

Forelesning nr.4 IN 1080 Mekatronikk

Vekselstrøm Kondensatorer

Dagens temaer

- Mer om Thévenins og Nortons teoremer
- Sinusformede spenninger og strømmer
- Firkant-, puls- og sagtannsbølger
- Effekt i vekselstrømkretser
- Kondensator
- Temaene hentes fra Kapittel 8.1-8.5, 8.8 og 9.1-9.4

Thévenin og Norton

- Teoremene gjør det mulig å forenkle lineære kretser med strøm/spenningskilder og passive kretselementer:
 - Thévenin: En vilkårlig krets kan erstattes av en spenningskilde V_{th} i serie med en resistor R_{th}
 - Norton: En vilkårlig krets kan erstattes av en strømkilde I_{no} i parallell med en resistor R_{no}
 - De forenklede kretsene kalles hhv Thévenin- og Norton-ekvivalenter
 - Har man funnet den ene ekvivalenten er det enkelt å finne den andre vha formler
- Gjelder også for ac kretser med elementer med frekvensavhengig motstand (impedans), men mer komplisert

Thévenins teorem: Fremgangsmåte (1)

Forarbeid:

- Identifiser og marker den delen av kretsen som skal erstattes med ekvivalenten
- Sett navn på de to tilkoblingspunktene mellom delen av kretsen som skal erstattes av ekvivalenten og resten av kretsen

Thévenin-resistansen R_{th}:

- Sett alle kilder til null (spenningskilder kortsluttes og strømkilder åpnes)
- R_{th} er resistansen sett mellom de to terminalene etter at kildene er satt til null

Thévenins teorem: Fremgangsmåte (2)

- Thévenin-spenningen V_{th}:
 - Sett alle kilder tilbake
 - Beregn V_{th} mellom de to terminalene uten at resten av kretsen er tilkoblet
- Thévenin-ekvivalenten med spenningskilden V_{th} og resistoren R_{th} settes inn og erstatter den kompliserte delen

Thévenins teorem: Eksempel (1)

Finn V_{th} og R_{th} for den blå delen

 Fjerner den delen av kretsen som ikke skal inngå i ekvivalenten (dvs resistoren R_L)

Thévenins teorem: Eksempel (3)

- Nuller ut kilden(e): Kortslutter V1
- Beregner resistansen (dvs R_{th}) mellom node a og b:
 - R1||R2=(R1*R2)/(R1+R2)=(3Ω*6Ω)/(3Ω+6Ω)=2Ω

- Setter tilbake V1 og beregner spenningen mellom node a og b:
 - Vab=Vth=V1*(R2/(R1+R2)=9v*(6Ω)/(3Ω+6Ω)=6v

Thévenins teorem: Eksempel (4)

Setter inn ekvivalenten:

 For ulike verdier av RL er det nå mye enklere å beregne f.eks hvordan strømmen IL varierer

Thévenins teorem: Med og uten ekvivalent

IL=Vth/(Rth + RL)

IL = Vab/RL og Vab = V1*R1/(R1 + R2||RL)

IL = V1*R1/(R1+R2*RL/(R2+RL))/RL

RL= 2Ω : IL = 9v*3 Ω /(3 Ω +6 Ω *2 Ω /(6 Ω +2 Ω))/2 Ω =1.5A

RL=10Ω : IL = 9v*3 Ω /(3 Ω +6 Ω *10 Ω /(6 Ω +10 Ω))/10 Ω=0.5A

RL=100Ω : IL = 9v*3 Ω /(3 Ω +6 Ω *100 Ω /(6 Ω +100 Ω))/100 Ω=0.06A

RL= 2Ω : IL= $6v/(2\Omega + 2\Omega)$ =1.5A

RL= 10Ω : IL= $6v/(2\Omega + 10\Omega)=0.5A$

RL= 100Ω : $6v/(2\Omega + 100\Omega) = 0.06A$

Nortons teorem

- Samme fremgangsmåte som for Thévenins teorem
 - Likhet: Kildene kortsluttes (spenningskilder) eller åpnes (strømkilder)
 - Forskjell: Terminalene a og b kortsluttes for å finne strømmen gjennom dem (istedenfor å beregne spenningen over dem)
- Sammenhengen mellom Norton- og Thévenin-ekvivalenter:

$$R_{th} = R_{no}$$

$$V_{th} = I_{no}R_{no}$$

$$\frac{V_{th}}{R_{th}} = I_{no}$$

Signaler

- Et signal er et annet navn på en strøm eller spenning som overfører informasjon
- . Signaler som varierer mhp tid kalles ac-signaler
- Variasjonen kan være periodisk (b), dvs at signalet gjentar seg med faste mellomrom, eller ikke-periodisk ((a) og (c))
- dc-signaler også kan variere over tid, men dette er som regel ikke tilsiktet (f.eks. batteri som lades ut)

Sinussignaler

- Mange naturlige fenomener varierer med sinus-karakteristikk
- Sinussignaler og deres egenskaper kan beskrives presist matematisk
- Vilkårlige signaler kan representeres som sinusformede signaler
- Sinussignaler er viktige i bla lyd- og bildebehandling

Egenskaper

- Et sinussignal karakteriseres ved amplitude og periode
- Amplituden A er den maksimale verdien til signalet, mens perioden T er tiden det tar før signalformen gjentar seg

$$A = 20 \text{ volt}$$

T=50 µs

Mer om amplitude

- Et balansert sinussignal er sentrert rundt 0: Maksimal positiv verdi = maksimal negativ verdi (absoluttverdi).
- Amplituden er den positive maksimumsverdien
- Gjennomsnittsverdien over en hel periode er lik 0 hvis signalet er balansert

Mer om periode og frekvens

 Perioden er tiden det tar før signalformen gjentas; frekvensen sier hvor mange ganger signalformen gjentar seg per sekund

Perioden T og frekvensen f er omvendt proporsjonale:

$$T = \frac{1}{f} \iff f = \frac{1}{T}$$

Strøm- og spenningsretning

 For et balansert sinussignal endres strømretningen og/eller polariteten til spenningen en gang per periode

 Signalet er positivt halve perioden og negativ den andre halve perioden

Øyeblikksverdi

• Øyeblikksverdien måles som verdien på et bestemt tidspunkt

06.02.2018

IN 1080

Peak-til-peak verdi

- Amplitude kalles også magnitude eller peak-verdi V_p
- Peak-til-peak verdi er definert som

$$V_{pp} = 2V_p \wedge I_{pp} = 2I_p$$

RMS-verdi

- RMS-verdi betyr Root-Mean-Square og kalles den effektive verdien til sinussignalet
- RMS-verdien til et sinussignal angir hva et tilsvarende dcsignal må være for å produsere samme effekt i en resistor

RMS-verdi (forts)

Sammenhengen mellom RMS-verdien og peakverdien er

$$V_{rms} = \frac{1}{\sqrt{2}} V_p \approx 0.707 V_p$$

$$I_{rms} = \frac{1}{\sqrt{2}}I_p \approx 0.707I_p$$

Kjenner RMS-verdien kan man finne peakverdien:

$$V_p = \sqrt{2}V_{rms} \approx 1,414V_{rms}$$

$$I_p = \sqrt{2}I_{rms} \approx 1,414I_{rms}$$

Gjennomsnittsverdi

 Gjennomsnittsverdien til et sinussignal måles over en halv periode (hvorfor?)

. Sammenhengen er gitt av

$$V_{avg} = \frac{2}{\pi} V_{\rho} \approx 0.637 V_{\rho}$$

$$I_{avg} = \frac{2}{\pi}I_{p} \approx 0.637I_{p}$$

Matematisk representasjon av sinus

 I mange sammenhenger representeres sinussignaler som en funksjon

- Matematisk kan sinus skrives som $y = A \sin(\theta)$
- Skal senere i kurset se at sinusfunksjoner kan utvides til det komplekse planet, noe som gjør mange operasjoner mye enklere

Matematisk representasjon av sinus (forts.)

- θ brukes for å representere sinuskurven som en vektor og man tenker seg at vektoren roterer
- Om endepunktet projiseres horisontalt på en rett linje, får man en sinuskurve

Matematisk representasjon av sinus (forts)

 Siden signalet gjentar seg for hver 2π=360°, kan frekvensen defineres som

$$f = \frac{1}{T} \Rightarrow \omega = \frac{2\pi}{T} \Leftrightarrow \omega = 2\pi f$$

 ω kalles for radian- eller vinkelfrekvens og er proporsjonal med f

Time (in seconds) = 0.00 s Rotation (in radians) = 0.00 rad Rotation (in cycles) = 0.00 cycle $\omega = \frac{0.00 \text{ rad}}{0.00 \text{ s}} = \frac{0.00 \text{ cycle}}{0.00 \text{ cycle}} = \frac{0.00 \text{ cyc$

Matematisk representasjon av sinus (forts)

• Hvis lengden på vektoren er V_p , kan sammenhengen mellom sinussignalet og vektorrepresentasjonen skrives som

$$v = V_p \sin(\theta)$$

 $i = I_p \sin(\theta)$

Fasedreining

• Hvis et sinussignal forskyves i tid (dvs langs den horisontale aksen), oppstår *faseforskyving* eller *fasedreining* φ

$$y = A \sin(\theta \pm \varphi)$$

Analyse av ac-kretser

- Ohms lov og Kirchhoffs strøm- og spenningslover gjelder også for ac-signaler
 - Ved høye frekvenser må man bruke Maxwells ligninger
- Man må bruke enten peak-, rms- eller gjennomsnittsverdier for både strøm og spenning i samme ligning
- For å beregne effekt må man bruke rms-verdiene:

$$P = V_{rms}I_{rms}$$

$$P = \frac{V_{rms}^2}{R}$$

$$P = I_{rms}^2 R$$

Sinussignaler med dc-offset

 Hvis sinussignalet har en dc-komponent, forskyves amplituden opp eller ned

• V_p defineres relativt til dc-offset, og ikke fra 0

Andre bølgeformer

- I digitale systemer brukes firkant- eller pulssignaler
- Et pulssignal varierer mellom to faste nivåer

 I tillegg til amplituden karakteriseres pulssignalet av pulsbredden og stigene og fallende flanker («edges»)

Andre bølgeformer (forts)

- Et ideelt pulssignal har vertikale flanker; i praksis er dette umulig fordi strøm/spenning ikke kan endre verdi momentant
- Fysiske pulssignaler karakteriseres ved tre parametre til:
 - «Rise time»: Tiden det tar fra signalet går fra 10% til 90% av amplituden
 - «Fall time»: Tiden det tar fra signalet går fra 90% til 10% av amplituden
 - Pulsbredden måles mellom de punktene på hhv stigende og fallende flanke som har nådd 50% av amplituden

Andre bølgeformer (forts)

 Periodiske signaler er ikke alltid symmetriske rundt et referansepunkt (gjennomsnittsverdi ≠ 0)

- Frekvensen defineres som for sinus
- «Duty cycle» er forholdet mellom pulsbredde og periode i %

$$DutyCycle = \left(\frac{t_w}{T}\right)100\%$$

Kondensatorer

- Kondensatorer er viktige komponenter i elektronikk
- Kondensatorer kan lagre energi (ladninger), eller glatte ut signaler som endrer seg hurtig
- Brukes i elektroniske filtre for å fjerne uønskede frekvenser fra ac-signaler
- Brukes i kraft-elektronikk, blant annet ac-til-dc og dc-ac omformere, spenningsregulatorer, batterier etc
- Kondensatorer lages i ulike størrelser og typer avhengig av bruksområde

Det matematisk-naturvitenskapelige fakultet

Kondensatorer

- En resistors motstand varierer ikke med frekvensen til strømmen
- En kondensators motstand variererer med frekvensen
- En kondensator kan lagre elektrisk ladning
- En kondensator består av to plater av ledende materiale med isolasjon i mellom

06.02.2018 IN 1080

Kondensatorer (forts)

En kondensator kan sammenlignes med et vannrør med en elastisk membran

- Hvis vannet beveger seg vil membranen bevege seg også, slik det ser ut som det renner vann igjennom røret (vann = elektrisk strøm)
- Hvis vannet endrer retning, vil membranen gå tilbake til sin opprinnelige posisjon og presse vannet tilbake
- Det vil være trykkforskjell på hver side av membranen når vannet beveger seg (trykkforskjell = spenning)
- Uten bevegelse i vannet vil membranen ikke bevege seg (dc-spenning gir ingen strøm igjennom kondensatoren)

UiO: Institutt for informatikk

Det matematisk-naturvitenskapelige fakultet

Kondensatorer (forts)

- Hvis platene kobles til en spenning V_s , oppstår et elektrisk felt mellom platene
- Feltet gjør at elektroner beveger seg fra den ene platen over til den andre
- Når spenningen mellom platene har nådd V
 beveger det seg ikke lenger elektroner
- Om kilden fjernes vil en ideell kondensator beholde spenningen til evig tid
- I praksis «lekker» platene og dette modelleres med en resistor i parallell

(a) Neutral (uncharged) capacitor (same charge on both plates)

(c) After the capacitor charges to V_S, no electrons flow.

(b) When connected to a voltage source, electrons flow from plate A to plate B as the capacitor charges.

(d) Ideally, the capacitor retains charge when disconnected from the voltage source.

06.02.2018 IN 1080 35

Kondensatorer (forts)

 Hvis spenningskilden kilden fjernes vil en ideell kondensator beholde spenningen til evig tid

I praksis «lekker» platene ladninger og dette kan modelleres med

en resistor i parallell

 Hvis frekvensene blir høye (~10⁹ Hertz) blir oppførselen mer komplisert (mer om dette senere i kurset)

Kondensatorer (forts)

Mengden ladning en kondenator kan holde på heter kapasitans
 C, måles i Farad og er definert ved

$$C = \frac{Q}{V} \Leftrightarrow Q = CV \Leftrightarrow V = \frac{Q}{C}$$

- 1 Farad er kapasitansen som tilsvarer lagring av 1 Coulomb med 1 volt potensialforskjell mellom platene
- Sammenhengen mellom plateareal A, plateavstand d og kapasitans er gitt av

 $C = \varepsilon \frac{A}{d}$

 ε kalles for permittivitet og er en egenskap ved materialet mellom platene

Oppladning og utladning av kondensator

- Ladninger kan bare bevege seg når spenningen over kondensatoren er forskjellig fra spenningskilden
- Når kretsen har nådd stabil dc-spenning, vil kondensatoren blokkere for strøm

Tidskonstant

- Viktige egenskaper ved en kondensator er
 - Hvor raskt den lades opp når en spenningskilde V_s kobles til
 - Hvor raskt den lades ut til 0 når en spenningskilde V_s kobles fra
- Tidskonstanten τ sier hvor lang tid det tar å lade opp eller ut kondensatoren når den er koblet i serie med en ohmsk motstand.
- Måles i sekunder og er definert ved $\tau = RC$

Tidskonstant (forts)

- . Når $\tau = 1s$ betyr det at
 - En fullt utladet kondensator har nådd ca 63% av den maksimale spenningen etter at den er koblet til en spenningkilde
 - En fullt oppladet kondensator har falt til ca 37% av den opprinnelige spenningen etter at kilden er koblet fra
- Opp/utladningskurvene er eksponensielle

(a) Charging curve with percentages of the final voltage

(b) Discharging curve with percentages of the initial voltage

Tidskonstant (forts)

 De generelle formlene for oppladning og utladning av en kondensator som lades opp/ut via en resistor er gitt av

$$v = V_F + (V_i - V_F)e^{-\frac{t}{\tau}}$$
$$i = I_F + (I_i - I_F)e^{-\frac{t}{\tau}}$$

der V_F og I_F er slutt-verdiene, og V_i og I_i er startverdiene

. Hvis man lader opp fra $V_i = 0$, blir formelen

$$v = V_F (1 - e^{-\frac{t}{RC}})$$

. Hvis man lader *ut* til $V_F = 0$ blir formelen

$$v = V_i e^{-\frac{t}{RC}}$$

Kapasitiv reaktans

- En kondensator har en motstand mot elektrisk strøm som er avhengig av frekvensen til signalet
- Denne motstanden kalles kapasitiv reaktans X_c og er definert ved

$$X_c = \frac{1}{2\pi fC}$$

- Jo større frekvens, desto mindre kapasitiv reaktans
- . Jo større kapasitans, desto mindre kapasitiv reaktans
- Også reaktans kan representeres i det komplekse planet, og da blir det lettere å finne den samlede motstanden (resistivitet og reaktans) i en krets

Nøtt til neste gang

 Hva gjør denne kretsen? (dvs hva er sammenhengen mellom V_{in} og V_o når bryterene åpnes og lukkes?) Anta ideelle kondensatorer

UiO: Institutt for informatikk

Det matematisk-naturvitenskapelige fakultet

Oppsummeringsspørsmål

• Spørsmål fra forelesningene 3 og 4