Julian M. Urban, Ph.D.

Research Scientist, Machine Learning

Postdoctoral Associate at MIT

SUMMARY

Seminar, Institute for Nuclear Theory

Seminar, Applied Mathematics

Computational physicist with 7 years of experience in designing machine learning models and stochastic sampling algorithms for the simulation of complex systems and statistical analysis of large datasets. Pioneering applications of modern probabilistic modeling techniques in computational quantum field theory research with a focus on generative neural networks and Gaussian process regression. Leading and contributing to scientific software projects in interdisciplinary collaborations with researchers from academia and industry, ranging from the development of reference libraries for statistical inference methods to the implementation of highly parallelized simulations powered by deep learning and deployed on exascale HPC platforms with thousands of GPUs.

✓ jurban@mit.edu jmurban@pm.me lettucefield.org **4** +1 617 401 5278

github.com/julian-urban Boston, USA

EXPERTISE

Probabilistic modeling, statistical inference, Conceptual

stochastic processes, MCMC algorithms,

numerical optimization

Proficient: scientific Python (numerical / ML **Programming**

libraries including PyTorch, NumPy, SciPy) Basics: C++, Bash, PHP, SQL, Mathematica

U Washington

UC Berkeley

Technologies GNU/Linux, HPC scheduling (Slurm, PBS),

AIMHub, Git, Jupyter, Emacs

Languages English, German (native)

PROJECTS -

Generative Modeling for Lattice QCD: Collaboration with Google DeepMind to build large neural network architectures for the generative modeling and stochastic sampling of complex data distributions found in lattice quantum chromodynamics research.

Bayesian Fredholm Inversion: Developing the fredipy package for solving heavily ill-conditioned linear inverse problems probabilistically using advanced Gaussian process regression and numerical optimization techniques.

Topological Data Analysis: Extracting stable features from high-dimensional noisy data using persistent homology.

ACADEMIC POSIT	IONS		
2022 - current	Postdoctoral Associate, Center for Theoretical Physics	MIT	
2021 - 2022	Research Affiliate, Laboratory for Nuclear Sciences	MIT	
2020 - 2022	Research and Teaching Assistant, Institute for Theoretical Physics	U Heidelberg	
EDUCATION —			
2018 - 2022	Ph.D., Machine learning for computational quantum field theory	U Heidelberg	
2015 - 2018	M.Sc., Machine learning for computational quantum field theory	U Heidelberg	
2012 - 2015	B.Sc., Detector physics for collider experiments	U Heidelberg	
NON-ACADEMIC WORK			
2010 - 2013	Software Developer, Web/Database Applications	DLI Trier	
SELECTED PUBLIC	CATIONS —		
arXiv:2203.01243	Flow-based density of states for complex actions	Phys.Rev.D	
arXiv:2107.13464	Reconstructing QCD spectral functions with Gaussian processes	Phys.Rev.D	
arXiv:2003.01504	Towards novel insights in lattice field theory with explainable machine learning	Phys.Rev.D	
arXiv:1811.03533	Reducing autocorrelation times in lattice simulations with generative adversarial networks	Mach.Learn.Sci.Tech.	
INVITED TALKS			
11/2023	Workshop, Large-scale lattice QCD simulation and application of machine learning	U Tsukuba	
9/2023	Conference, European network for particle physics, lattice field theory and extreme compu	ting HU Berlin	

5/2023

3/2023

MISCELLANEOUS ————————————————————————————————————			
Contributor	Found and fixed a high priority issue in torch.distributions.von_mises.VonMises	GitHub/PyTorch	
Organizer	Organized an interdisciplinary workshop on Machine Learning and the Renormalization Group	ECT* Trento	
Mentor	Advised students on five Bachelor's and four Master's thesis projects during Ph.D.	U Heidelberg	