Orthogonal Complement

Definition: Orthogonal Complement

Let E be an inner product space and let S be a non-empty subset of E. To say that an $\vec{x} \in E$ is *orthogonal* to S, denoted $\vec{x} \perp S$, means $\forall \vec{y} \in S, \vec{x} \perp \vec{y}$.

The set of all elements of E that are orthogonal to S, denoted S^{\perp} , is called the *orthogonal complement* of S:

$$S^{\perp} = \{ \vec{x} \in E \mid \vec{x} \perp S \}$$

To say that two non-empty subsets A and B of E are orthogonal, denoted $A \perp B$, means $\forall \vec{x} \in A, \forall \vec{y} \in B, \vec{x} \perp \vec{y}$.

Examples

Let E be an inner product space:

1).
$$E^{\perp} = {\vec{0}}$$

2).
$$\{\vec{0}\}^{\perp} = E$$

3). Let (\vec{x}_n) be a complete orthonormal sequence is E:

$$\{\vec{x}_n \mid n \in \mathbb{N}\}^{\perp} = \{\vec{0}\}$$

4).
$$E = \mathcal{C}[0,1]$$
 with $\langle f,g \rangle = \int_0^1 f\overline{g}$.

Let $S = \mathcal{P}[0,1]$, all polynomials.

Assume $f \in S^{\perp}$.

But there exists (p_n) in $\mathcal{P}[0,1]$ such that $p_n \rightrightarrows f$, and thus $p_n \overset{L_2}{\to} f$. Now, by continuity of the inner product, $\forall n \in \mathbb{N}$:

$$||f||^2 = \langle f, f \rangle = \langle f, \lim_{n \to \infty} p_n \rangle = \lim_{n \to \infty} \langle f, p_n \rangle = 0$$

$$\therefore S^{\perp} = \{\vec{0}\}$$

Theorem

Let E be an inner product space and $S\subseteq E\text{:}$

 S^{\perp} is a closed subspace of E.

Proof

Assume $\vec{x}, \vec{y} \in S^{\perp}$.

Assume $\alpha, \beta \in \mathbb{C}$.

Assume $\vec{z} \in S$.

$$\langle \alpha \vec{x} + \beta \vec{y}, \vec{z} \rangle = \alpha \langle \vec{x}, \vec{z} \rangle + \beta \langle \vec{y}, \vec{z} \rangle = 0$$

Thus $\alpha \vec{x} + \beta \vec{y} \perp \vec{z}$ and so $\alpha \vec{x} + \beta \vec{y} \in S^{\perp}$.

Therefore, S^{\perp} is a subspace of E.

Assume (\vec{x}_n) is a sequence in S^{\perp} such that $\vec{x}_n \to \vec{x} \in E$.

Assume $\vec{y} \in S$.

So $\forall n \in \mathbb{N}, \vec{y} \perp \vec{x}_n$.

$$\langle \vec{x}, \vec{y} \rangle = \left\langle \lim_{n \to \infty} \vec{x}_n, \vec{y} \right\rangle = \lim_{n \to \infty} \left\langle \vec{x}_n, \vec{y} \right\rangle = 0$$
 Thus $\vec{x} \perp \vec{y}$ and so $\vec{x} \in S^{\perp}$.

Therefore S^{\perp} is closed.

Theorem

Let H be a Hilbert space and let S be a convex subset of H. Let $\vec{x} \in H \setminus S$ and let $\vec{y} \in S$ such that $d(\vec{x}, S) = ||\vec{x} - \vec{y}||$:

$$\vec{x} - \vec{y} \perp S$$

Thus, $\forall \vec{z} \in S, \vec{x} - \vec{y} \perp \vec{z}$.

Proof

Assume $\vec{z} \in S$ such that $\vec{z} \neq \vec{0}$.

Consider the perturbation $\vec{y} + \epsilon \vec{z}$ for some $\epsilon \in \mathbb{R}$.

Let $d = d(\vec{x}, S)$.

$$d^{2} \leq \|\vec{x} - (\vec{y} + \epsilon \vec{z})\|^{2}$$

$$= \|(\vec{x} - \vec{y}) + \epsilon \vec{z}\|^{2}$$

$$= \langle (\vec{x} - \vec{y}) + \epsilon \vec{z}, (\vec{x} - \vec{y}) + \epsilon \vec{z} \rangle$$

$$= \|\vec{x} - \vec{y}\|^{2} - \langle \vec{x} - \vec{y}, \epsilon \vec{z} \rangle - \langle \epsilon \vec{z}, \vec{x} - \vec{y} \rangle + \epsilon^{2} \|\vec{z}\|^{2}$$

$$= \|\vec{x} - \vec{y}\|^{2} - \epsilon [\langle \vec{x} - \vec{y}, \vec{z} \rangle - \langle \vec{x} - \vec{y}, \vec{z} \rangle] + \epsilon^{2} \|\vec{z}\|^{2}$$

$$= \|\vec{x} - \vec{y}\|^{2} - 2\epsilon \operatorname{Re}(\langle \vec{x} - \vec{y}, \vec{z} \rangle) + \epsilon^{2} \|\vec{z}\|^{2}$$

$$= d^{2} - 2\epsilon \operatorname{Re}(\langle \vec{x} - \vec{y}, \vec{z} \rangle) + \epsilon^{2} \|\vec{z}\|^{2}$$

$$0 \leq \epsilon^{2} \|\vec{z}\|^{2} - 2\epsilon \operatorname{Re}(\langle \vec{x} - \vec{y}, \vec{z} \rangle)$$

Now, let $a = \|\vec{z}\|^2$ and $b = 2\operatorname{Re}(\langle \vec{x} - \vec{y}, \vec{z} \rangle)$:

$$a\epsilon^2 - b\epsilon \ge 0$$
$$a\epsilon \left(\epsilon - \frac{b}{a}\right) \ge 0$$

But for this to always be true it must be the case that b = 0.

And so $\operatorname{Re}(\langle \vec{x} - \vec{y}, \vec{z} \rangle) = 0$.

By similar argument for $\vec{y} + i\epsilon \vec{z}$, $\text{Im}(\langle \vec{x} - \vec{y}, \vec{z} \rangle) = 0$.

Thus $\langle \vec{x} - \vec{y}, \vec{z} \rangle = 0$ and so $\vec{x} - \vec{y} \perp \vec{z}$.

$$\vec{x} - \vec{y} \perp S$$
.

Such a \vec{y} is called the *orthogonal projection* of \vec{x} onto S:

$$y = \operatorname{proj}_S \vec{x}$$

Resulting in a mapping: $\operatorname{proj}_S: H \to S$.

Corollary

Let H be Hilbert space and let S be a closed subspace of H. Every $\vec{x} \in H$ can be written uniquely as $\vec{x} = \vec{y} + \vec{z}$ where $\vec{y} \in S$ and $\vec{z} \in S^{\perp}$.

Thus,
$$H = S \oplus S^{\perp}$$
.

Proof

Assume $\vec{x} \in H$.

Since S is a closed subspace, S is closed and convex.

Thus a nearest point $\vec{y} \in S$ to \vec{x} exists.

But
$$\vec{z} = \vec{x} - \vec{y} \perp S$$
 and so $\vec{z} \in S^{\perp}$.

Therefore $\vec{x} = \vec{y} + \vec{z}$, thus proving existence.

Now, assume $\vec{x} = \vec{y} + \vec{z} = \vec{y}' + \vec{z}'$ where $\vec{y}, \vec{y}' \in S$ and $\vec{z}, \vec{z}' \in S^{\perp}$.

Let $\vec{w} = \vec{y} - \vec{y}' = \vec{z}' - \vec{z}$.

But $\vec{y} - \vec{y}' \in S$ and $\vec{z}' - \vec{z} \in S^{\perp}$.

And so $\vec{w} \in S$ and $\vec{w} \in S^{\perp}$.

 $\vec{x} = \vec{0}$ and thus $\vec{y} = \vec{y}'$ and $\vec{z} = \vec{z}'$, thus proving uniqueness.

Theorem

Let H be a Hilbert space and let S be a closed subspace of H:

$$S^{\perp \perp} = S$$

Proof

 $\subseteq \mathsf{Assume} \; \vec{x} \in S^{\perp \perp}$

 $\exists\, \vec{y}\in S \text{ and } \vec{z}\in S^\perp \text{ such that } \vec{x}=\vec{y}+\vec{z}.$

So
$$\vec{y} \in S^{\perp \perp}$$
.

$$\vec{x} - \vec{y} = \vec{z}.$$

So
$$\vec{z} \in S^{\perp \perp}$$
.

So $\vec{z} \in S^{\perp}$ and $\vec{z} \in S^{\perp \perp}$, and so $\vec{z} = \vec{0}$.

$$\therefore \vec{x} = \vec{y} \in S$$

$$\therefore S^{\perp \perp} = S^{\perp}$$

 \supseteq Assume $\vec{x} \in S$.

$$\vec{x} \perp S^\perp$$

$$\therefore \vec{x} \in S^{\perp \perp}$$

In general, in a Hilbert space $H, S^{\perp \perp}$ is the closure of S.