Spin-1/2 Operators and Their Eigenstates in Bra-Ket Notation

Spin Operators in Bra-Ket Form

Let $|+\rangle \equiv \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $|-\rangle \equiv \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, and let \hbar be Planck's constant. The spin operators for a spin-1/2 particle are:

 S_z Operator

$$S_z = \frac{\hbar}{2} \left(\left| + \right\rangle \left\langle + \right| - \left| - \right\rangle \left\langle - \right| \right)$$

 S_x Operator

$$S_x = \frac{\hbar}{2} \left(\left| + \right\rangle \left\langle - \right| + \left| - \right\rangle \left\langle + \right| \right)$$

 S_y Operator

$$S_y = \frac{\hbar}{2i} \left(|+\rangle \left\langle -|-|-\rangle \left\langle +|\right) \right.$$

Eigenstates of Spin Operators

Eigenstates of S_z

$$|+\rangle_z = |+\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}, \quad |-\rangle_z = |-\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$$

Eigenstates of S_x

$$|+\rangle_x = \frac{1}{\sqrt{2}} \left(|+\rangle + |-\rangle\right), \quad |-\rangle_x = \frac{1}{\sqrt{2}} \left(|+\rangle - |-\rangle\right)$$

Eigenstates of S_y

$$\left|+\right\rangle_{y}=\frac{1}{\sqrt{2}}\left(\left|+\right\rangle+i\left|-\right\rangle\right),\quad \left|-\right\rangle_{y}=\frac{1}{\sqrt{2}}\left(\left|+\right\rangle-i\left|-\right\rangle\right)$$

Summary Table

Operator	$+\hbar/2$ Eigenstate	$-\hbar/2$ Eigenstate
S_z	$\ket{+}$	$ -\rangle$
S_x	$\frac{1}{\sqrt{2}}(+\rangle + -\rangle)$	$\frac{1}{\sqrt{2}}(+\rangle - -\rangle)$
S_y	$\frac{1}{\sqrt{2}}(+\rangle + i -\rangle)$	$\frac{1}{\sqrt{2}}(+\rangle - i -\rangle)$