Hausdorff dimension, Mean quadratic variation of infinite self-similar measures*

Zu-Guo Yu¹, Fu-Yao Ren² and Jin-Rong Liang²

¹Institute of Theoretical Physics, Academia Sinica,
P.O. Box 2735, Beijing 100080, P.R.C. E-mail:yuzg@itp.ac.cn.

²Institute of Mathematics, Fudan University, Shanghai 200433, P.R.C.

(Received on 10 October, 1996; Accepted on 15 August, 1997)

Abstract: Under weaker condition than that of Riedi & Mandelbrot, the Hausdorff (and Hausdorff-Besicovitch) dimension of infinite self-similar set $K \subset \mathbf{R}^d$ which is the invariant compact set of infinite contractive similarities $\{S_j(x) = \rho_j R_j x + b_j\}_{j \in \mathbf{N}}$ (0 < $\rho_j < 1, b_j \in \mathbf{R}^d, R_j$ orthogonal) satisfying open set condition is obtained. It is proved (under some additional hypotheses) that the β -mean quadratic variation of infinite self-similar measure is of asymptotic property (as $t \longrightarrow 0$).

Key Words: Hausdorff (and Hausdorff-Besicovitch) dimension, infinite self-similar set/measure, mean quadratic variation.

AMS Classification: 28A80, 00A73.

^{*} Project partially supported by the Tianyuan Foundation of China and Postdoctoral station Foundation of the State Education Committee.

Introduction 1

In this paper, we denote \mathbf{R}^d the d-dimensional Euclidean space, N the set of natural numbers and **Z** the set of integer numbers.

For given finite contractive similarities $\{S_j(x) = \rho_j R_j x + b_j\}_{j=1}^m$ of \mathbf{R}^d , where $0 < \rho_j < 0$ $1, b_j \in \mathbf{R}^d, R_j$ orthogonal, J.E.Hutchinson [1] proved that there exists unique compact set K_1 satisfying

$$K_1 = \bigcup_{j=1}^m S_j(K_1).$$

 K_1 is called self-similar set. If there exists an open set O_1 satisfying $S_i(O_1) \subset O_1$ and $S_i(O_1) \cap S_j(O_1) = \emptyset$ $(i \neq j)$, we call that $\{S_j\}_{j=1}^m$ satisfy open set condition. We call that they satisfy strong open set condition if the sets $S_i(\overline{O})$ are disjoint. Then

If $\{S_j\}_{j=1}^m$ satisfy open set condition, then the Hausdorff Theorem A (Hutchinson)

dimension s' of K_1 is the unique solution of the equation $\sum_{j=1}^{m} \rho_j^{s'} = 1$. In [1], he also proved that for given probability vector $P = (P_1, P_2, \dots, P_m)$ satisfying $\sum_{j=1}^{m} P_j = 1$, there exists unique probability measure μ_1 on \mathbf{R}^d satisfying

$$\mu_1(\cdot) = \sum_{j=1}^m P_j \mu_1(S_j(\cdot))$$

and the support set of μ_1 is K_1 . μ_1 is called self-similar measure and $\{P_j\}_{j=1}^m$ is called weights of μ_1 .

Ka-Sing Lau and Jian-rong Wang [2], and R.S.Strichartz [3-7] have done much study on Fourier analysis of self-similar measure. R.S. Strichartz in [3] (or [7]) discussed many fractal measures. If μ is self-similar measure on \mathbb{R}^d , Strichartz [4-6] discussed the asymptotic property (as $r \longrightarrow \infty$) of function

$$H(r) = \frac{1}{r^{d-\beta'}} \int_{|x| \le r} |F(x)|^2 dx,$$

where $F(x) = (d\mu)^{\wedge}$ and β' is defined by $\sum_{j=1}^{m} \rho_{j}^{-\beta'} P_{j}^{2} = 1$. Let μ be a Borel measure on \mathbf{R}^{d} , f be a Borel measurable function, we use μ_{f} to denote the measure defined by $\mu_f(E) = \int_E f d\mu$ for any Borel set E in \mathbf{R}^d .

It is proved in [5] that if $\{S_j\}_{j=1}^m$ satisfies the strong open set condition, then for the self-similar measure μ defined by natural weights (i.e. $P_j = \rho_i^{\beta'}$, $\beta' = s'$)

$$\frac{1}{r^{d-\beta'}} \int_{|x| \le r} |(\mu_f)^{\wedge}|^2 dx = q(r) \int |f|^2 d\mu + E(r) \quad \text{for} \quad \forall f \in L^2(d\mu), \tag{*}$$

where $E(r) \longrightarrow 0$ as $r \longrightarrow +\infty$, and q(r) is a multiplicative periodic function or a positive constant.

Let μ be a σ -finite measure on \mathbf{R}^d , for $0 \le \alpha \le d$, let

$$V_{\alpha}(t;\mu) = \frac{1}{t^{d+\alpha}} \int_{\mathbf{R}^d} |\mu(B_t(x))|^2 dx,$$

where $B_t(x)$ is the ball of radius t, centered at x. We will call $\limsup_{t\longrightarrow 0} V_{\alpha}(t;\mu)$ the upper α -mean quadratic variation (m.q.v.) of μ , and simply call it α -m.q.v. if the limit exists.

If μ is a self-similar measure on \mathbf{R}^d , Ka-sing Lau and Jian-rong Wang [2] proved the following two Theorems

Theorem B([2]) Under some additional conditions, we have

$$\lim_{t \to 0} [V_{\beta'}(t; \mu) - p(t)] = 0.$$

where p(t) is a multiplicative periodic function or a positive constant and β' is defined as above.

Theorem C ([2]) If the self-similar measure μ defined by natural weights (i.e. $P_j = \rho_j^{\beta'}, \beta' = s'$), under some additional hypotheses

$$\lim_{t \to 0} \left[\frac{1}{t^{d+\beta'}} \int_{\mathbf{R}^d} |\mu_f(B_t(x))|^2 dx - p(t) \int |f|^2 d\mu \right] = 0 \quad \text{for} \quad \forall f \in L^2(d\mu),$$

where p(t) is the function in Theorem B.

R.H.Riedi and B.B.Mandelbrot [8] introduced infinite self-similar sets and infinite self-similar measures on \mathbf{R}^d (definitions see later of this paper), discussed multifractal formalism for infinite self-similar measures and the Hausdorff dimension of infinite self-similar sets (under some additional conditions). In this paper, under weaker condition than that of Riedi & Mandelbrot, we extend Theorem A to the infinite self-similar case. If μ is infinite self-similar measure and the equation $\sum_{j=1}^{\infty} P_j^2 \rho_j^{-\beta} = 1$ has finite solution β , then under some additional hypotheses, R.S.Strichartz [5] obtained the asymptotic property of function H(r) and conclusion (*). In this paper, we also extend Theorem B,C to the infinite self-similar case.

2 Hausdorff (and Hausdorff-Besicovitch) dimension of infinite self-similar set.

For given infinite contractive similarities $\{S_j(x) = \rho_j R_j x + b_j\}_{j \in \mathbb{N}}$ of \mathbb{R}^d , where $0 < \rho_j < 1, b_j \in \mathbb{R}^d, R_j$ orthogonal, from [8], there exists unique compact set K satisfying

$$K = \overline{\bigcup_{j=1}^{\infty} S_j(K)}.$$

K is called *infinite self-similar set*. K can be constructed as following. Let $E_0 \subset \mathbf{R}^d$ be a compact set, denote $E_{j_1 \cdots j_k} = S_{j_1} \circ \cdots \circ S_{j_k}(E_0)$, then

$$K = \bigcap_{k=0}^{\infty} \overline{\bigcup_{j_1, \dots, j_k \in \mathbf{N}} E_{j_1 \dots j_k}}.$$

For given probability sequence (P_1, P_2, \cdots) with $\sum_{j=1}^{\infty} P_j = 1$, from [8], there exists unique probability measure μ on \mathbf{R}^d satisfying

$$\mu(\cdot) = \sum_{j=1}^{\infty} P_j \mu(S_j(\cdot)).$$

We call μ infinite self-similar measure and $\{P_j\}_{j=1}^{\infty}$ weights of μ . Its support set is K.

Definition 1 We call $\{S_j(x)\}_{j\in\mathbb{N}}$ satisfying open set condition if there exists a bounded open set $O \subset \mathbb{R}^d$ such that $S_j(O) \subset O$ and $S_i(O) \cap S_j(O) = \emptyset$ $(i \neq j)$.

For any subset $A \in \mathbf{R}^d$ and $0 \le s < \infty$, let $\mathcal{M}^s_{\delta}(A) = \inf \sum_{i=1}^{\infty} |A_i|^s$, where $A = \bigcup_{i=1}^{\infty} A_i$ is a countable decomposition of A into subsets of diameter $|A_i| < \delta$ (> 0). We set $|A_i|^0 = 0$ if A_i is empty and $|A_i|^0 = 1$ otherwise. The the s-dimensional measure of A is defined to be

$$\mathcal{M}^s(A) = \sup_{\delta > 0} \mathcal{M}^s_{\delta}(A).$$

The Hausdorff-Besicovitch dimension^[9] of A is

$$\dim_M(A) = \sup\{0 \le s < \infty : \quad \mathcal{M}^s(A) > 0\}.$$

Remark: It is easy to see that in the definition of $\mathcal{M}_{\delta}^{s}(A)$, we can replace $|A_{i}|$ by $|\overline{A_{i}}|$. From the definition of fractal dimension^[10] dim_H(A), we can see that

$$\dim_H(A) \le \dim_M(A). \tag{1}$$

Theorem 1 If the equation $\sum_{j=1}^{\infty} \rho_j^s = 1$ has finite solution s, and $\{S_j\}_{j=1}^{\infty}$ satisfy open set condition, K is the infinite self-similar set, then the Hausdorff-Besicovitch dimension $\dim_M(K)$ and Hausdorff dimension $\dim_H(K)$ of K is s.

Remark. Our condition is weaker than Riedi & Mandelbrot's [8] condition: there exist numbers r, R such that $-\infty < \log r \le (1/j) \log \rho_j \le \log R < 0 \ \forall j$.

Proof of Theorem 1 To get the upper bound. Let $K = \bigcup_{i=1}^{\infty} A_i$ be any decomposition of K into subsets of diameter $< \delta$, then a new decomposition is provided by $K = \bigcup_{i=1}^{\infty} \overline{\bigcup_{j=1}^{\infty} A_{ij}}$, where $A_{ij} = \varphi_j(A_i)$. Because

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |A_{ij}|^s \leq \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |\rho_j|^s |A_i|^s$$
$$\leq (\sum_{j=1}^{\infty} \rho_j^s) \sum_{i=1}^{\infty} |A_i|^s,$$

it follows that whenever $\sum_{j=1}^{\infty} \rho_j^s < 1$ we must have $\mathcal{M}_{\delta}^s(K) = 0$, then $\mathcal{M}^s(K) = 0$. As $\dim_M(K) = \inf\{s: \mathcal{M}^s(K) = 0\}$, hence $\dim_M(K) \leq s$ where $\sum_{j=1}^{\infty} \rho_j^s = 1$. From (1), we have $\dim_H(K) \leq s$.

To get the lower bound. We let $K^{(m)}$ be the self-similar set generated by $\{S_j\}_{j=1}^m$, then from Theorem 8 of ref.[11], we have

$$\dim_{M}(K^{(m)}) \ge \min\{d, s^{(m)}\},\tag{2}$$

where $s^{(m)}$ is the positive solution of $\sum_{j=1}^{m} \rho_j^{s^{(m)}} = 1$. Using Theorem 4.13 of ref.[10], similar to the proof of Theorem 8 of ref.[11], we can obtain

$$\dim_{H}(K^{(m)}) \ge \min\{d, s^{(m)}\}. \tag{3}$$

Then from Lemma 8 of ref.[8], we have $\lim_{m \to \infty} s^{(m)} = s$, where $\sum_{j=1}^{\infty} \rho_j^s = 1$. Since for any $m, K^{(m)} \subset K$, we have $\dim_M(K) \ge \dim_M(K^{(m)})$ and $\dim_H(K) \ge \dim_H(K^{(m)})$. From open set condition, we have s < d, then from (2) and (3), we have

$$\dim_M(K) \ge s^{(m)} \tag{4}$$

and

$$\dim_H(K) \ge s^{(m)}. (5)$$

Take limit from (4) and (5), we have $\dim_M(K) \geq s$ and $\dim_H(K) \geq s$. #

The method used in proof of Theorem 1 can be used to estimate the Hausdorff (and Hausdorff-Besicovitch) dimension of the limit set of infinite non-similar contractive maps.

Corollary 1 Let $\{\varphi_j\}_{j=1}^{\infty}$ be infinite contractive maps with

$$|\varphi_j(x) - \varphi_j(y)| \le c_j|x - y|, \quad x, y \in \mathbf{R}^d, \quad j = 1, 2, \dots,$$

and satisfying open set condition, and denote E their contractive-invariant set. If the equation $\sum_{j=1}^{\infty} c_j^u = 1$ has finite solution u, then $\dim_H(E) \leq \dim_M(E) \leq u$.

Corollary 2 Let $\{\varphi_i\}_{i=1}^{\infty}$ be infinite contractive maps with

$$|\varphi_j(x) - \varphi_j(y)| \ge b_j |x - y|, \quad x, y \in \mathbf{R}^d, \quad j = 1, 2, \dots,$$

and satisfying open set condition, and denote E their contractive-invariant set. If the equation $\sum_{i=1}^{\infty} b_i^l = 1$ has finite solution l, then $\dim_M(E) \ge \dim_H(E) \ge \min\{d, l\}$.

Proof. Since $\{\varphi_j\}$ are non-similar maps, we can not obtain $l^{(m)} \leq d$ from open set condition, where $l^{(m)}$ satisfies $\sum_{j=1}^m b_j^{l^{(m)}} = 1$. then similar to proof of Theorem 1, this conclusion holds. #

3 Mean quadratic variations of infinite self-similar measures.

We define

$$H(r) = \frac{1}{r^{d-\beta}} \int_{|x| < r} |F(x)|^2 dx,$$

where F(x) is the Fourier transform of μ .

If μ is a Borel measure on \mathbf{R}^d , for every μ -measurable function f, we use μ_f to denote the measure $\mu_f(E) = \int_E f d\mu$ for any Borel subset E.

Definition 2 . If in addition to the definition of open set condition, the sets $S_j(\overline{O})$ are mutually disjoint and O intersects K, we call $\{S_j\}_{j\in\mathbb{N}}$ satisfy strong open set condition.

We assume $\{S_j\}_{j=1}^{\infty}$ satisfy strong open set condition. Let d_{jk} denote the distance between $S_j(O)$ and $S_k(O)$ which is positive for $j \neq k$ by strong open set condition. We assume

$$\sum_{j \neq k} P_j P_k d_{jk}^{-\beta} < \infty. \tag{6}$$

Denote $q(\lambda) = \sum_{\rho_i \leq \lambda} P_j^2 \rho_j^{-\beta}$, we assume

$$q(\varepsilon\lambda) \le \delta q(\lambda) \tag{7}$$

for some $0 < \varepsilon < 1$ and $0 < \delta < 1$.

Under the conditions (6) and (7), R.S.Strichartz [5] (P357-P358) obtained the asymptotic property (as $r \longrightarrow +\infty$) of the function H(r) and conclusion (*) for infinite self-similar measures.

We use $J = (j_1, j_2, \dots, j_k)$ to denote the multi-index, |J| = k its length, and Λ the set of all such multi-indice, where $j_i \in \mathbf{N}$, $i = 1, \dots, k$ and $k \in \mathbf{N}$. We set

$$P_J = P_{j_1} P_{j_2} \cdots P_{j_k}, \qquad \rho_J = \rho_{j_1} \cdots \rho_{j_k}, \qquad E_J = E_{j_1 j_2 \cdots j_k}$$

For any 0 < t < 1, we denote

$$\Lambda(t) = \{ J \in \Lambda : \quad \rho_J = \sup \rho_{J'}, \quad \rho_{J'} < t \},$$

and for fixed parameter ε (given in condition (7)), we denote

$$\Lambda_1(t) = \{ J \in \Lambda(t) : \rho_J \ge \varepsilon t \}.$$

Then we have

Theorem 2 Let μ be infinite self-similar measure, we assume that the condition (7) holds, then $V_{\beta}(t;\mu)$ is bounded below by a positive constant on $0 < t \le 1$.

Proof. Since $\sum_{j=1}^{\infty} P_j^2 \rho_j^{-\beta} = 1$, then $\sum_{J \in \Lambda(t)} P_J^2 \rho_J^{-\beta} = 1$. When $J \in \Lambda_1(t)$, we have $\varepsilon t \leq \rho_J < t$. Hence

$$t^{-\beta} < \rho_J^{-\beta} \le (\varepsilon t)^{-\beta}.$$

From the condition (7) and similar to ref.[5](P358), we can prove

$$\sum_{J\in\Lambda_1(t)} P_J^2 \rho_J^{-\beta} \geq \left(\delta^{-1}-1\right) \sum_{J\in\Lambda(t)} P_J^2 \rho_J^{-\beta}.$$

Hence

$$\begin{split} (\delta^{-1}-1) &= (\delta^{-1}-1) \sum_{J \in \Lambda(t)} P_J^2 \rho_J^{-\beta} \leq \sum_{J \in \Lambda_1(t)} P_J^2 \rho_J^{-\beta} \\ &\leq \sum_{J \in \Lambda_1(t)} P_J^2 (\varepsilon t)^{-\beta} \leq \sum_{J \in \Lambda(t)} P_J^2 (\varepsilon t)^{-\beta}, \end{split}$$

hence

$$\frac{1}{t^{\beta}} \sum_{J \in \Lambda(t)} P_J^2 \ge (\delta^{-1} - 1) \varepsilon^{\beta}.$$

Without loss of generality we assume $|E_0|=1$. We denote ω_d the Lebesgue measure. Note that μ is supported by $\cup \{E_J: J \in \Lambda(t)\}$ and $\mu(E_J)=P_J$. Hence

$$V_{\beta}(t;\mu) = \frac{1}{t^{d+\beta}} \int \left[\int \int \chi_{B_{t}(x)}(\xi) \chi_{B_{t}(x)}(\eta) d\mu(\xi) d\mu(\eta) \right] dx$$

$$= \frac{1}{t^{d+\beta}} \int \int \omega_{d}(B_{t}(\xi) \cap B_{t}(\eta)) d\mu(\xi) d\mu(\eta)$$

$$\geq \frac{1}{t^{d+\beta}} \sum_{J \in \Lambda(t)} \int \int_{\xi, \eta \in E_{J}} \omega_{d}(B_{t}(\xi) \cap B_{t}(\eta)) d\mu(\xi) d\mu(\eta).$$

Since $|E_J| = \rho_J \le t$, hence $B_t(\xi) \cap B_t(\eta)$ contains a ball of radius t/2 whenever $\xi, \eta \in E_J$. It follows that

$$V_{\beta}(t;\mu) \geq \frac{c}{t^{\beta}} \sum_{J \in \Lambda(t)} \int \int_{\xi,\eta \in E_J} d\mu(\xi) d\mu(\eta)$$
$$\geq \frac{c}{t^{\beta}} \sum_{J \in \Lambda(t)} P_J^2 \geq c(\delta^{-1} - 1) \varepsilon^{\beta},$$

where $c(\delta^{-1}-1)\varepsilon^{\beta}$ is a positive constant. #

From the asymptotic property of H(r) of infinite self-similar measure ([5]), Theorem 4.10 and Corollary 4.12 of [2] and our Theorem 2, we have

Theorem 3 Let μ be infinite self-similar measure. Assume conditions (6) and (7) hold, then

$$\lim_{t \to 0} (V_{\beta}(t; \mu) - P(t)) = 0$$

for some P > 0 such that the following holds.

- (i) If $\{-\ln \rho_j: j \in \mathbb{N}\}$ is non-arithematic, then P(t) = c' for some constant c'.
- (ii) Otherwise, let $((\ln \rho)\mathbf{Z})$, $\rho > 1$ be the lattice generated by $\{-\ln \rho_j : j \in \mathbf{N}\}$, then $P(\rho t) = P(t)$.

From the conclusion (*) of infinite self-similar measure ([5]), Theorem 4.10 and Corollary 4.12 of [2], if the equation $\sum_{j=1}^{\infty} \rho_j^s = 1$ has finite solution s, then

Theorem 4 Let μ be infinite self-similar measure with natural weights $P_j = \rho_j^{\beta}$, where $\beta = s$ is the finite solution of equation $\sum_{j=1}^{\infty} \rho_j^s = 1$, we assume conditions (6) and (7) holds, then for any $f \in L^2(d\mu)$ we have

$$\lim_{t \to 0} \left[\frac{1}{t^{d+\beta}} \int |\mu_f(B_t(x))|^2 dx - P(t) \int |f|^2 d\mu \right] = 0,$$

where P defined in Theorem 3.

References

- [1] J.E.Hutchinson, Fractals and Self-similarity, *Indiana University Math. Journal*, **30(5)** (1981), 713-747.
- [2] Ka-sing Lau and Jian-rong Wang, Mean Quadratic Variations and Fourier Asymptotics of Self-similar Measures, *Monatshefte Fur Mathematik*, **115** (1993), 99-132.
- [3] R.S.Strichartz, Fourier asymptotics of fractal measures, J. Functional Anal. 89 (1990), 154-187.
- [4] R.S.Strichartz, Self-similar measures and their Fourier transforms I, *Indiana University Math. Journal*, **39** (1990), 797-817.
- [5] R.S.Strichartz, Self-similar measures and their Fourier transforms II, Trans. Amer. Math. Soc. 39 (1990), 797-817.
- [6] R.S.Strichartz, Self-similar measures and their Fourier transforms III, *Indiana University Math. Journal*, **42** (1993), 367-410.
- [7] R.S.Strichartz, Self-similarity in harmonic analysis, *J. Fourier Anal. and Appli.* 1 (1994), 1-37.
- [8] R.H.Riedi and B.B.Mandelbrot, Multifractal formalism for infinite multinomial measures, Adv. in Appli.Math. 16 (1995), 132-150.
- [9] Hurewitz & Wallman, Dimension theory, Princeton University Press, 1948
- [10] K.Falcorner, Fractal Geometry Mathematical Functions and Applications, John wiley & sons Ltd, 1990.
- [11] M.F.Barnsley and S.Demko, Iterated function systems and the global construction of fractals, *Proc.R.Soc.Lond.A.* **399** (1985), 243-275.
- [12] K.Falconer, The Geometry of Fractal Sets, Cambridge Univ. Press. London, 1985.
- [13] Fu-yao Ren, Zu-guo Yu and Feng Su, Frcational integral associated to self-similar set or generalized self-similar set and its Physical interpretation, *Physics Letters A*, **219** (1996), 59-68.
- [14] Patrik Billingsley, Probability and Measure (2nd), John wiley & sons New York Chichester Brisbane Toronto Singapore, 1985.
- [15] Zhi-ying Wen, Fractal Geometry and its some proceedings recently (in Chinese), Lecture note in Nanjing University, 1994.