

CH-CH-Changes (David Bowie)

Fixed or changing?

There used to be a crude categorization in the types of constructs (social) scientist study.

- Fixed constructs (Traits):
 - Aspects of an individual that do not change over time.
 - E.g., Personality, IQ (although debatable now).
- Changing constructs (States):
 - Aspects that do change.
 - E.g., Mood, Concentration.

- Nothing is fixed!
 - "Zoom out" to a longer time-scale, and traits become states.
 - Even mountains (and Betty White) aren't permanent.

- Nothing is fixed!
 - "Zoom out" to a longer time-scale, and traits become states.
 - Even mountains aren't permanent.
- Change also doesn't exist!

- Nothing is fixed!
 - "Zoom out" to a longer time-scale, and traits become states.
 - Even mountains (and Betty White) aren't permanent.
- Change also doesn't exist!
 - Change isn't one thing
 - Very important to realize this

What do you think I mean with "change" isn't one thing?

Can you think of different types of change?

TILBURG •

TILBURG •

TILBURG •

What if this is cross-sectional data?

- Can think about the following different types of change:
 - Long-term vs Short-term (Note! Long-term not necessarily the sum of short-term)

- Can think about the following different types of change:
 - Long-term vs Short-term (Note! Long-term not necessarily the sum of short-term)
 - Reversible vs non-reversible/trend.

- Moreover, "change" can also be a trait(!)...
 - How variable your mood is, could be something that is characteristic of you!
 - Different people might have different amounts of variability in mood.
- ...and a state of its own.
 - One person's variability can change over time!

Koval et al.:

- Inertia (i.e., "lack of change") in sad/dysphoric affect related to rumination and depression.
- Amount of inertia differs between individuals.

Groot:

Mood variation different within one person at different times.

Koval et al.:

- Inertia (i.e., "lack of change") in sad/dysphoric affect related to rumination and depression.
- Amount of inertia differs between individuals.

Groot:

Mood variation different within one person at different times.

How could you show this with multilevel analysis?

- Usually, focus on long-term, trend change.
 - Mean-level differences.
- Intensive Longitudinal Data/Multilevel can be used for this as well but think about the process your studying!
 - Do you really need to measure someone multiple times a day over several weeks?
 - Can you give me an example for a construct for which you do? And of a construct for which you don't?

- Intensive Longitudinal Data really for studying short-term (reversible changes) (and trait-like differences therein).
- What is Intensive Longitudinal Data
 - Many observation per person.
 - Observations close together in time.
 - But...definition not well defined.

- Intensive Longitudinal Data really for studying short-term (reversible changes) (and trait-like differences therein).
- What is Intensive Longitudinal Data
 - Many observation per person.
 - Observations close together in time.
 - But...definition not well defined.
- This type of change has its "own" collection of useful models!

- This type of change has its "own" collection of useful models!
- Would you use multilevel regression models for reversible changes?
 - Why?
 - Why not?

- This type of change has its "own" collection of useful models!
- Would you use multilevel regression models for reversible changes?
 - Why?
 - Why not?
- What Intercept and Slope values do you expect to find?
- And what do you expect for the variances in the intercepts and slopes?

Reversible Change

One type of model used is the AR model

Reversible Change

- One type of model used is the AR model.
- More on that later ⑤...(spoiler: can use multilevel regression for this model too! Just need a small tweak ⑥).

Longitudinal Data: Systematic Mean Level Change

Hierarchical analysis:

Figure 1: Example hierarchical data structure

Examples:	Education	Organizational	Longitudinal
Level 3	schools	organizations	classes
Level 2	classes	departments	pupils
Level 1	pupils	individuals	observations

Longitudinal data

- Just another multilevel analysis
- Advantages:
 - Fixed occasions and varying occasions.
 - Change can differ between individuals
 - Balanced data is not a requirement.
 - Can add higher level predictors.

Longitudinal data

- Fixed occasions example:
- 200 students
- Dependent variable:
 - *GPA*: grade point average for six successive semesters
- Independent variables:
 - *job* (number of hours worked, scale from 0-4)
 - sex (boy = 0, girl = 1)
 - HighGPA (mean high school GPA)

Multilevel regression model for longitudinal data

Regression equation with lower level variables:

$$Y_{ti} = \pi_{0i} + \pi_{1i} Time_{ti} + \pi_{pi} X_{pti} + e_{ti}$$

- coefficients at the lowest level: π
- person level coefficients: β
- Y_{ti} : response variable of individual i measured at time point t
- *Time_{ti}*: time variable, that indicates the time point
- X_{pti} : time varying covariates (p \neq 0, 1)
- Example: $GPA_{ti}=\pi_{0i}+\pi_{1i}Time_{ti}+\pi_{2i}Job_{ti}+e_{ti}$

First research question

Multilevel regression model for longitudinal data

 Add time invariant covariates (second level variables, student characteristics).

$$Y_{ti} = \pi_{0i} + \pi_{1i} Time_{ti} + \pi_{pi} X_{pti} + e_{ti}$$

$$\pi_{0i} = \beta_{00} + \beta_{0q} Z_{qi} + u_{0i}$$

Second research question

$$GPA_{ti} = \pi_{0i} + \pi_{1i}Time_{ti} + \pi_{2i}Job_{ti} + e_{ti}$$

$$\pi_{0i} = \beta_{00} + \beta_{01} sex_i + \beta_{02} HighGPA_i + u_{0i}$$

Third research question

$$\pi_{2i} = \beta_{20} + u_{2i}$$

Fourth research question

time

$$\pi_{1i} = \beta_{10} + \beta_{1q} Z_{qi} + u_{1i}$$

$$\pi_{2i} = \beta_{20} + \beta_{2q} Z_{qi} + u_{2i}$$

Multilevel regression equation

$$GPA_{ti} = \beta_{00} + \beta_{01}sex_{i} + \beta_{02}HighGPA_{i} + \pi_{1i}Time_{ti} + \pi_{2i}Job_{ti} + u_{0i} + e_{ti}$$

$$\pi_{1i} = \beta_{10} + \beta_{11} sex_i + \beta_{12} HighGPA_i + u_{1i}$$

$$\pi_{2i} = \beta_{20} + \beta_{21} sex_i + \beta_{22} HighGPA_i + u_{2i}$$

$$GPA_{ti} = \beta_{00} + \beta_{01}sex_i + \beta_{02}HighGPA_i + \beta_{10}Time_{ti} + \beta_{20}Job_{ti} + \beta_{11}Time_{ti} \times sex_i$$

$$+ \beta_{12}Time_{ti} \times HighGPA_i + \beta_{21}Job_{ti} \times sex_i + \beta_{22}Job_{ti} \times HighGPA_i$$

$$+ u_{1i}Time_{ti} + u_{2i}Job_{ti} + u_{0i} + e_{ti}$$

Steps of a multilevel analysis

- 1. Check whether multilevel is necessary
- 2. Add all level 1 main effects and interactions
- 3. Add all level 2 main effects and interactions
- 4. Check level 1 effects for random slopes
- 5. If random slopes are present: add cross-level interactions

Step 1: Intercept Only Model (is multilevel necessary?)

Results multilevel analysis of GPA					
Model:	M0: inter	M0: intercept only model			
Fixed part					
Predictor	coefficien	nt p-value			
Intercept	2.87	0.000			
time					
job					
sex					
high GPA					
Random part					
σ_e^2	0.098				
σ^2_{u0}	0.057	0.000			

$$GPA_{it} = \pi_{0i} + e_{it} \pi_{0i} = \beta_{00} + u_{0t}$$

Step 2a: Add Time

Results multilevel analysis of GPA			
Model:	M1: time	model	
Fixed part			
Predictor	coefficier	nt p-value	
Intercept	2.60	0.000	
time	0.11	0.000	
job			
sex			
highGPA			
Random part			
σ_{e}^{2}	0.058		
σ^2_{u0}	0.064	0.000	

$$GPA_{it} = \pi_{0i} + \pi_1 Time + e_{it}$$

 $\pi_{0i} = \beta_{00} + u_{0t}$

• Step 2a: add *time* variable

$$GPA_{ti} = 2.60 + 0.11 time_{ti} + u_{0i} + e_{ti}$$

- Interpretation and relevance of the regression coefficients:
 - intercept:
 - the model predicts a GPA-score of 2.60 at the first time point
 - time:
 - -b = 0.11,
 - relevance: maximum difference: $5 \times 0.11 = 0.55$ on the GPA-scale 1.7-4

Step 2b: Add other level 1 predictors

Results multilevel analysis of GPA						
Model:	M0: intercept only model		M1: time i	M1: time model		job
Fixed part						
Predictor	coefficient	p-value	coefficient	t p-value	coefficient	p-value
Intercept	2.87	0.000	2.60	0.000	2.61	0.000
time			0.11	0.000	0.10	0.000
job					-0.17	0.000
sex						
highGPA						
Random part						
σ_e^2	0.098		0.058		0.055	
σ^2_{u0}	0.057	0.000	0.064	0.000	0.053	0.000

$$GPA_{it} = \pi_{0i} + \pi_1 Time + \pi_2 Job + e_{it}$$

 $\pi_{0i} = \beta_{00} + u_{0t}$

Step 2b: add job variable:

$$GPA_{ti} = 2.61 + 0.10time_{ti} - 0.17job_{ti} + u_{0i} + e_{ti}$$

- Interpretation and relevance of the regression coefficient:
 - *job*:
 - b = -0.17,
 - relevance: maximum difference: $2 \times -0.17 = -0.34$ on the GPA-scale 1.7-4

Compare the random effects of model 0, 1 and 2

Results multilevel analysis of GPA							
Model:	M0: intercept only model		M1: time r	nodel	M2: M1 +	job	
Fixed part Predictor	coefficient	p-value	coefficient	p-value	coefficient	p-value	
Intercept	2.87	0.000	2.60	0.000	2.61	0.000	
time			0.11	0.000	0.10	0.000	
job					-0.17	0.000	
sex highGPA Random part							
σ_e^2	0.098		0.058		0.055		
σ^2_{u0}	0.057	0.000	0.064	0.000	0.053	0.000	

Compare the random effects of model 0, 1 and 2

Results multilevel analysis of GPA						
Model:	M0: intercept only model		M1: time i	model	M2: M1 +	job
Fixed part Predictor	coefficient	p-value	coefficient	t p-value	coefficient	p-value
Intercept	2.87	0.000	2.60	0.000	2.61	0.000
time			0.11	0.000	0.10	0.000
job					-0.17	0.000
sex highGPA Random part						
σ_{e}^{2}	0.098		0.058		0.055	
σ_{u0}^2	0.057	0.000	0.064	0.000	0.053	0.000

Model 1: second level error variance is bigger than in model 0

- Multilevel divides total variance assuming 2-stage sampling
 - So first draw a random sample of level 2 units.
 - Then draw a random sample from these level 2 units to get your level 1 observations.
 - Because of this the model assumes at least some variance on all variables (even if it is just sampling error.
- Nested data example:

- With Fixed Timepoints, all scores on the time variable are exactly the same!
 - So, less variance on level 1 then expected!
 - The model notices this when 'Time' is added as a predictor and corrects its mistake.

- With Fixed Timepoints, all scores on the time variable are exactly the same!
 - So, less variance on level 1 then expected!
 - The model notices this when 'Time' is added as a predictor and corrects its mistake.

- Variance on level 1 was too high and is lowered
 - Variance on level 2 goes up since total variance is fixed

Results multilevel analysis

Results multilevel analysis of GPA							
Model:	M0: intercept only model	M1: time	model	M2: M1 +	job		
Fixed part Predictor	coefficient p-value	coefficient	t p-value	coefficien	t p-value		
Intercept	2.87 0.000	2.60	0.000	2.61	0.000		
time	Λ	0.11	0.000	0.10	0.000		
job	/ \			-0.17	0.000		
sex highGPA Random part							
σ_e^2	0.098	0.058		0.055			
σ_{u0}^2	0.057 0.000	0.064	0.000	0.053	0.000		

Simple Solution: Don't use an intercept only model!

The model with time is the baseline model.

Time model:

$$-\sigma_e^2 = 0.058$$

$$-\sigma_{u_0}^2 = 0.063$$

• Job model:

$$-\frac{\sigma_e^2}{\sigma_{u_0}^2} = 0.055$$
$$-\frac{\sigma_{u_0}^2}{\sigma_{u_0}^2} = 0.052$$

$$-^{o}u_0 = 0.052$$

$$R_1^2 = \frac{0.058 - 0.055}{0.058} = 0.05$$

$$R_2^2 = \frac{0.063 - 0.052}{0.063} = 0.17$$

Step 3: add second level variables

Results multilevel analysis of GPA						
Model:	M2b: low	ver level variables	M3: M2b + higher level variables			
Fixed part						
Predictor	coefficier	nt p-value	coefficier	nt p-value		
Intercept	2.61	0.000	2.53	0.000		
time	0.10	0.000	0.10	0.000		
job	-0.17	0.000	-0.17	0.000		
sex			0.15	0.000		
high GPA			0.085	0.000		
Random part						
σ_e^2	0.055		0.055			
σ_{u0}^2	0.053	0.000	0.046	0.000		

$$\begin{aligned} GPA_{it} &= \pi_{0i} + \pi_{1}Time + \pi_{1}Job + e_{it} \\ \pi_{0i} &= \beta_{00} + \beta_{01}Sex + \beta_{02}highGPA + u_{0t} \end{aligned}$$

Step 3: add second level variables

$$GPA_{ti} = 2.53 + 0.10time_{ti} - 0.17job_{ti} + 0.15sex_{i} + 0.085HighGPA + u_{0i} + e_{ti}$$

- Interpretation and relevance of the regression coefficients:
- · sex:
 - b = 0.15, difference between boys and girls
 - relevance: girls perform 0.15 better than boys on the mean GPA-scale 1.7-4
- HighGPA:
 - b = 0.085
 - relevance: maximum difference: $2 \times 0.085 = 0.17$ on the mean *GPA*-scale 1.7-4

Time model:

$$-\sigma_e^2 = 0.058$$

$$-\sigma_{u_0}^2 = 0.063$$

• Job model:

$$-\sigma_e^2 = 0.055$$

$$-\sigma_{u_0}^2 = 0.052$$

• Job, sex and HighGPA:

$$-\sigma_e^2 = 0.055$$

$$-\sigma_{u_0}^2 = 0.045$$

$$R_1^2 = \frac{0.058 - 0.055}{0.058} = 0.05$$

$$R_2^2 = \frac{0.063 - 0.052}{0.063} = 0.17$$

$$R_2^2 = \frac{0.063 - 0.045}{0.063} = 0.29$$

Results longitudinal multilevel analysis, random slopes

- Step 4: add random slopes
- H_0 : the relation between *time* and *GPA* is the same within all students
- H₁: the relation between *time* and *GPA* is not the same within all students
- H_0 : the relation between job and GPA is the same within all students
- H₁: the relation between *job* and *GPA* is not the same within all students

Results longitudinal multilevel analysis, random slopes

Step 4: add random slope time

Results multilevel analysis of GPA						
Model:	M3: lowe	r and higher level variables	M4: M3 + random slope time			
Fixed part						
Predictor	coefficien	t p-value	coefficient	t p-value		
Intercept	2.53	0.000	2.55	0.000		
time	0.10	0.000	0.10	0.000		
job	-0.17	0.000	-0.13	0.000		
sex	0.15	0.000	0.12	0.000		
highGPA	0.085	0.000	0.089	0.001		
Random part						
σ_e^2	0.055		0.042			
σ_{u0}^2	0.046	0.000	0.039	0.000		
σ_{u1}^2			0.0039	0.000		
σ^2_{u0u1}			-0.0025	i		

$$GPA_{it} = \pi_{0i} + \pi_{1j}Time + \pi_{2}Job + e_{it}$$

 $\pi_{0i} = \beta_{00} + \beta_{01}Sex + \beta_{02}highGPA + u_{0t}$
 $\pi_{1i} = \beta_{10} + u_{1t}$

Results longitudinal multilevel analysis, random slopes

Step 4: add random slope job

Results multilevel analysis of GPA						
Model:	M3: lowe	M3: lower and higher level variables M4: M3 + random s		random slope job		
Fixed part Predictor	coefficier	nt p-value	coefficien	t p-value		
Intercept	2.53	0.000	2.53	0.000		
time	0.10	0.000	0.10	0.000		
job	-0.17	0.000	-0.18	0.000		
sex	0.15	0.000	0.15	0.000		
highGPA	0.085	0.000	0.084	0.000		
Random part						
σ_e^2	0.055		0.055			
σ^2_{u0}	0.046	0.000	0.045	0.000		
σ_{ul}^2			0.0045	>.500		
σ^2_{u0u1}			-0.014			

$$GPA_{it} = \pi_{0i} + \pi_{1}Time + \pi_{2j}Job + e_{it}$$

 $\pi_{0i} = \beta_{00} + \beta_{01}Sex + \beta_{02}highGPA + u_{0t}$
 $\pi_{2i} = \beta_{20} + u_{2t}$

- Step 5: add cross-level interactions
- H₀: sex can't explain the different relations between GPA and time in different individuals
- H₁: sex explains (a part of) the different relations between GPA and time in different individuals
- H₀: *HighGPA* can't explain the different relations between *GPA* and *time* in different individuals
- H₁: *HighGPA* explains (a part of) the different relations between *GPA* and in different individuals

Step 5: add cross-level interactions

Results multilevel analysis of GPA						
Model:	M3: lower	and higher level variables	M4: M3 +	random slope time		
Fixed part						
Predictor	coefficient	p-value	coefficient	p-value		
Intercept	2.55	0.000	2.57	0.000		
time	0.10	0.000	0.088	0.000		
job	-0.13	0.000	-0.13	0.000		
sex	0.12	0.000	0.076	0.029		
high GPA	0.089	0.001	0.091	0.002		
time×sex			0.029	0.009		
time×highGPA			-0.0018	0.853		
Random part						
σ_e^2	0.042		0.042			
σ^2_{u0}	0.039	0.000	0.039	0.000		
σ^2_{u1}	0.0039	0.000	0.0037	0.000		
σ^2_{u0u1}	-0.0025		-0.0037			

$$\begin{split} GPA_{it} &= \pi_{0i} + \pi_{1j} Time + \pi_{2} Job + e_{it} \\ \pi_{0i} &= \beta_{00} + \beta_{01} Sex + \beta_{02} highGPA + u_{0t} \\ \pi_{1i} &= \beta_{10} + \beta_{11} Sex + \beta_{12} highGPA + u_{1t} \end{split}$$

Step 5: add cross-level interaction

$$GPA_{ti} = 2.57 + 0.088time_{ti} - 0.13job_{ti} + 0.076sex_{i} + 0.089HighGPA + 0.030time_{ti} \times sex_{j} + u_{1i}time_{ij} + u_{0i} + e_{ti}$$

- Interpretation and relevance of regression coefficients:
 - time.sex:

$$-b = 0.030$$

Explained slope variance:

$$R_{slope}^2 = \left(\frac{0.0039 - 0.0037}{0.0039}\right) = 0.05$$

· differences between male and female students increases

Practical 6

Residuals

Longitudinal Multilevel Regression

- Remember that you always need to think about what your model says about the data.
- And a multilevel regression (with a fixed effect of time) is saying something that might be a bit weird with longitudinal data.
- Remember:

$$\rho = \frac{\sigma_{u_0}^2}{\sigma_{u_0}^2 + \sigma_e^2}$$

Multilevel Repeated Measures

$$\rho = \frac{\sigma_{u_0}^2}{\sigma_{u_0}^2 + \sigma_e^2}$$

$$\Sigma(\mathbf{Y}) = \begin{pmatrix} \sigma_e^2 + \sigma_{u_0}^2 & \sigma_{u_0}^2 & \sigma_{u_0}^2 & \dots & \sigma_{u_0}^2 \\ \sigma_{u_0}^2 & \sigma_e^2 + \sigma_{u_0}^2 & \sigma_{u_0}^2 & \dots & \sigma_{u_0}^2 \\ \sigma_{u_0}^2 & \sigma_{u_0}^2 & \sigma_e^2 + \sigma_{u_0}^2 & \dots & \sigma_{u_0}^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \sigma_{u_0}^2 & \sigma_{u_0}^2 & \sigma_{u_0}^2 & \dots & \sigma_e^2 + \sigma_{u_0}^2 \end{pmatrix}.$$

- Makes certain assumptions about variance-covariance matrix
 - Related to Sphericity in RM ANOVA
 - Compound Symmetry
 - All variances and covariances equal (likely?)
 - Inflated Type I errors if violated
- What do we do if violated?

Multilevel Repeated Measures

$$\begin{split} GPA_{it} &= \pi_{1i}T1_{it} + \pi_{2i}T2_{it} + \pi_{3i}T3_{it} + \pi_{4i}T4_{it} + \pi_{5i}T5_{it} + \pi_{6i}T6_{it} \\ \pi_{1i} &= \beta_{10} + u_{1t} \\ \pi_{2i} &= \beta_{20} + u_{2t} \\ \vdots \\ \pi_{6i} &= \beta_{60} + u_{6t} \end{split}$$

- Use dummies for all measurement occasions
 - Remove Intercept
 - Each dummie has random slope
- This is basically a MANOVA

• Random part: (co)variance matrix

	GPA1	GPA2	GPA3	GPA4	GPA5	GPA6
GPA1	0.097					
GPA2	0.036	0.113				
GPA3	0.026	0.051	0.125			
GPA4	0.021	0.056	0.083	0.126		
GPA5	0.024	0.061	0.090	0.107	0.128	
GPA6	0.025	0.055	0.089	0.111	0.119	0.142

- Disadvantages:
 - no time variable
 - no time varying covariates
 - listwise deletion
- No direct test for "change", but can use a contrast

Categorical

 H_0 : all means are equal ($\mu_0 = \mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$)

H₁: not all means are equal

Linear

H₀: there isn't linear relation between *GPA* and *time*

H₁: there is a linear relation between *GPA* and *time*

MANOVA significance tests on GPA example data							
Effect tested:	F	df	p				
GPA (categorical)	4.53	5/193	.001				
GPA (linear trend)	12.77	1/197	.000				
HighGPA	9.16	1/197	.003				
sex	7.23	1/197	.000				

- H_0 : there isn't a relation between *GPA* and *sex* H_1 : there is a relation between *GPA* and *sex*
- H₀: there isn't relation between GPA and HighGPA
 H₁: there is a positive relation between GPA and HighGPA

MANOVA significance tests on GPA example data			
Effect tested:	F	df	p
GPA (categorical)	4.53	5/193	.001
GPA (linear trend)	12.77	1/197	.000
HighGPA	9.16	1/197	.003
sex	7.23	1/197	.000

Multilevel Repeated Measures

$$GPA_{it} = \pi_{0i} + \pi_{1i} Time + \pi_{2i} T1_{it} + \pi_{3i} T2_{it} + \pi_{4i} T3_{it} + \pi_{5i} T4_{it} + \pi_{6i} T5_{it} + \pi_{7i} T6_{it}$$

$$\pi_{0i} = \beta_{00}$$

$$\pi_{1i} = \beta_{10}$$

$$\pi_{2i} = 0 + u_{2t}$$

$$\pi_{3i} = 0 + u_{3t}$$

$$\vdots$$

$$\pi_{7i} = 0 + u_{7t}$$

- This model can be used to model a linear trend with multilevel regression.
 - Not saturated like the MANOVA model
- · Build in to certain software packages.

Multilevel Repeated Measures

- Many more possibilities for residual (co)variance structure!
- Observations closer in time more highly correlated?

$$\Sigma(\mathbf{Y}) = \frac{\sigma_{\varepsilon}^{2}}{(1 - \rho^{2})} \begin{pmatrix} 1 & \rho & \rho^{2} & \dots & \rho^{k-1} \\ \rho & 1 & \rho & \dots & \rho^{k-2} \\ \rho^{2} & \rho & 1 & \dots & \rho^{k-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \rho^{k-1} & \rho^{k-2} & \rho^{k-3} & \dots & 1 \end{pmatrix}.$$

$$\Sigma(\mathbf{Y})\sigma_{\varepsilon}^{2} \begin{pmatrix} 1 & \rho_{1} & \rho_{2} & \dots & \rho_{k-1} \\ \rho_{1} & 1 & \rho_{1} & \dots & \rho_{k-2} \\ \rho_{2} & \rho_{1} & 1 & \dots & \rho_{k-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \rho_{k-1} & \rho_{k-2} & \rho_{k-3} & \dots & 1 \end{pmatrix}.$$

$$\Sigma(\mathbf{Y})\sigma_{e}^{2} \begin{pmatrix} 1 & \rho_{1} & \rho_{2} & \dots & \rho_{k-1} \\ \rho_{1} & 1 & \rho_{1} & \dots & \rho_{k-2} \\ \rho_{2} & \rho_{1} & 1 & \dots & \rho_{k-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \rho_{k-1} & \rho_{k-2} & \rho_{k-3} & \dots & 1 \end{pmatrix}.$$

Toeplitz

AR

Multilevel Repeated Measures

 Or, add a random slope!!! (another reason to not use the step-wise modelbuilding approach!)

$$\operatorname{var}(Y_t) = \sigma_{u_0}^2 + \sigma_{u_{01}}(t - t_0) + \sigma_{u_1}^2(t - t_0) + \sigma_e^2,$$

$$cov(Y_t, Y_s) = \sigma_{u_0}^2 + \sigma_{u_{01}}[(t - t_0) + (s - s_0)] + \sigma_{u_1}^2(t - t_0)(s - s_0)$$

One type of model used is the AR model

How could you run an AR-model using tools you already know?

• Can run an AR model with multilevel regression too!

$$Y_t = b_0 + b_1 Y_{t-1} + \epsilon$$

• Can run an AR model with multilevel regression too!

$$Y_t = b_0 + b_1 Y_{t-1} + \epsilon$$

$$Y = b_0 + b_1 X + \epsilon$$

$$Y_t = b_0 + b_1 Y_{t-1} + \epsilon_t$$

 b_0 = Long run tendency \rightarrow Think "mean".

 b_1 = Autoregressive parameter \rightarrow inertia.

 ϵ_t = Residual/Innovation \rightarrow All variation that can not be predicted by previous measurement.

$$Y_{it} = b_{0i} + b_{1i}Y_{i,t-1} + \epsilon_{it}$$

- Couple of things:
 - The intercept is not the mean!

$$\mu = \frac{b_o}{1 - b_1^2}$$

- To get the mean you need to group-mean center the lagged predictor $Y_{i,t-1}$
- This model assumes there is no trend! If there is, remove it first!!

 Will often be interested in (longitudinal) relation between two or more variables

This is called a VAR model

$$\begin{bmatrix} Y_t \\ X_t \end{bmatrix} = \begin{bmatrix} b_{Y0} \\ b_{X0} \end{bmatrix} + \begin{bmatrix} b_{Y1} & b_{XY} \\ b_{YX} & b_{X1} \end{bmatrix} \begin{bmatrix} Y_{t-1} \\ X_{t-1} \end{bmatrix} + \begin{bmatrix} \epsilon_{Yt} \\ \epsilon_{Xt} \end{bmatrix}$$

 b_{Y0}/b_{X0} = Long run tendency \rightarrow Think "mean".

 b_{Y1}/b_{X1} = Autoregressive parameter \rightarrow inertia.

 b_{YX}/b_{XY} = Cross-lagged effects.

 $\epsilon_{Yt}/\epsilon_{Xt}$ = Residual/Innovation \rightarrow All variation that can not be predicted by previous measurement.

$$\begin{bmatrix} Y_t \\ X_t \end{bmatrix} = \begin{bmatrix} b_{Y0} \\ b_{X0} \end{bmatrix} + \begin{bmatrix} b_{Y1} & b_{XY} \\ b_{YX} & b_{X1} \end{bmatrix} \begin{bmatrix} Y_{t-1} \\ X_{t-1} \end{bmatrix} + \begin{bmatrix} \epsilon_{Yt} \\ \epsilon_{Xt} \end{bmatrix}$$

This model is very close to the longitudinal network models you see in the literature!

- Only real difference is the estimation method
 - Networks not really multilevel
 - Inference is hard, more descriptive
 - But, scale better to larger data sizes.

- Remember change is multifaceted and can appear in many places/ways.
- Intensive Longitudinal Data well suited for certain types of change/differences.
 - Which ones again?

- Still did not consider all types of change/differences!
 - Residual variances can differ between people and change across time.
 - This implies there is no such thing as reliability!
 - Reliability changes across individuals and time!

- Still did not consider all types of change/differences!
 - Residual variances can differ between people and change across time.
 - This implies there is no such thing as reliability!
 - Reliability changes across individuals and time!
- And, to make it really meta:
- If inertia/stability can change, then can that change in stability also change and/or differ between individuals?

- Change is everywhere and people can differ in many, many ways!
- To capture some of these ways, you need to look really "intensively" (i.e., moment to moment).
- For others you don't!!!

Practical 7

ESM: Current Issues

Experience Sampling

What do you think are some of the difficulties EMA studies pose?

Experience Sampling

- Drop-out.
- Missed measurements.
- Measurement(!! ...here be monsters).
- Time-scale/lag.
- Timing (fixed interval or randomly timed).

Experience Sampling

- Drop-out.
- Missed measurements.
- Measurement(!! ...here be monsters).
 - Measurement always difficult.
 - Nothing works for everyone all the time.
 - NO measure designed to be administered multiple times a day.
- Time-scale/lag.
- Timing (fixed interval or randomly timed).

