

Computational Methodology for Image-based Outcomes Prediction in Liver Cancer

Thierry Lefebvre ¹ Ozan Ciga, MSc ^{2,3} Peter Savadjiev, PhD ^{1,2,4}

Affiliations:

- Medical Physics Unit, McGill University.
- 2. School of Computer Science, McGill University.
- 3. Department of Computer Science, University of Toronto.
- 4. Department of Diagnostic Radiology, McGill University.

Email: thierry.lefebvre@mail.mcgill.ca

Challenges for ML in Radiology

Outcomes Prediction after Therapy using Imaging

Radiomics:

- Require segmentation
- Often done on one 2D slice
- Time consuming for a volume

Deep learning:

- Requires huge training set
- Sensitive to image orientation
- 3D can be really computationally heavy

Feature-based Classification

Human-engineered Features

Local Image Descriptors

- Same size than the original image
- Enhance textures in images
- Can facilitate automated detection of features for image classification

Non-Local Image Descriptors

- Compact description of a volume
- Allows faster image classification with minimal loss of information
- No need for explicit segmentation

Rongrong L et al. Optical Engineering. 2017Dec; 56(12)123109.

Hydrogen-like Atom

Schrödinger Equation Solutions

Coefficients of the angular basis:
 Spherical Harmonics

Coefficients of the radial basis:
 Associated Laguerre Polynomials

Angular Basis

Laplace's Spherical Harmonics Functions $Y_l^m(\theta, \varphi)$

- Angular part of the complex electronic cloud structure of atoms
- Three quantum numbers *n*, *l*, *m*
- Combined with a radial basis, they can fully describe complex shapes

Radial Basis

From H. Skibbe et al

- Damped Fourier expansion as radial basis $w_k^R(r)$
- Computationally efficient choice for replacing associated Laguerre polynomials (really expensive)

$$w_k^R(r) = \frac{1}{\sqrt{R}} e^{2\pi i k r \frac{1}{R}}$$

Spherical Harmonics Fourier Descriptors WGGill

Tumor Modeling

Hypothesis

- Underlying tumour information can be encoded in spherical harmonics
 Fourier decomposition coefficients
- No need to segment: just select the center of the tumour and expand to a radius that will englobe the whole tumour

Example

- ≈100,000 voxels in segmented tumour volume
- Could be represented by 50 x 50 matrix,2,500
 → evaluated in seconds
- Computationally efficient for classification (40 times smaller!)

Tumor Modeling

Rationale

 Already been shown that using only these coefficients with no other prior information on the volume, we can reconstruct complex structures with minimal loss of information

M Turk. www.cc.gatech.edu.

Population

RFAI Benchmark Dataset

Fourier Texture Dataset

L Paulhac. 4th International Conference on Computer Vision Theory and Applications. pp 135-141. 2009.

Statistical Analyses

- Classification Performance Evaluated with 4 Machine Learning-based Classifiers:
 - K-nearest Neighbors (KNN)
 - Random Forest (RF)
 - Gaussian Naive Bayes (NB)
 - Support Vector Machines (SVM)
- Cross-validated Metrics with 95% Confidence Interval:
 - Accuracy

Preliminary Results (Fourier Texture)

Data	ML-Classifier	Accuracy
Fourier (<i>L_{max}</i> = 50)	KNN	0.97 ± 0.05
	RF	0.93 ± 0.04
	NB	0.86 ± 0.08
	SVM	0.94 ± 0.05

T-dist. Stochastic Neighbor Embedding

Accuracy of 0.99 with Linear Discriminant Analysis

Fourier Texture Reconstructions

Geometric Texture Dataset

L Paulhac. 4th International Conference on Computer Vision Theory and Applications. pp 135-141. 2009.

Data	ML-Classifier	Accuracy
Geometric (<i>L_{max}</i> = 50)	KNN	0.77 ± 0.06
	RF	0.94 ± 0.04
	NB	0.92 ± 0.05
	SVM	0.91 ± 0.05

T-dist. Stochastic Neighbor Embedding

Geometric Texture Reconstructions

Liver Tumours Dataset

Preliminary Population

Liver Tumours

- Baseline CT scan prior to treatment
- Follow-up CT scan 2 months after treatment (outcomes 6 months after)
- SHFD evaluated on baseline data to see if it was enough to predict treatment response

Preliminary Results (Fourier Texture)

Data	ML-Classifier	Accuracy
	KNN	0.78 ± 0.10
Liver with STA Toolbox	RF	0.83 ± 0.06
$(L_{max}=50)$	NB	0.83 ± 0.06
· max	SVM	0.83 ± 0.06

Conclusions

- Provided compact rotation-invariant image descriptors
 - fast classification
 - no need for segmentation
- Need to apply this tool to more tumour data to see:
 - How it performs in a larger dataset?
 - Can we get similar or better results than state-of-the-art radiomics (on segmented medical images)?

Acknowledgments

- Ozan Ciga
- Nikesh Muthukrishnan
- Peter Savadjiev
- Caroline Reinhold
- Reza Forgani

Santé et Services sociaux Québec 💀 🥸

Appendix

 $c_{\ell 2}^{Rk}$

 $= \|\mathbf{a}_{\ell}^{Rk}\|$

Skibbe H et al., in Proc. of the 3DIM.12th IEEE ICCV 2009

 $= (\mathbf{a}_{\ell}^{Rk} ullet_0 \mathbf{a}_{\ell}^{R,-k})^{rac{1}{2}} = \langle \mathbf{a}_{\ell}^{Rk}, \mathbf{a}_{\ell}^{Rk}
angle^{rac{1}{2}}$

Spherical Harmonics Fourier Descriptors (SHFD): F_{KL}

- phase information of the coefficient is preserved in c_{I0}^{Rk} and c_{I1}^{Rk}
- c_{l2}^{Rk} represents the energy bands for l and k

$$\begin{split} c_{\ell 0}^{Rk} &= |\text{Real}((\mathbf{a}_{\ell}^{Rk} \bullet_0 \mathbf{a}_{\ell}^{Rk})^{\frac{1}{2}})| \\ c_{\ell 1}^{Rk} &= |\text{Imag}((\mathbf{a}_{\ell}^{Rk} \bullet_0 \mathbf{a}_{\ell}^{Rk})^{\frac{1}{2}})| \\ c_{\ell 2}^{Rk} &= (\mathbf{a}_{\ell}^{Rk} \bullet_0 \mathbf{a}_{\ell}^{R,-k})^{\frac{1}{2}} = \langle \mathbf{a}_{\ell}^{Rk}, \mathbf{a}_{\ell}^{Rk} \rangle^{\frac{1}{2}} \\ &= ||\mathbf{a}_{\ell}^{Rk}|| \\ \mathbf{F}_{KL} &= \{\mathbf{c}_0^{0T}, \cdots, \mathbf{c}_{\ell}^{RkT}, \cdots, \mathbf{c}_L^{RKT}\} \end{split}$$

Spherical Harmonics

Laplaces's Spherical Harmonics Functions $Y_l^m(\theta, \varphi)$

- Elevation angle θ
- Azimuthal angle φ
- Associate Legendre polynomials $P_I^m(\cos \theta)$
- Azimuthal quantum number *l* (from atomic physics)
- Magnetic quantum number m

$$Y_l^m(\theta, \phi) = \sqrt{\frac{2l + 1(l - m)!}{4\pi(l + m)!}} P_l^m(\cos \theta) e^{im\phi} \qquad P_l^m(x) = \frac{(-1)^m}{(2^l l!)} (1 + x^2)^{\frac{m}{2}} \frac{(d^{l+m})}{(dx^{l+m})} (x^2 - 1)^l$$

Prior Literature

H. Skibbe et al

- SPHARM as angular basis $f(\theta, \varphi)$ with coefficients b_{ln}
- Damped Fourier expansion as radial basis $w_k^R(r)$
 - Orthonormal basis for functions on interval [0, R]
- Expansion of function f(r) defined on a sphere
 - with the expansion coefficients a_l^{Rk} and the orthonormal basis functions $E_{lm}^{Rk}(\mathbf{r})$

$$f(\theta, \phi) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\infty} b_{\ell m} Y_m^{\ell}(\theta, \phi)$$

$$lm = \sum_{\ell=0}^{\infty} (\mathbf{b}_{\ell})^T \mathbf{Y}^{\ell}(\theta, \phi)$$

$$w_k^R(r) = \frac{1}{\sqrt{R}} e^{2\pi i k r \frac{1}{R}}$$

$$f(\mathbf{r}) = \sum_{k=-\infty}^{\infty} \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\infty} a_{\ell m}^{Rk} E_{\ell m}^{Rk}(\mathbf{r})$$

$$= \sum_{k=-\infty}^{\infty} \sum_{\ell=0}^{\infty} (\mathbf{a}_{\ell}^{Rk})^T \mathbf{E}_{\ell}^{Rk}(\mathbf{r})$$

$$E_{\ell m}^{Rk}(\mathbf{r}) = Y_m^{\ell}(\theta, \phi) w_k^R(r) \frac{1}{r}$$

Prior Literature

H. Skibbe et al

- Expansion separately performed
 - angular part $Y_m^l(\theta, \varphi)$ using a spherical harmonic transformation
 - radial part $w_k^R(r) \frac{1}{r}$ using an ordinary 1D Fourier transformation
- Expansion coefficients a_l^{Rk}
 - weighting f(r) by distance from centre r

$$\langle f, E_{\ell m}^{Rk} \rangle = \cdots$$

$$= \int_{0}^{R} w_{-k}^{R}(r) b_{\ell m}(r) dr$$

$$= a_{\ell m}^{Rk}$$

H. Skibbe et al

- Expansion separately performed
 - angular part $Y_m^l(\theta, \varphi)$ using a spherical harmonic transformation
 - radial part w_k^R(r) ¹/_r using an ordinary
 1D Fourier transformation
- Expansion coefficients a_l^{Rk}
 - weighting f(r) by distance from centre r

H. Skibbe et al

- Expansion separately performed
- angular part Y_m(θ, φ) using a spherical harmonic transformation
- radial part w^R_R(r) ¹/_r using an
- Expansion coefficients a^{Rk}
- weighting f(r) by distance

H. Skibbe et al

- Expansion separately performed
 - angular part Y^l_m(θ, φ) using a spherical harmonic transformation
 - radial part $w_k^R(r) \frac{1}{r}$ using an ordinary 1D Fourier transformation
- Expansion coefficients a_l^{Rk}
 - weighting f(r) by distance from centre r

H. Skibbe

- Expansion separately performed
- spherical harmonic transformation
- radial part w^R_k(r) ¹/_r using an ordinal 1D Fourier transformation
- Expansion coefficients a^{Rk}
 weighting f(r) by distant

$$f'(r, \theta, \phi) = rf(r, \theta, \phi)$$

H. Skibbe et al.,in Proc. of the 3DIM 2009, part of the 12th IEEE ICCV 2009