1

EE25BTECH11019 - Darji Vivek M.

Question:

 $\mathbf{B} - \mathbf{A} = 3\mathbf{i} - \mathbf{j} + \mathbf{k}$ and $\mathbf{D} - \mathbf{C} = -3\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}$ are two vectors. The position vectors of the points \mathbf{A} and \mathbf{C} are $6\mathbf{i} + 7\mathbf{j} + 4\mathbf{k}$ and $-9\mathbf{j} + 2\mathbf{k}$, respectively. Find the position vectors of a point \mathbf{P} on the line \mathbf{AB} and a point \mathbf{Q} on the line \mathbf{CD} such that $\mathbf{Q} - \mathbf{P}$ is perpendicular to both $\mathbf{B} - \mathbf{A}$ and $\mathbf{D} - \mathbf{C}$.

(10, 2021)

Solution:

Symbol	Meaning
a	$\begin{pmatrix} 6 \\ 7 \\ 4 \end{pmatrix}$ (position vector of A)
c	$\begin{pmatrix} 0 \\ -9 \\ 2 \end{pmatrix}$ (position vector of C)
\mathbf{d}_1	$\begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} $ (direction of B – A)
\mathbf{d}_2	$\begin{pmatrix} -3\\2\\4 \end{pmatrix} \text{ (direction of } \mathbf{D} - \mathbf{C})$
λ, μ	Parameters for P , Q on AB , CD respectively

TABLE 0: Variables Used

Matrix Method:

Points on the lines can be written as

$$\mathbf{P} = \mathbf{a} + \lambda \mathbf{d}_1, \qquad \mathbf{Q} = \mathbf{c} + \mu \mathbf{d}_2. \tag{1}$$

Then

$$\mathbf{Q} - \mathbf{P} = (\mathbf{c} - \mathbf{a}) + \mu \mathbf{d}_2 - \lambda \mathbf{d}_1. \tag{2}$$

Perpendicularity to both \mathbf{d}_1 and \mathbf{d}_2 gives

$$\mathbf{d}_{1}^{\mathsf{T}}(\mathbf{Q} - \mathbf{P}) = 0, \qquad \mathbf{d}_{2}^{\mathsf{T}}(\mathbf{Q} - \mathbf{P}) = 0. \tag{3}$$

This yields the 2×2 linear system

$$\underbrace{\begin{pmatrix} \mathbf{d}_{1}^{\mathsf{T}} \mathbf{d}_{1} & \mathbf{d}_{1}^{\mathsf{T}} \mathbf{d}_{2} \\ \mathbf{d}_{2}^{\mathsf{T}} \mathbf{d}_{1} & \mathbf{d}_{2}^{\mathsf{T}} \mathbf{d}_{2} \end{pmatrix}}_{Gram matrix G} \begin{pmatrix} \lambda \\ \mu \end{pmatrix} = - \begin{pmatrix} \mathbf{d}_{1}^{\mathsf{T}} (\mathbf{c} - \mathbf{a}) \\ \mathbf{d}_{2}^{\mathsf{T}} (\mathbf{c} - \mathbf{a}) \end{pmatrix}. \tag{4}$$

Compute the required dot products:

$$\mathbf{d}_{1} = \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}, \quad \mathbf{d}_{2} = \begin{pmatrix} -3 \\ 2 \\ 4 \end{pmatrix}, \quad \mathbf{c} - \mathbf{a} = \begin{pmatrix} -6 \\ -16 \\ -2 \end{pmatrix}.$$

$$\mathbf{d}_{1}^{\mathsf{T}} \mathbf{d}_{1} = 11, \quad \mathbf{d}_{2}^{\mathsf{T}} \mathbf{d}_{2} = 29, \quad \mathbf{d}_{1}^{\mathsf{T}} \mathbf{d}_{2} = \mathbf{d}_{2}^{\mathsf{T}} \mathbf{d}_{1} = -7,$$

$$\mathbf{d}_{1}^{\mathsf{T}} (\mathbf{c} - \mathbf{a}) = -4, \quad \mathbf{d}_{2}^{\mathsf{T}} (\mathbf{c} - \mathbf{a}) = -22.$$
(5)

Hence, from (??),

$$\begin{pmatrix} 11 & -7 \\ -7 & 29 \end{pmatrix} \begin{pmatrix} \lambda \\ \mu \end{pmatrix} = \begin{pmatrix} 4 \\ 22 \end{pmatrix}. \tag{6}$$

Solving,

$$\lambda = -1, \qquad \mu = 1. \tag{7}$$

Therefore,

$$\mathbf{P} = \mathbf{a} + \lambda \mathbf{d}_1 = \begin{pmatrix} 6 \\ 7 \\ 4 \end{pmatrix} - \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 8 \\ 3 \end{pmatrix}, \tag{8}$$

$$\mathbf{Q} = \mathbf{c} + \mu \mathbf{d}_2 = \begin{pmatrix} 0 \\ -9 \\ 2 \end{pmatrix} + \begin{pmatrix} -3 \\ 2 \\ 4 \end{pmatrix} = \begin{vmatrix} -3 \\ -7 \\ 6 \end{vmatrix}. \tag{9}$$

Verification:

$$\mathbf{Q} - \mathbf{P} = \begin{pmatrix} -6 \\ -15 \\ 3 \end{pmatrix}, \quad \mathbf{d}_{1}^{\mathsf{T}}(\mathbf{Q} - \mathbf{P}) = 0, \quad \mathbf{d}_{2}^{\mathsf{T}}(\mathbf{Q} - \mathbf{P}) = 0, \tag{10}$$

confirming $\mathbf{Q} - \mathbf{P} \perp \mathbf{B} - \mathbf{A}$ and $\mathbf{Q} - \mathbf{P} \perp \mathbf{D} - \mathbf{C}$.

Fig. 0.1: plot