ALGORITMOS DE COMPUTACION GRAFICA

Clase 14 Ray tracing. Radicación de luz

Objetivo: Analizar la tecnología Ray tracing. Radicación de luz.

Argumentar sobre su importancia.

Crown: 30.00°, Pavilion: 40.70° 18% Generated by OctoNus DiamCalc

Lunes 13:00 - 16:20

MA. Juan Carlos Reátegui Morales jreategui@untels.edu.pe

MBA-ISO 27001-ISO 9001-ISO 22301 "Un ejército victorioso gana primero y entabla la batalla después; un ejército derrotado lucha primero e intenta obtener la victoria después.".

Sun Tzu

El Trazado de rayos (Ray tracing, en inglés), es la técnica de iluminación virtual que aporta un aspecto realista a los mejores juegos de hoy en día.

Esta técnica simula la manera en que la luz se refleja y rebota sobre diferentes objetos y superficies, dando un mayor realismo a los entornos de los juegos que por lo general utilizan sistemas de iluminación estáticos.

¿Qué es el trazado de rayos exactamente? ¿Cómo funciona?

Una buena tarjeta de video puede utilizar esta técnica para aumentar la inmersión de los videojuegos, pero no todas son capaces ni tienen la potencia suficiente para hacerlo.

Los juegos sin Trazado de rayos dependen de la iluminación estática «horneada». Los desarrolladores colocan fuentes de luz dentro de un entorno que emite luz de manera uniforme en cualquier vista.

El Trazado de rayos en los juegos intenta emular la forma en que funciona la luz en el mundo real. Traza el camino de la luz simulada rastreando millones de fotones virtuales.

Cuanto más brillante sea la luz, más fotones virtuales debe calcular la GPU y más superficies reflejará, refractará y dispersará.

Ray tracing, también conocido como **trazado de rayos**, es una tecnología que lleva entre nosotros mucho tiempo, tanto que tenemos que remontarnos a los años ochenta para encontrar los primeros trabajos realmente importantes basados en dicha tecnología. Con el paso de los años esta tecnología ha evolucionado, pero su base, y sus objetivos, siguen siendo los mismos.

Durante los últimos treinta años, el mundo de los videojuegos ha experimentado una evolución enorme, sobre todo desde el punto de vista técnico. Esto ha sido posible gracias a la evolución que ha vivido, de forma correlativa, la **GPU**, un componente que ha sido el pilar central sobre el que se han ido construyendo y asentando todos esos saltos.

Ray tracing, también conocido como **trazado de rayos**, es una serie de algoritmos complejos que permiten deducir por dónde reincide la luz y ser capaz de mostrar adecuadamente los reflejos y refracciones en tiempo real, su gran diferencia respecto a la industria del cine, hace ya de mucho tiempo, tanto que tenemos que remontarnos a los años ochenta para encontrar los primeros trabajos realmente importantes basados en dicha tecnología.

GPU es el acrónimo de Graphics Processing Unit y representa precisamente el corazón de una tarjeta gráfica al igual que la CPU lo hace en un PC. Aparte del corazón, también es su cerebro, ya que es la encargada de realizar todos los cálculos complejos que nos permiten disfrutar de nuestros juegos en pantalla.

Es la pieza de silicio que tanto AMD como NVIDIA o Intel fabrican y donde se graban los transistores, es el llamado chip de la tarjeta gráfica.

https://youtu.be/PkN5nbUnIP0

El Trazado de rayos (Ray tracing, en inglés), es la técnica de iluminación virtual que aporta un aspecto realista a los mejores juegos de hoy en día.

Esta técnica simula la manera en que la luz se refleja y rebota sobre diferentes objetos y superficies, dando un mayor realismo a los entornos de los juegos que por lo general utilizan sistemas de iluminación estáticos.

Pero, ¿qué es el trazado de rayos exactamente? Y más importante aún, ¿cómo funciona?

Una buena tarjeta de video puede utilizar esta técnica para aumentar la inmersión de los videojuegos, pero no todas son capaces ni tienen la potencia suficiente para hacerlo.

El Trazado de rayos en los juegos intenta emular la forma en que funciona la luz en el mundo real.

Traza el camino de la luz simulada rastreando millones de fotones virtuales. Cuanto más brillante sea la luz, más fotones virtuales debe calcular la GPU y más superficies reflejará, refractará y dispersará.

Ray tracing. Radicación de luz (Aplicación)

Para la óptica de los **concentradores solares** existe la metodología de Trazado de Rayos (Ray-tracing), que aplica un tratamiento fundamentado en el cálculo estocástico para el seguimiento de la condición energética de cada rayo proyectado, a partir de un grupo de rayos incidentes sobre los espejos de concentración primarios.

La técnica hace uso del Método de Montecarlo, generando números aleatorios de fotones, los cuales son seguidos probabilísticamente a través de sus cambios de dirección, por fenómenos de reflexión o refracción óptica en los componentes del sistema concentrador, para calcular sus pérdidas de energía hasta llegar a su destino en el elemento receptor, obteniendo así acumulativamente la cantidad de flujo final conseguido.

Esta técnica tiene un nivel de precisión alto con gran aproximación a los resultados experimentales, que remontarnos a los años ochenta para encontrar los primeros trabajos realmente importantes basaldos en dicha tecnología. Con el paso de los años esta tecnología ha evolucionado, pero su base, y sus objetivos, siguen siendo los mismos.

https://www.youtube.com/watch?v=tbsudki8Sro

Desde su irrupción en el mundo de los videojuegos, de la mano de NVIDIA, el ray tracing ha supuesto una completa revolución.

Es una tecnología que mejora las iluminaciones, sombras y reflejos, logrando una escena mucho más realista de los juegos con ray tracing.

En términos generales, el ray tracing intenta simular lo que vemos con nuestros ojos, para lo cual se apoya en el cálculo generado por los Tensor Cores.

Se trata de unidades nuevas de procesamiento en la GPU que se dedican a establecer, con suma precisión, las iluminaciones que generan sombras y reflejos.

Hay que aclarar que no se trata de una tecnología nueva. De hecho, en el cine se viene empleando desde hace ya varios años.

Llegó a los videojuegos de la mano de las tarjetas gráficas NVIDIA, en el año 2018. Recientemente, la ha adoptado también AMD.

Los Tensor Cores permiten la computación de precisión mixta, adaptando dinámicamente los cálculos para acelerar el rendimiento y preservando la precisión.

Futuro de los Videojuegos:

https://www.youtube.com/watch?v=XgyjTwMXXEw

Un descanso de 15' Minutos

DESARROLLO DE APLICACIONES ALGORITMOS DE COMPUTACION GRAFICA

RACTICA DE ALGORITMOS DE COMPUTACION GRAFICA

jreategui@untels.edu.pe MBA-ISO 27001-ISO 9001-ISO 22301

INVESTIGACIÓN SOBRE QGIS EN LA WEB

https://www.youtube.com/watch?v=XyeIA80Flco

Dos casos

- 1) Uso de Javascript para gestionar mapas en la web
 - 2) Qgis en la Web

INVESTIGACIÓN SOBRE POWER BI

https://www.bimatico.com/es/bi-news/para-que-se-utiliza-power-bi-que-es-capaz-de-hacer-y-donde-descargarlo https://youtu.be/kVGxi--pfWE

Investigación de Aplicaciones del Power BI en el contexto de computación Gráfica:

Exposición

- 0.- Carátula e Introducción
- 1.- Instalar Power Bl.
- 2.- Para que sirve. Importancia.
- 2.- Poner gráficos de Power BI en la web. (Dashboard para ventas)
- 5.- Conclusiones
- 6.- Recomendaciones
- 7.- Bibliografía

Power Point Entregar exponer en equipo.

Por Equipo (Todos deben exponer).

Exposición de Práctica 12

N°	A1 umno	Proyecto	
3	ANCHAYHUA GUTIERREZ DAVID ANDRE	Animaciones con Anime	ANIMA-ANIME
13	LEANDRO BLAS LUIGGI ANDERSON	Animaciones con Anime	ANIMA-ANIME
15	NOBLEJAS SAAVEDRA JORDAN MOISES	Annual Control Control	
22	Sllvestre Abarca Jorge Javier	Animaciones con Anime	ANIMA-ANIME
8	DIAZ SEMINARIO DANIEL OMAR	Cuadro de Mando Integral (CMI)	CMI
16	PONCE SUSANIBAR ALONSO GAVINO	Cuadro de Mando Integral (CMI)	CMI
19	TORRES BARRIENTOS CARLOS JOSSIMAR	Cuadro de Mando Integral (CMI)	CMI
4	AZAÑERO ESPINOZA WALDIR YSAI	Identifica personas con Python	IDENTIPERSONAS
5	CARRASCO CHINCHAY HENRY ELI	Identifica personas con Python	IDENTIPERSONAS
11	GOMEZ HUAMANI STEVE EDWARD	Identifica personas con Python	IDENTIPERSONAS
18	SAYAS DE LA VEGA PIERO GABRIEL	Identifica personas con Python	IDENTIPERSONAS
2	ALVA CHANTA EDSON ALCIDES	Reconoc. De Imágenes en Medicina	RECONO-IMAGEN
9	FLORES CHAMBA JOSE	Reconoc. De Imágenes en Medicina	RECONO-IMAGEN
14	MOTTA MENDOZA MIGUEL ANGEL	Reconoc. De Imágenes en Medicina	RECONO-IMAGEN
20	YAURICASA MENDOZA MIGUEL ANGEL	Reconoc. De Imágenes en Medicina	RECONO-IMAGEN
6	CCACCYA HUAMAN ANTONY	RV-RA en Turismo	RVRA-TURISMO
7	CHAVEZ GAMARRA JOSE CARLOS	RV-RA en Turismo	RVRA-TURISMO
10	FLORES HERRERA JULIO CHRISTIAN	RV-RA en Turismo	RVRA-TURISMO
12	HUANCAS LEUYACC ANSELMO JUNIOR	RV-RA en Turismo	RVRA-TURISMO
1	ALANYA VILLAR JOEL EDWIN	Videojuegos con Unity	VIDEO-UNITY
17	QUISPE CUPE JORDY EUSEBIO	Videojuegos con Unity	VIDEO-UNITY
21	ZEVALLOS TORRES DIEGO LEONEL	Videojuegos con Unity	VIDEO-UNITY

Historia VES

Semana 12: Historia Gráfica

Control de Proyecto Final

N°	A1umno	Proyecto		
3	ANCHAYHUA GUTIERREZ DAVID ANDRE	Animaciones con Anime	ANIMA-ANIME	-Nada
13	LEANDRO BLAS LUIGGI ANDERSON	Animaciones con Anime	ANIMA-ANIME	
15	NOBLEJAS SAAVEDRA JORDAN MOISES	Animaciones con Anime	ANIMA-ANIME	Verificar
22	Sllvestre Abarca Jorge Javier	Animaciones con Anime	ANIMA-ANIME	avance por
8	DIAZ SEMINARIO DANIEL OMAR	Cuadro de Mando Integral (CMI)	CMI	Talta maiarar
16	PONCE SUSANIBAR ALONSO GAVINO	Cuadro de Mando Integral (CMI)	CMI	Falta mejorar equipo
19	TORRES BARRIENTOS CARLOS JOSSIMAR	Cuadro de Mando Integral (CMI)	CMI	
4	AZAÑERO ESPINOZA WALDIR YSAI	Identifica personas con Python	IDENTIPERSONAS	
5	CARRASCO CHINCHAY HENRY ELI	Identifica personas con Python	IDENTIPERSONAS	Muy bien
11	GOMEZ HUAMANI STEVE EDWARI	ntifica personas con Python	IDENTIPERSONAS	Paper
18	SAYAS DE LA VEGA PIERO GABRIEL	Identifica personas con Python	IDENTIPERSONAS	_
2	ALVA CHANTA EDSON ALCIDES	Reconoc. De Imágenes en Medicina	RECONO-IMAGEN	
9	FLORES CHAMBA JOSE	Reconoc. De Imágenes en Medicina	RECONO-IMAGEN	_Muy bien
14	MOTTA MENDOZA MIGUEL ANGEL	Reconoc. De Imágenes en Medicina	RECONO-IMAGEN	
20	YAURICASA MENDOZA MIGUEL ANGEL	Reconoc. De Imágenes en Medicina	RECONO-IMAGEN	
6	CCACCYA HUAMAN ANTONY	RV-RA en Turismo	RVRA-TURISMO	1 5,
7	CHAVEZ GAMARRA JOSE CARLOS	RV-RA en Turismo	RVRA-TURISMO	Muy bie Phecklist
10	FLORES HERRERA JULIO CHRISTIAN	RV-RA en Turismo	RVRA-TURISMO	
12	HUANCAS LEUYACC ANSELMO JUNIOR	RV-RA en Turismo	RVRA-TURISMO	
1	ALANYA VILLAR JOEL EDWIN	Videojuegos con Unity	VIDEO-UNITY	
17	QUISPE CUPE JORDY EUSEBIO	Videojuegos con Unity	VIDEO-UNITY	Muy bie
21	ZEVALLOS TORRES DIEGO LEONEL	Videojuegos con Unity	VIDEO-UNITY	
			1	

Semana 10: Presentar el Prototipo del Sistema

TEMA DE PRATICA CALIFICADA CLASE 15

Crear un personaje 3D que pueda ser utilizado en presentaciones o video juegos, con ayuda del software Blender. (Personal)

El personaje debe tener características peruanas.

Tarea individual.

Personalidad

Medio de difusión

Objetivo

Originalidad.

REPASANDO QGIS

QGIS Cloud

QGIS Cloud es una infraestructura personal de datos espaciales (SDI) en internet. Permite la publicación de proyectos de QGIS como mapas y datos espaciales.

De este modo QGIS Cloud no va permitir compartir datos espaciales con otros usuarios y todo esto muy fácilmente, sin la disponibilidad de un servidor, la infraestructura o el conocimiento experto.

Características:

- Crear mapas: Diseñar mapas desde QGIS desktops y publicarlas con QGIS Cloud.
- Administrar datos: Base de datos PostgreSQL 9, extendida con PostGIS 2, creadas directamente desde QGIS Cloud.
- Compartir información: Mapas y datos espaciales con los servicios web compatibles OGC (Open Geospatial Consortium) a través de WMS, WFS.
- Ofrece mapas de alta calidad a través de WMS para su impresión
- Seguridad: Compartir servicios con un grupo restringido de personas, el cual conlleva a un costo con respecto a un tipo de plan.

REPASANDO QGIS

Planes

Instalación QGIS Cloud

http://sigda.cultura.gob.pe/#

Mapa	Cargando Datos	Cuenta	Acerca de	
	Q 6I	5	-	
	QGIS Cloud			
	Añadir Capa de fondo			
	Publ	icar Mapa		
	Publi	car Mapa		

TRABAJO ASINCRÓNICO

Recomendaciones para Desarrollar

JUEGOS: https://www.youtube.com/watch?v=W2QcMByjBek

https://colab.research.google.com/github/aniquetahir/Colaboratory/blob/master/BlenderRender.ipynb#scrollTo=ilwDQe4gb3O5

Control de Aprendizaje

Preguntas de Control:

- ¿Qué es Ray Tracing?. ¿Cuál es su utilidad?
- ¿Que ventajas otorga esta tecnología en forma práctica?
- ¿Qué importancia tiene una GPU para los video juegos?
- ¿Que aplicaciones podría darse a esta tecnología en VES?
- ¿De que manera los Videos Juegos y la educación se relacionan?

Posible Examen Final

- 1) Desarrollar un SIG para gestionar los riesgos en VES interactuando en la nube. (Sismos y Tsunamis). Mostrando información de población con Power BI (popup).
- 2) Desarrollar un **Historia Digital** sobre los sismos y tsunamis en la costa peruana, donde aparezca un personaje digital 3D con movimiento y recomiende la formas de protegerse a los ciudadanos de VES. Hacer uso de efectos especiales. (Power Point y/o HTML-CSS-JAVASCRIPT).

(Sacar recomendaciones de <u>www.indeci.gob.pe</u>)

Ponerlo en el Drive.

ALGORITMOS DE COMPUTACION GRAFICA

Clase 15 Ray tracing. Aplicación de orden de imagen esfera.

Objetivo: Analizar la tecnología Ray tracing. Aplicación de orden de imagen esfera.

Argumentar sobre su importancia.

Lunes 13:00 - 16:20

MA. Juan Carlos Reátegui Morales jreategui@untels.edu.pe

"La acción es mejor que el conocimiento, pero, a fin de hacer lo correcto, debemos saber lo que hacemos."

<u>Carlomagno</u>

Muchas gracias...