Математическая статистика. Теория

Александр Сергеев

1 Введение

Процесс компиляции

вход $\xrightarrow{\text{лексический анализ}}$ токены $\xrightarrow{\text{парсинг}}$ дерево разбора $\xrightarrow{\text{вычисление/компиляция}}$ результат

Определение

Токен – неделимая единица парсинга

Синтаксически управляемая трансляция – технология написания парсеров, когда одновременно задаются и зависят друг от друга парсинг и вычисление (правила вычисления применяются прямо во время разбора)

Напоминание

Контекстно-свободная грамматика:

Алфавит Σ

Нетерминалы N

Стартовый нетерминал $S \in N$

Правила $P \subset N \times (N \cup \Sigma)^* : \langle A, \alpha \rangle \in P$ или $A \to \alpha$

 $\alpha \Rightarrow \beta$ – из α выводится за 1 шаг β , если $\alpha = \alpha_1 A \alpha_2, \beta = \alpha_1 \xi \alpha_2$ и есть правило $A \to \xi \in P$

Язык грамматики $L(\Gamma) = \{x | S \Rightarrow^* x, x \in \Sigma^* \}$

Определение

Грамматика $\Gamma \in LL(1)$, если из

$$S \Rightarrow^* xA\alpha \Rightarrow x\xi\alpha \Rightarrow^* xcy$$

$$S \Rightarrow^* xA\beta \Rightarrow x\eta\beta \Rightarrow^* xcz$$

$$c \in \Sigma$$
 или $c = \varepsilon, y = \varepsilon, z = \varepsilon$

следует $\xi = \eta$

Замечание

Буквы из конца латинского алфавита – строки из терминалов

Буквы из греческого алфавита – любые строки (возможно, содержащие

нетерминалы)

Замечание

Другими словами, если мы хотим, чтобы из нетерминала A получилась строка, начинающаяся на c, то у нас есть только одно правило для достижения этого

Определение

LL(k) – вместо символа c у нас k символов Из

$$S\Rightarrow^*xA\alpha\Rightarrow x\xi\alpha\Rightarrow^*xcy$$
 $S\Rightarrow^*xA\beta\Rightarrow x\eta\beta\Rightarrow^*xcz$ $c\in\Sigma^k$ или $c=\Sigma^{\leq k},y=\varepsilon,z=\varepsilon$ следует $\xi=\eta$

Замечание

LL(0)-грамматики задают линейные программы (обобщение архиваторов)

Утверждение

LL(1)-грамматики — это грамматики, для которых можно написать рекурсивный спуск

Определение

$$FIRST: (N \cup \Sigma)^* \to 2^{\Sigma \cup \{\varepsilon\}}$$
$$FOLLOW: N \to 2^{\Sigma \cup \{\$\}}$$

Пока будем считать, что бесполезных символов нет – из любого нетерминала можно вывести терминал

$$FIRST(\alpha) = \{c | \alpha \Rightarrow^* c\beta\} \cup \{\varepsilon | \alpha \Rightarrow^* \varepsilon\}$$
$$FOLLOW(A) = \{c | S \Rightarrow^* \alpha A c\beta\} \cup \{\$ | S \Rightarrow^* \alpha A\}$$

Теорема

Грамматика $\Gamma \in LL(1) \Leftrightarrow \forall A \to \alpha, A \to \beta$ выполнено

1.
$$FIRST(\alpha) \cap FIRST(\beta) = \emptyset$$

2.
$$\varepsilon \in FIRST(\alpha) \Rightarrow FIRST(\beta) \cap FOLLOW(A) = \emptyset$$

Лемма

$$\alpha = c\beta \Rightarrow FIRST(\alpha) = \{c\}$$

$$\alpha = \varepsilon \Rightarrow FIRST(\alpha) = \{\varepsilon\}$$

$$\alpha = A\beta \Rightarrow FIRST(\alpha) = FIRST(A) \setminus \varepsilon \cup (FIRST(\beta) \text{ if } \varepsilon \in FIRST(A))$$