[056 ∠			
	0	57	1

oue	13	IVI.	E3	4 1	
					-

Register					
Number					

V Semester Diploma Examination, Oct./Nov.-2019

APPLIED THERMAL ENGINEERING

Time	Time: 3 Hours] [Max.		
Note	: (i) Answer any six questions from Part - A, any seven questions from	Part – B.	
	(ii) Use of steam tables and mollier chart is permitted.		
	(iii) Assume any missing data suitably.		
	PART – A		
1.	Define the following terms:	5	
	(a) Saturation temperature		
	(b) Enthalpy of Evaporation (c) Superheated Steam	,	
	(d) Specific Volume of Wet Steam		
	(e) Dryness fraction of Steam		
2.	List out five comparisions between water tube and fire tube boilers.	5	
3.	Explain in detail the functions of "Safety Valve" and "Fusible Plug".	5	
4.	State the factors which affects the cooling of water in a cooling tower.	5	
5.	Sketch and label low level jet condenser.	5	
6.	Describe the velocity compounding of steam turbine.	5	
7.	Write the classification of air compressor.	5	
	1 of 4	[Turn over	

15M	E52T 2 of 4	105
8.	Define the following:	5
	(a) Refrigeration	
	(b) C.O.P.	
	(c) Relative humidity	
	(d) Den point depression	
	(e) Specific humidity	
9.	Explain winter air-conditioning system with a neat sketch.	5
	PART – B	
10.	Determine the Quantity of heat required to produce 1 kg of steam at a pressure of 6 bar and at a temperature of 25 °C, under the following conditions:	of
	(a) When the steam is wet having a dryness fraction of 0.9;	
	(b) When the steam is dry saturated;	
	(c) When it is superheated at a constant pressure to a temperature of 250 °C.	
	Assume the mean specific heat of superheated steam to be $2.3 \frac{kJ}{kg - {}^{\circ}k}$.	10
11.	The internal energy of 1 kg. of steam at pressure of 14 bar is 2420 kJ, calculate the dryness fraction of steam. Find the increase in internal energy if this steam superheated at constant pressure to a temp 295 °C. Take C _p of Superheated steam at 2.3 kJ/kg°k.	S
10	(a) With a neat sketch, explain separating type steam calorimeter.	5
12.		5
	(b) Distinguish between forced draught and induced draught.	
13.	Sketch and explain the working of a La-mount Boiler.	10
14.	(a) Explain types of steam nozzles and define the term "nozzle efficiency".	5
	(b) Compare merits and demerits of surface condenser over jet condenser.	5

A turbine having a set of 16 nozzles receives steam at 20 bar and 400 °C. The pressure of steam at the nozzle exit is 12 bar. If the discharge rate is 260 kg/min and the nozzle efficiency is 90%, calculate the Cross-sectional area at the nozzle exit. If the steam has a velocity of 80 m/sec. at entry to the nozzle, find the percentage increase in discharge.

16. The velocity of steam at inlet to a simple impulse turbine is 1000 m/s and the nozzle angle is 20°. The mean blade speed is 400 m/s and the blades are symmetrical. The mass flow rate of steam is 0.75 kg/sec. The friction effects on the blades are negligible.

Estimate:

- (a) the blade angles
- (b) tangential force on the blades
- (c) axial thrust
- (d) the diagram power,
- (e) the diagram efficiency

10

17. Steam flows from the nozzle of an impulse turbine with a velocity of 730 m/sec. and enters a ring of blades having a mean velocity of 180 m/sec. The nozzle angle is 20° and outlet blade angle is 25°. Steam flows at the rate of 1.2 kg/sec. Take blade velocity co-efficient as 0.72.

Determine:

- (a) Blade efficiency
- (b) Power developed
- (c) Energy lost in the blades / sec:

10

[Turn over

i

18. A single acting, single stage reciprocating air compressor has a bore of 200 mm and stroke of 300 mm. It runs at a speed of 500 rpm. Air is compressed according to law PV^{1.3} = C, from a pressure of 97 kPa and compression pressure is 550 kPa. It is delivered at this pressure. The initial temperature is 20 °C. Determine the delivery temperature, amount of air delivered and the power required to drive the compressor. Neglect clearance.

	Tak	$e R = 0.29 \frac{RJ}{kg - {}^{\circ}k}.$	10
19.	(a)	Explain with a neat sketch, the vapour compression refrigeration system.	5
	(b)	Differentiate between impulse and reaction Turbine	. 5