Understanding independence: example

Understanding independence: questions

- \triangleright On which given probabilities does P(N) depend?
- If you were to observe a value for B, which variables' probabilities will change?
- If you were to observe a value for N, which variables' probabilities will change?
- Suppose you had observed a value for *M*; if you were to then observe a value for *N*, which variables' probabilities will change?
- Suppose you had observed B and Q; which variables' probabilities will change when you observe N?

What variables are affected by observing?

- If you observe variable \overline{Y} , the variables whose posterior probability is different from their prior are:
 - \rightarrow The ancestors of \overline{Y} and
 - > their descendants.
- Intuitively (if you have a causal belief network):
 - > You do abduction to possible causes and
 - **prediction** from the causes.

Common descendants

- tampering and fire are independent
- tampering and fire are dependent given alarm
- Intuitively, tampering can explain away fire

Common ancestors

- alarm and smoke are dependent
- alarm and smoke are independent given fire
- Intuitively, *fire* can explain *fire* and *smoke*; learning one can affect the other by changing your belief in *fire*.

Chain

- alarm and report are dependent
- alarm and report are independent given leaving
- Intuitively, the only way that the *alarm* affects *report* is by affecting *leaving*.

d-separation

- \overline{X} is d-separated from \overline{Y} given \overline{Z} if there is no path from an element of \overline{X} to an element of \overline{Y} , where:
- If there are paths $A \to B$ and $B \to C$ such that $B \notin \overline{Z}$, there is a path $A \to C$.
- If there are paths $B \to A$ and $B \to C$ such that $B \notin \overline{Z}$, there is a path $A \to C$.
- If there are paths $A \to B$ and $C \to B$ such that $B \in \overline{Z}$, there is a path $A \to C$.
- \overline{X} is independent \overline{Y} given \overline{Z} for some conditional probabilities iff \overline{X} is d-separated from \overline{Y} given \overline{Z}