Feature Engineering

- Practical Machine Learning

QiChao 2016.10

Question

- What is Feature Engineering?
- Feature Engineering Pipeline?
- How to Apply Feature Engineering?

Outline

- Definition of Feature Engineering
- Feature Engineering Pipeline
- Non-Linearity and Model Stacking
- Feature Learning
- Application of Feature Engineering

Definition

What is Feature Engineering?

- Feature engineering is the process of the transforming raw data into features that better represent the underlying problem to the predictive models, resulting in improved on unseen data.(作用)
- Feature engineering is the process of formulating the most appropriate features given the data, the model, and the task.(目的)
- Feature engineering is a super-set of activities which include feature extraction, feature construction and feature selection, each of the three are important steps and none should be ignored.(feature selection > feature extraction > feature construction)(包含内容)

Outline

- Definition of Feature Engineering
- Feature Engineering Pipeline
- Non-Linearity and Model Stacking
- Feature Learning
- Application of Feature Engineering

Figure. The place of feature engineering in the machine learning workflow

Figure. The messy path from data to answers

Feature Categories

- Raw Data:
 - text, image, Speech
- Single Feature
 - 0/1([0, 1, 0, ...])
 - continuous(0.12)
 - category(enumeration, ['male', 'female'])
- Stable, Dynamic
 - stable(hotel star, gender)
 - dynamic(geographic, age)
- Low level, High level
 - low(gender, age)
 - high(log(x), sin(x))

- Feature Categories
- Feature Extraction & Construction
- Extraction
 - Image(sift, hog, ...)
 - Document(html, blog, email, ...)
 - Text(BOW, TFIDF, word2vec, doc2vec)
 - Database(structured data)
- Construction
 - Discretization
 - Binarization
 - Transformation

- Feature Categories
- Feature Extraction & Construction
- Feature Cleaning
 - Missing Value
 - (knn, mean, random and median)
 - Character Encoding
 - Outliers

- Feature Categories
- Feature Extraction & Construction
- Feature Cleaning
- Feature Processing
 - Normalization(z-score, min-max, normalizer)

- KNN(KMeans) with Euclidean distance
- LR, SVM, Neural Networks(except Tree models) use gradient descent optimization
- LDA, PCA find direction of maximizing the variance

Z-score or Min-Max?

- No obvious answer, it depends on the application.
- Certain distance measures, PCA prefer Z-score over Min-Max scaling.
- Image processing, pixel intensities have to be normalized to fit within a certain range
- Neural Network algorithms require data that on a 0-1 scale.

- Feature Categories
- Feature Extraction & Construction
- Feature Cleaning
- Feature Processing
 - Normalization(z-score, min-max, Normalizer)
 - Encodings(one-hot, feature-hashing, bin-counting)
 - String Indexer([a, b, c] -> [1, 2, 3])

Categories Feature Encodings

	one-hot	feature-hashing
space	O(n)	O(n)
time	O(kn) linear model	O(nm) linear/kernel
pros	1.Easiest to implement 2.Protentially most accurate 3.Feasible for online learning	1.Easy to implement 2.Makes model training cheaper 3.Easily adaptable to new categories 4.Easily handles rare categories 5.Feasisble for online learning
cons	1.Computationally inefficient 2.Does not adapt to growing categories 3.Not feasible for anything other than linear models 4.Require large-scale distributed optimization with truly large datasets	1.Only suitable for linear or kernelized models 2.Hashed features not interpretable 3.Mixed reports of accuracy

- Feature Categories
- Feature Extraction & Construction
- Feature Cleaning
- Feature Processing
- Feature Selection
 - Filter (Chi-square, Information Gain, Pearson, Variance Threshold)
 - Wrapper
 - Embedded(L1 norm, L2 norm, Elastic Net, Tree Model)

L1 norm & L2 norm

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \le t$ and $\beta_1^2 + \beta_2^2 \le t^2$, respectively, while the red ellipses are the contours of the least squares error function.

- Feature Categories
- Feature Extraction & Construction
- Feature Cleaning
- Feature Processing
- Feature Selection
- Dimensionality Reduction
 - Linearity
 - PCA, LDA
 - Non-Linearity:
 - Local Linear Embedding

Non-Linearity: Local Linear Embedding

	PCA	LDA
similarity	1.Linear transformation tech. 2.Rely on the mean and covariance matrix	
difference	1.Unsupervised 2.Finds the directions of maximal variance 3.Mainly used for feature extraction 4.Can be formalized as Gaussian based ICA	1.Supervised 2.Cares about class separability(between class variance is maximized, within class variance are minimized) 3.Mainly used for classification 4.Can be formalized as multinomial- Dirichlet based ICA

Outline

- Definition of Feature Engineering
- Feature Engineering Pipeline
- Non-Linearity and Model Stacking
- Feature Learning
- Application of Feature Engineering

- Two methods to solve non-linearity
 - 1.Explicity use non-linear classifier, such as Tree Models, SVM(RBF kernel)
 - 2. Transform the input space to get a linear feature space

$$x = (x1, x2) => x' = (x1, x1*x2)$$

- Non-Linearity Featurization
 - K-means featurization for classification(Supervised & Unsupervised)
- Model Stacking
 - Find a transformation for the given data such that the non linearity is removed.
 - Feature transformations with ensembles of trees(facebook paper)
 - Features generated by tree model(different training subset for training trees and meta-classifier(LR))

- Non-Linearity Featurization
 - K-means featurization for classification(Supervised & Unsupervised)

K-means on the Swiss roll with 10 clusters

Model Stacking

K-means on the Swiss roll with 10 clusters

Model Stacking

Figure 1: Hybrid model structure. Input features are transformed by means of boosted decision trees. The output of each individual tree is treated as a categorical input feature to a sparse linear classifier. Boosted decision trees prove to be very powerful feature transforms.

Model Stacking

Outline

- Definition of Feature Engineering
- Feature Engineering Pipeline
- Non-Linearity Features and Model Stacking
- Feature Learning
- Application of Feature Engineering

- Supervised Feature Learning
 - (Learning features from labeled data)
 - Neural Networks
 - Dictionary learning
 - LDA
- Unsupervised Feature Learning
 - (Learning features from unlabeled data)
 - K-Means, PCA, Local Linear Embedding
 - Autoencoder, Sparse coding, Self-Taught Learning
 - Generative Models

Autoencoder

Sparse Autoencoder

Sparse coding

- 1.Find a set of basis vector **\$\phi\$**
- 2.Represent X as a linear combination of these basis vectors ϕ_i , $\mathbf{x} = \sum_{i=1}^{\kappa} a_i \phi_i$, $\mathbf{k} >> \mathbf{n}$

$$\mathbf{x} = \sum_{i=1}^{k} a_i \phi_i$$

$$\text{minimize}_{a_i^{(j)}, \phi_i} \quad \sum_{j=1}^{m} \left\| \mathbf{x}^{(j)} - \sum_{i=1}^{k} a_i^{(j)} \phi_i \right\|^2 + \lambda \sum_{i=1}^{k} S(a_i^{(j)})$$

$$\text{subject to} \qquad ||\phi_i||^2 \le C, \forall i = 1, \dots, k$$

L1 norm

$$\begin{aligned} \mathbf{x} &= \sum_{i=1}^k a_i \phi_i \\ \text{minimize}_{a_i^{(j)}, \phi_i} & \sum_{j=1}^m \left\| \mathbf{x}^{(j)} - \sum_{i=1}^k a_i^{(j)} \phi_i \right\|^2 + \lambda \sum_{i=1}^k |a_i|_1 \\ \text{subject to} & ||\phi_i||^2 \leq C, \forall i = 1, \dots, k \end{aligned}$$

Outline

- Definition of Feature Engineering
- Feature Engineering Pipeline
- Non-Linearity Features and Model Stacking
- Feature Learning
- Application of Feature Engineering

Fig. 1: A timeline showing the release of machine-learning libraries discussed in section I in the last 25 years.

Spark 1.6.2 Python 2.7	Spark ML	Python ML
DataFrame	Yes	Yes(Pandas)
ML Pipeline	Yes	Yes
XGBoost	Yes	Yes
MXNet	Yes	Yes
Word2Vec	Yes	Yes(Gensim)
Deep Learning	Deep Learning 4J	TensorFlow, Theano, Keras

spark 1.6.2 sklearn 0.18	Spark ML	Scikit-Learn
Label	Binarizer / StringIndexer	LabelEncoder / LabelBinarizer
One-Hot	OneHotEncoder	OneHotEncoder
0-1	Binarizer	Binarization
Norm	Normalizer	Normalization
Z-score	StandarScaler	StandarScaler
Min-Max	MinMaxScaler	MinMaxScaler
Discretization	QuantileDiscretizer	No
Robust	No	RobustScaler
	IndexerToString	No
	VectorIndexer	No
	Bucketizer	No

- Spark DataFrame VS Pandas DataFrame
- Scikit-Learn Feature Transformer VS Spark ML Feature Transformer
- Scikit-Learn Pipeline VS Spark ML Pipeline
- https://github.com/ustcqi/chuangxianghui/tree/master/src/main/scala http://stat-computing.org/dataexpo/2009/the-data.html

Question?

Thank You