

AW

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
12. August 2004 (12.08.2004)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2004/066976 A1

- (51) Internationale Patentklassifikation⁷: **A61K 9/14**
- (21) Internationales Aktenzeichen: PCT/EP2003/013059
- (22) Internationales Anmeldedatum:
21. November 2003 (21.11.2003)
- (25) Einreichungssprache: Deutsch
- (26) Veröffentlichungssprache: Deutsch
- (30) Angaben zur Priorität:
103 04 403.5 28. Januar 2003 (28.01.2003) DE
- (71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): RÖHM GMBH & CO. KG [DE/DE]; Kirschenallee, 64293 Darmstadt (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (*nur für US*): PETEREIT, Hans-Ulrich [DE/DE]; Händelstrasse 40, 64291 Darmstadt (DE). MEIER, Christian [DE/DE]; In der Köhlertanne 89 a, 64295 Darmstadt (DE). GRYCZKE, Andreas [DE/DE]; Wilhelm-Leuschner-Strasse 241, 64347 Griesheim (DE).
- (81) Bestimmungsstaaten (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (*regional*): ARIPO Patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: METHOD FOR PRODUCING AN IMMEDIATELY DECOMPOSING ORAL FORM OF ADMINISTRATION WHICH RELEASES ACTIVE INGREDIENTS

(54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG EINER ORALEN ARZNEIFORM MIT UNMITTELBAREM ZERFALL UND WIRKSTOFFFREISETZUNG

(57) Abstract: The invention relates to a method for producing an oral form of administration which decomposes immediately and releases active ingredients in the mouth. According to said method, (a) an anionic pharmaceutical active ingredient is intensively mixed with (b) a copolymer consisting of radically polymerised C₁-C₄ esters of the acrylic acid or methacrylic acid and other (meth)acrylate monomers containing functional tertiary amino groups, and (c) between 5 and 50 wt. %, in relation to (b), of a C₁₂-C₂₂ carboxylic acid in the melted mass; the mixture is solidified and ground to form a powder containing active ingredients having an average particle size of 200 µm or less; and the powder is encapsulated in a water-soluble matrix consisting of pharmaceutically standard adjuvants, on the condition that no more than 3 wt. %, in relation to the copolymer, of emulsifiers with an HLB value of at least 14 must be contained therein. The invention also relates to the powder containing active ingredients and the uses of the same.

(57) Zusammenfassung: Die Erfindung betrifft ein Verfahren zur Herstellung einer oralen Arzneiform mit unmittelbarem Zerfall und Wirkstofffreisetzung bereits im Mund, durch intensives Mischen (a) eines anionischen pharmazeutischen Wirkstoffs mit (b) einem Copolymer, bestehend aus radikalisch polymerisierten C₁- bis C₄-Ester der Acryl- oder Methacrylsäure und weiteren (Meth)acrylatMonomeren die funktionelle tertiäre Aminogruppen aufweisen, sowie (c) 5 bis 50 Ggew.-%, bezogen auf (b), einer C₁₂-bis C₂₂-Carbonsäure in der Schmelze, Erstarren der Mischung und Mahlen zum einem wirkstoffhaltigen Pulver mit einer mittleren Korngrösse von 200 µm oder weniger, Einbetten des Pulvers in eine wasserlösliche Matrix aus pharmazeutisch üblichen Hilfsstoffen, mit der Massgabe, dass nicht mehr als 3 Gew.-%, bezogen auf das Copolymer, an Emulgatoren mit einem HLB-Wert von mindestens 14 enthalten sein dürfen. Die Erfindung betrifft weiterhin das wirkstoffhaltige Pulver und dessen Verwendungen.

WO 2004/066976 A1

Verfahren zur Herstellung einer oralen Arzneiform mit unmittelbarem Zerfall und Wirkstofffreisetzung

Gebiet der Erfindung

Die Erfindung betrifft ein Verfahren zur Herstellung einer oralen Arzneiform mit unmittelbarem Zerfall und Wirkstofffreisetzung bereits im Mund. Die Erfindung betrifft weiterhin ein wirkstoffhaltiges Pulvers und dessen Verwendung.

Stand der Technik

EP-A 0 417 588 beschreibt ein Verfahren zur Herstellung eines komplexierten Arzneimittels aus einem ionogenen Wirkstoff durch Umsetzung des Wirkstoffs mit einem komplementär ionogenen, partikelförmigen Polymer in Gegenwart einer zum Anfeuchten der Mischung ausreichenden Wassermenge. Bei Wirkstoffssalzen ist es erforderlich, der Mischung eine Säure oder Base zur Neutralisation des Gegenions des Wirkstoffs zuzusetzen. Bei der Umsetzung von Wirkstoffssalzen wie Propranolol-HCl, Verapamil-HCl oder Metoclopramid-HCl mit anionischen (Meth)acrylat-Copolymeren wie EUDRAGIT® L oder EUDRAGIT® L100-55 wird der Mischung beispielsweise Natriumcarbonat zugesetzt. In diesem Fall kann eine Geschmacksisolierung der bitter schmeckenden Wirkstoffe erreicht werden. Weiterhin ist erwähnt, daß im Falle, daß der ionogene Wirkstoff eine Säure ist, ein partikelförmiges Polymer eingesetzt werden kann, welches als komplementär ionogene Gruppen seitenständige Aminogruppen aufweist. Die seitenständige Aminogruppen kann z. B. eine tertiäre Aminogruppe, stammend aus polymerisierten Monomeren wie z. B. 2-Dimethylamino-ethyl-methacrylat sein.

WO 01/39751 beschreibt ein Verfahren zur Herstellung von Formkörpern mittels Spritzguß mit den Verfahrensschritten

a) Aufschmelzen eines (Meth)acrylat-Copolymeren, das sich aus 30 bis 80 Gew.-% radikalisch polymerisierten C1- bis C4-Alkylestern der Acryl- oder der Methacrylsäure und 70 bis 20 Gew.-% (Meth)acrylat-Monomeren mit einer tertiären Ammonium- bzw. Aminogruppe im Alkylrest zusammensetzt,

wobei das (Meth)acrylat-Copolymere in Mischung mit 1 bis 70 Gew.-% von einem Weichmacher und einem Trockenstellmittel im Verhältnis 1: 1 bis 1 : 20 vorliegt,

wobei mindestens 1 Gew.-% Weichmacher enthalten ist,

sowie 0,05 bis 5 Gew.-% eines Trennmittels enthalten sind und

zusätzlich weitere übliche Additive oder Hilfsstoffe und gegebenenfalls ein pharmazeutischer Wirkstoff in der Mischung enthalten sein können und die Mischung vor dem Aufschmelzen einen Gehalt an niedrigsiedenden Bestandteilen mit einem Dampfdruck von mindestens 1,9 bar bei 120°C von über 0,5 Gew.-% aufweist,

b) Entgasen der Mischung im thermoplastischen Zustand bei Temperaturen von mindestens 120 °C, wodurch der Gehalt der niedrigsiedenden Bestandteile mit einem Dampfdruck von mindestens 1,9 bar bei 120°C auf höchstens 0,5 Gew.-% gesenkt wird

c) Einspritzen der aufgeschmolzenen und entgasten Mischung in den Formhohlraum eines Spritzgießwerkzeugs, wobei der Formhohlraum eine Temperatur aufweist, die mindestens 10 °C unterhalb der Glastemperatur des (Meth)acrylat-Copolymeren liegt, Abkühlen der Schmelzemischung und Entnahme des erhaltenen Formkörpers aus der Form.

WO 02/67906 beschreibt ein Verfahren zur Herstellung eines Überzugs- und Bindemittels für orale oder dermale Arzneiformen bestehend im wesentlichen aus (a) einem Copolymer, bestehend aus radikalisch polymerisierten C1- bis C4-Estern der Acryl- oder Methacrylsäure und weiteren (Meth)acrylat-Monomeren die funktionelle tertiäre Ammoniumgruppen aufweisen, wobei das Copolymer in Pulverform mit einer mittleren Teilchengröße von 1 - 40 µm vorliegt, (b) 3 bis 15 Gew.-%, bezogen auf (a), eines Emulgators mit einem HLB-Wert von mindestens 14 und (c) 5 bis 50 Gew.-%, bezogen auf (a), einer C₁₂- bis C₁₈-Monocarbonsäure oder einer C₁₂- bis C₁₈-Hydroxylverbindung, wobei die Komponenten (a), (b) und (c) mit oder ohne Zusatz von Wasser und gegebenenfalls unter Zusatz eines pharmazeutischen Wirkstoffs und weiterer üblicher Zuschlagstoffe miteinander vermengt oder vermischt werden und das Überzugs- und Bindemittel aus der Mischung durch Schmelzen, Gießen, Ausstreichen, Aufsprühen oder Granulieren hergestellt wird.

Gemäß der WO 02/67906 sind besonders lagerstabile Arzneiformen erhältlich, die insbesondere feuchteempfindliche Wirkstoffe wie Acetylsalicyläre, Carbenoxolon, Cefalotin, Epinefrin, Imipramin, Kaliumjodid, Ketoprofen, Levodopa, Nitrazepam, Nitroprussid, Oxitetracyclin-HCl, Promethazin, Omeprazol oder andere Benzimidazolderivate oder Streptomycin enthalten können.

Wirkstoffklassen und Substanzen, die oftmals bitteren Geschmack hervorrufen können und sich mit den Überzugs- und Bindemittel gemäß der WO 02/67906 vorteilhafterweise auch geschmacksisolierend formulieren lassen sind z. B.:

Analgetika und Antirheumatika: Paracetamol, Diclofenac, Aceclofenac, Ibuprofen, Ketoprofen, Flubiprofen, Levacetylmethadol, Oxycodon

Psychopharmaka: Prometazine, Donepezil, Modafinil, Nefazodon, Reboxetin, Sertindol, Sertraline

Antibiotika: Erythromycin, Roxithromycin, Clarithromycin, Grepafloxacin,

Ciprofloxacin, Levofloxacin, Sparfloxacin, Trovafloxacin, Nevirapin

Betablocker: Propanolol, Metoprolol, Bisoprolol, Nebivolol

Antidiabetika: Metformin, Miglitol, Repaglinid

H1 Antihistaminika: Diphenhydramin, Fexofenadin, Mizolastin

H2 Antihistaminika: Cimetidin, Nizatidin, Ticlopidin, Cetrizin, Ranitidin,

Vitamine: Thiaminenitrate;

sowie weitere Wirkstoffe: Chinidin-Sulfat, Amilopriose-HCl, Pseudoephedrin-HCl, Sildenafil, Topiramat, Granisetron, Rebamipide, Chinin-HCl

Aufgabe und Lösung

Ein Problem bei vielen oralen Arzneiformen, ist daß das Herunterschlucken oftmals die Zuhilfenahme von Flüssigkeit, z. B. einem Schluck Wasser, erfordert. Dies ist ungünstig, wenn im Bedarfsfall kein Getränk zur Verfügung steht oder etwa die momentane berufliche Tätigkeit unterbrochen werden muß, um das Medikament einnehmen zu können. Für viele Patienten ist es zudem unangenehm in Gegenwart anderer Personen quasi beobachtet und Aufmerksamkeit erregend ihr Medikament einzunehmen, was umso auffälliger ist, wenn nach einem Getränk benutzt werden muß oder für diesen Zweck gar erbeten werden muß.

Viele Patienten, insbesondere zu nennen ältere Menschen und Kinder, wünschen daher orale Arzneiformen, die einfach und unauffällig praktisch an beliebigen Orten eingenommen werden können. Dies ist insbesondere bei Krankheiten der Fall, die sehr pünktlich oder bei Bedarf unverzüglich eingenommen werden sollen oder müssen, wie z. B. bei Schmerzmitteln.

Es besteht zusätzlich ein Bedarf an Arzneiformen, die den enthalten Wirkstoff z. B. Schmerzmittel bei oraler Einnahme bereits im Mund freisetzen und auf diese Weise rasch wirken können. Bekannte Applikationsformen sind z. B. verpreßten Tabletten oder Lutschtabletten, gefriergetrockneten Tabletten, gegossenen Tabletten oder Pastillen, Sachets, Kautabletten, Trockensäften und/oder flüssigkeitsgefüllten Bonbons.

Viele dieser schnell zerfallenden Arzneiformen haben jedoch den Nachteil, daß sie einen sandigen Mundgeschmack bewirken, der einige Minuten andauern kann, bis sich die Tablettenbestanteile völlig aufgelöst haben. Das sandige Mundgeschmack wird als unangenehm empfunden wird und kann einen Hustenreiz bewirken. Ein weiteres Problem ist dabei die Geschmacksisolierung von bitter schmeckenden Wirkstoffen. Wegen der Anforderung der Wirkstofffreisetzung im Mund können die bekannten geschmacksisolierenden Überzüge nicht verwendet werden.

Zur Lösung dieser Probleme sollte eine Arzneiform bereitgestellt werden, die ohne Flüssigkeit einnehmbar ist und den Wirkstoff ummittelbar freisetzt. Dabei soll ein sandiger Mundgeschmack ausbleiben. Die Arzneiform soll für eine Vielzahl von Wirkstoffen, insbesondere jedoch für Schmerzmittel der Klasse der Antirheumatika oder für Antibiotika geeignet sein.

Die Aufgabe wird gelöst durch ein
Verfahren zur Herstellung einer oralen Arzneiform mit unmittelbarem Zerfall und
Wirkstofffreisetzung bereits im Mund, durch intensives Mischen

- (a) eines anionischen pharmazeutischen Wirkstoffs mit
- (b) einem Copolymer, bestehend aus radikalisch polymerisierten C₁- bis C₄-Ester der Acryl- oder Methacrylsäure und weiteren (Meth)acrylat-Monomeren die funktionelle tertiäre Aminogruppen aufweisen, sowie
- (c) 5 bis 50 Gew.-%, bezogen auf (b), einer C₁₂- bis C₂₂-Carbonsäure

in der Schmelze, Erstarren der Mischung und Mahlen zum einem wirkstoffhaltigen Pulver mit einer mittleren Korngröße von 200 µm oder weniger, Einbetten des Pulvers in eine wasserlösliche Matrix aus pharmazeutisch üblichen Hilfsstoffen, mit der Maßgabe, daß nicht mehr als 3 Gew.-%, bezogen auf das Copolymer, an Emulgatoren mit einem HLB-Wert von mindestens 14 enthalten sein dürfen.

In bisher nicht verstandener Weise ergeben sich die Vorteile der Erfindung anders als bei der WO 02/67906 nur bei anionischen Wirkstoffen. Möglicherweise ergibt sich eine thermisch induzierte Wechselwirkung der anspruchsgemäßen Bestandteile (a), (b) und (c), die in dieser Weise nicht aus der WO 02/67906 ableitbar ist. Die erfindungsgemäß erhältlichen Arzneiformen sind gut ohne zusätzliche Flüssigkeit einnehmbar und verursachen nach Wirkstofffreisetzung im Mund keinen sandigen Geschmack.

Ausführung der Erfindung

Die Erfindung betrifft ein Verfahren zur Herstellung einer oralen Arzneiform mit unmittelbarem Zerfall und Wirkstofffreisetzung bereits im Mund, durch intensives Mischen

- (a) eines anionischen pharmazeutischen Wirkstoffs mit
- (b) einem Copolymer, bestehend aus radikalisch polymerisierten C₁- bis C₄-Estern der Acryl- oder Methacrylsäure und weiteren (Meth)acrylat-Monomeren die funktionelle tertiäre Aminogruppen aufweisen, sowie
- (c) 5 bis 50 Gew.-%, bezogen auf (b), einer C₁₂- bis C₂₂-Carbonsäure

in der Schmelze, Erstarren der Mischung und Mahlen zum einem wirkstoffhaltigen Pulver mit einer mittleren Korngröße von 200 µm oder weniger, Einbetten des Pulvers in eine wasserlösliche Matrix aus pharmazeutisch üblichen Hilfsstoffen, mit der Maßgabe, daß nicht mehr als 3 Gew.-%, bezogen auf das Copolymer, an Emulgatoren mit einem HLB-Wert von mindestens 14 enthalten sein dürfen.

Pharmazeutischer Wirkstoff (a)

Der anionische pharmazeutischen Wirkstoff, liegt bedingt durch die Herstellung in der Schmelze eingebettet im Copolymer in Form einer „solid solution“ vor.

Der Zustand der „solid solution“ kann z. B. im Polarisationsmikroskop, thermoanalytisch (Differential Scanning Calorimetry (DSC)) oder im Röntgenbeugungsspektrum nachgewiesen werden.

Das Mengenverhältnis bezogen auf Gew.-% von Wirkstoff zu Copolymer liegt günstigerweise bei 2 zu 1 bis 1 zu 2. Bevorzugt ist das Copolymer in gleichen Mengen oder im Überschuß vorhanden.

Der anionischer Wirkstoff (a) ist bevorzugt ein anionisches Schmerzmittel ein anionisches Antirheumatikum oder ein anionisches Antibiotikum.

Das wirkstoffhaltige Pulver kann z. B. die folgenden anionischen Wirkstoff enthalten:

Acamprosat, Aceclofenac, Acemetacin, Acetylcystein, Acetylsalicylsäure, Acetyltyrosin, Acipimox, Acitretin , Alanin, Alendronsäure, Amethopterin, Aminosäuren, Amoxicillin, Ampicillin , Ascorbinsäure, Atorvastatin , Azidocillin, Aztreonam, Bacampicillin, Baclofen, Benazepril, Bendamustin, Benzylpenicillin, Bezafibrat, Biotin, Bornaprin, Bumetanid, Cabastin, Canrenoinsäure, Carbamoylphenoxyessigsäure, Carbidopa, Carbimazol, Carbocistein, Carisoprodol, Cefaclor, Cefadroxil, Cefalexin, Cefazolin, Cefepim, Cefetamet, Cefixim, Cefotaxim, Cefotiam, Cefoxitin, Cefpodoxim, Ceftazidim, Ceftibuten , Ceftriaxon, Cefuroxim, Cetirizin, Chenodeoxycholsäure, Chlorambucil, Cidofovir, Cilastatin, Cilazapril, Cinoxacin, Ciprofloxacin, Cisatracurium besilat, Clavulansäure, Clodronsäure, Clorazepat, Cromoglicinsäure, Desmeninol,

Diclofenac, Dicloxacillin, Enoxacin, Eprosartan, Etacrynsäure, Etidronsäure, Etofyllin, Etomidat, Felbinac, Felodipin, Fenofibrat, Fexofenadin, Flavoxat, Fleroxacin, Flucloxacillin, Flufenaminsäure, Flumazenil, Flupirtin, Flurbiprofen, Fluvastatin, Fosfomycin, Fosinopril, Furosemid, Fusidinsäure, Gabapentin, Gemfibrozil, Ibandronsäure, Ibuprofen, Iloprost, Imidapril, Imipenem, Indomethecin, Irinotecan, Isradipin, Ketoprofen, Lercanidipin, Levodopa, Levofloxacin, Liothyronin, Liponsäure, Lisinopril, Lodoxamid, Lomefloxacin, Lonazolac, Loracarbef, Loratadin, Lovastatin, Mefenaminsäure, Meropenem, Mesalazin, Metamizol, Methotrexat, Methyldopa, Mezlocillin, Moexipril, Montelukast, Moxifloxacin, Mupirocin, Naproxen, Natamycin, Nateglinid, Nedocromil, Nicotinsäure, Nifedipin, Nilvadipin, Nimodipin, Nisoldipin, Nitrendipin, Norfloxacin, Ofloxacin, Olsalazin, Orotsäure, Oxacillin, Pamidronsäure, Pangamsäure, Penicillamin, Phenoxyethylpenicillin, Pentosanpolysulfat, Perindopril, Pethidin, Pipemidsäure, Piperacillin, Pirenoxin, Piretanid, Probenecid, Proglumid, Propicillin, Prostaglandine, Quinapril, Quinaprilat, Ramipril, Repaglinid, Reserpin, Risedronsäure, Salicylsäure, Sulfasalazin, Spirapril, Sulbactam, Sulfasalazin, Sultamicillin, Tazaroten, Tazobactam, Telmisartan, Tiagabin, Tiaprofensäure, Tildin, Tiludronsäure, Trandolapril, Tranexamsäure, Valproinsäure Vigabatrin, Vincamin, Vinpocetin, Zanamivir, Zoledronsäure, Zopiclon und/oder deren Salze, Isomere und/oder Kombinationen enthalten sind.

Copolymer (b)

Die Copolymere (a) bestehen im wesentlichen oder ganz aus radikalisch polymerisierten C1- bis C4-Estern der Acryl- oder Methacrylsäure und weiteren (Meth)acrylat-Monomeren, die funktionelle tertiäre Aminogruppen aufweisen.

Geeignete Monomere mit funktionellen tertiären Aminogruppen sind in US 4 705 695, Spalte 3, Zeile 64 bis Spalte 4, Zeile 13 aufgeführt. Insbesondere zu nennen sind Dimethylaminoethylacrylat, 2-Dimethylaminopropylacrylat, Dimethylaminopropylmethacrylat, Dimethylaminobenzylacrylat, Dimethylaminobenzylmethacrylat, (3-Dimethylamino-2,2-dimethyl)propylacrylat, Dimethylamino-2,2-dimethyl)propylmethacrylat, (3-Diethylamino-2,2-dimethyl)propylacrylat und Diethylamino-2,2-dimethyl)propylmethacrylat. Besonders bevorzugt ist Dimethylaminoethylmethacrylat.

Der Gehalt der Monomere mit tertiären Aminogruppen im Copolymeren kann vorteilhafterweise zwischen 30 und 70 Gew.-%, bevorzugt zwischen 40 und 60 Gew.-% liegen. Der Anteile der C1- bis C4-Ester der Acryl- oder Methacrylsäure beträgt 70 - 30 Gew.-%. Zu nennen sind Methylmethacrylat, Ethylmethacrylat, Butylmethacrylat, Methylacrylat, Ethylacrylat, Butylacrylat.

Ein der Komponente (b) entsprechendes (Meth)acrylatcopolymer mit tertiären Aminogruppen kann z. B. aus 20 - 30 Gew.-% Methylmethacrylat, 20 - 30 Gew.-% Butylmethacrylat und 60 - 40 Gew.-% Dimethylaminoethylmethacrylat aufgebaut sein. Der Anteil der Komponente (a) an der Formulierung beträgt bevorzugt 50 - 90 Gew.-%.

Die Copolymer (b) werden in an sich bekannter Weise durch radikalische Substanz-, Lösungs-, Perl- oder Emulsionspolymerisation erhalten. Sie müssen vor der Verarbeitung durch geeignete Mahl-, Trocken- oder Sprühprozesse in geeignete Teilchengrößenbereich gebracht werden. Geeignet sind Granulate und Pulver. Geeignete Handelsprodukte sind z. B. EUDRAGIT® E 100 (Granulat) oder EUDRAGIT® E PO (Pulver).

Komponente (c)

Komponente (c): 5 bis 50, bevorzugt 10 bis 20 Gew.-% (bezogen auf die Copolymer-Komponente (b) einer C₁₂- bis C₂₂-Carbonsäure. Die Komponente (c) ist wichtig für die Verarbeitbarkeit. Bevorzugt sind unverzweigte C₁₂- bis C₂₂-Monocarbonsäuren. Es können gegebenenfalls auch verzweigte Derivate der genannten Substanzen geeignet sein.

C₁₂- bis C₂₂-Monocarbonsäuren sind z.B insbesondere Laurinsäure und Myristinsäure. Bevorzugt sind Palmitinsäure und Stearinsäure.

Emulgatoren mit einem HLB-Wert von mindestens 14

Emulgatoren mit einem HLB-Wert von mindestens 14 sollen zu weniger als 3 Gew.-%, bevorzugt weniger als 2 oder 1 Gew.-%, insbesondere soll kein solcher Emulgator enthalten sein. Der Grund dafür liegt in der Pulverstruktur des Ausgangsmaterials, in dem der Eigengeschmack solcher Emulgatoren besonders hervortritt. Überraschenderweise ist im Gegensatz zur Lehre der WO 02/67906 unter Anwendung des speziellen erfindungsgemäßen Verfahrens ein Verzicht auf den Emulgatoreinsatz möglich.

Emulgatoren oder Tenside sind grenzflächenaktive Substanzen mit lykoparem Charakter, d.h. in ihrem Molekül müssen unpolare, lipophile und polare, hydrophile Zentren vorliegen (P.H. List, Arzneiformenlehre, Wissenschaftliche Verlagsgesellschaft mbH Stuttgart, 1982, Kap. 6.2.). Je nach molekularem Aufbau unterscheidet man zwischen ionogenen und nichtionogenen Emulgatoren.

Der HLB-Wert ist ein 1950 von Griffin eingeführtes Maß der Hydrophilie bzw. Lipophilie von nichtionischen Tensiden. Er lässt sich experimentell durch die Phenol-Titrationsmethode nach Marszall bestimmen; vgl. "Parfümerie, Kosmetik", Band 60, 1979, S. 444 - 448; weitere Literaturhinweise in Römpf, Chemie-Lexikon, 8.Aufl. 1983, S.1750. Siehe weiterhin z. B. US 4 795 643 (Seth)).

Ein HLB-Wert (Hydrophile/Lipophile Balance) lässt sich nur bei nicht ionischen Emulgatoren exakt bestimmen. Bei anionischen Emulgatoren kann dieser Wert rechnerisch ermittelt werden, liegt jedoch praktisch immer über oder weit über 14.

Unter Emulgatoren mit einem HLB-Wert über 14 werden hydrophile, nicht ionische Emulgatoren mit HLB - Bereich von mindestens 14 sowie ebenfalls hydrophile, anionische Emulgatoren und deren Salze, die einen rechnerischen HLB-Wert über 14 aufweisen, verstanden. Beispiele für Emulgatoren mit einem HLB-Wert über 14 sind z. B. Natriumlaurylsulfat und Natriumcetylstearylsulfat, Saccharosestearat und Polysorbat 80.

Emulgatoren mit HLB-Werten von weniger als 14, wie z. B. Glycerolmonostearat können hingegen auch in Mengen von mehr als 3 Gew.-% enthalten sein.

Pharmazeutisch übliche Hilfsstoffe

Das Pulvers wird in eine wasserlösliche Matrix aus pharmazeutisch üblichen Hilfsstoffen eingebettet.

Füll- und Bindemittel

Die wasserlösliche Matrix wird überwiegend gebildet aus Füll- und Bindemitteln. Bevorzugt sind dies z. B. wasserlösliche Mono-, Di, Oligo- oder Polysaccharide oder deren Derivate, weiterhin Peptide, Proteine etc.. Beispiele sind z. B. Lactose, Fructose, Glucose, Dextrose, Galaktose, Mannit, Rhamnose, Tragant, Dextrin, Guar Gum, Sorbitol, Xylitol, Isomatose, Saccharose, Maltose, Hydroxypropylmethylcellulose (HPMC), Stärkehydrolysate, Gelatine.

Einsatzmengen und Verwendung der üblichen Zuschlagstoffe in Arzneimittelüberzügen oder Beschichtungen sind dem Fachmann geläufig. Übliche Zuschlagstoffe können z. B. Trennmittel, Pigmente, Stabilisatoren, Antioxidantien, Porenbildner, Penetrationsförderer, Aromastoffe oder Geschmacksmittel sein. Sie dienen als Verarbeitungshilfsmittel und sollen ein sicheres und reproduzierbares Herstellungsverfahren sowie gute Langzeitlagerstabilität gewährleisten oder sie erreichen in der Arzneiform zusätzliche vorteilhafte Eigenschaften.

Trennmittel:

Trennmittel besitzen in der Regel lipophile Eigenschaften und werden in der Regel den SprühSuspensionen zugesetzt. Sie verhindern eine Agglomeration der Kerne während der Befilmung. Bevorzugt werden Talcum, Mg- oder Ca -

Stearat, gemahlene Kieselsäure, Kaolin oder nicht ionische Emulgatoren mit einem HLB - Wert zwischen 3 und 8 eingesetzt. Übliche Einsatzmengen für Trennmittel in den erfindungsgemäßen Überzugs- und Bindemitteln liegen zwischen 0,1 bis 10 Gew.-% bezogen auf die Arzneiform.

Pigmente:

Der Zusatz erfolgt nur selten in Form des löslichen Farbstoffs. In der Regel dispergiert man Aluminium- oder Eisenoxidpigmente. Übliche Einsatzmengen für Pigmente in den erfindungsgemäßen Überzugs- und Bindemitteln zwischen 1 und 10 Gew.-%, bezogen auf die Arzneiform.

Grundsätzlich müssen natürlich alle eingesetzten Substanzen toxikologisch unbedenklich und in Arzneimitteln ohne Risiko für Patienten zu verwenden sein.

Weitere Zuschlagstoffe können auch Weichmacher sein. Übliche Mengen liegen zwischen 0 und 50, bevorzugt 0 bis 20, insbesondere 0 bis 10 Gew.-%. Besonders bevorzugt sind allerdings höchstens 5 Gew.-% oder kein Weichmacher enthalten, da die Formulierungen durch die Anwesenheit der Komponenten (c) häufig bereits elastisch genug sind und zusätzlicher Weichmacher zu unerwünschter Klebrigkeit führen kann.

Weichmacher:

Weichmacher können je nach Typ (lipophil oder hydrophil) und zugesetzter Menge die Funktionalität der Polymerschicht beeinflussen. Weichmacher erreichen durch physikalische Wechselwirkung mit dem Polymeren eine Absenkung der Glasübergangstemperatur und fördern in Abhängigkeit von der zugesetzten Menge die Verfilmung. Geeignete Stoffe haben in der Regel ein

Molekulargewicht zwischen 100 und 20.000 und enthalten eine oder mehrere hydrophile Gruppen im Molekül, z. B. Hydroxyl-, Ester- oder Aminogruppen.

Beispiele geeigneter Weichmacher sind Citronensäurealkylester, Glycerinester, Phthalsäurealkylester, Sebacinsäurealkylester, Succroseester, Sorbitanester, Diethylsebacat, Dibutylsebacat und Polyethylenglykole 200 bis 12.000.

Bevorzugte Weichmacher sind Triethylcitrat (TEC), Acetyltriethylcitrat (ATEC) und Dibutylsebacat (DBS). Weiterhin zu nennen sind in der Regel bei Raumtemperatur flüssige Ester wie Citrate, Phthalate, Sebacate oder Rizinusöl. Bevorzugt werden Zitronensäure- und Sebacinsäureester verwendet. Auch können Mischungen von Weichmachern eingesetzt werden.

Das Herstellungsverfahren

Das erfindungsgemäße Verfahren sieht die Herstellung einer oralen Arzneiform mit unmittelbarem Zerfall und Wirkstofffreisetzung bereits im Mund, durch intensives Mischen der Komponenten (a), (b) und (c) im der Schmelze vor. Geeignet sind Verarbeitungstemperaturen im Bereich von 80 bis 200 °C, bevorzugt von 100 bis 180 °C. Bevorzugt setzt man zum Zweck des intensiven Mischens in der Schmelze einen Doppelschneckenextruder ein. Nach dem Erstarren wird die Mischung zum einem wirkstoffhaltigen Pulver gemahlen. Die mittleren Korngröße des Pulvers soll 200 µm oder weniger, bevorzugt 50 bis 150 µm betragen.

Die mittlere Korn- bzw. Teilchengröße der Pulver kann wie folgt bestimmt werden: Durch Luftstrahlsiebung zur einfachen Aufteilung des Mahlproduktes in wenige Fraktionen. Diese Methode ist in diesem Meßbereich etwas ungenauer als die Alternativen. Mindestens 70, bevorzugt 90 % der Teilchen bezogen auf

die Masse (Masseeverteilung) sollen jedoch in dem erfindungsgemäßen Größenbereich von 200 µm oder weniger, bevorzugt von 50 bis 150 µm liegen. Eine gut geeignete Meßmethode ist die Laserbeugung zur Bestimmung der Korngrößenverteilung. Handelsübliche Geräte erlauben die Messung in Luft (Fa. Malvern S3.01 Partikelsizer) oder bevorzugt in flüssigen Medien (Fa. LOT, Galai CIS 1). Voraussetzung für die Messung in Flüssigkeiten ist, daß sich das Polymer darin nicht löst oder die Teilchen auf eine andere Weise während der Messung verändern. Ein geeignetes Medium ist z. B. eine stark verdünnte (ca. 0,02%ige) wäßrige Polysorbat 80 Lösung.

Das wirkstoffhaltige Pulver kann zu einer Tablette, Lutschtablette, gefriergetrockneten Tabletten, gegossenen Tabletten oder Pastillen, Sachets, Kautabletten, Trockensaften, Bonbons und/oder flüssigkeitsgefüllten Bonbons verarbeitet werden.

Diese Verarbeitung erfolgt in der Regel in mehreren Schritten. Zunächst wird das wirkstoffhaltige Copolymerpulver mit pharmazeutischen Hilfsstoffen gemischt und kann z. B. direkt zu Tabletten, Lutschtabletten oder Kautabletten verpreßt werden. Das Gemisch kann auch mit Wasser angeteigt, in eine Form gefüllt und gefriergetrocknet werden, so daß man gefriergetrocknete Tabletten erhält. Gegossene Tabletten oder Pastillen können erhalten werden, indem man das wirkstoffhaltige Copolymerpulver, z. B. mit einer Saccharidlösung bei erhöhter Temperatur mischt, in eine Form, z. B. für Tabletten oder Bonbons gießt und durch Abkühlen erstarrt läßt. Flüssigkeitsgefüllte Bonbons können erzeugt werden, indem man ein flüssiges Gemisch, enthaltend das wirkstoffhaltige Copolymerpulver z. B. in einer Zuckerlösung in eine feste Hülle aus z. B. einem Zucker einspritzt und diese anschließend verschließt.

Wirkstoffhaltiges Pulver

Das wirkstoffhaltige Pulver hat eine mittlere Korngröße von 200 µm oder darunter, bevorzugt 50 bis 150 µm und enthält

- (a) einen anionischen pharmazeutischen Wirkstoff, der in Form einer solid solution vorliegt und eingebettet ist in
- (b) ein Copolymer, welches aus radikalisch polymerisierten C₁- bis C₄-Estern der Acryl- oder Methacrylsäure und weiteren (Meth)acrylat-Monomeren die funktionelle tertiäre Aminogruppen aufweisen, besteht, sowie
- (c) 5 bis 50 Gew.-%, bezogen auf (b), einer C₁₂- bis C₂₂-Carbonsäure,
- (d) mit der Maßgabe, daß kein oder weniger als 3 Gew.-%, bezogen auf das Copolymer, eines Emulgators mit einem HLB-Wert von mindestens 14 enthalten ist.

Verwendungen

Das wirkstoffhaltiges Pulvers kann zur Herstellung einer oralen Arzneiform mit unmittelbarem Zerfall und Wirkstofffreisetzung bereits im Mund, die nach Freisetzung für mindestens 30 Sekunden keinen bitteren Geschmack hervorruft, verwendet werden. Die Arzneiform kann in Form von verpreßten Tabletten oder Lutschtabletten, gefriergetrockneten Tabletten, gegossenen Tabletten oder Pastillen, Sachets, Kautabletten, Trockensaften, Bonbons und/oder flüssigkeitsgefüllten Bonbons vorliegen.

Bitterwerte

Die Überprüfung der Geschmacksisolierung kann auf einfache Weise organoleptisch durch Verkosten erfolgen. Bei dieser Prüfung soll nach Wirkstofffreisetzung für mindestens 30 Sekunden noch kein oder leicht bitterer Geschmack wahrnehmbar sein. Genauer ist die Bestimmung von Bitterwerten. Kein oder leicht bitterer Geschmack entspricht Bitterwerten unter 1000.

Bitterwerte können nach DAB 1999 Methode 2.8.N8 (Bestimmung des Bitterwertes) bestimmt werden.

Während z. B. Ibuprofen einen Bitterwert um die 100.000 hat, liegt der erfindungsgemäße Wert für einen eingebetteten anionischen Wirkstoff in der Regel unter 1000, bevorzugt unter 100. Ein Bitterwert von 1000 ist für pharmazeutische Praxis in der Regel ausreichend.

BEISPIELE

In den Beispielen verwendete Copolymere:

EUDRAGIT® E PO: Copolymerpulver aus Methylmethacrylat, Butylmethacrylat, und Dimethylaminoethylmethacrylat in Verhältnis 25 : 25 : 50 mit einer mittleren Teilchengröße von 15 µm.

EUDRAGIT® E 100 : Copolymer aus Methylmethacrylat, Butylmethacrylat, und Dimethylaminoethylmethacrylat in Verhältnis 25 : 25 : 50 im Granulatform.

Die Wirksamkeit der Geschmacksisolierung wurde organoleptisch durch Verkosten geprüft. Dabei wurde die Zeit zwischen Aufnahme in den Mund und Auftreten des bitteren Geschmacks ermittelt.

Beispiel 1:

Compound mit 1 mol Dimethylaminoethylmethacrylat-Einheiten enthalten im Copolymer EUDRAGIT® E PO: 1 mol Stearinsäure : 0,66 mol Ibuprofen : 0,18 mol Talk.

Es wurden 39,42 g EUDRAGIT® E PO, 35,2 g Stearinsäure, 16,9 g Ibuprofen und 8,4 g Talk eingewogen und zusammen in den auf 100 °C vorgewärmten IKA Messknete gegeben, wo die Mischung bei 100 °C Produkttemperatur für 20 min mit 60 U/min (2 Knetschaufeln) geknetet wurde. Die Mischung wurde dem Messknete entnommen und mit Tropfeneis abgekühlt.

Nimmt man 1 g dieses Compounds in den Mund, schmeckt er nach 2 min nicht bitter.

Beispiel 2:

Compound mit 1 mol Dimethylaminoethylmethacrylat-Einheiten enthalten im Copolymer EUDRAGIT® E PO : 0,5 mol Stearinsäure : 0,66 mol Ibuprofen : 0,18 mol Talk.

Es wurden 47,85 g EUDRAGIT® E PO, 21,38 g Stearinsäure, 20,5 g Ibuprofen und 10,25 g Talk eingewogen und zusammen in den auf 100 °C vorgewärmten IKA Messkneter gegeben, wo die Mischung bei 100 °C Produkttemperatur für 20 min mit 60 U/min (2 Knetschaufeln) geknetet wurde. Die Mischung wurde dem Messkneter entnommen und mit Trockeneis abgekühlt.

Nimmt man 1 g dieses Compounds in den Mund, schmeckt er nach 2 min nicht bitter bis leicht bitter.

Beispiel 3:

Compound mit 1 mol Dimethylaminoethylmethacrylat-Einheiten enthalten im Copolymer EUDRAGIT® E PO : 0,65 mol Stearinsäure : 0,65 mol Ibuprofen : 0,18 mol Talk

Es wurden 44,8 g EUDRAGIT® E PO, 26,4 g Stearinsäure, 19,2 g Ibuprofen und 9,6 g Talk eingewogen und zusammen in den auf 100 °C vorgewärmten IKA Messkneter gegeben, wo die Mischung bei 100 °C Produkttemperatur für 20 min mit 60 U/min (2 Knetschaufeln) geknetet wurde. Die Mischung wurde dem Messkneter entnommen und mit Trockeneis abgekühlt.

Nimmt man 1 g dieses Compounds in den Mund, schmeckt er nach 2 min nicht bitter.

Beispiel 4:

Compound mit 1 mol Dimethylaminoethylmethacrylat-Einheiten enthalten im Copolymer EUDRAGIT® E PO: 0,33 mol Stearinsäure : 0,66 mol Ibuprofen : 0,18 mol Talk

Es wurden 51,6 g EUDRAGIT® E PO, 15,23 g Stearinsäure, 22,1 g Ibuprofen und 11 g Talk eingewogen und zusammen in den auf 100 °C vorgewärmten IKA Messkneter gegeben, wo die Mischung bei 100 °C Produkttemperatur für 20 min mit 60 U/min (2 Knetschaufeln) geknetet wurde. Die Mischung wurde dem Messkneter entnommen und mit Trockeneis abgekühlt.

Nimmt man 1 g dieses Compounds in den Mund, schmeckt er nach 1 min leicht bitter.

Beispiel 5:

Compound mit 1 mol Dimethylaminoethylmethacrylat-Einheiten enthalten im Copolymer EUDRAGIT® E PO: 0,34 mol Stearinsäure : 1 mol Ibuprofen : 0,27 mol Talk.

Es wurden 34,73 g EUDRAGIT® E PO, 15,52 g Stearinsäure, 33,1 g Ibuprofen und 16,58 g Talk eingewogen und zusammen in den auf 100 °C vorgewärmten IKA Messkneter gegeben, wo die Mischung bei 100 °C Produkttemperatur für 20 min mit 60 U/min (2 Knetschaufeln) geknetet wurde. Die Mischung wurde dem Messkneter entnommen und mit Trockeneis abgekühlt.

Nimmt man 1 g dieses Compounds in den Mund, schmeckt er nach 1 min bitter.

Vergleichsbeispiel 6: (Wirkstoff Coffein nicht erfindungsgemäß)

Compound mit 1 mol Dimethylaminoethylmethacrylat-Einheiten enthalten im Copolymer EUDRAGIT® E PO : 0,5 mol Stearinsäure : 1,58 mol Coffein (F_p : 234 – 239 °C).

Es wurden 41,47 g EUDRAGIT® E PO, 18,53 g Stearinsäure, 40 g Coffein eingewogen und zusammen in den auf 100 °C vorgewärmten IKA Messkneter gegeben, wo die Mischung bei 100 °C Produkttemperatur für 20 min mit 60 U/min (2 Knetschaufeln) geknetet wurde. Die Mischung wurde dem Messkneter entnommen und mit Tropfeneis abgekühlt.

Nimmt man 1 g dieses Compounds in den Mund, schmeckt er nach 10 s bitter.

Vergleichsbeispiel 7: (ohne Stearinsäure)

Compound mit 1 mol Dimethylaminoethylmethacrylat-Einheiten enthalten im Copolymer EUDRAGIT® E PO: 0,67 mol Ibuprofen : 0,18 mol Talk.

Es wurden 60 g EUDRAGIT® E PO, 26,4 g Ibuprofen und 13,2 g Talk eingewogen und zusammen in den auf 100 °C vorgewärmten IKA Messkneter gegeben, wo die Mischung bei 100 °C Produkttemperatur für 20 min mit 60 U/min (2 Knetschaufeln) geknetet wurde. Die Mischung wurde dem Messkneter entnommen und mit Tropfeneis abgekühlt.

Nimmt man 1 g dieses Compounds in den Mund, schmeckt er nach 10 s bitter.

Vergleichsbeispiel 8: (Wirkstoff Paracetamol nicht erfundungsgemäß)

Compound mit 1 mol Dimethylaminoethylmethacrylat-Einheiten enthalten im Copolymer EUDRAGIT® E PO: 0,5 mol Stearinsäure : 2,03 mol Paracetamol (F_p : 168 - 172 °C).

Es wurden 41,47 g EUDRAGIT® E PO, 18,53 g Stearinsäure, 40 g Paracetamol eingewogen und zusammen in den auf 100 °C vorgewärmten IKA Messkneter gegeben, wo die Mischung bei 100 °C Produkttemperatur für 20 min mit 60 U/min (2 Knetschaufeln) geknetet wurde. Die Mischung wurde dem Messkneter entnommen und mit Tropfeneis abgekühlt.

Nimmt man 1 g dieses Compounds in den Mund, schmeckt er sofort bitter.

Vergleichsbeispiel 9: (Wirkstoff Paracetamol nicht erfundungsgemäß)

Compound mit 1 mol Dimethylaminoethylmethacrylat-Einheiten enthalten im Copolymer EUDRAGIT® E : 0,5 mol Stearinsäure : 1 mol Paracetamol.

Es wurden 41,5 % EUDRAGIT® E 100, 18,53 % Stearinsäure und 40 % Paracetamol zusammen in einem 18 mm Doppelschneckenextruder in einem Temperaturbereich von 100 °C bis 172 °C extrudiert. In dem Bereich des Extruders, wo 172 °C bestanden, war die Schnecke besonders mischintensiv ausgelegt um eine homogene Schmelze zu erreichen.

Der so entstandene Compound schmeckt sofort bitter.

Beispiel 10:

Compound mit 1 mol Dimethylaminoethylmethacrylat-Einheiten enthalten im Copolymer EUDRAGIT® E PO: 0,06 mol Stearinsäure : 0,77 mol Ibuprofen.

Es wurden 100 g EUDRAGIT® E PO, 5 g Stearinsäure und 50 g Ibuprofen eingewogen und zusammen in den auf 100 °C vorgewärmten IKA Messkneter gegeben, wo die Mischung bei 100 °C Produkttemperatur für 20 min mit 60 U/min (2 Knetschaufeln) geknetet wurde. Die Mischung wurde dem Messkneter entnommen und mit Trockeneis abgekühlt.

Nimmt man 1 g dieses Compounds in den Mund, schmeckt er nach 30 – 60 s min bitter.

Beispiel 11:

Compound mit 1 mol Dimethylaminoethylmethacrylat-Einheiten enthalten im Copolymer EUDRAGIT® E PO: 0,12 mol Stearinsäure : 0,77 mol Ibuprofen.

Es wurden 100 g EUDRAGIT® E PO, 10 g Stearinsäure und 50 g Ibuprofen eingewogen und zusammen in den auf 100 °C vorgewärmten IKA Messkneter gegeben, wo die Mischung bei 100 °C Produkttemperatur für 20 min mit 60 U/min (2 Knetschaufeln) geknetet wurde. Die Mischung wurde dem Messkneter entnommen und mit Tropfeneis abgekühlt.

Nimmt man 1 g dieses Compounds in den Mund, schmeckt er nach 1 min bitter.

Vergleichsbeispiel 12 (C₁₂-Alkohol-Verbindung anstelle von Stearinsäure)

Compound mit 1 mol Dimethylaminoethylmethacrylat-Einheiten enthalten im Copolymer EUDRAGIT® E PO: 0,34 mol Dodecanol : 0,77 mol Ibuprofen.

Es wurden 100 g EUDRAGIT® E PO, 20 g Dodecanol und 50 g Ibuprofen eingewogen und zusammen in den auf 100 °C vorgewärmten IKA Messkneter gegeben, wo die Mischung bei 100 °C Produkttemperatur für 20 min mit 60 U/min (2 Knetschaufeln) geknetet wurde. Die Mischung wurde dem Messkneter entnommen und mit Tropfeneis abgekühlt.

Nimmt man 1 g dieses Compounds in den Mund, schmeckt er nach 20 s bitter und weist den unangenehmen Geschmack von Dodecanol auf.

PATENTANSPRÜCHE

1. Verfahren zur Herstellung einer oralen Arzneiform mit unmittelbarem Zerfall und Wirkstofffreisetzung bereits im Mund, durch intensives Mischen

- (a) eines anionischen pharmazeutischen Wirkstoffs mit
- (b) einem Copolymer, bestehend aus radikalisch polymerisierten C₁- bis C₄-Estern der Acryl- oder Methacrylsäure und weiteren (Meth)acrylat-Monomeren die funktionelle tertiäre Aminogruppen aufweisen, sowie
- (c) 5 bis 50 Gew.-%, bezogen auf (b), einer C₁₂- bis C₂₂-Carbonsäure

in der Schmelze, Erstarren der Mischung und Mahlen zum einem wirkstoffhaltigen Pulver mit einer mittleren Korngröße von 200 µm oder weniger, Einbetten des Pulvers in eine wasserlösliche Matrix aus pharmazeutisch üblichen Hilfsstoffen, mit der Maßgabe, daß nicht mehr als 3 Gew.-%, bezogen auf das Copolymer, an Emulgatoren mit einem HLB-Wert von mindestens 14 enthalten sein dürfen.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man zum Zweck des intensiven Mischens in der Schmelze einen Doppelschneckenextruder einsetzt.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man bei Temperaturen im Bereich von 80 bis 200 °C extrudiert.

4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Einbetten des Pulvers in die wasserlösliche Matrix durch Verpressen, Gießen, Granulieren oder Gefriertrocknen erfolgt.
5. Wirkstoffhaltiges Pulver mit einer mittleren Korngröße von 200 µm oder darunter, enthaltend
 - (a) einen anionischen pharmazeutischen Wirkstoff, welcher in Form einer solid solution vorliegt und eingebettet ist in
 - (b) ein Copolymer, welches aus radikalisch polymerisierten C₁- bis C₄-Estern der Acryl- oder Methacrylsäure und weiteren (Meth)acrylat-Monomeren die funktionelle tertiäre Aminogruppen aufweisen, besteht, sowie
 - (c) 5 bis 50 Gew.-%, bezogen auf (b), einer C₁₂- bis C₂₂-Carbonsäure,
 - (d) mit der Maßgabe, daß kein oder weniger als 3 Gew.-%, bezogen auf das Copolymer, eines Emulgators mit einem HLB-Wert von mindestens 14 enthalten ist.
6. Wirkstoffhaltiges Pulver nach Anspruch 5, dadurch gekennzeichnet, daß als anionischer Wirkstoff (a) ein anionisches Schmerzmittel bzw. ein anionisches Antirheumatisches oder ein anionisches Antibiotikum enthalten ist.

7. Wirkstoffhaltiges Pulver nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß als anionischer Wirkstoff (a) Acamprosat, Aceclofenac, Acemetacin, Acetylcystein, Acetylsalicylsäure, Acetyltyrosin, Acipimox, Acitretin , Alanin, Alendronsäure, Amethopterin, Aminosäuren, Amoxicillin, Ampicillin , Ascorbinsäure, Atorvastatin , Azidocillin, Aztreonam, Bacampicillin, Baclofen, Benazepril, Bendamustin, Benzylpenicillin, Bezafibrat, Biotin, Bornaprin, Bumetanid, Cabastin, Canrenoinsäure, Carbamoylphenoxyessigsäure, Carbidopa, Carbimazol, Carbocistein, Carisoprodol, Cefaclor, Cefadroxil, Cefalexin, Cefazolin, Cefepim, Cefetamet, Cefixim, Cefotaxim, Cefotiam, Cefoxitin, Cefpodoxim, Ceftazidim, Ceftibuten , Ceftriaxon, Cefuroxim, Cetirizin, Chenodeoxycholsäure, Chlorambucil, Cidofovir, Cilastatin, Cilazapril, Cinoxacin, Ciprofloxacin, Cisatracurium besilat, Clavulansäure, Clodronsäure, Clorazepat, Cromoglicinsäure, Desmeninol, Diclofenac, Dicloxacillin, Enoxacin, Eprosartan, Etacrynsäure, Etidronsäure, Etofyllin, Etomidat, Felbinac, Felodipin, Fenofibrat, Fexofenadin, Flavoxat, Fleroxacin, Flucloxacillin, Flufenaminsäure, Flumazenil, Flupirtin, Flurbiprofen, Fluvastatin, Fosfomycin, Fosinopril, Furosemid, Fusidinsäure, Gabapentin, Gemfibrozil, Ibandronsäure, Ibuprofen, Iloprost, Imidapril, Imipenem, Indometheacin, Irinotecan, Isradipin, Ketoprofen, Lercanidipin , Levodopa, Levofloxacin, Liothyronin, Liponsäure, Lisinopril, Lodoxamid, Lomefloxacin, Lonazolac, Loracarbef, Loratadin, Lovastatin, Mefenaminsäure, Meropenem, Mesalazin, Metamizol, Methotrexat, Methyldopa, Mezlocillin, Moexipril, Montelukast, Moxifloxacin, Mupirocin, Naproxen, Natamycin, Nateglinid, Nedocromil, Nicotinsäure, Nifedipin, Nilvadipin, Nimodipin, Nisoldipin, Nitrendipin, Norfloxacin, Ofloxacin, Olsalazin, Orotsäure, Oxacillin, Pamidronsäure, Pangamsäure, Penicillamin, Phenoxymethylpenicillin, Pentosanpolysulfat, Perindopril, Pethidin, Pipemidsäure, Piperacillin,

Pirenoxin, Piretanid, Probenecid, Proglumid, Propicillin, Prostaglandine, Quinapril, Quinaprilat, Ramipril, Repaglinid, Reserpin, Risedronsäure, Salicylsäure, Sulfasalazin, Spirapril, Sulbactam, Sulfasalazin, Sultamicillin, Tazaroten, Tazobactam, Telmisartan, Tiagabine, Tiaprofensäure, Tilidin, Tiludronsäure, Trandolapril, Tranexamsäure, Valproinsäure Vigabatrin, Vincamin, Vinpocetin, Zanamivir, Zoledronsäure, Zopiclon und/oder deren Salze, Isomere und/oder Kombinationen enthalten sind.

8. Verwendung eines wirkstoffhaltiges Pulvers nach einem oder mehreren der Ansprüche 5 bis 7 zur Herstellung einer oralen Arzneiform mit unmittelbarem Zerfall und Wirkstofffreisetzung bereits im Mund, die nach Freisetzung für mindestens 30 Sekunden keinen oder nur einen leicht bitteren Geschmack hervorruft.
9. Verwendung des wirkstoffhaltiges Pulvers nach Anspruch 8 zur Herstellung von Arzneiformen wie verpreßten Tabletten oder Lutschtabletten, gefriergetrockneten Tabletten, gegossenen Tabletten oder Pastillen, Sachets, Kautabletten, Trockensaften, Bonbons und/oder flüssigkeitsgefüllten Bonbons.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 03/13059

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 A61K9/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, EMBASE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0 417 588 A (ROEHM GMBH) 20 March 1991 (1991-03-20) cited in the application the whole document	1-9
P, A	WO 03/007917 A (SUPLIE PASCAL ; CRIERE BRUNO (FR); NOURI NOURREDINE (FR); ZUCCARELLI J) 30 January 2003 (2003-01-30) the whole document	
A	US 2002/168404 A1 (RAULT ISABELLE ET AL) 14 November 2002 (2002-11-14) the whole document	1-9

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
25 May 2004	15/06/2004
Name and mailing address of the ISA European Patent Office, P.B. 5618 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Felder, C

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 03/13059

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
EP 0417588	A 20-03-1991		DE 3930733 A1 AT 79551 T DD 297556 A5 DE 59000267 D1 EP 0417588 A2 HU 61457 A2 JP 3109333 A	28-03-1991 15-09-1992 16-01-1992 24-09-1992 20-03-1991 28-01-1993 09-05-1991
WO 03007917	A 30-01-2003		CA 2453290 A1 EP 1416922 A1 WO 03007917 A1	30-01-2003 12-05-2004 30-01-2003
US 2002168404	A1 14-11-2002		FR 2781152 A1 AU 765915 B2 AU 3906699 A CA 2277878 A1 DE 974365 T1 EP 0974365 A1 ES 2144989 T1 JP 2000044490 A KR 2000011772 A NZ 336789 A ZA 9904470 A	21-01-2000 02-10-2003 10-02-2000 20-01-2000 04-05-2000 26-01-2000 01-07-2000 15-02-2000 25-02-2000 24-11-2000 28-01-2000

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 03/13059

A. KLASSEFIZIERTUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 A61K9/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBiete

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 A61K

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ, EMBASE

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie ^a	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	EP 0 417 588 A (ROEHM GMBH) 20. März 1991 (1991-03-20) in der Anmeldung erwähnt das ganze Dokument	1-9
P, A	WO 03/007917 A (SUPLIE PASCAL ; CRIERE BRUNO (FR); NOURI NOURREDINE (FR); ZUCCARELLI J) 30. Januar 2003 (2003-01-30) das ganze Dokument	
A	US 2002/168404 A1 (RAULT ISABELLE ET AL) 14. November 2002 (2002-11-14) das ganze Dokument	1-9

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen : *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* Älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- *V* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahelegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche	Absendedatum des Internationalen Recherchenberichts
25. Mai 2004	15/06/2004
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	Bevollmächtigter Bediensteter Felder, C

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 03/13059

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
EP 0417588	A	20-03-1991	DE	3930733 A1		28-03-1991
			AT	79551 T		15-09-1992
			DD	297556 A5		16-01-1992
			DE	59000267 D1		24-09-1992
			EP	0417588 A2		20-03-1991
			HU	61457 A2		28-01-1993
			JP	3109333 A		09-05-1991
WO 03007917	A	30-01-2003	CA	2453290 A1		30-01-2003
			EP	1416922 A1		12-05-2004
			WO	03007917 A1		30-01-2003
US 2002168404	A1	14-11-2002	FR	2781152 A1		21-01-2000
			AU	765915 B2		02-10-2003
			AU	3906699 A		10-02-2000
			CA	2277878 A1		20-01-2000
			DE	974365 T1		04-05-2000
			EP	0974365 A1		26-01-2000
			ES	2144989 T1		01-07-2000
			JP	2000044490 A		15-02-2000
			KR	2000011772 A		25-02-2000
			NZ	336789 A		24-11-2000
			ZA	9904470 A		28-01-2000