TRIGONOMETRY RETROALIMENTACIÓN TOMO 1

CAPÌTULOS

1,2,3

Calcular el valor

H =
$$\frac{5^{\circ} 20'}{40'} - \frac{2^{g} 40^{m}}{80^{m}}$$

RESOLUCIÓN

• Recordamos que:

• Convertimos todo a minutos:

$$H = \frac{5(60') + 20'}{40'} - \frac{2(100^{m}) + 40^{m}}{80^{m}}$$

$$H = \frac{300' + 20'}{40'} - \frac{200^m + 40^m}{80^m}$$

$$H = \frac{320^{11}}{40^{11}} - \frac{240^{11}}{80^{11}}$$

$$H = 8 - 3$$

2)

Reduzca la
expresión:

$$H = \frac{\frac{5\pi}{9} \operatorname{rad} - 50^{g} + 5^{o}}{\frac{\pi}{12} \operatorname{rad}}$$

RESOLUCIÓN

• Recordamos que:

$$\pi \, \text{rad} <> 180^{\circ}$$

$$FC = \frac{9^0}{10^g} = 1$$

• Reemplazamos en H:

$$H = \frac{\frac{5}{9^{\circ}}(\frac{20^{\circ}}{180^{\circ}}) - 50^{\circ} \left(\frac{9^{\circ}}{10^{\circ}}\right) + 5^{\circ}}{\frac{180^{\circ}}{12}}$$

$$H = \frac{100^{0} - 45^{0} + 5^{0}}{15^{0}}$$

$$H = \frac{60^{-07}}{15^{07}}$$

3) Calcular $\frac{8x}{y}$ si se cumplen :

$$\begin{cases} x + y = 70^g \\ x - y = \frac{\Pi}{12} \text{ rad} \end{cases}$$

RESOLUCIÓN

Recordamos que :

$$FC = \frac{9^0}{10^g} = 1$$

$$\pi \text{ rad} <> 180^0$$

Reemplazamos en datos :

$$x + y = 70^{g'} \left(\frac{9^{\circ}}{10^{g'}}\right) = 63^{\circ}$$

$$x - y = \frac{180^{\circ}}{12} = 15^{\circ}$$

$$2x = 78^{\circ} \qquad x = 39^{\circ}$$

• Reemplazamos x en primer dato :

$$39^0 + y = 63^0$$
 \Rightarrow $y = 24^0$

• Calculamos lo pedido:

$$\frac{8x}{y} = \frac{8^{7}(39^{9})}{\frac{24^{7}}{3}} = \frac{39}{3}$$

$$\frac{8x}{y} = 13$$

4) Siendo S y C lo convencional para un mismo ángulo positivo, calcular el $\sqrt{\frac{5S+4C}{5S-4C}}-1$

RESOLUCIÓN

 Recordamos un método pràctico :

$$S = 9n$$

$$C = 10n$$

Reemplazamos en E :

$$E = \sqrt{\frac{5(9n) + 4(10n)}{5(9n) - 4(10n)} - 1}$$

$$E = \sqrt{\frac{45n + 40n}{45n - 40n} - 1}$$

$$E = \sqrt{\frac{85\cancel{n}}{5\cancel{n}} - 1}$$

$$E = \sqrt{17 - 1}$$

$$E = \sqrt{16}$$

Siendo S ,C y R lo convencional para un mismo ángulo positivo, calcular su medida radial si $_{4R} = 21$

RESOLUCIÓN

Recordar:

$$S = 180K$$

$$C = 200K$$

$$R = K\pi$$

Reemplazamos en el dato :

$$\frac{\frac{2}{5(180 \text{ K})}}{90^{7}} + \frac{\frac{200 \text{ K}}{25^{7}} - \frac{4(\text{K}\pi^{7})}{\pi^{7}} = 21$$

$$10K + 8K - 4K = 21$$

$${}^{2}_{14}K = {}^{3}_{17}$$
 $K = {}^{3}_{2}$

Calculamos la medida radial :

$$R rad = K\pi rad$$

$$\therefore$$
 R rad = $\frac{3\pi}{2}$ rad

De acuerdo al gràfico, calcule la medida

RESOLUCIÓN

• Calculamos la medida radial de cada àngulo central:

$$\Theta_1 \operatorname{rad} <> 15^{\circ} \left(\frac{\pi \operatorname{rad}}{180^{\circ}}\right) = \left(\frac{\pi}{12}\right) \operatorname{rad}$$

$$\Theta_2 \operatorname{rad} <> 36^{\circ} \left(\frac{\pi \operatorname{rad}}{180^{\circ}}\right) = \left(\frac{\pi}{5}\right) \operatorname{rad}$$

Aplicamos $L = \Theta R$

• Aplicamos L =
$$\Theta$$
 R
 $L_1 = \Theta_1 R_1 = \frac{\pi}{12} (60 \text{ m}) = 5\pi \text{ m}$
(+)

$$L_2 = \Theta_2 R_2 = \frac{\pi}{5} (120 \text{ m}) = \underline{24\pi \text{ m}}$$

$$\therefore L_1 + L_2 = 29\pi \,\mathrm{m}$$

7) De acuerdo al gràfico, calcule la medida de

RESOLUCIÓN

• Calculamos la medida radial de cada àngulo central :

$$\Theta_1 \operatorname{rad} <> 20^{g} \left(\frac{\pi \operatorname{rad}}{200^{g}}\right) = \left(\frac{\pi}{10}\right) \operatorname{rad}$$

$$\Theta_2$$
 rad $<> 50g \left(\frac{\pi \operatorname{rad}}{200g}\right) = \left(\frac{\pi}{4}\right) \operatorname{rad}$

Aplicamos L = Θ R

$$L_2 = \Theta_2 R_2 = \frac{\pi}{4} (40 \text{ m}) = 10 \pi \text{ m}$$
 $L_1 = \Theta_1 R_1 = \frac{\pi}{10} (20 \text{ m}) = 2\pi \text{ m}$
(-)

$$\therefore L_2 - L_1 = 8\pi \,\mathrm{m}$$

◎1

B) De acuerdo al gràfico, calcule la medida de L₁ si AOB y COD son sectores circulares.

RESOLUCIÓN

• Asumimos que :

$$L_2 = 25 \text{ m}$$
 $R_1 = 6 \text{ m}$ $R_2 = 10 \text{ m}$

Aplicamos propiedad :

$$\frac{L_{1}}{L_{2}} = \frac{R_{1}}{R_{2}}$$

$$\Rightarrow \frac{L_{1}}{25 \text{ m}} = \frac{\frac{3}{6 \text{ m}}}{\frac{10 \text{ m}}{5}} \Rightarrow L_{1} = \frac{3}{5} (\frac{25 \text{ m}}{25 \text{ m}})$$

$$L_1 = 15 \,\mathrm{m}$$

◎1

9) De acuerdo al gràfico, calcule el valor de θ si AOB y COD son sectores circulares.

RESOLUCIÓN

Asumimos que :

$$L_1 = 5\pi \text{ m}$$
 $L_2 = 11\pi \text{ m}$ $h = 8 \text{ m}$

Aplicamos propiedad :

$$\Theta = \frac{L_2 - L_1}{h}$$

$$\Theta = \frac{11\pi \,\mathrm{m} \,-5\pi \,\mathrm{m}}{8 \,\mathrm{m}}$$

$$\Theta = \frac{6\pi \text{ m}}{8 \text{ m}}$$

$$\bullet \theta = \frac{3\pi}{4}$$

01

10) De acuerdo al gràfico : AOB, COD y EOF son sectores circulares.

Calcule el valor de W = $5 L_3 - 3 L_2$

RESOLUCIÓN

• Por propiedad, asumimos que:

$$L_1 = L$$
 $L_2 = 2 L$ $L_3 = 3 L$

Reemplazamos en W :

$$W = \frac{5(3L) - 3(2L)}{L + 2L}$$

$$W = \frac{15 L - 6 L}{W^3 = \frac{9 L}{3 L}}$$

$$\cdot \cdot W = 3$$

¡MUCHAS GRACIAS POR TUATENCIÓN!

¡ Que la fuerza esté contigo!

EL CAMINANTE SOBRE EL MAR DE NUBES David Caspar Friedrich