1 Dodatna intuicija ekstremov funkcije na omejenem območju

Za boljšo intuicijo ekstremov funkcije na omejenem območju, si oglejmo zelo enostaven primer:

Zanimajo nas ekstremi funkcije $f(x,y) = x^2 + y^2$, na območju \mathcal{D} , ki ga podaja $x^2 + y^2 \leq 1$.

Kandidat za ekstrem, ki ga dobimo iz $\nabla f(x,y) = (0,0)$ je T(0,0). S Hessejevo matriko (ali pa s premislekom) bi lahko preverili, da je to lokalni (celo globalni) minimum f(x,y) na \mathbb{R}^2 . Seveda je potem to tudi lokalni minimum, če se omejimo na $A \subset \mathbb{R}^2$, ki vsebuje T(0,0) (tu se omejimo na dovolj "lepe" A, ne pa npr. $A = \{T(0,0)\}$). To da so ostale kandidati na robu območja je lepo razvidno iz spodnje slike. Na robu ima funkcija konstantno vrednost f(x,y) = 1. Na območju ima torej f(x,y) minimum v (x,y) = (0,0) in maskimum na $x^2 + y^2 = 1$.

Funkcija $f(x,y)=x^2+y^2$, kjer ekstreme iščemo na oranžno pobarvanem območju. Ekstremi so označeni z rdečo barvo.

Poglejmo še ekstreme $f(x,y) = x^2 + y^2$ na območju \mathcal{D}_2 , ki ga podaja $1 \ge x \ge 2, 1 \ge y \ge 2$. Lokalni minimum (0,0) je tokrat izven območja \mathcal{D}_2 , torej so edini kandidati za ekstreme na robu \mathcal{D}_2 . Na robu x = 1 velja $f(1,y) = 1 + y^2$, kar ima neničelen odvod na \mathcal{D}_2 in so kandidati le (1,1) in (1,2). Na robu x = 2 podobno velja $f(2,y) = 4 + y^2$ in so kandidati le (2,1) in (2,2) Čisto simetrično imamo na robovih y = 1, y = 2, kar da iste kandidate. Z izračunom se prepričamo, da je minimum le v točki (1,1) maksimum pa v (2,2). Situacija je prikazana na spodnji sliki

Funkcija $f(x,y)=x^2+y^2$, kjer ekstreme iščemo na oranžno pobarvanem območju. Ekstremi so označeni z rdečo barvo.