UNCLASSIFIED

AD 408 430

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA. VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

CLIMATOLOGICAL WIND AND DENSITY DATA

FOR

TWENTY-FIVE USSR STATIONS

bу

Myrtle D. France Computation and Analysis Laboratory

U. S. NAVAL WEAPONS LABORATORY DAHLGREN, VIRGINIA

Į.

Date: MAY 1963

U. S. Naval Weapons Laboratory Dahlgren, Virginia

Climatological Wind and Density Data

for

Twenty-Five USSR Stations

Ъу

Myrtle D. France Computation and Analysis Laboratory

NWL REPORT NO. 1859

May 1963

CONTENTS

		Page
Abstr	act	111
	ord	iv
Descr	iption of Data	1
	Definitions of Data Coverage	1
	Equations for Computation of Wind and	2
	Density Means, Standard Deviations, and Coefficients of Correlation	
3.	Locations of Stations and Observational	4
4.	Accuracy of Data	5
	ssion	7
	Wind Profiles	7
	Density Profiles	7
Plann	ed Reports of Climatological Data for	9
_	ences	10
	dices:	
••	A. Tabulations of Wind Data B. Tabulations of Density Data C. Distribution	

Figures:

- 1. Geographical Location of Twenty-Five Stations
- 2. Mean East-West Wind Components, Seasonal Dependence Per Station
- 3. Comparison of Magnitudes of Typical Mean East-West
- and Mean North-South Wind Components
 - 4. Standard Deviation of Typical Mean Reasonal Wind Components
 - 5. Mean Density Departures from ARDC 1959 Model Atmosphere, Seasonal Dependence Per Station
- 6. Mean Density Departures from ARDC 1959 Model Atmosphere, Latitude Dependence Per Season
- 7. Mean Density Variability, Seasonal Dependence Per Station

Tables:

1. Station Designation and Observational Record Summary

CONTENTS (Continued)

Table (Continued):

- Appendix A Tables 1-100, Wind Component Means and Standard Deviations, by Levels, with Correlations Between Levels for Each Component
- Appendix B Tables 101-200, Air Density Means and Standard Deviations, by Geometric Heights, with Correlations Between Heights

ABSTRACT

Climatological wind and density data, by seasons, are presented for twenty-five USSR stations. Tabulations of means, standard deviations, and correlation coefficients, based on about ten years of statistical data over the period of 1950 to 1962, are given, by pressure levels (from surface to 100 millibars) for wind and by geometric heights (from surface to 16221 meters) for density. For purposes of description, graphical presentations of typical data are given for selected cases. These data were obtained from compilations and computations by the National Weather Records Center, Asheville.

FOREWORD

Mean seasonal wind and density data, applicable to twenty-five USSR stations, are presented for information. These data are believed to be of general interest to many activities. Although similar data for at least several of the stations are known to have been included in reports of broader studies, these earlier publications are classified and have had limited distribution.

Credit is due to the National Weather Records Center, Asheville, for supplying the statistical data. The helpful guidance in the preparation of this report of David R. Brown, Jr., Head of the Geoballistics Division, Computation and Analysis Laboratory, and Mrs. Doreen H. Daniels is acknowledged. Credit is also due J. E. Clift, Computer Engineering Division, Computation and Analysis Laboratory, for his assistance in planning the table formats.

• APPROVED FOR RELEASE:

/s/ R. H. LYDDANE Technical Director

DESCRIPTION OF DATA

1. <u>Definitions of Data Coverage</u>

Climatological wind and density data are presented in this report for twenty-five USSR stations (Figure 1 and Table 1). The data are based on measurements by means of operational radiosonde equipment taken for a period of approximately ten years. The twenty-five stations are located between north latitudes of about 40 and 69 degrees and between east longitudes of about 24 and 60 degrees. The wind observations were taken between January, 1950 and December, 1959; the density observations were taken between January, 1950 and January, 1962. Appendix A provides tables of mean seasonal wind components, standard deviations, and coefficients of correlation between levels, with respect to pressure level. Appendix B provides tables of mean seasonal densities, standard deviations, and coefficients of correlation between levels, with respect to geometric height.

For each combination of station and season, Appendix A provides a table of the following data for the wind at the surface and for pressure levels of 850, 700, 500, 300, 200, and 100 millibars:

- a. The mean wind components, north-south and east-west (knots).
- b. The standard diviations of the mean wind components (knots).
- c. The coefficients of correlation between levels.
- d. Number of observations (column heading designation OBSN) included in the data at each level for computation of the mean components and standard deviations.

In each table, the data contained in the columns headed by MEW are the mean east-west wind components (a negative component indicates a wind component from the west); the standard deviations of the east-west components are given in the columns headed by SEW. Correspondingly, the mean north-south wind components are given in the rows headed by MNS (a negative component indicates a wind component from the south); the standard deviations of the mean north-south components are given in the rows headed by SNS. The coefficients of correlation are presented by array, the rows and columns of which are arranged in accordance with the pressure levels. The coefficients of correlation for the east-west wind

GEOGRAPHICAL LOCATION OF TWENTY-FIVE STATIONS

FIGURE I

									NWL RE	PORT N	1859 io. 1859
			y	1/62	1/62	1/62	1/62	1/62	NWL RE	PORT N	1859 70. 1859 11. 1859
		mary	Record	1/50- 1/62	10/50- 1/62	1/50-	1/50- 1/62	1/50- 1/62	1/50-	1/50-	4/50-
	≻ 1	Observational Summary	Period of Wind	1/50- 1/62	10/50- 1/62	1/50- 1/62	1/50- 1/62	1/50-12/59	1/50-12/59	1/50-12/59	2/56-12/59
	ORD SUMMAR	0bs	Type** Rate**	6 13	6 13	6 23	6 23	6 12	6	6 12	6 22
B 1	STATION DESIGNATION AND OBSERVATIONAL RECORD SUMMARY	Altitude of Station Above	Mean Sea Level Meters	76	10	13	18	. 44	7	၈	234
TABLE	ON AND OF	aphic tion	de (N) ude (E) Min	58 03	59 47	35 30	43 43	25 48	58 18	58 04	52 32
	ESIGNATI	Geographic Location	Latitude Longitude Deg Mi	33	9 4 94	4 9	61 30	59 24	30	56 24	53 27
	STATION D		Figure 1 Symbol	1	7	m	4	S	9	7	œ
			*OMM	22113	22522	22550	22802	26038	26063	26422	26850
			Station Name	Murmansk	Kem Port	Arkhangelsk	Sortovola	Tallin	Leningrad Town	Riga	Minsk

 \mathbf{C}

		т	8	- 2	- 2	~	<u> </u>	1	WL RE	PORT N	0. 1859
	dity		1/62	1/62	1/62	1/62	1/62	1/62	1/62	1/62	0. 1859 /1
	Scmmary d of Record Density		1/50-	2/53-	2/53-	1/50-	1/50-	1/50- 1/62	2/53-	1/50-	1/50-
	Observational Sur		1/50-12/59	2/53-12/59	7/55~12/59	1/50-12/59	1/50-12/59	1/50-12/59	2/56-12/59	1/50-12/59	1/50-12/59
	0bs Type** Rate**		22	6 22	6 23	6 12	6 12	6 22	6 22	6 13	6 13
(Continued)	Altitude of Station Above Mean Sea Level	Meters	172	82	122	156	237	197	777	179	325
TABLE 1 (C	Geographic Location atitude (N) ongitude (E)	1.	39 37	13 49	47	45 34	48 38	45	14 10	24 27	49 57
Ħ	Geographi Location Latitude Longitude	Deg	58	56 43	55	55 37	56 60	54 56	53 50	50	49
	Figure 1 Svmbol	202116	6	10	11	12	13	14	15	16	17
	*OMM	2	27196	27553	27595	27612	28440	28722	28900	33345	33393
	Station	Name	Kirov	Strigino	Kazan	Moscow	Sverdlovsk	Ufa	Kuibishev	Kyev	Lvov

TABLE 1 (Corrinned)

_		 _	1		~	~					NW	L REPO	RT N	0. 1859	<u>}</u>
			ty		1/62	1/62	1/62	1/62	1/62	1/62	1/62	1/62			
		Record	Density		1/50-										
	į	Rec	Dε		1/5	2/50-	2/53-	1/50-	1/50-	1/50-	1/50-	10/51-			
		Jo I			_	_	,	_			_				
					3/53-12/59	2/50-12/59	2/53-12/59	2/50-12/59	1/50-12/59	1/50-12/59	1/50-12/59	/55-12/59			
		Pe	Wind		3-1	0-1	3-1	0-1	0-1	0-1	0-1	5-1			
	Ohoomistofi	17.0	12		3/2	2/5	2/5	2/5	1/5	1/5	1/5	7/5			
	7	0 K	-i< 1												
	•	Type**	Racexx		6 13	6 22.	6 113	2 22	6	6 22	6 22	2 22			
		F ₁	Ra	•			· · ·								
•	Ę	ນ . >											(WIYO)		9.
	Altitude of	Sea		rs		9	7	2	_	0	7				
	itu	Mean	Level	Meters	99	156	152	145	7	760	907	į	tio		
	Alt c+2+	Mean S		24									niza		
٠.			~!										Organization		
	ic		(E)	Min	38	34 02	56 17	. 	15 49	7 7	08	00			
	eographi	arr. ude	tude		2 K	m 0	Ω ⊢	41 21	15	41 57	0	00	gic		
• •	Geographic	Latitude	Longitude	Deg	46 30	51	49.36	48 44	47	41 44	40 44	41 49	rold	5)	
	G	12	긔									* .	the World Meteorological	and	
		 (27										d Me	7 S:	
		Figure	Symbol		18	19	20	21	22	23	24	25	Wor1	page	
		E.	S										the 1) uc	
			*		37	72	00	09	31	46	88	09	by t	itic	
			WMO*		33837	34172	34300	34560	34731	37549	37789	37860	designation by	efin	
													nat	r de	
		Station						o.	Donu	. •			8 1 8	t fo	
		Sta	Name		· ,	. : 2	 ≱	nove	. Na	- ب	ri Li			texi	
					Odessa	Saratov	Kharkov	Voroponovo	Rostov Na	Tbilisi	Yerevan	ku	*Number	**See text for definition (pages	
					рO	Sa	Kh	Vo	Ro	ТЪ	Ye	Baku	N*	*	

data are tabulated below the main diagonal of the array whereas the coefficients of correlation for the north-south data are tabulated above the main diagonal of the array.

For each combination of station and season, Appendix B provides a table of the following data for the density at the surface and at geometric heights of 1458, 3014, 5579, 7193, 9177, 11806, 13638, and 16221 meters:

- a. The mean air density (kilograms mass per cubic meter).
- b. The standard deviation of the mean air density (kilograms mass per cubic meter).
- c. The coefficients of correlation between levels.
- d. Number of observations (column heading designation OBSN) included in the data at each altitude for computation of the means and standard deviations.
- e. The number designation for identification of each level.

In each table, the data contained in the rows headed by M are the mean air densities; the standard deviations, multiplied by 10, are contained in the rows headed by Sx10. The coefficients of correlation are presented by array, the rows and columns of which are arranged in accordance with the geometric heights.

The data of Appendices A and B are identified by a code number indicating the station number as used in Figure 1, the season, and the type of data, either wind or density. Within each appendix, the first major grouping is by station number (1 through 25) and the second major grouping is by season (winter, spring, summer, and fall, in that order, with symbols W, Sp, Su, and F, respectively). For example, in Appendix A the first table is identified by the code W-1 W, where the first W designates wind (common to all tables in Appendix A), the 1 represents the station number (in accordance with Figure 1), and the second W indicates that the data apply to the winter season. The second table of Appendix A is therefore coded W-1Sp, the third table W-1Su, and the fourth table W-1F.

2. Equations for Computation of Wind and Density Means, Standard Deviations, and Coefficients of Correlation

The following equations are among those employed by the National Weather Records Center in the computation of the data given in Appendices A and B:

(

Hean =
$$\frac{\Sigma X_i}{N}$$

Standard Deviation = $\sqrt{\frac{N \Sigma X_i^2 - (\Sigma X_i)^2}{N(N-1)}}$

Coefficient of
Correlation (between ith and
$$\sqrt{N \sum_{i} x_{i}^{2} - (\sum_{i} x_{i})^{2}} \sqrt{N \sum_{j} x_{j}^{2} - (\sum_{j} x_{j})^{2}}$$
(between ith levels)

where,

X_i = individual observation of data (wind or density) at the ith level

N = the number of observations (<u>i.e.</u>, the number of soundings)

The value of N used in the computations of the means and standard deviations is in most instances greater than that employed for the computation of the correlation coefficients, since the latter require that data be available for both levels of each combination (ij) within a given sounding.

The density data were computed from observations of temperature, pressure, and relative humidity as follows:

$$\rho = \frac{0.3486 \ (P - 0.377 \ E_{s} \ RH)}{T_{F}}$$

where,

ρ = air density in kilograms mass per cubic meter

P = air pressure in millibars

 E_s = saturation vapor pressure, at temperature T_K , in millibars

RH = relative humidity (<u>e.g.</u>, for RH of 50 percent, use 0.50 in the equation)

Tw = air temperature in degrees Kelvin

It should be noted that the density data were procured at fixed pressure levels, however, the data were processed for presentation versus geometric height; that is to say the density data were not simply tabulated versus the geometric height associated with the standard atmosphere at the particular pressure level. In general, this conversion is obtained by use of the following integral, in the absence of direct measurements of the altitudes at which the observations are made:

$$h = h_0 - \frac{R}{g} \int_{P_0}^{P} \frac{T(P)}{P} dP$$

where,

h = geometric altitude (ho is the surface altitude)

R = universal gas constant

g = acceleration due to gravity

T (P) = air temperature as a function of pressure level

P = air pressure (Po is the surface pressure)

3. Locations of Stations and Observational Record Summary

The latitudes and longitudes of the twenty-five USSR stations, for which data are given in this report, are listed in Table 1 and shown geographically in Figure 1. The stations are listed in Table 1 by name and WMO number (World Meteorological Organization; the number designations are given in Reference 1) together with the geographical co-ordinates, altitudes of the stations above mean sea level, and periods of record for both the wind and density data. Also given in Table 1 are numbers indicating the type of observation and the observation rate code, applicable to both the wind and density data (specific details of the type and rate data are described in Reference 1). These are described, in general, as follows:

a. Type of Observation

- 6 = 2 rawins per day (wind tracked by electronic equipment)

b. Rate Code

The first digit describes the percentage frequency that data were received for the station:

- 1 = data received 90 percent of period and/or 90
 percent of the possible observations of the
 month
- 2 = data received 50-89 percent of period and/or 50-89 percent of possible observations

The second digit describes the percentage frequency that observations reached selected mandatory levels:

- 2 = equal to or greater than 50 percent of observations received reach the 100 mb level
- 3 = equal to or greater than 50 percent of observations received reach the 300 mb level

4. Accuracy of Data

The climatological data given in this report are subject to errors of various kinds (for example, observational and processing errors). As far as is known, there is presently no pertinent information as to the accuracy of the instruments and procedures employed in making the observations and, hence, specific statements concerning the reliability of the data cannot be made. Several reports have been published, however, giving accuracies of radiosondes used in the United States, References 2, 3, 4, and 5. For example, the standard deviations of observational errors for the AN/AMT-4 radiosonde, as quoted in Reference 2, are as follows:

	Press	ire	Temperature	Relative Humidity
±1	mb at	1000 mb	±1°C	±5%
±3	mb at	500 mb	±1°C	±5%
±1.5	5 mb at	100 mb	±1°C	±5%

The above errors in radiosonde measurements would produce air density errors of the following magnitudes:

Pressure (mb)	Air Density Error (Pelative to ARDC 1959) (%)
1000	0.4
500	0.8
100	1.6

The climatological seasonal mean densities were compared for consistency with the monthly mean data given in Reference 6. It was found that the monthly data, in terms of percent deviation from the ARDC 1959 standard atmosphere, enveloped the seasonal data, as given in Appendix B.

The errors in the wind data are even more difficult to assess. Reference 5 indicates that the observational errors in radiosonde measurements would be less than 10 knots in wind magnitude. The decreasing number of observations with altitude constitutes the most serious handicap in the wind climatological data. A bias is introduced at the higher levels (a bias toward lower values) in that the strong winds at the lower levels blow the balloon out of range before it reaches the upper levels. The magnitude of the mean winds given in Appendix A were compared with the monthly mean wind data given in Reference 7. Here again, the data were in reasonable agreement.

Except for the possible bias in the upper wind data, it is assumed that all the other errors in both the wind and density data would be random, and would not produce significant biases in the data as given.

DISCUSSION

1. Wind Profiles

The variation with pressure level of the seasonal mean wind components and standard deviations is shown in Figures 2, 3, and 4 for several typical stations, the latitudes and longitudes of which are representative of the area covered by the data of this report. Typical seasonal variations of the mean east-west components of the wind profiles are shown in Figure 2. In general, for all of the data recorded, the mean east-west components exceed the mean north-south components by a factor of about 2 or 3; in order to demonstrate this relation, Figure 3 shows a comparison of typical mean east-west and mean north-south components. Representative values of the standard deviations of the mean components, together with the corresponding means, are shown in Figure 4. The data show that there is little difference in the shapes of the profiles for the four seasons; typically, the highest mean winds occur during the winter season and the lowest mean winds occur during the spring season. The mean wind profiles exhibit an increase in the wind speed with altitude throughout most of the troposphere with peak mean winds generally occuring at an altitude of approximately 11 kilometers (in the region of the 300 and 200 millibar levels). Little seasonal variation is exhibited in the mean surface winds; however, the seasonal variations of the mean winds increase with altitude. Over the span of the locations of the twenty-five stations, only slight variation of the mean wind profiles with latitude is demonstrated; for example, at about the 300 millibar level, the mean winds for the lowest latitudes considered are only about 5 knots greater than the mean winds for the highest latitudes considered. For all of the wind data contained in this report, the standard deviation of the mean wind (of the same order of magnitude for both the mean east-west and mean north-south components) increases with altitude over most of th, troposphere; at the surface, typical standard deviations are from about 5 to 10 knots whereas at the 300 millibar level the standard deviations are usually about 25 knots. The increases in mean wind speed and variability with altitude, as shown by the data of this report, are in agreement with the results reported in Reference 8.

2. Density Profiles

The variation with geometric altitude of the seasonal mean air densities, expressed as the percent departure from the ARDC 1959 model atmosphere, and the standard deviations are shown in Figures

MEAN EAST-WEST WIND COMPONENTS SEASONAL DEPENDENCE PER STATION (DATA LEVELS •)

FIGURE 2

COMPARISION OF MAGNITUDES OF TYPICAL MEAN EAST-WEST AND MEAN NORTH-SOUTH WIND COMPONENTS (DATA LEVELS +)

FIGURE 3

STANDARD DEVIATION OF TYPICAL MEAN SEASONAL WIND COMPONENTS (DATA LEVELS *)

FIGURE 4

MEAN DENSITY DEPARTURES FROM ARDC 1959 MODEL ATMOSPHERE SEASONAL DEPENDENCE PER STATION (DATA LEVELS *)

FIGURE 5

MEAN DENSITY DEPARTURES FROM ARDC 1959 MODEL ATMOSPHERE LATITUDE DEPENDENCE PER SEASON (DATA LEVELS *)

FIGURE 6

MEAN DENSITY VARIABILITY SEASONAL DEPENDENCE PER STATION (DATA LEVELS -)

FIGURE 7

5, 6, and 7 for several typical stations, the latitudes and longitudes of which are representative of the area covered by the data of this report. Typical seasonal variations of the mean air density are shown in Figure 5. For each of the seasons, Figure 6 shows the variation of mean air density with latitude. Representative values of the percentage variability of the density are shown in Figure 7 (percent variability is defined, for any given altitude, as the standard deviation of the air density expressed as a percentage of the mean air density). The data of Figures 5 and 6 clearly demonstrate the isopycnic level occuring at altitudes of between 7 and 9 kilometers; at the isopycnic level, the departures of the mean densities from that of the standard atmosphere are usually less than 1 or 2 percent. The departures with respect to the standard atmosphere above the isopycnic level are negatively correlated with the departures below the isopycnic level; typically, the density profiles with the largest departures near the surface attain the largest departures above the isopycnic level (with the sign of the departure opposite to that of the surface departure). Above the isopycnic level, the data show (Figures 5 and 6) that the maximum deviations from the standard atmosphere (negative for the latitudes considered) occur at an altitude of approximately 13 kilometers. For the twenty-five stations, the largest departures from the standard atmosphere, at both the surface and at an altitude of about 13 kilometers, are exhibited during the winter season, whereas typically the least departures are obtained during the summer season. The data of Figure 6 show that the departures are strongly dependent on latitude, particularly above the isopycnic level. Perhaps of some interest is the fact that the mean densities below an altitude of about 3 kilometers usually tend towards a positive departure, independent of the sign of the departure above the isopycnic level. The percent variabilities of the mean seasonal densities are shown in Figure 7 for several typical stations. For the altitudes of the data considered, the maximum variabilities are exhibited at an altitude of about 12 kilometers; the variability at the surface, however, is only slightly less than at an altitude of 12 kilometers. The least variabilities are exhibited in the region of the isopycnic level. The dependences on season and latitude of the mean densities and variabilities as shown by the data of this report are in general agreement with the results reported in Reference 3.

PLANNED REPORTS OF CLIMATOLOGICAL DATA FOR ADDITIONAL STATIONS

Climatological data for additional Eurasian stations are expected to be published during the latter part of 1963. These data, applicable to 40 stations for wind and 37 stations for density, are based on about two to ten years of observation during the period of 1950 to 1962. The stations are located in the geographical area from approximately 22 degrees north to 80 degrees north and from approximately 35 degrees east to 180 degrees east.

REFERENCES

1. USAF and NWRC Reference Manual 524 of 19 July 1961

į

- 2. ACMC Report No. RR-TR-61-50, Reliability and Representativeness of Air Density Data, of 16 October 1961
- 3. AFCRC-TN-58-627, Behavior of Atmospheric Density Profiles, of December, 1958
- 4. NWRC Memo, A Preliminary Evaluation of the Reliability of Upper
 Air Density Data for the Eurasian Continent, by Harold L. Crutcher
 of March, 1963 (Unpublished)
- 5. Handbook of Geophysics, United States Air Force, 1960
- 6. NASA TN D-1641, Cross Sections of Temperature, Pressure, and Density Near the 80th Meridian West, of May, 1963
- 7. AOMC Climatological Ringbook, 1959-1961
- 8. AFCRC-TN-57-478, Maximum Variability Level of Winds, of 31 May 1957

TABULATIONS OF WIND DATA APPENDIX A

「神神神の大きなないのでは、大きなないできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできるというできる

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).
BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

MURMA	MURMANSK, WINTER	47ER					LAT 6	88 58 N	LONG	033 03 E
		NORTH	LEVEL	SFC	850	700	500	300	200	100
EAST	EAST-WEST		MNS	-7.99	-0.08	06•0	2.31	5.77	8.90	8.77
			SNS	10.53	18.83	16.04	21.70	26.49	21.73	17.38
OBSN	LEVEL	MEW	SEW							
30	SFC	-0.79	4 • 45		•421	•190	• 349	• 190	• 080	025
598	850	-8.37	18.08	•684		• 704	•514	• 353	•366	•258
665	200	-7.22	16.77	•665	•732		•724	•498	•405	•274
544	200	-12,28	19.55	251	•460	•705		•773	•667	•473
413	300	-16,35	28•96	•056	•289	•522	•687		•828	•582
220	200	-17.96	23.11	056	•168	•359	• 488	•556		•793
162	100	-25,58	16.05	132	•149	•251	•392	.427	•592	

W-1SP

TABLE 2

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

033 03 E	100	8 • 71	18,19			.253	•278	•452	•376	•579	
LONG	200	6.73	20.48			•421	•533	•611	•766		•584
89 89	300	5.51	25.01			• 428	• 549	•766		•717	•369
LAT 6	500	4.88	21.28			•622	• 799		• 703	•569	•372
	700	4.23	16.39			•820		•705	•484	•394	•314
	850	1.77	15.00				•754	• 556	•370	•291	•226
	SFC										
	LEVEL	MNS	SNS	SEW		15,36	16.15	20.03	24.58	16.52	15.08
S I N G	NORTH			MEW		-8.97	-10.44	-16.12	-17,82	-12,51	-10.08
MURMANSK. SPRING		EAST-WEST		LEVEL	SFC	850	700	200	300	200	100
MURMA		EAST		OBSN	O	618	619	536	350	188	177

TABLE 3

(

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

200	-3,98	4								
	Ŷ	19.04		023	•280	•544	•792	•817		•396
300	-2.45	28.60		116	•342	•579	•732		•752	•474
200	-0.44	19,98		•082	•469	•710		• 785	•741	• 194
700	-0.23	14.66		.277	•702		•775	•580	•630	•203
850	0.05	13,30		•576		•764	•618	•428	.520	•178
SFC	0.70	6.13			•107	.158	030	101	060•-	117
LEVEL	S N N	SNS	SEW	2.22	12.93	14.10	18•61	26.54	16.72	11.40
NORTH		,	MEW	-0.42	-5.92	-T.T-	-11,60	-15.83	-9.22	-4.35
	-WEST		LEVEL	SFC	850	700	200	300	200	100
	EAST.		NSEO	80	609	633	584	388	205	189
	LEVEL SFC 850 700 500 300	LEVEL SFC 850 700 500 300 MNS 0.70 0.05 -0.23 -0.44 -2.45	NORTH LEVEL SFC 850 700 500 300 SOUTH MNS 0.70 0.05 -0.23 -0.44 -2.45 SNS 6.13 13.30 14.66 19.98 28.60	-WEST NORTH LEVEL SFC 850 700 500 300 SOUTH MNS 0.70 0.05 -0.23 -0.44 -2.45 SNS 6.13 13.30 14.66 19.98 28.60 LEVEL MEW SEW	-WEST	WORTH SOUTH S	-WEST MNS 0.70 0.60 700 500 300 2 -WEST MNS 0.70 0.05 -0.63 -0.44 -2.45 -3 LEVEL MEW SEW 13.30 14.66 19.98 28.60 19 LEVEL MEW SEW SFC -0.42 2.22	WEST MNS Oo-70 Oo-05 Too 500 300 2 -WEST MNS Oo-70 Oo-05 -Oo-44 -2.45 -3 LEVEL MEW SEW 13.30 14.66 19.98 28.60 19 SFC -Oo-42 SEW .576 .277 .082 -116 . 850 -5.92 12.93 .107 .702 .469 .342 . 700 -5.92 12.93 .107 .702 .469 .342 . 700 -7.77 14.10 .158 .764 .770 .710 .579 500 -11.60 18.61 030 .618 .775 .770 .770 .771 .773	-WEST RNS SFC BSO 700 500 300 2 -WEST RNS 0.70 0.05 -0.23 -0.44 -2.45 -3 LEVEL MEW SEW 13.30 14.66 19.98 28.60 19 SFC -0.42 SEW	-WEST SFC 850 700 500 300 2 -WEST MNS 0.070 0.055 -0.023 -0.044 -2.45 -3 LEVEL MEW SEW 13.33 14.66 19.998 28.60 19 SFC -0.042 2.22

W-1F

TABLE 4

(

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

033 03 E	100	11.47	13,76		•406	•390	•385	•513	•514	•736	
LONG	200	14.71	20.83		•329	•374	•452	•642	•676		•632
68 58 N	300	12.83	29.28		.150	•363	•490	• 780		•642	.518
LAT 6	200	7.75	22.65		• 185	•572	•742		•757	•599	•479
	700	5.11	17.27		•556	•722		•706	•473	•366	•197
	850	1.74	18.59		•789		•674	•585	•319	•310	•160
	SFC	-0.77	9446			•370	•233	•314	•229	•207	•101
	LEVEL	S N	SNS	SEW	5.80	15.79	16.30	20.12	27.08	20.27	12.39
ب	NORTH			MEW	-2.37	-10.06	-10.20	-13.57	-16.55	-14.85	-14.23
MURMANSK, FALL		EAST-WEST		LEVEL	SFC	850	700	200	300	200	100
MURMAP		EAST.		OBSN	80	669	615	572	365	188	148

W-2W

TABLE 5

「大学のできる」のないのは、日本のでは、からなり、そのできる

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).
BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH.COMPONENT

KEM PORT. WINTER	TER					. AT 6	64 59 N	LONG	034 47 E
	NORTH	LEVEL	SFC	850	700	500	300	200	100
		S N N		1.14	2.03	3.96	4.73	9.41	13.58
		SNS		16.32	19,95	22.60	29.31	26.83	23.04
	MFW	SEW							
	-5.36	16.22			•776	•612	•461	•362	•178
	-7.55	20.83		•753		• 680	•532	•435	• 263
	-9.81	21.68		•617	•650		• 683	•635	5 •547
	-14.61	27.37		• 404	•442	•672		•808	.613
	-24,29	21.93		•354	•346	• 600	669•		•644
	-27,89	21.71		•122	•198	• 385	•465	•582	

W-2SP

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).
BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

φ

TABLE

(

034 47 E	100	6.26	13.56			•150	•312	•412	•318	•412	
LONG 03	200	9•92	26.39			•468	•568	• 695	•742		•472
Z 69	300	5.33	32.03			•426	• 665	•761		•694	•324
LAT 64	500	5.64	23.57			•535	• 737		•742	•498	•163
	700	4 • 41	17.89			•752		•676	.527	•414	•141
	850	3.10	16.16				.657	•437	•388	•221	•052
	SFC	11.62₽									
	LEVEL	M N N	SNS	SEW		17.63	16.37	21.12	28.84	23.72	17.56
5 N	NORTH			MEW	13.40	-7.22	-11.34	-16.20	-21.83	-21,28	-10.97
KEM PORT. SPRING		EAST-WEST		LEVEL	SFC	850	700	500	300	200	100
KEM PC		EAST.		OBSN	-	533	505	455	377	134	94

海道の 大きな からなる ないまた いまれ こうまん こう

TABLE 7

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).
BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

KE P	KEM PORT, SUMMER	MMER					LAT 6	64 59 N	LONG	034 47 E
		NORTH	LEVEL	SFC	850	700	500	300	200	100
EAST	EAST-WEST		M N N N		0 • 20	-1 • 49	-2.00	-3.19	-5.13	-3.14
			SNS		14.27	16.80	19,93	29.47	23,98	15.24
OBSN	LEVEL	MEW	SEW							
0	SFC									
547	850	-0.93	15.49			•633	•574	•453	•363	3 •146
526	700	-3,61	17.41		• 545		669•	• 666	•421	•196
497	500	-7.85	20.90		.512	•568		•T72	•517	•321
446	300	-13.01	29.58		•391	•517	• 700		•689	•416
152	200	-14.38	23.70		•528	.537	•711	.757		•519
124	100	-5.02	14.86		•391	•303	•468	•407	497	•

W-2F

TABLE 8

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

034 47 E	100	11.19	16.92			•331	•455	•441	•317	•559	
CONG	200	13.84	25.22			•409	•505	•627	•579		•415
64 59 N	300	13.78	31.21			• 444	• 608	•740		•667	•419
LAT 6	200	8.87	22.46			• 635	• 741		•719	•544	• 436
	700	5.50	18.50			•714		•675	•495	• 353	•318
	850	3.52	13,95				•669	.547	•327	.207	•115
	SFC										
	LEVEL	M N N	SNS	SEW		15.28	18•16	21 • 36	28•28	19•91	13.09
_1	NORTH SOUTH			MFW		-6.19	-8-58	-12.74	-16,95	-23.03	-17.80
KEM PORT, FALL		EAST-WEST		LEVEL	SFC	850	700	200	300	200	100
KEM D		EAST.		OBSN	O	602	266	484	391	114	99

M-3W

TABLE 9

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

040 30 E	100	6.78	21.04			•120	•199	• 454	•547	• 589	
LONG	200	99•9	26.19			•290	•414	•656	.841		•764
64 35 N	300	2•49	26.33			•407	•483	•705		•755	•653
LAT 6	500	1 • 33	19.64			•632	• 718		•681	• 652	•549
	700	-0.23	18•24			•730		•735	•495	•511	•345
	850	-1.65	14.94				•834	•622	•420	•328	•252
	SFC										
	LEVEL	MNS S	SNS	SEW		13.84	16.22	20.65	25.36	26,35	20.55
WINTER	NORTH SOUTH			MEW		-4.77	-7.02	69•6-	-11.94	-18.12	-25.02
ARKHANGELSK. WINTER		EAST-WEST		LEVEL	SFC	850	700	200	300	500	100
ARKHA		EAST		OBSN	O	568	553	534	452	182	114

W-3SP

TABLE 10

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

040 30 E	100	6,36	23.90			•134	•291	• 395	•474	•538	
LONG	200	4.48	22.67			.420	•565	• 583	•732		• 608
64 35 N	300	5.98	23.03			•491	• 654	•726		• 680	• 622
LAT 6	200	3.80	18,85			•594	•779		•707	• 560	•457
	700	3.46	15.18			•702		•680	•572	•484	•438
	850	1.61	13.80				•598	•409	•256	•345	•276
	SFC										
	LEVEL	MNS	SNS	SEW		16.70	15.29	18.40	21.67	29•08	18.92
SPRING	NORTH			MEW		-6.22	-9.10	-13.22	-17,35	-17.24	-12.61
ARKHANGELSK. SPRING		EAST-WEST		LEVEL	SFC	850	700	200	300	200	100
ARKHA		EAST		OBSN	O	539	512	474	445	168	110

W-3SU

TABLE 11

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

040 30 E	100	-0.63	15.57			•397	•449	• 568	•535	•119	
LONG LONG	200	-2.27	20.66			•515	.512	•808	.846		•590
4 35 N	300	40.0-	23,38			•486	•540	.747		•769	• 505
LAT 64	200	0.04	17.93			•623	•625		• 660	•514	• 306
	700	99•0-	15.82			•730		•715	•652	•610	•458
	850	60.0-	11.45				.772	•601	• 535	.372	•346
	SFC										
	LEVEL	SN _S	SNS	SEW		11.28	13•84	20•39	24.58	20.71	15.53
SUMMER	NORTH			MEW		-2.20	-4.72	-8.48	-10.81	96•8-	-5.29
ARKHANGELSK. SUMMER		-WEST		LEVEL	SFC	850	700	500	300	200	100
ARKHAI		EAST-WEST		OBSN	O	266	536	493	444	169	140

THE RESERVE OF THE PARTY OF THE

TABLE 12

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).
BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

LONG 040 30 E	200 100	10.86 16.70	22.80 26.01			8 .435 .385	514 •489	670 •496	•732 •419	.661	• 604
64 35 N	300	9•39	25.64			• 508	.557	• 705		• 705	•440
LAT	500	7.12	20.72			• 688	.747		•732	•650	.491
	700	5.13	15.74			•815		•739	•502	•432	•358
	850	2.80	14.00				•720	• 583	•413	•324	•116
	SFC										
	LEVEL	SN _M	SNS	SEW		15.98	16.69	18•12	26.60	21.089	19,78
FALL	NORTH			MEW		-6.67	-8.03	-12.06	-14.48	-19.00	-16.07
ARKHANGELSK. FALL	•	EAST-WEST		LEVEL	SFC	850	700	500	300	200	100
ARKHA		EAST		OBSN	0	614	586	546	487	143	104

W-4W

TABLE 13

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

030 43 E	100	0 7-10	4 20•67			72 •291	960.	65 •416	98 •504	•632	35
LONG	200	5.20	24,34			•372	•380	• 565	•698		•585
61 43 N	300	3.33	30 • 30			.427	•440	•754		• 640	•440
LAT	200	1.80	25.62			•560	•581		• 685	•539	•320
	700	2.44	19.28			•741		•691	•465	•336	•251
	850	2.05	15.17				•725	• 506	•323	•282	•203
	SFC	9•30	-								
	LEVEL	S N N	SNS	SEW		15.19	17.22	20.46	27.68	20.52	16.67
/INTER	NORTH			MEW	-25,57	-4.92	-8.97	-13,51	-19.49	-20.73	-26.17
SORTOVOLA, WINTER		EAST-WEST		LEVEL	SFC	850	700	200	300	200	100
SORTO		EAST		OBSN	4	356	309	259	231	215	161

W-4SP

TABLE 14

L

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

SORTOVOLA. SPRING	LEVEL	S T C	850	700	LAT 6 500	61 43 N 300	LONG	030 43 E
	SNR		1.60	2.29	3.31	5.29	7.32	8.70
	SNS		13,38	15.08	21.02	27.04	20.96	18.80
	SEW							
	13.47			.677	•476	•376	• 356	•168
	14.71		•793		.667	•468	.445	•218
	19,86		• 569	•744		•657	•540	•308
	26.10		•344	•585	.777		•630	•283
	19,56		•198	•475	•645	•675		•457
	16.45		•117	•211	• 289	•344	•484	

W-45U

TABLE 15

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

030 43 E	100	-2.09	12.16			•026	•191	•354	•274	•332	
LONG	200	- 5∙58	22.14			•271	.415	•677	•720		•518
61 43 N	300	-3.26	29.78			•428	•581	•779		•701	•429
LAT	200	-2•39	19.75			•596	• 731		•714	• 705	•326
	700	-1.70	16.51			•659		•769	•505	•521	• 308
	850	-0.86	13.70				•751	.551	•304	•320	•179
	SFC										
	LEVEL	W S	SNS	SEW		12.04	14.51	17.22	30.82	21.84	12.19
UMMER	NORTH SOUTH		•	MEW		-3.57	-5.67	-8.94	-10.20	-10.46	-4.60
SORTOVOLA. SUMMER		EAST-WEST		LEVEL	SFC	850	700	200	300	200	100
SORTO		EAST		OBSN	O	523	442	372	264	231	223

W-4F

TABLE 16

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).
BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

100	11.23	17.40			•390	• 542	•457	•510	•643	
200	12.90	26.74			•463	•622	•586	•766		. 597
300	12.34	31.42			•549	699•	•683		•719	•547
200	7.07	25.34			•582	•694		•724	•674	•452
700	4.43	18.08			•786		169•	•624	•512	•347
850	0.56	16.17				• 707	•449	•286	•226	•068
SFC										
LEVEL	MNS	SNS	SEW		13.57	13.82	19.00	27•32	22.48	17.15
NORTH SOUTH:			MEW		-5.68	-9.02	-14.09	-17.24	-17,55	-15.56
	-WEST		LEVEL	SFC	850	700	500	300	200	100
	EAST.		OBSN	O	352	298	249	229	224	206
	LEVEL SFC 850 700 500 300 200	LEVEL SFC 850 700 500 200 200 MNS 0.56 4.43 7.07 12.34 12.90	NORTH LEVEL SFC 850 700 500 200 200 SOUTH: MNS 0.56 4.43 7.07 12.34 12.90 SNS 16.17 18.08 25.34 31.42 26.74	NORTH LEVEL SFC B50 700 500 300 200 SOUTH: MNS 0.56 4.443 7.07 12.34 12.90 SNS 16.17 18.08 25.34 31.42 26.74 LEVEL MEW SEW	MORTH SOUTH: LEVEL SFC 850 700 500 200 -WEST SOUTH: MNS 0.556 4.443 7.07 12.34 12.90 LEVEL NEW NEW SFW SEW 16.17 18.08 25.34 31.42 26.74	MORTH SOUTH: S	-WEST BFC BSO 700 500 300 200 1 -WEST MNS 0.56 4.443 7.07 12.34 12.90 11 LEVEL MEW SEW 16.17 18.08 25.34 31.42 26.74 17 SFC SEW 3.1.45 31.42 26.74 17 SFC AS.68 13.57 AS.69 -5.82 -5.46 -6.43 -6.43 -6.43 -6.43 -6.43 -6.44 </td <td>-WEST RNS SFC 850 700 500 300 200 1 -WEST RNS 0.56 4.443 7.07 12.34 12.90 11 LEVEL MEW SEW 16.17 18.08 25.34 31.42 26.74 17 SFC SFC A.56 A.58 31.42 26.74 17 850 -5.68 13.57 A.707 A.58 31.42 36.94 46.3 700 -9.02 13.82 -707 -6.94 -6.94 -6.69 -6.69 -6.58 500 -14.09 19.00 -449 -6.97 -6.94 -6.58 -6.58 -6.58 -6.58</td> <td>-WEST MNS SFC 850 700 500 300 200 1 -WEST MNS 0.56 4.43 7.07 12.34 12.90 11 LEVEL MEW SEW 16.17 18.08 25.34 31.42 26.74 17 SFC SFC A.568 13.57 A.578 31.42 26.74 17 950 -5.68 13.57 A.778 A.586 -5.59 -5.49 17 500 -14.09 19.00 A.707 A.786 -5.69 -6.69 -6.69 300 -17.24 27.32 -2.86 -6.24 -7.24 -7.56 -7.56</td> <td>-WEST MNS SFC BSO 700 500<!--</td--></td>	-WEST RNS SFC 850 700 500 300 200 1 -WEST RNS 0.56 4.443 7.07 12.34 12.90 11 LEVEL MEW SEW 16.17 18.08 25.34 31.42 26.74 17 SFC SFC A.56 A.58 31.42 26.74 17 850 -5.68 13.57 A.707 A.58 31.42 36.94 46.3 700 -9.02 13.82 -707 -6.94 -6.94 -6.69 -6.69 -6.58 500 -14.09 19.00 -449 -6.97 -6.94 -6.58 -6.58 -6.58 -6.58	-WEST MNS SFC 850 700 500 300 200 1 -WEST MNS 0.56 4.43 7.07 12.34 12.90 11 LEVEL MEW SEW 16.17 18.08 25.34 31.42 26.74 17 SFC SFC A.568 13.57 A.578 31.42 26.74 17 950 -5.68 13.57 A.778 A.586 -5.59 -5.49 17 500 -14.09 19.00 A.707 A.786 -5.69 -6.69 -6.69 300 -17.24 27.32 -2.86 -6.24 -7.24 -7.56 -7.56	-WEST MNS SFC BSO 700 500 </td

MI-DE

TABLE 17

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).
BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

024 48 E	100	5.36	23,32		•255	•338	•462	•386	•473	•712	
LONG	200	4.49	29•03		.277	•476	•601	•715	•830		•770
59 25 N	300	4.59	29,42		.373	• 565	969•	•830		•800	•480
LAT	200	4.64	24.35		•420	•689	•818		•809	•681	•414
	700	1.87	17.66		•473	•842		.852	•688	•623	•316
	850	0.33	15.08		• 533		•830	• 705	•557	.507	•218
	SFC	-1.57	7.54			•607	•579	•507	• 338	•347	•241
	LEVEL	₹ SNS	SNS	SEW	6•78	16.71	18•61	24.19	30.68	26.83	26.87
α	NORTH			MEW	0.16	-5.32	-10.06	-13.52	-18•73	-24.52	-30.43
TALLIN, WINTER		EAST-WEST		LEVEL	SFC	850	700	200	300	200	100
TALLI		EAST		OBSN	417	373	417	417	417	296	68

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

TALLI	TALLIN, SPRING	10					LAT 5	59 25 N	FONG	024 48 E
		NORTH	LEVEL	SFC	850	700	200	300	200	100
EAST	EAST-WEST		SN W	-0.08	1.75	2•62	4.12	5.54	5.01	2.88
			SNS	7.31	14.67	16•77	24.85	33,11	26.13	24.05
OBSN	LEVEL	MEW	SEW							
424	SFC	-0.47	5,97		•491	-447	.371	•225	•166	020
406	850	-4.10	13.54	•416		•799	•607	•468	•419	•241
424	700	-7.50	15.87	•331	•771		•811	• 687	•635	•398
424	500	-12,59	21.37	•214	•567	•760		•839	•742	•567
454	300	-17.53	28.02	•167	•476	•664	•810		.813	•659
355	200	-18.67	23.76	•178	•446	•625	• 708	•792		•678
83	100	-11,31	19,55	.158	•250	•333	•443	•421	• 450	

W-5SU

TABLE 19

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

024 48 E	100	-3.79	16.55		•353	•381	•511	•486	•489	•621	
LONG	200	-5.28	27.57		•316	• 530	•667	•752	•793		•551
59 25 N	300	-4.49	30.12		•351	• 632	•730	.832		• 799	•570
LAT	200	-1.79	22.15		•417	•739	•862		• 780	• 732	•611
	700	-1.20	15.74		497	•861		.777	•676	•586	•456
	850	96•0-	12.71		•534		.823	•620	•529	•439	•472
	SFC	-0-17	5,95			•562	497	•322	•303	•240	•124
	LEVEL	W W N N	SNS	SEW	5.40	13,35	14.28	19.97	26.27	23.69	19.00
α	NORTH			MEM	-1.57	-6.04	-8.26	-12.67	-18,23	-18.79	-11.00
TALLIN, SUMMER		EAST-WEST		LEVEL	SFC	850	700	200	300	200	100
TALLI		EAST		OBSN	426	395	427	427	427	309	103

TABLE 20

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).
BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

TALLIN, FALL	• FALL						LAT 59	25 N	LONG	024 48 E
		NORTH SOUTH	LEVEL	SFC	850	200	500	300	200	100
EAST-WEST	WEST		SZW	-1.69	0.08	2.91	4 • 78	7.71	9.85	8.26
			SNS	7.31	16.26	18.21	25.03	33.69	32.02	26.25
OBSN	LEVEL	MEW	SEW							
426	SFC	-1.75	6.70		•667	•622	•519	• 405	•381	•294
400	850	-10.57	14.18	• 505		•848	•726	• 604	•567	•432
426	700	-14,38	16.59	•471	•807		•848	•716	•682	• 505
426	500	-20,83	21.90	•393	699•	•786		•826	• 780	•619
426	300	-26.81	28•62	•371	•541	•679	•807		•889	669•
323	200	-29.61	27.69	• 300	•468	•604	969•	• 791		•769
80	100	-20.40	34.22	•170	•167	•278	•512	• 560	609 •	

TABLE 21

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS). BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

ENING	LENINGRAD TOWN. WINTER	WINTER					LAT	59 58 N	LONG	03 0 1 8 E
		NORTH	LEVEL	SFC	850	700	200	300	200	100
EAST-WEST	WEST		MNS	-2.04	99•0-	0.56	3•36	5.62	6,93	6.74
			SNS	6.78	15,95	19•14	23.34	29.73	29.15	20•69
OBSN	LEVEL	MEW	SEW							
413	SFC	-0.51	6.47		• 599	•532	•440	•344	•234	•122
392	850	-7.13	15.99	•565		•851	• 730	•577	•483	•377
413	700	-9.72	18.24	• 509	.841		•838	•692	.551	•393
413	200	-12,63	21.86	•405	•686	•815		•852	•705	• 529
413	300	-16,83	28.97	•304	• 535	•656	•835		•803	•633
240	200	-23.96	25.96	•235	•458	•536	• 656	•800		•705
53	100	-22.64	19.47	•029	•128	•270	•321	•536	•614	

The state of the s

22 TABLE

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

LONG 030 18 E	200 100	3.42 5.15	24.75 18.48		•178104	.528 .285	•647 •464	•726 •553	•760 •692	•731	•489
59 58 N	300	2.55	33.01 2		•215	• 504	•672	•865		•740	•520
LAT 5	200	1.07	25.30		•313	•642	•813		.823	• 654	•528
	700	00•0	17.88		•409	•814		•786	•647	•547	•435
	850	0 • 1 7	14.75		•481		•850	•612	•469	.377	•371
	SFC	90•0-	6.02			•564	•487	•350	.213	•185	003
	LEVEL	MNS	SNS	SEW	5.56	14.90	16.63	23•35	28•41	22.21	12.77
LENINGRAD TOWN. SPRING	SOUTH			MEW	-0.37	-5.23	-8.67	-13.89	-17.68	-22.50	-9.27
IGRAD TO		EAST-WEST		LEVEL	SFC	850	700	200	300	200	100
LENIA		EAST		OBSN	430	415	430	430	430	318	4

TABLE 23

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS). BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

0 18 E	100	0.16	12.77	(•320	•433	•349	.447	•427	• 509	
Long 030	200	-5.87	27•16	!	• 303	•616	•695	•750	•764		•635
z es	300	-5.54	29•46		•274	•593	•714	•834		•749	•547
LAT 59	200	-4.12	20.46		•374	•722	•831		•829	169•	• 539
	700	-3.28	15.43		•434	•854		•838	-692	•648	•488
	850	-2.22	12.40		•530		.845	•701	.571	.510	•436
	SFC	-0.52	5.17			.521	\$49¢	.375	•310	.321	•087
	LEVEL	SN SN SN SN	SNS	SEW	4.60	12.67	13.81	19.45	27.45	22.50	09•6
LENINGRAD TOWN, SUMMER	HEAON			MEW	-0.70	5-21	-7.38	-10.69	-15-31	-18.03	00•6-
SRAD TOWN		TAST		LEVEL	S S	ַ מ ס כ	000	200	O C	000	100
LENING		F A S T) [OBSN	,	, ,	040 040	† † †		t 0	49

一大のないないというない あいまれる いろこうちょうしょう

(

.

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBAKS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

3	LENINGRAD TOWN. FALL					LAT 5	59 58 X	LONG	030 18 E
NORTH		LEVEL	SFC	850	700	200	300	200	100
		SZ SZ SZ SZ SZ SZ SZ SZ SZ SZ SZ SZ SZ S	-2.10	0.45	2.14	5.21	8•35	10.94	7.47
		SNS	5.89	15.10	17.62	24.48	31.83	31.44	17.45
MEW		SEW							
-1.85		5.77		699•	•589	•497	.372	•420	•346
-10.38		14.77	•526		•846	• 760	•625	•615	• 582
-13,48		16.67	•519	•848		•839	•740	.727	•646
-19.43		22.69	•420	•693	•821		•845	•752	. •687
-24.03		29•28	•341	•608	•742	•838		•838	1.677
-27.28		26.87	•325	.547	• 660	751	.815		•725
-11.91		20.36	.373	•536	•553	•610	•662	•674	

TABLE 25

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS). BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

RIGA, WINTER						LAT 56	58 N	LONG	024 04 E
	NORTH	LEVEL	SFC	850	700	200	300	200	100
		SZ W	-3.44	0.56	2.25	4.45	5.21	5.65	8.78
		SNS	7.85	16.03	18.23	24.00	31.55	26•29	18•19
	MEW	SEW							
	-0.45	6.84		•480	•453	• 353	•310	•258	•069
	-7.99	17.29	•645		•807	•630	• 502	•427	•218
	-11,39	19.68	•565	•870		• 793	• 648	•545	•342
	-15.45	25.24	•426	•693	•813		•842	•721	•581
	-20.54	31 + 32	•340	•569	•711	•854		•838	•639
	-23,57	27.73	•299	• 545	•072	• 746	•836		•610
	-25.57	20,98	•259	•274	•449	•579	.592	•765	

TABLE 26

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

LONG 024 04 E	200 100	2.80 -4.10	25.08 19.22		•151245	•498 •111	•662 •367	.744 .445	•796 •544	• 708	•685
56 58 N	300	5.01	31.42		•240	• 509	• 691	•8.6		.802	•513
LAT S	500	5.15	25.47		•331	•675	•840		•856	•756	•490
	700	2•93	18.07		•420	•818		.847	•724	•687	•456
	850	0.64	15.17		.518		.827	•631	.513	•501	•276
	SFC	-0.45	7.17			•459	•424	•336	•273	•268	.077
	LEVEL	MNS	SNS	SEW	5.73	13.52	17.18	22•60	27.78	21.94	16.19
	NORTH SOUTH			MEW	-0.39	-5.75	-8.47	-12,55	-17.10	-18.77	-7.99
RIGA. SPRING		EAST-WEST		LEVEL	SFC	850	700	200	300	200	100
RIGA.		EAST		OBSN	407	396	407	407	407	339	57

TABLE 27

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

024 04 E	100	-3.73	12.34		•116	•230	•404	•422	•438	•432	
LONG	200	-5.30	25.86		•267	•509	•657	•803	•832		•733
56 58 N	300	-4.20	30 • 62		•305	• 560	•714	•871		•798	• 668
LAT 5	500	-2.70	20.89		• 386	•678	.820		•820	•756	•657
	700	-1.94	14.75		•449	•792		•808	•639	•595	•577
	850	-0.97	11.76		•489		.820	•638	•459	•437	•475
	SFC	-0.70	5.34			•498	•478	•373	•279	•289	•393
	LEVEL	SNW S	SNS	SEW	4.57	11.85	13,48	18•69	26•31	23,63	11.70
	NORTH SOUTH			MEW	-1.28	-7.64	-10.12	-15,29	-20,38	-23,14	-7.36
RIGA, SUMMER		EAST-WEST		LEVEL	SFC	850	700	200	300	200	100
RIGA.		EAST		OBSN	414	401	414	414	414	278	64

W-7F

TABLE 28

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

024 04 E	100	40.0-	16.75		•288	•457	•575	9699	•738	•807	
LONG	200	8•28	28.56		•372	•586	•730	•812	•870		•656
56 58 N	300	6.39	31.24		• 398	•615	•755	.833		.817	•504
LAT 5	200	4 • 70	26.09		•475	• 661	•806		•812	•714	• 445
	700	2.12	18.03		•549	•795		.777	•694	•629	•366
	850	-0.54	15.66		•617		• 800	•639	• 536	•482	•326
	S C C	-2.18	7.11			•542	•521	•439	•338	•325	016
	LEVEL	MNS.	SNS	SEW	6.31	14.63	16.88	22.79	26•93	23.65	14.38
	NORTH			MEW	-1.81	-13,89	-16.46	-21,33	-26,23	-27,80	-17.43
FALL		EAST-WEST		LEVEL	SFC	850	700	200	300	200	100
RIGA. FALL		EAST		OBSN	400	382	400	400	400	256	50

W-8W

TABLE 29

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

027 32 E	100	5.56	26.83		•271	•399	•572	• 706	•758	•839	
LONG	200	5.60	27.20		• 304	•485	•607	•757	•838		.787
53 52 N	300	5.25	26.95		•278	• 545	• 685	.845		•881	•731
LAT 5	200	2.95	21.12		• 393	• 686	•829		•838	•780	•682
	700	0.95	17.64		•529	.867		•864	•725	•656	•561
	850	-1.01	16.38		•606		•882	•724	•576	•490	•446
	SFC	-1.96	7.25			•630	•535	•414	•284	•253	•090
	LEVEL	SNR S	SNS	SEW	7.03	15•78	17•37	21.78	28,78	25.94	19•72
~	SOUTH			MEW	€6•0-	-8.59	-11.60	-14.40	-18,65	-26.87	-31.83
MINSK. WINTER		EAST-WEST		LEVEL	SFC	850	700	200	300	200	100
MINSK		EAST		OBSN	429	407	429	429	429	281	131

TABLE 30

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).
BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

MINSK	MINSK, SPRING						LAT 53	3 52 N	FONG	027 32 E
		NORTH SOUTH	LEVEL	SFC	850	700	500	300	200	100
EAST	EAST-WEST		W NS	0.35	1 • 1 1	1.28	0.93	1.94	1 • 44	-1 • 34
			SNS	6.41	14.24	15.70	22.13	30.21	22.87	20.52
OBSN	LEVEL	MEW	SEW							
441	SFC	-0.56	5.79		• 538	.451	• 299	•188	.123	•070
439	850	-5.58	14.42	•584		•800	• 581	•447	•428	•468
441	700	-8.30	16.22	•475	•824		.817	•695	•647	•649
441	200	-13.13	21.00	966	•691	.840		•874	•761	•760
441	300	-16,53	27.10	•281	•575	•737	•882		• 797	•710
306	200	-17,82	22.89	.271	•515	•689	•775	•805		•842
92	100	-9,95	17,93	•255	.437	•542	•643	• 605	•718	

W-8SU

TABLE 31

1

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

027 32 E	100	-3.54	18•81		•135	• 350	•544	•729	•735	•820	
LONG 0	200	-4.18	26.74		.156	.457	•651	•811	•865		•689
53 52 N	300	-4.37	25.41		•193	•481	• 663	•856		•799	• 548
LAT 5	500	-3.01	18.85		• 293	•652	•815		•845	•743	.527
	700	-1.63	13.72		•320	•795		•837	•100	•595	•396
	850	-0.43	11.09		•428		•834	• 705	•569	•464	•257
	SFC	0.35	5.34			•514	•453	•371	•258	•116	• 200
	LEVEL	W NS	SNS	SEW	4.78	11.60	13.87	17,25	23.98	24.17	16.59
	NORTH SOUTH			MEW	16.0-	-6.72	-9.54	-13.64	-18,71	-27.18	-19.10
MINSK. SUMMER		EAST-WEST		LEVEL	SFC	850	700	200	300	200	100
MINSK		EAST		OBSN	429	408	429	429	429	202	46

TABLE 32

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

027 32 E	100	7.05	23•35		•308	•469	•635	•805	•781	•844	
LONG 0	200	9.72	28.76		•351	•544	•703	•859	•892		•705
53 52 N	300	5.89	28.72		•331	• 566	• 698	•866		.842	•649
LAT 5	200	4.06	21.33		•445	• 700	.835		•801	• 758	• 604
	700	2.86	17.18		•556	•854		•832	•686	•621	•505
	850	0.80	14.53		•635		•858	•720	• 554	.493	•341
	SFC	-1.30	8.04			•631	.537	•374	•298	•257	•299
	LEVEL	WNS	SNS	SEW	6.16	12.24	14.05	17.00	25.62	22.11	16.26
	NORTH			MEW	-2•39	-11.89	-14.44	-19.10	-24.50	-24,37	-23,45
MINSK, FALL		EAST-WEST		LEVEL	SFC	850	700	200	300	200	100
MINSK		EAST		OBSN	454	400	424	454	424	269	142

The state of the s

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).
BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

KIROV.	KIROV. WINTER						LAT 58	2 96 8	LONG	049 37 E
		NORTH SOUTH	LEVEL	SFC	850	700	200	300	200	100
-AST-WEST	WEST		M N N	-3.28	-2.68	-1.75	1 • 22	2.10	-1.71	0.29
			SNS	8.72	15.82	17.16	21.28	26.93	26.97	22.07
OBSN	LEVEL	MEW	SEW							
165	SFC	-1.40	8.22		• 544	•490	•376	•334	• 303	•038
160	850	-6.26	15.00	•616		•811	•634	•505	•524	•384
165	700	-7.77	16.75	•506	•901		• 790	• 663	•648	•533
164	500	-13,64	18.28	•486	•676	•727		• 788	•755	•622
164	300	-19,66	26•81	• 401	•492	• 606	•776		•834	•564
103	200	-25,63	24.79	•240	•392	•526	•531	• 625		• 648
69	100	-32•68	21 •88	•161	•279	• 443	• 408	•405	•456	

dS6-M

TABLE 34

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS). BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

(IROV.	KIROV. SPRING						LAT 58	2 6 8	LONG	049 37 E
		NORTH	LEVEL	SFC	850	700	200	300	200	100
EAST	EAST-WEST	- 	SZ W	-0.27	1.13	2.10	3.11	5.13	7.40	6.61
			SNS	7.29	12.12	15.12	21.04	26.48	23,69	12.78
OBSN	LEVEL	MEW	SEW							
214	SFC	-0.68	5.40		•581	•406	• 308	•223	•216	•023
207	850	-5.54	13.41	•516		•844	•624	•534	•523	•192
214	700	-9.44	14.03	•379	•709		•804	•770	• 755	•378
214	500	-16.88	17.68	•332	• 552	•737		•828	•746	•460
214	300	-22,25	21.16	•170	•278	.572	•713		•828	•374
96	200	-24.95	16.85	•062	020	•285	• 595	•766		•557
72	100	-15.74	13.13	021	047	• 090	• 350	•247	•363	

US6-₩

TABLE 35

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS). BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

049 37 E	100	0.23	10.86		•047	•282	•443	•507	•459	•707	
LONG	200	-2,86	17,35		•129	.377	•657	•742	•768		•349
58 39 N	300	0.82	23,37		• 182	•490	•675	•742		• 785	•545
LAT	500	0.74	17.47		•287	• 701	.846		• 791	•675	•461
	700	0.21	12.94		•349	•828		•841	•663	•665	•357
	850	-0 • 1 9	10.20		•479		•813	•629	•515	•494	•251
	SFC	-0.04	5.46			• 443	• 441	•371	•249	•213	•175
	LEVEL	S N N	SNS	SEW	4.53	99•6	12.34	16.50	22.67	23.96	12.01
~	NORTH			MEW	0.16	-3.01	-7	-10.69	-14,61	-15,43	-2.84
KIROV. SUMMER		EAST-WEST		LEVEL	SFC	850	700	500	300	200	100
KIROV		EAST.		OBSN	257	248	257	257	257	106	78

M-9F

TABLE 36

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS). BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

LEVEL SFC	U		850	700	500 500			100 100
	MNS -2 • 12		66•0-	0 • 84	4 • 95	6.70	04.€C	0 • 0 0
	SNS 8•2	8.22	13.68	16.69	22.89	28•52	28.56	18.05
	SEW							
-3.44	7.31		699•	•583	•387	•290	•214	•120
	12.80	•478		•871	•661	•454	•491	497
	14.86	•481	•836		•775	•662	•641	• 565
	17.66	•329	.527	•680		• 683	•821	•693
	23.06	•311	•429	• 603	-807		•773	•572
	22.33	•166	• 440	• 605	•720	•724		•715
	18.92	•003	•227	•136	• 206	• 100	•261	

TABLE 37

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).
BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

043 49 E	100	7.13	28.91		•178	•436	•518	•596	•605	•722	
LONG	200	6 • 5 9	28.72		•312	• 560	•657	.827	.837		•753
56 13 N	300	2.52	30.29		•296	• 600	.707	.819		• 792	• 741
LAT	200	-1.03	23.10		•361	•724	•824		•825	•750	• 664
	700	-1.85	18.03		•401	•880		•847	•720	•602	•598
	850	13.23	15.68		•427		•869	•725	•616	•527	.510
	SFC	-3.17	7.83			•544	•515	•435	•360	•182	690•
	LEVEL	M N N N	SNS	SEW	6.35	15.72	17.43	22•93	30.27	29.20	28•89
NTER	NORTH			MEW	-1.87	09•6-	-11.42	-14.83	-20.21	-28.91	-24.62
STRIGINO. WINTER		EAST-WEST		LEVEL	SFC	850	700	200	300	200	100
STRIG		EAST		OBSN	390	365	390	390	390	166	70

W-10SP

TABLE 38

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

100	-1 • 09	21.04		•274	•526	•585	169•	•723	•750	
200	3.07	28.87		•262	.551	•674	•770	•811		.797
300	-4.59	30.76		•341	• 625	•721	.848		• 780	•723
200	-3.40	24.17		•416	•745	•845		•815	• 744	• 628
700	-2.88	18•19		•510	897		•787	•667	•681	•606
850	-2.18	14.77		•552		•818	•625	•492	•451	•191
SFC	-1 • 75	7.15			•446	•441	•320	•253	•198	•117
LEVEL	W N N	SNS	SEW	6.14	14.09	15•68	20.07	25.53	22•66	21.76
NORTH			MEW	-0-85	-7.40	-10.14	-14.01	-18•63	-23.10	-17.66
	-WEST		LEVEL	SFC	850	700	200	300	200	100
	EAST		OBSN	402	379	402	402	402	111	4
	LEVEL SFC 850 700 500 300 200	LEVEL SFC 850 700 500 300 200 MNS -1.75 -2.18 -2.88 -3.40 -4.59 3.07	NORTH LEVEL SFC 850 700 500 200 200 SOUTH MNS -1.75 -2.18 -2.88 -3.40 -4.59 3.07 SNS 7.15 14.77 18.19 24.17 30.76 28.87	MORTH SOUTH S	WORTH SOUTH S	WORTH SOUTH SEW TAIS SOUTH SOUT	-WEST LEVEL SFC 850 700 500 300 200 1 -WEST MNS -1.675 -2.18 -2.88 -3.40 -4.59 3.007 -1 LEVEL MEW SEW 7.15 14.77 18.19 24.17 30.76 28.87 21 SFC -0.85 6.14	-WEST LEVEL SFC 850 700 500 300 200 1 -WEST AMS -1.75 -2.18 -2.88 -3.40 -4.59 3.07 -1.5 LEVEL MEW SEW 7.15 14.77 18.19 24.17 30.76 28.87 21 SFC -0.85 6.14	-WEST MORTH SOUTH LEVEL SFC 850 700 500 300 200 1 -WEST MNS -1.75 -2.18 -2.88 -3.40 -4.59 3.07 -1.75 -1.75 -2.88 -3.40 -4.59 3.07 -1.75 -1.75 -1.40 -4.59 3.07 -2.88 -1.40	-WEST MNS -1.75 950 700 500 300 200 7 -WEST MNS -1.75 -2.18 -2.88 -3.40 -4.59 3.076 2.075 -1.75 -1.75 -2.88 -2.88 -2.89 <t< td=""></t<>

W-10SU

TABLE 39

BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

3 49 E	100	-4.14	23.28		•143	• 360	•460	•410	•458	•596	
LONG 043	200	-4.72	23.06 2		•252	• 392	•571	•607	•808		• 480
56 13 N	300	-0.95	24.46		•329	• 608	• 744	•828		• 792	•350
LAT 5	200	0.02	18.58		• 348	• 705	•835		.757	• 766	• 328
	700	0.17	14.84		•434	•869		•751	• 655	669•	•391
	850	2.16	11,33		• 525		•808	•593	•493	•498	•424
	SFC	-0.31	5.13			•478	• 400	•322	•283	•244	•176
	LEVEL	S N N	SNS	SEW	4.24	10.94	13.12	17.00	24.05	22.62	21.88
A C	NORTH			MEW	-1.15	-6.98	-9.58	-13,33	-18,15	-25•78	-20.01
STRIGINO. SUMMER		EAST-WEST		LEVEL	SFC	850	700	200	300	200	100
STRIG		EAST.		OBSN	366	297	365	365	365	96	39

W-10F

TABLE 40

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

043 49 E	100	9.42	30.64		4 •249	9 •457	3 •544	8 •619	7 •646	•752	ю
LONG	200	3.42	30.87		•284	•529	•633	•678	.827		•783
56 13 N	300	3.56	28,99		•413	•633	•765	•819		•809	609•
LAT	200	2.27	22,99		•470	• 725	•870		•838	• 700	•657
	700	2•12	16.50		•527	•842		•848	•758	• 595	•590
	850	0.78	14.07		• 554		•857	•770	•657	• 566	241
	SFC	-2.00	7.09			•432	•478	•366	• 299	•143	•140
	LEVEL	₩ W N N	SNS	SEW	5.54	12.38	16.32	19.55	25.10	25•78	20.56
נר	NORTH SOUTH			MEW	-2.58	-13.74	-14.42	-19,45	-24.54	-28,33	-27.77
STRIGINO, FALL		EAST-WEST		LEVEL	SFC	850	200	200	300	200	100
STRIG		EAST		OBSN	363	307	363	363	363	126	4

W-11W

TABLE 41

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

049 11 E	100	5.81	29•48		•145	•475	•619	•661	•750	•789	
LONG 04	200	7.23	29.40		• 143	497	•589	•728	•827		•642
N 44 N	300	4.06	29•13		•150	•429	.579	.801		•827	•725
LAT 55	200	1.55	21.72		.261	•625	•753		. 804	•746	•616
	700	0.23	15.91		•378	•812		•774	•711	•647	•536
	850	£6•0 -	13,95		•440		.837	•629	. 597	•452	•505
	SFC	-3•07	7.36			• 504	•457	•298	•245	•268	•095
	LEVEL	MNS	SNS	SEW	6.94	15.37	19.22	22.44	29.61	28•19	22.83
	NORTH			MEW	-0.93	-7.46	-10.40	-14.77	-20.77	-26.08	-26.48
KAZAN. WINTER		-WEST		LEVEL	SFC	850	700	200	300	200	100
KAZAN		EAST-WEST		OBSN	232	214	232	232	232	137	42

W-11SP

TABLE 42

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS), WIT. CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

KAZAN	KAZAN, SPRING						LAT 5	SS 47 N	Long	049 11 E
		NORTH	LEVEL	SFC	850	700	200	300	200	100
EAST	EAST-WEST		S N N	-1 •69	-1 • 53	-1.55	-1.61	-0.78	5.36	4.02
			SNS	7.05	13.64	16.05	20.62	26•39	28•39	18.09
OBSN	LEVEL	MEW	SEW							
290	SFC	-0.62	2.60		• 483	.397	•265	•181	•164	•017
275	850	-7.31	12.73	• 355		•845	•675	• 585	•638	•388
290	700	-10.51	16.34	•300	•716		•816	•698	•721	•433
290	500	-14,81	21.14	•201	•516	•715		.818	.847	•576
290	300	-19,72	27.14	•119	•423	•625	197.		006•	•518
100	200	-26,68	23•34	•102	•409	•639	•729	• 794		•564
34	100	-14.09	18.32	•225	•279	•392	•336	•436	•443	

W-11SU

TABLE 43

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS). BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

049 11 E	100	-0.29	15.70		•234	•344	•412	•470	.377	•462	
LONG	200	-2.41	22.62		•123	•396	•583	•720	•770		•670
55 47 N	300	3.46	25.63		•281	•566	• 708	• 791		•771	•773
LAT 5	500	3.09	18.75		• 323	• 701	.827		•824	•763	169•
	700	2.41	14.81		•370	•814		•813	•700	•677	•664
	850	1 • 98	12.42		•513		•671	• 600	•511	•405	• 588
	SFC	0.23	5.50			•447	•382	•328	•250	•328	•306
	LEVEL	WNW	SNS	SEW	4.76	11.99	14.16	17.93	22.66	24.89	17.95
٣	NORTH			MEW	-1.17	-5.60	-9.52	-13,81	-18.23	-24,85	-16.07
KAZAN. SUMMER		EAST-WEST		LEVEL	SFC	850	700	200	300	200	100
KAZAN		EAST		OBSN	335	290	334	334	334	110	39

TABLE 44

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).
BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

KAZAN. FALL						LAT 55	7 7 Z	LONG	049 11 E
NORTH		LEVEL	SFC	850	700	500	300	200	100
		MNS	-2.45	-0.33	1 • 30	3.63	5.81	5,95	9.73
		SNS	7.03	13.00	14•79	20.13	28•17	27.63	21.04
MEW		SEW							
-2.27		5.79		•489	•481	• 386	•281	•253	•348
-12,69	•	13.52	•394		•775	•640	•482	•478	• 300
-16,65		15.27	•371	.816		•759	• 653	•622	•523
-22.81		18.32	•308	•675	•752		•775	•723	•521
-27.26		22•89	•254	•540	•631	• 745		.833	•652
-30,999	•	25.88	•141	•427	•574	•713	•775		•616
-24.40	_	24 • 03	•393	•489	•460	•530	• 503	• 500	

W-12W

TABLE 45

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

037 34 E	100	7.007	23,37		•169	•433	•550	•641	•685	•821	
LONG	200	7.99	29.40		•311	•592	•708	.827	.872		•674
55 45 N	300	2.58	31.79		•285	•551	•691	.860		•827	•561
LAT	500	0.87	24.40		•361	• 688	•818		•853	•778	•528
	700	00•0	18.92		•433	•866		.845	•725	•693	•533
	850	-1.59	16.75		•479		.814	•694	.557	•545	•450
	SFC	-1.63	6.18			•537	•453	•392	•283	•218	•200
	LEVEL	SN _S	SNS	SEW	5.56	15.82	17,39	22,85	28.46	23•35	20.69
œ	SOUTH			MEW	-0.54	-8.51	-11.72	-15,33	-19.55	-29,98	-32,23
MOSCOW. WINTER		EAST-WEST		LEVEL	SFC	850	700	200	300	500	100
MOSCO		EAST.		OBSN	443	429	443	443	443	207	146

W-12SP

TABLE 46

1

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

037 34 E	100	3.42	17.29		-•097	•370	• 553	•718	•691	•808	
CONG 0	200	-1.20	25.45		• 150	•558	•702	•828	• 839		• 543
25 4 25 X	300	-4.26	30.39		• 249	• 568	•729	• 901		•727	•359
LAT 5	200	-3.44	24.17		• 330	•673	•840		•869	•742	• 282
	700	-2.16	18.79		•486	•841		•833	•712	•664	•283
	850	-1.42	15.78		•572		•770	•618	•487	•459	•103
	SFC	-0.43	6.92			.554	•478	•365	•247	•201	010
	LEVEL	MNS	SNS	SEW	5.81	14.09	16•40	21.37	26•77	21.82	17.68
ဗ္	NORTH SOUTH			MEW	-0-14	-5.45	-8.57	-12.51	-16.63	-22.42	-14,98
MOSCOW. SPRING		EAST-WEST		LEVEL	SFC	850	700	500	300	200	100
MOSCO		EAST		OBSN	446	441	447	447	447	158	91

TABLE 47

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

Moscol	MOSCOW. SUMMER	٣					LAT 55	ี 2 2 2	Long	037 34 E
,		NORTH	LEVEL	SFC	850	700	500	300	200	100
EAST.	EAST-WEST		₩ NS	0000	-0.85	-1.69	-3.21	-3.21	-3.65	-1.67
			SNS	4 • 60	12.18	14.61	17.66	24.62	21.45	12.24
OBSN	LEVEL	MEW	SEW							
448	SFC	-0.58	4 • 0 ?		•392	•360	•247	•172	•201	•239
431	850	-6•02	11.21	•467		•835	•677	•483	• 444	•356
448	700	-9.62	13.45	•467	•824		.834	• 660	•621	•377
448	500	-13,58	17.25	•383	•703	•821		•837	•776	•396
448	300	-18,58	23•63	•285	•543	•665	.822		•811	•473
152	200	-27.77	20•30	•394	•431	•569	669•	•743		•457
06	100	-9.37	10.96	•396	•419	•430	• 435	•482	•616	

TABLE 48

í

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

MOSCO	MOSCOW. FALL						LAT 55	ស ស ន	LONG	037 34 E
		NORTH	LEVEL	SFC	850	700	500	300	200	100
EAST	EAST-WEST		WNS	-1.22	0.31	1.75	2.72	4.97	8.82	7.09
			SNS	10.90	15,39	18•42	24.05	31•46	28.06	18•89
OBSN	LEVEL	MEW	SEW	ær						
449	SFC	-1.87	5.01	**	•307	•290	•238	•186	• 340	•278
438	850	-12,42	13.66	•462		•822	• 698	.547	• 658	•514
449	700	-15.78	15.74	•417	•833		•851	•711	•791	•680
449	500	-21.02	19.74	.345	•719	•829		•869	•862	•749
449	300	-24.50	24.77	•248	•556	•656	•808		•901	•765
189	200	-26.91	21.68	•296	•566	•679	•808	•825		•806
155	100	-22•09	15.16	•225	•371	•528	• 563	• 541	•605	

TABLE 49

{

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

060 38 E	100	6.04	19.78		• 130	•396	•457	•536	•641	•638	
LONG 0	200	2.78	26.00		•255	.534	•655	•741	•773		•611
56 48 N	300	1.19	29•30		• 138	•560	•716	.842		• 789	•533
LAT 5	500	-2.04	24.00		•250	•677	•827		.821	•728	•480
	700	-2.06	18•28		•325	•827		•786	•665	•607	•294
	850	-1 • 44	16.61		•418		•775	• 631	•493	•389	•269
	S PFC	-2•18	5.89			•298	•184	•142	•088	• 012	•073
	LEVEL	MNS	SNS	SEW	5.98	16.26	17.62	24.40	29•46	25.01	19.12
WINTER	NORTH			MEW	-1 • 48	-11.00	-12,98	-17.14	-22,33	-27,90	-37,66
SVERDLOVSK. WINTER		EAST-WEST		LEVEL	SFC	850	700	200	300	200	100
SVERD		EAST		OBSN	416	386	416	416	416	178	83

TABLE 50

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).
BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

W-13SU

TABLE 51

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

060 38 E	100	3.26	11.76		•128	•271	• 385	•381	•405	•464	
LONG	200	4.14	23.90		•207	• 558	•781	•837	.856		•236
λ 8 2	300	8.16	28.46		•120	• 526	•746	.836		•879	•203
LAT 56	200	6.43	20.28		• 174	•659	•822		•839	•805	• 209
	700	5.21	14.67		•237	•749		•854	•714	• 700	•210
	850	4.78	11,39		•313		•805	•708	.567	• 566	•354
	SFC	0.25	5.03			•411	•352	•316	•184	•196	•249
	LEVEL	MNS	SNS	SEW	4.14	11,95	15.17	19.18	25.76	21.98	13.70
SUMMER	SOUTH			MEW	-0.87	-4.47	-7.05	-10.80	-14.65	-13.93	-6.39
SVERDLOVSK, SUMMER		EAST-WEST		LEVEL	SFC	850	700	500	300	200	100
SVERDI		EAST.		OBSN	388	378	389	389	389	134	4 6

TABLE 52

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

SVERDI	SVERDLOVSK. FALL	ALL					LAT 56	6 8 8 8	Long	060 38 E
		NORTH SOUTH	LEVEL	SFC	850	700	200	300	200	100
EAST.	EAST-WEST		M N N	-1.26	3.26	2•60	3.98	6.26	2•06	2.02
			SNS	90•9	15.52	18•13	24 • 35	31.05	24.03	14.79
OBSN	LEVEL	MEW	SEW							
412	SFC	-2.80	5.75		•499	•470	•418	•288	•416	•237
402	850	-13,93	15.68	•544		•805	• 665	•530	•509	•386
412	700	-16.94	17.12	•417	•789		• 794	• 684	•693	• 565
412	200	-23.01	22.73	•305	•645	•776		.820	•771	•595
412	300	-28.21	27.94	•205	.513	•626	•820		•888	909•
159	200	-34.00	20.15	•120	•399	•490	• 701	•776		•708
84	100	-25,53	13,15	•129	•331	•469	•567	• 596	•570	

W-14W

TABLE 53

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS). BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

056 00 E	100	-16.48	18.79		•325	•281	•200	•232	• 193	•141	
LONG	200	-7.29	23.72		•093	•346	•540	•549	•782		• 509
54 45 N	300	-8.45	30.25		•212	•376	•630	•748		•771	•524
LAT S	500	-8.26	22.03		.261	•534	•749		.825	•706	• 662
	700	-7.71	16.17		•416	•807		•718	•635	•654	•767
	850	-6.55	15.16		• 552		.831	•616	• 522	•453	•644
	SFC	-3.15	8.37			•505	•426	.352	•299	•249	•283
	LEVEL	S N N	SNS	SEW	6.16	12.44	17.64	23.12	28.78	24.15	24.23
	NORTH SOUTH			MEW	-0.80	-4.39	-8.57	-12,88	-19,82	-30.62	-35,36
UFA. WINTER		EAST-WEST		LEVEL	SFC	850	700	200	300	200	100
UFA. 1		EAST.		OBSN	156	143	156	156	156	75	19

W-14SP

TABLE 54

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

UFA. SPRING						LAT 5	54 45 N	LONG	056 00 E
20;	NORTH	LEVEL	SFC	850	700	500	300	200	100
		N N N	-1 •87	-3•19	-2.64	-1.32	-1 • 77	0.51	-0.70
		SNS	6.41	13.99	16.67	19.72	24.46	23.70	18.44
	MEW	SEW							
-	-0.10	5.15		•396	•314	•227	•170	•146	•062
	-5.50	12.18	•425		•834	• 703	• 588	•643	• 295
	00•6-	14.26	•316	•775		•835	• 709	•759	• 444
1	-13.19	19.24	•254	• 558	•746		•820	•779	•560
1	-19,43	22.44	.221	.345	•575	.773		•818	•601
1	-24.70	21.16	024	•352	•635	•726	•769		•572
•	-19.49	18.50	138	•139	•487	.510	•539	•459	

W-14SU

TABLE 55

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).
BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

056 00 E	100	0.51	10.03		•062	•080	•386	•321	• 544	•791	
LONG	200	1.05	24.25		•095	•484	•648	•768	•802		•775
54 45 N	300	5.09	25.41		•284	•586	• 702	•831		•770	•506
LAT 5	200	3.85	18.87		• 281	•695	.833		•766	•752	•518
	700	3•32	14.09		•363	•776		•818	•654	•705	•423
	850	1.92	11.77		.367		•783	•681	•479	•571	•223
	SFC	0.33	5.25			•462	•386	•371	•267	•313	•124
	LEVEL	MNS	SNS	SEW	4•39	10.16	14.30	17.49	22.40	24.17	11.95
	NORTH			MEW	-0.37	-4 • 35	-7.05	-10.61	-13,74	-16.13	-10.22
UFA. SUMMER		EAST-WEST		LEVEL	SFC	850	700	500	300	200	100
UFA.		EAST		OBSN	302	291	302	302	302	62	20

W-14F

TABLE 56

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

056 00 E	100	-6.10	15,33		•403	.347	•365	•574	• 555	•673	
LONG	200	-2.25	25.96		•307	•390	•541	•654	•837		•563
54 45 N	300	09•0	29.83		•438	•646	•657	•802		• 569	•489
LAT 5	500	-1 • 30	23.86		•476	•673	•738		•729	•546	•405
	70C	-1.52	17.49		•557	•828		•787	•692	• 583	•478
	850	-2.20	14.09		•642		•855	•695	• 583	• 503	•392
	SFC	-2.02	7.13			•449	•376	•318	•279	•429	• 095
	LEVEL	SZ SZ SZ	SNS	SEW	5.60	12•36	15•10	20.30	24.29	17.33	14.61
	NORTH			MEW	-2.53	-10.30	-14.90	-22.40	-26.77	-32,89	-23,16
FALL		EAST-WEST		LEVEL	SFC	850	700	200	300	500	100
UFA. FALL		EAST		OBSN	178	167	178	178	178	1	27

W-15W

TABLE 57

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

050 10 E	100	5.40	22.21		•050	• 448	•463	•652	•661	•713	
LONG	200	4•00	27.77		•131	•481	•633	•802	•877		•693
53 14 N	300	2.80	29.51		•166	•540	• 684	•835		.845	497
LAT 5	200	0.60	23.32		•230	•644	•808		•841	• 749	•551
	700	-1.61	18.03		•334	• 795		•833	•734	•705	•496
	850	-2.86	14.92		•431		•830	•701	.581	•457	•199
	SFC	-2.27	7.66			•528	•464	•378	•317	•257	•081
	LEVEL	MNS	SNS	SEW	6.86	15.27	17.64	22.75	27.90	25.43	21.51
NTER	NORTH			MEW	-1.09	-9.52	-12.80	-18.24	-23.76	-30•76	-31.07
KUIBISHEV. WINTER		EAST-WEST		LEVEL	SFC	850	700	200	300	200	100
KUIBI		EAST.		OBSN	384	353	384	384	383	164	46

W-15SP

TABLE 58

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

050 10 E	100	6.84	21.66		•276	•470	.572	•733	•715	•846	
LONG	200	4.41	26.02		•196	•515	.593	•730	•804		•814
53 14 Z	300	-1.36	24.85		•229	•533	• 661	.803		•869	•750
LAT 5	200	-1.87	21.37		•267	•706	•808		•824	• 791	•712
	700	-3.07	17.08		•316	.830		•833	•671	•683	•680
	850	-3.19	14.69		•417		.821	•721	• 533	.515	• 588
	SFC	-0.31	7.23			•487	45 2	•434	•313	•335	•350
	LEVEL	S N N	SNS	SEW	6.14	14.26	16.44	20.05	25.59	25.47	23.92
SPRING	NORTH SOUTH			MEW	-0.10	-5.81	64.6-	-14.18	-18.54	-20.81	-21,61
KUIBISHEV. SPRING		EAST-WEST		LEVEL	SFC	850	700	500	300	200	100
KU181		EAST		OBSN	386	347	386	386	386	66	55

W-15SU

TABLE 59

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

050 10 E	100	3.13	20.96		•018	•477	•677	•752	•854	.907	
LONG	200	-0.87	24.75		•086	•473	•677	•TT2	• 903		•835
53 14 N	300	1.79	24.52		•213	• 554	•726	•830		.898	•779
LAT 5	200	0.78	19.00		• 268	• 711	•874		.823	•836	•778
•	700	1 • 1 3	14.98		•303	•799		•834	•714	•772	•735
	850	1.87	11.83		•376		•800	•678	•537	•628	•650
	SFC	1.20	4.95			•287	•262	•223	•206	•277	•369
	LEVEL	SZ SZ SZ	SNS	SEW	4.04	10.47	12.78	17.37	23.49	24.77	23•32
UMMER	NORTH			MEW	-0.35	-5.77	50°6-	-13.02	-17,55	-23,34	-24.89
KUIBISHEV. SUMMER		EAST-WEST		LEVEL	SFC	850	700	500	300	200	100
KUIBI		EAST		OBSN	406	323	406	406	406	134	73

W-15F

TABLE 60

ĺ

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).
BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

050 10 E	100	3.81	22.42		•172	•292	•613	•703	•739	.747	
LONG	200	2.93	29.49		660•	•485	•699	•807	•840		• 695
53 14 N	300	5.89	28.04		•210	• 606	• 709	•823		.814	•719
LAT	500	4 • 1 4	22.21		• 224	• 644	•829		•750	• 682	• 580
	700	1.69	16.85		•370	•782		•770	•616	•497	•452
	850	0.95	14.75		•453		•780	• 605	•471	•390	•228
	SFC	-1.05	7.25			•529	•426	•358	•218	.172	•250
	LEVEL	MNS S	SNS	SEW	5.55	14.20	15.70	20.77	26.25	25.82	20.91
1 .	NORTH			MEW	-1.73	-11.68	-15.27	-22.40	-26.74	-34.68	-33.54
KUIBISHEV• FALL		EAST-WEST		LEVEL	SFC	850	700	200	300	200	100
KUIBI		EAST		OBSN	407	359	407	407	407	166	86

W-16W

TABLE 61

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

	3.91 7.11 7.09	28.56 24.56 20.77		•179 •142 •063	.354 .279 .273	•601 •564 •452	•811 •751 •631	.829 .613	669• 008•	•424 •593
200	3.13	22.01		• 285	•549	•769		.811	•770	• 385
700	1 • 32	16.36		•466	•789		•774	•615	•592	•284
850	0.27	15.52		• 620		•830	•646	•492	.518	•174
SFC	-1 • 1 7	7.13			•545	• 504	•337	•248	•120	094
LEVEL	MNS.	SNS	SEW	7.11	14.36	16.34	21.37	27,98	24.07	14.28
NORTH			MEW	-1.24	00•6-	-13.41	-18,85	-23.47	-25.80	-25,28
	EAST-WEST		LEVEL	SFC	386 / 850	700	200	300	500	100
	EAST		OBSN	414	386	413	413	412	508	9

W-16SP

TABLE 62

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

030 27 E	100	3•11	18.48		-•103	-•060	• 565	•686	•704	•727	
LONG	200	-0.06	23.26		•052	•291	•633	069•	•734		•711
50 24 N	300	0.84	26.89		•120	•373	• 656	• 782		• 748	.617
LAT 5	500	0.56	21.35		• 280	•535	•814		•867	•714	• 655
	700	0.56	16.01		•398	•728		•828	•747	•651	•651
	850	0.93	13.97		• 559		• 786	•656	•572	•498	•394
	SFC	0.04	6.94			•588	4447	•375	•268	•212	045
	LEVEL	M N N	SNS	SEW	5.79	13•78	17.02	23,22	29.53	23.80	19.06
	NORTH			MEW	-0.08	-3.13	-6.61	-11.50	-16.34	-17.78	-11.13
KYEV. SPRING		EAST-WEST		LEVEL	SFC	850	700	200	300	200	100
KYEV.		EAST		OBSN	417	408	417	417	417	213	48

W-16SU

TABLE 63

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

030 27 E	100	-3.40	11.97		-•138	•104	•413	• 585	•623	•638	
LONG	200	-1.67	23.47		•168	•372	•639	•765	•765		•483
7 24 N	300	90•0	22.27		•121	•434	• 641	•807		•733	• 522
LAT 50	500	-0.91	16.46		.215	•587	• 791		.840	• 669	•478
	700	0.56	12,38		•262	•740		•825	•723	•553	•271
	850	1.13	10.57		•432		.846	•759	•642	•463	•391
	SFC	1.05	5.21			•508	•405	•366	•292	.122	•131
	LEVEL	MNS	SNS	SEW	4.51	11.35	13.62	18.01	23.04	20.03	13,23
	NORTH SOUTH			MEW	-0.82	-4.33	-7.62	-11.83	-17,39	-30.87	-16.75
KYEV. SUMMER		-WEST		LEVEL	SFC	850	700	200	300	200	100
KYEV.		EAST-WEST		OBSN	432	417	432	432	432	165	57

W-16F

TABLE 64

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

KYEV. FALL						LAT 50	0 4 N	Long	030 27 E
	NORTH	LEVEL	SFC	850	700	200	300	200	100
EAST-WEST		ØZ SZ SZ	• 0 • 49	2 • 00	2•33	3.61	5.27	9.00	9.17
		SNS	5.83	13,31	14.88	19.18	26.11	27.94	16•19
OBSN LEVEL	MEW	SEW							
419 SFC	-1.34	5•73		•487	•378	•226	•145	•379	•164
850	-7.67	12.69	.587		•808	•580	• 440	• 553	•288
700	-12.12	14.16	•508	• 785		•768	• 659	•711	•567
500	-18.54	18•46	.387	•616	•756		•821	•828	•623
300	-23,88	25.43	•287	•488	•613	•761		•853	•606
200	-26.62	23.24	•148	•438	.571	•724	.841		•729
100	-19,57	12.12	•121	•206	168.	•479	•470	•534	

TABLE 65

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

LV0V•	LVOV. WINTER						LAT 4	N 64 64	LONG	023 57 E
		NORTH SOUTH	LEVEL	SFC	850	700	200	300	200	100
EAST	EAST-WEST		MNS	-1 • 79	0.10	1 • 85	2.51	3.19	5.65	8.70
			SNS	6.57	13.19	15.39	20.93	27.09	26•35	20.27
OBSN	LEVEL	MEW	SEW							
381	SFC	-1 • 44	06•9		•439	•264	•193	• 148	•190	-0005
352	850	-10.10	17.90	•477		•783	.520	•409	•449	•275
379	700	-11.83	17.04	•407	•723		•677	.571	•587	•325
379	200	-17.02	21.99	•260	•535	.757		•768	•768	•415
379	300	-19,39	29.84	•180	•410	•613	• 766		•751	•458
210	200	-19.53	26•83	•201	•363	•618	•724	•779		•637
62	100	-21 • 14	19.85	•281	•300	•449	•448	• 509	•560	

W-17SP

TABLE 66

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

3 57 E	100	1.71	16.63		-•068	015	•433	•419	•435	.567	
LONG 023	200	0.14	23•39		•056	•276	•536	•678	•726		•721
N 64 6	300	1.96	25.88		•125	•393	•616	•793		•806	•637
LAT 49	200	2.99	19,94		• 242	.521	• 745		•828	•770	.587
	700	2•08	14.30		•368	•729		•787	•674	•645	•397
	850	1.67	12.18		• 532		-827	•611	•495	•471	•249
	SFC	0.45	5.62			644	•428	•328	•214	.262	•304
	LEVEL	MNS	SNS	SEW	2•09	13.95	16•11	22•83	28•23	25.88	16.71
	NORTH			MEW	-0.91	-5.13	-6.82	-10+34	-14.94	-13.52	-3.81
LVOV. SPRING		EAST-WEST		LEVEL	SFC	850	700	500	300	200	100
LV0V•		EAST,		OBSN	415	396	415	615	415	264	40

W-17SU

TABLE 67

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

LONG 023 57 E	200 100	-8.28 -11.37	25.20 17.66		042078	•304 •000	•580 •380	•710 •594	•775	•723	•436
A 94 94	300	-2.78	22.34		• 083	•313	•613	• 769		• 666	• 525
LAT 4	200	-2.04	15.64		• 150	• 480	•752		• 780	•696	• 288
	700	-1.07	12.30		•233	•680		•821	•663	•580	•226
	850	0 • 45	10.08		•336		•774	•679	.542	•397	105
	SFC	-0.02	4.12			• 380	•323	•237	•200	•077	-•178
	LEVEL	WNS	SNS	SEW	4 • 00	10.84	13.41	17.20	23.04	23.47	16•36
	NORTH			MEW	-1 • 30	-5.71	-8.34	-12•71	-18,30	-28.12	-18•71
LVOV. SUMMER		EAST-WEST		LEVEL	SFC	850	700	500	300	200	100
LV0V•		EAST		OBSN	409	379	409	409	409	200	4

W-17F

TABLE 68

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

023 57 E	100	5.13	19•51		•082	•328	•558	•563	•677	•747	
LONG	200	4.41	25.51		•089	•405	•564	•725	•843		.577
N 64 64	300	3•36	27.59		.122	•345	• 600	• 790		• 781	•471
LAT 4	200	2.86	19.53		•236	•515	•772		•760	•685	•337
	700	1 • 1 1	13.72		•311	•627		•733	•587	•595	•326
	850	-0.04	11.33		•393		•745	497	•367	•405	•213
	SFC	-1 •36	4 •99			•496	•393	•282	•219	•299	• 203
	LEVEL	SNΣ	SNS	SEW	5.13	11.77	13•76	18.65	25.88	24.87	16.48
	NORTH			MEW	-0.91	-9.17	-11.66	-17.72	-21.90	-21.92	-21.22
FALL		EAST-WEST		LEVEL	SFC	850	700	200	300	200	100
LVOV, FALL		EAST		OBSN	383	334	383	383	383	205	65

TABLE 69

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

ODESSA, WINTER	α					LAT 4	46 29 N	LONG	030 38 E
Ζળ	NORTH	LEVEL	SFC	850	700	200	300	200	100
		MNS	1 • 1 9	1.61	0.93	1.05	2.68	4.12	5.30
		SNS	7.47	13.60	13.74	20•17	27.40	28.29	20.83
	MEW	SEW							
1	-0.33	6.47		•431	•233	043	-•063	•014	•034
t	-6.20	12.77	•495		•689	• 390	•259	•280	•403
7	-12.44	15.06	•440	•675		• 684	• 543	•525	• 500
10	-20•36	21.61	• 309	• 538	•742		•745	•694	•613
7	-24.17	27.49	•188	•420	•625	•776		•775	•556
Ĭ	-24.87	29.20	•198	•438	•607	• 734	197		•703
Ť	-32,51	20.50	•052	•219	•431	• 388	•512	•549	

W-18SP

TABLE 70

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS). WITH COPRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

030 38 E	100	2.04	11.48		•056	•276	• 174	•219	•187	•279	
LONG	200	-2.12	23.94		012	•207	• 390	•689	•754		•188
46 29 N	300	-2.27	25.41		•112	•324	•526	•821		• 790	• 293
LAT 4	500	-0.72	18.32		•190	.427	•621		•820	•759	•017
	700	-0.43	16.50		•313	•608		•783	669•	•656	•050
	850	66•0	12.18		•499		•753	•626	• 539	• 505	•137
	SFC	0.84	7.23			•484	•387	•301	•163	•226	•256
	LEVEL	N NS	SNS	SEW	4.84	12.84	16.15	22.03	29.11	27.67	9.25
9	NORTH			MEM	-0.16	-2.58	-6.63	-11.46	-15.12	-13.74	-5,38
ODESSA. SPRING		EAST-WEST		LEVEL	SFC	850	700	200	300	200	100
ODESS		EAST		OBSN	366	344	366	366	365	160	20

W-18SU

TABLE 71

and supplementations and the com-

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

030 38 E	100	5.95	22.21		•303	•326	•635	•658	•352	.541	
LONG 03	200	-4.41	22.75		•005	•296	•559	•656	•693		• 080
46 29 N	300	-0.41	21.92		• 001	•394	• 598	•771		• 632	-•050
LAT 4	200	94.0	14.94		.122	•517	•764		• 780	•503	051
	700	1 • 79	10.32		•265	•673		•782	•652	•434	•209
	850	2•33	9.68		•453		•787	•686	• 505	•200	•056
	SFC	1 • 88	5,65			•422	•338	•345	•276	•236	-•004
	LEVEL	S N N	SNS	SEW	3.89	10.22	12.32	16.30	24.05	21 • 39	18.28
œ	NORTH SOUTH			MEW	66•0-	-1.07	-4.78	-10.41	-18.89	-31,52	-21.96
ODESSA. SUMMER		EAST-WEST		LEVEL	SFC	850	700	200	300	500	100
ODESS		EAST-		OBSN	411	392	411	411	411	168	56

ARD DEV

72

TABLE

1

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).
BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

LONG 030 38 E	200 100	4.41 2.91	23.74 11.93		•095 •350	•407 •243	•641 •317	•710 •356	.745 .252	•411	•521
46 29 N	300	3,92	26,39		•138	.511	•684	• 794		• 704	•518
LAT 4	200	3.28	18,36		•163	• 603	• 783		•763	•605	609 •
	700	2.18	12.67		•306	•750		•788	•681	•536	•526
	850	3.23	11.79		•431		• 784	•693	• 585	•387	•411
	SFC	2.52	6.72			•395	•392	•314	•332	•195	•143
	LEVEL	MNS	SNS	SEW	5.19	10.86	13.48	19.97	25.78	23.06	14.84
	NORTH SOUTH			MEW	0.14	-3,89	-9446	-15•17	-19,22	-22.67	-20•13
ODESSA. FALL		EAST-WEST		LEVEL	SFC	850	700	E00	300	200	100
ODESS		EAST		OBSN	357	319	356	357	357	158	52

TABLE 73

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).
BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

046 02 E	100	3.67	23,39		074	•224	•280	•595	•742	•787	
LONG	200	5.19	28,23		•162	•406	• 495	•693	•816		•733
51 34 N	300	1 • 09	23,39		•213	• 539	•639	• 796		•828	265•
LAT	200	99•0-	18.11		•315	•702	•816		•848	•745	•480
	700	-2.20	14.51		•422	•859		•821	•709	•581	•425
	850	-2.20	14.55		• 503		•882	•754	•651	•511	•367
	SFC	-1.71	8.06			•516	•418	•323	•252	•105	•172
	LEVEL	MNS	SNS	SEW	6.55	15.47	15.97	20.21	24.46	24.13	20.21
TER	NORTH			MEM	-0.43	-6.22	-9,33	-15.45	-19.43	-26.17	-25,34
SARATOV. WINTER		EAST-WEST		LEVEL	SFC	850	700	500	300	200	100
SARAT		EAST		OBSN	385	351	385	385	385	155	80

W-19SP

TABLE 74

í

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).
BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

046 02 E	100	-0.78	20•38		•256	•470	•626	•687	•721	•795	
LONG	200	-2.58	24.00		• 160	•456	•613	•779	•848		•834
51 34 N	300	-3.40	23.04		• 198	.537	•687	•831		•771	•715
LAT	200	-3.73	18.40		• 338	• 706	•825		•837	•654	•463
	700	-3.77	15.27		•409	•828		•833	•702	•543	•384
	850	-3.01	14.44		•550		•830	•715	•615	•479	.245
	SFC	90•0-	8.26			•448		•391	•263	•287	•129
	LEVEL	M N N N	SNS	SEW	6.68	13.91	14.94	18.54	23.16	23.08	20.54
9 2 1	NORTH SOUTH			MEW	-0.04	-2.70	-4.53	-7.91	-12,30	-17.70	-12.14
SARATOV. SPRING		EAST-WEST		LEVEL	SFC	850	700	200	300	200	100
SARAT		EAST		OBSN	424	416	424	424	424	101	58

W-19SU

TABLE 75

ĺ

1

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS). BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

LONG 046 02 E	200 100	-2.70 -3.34	21.02 12.84		•240 •083	•285 •247	•527 •420	•726 •571	•725 •529	•723	•786
ω 4 Σ	300	-0.56 -2	21.72 21		•108	•554	669•	•832		•845	• 728
LAT 51	500	-0 • 1 0	16•11		•143	169•	•828		•806	•761	•670
	700	-0.14	13•74		•190	•770		•808 •	•672	•718	•677
	850	0.25	11.83		.227		•800	•724	.583	• 552	•490
	SFC	0.85	9.73			• 383	•355	•340	•233	•276	•225
	LEVEL	N N N N	SNS	SEW	4 • 97	11.56	12.57	15.76	21.41	24 • 52	17.41
ME R	SOUTH			MEM	-0.70	-2.97	-6.88	-10.61	-14.83	-28.19	-18.50
SARATOV, SUMMER		EAST-WEST		LEVEL	SFC	850	700	200	300	200	100
SARAT		FAST.		OBSN	413	398	413	413	413	122	67

W-19F

TABLE 76

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).
BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

046 02 E	100	3.83	21.61		•107	.227	•625	•628	•608	•723	
LONG	200	2.76	23.53		.152	•511	•711	•817	•819		•758
51 34 N	300	2.53	23.01		•378	•619	•727	•820		•804	•713
LAT	500	66•0	18.52		• 422	•678	•819		•837	•705	•530
	700	1.24	13.80		•484	-842		•829	•646	•475	• 353
	850	0.31	14.26		•570		•834	•659	•495	•313	•067
	SFC	-0.27	7.27			•550	•469	• 384	•300	•218	•160
	LEVEL	MNS	SNS	SEW	6.68	13,52	14.13	18•21	22.81	23.84	18.03
	NORTH SOUTH			MEW	-2.20	-8.41	-11.95	-18,36	-23.41	-31.42	-26.64
SARATOV, FALL		EAST-WEST		LEVEL	O F	850	700	500	300	500	100
SARAT		EAST		OBSN	395	367	395	395	395	146	67

TABLE 77

C

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

16 17 E	100	-1.71	25.03		•202	• 363	•613	•636	•687	•753	
LONG 036	200	5.60	28•31		• 184	• 483	•670	•763	•859		•720
N 55 K	300	2.80	25,96		.122	•404	•610	•761		.827	•657
LAT 49	500	1.52	20.79		•250	•574	•741		•817	•702	• 536
	700	0.45	16.19		.377	.772		•808	•650	•572	•366
	850	-0.60	14.16		• 535		858	•643	•490	•445	•371
	SFC	-0.43	7.52			•709	•584	•398	•326	•277	•273
	LEVEL	SZ SZ SZ SZ SZ SZ SZ SZ SZ SZ SZ SZ SZ S	SNS	SEW	8.06	16.81	18.67	23.51	27.42	24.27	22.87
ξ L	NORTH			MEW	0.76	-8.08	-12.75	-19.82	-25.18	-27.10	-37.46
KHARKOV. WINTER		•WEST		LEVEL	SFC	850	700	500	300	200	100
KHARK		EAST-WEST		OBSN	377	358	377	377	377	195	69

W-20SP

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

78

TABLE

036 17 E	100	2.29	22.52		-•052	•338	•653	•715	•694	.747	
LONG	200	-1.65	25.06		•150	•558	•737	•786	•788		•510
49 56 N	300	-3 •32	27.61		•182	•473	•671	•838		• 781	•290
LAT 4	500	-3.61	20.89		•280	•623	•808		•808	•639	•435
	700	-2.64	15.68		•433	•812		•775	•658	•658	•657
	850	-2.14	13,15		• 580		•822	•627	•488	•485	.767
	SFC	-0.43	7.54			•546	•466	•354	•215	•192	•278
	LEVEL	S N N	SNS	SEW	06•9	14.73	16.48	22.62	28•35	22.42	19•06
1 NG	NORTH			MEW	1.03	-3•11	-6•00	-10.86	-16,65	-14.18	-6.53
KHARKOV. SPRING		EAST-WEST		OEVTL	SFC	850	700	200	300	200	100
KHARK		EAST		OBSN	422	409	422	422	422	140	25

W-20SU

TABLE 79

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

20•40	223	•232	• 404	•433	• 559	•464	
26•17	•052	.531	•639	•673	•806		.347
21 • 80	•062	•484	.592	•739		• 692	•398
15•35	•172	•647	• 794		.813	• 628	•385
12.05	•229	•740		•838	• 704	•575	•308
10•10	•344		.873	• 790	•641	• 532	.152
0 •		•486	•443	•417	•317	•122	221
SEW	4 • 55	11.89	13.66	17.95	23,35	22.56	18,56
MEW	0.04	-2,90	-6.02	-10.94	-16,83	-31,73	-20.63
LEVEL	SFC	850	700	200	300	200	100
OBSN	417	402	417	417	417	153	36
	LEVEL MEW SEW 5.40 10.10	SNS 5040 10•10 12 LEVEL MEW SEW SFC 0•04 4•55 •344	SNS 5040 10010 12 LEVEL MEW SEW SFC 0.04 4.55 .344 850 -2.90 11.89 .486	SNS 5040 10010 12 LEVEL MEW SEW SFC 0.004 4.55 850 -2.90 11.89 .486 700 -6.02 13.66 .4443 .873	SFC 0.04 4.55 5.440 10.10 12 SFC 0.04 4.55 .344 850 -2.90 11.89 .486 700 -6.02 13.66 .443 .873 500 -10.94 17.95 .417 .790	SFC 0.04 4.55 3.40 10.10 12 LEVEL MEW SEW SFC 0.04 4.55 .344 850 -2.90 11.89 .486 700 -6.02 13.66 .443 .873 500 -10.94 17.95 .417 .790 300 -16.83 23.35 .317 .641	SINS SINS 10.10 IZ LEVEL MEW SEW SFC 0.004 4.55 850 -2.90 11.89 .486 700 -6.02 13.66 .443 .873 500 -10.94 17.95 .417 .790 300 -16.83 23.35 .317 .641

W-20F

TABLE 80

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).
BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

KHARK	KHARKOV, FALL						LAT 4	49 56 N	LONG	036 17 E
		NORTH	LEVEL	SFC	850	700	200	300	200	100
EAST	EAST-WEST		MNS	0.02	1.22	1.98	3.34	5.91	8.61	10.78
			SNS	6.65	12.90	15.16	21.49	27.95	30 • 35	25.34
OBSN	LEVEL	MEW	SEW							
412	SFC	-0.17	6.35		•479	•398	•314	•232	•316	•344
393	850	-7.64	13.46	•640		•815	•662	•511	•660	• 558
412	700	-12,59	15.19	•541	•831		•831	•715	•774	•575
412	500	-20.30	20.23	•397	•640	.815	•	•862	.837	•559
412	300	-25.80	26.11	•297	• 483	•674	.813		•864	•575
173	200	-34.47	23.53	•222	•293	•536	•682	•824		•779
61	100	-30,33	25•32	•076	•134	•199	•244	•293	•374	

W-21W

TABLE 81

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

044 21 E	100	2.76	21 • 08		•058	•405	•314	• 598	•536	•726	
LONG	200	4.64	27•16		• 130	•390	•522	•726	•805		•514
48 41 N	300	60•6	30.43		• 132	•410	•547	•808		•672	•308
LAT 4	500	3.01	22.99		• 222	• 509	•661		•758	•681	• 250
	700	-1.85	15.14		•365	•673		•711	•621	•532	•301
	820	-2.35	12,28		• 583		.832	•529	•428	•435	•444
	SFC	0.02	9.11			•686	•545	•397	•305	•295	•185
	LEVEL	M N N	SNS	SEW	11.04	17.80	19.37	21 • 35	30•66	25.10	21.76
WINTER	NORTH SOUTH			MEW	-0.52	-9.72	-14.46	-22,50	-26.31	-29,86	-36.45
VOROPONOVO. WINTER		EAST-WEST		LEVEL	SFC	850	700	200	300	200	100
VOROP		EAST		OBSN	123	114	123	123	123	106	47

W-21SP

TABLE 82

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS). BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

044 21 E	100	-3.28	17.02		015	045	•440	•523	•542	•616	
LONG 044	200	. 99•9-	21.45		•004	•328	•524	•674	•751		•695
48 41 N	300	-5.36	25.40		•105	•418	• 584	•721		•769	•532
LAT 4	200	-5.56	19.22		• 229	•620	• 754		•856	•721	609•
	700	-4.29	15.04		•374	•770		.823	•683	•606	•645
	850	-3.73	13,15		•437		•804	•677	• 523	•526	• 500
	SFC	-1.55	7,95			•578	•439	•365	•239	•296	•387
	LEVEL	M N N	SNS	SEW	8.57	14.55	17,35	21•61	25.28	24.66	15,39
SPRING	NORTH			MEW	0.80	-1 •83	-4.27	68•6-	-15,39	-14.51	-11.87
VOROPONOVO. SPRING		EAST-WEST		LEVEL	SFC	850	700	200	300	200	100
VOROP		EAST		OBSN	144	136	144	144	144	86	28

W-21SU

TABLE 83

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

ROPON	• 000	VOROPONOVO. SUMMER					LAT	48 41 N	Long	044 21 E
		NORTH	LEVEL	SFC	850	700	500	300	200	100
EAST-WEST	EST		MNS	0.43	-0.64	-0.60	-0.39	-1.01	-0.60	-1.07
			SNS	6.20	9.70	11.56	15.91	20.98	16.98	11.27
OBSN LE	LEVEL	MEW	SEW							
506	SFC	00•0	5.93		• 500	•261	•201	•076	•026	• 355
199	850	-3,34	12.16	•563		•638	•501	•367	•271	•479
. 802	700	-7.66	15,66	•428	.814		• 731	•552	.547	•256
208	200	-12.67	18•69	•388	• 711	•789		•745	•622	•393
208	300	-20•34	24 • 44	•286	.575	• 658	• 774		669•	• 545
118 2	200	-32.47	20.03	•226	•463	•479	•619	•675		-477
38	100	-20•34	11.76	021	•048	•117	•257	•357	•347	

TABLE 84

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

044 21 E	100	8.59	22.29		•202	• 509	•723	•686	•796	•817	
LONG	200	6.28	29.36		•082	• 405	• 585	•774	•853		•613
48 41 N	300	5.19	27.94		•184	•510	•629	•814		•748	•471
LAT 4	200	3.81	22,33		• 202	• 606	•757		• 750	• 695	• 500
	700	0.29	14.34		•426	•795		•807	•701	•630	•478
	850	-1.32	12,32		•626		•806	699•	.557	• 555	•200
	SFC	-0 38	8.37			•705	.547	•474	•362	•325	•204
	LEVEL	MNS	SNS	SEW	8.22	13.81	16.65	22.23	29.59	28.25	26.85
FALL	NORTH			MEW	-0.23	-4.90	-10.98	-20.85	-27,75	-35.60	-24.31
VOROPONOVO, FALL		EAST-WEST		LEVEL	SFC	850	700	200	300	200	100
VOROP		EAST		OBSN	141	134	141	141	141	97	4

W-22W

TABLE 85

ĺ

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

ROSTO	ROSTOV NA DONU. WINTER	WINTER					LAT 4.	47 15 N	Long	039 49 E
		NORTH SOUTH	LEVEL	SFC	850	700	200	300	200	100
EAST	EAST-WEST		MNS	£6•0 -	-0.54	-1.19	1.03	2.49	4.92	2.58
			SNS	8.10	12.69	14.28	21.02	30 • 84	23.94	21.45
OBSN	LEVEL	MEW	SEW							
139	SFC	0.41	9.05		•316	•189	•211	•078	•081	070
130	850	-8.74	15.95	•463		•767	.562	•397	•467	•436
139	700	-14.36	16.28	•437	•787		• 690	•526	• 562	• 400
139	E00	-18.89	20.05	•373	•617	• 790		•814	•770	• 603
139	300	-24.91	26.97	•144	• 530	•650	• 785		•813	•645
132	500	-24,35	23,35	•186	.447	•585	•719	•814		•783
81	100	-24.40	23,88	125	•197	•283	• 460	•574	•724	

W-22SP

TABLE 86

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

039 49 E	100	-6.30	24.23		019	•346	•589	•680	•636	•772	
LONG	200	-6.41	22.40		•136	•445	•689	•775	•795		•784
7 15 N	300	-3•09	23,55		•065	•413	•675	•869		•816	•731
LAT 47	200	-2.97	18.07		•093	•511	• 797		• 794	•716	•708
	700	-2.64	12.65		•140	•694		•839	•728	•647	•677
	850	-2.99	11.00		•170		.820	•670	•491	•476	•617
	SFC	1.65	00•9			•625	• 584	•431	•379	•427	•444
	LEVEL	S N S	SNS	SEW	9.17	16•71	18.28	21.70	26.13	25•86	21.61
ROSTOV NA DONU. SPRING	NORTH			MEW	1 • 30	-0.68	-4.37	-7.79	-12.01	-14.84	-12.61
V NA DON		EAST-WEST		LEVEL	SFC	820	700	200	300	200	100
ROSTO		EAST,		OBSN	135	130	135	135	135	95	99

W-225U

TABLE 87

が大きないのからは、100mmのでは、

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

039 49 E	100	-2.90	18•65		124	•094	•259	•291	.427	•637	
LONG 0	200	-1.87	19•49		•000	•420	•469	•538	•676		•516
7 15 Z	300	-0.62	20.67		•040	•480	•673	•779		.727	.371
LAT 47	200	-0.31	14.46		•103	•526	•724		•742	•556	•379
	700	-1 • 1 1	9.73		•222	•654		•750	• 586	•493	•075
	850	-0.78	8.92		•225		•779	.657	•469	•292	690•-
	SFC	1 • 90	5005			•635	.523	•367	•338	•266	077
	LEVEL	MNS	SNS	SEW	6.02	13.66	13.81	15.49	20.56	18•30	17.47
• SUMMER	NORTH SOUTH			MEW	0.51	-1.46	-5.58	-11.76	-21 •26	-31 .83	-21.80
ROSTOV NA DONU. SUMMER		WEST		LEVEL	SFC	850	700	500	300	500	100
ROSTOV		EAST-WEST		OBSN	250	235	250	250	250	128	80

ш

039 49

LONG

Z

47 15

LAT

ROSTOV NA DONU. FALL

BY LEVELS

(IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

88

TABLE

ί

(

•547 •656 •706 •703 -.051 •491 4.78 18,87 100 •032 •536 •743 •783 •829 •654 3.73 25,12 200 •470 .832 •011 • 701 •769 •629 3,30 26.19 300 .517 •745 •001 **.808** • 706 •717 3.69 18.30 500 •728 •676 •583 .121 •754 669• 0.82 12.94 700 .229 **805** •688 •577 .583 •354 0.45 10.73 850 .651 .517 •449 •385 .227 •442 1.44 5.79 SFC 7.50 13,35 15,35 LEVEL 18.58 24.17 21,35 25.51 MNS SNS SEW NORTH SOUTH 2.06 -4.26 -10.65 -18.05 -24.11 -29.20 -24.83 MEW LEVEL EAST-WEST SFC 850 700 500 300 200 100

OBSN

140

129

140

140

140

98

63

The state of the s

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).
BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

TBILI	TBILISI. WINTER	ĒR					LAT 4	41 41 N	LONG	044 57 E
		NORTH	LEVEL	SFC	850	700	200	300	200	100
EAST	EAST-WEST		MNS	1.17	2.68	99•0	99•0	-1 • 30	2.04	-1.69
			SNS	5.05	8.28	10.38	14.18	22.07	24.73	16.55
OBSN	LEVEL	MEW	SEW							
202	SFC	0.04	5.63		.343	.157	• 065	•015	•025	145
162	850	-8.78	11,85	•375		•502	191	.195	•171	•160
202	700	-15.82	13,37	•206	•435		•540	•438	•446	•385
202	200	-23.70	17.29	-•028	•039	•582		•479	•677	•735
202	300	-33.42	26.00	•016	•030	•490	• 392		•861	•665
143	200	-36,55	23.82	•017	• 060	• 399	•601	•732		•712
4	100	-40.20	17.68	206	•384	•121	.312	•369	•420	

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

90

TABLE

ш -.234 •314 -.046 •690 .819 •763 -10.03 16.69 57 100 044 •040 -0004 •509 •716 •817 -7.36 19,92 LONG 200 •040 •726 -.128 •427 •763 41 41 N -7.48 20.23 300 •054 •545 •749 --184 •717 -4.12 13,78 LAT 500 •312 •756 --027 •550 •678 -3.32 9,33 700 -.063 .352 .216 •406 .521 -0.78 9.02 850 •050 •173 .152 •010 060• 4.82 00.0 SFC LEVEL 10.08 10.92 13.91 18,26 23.10 25.05 MNS SNS SEW NORTH 1.13 -2.43 -7.42 -14,57 -20,32 MEN -22.01 TBILISI , SPRING LEVEL SFC 850 700 500 300 EAST-WEST 200 OBSN 190 175 189 190 190 84

•629

•577

•626

•708

•715

.141

19.55

-15.97

100

32

W-23SU

TABLE 91

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS). BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

044 57 E	100	0.37	13.02		341	175	-•066	•093	•143	•386	
LONG	200	-4.12	18.77		041	316	• 092	•545	•678		• 660
4 1 4 1 X	300	-6.22	19.74		047	129	• 385	• 628		699•	•579
LAT ,	200	-5.01	14.22		-•085	145	• 369		•437	• 541	• 228
	700	-4.20	7.85		•048	•270		•381	•282	•203	•166
	850	99•0	8.41		•243		•443	•229	•177	•113	-•036
	SFC	1 • 69	5.32			•258	•150	•053	•038	073	-•051
	LEVEL	SZ SZ SZ SZ SZ SZ SZ SZ SZ SZ SZ SZ SZ S	SNS	SEW	4 • 49	10.98	09•6	12,36	21.31	21.10	22.97
MER	NORTH			MER	-0.27	0.43	-2.70	-14.71	-33,58	-46.59	-39.56
TBILISI, SUMMER		EAST-WEST		LEVEL	SFC	850	700	500	300	200	100
TBILI		EAST		OBSN	176	167	176	176	176	112	4

W-23F

TABLE 92

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

044 57 E	100	1.61	15.16		111	•190	•154	•314	•340	•441	
FONG	200	-2.23	18.89		•021	166	•323	•613	•730		•449
41 41 N	300	-3.05	19.74		•019	060•-	•173	•574		• 698	•533
LAT 4	200	-1.94	11.97		•084	• 130	•482		• 628	•548	• 303
	700	-1.75	7.91		•100	•381		•661	• 500	•386	•142
	850	1.19	8.43		•369		• 664	•439	•348	•281	- 020
	SFC	0.56	4.90			•369	• 253	•152	•051	•142	151
	LEVEL	Σ N N	SNS	SEW	5.13	11.46	12.10	15,89	21 • 65	23,90	23.59
	NORTH			MEW	0.31	-3.67	-12,14	-21,37	-32,43	-41,91	-35,52
TBILISI, FALL		EAST-WEST		LEVEL	SFC	850	700	500	300	200	100
TBILI		EAST		OBSN	200	174	200	200	200	137	54

W-24W

TABLE 93

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

044 28 E	100	-1.20	15.43		-•044	•041	•143	•282	•525	•648	
CONG	200	0.39	21.30		-•049	•136	•362	.657	•676		•477
40 08 N	300	-1.05	23.04		• 098	•103	•408	• 621		• 663	•474
LAT 4	200	-1.52	15.08		020	.237	•539		•678	•698	•455
	700	-3.71	9.38		•062	•295		•564	•495	•411	•325
	850	-2.88	4.84		•018		•162	•108	•160	026	062
	SFC	-0.35	3.67			960•	690•	•091	•104	•084	•098
	LEVEL	M S N S	SNS	SEW	4.88	5.87	10.84	17.06	25.24	21.74	20.13
ËR	NORTH			MEW	-0.74	-0.02	-11.19	-20195	-27.34	-35•77	-35.19
YEREVAN. WINTER		EAST-WEST		LEVEL	SFC	850	700	200	300	200	100
YEREV		EAST.		OBSN	596	252	596	296	296	169	87

TABLE 94

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

N LONG 044 28 E	200 100	38 -11.66 -9.68	08 19•20 15•39			•005047209	.359 .343 .083	•665 •633 •480	•733 •576	•818	•652 •750
40 08	300	-10.38	21.08					•	- 1		
LAT	500	-6.70	13.21		116	•142	•491		•731	•708	•640
	700	-5.28	8.01		•005	•327		•683	•489	• 558	•535
	850	-3•34	6.28		•115		•234	•163	•169	•225	•381
	SFC	0.23	5.23			•064	•064	• 035	•022	•061	•308
	LEVEL	MNS	SNS	SEW	4.62	6.82	10.55	16.03	22.52	25.57	16.34
~I NG	NORTH			MEW	0.35	1.001	-6.08	-15.70	-25,06	-28,15	-19,37
YEREVAN, SPRING		EAST-WEST		LEVEL	SFC	850	700	500	300	200	001
YEREV		EAST		OBSN	329	305	329	329	329	111	7

W-24SU

95 TABLE

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

YEREV	YEREVAN, SUMMER	ÆR					LAT 4	40 08 N	LONG	044 28 E
		NORTH	LEVEL	SFC	850	700	200	300	200	100
EAST	EAST-WEST		MNS	0.72	-2.20	-4.60	-5-85	-9.11	-8 • 88	-8.37
			SNS	4.92	4 • 60	5.91	13,33	18.91	20,52	17.55
OBSN	LEVEL	MEW	SEW							
382	SFC	0.52	4 • 55		023	1.008	087	093	134	•263
359	850	2 • 39	5.44	•036		•128	-•058	171	125	148
382	700	-1.22	7•38	•078	•162		•489	• 404	•310	• 414
382	500	-13.89	11.41	•048	•130	•449		• 709	•587	•256
382	300	-34.57	20•69	•035	031	•261	•493		•734	•289
140	200	-45.58	20.91	077	000•	•020	• 358	• 600		•456
59	100	-32.04	19.55	140	•166	•054	•147	•164	•438	

W-24F

96 TABLE

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

044 28 E	100	-2.45	15,95		•064	•110	•267	•209	•317	•549	
LONG	200	-6.04	20.63		•035	•102	•354	•493	•587		•312
40 08 N	300	- 5.38	19.08		• 066	.121	• 405	•657		• 544	•204
LAT 4	200	-4.02	12.77		•025	•107	•382		•611	477	•189
	700	-4.37	7.83		-•006	•259		•567	•363	•326	•249
	850	-3.21	5.71		•001		•216	•218	•092	•352	-105
	SFC	-0.08	4.16			•046	•176	• 100	•111	•115	•044
	LEVEL	ΝΝ S	SNS	SEW	4.20	6.35	62•6	13•72	20.38	24•38	17.62
	NO2TH SOUTH			MEW	0.04	0.84	-7.66	-18.58	-29.92	-37.50	-29.42
YEREVAN, FALL		EAST-WEST		LEVEL	SFC	850	700	200	300	200	100
YEREV		EAST.		OBSN	339	305	339	339	339	142	6

TABLE 97

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS), WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

3	100	5 0 • 64	9 20.48		95 •155	31 •481	39 •472	38 •482	16 •465	•740	74
	200	4.06	22,69		095	031	• 339	•438	•716		•374
	300	0.16	24.19		•012	- 003	•471	• 636		•701	•398
	200	-1.13	15,82		•050	• 225	•645		•772	• 565	058
	700	-2.90	12.73		•030	•487		.527	•480	•350	•019
	850	-1 • 53	13.19		• 156		•537	+227	•227	•081	•052
	SFC	-0.52	4.53			•071	•118	•177	•147	•039	•324
	LEVEL	MNS NS	SNS	SEW	4.43	11.50	11.19	16.81	24•31	22.52	12.94
	NORTH			MEW	-0.29	-8.55	-11,95	-19,31	-28,33	-34.80	-38,24
		EAST-WEST		LEVEL	SFC	850	700	500	300	200	100
		EAST		OBSN	180	158	181	181	181	139	21

W-25SP

TABLE 98

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

049 00 E	100	-4.84	18.89		•241	047	•089	•269	•615	•740	
LONG	200	-5.25	21.49		011	-•065	• 304	•489	•706		•655
41 00 N	300	-5.77	21.41		• 020	-•150	• 233	•626		•689	• 503
LAT 4	200	-6.65	15.43		.051	016	• 345		699•	• 511	• 337
	700	-3.32	10.20		•150	•401		•636	•452	•334	•274
	850	-1.57	12.03		• 255		•605	•559	•381	•379	• 508
	SFC	-0.45	5.46			-0004	•025	-•007	900•-	131	•281
	LEVEL	SN _M	SNS	SEW	4 • 68	10.63	12.36	17.02	19•88	24.56	20•79
	NORTH SOUTH			MEW	0.14	-4.33	-6.86	-11.62	-21.12	-27.38	-18,34
BAKU. SPRING		EAST-WEST		LEVEL	SFC	850	700	500	300	200	100
BAKU.		EAST		OBSN	191	178	191	191	191	81	28

W-25SU

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

66

TABLE

BAKU.	BAKU. SUMMER						LAT 4	41 00 N	LONG	049 00 E
		NORTH	LEVEL	SFC	850	700	200	300	200	100
EAST.	EAST-WEST		M N N	0.29	1.24	-2.78	-2,95	-3.63	-1.85	6.43
			SNS	4.27	12,36	10.10	13.80	24.05	19.12	21 • 39
OBSN	LEVEL	MEW	SEW							
172	SFC	66•0	4.53		•065	-•035	960•-	-•039	217	119
156	850	1.57	7.75	•123		•364	-•093	378	405	•463
172	700	-4.97	8.92	•054	•434		•379	• 186	.120	•287
172	500	-15.21	12.49	•070	•196	• 500		•532	•417	•039
172	300	-34.08	25.62	-092	•117	•315	•546		•622	•125
101	200	-41,99	24.71	012	•188	•307	•491	•711		284
21	100	-32,53	30•33	060•-	•238	•326	•370	•492	•840	

W-25F

TABLE 100

WIND COMPONENT MEANS AND STANDARD DEVIATIONS (IN KNOTS).

BY LEVELS (IN MILLIBARS). WITH CORRELATIONS BETWEEN LEVELS FOR EACH COMPONENT

049 00 E	100	0.33	32.60		-•312	-•307	435	•283	•618	•763	
LONG	200	-1.15	22.71		248	110	•112	•367	.597		•801
41 00 N	300	1 • 38	20.89		200	033	•249	•498		• 569	• 630
LAT 4	200	1 • 1 1	13.25		111	•129	•460		• 666	•486	.507
	700	-1.01	10.34		-•008	•276		•534	•505	•325	•233
	850	-0.70	12.55		•170		•379	660•	•167	•125	056
	SFC	0 • 10	4 • 1 4			•152	•039	•003	057	€009	010
	LEVEL	MNS	SNS	SEW	4 • 31	10.43	10.96	16•38	22.44	23.94	35•03
	NORTH			MEW	-0-10	-6.98	-10.90	-18,34	-28.80	-41.02	-46.09
FALL		EAST-WEST		LEVEL	SFC	820	700	200	300	200	100
BAKU, FALL		EAST		OBSN	166	153	166	166	166	115	25

TABULATIONS OF DENSITY DATA APPENDIX B

0-1×

TABLE 101

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

MURMA	MURMANSK. WINTER	INTER						LAT 68	Z 28 8	Long	033 03	ш
		HGT		N	ო	4	ഗ	ø	۲	σο	0	
		Σ.	1.3171	1.1054	•9253	•6864	•5679	.4415	•2940	•2175	10	
		SX10	.5220	.2184	•1753	•1992	•1581	.1529	•0677	•0415	10	
OBSN	HG→											
349	46	-	1.000	•578	•366	• 151	•066	058	231	228		
349	1458	N		1.000	•768	•372	•334	•373	244	347		
345	3014	т			1.000	• 540	•382	•416	-308	283		
229	5579	4				1.000	•631	226	273	232		
228	7193	ហ					1.000	•315	117	113		
22	9177	v						1.000	•790	•740		
11	11806	۲							1.000	•956		
1	13638	c o								1.000		
0	16221	o										

0-1SP

TABLE 102

ĺ

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

MURMA	MURMANSK. SPRING	PR I NG						LAT 68	8 28 2	LONG	033 03 E
		HGT	•	N	ю	4	ហ	9	7	ω	6
		Σ	1.2937	1.0982	.9212	•6829	•5698	•4463	•2935	•2210	•1544
		SX10	•4154	•2190	•1729	.1681	•1689	.1802	.1387	•0878	•0436
OBSN	HGT										
393	46	-	1.000	•629	•483	.121	•117	•181	•084	109	•566
393	1458	N		1 • 000	•764	•274	•160	•066	•070	-•161	-•079
390	3014	m			1.000	• 455	•268	•070	•016	178	216
273	5579	4				1.000	•603	-•052	•210	•044	065
271	7193	ທ					1.000	•489	•523	•453	•514
51	9177	v						1 • 000	•798	•783	•705
58	11806	۲							1 • 000	•965	•869
27	13638	c o								1.000	•932
ហ	16221	0									1.000

TABLE 103

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

W

MURMA	MURMANSK. SUMMER	JMMER						LAT 68	Z 89 2	Long	033 (03 E
		HGT	**	N	ო	4	ហ	v	٢	Φ		Φ
		Σ	1.2427	1.0622	•8974	•6767	•5689	•4523				
		SX10	•2286	•1844	•1218	.1088	•1741	•1075				
OBSN	HGT											
297	46		1.000	•785	•634	•271	•241	•477				
297	1458	N		1 • 000	•698	•279	•241	•317				
294	3014	m			1.000	• 401	•296	•633				
224	5579	4				1.000	•418	•305				
167	7193	ហ					1.000	•758				
92	9177	v						1 • 000				
0	11806	۲										
0	13638	œ										
0	16221	0										

TABLE 104

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).
BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

MURMAI	MURMANSK, FALL	\LL						LAT 68 58 N	N		033 03 E	4.4
		HGT	~	N	ო	4	ហ	6 7		89	0	
		Σ	1.2785	1.0851	•9116	•6842	•5680	•4542				
		SX10	•3615	•2242	.1740	•1177	•1196	•0788				
OBSN	HGT											
281	46		1.000	•822	•722	•516	•239	•178				
280	1458	N		1.000	•834	.571	•232	•173				
279	3014	ო			1.000	•607	•278	•020				
180	5579	4				1.000	•563	•221				
172	7193	ហ					1 • 000	• 688				
25	9177	v						1 • 000				
0	11806	^										
0	13638	œ										
0	16221	0										

TABLE 105

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

X M X	KEM PORT, WINTER	INTER						LAT 6	64 59 N	LONG	LONG 034 47 E
		HG+		N	ო	4	ហ	ø	7	Φ	o
		Σ	1.3299	1.1089	•9284	• 6839	•5727	.4423	.2941	•2175	
		SX10	•5790	•2751	•2003	•1290	•1280	•1659	.1412	•0778	
OBSN	HG⊣										
310	10		1 • 000	.521	•356	•270	•196	•101	•334	•319	
310	1458	N		1.000	•620	•329	•215	-•166	•043	•121	
307	3014	m			1.000	• 663	• 422	•266	600•-	•041	
252	5579	4				1.000	•729	•439	050	•004	
244	7193	ហ					1 • 000	• 635	.377	•341	
50	9177	9						1 • 000	•922	•916	
50	11806	۲							1.000	.972	
19	13638	6 0								1 • 000	
0	16221	6									

D-2SP

TABLE 106

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

034 47 E	0	•1543	•0597		•326	•067	•166	•114	•444	•843	•861	.940	1 • 000
LONG 034	ω	•2261	•1134		288	-•460	-•465	-•241	•506	•895	• 980	1.000	•
64 59 N	7	•3019	.1628		214	425	470	230	•471	•903	1 • 000		
LAT 6	9	.4510	.1530		279	-•370	465	-•168	• 593	1 • 000			
	ហ	.5754	.1313		•043	•126	-077	•288	1.000				
	4	• 6933	.1425		• 387	• 482	•499	1.000					
	М	•9241	•1948		•532	•762	1.000						
	N	1.1015	.2617		• 744	1.000							
		1.3106	.5212		1.000								
R I NG	HGT	Σ	SX10		~	N	m	4	ດ	v	۲	œ	σ
KEM PORT. SPRING				HGT	10	1458	3014	5579	7193	9177	11806	13638	16221
χ Μ Σ				OBSN	298	298	294	225	219	9	37	35	15

D-25U

TABLE 107

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

LONG 034 47 E	9	•2287 •1591	•1312 •0435		30 •249	20 352	58425	55664	44595	92484	33 002	00 •255	1 • 000	
	~				• 380	•120	•158	- 355	•144	•792	•933	1 • 000		
	^	•3032	•1924		•262	•044	•066	331	•033	•657	1.000			
	9	•4541	•0896		•511	•233	.142	138	•578	1 • 000				
	ហ	• 5684	•1098		•346	.187	•310	•426	1.000					
	4	• 6808	•1825		• 258	•217	• 383	1.000						
	m	. 8959	•1670		•535	• 609	1.000							
	N	1.0524	2277		•749	1 • 000								
		1,2397	.2497		1 • 000									
	HGT	Σ	SX10		-	N	m	4	ហ	v	^	œ	0	
				H61	10	1458	3014	5579	7193	9177	11806	13638	16221	
				OBSN	167	164	161	138	126	93	13	12	œ	

TABLE 108

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

KE FI P	KEM PORT, FALL	ALL						LAT 6	64 59 N	LONG	034 47 E
		HGT	***	ณ	m	4	ហ	9	۲	ω	0
		Σ	1.2857	1 • 0879	.9151	.6873	,5733	•4546	•3089	•2309	•1574
		SX10	•4157	•2749	.2063	•1677	.1968	.1165	.1534	•1101	•0601
OBSN	HG1										
290	10		1.000	•647	•575	•365	•242	•109	•082	•018	•280
589	1458	N		1 • 000	•733	•412	•346	018	243	215	•535
285	3014	m			1.000	.557	•376	049	-•165	177	•090
252	5579	4				1.000	•308	660	060•	045	-•585
239	7193	ເກ					1.000	•591	•306	•282	•188
11	9177	v						1 • 000	•759	•779	•537
22	11806	٢							1.000	• 980	•889
20	13638	œ								1.000	•956
^	16221	0									1 • 000

ME-0

TABLE 109

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER), BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

ARKHA	ARKHANGELSK. WINTER	MIN	ER R					LAT 6	64 35 N	LONG	040 30	о М
		HGT	~	N	m	4	ເດ	v	7	ω		0
		Σ	1.3488	1.1189	.9321	• 6965	•5791	•4392	•2940	•2183		
		SX10	•5911	•2371	•1648	•1252	•2112	.1225	•1158	•0754		
OBSN	HGT											
377	13	H	1 • 000	• 593	•509	•296	•147	•050	•081	•081		
369	1458	N		1 • 000	•744	•416	• 206	•136	003	012		
345	3014	ო			1.000	• 645	•249	•116	076	105		
282	5579	4				1.000	•462	•253	960•	•088		
270	7193	ហ					1.000	•620	•424	•381		
53	9177	9						1 • 000	906•	•896		
35	11806	٢							1.000	•74		
35	13638	c o								1.000		
0	16221	0										

D-3SP

TABLE 110

ĺ

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER). BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

040 30 E	Φ	•1541	•0555		-•727	-•606	464•-	-•209	•255	•738	•871	•933	1 • 000
LONG 040	ω	•2244	•1073		-•486	-•610	601	137	•443	•830	•984	1 • 000	•
S S	7	•3002	•1641		- 404	568	603 -	154	•475	.872	1.000		
LAT 64	9	•4476	•1845		047	228	136	•023	969•	1 • 000			
	ດນ	.5753	.1273		013	•023	• 125	•420	1.000				
	4	• 6942	.1510		•074	•274	•405	1.000					
	ю	•9260	.1710		•370	•796	1.000						
	N	1.1037	•2607		•601	1 • 000							
5 NG	1	1,3131	•5708		1 • 000								
SPR	HGT	Σ	SX10			N	m	4	ហ	9	^	œ	Q.
ARKHANGELSK, SPRING				HGT	13	1458	3014	5579	7193	7116	11806	13638	16221
ARKHAI				OBSN	336	332	297	255	248	68	45	42	16

TABLE 111

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).
BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

ARKHAI	ARKHANGELSK. SUMMER	SUMI	MER					LAT 6	64 35 N	LONG	040 30 E
		HGT		N	ო	4	ហ	ø	^	σ	6
		Σ	1 • 2453	1.0565	9968•	• 6807	.5722	•4568	•3172	•2380	•1583
		SX10	•2210	•1693	•1092	.1203	.1915	•0565	•1088	•0662	•0238
OBSN	HGT										
193	13	1	1.000	•712	•615	•319	•119	•036	278	176	•083
190	1458	N		1 • 000	•784	•338	•135	•003	564	509	110
166	3014	n			1.000	•421	•150	•149	521	470	238
144	5579	4				1.000	.112	•263	-•388	-•369	142
138	7193	ហ					1 • 000	•492	141	237	-•129
104	9177	ø						1 • 000	•257	•136	•179
10	11806	2 7							1 • 000	• 985	•632
0	13638	c								1 • 000	•736
Φ	16221	Φ									1 • 000

TABLE 112

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

30 E	Φ	•1482	•0748		282	•051	318	-•211	•358	•808	•745	•940	1 • 000
LONG 040	σ	•2244	•1138		-•314	248	495	-•356	•573	•913	•971	1 • 000	•
64 35 N	7	•3015	•1731		208	250	460	327	•518	•924	1.000		
LAT 6	ø	•4503	.1535		+034	149	280	286	•472	1 • 000			
	ហ	.5740	•138B		•258	•193	•170	•287	1.000				
	4	• 6899	•1531		•412	• 520	•631	1.000					
	ო	•9175	.2050		•585	•737	1 • 000						
	ณ	1.0923	•2835		•765	1 • 000							
	-	1 • 2906	•4656		1.000								
FALI	HGT	Σ	SX10			N	m	4	ស	ø	^	0 0	0
ARKHANGELSK• FALL				HG→	13	1458	3014	5579	7193	9177	11806	13638	16221
АККНА				OBSN	310	306	288	246	231	65	31	56	0

D-4W

TABLE 113

l

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).
BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

030 43 E	0	.1571	•1137		•849	•998	007	•104	157	-907	464	•376	1.000
LONG	ω	•2212	• 0848		-•089	154	-•064	•135	•331	•857	•948	1 • 000	
61 43 N	7	•2966	.1250		- •094	215	144	•075	•267	•842	1.000		
LAT	9	•4421	•1419		•107	•005	•165	•347	•610	1 • 000			
	ທ	•5737	•1318		•104	•181	•422	•721	1.000				
	4	•6938	•1361		•327	457	•751	1.000					
	ю	•9292	•1895		•314	•712	1 • 000						
	N	1.1134	.2985		•419	1.000							
~		1.3227	•7567		1.000								
INTER	HG⊤	Σ	SX10		+	N	m	4	ស	9	۲	a o	0
SORTOVOLA. WINTER				HGŦ	18	1458	3014	5579	7193	9177	11806	13638	16221
SORTO				OBSN	265	265	261	173	169	144	114	112	ო

TABLE 114

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

SORTO	SORTOVOLA. SPRING	SPRING	(3					LAT 6	61 43 N	LONG	030 43 E
		HGT		N	m	4	ហ	9	1	ω	0
		Σ	1 • 2999	1.0942	•9217	•6925	.5777	•4503	•3047	•2282	• 1553
		SX10	•4678	.2597	•1859	•1176	•1852	• 1385	•1347	•0870	•0529
OBSN	HGT										
335	18	•	1.000	•678	•560	• 395	•132	•104	-•067	-•138	230
335	1458	N		1 • 000	• 605	•406	•060	-•001	212	-•250	234
330	3014	m			1.000	• 536	•063	072	251	280	271
230	5579	4				1.000	•296	•172	117	-•129	-•204
222	7193	ເດ					1 • 000	•184	110	168	 098
195	9177	ø						1 • 000	•589	.527	•124
171	11806	۲							1 • 000	•952	.515
168	13638	c o								1.000	•770
51	16221	0									1 • 000

D-4SU

TABLE 115

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER), BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

SORTO	SORTOVOLA. SUMMER	SUMMER	œ				٦	T 61	z m	ONG	0 43
		HGT	#	2	т	4	ហ	9	7	ω	σ,
		Σ	1.2359	1.0549	8968	• 6804	•5708	•4570	•3172	•2387	•1594
		SX10	•3005	.1578	•1315	•1222	•0839	•1412	•1187	•0772	•0408
OBSN	HG7										
298	18	H	1.000	•336	•328	•142	•223	•144	•093	•092	027
297	1458	N		1 • 000	•554	•133	•110	•034	-•135	172	103
596	3014	m			1.000	• 322	•296	•135	-•068	-053	108
249	5579	4				1.000	•256	•087	032	-•068	144
180	7193	ហ					1 • 000	•376	•225	•292	•262
176	9177	ø						1.000	•207	•195	•160
154	11806	۲	<i>i</i> .						1.000	946	•631
152	13638	©								1 • 000	•798
142	16221	6									1 • 000

D-4F

TABLE 116

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

43 E	Φ	•1579	•0200		•253	•144	000•	018	017	057	•182	• 504	1 • 000
LONG 030	œ	•2321	•0879		690•	-•067	-•166	-•003	•063	-431	• 958	1 • 000	•••
61 43 N	^	•3104	•1425		•110	031	142	•008	960•	•442	1.000		
LAT 6	9	•4516	•1524		• 100	-•038	760•-	600•	•377	1 • 000			
	ហ	.5732	•1347		•162	•233	•127	•347	1.000				
	4	• 6873	•1320		•165	•310	•247	1.000					
	ო	.9128	•2104		•336	•514	1.000						
	N	1.0857	•2558		• 533	1 • 000							
		1.2728	•3927		1.000								
FALL	HGT	Σ	SX10			N	m	4	ហ	9	7	c o	0
SORTOVOLA. FALL				HGT	18	1458	3014	5579	7193	9177	11806	13638	16221
SORTC				OBSN	270	270	264	218	203	186	157	151	39

D-5W

TABLE 117

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER), BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

TALLIN, WINTER	ER HGT		N	m	4	ហ	LAT 6	59 25 N	C CONG	024 48 E
M 1 • 3057		-	1 • 1069	•9269	•6971	.5754	•4470	•3026	• 2255	• 1554
SX10 •5744	•5744		. 2731	•2095	•1640	•1109	•1390	.1521	•0954	•0707
1 • 000		•	•585	•344	•267	•276	•177	••056	071	382
2 1•	1.	-	1.000	•760	• 454	•371	•195	-095	082	•141
E				1.000	•475	•373	•115	135	-•092	•363
4					1.000	•575	•173	-•115	-•098	• 065
ر د						1 • 000	•72T	•364	•407	•332
	·						1 • 000	•839	•851	•806
								1.000	626	•810
									1.000	•916
										1 • 000

-5SP

TABLE 118

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).
BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

TALLIA	TALLIN, SPRING	S S						LAT 59	9 25 N	CONG 0	024 48 E
		HG1	-	N	m	4	ເດ	9	7	ω	6
		Σ	1.2862	1 • 0919	.9208	.6941	.5771	•4539	•3092	•2312	•1567
		SX10	•3824	.2271	.1602	•1353	•0872	•1173	•1325	•0848	•0327
OBSN	HGT										
591	4	* **	1.000	•714	•545	• 302	•195	021	-•169	-•262	155
290	1458	ď		1.000	.846	•418	•242	194	427	478	-•393
587	3014	m			1 • 000	•480	.261	190	447	-•472	407
490	5579	4				1.000	•532	•033	239	-•251	312
464	7193	ហ					1.000	.607	•290	•299	•034
403	9177	9						1.000	•805	• 788	•571
326	11806	*							1.000	* 26.	•791
309	13638	Œ								1 • 000	•887
155	16221	Φ									1 • 000

D-55U

TABLE 119

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

LAT 59 25 N LONG 024 48	4 5 6 7 8	74 •6827 •5709 •4564 •3189 •2409 •1611	80 •1212 •0765 •0783 •1152 •0834 •0434		0 •314 •363 •220 •042 •002•052	4 •362 •305 •045 -•290 -•341 -•280	0 •327 •170•041•266•332•354	1.000 .108069167214276	1.000 .448 .060 .054 .076	1.000 .390 .352 .308	11.000 • 171.	1.000 .849	
آـ	ស									1•0			
	4	-							1•0				
	М	•8974	•1180		• 500	•644	1.000						
	N	1.0557	.1288		•702	1.000							
	•	1.2297	•1643		1 • 000								
JER JER	HGT	Σ	SX10			ณ	m	4	ហ	9	^	œ	(
TALLIN. SUMMER				HGT	4	1458	3014	5579	7193	9177	11806	13638	
TALL I				OBSN	538	538	536	511	412	405	329	284	•

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

120

TABLE

TALL	TALLIN, FALL	لـ						LAT	59 25 N	LONG	024 48 E
		HGT	•	N	ო	4	ហ	ø	٢	œ	Φ
		Σ	1.2625	1.0802	•9104	.6883	.5748	.4551	•3174	•2371	•1597
		SX10	•3465	•2074	.1516	• 0956	.1482	•0855	.1360	•0940	•0461
OBSN	HGT										
562	44	-	1.000	•618	•390	.277	•105	•126	•070	•034	•287
260	1458	0		1 • 000	• 794	.597	•133	•032	118	147	051
555	3014	ო			1.000	• 593	•107	-•087	•249	275	-•331
498	5579	4				1.000	• 268	•089	151	-•166	172
464	7193	Ŋ					1 • 000	•064	•106	•092	• 082
421	9177	φ						1 • 000	•686	•652	. 551
301	11806	_							1 • 000	•968	•856
246	13638	c o								1.000	.933
145	16221	0									1 • 000

TABLE 120

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

TALLI	TALLIN, FALL	L						LAT 5	59 25 N	LONG	024 48 E
		HGT		α	т	4	ດ	9	۲	ω	0
		Σ	1.2625	1.0802	•9104	• 6883	•5748	.4551	•3174	•2371	.1597
		SX10	.3465	•2074	•1516	•0956	•1482	•0855	•1360	•0940	•0461
OBSN	HGT										
562	44	~	1.000	•618	•390	.277	•105	•126	•070	•034	•287
260	1458	N		1 • 000	•794	.597	•133	•032	118	147	-051
555	3014	m			1.000	.593	•107	-•087	249	275	331
498	5579	4				1.000	•268	•089	151	166	172
464	7193	ເດ					1 • 000	•064	•106	• 092	• 082
421	9177	v						1 • 000	•686	•652	. 551
301	11806	۲							1 • 000	• 968	•856
246	13638	œ								1.000	• 933
145	16221	0									1 • 000

D-6W

TABLE 121

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

LENIN	LENINGRAD TOWN. WINTER	·NMO	WINTER					LAT 5	S9 58 N	LONG	030 18 E
		HGT	•	N	ო	4	ហ	ø	۲	ω	σ
		Σ	1 • 3098	1.0961	•9175	• 6868	.5673	•4405	•2969	•2214	.1501
		SX10	.5345	•2593	•1821	•1125	•1031	•1362	•1339	•0843	•0875
OBSN	HGŢ										
708	4	-	1.000	•650	•528	• 385	•283	•174	-077	•063	-947
707	1458	N		1 • 000	•793	•532	•325	-•008	134	135	627
969	3014	m			1.000	•713	•407	017	-•183	164	•860
583	5579	4				1.000	•752	•186	051	-•023	•853
578	7193	ហ					1 • 000	• 554	162.	• 303	•916
329	9177	9						1 • 000	•768	•748	4 66•
260	11806	۲							1 • 000	•971	868•
260	13638	œ								1.000	\$ 26•
4	16221	Q,									1 • 000

D-6SP

TABLE 122

(

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

INGR	AD T	• NAC	LENINGRAD TOWN. SPRING					LAT 5	S9 58 N	LONG	030 18 E
		HGT	~	N	m	4	ស	9	_	ω	o
		Σ	1.2808	1.0816	•9114	•6855	•5690	•4462	•3000	•2246	•1557
		SX10	•4168	•2325	•1725	.1002	.1007	•1384	•1429	•0912	•0498
	HGT										
	4	~	1.000	•767	•524	•405	•063	055	159	220	227
	1458	N		1 • 000	•726	.507	007	-•290	403	-•436	279
	3014	m			1.000	• 458	-•050	338	-•393	404	410
	5579	4				1.000	•525	•030	118	-•079	• 194
	7193	ហ					1.000	•598	•411	•462	•428
	9177	v						1 • 000	.817	•834	•635
-	11806	٢							1.000	•974	•684
	13638	œ								1 • 000	•873
-	16221	Q									1 • 000

D-6SU

TABLE 123

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

030 18 E	O	•1582	•0329		-•007	192	124	121	•106	•159	•524	•726	1.000
LONG	σ	•2363	•0733		•049	114	÷000	-•063	•125	• 452	•954	1.000	
S9 58 N	^	•3143	•1148		• 000	138	082	050	•061	•405	1.000		
LAT 5	v	.4507	•0831		•205	•162	•281	•026	•334	1.000			
	ເດ	•5639	•1000		•207	•248	•337	•135	1 • 000				
	4	•6743	•1434		• 243	• 250	• 368	1.000					
	m	•8876	•1172		•492	•613	1.000						
	N	1.0426	.1506		•601	1 • 000							
SUMMER	-	1.2221	•2364		1.000								
· Z	HG1	Σ	SX10			N	က	4	ស	•	^	c o	0
RAD TO				HG+	4	1458	3014	5579	7193	7716	11806	13638	16221
LENINGRAD TOWN. SUMMER				OBSN	582	580	570	505	460	409	284	241	227

D-6F

TABLE 124

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

LENIN	LENINGRAD TOWN. FALL	- NMO	FALL					LAT 5	N 85 65	LONG	030 18 E
		нст		0	ო	4	ហ	9	7	œ	0
		Σ	1.2686	1 • 0729	•9023	• 6809	•5666	•4487	.3101	•2319	•1574
		SX10	•4013	•2261	.1602	•1084	•1037	•1048	•1432	•0882	•0473
OBSN	HGT										
597	4		1.000	•705	•564	• 391	•231	•077	061	-•109	• 015
595	1458	N		1 • 000	.810	•531	•256	•016	243	-•278	-•159
586	3014	m			1.000	• 563	•260	061	346	353	206
540	5579	4				1.000	•509	.147	201	-•186	•035
536	7193	ហ					1.000	•390	•073	•054	•127
384	9177	9						1.000	•679	•694	. 440
281	11806	'							1.000	996•	•639
260	13638	c c								1 • 000	.812
833	16221	0									1 • 000

D-7W

125 TABLE

ĺ

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

024 04 E	Φ	•1589	•0323		•889	479	490	•825	•619	.848	•581	•738	1 • 000
LONG	œ	•2256	•0881		•064	117	211	-•059	•278	•849	• 970	1 • 000	
56 58 N	^	•3032	•1456		•089	120	194	053	•257	1771	1 • 000		
LAT	ø	•4472	•1245		•127	075	176	018	•455	1 • 000			
	ហ	.5742	•1032		•210	•232	•187	•376	1 • 000				
	4	•6928	.1222		• 284	• 411	• 473	1.000					
	ო	•9207	•1793		• 504	•749	1.000						
	N	1 • 0985	•2480		•659	1 • 000							
		1 • 3053	•4916		1.000								
~	HGT	Σ	SX10		-	N	m	4	រេ	v	^	c o	0
RIGA. WINTER				HGT	m	1458	3014	5579	7193	9177	11806	13638	16221
RIGA.				OBSN	295	559	556	463	459	421	283	276	4

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

21 GA•	RIGA. SPRING	ഗ						LAT 5	56 58 N	LONG	024 04 E
		HGT	•	0	ო	4	ທ	9	7	ω	6
		Σ	1,2811	1.0836	.9151	•6914	.5753	•4511	•3069	•2295	11211
		SX10	•3717	.2477	•1911	.1367	•1079	•1296	.1342	•0844	•0343
OBSN	HGT										
537	n	~	1.000	•633	966•	•383	•252	•070	043	113	271
536	1458	N		1 • 000	•716	•340	•165	112	368	-•387	302
517	3014	ო			1.000	•368	•173	860•-	-•339	-345	260
465	5579	4				1.000	•662	•106	077	-•067	-•058
458	7193	ហ					1 •000	•539	•290	•307	114
434	9177	Φ						1.000	•724	• 707	•166
379	11806	۲							1.000	•955	•657
356	13638	œ								1.000	•841
118	16221	0									1 • 000

127 TABLE

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

LONG 024 04 E	80	•2391 •1595	•0760 •0337		-142200	361258	281262	123204	•125 •028	•533 •376	•941 •675	1.000 .824	1 • 000
56 58 N	1	•3185	•1162		123	-•330	251	118	•085	•519	1 • 000		
LAT	v	•4547	•0764		900•-	-•040	-•063	• 182	•505	1 • 000			
	ស	.5691	•0780		•088	•054	•051	•558	1.000				
	4	•6789	•0877		•150	•197	•307	1.000					
	m	.8945	.1381		•359	•462	1.000						
	N	1.0520	.1862		•358	1 • 000							
		1.2292	•2867		1.000								
~	нбт	Σ	SX10		e=4	N	m	4	ហ	ø	^	c o	Φ.
RIGA. SUMMER				HGT	m	1458	3014	5579	7193	9177	11806	13638	16221
R16A.				OBSN	464	491	469	429	417	414	398	316	308

D-7F

TABLE 128

į

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

N LONG 024 04 E	7 8 9	•3168 •2360 •1 599	•1437 •0970 •0436		34052013	44266152	97382305	335317104	183103 •052	•702 •712 •595	1.000 .971 .675	1.000 .836	1 • 000
56 58		*	•		034	244	-•397	i	083	•	1.		
LAT	ø	•4538	•0935		•154	• 005	142	•012	•051	1 • 000			
	ស	.5741	•1407		•179	•250	•111	•374	1.000				
	4	•6852	•0916		668•	•610	•647	1.000					
	ო	•9028	•1593		•483	•761	1.000						
	N	1.0741	•2087		•666	1 • 000							
		1.2647	•3320		1.000								
	HGT	Σ	SX10		, 1	N	m	4	ហ	φ	^	c c	6
FALL				HGT	n	1458	3014	5579	7193	9177	11806	13638	16221
RIGA. FALL				OBSN	490	489	473	422	407	403	352	291	129

D-8W

129 TABLE

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

027 32 E

LONG

027 32 E	O.	0.1548	•0818		•115	~ •298	311	417	655	615	.571	•929	1 • 000
CONG	ω	0.2293	•0810		149	-•387	-•446	275	•129	• 564	• 946	1 • 000	
53 52 8	۲	0.3081	•1296		172	411	456	271	•193	•654	1 • 000		
LAT	y	0.4512	.1065		119	206	255	4000	.707	1 • 000			
	ດ	0.5724	•0770		•161	•242	•212	•661	1 • 000				
	4	0.6927	•1124		• 357	.518	•570	1.000					
	ю	0.9218	•2039		•525	• 760	1.000						
	a	1.1023	•2754		•712	1.000							
	#	1.2816	•4654		1.000								
α	HG1	Σ	SX10		4-4	N	m	4	ល	v	7	æ	0
MINSK. WINTER				HGT	234	1458	3014	5579	7193	9177	11806	13638	16221
MINSK				OBSN	264	264	262	261	261	238	22 <i>ż</i>	219	13

D-8SP

TABLE 130

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

027 32 E	0	0.1572	•0355		209	-•333	-•446	-•307	• 150	•558	•740	•872	1.000
LONG 02	Ø	0.2330	•0753		268	-•448	378	173	•281	•652	• 963	1 • 000	
53 52 N	۲	0.3113	.1215		207	409	-•336	140	•288	•635	1.000		
LAT 5	Φ	0.4555	•1032		-•061	-•196	173	•016	•694	1 • 000			
	ທ	0.5737	•0738		.153	•103	•050	•673	1 • 000				
	4	0.6916	•1190		.287	• 355	•370	1.000					
	ო	0.9144	•1795		•460	•620	1.000						
	a	1.0824	•2460		•748	1 • 000							
	-	1.2473	•4110		1.000								
ဗ	HGT	Σ	SX10		-	N	ы	4	ស	9	^	œ	0
MINSK. SPRING				НСТ	234	1458	3014	5579	7193	9177	11806	13638	16221
MI NSK.				OBSN	296	596	295	290	284	261	237	229	111

D-85U

TABLE 131

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER), BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

INSK.	MINSK. SUMMER	α W						LAT 5	53 52 N	LONG	027 32 E
		HGT		N	m	4	ດ	9	_	ω	Φ
		Σ	1.1979	1.0483	0.8946	0.6811	0.5687	0.4568	0.3228	0.2438	0.1627
		SX10	•1940	.1715	.1276	•1328	•0796	•0820	•1162	•0833	•0406
OBSN	HGT										
305	234	1	1.000	•735	•542	•448	•615	•491	024	021	€00
305	1458	N		1 • 000	•623	•308	•359	•224	-•316	313	345
303	3014	m			1 • 000	•326	•347	•219	253	228	313
301	5579	4				1.000	•796	•160	112	147	• 022
262	7193	ເດ					1.000	•703	•172	•150	•158
260	9177	9						1 • 000	•460	•469	•320
235 1	11806	^							1.000	•973	•735
207 1	13638	c o								1.000	•868
204 1	16221	0									1.000

D-8F

TABLE 132

ĺ

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER), BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

32 E	0	0.1602	•0367		•066	-•148	251	-•179	•079	•349	.522	•735	1 • 000
027			vo			1	t	1					-
LONG	co	0.2387	• 0806		027	-•361	452	-•289	010	• 444	•946	1.000	
53 52 N	7	0.3200	•1276		•064	278	425	225	•088	•508	1.000		
LAT	ø	0 • 4579	0960•		•065	-•019	174	104	•659	1.000			
	ល	0.5731	•0653		•335	•270	•285	•667	1.000				
	4	0.6884	.1037		•403	•369	•518	1.000					
	М	0.9087	.1327		•579	•657	1.000						
	N	1.0779	.2173		•730	1.000							
	e-1	1.2424	•2854		1.000								
	HG1	Σ	SX10			N	m	4	ເດ	ø	^	c c	0
MINSK. FALL				HGT	234	1458	3014	5579	7193	9177	11806	13638	16221
MINSK				OBSN	258	258	257	252	247	245	206	185	100

(を)の いい 大学者 こうじ

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER), BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

049 37 E	ο.	•1438	•0091		• 965	•846	•985	626	•582	•124	•784	•768	1.000
LONG 04	œ	•2246	•0790		056	220	237	-052	•364	•854	116.	1.000	-
S8 39 N	7	•3024	•1315		•023	•216	•236	•076	•343	•846	• 000		
LAT 5	9	•4489	•1292		•011	127	173	•124	•677	1.000			
	ហ	.5740	•1008		077	120	900•-	•632	1.000				
	4	• 6953	•0874		•228	• 360	•571	1.000					
	ю	•9325	•1592		•533	•767	1.000						
	N	1.1186	•2677		•684	1 • 000							
	•	1 • 3290	•5850		1 • 000								
α	нст	Σ	SX10		~	N	m	4	ស	9	۲	æ	0
WINTE				HG⊤	164	1458	3014	5579	7193	7716	11806	13638	16221
KIROV. WINTER				OBSN	342	341	337	258	252	163	153	153	m

dS6-0

TABLE 134

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

I ROV	KIROV. SPRING	ს X						LAT 5	S8 39 N	LONG	049 37 E
		HGT	~	N	ო	4	ດ	v	7	Ø	σ
		Σ	1 • 2675	1.0906	•9176	• 6901	•5716	•4486	•3040	•2278	•1577
		SX10	•5313	•3013	•2075	•1319	.1022	•1759	•1708	•1158	•0457
OBSN	HGT										
304	164		1.000	•702	•464	•318	•036	318	392	439	423
303	1458	N		1 • 000	• 741	•351	052	389	541	569	491
599	3014	m			1.000	• 303	114	-•398	-•467	465	304
241	5579	4				1.000	•247	-•094	-•056	045	•195
223	7193	ເດ					1 • 000	•734	•466	•496	•489
167	9177	ø						1 • 000	•708	•716	•743
146	11806	^							1 • 000	•979	•768
145	13638	Ø								1.000	•881
57	16221	0									1 • 000

0**-**680

TABLE 135

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER), BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

ROV.	KIROV. SUMMER	α						LAT	58 39 N	LONG	049 37 E
		HGT		Ŋ	m	4	ហ	9	7	ω	0
		Σ	1.2034	1.0460	.8915	•6786	•5696	•4557	•3174	•2393	.1601
		SX10	•2602	•1629	.1248	•1395	•0769	9680•	•1216	•0783	•0299
OBSN	HG1										
233	164	•	1.000	•617	• 501	•274	•252	•023	260	274	-*385
232	1458	N		1 • 000	•793	•457	•491	•166	-•190	-•199	524
231	3014	ო			1.000	•567	•643	•260	-•100	-•091	491
174	5579	4				1.000	•432	113	199	250	389
108	7193	ហ					1.000	•481	•149	•136	270
108	9177	ø						1.000	•527	• 509	•012
91	11806	۲							1.000	• 968	•606
06	13638	œ								1.000	•768
98	16221	0									1 • 000

D-9F

TABLE 136

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

KIROV	KIROV. FALL							LAT 58	8 39 N	LONG	049 37 E
		HGT		Ø	ო	4	ດ	vo	7	ω	o
		Σ	1.2684	1.0912	•9156	• 6895	•5729	•4532	•3099	•2319	•1578
		SX10	•5720	•2965	•2014	•1339	6960•	.1125	•1476	•0942	•0347
OBSN	HGT										
296	164		1.000	•713	•556	•421	•378	047	200	-•256	•248
296	1458	N		1 • 000	•886	.622	.512	-•065	-•350	372	160 •
294	3014	m			1.000	•619	•545	- 008	-•338	349	• 001
227	5579	4				1.000	•680	•049	960•-	108	•332
202	7193	ហ					1.000	•486	•276	• 300	•370
155	9177	v						1 • 000	•805	•794	•182
121	11806	r							1.000	•970	•540
119	13638	c c								1.000	•758
37	16221	0									1 • 000

TABLE 137

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

Ш

STRIGINO. WINTER	INTER						LAT 56	z Z	CONG	043 49
	HGT		N	М	4	ດ	9	۲	60	0
	Σ	1.3122	1.1026	•9214	.6885	•5700	•4449	•3002	•2234	
	SX10	•5775	•2601	•1862	.1072	.1080	•1268	•1398	•0834	
HGT										
82	-	1.000	•627	• 506	•366	•075	•047	-•036	• 083	
1458	N		1 •000	.861	.520	001	229	-•363	371	
3014	m			1.000	• 592	•048	312	412	-•421	
5579	4				1.000	•443	690•	-•084	073	
7193	ហ					1.000	•573	•292	•339	
9177	v						1 • 000	•816	•844	
11806	^						•	1.000	.961	
13638	6 0								1.000	
16221	6									

D-10SP

138 TABLE

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

STRIG	STRIGINO, SPRING	PR I NG						LAT 5	56 13 N	LONG	043 49 E
		нст	-	Ŋ	ო	4	រេ	9	_	ω	O.
		Σ	1.2655	1.0812	•9085	•6846	.5691	•4448	•3035	•2265	•1562
		SX10	•4678	•3000	•2124	•1106	0960•	•1599	•1741	•1106	•0349
OBSN	HGT										
178	82	-	1 • 000	•768	•545	•414	•119	216	-•364	-•400	174
178	1458	N		1 • 000	•633	•383	•066	315	493	514	456
178	3014	ю			1.000	• 500	•098	250	341	359	218
178	5579	4				1.000	•636	•042	054	-•046	•112
178	7193	ស					1 • 000	669•	.447	•468	•246
152	9177	ø						1 • 000	.727	•722	• 599
152	11806	۲							1.000	•979	•678
151	13638	0 0								1.000	•823
38	16221	σ									1 • 000

D-10SU

TABLE 139

Saldingula actions and the silver

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

STRIGI	STRIGINO. SUMMER	JMMER						LAT 5	56 13 N	LONG	043 49 E
		HG1		N	ო	4	ហ	v	7	σο	0
		Σ	1.1944	1.0338	•8828	•6733	•5659	.4545	.3180	•2392	• 1592
		SX10	•1090	•1059	.1340	•0577	•0504	•0839	•1182	•0715	•0308
OBSN	HGT										
94	82	•	1.000	•816	•146	•321	•159	-•184	229	-•291	-•372
94	1458	N		1 • 000	•160	•240	•075	217	-•393	412	-•388
93	3014	m			1.000	•054	•024	103	-•039	140	-•228
66	5579	4				1.000	•846	•376	•098	•121	• 000
66	7193	ហ					1.000	• 553	•225	•232	.077
91	9177	ø						1 • 000	•272	•289	•226
89	11806	7							1.000	• 970	•651
8	13638	σ								1 • 000	•789
98	86 16221	Φ									1 • 000

D-10F

TABLE 140

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

STRIG	STRIGINO. FALL	, L.L						LAT 5	56 13 N	LONG 0	043 49 E
		HGT		Ø	п	4	ů)	9	7	ω	ው
		Σ	1.2713	1.0825	•9070	•6842	•5708	•4494	•3100	•2317	•1571
		SX10	•4633	•2951	.1560	•0963	•1115	•1040	•1381	•0845	•0245
OBSN	HGT										
174	82	-	1.000	.818	• 683	• 462	.157	026	-•192	271	•064
174	1458	N		1.000	•685	•476	•145	160	282	-•345	214
174	3014	n			1.000	•646	• 248	077	-•349	374	-•186
172	5579	4				1.000	•414	020	273	• 299	102
172	7193	ເດ					1.000	•235	•071	• 069	•074
154	9177	9						1 • 000	e 777	• 760	•274
139	11806	۲							1 • 000	• 965	•546
138	13638	σο								1 • 000	•718
36	16221	0									1 • 000

D-11W

TABLE 141

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

11 E	0	•1512	•1378		-•742	885	477	•363	•978	•093	-•340	• 355	1 • 000
040					ĭ	ĭ	ĭ	•	•	•	i	•	-
LONG	c o	•2228	•0987		•012	215	170	•175	•584	• 781	• 968	1 • 000	
55 47 N	7	•2996	•1594		•015	238	209	•144	•542	• 786	1.000	,	
LAT	v	•4438	•1509		•045	062	019	•307	•620	1 • 000			
	ស	•5738	•1419		•198	•221	•304	999•	1 • 000				
	4	•6919	•1174		.311	.512	•578	1.000					
	ო	•9221	.1612		•478	•804	1.000						
	N	1.1048	•2236		•581	1 • 000							
	••	1,3212	•5246		1 • 000								-
α	HGT	Σ	SX10		-	8	က	4	ហ	ø	^	c o	0
KAZAN. WINTER				HGT	64	1458	3014	5579	7193	9177	11806	13638	16221
KAZAN.				OBSN	257	257	256	254	252	237	169	169	4

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY: GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

KAZAN	KAZAN	ს Z						LAT 5	55 47 N	LONG	049 11 E
		HGT		N	т	4	ហ	v	7	ω	o
		Σ	1 • 2748	1.0833	.9120	.6873	•5713	•4476	• 3064	•2270	•1578
		SX10	•4685	.3277	•1950	•1335	•0823	•1331	•1662	•1002	•0413
OBSN	HG+		·								
238	64		1.000	•793	•689	•215	•089	-•295	456	501	-•380
238	1458	N		1 • 000	•729	•231	•025	426	585	586	-•319
238	3014	ю			1.000	•472	.151	407	589	574	270
236	5579	4				1.000	•325	068	-•245	235	• 000
236	7193	រេ					1.000	•635	•337	•331	• 203
229	9177	ø						1 • 000	•848	.826	•632
201	11806	7							1.000	•976	•858
179	13638	ω								1.000	•916
37	16221	0									1 • 000

D-11SU

TABLE 143

Witness and the same of

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

KAZAN	KAZAN. SUMMER	Ω						LAT 5	55 47 N	LONG	049 11 E
		HGT	•	N	m	4	ເດ	v	7	ω	o
		Σ	1.2043	1 • 0390	•8874	•6749	•5685	.4532	•3178	•2397	•1603
		SX10	.2453	•1231	•0946	•0684	•2046	•0680	•1040	•0703	•0366
OBSN	HGT										
123	64		1 • 000	•556	•386	•266	-•005	138	-•236	272	256
123	1458	N		1 • 000	•654	.487	•065	-•193	450	518	470
123	3014	ю			1.000	• 560	•145	-•038	342	-•380	-•373
121	5579	4				1.000	•215	•175	-•161	229	324
120	7193	ហ					1.000	153	-•038	-•167	258
119	9177	ø						1.000	•521	•453	•046
117	11806	7							1.000	• 943	•536
107	13638	œ								1.000	•767
104	16221	0									1 • 000

D-11F

144 TABLE

(

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

049 11 E	Φ	•1562	•0345		280	- 358	528	077	-•048	•615	•807	8 88	1.000
LONG 04	æ	•2306	•0931		- 202	-•336	1.403	-•093	•234	•816	•975	1.000	
55 47 N	۲	•3063	•1557		110	- 255	-•331	-•041	•290	.818	1.000		
LAT 5	9	•4499	.1200		013	-•154	200	•151	•543	1.000			
	ເນ	•5717	•0937		• 344	•282	•228	•564	1.000				
	4	• 6865	•0966		• 651	• 685	•629	1.000					
	ო	•9117	•1888		•653	•827	1.000						
	8	1.0866	•2641		•835	1 • 000							
		1 • 2788	.5232		1 • 000								
	HGT	Σ	SX10			N	m	4	ហ	9	^	©	0
FALL				HGT	64	1458	3014	5579	7193	9177	11806	13638	16221
KAZAN. FALL				OBSN	227	227	223	220	219	215	177	168	34

D-12W

TABLE 145

おけてからない はんかっとう こうしゃくかん あっちょうしょう

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

MOSCO	MOSCOW. WINTER	TER						LAT	55 45 N	LONG	037 34 E
		HGH	=	N	М	4	വ	9	۲	60	Φ
		Σ	1.3078	1.1061	•9232	.6915	.5711	•4459	•3026	•2248	•1524
		SX10	•5313	.2657	.1940	.1258	•0964	• 1289	•1339	•0810	•1170
OBSN	HGH										
823	156	-	1.000	•680	477	.321	•195	•052	•033	•021	613
821	1458	a		1.000	•751	•311	•160	127	208	205	-•085
817	3014	m			1.000	•319	•159	153	229	249	•194
765	5579	4				1.000	.571	•129	••050	-•036	•883
762	7193	Ŋ					1 • 000	• 683	•364	• 383	• 505
528	9177	ø						1 • 000	•792	.827	149
393	11806	^							1.000	•963	• 935
389	13638	œ								1.000	-•374
4	16221	σ									1.000

C

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

LONG 037 34 E	0,	•2299 •1571	•0895 •0329		429101	573262	515271	260 .073	•237 •171	•720 •279	•967 •740	1.000 .867	1.000
55 45 N	7	•3081	•1416		-•360	512	- 469	256	•239	•753	1.000	•	
LAT 5	ø	•4508	.1250		200	-•335	-•293	•005	699•	1.000			
	ស	•5712	•0934		•235	•194	•285	•619	1.000				
	4	• 6878	.1075		•574	665•	• 711	1 • 000					
	ო	•9135	.1750		•732	•822	1.000						
	N	1.0835	•2716		•871	1 •000							
	~	1.2638	•4104		1.000								
<u>9</u>	НСТ	Σ	SX10		-	N	m	4	រេ	9	٢	œ	0
MOSCOW. SPRING				HGT	156	1458	3014	5579	7193	9177	11806	13638	16221
MOSCOM				OBSN	783	781	777	754	744	587	444	421	128

TABLE 147

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

MOSCOW. SUMMER	SUM	M E D						LAT 5	55 45 N	LONG	037 34 E
		HGT	•	N	ო	4	ດ	ø	7	ω	O.
		Σ	1.2027	1.0424	.8891	•6755	•5660	•4539	•3187	•2404	•1605
		SX10	•1692	•1409	•1129	•0734	•0798	6690•	•1091	•0761	•0335
OBSN	HGT										
684	156	#	1.000	.832	• 583	• 456	•292	•117	156	-•192	273
684	1458	N		1.000	•665	• 458	•261	1.001	357	~ •386	441
682	3014	က			1.000	• 536	•340	•119	262	298	-•395
674	5579	4				1.000	•687	•446	-•020	-•065	-•279
654	7193	ហ					1.000	•487	•056	• 008	-•108
636	9177	9						1 • 000	•431	•370	•106
538 1	11806	^							1.000	•961	•626
437 1	13638	œ								1 • 000	•805
428 1	16221	0									1 • 000

TABLE 148

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).
BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

10SCO	MOSCOW, FALL							LA +	SS 45 N	LONG	037 34 E
		F D	~ 4	N	m	4	ហ	9	٢	ω	σ
		Σ	1.2564	1.0794	£206•	•6848	.5702	.4512	.3126	.2323	.1580
		SX10	•4088	•2693	•1861	•1180	•1274	•1214	•1487	-0957	•0496
OBSN	HGH										
694	156	+	1.000	.757	•654	.574	• 353	•265	• 038	•005	•203
269	1458	c 1		1.000	•792	•627	•346	• 136	-•189	-254	275
689	3014	m			1.000	•714	• 336	•043	236	227	072
199	5579	4				1.000	• 506	• 185	117	060•-	027
654	7193	ហ					1.000	•412	•197	191	•061
561	9177	•						1.000	•72T	• 680	•122
443	11806	7							1.000	• 963	•611
374	13638	α								1.000	•842
121	16221	Q,									1.000

The same and the s

TABLE 149

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

e e		in the	n
	œ o	9 0	.1164 .9283 .2520 .1769 .615 .481 .000 .729

150 TABLE

1

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

060 38 E	σ	• 1554	•0488		-•462	501	• 524	315	- 008	.529	•526	.818	1 • 000
LONG	ω	•2266	•0962		555	-•705	- 593	0440	.152	•683	196•	1.000	
56 48 N	7	•3038	•1478		464	-•646	- 556	368•-	• 166	•729	1.000		
LAT 5	v	•4492	•1447		334	463	-•393	156	• 549	1.000			
	ហ	.5695	•0994		• 180	•135	.221	•673	1.000				
	4	• 6872	•1183		• 495	• 536	• 622	0000					
	m	•9139	•2014		• 708	•847	1.000						
	N	1.0855	•3110		.818	1 • 000							
වු	•	1.2570	•4946		1.000								
SPRI	HGT	Σ	SX10		€	N	т	4	ហ	9	7	α	O.
SVERDLOVSK. SPRING				HGH	237	1458	3014	5579	7193	9177	11806	13638	16221
SVERDI				NSGO	422	422	414	350	330	188	118	110	34

TABLE 151

ĺ

A STATE OF THE PERSON OF THE P

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

SVERD	SVERDLOVSK. SUMMER	SUMME	<u>م</u>					LAT 5	56 48 N	FONG	060 38 E
		HGT		a	ო	4	ເດ	ø	7	ω	0
		Σ	1.1892	1 • 0397	.8861	•6756	•5648	•4536	•3147	•2369	•1587
		SX10	•1950	•1829	•1029	• 1355	•0802	•0858	.1163	•0776	•0369
OBSN	HG1			,							
407	237		1.000	•726	169·	• 196	• 299	•088	144	-•161	-•385
406	1458	N		1.000	•612	•121	•176	•133	420	-•431	520
398	3014	m			1.000	•334	•379	•093	-•094	153	-•463
344	5579	4				1.000	• 253	-•029	-•118	171	198
599	7193	ហ					1 • 000	•630	690•	•018	118
279	9177	v						1 • 000	•370	•339	• 243
130	11806	r							1 • 000	•968	•664
114	13638	0 0								1.000	•832
108	16221	0									1 • 000

D-13F

TABLE 152

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER), BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

4G 060 38 E	0,	•2283 •1567	•0945 •0410		347248	519 334	573 -•286	350182	•159327	•590 •017	•972 •556	.765	1.000
LONG		•	•		347	519	573	350	•	<u>មា</u>	6	1.000	
56 48 N	7	•3065	•1494		246	442	492	276	•176	•614	1.000		
LAT	v	.4500	.1610		187	298	262	290	•489	1 • 000			
	ເດ	•5699	•1096		•311	•175	•187	.477	1 • 000				
	4	• 6868	.1431		•443	• 406	•432	1.000	•				
	m	.9121	.2255		•628	•766	1.000						
	N	1.0873	•3305		•765	1 • 000							
		1.2606	.5497		1.000								
FALL	HGT	Σ	SX10		-	0	m	4	ທ	v	^	œ	Φ
SVERDLOVSK• FALL				нет	237	1458	3014	5579	7193	9177	11806	13638	16221
SVERD				OBSN	487	486	482	412	381	217	146	137	19

D-14W

TABLE 153

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER), BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

056 00 E	σ	•1496	•0527		275	•087	135	459	-•081	016	-•300	•287	1 • 000
CONG 0	ω	•2302	•0750		-•061	274	250	226	•152	•686	•944	1.000	
54 45 N	^	•3100	•1302		-•064	312	266	•-258	•134	•731	1.000		
LAT	9	.4551	•1237		133	-•330	-•191	•145	•719	1 • 000			
	រេ	.5781	•0981		•062	•058	•214	•712	1.000				
	4	1669	•1119		• 213	• 334	• 444	1.000					
	m	•9358	.1623		•385	•634	1.000						
	N	1.1270	•2488		•627	1 • 000							
		1,3431	•5991		1.000								
	HG⊤	Σ	SX10		•-4	N	m	4	ហ	9	7	c c	0
UFA. WINTER				HGH	197	1458	3014	5579	7193	9177	11806	13638	16221
UFA.				OBSN	407	407	401	305	287	95	65	28	c o

0-14SP

154 TABLE

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

о В	6	•1623	•0400		•091	-•063	-•085	•261	•258	•145	•830	•943	1 • 000
056		~	10			1	1						=
Long	ω	•2367	•1385		-•706	740	069•-	227	•373	•698	• 990	1.000	
4 13 2	۲	•3172	•1862		714	-•746	-•719	236	•354	•662	1 • 000		
LAT 54	v	•4576	.1562		457	472	428	180	•472	1 • 000			
	ហ	.5745	•1089		•165	•030	•139	•293	1 • 000			-	
	4	•6938	•1961		.312	• 296	•348	1.000					· ·
	ო	.9192	•2044		•786	066•	1.000						
	N	1.0918	•3554		.861	1.000							
	4 -4	1.2754	SX10 • 6044		1 • 000								
	HG⊤	Σ	SX10			N	(*)	4	ហ	ø	۲	œ	0
UFA. SPRING				нвт	197	1458	3014	5579	7193	9177	11806	13638	16221
UFA.				OBSN	375	375	363	290	242	130	65	56	30

TABLE 155

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

6 00 E	Φ	•1622	•0444		861	897	-•707	- 588	-•711	• 441	•940	•963	1 • 000
Long 056	80	•2422	0960•		907	873	827	733	-•730	•371	966•	1 • 000	
4 13 2 2	۲	•3205	•1150		763	-•765	729	521	-•399	•178	1 • 000		
LAT 54	ø	•4558	•0614		• 164	•116	•285	•490	•800	1 • 000			
	വ	•5670	•0673		.212	•174	• 390	.767	1 • 000				
	4	•6783	•1236		•081	•174	• 359	1.000					
	m	.8897	.1203		•434	•744	1.000						
	N	1.0415	•1785		969•	1 • 000							
	-	1.1950	•2494		1.000								
	HGT	Σ	SX10			N	6 0	4	ស	ø	۲	ω	0
UFA. SUMMER				HGT	197	1458	3014	5579	7193	9177	11806	13638	16221
UFA.				OBSN	298	297	295	263	187	177	50	c o	œ

D-14F

TABLE 156

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

90 E	0	•1600	•0545		•374	•615	•413	-•062	177	677.	•931	096•	1 • 000
056		-			•	•	•	ĭ	ĭ	•			.
LONG	ω	•2379	•1072		•078	-•166	-•311	214	•445	•727	•986	1.000	
7 2 2	7	.3214	•1359		025	224	277	121	•338	669•	1.000		
LAT 54	9	•4603	•0943		• 251	• 260	•297	•378	•641	1.000			
	ហ	•5759	•1121		• 483	.511	• 544	•739	1.000				
	4	. 6907	•1275		•613	969•	• 796	1.000					
	т	•9190	•2074		• 700	.861	1.000						
	N	1.0951	•3381		•860	1 • 000							
	-	1.2762	•5705		1.000								
	HGT	Σ	SX10		•	o l	m	4	មា	9	^	α	0
-ALL	-			нбт	197	1458	3014	5579	7193	7716	11806	13638	16221
UFA, FALL				OBSN	312	307	596	254	221	124	30	20	α

\$ of property and the second

TABLE 157

į

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

10 E	0	•1575	•0711		-•359	243	637	323	•026	-•101	.882	•965	1 • 000	
050		m	١٥.		1	1	1	1		i			-	
Long	ω	•2313	•0926		057	330	-•397	144	•113	•667	•972	1 • 000		
53 14 N	۲	•3118	.1457		020	•339	410	110	•154	•723	1.000			
LAT 5	v	•4570	•1269		•026	233	196	•100	• 365	1 • 000				
	ហ	.5826	.1297		061	• 086	• 004	•484	1.000					
	4	•7020	.1032		• 208	• 353	• 562	1.000						
	m	•9379	.1660		•449	•670	1.000							
	N	1.1281	•2542		•617	1.000								
ď		1 • 3490	•6082		1.000									
NTE	HGT	Σ	SX10		₩	C I	m	4	ហ	9	^	œ	0	
KUIBISHEV, WINTER				HGH	136	1458	3014	5579	7193	9177	11806	13638	16221	
KUIBI				OBSN	300	300	599	291	291	237	199	196	2	

TABLE 158

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).
BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

KUIBISHEV. SPRING	SHEV.	SPRING	(n					LAT 53	3 14 N	LONG	050 10 E
		HGT	•-1	ณ	m	4	ហ	9	۲	ω	0
		Σ	1.2875	1.0960	•9239	.6981	.5818	.4612	•3179	.2371	•1616
		SX10	.6027	•3300	.2035	•1087	•0814	•1121	•1631	•1127	•0478
OBSN	HGT										
306	136	- 4	1 • 000	.803	•628	•466	•194	-•197	-•396	458	244
305	1458	۵		1 • 000	.848	.621	•213	-•358	-•619	670	454
303	3014	m			1.000	•674	•205	410	640	675	-•466
599	5579	4				1.000	•629	-•068	350	-•380	207
290	7193	ທ					1.000	•526	• 200	•178	•118
247	9177	9						1.000	• 645	•601	497
203	11806	٠,							1 • 000	•972	•676
193	13638	6 0								1.000	•851
46	16221	6									1 • 000

D-15SU

TABLE 159

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER), BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

050 10 E	6	•1644	•0408		-•296	- 525	572	-•387	150	•220	•779	•893	1 • 000
LONG	ω	•2450	•0798		265	511	527	418	013	• 441	•972	1.000	
53 14 N	7	•3233	.1070		047	-•366	-•379	271	650•	•491	1.000		
LAT 5	ø	•4620	•0881		•170	•056	-•047	244	•280	1 • 000			
	ហ	.5753	.1227		•426	•371	•290	• 049	1.000				
	4	.6873	.1818		.327	• 285	•434	1.000					
	М	•8976	•1315		•622	• 655	1.000						
	N	1.0510	•1806		•808	1 • 000							
α.		1.2158	.2153		1.000								
SUMMER	нст	Σ	SX10			'n	m	4	ហ	9	7	œ	Φ
KUIBISHEV. SUMMER				HG→	136	1458	3014	5579	7193	9177	11806	13638	16221
KUIBI				OBSN	181	181	181	180	176	175	113	105	102

TABLE 160

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER), BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

LONG 050 10 E	9	.2367 .1599	.0947 .0457		•051 •139	129172	202347	116216	•275 -•045	•617 •276	•971 •803	1.000 .905	1.000
										•	•		
53 14 N	^	•3164	•1407		•128	-•069	164	060•-	•292	•670	1.000		
LAT 5	v	•4591	•1249		•179	•107	•137	•146	•579	1 • 000			
	ហ	•5811	•1063		•454	•523	609•	•535	1.000				
	4	•6983	•1532		• 442	• 562	• 681	1.000					
	ю	•9258	•1929		•659	•856	1.000						
	N	1.1023	•3085		•794	1.000							
	1	1.2901	.5688		1.000								
-ALL	HGT	Σ	SX10		•	N	m	4	ហ	ø	^	œ	Q
KUIBISHEV. FALL				HGT	136	1458	3014	5579	7193	9177	11806	13638	16221
KUIBI				OBSN	237	237	237	232	230	215	185	173	95

TABLE 161

でんまない かなり こと 東いまり、こと

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).
BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

0 27 E	0	•1563	• 0855		278	-•380	150	165	•092	354	•490	•908	1 • 000
LONG 030	σ	•2316	•0911		334	552	509	-•387	•068	•576	•957	1.000	
50 24 N	7	•3115	.1452		297	559	495	417	•023	•633	000• ;		
LAT 5	9	•4564	•1096		-•062	-•291	-•387	-•029	•391	1 • 000			
	Ŋ	.5764	.1037		•158	•172	•158	•610	1.000				
	4	• 6938	.1145		.372	•516	•570	1.000					
	ო	.9210	.1952		•518	•723	1.000						
	N	1.1001	.2733		•717	1.000							
		1 • 2891	.4526		1.000								
64	HGT	Σ	SX10			N	m	4	ហ	9	۲	αc	6
KYEV. WINTER				HGT	179	1458	3014	5579	7193	9177	11806	13638	16221
KYEV •				OBSN	069	069	653	601	587	201	153	148	10

D-16SP

TABLE 162

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER), BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

030 27 E	Q,	•1587	•0334		274	363	-•439	223	257	•330	•685	•825	1 • 000
LONG 0:	ω	•2349	•0763		321	470	413	-•103	•173	•677	.4957	1 • 000	
50 24 N	۲	.3142	•1246		234	409	361	-•085	•196	•665	1.000		
LAT 5	v	•4593	•0849		126	185	178	•134	•349	1 • 000			
	ເນ	•5760	.1402		.153	•145	•273	• 396	1.000				
	4	0069•	.1227		• 435	•469	•617	1.000					
	т	•9122	•1731		•625	•798	1.000						
	Ŋ	1.0794	•2921		•794	1.000							
		1.2458	•4070		1.000								
40	HG⊣	Σ	SX10			N	m	4	ហ	ø	^	œ	0
KYEV. SPRING				HGT	179	1458	3014	5579	7193	9177	11806	13638	16221
KYEV.				OBSN	668	667	639	260	516	295	161	159	71

TABLE 163

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER), BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

27 E	0	•1646	•0375		-•439	440	206	456	-•063	•068	•677	•848	1 • 000
030		•	_		1	ı	1	1	ı	-			Ä
LONG	ω	•2429	•0670		427	455	234	-•300	-•057	•106	• 953	1 • 000	
50 24 N	7	•3241	•0940		-•308	370	220	113	•013	•167	1.000		
LAT 5	9	•4584	•0671		•021	005	147	• 100	• 553	1.000			
	ເດ	•5716	.1594		.105	•072	•132	•175	1.000				
	4	• 6811	•1847		•119	•102	•216	1.000					
	е	•8929	•1411		•452	•437	1.000						
	N	1.0451	.1723		.667	1.000							
		1.1973	•1770		1.000								
_	HG⊤	Σ	SX10		~	N	m	4	ហ	ø	7	œ	0
KYEV. SUMMER				HGH	179	1458	3014	5579	7193	9177	11806	13638	16221
KYEV.				OBSN	630	630	617	571	491	457	106	83	82

D-16F

TABLE 164

ĺ

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

KYEV. FALL	FALL							LAT 5	50 24 N	LONG	030 27 E
		HGT		o!	ო	4	ហ	ø	7	00	O.
		Σ	1.2461	1.0759	6906•	• 6877	.5754	•4598	•3238	•2433	•1624
		SX10	•3375	•2401	•1492	•1133	•0917	•0793	•1072	•0711	• 0358
OBSN	HG⊤										
543	179	-	1 • 000	• 707	•612	•432	•403	•249	•023	-•101	223
543	1458	N		1 • 000	•767	• 455	•380	•166	• 189	-•318	403
514	3014	m			1.000	• 509	•456	•075	258	606	-•332
469	5579	4				1.000	•401	•264	114	286	357
435	7193	ហ					1.000	•490	•181	•109	-•056
328	9177	9						1.000	•471	•531	•331
79	11806	۲							1.000	.951	•548
67	13638	œ								1.000	•758
5	16221	0									1 • 000

Section 1

(

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER), BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

LONG 023 57 E

LAT 49 49 N

LVOV. WINTER

O,	•1549	.0923		586	718	345	-•123	•079	•141	•703	. 897	1 • 000
σ	•2305	•0940		214	- 406	- 300	- 190	• 199	• 695	.971	1 • 000	1
۲	• 3093	•1529		210	412	273	139	•216	•682	1.000		
v	•4524	•1392		047	165	160	•038	•577	1 • 000			
ເນ	.5747	.1058		.126	•133	•061	•412	1.000				
4	.6926	•1403		•235	•387	• 464	1 • 000					
ო	•9197	.2162		•369	•633	1.000						
N	1.0981	•2898		•611	1 • 000							
1	1 • 2569	•4427		1 • 000			·					
HGH	Σ	SX10			N	m	4	ហ	9	۲	œ	0
			HGH	325	1458	3014	5579	7193	9177	11806	13638	16221
			OBSN	676	675	672	587	571	287	192	175	15

0-17SP

166 TABLE

(

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

57 E	δ	1580	•0325		-•535	414	277	-•533	• 001	•579	•736	•854	1 • 000
023		•			ĭ	i	i	i	•	•	•	•	
LONG	m	.2349	•0700		-•394	453	445	370	•052	•463	• 956	1 • 000	
49 49 N	۲	.3144	•1157		337	-•305	402	315	043	•369	1 • 000		
LAT 4	v	•4588	•1201		110	183	148	-•080	•337	1 • 000			
	ហ	•5754	•0904		•130	•114	•086	•578	1.000				
	4	•6899	.1270		• 441	• 349	•373	1.000					
	m	•9116	•1846		•571	•642	1 • 000						
	N	1.0769	.2564		•741	1 • 000							
	~	1.2240	•3406		1 • 000								
	HGT	Σ	SX10			N	m	4	ហ	v	^	c c	0
LVOV. SPRING				HG1	325	1458	3014	5579	7193	9177	11806	13638	16221
LV0V•				OBSN	652	649	646	574	532	339	171	159	78

TABLE 167

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

023 57 E	٥	1641	•0377		320	-•307	407	-•352	274	•167	•688	•846	1 • 000
LONG	ω	•2452	•0748		370	376	331	456	256	-•228	• 858	1 • 000	
49 49 N	7	•3236	•1100		245	257	198	247	110	660•-	1.000		
LAT 4	v	•4578	•0806		•142	.127	•148	• 233	•492	1 • 000			
	ເດ	•5709	.1553		•231	•178	•212	•297	1 • 000				
	4	.6801	•1401		• 304	• 259	• 313	1.000					
	m	.8926	•1396		•555	•513	1.000						
	N	1.0460	•1913		•645	1 • 000							
	**	1.1843	•2048		1 • 000								
~	HGT	Σ	SX10		•	N	m	4	ហ	v	_	c o	Φ
LVOV. SUMMER				HGT	325	1458	3014	5579	7193	9177	11806	13638	16221
LVOV.				OBSN	614	614	614	603	537	502	115	89	89

D-17F

TABLE 168

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

023 57 E	σ	•1641	•0383		•019	173	-•360	- •098	-•085	•240	•459	•795	1.000
LONG	ω	•2431	•0790		•039	167	260•-	-•064	•266	•676	.927	1.000	
49 49 N	7	•3238	•1133		960•	192	165	025	•305	.581	1.000		
LAT 4	ø	•4574	•1101		•110	-•02B	-•029	•131	•691	1 • 000			
	ເດ	.5731	•0901		•320	• 306	•231	•263	1 • 000				
	4	• 6864	.1645		• 294	•278	•314	1.000					
	М	•9045	.1637		.573	•724	1 • 000						
	a	1.0710	•2260		•750	1 • 000							
		1.2202	•2831		1.000								
	HGT	Σ	SX10		, 	N	m	4	ហ	9	۲	œ	o
FALL				HG∓	325	1458	3014	5579	7193	9177	11806	13638	16221
LVOV. FALL				OBSN	260	558	556	526	485	366	118	92	51

TABLE 169

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

0 38 E	0	.1548	•0635		-•663	663	-•639	515	• 085	-•191	•705	406	1.000
LONG 030	ω	•2336	•0871		336	695	682	- 533	•311	•486	•926	1.000	
N 62 5	_	.3153	.1433		608.	683	-•666	543	•194	• 591	1.000		
LAT 46	Ø	.4591	1860•		-•158	260	435	206	•470	1 • 000			
	ເດ	.5777	.0840		•068	.125	•071	.397	1.000				
	4	• 6933	•0948		•275	• 444	•514	1.000					
	ო	.9203	•1846		.510	•741	1.000						
	N	1 • 0949	•2637		.647	1.000							
		1 • 2929	•4059		1.000								
ā G	HGH	Σ	SX10			0	m	4	ហ	9	۲-	œ	0,
ODESSA. WINTER				HGH	64	1458	3014	5579	7193	9177	11806	13638	16221
ODESSA				OBSN	563	563	558	469	442	150	82	74	14

0-18SP

TABLE 170

(_

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

ODESS	ODESSA, SPRING	N I						LAT 4	46 29 N	LONG	030 38 E
		HG⊤	•	N	ო	4	ហ	9	^	Φ	σ
		Σ	1.2560	1.0725	0606•	• 6892	•5757	•4608	.3212	•2397	•1607
		SX10	•3566	.2633	.1760	•1395	•1039	•0665	•0616	•0689	•0312
OBSN	HGT										
540	64	~	1.000	•734	•554	•339	•206	•092	441	474	•062
539	1458	N		1 • 000	•754	•430	•231	660•	576	597	•043
536	3014	m			1 • 000	•407	•192	•074	435	469	•034
486	5579	4				1 • 000	• 283	.171	344	-•307	•166
414	7193	ហ					1 • 000	•575	153	-•085	•223
239	9177	v						1.000	•432	• 458	•391
6 0	11806	^							1.000	•955	•607
80	13638	œ								1.000	•835
4	16221	0									1 • 000

D-18SU

171 TABLE

\$

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

ODESS	ODESSA, SUMMER	MER						LAT 4	46 29 N	LONG	030 38 E
		HGT		N	М	4	ល	9	^	ω	o
		Σ	1.2041	1 • 0398	8888	.6814	•5703	•4582	•3263	.2491	•1672
		SX10	•2104	•1488	•1354	.2282	.1207	•0790	•0857	•0564	•0360
OBSN	HGT										
559	64	.	1 • 000	•594	•343	• 105	•156	•011	251	-•347	358
559	1458	N		1 • 000	•494	•140	•281	•102	-•130	•033	032
555	3014	m			1.000	• 101	•088	123	279	604	497
544	5579	4				1.000	•098	040	226	-•706	543
450	7193	ហ					1.000	•473	•083	•067	•050
424	9177	9						1 • 000	•238	•387	•338
22	11806	7							1.000	• 935	•432
0	13638	œ								1.000	•689
0	16221	Φ									1 • 000

D-18F

172 TABLE

(

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER), BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

ODESSA, FALL	4						LAT 4	46 29 N	LONG	030 38 E
	HGT	1	Ø	e)	4	ហ	9	^	Ø	Φ
	Σ	1.2467	1.0695	•9040	• 6866	•5756	•4604	• 3258	•2439	•1639
	SX10	•2986	•2356	•1614	•1385	.1226	•0508	•0866	•0671	•0403
HG1										
64		1.000	•865	•676	•352	•250	•276	123	-•311	534
1458	0		1 • 000	•754	• 360	•210	•217	-•382	529	556
3014	m			1.000	•330	•187	• 155	-•491	474	395
5579	4				1.000	• 343	• 138	370	-•367	563
7193	r S					1 • 000	•268	-•271	248	017
9177	9						1 • 000	•327	•539	•250
11806	۲							1.000	•915	• 599
13638	6 0								1.000	•839
16221	0									1 • 000

D-19W

TABLE 173

ŧ

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER), BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

ARAT(SARATOV. WINTER	ZTER						LAT 51	1 34 N	LONG	046 02 E
		HGT	+	Ŋ	М	4	ហ	9	۲	ω	6
		Σ	1,3323	1.1214	•9314	•6965	.5743	•4477	•3064	•2269	.1444
		SX10	•6794	.2487	•1980	•1159	.1013	•1356	•1397	•0860	•0834
OBSN	HGT										
264	156	-	1.000	•412	•125	-•030	107	234	201	182	•636
264	1458	N		1.000	•544	•136	048	-•380	544	504	•479
263	3014	m			1.000	•172	103	-•387	531	502	• 704
208	5579	4				1.000	•439	049	122	136	•401
190	7193	រោ					1.000	•424	690•	•062	975
122	9177	9						1 • 000	•518	.571	737
108	11806	7							1.000	.937	-•785
107	13638	œ								1 • 000	•786
m	16221	0									1 • 000

D-19SP

174 TABLE

ĺ

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER), BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

D-19SU

TABLE 175

1

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

SARATOV. SUMMER	ά						LAT 51	1 34 N	LONG	046 02 E
нст 1	e-4		N	т	4	ហ	ø	7	ω	6
M 1.1949 1			1 • 0390	•8896	•6794	•5701	•4562	•3195	•2415	•1624
SX10 •1922 •		•	.1660	•2035	.1229	•0833	•0688	•0945	•0631	•0402
1 1.000			•746	•311	•178	• 382	•057	238	404	416
2 1 • 000	1 • 0	1.0	00	•384	• 160	•253	-•079	462	549	467
m				1.000	• 338	• 352	•042	200	-•347	-•379
4					1.000	•000	-•092	107	177	212
ហ						1.000	•652	.212	•059	058
v							1 • 000	•570	•412	•141
_								1.000	• 936	•601
œ									1.000	.822
6										1.000

D-19F

TABLE 176

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

SAR	SARATOV• FALL	ALL						LAT	51 34 N	LONG	046 02 E
		HGT		N	m	4	ເດ	v	^	ω	0
		Σ	1.2689	1.0889	.9141	• 6925	•5756	4554	.3142	.2354	•1590
		SX10	•4653	•3055	•1772	•1467	•0808	•0985	•1416	•0885	•0551
OBSN	нбт										
247	156		1 • 000	•762	•624	•355	497	.297	•167	•076	-•064
246	1458	N		1.000	•644	• 330	•307	• 002	- 094	183	-•276
234	3014	m			1.000	•463	•355	107	269	391	450
175	5579	4				1.000	•162	112	187	-•241	•026
166	7193	ເດ					1.000	.501	•204	•182	•124
133	9177	ø						1 • 000	•680	.707	•449
101	11806	۲							1.000	• 955	•477
86	13638	c o								1 • 000	•725
34	16221	0									1 • 000

D-20W

TABLE 177

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER), BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

KHARk	KHARKOV. WINTER	NTER						LAT 4	A 56 94	LONG	036 17 E
		HGT	~	al	ო	4	ດ	9	7	σ	6
		Σ	1.2986	1.1022	.9220	•6946	•5776	•4551	•3095	•2302	.1527
		SX10	•4882	•3243	.2025	.1261	•1159	•1481	.1442	•0910	9690•
OBSN	HG→										
457	152		1.000	•776	•595	• 422	• 235	108	076	-•110	- 566
456	1458	N		1.000	•666	• 450	•180	315	256	275	613
452	3014	ю			1.000	• 540	•243	238	345	343	477
443	5579	4				1.000	• 480	•058	061	690•-	347
435	7193	ហ					1.000	•509	•307	•366	•019
203	9177	v						1 • 000	•631	•648	•481
174	11806	^							1 • 000	.957	•081
172	13638	c o								1.000	•537
4	16221	0,									1 • 000

D-20SP

TABLE 178

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER), BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

16 17 E	0	• 1593	•0375		397	547	-•433	178	-•095	•365	• 559	•756	1 • 000
LONG 036	œ	•2346	•0808		479	546	586	276	•104	.537	• 959	1.000	
49 56 N	^	•3140	.1233		382	476	520	241	•133	• 558	1.000		
LAT 4	ø	•4583	•0962		-•036	169	158	• 148	•369	1 • 000			
	ហ	•5772	•1326		•249	•252	•267	•276	1.000				
	4	6069•	.1312		• 500	• 525	• 608	1.000					
	ო	•9125	•1863		•681	• 795	1.000						
	a	1.0815	•2953		•801	1.000							
		1 • 2539	•4345		1.000								
NI NG	HGH	Σ	SX10		***	C I	m	4	ហ	ø	^	c o	0
KHARKOV. SPRING				HGT	152	1458	3014	5579	7193	9177	11806	13638	16221
KHARK				OBSN	459	458	452	437	431	277	185	182	76

D-20SU

TABLE 179

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER), BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

036 17 E	Φ	•1646	•0370		137	-•283	437	-,274	258	044	• 599	•834	1 • 000
LONG 03	Φ	•2451	•0708		•034	-•088	•030	058	•059	•273	• 925	1.000	
49 56 N	^	•3235	•0935		027	167	012	690•-	•083	• 355	1 • 000		
LAT 4	ø	4577	.0610		•182	•148	•271	•171	• 414	1 • 000			
	ហ	•5703	•0946		•273	• 305	•434	•010	1 • 000				
	4	•6798	•1548		•221	• 258	•265	1.000					
	М	•8898	.1287		•495	•568	1.000						
	N	1.0391	.1508		.846	1 • 000							
		1.1984	•1825		1.000					-			
MER	HGT	Σ	SX10		-	N	m	4	ហ	9	7	œ	0
KHARKOV. SUMMER				HGT	152	1458	3014	5579	7193	9177	11806	13638	16221
KHARK				OBSN	444	443	441	435	430	412	112	104	102

D-20F

TABLE 180

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER), BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

Ш

N

KHARK	KHARKOV. FALL	7						LAT 4	49 56 N	LONG	036 17 E
		HGT	1	ผ	ო	4	ហ	ø	٢	ω	6
		Σ	1.2559	1.0806	0606•	• 6898	.5761	•4602	.3201	•2400	•1612
		SX10	•4548	.2947	.1563	•1363	•0876	•0886	•1158	•0759	•0347
OBSN	HGT										
376	152	~	1 • 000	•542	•468	•197	• 225	•113	•107	024	-•063
376	1458	QI -		1 • 000	•684	• 303	•249	•048	187	264	210
375	3014	m			1.000	• 492	•389	•103	-•269	269	018
374	5579	4				1.000	• 255	• 140	-•113	121	•170
369	7193	ln 					1.000	•325	•186	•232	•367
277	9177	9						1.000	•602	•619	•484
103	11806	,							1.000	•954	•693
102	13638	0 0								1.000	•840
65	16221	Φ									1 • 000

181 TABLE

{

1

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER), BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

VOROP	VOROPONOVO. WINTER	WINTE	23					LAT 4	48 41 N	LONG	044 21 E
		HGT	1	N	ო	4	ເດ	ø	7	ω	6
		Σ	1 • 3179	1.1070	•9249	•6951	•5778	•4551	.3120	•2321	•1611
		SX10	•6258	•2636	•1823	•0663	•1109	•1383	•1495	•0963	•0728
OBSN	HGŦ										
418	145	~	1.000	•527	•317	•224	•061	072	-•044	-•049	284
417	1458	N		1.000	•741	•546	•111	262	356	-•354	529
412	3014	m			1.000	• 687	•188	-•297	401	-•383	- 580
302	5579	4				1.000	•643	•036	178	-•168	249
288	7193	ເດ					1 • 000	•533	•187	•190	•114
161	9177	ø						1.000	•767	•773	•766
132	11806	٢							1.000	•965	•103
129	13638	œ								1.000	•375
7	16221	6									1.000

182 TABLE

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

044 21 E	σ	•1619	•0303		285	280	468	-•011	•164	432	• 603	.871	1 • 000
LONG	ω	.2367	•0954	•	549	•• 598	536	-•269	•244	•384	.957	1.000	
48 41 N	7	.3188	•1310		571	643	- •581	321	•205	•471	1.000		
LAT 4	Φ	.4580	.1292		191	261	-•193	•001	•389	1 • 000			
	ເດ	.5745	•0780		•102	•110	•347	•687	1 • 000				
	4	• 6885	•1009		• 552	• 560	• 740	1.000					
	m	.9101	•1904		•681	• 705	1.000						
	N	1.0777	•3278		•800	1 •000							
ပ္ခ		1.2574	•4879		1.000								
SPRI	HGT	Σ	SX10		~	N	т	4	ហ	9	^	c o	0
VOROPONOVO. SPRING				HGT	145	1458	3014	5579	7193	9177	11806	13638	16221
VOROP				OBSN	418	417	412	334	246	178	125	104	40

183 TABLE

1

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

VOROPONOVO. SUMMER

LAT 48 41 N LONG 044 21 E	6 7 8 9	• 4570 • 3232 • 2463 • 1666	•0659 •0972 •0657 •0402		024192222209	.025182222219	•140 -•177 -•244 -•320	297236372319	083226242125	1.000 .486 .466 .040	1.000 .922 .242	1.000 • 604	•
	ເດ	•5699	•1348		015	-003	•123	•265	1.000				
	4	.6785	.1351		•066	•045	• 198	1.000					
	m	.8876	.1232		•421	•442	1.000						
	ณ	1.0345	•1763		•646	1 • 000							
<u>م</u>		1.1922	•2144		1.000								
SUMME	HGT	Σ	SX10		H	N	n	4	រេ	ø	^	c o	0
VOROPONOVO. SUMMER				HGT	145	1458	3014	5579	7193	9177	11806	13638	16221
VOROF				OBSN	366	366	366	356	171	169	78	78	1

D-21F

TABLE 184

1

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

044 21 E	σ	•1623	•0360		•066	-•192	267	157	-•063	•209	•638	•824	1 • 000
LONG 044	Φ	•2409	•0803		078	202	107	400•-	-211	•546	•946	1 • 000	-
48 41 N	۲	•3205	•1126		•049	119	-•088	•026	•217	•507	1.000		•
LAT 4	v	•4589	•0750		•134	•084	•223	•422	•714	1 • 000			
	ស	•5744	•0760		•385	• 411	•546	•700	1.000				
	4	• 6868	•1160		• 432	• 463	•528	1.000					
	М	•9063	•1754		•686	•805	1.000						
	a	1.0753	•2656		.871	1.000							
	~	1.2582	•4194		1 • 000								
FALL	нвт	Σ	SX10		6-4	N	m	4	ហ	9	۲	c o	0
VOROPONOVO. FALL				HGT	145	1458	3014	5579	7193	9177	11806	13638	16221
VOROP				OBSN	334	334	331	279	176	159	101	98	63

D-22W

TABLE 185

1

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

9 49 E	σ	.1573	•0706		112	497	496	273	-•003	•216	•168	• 585	1 • 000
LONG 039	80	•2331	•0832		153	521	475	320	•048	•695	•955	1.000	
47 15 N	7	•3133	•1354		144	-•488	442	318	•044	•689	1.000		
LAT 4	v	.4561	•1086		-•081	263	213	158	•434	1 • 000			
	ດ	.5830	.1722		•188	•172	•136	•319	1.000				
	4	• 6948	.1382		•153	• 323	• 406	1.000					
	m	•9208	.1740		•378	•772	1.000						
	N	1.0965	•2732		•546	1 • 000							
WINTER	-	1 • 3040	•4949		1.000								
, 5 2	нст	Σ	SX10			N	m	4	ហ	v	^	c c	0
ROSTOV NA DONU• WINTER				нбт	77	1458	3014	5579	7193	9177	11806	13638	16221
ROSTOV				OBSN	609	607	296	469	449	314	289	287	39

D-22SP

186 TABLE

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

039 49 E	ø	•1601	•0428		567	678	-•695	-•481	379	•307	•854	•932	1.000
LONG	σ	•2373	•0872		-•494	869•-	169• -	422	220	965•	•971	1.000	
47 15 N	_	.3174	.1236		405	642	643	004•-	-195	•614	1.000		
LAT 4	ø	.4580	• 0900		110	-•167	-•229	057	•328	1 • 000			
	ស	.5813	•1836		•260	• 323	•266	•321	1.000				
	4	•6892	•1171		• 406	• 532	• 538	1.000					
	m	•9088	.1822		.587	•802	1.000						
	ุณ	1.0730	•2923		•758	1.000							
SPR ING	-	1.2583	•4391		1.000								
Š	HGH	Σ	SX10		-	N	m	4	ល	9	7	c c	0,
ROSTOV NA DONU. SPRING				HGH	77	1458	3014	5579	7193	9177	11806	13638	16221
ROSTO				OBSN	616	615	605	519	434	347	295	283	141

The state of the s

187 TABLE

(

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).
BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

1

TABLE 188

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER), BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

ROSTOV NA DONU• FALL	A.
0 1.0708 .9039	
3 .2523 .1761	
•789	
1.000 .713	
1 • 000	1 • 0 0 0

TABLE 189

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

TBILI	TBILISI. WINTER	N R R						LAT 4	41 41 N	LONG	044 57 E
		нбт	~ 4	N	ო	4	ស	vo	۲	ω	Φ.
		Σ	1.2245	1.0926	•9206	•6961	.5811	•4592	•3205	•2383	•1615
		SX10	•3141	•2702	•2032	.1208	.1441	•1066	•1106	•0818	•0514
OBSN	HGT										
249	490		1.000	• 600	•418	• 328	•101	•158	•128	• 185	•254
249	1458	N		1 • 000	.667	•411	•139	•010	070	082	•014
247	3014	က			1.000	•526	•176	•042	-•193	128	•139
239	5579	4				1.000	•419	•145	-•049	• 089	•287
220	7193	ហ					1.000	•101	•044	•098	•370
211	9177	9						1 • 000	•439	•498	•433
162	11806	۲							1 • 000	• 944	•800
134	13638	σο								1 • 000	•919
52	16221	0									1.000

TABLE 190

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

SP	TBILISI. SPRING						LAT 4	41 41 N	LONG	044 57 E
HG1		-	ď	m	4	ດ	v	۲	ω	0
Σ		1.1853	1.0687	• 9030	• 6888	•5765	•4605	•3256	•2440	•1639
SX10	0	•3065	•2678	•2147	• 1535	•0938	•0761	•1025	•0603	•0579
H		1.000	•800	•473	•305	•297	• 060	• 388	437	171
N			1 • 000	•547	•346	• 394	•092	-•370	-•440	207
m				1.000	•299	•243	•015	265	-•314	-169
4					1.000	• 640	-•040	152	200	028
ហ						1.000	•440	•037	•014	•128
9							1 • 000	•410	•420	•364
7								1.000	•924	•622
c									1.000	.863
0										1 • 000

TABLE 191

{

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER), BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

TBILI	TBILISI. SUMMER	MMER						LAT 4	41 41 N	LONG	044 57 E
		нст		0	m	4	ស	v	7	ω	σ
		Σ	1.1430	1.0341	•8848	•6787	•5699	•4540	•3260	.2525	•1746
		SX10	•2276	•2024	•1817	• 2532	.1983	•1049	•0893	•0770	6690•
OBSN	HGT										
227	490		1.000	•770	•493	•294	•288	• 544	•372	•158	• 049
227	1458	7		1 • 000	•548	•320	• 358	•591	•341	•153	•046
224	3014	m			1.000	•210	•184	•405	•259	•218	•102
220	5579	4				1.000	•084	016	077	238	159
208	7193	ហ					1.000	•238	•228	•116	•134
208	9177	9						1 • 000	669•	•473	•183
200	11806	7							1.000	•893	•517
149	13638	c o								1.000	•838
148	16221	0									1 • 000

D-23F

TABLE 192

.

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

LAT 41 41 N LONG 044 57 E	4 5 6 7 8 9	•6894 •5760 •4596 •3280 •2476 •1 675	•1965 •1034 •0897 •0935 •0778 • 0543		•350 •489 •299 -•028 -•137 -•090	•397 •591 •325079253199	•446 •667 •380•084•221156	1.000 .296 .111138292144	1.000 .610 .084019095	1.000 .357 .332 .047	1.000 .884 .348	1.000 1	
	2	1.0678 .9042	•3009 •2065		•774 •652	1.000 .855	1.000						
		1.1839 1	•3776		1.000	F							
Ļ	HG⊣	Σ	SX10			N	m	4	ហ	Ø	7	α	σ
TBILISI, FALL				HGT	490	1458	3014	5579	7193	9177	11806	13638	16221
TB1L1				OBSN	238	238	237	620	223	221	204	119	4

北美麗 はぎってる あってい

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

YERE	YEREVAN, WINTER	NTER						LAT 4	40 08 N	LONG	044 28 E
		HGT	#	N	m	4	ហ	v	7	Φ	Φ
		Σ	1.1860	1.1076	•9250	•695₽	.5812	•4601	.3212	•2392	•1618
		SX10	•4679	•3181	•2093	•1443	•1488	•1147	.1211	• 0898	• 0622
OBSN	HGT										
342	907	-	1 • 000	•739	•382	.372	•145	• 363	•316	•478	•666
342	1458	N		1.000	•539	•470	•208	•355	•372	•428	•620
337	3014	ю			1.000	• 626	•193	•281	•137	•225	• 566
285	5579	4				1.000	• 503	•393	•214	•367	•636
250	7193	ហ					1.000	•459	• 188	• 350	•707
203	9177	9						1 • 000	.491	• 505	•519
165	11806	۲							1.000	•937	•737
140	13638	œ								1.000	•921
9	16221	σ									1 • 000

TABLE 194

(_

ĺ

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

S	YEREVAN. SPRING						LAT 4	40 08 N	LONG	044 28 E
HGH			N	m	4	ល	v	7	00	σ
Σ		1.1276	1.0564	• 9000	• 6884	•5764	•4603	.3243	•2430	•1643
S	SX10	•3093	•3056	•2006	•1952	•1755	•1098	•1044	•0929	•0634
HGT										
907 1		1.000	•692	•662	• 344	•220	•092	268	-•363	077
1458 2	N		1 • 000	•611	• 324	•142	011	290	351	860•-
3014	m			1.000	•390	•245	•092	404	474	231
5579	4				1.000	•062	016	285	312	-•065
7193	ស					1.000	•198	-•094	055	•221
7116	9						1.000	•261	•292	• 440
•	^							1 • 000	•937	•579
	œ								1.000	•822
	0									1 • 000

D-24SU

TABLE 195

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

LONG 044 28 E

LAT 40 08 N

YEREVAN. SUMMER

		HGT		a	ო	4	ທ	ø	r	ω	Φ
		Σ	1.0883	1.0190	•8746	•6764	•5671	•4530	•3271	•2548	.1771
		SX10	•2476	.1853	•1672	•2512	•1219	.1028	•0798	•0668	•0605
OBSN	HGT										
294	406		1.000	•655	•463	•154	•274	•341	•034	140	203
294	1458	N		1 • 000	•636	•149	•373	•408	•003	265	386
294	3014	m			1 • 000	•112	•226	•191	125	315	427
288	5579	4				1.000	254	218	266	445	-•292
215	7193	ហ					1 • 000	.532	•206	•075	211
212	9177	v						1 • 000	•289	028	334
203	11806	٢							1.000	•822	•238
166	13638	œ								1.000	.727
164	16221	o									1 • 000

D-24F

TABLE 196

AIR DENSITY MEANS AND STANDARD DEVIATIONS, (IN KILOGRAMS PER CUBIC METER), BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETWEEN HEIGHTS

5X10 • 394 1 1•000 2	3 1.0576 6 .3375 .810 1.000	.8983 .2340 .664 .780	.6876 .1870 .505	5 •5773 •1337 •595 •610	. 4609 • 1193 • 472 • 476	.3291 .1153 .205	.0906 .0906 .0906	9 • 1699 • 0719 • 046
	-		• 487 • 000 • 1	• 4 78 • 4 39 • 1 • 000	• 428 • 225 • 693 1•000	• 080 • 142 • 458 • 543	144 016 373 427 850	-125 -133 -202 -143 -238 -704

TABLE 197

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

049 00 E	Φ	•1610	• 0502		393	296	- 436	256	•165	• 253	•626	.847	1 • 000
LONG	Φ	•2378	•0742		-,357	418	-•462	-•377	•073	•272	• 950	1 • 000	
41 00 N	7	•3198	•1219		294	288	-•330	565	• 056	•276	1.000		
LAT 4	ø	•4606	•0888		-•187	960•-	268	275	• 352	1 • 000			
	ທ	•5817	.1254		•074	660•	078	-•131	1 • 000				
	4	• 6959	.1761		•143	• 311	• 160	1.000					
	m	.9120	.2195		•265	•503	1.000						
	N	1.0796	.2503		•415	1 • 000							
	~	1.2756	•3006		1.000								
~	HG1	Σ	SX10			C i	m	4	ហ	ø	^	œ	0
BAKU. WINTER				HGT	30	1458	3014	5579	7193	9177	11806	13638	16221
BAKU.				OBSN	175	175	175	173	169	162	128	106	36

TABLE 108

AIR DENSITY MEANS AND STANDARD FEVIATIONS (IN KILOGRAMS PER CUBIC METER).
BY GEOMETRIC HEIGHTS (IN METERS), WITH CORRELATIONS BETHERN MEIGHTS.

049 00 巨	0	.1641	•0541		1.504	526	476	264	-042	•146	S0E •	• 644	1 • 000
C SNO J	σ	• 2423	0060°		1.486	• 565	- 451	• 350	• 183	.351	• 924	1 • 000	
41 00 N	۲	•3233	.1170		1.403	457	383	-,373	203	302	1.000		
LAT 4	Ø	•4595	•0924		061	-046	1.149	760	• 240	1 • 000			
	ហ	.5770	•1035		• 0	•320	•166	•228	1.000				
	4	• 6898	•1677		e 347	• 29B	• 306	1.000					
	m	• 901E	•2318		• 660	• 708	1.000						
	N	1.0676	•3344		•765	1.000							
	***	1.2545	•3329		1.000								
	HGH	Σ	SX10		444	O.	m	4	ហ	9	^	α	Ū
SAKU. SPRING				HG+	30	1458	3014	5579	7193	9177	11806	13638	16221
SAKU.				OBSN	198	198	198	196	195	184	163	130	39

D-25SU

TABLE 109

東京 から 大きな ないかかしこう

AIR DENSITY MEANS AND STANDAPD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

PY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

BAKU.	BAKU. SUMMER	α						LAT 4	41 00 N	LONG	049 00 E
		HG 7	+	Q)	ю	4	ហ	v	^	ω	ø
		Σ	1.1942	1.0226	.8760	•6766	•5692	•4547	•3268	•2540	•1756
		SX10	•2129	•1533	•1101	•1624	.1642	•1131	•0658	•0653	•0627
OBSN	HGT										
166	30		1.000	•342	•309	•056	•065	• 050	170	348	471
165	1458	N		1.000	•694	.201	•129	1000	357	-•426	-395
165	3014	m			1.000	•199	•125	•067	-357	522	526
164	5579	4				1.000	016	-•095	166	483	447
164	7193	ហ					1.000	037	365	417	398
164	9177	ø						1 • 000	•017	270	346
151	11806	۲		•					1.000	•850	.552
127	13638	œ								1 • 000	•883
126	16221	0.									1 • 000

200 TABLE

AIR DENSITY MEANS AND STANDARD DEVIATIONS (IN KILOGRAMS PER CUBIC METER).

BY GEOMETRIC HEIGHTS (IN METERS). WITH CORRELATIONS BETWEEN HEIGHTS

049 00 E	6	.1680	•0700		581	-•495	516	441	238	102	•299	•859	1 • 000
LONG	Φ	•2483	•0792		557	592	669•-	429	292	•060	•816	1 • 000	
41 00 N	7	•3282	•0813		••359	394	370	227	263	•251	1.000		
LAT 4	v	•4604	•1107		•134	• 155	• 135	•193	-•119	1 • 000			
	ហ	.5787	•2373		•179	•201	• 180	•135	1 • 000				
	4	• 6866	•1462		•499	• 552	• 533	1.000					
	m	•8975	•1929		•644	• 793	1.000						
	N	1.0588	•2584		•773	1.000							
	.	1.2338	•3089		1.000								
	HGT	Σ	SX10		-	N	m	4	ហ	9	^	œ	0
FALL				HGH	30	1458	3014	5579	7193	9177	11806	13638	16221
BAKU, FALL				OBSN	184	184	183	181	180	178	168	140	114

DISTRIBUTION

APPENDIX C

	TAMT	REPURI NU	. 1039
DISTRIBUTION			
Bureau of Naval Weapons			
Ad3			1
Ree			1
SP-23			1
SP-27			1
SP-43			1
Commander			
Armed Services Technical Information Agency			
Arlington Hall Station			
Arlington 12, Virginia			10
Attn: TIPDR			
Director of Defense Research and Engineering			
Weapons Systems Evaluation Group			
Washington 25, D. C.			1
Commander in Chief, Atlantic			
Norfolk 11, Virginia			1
Attn: CDR J. T. Knudsen			
Commander in Chief, Pacific			
Navy No. 128			_
FPO, San Francisco, California			1
Commanding General			
Aberdeen Proving Ground			
Aberdeen, Maryland			1
Attn: Ballistics Research Laboratories			
Commander			
U. S. Naval Ordnance Test Station			_
China Lake, California			1
Commander			
U. S. Naval Ordnance Laboratory			_
White Oak, Maryland			1
Commander			
U. S. Naval Air Missile Test Center			•
Point Mugu, California			1

DISTRIBUTION (Continued)

Commander	
Operation Development Force	
U. S. Atlantic Fleet, U. S. Naval Base	
Norfolk 11, Virginia	1
Director	
Naval Research Laboratory	
Washington 25, D. C.	1
Chief of Naval Operations	
Naval Weather Service	
Washington 25, D. C.	1
Space Technology Laboratories	
P. O. Box 45564, Airport Station	
Los Angeles 45, California	1
Commanding General	
Army Ballistic Missile Agency	
Redstone Arsenal, Alabama	1
National Aeronautics and Space Administration	
Manned Spacecraft Center	
Houston 1, Texas	1
Attn: Technical Information Office	
Lockheed Missile and Space Company	
P. O. Box 504	
Sunnyvale, California	1
Officer in Charge	
U. S. Navy Weather Research Facility	
U. S. Naval Air Station, Bldg. R-48	
Norfolk 11, Virginia	1
Aerospace Corporation	
P. O. Box 95085	_
Los Angeles 45, California	1
Attn: Library Technical Documents Group	
Research Library	
AVCO	
201 Lowell Street	•
Wilmington, Massachusetts	1

₹` ₹

DISTRIBUTION (Continued)

Air Force Ballistic Missile Division Air Force Unit Post Office Los Angeles 45, California Attn: WDLRM	1
Air Force Cambridge Research Center Air Research and Development Command 1065 Main Street Waltham, Massachusetts Attn: Norman Sissenwine	1
Center of Analysis Massachusetts Institute of Technology Cambridge, Massachusetts	1
Climatic Center Headquarters, Air Weather Service 225 D Street, S. E., Annex #2 Washington 25, D. C.	1
Operations Research, Incorporated 8605 Cameron Street Silver Spring, Maryland	1
Director National Bureau of Standards Washington 25, D. C.	1
Commanding General Army Ordnance Missile Command Redstone Arsenal, Alabama	1
Commanding General 4th Weather Group (MATS) Andrews Air Force Base Washington 25, D. C.	1
Commander Air Force Special Weapons Center Kirtland Air Force Base, New Mexico Attn: SWVWD	1
North American Aviation, Inc. 4300 East 5th Avenue Columbus, Ohio Attn: Kenneth S. Cook, Engineering Data Section	1

NWL REPORT NO. 1859

DISTRIBUTION (Continued)

University of Texas Military Physics Research Laboratory Box 8036, University Station Austin 12, Texas	1
Minneapolis-Honeywell Regulator Company Ordnance Division 600 2nd Street North Hopkins, Minnesota	1
	•
Ford Motor Company Aeronutronic Division Ford Road, Newport Beach, California	1
Local:	
ĸ	1
K- 3	1
KG	1
KGX	4
KXR	1
ACL	20
File	1

LIBRARY CATALOGING INPUT PRIC-NWL-5070/15 (7-62)

1_

		BIBLIOGRAPHIC INFORMATION	INFORMATION			
DESCRIPTOR		CODE		DES	DESCRIPTOR	CODE
SOURCE			SECURITY CLA	SSIFICATION	SECURITY CLASSIFICATION AND CODE COUNT	
Naval Weapons Laboratory		NPGA		UNCLASSIFIED	FIED	0015
REPORT NOMBER			CIRCULATION LIMITATION	LIMITATION		
1859		1859				
REPORT DATE			CIRCULATION	LIMITATION C	CIRCULATION LIMITATION OR BIBLIOGRAPHIC	
May 1963		0563				
			BIBLIOGRAPHIC (Suppl., Vol., etc.)	C (Suppl., Vo	il., etc.)	
		SUBJECT ANALYSIS OF REPORT	SIS OF REPOR	1		
DESCRIPTOR	CODE	DESCRIPTOR		CODE	DESCRIPTOR	CODE
Climatology	СГІМ	Equipment		EQUI		
Wind	QNIM					
Atmosphere	ATMO					
Density	DENS					
Data	DATA					
Tables	TABL					
Russia	RUSS					
Component	COMO					
Means	AVER					
Season	SASO					
Weather	WEAT					
Stations	STAI					
Meteorology	METE					
Radiosondes	RADS					

1. Wind - Tables - USSR 2. Wind - Statistical analysis - USSR 3. Atmosphere - Density - USSR 4. USSR - Weather stations I. France, M. D. UNCLASSIFIED	1. Wind - Tables - USSR 2. Wind - Statistical analysis - USSR 3. Atmosphere - Density - USSR - Weather stations I. France, M. D. UNCLASSIFIED
Naval Weapons Laboratory, Dahlgren, Virginia. (NWL Report No. 1859) CLIMATOLOGICAL WIND AND DENSITY DATA FOR TWENTY-FIVE USSR STATIONS, by M. D. France. May 1963. 10 p., 6 figs., 200 tables. UNCLASSIFIED Climatological wind and density data, by seasons, are presented for 25 USSR stations. Tabulations of means, standard deviations, and correlation coefficients, based on about ten years of statistical data over the period of 1950 to 1962, are given. For purposes of description, graphical presentations of typical data are given for selected cases.	Naval Weapons Laboratory, Dahigren, Virginia. 1. Wind - Tables - USSR (NWL Report No. 1859) CLIMATOLOGICAL WIND AND DENSITY DATA FOR analysis - USSR TWENTY-FIVE USSR STATIONS, by M. D. France. 3. Atmosphere - Density UNCLASSIFIED 4. USSR - Weather station of means, are presented for 25 USSR stations. Tabulations of means, standard deviations. Tabulation coefficients, based on about ten years of statistical data over the period of 1950 to 1962, are given. For purposes of description, graphical presentations of typical data are given for selected cases. UNCLASSIFIED
1. Wind - Tables - USSR 2. Wind - Statistical analysis - USSR 3. Atmosphere - Density - USSR 4. USSR - Weather stations I. France, M. D. UNCLASSIFIED	1. Wind - Tables - USSR 2. Wind - Statistical analysis - USSR 3. Atmosphere - Density - USSR 4. USSR - Weather stations I. France, M. D. UNCLASSIFIED
Mavai Weapons Laboratory, Dahlgren, Virginia. (NWL Report No. 1859) CLIMATOLOGICAL WIND AND DENSITY DATA FOR TWENTY-FIVE USSR STATIONS, by M. D. France. May 1963. 10 p., 6 figs., 200 tables. UNGLASSIFIED Climatological wind and density data, by seasons, are presented for 25 USSR stations. Tabulations of means, standard deviations, and correlation coefficients, based on about ten years of statistical data over the period of 1950 to 1962, are given. For purposes of description, graphical presentations of typical data are given for selected cases.	Naval Weapons Laboratory, Dahlgren, Virginia. (NWL Report No. 1859) CLIMATOLOGICAL WIND AND DENSITY DATA FOR TWENTY-FIVE USSR STATIONS, by M. D. France. May 1963. 10 p., 6 figs., 200 tables. UNCLASSIFIED Climatological wind and density data, by seasons, are presented for 25 USSR stations. Tabulations of means, standard deviations, and correlation coefficients, based on about ten years of statistical data over the period of 1950 to 1962, are given. For purposes of description, graphical presentations of typical data are given for selected cases.

i