CNTKCTL_EL1, Counter-timer Kernel Control Register

The CNTKCTL EL1 characteristics are:

Purpose

When FEAT_VHE is implemented and HCR_EL2. {E2H, TGE} is {1, 1}, this register does not cause any event stream from the virtual counter to be generated, and does not control access to the counters and timers. The access to counters and timers at EL0 is controlled by CNTHCTL_EL2.

When FEAT_VHE is not implemented, or when HCR_EL2.{E2H, TGE} is not {1, 1}, this register controls the generation of an event stream from the virtual counter, and access from EL0 to the physical counter, virtual counter, EL1 physical timers, and the virtual timer.

Configuration

AArch64 System register CNTKCTL_EL1 bits [31:0] are architecturally mapped to AArch32 System register CNTKCTL[31:0].

Attributes

CNTKCTL EL1 is a 64-bit register.

Field descriptions

0302010059585750555453525150	49	484/4645444342	41	40	39383730	35	34	
			RES0					
RES0	EVNTIS	RES0	ELOPTEN	ELOVTEN	EVNTI	EVNTDIR	VNTENEI	_0
3130292827262524232221201918	17	16151413121110	9	8	7 6 5 4	3	2	

Bits [63:18]

Reserved, res0.

EVNTIS, bit [17] When FEAT_ECV is implemented:

Controls the scale of the generation of the event stream.

EVNTIS	Meaning	

0b0	The CNTKCTL_EL1.EVNTI
	field applies to
	<u>CNTVCT_EL0</u> [15:0].
0b1	The CNTKCTL EL1.EVNTI
	field applies to
	CNTVCT EL0[23:8].

This control applies regardless of the value of the CNTHCTL EL2.ECV bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bits [16:10]

Reserved, res0.

ELOPTEN, bit [9]

Traps EL0 accesses to the physical timer registers to EL1, or to EL2 when it is implemented and enabled for the current Security state and HCR EL2.TGE is 1, as follows:

- In AArch64 state, the following registers are trapped, reported using EC syndrome value 0x18:
 - CNTP CTL ELO, CNTP CVAL ELO, and CNTP TVAL ELO.
- In AArch32 state, MRC and MCR accesses to the following registers are trapped, reported using EC syndrome value 0x03, MRRC and MCRR accesses are trapped, reported using EC syndrome value 0x04:
 - CNTP CTL, CNTP CVAL, CNTP TVAL.

ELOPTEN	Meaning
0b0	EL0 accesses to the physical
	timer registers are trapped
	to EL1.
0b1	This control does not cause
	any instructions to be
	trapped.

When FEAT_VHE is implemented and HCR_EL2. {E2H, TGE} is {1, 1}, this control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

ELOVTEN, bit [8]

Traps EL0 accesses to the virtual timer registers to EL1, or to EL2 when it is implemented and enabled for the current Security state and <u>HCR EL2</u>.TGE is 1, as follows:

- In AArch64 state, accesses to the following registers are trapped, reported using EC syndrome value 0x18:
 - CNTV CTL EL0, CNTV CVAL EL0, and CNTV TVAL EL0.
- In AArch32 state, MRC and MCR accesses to the following registers are trapped and reported using EC syndrome value 0x03, MRRC and MCRR accesses are trapped using EC syndrome value 0x04:
 - CNTV CTL, CNTV CVAL, and CNTV TVAL.

ELOVTEN	Meaning
0b0	EL0 accesses to the virtual
	timer registers are trapped.
0b1	This control does not cause
	any instructions to be
	trapped.

When FEAT_VHE is implemented and <u>HCR_EL2</u>.{E2H, TGE} is {1, 1}, this control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

EVNTI, bits [7:4]

Selects which bit of <u>CNTVCT_ELO</u>, as seen from EL1, is the trigger for the event stream generated from that counter when that stream is enabled.

If FEAT_ECV is implemented, and CNTKCTL_EL1.EVNTIS is 1, this field selects a trigger bit in the range 8 to 23 of CNTVCT_EL0.

Otherwise, this field selects a trigger bit in the range 0 to 15 of CNTVCT ELO.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

EVNTDIR, bit [3]

Controls which transition of the <u>CNTVCT_ELO</u> trigger bit, as seen from EL1 and defined by EVNTI, generates an event when the event stream is enabled.

EVNTDIR	Meaning
0b0	A 0 to 1 transition of the
	trigger bit triggers an event.
0b1	A 1 to 0 transition of the
	trigger bit triggers an event.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

EVNTEN, bit [2]

When FEAT_VHE is not implemented, or when HCR_EL2.{E2H, TGE} is not {1, 1}, enables the generation of an event stream from CNTVCT_EL0 as seen from EL1.

EVNTEN	Meaning	
0b0	Disables the event stream.	
0b1	Enables the event stream.	

When FEAT_VHE is implemented and HCR_EL2. {E2H, TGE} is {1, 1}, this control does not enable the event stream.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

ELOVCTEN, bit [1]

Traps EL0 accesses to the frequency register and virtual counter register to EL1, or to EL2 when it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1, as follows:

- In AArch64 state, accesses to the following registers are trapped and reported using EC syndrome value 0x18:
 - <u>CNTVCT_EL0</u> and if <u>CNTKCTL_EL1</u>.EL0PCTEN is 0, CNTFRQ_EL0.

- In AArch32 state, MRC and MCR accesses to the following registers are trapped and reported using EC syndrome value 0x03, MRRC and MCRR accesses are trapped and reported using EC syndrome value 0x04:
 - <u>CNTVCT</u> and if <u>CNTKCTL EL1</u>.EL0PCTEN is 0, <u>CNTFRQ</u>.

ELOVCTEN	Meaning
0b0	EL0 accesses to the
	frequency register and
	virtual counter registers
	are trapped.
0b1	This control does not
	cause any instructions to
	be trapped.

When FEAT_VHE is implemented and HCR_EL2. {E2H, TGE} is {1, 1}, this control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

ELOPCTEN, bit [0]

Traps EL0 accesses to the frequency register and physical counter register to EL1, or to EL2 when it is implemented and enabled for the current Security state and HCR EL2.TGE is 1, as follows:

- In AArch64 state, the following registers are trapped, reported using EC syndrome value 0x18:
 - <u>CNTPCT_EL0</u> and if <u>CNTKCTL_EL1</u>.EL0VCTEN is 0, <u>CNTFRQ_EL0</u>.
- In AArch32 state, MCR or MRC accesses the following registers are trapped, reported using EC syndrome value 0x03, MCRR or MRRC accesses are trapped and reported using EC syndrome value 0x04:
 - CNTPCT and if CNTKCTL EL1.EL0VCTEN is 0, CNTFRQ.

ELOPCTEN	Meaning
0b0	EL0 accesses to the
	frequency register and
	physical counter register
	are trapped.
0b1	This control does not cause
	any instructions to be
	trapped.

When FEAT_VHE is implemented and HCR_EL2. {E2H, TGE} is {1, 1}, this control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Accessing CNTKCTL_EL1

When HCR_EL2. E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CNTKCTL_EL1 or CNTKCTL_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CNTKCTL_EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b1110	0b0001	0b000

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    X[t, 64] = CNTKCTL_EL1;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        X[t, 64] = CNTHCTL_EL2;
    else
        X[t, 64] = CNTKCTL_EL1;
elsif PSTATE.EL == EL3 then
    X[t, 64] = CNTKCTL_EL1;
```

MSR CNTKCTL_EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b000	0b1110	0b0001	0b000

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    CNTKCTL_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
```

MRS <Xt>, CNTKCTL_EL12

op0	oo op1 CI		CRm	op2
0b11	0b101	0b1110	0b0001	0b000

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        X[t, 64] = CNTKCTL\_EL1;
    else
        UNDEFINED;
elsif PSTATE.EL == EL3 then
    if EL2Enabled() && !ELUsingAArch32(EL2) &&
HCR\_EL2.E2H == '1' then
        X[t, 64] = CNTKCTL\_EL1;
    else
        UNDEFINED;
```

MSR CNTKCTL_EL12, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b101	0b1110	0b0001	0b000

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        CNTKCTL_EL1 = X[t, 64];
```

AArch32 Registers AArch64 Registers AArch32 Instructions AArch64 Instructions

Index by Encoding External Registers

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright \hat{A} © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.