Objectives

- Objective 1
- Objective 2
- Objective 3

Theorem 1

if $u_1, u_2, ..., u_u$ Orthonormal and $v = \sum c_i u_i$ then $c_i = < u_i, v >$

1.1 Proof

$$\langle u_i, v \rangle = \langle u_i, \sum_{j=1}^n c_j u_j$$

$$= \sum_{j=1}^n c_j \langle u_{ji} u_i \rangle$$

$$= \sum_{j=1}^n c_j f_{ij}$$

$$= c_i$$

Based on: < ax + y, z >= a < x, z > + < y, z >Corollary: if $u = \sum a_i u_i \land \lor = \sum b_i u_i$

1.2 Proof

$$< u, v > = < a_i u_i, b_i u_i >$$

$$= a_1 < u_1, \sum b_i u_i > +a_2 < u_2, v > + \dots$$

$$= a_1 b_1 < u_1, u_1 > +a_1 b_2 < u_1, u_2 > + \dots$$

$$+ a_2 b1 < u_2, u_1 > + \dots$$

$$< u, v > = < \sum a_i u_i, v >$$

$$= \sum a_i < u_i, v >$$

$$= \sum a_i < v_1 u_i >$$

$$= \sum a_i b_i$$

1.3 Definitions

1.3.1 Def 1

$$||v|| = \sqrt{\langle v, v \rangle} = \sqrt{v^t v}$$

1.3.2 Def 2

 $O \in \mathbb{R}^n * n$ is or orthogonal if Qi from orthogonal set.

1.3.3 Def 3

Orthogonal set $\{u_1, u_2, ..., u_u\}$ Orthogonal unit vectors

$$u_i^t u_j = \delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

1.3.4 Def 4

Gwen avg $\{v_1, v_2, ..., v_u\}$ orthogonal $u_i = \frac{v_i}{||v_i||}$ are normalized, hence orthogonal **Ex:**

$$v_1 = (1, 1, 1)^{\top} \rightarrow u_1 = \frac{1}{\sqrt{3}} v_1$$

 $v_2 = (2, 1, -3)^{\top} \rightarrow u_2 = \frac{1}{\sqrt{14}} v_2$
 $v_3 = (4, -5, 1)^{\top} \rightarrow u_3 = \frac{1}{\sqrt{42}} v_3$

1.3.5 Def 5

 $a|b \text{ iff } \exists k \in \mathbb{Z} : b = ak$

- b is a multiple of a
- a is a divisor of b
- a is a factor of b

1.3.6 Def 6

n > 1 is prime is only divisors a $1 \wedge n$. (no factors)

1.3.7 Def 7

Composite is not prime (has at least 1 factor).

1.3.8 Def 8

If $a/n \wedge a/m$, then a is a common factor.

1.3.9 Def 9

 $gcd(m,n) = d \Leftrightarrow d|m \wedge d|u$ and if $h|m \wedge h|n$, then $d \leq h$

2 Theorem

if $h|n \wedge h|m$, then $\forall i, jh|(in + jm)$.

2.1 Proof

n = nk, $\wedge m = hk_2$ then

$$in + jm = ihk_1 + jhk_2$$
$$= h(ik_1 + jk_2)$$
$$\rightarrow h|(in + jm)$$

2.2 Definition

(Quotient) $\forall m, n : m \neq 0$ $q = \lfloor \frac{n}{m} \rfloor$ and (remainder) of dividing n by m is r = n - qm. $(r = n \mod m)$

i.e.

$$n = mq + r$$
 such that
$$\begin{cases} 0 & \text{if } 0 \leqslant r < m & m > 0 \\ m & \text{if } m \leqslant r \leqslant 0 & m < 0 \end{cases}$$

3 Theorem

let $m, n \in \mathbb{Z} : m \neq 0 V n \neq 0$ and (not both 0) let $d = min\{in + jm \text{ such that } i, j \in \mathbb{Z} \land in + jm > 0\}$ then d = gcd(m, n).

3.1 Proof

d = in + jm.(smallest linear combo of $m \wedge n$, moreover, n = qd + r with $0 \leq r < d$. Therefor we have

$$n = q(in + jm) + r$$
$$= qin + qjm + r$$
$$r = n(1 - qi) + m(qi)$$

Since r is linear combo but d is minimal $\wedge r < d$, then r = 0, $\rightarrow d|n$. Sumilarly $d|m \rightarrow d$ is common divisor $\rightarrow d \leq \gcd(m,n)$. Also since $\gcd(m,n)$ divides $m \wedge n$ and d = in + jm, then $\gcd(m,n)|d \rightarrow d = \gcd(m,n)k \rightarrow d \geqslant \gcd(m,n)$ Corollary: if $h|n \wedge h|m$, then $h|\gcd(m,n)$

3.2 Proof

gcd(m,n) = am + bn \therefore since $h|m \wedge h|n$ then $m = hk_1 \wedge n = hk_2$ then

$$gcd(m,n) = hak_1 + hbk_2$$
$$= h(ak_1 + dk_2)$$

4 Theorem

Suppose $n \ge 0$ m > 0. Let r = n mod then gcd(m, n) = gcd(m, r).

4.1 Proof

show gcd(m,n)|gcd(m,n) and vice versa. Let $d_1 = gcd(m,n)$, then $d_1|m \wedge d_1/n \to m = d_1k_1 \wedge n = d_1k_2$. Also n = mq + r $\exists q_1r: 0 \le r < m$

5 Gradient Descent

- ullet Compute sequence of vectors in \mathbb{R}^s aiming to converge to a vector that minimizes cost
- if $\Delta p \approx 0$, then Taylor Series gives $Cost(p + \Delta p) \approx Cost(p) + \sum_{r=1}^{s} \frac{\partial Cost(p)}{\partial pr} \cdot \Delta pr$. $Cost(p) + \frac{\partial C(p)}{\partial p} + \frac{\partial C(p)}{\partial p_2} + \dots + \frac{\partial C(p)}{\partial p_2}$
- Denote $\nabla C(p) \in \mathbb{R}^s$, gradient (vector of partial derivatives).
- $\frac{\partial C(p)}{\partial pi}$ = how much Cost changes in the "direction" pi.

•
$$(\nabla C(p))_r = \frac{\partial C(p)}{\partial p_r}$$

• $Cost(p + \Delta p) \approx Cost(p) + \nabla Cost(p)^t \Delta p$.

$$Cost(p + \Delta p) \approx C(p) + \nabla C(p)^t \Delta p$$

- Choose Δp to make $\nabla C(p)^t \Delta p$ as negative as possible.
- Cauchy Schwarz Inequality.

$$|x^t y| \le ||x||_2 * ||y||_2$$

 $\therefore -||x||_2 * ||y||_2 \le x^t y \le ||x||_2 * ||y||_2$
 $-||x||_2 * ||y||_2$ most negtive $x^t y$ can be.
 \rightarrow When $x = -y$.

Note:
$$|x^y| = |x * y| = ||x||_2 * ||y||_2 * cos0$$
 $x = \lambda y$, then $|\lambda y * y| = |\lambda| * ||y||^2 = ||y|| * ||y|| * |cos0| ||x|| = \sqrt{x^t x} ||y|| = ||x||_2 * |$