Лабораторная работа 2: Встраивание ЦВЗ в спектр изображений на основе технологии расширения спектра

Задания

В рамках выполнения лабораторной работы необходимо выполнить задания из списка основных по вариантам, отмеченным в таблице ниже, а также ответить на один контрольный вопрос. Вопросы выбирает преподаватель. Также студент по желанию может выполнить одно из дополнительных заданий после основных.

Основные задания

- 1. Реализовать генерацию ЦВЗ Ω как псевдослучайной последовательности заданной длины из чисел, распределённых по нормальному закону.
- 2. Реализовать трансформацию исходного контейнера к пространству признаков согласно варианту задания.
- 3. Осуществить встраивание информации методом, определяемым вариантом задания. Значения параметра встраивания устанавливается произвольным образом.
- 4. Сформировать носитель информации при помощи обратного преобразования от матрицы признаков к цифровому сигналу. Сохранить его на диск.
- 5. Считать носитель информации из файла и повторно выполнить п. 2 для носителя информации.
- 6. Сформировать оценку встроенного ЦВЗ $ildе{\Omega}$ неслепым методом (то есть с использованием матрицы признаков исходного контейнера); выполнить детектирование при помощи функции близости $ho\left(\Omega, ildе{\Omega}\right)$ вида (6.11).
- 7. Осуществить автоматический подбор значения параметра встраивания методом перебора с целью обеспечения заданного значения функции близости ρ или уровня визуального качества PSNR изображения носителя информации (по вариантам).
- 8. [Варианты 5-24] Выполнить дополнительное исследование полученной системы встраивания информации по вариантам.

Дополнительные задания

- Реализовать расчёт любого взвешенного по частотам показателя качества изображений (они могут называться ЧВ СКП, weighted signal-to-noise ratio, WSNR; вид весовой функции значения не имеет). Сравнить результаты для своего варианта со значениями показателя PSNR.
- 10. Реализовать изменённый метод встраивания информации и соответствующий ему метод извлечения информации, обеспечивающий слепое извлечение информации, при этом в целом оставаясь в рамках своего варианта задания. Можно воспользоваться принципами, реализованными в СВИ-15 (Piva et al.). Порог при детектировании выбирать не требуется.
- 11. [Для вариантов заданий, предполагающих вейвлет-декомпозицию контейнера] Помимо базового семейства вейвлетов Хаара выполнить задания лабораторной работы на двух других семействах вейвлетов (различные варианты вейвлетов Добеши, койфлетов, биортогональных вейвлетов и др.) и сравнить полученные результаты, в том числе с исходными показателями на семействе Хаара.
- 12. [Для вариантов заданий, включающих исследование «Ложное обнаружение»] Выбрать и реализовать другой способ генерации исходной последовательности: не по нормальному закону, а иным образом, исходя из задачи получения большого ансамбля мало коррелированных друг с другом последовательностей. Провести исследование «Ложное обнаружение» (подробности см. ниже) для этого способа генерации ЦВЗ.

Варианты заданий

Метод встраивания: аддитивный для нечётных вариантов, мультипликативный для чётных вариантов.

Если $var \equiv 1; 2 \pmod{4}$, где var — номер варианта задания (1-24), то подбор параметров в задании 7 осуществляется исходя из обеспечения $\rho > 0.9$ (или по желанию любого значения, большего 0.9) при минимальных искажениях по мере PSNR. Если $var \equiv 3; 4 \pmod{4}$, то подбор параметров в задании 7 осуществляется исходя из обеспечения PSNR > 30 дБ (или по желанию любого значения, большего 30 дБ), при этом выбирается набор параметров, соответствующий наибольшему значению ρ .

В представленной ниже таблице отражены остальные параметры заданий:

А: спектральное преобразование при переходе к матрице признаков. Для ДПФ указаны конкретные компоненты комплексной матрицы, используемые для встраивания. Для ДВП — число уровней декомпозиции (во всех вариантах необходимо использовать семейство вейвлетов Хаара).

В: зона спектра, которую необходимо использовать для встраивания информации. Для ДКП, ДПФ считаем, что спектр делится на зоны низких (L), средних (M) и высоких (H) частот. Для ДКП в данной лабораторной работе принимается упрощённое расположение зон, показанное на рисунке 1, с соотношением площадей L:M:H = 1/16: 3/16: 3/4. Для ДПФ в данной лабораторной работе принимается упрощённое расположение зон, показанное на рисунке 2, с соотношением площадей L:M:H = 1/4: 1/2: 1/4. Для ДВП на каждом уровне декомпозиции спектр делится на зоны LL, LH, HL, HH.

Рис. 1 – Принимаемое в данной лабораторной работе упрощённое расположение зон L, M, H спектра ДКП

L	М	L
М	Н	М
L	М	L

Рис. 2 – Принимаемое в данной лабораторной работе упрощённое расположение зон L, M, H спектра ДПФ

С: доля выбранной группы коэффициентов спектра, которая подлежит изменению. Это значение определяет длину встраиваемой последовательности Ω . Используются первые коэффициенты в порядке от низкочастотных к высокочастотным.

D: вид дополнительного исследования:

- «Ложное обнаружение»: генерируем 100 случайных последовательностей той же длины, что и Ω , и ищем значение функции близости $\tilde{\Omega}$ с каждой из них. Строим график, проверяем, удаётся ли выбрать правильную последовательность.
- *«Разные фрагменты»:* встраивание производится не только в первые 1/4 спектральных компонент из выбранной обрасти, но и отдельно в каждую из оставшихся четвертей при тех же параметрах. Результаты сравниваются по PSNR и по ρ .
- «Beta: MSE»: после выполнения заданий 1-7 необходимо выполнить их повторно при использовании модифицированного метода формирования итогового носителя информации по формулам (6.15)-(6.16) и сравнить результаты.
- *«Beta: Laplace»:* отличается от предыдущего вида исследования способом оценивания текстурированности изображения: вместо $C_{MSE,9\times9}$ в формуле (6.16) используется результат свёртки исходного контейнера $\mathcal C$ с маской Лапласа вида

$$g(n_1, n_2) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Nº	А	В	С	D
(var)				
1	ДКП	L	1	-
2	дкп	М	1/2	_
3	дкп	Н	1/4	-
4	дкп	М	1/4	_
5	дкп	М	1/2	Ложное обнаружение
6	дкп	Н	1/4	Разные фрагменты
7	дкп	L	1	Beta: MSE
8	ДКП	М	1/4	Beta: Laplace
9	ДПФ: Re	L	1	Ложное обнаружение
10	ДПФ: Re	Ĺ	1/2	Разные фрагменты

11	ДПФ: Re	M+H	1/2	Beta: MSE
12	ДПФ: Re	M+H	1/4	Beta: Laplace
13	ДПФ: abs	Н	1	Ложное обнаружение
14	ДПФ: abs	Н	1/4	Разные фрагменты
15	ДПФ: abs	Н	1/2	Beta: MSE
16	ДПФ: abs	L	1/2	Beta: Laplace
17	ДВП: 2	LL	1/2	Ложное обнаружение
18	ДВП: 2	HL	1/4	Разные фрагменты
19	ДВП: 2	LH	1	Beta: MSE
20	ДВП: 2	НН	1/4	Beta: Laplace
21	ДВП: 3	LL	1/2	Ложное обнаружение
22	ДВП: 3	HL	1/4	Разные фрагменты
23	ДВП: 3	LH	1	Beta: MSE
24	ДВП: 3	HH	1/2	Beta: Laplace

Контрольные вопросы

- 1. Основные этапы встраивания информации в спектр изображения.
- 2. В чём преимущества и недостатки встраивания информации в спектр изображения в сравнении со встраиванием в исходные пиксели?
- 3. Каковы области низких, средних высоких частот в ДПФ?
- 4. Каковы области низких, средних высоких частот в ДКП?
- 5. Каковы области низких, средних высоких частот в ДВП?
- 6. На какие характеристики СВИ может влиять выбор частот, к которые встраивается ЦВЗ?
- 7. В чём основные отличия ДПФ от ДКП, ДВП?
- 8. В чём основные отличия ДВП от ДКП, ДПФ?
- 9. Что такое аддитивное встраивание? Каковы варианты формул аддитивного встраивания?
- 10. Что такое мультипликативное встраивание? Каковы варианты формул мультипликативного встраивания?
- 11. В чём заключается принцип расширения спектра при встраивании информации?
- 12. Опишите формулами процесс детектирования ЦВЗ, применяемый в данной лабораторной работе.