Problem 10. (§6.4, #30) If λ_{max} is the largest eigenvalue of a symmetric matrix A, no diagonal entry can be larger tha λ_{max} . What is the first entry a_{11} of $A = Q\Lambda Q^T$? Show why $a_{11} \leq \lambda_{max}$.

Solution. (12 points) Set $\mathbf{e}_1 = (1, 0, 0, \ldots)^T$ and $\mathbf{v} = Q^T \mathbf{e}_1 = (v_1, \ldots, v_n)$. Then,

$$a_{11} = \mathbf{e}_1^{\mathrm{T}} A \mathbf{e}_1 = \mathbf{e}_1^{\mathrm{T}} Q \Lambda Q^{\mathrm{T}} \mathbf{e}_1 = (Q^{\mathrm{T}} \mathbf{e}_1)^{\mathrm{T}} \Lambda (Q^{\mathrm{T}} \mathbf{e}_1) = \mathbf{v}^{\mathrm{T}} \Lambda \mathbf{v} = \sum_{i=1}^n \lambda_i v_i^2.$$

Since Q^{T} is orthogonal,

$$\|\mathbf{v}\| = \|Q^{\mathrm{T}}\mathbf{e}_1\| = \|\mathbf{e}_1\| = 1$$

and so

$$a_{11} \le \lambda_{max} \sum_{i=1}^{n} v_i^2 = \lambda_{max} ||\mathbf{v}||^2 = \lambda_{max}.$$

When Q is square, $Q^{T}Q = I$ means that $Q^{T} = Q^{-1}$: transpose = inverse.

To repeat: $Q^TQ = I$ even when Q is rectangular. In that case Q^T is only an inverse from the left. For square matrices we also have $QQ^T = I$, so Q^T is the two-sided inverse of Q. The rows of a square Q are orthonormal like the columns. The inverse is the transpose. In this square case we call Q an orthogonal matrix.

If Q has orthonormal columns $(Q^TQ = I)$, it leaves lengths unchanged:

Same length
$$||Qx|| = ||x||$$
 for every vector x . (3)

Q also preserves dot products: $(Qx)^T(Qy) = x^TQ^TQy = x^Ty$. Just use $Q^TQ = I!$

Proof $\|Qx\|^2$ equals $\|x\|^2$ because $(Qx)^T(Qx) = x^TQ^TQx = x^TIx = x^Tx$. 总是无法区分 Q is square 和 Q is rectangular