Bayesian Inference and Markov Chain Monte Carlo

Bob Carpenter

Columbia University

Warmup Exercise I

Sample Variation

Repeated i.i.d. Trials

- Suppose we repeatedly generate a random outcome from among several potential outcomes
- Suppose the outcome chances are the same each time
 - i.e., outcomes are independent and identically distributed (i.i.d.)
- For example, spin a spinner, such as one from Family Cricket.

Repeated i.i.d. Binary Trials

- Suppose the outcome is binary and assigned to 0 or 1; e.g.,
 - 20% chance of outcome 1: ball in play
 - 80% chance of outcome 0: ball not in play
- Consider different numbers of bowls delivered.
- How will proportion of successes in sample differ?

Simulating i.i.d. Binary Trials

```
    R Code: rbinom(10, N, 0.2) / N
```

```
- 10 bowls (10% to 50% success rate)
```

- **100 bowls** (16% to 26% success rate) 26 18 23 17 21 16 21 15 21 26
- **1000 bowls** (18% to 22% success rate)
 - 181 212 175 213 216 179 223 198 188 194
- **10,000 bowls** (19.3% to 20.3% success rate) 2029 1955 1981 1980 2001 2014 1931 1982 1989 2020

Simple Point Estimation

· Estimate chance of success θ by proportion of successes:

$$\theta^* = \frac{\text{successes}}{\text{attempts}}$$

· Simulation shows accuracy depends on the amount of data.

Confidence Intervals via Sim

- *P*% **confidence interval**: interval in which *P*% of the estimates are expected to fall.
- · Simulation computes intervals to any accuracy.
- Just simulate, sort, and inspect the central empirical interval.

Example Interval Calculation

 To calculate 95% confidence interval of estimate based on 1000 samples:

```
> sims <- rbinom(10000, 1000, 0.2) / 1000
> sorted_sims <- sort(sims)
> sorted_sims[c(250, 9750)]
[1] 0.176 0.225
```

• The 95% confidence interval is thus (0.175, 0.225)

Estimator Bias

- · Bias: expected difference of estimate from true value
- · Continuing previous example

```
> sims <- rbinom(10000, 1000, 0.2) / 1000
> sorted_sims <- sort(sims)</pre>
```

Take central point to get expected estimate from estimator

```
> sort(sims)[5000]
[1] 0.2
```

· Central value of 0.2 shows this estimator is unbiased

Simple Point Estimation (cont.)

- Central Limit Theorem: $\emph{expected}$ error in θ^* goes down

as

$$\frac{1}{\sqrt{N}}$$

- A decimal place of accuracy requires $100\times$ more samples.
- · The width of confidence intervals shrinks at the same rate.

· Can also use theory to show this estimator is unbiased.

Pop Quiz! Cancer Clusters

· Why do lowest and highest cancer clusters look so similar?

Pop Quiz Answer

 Hint: mix earlier simulations of repeated i.i.d. trials with 20% success and sort:

1/10	1/10	1/10	15/100	16/100
17/100	175/1000	179/1000	18/100	181/1000
188/1000	194/1000	198/1000	2/10	2/10
2/10	2/10	21/100	21/100	21/100
212/1000	213/1000	216/1000	223/1000	23/100
26/100	26/100	3/10	4/10	5/10

- · More variation in observed rates with smaller sample sizes
- Answer: High cancer and low cancer counties are small populations

Warmup Exercise II

Integration

Monte Carlo

Monte Carlo Calculation of π

- Computing $\pi = 3.14...$ via simulation is *the* textbook application of Monte Carlo methods.
- Generate points uniformly at random within the square
- Calculate proportion within circle $(x^2 + y^2 < 1)$ and multiply by square's area (4) to produce the area of the circle.
- This area is π (radius is 1, so area is $\pi r^2 = \pi$)

Monte Carlo Calculation of π (cont.)

· R code to calcuate π with Monte Carlo simulation:

```
> x <- runif(1e6,-1,1)
> y <- runif(1e6,-1,1)
> prop_in_circle <- sum(x^2 + y^2 < 1) / 1e6
> 4 * prop_in_circle
[1] 3.144032
```

Accuracy of Monte Carlo

- · Monte Carlo is not an approximation!
- · It can be made exact to within any ϵ
- · Monte Carlo draws are i.i.d. by definition
- · Central limit theorem: expected error decreases at rate of

$$\frac{1}{\sqrt{N}}$$

- · 3 decimal places of accuracy with sample size 1e6
- \cdot Need 100 imes larger sample for each digit of accuracy

General Monte Carlo Integration

MC can calculate arbitrary definite integrals,

$$\int_{a}^{b} f(x) \, dx$$

- Let d upper bound f(x) in (a,b); tightness determines computational efficiency
- Then generate random points uniformly in the rectangle bounded by (a,b) and (0,d)
- Multiply proportion of draws (x, y) where y < f(x) by area of rectangle, $d \times (b a)$.
- Can be generalized to multiple dimensions in obvious way

Maximum Likelihood

Estimation

Warmup Exercise II

Observations, Counterfactuals, and Random Variables

- · Assume we observe data $y = y_1, ..., y_N$
- Statistical modeling assumes even though y is observed, the values could have been different ceteris paribus
- John Stuart Mill first characterized this counterfactual nature of statistical modeling in:
 - A System of Logic, Ratiocinative and Inductive (1843)
- In modern (Kolmogorov-ian) language, we say y is a random variable

Likelihood Functions

 A likelihood function is a probability function (density, mass, or mixed)

$$p(y|\theta,x)$$
,

- · where θ is a vector of **parameters**,
- · *x* is some fixed data (e.g., regression predictors or "features"),
- · considered as a function $\mathcal{L}(\theta)$ of θ for fixed x and y.

Maximum Likelihood Estimation

- The statistical inference problem is to estimate parameters θ given observations y.
- Maximum likelihood estimation (MLE) chooses the estimate θ^* that maximizes the likelihood function, i.e.,

$$\theta^* = \arg \max_{\theta} \mathcal{L}(\theta) = \arg \max_{\theta} p(y|\theta, x)$$

· This function of \mathcal{L} and $\mathcal{Y}(x)$ is called an *estimator*

Example of MLE

· The frequency-based estimate

$$\theta^* = \frac{1}{N} \sum_{i=1}^{N} y_n,$$

is the observed rate of "success" (outcome 1) observations.

· This is the MLF for the model

$$p(y|\theta) = \prod_{n=1}^{N} p(y_n|\theta) = \prod_{n=1}^{N} \text{Bernoulli}(y_n|\theta)$$

where for $u \in \{0, 1\}$,

Bernoulli
$$(u|\theta) = \begin{cases} \theta & \text{if } u = 1\\ 1 - \theta & \text{if } u = 0 \end{cases}$$

Example of MLE (cont.)

- The first step $p(y|\theta) = \prod_{n=1}^{N} p(y_n|\theta)$ is the i.i.d. (or exchangeability) modeling *assumption*.
- The second step $p(y_n|\theta) = \text{Bernoulli}(y_n|\theta)$ is a modeling assumption.
- · The frequency estimate is the MLE, because
 - derivative is zero (indicating min or max),

$$\mathcal{L}_{v}'(\theta^{*})=0,$$

- and second derivative is negative (indicating max),

$$\mathcal{L}_{\nu}^{\prime\prime}(\theta^*) < 0.$$

MLEs can be Dangerous!

- · Recall the cancer cluster example
- · Accuracy is low with small counts
- · What we need are hierarchical models (stay tuned)

Part I

Bayesian Data Analysis

Bayesian Data Analysis

- "By Bayesian data analysis, we mean practical methods for making inferences from data using probability models for quantities we observe and about which we wish to learn."
- "The essential characteristic of Bayesian methods is their explict use of probability for quantifying uncertainty in inferences based on statistical analysis."

Bayesian Mechanics

- 1. Set up full probability model
 - for all observable & unobservable quantities
 - · consistent w. problem knowledge & data collection
- 2. Condition on observed data
 - caclulate posterior probability of unobserved quantities conditional on observed quantities
- 3. Evaluate
 - · model fit
 - · implications of posterior

Notation for Basic Quantities

- · Basic Quantities
 - y: observed data
 - θ : parameters (and other unobserved quantities)
 - x: constants, predictors for conditional (aka "discriminative") models
- · Basic Predictive Quantities
 - \tilde{y} : unknown, potentially observable quantities
 - \tilde{x} : predictors for unknown quantities

Naming Conventions

- · **Joint**: $p(y, \theta)$
- · Sampling / Likelihood: $p(y|\theta)$
 - Sampling is function of y with θ fixed (prob function)
 - Likelihood is function of θ with y fixed (not prob function)
- Prior: $p(\theta)$
- Posterior: $p(\theta|y)$
- · Data Marginal (Evidence): p(y)
- Posterior Predictive: $p(\tilde{y}|y)$

Bayes's Rule for Posterior

$$p(\theta|y) = \frac{p(y,\theta)}{p(y)} \qquad [def of conditional]$$

$$= \frac{p(y|\theta) p(\theta)}{p(y)} \qquad [chain rule]$$

$$= \frac{p(y|\theta) p(\theta)}{\int_{\Theta} p(y,\theta') d\theta'} \qquad [law of total prob]$$

$$= \frac{p(y|\theta) p(\theta)}{\int_{\Theta} p(y|\theta') p(\theta') d\theta'} \qquad [chain rule]$$

Inversion: Final result depends only on sampling distribution (likelihood) $p(y|\theta)$ and prior $p(\theta)$

Bayes's Rule up to Proportion

· If data y is fixed, then

$$p(\theta|y) = \frac{p(y|\theta) p(\theta)}{p(y)}$$

$$\propto p(y|\theta) p(\theta)$$

$$= p(y,\theta)$$

- Posterior proportional to likelihood times prior
- · Equivalently, posterior proportional to joint

Posterior Predictive Distribution

- · Predict new data \tilde{y} based on observed data y
- · Marginalize out parameter from posterior

$$p(\tilde{y}|y) \ = \ \int_{\Theta} p(\tilde{y}|\theta) \, p(\theta|y) \, d\theta.$$

averaging predictions $p(\tilde{y}|\theta)$, weighted by posterior $p(\theta|y)$

- $\Theta = \{\theta \mid p(\theta|y) > 0\}$ is the support of $p(\theta|y)$
- · For discrete parameters θ ,

$$p(\tilde{y}|y) = \sum_{\theta \in \Theta} p(\tilde{y}|\theta) p(\theta|y).$$

· Can mix continuous and discrete (integral as shorthand)

Event Probabilities

- · Recall that an event A is a collection of outcomes
- \cdot Suppose event A is determined by indicator on parameters

$$f(\theta) = \begin{cases} 1 & \text{if } \theta \in A \\ 0 & \text{if } \theta \notin A \end{cases}$$

- e.g., $f(\theta) = \theta_1 > \theta_2$ for $Pr[\theta_1 > \theta_2 | y]$
- · Bayesian event probabilities calculate posterior mass

$$\Pr[A] = \int_{\Theta} f(\theta) \, p(\theta|y) \, d\theta.$$

· Not frequentist, because involves parameter probabilities

Male Birth Ratio

Example I

Laplace Turns the Crank

· Laplace's data on live births in Paris from 1745-1770:

sex	live births		
female	241 945		
male	251 527		

- Question 1 (Event Probability)
 Is a boy more likely to be born than a girl?
- Question 2 (Estimate)
 What is the birth rate of boys vs. girls?
- · Bayes formulated the basic binomial model
- · Laplace solved the integral (Bayes couldn't)

Binomial Distribution

- Binomial distribution is number of successes y in N i.i.d. Bernoulli trials with chance of success θ
- · If $y_1, ..., y_N \sim \text{Bernoulli}(\theta)$, then $(y_1 + \cdots + y_N) \sim \text{Binomial}(N, \theta)$
- · The analytic form is

Binomial
$$(y|N,\theta) = \binom{N}{y} \theta^y (1-\theta)^{N-y}$$

where the binomial coefficient normalizes for permutations of which $y_n = 1$,

$$\binom{N}{y} = \frac{N!}{y! (N-y)!}$$

Bayes's Binomial Model

- · Data
 - y: total number of male live births (241,945)
 - N: total number of live births (493,472)
- Parameter
 - $\theta \in (0,1)$: proportion of male live births
- Likelihood

$$p(y|N,\theta) = \text{Binomial}(y|N,\theta) = \binom{N}{y} \theta^y (1-\theta)^{N-y}$$

Prior

$$p(\theta) = \text{Uniform}(\theta|0,1) = 1$$

Beta Distribution

- · Required for analytic posterior of Bayes's model
- For parameters $\alpha, \beta > 0$ and $\theta \in (0, 1)$,

$$Beta(\theta | \alpha, \beta) = \frac{1}{R(\alpha, \beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

· Euler's beta function is used to normalize.

$$\mathsf{B}(\alpha,\beta) \ = \ \int_0^1 u^{\alpha-1} (1-u)^{\beta-1} du \ = \ \frac{\Gamma(\alpha) \, \Gamma(\beta)}{\Gamma(\alpha+\beta)}$$

where $\Gamma()$ is continuous generalization of factorial

Note: Beta $(\theta|1,1)$ = Uniform $(\theta|0,1)$

Beta Distribution — Examples

 Unnormalized posterior density assuming uniform prior and y successes out of n trials (all with mean 0.6).

1.0

π'n

Laplace Turns the Crank

· Given Bayes's general formula for the posterior

$$p(\theta|y,N) = \frac{\mathsf{Binomial}(y|N,\theta) \, \mathsf{Uniform}(\theta|0,1)}{\int_{\Theta} \mathsf{Binomial}(y|N,\theta') \, p(\theta') d\theta'}$$

 Laplace used Euler's beta function (B) to solve the integral required for normalizationm.

$$p(\theta|y, N) = \text{Beta}(\theta|y+1, N-y+1)$$

Estimation

- Posterior is $distroBeta(\theta|1 + 241945, 1 + 251527)$
- · Posterior mean:

$$\frac{1 + 241\,945}{1 + 241\,945 + 1 + 251\,527} \approx 0.4902913$$

Maximum likelihood estimate same as posterior mode (because of uniform prior)

$$\frac{241\,945}{241\,945+251\,527}\approx 0.4902912$$

· As number of observations $\rightarrow \infty$, MLE approaches posterior mean

Event Probability Inference

 What is probability that a male live birth is more likely than a female live birth?

$$\begin{aligned} \Pr[\theta > 0.5] &= \int_{\Theta} I[\theta > 0.5] \, p(\theta|y, N) d\theta \\ &= \int_{0.5}^{1} p(\theta|y, N) d\theta \\ &= 1 - F_{\theta|y, N}(0.5) \\ &\approx 1^{-42} \end{aligned}$$

- · $F_{\theta|v,N}$ is posterior cumulative distribution function (cdf),
- · $I[\phi] = 1$ if condition ϕ is true and 0 otherwise

Bayesian Fisher Exact Test

· Suppose we have the following data on handedness

	sinister	dexter	TOTAL
male	9 (<i>y</i> ₁)	43	52 (N ₁)
female	4 (<i>y</i> ₂)	44	48 (N ₂)

- · Assume likelihoods Binomial $(y_k|n_k, heta_k)$ and uniform priors
- Are men more likely to be lefthanded?

$$\Pr[\theta_1 > \theta_2 \mid y, N] = \int_{\Theta \times \Theta} p(\theta_1 \mid y_1, N_1) \, p(\theta_2 \mid y_2, N_2) \, d\theta_1 \, d\theta_2$$

$$\approx 0.91$$

Visualizing Posterior Difference

· Plot of posterior difference, $p(\theta_1 - \theta_2 \mid y, N)$

· Vertical bars: central 95% posterior interval (-0.05, 0.22)

Part III

Conjugate Priors

Conjugate Priors

- Before MCMC techniques became practical, Bayesian analysis mostly involved conjugate priors
- Still widely used because analytic solutions are more efficient than MCMC
- \cdot Family ${\mathcal F}$ is a conjugate prior for family ${\mathcal G}$ if
 - prior in \mathcal{F} and
 - likelihood in G,
 - entails posterior in ${\mathcal F}$

Beta is Conjugate to Binomial

- Prior: $p(\theta|\alpha,\beta) = \text{Beta}(\theta|\alpha,\beta)$
- · Likelihood: $p(y|N,\theta) = Binomial(y|N,\theta)$
- · Posterior:

$$\begin{split} p(\theta|y,N,\alpha,\beta) & \propto & p(\theta|\alpha,\beta) \, p(y|N,\theta) \\ & = & \operatorname{Beta}(\theta|\alpha,\beta) \operatorname{Binomial}(y|N,\theta) \\ & = & \frac{1}{\mathsf{B}(\alpha,\beta)} \theta^{\alpha-1} \, (1-\theta)^{\beta-1} \, \binom{N}{y} \theta^y (1-\theta)^{N-y} \\ & = & \frac{1}{\mathsf{B}(\alpha,\beta)} \theta^{y+\alpha-1} \, (1-\theta)^{N-y+\beta-1} \end{split}$$

 \propto Beta $(\theta | \alpha + \nu, \beta + N - \nu)$

Chaining Updates

- · Start with prior Beta($\theta | \alpha, \beta$)
- · Receive binomial data in K statges $(y_1, N_1), \ldots, (y_K, N_K)$
- · After (y_1, N_1) , posterior is Beta $(\theta | \alpha + y_1, \beta + N_1 y_1)$
- Use as prior for (y_2, N_2) , with posterior $Beta(\theta | \alpha + y_1 + y_2, \ \beta + (N_1 y_1) + (N_2 y_2))$
- Lather, rinse, repeat, until final posterior $Beta(\theta | \alpha + y_1 + \dots + y_K, \ \beta + (N_1 + \dots + N_K) (y_1 + \dots + y_K))$
- · Same result as if we'd updated with combined data $(y_1 + \cdots + y_K, N_1 + \cdots + N_K)$

Part II

Part II

(Un-)Bayesian

Point Estimation

MAP Estimator

• For a Bayesian model $p(y, \theta) = p(y|\theta) p(\theta)$, the max a posteriori (MAP) estimate maximizes the posterior,

$$\begin{array}{ll} \theta^* &=& \arg\max_{\theta} \, p(\theta|y) \\ &=& \arg\max_{\theta} \, \frac{p(y|\theta)p(\theta)}{p(y)} \\ &=& \arg\max_{\theta} \, p(y|\theta)p(\theta). \\ &=& \arg\max_{\theta} \log p(y|\theta) + \log p(\theta). \end{array}$$

- not Bayesian because it doesn't integrate over uncertainty
- · not frequentist because of distributions over parameters

MAP and the MLE

 MAP estimate reduces to the MLE if the prior is uniform, i.e.,

$$p(\theta) = c$$

because

$$\theta^* = \arg \max_{\theta} p(y|\theta) p(\theta)$$

$$= \arg \max_{\theta} p(y|\theta) c$$

= $arg max_{\theta} p(y|\theta)$.

Penalized Maximum Likelihood

- The MAP estimate can be made palatable to frequentists via philosophical sleight of hand
- · Treat the negative log prior $-\log p(\theta)$ as a "penalty"
- · e.g., a Normal $(\theta | \mu, \sigma)$ prior becomes a penalty function

$$\log \sigma + \frac{1}{2} \left(\frac{\theta - \mu}{\sigma} \right)^2$$

- · Maximize sum of log likelihood and negative penalty
- Called a "penalized maximum likelihood estimate," but quantitatively equal to MAP

Proper Bayesian Point Estimates

- · Choose estimate to minimize some loss function
- To minimize expected squared error (L2 loss), $\mathbb{E}[(\theta-\theta')^2]$, use the posterior mean

$$\hat{\theta} = \operatorname{arg\,min}_{\theta'} \mathbb{E}[(\theta - \theta')^2] = \int_{\Theta} \theta \times p(\theta|y) \, d\theta.$$

- · To minimize expected absolute error (L1 loss), $\mathbb{E}[|\theta \theta'|]$, use the posterior median.
- Other loss (utility) functions possible, the study of which falls under decision theory

Point Estimates for Inference?

- Common in machine learning to generate a point estimate θ^* then use it for inference, $p(\tilde{y}|\theta^*)$
- · This is defective because it

Underestimates Uncertainty

- · To properly estimate uncertainty, apply full Bayes
- If you don't, Dutch book can be made against you (i.e., if you use your strategy to bet, I can beat you in the long run using full Bayes)

Part III

Philosophical Interlude

Exchangeability

• Roughly, an exchangeable probability function is such that for a sequence of random variables $y = y_1, ..., y_N$,

$$p(y) = p(\pi(y))$$

for every N-permutation π (i.e, a one-to-one mapping of $\{1,\ldots,N\}$)

i.i.d. implies exchangeability, but not vice-versa

Exchangeability Assumptions

- Models almost always make some kind of exchangeability assumption
- · Typically when other knowledge is not available
 - e.g., treat voters as conditionally i.i.d. given their age, sex, income, education level, religous affiliation, and state of residence
 - But voters have many more properties (hair color, height, profession, employment status, marital status, car ownership, gun ownership, etc.)
 - Missing predictors introduce additional error (on top of measurement error)

de Finetti's Theorem

- de Finetti's Theorem: Given some background variables, every exchangeable sequence is conditionally i.i.d.
- So if our i.i.d. assumptions are invalid, condition on more predictors

Bayesian vs. Frequentist

- · Everyone: Model data y as "random"
- · Everyone: Parameters have single, true (but unknown) value
- · Everyone: Admit Bayes's rule of probability
- · Bayesians Only: Model parameters θ as "random"
- · Frequentists Only: Probabilities are long-run frequencies of observables, which excludes parameters (unobservable)
- Bayesians Only: Allow probabilities conditioned on parameters

Random Parameters: Doxastic or Epistemic?

- Bayesians treat distributions over parameters as epistemic (i.e., about knowledge)
- They do not treat them as being doxastic (i.e., about beliefs)
- · Priors encode our knowledge before seeing the data
- · Posteriors encode our knowledge after seeing the data
- · Bayes's rule provides the way to update our knowledge
- People like to pretend models are ontological (i.e., about what exists)

Arbitrariness: Priors vs. Likelihood

- · Bayesian analyses often criticized subjective (arbitrary)
- Choosing priors is no more arbitrary than choosing a likelihood function (or an exchangeability assumption)
- · As George Box famously wrote (1987),

All models are wrong, but some are useful.

· This is true for frequentists as well as Bayesians

Part IV

Hierarchical Models

Part I

Baseball At-Bats

- · For example, consider baseball batting ability.
 - Baseball is sort of like cricket, but with round bats, a one-way field, stationary "bowlers", four bases, short games, and no tied games.
- · Batters have a number of "at-bats" in a season, out of which they get a number of "hits" (hits are a good thing)
- Nobody with higher than 40% success rate since 1950s.
- · No player (excluding "bowlers") bats much less than 20%.
- Same approach applies to hospital pediatric surgery complications (a BUGS example), reviews on Yelp, test scores in multiple classrooms, . . .

Baseball Data

- Hits versus at bats for the 2006 American League season
- Not much variation ir ability!
- Ignore fact that players with more at-bats tend to be better (need GLM for that...)

Pooling Data

- How do we estimate the ability of a player who we observe getting 6 hits in 10 at-bats? Or 0 hits in 5 at-bats? Estimates of 60% or 0% are absurd!
- · Same logic applies to players with 152 hits in 537 at bats.
- No pooling: estimate each player separately
- Complete pooling: estimate all players together (assume no difference in abilities)
- · Partial pooling: somewhere in the middle

Hierarchical Models

- Hierarchical models are principled way of determining how much pooling to apply.
- Assume population ability levels and pull estimates toward the population mean based on how much variation in the population
 - low variance population: more pooling
 - high variance population: less pooling
- · In limit
 - as variance goes to 0, get complete pooling
 - as variance goes to ∞, get no pooling

Hierarchical Batting Ability

- Instead of fixed priors, estimate priors along with other parameters
- · Still only uses data once for a single model fit
- · Data: y_n, B_n : hits, at-bats for player n
- · Parameters: θ_n : ability for player n
- · Hyperparameters: α, β : population mean and variance
- · Hyperpriors: fixed priors on α and β (hardcoded)

Hierarchical Batting Model (cont.)

$$y_n \sim \operatorname{Binomial}(B_n, \theta_n)$$
 $\theta_n \sim \operatorname{Beta}(\alpha, \beta)$
 $\frac{\alpha}{\alpha + \beta} \sim \operatorname{Uniform}(0, 1)$
 $(\alpha + \beta) \sim \operatorname{Pareto}(1.5)$

· Sampling notation syntactic sugar for:

$$p(y,\theta,\alpha,\beta) \ = \ \mathsf{Pareto}(\alpha+\beta|1.5) \ \textstyle\prod_{n=1}^{N} \Big(\mathsf{Binomial}(y_n|B_n,\theta_n) \ \mathsf{Beta}(\theta_n|\alpha,\beta) \Big)$$

- Pareto provides power law: Pareto $(u|\alpha) \propto \frac{\alpha}{u^{\alpha+1}}$
- · Should use more informative hyperpriors!

Hierarchical Prior Posterior

- Draws from posterior (crosshairs at posterior mean)
- Prior population mean: 0.271
- · Prior population scale: 400
- Together yield prior std dev of 0.022
- Mean better estimated than scale (typical)

Posterior Ability (High Avg Players)

- Histogram of posterior draws for high-average players
- \cdot 22/60 = 0.367
- Note uncertainty grows with lower atbats

Multiple Comparisons

- · Who has the highest ability (based on this data)?
- Probabilty player n is best is

Average	At-Bats	Pr[best]
.347	521	0.12
.343	623	0.11
.342	482	0.08
.330	648	0.04
.330	607	0.04
.367	60	0.02
.322	695	0.02

- No clear winner—sample size matters.
- · In last game (of 162), Mauer (Minnesota) edged out Jeter (NY)

"Naive Bayes" Four Ways

· Joint Distribution $p(\pi, \phi, z, w)$, defined by:

```
- \pi \sim \mathsf{Dirichlet}(\alpha) (topic prevalence)
```

-
$$\phi_k \sim \mathsf{Dirichlet}(\beta)$$
 (word prevalence in topic k)

-
$$z_d \sim \mathsf{Categorical}(\pi)$$
 (topic for doc d)

-
$$w_{d,n} \sim \mathsf{Categorical}(\phi_{z_d})$$
 (word n in doc d)

- Inference Problems
 - fully supervised learning: $p(\pi, \phi \mid w, z)$
 - semi-supervised learning: $p(\pi, \phi \mid w, z, \tilde{w})$
 - unsupervised clustering: $p(\tilde{z} \mid \tilde{w})$
 - fully supervised prediction: $p(\tilde{z} \mid \tilde{w}, w, z)$
 - semi-supervised prediction: $p(\tilde{z} \mid \tilde{w}, w, z, \tilde{\tilde{w}})$

Part V

Monte Carlo

Markov Chain

Markov Chain Monte Carlo

· Standard Monte Carlo draws i.i.d. samples

$$\theta^{(1)},\ldots,\theta^{(M)}$$

according to a probability function $p(\theta)$

- Drawing i.i.d. samples is often impossible when dealing with complex densities like Bayesian posteriors $p(\theta|y)$
- · So we use Markov chain Monte Carlo (MCMC) in these cases and draw $\theta^{(1)}, \dots, \theta^{(M)}$ from a Markov chain

Markov Chains

· A Markov Chain is a sequence of random variables

$$\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(M)}$$

such that $\theta^{(m+1)}$ only depends on $\theta^{(m)}$, i.e.,

$$p(\theta^{(m+1)}|y,\theta^{(1)},\dots,\theta^{(m)}) \; = \; p(\theta^{(m+1)}|y,\theta^{(m)})$$

- Drawing $\theta^{(1)}, \dots, \theta^{(M)}$ from a Markov chain according to $p(\theta^{(m+1)} | \theta^{(m)}, y)$ is more tractable
- Still require marginal $p(\theta^{(m)}|y)$ at each element of the chain $p(\theta^{(1)}, \dots, \theta^{(M)}|y)$ to be equal to true posterior

Random-Walk Metropolis

- · Draw random initial parameter vector $\theta^{(1)}$ (in support)
- For $m \in 2:M$
 - Sample proposal from a (symmetric) jumping distribution, e.g.,

$$\theta^* \sim \text{MultiNormal}(\theta^{(m-1)}, \sigma \mathbf{I})$$

where I is the identity matrix

- Draw $u^{(m)} \sim \text{Uniform}(0,1)$ and set

$$\theta^{(m)} = \begin{cases} \theta^* & \text{if } u^{(m)} < \frac{p(\theta^*|y)}{p(\theta^{(m)}|y)} \\ \theta^{(m-1)} & \text{otherwise} \end{cases}$$

Metropolis and Normalization

· Metropolis only uses posterior in a ratio:

$$\frac{p(\theta^* \mid y)}{p(\theta^{(m)} \mid y)}$$

- · This allows the use of unnormalized densities
- Recall Bayes's rule:

$$p(\theta|y) \propto p(y|\theta) p(\theta)$$

- · Thus we only need to evaluate sampling (likelihood) and prior
- It also sidesteps computing the normalizing term

$$\int_{\Theta} p(y|\theta) \, p(\theta) d\theta$$

Metropolis-Hastings

- · Generalizes Metropolis to asymmetric proposals
- · Acceptance ratio is

$$\frac{J(\theta^{(m)}|\theta^*) \times p(\theta^*|y)}{J(\theta^*|\theta^{(m)}) \times p(\theta^{(m)}|y)}$$

where J is the proposal density

· i.e.,

```
probability of being at \theta^* and jumping to \theta^{(m)} probability of being at \theta^{(m)} and jumping to \theta^*
```

- General form ensures equilibrium for any jumping distribution by maintaining detailed balance
- · Like Metropolis, only requires ratios
- Many algorithms involve a Metropolis-Hastings "correction"

Optimal Proposal Scale?

· Proposal scale σ is a free; too low or high is inefficient

- Traceplots show parameter value on y axis, iterations on x
- · Empirical tuning problem; theoretical optima exist for some cases

Roberts and Rosenthal (2001) Optimal Scaling for Various Metropolis-Hastings Algorithms. Statistical Science.

Correlations in Posterior Draws

- Markov chains typically display autocorrelation in the series of draws $\theta^{(1)},\ldots,\theta^{(m)}$
- · Without i.i.d. draws, central limit theorem does not apply
- · Effective sample size $N_{\rm eff}$ divides out autocorrelation
- $\cdot N_{eff}$ must be estimated from sample
 - Use fast Fourier transform to efficiently compute correlations at all lags
- · Estimation accuracy proportional to

$$rac{1}{\sqrt{N_{\mathsf{eff}}}}$$

 \cdot Compare previous plots; good choice of σ leads to high $N_{
m eff}$

Convergence

- · Imagine releasing a hive of bees in a sealed house
 - they disperse, but eventually reach equilibrium where the same number of bees leave a room as enter it
- · May take many iterations for Markov chain to reach equilibrium

- · Four chains with different starting points
- Left) 50 iterations; Center) 1000 iterations; Right) Draws from second half of each chain

Gibbs Sampling

- · Draw random initial parameter vector $\theta^{(1)}$ (in support)
- For $m \in 2:M$
 - For $n \in 1:N$:
 - * draw $\theta_n^{(m)}$ according to conditional

$$p(\theta_n|\theta_1^{(m)},\ldots,\theta_{n-1}^{(m)},\theta_{n+1}^{(m-1)},\ldots,\theta_N^{(m-1)},y).$$

- e.g, with $\theta = (\theta_1, \theta_2, \theta_3)$:
 - draw $\theta_1^{(m)}$ according to $p(\theta_1|\theta_2^{(m-1)},\theta_3^{(m-1)},y)$
 - draw $\theta_2^{(m)}$ according to $p(\theta_2|\theta_1^{(m)},\theta_3^{(m-1)},y)$
 - draw $\theta_3^{(m)}$ according to $p(\theta_3|\theta_1^{(m)},\theta_2^{(m)},y)$

Generalized Gibbs

- · "Proper" Gibbs requires the conditional Monte Carlo draws
 - typically works only for conjugate priors
- In general case, may need to use less efficient conditional draws
 - Slice sampling is a popular general technique that works for discrete or continuous θ_n
 - Adaptive rejection sampling is another alternative

Sampling Efficiency

- · We care only about $N_{\rm eff}$ per second
- · Decompose into
 - 1. Iterations per second
 - 2. Effective samples per iteration
- Gibbs and Metropolis have high iterations per second (especially Metropolis)
- But they have low effective samples per iteration (especially Metropolis)
- Both are particular weak when there is high correlation among the parameters in the posterior

Hamiltonian Monte Carlo & NUTS

- · Slower iterations per second than Gibbs or Metropolis
- Much higher number of effective samples per iteration for complex posteriors (i.e., high curvature and correlation)

- Details in the next talk . . .
- · Along with details of how Stan implements HMC and NUTS

The End