(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2002-260207 (P2002-260207A)

(43)公開日 平成14年9月13日(2002.9.13)

(51) Int.Cl. ⁷		識別記号	FΙ			テーマコー	ド(参考)
G11B	5/64		G11B	5/64		5 I	0006
	5/65			5/65		5 I	112
	5/66			5/66			
	5/738			5/738			
	5/851			5/851			
			家 京 情 全 審	未請求	請求項の数37	OL	(全 26 頁)
(21)出顧番号	}	特顧2001-401183(P2001-401183)	(71)出顧人	0000020	04		-
				昭和電工	集式会社		
(22)出廣日		平成13年12月28日(2001.12.28)		東京都港	区芝大門1丁目	113番9	导
			(72)発明者	坂脇 奪	E .		
(31)優先権主	張番号	特顧2000-403307 (P2000-403307)		千葉県市	原市八幡海岸通	重5番の	1 昭和電
(32)優先日		平成12年12月28日(2000.12.28)		エエイチ	・ディー株式会	社内	
(33)優先権主	選国	日本(JP)	(72)発明者	酒井 湘	志		
				千葉県市	可市八幡海岸通	重5番の	1 昭和電
				エエイチ	・ディー株式会	社内	
			(74)代理人	10006490	. 80		
				弁理士	志賀 正武	(外6名)	1
						掲	終頁に続く

(54) 【発明の名称】 磁気記録媒体、その製造方法、製造装置、および磁気記録再生装置

(57)【要約】

【課題】 熱揺らぎ耐性などの磁気特性およびグライド ハイト特性に優れ、かつ容易に製造することができる磁 気記録媒体を提供する。

【解決手段】 非磁性基板1と、その上に形成された非磁性下地層3、磁性層4および保護層5を基本構成とし、非磁性下地層3が、bcc構造を有し、非磁性基板1と非磁性下地層3との間に、非磁性下地層を(200)に優先的に配向させる配向調整層2が形成され、非磁性下地層3と磁性層4のいずれか一方または両方が、柱状微結晶粒が半径方向に傾いた結晶構造を有し、磁性層4の周方向の保磁力Hccと径方向の保磁力Hcrとの比Hcc/Hcrが1より大きくされている。

(b)

【特許請求の範囲】

【請求項1】 非磁性基板と、その上に形成された非磁性下地層、磁性層および保護層を基本構成とする磁気記録媒体において、

1

非磁性下地層が、bcc構造を有し、

非磁性基板と非磁性下地層との間に、非磁性下地層を (200)に優先的に配向させる配向調整層が形成され、

非磁性下地層と磁性層のいずれか一方または両方が、柱状微結晶粒が半径方向に傾いた結晶構造を有し、

磁性層の周方向の保磁力Hccと径方向の保磁力Hcr との比Hcc/Hcrが、1より大きくされていること を特徴とする磁気記録媒体。

【請求項2】 磁性層が、複数の磁性膜を有し、これら磁性膜が、hcp構造を有し、かつ(110)に優先的に配向しており、これら磁性膜間に反強磁性結合が形成可能とされていることを特徴とする請求項1記載の磁気記録媒体。

【請求項3】 配向調整層が、柱状微結晶粒が半径方向に傾いた結晶構造を有することを特徴とする請求項1 または2記載の磁気記録媒体。

【請求項4】 磁性層は、隣り合う磁性膜の磁気モーメント方向が互いに正対する積層フェリ構造を有することを特徴とする請求項1~3のうちいずれか1項記載の磁気記録媒体。

【請求項5】 磁性層は、複数の磁性膜と、これらの間に介在する中間膜とを有する構造とされていることを特徴とする請求項1~4のうちいずれか1項記載の磁気記録媒体。

【請求項6】 磁性層は、磁性膜と、これに隣接する中間膜とからなる積層構造を2つ以上有することを特徴とする請求項1~5のうちいずれか1項記載の磁気記録媒体。

【請求項7】 複数の磁性膜のうち最も保磁力が大きい主磁性膜に対し隣接する磁性膜の反強磁性結合磁界が、この磁性膜の保磁力よりも大きいことを特徴とする請求項1~6のうちいずれか1項記載の磁気記録媒体。

【請求項8】 中間膜は、Ru、Cr、Ir、Rh、Mo、Cu、Co、Re、Vのうち少なくとも1種を主成分とする材料からなるものであることを特徴とする請 40 求項5項記載の磁気記録媒体。

【請求項9】 配向調整層は、Cr、V、Nb、M o、W、Ta modesize <math>modesize modesize <math>modesize modesize modesize

【請求項10】 配向調整層は、Crを主成分とする合金からなるものであることを特徴とする請求項1~8のうちいずれか1項記載の磁気記録媒体。

【請求項11】 配向調整層は、Taを含む合金X₁Ta(X₁はBe、Co、Cr、Fe、Nb、Ni、V、

2n、2rのうち 1 種または 2 種以上)を主成分とするものであり、かつ F d 3 m構造またはアモルファス構造を有することを特徴とする請求項 $1\sim8$ のうちいずれか 1 項記載の磁気記録媒体。

【請求項12】 配向調整層は、Nbを含む合金 X_2N b(X_2 はBe、Co、Cr、Fe、Ni、Ta、V、Zn、Zr のうち1 種または2 種以上)を主成分とするものであり、かつFd3 m構造またはアモルファス構造を有することを特徴とする請求項 $1\sim8$ のうちいずれか1項記載の磁気記録媒体。

【請求項13】 配向調整層は、CoTaまたはCoNbを主成分とするものであり、TaまたはNbの含有量が $30\sim75a$ t%であり、かつFd3m構造またはアモルファス構造を有することを特徴とする請求項 $1\sim8$ のうちいずれか1項記載の磁気記録媒体。

【請求項14】 配向調整層は、CrTaまたはCrNbを主成分とするものであり、TaまたはNbの含有量が $15\sim75a$ t%であることを特徴とする請求項 $1\sim8$ のうちいずれか」項記載の磁気記録媒体。

【請求項15】 配向調整層は、NiTaまたはNi Nbを主成分とするものであり、TaまたはNbの含有量が $30\sim75at$ %であり、かつFd3m構造またはアモルファス構造を有することを特徴とする請求項 $1\sim8$ のうちいずれか I 項記載の磁気記録媒体。

【請求項16】 配向調整層は、Fd3m構造を有する非磁性金属からなるものであることを特徴とする請求項1~8のうちいずれか1項記載の磁気記録媒体。

【請求項17】 配向調整層は、C15構造を有する 非磁性金属からなるものであることを特徴とする請求項 16記載の磁気記録媒体。

【請求項18】 非磁性基板と配向調整層との間に、 配向性向上層が形成されていることを特徴とする請求項 1~17のうちいずれか1項記載の磁気記録媒体。

【請求項19】 配向性向上層は、B2構造またはア モルファス構造を有する材料からなるものであることを 特徴とする請求項18記載の磁気記録媒体。

【請求項20】 配向性向上層は、NiAl、FeAl、CoAl、CoZr、CoCrZr、およびCoCrCのうちいずれかを主成分とするものであることを特徴とする請求項18記載の磁気記録媒体。

【請求項21】 配向調整層は、複数設けられていることを特徴とする請求項1~20のうちいずれか1項記載の磁気記録媒体。

【請求項22】 非磁性基板と、その上に形成された 磁性層および保護層を基本構成とする磁気記録媒体にお いて、

非磁性基板と磁性層との間に、直上の層の結晶配向性を 調整する配向調整層が形成され、

磁性層が、柱状微結晶粒が半径方向に傾いた結晶構造を 有し、

50

磁性層の周方向の保磁力H c c と径方向の保磁力H c r との比H c c / H c r が、1より大きくされていることを特徴とする磁気記録媒体。

3

【請求項23】 磁性層が、複数の磁性膜を有し、これら磁性膜が、hcp構造を有し、かつ(110)に優先的に配向しており、これら磁性膜間に反強磁性結合が形成可能とされていることを特徴とする請求項22記載の磁気記録媒体。

【請求項24】 配向調整層が、柱状微結晶粒が半径 方向に傾いた結晶構造を有することを特徴とする請求項 10 22または23記載の磁気記録媒体。

【請求項25】 非磁性基板と、その上に形成された 非磁性下地層、磁性層および保護層を基本構成とする磁 気記録媒体において、

非磁性基板と非磁性下地層との間に、直上の層の結晶配向性を調整する配向調整層が形成され、

非磁性下地層が、bcc構造を有し、

非磁性下地層と磁性層のいずれか一方または両方が、柱 状微結晶粒が半径方向に傾いた結晶構造を有し、

配向調整層が、アモルファス構造のN i P合金からなるものであり、かつ非磁性下地層を(200)に優先的に配向させることができるようにされ、

磁性層の周方向の保磁力Hccと径方向の保磁力Hcr との比Hcc/Hcrが、1より大きくされていること を特徴とする磁気記録媒体。

【請求項26】 磁性層が、複数の磁性膜を有し、これら磁性膜が、hcp構造を有し、かつ(110)に優先的に配向しており、これら磁性膜間に反強磁性結合が形成可能とされていることを特徴とする請求項25記載の磁気記録媒体。

【請求項27】 配向調整層は、窒素または酸素を1 a t %以上含むことを特徴とする請求項1~26のうちいずれか1項記載の磁気記録媒体。

【請求項28】 非磁性基板と、その上に形成された非磁性下地層、磁性層および保護層を基本構成とし、非磁性下地層が、bcc構造を有し、非磁性基板と非磁性下地層との間に、非磁性下地層を(200)に優先的に配向させる配向調整層が形成された磁気記録媒体を製造する方法であって、

成膜粒子を放出源から放出させて被付着面に付着させることにより非磁性下地層と磁性層のいずれか一方または両方を形成し、この際、成膜粒子軌道の被付着面への投影線がほぼ非磁性基板の径方向に沿い、かつ非磁性基板に対し傾いて入射するように成膜粒子の方向を設定することを特徴とする磁気記録媒体の製造方法。

【請求項29】 成膜粒子を放出源から放出させて被付着面に付着させることにより配向調整層を形成し、この際、成膜粒子軌道の被付着面への投影線がほぼ非磁性基板の径方向に沿い、かつ非磁性基板に対し傾いて入射するように成膜粒子の方向を設定することを特徴とする

請求項28記載の磁気記録媒体の製造方法。

【請求項30】 配向調整層に、酸化処理または窒化処理を施すことを特徴とする請求項28または29記載の記載の磁気記録媒体の製造方法。

【請求項31】 配向調整層を形成するにあたって、 成膜粒子の放出源としてスパッタリングターゲットを用 いるスパッタ法を採用することを特徴とする請求項28 ~30のうちいずれか1項記載の磁気記録媒体の製造方 法。

【請求項32】 配向調整層を形成するに際し、酸素 または窒素を含むスパッタガスを用いることによって酸 化処理または窒化処理を行うことを特徴とする請求項3 1記載の磁気記録媒体の製造方法。

【請求項33】 酸化処理または窒化処理を、配向調整層の表面を酸素含有ガスまたは窒素含有ガスに接触させることにより行うことを特徴とする請求項30記載の磁気記録媒体の製造方法。

【請求項34】 非磁性基板と、その上に形成された 非磁性下地層、磁性層および保護層を基本構成とし、非 磁性下地層が、bcc構造を有し、非磁性基板と非磁性 下地層との間に、非磁性下地層を(200)に優先的に 配向させる配向調整層が形成された磁気記録媒体を製造 する装置であって、

成膜粒子を放出し被付着面に付着させることにより、配向調整層、非磁性下地層、磁性層のうち少なくともいずれか1つを形成する放出源と、この放出源から放出された成膜粒子の方向を定める方向設定手段とを備え、

この方向設定手段は、成膜粒子軌道の被付着面への投影線がほぼ非磁性基板の径方向に沿い、かつ非磁性基板に対し傾いて入射するように成膜粒子の方向を設定することができるようにされていることを特徴とする磁気記録 媒体の製造装置。

【請求項35】 磁気記録媒体と、この磁気記録媒体 に情報を記録再生する磁気ヘッドとを備え、

磁気記録媒体が、非磁性基板と、その上に形成された非磁性下地層、磁性層および保護層を基本構成とし、非磁性下地層が、bcc構造を有し、非磁性基板と非磁性下地層との間に、非磁性下地層を(200)に優先的に配向させる配向調整層が形成され、非磁性下地層と磁性層のいずれか一方または両方が、柱状微結晶粒が半径方向に傾いた結晶構造を有し、磁性層の周方向の保磁力Hccと径方向の保磁力Hcrとの比Hcc/Hcrが、1より大きくされていることを特徴とする磁気記録再生装置

【請求項36】 磁性層が、複数の磁性膜を有し、これら磁性膜が、hcp構造を有し、かつ(110)に優先的に配向しており、これら磁性膜間に反強磁性結合が形成可能とされていることを特徴とする請求項35記載の磁気記録再生装置。

【請求項37】 配向調整層が、柱状微結晶粒が半径

.

方向に傾いた結晶構造を有することを特徴とする請求項 35または36記載の磁気記録再生装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、計算機周辺装置や 画像・音声記録用に用いられる磁気ディスク装置などに 用いられる磁気記録媒体、その製造方法、製造装置、お よび上記磁気記録媒体を用いた磁気記録再生装置に関す るものである。

[0002]

【従来の技術】磁気記録媒体の高記録密度化に伴い、磁 性層中の磁性粒子の微細化、磁気的孤立化、磁性層の薄 膜化などによって、ノイズ低減や分解能向上を図ること が提案されている。しかしながら、磁性粒子の微細化、 磁気的孤立化、磁性層の薄膜化を行う場合には、磁性粒 子が小さくなるため、熱揺らぎ耐性が低下しやすい問題 がある。熱揺らぎとは、記録ビットが不安定となり記録 したデータの消失が起こる現象をいい、磁気記録再生装 置においては、記録したデータの再生出力の経時的な減 衰として現れる。従来、磁気記録媒体用の基板として は、アルミニウム合金等からなる非磁性金属基板が多く 用いられている。非磁性金属基板は、通常、表面を硬化 するためNiPなどからなる硬質膜を設け、その表面に テクスチャ加工が施されて用いられている。テクスチャ 加工は、基板表面に所定方向(通常は円周方向)に沿う 凹凸を形成する加工であり、テクスチャ加工を施すこと によって、基板上に形成される下地層および磁性層の結 晶配向性を向上させ、磁性層の磁気異方性を高め、熱揺 らぎ耐性などの磁気特性を向上させることができる。

【0003】ところで、近年では、磁気記録媒体用の基 板として、アルミニウム等からなる金属基板に代えて、 ガラス、セラミックスなどからなる非金属基板が多く用 いられてきている。非金属基板は、硬度が高いためヘッ ドスラップが生じにくく、しかも表面平滑性が高いため グライドハイト特性の点で有利である。しかしながら、 ガラス基板などの非金属基板は、テクスチャ加工を施す のが難しく、磁性層の磁気異方性が不十分となり熱揺ら ぎ耐性が低くなりやすいという問題がある。このため、 ガラス、セラミックスなどからなる非金属基板上に、テ クスチャ加工が容易な硬質膜を形成することが提案され ている。例えば特開平5-197941号公報には、非 金属基板表面に、テクスチャ加工が容易な硬質膜である N i P膜をスパッタ法により形成した磁気記録媒体が開 示されている。非金属基板表面に硬質膜を設けた磁気記 録媒体を製造するには、スパッタ装置などの成膜装置内 において基板上に硬質膜を形成した後、基板を一旦成膜 装置から搬出し、テクスチャ加工装置を用いてテクスチ ャ加工を施し、次いで再び成膜装置内に搬入し下地層や 磁性層の形成を行う方法が採られる。

[0004]

【発明が解決しようとする課題】しかしながら、上記アルミニウム基板のような非磁性金属基板、ガラス基板のような非金属基板を用いた従来の磁気記録媒体では、表面に形成されたNiPなどからなる硬質膜にテクスチャ加工を施すことによって磁性層の磁気異方性を高めることができるものの、硬質膜の表面凹凸によって媒体の表

とかできるものの、 使質膜の表面凹凸によって媒体の表面 平滑性が低くなりやすい。このため、グライドハイト特性が悪化し、高記録密度化が難しくなる問題があった。また製造工程が煩雑であるため製造コストが嵩む不都合があった。 本発明は、上記事情に鑑みてなされたもので、熱揺らぎ耐性などの磁気特性およびグライドハイト特性に優れ、かつ容易に製造することができる磁気記録媒体、この磁気記録媒体を容易に製造することができる方法および装置、さらには熱揺らぎ耐性などの磁気特性に優れた磁気記録媒体を用いた磁気記録再生装置を提

[0005]

供することを目的とする。

【課題を解決するための手段】本発明の磁気記録媒体 は、非磁性基板と、その上に形成された非磁性下地層、 磁性層および保護層を基本構成とし、非磁性下地層が、 bcc構造を有し、非磁性基板と非磁性下地層との間 に、非磁性下地層を(200)に優先的に配向させる配 向調整層が形成され、非磁性下地層と磁性層のいずれか 一方または両方が、柱状微結晶粒が半径方向に傾いた結 晶構造を有し、磁性層の周方向の保磁力Hccと径方向 の保磁力Hcrとの比Hcc/Hcrが、1より大きく されていることを特徴とする。磁性層は、複数の磁性膜 を有し、これら磁性膜が、 h c p 構造を有し、かつ(1 10) に優先的に配向しており、これら磁性膜間に反強 磁性結合が形成可能とされている構成が好ましい。配向 調整層は、柱状微結晶粒が半径方向に傾いた結晶構造を 有する構成が好ましい。本発明の磁気記録媒体では、非 磁性下地層と磁性層のいずれか一方または両方が、柱状 微結晶粒が半径方向に傾いた結晶構造を有するため、磁 性層の周方向の保磁力Hccと径方向の保磁力Hcrと の比Hcc/Hcrを、1より大きくすることができ る。上記構成によれば、磁性層において周方向の磁気異 方性を強め、結晶磁気異方性定数 (Ku)を高めること ができることから、熱揺らぎ耐性、保磁力、記録再生信 号のS/N比などの磁気特性の向上を図ることができ る。本発明では、これに加えて、磁性膜間の反強磁性結 合により、最も保磁力の高い主磁性膜以外の磁性膜の磁 化について、見かけ上磁化のない状態、または主磁性膜 の磁化が、これ以外の磁性膜の磁化に相当する磁化の 分、見かけ上小さくなった状態が得られる。このため、 ノイズや分解能に悪影響を及ぼすことがなく、磁性粒子 の体積を十分に大きくすることができ、熱的安定化を図 り、熱揺らぎ耐性の向上を図ることができる。磁性層 は、隣り合う磁性膜の磁気モーメント方向が互いに正対 する積層フェリ構造を有する構成とすることができる。

磁性層は、複数の磁性膜と、これらの間に介在する中間 膜とを有する構造とすることができる。磁性層は、磁性 膜と、これに隣接する中間膜とからなる積層構造を2つ 以上有する構成とすることができる。複数の磁性膜のう ち最も保磁力が大きい主磁性膜に対し隣接する磁性膜の 反強磁性結合磁界は、この磁性膜の保磁力よりも大きく 設定するのが好ましい。中間膜は、Ru、Cr、Ir、 Rh、Mo、Cu、Co、Re、Vのうち少なくとも1 種を主成分とする材料からなるものとするのが好まし い。配向調整層は、bcc構造の非磁性下地層を(20 0) に優先的に配向させる構成、すなわち Cr、V、N b、Mo、W、Taのうち1種または2種以上からなる 構成とすることができる。配向調整層は、bcc構造の 非磁性下地層を(200)に優先的に配向させる構成、 すなわちCrを主成分とする合金からなるものであって もよい。配向調整層は、bcc構造の非磁性下地層を (200)に優先的に配向させる構成、すなわちTaを 含む合金X1Ta(X1はBe、Co、Cr、Fe、N b、Ni、V、Zn、Zrのうち1種または2種以上) を主成分とし、かつFd3m構造またはアモルファス構 造を有するものであってもよい。配向調整層は、bcc 構造の非磁性下地層を(200)に優先的に配向させる 構成、すなわちNbを含む合金X2Nb(X2はBe、C o、Cr、Fe、Ni、Ta、V、Zn、Zrのうち1 種または2種以上)を主成分とし、かつFd3m構造ま たはアモルファス構造を有するものであってもよい。配 向調整層は、bcc構造の非磁性下地層を(200)に 優先的に配向させる構成、すなわちCoTaまたはCo Nbを主成分とするものであり、TaまたはNbの含有 量が30~75at%であり、かつFd3m構造または アモルファス構造を有する構成とすることができる。配 向調整層は、bcc構造の非磁性下地層を(200)に 優先的に配向させる構成、すなわちCrTaまたはCr N b を主成分とするものであり、 T a または N b の含有 量が15~75at%である構成とすることができる。 配向調整層は、bcc構造の非磁性下地層を (200) に優先的に配向させる構成、すなわちNiTaまたはN iNbを主成分とするものであり、TaまたはNbの含 有量が30~75at%であり、かつFd3m構造また はアモルファス構造を有する構成とすることができる。 配向調整層は、bcc構造の非磁性下地層を(200) に優先的に配向させる構成、すなわち Fd 3m構造を有 する非磁性金属からなるものとすることができる。配向 調整層は、bcc構造の非磁性下地層を(200)に優 先的に配向させる構成、すなわち C 1 5 構造を有する非 磁性金属からなるものとすることができる。本発明で は、非磁性基板と配向調整層との間に、配向性向上層が 形成されている構成とすることができる。配向性向上層 は、B2構造またはアモルファス構造を有する材料から なるものである構成とすることができる。配向性向上層

は、NiAI、FeAI、CoAI、CoZr、CoCrZr、CoCrZr、およびCoCrCのうちいずれかを主成分とするものである構成とすることができる。本発明では、配向調整層を、複数設けることができる。

【0006】本発明の磁気記録媒体は、非磁性基板と、 その上に形成された磁性層および保護層を基本構成と し、非磁性基板と磁性層との間に、直上の層の結晶配向 性を調整する配向調整層が形成され、磁性層が、柱状微 結晶粒が半径方向に傾いた結晶構造を有し、磁性層の周 方向の保磁力Hccと径方向の保磁力Hcrとの比Hc c/Hcrが、1より大きくされている構成を採用でき る。磁性層は、複数の磁性膜を有し、これら磁性膜が、 h c p 構造を有し、かつ (110) に優先的に配向して おり、これら磁性膜間に反強磁性結合が形成可能とされ ている構成が好ましい。配向調整層は、柱状微結晶粒が 半径方向に傾いた結晶構造を有する構成が好ましい。本 発明の磁気記録媒体は、非磁性基板と、その上に形成さ れた非磁性下地層、磁性層および保護層を基本構成と し、非磁性基板と非磁性下地層との間に、直上の層の結 晶配向性を調整する配向調整層が形成され、非磁性下地 層が、bcc構造を有し、非磁性下地層と磁性層のいず れか一方または両方が、柱状微結晶粒が半径方向に傾い た結晶構造を有し、配向調整層が、アモルファス構造の N i P合金からなるものであり、かつ非磁性下地層を (200)に優先的に配向させることができるようにさ れ、磁性層の周方向の保磁力Hccと径方向の保磁力H crとの比Hcc/Hcrが、1より大きくされている 構成とすることができる。磁性層は、複数の磁性膜を有 し、これら磁性膜が、hcp構造を有し、かつ(11 0)に優先的に配向しており、これら磁性膜間に反強磁 性結合が形成可能とされている構成が好ましい。配向調 整層は、窒素または酸素を1 a t %以上含む構成が好ま しい。

【0007】本発明の磁気記録媒体の製造方法は、非磁 性基板と、その上に形成された非磁性下地層、磁性層お よび保護層を基本構成とし、非磁性下地層が、bcc構 造を有し、非磁性基板と非磁性下地層との間に、非磁性 下地層を(200)に優先的に配向させる配向調整層が 形成された磁気記録媒体を製造する方法であって、成膜 粒子を放出源から放出させて被付着面に付着させること により非磁性下地層と磁性層のいずれか一方または両方 を形成し、この際、成膜粒子軌道の被付着面への投影線 がほぼ非磁性基板の径方向に沿い、かつ非磁性基板に対 し傾いて入射するように成膜粒子の方向を設定すること を特徴とする。本発明の製造方法では、成膜粒子を放出 源から放出させて被付着面に付着させることにより配向 調整層を形成し、この際、成膜粒子軌道の被付着面への 投影線がほぼ非磁性基板の径方向に沿い、かつ非磁性基 板に対し傾いて入射するように成膜粒子の方向を設定す ることができる。本発明の製造方法では、配向調整層

8

に、酸化処理または窒化処理を施すことができる。配向 調整層を形成するにあたっては、成膜粒子の放出源とし てスパッタリングターゲットを用いるスパッタ法を採用 することができる。配向調整層を形成するに際しては、 酸素または窒素を含むスパッタガスを用いることによっ て酸化処理または窒化処理を行うことができる。酸化処 理または窒化処理は、配向調整層の表面を酸素含有ガス または窒素含有ガスに接触させることにより行うことが できる。

9

【0008】本発明の磁気記録媒体の製造装置は、非磁性基板と、その上に形成された非磁性下地層、磁性層および保護層を基本構成とし、非磁性下地層が、bcc構造を有し、非磁性基板と非磁性下地層との間に、非磁性下地層を(200)に優先的に配向させる配向調整層が形成された磁気記録媒体を製造する装置であって、成膜粒子を放出し被付着面に付着させることにより、配向調整層、非磁性下地層、磁性層のうち少なくともいずれか1つを形成する放出源と、この放出源から放出された成膜粒子の方向を定める方向設定手段とを備え、この方向設定手段が、成膜粒子軌道の被付着面への投影線がほぼよ地磁性基板の径方向に沿い、かつ非磁性基板に対し傾いて入射するように成膜粒子の方向を設定することができるようにされていることを特徴とする。

【0009】本発明の磁気記録再生装置は、磁気記録媒 体と、この磁気記録媒体に情報を記録再生する磁気ヘッ ドとを備え、磁気記録媒体が、非磁性基板と、その上に 形成された非磁性下地層、磁性層および保護層を基本構 成とし、非磁性下地層が、bcc構造を有し、非磁性基 板と非磁性下地層との間に、非磁性下地層を (200) に優先的に配向させる配向調整層が形成され、非磁性下 地層と磁性層のいずれか一方または両方が、柱状微結晶 粒が半径方向に傾いた結晶構造を有し、磁性層の周方向 の保磁力Hccと径方向の保磁力Hcrとの比Hcc/ Hcrが、1より大きくされていることを特徴とする。 磁性層は、複数の磁性膜を有し、これら磁性膜が、hc p構造を有し、かつ(110)に優先的に配向してお り、これら磁性膜間に反強磁性結合が形成可能とされて いる構成が好ましい。配向調整層は、柱状微結晶粒が半 径方向に傾いた結晶構造を有する構成が好ましい。

[0010]

【発明の実施の形態】図1は、本発明の磁気記録媒体の第1の実施形態を示すもので、ここに示す磁気記録媒体は、非磁性基板1上に配向調整層2が形成され、その上に非磁性下地層3、磁性層4、保護層5、潤滑層6が順次形成されたものである。図1(a)は、本実施形態の磁気記録媒体の全体構成を示す断面図であり、図1

(b)は、この磁気記録媒体の断面の透過型電子顕微鏡(TEM)写真に基づいて作成した要部拡大図である。 【0011】非磁性基板1としては、アルミニウム、アルミニウム合金等の金属材料からなる金属基板を用いて

もよいし、ガラス、セラミック、シリコン、シリコンカ ーバイド、カーボンなどの非金属材料からなる非金属基 板を用いてもよい。ガラス基板としては、アモルファス ガラス、結晶化ガラスが使用可能であり、アモルファス ガラスとしては、汎用のソーダライムガラス、アルミノ ケートガラス、アルミノシリケートガラスを使用でき る。また結晶化ガラスとしては、リチウム系結晶化ガラ スを用いることができる。セラミックス基板としては、 汎用の酸化アルミニウム、窒化アルミニウム、窒化珪素 などを主成分とする焼結体や、それらの繊維強化物など が使用可能である。非磁性基板 1 としては、耐久性、コ ストなどの観点からガラス基板を用いるのが好ましい。 また、これらの基板の表面にメッキ法などによりNiP 層が形成されたものも非磁性基板1として挙げることが できる。本発明においては、アルミニウムなどからなる 非磁性金属基板と、ガラス基板などの非金属基板とを含 めて非磁性基板と呼ぶ。非磁性基板1の表面にはテクス チャ加工を施してもよい。基板1の表面の平均粗さRa は、0.01~2nm (好ましくは0.05~1.5n m)とするのが好適である。

【0012】配向調整層2は、直上に形成される非磁性 下地層3の結晶配向性を整え、さらにはその上に形成さ れる磁性層4の結晶配向性を調整し、磁性層4の磁気異 方性を向上させるためのものである。配向調整層 2 に は、Cr、V、Nb、Mo、W、Taのうち1種または 2種以上を用いるのが好ましい。これによって、 b c c 構造の非磁性下地層3を(200)に優先的に配向させ ることができる。配向調整層2の材料としては、Crを 主成分とする(すなわちCェの含有率が50 a t %を越 える)合金を用いることもでき、特にCrXo(Xoは V、Nb、Mo、Ta、Wのうち1種または2種以上) 系合金を用いるのが好ましい。これによって、bcc構 造の非磁性下地層3を(200)に優先的に配向させる ことができる。CrXo系合金を用いる場合、Xoの含有 率は、1 a t %以上、50 a t %未満とするのが好まし い。Xoの含有率を上記範囲とすることによって、非磁 性下地層 3 および磁性層 4 の結晶配向性を高め磁気異方 性を向上させることができる。

【0013】配向調整層 2 は、Taを含む合金 X_1Ta (X_1 は Be、Co、Cr、Fe、Nb、Ni、V、Zn、Zr のうち 1 種または 2 種以上)を主成分とし、かつ Fd 3 m構造または Te であってもよい。これによって、bc c 構造の非磁性下地層 3 を (200)に優先的に配向させることができる。配向調整層 2 は、Nb を含む合金 X_2 Nb (X_2 は Be 、Co、Cr、Fe 、Ni、Ta、V、Zn、Zr のうち 1 種または 2 種以上)を主成分とし、かつ Fd 3 m構造または Te を主成分とし、かつ Te 3 m構造または Te であってもよい。これによって、Te Te Te の Te

は、CoTaまたはCoNbを主成分とするものであ り、TaまたはNbの含有量が30~75at%であ り、かつFd3m構造またはアモルファス構造を有する 構成とすることができる。これによって、bcc構造の 非磁性下地層3を(200)に優先的に配向させること ができる。配向調整層2は、CrTaまたはCrNbを 主成分とするものであり、TaまたはNbの含有量が1 5~75 a t % である構成とすることもできる。これに よって、bcc構造の非磁性下地層3を(200)に優 先的に配向させることができる。配向調整層 2 は、Ni TaまたはNiNbを主成分とするものであり、Taま たはNbの含有量が30~75at%であり、かつFd 3 m構造またはアモルファス構造を有する構成とするこ ともできる。これによって、bcc構造の非磁性下地層 3を(200)に優先的に配向させることができる。配 向調整層2がこれらCoTa、CoNb、CrTa、C rNb、NiTa、NiNbを主成分とするものである 場合において、TaまたはNbの含有率を上記範囲とす るのが好適であるとしたのは、この含有率が低すぎると 保磁力が低くなりやすく、含有率が高すぎると磁性層内 20 の配向性が低下し保磁力が低くなるおそれがあるためで ある。また配向調整層2は、TaまたはNbを30at %以上含有する非磁性合金材料からなるものとすること もできる。これによって、bcc構造の非磁性下地層3 を(200)に優先的に配向させることができる。

【0014】配向調整層2は、Fd3m構造(空間群 (Space Group) 表記) を有する非磁性金属 からなるものとすることもできる。これによって、bc c構造の非磁性下地層3を(200)に優先的に配向さ せることができる。Fd3m構造を有する非磁性金属と しては、上述のCrXo系合金のうちCrNb系(70 Cr30Nbなど)、CrTa系(65Cr35Taな ど)、CrTi系(64Cr36Tiなど)等のC15 構造(Skrukturbercht Symbol表 記) 合金が好適である。 Fd3m構造を有する金属とし ては、このほか、CoTa系(65Co35Taな ど)、CoNb系(70Co30Nbなど)、WHf系 (66W34Hf)、AlY系(67Al33Yなど) 等のC15構造合金がある。またCoTa系(比較的C o含有率が小さいもの、例えば50Co50Taな ど)、FeNb系 (50Fe50Nbなど) 等の合金を 用いることもできる。これらFd3m構造を有する材料 を用いる場合には、成膜時に酸化処理または窒化処理 (後述) を行うことによってその結晶構造 (F d 3 m構

【0015】配向調整層2には、窒素または酸素を1at%以上含有させるのが好ましい。これは、窒素または

造)を整えたものが好ましい。配向調整層2は、非磁性

下地層3の結晶配向性を調整するだけでなく、非磁性下

地層3、磁性層4中の結晶粒を微細化する結晶粒微細化

層としても機能する。

酸素をlal%以上含有させることによって、非磁性下 地層3の結晶を、より正確に(200)に配向させ、磁 性層 4 の磁気異方性を高めることができるためである。 【0016】図1(b)に示すように、配向調整層2 は、柱状微結晶粒2aが、非磁性基板1に垂直な線2b に対して半径方向に傾いた結晶構造を有する構成とする のがが好ましい。すなわち柱状微結晶粒 2 a の傾斜角度 α1 (垂直線2bに対する、柱状微結晶粒2a軸方向の 傾き)が0°を越え、90°未満となるようにするのが 好ましい。柱状微結晶粒 2 a の傾斜角度 α 1 は、10~ 75°(好ましくは15~75°、さらに好ましくは2 0~75°、さらに好ましくは25~55°)であるこ とが好ましい。傾斜角度 α 1 が上記範囲未満である場合 には、非磁性下地層3、磁性層4の結晶配向性が悪化し 磁気異方性が低下する。また成膜装置の構成の点から、 角度 α 1 を上記範囲を越える範囲に設定するのは難し い。傾斜角度α1は、10°以上、30°未満となる値 とすることができる。また65°を越え、90°未満と なる値とすることもできる。また配向調整層2は、柱状 微結晶粒2aの傾きが中心側から外周側にかけて徐々に 大きくなるようになっている構成とすることもできる。 配向調整層2を、柱状微結晶粒2aが半径方向に傾いた 構成とする場合には、柱状微結晶粒2aの円周方向の傾 きは任意としてよいが、特に、柱状微結晶粒2aが周方 向にほとんど傾いていない構成が好ましい。

【0017】配向調整層2の厚さは2~100nmとするのが望ましい。この厚さは、上記範囲未満であると磁性層の磁気異方性が低下し、上記範囲を越えると製造効率が低下する。

【0018】配向調整層2の表面平均粗さRaは、0.4nm以下(好ましくは0.2nm以下)とするのが好ましい。この表面平均粗さRaが上記範囲を越えると、媒体の表面凹凸が大きくなり、グライドハイト特性の低下を招く。

【0019】非磁性下地層 3は、従来公知の下地層材料、例えば C r、V、 T a の 0 5 1 種以上、またはこれらに結晶性を損なわない範囲で他の元素を添加した合金からなるものとすることができる。なかでも特に、C r または C r 合金(例えば C r W系、C r M o 系、C r V 系)を用いるのが好適である。またこの材料としては、N i 5 0 A 1 (N i - 5 0 a t % A 1)等の B 2 構造を有する材料を用いることもできる。また非磁性下地層 3 は単層構造としてもよいし、2 種類以上の膜を複数積層させた多層構造としてもよい。非磁性下地層 3 の厚さは、 $1\sim100$ n m、好ましくは $2\sim50$ n m とするのが望ましい。

【0020】非磁性下地層3は、bcc構造を有し、かつ配向面(非磁性下地層3の表面における支配的な結晶面)が(200)とされており、これによって磁性層4の磁気異方性を高めることができるようになっている。

【0021】本実施形態の磁気記録媒体では、非磁性下 地層3と磁性層4のいずれか一方または両方が、柱状微 結晶粒が半径方向に傾いた結晶構造を有する。図2は、 柱状微結晶粒が傾いた構造を有する非磁性下地層3を示 すもので、ここに示す非磁性下地層3は、柱状微結晶粒 3 aが、非磁性基板1に垂直な線3 bに対して半径方向 に傾いた結晶構造を有する。すなわち柱状微結晶粒3 a の傾斜角度 α 2 (垂直線 3 b に対する、柱状微結晶粒 3 a 軸方向の傾き)が0°を越え、90°未満となるよう になっている。柱状微結晶粒3 a の傾斜角度α2は、1 0~75°(好ましくは15~75°、さらに好ましく は20~75°、さらに好ましくは25~55°)であ ることが好ましい。傾斜角度 α 2 が上記範囲未満である 場合には、磁性層4の結晶配向性が悪化し磁気異方性が 低下する。また成膜装置の構成の点から、角度 α 2 を上 記範囲を越える範囲に設定するのは難しい。傾斜角度α 2は、10°以上、30°未満となる値とすることがで きる。また65°を越え、90°未満となる値とするこ ともできる。非磁性下地層3を、柱状微結晶粒3aが半 径方向に傾いた構成とする場合には、柱状微結晶粒3 a の円周方向の傾きは任意としてよいが、特に、柱状微結 晶粒3aが周方向にほとんど傾いていない構成が好まし い。

【0022】磁性層4は、以下に示すように、複数の磁 性膜間に反強磁性結合が形成されている構造、すなわち 反強磁性結合構造(いわゆるAFC (Anti Ferro magnet ic Coupling)構造)を有する。この磁性層 4 は、第 1 磁 性膜4 a (上層側) と、第2磁性膜4 b (下層側) と、 これらの間に介在する中間膜 4 c とを有する。第1およ び第2磁性膜4a、4bには、例えばCr、Pt、T a、B、Ti、Ag、Cu、Al、Au、W、Nb、Z r、V、Ni、FeおよびMoのうち1種以上を、Co に加えたCo合金を用いることができる。上記材料の好 適な具体例としては、CoPt系、CoCrPt系、C oCrPtTa系、CoCrPtB系、CoCrPtB Ta系、CoCrPtTaCu系、CoCrPtTaZ r系、CoCrPtTaW系、CoCrPtCu系、C oCrPtZr系、CoCrPtBCu系、CoCrP tBZr系、CoNiTa系、CoNiTaCr系、C o Cr Ta 系などの合金が利用できる。また、Ag、T i、Ru、C等の非磁性金属、この非磁性金属の化合 物、酸化物(SiOz、SiO、AlzO3等)、窒化物 (Si3N4、AIN、TiN、BN等)、フッ化物 (C a F 等)、炭化物(TiC等)などの非磁性母材中に磁 性粒子が分散したグラニュラー膜を採用することもでき

【0023】第1および第2磁性膜4a、4bの厚さは、特に限定されないが、小さすぎれば磁性粒子の体積が少なくなり熱揺らぎ耐性の点で不利となり、大きすぎればこの層の磁化が過大となりノイズ増加を招くおそれ 50

がある。このため、磁性膜4aの厚さは1~40nm (好ましくは5~30nm)とするのが好適であり、磁性膜4bの厚さは1~20nm (好ましくは1~10nm)とするのが好適である。第1磁性膜4aの保磁力は、2000(Oe)以上(好ましくは3000(Oe)以上)とするのが好適である。この保磁力が上記範囲未満であると、この磁性膜4aの熱揺らぎ耐性が小さくなり、熱揺らぎ耐性向上効果が低下する。第1磁性膜4aの保磁力は、第2磁性膜4bの保磁力よりも大きく設定するのが好ましい。この場合、第1磁性膜4aは、第2磁性膜4bに比べ保磁力が大きい主磁性膜となる。この際、磁性層4全体(磁気記録媒体)の保磁力は主磁性膜の保磁力に等しくなるようにするのが好ましい。

【0024】第1 および第2 磁性膜 4a、4bは、中間膜 4c を介した反強磁性結合によって、磁気モーメント方向が互いに正対するようにされており、これによって磁性層 4 は積層フェリ構造となっている。第1 および第2 磁性膜 4a、4b は、b は、b に b は、b に b で配向面が(b 10)とされている。

【0026】図3に示すように、磁性層4は、柱状微結 晶粒が傾いた構造を有する構成とすることができる。こ こに示す磁性層 4 (第1磁性膜 4 a、中間膜 4 c、第2 磁性膜4b)は、柱状微結晶粒4d、4e、4fが、非 磁性基板1に垂直な線4gに対して基板1の半径方向に 傾いた結晶構造を有する。すなわち柱状微結晶粒4d、 4 e、4 f の傾斜角度 α 3 (垂直線 4 g に対する、柱状 微結晶粒4d、4e、4f軸方向の傾き)が0°を越 え、90°未満となるようになっている。柱状微結晶粒 4 d、4 e、4 f の傾斜角度 α 3 は、10~75° (好 ましくは15~75°、さらに好ましくは20~75 °、さらに好ましくは25~55°)であることが好ま しい。傾斜角度 α 3 が上記範囲未満である場合には、磁 性層 4 の結晶配向性が悪化し磁気異方性が低下する。ま た成膜装置の構成の点から、角度 α 3 を上記範囲を越え る範囲に設定するのは難しい。傾斜角度 α 3は、10°

以上、30°未満となる値とすることができる。また6 5°を越え、90°未満となる値とすることもできる。 磁性層 4 を、柱状微結晶粒 4 d、 4 e、 4 f が半径方向 に傾いた構成とする場合には、柱状微結晶粒4 d、4 e、4fの円周方向の傾きは任意としてよいが、特に、 柱状微結晶粒4d、4e、4fが周方向にほとんど傾い ていない構成が好ましい。

【0027】保護層5の材料としては、従来公知のもの を使用してよく、例えばカーボン、酸化シリコン、窒化 シリコン、酸化ジルコニウム等の単一成分またはこれら を主成分とする材料を使用することができる。保護層 5 の厚さは、2~10nmとするのが好ましい。

【0028】潤滑層6は、パーフルオロポリエーテル等 のフッ素系潤滑剤などからなるものとすることができ る。

【0029】上記構成の磁気記録媒体は、磁性層4の周 方向の保磁力Hccと径方向の保磁力Hcrとの比Hc c/Hcrが、1より大(好ましくは1.1以上、さら に好ましくは1. 2以上)とされている。この比Hcc /Hcrが上記範囲未満であると、磁気記録媒体の磁気 20 異方性が不足し、熱揺らぎ耐性、エラーレート、ノイズ 特性などの磁気特性が不十分となる。

【0030】次に、上記磁気記録媒体を製造する場合を 例として、本発明の磁気記録媒体の製造方法の一実施形 態を説明する。図4は、本発明の磁気記録媒体の製造装 置の一実施形態を示すものである。ここに示すスパッタ 装置21は、非磁性基板1上に配向調整層2を形成する ためのもので、成膜粒子を放出する放出源であるスパッ タリングターゲット22と、このスパッタリングターゲ ット22から放出された成膜粒子の方向を定める方向設 30 定手段である遮蔽板23とをチャンバ28内に備えてい る。符号29はスパッタガス等をチャンバ28内に導入 する導入経路であり、符号30はチャンバ28内のスパ ッタガス等をチャンバ28から導出する導出経路であ

【0031】スパッタリングターゲット22は、形成す るべき層の構成材料からなるものであり、円板状に形成 されている。遮蔽板23は、スパッタリングターゲット 22から放出された成膜粒子のうち、目的とする方向以 外の方向に放出された成膜粒子を遮ることにより成膜粒 子の方向を定めるためのもので、円板状に形成され、ほ ぼ中央部に、円形の成膜粒子通過口24が形成されてい る。遮蔽板23は、スパッタリングターゲット22に対 しほぼ平行に、スパッタリングターゲット22に対して 所定の間隔をおいて設置されている。遮蔽板23は、そ の軸線23aがスパッタリングターゲット22の軸線2 2 a に対しほぼ一致するように設置されている。また成 膜粒子の入射角度の精度を高めるためには、遮蔽板23 を可能な限り薄く形成するのが好ましい。例えば、外径 2. 5インチ (63. 5mm) の非磁性基板 1 を用いる 50 場合には、遮蔽板23の厚さは1.5~5mm (好まし くは2~4mm)とするのが好ましい。遮蔽板23に は、耐熱性に優れ、不純物発生が少ない材料である金属 材料(例えばステンレス、アルミニウム合金)を用いる のが好ましく、特に、付着した成膜粒子を除去する作業 が容易であり、しかも安価であることからアルミニウム 合金を用いるのが好ましい。

【0032】成膜粒子通過口24の内径は、放出された 成膜粒子が非磁性基板1の表面1aの配向調整層形成領 域lbに付着する際の成膜粒子の非磁性基板lに対する 入射角度αが10~75°となるように設定するのが好 ましい。この入射角度αとは、非磁性基板1に対し垂直 な線1 c に対する角度をいう。成膜粒子通過口24の内 径は、成膜効率を低下させない範囲で小さくするのが好 ましい。例えば、外径2.5インチ(63.5mm)の 非磁性基板 1 を用いる場合には、成膜粒子通過口 2 4 の 内径は20mm以下(好ましくは15mm以下、さらに 好ましくは7mm以下)とするのが好ましい。

【0033】このスパッタ装置21を用いて配向調整層 2を形成するには、非磁性基板1をチャンバ28内に搬 入し、遮蔽板23のスパッタリングターゲット22側に 対し反対側(図中左側)に非磁性基板1を配置する。こ の際、非磁性基板1はスパッタリングターゲット22、 遮蔽板23に対しほぼ平行に配置する。

【0034】次いで、アルゴンなどのスパッタガスを導 入経路29を通してチャンバ28内に導入するととも に、スパッタリングターゲット22に給電し、成膜粒子 をスパッタ法により放出させる。この際、スパッタリン グターゲット22の中央部からやや離れた位置の成膜粒 子放出箇所25、25から放出された成膜粒子のうち、 遮蔽板23中央部に向かったものは、成膜粒子通過口2 4を通過し、それ以外のものは遮蔽板23に遮られる。 【0035】図4および図5に示すように、成膜粒子通 過口24を通過した成膜粒子は、ターゲット22の中央 部からやや離れた位置の成膜粒子放出箇所 25から放出 され、遮蔽板23中央部の成膜粒子通過口24を通過し たものであるため (図4を参照)、成膜粒子軌道26の 基板表面 1 a への投影線 2 7 は、ほぼ非磁性基板 1 の径 方向に沿うものとなる(図5を参照)。このため、成膜 粒子は基板1の周方向に均一に表面1 aに付着する。成 膜粒子は、入射角度 α が好ましくは $10\sim75$ °となる ように、被付着面である表面laの環状の配向調整層形 成領域1 bに付着する。この入射角度αは、15~75 (好ましくは20~75°、さらに好ましくは25~ 55°)とするのがさらに好適である。この入射角度α が上記範囲未満である場合には、非磁性下地層3、磁性 層4の結晶配向性が悪化し磁気異方性が低下する。また 装置構成の点から入射角度αを上記範囲を越える範囲に 設定するのは難しい。また傾斜角度 α は、10°以上、

30°未満となる値とすることができる。また65°を

越え、75°以下となる値とすることもできる。

【0036】入射角度αを上記範囲に設定することによって、図1(b)に示すように、配向調整層2は、柱状微結晶粒2aが、非磁性基板1に垂直な線2bに対して半径方向に傾いた結晶構造を有するものとなる。

【0037】配向調整層 2には、酸化処理または窒化処理を施すのが好ましい。酸化処理または窒化処理を行うには、スパッタ装置 21を用いて配向調整層 2を形成するに際し、導入経路 29を通してチャンバ 28に導入するスパッタガスとして、酸素または窒素を含むものを用いる方法を採ることができる。酸素を含むスパッタガスとしては、酸素とアルゴンの混合ガスを用いることができる。窒素を含むスパッタガスとしては、窒素とアルゴンの混合ガスを用いることができる。混合ガス中の酸素または窒素の含有率は、 $1\sim50$ 001%とすることができる。

【0038】また本発明では、配向調整層2を形成した後に、その表面を酸素含有ガスまたは窒素含有ガスに接触させる方法によって酸化または窒化処理を行うこともできる。酸素含有ガスとしては、空気、純酸素、水蒸気 20を用いることができる。また空気中の酸素含有率を増加させた酸素富化ガスを用いることもできる。窒素含有ガスとしては、空気、純窒素、窒素富化ガスを用いることができる。

【0039】配向調整層2表面を酸素含有ガスまたは窒 素含有ガスに接触させる方法の具体例としては、上述の ように、スパッタ装置21内において基板1上に配向調 整層2を形成した後、チャンバ28内に、導入経路29 を通して酸素含有ガスまたは窒素含有ガスを導入する方 法を挙げることができる。酸素含有ガスまたは窒素含有 ガス中の酸素または窒素含有率は、1~100vol% とすることができる。導入する酸素、窒素の量や、酸 素、窒素への曝露時間を適宜設定することにより、配向 調整層2の酸化(窒化)度合いを調節することができ る。例えば、10-4~10-6 Paの真空度に対し、10 -3 Pa以上の酸素ガス圧の雰囲気に、配向調整層2を 0. 1~30秒間曝すことによって、所定の酸化状態を 得ることができる。酸素含有ガスまたは窒素含有ガスの 使用によって、酸化処理または窒素処理を容易な操作で 行うことができるようになる。この酸化処理または窒化 40 処理によって、配向調整層2は少なくとも表面付近が酸 化または窒化される。

【0040】なお酸化処理または窒化処理を行うには、スパッタガスとして、酸素または窒素を含むものを用いて配向調整層2を形成した後に、その表面を酸素含有ガスまたは窒素含有ガスに接触させる方法を採ることもできる。また配向調整層2の表面を大気にさらす方法を採ることもできる。

【0041】非磁性下地層3を、柱状微結晶粒が半径方向に傾いた結晶構造を有する構成とする場合には、スパ 50

ッタ装置 2 1 を用いて非磁性下地層 3 を形成することができる。すなわち、配向調整層 2 を形成する場合と同様に、成膜粒子をスパッタリングターゲット 2 2 から放出させて被付着面に付着させ、この際、成膜粒子軌道 2 6 の被付着面への投影線 2 7 がほぼ基板 1 の径方向に沿い、かつ基板 1 に対し傾斜するように成膜粒子の方向を設定することによって非磁性下地層 3 を形成することができる。

【0042】磁性層4を、柱状微結晶粒が半径方向に傾いた結晶構造を有する構成とする場合には、スパッタ装置21を用いて磁性層4を形成することができる。すなわち、配向調整層2を形成する場合と同様に、成膜粒子をスパッタリングターゲット22から放出させて被付着面に付着させ、この際、成膜粒子軌道26の被付着面への投影線27がほぼ基板1の径方向に沿い、かつ基板1に対し傾斜するように成膜粒子の方向を設定することによって磁性層4を形成することができる。

【0043】非磁性下地層3を形成する際、配向調整層2の影響下で成長する非磁性下地層3は、優れた結晶配向性を有するものとなる。非磁性下地層3は、bcc構造を有し、かつ配向面(非磁性下地層3における支配的な結晶配向面)が(200)となる。非磁性下地層3が優れた結晶配向性を有するものとなる結果、その上に形成される磁性層4の結晶配向性が向上する。磁性層4の第1および第2磁性膜4a、4bは、hcp構造を有し、かつ配向面(磁性層4における支配的な結晶配向面)が(110)となる。

【0044】また保護層5は、プラズマCVD法、スパッタ法などにより形成することができる。潤滑層6の形成には、パーフルオロポリエーテル等のフッ素系液体潤滑剤などの潤滑剤を保護層5上にディッピング法により塗布する方法を採用することができる。

【0045】本実施形態の磁気記録媒体は、非磁性下地層3と磁性層4のいずれか一方または両方が、柱状微結晶粒が半径方向に傾いた結晶構造を有するので、磁性層4における周方向の磁気異方性を高めることができる。磁性膜4において周方向の磁気異方性が高められるため、結晶磁気異方性定数(Ku)を高めることができることから、熱揺らぎ耐性の向上を図ることができる。

【0046】また、磁性層4において周方向の磁気異方性を高めることができるため、孤立再生波半値幅を小さくし、再生出力の分解能を向上させることができる。従って、エラーレートを向上させることができる。また、磁気異方性を高めることによって、保磁力を向上させ、再生出力を向上させることができる。このため、SNRなどのノイズ特性の向上が可能となる。

【0047】さらには、磁性層4が、第1および第2磁性膜4a、4bを有し、これらの間に反強磁性結合が形成された構造を有するので、磁性膜4a、4b間の反強磁性結合により、見かけ上、磁化の小さい状態が得られ

る。このため、ノイズ特性や分解能に悪影響を及ぼすことなく、磁性粒子の体積を十分に大きくすることができ、熱的な安定化を図ることができる。従って、熱揺らぎ耐性をさらに高めることができる。

【0048】一般に、2つの磁性膜間の反強磁性結合の 強度は、磁性膜間に設けられた中間膜の厚さに大きな影 響を受ける。例えば、中間膜にRuを用いる場合には、 磁性膜間の反強磁性結合強度は、中間膜の厚さが0.8 nm前後であるときに極大値をとり、中間膜の厚さが、 この極大値に相当する厚さに比べ、わずかに大きくなる かまたは小さくなると、反強磁性結合強度は大きく低下 する。このため、磁性層に反強磁性結合構造(AFC構 造)を採用する場合には、磁性層の下に形成される膜の 表面凹凸が大きいと、中間膜の厚さが不均一となり、局 部的に反強磁性結合強度が低下し、熱揺らぎ耐性が不十 分となりやすい。これに対し、本実施形態の磁気記録媒 体では、磁性層4の磁気異方性を向上させることができ ることから、製造に際してテクスチャ加工が不要となる ため、テクスチャ加工の表面凹凸により中間膜4 c の厚 さが不均一となるのを防ぎ、反強磁性結合強度を高め、 十分な熱揺らぎ耐性向上効果を得ることができる。

【0049】また、本実施形態の磁気記録媒体は、非磁性基板1と非磁性下地層3との間に、配向調整層2が形成され、この配向調整層2が、柱状微結晶粒2aが半径方向に傾いた結晶構造を有する構成とすることによって、非磁性下地層3および磁性層4の結晶配向性を向上させ、磁性層4における周方向の磁気異方性を高めることができる。磁性膜4において周方向の磁気異方性が高められるため、結晶磁気異方性定数(Ku)を高めることができることから、熱揺らぎ耐性の向上を図ることが30できる。

【0050】また、配向調整層2の表面平滑性を高めることができることから、媒体の表面平均粗さRaを小さくし、優れたグライドハイト特性を得ることができる。またテクスチャ加工が不要となるため、製造が容易となり、製造コスト削減が可能となる。

【0051】また非磁性下地層3内の結晶粒を微細化し、下地層3の影響下で成長する磁性層4内の磁性粒を微細化、均一化することができるため、ノイズの低減を図ることができる。このため、ノイズ特性をさらに向上 40 させることができる。

【0052】配向調整層2を、Fd3m構造を有する非磁性金属からなるものとする場合には、非磁性下地層3、磁性層4における結晶配向性を向上させ、磁性層4における磁気異方性をさらに高めることができる。

【0053】また上記実施形態の製造方法は、スパッタリングターゲット22から成膜粒子を放出させて被付着面に付着させることにより非磁性下地層3と磁性層4のいずれか一方または両方を形成し、この際、成膜粒子の軌道26の投影線27がほぼ非磁性基板1の径方向に沿

い、かつ非磁性基板 1 に対し傾いて入射するように成膜 粒子の方向を設定することによって、磁性層 4 における 磁気異方性を高めることができる。このため、熱揺らぎ 耐性を向上させることができる。またエラーレート、ノ イズ特性などの磁気特性を向上させるとともに、優れた グライドハイト特性を得ることができる。

【0054】また上記実施形態の製造方法は、スパッタリングターゲット22から成膜粒子を放出させ、非磁性基板1の表面1aに付着させることにより配向調整層2を形成するにあたり、成膜粒子の軌道26の非磁性基板1への投影線27が、ほぼ非磁性基板1の径方向に沿い、かつ非磁性基板1に対し傾いて入射するように成膜粒子の方向を設定することによって、磁性層4における磁気異方性を高めることができる。このため、熱揺らぎ耐性を向上させることができる。またエラーレート、ノイズ特性などの磁気特性を向上させるとともに、優れたグライドハイト特性を得ることができる。

【0055】またテクスチャ加工を行うことなく磁性層 4の磁気異方性を向上させることができるため、テクス チャ加工の表面凹凸により媒体の表面粗さが大きくなる ことによってグライドハイト特性が低下するのを防ぐことができる。また製造に際しテクスチャ加工が不要となるため、製造が容易となり製造コスト削減が可能となる。

【0056】また配向調整層2の表面を酸化処理または窒化処理することによって、非磁性下地層3の配向を(200)とし、磁性層4の磁気異方性をさらに高め、磁気記録媒体の熱揺らぎ耐性、エラーレート、ノイズ特性などを向上させることができる。

【0057】また上記製造方法では、配向調整層2を形成するにあたって、成膜粒子の放出源としてスパッタリングターゲット22を用いるスパッタ法を採用するので、配向調整層2を容易に形成することができる。

【0058】また酸化処理または窒化処理を、酸素または窒素を含むスパッタガスを用いて配向調整層2を形成する方法により行うことによって、配向調整層2の形成と、酸化または窒素処理とを1つの工程で行うことができ、製造工程の簡略化が可能となる。従って、作業を容易にするとともに、製造効率の向上を図ることができる。

【0059】また酸化処理または窒化処理を、配向調整層2の表面を酸素含有ガスまたは窒素含有ガスに接触させることにより行う場合には、スパッタ装置21を用いて非磁性基板1上に配向調整層2を形成した後、得られた媒体基板M(非磁性基板1上に配向調整層2を形成したもの)をこのスパッタ装置21から搬出することなく、引き続きこのスパッタ装置21内において配向調整層2表面の酸化または窒化処理を行うことができる。従って、製造工程を簡略化し、作業の容易化および製造効率向上を図ることができる。

【0060】また上記スパッタ装置21は、成膜粒子の放出源となるスパッタリングターゲット22と、放出された成膜粒子の方向を定める遮蔽板23を備えているので、非磁性基板1に対する成膜粒子の入射方向を、正確に定めることができる。このため、非磁性下地層3および磁性層4の結晶配向性を向上させ、磁性層4における磁気異方性を確実に高めることができる。

【0061】本発明の磁気記録媒体は、非磁性下地層と 磁性層のいずれか一方または両方が、柱状微結晶粒が半 径方向に傾いた結晶構造を有するものであればよい。す なわち非磁性下地層3と磁性層4のうちいずれか一方の 柱状微結晶粒が傾斜しており、他方が結晶粒傾斜構造を もたない構成も可能である。また上記実施形態では、柱 状微結晶粒2aが半径方向に傾いた結晶構造の配向調整 層2を有する磁気記録媒体を例示したが、本発明の磁気 記録媒体は、これに限らず、配向調整層2が結晶粒傾斜 構造をもたないものであってもよい。また上記実施形態 の磁気記録媒体では、第1磁性膜4a、中間膜4c、第 2磁性膜4bのすべてにおいて、柱状微結晶粒4d、4 e、4fが傾斜した構成としたが、本発明はこれに限ら ず、第1磁性膜4a、中間膜4c、第2磁性膜4bのう ち少なくとも1つで、柱状微結晶粒が傾斜した構造を採 用することもできる。特に、すべての磁性膜(この例で は第1磁性膜4aおよび第2磁性膜4b)を、結晶粒が 傾斜した構造とするのが好ましい。

【0062】また本発明では、配向調整層をアモルファ ス構造のNiP合金(アモルファスNiP合金)からな るものとすることもできる。配向調整層をアモルファス N i P 合金からなるものとした磁気記録媒体としては、 図1(a)に示す構造のものを例示できる。この図を利 用して本発明の磁気記録媒体の第2の実施形態を説明す る。本実施形態の磁気記録媒体では、配向調整層2がN i P合金からなるものとされ、そのNi含有率は、50 ~90at%とするのが好ましい。アモルファスNiP 合金からなる配向調整層2は、上記製造方法と同様にし て形成することができる。すなわち、アモルファスNi P合金からなるスパッタリングターゲット22と遮蔽板 23を有するスパッタ装置21を用い、スパッタリング ターゲット22からの成膜粒子を、入射角度αが好まし くは10~75°となるように非磁性基板1の表面1a に付着させる。

【0063】配向調整層2を形成するに際しては、上述の方法に従って、酸素または窒素を含むスパッタガスを用いるか、または配向調整層2表面を酸素含有ガスまたは窒素含有ガスに接触させることによって、配向調整層2に酸化処理または窒化処理を施す。これによって、配向調整層2の少なくとも表面が結晶化する可能性がある。この磁気記録媒体は、磁性層4の周方向の保磁力Hccと径方向の保磁力Hcrとの比Hcc/Hcrが、1より大きくなる(好ましくは1.1以上、さらに好ま50

しくは1.2以上)。

【0064】この磁気記録媒体では、上記第1の実施形態の磁気記録媒体と同様に、非磁性下地層3および磁性層4の結晶配向性を向上させ、磁気異方性を高めることができる。従って、熱揺らぎ耐性、エラーレート、ノイズ特性などの磁気特性を向上させることができる。またグライドハイト特性を向上させることができる。

【0065】図6は、本発明の磁気記録媒体の第3の実 施形態を示すもので、ここに示す磁気記録媒体は、磁性 層14が、第1磁性膜14a (最上層側)、第2磁性膜 14b、第3磁性膜14c (最下層側)を有し、第1お よび第2磁性膜14a、14b間に第1の中間膜14d が設けられ、第2および第3磁性膜14b、14c間に 第2の中間膜14eが設けられている点で図1に示すも のと異なる。第1ないし第3の磁性膜14a、14b、 14 cには、上述の磁性膜4a、4bの材料として例示 した磁性材料を用いることができる。第1磁性膜14a の保磁力Hc1は、2000(Oe)以上(好ましくは 3000(0e)以上)とするのが好適である。保磁力 Hclが上記範囲未満であると、この磁性膜14aの熱 揺らぎ耐性が小さくなり、熱揺らぎ耐性向上効果が低下 する。第1磁性膜14aの保磁力Hc1は、第2および 第3磁性膜14b、14cの保磁力Hc2、Hc3より も大きく設定するのが好ましい。この場合、第1磁性膜 1 4 a は保磁力が最も大きい主磁性膜となる。

【0066】第1ないし第3磁性膜14a、14b、14cの厚さは、特に限定されないが、小さすぎれば磁性粒子の体積が少なくなり熱揺らぎ耐性の点で不利となり、大きすぎればこの層の磁化が過大となりノイズ増加を招くおそれがある。このため、第1磁性膜14aの厚さは1~40nm(好ましくは5~30nm)とするのが好適であり、第2および第3磁性膜14b、14cの厚さは1~20nm(好ましくは1~10nm)とするのが好適である。第1および第2中間膜14d、14eの材料および厚さは、上述の中間膜4cと同様とすることができる。

【0067】この実施形態の磁気記録媒体では、非磁性下地層3と磁性層14のいずれか一方または両方が、柱状微結晶粒が半径方向に傾いた結晶構造を有する。磁性層14は、磁性膜14a、14b、14c、中間膜14d、14eのすべてにおいて、柱状微結晶粒が傾斜した構成としてもよいし、これらのうち少なくとも1つで、柱状微結晶粒が傾斜した構造を採用することもできる。特に、すべての磁性膜(磁性膜14a、14b、14c)を、結晶粒が傾斜した構造とするのが好ましい。【0068】本実施形態の磁気記録媒体では、最も保磁力が大きい第1磁性膜14aに対し、中間膜14dを介して隣接する第2磁性膜14bの反強磁性結合磁界が、この磁性膜の保磁力よりも大きいことが好ましい。以下、このことを図7を参照して説明する。図7は、本実

け上小さくし、ノイズ特性や分解能を劣化させることなく、熱揺らぎ耐性向上効果を確実に得ることができる。これに対し、反強磁性結合磁界Hbias2が保磁力H c 2よりも小さい場合には、磁性膜間の反強磁性結合が不十分となり、外部磁場をゼロとした場合でも第2磁性膜14bの磁化方向が反転せず、再生時において、磁性層14全体の磁化が増加することになり、ノイズ特性や分解能

24

に悪影響が及ぶ可能性がある。さらに、磁性膜間の反強 磁性結合が不十分となるため、磁性粒子の実効体積増加 の効果が弱くなることから、熱揺らぎ耐性を高める効果 が低下するおそれがある。

【0070】本実施形態の磁気記録媒体では、磁性層1 4が、第1ないし第3の磁性膜14a、14b、14c と、これらの間に設けられた第1および第2の中間膜1 4 d、14 e とを有するので、磁性膜数が2である第1 の実施形態の磁気記録媒体(図1)に比べ、磁性層14 全体の磁性粒子の実効体積を低下させることなく、磁性 膜14aの厚さを小さく設定できる。このため、熱揺ら ぎ耐性を向上させ、かつ磁性膜 1 4 a 内の磁化方向の乱 れを最小限に抑え、記録再生におけるノイズ特性や分解 能を向上させることができる。なおこの実施形態の磁気 記録媒体では、磁性膜とこれに隣接する中間膜とからな る積層構造を2つ有する(磁性膜14bと中間膜14d からなる第1の積層構造と、磁性膜14cと中間膜14 eからなる第2の積層構造を有する)が、本発明におい て、磁性層は、磁性膜と、これに隣接する中間膜とから なる積層構造を3以上有する構成とすることもできる。 この場合には、磁性膜の磁性粒子の実効体積をさらに大 きくできるため、熱揺らぎ耐性を向上させることができ

【0071】図8は、本発明の磁気記録媒体の第4の実施形態を示すもので、ここに示す磁気記録媒体では、非磁性下地層3と磁性層14との間に、非磁性中間層15が設けられている。非磁性中間層15には、hcp構造を有する非磁性材料を用いるのが好ましい。非磁性中間層15には、CoCr系合金を用いるのが好ましい。またCoCrにPt、Ta、ZrNb、Cu、Re、Ni、Mn、Ge、Si、O、N、およびBのうち1種以上を添加した合金を用いることもできる。非磁性中間層15の厚さは、磁性層14における磁性粒子の粗大化を防ぐため、20nm以下(好ましくは10nm以下)とするのが好ましい。本実施形態の磁気記録媒体では、非磁性中間層15を設けることによって、磁性層14の配向性を高め、熱揺らぎ耐性をさらに向上させることがでまる。

【0072】非磁性中間層15は、図1~図3に示す配向調整層2、非磁性下地層3、磁性層4と同様に、柱状微結晶粒が半径方向に傾いた結晶構造を有する構成とすることもできる。柱状微結晶粒の傾斜角度は、配向調整層2、非磁性下地層3、磁性層4の柱状微結晶粒と同様

施形態の磁気記録媒体の履歴曲線を示すものである。こ の磁気記録媒体では、最上層側の磁性膜(第1磁性膜1 4 a) だけでなく、他の磁性膜 (第2および第3磁性膜 14b、14c)においても個別に磁化反転が起きるた め、履歴曲線が複数の段部(磁化反転部)を有するもの となる。すなわち、図7(a)に示すように、外部磁場 Hを減少させる過程で描かれる曲線が、第2磁性膜14 bの磁化反転部R2 (外部磁場Hと磁化Mがいずれも正 である第1象限にあるもの)と、第3磁性膜14cの磁 化反転部R3と、第1磁性膜14aの磁化反転部R1と を有する履歴曲線が得られる。磁化反転部R2、R3、 R1においては、外部磁場Hの減少に伴って小さくなる 磁化の減少率が急に大きくなっている。図中破線は、こ れら磁化反転部付近において外部磁場Hを増減させて作 成した履歴曲線(マイナーループ)の一部を示すもので ある。

【0069】この磁気記録媒体においては、外部磁場H が十分に高い図中領域 A1では、3つの磁性膜の磁化方 向がすべて正方向となるが、外部磁場Hを減少させるに 伴い、まず磁化反転部R2において第2磁性膜14bの 磁化方向が反転し、領域A2における第2磁性膜14b の磁化方向が負方向となる。さらに外部磁場Hを減少さ せると、磁化反転部R3において第3磁性膜14cの磁 化方向が反転し、領域A3における第3磁性膜14cの 磁化方向は負方向となる。さらに外部磁場Hを減少させ ると、磁化反転部R1において第1磁性膜14aの磁化 方向が反転し負方向となり、領域 A 4に至って完全に負 方向となる。ここで、磁性層14全体の保磁力Hcは、 最も保磁力が大きい第1磁性膜14aの保磁力Hc1に ほぼ等しくなる。なお磁化反転部 R 1 付近の履歴曲線の 微分値の絶対値がピークとなる外部磁場Hを保磁力H c 1とする。磁化反転部R2付近の履歴曲線(マイナール ープ) MR2の微分値の絶対値がピークとなる外部磁場 をH c 2A、H c 2Bとし、これらH c 2A、H c 2Bの平均値 を反強磁性結合磁界Hbias2とする。またHc2AとHbia s2との差を第2磁性膜14bの保磁力Hc2とする。こ こに示す磁気記録媒体では、図7(b)に示すように、 第2磁性膜14bの磁化反転部R2における履歴曲線 (マイナーループ) MR2の中心に相当する外部磁場H である反強磁性結合磁界Hbias2は、第2磁性膜の保磁 力Hc2よりも大きい。このため、高い外部磁場Hを加 えて3つの磁性膜の磁化方向を全て正方向とした状態か ら外部磁場Hをゼロにすると、第2磁性膜14bでは、 上下に隣接する磁性膜14a、14cとの反強磁性結合 により、確実に磁化方向が反転し負方向に向くようにな る。このため、反強磁性結合により外部磁場がゼロであ る状態における再生において、見かけ上、磁性層14の

磁化を、磁性膜14a、14b、14cの合計磁化か

ら、磁性膜 1 4 b の磁化分をマイナスした値とすること

ができる。これにより、磁性層14全体の磁化を、見か

0

とすることができる。柱状微結晶粒が半径方向に傾いた結晶構造を有する非磁性中間層 1 5 を形成するには、配向調整層 2、非磁性下地層 3、磁性層 4 を形成する方法と同様の方法を採用することができる。これによって、磁性層 4 の磁気異方性をさらに高め、熱揺らぎ耐性を向上させることができる。

【0073】図9は、本発明の磁気記録媒体の第5の実施形態を示すもので、ここに示す磁気記録媒体では、配向調整層2と非磁性下地層3との間に、第2下地層16が設けられている。この第2下地層16には、CrまたはCr合金を用いることができる。この磁気記録媒体では、非磁性下地層3および磁性層4における結晶配向性を向上させ、磁性層4における磁気異方性をさらに高めることができる。

【0074】第2下地層16は、図1~図3に示す配向調整層2、非磁性下地層3、磁性層4と同様に、柱状微結晶粒が半径方向に傾いた結晶構造を有する構成とすることもできる。柱状微結晶粒の傾斜角度は、配向調整層2、非磁性下地層3、磁性層4の柱状微結晶粒と同様とすることができる。柱状微結晶粒が半径方向に傾いた結晶構造を有する第2下地層16を形成するには、配向調整層2、非磁性下地層3、磁性層4を形成する方法と同様の方法を採用することができる。これによって、磁性層4の磁気異方性をさらに高め、熱揺らぎ耐性を向上させることができる。

【0075】図10は、本発明の磁気記録媒体の第6の 実施形態を示すもので、ここに示す磁気記録媒体では、 非磁性基板 1 と配向調整層 2 との間に、配向性向上層 1 7が設けられている。配向性向上層 17は、配向調整層 2の配向性を調整するとともに、配向調整層 2の基板側 からの剥離を防ぐためのもので、材料としては、例えば Cr、Mo、Nb、V、Re、Zr、W、Tiのうち1 種以上を主成分とする合金を使用することができ、なか でも特に、CrMo系、CrTi系、CrV系、CrW 系などの合金や、Crの使用が好適である。またB2構 造またはアモルファス構造を有する材料を用いることも できる。B2構造を有する材料としては、NiAl系 (Ni50Alなど)、CoAl系(Co50Alな ど)、FeA1系(Fe50A1)などの合金を挙げる ことができる。アモルファス構造を有する材料として は、CuZr系、TiCu系、NbNi系、NiP系な どの合金を用いることができる。配向性向上層17の材 料の好ましい具体例としては、NiAl、FeAl、C o A l、Co Z r、Co C r Z r、およびCo C r Cの うちいずれかを主成分とするものを挙げることができ る。配向性向上層17の厚さは、200mm以下、例え ば $5 \sim 200$ n m とするのが好ましい。この厚さが 200 n mを越えると磁性層 4 の磁気異方性を高める効果が

低下する。

上層17を設けることによって、配向調整層2の初期成長時の配向性の乱れを防ぎ、非磁性下地層3および磁性層14の結晶配向性を向上させ、磁性層14の磁気異方性をさらに高めることができる。従って、熱揺らぎ耐性をさらに高めることができる。また非磁性基板1から配向調整層2が剥離するのを防ぐことができる。

【0077】また、本発明では、以下に例示するように、配向調整層を複数設けることもできる。図11は、本発明の磁気記録媒体の第7の実施形態を示すもので、ここに示す磁気記録媒体は、配向調整層2に代えて、第1および第2の配向調整層2c、2dが設けられている点で図4に示す磁気記録媒体と異なる。配向調整層2c、2dに用いる材料やこれらの厚さは、図1に示す磁気記録媒体の配向調整層2と同様とすることができる。なお配向調整層の数は3以上とすることもできる。

【0078】また本発明の磁気記録媒体では、以下に例 示するように、非磁性下地層を設けず、配向調整層上に 直接、磁性層を形成した構成とすることもできる。この 場合には、非磁性下地層を設けないこと以外は本明細書 中に記載した構成とすることができる。図12は、本発 明の磁気記録媒体の第8の実施形態を示すもので、ここ に示す磁気記録媒体は、非磁性下地層3が形成されてい ない点で図6に示す磁気記録媒体と異なる。この磁気記 録媒体では、磁性層14が、柱状微結晶粒が半径方向に 傾いた結晶構造を有する。この磁気記録媒体では、磁性 層14の結晶配向性を向上させ、磁性層14における周 方向の磁気異方性を高め、熱揺らぎ耐性の向上を図るこ とができる。また本発明では、磁性層を、単一材料から なる単層構造とすることもできる。この場合、磁性層に は上記磁性膜4a、4bに用いることができる材料を用 いることができる。

【0079】図13は、上記磁気記録媒体を用いた磁気記録再生装置の例を示すものである。ここに示す磁気記録再生装置は、上記構成の磁気記録媒体7と、磁気記録媒体7を回転駆動させる媒体駆動部8と、磁気記録媒体7に情報を記録再生する磁気へッド9と、ヘッド駆動部10と、記録再生信号処理系11とを備えている。記録再生信号処理系11は、入力されたデータを処理して記録信号を磁気ヘッド9に送ったり、磁気ヘッド9からの再生信号を処理してデータを出力することができるようになっている。

【0080】この磁気記録再生装置にあっては、磁気記録媒体の磁気異方性を高めることができるため、熱揺らぎ耐性の向上を図り、熱揺らぎ現象に起因するデータ消失などのトラブルを未然に防ぐことができる。またエラーレート、ノイズ特性などの磁気特性を向上させるとともに、優れたグライドハイト特性を得ることができる。従って、高記録密度化を図ることができる。

置31は、成膜粒子の放出源であるスパッタリングターゲット32が環状に形成され、遮蔽板33が、環状の外側遮蔽板33aと、外側遮蔽板33aの開口部内に配設された円板状の内側遮蔽板33bとから構成されている点で図2に示すスパッタ装置21と異なる。

【0082】遮蔽板33は、内側遮蔽板33bの外径が外側遮蔽板33aの内径よりも小さくなるように形成され、外側遮蔽板33aの内周縁と内側遮蔽板33bの外周縁との間に、成膜粒子が通過する成膜粒子通過スリット34が形成されている。外側遮蔽板33aの内径と内側遮蔽板33bの外径は、放出された成膜粒子が非磁性基板1に付着する際に、成膜粒子が非磁性基板1に対し傾いて入射するように(好ましくは入射角度α'が10~75°となるように)設定されている。

【0083】 このスパッタ装置 31 を用いて配向調整層 2 を形成する際には、スパッタリングターゲット 32 から放出されて成膜粒子通過スリット 34 を通過した成膜 粒子が、非磁性基板 1 に対する入射角度 α が好ましくは $10\sim75$ となるように非磁性基板 1 の表面 1 aに付着する。これによって、半径方向に傾いた柱状微結晶 粒 2 a を有する配向調整層 2 を形成することができる。また、このスパッタ装置 31 を用いて、半径方向に傾いた柱状微結晶粒を有する非磁性下地層 3 または磁性層 4 を形成することもできる。

【0084】また本発明では、配向調整層を形成する方法として、スパッタ法のほかに、真空蒸着法、ガス中スパッタ法、ガスフロースパッタ法、イオンビーム法などの物理蒸着法を用いることができる。また上記実施形態では、磁気異方性の指標として、磁性層全体の保磁力Hcに関して、周方向の保磁力Hccと径方向の保磁力Hcrとの比Hcc/Hcrを用いたが、本発明はこれに限らず、磁性層を構成する各磁性膜の保磁力(例えば第2磁性膜14bの保磁力Hc2)に関して、周方向の保磁力と径方向の保磁力との比を磁気異方性の指標として用いることもできる。

[0085]

【実施例】以下、具体例を挙げて本発明を詳細に説明する。

(試験例1) DCマグネトロンスパッタ装置(アネルバ社製3010)を用いたスパッタ法によって、非磁性基板(アモルファスガラス、直径65mm、厚さ0.635mm)上に、50Ni50Al(50at%Ni-50at%Al)からなる配向性向上層、94Cr6Mo(94at%Cr-6at%Mo)からなる非磁性下地層(厚さ10nm)、60Co40Cr(60at%Co-40at%Cr)からなる非磁性中間層(厚さ2nm)、64Co22Cr10Pt4B(64at%Co-22at%Cr-10at%Pt-4at%B)からなる磁性層(厚さ18nm)、カーボンからなる保護層(厚さ6nm)を形成した。次いで、ディッピング法に

よりパーフルオロエーテルからなる潤滑層を形成した。 成膜の際には、スパッタ装置のチャンバ内を真空到達度 2×10-6 Paとなるまで減圧した。また非磁性基板1は200℃に加熱した。スパッタガスとしてはアルゴンを用いた。

【0086】(試験例2)磁性層を、64Co22Cr 10Pt4Bからなる第1磁性膜(厚さ18nm)と、 84Co12Cr4Taからなる第2および第3磁性膜 (厚さ2.5nm)と、これら磁性膜間に設けられたR uからなる第1および第2中間膜(厚さ0.8nm)と を有する構造として磁気記録媒体を作製した。その他の 条件は試験例1に準じた。

【0087】(試験例3) NiAlからなる配向性向上層を設けず、非磁性基板と非磁性下地層との間にCrからなる第2下地層(厚さ10nm)を設けて磁気記録媒体を作製した。その他の条件は試験例1に準じた。

【0088】(試験例4)70Cr30Nbからなる配向調整層(厚さ20nm)を形成して磁気記録媒体を作製した。配向調整層を形成する際には、スパッタ装置21を用い、成膜粒子の軌道26の非磁性基板1への投影線27が、ほぼ非磁性基板1の径方向に沿い、かつ非磁性基板1に対する入射角度が10~75°となるように成膜粒子の方向を設定した。また配向調整層の形成にあたっては、スパッタガスとして、25vol%の窒素をアルゴンに添加した混合ガスを用いた。その他の条件は試験例3に準じた。

【0089】(試験例5~7)図9に示す磁気記録媒体 を次のようにして作製した。DCマグネトロンスパッタ 装置(アネルバ社製3010)を用いたスパッタ法によ って、非磁性基板1(アモルファスガラス、直径65m m、厚さ0. 635mm) 上に、70Cr30Nbから なる配向調整層2(厚さ20 nm)、Crからなる第2 下地層16(厚さ10nm)、94Cr6Moからなる 非磁性下地層3 (厚さ10nm)、60Co40Crか らなる非磁性中間層15(厚さ2nm)、磁性層14、 カーボンからなる保護層5(厚さ6 nm)を形成した。 次いで、ディッピング法によりパーフルオロエーテルか らなる潤滑層6を形成した。磁性層14は、第1ないし 第3磁性膜14a、14b、14c(厚さはそれぞれ1 8 nm、2. 5 nm、2. 5 nm) と、これら磁性膜間 に設けられた第1および第2中間膜14d、14e(厚 さ0.8 nm)とを有する構造とした。第1磁性膜14 aには64Co22Cr10Pt4Bを用い、第2およ び第3磁性膜14b、14cには84Co12Cr4T aを用い、中間膜14d、14eにはRuを用いた。配 向調整層2を形成する際には、スパッタ装置21を用 い、成膜粒子の軌道26の非磁性基板1への投影線27 が、ほぼ非磁性基板1の径方向に沿い、かつ非磁性基板 1に対する入射角度が10~75°となるように成膜粒 子の方向を設定した。また配向調整層2の形成にあたっ

ては、スパッタガスとして、25vol%の窒素をアルゴンに添加した混合ガスを用いた。その他の条件は試験例4に準じた。

【0090】(試験例8)磁性層4を、第1および第2磁性膜4a、4b(厚さはそれぞれ18nm、2.5nm)と、これらの間に介在する中間膜4c(厚さ0.8nm)とを有する構成として磁気記録媒体を作製した。第1磁性膜4aには64Co22Cr10Pt4Bを用い、第2磁性膜4bには84Co12Cr4Taを用い、中間膜4cにはRuを用いた。その他の条件は試験例5~7に準じた。

【0091】 (試験例9~13) 図8に示す磁気記録媒

体を次のようにして作製した。非磁性基板1(結晶化ガラス、直径65mm、厚さ0.635mm)上に、70 Cr30Nbからなる配向調整層2(厚さ20nm)、85Cr15Moからなる非磁性下地層3(厚さ10nm)、60Co40Crからなる非磁性中間層15(厚さ2nm)、磁性層14、カーボンからなる保護層5(厚さ6nm)、潤滑層6を形成した。配向調整層2を形成する際には、スパッタ装置21を用い、成膜粒子の軌道26の非磁性基板1への投影線27が、ほぼ非磁性基板1の径方向に沿い、かつ非磁性基板1に対する入射角度が10~75°となるように成膜粒子の方向を設定した。また配向調整層2の形成にあたっては、スパッタガスとして、25vol%の窒素をアルゴンに添加した混合ガスを用いた。その他の条件は試験例5~7に準じた。

【0092】試験例1~13の磁気記録媒体の静磁気特 性を、振動式磁気特性測定装置(VSM)を用いて測定 した。磁性層全体の周方向の保磁力Hccと半径方向の 保磁力Hcrの比(Hcc/Hcr)を測定し磁気異方 性の指標とした。また、試験例9~13については、履 歴曲線を作成し、これを用いて第2磁性膜14bの保磁 力Hc2および反強磁性結合磁界Hbias2を求めた。また 電磁変換特性を、Guzik社製リードライトアナライ ザRWA1632、およびスピンスタンドS1701M Pを用いて測定した。電磁変換特性の評価には、再生部 に巨大磁気抵抗(GMR)素子を有する複合型薄膜磁気 記録ヘッドを用い、記録条件を線記録密度600kFC Iとして測定を行った。熱揺らぎ耐性(熱減磁)につい ては、スピンスタンドS1701MPを用い、70℃に おいて記録密度300kFCIでの出力減少を測定し た。またX線回折測定装置を用いて、 θ / 2θ 法により 磁気記録媒体の非磁性下地層と磁性層の支配的な結晶配 向面を特定した。製造条件および試験結果を表1ないし

【0093】(試験例14) 非磁性基板1上に、NiA 1からなる配向性向上層17、94Cr6Moからなる 非磁性下地層3、60Co40Crからなる非磁性中間 層15、磁性層14、カーボンからなる保護層5、潤滑 層6を形成して磁気記録媒体を作製した。その他の条件は試験例9~13に準じた。

【0094】(試験例15)NiPからなる配向性向上層17を設け、この配向性向上層17表面に周方向に沿うテクスチャ加工を施し、その上にCrからなる第2下地層16、60Co40Crからなる非磁性中間層15、磁性層14、カーボンからなる保護層5、潤滑層6を形成して磁気記録媒体を作製した。その他の条件は試験例14に準じた。

【0095】(試験例16)図10に示す磁気記録媒体を次のようにして作製した。非磁性基板1上にCo30Cr10Zrからなる配向性向上層17を設け、その上にCr25Vからなる配向調整層2、Crからなる第2下地層16、94Cr6Moからなる非磁性下地層3、60Co40Crからなる非磁性中間層15、磁性層14、カーボンからなる保護層5、潤滑層6を形成して磁気記録媒体を作製した。配向調整層2を形成する際には、スパッタ装置21を用い、成膜粒子の軌道26の非磁性基板1への投影線27が、ほぼ非磁性基板1の径方向に沿い、かつ非磁性基板1に対する入射角度が10~75°となるように成膜粒子の方向を設定した。また配向調整層2の形成にあたっては、スパッタガスとして、25vo1%の窒素をアルゴンに添加した混合ガスを用いた。その他の条件は試験例14に準じた。

【0096】(試験例17)基板1としてアルミニウム合金基板表面にNiPメッキ層を形成したもの(NiPアルミ基板)を用い、この基板1上にCrからなる第2下地層16、94Cr6Moからなる非磁性下地層3、60Co40Crからなる非磁性中間層15、磁性層14、カーボンからなる保護層5、潤滑層6を形成して磁気記録媒体を作製した。その他の条件は試験例14に準じた。

【0097】(試験例18)基板1表面に周方向に沿う テクスチャ加工を施すこと以外は試験例17と同様にし て磁気記録媒体を作製した。

【0098】(試験例19)基板1としてアルミニウムからなるものを用いること以外は試験例16と同様にして磁気記録媒体を作製した。

【0099】 (試験例20) 磁性層を、64Co22Cr10Pt4Bからなるもの(厚さ18nm)とすること以外は試験例18と同様にして磁気記録媒体を作製した。

【0100】試験例14~20の磁気記録媒体の静磁気特性を、振動式磁気特性測定装置(VSM)を用いて測定した。また磁性層全体の周方向の保磁力Hccと半径方向の保磁力Hcrの比(Hcc/Hcr)を測定し磁気異方性の指標とした。また電磁変換特性を、Guzik社製リードライトアナライザRWA1632、およびスピンスタンドS1701MPを用いて測定した。電磁変換特性の評価には、再生部に巨大磁気抵抗(GMR)

素子を有する複合型薄膜磁気記録へッドを用い、記録条件を線記録密度600kFCIとして測定を行った。この際、1記録トラックを512セクターに分割し、これらを128セクターごとに4つの領域に分け、領域ごとに電磁変換特性を評価し、記録トラック内での再生出力信号(LFTAA)およびSNRのばらつきを調べた。電磁変換特性の評価は、半径20mmの位置および半径30mmの位置において行った。製造条件および試験結果を表5および表6に示す。

【0101】(試験例21)非磁性基板1(結晶化ガラ ス、直径65mm、厚さ0.635mm)上に、45N i55Nbからなる配向調整層2(厚さ20nm)、C rからなる第2下地層16(厚さ10nm)、80Cr 20 Vからなる非磁性下地層3 (厚さ10 nm)、60 Co40Cァからなる非磁性中間層15(厚さ2 n m)、66Co21Cr9Pt4Bからなる磁性層(厚 さ17 nm)、カーボンからなる保護層5(厚さ6 n m)、潤滑層6を形成して磁気記録媒体を作製した。配 向調整層2を形成する際には、スパッタ装置21を用 い、成膜粒子の軌道26の非磁性基板1への投影線27 が、ほぼ非磁性基板1の径方向に沿い、かつ非磁性基板 1に対する入射角度が10~75°となるように成膜粒 子の方向を設定した。また配向調整層2の形成にあたっ ては、スパッタガスとして、15 vol%の窒素をアル ゴンに添加した混合ガスを用いた。

【0102】(試験例22~27) 83Col4Cr3 Taからなる下層側磁性膜(厚さ2nm)と、Ruからなる中間膜(厚さ0.8nm)とからなる積層構造を1~6回積層し、その上に66Co21Cr9Pt4Bからなる最上層側磁性膜(厚さ17nm)を設けた構成の 30 磁性層を用いること以外は試験例21と同様にして磁気記録媒体を作製した。

【0103】(試験例28~36)図9に示す磁気記録媒体を次のようにして作製した。配向調整層2を、表7に示す材料からなるものとし、非磁性下地層3を94℃ r6Moからなるものとして磁気記録媒体を作製した。磁性層は、83℃o14℃r3Taからなる磁性膜(第2および第3磁性膜14b、14c)と、表7に示す材料からなる中間膜(中間膜14d、14e)とからなる積層構造を2回積層し、その上に66℃o21℃r9Pt4Bからなる磁性膜(第1磁性膜14a)(厚さ17nm)を設けた構成とした。その他の条件は試験例21

に準じた。

【0104】(試験例37~58)配向性向上層17、 配向調整層2の材料および厚さを表8に示すとおりと し、配向調整層2の表面に、表8に記載の方法により酸 化または窒化処理を施して磁気記録媒体を作製した。非 磁性下地層3は、80Cr20Wからなるもの(厚さ5 nm) とし、非磁性中間層15は63Co37Crから なるもの(厚さ2nm)とした。磁性層は、73Co1 8Cr6Pt3Taからなる第3磁性膜14c(厚さ2 nm)、Ruからなる第2中間膜14e(厚さ0.8n m)、84Co12Cr4Taからなる第2磁性膜14 b (厚さ2.5 nm)、Ruからなる第1中間膜14d (厚さ0.8nm)、64Co22Cr10Pt4Bか らなる第1磁性膜14a (厚さ18nm)を順次積層し た構成とした。その他の条件は試験例21に準じた。な お、表中、酸化・窒化処理欄には、酸化処理または窒化 処理の方法を示した。例えば、20vol%N2/Ar は、スパッタガスとして、窒素含有率が20vol%で あり残部がArであるものを用いたことを示し、O2ガ ス曝露とは、配向調整層2を酸素ガス(純酸素)にさら す処理を行ったことを示す。試験例21~58の磁気記 録媒体の静磁気特性および電磁変換特性を測定した。製 造条件および試験結果を表7および表8に示す。

【0105】上記試験例1~58では、磁性層の磁性膜を形成する際に、成膜粒子の入射方向を半径方向に設定した。すなわち成膜粒子の軌道の投影線が非磁性基板1の径方向に沿い、かつ非磁性基板1に対する入射角度が10~75°となるように成膜粒子の方向を設定した。【0106】(試験例59~80)基板1としてNiPアルミ基板またはガラス基板を用い、表9および表10に示す構成の磁気記録媒体を作製した。その他の条件は試験例21に準じた。試験例59~80の磁気記録媒体の静磁気特性および電磁変換特性を測定した。製造条件および試験結果を表9および表10に示す。

【0107】上記各試験例の磁気記録媒体において、成膜の際に、成膜粒子の入射方向を半径方向に設定したものについて、断面をTEMにより観察した結果、柱状微結晶粒が半径方向に $10\sim75$ °傾いた結晶構造を有するものとなったことが明らかになった。

[0108]

【表1】

	基板	配向		配向			75	非磁性	-	非磁					磁性層				
		向上		調整層	•	地	蓉	下地層	3	性中間層	第3磁性	漠		32 間膜	第2磁性	膜	1 -	9 1 間膜	第 1 磁性
		組成	厚さ	組成	厚さ	組成	厚さ	組成	厚さ		組成	厚さ	組成	厚さ	組成	厚さ	組成	厚さ	膜
試験例1	がラス	NTAL	50	-	_	_	_	Cr6Mo	10	(*1)	_	_	_	_	_	=	=		(*2)
試験例2	かうス	NiAl	50	-	_	 	-	Cr6Mo	10	(*1)	Co12Cr4Ta	2. 5	Ru	0.8	Co 12Cr4Ta	2. 5	Ru	0.8	1
試験例3	かラス	_	 	_	_	Cr	10	Cr6Mo		(*1)		_		_	_	_ ,	_	_	(*2)
試験例4	かラス	-	_	Cr30Nb	20	Cr	10	Cr6Mo	10	(+1)		_	_	_	_	_	_	l_	(*2)
試験例5	かラス	-	_	Cr30Nb	20	Cr	10	Cr6Mo	10	(*1)	Co12Cr4Ta	2. 5	Ru	0.8	Co12Cr4Ta	2. 5	Ru	0.8	, -,
試験例6	かラス	-	-	Cr 30Nb	20	Cr	10	Cr6Ma							Co12Cr4Ta				
試験例7	かラス	-	_	Cr30Nb	20	Cr	10	Cr6Mo							Co12Cr4Ta				
試験例8	かうス	- 1	-	Cr30Nb	20	Cr	10	Cr6Mo		(*1)	_	_	_		Co12Cr4Ta				

(厚さの単位は n mとした)

* 1 : 非磁性中間層=組成;Co40Cr,厚さ;2nm * 2 : 第1磁性膜 =組成;Co22Cr10Pt4B,厚さ;18nm

[0109]

【表2】

	保磁力	静磁気	特性	P W50	SNR	熱減磁	非磁	!	磁性	周
	Нc	磁気異方性	Mrt				下地			
	(*1)	Hec/Her		ļ	İ		配向	結晶	配向	結晶
	(Oe)	(-)	(T·nm)	(nS)	(dB)	(%/decade)	面	構造	面	構造
試験例1	3213	1	0. 35	16. 77	16. 31	0. 85	112	bcc	100	hcp
試験例2	3471	1	0. 35	16. 56	16. 74	0.7	112	bcc	100	hcp
試験例3	2213	1	0. 27	16. 93	12.9	0. 98	110	bcc	101	hop
試験例4	3631	1. 3	0.39	15. 18	19. 08	0.42	200	bcc	110	hop
試験例5	3829	1.3	0.39	14. 83	19. 34	0.26	200	bcc	110	hop
試験例6	3721	1. 25	0.42	16. 55	21.51	0. 83	200	bcc	110	hop
試験例7	3694	1. 27	0.41	16, 11	17. 95	0. 35	200	bcc	110	hcp
試験例8	3785	1. 3	0. 34	14. 26	20. 57	0.34	200	bcc	110	hcp

Hcc/Hcr: 周万向の保磁力Hccと径方向の保磁力Hcrとの比

Mrt:磁性層の残留磁化膜厚積 PW50:孤立再生波形半值幅 SNR :シグナル/ノイズ比 *1:磁性層全体の保磁力

30

[0110]

【表3】

	基板	配向		非磁化	ŧ	非磁					磁性	# 63				
		調整層	3	下地應	Ŧ	性中 間層	第3磁性	膜	ı	32 間膜	第2磁性		1	男 1 問膜	第1磁性膜	
		組成	厚さ	組成	厚さ		組成	厚さ	組成	厚さ	組成	厚さ	組成	厚っ	組成	厚さ
試験例9	がうス	Cr30Nb	20	Cr 15Mo	10	(*1)	Co12Cr4Ta	2	_		Co12Cr4Ta	-			Co22Cr 10Pt4B	_
試験例10	かうス	Cr30Nb	20	Cr 15Mo	10	(*1)	Co12Cr4Ta	2.5					Ru	0.8	Co22Cr 10Pt4B	18
試験例11	かうス	Cr30Nb	20	Cr 15Mo	10	(+1)	Co12Cr4Ta				Co12Cr4Ta				Co22Cr 10Pt4B	
試験例12	かラス	Cr30Nb	20	Cr 15Mo	10	(*1)	Co12Cr4Ta				Co12Cr4Ta	1 * 1			Co22Cr 10Pt4B	
							Co12Cr4Ta	1			Co12Cr4Ta	'			Co22Cr 10Pt4B	

*1:非磁性中間層=組成:Co40Cr. 厚さ:2nm

(厚さの単位は n mとした)

[0111]

【表4】

35

	保磁力 Hc	静磁気 磁気 異万性	特性 Mrt	P W50	SNR	無減磁	非磁 下地		磁性		第2磁性膜 保磁力	反強磁性 結合磁界
	(*1)	Hec/Her					配向	結晶	配向	結晶	H c 2(*2)	Hbias2(*3)
	(0e)	(-)	(T·nm)	(nS)	(dB)	(%/decade)	面	構造	面	構造	(Oe)	(0e)
試験例9	3875	1. 3	0.39	14. 92	19. 21	0. 27	200	bcc	110	hcp	56	1490
試験例10	3868	1.3	0.39	14. 87	19. 38	0. 26	200	bcc	110	hcp	70	1370
試験例11	3872	1. 3	0.39	14. 89	19. 34	0. 25	200	bcc	110	hcp	175	1230
試験例12	3852	1. 3	0.39	14. 93	19. 17	0. 23	200	bcc	110	hcp	470	800
試験例13	3742	1. 3	0.41	16. 11	17. 95	0. 30	200	bcc	110	hcp	690	440

Hcc/Hcr: 周方向の保磁力Hccと径方向の保磁力Hcrとの比

 Mrt
 : 磁性層の残留磁化膜厚積

 PW50
 : 孤立再生波形半値幅

 SNR
 : シグナルノノイズ比

 *1
 : 磁性層全体の保磁力Hc

 *2
 : 第2磁性膜の保磁力Hc2

*3 :第2磁性膜の反強磁性結合Hbias2

[0112]

【表5】

4 4											2202								
	基板	配向的	_	デリス チャ		_	第地	2下	—	非磁		775	. 44		磁性層	n==		7 4	1 47 4
		(*1)	_	71	調整		ופאנ	8	性下 地層	問層	第3磁性	决		32 間膜	第2磁性	漢		[] 間膜	第1 磁性
	,	組成	厚		組成	厚	組成	厚			組成	厚さ	組成	厚	組成	厚さ	組成	厚	膜
			ĕ_			t	PX	2				ē	戍	E		2	灰	ē.	
試験例14	ガラズ	NiAl	20	-	-	-	-	-	(*2)	(*3)	Co12Cr4Ta	2. 5	Ru	0.8	Co12Cr4Ta	2. 5	Ru	0.8	(*4)
試験例15	がうス	NiP	20	0	-	_	Cr	10	(*2)	(*3)	Co12Cr4Ta	2. 5	Ru	0.8	Co12Cr4Ta	2. 5	Ru	0.8	(*4)
試験例16	かラス	CoCrZr	20	-	Cr25V	20	Cr	10	(*2)	(*3)	Co12Cr4Ta	2. 5	Ru	0.8	Co12Cr4Ta	2.5	Ru	0.8	(*4)
試験例17	アルミ		-	_	-	_	Cr	10	(*2)	(*3)	Co12Cr4Ta	2. 5	Ru	0.8	Co12Cr4Ta	2. 5	Rυ	0.8	(*4)
試験例18	PIJE	_	-	0	_	_	Cr	10	(*2)	(*3)	Co12Cr4Ta	2.5	Ru	0. 8	Co12Cr4Ta	2.5	Ru	0.8	(*4)
試験例19	7ルミ	CoCrZr	20	-	Cr 25V		Cr)			1			Co12Cr4Ta	ı			
試験例20	71.3	-		0	-	_	Cr	1	(*2)		_	_		_	_		_	_ `	(*4)

* 1 : CoCrZr = Co30Cr 10Zr

* 2 : 非磁性下地層=組成;Cr6Mo,厚さ;10nm * 3 : 非磁性中間層=組成;Co40Cr,厚さ;2nm

* 4 : 第1磁性層 =組成:Co22Cr10Pt4B, 厚さ:18nm

試験例15では、基板と配向性向上層(NiP)との間にCrからなる下地層を設けた。

30

[0113]

【表6】

38

	磁気異方性			半径20	加位置			半径30	mm位置		標準偏差
	Hcc/Hcr (-)		第 1 領域	第 2 領域	第3 領域	第 4 領域	第 1 領域	第2領域	第3 領域	第4 領域	
試験例14	1	LFTAA(µV) SNR (dB)	1320 16. 72	1324 16. 74	1319 16.71	1322 16. 75	1321 16. 72	1317 16. 74	1322 16. 73	1320 16, 75	2. 1339 0. 0149
試験例15	1. 3	LFTAA(µV) SNR (dB)	1470 19. 02	1511 18. 69	1491 18. 8	1458 19. 05	1455 19. 03	1423 19, 21	1440 19. 15	1483 18, 65	28. 4451 0. 2101
試験例16	1. 31	LFTAA(µV) SNR (dB)	1485 19. 57	1481 19. 58	1484 19. 58	1487 19. 57	1487 19. 56	1485 19. 57	1488 19. 56	1486 19. 56	2. 1998 0. 0083
試験例17	1	LFTAA(µ V) SNR (dB)	1020 15. 82	1024 15. 79	1014 15.84	1027 15. 75	987 15. 76	991 15, 77	990 15. 73	985 15, 74	18. 1088 0. 0389
試験例18	1. 3	LFTAA(µV) SNR (dB)	1491 19. 09	1476 19. 21	1454 19. 14	1534 19. 1	1446 19, 12	1489 18. 69	1451 18. 99	1439 19. 1	31. 7085 0. 1596
試験例19	1. 29	LFTAA(μ V) SNR (dB)	1490 19. 62	1491 19. 62	1492 19. 61	1490 19. 62	1488 19. 63	1487 19. 62	1488 19. 62	1490 19. 62	1. 6903 0. 0053
試験例20	1. 3	LFTAA(μV) SNR (dB)	1490 18. 99	1 492 18. 92	1495 18. 95	1491 19. 02	1488 18. 87	1485 18. 93	1488 18. 74	1489 18. 88	3. 0119 0. 0861

Hcc/Hcr: 周方向の保磁力Hccと径方向の保磁力Hcrとの比

LFTAA : 再生出力信号 (低周波) SNR : シグナル/ノイズ比 第1領域: セクター 0~127 第2領域: セクター128~255 第3領域: セクター256~383 第4領域: セクター384~511

20

[0114]

【表7】

i i	配向調整層	i	第地	[[]	非磁性下地層	Ė	非磁性中	下層側磁性	- RAS	labi	磁性		最上層側磁性	磁	/B AB	放気状	性 Mrt	熟減磁
					L'HEUE		間層	T AMERICAN				構造	AX _L NEE BRUTENTE	EX.	7	異常	IVIT L	
	組成	厚さ	組成	厚さ	組成	厚さ		組成	厚さ	組成	厚さ	数 (*2)		厚さ	(0e)	性	(T-	(%/de -cade)
試験例21	45N i 55Nb				Cr20V	10	(*1)	-	-	_	-	_	Co21Cr9Pt4B	17	3876	1. 29	0.4	0.43
試験例22	45N i 55Nb	20	Cr	10	Cr20V	10	(*1)	Co14Cr3Ta	2	Ru	0.8	1	Co21Cr9Pt4B	17	3798	1.3	0. 36	0.36
試験例23	45N i 55Nb	20	Cr	10	Cr 20V	10	(*1)	Co14Cr3Ta	2	Ru	0.8	2	Co21Cr9Pt4B	17	3767	1.3	0. 4	0. 27
試験例24	45N i 55Nb	20	Cr	10	Cr20V	10	(*1)	Co14Cr3Ta	2	Ru	0.8	3	Co21Cr9Pt4B	17	3854	1. 3	0. 36	0. 22
試験例25	45N i 55Nb	20	Cr	10	Cr20V	10	(*1)	Co14Cr3Ta	2	Ru	0.8	4	Co21Cr9Pt4B	17	3822	1.31	0.4	0. 18
試験例26	45N i 55Nb	20	Cr	10	Cr20V	10	(*1)	Co 14Cr 3Ta	2	Ru	0. 8	5	Co21Cr9Pt4B	17	3843	1.31	0. 36	0. 14
試験例27	45N i 55Nb	20	Cr	10	Cr20V	10	(*1)	Co 14Cr 3Ta	2	Ru	0. 8	6	Co21Cr9Pt4B	17	3855	1. 3	0.4	0. 11
試験例28	50Ni50Ta	20	Cr	10	Cr6Mo	10	(*1)	Co14Cr3Ta	1	Cr	1. 0	2	Co21Cr9Pt4B	17	3659	1. 28	0.4	0. 28
試験例29	50N i 50Ta	20	Cr	10	Cr6Mo	10	(*1)	Co 14Cr3Ta	1.5	Ir	0. 5	2	Co21Cr9Pt4B	17	3678	1. 29	0.4	0. 27
試験例30	48Ni 48Ta4Zr	20	Cr	10	Cr6Mo	10	(*1)	Co 14Cr3Ta	1.5	Rh	0.8	2	Co21Cr9Pt4B	17	3598	1. 29	0. 4	0. 29
試験例31	48Ni48Ta4Zr	20	Cr	10	Cr6Mo	10	(*1)	Co 14Cr 3Ta	1	Mo	0. 6	2	Co21Cr9Pt4B	17	3643	1. 29	0.4	0.3
試験例32	48Ni48Ta4Zr	20	Cr	10	Cr6Mo	10	(*1)	Co 14Cr 3Ta	1	Cu	0.8	2	Co21Cr9Pt4B	17	3651	1.3	0. 4	0. 28
試験例33	48Ni48Ta4Zr	20	Cr	10	Cr6Mo	10	(*1)	Co 14Cr 3Ta	1	Re	0. 5	2	Co21Cr9Pt4B	17	3675	1. 3	0.4	0. 28
試験例34	4BNi48Ta4Zr	20	Cr	10	Cr6Mo	10	(*1)	Co14Cr3Ta	1	٧	1. 0	2	Co21Cr9Pt4B	17	3641	1. 29	0. 4	0. 29
試験例35	48Ni48Ta4Zr	20	Cr	10	Cr6Mo	10	(*1)	Co14Cr3Ta	1	Pd	0.8	2	Co21Cr9Pt4B	17	3426	1. 25	0. 45	0. 44
試験例36	48Ni48Ta4Zr	20	Cr	10	Cr6Mo	10	(*1)	Co 14Cr 3Ta	1	Αu	0.8	2	Co21Cr9Pt4B	17	3411	1. 25	0. 45	0. 44

* 1:非磁性中間層=組成;Co40Cr,厚さ;2nm

(厚さの単位はnmとした)

* 2:下層側磁性膜と中間膜とからなる積層構造の数

[0115]

【表8】

	基板	配向性向上應	}	配向調整	8	第	不	非磁性	:	非磁性	E	磁性	酸化·窒化	静磁	気特性	熱減磁
						地	7	下地層	f	中間層	1	魯	処理	保磁	磁気	
	·	組成	厚	組成	厚	組	厚	組成	厚	組成	含			カ	異方性	(%/de
			Ю		ŏ	成	ŏ		č		₹			(0e)	(-)	-cade)
試験例37	がラス	-	_	85Cr 15T i	20	Cr	10	Cr20W	5	Co37Cr	2	(*1)		3654	1. 23	0. 24
試験例38	がラス	–	-	85Cr 15T i	20	Cr	10	Cr 20W	5	Co37Cr	2	(*1)	20vo1%N2/Ar	3721	1. 26	0. 21
試験例39	かラス	<u> </u>	-	80Cr 20Mo	20	Cr	10	Cr20W	5	Co37Cr	2	(*1)		3621	1. 27	0. 24
試験例40	かラス	_	-	80Cr 20W	15	Cr	10	Cr20W	5	Co37Cr	2	(*1)	_	3792	1. 26	0. 23
試験例41	かうス	_	_	80Cr 20W	15	Cr	10	Cr20W	5	Co37Cr	2	(*1)	20vo1%O2/Ar	3547	1. 31	0. 20
試験例42	かラス	-	-	80Cr20Ru	15	Cr	10	Cr 20W	5	Co37Cr	2	(*1)	_	3687	1. 25	0. 24
試験例43	かラス		-	85Cr 15Re	20	Cr	10	Cr20W	5	Co37Cr	2	(*1)	_	3819	1. 26	0. 23
試験例44	かラス	_	-	٧	20	Cr	10	Cr20W	5	Co37Cr	2	(*1)	_	3683	1. 23	0. 24
試験例45	かラス	_	-	Cr	20	Cr	10	Cr20W	5	Co37Cr	2	(*1)	_	3599	1. 25	0. 24
試験例46	かラス	50Ni50AI	10	Nb	25	Cr	10	Cr20W	5	Co37Cr	2	(*1)	-	3533	1. 27	0. 24
試験例47	がうス	50Fe50A1	10	Мо	20	Cr	10	Cr20W	5	Co37Cr	2	(*1)	_	3751	1. 17	0. 25
試験例48	かラス	~	-	Ta	20	Cr	10	Cr20W	5	Co37Cr	2	(*1)	_	3878	1. 3	0. 22
試験例49	かラス	-	-	Ta	20	Cr	10	Cr 20W	5	Co37Cr	2	(*1)	N2が x暖露	3799	1.34	0. 20
試験例50	がラス・	80Co20Zr	10	Ta	20	Cr	10	Cr20W	5	Co37Cr	2	(*1)	N2が ス録器	3925	1. 37	0. 18
試験例51	かラス	50Ni50AI	15	Ħ	20	Cr	10	Cr20W	5	Co37Cr	2	(*1)	_	3616	1.21	0. 25
試験例52	かりス	_	-	66Be34Nb	20	Cr	10	Cr20W	5	Co37Cr	2	(*1)	_	3968	1. 35	0. 20
試験例53	かラス	_	-	66V34Ta	20	Cr	10	Cr20W	5	Co37Cr	2	(*1)	-	3598	1.31	0. 23
試験例54	かラス	_	-	50Ta50Zr	20	Cr	10	Cr20W	5	Co37Cr	2	(*1)	_	3469	1. 28	0. 25
試験例55	かラス	-	-	50Nb50Ta	20	Cr	10	Cr20W	5	Co37Cr	2	(*1)	ul 1	3983	1. 36	0. 20
試験例56	71.5	60Co30Cr10Zr							5	Co37Cr	2	(*1)	20vo1%N2/Ar	3500	1. 35	0. 23
試験例57	715	56Co26Cr 18C	30	70Co30Nb	20	Cr	10	Cr20W	5	Co37Cr	2	(*1)	20vo1%N2/Ar	3904	1.31	0. 21
試験例58		-	_					Cr 20W	5	Co37Cr		(*1)	〇2か 2眼露	3771	1. 15	0. 22

* 1:磁性層=第3磁性膜(Co18Cr6Pt3Ta. 厚さ2nm)/第1反強磁性膜(Ru. 厚さ0. 8nm)/第2磁性膜(Co12Cr4Ta. 厚さ2. 5nm) /第2反強磁性膜(Ru, 厚さ0.8nm)/第1磁性膜(Co22Cr10Pt4B, 厚さ16nm) (厚さの単位は全てnmとした)

[0116] 【表9】

	基板	B 2	o	整層			第	2 下批			非研	铁性	下地區	3	非磁性	中	周層	
	(#1)			1	入射			斜方	入射	配向		1	斜方	入射			斜方	入射
İ		組成	厚	関人	方向	組成	厚	入射	方向		組成	厚	入射	方向	組成		入射	方向
			ð	(*2)			ð	(*2)	1		1	a	(*2)		- V.	i	(*2)	
	アルミ		-	-	-	Cr	10	なし	-	(200)	Cr 15#	3	なし	-	Co35Cr	2	なし	
試験例60	715	-	_		-	Cr	10	なし	_	(200)	Cr 15W	3	なし	_	Co35Cr	2	なし	
試験例61	715	-		-	-	Cr	10	なし	-	(200)	Cr 15W	3	なし		Co35Cr	2	なし	
試験例62	713	-	-	-	-	Cr	10	なし	-	(200)	Cr 15W	3	なし	-	Co35Cr	12	なし	i
試験例63	7 <i>k</i> ≥	-	-	_	_	Cr	10	なし	_	(200)	Cr 15W	3	なし	-	Co35Cr	2	なし	1
試験例64	アルミ	<u>-</u> -	-	-	-	Cr	10	なし	_	(200)	Cr 15W	3	なし	_	Co35Cr	2	なし	1
試験例65	71E	_	-	_	_	Cr	10	なし	_	(200)	Cr 15W	3	なし	_	Co35Cr	2	あり	1
試験例56		-	-	-	-	Cr	10	あり	半径	(200)	Cr 15W	3	あり	半径		2	あり	半径
試験例67	アルミ	Cr35Nb	20	あり	半径	Cr	10	あり	半径	(200)	Cr.15\	3	あり	半径		2	あり	1
試験例68	PIE	Cr35Nb	20	あり	半径	Cr	10	あり	半径	(200)	Cr 15\	3	あり	半径		2	あり	1
試験例69	7113	Cr 35Nb	20	あり	半径	Cr	10	あり			Cr 15W	3	あり	半径	-	_		-
試験例70	がラス	Cr 35Nb	20	あり	半径	Cr			半径		Cr 15W	3		半径	_	İ _	l _	_
試験例71	かラス	Cr 35Nb	20	あり	半径	Cr	10	あり	半径	(200)	Cr 15W	3	なし	_	Co35Cr	2	なし	_
試験例72	がラス				半径	Cr	10	なし	-		Cr 15W	3	なし	_	Co35Cr	2	なし	
試験例73	71.6	_	_	_		_	_		_	_	Cr 15Mo	5	なし	_	Co20Cr3Ta	2	あり	半径
試験例74		Ni35Nb	5	あり	半径	Cr	10	あり	半径	(200)		3	あり	半径	Co25Cr2Ta	ı	あり	
試験例75	71E	_	_	_	-	Cr 15Ti			半径		Cr20V	20		半径	Co35Cr	3	なし	-
試験例76	716	_	-	_	_	V	4	あり	半径		Cr20Ti	10			Co35Cr	3	あり	半径
試験例77	かラス	Co30Ta	20	あり	半径	Cr	1 1				Cr20Mo		あり	半径	Co40Cr	2	あり	半径
試験例78					半径	Cr		あり			Cr20V		あり	半怪	Co40Cr	2	あり	半径
試験例79	かラス	_	_	_		Cr35Nb					Cr 20V		あり		Co35Cr	2	なし	T 12
試験例80		_	_	_	-	Cr35Nb	1 1	- 1						半径		2		半径

[0117]

【表10】

^{* 1:} アルミ=N: Pアルミ基板 (アルニウム合金基板表面にN: Pメッキ暦を形成したもの) ガラス = 結晶化ガラス * 2:斜万入射 = 成膜粒子の入射角度を1-0~75°とする (厚さの単位は全てnmとした)

							磁性	主層									s.	OR	SNR
	第3磁性肺	Į	1	₹2	第2磁性膜			§ 1	第	1 磁性膜		磁性	越	中間	頭	磁性膜		~'`	J
			中	問度			中	間膜				斜方	入射		入射	配向			į
	組成	厚	組	厚	組成	厚	組	厚	組成		厚	入射		入射		00.3			
		ð	成	ð		ð	成	č			3							ĺ	(dB)
試験例59	-	_	-	-		-	_	-	Co21Cr	12Pt4B	18	あり	半径	あり	半径	(110)	0. 83	1. 35	
試験例60		_	-	_	Co12Cr4Ta	2.5	Ru	0.8	Co21Cr	12Pt4B	18	あり				(110)	0.81		1
試験例61	Co12Cr4Ta	2. 5	Ru	0.8	Co12Cr4Ta	2. 5	Ru	0.8	Co21Cr	12Pt4B	18				1	(110)		1. 35	
試験例62	Co20Cr 10Pt3B	2	Ru	0.8	Co20Cr 10Pt3B	2	Ru	0.8	Co21Cr	12Pt4B	18	あり				(110)		1. 34	
試験例63	-	_				_	_	_		12Pt4B		なし	_	なし		(110)		1. 21	1
試験例64	Co12Cr4Ta	2. 5	Ru	0.8	Co12Cr4Ta	2. 5	Ru	0.8		12Pt4B	18		-	なし	_	(110)	•	1. 22	
試験例65	_	_	-	_	_	_	_	-		12Pt4B	1	あり	半径		_	(110)		1. 37	
試験例66	_ '	-	-	_	_	l –	l_	_		12Pt4B		あり	1		坐容	(110)	0. 87		
試験例67	_	 –	-	l –	_		 	1_	1	12Pt4B			半径			(110)	0. 84		
試験例68	_		-	_	Co12Cr4Ta	2.5	Ru	0.8		12Pt4B						(110)	0. 85		
試験例69	-	_	-	-	Co 15Ru	2	Ru	0.8	Co21Cr	12Pt4B						(110)		1. 41	
試験例70	-	_	-	l –	Co 15Ru	2	Ru	0.8		12Pt4B						(110)	0. 78		
試験例71	Co18Cr8Pt4B	2	Ru	0.8	Co18Cr8Pt4B	2	ı	0.8	ı	12Pt48			半径			(110)	0. 77		1
試験例72	Co12Cr4Ta	2. 5	Ru	0.8	Co12Cr4Ta	2. 5	Ru	0.8	Co21Cr	12Pt4B	1					(110)	0. 79		
試験例73	_	_	-	_	_	_		_		12Pt3B		あり				(110)	0. 87		1
試験例74	_	_	-	_	_	-	_	İ —	Co22Cr	12Pt3B			半径		坐徑	(110)	0. 88		
試験例75	_	-	-	_	_		_	_		12Pt3B	•	あり					0. 85		1
試験例76		_	_	_			_	_		3Pt3B2Cu		あり					0. 88		
試験例77	_	_	_	- :	_	_	_	!		13Pt5B						(110)	0. 81		:
試験例78	-	_	-	-	~	-	 _	-		13Pt5B			半径			(110)		1. 24	
試験例79	-	_	-	-		_	-	 -	Co21Cr			なし	_	なし	-		0. 79		
試験例80	-	_	_	-	_	_	<u>'</u>	_		12Pt4B	2	なし	_	なし	_		0. 81		

*1:斜方入射=成膜時に成膜粒子の入射角度を10~75°とするOR:Hcc/Hcr

(厚さの単位は全て n mとした)

【0118】表1および表2より、配向調整層を設け ず、AFC構造も採用しない試験例1に比べ、配向調整 層2により磁性層に磁気異方性を付与した試験例4、お よびAFC構造を採用した試験例2では、熱揺らぎ耐性 を高めることができたものの、配向調整層 2 と A F C 構 造とを採用した試験例5~8では、これら試験例2、4 に比べ、顕著な熱揺らぎ耐性向上効果が得られたことが わかる。なかでも特に、3つの磁性膜と2つの中間膜か らなる磁性層を有する試験例5~7では、優れた熱揺ら ぎ耐性が得られたことがわかる。また、中間膜4 d、4 eの厚さを0.8nmとした試験例5では、この厚さを 0. 5 nmまたは 1. 4 nmとした試験例 6、7 に比 べ、熱揺らぎ耐性に優れたものとなったことがわかる。 表3および表4より、第2磁性膜14bの反強磁性結合 磁界Hbias2が保磁力Hc2よりも大きい試験例9~12 では、Hbias2がH c 2以下である試験例13に比べ、ノ イズ特性およびPW50について優れた結果が得られた ことがわかる。表5および表6より、テクスチャ加工を 行う試験例15、18、20では、磁気異方性を高める ことができるものの、磁気特性の周方向のばらつきが大 きいことがわかる。このばらつきは、NiP膜(配向性 向上層)の表面凹凸により中間膜の厚さが不均一となる ことにより磁性膜間の反強磁性結合が局部的に不十分と なることに起因すると考えることができる。またテクス チャ加工を行わない試験例14、17では、磁気異方性 が低く、出力、ノイズ特性の点で劣ることがわかる。こ れに対し、配向調整層2を設ける試験例16、19で は、テクスチャ加工を行わないにも拘わらず、磁気異方 50

性を高めることができ、出力、ノイズ特性とも優れた値 が得られ、しかも磁気特性の周方向のばらつきを抑える ことができたことがわかる。表7に示すように、試験例 22~27より、積層構造数を多くすることによって、 優れた熱揺らぎ耐性を得ることができたことがわかる。 また試験例28~36より、中間膜の材料として、Ru のほかに、Cr、Ir、Rh、Mo、Cu、Re、Vを 用いる場合にも、熱揺らぎ耐性向上効果を得ることがで きたことがわかる。表8に示すように、試験例37~4 3より、配向調整層2の材料として、各種Cr合金(C rTi、CrMoなど)を用いた場合にも熱揺らぎ耐性 向上効果を得ることができたことがわかる。また試験例 44~51より、配向調整層2の材料として、Vなどの 単体元素を用いた場合にも熱揺らぎ耐性向上効果を得る ことができたことがわかる。また試験例52~57よ り、、配向調整層2の材料として、BeNbなどのNb 合金や、VTaなどのTa合金を用いた場合にも熱揺ら ぎ耐性向上効果を得ることができたことがわかる。また 配向調整層2に酸化・窒化処理を施すことによって、熱 揺らぎ耐性などの磁気特性を高めることができたことが わかる。また配向性向上層17を設けることによって、 磁気異方性が高められ、優れた熱揺らぎ耐性を得ること ができたことがわかる。表9および表10より、非磁性 下地層3と磁性層4のいずれか一方または両方が、柱状 微結晶粒が半径方向に傾いた結晶構造を有する構成によ って、優れた熱揺らぎ耐性向上効果を得ることができた ことがわかる。

[0119]

【発明の効果】以上説明したように、本発明の磁気記録 媒体は、非磁性下地層と磁性層のいずれか一方または両 方が、柱状微結晶粒が半径方向に傾いた結晶構造を有す るので、非磁性下地層および磁性層の結晶配向性を向上 させ、磁性層における周方向の磁気異方性を高めること ができる。このため、結晶磁気異方性定数(Ku)を高 め、熱揺らぎ耐性の向上を図ることができる。さらに は、磁性層が、複数の磁性膜を有し、これらの間に反強 磁性結合が形成された構造を有する構成によって、磁性 膜間の反強磁性結合により、最も保磁力の高い主磁性膜 10 以外の磁性膜の磁化について、見かけ上磁化のない状 態、または主磁性膜の磁化が、これ以外の磁性膜の磁化 に相当する磁化の分、見かけ上小さくなった状態が得ら れる。このため、ノイズ特性や分解能に悪影響を及ぼす ことなく、磁性粒子の体積を十分に大きくすることがで き、熱安定化を図り、熱揺らぎ耐性をさらに向上させる ことができる。一般に、2つの磁性膜間の反強磁性結合 の強度は、磁性膜間に設けられた中間膜の厚さに大きな 影響を受けるため、磁性層の下に形成される膜の表面凹 凸が大きいと、中間膜の厚さが不均一となり、局部的に 反強磁性結合強度が低下し、熱揺らぎ耐性が不十分とな りやすい。これに対し、本発明の磁気記録媒体では、柱 状微結晶粒が半径方向に傾いた結晶構造を採用すること により、磁性層における周方向の磁気異方性を高めるこ とができることから、製造に際してテクスチャ加工が不 要となるため、配向調整層の表面平滑性を高くすること ができる。従って、配向調整層の表面凹凸により中間膜 の厚さが不均一となるのを防ぎ、反強磁性結合強度を高 め、十分な熱揺らぎ耐性向上効果を得ることができる。

【図面の簡単な説明】

【図1】 (a)本発明の磁気記録媒体の第1の実施 形態を示す一部断面図である。(b)(a)に示す磁気 記録媒体の断面の透過型電子顕微鏡(TEM)写真に基 づいて作成した要部拡大図である。

【図2】 図1に示す磁気記録媒体の断面の透過型電子顕微鏡(TEM)写真に基づいて作成した要部拡大図である。

 【図3】 図1に示す磁気記録媒体の断面の透過型電子顕微鏡(TEM)写真に基づいて作成した要部拡大図である。

【図4】 本発明の磁気記録媒体の製造装置の一実施 形態を示す概略構成図である。

【図5】 図4に示す製造装置を用いて磁気記録媒体を製造する方法を説明する説明図である。

【図6】 本発明の磁気記録媒体の第3の実施形態を示す一部断面図である。

【図7】 図6に示す磁気記録媒体の履歴曲線を示す グラフである。

【図8】 本発明の磁気記録媒体の第4の実施形態を示す一部断面図である。

【図9】 本発明の磁気記録媒体の第5の実施形態を示す一部断面図である。

【図10】 本発明の磁気記録媒体の第6の実施形態を示す一部断面図である。

【図11】 本発明の磁気記録媒体の第7の実施形態を示す一部断面図である。

【図12】 本発明の磁気記録媒体の第8の実施形態を示す一部断面図である。

【図13】 本発明の磁気記録再生装置の一実施形態を示す一部断面図である。

【図14】 本発明の磁気記録媒体の製造装置の他の 実施形態を示す概略構成図である。

【符号の説明】

1 ・・・非磁性基板、1 a・・・非磁性基板表面(被付着面)、2、2 c、2 d・・・配向調整層、2 a、3 a、4 d、4 e、4 f・・・柱状微結晶粒、3・・・非磁性下地層、4、1 4・・・磁性層、4 a、4 b、1 4 b、1 4 c・・・磁性膜、4 c、1 4 d、1 4 e・・・中間膜、7・・・磁気記録媒体、9・・・磁気ヘッド、1 4 a・・・第1磁性膜(主磁性膜)、2 2・・・スパッタリングターゲット(放出源)、2 3・・・遮蔽板(方向設定手段)、2 6・・・成膜粒子の軌道、2 7・・・投影線、α、α・・・入射角度、α1、α2、α3・・・柱状微結晶粒の傾斜角度

【図12】

半径方向 2a;柱状微結島粒 (b)

表面(被付着面) シタリングターゲット(放出源) 返(方向設定手段)

【図14】

フロントページの続き

F ターム(参考) 5D006 BB01 BB02 BB03 BB04 BB07 BB08 BB09 CA01 CA05 CA06 EA03 5D112 AA03 AA05 BB05 BD03 BD04 BD06 FA04 FB21 GA17