1 Background

The Golang source for the log() function¹ states that the natural log is computed in three parts

1.1 Argument Reduction

Find k and f such that

$$x = 2^k \left(1 + f \right)$$

where $\frac{\sqrt{2}}{2} < 1 + f < \sqrt{2}$.

1.2 Approximation of log(1+f)

Let $s = \frac{f}{2+f}$, based on

$$\log(1+f) = \log(1+s) - \log(1-s)$$

$$= 2s + \frac{2}{3}s^3 + \frac{2}{5}s^5 + \cdots$$

$$= 2s + sR(s)$$

Use a special Reme² algorithm on [0, 0.1716] to generate a polynomial of degree 14 to approximate R. This approximation is given by³

$$R(z) \approx L_1 s^2 + L_2 s^4 + L_3 s^6 + L_4 s^8 + L_5 s^{10} + L_6 s^{12} + L_7 s^{14}$$

with maximum error $2^{-58.45}$.

1.3 Combining

Finally

$$\log(x) = k \log(2) + \log(1+f)$$

$$= kH + \left(f - \left(\frac{f^2}{2} - \left(s\left(\frac{f^2}{2} + R\right) + kL\right)\right)\right)$$

where

$$\log(2) = H + L$$

splits as high and low parts

$$H=2^{-1}\cdot \texttt{1.62e42fee00000}_{16}$$

$$L=2^{-1}\cdot \texttt{0.000000001a39ef35793c76}_{16}=2^{-33}\cdot \texttt{1.a39ef35793c76}_{16}$$

$$\log(2)=2^{-1}\cdot \texttt{1.62e42fefa39ef}_{16}$$

such that the high part satisfies nH is always exact for |n| < 2000.

 $^{^1}$ The Golang source actually mentions that this method and some of the comments were borrowed from original C code, from FreeBSD's /usr/src/lib/msun/src/e_log.c

²misspelling, should be Remez

 $^{^3{\}rm the}~z$ is likely s^2 which likely means the polynomial is intentionally degree 7 in z

2 Reducing Value

First note that

$$2^{-1} < 2^{-\frac{1}{2}} < 2^{0} < 2^{\frac{1}{2}} < 2^{1}$$
 i.e. $\frac{1}{2} < \frac{\sqrt{2}}{2} < 1 < \sqrt{2} < 2$.

In Golang the function math.Frexp takes a float x and returns an exponent e and fractional value m such that

$$x = 2^e m$$
, $2|m| \in [1,2)$.

Since $\log(x)$ defined requires x>0 we know m>0. If $\frac{1}{\sqrt{2}}< m<1$ then we set k=e and 1+f=m. If $\frac{1}{2}\leq m\leq \frac{1}{\sqrt{2}}$ then we set $1+f=2m\in \left[1,\sqrt{2}\right]$ and k=e-1 since $2^em=2^{e-1}(2m)$. This would appear to only give

$$\frac{1}{\sqrt{2}} < 1 + f \le \sqrt{2}$$

but we also know $1+f\neq\sqrt{2}$ since an irrational can't be represented in floating point.

3 From f to s

We write $1 + f = \frac{1+s}{1-s}$ so that

$$\log(1+f) = \log(1+s) - \log(1-s)$$
$$= 2s + \frac{2}{3}s^3 + \frac{2}{5}s^5 + \cdots$$

Solving for s in the above yields $s = \frac{f}{2+f} = 1 - \frac{2}{2+f}$ and

$$\frac{1}{\sqrt{2}} < 1 + f < \sqrt{2} \Longrightarrow -\left(3 - 2\sqrt{2}\right) < s < 3 - 2\sqrt{2} \approx 0.171573 < 0.1716.$$

3.1 Why the bounds?

The bound $\frac{1}{\sqrt{2}} < 1 + f < \sqrt{2}$ was just given but never justified. In fact, this interval is required to be able to use an approximation of R(s). First, in order to factor $x = 2^k(1+f)$ uniquely, if $1+f \in [\alpha, \beta]$ we must have

$$\log_2 \beta = \log_2 \alpha + 1 \iff \beta = 2\alpha.$$

Second, since defining R(s) requires both $\log(1 \pm s)$ to be defined, we need -1 < s < 1.

Third, the symmetry R(s) = R(-s) means we limit to some -A < s < A (for $0 < A \le 1$). This in turn means that

$$\frac{1}{B} < 1 + f < B, \qquad B = \frac{1+A}{1-A} \iff A = \frac{B-1}{B+1}.$$

Hence we put $1 + f \in [B^{-1}, B]$ which forces

$$\log_2 B = \log_2 \left(B^{-1} \right) + 1 \Longrightarrow 2 \log_2 B = 1 \Longrightarrow B = 2^{\frac{1}{2}} = \sqrt{2} \Longrightarrow A = 3 - 2\sqrt{2}.$$

4 Remez Algorithm

We seek to approximate

$$R(s) = \frac{2s^2}{3} + \frac{2s^4}{5} + \frac{2s^6}{7} + \dots = \frac{\log(1+s) - \log(1-s)}{s} - 2, \quad R(0) = 0$$

with a degree 14 polynomial that gives equi-oscillating errors. By construction R(s) = R(-s), hence we need to be able to approximate R(s) for $s \in [0, 3 - 2\sqrt{2}] \subset [0, 0.1716]$.

We manually force an equi-oscillating error at node points s_0, s_1, \ldots, s_7 by setting

$$R(s_j) = L_2 s_j^2 + L_4 s_j^4 + \dots + L_{14} s_j^{14} + (-1)^j E = P(s_j) \pm E$$

and solving for the 7 unknown coefficients and the error E. This gives a system

$$\begin{bmatrix} s_0^2 & \cdots & s_0^{14} & 1 \\ s_1^2 & \cdots & s_1^{14} & -1 \\ \vdots & & \ddots & \vdots \\ s_7^2 & \cdots & s_7^{14} & -1 \end{bmatrix} \begin{bmatrix} L_2 \\ \vdots \\ L_{14} \\ E \end{bmatrix} = \begin{bmatrix} R(s_0) \\ R(s_1) \\ \vdots \\ R(s_7) \end{bmatrix}.$$

After solving, we exchange s_0, s_1, \ldots, s_7 for new points which maximize |R(s) - P(s)| locally. The method terminates once the exchange process results in no change at all (or a minimal change).

An alternative approach only swaps a single s_i at a time. It finds the absolute extreme

$$s^* = \underset{s \in [0, 3-2\sqrt{2}]}{\operatorname{argmax}} |R(s) - P(s)|$$

and then swap s^* with the nearest value among the $\{s_j\}$ and only terminates once the absolute extreme occurs among the $\{s_j\}$.

In either situation, if there is no exchange left to do

$$\max_{s \in [0, 3 - 2\sqrt{2}]} |R(s) - P(s)| = |R(s^*) - P(s^*)| = |\pm E| = E$$

and this equi-oscillating error will occur a maximal number of times in our interval.