The Lean library file group.lean reformulated in ForTheL and pretty-printed

Peter Koepke

June 7, 2019

This file is a ForTheL version of the first half of https://github.com/leanprover/lean/blob/master/library/init/algebra/group.lean The second half is similar, with additive instead of multiplicative notation.

Preliminaries

Signature 1. A type is a class. Let α stand for a type. Let a:t stand for a is an element of t.

Semigroups

Signature 2. A type with multiplication is a type. Let α be a type with multiplication and $a, b : \alpha$. $a *^{\alpha} b$ is an element of α .

[synonym semigroup/-s]

Definition 1. A semigroup is a type with multiplication α such that for all $a, b, c : \alpha \ (a *^{\alpha} b) *^{\alpha} c = a *^{\alpha} (b *^{\alpha} c)$.

Definition 2. A commutative semigroup is a semigroup α such that for all $a, b : \alpha \ a *^{\alpha} b = b *^{\alpha} a$.

Definition 3. A semigroup with left cancellation is a semigroup α such that for all $a, b, c : \alpha$ $a *^{\alpha} b = a *^{\alpha} c \Rightarrow b = c$.

Definition 4. A semigroup with right cancellation is a semigroup α such that for all $a, b, c : \alpha$ $a *^{\alpha} b = c *^{\alpha} b \Rightarrow a = c$.

Signature 3. A type with one is a type. Assume α is a type with one. 1^{α} is an element of α .

Definition 5. A monoid is a semigroup α such that α is a type with one and $\forall a : \alpha \ 1^{\alpha} *^{\alpha} a = a \ and \ \forall a : \alpha \ a *^{\alpha} 1^{\alpha} = a$.

Definition 6. A commutative monoid is a monoid that is a commutative semigroup.

Signature 4. A type with inverses is a type.

Signature 5. Assume α is a type with inverses and $a:\alpha$. $a^{-1,\alpha}$ is an element of α .

0.0.1 Groups

Definition 7. A group is a monoid α such that α is a type with inverses and for all $a: \alpha \ a^{-1,\alpha} *^{\alpha} a = 1^{\alpha}$.

Definition 8. A commutative group is a group that is a commutative monoid.

Lemma 1 (mul left comm). Let α be a commutative semigroup. Then for all $a, b, c : \alpha$ $a *^{\alpha} (b *^{\alpha} c) = b *^{\alpha} (a *^{\alpha} c)$.

Lemma 2 (mul right comm). Let α be a commutative semigroup. Then for all $a, b, c : \alpha$ $a *^{\alpha} (b *^{\alpha} c) = a *^{\alpha} (c *^{\alpha} b)$.

Lemma 3 (mul left cancel iff). Let α be a semigroup with left cancellation. Then for all $a, b, c : \alpha$ $a *^{\alpha} b = a *^{\alpha} c \leftrightarrow b = c$.

Lemma 4 (mul right cancel iff). Let α be a semigroup with right cancellation. Then for all $a, b, c : \alpha$ $b *^{\alpha} a = c *^{\alpha} a \leftrightarrow b = c$.

Let α denote a group.

Lemma 5 (inv mul cancel left). For all $a, b : \alpha \ a^{-1,\alpha} *^{\alpha} (a *^{\alpha} b) = b$.

Lemma 6 (inv mul cancel right). For all $a, b : \alpha \ a *^{\alpha} (b^{-1,\alpha} *^{\alpha} b) = a$.

Lemma 7 (inv eq of mul eq one). Let $a, b: \alpha$ and $a *^{\alpha} b = 1^{\alpha}$. Then $a^{-1,\alpha} = b$.

Lemma 8 (one inv). $(1^{\alpha})^{-1,\alpha} = 1^{\alpha}$.

Lemma 9 (inv inv). Let $a:\alpha$. Then $(a^{-1,\alpha})^{-1,\alpha}=a$.

Lemma 10 (mul right inv). Let $a:\alpha$. Then $a*^{\alpha}a^{-1,\alpha}=1^{\alpha}$.

Lemma 11 (inv inj). Let $a, b : \alpha$ and $a^{-1,\alpha} = b^{-1,\alpha}$. Then a = b.

Lemma 12 (group mul left cancel). Let $a, b, c : \alpha$ and $a *^{\alpha} b = a *^{\alpha} c$. Then b = c.

Lemma 13 (group mul right cancel). Let $a, b, c : \alpha$ and $a *^{\alpha} b = c *^{\alpha} b$. Then a = c.

Proof.
$$a = (a *^{\alpha} b) *^{\alpha} b^{-1,\alpha} = (c *^{\alpha} b) *^{\alpha} b^{-1,\alpha} = c.$$

Lemma 14 (mul inv cancel left). Let $a, b : \alpha$. Then $a *^{\alpha} (a^{-1,\alpha} *^{\alpha} b) = b$.

Lemma 15 (mul inv cancel right). Let $a, b : \alpha$. Then $(a *^{\alpha} b) *^{\alpha} b^{-1,\alpha} = a$.

Lemma 16 (mul inv rev). Let $a, b : \alpha$. Then $(a *^{\alpha} b)^{-1,\alpha} = b^{-1,\alpha} *^{\alpha} a^{-1,\alpha}$.

Proof.
$$(a *^{\alpha} b) *^{\alpha} (b^{-1,\alpha} *^{\alpha} a^{-1,\alpha}) = 1^{\alpha}.$$

Lemma 17 (eq inv of eq inv). Let $a, b : \alpha$ and $a = b^{-1,\alpha}$. Then $b = a^{-1,\alpha}$.

Lemma 18 (eq inv of mul eq one). Let $a, b : \alpha$ and $a *^{\alpha} b = 1^{\alpha}$. Then $a = b^{-1,\alpha}$.

Lemma 19 (eq mul inv of mul eq). Let $a, b, c : \alpha$ and $a *^{\alpha} c = b$. Then $a = b *^{\alpha} c^{-1,\alpha}$.

Lemma 20 (eq inv mul of mul eq). Let $a, b, c: \alpha$ and $b *^{\alpha} a = c$. Then $a = b^{-1,\alpha} *^{\alpha} c$.

Lemma 21 (inv mul eq of eq mul). Let $a, b, c : \alpha$ and $b = a *^{\alpha} c$. Then $a^{-1,\alpha} *^{\alpha} b = c$.

Lemma 22 (mul inv eq of eq mul). Let $a,b,c:\alpha$ and $a=c*^{\alpha}b$. Then $a*^{\alpha}b^{-1,\alpha}=c$.

Lemma 23 (eq mul of mul inv eq). Let $a, b, c : \alpha$ and $a *^{\alpha} c^{-1,\alpha} = b$. Then $a = b *^{\alpha} c$.

Lemma 24 (eq mul of inv mul eq). Let $a, b, c : \alpha$ and $b^{-1,\alpha} *^{\alpha} a = c$. Then $a = b *^{\alpha} c$.

Lemma 25 (mul eq of eq inv mul). Let $a,b,c:\alpha$ and $b=a^{-1,\alpha}*^{\alpha}c$. Then $a*^{\alpha}b=c$.

Lemma 26 (mul eq of eq mul inv). let $a,b,c:\alpha$ and $a=c*^{\alpha}b^{-1,\alpha}$. Then $a*^{\alpha}b=c$.

Lemma 27 (mul inv). Let α be a commutative group. Let $a, b : \alpha$. Then $(a *^{\alpha} b)^{-1,\alpha} = a^{-1,\alpha} *^{\alpha} b^{-1,\alpha}$.