

DFS PORTION of FCC 47 CFR PART 15 SUBPART E DFS PORTION of INDUSTRY CANADA RSS-247 ISSUE 2

CERTIFICATION TEST REPORT

FOR

5 GHz FIXED OUTDOOR TRANSCEIVER

MODEL NUMBER: ePMP FORCE190

FCC ID: Z8H89FT0031 IC: 109W-0031

REPORT NUMBER: 12234490-E1V1

ISSUE DATE: APRIL 25, 2018

Prepared for

CAMBIUM NETWORKS 3800 GOLF ROAD ROLLING MEADOWS, IL 60008-4023, U.S.A.

Prepared by

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000

FAX: (510) 661-0888

REPORT NO: 12234490-E1V1 DATE: APRIL 25, 2018 FCC ID: Z8H89FT0031 IC: 109W-0031

Revision History

Rev.	Issue Date	Revisions	Revised By
V1	04/25/18	Initial Issue	Henry Lau

TABLE OF CONTENTS

1.	ATTESTATION OF TEST RESULTS	. 4
2.	TEST METHODOLOGY	. 5
3.	FACILITIES AND ACCREDITATION	. 5
4.	CALIBRATION AND UNCERTAINTY	. 5
4	1.1. MEASURING INSTRUMENT CALIBRATION	. 5
4	1.2. MEASUREMENT UNCERTAINTY	. 5
5.	DYNAMIC FREQUENCY SELECTION	. 6
	5.1. OVERVIEW 5.1.1. LIMITS 5.1.2. TEST AND MEASUREMENT SYSTEM 5.1.3. TEST AND MEASUREMENT SOFTWARE 5.1.4. TEST ROOM ENVIRONMENT 5.1.5. SETUP OF EUT 5.1.6. DESCRIPTION OF EUT 5.2. RESULTS FOR 10 MHz BANDWIDTH 5.2.1. TEST CHANNEL 5.2.2. RADAR WAVEFORMS AND TRAFFIC	. 6 10 12 12 13 14 <i>16</i> 16
	5.2.3. CHANNEL AVAILABILITY CHECK TIME	30 30 35
	5.3. RESULTS FOR 40 MHz BANDWIDTH	44 53 58 58 63 64 66
6.	SETUP PHOTOS	
υ.	JLIUF FIIO1UJ	14

REPORT NO: 12234490-E1V1 FCC ID: Z8H89FT0031

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: CAMBIUM NETWORKS

3800 GOLF ROAD

ROLLING MEADOWS, IL 60008-4023, U.S.A.

EUT DESCRIPTION: 5 GHz FIXED OUTDOOR TRANSCEIVER

MODEL: ePMP FORCE190

SERIAL NUMBER: 00:04:56:00:00:88

DATE TESTED: APRIL 03 to 04, 2018

APPLICABLE STANDARDS

STANDARD TEST RESULTS

DFS Portion of CFR 47 Part 15 Subpart E Complies

DFS Portion of INDUSTRY CANADA RSS-247 Issue 2 Complies

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For

UL Verification Services Inc. By:

HENRY LAU TEST ENGINEER

UL Verification Services Inc.

Prepared By:

DOUG ANDERSON EMC ENGINEER

UL Verification Services Inc.

DATE: APRIL 25, 2018

REPORT NO: 12234490-E1V1 FCC ID: Z8H89FT0031

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with the DFS portion of FCC CFR 47 Part 2, FCC CFR 47 Part 15, FCC 06-96, FCC KDB 789033, KDB 905462 D02 and D03 and RSS-247 Issue 2.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL Verification Services, Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://ts.nist.gov/standards/scopes/2000650.htm.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty level has been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Time	± 0.02 %

The Uncertainty figure is valid to a confidence level of 95%.

DATE: APRIL 25, 2018

5. DYNAMIC FREQUENCY SELECTION

5.1. OVERVIEW

5.1.1. LIMITS

INDUSTRY CANADA

IC RSS-247 is closely harmonized with FCC Part 15 DFS rules. The deviations are as follows:

RSS-247 Issue 2

Note: For the band 5600–5650 MHz, no operation is permitted.

Until further notice, devices subject to this annex shall not be capable of transmitting in the band 5600–5650 MHz. This restriction is for the protection of Environment Canada weather radars operating in this band.

FCC

§15.407 (h), FCC KDB 905462 D02 "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVICES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION" and KDB 905462 D03 "U-NII CLIENT DEVICES WITHOUT RADAR DETECTION CAPABILITY".

DATE: APRIL 25, 2018 IC: 109W-0031 REPORT NO: 12234490-E1V1 DATE: APRIL 25, 2018 IC: 109W-0031 FCC ID: Z8H89FT0031

Table 1: Applicability of DFS requirements prior to use of a channel

Requirement	Operational Mode				
	Master	Client (without radar detection)	Client (with radar detection)		
Non-Occupancy Period	Yes	Not required	Yes		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
U-NII Detection Bandwidth	Yes	Not required	Yes		

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operational	Operational Mode				
	Master	Client (without DFS)	Client (with DFS)			
DFS Detection Threshold	Yes	Not required	Yes			
Channel Closing Transmission Time	Yes	Yes	Yes			
Channel Move Time	Yes	Yes	Yes			
U-NII Detection Bandwidth	Yes	Not required	Yes			

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar DFS	Client (without DFS)
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link
All other tests	Any single BW mode	Not required

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in all 20 MHz channel blocks and a null frequency between the bonded 20 MHz channel blocks.

REPORT NO: 12234490-E1V1 DATE: APRIL 25, 2018 FCC ID: Z8H89FT0031 IC: 109W-0031

Table 3: Interference Threshold values, Master or Client incorporating In-Service Monitoring

Maximum Transmit Power	Value
	(see notes)
E.I.R.P. ≥ 200 mill watt	-64 dBm
E.I.R.P. < 200 mill watt and	-62 dBm
power spectral density < 10 dBm/MHz	
E.I.R.P. < 200 mill watt that do not meet power spectral	-64 dBm
density requirement	

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note 3: E.I.R.P. is based on the highest antenna gain. For MIMO devices refer to KDB publication 662911 D01.

Table 4: DFS Response requirement values

Table 4. Di O Response requirement values	
Parameter	Value
Non-occupancy period	30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds (See Note 1)
Channel Closing Transmission Time	200 milliseconds + approx. 60 milliseconds over remaining 10 second period. (See Notes 1 and 2)
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission power bandwidth. (See Note 3)

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The *Channel Closing Transmission Time* is comprised of 200 milliseconds starting at the beginning of the *Channel Move Time* plus any additional intermittent control signals required to facilitate a *Channel* move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the *U-NII Detection Bandwidth* detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

REPORT NO: 12234490-E1V1 DATE: APRIL 25, 2018 IC: 109W-0031 FCC ID: Z8H89FT0031

Table 5 - Short Pulse Radar Test Waveforms

Radar	Pulse	PRI	Pulses	Minimum	Minimum
Type	Width	(usec)		Percentage	Trials
	(usec)	,		of Successful	
	, ,			Detection	
0	1	1428	18	See Note 1	See Note
					1
1	1	Test A: 15 unique		60%	30
		PRI values randomly			
		selected from the list	Roundup:		
		of 23 PRI values in	{(1/360) x (19 x 10 ⁶ PRI _{usec})}		
		table 5a			
		Test B: 15 unique			
		PRI values randomly			
		selected within the			
		range of 518-3066			
		usec. With a			
		minimum increment			
		of 1 usec, excluding			
		PRI values selected			
		in Test A			
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
		Aggregate (Radar T	ypes 1-4)	80%	120

Note 1: Short Pulse Radar Type 0 should be used for the Detection Bandwidth test, Channel Move Time, and Channel Closing Time tests.

Table 6 - Long Pulse Radar Test Signal

Radar	Pulse	Chirp	PRI	Pulses	Number	Minimum	Minimum
Waveform	Width	Width	(µsec)	per	of	Percentage	Trials
Type	(µsec)	(MHz)		Burst	Bursts	of Successful	
						Detection	
5	50-100	5-20	1000-	1-3	8-20	80%	30
			2000				

Table 7 – Frequency Hopping Radar Test Signal

i abio i	rabio i Troquolog Tropping Radai Tool Olgilai								
Radar	Pulse	PRI	Pulses	Hopping	Hopping	Minimum	Minimum		
Waveform	Width	(µsec)	per	Rate	Sequence	Percentage of	Trials		
Type	(µsec)		Hop	(kHz)	Length	Successful			
					(msec)	Detection			
6	1	333	9	0.333	300	70%	30		

5.1.2. TEST AND MEASUREMENT SYSTEM

CONDUCTED METHOD SYSTEM BLOCK DIAGRAM

REPORT NO: 12234490-E1V1 FCC ID: Z8H89FT0031

SYSTEM OVERVIEW

The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution.

The short pulse types 1, 2, 3 and 4, and the long pulse type 5 parameters are randomized at run-time.

The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of KDB 905462 D02. The frequency of the signal generator is incremented in 1 MHz steps from F_L to F_H for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold.

Should multiple RF ports be utilized for the Master and/or Slave devices (for example, for diversity or MIMO implementations), additional combiner/dividers are inserted between the Master Combiner/Divider and the pad connected to the Master Device (and/or between the Slave Combiner/Divider and the pad connected to the Slave Device). Additional pads may be utilized such that there is one pad at each RF port on each EUT.

SYSTEM CALIBRATION

A 50-ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected in place of the master device. The signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of –64 dBm as measured on the spectrum analyzer.

Without changing any of the instrument settings, the spectrum analyzer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. The Reference Level Offset of the spectrum analyzer is adjusted so that the displayed amplitude of the signal is –64 dBm.

The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of –64 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

DATE: APRIL 25, 2018

REPORT NO: 12234490-E1V1 DATE: APRIL 25, 2018 FCC ID: Z8H89FT0031 IC: 109W-0031

ADJUSTMENT OF DISPLAYED TRAFFIC LEVEL

A link is established between the Master and Slave and the Link Step Attenuator between the units is adjusted as needed to provide a suitable received level at the Master and Slave devices. The video test file is streamed to generate WLAN traffic. The WLAN traffic level, as displayed on the spectrum analyzer, is confirmed to be at lower amplitude than the radar detection threshold and is confirmed to be the Radar Detection Device rather than the associated device. If a different setting of the Master Step Attenuator is required to meet the above conditions, a new System Calibration is performed for the new Master Step Attenuator setting.

TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the DFS tests documented in this report:

TEST EQUIPMENT LIST										
Description Manufacturer Model T No. Cal Due										
Spectrum Analyzer, PXA, 3Hz to 44GHz	Keysight	N9030A	T459	06/22/18						
Signal Generator, MXG X-Series RF Vector	Agilent	N5182B	T1134	04/21/18						
Arbitrary Waveform Generator	Agilent / HP	33220A	T190	04/06/18						

5.1.3. TEST AND MEASUREMENT SOFTWARE

The following test and measurement software was utilized for the tests documented in this report:

TEST SOFTWARE LIST				
Name	Version	Test / Function		
Aggregate Time-PXA	3.0	Channel Loading and Aggregate Closing Time		
FCC 2006 Detection Bandwidth-PXA 3.0 Detection Bandwidth in 1 MHz Steps				
FCC 2014 Detection Bandwidth-PXA	3.0	Detection Bandwidth in 5 MHz Steps		
In Service Monitoring-PXA 3		In-Service Monitoring (Probability of Detection)		
PXA Read 3.0.0.9 Signal Generator Screen Capture				
SGXProject.exe	1.7	Radar Waveform Generation and Download		

5.1.4. TEST ROOM ENVIRONMENT

The test room temperature and humidity shall be maintained within normal temperature of 15~35 °C and normal humidity 20~75% (relative humidity).

ENVIRONMENT CONDITION

Parameter	Value	
Temperature	25.9 and 25.8 °C	
Humidity	27 and 29 %	

5.1.5. SETUP OF EUT

CONDUCTED METHOD EUT TEST SETUP

SUPPORT EQUIPMENT

The following support equipment was utilized for the DFS tests documented in this report:

PERIPHERAL SUPPORT EQUIPMENT LIST						
Description	Manufacturer	Model	Serial Number	FCC ID		
P.O.E.Injector (EUT)	Phihong	PSA15A-300 (AP)	0444582117P0401	DoC		
Notebook PC (EUT	Lenovo	Type 20B7-S0A200	PF-02JN9J 14/06	DoC		
Controller/Console)						
AC Adapter	Lenovo	ADLX65NCC2A	11S45N0263Z1ZSHD41A5JY	DoC		
(Controller/Console PC)						
5 GHz Fixed Outdoor	Cambium	ePMP 1000	00:04:56:C3:5F:F5	Z8HFT0005		
Transceiver (Slave Device)	Networks					
P.O.E.Injector (Slave)	Phihong	PSA15A-300 (AP)	0443642117P0401	DoC		
Notebook PC (Slave Host)	Lenovo	TP00001A	None	DoC		
AC Adapter (Host PC)	Lenovo	ADLX65NCT2A	11S45N0323Z1ZLZH3925TJ	DoC		

DATE: APRIL 25, 2018 IC: 109W-0031 REPORT NO: 12234490-E1V1 FCC ID: Z8H89FT0031

5.1.6. DESCRIPTION OF EUT

For FCC the EUT operates over the 5250-5350 MHz and 5470-5725 MHz ranges.

For IC the EUT operates over the 5250-5350 MHz and 5470-5725 MHz ranges, excluding the 5600-5650 MHz range.

The EUT is a Master Device.

The manufacturer declares that highest power level within both of these bands is 30.0 dBm EIRP.

The highest gain antenna assembly utilized with the EUT has a gain of 22 dBi in the 5250-5350 MHz band and 22 dBi in the 5470-5725 MHz band. The lowest gain antenna assembly utilized with the EUT has a gain of 0 dBi in the 5250-5350 MHz band and 0 dBi in the 5470-5725 MHz band.

Two identical orthogonally polarized antennas are utilized to meet the diversity and MIMO operational requirements.

The rated output power of the Master unit is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for antenna gain and procedural adjustments, the required conducted threshold at the antenna port is -64 + 0 + 1 = -63 dBm.

The EUT was tested with a client declared worst-case gain of 0 dBi.

The calibrated conducted DFS Detection Threshold level is set to -63 dBm.

The EUT uses one vertically polarized and one horizontally polarized transmitter/receiver chain. During testing the vertical chain is connected to a 50-ohm coaxial antenna port while the horizontal chain is terminated with a 50-ohm load. The vertical antenna port is connected to the test system via a power divider to perform conducted tests.

The Slave device associated with the EUT during these tests does not have radar detection capability.

WLAN traffic that meets or exceeds the minimum required loading was generated by transferring a data stream from the Master Device to the Slave Device using iPerf version 2.0.5 software package.

TPC is required since the maximum EIRP is greater than 500 mW (27 dBm).

The EUT utilizes a proprietary protocol. Two nominal channel bandwidths are implemented: 10 MHz and 40 MHz.

The software installed in the EUT is revision 3.5.2.

DATE: APRIL 25, 2018

REPORT NO: 12234490-E1V1 DATE: APRIL 25, 2018 IC: 109W-0031 FCC ID: Z8H89FT0031

UNIFORM CHANNEL SPREADING

This function is not required per KDB 905462.

5.2. **RESULTS FOR 10 MHz BANDWIDTH**

5.2.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5550 MHz.

5.2.2. RADAR WAVEFORMS AND TRAFFIC

RADAR WAVEFORMS

TRAFFIC

CHANNEL LOADING

The level of traffic loading on the channel by the EUT is 19.6%

REPORT NO: 12234490-E1V1 FCC ID: Z8H89FT0031

5.2.3. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A link was established on channel then the EUT was rebooted. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

PROCEDURE FOR TIMING OF RADAR BURST

With a link established on channel, the EUT was rebooted. A radar signal was triggered within 0 to 6 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. With a link established on channel, the EUT was rebooted. A radar signal was triggered within 54 to 60 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

DATE: APRIL 25, 2018

REPORT NO: 12234490-E1V1 DATE: APRIL 25, 2018 FCC ID: Z8H89FT0031 IC: 109W-0031

QUANTITATIVE RESULTS

No Radar Triggered

Timing of	Timing of	Total Power-up	Initial Power-up
Reboot	Start of Traffic	Cycle Time	Cycle Time
(sec)	(sec)	(sec)	(sec)
30.45	128.6	98.2	38.2

Radar Near Beginning of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
30.28	71.4	41.2	3.0

Radar Near End of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
30.12	125.4	95.3	57.1

QUALITATIVE RESULTS

Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar Triggered	EUT marks Channel as active	Transmissions begin on channel after completion of the initial power-up cycle and the CAC
Within 0 to 6 second window	EUT indicates radar detected	No transmissions on channel
Within 54 to 60 second window	EUT indicates radar detected	No transmissions on channel
	EUT does not display any radar parameter values	

TIMING WITHOUT RADAR DURING CAC

Transmissions begin on channel after completion of the initial power-up cycle and the CAC.

TIMING WITH RADAR NEAR BEGINNING OF CAC

AP is rebooted Traffic ceases Start of Initial Power-up cycle End of Initial Power-up cycle Start of CAC Radar Signal Applied TIMING WITH RADAR NEAR BEGINNING OF CAC Cente Freq 5.550000000 5Hz

| Freq | AUGNAUTO
Avg Type: Log-Pwr Frequency T.g: Free Run #Atten: 0 dB **Auto Tune** Mkr2 71.43 s -63.29 dBm Ref Offset -17.6 Ref -45.00 dBm Center Fred 5.550000000 GH: Start Fred 5.550000000 GH Stop Fred 5.550000000 GHz Center 5.550000000 GHz Span 0 Hz CF Step 3.000000 MHz Res BW 3.0 MHz **#VBW 3.0 MHz** Sweep 300.0 s (40001 pts) MKR MODE TRC SCL Freq Offset 0 Hz

No EUT transmissions were observed after the radar signal.

TIMING WITH RADAR NEAR END OF CAC

No EUT transmissions were observed after the radar signal.

5.2.4. OVERLAPPING CHANNEL TESTS

RESULTS

The channel spacing is not less than the channel bandwidth therefore the EUT does not have an overlapping channel plan.

5.2.5. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

Channel Move Time	Limit
(sec)	(sec)
0.0384	10

Aggregate Channel Closing Transmission Time	Limit
(msec)	(msec)
0.0	60

DATE: APRIL 25, 2018

MOVE TIME

CHANNEL CLOSING TIME

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

No transmissions are observed during the aggregate monitoring period.

DATE: APRIL 25, 2018 IC: 109W-0031

LONG PULSE CHANNEL MOVE TIME

The traffic ceases prior to 10 seconds after the end of the radar waveform.

5.2.6. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5545	5555	10	8.8126	113.5	100

REPORT NO: 12234490-E1V1 DATE: APRIL 25, 2018 FCC ID: Z8H89FT0031 IC: 109W-0031

DETECTION BANDWIDTH PROBABILITY

DETECTION BANDWIDTH PROBABILITY RESULTS							
	Detection Bandwidth Test Results 29445 DFS 1 FCC Type 0 Waveform: 1 us Pulse Width, 1428 us PRI, 18 Pulses per Burst						
FCC Type 0 W	avetorm: 1 us P	uise Wiath, 142	0 US PKI, 10 PU	ises per buist			
Frequency	Number Number Detection Mark						
(MHz)	of Trials	Detected	(%)				
5545	5545 10 10 100 FL						
5550 10 10 100							
5555 10 10 100 FH							

REPORT NO: 12234490-E1V1 DATE: APRIL 25, 2018 FCC ID: Z8H89FT0031 IC: 109W-0031

5.2.7. IN-SERVICE MONITORING

RESULTS

FCC Radar Test Summ	агу								
Signal Type	Number	Detection	Limit	Dace/Eail	Dete	ction			In-Service
Signal Type	number	Detection	Lillin	газзуган	Band	width	Test	Employee	Monitoring
	of Trials	(%)	(%)		FL	FH	Location	Number	Version
FCC Short Pulse Type 1	30	90.00	60	Pass	5545	5555	DFS 1	29445	Version 3.0
FCC Short Pulse Type 2	30	93.33	60	Pass	5545	5555	DFS 1	29445	Version 3.0
FCC Short Pulse Type 3	30	90.00	60	Pass	5545	5555	DFS 1	29445	Version 3.0
FCC Short Pulse Type 4	30	80.00	60	Pass	5545	5555	DFS 1	29445	Version 3.0
Aggregate		88.33	80	Pass					
FCC Long Pulse Type 5	30	80.00	80	Pass	5545	5555	DFS 1	29445	Version 3.0
FCC Hopping Type 6	33	96.97	70	Pass	5545	5555	DFS 1	29445	Version 3.0

TYPE 1 DETECTION PROBABILITY

Waveform	Pulse Width	PRI	Pulses	Test	Frequency	Successful Detection
	(us)	(us)	Per Burst	(A/B)	(MHz)	(Yes/No)
1001	1	3066	18	Α	5555	No
1002	1	678	78	Α	5546	Yes
1003	1	938	57	Α	5548	Yes
1004	1	738	72	Α	5553	Yes
1005	1	598	89	Α	5555	Yes
1006	1	858	62	Α	5550	Yes
1007	1	578	92	Α	5546	Yes
1008	1	698	76	Α	5553	Yes
1009	1	798	67	Α	5547	Yes
1010	1	518	102	Α	5551	Yes
1011	1	638	83	Α	5554	Yes
1012	1	538	99	Α	5552	Yes
1013	1	918	58	Α	5548	Yes
1014	1	758	70	Α	5549	Yes
1015	1	618	86	Α	5546	Yes
1016	1	2642	20	В	5545	Yes
1017	1	727	73	В	5546	Yes
1018	1	2360	23	В	5551	Yes
1019	1	574	92	В	5553	Yes
1020	1	2336	23	В	5554	Yes
1021	1	2033	26	В	5549	Yes
1022	1	2730	20	В	5552	No
1023	1	1203	44	В	5548	No
1024	1	836	64	В	5553	Yes
1025	1	792	67	В	5554	Yes
1026	1	553	96	В	5547	Yes
1027	1	639	83	В	5551	Yes
1028	1	530	100	В	5550	Yes
1029	1	2098	26	В	5551	Yes

TYPE 2 DETECTION PROBABILITY

2001 4.2 218 23 5553 2002 3.9 152 24 5547 2003 3.4 220 28 5553 2004 1.5 159 23 5546 2005 1.2 150 27 5547 2006 1.6 217 25 5547 2007 1.5 175 27 5546 2008 2.2 164 29 5547 2009 4.5 164 27 5548 2010 1.2 201 27 5554 2010 1.2 201 27 5554 2011 1.8 167 29 5548 2012 2.9 208 25 5548 2013 3.7 178 24 5553 2014 3 185 28 5555 2015 4 202 27 5548 2016 3.6 171 24 5549 2017 2.9 154 28 <th>essful Detectior (Yes/No)</th>	essful Detectior (Yes/No)
2003 3.4 220 28 5553 2004 1.5 159 23 5546 2005 1.2 150 27 5547 2006 1.6 217 25 5547 2007 1.5 175 27 5546 2008 2.2 164 29 5547 2009 4.5 164 27 5548 2010 1.2 201 27 5554 2011 1.8 167 29 5548 2012 2.9 208 25 5549 2013 3.7 178 24 5553 2014 3 185 28 5555 2015 4 202 27 5548 2016 3.6 171 24 5549 2017 2.9 154 28 5551 2018 2.6 207 29 5549 2019 2.1 </td <td>Yes</td>	Yes
2004 1.5 159 23 5546 2005 1.2 150 27 5547 2006 1.6 217 25 5547 2007 1.5 175 27 5546 2008 2.2 164 29 5547 2009 4.5 164 27 5548 2010 1.2 201 27 5554 2011 1.8 167 29 5548 2012 2.9 208 25 5549 2013 3.7 178 24 5553 2014 3 185 28 5555 2015 4 202 27 5548 2016 3.6 171 24 5549 2017 2.9 154 28 5551 2018 2.6 207 29 5549 2019 2.1 195 26 5553 2020 4.3 </td <td>No</td>	No
2005 1.2 150 27 5547 2006 1.6 217 25 5547 2007 1.5 175 27 5546 2008 2.2 164 29 5547 2009 4.5 164 27 5548 2010 1.2 201 27 5554 2011 1.8 167 29 5548 2011 1.8 167 29 5548 2012 2.9 208 25 5549 2013 3.7 178 24 5553 2014 3 185 28 5555 2014 3 185 28 5555 2015 4 202 27 5548 2016 3.6 171 24 5549 2017 2.9 154 28 5551 2018 2.6 207 29 5549 2019 2.1 <td>Yes</td>	Yes
2006 1.6 217 25 5547 2007 1.5 175 27 5546 2008 2.2 164 29 5547 2009 4.5 164 27 5548 2010 1.2 201 27 5554 2011 1.8 167 29 5548 2012 2.9 208 25 5549 2013 3.7 178 24 5553 2014 3 185 28 5555 2015 4 202 27 5548 2016 3.6 171 24 5549 2017 2.9 154 28 5551 2018 2.6 207 29 5549 2019 2.1 195 26 5553 2020 4.3 214 27 5546 2021 2.1 168 25 5546 2022 4.4 </td <td>Yes</td>	Yes
2007 1.5 175 27 5546 2008 2.2 164 29 5547 2009 4.5 164 27 5548 2010 1.2 201 27 5554 2011 1.8 167 29 5548 2011 1.8 167 29 5548 2012 2.9 208 25 5549 2013 3.7 178 24 5553 2014 3 185 28 5555 2014 3 185 28 5555 2015 4 202 27 5548 2016 3.6 171 24 5549 2017 2.9 154 28 5551 2018 2.6 207 29 5549 2019 2.1 195 26 5553 2020 4.3 214 27 5546 2021 2.1 <td>Yes</td>	Yes
2008 2.2 164 29 5547 2009 4.5 164 27 5548 2010 1.2 201 27 5554 2011 1.8 167 29 5548 2011 1.8 167 29 5548 2012 2.9 208 25 5549 2013 3.7 178 24 5553 2014 3 185 28 5555 2014 3 185 28 5555 2015 4 202 27 5548 2016 3.6 171 24 5549 2017 2.9 154 28 5551 2018 2.6 207 29 5549 2019 2.1 195 26 5553 2020 4.3 214 27 5546 2021 2.1 168 25 5546 2022 4.4 <td>Yes</td>	Yes
2009 4.5 164 27 5548 2010 1.2 201 27 5554 2011 1.8 167 29 5548 2012 2.9 208 25 5549 2013 3.7 178 24 5553 2014 3 185 28 5555 2015 4 202 27 5548 2016 3.6 171 24 5549 2017 2.9 154 28 5551 2018 2.6 207 29 5549 2019 2.1 195 26 5553 2020 4.3 214 27 5546 2021 2.1 168 25 5546 2022 4.4 191 23 5554 2023 2.4 230 25 5554 2024 5 20 23 5551 2025 3.2	Yes
2010 1.2 201 27 5554 2011 1.8 167 29 5548 2012 2.9 208 25 5549 2013 3.7 178 24 5553 2014 3 185 28 5555 2015 4 202 27 5548 2016 3.6 171 24 5549 2017 2.9 154 28 5551 2018 2.6 207 29 5549 2019 2.1 195 26 5553 2020 4.3 214 27 5546 2021 2.1 168 25 5546 2022 4.4 191 23 5554 2023 2.4 230 25 5554 2024 5 20 23 5551 2025 3.2 182 25 5547 2026 4	Yes
2011 1.8 167 29 5548 2012 2.9 208 25 5549 2013 3.7 178 24 5553 2014 3 185 28 5555 2015 4 202 27 5548 2016 3.6 171 24 5549 2017 2.9 154 28 5551 2018 2.6 207 29 5549 2019 2.1 195 26 5553 2020 4.3 214 27 5546 2021 2.1 168 25 5546 2022 4.4 191 23 5554 2023 2.4 230 25 5554 2024 5 220 23 5551 2025 3.2 182 25 5547 2026 4 175 24 5547	Yes
2012 2.9 208 25 5549 2013 3.7 178 24 5553 2014 3 185 28 5555 2015 4 202 27 5548 2016 3.6 171 24 5549 2017 2.9 154 28 5551 2018 2.6 207 29 5549 2019 2.1 195 26 5553 2020 4.3 214 27 5546 2021 2.1 168 25 5546 2022 4.4 191 23 5554 2023 2.4 230 25 5554 2024 5 220 23 5551 2025 3.2 182 25 5547 2026 4 175 24 5547	Yes
2013 3.7 178 24 5553 2014 3 185 28 5555 2015 4 202 27 5548 2016 3.6 171 24 5549 2017 2.9 154 28 5551 2018 2.6 207 29 5549 2019 2.1 195 26 5553 2020 4.3 214 27 5546 2021 2.1 168 25 5546 2022 4.4 191 23 5554 2023 2.4 230 25 5554 2024 5 220 23 5551 2025 3.2 182 25 5547 2026 4 175 24 5547	Yes
2014 3 185 28 5555 2015 4 202 27 5548 2016 3.6 171 24 5549 2017 2.9 154 28 5551 2018 2.6 207 29 5549 2019 2.1 195 26 5553 2020 4.3 214 27 5546 2021 2.1 168 25 5546 2022 4.4 191 23 5554 2023 2.4 230 25 5554 2024 5 220 23 5551 2025 3.2 182 25 5547 2026 4 175 24 5547	Yes
2015 4 202 27 5548 2016 3.6 171 24 5549 2017 2.9 154 28 5551 2018 2.6 207 29 5549 2019 2.1 195 26 5553 2020 4.3 214 27 5546 2021 2.1 168 25 5546 2022 4.4 191 23 5554 2023 2.4 230 25 5554 2024 5 220 23 5551 2025 3.2 182 25 5547 2026 4 175 24 5547	Yes
2016 3.6 171 24 5549 2017 2.9 154 28 5551 2018 2.6 207 29 5549 2019 2.1 195 26 5553 2020 4.3 214 27 5546 2021 2.1 168 25 5546 2022 4.4 191 23 5554 2023 2.4 230 25 5554 2024 5 220 23 5551 2025 3.2 182 25 5547 2026 4 175 24 5547	Yes
2017 2.9 154 28 5551 2018 2.6 207 29 5549 2019 2.1 195 26 5553 2020 4.3 214 27 5546 2021 2.1 168 25 5546 2022 4.4 191 23 5554 2023 2.4 230 25 5554 2024 5 220 23 5551 2025 3.2 182 25 5547 2026 4 175 24 5547	Yes
2018 2.6 207 29 5549 2019 2.1 195 26 5553 2020 4.3 214 27 5546 2021 2.1 168 25 5546 2022 4.4 191 23 5554 2023 2.4 230 25 5554 2024 5 220 23 5551 2025 3.2 182 25 5547 2026 4 175 24 5547	Yes
2019 2.1 195 26 5553 2020 4.3 214 27 5546 2021 2.1 168 25 5546 2022 4.4 191 23 5554 2023 2.4 230 25 5554 2024 5 220 23 5551 2025 3.2 182 25 5547 2026 4 175 24 5547	Yes
2020 4.3 214 27 5546 2021 2.1 168 25 5546 2022 4.4 191 23 5554 2023 2.4 230 25 5554 2024 5 220 23 5551 2025 3.2 182 25 5547 2026 4 175 24 5547	Yes
2021 2.1 168 25 5546 2022 4.4 191 23 5554 2023 2.4 230 25 5554 2024 5 220 23 5551 2025 3.2 182 25 5547 2026 4 175 24 5547	Yes
2022 4.4 191 23 5554 2023 2.4 230 25 5554 2024 5 220 23 5551 2025 3.2 182 25 5547 2026 4 175 24 5547	Yes
2023 2.4 230 25 5554 2024 5 220 23 5551 2025 3.2 182 25 5547 2026 4 175 24 5547	Yes
2024 5 220 23 5551 2025 3.2 182 25 5547 2026 4 175 24 5547	Yes
2025 3.2 182 25 5547 2026 4 175 24 5547	No
2026 4 175 24 5547	Yes
	Yes
2027 4.6 222 23 5546	Yes
2021 110 222 20 0010	Yes
2028 1.6 182 23 5548	Yes
2029 2.4 195 29 5546	Yes

REPORT NO: 12234490-E1V1 DATE: APRIL 25, 2018 FCC ID: Z8H89FT0031 IC: 109W-0031

TYPE 3 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Frequency (MHz)	Successful Detection (Yes/No)
3001	7.7	334	17	5551	Yes
3002	7.3	486	17	5554	Yes
3003	6.6	435	17	5546	Yes
3004	6.3	349	17	5553	Yes
3005	9.9	310	16	5555	Yes
3006	8	253	17	5546	Yes
3007	9.9	478	17	5553	Yes
3008	8.1	300	18	5553	Yes
3009	6.1	420	18	5549	Yes
3010	8.7	388	18	5553	Yes
3011	6.9	270	16	5551	Yes
3012	9.9	250	18	5554	Yes
3013	8.3	396	18	5555	Yes
3014	9.4	272	18	5546	Yes
3015	6.1	313	17	5552	Yes
3016	9.5	452	16	5545	Yes
3017	6.4	255	16	5553	No
3018	6	407	16	5552	Yes
3019	9.4	355	16	5555	No
3020	7.2	403	16	5548	Yes
3021	6.7	482	18	5546	Yes
3022	6.7	424	16	5548	Yes
3023	8.6	398	16	5547	Yes
3024	6.8	471	17	5550	Yes
3025	8.9	340	17	5555	No
3026	7.4	308	17	5546	Yes
3027	7.8	441	18	5546	Yes
3028	8.6	422	17	5549	Yes
3029	7	317	17	5548	Yes

REPORT NO: 12234490-E1V1 DATE: APRIL 25, 2018 FCC ID: Z8H89FT0031 IC: 109W-0031

TYPE 4 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Frequency (MHz)	Successful Detection (Yes/No)
4001	17.4	484	13	5552	Yes
4002	16	373	16	5552	Yes
4003	18.2	426	13	5549	Yes
4004	13	327	16	5554	Yes
4005	15.6	276	13	5552	Yes
4006	20	323	16	5549	Yes
4007	18.8	285	14	5550	No
4008	14.6	345	15	5551	Yes
4009	13.9	319	16	5550	Yes
4010	19.1	274	12	5549	Yes
4011	14.6	261	13	5554	Yes
4012	16.1	480	12	5548	Yes
4013	12.1	362	14	5550	Yes
4014	14	342	13	5545	Yes
4015	19.5	371	12	5545	No
4016	17.7	364	12	5550	Yes
4017	14.5	405	16	5552	Yes
4018	13.2	293	14	5548	Yes
4019	11.1	347	16	5551	No
4020	19.2	381	14	5549	No
4021	12.8	448	12	5550	Yes
4022	17.1	495	15	5546	No
4023	16	456	13	5548	Yes
4024	11.7	265	16	5545	Yes
4025	11	491	14	5555	Yes
4026	16.3	446	16	5554	No
4027	11.8	433	12	5554	Yes
4028	13.2	400	16	5551	Yes
4029	18.3	282	12	5554	Yes

TYPE 5 DETECTION PROBABILITY

Trial	Frequency (MHz)	Successful Detection (Yes/No)
1	5550	Yes
2	5550	No
3	5550	Yes
4	5550	Yes
5	5550	No
6	5550	Yes
7	5550	Yes
8	5550	No
9	5550	No
10	5550	Yes
11	5554	Yes
12	5551	Yes
13	5550	Yes
14	5551	Yes
15	5548	Yes
16	5550	Yes
17	5549	Yes
18	5554	Yes
19	5550	Yes
20	5551	Yes
21	5552	Yes
22	5549	No
23	5552	Yes
24	5549	Yes
25	5552	Yes
26	5549	Yes
27	5552	Yes
28	5549	No
29	5552	Yes
30	5549	Yes

Note: The Type 5 randomized parameters tested are shown in a separate document.

TYPE 6 DETECTION PROBABILITY

ım muç	just 2005 Hopping Se	quence		
Trial	Starting Index Within Sequence	Signal Generator Frequency (MHz)	Hops within Detection BW	Successfu Detection (Yes/No)
1	353	5545	3	Yes
2	828	5546	2	Yes
3	1303	5547	2	Yes
4	1778	5548	2	Yes
5	2253	5549	3	Yes
6	2728	5550	4	Yes
7	3203	5551	1	Yes
8	3678	5552	1	Yes
9	4153	5553	2	Yes
10	4628	5554	3	Yes
11	5103	5555	4	Yes
12	5578	5545	2	Yes
13	6053	5546	1	Yes
14	6528	5547	2	Yes
15	7003	5548	1	Yes
16	7478	5549	3	Yes
17	7953	5550	2	Yes
18	8428	5551	4	Yes
19	8903	5552	3	Yes
20	9378	5553	1	Yes
21	9853	5554	1	Yes
22	10328	5555	3	Yes
23	10803	5545	2	No
24	11278	5546	2	Yes
25	11753	5547	3	Yes
26	12228	5548	3	Yes
27	12703	5549	3	Yes
28	13178	5550	2	Yes
29	13653	5551	1	Yes
30	14128	5552	3	Yes
31	14603	5553	2	Yes
32	15078	5554	1	Yes
33	15553	5555	1	Yes

5.3. **RESULTS FOR 40 MHz BANDWIDTH**

5.3.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5550 MHz.

5.3.2. RADAR WAVEFORMS AND TRAFFIC

RADAR WAVEFORMS

TRAFFIC

CHANNEL LOADING

The level of traffic loading on the channel by the EUT is 19.47%

REPORT NO: 12234490-E1V1 FCC ID: Z8H89FT0031

5.3.3. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A link was established on channel then the EUT was rebooted. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

PROCEDURE FOR TIMING OF RADAR BURST

With a link established on channel, the EUT was rebooted. A radar signal was triggered within 0 to 6 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. With a link established on channel, the EUT was rebooted. A radar signal was triggered within 54 to 60 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

DATE: APRIL 25, 2018

IC: 109W-0031

DATE: APRIL 25, 2018 REPORT NO: 12234490-E1V1 IC: 109W-0031 FCC ID: Z8H89FT0031

QUANTITATIVE RESULTS

No Radar Triggered

Timing of	Timing of	Total Power-up	Initial Power-up
Reboot	Start of Traffic	Cycle Time	Cycle Time
(sec)	(sec)	(sec)	(sec)
29.67	127.7	98.0	38.0

Radar Near Beginning of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
30.17	71.8	41.6	3.6

Radar Near End of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
30.26	125.8	95.5	57.5

QUALITATIVE RESULTS

Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar Triggered	EUT marks Channel as active	Transmissions begin on channel after completion of the initial power-up cycle and the CAC
Within 0 to 6 second window	EUT indicates radar detected	No transmissions on channel
Within 54 to 60 second window	EUT indicates radar detected	No transmissions on channel

TIMING WITHOUT RADAR DURING CAC

Transmissions begin on channel after completion of the initial power-up cycle and the CAC.

TIMING WITH RADAR NEAR BEGINNING OF CAC

AP is rebooted Traffic ceases Start of Initial Power-up cycle End of Initial Power-up cycle Start of CAC Radar Signal Applied TIMING WITH RADAR NEAR BEGINNING OF CAC 1:54 PM Apr 03, 2018 TRACE 1 2 2 4 5 Freq 5.550000000 GHz
PNO: Fast
FGain:High Frequency Avg Type: Log-Pwr rig: Free Run #Atten: 0 dB **Auto Tune** Mkr2 71.80 s -63.29 dBm Ref Offset -13.6 d Ref -45.00 dBm Center Fred 5.550000000 GH: Start Fred 5.550000000 GH Stop Fred 5.550000000 GHz Center 5.550000000 GHz Span 0 Hz CF Step 3.000000 MHz Res BW 3.0 MHz **#VBW 3.0 MHz** Sweep 300.0 s (40001 pts) MKR MODE TRC SCL Freq Offset 0 Hz

No EUT transmissions were observed after the radar signal.

TIMING WITH RADAR NEAR END OF CAC

AP is rebooted Traffic ceases Start of Initial Power-up cycle End of Initial Power-up cycle Start of CAC Radar Signal Applied TIMING WITH RAPAR NEAR END OF CAC rum Analyzer 227 RF SO 2 DC GHz

req 5.550000000 GHz

PNO: Fast -IF Gain: High ıxı RL Center 02:39:31 PM Apr 03, 2018 TRACE 1 2 3 4 5 6 TYPE WWWWW DET P P P P P P Frequency Avg Type: Log-Pwr Trig: Free Run #Atten: 0 dB Auto Tune Mkr2 125.8 s -63.11 dBm Ref Offset -13.6 dB Ref -45.00 dBm Center Fred 5.550000000 GH: Start Fred 5.550000000 GH Stop Fred 5.550000000 GHz Center 5.550000000 GHz Span 0 Hz CF Step 3.000000 MHz Res BW 3.0 MHz **#VBW 3.0 MHz** Sweep 300.0 s (40001 pts) MKR MODE TRC SCL -76.95 dBm -63.11 dBm Freq Offset 0 Hz

No EUT transmissions were observed after the radar signal.

5.3.1. OVERLAPPING CHANNEL TESTS

RESULTS

The channel spacing is not less than the channel bandwidth therefore the EUT does not have an overlapping channel plan.

5.3.2. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

Channel Move Time	Limit
(sec)	(sec)
0.0464	10

Aggregate Channel Closing Transmission Time	Limit
(msec)	(msec)
0.0	60

DATE: APRIL 25, 2018

IC: 109W-0031

MOVE TIME

CHANNEL CLOSING TIME

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

No transmissions are observed during the aggregate monitoring period.

DATE: APRIL 25, 2018 IC: 109W-0031

LONG PULSE CHANNEL MOVE TIME

The traffic ceases prior to 10 seconds after the end of the radar waveform.

5.3.1. NON-OCCUPANCY PERIOD

RESULTS

No EUT transmissions were observed on the test channel during the 30-minute observation time. After the 30-minute non-occupancy period the EUT performed a new CAC, then resumed transmissions upon detecting no radar during this CAC period.

5.3.2. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5530	5570	40	36.376	110.0	100

REPORT NO: 12234490-E1V1 DATE: APRIL 25, 2018 FCC ID: Z8H89FT0031 IC: 109W-0031

DETECTION BANDWIDTH PROBABILITY

DETECTION E	BANDWIDTH P	ROBABILITY	RESULTS	
Detection Band	dwidth Test Res	sults	29445	DFS 1
FCC Type 0 Wa	aveform: 1 us P	ulse Width, 142	28 us PRI, 18 Pu	lses per Burst
Frequency	Number	Number	Detection	Mark
(MHz)	of Trials	Detected	(%)	
5530	10	10	100	FL
5535	10	10	100	
5540	10	10	100	
5545	10	10	100	
5550	10	10	100	
5555	10	10	100	
5560	10	10	100	
5565	10	10	100	
5570	10	10	100	FH
	_	_		

REPORT NO: 12234490-E1V1 DATE: APRIL 25, 2018 FCC ID: Z8H89FT0031 IC: 109W-0031

5.3.3. IN-SERVICE MONITORING

RESULTS

FCC Radar Test Summ	агу									
Signal Type	Number	Detection	Limit	Pass/Fail		ction width		Test	Employee	In-Service Monitoring
	of Trials	(%)	(%)		FL	FH	OBW	Location	Number	Version
FCC Short Pulse Type 1	30	93.33	60	Pass	5530	5570	36.38	DFS 1	29445	Version 3.0
FCC Short Pulse Type 2	30	96.67	60	Pass	5530	5570	36.38	DFS 1	29445	Version 3.0
FCC Short Pulse Type 3	30	96.67	60	Pass	5530	5570	36.38	DFS 1	29445	Version 3.0
FCC Short Pulse Type 4	30	66.67	60	Pass	5530	5570	36.38	DFS 1	29445	Version 3.0
Aggregate		88.33	80	Pass						
FCC Long Pulse Type 5	30	100.00	80	Pass	5530	5570	36.38	DFS 1	29445	Version 3.0
FCC Hopping Type 6	41	95.12	70	Pass	5530	5570		DFS 1	29445	Version 3.0

TYPE 1 DETECTION PROBABILITY

Waveform	Pulse Width	PRI	Pulses	Test	Frequency	Successful Detection
	(us)	(us)	Per Burst	(A/B)	(MHz)	(Yes/No)
1001	1	3066	18	Α	5535	No
1002	1	678	78	Α	5546	Yes
1003	1	938	57	Α	5544	Yes
1004	1	738	72	Α	5544	Yes
1005	1	598	89	Α	5539	Yes
1006	1	858	62	Α	5559	Yes
1007	1	578	92	Α	5554	Yes
1008	1	698	76	Α	5533	Yes
1009	1	798	67	Α	5547	Yes
1010	1	518	102	Α	5535	Yes
1011	1	638	83	Α	5559	Yes
1012	1	538	99	Α	5532	Yes
1013	1	918	58	Α	5540	Yes
1014	1	758	70	Α	5548	Yes
1015	1	618	86	Α	5553	Yes
1016	1	2642	20	В	5560	Yes
1017	1	727	73	В	5541	Yes
1018	1	2360	23	В	5570	Yes
1019	1	574	92	В	5537	Yes
1020	1	2336	23	В	5555	Yes
1021	1	2033	26	В	5566	Yes
1022	1	2730	20	В	5541	No
1023	1	1203	44	В	5543	Yes
1024	1	836	64	В	5536	Yes
1025	1	792	67	В	5558	Yes
1026	1	553	96	В	5534	Yes
1027	1	639	83	В	5565	Yes
1028	1	530	100	В	5545	Yes
1029	1	2098	26	В	5545	Yes
1030	1	2119	25	В	5536	Yes

TYPE 2 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Frequency (MHz)	Successful Detection (Yes/No)
2001	4.2	218	23	5568	Yes
2002	3.9	152	24	5531	Yes
2003	3.4	220	28	5548	Yes
2004	1.5	159	23	5560	Yes
2005	1.2	150	27	5559	No
2006	1.6	217	25	5537	Yes
2007	1.5	175	27	5548	Yes
2008	2.2	164	29	5565	Yes
2009	4.5	164	27	5555	Yes
2010	1.2	201	27	5539	Yes
2011	1.8	167	29	5546	Yes
2012	2.9	208	25	5551	Yes
2013	3.7	178	24	5531	Yes
2014	3	185	28	5539	Yes
2015	4	202	27	5553	Yes
2016	3.6	171	24	5569	Yes
2017	2.9	154	28	5539	Yes
2018	2.6	207	29	5545	Yes
2019	2.1	195	26	5556	Yes
2020	4.3	214	27	5532	Yes
2021	2.1	168	25	5559	Yes
2022	4.4	191	23	5570	Yes
2023	2.4	230	25	5548	Yes
2024	5	220	23	5543	Yes
2025	3.2	182	25	5563	Yes
2026	4	175	24	5541	Yes
2027	4.6	222	23	5544	Yes
2028	1.6	182	23	5556	Yes
2029	2.4	195	29	5568	Yes
2030	1.7	159	26	5560	Yes

REPORT NO: 12234490-E1V1 DATE: APRIL 25, 2018 FCC ID: Z8H89FT0031 IC: 109W-0031

TYPE 3 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Frequency (MHz)	Successful Detection (Yes/No)
3001	7.7	334	17	5557	Yes
3002	7.3	486	17	5540	Yes
3003	6.6	435	17	5554	Yes
3004	6.3	349	17	5534	Yes
3005	9.9	310	16	5556	Yes
3006	8	253	17	5541	Yes
3007	9.9	478	17	5557	Yes
3008	8.1	300	18	5563	Yes
3009	6.1	420	18	5535	Yes
3010	8.7	388	18	5547	Yes
3011	6.9	270	16	5537	Yes
3012	9.9	250	18	5551	Yes
3013	8.3	396	18	5535	Yes
3014	9.4	272	18	5553	Yes
3015	6.1	313	17	5569	Yes
3016	9.5	452	16	5544	Yes
3017	6.4	255	16	5567	Yes
3018	6	407	16	5551	Yes
3019	9.4	355	16	5556	No
3020	7.2	403	16	5550	Yes
3021	6.7	482	18	5568	Yes
3022	6.7	424	16	5533	Yes
3023	8.6	398	16	5549	Yes
3024	6.8	471	17	5558	Yes
3025	8.9	340	17	5544	Yes
3026	7.4	308	17	5563	Yes
3027	7.8	441	18	5553	Yes
3028	8.6	422	17	5540	Yes
3029	7	317	17	5545	Yes

REPORT NO: 12234490-E1V1 DATE: APRIL 25, 2018 FCC ID: Z8H89FT0031 IC: 109W-0031

TYPE 4 DETECTION PROBABILITY

Waveform	Pulse Width	PRI	Pulses Per Burst	Frequency	Successful Detection
	(us)	(us)		(MHz)	(Yes/No)
4001	17.4	484	13	5539	Yes
4002	16	373	16	5536	Yes
4003	18.2	426	13	5531	Yes
4004	13	327	16	5558	Yes
4005	15.6	276	13	5568	Yes
4006	20	323	16	5561	No
4007	18.8	285	14	5556	No
4008	14.6	345	15	5544	Yes
4009	13.9	319	16	5570	Yes
4010	19.1	274	12	5556	No
4011	14.6	261	13	5551	No
4012	16.1	480	12	5566	No
4013	12.1	362	14	5560	Yes
4014	14	342	13	5551	Yes
4015	19.5	371	12	5542	No
4016	17.7	364	12	5560	Yes
4017	14.5	405	16	5531	Yes
4018	13.2	293	14	5556	Yes
4019	11.1	347	16	5544	Yes
4020	19.2	381	14	5569	No
4021	12.8	448	12	5532	No
4022	17.1	495	15	5534	Yes
4023	16	456	13	5535	Yes
4024	11.7	265	16	5540	Yes
4025	11	491	14	5541	Yes
4026	16.3	446	16	5554	No
4027	11.8	433	12	5542	Yes
4028	13.2	400	16	5550	Yes
4029	18.3	282	12	5561	No
4030	11.1	263	13	5543	Yes

TYPE 5 DETECTION PROBABILITY

Data Sheet for FCC	Long Pulse	Data Sheet for FCC Long Pulse Radar Type 5					
Trial	Frequency						
	(MHz)	(Yes/No)					
1	5550	Yes					
2	5550	Yes					
3	5550	Yes					
4	5550	Yes					
5	5550	Yes					
6	5550	Yes					
7	5550	Yes					
8	5550	Yes					
9	5550	Yes					
10	5550	Yes					
11	5539	Yes					
12	5536	Yes					
13	5537	Yes					
14	5539	Yes					
15	5537	Yes					
16	5538	Yes					
17	5536	Yes					
18	5536	Yes					
19	5535	Yes					
20	5540	Yes					
21	5561	Yes					
22	5562	Yes					
23	5563	Yes					
24	5563	Yes					
25	5562	Yes					
26	5563	Yes					
27	5564	Yes					
28	5562	Yes					
29	5563	Yes					
30	5563	Yes					

Note: The Type 5 randomized parameters tested are shown in a separate document.

TYPE 6 DETECTION PROBABILITY

ւ լա տաչ	just 2005 Hopping Se	quence		
Trial	Starting Index Within Sequence	Signal Generator Frequency (MHz)	Hops within Detection BW	Successful Detection (Yes/No)
1	356	5530	5	Yes
2	831	5531	12	Yes
3	1306	5532	12	Yes
4	1781	5533	11	Yes
5	2256	5534	11	Yes
6	2731	5535	8	Yes
7	3206	5536	6	Yes
8	3681	5537	3	Yes
9	4156	5538	10	Yes
10	4631	5539	11	Yes
11	5106	5540	8	Yes
12	5581	5541	9	Yes
13	6056	5542	7	Yes
14	6531	5543	10	Yes
15	7006	5544	8	Yes
16	7481	5545	8	Yes
17	7956	5546	10	Yes
18	8431	5547	10	Yes
19	8906	5548	14	Yes
20	9381	5549	3	No
21	9856	5550	5	No
22	10331	5551	17	Yes
23	10806	5552	10	Yes
24	11281	5553	5	Yes
25	11756	5554	8	Yes
26	12231	5555	7	Yes
27	12706	5556	9	Yes
28	13181	5557	9	Yes
29	13656	5558	4	Yes
30	14131	5559	10	Yes
31	14606	5560	6	Yes
32			5	
	15081	5561	_	Yes
33	15556	5562	9	Yes
34	16031	5563	9	Yes
35	16506	5564	7	Yes
36	16981	5565	4	Yes
37	17456	5566	7	Yes
38	17931	5567	13	Yes
39	18406	5568	8	Yes
40	18881	5569	9	Yes
41	19356	5570	11	Yes

REPORT NO: 12234490-E1V1 FCC ID: Z8H89FT0031

5.4. BRIDGE MODE RESULTS

Per KDB 905462, Section 5.1 (footnote 1):

Networks Access Points with Bridge and/or MESH modes of operation are permitted to operate in the DFS bands but must employ a DFS function. The functionality of the Bridge mode as specified in §15.403(a) must be validated in the DFS test report. Devices operating as relays must also employ DFS function. The method used to validate the functionality must be documented and validation data must be documented. Bridge mode can be validated by performing a test statistical performance check (Section 7.8.4) on any one of the radar types. This is an abbreviated test to verify DFS functionality. MESH mode operational methodology must be submitted in the application for certification for evaluation by the FCC.

This device does not support Bridge Mode therefore this test was not performed.

DATE: APRIL 25, 2018

IC: 109W-0031

6. SETUP PHOTOS

DYNAMIC FREQUENCY SELECTION MEASUREMENT SETUP

END OF REPORT