1 Small prefix

Recall:

- L numberfield: $\iff L$ is a finite extension of \mathbb{Q} In particular: L/\mathbb{Q} is separable $\Rightarrow L/\mathbb{Q}$ is primitive, i.e. $L = \mathbb{Q}(\alpha), \mathbb{Q}[X] \ni f_{\alpha} = \min$ minimal polynomial of α over \mathbb{Q} and $[L:\mathbb{Q}] = \deg(f_{\alpha})$.
- $\mathcal{O} := \{ \alpha \in L \mid f_{\alpha} \in \mathbb{Z}[X] \}$ is called *ring of integers* (generalization of $\mathbb{Z} \subseteq \mathbb{Q}$). \mathcal{O} is an integral domain.
- Goal: study the ring \mathcal{O}
- Questions:
 - 1. What is \mathcal{O}^{\times} ? What is its structure?
 - 2. What are the prime ideals of \mathcal{O} ?
 - 3. Do we have a unique prime factorization, i.e. is \mathcal{O} a UFD?

1.1 Motivation

Problem 1.1.1 (Fermat's conjecture, \sim 1640). Show that the equation $x^n + y^n = z^n$ has no nontrivial integer solutions, i.e. solutions (x, y, z) with $x, y, z \in \mathbb{Z} \setminus \{0\}$ for $n \geq 3$.

History:

- 1770: Euler found solution for n=3
- 1825: Dirichlet and Legendre using Germain
- Kummer showed it for many primes, he showed as well that his idea doesn't work for all $n \in \mathbb{N}_{\geq 2}$
- Conjecture was proved by Wiles in 1997

Remark 1.1.2. i) If Fermat's is true for n, then also for nk for all $k \in \mathbb{N}$.

- ii) It is sufficient to prove Fermat's conjecture for n=4 and all odd primes.
- *Proof.* i) Suppose (x, y, z) is a nontrivial solution of $x^{nk} + y^{nk} = z^{nk} \Rightarrow (x^k, y^k, z^k)$ is a nontrivial solution to $x^n + y^n = z^n$.
 - ii) Follows from i).

Proposition 1.1.3 (n=2). Suppose $x, y, z \in \mathbb{Z}, \gcd(x, y, z) = 1$

- i) x, y, z are pairwise coprime if $x^2 + y^2 = z^2$
- ii) $x^2 + y^2 = z^2 \Rightarrow either x \text{ or } y \text{ is even}$
- iii) $x^2 + y^2 = z^2 \iff \exists r, s \in \mathbb{N}_0, \gcd(r, s) = 1 \text{ s.t. } x = \pm 2rs, y = \pm (r^2 s^2), z = \pm (r^2 + s^2).$

Proof. i) clear ✓

- ii) One of x, y, z has to be even, since $odd + odd \neq odd$. Suppose z is even. Then look at equation mod 4, this gives a contradiction. By i) only one of x and y is even.
- iii) " \Leftarrow ": calculation " \Rightarrow ": Wlog. assume $x, y, z \in \mathbb{N}_0$, x even, y, z odd: $\Rightarrow x = 2u, z + y = 2v, z - y = 2w, \gcd(w, v) = 1(y, z \text{ are coprime}), x^2 + y^2 = z^2$ $\Rightarrow 4u^2 = x^2 = z^2 - y^2 = (z - y)(z + y) = 4wv \Rightarrow u^2 = wv$

$$\overset{\gcd(v,w)=1}{\Longrightarrow} v = r^2, w = s^2 \Rightarrow z = v + w = r^2 + s^2, y = v - w = r^2 - s^2$$
and $x = 2u = 2\sqrt{vw} = 2rs$

Remark. $(x, y, z) \in \mathbb{Z}^3$ with $x^2 + y^2 = z^2$ are called pythagorean triples.

Proposition 1.1.4 (n = 4). The equation $x^4 + y^4 = z^2$ (and $x^4 + y^4 = z^4$) have no nontrivial integer solutions.

Proof. Suppose $x, y, z \in \mathbb{Z}$ with $x^4 + y^4 = z^2, xyz \neq 0$. Wlog x, y, z > 0, x, y, z coprime, $x = 2\tilde{x}$ for some $\tilde{x} \in \mathbb{N}$. Choose z minimal with this conditions.

Prop. 1.2
$$\Rightarrow \exists r, s \in \mathbb{N} \text{ s.t. } x^2 = 2rs, y^2 = r^2 - s^2, z = r^2 + s^2 \text{ and } \gcd(r, s) = 1$$

 $\Rightarrow y^2 + s^2 = r^2 \text{ with } y, s, r \text{ coprime.}$

Prop. 1.2
$$\Rightarrow \exists a, b \in \mathbb{N}$$
 s.t. $s = 2ab, y = a^2 - b^2, r = a^2 + b^2$ and $\gcd(a, b) = 1$.
plug in $\Rightarrow x^2 = 4ab(a^2 + b^2)$
 $\Rightarrow \tilde{x}^2 = ab(a^2 + b^2)$ and $a, b, a^2 + b^2$ pairwise coprime

As in proof of Prop. 1.2 (they are coprime but a square number)

$$\Rightarrow \exists c, d, e \in \mathbb{N} \text{ s.t. } a = c^2, b = d^2, a^2 + b^2 = e^2$$

 $\Rightarrow c^4 + d^4 = a^2 + b^2 = e^2 \text{ and } e < a^2 + b^2 = r < z$

f since z was chosen to be minimal.

From now on: n = p odd prime.

Idea 1.1.5 (by Germain). Distinguish 2 cases in Fermat's problem:

- 1. "First case": x, y, z with p does not divide xyz.
- 2. "Second case": exactly one of x, y, z is divided by p.

Some approach:

- Use primitive p-th root of unity $\zeta = \zeta_p$.
- Reminder: $X^p 1 = (X 1)(X \zeta) \dots (X \zeta^{p-1})$
- Setting $\tilde{y} = -y$ we get:

$$x^{p} + y^{p} = x^{p} - \tilde{y}^{p} = \tilde{y}^{p} \left(\left(\frac{x}{\tilde{y}} \right)^{p} - 1 \right)$$

$$= \tilde{y}^{p} \left(\frac{x}{\tilde{y}} - 1 \right) \left(\frac{x}{\tilde{y}} - \zeta \right) \dots \left(\frac{x}{\tilde{y}} - \zeta^{p-1} \right)$$

$$= (x - \tilde{y})(x - \tilde{y}\zeta) \dots (x - \tilde{y}\zeta^{p-1})$$

$$= (x + y)(x + y\zeta) \dots (x + y\zeta^{p-1})$$

Lemma 1.1.6. For $x, y, z \in \mathbb{Z}$ we have $x^p + y^p = z^p \iff (x+y)(x+y\zeta)\dots(x+y\zeta^{p-1}) = z^p$

<u>Idea:</u> Look at prime divisors in $\mathbb{Z}[\zeta]$.

<u>Problem:</u> Would be good to have unique prime factorization. This will not be true in general.

1.2 The ring $\mathbb{Z}[\zeta]$

Suppose ζ is a primitive *n*-th root of unity

Reminder 1.2.1. i) $\mathbb{Q}(\zeta)/\mathbb{Q}$ is algebraic extension of degree $[\mathbb{Q}(\zeta):\mathbb{Q}]=\varphi(n)$

- ii) $\mathbb{Q}(\zeta)/\mathbb{Q}$ is a Galois extension. In particular: $\operatorname{Hom}(\mathbb{Q}(\zeta)/\mathbb{Q}) \cong \operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q}) = \{\sigma_i \text{ with } \sigma_i(\zeta) = \zeta^i \mid i \in (\mathbb{Z}/n\mathbb{Z})^{\times}\} \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$
- iii) Consider the norm map $\mathcal{N}: \mathbb{Q}(\zeta) \to \mathbb{Q}$, $\alpha \mapsto \det(\gamma \mapsto \alpha \gamma)$. We have for $\alpha = r(\zeta)$ $(r \in \mathbb{Q}[X] \text{ polynomial})$ with min. polynomial $f_{\alpha} = X^k + c_{k-1}X^{k-1} + \cdots + c_0$:
 - If we have $\mathbb{Q}(\alpha) = \mathbb{Q}(\zeta)$, then $\mathcal{N}(\alpha) = (-1)^{\varphi(n)}c_0$
 - $\mathcal{N}(\alpha) = \prod_{\sigma \in \operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})} \sigma(\alpha) = \prod_{i \in (\mathbb{Z}/n\mathbb{Z})^{\times}} r(\zeta^{i})$
 - $\alpha \in \mathbb{Q} \Rightarrow \mathcal{N}(\alpha) = \alpha^{\varphi(n)}$

iv)
$$X^{n-1} + X^{n-2} + \dots + 1 = \frac{X^{n-1}}{X-1} = (X - \zeta)(X - \zeta^2) \dots (X - \zeta^{n-1})$$

 $\stackrel{X=1}{\Rightarrow} n = (1 - \zeta)(1 - \zeta^2) \dots (1 - \zeta^{n-1})$

Reminder 1.2.2 (and preview). i) $\mathcal{O} := \mathbb{Z}[\zeta] := \{r(\zeta) \mid r \in \mathbb{Z}[X]\}$

ii)
$$\mathbb{Z}[\zeta] = \{\alpha \in \mathbb{Q}(\zeta) \mid f_{\alpha} \in \mathbb{Z}[X]\}$$
 (proof later)

- iii) $\mathbb{Z}[\zeta]$ is a free \mathbb{Z} -module with basis $\{1, \zeta, \dots, \zeta^{d-1}\}$ with $d = \varphi(n)$ (proof later)
- iv) $\alpha \in \mathbb{Z}[\zeta] \Rightarrow \mathcal{N}(\alpha) \in \mathbb{Z}$ (proof later)
- v) $\{\alpha \in \mathcal{O} \mid |\alpha| = 1\}$ is finite (proof later)

Reminder 1.2.3. Suppose R is an integral domain:

- i) $\alpha \in R$ is irreducible: \iff If $\alpha = \alpha_1 \alpha_2$ with $\alpha_i \in R$, then $\alpha_1 \in R^{\times}$ or $\alpha_2 \in R^{\times}$
- ii) $\alpha, \alpha' \in R$ are associated to each other : $\iff \exists \varepsilon \in R^{\times} : \alpha = \varepsilon \alpha'$
- iii) R is called $factorial : \iff \text{each } \alpha \in R, \alpha \neq 0 \text{ can be written in a unique way as } \alpha = \varepsilon \pi_1 \cdot \ldots \cdot \pi_r \text{ with } \pi_i \text{ irreducible up to multiplication with } \varepsilon \in R^{\times}$
- iv) $\alpha_1, \alpha_2 \in R$ are called *coprime* : \iff If $\alpha' \in R$ with $\exists \beta_1, \beta_2 \in R : \alpha_1 = \alpha' \beta_1, \alpha_2 = \alpha' \beta_2$ then $\alpha' \in R^{\times}$.

Remark (and correction). 1. Recall: L/\mathbb{Q} field extensions:

$$\mathcal{O} := \{ \alpha \in L \mid f_{\alpha} \in \mathbb{Z}[X] \}$$

!! Here: f_{α} is by definition monic, i.e leading coefficient is 1.

Remark:
$$\mathcal{O} = \{ \alpha \in L \mid \exists f \in \mathbb{Z}[X] \text{ with } f \text{ monic and } f(\alpha) = 0 \}$$

"⊆": clear

"⊇": Lemma of Gauss

2. Recall: Definition of field norm for L/K finite field extension How is norm defined? $\mathcal{N}: L \to K$ defined as follows:

Suppose $\alpha \in L \Rightarrow \varphi_{\alpha} : \beta \mapsto \alpha\beta$ is linear map over K. Then:

$$\mathcal{N}_{L/K}(\alpha) := \det(\phi_{\alpha})$$

Properties:

- a) If $L = K(\alpha)$ and $X^n + c_{n-1}X^{n-1} + \cdots + c_0$ is a minimal polynomial of α over K, then $\mathcal{N}_{L|K}(\alpha) = (-1)^n c_0$.
- b) $\mathcal{N}_{L/K}(\alpha) = (\prod_{i=1}^r \sigma_i(\alpha))^q$ with $\operatorname{Hom}_K(L, \overline{K}) = \{\sigma_1, \dots, \sigma_r\}$ and $q = \operatorname{inseparable}$ ble degree, i.e. $[L:K] = [L:K]_s \cdot q$.
- c) $\alpha \in K \Rightarrow \mathcal{N}_{L|K}(\alpha) = \alpha^d$ with d = [L:K] (see Bosch "Algebra"4.7).

General reference: NEUKIRCH

This chapter: BOREVICH + SHAFEREVICH Chapter 3.1.

Recall: Goal: prove for p prime and odd

$$x^p + y^p = z^p$$

has no non-trivial solutions. Last time:

$$x^{p} + y^{p} = z^{p} = (x+y)(x+y\zeta)(x+y\zeta^{2})\dots(x+y\zeta^{p-1}) \in \mathbb{Z}[\zeta]$$

From now on: p odd prime, $\zeta = e^{\frac{2\pi i}{p}}$ primitive p - th root of unity $\mathcal{O} = \mathbb{Z}[\zeta]$.

Proposition 1.2.4. For the group of units \mathcal{O}^{\times} of $\mathcal{O} = \mathbb{Z}[\zeta]$ we have:

$$\mathcal{O}^{\times} = \{ \alpha \in \mathcal{O} \mid \mathcal{N}(\alpha) = \pm 1 \}$$

Notation: $\mathcal{N} = \mathcal{N}_{\mathbb{Q}(\zeta)/\mathbb{Q}}$ in this chapter.

Proof.
$$\subseteq$$
 " $\alpha \in \mathcal{O}^{\times} \Rightarrow \exists \beta \in \mathcal{O}$ with $\alpha\beta = 1 \Rightarrow 1 = N(\alpha\beta) \stackrel{!}{=} \underbrace{\mathcal{N}(\alpha)}_{\in \mathbb{Z}} \underbrace{\underbrace{\mathcal{N}(\beta)}_{\text{by 2.2 v}}}_{\in \mathbb{Z}} \Rightarrow \text{claim}$

" \supseteq ": Suppose $\alpha \in \mathcal{O}$ with $\mathcal{N}(\alpha) = \pm 1$.

$$\Rightarrow \pm 1 = \mathcal{N}(\alpha) = \prod_{\sigma \in Gal(\mathbb{Q}(\zeta)|\mathbb{Q})} \sigma(\alpha)$$

Note: $\alpha = a_0 + a_1 \zeta + \dots a_{p-2} \zeta^{p-2} \in \mathbb{Z}[\zeta]$

$$\Rightarrow \sigma(\alpha) = a_0 + a_1 \zeta^i + \dots + a_{p-2} \zeta^{i(p-2)} \text{ for some } i \in \{1, \dots, p-1\} \Rightarrow \sigma(\alpha) \in \mathbb{Z}[\zeta]$$

\Rightarrow \alpha \text{ is a divisor of 1 in } \mathbb{Z}[\zeta] \Rightarrow \alpha \in \mathcal{O}^\times.

Lemma 1.2.5.
i) $\mathcal{N}(1-\zeta^s) = p \text{ for } s \in \mathbb{Z} \text{ with } s \not\equiv 0 \mod p$

- ii) 1ζ is irreducible in $\mathcal{O} = \mathbb{Z}[\zeta]$.
- iii) $p = \varepsilon \cdot (1 \zeta)^{p-1}$ with some $\varepsilon \in \mathcal{O}^{\times}$.

Proof. i) 2.1. iv)
$$\Rightarrow p = (1 - \zeta)(1 - \zeta^2) \dots (1 - \zeta^{p-1})$$

2.1. iii) $\Rightarrow \mathcal{N}(1 - \zeta^s) = \prod_{\sigma \in \text{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})} \sigma(1 - \zeta^s) = \prod_{i=1}^{p-1} (1 - \zeta^{si}) = \prod_{j=1}^{p-1} (1 - \zeta^j) = p$

- ii) We obtain from i) that $1 \zeta \notin \mathcal{O}^{\times}$. Suppose $1 \zeta = \alpha \beta$ with $\alpha, \beta \in \mathcal{O}$ $\Rightarrow p = \mathcal{N}(1 \zeta) = \mathcal{N}(\alpha) \mathcal{N}(\beta) \Rightarrow \mathcal{N}(\alpha) = \pm 1$ or $\mathcal{N}(\beta) = \pm 1 \stackrel{\text{Prop 2.4}}{\Longrightarrow} \alpha \in \mathcal{O}^{\times}$ or $\beta \in \mathcal{O}^{\times}$.
- iii) Use: $1 \zeta^s = (1 \zeta) \underbrace{(1 + \zeta + \zeta^2 + \dots + \zeta^{s-1})}_{\varepsilon_s} = (1 \zeta)\varepsilon_s$ $\Rightarrow p = \mathcal{N}(1 \zeta^s) = \underbrace{\mathcal{N}(1 \zeta)}_{=p} \cdot \mathcal{N}(\varepsilon_s) \Rightarrow \mathcal{N}(\varepsilon_s) = 1 \Rightarrow \varepsilon_s \in \mathcal{O}^{\times}$

Hence
$$p = \prod_{s=1}^{p-1} (1 - \zeta^s) = \prod_{s=1}^{p-1} \underbrace{\varepsilon_s}_{\in \mathcal{O}^{\times}} (1 - \zeta) = (1 - \zeta)^{p-1} \prod_{s=1}^{p-1} \varepsilon_s$$

Notation: $\varepsilon_s = 1 + \zeta + \dots + \zeta^s$.

Lemma 1.2.6. i) $a \in \mathbb{Z}$ with $1 - \zeta$ divides a in $\mathcal{O} \Rightarrow p$ divides a.

ii) An n-th root of unity lies in $\mathbb{Q}(\zeta) \iff n$ divides 2p.

Proof. i) $a = (1 - \zeta)\beta$ with $\beta \in \mathcal{O} \Rightarrow a^{p-1} = \mathcal{N}(a) = p \mathcal{N}(\beta) \stackrel{(\mathcal{N}(\beta) \in \mathbb{Z})}{\Longrightarrow} p$ divides a.

ii) " \Leftarrow ": $-1 \in \mathbb{Q}(\zeta)$ and thus $e^{\frac{2\pi i}{2p}} \in \mathbb{Q}(\zeta)$ " \Rightarrow ": Consider $H := \{\omega \in \mathbb{Q}(\zeta) \mid \omega \text{ is a root of unity}\}$

5 / 30

- a) $H \subseteq \mathbb{Z}[\zeta]$: Suppose $\omega \in H \Rightarrow \omega^n 1 = 0$ for some $n \in \mathbb{N} \Rightarrow f_\omega$ is a divisor of $X^n 1 \Rightarrow f_\omega \in \mathbb{Z}[X] \stackrel{2.2ii}{\Longrightarrow} \omega \in \mathbb{Z}[\zeta]$.
- b) $\tilde{\omega}$ some conjugate of $\omega \Rightarrow \tilde{\omega}$ is a root of $X^n 1 \Rightarrow |\tilde{\omega}| = 1 \stackrel{2.2v}{\Longrightarrow} H$ is finite $\Rightarrow H$ is a cyclic subgroup of $\mathbb{Q}(\zeta)^{\times}$. Choose some generator ω_0 of H and denote $m := \operatorname{ord}(\omega_0)$. Since $\zeta \in H$ and $\operatorname{ord}(\zeta) = p \Rightarrow p$ divides m. Decompose $m = p^s \cdot m'$ with $s \geq 1$ and $\operatorname{gcd}(m', p) = 1$. Consider the field extensions chain:

$$\mathbb{Q} \subseteq \mathbb{Q}(\omega_0) \subseteq \mathbb{Q}(\zeta)$$

with degrees $[\mathbb{Q}(\zeta):\mathbb{Q}] = p-1 = \varphi(p)$ and $[\mathbb{Q}(\omega_0):\mathbb{Q}] = \varphi(m) = p^{s-1}(p-1)\varphi(m') \leq p-1 \Rightarrow s=1$ and $\varphi(m')=1$ and thus $m'=1,2\Rightarrow \operatorname{ord}(\omega_0) \leq 2p$.

Notation 1.2.7.

- 1. L/K field extension, $\alpha \in L, \overline{K}$ given algebraic closure. The elements $\sigma(\alpha)$ with $\sigma \in \operatorname{Hom}_K(L, \overline{K})$ are called *conjugates of* α . In particular: L/K normal \Rightarrow conjugates live in L.
- 2. R ring, I ideal in R, $p:R\to R/I$ canonical projection. For $\alpha,\beta\in R$ we denote $\alpha\equiv\beta\mod I:\iff p(\alpha)=p(\beta).$ If I=<q> is a principal ideal, we denote $\alpha\equiv\beta\mod q:\iff \alpha\equiv\beta\mod < q>$

Example 1.2.8. Consider $\mathbb{Q}(\zeta)/\mathbb{Q}$ with $\zeta^p = 1, R = \mathcal{O} = \mathbb{Z}[\zeta], \alpha = a_0 + a_1\zeta + a_2\zeta^2 + \cdots + a_{p-2}\zeta^{p-2}$

- i) The conjugates of α are: $\alpha_h = a_0 + a_1 \zeta^h + a_2 \zeta^{2h} + \cdots + a_{p-2} \zeta^{h(p-2)}$ with $h \in \{1, \ldots, p-1\}$.
- ii) Consider $\lambda = 1 \zeta$ and $I = \langle \lambda \rangle$. $1 \equiv \zeta \mod \lambda$ and $\alpha \equiv a_0 + a_1 + \cdots + a_{p-2} \mod \lambda (\in \mathbb{Z})$.

iii)
$$\alpha^p \equiv a_0^p + (a_1 \zeta)^p + \dots + (a_{p-2} \zeta^{p-2})^p = \underbrace{a_0^p + a_1^p + \dots + a_{p-1}^p}_{\in \mathbb{Z}} \mod p$$

Theorem 1.2.9 (Kummer's Lemma). If $\varepsilon \in \mathbb{Z}[\zeta]$ is a unit, i.e. $\varepsilon \in \mathbb{Z}[\zeta]^{\times}$,

$$\frac{\varepsilon}{\bar{\varepsilon}} = \zeta^a \quad \text{for some } a \in \mathbb{Z}$$

Here $\bar{\varepsilon} = \tau(\varepsilon)$, where τ is the complex conjugation. Recall: $\tau \in \text{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$.

Proof. Denote $\varepsilon = a_0 + a_1 \zeta + \dots + a_{p-2} \zeta^{p-2} = r(\zeta)$ with $r(X) = \sum_{i=0}^{p-2} a_i X^i \in \mathbb{Z}[X]$. Observe:

1.
$$\varepsilon \in \mathcal{O}^{\times} \Rightarrow \exists \varepsilon' \in \mathcal{O} \text{ s.t. } \varepsilon \varepsilon' = 1 \Rightarrow \bar{\varepsilon} \bar{\varepsilon}' = 1 \Rightarrow \bar{\varepsilon} \in \mathcal{O}^{\times}$$

2. $\mu := \frac{\varepsilon}{\overline{\varepsilon}} = \frac{r(\zeta)}{r(\zeta^{-1})}$ and the conjugate μ_k of μ is $\frac{r(\zeta^k)}{r(\zeta^{-k})} = \frac{r(\zeta^k)}{r(\zeta^k)}$. In particular $|\mu_k| = 1$. It follows that $\mu_k \in \{\alpha \in \mathcal{O}^\times \mid |\alpha| = 1\}$ which is by 2.2. v) a finite subgroup of $\mathbb{Q}(\zeta)^\times \Rightarrow \mu$ is a root of unity

Lemma 2.6 $\Rightarrow \mu = \pm \zeta^a$ for some $a \in \mathbb{Z}$.

Claim: $\mu = \zeta^a$

<u>Proof of claim:</u> suppose $\mu = -\zeta^a$, i.e. $\varepsilon = -\bar{\varepsilon}\zeta^a$ (*)

<u>Idea:</u> calculation mod $\lambda = 1 - \zeta$ $\varepsilon = a_0 + a_1 \zeta + \dots + a_{p-2} \zeta^{p-2}$

Ex. 2.8.ii)
$$\Rightarrow \varepsilon \equiv \underbrace{a_0 + a_1 + \dots + a_{p-2}}_{=:M \in \mathbb{Z}} \equiv \bar{\varepsilon} \mod \lambda$$

 $(\star) \Rightarrow \varepsilon \equiv -\bar{\varepsilon} \mod \lambda \Rightarrow M \equiv -M \mod \lambda \Rightarrow 2M \equiv 0 \mod \lambda \stackrel{\text{Lemma 2.6 i}}{\Longrightarrow} p \text{ divides } 2M \text{ in } \mathbb{Z} \stackrel{p \text{ odd}}{\Longrightarrow} p \text{ divides } M.$

 $\Rightarrow \lambda = 1 - \zeta$ divides M in O by Lemma 2.5.

 $\Rightarrow \varepsilon \equiv \bar{\varepsilon} \equiv M \equiv 0 \mod \lambda = 1 - \zeta \Rightarrow$ Contradiction to ε is unit and $1 - \zeta$ is irreducible

Corollary 1.2.10. ε unit in $\mathbb{Z}[\zeta] \Rightarrow \varepsilon = r\zeta^s$ with some $r \in \mathbb{R}, s \in \mathbb{Z}$.

Proof. Prop $2.9 \Rightarrow \exists \ a \in \mathbb{Z}, \varepsilon = \zeta^a \cdot \bar{\varepsilon}.$

Choose $s \in \mathbb{Z}$ with $2s \equiv a \mod p$

$$\Rightarrow \frac{\varepsilon}{\zeta^s} = \zeta^s \cdot \bar{\varepsilon} = \frac{\bar{\varepsilon}}{\zeta^{-s}} = \frac{\bar{\varepsilon}}{\zeta^s} = r \in \mathbb{R} \text{ and } \varepsilon = r \cdot \zeta^s.$$

Lemma 1.2.11. Suppose $x, y, m, n \in \mathbb{Z}$ with $m \not\equiv n \mod p$. $x + y\zeta^n$ and $x + y\zeta^m$ are relatively prime \iff (x and y are relatively prime) and (x + y not divisible by p)

Proof. $,\Rightarrow$ ":

- d|x and $d|y \Rightarrow d|x + \zeta^n y$ and $d|x + \zeta^n y$
- "p|x + y" Recall: $p = \varepsilon (1 \zeta)^{p-1}$ with $\varepsilon \in O^{\times}$ $\Rightarrow x + \zeta^m y = \underbrace{x + y}_{\text{divisible by } p} + y \cdot \underbrace{(\zeta^m - 1)}_{(\zeta - 1)(1 + \zeta + \zeta^2 \cdots + \zeta^{m-1})} \equiv 0 \mod 1 - \zeta$ same way $x + \zeta^n y \equiv 0 \mod 1 - \zeta$

 $, \Leftarrow$ ": Idea: show: $\exists \alpha_0, \beta_0 \in \mathcal{O}$ with:

$$1 = \alpha_0(x + \zeta^m y) + \beta(x + \zeta^n y)$$

Consider: $A := \{ \alpha(x + \zeta^m y) + \beta(x + \zeta^n y) \mid \alpha, \beta \in \mathcal{O} \}$

A is an ideal in \mathcal{O} . We have:

1.
$$(x + \zeta^m y) - (x + \zeta^n y) = \zeta^m (1 - \zeta^{n-m}) y = \underbrace{\zeta^n \varepsilon_{n-m}}_{\in \mathcal{O}^{\times}} (1 - \zeta) y \Rightarrow (1 - \zeta) y \in A$$

2.
$$\zeta^n(x+\zeta^m y) - \zeta^m(x+\zeta^n y) = (\zeta^n - \zeta^m)x = \zeta^n \cdot (1-\zeta^{n-m})x = \underbrace{\zeta^n \varepsilon_{m-n}}_{\in \mathcal{O}^{\times}} \cdot (1-\zeta)x \Rightarrow (1-\zeta)x \in A.$$

3.
$$gcd(x,y) = 1 \Rightarrow \exists \ a,b \in \mathbb{Z} \text{ with } 1 = ax + by \Rightarrow (1-\zeta)xa + (1-\zeta)yb = 1-\zeta \stackrel{1.\&2}{\Rightarrow} 1-\zeta \in A$$

4.
$$x + y = \underbrace{x + \zeta^n y}_{\in A} + \underbrace{(1 - \zeta^n) y}_{\in A} \in A$$

5.
$$\gcd(p, x + y) = 1 \Rightarrow \exists \bar{a}, \bar{b} \in \mathbb{Z} : 1 = \underbrace{\bar{a}p}_{\in A} + \bar{b}\underbrace{(x + y)}_{\in A} \in A.$$

$$\Rightarrow \text{Hence } x + \zeta^n y \text{ and } x + \zeta^m y \text{ are coprime.}$$

Remark 1.2.12. Suppose $\alpha = a_0 + a_1\zeta + \cdots + a_{p-1}\zeta^{p-1} \in \mathcal{O}$ with $a_i \in \mathbb{Z}$ and at least one $a_i = 0$.

If $n \in \mathbb{Z}$ with n divides α in \mathcal{O} , then n divides all a_i

Proof. Recall from 2.2 (preview):
$$1, \zeta, \zeta^2, \ldots, \zeta^{p-2}$$
 is a basis of \mathcal{O} .
Furthermore: $1 + \zeta + \cdots + \zeta^{p-1} = 0$
 $\Rightarrow \{1, \zeta, \ldots, \zeta^{p-1}\} \setminus \{\zeta^j\}$ is a basis \Rightarrow claim.

1.3 First case of Fermat in case of $\mathbb{Z}[\zeta]$ is a UFD (unique factorization domain)

Reference: BOREVICH + SHAFEREVIC + WASHINGTON Chapter 1 As before: p odd prime, $\zeta = e^{\frac{2\pi i}{p}}p$ -th root of unity.

Theorem 1.3.1. Suppose that $\mathbb{Z}[\zeta]$ is a UFD, then $x^p + y^p = z^p$ has no non-trivial solutions (x, y, z), such that neither x, y nor z is divisible by p.

Theorem 1.3.2 (p=3). Suppose $x,y,z\in\mathbb{Z}$ with $x^3+y^3=z^3\mod 9\Rightarrow 3$ divides x,y or z.

Proof. Recall: Little Fermat's theorem $x^p \equiv x, y^p \equiv y, z^p \equiv z \mod p$.

$$x^{3} + y^{3} = z^{3} \mod 3 \Rightarrow x + y \equiv z \mod 3$$

$$\Rightarrow z = x + y + 3u \text{ with } u \in \mathbb{Z}$$

$$\Rightarrow \underline{x^{3} + y^{3}} \equiv (x + y + 3u)^{3} \equiv \underline{x^{3} + y^{3}} + 3xy^{2} + 3x^{2}y \mod 9$$

$$\Rightarrow 0 \equiv xy^{3} + x^{2}y \equiv xy(x + y) \equiv xyz \mod 3$$

$$\Rightarrow x, y \text{ or } z \text{ is divisible by } 3$$

Lemma 1.3.3. Let $p \ge 5$. Suppose $x, y, z \in \mathbb{Z}$ with $x^p + y^p = z^p$. If $x \equiv y \equiv -z \mod p$, then p|z.

Proof.
$$z \equiv z^p = x^p + y^p \equiv -2z^p \equiv -2z \mod p \Rightarrow 3z \equiv 0 \mod p \xrightarrow{p \neq 3} p|z.$$

Remark 1.3.4. It follows from Lemma 3.2 that in the first case of Fermat we may assume for $p \ge 5$ that $x \not\equiv y \mod p$ because we can replace $x^p + y^p = z^p$ by $x^p + (-z)^p = (-y)^p$ and $x \not\equiv -z \mod p$.

of Thm. 1. $p = 3 \Rightarrow$ claim follows from Prop 3.1.

Now: $p \ge 5$. Suppose $x, y, z \in \mathbb{Z}$ with p divides neither x, y nor z, x, y, z are pairwise coprime and $x \not\equiv y \mod p$. Suppose $z^p = x^p + y^p = (x + y)(x + \zeta y) \dots (x + \zeta^{p-1}y)$. Apply Lemma 2.11:

- gcd(x,y) = 1
- Little Fermat $\Rightarrow x + y \equiv x^p + y^p \equiv z^p \not\equiv 0 \mod p$

 $\overset{2.11}{\Longrightarrow} x + y, x + \zeta y, \dots, x + \zeta^{p-1} y$ are pairwise coprime. $\overset{\mathbb{Z}[\zeta] \text{ UFD}}{\Longrightarrow} , x + \zeta^i y$ have to be *p*-power. More precisely: $x + \zeta y = \varepsilon \alpha^p$ with $\varepsilon \in \mathcal{O}^{\times}, \alpha \in \mathcal{O}$, since they are coprime factors of a *p*-th power.

- 1. Cor. $2.10 \Rightarrow \varepsilon = r\zeta^s$ with $r \in \mathbb{R}, s \in \mathbb{Z}$
- 2. Example 2.8. iii) $\Rightarrow \exists a \in \mathbb{Z} \text{ with } \alpha^p \equiv a \mod p$.

$$x + \zeta y = r\zeta^{s}\alpha^{p} \equiv r\zeta^{s}a \mod p$$

$$x + \zeta^{-1}y = \overline{x + \zeta y} \equiv r\zeta^{-s}a \mod p$$

$$\Rightarrow \zeta^{-s}(x + \zeta y) \equiv ra \equiv \zeta^{s}(x + \zeta^{-1}y) \mod p$$

$$\Rightarrow \underbrace{x + \zeta y - \zeta^{2s}x - \zeta^{2s-1}y}_{=x \cdot 1 + y\zeta - x\zeta^{2s} - y\zeta^{2s-1}} \equiv 0 \mod p$$

Idea: Use Rem. 2.12

Case 1: $1, \zeta, \zeta^{2s-1}, \zeta^{2s}$ are distinct $\stackrel{p \geq 5, \text{ Rem } 2.12}{\Longrightarrow} p|x$ and p|y. Contradiction to first case.

Recall: $L = \mathbb{Q}(\zeta)$, $\mathcal{O} = \mathbb{Z}[\zeta]$, where ζ is a p-th root of unity

Last time:

- (1) $a_1 1 + a_2 \zeta + \dots + a_p \zeta^{p-1} = \alpha$ and at least one $a_j = 0$ If α is divided by $n \in \mathbb{Z}$ then all the a_i are divided by n.
- (2) $x + y\zeta x\zeta^{2s} y\zeta^{2s-1} \equiv 0 \mod p$

Continuation of proof of Theorem 1. "Case 2" $1, \zeta, \ldots, \zeta^{2s}$ are not distinct. Observe: $1 \neq \zeta$ and $\zeta^{2s-1} \neq \zeta^{2s}$

"Case 2A"
$$1 = \zeta^{2s} (\Leftrightarrow p|s)$$
.

(2) implies $y\zeta - y\zeta^{2s-1} \equiv 0 \mod p$ such that Remark 2.12 yields the contradiction p|y.

"Case 2B"
$$1 = \zeta^{2s-1} (\Leftrightarrow \zeta = \zeta^{2s})$$
.

(2) implies $(x-y)1 + (y-x)\zeta \equiv 0 \mod p$ such that Remark 2.12 yields p|y-x, which contradicts the assumption $x \not\equiv y \mod p$.

"Case 2C"
$$\zeta = \zeta^{2s-1}$$
.

(2) implies $x - x\zeta^2 \equiv 0 \mod p$ such that Remark 2.12 yields the contradiction p|x. \square

Questions:

- (1) Under which assumption is \mathcal{O} a UFD?
- (2) What can we do if \mathcal{O} is not a UFD?
 - \rightarrow Idea of Kummer: "calculate with ideals"

Prospect: Theorem (Montgomery, Uchida, 1971) $\mathbb{Z}[\zeta]$ is a UFD if and only if $p \leq 19$, p prime.

Preview: From Kummer's idea we obtain a better criterion for p called **regular**, which ensures that Fermat's conjecture holds for p.

Conjecture. There are infinitely many regular primes.

2 Ring of integers

In this chapter, all rings are assumed to be commutative with 1.

2.1 Integral ring extensions

Definition 2.1.1 ("ganze Ringerweiterungen"). Let $A \subset B$ be a ring extension.

- (i) $b \in B$ is **integral** over A if there exists a monic polynomial $f(X) = X^n + a_{n-1}X^{n-1} + \cdots + a_0 \in A[X]$ with f(b) = 0.
- (ii) B is **integral** over A if all $b \in B$ are integral over A.

Proposition 2.1.2. Let $A \subset B$ be a ring extension and $b_1, \ldots, b_n \in B$. Then b_1, \ldots, b_n are integral over A if and only if

$$A[b_1,\ldots,b_n] = \{f(b_1,\ldots,b_n) \mid f \in A[X_1,\ldots,X_n]\}$$

is a finitely generated A-module.

Reminder 2.1.3 ("Adjunkte"). Let R be a ring and $A \in \mathbb{R}^{n \times n}$

- (i) $A^{\#} = (a_{i,j}^{\#})$ with $a_{i,j}^{\#} = (-1)^{i+j} \det(A_{j,i})$, where $A_{j,i}$ is obtained from A by deleting the j-th row and i-th column of A.
- (ii) We have $AA^{\#} = A^{\#}A = \det(A)I$. In particular, Ax = 0 implies $A^{\#}Ax = 0$ such that $\det(A)x = 0$.

Proof of Proposition 1.2. " \Rightarrow " If n=1 and b is integral over A, then there is an $f \in A[X]$ with f monic such that f(b)=0. Let $g \in A[X]$ be arbitrary. Then

$$q(X) = q(X)f(X) + r(X)$$

with $q, r \in A[X]$ and $\deg r < \deg f = d$. Hence g(b) = r(b) with $\deg r < d$. Thus $\{1, b, \dots, b^{d-1}\}$ generate A[b] as an A-module. The case $n \geq 2$ follows by induction.

" \Leftarrow " $A[b_1,\ldots,b_n]$ is finitely generated as an A-module by w_1,\ldots,w_r . If $b\in A[b_1,\ldots,b_n]$ then

$$bw_i = \sum_{j=1}^r a_{j,i} w_j$$

such that

$$(bI - (a_{i,j})) w = 0.$$

Thus, $\det(bI - (a_{i,j})) w = 0$ and hence

$$\det\left(bI - (a_{i,i})\right) w_i = 0$$

for all i = 1, ..., r. If we now use that

$$1 = c_1 w_1 + \dots + c_r w_r$$

we can infer det $(bI - (a_{i,j}))$ 1 = 0. Consider

$$M = bI - (a_{i,j}) = \begin{pmatrix} b - a_{1,1} & -a_{1,2} & \cdots & -a_{1,r} \\ -a_{2,1} & b - a_{2,2} & \cdots & -a_{2,r} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{r,1} & -a_{r,2} & \cdots & b - a_{r,r} \end{pmatrix}.$$

By the Leibniz formula we have

$$\det(M) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n m_{\sigma(i),j}$$

which is a polynomial over b with leading coefficient 1. Hence b is integral over A.

Corollary 2.1.4 (And Definition). (i) If $A \subset B$ is an extension of rings then

$$\overline{A} = \{b \in B \mid b \text{ is integral over } A\}$$

is a ring. It is called the **integral closure** of A in B. If $\overline{A} = A$ then A is called **integrally closed** in B.

- (ii) We have transitivity, that is to say, if A, B, C are rings with $A \subset B \subset C$ such that C is integral over B and B is integral over A then C is integral over A.
- (iii) The integral closure of A in B is integrally closed, i.e., $\overline{\overline{A}} = \overline{A}$.

Proof. "(i)" If $b_1, b_2 \in \overline{A}$ then $A[b_1], A[b_2]$ are finitely generated A-modules. Hence $A[b_1, b_2]$ is a finitely generated A-module. Thus, by Proposition 1.3, $b_1 + b_2$ and b_1b_2 are integral, i.e., elements of \overline{A} .

"(ii)" If $c \in C$ then c is integral over B and hence there is a monic polynomial $f = X^n + b_{n-1}X^{n-1} + \cdots + b_0 \in B[X]$ with f(b) = 0. This shows that c is integral over $R = A[b_1, \ldots, b_{n-1}]$ such that Proposition 1.3 shows that R[c] is a finitely generated R-module. Furthermore, b_0, \ldots, b_{n-1} are integral over A such that another application of Proposition 1.3 shows that R is a finitely generated A-module. Hence, R[c] is a finitely generated A module such that c is integral over A by Proposition 1.3.

Definition 2.1.5 ("ganzer Abschluss und normaler Ring"). If A is an integral domain we call its integral closure \overline{A} in $K = \operatorname{Quot}(A)$ the **normalization** or the **integral closure** of A. We say A is **integrally closed** if A is integrally closed in K.

Remark 2.1.6. If A is a UFD then A is integrally closed.

Proof. Suppose $b = \frac{a}{a'} \in \text{Quot}(A)$ with $\gcd(a, a') = 1$ is integral over A. Then there exist $a_0, \ldots, a_{n-1} \in A$ with

$$\left(\frac{a}{a'}\right)^n + a_{n-1} \left(\frac{a}{a'}\right)^{n-1} + a_{n-2} \left(\frac{a}{a'}\right)^{n-2} + \dots + a_0 = 0$$

such that

$$a^{n} + a_{n-1}a'a^{n-1} + a_{n-2}a'^{2}a^{n-2} + \dots + a_{0}a'^{n} = 0.$$

Let $a' = \varepsilon \pi_1 \cdots \pi_r$ be the prime factorization of a' with $\varepsilon \in A^{\times}$ and π_1, \ldots, π_r primes. Since $\pi_i | a'$ the above equation shows that actually $\pi_i | a^n$. But this implies $\pi_i | a$ which is a contradiction to $\gcd(a, a') = 1$. Hence we have $a' = \varepsilon \in A^{\times}$ such that $b \in A$.

2.2 Integral closures in field extensions

Setting:

- A is an integral domain.
- A is integrally closed.
- $K = \operatorname{Quot}(A)$.
- L/K is a finite field extension with $\overline{A}_K = A \subset K = \operatorname{Quot}(A) \hookrightarrow L \supset B = \overline{A}_L$.
- B is the integral closure of A in L. Observe: $B \cap K = A$

Remark 2.2.1. (i) B is integrally closed in L.

- (ii) If $\beta \in L$ then there are $b \in B$ and $a \in A \setminus \{0\}$ such that $\beta = \frac{b}{a}$. In particular, L = Quot(B).
- (iii) For $\beta \in L$ we have $\beta \in B$ if and only if $f_{\beta} \in A[X]$, where f_{β} is the minimal polynomial of β over K.

Proof. "(i)" Follows from the transitivity in Corollary 1.4.

"(ii)" Choose $a \in A$ with $a^n f_{\beta}(X) = a^n X^n + a^{n-1} c_{n-1} X^{n-1} + \cdots + c_0 \in A[X]$. Then we have

$$a^{n}\beta^{n} + c_{n-1}a^{n-1}\beta^{n-1} + \dots + c_{0} = 0$$

and hence

$$(a\beta)^n + c_{n-1}(a\beta)^{n-1} + \dots + c_0 = 0$$

such that $a\beta$ is integral over A. Consequently, $b = a\beta \in B$ and $\beta = \frac{b}{a}$.

"(iii)" " \Leftarrow " Obvious. " \Rightarrow " Let β be a zero of $g(X) = \underline{X}^n + a_{n-1}X^{n-1} + \cdots + a_0 \in A[X]$. Then f_{β} divides g. If β_1, \ldots, β_n are the zeros of f_{β} in \overline{K} then they are also zeros of g and thus integral over A. Hence the coefficients of f_{β} are integral over A and are elements of K such that $f_{\beta} \in A[X]$ as claimed.

Reminder 2.2.2 (Trace, Norm). Let $K \subseteq L$ be a finite field extension. For α in L consider the map $T_{\alpha}: \beta \mapsto \alpha\beta$. The following holds

- i) $\operatorname{Tr}_{L/K}(\alpha) = \operatorname{Tr}(T_{\alpha})$ and $\mathcal{N}_{L/K}(\alpha) = \det(T_{\alpha})$,
- ii) If $L = K(\alpha)$ and $f_{\alpha}(X) = X^n + \sum_{i=0}^{n-1} a_i X^i$ then

$$\operatorname{Tr}_{L/K}(\alpha) = -a_{n-1}$$
 and $\mathcal{N}_{L/K}(\alpha) = (-1)^n \cdot a_0$,

iii) Since $T_{\alpha+\beta} = T_{\alpha} + T_{\beta}$ and $T_{\alpha\cdot\beta} = T_{\alpha} \circ T_{\beta}$, we conclude that

$$\operatorname{Tr}_{L/K}:(L,+)\to (K,+)$$
 and $\mathcal{N}_{L/K}:(L^*,\cdot)\to (K^*,\cdot)$

are group homomorphisms,

- iv) Suppose $K \subseteq L$ is a seperable field extension with $L = K(\alpha)$. Further assume $\operatorname{Hom}_K(L, \overline{K}) = \{\sigma_1, \dots, \sigma_n\}$. Then the following holds
 - $f_{\alpha} = \prod_{i=1}^{n} (X \sigma_i(\alpha)),$
 - $\operatorname{Tr}_{L/K}(\alpha) = \sum_{i=1}^{n} \sigma_i(\alpha),$
 - $\mathcal{N}_{L/K}(\alpha) = \prod_{i=1}^n \sigma_i(\alpha)$,
- v) Trace and norm are transitive, i.e., for field extensions $K \subseteq L \subseteq M$ it holds
 - $\mathcal{N}_{L/K} \circ \mathcal{N}_{M/L} = \mathcal{N}_{M/K}$,
 - $\operatorname{Tr}_{L/K} \circ \operatorname{Tr}_{M/L} = \mathcal{N}_{M/K}$.

Definition 2.2.3 (Discriminant). Let $K \subseteq L$ be a seperable field extension and let $\alpha_1, \ldots, \alpha_n$ be a K-basis of L. Further let $\operatorname{Hom}_K(L, \overline{K}) = \{\sigma_1, \ldots, \sigma_n\}$. Consider the matrix

$$A := \begin{pmatrix} \sigma_1(\alpha_1) & \sigma_1(\alpha_2) & \cdots & \sigma_1(\alpha_n) \\ \sigma_2(\alpha_1) & \sigma_2(\alpha_2) & \cdots & \sigma_2(\alpha_n) \\ \vdots & \vdots & \cdots & \vdots \\ \sigma_n(\alpha_1) & \sigma_n(\alpha_2) & \cdots & \sigma_n(\alpha_n) \end{pmatrix} = (\sigma_i(\alpha_j))_{i,j} \in L^{n \times n}.$$

We call $d(\alpha_1, \dots, \alpha_n) := \det(A^2)$ the **discriminant** of L over K with respect to the basis $\alpha_1, \dots, \alpha_n$.

Remark 2.2.4. In the situation of Definition (2.2.3) the following holds.

- i) Consider the matrix $B = (\operatorname{Tr}_{L/K}(\alpha_i \alpha_j))_{i,j}$ in $K^{n \times n}$. Then the discriminant is given by $d(\alpha_1, \dots, \alpha_n) = \det(B)$. In particular, the discriminant $d(\alpha_1, \dots, \alpha_n)$ lies in K.
- ii) Suppose we have Θ in L such that $1, \Theta, \dots, \Theta^{n-1}$ forms a basis of L. Then the following equality holds

$$d(1,\Theta,\ldots,\Theta^{n-1}) = \prod_{1 \le i < j \le n} (\Theta_i - \Theta_j)^2.$$

Here Θ_i denotes $\sigma_i(\Theta)$. If $L = K(\Theta)$ then $d(1, \Theta, \dots, \Theta^{n-1})$ coincides with the discriminant of the minimal polynomial f_{Θ} . Note that we use the notion of discriminants for polynomials here.

Proof. We begin by proving statement i). One computes

$$\det(A)^2 = \det(A^t) \cdot \det(A) = \det(A^t \cdot A).$$

The following calculation proves the claim

$$A^{t} \cdot A = (\sigma_{j}(\alpha_{i}))_{i,j} \cdot (\sigma_{k}(\alpha_{\ell}))_{k,\ell}$$

$$= \left(\sum_{j=1}^{n} \sigma_{j}(\alpha_{i}) \cdot \sigma_{j}(\alpha_{\ell})\right)_{i,\ell}$$

$$= \left(\sum_{j=1}^{n} \sigma_{j}(\alpha_{i} \cdot \alpha_{\ell})\right)_{i,\ell}$$

$$= (\operatorname{Tr}_{L/K}(\alpha_{i} \cdot \alpha_{\ell}))_{i,\ell}$$

$$= R$$

For statement ii), we will compute the determinant of the following Vondermonde matrix

$$\det(A) = \det\begin{pmatrix} 1 & \Theta_1 & \cdots & \Theta_1^{n-1} \\ 1 & \Theta_2 & \cdots & \Theta_2^{n-1} \\ \vdots & \vdots & \cdots & \vdots \\ 1 & \Theta_n(\alpha_2) & \cdots & \Theta_n^{n-1} \end{pmatrix} =: V_n(\Theta_1, \dots, \Theta_n).$$

By induction, we prove that $V_n(\Theta_1, \ldots, \Theta_n)$ is nonzero and that the following equality holds

$$V_n(\Theta_1, \dots, \Theta_n) = \prod_{1 \le i < j \le n} (\Theta_j - \Theta_i).$$

For n=2, we have

$$\det(A) = \det\begin{pmatrix} 1 & \Theta_1 \\ 1 & \Theta_2 \end{pmatrix} = \Theta_2 - \Theta_1 \neq 0.$$

Hence the claim holds for n = 2. Now we assume that the claim holds for a $n \in \mathbb{N}_{\geq 2}$. We want to prove that viewed as polynomials in Z the following equality holds

$$V_{n+1}(\Theta_1, \dots, \Theta_n, Z) = V_n(\Theta_1, \dots, \Theta_n) \cdot \prod_{i=1}^n (Z - \Theta_i).$$
 (2.1)

This implies that

$$V_n(\Theta_1, \dots, \Theta_{n+1}) = V_n(\Theta_1, \dots, \Theta_n) \cdot \prod_{i=1}^n (\Theta_{n+1} - \Theta_i) = \prod_{1 \le i < j \le n} (\Theta_j - \Theta_i).$$

To show equality (2.1), recall that

$$V_{n+1}(\Theta_1, \dots, \Theta_n, Z) = \det \begin{pmatrix} 1 & \Theta_1 & \cdots & \Theta_1^n \\ 1 & \Theta_2 & \cdots & \Theta_2^n \\ \vdots & \vdots & \cdots & \vdots \\ 1 & \Theta_n(\alpha_2) & \cdots & \Theta_n^n \\ 1 & Z & \cdots & Z^n \end{pmatrix}.$$

Ones sees that the polynomials on both sides of equality (2.1) have degree n. Moreover, $\{\Theta_1, \dots, \Theta_n\}$ is the set of zeros for both polynomials. Since the leading coefficient in both cases is $V_n(\Theta_1, \dots, \Theta_n)$, the polynomials are equal. This proves the claim.

Example 2.2.5. Consider $L = \mathbb{Q}(\sqrt{D})$ for a square free integer D different from 0 and 1. Then the following holds

- $\mathfrak{B}_1 = \{1, \sqrt{D}\}$ is a \mathbb{Q} -basis of L.
- Define $\sigma_2: L \to \overline{\mathbb{Q}}, a + b\sqrt{D} \mapsto a b\sqrt{D}$. Then we have

$$\operatorname{Hom}_{\mathbb{Q}}(L,\overline{\mathbb{Q}}) = \{\sigma_1 = \operatorname{id}, \sigma_2\}.$$

- $\operatorname{Tr}_{L/\mathbb{O}}(a+b\sqrt{D})=a+b\sqrt{D}+a-b\sqrt{D}=2a.$
- $\mathcal{N}_{L/\mathbb{O}}(a+b\sqrt{D}) = (a+b\sqrt{D}) \cdot (a-b\sqrt{D}) = a^2 b^2 \cdot D.$
- $d(\mathfrak{B}_1) = \det \begin{pmatrix} 1 & \sqrt{D} \\ 1 & -\sqrt{D} \end{pmatrix}^2 = (-2\sqrt{D}) = 4D.$
- We have

$$(\alpha_i \alpha_j)_{i,j} = \begin{pmatrix} 1 & \sqrt{D} \\ \sqrt{D} & D \end{pmatrix}.$$

Hence we compute

$$\det((\operatorname{Tr}(\alpha_i \alpha_j))_{i,j}) = \det\begin{pmatrix} 2 & 0 \\ 0 & 2D \end{pmatrix} = 4D.$$

• Consider the Q-basis of L given by $\mathfrak{B}_2 = \{1 + \sqrt{D}, 1 - \sqrt{D}\}$. Computing the discriminant for this basis yields

$$d(1 + \sqrt{D}, 1 - \sqrt{D}) = \det \begin{pmatrix} 1 + \sqrt{D} & 1 - \sqrt{D} \\ 1 - \sqrt{D} & 1 + \sqrt{D} \end{pmatrix}^2 = 16D.$$

Hence we see that the discriminant depends on the basis we choose.

Proposition 2.2.6. Let $K \subseteq L$ be a seperable field extension.

i) The bilinear map

$$h: L^2 \to K, \ (x,y) \mapsto \operatorname{Tr}_{L/K}(xy)$$

is non degenerate, i.e., h(x,y) = 0 for all $y \in L$ implies that x = 0.

ii) If $\alpha_1, \ldots, \alpha_n$ forms a basis of L/K then $d(\alpha_1, \ldots, \alpha_n) \neq 0$.

Proof. For statement i), we choose a primitive element Θ . Then $1, \Theta, \dots, \Theta^{n-1}$ is a K-basis of L. Let B be the matrix representation of h with respect to this basis. We find

$$\det(B) \stackrel{(2.4)}{=} {}^{i)} d(1, \Theta, \dots, \Theta^{n-1})$$

$$\stackrel{(2.4)}{=} \prod_{1 \le i < j \le n} (\Theta_i - \Theta_j)^2 \ne 0.$$

Here Θ_i denotes $\sigma_i(\Theta)$. This shows that h is non degenerate. We now prove statement ii). Observe that the matrix $M = (\text{Tr}_{L/K}(\alpha_i \alpha_j))_{i,j}$ is the matrix representation of h with respect to $\alpha_1, \ldots, \alpha_n$. By Remark (2.4), we conclude

$$d(\alpha_1,\ldots,\alpha_n)=\det(M).$$

Now, i) implies that det(M) is nonzero.

Remark 2.2.7. Let $A \subseteq B$ be an integral ring extension with $B \subseteq L$ and $A = B \cap K \subseteq K$. Assuming that $\operatorname{Hom}_K(L, \overline{K}) = \{ \operatorname{id} = \sigma_1, \ldots, \sigma_n \}$ the following holds

- i) If $x \in B$ then $\sigma_i(x) \in B$ for all $1 \le i \le n$.
- ii) For all $x \in B$ the trace $\text{Tr}_{L/K}(x)$ and the norm $\mathcal{N}_{L/K}(x)$ lie in A.
- iii) Let $x \in B$. Then x lies in B^* if and only if the norm $\mathcal{N}_{L/K}(x)$ lie in A^* .

Proof. We start by proving i). Let x in B. By Remark (2.1), we have that the minimal polynomial f_x lies in A[X]. Since $\sigma(x)$ is also a zero of f_x , it is contained in B. This shows i). Now, statement ii) follows from i), Reminder (2.2) iv) and the fact that $A = B \cap K$. For iii), assume that x is a unit in B, i.e., we find y in B with xy = 1. Hence

$$\mathcal{N}_{L/K}(x) \cdot \mathcal{N}_{L/K}(y) = \mathcal{N}_{L/K}(xy) = 1.$$

Using ii), we deduce that $\mathcal{N}_{L/K}(x)$ lies in A^* . This proves one direction. For the other direction, assume that $\mathcal{N}_{L/K}(x)$ lies in A^* , i.e., we find $a \in A$ with

$$1 = a \cdot \mathcal{N}_{L/K}(x)$$

$$= a \cdot \prod_{i=1}^{n} \sigma_{i}(x)$$

$$= a \cdot x \cdot \prod_{i=2}^{n} \sigma_{i}(x).$$

$$\stackrel{}{=} a \cdot x \cdot \underbrace{\prod_{i=2}^{n} \sigma_{i}(x)}_{\in B, by i}.$$

Hence x lies in B^* . This proves iii).

Proposition 2.2.8. Suppose $\alpha_1, \ldots, \alpha_n \in B$ forms a K-basis of L. Let d denote the discriminant $d(\alpha_1, \ldots, \alpha_n) \in A$. Then $d \cdot B$ is contained in $A\alpha_1 + \cdots + A\alpha_n$.

Proof. Suppose $\alpha = \sum_{j=1}^{n} c_j \alpha_i \in B$ for $c_i \in K$. We want to solve for (c_1, \ldots, c_n) . Applying the trace to the equalities

$$\alpha_i \alpha = \sum_{j=1}^n c_j \alpha_i \alpha_j, \ 1 \le i \le n,$$

we obtain

$$\operatorname{Tr}_{L/K}(\alpha_i \alpha) = \sum_{i=1}^n c_j \operatorname{Tr}_{L/K}(\alpha_i \alpha_j), \ 1 \le i \le n.$$

Hence $x = (c_1, \ldots, c_n)$ is the solution of the linear system Mx = y, where

$$M = ((\operatorname{Tr}_{L/K}(\alpha_i \alpha_j)))_{i,j} \in A^{n \times n}, \ y = (\operatorname{Tr}_{L/K}(\alpha_i \alpha))_i \in A^n.$$

By Reminder (1.3), we have

$$\det(M) \cdot x = M^{\#}Mx = M^{\#}y \in A^n.$$

Using Remark (2.4), we know $\det(M) = d(\alpha_1, \dots, \alpha_n) =: d$. We conclude that dc_i lies in A for $1 \le i \le n$, which proves the claim.

Definition 2.2.9 (Ganzheitsbasis). Suppose $\omega_1, \ldots, \omega_n \in B$ forms a basis of B over A, i.e., every $\alpha \in B$ can be written in a unique way as an A-linear combination $\sum_{i=1}^{n} c_i \omega_i$. Then $\omega_1, \ldots, \omega_n$ is called an **integral basis** of B over A.

Example 2.2.10. Same situation as in Ex. 2.5. $\mathcal{B}_1 = \{1, \sqrt{D}\} \subseteq B$. Consider:

$$\alpha = \frac{1}{2}(1 + \sqrt{D}) \Rightarrow 2\alpha = 1 + \sqrt{D}$$
$$\Rightarrow (2\alpha - 1)^2 = D \Rightarrow 4\alpha^2 - 4\alpha + 1 = D$$
$$\Rightarrow f_{\alpha}(X) = X^2 - X + \frac{1 - D}{4}$$

Hence if $D \equiv 1 \mod 4 \Rightarrow \alpha \in B$ and \mathcal{B}_1 is not an integral basis.

Proposition 2.2.11. Let $D \in \mathbb{Z}$, D square-free, $D \neq 0, 1, B := integral closure of <math>\mathbb{Z}$ in $\mathbb{Q}(\sqrt{D}) = L$.

- i) $D \equiv 2, 3 \mod 4 \Rightarrow \{1, \sqrt{D}\}\$ is an integral basis of B/\mathbb{Z} in particular $B = \mathbb{Z}[\sqrt{D}]$.
- ii) $D \equiv 1 \mod 4 \Rightarrow \{1, \frac{1}{2}(\sqrt{D}+1)\}$ is an integral basis of B/\mathbb{Z} . and $B = \mathbb{Z}[\frac{1}{2}(1+\sqrt{D})]$.

Proof. Consider $\alpha = a + b\sqrt{D} \in \mathbb{Q}(\sqrt{D})$ with $a, b, \in \mathbb{Q}$. $\Rightarrow f_{\alpha} = X^2 - 2aX + a^2 - b^2D$.

Rem 2.1: $\alpha \in B \iff f_{\alpha} \in \mathbb{Z}[X] \iff 2a \in \mathbb{Z} \text{ and } a^2 - b^2D \in \mathbb{Z}.$

- (1) Show: $\alpha \in B \Rightarrow 2b \in \mathbb{Z}$. $\alpha \in B \Rightarrow 4a^2 - 4b^2D = 4z$ with $z \in \mathbb{Z}$. Write $b = \frac{p}{q}$ with $p, q \in \mathbb{Z}, \gcd(p, q) = 1$ $\Rightarrow 4p^2D = ((2a)^2 - 4z)q^2 \quad (\star)$ $\Rightarrow q = 1 \text{ or } 2$.
- (2) Show: $q = 2 \Rightarrow D \equiv 1 \mod 4$ $(\star) \Rightarrow p^2 D = (2a)^2 - 4z \equiv (2a)^2 \mod 4$ $p \text{ is odd, hence } p^2 \equiv 1 \mod 4 \Rightarrow (2a) \text{ is odd (i.e. } a = \frac{2n-1}{2} \in \mathbb{Q})$ $\Rightarrow (2a)^2 \equiv 1 \mod 4 \Rightarrow D \equiv 1 \mod 4.$
- (3) It follows from (2) if $D \equiv 1 \mod 4$: $\alpha \in B \iff \alpha = a + b\sqrt{D}$ or $\alpha = \frac{1}{2}(a + b\sqrt{D})$ with $a, b \in \mathbb{Z}$. Hence we obtain:

$$B = \begin{cases} \mathbb{Z}[\sqrt{D}] & \text{, if } D \equiv 2, 3 \mod 4 \\ \mathbb{Z}[\frac{1}{2}(1+\sqrt{D}] & \text{, if } D \equiv 1 \mod 4 \end{cases}$$

For the second case observe that $\frac{a}{2} + \frac{b}{2}\sqrt{D} = \frac{a-b}{2} + \frac{b}{2}(1+\sqrt{D}) \in \mathbb{Z}[\frac{1}{2}(1+\sqrt{D})]$. This implies the claim.

Proposition 2.2.12. Suppose L/K separable and A is a principal ideal domain. Let $M \neq 0$ be a finitely generated B-submodule of $L \Rightarrow M$ is a free A-module. In particular: B is a free A-module of rank n := [L : K].

Reminder 2.2.13. Suppose A is a principal ideal domain and M_0 is a finitely generated free A-module.

- i) Any submodule M of M_0 is free.
- ii) $\operatorname{rank}(M_0) \ge \operatorname{rank}(M)$

of Prop 2.12. Let $\mu_1, \ldots, \mu_r \in M \subseteq L$ be generators of M as B-module and let $\alpha_1, \ldots, \alpha_n$ be a basis of L/K in B and $d := d(\alpha_1, \ldots, \alpha_n) \in A$. Recall: $L = \{ \frac{b}{a} \mid b \in B, a \in A \setminus \{0\} \}$.

(1) Prop $2.7 \Rightarrow dB \subseteq A\alpha_1 + \cdots + A\alpha_n$

 $(2) \ \exists a \in A : a\mu_1, \dots, a\mu_r \in B$

Hence: $daM \subseteq dB \subseteq A\alpha_1 + \cdots + A\alpha_n =: M_0$

 $(M_0 \text{ is a free } A\text{-module, since } \alpha_1, \dots, \alpha_n \text{ are basis of } L/K).$

Reminder $2.13 \Rightarrow adM$ is a free A-module $\Rightarrow M$ is a free A-module.

Furthermore: $\operatorname{rank}(M) = \operatorname{rank}(adM) \stackrel{Rem.2.13}{\leq} \operatorname{rank}(M_0) = n$.

Suppose that M = B. So far we got that B is a free A-module and rank $(B) \leq n$.

Show: $rank(B) \ge n$.

Let μ_1, \ldots, μ_r be a basis of B as A-module. By $L = \{\frac{b}{a} \mid b \in B, a \in A \setminus \{0\}\}$ we have that μ_1, \ldots, μ_r generate L over K.

Hence: if A is a principal ideal domain, then B has always an integral basis.

Proposition 2.2.14. Suppose we are in the following situation:

- L/K and L'/K are Galois extensions of degree n and m in some field E
- A a subring of K such that K = Quot(A) and B and B' are the integral closures of A in L and L'.
- $\{\omega_1, \ldots, \omega_n\}$ and $\{\omega'_1, \ldots, \omega'_m\}$ are integral basis for B/A and B'/A.
- $d := d(\omega_1, \ldots, \omega_n)$ and $d' := d(\omega'_1, \ldots, \omega'_m) \in A$ with d and d' are coprime in A, i.e. $\exists x, x' \in A$ with 1 = dx + d'x'.
- $K = L \cap L'$

Then we have: $\{\omega_i \omega_j' \mid i \in \{1, \dots, n\}, j \in \{1, \dots, m\}\}$ is an integral basis and its discriminant is $d^m(d')^n$.

Proof. Recall: $L \cap L' = K \Rightarrow [LL' : K] = nm$ and $\{\omega_i \omega_j'\}$ is a basis of the field extension LL'/K.

 $\operatorname{Gal}(L/K) = \{\sigma_1, \dots, \sigma_n\} \text{ and } \operatorname{Gal}(L'/K) = \{\sigma'_1, \dots, \sigma'_m\}$

 \Rightarrow obtain unique lifts $\hat{\sigma}_i \in \operatorname{Gal}(LL'/L')$ and $\hat{\sigma}_j' \in \operatorname{Gal}(LL'/L)$ and $\operatorname{Gal}(LL'/K) = \{\hat{\sigma}_i\hat{\sigma}_j' \mid i \in \{1,\ldots,n\}, j \in \{1,\ldots,m\}\}.$

Consider: $\alpha \in \tilde{B} := \text{integral closure of } A \text{ in } LL'.$

Write $\alpha = \sum_{i,j} \alpha_{i,j} \omega_i \omega'_j = \sum_j \beta_j \omega'_j$ with $\alpha_{i,j} \in K$ and $\beta_j = \sum_i \alpha_{i,j} \omega_i \in L$.

- $\Rightarrow \hat{\sigma}'_i(\alpha) = \sum_j \beta_j \hat{\sigma}'_i(\omega'_j), \text{ since } \hat{\sigma}'_i \in \text{Gal}(LL'/L).$
- \Rightarrow We have a linear system:

$$a = Tb \text{ with } a = \begin{pmatrix} \hat{\sigma}_1'(\alpha) \\ \vdots \\ \hat{\sigma}_m'(\alpha) \end{pmatrix} \in \tilde{B}^m \ , \ b = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_m \end{pmatrix} \in L^m \ , \ T = (\hat{\sigma}_i'(\omega_j'))_{(i,j)} \in \tilde{B}^{m \times m}$$

Observe: $det(T)^2 = d'$

⇒
$$\det(T)b = T^{\#}Tb = T^{\#}a \in \tilde{B}^{m} \Rightarrow d'b \in \tilde{B}^{m}$$

$$\Rightarrow \forall j: d'\beta_{j} = \sum_{i} d'\alpha_{i,j}\omega_{i} \in \tilde{B} \cap L = B$$

$$\Rightarrow d'\alpha_{i,j} \in A, \text{ since } \{\omega_{1}, \dots, \omega_{n}\} \text{ is an integral basis.}$$

$$\Rightarrow d\alpha_{i,j} \in A \text{ in the same way}$$

$$\Rightarrow \alpha_{i,j} = (x'd' + xd)\alpha_{i,j} = x'd'\alpha_{i,j} + xd\alpha_{i,j} \in A.$$

Hence: $\{\omega_i \omega_j' \mid (i,j) \in \{(1,1),\ldots,(n,m)\}\}$ is an integral basis of \tilde{B}/A . For calculating the discrimant consider the matrix $M = (\hat{\sigma}_k \circ \hat{\sigma}_l'(\omega_i \omega_j'))_{(k,l),(i,j)} = (\hat{\sigma}_k(\omega_i)\hat{\sigma}_l'(\omega_j'))$. Consider $Q = (\hat{\sigma}_k(\omega_i))$

$$\Rightarrow M = \begin{pmatrix} Q & 0 & \dots & 0 \\ 0 & \ddots & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \dots & 0 & Q \end{pmatrix} \cdot \begin{pmatrix} I \cdot \hat{\sigma}'_1(\omega'_1) & \cdots & I \cdot & \hat{\sigma}'_1(\omega'_1) \\ \vdots & & \vdots & & \vdots \\ I \cdot \hat{\sigma}'_1(\omega'_m) & \cdots & I \cdot & \hat{\sigma}'_m(\omega'_m) \end{pmatrix}$$

Observe:

(1)
$$\det(Q)^2 = d(\omega_1, \omega_n) = d$$

(2) The second matrix can be transformed by switching rows and columns to $\begin{pmatrix} Q & 0 & \dots & 0 \\ 0 & \ddots & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \dots & 0 & Q' \end{pmatrix}$ with $Q' = (\sigma'_l(\omega'_j))$ and $\det(Q') = d'$ $\Rightarrow \det(M)^2 = \det(Q)^{2m} \cdot \det(Q')^{2n} = d^m d'^n.$

Remark 2.2.15 (and Definition). Suppose $K = \mathbb{Q}, A = \mathbb{Z}, L$ a number field and $B = \mathcal{O}_k$.

- (i) There is always an integral basis w_1, \ldots, w_n .
- (ii) The **discriminant** $d_k = d_k(\mathcal{O}_k) = d(w_1, \dots, w_n)$ does not depend on the choice of integral basis.

Proof. "(i)" Proposition 2.12 "(ii)" Let w'_1, \ldots, w'_n be another integral basis. Then there exists a base change matrix $T \in GL_n(\mathbb{Z})$ with

$$\begin{pmatrix} w_1' \\ \vdots \\ w_n' \end{pmatrix} = T \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix}.$$

Hence

$$\begin{pmatrix} \sigma(w_1') \\ \vdots \\ \sigma(w_n') \end{pmatrix} = T \begin{pmatrix} \sigma(w_1) \\ \vdots \\ \sigma(w_n) \end{pmatrix}.$$

such that

$$d(w'_1, \dots, w'_n) = \underbrace{\det T}_{\in \{1, -1\}}^2 d(w_1, \dots, w_n) = d_k.$$

Example 2.2.16. Let $L = \mathbb{Q}(\sqrt{D})$ with $D \in \mathbb{Z}$ square-free. By Proposition 2.14 we have:

(i) $\mathcal{O}_k = \mathbb{Z}[\sqrt{D}]$ and $\{1, \sqrt{D}\}$ is an integral basis for $D \equiv 2, 3 \mod 4$ and $d_k = 4D$.

(ii) $\mathcal{O}_k = \mathbb{Z}\left[\frac{1+\sqrt{D}}{2}\right]$ and $\left\{1, \frac{1+\sqrt{D}}{2}\right\}$ is an integral basis for $D \equiv 1 \mod 4$ and $d_k = D$.

In particular, this holds for D = -1, i.e., the Gaussian integers $\mathbb{Z}[i]$.

2.3 Ideals

Let R be a commutative ring with 1.

Problem: O_k is not a UFD in many cases, e.g. in $\mathbb{Z}[\sqrt{-5}]$ we have

$$(1+\sqrt{-5})(1-\sqrt{-5}) = 1+5=6=2\cdot 3,$$

that is, two different ways to factor 6 in irreducible elements.

Idea:

(1) Maybe we have too few elements, i.e.,

$$1 + \sqrt{-5} = p_1 p_2, 1 - \sqrt{-5} = p_3 p_4$$
 and $2 = p_2 p_3, 3 = p_1 p_4$

for some primes p_i .

(2) An element is determined (up to units) by the set of elements it divides, e.g.

$$p_i \longleftrightarrow \{x \in \mathcal{O}_k; p_i | x\} = p_i \mathcal{O}_k \text{ (this is an ideal)}.$$

Notation 2.3.1. Let $I, J \subset R$ be ideals. We define

- $I + J = \{a + b; a \in I, b \in J\},\$
- $IJ = \{ \sum_{i} a_i b_i; a_i \in I, b_i \in J \}.$

Definition 2.3.2 (and Reminder). Let $I \subseteq R$ be an ideal.

- (a) I is called **prime** if for all $a, b \in R$ with $ab \in I$ we already have $a \in I$ or $b \in I$. \Leftrightarrow For all ideals $A, B \subset R$ with $AB \subset I$ we have $A \subset I$ or $B \subset I$.
- (b) I is called **maximal** if for any ideal $I \subset J \subset R$ we have J = I or J = R. $\Leftrightarrow R/I$ is a field.
- (c) R is called **Noetherian** if every ascending chain of ideals

$$I_1 \subset I_2 \subset \cdots$$

becomes stationary, i.e., if there is an $N \in \mathbb{N}$ such that $I_n = I_N$ for alls $n \geq N$. \Leftrightarrow Every ideal in R is finitely generated.

- (d) R is called a **Dedekind domain** if
 - R is an integral domain,
 - R is integrally closed,
 - \bullet R is Noetherian, and
 - \bullet every prime ideal in R is maximal.

Proposition 2.3.3. *If* \mathcal{O} *is the integral closure of* \mathbb{Z} *in a number field then* \mathcal{O} *is a Dedekind domain.*

Proof. It is clear that \mathcal{O} is an integral domain and integrally closed. Furthermore, by Proposition 2.12 each \mathbb{Z} -submodule is finitely generated as a \mathbb{Z} -module, thus also as an \mathcal{O} -module. Hence \mathcal{O} is Noetherian.

Now, let $I \subset \mathcal{O}$ be a prime ideal. Then $I \cap \mathbb{Z} \subset \mathbb{Z}$ is a prime ideal such that $\mathbb{Z}/(I \cap \mathbb{Z}) = \mathbb{F}_p$. Using $\mathcal{O} = \mathbb{Z}[w_1, \dots, w_n]$ we conclude

$$\mathcal{O}/I = \mathbb{Z}/(I \cap \mathbb{Z})[w_1', \dots, w_n'] = \mathbb{F}_p[w_1', \dots, w_n'] = \mathbb{F}_p(w_1', \dots, w_n'),$$

where $w_i' \equiv w_i \mod I$. Thus \mathcal{O}/I is a field ad hence I maximal.

From now on: Let \mathcal{O} denote a Dedekind domain.

Theorem 2.3.4. Every ideal $0 \neq I \subset \mathcal{O}$ has a unique factorization

$$I = P_1 \cdots P_n$$

into prime ideals $P_i \subset \mathcal{O}$.

Lemma 2.3.5. For every ideal $0 \neq I \subset \mathcal{O}$ there exist nonzero prime ideals $P_i \subset \mathcal{O}$ such that

$$P_1 \cdots P_n \subset I$$
.

Proof. Set $M = \{0 \neq I \subset \mathcal{O} \text{ ideal}; I \text{ does not have such } P_i\}$ and suppose $M \neq \emptyset$. Then M is partially ordered by inclusion and since \mathcal{O} is Noetherian, every chain in M has an upper bound. Thus, the Lemma of Zorn yields a maximal element $I_0 \in M$. Since I_0 cannot be prime there are $a, b \in \mathcal{O}$ such that $ab \in I_0$ but $a, b \notin I_0$. Consider the ideals $I_1 = (a) + I_0$ and $I_2 = (b) + I_0$ which satisfy $I_0 \subsetneq I_1$, $I_0 \subsetneq I_2$ and $I_1I_2 \subset I_0$. Since I_0 is a maximal ideal in M, we have $I_{1,2} \notin M$ hence we find prime ideals $P_1, \ldots, P_n, P'_1, \ldots, P'_m \subset \mathcal{O}$ with

$$P_1 \dots P_n \subset I_1$$
 and $P'_1 \dots P'_m \subset I_2$.

Finally, we conclude $P_1 \dots P_n P_1' \dots P_m' = I_1 I_2 \subset I_0 \Rightarrow I_0 \notin M \not\in M = \emptyset$.

Lemma 2.3.6. Let $0 \neq P \subset \mathcal{O}$ be a prime ideal, $I \subset \mathcal{O}$ an ideal and $K = \operatorname{Quot}(\mathcal{O})$. Then:

(i)
$$P^{-1} := \{x \in K; xP \subset \mathcal{O}\} \supseteq \mathcal{O}$$

(ii)
$$I \subsetneq P^{-1}I := \{ \sum_i a_i x_i; \ a_i \in I, x_i \in P^{-1} \}$$

Proof. "(i)" Let $0 \neq a \in P$, $P_1 \cdots P_n \subset (a) \subset P$ as in Lemma 3.5 with n minimal.

Claim: Without loss of generality we can assume that $P_1 = P$.

Proof of the claim: Since $P_1 \cdots P_n \subset P$ and P is prime, there is an index i such that $P_i \subset P$, by reindexing we may assume that i = 1. However, we assumed \mathcal{O} to be Dedekind, hence P_1 is a maximal ideal in \mathcal{O} . Thus, $P_1 \subset P \subsetneq \mathcal{O}$ implies that $P_1 = P$ as claimed.

Now, since n was chosen minimal we have $P_2 \cdots P_n \not\subset (a)$, i.e, there exists an element $b \in (a) \backslash P_2 \cdots P_n$. On the one hand we thus have

$$a^{-1}b \notin \mathcal{O}$$

and on the other hand $bP \subset (a)$ such that $a^{-1}bP \subset \mathcal{O}$ and hence

$$a^{-1}b \in P^{-1}.$$

Both of this together shows that $P^{-1} \supseteq \mathcal{O}$.

"(ii)" Assume there is an ideal $I \subset \mathcal{O}$ such that $P^{-1}I \subset I$. Let $\{\alpha_1, \ldots, \alpha_n\} \subset I$ be a generating set and choose $x \in P^{-1} \setminus \mathcal{O}$. Then,

$$x\alpha_i = \sum_j a_{ij}\alpha_j$$

for some $a_{ij} \in \mathcal{O}$. Consider the matrix $A = xE_n - (a_{ij})_{i,j}$, which satisfies

$$A \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = 0.$$

Since $A^{\#}A = \det A$ we conclude $\det A = 0$ such that x is a zero of the monic polynomial $\det \left(XE_n - (a_{ij})_{i,j}\right)$ over \mathcal{O} . But since \mathcal{O} is integrally closed this implies $x \in \mathcal{O}$, a contradiction.

Proof of Theorem 3.4. Existence of a factorization: Let

$$M = \{0 \neq I \subset \mathcal{O} \text{ ideal}; I \text{ has no factorization}\}$$

and assume that $M \neq \emptyset$. As in Lemma 3.5, let $I_0 \in M$ be a maximal element and let $P \supset I_0$ be a maximal ideal containing I_0 . Since I_0 is not prime we have $I_0 \neq P$ such that by Lemma 3.6,

$$I_0 \subsetneq P^{-1}I_0 \subset P^{-1}P = \mathcal{O}.$$

Note that $I_0 = I_0 \mathcal{O} = I_0 P^{-1} P$ and $I_0 \neq P$ imply $P^{-1} I_0 \subsetneq \mathcal{O}$. Since I_0 was maximal in M we thus have $P^{-1} I_0 \not\in M$, i.e., there are prime ideals $P_1, \ldots, P_n \subset \mathcal{O}$ with $P^{-1} I = P_1 \cdots P_n$. This leads to the contradiction $I = P P_1 \cdots P_n$.

Uniqueness of the factorization: Suppose that

$$I = P_1 \cdots P_n = Q_1 \cdots Q_m$$

are two prime factorizations. Then $P_1 \supset I = Q_1 \cdots Q_m$, hence without loss of generality we can assume that $Q_1 \subset P_1$. Since \mathcal{O} is Dedekind we conclude $Q_1 = P_1$ such that

$$P_2 \cdots P_n = P_1^{-1} I = Q_2 \cdots Q_m.$$

The claim follows by induction.

Definition 2.3.7. We call two ideals $0 \neq I, J \subset \mathcal{O}$ coprime : $\Leftrightarrow I + J = \mathcal{O}$. For example, one could take two distinct prime ideals in a Dedekind ring.

Remark 2.3.8. Let $P_1, \ldots, P_n \subset \mathcal{O}$ be pairwise coprime. Then P_1 and $P_2 \cdots P_n$ are coprime and we have $\prod_{i=1}^n P_i = \bigcap_{i=1}^n P_i$.

Proof. Induction on n: The case n=2 is clear. Let n>2. Since P_1 and P_2 are coprime, $\exists p_1 \in P_1, p_2 \in P_2$, such that we can write $1=p_1+p_2$. By induction hypothesis, $\exists p_1' \in P_1, p_2 \in P_3 \cdots P_n$, such that $1=p_1'+p$. It follows

$$1 = p_1 + p_2 \cdot (p'_1 + p) = \underbrace{p_1 + p_2 p'_1}_{\in P_1} + \underbrace{p_2 p}_{\in P_2 \cdots P_n},$$

which yields the first claim.

For the second claim, first note that $\prod P_i \subset \bigcap P_i$ is clear.

For the converse, let $a \in \bigcap P_i$, which of course implies that $a \in P_i$ for all i. As above, we write $1 = p_1 + p$, $p_1 \in P_1$, $p \in P_2 \cdots P_n$. We get $a = ap_1 + ap$, which implies that $a \in aP_1 + P_1 \cdot \prod_{i=2}^n P_i$ for all i and by induction hypothesis, we get $a \in \prod P_i$.

Theorem 2.3.9 (Chinese Remainder Theorem). Let $P_1, \ldots, P_n \subset \mathcal{O}$ bet pairwise coprime ideals, $I = \bigcap_{i=1}^n P_i$. Then we have

$$\mathcal{O}/I \cong \bigoplus_{i=1}^n \mathcal{O}/P_i$$

Proof. Consider the map

$$\phi: \mathcal{O} \longrightarrow \bigoplus_{i} \mathcal{O}/P_{i}, \quad a \mapsto \bigoplus_{i} a \mod P_{i}.$$

Obviously, $\ker(\phi) = I$. It remains to show, that ϕ is surjective. Let first n = 2: For $p_1 \in P_1$, $p_2 \in P_2$ let $1 = p_1 + p_2$ and for any a_1 , $a_2 \in \mathcal{O}$ write $a = a_2p_1 + a_1p_2$. Then $\phi(a) = a_1 \oplus a_2 \in \mathcal{O}/P_1 \oplus \mathcal{O}/P_2$.

In general, by **3.8**, we know that $\exists y_i \in \mathcal{O}$ with $y_i \equiv 1 \mod P_i$ and $y_i \equiv 0 \mod \bigcap_{j \neq i} P_i$. Hence the element $a = \sum_{i=1}^n a_i y_i$ is mapped to $\bigoplus_{i=1}^n a_i \mod P_i$

Definition 2.3.10. A fractional ideal of K is a finitely generated \mathcal{O} -module $0 \neq I$ of K. Since \mathcal{O} is noetherian, this is equivalent to: $\exists c \in \mathcal{O}$, such that $c \cdot I \subset \mathcal{O}$ is an ideal (since every submodule of \mathcal{O} is finitely generated). The product of two fractional ideals is denoted in the same way as introduced in **3.3**. Ideals in \mathcal{O} are called **integral ideals**.

Theorem 2.3.11. The fractional ideals of K, together with the product, form an abelian group, which we denote by \mathcal{J}_K .

Proof. Commutativity and associativity are clear. The unit in \mathcal{J}_K is given by \mathcal{O} . We define $I^{-1} := \{x \in K \mid x \cdot I \subset K\}$ and show, that this defines an inverse for all $I \in \mathcal{J}_K$.

For a prime ideal $P \subset \mathcal{O}$, we have already seen in **3.4** that $P^{-1}P = \mathcal{O}$ and for an integral ideal $I = P_1 \cdots P_n$, we have $J = P_1^{-1} \cdots P_n^{-1}$ as an inverse:

 $J \subset I^{-1}$ is clear. For the converse, let $x \in I^{-1}$, we then have $x \cdot IJ \subset \mathcal{O}$, with $x \cdot I \subset \mathcal{O}$ and $IJ = \mathcal{O}$, therefore $x \cdot 1 \in J$ and $I^{-1} \subset J$ follows.

Let now I be fractional. Then $\exists c \in \mathcal{O}$, such that cI is integral. But then $(cI)^{-1} = c^{-1}I^{-1}$ and hence $II^{-1} = (cI)(c^{-1}I^{-1}) = \mathcal{O}$

Corollary 2.3.12. Every fractional ideal I has a unique factorization $I = \prod P_i^{n_i}$, with $n_i \in \mathbb{Z}$, $P_i \subset \mathcal{O}$ distinct prime ideals and only finitely many $n_i \neq 0$. In particular, \mathcal{J}_K is a free abelian group on the prime ideals of \mathcal{O} .

Proof. By **3.11**, every element $I \in \mathcal{J}_K$ can be written as $I = AB^{-1}$ for some integral ideals $A, B \subset \mathcal{O}$. Therefore, by **3.4**, we get $I = \prod P_i^{n_i}$ and by multiplying denominators, we see that this presentation is unique.

Definition 2.3.13. The principle ideals generate a subgroup \mathcal{P}_K of \mathcal{J}_K . We call the quotient group $\operatorname{Cl}_K := \mathcal{J}_K/\mathcal{P}_K$ the **ideal class group**. We have an exact sequence of groups

$$1 \longrightarrow \mathcal{O}^{\times} \longrightarrow K^{\times} \stackrel{a \mapsto a\mathcal{O}}{\longrightarrow} \mathcal{J}_{K} \longrightarrow \operatorname{Cl}_{K} \longrightarrow 1.$$

2.4 Lattices and Minkowski

Definition 2.4.1. Let V be an n-dimensional \mathbb{R} -vector space. A lattice $\Lambda \subset V$ is a subgroup of the form $\mathbb{Z}v_1 + \ldots \mathbb{Z}v_m$, where v_1, \ldots, v_m are linearly independent over V. We call (v_1, \ldots, v_m) a basis of Λ and $\phi := \{x_1v_1 + \ldots x_mv_m \mid x_i \in [0, 1)\}$ a fundamental domain of Λ . We call Λ complete, if n = m.

CAUTION: For many people, lattices are always complete!

Example 2.4.2. (a) $\mathbb{Z}\begin{pmatrix}1\\0\end{pmatrix} + \mathbb{Z}\begin{pmatrix}0\\1\end{pmatrix} \subset \mathbb{R}^2$ is a complete lattice

- (b) $\mathbb{Z} + \mathbb{Z}\sqrt{2} \subset \mathbb{R}$ is not a lattice, since 1 and $\sqrt{2}$ are not linearly independent.
- (c) $\mathbb{Z}\begin{pmatrix} \sqrt{2} \\ 1 \end{pmatrix} \subset \mathbb{R}^2$ is a non-complete lattice.

Proposition 2.4.3. A subgroup $\Lambda \subset V$ is a lattice $\Leftrightarrow \Lambda$ is a discrete subgroup of V.

Proof. " \Rightarrow ": Take $\{\lambda + x_1v_1 + \cdots + x_nv_n + \text{rest of basis } | |x_n| < 1\}$ as a neighbourhood for $\lambda \in \Lambda$.

" \Leftarrow ": Let $V_0 = \langle \Lambda \rangle_{\mathbb{R}}$. Then we can choose a basis v_1, \ldots, v_m of V_0 in Λ , such that $\Lambda_0 := \mathbb{Z}v_1 + \cdots + \mathbb{Z}v_m$ is a lattice in V_0 .

Claim: The index $[\Lambda : \Lambda_0]$ is finite.

Proof of the claim: Since Λ_0 is complete, $V = \bigsqcup_{\lambda \in \Lambda_0} \phi_0 + \lambda$. Since Λ is discrete and ϕ_0 bounded, $\Lambda \cap \phi_0$ is finite. Hence we have only finitely many residue classes $\lambda + \Lambda_0$ of Λ and therefore $[\Lambda : \Lambda_0] =: d < \infty$.

From this follows, that $\Lambda \subset \frac{1}{d}\Lambda_0 = \mathbb{Z}(\frac{1}{d}v_1) + \cdots + \mathbb{Z}(\frac{1}{d}v_m)$. Therefore, Λ has a \mathbb{Z} -basis $w_1 = v_1 n_1, \ldots, w_r = v_r n_r$ for some $n_i \in \frac{1}{d}\mathbb{N}$ and since Λ spans V_0 , we get r = m and they are linearly independent.

Let $\Gamma = v_1 \mathbb{Z} + \cdots + v_n \mathbb{Z} \subset \mathbb{R}^n$ be a complete lattice. We define

$$\operatorname{vol} \Gamma = \operatorname{vol} \phi = |\det(v_1, \dots, v_n)|.$$

Note that this definition is independent of the chosen basis since for a transformation

$$A(v_1,\ldots,v_n)=(v_1',\ldots,v_n')$$

between two bases we have $\det A = \pm 1$.

Theorem 2.4.4 (Minkowski). Let $X \subset \mathbb{R}^n$ be a convex, symmetric central (i.e., $x \in X$ implies $-x \in X$) subset and let $\Gamma \subset \mathbb{R}^n$ be a complete lattice. If

$$\operatorname{vol} X > 2^n \operatorname{vol} \Gamma$$

then there exists some $\gamma \in \Gamma \setminus \{0\}$ such that $\gamma \in X$.

Proof. Claim: It suffices to show that there are $\gamma_1, \gamma_2 \in \Gamma, \gamma_1 \neq \gamma_2$, such that

$$\left(\frac{1}{2}X + \gamma_1\right) \cap \left(\frac{1}{2}X + \gamma_2\right) \neq \emptyset.$$

Proof of claim: Let $x = \frac{1}{2}x_1 + \gamma_1 = \frac{1}{2}x_2 + \gamma_2$ with some $x_1, x_2 \in X$. Then

$$y = \frac{1}{2}(x_1 - x_2) = \gamma_2 - \gamma_1 \in \Gamma \setminus \{0\}$$

with $y \in X$ since X is symmetrical central.

Now let us assume that the family $(\frac{1}{2}X + \gamma)_{\gamma \in \Gamma}$ is pairwise disjoint. Then

$$\left(\left[\frac{1}{2}X+\gamma\right]\cap\phi\right)_{\gamma\in\Gamma}$$

also consists of pairwise disjoint sets such that we obtain the contradiction

$$\begin{aligned} \operatorname{vol} \Gamma &= \operatorname{vol} \phi \geq \sum_{\gamma \in \Gamma} \operatorname{vol} \left(\left[\frac{1}{2} X + \gamma \right] \cap \phi \right) = \sum_{\gamma \in \Gamma} \operatorname{vol} \left(\frac{1}{2} X \cap [\phi - \gamma] \right) \\ &= \operatorname{vol} \left(\frac{1}{2} X \right) = \frac{1}{2^n} \operatorname{vol} X. \end{aligned}$$

2.5 Minkowski theory

Let $[K : \mathbb{Q}] = n$ be a field extension, $\tau_i : K \hookrightarrow \mathbb{C}$ different embeddings and consider the embedding

$$j: K \hookrightarrow K_{\mathbb{C}} = \prod_{\tau_i} \mathbb{C}, \ a \mapsto (\tau_1(a), \dots, \tau_n(a)).$$

Define a hermitian scalar product on $K_{\mathbb{C}}$ by

$$\langle (x_{\tau_i}), (y_{\tau_i}) \rangle = \sum_{\tau_i} x_{\tau_i} \overline{y_{\tau_i}}$$

and consider the complex conjugation $F \in \operatorname{Gal}(\mathbb{C}/\mathbb{R})$ given by $\mathbb{C} \to \mathbb{C}, z \mapsto \overline{z}$. Let

$$F(\tau) = \overline{\tau} \colon a \mapsto \overline{\tau(a)}$$

and extend it to $K_{\mathbb{C}}$ by

$$F \colon K_{\mathbb{C}} \to K_{\mathbb{C}}, (x_{\tau}) \mapsto (\overline{x}_{\overline{\tau}}).$$

Example. Let D > 0 be square-free. Consider

$$\mathbb{Q}\left(\sqrt{D}\right) \hookrightarrow \mathbb{Q}\left(\sqrt{D}\right)_{\mathbb{C}} = \prod_{\tau_i} \mathbb{C}$$

with

$$\tau_1\left(a+b\sqrt{D}\right) = a+b\sqrt{D}$$
 and $\tau_2\left(a+b\sqrt{D}\right) = a-b\sqrt{D}$.

Then

$$j\left(a+b\sqrt{D}\right) = \left(a+b\sqrt{D}, a-b\sqrt{D}\right)$$

and $F(\tau_1) = \tau_1, F(\tau_2) = \tau_2$ such that

$$F\left(x_{\tau_1}, x_{\tau_1}\right) = \left(\overline{x}_{\tau_1}, \overline{x}_{\tau_2}\right).$$

Remark. • $F(\langle x, y \rangle) = \langle F(x), F(y) \rangle$

• Tr: $K_{\mathbb{C}} \to \mathbb{C}$, $(x_{\tau}) \mapsto \sum_{\tau} x_{\tau}$ such that $(\operatorname{Tr} \circ j)(a) = \operatorname{Tr}_{K/\mathbb{Q}}(a)$

Now define the F-invariant \mathbb{R} -vector space

$$K_{\mathbb{R}} = K_{\mathbb{C}}^+ = \{ x \in K_{\mathbb{C}} \mid F(x) = x \} = \{ x \in K_{\mathbb{C}} \mid x_{\overline{\tau}} = \overline{x_{\tau}} \text{ for all } \tau \}.$$

Since $\overline{\tau}(a) = \overline{\tau(a)}$ for all $a \in K$ and all τ , we have $j(K) \subset K_{\mathbb{R}}$. We call $K_{\mathbb{R}}$ the **Minkowski** space and $\langle \cdot, \cdot \rangle \big|_{K_{\mathbb{R}}}$ the **canonical metric**.

Remark. Note that $j: K \to K_{\mathbb{R}} \cong K \otimes_{\mathbb{Q}} \mathbb{R}$, where the isomorphism is given by $a \otimes x \mapsto j(a)x$ for $x \in \mathbb{R}$.

Explicit description of $K_{\mathbb{R}}$: Let n = r + 2s, where r and s are the number of embeddings

$$\varphi_1, \ldots, \varphi_r \colon K \hookrightarrow \mathbb{R}$$

and

$$\sigma_1, \overline{\sigma_1}, \ldots, \sigma_s, \overline{\sigma_s} \colon K \hookrightarrow \mathbb{C},$$

respectively. Notice that $F(\varphi_i) = \varphi_i$ and $F(\sigma_j) = \overline{\sigma_j}$. Then elements of $K_{\mathbb{C}}$ are of the form

$$x = (x_{\varphi(1)}, \dots, x_{\varphi(r)}, x_{\sigma_1}, x_{\overline{\sigma_1}}, \dots, x_{\sigma_s}, x_{\overline{\sigma_s}})$$

with

$$F(x) = (\overline{x_{\varphi_1}}, \dots, \overline{x_{\varphi_r}}, \overline{x_{\overline{\sigma_1}}}, \overline{x_{\sigma_1}}, \dots, \overline{x_{\overline{\sigma_s}}}, \overline{x_{\sigma_s}}).$$

Hence we have

$$K_{\mathbb{R}} = \left\{ x \in K_{\mathbb{C}} \mid x_{\varphi_i} \in \mathbb{R}, x_{\overline{\sigma_i}} = \overline{x_{\sigma_i}} \right\}.$$

Proposition 2.5.1. The map

$$f \colon K_{\mathbb{R}} \xrightarrow{\cong} \mathbb{R}^{r+2s} = \prod_{\tau} \mathbb{R},$$
$$x \mapsto (x_{\varphi_1}, \dots, x_{\varphi_r}, \operatorname{Re} x_{\sigma_1}, \operatorname{Im} x_{\sigma_1}, \dots, \operatorname{Re} x_{\sigma_s}, \operatorname{Im} x_{\sigma_s}.)$$

is an isomorphism. It transforms the canonical metric into the scalar product

$$\langle x, y \rangle = \sum_{\tau} \alpha_{\tau} x_{\tau} y_{\tau},$$

where

$$\alpha_{\tau} = \begin{cases} 1, & \tau = \varphi_i \text{ for some } i, \\ 2, & \tau = \sigma_j \text{ for some } j. \end{cases}$$

Proof. Obviously, f is an isomorphism. For $x=(x_{\tau}),y=(y_{\tau})\in K_{\mathbb{R}}$ we have

$$\langle x, y \rangle \big|_{K_{\mathbb{R}}} = \sum_{\tau} x_{\tau} \overline{y_{\tau}}$$

$$= \sum_{\varphi_{i}} x_{\varphi_{i}} y_{\varphi_{i}} + \sum_{\sigma_{j}} x_{\sigma_{j}} \overline{y_{\sigma_{j}}} + \sum_{\overline{\sigma_{j}}} \overline{(x_{\sigma_{j}} \overline{y_{\sigma_{j}}})}$$

$$= \cdots = (f(x), f(y)).$$

Remark. • The canonical metric induces a volume vol_{can} on $K_{\mathbb{R}}$ and thus on \mathbb{R}^{r+2s} .

• If we denote the Lebesgue measure on \mathbb{R}^{r+2s} by $\operatorname{vol}_{\operatorname{Leb}}$ then, for $X \subset K_{\mathbb{R}}$,

$$2^s \operatorname{vol}_{\operatorname{Leb}} f(X) = \operatorname{vol}_{\operatorname{can}} X.$$

• We will thus consider $K \supset U \xrightarrow{j} j(U) \xrightarrow{f} \mathbb{R}^{r+2s}$.