module	24.00
Gold Wire	M-8	\$0.01/Wire x 584 wires/Module	5.84
Thick Film Inks	M-9	\$0.90/Print x 8 Layers/Module	7.20
Package	M-10	\$9.75 x 1 Pkg/Module	9.75
Lid	M-11	\$3.75 x 1 Pkg/Module	3.75
		TOTAL MATERIAL COST	\$103.29

STANDARD MODULE NO. 2 - AUTOMATIC T.A.B. PROCESSES

RECURRING LABOR:

<u>PROCESS</u>	<u>PROCESS NO.</u>	<u>COST FORMULA</u>	<u>COST PER MODULE</u>
Thick Film Printing	C-1	\$17.95 [(.0012 + (.0019x5) + (.0014x3))]	\$ 0.27
Component Mount	C-2	\$17.95 [(.0008 + (.0023x7) + (.0039x20))]	1.70
Capacitor Mount	C-3	\$17.95 [(.0008 + (.0023x9) + (.0039x24))]	2.07
Wire Bonding	C-4	\$17.95 [(.0050 + (.009x42) + (.0001x20) + (.00046x225))]	2.66
Chip Separation	T-1	\$17.95x.0027x32	1.55
Inner Lead Bonding	T-2-A	\$17.95x.0010x32	.57
Chip Test	T-3-A	\$17.95x.0028x32	1.61
Framing	T-4-A	\$17.95x.0003x32	.17
Outer Lead Bonding	T-5-A	\$17.95x.0020x32	1.15
Visual Inspect & Rework	T-6	\$17.95x [(.0146x32) + (.0003x359)]	10.32
Visual Inspect & Rework	C-5	\$17.95x [(.0146x20) + (.0011x225)]	9.68
Burn-In	C-6	\$17.95x [(3.5 ÷ 6) + .0048]	10.56
Package Test	C-7	\$17.95x.02	0.36
Trouble Shoot	C-8	\$17.95x 16.0x.56	160.83
Rework	T-7	\$17.95x.2000x.82	2.94
Re Burn-In	C-10	\$10.56x1.17	12.36
Re Package Test	C-11	\$0.36x1.17	0.42
Seal Package	C-12	\$17.95x .016	0.29

TOTAL RECURRING COST = \$219.51

NON-RECURRING COSTS:

<u>ITEM</u>	<u>ITEM NO.</u>	<u>COST FORMULA</u>	<u>NON RECURRING</u>
Thick Film Screens	NR-1	\$15.00/Layer x 8 Layers	\$ 120
Program Auto Wirebonder	NR-2	\$0.15/Wire x 225 Wires	34
Lead Frame/Mask Design	NR-3	\$500/IC Type x 11 IC Types	5,500
Masks	NR-4	\$720/IC Type x 11	7,920
Thermode	NR-5	\$295 x 11	3,245
Test Cabling	NR-6	\$50 x 11	550
IC Test Program	NR-7	\$950 x 11	10,450
IC Test Fixturing	NR-8	\$215 x 11	2,365
Pkg. Level Testing, Progs, Fixt.	NR-9	\$3000/IC x 32	96,000

TOTAL NONRECURRING = \$126,184

STANDARD MODULE NO. 2 - AUTOMATIC TAB PROCESSES

<u>MATERIAL</u>	<u>MATERIAL NO.</u>	<u>COST FORMULA</u>	<u>MATERIAL COST</u>
Substrate 2" x 2"	M-2	\$0.75/sub x 1 sub/module	\$ 0.75
Integrated Circuits with Bumps	M-4	\$1.10/IC x 32 IC/module	35.20
Lead Frame	M-5	\$0.70/IC x 32 IC/module	22.40
Resistor Chip	M-6	\$1.00/chip x 20 chips/module	20.00
Capacitor	M-7	\$1.00/cap x 24 caps/module	24.00
Gold Wire	M-8	\$0.01/wire x 225 wires/module	2.25
Thick Film Ink	M-9	\$0.90/print x 8 Layers	7.20
Package	M-10	\$9.75/pkg x 1/module	9.75
Lid	M-11	\$3.75/lid x 1/module	3.75

TOTAL MATERIAL COST \$125.30

STANDARD MODULE NO. 2 - MANUAL T.A.B. PROCESSES

RECURRING LABOR

<u>PROCESS</u>	<u>PROCESS NO.</u>	<u>COST FORMULA</u>				<u>COST PER MODULE</u>
Thick Film Printing	C-1	Reff.	T.A.B.	Automat.	\$	0.27
Component Mount	C-2	"	"	"		1.70
Capacitor Mount	C-3	"	"	"		2.07
Wire Bonding	C-4	"	"	"		2.66
Chip Separation	T-1	"	"	"		1.55
Inner Lead Bonding	T-2-M	\$17.95 x	.0200 x	32		11.49
Chip Test	T-3-M	\$17.95 x	.0083 x	32		4.77
Framing	T-4-M	\$17.95 x	.0028 x	32		1.61
Outer Lead Bonding	T-5-M	\$17.95 x	.0083 x	32		4.77
Visual Inspect & Rework	T-6	Reff.	T.A.B.	Automatic		10.32
Visual Inspect & Rework	C-5	"	"	"		9.68
Burn-in	C-6	"	"	"		10.56
Pakcage Test	C-7	"	"	"		0.36
Trouble Shoot	C-8	"	"	"		160.83
Rework	T-7	"	"	"		2.94
Re Burn-in	C-10	"	"	"		12.36
Re Package Test	C-11	"	"	"		0.42
Seal Package	C-12	"	"	"		0.29

TOTAL RECURRING COST = \$238.65

NON-RECURRING:	(Reff. TAB Automatic)	<u>TOTAL COST</u>
		\$126,184.

MATERIAL COSTS:	(Reff. TAB Automatic)	<u>COST PER MODULE</u>
		\$125.30

STANDARD MODULE NO. 2

No. Units	Recur.	Conventional Chip & Wire			T.A.B. - Automatic			T.A.B. - Manual			
		Non Recur.	Mat.	Total Cost/ Module	Recurr.	Non Recurring	Mat.	Total Cost/ Module	Recurr.	Non Recurring	Mat.
1	\$418.89	\$96,208.	\$103.29	\$96,730	\$219.51	\$126,184.	\$125.30	\$126,529	\$238.65	\$126,184.	\$125.30
100		962.08		1484.26		1261.84		1606.65		1261.84	
500		192.42		714.60		252.37		597.18		252.37	
1000		96.21		618.39		126.18		470.99		126.18	
2000		48.10		570.28		63.09		407.90		63.09	
5000		19.24		541.42		25.24		370.05		25.24	
10000		9.62		531.80		12.62		357.43		12.62	
25000		3.85		526.03		5.05		349.86		5.05	
50000		1.92		524.10		2.52		341.33		2.52	
100,000		.96		523.14		1.26		346.07		1.26	

COMPARATIVE COST ANALYSIS

STANDARD MODULE NO. 2

B-14

4.5 hrs

TAB - MANUAL
TAB - AUTOMATIC
CONVENTIONAL AND VARIOUS

320

A3-29

ME COMPUTATION SHEET NO. 1 CAT

MODULES PRODUCED

DOLLARS PER MODULE

ELECTRONICS TECHNOLOGY AND DEVICES LABORATORY

CONTRACT DISTRIBUTION LIST

Code R123, Tech Library DCA Defense Comm Engrg Ctr 1800 Wiehle Ave)1 Reston, VA 22090	Cdr, Harry Diamond Laboratories ATTN: Library 2800 Powder Mill Road 001 Adelphi, MD 20783
Defense Communications Agency Technical Library Center Code 205 (P. A. Tolovi))1 Washington, DC 20305	Director US Army Ballistic Research Labs ATTN: DRXBR-LB 001 Aberdeen Proving Ground, MD 21005
Commander Naval Electronics Laboratory Center ATTN: Library)1 San Diego, CA 92152	Director US Army Materiel Systems Analysis Activity ATTN: DRXSY-T, MP (In Turn) 001 Aberdeen Proving Ground, MD 21005
Cdr, Naval Surface Weapons Center White Oak Laboratory ATTN: Library Code WX-21)1 Silver Spring, MD 20910	Cdr, AVRADCOM ATTN: DRSAV-E PO Box 209 001 St Louis, MO 63166
Hq, Air Force Systems Command ATTN: DLCA Andrews Air Force Base)1 Washington, DC 20331	Commander, Picatinny Arsenal ATTN: SARPA-FR-5, -ND-A-4, -TS-S (In Turn) 001 Dover, NJ 07801
Cdr, MICOM Redstone Scientific Info Center ATTN: Chief, Document Section)1 Redstone Arsenal, AL 35809	Project Manager, REMBASS ATTN: DRCPM-RBS 001 Fort Monmouth, NJ 07703
Commandant US Army Aviation Center ATTN: AT2Q-D-MA)1 Fort Rucker, AL 36362	Commander US Army Satellite Communications Agency ATTN: DRCPM-SC-3 001 Fort Monmouth, NJ 07703
Director, Ballistic Missile Defense Advanced Technology Center ATTN: ATC-R, PO Box 1500)1 Huntsville, AL 35807	TRI-TAC Office ATTN: TT-SE 001 Fort Monmouth, NJ 07703
Commander HQ, Fort Huachuca ATTN: Technical Reference Div)1 Fort Huachuca, AZ 85613	Cdr, US Army Avionics Lab AVRADCOM ATTN: DAVAA-D 001 Fort Monmouth, NJ 07703

US ARMY ELECTRONICS TECHNOLOGY & DEVICES LABORATORY
CONTRACT DISTRIBUTION LIST

# OF COPIES		# OF COPIES	
	Defense Technical Information Center ATTN: DTIC-TCA Cameron Station (Bldg 5) 012 Alexandria, VA 22314		Cdr, PM Concept Analysis Centers ATTN: DRCPM-CAC Arlington Hall Station 001 Arlington, VA 22212
001	GIDEP Engineering & Support Dept TE Section PO Box 398 Norco, CA 91760	001	Cdr, Night Vision & Electro-Optic ERADCOM ATTN: DELNV-D Fort Belvoir, VA 22060
001	Director Naval Research Laboratory ATTN: Code 2627 Washington, DC 20375	001	Cdr, Atmospheric Sciences Lab ERADCOM ATTN: DELAS-SY-S White Sands Missile Range, NM 881
001	Rome Air Development Center ATTN: Documents Library (TILD) Griffiss AFB, NY 13441	001	Cdr, Harry Diamond Laboratories ATTN: DELHD-CO, TD (In Turn) 2800 Powder Mill Road Adelphia, MD 20783
001	Deputy For Science & Technology Office, Asst Sec Army (R&D) Washington, DC 20310	001	Cdr, ERADCOM ATTN: DRDEL-CG, CD, CS (In Turn) 2800 Powder Mill Road Adelphia, MD 20783
001	HQDA (DAMA-ARZ-D/Dr. F.D. Verderame), Washington, DC 20310		
001	Director US Army Materiel Systems Analysis Actv ATTN: DRXSY-T Aberdeen Proving Ground, MD 21005,	001	Cdr, ERADCOM ATTN: DRDEL-CT 2800 Powder Mill Road Adelphia, MD 20783
001	Commander, DARCOM ATTN: DRCDE 5001 Eisenhower Avenue Alexandria, VA 22333	000	Commander US Army Electronics R&D Command Fort Monmouth, NJ 07703
001	Cdr, US Army Signals Warfare Lab ATTN: DELSW-OS Vint Hill Farms Station Warrenton, VA 22186	1 1 1 2 15	DELEW-D DELET-D DELSD-L (Tech Library) DELSD-L-S (STINFO) — Originating Office DELET-IA-T
001	Commander US Army Communications R&D Command ATTN: USMC-LNO Fort Monmouth, NJ 07703		

JU JUNE 1964
DISTRIBUTION LIST

<u># OF COPIES</u>		<u># OF COPIES</u>	
002	Advisory Group on Electron Devices 201 Varich Street, 9th Floor New York, NY 10014	001	Hughes Aircraft Company Solid State Products Division ATTN: R. P. Himmel 500 Superior Avenue Newport Beach, CA 92663
001	US Army Industrial Base Engrg Activity ATTN: DRXIB-MT (Mr. C. McBurney) Rock Island, IL 61299	001	Manufacturing Technology Utilization NASA Headquarters ATTN: Ray L. Gilbert 608 Independence Ave., SW Washington, DC 20546
001	Commander Naval Ocean Systems Center ATTN: Dr. W. D. McKee, Jr. Code 9253T San Diego, CA 92152	001	Commander, DARCOM ATTN: DRCMT (Fred Michel) 5001 Eisenhower Avenue Alexandria, VA 22333
001	Dr. Victor Ruwe Mgr, Microelectronics Functional Group US Missile R&D Command ATTN: DRDMI-EAA Redstone Arsenal, AL 35803	001	Kulicke & Soffa Industries, Inc ATTN: Mr. M. Kulicke 507 Prudential Road Hersham, PA 19044
001	NASA Scientific & Tech Info Facility Baltimore/Washington Int'l Airport PO Box 8757 Maryland 21240	001	Bell Laboratories Whippany Road ATTN: Tech Reports Center WH5E-227 Whippany, NJ 07981

**DATE
ILMED
- 8**