```
In [1]: #Carrega os pacotes
         import pandas as pd
         import numpy as np
         from nltk.corpus import stopwords
         import matplotlib.pyplot as plt
         import matplotlib as mpl
         %matplotlib inline
In [2]: #Dados das variaveis de treino
         train variants df = pd.read csv("training variants")
         train variants df.shape
Out[2]: (3321, 4)
In [3]:
         #Dados dos textos de treino
         train text df = pd.read csv("training text", sep="\\\\", engine='python', head
         er = None, names=["ID", "Text"], skiprows=1)
         train_text_df.shape
Out[3]: (3321, 2)
In [5]: #Juntando os datdasets (subtraíndo 1 das classes para que se iniciem com 0)
         df = pd.merge(train variants df, train text df, how='left', on='ID')
         df['Class'] = df['Class'] - 1
         df.head()
Out[5]:
            ID
                  Gene
                                 Variation Class
                                                                                    Text
             0
                FAM58A Truncating Mutations
                                              0
                                                  Cyclin-dependent kinases (CDKs) regulate a var...
          0
             1
                   CBL
                                   W802*
                                                   Abstract Background Non-small cell lung canc...
                                              1
             2
                   CBL
                                   Q249E
                                                   Abstract Background Non-small cell lung canc...
          2
             3
                   CBL
                                   N454D
                                              2 Recent evidence has demonstrated that acquired...
          3
             4
                   CBL
                                   L399V
                                                Oncogenic mutations in the monomeric Casitas B...
         df.shape
In [6]:
Out[6]: (3321, 5)
In [7]: # Valores NA
         TextNA = df['Text'].isna()
```

print('Existem %.0f valores NA' % TextNA[TextNA == True].shape[0])

Existem 5 valores NA

```
In [8]: # Removendo os valores missing
df = df.drop(TextNA[TextNA == True].index)
df.reset_index(drop=True)
```

Out[8]:

	ID	Gene	Variation	Class	Text
0	0	FAM58A	Truncating Mutations	0	Cyclin-dependent kinases (CDKs) regulate a var
1	1	CBL	W802*	1	Abstract Background Non-small cell lung canc
2	2	CBL	Q249E	1	Abstract Background Non-small cell lung canc
3	3	CBL	N454D	2	Recent evidence has demonstrated that acquired
4	4	CBL	L399V	3	Oncogenic mutations in the monomeric Casitas B
5	5	CBL	V391I	3	Oncogenic mutations in the monomeric Casitas B
6	6	CBL	V430M	4	Oncogenic mutations in the monomeric Casitas B
7	7	CBL	Deletion	0	CBL is a negative regulator of activated recep
8	8	CBL	Y371H	3	Abstract Juvenile myelomonocytic leukemia (JM
9	9	CBL	C384R	3	Abstract Juvenile myelomonocytic leukemia (JM
10	10	CBL	P395A	3	Oncogenic mutations in the monomeric Casitas B
11	11	CBL	K382E	3	Noonan syndrome is an autosomal dominant conge
12	12	CBL	R420Q	3	Noonan syndrome is an autosomal dominant conge
13	13	CBL	C381A	3	Noonan syndrome is an autosomal dominant conge
14	14	CBL	P428L	4	Oncogenic mutations in the monomeric Casitas B
15	15	CBL	D390Y	3	Noonan syndrome is an autosomal dominant conge
16	16	CBL	Truncating Mutations	0	To determine if residual cylindrical refractiv
17	17	CBL	Q367P	3	Acquired uniparental disomy (aUPD) is a common
18	18	CBL	M374V	4	Oncogenic mutations in the monomeric Casitas B
19	19	CBL	Y371S	3	Acquired uniparental disomy (aUPD) is a common
20	20	CBL	H94Y	5	Abstract Background Non-small cell lung canc
21	21	CBL	C396R	3	Oncogenic mutations in the monomeric Casitas B
22	22	CBL	G375P	3	Oncogenic mutations in the monomeric Casitas B
23	23	CBL	S376F	3	Recent evidence has demonstrated that acquired
24	24	CBL	P417A	3	Recent evidence has demonstrated that acquired
25	25	CBL	H398Y	3	Recent evidence has demonstrated that acquired

	ID	Gene	Variation	Class	Text
26	26	SHOC2	S2G	3	Abstract N-myristoylation is a common form of
27	27	TERT	Y846C	3	Heterozygous mutations in the telomerase compo
28	28	TERT	C228T	6	Sequencing studies have identified many recurr
29	29	TERT	H412Y	3	Heterozygous mutations in the telomerase compo
3286	3291	RET	C620R	6	We investigated the transforming activity of the r
3287	3292	RET	C634Y	6	We investigated the transforming activity of the r
3288	3293	RET	V804G	0	RET is a transmembrane tyrosine kinase partici
3289	3294	RET	R886W	6	Introduction Inherited germ line activating m
3290	3295	RET	F893L	3	Many missense mutations in the RET proto- oncog
3291	3296	RET	Y791F	6	The RET proto-oncogene encodes a receptor tyro
3292	3297	RUNX1	R177*	3	THE AML1 GENE IS KNOWN as the most frequent ta
3293	3298	RUNX1	Y113*	3	Introduction Myelodysplastic syndromes (MDS)
3294	3299	RUNX1	R139G	3	The BCR-ABL fusion protein generated by t(9;22
3295	3300	RUNX1	K83N	3	The most frequent mutations associated with le
3296	3301	RUNX1	R177Q	3	The most frequent mutations associated with le
3297	3302	RUNX1	R166Q	3	Familial platelet disorder with predisposition
3298	3303	RUNX1	P173S	3	Introduction Myelodysplastic syndromes (MDS) \dots
3299	3304	RUNX1	R201Q	3	Familial platelet disorder with predisposition
3300	3305	RUNX1	S70fsX93	3	Introduction Myelodysplastic syndromes (MDS) \dots
3301	3306	RUNX1	W279*	0	Here we report two new RUNX1 mutations in one
3302	3307	RUNX1	Truncating Mutations	0	The RUNX genes have come to prominence recentl
3303	3308	RUNX1	R174*	6	Familial platelet disorder with propensity to
3304	3309	RUNX1	D171G	0	The BCR-ABL fusion protein generated by t(9;22
3305	3310	RUNX1	Amplification	6	RUNX proteins belong to a family of metazoan t
3306	3311	RUNX1	RUNX1-EVI1 Fusion	3	The AML1/EVI-1 chimeric gene is generated by t
3307	3312	RUNX1	TEL-RUNX1 Fusion	3	Balanced chromosomal translocations are freque
3308	3313	RUNX1	H78Q	3	The BCR-ABL fusion protein generated by t(9;22
3309	3314	RUNX1	G42R	5	Introduction Myelodysplastic syndromes (MDS)

	ID	Gene	Variation	Class	Text
3310	3315	RUNX1	RUNX1-RUNX1T1 Fusion	3	The RUNX gene family includes three evolutiona
3311	3316	RUNX1	D171N	3	Introduction Myelodysplastic syndromes (MDS)
3312	3317	RUNX1	A122*	0	Introduction Myelodysplastic syndromes (MDS)
3313	3318	RUNX1	Fusions	0	The Runt-related transcription factor 1 gene (
3314	3319	RUNX1	R80C	3	The RUNX1/AML1 gene is the most frequent targe
3315	3320	RUNX1	K83E	3	The most frequent mutations associated with le

3316 rows × 5 columns

```
In [9]: #Verificando a distribuição das classes
    ax = df['Class'].value_counts().plot(kind='bar', color='black', title = 'Distr
    ibuição das classes')
    ax.set_xlabel('Classes')
    ax.set_ylabel('Frequência')
```

Out[9]: Text(0,0.5,'Frequência')

Temos pouquíssimos casos para as classes 2, 7 e 8, dificultando sua detecção. Teremos que balancear o dataset.

```
In [12]: # Calculando as frequências
    stopWords = set(stopwords.words('english'))
    vectorizer = CountVectorizer(stop_words=stopWords)
    X = vectorizer.fit_transform(palavras)
```

```
In [13]: # Crianda um dataframe com as paralavras mais frequentes
    def PalavrasFrequentesPorClasse(palavras, frequencias):
        dfTopWords = pd.DataFrame()
        for linha in range(len(frequencias)):
            dfTemp = pd.DataFrame({'Classe'+str(linha+1): palavras, 'Freq'+str(linha+1): frequencias[linha]})
            dfTemp = dfTemp.sort_values(by=['Freq'+str(linha+1)], ascending=False)
            dfTopWords = pd.concat([dfTopWords, dfTemp.reset_index(drop=True)], ax
        is=1)
        return dfTopWords
```

```
In [14]:
         # Crianda um dataframe com as palavras mais frequentes dado a classe
         def PalavrasFrequentesTotalClasses(palavras, frequencias, n):
             for linha in range(len(frequencias)):
                 dfTemp = pd.DataFrame({'Palavra': palavras, 'Freq'+str(linha+1): frequ
         encias[linha]})
                 if linha == 0:
                     dfTopWordsClasses = dfTemp.sort values(by=['Freq'+str(linha+1)], a
         scending=False)[0:20]
                 else:
                     dfTemp = dfTemp.sort_values(by=['Freq'+str(linha+1)], ascending=Fa
         lse)
                     dfTopWordsClasses = pd.merge(dfTopWordsClasses, dfTemp[0:n], how=
          'outer', on='Palavra')
             dfTopWordsClasses['TotalClasses'] = dfTopWordsClasses.count(axis='columns'
         , numeric only=True)
             return dfTopWordsClasses.sort_values(by=['TotalClasses'], ascending=False)
```

Out[15]:

	Classe1	Freq1	Classe2	Freq2	Classe3	Freq3	Classe4	Freq4	Classe5	Freq5	CI
0	mutations	33719	mutations	34570	mutations	6243	mutations	46483	brca1	14396	
1	cells	28402	cells	23143	brca1	4191	cells	37077	variants	14365	
2	cell	20282	patients	19183	cells	3900	pten	25777	mutations	13049	mut
3	p53	19152	cell	18237	al	3016	protein	23992	cancer	7866	٧٤
4	et	18973	mutation	15148	variants	2936	et	21997	cells	7500	(
5	al	18871	et	14718	et	2843	al	21866	protein	6111	mι
6	fig	18099	al	14653	cancer	2648	activity	21596	mutation	5782	
7	protein	17950	cancer	13217	mutation	2183	fig	21193	functional	5648	
8	cancer	17907	figure	13006	figure	2181	cell	21150	fig	5558	delet
9	mutation	17228	kinase	12615	alk	2075	figure	19398	type	5444	
4											•

Algumas palavras são muito comuns, como: mutations, cells, cell, et, al...

Out[17]:

	Palavra	Freq1	Freq2	Freq3	Freq4	Freq5	Freq6	Freq7	Freq8	Freq9	Tot
0	mutations	33719.0	34570.0	6243.0	46483.0	13049.0	12135.0	86824.0	1329.0	3590.0	
7	protein	17950.0	7777.0	1611.0	23992.0	6111.0	4766.0	20340.0	367.0	909.0	
17	mutant	12693.0	8294.0	1380.0	14022.0	2974.0	2962.0	27474.0	617.0	2848.0	
14	expression	14532.0	9894.0	1528.0	16113.0	3415.0	2660.0	26844.0	910.0	1728.0	
13	type	15172.0	7304.0	1301.0	16891.0	5444.0	4306.0	19906.0	410.0	1494.0	
10	figure	17109.0	13006.0	2181.0	19398.0	4241.0	4383.0	35016.0	855.0	2215.0	
8	cancer	17907.0	13217.0	2648.0	16655.0	7866.0	7000.0	32058.0	557.0	893.0	
9	mutation	17228.0	15148.0	2183.0	17874.0	5782.0	6819.0	38461.0	572.0	1190.0	
6	fig	18099.0	12555.0	1428.0	21193.0	5558.0	6179.0	37246.0	668.0	1341.0	
5	al	18871.0	14653.0	3016.0	21866.0	3829.0	3887.0	35159.0	1033.0	2030.0	
4	et	18973.0	14718.0	2843.0	21997.0	3827.0	3922.0	35244.0	1026.0	2035.0	
1	cells	28402.0	23143.0	3900.0	37077.0	7500.0	6477.0	73838.0	1374.0	3924.0	
2	cell	20282.0	18237.0	1745.0	21150.0	4321.0	4339.0	52942.0	768.0	2332.0	
4											•

```
In [19]: # Colocando as palavras frequêntes em lista para adicionar no stopWords
palavrasFrequentes = dfTopWordsClasses['Palavra'].values[dfTopWordsClasses['To
talClasses'] == 9]
palavrasFrequentes
```

In [20]: #Fazendo a mesma busca para pares de palavras
 vectorizer2 = CountVectorizer(stop_words=stopWords, ngram_range=(2, 2))
 X2 = vectorizer2.fit_transform(palavras)

Out[22]:

	Classe1	Freq1	Classe2	Freq2	Classe3	Freq3	Classe4	Freq4	Classe5	Fre
0	et al	18822	et al	14566	et al	2809	et al	21790	wild type	45
1	wild type	11947	wild type	4995	wild type	1157	wild type	13405	et al	38
2	cell lines	4243	cell lines	4141	amino acid	529	missense mutations	4760	vus neutral	19
3	dna binding	3120	kinase domain	2603	breast cancer	490	cell lines	4532	author manuscript	16
4	amino acid	3014	egfr mutations	2562	brca1 variants	479	amino acid	4502	brca1 variants	14
5	breast cancer	2957	tyrosine kinase	2022	vus neutral	416	pten mutations	3682	embryonic stem	14
6	amino acids	2498	cyclin d1	1796	mtor mutations	405	phosphatase activity	3010	brca1 brct	13
7	missense mutations	2416	cell line	1790	cells expressing	391	tumor suppressor	2896	cell lines	12
8	supplementary fig	2345	lung cancer	1790	fâ fâ	372	amino acids	2856	stem cells	11
9	figure figure	2075	amino acid	1751	alk mutations	366	dna binding	2560	pa author	11
4										•

In [23]: # Top pares de palavras presentes em pelo menos 7 classes
 dfTopWordsClasses2 = PalavrasFrequentesTotalClasses(vectorizer2.get_feature_na
 mes(), X2.toarray(), 50)
 dfTopWordsClasses2[dfTopWordsClasses2['TotalClasses'] > 6]

Out[23]:

```
Freq4
                                                         Freq5
          Palavra
                                       Freq3
                                                                 Freq6
                     Freq1
                               Freq2
                                                                           Freq7
                                                                                   Freq8
                                                                                           Freq9 To
 0
             et al
                   18822.0
                             14566.0
                                      2809.0
                                              21790.0
                                                        3822.0
                                                                3882.0
                                                                        34754.0
                                                                                  1026.0
                                                                                          2030.0
 2
         cell lines
                    4243.0
                              4141.0
                                       331.0
                                                4532.0 1244.0
                                                                1058.0
                                                                        12718.0
                                                                                   182.0
                                                                                           546.0
 1
                    11947.0
                              4995.0
                                              13405.0 4532.0
                                                                3210.0
                                                                                   307.0 1380.0
         wild type
                                      1157.0
                                                                         15111.0
                              1790.0
                                                                          5404.0
11
          cell line
                    1865.0
                                       284.0
                                                1877.0
                                                         531.0
                                                                   NaN
                                                                                    63.0
                                                                                           219.0
 4
                    3014.0
                              1751.0
                                       529.0
                                                4502.0
                                                       1133.0 1024.0
                                                                          4139.0
                                                                                    85.0
       amino acid
                                                                                             NaN
     breast cancer
                                                        1092.0
 5
                    2957.0
                              1266.0
                                       490.0
                                                2023.0
                                                                1339.0
                                                                          3169.0
                                                                                    59.0
                                                                                             NaN
 6
      amino acids
                    2498.0
                               853.0
                                       251.0
                                                2856.0
                                                         537.0
                                                                 764.0
                                                                          2309.0
                                                                                    52.0
                                                                                            NaN
             cells
30
                              1440.0
                                       391.0
                                                1426.0
                                                         527.0
                                                                 477.0
                                                                          5151.0
                                                                                    92.0
                                                                                            207.0
                       NaN
       expressing
    supplementary
                    2345.0
                              1595.0
                                                1724.0
                                                         798.0
                                                                 950.0
                                                                          2819.0
                                                                                   132.0
                                                                                            258.0
                                        NaN
    supplementary
13
                    1731.0
                              1189.0
                                        186.0
                                                1455.0
                                                         952.0
                                                                   NaN
                                                                          2064.0
                                                                                   136.0
                                                                                            320.0
             table
                              1750.0
 9
      figure figure
                    2075.0
                                       268.0
                                                2474.0
                                                          NaN
                                                                   NaN
                                                                          4245.0
                                                                                    90.0
                                                                                            266.0
```

```
In [24]: # Definindo nova lista de stopWords com palavras mais comuns
stopWords = set(stopwords.words('english') + list(palavrasFrequentes))
```

```
In [ ]: #Montando a matriz Tf-idf final
    def MontaTfidf(corpus, stopWords):
        vectorizer = TfidfVectorizer(stop_words=stopWords)
        X = vectorizer.fit_transform(corpus)
        df_Tfindf = pd.DataFrame(X.todense().tolist(), columns=vectorizer.get_feat
        ure_names())
        return(df_Tfindf)
```

```
In [25]: # Carrega matriz Tfidf
df_Tfindf = pd.read_hdf('TfidfTrain.hdf')
```

```
In [26]: df_Tfindf.shape
```

Out[26]: (3316, 164620)

```
ProjetoDSAcFeedback RedefiningCancerTreatment
In [27]:
           df Tfindf.head()
Out[27]:
                             0000 00000000000188 00000001 0000001 00000100 000001 000002 0000
               00
                        000
              0.0
                  0.017777
                               0.0
                                                  0.0
                                                            0.0
                                                                     0.0
                                                                                 0.0
                                                                                         0.0
                                                                                                  0.0
               0.0 0.008309
                               0.0
                                                  0.0
                                                            0.0
                                                                     0.0
                                                                                 0.0
                                                                                         0.0
                                                                                                  0.0
              0.0 0.008309
                               0.0
                                                  0.0
                                                            0.0
                                                                     0.0
                                                                                 0.0
                                                                                         0.0
                                                                                                  0.0
              0.0 0.000000
                               0.0
                                                  0.0
                                                            0.0
                                                                     0.0
                                                                                 0.0
                                                                                         0.0
                                                                                                  0.0
               0.0 0.005813
                               0.0
                                                  0.0
                                                            0.0
                                                                     0.0
                                                                                 0.0
                                                                                         0.0
                                                                                                  0.0
           5 rows × 164620 columns
           # Concatena a matriz com as clases
In [28]:
           df_Tfindf = pd.concat([df_Tfindf, df['Class']], axis=1, join = 'inner')
In [29]:
           df Tfindf.head()
Out[29]:
                             0000 000000000000188 00000001 0000001
                                                                          000000100
                                                                                     000001
                                                                                             000002 0000
               00
              0.0
                   0.017777
                               0.0
                                                  0.0
                                                            0.0
                                                                     0.0
                                                                                 0.0
                                                                                         0.0
                                                                                                  0.0
              0.0 0.008309
                               0.0
                                                  0.0
                                                            0.0
                                                                     0.0
                                                                                 0.0
                                                                                         0.0
                                                                                                  0.0
              0.0 0.008309
                               0.0
                                                  0.0
                                                            0.0
                                                                                 0.0
                                                                                         0.0
                                                                                                  0.0
                                                                     0.0
              0.0 0.000000
                               0.0
                                                  0.0
                                                            0.0
                                                                     0.0
                                                                                 0.0
                                                                                         0.0
                                                                                                  0.0
              0.0 0.005813
                               0.0
                                                  0.0
                                                            0.0
                                                                     0.0
                                                                                 0.0
                                                                                         0.0
                                                                                                  0.0
           5 rows × 164621 columns
```

```
In [30]: # Agrupa as palavras por classe para realizar feature selection
    df_TfindfCount = df_Tfindf.groupby('Class').apply(lambda column: (column != 0)
        .sum()).transpose()
    df_TfindfCount = df_TfindfCount / df_Tfindf.groupby('Class').count().transpose
    ()
    df_TfindfCount['Media'] = df_TfindfCount[df_TfindfCount.columns[0:9]].mean(1)
    df_TfindfCount['Desvio'] = df_TfindfCount[df_TfindfCount.columns[0:9]].std(1)
    df_TfindfCount['M_D'] = df_TfindfCount['Desvio'] / df_TfindfCount['Media']
    df_TfindfCount['TotalC'] = (df_TfindfCount[df_TfindfCount.columns[0:9]] != 0).
    sum(1)
```

C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\generic.py:7389: Runti
meWarning: '<' not supported between instances of 'str' and 'float', sort ord
er is undefined for incomparable objects</pre>

other.index, how=join, level=level, return indexers=True)

In [31]: df_TfindfCount[0:5]

Out[31]:

Class	0	1	2	3	4	5	6	
00	0.129433	0.119469	0.089888	0.193265	0.140496	0.216117	0.155462	0.1052
000	0.505319	0.519912	0.471910	0.525622	0.557851	0.670330	0.584034	0.6315
0000	0.000000	0.002212	0.000000	0.000000	0.000000	0.000000	0.004202	0.0000
000000000000188	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.001050	0.0000
0000001	0.000000	0.002212	0.000000	0.001464	0.000000	0.003663	0.001050	0.0000

```
In [32]: # Filtrando as palavras que aparecem em menos de 5% das classes.
Filtro1 = df_TfindfCount[df_TfindfCount['Media'] < 0.05]
Filtro1</pre>
```

Out[32]:

Class	0	1	2	3	4	5	6	7	
0000	0.000000	0.002212	0.000000	0.000000	0.000000	0.000000	0.004202	0.0	0.
000000000000188	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.001050	0.0	0.
0000001	0.000000	0.002212	0.000000	0.001464	0.000000	0.003663	0.001050	0.0	0.
0000001	0.001773	0.002212	0.000000	0.007321	0.000000	0.000000	0.002101	0.0	0.
00000100	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.001050	0.0	0.
000001	0.003546	0.000000	0.000000	0.002928	0.008264	0.021978	0.000000	0.0	0.
000002	0.000000	0.002212	0.000000	0.001464	0.012397	0.000000	0.008403	0.0	0.
00000397	0.000000	0.000000	0.000000	0.001464	0.000000	0.000000	0.000000	0.0	0.
000005	0.001773	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0	0.
000007	0.003546	0.004425	0.000000	0.000000	0.000000	0.000000	0.005252	0.0	0.
0000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.001050	0.0	0.
00001	0.005319	0.011062	0.011236	0.005857	0.000000	0.003663	0.010504	0.0	0.
0000112	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.003151	0.0	0.
00001311	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.001050	0.0	0.
0000149311	0.000000	0.000000	0.000000	0.001464	0.000000	0.000000	0.000000	0.0	0.
0000208	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.003151	0.0	0.
00002644	0.001773	0.004425	0.000000	0.000000	0.004132	0.000000	0.004202	0.0	0.
00003	0.001773	0.002212	0.000000	0.000000	0.000000	0.003663	0.000000	0.0	0.
00003450	0.000000	0.002212	0.000000	0.000000	0.000000	0.000000	0.001050	0.0	0.
00004	0.000000	0.002212	0.000000	0.000000	0.000000	0.000000	0.000000	0.0	0.
00005	0.003546	0.002212	0.000000	0.001464	0.000000	0.000000	0.011555	0.0	0.
00006	0.003546	0.000000	0.000000	0.000000	0.004132	0.000000	0.001050	0.0	0.
0000614	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.003151	0.0	0.
0000645	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.003151	0.0	0.
00006559	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.003151	0.0	0.
00008	0.001773	0.002212	0.000000	0.000000	0.000000	0.000000	0.001050	0.0	0.
0000839	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.003151	0.0	0.
00009	0.005319	0.002212	0.000000	0.001464	0.000000	0.000000	0.000000	0.0	0.
000096	0.000000	0.000000	0.000000	0.001464	0.000000	0.000000	0.000000	0.0	0.
0000965	0.000000	0.000000	0.000000	0.001464	0.000000	0.000000	0.000000	0.0	0.
^50	0.007092	0.000000	0.000000	0.004392	0.000000	0.007326	0.001050	0.0	0.
^500	0.000000	0.000000	0.000000	0.002928	0.000000	0.003663	0.000000	0.0	0.
^500â	0.001773	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0	0.
^550	0.001773	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0	0.

Class	0	1	2	3	4	5	6	7	
^55 7	0.000000	0.002212	0.000000	0.000000	0.000000	0.000000	0.000000	0.0	0
^6	0.005319	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0	0
^60	0.001773	0.000000	0.000000	0.004392	0.000000	0.000000	0.000000	0.0	0.
^602	0.000000	0.002212	0.000000	0.000000	0.000000	0.000000	0.000000	0.0	0.
^624	0.000000	0.002212	0.000000	0.000000	0.000000	0.000000	0.000000	0.0	0.
^669	0.000000	0.002212	0.000000	0.000000	0.000000	0.000000	0.000000	0.0	0.
^675	0.005319	0.000000	0.000000	0.013177	0.000000	0.000000	0.000000	0.0	0.
^7	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.003151	0.0	0.
^70	0.005319	0.002212	0.000000	0.001464	0.000000	0.000000	0.000000	0.0	0.
^730	0.000000	0.002212	0.000000	0.000000	0.000000	0.000000	0.000000	0.0	0.
^75	0.003546	0.000000	0.000000	0.000000	0.000000	0.000000	0.001050	0.0	0.
^777	0.000000	0.002212	0.000000	0.000000	0.000000	0.000000	0.003151	0.0	0.
^791	0.000000	0.002212	0.000000	0.000000	0.000000	0.000000	0.000000	0.0	0.
^8	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.001050	0.0	0.
^80	0.001773	0.000000	0.000000	0.002928	0.000000	0.007326	0.001050	0.0	0.
^85	0.000000	0.002212	0.000000	0.000000	0.000000	0.000000	0.001050	0.0	0.
^9	0.003546	0.000000	0.000000	0.002928	0.000000	0.000000	0.000000	0.0	0.
^90	0.007092	0.000000	0.000000	0.004392	0.000000	0.000000	0.000000	0.0	0.
^90â	0.001773	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0	0.
^91	0.000000	0.002212	0.000000	0.000000	0.000000	0.000000	0.000000	0.0	0.
^97	0.000000	0.002212	0.000000	0.000000	0.000000	0.000000	0.003151	0.0	0.
^arg	0.001773	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0	0.
^equal	0.000000	0.002212	0.000000	0.000000	0.000000	0.000000	0.000000	0.0	0.
î	0.005319	0.000000	0.000000	0.001464	0.004132	0.007326	0.001050	0.0	0.
^iã	0.003546	0.000000	0.000000	0.000000	0.000000	0.007326	0.001050	0.0	0.
^ã	0.001773	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0	0.
317 rows × 13 (columns								
01/10WS × 13 (Joiumns								•
									,

Dessa forma, conseguimos exluir 97% das variáveis, sem perda significativa no modelo

```
In [33]: # Excluindo as variáveis acima
    df_TfindfCount = df_TfindfCount.drop(Filtro1.index.values)
```

Balanceando o dataset

```
In [38]: # Removendo dados das clases majoritárias
         from imblearn.under sampling import TomekLinks
         Using TensorFlow backend.
In [39]: tl = TomekLinks(sampling strategy=[0,1,3,4,7,8])
         X tl, y tl = tl.fit sample(X treino, y treino)
In [40]: unique_elements, counts_elements = np.unique(y_treino, return_counts=True)
In [41]: unique_elements2, counts_elements2 = np.unique(y_tl, return_counts=True)
In [42]: # Aumentando a quantidade de registros das classes com poucas amostras
         oversampling = np.where([y_treino == 2, y_treino == 7, y_treino == 8])[1]
         valores = np.random.choice(oversampling, size=round(oversampling.shape[0]*0.6
         ), replace=False)
         X tl = np.append(X tl, X treino[valores], axis=0)
         y_tl = np.append(y_tl, y_treino[valores], axis=0)
In [43]: unique_elements3, counts_elements3 = np.unique(y_tl, return_counts=True)
In [44]: | # Criando novos dados através de SMOTE
         from imblearn.over sampling import SMOTE
In [45]:
         classes = \{2:180, 7:50, 8:100\}
         smote = SMOTE(sampling_strategy=classes)
         X sm, y sm = smote.fit sample(X tl, y tl)
In [46]: unique_elements4, counts_elements4 = np.unique(y_sm, return_counts=True)
```

```
In [47]: # Diminuindo a classe 6 que ainda está maior que as outras
         indice = np.where(y sm == 6)
         excluir = indice[0].shape[0] - 550
         valores = np.random.choice(indice[0], size=excluir, replace=False)
         X_treino = np.delete(X_sm, valores, 0)
         y_treino = np.delete(y_sm, valores)
In [48]: | unique_elements5, counts_elements5 = np.unique(y_treino, return_counts=True)
In [49]: print('Classes originais')
         counts elements
         Classes originais
Out[49]: array([394, 316, 63, 482, 168, 190, 665, 13, 26], dtype=int64)
In [50]: | print('Classes após TomekLinks')
         counts_elements2
         Classes após TomekLinks
Out[50]: array([364, 275, 63, 454, 151, 190, 665, 12, 25], dtype=int64)
In [51]: | print('Classes após Oversample')
         counts elements3
         Classes após Oversample
Out[51]: array([364, 275, 103, 454, 151, 190, 665, 20, 38], dtype=int64)
In [52]: print('Classes após SMOTE')
         counts_elements4
         Classes após SMOTE
Out[52]: array([364, 275, 180, 454, 151, 190, 665, 50, 100], dtype=int64)
In [53]: | print('Classes após Undersample')
         counts elements5
         Classes após Undersample
Out[53]: array([364, 275, 180, 454, 151, 190, 550, 50, 100], dtype=int64)
```

```
In [54]:
         plt.style.use('ggplot')
         fig, axes = plt.subplots(1,2, figsize=(8, 3), dpi = 120, squeeze = False, shar
         ey='row')
         vetor = [counts elements, counts elements5]
         titulo = ['Antes do balanceamento', 'Após balanceamento']
         k=0
         for linha in axes:
             for ax in linha:
                 ax.bar(np.arange(9), vetor[k], color='black')
                  ax.set_xlabel('Classes'); # x Label
                 ax.set title(titulo[k])
                 #ax.set_xticklabels(['1','2','3','4','5','6','7','8','9'])
                 ax.set_xticks(np.arange(9))
                 k+=1
         plt.show()
```


5 6 7

Classes

1

0

2 3 4

Após balanceamento


```
In [55]: # Random Forest
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import cross_val_score
import seaborn as sns
```

```
In [56]: # Cria uma função para construir a Confusion Matrix de forma gráfica
def CriaConfusionMatrix(cm):
    #confusionMatrix = confusion_matrix(y_test, predictions)
    ConfusionMatrixNorm = np.around(cm / cm.sum(axis=1)[:, np.newaxis] * 100,
decimals=0)
    sns.heatmap(ConfusionMatrixNorm, annot=True,cmap=plt.cm.Blues)
    plt.tight_layout()
    plt.title('Confusion Matrix %')
    plt.ylabel('Label verdadeiro')
    plt.xlabel('Label previsto')
    return plt.show()
```

```
In [57]:
         # Criando um modelo Random Forest para extraírmos as palavras mais relevantes
         modeloRF = RandomForestClassifier()
         modeloRF.fit(X_treino, y_treino)
         # Score
         scores = cross_val_score(modeloRF, X_treino, y_treino, cv = 5, scoring = 'accu
         racy', n_jobs = -1)
         # Imprimindo o resultado
         print ("ExtraTreesClassifier -> Acurácia: Média = %0.3f Desvio Padrão = %0.3f"
         % (np.mean(scores), np.std(scores)))
         # Faz as predições
         predictions = modeloRF.predict(X_test)
         # Performande do modelo nos dados de teste
         print("Avaliação do Modelo nos Dados de Teste")
         print(classification report(y test, predictions))
         # Confusion Matrix do Modelo Final
         CriaConfusionMatrix(confusion matrix(y test, predictions))
```

ExtraTreesClassifier -> Acurácia: Média = 0.535 Desvio Padrão = 0.016 Avaliação do Modelo nos Dados de Teste

precision	recall	f1-score	support
0.45	0.29	0.36	170
0.46	0.26	0.33	136
0.14	0.19	0.16	26
0.55	0.60	0.57	201
0.31	0.20	0.24	74
0.54	0.45	0.49	83
0.52	0.76	0.61	287
0.00	0.00	0.00	6
0.54	0.64	0.58	11
		0.49	994
0.39	0.38	0.37	994
0.48	0.49	0.47	994
	0.45 0.46 0.14 0.55 0.31 0.54 0.52 0.00 0.54	0.46	0.45


```
In [58]:
         # Extraindo as importâncias
         importances = modeloRF.feature importances
         indices = np.argsort(importances)
         # Obtém os índices
         ind=[]
         for i in indices:
             ind.append(variaveis[i])
         # Plot da Importância dos Atributos
         #plt.figure(1)
         plt.figure(figsize=(10,7))
         plt.title('Importância dos Atributos')
         plt.barh(range(len(indices[-30:])), importances[indices[-30:]], color = 'blac
         k', align = 'center')
         plt.yticks(range(len(indices[-30:])),ind[-30:])
         #plt.xlim([0,0.005])
         plt.xlabel('Importância Relativa')
         plt.show()
```


Como o projeto sugeria, vamos criar alguns modelos no keras

```
In [59]: from keras.models import Sequential
    from keras.layers import Dense, Dropout
    from keras.optimizers import SGD
    from keras.utils import to_categorical
    from keras.wrappers.scikit_learn import KerasClassifier
```

```
In [60]: # Transforma as variáveis em HotEncode
y_treinoHotEncode = to_categorical(y_treino)
y_testHotEncode = to_categorical(y_test)

In [61]: # Dimensao de entrada
dimensao = X_treino.shape[1]
```

Vamos testar alguns modelos de redes, variando a otimização e topologia.

- Otimização:
 - Adam
 - SGD
 - RMSprop
- Topologia:
 - 2 e 3 camadas ocultas
 - Com e sem dropout para regularização

```
In [62]:
         # Função que define a rede para fazermos o Grid Search
         def CriaModeloKeras(numCamadas, numNeuronios, numDropout, otimizador):
             # Cria o modelo
             model = Sequential()
             # Camda de entrada
             model.add(Dense(numNeuronios, input dim=dimensao, activation='relu'))
             if numDropout != 0: model.add(Dropout(numDropout))
             # Camada 2
             model.add(Dense(numNeuronios, activation='relu'))
             if numDropout != 0: model.add(Dropout(numDropout))
             if numCamadas == 3: model.add(Dense(numNeuronios, activation='relu'))
             if numDropout != 0 and numCamadas == 3: model.add(Dropout(numDropout))
             # Camada de saída
             model.add(Dense(9, activation='softmax'))
             # Compila o modelo
             model.compile(loss='categorical crossentropy', optimizer=otimizador, metri
         cs=['accuracy'])
             return model
```

```
In [66]:
         # Função para o Grid Search
         def GriSearchKeras(otimizador, numCamadas, numNeuronios, numDropout, batch siz
         e, epochs):
             acuracias = []
             parametros = []
             for camada in numCamadas:
                 for neuronio in numNeuronios:
                      for dropout in numDropout:
                          for batch in batch size:
                              for epoch in epochs:
                                  modeloKeras = CriaModeloKeras(camada, neuronio, dropout,
         otimizador)
                                  modeloKeras.fit(X_treino, y_treinoHotEncode, epochs =
         epoch, batch size = batch, verbose=0)
                                  scores = modeloKeras.evaluate(X test, y testHotEncode,
         verbose=0)
                                  acuracias.append(scores[1])
                                  parametros.append(dict(Camadas=camada, Neuronios=neuro
         nio, Dropout=dropout, Batch=batch, Epoch=epoch))
                                  print("%s: %.1f%% (Camadas: %.0f | Neuronios: %.0f | D
         ropout: %.1f | Batch: %.0f | Epoch: %.0f |)" % (modeloKeras.metrics names[1],
         scores[1]*100, camada, neuronio, dropout, batch, epoch))
             return acuracias, parametros
```

```
In [64]: # Definindo os hyperparametros
    optimizers = [SGD(lr = 0.01, momentum = 0.9, nesterov = True), 'adam','rmspro
    p']
    numCamadas = [2,3]
    numNeuronios = [50,150]
    numDropout = [0,0.5]
    batch_size = [10, 20]
    epochs = [50, 150]
```

```
accuracy: 44.3% (Camadas: 2 | Neuronios: 50 | Dropout: 0.0 | Batch: 10 | Epoc
h: 50 |)
accuracy: 44.8% (Camadas: 2 | Neuronios: 50 | Dropout: 0.0 | Batch: 10 | Epoc
h: 150 |)
accuracy: 43.9% (Camadas: 2 | Neuronios: 50 | Dropout: 0.0 | Batch: 20 | Epoc
h: 50 |)
accuracy: 46.1% (Camadas: 2 | Neuronios: 50 | Dropout: 0.0 | Batch: 20 | Epoc
h: 150 |)
accuracy: 45.5% (Camadas: 2 | Neuronios: 50 | Dropout: 0.5 | Batch: 10 | Epoc
h: 50 |)
accuracy: 48.0% (Camadas: 2 | Neuronios: 50 | Dropout: 0.5 | Batch: 10 | Epoc
h: 150 |)
accuracy: 49.0% (Camadas: 2 | Neuronios: 50 | Dropout: 0.5 | Batch: 20 | Epoc
h: 50 |)
accuracy: 47.8% (Camadas: 2 | Neuronios: 50 | Dropout: 0.5 | Batch: 20 | Epoc
h: 150 |)
accuracy: 46.8% (Camadas: 2 | Neuronios: 150 | Dropout: 0.0 | Batch: 10 | Epo
ch: 50 |)
accuracy: 46.4% (Camadas: 2 | Neuronios: 150 | Dropout: 0.0 | Batch: 10 | Epo
ch: 150 |)
accuracy: 46.9% (Camadas: 2 | Neuronios: 150 | Dropout: 0.0 | Batch: 20 | Epo
ch: 50 |)
accuracy: 48.0% (Camadas: 2 | Neuronios: 150 | Dropout: 0.0 | Batch: 20 | Epo
ch: 150 |)
accuracy: 49.5% (Camadas: 2 | Neuronios: 150 | Dropout: 0.5 | Batch: 10 | Epo
ch: 50 |)
accuracy: 50.6% (Camadas: 2 | Neuronios: 150 | Dropout: 0.5 | Batch: 10 | Epo
ch: 150 |)
accuracy: 51.4% (Camadas: 2 | Neuronios: 150 | Dropout: 0.5 | Batch: 20 | Epo
ch: 50 |)
accuracy: 49.5% (Camadas: 2 | Neuronios: 150 | Dropout: 0.5 | Batch: 20 | Epo
ch: 150 |)
accuracy: 44.4% (Camadas: 3 | Neuronios: 50 | Dropout: 0.0 | Batch: 10 | Epoc
h: 50 |)
accuracy: 46.8% (Camadas: 3 | Neuronios: 50 | Dropout: 0.0 | Batch: 10 | Epoc
h: 150 |)
accuracy: 47.2% (Camadas: 3 | Neuronios: 50 | Dropout: 0.0 | Batch: 20 | Epoc
h: 50 |)
accuracy: 44.3% (Camadas: 3 | Neuronios: 50 | Dropout: 0.0 | Batch: 20 | Epoc
h: 150 |)
accuracy: 45.7% (Camadas: 3 | Neuronios: 50 | Dropout: 0.5 | Batch: 10 | Epoc
h: 50 |)
accuracy: 49.4% (Camadas: 3 | Neuronios: 50 | Dropout: 0.5 | Batch: 10 | Epoc
h: 150 |)
accuracy: 47.1% (Camadas: 3 | Neuronios: 50 | Dropout: 0.5 | Batch: 20 | Epoc
h: 50 |)
accuracy: 47.8% (Camadas: 3 | Neuronios: 50 | Dropout: 0.5 | Batch: 20 | Epoc
h: 150 |)
accuracy: 47.5% (Camadas: 3 | Neuronios: 150 | Dropout: 0.0 | Batch: 10 | Epo
ch: 50 |)
accuracy: 48.5% (Camadas: 3 | Neuronios: 150 | Dropout: 0.0 | Batch: 10 | Epo
ch: 150 |)
accuracy: 48.4% (Camadas: 3 | Neuronios: 150 | Dropout: 0.0 | Batch: 20 | Epo
ch: 50 |)
accuracy: 46.9% (Camadas: 3 | Neuronios: 150 | Dropout: 0.0 | Batch: 20 | Epo
ch: 150 |)
accuracy: 48.0% (Camadas: 3 | Neuronios: 150 | Dropout: 0.5 | Batch: 10 | Epo
```

```
ch: 50 |)
accuracy: 51.0% (Camadas: 3 | Neuronios: 150 | Dropout: 0.5 | Batch: 10 | Epo
ch: 150 |)
accuracy: 48.7% (Camadas: 3 | Neuronios: 150 | Dropout: 0.5 | Batch: 20 | Epo
ch: 50 |)
accuracy: 48.5% (Camadas: 3 | Neuronios: 150 | Dropout: 0.5 | Batch: 20 | Epo
ch: 150 |)
```

In [67]: # Testando o otimizador Adam

acuraciasAdam, parametrosAdam = GriSearchKeras(optimizers[1], numCamadas, numN
euronios, numDropout, batch_size, epochs)

```
accuracy: 46.7% (Camadas: 2 | Neuronios: 50 | Dropout: 0.0 | Batch: 10 | Epoc
h: 50 |)
accuracy: 47.5% (Camadas: 2 | Neuronios: 50 | Dropout: 0.0 | Batch: 10 | Epoc
h: 150 |)
accuracy: 48.4% (Camadas: 2 | Neuronios: 50 | Dropout: 0.0 | Batch: 20 | Epoc
h: 50 |)
accuracy: 46.9% (Camadas: 2 | Neuronios: 50 | Dropout: 0.0 | Batch: 20 | Epoc
h: 150 |)
accuracy: 49.3% (Camadas: 2 | Neuronios: 50 | Dropout: 0.5 | Batch: 10 | Epoc
h: 50 |)
accuracy: 47.0% (Camadas: 2 | Neuronios: 50 | Dropout: 0.5 | Batch: 10 | Epoc
h: 150 |)
accuracy: 49.1% (Camadas: 2 | Neuronios: 50 | Dropout: 0.5 | Batch: 20 | Epoc
h: 50 |)
accuracy: 48.9% (Camadas: 2 | Neuronios: 50 | Dropout: 0.5 | Batch: 20 | Epoc
h: 150 |)
accuracy: 47.0% (Camadas: 2 | Neuronios: 150 | Dropout: 0.0 | Batch: 10 | Epo
ch: 50 |)
accuracy: 46.1% (Camadas: 2 | Neuronios: 150 | Dropout: 0.0 | Batch: 10 | Epo
ch: 150 |)
accuracy: 48.3% (Camadas: 2 | Neuronios: 150 | Dropout: 0.0 | Batch: 20 | Epo
ch: 50 |)
accuracy: 47.7% (Camadas: 2 | Neuronios: 150 | Dropout: 0.0 | Batch: 20 | Epo
ch: 150 |)
accuracy: 47.6% (Camadas: 2 | Neuronios: 150 | Dropout: 0.5 | Batch: 10 | Epo
ch: 50 |)
accuracy: 48.1% (Camadas: 2 | Neuronios: 150 | Dropout: 0.5 | Batch: 10 | Epo
ch: 150 |)
accuracy: 48.5% (Camadas: 2 | Neuronios: 150 | Dropout: 0.5 | Batch: 20 | Epo
ch: 50 |)
accuracy: 48.9% (Camadas: 2 | Neuronios: 150 | Dropout: 0.5 | Batch: 20 | Epo
ch: 150 |)
accuracy: 48.6% (Camadas: 3 | Neuronios: 50 | Dropout: 0.0 | Batch: 10 | Epoc
h: 50 |)
accuracy: 46.1% (Camadas: 3 | Neuronios: 50 | Dropout: 0.0 | Batch: 10 | Epoc
h: 150 |)
accuracy: 47.6% (Camadas: 3 | Neuronios: 50 | Dropout: 0.0 | Batch: 20 | Epoc
h: 50 |)
accuracy: 46.2% (Camadas: 3 | Neuronios: 50 | Dropout: 0.0 | Batch: 20 | Epoc
h: 150 |)
accuracy: 47.7% (Camadas: 3 | Neuronios: 50 | Dropout: 0.5 | Batch: 10 | Epoc
h: 50 |)
accuracy: 47.6% (Camadas: 3 | Neuronios: 50 | Dropout: 0.5 | Batch: 10 | Epoc
h: 150 |)
accuracy: 48.9% (Camadas: 3 | Neuronios: 50 | Dropout: 0.5 | Batch: 20 | Epoc
h: 50 |)
accuracy: 49.7% (Camadas: 3 | Neuronios: 50 | Dropout: 0.5 | Batch: 20 | Epoc
h: 150 |)
accuracy: 47.6% (Camadas: 3 | Neuronios: 150 | Dropout: 0.0 | Batch: 10 | Epo
ch: 50 |)
accuracy: 46.4% (Camadas: 3 | Neuronios: 150 | Dropout: 0.0 | Batch: 10 | Epo
ch: 150 |)
accuracy: 46.8% (Camadas: 3 | Neuronios: 150 | Dropout: 0.0 | Batch: 20 | Epo
ch: 50 |)
accuracy: 46.4% (Camadas: 3 | Neuronios: 150 | Dropout: 0.0 | Batch: 20 | Epo
ch: 150 |)
accuracy: 48.4% (Camadas: 3 | Neuronios: 150 | Dropout: 0.5 | Batch: 10 | Epo
```

```
ch: 50 |)
accuracy: 46.9% (Camadas: 3 | Neuronios: 150 | Dropout: 0.5 | Batch: 10 | Epo
ch: 150 |)
accuracy: 49.2% (Camadas: 3 | Neuronios: 150 | Dropout: 0.5 | Batch: 20 | Epo
ch: 50 |)
accuracy: 47.7% (Camadas: 3 | Neuronios: 150 | Dropout: 0.5 | Batch: 20 | Epo
ch: 150 |)
```

In [79]: # Testando o otimizador RMSProp

acuraciasRMSProp, parametrosRMSProp = GriSearchKeras(optimizers[2], numCamadas
, numNeuronios, numDropout, batch_size, epochs)

```
accuracy: 46.5% (Camadas: 2 | Neuronios: 50 | Dropout: 0.0 | Batch: 10 | Epoc
h: 50 |)
accuracy: 46.2% (Camadas: 2 | Neuronios: 50 | Dropout: 0.0 | Batch: 10 | Epoc
h: 150 |)
accuracy: 47.3% (Camadas: 2 | Neuronios: 50 | Dropout: 0.0 | Batch: 20 | Epoc
h: 50 |)
accuracy: 46.3% (Camadas: 2 | Neuronios: 50 | Dropout: 0.0 | Batch: 20 | Epoc
h: 150 |)
accuracy: 49.0% (Camadas: 2 | Neuronios: 50 | Dropout: 0.5 | Batch: 10 | Epoc
h: 50 |)
accuracy: 47.5% (Camadas: 2 | Neuronios: 50 | Dropout: 0.5 | Batch: 10 | Epoc
h: 150 |)
accuracy: 49.3% (Camadas: 2 | Neuronios: 50 | Dropout: 0.5 | Batch: 20 | Epoc
h: 50 |)
accuracy: 48.1% (Camadas: 2 | Neuronios: 50 | Dropout: 0.5 | Batch: 20 | Epoc
h: 150 |)
accuracy: 45.8% (Camadas: 2 | Neuronios: 150 | Dropout: 0.0 | Batch: 10 | Epo
ch: 50 |)
accuracy: 43.3% (Camadas: 2 | Neuronios: 150 | Dropout: 0.0 | Batch: 10 | Epo
ch: 150 |)
accuracy: 47.2% (Camadas: 2 | Neuronios: 150 | Dropout: 0.0 | Batch: 20 | Epo
ch: 50 |)
accuracy: 47.1% (Camadas: 2 | Neuronios: 150 | Dropout: 0.0 | Batch: 20 | Epo
ch: 150 |)
accuracy: 47.4% (Camadas: 2 | Neuronios: 150 | Dropout: 0.5 | Batch: 10 | Epo
ch: 50 |)
accuracy: 48.0% (Camadas: 2 | Neuronios: 150 | Dropout: 0.5 | Batch: 10 | Epo
ch: 150 |)
accuracy: 49.7% (Camadas: 2 | Neuronios: 150 | Dropout: 0.5 | Batch: 20 | Epo
ch: 50 |)
accuracy: 46.1% (Camadas: 2 | Neuronios: 150 | Dropout: 0.5 | Batch: 20 | Epo
ch: 150 |)
accuracy: 46.9% (Camadas: 3 | Neuronios: 50 | Dropout: 0.0 | Batch: 10 | Epoc
h: 50 |)
accuracy: 45.6% (Camadas: 3 | Neuronios: 50 | Dropout: 0.0 | Batch: 10 | Epoc
h: 150 |)
accuracy: 47.5% (Camadas: 3 | Neuronios: 50 | Dropout: 0.0 | Batch: 20 | Epoc
h: 50 |)
accuracy: 46.5% (Camadas: 3 | Neuronios: 50 | Dropout: 0.0 | Batch: 20 | Epoc
h: 150 |)
accuracy: 48.5% (Camadas: 3 | Neuronios: 50 | Dropout: 0.5 | Batch: 10 | Epoc
h: 50 |)
accuracy: 47.4% (Camadas: 3 | Neuronios: 50 | Dropout: 0.5 | Batch: 10 | Epoc
h: 150 |)
accuracy: 48.1% (Camadas: 3 | Neuronios: 50 | Dropout: 0.5 | Batch: 20 | Epoc
h: 50 |)
accuracy: 46.3% (Camadas: 3 | Neuronios: 50 | Dropout: 0.5 | Batch: 20 | Epoc
h: 150 |)
accuracy: 45.7% (Camadas: 3 | Neuronios: 150 | Dropout: 0.0 | Batch: 10 | Epo
ch: 50 |)
accuracy: 45.9% (Camadas: 3 | Neuronios: 150 | Dropout: 0.0 | Batch: 10 | Epo
ch: 150 |)
accuracy: 46.9% (Camadas: 3 | Neuronios: 150 | Dropout: 0.0 | Batch: 20 | Epo
ch: 50 |)
accuracy: 46.4% (Camadas: 3 | Neuronios: 150 | Dropout: 0.0 | Batch: 20 | Epo
ch: 150 |)
accuracy: 47.8% (Camadas: 3 | Neuronios: 150 | Dropout: 0.5 | Batch: 10 | Epo
```

```
ch: 50 |)
         accuracy: 46.4% (Camadas: 3 | Neuronios: 150 | Dropout: 0.5 | Batch: 10 | Epo
         ch: 150 |)
         accuracy: 47.6% (Camadas: 3 | Neuronios: 150 | Dropout: 0.5 | Batch: 20 | Epo
         ch: 50 |)
         accuracy: 47.9% (Camadas: 3 | Neuronios: 150 | Dropout: 0.5 | Batch: 20 | Epo
         ch: 150 |)
In [84]: BestSGD = max(acuraciasSGD)
         BestSGDParameters = parametrosSGD[acuraciasSGD.index(BestSGD)]
         print('Modelo SGD: %.2f%%' % (BestSGD*100))
         print(BestSGDParameters)
         print('\n')
         BestAdam = max(acuraciasAdam)
         BestAdamParameters = parametrosAdam[acuraciasAdam.index(BestAdam)]
         print('Modelo Adam: %.2f%%' % (BestAdam*100))
         print(BestAdamParameters)
         print('\n')
         BestRMSProp = max(acuraciasRMSProp)
         BestRMSPropParameters = parametrosRMSProp[acuraciasRMSProp.index(BestRMSProp)]
         print('Modelo RMSProp: %.2f%%' % (BestRMSProp*100))
         print(BestRMSPropParameters)
         Modelo SGD: 51.41%
         {'Camadas': 2, 'Neuronios': 150, 'Dropout': 0.5, 'Batch': 20, 'Epoch': 50}
         Modelo Adam: 49.70%
         {'Camadas': 3, 'Neuronios': 50, 'Dropout': 0.5, 'Batch': 20, 'Epoch': 150}
         Modelo RMSProp: 49.70%
         {'Camadas': 2, 'Neuronios': 150, 'Dropout': 0.5, 'Batch': 20, 'Epoch': 50}
         # Recriando o melhor modelo
In [85]:
         modeloKeras = CriaModeloKeras(2,150,0.5,optimizers[0])
         modeloKeras.fit(X treino, y treinoHotEncode, epochs = 50, batch size = 20, ver
         bose=0)
Out[85]: <keras.callbacks.callbacks.History at 0x1d59c806648>
```

```
In [90]: # Confusion matrix
predictions = modeloKeras.predict(X_test)
# Confusion Matrix do Modelo Final
CriaConfusionMatrix(confusion_matrix(y_test, predictions.argmax(axis=1)))
```


Conclusão:

O modelo conseguiu classificar aproximadamente 50% das classes corretamente. Dado que é um problema multiclasses com 9 classes e a probabilidade de classificação ao acaso é de 11%, o modelo consegue agregar valor. Apesar disso, sua acurácia ainda está longe da ideal. Para aumenta-la, poderíamos aplicar maior tratamento ao texto, utilizar outras técnicas como word2vec e até mesmo tentarmos rede neurais maiores, o que exigiria maior capacidade de treinamento.

