UNIVERSIDADE FEDERAL DE VIÇOSA CIÊNCIA DA COMPUTAÇÃO

INTRODUÇÃO AOS SISTEMAS LÓGICOS DIGITAIS TRABALHO PRÁTICO CODIFICADOR MORSE

FLORESTAL 2018 Este trabalho prático consiste na implementação de um codificador Morse capaz de converter um número (de 0 a 9) em seu sinal correspondente no código Morse.

O trabalho foi realizado em grupo pelos seguintes alunos:

- Yuri Dimitre 3485
- Samuel Pedro 3494
- William Lucas 3472
- Marcos Túlio 3504

Todo o desenvolvimento dos módulos e esquemas no <u>Logisim</u> se encontram disponibilizados no GitHub: <u>https://github.com/Numb4r/codigo-morse-verilog</u> e se encontram licenciados pela licença GPL v3.0.

Tabela da Verdade

Inicialmente no desenvolvimento do módulo foi realizado o levantamento das equações booleanas para cada saída através da tabela da verdade utilizando mapas de Karnaugh.

Α	В	С	D	S1	S2	S3	S4	S5
0	0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0	0
0	0	1	0	1	1	0	0	0
0	0	1	1	1	1	1	0	0
0	1	0	0	1	1	1	1	0
0	1	0	1	1	1	1	1	1
0	1	1	0	0	1	1	1	1
0	1	1	1	0	0	1	1	1
1	0	0	0	0	0	0	1	1
1	0	0	1	0	0	0	0	1
1	0	1	0	Х	Х	Х	Х	Х
1	0	1	1	Х	Х	Х	Х	Х
1	1	0	0	Х	Х	Х	Х	Х
1	1	0	1	Х	Х	Х	Х	Х
1	1	1	0	Х	Х	Х	Х	Х
1	1	1	1	Х	х	х	Х	Х

Ps: Traço = 0

Ponto = 1.

1. Mapas de cada saída:

S1:	C'.D'	C'.D	C.D	C.D'
A'.B'	0	1	1	1
A'.B	1	1	0	0
A.B	х	X	Х	X
A.B'	0	0	Х	Х

S2:	C'.D'	C'.D	C.D	C.D'
A'.B'	0	0	1	1
A'.B	1	1	0	1
A.B	X	Х	Х	Х
A.B'	0	0	Х	Х

S3:	C'.D'	C'.D	C.D	C.D'
A'.B'	0	0	1	0
A'.B	1	1	1	1
A.B	х	Χ	Х	Х
A.B'	0	0	Х	Х

$$S2 = B'.C + C.D' + B.C$$

$$S3 = B + C.D$$

S4:	C'.D'	C'.D	C.D	C.D'
A'.B'	0	0	0	0
A'.B	1	1	1	1
A.B	X	Χ	X	Х
A.B'	1	0	X	X

$$S4 = B + A.D'$$

S5:	C'.D'	C'.D	C.D	C.D'
A'.B'	0	0	0	0
A'.B	0	1	1	1
A.B	Х	X	Х	X
A.B'	1	1	Х	Х

$$S5 = A + B.D + B.C$$

2. Formas Canônicas:

a. Soma de Produtos:

S1
$$(A,B,C,D) = \sum m(1, 2, 3, 4, 5)$$

S2
$$(A,B,C,D) = \sum m(2, 3, 4, 5, 6)$$

S3
$$(A,B,C,D) = \sum m(3, 4, 5, 6, 7)$$

S4 (A,B,C,D) =
$$\sum m(4, 5, 6, 7, 8)$$

S5
$$(A,B,C,D) = \sum m(5, 6, 7, 8, 9)$$

b. Produto das Somas:

S1 (A,B,C,D) =
$$\pi$$
m(0, 6, 7, 8, 9)

S2 (A,B,C,D) =
$$\pi$$
m (0, 1, 7, 8, 9)

S3 (A,B,C,D) =
$$\pi$$
m (0, 1, 2, 8, 9)

S4 (A,B,C,D) =
$$\pi$$
m (0, 1, 2, 3, 9)

S5 (A,B,C,D) =
$$\pi$$
m (0, 1, 2, 3, 4)

3. Mintermos:

$$S1 = A'B'C'D + A'B'CD' + A'B'CD + A'BC'D' + A'BC'D$$

$$S3 = A'B'CD + A'BC'D' + A'BC'D + A'BCD' + A'BCD$$

$$S5 = A'BC'D + A'BCD' + A'BCD + AB'C'D' + AB'C'D$$

4. Maxtermos

$$S1 = (A + B + C + D) (A + B' + C' + D) (A + B' + C' + D') (A' + B + C + D) (A' + B + C + D')$$

$$S2 = (A + B + C + D) (A + B + C + D') (A + B' + C' + D') (A' + B + C + D) (A' + B + C + D')$$

$$S3 = (A + B + C + D) (A + B + C + D') (A + B + C' + D) (A' + B + C + D) (A + B + C + D')$$

$$S4 = (A + B + C + D) (A + B + C + D') (A + B + C' + D) (A + B + C' + D') (A' + B + C + D')$$

$$S5 = (A + B + C + D) (A + B + C + D') (A + B + C' + D) (A + B + C' + D') (A + B' + C + D)$$

5. Formas de onda

6. Circuito simplificado com portas lógicas no *LOGISIM*

7. Implementação em FPGA

A implementação em FPGA foi realizada com sucesso com o auxílio do monitor da disciplina em um modelo de FPGA Altera DE2-115 e seguiu os seguintes critérios:

- A codificação do código de binário para Morse apenas iniciará quando o switch correspondente ao ready estiver ativo.
- Em caso da entrada em binário for superior ou igual ao número 1010(10 em decimal), a entrada será considerada como invalida para a conversão e assim nenhum led ficará ativo.
- Caso o switch correspondente ao reset seja ativado, todas as saídas serão zeradas e permanecerão assim até que o mesmo seja desativado.

As seguintes imagens ilustram o funcionamento exato do modulo de FPGA com o codificador implementado:

Exemplo da conversão do número 1:

Exemplo da conversão do número 2:

Exemplo da codificação do número 3:

Exemplo da codificação do número 4:

Exemplo da codificação do número 5:

Exemplo de codificação do número 6:

Exemplo de codificação do número 7:

Exemplo de codificação do número 8:

Exemplo de codificação do número 9:

Exemplo de reset ativado:

Exemplo de entrada inválida(superior a 9):

8. Agradecimentos

Agradecimento especial para o monitor Lucas Duarte. Todas as aulas de monitoria foram de extrema relevância para a realização do trabalho com êxito.