《高等数学》单元自测题

第五章 定积分 第六章 定积分应用

专业	班级	姓名_	学号
一、填空题			
$1. \int_{-\pi}^{\pi} x^4 \sin x dx$	<i>x</i> =	$_{\circ}$ 2. $\int_{1}^{+\infty}$	$\frac{dx}{x^4} = \underline{\hspace{1cm}}$
$3. \int_0^2 f(x) dx =$	。其中 f (.	$(x) = \begin{cases} x^2 \\ 2 - x \end{cases}$	$(0 \le x \le 1)$ $(1 < x \le 2)$ °
4. 利用定积分的	J几何意义计算定积分 \int_{-2}^{2}	$\sqrt{4-x^2}dx = \underline{\hspace{1cm}}$	o
5. 正弦曲线 y =	$\sin x$ 在[0, π]上与 x 轴所	所围成的平面图	形绕 x 轴旋转一周所得旋转体的体
积 V =	•		
二 、单项选择 。 1. 下列说法中正			
(A) $f(x)$ 在[a,b]上有界,则 $f(x)$ 在[a,b]上可积;			
(B) $f(x)$ 在 [a,b] 上连续,则 $f(x)$ 在 [a,b] 上可积;			
(C) $f(x)$ 在 [a,b] 上可积,则 $f(x)$ 在 [a,b] 上连续;			
(D) 以上说法都	『不正确。		
$2. \text{if } f(x) = \begin{cases} 2x \\ 2x \end{cases}$	$x \le 1,$ $x, x > 1$, $\emptyset \Phi(x) = \int_{0}^{x} \Phi(x) dx$	$\int_{0}^{x} f(t)dt$ $\pm [0, 1]$	2]上的表达式为()。
$(\mathbf{A}) \Phi(x) = \begin{cases} 2x, \\ x^2 \end{cases}$	$0 \le x \le 1, +1, 1 < x \le 2;$ (B) $\Phi(x) =$	$\begin{cases} 2x, & 0 \le x \le 1, \\ x^2, & 1 < x \le 2 \end{cases}$	(C) $2x$; (D) x^2 .
3. 设连续函数 <i>f</i>	f(x)满足: $f(x) = x + x$	$\int_0^1 f(x)dx,$	则 $f(x) = ($)。
(A) $\frac{3}{4}x + x^2$;	(B) $x + \frac{3}{4}x^2$;	(C) $\frac{3}{2}x +$	x^2 ; (D) $x + \frac{3}{2}x^2$.
4. 设 <i>f</i> (<i>u</i>) 连续	且 $\int_0^2 x f(x) dx \neq 0$,若	$k \int_0^1 x f(2x) dx =$	$= \int_0^2 x f(x) dx, \text{if } k = ()_\circ$
7	(B) 1; (C)	2;	(D) 4.
5. 下列反常积分中收敛的是 ()。			
(A) $\int_{1}^{+\infty} \frac{1}{x} dx;$	$(\mathbf{B}) \int_{1}^{+\infty} \frac{1}{\sqrt[3]{x^2}} dx;$	(C) $\int_0^1 \frac{1}{(x-x^2)^2}$	$\frac{1}{1} \int_{1}^{2} dx$; (D) $\int_{1}^{2} \frac{dx}{\sqrt{2-x}}$.

三、计算题

$$1. \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^3 x dx.$$

$$2. \int_0^2 x^3 \sqrt{4 - x^2} \, dx \, \circ$$

3.
$$\int_0^1 \ln(x^2+1) dx$$
.

$$4. \int_0^{\frac{\pi}{2}} e^{\sin x} \sin x \cos x dx$$

$$5. \lim_{x\to 0} \frac{\int_0^{x^2} t \cdot e^{-t^2} dt}{x^3 \sin x}.$$

四、应用题

1. 求由曲线 $y = \frac{1}{x}$ 与直线 y = x, x = 2 所围成平面图形的面积.

2. 求由曲线 $y = x^2$ 与直线 y = x 所围成的平面图形绕 x 轴旋转一周所得旋转体的体积.

3. 求由曲线 $r = 4\cos\theta \left(-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}\right)$ 所围成平面图形的面积.

4. 求曲线 $y = \frac{1}{2}x^2$ 上相应于 x 从 0 到 1 的一段弧的长度.