For fun problem:

suppose
$$f:A\to B,\,g:B\to C$$
 $g\circ f$ is injective what can you say about g and f similar question with $g\circ f$ surjective

Linear Independence:

Suppose
$$V$$
 a VS/F, and $v_1, \ldots, v_n \in V$

These vectors are called linearly independent when the only solution to

$$c_1v_1 + \ldots + c_nv_n = 0, c_i \in F$$
 is the trivial solution $c_1 = \ldots = c_n = 0$

If $S \subset V$ is a subset of V, we call S linearly independent when if $c_1v_1 + \ldots +$

$$c_n v_n = 0$$
 for some $c_i \in F, v_i \in S$ then $c_1 = \ldots = c_n = 0$

i.e. all finite collections of elements in S are linearly independent.

If
$$v_1, \ldots, v_n \in V$$
 then we define span $\{v_1, \ldots, v_n\} = \{c_1 v_1 + \ldots + c_n v_n \mid c_i \in V\}$

F = {linear combinations of $v_1 \dots v_n$ }

 $\operatorname{span}\{v_1\dots v_n\}$ is the smallest subspace of V that contains $v_1\dots v_n$

If $S \subset V$ is a subset

span $\{S\} = \{c_1v_1 + \ldots + c_nv_n \mid c_i \in F, v_i \in S\} = \{\text{finite linear combinations} \text{ of elements in } S\}$

Example

Have $V \in \mathbb{R}^2$, let's show that $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ is linearly independent and span of it is V

Proof. To prove
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} = v_1, \quad \begin{pmatrix} 0 \\ 1 \end{pmatrix} = v_2$$
 is linearly independent

Assume
$$c_1v_1+c_2v_2=\begin{pmatrix}0\\0\end{pmatrix}$$
 for some $c_1,c_2\in\mathbb{R}$
Need to show $c_1=c_2=0$

Yes this is true

To prove span $\{v_1, v_2\} = V$, we need to show that only vector in V can be

represented as a linear combination of
$$\begin{pmatrix} 1\\0 \end{pmatrix}$$
 and $\begin{pmatrix} 0\\1 \end{pmatrix}$
Pick $(x,y)\in V,\, xv_1+yv_2=(x,y)$

Still have $V \in \mathbb{R}^2$

$$V = \operatorname{span} \left\{ \begin{pmatrix} 3 \\ 1 \end{pmatrix}, \begin{pmatrix} 24 \\ -15 \end{pmatrix} \right\}$$

To prove this we would need to take $(x,y) \in V$, find $c_1,c_2 \in R$ so that

$$c_1 \begin{pmatrix} 3 \\ 1 \end{pmatrix} + c_2 \begin{pmatrix} 24 \\ -15 \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$
can do this by row reduction

$$\begin{bmatrix} 3 & 24 & | & x \\ 1 & -15 & | & y \end{bmatrix}$$

If we row reduce and get on solution, that means your set doesn't span all of V

We could also say
$$V = \text{span}\left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 15 \end{pmatrix}, \begin{pmatrix} \pi \\ -e \end{pmatrix} \right\}$$

turns out
$$V = \text{span}\left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 0 \end{pmatrix} \right\}$$
, the extra vectors are "redundant"

Linear Independence Facts

If $S \subset V$ contains exactly one element, then S is linearly dependent iff $S = \{0_v\}$

Proof.

 \rightarrow direction

Say $S=\{x\}$, we know $c\cdot x=0_v$, for some $c\neq 0$ (because S is independent), divided by $c,\,x=0_v$

 \leftarrow direction

If
$$S = \{0_v\}$$

$$1 \cdot 0_v = 0_v$$
 and $1 \neq 0$

So this is a nontrivial linear combination that gives 0_v

So S is dependent

Exercise

Find 3 vectors in \mathbb{R}^3 so that any pair of vectors is independent, but the set of all 3 is linearly dependent

Moral of the story:

If I want to prove S is linearly independent, I cannot split S into parts. Need to use the definition of linear independence on the entire S.

Fact:

If S_1 and S_2 are two subsets of V, and both S_1 and S_2 are linearly independent.

Then $S_1 \cap S_2$ is linearly independent $\rightleftharpoons \operatorname{span}\{S_1\} \cap \operatorname{span}\{S_2\} = \{0_v\}.$

Proof.

Trick: If $c_1x_1 + \ldots + c_nx_n \in \text{span}\{S_1\}$ and $d_1y_1 + \ldots + d_ny_n \in \text{span}\{S_2\}$ and they're equal, then $c_1x_1 + \ldots + c_nx_n - d_1y_1 - \ldots - d_ny_n = 0$

Example: Working with $V=C[0,\pi]$

prove that $\{sin, cos\}$ is linearly independent

To do that, assume $c_1 sin + c_2 cos = 0$

This means: For every $x \in [0, \pi]$, $c_1 sin(x) + c_2 cos(x) = 0_v(x) = 0$

Pick
$$x = 0$$
, $c_1 0 + c_2 1 = 0$ so $c_2 = 0$

Pick
$$x = \frac{\pi}{2}$$
, $c_1 1 + x_2 0 = 0$, so $c_1 = 0$

Fact: If $S \subset V$ and $\operatorname{span}\{S\} = V$

If $S \subset U \subset V$ then $\operatorname{span}\{U\} = V$

Fact: If $S \subset V$ and S is linearly independent

If $U \subset S$ then U is linearly independent

If
$$c_1x_1 + \ldots + c_nx_n = 0$$
, $(x_1 \ldots x_n \in U)$

Since $x_1 \dots x_n \in S$ and S is linearly independent

must have $c_1 = \ldots = c_n = 0$