EXAMEN DE CÁLCULO. PRIMER CONTROL GRADO EN INGEN. INFORM. DEL SOFTWARE. 19-11-2018 (9-10:30)

Una única pregunta tipo test mal contestada no penaliza. Si son dos, penalizaría medio punto y si son las tres, penalizaría un punto. En el resto de preguntas se ha de contestar razonadamente. Cualquier resultado, no trivial, no visto en clase o en el material presentado en el Campus Virtual se ha de justificar; en caso contrario, no se valorará. No está permitido usar calculadora.

- 1) Sea $f(x) = 1/(x^2 + 1)$ definida en R. Si $x \in R$,
- a) $\min f(x) = 0$ b) f(x) no es acotada c) $\inf f(x) = 0$ d) f(x) es inyectiva (1p.)
- 2) La función $f(x) = \frac{x.sen(x)}{|x|}$ si $x \ne 0$ y f(0) = 1, presenta en x = 0 una discontinuidad
 - a) evitable b) esencial de salto finito c) esencial de salto infinito d) ninguna de las anteriores (1p.)
- 3) Sean $f(x) = \log(x)$ y $g(x) = 2\sqrt{x}$
 - a) $(g \circ f)'(e) = e$ b) $(g \circ f)'(e) = e^{-1}$ c) $(g \circ f)'(e) = 2e$ d) $(g \circ f)'(e) = 2e^{-1}$ (1p.)
- 4)
- a) Enunciar el teorema de Rolle.
- b) Como corolario del teorema de Rolle, demostrar el siguiente resultado: si f es derivable en (a, b) y $f'(x) \neq 0 \ \forall x \in (a, b)$, se verifica que en dicho intervalo la ecuación f(x) = 0 tiene, a lo sumo, una raíz.
- c) Sea $f(x) = x^5 80x + 2$. Usar el resultado anterior para determinar el número máximo de raíces reales de la ecuación f(x) = 0.

(0.5p.+0.6p.+0.6p.)

5) Sea
$$f(x) = (x-1)\exp\left(\frac{1}{x-1}\right)$$
 si $x \ne 1$ y $f(1) = 0$

- a) Obtener, si existen y sin aplicar la regla de L'Hôpital, las ecuaciones de las asíntotas verticales de f (por la izquierda y/o por la derecha) y las horizontales (en el $-\infty$ y/o en el $+\infty$).
- b) ¿Es f derivable por la izquierda en x = 1? Determinar, con justificación, los puntos críticos de f.
- c) ¿Alcanza f un extremo local en x=1?

(1p.+1.3p.+0.7p.)

- 6)
- a) Razonar si la sucesión $\{a_n\} = n \ sen((2n-1) \ \pi/2)$ es convergente, divergente (con límite o sin límite) u oscilante
- b) Dada la sucesión $\{a_n\} = \frac{n}{n+1} + \frac{n+1}{n+2} + \dots + \frac{n+n-1}{n+n}$,
- b1) Demostrar que es estrictamente creciente.
- b2) Demostrar que es divergente a $+\infty$, encontrando una sucesión minorante que diverja a $+\infty$.

EXAMEN DE CÁLCULO. PRIMER CONTROL GRADO EN INGEN. INFORM. DEL SOFTWARE. 19-11-2018 (10.30-12)

Una única pregunta tipo test mal contestada no penaliza. Si son dos, penalizaría medio punto y si son las tres, penalizaría un punto. En el resto de preguntas se ha de contestar razonadamente. Cualquier resultado, no trivial, no visto en clase o en el material presentado en el Campus Virtual se ha de justificar; en caso contrario, no se valorará. No está permitido usar calculadora

- 1) Sea $f(x) = 1/(x^2 + 1)$ definida en R. Si $x \in R$,
- a) $\inf f(x) = 0$ b) f(x) no es acotada c) $\min f(x) = 0$ d) f(x) es inyectiva (1p.)
- 2) La función $f(x) = \frac{x.sen(x)}{|x|}$ si $x \neq 0$ y f(0) = 1, presenta en x = 0 una discontinuidad
 - a) esencial de salto finito b) esencial de salto infinito c) evitable d) ninguna de las anteriores (1p.)
- 3) Sean $f(x) = \log(x)$ y $g(x) = 2\sqrt{x}$
 - a) $(g \circ f)'(e) = e$ b) $(g \circ f)'(e) = 2e$ c) $(g \circ f)'(e) = e^{-1}$ d) $(g \circ f)'(e) = 2e^{-1}$ (1p.)
- a) Enunciar el teorema de Rolle.
- b) Como corolario del teorema de Rolle, demostrar el siguiente resultado: si f es derivable en (a,b) y $f'(x) \neq 0 \ \forall x \in (a,b)$, se verifica que en dicho intervalo la ecuación f(x) = 0 tiene, a lo sumo, una raíz.
- c) Sea $f(x) = x^5 80x + 2$. Usar el resultado anterior para determinar el número máximo de raíces reales de la ecuación f(x) = 0.

(0.5p.+0.6p.+0.6p.)

5) Sea
$$f(x) = (x-1)\exp\left(\frac{1}{x-1}\right)$$
 si $x \ne 1$ y $f(1) = 0$

- a) Obtener, si existen y sin aplicar la regla de L'Hôpital, las ecuaciones de las asíntotas verticales de f (por la izquierda y/o por la derecha) y las horizontales (en el $-\infty$ y/o en el $+\infty$).
- b) ¿Es f derivable por la izquierda en x=1? Determinar, con justificación, los puntos críticos de f.
- c) ¿Alcanza f un extremo local en x=1 ?

(1p.+1.3p.+0.7p.)

- 6)
- a) Razonar si la sucesión $\{a_n\} = n \ sen((2n-1)\pi/2)$ es convergente, divergente (con límite o sin límite) u oscilante.
- b) Dada la sucesión $\{a_n\} = \frac{n}{n+1} + \frac{n+1}{n+2} + ... + \frac{n+n-1}{n+n}$,
- b1) Demostrar que es estrictamente creciente.
- b2) Demostrar que es divergente a $+\infty$, encontrando una sucesión minorante que diverja a $+\infty$.

EXAMEN DE CÁLCULO. PRIMER CONTROL GRADO EN INGEN. INFORM. DEL SOFTWARE. 19-11-2018 (11-12:30)

Una única pregunta tipo test mal contestada no penaliza. Si son dos, penalizaría medio punto y si son las tres, penalizaría un punto. En el resto de preguntas se ha de contestar razonadamente. Cualquier resultado, no trivial, no visto en clase o en el material presentado en el Campus Virtual se ha de justificar; en caso contrario, no se valorará. No está permitido usar calculadora.

- 1) Sea $f(x) = 1 + 1/(x^2 + 1)$ definida en R. Si $x \in R$,
- a) f(x) es inyectiva b) $\inf f(x) = 1$ c) f(x) no es acotada d) $\min f(x) = 1$ (1p.)
- 2) La función f(x) = sen(1/x) si $x \ne 0$, presenta en x = 0 una discontinuidad
 - a) evitable b) esencial de salto finito c) esencial de salto infinito d) ninguna de las anteriores (1p.)
- 3) Sean $f(x) = 4\sqrt{x}$ y $g(x) = \log(x)$

a)
$$(f \circ g)'(e) = 2e^{-1}$$
 b) $(f \circ g)'(e) = e^{-1}$ c) $(f \circ g)'(e) = 2e$ d) $(f \circ g)'(e) = e$ (1p.)

- 4)
- a) Enunciar el teorema del valor medio de Lagrange.
- b) Como corolario del teorema del valor medio, demostrar el siguiente resultado: si f es derivable en (a,b) y $f'(x) > 0 \ \forall x \in (a,b)$, se verifica que en dicho intervalo la función f es estrictamente creciente.
- c) Sea $f(x) = x^3 + x^2 + x 5$ ¿es f estrictamente creciente en R? (0.5p.+0.6p.+0.6p.)

5) Sea
$$f(x) = (x-2)\exp\left(\frac{1}{x-2}\right)$$
 si $x \ne 2$ y $f(2) = 0$

- a) Obtener, si existen y sin aplicar la regla de L'Hopital, las ecuaciones de las asíntotas verticales de f (por la izquierda y/o por la derecha) y las horizontales (en el $-\infty$ y/o en el $+\infty$).
- b) ¿Es f derivable por la izquierda en x = 2? Determinar, con justificación, los puntos críticos de f.
- c) ¿Alcanza f un extremo local en x = 2?

(1p.+1.3p.+0.7p.)

- 6)
- a) Razonar si la sucesión $\{a_n\} = n \ sen((2n+1)\pi/2)$ es convergente, divergente (con límite o sin límite) u oscilante.
- b) Dada la sucesión $\{a_n\} = \frac{n-1}{n+1} + \frac{n}{n+2} + ... + \frac{n+n-2}{n+n}$,
- b1) Demostrar que es estrictamente creciente.
- b2) Demostrar que es divergente a $+\infty$, encontrando una sucesión minorante que diverja a $+\infty$.

EXAMEN DE CÁLCULO. PRIMER CONTROL GRADO EN INGEN. INFORM. DEL SOFTWARE. 19-11-2018 (13-14:30)

Una única pregunta tipo test mal contestada no penaliza. Si son dos, penalizaría medio punto y si son las tres, penalizaría un punto. En el resto de preguntas se ha de contestar razonadamente. Cualquier resultado, no trivial, no visto en clase o en el material presentado en el Campus Virtual se ha de justificar; en caso contrario, no se valorará. No está permitido usar calculadora

- 1) Sea $f(x) = 1 + 1/(x^2 + 1)$ definida en R. Si $x \in R$,
- a) f(x) es inyectiva b) min f(x) = 1 c) inf f(x) = 1 d) f(x) no es acotada

(1p.)

- 2) La función $f(x) = \cos(1/x)$ si $x \ne 0$, presenta en x = 0 una discontinuidad
 - a) evitable b) esencial de salto finito c) esencial de salto infinito d) ninguna de las anteriores (1p.)
- 3) Sean $f(x) = 4\sqrt{x}$ y $g(x) = \log(x)$

a)
$$(f \circ g)'(e) = e^{-1}$$
 b) $(f \circ g)'(e) = 2e^{-1}$ c) $(f \circ g)'(e) = e$ d) $(f \circ g)'(e) = 2e$ (1p.)

- 4)
- a) Enunciar el teorema del valor medio de Lagrange.
- b) Como corolario del teorema del valor medio, demostrar lo siguiente: si f es derivable en (a,b) y $f'(x) < 0 \ \forall x \in (a,b)$, se verifica que en dicho intervalo la función f es estrictamente decreciente.
- c) Sea $f(x) = -x^3 + x^2 x + 4$ ¿es f estrictamente decreciente en R? (0.5p.+0.6p.+0.6p.)

5) Sea
$$f(x) = (x+1)\exp\left(\frac{1}{x+1}\right)$$
 si $x \ne -1$ y $f(-1) = 0$

- a) Obtener, si existen y sin aplicar la regla de L'Hopital, las ecuaciones de las asíntotas verticales de f (por la izquierda y/o por la derecha) y las horizontales (en el $-\infty$ y/o en el $+\infty$).
- b) ¿Es f derivable por la izquierda en x = -1? Determinar, con justificación, los puntos críticos de f.
- c) ¿Alcanza f un extremo local en x = -1?

(1p.+1.3p.+0.7p.)

- 6)
- a) Razonar si la sucesión $\{a_n\} = n^2 sen((2n+1)\pi/2)$ es convergente, divergente (con límite o sin límite) u oscilante.
- b) Dada la sucesión $\{a_n\} = \frac{n-1}{n+1} + \frac{n}{n+2} + ... + \frac{n+n-2}{n+n}$,
- b1) Demostrar que es estrictamente creciente.
- b2) Demostrar que es divergente a $+\infty$, encontrando una sucesión minorante que diverja a $+\infty$.