## Objectives

- Find the best practices of using open access points for Internet access
- Require no changes on the APs
- Study the ways of increasing duration of link layer connectivity
- Study the ways of extending the usable range of the APs via non-interfering V2V networks

### Some of the measured facts

| Region        | Area (km²) | Access Points | Density (APs/km²) |
|---------------|------------|---------------|-------------------|
| U.S.          | 9,166,600  | 5,615,451     | 0.6               |
| Las Vegas     | 240        | 26,069        | 109               |
| Kansas City   | 270        | 29,438        | 109               |
| Atlanta       | 460        | 65,364        | 142               |
| San Francisco | 213        | 69,502        | 326               |
| Seattle       | 165        | 64,923        | 395               |
| Boston        | 225        | 164,072       | 729               |
| Manhattan     | 105        | 194,651       | 1,854             |

[1] Kipp Jones and Ling Liu. ``What Where Wi: An Analysus of Millions of WiFi Access Points", To appear in Proceedings of 2007 IEEE Portable: International Conference on Portable Information Devices. Orlando, FL, March 25-29

| Type of connectivity | Mean (sec) | Std. dev.(sec) |
|----------------------|------------|----------------|
| End-to-end conn.     | 260        | 642            |
| Local IP conn.       | 162        | 447            |
| Successful assoc.    | 75         | 300            |
| Assoc. attempts      | 23         | 151            |

a simple caching optimization to speed-up IP address acquisition, we find that for our driving patterns the median duration of link-layer connectivity at vehicular speeds is 13 seconds, the median connection upload bandwidth is 30 KBytes/s, and that the mean duration between successful associations to APs is 75 seconds. We also find that connections are equally probable across a range of urban speeds (up to 60 km/hour in our measurements). Our end-to-end TCP upload experiments had a median throughput of about 30 KBytes/s, which is consistent with typical uplink speeds of home broadband links in the US. The median TCP connection is capable of uploading about 216 KBytes of data.

With

# Extending Range of Open WLANs through relaying at 900Mhz

#### Cars Equipped with

- One best of breed a/b/g WiFi radio (Ubiquiti XR2)
- One 900Mhz WiFi radio (Ubiquiti SR9)



## Simple relaying strategies

- No multi-hopping (no routing) over 900MHz relays
- Each relay emits heartbeats (e.g. of period 1-sec)
  whenever it has usable connection to an open WLAN
- Cars maintain an SNR-ordered preference list for available 900MHz relays
- Each car prefers its own direct WLAN connection over a 900MHz relay