Robust parameter estimation within minutes on gravitational wave signals from binary neutron stars

Thibeau Wouters, Peter T.H. Pang, Tim Dietrich, Chris Van Den Broeck

email: t.r.i.wouters@uu.nl

arXiv:??????????

Alslands 2024

Table of Contents

Introduction

Methods

Results

4 Conclusion

Parameter estimation

Parameter estimation (PE): get posterior of GW parameters θ

$$p(\theta|d) = \frac{p(d|\theta)p(\theta)}{p(d)}$$

Problem: Markov Chain Monte Carlo (MCMC): computationally expensive for binary neutron stars (BNS)

Overview

We extend JIM [1], based on JAX [2], with building blocks:

- 1 FLOWMC [3, 4]: Normalizing flow-enhanced, gradient-based MCMC
- RIPPLE [5]: Automatically-differentiable (AD) GW
- 3 Relative binning likelihood [6]

Table of Contents

• Introduction

2 Methods

Results

4 Conclusion

Normalizing flows

- Latent space: easy to sample (e.g. Gaussian)
- Data space: distribution learned from samples
- Enable approximate sampling from complicated distributions

FLOWMC

${ t FLOWMC:}$ normalizing-flow (NF) enhanced MCMC sampling

- (1) Gradient-based sampler (local sampler)
- 2 Train NF to approximate posterior
- 3 Normalizing flows (global sampler)

Table of Contents

Introduction

2 Methods

Results

4 Conclusion

Results

- Analyzed injections & 2 BNS events (posteriors: figures 1, 2, 3, 4)
- JIM wall time includes (i) time to compute reference parameters for relative binning, (ii) training NF, (iii) sampling

Event	Waveform	$_{ m Jim}$	PBILBY	RB-BILBY	ROQ-BILBY
		(1 GPU)	(480 cores)	(24 cores)	(24 cores)
GW170817	TF2	$(9.70 + 17.00) \; { m min}$	9.64 h	3.18 h	_
	NRTv2	$(5.69 + 28.02) \ min$	10.99 h	4.68 h	1.65 h
GW190425	TF2	$(5.13 + 16.49) \ min$	4.08 h	2.30 h	-
	NRTv2	$(6.15 + 15.37) \; min$	4.69 h	4.68 h	0.97 h
Injection	TF2	24.76 min	-	-	-
	NRTv2	18.02 min	-	-	

 $\label{eq:parallel} \mbox{($PBILBY = PARALLEL BILBY, RB = relative binning, ROQ = reduced order quadrature)}$

Environmental impact

 $\ensuremath{\mathrm{J}}\xspace\mathrm{IM}$ is more environmentally friendly than existing pipelines

- Energy consumption for all 204 runs of paper
- Average NL household: 2 810 kWh/year

		kWh	CO_2 [10 3 kg]	Trees [†]
JIM		33.78	0.01	0.55
PBILBY		3598.53	1.18	59.02
RB-Bilby		90.78	0.03	1.49
ROQ-BILBY	sampling	32.00	0.01	0.52
	precompute [‡]	5634.06	1.85	92.40

 $^{^{\}dagger}$ Number of trees needed to capture the emitted CO_2 in a year.

[‡]Estimated time to build ROQ bases.

Table of Contents

Introduction

2 Methods

Results

4 Conclusion

Conclusion

 Jim : a fast and environmentally friendly PE pipeline for GW signals

- Enhance MCMC with
 - JAX,
 - relative binning,
 - gradient-based samplers, and
 - normalizing flows
- Analyze BNS in 15 30 minutes of sampling time
- More environmentally friendly than existing methods
- Science cases:
 - low-latency alerts,
 - large-scale population studies, and future generation GW detectors

References

- [1] Kaze WK Wong, Maximiliano Isi, and Thomas DP Edwards. "Fast gravitational wave parameter estimation without compromises". In: arXiv preprint arXiv:2302.05333 (2023). Available at: https://github.com/kazewong/jim.
- [2] James Bradbury et al. JAX: composable transformations of Python+NumPy programs. Version 0.3.13. Available at: http://github.com/google/jax. 2018. URL: http://github.com/google/jax.
- [3] Marylou Gabrié, Grant M Rotskoff, and Eric Vanden-Eijnden. "Efficient bayesian sampling using normalizing flows to assist markov chain monte carlo methods". In: arXiv preprint arXiv:2107.08001 (2021).
- [4] Kaze WK Wong, Marylou Gabrié, and Daniel Foreman-Mackey. "FLOWMC: Normalizing-flow enhanced sampling package for probabilistic inference in Jax". In: arXiv preprint arXiv:2211.06397 (2022). Available at: https://github.com/kazewong/flowMC.
- [5] Thomas DP Edwards et al. "RIPPLE: Differentiable and Hardware-Accelerated Waveforms for Gravitational Wave Data Analysis". In: arXiv preprint arXiv:2302.05329 (2023). Available at: https://github.com/tedwards2412/ripple/.
- [6] Barak Zackay, Liang Dai, and Tejaswi Venumadhav. "Relative binning and fast likelihood evaluation for gravitational wave parameter estimation". In: arXiv preprint arXiv:1806.08792 (2018).
- [7] Patrick Kidger and Cristian Garcia. EQUINOX: neural networks in JAX via callable PyTrees and filtered transformations. Available at: https://github.com/patrick-kidger/equinox. 2021. arXiv: 2111.00254 [cs.LG].

Normalizing flow

Normalizing flows details:

- Rational-quadratic neural spline flows
- 10 layers, 8 bins
- 128 neurons in hidden layers
- Adam optimizer, learning rate decayed (polynomial schedule)
- Deep learning library: EQUINOX [7]

Stopping criterion

We stop training the NF if we achieve a mean Metropolis-Hastings acceptance rate of 10% (20%) for real events (injections).

Example: GW170817, TaylorF2 with 20%:

Validation – Mismatch waveforms

Cross-check against $LAL_{\rm SUITE}$: mismatch histogram based on 10 000 waveforms, from uniform samples with following ranges:

Parameter	Range	
Component masses	$[0.5M_{\odot}, 3M_{\odot}]$	
Component aligned spins	[-0.05, 0.05]	
Dimensionless tidal deformabilities	[0,5000]	
Inclination angle	$[0,\pi]$	
— IMRD — IMRD NRT	72 — TF	

Thibeau Wouters JIM for BNS PE Alslands 2024

Validation – p-p plot

We demonstrate the robustness of JIM:

- ullet 100 GW events with HLV at design sensitivity and T=128 s,
- NRTv2: reference waveform relative binning without taper,
- Priors: Table 1.

Table 1: Prior ranges used in our analyses. All priors are uniform priors with the specified range.

Parameter	Injection	GW170817	GW190425
$\mathcal{M}\left[M_{\odot}\right]$	[0.88, 2.61]	[1.18, 1.21]	[1.485, 1.490]
q	[0.5, 1]	[0.125, 1]	[0.125, 1]
χi	[-0.05, 0.05]	[-0.05, 0.05]	[-0.05, 0.05]
Λ_i	[0, 5000]	[0, 5000]	[0,5000]
d_L [Mpc]	[30, 300]	[1, 75]	[1,500]
t_c [s]	[-0.1, 0.1]	[-0.1, 0.1]	[-0.1, 0.1]
ϕ_c	$[0, 2\pi]$	$[0, 2\pi]$	$[0, 2\pi]$
$\cos\iota$	[-1,1]	[-1,1]	[-1, 1]
ψ	$[0,\pi]$	$[0,\pi]$	$[0,\pi]$
α	$[0, 2\pi]$	$[0, 2\pi]$	$[0, 2\pi]$
$\sin\delta$	[-1,1]	[-1,1]	[-1, 1]

GW170817 & GW190425: Jensen-Shannon divergences

Table 2: Jensen-Shannon divergences (in bits) between the marginal posterior obtained for GW170817 and GW190425 using TaylorF2 and IMRPhenomD_NRTidalv2 with JIM and PBILBY, with the highest value of each comparison in bold. The divergences are bound between [0,1].

	GW170817		GW190425	
Parameter	TF2	NRTv2	TF2	NRTv2
$\overline{\mathcal{M}}$	0.001725	0.000516	0.003557	0.002461
q	0.005212	0.007894	0.004837	0.002960
χ_1	0.005633	0.004301	0.002794	0.004825
χ_2	0.003030	0.002671	0.002416	0.003041
Λ_1	0.001062	0.002208	0.008556	0.000783
Λ_2	0.000559	0.002186	0.005808	0.003576
d_L	0.001544	0.01847	0.001273	0.002878
ϕ_c	0.003500	0.010714	0.003338	0.006126
$\cos\iota$	0.001615	0.012851	0.006400	0.005279
ψ	0.004048	0.011036	0.001516	0.003730
α	0.014008	0.001258	0.009822	0.012291
$\sin\delta$	0.009570	0.001761	0.008934	0.009228

GW170817 with TaylorF2

Figure 1

GW170817 with IMRPhenomD_NRTidalv2

Figure 2

GW190425 with TaylorF2

Figure 3

GW190425 with IMRPhenomD_NRTidalv2

Figure 4

10