Physika LB	SE3 LS	2021/2022
physika-lb.blogspot.com	PHYSICS	Date: /03/2022

Sample Exercise 1 ch 1 & 2 **Duration:** Name: min

Exercise 1

Motion along an inclined plane

A solid (S), of mass 500 g considered as a particle, is released at t = 0 with an initial velocity $\vec{V}_0 =$ $V_0\vec{i}$ from the top point O of an inclined plane (OA) that makes angle $\alpha = 30^{\circ}$ with the horizontal. The inclined plane is rough and exerts a constant force of friction \vec{f} on (S). The horizontal level passing through A chosen as a reference level of GPE as shown in document (Doc 1). Document (Doc 2) shows the variation of the velocity V of (S) as function of time as it moves from O to A.

Doc.1

Doc.2

Part 1: Dynamical Study

- Name the external forces acting on (S) along the path OA. Draw, not to scale, a diagram of 1-1) these forces.
- Determine the variation of linear momentum $\Delta \vec{P}$ of (S) between O and A. 1-2)
- We can consider that $\frac{\Delta \vec{P}}{\Delta t} \approx \frac{d\vec{P}}{dt}$. Applying Newton's second law $\Sigma \vec{F}_{ext} = \frac{d\vec{P}}{dt}$ on the solid (S), determine the sum of the external forces ($\Sigma \vec{F}_{ex}$) acting on (S). 1-3)
- Verify that the force of friction $\vec{f} = -2.22 \hat{t}$ (N). 1-4)

Part 2: Energetic Study

Consider the distance OA = 6.25 m and a point M at instant t between O and A such that OM = x.

- Calculate the mechanical energy ME_o of system [(S), Earth] at point O. 2-1)
- Determine, by applying the variation of mechanical energy $\Delta ME = W_{\vec{f}}$ between the two 2-2) points O and M, the mechanical energy ME of system [(S), Earth] at point M as function of x.
- Determine the gravitational potential energy GPE of system [(S), Earth] at point M as 2-3) function of x.
- 2-4) Determine the kinetic energy KE of (S) at point M as function of x.
- Represent on the same graph, using a convenient scale, the graphs of KE, GPE and ME as 2-5) function of x between A and O.

Part of the	Physika LB	SE3 LS PHYSICS	2021/2022	Mark		
Q	physika-lb.blogspot.com	Answer key	Date: /03/2022			
		Exercise 1				
	The external forces acting on (S):					
	$M\vec{g}$: weight of (S)					
1-1	\vec{N} : Normal Reaction on (S)					
	\vec{f} : friction force					
	Diagram					
	$\vec{P} = M\vec{V}$					
1-2	$ 2 \begin{vmatrix} \vec{P}_{O} = M\vec{V}_{O} = 0.5x3\vec{i} = 1.5 \vec{i} & (kg.m/s) \\ \vec{P}_{A} = M\vec{V}_{A} = 0.5x4 \vec{i} = 2 \vec{i} & (kg.m/s) \end{vmatrix} $					
1-2						
	$\Delta \vec{P} = \vec{P}_{A} - \vec{P}_{O} = 2\vec{i} - 1.5\vec{i} = 0.5\vec{i}$					
	Apply Newton's 2 nd law					
1-3	$\sum \vec{F} \exp \left(-\frac{d\vec{P}}{dt}\right) = \frac{\Delta \vec{P}}{\Delta t} = \frac{0.5 \vec{t}}{1.786} = 0.28$	\vec{i} (N)				
	$at \Delta t = 1.786$					
	$\sum \vec{\mathbf{F}} \exp = 0.28 \ \vec{\imath}$					
	$\mathbf{M}\vec{g} + \vec{N} + \vec{f} = 0.28 \ \vec{i}$					
	$Mgsin\alpha \vec{i} + Mgcos\alpha \vec{j} + \vec{N} + \vec{f} =$	$0.28 \vec{t}$				
1-4						
	$\vec{f} = -2.22 \ \vec{i}$					
	$ME_O = \frac{1}{2}MV_O^2 + Mgz_O = \frac{1}{2}$	$\rho MV \alpha^2 + MgAO \sin \alpha = \frac{1}{2} (0)$	$5)(3)^2 + 0.5 \times 10 \times 6.25 \sin 30 - 100$			
2-1	17.875J	2.1.1 0 1 1/1g/100mw = 72(0	(A) (1 0.5A10A0.256H150 -			
	$\Delta ME = W_f$	7 0				
2-2	$ME - ME_O = -f x$					
	ME - 17.875 = -2.22 x	· ()				
	ME = -2.22 x + 17.875					
2-3	$GPE = Mgz = Mg(MA)sin\alpha = Mg$ $= 15.625 - 2.5x$	$g(OA-OM)\sin\alpha = Mg(OA-x)\sin\alpha$	$\ln \alpha = 0.5 \times 10 (6.25 - x) \sin 30$			
2-4	ME = KE + GPE					
	-2.22 x + 17.875 = KE + 15.625 - 2	2.5x				
	KE = 0.28 x + 2.25					
2-5	Graph					