Séries numériques (4)

J. Ribault

4 novembre 2016

QCM

Soit $\sum u_n$ une série numérique.

Si
$$u_n \xrightarrow[n \to +\infty]{} 0$$
 alors $\sum u_n$ est convergente.

- VRAI
- FAUX

QCM

Soient $M \in \mathbb{R}$ et $\sum u_n$ une série numérique.

Si $\sum u_n$ est divergente alors $\sum Mu_n$ est divergente.

- VRAI
- FAUX

QCM

Soit $\sum u_n$ une série numérique à termes positifs telle que :

$$nu_n \xrightarrow[n \to +\infty]{} +\infty$$

- $\sum u_n$ est convergente
- $\sum u_n$ est divergente
- On ne peut pas conclure sur la nature de $\sum u_n$.

QCM

Soit $\sum u_n$ une série numérique à termes positifs telle que :

$$nu_n \xrightarrow[n \to +\infty]{} 0$$

- $\sum u_n$ est convergente
- $\sum u_n$ est divergente
- On ne peut pas conclure sur la nature de $\sum u_n$.

QCM

Soit $\sum u_n$ une série numérique à termes positifs telle que :

$$nu_n \xrightarrow[n \to +\infty]{} 1$$

- $\sum u_n$ est convergente
- $\sum u_n$ est divergente
- On ne peut pas conclure sur la nature de $\sum u_n$.

$$\sum_{n\geqslant 2} \frac{1}{(\ln n)^2} \text{ est}$$

- convergente
- divergente

QCM

$$\sum_{n\geqslant 2}\frac{1}{n\ln n} \text{ est }$$

- convergente
- divergente

QCM

$$\sum_{n\geqslant 2} \frac{1}{n(\ln n)^2} \text{ est }$$

- convergente
- divergente

QCM

Soient $\sum u_n$ et $\sum v_n$ deux séries à termes positifs telles que :

- $\bullet \ u_n = \mathop{O}_{+\infty}(v_n).$
- $\sum v_n$ est divergente
- $\sum u_n$ est convergente
- $\sum u_n$ est divergente
- ullet on ne peut pas conclure sur la nature de $\sum u_n$.

Séries numériques de références

- Séries géométriques
- Séries télescopiques
- Series de Riemann
- Séries de Riemann alternées
- Séries de Bertrand

Critères de convergence ou de divergence

- Critère grossier de divergence
- Critère spécial pour les séries alternées
- Critères de comparaison pour les séries à termes positifs
 - Comparaison à une intégrale
 - critère « $0 \leqslant u_n \leqslant v_n$ »
 - critère « $u_n = O(v_n)$ »
 - critère « $u_n \sim v_n$ »
 - ullet critère « $n^{\alpha}u_n$ »
 - règle de Cauchy
 - règle de d'Alembert

Exercice

Étudier la nature de
$$\sum_{n\geqslant 2}u_n$$
, avec : $u_n=\frac{(-1)^n}{(-1)^n+\ln n}$

On remarque que $\sum u_n$ n'est pas à termes de signe constant.

• $\sum |u_n|$ est une série à termes positifs.

•
$$|u_n| = \frac{1}{(-1)^n + \ln n} \sim \frac{1}{1 \ln n}$$
.

La série $\sum \frac{1}{\ln n}$ est une série de Bertrand avec $\alpha=0<1$ (et $\beta=1)$,

elle est donc divergente.

On déduit du critère « $u_n \sim v_n$ » que $\sum |u_n|$ est divergente.

On en déduit que $\sum u_n$ n'est pas **absolument convergente**.

- $\sum_{n\geqslant 3}u_n$ est une série alternée. La suite $(|u_n|)_{n\geqslant 3}$ n'est pas décroissante. On ne peut pas appliquer le critère des séries alternées.
- On peut faire un développement asymptotique de u_n et conclure...

Développement asymptotique de u_n avec un reste en « grand O »

$$\forall n \ge 2 , u_n = \frac{(-1)^n}{\ln n} \times \frac{1}{1 + \frac{(-1)^n}{\ln n}}$$
$$= \frac{(-1)^n}{\ln n} \left(1 + \frac{(-1)^n}{\ln n}\right)^{-1}$$

Or:

$$\begin{array}{c} \frac{(-1)^n}{\ln n} \xrightarrow[n \to +\infty]{} 0 \\ (1+x)^{-1} = 1 + \mathop{O}_{0}(x) \end{array} \right\} \ \ \mathrm{donc} \ \ \left(1 + \frac{(-1)^n}{\ln n}\right)^{-1} = 1 + \mathop{O}_{+\infty}\left(\frac{1}{\ln n}\right)$$

Donc :

$$u_n = \frac{(-1)^n}{\ln n} \left(1 + O_{+\infty} \left(\frac{1}{\ln n} \right) \right)$$
$$= \frac{(-1)^n}{\ln n} + O_{+\infty} \left(\frac{1}{(\ln n)^2} \right)$$

On remarque que $\sum \frac{1}{(\ln n)^2}$ est une série de Bertrand avec $\alpha=0<1$ (et $\beta=2$).

Elle est donc divergente.

On ne peut donc pas conclure sur la nature de $\sum_{+\infty}^{O} \left(\frac{1}{(\ln n)^2}\right)$. Si on poursuit le DA avec un reste en « grand O », on obtient :

$$u_n = \ldots + \mathop{O}_{+\infty} \left(\frac{1}{(\ln n)^k} \right)$$

Or, $\sum \frac{1}{(\ln n)^k}$ est divergente,

on ne peut donc pas conclure sur la nature de $\sum_{+\infty}^{O} \left(\frac{1}{(\ln n)^k}\right)$.

15/1

Développement asymptotique de u_n avec un reste en « petit o »

$$\begin{array}{c} \frac{(-1)^n}{\ln n} \underset{n \to +\infty}{\longrightarrow} 0 \\ (1+x)^{-1} = 1 - x + \underset{0}{o}(x) \end{array} \right\} \ \mathrm{donc} \ \left(1 + \frac{(-1)^n}{\ln n}\right)^{-1} = 1 - \frac{(-1)^n}{\ln n} + \underset{+\infty}{o}\left(\frac{1}{\ln n}\right)$$

Donc:

$$u_n = \frac{(-1)^n}{\ln n} \left(1 - \frac{(-1)^n}{\ln n} + o \left(\frac{1}{\ln n} \right) \right)$$
$$= \underbrace{\frac{(-1)^n}{\ln n}}_{=v_n} - \underbrace{\frac{1}{(\ln n)^2} + o \left(\frac{1}{(\ln n)^2} \right)}_{=w_n}$$

On a : $u_n = v_n - w_n$.

16/19

$\sum v_n$ est convergente :

- $\sum v_n$ est une série alternée
- $(|v_n|)$ est décroissante
- $\bullet |v_n| \xrightarrow{+\infty} 0$

On déduit du critère spécial sur les séries alternées que $\sum v_n$ est convergente.

$\sum w_n$ est divergente :

$$w_n = \frac{1}{(\ln n)^2} + \mathop{o}_{+\infty}\left(\frac{1}{(\ln n)^2}\right), \text{ donc } w_n \underset{+\infty}{\sim} \frac{1}{(\ln n)^2}.$$

$$\sum \frac{1}{(\ln n)^2} \text{ est une série à termes positifs.}$$

On déduit du critère « $u_n \sim v_n$ » que

les séries $\sum w_n$ et $\sum \frac{1}{(\ln n)^2}$ sont de même nature.

Or $\sum \frac{1}{(\ln n)^2}$ est une série de Bertrand avec $\alpha=0<1$ (et $\beta=2$).

Elle est donc divergente.

Donc $\sum w_n$ est divergente.

CONCLUSION

- $u_n = v_n w_n$ (au vois. de $+\infty$)
- ullet $\sum v_n$ est convergente
- $\sum w_n$ est divergente

On en déduit que $\sum u_n$ est divergente.