Due date: Thursday, November 30th

WS 2023-2024

Exercise 1. Let $u \in C^1(\mathbb{R})$ be such that

$$\int_{\mathbb{R}} u'(x) \, \varphi'(x) \, dx = 0$$

for every $\varphi \in C_c^{\infty}(\mathbb{R})$. Show that u is a linear function.

Hint: For each interval [a,b], carefully choose a sequence of functions $\varphi_k \in C^{\infty}(\mathbb{R})$ which approximate the characteristic function on [a,b] and send $k \to \infty$.

Exercise 2. Let $1 \leq p, q \leq \infty$. Show that given $f \in L^p(\mathbb{R}^n)$ and $g \in L^q(\mathbb{R}^n)$,

$$\left(\int_{\mathbb{R}^n} |fg|^k\right)^{\frac{1}{k}} dx \le \left(\int_{\mathbb{R}^n} |f|^p dx\right)^{\frac{1}{p}} \left(\int_{\mathbb{R}^n} |g|^q dx\right)^{\frac{1}{q}}$$

can only hold if

$$\frac{1}{k} = \frac{1}{p} + \frac{1}{q} \,.$$

Exercise 3. Show that for each $u \in C_c^1(\mathbb{R})$ it holds that

$$\sup_{\mathbb{R}} |u| \le \frac{1}{2} ||Du||_{L^1(\mathbb{R})}.$$

Exercise 4. Let $\Omega \in \mathbb{R}^n$ open and bounded.

(i) Show that

$$L^p(\Omega) \subset L^q(\Omega)$$

for all $1 \le q \le p \le \infty$.

- (ii) Let $(f_n)_n \subset L^p(\Omega)$. Show that if $f_n \to f$ uniformly, then $f \in L^p(\Omega)$ and $f_n \to f$ in L^p
- (iii) Let $(f_n)_n \subset L^p(\Omega)$. Show that $f_n \to f$ pointwise does not imply $f_n \to f$ in L^p .