

Department of Mechanical and Aerospace Engineering MEE 440/AEE 521 - Flight Vehicle Performance/Dynamics Homework-

1. For the aircraft assigned to you and use the corresponding aircraft data, provided drawings. Extract the relevant geometric parameters and provide estimates for all the longitudinal coefficients.

Wing Geometric Parameters

wing Geometric Parameters

•
$$C_T = 4.5$$
• $\Lambda_{LE} = 4.5$
• 0.0262
• $C_R = 6.2$
• $b = 33.8$
• $X_{WH_R} = 15.4$
• $E_{WH_R} = 2.2$
• E_{WH_R

Modeling Downwash Coefficients

Modeling Downwash Coefficients

$$\sqrt{\bullet} K_{AR} = \frac{1}{AR} - \frac{1}{1 + (AR)^{1.7}} = 0.1165$$

$$\sqrt{\bullet} K_{\lambda} = \frac{10 - 3\lambda}{7} = 1.1175$$

$$\sqrt{\bullet} K_{mr} = \frac{1 - \frac{m}{2}}{(r)^{0.33}} = 0.4376$$

$$\sqrt{\bullet} \left(\frac{d\epsilon}{d\alpha}\right)_{Mach=0} = 4.44 \left(K_{AR}K_{\lambda}K_{mr}\sqrt{\cos(\Lambda_{0.25})}\right)^{1.19} = 0.5422$$

Horizontal Tail Parameters

$$\sqrt{\bullet} \lambda_{H} = \frac{c_{T}}{c_{R}} = \frac{27}{C_{R}} = ? = 0.478$$

$$\sqrt{\bullet} S_{H} = \frac{b_{H}}{2} c_{R} (1 + \lambda_{H}) = \frac{47.6}{74.6} = 74.9$$

$$\sqrt{\bullet} AR_{H} = \frac{b_{H}^{2}}{S_{H}} = \frac{4.1174}{1+\lambda_{H}} = \frac{3.5412}{0.7348}$$

$$\sqrt{\bullet} c_{H} = \frac{2}{3} c_{R_{H}} \frac{1+\lambda_{H}+\lambda_{H}^{2}}{1+\lambda_{H}} = \frac{3.5412}{0.7348}$$

$$\sqrt{\bullet} x_{MAC_{H}} = \frac{b_{H}}{6} \frac{(1+2\lambda_{H})}{(1+\lambda_{H})} \tan(\Lambda_{LE_{H}}) = \frac{0.205}{0.205}$$

$$\sqrt{\bullet} \tan(\Lambda_{0.5_{H}}) = 0.1714 \qquad \Lambda_{0.5_{H}} = 0.1697$$
Wing Tail Geometric Parameters
$$\sqrt{\bullet} X_{WH} = X_{W_{HR}} + \frac{c_{R_{H}}}{4} - \frac{c_{R}}{4} = 15.5$$

$$\sqrt{\bullet} r = \frac{2X_{WH}}{b} = 0.9172$$

$$\sqrt{\bullet} m = \frac{2Z_{WH}}{b} = 0.1775$$

Wing Lift-Slope Coefficients

 $\sqrt{\bullet \ \overline{x}_{AC_H}} = \frac{\times_{AC_H}}{=} 2.44$

$$V_{\bullet} K = 1 + \frac{(8.2 - 2.3 \Lambda_{LE}) - AR(0.22 - 0.153 \Lambda_{LE})}{100} = 1.067 \text{ } V_{\bullet}$$

 $x_{AC_H} = X_{WH_R} + x_{MAC_H} + \frac{\bar{c}_H}{4} - x_{MAC} = 17 \text{ 42.6}$

Horizontal Tail Lift-Slope Coefficients
$$\sqrt{\bullet} \ k_H = \frac{(8.2-2.3\Lambda_{LE_H})-AR_H(0.22-0.153\Lambda_{LE_H})}{100} + 1 = 1.07 \ \text{2}$$

$$\sqrt{\bullet} \ c_{L\alpha_{H|_{Mach}}} = \sqrt{\bullet} \ c_{L\alpha_{H|_{Mach}}} = \sqrt{\bullet} \ c_{L\alpha_{H|_{Mach}}}$$

University of Dayton
$$c_{L_{\alpha_W}} = \frac{2\pi AR}{\sqrt{5}}$$

Oniversity of Dayton
$$c_{L_{\alpha W|Mach=0}} = \frac{2\pi AR}{2+\sqrt{\left[\frac{AR^2}{k^2}\left(1+tan^2(\Lambda_{0.5})\right)\right]+4}} = 4.8131$$

$$\frac{\left(\frac{d\epsilon}{k^2}\right)_{Mach}}{\left(\frac{d\epsilon}{k^2}\right)_{Mach=0}} = \frac{\left(\frac{d\epsilon}{k^2}\right)_{Mach=0}}{\left(\frac{d\epsilon}{k^2}\right)_{Mach=0}} = 0.1413$$

•
$$\left(\frac{d\epsilon}{d\alpha}\right)|_{Mach} = \left(\frac{d\epsilon}{d\alpha}\right)|_{Mach=0} \frac{c_{L_{\alpha_{W_{|Mach=0}}}}}{c_{L_{\alpha_{W_{|Mach}}}}}$$
 70.1613

Wing Aerodynamic Center - Napolite

$$\sqrt{\bullet}$$
 $\bar{x}_{AC_W} = K_1 \left(\frac{x'_{AC_W}}{c_R} - K_2 \right) = \bullet O.$ 155

$$\int_{-\infty}^{\infty} -\frac{\tan(\Lambda_{LE})}{\sqrt{1-M^2}} = -0.685$$
 $-AR * \tan(\Lambda_{LE}) = -0.821$

$$\begin{array}{c} \sqrt{-AR*\tan(\Lambda_{LE})} = - \end{array}$$

$$\checkmark$$
• Figure 2.27: $\lambda = 0.25, AR * tan(\Lambda_{LE}) = 4.5827 \Rightarrow \frac{x'_{AC}}{c_R} = 0.16$

✓• Figure 2.28:
$$\lambda = 0.25 \Rightarrow K_1 = 1.425$$

• Figure 2.29:
$$\Lambda_{LE} = 28^{\circ}, \lambda = 0.25, AR = 8.612 \Rightarrow K_2 = 0.65$$

$$\sqrt{\bullet} \ \bar{x}_{AC_W} = K_1 \left(\frac{x'_{AC}}{c_R} - K_2 \right) = -0.655$$

$$oldsymbol{\sqrt{\bullet}}$$
 $\Delta ar{x}_{AC_B} == -rac{1}{2.92Sar{c}}\sum_{i=1}^N w_{B_i}^2(rac{dar{\epsilon}}{dlpha_i})\Delta x_i =$ $oldsymbol{-0.19}$

$$\checkmark \bullet \ ar{x}_{AC_{WB}} = ar{x}_{AC_W} + \Delta ar{x}_{AC_B} = -0.9455$$

Aerodynamic Parameters \checkmark $C_{L_{\alpha}} = 3.215$

$$\bigvee \bullet \ C_{L_{\alpha}} = 3.215$$

$$\checkmark \bullet \ C_{L_{\delta_E}} = 0.3172$$

$$\checkmark$$
 • $C_{L_{i_H}} = \circ$. 63.44

$$\checkmark \bullet C_{m_{\alpha}} = \bullet 0.17$$

$$\checkmark \bullet \ C_{m_{\delta_E}} = -1.12$$

$$\checkmark \bullet \ C_{m_{i_H}} =$$

$$C_{L_{\dot{\alpha}}} = 0.429$$

$$\sqrt{\bullet} \ C_{m_{\dot{\alpha}}} = -6.95$$

$$V_{\bullet} C_{L_q} = 45.6 \text{ *Wrong}$$
 $V_{\bullet} C_{m_{\dot{\alpha}}} = -6.95$
 $V_{\bullet} C_{m_q} = -18.7 \text{ (from book)}$

ecture 7: