Теория графов. Теорема Татта

Д. В. Карпов

Extended edition

2023

- ightharpoonup Паросочетание в графе G называется совершенным, если оно покрывает все вершины графа G.
- ightharpoonup Обозначим за odd(G) (или o(G)) количество компонент связности графа, содержащих нечётное количество вершин.
- Мы готовы сформулировать теорему.

Teopeма (W. T. Tutte, 1947)

В графе G существует совершенное паросочетание тогда и только тогда, когда для любого $S\subset V(G)$ выполняется условие $odd(G - S) \leq |S|$.

Доказательство теоремы Туда

 \implies Пусть M – совершенное паросочетание, $S\subset V(G)$. Тогда граф G-S разобьётся на чётные и нечётные компоненты. Тогда для каждой нечётной компоненты ${\cal C}$ существует вершина, которая не покрыта рёбрами из $M \cap C$, но она была покрыта. Значит, одна вершина из нечётной компоненты связности смежна ребром из паросочетания M с вершиной из множества S (потому что только его мы и удаляли). Все вершины, с которыми соединены вершины из нечётных компонент, разные, потому что из вершины паросочетания выходит ровно 1 ребро. Отсюда следует, что в S вершин не меньше, чем odd(G - S)

Доказательство теоремы Обратно

- ▶ Предположим, что граф удовлетворяет условию, но не имеет совершенного паросочетания. Тогда, в частности (подставим $S=\varnothing$), $odd(G)\leqslant |\varnothing|=0$, то есть, v(G) чётно (потому что в G нет нечётных компонент).
- Пусть G* максимальный надграф G на том же множестве вершин, не имеющий совершенного паросочетания (то есть, добавив любое ребро, совершенное паросочетание уже будет). Мы построим совершенное паросочетание в G* и придем к противоречию (фактически главная идея доказательства).

▶ Пусть $U = \{u \in V(G) : d_{G^*}(u) = v(G) - 1\}$ (множество вершин, соединённых со всеми остальными). G^* — не полный граф, а значит, $U \neq V(G)$. Удалим эти вершины из G^* .

lacktriangle (Лемма) Утверждается, что получившийся граф G^*-U — это объединение нескольких несвязанных полных графов. Доказывать будем от противного.

Доказательство.

- Предположим, что это не так. Тогда существуют такие вершины $x, y, z \in V(G) \setminus U$, что $xy, yz \in E(G^*)$, но $xz \notin E(G^*)$.
- ightharpoons Так как $y \notin U$, существует такая вершина $w \notin U$, что $yw \notin E(G^*)$.
- ightharpoonup Ввиду максимальности графа G^* существует совершенное паросочетание M_1 в графе $G^* + xz$ и совершенное паросочетание M_2 в графе $G^* + yw$. Так как в графе G^* нет совершенного паросочетания, $xz \in M_1$ и $yw \in M_2$.

Д.В. Карпов

▶ Пусть $H = (V(G), M_1 \triangle M_2)$. Граф H — несвязное объединение циклов чётной длины, потому что из каждой вершины графа H выходит или 0, или 2 ребра (можно вспомнить критерий двудольности графа и применить его для каждой из компонент). Очевидно, в каждом из циклов чередуются рёбра паросочетаний M_1 и M_2 . Из-за чередования рёбер диагоналей в циклах быть не может. 2 случая:

 ${f C}$ лучай ${f 1}$. xz и yw в разных компонентах C_1 и C_2 графа H

- ▶ Тогда на вершинах C_1 мы выберем рёбра паросочетания M_2 , на вершинах C_2 мы выберем рёбра паросочетания M_1 , а в остальных компонентах графа H любое из этих паросочетаний (на рисунке M_1).
- В итоге получится совершенное паросочетание графа G^* , противоречие.

- Д.В.Карпов
- ▶ В силу симметричности х и z можно считать, что вершины расположены в чётном цикле С в порядке ywxz.
- Рассмотрим простой путь P = zCyxCw, который состоит из двух дуг цикла C и ребра xy (оно не в графе H, но точно у нас было в $G^*!$). Тогда V(P) = V(C) и $E(P) \subset E(G^*)$. Количество рёбер между точками z, y и x, w чётно (иначе рёбра не чередуются). Итак, мы получили путь, убрав ребра xz, yw из чётного цикла и добавив ребро $xy \Rightarrow$ осталось нечётное количество рёбер. Очевидно, в простом пути нечётной длины существует совершенное паросочетание.

Доказательство теоремы

- ▶ По лемме $G^* U$ объединение несвязных полных графов. В силу условия, среди них не более чем |U| имеет нечётное число вершин $(odd(G^* U) \leq |U|)$.
- В каждой чётной компоненте графа $G^* U$ существует совершенное паросочетание, в каждой нечётной паросочетание, покрывающее все вершины, кроме одной. Соединим её с вершиной из U (используем различные, и их точно хватит, т. к. $odd(G^* U) \leqslant |U|$).
- Разбиваем оставшиеся вершины в U: они разобьются на пары: это возможно всегда, потому что в изначальном графе (а значит и в G^* , потому что $V(G^*) = V(G)$ по построению) количество вершин чётно, а вершины из U это те вершины, которые соединены с остальными по построению.

Рисунок к последним пунктам _{Мы молодцы}

