

### **FORMALE SYSTEME**

ÜBUNG 13

Eric Kunze eric.kunze@tu-dresden.de

TU Dresden, 28. Januar 2022

## ÜBUNGSBLATT 13

Aufgabe 1

Resolution

Aufgabe 1

Resolution

Aufgabe 2

k-Färbbarkeit

Aufgabe 3

Aussagenlogik nur mit  $\rightarrow$ ?

Aufgabe 4

Polynomielle Abschlüsse

Aufgabe 5

Komplexität co-endlicher Sprachen

# **Aufgabe 1**

Resolution

#### KLAUSELFORM & RESOLUTION

- ▶ Eine Klausel  $L_1 \lor ... \lor L_n$  wir dargestellt als Menge  $\{L_1, ..., L_n\}$
- ► Eine Konjunktion von Klauseln  $K_1 \wedge ... \wedge K_\ell$  wird dargestellt als Menge  $\{K_1, ..., K_\ell\}$

Eine Menge von Mengen von Literalen unter dieser Interpretation heißt Klauselform.

#### **KLAUSELFORM & RESOLUTION**

- ► Eine Klausel  $L_1 \lor ... \lor L_n$  wir dargestellt als Menge  $\{L_1, ..., L_n\}$
- ► Eine Konjunktion von Klauseln  $K_1 \wedge ... \wedge K_\ell$  wird dargestellt als Menge  $\{K_1, ..., K_\ell\}$

Eine Menge von Mengen von Literalen unter dieser Interpretation heißt Klauselform.

Gegeben seien zwei Klauseln  $K_1$  und  $K_2$  für die es ein Atom  $p \in$ 

**P** gibt mit  $p \in K_1$  und  $\neg p \in K_2$ .

Die Resolvente von  $K_1$  und  $K_2$  bezüglich p ist die Klausel

$$(K_1 \setminus \{p\}) \cup (K_2 \setminus \{\neg p\})$$

Eine Klausel R ist eine Resolvente einer Klauselmenge K wenn R Resolvente zweier Klauseln  $K_1, K_2 \in K$  ist.

Wir betrachten Klauseln  $\{L_1, \ldots, L_n, p\}$  und  $\{\neg p, M_1, \ldots, M_\ell\}$ :

Wir betrachten Klauseln  $\{L_1, \ldots, L_n, p\}$  und  $\{\neg p, M_1, \ldots, M_\ell\}$ :

$$\blacktriangleright \ \{L_1, \ldots, L_n, p\} \equiv (L_1 \vee \ldots \vee L_n \vee p) \equiv (\neg L_1 \wedge \ldots \wedge \neg L_n) \rightarrow p$$

Wir betrachten Klauseln  $\{L_1, \ldots, L_n, p\}$  und  $\{\neg p, M_1, \ldots, M_\ell\}$ :

- $\blacktriangleright \{L_1,\ldots,L_n,p\} \equiv (L_1 \vee \ldots \vee L_n \vee p) \equiv (\neg L_1 \wedge \ldots \wedge \neg L_n) \rightarrow p$
- $\blacktriangleright \ \{\neg p, M_1, \ldots, M_\ell\} \equiv (\neg p \lor M_1 \lor \ldots \lor M_\ell) \equiv p \to (M_1 \lor \ldots \lor M_\ell)$

Wir betrachten Klauseln  $\{L_1, \ldots, L_n, p\}$  und  $\{\neg p, M_1, \ldots, M_\ell\}$ :

- $\blacktriangleright \{L_1,\ldots,L_n,p\} \equiv (L_1 \vee \ldots \vee L_n \vee p) \equiv (\neg L_1 \wedge \ldots \wedge \neg L_n) \rightarrow p$
- $\blacktriangleright \ \{\neg p, M_1, \ldots, M_\ell\} \equiv (\neg p \lor M_1 \lor \ldots \lor M_\ell) \equiv p \to (M_1 \lor \ldots \lor M_\ell)$

Daraus folgt unmittelbar  $(\neg L_1 \land ... \land \neg L_n) \rightarrow (M_1 \lor ... \lor M_\ell)$  $\leadsto$  dies entspricht der Klausel  $\{L_1, ..., L_n, M_1, ..., M_\ell\}$ 

Wir betrachten Klauseln  $\{L_1, \ldots, L_n, p\}$  und  $\{\neg p, M_1, \ldots, M_\ell\}$ :

- $\blacktriangleright \{L_1,\ldots,L_n,p\} \equiv (L_1 \vee \ldots \vee L_n \vee p) \equiv (\neg L_1 \wedge \ldots \wedge \neg L_n) \rightarrow p$
- $\blacktriangleright \ \{\neg p, M_1, \dots, M_\ell\} \equiv (\neg p \lor M_1 \lor \dots \lor M_\ell) \equiv p \to (M_1 \lor \dots \lor M_\ell)$

Daraus folgt unmittelbar  $(\neg L_1 \land ... \land \neg L_n) \rightarrow (M_1 \lor ... \lor M_\ell)$  $\leadsto$  dies entspricht der Klausel  $\{L_1, ..., L_n, M_1, ..., M_\ell\}$ 

**Satz:** Wenn R Resolvente der Klauseln  $K_1$  und  $K_2$  ist, dann gilt  $\{K_1, K_2\} \models R$ .

- ► Die leere Klausel ist eine Disjunktionen von 0 Literalen, also gerade ⊥ (neutrales Element von ∨)
- ► ⊥ in einer Konjunktion macht die gesamte Formel falsch (unerfüllbar).
- ► Lässt sich ⊥ ableiten, so ist die Formel unerfüllbar.

### DAS RESOLUTIONSKALKÜL

#### Resolution

Gegeben: Formel  $\mathcal{F}$  in Klauselform Gesucht: Ist  $\mathcal{F}$  erfüllbar oder unerfüllbar?

- (1) Finde ein Klauselpaar  $K_1, K_2 \in \mathcal{F}$  mit Resolvente  $R \notin \mathcal{F}$
- (2) Setze  $\mathcal{F} := \mathcal{F} \cup \{R\}$
- (3) Wiederhole Schritt (1) und (2) bis keine neuen Resolventen gefunden werden können
- (4) Falls  $\perp \in \mathcal{F}$ , dann gib "unerfüllbar" aus; andernfalls gib "erfüllbar" aus

#### DAS RESOLUTIONSKALKÜL

#### Resolution

Gegeben: Formel  $\mathcal{F}$  in Klauselform Gesucht: Ist  $\mathcal{F}$  erfüllbar oder unerfüllbar?

- (1) Finde ein Klauselpaar  $K_1, K_2 \in \mathcal{F}$  mit Resolvente  $R \notin \mathcal{F}$
- (2) Setze  $\mathcal{F} := \mathcal{F} \cup \{R\}$
- (3) Wiederhole Schritt (1) und (2) bis keine neuen Resolventen gefunden werden können
- (4) Falls  $\perp \in \mathcal{F}$ , dann gib "unerfüllbar" aus; andernfalls gib "erfüllbar" aus

*Beobachtung:* Unerfüllbarkeit steht fest, sobald ⊥ abgeleitet wurde → dann kann man das Verfahren frühzeitig abbrechen

Erfüllbarkeit kann dagegen erst erkannt werden, wenn alle Resolventen erschöpfend gebildet worden sind

Prüfen Sie die folgende Formel mittels Resolutionsverfahren auf Erfüllbarkeit:

a) 
$$b \wedge (a \vee b) \wedge (\neg b \vee c) \wedge (\neg b \vee \neg c) \wedge (\neg a \vee c)$$

b) 
$$\neg (c \rightarrow ((\neg a \land b \land c) \lor (a \land \neg b)))$$

**(a)** Die Formel ist bereits in konjunktiver Normalform. Die zugehörige Klauselform lautet

$$\left\{ \left\{ b\right\} ,\left\{ a,b\right\} ,\left\{ \lnot b,c\right\} ,\left\{ \lnot b,\lnot c\right\} ,\lnot a,c\right\} .$$

Durchnummerieren liefert:

- (1) {*b*}
- (2)  $\{a, b\}$
- (3)  $\{\neg b, c\}$
- (4)  $\{\neg b, \neg c\}$
- (5)  $\{ \neg a, c \}$

Als Resolutionsschritte kann man beispielsweise folgende wählen:

- (6) {*c*}
- (1) + (3)

(7)  $\{\neg b\}$ 

(4) + (6)

(8) ⊥

(1) + (7)

Da die leere Klausel ableitbar ist, ist die Formel nicht erfüllbar.

(b) Transformation in konjunktive Normalform liefert

$$(c \wedge (a \vee \neg b \vee \neg c) \wedge (\neg a \vee b))$$

Klauselform:  $\{\{c\}, \{a, \neg b, \neg c\}, \{\neg a, b\}\}$ 

- $(1) \{c\}$
- (2)  $\{a, \neg b, \neg c\}$
- (3)  $\{\neg a, b\}$

Als Resolutionsschritte kann man beispielsweise folgende wählen:

(6) 
$$\{a, \neg b\}$$

$$(1) + (2)$$

(7) 
$$\{b, \neg b, \neg c\}$$
  
(8)  $\{a, \neg a, \neg c\}$ 

$$(2) + (3)$$
  
 $(2) + (3)$ 

(9) 
$$\{b, \neg b\}$$

$$(1) + (5)$$

(10) 
$$\{a, \neg a\}$$

$$(1) + (6)$$

(11) 
$$\{\neg a, b, \neg c\}$$

$$(3) + (5)$$

Man kann diesen Prozess nun noch weiter durchführen, allerdings wird man nie die leere Klausel ableiten können. Die Formel ist daher erfüllbar.

# Aufgabe 1

Resolution

Prüfen Sie mittels Resolution die folgenden Formeln jeweils auf Erfüllbarkeit:

a) 
$$a \wedge ((c \wedge b) \wedge ((\neg c \vee \neg b) \vee (a \wedge (c \wedge b))))$$
  
b)  $(\neg a \vee \neg b) \wedge (a \vee b) \wedge (\neg a \vee c) \wedge (a \vee \neg c)$   
 $\wedge (b \vee \neg d) \wedge (\neg b \vee d) \wedge (\neg c \vee d) \wedge (c \vee \neg d)$ 

# Aufgabe 2 k-Färbbarkeit

Eine k-Färbung für einen endlichen Graphen G ist eine Zuordnung der Knoten von G zu Werten ("Farben") in  $\{1, \ldots, k\}$ , so dass Knoten, die in G durch eine Kante verbunden sind, nicht denselben Wert zugeordnet bekommen.

Geben Sie für einen endlichen Graphen G=(V,E) mit n Knoten und einen Wert k eine aussagenlogische Formel  $\varphi_{G,k}$  an, so dass  $\varphi_{G,k}$  genau dann erfüllbar ist, wenn es eine k-Färbung von G gibt.

Wir bezeichnen die Menge aller Farben mit  $C_k = \{1, \ldots, k\}$ . Wir verwenden die aussagenlogischen Variablen  $p_{v,c}$  für  $v \in V$  und  $c \in C_k$  um auszudrücken, dass der Knoten v mit der Farbe c gefärbt wird.

▶ Jeder Knoten hat mindestens eine Farbe:

$$\varphi_{\geq 1} := \bigwedge_{v \in V} \bigvee_{c \in C_k} p_{v,c}$$

▶ Jeder Knoten hat höchstens eine Farbe:

$$\varphi_{\leq 1} := \bigwedge_{\substack{v \in V}} \bigvee_{\substack{c_1, c_2 \in C_k \\ c_1 \neq c_2}} \neg \left( p_{v, c_1} \land p_{v, c_2} \right)$$

► Benachbarte Knoten haben unterschiedliche Farben

$$\varphi_{\neq} := \bigwedge_{\substack{v_1, v_2 \in V \\ (v_1, v_2) \in E}} \bigvee_{c \in C_k} \neg \left( p_{v_1, c} \land p_{v_2, c} \right)$$

Die Formel  $\varphi_{G,k}$  ergibt sich dann als

$$\varphi_{G,k} := \varphi_{\geq 1} \wedge \varphi_{\leq 1} \wedge \varphi_{\neq}.$$

# **Aufgabe 3**

Aussagenlogik nur mit  $\rightarrow$ ?

- a) Es sei  $\varphi$  eine Formel, die ausschließlich den Junktor  $\to$  verwendet. Zeigen Sie: Wenn  $w(p_i) = 1$  für alle  $p_i \in Var(\varphi)$  ist, dann ist auch  $w(\varphi) = 1$ .
- b) Es sei  $\varphi$  eine allgemeine aussagenlogische Formel. Beweisen oder widerlegen Sie:  $\varphi$  ist äquivalent zu einer Formel, die ausschließlich den Junktor  $\to$  verwendet.

- (a) Induktion über den Aufbau von Formeln.
  - (IA) Sei  $\varphi = p \in \mathbf{P}$  ein Atom. Dann gilt  $w(p) = 1 \implies w(\varphi) = 1$ .
  - (IV) Seien  $\varphi_1, \varphi_2$  Formeln, die nur den Junktor  $\rightarrow$  verwenden und Folgendes erfüllen: Gilt  $w(p_1)=1$  für alle  $p_1\in \mathsf{Var}(\varphi_1)$ , dann gilt  $w(\varphi_1)=1$ ; sowie gilt  $w(p_2)=1$  für alle  $p_2\in \mathsf{Var}(\varphi_2)$ , dann gilt  $w(\varphi_2)=1$ .
  - (IS) Sei  $\varphi:=(\varphi_1 \to \varphi_2)$ . Es gilt  $\operatorname{Var}(\varphi)=\operatorname{Var}(\varphi_1) \cup \operatorname{Var}(\varphi_2)$ . Ist w(p)=1 für alle  $p \in \operatorname{Var}(\varphi)$ , so auch w(p)=1 für alle  $p \in \operatorname{Var}(\varphi_1)$  und w(p)=1 für alle  $p \in \operatorname{Var}(\varphi_2)$ . Per Induktionsvoraussetzung gilt dann auch  $w(\varphi_1)=1$  und  $w(\varphi_2)=1$ ; und somit schließlich  $w(\varphi)=w(\varphi_1 \to \varphi_2)=1$ .
- **(b)** Die Aussage ist falsch. Sei  $p \in \mathbf{P}$  ein Atom mit w(p) = 1. Dann gibt es keine zu  $\neg p$  äquivalente Formel mit nur dem Junktor  $\rightarrow$ .

Achtung: auch die "Abkürzungen"  $\top$  und  $\bot$  dürfen nicht verwendet werden, d.h.  $p\to \bot$  ist keine Formel, die nur den Junktor  $\to$  verwendet.

**Aufgabe 4** 

Polynomielle Abschlüsse

Seien  $\Sigma$  ein Alphabet und  $L, L_1, L_2 \subseteq \Sigma^*$  Sprachen mit  $L, L_1, L_2 \in \mathbf{P}$ . Zeigen Sie:

- a)  $L_1 \cup L_2, L_1 \circ L_2$  und  $\bar{L}$  sind in polynomieller Zeit entscheidbar.
- b)  $L^R=\{w^R:w\in L\}$  ist in polynomieller Zeit entscheidbar, wobei für  $w=a_1\dots a_n\in \Sigma^*$  das Rückwärtswort  $w^R$  definiert ist durch

$$w^R = a_n a_{n-1} \dots a_1$$

(und  $\varepsilon^R = \varepsilon$ ,  $a^R = a$  für  $a \in \Sigma$ ).

(a) Seien  $\mathcal{M}$ ,  $\mathcal{M}_1$  und  $\mathcal{M}_2$  polynomiell zeitbeschränkte Turingmaschinen.

 $\overline{\it L}$ : Die folgende Turingmaschine  $\overline{\it M}$  entscheidet  $\overline{\it L}$ :

Eingabe wSimuliere M auf w.

falls  $\mathcal M$  akzeptiert: verwerfe

falls M verwirft: akzeptiere

Da  $\mathcal{M}$  in polynomieller Zeit entscheidet, entscheidet auch  $\overline{\mathcal{M}}$  in polynomieller Zeit. Es gilt also  $\overline{L} \in \mathbf{P}$ .

 $L_1 \cup L_2$ : Die folgende Turingmaschine  $\mathcal{M}_{\cup}$  entscheidet  $L_1 \cup L_2$ : Eingabe w

Simuliere  $\mathcal{M}_1$  auf w.

falls  $\mathcal{M}_1$  akzeptiert: akzeptiere falls  $\mathcal{M}_1$  verwirft:

Simuliere  $\mathcal{M}_2$  auf w.

falls  $\mathcal{M}_2$  akzeptiert: akzeptiere falls  $\mathcal{M}_2$  verwirft: verwerfe

Sowohl  $\mathcal{M}_1$  als auch  $\mathcal{M}_2$  entscheiden ihren Teil in polynomieller Zeit und "polynomiell + polynomiell = polynomiell", d.h. auch

 $\mathcal{M}_{\cup}$  entscheidet in polynomieller Zeit. Somit gilt  $L_1 \cup L_2 \in \mathbf{P}$ .

(a) Seien weiterhin  $\mathcal{M},\,\mathcal{M}_1$  und  $\mathcal{M}_2$  polynomiell zeitbeschränkte Turingmaschinen.

```
L_1 \circ L_2: Die folgende Turingmaschine \mathcal{M}_{\circ} entscheidet L_1 \circ L_2:
          Eingabe w = a_1 \dots a_n
          Für alle 1 < k < n:
                Simuliere \mathcal{M}_1 auf a_1 \dots a_k.
                     falls \mathcal{M}_1 verwirft: wähle nächstes k
                     falls \mathcal{M}_1 akzeptiert:
                           Simuliere \mathcal{M}_2 auf a_{k+1} \dots a_n.
                                falls M_2 akzeptiert: akzeptiere
                                falls \mathcal{M}_2 verwirft: wähle nächstes k
          Sowohl \mathcal{M}_1 als auch \mathcal{M}_2 entscheiden ihren Teil in polynomieller
          Zeit. Die äußere Schleife wird maximal n mal durchlaufen, d.h.
          der Aufwand lässt sich salopp mit
                     n \cdot (polynomiell + polynomiell) = polynomiell
```

angeben. Daher ist  $L_1 \circ L_2 \in \mathbf{P}$ .

```
(b) Eingabe: w \in \Sigma^*.

Transformiere w zu w^R.

Simuliere \mathcal{M} auf w^R.

falls \mathcal{M} akzeptiert: akzeptiere

falls \mathcal{M} verwirft: verwerfe

Die Simulation von \mathcal{M} ist polynomiell nach Voraussetzung und die Transformation von w zu w^R ist offensichtlich auch polynomiell.

Somit ist L^R \in \mathbf{P}.
```

Komplexität co-endlicher Sprachen

**Aufgabe 5** 

Eine Sprache  $L \subseteq \Sigma^*$  ist *co-endlich* genau dann, wenn  $\bar{L}$  (also  $\Sigma^* \setminus L$ ) endlich ist.

Beweisen oder widerlegen Sie:

- a) Jede co-endliche Sprache ist in DTIME(n).
- b) Jede co-endliche Sprache ist in DTIME(1).

- (a) Die Aussage gilt. Jede endliche Sprache ist regulär und reguläre Sprachen sind unter Komplement abgeschlossen. Daher ist jede co-endliche Sprache regulär.
  - Da das Wortproblem für reguläre Sprachen in linearer Zeit entscheidbar ist, ist jede co-endliche Sprache in DTIME(n).
- **(b)** Auch diese Aussage gilt. Sei  $L \subseteq \Sigma^*$  co-endlich. Dann ist per Definition  $\overline{L}$  endlich.
  - ightharpoonup Ist  $\overline{L}=\emptyset$ , so ist  $L=\Sigma^*$  und damit offensichtlich in konstanter Zeit entscheidbar (akzeptiere alle Eingaben).
  - ⊳ Ist  $\overline{L} \neq \emptyset$ , so existiert (da  $\overline{L}$  endlich ist) ein längstes Wort  $w_{\max}$  mit  $|w_{\max}| = m$ . Somit muss jede Turingmaschine  $\mathcal M$  höchstens m Zeichen der Eingabe lesen (unabhängig von der Eingabe) und kann dann sofort  $w \in \overline{L}$  und damit  $w \in L$  entscheiden. Damit gilt nun: die Anzahl der Schritte von  $\mathcal M$  bei Eingabe  $w \in \Sigma^*$  sind durch  $f : \mathbb N \to \mathbb R$  mit  $f(n) = c_m$  charakterisiert, wobei  $c_m \in \mathbb R$  eine positive Konstante ist, die nur von m abhängt. Für dieses f gilt  $f \in \mathcal O(1)$ , da  $f(n) \le c_m \cdot 1$  für alle  $n \ge 0$  gilt. Damit folgt  $L \in \mathsf{DTIME}(1)$ .