

$$f_{\gamma}(y) = \lambda e^{-\lambda h \left(\frac{h}{h}\right)} \left(\frac{1}{y}\right) \prod_{h(y) - h(x) \in (0, \infty)} \frac{1}{y} \left(\frac{h(x)}{h(x)}, \infty\right)$$

$$= \lambda e^{-\lambda h \left(\frac{h}{h}\right)} \prod_{\gamma \in (k, \infty)} \frac{1}{y} \left(\frac{h(x)}{h(x)}, \infty\right)$$

$$= \lambda e^{-\lambda h \left(\frac{h}{h}\right)} \prod_{\gamma \in (k, \infty)} \frac{1}{y} \left(\frac{h(x)}{h(x)}, \infty\right)$$

$$= \lambda e^{-\lambda h \left(\frac{h}{h}\right)} \prod_{\gamma \in (k, \infty)} \frac{1}{y} \left(\frac{h(x)}{h(x)}, \infty\right)$$

$$= \lambda e^{-\lambda h \left(\frac{h}{h}\right)} \prod_{\gamma \in (k, \infty)} \frac{1}{y} \left(\frac{h(x)}{h(x)}, \infty\right)$$

$$= \lambda e^{-\lambda h \left(\frac{h}{h}\right)} \prod_{\gamma \in (k, \infty)} \frac{1}{y} \left(\frac{h(x)}{h(x)}, \infty\right)$$

$$= \lambda e^{-\lambda h \left(\frac{h}{h}\right)} \prod_{\gamma \in (k, \infty)} \frac{1}{y} \left(\frac{h(x)}{h(x)}, \infty\right)$$

$$= \lambda e^{-\lambda h \left(\frac{h}{h}\right)} \prod_{\gamma \in (k, \infty)} \frac{1}{y} \left(\frac{h(x)}{h(x)}, \infty\right)$$

$$= \lambda e^{-\lambda h \left(\frac{h}{h}\right)} \prod_{\gamma \in (k, \infty)} \frac{1}{y} \left(\frac{h(x)}{h(x)}, \infty\right)$$

$$= \lambda e^{-\lambda h \left(\frac{h}{h}\right)} \prod_{\gamma \in (k, \infty)} \frac{1}{y} \left(\frac{h(x)}{h(x)}, \infty\right)$$

$$= \lambda e^{-\lambda h \left(\frac{h}{h}\right)} \prod_{\gamma \in (k, \infty)} \frac{1}{y} \left(\frac{h(x)}{h(x)}, \infty\right)$$

$$= \lambda e^{-\lambda h \left(\frac{h}{h}\right)} \prod_{\gamma \in (k, \infty)} \frac{1}{y} \left(\frac{h(x)}{h(x)}, \infty\right)$$

$$= \lambda e^{-\lambda h \left(\frac{h}{h}\right)} \prod_{\gamma \in (k, \infty)} \frac{1}{y} \left(\frac{h(x)}{h(x)}, \infty\right)$$

$$= \lambda e^{-\lambda h \left(\frac{h}{h}\right)} \prod_{\gamma \in (k, \infty)} \frac{1}{y} \left(\frac{h(x)}{h(x)}, \infty\right)$$

$$= \lambda e^{-\lambda h \left(\frac{h}{h}\right)} \prod_{\gamma \in (k, \infty)} \frac{1}{y} \left(\frac{h(x)}{h(x)}, \infty\right)$$

$$= \lambda e^{-\lambda h \left(\frac{h}{h}\right)} \prod_{\gamma \in (k, \infty)} \frac{1}{y} \left(\frac{h(x)}{h(x)}, \infty\right)$$

$$= \lambda e^{-\lambda h \left(\frac{h}{h}\right)} \prod_{\gamma \in (k, \infty)} \frac{1}{y} \left(\frac{h(x)}{h(x)}, \infty\right)$$

$$= \lambda e^{-\lambda h \left(\frac{h}{h}\right)} \prod_{\gamma \in (k, \infty)} \frac{1}{y} \left(\frac{h(x)}{h(x)}, \infty\right)$$

$$= \lambda e^{-\lambda h \left(\frac{h}{h}\right)} \prod_{\gamma \in (k, \infty)} \frac{1}{y} \left(\frac{h(x)}{h(x)}, \infty\right)$$

$$= \lambda e^{-\lambda h \left(\frac{h}{h}\right)} \prod_{\gamma \in (k, \infty)} \frac{1}{y} \left(\frac{h(x)}{h(x)}, \infty\right)$$

$$= \lambda e^{-\lambda h \left(\frac{h}{h}\right)} \prod_{\gamma \in (k, \infty)} \frac{1}{y} \left(\frac{h(x)}{h(x)}, \infty\right)$$

$$= \lambda e^{-\lambda h \left(\frac{h}{h}\right)} \prod_{\gamma \in (k, \infty)} \frac{1}{y} \left(\frac{h(x)}{h(x)}, \infty\right)$$

$$= \lambda e^{-\lambda h \left(\frac{h}{h}\right)} \prod_{\gamma \in (k, \infty)} \frac{1}{y} \left(\frac{h(x)}{h(x)}, \infty\right)$$

$$= \lambda e^{-\lambda h \left(\frac{h}{h}\right)} \prod_{\gamma \in (k, \infty)} \frac{1}{y} \left(\frac{h(x)}{h(x)}, \infty\right)$$

$$= \lambda e^{-\lambda h \left(\frac{h}{h}\right)} \prod_{\gamma \in (k, \infty)} \frac{1}{y} \left(\frac{h(x)}{h(x)}, \infty\right)$$

$$= \lambda e^{-\lambda h \left(\frac{h}{h}\right)} \prod_{\gamma \in (k, \infty)} \frac{1}{h(x)} \prod_{\gamma \in (k, \infty)} \frac{1}{y} \left(\frac{h(x)}{h(x)}, \infty\right)$$

$$= \lambda e^{-\lambda h \left(\frac{h}{h}\right)} \prod_{\gamma \in (k, \infty)} \frac{1}{y} \left(\frac{h(x)}{h(x)}, \infty\right)$$

$$= \lambda e^{-\lambda h \left(\frac{h}{h}\right)} \prod_{\gamma \in (k, \infty)} \frac{1}{y} \left(\frac{h(x)}{h(x)}, \infty\right)$$

Eq. (Q) =
$$\frac{1}{2}(-q)^{-\frac{1}{2}}$$

Let $k=1$, (~ Foreto ((1 χ) = $\frac{1}{2}$) $\frac{1}{2}$ (1.50)

Eq. (Q) = $(1-q)^{\frac{1}{2}}$

Let (a) be % of love anneal if land is owned by reaple who own < a

Let (a) be % of love anneal if $\leq \alpha$

La) = $\frac{1}{2}$ (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (b) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{1}{2}$ (c) $\frac{1}{2}$ (d) $\frac{1}{2}$ (d) $\frac{1}{2}$ (e) $\frac{1}{2}$ (f) $\frac{1}{2}$ (f)

