- b. Use Figure A3-3 to determine the capacity of the gutter section above the depressed section (Q_s). Use the procedure for non-composite gutter sections, Condition 2, substituting T_s for T.
- c. Calculate the ratios W/T and S_w/S_x , and, from Figure A3-4, find the appropriate ratio of E_o (the ratio of Q_w/Q).
- d. Calculate the total gutter flow using the equation:

$$Q = Qs (1 - Eo)$$
 (Eq. A3-6)

where:

Q - gutter flow rate, in m³/sec

 Q_s = flow capacity of the gutter section above the depressed section, in m³/sec E_o - ratio of frontal flow to total gutter flow, Q_w/Q

e. Calculate the gutter flow in width (W), using Equation A3-5.