	<pre>### Import required libraries : import numpy as np import matplotlib.pyplot as plt %matplotlib inline import random from sklearn.metrics import classification import tensorflow as tf import keras</pre>	ation_report, confusion_matrix
	<pre>from keras.layers import Dense, Conv2D from keras.models import Sequential import os import cv2</pre>	D, MaxPooling2D, Flatten, Dropout, BatchNormalization ImageDataGenerator, array_to_img, img_to_array, load_img
In []:	<pre>### Instantiating ImageDataGenerator : train_datagen = ImageDataGenerator(rotation_range = 40, width_shift_range = 0.2, height_shift_range = 0.2, shear_range = 0.2, zoom_range = 0.2, horizontal_flip = True,</pre>	
	<pre>fill_mode = 'nearest') ### Defining imageGenerator function t def imageGenerator(pc_directory, image train_generator = train_datagen.fl pc_directory, target_size = (imagesize, imagesize)</pre>	esize, save_directory): Low_from_directory(
	<pre>batch_size = 20, #class_mode = 'binary', save_to_dir = save_directory, save_prefix = 'cat', save_format = 'jpg') print(train_generator.class_indice ## Iterarter to produce new images</pre>	
in []:	<pre>imagesize = 128 save_directory = r'C:\Users\hp\OneDriv imageGenerator(pc_directory, imagesize pc_directory = r'C:\Users\hp\OneDrive\</pre>	Desktop\AI\Deep Learning\Datasets\Simplilearn project datasets\1577957291_deeplearningwithkerasandtensorflow project; ve\Desktop\AI\Deep Learning\Datasets\Simplilearn project datasets\1577957291_deeplearningwithkerasandtensorflow project
ı [19]:	<pre>imagesize = 128 save_directory = r'C:\Users\hp\OneDriv imageGenerator(pc_directory, imagesize ### Function to load data from the pc def load_data(DATA_DIR, CATEGORIES, di data = [] for category in CATEGORIES: path = os.path.join(DATA_DIR,</pre>	: irectory):
	<pre>path = os.path.join(path, cate class_names = CATEGORIES.index for image in os.listdir(path): img_array = cv2.imread(os. data.append([img_array, c]) return data</pre>	egory) ((category) path.join(path, image)) Lass_names])
n [20]: ut[20]: n [21]:	<pre>CATEGORIES_2 = ['cats', 'dogs'] directory = 'train' training_data = load_data(DATA_DIR, CAtype(training_data)</pre>	ktop\AI\Deep Learning\Datasets\Simplilearn project datasets\1577957291_deeplearningwithkerasandtensorflow project3\data
1 [22]:	<pre>directory = 'test' CATEGORIES = ['cats', 'dogs'] testing_data = load_data(DATA_DIR, CATEGORIES, directory)</pre>	
	<pre>## Checking whether the data is shuff! print('Train_labels :') for img in training_data[:10]: print(img[1]) ## Checking whether the data is shuff! print('Test_labels :') for img in testing_data[:10]: print(img[1])</pre>	
	<pre>len(training_data) Train_labels : 0 0 1 1 1 1 1 0 0</pre>	
	0 1 Test_labels : 1 0 0 1 1 0 0 0 0 0 0	
ut[22]: n [23]:	1 1 0 8040 ### No.of images in train and test dat print('training data length :', len(tr print('testing data length :', len(testining data length : 8040	caining_data))
1 [24]:	<pre>### Splitting the data into train and X_train = [] y_train = [] X_test = [] y_test = [] for feature, label in training_data: X_train.append(feature)</pre>	test splits :
	<pre>y_train.append(label) for feature, label in testing_data: X_test.append(feature) y_test.append(label) print('No.of images in X_train :', ler print('No.of images in y_train :', ler print('=' * 40) print('No.of labels in X_test :', len(</pre>	n(y_train)) (X_test))
	<pre>def resize_image(data): resized_data = []</pre>	==
r	<pre>image_size = 128 for image in data:</pre>	<pre>(image_size, image_size), interpolation = cv2.INTER_NEAREST)</pre>
[26]:	<pre>def array_conv(data): data = np.asarray(data) return data X_train_arr = array_conv(X_train_resized) X_test_arr = array_conv(X_test_resized) y_train_arr = array_conv(y_train) y_test_arr = array_conv(y_test) print(type(X_train_resized)) print(type(X_test_resized)) print(type(X_test_resized)) print('=' * 40)</pre>	
		==
	: (8040, 128, 128, 3)	
<pre>X_test_scaled = scaling_data(X_test_arr) n [29]: X_train_scaled.shape ut[29]: (8040, 128, 128, 3) n [30]: ### Plotting some of the images : plt.figure(figsize = (10, 10))</pre>		
	<pre>for i in range(80): plt.subplot(8, 10, i + 1) plt.imshow(X_train[i]) plt.xticks([]) plt.yticks([]) plt.xlabel(CATEGORIES[y_train[i]], color = 'white')</pre>	
	<pre>### Checking shapes of the train and test sets : print('X_train scaled shape :', X_train_scaled.shape) print('X_test scaled shape :', X_test_scaled.shape) print('=' * 40) print('y_train shape :', y_train_arr.shape) print('y_test shape :', y_test_arr.shape) X_train scaled shape : (8040, 128, 128, 3) X_test scaled shape : (20, 128, 128, 3)</pre>	
In []:		
	<pre>model = Sequential() model.add(Conv2D(32, (5, 5), input_sha model.add(MaxPooling2D((2, 2), (2, 2)) model.add(Conv2D(64, (5, 5), activation model.add(MaxPooling2D((2, 2), (2, 2)) model.add(Flatten()) model.add(Dense(32, activation = 'relumodel.add(Dropout(0.4)) model.add(Dense(2, activation = 'softm</pre>	on = 'relu')) () () () () () () () () () () () ()
	model.summary() Model: "sequential_1" Layer (type) Output Sha	ape Param # ====================================
	conv2d_3 (Conv2D) (None, 58, max_pooling2d_3 (MaxPooling2 (None, 29, flatten_1 (Flatten) (None, 538, dense_2 (Dense) (None, 32, dense_3 (Dense) (None, 32, dense_3 (Dense) (None, 2)	, 29, 64) 0 824) 0 1722400
	Total params: 1,776,162 Trainable params: 1,776,162 Non-trainable params: 0 ### Compiling the model: model.compile(optimizer = 'adam',	
[34]:	Epoch 2/50 227/227 [===================================	epochs = 50, validation_split = 0.1) =] - 238s 987ms/step - loss: 0.7204 - accuracy: 0.5701 - val_loss: 0.4789 - val_accuracy: 0.7239 =] - 215s 946ms/step - loss: 0.4541 - accuracy: 0.7836 - val_loss: 0.2546 - val_accuracy: 0.8806 =] - 219s 963ms/step - loss: 0.2191 - accuracy: 0.9089 - val_loss: 0.1640 - val_accuracy: 0.9465
	227/227 [===================================	=] - 215s 949ms/step - loss: 0.1044 - accuracy: 0.9588 - val_loss: 0.0569 - val_accuracy: 0.9776 =] - 213s 938ms/step - loss: 0.1276 - accuracy: 0.9619 - val_loss: 0.0633 - val_accuracy: 0.9764 =] - 216s 952ms/step - loss: 0.0390 - accuracy: 0.9863 - val_loss: 0.2272 - val_accuracy: 0.9279 =] - 219s 967ms/step - loss: 0.0875 - accuracy: 0.9679 - val_loss: 0.0341 - val_accuracy: 0.9888 =] - 213s 939ms/step - loss: 0.0216 - accuracy: 0.9906 - val_loss: 0.0632 - val_accuracy: 0.9764 =] - 214s 942ms/step - loss: 0.0302 - accuracy: 0.9886 - val_loss: 0.0411 - val_accuracy: 0.9838
	Epoch 10/50 227/227 [===================================	=] - 212s 933ms/step - loss: 0.0360 - accuracy: 0.9870 - val_loss: 0.0704 - val_accuracy: 0.9776 =] - 207s 913ms/step - loss: 0.0218 - accuracy: 0.9921 - val_loss: 0.1261 - val_accuracy: 0.9764 =] - 207s 913ms/step - loss: 0.0847 - accuracy: 0.9767 - val_loss: 0.0474 - val_accuracy: 0.9863 =] - 207s 912ms/step - loss: 0.0134 - accuracy: 0.9957 - val_loss: 0.0247 - val_accuracy: 0.9913 =] - 209s 919ms/step - loss: 0.0180 - accuracy: 0.9940 - val_loss: 0.0529 - val_accuracy: 0.9813
	227/227 [===================================	=] - 208s 916ms/step - loss: 0.0448 - accuracy: 0.9876 - val_loss: 0.0390 - val_accuracy: 0.9838 =] - 26174s 116s/step - loss: 0.0250 - accuracy: 0.9926 - val_loss: 0.0185 - val_accuracy: 0.9913 =] - 223s 983ms/step - loss: 0.0154 - accuracy: 0.9957 - val_loss: 0.0523 - val_accuracy: 0.9838 =] - 214s 944ms/step - loss: 0.0095 - accuracy: 0.9961 - val_loss: 0.0413 - val_accuracy: 0.9900 =] - 218s 962ms/step - loss: 0.0148 - accuracy: 0.9956 - val_loss: 0.0253 - val_accuracy: 0.9900 =] - 303s 1s/step - loss: 0.0174 - accuracy: 0.9955 - val_loss: 0.0291 - val_accuracy: 0.9925
	Epoch 21/50 227/227 [===================================	=] - 311s 1s/step - loss: 0.0060 - accuracy: 0.9987 - val_loss: 0.0453 - val_accuracy: 0.9913 =] - 302s 1s/step - loss: 0.0057 - accuracy: 0.9978 - val_loss: 0.0947 - val_accuracy: 0.9689 =] - 265s 1s/step - loss: 0.0297 - accuracy: 0.9904 - val_loss: 0.0468 - val_accuracy: 0.9888
	Epoch 24/50 227/227 [===================================	=] - 281s 1s/step - loss: 0.0114 - accuracy: 0.9963 - val_loss: 0.0234 - val_accuracy: 0.9888 =] - 302s 1s/step - loss: 0.0096 - accuracy: 0.9973 - val_loss: 0.0439 - val_accuracy: 0.9863
	227/227 [===================================	
	227/227 [===================================	=] - 302s 1s/step - loss: 0.0096 - accuracy: 0.9973 - val_loss: 0.0439 - val_accuracy: 0.9863 =] - 317s 1s/step - loss: 0.0220 - accuracy: 0.9928 - val_loss: 0.0282 - val_accuracy: 0.9925 =] - 289s 1s/step - loss: 0.0077 - accuracy: 0.9965 - val_loss: 0.0275 - val_accuracy: 0.9925 =] - 251s 1s/step - loss: 0.0073 - accuracy: 0.9980 - val_loss: 0.0222 - val_accuracy: 0.9938 =] - 244s 1s/step - loss: 0.0045 - accuracy: 0.9984 - val_loss: 0.0622 - val_accuracy: 0.9838 =] - 250s 1s/step - loss: 0.0083 - accuracy: 0.9955 - val_loss: 0.0300 - val_accuracy: 0.9913
	227/227 [===================================	= 302s 1s/step - loss: 0.0096 - accuracy: 0.9973 - val_loss: 0.0439 - val_accuracy: 0.9863 = - 317s 1s/step - loss: 0.0220 - accuracy: 0.9928 - val_loss: 0.0282 - val_accuracy: 0.9925 = - 289s 1s/step - loss: 0.0077 - accuracy: 0.9965 - val_loss: 0.0275 - val_accuracy: 0.9925 = - 251s 1s/step - loss: 0.0073 - accuracy: 0.9980 - val_loss: 0.0222 - val_accuracy: 0.9938 = - 244s 1s/step - loss: 0.0045 - accuracy: 0.9984 - val_loss: 0.0622 - val_accuracy: 0.9838 = - 250s 1s/step - loss: 0.0083 - accuracy: 0.9955 - val_loss: 0.0300 - val_accuracy: 0.9913 = - 222s 980ms/step - loss: 0.0040 - accuracy: 0.9988 - val_loss: 0.0206 - val_accuracy: 0.9938 = - 222s 980ms/step - loss: 0.0191 - accuracy: 0.9941 - val_loss: 0.0235 - val_accuracy: 0.9925 = - 222s 976ms/step - loss: 0.0128 - accuracy: 0.9969 - val_loss: 0.0780 - val_accuracy: 0.9801 = - 221s 974ms/step - loss: 0.1188 - accuracy: 0.9985 - val_loss: 0.0376 - val_accuracy: 0.9900 = - 222s 980ms/step - loss: 0.0062 - accuracy: 0.9978 - val_loss: 0.0291 - val_accuracy: 0.9950 = - 222s 980ms/step - loss: 0.0056 - accuracy: 0.9982 - val_loss: 0.0252 - val_accuracy: 0.9950 = - 244s 1s/step - loss: 0.0057 - accuracy: 0.9984 - val_loss: 0.0136 - val_accuracy: 0.9950 = - 258s 1s/step - loss: 0.0343 - accuracy: 0.9984 - val_loss: 0.0344 - val_accuracy: 0.9964 = - 258s 1s/step - loss: 0.0115 - accuracy: 0.9975 - val_loss: 0.0334 - val_accuracy: 0.9900 = - 256s 1s/step - loss: 0.0117 - accuracy: 0.9975 - val_loss: 0.0638 - val_accuracy: 0.9888 = - 2598 1s/step - loss: 0.0187 - accuracy: 0.9915 - val_loss: 0.0638 - val_accuracy: 0.9888
	227/227 [===================================	= - 302s 1s/step - loss: 0.0096 - accuracy: 0.9973 - val_loss: 0.0439 - val_accuracy: 0.9863 = - 317s 1s/step - loss: 0.0220 - accuracy: 0.9928 - val_loss: 0.0282 - val_accuracy: 0.9925 = - 289s 1s/step - loss: 0.0077 - accuracy: 0.9965 - val_loss: 0.0275 - val_accuracy: 0.9925 = - 251s 1s/step - loss: 0.0073 - accuracy: 0.9980 - val_loss: 0.0222 - val_accuracy: 0.9938 = - 244s 1s/step - loss: 0.0045 - accuracy: 0.9984 - val_loss: 0.0622 - val_accuracy: 0.9938 = - 250s 1s/step - loss: 0.0045 - accuracy: 0.9955 - val_loss: 0.0300 - val_accuracy: 0.9913 = - 222s 980ms/step - loss: 0.0040 - accuracy: 0.9988 - val_loss: 0.0206 - val_accuracy: 0.9938 = - 233s 983ms/step - loss: 0.0191 - accuracy: 0.9941 - val_loss: 0.0235 - val_accuracy: 0.9925 = - 222s 976ms/step - loss: 0.0128 - accuracy: 0.9969 - val_loss: 0.0780 - val_accuracy: 0.9801 = - 221s 974ms/step - loss: 0.1188 - accuracy: 0.9835 - val_loss: 0.0376 - val_accuracy: 0.9990 = - 222s 980ms/step - loss: 0.0062 - accuracy: 0.9978 - val_loss: 0.0291 - val_accuracy: 0.9950 = - 220s 968ms/step - loss: 0.0056 - accuracy: 0.9982 - val_loss: 0.0252 - val_accuracy: 0.9950 = - 244s 1s/step - loss: 0.0057 - accuracy: 0.9984 - val_loss: 0.1136 - val_accuracy: 0.9964 = - 258s 1s/step - loss: 0.0315 - accuracy: 0.9975 - val_loss: 0.0376 - val_accuracy: 0.9980 = - 256s 1s/step - loss: 0.0116 - accuracy: 0.9975 - val_loss: 0.0576 - val_accuracy: 0.9813 = - 251s 1s/step - loss: 0.0187 - accuracy: 0.9915 - val_loss: 0.0638 - val_accuracy: 0.9888
t[34]:	227/227 [===================================	3025 15/Step - loss: 0.0096 - accuracy: 0.9973 - val_loss: 0.0439 - val_accuracy: 0.9963
t[34]: [35]:	27/227 [===================================	
ut[34]: n [35]: ut[35]: n [50]: ut[50]:	227/227 [===================================	3025 1x/step loss: 0.0096 accuracy: 0.9973 valloss: 0.0439 vallaccuracy: 0.9863 3175 1x/step loss: 0.0220 accuracy: 0.9926 valloss: 0.0222 vallaccuracy: 0.9925 3295 1x/step loss: 0.0277 accuracy: 0.9986 valloss: 0.0225 vallaccuracy: 0.9938 3295 1x/step loss: 0.0077 accuracy: 0.9986 valloss: 0.0225 vallaccuracy: 0.9938 3246 1x/step loss: 0.0087 accuracy: 0.9986 valloss: 0.0222 vallaccuracy: 0.9938 3285 1x/step loss: 0.0083 accuracy: 0.9986 valloss: 0.0222 vallaccuracy: 0.9938 3285 980ms/step loss: 0.0083 accuracy: 0.9988 valloss: 0.0226 vallaccuracy: 0.9938 3225 980ms/step loss: 0.9101 accuracy: 0.9988 valloss: 0.0226 vallaccuracy: 0.9925 3225 980ms/step loss: 0.9128 accuracy: 0.9983 valloss: 0.0226 vallaccuracy: 0.9986 3225 980ms/step loss: 0.9128 accuracy: 0.9983 valloss: 0.0236 vallaccuracy: 0.9990 3225 980ms/step loss: 0.0067 accuracy: 0.9983 valloss: 0.0291 vallaccuracy: 0.9990 3225 980ms/step loss: 0.0067 accuracy: 0.9983 valloss: 0.0257 vallaccuracy: 0.9960 3225 980ms/step loss: 0.0067 accuracy: 0.9984 valloss: 0.0257 vallaccuracy: 0.9960 3225 1x/step loss: 0.0067 accuracy: 0.9984 valloss: 0.0256 vallaccuracy: 0.9988 3256 1x/step loss: 0.0087 accuracy: 0.9975 valloss: 0.0256 vallaccuracy: 0.9988 3256 1x/step loss: 0.0084 accuracy: 0.9989 valloss: 0.0688 vallaccuracy: 0.9988 3256 1x/step loss: 0.0089 accuracy: 0.9989 valloss: 0.0387 vallaccuracy: 0.9988 3256 1x/step loss: 0.0019 accuracy: 0.9989 valloss: 0.0387 vallaccuracy: 0.9988 3256 1x/step loss: 0.0019 accuracy: 0.9989 valloss: 0.0387 vallaccuracy: 0.9988 3256 1x/step loss: 0.0019 accuracy: 0.9989 valloss: 0.0387 vallaccuracy: 0.9988 3258 1x/step loss: 0.0088 accuracy: 0.9989 valloss: 0.0387 vallaccuracy: 0.9988 3258 1x/step loss: 0.0080 accuracy: 0.9989 valloss: 0.0387 vallaccuracy: 0.9988
it[34]: it[35]: it[50]: it[50]: it[50]: it[50]:	227/227 [===================================	3025 15/31ep - 1055: 0.0006 - accuracy: 0.9973 - val_loss: 0.0439 - val_accuracy: 0.9885 3175 15/31ep - 1056: 0.0272 - accuracy: 0.9906 - val_loss: 0.0225 - val_accuracy: 0.9925 3253 15/31ep - 1056: 0.0073 - accuracy: 0.9906 - val_loss: 0.0225 - val_accuracy: 0.9938 2445 15/31ep - 1055: 0.0086 - accuracy: 0.9906 - val_loss: 0.0222 - val_accuracy: 0.9938 2445 15/31ep - 1055: 0.0086 - accuracy: 0.9906 - val_loss: 0.0222 - val_accuracy: 0.9938 2253 9585/11ep - 1055: 0.0086 - accuracy: 0.9908 - val_loss: 0.0206 - val_accuracy: 0.9908 2225 9585/31ep - 1055: 0.0123 - accuracy: 0.9908 - val_loss: 0.0206 - val_accuracy: 0.9908 2225 9785/31ep - 1055: 0.0124 - accuracy: 0.9908 - val_loss: 0.0206 - val_accuracy: 0.9908 2225 9785/31ep - 1055: 0.0125 - accuracy: 0.9908 - val_loss: 0.0207 - val_accuracy: 0.9908 2225 9785/31ep - 1055: 0.0125 - accuracy: 0.9908 - val_loss: 0.0207 - val_accuracy: 0.9908 2225 9785/31ep - 1055: 0.0082 - accuracy: 0.9908 - val_loss: 0.0207 - val_accuracy: 0.9908 2225 98085/31ep - 1055: 0.0082 - accuracy: 0.9908 - val_loss: 0.0252 - val_accuracy: 0.9950 2245 15/31ep - 1055: 0.0055 - accuracy: 0.9908 - val_loss: 0.0252 - val_accuracy: 0.9950 245 15/31ep - 1055: 0.0015 - accuracy: 0.9908 - val_loss: 0.0334 - val_accuracy: 0.9964 245 15/31ep - 1055: 0.0155 - accuracy: 0.9975 - val_loss: 0.0335 - val_accuracy: 0.9988 2555 15/31ep - 1055: 0.0107 - accuracy: 0.9975 - val_loss: 0.0358 - val_accuracy: 0.9988 2556 15/31ep - 1055: 0.0016 - accuracy: 0.9975 - val_loss: 0.0338 - val_accuracy: 0.9988 275 15/31sp - 1055: 0.0002 - accuracy: 0.9975 - val_loss: 0.0336 - val_accuracy: 0.9988 275 15/31sp - 1055: 0.0006 - accuracy: 0.9995 - val_loss: 0.0336 - val_accuracy: 0.9988 275 15/31sp - 1055: 0.0006 - accuracy: 0.9996 - val_loss: 0.0336 - val_accuracy: 0.9888 275 15/31sp - 1055: 0.0006 - accuracy: 0.9996 - val_loss: 0.0336 - val_accuracy: 0.9938 276 276 15/31sp - 1055: 0.0006 - accuracy: 0.9998 - val_loss: 0.0336 - val_accurac
ut[34]: n [35]: ut[35]: n [50]: ut[50]: n [54]: n [54]: n [57]: ut[57]:	227/227 [===================================	3022 ls/step
ut[34]: n [35]: ut[35]: n [50]: ut[50]: n [54]: n [54]: n [57]: ut[57]:	227/227 [===================================	3075 tar/step loss: 0.8006 accuracy: 0.8073 vall.loss: 0.0430 vall.accuracy: 0.8063 2 347 tar/step loss: 0.8075 accuracy: 0.8080 vall.loss: 0.0275 vall.accuracy: 0.8080 vall.2005 vall.20
at[34]: at[35]: at[50]: at[50]: at[50]: at[54]: at[54]: at[57]: at[57]:	227/227 [===================================	3075 tar/step loss: 0.8006 accuracy: 0.8073 vall.loss: 0.0430 vall.accuracy: 0.8063 2 347 tar/step loss: 0.8075 accuracy: 0.8080 vall.loss: 0.0275 vall.accuracy: 0.8080 vall.2005 vall.20
It [34]: It [35]: It [50]: It [50]: It [57]: It [57]: It [57]: It [68]:	227/227 [===================================	9725 16/14/09 10/15 0.7895 Securitary 0.4997 Vel. Loss 0.4295 Vel. Loss 0