College: VIT Data Analysis Batch

Name: Asmika Panchal Roll No: 23101A2002

College: VIT Data Analysis Batch

Name: Asmika Panchal Roll No: 23101A2002

Data Analysis Report Project - Student Result Analysis on examscores.csv dataset downloaded from Kaagle Datasets

1. Introduction

This report aims to analyze the student scores dataset to uncover patterns and insights that can help in understanding the factors affecting student performance in Math, Reading, and Writing.

2. Data Dictionary (column description)

- 1. Gender: Gender of the student (male/female)
- 2. EthnicGroup: Ethnic group of the student (group A to E)
- 3. ParentEduc: Parent(s) education background (from some_highschool to master's degree)
- 4. LunchType: School lunch type (standard or free/reduced)
- 5. TestPrep: Test preparation course followed (completed or none)
- 6. ParentMaritalStatus: Parent(s) marital status (married/single/widowed/divorced)
- 7. PracticeSport: How often the student parctice sport (never/sometimes/regularly)
- 8. IsFirstChild: If the child is first child in the family or not (yes/no)
- 9. NrSiblings: Number of siblings the student has (0 to 7)
- 10. TransportMeans: Means of transport to school (schoolbus/private)
- 11. WklyStudyHours: Weekly self-study hours(less that 5hrs; between 5 and 10hrs; more than 10hrs)
- 12. MathScore: math test score(0-100)
- 13. ReadingScore: reading test score(0-100)
- 14. WritingScore: writing test score(0-100)

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

3. Data Understanding

3.1 Printing the top 5 values of the data

df= pd.read_csv("examscores.csv")
print(df.head())

	Unnamed: 0	Gender	EthnicGroup	Parent	Educ Lur	nchType T	estPrep	\
0	0	female	NaN	bachelor's de	gree st	tandard	none	
1	1	female	group C	some col	lege st	tandard	NaN	
2	2	female	group B	master's de	gree st	tandard	none	
3	3	male	group A	associate's de	gree free/r	reduced	none	
4	4	male	group C	some col	lege st	tandard	none	
	ParentMarit	alStatus	PracticeSport	: IsFirstChild	NrSiblings	Transpor	tMeans	\
0		married	regularly	, yes	3.0	scho	ol_bus	
1		married	sometimes	s yes	0.0		NaN	
2		single	sometimes	s yes	4.0	scho	ol_bus	
3		married	never	no no	1.0		NaN	
4		married	sometimes	s yes	0.0	scho	ol_bus	
				-				

	WklyStudyHours	MathScore	ReadingScore	WritingScore
0	< 5	71	71	74
1	5 - 10	69	90	88
2	< 5	87	93	91
3	5 - 10	45	56	42
4	5 - 10	76	78	75

3.2 Descriptive Statistics of the data

College: VIT Data Analysis Batch

Name: Asmika Panchal **Roll No**: 23101A2002

	Unnamed: 0	NrSiblings	MathScore	ReadingScore	WritingScore
count	30641.000000	29069.000000	30641.000000	30641.000000	30641.000000
mean	499.556607	2.145894	66.558402	69.377533	68.418622
std	288.747894	1.458242	15.361616	14.758952	15.443525
min	0.000000	0.000000	0.000000	10.000000	4.000000
25%	249.000000	1.000000	56.000000	59.000000	58.000000
50%	500.000000	2.000000	67.000000	70.000000	69.000000
75%	750.000000	3.000000	78.000000	80.000000	79.000000
max	999.000000	7.000000	100.000000	100.000000	100.000000
df.inf	-o()				
RangeI	s 'pandas.core. Index: 30641 en Columns (total	tries, 0 to 30			
# C	Column	Non-Null	Count Dtype		
0 U	Jnnamed: 0	30641 no	n-null int64		
	Gender	30641 no	n-null object		
	EthnicGroup	28801 no	·		
_	ParentEduc	28796 no			
	.unchType	30641 no	3		
5 T	TestPrep	28811 no	n-null object		

29069 non-null float64

12 MathScore 30641 non-null int64 13 ReadingScore 30641 non-null int64 14 WritingScore 30641 non-null int64

dtypes: float64(1), int64(4), object(10) memory usage: 3.5+ MB

3.3 Calculating the null values in the exam scores data

6 ParentMaritalStatus 29451 non-null object

7 PracticeSport 30010 non-null object
8 IsFirstChild 29737 non-null object
9 NrSiblings 29069 non-null float64
10 TransportMeans 27507 non-null object
11 WklyStudyHours 29686 non-null object
12 MathScape 30641 non-null int64

df.isnull().sum()

Unnamed: 0 Gender 0 EthnicGroup 1840 ParentEduc 1845 LunchType 0 TestPrep 1830 ParentMaritalStatus 1190 PracticeSport 631 IsFirstChild 904 NrSiblings 1572 TransportMeans 3134 WklyStudyHours 955 0 MathScore ReadingScore 0 WritingScore dtype: int64

4. Data Cleaning

4.1 Drop Unnamed Column

df= df.drop("Unnamed: 0",axis =1) print(df.head())

	Gender	EthnicGroup	ParentEduc	LunchType	TestPrep	\
0	female	NaN	bachelor's degree	standard	none	
1	female	group C	some college	standard	NaN	
2	female	group B	master's degree	standard	none	
3	male	group A	associate's degree	free/reduced	none	
4	male	group C	some college	standard	none	

	ParentMaritalStatus	PracticeSport	IsFirstChild	NrSiblings	TransportMeans	\
0	married	regularly	yes	3.0	school_bus	
1	married	sometimes	yes	0.0	NaN	
2	single	sometimes	yes	4.0	school_bus	
3	married	never	no	1.0	NaN	
4	married	sometimes	Ves	9.9	school hus	

	WklyStudyHours	MathScore	ReadingScore	WritingScore
0	< 5	71	71	74
1	5 - 10	69	90	88
2	< 5	87	93	91
3	5 - 10	45	56	42
4	5 - 10	76	78	75

College: VIT Data Analysis Batch **Name**: Asmika Panchal

Roll No: 23101A2002

5. Data Transformation

5.1 change Weekly study hours column

```
df["WklyStudyHours"]=df["WklyStudyHours"].str.replace("05-Oct","5 - 10")
df.head()
  Gender EthnicGroup
                               ParentEduc
                                              LunchType TestPrep \
  female
                       bachelor's degree
                                               standard
                 NaN
                                                            none
              group C
1 female
                             some college
                                               standard
                                                             NaN
2 female
              group B
                                               standard
                         master's degree
                                                            none
3
    male
              group A associate's degree free/reduced
                                                            none
                                               standard
4
    male
             group C
                             some college
                                                            none
  ParentMaritalStatus PracticeSport IsFirstChild NrSiblings TransportMeans \
0
             married
                                                                 school_bus
                          regularly
                                             yes
                                                         3.0
                                                         0.0
1
              married
                          sometimes
                                             yes
                                                                        NaN
2
                          sometimes
                                                         4.0
                                                                 school bus
              single
                                             yes
3
             married
                                                         1.0
                                                                        NaN
                              never
                                             no
4
              married
                                                         0.0
                          sometimes
                                             yes
                                                                 school_bus
 WklyStudyHours MathScore
                             ReadingScore WritingScore
0
                        71
                                       71
             < 5
         5 - 10
1
                         69
                                       90
                                                     88
2
                         87
                                       93
                                                     91
             < 5
         5 - 10
3
                         45
                                       56
                                                     42
```

6. Exploratory Data Analysis

76

5 - 10

6.1 Gender Distribution

4

```
plt.figure(figsize=(5,5))
ax= sns.countplot(data= df, x="Gender",palette="Set2",saturation=2,edgecolor = "black")
plt.title("Gender Distribution")
ax.bar_label(ax.containers[0])
ax.bar_label(ax.containers[1])
plt.show()
```

C:\Users\asmika\AppData\Local\Temp\ipykernel_11664\1595413645.py:2: FutureWarning:

78

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

75

ax= sns.countplot(data= df, x="Gender",palette="Set2",saturation=2,edgecolor = "black")

from the above chart we have analysed that:the number of females in the data is more than the number of males

6.2 Relationship Comparison between Gender and Students Score

```
gb2=df.groupby("Gender").agg({"MathScore":'mean',"ReadingScore":'mean',"WritingScore":"mean"})
print(gb2)
```

	MathScore	ReadingScore	WritingScore
Gender			
female	64.080654	72.853216	72.856457
male	69.069856	65.854571	63.920418

College : VIT Data Analysis Batch

Name: Asmika Panchal Roll No: 23101A2002

```
plt.figure(figsize=(4,4))
plt.title("Relationship Comparison between Gender and Students Score")
sns.heatmap(gb2, annot=True,cmap="plasma",linewidths=0.5, linecolor='black',cbar=True)
plt.show()
```

Relationship Comparison between Gender and Students Score

from the above chart we have concluded that males have obtained more marks in Maths comparatively to females and females have obtained more marks in Reading and Writing Scores compared to males

6.3 Relationship between Parents Education and Students Score

gb=df.groupby("ParentEduc").agg({"MathScore":'mean',"ReadingScore":'mean',"WritingScore":"mean"})
print(gb)

	MathScore	ReadingScore	WritingScore			
ParentEduc		-	-			
associate's degree	68.365586	71.124324	70.299099			
bachelor's degree	70.466627	73.062020	73.331069			
high school	64.435731	67.213997	65.421136			
master's degree	72.336134	75.832921	76.356896			
some college	66.390472	69.179708	68.501432			
some high school	62.584013	65.510785	63.632409			
<pre>plt.figure(figsize=(4,4)) plt.title("Relationship between Parents Education and Students Score") sns.heatmap(gb, annot=True) plt.show()</pre>						

Relationship between Parents Education and Students Score

from the above chart we have concluded that the education of the parents have a good impact on their scores

6.4 Relationship between Parents Marital Status and Students Score

```
gb1=df.groupby("ParentMaritalStatus").agg({"MathScore":'mean',"ReadingScore":'mean',"WritingScore":
"mean"})
print(gb1)
```

	MathScore	ReadingScore	WritingScore				
ParentMaritalStatus		_					
divorced	66.691197	69.655011	68.799146				
married	66.657326	69.389575	68.420981				
single	66.165704	69.157250	68.174440				
widowed	67.368866	69.651438	68.563452				
<pre>plt.figure(figsize=(4,4)) plt.title("Relationship between Parents Marital Status and Students Score") sns.heatmap(gb1, annot=True,cmap='gist_earth') plt.show()</pre>							

Relationship between Parents Marital Status and Students Score

from the above chart we have concluded there is no/negligible impact on the scores of the students based on their marital status

6.5 Distribution of Scores

6.5.1 Calculated the Frequency of Math Scores

```
import seaborn as sns
import matplotlib.pyplot as plt

math_score_counts = df['MathScore'].value_counts().sort_index()
# Create a line plot for MathScore
plt.figure(figsize=(9,5))
sns.lineplot(x=math_score_counts.index, y=math_score_counts.values)
plt.title('Distribution of Math Scores')
plt.xlabel('Math Score')
plt.ylabel('Frequency')
plt.grid(True)
plt.show()
```

College: VIT Data Analysis Batch Name: Asmika Panchal

Roll No: 23101A2002

6.5.2 Calculated the Frequency of Reading Scores

```
import seaborn as sns
import matplotlib.pyplot as plt
```

```
# Assuming df is your DataFrame and 'ReadingScore' is the column name for reading scores
reading_score_counts = df['ReadingScore'].value_counts().sort_index()
```

Create a line plot for ReadingScore

```
plt.figure(figsize=(9, 5))
sns.lineplot(x=reading_score_counts.index, y=reading_score_counts.values)
plt.title('Distribution of Reading Scores')
plt.xlabel('Reading Score')
plt.ylabel('Frequency')
plt.grid(True)
plt.show()
```


6.5.3 Calculated the Frequency of Writing Scores

```
import seaborn as sns
import matplotlib.pyplot as plt
```

```
# Assuming df is your DataFrame and 'WritingScore' is the column name for writing scores
writing_score_counts = df['WritingScore'].value_counts().sort_index()
```

```
# Create a line plot for WritingScore
```

```
plt.figure(figsize=(9, 5))
sns.lineplot(x=writing_score_counts.index, y=writing_score_counts.values)
plt.title('Distribution of Writing Scores')
plt.xlabel('Writing Score')
plt.ylabel('Frequency')
plt.grid(True)
plt.show()
```

College: VIT Data Analysis Batch Name: Asmika Panchal

Roll No: 23101A2002

from the above 3 Scores Line Graphs we can conclude that the students are basically weak in Maths than the 2 rest of subjects

```
6.6. Distribution of Ethinic Groups
print(df["EthnicGroup"].unique())
[nan 'group C' 'group B' 'group A' 'group D' 'group E']
import seaborn as sns
import matplotlib.pyplot as plt
# Calculate counts for each ethnic group
groupA = df.loc[df['EthnicGroup'] == "group A"].count()
groupB = df.loc[df['EthnicGroup'] == "group B"].count()
groupC = df.loc[df['EthnicGroup'] == "group C"].count()
groupD = df.loc[df['EthnicGroup'] == "group D"].count()
groupE = df.loc[df['EthnicGroup'] == "group E"].count()
# Labels and data for the pie chart
labels = ["group A", "group B", "group C", "group D", "group E"]
sizes = [groupA["EthnicGroup"], groupB["EthnicGroup"], groupC["EthnicGroup"],
groupD["EthnicGroup"], groupE["EthnicGroup"]]
# Define colors and explode
colors = plt.get_cmap('rainbow')(np.linspace(0, 1, len(labels)))
# Create pie chart
plt.figure(figsize=(5.5,5.5))
plt.pie(sizes, labels=labels, autopct="%1.2f%%", startangle=140, colors=colors)
plt.title("Distribution of Ethnic Groups")
# Show plot
plt.show()
```

Distribution of Ethnic Groups

College: VIT Data Analysis Batch

Name: Asmika Panchal Roll No: 23101A2002

from this we can conclude that Group C has the most distribution among the Ethnic Groups with a percentage of 31.98%

```
6.7.1. Distribution of Scores of Students according to Weakly Study Hours
gb4=df.groupby("WklyStudyHours").agg({"MathScore":'mean',"ReadingScore":'mean',"WritingScore":"mean
"})
gb4['AllScoresMean'] = (gb4['MathScore'] + gb4['ReadingScore'] + gb4['WritingScore']) / 3
print(gb4)
                MathScore ReadingScore WritingScore AllScoresMean
WklyStudyHours
5 - 10
                66.870491
                              69.660532
                                            68.636280
                                                           68.389101
< 5
                64.580359
                              68.176135
                                            67.090192
                                                           66.615562
> 10
               68.696655
                              70.365436
                                            69.777778
                                                           69.613290
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
# Calculate counts for each category of weekly study hours
study_hours_counts = df['WklyStudyHours'].value_counts()
# Labels and data for the pie chart
labels = study_hours_counts.index.tolist()
sizes = study hours counts.values.tolist()
# Define colors
colors = ['tab:orange', 'tab:green', 'tab:red']
# Create pie chart
plt.figure(figsize=(5.5,5.5))
plt.pie(sizes, labels=labels, autopct="%1.2f%%", startangle=140, colors=colors)
plt.title("Distribution of Weekly Study Hours")
```

Distribution of Weekly Study Hours

Show plot

plt.show()

from this we can conclude that Student's study upto maximum 5 - 10 hours of study with the maximum percentage of 54.73%

6.7.2. Relationship between Weakly Study Hours studied by student and Students Scores

```
plt.figure(figsize=(4,4))
plt.title("Relationship between Weakly Study Hours and Students Scores")
sns.heatmap(gb4, annot=True,cmap='cividis')
plt.show()
```

Relationship between Weakly Study Hours and Students Scores

from this we can conclude that Student's who study more than 10 hours have more overall marks average of 70 than 5-10 hours with overall average of 68 and less than 5 hours with overall average of 67 respectively

6.8. Relationship between Test Preparation and Students Scores

gb5=df.groupby("TestPrep").agg({"MathScore":'mean',"ReadingScore":'mean',"WritingScore":"mean"})
print(gb5)

	MathScore	ReadingScore	WritingScore			
TestPrep						
completed	69.54666	73.732998	74.703265			
none	64.94877	67.051071	65.092756			
<pre>plt.figure(figsize=(4,4)) plt.title("Relationship between Test Preparation and Students Scores") sns.heatmap(gb5, annot=True,cmap='inferno') plt.show()</pre>						

Relationship between Test Preparation and Students Scores

from this we can conclude that the Students those who have completed their Test Preparation have more mean marks in all the subjects comparatively to those haven't done any preparation

6.9. Relationship between Lunch Type and Student Scores

gb3=df.groupby("LunchType").agg({"MathScore":'mean',"ReadingScore":'mean',"WritingScore":"mean"}).r
eset_index()
print(gb3)

	LunchType	MathScore	ReadingScore	WritingScore
0	free/reduced	58.862332	64.189735	62.650522
1	standard	70.709370	72.175634	71.529716

from this we can conclude that the Students those who have Standard Lunch have more mean marks in all the subjects comparatively to those have free or reduced food

6.10. Relationship between Practicing Sport and Student Scores

```
gb6=df.groupby("PracticeSport").agg({"MathScore":'mean',"ReadingScore":'mean',"WritingScore":"mean"
})
print(gb6)
```

	MathScore	ReadingScore	WritingScore			
PracticeSport						
never	64.171079	68.337662	66.522727			
regularly	67.839155	69.943019	69.604003			
sometimes	66.274831	69.241307	68.072438			
<pre>plt.figure(figsize=(4,4)) plt.title("Relationship between Practice Sport and Students Scores") sns.heatmap(gb6, annot=True,cmap='inferno') plt.show()</pre>						

Relationship between Practice Sport and Students Scores

from the above chart we can conclude that the students that Practice sports regularly and even sometimes remain fresh and active and hence their scores gradually increase comparative to those students who never Practice sports <u>Dashboard.py</u>

```
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# Load the data
df = pd.read_csv("examscores.csv")
# Data Cleaning
df = df.drop("Unnamed: 0", axis=1)
df["WklyStudyHours"] = df["WklyStudyHours"].str.replace("05-Oct", "5 - 10")
# Streamlit App Title
st.title("Student Exam Scores Dashboard")
# Display the DataFrame
st.header("Dataset Overview")
st.write(df.head())
# Display summary statistics
st.header("Summary Statistics")
st.write(df.describe())
# Check for missing values
st.header("Missing Values")
st.write(df.isnull().sum())
# Gender Distribution
st.header("Gender Distribution")
plt.figure(figsize=(5, 5))
ax = sns.countplot(data=df, x="Gender", palette="Set2", saturation=2, edgecolor="black")
plt.title("Gender Distribution")
ax.bar_label(ax.containers[0])
ax.bar_label(ax.containers[1])
st.pyplot(plt)
# Gender vs Scores Heatmap
st.header("Gender vs Scores")
gb2 = df.groupby("Gender").agg({"MathScore": 'mean', "ReadingScore": 'mean', "WritingScore": "mean"})
st.write(gb2)
plt.figure(figsize=(4, 4))
plt.title("Relationship Comparison between Gender and Students Score")
sns.heatmap(gb2, annot=True, cmap="plasma", linewidths=0.5, linecolor='black', cbar=True)
st.pyplot(plt)
# Parent Education vs Scores Heatmap
st.header("Parent Education vs Scores")
gb = df.groupby("ParentEduc").agg({"MathScore": 'mean', "ReadingScore": 'mean', "WritingScore":
"mean"})
st.write(gb)
plt.figure(figsize=(4, 4))
plt.title("Relationship between Parents Education and Students Score")
sns.heatmap(gb, annot=True)
st.pyplot(plt)
st.header("Parent Marital Status vs Scores")
gb1 = df.groupby("ParentMaritalStatus").agg({"MathScore": 'mean', "ReadingScore": 'mean',
"WritingScore": "mean"})
st.write(gb1)
plt.figure(figsize=(4, 4))
plt.title("Relationship between Parents Marital Status and Students Score")
sns.heatmap(gb1, annot=True, cmap='gist_earth')
st.pyplot(plt)
# Math Score Distribution
st.header("Distribution of Math Scores")
math_score_counts = df['MathScore'].value_counts().sort_index()
plt.figure(figsize=(9, 5))
sns.lineplot(x=math_score_counts.index, y=math_score_counts.values)
plt.title('Distribution of Math Scores')
plt.xlabel('Math Score')
plt.ylabel('Frequency')
plt.grid(True)
```

```
st.pyplot(plt)
# Reading Score Distribution
st.header("Distribution of Reading Scores")
reading_score_counts = df['ReadingScore'].value_counts().sort_index()
plt.figure(figsize=(9, 5))
sns.lineplot(x=reading_score_counts.index, y=reading_score_counts.values)
plt.title('Distribution of Reading Scores')
plt.xlabel('Reading Score')
plt.ylabel('Frequency')
plt.grid(True)
st.pyplot(plt)
# Writing Score Distribution
st.header("Distribution of Writing Scores")
writing_score_counts = df['WritingScore'].value_counts().sort_index()
plt.figure(figsize=(9, 5))
sns.lineplot(x=writing_score_counts.index, y=writing_score_counts.values)
plt.title('Distribution of Writing Scores')
plt.xlabel('Writing Score')
plt.ylabel('Frequency')
plt.grid(True)
st.pyplot(plt)
# Ethnic Group Distribution
st.header("Distribution of Ethnic Groups")
groupA = df.loc[df['EthnicGroup'] == "group A"].count()
groupB = df.loc[df['EthnicGroup'] == "group B"].count()
groupC = df.loc[df['EthnicGroup'] == "group C"].count()
groupD = df.loc[df['EthnicGroup'] == "group D"].count()
groupE = df.loc[df['EthnicGroup'] == "group E"].count()
labels = ["group A", "group B", "group C", "group D", "group E"]
sizes = [groupA["EthnicGroup"], groupB["EthnicGroup"], groupC["EthnicGroup"], groupD["EthnicGroup"],
groupE["EthnicGroup"]]
colors = plt.get_cmap('rainbow')(np.linspace(0, 1, len(labels)))
plt.figure(figsize=(5.5, 5.5))
plt.pie(sizes, labels=labels, autopct="%1.2f%%", startangle=140, colors=colors)
plt.title("Distribution of Ethnic Groups")
st.pyplot(plt)
# Weekly Study Hours vs Scores
st.header("Weekly Study Hours vs Scores")
gb4 = df.groupby("WklyStudyHours").agg({"MathScore": 'mean', "ReadingScore": 'mean', "WritingScore":
"mean"})
gb4['AllScoresMean'] = (gb4['MathScore'] + gb4['ReadingScore'] + gb4['WritingScore']) / 3
st.write(gb4)
study_hours_counts = df['WklyStudyHours'].value_counts()
labels = study_hours_counts.index.tolist()
sizes = study_hours_counts.values.tolist()
colors = ['tab:orange', 'tab:green', 'tab:red']
plt.figure(figsize=(5.5, 5.5))
plt.pie(sizes, labels=labels, autopct="%1.2f%%", startangle=140, colors=colors)
plt.title("Distribution of Weekly Study Hours")
st.pyplot(plt)
plt.figure(figsize=(4, 4))
plt.title("Relationship between Weekly Study Hours and Students Scores")
sns.heatmap(gb4, annot=True, cmap='cividis')
st.pyplot(plt)
# Test Preparation vs Scores
st.header("Test Preparation vs Scores")
gb5 = df.groupby("TestPrep").agg({"MathScore": 'mean', "ReadingScore": 'mean', "WritingScore": "mean"})
st.write(gb5)
plt.figure(figsize=(4, 4))
plt.title("Relationship between Test Preparation and Students Scores")
sns.heatmap(gb5, annot=True, cmap='inferno')
st.pyplot(plt)
# Lunch Type vs Scores
st.header("Lunch Type vs Scores")
gb3 = df.groupby("LunchType").agg({"MathScore": 'mean', "ReadingScore": 'mean', "WritingScore":
"mean"}).reset_index()
gb3_melted = pd.melt(gb3, id_vars=['LunchType'], value_vars=['MathScore', 'ReadingScore',
'WritingScore'], var_name='ScoreType', value_name='MeanScore')
plt.figure(figsize=(10, 6))
```

College: VIT Data Analysis Batch **Name**: Asmika Panchal

Roll No: 23101A2002

sns.barplot(x='LunchType', y='MeanScore', hue='ScoreType', data=gb3_melted, palette='inferno')
plt.title("Relationship between Lunch Type and Students Scores")
plt.xlabel("Lunch Type")
plt.ylabel("Mean Score")
plt.legend(title='Score Type', loc='upper right')
st.pyplot(plt)

Practice Sport vs Scores
st.header("Practice Sport vs Scores")
gb6 = df.groupby("PracticeSport").agg({"MathScore": 'mean', "ReadingScore": 'mean', "WritingScore":
"mean"})
st.write(gb6)
plt.figure(figsize=(4, 4))
plt.title("Relationship between Practice Sport and Students Scores")
sns.heatmap(gb6, annot=True, cmap='inferno')

st.pyplot(plt)

Student Exam Scores Dashboard using Streamlit

Dataset Overview

Dataset Overview						<u></u>	
	Gender	EthnicGroup	ParentEduc	LunchType	TestPrep	ParentMaritalStatus	PracticeSport
0	female	None	bachelor's degree	standard	none	married	regularly
1	female	group C	some college	standard	None	married	sometimes
2	female	group B	master's degree	standard	none	single	sometimes
3	male	group A	associate's degree	free/reduced	none	married	never
4	male	group C	some college	standard	none	married	sometimes

Summary Statistics

	NrSiblings	MathScore	ReadingScore	WritingScore
count	29,069	30,641	30,641	30,641
mean	2.1459	66.5584	69.3775	68.4186
std	1.4582	15.3616	14.759	15.4435
min	0	0	10	4
25%	1	56	59	58
50%	2	67	70	69
75%	3	78	80	79
max	7	100	100	100

Missing Values

	0
Gender	0
EthnicGroup	1,840
ParentEduc	1,845
LunchType	0
TestPrep	1,830
ParentMaritalStatus	1,190
PracticeSport	631
IsFirstChild	904
NrSiblings	1,572
TransportMeans	3,134

Gender Distribution

Gender vs Scores

Gender	MathScore	ReadingScore	WritingScore
female	64.0807	72.8532	72.8565
male	69.0699	65.8546	63.9204

Relationship Comparison between Gender and Students Score

Parent Education vs Scores

ParentEduc	MathScore	ReadingScore	WritingScore
associate's degree	68.3656	71.1243	70.2991
bachelor's degree	70.4666	73.062	73.3311
high school	64.4357	67.214	65.4211
master's degree	72.3361	75.8329	76.3569
some college	66.3905	69.1797	68.5014
some high school	62.584	65.5108	63.6324

Parent Marital Status vs Scores

ParentMaritalStatus	MathScore	ReadingScore	WritingScore
divorced	66.6912	69.655	68.7991
married	66.6573	69.3896	68.421
single	66.1657	69.1572	68.1744
widowed	67.3689	69.6514	68.5635

Relationship between Parents Marital Status and Students Score

Distribution of Math Scores

Distribution of Reading Scores

Distribution of Writing Scores

Distribution of Ethnic Groups

Distribution of Ethnic Groups

Weekly Study Hours vs Scores

WklyStudyHours	MathScore	ReadingScore	WritingScore	AllScoresMean
5 - 10	66.8705	69.6605	68.6363	68.3891
< 5	64.5804	68.1761	67.0902	66.6156
> 10	68.6967	70.3654	69.7778	69.6133

Distribution of Weekly Study Hours

Relationship between Weekly Study Hours and Students Scores

Test Preparation vs Scores

TestPrep	MathScore	ReadingScore	WritingScore
completed	69.5467	73.733	74.7033
none	64.9488	67.0511	65.0928

Relationship between Test Preparation and Students Scores

Lunch Type vs Scores

Practice Sport vs Scores

PracticeSport	MathScore	ReadingScore	WritingScore
never	64.1711	68.3377	66.5227
regularly	67.8392	69.943	69.604
sometimes	66.2748	69.2413	68.0724

Relationship between Practice Sport and Students Scores

Key Findings from this Project:

- 1. <u>Distribution of Ethnic Groups</u>: The pie chart for ethnic groups showed that the population of students is distributed across five ethnic groups, with each group making up a significant portion of the sample.
- 2. <u>Relationship between Weekly Study Hours and Scores</u>: The heatmap revealed a positive correlation between weekly study hours and student scores in Math, Reading, and Writing. More study hours tend to correlate with higher scores in all three subjects.
- 3. <u>Relationship between Parent Education and Student Scores</u>: The heatmap for parent education indicated that higher parent education levels are associated with higher student scores in Math, Reading, and Writing. Specifically, students with parents having a master's degree scored the highest on average.
- 4. <u>Practice Sport and Student Scores</u>: The analysis showed that students who practice sports regularly tend to have slightly higher scores compared to those who never practice sports. However, the differences were not very pronounced.
- 5. <u>Lunch Type and Student Scores</u>: Students who receive standard lunches tend to have higher average scores compared to those who receive free/reduced lunches.
- 6. <u>Number of Siblings and Student Scores</u>: There is a slight negative correlation between the number of siblings and student scores. Students with more siblings tend to have slightly lower scores on average.

College : VIT Data Analysis Batch **Name**: Asmika Panchal

Roll No: 23101A2002

Conclusions:

Based on the analysis of the student scores dataset, several key insights can be drawn:

- 1. <u>Parental Influence</u>: The educational background of parents plays a significant role in student performance. Higher levels of parental education are associated with better student outcomes across all subjects.
- 2. <u>Study Habits</u>: Regular study habits are crucial for achieving higher scores. Students who dedicate more hours to studying each week tend to perform better in Math, Reading, and Writing.
- 3. <u>Practice Sports</u>: Engaging in sports appears to have a positive impact on student performance, albeit modest. Students who practice sports regularly tend to score slightly higher than their peers who do not engage in sports.
- 4. <u>Socioeconomic Factors</u>: Socioeconomic status, as indicated by lunch type, influences student performance. Students who have access to standard lunches generally perform better than those who receive free/reduced lunches.
- 5. <u>Family Size</u>: There is a slight negative impact of having more siblings on student performance. This may be due to resource dilution or less individual attention.

Recommendations on this Data:

- 1. <u>Encourage Parental Involvement</u>: Schools and educators should encourage parental involvement and provide resources to help parents support their children's education.
- 2. <u>Promote Regular Study Habits</u>: Implement programs and workshops to help students develop effective study habits and time management skills.
- 3. <u>Support Physical Activity:</u> Schools should provide ample opportunities for students to engage in sports and physical activities, as it has a positive impact on overall student well-being and performance.
- 4. <u>Address Socioeconomic Disparities</u>: Implement initiatives to support students from lower socioeconomic backgrounds, ensuring they have access to necessary resources and support systems.
- 5. <u>Tailored Support for Larger Families</u>: Provide additional support and resources to students from larger families to ensure they receive adequate attention and resources for their education.