CS 107, Probability, Spring 2020 Lecture 15

Michael Poghosyan mpoghosyan@aua.am

AUA

21 February 2020

Content

- Repeated, Independent Trials: Binomial Distribution
- Repeated, Independent Trials: Multinomial Distribution

Last Lecture ReCap

Last time we were talking about Independence of several Events, and also about Repeated Trials Model:

- We learned that if \underline{A} and \underline{B} are independent, then so are \underline{A} and \overline{B} , and also \overline{A} and \underline{B} , also \overline{A} and \overline{B} ;
- We call Events $A_1, A_2, ..., A_n$ Pairwise Independent, if $\mathbb{P}(A_i \cap A_j) = \mathbb{P}(A_i) \cdot \mathbb{P}(A_j), \quad i \neq j$.
- We call Events $A_1, ..., A_n$ Mutually Independent or just Independent, if for any subgroup of events $A_{i_1}, A_{i_2}, ..., A_{i_k}$,

$$\mathbb{P}(A_{i_1} \cap A_{i_2} \cap ... \cap A_{i_k}) = \mathbb{P}(A_{i_1}) \cdot \mathbb{P}(A_{i_2}) \cdot ... \cdot \mathbb{P}(A_{i_k}),$$

Last Lecture ReCap

Last time we were talking about Independence of several Events, and also about Repeated Trials Model:

• We talked about the Repeated Trials Model: we have a Simple Experiment (Trial), and an Event in that Experiment, called a Success. Let p be the Probability of that Event in a Trial. We repeat our Trial n times, independently, and we are interested in the Probability that we will have exactly k Successes: if X is the number of Successes in n Trials, then

$$\mathbb{P}(X=k) = \binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}.$$

Repeated Indep Trials: Binomial Probabilities

We can represent this in the form of a Table: Let X be the number of Successes in n Trials. Then the Distribution of X is given by:

$$\frac{X \quad \| \quad 0 \quad | \quad 1 \quad | \quad 2 \quad | \quad \dots \quad | \quad n}{\mathbb{P}(X=k) \, \| \begin{pmatrix} n \\ 0 \end{pmatrix} p^0 (1-p)^n \, | \begin{pmatrix} n \\ 1 \end{pmatrix} p^1 (1-p)^{n-1} \, | \begin{pmatrix} n \\ 2 \end{pmatrix} p^2 (1-p)^{n-2} \, | \quad \dots \quad | \begin{pmatrix} n \\ n \end{pmatrix} p^n (1-p)^0}$$

We read this as, say: for X = 2,

$$\mathbb{P}(X=2) = \binom{n}{2} p^2 (1-p)^{n-2}.$$

Binomial Distribution

Binomial Distribution, p=0.5, n=20

Binomial Distribution

Binomial Distribution, p=0.5 and p=0.3, n=20

Example:

Problem: Assume that 20 times we are picking a card at random from the deck, with a replacement (in order to have independent trials!). What is the probability that exactly 12 times we will have Hearts?

Solution:

- Simple Experiment = Trial = Picking a Card at random;
- Event in the Trial = A = Card is a Hearts;
- $\mathbb{P}(\mathsf{Event}) = \frac{1}{4}$
- Number of Trials (Repetitions) = 20

So

$$\mathbb{P}(\mathsf{Exactly\ 12\ Hearts}) = \binom{20}{12} \cdot \left(\frac{1}{4}\right)^{12} \cdot \left(1 - \frac{1}{4}\right)^{20 - 12}.$$

Example: Cont'd

Problem: In the problem above, what is the probability that we will have Hearts in more than 17 cases? In not more than

17 cases?

Solution: OTB

Example:

Problem: Some entrance exam test consists of 30 multiple choice problems. Every correct choice gives 1 points. Each problem has suggested 5 choices for the answer, from which only one is correct. If the person will choose randomly the answers, what is the probability that

- He/she will get 25 points?
- He/she will get more than 25 points?
- He/she will get less than 29 points?

Repeated, Independent Trials: Multinomial Case

Now we consider an Experiment consisting of repetition of a Simple Experiment, which can result in 2 or more than 2 events. More precisely,

- We have a Simple Experiment (Trial);
- The Simple Experiment can result in one of the mutually exclusive Events $A_1, A_2, ..., A_m$;
- The probability of having A_k in one Trial is p_k , i.e., $\mathbb{P}(A_k) = p_k$, and $p_1 + p_2 + ... + p_m = 1$;
- We repeat our Trial *n* times, independently;
- We are interested in the probability that we will have exactly k_1 outcomes from A_1 , exactly k_2 outcomes from $A_2,...$, and exactly k_m outcomes from A_m .
- Clearly, we need to have (we are doing n trials)

$$k_1 + k_2 + ... + k_m = n$$
.

Multinomial Case, Remark

Note that the Binomial Case is the particular case of the Multinomial: in that case

- Each trial can result either in A (Success) or in \overline{A} (Failure);
- So we have m=2, $A_1=A$, $A_2=\overline{A}$;
- We have $p_1 = \mathbb{P}(A_1) = \mathbb{P}(A) = p$, so $p_2 = \mathbb{P}(A_2) = \mathbb{P}(\overline{A}) = 1 p$
- We are interested in having exactly k Successes in n Trials, that is, we are interested in having exactly $k_1 = k$ times A_1 (Success) and exactly $k_2 = n k_1$ times A_2 (Failure)

Repeated Indep Trials: Multinomial Probabilities

Now, for our Multinomial Model, let us denote by X_k the number of occurrences of A_k in n Trials, k=1,2,...,m. So we are interested in the Probability of the Event

$$X_1 = k_1, X_2 = k_2, ..., X_m = k_m.$$

Remark: Usually, Mathematicians use vector notations: they denote

$$\mathbf{X} = [X_1, X_2, ..., X_m]^T$$

and write

$$X = k$$

as the vector-form of the above Event.

Intermezzo: Partitions

Problem: How many different words can be obtained from the word

TRALALA

by rearranging its letters?

Problem: Assume we have n elements, and nonnegative integers $k_1, ..., k_m$ with

$$k_1 + k_2 + ... + k_m = n.$$

In how many ways we can divide our n elements into disjoint groups, where the 1st group has k_1 elements, 2nd group has k_2 elements, ..., m-th group has k_m elements?

Repeated Indep Trials: Multinomial Probabilities

Multinomial Probabilities

The probability that exactly k_1 times we will have the event A_1 , exactly k_2 times we will have the event A_2 , ..., exactly k_m times we will have the event A_m in the above described n trials, is

$$\mathbb{P}(X_1 = k_1, X_2 = k_2, ..., X_m = k_m) = \binom{n}{k_1, k_2, ..., k_m} \cdot p_1^{k_1} \cdot p_2^{k_2} \cdot ... \cdot p_m^{k_m}$$

where $p_k = \mathbb{P}(A_k)$, k = 1, ..., m.

Here

$$\binom{n}{k_1, k_2, \dots, k_m} = \frac{n!}{k_1! \cdot k_2! \cdot \dots \cdot k_m!}$$

Note that in the binomial case, i.e., when m=2, we get the Binomial Probabilities formula.