CHBE 552 Problem Set 1

Jincong Li 60539939

Feb 24th

Question 1

By implementing SA method with following parameters: bounds = (-1, 1), initial temperature = 10000, cooling rate = 0.95, stopping temperature = 0.001, and max iterations = 1000, three tests are conducted and the results are shown as following:

Test 1:

Best x_1 and x_2 are [0.00016685, -0.00014399] and the best function value is 1.074285020 \cdot 10⁻⁶.

Test 2:

Best x_1 and x_2 are [0.00019128, 0.00056343] and the best function value is 1.08674897771 · 10⁻⁵.

Test 3:

Best x_1 and x_2 are [0.00023714, 0.00051509] and the best function value is 9.45038628186 \cdot 10⁻⁶.

Thus, one can conclude the best x_1 and x_2 are [0,0] and the best function value is 0. The tiny error might comes from the numerical uncertainty of float computation in Python.

Question 2

By implementing Luus-Jaakola method accoording to the reference with such parameters:

Initial guess of each x_j : $x_{bounds} = [(0, 1)]$ max iterations:N = 10000Initial search area: $V_{initial} = 0.1$ Search area reduction factor: $V_r = 0.999$ Solution for variables x_1 to x_{10} are found to be

```
x_1 = 0.0406700206

x_2 = 0.147744627

x_3 = 0.783102950

x_4 = 0.00141387372

x_5 = 0.485248112

x_6 = 0.000691530012

x_7 = 0.0273983722

x_8 = 0.0179474168

x_9 = 0.0373039831

x_{10} = 0.0969432948
```

And the optimal objective function value is computed to be -47.7610, which generally agrees with the value provided in the reference paper.

Note that the number of iterations are setted to be very such that a global minimum could be found, and the search area reduction fractor are close to 1 such that the search area only reduces a little bit in each iteration, thus, the solution of x_i could have more digits.

Question 3

By implementing Luus-Jaakola method accoording to the reference with same parameters stated in question 2, except for initial guess of x_j since the bounds should follow the indicated constraint in the paper:

Best Solution for independent variable:

 $x_1 = 1727.77228$ $x_7 = 94.25960$ $x_8 = 10.41761$

Dependent Variables:

 $x_2 = 0.000160000000$ $x_3 = 0.994398201$ $x_4 = 0.00305494307$ $x_5 = 0.00199925826$ $x_6 = 0.908309867$ $x_9 = 2.56910919$ $x_{10} = 0.0149778787$

Best Objective Function Value:1161.45677

The results generally agrees with the value provided in the reference paper.

Question 4&5

By implementing Nelder-Mead algorithm in Python, for function in part 1: the minimum point is $[0.99999871 \approx 1, 0.99999707 \approx 1]$, and the minimum function value is $1.3556651538450528e - 11 \approx 0$.

For function in part 2: the minimum point is $[6.50737582e - 04 \approx 0, -6.52767435e - 05 \approx 0, -6.74455549e - 04 \approx 0, -6.76241743e - 04 \approx 0]$, and the minimum function value is $5.379451007433241e - 11 \approx 0$.

Again, The tiny error might comes from the numerical uncertainty of float computation in Python.

Question 6

The work done by the first compressor C-1 is given by:

$$W_{C-1} = \frac{RT_1}{\gamma} \left(\left(\frac{P_2}{P_1} \right)^{\gamma} - 1 \right) \tag{1}$$

The work done by the second compressor C-2, compressing from P_2 to P_4 , is (since $P_2=P_3$):

$$W_{C-2} = \frac{RT_1}{\gamma} \left(\left(\frac{P_4}{P_2} \right)^{\gamma} - 1 \right) \tag{2}$$

The total work W_{tot} is the sum of the work done by both compressors:

$$W_{tot} = W_{C-1} + W_{C-2} \tag{3}$$

$$W_{tot} = \frac{RT_1}{\gamma} \left(\left(\frac{P_2}{P_1} \right)^{\gamma} - 1 \right) + \frac{RT_1}{\gamma} \left(\left(\frac{P_4}{P_2} \right)^{\gamma} - 1 \right) \tag{4}$$

Differentiate W_{tot} with respect to P_2 to find the minimum:

$$\frac{dW_{tot}}{dP_2} = \frac{RT_1\gamma}{\gamma} \left(\frac{P_2}{P_1}\right)^{\gamma-1} \frac{1}{P_1} - \frac{RT_1\gamma}{\gamma} \left(\frac{P_4}{P_2}\right)^{\gamma} \frac{1}{P_2^2}$$
 (5)

Set the derivative equal to zero and solve for P_2 :

$$0 = \frac{RT_1\gamma}{\gamma} \left[\left(\frac{P_2}{P_1} \right)^{\gamma - 1} \frac{1}{P_1} - \left(\frac{P_4}{P_2} \right)^{\gamma} \frac{1}{P_2^2} \right]$$
 (6)

Simplify and solve for P_2 :

$$0 = P_2^{\gamma - 1} \frac{1}{P_1^{\gamma}} - P_4^{\gamma} \frac{1}{P_2^{\gamma + 1}}$$

$$P_4^{\gamma} = P_2^{2\gamma} \frac{1}{P_1^{\gamma}}$$

$$P_2^{2\gamma} = P_1^{\gamma} P_4^{\gamma}$$

$$P_2^2 = P_1 P_4$$

Take the square root of both sides to find P_2 :

$$P_2 = \sqrt{P_1 P_4} \tag{7}$$

This result indicates that the optimal intermediate pressure P_2 is the geometric mean of the inlet pressure P_1 and the final pressure P_4 .