8. Автоматы и преобразователи

Процесс распознавания и переработки цепочки символов можно рассматривать как процесс функционирования некоторого условного прибора.

Распознающий автомат имеет:

входную ленту, устройство чтения, устройство управления с конечной памятью, вспомогательную память.

Текущее состояние распознавателя называют конфигурацией. Для каждой конфигурации определены: состояние устройства управления (их конечное множество), положение устройства чтения, состояние вспомогательной памяти.

В множестве конфигураций выделяются начальная конфигурация и конечная конфигурация. Переход от одной конфигурации к другой осуществляется по тактам.

Распознаватель допускает входную цепочку, если он, обрабатывая эту цепочку начиная с начальной конфигурации, переходит в конечную конфигурацию за конечное число тактов.

Конечный автомат — простейший распознаватель без вспомогательной памяти. Используют следующее определение конечного автомата: $K = (Q, T, \delta, q_0, F)$, где

Q — конечное множество состояний устройства управления,

T — алфавит входных символов,

 δ — функция переходов (отображение $Q \times T \to Q$),

 $q_0 \in Q$ — начальное состояние,

 $F\subset Q$ — множество заключительных состояний.

Если функция δ — однозначная, то KA называют детерминированным. Если функция δ — многозначная, то KA называют недетерминированным.

Конфигурация автомата $(q, w) \in Q \times T^*$, при этом начальная конфигурация (q_0, w) и конечная конфигурация $(q, \varepsilon) \mid q \in F$. Здесь w — цепочка символов, которые еще не были обработаны.

Переходы от конфигурации к конфигурации обозначаются знаком ⊢.

Распознаватель $K = (Q, T, \delta, q_0, F)$ допускает входную цепочку $w \in T^*$, если $(q_0, w) \vdash (q, \varepsilon), q \in F$.

Язык, определяемый конечным автоматом K,

$$L(K) = \{ w \in T^* \mid (q_0, w) \vdash (q, \varepsilon), \ q \in F \}$$

Пример. Конечный автомат, допускающий цепочки из 0 и 1, в которых имеется подцепочка 11.

$$K=(\{q_0,q_1,q_2\},\{0,1\},\delta,q_0,\{q_2\})$$
 Функция переходов:
$$\delta(q_0,0)=\{q_0\},\quad \delta(q_0,1)=\{q_1\},\quad \delta(q_1,0)=\{q_0\},\\ \delta(q_1,1)=\{q_2\},\quad \delta(q_2,0)=\{q_2\},\quad \delta(q_2,1)=\{q_2\}$$

Часто функция переходов задается как таблица переходов или как диаграмма переходов.

Доказано, что **множество языков, допускаемых конечными автоматами, совпадает с множеством языков, порождаемых автоматными грамматиками.**

Конечный преобразователь анализирует цепочку символов на входной ленте и записывает другую цепочку символов на выходной ленте. По определению $M=(Q,T,D,\delta,q_0,F),$ где

Q — конечное множество состояний устройства управления,

T — алфавит входных символов,

D — алфавит выходных символов,

 δ — функция переходов (отображение $Q \times T \to Q$),

 $q_0 \in Q$ — начальное состояние,

 $F \subset Q$ — множество заключительных состояний.

Конфигурация конечного преобразователя $(q, x, y) \in Q \times T^* \times D^*$.

Цепочка символов $y \in D^*$ называется выходом для цепочки символов $x \in T^*$, если $(q_0, x, \varepsilon) \vdash (q, \varepsilon, y)$ для некоторого $q \in F$.

Автомат с магазинной памятью (МП-автомат) представляет собой конечный автомат, дополненный неограниченной памятью с доступом только к крайнему символу.

 $P = (Q, T, \Gamma, \delta, q_0, Z_0, F)$, где

Q — конечное множество состояний устройства управления,

T — алфавит входных символов,

 Γ — алфавит символов магазина,

 δ — функция переходов (отображение $Q \times T \times \Gamma \to Q \times \Gamma^*$),

 $q_0 \in Q$ — начальное состояние устройства управления,

 $Z_0 \in \Gamma$ — начальный символ в магазине,

 $F\subset Q$ — множество заключительных состояний.

Конфигурация МП-автомата: q — состояние устройства управления, x — необработанная часть входной цепочки и α — содержимое магазина.

Начальная конфигурация (q_0, w, Z_0) , заключительная конфигурация (q, ε, α) .

Такт работы $(q, x, \alpha) \vdash (q', x', \alpha')$.

МП-автомат допускает цепочку символов $w \in T^*$, если $(q_0, w, Z_0) \vdash^* (q, \varepsilon, \alpha)$ при некоторых $q \in F$ и $\alpha \in \Gamma^*$.

Язык, определяемый (допускаемый) МП-автоматом, образуют все распознаваемые им цепочки.

Пример. МП-автомат, допускающий язык $L = \{a^n b^n \mid n \ge 0\}.$

Во время работы МП-автомата операции над крайним символом в магазине не зависят от других символов в магазине.

Расширенные МП-автоматы допускают замену конечной цепочки крайних символов в магазине на другую конечную цепочку.

Множество языков, допускаемых автоматами с магазинной памятью, совпадает с множеством языков, порождаемых контекстно свободнымиграмматиками.

Преобразователь с магазинной памятью (МП-преобразователь) представляет собой МП-автомат, имеющий устройство записи символов на выходную ленту.

 $D = (Q, T, D, \Gamma, \delta, q_0, Z_0, F),$ где

Q — конечное множество состояний устройства управления,

T — алфавит входных символов,

D — алфавит выходных символов,

 Γ — алфавит символов магазина,

 δ — функция переходов (отображение $Q \times T \times \Gamma \to Q \times \Gamma^*$),

 $q_0 \in Q$ — начальное состояние устройства управления,

 $Z_0 \in \Gamma$ — начальный символ в магазине,

 $F\subset Q$ — множество заключительных состояний.

Конфигурация МП-преобразователя: q — состояние устройства управления, x — необработанная часть входной цепочки, α — содержимое магазина и y — цепочка символов на выходной ленте.

Пример. МП-преобразователь, переводящий арифметическое выражение в инфиксной форме в эквивалентную префиксную форму.