Quadrature Down Converter

KEERTHI SEELA 2023102012 IIIT Hyderabad keerthi.seela@students.iiit.ac.in

ANUMULA VENKATA SAI SREE SAHITHI 2023112002 IIIT Hyderabad

sahithi.anumula@research.iiit.ac.in

Abstract—The objective of this project is to develop a Quadrature Down Converter (QDC), enabling frequency down-conversion. The project will involve a comprehensive analysis of system requirements, followed by the design, simulation, and practical realization of the QDC. Through systematic examination of operational needs, circuit design, virtual testing, and physical implementation.

Keywords—Quadrature Oscillator, Mixer circuit, low pass filter

I. INTRODUCTION (HEADING 1)

The quadrature down converter converts the high-frequency quadrature signals into low-frequency signals. This conversion is essential for extraction of information from received signals. Internally, a quadrature down converter preserves the in-phase (I) and quadrature-phase (Q) components of the input signal while shifting its frequency. This is typically achieved through a combination of mixing, filtering, and amplification stages integrated into the converter's design.

In this project, we are developing a quadrature down converter by choosing and integrating essential components like mixers, filters, and oscillators. The primary goal is to create a high-performance system that can effectively convert high-frequency signals to low-frequency signals while preserving signal integrity. This involves optimizing each stage of the down converter to achieve efficient frequency conversion.

A QDC has three main components. They are:

1) Qudrature Oscillator:

This oscillator circuit generates two high-frequency signals characterized by a phase disparity of 90°.

2) Mixer Circuit (or) Switch:

This circuit (which includes

MOSFET as an important component) performs signal mixing by combining two input signals, one sourced externally and the other derived from the oscillator, resulting in the generation of a mixed signal.

3) Low Pass Filter:

This filter selectively attenuates high-frequency signals while allowing low-frequency signals to pass through, based on its defined cut-off frequency.

Fig.1: Quadrature Down Converter

II. CIRCUIT ANALYSIS

The Quadrature Oscillator is given an input of 0V, so the offset DC voltage is taken as input and the op-amp amplifies it to sine wave and cosine waves. Op Amps are used to give a negative feed-back and add a phase of 180 °in each feedback. If a phase difference of 90° is given as feed-back then, the amplitude would continuously rise. To avoid this, we need to make it 180°. In a Quadrature Down-Conversion (QDC) oscillator, the integrator and phase shifter are crucial components that work together to generate quadrature (90-degree phase-shifted) signals. These signals are essential in various applications, including frequency synthesis, modulation, and demodulation

Fig.2: Quadrature Oscillator

The mixer circuit(switch) contains a MOSFET which operates in Triode region and the following is the working of it.

The working of the circuit is as follows:

- Voltage input from the oscilloscope =
 - $V_{OSC} = A_1 \sin (2\pi t 100k)$
- Voltage input from the external source =

$$V_{IN} = A_2 \sin(2\pi t - 99k)$$

• Biasing Voltage = V_{BIAS}

$$\begin{aligned} V_{g} &= V_{BIAS} + V_{OSC} \\ V_{s} &= V_{IN} \end{aligned}$$

$$V_s = V_{II}$$

$$V_b = 0$$

Now.

$$V_{GS} = V_{BIAS} + V_{OSC} + V_{IN} \label{eq:VGS}$$

V_{bias} is approximated to the value of Threshold voltage of **MOSFET**

$$: V_{GS} - V_{TH} = V_{OSC} - V_{IN}$$

$$\therefore$$
 if $V_{OSC} - V_{IN} < 0$

$$\Longrightarrow I_{\rm DS}=0$$

=⇒ the MOSFET is in Cut-off Region.

$$V_{OSC} - V_{IN} > 0$$

=⇒ the MOSFET is in Triode region

Note that the MOSFET never goes to saturation, because:

$$V_{OUT} << V_{IN} << V_{OSC}$$

$$V_{DS}-V_{GS}=V_{OUT}-V_{IN}-V_{BIAS}-V_{OSC}+V_{IN} \label{eq:VDS}$$

$$V_{DS} - V_{GS} = V_{OUT} - V_{BIAS} - V_{OSC}$$

$$V_{DS} - V_{GS} < -V_{BIAS}$$

for a triode to be in saturation,

$$V_{DS} > V_{GS} - V_{TH}$$

But, this condition is never satisfied. So, it can be said that MOSFET never enters saturation

Fig.3: Mixer

A low-pass filter is designed to reduce or suppress highfrequency signals while allowing low-frequency signals to pass through with minimal alteration. The cutoff frequency marks the point where the filter begins attenuating higher frequencies. The roll-off characteristic indicates how rapidly the filter's attenuation increases beyond this cutoff frequency

$$F_c = \! 1/2\pi RC$$

Fig.4: Low pass filter

III. QUADRATURE OSCILLATOR DESIGN

Fig.5: LTSPICE of Quadrature Oscillator

Fig.6: Calculations of R and C

Fig.7: V_{OSCI} and V_{OSCQ} Transient Plots

Fig.8: FFT of cosine

Fig.9: FFT of sine

Fig.10: Phase of sine

Fig.11: Phase of cosine

Fig.12: Transient waveforms

Fig.13: FFT of sine

Fig.14: FFT of cosine

Fig.15: Phase difference

IV. SWITCH(MIXER) DESIGN

Fig.16: LTSPICE of Mixer

$$V_{TF_1} = V_{in} \times V_{OSC_1} = \frac{A_1 A_2}{2} \left(\begin{array}{c} 1 \end{array} \right)$$

In the given circuit

$$\frac{A_1A^2}{2} = \frac{1 \times 100 \text{m}^{\vee}}{2} = 50 \text{m}^{\vee}$$

VIFI'S RO Amplitude Calculated though LI spice

= 48mv ~ somv

is in Positive values the cyclem operates in on condition, if it is in negative values, system circuit operates in off condition.

Os Vosc 2VT of Mosper - 2011 Condition

Fig.17: Working of mixer

$$f = \frac{1}{2\pi Rc}$$

$$V_{Bios} = V_{Th} \text{ of } Mosfet$$

$$to allow lookH_2 \text{ in to the circuit}$$

$$lookH_2 > \frac{1}{2\pi Rc}$$

$$RC > \frac{1}{2\pi x^{10}}$$

$$RC > \frac{1}{2\pi}$$

we choose Roios as 2MJZ CC as 27PF

Because Cc should be small enough
to allow Vosc, whereas Roias
Should be high enough, so that
Vosc Completely enters into MOSFET

MOSFET parameters

Fig.20: FFT of V_{IF} for f=98kHz

Fig.21: Transient plot of V_{IF} for f=95kHz

Fig.22: FFT of V_{IF} for f=95kHz

Fig.23: Transient plot of V_{IF} for f=99kHz

Fig.24: FFT of V_{IF} for f=99kHz

Fig.25: Transient plot of V_{IF} for f=101kHz

Fig.26: FFT of $V_{\rm IF}$ for f=101kHz

Fig.27: Transient plot of V_{IF} for f=102kHz

Fig.28: FFT of V_{IF} for f=102kHz

Fig.29: Transient plot of V_{IF} for f=105kHz

Fig.30: FFT of V_{IF} for f=105kHz

HARDWARE OF MIXER CIRCUIT

Fig.31: Transient plot of V_{IF} for f=95kHz

Fig.32: FFT of $V_{\rm IF}$ for f=95kHz

Fig.34: FFT of $V_{\rm IF}$ for f=98kHz

Fig.36: FFT of V_{IF} for f=99kHz

Fig.37: Transient plot of V_{IF} for f=101kHz

Fig.38: FFT of V_{IF} for f=101kHz

Fig.39: Transient plot of V_{IF} for f=102kHz

Fig.40: FFT of V_{IF} for f=102kHz

Fig.41: Transient plot of V_{IF} for f=105kHz

Fig.42: FFT of V_{IF} for f=105kHz

Fig. 43: Transient plot of $V_{\rm IN}$

V. LOW PASS FILTER DESIGN

Fig.44: Design of LPF

$$-3d8 \text{ of } 2kHz$$

$$\frac{1}{2\pi RC} = 2kHz$$

$$\frac{1}{2\pi RC}$$

$$RC = 7.95 \times 8k L$$

$$C = 10n F$$

Fig.45: Calculations of R and C

Fig.46: Frequency response

Fig.47: Transient response for 1kHz

Fig.48: Transient response for 10kHz

Fig.49: LPF FFT

Fig.50: Frequency response in Hardware

1 2001/ 2 2001/ DD: 200 E/ Scop # 1 2001 MESSIGHT FFT Entry Control to EFT Control to EFT

Fig.51: Transient response for 1kHz

Fig.51: Transient response for 10kHz

Fig.52: Outputs of Mixer and LPF when connected

Fig.53: FFT of LPF output When Mixer and LPF are connected

VI. COMPLETE CIRCUIT PROTOTYPE DESIGN

Fig.54: Complete Circuit LTSPICE

Fig.55: Transient simulation of input

Fig.56: Transient simulation of oscillator output

Fig.57: Transient simulation of IF and QF

Fig.58: Transient simulation of IF(final) and QF(final)

The above three figures are reported to annotate the phase difference I-Q components

Fig.59: FFT plots of IF

Fig.60: FFT plots of QF

Fig.61: FFT plots of IF(final)

Fig.62: FFT plots of QF(final)

Yes. We can process the FFT plots to find the phase of final I and Q components.

Fig.63: Transient plots of V_{IN}

Fig.64: Transient plots of V_{OSCI} and V_{OSCQ}

Fig.65: Transient plots of V_{IFI} and V_{IFQ}

Fig.66: Transient plots of $V_{\text{IF(FINAL)I}}$ and $V_{\text{IF(FINAL)Q}}$

Fig.67: Phase difference of V_{OSCI} and V_{OSCQ}

Fig.68: Phase difference of V_{IFI} and V_{IFQ}

Fig.69: Phase difference of $V_{\text{IF(FINAL)I}}$ and $V_{\text{IF(FINAL)Q}}$

Fig.70: FFT plots of V_{IF(FINAL)I}

Fig.71: FFT plots of V_{IF(FINAL)Q}

Parameters	Simulated	Measured
Oscillator		
Frequency	100kHz	100.3kHz
(I-phase)		
Oscillator		
Frequency	100.18kHz	100.4kHz
(Q-phase)		
Oscillator		
Amplitude	1 V	1.05V
(I-phase)		
Oscillator		
Amplitude	1 V	1.07V
(Q-phase)		
Input frequency	98kHz	98kHz
$Supply-V_{DD}$	2.5V	6.72V
Supply - V _{SS}	-2.5V	-6.72V
V_{BIAS}	0.5V	1.76V
C_{C}	27pF	5pF
R – LPF	7.9kΩ	8kΩ
C – LPF	10nF	10nF

VII. CONTRIBUTIONS

Keerthi Seela

- Simulations in LTSPICE
 Oscillator
 Report

Anumula Venkata Sai Sree Sahithi

- Mixer Circuit LPF
- Report and PPT