ASSIGNMENT 11

Presentation On State Transition Diagram

Chetan Sarigala IIIT Raichur

January 7, 2021

Table of contents

- Question
 - options
- 2 Answei
 - multiplexer
 - D flip flop
 - truth table
 - state transition diagram
 - state transition table

Question

The state transition diagram for the following circuit is:

Options

Table of contents

- Questionoptions
- 2 Answer
 - multiplexer
 - D flip flop
 - truth table
 - state transition diagram
 - state transition table

multiplexer

There are total 5 types of multiplexer it varies in no of inputs It is also known as Data Selector

The relation between selctor and no of inputs is $(s = log_2 n)$ if the selector(A) is 0 then the output will be 1 similarly the other therefore, output y can be 1 or 0

D flip flop

The memory element in a sequential circuit is called as a flip flop from the question $D = \overline{Q.y}$

TABLE 1			
clk	D	Q	\overline{Q}
1	0	0	1
1	1	1	0

from the truth table the total possible outputs for Q = 0.1

1) so let us take Q = 0 when the selector A = 0, y = 1
$$D = \overline{Q} + \overline{y}$$

$$= 1 + 0 = 1$$

when the
$$selctor(A)$$
 is 1 then $y = 0$

then
$$D = 1 + 1 = 1$$

2) now take
$$Q=1$$
 when selector $A=0$, output $y=1$ then $D=0+0=0$

when selector
$$A = 1$$
, output $y = 0$

then
$$D = 0 + 1 = 1$$

state transition diagram

the diagram itself explains, the Q=0 state opens door and the transition goes to state Q=1 similarly the transition goes from state Q=1 to Q=0 when the transition condition is A=1.

state transition table

TABLE 2			
Present state	input	Next state	
0	0	0	
0	1	1	
1	0	0	
1	1	1	

THE END

Thank you.

