Credit Card Fraud

1. Amount vs. Time Graph:

I plotted a scatter plot to visualise the distribution of transaction amounts over time. Each dot on the graph represents a transaction. This visualisation helps in understanding if there's any trend or pattern related to transaction amounts as time progresses.

2. Fraudulent and Valid Transactions:

The data contains a total of 492 fraudulent transactions and 284,315 valid transactions. This shows a highly imbalanced distribution between the two classes, with fraudulent transactions being much less frequent.

Fraudulent Transactions: 492 Valid Transactions: 284315

3. Outlier Fraction:

The outlier fraction, representing the proportion of fraudulent transactions in the data, was calculated to be approximately 0.001730.00173 or 0.173%0.173%. This fraction is crucial when considering techniques like anomaly detection, as it indicates the rarity of fraudulent transactions.

Outlier Fraction: 0.00173

4. Correlation Between Features:

The correlation coefficients between the features and the Class column were computed. Some parts positively correlate with fraudulence, meaning they tend to increase when a transaction is fraudulent. Conversely, some features have a negative correlation, meaning their values tend to decrease for fraudulent transactions. Understanding these correlations can be essential for building predictive models.

Class 1.000000 V11 0.154876

V4	0.133447
V2	0.091289
V21	0.040413
V19	0.034783
V20	0.020090
V8	0.019875
V27	0.017580
V27	0.009536
Amount V26	0.005632
V25	0.003308
V22	0.000805
V23	-0.002685
V15	-0.004223
V13	-0.004570
V24	-0.007221
Time	-0.012323
V6	-0.043643
V5	-0.094974
V9	-0.097733
V9 V1	-0.101347
V18	-0.111485
V7	-0.187257
V3	-0.192961
V16	-0.196539
V10	-0.216883
V12 V14 V17	-0.260593 -0.302544
V T /	-0.326481

5. Heatmap of Correlations:

A heatmap was created to visualise the correlation coefficients between all the features in the data. This heatmap offers a visual representation of how different parts relate. It can be helpful for feature selection and understanding multicollinearity between elements.

