Automate the boring stuff with pytorch-lightning

Jacob Nilsson

13 May, 2020

Luleå University of Technology

What's the boring stuff?

An example of boilerplate code

LIVE CODING EXAMPLE

An example of boilerplate code

```
With boring stuff:

class MyClass():
    def __init__(self, a, b):
        self._a = a
        self. b = b

Without boring stuff:

Odataclass
class MyDataClass():
        a: int
        b: float
```

Flexibility vs. Readability

```
Higher flexibility
Messier code
More error prone:
```

```
Lower flexibility
Cleaner code
Less error prone:
```

```
class MyClass():
    def __init__(self, a, b):
        self._a = a
        self._b = b
```

```
@dataclass
class MyDataClass():
    a: int
    b: float
```

Opinions on PyTorch vs TensorFlow

PyTorch:

Flexible models ("normal" code)*
Easy debugging (print() works)*

Deployment is manual and requires a lot of boilerplate code

TensorFlow:

Models are difficult to change* Difficult debugging*

Deployment is streamlined

*Common thoughts about PyTorch vs. TensorFlow online

Opinions on PyTorch vs TensorFlow

PyTorch:

Flexible models ("normal" code)*
Easy debugging (print() works)*

Deployment is manual and requires a lot of boilerplate code

TensorFlow:

Models are difficult to change* Difficult debugging*

Deployment is streamlined

*Common thoughts about PyTorch vs. TensorFlow online

Introduction to

pytorch-lightning

What is pytorch-lightning

Pytorch-lightning is a tool to organize pytorch code. Pytorch-lightning organizes code into 3 categories:

- 1. Research code
- 2. Engineering code (Boilerplate)
- 3. Non-essential research code (logging)

Comparing pure torch to pytorch-lightning

LIVE CODING EXAMPLE

Research code

PyTorch

PyTorch Lightning

Engineering code

PyTorch PyTorch Lightning # model class Net(nn.Module): # train loader net = Net() # optimizer + scheduler def training step(self, batch, batch idx): for epoch in range(1, 108): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) ontimizer.zero.grad() if __name__ == '__main__: loss.backward() net = Net() optimizer.sten() if hatch idx % arms.log interval -- 8: trainer = Trainer() trainer.fit(net) print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(enorh, batch idx * len(data), len(train loader,dataset).

180. * batch_idx / len(train_loader), loss.item()))

Summary thus far

Question break

Validation, Testing, Progress Bar, and

Logging

Validation

To do validation, you add two methods and a dataloader:

```
def validation step(self, batch, batch idx):
    """ Calculate validation for batch
def validation epoch end(self, outputs):
    """ Average results over all batches
def val dataloader(self):
    """ Returns a validation dataloader
```

For testing, replace validation with test

Progress Bar and Logging

All _step and _epoch_end methods *must* return a dictionary where you can choose what is logged and shown in the progress bar.

```
def training step(self. batch, batch idx):
    0.00
    return {'loss': loss} # Mandatory for training step
def validation epoch end(self, batch, batch idx):
    . . . .
    return {'progress bar': pb dict, # dict of progress bar
        'log': {'val loss', val loss} # dict of variables to log
```

Customizable loggers

Logging is done automatically done with Tensorboard by default, but can be swapped to any other logger compatible with Pytorch Lightning, see https://pytorch-lightning.readthedocs.io/en/latest/loggers.html. For example TestTube:

```
def main():
    from pytorch_lightning.loggers import TestTubeLogger
    ttlogger = TestTubeLogger('tb_logs', name='my_model')
    trainer = pl.Trainer(logger=ttlogger)
```

Full code example

LIVE CODING EXAMPLE **A**

Summary of section

To add *validation* or *testing* functionality, you add **step** and **epoch_end** (collation) methods, as well as a dataloader for each functionality.

Logging is easily added, and logger behaviour can be changed.

Debugging

Validation sanity checks

Pytorch Lightning runs a few validation steps (5 by default) before training to find errors before costly training begins. Can be customized:

```
trainer = Trainer(num_sanity_val_steps=5)
```

Fast dev run

To quickly check that the model runs through all steps correctly, you can set the fast_dev_run flag:

```
trainer = Trainer(fast_dev_run=True)
```

Overfitting checks

You can tell the trainer to overfit on a small subset of your data to check that the loss goes to 0.

```
trainer = pl.Trainer(
   overfit_pct=0.01, # Overfits on 1% of the data
   training_percent_check=0.01, # Overfits on 1% of the training data
```

Customizing the training loop

Callbacks

Non-essential functionality is put in callbacks, some important ones are already defined such as early stopping and model checkpointing

Callbacks

Each callback can be further customized to suit specific tasks, and new callbacks can be written if needed, see

https://pytorch-lightning.readthedocs.io/en/latest/callbacks.html.

19

Model Hooks

The *model hooks* are the methods that comprise the model interface. **training_step** is a model hook.

Each hook represent a behaviour of the model, and all hooks can be changed to change the behaviour.

Hooks example: on_epoch_start

Used if you have something you need to do at the start of each epoch:

```
class Net(pl.LightningModule):
    def on_epoch_start():
        print('new epoch started')
        self.a *= 1.1
```

More Hooks

Consult the documentation for more hooks, some are very specific and they are open to suggestions for new hooks.

https://pytorch-lightning.readthedocs.io/en/latest/api/
pytorch_lightning.core.hooks.html

Summary

Summary

Pytorch Lightning is a framework for Pytorch that strives to reduce the amount of engineering code in your projects, letting you focus on research.

Logging is automatic.

Debugging functionality is built-in.

Little flexibility is lost due to flexible callbacks and model hooks.

"Standardizes" training code in Pytorch (to those who use it).

Questions and End