

OAK-SoM-Pro - Myriad X SoM with eMMC Flash

1 Features

- Intel Movidius Myriad X VPU ma2485-C0
- 16GB eMMC 5.1
- 128MB QSPI NOR Flash
- 32Kb I2C EEPROM
- USB3.1, gen2 10gbps
- PCIe x1 (ext. ref clk)
- 2x 4-Lane MIPI CSI-2 D-PHY
- 2x 2-Lane MIPI CSI-2 D-PHY
- QSPI, SDIO, UART, I2C, I2S
- Boot Modes Supported: NOR, eMMC, USB, Ethernet (EEPROM)
- On-board power generation

2 Applications

- Industrial automation
- Robotics and autonomy
- Security systems
- · Remote intelligence

3 Variants

OAK-SoM-Pro options are listed below based on VPU used on the SoM:

- Intel MA2485 with integrated 4Gbit DRAM
- Intel MA2085 with external DRAM:
 - o 4Gbit
 - o 8Gbit
 - o 16Gbit

4 Description

The Luxonis OAK-SoM-Pro is a system-on-module (SoM) designed for integration into a top-level system with a need for a low-power, 4 TOPS AI vision system. The OAK-SoM-Pro interfaces with the system through two 10-gbps-rated 100-pin DF40C-100DP-0.4V(51) board-to-board mezzanine connectors which carry all signal I/O as well as 5V input. The on-board SMPS system regulates the 5V input and provides all necessary digital and analog power.

An auxiliary power port is offered to interface without connection to a baseboard.

Core digital electronics on the OAK-SoM-Pro include the Movidius Myriad X VPU (MA2485-C0), a 16GB eMMC 5.1 flash device, 128MB QSPI NOR flash, and 32kb EEPROM.

USB 3.1 Gen2, QSPI, UART, I2C, 1-lane PCIe, and SDIO are all broken out from the SoM and routed through the mezzanine connectors to the system. Additionally, the OAK-SoM-Pro SoM exposes two 2-lane MIPI CSI-2 D-PHY channels and two 4-lane MIPI CSI-2 D-PHY channels, allowing for multiple camera inputs.

I2S interface with APB data 32 bit bus width is exposed; one output and 3 stereo inputs give the ability to connect multiple microphones and one external audio device.

GPIO Boot selection, JTAG, and additional Myriad X GPIOs are exposed as well. A 10-pin JTAG connector is also provided on-board to allow for debug without the need for a baseboard.

The SoM can be booted via USB, NOR flash, eMMC, SPI, and Ethernet (RTL8111HS driver in EEPROM).

SoM power consumption is use-case dependent, but typical consumption is under 5W with thermal mitigation.

Device Information

PART NUMBER	SIZE (W x L x H) ¹
OAK-SoM-Pro	30mm x 45mm x 17.5mm

Including components and heatsink

Figure 1 - Top and Bottom of OAK-SoM-Pro PCBA

Figure 2 – Top and Bottom of OAK-SoM-Pro PCBA (2085 with 8Gbit DRAM)

Table of Contents

1	FE	ATUR	ES	1
2			ATIONS	
3			TS	
			PTION	
4				
5			DIAGRAM	
5			ICAL CHARACTERISTICS	
	5.1 5.2		OLUTE MAXIMUM RATINGS ¹	
		_		
6			NNECTOR	
	6.1		DUT	
	6.2	12C . 2.1	EEPROM I2C0 Address Usage	
		2.2	RGB Camera I2C1 Address Usage	
	_			
		2.3	Stereo Camera I2C2 Address Usage	
	6.3		1	
	6.4 6.5		E	
	6.6		33.1 GEN2	
	6.7		MC	
	6.8		OOD	
	6.9 6.10		KEUP	
	6.11		MERA REFERENCE CLOCKS	
	6.12		MERA RESET SIGNALS	
	6.13	1.8V	/ SHARED SPI0 (QSPI)	11
	6.14		/ GPIO BANK	
	6.1	15.1	3.3V GPIO Bank - SDIO	13
	6.1	15.2	3.3V GPIO Bank – QSPI (SPI2)	13
	6.16	1.8V	/ GPIO	13
7	ВС	от м	ODES	15
8	МЕ	ECHAN	NICAL INFORMATION	17
	8.1	OAK	K-SoM-Pro Dimensions	17
	8.2		COMMENDED MOUNTING CONFIGURATION	
	8.3		K-SoM-Pro Mounting Holes	
	8.4	Sol	M CLEARANCE	18
9	TH	HERMA	AL INFORMATION	18
10) RE	-VISIO	N HISTORY	19

https://www.luxonis.com

5 Block Diagram

Figure 3 - Schematic Block Diagram

5 Electrical Characteristics

5.1 Absolute Maximum Ratings¹

SYMBOL	RATINGS	MIN	MAX	UNIT
V _{IN}	External input supply voltage range. ²	3.6	5.5	V
V _{I/O_1V8}	Input voltage SoM I/O for 1.8V logic	-0.3	2.0	V
V _{I/O_3V3}	Input voltage SoM I/O for 3.3V logic	-0.3	3.6	V
I _{I/O}	IO output current drive strength	2	12	mA
T _J	Junction temperature.		105	С
T _{STG}	Storage temperature.	-30	150	С

5.2 Recommended Operating Conditions

SYMBOL	RATINGS	MIN	TYP	MAX	UNIT
V _{IN}	External input supply voltage range. ²	4.5	5.0	5.25	V
V _{I/O_1V8}	Input voltage SoM I/O for 1.8V logic	0		1.8	V
V _{I/O_3V3}	Input voltage SoM I/O for 3.3V logic	0		3.3	V
PQ	Quiescent power draw ³		0.3		W
P _{IDLE}	Idle power draw ⁴		0.7		W
P _{INFR}	Inference power draw ⁵		2.48		W
T _A	Ambient operating temperature ⁶		25	50	°C
T _J	Junction temperature. ⁶			105	°C

- Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress
 ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under
 Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device
 reliability.
- 2) Applies to 5V input pins only
- 3) With SoM in reset
- 4) Myriad X booted to base mode via USB
- 5) MobilenetSSDV2 detector, 30fps
- 6) With default Luxonis passive heatsink, running Mobilenet-SSDV2 30fps. Custom or active thermal solutions are recommended in ambient environments >50C, and/or for highly demanding inference operations >2.5W.

6 SoM Connector

6.1 Pinout

The following contains the pinout of 100-pin DF40C-100DP-0.4V(51) connector, part A.

Figure 4 - Schematic Pinout, Connector J4

The following contains the pinout of 100-pin DF40C-100DP-0.4V(51) connector, part B.

Figure 5 - Schematic Pinout, Connector J2

6.2 I2C

The OAK-SoM-Pro SoM offers five dedicated I2C interfaces, I2C0 (EEPROM I2C), I2C1 (CAMA_I2C), I2C2 (CAMB_I2C), I2C3 (CAMD_I2C), I2C4 (PCIe_CLK_I2C) all with 2.2Kohm pull-up resistors (SDA & SCL) to the on-SoM 1.8V rail. For custom baseboard designs, all four I2C interfaces are available and routed through the mezzanine connectors. I2C0 is already used for EEPROM which located on SoM. On most Luxonis baseboards, such as the SJ2088POE, the I2C1 interface is used for communication with the RGB color camera, the I2C2 interface is used to communicate with the pair of stereo cameras, the I2C4 is used for I2C programmability of PCIe clock generator and the I2C3 is typically unused but accessible through test points or connector pads.

6.2.1 EEPROM I2C0 Address Usage

The 32K I2C Serial EEPROM on most Luxonis baseboards is used for revision detect and a storage location for RTL8111HS driver if applicable. With functional address lines 7-bit address for EEPROM is set to 0x50. Use of the I2C0 interface on other components is possible, but with consideration of the existing usage of the EEPROM.

6.2.2 RGB Camera I2C1 Address Usage

The IMX378 RGB camera on most Luxonis baseboards uses some specific addresses as seen in Figure 6. Use of the I2C1 interface on other components is possible, but with consideration of the existing usage of the RGB camera.

IMX378 M	IMX378 MODULE CONNECTOR										
	MODULE & SENS	SOR INFORMATION									
MODULE	A12N02A-201	I2C Clock Rate	1000 kHz Max								
SENSOR	IMX378-AAQH5-C	I2C Address (8 bits)	0x34 (Sensor)								
	12.3 Mega pixel CMOS		0x18 (VCM driver)								
	1/2.3 inch		0xA0 (EEPROM driver)								
MAX RESOLUTION	4056x3040	Sensor Clock Input	6 - 27 MHz								

Figure 6 - Baseboard I2C1 RGB Camera Module Usage

6.2.3 Stereo Camera I2C2 Address Usage

The pair of OV9282 sensors comprising the stereo pair some Luxonis baseboards uses specific addresses as seen in Figure 7. Use of the I2C2 interface on other components is possible, but with consideration of the existing usage of the stereo camera.

	MODULE & SENSOR INFORMATION									
MODULE	TG16:	LB-201 OR AN01V32-0JG	I2C Clock Rate	400 kHz Max						
SENSOR		OV09282-GA4A B&W 1 Mega pixel CMOS	I2C Address (8 bits)	0xC0(W) 0xC1(R)						
		1/4 inch								
MAX RESO	LUTION	1280X800	Sensor Clock Input	6 - 64 MHz (24 MHz typ.)						

Figure 7 - Baseboard I2C2 Stereo Camera Module Usage

6.3 MIPI

Four MIPI CSI-2 DPHYv1.2 interfaces are available as input to the SoM. Two are 4-lane interfaces, and the other two interfaces are 2-lane each, all allowing a maximum of 2.1Gbps per lane.

For each of the four camera interfaces, the inter-pair delay of that interface is matched to the clock pair within +/-1ps, and all pairs are routed with 100ohm differential impedance.

6.4 I2S

Three stereo inputs for microphones and one audio output supporting I2S are available routed thorough mezzanine connector. With use of word select up to six microphones can be connected to the interface and two channel stereo audio device can be attached to the SoM.

Pin/ Conn. #	Pin name / Primary Function	SoM GPIO	Alt. 1	PU/PD on SoM	Pin Type	Description
21/B	I2S2_IN_SD0	MXIO_50			1.8V GPIO	Typically used for I2S interface but can be reconfigured to any other GPIO.
25/B	I2S2_IN_SD1	MXIO_51			1.8V GPIO	Typically used for I2S interface but can be reconfigured to any other GPIO.
27/B	I2S2_IN_SD2	MXIO_52			1.8V GPIO	Typically used for I2S interface but can be reconfigured to any other GPIO.
23/B	12S2_OUT_SD0	MXIO_30			1.8V GPIO	Typically used for I2S interface but can be reconfigured to any other GPIO.
19/B	I2S2_WS 29	MXIO_29			1.8V GPIO	Typically used for I2S interface but can be reconfigured to any other GPIO.
17/B	I2S2_SCK	MXIO_28			1.8V GPIO	Typically used for I2S interface but can be reconfigured to any other GPIO.

Table 1 – I2S Pin Configuration

6.5 PCIe

PCIe Gen 1 lane expansion bus is routed through mezzanine connector B. It supports all standard requirements of PCIe Rev 3.0, version 1.0. External reference clocking should be used for EP/RC applications. The reference clock signal used must be 100MHz.

Pin/ Conn. #	Pin name / Primary Function	SoM GPIO	Alt. 1	PU/PD on SoM	Pin Type	Description
81/B	SDS_IO_CLKI_N	SDS_IO_CLKI_ N			SDS	PCIe differential reference clock input from clock generator negative.
83/B	SDS_IO_CLKI_P	SDS_IO_CLKI_P			SDS	PCIe differential reference clock input from clock generator positive.
69/B	SDS_TXD_P	SDS_TXD_P		AC coupling	SDS	PCIe x1 lane transmitter data differential pair positive. Board implements AC coupling caps on board.
71/B	SDS_TXD_N	SDS_TXD_N		AC Coupling	SDS	PCIe x1 lane transmitter data differential pair negative. Board implements AC coupling caps on board.
75/B	SDS_RXD_P	SDS_RXD_P			SDS	PCIe x1 lane receiver data differential pair positive.
77/B	SDS_RXD_N	SDS_RXD_N			SDS	PCIe x1 lane receiver data differential pair negative.
65/B	PCIe_CLKREQ_N	MXIO_55		PU: 10kR/1.8V	PCle	Ref Clk request Signal
63/B	PCI_PERST	MXIO_13			PCle	Acnve Loo Reset Input to the add in Card.
28/B	BOOT_AUX/PCIe_ISO_N	MXIO_58			1.8V GPIO	Isolate pin active low. Output used to isolate the device from PCIe bus.

Table 2 - PCIe Pin Configuration

6.6 USB3.1 Gen2

USB3.1 is exposed it can operate as a device. Maximum of 10Gbps serial data rate can be achieved.

Pin/ Conn. #	Pin name / Primary Function	SoM GPIO	Alt. 1	PU/PD on SoM	Pin Type	Description
84/B	USB_TX_N	USB_TX_N			USB3	USB 3.0 SSTX (-) / No AC caps on SoM / 0.5ps intra-pair tuning / 90ohm +/-10%
86/B	USB_TX_P	USB_TX_P			USB3	USB 3.0 SSTX (+) / No AC caps on SoM / 0.5ps intra-pair tuning / 90ohm +/-10%
96/B	USB_RX_P	USB_RX_P			USB3	USB 3.0 SSRX (+) / 0.5ps intra-pair tuning / 90ohm +/-10%
98/B	USB_RX_N	USB_RX_N			USB3	USB 3.0 SSRX (-) / 0.5ps intra-pair tuning / 90ohm +/-10%
90/B	USB_D_N	USB_D_N			USB2	USB 2.0 (-) / 2ps intra-pair tuning / 90ohm +/-10%
92/B	USB_D_P	USB_D_P			USB2	USB 2.0 (+) / 2ps intra-pair tuning / 90ohm +/-10%
80/B	5V/VBUS	5V/VBUS			PWR	USB UFP VBUS sense input for VBUS detect. Can be tied to 5V to enable Myriad X USB for embedded applications.

Table 3 - USB Pin Configuration

6.7 eMMC

16GB eMMC with 5.1 host controller flash storage device on SoM can be used as a permanent storage medium. It can also be used as storage location for firmware boot images. Fastest recommended eMMC boot mode can be selected with boot mode number 0x1f. Using 8 parallel data lines you can achieve 3Gbits per second data rate and 1.5Gbits data rate for HS400 and HS200 mode respectively.

6.8 PGOOD

PGOOD is a 1.8V open-drain output from the SoM PMIC and is pulled high when the PMIC evaluates power is good. PGOOD has a 10Kohm pull-up resistor to the on-SoM 1.8V rail.

This pin should be left floating if unused or tied to a high-impedance input to sense PGOOD. Do not pull or tie PGOOD to GND.

6.9 WAKEUP

WAKEUP is a 1.8V input to the SoM which should be pulled to GND through a 10Kohm resistor on baseboard. If driven high and sensed during the rising edge of _RST power-on-reset, the on-chip efuse is used for boot selection. At present, this functionality is not used on any Luxonis SoM.

The WAKEUP pin was originally intended for waking the SoM from deep sleep mode, but this functionality is not supported on Luxonis SoMs. However, any MXIO can be used to trigger an interrupt and wake the SoM.

The WAKEUP should be pulled to GND through a 10Kohm resistor on baseboard.

6.10 RST

_RST is the active-low Myriad X reset input. _RST has a 1.8V 10Kohm pull-up resistor on the SoM, and can be driven low from the baseboard to reset the Myriad X.

6.11 Camera Reference Clocks

Two pins are used to provide a 24MHz reference clock to the image sensor ICs on the baseboard. These signals are on the CAMA_CLK and CAMB_CLK pins of the SoM interface connector. Each signal has a 121Kohm, pull down on the SoM. CAMA_CLK is meant to be used for RGB cameras and CAMB_CLK for grayscale stereo pair cameras. It is possible to create additional reference clocks for additional cameras by reconfiguring an MXIO pin.

6.12 Camera Reset Signals

Three pins are used for individually resetting or powering down the RGB and stereo pair cameras. These signals are CAMA_RST, CAM_B_D_PWM, and CAM_B_PWDN_N, for both RGB, LEFT, and RIGHT cameras respectively. Each of these signals is 1.8V and are active-low. No pull-up or pull-down resistors are on these signals on the SoM.

6.13 1.8V Shared SPI0 (QSPI)

The signals with prefix "SPI0" are part of a QSPI bus which is shared with the optional on-SoM NOR flash. Note the signal configuration details in Table 4 (refer to the <u>OAK-SoM-Pro IO TABLE</u> for more details). All signals related to SPI0 are delay-matched on the SoM to +/-100ps to the connector interface.

Pin/ Conn. #	Pin name / Primary Function	SoM GPIO	Alt. 1	PU/PD on SoM	Pin Type	Description
60/A	MXIO_8/SPI0_CS_1	MXIO_8	SPI0_CS_1		1.8V GPIO	GPIO, or can be configured as second CS for SPI0, MX in Controller or Peripheral mode. / +/-100ps inter-SPI0
70/A	SPI0_CS_0	MXIO_5		PU: 1kR/1.8V	1.8V GPIO	Hardwired to SoM on-board NOR S# / +/- 100ps inter-SPI0
74/A	SPI0_SCK	MXIO_4			1.8V GPIO	Hardwired to SoM on-board NOR C / +/-100ps inter-SPI0
62/A	SPI0_SIO0	MXIO_0			1.8V GPIO	Hardwired to SoM on-board NOR DQ0 / +/- 100ps inter-SPI0
64/A	SPI0_SIO1	MXIO_1			1.8V GPIO	Hardwired to SoM on-board NOR DQ1 / +/- 100ps inter-SPI0
66/A	SPI0_SIO2	MXIO_2		PU: 1kR/1.8V	1.8V GPIO	Hardwired to SoM on-board NOR W#/DQ2 / +/- 100ps inter-SPI0
68/A	SPI0_SIO3	MXIO_3		PU: 1kR/1.8V	1.8V GPIO	Hardwired to SoM on-board NOR DQ3/HOLD# / +/-100ps inter-SPI0

Table 4 - SPIO Pin Configuration

With the NOR flash unpopulated the SPI0 bus can be used by the Myriad X in either controller or peripheral mode. With the Myriad X in controller mode, SPI0_CS_0 and SPI0_CS_1 can be used as chip selects for any baseboard peripherals, and additional baseboard chip selects can be configured by using MXIOs, if required. With the Myriad X in peripheral mode, either the SPI0_CS_0 or SPI0_CS_1 can be used by the baseboard controller to select the Myriad X as a peripheral. Unlike for controller mode, in peripheral mode, MXIOs cannot be configured as chip selects for the Myriad X, only SPI0_CS_0 and SPI0_CS_1 can be used for this purpose.

With the NOR flash populated, the SPI0 bus can still be used by the Myriad X in either controller or peripheral mode, but the NOR flash now occupies the SPI0_CS_0 location so some care must be taken to avoid contention. With the NOR flash populated, and the Myriad X is in controller mode, the SPI0_CS_0 selects the NOR flash. SPI0_CS_1 (or other reconfigured MXIO) can be used as a second chip select for baseboard peripherals. When in peripheral mode SPI0_CS_1 should be used as the chip select for the peripheral Myriad X to avoid contention when communicating with NOR flash using SPI0_CS_0.

Note that when an external controller is accessing the NOR flash on the SoM, the Myriad X must not be allowed to access at the same time. Asserting _RST for the Myriad X is an option to prevent this contention.

6.14 3.3V GPIO Bank

The SoM offers six GPIO which are 3.3V signaling for easy interface to common peripherals and devices with 3.3V signaling. These GPIO offer several configurations including SDIO, QSPI, UART, PWM, and I2C, along with general purpose IO and are listed in Table (refer to the OAK-SoM-Pro IO TABLE for more details).

Pin/ Conn. #	Pin name / Primary Function	SoM GPIO	Alt. 1	Alt. 2	Alt. 3	Alt. 4	PU/PD on SoM	Pin Type	Description
40/A	MXIO_34_3V3	MXIO_34	sd_hst0_dat_ 0	spi2_dio_2	pwm_0	I2C3_SDA	PU: 40.2kR/1.8V	3.3V GPIO	3.3V GPIO. Note PU/PD resistors that are configured for SDIO, but also compatible with SPI. / +/-100ps inter-SD_HST
61/A	MXIO_32_3V3	MXIO_32	sd_hst0_clk	spi2_dio_0 _mosi			PU: 40.2kR/1.8V	3.3V GPIO	3.3V GPIO. Note PU/PD resistors that are configured for SDIO, but also compatible with SPI. / +/-100ps inter-SD_HST
63/A	MXIO_33_3V3	MXIO_33	sd_hst0_cmd	spi2_dio_1 _miso		I2C3_SCL	PU: 40.2kR/1.8V	3.3V GPIO	3.3V GPIO. Note PU/PD resistors that are configured for SDIO, but also compatible with SPI. / +/-100ps inter-SD_HST
32/A	MXIO_37_3V3	MXIO_37	sd_hst0_dat_ 3	spi2_cs_0	pwm_3	UART3_TX	PD: 300kR/GND	3.3V GPIO	3.3V GPIO. Note PU/PD resistors that are configured for SDIO, but also compatible with SPI. / +/-100ps inter-SD_HST
36/A	MXIO_36_3V3	MXIO_36	sd_hst0_dat_ 2	spi2_sclk			PU: 40.2kR/1.8V	3.3V GPIO	3.3V GPIO. Note PU/PD resistors that are configured for SDIO, but also compatible with SPI. / +/-100ps inter-SD_HST
38/A	MXIO_35_3V3	MXIO_35	sd_hst0_dat_ 1	spi2_dio_3		UART3_RX	PU: 40.2kR/1.8V	3.3V GPIO	3.3V GPIO. Note PU/PD resistors that are configured for SDIO, but also compatible with SPI. / +/-100ps inter-SD_HST

Table 5 - 3.3V GPIO Pin Configuration

6.15.1 3.3V GPIO Bank - SDIO

The 3.3V GPIO bank is nominally configured for use with SDIO, as appropriate pull-up and pull-down resistors exist on the SoM. CLK, CMD, and DAT[0:3] are available for use. Optional signals such as card detect can be implemented using the 1.8V GPIO.

6.15.2 3.3V GPIO Bank - QSPI (SPI2)

The 3.3V GPIO bank can be configured as a QSPI bus. The weak pull-up and pull-down resistors on the signal lines (for use as SDIO) are over driven when used as a QSPI interface, though maximum data rates are not guaranteed. Like the SPI0 bank, the 3.3V QSPI interface can operate as a controller or peripheral using the SPI2_CS_0 signal. Additional chip selects can be sent to baseboard peripherals with other 1.8V GPIO, though the need to level shift from 1.8V to 3.3V may be necessary.

6.16 1.8V GPIO

The default IO voltage for all GPIO is 1.8V, with the exceptions of the 3.3V GPIO listed in Table . Each SPGIO can be muxed to alternate functionality as described in Table (refer to the OAK-SoM-Pro IO TABLE for more details). In addition to muxed functionality, each MXIO is fully user-programmable with support or four output drive strengths (2mA, 4mA, 8mA, 12mA), selectable output slew-rate (slow/fast), open-drain output mode, LVCMOS/LVTTL compatible input modes with selectable hysteresis, programmable pull-up/pull-down input options, power-on-start capability, and no requirements for power sequencing. Additionally, 100MHz frequency can be achieved with less than 15pF external load, or up to 125MHz with less than 10pF external load.

Pin/ Conn. #	Pin name / Primary Function	SoM GPIO	Alt. 1	Alt. 2	PU/PD on SoM	Pin Type	Description
28/A	CAMA_CLK	MXIO_44			PD: 121kR/GND	1.8V GPIO	24MHz reference clock for Camera A PLL
33/A	CAMA_I2C_SDA	MXIO_21	pwm5		PU: 2.2kR/1.8V	1.8V GPIO	I2C data for Camera A
34/A	CAMA_RST	MXIO_31				1.8V GPIO	Camera A reset/power down.
35/A	CAMA_I2C_SCL	MXIO_20			PU: 2.2kR/1.8V	1.8V GPIO	I2C clock for Camera A
42/A	COM_AUX_IO2	MXIO_41				1.8V GPIO	Auxiliary GPIO for cameras sync/trigger. Reserved for interrupt FSIN (Frame sync input) for the cameras used.
59/A	MXIO_7	MXIO_7			PU: 40.2kR/1.8V	1.8V GPIO	Configured for SDIO card detect, or as regular GPIO. Note 1.8V, 40.2k PU. / +/-100ps inter-SD_HST
60/A	MXIO_8/SPI0_C S_1	MXIO_8	SPI0_CS_1			1.8V GPIO	GPIO, or can be configured as second CS for SPI0, MX in Controller or Peripheral mode. / +/-100ps inter-SPI0
62/A	SPI0_SIO0	MXIO_0				1.8V GPIO	Hardwired to SoM on-board NOR DQ0 / +/-100ps inter-SPI0
64/A	SPI0_SIO1	MXIO_1				1.8V GPIO	Hardwired to SoM on-board NOR DQ1 / +/-100ps inter-SPI0
65/A	CAM_B_D_PWM	MXIO_57				1.8V GPIO	Camera C reset/power down.
66/A	SPI0_SIO2	MXIO_2			PU: 1kR/1.8V	1.8V GPIO	Hardwired to SoM on-board NOR W#/DQ2 / +/-100ps inter-SPI0
67/A	CAM_B_PWDN_ N	MXIO_54				1.8V GPIO	Camera B reset/power down.
68/A	SPI0_SIO3	MXIO_3			PU: 1kR/1.8V	1.8V GPIO	Hardwired to SoM on-board NOR DQ3/HOLD# / +/- 100ps inter-SPI0

https://www.luxonis.com

70/A	SPI0_CS_0	MXIO_5		PU: 1kR/1.8V	1.8V GPIO	Hardwired to SoM on-board NOR S# / +/-100ps inter- SPI0
73/A	CAMB_CLK	MXIO_47		PD: 121kR/GND	1.8V GPIO	24MHz reference clock for Camera B PLL
74/A	SPI0_SCK	MXIO_4			1.8V GPIO	Hardwired to SoM on-board NOR C / +/-100ps inter- SPI0
77/A	CAMB_I2C_SCL	MXIO_22		PU: 2.2kR/1.8V	1.8V GPIO	Camera B I2C SDA. Can be used as GPIO.
79/A	CAMB_I2C_SDA	MXIO_23		PU: 2.2kR/1.8V	1.8V GPIO	Camera B I2C SCL. Can be used as GPIO.
69/A	MXIO_53	MXIO_53			1.8V GPIO	General purpose 1.8V IO
78/A	MXIO_24	MXIO_24	I2C3_SCL	PU: 2.2kR/1.8V	1.8V GPIO	Camera C I2C SCL (if applicable). Can be used as GPIO
80/A	MXIO_25	MXIO_25	I2C3_SDA	PU: 2.2kR/1.8V	1.8V GPIO	Camera C I2C SDA (if applicable). Can be used as GPIO

Table 6 - 1.8V GPIO Pin Configuration (connector A)

00/D	MYIO 50	MVIO 50	LIART RY			1.8V	Boot auxiliary GPIO for PCIe can be configured as
28/B	MXIO_58	MXIO_58	UART_RX	pwm3		GPIO	PCIe_ISOLATE_N
34/B	I2C0 SCL	MXIO 18			PU:	1.8V	EEPROM I2C SCL (if applicable). Can be used as
04/10	1200_002	W/XIO_10			2.2kR/1.8V	GPIO	GPIO
36/B	I2C0 SDA	MXIO_19			PU:	1.8V	EEPROM I2C SDA (if applicable). Can be used as
					2.2kR/1.8V	GPIO	GPIO
42/B	MXIO_46	MXIO_46	UART_RX	pwm3		1.8V GPIO	Typically labeled as UART_RX on Luxonis baseboards.
44/B	MXIO_45	MXIO_45	UART_TX	pwm2		1.8V	Typically labeled as UART_TX on Luxonis
44/0						GPIO	baseboards.
48/B	MXIO 6	MXIO 6				1.8V	General purpose 1.8V IO
40/D	WIXIO_0	WIXIO_0				GPIO	General purpose 1.0V 10
50/B	MXIO 9	MXIO 9				1.8V	General purpose 1.8V IO
						GPIO	Contract particles that the
52/B	MXIO 10	MXIO 10				1.8V	General purpose 1.8V IO
	_	_				GPIO	<u> </u>
54/B	MXIO_11	MXIO_11				1.8V GPIO	General purpose 1.8V IO
	_					1.8V	<u> </u>
56/B	MXIO_12	MXIO_12				GPIO	General purpose 1.8V IO
57/B			1			1.8V	I2C data for PCIe clock generator control (if
31/6	I2C4_SDA	MXIO_26				GPIO	applicable). Can be used as GPIO
58/B						1.8V	
00/2	MXIO_14	MXIO_14				GPIO	General purpose 1.8V IO
59/B						1.8V	I2C clock for PCIe clock generator control (if
00,2	I2C4_SCL	MXIO_26				GPIO	applicable). Can be used as GPIO
60/B						1.8V	
	MXIO_15	MXIO_15				GPIO	General purpose 1.8V IO
62/B	140/10 40	11/10 10				1.8V	0 1 10//10
	MXIO_16	MXIO_16				GPIO	General purpose 1.8V IO
64/B	MXIO 17	MXIO 17				1.8V	General purpose 1.8V IO
	WIXIO_17	WIXIO_17				GPIO	General purpose 1.8V IO
66/B	MXIO_38	MVIO 20				1.8V	General purpose 1.8V IO
	IVIXIO_38	MXIO_38				GPIO	General purpose 1.8V IO
68/B	MXIO 39	MXIO 39				1.8V	General purpose 1.8V IO
	IVIAIO_39	IVIAIO_39				GPIO	General purpose 1.6V 10
70/B	MXIO 40	MXIO_40				1.8V	General purpose 1.8V IO
	111/10_40	W/XIO_40				GPIO	30.10141 P41P030 1.0V 10
72/B	MXIO 42	MXIO 42				1.8V	General purpose 1.8V IO
	111/10_42	W/XIO_42				GPIO	Control purpose 1.0V 10
74/B	MXIO 43	MXIO 43				1.8V	General purpose 1.8V IO
	,	1117110_10			İ	GPIO	333.a. paipood 1.07 10

Table 7 - 1.8V GPIO Pin Configuration (connector B)

6.17 JTAG

JTAG used to access the MyriadX for debugging.

Pin/ Conn. #	Pin name / Primary Function	SoM GPIO	Alt. 1	Alt. 2	PU/PD on SoM	Pin Type	Description
89/B	SYS_RST	SYS_RST			PU: 10kR/1.8V	JTAG	JTAG signal
91/B	TDO	TDO			PU: 10kR/1.8V	JTAG	JTAG signal
93/B	TRST	TRST			PD: 10kR/1.8V	JTAG	JTAG signal
95/B	TDI	TDI			PU: 10kR/1.8V	JTAG	JTAG signal
97/B	тск	TCK			PD: 10kR/1.8V	JTAG	JTAG signal
99/B	TMS	TMS			PU: 10kR/1.8V	JTAG	JTAG signal

Table 8 - JTAG Pin Configuration

7 BOOT Modes

The boot signals are broken out from the SoM and routed through the mezzanine connector which offers the end user the option to easily configure the boot mode by setting the BOOT[4:0] bits high (1.8V) or low. These bits are sampled on the rising edge of _RST during power-on-reset, and allow for boot from USB, NOR flash, eMMC, SPI, and Ethernet (RTL8111HS driver in EEPROM).

To configure the NOR flash boot mode, set the bits to 0x8 [0b01000]. In this configuration, the Myriad X acts as an SPI controller on SPI0 to boot from the NOR flash with SPI settings: 24-bit address, Quad I/O, and at a rate of 50MHz. It is also possible to boot with the Myriad X configured as an SPI peripheral, but this feature is not yet fully supported.

To configure USB boot, set the bits to 0x16 [0b10110]. In this configuration, the Myriad X will boot using the USB 2 interface.

To configure eMMC boot, set the bits to 0x1f [0b11111]. In this configuration, the Myriad X will boot using the 8-bit, SDR104 mode in HS200 and HS400 mode.

To configure PCIe boot, set the bits to 0x14 [0b10100]. In this configuration, the Myriad X will boot using PCIe Gen 2 interface. With use of RTL8111HS Ethernet controller on baseboard device will boot from Ethernet interface.

Pin/ Conn. #	Pin name / Primary Function	SoM GPIO	Alt. 1	Alt. 2	PU/PD on SoM	Pin Type	Description
18/B	воот4	MXIO_63				1.8V set BOOT pin	Boot register set pin bit 4 (MSB)
20/B	воотз	MXIO_62				1.8V set BOOT pin	Boot register set pin bit 3
22/B	воот2	MXIO_61				1.8V set BOOT pin	Boot register set pin bit 2
24/B	BOOT1	MXIO_60				1.8V set BOOT pin	Boot register set pin bit 1
26/B	воото	MXIO_59				1.8V set BOOT pin	Boot register set pin bit 0 (LSB)

Table 2 - BOOT Pin Configuration

8 SoM LEDs

There are two Light Emitting Diodes located on the edge of the OAK-SoM-Pro.

One is driven with open drain output from Power Management Integrated Circuit which supplies Myriad X. LED is lit when the PGOOD output is floating indicating all outputs of PMIC are in specified range as well as the input 5V supplying rail.

Second LED can be used as indicator in application and can be driven with MXIO56, which is on when IO is driven high and turned off when IO is driven low.

Figure 8 - Baseboard I2C2 Stereo Camera Module Usage

8 Mechanical Information

The following information is the most current data available for the designated device. This data is subject to change without notice and without revision of this document.

8.1 OAK-SoM-Pro Dimensions

Figure 9 – Top, Side, and Bottom dimensions

8.2 Recommended Mounting Configuration

The OAK-SoM-Pro SoM is designed to be used with a 3mm mated-height connector and accompanying 3mm standoffs. The B2B connector plugs are on the OAK-SoM-Pro (Hirose DF40C-100DP-0.4V), while the receptacle, which determines mated height, is on the baseboard (Hirose DF40HC(3.0)-100DS-0.4V). Wuerth Elektronik 9774030243R SMT standoffs are recommended.

8.3 OAK-SoM-Pro Mounting Holes

The OAK-SoM-Pro has 2 M2.5 mounting holes for securing the SoM. These mounting holes use a 2.6mm ID, and a 5.5mm OD pad, which is tied to SoM GND. M2-0.40 screws can be used with these pads to secure the SoM to the recommended Wuerth Elektronik 9774030243R SMT standoffs, or a custom solution using M2-0.40 or M2.5-0.45 screws can be used. Note that when using M2.5-0.45 screws, there is reduced tolerance between the B2B connector clocking and the screws' hole alignment. This must be accounted for to ensure proper connector mating.

8.4 SoM Clearance

3mm is the board-to-board standoff height when using the recommended mounting configuration, however, components on the underside of the OAK-SoM-Pro reduce this clearance. For highest design reliability, it is recommended not to place components on the baseboard underneath the SoM, but components with max height <1mm will have clearance.

In previous designs many components have been successfully placed on the baseboard beneath the SoM making careful use of the 3D STEP file of the SoM, which is available online here <u>OAK-SoM-Pro</u>.

9 Thermal Information

Power consumption can vary considerably depending on the application. A stereo vision application running Mobilenet-SSD V2 at 30fps typically consumes about 2.5W, but more aggressive applications can consume closer to 5W. Most of this power is consumed by the MA2485. While the VFBGA provides an excellent thermal path from the MA2485 to the SoM, the thermal sink is small, and the part temperature can quickly rise toward the 105C max die temperature.

Heatsinking of the MA2485 is required for most applications.

Table 3 details thermal parameters for the MA2485 simulated in a still air environment, an ambient temperature of 25C, 2W power dissipation, and under the test conditions described in JESD51-2A.

Parameter	Value (C/W)	Description
θ_{JB}	5.8	Junction-to-board thermal resistance (EIA/JESD51-8)
θ_{JC}	3.1	Junction-to-case thermal resistance
θ_{JA}	21.4	Junction-to-ambient thermal resistance (EIA/JESD51-2)

Table 3 - MA2485 Thermal Parameters

https://www.luxonis.com

10 Revision History

- Initial Release June 2020
- Revision 0.1 February 2021
 - Added block diagram
 - Added description for all interfaces
 - Updated connectors pinout and mechanical information
- Revision 0.2 June 2021
 - o Renamed connector GPIO names with one used on MA2485-CO
- Revision 0.3 July 2021
 - Changed naming convention and added variants
- Revision 0.4 September 2021
 - Changed naming convention for Myriad X GPIOs
- Revision 0.5 November 2021
 - o Added tables for PCIe, USB and JTAG pins and descriptions
- Revision 0.6 January 2022
 - o LED info