Results

FEM/DES vs SPH - DENSITY

SPH STUDY

Ti-6Al-4V TUNGSTEN ALLOY

FEM/DES OBSERVATIONS

CROSS-PARAMATER STUDY

- 4 MATERIALS:
 - AA6070-O
 - STEEL 4340
 - Ti-6Al-4V
 - TUNGSTEN ALLOY

- - 0.042
 - 0.084
 - 0.126

- 3 t/d RATIOS: 3 VELOCITIES [km/s]:
 - 5.5
 - 6.7
 - 7.5

PCA loadings

R1 = Target hole diameter
R2 = Debris cloud diameter
R3 = Percentage of solid material
R4 = Residual velocity
R5 = Conversion due to temperature

Observations:

- PC1 > 3PC2
- Equal spacing between material groups
- Overlap between groups
 - E.g. Thick wall Alu. low vel. ≈ Thin wall Ti. low vel.
- Material properties and t/d ratio affect all
 - Percentage of solid material more sensitive than residual velocity (horizontal axis)

PCA loadings

R1 = Target hole diameter

R2 = Debris cloud diameter

R3 = Percentage of solid material

R4 = Residual velocity

R5 = Conversion due to temperature

Observations:

- Input velocity has little impact on:
 - Hole diameter
 - Cloud diameter
 - Conversion due to temperature
- Input velocity affects: percentage of solid material & residual velocity
- Inverse correlation between percentage of solid material and residual velocity
- Target hole diameter, debris cloud diameter and conversion due to temperature are equally sensitive to all input parameter changes

- Lower velocity simulations have a higher percentage velocity decrease
- Increasing velocity does not strictly result in larger target hole diameter
- Increasing t/d leads:
 - to lower percentage of solid material
 - higher conversion due to temperature
 - decreasing residual velocity
 - increased cloud diameter
 - increased hole diameter

Alternative plot

Order = Material, velocity, t/d

Next steps

- Ideally: Perform high velocity impact experiments to validate numerical simulations
- Extent material parameter study:
 - Mesh size
 - Different set of materials
 - Different impactor material
 - •
- Impact under an angle
- Impactor shape

