and length dimensions can be of virtually any desired measurements and whose height can vary to a considerable extent. It will be understood that the longer the length the greater will be the heat generated, and hence either the greater must be the cooling water flow rate through the tubing, or the larger must be the diameter of the tubing so as to carry enough coolant to remove the heat generated during the process. It will be understood that the paddle may, if desired, be made in two longitudinal sections so that one or more intermediate, mating sections, each with its own length of copper tubing may be added to the paddle to increase or decrease its width as desired, the short lengths of tubing in the added sections being mated to ends of the copper tubing in bend 39. The top end face of the paddle is indicated at 33.

[0031] Referring now to Figures 2 and 3 particularly, the paddle 35 is shown laying flat on the upper surface 32 of table 25, and butted against the front face 31 of backing plate 30 at the table-backing plate junction. The relationship of the front edge 43 and the rear edge 44 of the paddle 35 to the backing plate 30 is shown best in Figure 2.

[0032] A through hardened die block is indicated generally at 50 resting upon the right end portion of paddle 35. The die block, which, in this instance, does not have a shank formed in it, is defined by front side 51, rear side 52, left edge 53, right edge 54, bottom 55 and top 56. As can be appreciated form Figure 3, the entire surface area of the bottom 55 of block 50 is in surface abutting contact with the top surface 33 of the paddle 35.

[0033] It will be noted that the surface area of paddle 35 is considerably larger in both