

!Optimizer Panda team

Ali Fathi Mohamma Rashid -Shayan Ras jbarzadeh

Round

Round 2

Data Ide

Round

Round -

D -

D 0

!Optimizer Panda team

Ali Fathi - Mohammad Rashid - Shayan Ranjbarzadeh

27/8/2021

Table of Contents

!Optimizer Panda team

Ali Fathi Mohamma Rashid -Shayan Ras jbarzadeh

Round

rtound 2

Data Ide

_ . .

_ .

1004114 1

.

1 Round 1

2 Round 2

3 Data Ideas

4 Round 3

6 Round 4

6 Round 5

References

Round 1

!Optimizer Panda team

Ali Fathi Mohamma Rashid -Shayan Ra ibarzadel

Round 1

Round

Data Ide

Round

Dound

_ .

Round a

Or si

minimize
$$0^T v$$

s.t.: $Sv = 0$
 $l \leq v \leq u$

Or simply use the code for round 2:))

Round 2 Original problem

!Optimizer Panda team

Ali Fathi Mohamma Rashid -Shayan Rai

Round

Round 2

Data Ida

ъ .

. .

Itound

Round 5

References

$$\begin{aligned} & \text{minimize} & & \|v\|_0 \\ & \text{s.t.:} & Sv = 0 \\ & & l \preceq v \preceq u \end{aligned}$$

Weighted Algorithm (Linear!)

!Optimizer Panda team

Ali Fathi Mohamma Rashid -Shayan Ras jbarzadeh

Round

Round 2

Data Ide

Round

Round

nouna a

References

minimize $\sum_{i=1}^{n} w_i |v_i|$ s.t.: Sv = 0 $l \leq v \leq u$

If $w = \vec{1}_n$, the wighted problem would be norm 1 minimization. If $w_i \approx \infty$ for each $i \in I_z$ and 0 otherwise, it would find some sparse solution in which $v_{I_z} = 0$.

Weighted Algorithm Updating Weights

!Optimizer Panda team

Ali Fathi -Mohamma Rashid -Shayan Rai jbarzadeh

Round

Round 2

Data Ide

1004114

Round

Round

Referenc

Basic updating:

$$\vec{w}^{(0)} = \vec{1}_n$$

$$\vec{w}^{(t+1)}_i = \frac{1}{|\vec{v}^{(t)}_i| + \epsilon}$$

(ϵ prevents division by 0) Trying to push small elements of v to zero

Weighted Algorithm

Updating Weights

!Optimizer Panda team

Ali Fathi -Mohammad Rashid -Shayan Ran jbarzadeh

Round

Round 2

Data Ide

Round

Round

Round !

Reference

NW4 updating (used in contest):

$$w_i^{(0)} = \vec{1}_n$$

$$w_i^{(t+1)} = \frac{1 + (|v_i^{(t)}| + \epsilon)^p}{(|v_i^{(t)}| + \epsilon)^{p+1}}$$

In which 0 is some modifiable parameter (0.8 was used in contest).

Other updating methods could be found at [1].

Weighted Algorithm Randimization

!Optimizer Panda team

Ali Fathi -Mohamma Rashid -Shayan Rai jbarzadeh

Round

Round 2

Data Ide

Round

Round

Dound

1tound (

Multiplying NW4 weight with some random number:

$$\vec{w}_{i}^{(0)} = \vec{1}_{n}$$

$$\vec{w}_{i}^{(t+1)} = \frac{1 + (|v_{i}^{(t)}| + \epsilon)^{p}}{(|v_{i}^{(t)}| + \epsilon)^{p+1}} \times r_{i}^{3}$$

$$r_{i} \sim Unif[0, 1]$$

Distribution and power (3) are adjusted experimentally.

The Theory Behind Wighted Algorithm merit function

!Optimizer Panda team

Ali Fathi -Mohammad Rashid -Shayan Ran jbarzadeh

Round

Round 2

Data Id

Round

Ttouria .

Keferences

• A convex approximation of l_0 -norm: $\Phi_{\epsilon}(v)$ such that $\lim_{\epsilon \to 0} \Phi_{\epsilon}(v) = ||v||_0$ (ϵ does more than preventing division by 0!)

• e.g.

$$\Phi_{\epsilon}(v) = \sum_{i=1}^{n} \log(|v_i| + \epsilon)$$

(the merit function for NW4 could be found at [1])

The Theory Behind Wighted Algorithm merit function

!Optimizer Panda team

Ali Fathi -Mohammad Rashid -Shayan Rar jbarzadeh

Round

Round 2

Data Ide

_ .

Round

Round

Referenc

• Using linear approximation of $\Phi_{\epsilon}(v)$:

$$\Phi_{\epsilon}(v) \approx \Phi_{\epsilon}(v^{(t)}) + \nabla \Phi_{\epsilon}(v^{(t)})^{T} \cdot (v - v^{(t)})$$

• for example for logarithmic Φ_{ϵ} we have:

$$w^{(t+1)} := \nabla \Phi_{\epsilon}(v^{(t)}) = \left(\frac{1}{|v_1^{(t)}| + \epsilon}, \cdots, \frac{1}{|v_n^{(t)}| + \epsilon}\right)^T$$

Advantages

!Optimizer Panda team

Ali Fathi Mohamma Rashid -Shayan Ra jbarzadeh

Round

Round 2

Data Ide

Round

Round

Reference:

- It is linear (LP) and fast
- Local optima are sparse

Other tested algorithms

!Optimizer Panda team

Ali Fathi Mohamma Rashid -Shayan Rai ibarzadeh

Round

Round 2

Data Ide

Round

Round

Round 8

.

• Dual Density method:

maximize
$$\alpha \Phi_{\epsilon}(s) + b^T y$$

s.t.: $S^T y - u + v = 0$
 $s = w - u + v$
 $(s, u, v, w) \succeq 0$
 $b^T y \coloneqq \gamma = min\{\|Wv\|_1 : Sv = 0\}$

Other tested algorithms

!Optimizer Panda team

Ali Fathi -Mohammad Rashid -Shayan Ran jbarzadeh

Round

Round 2

Data Ide

_ .

. .

Round .

References

- Greedy fixing minimum elements (with minimum absolute value) to zero.
- Fixing optimal norm 1 surface by adding the constraint $1^T |\vec{v}| \leq 1.1z_0$, in which z_0 is minimum norm 1 objective value, and then optimize with random weights.

- Greedy and random search among sparse neighbors
- Projecting candidate edges on null(S) plate

Ideas to work better with data

precision modification

!Optimizer Panda team

Ali Fathi Mohamma Rashid -Shayan Ra ibarzadeh

Round

Round :

Data Ideas

Round

D 1

_ .

rtound c

• Ignore unnecessary precision in S, L, U and V:

$$|x| < 2E - 5 \Rightarrow x \leftarrow 0$$

Ideas to work better with data

obliged non-zero elements

!Optimizer Panda team

Ali Fathi -Mohammad Rashid -Shayan Ran jbarzadeh

Round :

Round :

Data Ideas

Round

. .

D d

.

ullet Ignoring definitely-nonzero elements of V from objective function:

$$L \preceq V \preceq U$$

$$L_{i,j} > 0 \text{ or } U_{i,j} < 0 \Rightarrow V_{i,j} \neq 0$$

$$\forall i \ (\exists j \ L_{i,j} > 0 \text{ or } U_{i,j} < 0$$

 \Rightarrow i'th row of V could not be knocked out)

and w_i would be zero in these indices (i) and the solver wouldn't try to make those rows zero.

Ideas to work better with data

putting zero elements aside

!Optimizer Panda team

Ali Fathi Mohamma Rashid -Shayan Ras jbarzadeh

Round :

Round :

Data Ideas

Round

Round

Round

Referenc

 \bullet Ignoring definitely-zero elements of V from problem:

$$L \preceq V \preceq U$$

$$L_{i,j} = 0 = U_{i,j} \Rightarrow V_{i,j} = 0$$

and we totally exclude those elements, and consequently the problem size shrinks dramatically!

Lower bound analysis power of linearity

!Optimizer Panda team

Ali Fathi Mohamma Rashid -Shayan Rai jbarzadeh

Round

Data Ideas

Data Ide

Round

Round

Round 5

Referenc

- Most of non-zero elements of the best v are those which are obliged to be non-zero by l and u
- We knocked out (i.e. putting zero) the other non-zero elements and checked the feasibility (whether Sv=0 and $l \leq v \leq u$ and $v_i=0$ is feasible or not) and if it got infeasible, we count it in lower bound.
- Result: for our best answer, l_0 -norm is highly near this lower bound.

Round 3 Original problem

!Optimizer Panda team

Ali Fathi Mohamma Rashid -Shayan Ras ibarzadeh

Round

Round

Data Ide

Round 3

Round

Round |

References

minimize $\|V\|_{2,0}$

s.t.: SV = 0

$$L \preceq V \preceq U$$

Algorithm: norm 1,1 approximation

A reasonable separable LP approximation

!Optimizer Panda team

Ali Fathi Mohamma Rashid -Shayan Rai jbarzadeh

Round

Round :

Data Ide

Round 3

D 1

Ttouna .

 $\begin{aligned} & \text{minimize} & \left\| V \right\|_{1,1} = \Sigma_{j=1}^c \left\| v_j \right\|_1 \\ & \text{s.t.: } Sv_j = 0 & \forall j \\ & l_j \preceq v_j \preceq u_j & \forall j \end{aligned}$

(c is the number of columns in V and v_j denotes j'th column of V) In $\|V\|_{p,0}$, p-norm of rows beside norm 0, just distinguishes whether a row is all-zero or not. Both p=1 and p=2 fulfill this job (and even $\|V\|_{1,0} = \|V\|_{2,0}$!). Afterward, norm 0 in $\|V\|_{1,0}$ is replaced with norm 1.

Separation

Transforming round 3 problem to many round 2 problems

!Optimizer Panda team

Ali Fathi Mohamma Rashid -Shayan Ras jbarzadeh

Round

rtound 2

Data Ide

Round 3

Round

Round

Referen

The last problem is equivalent to solve c distinct LPs $(1 \le j \le c)$:

minimize
$$\|v_j\|_1$$

s.t.: $Sv_j = 0$
 $l_j \leq v_j \leq u_j$

If the solver is super-linear (e.g. $O(n^{1+\delta})$ for arbitrary δ), having c problems of size n would be solved faster than a problem of size c * n.

Sharing weights in separated problems

!Optimizer Panda team

Ali Fathi Mohamma Rashid -Shayan Ras jbarzadeh

Round

Round

Data Ide

Round 3

. .

ъ .

riound .

In which v'_i denotes i'th row of V.

The weights are updated just the same as round 2, but by using $\left\|v_i^{\prime(t)}\right\|_2$ (or norm-1) instead of $|v_i^{(t)}|$ (weights would be projected on each separated problem).

minimize
$$\sum_{i=1}^{n} w_i \|v_i'\|_1$$
$$= \sum_{j=1}^{c} (\sum_{i=1}^{n} w_i | (v_j)_i |)$$
s.t.:
$$Sv_j = 0 \quad \forall j$$
$$l_j \leq v_j \leq u_j \quad \forall j$$

Round 4 Original problem

!Optimizer Panda team

Ali Fathi Mohamma Rashid -Shayan Rai

Round

Round

Data Ide

Round 4

Round !

Reference

$$\begin{aligned} & \text{minimize} & & \|V\|_{2,0} + \lambda \left\| \left(SV\right)^T \right\|_{2,0} \\ & \text{s.t.:} & L \preceq V \preceq U \end{aligned}$$

Which means freeing each column of V from constraint SV=0, has a penalty of λ .

Round 4

Norm 1,1 approximation, but freeing some columns

!Optimizer Panda team

Ali Fathi Mohamma Rashid -Shayan Ras jbarzadeh

Round

Round :

Data Ide

Round

Round 4

Round !

Reference

minimize
$$\sum_{i=1}^{n} w_i \|v_i'\|_1$$

s.t.: $Sv_j = 0 \quad \forall j \in J$
 $L \leq V \leq U$

In which:

$$J = \{j \in \{1, \cdots, c\} \mid c_j < \lambda\}$$

$$\begin{aligned} c_j = &(\text{minimize } \|v_j\|_1 \text{ s.t. } Sv_j = 0 \text{ and } l_j \leq v_j \leq u_j) \\ -&(\text{minimize } \|v_j\|_1 \text{ s.t. } l_j \leq v_j \leq u_j) \end{aligned}$$

(It is a heuristic of the advantage gained by freeing column j)

Round 4 Other ideas

!Optimizer Panda team

Ali Fathi -Mohammad Rashid -Shayan Ran jbarzadeh

Round

Round :

Data Ide

Round

Round 4

Round |

Referenc

• Simultaneously optimize the terms in objective function, using norm 1,1 approximation and separation:

minimize
$$\|V\|_{1,1} + \lambda \|(SV)^T\|_{1,1}$$

 $= \sum_{i=1}^n w_i \|v_i'\|_1 + \lambda \sum_{j=1}^c \hat{w}_j \|Sv_j\|_1$
s.t.: $L \leq V \leq U$

and the separated problem j would be like:

minimize
$$\sum_{i=1}^{n} w_i |(v_j)_i| + \lambda \hat{w}_j ||Sv_j||_1$$

s.t.: $l_j \leq v_j \leq u_j$

with the same updating method (according to the l_2 -norm of corresponding vector) and also normalized to be summed 1, to keep their proportion to be λ .

Round 5 Original problem

!Optimizer Panda team

Ali Fathi Mohamma Rashid -Shayan Rai ibarzadeh

Round

Round 2

Data Ide

Ttound .

Round 5

References

$$\begin{aligned} & \text{minimize} & & \|V\|_{2,0} \\ & \text{s.t.:} & & \left\| (SV)^T \right\|_{2,0} \leq K \\ & & L \preceq V \preceq U \end{aligned}$$

Round 5

Norm 1,1 approximation, but freeing some columns

!Optimizer Panda team

Ali Fathi Mohamma Rashid -Shayan Ras jbarzadeh

minimize
$$\sum_{i=1}^{n} w_i \|v_i'\|_1$$

s.t.: $Sv_j = 0 \quad \forall j \in J$
 $L \leq V \leq U$

In which:

$$J = \{1, \dots, c\} \setminus K - \underset{\{1, \dots, c\}}{\operatorname{argmax}}(c_j)$$

$$\begin{split} c_j = & (\text{minimize } \|v_j\|_1 \text{ s.t. } Sv_j = 0 \text{ and } l_j \preceq v_j \preceq u_j) \\ - & (\text{minimize } \|v_j\|_1 \text{ s.t. } l_j \preceq v_j \preceq u_j) \end{split}$$

(freeing K most advantageous columns)

Round 5 Other ideas

!Optimizer Panda team

Ali Fathi Mohamma Rashid -Shayan Ra ibarzadel

Round

Round 2

ata Ide

Data Id

Round

Round 5

Reference

• Using round 4 code by binary searching on λ (start with some λ , solve the problem, then increase or decrease it if more or less than K columns of answer V are freed, respectively)

References

!Optimizer Panda team

Ali Fathi Mohamma Rashid -Shayan Ras jbarzadeh

Round 1

Round 2

Data Id

.

Round

Pound

References

Yun-Bin Zhao Sparse Optimization Theory and Methods, 2018

Jialiang Xu & Yun-Bin Zhao Dual-density-based reweighted ℓ_1 -algorithms for a class of ℓ_0 -minimization problems, J Glob Optim (2021)

https://jump.dev/MathOptInterface.jl/v0.8.1/apimanual/

