Week 12

- GOAL:
 - Improve utilization of single Ara with different lane configurations
- TODO:
 - Software:
 - Add support for Spike simulator (optional)
 - Add custom instructions to LLVM compiler
 - Hardware:
 - Architecture modification proposal
 - Design sub-modules
 - Test riscv-tests and other benchmarks
 - Test new MatMul performance

- Broadcast buffer
 - b_vec reuse: #lanes * reuse_size
 - Load b_vec from L2-cache and store it in bc_buffer for reuse
 - Ping-Pang style
 - While using data in buf0, VLDU can still loads data to BUF1

- Broadcast buffer
 - b_vec reuse: #lanes * reuse_size
 - Load b_vec from L2-cache and store it in bc_buffer for reuse
 - Ping-Pang style
 - While using data in buf0, VLDU can still loads data to BUF1

- Relay-Station
 - Receive the bc data from the previous lane (except the first lane)
 - Forward it to the next lane (except the last lane)

- VMFPU operands:
 - a: elements of matrix A, stride loaded, vI = reuse_size
 - one element per b_vec, need a counter (BLEN)
 - b: vector of matrix B, broadcast, vI = BLEN
 - o c: accumulated result, normal vector register
 - one element per b element

- Store results
 - o In order:
 - reg0: lane0, lane1, ...
 - reg1: lane0, lane1, ...

Result Matrix C

4 lanes, reuse size=2

Store results

- In order:
 - reg0: lane0, lane1, ...
 - reg1: lane0, lane1, ...

- Solution: stride store
 - Poor performance
 - Multi-banking L2-Cache, enable simultaneous write & read

Result Matrix C

4 lanes, reuse_size=2