1/24

Lecture 2

Basic dynamical systems theory I

AEM-ADV12 Hydrodynamic stability
Dr Yongyun Hwang

Lecture outline 2/24

- 1. Phase portrait and equilibria
- 2. Linear stability analysis

ecture outline	3/24
Phase portrait and equilibria	
cres -natility amilyet	

Equilibrium point (or fixed point)

5/24

Definition: Equilibrium point

 $\overline{\mathbf{x}}$ is an equilibrium point if $\mathbf{x}(t) = \overline{\mathbf{x}}$ is a solution of the given dynamical system such that

 $f(\overline{x}) = 0$

Gready Solution.

Equilibrium point (or fixed point)

6/24

Example 1: Nonlinear pendulum

$$\dot{x} = y$$
 and $\dot{y} = \sin x$

Let $\ddot{x} = \ddot{y} = 0$. Then y = 0, $\sin x = 0$.

i κ=0, ±π, ±2π, ±3π, ...

Equitibrium points

(0,0), (±12,0), (±22,0)

ecture outline	8/24
2. Linear stability analysis	

Jacobian linearisation

9/24

Jacobian linearisation

> EK(1, 8x ~OCI)

Let \overline{x} be an equilibrium point such that $f(\overline{x}) = 0$. Consider a small perturbation $\delta \mathbf{x}$, i.e. $\mathbf{x} = \overline{\mathbf{x}} + \boldsymbol{\varepsilon} \delta \mathbf{x}$, then the given nonlinear system is approximated by the following linear dynamical system:

$$\frac{d\delta \mathbf{x}}{dt} = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \bigg|_{\mathbf{x} = \bar{\mathbf{x}}} \delta \mathbf{x}$$

Remark

Linear dynamical system is much easier to analyse.

$$\frac{d\overline{z} + \epsilon s \kappa}{dt} = f(\overline{z} + \epsilon s \kappa)$$

$$\frac{d s \kappa}{dt} = f(\overline{z} + \epsilon s \kappa)$$

$$\frac{d s \kappa}{dt} = f(\overline{z} + \epsilon s \kappa)$$

Jacobian linearisation

10/24

Example 1

Find the linearised system around the equilibrium point.

$$\frac{3}{3} \left[\frac{6x}{3} \right] = \left[\frac{3f_1}{3x} \frac{3f_1}{3y} \right] \left[\frac{6x}{3y} \right] \left[\frac{6x}{3y} \right]$$

Linearisation of Navier-Stokes equation

11/24

Example 2: Linearised Navier-Stokes equation

Find the linearised equation around an equilibrium point (basic state) given by U

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla p + \frac{1}{\text{Re}} \nabla^2 \mathbf{u}$$
$$\nabla \cdot \mathbf{u} = 0$$

Let
$$u = U + \varepsilon u'$$
 and $p = P + \varepsilon p'$

Figurial point

At () (6)

Linearised N-S equations

Linear instability

12/24

Definition: Linear instability or stability

k has point.

alled (Gtate)

If the linearised dynamical system around the given basic state $\overline{\mathbf{x}}$ has a solution such that $\|\mathbf{\delta x}\| \to \infty$ as $t \to \infty$, the basic state is called linearly unstable.

17 two dimensional.

Linear stability of a planar dynamical system

13/24

Let the linearised system around the basic state $\overline{\mathbf{x}}$ be

$$\frac{d\delta \mathbf{x}}{dt} = \mathbf{A} \, \delta \mathbf{x} \quad \text{where} \quad \mathbf{A} = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \bigg|_{\mathbf{x} = \overline{\mathbf{x}}}$$

Hormal mode solution: Sx = ext sx

Asic = Asic Eigenvalue problem for A.

A. A. and Sic., Sic.

Pergenvalues.

From initial end of the Sic. + Ca exit Sic.

eigenvectors

Re(1) or Re(1)>0., 118211 → 00. 06 t→00 = Linearly unstable

14/24

Case I

 λ_1,λ_2 are both real, and $\lambda_1 \neq \lambda_2$. The two corresponding eigenvectors \mathbf{V}_1 and \mathbf{V}_2 are then linearly independent.

 $i) \lambda_1, \lambda_2 < 0, |\lambda_1| > |\lambda_2|$

This type

Eguilibrium

mable 11

Node

15/24

Case I

 λ_1,λ_2 are both real, and $\lambda_1 \neq \lambda_2$. The two corresponding eigenvectors $\mathbf{v_i}$ and $\mathbf{v_2}$ are then linearly independent.

$$ii) \lambda_1, \lambda_2 > 0, |\lambda_1| > |\lambda_2|$$

16/24

Case 1

 λ_1,λ_2 are both real, and $\lambda_1 \neq \lambda_2$. The two corresponding eigenvectors \mathbf{V}_1 and \mathbf{V}_2 are then linearly independent.

$$iii) \lambda_2 < 0 < \lambda_1$$

Saddle.

17/24

Case II

 $\lambda_{\!_1}, \lambda_{\!_2}$ are both real, and $\ \lambda_{\!_1} = \lambda_{\!_2}$.

 $i) \operatorname{rank}(\mathbf{A} - \lambda \mathbf{I}) = 0$

eigenvector space is full rank. 2-dimensional

Phase portrait of 2D linear system Case II λ_1, λ_2 are both real, and $\lambda_1 = \lambda_2$. $ii) \operatorname{rank}(\mathbf{A} - \lambda \mathbf{I}) = 1$ One engenvector \mathbf{exicts} . \mathbf{exicts} . \mathbf{exicts} .

19/24

Case III

 λ_1,λ_2 are both complex such that $\ \lambda_1=lpha\pm ieta,\lambda_2=lpha-ieta$

 $i)\alpha = 0$

0

Where

$$\Theta = \tan^{-1}\left(\frac{\kappa}{\kappa_i}\right)$$

20/24

Case III

 λ_1,λ_2 are both complex such that $\ \lambda_1=\alpha\pm ieta,\lambda_2=\alpha-ieta$

21/24

Case III

focus.

 λ_1,λ_2 are both complex such that $\lambda_1=\alpha\pm ieta,\lambda_2=\alpha-ieta$

 $iii) \alpha < 0$ Gtable

21

22/24

Example: Unforced duffing equation

$$\ddot{x} + \dot{x} - x + x^3 = 0$$

$$(x, =)\hat{x}_1 = x_2$$

$$\hat{\mathcal{K}}_2 = \mathcal{K}_1 - \mathcal{K}_1^3 - \mathcal{K}_2.$$

$$\frac{\partial f}{\partial x}\Big|_{x=\overline{x}} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \quad \lambda_1 = -\frac{1}{2} + \frac{\sqrt{5}}{2} > 0$$

$$\lambda_2 = -\frac{1}{2} - \frac{\sqrt{5}}{2} < 0$$

$$\lambda_3 = -\frac{1}{2} - \frac{\sqrt{5}}{2} < 0$$

$$\frac{\partial}{\partial z} = (\pm 1.0)$$

$$\frac{\partial}{\partial z} = \begin{bmatrix} 0 & 1 & 1 \\ -2 & -1 & 1 \end{bmatrix} \quad \text{Re} (\lambda_1, \lambda_2) < 0 \quad \text{Grable} \quad \text{focus}$$

Summary 24/24

- 1. Phase portrait and equilibria
- 2. Linear stability analysis