## Criptografie și securitate CTI

## Laborator 5

## Sistemul de cifrare One Time Pad (OTP) pe biţi

- 1. (a) Folosind sistemul OTP și codul ASCII, criptați primele 2 litere din numele vostru folosind cheia  $k=0100\ 1110\ 0110\ 1000$ ;
  - (b) Decriptați mesajul cifrat  $c=1101\ 1111\ 0101\ 1011$  utilizând cheia  $k=1001\ 1101\ 0010\ 1101.$
  - (c) Ce cantitate de date se poate cifra utilizând OTP cu o cheie de 1GB dacă se dorește păstrarea securității perfecte? De ce?
  - (d) Proprietățile de confuzie și difuzie sunt satisfăcute?
- 2. Se poate construi un criptosistem similar cu OTP dar înlocuind operația XOR cu AND? Dar cu operația OR? Dar cu operația NOT?
- 3. (a) Folosind un tool online, decriptați ciphertextul c folosind cheia k, unde
  - $c = 0 \times 6469 f 6670 d e 9 d d 7 e 420264417 a 833151557 b 60 a 529 f 970833215425306014 d, \\ k = 0 \times 211 f 93476 c c 9 b 410366716221 f f 34530215 b 0 d c 05 a 981 a f 65 e 352330736 c 63.$
  - (b) Determinați cheia care duce ciphertext-ul anterior în mesajul m = "OTP=Criptosistem perfect sigur!".
  - (c) Arătați matematic cum poate Eve să găsească mesajul  $m_2$  dacă știe că Alice refolosește aceeași cheie în criptosistemul OTP. De asemenea, Eve cunoaște și textul cifrat  $c_2$  aferent mesajului  $m_2$  și încă o pereche  $(m_1, c_1)$  la care știe că a fost folosită aceeași cheie în procesul de criptare.

## Generatoare de numere (pseudo)aleatoare

- 1. a) Considerați generatorul liniar congruențial (LCG) definit prin  $x_{n+1} = 3 \cdot x_n + 4 \pmod{8}$  și  $x_0 = 0$ . Generați o secvență de numere utilizând acest LCG. Este acesta un generator sigur din punct de vedere criptografic? Ce se întâmplă dacă  $x_0 = 5$ ?
  - b) Considerați generatorul liniar congruențial (LCG) definit prin  $x_{n+1} = 3 \cdot x_n + 4 \pmod{15}$  și  $x_0 = 1$ . Generați o secvență de numere utilizând acest LCG. Este acesta un generator sigur din punct de vedere criptografic?
- 2. i) Considerați un linear feedback shift register (LFSR) potrivit schemei din Figure 1. Fie  $x_i$  intrările inițiale pentru  $R_i$ ,  $0 \le i \le 3$ , conform Table 1. Care sunt primii 8 biți de ieșire?
  - Arătați că secvența de ieșire este definită de stările inițiale și de formula recursivă  $x_{i+4} = x_{i+3} \oplus x_i$  și determinați periodicitatea șirurilor rezultate.



Figure 1: LFSR - exercițiul 4

|    | $x_3$ | $x_2$ | $x_1$ | $x_0$ |
|----|-------|-------|-------|-------|
| a) | 0     | 1     | 1     | 0     |
| b) | 1     | 1     | 1     | 0     |

Table 1: Stări inițiale  ${\cal R}_i$  - exercițiul 4

ii) Implementați un LFSR în care numărul stărilor să poată fi ales. Folosiți acest program pentru a crea un LFSR cu 10 stări și găsiți un seed care să dezvolte un șir de perioadă maximă.