Lecture 12: Extrema

October 31, 2018

Sunil Kumar Gauttam

Department of Mathematics, LNMIIT

Example 12.1 Consider $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x,y) := 4xy - x^4 - y^4$. Find all the points of local extrema, saddle points (if any) of f.

Solution: Since f is a polynomial function, f has continuous partial derivatives of all orders. Also, $f_x = 4y - 4x^3$ and $f_y = 4x - 4y^3$, and so $\nabla f(x,y) = (0,0) \iff y = x^3, x = y^3 \implies x = (x^3)^3 \implies x(x^2-1)(x^2+1)(x^4+1) = 0 \implies x = 0, \pm 1 \implies (x,y) = (x,x^3) = (0,0), (1,1), (1,-1)$. Further, $f_{xx} = -12x^2, f_{xy} = 4$, and $f_{yy} = -12y^2$, and so the discriminant is given by $\Delta f = f_{xx}f_{yy} - f_{xy} = 16(9x^2y^2-1)$. In particular, $\Delta f(0,0) = -16 < 0$ and $\Delta f(1,1) = \Delta f(-1,-1) = 128 > 0$. Also $f_{xx}(1,1) = f_{xx}(-1,-1) = -12 < 0$. By the Discriminant Test, f has a saddle point at f(0,0) and a local maximum at f(0,1) as well as at f(0,1) = 1.

Example 12.2 Find all points (if any) of local extrema, saddle points for the function $f(x,y) = x^4 + y^3$. Also discuss the points of absolute maxima and minima.

Solution: Since f is a polynomial function, f has continuous partial derivatives of all orders. Also, $f_x = 4x^3$, $f_y = 3y^2$. So (0,0) is the only critical point. $f_{xx} = 12x^2$, $f_{yy} = 6y$, $f_{xy} = 0$. Hence $f_{xx}f_{yy} - f_{xy}^2 = 0$ at (0,0). So test fails. We claim that f neither has local maximum nor a local minimum at (0,0). To see this, note that f(0,0) = 0 and f takes both positive as well as negative values in any open disk centered at the origin. For example, $f(r,0) = r^4 > 0$ and $f(0,-r) = -r^3 < 0$ for any r > 0. It turns out that f does have a saddle point at (0,0).

Function f does not attain absolute maximum and absolute minimum on \mathbb{R}^2 , since

$$f(x,0) = x^4, f(0,y) = y^3$$

So as we move along x-axis away from origin, f values increases arbitrarily large and as we move away from (0,0) along negative y-axis f values becomes arbitrarily small.

Example 12.3 Can you conclude anything about f(a,b) if f and its first and second partial derivatives are continuous throughout a disk centered at the critical point (a,b) and $f_{xx}(a,b)$ and $f_{yy}(a,b)$ differ in sign? Give reasons for your answer.

12-2 Lecture 12: Extrema

Solution: If $f_{xx}(a,b)$ and $f_{yy}(a,b)$ differ in sign, then $f_{xx}(a,b)f_{yy}(a,b) < 0$ so discriminant is < 0. The surface must therefore have a saddle point at (a,b) by the second derivative test.

Example 12.4 Show that (0,0) is a critical point of $f(x,y) = x^2 + kxy + y^2$ no matter what value the constant k has.

Solution: Since f is a polynomial function hence $\nabla f(x,y)$ exists everywhere. Also $f_x = 2x + ky$, $f_y = kx + 2y$. For each $k \in \mathbb{R}$, we have $f_x(0,0) = 0 = f_y(0,0)$. Hence (0,0) is a critical point of f.

Example 12.5 For what values of the constant k does the Second Derivative Test guarantee that $f(x,y) = x^2 + kxy + y^2$ will have a saddle point at (0,0)? A local minimum at (0,0)? For what values of k is the Second Derivative Test inconclusive? Can you decide the nature of (0,0) when Second Derivative Test is inconclusive? Give reasons for your answers.

Solution: $f_{xx}=2, f_{yy}=2, f_{xy}=k$. Hence discriminant $\Delta f(x,y)=4-k^2$. So if $4-k^2<0$, i.e., |k|>2 then the Second Derivative Test guarantee that f has a saddle point at (0,0). If $4-K^2>0$, i.e. |k|<2 then the Second Derivative Test guarantee that f has a local minimum at (0,0). For $k=\pm 2$ the Second Derivative Test inconclusive.

For $k = \pm 2$, $f(x,y) = x^2 \pm 2xy + y^2 = (x \pm y)^2 \ge 0 = f(0,0)$ for all $(x,y) \in \mathbb{R}^2$. Hence f has local and global minimum at (0,0) for $k = \pm 2$.