Formulas

The trigonometric identity is $\sin^2(\theta) + \cos^2(\theta) = 1$.

Formulas

The trigonometric identity is $\sin^2(\theta) + \cos^2(\theta) = 1$.

```
The trigonometric identity
is $\sin^2(\theta) + \cos^2(\theta) = 1 $.
```

Formulas

The trigonometric identity is $\sin^2(\theta) + \cos^2(\theta) = 1$.

```
The trigonometric identity
is $\sin^2(\theta) + \cos^2(\theta) = 1 $.
```

```
\usepackage{amsmath,amssymb}
\usepackage{commath,mathtools}
```

Formula	Code		Formula	Cod	е	
$\sqrt{2}$	<i>\$</i>	<i>\$</i>	$\sqrt[3]{8}$	\$		\$
$\frac{2}{3}$	<i>\$</i>	\$	x_1	<i>\$</i>	<i>\$</i>	
$6 \geq 3$	<i>\$</i>	<i>\$</i>	x_1^2	\$	<i>\$</i>	
$a^2 + b^2$	<i>\$</i>	\$	a^{2+b^2}	\$		\$

Formula	Code		Formula	Cod	Code		
$\sqrt{2}$	<pre>\$ \sqrt{2} \$</pre>		$\sqrt[3]{8}$	\$		<i>\$</i>	
$\frac{2}{3}$	\$	\$	x_1	<i>\$</i>	<i>\$</i>		
$6 \geq 3$	\$	<i>\$</i>	x_1^2	<i>\$</i>	<i>\$</i>		
$a^2 + b^2$	<i>\$</i>	\$	a^{2+b^2}	<i>\$</i>		<i>\$</i>	

Formula	Code		Formula	Coc	Code		
$\sqrt{2}$	<pre>\$ </pre>	2} \$	$\sqrt[3]{8}$	\$		<i>\$</i>	
$\frac{2}{3}$	<pre>\$ </pre>	2}{3} \$	x_1	<i>\$</i>	<i>\$</i>		
$6 \geq 3$	<i>\$</i>	<i>\$</i>	x_1^2	<i>\$</i>	\$		
$a^2 + b^2$	<i>\$</i>	\$	a^{2+b^2}	<i>\$</i>		\$	

Formula	Code	Formula	Code	
$\sqrt{2}$	<pre>\$ \sqrt{2} \$</pre>	$\sqrt[3]{8}$	\$	<i>\$</i>
$\frac{2}{3}$	<pre>\$ \frac{2}{3} \$</pre>	x_1	<i>\$</i>	
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	\$	
$a^2 + b^2$	<i>\$</i>	a^{2+b^2}	<i>\$</i>	\$

Formula	Code	Formula	Cod	le	
$\sqrt{2}$	<pre>\$ \sqrt{2} \$</pre>	$\sqrt[3]{8}$	<i>\$</i>		<i>\$</i>
$\frac{2}{3}$	<pre>\$ \frac{2}{3} \$</pre>	x_1	<i>\$</i>	\$	
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	<i>\$</i>	\$	
$a^2 + b^2$	\$ a^2 + b^2 \$	a^{2+b^2}	\$		<i>\$</i>

Formula	Code	Formula	Code
$\sqrt{2}$	<pre>\$ \sqrt{2} \$</pre>	√38	\$ \sqrt[3]{8} \$
$\frac{2}{3}$	<pre>\$ \frac{2}{3} \$</pre>	x_1	<i>\$</i>
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	<i>\$</i>
$a^2 + b^2$	\$ a^2 + b^2 \$	a^{2+b^2}	\$

Formula	Code	Formula	Code
$\sqrt{2}$	<pre>\$ \sqrt{2} \$</pre>	$\sqrt[3]{8}$	<pre>\$ \sqrt[3]{8} \$</pre>
$\frac{2}{3}$	<pre>\$ \frac{2}{3} \$</pre>	x_1	\$ x_1 \$
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	<i>\$</i>
$a^2 + b^2$	\$ a^2 + b^2 \$	a^{2+b^2}	<i>\$</i>

Formula	Code	Formula	Code
$\sqrt{2}$	<pre>\$ \sqrt{2} \$</pre>	$\sqrt[3]{8}$	<pre>\$ \sqrt[3]{8} \$</pre>
$\frac{2}{3}$	<pre>\$ \frac{2}{3} \$</pre>	x_1	\$ x_1 \$
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	\$ x_1^2 \$
$a^2 + b^2$	\$ a^2 + b^2 \$	a^{2+b^2}	<i>\$</i>

Formula	Code	Formula	Code
$\sqrt{2}$	<pre>\$ \sqrt{2} \$</pre>	√38	\$ \sqrt[3]{8} \$
$\frac{2}{3}$	<pre>\$ \frac{2}{3} \$</pre>	x_1	\$ x_1 \$
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	\$ x_1^2 \$
$a^2 + b^2$	\$ a^2 + b^2 \$	a^{2+b^2}	<pre>\$ a^{2 + b^2} \$</pre>

Formula	Code	Formula	Code
$\sqrt{2}$	<pre>\$ \sqrt{2} \$</pre>	√3/8	\$ \sqrt[3]{8} \$
$\frac{2}{3}$	<pre>\$ \frac{2}{3} \$</pre>	x_1	\$ x_1 \$
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	\$ x_1^2 \$
$a^{2} + b^{2}$	\$ a^2 + b^2 \$	a^{2+b^2}	\$ a^{2 + b^2} \$

Formula	Code	Formula	Code
$\sqrt{2}$	<pre>\$ \sqrt{2} \$</pre>	$\sqrt[3]{8}$	<pre>\$ \sqrt[3]{8} \$</pre>
$\frac{2}{3}$	<pre>\$ \frac{2}{3} \$</pre>	x_1	\$ x_1 \$
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	\$ x_1^2 \$
$a^{2} + b^{2}$	\$ a^2 + b^2 \$	a^{2+b^2}	<pre>\$ a^{2 + b^2} \$</pre>

$$x^2 = x^2 + x^2 = x^2 + x^2 = x^2$$

Formula	Code			Formula	Code	
x_1,\ldots,x_n	\$	\$		5 · 6	<i>\$</i>	\$
α, β, γ	<i>\$</i>		\$	A,B,Γ	<i>\$</i>	\$
$\epsilon, arepsilon$	<i>\$</i>		<i>\$</i>	${\cal P}$	<i>\$</i>	\$
$\phi, arphi$	<i>\$</i>	<i>\$</i>		\mathbb{P}	<i>\$</i>	<i>\$</i>

Formula	Code		Formula	Code	
x_1,\ldots,x_n	<pre>\$ x_1,\dots,x_n</pre>	\$	5 · 6	<i>\$</i>	<i>\$</i>
$lpha,eta,\gamma$	<i>\$</i>	<i>\$</i>	A,B,Γ	<i>\$</i>	<i>\$</i>
$\epsilon, arepsilon$	<i>\$</i>	\$	${\cal P}$	<i>\$</i>	<i>\$</i>
$\phi, arphi$	\$	<i>\$</i>	\mathbb{P}	<i>\$</i>	<i>\$</i>

Formula	Code		Formula	Code	
x_1,\ldots,x_n	<pre>\$ x_1,\dots,x</pre>	_n <i>\$</i>	5 · 6	<i>\$</i>	\$
$lpha,eta,\gamma$	<pre>\$ \alpha,\beta</pre>	a,\gamma \$	A,B,Γ	<i>\$</i>	<i>\$</i>
$\epsilon, arepsilon$	<i>\$</i>	<i>\$</i>	${\cal P}$	<i>\$</i>	\$
$\phi, arphi$	<i>\$</i>	<i>\$</i>	\mathbb{P}	<i>\$</i>	\$

Formula	Code		Formula	Code	
x_1,\ldots,x_n	<pre>\$ x_1,\dots,x_</pre>	n \$	5 · 6	\$	\$
α, β, γ	<pre>\$ \alpha,\beta</pre>	ı,\gamma \$	A,B,Γ	<i>\$</i>	<i>\$</i>
$\epsilon, arepsilon$	<pre>\$ \epsilon,\varepsilon \$</pre>		${\cal P}$	\$	<i>\$</i>
$\phi, arphi$	<i>\$</i>	\$	\mathbb{P}	\$	<i>\$</i>

Formula	Code	Formula	Code	
x_1,\ldots,x_n	<pre>\$ x_1,\dots,x_n \$</pre>	5 · 6	\$	<i>\$</i>
α, β, γ	<pre>\$ \alpha,\beta,\gamma \$</pre>	A,B,Γ	<i>\$</i>	<i>\$</i>
$\epsilon, arepsilon$	<pre>\$ \epsilon,\varepsilon \$</pre>	${\cal P}$	<i>\$</i>	\$
$\phi, arphi$	<pre>\$ \phi,\varphi \$</pre>	\mathbb{P}	\$	<i>\$</i>

Formula	Code	Formula	Code	
x_1,\ldots,x_n	<pre>\$ x_1,\dots,x_n \$</pre>	5 · 6	\$ 5\cdot 6 \$	
α, β, γ	<pre>\$ \alpha,\beta,\gamma \$</pre>	A,B,Γ	<i>\$</i>	<i>\$</i>
$\epsilon, arepsilon$	<pre>\$ \epsilon,\varepsilon \$</pre>	${\cal P}$	<i>\$</i>	<i>\$</i>
$\phi, arphi$	<pre>\$ \phi,\varphi \$</pre>	\mathbb{P}	<i>\$</i>	<i>\$</i>

Formula	Code	Formula	Code
x_1,\ldots,x_n	<pre>\$ x_1,\dots,x_n \$</pre>	5 · 6	\$ 5\cdot 6 \$
α, β, γ	<pre>\$ \alpha,\beta,\gamma \$</pre>	A,B,Γ	\$ A,B,\Gamma \$
$\epsilon, arepsilon$	<pre>\$ \epsilon,\varepsilon \$</pre>	${\cal P}$	\$
$\phi, arphi$	<pre>\$ \phi,\varphi \$</pre>	\mathbb{P}	<i>\$</i>

Formula	Code	Formula	Code
x_1,\ldots,x_n	<pre>\$ x_1,\dots,x_n \$</pre>	5 · 6	\$ 5\cdot 6 \$
α, β, γ	<pre>\$ \alpha,\beta,\gamma \$</pre>	A,B,Γ	\$ A,B,\Gamma \$
$\epsilon, arepsilon$	<pre>\$ \epsilon,\varepsilon \$</pre>	${\cal P}$	<pre>\$ \mathcal{P} \$</pre>
$\phi, arphi$	<pre>\$ \phi,\varphi \$</pre>	\mathbb{P}	<i>\$</i>

Formula	Code	Formula	Code
x_1,\ldots,x_n	<pre>\$ x_1,\dots,x_n \$</pre>	5 · 6	\$ 5\cdot 6 \$
α, β, γ	<pre>\$ \alpha,\beta,\gamma \$</pre>	A,B,Γ	\$ A,B,\Gamma \$
$\epsilon, arepsilon$	<pre>\$ \epsilon,\varepsilon \$</pre>	${\cal P}$	<pre>\$ \mathcal{P} \$</pre>
$\phi, arphi$	<pre>\$ \phi,\varphi \$</pre>	\mathbb{P}	<pre>\$ \mathbb{P} \$</pre>

Formulas: Vectors

Formule	Code	Formule	Code
\vec{x}	<pre>\$ \vec{x} \$</pre>	$ec{F}_{tot}$	<pre>\$ \vec{F}_{\text{tot}} \$</pre>
×	<pre>\$ \mathbf{x} \$</pre>	$\hat{\imath} + 6\hat{k}$	<pre>\$ \hat{\imath} + 6\hat{k} \$</pre>
$\ \vec{x}\ $	<pre>\$ \norm{\vec{x}} \$</pre>	$ abla imes extbf{A}$	<pre>\$ \nabla\times\mathbf{A} \$</pre>

$$\vec{F}_{tot}$$
, \vec{F}_{tot}

S S

Formulas: Calculus

\usepackage{commath}

$$\frac{\mathsf{d} \sin(x)}{\mathsf{d} x}, \frac{\partial f(x, y)}{\partial x}, \partial_x f$$

$$\int_0^\infty e^{-x} \, \mathrm{d}x = 1$$

Formulas: Mathematical relations

Formula	Code	Formula	Code
$a \leq b$	$$$ a \leq b $$$	$a \ge b$	<pre>\$ a \geq b \$</pre>
a < b	\$ a < b \$	a > b	\$ a > b \$
$a\ll b$	\$ a \11 b \$	a ≫ b	\$ a \gg b \$
a = b	<pre>\$ a = b \$</pre>	$a\simeq b$	$\$$ a \simeq b $\$$
a eq b	$$$ a \neq b $$$	approx b	<pre>\$ a \approx b \$</pre>
$a\sim b$	<pre>\$ a \sim b \$</pre>	$a\stackrel{*}{=}b$	<pre>\$ a \stackrel{*}{=}b \$</pre>

Formulas: Arrows and operators

```
\DeclareMathOperator{\Image}{Image}
a \iff b, a\implies b, a\mapsto b
\lim_{x\to 0} \frac{x \to 0}{\frac{\sin(x)}{x}} = 1
\Image(f) = \mathbb{R}_{\leq 0}
```

$$a \iff b, a \implies b, a \mapsto b$$

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

$$\mathsf{Image}(f) = \mathbb{R}_{>0}$$

So many! And there are lots more :-)

CTAN symbol list:

http://mirrors.ctan.org/info/symbols/comprehensive/ symbols-a4.pdf

Detexify:

http://detexify.kirelabs.org/classify.html

Equation

```
The trigonometric identity is
$\sin^2(\theta) + \cos^2(\theta) = 1 $.

The trigonometric identity is
\begin{equation}
  \sin^2(\theta) + \cos^2(\theta) = 1.
\end{equation}
```

De trigonometric identity is $\sin^2(\theta) + \cos^2(\theta) = 1$.

De trigonometric identity is

$$\sin^2(\theta) + \cos^2(\theta) = 1. \tag{1}$$

Align

```
The double-angle formula can now be rewritten as 

\begin{align}
\\cos(2\theta) = \\cos^2(\theta) - \\sin^2(\theta)\\\
= 2\\cos^2(\theta)-1.
\\end{align}
```

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) \tag{1}$$

$$=2\cos^2(\theta)-1. \tag{2}$$

Align

```
The double-angle formula can now be rewritten as 

\begin{align}
\\cos(2\theta) &= \\cos^2(\theta) - \\sin^2(\theta)\\\
&= 2\\cos^2(\theta)-1.
\\end{align}
```

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) \tag{1}$$

$$=2\cos^2(\theta)-1. (2)$$

 $x \to 0$

Align

```
The double-angle formula can now be rewritten as
\begin{align}
   \cos(2\theta) &= \cos^2(\theta) - \sin^2(\theta)
   \nonumber\\
   &= 2\cos^2(\theta)-1.
\end{align}
```

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$$
$$= 2\cos^2(\theta) - 1. \tag{1}$$

align

Align

```
The double-angle formula can now be rewritten as 

\begin{align*}
\\cos(2\theta) &= \\cos^2(\theta) - \\sin^2(\theta)\\\
&= 2\\cos^2(\theta)-1.
\\end{align*}
```

$$cos(2\theta) = cos^{2}(\theta) - sin^{2}(\theta)$$
$$= 2 cos^{2}(\theta) - 1.$$

 $x \to 0$

Align

```
The double-angle formula can now be rewritten as 

\begin{align*}
\\cos(2\theta) &= \\cos^2(\theta) - \\sin^2(\theta)\\\
&= 2\\cos^2(\theta) -1. \\tag{$ * $}
\\end{align*}
```

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$$
$$= 2\cos^2(\theta) - 1. \tag{*}$$

equation

align

nonumber

align*

Align

```
We do this with the double-angle formula
\begin{align*}
    \cos(2\theta) &= \cos^2(\theta) - \sin^2(\theta)
\end{align*}
which we can rewrite as
\begin{align*}
    \&= \cos^2(\theta) - (1 - \cos^2(\theta))
    \&= 2 \cos^2(\theta) - 1.
\end{align*}
```

We do this with the double-angle formula

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta),$$

which we can rewrite as

=
$$\cos^2(\theta) - (1 - \cos^2(\theta))$$

= $2\cos^2(\theta) - 1$.

Align

We do this with the double-angle formula

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta),$$

which we can rewrite as

=
$$\cos^2(\theta) - (1 - \cos^2(\theta))$$

= $2\cos^2(\theta) - 1$.

Also in use

```
AA \(\sqrt{2}\)
BB \[\sqrt{3}\]
CC $$ \sqrt{4} $$
```

```
AA \sqrt{2} BB \sqrt{3} CC \sqrt{4}
```

Left-right

```
\begin{align*}
  &f(\sum_{i=1}^{n}x_i)\\
  &f\left(\sum_{i=1}^{n}x_i\right)
\end{align*}
```

$$f\left(\sum_{i=1}^{n} x_{i}\right)$$

$$f\left(\sum_{i=1}^{n} x_{i}\right)$$

align*

```
\begin{align*}
   \left(\frac{x^2\right)^{x=0}^{x=2} = 4}
\end{align*}
```

$$\left[x^2\right]\bigg|_{x=0}^{x=2}=4,$$

\nonumber | align* | \tag | \intertext |

```
\begin{align*}
  R(\theta) = \begin{pmatrix}
    \cos(\theta) & -\sin(\theta)\\
    \sin(\theta) & \cos(\theta)
  \end{pmatrix},\quad
  \abs{x} = \begin{cases}
    x & \mbox{if $ x \geq 0$}\\
    -x & \mbox{if $ x < 0$}
  \end{cases}
  \end{align*}</pre>
```

$$R(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}, \quad |x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$