ESERCIZI LIMITI DI SUCCESSIONI

- 1. Verificare che la successione $a_n = (-\frac{1}{2})^n$ è limitata e dotata di minimo e massimo.
- 2. Dire se le seguenti successioni sono limitate (n intero e maggiore o uguale a 1):

a)
$$\frac{n!}{n^n}$$
; b) $\frac{\sin(n)}{n}$; c) $\sqrt{n^2+1}-n$; d) $(-1)^n(\frac{2}{3})^n$; e) $(-1)^n(\frac{3}{2})^n$

3. Verificare che le disuguaglianze seguenti sono definitivamente soddisfatte:

a)
$$\frac{1}{\sqrt{n}} < \frac{n-2}{n}$$
; b) $\sqrt[3]{n-2n^2} < -10$.

- 4. Verificare che per $a \in (0,1)$ tutti i termini della successione $a_1 = a$, $a_{n+1} = a_n a_n^3$, n = 2,3,... appartengono a (0,1).
- 5. Determinare per quale valore di α la successione $a_1 = \alpha$, $a_{n+1} = a_n^2 2$, n = 1,2,... è definitivamente uguale a 2.
- 6. Calcolare il seguente limite di successione:

$$\lim_{n \to \infty} \frac{\sqrt{n^2 + 3} - \sqrt{n + 1}}{\sqrt{n + 2} + \sqrt{n^2 - 1}}$$

7. Dimostrare, applicando la definizione di limite, che:

a)
$$\lim_{n\to\infty} \frac{1-n^2}{3n^2+n+1} = -\frac{1}{3}$$
;

b)
$$\lim_{n \to \infty} \frac{2n^3}{n^3 - 1} = 2;$$

c)
$$\lim_{n\to\infty} \sqrt{\frac{16n-2}{n}} = 4.$$

- 8. Si dimostri che se una successione di numeri positivi è tale che $\lim_{n\to\infty}a_n=+\infty$, allora $\lim_{n\to\infty}1/a_n=0$ e viceversa.
- 9. Un'urna contiene inizialmente palline rosse e bianche. Vengono aggiunte successivamente palline rosse e si indica con r_n e b_n la probabilità di estrarre rispettivamente una pallina rossa o una pallina bianca dopo aver aggiunto n palline rosse. Si studi il comportamento delle due successioni. E se aggiungessimo due palline rosse e una bianca ogni volta?
- 10. Calcolare il seguente limite: $\lim_{n\to\infty} \frac{1+2+4+...+2^{n+1}}{2^n}.$
- 11. Consideriamo il fascio di circonferenze $C_n: x^2 + y^2 2nx = 0$ e siano P_n i punti di ordinata negativa dati dall'intersezione della tangente a C_n nel punto di coordinate (2n,0) con C_{n+1} .
 - Si determini l'equazione della curva a cui appartengono tutti i P_n ;
 - esprimere l'ordinata y_{n+1} del punto P_{n+1} in funzione dell'ascissa y_n di P_n ;
 - esprimere il termine generale della successione y_n ;
 - calcolare il $\lim_{n\to\infty} (y_{n+1} y_n)$.

- 12. Data la successione $a_n = \frac{1}{2n(n-1)}$ si determinino due numeri reali $r \in s$ in modo tale che risulti $a_n = \frac{r}{2n} + \frac{s}{n-1}$. Si trovi inoltre un'espressione per la somma $S_n = a_1 + ... + a_n$, e si calcoli il $\lim S_n$.
- 13. Una successione x_n ha la proprietà che $x_{n+1}-x_n \ge 1$ per ogni valore dell'indice n. Si calcoli, se esiste, il $\lim_{n\to\infty} x_n$.
- 14. Indicata con a_n la successione di Fibonacci $\begin{cases} a_0 = 0; & a_1 = 1 \\ a_n = a_{n-1} + a_{n-2}; & n > 1 \end{cases}$, si dimostri che $\lim_{n\to\infty}a_n=+\infty.$
- 15. Data la parabola di equazione $y = 4x x^2$, sia y = nx, con n intero naturale, un fascio di rette che la intersecano nei punti P_n diversi dall'origine.
 - Si determinino in funzione di n le aree S_n dei triangoli OP_nP_{n+1} ;
 - Si calcoli il $\lim_{n\to\infty} \frac{S_{n+1}}{S_n}$.
- 16. Un parallelepipedo rettangolo ha dimensioni a, b, c rispetto ad una determinata unità di misura. Si operano successive modifiche al parallelepipedo: ogni volta il lato a viene dimezzato, mentre i lati b e c vengono aumentati di 10 unità. Se V_0 è il volume iniziale e V_n quello ottenuto dopo *n* modifiche:

 - a) Si calcoli il $\lim_{n\to\infty} \frac{V_n}{V_0}$; b) Si calcoli il $\lim_{n\to\infty} \frac{V_{n+1}}{V_n}$.
- 17. In un'azienda, se un certo dipendente è presente al lavoro, la probabilità che il giorno successivo sia presente è 1/2, mentre se è assente la probabilità che il giorno successivo sia presente è $^{3}/_{4}$. Nell'ipotesi che il primo giorno (giorno "0") sia presente, indicata con p_{n} la probabilità che sia presente il giorno n-esimo, si studi il comportamento della successione p_n
- 18. Calcolare i seguenti limiti di successioni.

$$a) \lim_{n\to\infty} \frac{1}{\sqrt{n+1}-\sqrt{n}} \quad b) \lim_{n\to\infty} \sqrt{n} (\sqrt{n+1}-\sqrt{n}) \quad c) \lim_{n\to\infty} \binom{n}{2} / n^2 \quad d) \lim_{n\to\infty} \binom{n}{2} / n \quad e) \lim_{n\to\infty} \binom{n}{3} / n^3$$

- 19. Si scriva in forma compatta la somma1+11+111+1.111+11.111. (suggerimento: 111=1+10+100...).
- 20. Calcolare il valore della seguente somma parziale: $\sum_{k=0}^{n} (2k+1)^{2}$.
- 21. Dopo aver dimostrato che la lunghezza del lato del poligono regolare di 2^{n+1} lati è legata a quella del poligono di 2ⁿ lati, inscritto nella medesima circonferenza di raggio unitario, dalla

relazione
$$l_{2^{n+1}} = \sqrt{2 - \sqrt{4 - \left(l_{2^n}\right)^2}}$$
, si calcoli il $\lim_{n \to \infty} \sqrt{2 + \sqrt{2 + \dots + \sqrt{2}}}$. (Suggerimento: il perimetro del poligono regolare di 2^{n+1} al crescere del numero dei lati tende alla misura della circonferenza...)

- 22. Una pallina viene lasciata cadere dalla quota di un metro. Ad ogni impatto col suolo dissipa una quantità di energia che la fa rimbalzare ad una quota pari a $\frac{7}{8}$ di quella precedente. Si calcoli la distanza complessiva percorsa dalla pallina quando avrà terminato di rimbalzare.
- 23. Si calcoli il $\lim_{n\to\infty} \frac{n^2+1}{2^n+n}$ evidenziando i passaggi che permettono di applicare i teoremi noti e/o i limiti notevoli.
- 24. Calcolare i seguenti limiti di successioni: a) $\lim_{n\to\infty} \frac{n\cos(n\pi)}{n^2+1}$; b) $\lim_{n\to\infty} \frac{n^3-1}{n^2-1}$.
- 25. Una pallina cade da un'altezza h su di un piano orizzontale e rimbalza fino a raggiungere un'altezza qh, dove 0 < q < 1 ed è indipendente da h. Supponiamo che la pallina compia "infiniti" rimbalzi raggiungendo ogni volta una quota pari al prodotto di q per la quota precedente. La pallina finirà di rimbalzare in un tempo finito?
- 26. Un quadrato unitario è suddiviso in 9 quadrati uguali e il quadrato centrale viene colorato (il mio colore preferito è il verde, fate voi). I rimanenti 8 quadrati sono similmente divisi (ognuno, cioè, viene a sua volta diviso in 9 quadrati) e viene colorato il quadrato centrale di ciascuno di essi. Il procedimento viene iterato infinite volte. Calcolare l'area complessiva della superficie colorata.
- 27. Dimostrare che una successione convergente è limitata.
- 28. All'interno del quadrato di lato 1 è inscritta una circonferenza, all'interno della quale è inscritto un quadrato, all'interno del quale è inscritta una circonferenza, e così via. Si trovi il termine generico della successione delle misure dei lati dei quadrati così ottenuti. Indicata con $d_n = l_n^2 \pi r_n^2$ la differenza tra l'area del quadrato e quella della circonferenza inscritta,

sia
$$S_n = \sum_{k=0}^n d_k$$
, con $d_0 = 1 - \frac{\pi}{4}$. Si calcoli il $\lim_{n \to \infty} S_n$.

- 29. Calcolare i seguenti limiti di successioni: a) $\lim_{n\to\infty} \frac{1-\cos n\pi}{n}$; b) $\lim_{n\to\infty} \frac{1-n^2}{n-1}$.
- 30. Verificare con la definizione il seguente limite infinito: $\lim_{n\to\infty}\frac{n}{\sqrt{n-1}}$.
- 31. Dimostrare che, se a_n è definitivamente maggiore di b_n , e se $\lim_{n\to\infty}b_n=+\infty$, allora $\lim_{n\to\infty}a_n=+\infty$.
- 32. Una successione che tende a più infinito non è limitata superiormente. E' vero il viceversa, cioè che se una successione non è limitata superiormente, allora tende a più infinito?
- 33. Calcolare i seguenti limiti di successioni:

a)
$$\lim_{n\to\infty} \frac{5n^4 - 2n^3 + 3}{n^4 - n^5 + 1}$$

b)
$$\lim_{n\to\infty} \frac{\sqrt{n^2+2} - \sqrt{n^2+3}}{\sqrt{n}+1}$$

34. Si verifichino con la definizione i seguenti limiti di successioni:

$$a\lim_{n\to\infty} \frac{1}{\ln n} = 0; b\lim_{n\to\infty} \left(\sqrt{n+3} - \sqrt{n-2}\right) = 0.$$

- 35. Dimostrare che la successione definita per ricorrenza: $\begin{cases} a_0 = 2 \\ a_{n+1} = \frac{1}{1 a_n} \end{cases}$ non ha limite.
- 36. E' data la famiglia di parabole $y = x^2 nx$. Dopo aver tracciato sullo stesso piano cartesiano i grafici corrispondenti ai valori n = 1, 2:
 - a) Si scriva l'equazione della retta t_n , tangente al grafico della parabola corrispondente nel punto A_n di coordinate (n,0).
 - b) Si determini l'equazione del luogo geometrico dei punti a cui appartengono i vertici V_n della parabola.
 - c) Si indichi con P_n il punto di intersezione della retta t_n con la parabola $y = -x^2$, con A_n il punto di coordinate (n,0), e con H_n la proiezione di P_n sull'asse delle ascisse. Si calcoli il rapporto q tra l'area del triangolo $V_n P_n A_n$, e quella del triangolo $H_n P_n A_n$.
 - d) Si calcoli il $\lim_{n\to\infty}\sum_{k=0}^n (q)^k$.
- 37. E' Data la famiglia di parabole \mathcal{D}_n $y = nx^2 x$. Dopo aver tracciato sullo stesso piano cartesiano i grafici corrispondenti ai valori n = 1, 2:
 - a) Per n > 1, Si determinino i punti P_n, Q_n in cui la retta t_n , tangente al grafico della parabola $y = nx^2 x$ nel vertice V_n , incontra la parabola $y = (n-1)x^2 x$.
 - b) Si trovi il punto H_n intersezione delle tangenti alla parabola $y = (n-1)x^2 x$, condotte dai punti P_n, Q_n .
 - c) Si calcoli l'area S_n del triangolo $V_{n-1}P_nQ_n$, e l'area S_n' del triangolo $H_nP_nQ_n$.
 - d) Si calcoli il $\lim_{n\to\infty} \frac{S_n}{S'_n}$.
- 38. In un sistema di riferimento cartesiano Oxy, è data la famiglia \mathcal{D} di parabole di equazione $y = nx^2 n^2x$, $n \in \mathbb{N}$.
 - a) Si determini l'equazione della retta tangente t alla parabola della famiglia nel punto di coordinate (0,0), e si indichi con A l'altro punto in cui la generica parabola della famiglia \wp incontra l'asse x.
 - b) Si determini il punto H, intersezione della parallela s a t condotta da A, con la perpendicolare p a t condotta da O. Detta S_T l'area del triangolo OAH, calcolare il $\lim_{n\to+\infty} S_T$.
 - 39. In un sistema di riferimento cartesiano Oxy, sono date la famiglia \wp di parabole di

equazione
$$y = \frac{4}{n}x^2 - \frac{3}{n}$$
, $n \in \mathbb{N}$, e la famiglia \Im di iperboli $y = \frac{1}{nx}$, $n \in \mathbb{N}$.

a) Si determinino i punti d'intersezione tra le curve rappresentanti delle due famiglie.

- b) Si traccino i grafici delle parabole e delle iperboli corrispondenti ai valori n=1 e n=2.
- c) Si dimostri che, al variare di $n \in N$, le rette per $P_n\left(-\frac{1}{2}, -\frac{2}{n}\right)$ e $Q_n\left(1, \frac{1}{n}\right)$ intersecano l'asse delle ascisse nello stesso punto, $R\left(\frac{1}{2}, 0\right)$.
- d) Si determini l'area del triangolo $P_{n+1}Q_nR$, e si calcoli il $\lim_{n\to\infty}\frac{Area(P_{n+1}Q_nR)}{Area(P_{n+1}Q_{n+1}Q_n)}$.

Soluzioni

1. Limitata:
$$-\frac{1}{2} \le a_n \le 1$$
.

2.
$$a)0 \le a_n \le 1$$
; $b)-1 < a_n < 1$; $c)a_n \le 1$; $-\frac{2}{3} \le a_n \le 1$; $e)a_n \le -\frac{3}{2} \lor a_n \ge 1$.

3.
$$a = n > 4$$
; $b)n > 46$.

4. Si dimostra che la successione è a termini positivi ed è decrescente.

5.
$$\alpha = 2 \vee \alpha = -1$$
.

6. 1

9.
$$r_n = \frac{n+R}{n+R+B} \to 1$$
 $b_n = \frac{B}{n+R+B} \to 0$, $r_n = \frac{2n+R}{3n+R+B} \to \frac{2}{3}$ $b_n = \frac{n+B}{3n+R+B} \to \frac{1}{3}$.

10.4.

11.
$$P_n = (2n; -2\sqrt{n}); \ y = -\sqrt{2x}; \ y_{n+1} = -\sqrt{1 + y_n^2}; \ y_n = -2\sqrt{n}; \ 0.$$

12.
$$a_n = \frac{-1}{2n} + \frac{1}{2(n-1)}$$
; $S_n = \frac{1}{2} - \frac{1}{2n} \xrightarrow[n \to \infty]{} \frac{1}{2}$.

13. Scrivere le prime n diseguaglianze e sommare membro a membro $x_n \ge x_0 + n \xrightarrow[n \to \infty]{} + \infty$.

14.
$$\lim_{n \to \infty} \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^n = +\infty$$
.

15.
$$S_n = \frac{|n-3|\sqrt{n^4 - 8n^3 + 17n^2 - 8n + 16}}{2\sqrt{n^2 + 1}};$$
 1.

16.
$$V_n = \frac{a}{2^n}(b+10n)(c+10n)$$
 $a)0;$ $b)\frac{1}{2}$.

17.
$$\begin{cases} p_0 = 1 \\ p_{n+1} = \frac{1}{2}p_n + \frac{3}{4}(1 - p_n) = -\frac{p_n}{4} + \frac{3}{4} \implies p_n = \frac{3}{5} + \frac{2}{5}\left(-\frac{1}{4}\right)^n \xrightarrow[n \to \infty]{} \frac{3}{5} = 0, 6.$$

18. a) 0 b)
$$\frac{1}{2}$$
 c) $\frac{1}{2}$ d)+ ∞ e) $\frac{1}{6}$.

19.
$$\sum_{k=1}^{5} [6-k] 10^{k-1}$$
.

$$20. \ \frac{n}{3} \Big[4n^2 + 12n + 1 \Big].$$

$$21. \ l_{2^{n}} = \sqrt{2 - \sqrt{2 + \sqrt{2 + \dots + \sqrt{2}}}} \Rightarrow \lim_{n \to \infty} \sqrt{2 + \sqrt{2 + \dots + \sqrt{2}}} = \lim_{n \to \infty} \left(2 - l_{2^{n}}^{2}\right) = 2.$$

$$22. \ 15m.$$

$$23. \ 0 \leftarrow \frac{n^{2}}{2 \cdot 2^{n}} \le \frac{n^{2} + 1}{2^{n} + n} \le \frac{2n^{2}}{2^{n}} \to 0.$$

$$a) \lim_{n \to \infty} \frac{n \cos(n\pi)}{n^{2} + 1} = \lim_{n \to \infty} \frac{n \cos(n\pi)}{n^{2} \left(1 + n^{-2}\right)} = \lim_{n \to \infty} \frac{(-1)^{n}}{n \left(1 + n^{-2}\right)} = 0;$$

$$24.$$

$$b) \lim_{n \to \infty} \frac{n^{3} - 1}{n^{2} - 1} = \lim_{n \to \infty} \frac{n^{2} + n + 1}{n + 1} = \lim_{n \to \infty} \frac{n}{\left(1 + n^{-1}\right)} + 1 = +\infty$$

25. Utilizziamo la legge oraria del moto uniformemente accelerato $s = h - \frac{1}{2}gt^2$ per calcolare il "tempo di volo" relativo ad ogni rimbalzo. La pallina impiega inizialmente un tempo $t_0 = \sqrt{\frac{2h}{\sigma}}$ per giungere a terra. A questo punto rimbalza (urto perfettamente elastico...), raggiunge la quota qh e ricade di nuovo a terra in un tempo $t_1 = 2\sqrt{\frac{2qh}{g}}$. Rimbalza nuovamente e raggiunge la nuova quota q(qh) e ritorna a terra in un tempo $t_2 = 2\sqrt{\frac{2q^2h}{\rho}}$. Iterando il procedimento si ha che il tempo tra un rimbalzo ed il successivo è $t_n = 2\sqrt{\frac{2q^nh}{q}} = 2\sqrt{\frac{2h}{q}}\cdot\left(\sqrt{q}\right)^n = 2t_0\left(\sqrt{q}\right)^n$. Il tempo complessivo

sarà quindi $T = t_0 + \sum_{n=0}^{\infty} t_n = t_0 + \sum_{n=0}^{\infty} 2t_0 \left(\sqrt{q}\right)^n = t_0 \left(1 + 2\left(\frac{1}{1 - \sqrt{q}}\right)\right) = t_0 \left(1 + 2\frac{\sqrt{q}}{1 - \sqrt{q}}\right) = t_0 \left(\frac{1 + \sqrt{q}}{1 - \sqrt{q}}\right).$

Conclusione: pur effettuando infiniti rimbalzi la pallina cessa di rimbalzare dopo un tempo finito.

26. Innanzitutto, indichiamo con S_n l'area colorata al passo n-esimo:

$$S_1 = 1 \cdot \left(\frac{1}{3}\right)^2$$
, $S_2 = S_1 + 8 \cdot \left(\frac{1}{9}\right)^2 = \frac{1}{3^2} + \frac{2^3}{3^4}$, $S_3 = S_2 + 64 \cdot \left(\frac{1}{27}\right)^2 = \frac{1}{3^2} + \frac{2^3}{3^4} + \frac{2^6}{3^6}$, in generale

$$S_n = \sum_{k=1}^n \frac{2^{3(k-1)}}{3^{2k}} = S_n = \frac{1}{8} \left(\frac{1 - \left(\frac{8}{9}\right)^{n+1}}{1 - \frac{8}{9}} - 1 \right) \Rightarrow \lim_{n \to \infty} S_n = 1.$$

27. Sia $L = \lim_{n \to \infty} a_n$. Posto, ad esempio, $\varepsilon = 1$, esiste in corrispondenza un n_0 tale che $\left| a_n - L \right| < 1$ per ogni $n > n_0$. Quindi $\left| a_n \right| = \left| a_n - L + L \right| < \left| a_n - L \right| + \left| L \right| < 1 + \left| L \right|$. C.v.d.

$$28. \ \ r_n = \frac{1}{2} \left(\frac{1}{\sqrt{2}} \right)^n; l_n = \left(\frac{1}{\sqrt{2}} \right)^n \Rightarrow d_n = l_n^2 - \pi r_n^2 = \left(1 - \frac{\pi}{4} \right) \frac{1}{2^n}; S_n = \left(1 - \frac{\pi}{4} \right) \frac{1 - 2^{-(n+1)}}{1 - 2^{-1}} \Rightarrow \lim_{n \to \infty} S_n = 2 \left(1 - \frac{\pi}{4} \right).$$

$$29. \quad a) \lim_{n \to \infty} \frac{1 - \cos n\pi}{n} \Rightarrow 0 \le \frac{1 - \cos n\pi}{n} \le \frac{1}{n} \Rightarrow 0; \quad b) \lim_{n \to \infty} \frac{1 - n^2}{n - 1} = \lim_{n \to \infty} -\frac{(1 - n)(1 + n)}{1 - n} = -\infty$$

$$30. \ \frac{n}{\sqrt{n-1}} \ge m \Rightarrow \frac{n-m\sqrt{n+1}}{\sqrt{n-1}} \ge 0 \Rightarrow \begin{cases} \sqrt{n} \ge \frac{m+\sqrt{m^2-4}}{2} \\ \sqrt{n} \le \frac{m-\sqrt{m^2-4}}{2} \end{cases} \Rightarrow n_0 = \left[\left(\frac{m+\sqrt{m^2-4}}{2} \right)^2 \right] + 1$$

31. a_n è definitivamente maggiore di b_n : $\exists n_1 \mid \forall n \geq n_1 \Rightarrow a_n \geq b_n$, inoltre $\lim_{n \to \infty} b_n = +\infty$:

$$\forall m>0 \\ \exists n_0 \mid \forall n\geq n_0 \Rightarrow b_m\geq m \;. \; \; \text{Quindi, se} \;\; n\geq \max\left\{n_1,n_0\right\} \Rightarrow a_n\geq b_n\geq m \Rightarrow \lim_{n\to\infty} a_n=+\infty$$

32. No. Ad esempio, la successione $a_n = (-1)^n n$ non è limitata superiormente, tuttavia non esiste il limite per n tendente a infinito.

33. a) a)0;b)0

34.

$$a): \frac{1}{\ln n} > 0 \,\forall n \ge 2 \Rightarrow \left| \frac{1}{\ln n} \right| = \frac{1}{\ln n} \Rightarrow \frac{1}{\ln n} < \varepsilon \Rightarrow \frac{1 - \varepsilon \ln n}{\ln n} < 0 \Rightarrow \ln n > \frac{1}{\varepsilon} \Rightarrow n > n_0 := \left[e^{\frac{1}{\varepsilon}} \right] + 1$$

$$b): (n+3) > (n-2) \,\forall n \Rightarrow \left| \sqrt{n+3} - \sqrt{n-2} \right| < \varepsilon = \sqrt{n+3} - \sqrt{n-2} < \varepsilon \Rightarrow n+3 < n-2 + 2\varepsilon \sqrt{n-2} + \varepsilon^2 \Rightarrow 2\varepsilon \sqrt{n-2} > 5 - \varepsilon^2 \Rightarrow n > n_0 := \left[\left(\frac{5 - \varepsilon}{2\varepsilon} \right)^2 + 2 \right] + 1$$

35. Scriviamo alcuni termini della successione: $a_0 = 2$; $a_1 = -1$; $a_2 = \frac{1}{2}$; $a_3 = 2$; Dall'esame

dei primi 4 termini si evince un carattere di *periodicità* della successione: per esempio i termini di indice 3n sono tutti uguali a due. Dimostriamo questa affermazione con il principio di induzione: $a_0 = 2$

$$a_{3n} = 2 \Rightarrow a_{3n+1} = \frac{1}{1-2} = -1 \Rightarrow a_{3n+2} = \frac{1}{1-(-1)} = \frac{1}{2} \Rightarrow a_{3n+3} = a_{3(n+1)} = \frac{1}{1-\frac{1}{2}} = 2$$
. Di conseguenza infiniti

termini sono uguali a due e, con procedimento analogo, si dimostra che infiniti termini sono uguali a -1 e a ½. Non è quindi possibile che infiniti termini della successione, tranne al più un numero finito, si possano "addensare" arbitrariamente vicino ad uno qualsiasi dei tre valori della successione.

36. a)
$$y = n(x-n)$$
; b) $y = -x^2$; c) $q = \frac{1}{6-2\sqrt{5}} = \frac{3+\sqrt{5}}{8}$; d) $\lim_{n\to\infty} \sum_{k=0}^{n} \left(\frac{3+\sqrt{5}}{8}\right)^k = \frac{1}{1-\frac{3+\sqrt{5}}{8}} = \frac{8}{5-\sqrt{5}}$.

37. a)
$$P_n \left(\frac{\sqrt{n-1}}{2\sqrt{n}(n-1)}, -\frac{1}{4n} \right)$$
; $Q_n \left(\frac{\sqrt{n+1}}{2\sqrt{n}(n-1)}, -\frac{1}{4n} \right)$ b) $H_n \left(\frac{\sqrt{n}}{2\sqrt{n}(n-1)}, -\frac{n^2 + 2\sqrt{n+1}}{4n(n-1)^2} \right)$ c) $S_n = \frac{1}{8n\sqrt{n}(n-1)^2}$, $S_n' = \frac{\sqrt{n+1}}{4n(n-1)^3}$, d) $\frac{1}{2}$.

38.
$$t: y = -n^2 x \cdot A(n; 0)$$

$$s: y = -n^2 x + n^3$$
 $p: y = \frac{x}{n^2}$ $H\left(\frac{n^5}{1 + n^4}; \frac{n^3}{1 + n^4}\right)$ $S_T = \frac{n^4}{2(1 + n^4)} \Rightarrow \lim_{n \to +\infty} S_T = \frac{1}{2}$

39. a)
$$\begin{cases} y = \frac{4}{n}x^2 - \frac{3}{n} \implies 0 = 4x^3 - 3x - 1 = (x - 1)(2x + 1)^2 \implies x_1 = 1 \implies \left(1, \frac{1}{n}\right) \\ nxy = 1 \end{cases}$$
 c)

$$y - \frac{1}{n} = \frac{\frac{1}{n} + \frac{2}{n}}{1 + \frac{1}{2}} (x - 1) \Rightarrow y = \frac{2}{n} x - \frac{1}{n} \Rightarrow 0 = \frac{1}{n} - \frac{1}{n} \forall n ; d$$