Description of Algorithm for DL Support Set Computation

- 1. construction of a TBox classification: Parse ontology and for each triple in it, add the respective fact to ASP program *P*.
 - C rdf:type owl:Class: op(C,negC), sub(C,C)
 - R rdf:type owl:ObjectProperty: op(R,negR), sub(R,R), op(exR,negexR), sub(exR,exR)
 - C rdf:type owl:subClassOf D: sub(C,D)
 - R rdf:type owl:subPropertyOf Q: sub(R,Q)
 - C owl:disjointWith D: sub(C,negD)
 - R owl:propertyDisjointWith Q: sub(R,negQ)
 - R rfds:domain Q: sub(exR,Q)

```
Further rules for P are: sub(X,Z):-sub(X,Y),sub(Y,Z).
```

sub(Y',X'):-op(X,X'),op(Y,Y'),sub(X,Y).

conf(X,Y):-op(X,Y),sub(X,Y).

op(X,Y):-op(Y,X).

There will be a unique answer set of P, let it call A.

- 2. Given an external atom $cDL[c^+, c^-, r^+, r^-, Q](X)$ (concept query) and maximal extensions of its input predicates, construct a set of support sets S for it in the following way. Compute all unary support sets:
 - for each $c^+(C, X)$:

If Tsub(C,Q) is in A, then add $Tc^+(C,X)$ to S;

If conf(C,C) is in A, then add $Tc^+(C,Y)$ to S;

• for each $c^-(C, X)$:

If sub(negC,Q) is in A, then add $Tc^{-}(C,X)$ to S;

• for each $r^+(R, X, Y)$:

If sub(exR,Q) is in A, then add $Tr^+(R, X, Y)$ to S;

• for each $r^-(R, X, Y)$:

If sub(negexR,Q) is in A, then add $Tr^{-}(R, X, Y)$ to S;

• add Q(X) to S;

Compute all support sets where the set of input predicates is empty:

- If sub(C,Q) is in A, then
 - * if C is of form exR, add R(X,Y) to S;
 - * otherwise add C(X) to $\mathcal S$

Compute binary support sets:

• for each $c^+(C,X)$:

If Tsub(C,C') is in A then add $\{Tc^+(C,Y), negC'(Y)\}$ to S. If $c^-(C',Y)$ occurs in the maximal interpretation, then add $\{Tc^+(C,Y), Tc^-(C',Y)\}$.

• for each $r^+(R, x, y)$:

If Tsub(exR,C) is in A then add $\{Tr^+(R,X,Y), negC(X)\}$ to S; If Tsub(R,R') is in A then add $\{Tr^+(R,X,Y), negR'(X,Y)\}$ to S;