Relatório de Modelagem e Otimização de Algoritmos A* aplicado no jogo 15-Puzzle

Fernando E. A. de Carvalho, Vinícius P. de Camargo

¹Departamento de Informática – Universidade Estadual de Maringá (UEM) Av. Colombo, 5790 - UEM - Bloco C56 – Maringá – PR – Brazil

{ra88408, ra88063}@uem.br

1. Introdução e resumo do problema

Criado nos Estados Unidos da América no final do século XIX e conhecido no Brasil desde 1995, o Jogo dos 15 ou 15-Puzzle consiste de realizar sequências de movimentos que levem a uma determinada sequência final, como demonstrado pela Figura 1.

Figura 1. Tabuleiro em estado final para o objetivo deste presente trabalho.

Para a resolução do problema, o algoritmo A* foi indicado; sendo o mesmo inicialmente proposto por Peter Hart, Nils Nilsson, e Bertram Raphael em 1968 e chamado apenas de A, recebendo posteriormente o nome de A* quando este possuía uma heurística admissível, ou seja, levava ao resultado ótimo.

2. Objetivos

Segundo o objetivo do trabalho proposto para disciplina de Modelagem e Otimização Algorítmica do curso de Bacharelado em Informática, o algoritmo A*, que pode ser desenvolvido em qualquer linguagem a qual a plataforma run.codes suporte, deve ser executado e os resultados presentes na Seção 3 devem levar em consideração a resposta obtida, a memória consumida na execução do algoritmo A* e também seu tempo de execução.

3. Resultados

A presente seção apresenta os resultados dos testes, sendo estes conduzidos em dois computadores distintos segundo a necessidade de memória de cada instância do problema, sendo os respectivos hardwares identificados a seguir:

- Computador Pessoal (PC)¹
 - Processador: Intel i5 3^a geração CPU @ 2.50Ghz;
 - Memória RAM: 6Gb (4Gb alocados para os testes);
 - Sistema Operacional: Windows 10 Home Edition;
 - Versão JVM: 1.8.
- Servidor do Departamento de Informática UEM (Pitomba)
 - Processador: Intel Xeon® 5000 CPU @ 2.30Gzh;
 - Memória RAM: 128Gb (45Gb alocados para os testes);
 - Sistema Operacional: Debian GNU/Linux 8 (jessie);
 - Versão JVM: 1.9;

As subseções apresentam as instâncias do problema, uma breve explicação de cada heurística e os resultados de cada caso de execução².

3.1. Instâncias do problema

- 1. 5 13 6 10 1 7 2 9 4 3 15 14 8 0 11 12
- 2. 2 10 11 9 3 1 0 13 4 6 7 14 5 8 12 15
- 3. 5 9 13 10 2 6 14 15 1 4 7 12 0 3 11 8
- 4. 7 11 4 5 0 6 15 8 14 1 3 13 9 12 10 2
- 5. 5 10 9 14 7 3 13 6 1 15 0 12 8 2 4 11
- 6. 0 9 3 7 1 14 6 4 2 11 12 15 13 8 10 5
- 7. 3 9 0 7 2 1 6 5 11 13 4 12 8 14 15 10
- 8. 9674215128311014151013
- 9. 2945071112146313181510
- 10. 7 11 5 12 9 8 6 13 2 3 4 10 14 1 15 0

3.2. Heurística 1

Esta heurística baseia-se na quantidade de peças qu estão fora do lugar em comparação com a solução final, já que cada peça errada necessitará de no mínimo um movimento para para que a se chegar na conclusão, assim esta heurística torna-se uma heurística aceitável.

¹Este hardware apresenta não só economia de tempo devido à frequência do processador, mas economia de memória para uma mesma instância, devido possivelmente a alguma otimização feita nas instruções do processador.

²Testes que ocuparam mais de 45 Gigabytes de memória foram interrompidos.

Instância	Passos	Tempo (milisegundos)	Memória (mb)	Hardware utilizado
1	20	31	3,36	PC
2	27	733	123,92	PC
3	27	391	81,22	PC
4	_	_	_	Pitomba
5	34	57.800	4.914,34	Pitomba
6	_	_	_	Pitomba
7	_	_	_	Pitomba
8	_	_	_	Pitomba
9	_	_	_	Pitomba
10	_	_	_	Pitomba

Tabela 1. Aplicação da heurística 1 nas instâncias do problema.

3.3. Heurística 2

Na segunda heurística é contato a quantidade de peças que estão fora de ordem crescente das quinze peças. Esta heurística segue o princípio da primeira em que no mínimo um movimento será necessário para posicionar uma peça errada ao seu devido lugar.

Instância	Passos	Tempo (milisegundos)	Memória (mb)	Hardware utilizado
1	20	31	4,80	PC
2	27	6.048	426,01	PC
3	27	1.671	438,52	PC
4	_	_	_	Pitomba
5	34	148.016	12.222,72	Pitomba
6	_	_	_	Pitomba
7	_	_	_	Pitomba
8	_	_	_	Pitomba
9	_	_	_	Pitomba
10	_	_	_	Pitomba

Tabela 2. Aplicação da heurística 2 nas instâncias do problema.

3.4. Heurística 3

A terceira heurística calcula a distância manhattan, que é o calculo da distancia em que a peça está, para o seu devido lugar na posição de solução supondo um caminho livre. Como será necessário pelo menos a quantidade retornada pelo cálculo da distância manhattan para posicionar a peça em sua posição de solução, tal heurística se mostra válida e apresenta o melhor desempenho entre todas as heurísticas testadas.

Instância	Passos	Tempo (milisegundos)	Memória (mb)	Hardware utilizado
1	20	15	1,92	PC
2	27	46	8,64	PC
3	27	62	20,64	PC
4	57	58.175	2.795,67	PC
5	34	250	15,48	PC
6	56	96.368	9.225,79	Pitomba
7	44	859	111,98	PC
8	51	24.407	1.482,84	PC
9	49	39.531	2.047,94	PC
10	50	8.703	518,72	PC

Tabela 3. Aplicação da heurística 3 nas instâncias do problema.

3.5. Heurística 4

Na heurística quatro é utilizada a soma das 3 primeiras heurísticas, cada uma com um peso respectivo, a soma dos pesos deve ser igual a um, e os mesmos foram selecionados de forma empírica.

Instância	Passos	Tempo (milisegundos)	Memória (mb)	Hardware utilizado
1	20	15	1,92	PC
2	27	94	19,68	PC
3	27	78	21,60	PC
4	_	_	_	Pitomba
5	34	297	43,17	PC
6	_	_	_	Pitomba
7	44	10.094	824,55	PC
8	51	245.277	17.856,90	Pitomba
9	49	202.342	15.801,71	Pitomba
10	50	102.268	8.300,00	Pitomba

Tabela 4. Aplicação da heurística 4 nas instâncias do problema.

3.6. Heurística 5

A quinta e última heurística implementada usa o maior valor das três primeiras heurísticas, como todas as três são heurísticas aceitáveis, esta por sua vez também se torna. Um problema encontrada no cálculo das heurísticas quatro e cinco, é que para realizar o mesmo é necessário o cálculo das heurísticas um, dois, e três, desta forma tendo um custo computacional mais alto, no entanto, escolhas entre as melhores opções das heurísticas um, dois e três otimizam o processo, de modo que as duas últimas heurísticas apresentam desempenho muito melhor que as heurísticas um e dois.

Instância	Passos	Tempo (milisegundos)	Memória (mb)	Hardware utilizado
1	20	16	1,92	PC
2	27	63	19,68	PC
3	27	78	20,16	PC
4	57	129.826	12.213,87	Pitomba
5	34	281	19,37	PC
6	56	378.224	28.772,61	Pitomba
7	44	3.094	218,44	PC
8	51	44.690	2.204,32	PC
9	49	83.199	7.053,88	Pitomba
10	50	24.486	1.352,284	PC

Tabela 5. Aplicação da heurística 5 nas instâncias do problema.

4. Instruções de execução

As instruções de execução assumem que o leitor tenha um compilador de java instalado em seu computador.

- 1. Abra a pasta que contém o arquivo Main.java
- 2. Abra o terminal
- 3. Digite javac Main.java
- 4. Digite java -Xmx4G Main < arquivoDesejado.in //Neste exemplo a memória máxima alocada para a Heap da JVM (*Java Virtual Machine*) é 4G, mas esta quantidade não resolve todas as instâncias e o arquivoDesejado.in deve ser substituido pelo arquivo que deseja-se testar.