Statistique bidimentionnelle et Regression linéaire

Exercice 1

Dans un TP de physique à chaque masse mi (un poids) on obtiendra une extension xi, le tableau des données brutes est le suivant :

Mi (kg)	0	10	20	30	40
Xi (cm)	0	0.5	1.1	1.5	1.9

- 1) Donner la droite de régression de Y en fonction de X : y=ax+b. (avec Y la variable poids)
- 2) Donner la droite de régression de X en fonction de Y : x=a'y+b'. (avec Y la variable poids)
- 3) Cette droite est elle acceptable ? peut-on faire de la prédiction.
- 4) Si oui, quelle masse aurions nous si on veut une dilatation du ressort égale à xi= 3cm.

Exercice 2

Une étude théorique de l'évolution d'une population en extinction conduit à penser que le nombre d'individus « N » de cette population varie avec le temps « t » suivant une loi de type :

$$N(t)=a*exp(-kt)$$

Où a et k sont des constantes strictement positives. On veut déterminer expérimentalement la valeur de la constante k.

Pour cela, on observe pendant 8 mois un échantillon composé initialement de 200 individus, notant à la fin de chaque mois le nombre de survivants. Les résultats sont les suivants :

t	1	2	3	4	5	6	7	8
Survivant après le t éme mois	180	154	140	120	112	97	84	76

En faisant un changement de variable on va étudié le modèle (t,lnN)

	t	0	1	2	3	4	5	6	7	8
Γ	Inn(t)	5.3	5.2	5.0	4.9	4.8	4.7	4.6	4.4	4.3

1. En déduire les valeurs de ${\bf k}$ et ${\bf \alpha}$ lorsque ${\bf t}$ est exprimé en mois

En utilisant la méthode des moindres carrés (droite de régression de Y=lnN(t) par rapport à X=t ie le temps).

- 2. Calculer le coefficient de corrélation. Que peut-on en déduire ?
- 3. Quel sera, à votre avis, le nombre de survivants de cet échantillon à la fin de l'année en cours ? puis à la fin de l'année suivante ?