

1. 布林代數基本運算

- AND(•)

⇒ Input 皆為1的時候為1,否則為0

1	4	В	A.B
(2	0	0
(0	1	0
	1	0	0
	1	1	1

- OR(+)

⇒ Input 皆為 0 的時候為 0, 否則為 1(有 1 個為 1 就 1)

A	В	A+B
0	0	0
0	1	1
1	0	1
1		1

- NOT

表3.2.2 基本邏輯閘與布林代數關係

邏輯閘	簡稱	布林代數	運算式
反向閘	NOT	NOT	$X=\overline{A}$
及閘	AND	AND	X=A • B
或閘	OR	OR	X=A+B
反及閘	NAND	NOT-AND	$X = \overline{A \cdot B}$
反或閘	NOR	NOT-OR	$X = \overline{A + B}$
互斥或閘	XOR	EX-OR	$X=_{A \oplus B}$
互斥反或閘	XNOR	EX-NOR	$X = \overline{A \oplus B}$

2. 布林代數基本定理(9個)

$$x(9)$$
 笛摩根 對一個布材式子取補放(香定), $x(9)$ 笛摩根 對一個布材式子取補放(香定), $x(9)$ 定理 則結果協: $x(9)$ 次續補 $x(9)$ $x(1)$ $x(1)$ $x(1)$ $x(2)$ $x(3)$ $x(1)$ $x(1)$ $x(2)$ $x(3)$ $x(1)$ $x(2)$ $x(3)$ $x(1)$ $x(2)$ $x(3)$ $x(3)$ $x(3)$ $x(3)$ $x(3)$ $x(3)$ $x(3)$ $x(4)$ $x(3)$ $x(4)$ $x(3)$ $x(4)$ $x(3)$ $x(4)$ $x(4$

Α	В	A+B	Ā+B	Ā	B̄	Ā•Ē
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0
			<u> </u>		<u> </u>	<u> </u>
			両者	新得	結果相	目司

兩者所得結果相同

(9) 對偶律 用途。已知某個布林式了成立. 則可以用对偶律轉得到另一個也成立的布林式子。

轉換方式:
$$S - 1$$
 續 $O - O$ 每 O 每 O 在 O

3. 正規化表示法

- 「最小項的和」(sum of minterms)
 - ⇒ 將最小項以「OR」運算子結合,也就是用「+」運算子

結合,便是「最小項的和」

⇒ N 個變數, 2^n 個組合

- (=) Min-term : 包含下有重新入變數之談積項 eng、之個多枚CA(B) => 4個Min-terms: AB, AB, AB, AB, AB. eng、3個多板CA(B)C) => 8個min-terms: ABC, ABC, ABC, ABC, ABC, ABC
- 「最大項的積」(product of maxterms)
 - ⇒ 將最大項以「AND」運算子結合,也就是用「・」運算子 結合,便是「最大項的積」

(=) Max-term: 包含所有輸入要級之和2頁

eig、2個多权(A,B) = 4個Max-term: (A+B), (

Example

F = ABC' + A'B' + BC' 3 variables 7 literals

Row No.	A	В	C		Mintem	s	1	Maxterm	ıs	f	f'
0	0	0	0	A'B'C'	=	m_0	A+B+C	=	M_0	0	1
1	0	0	1	A'B'C	=	m_1	A+B+C'	=	M_1	0	1
2	0	1	0	A'BC'	=	m_2	A+B'+C	=	M_2	0	1
3	0	1	1	A'BC	=	m_3	A+B'+C'	=	M_3	1	0
4	1	0	0	AB'C'	=	m_4	A'+B+C	=	M_4	1	0
5	1	0	1	AB'C	=	m_5	A'+B+C'	=	M_5	1	0
6	1	1	0	ABC '	=	m_6	A'+B'+C	=	M_6	1	0
7	1	1	1	ABC	=	m ₇	A'+B'+C'	=	M_7	1	0

$$m_i' = Mi$$

$$\Rightarrow f = A'BC + AB'C' + AB'C + ABC' + ABC$$

$$= m_3 + m_4 + m_5 + m_6 + m_7$$
or $f(A, B, C) = \sum m(3, 4, 5, 6, 7)$
min term = 1 $\Rightarrow f = 1$

$$f = (A + B + C) (A + B + C') (A + B' + C) = M_0 M_1 M_2$$

$$f(A, B, C) = \prod M(0, 1, 2)$$
maxterm = 0 $\implies f = 0$

4. 電路化簡

- (一) 目目: 用最少的灑輯間完成相同百分電路 27 能,以節省成本.
- (2)方法: 有很多種. 其中以"卡諾圖"最方便.
- (三) 電路化簡, 节2種 → 磁化成最簡白 SOP (Sum of Product) 穩+ 穩+ 如化成最簡白 SOP (Product of Sum) (子)・子)
- 四卡諾圖介紹
- (一) N人化成最簡 SOP 為1例: 凡個變數⇒有2ⁿ 介方格. 笛咽方辖 Note: POS⇒方格代表Max-term 代表Min-term (最小項)

- SOP(卡諾圖)

心 化簡的步驟:

- 1. 將在 $\underline{\mathbf{a}}$ 值表中可產生 $\underline{\mathbf{a}}$ 的每個基礎乘積項,對應的填入卡諾圖的空格中,並標 記為 $\underline{\mathbf{a}}$,其他的空格則填入 $\underline{\mathbf{o}}$ 。
- 2. 依序圈出相鄰的8個1、相鄰的4個1、相鄰的2個1,空格中的1可被重複 圈選,以便消除最多的變數。
- 3. 如果還留下獨立的 1 , 也要個別圈選。
- 4. 觀察圈選的狀況,要讓所有1的空格都被圈到,而圈選的組數要愈少愈好。
- 5. 每一個圈選的結果是一個乘積項,將所有的乘積項OR起來即是化簡後的布林 代數式。

上下兩列亦屬於相鄰的方格

(c) X=ABCD+ABCD+ABCD+ABCD

左右兩列亦屬於相鄰的方格

利用卡諾圖化簡 X=ĀBC+ĀB 之布林代數式

- POS

- 隨意條件(Don't care condition)
 - ⇒ 並非所有的輸入狀況皆會發生,其對輸出不重要

5. 邏輯閘(Logic Gate)

(5) NOR gate (NOT OR)

pef: OR 輔田南否定

Α			
B	<u>_</u>	- F = A . B	

真值表

A	B	(A+B)
0	0	1
0	1	0
1	٥	0
1	1	0

- (6) XOR gate (exclusive-OR gate 互斥或)
 - •相同勘口,村異為1。
 - 。真值表

A	B	ADB
0	0	0
0	1	1
1	0	1
1	1	0

· A ① B ⇔ ĀB+ AB 輪流補

- (7) XNOR gate (exclusive—NOR 互斥反欧)
 - ○村同路1,村異路0。

· A O B ← AB + AB 同為輔 + 同為不補

131: ADB = AOB

Pf:
$$\overline{A \oplus B} = \overline{(\overline{A}B + \overline{A}\overline{B})} = \overline{AB} \cdot \overline{AB} = (A + \overline{B}) \cdot (\overline{A} + B)$$

$$= A\overline{A}^{\circ} + AB + \overline{B}\overline{A} + \overline{B}B^{\circ}$$

$$= \overline{AB} + AB = A \oplus B$$

TBJ1: F(A,B,C) = AB+ABC+AB化效 simplified Sop 哲論故電路图(Circuit Oiagram)

6. Universal Gate C Complete Gate 萬用閘/完整閘

Def: 單用此間可以完於所有電路 (或其它gates) 动能。 图 NAND 和 NOR gate 皆是。

7. XOR 與 XNOR 特性探討

A
$$\oplus$$
 I = \overline{A} A \otimes I = \overline{A}
A \oplus O = \overline{A} A \otimes Ø = \overline{A}
A \oplus A = \overline{A} A \otimes \overline{A} = \overline{A}

(2) ① 互斥或是 Even -parity Bit generator (偶同位位元產生器) 跟10有關 RP所有BitsT直下互下或、BP得Even-Parity Bit ↓ BP 知。

XOR XNOR 結果差一個NOT

8. 電路種類

- 組合電路(Combinational Circuit)
 - 四組合電路之設計
 - (-) steps: ①依據問題,定出所需的 in put 介权.及 output 介权.
 - ⊙依問題 (27) 幕出 Truth Table
 - ③用午諾图.實施電路代開.
 - 田繪出電路图.

例1: tt 較器. 若 A 2 B 則 output 為1.否則為必.

回加法器。

工. 半加器.

74	+		他位
A	B	Sam	Court
0	0	0	O
0	1	1	Ð
1	0	1	0
(11	0	1

ď,	Sum: AB	O,	
	0		1
	١	1	

AB

Sum = AB + AB = A & B.

亚,全加器

A	B	C	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	-	1

Sum = ABC + ABC + ABC = ABBOC

- 电路图.

Cout: ABC + ABC + AB

田成里of Sum.

相當於是2个半的器及1个0尺。

I. 半減器.

A	B	D	Borrow
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	כ

Ⅱ. 全滅器.

Inputs: A.B.C 3個(BPA-B-C)

outputs: D B Borrow

A	B	C	D	Borrow
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1 .
0	1	1	0	1
1	D	0	1	0
1	0	1	.0	0
1	1	0	0	0
1	1	1	1	

D:	· QU	00	0 1	1	10
	0		1		1
	1	1		1	

D= ABC+ ABC + ABC + ABC = ABBOC

Borrow &

不遵守书諾国化销原則. 想要再利用

某些田成果加旦

--電路图:

- 序向電路(Sequential Circuit)
 - ⇒ 正反器(Flip-Flop)

国: W. NOR gate 描码1.

R.S.福 inputs, 《店輸出 (高為《之補权)

R	5	と=欠事輸出Q	本次動出Q.	Q
1	0	0	0	1
(0	1	0	1
1	1	0	0	0
1	1	1	0	0
0	0	0	0	1
0	0	1	1	0

为NOR特性: Input只要有1.5篇1.輸出必為为

TR	5	Q	Q	
11	0	0	1	⇒ Reset(R)
0	1	1	0	⇒ Set (S)
0	0	Qt	Qt	⇒ Q4:と江輸出、BP\$街车原號、(ヒンア輸去光號) BPまで着2か角点
I	1		不会發	生宜遊兔之. 一般來說undifined

· 溴爾表 Exciting Table

K=Z Qt	本次 (Q·	R	5	R.S: inputs.
1	0	l	0	⇒ 改变狀態 Reset
1	1	0	X	⇒ { Set: S=1,R=0 無持庫號: S=0,R=0
0	0	Χ	0	⇒ { keset: S=0, R=1 維持康儀: S=0, R=0
0	1	0	1	⇒ Set

R-定要是0, 51或0不在手 "X": don't cave.

- 比較

為且合電 路	序向電路
。电路之輸出只與 輸入的組合相常 與時房無用. 與七一次輸出無用	。輸出會和本次輸入組合. 新上次輸出結果共同決定 與時序(Timing)相関.
。相同的輔訊入組合 (必得相同 C-致)之結果.	·相同的事制入組合. 不見得得到相同語集.
。不具備回饋(feedback) 器可立电路。	○具備
·不具備計算(memory) 三能力	。具備
· 你! 比較器. 編碼器. 加法器. 解碼器. 加法器. 解碼器. 该法器. 計數器. 多工器. (Counting) 解多工器 etc.	·例: 正反器(flip-flop) 言小意体。 連波計权器. etc.

9. Pineline(管線式)

- 公式

- ⇒ (Instruction count + (pipeline stage -1)) * Clock cycle time
- ⇒ 執行到最後一條指令時,還需等(stage 1)個 cycle,作後
 - 一個指令才會完全做完

一日的

加速多條指急之執行 (縮短多條指定之執行時間)

(=) Non- pipeline

假設机器指急有与個 Stages .410下:

IF DE E	XE FO WB
---------	----------

面介 stage 名花 1 か clock cycle · 執行 3 條指全. 共花 3 * 5 = 15 ケ clock cycles.

[]:

(声) pipeline 技術

不同指定之不同 Stage 可以 overlay execution (重疊/平行執行) **为加速整体指空之執行.**

为小柔指全共花了個 clock cycles.

☆ pipeline 主な式 (記)

全 N8 指令拟目.

則 pipeline time

ら: 指室 stage 秋日. = [N+(s-1)]* MAX { をstage 之 Time } < (Instruction count + (pipeline stage -1)) * Clock cycle time

例:机器指空有5個 Stages 知下: Anso.

1 Non-pipeline

10 * (10+5+10+10+5)=10 * 40 = 400 ns

執行10條指生笑花? ns

O Non-pipeline & pipeline

[10+65-1)] * MAX {10, 5, 10, 10, 5}

= 14 x10 = 140 ns.

10. 命題演算

(=) P⇔Q (P若且唯若Q)

P	Q	PAR	PAQ	Q = P	(P=Q) 1 (Q=P)
0	0	1	1	1	1
0	1	0	(0	0
1	0	0	0	1	0
1	1	1	1	1	1

(3) Tautology 15夏.

不論 input 之組合協何. output 一律協 True (1) Note: 若以长諾圖來看. 即每一個方格均填入"工"