COT 4521: INTRODUCTION TO COMPUTATIONAL GEOMETRY

The Art Gallery Problem

Paul Rosen Assistant Professor University of South Florida

THE ART GALLERY PROBLEM

• THE ART GALLERY PROBLEM: HOW MANY CAMERAS WE NEED TO GUARD A GIVEN GALLERY SO THAT EVERY POINT IS SEEN, AND HOW WE DECIDE TO PLACE THEM?

• IN GEOMETRY TERMINOLOGY: HOW MANY POINTS ARE NEEDED IN A SIMPLE POLYGON WITH N VERTICES SO THAT EVERY POINT IN THE POLYGON IS SEEN?

THE ART GALLERY PROBLEM

THIS PROBLEM WAS POSED BY VICTOR KLEE IN 1973

 A GUARD OF THE GALLERY CORRESPONDS TO A POINT ON THE POLYGONAL FLOOR PLAN.

 GUARDS CAN SEE IN EVERY DIRECTION, WITH A FULL RANGE OF VISIBILITY

• THE OPTIMIZATION PROBLEM IS COMPUTATIONALLY DIFFICULT

THE ART GALLERY PROBLEMS

• In a simple polygon P, a point X is said to be *visible* from a point Y (or, vice versa) whenever the line segment XY does not intersect with the exterior of P

$$P: XY \subseteq P$$

• Vertices of P are considered non-blockers of visibility

• VISIBILITY: 2π range

THE ART GALLERY PROBLEMS

- CONSIDER A ROOM WHOSE FLOOR IS POLYGON OF N VERTICES, HOW MANY POINT LIGHTS (CAMERAS) ARE NEEDED TO LIGHT THE WHOLE ROOM?
- A SET OF LIGHTS IS SAID TO <u>COVER</u>
 A POLYGON IF EVERY POINT IN THE
 POLYGON IS LIGHTED.
 - Assume the lights themselves are not sources of shadows

GUARDING A SIMPLE POLYGON

- GIVEN A SIMPLE POLYGON P WITH N VERTICES, FIND THE MINIMUM NUMBER OF GUARDS REQUIRED FOR EVERY POINT OF P TO BE VISIBLE FROM SOME GUARD
- Assume that every guard can view 360 degrees around it
- HOW MANY LIGHTS WE NEED TO PLACE TO GUARD A SIMPLE POLYGON?
 - One guard is both necessary and sufficient for any convex polygon

SUFFICIENT NUMBER OF GUARDS FOR ANY POLYGON OF N VERTICES

- HOW MANY GUARDS ARE SUFFICIENT TO COVER ANY N-VERTEX SIMPLE POLYGON?
 - By placing a guard at every vertex, any n-vertex simple polygon can be trivially guarded with n guards — loose upper bound

Maximum over minimum formulation Formal definition

• Let $g(P_N)$ be the smallest number of lights need to cover a particular polygon of ${\mathbb N}$ sides.

$$g(P_N) = \min_S | \{S : S \text{ covers } P\} |$$

- S is the set of points where the lights are located
- What is the max of $g(P_N)$ over all P_N ?

$$G(N) = \max_{P_N} g(P_N)$$

HOW MANY LIGHTS ARE NEEDED?

What is the maximum of the minimum number of lights needed to cover a 12-sided polygon?

G(N) = ?

$$1 \le G(N) \le N$$

$$G(3) = 1$$

$$G(4) = 1$$

$$G(5) = 1$$

$$G(6) = 2$$

MAXIMUM OVER MINIMUM FORMULATION

• How many lights (cameras) NEEDED (N=12)

MAXIMUM OVER MINIMUM FORMULATION: QUIZ

• How many lights (cameras) needed (n=12)

MAXIMUM OVER MINIMUM FORMULATION: QUIZ

• How many lights (cameras) NEEDED (N=12)

MAXIMUM OVER MINIMUM FORMULATION: QUIZ

• How many lights (cameras) NEEDED (N=12)

$$G(N) = \dots$$

- CHVATAL'S COMB
 - G(12) = 4

• CAN IT BETHAT $G(N) = \left\lfloor \frac{N}{3} \right\rfloor$?

MAXIMUM OVER MINIMUM FORMULATION

- Theorem (Art Gallery Theorem). For a simple polygon with N vertices, $\lfloor n/3 \rfloor$ cameras are occasionally necessary and always sufficient to have every point in the polygon visible from at least one of the cameras
 - Sufficiency of n
 - Certainly at least one camera is needed—lower bound on G(n): $1 \le G(n)$
 - An upper bound on G(n): $G(n) \le n$
 - The first proof that $G(n) = \lfloor n/3 \rfloor$ was due to Ghvatal (1975)
 - We will present Fiske's proof of sufficiency of $\lfloor n/3 \rfloor$ guards for any n-sided polygon

FISKE' PROOF

- GIVEN ARBITRARY N-VERTEX P:
 - Triangulate P
 - Color the vertices of triangulation graph G
 - G can be 3-colored
 - Place lights at same colored nodes
 - Guaranteed to light the whole polygon P

Brute Force Triangulation

- TRIANGULATE P USING A DIAGONAL-BASED APPROACH
- **THEOREM:** EVERY POLYGON P OF N VERTICES CAN BE PARTITIONED INTO TRIANGLE BY THE ADDITION OF (ZERO OR MORE) DIAGONALS.
 - Complexity of diagonal-based algorithm:
 - $O(n^2)$ # of diagonal candidates
 - O(n) testing each of neighborhoods
 - Repeating this $O(n^3)$ computation for each of the n-3 diagonals yields $O(n^4)$

TRIANGULATION DUAL

- THE DUAL T OF A TRIANGULATION IS A TREE, WITH EACH NODE OF DEGREE AT MOST THREE.
- DUAL GRAPH: EACH FACE GIVES A NODE; TWO NODES ARE CONNECTED IF THE FACES ARE ADJACENT

Properties of triangulations

PROOF:

- The degree three is immediate from the fact that every triangle have three sides.
- If there is a cycle C in T it is easy to verify that...
- There must be a vertex inside the polygon...

MEISTER'S TWO EARS THEOREM

- THREE CONSECUTIVE VERTICES, A, B, C FORM AN EAR IF AC IS A DIAGONAL
- "2-EARS" THEOREM: EVERY POLYGON OF $n \ge 4$ VERTICES HAS AT LEAST 2 NON-OVERLAPPING EARS.
 - The triangulation dual has at least 2 nodes
 - A tree of more than 2 nodes has at least
 2 leaf nodes
 - Each leaf node corresponds to an ear.

TRIANGULATION THEORY: 3-COLORING

- "2-EARS" THEOREM CAN BE USED TO EASILY PROVE 3-COLORABILITY OF TRIANGULATION GRAPHS
 - Induction on *n*
 - Base case: n = 3
 - For $n \geq 4$: 2-ears theorem guarantees that an ear abc exists apply inductive hypothesis to polygon P' without ear "reattaching" ear adds back in one vertex (w.l.o.g. b) color b whatever color a and c don't use result is a 3-coloring of P

FISKE' PROOF

• 3 COLORS

FISKE' PROOF

• APPLY THE "PIGEON-HOLE PRINCIPLE" — If n Objects are placed into K pigeon Holes, then at least one hole must contain no more than n/k objects

3 COLORS SUFFICE...

3 COLORS SUFFICE...

PIGEON HOLE PRINCIPLE

- 3 HOLES (COLORS) AND 14 PIGEONS (VERTICES) TO GO INTO THEM.
- THERE WILL ALWAYS BE ONE HOLE WITH LESS OR EQUAL TO 14/3 PIGEONS
- GENERALIZING: FOR 3 COLORS AND N VERTICES THERE
 WILL BE A COLOR THAT IS USED AT MOST N/3 TIMES. PLACE
 THE LIGHT AT THOSE COLORS.

EXAMPLE

