Agenda

- Goal
- Background and motivation
- Model & Network Structure
- Data preprocessing
- Network Training
- Result
- Future Work

Goal

• Apply transfer learning to predict the facial emotion

• 3 classes (Neutral, Happy, sad)

• Training data: 15k image

• Validation data: 5k image

Background and Motivation

Emotions are a person's emotional and psychological changes with different situation.

Detecting Emotions would be huge step Artificial Intelligence

Model & Network Structure

Consist of VGG16, DenseNet121 and CNN

Use VGG16 and Densnet121 as feature extractor

 Both VGG16 and Densent121 connect to same CNN

Model & Network Structure(contd.)

CNN

```
Model: "sequential 3"
                         Output Shape
Layer (type)
______
flatten 3 (Flatten)
                         multiple
dense 6 (Dense)
                         multiple
                                               1835520
batch_normalization_3 (Batch multiple
                                               2048
dropout 3 (Dropout)
                         multiple
                                               0
dense 7 (Dense)
                         multiple
                                               1539
Total params: 1,839,107
Trainable params: 1,838,083
Non-trainable params: 1,024
```

```
top_model = Sequential()
top_model.add(Flatten())
top_model.add(Dense(512, activation='relu',kernel_initializer='he_normal'))
top_model.add(BatchNormalization())
top_model.add(Dropout(0.2))
top_model.add(Dense(3, activation='softmax')) # 3 classes
```

Data Preprocessing

horizontal flip

rescale

Network Training

Hyper parameter Tuning

1. Weight initialization method (with or without

"he_normal")(He et al., 2015).

2. Learning rate

3. "Epsilon" in Adam (Reddi et.al, 2018)

```
tf.keras.optimizers.Adam(
    learning_rate=0.001,
    beta_1=0.9,
    beta_2=0.999,
    epsilon=1e-07,
    amsgrad=False,
    name='Adam',
    **kwargs
)
```

Result

Weight Initialization

Kernel	Training Accuracy (%)		Validation Accuracy (%)	
Initializer	VGG16	DenseNet121	VGG16	DenseNet121
/lr=1e-3				
He_normal	82.85	76.37	79.28	76.49
glorot_uniform	79.97	76.08	76.97	76.49
(default)				

able1. Training accuracy and validation accuracy on weight initialization.

Result

Weight Initialization

Using "he_normal"

Network: VGG16 and CNN using "glorot_uniform"

Result

Weight Initialization Network: DenseNet 1212and CNN

Using "he normal"

model accuracy (default Adam optimizer) - he normal kernel initializer

model loss (default Adam optimizer) - he normal kernel initializer

using "glorot uniform"

Learning rate (using "he_normal")

Learning	Training Accuracy (%)		Validation Accuracy (%)		
rate	VGG16	DenseNet121	VGG16	DenseNet121	
1e-3	82.58	85.65	76.90	76.56	
1e-4	89.09	82.55	75.27	72.62	
1e-5	84.75	79.16	73.71	72.55	

Table 2. Training accuracy and validation accuracy on different learning rate

Learning rate

Network: VGG16 and CNN

Learning rate

Network: DenseNet121 and CNN

Epsilon

Epsilon/	Training Accuracy (%)		Validation Accuracy (%)	
Lr= 1e-5	VGG16	DenseNet121	VGG16	DenseNet121
1	83.23	46.42	76.63	48.61
0.1	84.8	61.90	74.6	64.35
1e-4	84.51	72.77	74.93	76.82
1e-7	84.75	77.06	73.71	70.79
(default)				
1e-8	85.24	76.78	73.91	71.87

Table2. Training accuracy and validation accuracy on different epsilon value

Epsilon

Network: VGG16 and CNN

Epsilon

Network: VGG16 and CNN

Epsilon

Network: DenseNet121 and CNN

Epsilon

Network: DenseNet121 and CNN

F1 score using "he_normal" Ir=0.001

Densenet121and CNN

	precision	Lecall	T1-Score	Support
class001	0.68	0.64	0.66	494
class002	0.93	0.76	0.84	487
class003	0.65	0.80	0.72	491
accuracy			0.73	1472
macro avg	0.75	0.73	0.74	1472
weighted avg	0.75	0.73	0.74	1472

VGG16 and CNN

	precision	recall	f1-score	support
class001	0.67	0.81	0.74	494
class002	0.94	0.84	0.89	486
class003	0.80	0.71	0.76	492
accuracy			0.79	1472
macro avg	0.80	0.79	0.79	1472
ighted avg	0.80	0.79	0.79	1472

F1 score using "glorot_uniform

" lr=0.001

Densenet121 and CNN

	precision	recall	f1-score	support
class001	0.71	0.54	0.61	482
class002	0.86	0.85	0.86	495
class003	0.67	0.83	0.74	495
accuracy			0.74	1472
macro avg	0.75	0.74	0.74	1472
weighted avg	0.75	0.74	0.74	1472

VGG16 and CNN

	precision	recall	f1-score	support
class001	0.57	0.86	0.69	492
class002	0.84	0.91	0.87	490
class003	0.92	0.39	0.55	490
accuracy			0.72	1472
macro avg	0.78	0.72	0.70	1472
weighted avg	0.78	0.72	0.70	1472

Future work

Combine with Facial Recognition

Use OpenCv for facial detection

Combine with Facial Recognition

Expand to more categories of emotion

increase no of classes from 3 to 8

downside: increase training time (4-6 hour)
 & less accurate (validation accuracy ~50%)

Expand to more categories of emotion

Model with multiple sub branch

 concatenate feature map from more than 1 model(Densenet, resnet, inception) with different combinations.

 cannot achieve within the timeframe of current project

Reference

Reference:

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on ImageNet Classification. *2015 IEEE International Conference on Computer Vision (ICCV)*. https://doi.org/10.1109/iccv.2015.123

Reddi, Sashank J., et al. "On The Convergence Of Adam And Beyond." *ICLR* 2018, 2018, https://doi.org/https://doi.org/10.48550/arXiv.1904.09237.

Thank you!