Mechanical Processing in Internally Coupled Ears

Anupam Prasad Vedurmudi

TMP Thesis Defence July 8, 2013

The Model

Introduction

Introduction

The Model Mouth Cavity Eardrum

Coupled Membranes

Evaluation

Conclusio

Auditory Systems

Independent Ears Eustachian tubes typically very narrow.

Effectively independent eardrum vibrations.

Coupled Ears

Eardrums connected through wide eustachian tubes and a large mouth cavity.

Eardrums vibrations influence eachother.

Advantages of Coupled Ears

► Low frequencies result in reduced degradation of hearing cues in dense environments.

Outline for section 2

Introduction

The Model

Mouth Cavity

Eardrum

Coupled Membranes

Evaluation

Mouth Cavity

Mouth Cavity

 a_{tymp} fixed.

$$V_{
m cyl} = \pi a_{
m tymp}^2 L$$

 $a_{\rm tymp}, V_{\rm cyl}$ fixed

$$a_{\rm cyl} = \sqrt{V_{\rm cyl}/\pi}$$

The Model

•000000

Mouth Cavity

Mouth Cavity

 a_{tymp} fixed.

$$V_{
m cyl} = \pi a_{
m tymp}^2 L$$

$$a_{
m tymp}, \ V_{
m cyl}$$
 fixed. $a_{
m cyl} = \sqrt{V_{
m cyl}/\pi L}$

Mouth Cavity

Acoustic Head Model

- I Ipsilateral ear, C Contralateral ear.
 p₀, p_L sound pressure on
 eardrums, θ sound source
 direction.
- ▶ Sound source "far away".
- No appreciable amplitude difference, $|p_0| = |p_L|$.
- Phase difference between sound at both ears $\Delta = 1.5kL\sin\theta$.
- $p_0 = pe^{j\omega t .75kL\sin\theta}$ $p_L = pe^{j\omega t + .75kL\sin\theta}$

Acoustic Head Model

- I Ipsilateral ear, C Contralateral ear.
 p₀, p_L sound pressure on
 eardrums, θ sound source
 direction.
- ► Sound source "far away".
- No appreciable amplitude difference, $|p_0| = |p_L|$.
- ▶ Phase difference between sound at both ears $\Delta = 1.5kL\sin\theta$.
- $p_0 = pe^{j\omega t .75kL\sin\theta}$ $p_L = pe^{j\omega t + .75kL\sin\theta}$

Introduction

Acoustic Head Model

- I Ipsilateral ear, C Contralateral ear.
 p₀, p_L sound pressure
 eardrums, θ sound sound
- ► Sound source "far away".
- No appreciable amplitude difference, $|p_0| = |p_L|$.
- ► Phase difference between sound at both ears $\Delta = 1.5kL\sin\theta$.
- $p_0 = pe^{j\omega t .75kL\sin\theta}$ $p_L = pe^{j\omega t + .75kL\sin\theta}$

Mouth Cavity

Cavity Pressure

3D Wave Equation

$$\frac{1}{c^2} \partial_t^2 p(x, r, \phi, t) = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial p(x, r, \phi, t)}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 p(x, r, \phi, t)}{\partial \phi^2} + \frac{\partial p(x, r, \phi, t)}{\partial x^2} \tag{1}$$

To be solved using the separation ansatz

The Model

0000000

$$p(x, r, \phi, t) = f(x)g(r)h(\phi)e^{j\omega t}.$$

Separated Equations and their Solutions

The Model

0000000

$$x$$
- and ϕ - directions

Introduction

$$\frac{d^2 f(x)}{dx^2} + \zeta^2 f(x) = 0 \longrightarrow f(x) = e^{\pm j\zeta x}$$

$$\frac{d^2 h(\phi)}{d\phi^2} + q^2 h(\phi) = 0 \longrightarrow h(\phi) = e^{\pm jq\phi}$$
(3)

Evaluation

Conclusion

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial g(r)}{\partial r}\right) + \left[\nu^2 - \frac{q^2}{r^2}\right]g(r) = 0 \longrightarrow g(r) = J_q(\nu r)$$
where, $\nu^2 = k^2 - \zeta^2$

Internally Coupled Ears 9/24

Separated Equations and their Solutions

x- and ϕ - directions

$$\frac{d^2 f(x)}{dx^2} + \zeta^2 f(x) = 0 \longrightarrow f(x) = e^{\pm j\zeta x}$$

$$\frac{d^2 h(\phi)}{d\phi^2} + q^2 h(\phi) = 0 \longrightarrow h(\phi) = e^{\pm jq\phi}$$
(3)

r-direction. Bessel functions

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial g(r)}{\partial r}\right) + \left[\nu^2 - \frac{q^2}{r^2}\right]g(r) = 0 \longrightarrow g(r) = J_q(\nu r)$$
where, $\nu^2 = k^2 - \zeta^2$ (4)

1 D 7 LB 7 1 E 7 1 E 7 1 E 7 1

Conclusion

Boundary Conditions - ϕ

Smoothness and Continuity in
$$\phi$$
.

$$\phi
ightarrow h(0) = h(2\pi)$$
 and $h'(0) = h'(2\pi)$

The Model

$$\Rightarrow h(\phi) = \cos q\phi, \ q = 0, 1, 2, \dots \tag{5}$$

Introduction

Mouth Cavity

Impenetrable boundary at $r=a_{\rm cyl}$, i.e. normal derivative vanishes

The Model

0000000

$$-j\rho\omega\mathbf{v} = \mathbf{n}. \ \nabla p(x, r, \phi; t)|_{r=\mathbf{a}_{\text{cyl}}} \equiv \left. \frac{\partial g}{\partial r} \right|_{r=\mathbf{a}_{\text{cyl}}} = 0 \tag{6}$$

$$\Rightarrow g(r) = J_q(\nu_{qs}r/a_{cyl}) \tag{7}$$

Evaluation

Bessel Prime Zeros

$$\blacktriangleright$$
 $\nu_{\rm qs}$ - zeros of J_a' , $s=0,1,2,\ldots$

$$u_{\mathrm{qs}}$$
 - zeros of J_q , $s=0,1,2,\dots$

$$u_{00}=0$$

Internally Coupled Ears

The Model

Evaluation

Pressure Modes

Introduction

Mouth Cavity

$$p(x, r, \phi, t) = \sum_{q=0, s=0}^{\infty} p_{qs}(x, r, \phi) e^{j\omega t}$$

$$p_{qs}(x, r, \phi) = \left[A_{qs} e^{j\zeta_{qs}x} + B_{qs} e^{-j\zeta_{qs}x} \right] \cos q\phi J_q(\nu_{qs}r/a_{cyl})$$
where, $\zeta_{qs} = \sqrt{k^2 - \nu_{qs}^2/a_{cyl}^2}$ (9)

Dlana Maya May

The Model

000000

Introduction

Mouth Cavity

$$p(x, r, \phi, t) = \sum_{q=0, s=0}^{\infty} p_{qs}(x, r, \phi) e^{i\omega t}$$

$$p_{qs}(x, r, \phi) = \left[A_{qs} e^{j\zeta_{qs}x} + B_{qs} e^{-j\zeta_{qs}x} \right] \cos q\phi J_q(\nu_{qs}r/a_{cyl})$$
(9)

Plane Wave Mode

$$p_{00}(x, r, \phi; t) = \left[A_{00} e^{jkx} + B_{00} e^{-jkx} \right] e^{j\omega t}$$
 (10)

Evaluation

4 □ > 4 □ > 4 □ > 4 □ >

The Model •000000

Eardrum

Eardrum

Sketch of a Tokay eardrum as seen from the outside^a.

COL - approximate position opposite the extracolumella insertion

The ICF eardrum.

Extracolumella (dark) - rigid, stationary.

Tympanum - assumed linear elastic.

Rigidly clamped at the boundaries ($r = a_{tymp}$ and $\phi = \beta$, $2\pi - \beta$)

aG. A. Manley, "The middle ear of the tokay gecko," Journal of Comparative Physiology, vol. 81, no. 3, pp. 239-250, 1972

NA I

Eardrum

Membrane Vibrations

Membrane EOM

$$-\partial_t^2 u(r,\phi;t) - 2\alpha \partial_t u(r,\phi;t) + c_M^2 \Delta_{(2)} u(r,\phi;t) = \frac{1}{\rho_m d} \Psi(r,\phi;t)$$
(11)

Membrane parameters

 α - damping coefficient, c_M^2 - propagation velocity

 ho_m - density, d - thickness.

Introduction

Free-Undamped Membrane, $\alpha \to 0$, $\Psi \to 0$

The Model

Separation Ansatz

$$u(r,\phi;t) = f(r)g(\phi)h(t) \tag{12}$$

Evaluation

Conclusion

(14)

15/24

Separated Equations

$$\frac{d^2g(\phi)}{d\phi^2} + \kappa^2 g(\phi) = 0$$

$$\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f(r)}{\partial r} \right) + \left[\mu^2 - \frac{\kappa^2}{r^2} \right] f(r) = 0$$
(13)

$$\frac{d^2h(t)}{dt^2} + c_M^2\mu^2h(t) = 0 {15}$$

4日 > 4周 > 4 3 > 4 3 > 3 3

$$\Rightarrow g(\phi) = \sin \kappa (\phi - \beta)$$

where,
$$\kappa=rac{m\pi}{2(\pi-eta)}, \quad m=1,2,3,\ldots$$

The Model

0000000

$$p;t)=0$$

$$\rightarrow I(I) - J_{\kappa}(\mu_{\text{mn}} I / a_{\text{tymp}})$$
where μ_{mn} is the n^{th} zero of J_{mn}

<□▶ <률▶ <臺▶ = - 9q@

Introduction

Boundary Conditions

Eardrum

Conclusion

(16)

Larurt

Introduction

Boundary Conditions

$$\phi$$
-direction: $u(r, \beta; t) = u(r, 2\pi - \beta, t) = 0$

The Model

$$\Rightarrow g(\phi) = \sin \kappa (\phi - \beta)$$
 (16) where, $\kappa = \frac{m\pi}{2(\pi - \beta)}, \quad m = 1, 2, 3, \dots$

Evaluation

r-direction:
$$u(a_{\text{tymp}}, \phi; t) = 0$$

$$\Rightarrow f(r) = J_{\kappa}(\mu_{\rm mn} r / a_{\rm tymp})$$
 where, $\mu_{\rm mn}$ is the $n^{\rm th}$ zero of J_{κ}

Free eigenmodes

Introduction

Eardrum

$$u_{ ext{free}}(r,\phi;t) = \sum_{-\infty}^{\infty} C_{ ext{mn}} u_{ ext{mn}}(r,\phi) e^{j\omega_{ ext{mn}}t}$$

The Model

0000000

$$m=0, n=1$$

 $u_{\rm mn}(r,\phi) = \sin \kappa (\phi - \beta) J_{\kappa}(\mu_{\rm mn} r)$

where,
$$\omega_{\rm mn} = c_{\rm M} \mu_{\rm mn}$$

$$\widetilde{u}_{\text{free}}(r,\phi;t) = \sum_{n=0}^{\infty} \widetilde{C}_{\text{mn}} u_{\text{mn}}(r,\phi) e^{j\omega_{\text{mn}}t - \alpha t}$$
 (20)

Evaluation

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ■

Conclusion

(18)

(19)

Eardrum

Free eigenmodes

$$u_{
m free}(r,\phi;t) = \sum_{}^{\infty} C_{
m mn} u_{
m mn}(r,\phi) e^{j\omega_{
m mn}t}$$

 $u_{\rm mn}(r,\phi) = \sin \kappa (\phi - \beta) J_{\kappa}(\mu_{\rm mn} r)$

m = 0, n = 1

where,
$$\omega_{\mathrm{mn}} = c_{M} \mu_{\mathrm{mn}}$$

Damped membrane

$$\widetilde{u}_{\text{free}}(r,\phi;t) = \sum_{m=0}^{\infty} \widetilde{C}_{\text{mn}} u_{\text{mn}}(r,\phi) e^{j\omega_{\text{mn}}t - \alpha t}$$
 (20)

(18)

(19)

m=0,n=1

The Model

0000000

Forced Vibrations: $\Psi = pe^{j\omega t}$

Steady State Solution

Substitute u_{ss} in Membrane EOM.

$$C_{\rm mn} = \frac{p \int dS u_{\rm mn}}{\Omega_{\rm mn} \int dS u_{\rm mn}^2}$$

$$\Omega_{\rm mn} = a_{\rm mn} d \left[(\omega^2 - \omega^2) \right] = 2i\alpha \omega$$

4□ > 4回 > 4 = > 4 = > = 900

Introduction

Eardrum

Eardrum

Forced Vibrations: $\Psi = pe^{j\omega t}$

Steady State Solution

$$u_{\rm ss}(r,\phi;t) =: \sum_{m=0,n=1}^{\infty} C_{\rm mn} u_{\rm mn}(r,\phi) e^{j\omega t}$$
 (21)

Substitute u_{ss} in Membrane EOM.

$$C_{\rm mn} = \frac{p \int dS u_{\rm mn}}{\Omega_{\rm mn} \int dS u_{\rm mn}^2}$$

$$\Omega_{\rm mn} = \rho_{M} d \left[(\omega^2 - \omega_{\rm mn}^2) - 2j\alpha\omega \right]$$
(22)

Eardrum

Forced Vibrations contd.

Transient Solution

Same as the solution for a free damped membrane

$$u_{\rm t}(r,\phi;t) = \sum_{m=0,n=1}^{\infty} \widetilde{C}_{\rm mn} u_{\rm mn}(r,\phi) e^{j\omega_{\rm mn}t - \alpha t}$$
 (23)

 $\widetilde{\textit{C}}_{
m mn}$ determined from the membrane displacement at t=0.

$$u_{\rm t} \to 0$$
 as $t \to \infty$.

The Model

Mouth Cavity
Eardrum
Coupled Membranes

Outline for section 3

Evaluation

Introduction

Conclusio

Vibration Amplitude

Introduction

Outline for section 4

Introduction

Mouth Cavity

Coupled Membranes

The Model

Conclusion

The Model

Introduction

Conclusion

Thank You

