© Laurent Garcin MP Dumont d'Urville

GÉOMÉTRIE AFFINE

Dans tout ce chapitre, E désigne un K-espace vectoriel.

1 Préliminaires

Identification des points et des vecteurs

- Jusqu'à maintenant, les éléments de E étaient considérés comme des vecteurs. Dans ce chapitre, on les considérera également comme des points.
- Les éléments de E considérés comme des points seront notés avec des lettres majuscules.
- Les éléments de E considérés comme des vecteurs seront notés surmontés d'une flèche.
- Si A et B sont deux points de E, on notera $\overrightarrow{AB} = B A$.
- Si A est un point de E et \vec{u} un vecteur de E, A + \vec{u} est l'unique point B de E tel que $\overrightarrow{AB} = \vec{u}$.

Proposition 1.1 Relation de Chasles

Soit A, B, C trois points de E. Alors $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$.

2 Sous-espace affines

2.1 Définition

Définition 2.1 Sous-espace affine

On appelle sous-espace affine de E toute partie \mathcal{F} de E de la forme $\Omega + F$ où Ω est un point de E et F un sous-espace vectoriel de E. Dans ce cas,

- 1. le sous-espace vectoriel F associé à \mathcal{F} est unique; on l'appelle la **direction** de \mathcal{F} ;
- 2. pour tout point $A \in \mathcal{F}$, $\mathcal{F} = A + F$.

Notation 2.1

La direction d'un sous-espace affine \mathcal{F} est souvent notée $\overrightarrow{\mathcal{F}}$.

Définition 2.2 Translation

Soit \vec{u} un vecteur d'un K-espace vectoriel E. On appelle translation de vecteur \vec{u} l'application qui à un point M de E associe le point M + \vec{u} .

ATTENTION! Une translation n'est pas une application linéaire.

© Laurent Garcin MP Dumont d'Urville

Définition 2.3 Dimension d'un sous-espace affine

Soit \mathcal{F} un sous-espace affine de E de direction F. Si F est de dimension finie, on dit que \mathcal{F} est de dimension dim F.

Exemple 2.1

- Les sous-espaces affines de \mathbb{R}^2 sont les singletons et les droites et \mathbb{R}^2 .
- Les sous-espaces affines de \mathbb{R}^3 sont les singletons, les droites, les plans et \mathbb{R}^3 .

Définition 2.4

On appelle **hyperplan affine** d'un espace vectoriel E tout sous-espace affine de E dont la direction est un hyperplan vectoriel.

2.2 Intersection de sous-espaces affines

Proposition 2.1 Intersection de sous-espaces affines

Soient $(\mathcal{F}_i)_{i \in I}$ une famille de sous-espaces affines d'un espace vectoriel E. Pour tout $i \in I$, on note F_i la direction de \mathcal{F}_i .

- Soit $\bigcap_{i \in I} \mathcal{F}_i$ est vide;
- soit $\bigcap_{i \in I} \mathcal{F}_i$ est un sous-espace affine de direction $\bigcap_{i \in I} F_i$.

Exercice 2.1

Soient \mathcal{F} et \mathcal{G} deux sous-espaces affines de E de direction respectives F et G.

- 1. Montrer que si E = F + G, alors $\mathcal{F} \cap \mathcal{G} \neq \emptyset$.
- 2. Montrer que si $E = F \oplus G$, alors $\mathcal{F} \cap \mathcal{G}$ est un singleton.

3 Lien avec les applications linéaires

Proposition 3.1

Soit $f \in \mathcal{L}(E, F)$ et $b \in F$. L'ensemble des solutions de l'équation f(x) = b d'inconnue $x \in E$ est

- soit vide;
- soit un sous-espace affine de direction $\operatorname{Ker} f$.

Remarque. Plus précisément, l'ensemble des solutions de f(x) = b, s'il est non vide, est $x_0 + \text{Ker } f$ où x_0 est une solution particulière. Les solutions de f(x) = b sont donc les sommes d'une solution particulière et des solutions de l'équation homogène $f(x) = 0_F$.

© Laurent Garcin MP Dumont d'Urville

Exemple 3.1

L'ensemble S des solutions d'un système linéaire à coefficients dans K, à n inconnues dans K et avec second membre est soit vide soit un sous-espace affine de K^n . Dans le second cas, si $X = (x_1, ..., x_n)$ est une solution particulière et si S est l'ensemble des solutions du système linéaire homogène associé, S = X + S.

Exemple 3.2

Soit $(a, b) \in \mathcal{C}(I, \mathbb{K})^2$. L'ensemble \mathcal{S} des solutions sur I de l'équation différentielle y' + ay = b est un sous-espace affine de \mathbb{K}^I de dimension 1. Plus précisément si y_0 est une solution particulière (son existence est garantie) et si S est l'ensemble des solutions de l'équation homogène associée, alors $\mathcal{S} = y_0 + S$.

Exemple 3.3

Soient $(a, b, c) \in \mathbb{K}^3$ avec $a \neq 0$ et $d \in \mathcal{C}(I, \mathbb{K})$. L'ensemble \mathcal{S} des solutions sur I de l'équation différentielle ay'' + by' + cy = d est un sous-espace affine de \mathbb{K}^I de dimension 2. Plus précisément si y_0 est une solution particulière (son existence est garantie) et si S est l'ensemble des solutions de l'équation homogène associée, alors $\mathcal{S} = y_0 + S$.

Exemple 3.4 Polynômes interpolateurs

Soient $x_0, \dots, x_n \in \mathbb{K}$ distincts et (y_0, \dots, y_n) . L'ensemble \mathcal{P} des polynômes P tels que $P(x_i) = y_i$ pour tout $i \in [0,]$ est un sous-espace affine de $\mathbb{K}[X]$. Plus précisément si P est un polynôme vérifiant la condition précédente (son existence est

garantie), alors
$$\mathcal{P} = P + A\mathbb{K}[X]$$
 où $A = \prod_{i=0}^{n} X - x_i$.

4 Repères affines

Définition 4.1

On appelle **repère affine** d'un \mathbb{K} -espace vectoriel E tout couple (O, \mathcal{B}) où O est un point de E et \mathcal{B} est une base de E.

Définition 4.2 Coordonnées dans un repère affine

Soit (O, \mathcal{B}) un repère affine d'un \mathbb{K} -espace vectoriel E. On appelle **coordonnées** du point $M \in E$ dans ce repère affine les coordonnées du vecteur \overrightarrow{OM} dans la base \mathcal{B} .