第六章 统计量和抽样分布 参考答案

_	、单选题(共5小题,每小题4分,共20	分)		
1.	设随机变量 X 和 Y 都服从标准正态分布,	则	······(C)	
	(A) X + Y 服从正态分布	(B) $X^2 + Y^2$ 服从 χ^2	分布	
	(C) X^2 和 Y^2 都服从 χ^2 分布	(D) X ² /Y ² 服从 F 分	个 布	
2.	对于给定的正数 $\alpha(0<\alpha<1)$,则以下结论中不正确的是 \cdots			
	(A) $u_{1-\alpha} = -u_{\alpha}$	(B) $t_{1-\alpha}(n) = -t_{\alpha}(n)$		
	(C) $\chi_{1-\alpha}^2(n) = -\chi_{\alpha}^2(n)$	(D) $F_{1-\alpha}(n_1, n_2) = \frac{1}{F_{\alpha}(n_1)}$	$\frac{1}{n_2,n_1)}$	
3.	设 $X_1, X_2, \cdots, X_n (n \ge 2)$ 为来自总体 $N(\mu, 1)$ 结论不正确的是) 的简单随机样本, <i>2</i>		
	(A) $\sum_{i=1}^{n} (X_i - \mu)^2$ 服从 χ^2 分布	(B) $2(X_n - X_1)^2$ 服从	χ^2 分布	
	(C) $\sum_{i=1}^{n} (X_i - \bar{X})^2$ 服从 χ^2 分布	(D) $n(\bar{X}-\mu)^2$ 服从 f	γ ² 分布	
4.	设 $(X_1, X_2, \cdots, X_{16})$ 为来自总体 $N(3, 16)$ 的-(A) $\bar{X} - 3 \sim N(0, 1)$ (B) $4(\bar{X} - 3) \sim N(0, 1)$	_	_	
5.	已知总体 X 服从参数为 λ 的泊松分布 (λ 本,则	未知), X_1, X_2, \cdots, X_n	$n(n \ge 2)$ 是 X 的一组样	
	$\frac{1}{n}\sum_{i=1}^{n}X_{i}-\lambda, \ \frac{1}{n}\sum_{i=1}^{n}X_{i}, \ \frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-X_{i})$	$(X_i - \bar{X})^2$, $\frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$	$(-\lambda)^2$, $\frac{(n-1)S^2}{Var(X)}$	
	中可以作为统计量的个数是	可以作为统计量的个数是·····(B		
	(A) 1 (B) 2	(C) 3	(D) 4	
	二、填空题(共 4 小题,每小题 5 分,共 20 分) 1. 设总体 X 的概率密度函数为 $f(x) = \frac{1}{2}e^{- x }, x \in \mathbb{R}, X_1, X_2, \cdots, X_n$ 是 X 的一组样本,其样本方差为 S^2 ,则 $E(S^2) = 2$.			
2.	设 X_1, X_2, \dots, X_n 为来自二项分布总体 $B(n)$ 样本方差,记统计量 $T = \bar{X} - S^2$,则 $E(T) = \bar{X} - S^2$		I S ² 分别为样本均值和	
3.	设 X_1, X_2, \dots, X_n 为来自正态总体 $N(\mu, \sigma^2)$ $E(T) = \underline{\mu^2 + \sigma^2}$.	的一组样本,记统	計量 $T = \frac{1}{n} \sum_{i=1}^{n} X_i^2$,则	

4. 设 X_1, X_2, \cdots, X_{15} 为来自正态总体 $N(0, 2^2)$ 的一组样本,则 $Y = \frac{X_1^2 + X_2^2 + \cdots + X_{10}^2}{2(X_{11}^2 + X_{12}^2 + \cdots + X_{15}^2)}$ 服从的分布为 ___F(10,5)___.

三、设 X_1, X_2, \dots, X_n 是取自正态总体 N(80, 16) 的一组样本,当样本容量 n 至少多大,才能使样本均值 \bar{X} 大于 **78** 的概率不小于 **0.95**?(本题 20 分)

解. 因为 $\bar{X} \sim N(80, \frac{16}{n})$, 所以

$$P(\bar{X} > 78) = 1 - \Phi\left(\frac{78 - 80}{\sqrt{16/n}}\right) = \Phi\left(\frac{\sqrt{n}}{2}\right) \ge 0.95$$

则 $\frac{\sqrt{n}}{2} \ge u_{0.95} = 1.645$, 解得 $n \ge 10.8$, 故 n = 11.

四、设 X_1, X_2, \dots, X_5 是取自正态总体 N(0,4) 的一组样本,令 $Y = c_1(X_1 + 2X_2)^2 + c_2(X_3 + 3X_4 - 2X_5)^2$,求 Y 服从 χ^2 分布时常数 c_1, c_2 的值. (本题 20 分)

解. 计算可知,

$$E(X_1 + 2X_2) = 0, Var(X_1 + 2X_2) = 20, \frac{X_1 + 2X_2}{\sqrt{20}} \sim N(0, 1),$$

$$E(X_3 + 3X_4 - 2X_5) = 0, Var(X_3 + 3X_4 - 2X_5) = 56, \frac{X_3 + 3X_4 - 2X_5}{\sqrt{56}} \sim N(0, 1),$$

且 $X_1 + 2X_2$ 与 $X_3 + 3X_4 - 2X_5$ 相互独立,则

$$Y = \left(\frac{X_1 + 2X_2}{\sqrt{20}}\right)^2 + \left(\frac{X_3 + 3X_4 - 2X_5}{\sqrt{56}}\right)^2 \sim \chi^2(2),$$

五、设 X_1, X_2, \cdots, X_6 是取自正态总体 $N(0, \sigma^2)$ 的一组样本,令 $Y = \frac{c(X_1 + X_3 + X_5)}{\sqrt{X_2^2 + X_4^2 + X_6^2}}$, 其中 c 是不等于零的常数,求 Y 服从 t 分布时常数 c 的值.(本题 20 分)

解. 由

$$\frac{X_1 + X_3 + X_5}{\sqrt{3}\sigma} \sim N(0, 1), \frac{X_i}{\sigma} \sim N(0, 1), i = 2, 4, 6,$$

可得

$$\left(\frac{X_2}{\sigma}\right)^2 + \left(\frac{X_4}{\sigma}\right)^2 + \left(\frac{X_6}{\sigma}\right)^2 \sim \chi^2(3),$$

则

$$\frac{\frac{X_1+X_3+X_5}{\sqrt{3}\sigma}}{\sqrt{\left(\left(\frac{X_2}{\sigma}\right)^2+\left(\frac{X_4}{\sigma}\right)^2+\left(\frac{X_6}{\sigma}\right)^2\right)/3}}\sim t(3),$$