

CSD2181/2183 - Data Structure

Exercises

HUA Guang (华光)

Associate Professor guang.hua@singaporetech.edu.sg

Introduction – Data Structure Exercises

- Purpose: to reinforce what you have learned and practiced in lectures.
- The exercise session is conducted face to face in class.
- It consists of a few MCQs to be solved within class.
- Limited time is given for each question (answer will be discussed afterwards).
- You are required to login to ClassPoint with your student ID.
- So, bring along your laptop or devices with Internet access.
- Attendance is compulsory and there is no make up.
- Exercises are marked considering your overall performance in the module.

Introduction – Data Structure Exercises

https://www.classpoint.app/

5.1 In a binary tree, the root node has

- A. One parent
- **B.** No parent
- C. Multiple siblings
- D. Two children
- E. B and D

5.2 What is the height of the binary tree?

- A. -1
- B. 0
- C. 1
- D. 2
- E. 3

5.3 What is the height of the left subtree?

- A. -1
- **B.** 0
- C. 1
- D. 2
- E. 3

5.4 What is the height of the right subtree?

- A. -1
- B. 0
- C. 1
- D. 2
- E. 3

5.5 What is the height of the tree?

- A. -1
- B. 0
- C. 1
- D. 2
- E. 3

5.6 Is this tree balanced?

5.7 Is this tree balanced?

A. Yes

B. No

Is this tree complete? A. Yes B. No Multiple Choice

Is this tree complete? A. Yes B. No Multiple Choice

5.10 What is the pre-order traversal of the tree?

5.11 What is the in-order traversal of the tree?

5.12 What is the post-order traversal of the tree?

5.13 Which is correct regarding the following traversals?

(1) Pre-order: 12478536

(2) In-order: 74825136

(3) Post-order: 78452631

A. (1) only

B. (2) only

C. (3) only

D. (1) and (2)

E. (1)(2)(3)

5.14 What is the height of the BST after these operations?

```
A. 2 Insert(1);
B. 3 Insert(2);
C. 4 Insert(3);
D. 5 Insert(4);
E. 6 Insert(6);
F. 7 Insert(7);
```


5.15 What is the height of the BST after these operations?

```
A. 2 Insert(4);
B. 3 Insert(2);
C. 4 Insert(5);
D. 5 Insert(3);
E. 6 Insert(1);
F. 7 Insert(7);
```


5.16 What is the worst-case time complexity of BST::find()?

- A. O(1)
- B. O(logn)
- **C. O**(n)
- D. O(nlogn)
- E. $O(n^2)$

- 5.17 In delete operation of BST, we need in-order predecessor (successor) of the to-be-deleted node if it has both non-empty left and right child. Which of the following is true?
- A. Predecessor is always a leaf node
- B. Predecessor is always either a leaf node or a node with empty left child
- C. Predecessor cannot be a parent node
- D. Predecessor is always either a leaf node or a node with empty right child

5.18 For a BST having a node with value x, after the following operations

```
Delete(root, x);
Insert(root, x);
```

- A. The resulting BST is exactly the same as the original BST
- B. The resulting BST has a different structure from the original BST
- C. The height of the resulting BST is different from the original BST
- D. A and B are possible
- E. A, B, and C are possible

$$A: X = 3$$

B:
$$X = 2$$

$$C: X = 1$$

5.19 Consider replacement by predecessor, what is the height of the BST after the following operations?

Delete(root, 6);
Delete(root, 7);

- A. 2
- B. 3
- C. 4
- D. 5
- E. 6

5.20 Is the BST after right rotation about the root node a balanced BST?

A. Yes

B. No

The End