

DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITE DE COOPÉRATION EN MATIÈRE DE BREVETS (PCT)

(54) Title: VACCINE FOR *NEISSERIA MENINGITIDIS* INFECTIONS

(54) Titre: VACCIN CONTRE LES INFECTIONS A NEISSERIA MENINGITIDIS

(57) Abstract

A pharmaceutical vaccine composition including at least a first and a second human transferrin-binding molecules as therapeutic agents, wherein said first molecule originates from a first *N. meningitidis* strain having a human transferrin receptor of which the lower molecular weight subunit (Tbp2) is recognized by an anti-receptor antiserum of *N. meningitidis* strain 2394 (receptor 2394) but not by an anti-receptor antiserum of *N. meningitidis* strain 2169 (receptor 2169); and at least one second molecule originating from a second *N. meningitidis* strain having a human transferrin receptor of which the lower molecular weight subunit (Tbp2) is recognized by a 2169 anti-receptor antiserum but not by a 2394 anti-receptor antiserum.

(57) Abrégé

Une composition pharmaceutique vaccinale qui comprend à titre d'agents thérapeutiques au moins une première et une deuxième molécules capables de se lier à la transferrine humaine; ladite première molécule ayant pour origine une première souche de *N. meningitidis* qui possède un récepteur de la transferrine humaine dont la sous-unité de poids moléculaire moindre (Tbp2) est reconnue par un antisérum anti-récepteur de la souche *N. meningitidis* 2394 (récepteur 2394) et n'est pas reconnue par un antisérum anti-récepteur de la souche de *N. meningitidis* 2169 (récepteur 2169); et au moins une deuxième molécule ayant pour origine une deuxième souche de *N. meningitidis* qui possède un récepteur de la transferrine humaine dont la sous-unité de poids moléculaire moindre (Tbp2) est reconnue par un antisérum anti-récepteur 2169 et n'est pas reconnue par un antisérum anti-récepteur 2394.

UNIQUEMENT A TITRE D'INFORMATION

**Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures
publiant des demandes internationales en vertu du PCT.**

AT	Autriche	FR	France	MR	Mauritanie
AU	Australie	GA	Gabon	MW	Malawi
BB	Barbade	GB	Royaume-Uni	NL	Pays-Bas
BE	Belgique	GN	Guinée	NO	Norvège
BF	Burkina Faso	GR	Grèce	NZ	Nouvelle-Zélande
BG	Bulgarie	HU	Hongrie	PL	Pologne
BJ	Bénin	IE	Irlande	PT	Portugal
BR	Brésil	IT	Italie	RO	Roumanie
CA	Canada	JP	Japon	RU	Fédération de Russie
CF	République Centrafricaine	KP	République populaire démocratique de Corée	SD	Soudan
CG	Congo	KR	République de Corée	SE	Suède
CH	Suisse	LI	Liechtenstein	SK	République slovaque
CI	Côte d'Ivoire	LK	Sri Lanka	SN	Sénégal
CM	Cameroon	LU	Luxembourg	SU	Union soviétique
CS	Tchécoslovaquie	MC	Monaco	TD	Tchad
CZ	République tchèque	MG	Madagascar	TG	Togo
DE	Allemagne	ML	Malí	UA	Ukraine
DK	Danemark	MN	Mongolie	US	Etats-Unis d'Amérique
ES	Espagne			VN	Viet Nam
FI	Finlande				

Vaccin contre les infections à *Neisseria meningitidis*

5 La présente invention a pour objet une composition pharmaceutique vaccinale destinée à la prévention des méningites causées par *Neisseria meningitidis*.

10 D'une manière générale, les méningites sont soit d'origine virale, soit d'origine bactérienne. Les bactéries principalement responsables sont : *N. meningitidis* et *Haemophilus influenzae*, respectivement impliquées dans environ 40 et 50 % des cas de méningites bactériennes.

15 On dénombre en France, environ 600 à 800 cas par an de méningites à *N. meningitidis*. Aux Etats-Unis, le nombre de cas s'élève à environ 2 500 à 3 000 par an.

20 L'espèce *N. meningitidis* est sub-divisée en sérogroupes selon la nature des polysaccharides capsulaires. Bien qu'il existe une douzaine de sérogroupes, 90 % des cas de méningites sont attribuables à 3 sérogroupes : A, B et C.

25 Il existe des vaccins efficaces à base de polysaccharides capsulaires pour prévenir les méningites à *N. meningitidis* sérogroupes A et C. Ces polysaccharides tels quels ne sont que peu ou pas immunogéniques chez les enfants de moins de 2 ans et n'induisent pas de mémoire immunitaire. Toutefois, ces inconvénients peuvent être surmontés en conjuguant ces polysaccharides à une protéine porteuse.

30 Par contre, le polysaccharide de *N. meningitidis* groupe B n'est pas ou peu immunogène chez l'homme, qu'il soit sous forme conjuguée ou non. Ainsi, il apparaît hautement souhaitable de rechercher un vaccin à l'encontre des méningites induites par *N. meningitidis* notamment du sérogroupe B autre qu'un vaccin à base de polysaccharide.

35 A cette fin, différentes protéines de la membrane externe de *N. meningitidis* ont déjà été proposées. Il s'agit en particulier du récepteur membranaire de la transferrine humaine.

D'une manière générale, la grande majorité des bactéries ont besoin de fer pour leur croissance et elles ont développé des systèmes spécifiques d'acquisition de ce métal. En ce qui concerne notamment *N. meningitidis* qui est un pathogène strict de l'homme, le fer ne peut être prélevé qu'à partir des protéines humaines de transport du fer telles que la transferrine et la lactoferrine puisque la quantité de fer sous forme libre est négligeable chez l'homme (de l'ordre de : 10^{-18} M), en tout cas insuffisante pour permettre la croissance bactérienne.

Ainsi, *N. meningitidis* possède un récepteur de la transferrine humaine et un récepteur de la lactoferrine humaine qui lui permettent de fixer ces protéines chélatrices du fer et de capter par la suite le fer nécessaire à sa croissance.

Le récepteur de la transferrine de la souche *N. meningitidis* B16B6 a été purifié par Schryvers et al (WO 90/12591) à partir d'un extrait membranaire. Cette protéine telle que purifiée apparaît essentiellement constituée de 2 types de polypeptides : un polypeptide d'un poids moléculaire apparent élevé de 100 kD et un polypeptide d'un poids moléculaire apparent moindre d'environ 70 kD, tels que révélés après électrophorèse sur gel de polyacrylamide en présence de SDS.

Le produit de la purification notamment mise en oeuvre par Schryvers est appelé, par définition arbitraire et pour les besoins de la présente demande de brevet, récepteur de la transferrine et les polypeptides le constituant, des sous-unités. Dans la suite du texte, les sous-unités de poids moléculaire élevé et de poids moléculaire moindre sont respectivement appelées Tbp1 et Tbp2.

On a maintenant trouvé qu'il existait au moins 2 types de souches qui diffèrent par la constitution de leurs récepteurs de la transferrine respectifs. Ceci a été mis en évidence en étudiant des extraits membranaires de plus de dizaines de souches de *N. meningitidis* d'origines variées. Ces extraits membranaires ont tout d'abord été soumis à une électrophorèse sur gel de SDS-PAGE, puis électrotransferés sur feuilles de nitrocellulose. Ces feuilles de nitrocellulose ont été incubées :

- a) en présence d'un antisérum de lapin dirigé contre le récepteur de la transferrine purifié à partir de la souche *N. meningitidis* B16B6, aussi appellée 2394 ;
- 5 b) en présence d'un antisérum de lapin dirigé contre le récepteur de la transferrine purifié à partir de la souche *N. meningitidis* 2169 ; ou
- c) en présence de la transferrine humaine conjuguée à la peroxydase.
- 10 En ce qui concerne a) et b), la reconnaissance des sous-unités du récepteur de la transferrine est révélée par addition d'un anticorps anti-immunoglobulines de lapin couplé à la peroxydase, puis par addition du substrat de cette enzyme.
- 15 Les tableaux I et II ci-après dessous indiquent le profil de certaines souches représentatives tel qu'il apparait sur gel de SDS-PAGE à 7,5 % polyacrylamide ; les bandes sont caractérisées par leur poids moléculaire apparent exprimé en kilodaltons (kD) :

	Souches		
Tableau I	2394 (B; 2a:P1.2:I2,3) 2228 (B; nd) 2170 (B; 2a:P1.2:I3)	2234 (Y;nd) 2154 (C; nd) 2448 (B; nd)	550 (C; 2a;) 179 (C; 2a:P1.2)
Détection avec l'antisérum anti-récepteur 2394	93	93	99
Détection avec l'antisérum anti-récepteur 2169	68	69	69
Détection avec la transférine peroxydase			

N.B. : Entre parenthèse sont indiqués dans l'ordre le sérogroupe, le sérotype, le sous-type et l'immunotype.

	Souches								
Tableau II	2169 (B:9:P1.9)	1000 (B:nd)	1604 (B:nd)	132 (C:15:P1.16)	1001 (A:4:P1.9)	876 (B:19:P1.6)	1951 (A:nd)	2449 (B:nd)	867 (B:2b:P1.2)
Détection avec l'antisérum anti-récepteur 2394	96	98	98	98	98	98	96	94	93
Détection avec l'antisérum anti-récepteur 2169	96	98	98	98	98	98	96	94	93
Détection avec la transférine-peroxydase	87	85	83	81	79	79	83	87	85

N.B. : Entre parenthèse sont indiqués dans l'ordre le sérogroupe, le sérotype, le sous-type et l'immunotype.

Les résultats répertoriés dans les 2 premières lignes des tableaux montrent qu'il existe 2 types de souches :

5 Le premier type (Tableau I) correspond à des souches qui possèdent un récepteur dont les 2 sous-unités sont reconnues par l'antisérum anti-récepteur 2394 tandis que seule la sous-unité de haut poids moléculaire est reconnue par l'antisérum anti-récepteur 2169.

10 Le second type (Tableau II) correspond à des souches qui possèdent un récepteur dont les 2 sous-unités sont reconnues par l'antisérum anti-récepteur 2169 tandis que seule la sous-unité de haut poids moléculaire est reconnue par l'antisérum anti-récepteur 2394.

15 En conséquence, il existe une diversité antigénique au niveau de la sous-unité de moindre poids moléculaire. Cette diversité est toutefois restreinte puisqu'elle se résout en 2 grands types, contrairement à ce qui est suggéré par Griffiths et al, FEMS Microbiol. Lett. (1990) 69 : 31.

20 [Par ailleurs, on notera que quelque soit le type de souche, la sous-unité capable de se lier à la transferrine est toujours la sous-unité de moindre poids moléculaire (Tableaux A et B, troisième ligne des résultats).]

25 En vertu de ces constatations, il eut été tentant de conclure qu'un vaccin efficace à l'encontre de toutes les infections à *N. meningitidis* pouvait être constitué de manière suffisante, d'un récepteur de la transferrine ou uniquement de sa sous-unité de haut poids moléculaire, quelle que soit la souche d'origine du récepteur, puisque cette dernière est reconnue par les 2 types d'antisérum.

30 De manière surprenante, on a maintenant trouvé que tel n'était pas le cas dans la mesure où la sous-unité de haut poids moléculaire ne serait pas capable d'induire la production d'anticorps de type neutralisant. Seule la plus petite des 2 sous-unités du récepteur serait capable de remplir cette fonction. Puisque cette sous-unité de moindre poids moléculaire se caractérise par une variation antigénique significative du premier type au deuxième type de souche, un seul type de récepteur de la transferrine ne devrait pas être suffisant pour vacciner contre toutes les infections à *N. meningitidis*.

C'est pourquoi l'invention propose :

- i) Une composition pharmaceutique vaccinale qui comprend à titre d'agents thérapeutiques au moins une première et une deuxième molécules capables de se lier à la transferrine humaine ; ladite première molécule ayant pour origine une première souche de *N. meningitidis* qui possède un récepteur de la transferrine humaine au moins constitué d'une sous-unité de haut poids moléculaire (Tbp1) et d'une sous-unité de poids moléculaire moindre (Tbp2) et dont la sous-unité de poids moléculaire moindre (Tbp2) est reconnue par un antisérum anti-récepteur de la souche *N. meningitidis* 2394 (récepteur 2394) et n'est pas reconnue par un antisérum anti-récepteur de la souche de *N. meningitidis* 2169 (récepteur 2169) ; et ladite deuxième molécule ayant pour origine une deuxième souche de *N. meningitidis* qui possède un récepteur de la transferrine humaine au moins constitué d'une sous-unité de haut poids moléculaire (Tbp1) et d'une sous-unité de poids moléculaire moindre (Tbp2) et dont la sous-unité de poids moléculaire moindre (Tbp2) est reconnue par un antisérum anti-récepteur 2169 et n'est pas reconnue par un antisérum anti-récepteur 2394 ;
- ii) Un kit de vaccination contenant :
 - a) Une composition pharmaceutique qui comprend à titre d'agent thérapeutique au moins une première molécule capable de se lier à la transferrine humaine ; ladite première molécule ayant pour origine une première souche de *N. meningitidis* qui possède un récepteur de la transferrine humaine au moins constitué d'une sous-unité de haut poids moléculaire et d'une sous-unité de poids moléculaire moindre et dont la sous-unité de poids moléculaire moindre est reconnue par un antisérum anti-récepteur de la souche *N. meningitidis* 2394 (récepteur 2394) et n'est pas reconnue par un antisérum anti-récepteur de la souche de *N. meningitidis* 2169 (récepteur 2169) ;
 - b) Une composition pharmaceutique qui comprend à titre d'agent thérapeutique au moins une deuxième molécule capable de se lier à la transferrine humaine ; ladite deuxième molécule ayant pour

5 origine une deuxième souche de *N. meningitidis* qui possède un récepteur de la transferrine humaine au moins constitué d'une sous-unité de haut poids moléculaire et d'une sous-unité de poids moléculaire moindre et dont la sous-unité de poids moléculaire moindre est reconnue par un antisérum anti-récepteur 2169 et n'est pas reconnue par un antisérum anti-récepteur 2394. ; et

10 c) Des instructions pour l'administration concomitante ou consécutive
15 des compositions a) et b) ;

15 iii) L'usage thérapeutique combiné d'au moins une première et une deuxième molécules capables de se lier à la transferrine humaine ; ladite première molécule ayant pour origine une première souche de *N. meningitidis* qui possède un récepteur de la transferrine humaine au moins constitué d'une sous-unité de haut poids moléculaire et d'une sous-unité de poids moléculaire moindre et dont la sous-unité de poids moléculaire moindre est reconnue par un antisérum anti-récepteur de la souche *N. meningitidis* 2394 (récepteur 2394) et n'est pas reconnue par un antisérum anti-récepteur de la souche de *N. meningitidis* 2169 (récepteur 2169) ; et ladite deuxième molécule ayant pour origine une deuxième souche de *N. meningitidis* qui possède un récepteur de la transferrine humaine au moins constitué d'une sous-unité de haut poids moléculaire et d'une sous-unité de poids moléculaire moindre et dont la sous-unité de poids moléculaire moindre est reconnue par un antisérum anti-récepteur 2169 et n'est pas reconnue par un antisérum anti-récepteur 2394 ; et

20

25 iv) Une méthode de vaccination à l'encontre des infections à *N. meningitidis*, qui comprend l'acte d'administrer une quantité efficace d'un point de vue thérapeutique d'au moins une première et une deuxième molécules capables de se lier à la transferrine humaine, de manière concomitante ou consécutive, à un sujet ayant besoin d'un tel traitement vaccinal ; ladite première molécule ayant pour origine une première souche de *N. meningitidis* qui possède un récepteur de la transferrine humaine au moins constitué d'une sous-unité de haut poids moléculaire et d'une sous-unité de poids moléculaire moindre et dont la sous-unité de poids moléculaire moindre est reconnue par un antisérum anti-récepteur de la

souche *N. meningitidis* 2394 (récepteur 2394) et n'est pas reconnue par un antisérum anti-récepteur de la souche de *N. meningitidis* 2169 (récepteur 2169) ; et ladite deuxième molécule ayant pour origine une deuxième souche de *N. meningitidis* qui possède un récepteur de la transferrine humaine au moins constitué d'une sous-unité de haut poids moléculaire et d'une sous-unité de poids moléculaire moindre et dont la sous-unité de poids moléculaire moindre est reconnue par un antisérum anti-récepteur 2169 et n'est pas reconnue par un antisérum anti-récepteur 2394.

10

Par "molécule capable de se lier à la transferrine humaine", on entend soit un récepteur de la transferrine humaine ayant pour origine *N. meningitidis* (c'est-à-dire une molécule comprenant notamment 2 types de sous-unités) soit uniquement la sous-unité du récepteur, capable de se lier à la transferrine humaine, ainsi qu'un fragment ou un analogue de cette sous-unité.

Un récepteur de la transferrine peut être obtenu sous forme purifiée à partir d'une souche de *N. meningitidis* préalablement cultivée dans un milieu carencé en fer sous forme libre, notamment selon la méthode de Schryvers et al, WO 90/12591, décrite de manière similaire dans Schryvers et al, Infect. Immun. (1988) 56 (5) : 1144. De manière alternative, un récepteur de la transferrine ayant pour origine une souche de *N. meningitidis* peut être produit en mettant en oeuvre les techniques du génie génétique. Le ou les fragments d'ADN codant pour les sous-unités du récepteur peuvent être exprimés conjointement ou séparément dans un système d'expression hétérologue (e.g. bactérie, levure, cellule de mammifère). Les sous-unités sous forme libre ou associées sous forme de récepteur sont dans ce cas-là recueillies à partir d'une culture et purifiées. Lorsque les sous-unités sont ainsi produites sous forme libre, on peut prévoir de les réassocier sous forme de récepteur en les soumettant à un traitement approprié.

La sous-unité capable de se lier à la transferrine humaine (sous-unité de moindre poids moléculaire) peut être obtenue sous forme purifiée (c'est-à-dire dissociée et isolée de la sous-unité de haut poids moléculaire) notamment à partir d'un récepteur purifié selon la méthode de Schryvers et al, en soumettant le récepteur à l'action d'un agent fortement dénaturant tel que l'urée 8M ou la guanidine HCl 6M, puis en séparant les sous-unités dissociées par des méthodes

chromatographiques classiques telles qu'une chromatographie d'échange d'ions ou de gel de filtration. De manière alternative, la sous-unité peut être produite selon les méthodes du génie génétique. Ces méthodes sont en outre parfaitement adaptées à la production des fragments ou des analogues de la sous-unité.

A titre d'exemple, les sous-unités Tbp1 et Tbp2 des souches 2394 et 2169 sont décrites par référence à leurs séquences d'acides aminés telles que montrées dans les identificateurs de séquences n° 1 à 4 (SEQ ID N° 1 à 4).

Par "fragment de la sous-unité capable de se lier à la transferrine humaine", on signifie un peptide ayant une séquence d'acides aminés qui est incluse dans la séquence de la sous-unité. Par "anologue de la sous-unité capable de se lier à la transferrine humaine", on signifie une protéine ayant une séquence d'acides aminés qui présente un degré d'homologie d'au moins 80 %, de préférence d'au moins 90 %, de manière tout à fait préférée d'au moins 95 % avec la séquence de la sous-unité. Aux fins de la présente invention, il est bien entendu qu'un tel fragment ou un tel analogue doit conserver les propriétés immunogènes de la sous-unité.

Les souches de *N. meningitidis* 2394 (B:2a:P1.2:L2.3) et 2169 (B:9:P1.9:L3.7), communément utilisées dans les laboratoires, sont publiquement disponibles auprès de la Collection de l'Institut Pasteur, 25 rue du Dr Roux 75015 Paris sous les numéros d'enregistrement respectifs CIP 7908 et CIP 7917.

De plus, les antisérum anti-récepteur qui sont requis afin de discriminer les souches de *N. meningitidis* peuvent être obtenus comme suit :

Un récepteur est tout d'abord purifié à partir d'une souche initiale (2394 ou 2169), selon la méthode de Schryvers et al. Des lapins néozélandais albinos reçoivent par voie sous-cutanée et intramusculaire 100 µg du récepteur en présence d'adjuvant complet de Freund. 21 jours et 42 jours après la première injection, les lapins reçoivent à nouveau 100 µg du récepteur purifié mais ces fois-ci en présence d'adjuvant incomplet de Freund. 15 jours après la dernière injection, le sérum des animaux est prélevé, puis décomplémenté et filtré sur une membrane de porosité 0,45 µm. Le filtrat est par la suite épuisé par contact

5 avec la souche initiale qui pour se faire, a été cultivée au préalable en présence de fer (dans ces conditions, la synthèse du récepteur de la transferrine est réprimée). Les modalités de contact sont comme suit : 10 ml du filtrat sont ajoutés à 10^{10} cfu (unités formant des colonies) d'une culture de la souche initiale. L'adsorption est poursuivie une nuit à 4°C, sous agitation. Les bactéries sont ensuite éliminées par centrifugation. Le surnageant est récupéré puis soumis à nouveau à 2 opérations d'adsorption successives comme précédemment décrit.

10 10 Le type d'une souche (vis-à-vis de la nature de son récepteur de la transferrine) peut être identifié à partir d'extraits membranaires derivés de cultures carencées en fer sous forme libre, en mettant en oeuvre des techniques conventionnelles telles que l'électrophorèse sur gel de SDS-PAGE, poursuivie par un immunoblotting utilisant un antisérum tel que précédemment décrit.

15 15 La première molécule entrant dans la composition vaccinale a pour origine une première souche de *N. meningitidis* qui possède un récepteur de la transferrine essentiellement constitué (i) d'une sous-unité de haut poids moléculaire, de manière avantageuse de 100 à 90 kD, de préférence de 93-95 kD environ et (ii) d'une sous-unité de moindre poids moléculaire, de manière avantageuse de 75 à 60 kD, de préférence de 72 à 65 kD, et de manière tout à fait préférée respectivement (i) de 93 kD et (ii) de 67-70 kD environ.

20 20 La deuxième molécule entrant dans la composition vaccinale a pour origine une deuxième souche de *N. meningitidis* qui possède un récepteur de la transferrine essentiellement constitué (i) d'une sous-unité de haut poids moléculaire, de manière avantageuse de 100 à 90 kD, de préférence de 100 à 95 kD, de manière tout à fait préférée de 98 kD environ et (ii) d'une sous-unité de moindre poids moléculaire, de manière avantageuse de 90 à 80 kD, de préférence de 87 à 85 kD, de manière tout à fait préférée de 87 kD environ.

25 30 35 Les poids moléculaires indiqués ci-avant sont des poids moléculaires apparents tels que révélés après électrophorèse d'un récepteur purifié sur gel de SDS-PAGE. Une telle électrophorèse peut être mise en oeuvre selon la méthode de Laemmli illustrée comme suit :

On prépare tout d'abord un gel de polyacrylamide (16 cm x 20 cm x 1 mm d'épaisseur) comprenant un prégel à 5 % et un gel séparateur à 7,5 % dans du tampon d'électrophorèse (Tris 6 g/l, glycine 28,8 g/l, SDS 0,1 %).

5 D'autre part, à 50 µl d'une solution de récepteur purifié à 0,6 mg/ml (dans le tampon phosphate 50 mM pH 8.0 contenant du Sarkosyl à 0,05 %) sont ajoutés 50 µl de tampon échantillon (Tris-HCl 62 mM pH 6.8, SDS 2 %, β-mercaptopéthanol 5 %, glycérol 1 %, bleu de bromophénol 0,001 %). Le mélange est incubé pendant 5 min dans un bain d'eau en ébullition. 17 µl (soit 5 µg de protéine) de l'échantillon ainsi préparé sont déposés dans un puits du gel. On ajoute en parallèle, un échantillon préparé de manière similaire qui contient des marqueurs de poids moléculaire. L'électrophorèse est réalisée en tampon d'électrophorèse à 50 Volts pendant 15 heures. Le gel est fixé et coloré au bleu de Coomassie.

15 D'une manière générale, la première ou la deuxième molécule utile aux fins de la présente invention peut avoir pour origine une souche de *N. meningitidis* de n'importe quel sérogroupe. De manière avantageuse, la première ou la deuxième molécule a pour origine une souche de *N. meningitidis* sérogroupe B. De préférence, la première et la deuxième molécules ont respectivement pour origine une première et une deuxième souches de *N. meningitidis* sérogroupe B.

25 Selon un aspect de l'invention tout à fait préféré, la première molécule a pour origine la souche 2394 tandis que la deuxième molécule a pour origine la souche 2169.

30 Une composition pharmaceutique selon l'invention peut être fabriquée de manière conventionnelle. En particulier on associe le ou les agents thérapeutiques selon l'invention avec un diluant ou un support acceptable d'un point de vue pharmaceutique. Une composition selon l'invention peut être administrée par n'importe quelle voie conventionnelle en usage dans le domaine des vaccins, en particulier par voie sous-cutanée, par voie intramusculaire ou par voie intra-veineuse, par exemple sous forme de suspension injectable. L'administration peut avoir lieu en dose unique ou répétée une ou

plusieurs fois après un certain délai d'intervalle. Le dosage approprié varie en fonction de divers paramètres, par exemple, de l'individu traité ou du mode d'administration.

5 L'invention est décrite plus en détails dans les exemples ci-après et par référence à la Figure 1, qui représente une électrophorèse en gel SDS-PAGE en polyacrylamide 7,5 % dans laquelle les colonnes A et B correspondent aux récepteurs des souches *N. meningitidis* 2169 et 2394, respectivement. Les flèches à l'horizontale indiquent l'emplacement des protéines témoins de masse moléculaire apparente connue (94 kD, phosphorilase B ; 67 kD, albumine).

10

EXEMPLE 1 : Purification du récepteur de la transferrine à partir de la souche 2394

1A - Culture

5

Un lyophilisat de la souche *N. meningitidis* 2394 est repris dans environ 1 ml de bouillon Mueller-Hinton (BMH, Difco). La suspension bactérienne est ensuite étalée sur le milieu solide Muller-Hinton contenant du sang cuit (5 %).

10

Après 24 h d'incubation à 37°C dans une atmosphère contenant 10 % de CO₂, la nappe bactérienne est recueillie pour ensemencer 150 ml de BMH pH 7,2, répartis en 3 erlens de 250 ml. L'incubation est poursuivie pendant 3 h à 37°C sous agitation. Chacune des 3 cultures ainsi réalisées permet d'ensemencer 400 ml de BMH pH 7,2 supplémentés avec 30 µm d'éthylènediamine - di (O-hydroxyphenyl - acetic acid) (EDDA, Sigma), qui est un agent chélatant du fer sous forme libre.

20

Après 16 h de culture à 37°C sous agitation, les cultures sont contrôlées pour leur pureté par observation au microscope après une coloration de Gram. La suspension est centrifugée, le culot contenant les germes est pesé et conservé à -20°C.

1B - Purification

25

La méthode de purification est essentiellement telle que décrite par Schryvers et al (supra).

30

35

Le culot bactérien obtenu en 1A est décongelé, puis remis en suspension dans 200 ml de tampon Tris HCl 50 mM, pH 8.0 (tampon A). La suspension est centrifugée pendant 20 min à 15 000 xg à 4°C. Le culot est récupéré, puis remis en suspension dans du tampon A à la concentration finale de 150 g/l. Des fractions de 150 ml sont traitées pendant 8 min à 800 bars dans un lyseur de cellules travaillant sous haute pression (Rannie, modèle 8.30H). Le lysat cellulaire ainsi obtenu est centrifugé pendant 15 min à 4°C à 15 000 xg. Le surnageant est récupéré, puis centrifugé pendant 75 min à 4°C à 200 000 xg.

Après élimination du surnageant, le culot est repris dans du tampon A et après dosage de protéines selon Lowry, la concentration de la suspension est ajustée à 5 mg/ml.

5 A 1,4 ml de la suspension de membranes on ajoute 1,75 mg de transferrine humaine biotynylée selon le procédé décrit par Schryvers. La concentration finale de la fraction membranaire est de 4 mg/ml. Le mélange est incubé 1 heure à 37°C puis centrifugé à 100 000 xg pendant 75 min à 4°C. Le culot de membranes est repris par le tampon A contenant du NaCl 0,1M et incubé 10 pendant 60 min à température ambiante.

15 Après solubilisation, on ajoute à cette suspension un certain volume de N Lauroyl Sarkosine à 30 % (p/v) et d'EDTA 500 mM de façon que les concentrations finales en Sarkosyl et EDTA soient de 0,5 % et 5 mM respectivement. Après une incubation de 15 min à 37°C sous agitation, on ajoute 1 ml de résine streptavidine-agarose (Pierce) préalablement lavée en tampon A. La suspension est incubée 15 min à température ambiante puis centrifugée à 1 000 xg pendant 10 min. La résine est ensuite conditionnée dans une colonne et l'éluat direct est éliminé.

20 La résine est lavée par 3 volumes de colonnes de tampon Tris-HCl 50 mM pH 8.0 contenant NaCl 1M, EDTA 10 mM Sarkosyl 0,5 % (tampon B) puis par un volume de colonne de tampon B contenant de la guanidine HCl 750 mM. Le récepteur de la transferrine est ensuite élué par le tampon B contenant de la guanidine HCl 2M Sarkosyl 0,05 %. L'éluat est collecté en fraction dont le volume correspond à 1 Vol., dans des tubes contenant 1 Vol. de Tris HCl 50 mM pH 8.0, NaCl 1M. La densité optique à 280 nm de l'éluat est mesurée en sortie de colonne à l'aide d'un détecteur UV.

25 30 Les fractions correspondant au pic d'élution sont recueillies, dialysées contre du tampon phosphate 10 mM, pH 8.0 contenant du Sarkosyl 0,05 % et lyophilisées. Le lyophilisat est repris dans de l'eau à une concentration 10 fois supérieure. La solution est dialysée une seconde fois contre du tampon phosphate 50 mM pH 8.0 contenant du Sarkosyl 0,05 % (tampon C) puis la 35 solution est filtrée sur une membrane de porosité 0,22 µm.

Le contenu en protéines est déterminé et ajusté à 1 mg/ml par addition de tampon C, sous conditions aseptiques. Cette préparation est conservée à -70°C.

5

EXEMPLE 2 : Purification du récepteur de la transferrine à partir de la souche 2169.

10 La culture de la souche 2169 et la purification du récepteur de la transferrine sont effectuées dans des conditions identiques à celles décrites dans l'Exemple 1.

15 EXEMPLE 3 : Composition pharmaceutique vaccinale destinée à prévenir des infections à *N. meningitidis*.

Les solutions stériles obtenues dans les Exemples 1 et 2 sont décongelées. Afin de préparer un litre de vaccin renfermant 100 µg/ml de chacun des principes actifs, on mélange stérilement les solutions suivantes :

20

- Solution de récepteur 2394 à 1 mg/ml dans du tampon C 100 ml

25

- Solution de récepteur 2169 à 1 mg/ml dans du tampon C 100 ml

30

- Eau physiologique tamponnée (PBS) à pH 6.0 300 ml

- Hydroxyde d'aluminium à 10 mg Al⁺⁺⁺/ml 50 ml

35

- Mertthiolate à 1 % (p/v) dans du PBS 10 ml

- PBS qsp 1000 ml

EXEMPLE 4 : Mise en évidence de l'importance de la sous-unité de moindre poids moléculaire à titre d'agent vaccinal.

Des lapins néozélandais albinos reçoivent par voie sous-cutanée et
5 intramusculaire 100 µg du récepteur 2394 ou 2169 (tel que obtenu dans
l'Exemple 1 ou 2) en présence d'adjuvant complet de Freund. 21 jours et
42 jours après la première injection, les lapins reçoivent à nouveau 100 µg du
10 récepteur purifié mais ces fois-ci en présence d'adjuvant incomplet de Freund.
15 jours après la dernière injection, le sérum de animaux est prélevé, puis
décomplémenté et filtré sur une membrane de porosité 0,45 µm. Le filtrat est
par la suite épuisé par contact avec la souche initiale (2394 ou 2169) qui pour se
faire, a été cultivée au préalable en présence de fer sous forme libre (dans ces
conditions, la synthèse du récepteur de la transferrine est réprimée). Les
modalités de contact sont comme suit : 10 ml du filtrat sont ajoutés à 10¹⁰ cfu
15 (unités formant des colonies) d'une culture de la souche initiale. L'adsorption
est poursuivie une nuit à 4°C, sous agitation. Les bactéries sont ensuite
éliminées par centrifugation. Le surnageant est récupéré puis soumis à nouveau
à 2 opérations d'adsorption successives comme précédemment décrit.

20 Une gamme de dilution de chacun des antisérum anti-récepteur 2394 et
anti-récepteur 2169 est préparée en milieu M199 (Gibco). 200 µl de chaque
dilution sont déposés dans les puits d'une macroplaqué de titrage (8x12in.). Un
éssai témoin est réalisé avec 200 µl de milieu M199. Dans chacuns des puits on
ajoute (i) 100 µl d'une culture en phase de croissance exponentielle d'une
25 souche de *N. meningitidis*, en milieu Mueller-Hinton complémenté à 30 µM
EDDA et (ii) 100 µl de complément (sérum de jeune lapin dilué).

30 Après 30 min d'incubation à 37°C sous agitation douce, on ajoute dans
chaque puits, 1 ml de milieu Mueller-Hinton contenant 1 ml d'agar noble en
surfusion. Après solidification du milieu, l'incubation est poursuivie 18-24 hrs à
37°C ; puis le nombre d'unités formant des colonies dans chaque puits est
évalué. L'inverse de la dernière dilution d'antisérum en présence de laquelle on
observe 50 % de lyse par rapport au témoin, correspond au titre bactéricide.

Les résultats sont présentés dans le Tableau III ci-dessous :

Activité Bactéricide					
	Lapin n° 1		Lapin n° 2		
5	Sérum avant immunisation 2394	Antisérum anti-récepteur	Sérum avant immunisation 2169	Antisérum anti-récepteur	
10	2394	< 8	2048	< 8	< 8
	2228	< 8	1024	< 8	< 8
	2154	< 8	2048	< 8	< 8
	2234	< 8	2048	< 8	< 8
	2448	< 8	256	< 8	< 4
	2169	< 16	< 16	< 8	1024
	896	< 8	< 8	< 8	65

15

20

L'antisérum anti-récepteur 2394 a une activité bactéricide uniquement à l'encontre des souches du premier type tel que défini dans la présente demande (2394, 2228, 2154, 2234 et 2448) tandis que l'antisérum anti-récepteur 2169 a une activité bactéricide uniquement à l'encontre des souches du second type (2169 et 876). Ceci suggère fortement que la production d'anticorps neutralisants est essentiellement induite par la sous-unité de moindre poids moléculaire qui porte la variabilité antigénique.

SEQ ID NO : 1

Objet : Séquence d'acides aminés de la sous-unité Tbp2 *N. meningitidis* 2394.

Cys	Leu	Gly	Gly	Gly	Ser	Phe	Asp	Leu	Asp	Ser	Val	Glu	Thr	
1				5				10				15		
Val	Gln	Asp	Met	His	Ser	Lys	Pro	Lys	Tyr	Glu	Asp	Glu	Ser	
				20				25				30		
Gln	Pro	Glu	Ser	Gln	Gln	Asp	Val	Ser	Glu	Asn	Ser	Gly	Ala	Ala
				35				40				45		
Tyr	Gly	Phe	Ala	Val	Lys	Leu	Pro	Arg	Arg	Asn	Ala	His	Phe	Asn
				50				55				60		
Pro	Lys	Tyr	Lys	Glu	Lys	His	Lys	Pro	Leu	Gly	Ser	Met	Asp	Trp
				65				70				75		
Lys	Lys	Leu	Gln	Arg	Gly	Glu	Pro	Asn	Ser	Phe	Ser	Glu	Arg	Asp
				80				85				90		
Glu	Leu	Glu	Lys	Lys	Arg	Gly	Ser	Ser	Glu	Leu	Ile	Glu	Ser	Lys
				95				100				105		
Trp	Glu	Asp	Gly	Gln	Ser	Arg	Val	Val	Gly	Tyr	Thr	Asn	Phe	Thr
				110				115				120		
Tyr	Val	Arg	Ser	Gly	Tyr	Val	Tyr	Leu	Asn	Lys	Asn	Ile	Asp	
				125				130				135		
Ile	Lys	Asn	Asn	Ile	Val	Leu	Phe	Gly	Pro	Asp	Gly	Tyr	Leu	Tyr
				140				145				150		
Tyr	Lys	Gly	Lys	Glu	Pro	Ser	Lys	Glu	Leu	Pro	Ser	Glu	Lys	Ile
				155				160				165		
Thr	Tyr	Lys	Gly	Thr	Trp	Asp	Tyr	Val	Thr	Asp	Ala	Met	Glu	Lys
				170				175				180		
Gln	Arg	Phe	Glu	Gly	Leu	Gly	Ser	Ala	Ala	Gly	Gly	Asp	Lys	Ser
				185				190				195		
Gly	Ala	Leu	Ser	Ala	Leu	Glu	Gly	Val	Leu	Arg	Asn	Gln	Ala	
				200				205				210		
Glu	Ala	Ser	Ser	Gly	His	Thr	Asp	Phe	Gly	Met	Thr	Ser	Glu	Phe
				215				220				225		
Glu	Val	Asp	Phe	Ser	Asp	Lys	Thr	Ile	Lys	Gly	Thr	Leu	Tyr	Arg
				230				235				240		
Asn	Asn	Arg	Ile	Thr	Gln	Asn	Asn	Ser	Glu	Asn	Lys	Gln	Ile	Lys
				245				250				255		

Thr Thr Arg Tyr Thr Ile Gln Ala THr Leu His Gly Asn Arg Phe
 260 265 270
 Lys Gly Lys Ala Leu Ala Ala Asp Lys Gly Ala Thr Asn Gly Ser
 275 280 285
 His Pro Phe Ile Ser Asp Ser Asp Ser Leu Glu Gly Gly Phe Tyr
 290 295 300
 Gly Pro Lys Gly Glu Glu Leu Ala Gly Lys Phe Leu Ser Asn Asp
 305 310 315
 Asn Lys Val Ala Ala Val Phe Gly Ala Lys Gln Lys Asp Lys Lys
 320 325 330
 Asp Gly Glu Asn Ala Ala Gly Pro Ala Thr Glu Thr Val Ile Asp
 335 340 345
 Ala Tyr Arg Ile Thr Gly Glu Glu Phe Lys Lys Glu Gln Ile Asp
 350 355 360
 Ser Phe Gly Asp Val Lys Lys Leu Leu Val Asp Gly Val Glu Leu
 365 370 375
 Ser Leu Leu Pro Ser Glu Gly Asn Lys Ala Ala Phe Gln His Glu
 380 385 390
 Ile Glu Gln Asn Gly Val Lys Ala Thr Val Cys Cys Ser Asn Leu
 395 400 405
 Asp Tyr Met Ser Phe Gly Lys Leu Ser Lys Gku Asn Lys Asp Asp
 410 415 420
 Met Phe Leu Gln Gly Val Arg Thr Pro Val Ser Asp Val Ala Ala
 425 430 435
 Arg Thr Glu Ala Lys Tyr Arg Gly Thr Gly Thr Trp Tyr Gly Tyr
 440 445 450
 Ile Ala Asn Gly Thr Ser Trp Ser Gly Glu Ala Ser Asn Gln Glu
 455 460 465
 Gly Gly Asn Arg Ala Glu Phe Asp Val Asp Phe Ser Thr Lys Lys
 470 475 480
 Ile Ser Gly Thr Leu Thr Ala Lys Asp Arg Thr Ser Pro Ala Phe
 485 490 495
 Thr Ile Thr Ala Met Ile Lys Asp Asn Gly Phe Ser Gly Val Ala
 500 505 510
 Lys Thr Gly Glu Asn Gly Phe Ala Leu Asp Pro Gln Asn Thr Gly
 515 520 525
 Asn Ser His Tyr Thr His Ile Glu Ala Thr Val Ser Gly Gly Phe
 530 535 540
 Tyr Gly Lys Asn Ala Ile Glu Met Gly Gly Ser Phe Ser Phe Pro
 545 550 555
 Gly Asn Ala Pro Glu Gly Lys Gln Glu Lys Ala Ser Val Val Phe
 560 565 570
 Gly Ala Lys Arg Gln Gln Leu Val Gln
 575

SEQ ID NO : 2

Objet : Séquence d'acides aminés de la sous-unité Tbpl de *N. meningitidis* 2394.

Glu	Asn	Val	Gln	Ala	Glu
1					5
Gln Ala Gln Glu Lys Gln Leu Asp Thr Ile Gln Val Lys Ala Lys					
10		15			20
Lys Gln Lys Thr Arg Arg Asp Asn Glu Val Thr Gly Leu Gly Lys					
25		30			35
Leu Val Lys Ser Ser Asp Thr Leu Ser Lys Glu Gln Val Leu Asn					
40		45			50
Ile Arg Asp Leu Thr Arg Tyr Asp Pro Gly Ile Ala Val Val Glu					
55		60			65
Gln Gly Arg Gly Ala Ser Ser Gly Tyr Ser Ile Arg Gly Met Asp					
70		75			80
Lys Asn Arg Val Ser Leu Thr Val Asp Gly Val Ser Gln Ile Gln					
85		90			95
Ser Tyr Thr Ala Gln Ala Ala Leu Gly Gly Thr Arg Thr Ala Gly					
100		105			110
Ser Ser Gly Ala Ile Asn Glu Ile Glu Tyr Glu Asn Val Lys Ala					
115		120			125
Val Glu Ile Ser Lys Gly Ser Asn Ser Ser Glu Tyr Gly Asn Gly					
130		135			140
Ala Leu Ala Gly Ser Val Ala Phe Gln Thr Lys Thr Ala Ala Asp					
145		150			155
Ile Ile Gly Glu Gly Lys Gln Trp Gly Ile Gln Ser Lys Thr Ala					
160		165			170
Tyr Ser Gly Lys Asp His Ala Leu Thr Gln Ser Leu Ala Leu Ala					
175		180			185
Gly Arg Ser Gly Gly Ala Glu Ala Leu Leu Ile Tyr Thr Lys Arg					
190		195			200
Arg Gly Arg Glu Ile His Ala His Lys Asp Ala Gly Lys Gly Val					
205		210			215
Gln Ser Phe Asn Arg Leu Val Leu Asp Glu Asp Lys Lys Glu Gly					
220		225			230
Gly Ser Gln Tyr Arg Tyr Phe Ile Val Glu Glu Glu Cys His Asn					
235		240			245
Gly Tyr Ala Ala Cys Lys Asn Lys Leu Lys Glu Asp Ala Ser Val					
250		255			260

Lys Asp Glu Arg Lys Thr Val Ser Thr Gln Asp Tyr Thr Gly Ser
 265 270 275
 Asn Arg Leu Leu Ala Asn Pro Leu Glu Tyr Gly Ser Gln Ser Trp
 280 285 290
 Leu Phe Arg Pro Gly Trp His Leu Asp Asn Arg His Tyr Val Gly
 295 300 305
 Ala Val Leu Glu Arg Thr Gln Gln Thr Phe Asp Thr Arg Asp Met
 310 315 320
 Thr Val Pro Ala Tyr Phe Thr Ser Glu Asp Tyr Val Pro Gly Ser
 325 330 335
 Leu Lys Gly Leu Gly Lys Tyr Ser Gly Asp Asn Lys Ala Glu Arg
 340 345 350
 Leu Phe Val Gln Gly Glu Gly Ser Thr Leu Gln Gly Ile Gly Tyr
 355 360 365
 Gly Thr Gly Val Phe Tyr Asp Glu Arg His Thr Lys Asn Arg Tyr
 370 375 380
 Gly Val Glu Tyr Val Tyr His Asn Ala Asp Lys Asp Thr Trp Ala
 385 390 395
 Asp Tyr Ala Arg Leu Ser Tyr Asp Arg Gln Gly Ile Asp Leu Asp
 400 405 410
 Asn Arg Leu Gln Gln Thr His Cys Ser His Asp Gly Ser Asp Lys
 415 420 425
 Asn Cys Arg Pro Asp Gly Asn Lys Pro Tyr Ser Phe Tyr Lys Ser
 430 435 440
 Asp Arg Met Ile Tyr Glu Glu Ser Arg Asn Leu Phe Gln Ala Val
 445 450 455
 Phe Lys Lys Ala Phe Asp Thr Ala Lys Ile Arg His Asn Leu Ser
 460 465 470
 Ile Asn Leu Gly Tyr Asp Arg Phe Lys Ser Gln Leu Ser His Ser
 475 480 485
 Asp Tyr Tyr Leu Gln Asn Ala Val Gln Ala Tyr Asp Leu Ile Thr
 490 495 500
 Pro Lys Lys Pro Pro Phe Pro Asn Gly Ser Lys Asp Asn Pro Tyr
 505 510 515
 Arg Val Ser Ile Gly Lys Thr Thr Val Asn Thr Ser Pro Ile Cys
 520 525 530
 Arg Phe Gly Asn Asn Thr Tyr Thr Asp Cys Thr Pro Arg Asn Ile
 535 540 545
 Gly Gly Asn Gly Tyr Tyr Ala Ala Val Gln Asp Asn Val Arg Leu
 550 555 560
 Gly Arg Trp Ala Asp Val Gly Ala Gly Ile Arg Tyr Asp Tyr Arg
 565 570 575
 Ser Thr His Ser Glu Asp Lys Ser Val Ser Thr Gly Thr His Arg
 580 585 590

Asn Leu Ser Trp Asn Ala Gly Val Val Leu Lys Pro Phe Thr Trp
595 600 605

Met Asp Leu Thr Tyr Arg Ala Ser Thr Gly Phe Arg Leu Pro Ser
610 615 620

Phe Ala Glu Met Tyr Gly Trp Arg Ala Gly Glu Ser Leu Lys Thr
625 630 635

Leu Asp Leu Lys Pro Glu Lys Ser Phe Asn Arg Glu Ala Gly Ile
640 645 650

Val Phe Lys Gly Asp Phe Gly Asn Leu Glu Ala Ser Tyr Phe Asn
655 660 665

Asn Ala Tyr Arg Asp Leu Ile Ala Phe Gly Tyr Glu Thr Arg Thr
670 675 680

Gln Asn Gly Gln Thr Ser Ala Ser Gly Asp Pro Gly Tyr Arg Asn
685 690 695

Ala Gln Asn Ala Arg Ile Ala Gly Ile Asn Ile Leu Gly Lys Ile
700 705 710

Asp Trp His Gly Val Trp Gly Gly Leu Pro Asp Gly Leu Tyr Ser
715 720 725

Thr Leu Ala Tyr Asn Arg Ile Lys Val Lys Asp Ala Asp Ile Arg
730 735 740

Ala Asp Arg Thr Phe Val Thr Ser Tyr Leu Phe Asp Ala Val Gln
745 750 755

Pro Ser Arg Tyr Val Leu Gly Leu Gly Tyr Asp His Pro Asp Gly
760 765 770

Ile Trp Gly Ile Asn Thr Met Phe Thr Tyr Ser Lys Ala Lys Ser
775 780 785

Val Asp Glu Leu Leu Gly Ser Gln Ala Leu Leu Asn Gly Asn Ala
790 795 800

Asn Ala Lys Ala Ala Ser Arg Arg Thr Arg Pro Trp Tyr Val
805 810 815

Thr Asp Val Ser Gly Tyr Tyr Asn Ile Lys Lys His Leu Thr Leu
820 825 830

Arg Ala Gly Val Tyr Asn Leu Leu Asn Tyr Arg Tyr Val Thr Trp
835 840 845

Glu Asn Val Arg Gln Thr Ala Gly Gly Ala Val Asn Gln His Lys
850 855 860

Asn Val Gly Val Tyr Asn Arg Tyr Ala Ala Pro Gly Arg Asn Tyr
865 870 875

Thr Phe Ser Leu Glu Met Lys Phe
880

SEQ ID NO : 3

Objet : Séquence d'acides aminés de la sous-unité Tbp1 de *N. meningitidis* 2169.

	Glu	Asn	Val	Gln	Ala	Gly								
	1					5								
Gln	Ala	Gln	Glu	Lys	Gln	Leu	Asp	Thr	Ile	Gln	Val	Lys	Ala	Gly
	10					15							20	
Lys	Gln	Lys	Thr	Arg	Arg	Asp	Asn	Glu	Val	Thr	Gly	Leu	Gly	Lys
	25							30					35	
Leu	Val	Lys	Thr	Ala	Asp	Thr	Leu	Ser	Lys	Glu	Gln	Val	Leu	Asp
	40							45					50	
Ile	Arg	Asp	Leu	Thr	Arg	Tyr	Asp	Pro	Gly	Ile	Ala	Val	Val	Glu
	55							60					65	
Gln	Gly	Arg	Gly	Ala	Ser	Ser	Gly	Tyr	Ser	Ile	Arg	Gly	Met	Asp
	70							75					80	
Lys	Asn	Arg	Val	Ser	Leu	Thr	Val	Asp	Gly	Leu	Ala	Gln	Ile	Gln
	85							90					95	
Ser	Tyr	Thr	Ala	Gln	Ala	Ala	Leu	Gly	Gly	Thr	Arg	Thr	Ala	Gly
	100							105					110	
Ser	Ser	Gly	Ala	Ile	Asn	Glu	Ile	Glu	Tyr	Glu	Asn	Val	Lys	Ala
	115							120					125	
Val	Glu	Ile	Ser	Lys	Gly	Ser	Asn	Ser	Val	Glu	Gln	Gly	Ser	Gly
	130							135					140	
Ala	Leu	Ala	Gly	Ser	Val	Ala	Phe	Gln	Tyr	Lys	Thr	Ala	Asp	Asp
	145							150					155	
Val	Ile	Gly	Glu	Gly	Arg	Gln	Trp	Gly	Ile	Gln	Ser	Lys	Thr	Ala
	160							165					170	
Tyr	Ser	Gly	Lys	Asn	Arg	Gly	Leu	Thr	Gln	Ser	Ile	Ala	Leu	Ala
	175							180					185	
Gly	Arg	Ile	Gly	Gly	Ala	Glu	Ala	Leu	Leu	Ile	His	Thr	Gly	Arg
	190							195					200	
Arg	Ala	Gly	Glu	Ile	Arg	Ala	His	Glu	Asp	Ala	Gly	Arg	Gly	Val
	205							210					215	
Gln	Ser	Phe	Asn	Arg	Leu	Val	Pro	Val	Glu	Asp	Ser	Ser	Glu	Tyr
	220							225					230	
Ala	Tyr	Phe	Ile	Val	Glu	Asp	Glu	Cys	Glu	Gly	Lys	Asn	Tyr	Glu
	235							240					245	
Thr	Cys	Lys	Ser	Lys	Pro	Lys	Lys	Asp	Val	Val	Gly	Lys	Asp	Glu
	250							255					260	

Arg Gln Thr Val Ser Thr Arg Asp Tyr Thr Gly Pro Asn Arg Phe
265 270 275

Leu Ala Asp Pro Leu Ser Tyr Glu Ser Arg Ser Trp Leu Phe Arg
280 285 290

Pro Gly Phe Arg Phe Glu Asn Lys Arg His Tyr Ile Gly Gly Ile
295 300 305

Leu Glu His Thr Gln Gln Thr Phe Asp Thr Arg Asp Met Thr Val
310 315 320

Pro Ala Phe Leu Thr Lys Ala Val Phe Asp Ala Asn Ser Lys Gln
325 330 335

Ala Gly Ser Leu Pro Gly Asn Gly Lys Tyr Ala Gly Asn His Lys
340 345 350

Tyr Gly Gly Leu Phe Thr Asn Gly Glu Asn Gly Ala Leu Val Gly
355 360 365

Ala Glu Tyr Gly Thr Gly Val Phe Tyr Asp Glu Thr His Thr Lys
370 375 380

Ser Arg Tyr Gly Leu Glu Tyr Val Tyr Thr Asn Ala Asp Lys Asp
385 390 395

Thr Trp Ala Asp Tyr Ala Arg Leu Ser Tyr Asp Arg Gln Gly Ile
400 405 410

Gly Leu Asp Asn His Phe Gln Gln Thr His Cys Ser Ala Asp Gly
415 420 425

Ser Asp Lys Tyr Cys Arg Pro Ser Ala Asp Lys Pro Phe Ser Tyr
430 435 440

Tyr Lys Ser Asp Arg Val Ile Tyr Gly Glu Ser His Arg Leu Leu
445 450 455

Gln Ala Ala Phe Lys Lys Ser Phe Asp Thr Ala Lys Ile Arg His
460 465 470

Asn Leu Ser Val Asn Leu Gly Phe Asp Arg Phe Asp Ser Asn Leu
475 480 485

Arg His Gln Asp Tyr Tyr Tyr Gln His Ala Asn Arg Ala Tyr Ser
490 495 500

Ser Lys Thr Pro Pro Lys Thr Ala Asn Pro Asn Gly Asp Lys Ser
505 510 515

Lys Pro Tyr Trp Val Ser Ile Gly Gly Gly Asn Val Val Thr Gly
520 525 530

Gln Ile Cys Leu Phe Gly Asn Asn Thr Tyr Thr Asp Cys Thr Pro
535 540 545

Arg Ser Ile Asn Gly Lys Ser Tyr Tyr Ala Ala Val Arg Asp Asn
550 555 560

Val Arg Leu Gly Arg Trp Ala Asp Val Gly Ala Gly Leu Arg Tyr
565 570 575

Asp Tyr Arg Ser Thr His Ser Asp Asp Gly Ser Val Ser Thr Gly
 580 585 590
 Thr His Arg Thr Leu Ser Trp Asn Ala Gly Ile Val Leu Lys Pro
 595 600 605
 Ala Asp Trp Leu Asp Leu Thr Tyr Arg Thr Ser Thr Gly Phe Arg
 610 615 620
 Leu Pro Ser Phe Ala Glu Met Tyr Gly Trp Arg Ser Gly Val Gln
 625 630 635
 Ser Lys Ala Val Lys Ile Asp Pro Glu Lys Ser Phe Asn Lys Glu
 640 645 650
 Ala Gly Ile Val Phe Lys Gly Asp Phe Gly Asn Leu Glu Ala Ser
 655 660 665
 Trp Phe Asn Asn Ala Tyr Arg Asp Leu Ile Val Arg Gly Tyr Glu
 670 675 680
 Ala Gln Ile Lys Asn Gly Lys Glu Glu Ala Lys Gly Asp Pro Ala
 685 690 695
 Tyr Leu Asn Ala Gln Ser Ala Arg Ile Thr Gly Ile Asn Ile Leu
 700 705 710
 Gly Lys Ile Asp Trp Asn Gly Val Trp Asp Lys Leu Pro Glu Gly
 715 720 725
 Trp Tyr Ser Thr Phe Ala Tyr Asn Arg Val His Val Arg Asp Ile
 730 735 740
 Lys Lys Arg Ala Asp Arg Thr Asp Ile Gln Ser His Leu Phe Asp
 745 750 755
 Ala Ile Gln Pro Ser Arg Tyr Val Val Gly Leu Gly Tyr Asp Gln
 760 765 770
 Pro Glu Gly Lys Trp Gly Val Asn Gly Met Leu Thr Tyr Ser Lys
 775 780 785
 Ala Lys Glu Ile Thr Glu Leu Leu Gly Ser Arg Ala Leu Leu Asn
 790 795 800
 Gly Asn Ser Arg Asn Thr Lys Ala Thr Ala Arg Arg Thr Arg Pro
 805 810 815
 Trp Tyr Ile Val Asp Val Ser Gly Tyr Tyr Thr Ile Lys Lys His
 820 825 830
 Phe Thr Leu Arg Ala Gly Val Tyr Asn Leu Leu Asn Tyr Arg Tyr
 835 840 845
 Val Thr Trp Glu Asn Val Arg Gln Thr Ala Gly Gly Ala Val Asn
 850 855 860
 Gln His Lys Asn Val Gly Val Tyr Asn Arg Tyr Ala Ala Pro Gly
 865 870 875
 Arg Asn Tyr Thr Phe Ser Leu Glu Met Lys Phe
 880 885

SEQ ID NO : 4

Objet : Sequence d'acides aminés de la sous-unité Tbp2 de *N. meningitidis* 2169.

Cys	Leu	Gly	Gly	Gly	Ser	Phe	Asp	Leu						
1				5				10						
Asp	Ser	Val	Asp	Thr	Glu	Ala	Pro	Arg	Pro	Ala	Pro	Lys	Tyr	Gln
				15					20					25
Asp	Val	Ser	Ser	Glu	Lys	Pro	Gln	Ala	Gln	Lys	Asp	Gln	Gly	Gly
				30					35					40
Tyr	Gly	Phe	Ala	Met	Arg	Leu	Lys	Arg	Arg	Asn	Trp	Tyr	Pro	Gly
				45				50						55
Ala	Glu	Glu	Ser	Glu	Val	Lys	Leu	Asn	Glu	Ser	Asp	Trp	Glu	Ala
				60				65						70
Thr	Gly	Leu	Pro	Thr	Lys	Pro	Lys	Glu	Leu	Pro	Lys	Arg	Gln	Lys
				75				80						85
Ser	Val	Ile	Glu	Lys	Val	Glu	Thr	Asp	Gly	Asp	Ser	Asp	Ile	Tyr
				90				95						100
Ser	Ser	Pro	Tyr	Leu	Thr	Pro	Ser	Asn	His	Gln	Asn	Gly	Ser	Ala
				105				110						115
Gly	Asn	Gly	Val	Asn	Gln	Pro	Lys	Asn	Gln	Ala	Thr	Gly	His	Glu
				120				125						130
Asn	Phe	Gln	Tyr	Val	Tyr	Ser	Gly	Trp	Phe	Tyr	Lys	His	Ala	Ala
				135				140						145
Ser	Glu	Lys	Asp	Phe	Ser	Asn	Lys	Lys	Ile	Lys	Ser	Gly	Asp	Asp
				150				155						160
Gly	Tyr	Ile	Phe	Tyr	His	Gly	Glu	Lys	Pro	Ser	Arg	Gln	Leu	Pro
				165				170						175
Ala	Ser	Gly	Lys	Val	Ile	Tyr	Lys	Gly	Val	Trp	His	Phe	Val	Thr
				180				185						190
Asp	Thr	Lys	Lys	Gly	Gln	Asp	Phe	Arg	Glu	Ile	Ile	Gln	Pro	Ser
				195				200						205
Lys	Lys	Gln	Gly	Asp	Arg	Tyr	Ser	Gly	Phe	Ser	Gly	Asp	Gly	Ser
				210				215						220
Glu	Glu	Tyr	Ser	Asn	Lys	Asn	Glu	Ser	Thr	Leu	Lys	Asp	Asp	His
				225				230						235
Glu	Gly	Tyr	Gly	Phe	Thr	Ser	Asn	Leu	Glu	Val	Asp	Phe	Gly	Asn
				240				245						250
Lys	Lys	Leu	Thr	Gly	Lys	Leu	Ile	Arg	Asn	Asn	Ala	Ser	Leu	Asn
				255				260						265

Asn Asn Thr Asn Asn Asp Lys His Thr Thr Gln Tyr Tyr Ser Leu
 270 275 280
 Asp Ala Gln Ile Thr Gly Asn Arg Phe Asn Gly Thr Ala Thr Ala
 285 290 295
 Thr Asp Lys Lys Glu Asn Glu Thr Lys Leu His Pro Phe Val Ser
 300 305 310
 Asp Ser Ser Ser Leu Ser Gly Gly Phe Phe Gly Pro Gln Gly Glu
 315 320 325
 Glu Leu Gly Phe Arg Phe Leu Ser Asp Asp Gln Lys Val Ala Val
 330 335 340
 Val Gly Ser Ala Lys Thr Lys Asp Lys Leu Glu Asn Gly Ala Ala
 345 350 355
 Ala Ser Gly Ser Thr Gly Ala Ala Ala Ser Gly Gly Ala Ala Gly
 360 365 370
 Thr Ser Ser Glu Asn Ser Lys Leu Thr Thr Val Leu Asp Ala Val
 375 380 385
 Glu Leu Thr Leu Asn Asp Lys Lys Ile Lys Asn Leu Asp Asn Phe
 390 395 400
 Ser Asn Ala Ala Gln Leu Val Val Asp Gly Ile Met Ile Pro Leu
 405 410 415
 Leu Pro Lys Asp Ser Glu Ser Gly Asn Thr Gln Ala Asp Lys Gly
 420 425 430
 Lys Asn Gly Gly Thr Glu Phe Thr Arg Lys Phe Glu His Thr Pro
 435 440 445
 Glu Ser Asp Lys Lys Asp Ala Gln Ala Gly Thr Gln Thr Asn Gly
 450 455 460
 Ala Gln Thr Ala Ser Asn Thr Ala Gly Asp Thr Asn Gly Lys Thr
 465 470 475
 Lys Thr Tyr Glu Val Glu Val Cys Cys Ser Asn Leu Asn Tyr Leu
 480 485 490
 Lys Tyr Gly Met Leu Thr Arg Lys Asn Ser Lys Ser Ala Met Gln
 495 500 505
 Ala Gly Gly Asn Ser Ser Gln Ala Asp Ala Lys Thr Glu Gln Val
 510 515 520
 Glu Gln Ser Met Phe Leu Gln Gly Glu Arg Thr Asp Glu Lys Glu
 525 530 535
 Ile Pro Thr Asp Gln Asn Val Val Tyr Arg Gly Ser Trp Tyr Gly
 540 545 550
 His Ile Ala Asn Gly Thr Ser Trp Ser Gly Asn Ala Ser Asp Lys
 555 560 565
 Glu Gly Gly Asn Arg Ala Glu Phe Thr Val Asn Phe Ala Asp Lys
 570 575 580

Lys Ile Thr Gly Lys Leu Thr Ala Glu Asn Arg Gln Ala Gln Thr
585 590 595

Phe Thr Ile Glu Gly Met Ile Gln Gly Asn Gly Phe Glu Gly Thr
600 605 610

Ala Lys Thr Ala Glu Ser Gly Phe Asp Leu Asp Gln Lys Asn Thr
615 620 625

Thr Arg Thr Pro Lys Ala Tyr Ile Thr Asp Ala Lys Val Lys Gly
630 635 640

Gly Phe Tyr Gly Pro Lys Ala Glu Glu Leu Gly Gly Trp Phe Ala
645 650 655

Tyr Pro Gly Asp Lys Gln Thr Glu Lys Ala Thr Ala Thr Ser Ser
660 665 670

Asp Gly Asn Ser Ala Ser Ser Ala Thr Val Val Phe Gly Ala Lys
675 680 685

Arg Gln Gln Pro Val Gln
690

Revendications

1. Une composition pharmaceutique vaccinale destinée à la prévention ou à l'atténuation des effets d'une infection à *Neisseria meningitidis*, qui comprend à titre d'agents thérapeutiques au moins une première et une deuxième molécules capables de se lier à la transferrine humaine ; ladite première molécule ayant pour origine une première souche de *N. meningitidis* qui possède un récepteur de la transferrine humaine au moins constitué d'une sous-unité de haut poids moléculaire et d'une sous-unité de poids moléculaire moindre et dont la sous-unité de poids moléculaire moindre est reconnue par un antisérum anti-récepteur de la souche *N. meningitidis* 2394 (récepteur 2394) et n'est pas reconnue par un antisérum anti-récepteur de la souche de *N. meningitidis* 2169 (récepteur 2169) ; et ladite deuxième molécule ayant pour origine une deuxième souche de *N. meningitidis* qui possède un récepteur de la transferrine humaine au moins constitué d'une sous-unité de haut poids moléculaire et d'une sous-unité de poids moléculaire moindre et dont la sous-unité de poids moléculaire moindre est reconnue par un antisérum anti-récepteur 2169 et n'est pas reconnue par un antisérum anti-récepteur 2394.
2. Une composition pharmaceutique vaccinale selon la revendication 1, qui comprend à titre d'agents thérapeutiques au moins une première et une deuxième molécules capables de se lier à la transferrine humaine ; ladite première molécule ayant pour origine une première souche de *N. meningitidis* qui possède un récepteur de la transferrine humaine dont la sous-unité de haut poids moléculaire et la sous-unité de poids moléculaire moindre sont reconnues par un antisérum anti-récepteur 2394 ; et ladite deuxième molécule ayant pour origine une deuxième souche de *N. meningitidis* qui possède un récepteur de la transferrine humaine dont la sous-unité de haut poids moléculaire et la sous-unité de poids moléculaire moindre sont reconnues par un antisérum anti-récepteur 2169.
3. Une composition pharmaceutique vaccinale selon la revendication 1 ou 2, qui comprend à titre d'agent thérapeutiques, au moins une première et une deuxième molécules capables de se lier à la transferrine humaine ; ladite première molécule ayant pour origine une première souche de *N. meningitidis* qui possède un récepteur de la transferrine humaine essentiellement constitué d'une sous-unité de haut poids moléculaire de

100 kD environ à 90 kD et d'une sous-unité de moindre poids moléculaire de 75 kD à 60 kD ; et ladite deuxième molécule ayant pour origine une deuxième souche de *N. meningitidis* qui possède un récepteur de la transferrine humaine essentiellement constitué d'une sous-unité d'un poids moléculaire élevé de 100 kD environ à 90 kD et d'une sous-unité d'un poids moléculaire moindre de 90 kD à 80 kD .

4. Une composition pharmaceutique vaccinale selon la revendication 3, dans laquelle ladite première molécule a pour origine une première souche de *N. meningitidis* qui possède un récepteur de la transferrine humaine essentiellement constitué d'une sous-unité de haut poids moléculaire de 93-95 kD environ et d'une sous-unité de moindre poids moléculaire de 72 kD à 65 kD.
5. Une composition pharmaceutique vaccinale selon la revendication 4, dans laquelle ladite première molécule a pour origine une première souche de *N. meningitidis* qui possède un récepteur de la transferrine humaine essentiellement constitué d'une sous-unité de haut poids moléculaire de 93 kD environ et d'une sous-unité de moindre poids moléculaire de 67-70 kD environ.
6. Une composition pharmaceutique vaccinale selon la revendication 5, dans laquelle ladite deuxième molécule a pour origine une deuxième souche de *N. meningitidis* qui possède un récepteur de la transferrine humaine essentiellement constitué d'une sous-unité de haut poids moléculaire de 100 kD environ à 95 kD et d'une sous-unité d'un poids moléculaire moindre de 87 kD à 85 kD .
7. Une composition pharmaceutique vaccinale selon la revendication 6, dans laquelle ladite deuxième molécule a pour origine une deuxième souche de *N. meningitidis* qui possède un récepteur de la transferrine humaine essentiellement constitué d'une sous-unité de haut poids moléculaire de 98 kD environ et d'une sous-unité d'un poids moléculaire moindre de 87 kD environ.
8. Une composition pharmaceutique vaccinale selon l'une des revendications 1 à 7, dans laquelle ladite première molécule capable de se lier à la

transferrine humaine et ayant pour origine ladite première souche, est le récepteur de la transferrine humaine de ladite première souche.

9. Une composition pharmaceutique vaccinale selon l'une des revendications 1 à 7, dans laquelle ladite première molécule capable de se lier à la transferrine humaine et ayant pour origine ladite première souche, est la sous-unité de moindre poids moléculaire du récepteur de la transferrine humaine de ladite première souche, un fragment ou un analogue de ladite sous-unité de moindre poids moléculaire.
10. Une composition pharmaceutique vaccinale selon la revendication 9, dans laquelle ladite première molécule capable de se lier à la transferrine humaine et ayant pour origine ladite première souche, est la sous-unité de moindre poids moléculaire du récepteur de la transferrine humaine de ladite première souche.
11. Une composition pharmaceutique vaccinale selon l'une des revendications 1 à 10, dans laquelle ladite deuxième molécule capable de se lier à la transferrine humaine et ayant pour origine ladite deuxième souche, est le récepteur de la transferrine humaine de ladite deuxième souche.
12. Une composition pharmaceutique vaccinale selon l'une des revendications 1 à 10, dans laquelle ladite deuxième molécule capable de se lier à la transferrine humaine et ayant pour origine ladite deuxième souche, est la sous-unité de moindre poids moléculaire du récepteur de la transferrine humaine de ladite deuxième souche, un fragment ou un analogue de ladite sous-unité de moindre poids moléculaire.
13. Une composition pharmaceutique vaccinale selon la revendication 12, dans laquelle ladite deuxième molécule capable de se lier à la transferrine humaine et ayant pour origine ladite deuxième souche, est la sous-unité de moindre poids moléculaire du récepteur de la transferrine humaine de ladite deuxième souche.

14. Une composition pharmaceutique vaccinale selon l'une des revendications 1 à 13, dans laquelle lesdites première et deuxième molécules ont respectivement pour origine une première et deuxième souches de *N. meningitidis* sérogroupe B.

1/1

FIG. 1

FEUILLE DE REMPLACEMENT

INTERNATIONAL SEARCH REPORT

International application No.

PCT/FR 92/00905

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl.⁵ A61K 39/095; //C07K 13/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl.⁵ C07K; A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO, A, 9 012 591 (UNIVERSITY TECHNOLOGIES INTERNATIONAL INC.) 1 November 1990 (cited in the application) see the whole document	1-14
A	WO, A, 8 702 678 (STATE OF OREGON) 7 May 1987 see the whole document	1-14
A	INFECTIO AND IMMUNITY Vol. 58, No. 9 September 1990, WASHINGTON pages 2875-2881. NIRUPAMA B. B. ET AL "expression of neisseria meningitidis iron- regulated outer membrane proteins, including a 70-kilodalton transferrin receptor, and their potential for use as vaccines" cited in the application, see the whole document	1-14

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "B" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

15 January 1993 (15.01.93)

Date of mailing of the international search report

8 February 1993 (08.02.93)

Name and mailing address of the ISA/

EUROPEAN PATENT OFFICE

Faxsimile No.

Authorized officer

Telephone No.

**ANNEX TO THE INTERNATIONAL SEARCH REPORT
ON INTERNATIONAL PATENT APPLICATION NO.**

**FR 9200905
SA 66295**

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.
The members are as contained in the European Patent Office EDP file on
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. **15/01/93**

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO-A-9012591	01-11-90	AU-A-	5526190	16-11-90
		US-A-	5141743	25-08-92
-----	-----	-----	-----	-----
WO-A-8702678	07-05-87	US-A-	4681761	21-07-87
		AU-B-	594400	08-03-90
		AU-A-	6623286	19-05-87
		EP-A-	0245433	19-11-87
		JP-T-	63502427	14-09-88
-----	-----	-----	-----	-----

RAPPORT DE RECHERCHE INTERNATIONALE

Demande Internationale N°

PCT/FR 92/00905

I. CLASSEMENT DE L'INVENTION (si plusieurs symboles de classification sont applicables, les indiquer tous) ⁷

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB.

CIB 5 A61K39/095; //C07K13/00

II. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée⁸

Système de classification	Symboles de classification
CIB 5	C07K ; A61K

Documentation consultée autre que la documentation minimale dans la mesure où de tels documents font partie des domaines sur lesquels la recherche a porté

III. DOCUMENTS CONSIDÉRÉS COMME PERTINENTS¹⁰

Catégorie ¹¹	Identification des documents cités, avec indication, si nécessaire, ¹² des passages pertinents ¹³	No. des revendications visées ¹⁴
A	WO,A,9 012 591 (UNIVERSITY TECHNOLOGIES INTERNATIONAL INC.) 1 Novembre 1990 cité dans la demande voir le document en entier ---	1-14
A	WO,A,8 702 678 (STATE OF OREGON) 7 Mai 1987 voir le document en entier ---	1-14 -/-

¹¹ Catégories spéciales de documents cités:

- ^{"A"} document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- ^{"E"} document antérieur, mais publié à la date de dépôt international ou après cette date
- ^{"L"} document pouvant lancer un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- ^{"O"} document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- ^{"P"} document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

- ^{"T"} document ultérieur publié postérieurement à la date de dépôt international ou à la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention
- ^{"X"} document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive
- ^{"Y"} document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier.
- ^{"Z"} document qui fait partie de la même famille de brevets

IV. CERTIFICATION

Date à laquelle la recherche internationale a été effectivement achevée

15 JANVIER 1993

Date d'expédition du présent rapport de recherche internationale

C. 02. 9.

Administration chargée de la recherche internationale

OFFICE EUROPÉEN DES BREVETS

Signature du fonctionnaire autorisé

FERNANDEZ Y BRA F.

(SUITE DES RENSEIGNEMENTS INDIQUES SUR LA
DEUXIEME FEUILLE)III. DOCUMENTS CONSIDERES COMME PERTINENTS¹⁴

Catégorie ¹⁵	Modification des documents cités, ¹⁶ avec indication, si nécessaire des passages pertinents ¹⁷	No. des revendications visées ¹⁸
A	<p>INFECTION AND IMMUNITY vol. 58, no. 9, Septembre 1990, WASHINGTON pages 2875 - 2881 NIRUPAMA B.B. ET AL 'expression of neisseria meningitidis iron-regulated outer membrane proteins, including a 70-kilodalton transferrin receptor, and their potential for use as vaccines' cité dans la demande voir le document en entier -----</p>	1-14