REGRESIÓN LINEAL SIMPLE Y MÚLTIPLE

DATAFORGE

TEAM MEMBERS (DATAFORGE)

JESÚS EDUARDO VALLE
VILLEGAS

Finanzas A01770616

DIEGO ANTONIO OROPEZA
LINARTE

BGB A01733018

MANUEL EDUARDO
COVARRUBIAS RODRÍGUEZ

ITC A01737781

ITHANDEHUI JOSELYN ESPINOZA

> ITC A01734547

MAURICIO GRAU GUTIERREZ
RUBIO

LEM A01734914

Objetivo

Aplicar técnicas de regresión lineal simple y múltiple al dataset del Datathon / projectos_forvia.csv, realizando un preprocesamiento adecuado de las variables categóricas y cuantitativas, para identificar relaciones significativas entre variables y comparar los coeficientes obtenidos, con el fin de generar hallazgos que apoyen la interpretación de los datos.

Metodología

Se utilizó un dataset del Datathon para aplicar regresión lineal, con el objetivo de identificar relaciones entre variables y comparar el desempeño de modelos simples y múltiples.

Preprocesamiento

Conversión de variables categóricas a numéricas (frecuencias).

Regresión Simple

Generación de un heatmap para visualizar relaciones lineales y selección de los 5 pares de variables con mayor correlación.

Construcción de modelos entre las variables más correlacionadas para analizar la fuerza y dirección de la relación.

Regresión Múltiple

Desarrollo de modelos con varias variables independientes para cada variable cuantitativa, comparando sus coeficientes con los de la regresión simple.

Hallazgos

Identificación de las variables con mayor impacto, análisis de diferencias entre modelos simples y múltiples, y validación de patrones observados en los datos.

Preprocesamiento

- Se codificaron las variables categóricas en valores numéricos según su frecuencia.
- Se detectaron y ajustaron los valores atípicos.
- Se validó que el dataframe final contuviera únicamente variables numéricas.

Transformacion de variables

Mapeo con un ciclo for

Index	TaxonName_num	TaxonCode_num	SamplingOperatio ns_code_num	CodeSite_SamplingO perations_num	Date_SamplingOp eration_num
0	1	1	1	1	1
1	1	1	2	2	2
2	2	2	2	3	3
3	2	2	3	4	4
4	2	2	4	5	5
5	2	2	5	6	6
6	2	2	6	7	7
7	2	2	7	8	8
8	2	2	8	9	9
9	2	2	9	10	10

Fue necesario transformar las variables categóricas en variables numéricas. Para ello, se utilizó la jerarquía de frecuencias, asignando valores más bajos a las categorías con mayor frecuencia de aparición.

ANÁLISIS DE CORRELACIONES USANDO HEATMAP

• TaxonName_num ↔ TaxonCode_num Correlación: 1.0000 (|1.0000|)

Interpretación: Muy Fuerte Relación POSITIVA:

• Abundance_nbcell ↔ Abundance_pm Correlación: 0.9890 (|0.9890|)

Interpretación: Muy Fuerte Relación POSITIVA.

Interpretación: Débil Relación POSITIVA:

HEATMAP COMPLETO - Matriz de Correlación de Todas las Variables

ANÁLISIS DE INSIGHTS

Cada diatomea
está correctamente
identificada y
codificada

Hay guerra ecológica entre especies por los recursos

Las diatomeas viven en ambientes muy predecibles, estables y consistente a lo largo del tiempo

La abundancia total es independiente de qué especies hay

Distribución de fuerza de correlaciones en el Top 5:

• TaxonName_num ↔ TaxonCode_num Correlación: 1.0000 (|1.0000|)

Interpretación: Muy Fuerte Relación POSITIVA: Cuando TaxonName_num aumenta, TaxonCode_num tiende a aumentar 2.

• Abundance_nbcell ↔ Abundance_pm Correlación: 0.9890 (|0.9890|)

Interpretación: Muy Fuerte Relación POSITIVA: Cuando Abundance_nbcell aumenta, Abundance_pm tiende a aumentar 3.

Interpretación: Débil Relación POSITIVA: Cuando SamplingOperations_code_num aumenta, CodeSite_SamplingOperations_num tiende a aumentar

TaxonName

- Se codificaron las variables categóricas en valores numéricos según su frecuencia.
- Se detectaron y ajustaron los valores atípicos.
- Se validó que el dataframe final contuviera únicamente variables numéricas.

Abundance_nbcell	-0.100
Abundance_pm	-0.101
SamplingOperations_code_num	-0.018

Coef de correlación antes	-0.101
Coef de correlación después	0.1016
R ²	0.0103

TaxonCode

- Se codificaron las variables categóricas en valores numéricos según su frecuencia.
- Se detectaron y ajustaron los valores atípicos.
- Se validó que el dataframe final contuviera únicamente variables numéricas.

Abundance_nbcell	-0.100
Abundance_pm	-0.101
SamplingOperations_code_num	-0.018

Coef de correlación antes	-0.101
Coef de correlación después	0.1016
R ²	0.0103

SamplingOperations_code

- Se codificaron las variables categóricas en valores numéricos según su frecuencia.
- Se detectaron y ajustaron los valores atípicos.
- Se validó que el dataframe final contuviera únicamente variables numéricas.

CodeSite_SamplingOperations	0.384
Date_SamplingOperation	0.121

Coef de correlación antes	0.3836
Coef de correlación después	0.3903
R ²	0.1524

CodeSite_SamplingOperations

- Se codificaron las variables categóricas en valores numéricos según su frecuencia.
- Se detectaron y ajustaron los valores atípicos.
- Se validó que el dataframe final contuviera únicamente variables numéricas.

SamplingOperations_code	0.384
Date_SamplingOperation	0.127

Coef de correlación antes	0.3836
Coef de correlación después	0.3920
R²	0.1537

Date_SamplingOperation

- Se codificaron las variables categóricas en valores numéricos según su frecuencia.
- Se detectaron y ajustaron los valores atípicos.
- Se validó que el dataframe final contuviera únicamente variables numéricas.

SamplingOperations_code	0.121
CodeSite_SamplingOperations	0.127

Coef de correlación antes	0.127
Coef de correlación después	0.149
R ²	0.0222

Abundance_nbcell

- Se codificaron las variables categóricas en valores numéricos según su frecuencia.
- Se detectaron y ajustaron los valores atípicos.
- Se validó que el dataframe final contuviera únicamente variables numéricas.

TaxonName	-0.100
TaxonCode	-0.100

Coef de correlación antes	-0.100
Coef de correlación después	0.104
R ²	0.0109

TotalAbundance_SamplingOperation

- Se codificaron las variables categóricas en valores numéricos según su frecuencia.
- Se detectaron y ajustaron los valores atípicos.
- Se validó que el dataframe final contuviera únicamente variables numéricas.

Date_SamplingOperation_num	0.008
CodeSite_SamplingOperations	0.015
SamplingOperations_code_num	-0.018

Coef de correlación antes	-0.18	
Coef de correlación después	0.029	
R ²	0.0008	

Abundance_pm

- Se codificaron las variables categóricas en valores numéricos según su frecuencia.
- Se detectaron y ajustaron los valores atípicos.
- Se validó que el dataframe final contuviera únicamente variables numéricas.

TaxonName	-0.101
TaxonCode	-0.101
SamplingOperations_code_num	0.40

Coef de correlación antes	-0.101	
Coef de correlación después	0.108	
R ²	0.0116	

Transformacion de variables

Mapeo con un ciclo for

Index	Project Type	Geographical scope	Project manager	State	Project size	Project Org	BG	Project Health	On-Hold
0	1	63	2	1	3	1	1	1	1
1	1	62	15	1	2	1	2	2	2
2	1	51	20	1	1	1	2	2	1
3	1	51	15	1	3	1	2	1	2
4	1	61	2	1	1	1	2	1	1
241	6	43	119	1	2	9	3	1	1
242	8	126	27	1	1	4	3	1	1
243	8	42	27	1	1	4	3	1	1
244	1	42	120	1	3	4	3	1	1
245	12	127	121	4	4	35	11	3	3

Distribución de fuerza de correlaciones en el Top 5:

Hallazgos

- Project manager ↔ Project organization →
 0.502 (moderada positiva)
- State ↔ Project Health → 0.494 (moderada positiva)
- Project Type ↔ BG → 0.387 (débil positiva)
- Project Type ↔ Project organization → 0.376 (débil positiva)
- Project organization ↔ BG → 0.370 (débil positiva)

ANÁLISIS DE CORRELACIONES USANDO HEATMAP

Interpretación de la Matriz de Correlación

- Relaciones moderadas:
- State ↔ Project Health (0.494): Proyectos en estados avanzados tienden a tener mejor salud.
- Relaciones débiles:
- Project Type ↔ BG (0.387), Project Type ↔ Project organization (0.376), Project organization ↔ BG (0.370): Leve asociación entre tipo de proyecto, organización y unidad de negocio.
- Correlaciones muy bajas:
- Percent complete tiene muy poca relación con otras variables, lo que sugiere que el avance de los proyectos no está determinado por estas variables.

0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

ANÁLISIS DE INSIGHTS

Patrones de Registro Estandarización de Procesos

Campos No Independientes Correlación #1:

Project Manager ↔

Project

Organization

(0.505)

Project Type ↔ BG

Project manager	0.3041
Project organization	0.3757
BG	0.3869

- Se observó una relación positiva débil entre BG y Project Type.
- Los datos reales presentan alta dispersión, sobre todo en valores bajos de BG.
- El modelo múltiple logra ajustar una tendencia ascendente, aunque limitada por la variabilidad.

Coef de correlación antes	0.3869
Coef de correlación después	0.4645
R ²	0.2157

Project manager ↔ Project organization

Project Type	0.3041
Project organization	0.5022
BG	0.2778

- Se observó una relación positiva moderada entre Project organization y Project manager.
- Los valores reales muestran dispersión alta, aunque la tendencia ascendente es clara.

•

 El modelo múltiple refuerza la relación, pero la variabilidad limita la precisión.

Coef de correlación antes	0.5022
Coef de correlación después	0.5216
R ²	0.2720

Geographical scope ↔ Project manager

Project manager	0.0999
On-hold	0.0882

- Se identificó una relación positiva débil entre Project manager y Geographical scope.
- Los valores reales presentan alta dispersión, sin un patrón lineal claro.
- El modelo múltiple ajusta una tendencia ascendente ligera, pero con bajo poder predictivo.

Coef de correlación antes	0.0999
Coef de correlación después	0.1410
R ²	0.0198

State ↔ Project Health

On-hold	0.3251
Project Health	0.4938
BG	0.3029

- Se identificó una relación positiva moderada entre State y Project Health.
- La mayoría de proyectos se concentran en estados bajos, con distintos niveles de salud.
- El modelo múltiple confirma la tendencia ascendente, aunque la dispersión reduce su precisión.

Coef de correlación antes	0.4938
Coef de correlación después	0.5688
R^2	0.3256

Project Organization↔ Project Manager

Project type	0.3757
Project management	0.5022
BG	0.3697

- Se observó una relación positiva moderada entre Project Organization y Project Manager.
- Los datos reales presentan alta dispersión, especialmente en proyectos con valores bajos de Project Organization.
- El modelo múltiple muestra una tendencia ascendente moderada, pero con bajo poder explicativo

Coef de correlación antes	0.5022
Coef de correlación después	0.5801
R ²	0.3365

BG ↔ **Project Type**

Project type	0.3869
Project organization	0.3697
State	0.3029

- Se observó una relación positiva débil entre Project Type y BG.
- Los datos reales presentan alta dispersión, sobre todo en valores bajos de Project Type.
- El modelo múltiple muestra una tendencia ascendente ligera, pero con bajo poder explicativo.

Coef de correlación antes	0.3869
Coef de correlación después	0.4994
R ²	0.2494

Project Health ↔ State

0.3344

On-hold

•	Se	encontr	Ó	una	relació	'n	positiva
	mo	derada	е	entre	State	У	Project
	Hed	alth.					

- La mayoría de proyectos se concentran en estados bajos, con diferentes niveles de salud.
- El modelo múltiple confirma la tendencia ascendente, aunque la dispersión limita la precisión.

Coef de correlación antes	0.4938
Coef de correlación después	0.5272
R ²	0.2779

On-hold ↔ Project Health

State	0.3251
Project Health	0.3344
BG	0.2268

- Se observó una relación positiva débil entre On-hold y Project Health.
- La mayoría de proyectos se concentran en niveles bajos de Onhold.
- Algunos proyectos con buena salud aparecen en pausa, pero el patrón general es poco significativo.

Coef de correlación antes	0.3344
Coef de correlación después	0.4091
R ²	0.1673

Percent complete ↔ State

State	-0.2474
Project organization	-0.0899
Project Health	-0.1784

- Se identificó una relación positiva muy débil entre State y Percent complete.
- La mayoría de proyectos están en State = 1, con avances muy variados (0% a 100%).
- En estados más altos hay pocos proyectos y con avances bajos.
- No existe un patrón lineal claro → baja utilidad predictiva.

Coef de correlación antes	-0.2474
Coef de correlación después	0.2597
R ²	0.0674

iMUCHAS GRACIAS POR SU ATENCION!

