Escuela Rafael Díaz Serdán

Ciencias y Tecnología: Química

3° de Secundaria (2022-2023)

Examen de la Unidad 3

Prof.: Julio César Melchor Pinto

Fecha: Nombre del alumno:

Instrucciones: -

Lee con atención cada pregunta y realiza lo que se te pide. Desarrolla tus respuestas en el espacio determinado para cada solución. De ser necesario, utiliza una hoja en blanco por separado, anotando en ella tu nombre completo, el número del problema y la solución propuesta.

Reglas:

Al comenzar este examen, aceptas las siguientes reglas:

- × No se permite salir del salón de clases.
- X No se permite intercambiar o prestar ningún tipo de material.
- X No se permite el uso de **celular** o cualquier **otro dispositivo**.
- X No se permite el uso de apuntes, libros, notas o formularios.
- X No se permite **mirar** el examen de otros alumnos.
- X No se permite la **comunicación** oral o escrita con otros alumnos.

Si no consideraste alguna de estas reglas, comunícalo a tu profesor.

Aprendizajes a evaluar:

- 🔽 Argumenta acerca de posibles cambios químicos en un sistema con base en evidencias experimentales.
- 🔽 Reconoce y valora el uso de reacciones químicas para sintetizar nuevas sustancias útiles o eliminar sustancias indeseadas.
- 🔽 Reconoce la utilidad de las reacciones químicas en el mundo actual.
- 🔽 Explica, predice y representa cambios químicos con base en la separación y unión de átomos o iones, y se recombinan para formar nuevas sustancias.

Calificación:

Pregunta	1	2	3	4	5	6	7	Total
Puntos	10	10	20	15	10	15	20	100
Obtenidos								

[10 puntos] Balancea la siguiente ecuación química:

$$HgO \longrightarrow Hg + O_2$$

	oles de sacarosa	? Expresa la res	puesta con 3 d	cifras significa	tivas.	
	os] En un recipie	nte se introducer	n 15 g de dióx	ido de carbon	o, CO_2 .	
Calcula: Ba Los 1	noles de sustancia	n introducidos				
	moies de sustancia	i miroducidos.				
b) ¿Cuá	ntas moléculas de	e CO ₂ y átomos	de carbono y	de oxígeno ha	y en el recipien	te?
[15 punt	od Halla la maga	do ozono O go	uo contiono 1 :	\times 10 ²⁵ átomos	do oxígono	
[19 pund	os] Halla la masa	de ozono O ₃ , qi		x 10 ° atomos	de oxigeno.	

[10 puntos] Identifica en las siguientes reacciones si es de síntesis o combinación, descomposición, desplazamiento simple o desplazamiento doble.

$$(5a)$$
 2 Na + ZnI₂ \longrightarrow 2 NaI + Zn

- A. Descomposición
- B. Combinación
- C. Desplazamiento
- D. Doble desplazamiento

$$(5b)$$
 $C_8HO_{18} + calor \uparrow \longrightarrow C_6H_{14} + C_2H_4$

- A. Descomposición
- B. Combinación
- C. Desplazamiento
- D. Doble desplazamiento

$$(5c)$$
 Zn(s) + 2 HCl(ac) \longrightarrow ZnCl₂(ac) + H₂(g)

- A. Descomposición
- B. Combinación
- C. Desplazamiento
- D. Doble desplazamiento

$$5d$$
 $2C(s) + O_2(g) \longrightarrow 2CO(g)$

- A. Descomposición
- B. Combinación
- C. Desplazamiento
- D. Doble desplazamiento

$$5e$$
 $2 Na + H2O $\longrightarrow 2 NaOH + H2$$

- A. Descomposición
- B. Combinación
- C. Desplazamiento
- D. Doble desplazamiento

$$5f$$
 2 Al(s) + 3 S(s) \longrightarrow Al₂S₃(s)

- A. Descomposición
- B. Combinación
- C. Desplazamiento
- D. Doble desplazamiento

$$(5g)$$
 Mg(s) + H₂O(l) \longrightarrow Mg(OH)₂(s)

- A. Descomposición
- B. Combinación
- C. Desplazamiento
- D. Doble desplazamiento

$$(5h)$$
 Al + H₂SO₄ \longrightarrow Al₂(SO₄)₃ + H₂

- A. Descomposición
- B. Combinación
- C. Desplazamiento
- D. Doble desplazamiento

$$(5i)$$
 2 NaCl(s) \longrightarrow 2 Na(s) + Cl₂(g)

- A. Descomposición
- B. Combinación
- C. Desplazamiento
- D. Doble desplazamiento

$$5j$$
 $SO_2(g) + H_2O(l) \longrightarrow H_2SO_3(ac)$

- A. Descomposición
- B. Combinación
- C. Desplazamiento
- ${f D}$. Doble desplazamiento

- \mathbf{A} . KNO₃
 - B. KF
 - C. KClO
 - D. KBr

Tabla 1: Compuestos que contienen potasio

Compuesto	$egin{array}{ll} {f Masa & molar} \ {f (g/mol)} \end{array}$	Porcentaje de potasio (%)
KNO_3	101.1	
KF	58.1	
KClO	90.6	
KBr	119.0	

Tabla 2: Tabla Periódica de los Elementos.

18 VIIIA	$\overset{2}{H}\overset{4.0025}{\text{Helio}}$	$\overset{\text{10}}{\overset{\text{20.180}}{\overset{\text{20.80}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neón}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}{\overset{\text{Neon}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}}}}}}{\overset{N}}{\overset{N}}{\overset{N}}}}}}}}$	$\overset{18}{A}\overset{39.948}{\Gamma}$	$\overset{36}{K}\overset{83.8}{\Gamma}$	$\overset{54}{\overset{131.29}{X}}_{\text{Kenón}}$	$\mathop{\mathrm{Rad}}_{^{60}}^{86}$	${\overset{\text{118}}{\bigcirc}} \overset{\text{294}}{\text{Squeson}}$	$\overset{71}{\text{Luterio}}$	$\frac{103}{L} \frac{262}{L}$ Lawrencio	
	17 VIIA	9 18.998 Fluor	$\bigcup_{Cloro}^{17} \bigcup_{Cloro}^{35.453}$	$\overset{35}{\mathrm{Bromo}}$	53 126.9 T	$\mathop{\mathrm{At}}_{\mathop{Astato}}^{85}$	\prod_{Teneso}^{292}	$\sum_{\text{Yterbio}}^{70}$	102 259 Nobelio	
	16 VIA	8 15.999 Oxígeno	$\overset{16}{S}\overset{32.065}{S}$	${\overset{34}{\mathrm{S}}}^{78.96}$	$\prod_{\text{Tellurio}}^{52}$	$\overset{84}{Po}^{209}_{O}$	$\frac{116}{L} \frac{293}{V}$ Libermonio	\prod_{Tulio}^{69}	$\underset{\text{Mendelevio}}{\text{101}} \overset{258}{\text{c}}$	
	15 VA	7 14.007 Nitrógeno	$\overset{\textbf{15}}{P}\overset{30.974}{\text{Posforo}}$	${\overset{33}{A}}_{\text{AS}}$	$\overset{51}{S}\overset{121.76}{b}$ Antimonio	$\overset{83}{\text{Di}}\overset{208.98}{\text{Dismuto}}$	${\overset{115}{\mathrm{MSCovio}}}^{288}$	$\frac{68}{\text{Erbio}}$	$\overset{\text{100}}{Fm}^{\text{257}}$	
	14 IVA	$\bigcup_{\text{Carbono}}^{6}$	$\overset{14}{\text{Silicio}}$	$\overset{32}{G}\overset{72.64}{e}$ Germanio	$\mathop{\mathrm{Sn}}_{\mathrm{estaño}}^{118.71}$	\Pr_{Plomo}^{82}	114 289 Flerovio	$\overset{\text{67}}{\text{Holmio}}^{\text{164.93}}$	99 252 Einsteinio	
	13 IIIA	$\overset{5}{\mathbf{B}}$	$\stackrel{13}{A}_{\scriptstyle 1}^{26.982}$	$\overset{31}{G}\overset{69.723}{a}$	$\stackrel{49}{\Gamma}_{\mathrm{Indo}}^{114.82}$	81 204.38 Talio	113 284 Nihonio	$\bigcup_{\text{Disprosio}}^{\textbf{66}}$	$\bigcup_{\text{Californio}}^{98}$	
			12 IIB	$\overset{30}{ ext{Zn}}$	$\overset{48}{\text{Cadmio}}$	$\underset{Mercurio}{\overset{80}{}}$	$\overset{112}{C}\overset{285}{n}$	$\prod_{\text{Terbio}}^{65-158.93}$	$\frac{97}{Bk}$	
			11 IB	$\overset{29}{\overset{63.546}{C}}$	$^{47}_{ m Ag}$	${\overset{79}{\mathrm{A}}}_{\overset{196.97}{\mathrm{Oro}}}$	$\underset{\text{Roentgenio}}{\text{III}} \text{ 280}$	$\overset{\textbf{64}}{\text{Gadolinio}}$	$\overset{96}{Cm}_{\text{Curio}}$	
			10 VIIIB	$\sum_{\text{Niquel}}^{28} \sum_{\text{58.693}}^{58.693}$	$\overset{\textbf{46}}{P}\overset{\textbf{106.42}}{\textbf{d}}$	$\Pr^{78}_{\text{P}}^{195.08}$	$\displaystyle \bigcup_{\text{Darmstadtio}}^{281}$	$\overset{\textbf{63}}{\text{Europio}}$	$\overset{95}{Am}^{243}$	
			9 VIIIB	$\bigcup_{\text{Cobalto}}^{27} \bigcup_{\text{Cobalto}}^{58.933}$	$\mathop{Rh}\limits^{45~102.91}_{\text{Rodio}}$	$\overline{\Gamma}$ 192.22 $\overline{\Gamma}$ Iridio	$\underset{\text{Meitnerio}}{109} 268$	$\overset{62}{S}\overset{150.36}{m}$	$\overset{94}{Pu}^{244}$	
		ro.	8 VIIIB	$\overset{26}{F}\overset{55.845}{e}$	${\overset{44}{R}}_{\overset{101.07}{L}}$	$\overset{76}{\text{OS}}$	$\overset{108}{\text{Hassio}}_{\text{Assio}}$	$\overset{\text{61}}{P}\overset{\text{145}}{m}$	93 237 Neptunio	
	gía:	Naturales ntéticos	7 VIIB	$\overset{25}{N}\overset{54.938}{\mathbf{n}}$	$\frac{43}{1}$	$\mathop{Renio}_{\text{Renio}}^{75}$	$\underset{\text{Bohrio}}{\text{107}}$	$\overset{60}{N}\overset{144.24}{\text{d}}$	$\bigcup_{\text{Uranio}}^{92 238.03}$	
	Simbología:	Negro: Na Gris: Sint	6 VIB	$\overset{24}{\overset{51.996}{\mathbf{\Gamma}}}$ Cromo	${\displaystyle \sum_{\text{Molybdeno}}^{42}}$	$\frac{74}{\text{VM}}$	$\overset{106}{S}\overset{266}{8}$	$\Pr_{Pras \otimes dymio}^{59 \ 140.91}$	$\overset{91}{P}\overset{231.04}{a}$	
	Sin	\mathbf{S}^{A_r} Simbolo	5 VB	$\sum_{\text{Vanadio}}^{23 50.942}$	\mathop{Niobio}^{41}	$\prod_{ ext{Tantalo}}^{ ext{73}}$	$\bigcup_{\text{Dubnio}}^{105}$	$\overset{58}{\overset{140.12}{\text{e}}}$	$\prod_{Torio}^{90-232.04}$	
			4 IVB	$\prod_{Titanio}^{22} 47.867$	$\overset{40}{Z}\overset{91.224}{r}$ Circonio	$\prod_{Hafhio}^{72} \prod_{Hafhio}^{72}$	$\Pr^{104}_{\text{Rtherfordio}}$	$\overset{57}{La}$	${\overset{89}{ ext{AC}}}^{227}$	
			3 IIIA	$\mathop{Sc}\limits^{21\ 44.956}\limits_{\text{Escandio}}$	$\sum_{\text{trio}}^{39 88.906}$	57-71		s -terreos		nidos
	2 IIA	$\mathop{Berilio}^{4}$	$\overline{\mathrm{Magnesio}}^{12}$	$\overset{20}{C}\overset{40.078}{\mathbf{a}}$	$\overset{38}{\mathrm{ST}}\overset{87.62}{\mathrm{r}}$ Stroncio	$\overset{56}{Bario}_{\text{Bario}}$	$\mathop{Radio}^{88}_{226}$	Alcalino Alcalino	te J o	obles los/Actín
1 IA	$\prod_{Hidrógeno}^{1}$	$\sum_{\text{Litio}}^{3} \frac{6.941}{\text{Litio}}$	$\overset{\text{11}}{\overset{22.990}{\text{N}}}$	$\sum_{\text{Potasio}}^{19 \ 39.098}$	$\overset{37}{R}\overset{85.468}{b}$	\sum_{Cesio}^{55}	$\overset{87}{\text{Francio}}^{223}$	Metales Alcalinos Metales Alcalino-terreos Metal	Metaloide No metal Halógeno	Gases Nobles Lantánidos/Actínidos
	П	2	೫	4	Ŋ	9	7			