www.emergencetechnocm.com

Office du Baccalauréat du Cameroun Session 2017

Examen : Probatoire

Série: $F_{2-3-4-5-CI-EF-MEB-IS-IB-GT}$ Le pôle de l'innovation

EMERGENCE TECHNO

Epreuve : Mathématiques

Durée : 2h Coefficient: 3

 igotimes_0 Le correcteur tiendra compte de la rigueur dans la rédaction et de la clarté de la copie.

On considère l'équation (E) : $4CosxSinx + 2\sqrt{2}Cosx + 2Sinx + \sqrt{2} = 0$

- 1) Montrer que l'équation (E) est équivalente à l'équation : $(2Cosx + 1)(2Sinx + \sqrt{2}) = 0$.
- 2) Résoudre dans R, puis dans l'intervalle] π; π[l'équation (E).
 3) On considère les nombres complexes suivants : z₁ = Cosa + i √3/2 et z₂ = √2/2 + iSinb où a et b sont deux solutions de l'équation (E) appartenant à] π; π[tels que a b = 11π/12.

- i) Montrer que $\frac{2\pi}{3}$ est un argument de z_1 et que $-\frac{\pi}{4}$ est un argument de z_2 .
- ii) Écrire Z sous la forme algébrique.
- iii) Quelle est la forme trigonométrique de \mathbb{Z} ?
- iV En déduire les valeurs exactes de $Cos \frac{11\pi}{12}$ et $Sin \frac{11\pi}{12}$.

Soit ABC un triangle isocèle en A tel que BC = 8cm et BA = 5cm. Soit I le milieu de [BC].

- 1) Faire la figure et placer le point F tel que $\overrightarrow{BF} = -\overrightarrow{BA}$.
- Montrer que F est le barycentre des points A et B, pondérés par des réels que l'on déterminera.
- 3) P étant un point du plan, réduire chacune des sommes suivantes :
- a) $\frac{1}{2}\overrightarrow{PB} + \frac{1}{2}\overrightarrow{PC}$; b) $-\overrightarrow{PA} + 2\overrightarrow{PB}$; c) $2\overrightarrow{PB} 2\overrightarrow{PA}$.
- 4) Déterminer et représenter l'ensemble (D) des points M du plan vérifiant :
- $\| \overset{1}{2}\overrightarrow{MB} + \frac{1}{2}\overrightarrow{MC} \| = \| \overrightarrow{MA} + 2\overrightarrow{MB} \|.$
- 5) Déterminer et représenter l'ensemble (Ω) des points M du plan vérifiant : $\|\overrightarrow{MB} + \overrightarrow{MC}\| = \|-2\overrightarrow{MA} + 2\overrightarrow{MB}\|.$

⊕ Partie A

Un récipient d'eau de fabrication artisanal a été scié en deux par un soudeur métallique. Le bord obtenue (partie touchée par les dents de la scie) est approximativement une partie de (C) courbe de f définie par : $f(x) = x^3 + 3x^2 - 1$.

- 1) Déterminer les limites de f en $-\infty$ et en $+\infty$.
- 2) Étudier les variations de f sur \mathbb{R} .
- Dresser le tableau de variation de f sur R.
- 4) Compléter le tableau ci-dessous puis construire (C) dans un repère orthonormé $(O; \vec{i}, \vec{j})$ unité sur les axes 1 cm.
- Placer les points A(0; -1), B(-2; 3), C(2; 3) et donner la nature exacte du triangle ABC.
- 6) En tournant le triangle ABC autour de l'axe $(O; \vec{i})$, on obtient un solide donc le volume est presque la valeur approchée par excès à 10⁻² du double de celui du récipient d'eau scié.

Donner la nature de ce solide et calculer en m^3 cette valeur approchée du volume de ce récipient. Prendre $\pi = 3, 14$.

On considère la suite (u_n) définie par $u_n = f(n) + 1$ pour tout n entier naturel.

- Vérifier pour tout n entier naturel u_n = n²(n + 3).
- Calculer Δ_n := u_{n+1} u_n en fonction de n, puis déduire le sens de variation de la suite (u_n).
- 3) La suite (u_n) est-elle convergente? Justifier votre réponse.
- 4) On définie une autre suite (v_n) par $v_n = \frac{(\Delta_n 3n^2)^2}{2}$
- **4-a)** Donner la nature de la suite (v_n) en précisant sa raison.
- **4-b)** On pose $s_n := v_1 + v_2 + v_3 + ... + v_n$. Calculer s_n en fonction de n.
- **4-c)** Montrer que $s_? = 71$