1 作业

题 1 (2.4.8). 证明 $f(z) = z^2 + 2z + 3$ 在 B(0,1) 中单叶.

证明. 设 $f(z_1) = f(z_2)$, 则 $z_1^2 + 2z_1 + 3 = z_2^2 + 2z_2 + 3$, 即 $(z_1 - z_2)(z_1 + z_2 + 2) = 0$. 而 $z_1, z_2 \in B(0, 1)$, 只能 $z_1 = z_2$. 故 f(z) 在 B(0, 1) 中单叶.

题 2 (2.4.15, 2.4.16). 考虑 *Joukowsky*¹变换 $\phi(z) = \frac{1}{2} \left(z + \frac{1}{z}\right)$. 证明下面 4 个 域都是 $\phi(z)$ 的单叶域并求出它们的像:

- 1. 上半平面 $\{z \in \mathbb{C} : \Im z > 0\};$
- 2. 下半平面 $\{z \in \mathbb{C}: \Im z < 0\};$
- 3. 无心单位圆盘 $\{z \in \mathbb{C} : 0 < |z| < 1\}$;
- 4. 单位圆盘的外部 $\{z \in \mathbb{C} : |z| > 1\}$.

证明. 对 $z_1 \neq z_2$, $\phi(z_1) = \phi(z_2)$ 当且仅当 $z_1 z_2 = 1$, 这蕴含 $\Im z_1 \cdot \Im z_2 < 0$ 和 $|z_1 z_2| = 1$. 因此这 4 个域都是 $\phi(z)$ 的单叶域.

为求这 4 个域的像, 我们将 ϕ 写成一系列函数的复合:

$$z \longrightarrow z_1 = \frac{z-1}{z+1} \longrightarrow z_2 = z^2 \longrightarrow w = \frac{1+z_2}{1-z_2} = \phi(z).$$

结论: ϕ 将前两个域均映为 $\mathbb{C}\setminus((-\infty,-1]\cup[1,+\infty))$,后两个域均映为 $\mathbb{C}\setminus[-1,1]$.

题 3 (2.4.17). 证明下面 2 个域都是 $\cos z$ 和 $\sin z$ 的单叶域:

- 1. $\{z \in \mathbb{C} : \theta_0 < \Re z < \theta_0 + 2\pi, \Im z > 0\};$
- 2. $\{z \in \mathbb{C} : \theta_0 < \Re z < \theta_0 + 2\pi, \Im z < 0\}$.

证明. 记 $\phi(z) = \frac{1}{2}(z + \frac{1}{z}), \, \psi(z) = \frac{1}{2}(z - \frac{1}{z}), \,$ 则

$$\cos z = \phi(e^{iz}),$$

$$\sin z = \frac{1}{i}\psi(e^{iz}).$$

在给定的域, $z \mapsto e^{iz}$ 是单射, 且像为 $\{re^{i\theta}: 0 < r < 1, \theta_0 < \theta < \theta_0 + 2\pi\}$ 和 $\{re^{i\theta}: r > 1, \theta_0 < \theta < \theta_0 + 2\pi\}$. 又已证 ϕ (ψ 类似) 在这两个域上单叶. 故 $\cos z$ 和 $\sin z$ 在题所给域上单叶.

 $^{^{1}}$ Nikolay Zhukovsky (1847-1921) was a Russian mathematician and engineer. His surname is usually romanised as Joukovsky or Joukowsky.

题 4 (2.4.22). 设 $f(z) = \frac{z^{p-1}}{(1-z)^p}$, 0 . 证明 <math>f 能在 $D = \mathbb{C} \setminus [0,1]$ 上选出单值全纯分支.

证明. 任取 D 中简单闭曲线 C, 则 C 内部或者同时不含 0 和 1, 或者同时 含 0 和 1. 对于前者, 显然 $\Delta_C f(z) = 0$. 对于后者,

$$\begin{split} \Delta_C \mathrm{Arg} f(z) &= (p-1) \Delta_C \mathrm{Arg} z - p \Delta_C \mathrm{Arg} (1-z) \\ &= (p-1) \cdot 2\pi - p \cdot 2\pi \\ &= -2\pi. \end{split}$$

题 5 (2.4.23). 证明 $f(z) = \operatorname{Log} \frac{z^2 - 1}{z}$ 能在 $D = \mathbb{C} \setminus ((-\infty, -1] \cup [0, 1])$ 上选出单值全纯分支.

证明. 考虑

$$\Delta_C f(z) = i \left(\Delta_C \operatorname{Arg}(z-1) + \Delta_C \operatorname{Arg}(z+1) - \Delta_C \operatorname{Arg}(z) \right).$$

由此可得支点为 $0, \pm 1, \infty$.

任取 D 中简单闭曲线 C, 只需考虑 C 包含 0, 1. 此时

$$\Delta_C f(z) = i(2\pi + 0 - 2\pi) = 0.$$

故 f(z) 能在 D 上选出单值全纯分支.

题 6 (2.4.26). 设 D 是复平面上去掉 [-1,i], [1,i] 和射线 z=it $(1 \le t < \infty)$ 后的域. 证明 $Log(1-z^2)$ 能在 D 上选出单值全纯分支. 设分支 f 满足 f(0)=0, 求 f(2).

证明. 考虑

$$\Delta_C \operatorname{Log}(1-z^2) = i \left(\Delta_C \operatorname{Arg}(z-1) + \Delta_C \operatorname{Arg}(z+1) \right).$$

由此可得支点为 ± 1 , ∞ . 故 $\mathrm{Log}(1-z^2)$ 能在 D 上选出单值全纯分支. 计算

$$f(2) = f(0) + \Delta_{C_0} \text{Log}(1 - z^2)$$

= $\Delta_{C_0} \log |1 - z^2| + i\Delta_{C_0} \text{Arg}(z - 1) + i\Delta_{C_0} \text{Arg}(z + 1)$
= $\log 3 + \pi i$,

其中 C_0 如图1所示.

图 1: Illustration of C_0 in Problem 2.4.26.

题 7 (2.4.27). 证明 $\sqrt[4]{(1-z)^3(1+z)}$ 能在 $\mathbb{C}\setminus[-1,1]$ 上选出单值全纯分支 f, 满足 $f(i)=\sqrt{2}e^{-\frac{\pi}{8}i}$. 求 f(-i).

证明. 任取 D 中简单闭曲线 C, 只需考虑 C 包含 ± 1 . 此时

$$\Delta_C \operatorname{Arg} f(z) = \frac{3}{4} \Delta_C \operatorname{Arg} (z - 1) + \frac{1}{4} \Delta_C \operatorname{Arg} (1 + z) = 2\pi.$$

故 $\sqrt[4]{(1-z)^3(1+z)}$ 能在 D 上选出单值全纯分支. 计算

$$f(-i) = f(i) + \Delta_{C_0} \sqrt[4]{(1-z)^3(1+z)}$$

$$= \sqrt{2}e^{-\frac{\pi}{8}i} + f(i) \left(e^{\frac{1}{4}i\Delta_{C_0}\operatorname{Arg}(1-z)^3(1+z)} - 1 \right)$$

$$= \sqrt{2}e^{-\frac{\pi}{8}i} + f(i) \left(e^{\frac{1}{4}i(3\cdot(-\frac{3}{2}\pi)+(-\frac{1}{2}\pi))} - 1 \right)$$

$$= \sqrt{2}e^{\frac{5}{8}\pi i}.$$

题 8 (2.5.1). 求将上半平面映为上半平面的分式线性变换, 使得 ∞ , 0, 1 分别映为 0, 1, ∞ .

解. 交比不变:

$$(w, 0, 1, \infty) = (z, \infty, 0, 1).$$

化简得

$$w = \frac{1}{1 - z}.$$

上半平面是 ∞ , 0, 1 和 0, 1, ∞ 的左侧, 因此 $z\mapsto w$ 将上半平面映为上半平面.

故所求变换为 $w = \frac{1}{1-z}$.

题 9 (2.5.2). 求将上半平面映为单位圆盘的分式线性变换, 使得 -1, 0, 1 分别映为 1, i, -1.

解. 交比不变:

$$(w, 1, i, -1) = (z, -1, 0, 1).$$

化简得

$$w = \frac{z - i}{iz - 1}.$$

上半平面是 -1, 0, 1 的左侧,单位圆盘是 1, i, -1 的左侧,因此 $z\mapsto w$ 将上半平面映为单位圆盘.

故所求变换为
$$w = \frac{z-i}{iz-1}$$
.

题 10 (2.5.4). 求将单位圆盘的外部映为右半平面的分式线性变换, 使得

- 1. 1, -i, -1 分别映为 i, 0, -i;
- 2. -i, i, 1 分别映为 i, 0, -i.

解. 通过交比不变计算, 再用左右侧说明得到的映射将单位圆盘外部映为右半平面.

结论:

- 1. $w = \frac{z+i}{z-i}$;
- 2. $w = \frac{z-i}{(2-i)z+2i-1}$.

题 11 (2.5.5). 求将上半平面映为自身的分式线性变换, 使得实轴上的 x_1 , x_2 , x_3 ($x_1 < x_2 < x_3$) 分别映为 $0, 1, \infty$.

解. 交比不变:

$$(w,0,1,\infty)=(z,x_1,x_2,x_3).$$

化简得

$$w = \frac{x_2 - x_3}{x_2 - x_1} \cdot \frac{z - x_1}{z - x_3}.$$

上半平面是 x_1, x_2, x_3 和 $0, 1, \infty$ 的左侧, 因此 $z \mapsto w$ 将上半平面映为上半平面.

故所求变换为
$$w = \frac{x_2 - x_3}{x_2 - x_1} \cdot \frac{z - x_1}{z - x_3}$$
.

题 12 (2.5.13). 求将 B(0,1) 映为自身的分式线性变换, 使得 $\frac{1}{2}$, 2, $\frac{5}{4}+\frac{3}{4}i$ 分别映为 $\frac{1}{2}$, 2, ∞ .

解. 通过交比不变, 可求得

$$w = \frac{(5-3i)z - 4}{4z - (5+3i)}.$$

为说明这是将 B(0,1) 映为自身的变换, 利用例 2.5.16:

$$w = \frac{5 - 3i}{5 + 3i} \frac{z - \frac{4}{5 - 3i}}{1 - \frac{4}{5 + 3i}z}.$$

题 13 (2.5.15). 求单叶全纯映射,将除去 [0,1+i] 的第一象限映为上半平面.

题 14 (2.5.16). 求单叶全纯映射,将 $\{z\in\mathbb{C}:-\frac{\pi}{2}<\Re z<\frac{\pi}{2},\Im z>0\}$ 映为上半平面,且将 $\frac{\pi}{2},-\frac{\pi}{2},0$ 分别映为 1,-1,0.

题 15 (2.5.18). 求单叶全纯映射将

2 补充材料