Untangling the Security of Kilian's Protocol: Upper and Lower Bounds

Alessandro Chiesa, Marcel Dall'Agnol, Ziyi Guan, Nick Spooner, Eylon Yogev

Interactive proofs

Perfect completeness: For every instance $x \in L$,

$$\Pr\left[\langle P(x, w), V(x) \rangle = 1\right] = 1.$$

Soundness: For every instance $x \notin L$ and adversary \tilde{P} ,

$$\Pr\left[\langle \tilde{P}, V(x) \rangle = 1\right] \le \epsilon(x).$$

Basic efficiency metric: COMMUNICATION COMPLEXITY (number of bits exchanged during the interaction).

Limitation: NP-complete languages do not have IPs with $cc \ll |w|$ (or else the language would be easy).

(Indeed, [GH97] proved that, in general, $IP[cc] \subseteq BPTIME[2^{cc}]$.)

Interactive arguments

Interactive proofs with computational soundness

Computational soundness: For every $x \notin L$, security parameter $\lambda \in \mathbb{N}$, and t_{ARG} -bounded adversary \tilde{P} ,

$$\Pr\left[\langle \tilde{P}, V(1^{\lambda}, x) \rangle = 1\right] \le \epsilon_{\mathsf{ARG}}(\lambda, x, t_{\mathsf{ARG}}).$$

Limitations on the communication complexity of interactive proofs no longer hold.

AMAZING: there exist interactive arguments for NP with $cc \ll |w|$ (given basic cryptography)

These are known as Succinct Interactive Arguments.

Further relaxation: Expected-time computational soundness $\epsilon_{\text{ARG}}^{\star}$ against adversaries with bounded expected running time t_{ARG}^{\star} .

Why study succinct interactive arguments?

A fundamental primitive known to exist assuming only simple cryptography (e.g. collision-resistant hash functions).

The savings in communication (cc $\ll |w|$) or even verification (time(V) $\ll |w|$) are remarkably useful.

Succinct arguments play a key role in notable applications (e.g., zero-knowledge with non-black-box simulation, malicious MPC, ...).

They also serve as a stepping stone towards succinct non-interactive arguments (SNARGs).

Recall: SNARGs for NP cannot be realized via a black-box reduction to a falsifiable assumption [GW11].

Often (though not always): SNARG = succinct interactive argument + non-falsifiable assumption / idealized model

Kilian's protocol, the first and simplest succinct argument

Kilian's protocol

abstraction for a succinct commitment with local openings (e.g. Merkle tree)

Building block #1: probabilistically checkable proof (PCP)

Building block #2: vector commitment scheme (VC)

The protocol:

Fundamental question: What is the security of Kilian's protocol?

What is the security of Kilian's protocol?

Previously:

- Folklore: well-understood, if ϵ_{PCP} and ϵ_{VC} if negligible, then ϵ_{ARG} is negligible.
- [Kilian92] gives an informal analysis.

non-trivial restrictions on the PCP.

- [BG08] proves security of Kilian's protocol **assuming** the underlying PCP is non-adaptive and reverse-samplable. Their analysis is NOT tight: roughly $\epsilon_{\mathsf{ARG}} \leq 8 \cdot \epsilon_{\mathsf{PCP}} + \sqrt[3]{\epsilon_{\mathsf{VC}}}$ (multiplicative constant overhead).
- Kilian's protocol is widely used across cryptography but lacks a security proof in the general case.

A similar protocol: Schnorr identification scheme

Numerous works study the security of Schnorr identification and its variants in different settings [Sho97,PS00,BP02,FPS20,BD20,RS21,SSY23]

Yet, there are gaps in our understanding of Schnorr's protocol - challenging open questions

Our contribution:

- Proving the security of Kilian's protocol is as hard as that of Schnorr's protocol.
 - Is Kilian's protocol really "well-understood"?
- A general and tightest known security analysis of Kilian's protocol.
 - Gaps and barriers remain.

Our results

Lower Bounds. Bounding the soundness error of Kilian's protocol is as hard as that of the Schnorr identification scheme.

There exists PCP and VC such that, for every $x \notin L$,

$$\epsilon_{\text{Schnorr}}(\lambda, t_{\text{Schnorr}}) \leq \epsilon_{\text{ARG}}(\lambda, x, t_{\text{ARG}}), \text{ where } t_{\text{ARG}} = O(t_{\text{Schnorr}});$$
 $\epsilon_{\text{Schnorr}}^{\star}(\lambda, t_{\text{Schnorr}}^{\star}) \leq \epsilon_{\text{ARG}}^{\star}(\lambda, x, t_{\text{ARG}}^{\star}), \text{ where } t_{\text{ARG}}^{\star} = O(t_{\text{Schnorr}}^{\star}).$

How tight are the bounds?

Strict-time setting.

- Setting $\epsilon_{\text{DLOG}}(\lambda, t) \leq O(t^2/2^{\lambda})$.
- Best known analysis of the Schnorr identification scheme:

$$\epsilon_{\text{Schnorr}}(\lambda, t_{\text{Schnorr}}) \leq \sqrt{\epsilon_{\text{DLOG}}(\lambda, O(t_{\text{Schnorr}}))} \leq O\left(\sqrt{t_{\text{Schnorr}}^2/2^{\lambda}}\right).$$
 Polynomial gap

- Our bound:

$$\epsilon_{\mathsf{ARG}}(\lambda, x, t_{\mathsf{ARG}}) \leq 2^{-\lambda} + \epsilon_{\mathsf{DLOG}}(\lambda, t_{\mathsf{ARG}} \cdot l/\epsilon) + \epsilon \leq 2^{-\lambda} + l^{2/3} \cdot O\left(\sqrt[3]{t_{\mathsf{ARG}}^2/2^{\lambda}}\right).$$

Expected-time setting.

- Best known analysis of the Schnorr identification scheme:

$$\epsilon_{\mathsf{Schnorr}}^{\star}(\lambda, t_{\mathsf{Schnorr}}^{\star}) \leq \epsilon_{\mathsf{DLOG}}^{\star}(\lambda, O(t_{\mathsf{Schnorr}}^{\star})).$$

- Our bound:

$$\epsilon_{\mathsf{ARG}}^{\star}(\lambda, x, t_{\mathsf{ARG}}) \leq 2^{-\lambda} + \epsilon_{\mathsf{DLOG}}^{\star}(\lambda, t_{\mathsf{ARG}}^{\star} \cdot \log(\mathsf{q}/\epsilon)) + \epsilon.$$

Polylogarithmic gap Almost tight

On the price of rewinding

Goal: achieve $\epsilon_{ARG} = 2^{-40}$ against adversaries of size 2^{60} for Kilian's protocol.

Standard model

$$t_{\text{VC}} = O\left(\frac{l}{\epsilon} \cdot t_{\text{ARG}}\right)$$

Standard model $t_{\text{VC}} = O\left(\frac{l}{\epsilon} \cdot t_{\text{ARG}}\right)$ For every $x \notin L$ and $\epsilon > 0$, $\epsilon_{\mathsf{ARG}}(\lambda, x, t_{\mathsf{ARG}}) \le \epsilon_{\mathsf{PCP}}(x) + \epsilon_{\mathsf{VC}}(\lambda, l(x), \mathsf{q}(x), t_{\mathsf{VC}}) + \epsilon.$

- Suppose $\epsilon_{\text{PCP}} = 2^{-42}$ with $l = 2^{30}$.
- Suppose $\epsilon_{VC} = (\lambda, l, q, t_{VC}) \le \frac{t_{VC}^2}{2\lambda}$ (achieved by ideal Merkle trees). $\epsilon_{VC} \le \frac{t_{ARG}^2}{2\lambda} = 2^{120-\lambda}$
- Setting $\epsilon := 2^{-42}$:

$$- t_{VC} \le 4 \cdot \frac{2^{30}}{2^{-42}} \cdot t_{ARG} < 2^{80} \cdot t_{ARG}$$

$$-\epsilon_{VC} \le \frac{(2^{80} \cdot t_{ARG})^2}{2^{\lambda}} = 2^{160 - \lambda} \cdot t_{ARG}^2 = 2^{280 - \lambda}$$

• Set $\lambda \neq 322$ to achieve the desired bound.

Random oracle model

For every $x \notin L$, [CY24] $\epsilon_{\mathsf{ARG}}(\lambda, x, t_{\mathsf{ARG}}) \le \epsilon_{\mathsf{PCP}}(x) + \frac{t_{\mathsf{ARG}}^2}{2\lambda}.$

- Suppose $\epsilon_{\text{PCP}} = 2^{-42}$
- Set $\sqrt{1} = 162$ to achieve the desired bound.
- If the hash function is assumed ideal then extraction is straightline.
- If the hash function is merely collision-resistant then extraction is rewinding. These computations illustrate the **PRICE OF REWINDING**.

Thank you!

https://eprint.iacr.org/2024/1434