Fundamental financial concepts

INTRODUCTION TO FINANCIAL CONCEPTS IN PYTHON

Dakota WixomQuantitative Finance Analyst

Course objectives

- The Time Value of Money
- Compound Interest
- Discounting and Projecting Cash Flows
- Making Rational Economic Decisions
- Mortgage Structures
- Interest and Equity
- The Cost of Capital
- Wealth Accumulation

Calculating Return on Investment (% Gain)

$$\operatorname{Return} \left(\% \operatorname{Gain}
ight) = rac{v_{t_2} - v_{t_1}}{v_{t_1}} = r$$

- v_{t_1} : The initial value of the investment at time
- v_{t_2} : The final value of the investment at time

Example

- You invest \$10,000 at time = year 1
- At time = 2, your investment is worth \$11,000

$$\frac{\$11,000 - \$10,000}{\$10,000} * 100 = 10\%$$
 annual return (gain) on :

Calculating Return on Investment (Dollar Value)

$$v_{t_2} = v_{t_1} st (1+r)$$

- v_{t_1} : The initial value of the investment at time
- v_{t_2} : The final value of the investment at time
- r: The rate of return of the investment per period t

Example

- Annual rate of return = 10% = 10/100
- You invest \$10,000 at time = year 1

$$10,000*(1+\frac{10}{100})=11,000$$

Cumulative growth (or depreciation)

- r: The investment's expected rate of return (growth rate)
- t: The lifespan of the investment (time)
- v_{t_0} : The initial value of the investment at time 0

$$\text{Investment Value} = v_{t_0} * (1 + r)^t$$

If the growth rate r is negative, the investment's value will depreciate (shrink) over time.

Discount factors

$$df = rac{1}{(1+r)^t}$$
 $v = fv * df$

- df: Discount factor
- r: The rate of depreciation per period t
- t: Time periods
- ullet v: Initial value of the investment
- fv: Future value of the investment

Compound interest

$$ext{Investment Value} = v_{t_0} * (1 + rac{r}{c})^{t*c}$$

- r: The investment's annual expected rate of return (growth rate)
- t: The lifespan of the investment
- v_{t_0} : The initial value of the investment at time 0
- c: The number of compounding periods per year

The power of compounding returns

Consider a \$1,000 investment with a 10% annual return, compounded quarterly (every 3 months, 4 times per year):

$$\$1,000*(1+rac{0.10}{4})^{1*4}=\$1,103.81$$

Compare this with no compounding:

$$\$1,000*(1+\frac{0.10}{1})^{1*1}=\$1,100.00$$

Notice the extra \$3.81 due to the quarterly compounding?

Exponential growth

Compounded Quarterly Over 30 Years:

$$\$1,000*(1+rac{0.10}{4})^{30*4}=\$19,358.15$$

Compounded Annually Over 30 Years:

$$\$1,000*(1+\frac{0.10}{1})^{30*1}=\$17,449.40$$

Compounding quarterly generates an extra \$1,908.75 over 30 years

Let's practice!

INTRODUCTION TO FINANCIAL CONCEPTS IN PYTHON

Present and future value

INTRODUCTION TO FINANCIAL CONCEPTS IN PYTHON

Dakota WixomQuantitative Finance Analyst

The non-static value of money

Situation 1

- Option A: \$100 in your pocket today
- Option B: \$100 in your pocket tomorrow

Situation 2

- Option A: \$10,000 dollars in your pocket today
- Option B: \$10,500 dollars in your pocket one year from now

Time is money

Your Options

- A: Take the \$10,000, stash it in the bank at 1% interest per year, risk free
- **B**: Invest the \$10,000 in the stock market and earn an average 8% per year
- C: Wait 1 year, take the \$10,500 instead

Comparing future values

- **A**: 10,000 * (1 + 0.01) = 10,100 future dollars
- **B**: 10,000 * (1 + 0.08) = 10,800 future dollars
- **C**: 10,500 future dollars

Present value in Python

Calculate the present value of \$100 received 3 years from now at a 1.0% inflation rate.

```
import numpy as np
np.pv(rate=0.01, nper=3, pmt=0, fv=100)
```

```
-97.05
```

Future value in Python

Calculate the future value of \$100 invested for 3 years at a 5.0% average annual rate of return.

```
import numpy as np
np.fv(rate=0.05, nper=3, pmt=0, pv=-100)
```

115.76

Let's practice!

INTRODUCTION TO FINANCIAL CONCEPTS IN PYTHON

Net present value and cash flows

INTRODUCTION TO FINANCIAL CONCEPTS IN PYTHON

Dakota WixomQuantitative Finance Analyst

Cash flows

Cash flows are a series of gains or losses from an investment over time.

Year	Project 1 Cash Flows	Project 2 Cash Flows
0	-\$100	\$100
1	\$100	\$100
2	\$125	-\$100
3	\$150	\$200
4	\$175	\$300

Assume a 3% discount rate

Year	Cash Flows	Formula	Present Value
0	-\$100	pv(rate=0.03, nper=0, pmt=0, fv=-100)	-100
1	\$100	pv(rate=0.03, nper=1, pmt=0, fv=100)	97.09
2	\$125	pv(rate=0.03, nper=2, pmt=0, fv=125)	117.82
3	\$150	pv(rate=0.03, nper=3, pmt=0, fv=150)	137.27
		/	

Arrays in NumPy

Example:

```
import numpy as np
array_1 = np.array([100,200,300])
print(array_1*2)
```

```
[200 400 600]
```

Net Present Value

Project 1

```
import numpy as np
np.npv(rate=0.03, values=np.array([-100, 100, 125, 150, 175]))
407.67
```

Project 2

```
import numpy as np
np.npv(rate=0.03, values=np.array([100, 100, -100, 200, 300]))
552.40
```

Let's practice!

INTRODUCTION TO FINANCIAL CONCEPTS IN PYTHON

