

MATB24 Quiz8,...

MATB24 QUIZ.8 TUT0022

- (1) [4 marks] In each part, give a complete definition, or mathematical characterization of the word in red
 - An unitary diagonalizable complex matrix

- (2) [5 marks] Give an example of the described object (with justification) or explain why such an example does not exist.
 - A unitarily diagonalizable complex matrix with real eigenvalues

- 3 The elementure of I ISIGR

Onsider the Identity motify I on Its general, a Itemstition of I E Mn(C), because REC matrix will work follows for He spectral thm

3 Notice $I^{\pm} = \bar{L}^{T} = I$, and $I^{\pm}I = II = I$, set I is unitround. at I = I"II I withy, hence I is unitarily diagonalizate

- (3) [6 marks] Answer the following question:
 - Prove that if A is unitarily diagonalizable, and it has real eigenvalues, then A is Hermitian

Let A be an unitarily diagonalizable matrix with real eigenvalues

then A = U*DU where U is uniting and D is diagonal where its entires one the elgenvalues of A, sit DB Mn (IR)

With A is Hermitton, i.e
$$A^{*}=A$$

$$A^{*}=(J^{*}DU)^{*}=(U^{*}DU)^{*}=(U^{*}DU)^{*}=(U^{*}D^{*}U^{*})^{*}$$

$$=U^{*}D^{*}(U^{*})^{*}=U^{*}DU=A, \text{ as required}$$
where $D^{*}=D$, because D is diagonal, set $D^{*}=D$
and $D^{*}_{G}M_{n}(IR)$, set $D^{*}=D$
and $U^{*}_{G}I^{*}=$