So since textboxes were not a thing on LearnIT I have put all my answers in the same document, including my thoughts on the multiple choice questions. I hope it is no hazzle to scroll down to the correct task.

Q1:

Construct a non-deterministic finite-state automaton that recognizes all bitstrings that end with 1 and contain an odd number of 0s.

Let our automaton be $M = (S, I, f, s_0, F)$:

States: $S = \{s_0, s_1, s_2\}$ Input: $I = \{0, 1\}$

Transitions: See table below

Initial state: s_0

Accepting states: $F = \{s_2\}$

State diagram:

State	Input	
	0	1
s_0	S_1	s_0, s_2
s_1	s_0	s_1
s_2		

The above state diagram constructs the below non-deterministic automaton:

Q2:

Answer is c by rule of elimination:

Set multiplication produces a set of tuples so a is incorrect.

Set multiplication of $A \times B$ produces a set of tuples which cardinality is as follows $|A \times B| = |A| * |B|$. Since b has two sets A, B with a cardinality of 3 on both, the answer should give 3 * 3 = 9 tuples. Since b has only 3 tuples, it is incorrect.

An equivalence relation is symmetric thus for $\forall (a, b) \in R, (b, a) \in R$. We can give a counterexample of this: $(1,4) \in R$ but $(4,1) \notin R$.

Thus only c is left and correct.

Q3:

With 29 letters in the alphabet, we have $\frac{29!}{(29-6)!} = 29 * 28 * 27 * 26 * 25 * 24 =$

342.014.400 permutations of 6-letter-strings with no repeating letters.

Now consider the sequence $\mathcal{A}\emptyset$ Å. It can be placed in either of the following ways:

That is, we can either have the sequence starting in the first, second, third or fourth position of the 6-letter-string where * denotes another letter.

Consider the remaining 26 letters in the alphabet such that we can choose the remaining 3 letters in $\frac{26!}{(26-3)!} = 26 * 25 * 24 = 15.600$ ways.

Since we had 4 different ways to put the sequence $\mathcal{E}\emptyset\text{Å}$, we have $4*\frac{26!}{(26-3)!}=4*15.600=62.400$ permutations.

Q4:

Consider $a_0 = 3$ and $a_1 = 3$

We can also say $a_0 = 3 * 1$ and $a_1 = 3 * 1$.

Since $f_0 = 1$ and $f_1 = 1$, we have $a_0 = f_0 * 3$ and $a_1 = f_1 * 3$

Since $a_n = a_{n-1} + a_{n-2}$ and $f_n = f_{n-1} + f_{n-2}$, the two sequences thus have the same definitions.

Assume $f_{n-1}*3=a_{n-1}$ and $f_{n-2}*3=a_{n-2}$ to prove $f_n*3=a_n$. Let us calculate $a_n=f_{n-1}*3+f_{n-2}*3=3(f_{n-1}+f_{n-2})=3*f_n$. Thus option d is correct. QED.

Q5:

Consider the events:

A: An individual is infected.

 $\sim A$: An individual is not infected.

A: An individual tests positive.

 $\sim B$: An individual tests negative.

A|B: An individual is infected after they have tested positive.

B|A: An individual tests positive when they are infected.

 $\sim B \mid \sim A$: An individual tests negative when they are not infected.

 $A \cap B$: An individual is infected and tests positive.

We have the following probabilities:

$$P(A) = 0.04$$

 $P(\sim A) = 1 - P(A) = 0.96$
 $P(B|A) = 0.9$
 $P(\sim B|A) = 1 - P(B|A) = 0.1$
 $P(\sim B|\sim A) = 0.99$
 $P(B|\sim A) = 1 - P(\sim B|\sim A) = 0.01$

We want to know the probability of an individual being infected if they have tested positive. That is, the event A|B.

We know that conditional probability can be determined using $P(A|B) = \frac{P(A \cap B)}{P(B)}$. Also for

 $B|A: P(B|A) = \frac{P(A \cap B)}{P(A)}$. Thus we can construct $P(A \cap B) = P(B|A) * P(A) = 0.9 * 0.04 = 0.04$ 0,036.

We also know that by Bayes' Theorem, that $P(A|B) = \frac{P(B|A)*P(A)}{P(B)}$.

This also works if $A = \sim A$. Thus we have $P(\sim A|B) = \frac{P(B|\sim A)*P(\sim A)}{P(B)}$.

We thus have $P(\sim A|B) = \frac{0.01*0.96}{P(B)}$.

We can calculate P(B):

$$P(B) = P(B|A) * P(A) + P(B|\sim A) * P(\sim A) = 0.9 * 0.04 + 0.01 * 0.96 = 0.0456$$

We now have enough to calculate $P(A|B) = \frac{P(B|A) * P(A)}{P(B)} = \frac{0.9 * 0.04}{0.0456} \approx 0.79$

(I'm sorry for the many unnecessary calculations, I lost track of what was used and what wasn't. But my answer will be the approx. 79%).

Q6:

Rule of elimination again:

A: Counterexample: $A = \emptyset$, $B = \{1,2\}$. Then $A \subseteq B$ and $A \cap B = \emptyset$ which is a contradiction to the statement.

B: The union of A and B will be \emptyset but since $\emptyset = \{\}$ then $\emptyset \notin \{\}$. Thus false.

C: True by rule of elimination. (also consider $\mathcal{P}(\emptyset) = \{\emptyset\}$ and thus $\emptyset \in \mathcal{P}(\emptyset)$).

D: As described above, $|A \times B| = |A| * |B|$ and since $|A \times B| = 3$, |A| = 3, |B| = 3 then we have a contradiction: $3 * 3 \neq 3$

Q7:

A is false, just watch this counterexample:

$$a = 5, b = 7, m = 2$$

Then $a \mod m = 1$, $b \mod m = 1$ and thus $a \equiv b \pmod m$

But a + b = 12 and $12 \mod m = 0$ and thus $(a + b) \mod m \neq b \mod m$.

Q8:

Prove by induction that $\sum_{i=0}^a (i*i!) = (a+1)! - 1$. Basecase: a=0. Then $\sum_{i=0}^a (i*i!) = 0*0! = 0$ and (a+1)! - 1 = 1! - 1 = 0 which means the basecase holds.

Assume the statement holds for n to prove it holds for n + 1.

Then $\sum_{i=0}^{a} (i*i!) = (a+1)! - 1$ to prove $\sum_{i=0}^{a} (i*i!) + (a+1)*(a+1)! = (a+2)! - 1$ We thus have that $\sum_{i=0}^{a} (i * i!) + (a+1) * (a+1)! = (a+1)! - 1 + (a+1) * (a+1)!$. Now let us simplify this statement.

$$\sum_{i=0}^{a+1} (i * i!) = (a+1)! + (a+1) * (a+1)! - 1$$

We can factorize (a + 1)!:

$$\sum_{i=0}^{a+1} (i * i!) = (a+1)! * (1 + (a+1)) - 1$$

The parenthesis (1 + (a + 1)) can be simplified to (a + 2).

Likewise we can show that (a+2)! = (a+2)*(a+1)*(a)*...*1 while (a+1)! Is the same but without the preceding (a+2)*. Thus, in other words, (a+2)! = (a+2)*(a+1)! Which we will use to replace on the right side of the equation.

$$\sum_{i=0}^{a+1} (i * i!) = (a+2)! - 1$$

Thus we have shown that it holds for the basecase a=0 and that it holds for any subsequent integer w^5 .

Q9:

Option d allows me to construct $(0 \cup 1)^*10(01)^*$ since:

The only production for S is $S \rightarrow A10B$ forcing me to have 10 in the middle.

Now, $A = (0 \cup 1)^*$ because A has the productions where it either turns into the emptystring or adds a 0 or 1 before the A $(A \to 0A, A \to 1A)$.

Likewise we have $B = (01)^*$ because B can only produce the emptystring or 01 followed by B. This allows for any number of (01) including none. Thus option d is correct.

Q10:

The graph is bipartite because we can put the vertices into two separate sets such that there are no edges between two vertices of the same set as follows:

$$S_1 = \{a, c, e\}$$

 $S_2 = \{b, d, f\}$

Also rule of elimination:

"There is a unique simple path between any two vertices": Counterexample, $d \to e$ and $d \to c \to f \to d$ thus has two simple paths.

"The graph has no Hamiltonian circuit": Counterexample, $d \to e \to b \to a \to f \to c \to d$ and thus has a Hamiltonian circuit.

"The graph is a rooted tree with root a": No, because we just showed there is a Hamiltonian circuit which is a circuit and thus the graph is not a tree.

Q11:

I hope it is read-able.

I know it is not completely correct, but hopefully good enough to submit anyway;)

Q12:

 $n \in \mathbb{N}$ and $n^3 + 13$ is odd to prove n is even by contradiction

We assume that n is odd and thus substitute n with the definition of odd numbers (2k+1 for integer k). This must be equal to the definition of an odd number, i.e. 2k + 1

$$(2k_1 + 1)^3 + 13 = 2k_2 + 1$$

We write out the exponentiation:

$$(2k_1 + 1)(2k_1 + 1)(2k_1 + 1) + 13 = 2k_2 + 1$$

We multiply the parentheses:

$$(2k_1 + 1) * (4k_1^2 + 1^2 + 4k_1) + 13 = 2k_2 + 1$$

 $4k_1^2 + 1^2 + 4k_1 + 8k_1^2 + 2k_1 + 8k_1^3 + 13 = 2k_2 + 1$

We simplify:

$$8k_1^3 + 14k_1^2 + 6k_1 + 4 = 2k_2 + 1$$

 $8k_1^3+14k_1^2+6k_1+4=2k_2+1 \label{eq:k1}$ We factorize the left side of the parenthesis with 2:

$$2 * (4k_1^3 + 7k_1^2 + 3k_1 + 2) = 2k_2 + 1$$

 $2*(4k_1^3+7k_1^2+3k_1+2)=2k_2+1$ We know that multiplication and addition of integers produce a new integer, so we will write $4k_1^3 + 7k_1^2 + 3k_1 + 2 = k_3, k_3 \in \mathbb{Z}$.

$$2k_3 = 2k_2 + 1$$

We thus have that an even integer is equal to an uneven integer and thus we have a contradiction w^5 .

Q13:

Since the cardinality of $|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}| * |\mathbb{N}|$ then we have that there are more elements in the codomain $(\mathbb{N} \times \mathbb{N})$ than in the domain \mathbb{N} . Thus it is not onto/surjective. For the question about injectivity, I must confess it is a somewhat qualified guess. My thoughts are:

- 1. Since the codomain is (much) larger than the domain, there is plenty of possibilities for two-tuples to each natural number and thus this speaks for a one-to-one function.
- 2. Since the definition for f(n) always differs from another, I believe is no way for two different n to give the same tuple of the co-domain f(n).

(Sort of inspired by the same theory about the cardinality of \mathbb{R} between 0 and 1 that is greater than the cardinality of \mathbb{N} shown in class).

Q14:

A pure guess based on the fact that the first/last implication introduction (depending on which way you read it from), i.e. $(\sim Q \lor \sim R) \to S$ gives the hypothesis $(\sim Q \lor \sim R)$. If either Q or R is false, then $(\sim Q \lor \sim R)$ will be true. Thus for this to be false, both Q and R must be true. That is the option a in Q14 which is why I guessed on that answer.