

CURSO DE ENGENHARIA DE SOFTWARE

Disciplina: Sistemas Operacionais

Comunicação e Sincronização entre Processos

Prof. M.e Alexandre Tannus

Anápolis - 2021. Associação Educativa Evandélica

Introdução

Algoritmos de Escalonamento

Questionamentos

- ► Como o sistema operacional escolhe os processos para execução?
- Quais algoritmos podem ser utilizados?
- Quais impactos cada algoritmo pode trazer para o desempenho geral do sistema?

Introdução

Algoritmos de Escalonamento

Relembrando - Transições de Estado

Relembrando - Estrutura do processo

Relembrando - Estrutura de thread

Relembrando - Troca de Contexto

Escalonamento de Processos

- Sistemas monoprocessados
 - ► Execução de um processo por vez
 - Outros processos devem aguardar a liberação da CPU
 - Problema: desperdício de uso da CPU

- Multiprogramação
 - ▶ Possibilidade de aumentar a eficiência no uso da CPU

Escalonamento de Processos

- Escalonador
 - ► Parte do sistema soperacional resposável pela escolha do processo que será executado em um dado momento.
 - ▶ Seleciona um processo na lista de *Pronto* e aloca a CPU a esse processo

- ► Algoritmo de escalonamento
 - Método utilizado pelo sistema operacional para realizar a escolha

Quando escalonar um processo?

- 1. Quando um novo processo é criado.
- 2. Quando ocorre uma interrupção.
- 3. Quando um processo é bloqueado por uma operação de E/S.
- 4. Quando um processo termina.

Formas de escalonamento

- ▶ Não Preemptivo
 - Execução de um processo selecionado até
 - Finalização do processo
 - Bloqueio do processo por E/S
 - Liberação voluntária da CPU pelo processo

- Preemptivo
 - Execução de um processo selecionado por um tempo fixo
 - Suspensão do processo ao final do tempo e seleção de outro processo para execução

Despachante (dispatcher)

▶ Módulo que passa o controle da CPU ao processo selecionado pelo escalonador

- ► Responsável pela troca de contexto
- Latência do despacho
 - ▶ Tempo necessário para interrupção de um processo e inicialização de outro processo
 - Deve ser o mais rápido possível

Objetivos - Todos os sistemas

- Imparcialidade
 - ► Todo processo recebe o mesmo tempo de CPU

- ► Imposição da política
 - Garantir a execução da política

- ▶ Balanceamento de carga
 - Manter a ocupação de todas as partes do sistema

Objetivos - Sistemas de lotes

- ► Taxa de saída (throughput)
 - ► Maximização do número de jobs por unidade de tempo

- ► Tempo de retorno (turnaround)
 - Minimizar tempo entre envio e término de uma tarefa

- Utilização da CPU
 - Otimização do tempo de uso da CPU

Objetivos - Sistemas interativos

- ► Tempo de resposta
 - Rápido atendimento das requisições

- Proporcionalidade
 - ► Atender às expectativas dos usuários

Objetivos - Sistemas de tempo real

- Cumprimento de prazos
 - ► Evitar perda de dados

- Previsibilidade
 - ► Evitar degradação de qualidade

Introdução

Algoritmos de Escalonamento

Algoritmos de Escalonamento

- ▶ Primeiro a chegar, primeiro a ser servido (First Come, First Served FCFS)
- ► Tarefa mais curta primeiro (Shortest Job First SJF)
- Por prioridades
- Round Robin
- Filas Multiníveis

First Come, First Served - FCFS

- ► Algoritmo preemptivo
- ▶ Processo que solicita a CPU primeiro será executado primeiro

<u>Processo</u>	<u>Duração do Pico</u>
P_1	24
P_2	3
P_3	3
P ₁	P ₂ P ₃ 24 27 30

Shortest Job First - SJF

- ► Algoritmo não preemptivo
- ▶ Seleciona o processo com tempo de execução mais curto para ser executado

<u>Processo</u>	<u>Tempo de Chegada</u>	<u>Duração do Pico</u>
P_1	0	8
P_2	1	4
P_3	2	9
P_4	3	5
$\begin{bmatrix} P_1 & P_2 \\ 0 & 1 \end{bmatrix}$	P ₄ P ₁ 17	P ₃ 26

Escalonamento por Prioridade

JniEVANGÉLICA ENTRO UNIVERSITÁRIO

- ► Algoritmo não preemptivo
- ► Seleciona o processo com base em prioridades estabelecidas
- ▶ Prioridades podem ser estáticas ou dinâmicas

<u>Processo</u>	<u>Duração do Pico</u>	<u>Prioridade</u>
P_1	10	3
P_2	1	1
P_3	2	4
P_4	1	5
P_5	5	2
P ₂ P ₅	P ₁	P ₃ P ₄

Round Robin

- ► Algoritmo não preemptivo
- ► Similar ao FCFS, mas com tempo limitado para cada processo (quantum)

<u>Processo</u>	<u>Duração do Pico</u>
P_1	24
P_2	3
P_3	3
P ₁ P ₂ P ₃ P ₁ 0 4 7 10	P ₁ P ₁ P ₁ P ₁ P ₁ P ₁ 14 18 22 26 30

Impacto do *quantum* de tempo

Bibliografia

- ➤ SILBERSCHATZ, A.; GALVIN, P. B.; GAGNE, G.. Fundamentos de sistemas operacionais: princípios básicos. Rio de Janeiro: LTC Livros Técnicos e Científicos, 2013.
- ► TANENBAUM, A.S., WOODHULL, A.S. **Sistemas Operacionais.** Porto Alegre: Grupo A, 2008.

