$n^{\circ}7$ - Dérivation, interprétation géométrique, lemme de Rolle, Théorème des accroissements finis

(Corrigé)

Notes de Cours

I Dérivation et théorème des accroissements finis

I.A Dérivée et tangente

Définition I.1 (Dérivée). On dit que f est **dérivable en** a si la quantité $\frac{f(x)-f(a)}{x-a}$ admet une limite pour x tendant vers a (avec $x \neq a$). Quand elle existe, cette limite est appelée la dérivée en a de f, noté f'(a):

$$f'(a) := \lim_{\substack{x \to a \\ x \neq a}} \frac{f(x) - f(a)}{x - a}$$

De manière équivalente, en effectuant le changement de variable h = x - a, on peut écrire

$$f'(a) = \lim_{\substack{h \to 0 \\ h \neq a}} \frac{f(a+h) - f(a)}{h}$$

Interprétation géométrique :

Quand elle existe, la quantité f'(a) correspond au **coefficient directeur de la tangente en** a au graphe de f. En effet, la quantité $\frac{f(x)-f(a)}{x-a}$, appelée **taux de variation** de f entre x et a, peut s'interpréter comme le coefficient directeur de la droite sécante au graphe de f aux points d'abscisses x et a. Or la dérivée de f en a est définie comme la limite du taux de variation de f entre a et x, donc cela correspond à la pente de la "secante limite", c'est-à-dire la tangente en a.

La secante (en bleu) s'approche de la tangente (en rouge) à mesure que x s'approche de a.

Si $a \neq b$ sont deux points distincts, la sécante au graphe de f entre les points d'abscisses a et b a pour équation

$$y = f(a) + \frac{f(b) - f(a)}{b - a} (x - a)$$

et si f est dérivable en f, on peut faire tendre b vers a pour obtenir la droite d'équation

$$y = f(a) + f'(a)(x - a)$$

On obtient ainsi l'équation de la tangente en a au graphe de f.

I.B Rolle et TAF

Le lemme de Rolle dit qu'une fonction f dérivable qui prend deux fois la même valeur possède un point d'annulation de sa dérivée entre les deux (ce qui correspond graphiquement à une tangente horizontale pour le graphe de la fonction f).

Théorème I.2 (Lemme de Rolle). Soit I un intervalle, et $f: I \to \mathbb{R}$ une fonction dérivable sur I. On suppose qu'il existe deux points distincts a < b dans I tels que

$$f(a) = f(b)$$

alors il existe $c \in]a,b[$ tel que

$$f'(c) = 0$$

Le point c n'est pas unique en général, le théorème assure l'existence d'au moins un point $c \in]a, b[$, mais il peut très bien y en avoir plusieurs (par exemple sur l'illustration ci-dessus, il y a plusieurs autres points où la tangente est horizontale).

Une conséquence (et une généralisation) du lemme de Rolle est le théorème des Accroissements Finis (parfois abrégé en l'acronyme TAF) :

Théorème I.3 (Théorème des Accroissements Finis). Soit I un intervalle, et $f: I \to \mathbb{R}$ une fonction dérivable sur I. Pour tous points distincts a < b dans I, il existe $c \in]a,b[$ tel que

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Démonstration. Soient a < b dans I. On considère la fonction $g(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a)$. La fonction g est dérivable sur I et on a

$$g(a) = f(a),$$
 $g(b) = f(b) - (f(b) - f(a)) = f(a)$

donc d'après le Lemme de Rolle, il existe $c \in]a, b[$ tel que g'(c) = 0, c'est-à-dire

$$f'(c) - \frac{f(b) - f(a)}{b - a} = 0$$

ce qui donne l'égalité souhaitée.

Dans ce théorème, on peut interpréter géométriquement les quantités $\frac{f(b)-f(a)}{b-a}$ comme la pente de la sécante entre a et b au graphe de f, et f'(c) comme la pente de la tangente en c au graphe de f. Et une égalité de pentes revient à dire que ces deux droites sont parallèles. En d'autres termes, le théorème des accroissements finis nous dit que pour toute secante au graphe de f (prise entre des points a et b), il existe au moins une tangente au graphe de f (au point c) qui est parallèle à cette sécante.

pente de la tangente en
$$c$$

pente de la sécante entre a et b

Tout comme dans le lemme de Rolle, le point c dépend de a et b et n'est pas forcément unique.

Mentionnons la généralisation à l'ordre n du théorème des acrroissements finis : la formule de Taylor Lagrange, qui permet si la fonction est n fois dérivable en un point, de l'approximer autour de ce point par un polynôme de degré n-1.

Théorème I.4 (Taylor-Lagrange). Soit $f: I \to \mathbb{R}$ une fonction n fois dérivable. Soit $a \in I$, pour tout $x \in I$, il existe $c \in]a, x[$ tel que

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{f^{(n)}(c)}{n!} (x-a)^n$$

I.C Inégalité des accroissements finis

Une conséquence du théorème des accroissements finis est l'inégalité des accroissements finis qui permet de majorer les variations de f si on peut borner sa dérivée.

Théorème I.5 (Inégalité des accroissements finis). Soit I un intervalle, et $f: I \to \mathbb{R}$ une fonction dérivable sur I. On suppose que la dérivée est bornée sur I, c'est-à-dire qu'il existe $M \ge 0$ tels que pour tout $x \in I$,

$$|f'(x)| \le M$$

alors pour tout $a, b \in I$ distincts, on a

$$|f(a) - f(b)| \le M|b - a|$$

Démonstration. On se donne $a, b \in I$ distincts. Quitte à inverser les noms de a et b, on peut supposer a < b (cela ne change rien car |f(a) - f(b)| = |f(b) - f(a)| et |b - a| = |a - b|). Comme f est dérivable sur I, d'après le théorème des accroissements finis, il existe $c \in [a, b]$ tel que

$$f(a) - f(b) = f'(c)(b - a)$$

et donc en prenant la valeur absolue

$$|f(a) - f(b)| = \underbrace{|f'(c)|}_{\leq M} \cdot |b - a| \leq M|b - a|$$

II Exercices

II.A Calculs de dérivées

1. (SF 22, 23, 24) (Aspect fondamental) Calculer les dérivées des fonctions suivantes :

$$f_1(x) = 3x^5 + 3x^2 + 2$$
 $f_2(x) = 7x\cos(x)$ $f_3(x) = \frac{x+1}{x^2+2}$

$$f_4(x) = x\sin(x) + \ln(x)\cos(x)$$
 $f_5(x) = \frac{\sin(x)}{2 + \cos(x)}$ $f_6(x) = \frac{x^2 + \cos(x)}{x^4 + x\sin(x) + 2}$

Solution:

$$f_1'(x) = 15x^4 + 6x$$
 $f_2'(x) = 7\cos(x) - 7x\sin(x)$

$$f_3'(x) = \frac{-x^2 - 2x + 3}{(x^2 + 3)^2}$$

$$f_4'(x) = \sin(x) + x\cos(x) + \frac{\cos(x)}{x} - \ln(x)\sin(x)$$

$$f_5'(x) = \frac{2\cos(x) + 1}{(2 + \cos(x))^2} \qquad f_6'(x) = \frac{2x^5 + x^4\sin(x) + 5x^3\cos(x) - x^2\sin(x) - 3x + \sin(x)\cos(x) + 2\sin(x)}{(x^4 + x\sin(x) + 2)^2}$$

2. (SF 22, 23, 24, 25) (Aspect fondamental) Calculer les dérivées des fonctions suivantes :

$$f_1(x) = 3(2x+5)^5$$
 $f_2(x) = e^{5x^4}$ $f_3(x) = \sin(3x+2)$

$$f_4(x) = (\ln(x))^2$$
 $f_5(x) = \ln(\cos(x))$ $f_6(x) = \cos(\ln(x))$

Solution:

$$f_1'(x) = 30(2x+5)^5$$
 $f_2'(x) = 20x^3e^{5x^4}$ $f_3'(x) = 3\cos(3x+2)$

$$f_4'(x) = \frac{2\ln(x)}{x}$$
 $f_5'(x) = -\frac{\sin(x)}{\cos(x)} = -\tan(x)$ $f_6'(x) = -\frac{\sin(\ln(x))}{x}$

3. (SF 22, 23, 24, 25) Math101 : Exercice 79 Soit f une fonction réelle dérivable sur \mathbb{R} . Calculer la dérivée des fonctions suivantes :

$$f_1(x) = \sin(f(x^2)),$$
 $f_2(x) = \sin(f(x)^2),$ $f_3(x) = \sin^2 f(x),$

$$f_4(x) = \sqrt{1 + f(x)^4},$$
 $f_5(x) = \ln(2 + \cos(f(x))),$ $f_6(x) = \tan\frac{\pi}{2 + f(x)^2}$

Solution:

$$f_1'(x) = 2xf'(x^2)\cos(f(x^2)),$$
 $f_2'(x) = 2f'(x)f(x)\cos(f(x)^2),$

$$f_3'(x) = 2\cos(f(x))\sin(f(x)),$$

$$f_4'(x) = \frac{2f'(x)f(x)^3}{\sqrt{1+f(x)^4}},$$

$$f_5'(x) = \frac{-f'(x)\sin f(x)}{2 + \cos f(x)}, \qquad f_6'(x) = -\frac{2\pi f'(x)f(x)}{(2 + f(x)^2)^2} \left(1 + \tan^2 \frac{\pi}{2 + f(x)^2}\right)$$

4. (SF 22, 23, 24, 25, 39) Math101: Exercice 82 Pour chacune des fonctions suivantes, préciser le domaine de définition, le domaine de dérivabilité et calculer la dérivée.

$$f_1(x) = x^2 + 1 + x^{11} + x^{101},$$
 $f_2(x) = x^5 \cos(x),$ $f_3(x) = e^x \sin(x)$

$$f_4(x) = \frac{1+x}{x-7},$$
 $f_5(x) = \frac{\ln x}{\sqrt{x-1}},$ $f_6(x) = \frac{1-x^3}{(1+x)^2},$

$$f_7(x) = \frac{x + \sin x}{\cos x}$$

Solution:

(a) f_1 est définie et dérivable sur \mathbb{R} , et

$$f_1'(x) = 2x + 11x^{10} + 101x^{100}$$

(b) f_2 est définie et dérivable sur \mathbb{R} , et

$$f_2'(x) = 5x^4 \cos(x) - x^5 \sin(x)$$

(c) f_3 est définie et dérivable sur \mathbb{R} , et

$$f_3'(x) = e^x(\sin(x) + \cos(x))$$

(d) f_4 est définie et dérivable sur $\mathbb{R} \setminus \{7\} =]-\infty, 7[\cup]7, +\infty[$, et

$$f_4'(x) = -\frac{-8}{x - 7}$$

(e) f_5 est définie et dérivable sur $[1, +\infty[$, et

$$f_5'(x) = \frac{2x - x\ln(x) - 2}{2x(x - 1)\sqrt{x - 1}}$$

(f) f_6 est définie et dérivable sur $\mathbb{R} \setminus \{-1\} =]-\infty, -1[\cup]-1, +\infty[$, et

$$f_6'(x) = -\frac{x^3 + 3x^2 + 2}{(1+x)^3}$$

(g) f_7 est définie et dérivable sur $\mathbb{R} \setminus \{k\pi + \pi/2, k \in \mathbb{Z}\} = \bigcup_{k \in \mathbb{Z}} [k\pi - \pi/2, k\pi + \pi/2]$, et

$$f_7'(x) = \frac{1 + \cos(x) + x\sin(x)}{\cos^2(x)}$$

5. (SF 28) Math151 : Test 1 (2014)

- (a) Déterminer l'équation de la tangente au graphe de la fonction $f_1: x \mapsto \sin(2x)$ au point d'abscisse $\frac{\pi}{12}$.
- (b) Déterminer l'équation de la tangente au graphe de la fonction $f_2: x \mapsto \sqrt{1+x}$ au point d'abscisse 3.
- (c) (*) Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction dérivable, et $g: \mathbb{R} \to \mathbb{R}$ la fonction définie par $g(x) = e^{f(x)}$. On suppose que la tangente au graphe de g au point d'abscisse 0 a pour équation y = 3x + 1. Déterminer l'équation de la tangente au graphe de f au point d'abscisse 0.

Solution:

(a) La tangente a pour équation

$$y = f_1(\pi/12) + f'_1(\pi/2) \left(x - \frac{\pi}{12}\right)$$
$$= \sin(\pi/6) + 2\cos(\pi/6) \left(x - \frac{\pi}{12}\right)$$
$$= \frac{1}{2} + \sqrt{3} \left(x - \frac{\pi}{12}\right)$$

(b) La tangente a pour équation

$$y = f_2(1) + f'_2(1)(x - 1)$$
$$= 2 + \frac{1}{4}(x - 1)$$

(c) L'équation de la tangente en 0 au graphe de g nous donne les valeur de g(0) et g'(0). En effet l'équation de la tangente en 0 à g est donnée par g(0) + g'(0)x, donc on en déduit que

$$g(0) = 1,$$
 $g'(0) = 3$

Par ailleurs, en calculant la dérivée de g, on trouve des équations qui nous permettent de déduire les valeurs f(0) et f'(0). En effet, on calcule que $g(0) = e^{f(0)}$, d'où f(0) = 0. Et 3 = g'(0) = f'(0) donc

 $f^{\prime}(0)=3.$ On conclut que la tangente en 0 au graphe de f à pour équation

$$y = 3x$$

6. (SF 22, 23, 24, 25, 28, 39) Math151 : Exercice 2.2 Pour chacune des fonctions suivantes, déterminer le domaine définition, domaine de dérivabilité et dérivée des fonctions suivantes, puis donner l'équation de la tangente à son graphe au point indiqué entre parenthèses.

$$f_1(x) = \frac{9x^3 - 4}{8x^3 + 6} \qquad \text{(en 1)} \qquad \qquad f_2(x) = \frac{(x - 1)^3}{\sqrt{x}} \qquad \text{(en 1)}$$

$$f_3(x) = x^3 e^{\sin(x)}$$
 (en π) $f_4(x) = \ln(\ln(x))$ (en e)

Solution:

(a) f_1 est définie et dérivable sur $]-\sqrt[3]{3},+\infty[$. On a

$$f_1'(x) = -\frac{3x(6x^3 - 8x - 9)}{(4x^3 + 3)^2}$$

La tangente en 1 au graphe de f_1 a pour équation

$$y = \frac{5}{14} + \frac{129}{98}(x - 1)$$

(b) f_2 est définie sur $[0, +\infty[$, et dérivable sur $]0, +\infty[$. On a

$$f_2'(x) = \frac{(5x+1)(x-1)^2}{2x\sqrt{x}}$$

La tangente en 1 au graphe de f_2 a pour équation y = 0.

(c) f_3 est définie et dérivable sur \mathbb{R} . On a

$$f_3'(x) = (3x^2 + x^3 \cos(x))e^{\sin(x)}$$

La tangente en π au graphe de f_3 a pour équation

$$y = \pi^3 - (\pi - 3)\pi^2(x - \pi)$$

(d) f_4 est définie et dérivable sur $]1, +\infty[$. On a

$$f_4'(x) = \frac{1}{x \ln(x)}$$

La tangente en e au graphe de f_4 a pour équation

$$y = \frac{x - e}{e} = \frac{x}{e} - 1$$

II.B Applications du lemme de Rolle

7. Une application du lemme de Rolle

On considère la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par

$$f(x) = x^3 - x$$

- (a) En utlisant le lemme de Rolle, montrer qu'il existe $c \in]-1,1[$ tel que f'(c)=0.
- (b) En résolvant l'équation, trouver toutes les valeurs $c \in]-1,1[$ telles que f'(c)=0.

Solution:

- (a) La fonction f est dérivable sur [-1,1] et on a f(-1)=f(1)=0, donc d'après le lemme de Rolle, il existe $c \in]-1,1[$ tel que f'(c)=0.
- (b) On a $f'(x) = 3x^2 1$, donc

$$f'(c) = 0 \iff c^2 = \frac{1}{3} \iff c = \pm \frac{\sqrt{3}}{3}$$

il y a donc deux solutions qui sont $c=-\frac{\sqrt{3}}{3}$ et $c=\frac{\sqrt{3}}{3}.$

8. Une application du lemme de Rolle

On considère la fonction $g: \mathbb{R} \to \mathbb{R}$ définie par

$$g(x) = \cos(2x)$$

- (a) En utlisant le lemme de Rolle, montrer qu'il existe $c \in]0, 2\pi[$ tel que g'(c) = 0.
- (b) En résolvant l'équation, trouver toutes les valeurs $c \in]0, 2\pi[$ telles que g'(c) = 0.

Solution:

- (a) On a $g(0) = g(2\pi) = 1$, et la fonction g est dérivable sur $[0, 2\pi]$, donc d'après le lemme de Rolle, il existe $c \in]0, 2\pi[$ tel que g'(c) = 0.
- (b) On a $g'(x) = -2\sin(2x)$, donc l'équation g'(c) = 0 possède trois solutions dans l'intervalle $]0, 2\pi[$ qui sont $c = \pi/2, c = \pi$ ou $c = 3\pi/2$.

9. (SF 39) Un contre-exemple à Rolle?

On considère la fonction $h(x) = \tan(x)$.

- (a) Déterminer le domaine de définition D_h , et de dérivabilité $D_{h'}$ de h?
- (b) Calculer h'(x) et montrer que $h'(x) \ge 1$ pour tout $x \in D_{h'}$.
- (c) Montrer que $h(0) = h(\pi)$. Montrer qu'il n'existe pas de point $c \in]0, \pi[$ tel que h'(c) = 0. Est-ce en contradiction avec le lemme de Rolle?

Solution:

- (a) h est définie et dérivable sur $D_h = D_{h'} = \mathbb{R} \setminus \{k\pi + \pi/2, k \in \mathbb{Z}\} = \bigcup_{k \in \mathbb{Z}} [k\pi \pi/2, k\pi + \pi/2]$.
- (b) Pour tout $x \in D_h$, on a

$$h'(x) = 1 + \underbrace{\tan^2(x)}_{\geq 0} \geq 1$$

(c) On a $h(0) = h(\pi) = 0$. Par ailleurs, comme $h'(x) \ge 1$ (pour tout $x \in D_{h'}$), il est imposible que la dérivée s'annule. Il n'existe donc aucun point $c \in]0, 2\pi[$ tel que h'(c) = 0.

Il ne s'agit pas réellement d'une contradiction du lemme de Rolle, car les hypothèses nécessaires pour l'appliquer ne sont pas toutes vérifiées ici : la fonction h n'est pas définie et dérivable **sur l'intervalle** $[0, \pi]$ **tout entier** (elle n'est pas définie en $\pi/2$).

10. Démonstration du TAF

Dans cet exercice, on cherche à déduire le théorème des accroissements finis à partir du lemme de Rolle. Pour cela, on se donne un intervalle I, une fonction $f:I\to\mathbb{R}$ dérivable sur I et a< b dans I. On considère la fonction $h:I\to\mathbb{R}$ définie par

$$h(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a)$$

- (a) Calculer h(a) et h(b). En utilisant le lemme de Rolle, montrer qu'il existe $c \in]a,b[$ tel que h'(c)=0.
- (b) Conclure qu'il existe $c \in]a, b[$ tel que

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Solution:

- (a) On calcule h(a) = h(b) = f(a). Or comme h est dérivable sur I (en tant que somme de fonctions dérivables), d'après le lemme de Rolle, il existe $c \in]a, b[$ tel que h'(c) = 0.
- (b) On calculer que pour $x \in I$,

$$h'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$$

donc le point c que l'on a trouvé à la question précédente convient, car $h'(c) = 0 \iff f'(c) = \frac{f(b) - f(a)}{b - a}$.

11. On considère le polynôme

$$P(x) = x^4 - 4x^3 + 9x^2 - 10x + 7$$

Montrer que P' admet au moins une racine dans]0,2[.

Solution: La fonction P est définie et dérivable sur I. On a P(0) = P(2) = 7, donc d'après le lemme de Rolle, il existe $c \in]0, 2[$ tel que P'(c) = 0, ce qui répond à la question.

12. Math 151: test 2 (2019) Soit $f:[0,3] \to \mathbb{R}$ dérivable telle que f(0)=1, f(1)=0 et f(2)=3. Montrer qu'il existe $c \in]1,3[$ tel que f'(c)=0.

Indication : On pourra utiliser le théorème des valeurs intermédiaires, puis le lemme de Rolle.

Solution : Comme f est continue (puisque dérivable) et que f(1) < 1 < f(3), d'après le théorème des valeurs intermédiaires, il existe $a \in]1,2[$ tel que f(a)=1. Comme f est dérivable, et que f(1)=f(a) alors d'après le lemme de Rolle, il existe $c \in]1,a[\subset]1,3[$ tel que f'(c)=0.

13. Double Rolle

Soit $f: I \to \mathbb{R}$ une fonction **deux fois** dérivable sur un intervalle I. On suppose qu'il existe $a_1 < a_2 < a_3$ dans I tels que

$$f(a_1) = f(a_2) = f(a_3)$$

(a) Montrer qu'il existe $c_1 < c_2$ dans I tels que

$$f'(c_1) = f'(c_2) = 0$$

(b) En déduire qu'il existe $c_3 \in I$ tel que

$$f''(c_3) = 0$$

II.C Théorème et inégalité des accroissements finis

14. Math151: test 2 (2019) Existe-t-il une fonction dérivable $f:[0,1]\to\mathbb{R}$ telle que f(0)=1, f(1)=0 et $f'(x)\leq -2$ pour tout $x\in[0,1]$?

Solution : C'est impossible! Si $f:[0,1] \to \mathbb{R}$ est une fonction telle que f(0)=1, f(1)=0, alors d'après le théorème des accroissement finis, il existe $c \in]0,1[$ tel que $f'(c)=\frac{f(0)-f(1)}{0-1}=-1>-2$.

15. Math 151: Exercice 2.10 On considère la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \sin(x)$.

(a) En utilisant l'inégalité des accroissement finis, montrer que pour tous $a,b\in\mathbb{R}$ on a

$$|\sin(b) - \sin(a)| \le |b - a|$$

(b) Interpréter graphiquement cette inégalité dans le cas b = 0.

Solution:

(a) La fonction f est dérivable sur \mathbb{R} et $f'(x) = \cos(x)$. On a $|f'(x)| \le 1$ donc d'après l'inégalité des accroissement finis, pour tous $a, b \in \mathbb{R}$ on a

$$|\sin(b) - \sin(a)| \le |b - a|$$

(b) En particulier l'inégalité

$$\underbrace{|\sin(\theta)|}_{\text{corde}} \le \underbrace{|\theta|}_{\text{arc de cercle}}$$

s'interprète géométriquement comme l'affirmation que pour le point du cercle trigonométrique à angle θ , la longeur de l'arc de cercle (θ) est plus long la longueur de la corde $(\sin(\theta))$.

16. Math101: Partiel 2 (2019) Série Harmonique

On considère la suite $(H_n)_{n\geq 1}$ définie pour $n\geq 1$ par $H_n=1+\frac{1}{2}+\ldots+\frac{1}{n}$.

(a) Soit $n \ge 1$. En appliquant le théorème des accroissements finis, montrer que

$$\frac{1}{n+1} < \ln(n+1) - \ln(n) < \frac{1}{n}$$

(b) En déduire que pour tout entier $n \geq 2$,

$$\ln(n+1) < H_n < \ln(n) + 1$$

(c) Déterminer $\lim_{n\to+\infty} H_n$

Solution:

(a) On considère la fonction $f:]0, +\infty[\to \mathbb{R}$ définie par f(x) = ln(x). La fonction f est dérivable sur $]0, +\infty[$ et appliquant le TAF entre les points n et n+1, il existe $c \in]n, n+1[$ tel que

$$\frac{f(n+1) - f(n)}{(n+1) - n} = f'(c)$$

c'est-à-dire

$$\frac{1}{c} = \ln(n+1) - \ln(n)$$

or n < c < n+1 par construction, donc $\frac{1}{n+1} < \frac{1}{c} < \frac{1}{n}$ et au final on obtient bien

$$\frac{1}{n+1} < \ln(n+1) - \ln(n) < \frac{1}{n}$$

(b) On a dans un sens

$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

$$> (\ln(2) - \ln(1)) + (\ln(3) - \ln(2)) + (\ln(4) - \ln(3)) + \dots + (\ln(n+1) - \ln(n))$$

$$> \ln(n+1) - \underbrace{\ln(1)}_{=0}$$

$$> \ln(n+1)$$

et si $n \geq 2$, on procède de même pour l'autre inégalité en majorant tous les termes sauf le premier

$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

$$< 1 + (\ln(2) - \ln(1)) + (\ln(3) - \ln(2)) + \dots + (\ln(n) - \ln(n-1))$$

$$< 1 + \ln(n)$$

(c) On a $H_n > \ln(n+1) \xrightarrow[n \to +\infty]{} +\infty$, donc

$$\lim_{n \to +\infty} H_n = +\infty$$

17. Monotonie et signe de la dérivée

Soit I un intervalle et $f: I \to \mathbb{R}$ une fonction réelle définie et dérivable sur I. On cherche dans cet exercice à démontrer l'équivalence

$$f$$
 croissante sur $I \iff \forall x \in I, f'(x) \ge 0$

- (a) On suppose dans cette question que pour tout $x \in I$, $f'(x) \ge 0$. On cherche à montrer que f est croissante sur I.
 - i. Montrer que pour tous x < y dans I, il existe $c_{x,y} \in]x,y[$ tel que

$$f(y) - f(x) = f'(c_{x,y})(y - x)$$

- ii. En déduire que f est croissante sur I.
- (b) On suppose dans cette question que f est croissante sur I. On cherche à démonter que pour tout $x \in I$, $f'(x) \ge 0$.
 - i. Soit $x \in I$. Montrer que pour tous $y \in I \setminus \{x\}$, on a

$$\frac{f(y) - f(x)}{y - x} \ge 0$$

Indication : On pourra séparer les cas x < y et x > y.

ii. En passant à la limite quand $y \to x$ dans l'inégalité précédente, montrer que

$$f'(x) \ge 0$$

Solution:

(a) i. f est dérivable sur I donc en appliquant le TAF entre x et y on obtient qu'il existe $c_{x,y} \in]x,y[$ tel que

$$f(y) - f(x) = f'(c_{x,y})(y - x)$$

ii. En reprenant les notations de la question précédente, on a

$$f(y) - f(x) = \underbrace{f'(c_{x,y})}_{\geq 0} \underbrace{(y-x)}_{\geq 0} \geq 0$$

Donc $f(y) \ge f(x)$. Ceci étant vrai pour tous x < y dans I, on a montré que f est croissante sur I.

(b) i. On sépare les cas x < y et x > y. Si x > y, on a $f(x) \ge f(y)$ (par croissance de f), et donc

$$\frac{\overbrace{f(y) - f(x)}^{\geq 0}}{\underbrace{y - x}_{> 0}} \geq 0$$

Inversement, si y < y, on a $f(y) \le f(x)$ (par croissance de f), et donc

$$\underbrace{\frac{\int_{0}^{2} f(y) - f(x)}{y - x}}_{\text{0}} \ge 0$$

donc l'égalité est vraie dans tous les cas.

ii. Pour tout $y \in I$ différent de x, on a

$$\frac{f(y) - f(x)}{y - x} \ge 0$$

en passant à la limite pour $y \to x$, on obtient finalement

$$f'(x) \ge 0$$

Le point x ayant été choisi quelconque au départ, l'inégalité est valable pour tout point $x \in I$.