CS722/822: Machine Learning

Instructor: Jiangwen Sun Computer Science Department

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?

- Methods for Performance Evaluation
 - How to obtain reliable estimates?

- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Metrics for Performance Evaluation

- Regression
 - Sum of squares

$$\frac{1}{N} \sum_{i=N}^{N} (y_i - f(\mathbf{x}_i))^2$$

Sum of deviation

$$\frac{1}{N} \sum_{i=N}^{N} |y_i - f(\mathbf{x}_i)|$$

Coefficient of determination R²

$$1 - \frac{\sum_{i} (y_i - f(\mathbf{x}_i))^2}{\sum_{i} (y_i - \overline{y})^2}$$

Metrics for Performance Evaluation

- Focus on the predictive capability of a model
 - Rather than how fast it takes to classify or build models, scalability, etc.
- Confusion Matrix:

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	а	b
CLASS	Class=No	С	d

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Metrics for Performance Evaluation...

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	a (TP)	b (FN)
CLASS	Class=No	c (FP)	d (TN)

Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10

- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example

Cost Matrix

	PREDICTED CLASS		
	C(i j)	Class=Yes	Class=No
ACTUAL	Class=Yes	C(Yes Yes)	C(No Yes)
CLASS	Class=No	C(Yes No)	C(No No)

C(i|j): Cost of classifying class j example as class i

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS		
ACTUAL CLASS	C(i j)	+	-
	+	-1	100
	-	1	0

Model M ₁	PREDICTED CLASS		
ACTUAL CLASS		+	-
	+	150	40
	-	60	250

Model M ₂	PREDICTED CLASS		
ACTUAL CLASS		+	-
	+	250	45
	-	5	200

Accuracy = 80%

Cost = 3910

Accuracy = 90%

Cost = 4255

Cost vs Accuracy

Count	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	а	b
CLASS	Class=No	С	d

Cost	PREI	DICTED CL	_ASS
		Class=Yes	Class=No
ACTUAL	Class=Yes	р	q
CLASS	Class=No	q	р

Accuracy is proportional to cost if

1.
$$C(Yes|No)=C(No|Yes) = q$$

2.
$$C(Yes|Yes)=C(No|No) = p$$

$$N = a + b + c + d$$

Accuracy =
$$(a + d)/N$$

Cost = p (a + d) + q (b + c)
= p (a + d) + q (N - a - d)
= q N - (q - p)(a + d)
= N [q - (q-p)
$$\times$$
 Accuracy]

Cost-Sensitive Measures

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) =
$$\frac{a}{a+b}$$

Count	PREDICTED CLASS		
		Class= Yes	Class= No
ACTUAL	Class= Yes	а	b
CLASS	Class= No	С	d

- Precision is biased towards C(Yes|Yes) & C(Yes|No)
- Recall is biased towards C(Yes|Yes) & C(No|Yes)

A model that declares every record to be the positive class: b = d = 0

Recall is high

A model that assigns a positive class to the (sure) test record: c is small

Precision is high

Cost-Sensitive Measures (Cont'd)

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) =
$$\frac{a}{a+b}$$

F-measure (F) =
$$\frac{2rp}{r+p} = \frac{2a}{2a+b+c}$$

Count	PREDICTED CLASS		
		Class= Yes	Class= No
ACTUAL	Class= Yes	а	b
CLASS	Class= No	С	d

F-measure is biased towards all except C(No|No)

Weighted Accuracy =
$$\frac{w_1 a + w_4 d}{w_1 a + w_2 b + w_3 c + w_4 d}$$

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?

- Methods for Performance Evaluation
 - How to obtain reliable estimates?

- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Methods for Performance Evaluation

• How to obtain a reliable estimate of performance?

- Performance of a model may depend on other factors besides the learning algorithm:
 - Class distribution
 - Cost of misclassification
 - Size of training and test sets

Learning Curve

- Learning curve shows how accuracy changes with varying sample size
- Requires a sampling schedule for creating learning curve:
 - Arithmetic sampling (Langley, et al)
 - Geometric sampling (Provost et al)

Effect of small sample size:

- Bias in the estimate
- Variance of estimate

Methods of Estimation

- Holdout
 - Reserve 2/3 for training and 1/3 for testing
- Random subsampling
 - Repeated holdout
- Cross validation
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k=n
- Stratified sampling
 - oversampling vs undersampling
- Bootstrap
 - Sampling with replacement

Model Evaluation (pp. 295—304 of data mining)

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?

- Methods for Performance Evaluation
 - How to obtain reliable estimates?

- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Methods of Estimation (Cont'd)

Holdout method

- Given data is randomly partitioned into two independent sets
 - ◆Training set (e.g., 2/3) for model construction
 - ◆Test set (e.g., 1/3) for accuracy estimation
- Random sampling: a variation of holdout
 - Repeat holdout k times, accuracy = avg. of the accuracies obtained
- Cross-validation (k-fold, where k = 10 is most popular)
 - Randomly partition the data into k mutually exclusive subsets, each approximately equal size
 - At i-th iteration, use D_i as test set and others as training set
 - <u>Leave-one-out</u>: k folds where k = # of tuples, for small sized data
 - Stratified cross-validation: folds are stratified so that class dist. in each fold is approx. the same as that in the initial data

Methods of Estimation (Cont'd)

- Bootstrap
 - Works well with small data sets
 - Samples the given training tuples uniformly with replacement
 - ◆i.e., each time a tuple is selected, it is equally likely to be selected again and re-added to the training set
- Several boostrap methods, and a common one is .632 boostrap
 - Suppose we are given a data set of d examples. The data set is sampled d times, with replacement, resulting in a training set of d samples. The data points that did not make it into the training set end up forming the test set. About 63.2% of the original data will end up in the bootstrap, and the remaining 36.8% will form the test set (since (1 − 1/d)^d ≈ e⁻¹ = 0.368)
 - Repeat the sampling procedure k times, overall accuracy of the model:

 $acc(M) = \sum_{i=1}^{k} (0.632 \times acc(M_i)_{test_set} + 0.368 \times acc(M_i)_{train_set})$

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?

- Methods for Performance Evaluation
 - How to obtain reliable estimates?

- Methods for Model Comparison
 - How to compare the relative performance among competing models?

ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals
 - Characterize the trade-off between positive hits and false alarms
- ROC curve plots TPR (on the y-axis) against FPR (on the x-axis)
- Performance of each classifier represented as a point on the ROC curve
- If the classifier returns a real-valued prediction,
 - changing the threshold of algorithm changes the location of the point

ROC Curve

	PREDICTED CLASS		
ACTUAL		Class =Yes	Class= No
	Class =Yes	a (TP)	b (FN)
CLASS	Class =No	c (FP)	d (TN)

TPR = TP/(TP+FN) FPR = FP/(FP+TN)

At threshold t:

TP=50, FN=50, FP=12, TN=88

ROC Curve

	PREDICTED CLASS		
		Class =Yes	Class= No
ACTUAL	Class	a	b
	=Yes	(TP)	(FN)
CLASS	Class	c	d
	=No	(FP)	(TN)

TPR = TP/(TP+FN) FPR = FP/(FP+TN)

(TPR,FPR):

- (0,0): declare everything to be negative class
 - TP=0, FP = 0
- (1,1): declare everything to be positive class

$$- FN = 0, TN = 0$$

- (1,0): ideal
 - FN = 0, FP = 0

ROC Curve

(TPR,FPR):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (1,0): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of the true class

How to Construct an ROC curve

Instance	P(+ A)	True Class			
1	0.95	+			
2	0.93	+			
3	0.87	-			
4	0.85	-			
5	0.85	-			
6	0.85	+			
7	0.76	-			
8	0.53	+			
9	0.43	-			
10	0.25	+			

- Use classifier that produces posterior probability for each test instance P(+|A)
- Sort the instances according to P(+|A) in decreasing order
- Apply threshold at each unique value of P(+|A)
- Count the number of TP, FP, TN, FN at each threshold
- TP rate, TPR = TP/(TP+FN)
- FP rate, FPR = FP/(FP + TN)

How to Construct an ROC curve

Instance	P(+ A)	True Class			
1	0.95	+			
2	0.93	+			
3	0.87	-			
4	0.85	-			
5	0.85	-			
6	0.85	+			
7	0.76	-			
8	0.53	+			
9	0.43	-			
10	0.25	+			

- Use classifier that produces posterior probability for each test instance P(+|A)
- Sort the instances according to P(+|A) in decreasing order
- Pick a threshold 0.85
- \rightarrow p>= 0.85, predicted to P
 - p< 0.85, predicted to N
 - TP = 3, FP=3, TN=2, FN=2
 - TP rate, TPR = 3/5=60%
 - FP rate, FPR = 3/5=60%

How to construct an ROC curve

	Class	+	-	+	-	-	-	+	-	+	+	
Thresho	ld >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
\rightarrow	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
\rightarrow	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

Using ROC for Model Comparison

- No model consistently outperforms the other
 - M₁ is better for small FPR
 - M₂ is better for large FPR
- Area Under the ROC curve (AUC)
 - Ideal:
 - Area = 1
 - Random guess:
 - Area = 0.5

Data normalization

- Example-wise normalization
 - Each example is normalized and mapped to unit sphere

$$\mathbf{x}^{(i)}/\|\mathbf{x}^{(i)}\|$$

- Feature-wise normalization
 - [0,1]-normalization: normalize each feature into a unit space
 (x_i-min(x_i))/(max(x_i) min(x_i))
 - Standard normalization:
 normalize each feature to have mean 0 and standard deviation 1
 (x_i-μ_i)/σ_i

