

INFS4205/7205 Advanced Techniques for High Dimensional Data

Spatial Data Organization 2

Semester 1, 2021

University of Queensland

+ Advanced Techniques for High Dimensional Data

- □ Course Introduction
- Introduction to Spatial Databases
- Spatial Data Organization
- Spatial Query Processing
- Managing Spatiotemporal Data
- Managing High-dimensional Data
- Other High-dimensional Data Applications
- When Spatial Temporal Data Meets Al
- Route Planning
- □ Trends and Course Review

+ Spatial Indexing

■ Purpose:

- Efficiency in processing spatial selection, join and other spatial operations
- Two strategies to organize space and objects
 - Map spatial objects into 1D space and use a standard index structure (B-tree)
 - Dedicated external data structures
- Basic ideas
 - Approximation
 - Bounding box, Grids
 - Hierarchical Data Organization

+ Object Approximation

- A fundamental idea of spatial indexing is the use of approximation
- Continuous Approximation
 - Object centric
 - Example:
 - Use of MBRs (Minimum Bounding Rectangles)
 - R-Tree
- Grid Approximation
 - Space centric
 - Faster mapping
 - Uniform / Non-uniform
 - High-D?
 - Example:
 - Quadtree

+ Data Access Methods

- One Dimensional
 - Hashing and B-Trees
- Line Data
 - Interval Tree, Segment Tree
- Point Data
 - Hashing: GRID and EXCELL
 - Hierarchical
 - Quadtree: Point and Region Quadtrees
 - kd-Tree
 - Z-values and B-tree
- Polygon Data
 - Transformation: End point mapping and Z-values
 - Overlapping: R-tree and R*-tree
 - Clipping: R+-tree

+ Grid File

■ Basic idea

- Superimpose a k-dimensional grid on the space
 - Only scan the data in a grid
 - Essentially, a 2D hash function
- Cells can be of varying sizes
- Cell-to-bucket mapping: many-to-1
 - What about 1-to-many?
- The grid definition (scales) is kept in memory
- The grid directory is kept on disk

Motivation

 Fixed-grid not suitable for non-uniformly distributed data

+ Grid File

- To answer a point query:
 - Use the scales / definition to locate the cell
 - Read the cell from disk
 - The loaded cell contains a reference (pointer) to data bucket
 - Read data bucket
 - On average two disk accesses
- To answer a range query:
 - Examine all cells that overlap the search region
 - Read the corresponding data buckets(s)

+ Grid File

- To insert a point:
 - Search (point query) the matching cell and data bucket
 - If there is sufficient space, insert into data bucket
 - Else: add a vertical or horizontal line to split, if necessary, and move data accordingly
- To delete a point:
 - Search ...
 - Merge if necessary
- Problems:
 - Have to remember all the definitions of the grids
 - Why not uniformly?

Capacity = 3

+ EXCELL

- EXtendible CELL
- Motivation
 - Fixed grid is easier to manage and more efficient to use
- Basic Ideas
 - All cells are of the same size
 - No need to keep grid definition (scales) in memory
 - But it's still necessary to remember how to map grid cells to buckets
 - Somewhere splits, everywhere splits

Data buckets Capacity = 3

+ Data Access Methods

- One dimensional
 - Hashing and B-Trees
- Line Data
 - Segment Tree, Interval Tree
- Point data
 - Hashing: GRID and EXCELL
 - Hierarchical
 - Quadtree: Point and Region Quadtrees
 - kd-Tree
 - Z-values and B-tree
- Polygon data
 - Transformation: End point mapping and z-values
 - Overlapping: R-tree and R*-tree
 - Clipping: R+-tree

+ Uniform Decomposition

Recursive decomposition of space

Resolution: max. level of decomposition, leading to $2^n \times 2^2$ cells

To have 1×1 cm cells, what is required resolution for:

- An area of 5000 x 5000 km²?
- An area of 300 x 300 km²?

n=29 (25)

How many times do you need to fold a piece of paper to make it reach the moon?

Average thickness of paper sheet = 0.1mm Distance between earth & moon = 384,403km

+ Quadtree - Basic Idea

Index node

Data node

+ Quadtree - Basic Idea

- Not a binary tree
 - Four-way comparison instead of two in 2D
 - In d dimensions, inner node has 2^d children
 - Not necessarily balanced
 - Tree shape depends on the data distribution / insertion order

1			2		3	
			4		5	
6	7 9	8 10	13		14	
11	12		15 17	16 18	19	

14

Insertion

■ Random insertion roughly *N* log₄ *N*

- When is the worst case?
 - Insertion takes N(N-1)/2

+ Point Quadtree Construction

- Optimized Point Quadtree
 - For any tree node *A*, no subtree of *A* has more than one-half of the points in the tree rooted at *A*
 - When all the points are known a priori
 - Sort the points primarily by one key and secondarily by the other
 - Root *A* takes the median value of the points
 - \blacksquare For example, x is the sorting primary key
 - All the points larger than A lie in NE and SE
 - All the points smaller than A lie in NW and SW
 - How to achieve it dynamically?

+ Point Quadtree Deletion

- Re-insert all points of the sub-tree rooted at the deleted point
 - Simple but expensive
- Replace the deleted node $A(x_A, y_A)$
 - With a node $B(x_B, y_B)$ such that the regions between x_A and x_B , and y_A and y_B are empty (hatched)
 - Can be replaced directly without changing the tree structure
 - Large amount of search
 - Sometimes does no exist

В

+ Point Quadtree Deletion

- When delete *A* in a binary search tree
 - It can be replaced by *D* or *G*
 - The two closest nodes in value

- Determine four candidates for the replacement
 - One for each quadrant
 - Opposite quads of children
 - For NE, goes the all the way down by SW
 - Select the "best" candidate
 - 1. Closer to each of its bordering axes than the others
 - 2. Minimum L_1 metric value (sum of the distance to the axes)
- Re-insert the affected areas

+ Region Quadtree

■ PR Quadtree

- Based on regular decomposition of the universe
 - Recursively decomposing a region into four congruent blocks
 - Only leaves contain data

+ Region Quadtree

- PR Quadtree Deletion
 - After deletion, if at most one siblings has a point
 - Merge the siblings

+ Region Quadtree

- MX Quadtree
 - The domain of the point is discrete
 - The overall region is $2^k \times 2^k$
 - All the values are discrete, have the same type and range
 - All coordinates ranging from 0 to $2^n 1$
 - Treat them as pixels
 - Good for image data
 - Points are always at leaves
 - All the data are at the same level

How about the order?

+ kd-Tree (k-dimensional Tree)

- Decomposition at data points (like Point Quadtree)
- Motivation
 - Point (& Region) Quadtree
 - Store *k* pointers and compares *k* values for a *k*-Dimensional space
 - kd-Tree: compare one dimension a time

Basic Idea

- Select a dimension, split according to this dimension and do the same recursively with the two new sub-partitions
- Fan-out is constant (=2) for arbitrary number of dimensions
- Number of comparisons at each node is constant (=1)
 - Binary search tree

Problem

■ The resulting binary tree is not adequate for secondary storage (i.e, one data item per node)

+ kd-Tree Construction

Depends on the order of insertion (not robust for sorted data).

Variations: non-alternative, data at leaves only, representing regions etc.

+ kd-Tree FindMin

- \blacksquare FindMin(d)
 - Find the point with the smallest value in the d^{th} dimension
 - If cutDim(node) = d
 - The minimum can't be in the right subtree
 - Recurse on the left subtree
 - If no left subtree
 - The current node is the min for the tree rooted at this node
 - If $cutDim(node) \neq d$
 - The minimum could be in either subtree
 - Recurse on both subtrees

+ kd-Tree FindMin

 \blacksquare FindMin(x)

 \blacksquare *FindMin*(*y*)

+ kd-Tree: Deletion

- To remove a node on a level with discriminator along dimension j (suppose < go to left and ≥ go to right)</p>
 - If the node is a leaf, remove it
 - Else if node has right subtree
 - Find the *j*-minimum node in the right subtree
 - Replace node with *j*-minimum node and repeat until you reach a leaf, then remove the leaf
 - Else find the *j*-maximum node in the left subtree, replace, repeat, remove?
 - This will cause problems if there are duplicate coordinates in *p*'s left subtree
 - Compute the *j*-minimum from left subtree as replacement
 - Make left subtree the new right subtree

+ Multidimensional Data

There is no total order that preserves spatial proximity

Solution:

Find heuristic solutions: total orders that preserve spatial proximity to some extent

■ Idea:

- If two objects are located close together in original space (*k*-dimensional), they should be close together in one-dimensional space (with high probability)
- Balancing for one-dimensional data is well known (B/B+ tree)

+ Space-Filling Curves (I)

+ Space-Filling Curves (II)

■ Row-order

+ Space-Filling Curves (III)

Z-order (Peano Order)

- Easy and elegant way to encode cells.
- SIRO-DBMS (SDM) and Oracle use this order.

+ Space-Filling Curves (IV)

■ Hillbert Order

+ Space-Filling Curves (V)

■ Gray order

+ Z-Order

■ How to obtain the z-order?

- 1. Counting: A is 24
- 2. Quaternary: $(120)_4 = (24)_{10}$

10

01

00

0

- 3. Bit-Interleaving
 - $x_0 y_0 x_1 y_1 \dots$
 - \bullet (011000)₂ = (24)₁₀
 - Works fine with varying resolutions
 - B: (21)₄
 - **(1001)**₂

000	001	010	011	100	101	110	111
00 01		10			11		
	0			1			

+ Some Properties of Z-Values

Variable length

- Approximate at different levels
- Appending '0's at the end to unify z-value length
 - Ambiguous!
 - From base4 to base5
 - 0123 to 12340

Nesting Peano Cells

- $\bullet b = b_1 b_2 b_3 \dots b_n$
- a is nested inside b if and only if
 - $length(a) \ge length(b), length(a)$ is the number of non-zero digits in z-value a
 - let k = length(a), $a_i = b_i$, $1 \le i \le k$

+ Z-Value Example

- B Covers C (Base 4)
 - B: 21
 - **C**: 210
- B covers C (Base 5) 1
 - B: 320
 - C: 321

+ Using Z-Values and B-Tree (I)

- Motivation
 - Use standard B-tree to manage multidimensional data
- Basic Idea
 - A Peano cell corresponds to a bucket
 - Peano cells are of varying sizes
 - Z-values are managed by B-tree

+ Using Z-Values and B-Tree (II)

Search

- Point query: find the z-value for the unit Peano cell containing point p
- Range query: find the min and max z-values for rectangle R (or the z-values approximating R)
- Insertion and deletion
- Compatibility of z-value indices
 - Origin and orientation
 - Spatial extent
 - Resolution

+ Data Access Methods

- One dimensional
 - Hashing and B-Trees
- Line Data
 - Interval Tree, Segment Tree
- Point data
 - Hashing: GRID and EXCELL
 - Hierarchical
 - Quadtree: point and region quadtrees
 - kd-Tree
 - Z-values and B-tree
- Polygon data
 - Transformation: End point mapping and Z-values
 - Overlapping: R-tree and R*-tree
 - Clipping: R+-tree

+ Indexing Objects with Spatial Extent

- Rectangles more difficult than points as they do not fall into a single cell of a bucket partition.
- Three strategies
 - Transformation: End point mapping and Z-values
 - Overlapping: R-tree and R*-tree
 - Clipping: R+-tree

+ Transformation: High Dimensional Points

- Motivation
 - Points are easy to manage
- Basic Ideas
 - A rectangle in 2-D space can be mapped to a point in 4-D space
 - Using point access methods
- Two methods
 - Endpoint mapping, or midpoint mapping
 - $(x_{low}, y_{low},) (x_{high}, y_{high}) \rightarrow (x_{low}, x_{high}, y_{low}, y_{high})$
 - $(x_{center}, x_{ext}), (y_{center}, y_{ext}) \rightarrow (x_{center}, x_{ext}, y_{center}, y_{ext})$

+ Endpoint Mapping

- Every range in 1-D space becomes a point in 2-D space
- $x \le y$ for the ranges, no point in the lower triangle

+ Query Processing Using Endpoint Mapping

Given x-interval (l, u):

- 1) *Intersection query*: find all *x*-intervals overlapping with (*l*, *u*)
- 2) Containment query: find all x-intervals inside (l, u)
- 3) Enclosure query: find all x-intervals enclosing (l, u)

Very intuitive, but...

+ Problems with Endpoint Mapping

- Points in the higher-D space are highly skewed
 - Not distributed evenly in the space
 - Only half, mapped into higher but smaller space
- Almost no relationship between the distances of two objects in the original space and the higher-D space
- A simple, intuitive query in the original space becomes complex and difficult to understand in the higher-D space
- Query processing in the higher-D space less efficient

+ Transformation: Using Z-Ordering

Motivation

Still using point access methods, but without drawbacks of the previous approach

Basic Ideas

- Instead of mapping a polygon into a point, decompose a polygon into a set of Peano cells and map each Peano cell into a number (i.e., z-value)
- Reverse of end point mapping: Higher D to lower D

+ Transformation: Using Z-Ordering

- Granularity
 - {11}, or {111, 112, 114}, or {111, 1121, 1123, 1124, 1141, 1142}
- When decomposition stops
 - Current cell either fully out or in the polygon
 - Reached the "resolution"

...the entire space is 1.

+ Redundancy in Z-Ordering

- Finer granularity
 - √ Improves approximation accuracy
 - √ Can reduce the number of "false hits"
 - × Too many index entries degrade query performance because of inflated index table
 - May identify the same object multiple times in spatial query processing

- The 4-Key method (Compromise)
 - Any objects, use no more than 4 values
 - Intuitively, a small object in the very middle, what happens?

+ Overlapping Regions

- Motivation
 - Single index entry for a polygon
- Basic ideas
 - One object (or its key) in one bucket only
 - Cell boundary calculated according to polygons inside the cell
 - Allow overlapping cells: inevitable!
- Problems
 - Multiple cells need to be examined to search an object
 - Where to insert?

+ R-Tree and R*-Tree

A node must have more than m, less than M elements.

Many different strategies for:

- Insertion \rightarrow Split
- Deletion → Reinsert

what info recorded in a node?

+ R-Tree Range Query

 $\blacksquare u_1, u_2, u_3, u_5, u_6$ are accessed

+ R-Tree Construction

- R-Tree construction can be "arbitrary"
 - Bottom-up
 - No formal constraint on the grouping of data into nodes

■ The left tree has a smaller perimeter sum than the right one

+ R-Tree Construction

- Why not minimize the area?
 - A rectangle with a smaller perimeter usually has a smaller area, but not the vice versa

+ R-Tree Insertion

- Insert(u, p)
 - 1. If u is a leaf node
 - add p to u
 - u overflows
 - 4. handle overflow(u)
 - 5. else
 - 6. $v \leftarrow choose subtree(u, p)$
 - 7. insert(v, p)

- Which MBR would you insert *p* into?
 - The MBR with the minimum increase
- How to handle the overflow?

p

+ R-Tree Handle Overflow

- handle overflow(u)
 - 1. Split(u) into u and u'
 - 2. If u is the root
 - 3. create a new root with u and u' as its child nodes
 - 4. else
 - 5. $w \leftarrow \text{the parent of } u$
 - 6. update MBR(u) in w
 - 7. add u' as a child of w
 - 8. if w overflows
 - 9. handle overflow(w)
 - How to split?

+ R-Tree Splitting a Leaf

- Let S be a set of B + 1 points
 - Divide S into two disjoint sets S_1 and S_2 to minimize the perimeter sum of $MBR(S_1)$ and $MBR(S_2)$
 - $|S_1| \ge 0.4B, |S_2| \ge 0.4B$

$$S_1 = \{a, b, c, d, e\}$$

 $S_2 = \{f, g, h, i, j, k\}$

$$S_1 = \{a, d, e, g, j\}$$

 $S_2 = \{b, c, f, h, i, k\}$

+ R-Tree Splitting a Leaf

- \blacksquare split(u)
 - 1. m: number of points in u
 - 2. Sort the points of u on x-dimension
 - 3. For i = [0.4B] to m [0.4B]
 - 4. $S_1 \leftarrow$ the set of the first *i* points in the list
 - 5. $S_2 \leftarrow$ the set of the other *i* points in the list
 - 6. Calculate the perimeter sum of $MBR(S_1)$ and $MBR(S_2)$
 - 7. Repeat 2-6 with respect to y-dimension
 - 8. Return the best split found

+ R-Tree Insertion Example

- Let S be a set of B + 1 rectangles
 - Divide S into two disjoint sets S_1 and S_2 to minimize the perimeter sum of $MBR(S_1)$ and $MBR(S_2)$
 - $|S_1| \ge 0.4B, |S_2| \ge 0.4B$
 - Node u_6 splits, generating u_9

+ R-Tree Insertion Example

■ Adding u_9 as a child of u_3 causes u_3 to overflow

+ R-Tree Insertion Example

■ Node u_3 splits, generating u_{10} as a child of the root

+ Query Processing Using R-Trees

- A node records the MBR of all objects in the subtree rooted from the node
 - Point query
 - Window query
 - Spatial join query
 - Nearest Neighbor query
 - Skyline query
 - ...

+ Clipping

- Motivation
 - R-Tree: May examine all the MBRs at all levels
 - Because the MBR may overlap, the space is not disjointly decomposed
 - Query point Q in the example
 - Single search path for a point query

+R+-Tree

- Basic ideas
 - A hierarchy of overlapping MBRs → A hierarchy of disjoint MBRs
 - Regular grid / Irregular grid
 - Clipping polygon at cell boundaries
 - Whenever an MBR at a lower level overlaps with another MBR, decompose it into a collection of non-overlapping sub-MBRs
 - Allowing one polygon in multiple cells
 - Non-overlapping is achieved at the cost of space

+ R⁺-Tree

Insertion

- Insert an object's MBR into all of the leaf nodes that overlap it
 - Find all the intersected nodes and clipped the object's MBR
- Overflow
 - Propagate to the parents, like R-Tree
 - Propagate to the children
 - A split of the parent node may introduce a space partition that affects the children nodes

Deletion

- Remove from all the leaves
 - Lead to Merge, but not always possible
- Periodically re-organization

+ R⁺-Tree

Split

- When A is split, its child B has to be split, and B's child C has to be split...
- Split the children might further require the split the parent
 - Split parent may require split the children (repartitioning creates overflow)
 - Up and down and up and down...
 - Deadlock!
 - Upper-bound is M MBRs
 - A node contains M+1 MBRs that encloses recursively

+R+-Tree

Problems

- Multiple index entries for an object
 - Increased search time (return the same object more than once for window query)
 - Overflow more likely
- Cascading splitting
- Deadlock

+ Query Processing Using R⁺-Trees

- Point query
- Window query
- Within buffer / distance
- Spatial join query

+ Data Access Methods

- One dimensional
 - Hashing and B-Trees
- Line Data
 - Interval Tree, Segment Tree
- Point data
 - Hashing: GRID and EXCELL
 - Hierarchical
 - Quadtree: point and region quadtrees
 - kd-Tree
 - Z-values and B-tree
- Polygon data
 - Transformation: End point mapping and Z-values
 - Overlapping: R-tree and R*-tree
 - Clipping: R+-tree

+ Indexing High Dimensional Data

- GIS applications in 2- or 3-D only
- Multimedia DB can have data with several hundred dimensions.
- While point/polygon access methods can be generalized for higher-D applications, they may be not efficient
- High-D indexing is a hard problem

+ Advanced Techniques for High Dimensional Data

- □ Course Introduction
- □ Introduction to Spatial Databases
- Spatial Data Organization
- Spatial Query Processing
- Managing Spatiotemporal Data
- Managing High-dimensional Data
- Other High-dimensional Data Applications
- When Spatial Temporal Data Meets Al
- Route Planning
- □ Trends and Course Review