$|0\rangle = N [a|100) + 60 |200) + 6|7227$ Uking Tr Inlm) = (-1) e mem) $\pi(0) = N[a(-1)^{0}|100) + b(-1)^{0}|200)$ + C (-1)² 132²] > 10) is an even expension of party offerator

b) Using $\langle n em | Ho | n em \rangle = -\frac{13.6}{n^2} eV = En$ 4 orthogonalty of $|n em \rangle$ states.

For H-atom,

for muonic atom. Me -> Mr = 200 Me

$$\frac{1}{200} = \frac{1}{200} = \frac{1}$$

$$S^2 = S_1^2 + S_2^2 + 2 \vec{J} \cdot \vec{S}_2$$

$$S^{2} \times C = S_{1}^{2} \times C + S_{2}^{2} \times C + 2 \times C \times C$$

$$34t^{2} \quad 34t^{2}$$

 \Rightarrow x_1 and x_4 are the eigenstates of S^2 [1] From the above result,

 $X_2 + X_7$ & $X_2 - X_7$ are also eigenstated of S^2 . \square $X_4 - X_2 + X_7$ & X_4 correspond to S=1 while $X_2 - X_7$ to S=0.

Pa

In the ground state y the atom, the space part of the wave fri is symmetric. Therefore, the spin part has to be anti-symmetric. There is only one antisymmetric state anich can be construeted out of two spin-if particles.) the g.s. of the atom is non-degenerate 1 Hypothetical the atom, the total wif had be symmetric. Since the space part is still symmetric the Upin part knowld also be symmetric. [1]

From addin of angular momenta,

181 = 2010

15

H'= e Eo M L) 8 sind Cord

since n=1 state is non-degenerate, the first order correction is given by

 $E_{n=1}^{\downarrow} = \langle \downarrow 00 \downarrow H / \downarrow 100 \rangle$ = EE (100/N/100) = leo (100 | . Th 2 a 1 100) = e & (100) th (-100) = - e En (100 | x | 600)

F N21 -0)

N=2 that has four fold degeneracy: [200) [210) [211] This requires computation of (2 lm/x12 l'm) Parity \Rightarrow $Al = l'-l = \pm 1$: Relection rule for l \rightarrow (21 ±1) (21 ± 1) (21 ± 1) (21 ± 1) 4 (210) (211) = 0.Using. [[z,]=ity: [z,y]=-itxx (2lm/ [2]) 12 lm)=-it (2lm/2l/m) or (m-m') < 2 l m | y | 2 l'm' > = -i. (2 l m | x | 2 l'm')Ly [4x, x]/it

> (m-mi) (2 lm) [lz, M] [2l'm') = i (2 lm) M12 l'm') (m-m') to (2 lm) 2122/m'>= [CT $[(m-m)^2-1]$ < 2 lm | π | 2 l m/ = 0 $(\Delta m = \pm 1)$ \Rightarrow (200|2|210)=04 (20012121±1) We Non-Zeno natrix elements. (200 a)21+1)za 4 (200) 21-17=6

Note:

Lince $\int_0^{2\pi} d\phi$ Coup simp =0 Could till Comp simp $\int_0^{2\pi} d\phi$ Coup simp

From degenerate PF, we need to solve for statu
$$|200\rangle$$
 $E^{1} \cdot (1)_{3\times3} \cdot (G_{2}) = (H)_{3\times3} \cdot (G_{2})$ at first order.

$$= \begin{pmatrix} 0 & a - a \\ a & 0 & 0 \\ -a & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} G_{2} \\ G_{2} \\ C_{3} \end{pmatrix}$$
 \Rightarrow Eigen values are given by:
$$\begin{vmatrix} -E^{1} & a - a \\ a & -E^{1} & 0 \\ -a & 0 & -E^{1} \end{vmatrix} = 0 \Rightarrow -a(-E^{1}a) - E^{1}(E)^{2}a^{2}$$

$$\Rightarrow E^{1}(2a^{2} \cdot -(E^{1}a^{2})) = 0$$

for
$$E^{1}=0$$
, ± 0.72 II
for $E^{1}=0$, $a \cdot 2 - a \cdot 3 = 0 \Rightarrow c_{3} = c_{2} = 1$
 $\pm c_{4} = 0$
 $\pm c_{5} =$

1210): $|\Phi\rangle_0$ $|\Phi\rangle_\pm$ are good states as they are orthogonal and Θ t- diagonal matrix elements of H' in this apace is 5ero. Of $(210|\alpha|\beta)_{,\pm} = 0 = \langle \Phi|\alpha|\Phi_{\pm} \rangle = \langle \Phi|\alpha|\Phi\rangle_{-}$ Fineel Uplighing

 $\frac{|2107, |40\rangle_{0}}{|40\rangle_{0}} = \frac{|40\rangle_{+}}{|40\rangle_{0}} = \frac{|40\rangle_{+}}{|40\rangle_{0}}$

E0 = 0

E0 £0