

Nonlinear and data-driven model predictive control

Prof. Dr.-Ing. Matthias Müller

EECL Course 2023

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

1 / 96

Stability in Model Predictive Control | MPC without terminal constraints

Setting

Goal: Guarantee stability and degree of suboptimality without stabilizing terminal constraints and cost

Problem setup

System dynamics: $\dot{x} = f(x, u), \quad x(0) = x_0$

 $u \in \mathcal{U} \subseteq \mathbb{R}^m$ Input constraints:

For simplicity, no state constraints (but extensions exist)

Recall standing assumptions:

- $f(0,0) = 0 \Rightarrow x_s = 0$ is equilibrium state for $u_s = 0$
- \mathcal{U} is compact
- $0 \in \operatorname{int}(\mathcal{U})$

Part 1: Stability in Model Predictive Control

- 1 Zero-terminal constraint MPC: taught by Prof. Frank Allgöwer
- 2 Quasi-infinite horizon MPC: taught by Prof. Frank Allgöwer
- 3 MPC without terminal constraints

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

Stability in Model Predictive Control | MPC without terminal constraints

Stability in Model Predictive Control Motivating examples

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -x_1 \left(\frac{\pi}{2} + \arctan(5x_1)\right) + 4x_2$$

$$-\frac{5x_1^2}{2(1+25x_1^2)} + 3u$$

[Primbs et al. '00]

- unstable for T=0.2
- stable for T = 0.3
- unstable for T=0.5

[Raff et al. '06]

- Open-loop stable system
- unstable for T = 60 s
- stable for T=129 s

Need to choose prediction horizon suitably in order to guarantee stability without terminal constraints

MPC problem

Finite-horizon cost functional: $J_T(x(t), \bar{u}(\cdot;t)) = \int\limits_t^{t+T} L(\bar{x}(\tau;t), \bar{u}(\tau;t)) d\tau$

MPC problem (MPC without terminal constraints)

MPC input:

$$u(\tau):=\bar{u}^*(\tau;t_i) \qquad \tau\in[t_i,t_i+\delta)$$
 with sampling time instants $t_i=i\delta\Rightarrow t_{i+1}=t_i+\delta$

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

7 / 96

eibniz Iniversität Cuboptimality Inde

l l Leibniz l O 2 Universität

Suboptimality Index

Stability in Model Predictive Control | MPC without terminal constraints

Infinite-horizon cost functional: $J_{\infty}(x_0, \bar{u}(\cdot; 0)) = \int_0^{\infty} L(\bar{x}(\tau; 0), \bar{u}(\tau; 0)) d\tau$ \sim optimal cost $J_{\infty}^*(x_0)$

Assumption: $J_{\infty}^{*}(x_{0}) < \infty$ for all x_{0} (system stabilizable)

Infinite-horizon cost resulting from application of MPC controller:

$$J_{\infty}^{\mathrm{MPC}}(x_0) = \int\limits_0^{\infty} L(x(\tau), u(\tau)) d\tau \qquad \text{with } x(0) = x_0$$

Definition: Suboptimality Index α

$$\alpha J_{\infty}^{\mathsf{MPC}}(x_0) \le J_{\infty}^*(x_0)$$

- $\rightarrow \alpha \leq 1$ by definition
- $\rightarrow \alpha > 0$ implies closed-loop stability

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

8 / 96

Stability in Model Predictive Control | MPC without terminal constraints

Relaxed Dynamic Programming

Proposition 1.1: Relaxed Dynamic Programming

Assume there exists $\alpha \in (0,1]$ such that

$$J_T^*(x(t+\delta)) \le J_T^*(x) - \alpha \int_t^{t+\delta} L(x(\tau), u(\tau)) d\tau$$
 (1)

holds for all $x \in \mathbb{R}^n$ (with x(t) = x). Then the estimate

$$\alpha J_{\infty}^*(x) \leq \alpha J_{\infty}^{\mathsf{MPC}}(x) \leq J_T^*(x) \leq J_{\infty}^*(x)$$

holds for all $x \in \mathbb{R}^n$.

Stability in Model Predictive Control | MPC without terminal constraints

Proof of Proposition 1.1

- 1st and 3rd inequality: Due to optimality
- 2nd inequality: Summing up (1) over all sampling instants $t_i = \delta i$, $i = 1, \dots, N$ gives

$$0 \le J_T^*(x(N\delta)) \le J_T^*(x_0) - \alpha \int_0^{N\delta} L(x(\tau), u(\tau)) d\tau$$

$$\sim N \to \infty: \quad J_T^*(x_0) \ge \alpha J_\infty^{\mathsf{MPC}}(x_0)$$

Stability in Model Predictive Control | MPC without terminal constraints

Abbreviation: $L^*(t;t_i) := L(\bar{x}^*(t;t_i),\bar{u}^*(t;t_i))$

$$J_T^*(x(t_i+\delta)) \le \frac{1}{\varepsilon} \int_{t_i+\delta}^{t_i+T} L^*(t;t_i)dt$$
 (2)

$$\int_{t_i+\delta}^{t_i+T} L^*(t;t_i)dt \le \gamma \int_{t_i}^{t_i+\delta} L^*(t;t_i)dt$$

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

11 / 9

Stability in Model Predictive Control | MPC without terminal constraints

Asymptotic stability and suboptimality

Theorem 1.2: Asymptotic stability and suboptimality

Assume there exists $\varepsilon \in (0,1]$ and $\gamma > 0$ such that (2) and (3) hold.

Then

$$J_T^*(x(t_i+\delta)) - J_T^*(x(t_i)) \le -\alpha \int_{t_i}^{t_i+\delta} L^*(\tau;t_i)d\tau,$$

with $\alpha = 1 - \gamma \frac{1-\varepsilon}{\varepsilon}$.

Furthermore, the estimate $\alpha J_{\infty}^{\mathsf{MPC}}(x) \leq J_{\infty}^*(x)$ holds and asymptotic stability of the closed loop is guaranteed for $\alpha > 0$.

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

12 / 96

Stability in Model Predictive Control | MPC without terminal constraints

Proof of Theorem 1.2

$$J_T^*(x(t_i + \delta)) - J_T^*(x(t_i)) = J_T^*(x(t_i + \delta)) - \int_{t_i}^{t_i + T} L^*(\tau; t_i) d\tau$$

$$\stackrel{(2)}{\leq} \frac{1 - \varepsilon}{\varepsilon} \int_{t_i + \delta}^{t_i + T} L^*(\tau; t_i) d\tau - \int_{t_i}^{t_i + \delta} L^*(\tau; t_i) d\tau$$

$$\stackrel{(3)}{\leq} \underbrace{\left(\gamma \frac{1 - \varepsilon}{\varepsilon} - 1\right)}_{t_i} \int_{t_i}^{t_i + \delta} L^*(\tau; t_i) d\tau$$

- → Suboptimality by Proposition 1.1 (Relaxed Dynamic Programming)
- \rightarrow Asymptotic stability from Lyapunov arguments and Barbalat's Lemma (for $\alpha>0)$

13 / 96

Stability in Model Predictive Control | MPC without terminal constraints

Asymptotic controllability

. Universität Hannover

Next: How can ε and γ be computed?

Assumption 1.3: Asymptotic controllability

For all x, there exists a (piece-wise continuous) input trajectory $\hat{u}_x(\cdot)$ with $\hat{u}_x(t) \in \mathcal{U}$ for all $t \geq 0$ such that

$$L(\hat{x}(t), \hat{u}_x(t)) \le \beta(t) \min_{u \in \mathcal{U}} L(x, u)$$
 for all $t \ge 0$

with $\beta: \mathbb{R} \to \mathbb{R}^+$

- continuous and positive
- strictly decreasing with $\lim_{t\to\infty}\beta(t)=0$
- $\int_{0}^{\infty} \beta(\tau) d\tau < \infty$

$$\rightarrow$$
 denote $B(t) = \int_{0}^{t} \beta(\tau) d\tau$

Notation: $\hat{x}(\cdot)$ is the trajectory starting at initial condition x and resulting from application of $\hat{u}_x(\cdot)$

Typical example

$$\beta(t) = C e^{-\lambda t}, \qquad \begin{array}{c} C \geq 1: & \text{overshoot constant} \\ \lambda > 0: & \text{decay rate} \end{array}$$

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

15 / 96

Stability in Model Predictive Control | MPC without terminal constraints

Consequences of Asymptotic Controllability I

Lemma 1.4

Let Assumption 1.3 hold. Then the inequality

$$\underline{J_T^*(x(t_i+\delta))} \le \int_{t_i+\delta}^{t_i+t} L^*(\tau;t_i)d\tau + \underline{B(T+\delta-t)L^*(t_i+t;t_i)}$$
(4)

holds for all $t \in [\delta, T]$.

optimal trajectory calculated

optimal trajectory calculated at $t_i + \delta$

trajectory generated by $\hat{u}_{x'}(\cdot)$

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

16 / 96

Stability in Model Predictive Control | MPC without terminal constraints

Proof of Lemma 1.4

Consider

$$\bar{u}(\tau; t_i + \delta) = \begin{cases} \bar{u}^*(\tau; t_i) & \tau \in [t_i + \delta, t_i + t] \\ \hat{u}_{x'}(\tau - t_i - t) & \tau \in (t_i + t, t_i + \delta + T] \end{cases}$$

$$\Rightarrow J_T^*(x(t_i+\delta)) \leq \bar{J}_T(x(t_i+\delta))$$

$$= \int_{t_i+\delta}^{t_i+t} L^*(\tau;t_i)d\tau + \int_{t_i+t}^{t_i+\delta+T} L(\hat{x}(\tau-t_i-t), \hat{u}_{x'}(\tau-t_i-t))d\tau$$

$$\leq \int_{t_i+\delta}^{t_i+t} L^*(\tau;t_i)d\tau + L^*(t_i+t;t_i) \int_{0}^{T+\delta-t} \beta(\tau)d\tau$$

$$= \int_{t_i+\delta}^{t_i+t} L^*(\tau;t_i)d\tau + B(T+\delta-t)L^*(t_i+t;t_i)$$

Stability in Model Predictive Control | MPC without terminal constraints

Consequences of Asymptotic Controllability II

Lemma 1.5

Let Assumption 1.3 hold. Then the inequality

$$\int_{t_{i}+t}^{t_{i}+T} L^{*}(\tau;t_{i})d\tau \le B(T-t)L^{*}(t_{i}+t,t_{i})$$
(5)

holds for all $t \in [0, T]$.

Proof: Similar to proof of Lemma 1.4.

18 / 96

How to calculate ε and γ

Ways to calculate ε and γ

- 1 Directly from (4) and (5)
- 2 Via an infinite-dimensional linear program
- 1.1 From (4): $J_T^*(x(t_i+\delta)) \le \min_{t \in [\delta,T]} \left\{ \int_{t_i+\delta}^{t_i+t} L^*(\tau;t_i)d\tau + B(T+\delta-t)L^*(t_i+t;t_i) \right\}$ $\leq \int L^*(\tau;t_i)d\tau + B(T) \min_{t \in [\delta,T]} L^*(t_i + t;t_i)$ $\leq \int_{-T}^{t_i+T} L^*(\tau;t_i)d\tau + B(T)\frac{1}{T-\delta} \int_{-T}^{t_i+T} L^*(\tau;t_i)d\tau$ $=\underbrace{(1+\frac{B(T)}{T-\delta})}\int_{-\infty}^{t_i+T}L^*(\tau;t_i)d\tau$

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

19 / 96

Stability in Model Predictive Control | MPC without terminal constraints

How to calculate ε and γ

Ways to calculate ε and γ

- 1 Directly from (4) and (5)
- 1.2 From (5):

$$\int_{t_{i}+\delta}^{t_{i}+T} L^{*}(\tau;t_{i})d\tau \leq \min_{t \in [0,\delta]} \int_{t_{i}+t}^{t_{i}+T} L^{*}(\tau;t_{i})d\tau$$

$$\leq \min_{t \in [0,\delta]} \{B(T-t)L^{*}(t_{i}+t;t_{i})\}$$

$$\leq B(T) \min_{t \in [0,\delta]} L^{*}(t_{i}+t;t_{i})$$

$$\leq B(T) \frac{1}{\delta} \int_{t_{i}}^{t_{i}+\delta} L^{*}(\tau;t_{i})d\tau$$

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

20 / 96

Stability in Model Predictive Control | MPC without terminal constraints

How to calculate ε and γ

- 1 Directly from (4) and (5)
- 2 Via an infinite-dimensional linear program

Want to compute ε such that (from (2)) $\varepsilon \leq \frac{\int_{t_i+\delta}^{t_i+T} L^*(\tau;t_i)d\tau}{\int_{-1}^{\infty} (\tau(t_i+\delta))}$ Idea: Minimize

$$\varepsilon = \min_{L_{t_i}(\cdot), J_T^*(x(t_i+\delta))^{-1}} \frac{\int_{\delta}^T L_{t_i}(\tau) d\tau}{J_T^*(x(t_i+\delta))^{-1}}$$
(6)

subject to (from (4)) $J_T^*(x(t_i+\delta)) \le \int_s^t L_{t_i}(\tau)d\tau + B(T+\delta-t)L_{t_i}(t) \quad \forall t \in [\delta, T]$ $0 < L_{t}(t)$

Due to linearity in L_{t_i} , set (without loss of generality) $J_T^*(x(t_i+\delta))=1$.

Stability in Model Predictive Control | MPC without terminal constraints

How to calculate ε and γ

Ways to calculate ε and γ

- 1 Directly from (4) and (5)
- 2 Via an infinite-dimensional linear program

Want to compute ε such that (from (2)) $\varepsilon \leq \frac{\int_{t_i+\delta}^{t_i+T} L^*(\tau;t_i)d\tau}{J^*(\tau;t_i+\delta)}$ Idea: Minimize

$$\varepsilon = \min_{L_{t_i}(\cdot)} \int_{\delta}^{T} L_{t_i}(\tau) d\tau \tag{6}$$

subject to (from (4))

$$1 \le \int_{\delta}^{t} L_{t_i}(\tau) d\tau + B(T + \delta - t) L_{t_i}(t) \quad \forall t \in [\delta, T]$$

$$0 \le L_{t_i}(t)$$

$$(7)$$

 $\rightarrow \underbrace{\mathsf{infinite\text{-}dimensional}}_{L_{t_i}}, \underbrace{\mathsf{linear}}_{\mathsf{in}} \ \mathsf{problem}$

How to calculate ε and γ

Ways to calculate arepsilon and γ

- 1 Directly from (4) and (5)
- 2 Via an infinite-dimensional linear program

Idea for Solution: First constraint (i.e., (7)) has to be active all the time!

Differentiate (7) w.r.t. t:

$$0 = L_{t_i}(t) + \frac{dB(T+\delta-t)}{dt}L_{t_i}(t) + B(T+\delta-t)\dot{L}_{t_i}(t)$$

$$\dot{L}_{t_i}(t) = rac{eta(T+\delta-t)-1}{B(T+\delta-t)} L_{t_i}(t)$$
, initial condition: $L_{t_i}(\delta) = rac{1}{B(T)}$

linear, time-varying ODE

Solution:
$$L_{t_i}^*(t) = \frac{1}{B(T+\delta-t)} e^{-\int\limits_{\delta}^{t} \frac{1}{B(T+\delta-\tau)} d\tau}$$

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

22 / 96

Stability in Model Predictive Control | MPC without terminal constraints

How to calculate ε and γ

l l Leibniz l o 2 Universität to 0 4 Hannover

Ways to calculate ε and γ

- 1 Directly from (4) and (5)
- 2 Via an infinite-dimensional linear program

Have to show: $L_{t_s}^*$ is a minimizer of (6), i.e.,

$$\int\limits_{\delta}^{T} L_{t_i}(\tau) d\tau \geq \int\limits_{\delta}^{T} L_{t_i}^*(\tau) d\tau \qquad \text{ for all feasible } L_{t_i}.$$

Proof by contradiction: Assume there exists $ar{L}_{t_i}$ such that

$$\int_{\delta}^{T} L_{t_i}^*(\tau) d\tau > \int_{\delta}^{T} \bar{L}_{t_i}(\tau) d\tau.$$

 \sim There exists $t \in [\delta, T]$ such that

$$\int\limits_{\delta}^{t}L_{t_{i}}^{*}(\tau)d\tau\geq\int\limits_{\delta}^{t}\bar{L}_{t_{i}}(\tau)d\tau\quad\text{and}\quad L_{t_{i}}^{*}(t)>\bar{L}_{t_{i}}(t).$$
 Institut für Regdungstechnik Leibniz Universität Hannover

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

23 / 96

Stability in Model Predictive Control | MPC without terminal constraints

How to calculate ε and γ

Ways to calculate ε and γ

- 1 Directly from (4) and (5)
- 2 Via an infinite-dimensional linear program
- \sim Since constraint (7) is active for all $t \in [\delta, T]$:

$$1 = \int_{\delta}^{t} L_{t_i}^*(\tau) d\tau + B(T + \delta - t) L_{t_i}^*(t) > \int_{\delta}^{t} \bar{L}_{t_i}(\tau) d\tau + B(T + \delta - t) \bar{L}_{t_i}(t)$$

$$1 - \int_{\delta}^{T} \frac{1}{B(T + \delta - \tau)} d\tau$$

Similarly: better estimate for γ can be obtained.

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

Stability in Model Predictive Control | MPC without terminal constraints

Suboptimality Index

Recall that

$$\alpha J_{\infty}^{\mathsf{MPC}}(x) \leq J_{\infty}^{*}(x)$$

and

$$\alpha = 1 - \gamma \frac{1 - \varepsilon}{\varepsilon}.$$

Want: $\alpha \to 1$

For $T \to \infty$: both estimates yield

$$\varepsilon \to 1$$
$$\Rightarrow \alpha \to 1$$

Comparison between MPC algorithms

Quasi-Infinite Horizon MPC

with additional terminal constraint and terminal cost

suboptimality estimate in general not possible

stability follows from initial feasibility and terminal region/controllers locally

 \rightarrow can explicitely be computed

extensions to more general (e.g., time varying) cost function not always straightforward

stability proof: feasible solution = shifted previously optimal solution and terminal controller at time T

MPC without terminal constraints

without additional terminal constraints

additional suboptimality estimate

uses controllability assumption to establish stability

→ not (easily) verifiable globally

extensions that require only local controllability exist

stability proof: feasible solution = shifted previously optimal solution and controllability input at some time $t \in [\delta, T]$

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

26 / 96

Example: Brockett-Integrator I

Stability in Model Predictive Control | MPC without terminal constraints

Brockett-Integrator:

$$\dot{x}_1(t) = u_1(t)
\dot{x}_2(t) = u_2(t)
\dot{x}_3(t) = x_1(t) u_2(t) - x_2(t) u_1(t)$$

- Jacobi linearization of the system is not asympt. stabilizable
- Not stabilizable by continuous state feedback
- Design of control Lyapunov function is a difficult task

Open-loop control input \widehat{u} defined as (here for $x_3(0) \geq 0$)

$$\widehat{u}_1(t) = \begin{cases} -x_1(0)/t_1, & 0 \le t < t_1 \\ \frac{\sqrt{2\pi x_3(0)}}{t_2} \sin(2\pi t/t_2), & t_1 \le t \le t_1 + t_2 \end{cases}$$

$$\widehat{u}_2(t) = \begin{cases} -x_2(0)/t_1, & 0 \le t < t_1 \\ \frac{\sqrt{2\pi x_3(0)}}{t_2} \cos(2\pi t/t_2), & t_1 \le t \le t_1 + t_2 \end{cases}$$

steers the system to $x(t_1 + t_2) = 0$.

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

State x

27 / 96

Stability in Model Predictive Control | MPC without terminal constraints

Example: Brockett-Integrator II

For \hat{u} and stage cost $L(x, u) = x_1^2 + x_2^2 + \nu_3 ||x_3|| + u_1^2 + u_2^2$

$$J_{T'}^*(x_0) \le J_{T'}(x_0, \widehat{u}) \le \underbrace{\left(t_1^* + \frac{3 + 2\pi\nu_3}{6\pi\nu_3}t_2^* + \frac{4\pi + \nu_3}{2\nu_3 t_2^*} + \frac{1}{\pi}\right)}_{=B_{\widehat{u}}(T') = \text{const.}} L(x_0, 0)$$

Stability guaranteed for $\nu_3 = 1, T > 23.3$ and $\nu_3 = 3, T > 15.4$.

Observation 1

Stability can be guaranteed for shorter prediction horizons if a larger ν_3 is chosen.

Taking additionally $\tilde{u} \equiv 0$ and $J_{T'}^*(x_0) \leq J_{T'}(x_0, \tilde{u}) = T' L(x_0, 0)$ into account, yields $B(T') = \min\{T', B_{\hat{u}}(T')\}$

Stability guaranteed for $\nu_3 = 1, T > 5.71$ and $\nu_3 = 3, T > 4.09$.

Observation 2

Additional information helpful for stability guarantees.

Stability in Model Predictive Control | MPC without terminal constraints Example: Brockett-Integrator III

9

State x

6 9

Time t

- Stability conditions can be conservative
- Theoretical analysis gives good guidelines for suitable controller design

MPC without terminal constraints: Summary

- ✓ Numerical efficient formulation
- Less restrictive than requirement of CLF
- ✓ Performance (*suboptimality*) estimates
- Controllability in general difficult to verify analytically
- Possibly conservative estimates on stabilizing prediction horizon

Extension: Additional weighting terms [Reble & Allgöwer '12]

- E.g. terminal cost "similar" to a CLF
- Stability guarantees for shorter prediction horizons
- ⇒ less computational demanding

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

30 /

fit Leibn

Robust tube-based MPC | Motivation and set theoretic computations

Setting

Uncertain linear discrete-time system

$$x(t+1) = Ax(t) + Bu(t) + w(t)$$

or short: $x^+ = Ax + Bu + w$

Constraints:

state constraints: $x(t) \in \mathcal{X}$

for all $t \in \mathbb{I}_{\geq 0}$

input constraints: $u(t) \in \mathcal{U}$

for all $t \in \mathbb{I}_{\geq 0}$

bound on w: $w(t) \in \mathcal{W}$

for all $t \in \mathbb{I}_{\geq 0}$

Assumptions:

- 1. ${\cal W}$ is convex, compact, and contains 0
- 2. $(0,0) \in \operatorname{int}(\mathcal{X} \times \mathcal{U})$

Typical setting in linear MPC: $\mathcal{X}, \mathcal{U}, \mathcal{W}$ polytopic

→ MPC optimization can be formulated as quadratic program (QP)

Notation: $\mathbb{I}_{>0}$: set of all integers ≥ 0

Robust tube-based MPC | Motivation and set theoretic computation

Part 2: Robust tube-based MPC

- 1 Motivation and set theoretic computations
- 2 Robust tube-based MPC
- 3 Approximations of the minimal RPI set

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

31 / 96

Robust tube-based MPC | Motivation and set theoretic computations

Main idea of tube-based MPC

Main idea: Use additional local feedback!

"real system state shall be kept in tube around nominal system state"

Nominal MPC optimization problem

Nominal system: $z^+ = Az + Bv$

MPC optimization problem for nominal model

At time t, given z(t), solve

$$\begin{split} & \underset{v(\cdot|t)}{\text{minimize}} & \quad \hat{J}(z(t), v(\cdot|t)) \\ & = \underset{v(\cdot|t)}{\text{minimize}} & \quad \sum_{k=t}^{t+N-1} L(z(k|t), v(k|t)) + F(z(t+N|t)) \\ & \text{such that} & \quad z(k+1|t) = Az(k|t) + Bv(k|t), \qquad t \leq k \leq t+N-1 \\ & \quad z(t|t) = z(t) \\ & \quad z(k|t) \in \mathbb{Z} & \quad t \leq k \leq t+N \\ & \quad v(k|t) \in \mathbb{V} & \quad t \leq k \leq t+N-1 \\ & \quad z(t+N|t) \in \mathbb{Z}^f \subseteq \mathbb{Z} \end{split}$$

 \rightarrow optimizer: $v^*(\cdot|t)$, optimal value function $\hat{J}^*(z(t))$

Notation: \hat{J} (with hat): cost functional for nominal system

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

34 / 96

Robust tube-based MPC | Motivation and set theoretic computations

Nominal MPC optimization problem

Nominal system: $z^+ = Az + Bv$

MPC optimization problem for nominal model

At time t, given z(t), solve

$$\begin{aligned} & \underset{v(\cdot|t)}{\text{minimize}} & & \hat{J}(z(t), v(\cdot|t)) \\ & = \underset{v(\cdot|t)}{\text{minimize}} & & \sum_{k=t}^{t+N-1} L(z(k|t), v(k|t)) + F(z(t+N|t)) \\ & \text{such that} & & z(k+1|t) = Az(k|t) + Bv(k|t), \qquad t \leq k \leq t+N-1 \\ & & z(t|t) = z(t) \\ & & z(k|t) \in \mathbb{Z} & t \leq k \leq t+N \\ & & v(k|t) \in \mathbb{V} & t \leq k \leq t+N-1 \\ & & z(t+N|t) \in \mathbb{Z}^f \subseteq \mathbb{Z} \end{aligned}$$

Definition: Feasible set

 $\mathbb{Z}_N := \{z(t) \in \mathbb{R}^n | \text{a feasible solution to the MPC opt. problem exists} \} \subseteq \mathbb{Z}$

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

Quadratic cost and auxiliary controller

Assumption 2.1: Quadratic cost and terminal region/cost

Cost is quadratic:
$$L(z,v) = \|z\|_Q^2 + \|v\|_R^2$$
, $Q,R > 0$

There exists a local auxiliary controller $k^{loc}(z) = Kz$ such that

(A1)
$$\mathbb{Z}^f$$
 is invariant w.r.t. $z^+ = \underbrace{(A+BK)}_{A_K} z$, i.e., $A_K \mathbb{Z}^f \subseteq \mathbb{Z}^f$

(A2) $Kz \in \mathbb{V}$ for all $z \in \mathbb{Z}^f$

(A3)
$$F(A_K z) - F(z) < -L(z, Kz)$$
 for all $z \in \mathbb{Z}^f$

As in the continuous-time case, it follows from Assumption 2.1 that

$$\hat{J}^*(z(t+1)) - \hat{J}^*(z(t)) \le -L(z(t), v(t)).$$

(see Lecture on quasi-infinite-horizon MPC)

Robust tube-based MPC | Motivation and set theoretic computations

Bounded cost

Using the particular (quadratic) cost, there exist constants $c_2 > c_1 > 0$ such that

$$c_1 \|z\|^2 \le \hat{J}^*(z) \qquad \forall z \in \mathbb{Z}_N \tag{1}$$

$$\hat{J}^*(z^+) - \hat{J}^*(z) \le -c_1 ||z||^2$$
 $\forall z \in \mathbb{Z}_N$ (2)

$$\hat{J}^*(z) \le c_2 \|z\|^2 \qquad \forall z \in \mathbb{Z}_N \tag{3}$$

Why is last inequality true?

Follows from (A3)!

$$\begin{aligned} \forall z \in \mathbb{Z}^f : \hat{J}^*(z) & \leq \hat{J}(z, Kz(\cdot)) \\ & = \sum_{i=0}^{N-1} L(z(i), Kz(i)) + F(z(N)) \\ & \overset{(A3)}{\leq} \text{ quadratic terminal cost} \\ & \leq F(z) \overset{\downarrow}{=} z^T Pz \leq \underbrace{\lambda_{\max}(P)}_{=:c_2} \|z\|^2 \end{aligned}$$

One can show that (3) holds for all $z \in \mathbb{Z}_N$ (under some technical conditions)

36 / 96

Set addition and set difference

Definition: Set addition and set difference

Minkowski set addition

$$A \oplus B := \{a + b | a \in A, b \in B\}$$

(Pontryagin) set difference $A \ominus B := \{a \in \mathbb{R}^n | a + b \in A, \forall b \in B\}$

Example 1:

Example 2:

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

37 / 96

Robust tube-based MPC | Motivation and set theoretic computations

Robust positively invariant sets I

Definition: Robust positively invariant set (RPI set)

S is called a RPI set for system

$$x^+ = Ax + w$$

iff

$$AS \oplus \mathcal{W} \subseteq S$$

(or, equivalently, $Ax + w \in S$ for all $x \in S$ and $w \in \mathcal{W}$).

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

38 / 96

Robust positively invariant sets II

Example: $x^+ = \frac{1}{2}x + w$, $||w|| \le 5$

RPI set: S = [-20, 20]

minimal RPI set: S = [-10, 10]

How to compute the minimal RPI set? Here easy to see: What is largest x such that $\frac{1}{2}x + 5 = x \rightarrow x = 10$

or:
$$S_{\infty} = \mathcal{W} \sum_{k=0}^{\infty} \left(\frac{1}{2}\right)^k = \mathcal{W} \frac{1}{1 - \frac{1}{2}} = 2\mathcal{W} = [-10, 10]$$

Robust tube-based MPC | Motivation and set theoretic computations

Minimal RPI set

Minimal RPI set

 $S_{\infty} := \sum_{i=1}^{\infty} A^{i} \mathcal{W}$

 S_{∞} is called the minimal RPI set for system $x^+ = Ax + w, w \in \mathcal{W}$.

 S_{∞} exists and is bounded if A is Schur stable (all EV in unit disc).

Why? Justification:

current state at time t: x

possible states at time t+1: $Ax \oplus \mathcal{W}$

possible states at time t+2: $A(Ax \oplus W) \oplus W = A^2x \oplus AW \oplus W$

in general at time t+j: $A^jx\oplus\sum_{i=1}^{j-1}A^k\mathcal{W}$

- \Rightarrow "By choosing j large enough": can reach any state in S_{∞}
- \Rightarrow For any RPI set S it holds that $S_{\infty} \subseteq S$.

S_{∞} in general difficult to compute!

 \sim can compute invariant outer approximation of S_{∞} (see later)

Part 2: Robust tube-based MPC

Motivation and set theoretic computations

2 Robust tube-based MPC

3 Approximations of the minimal RPI set

 $\textbf{Prof. Dr.-lng. M. M\"{u}ller (IRT)} \hspace{0.2cm} | \hspace{0.2cm} \textbf{EECI Course 2023} \hspace{0.2cm} | \hspace{0.2cm} \textbf{Nonlinear and data-driven model predictive control processes and data-driven model predictive control processes are also as a superior of the control processes are also$

41 / 96

Robust tube-based MPC | Robust tube-based MPC

Central idea for robust tube-based MPC

Use additional local feedback around nominal predicted trajectory:

$$u = v + K(x - z)$$

Proposition 2.2

Let $x^+ = Ax + Bu + w$ with $w \in \mathcal{W}$

and $z^+ = Az + Bv$.

If $x \in z \oplus S$ and u = v + K(x - z), then

$$x^+ \in z^+ \oplus S$$

with S: RPI set for $x^+ = \underbrace{(A + BK)}_{A_K} x + w$ with $w \in \mathcal{W}$.

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

42 / 96

Robust tube-based MPC | Robust tube-based MPC

Proof of Proposition 2.2

Proof of Proposition 2.2: Let e(t) = x(t) - z(t).

$$\Rightarrow e^{+} = x^{+} - z^{+} = Ax + B(v + K(x - z)) + w - Az - Bv$$
$$= (A + BK)e + w$$

As S is RPI for $e^+ = A_K e + w$, it follows that $e \in S \Rightarrow e^+ \in S$.

Hence $x \in z \oplus S \Rightarrow x^+ \in z^+ \oplus S$.

MPC algorithm for robust MPC

MPC optimal control problem

At time t, given x(t), solve

 $\begin{array}{ll}
\text{minimize} & J(x(t), v(\cdot|t)) \\
z(t|t), v(\cdot|t)
\end{array}$

 $= \underset{\boldsymbol{z(t|t)}, v(\cdot|t)}{\operatorname{minimize}} \quad \sum_{k=t}^{t+N-1} L(\boldsymbol{z(k|t)}, v(k|t)) + F(\boldsymbol{z(t+N|t)})$

such that z(k+1|t) = Az(k|t) + Bv(k|t)

 $t \le k \le t+N-1$

 $x(t) \in z(t|t) \oplus S$

 $z(k|t) \in \mathbb{Z} := \mathcal{X} \ominus S$

 $t \le k \le t + N$

 $v(k|t) \in \mathbb{V} := \mathcal{U} \ominus KS$

 $t \leq k \leq t+N-1$

 $z(t+N|t) \in \mathbb{Z}^f \subseteq \mathbb{Z}$

 \rightarrow optimizer: $z^*(t|t), v^*(\cdot|t) \rightarrow$ optimal value function $J^*(x(t))$

 \rightarrow applied input $u(t) = v^*(t|t) + K(x(t) - z^*(t|t))$

Important: Tightened constraints for nominal predicted system ensure fulfillment of original input/state constraints by the real (disturbed) system!

Properties of robust MPC algorithm

- feasible set $\mathbb{X}_N = \mathbb{Z}_N \oplus S \subseteq \mathcal{X}$
- $J^*(x) = \hat{J}^*(z^*(x))$ by definition of J^* and \hat{J}^*
- $J^*(x) = 0 \quad \forall x \in S$ ("S serves as origin for the disturbed system and the cost is 0 there")

Why? If $x \in S$, then z(x) = 0 and $v(\cdot|t) = 0$ is a feasible solution. Hence,

$$J^*(x) \le \hat{J}(0,0) = 0$$

 $\Rightarrow J^*(x) = 0$ and $z^*(x) = 0$.

Notation: $z^*(t|t) =: z^*(x(t))$

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

45 / 9

Robust tube-based MPC | Robust tube-based MPC

Proof: Feasibility

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive contro

$$\tilde{v}(k|t+1) = \begin{cases} v^*(k|t) & t+1 \le k \le t+N-1 \\ Kz^*(t+N|t) & k=t+N \end{cases}$$

$$\tilde{z}(t+1|t+1) = z^*(t+1|t)$$

 $\Rightarrow \tilde{z}(t+1|t+1)$ is feasible because $x(t+1) \in z^*(t+1|t) \oplus S$ by Proposition 2.2.

Institut für Regelungstechnik Leibniz Universität Hannover Robust tube-based MPC | Robust tube-ba

Stability and feasibility

Theorem 2.3: Convergence and feasibility

Suppose that Assumption 2.1 holds and the robust MPC problem is feasible (i.e., $x_0 \in \mathbb{X}_N$) at t=0. Then,

- (i) the robust MPC problem is recursively feasible and
- (ii) the closed-loop system robustly exponentially converges to S.

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

46 / 96

Robust tube-based MPC | Robust tube-based MP

Proof: Convergence I

$$J^*(x) = \hat{J}^*(z^*(x)) \stackrel{(1)}{\ge} c_1 ||z^*(x)||^2 \tag{4}$$

$$J^{*}(x) = \hat{J}^{*}(z^{*}(x)) \stackrel{(3)}{\leq} c_{2} \|z^{*}(x)\|^{2}$$

$$J^{*}(x(t+1)) - J^{*}(x(t)) = \hat{J}^{*}(z^{*}(x(t+1))) - \hat{J}^{*}(z^{*}(x(t)))$$
(5)

$$\stackrel{(2)}{\leq} -c_1 \|z^*(x(t))\|^2 \stackrel{(5)}{\leq} -\frac{c_1}{c_2} J^*(x(t))$$

 $<\hat{J}^*(z^*(t+1|t)) - \hat{J}^*(z^*(x(t)))$

$$\Rightarrow J^*(x(t+1)) \leq (1 - \frac{c_1}{c_2}) J^*(x(t)) \quad \text{define } \gamma := 1 - \frac{c_1}{c_2} \in (0,1)$$

$$\Rightarrow J^*(x(t)) \le \gamma^t J^*(x(0)) \stackrel{(5)}{\le} c_2 \gamma^t ||z^*(x(0))||^2$$

$$\stackrel{(4)}{\Rightarrow} ||z^*(x(t))|| \le \sqrt{\frac{c_2}{c_1}} \sqrt{\gamma^t} ||z^*(x(0))||$$

 $\Rightarrow z^*(x(\cdot))$ converges exponentially fast to 0

Proof: Convergence II

Recall:

$$x(t) \in z^*(x(t)) \oplus S$$

$$\Rightarrow ||x(t)||_S \le ||z^*(x(t))|| \le \sqrt{\frac{c_2}{c_1}} \sqrt{\gamma}^t ||z^*(x(0))||$$
(6)

Notation: $||x||_S$ point-to-set distance of point x to set S

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

49 / 96

Robust tube-based MPC | Approximations of the minimal RPI set

Part 2: Robust tube-based MPC

- Motivation and set theoretic computations
- 2 Robust tube-based MPC
- 3 Approximations of the minimal RPI set

Robust tube-based MPC | Robust tube-based MPC

Extensions

Linear systems with parametric uncertainties:

→ See, e.g., [Kouvaritakis & Cannon, Model Predictive Control: Classical, Robust and Stochastic]

Nonlinear Systems: (more) difficult to compute RPI set

- \sim approaches based on ISS/ δ ISS
- → approach applying MPC "two times":

[Rawlings et al., Model Predictive Control: Theory, Computation, and Design, Chapter 3.6]

- for nominal state sequence
- for local error feedback
- → Recent approach with simple tube parameterization:

J. Köhler, R. Soloperto, M. A. Müller, F. Allgöwer, A computationally efficient robust model predictive control framework for uncertain nonlinear systems, IEEE Transactions on Automatic Control, vol. 66, no. 2, pp. 794-801, 2021.

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

50 / 96

Invariant approximations of minimal RPI set I

Recall: S_{∞} in general difficult to compute!

ightarrow invariant outer approximations of S_{∞} can be computed efficiently

Define $S_k := \sum_{i=0}^{k-1} A^i \mathcal{W}, \quad k \geq 1$

Note that $S_k \to S_\infty$ as $k \to \infty$, but S_k for fixed k is in general not an RPI set!

Invariant approximations of minimal RPI set II

Theorem 2.4: Invariant approximations of minimal RPI set

If $0\in \mathrm{int}(\mathcal{W})$ and A is Schur stable, then there exists $\kappa\in\mathbb{I}_{\geq0}$ and $\alpha\in[0,1)$ such that

$$A^{\kappa} \mathcal{W} \subseteq \alpha \mathcal{W}. \tag{7}$$

If (7) holds, then

$$S(\alpha, \kappa) := (1 - \alpha)^{-1} S_{\kappa}$$

is an RPI set for the system $x^+ = Ax + w$.

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

53 / 96

Robust tube-based MPC | Approximations of the minimal RPI set

Proof

Proof: (7) follows since A is Schur stable (all EV strictly inside unit disc) and $0 \in \text{int}(\mathcal{W})$.

Next, we want to show that

$$AS(\alpha, \kappa) \oplus \mathcal{W} \subseteq S(\alpha, \kappa)$$

$$\sim AS(\alpha, \kappa) \oplus \mathcal{W} = (1 - \alpha)^{-1} \sum_{i=1}^{\kappa} A^i \mathcal{W} \oplus \mathcal{W}$$

$$= (1 - \alpha)^{-1} A^{\kappa} \mathcal{W} \oplus (1 - \alpha)^{-1} \sum_{i=1}^{\kappa - 1} A^{i} \mathcal{W} \oplus \mathcal{W}$$

$$\stackrel{(7)}{\subseteq} \underbrace{(1-\alpha)^{-1}\alpha\mathcal{W} \oplus \mathcal{W}}_{=[(1-\alpha)^{-1}\alpha+1]\mathcal{W}} \oplus (1-\alpha)^{-1} \sum_{i=1}^{\kappa-1} A^i \mathcal{W}$$

$$\stackrel{(7)}{=} \underbrace{(1-\alpha)^{-1}\alpha+1\mathcal{W}}_{=(1-\alpha)^{-1}\mathcal{W}} \oplus (1-\alpha)^{-1} \sum_{i=1}^{\kappa-1} A^i \mathcal{W}$$

$$= (1 - \alpha)^{-1} \sum_{i=0}^{\kappa - 1} A^i \mathcal{W} = S(\alpha, \kappa)$$

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

54 / 96

Robust tube-based MPC | Approximations of the minimal RPI set

Remarks

- for given κ such that (7) can be satisfied, one wants to find smallest α such that (7) holds
- for given α , one wants to find smallest κ such that (7) holds
- one can determine "how good" $S(\alpha,\kappa)$ is compared to S_{∞} \rightarrow algorithm below can be adapted suitably.

Possible algorithm to determine RPI set:

- **1** fix $\alpha \in (0,1)$ and $\kappa \in \mathbb{I}_{\geq 0}$
- 2 check whether (7) holds

if yes: $S(\alpha,\kappa)$ is RPI set

if not: set $\kappa := \kappa + 1$ and go to 2.

Economic MPC | Motivation and Setting

Part 3: Economic MPC

- Motivation and Setting
- 2 Performance quarantees in economic MPC
- 3 Optimal steady-state operation
- 4 Closed-loop convergence
- **5** Economic MPC without terminal constraints

Motivation

- lil Leibniz loi 2 Universität loo 4 Hannover
- In standard (stabilizing) MPC, we assume that the stage cost L(x,u) is positive definite with respect to the setpoint to be stabilized.
- However: different control objective is of interest in many applications
- Maximization of product in process industry
- Minimization of energy consumption in building climate control
- Efficient scheduling of production process in manufacturing industry
- ⇒ Setpoint stabilization is not primary control objective
- ⇒ more general MPC framework termed economic MPC

 $\textbf{Prof. Dr.-lng. M. M\"{u}ller (IRT)} \hspace{0.2cm} | \hspace{0.2cm} \textbf{EECI Course 2023} \hspace{0.2cm} | \hspace{0.2cm} \textbf{Nonlinear and data-driven model predictive control processes and data-driven model predictive control processes and data-driven model predictive control processes are also become a supplied to the processes are also become a supp$

57 / 9

Economic MPC | Motivation and Setting

Optimal steady state

Definition: Optimal steady state

Optimal steady state
$$(x_s, u_s) := \underset{\substack{x = f(x, u) \\ x \in \mathcal{X}. u \in \mathcal{U}}}{\operatorname{argmin}} L(x, u)$$

Example:

System dynamics: $x^+ = xu$

Constraints: $\mathcal{X} = \mathcal{U} = [-5, 5]$

Cost function: $L(x, u) = g(x) + (u+1)^2$

→ Steady state is not optimal operating behavior:

Trajectories

$$x = (1, -1, 1, -1, \dots)$$

 $u = (-1, -1, -1, -1, \dots)$

yield optimal performance!

Economic MPC | Motivation and

Setting

Stage cost L can be general cost function, need not be positive definite

⇒ Closed-loop system does not necessarily converge to a steady state

Setting:

Nonlinear discrete-time systems $x^+ = f(x, u)$

State and input constraints $x \in \mathcal{X}, u \in \mathcal{U}$

General stage cost function L(x, u)

Assumptions: \mathcal{X} and \mathcal{U} are compact L(x,u) is continuous

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

58 / 90

Economic MPC | Motivation and Setting

Economic MPC problem

MPC optimization problem ${\cal P}$

At time t, given x(t), solve

Optimizer $u^*(\cdot|t)$, optimal value function $J^*(x(t))$

Remark: Also economic MPC schemes available with terminal cost/region (instead of terminal equality constraint) and without terminal constraints.

Problems in economic MPC

The closed-loop system does not necessarily converge to a steady-state (other types of operation might be better)

- → Are there guarantees for the closed-loop performance?
- → Under what conditions is steady-state operation optimal?
- → If steady-state operation is optimal, does the closed loop converge to the optimal steady state?

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

61 / 96

${\sf Economic\ MPC\ |\ Performance\ guarantees\ in\ economic\ MPC}$

Performance guarantees in economic MPC

Theorem 3.1: Closed-loop average performance

The closed-loop asymptotic average performance is at least as good as operation at the optimal steady state, i.e.

$$\limsup_{T \to \infty} \frac{\sum_{t=0}^{T-1} L(x(t), u(t))}{T} \le L(x_s, u_s)$$

Economic MPC | Performance guarantees in economic

Part 3: Economic MPC

- 1 Motivation and Setting
- 2 Performance guarantees in economic MPC
- 3 Optimal steady-state operation
- 4 Closed-loop convergence
- **5** Economic MPC without terminal constraints

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

62 / 96

Economic MPC | Performance guarantees in economic MPC

Proof of Theorem 3.1

As in standard MPC, we obtain

$$J^*(x(t+1)) - J^*(x(t)) \le -L(x(t), u(t)) + L(x_s, u_s)$$
of
$$\int_{-T}^{T-1} I^*(x(t+1)) - I^*(x(t)) \le \lim \inf_{t \to T} \int_{-T}^{T-1} L(x, u_s) - L(x(t))$$

$$\Rightarrow \liminf_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} J^*(x(t+1)) - J^*(x(t)) \le \liminf_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} L(x_s, u_s) - L(x(t), u(t))$$

$$=L(x_s, u_s) - \limsup_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} L(x(t), u(t))$$

$$\lim_{T \to \infty} \inf \frac{1}{T} \sum_{t=0}^{T-1} J^*(x(t+1)) - J^*(x(t)) = \lim_{T \to \infty} \inf \frac{1}{T} \left(J^*(x(T)) - J^*(x(0)) \right)$$

$$\geq \lim_{T \to \infty} \inf \frac{1}{T} \left(\min_{x \in \mathcal{X}, u \in \mathcal{U}} NL(x, u) - J^*(x(0)) \right)$$

=0

The last equality holds since L is continuous and \mathcal{X} , \mathcal{U} are compact.

Institut für Regelungstechnik Leibniz Universität Hannover

Part 3: Economic MPC

- Motivation and Setting
- 3 Optimal steady-state operation
- 4 Closed-loop convergence
- 6 Economic MPC without terminal constraints

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

65 / 96

Optimal operation at steady state

Definition: Optimal operation at steady state

A system is optimally operated at steady state if

$$\liminf_{T \to \infty} \frac{\sum_{t=0}^{T-1} L(x(t), u(t))}{T} \ge L(x_s, u_s)$$

for all feasible sequences $(x(\cdot), u(\cdot))$.

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

66 / 96

Economic MPC | Optimal steady-state operation

Optimal operation at steady state

Definition: Optimal operation at steady state

A system is optimally operated at steady state if

$$\liminf_{T \to \infty} \frac{\sum_{t=0}^{T-1} L(x(t), u(t))}{T} \ge L(x_s, u_s)$$

for all feasible sequences $(x(\cdot), u(\cdot))$.

Definition: Strict dissipativity

A system is strictly dissipative with respect to the supply rate s(x, u) if there exists a nonnegative storage function $\lambda: \mathcal{X} \to \mathbb{R}_{>0}$ such that

$$\lambda(f(x,u)) - \lambda(x) \le s(x,u) - \rho(|x-x_s|), \qquad \rho \in \mathcal{K}_{\infty}$$

Continuous-time: $\dot{\lambda} < s$

Economic MPC | Optimal steady-state operation

Under what conditions is steady-state operation optimal?

Theorem 3.2: Optimal operation at steady state

A system is optimally operated at steady state if it is dissipative with respect to the supply rate $s(x, u) = L(x, u) - L(x_s, u_s)$.

Proof of Theorem 3.2:

$$0 \leq \liminf_{T \to \infty} \frac{\lambda(x(T)) - \lambda(x(0))}{T} = \liminf_{T \to \infty} \frac{\sum_{t=0}^{T-1} \lambda(x(t+1)) - \lambda(x(t))}{T}$$
$$\leq \liminf_{T \to \infty} \frac{\sum_{t=0}^{T-1} s(x(t), u(t))}{T} = \liminf_{T \to \infty} \frac{\sum_{t=0}^{T-1} L(x(t), u(t))}{T} - L(x_s, u_s)$$

Remark: Under an additional controllability assumption, dissipativity with supply rate $s(x, u) = L(x, u) - L(x_s, u_s)$ is also necessary for optimal steady-state operation.

Example

x(t+1) = x(t)u(t)**Dynamics**

 $(x,u) \in \begin{bmatrix} -5 & 5 \end{bmatrix} \times \begin{bmatrix} -5 & 5 \end{bmatrix}$ Constraints

Cost function $L(x,u) = (x-1)^2 + \delta(u-2)^2$

 $0 < \delta < 1$

Steady states $S = \{(x, u) : x = 0, u \in \mathcal{U}\}$

 $\cup \{(x, u) : x \in \mathcal{X}, u = 1\}$

 $(x_s, u_s) = (1, 1)$ Optimal with $L(x_s, u_s) = \delta$ steady state

 \Rightarrow system is dissipative with $\lambda(x) = 10\delta - 2\delta x$. Why?

$$\lambda(f(x,u)) - \lambda(x) = -2\delta x u + 2\delta x \stackrel{!}{\leq} (x-1)^2 + \delta(u-2)^2 - \delta$$

$$0 \leq (x-1)^2 + \delta(u-2)^2 + 2\delta x u - 2\delta x - \delta$$

$$\nabla_{|(x,u)} = 0 \Rightarrow \begin{bmatrix} 2x - 2 - 2\delta + 2\delta u \\ 2\delta u - 4\delta + 2\delta x \end{bmatrix} = 0 \quad \Rightarrow (x,u) = (1,1)$$

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

69 / 96

Example

x(t+1) = x(t)u(t)Dynamics

 $(x,u) \in \begin{bmatrix} -5 & 5 \end{bmatrix} \times \begin{bmatrix} -5 & 0 \end{bmatrix}$ Constraints

Cost function $L(x, u) = (x - 1)^2 + \delta(u - 2)^2$

Steady states $S = \{(x, u) : x = 0, u \in \mathcal{U}\}$

 $\cup \{(x, u) : x \in \mathcal{X}, u = 1\}$

 $(x_s, u_s) = (0, 0)$ New optimal

steady state with $L(0,0) = 1 + 4\delta$

→ system is not optimally operated at steady state (and hence not dissipative) anymore for small $\delta!$

 $u = (-\frac{1}{3}, -3, -\frac{1}{3}, -3, \dots)$ Why? Consider trajectory $x = (1, -\frac{1}{3}, 1, -\frac{1}{3}, \dots)$

 $\rightarrow \lim\inf_{T\rightarrow\infty}\frac{\sum\limits_{t=0}^{T-1}L(x(t),u(t))}{T}=\frac{\left(\frac{4}{3}\right)^2}{2}+\delta\frac{\left(-\frac{7}{3}\right)^2+(-5)^2}{2}< L(0,0) \quad \text{for latitut für Regdungstechnik Leibniz Universität Hannoverschaft Leibniz Universität Leibniz Universität Hannoverschaft Leibniz Universität Hannoverschaf$

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

70 / 96

Part 3: Economic MPC

- Motivation and Setting

- 4 Closed-loop convergence
- **5** Economic MPC without terminal constraints

Does the closed-loop system converge if steady-state operation is optimal?

Theorem 3.3: Convergence

Suppose the system is strictly dissipative w.r.t. the supply rate $s(x,u) = L(x,u) - L(x_s,u_s)$. Then the closed-loop system asymptotically converges to the optimal steady state x_s .

Remark: x_s is asymptotically stable if aditionally $J^*(x)$ and $\lambda(x)$ are continuous at x_s .

Proof of Theorem 3.3

Define "rotated" cost function

$$\tilde{L}(x, u) = L(x, u) + \lambda(x) - \lambda(f(x, u)) - L(x_s, u_s)$$

Auxiliary optimization problem \mathcal{P}

subject to

same constraints as in Problem \mathcal{P}

Claim: \mathcal{P} and $\tilde{\mathcal{P}}$ have the same optimizer (proof: see next slide).

 \sim Use $\tilde{\mathcal{P}}$ to analyze stability of the closed-loop system

$$\tilde{L}(x,u) \ge \rho(\|x-x_s\|)$$
 by strict dissipativity

⇒ We can apply standard MPC stability theory to conclude that the closed loop converges to x_s

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

73 / 96

Proof of Claim

Claim: Problems \mathcal{P} and $\tilde{\mathcal{P}}$ share the same optimizer(s)!

→ Feasible sets coincide

$$\begin{split} \tilde{J}(x(t), u(\cdot|t)) \\ &= \sum_{k=t}^{t+N-1} \left[L(x(k|t), u(k|t)) + \lambda(x(k|t)) - \lambda(f(x(k|t), u(k|t))) - L(x_s, u_s) \right] \\ &= \lambda(x(t|t)) - \lambda(x(t+N|t)) - NL(x_s, u_s) + \sum_{k=t}^{t+N-1} L(x(k|t), u(k|t)) \\ &= \lambda(x(t)) - \lambda(x_s) - NL(x_s, u_s) + J(x(t), u(\cdot|t)) \end{split}$$

- $\sim J$ and \tilde{J} only differ by constant terms
- \Rightarrow Problems \mathcal{P} and $\tilde{\mathcal{P}}$ share the same optimizer(s)

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

74 / 96

Economic MPC | Closed-loop convergence

Dissipativity in economic MPC I

Strict dissipativity and optimal steady-state operation

Discussion

- Closed-loop system "does the right thing", i.e., "finds" optimal operating behavior
- Can be concluded without having to compute storage function λ

Economic MPC | Closed-loop convergence

Results can be extended to optimal periodic behavior:

Dissipativity and optimal periodic operation

Dissipativity in economic MPC II

Discussion

- Dissipativity plays central role in economic MPC
- Closed-loop system "does the right thing", i.e., "finds" optimal operating behavior
- Can be concluded without having to compute storage function
- Results hold for both optimal steady-state and periodic behavior

Example - chemical reactor with dissipativity I

Van de Vusse reactor:

• Reactions $A \xrightarrow{k_1} B \xrightarrow{k_2} C$ and $2A \xrightarrow{k_3} D$, with A: reactant, B: desired product, C,D: waste products

$$\dot{c}_A = r_A(c_A, \vartheta) + (c_{in} - c_A)u_1$$

$$\dot{c}_B = r_B(c_A, c_B, \vartheta) - c_B u_1$$

$$\dot{\vartheta} = h(c_A, c_B, \vartheta) + \alpha(u_2 - \vartheta) + (\vartheta_{in} - \vartheta)u_1,$$

 ϑ : temperature in the reactor, u_1 : normalized flow rate of A, u_2 : temperature in cooling jacket

- Control objective: maximize production rate of $B \to L(x,u) = -c_B u_1$
- System is strictly dissipative w.r.t. supply rate $s(x,u) = L(x,u) L(x_s,u_s)$

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

77 /

conomic MPC | Closed-loop convergence

Example - chemical reactor without dissipativity III

Continuous flow stirred-tank reactor with parallel reactions

• Reactions $R \to P_1$ and $R \to P_2$, with R: reactant, P_1 : desired product, P_2 : waste product

$$\dot{x}_1 = 1 - 10^4 x_1^2 e^{-1/x_3} - 400 x_1 e^{-0.55/x_3} - x_1$$

$$\dot{x}_2 = 10^4 x_1^2 e^{-1/x_3} - x_2$$

$$\dot{x}_3 = u - x_3$$

 x_1 : concentration of R, x_2 : concentration of P_1 , x_3 : temperature in the reactor, u: proportional to heat flux through cooling jacket

• Control objective: maximize product $P_1 \to L(x,u) = -x_2$

Example - chemical reactor with dissipativity II 2.1 \sum_{5} 0.05 0.15 0.05 t [-] t [-] State x₂ Input u₂ 1.35 1.15 L 0.05 0.15 0.05 t [-] t [-]

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

78 / 96

Example - chemical reactor without dissipativity V

Optimal periodic orbit length: $T^{\star} \approx 11.444$

$$\min_{u(\cdot),T} \frac{1}{T} \int_0^T -x_2(\tau) d\tau$$

 $x(0) = x(T), T \in [5, 20].$ subject to

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

Economic MPC | Closed-loop convergence

 $L(x, u) = -x_2 + \omega(u - u_s)^2,$

Recovering steady-state optimality through regularization:

Example - chemical reactor without dissipativity VI

 $\omega > 0$

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

82 / 96

Economic MPC | Economic MPC without terminal constraints

Part 3: Economic MPC

81 / 96

- Motivation and Setting
- 2 Performance quarantees in economic MPC
- 3 Optimal steady-state operation
- 4 Closed-loop convergence
- **5** Economic MPC without terminal constraints

Economic MPC | Economic MPC without terminal constraints

Motivation

So far: Terminal constraint (and knowledge of x_s) necessary to show stability

Now: Economic MPC without terminal constraints

MPC optimization problem

At time t, given x(t), solve

$$\label{eq:minimize} \underset{u(\cdot|t)}{\text{minimize}} \qquad J(x(t), u(\cdot|t)) = \sum_{k=t}^{t+N-1} L(x(k|t), u(k|t))$$

subject to

x(t|t) = x(t)

x(k+1|t) = f(x(k|t), u(k|t)) $t \le k \le t + N - 1$

 $(x(k|t), u(k|t)) \in \mathcal{X} \times \mathcal{U}$ $t \le k \le t + N - 1$

 $x(t \pm N|t) \equiv x_s$

Assumption: L(x, u) is locally Lipschitz continuous, i.e., there exists $L_l > 0$ such that $||L(x_1, u_1) - L(x_2, u_2)|| \le L_l ||(x_1, u_1) - (x_2, u_2)||$ for all $(x_1, u_1), (x_2, u_2) \in \mathcal{X} \times \mathcal{U}$.

Example

Linear system $x^+ = 2x + u$

 $(x, u) \in \mathcal{X} \times \mathcal{U} = [-2, 2] \times [-3, 3]$ $L(x, u) = u^2$ Constraints

Stage cost

 \sim Optimal steady state $(x_s, u_s) = (0, 0)$

 \sim Strictly dissipative on \mathcal{X} with storage function $\lambda_c(x) = c - \frac{1}{2}x^2$, $c \geq 2$

Solutions of the MPC problem at time t=0 with x(0)=2 for $N=5,9,\ldots,25$:

Example

State x

10

20

87 / 96

Observations

1.5

0.5

- Optimal open-loop state sequences first converge to a neighborhood of the optimal steady state
- Optimal open-loop state sequences leave this neighborhood towards the end of the prediction horizon ("leaving arc")
- Number of time steps in which the optimal open-loop state sequence is close to the optimal steady-state increases with increasing prediction horizon N
- Closed-loop state sequences converge to and stay in a neighborhood of the optimal steady state

Example

Linear system $x^+ = 2x + u$

 $(x, u) \in \mathcal{X} \times \mathcal{U} = [-2, 2] \times [-3, 3]$ $L(x, u) = u^2$ Constraints

Stage cost

 \rightarrow Optimal steady state $(x_s, u_s) = (0, 0)$

 \sim Strictly dissipative on \mathcal{X} with storage function $\lambda_c(x) = c - \frac{1}{2}x^2$, $c \geq 2$

Solutions of the MPC problem at time $t = \{0, ..., 15\}$ with x(0) = 2 for N = 9:

Economic MPC | Economic MPC without terminal constraints

Turnpike property

Definition: Turnpike property

The MPC problem is said to have the turnpike property, if there exists C>0and $\alpha \in \mathcal{K}_{\infty}$ such that for all $x(t) \in \mathcal{X}$, we have

$$\#\mathcal{Q}_{\varepsilon} \ge N - \frac{C}{\alpha(\varepsilon)},$$
 (1)

where $\mathcal{Q}_{arepsilon}:=\left\{k\in\{t,\ldots,t+N-1\}\Big|\|(x^*(k|t),u^*(k|t))-(x_s,u_s)\|\leqarepsilon
ight\}$ and $\#\mathcal{Q}_{\varepsilon}$ is the cardinality of $\mathcal{Q}_{\varepsilon}$.

1 1 Leibniz 1 0 2 Universitä 10 0 4 Hannover

Relation between strict dissipativity and turnpike properties

Definition: Exponential reachability of x_s

The steady state x_s is called exponentially reachable, if there exist c>0 and and $\sigma\in[0,1)$ such that for all $x(0)\in\mathcal{X}$, there exists an infinite-horizon feasible input $\hat{u}(\cdot)$ such that

$$\|(\hat{x}(\tau), \hat{u}(\tau)) - (x_s, u_s)\| \le c\sigma^{\tau}.$$

Proposition 3.4: Strict dissipativity implies turnpike properties

Let the system be strictly dissipative with respect to the supply rate $L(x,u)-L(x_s,u_s)$ and a storage function bounded on $\mathcal X$ and let the steady state x_s be exponentially reachable. Then, the MPC problem has the turnpike property (1).

Remark: With proper controllability and technical assumptions, it is also true that turnpike properties imply strict dissipativity.

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

89 / 96

${\sf Economic\ MPC\ |\ Economic\ MPC\ without\ terminal\ constraints}$

Proof of Proposition 3.4

Using the input sequence $\hat{u}(\cdot)$ from the definition of exponential reachability with $\hat{x}(0)=x(t)$ yields

$$J_N^*(x(t)) = \sum_{k=t}^{t+N-1} L(x^*(k|t), u^*(k|t)) - L(x_s, u_s)$$

$$\leq \sum_{\tau=0}^{N-1} L(\hat{x}(\tau), \hat{u}(\tau)) - L(x_s, u_s)$$

$$\leq L_l \sum_{\tau=0}^{N-1} \|(\hat{x}(\tau), \hat{u}(\tau)) - (x_s, u_s)\|$$

$$\leq L_l c \sum_{\tau=0}^{N-1} \sigma^{\tau} \leq \frac{L_l c}{1-\sigma}.$$

Using (2)

$$-\bar{\lambda} + (N - \# \mathcal{Q}_{\varepsilon})\rho(\varepsilon) \le \frac{L_{l}c}{1 - \sigma}$$

$$\Rightarrow \# \mathcal{Q}_{\varepsilon} \ge N - \frac{L_{l}c(1 - \sigma)^{-1} + \bar{\lambda}}{\rho(\varepsilon)}$$

91 / 96

Economic MPC | Economic MPC without terminal constraints

Proof of Proposition 3.4

Proof: Let $J_N^*(x(t))$ denote the optimal value function of the MPC problem and assume without loss of generality $L(x_s, u_s) = 0$. Strict dissipativity implies

$$J_N^*(x(t)) \ge \lambda(x^*(N|t)) - \lambda(x(t)) + \sum_{k=t}^{t+N-1} \rho(\|x^*(k|t) - x_s\|).$$

Since $N - \#Q_{\varepsilon}$ denotes the number of time instances an optimal pair $(x^*(\cdot|t), u^*(\cdot|t))$ spends outside of an ε -neighborhood of x_s , we have

$$\sum_{k=t}^{t+N-1} \rho(\|x^*(k|t) - x_s\|) \ge (N - \#\mathcal{Q}_{\varepsilon})\rho(\varepsilon)$$

$$\Rightarrow J_N^*(x(t)) \ge \lambda(x^*(N|t)) - \lambda(x(t)) + (N - \#\mathcal{Q}_{\varepsilon})\rho(\varepsilon)$$

$$\ge -\bar{\lambda} + (N - \#\mathcal{Q}_{\varepsilon})\rho(\varepsilon), \tag{2}$$

where $\bar{\lambda} := \sup_{x \in \mathcal{X}} |\lambda(x)| < \infty$.

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

90 / 96

Economic MPC | Economic MPC without terminal constraints

Practical stability

Definition: Practical asymptotic stability

The point x_s is said to be practically asymptotically stable with respect to $\eta > 0$ on a set \mathcal{X} , if there exists $\beta \in \mathcal{KL}$ such that

$$||x(t) - x_s|| \le \max\{\beta(||x_0 - x_s||, t), \eta\}$$

holds for all $t \in \mathbb{N}_0$ and $x(0) = x_0 \in \mathcal{X}$.

Institut für Regelungstechnik Leibniz Universität Hannover

Recursive feasibility and convergence

Theorem 3.5: Convergence and recursive feasibility

Let the system be strictly dissipative with respect to the supply rate $L(x,u)-L(x_s,u_s)$ and a storage function bounded on \mathcal{X} . Let the steady state x_s be exponentially reachable and the linearization of the system at x_s be controllable. Let \mathcal{X} be compact. Then, there exists a sufficiently large prediction horizon $N \in \mathbb{N}$ such that the closed-loop system arising from economic MPC without terminal constraints has the following properties:

- (i) The MPC optimization problem is recursively feasible, if it is feasible for t=0 and
- (ii) the closed-loop system is practically asymptotically stable for all $x(0) \in \mathcal{X}$. Furthermore, $\eta = \eta(N)$ where $\eta(N) \to 0$ for $N \to \infty$ if some additional technical assumptions hold.

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

93 / 9

Economic MPC | Economic MPC without terminal constraints

Proof of Theorem 3.5: Recursive Feasibility

Proof: Assume $k_2 = k_1 + 2n$. Then, the candidate input

$$\hat{u}(k|t+1) = \begin{cases} u^*(k|t) & k = t+1, \dots, t+k_1-1 \\ u_1^{\varepsilon}(k-t-k_1) & k = t+k_1, \dots, t+k_1+n \\ u_2^{\varepsilon}(k-t-k_1-n-1) & k = t+k_1+n+1, \dots, t+k_2 \\ u^*(k-1|t) & k = t+k_2+1, \dots, N \end{cases}$$

is feasible at time t+1!

 \Rightarrow If $k_2 > k_1 + 2n$ we can simply add $\hat{u}(k|t+1) = u_s$ between $u_1^{\varepsilon}(\cdot)$ and $u_2^{\varepsilon}(\cdot)$

Economic MPC | Economic MPC without terminal constraints

Proof of Theorem 3.5: Recursive Feasibility

Proof: Suppose the MPC optimization problem is feasible at time t and let $x^*(\cdot|t)$ and $u^*(\cdot|t)$ be the optimal state and input sequence at time t.

By Proposition 3.4: For all $x(t) \in \mathcal{X}$ and any $\varepsilon > 0$ we can find $N < \infty$ and k_1 , k_2 with $k_1 + 2n \le k_2 \le N$, such that $\|x^*(t+k_1|t) - x_s\| \le \varepsilon$ and $\|x^*(t+k_2|t) - x_s\| \le \varepsilon$.

By controllability close to x_s : For ε sufficiently small, there exist feasible inputs $u_1^\varepsilon(\cdot)$ of length n+1 starting at $x^*(t+k_1|t)$ and ending at x_s , $u_2^\varepsilon(\cdot)$ of length n starting at x_s and ending at $x^*(t+k_2|t)$.

Prof. Dr.-Ing. M. Müller (IRT) | EECI Course 2023 | Nonlinear and data-driven model predictive control

94 / 96

Economic MPC | Economic MPC without terminal constraints

Proof of Theorem 3.5: Practical stability

Sketch of Proof: The rotated cost function

$$\tilde{J}(x,u) = \lambda(x(t|t)) - \lambda(x(t+N|t)) - NL(x_s, u_s) + J(x(t), u(t))$$

now depends on the chosen input sequence due to $\lambda(x(t+N|t))$

 \Rightarrow Rotating the cost function alters optimal solutions

But: Under additional technical assumptions it holds that

$$\tilde{J}_N^*(x) = J_N^*(x) + \lambda(x) - J_N^*(x_s) + R(x, N), \tag{3}$$

with $|R(x,N)| \leq \nu(||x-x_s||) + \omega(N)$ where $\nu \in \mathcal{K}$, $\omega \in \mathcal{L}$

Consider $\hat{V}_N(x)=\lambda(x)+J_N^*(x)-J_N^*(x_s)$. Then, using (3) and strict dissipativity, one can show that

$$\hat{V}_N(x(t+1)) - \hat{V}_N(x(t)) \le -\rho(\|x(t) - x_s\|) + c(N),$$

where c(N) > 0 and $c(N) \to 0$ as $N \to \infty$.

⇒ From here, one can use Lyapunov arguments to show practical asymptotic stability.

**Institut für Regelungst Lebing Universität Hanne