BACCALAUREAT GENERAL

MATHEMATIQUES

Série S

Enseignement Spécifique

Durée de l'épreuve : 4 heures

Coefficient: 7

Ce sujet comporte 8 pages numérotées de 1 à 8

Du papier millimétré est mis à la disposition des candidats.

L'utilisation d'une calculatrice est autorisée.

Le candidat doit traiter tous les exercices.

La qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

EXERCICE 1 (6 points)

(Commun à tous les candidats)

Soit f la fonction définie sur l'intervalle $]0, +\infty[$ par $f(x) = \ln x$. Pour tout réel a strictement positif, on définit sur $]0, +\infty[$ la fonction g_a par $g_a(x) = ax^2$.

On note $\mathscr C$ la courbe représentative de la fonction f et Γ_a celle de la fonction g_a dans un repère du plan. Le but de l'exercice est d'étudier l'intersection des courbes $\mathscr C$ et Γ_a suivant les valeurs du réel strictement positif a.

Partie A

On a construit en **annexe 1** (à rendre avec la copie) les courbes \mathscr{C} , $\Gamma_{0,05}$, $\Gamma_{0,1}$, $\Gamma_{0,19}$ et $\Gamma_{0,4}$.

- 1) Nommer les différentes courbes sur le graphique. Aucune justification n'est demandée.
- 2) Utiliser le graphique pour émettre une conjecture sur le nombre de points d'intersection de \mathscr{C} et Γ_a suivant les valeurs (à préciser) du réel a.

Partie B

Pour un réel a strictement positif, on considère la fonction h_a définie sur l'intervalle $]0, +\infty[$ par

$$h_a(x) = \ln x - ax^2.$$

- 1) Justifier que x est l'abscisse d'un point M appartenant à l'intersection de \mathscr{C} et Γ_a si et seulement si $h_a(x)=0$.
- 2) a) On admet que la fonction h_a est dérivable sur $]0, +\infty[$, et on note h'_a la dérivée de la fonction h_a sur cet intervalle.

Le tableau de variation de la fonction h_a est donné ci-dessous.

Justifier, par le calcul, le signe de $h'_a(x)$ pour x appartenant à $]0, +\infty[$.

x	$0 \qquad \frac{1}{\sqrt{2a}} \qquad + \circ$	0
$h'_a(x)$	+ 0 -	
h_a	$-\infty$	^

- **b)** Rappeler la limite de $\frac{\ln x}{x}$ en $+\infty$. En déduire la limite de la fonction h_a en $+\infty$. On ne demande pas de justifier la limite de h_a en 0.
- 3) Dans cette question et uniquement dans cette question, on suppose que a=0,1.
 - a) Justifier que, dans l'intervalle $\left[0, \frac{1}{\sqrt{0,2}}\right]$, l'équation $h_{0,1}(x) = 0$ admet une unique solution. On admet que cette équation a aussi une seule solution dans l'intervalle $\left[\frac{1}{\sqrt{0,2}}, +\infty\right[$.
 - **b)** Quel est le nombre de points d'intersection de \mathscr{C} et $\Gamma_{0,1}$?
- 4) Dans cette question et uniquement dans cette question, on suppose que $a = \frac{1}{2e}$.
 - a) Déterminer la valeur du maximum de $h_{\frac{1}{2e}}$.
 - **b**) En déduire le nombre de points d'intersection des courbes \mathscr{C} et $\Gamma_{\frac{1}{2e}}$. Justifier.
- 5) Quelles sont les valeurs de a pour lesquelles \mathscr{C} et Γ_a n'ont aucun point d'intersection? Justifier.

EXERCICE 2 (5 points)

(commun à tous les candidats)

La partie C peut être traitée indépendamment des parties A et B.

Partie A

On considère une variable aléatoire X qui suit la loi exponentielle de paramètre λ avec $\lambda > 0$. On rappelle que, pour tout réel a strictement positif,

$$P(X \leqslant a) = \int_0^a \lambda e^{-\lambda t} dt.$$

On se propose de calculer l'espérance mathématique de X, notée E(X), et définie par

$$E(X) = \lim_{x \to +\infty} \int_0^x \lambda t e^{-\lambda t} dt.$$

On note $\ensuremath{\mathbb{R}}$ l'ensemble des nombres réels.

On admet que la fonction F définie sur \mathbb{R} par $F(t) = -\left(t + \frac{1}{\lambda}\right)e^{-\lambda t}$ est une primitive sur \mathbb{R} de la fonction f définie sur \mathbb{R} par $f(t) = \lambda t e^{-\lambda t}$.

1) Soit x un nombre réel strictement positif. Vérifier que

$$\int_0^x \lambda t e^{-\lambda t} dt = \frac{1}{\lambda} \left(-\lambda x e^{-\lambda x} - e^{-\lambda x} + 1 \right).$$

2) En déduire que $E(X) = \frac{1}{\lambda}$.

Partie B

La durée de vie, exprimée en années, d'un composant électronique peut être modélisée par une variable aléatoire notée X suivant la loi exponentielle de paramètre λ avec $\lambda > 0$. La courbe de la fonction densité associée est représentée en **annexe 2**.

- 1) Sur le graphique de l'annexe 2 (à rendre avec la copie) :
 - a) Représenter la probabilité $P(X \le 1)$.
 - **b)** Indiquer où se lit directement la valeur de λ .
- 2) On suppose que E(X) = 2.
 - **a**) Que représente dans le cadre de l'exercice la valeur de l'espérance mathématique de la variable aléatoire *X* ?
 - **b)** Calculer la valeur de λ .
 - c) Calculer $P(X \le 2)$. On donnera la valeur exacte puis la valeur arrondie à 0,01 près. Interpréter ce résultat.
 - d) Sachant que le composant a déjà fonctionné une année, quelle est la probabilité que sa durée de vie totale soit d'au moins trois années ? On donnera la valeur exacte.

Partie C

Un circuit électronique est composé de deux composants identiques numérotés 1 et 2. On note D_1 l'événement « le composant 1 est défaillant avant un an » et on note D_2 l'événement « le composant 2 est défaillant avant un an ».

On suppose que les deux événements D_1 et D_2 sont indépendants et que $P(D_1) = P(D_2) = 0,39$. Deux montages possibles sont envisagés, présentés ci-dessous :

- 1) Lorsque les deux composants sont montés « en parallèle », le circuit A est défaillant uniquement si les deux composants sont défaillants en même temps. Calculer la probabilité que le circuit A soit défaillant avant un an.
- 2) Lorsque les deux composants sont montés « en série », le circuit B est défaillant dès que l'un au moins des deux composants est défaillant. Calculer la probabilité que le circuit B soit défaillant avant un an.

EXERCICE 3 (4 points)

(commun à tous les candidats)

Partie A

On appelle $\mathbb C$ l'ensemble des nombres complexes.

Dans le plan complexe muni d'un repère orthonormé $(O, \overrightarrow{u}, \overrightarrow{v})$, on a placé un point M d'affixe z appartenant à \mathbb{C} , puis le point R intersection du cercle de centre O passant par M et du demi-axe $[0, \overrightarrow{u})$.

- 1) Exprimer l'affixe du point R en fonction de z.
- 2) Soit le point M' d'affixe z' définie par

$$z' = \frac{1}{2} \left(\frac{z + |z|}{2} \right).$$

Reproduire la figure sur la copie et construire le point M'.

Partie B

On définit la suite de nombres complexes (z_n) par un premier terme z_0 appartenant à \mathbb{C} et, pour tout entier naturel n, par la relation de récurrence :

$$z_{n+1} = \frac{z_n + |z_n|}{4}.$$

Le but de cette partie est d'étudier si le comportement à l'infini de la suite $(|z_n|)$ dépend du choix de z_0 .

- 1) Que peut-on dire du comportement à l'infini de la suite $(|z_n|)$ quand z_0 est un nombre réel négatif?
- 2) Que peut-on dire du comportement à l'infini de la suite $(|z_n|)$ quand z_0 est un nombre réel positif?
- 3) On suppose désormais que z_0 n'est pas un nombre réel.
 - a) Quelle conjecture peut-on faire sur le comportement à l'infini de la suite $(|z_n|)$?
 - **b**) Démontrer cette conjecture, puis conclure.

EXERCICE 4 (5 points)

(candidats n'ayant pas suivi l'enseignement de spécialité)

Partie A.

On considère l'algorithme suivant :

Variables :	k et p sont des entiers naturels u est un réel		
Entrée :	Demander la valeur de p		
Traitement:	Affecter à u la valeur 5 Pour k variant de 1 à p Affecter à u la valeur $0, 5u+0, 5(k-1)-1, 5$ Fin de pour		
Sortie:	Afficher u		

Faire fonctionner cet algorithme pour p=2 en indiquant les valeurs des variables à chaque étape. Quel nombre obtient-on en sortie ?

Partie B.

Soit (u_n) la suite définie par son premier terme $u_0 = 5$ et, pour tout entier naturel n par

$$u_{n+1} = 0, 5u_n + 0, 5n - 1, 5.$$

- 1) Modifier l'algorithme de la première partie pour obtenir en sortie toutes les valeurs de u_n pour n variant de 1 à p.
- 2) A l'aide de l'algorithme modifié, après avoir saisi p=4, on obtient les résultats suivants :

n	1	2	3	4
u_n	1	-0, 5	-0,75	-0,375

Peut-on affirmer, à partir de ces résultats, que la suite (u_n) est décroissante ? Justifier.

- 3) Démontrer par récurrence que pour tout entier naturel n supérieur ou égal à 3, $u_{n+1} > u_n$. Que peut-on en déduire quant au sens de variation de la suite (u_n) ?
- 4) Soit (v_n) la suite définie pour tout entier naturel n par $v_n = 0, 1u_n 0, 1n + 0, 5$. Démontrer que la suite (v_n) est géométrique de raison 0, 5 et exprimer alors v_n en fonction de n.
- 5) En déduire que, pour tout entier naturel n,

$$u_n = 10 \times 0, 5^n + n - 5.$$

6) Déterminer alors la limite de la suite (u_n) .

A RENDRE AVEC LA COPIE

ANNEXE 1 de l'exercice 1

A RENDRE AVEC LA COPIE

ANNEXE 2 de l'exercice 2

