1 Why does X not contradict Y

Let $\mathscr{A} \subseteq \mathscr{B}$ be Banach Algebras.

```
Take X \equiv \{a - \lambda I : \lambda \in \mathbb{C}\}. By XXXX, \sigma_{\mathscr{B}}(a) \subseteq \sigma_{\mathscr{A}}(a).
```

This can be interpreted as saying in general that there are elements of X that are not invertible in \mathscr{A} but are invertible in \mathscr{B} since there simply more elements in \mathscr{B} , that might be the inverse of an element in X.

However, if both $\mathscr A$ and $\mathscr B$ are C^* , then by XXX, going from $\mathscr A$ to $\mathscr B$ does not add any inverses.

Subsequently the elements of X that are invertible is the same when taken as a subset of \mathscr{A} or \mathscr{B} , thus $\sigma_{\mathscr{B}}(a) = \sigma_{\mathscr{A}}(a)$.