BERT

And other language models
Boris Zubarev

BERT

And other Sesame Street characters
Boris Zubarev

Language Model

GPT

Masking

Self-Attention

Masked Self-Attention

Masking

Source text

am

space

invader

Attention Scores

Masked Attention Scores

Attention Distribution

Time

0.11	0.04	0.05	0.3
0.19	0.53	0.42	0.37
0.81	0.21	0.05	0.09
0.51	0.43	0.12	0.03

Masking

→

Future

0.11	-inf	-inf	-inf
0.19	0.53	-inf	-inf
0.81	0.21	0.05	-inf
0.51	0.43	0.12	0.03

Softmax

1	0	0	0	
0.48	0.52	0	0	
0.45	0.21	0.34	0	
0.25	0.16	0.33	0.26	

BERT

- New task masked language modelling
- Bidirectional language model
- Auxiliary task next sentence prediction
- Deeper

The poor don't have any money

don't

have

Masking 15% tokens (20% of them by random token)

Masked Text The [MASK] don't have any [MASK]

Masked Text The [MASK] don't have any [MASK]

Target Text The poor don't have any money

BERT

Masked Text The [MASK] don't have any [MASK]

BERT

- 50% actually next sentence
- 50% randomly sampled from corpus
- NSP token [CLS]

- 50% actually next sentence
- 50% randomly sampled from corpus

- 50% actually next sentence
- 50% randomly sampled from corpus
- NSP token [CLS]
- Token for separating sentence [SEP]

- 50% actually next sentence
- 50% randomly sampled from corpus
- NSP token [CLS]

BERT Summary

- New data structure
- Weak training signal (masked 15% of tokens)
- Because of the weak signal is trained much longer
- Have auxiliary task
- But maybe it not necessary
- Because there are results that do not show improvements using NSP

RoBERTa

- More data, bigger batches, longer training
- Removing NSP
- Training on longer sequences
- Dynamically changing the masking pattern applied to the training data

Cross-layer parameter sharing

Factorized embedding parameterization

Sentence-order prediction

ALBERT Cross-layer parameter sharing

- Do you use 12 transformer layers?
- Better! We use **one** transformer layer and apply it 12 times!

Model		Parameters	ameters Layers Hidden Embe		Embedding	Parameter-sharing		
	base	108M	12	768	768	False		
BERT	large	334M	24	1024	1024	False		
	xlarge	1270M	24	2048	2048	False		
ALBERT	base	12M	12	768	128	True		
	large	18M	24	1024	128	True		
	xlarge	59M	24	2048	128	True		
	xxlarge	233M	12	4096	128	True		

Table 2: The configurations of the main BERT and ALBERT models analyzed in this paper.

Mod	lel	Parameters	SQuAD1.1	SQuAD2.0	MNLI	SST-2	RACE	Avg	Speedup
BERT	base	108M	90.5/83.3	80.3/77.3	84.1	91.7	68.3	82.1	17.7x
	large	334M	92.4/85.8	83.9/80.8	85.8	92.2	73.8	85.1	3.8x
	xlarge	1270M	86.3/77.9	73.8/70.5	80.5	87.8	39.7	76.7	1.0
ALBERT	base	12M	89.3/82.1	79.1/76.1	81.9	89.4	63.5	80.1	21.1x
	large	18M	90.9/84.1	82.1/79.0	83.8	90.6	68.4	82.4	6.5x
	xlarge	59M	93.0/86.5	85.9/83.1	85.4	91.9	73.9	85.5	2.4x
	xxlarge	233M	94.1/88.3	88.1/85.1	88.0	95.2	82.3	88.7	1.2x

Factorized embedding parameterization

Memory complexity: O(W x H)

$$W = 30000$$

 $H = 2048$
 $W \times H \approx 61M$

Factorized embedding parameterization

ALBERT Sentence-order prediction

Thanks for your Attention!

Boris Zubarev

