HMMs: Jason Eisner's Ice Cream HMM

Jean Mark Gawron

Linguistics 522 San Diego State University

2013 Jan

Outline

Introduction

The Ice Cream HMM

Observation Probs

Transition Probs

Forward Prob $(\alpha(q_i))$

The Trellis

Forward Prob Algorithm

function FORWARD(observations of len T, state-graph of len N) **returns** forward-prob

create a probability matrix forward[N+2,T]

for each state *s* **from** 1 **to** *N* **do** ; initialization step $forward[s,1] \leftarrow a_{0,s} * b_s(o_1)$

for each time step t from 2 to T do ; recursion step

for each state s from 1 to N do

$$forward[s,t] \leftarrow \sum_{s'=1}^{N} forward[s',t-1] * a_{s',s} * b_s(o_t)$$

 $forward[q_F,T] \leftarrow \sum_{s=1}^{N} forward[s,T] * a_{s,q_F}$; termination step return $forward[q_F,T]$

Viterbi Computation

Viterbi Algorithm

function VITERBI(*observations* of len *T*, *state-graph* of len *N*) **returns** *best-path*

```
create a path probability matrix viterbi(N+2,T)
for each state s from 1 to N do
                                                               : initialization step
      viterbi[s,1] \leftarrow a_0 + b_s(o_1)
      backpointer[s,1] \leftarrow 0
for each time step t from 2 to T do
                                                                ; recursion step
   for each state s from 1 to N do
      viterbi[s,t] \leftarrow \max_{s}^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
      backpointer[s,t] \leftarrow \underset{s,t}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s}
viterbi[q_F,T] \leftarrow \max_{s=1}^{N} viterbi[s,T] * a_{s,q_F} ; termination step
backpointer[q_F,T] \leftarrow \underset{\sim}{\operatorname{argmax}} viterbi[s,T] * a_{s,q_F}; termination step
return the backtrace path by following backpointers to states back in
```

time from $backpointer[q_F, T]$

Viterbi with Backtrace

An example

Backward Prob $(\beta(q_i))$

Forward prob: one component

Combining α and β Probs

HMMs extend Markov Models

Markov Model: Sequential probability model depending on a limited history Chain

Chain States correspond directly to observations. State transitions depend only on state history

HMM States encode "hidden information" on which observations and state transitions depend. Most important use: Recover most likely "hidden" state sequence to produce a sequence of observations.

Most important HMM algorithms

Algorithm	Returns
Forward	Probability of an observation sequence
Viterbi	Most probable sequence of hidden states
	given an observation sequence
Forward-Backward	Learn an HMM model from a training set
	of observation sequences