Calculating \mathbb{R}^2 for MLM With Gutten Tree Data

Andy Grogan-Kaylor

26 May 2020

Figure 1: Norway Spruce and Larch Forest in Austrian Alps

https://ec.europa.eu/jrc/en/research-topic/forestry/qr-tree-project/norway-spruce

Data Source

The data used in this example are derived from the R package Functions and Datasets for "Forest Analytics with R".

According to the documentation, the source of these data are: "von Guttenberg's Norway spruce (Picea abies [L.] Karst) tree measurement data."

Figure 2: Old Tjikko, a 9,550 Year Old Norway Spruce in Sweden

The documentation goes on to further note that:

"The data are measures from 107 trees. The trees were selected as being of average size from healthy and well stocked stands in the Alps."

. use gutten.dta, clear

Variables

site Growth quality class of the tree's habitat. 5 levels.

location Distinguishes tree location. 7 levels.

tree An identifier for the tree within location.

age.base The tree age taken at ground level.

It might be best to use a centered age variable, centered at the grand mean of tree age:

```
. egen ageMEAN = mean(age_base)
```

. generate ageCENTERED = age_base - ageMEAN

height Tree height, m.

dbh.cm Tree diameter, cm.

volume Tree volume.

age.bh Tree age taken at 1.3 m.

tree. ID A factor uniquely identifying the tree.

Calculating R^2

Roberts et al. (2015) explain that there are multiple competing perspectives, and formulas, for calculating an estimate of \mathbb{R}^2 for multilevel models.

Here we adopt an approach advanced by Cox (link below).

Outline

- 1. Estimate MLM: mixed y x1 x2 x3 || id:
- 2. Generate predicted values: predict yhat
- 3. Estimate correlation of observed and predicted: corr y yhat
- 4. Then square this correlation: $R^2 = r^2$

Estimate MLM

```
. mixed height age_base site i.location || tree_ID:
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: log likelihood = -3050.2621
Iteration 1: log likelihood = -3050.2621
Computing standard errors:
Mixed-effects ML regression
Num
```

Mixed-effects ML regression	Number of obs	= 1,200
Group variable: tree_ID	Number of groups	= 107
	Obs per group:	
	min =	= 5
	avg =	= 11.2
	max =	= 15
	Wald chi2(8)	= 8663.47
Log likelihood = -3050.2621	Prob > chi2 =	- 0.0000

height	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
age_base	.2143496 -3.866312	.0023831 .1608021	89.95 -24.04	0.000	.2096789 -4.181478	.2190203 -3.551145
location						
2	5436647	1.247694	-0.44	0.663	-2.989099	1.90177
3	.5090705	.6487789	0.78	0.433	7625129	1.780654
4	.0954239	.7056685	0.14	0.892	-1.287661	1.478509
5	0590126	.5182994	-0.11	0.909	-1.074861	.9568356
6	.2078246	.6884815	0.30	0.763	-1.141574	1.557224

7	-1.210496	.7524348	-1.61	0.108	-2.685241	.2642491
_cons	12.27241	.5513051	22.26	0.000	11.19187	13.35294
Random-effe	cts Parameters	Estima	te Sto	l. Err.	[95% Conf.	Interval]
<pre>tree_ID: Identity</pre>		2.1067	2.106718 .3939037		1.460337	3.039204
	var(Residual)	8.3976	23	.359	7.722667	9.131569
IP tost we linear model: shihar(01) = 197.94						

LR test vs. linear model: chibar2(01) = 127.84

Prob >= chibar2 = 0.0000

Predict \hat{y}

. predict yhat if e(sample) $\ensuremath{//}$ calculate predicted values (option xb assumed)

Estimate Correlation of y and \hat{y}

We then obtain the correlation of y and \hat{y} , the observed and predicted values.

. corr height yhat (obs=1,200) height

	height	yhat
height yhat	1.0000 0.9364	1.0000

So our estimate for R^2 is .93636423 squared, or .87677798.

References

 $\label{eq:cox_norm} \mbox{Cox, N. J. (n.d.)}. \ \ \textit{Stata FAQ: Do-it-yourself R-squared}. \ \ \mbox{Retrieved May 7, 2020, from https://www.stata.} \\ \ \ \mbox{com/support/faqs/statistics/r-squared/}$

Roberts, J. K., Monaco, J. P., Stovall, H., & Foster, V. (2015). Explained Variance in Multilevel Models. In $Handbook\ of\ Advanced\ Multilevel\ Analysis$. https://doi.org/10.4324/9780203848852.ch12