Statistics Department,
Fergusson College,
(Established 1885)

TIME SERIES: OIL PRICES IN INDIA

Project Under

CPE-UG

PROJECT BY:

PARISEE SHIRKE

AJMAL ANSARI

ADITI IYER

SHUBHANGI ZANAN

Year 2014-15

S.Y.B.Sc. Statistics

Semester 1

CERTIFICATE

This is to certify that the project report entitled

"TIME SERIES: OIL PRICES IN INDIA" is an original work done by

Parisee Shirke, Ajmal Ansari, Adithi Iyer, and Shubhangi Zanan

under my supervision and able guidance.

Prof. S.S.SHENDE,

Project Guide,

Dept. of Statistics,

Fergusson College,

Pune-04.

Prof. S.S.SHENDE,

Head of Department,

Dept. of Statistics,

Fergusson College,

Pune-04.

INDEX:

Acknowledgement	.4
Abstract and Keywords	6
Introduction	8
Data Source and Softwares Used	10
Time Series Analysis: Definitions and Concepts	12
Examples of Time Series	21
Rice ProductionGold Prices	
Methodology	29
Motivation	31
Data	33
 Data Analysis Time Series of Oil Prices Estimation of Best Fitted Trendline: Petrol Estimation of Best Fitted Trendline: Diesel Estimation of Best Fitted Trendline: LPG Estimation of Best Fitted Trendline: Kerosen Double Exponential Smoothing: Petrol and LP 	36 39 47 57 e 64 G
 Estimation of Fuel Prices: Petrol	81 84
Conclusion	90
Scope and Limitations	92
References	95

ACKNOWLEDGEMENT
4

ACKNOWLEDGEMENT

We would like to take this opportunity to thank everyone who has been a direct or indirect part of our project report entitled "TIME SERIES: OIL PRICES IN INDIA".

We would like to thank our <u>Project Guide Prof. S.S. Shende, HOD, Statistics Department</u> for his valuable support and guidance, which helped us in completing this task through various stages.

We are also grateful to <u>Dr. Mrs. Sharmishtha L. Matkar</u>, <u>HOD</u>, <u>Economics</u> <u>Department</u>, who provided us with the information on the background of the subject which enhanced the quality of our project report.

We would also like to express a sense of gratitude to our <u>teachers</u> for their support and efforts that encouraged us to undertake this project work because of which we are able to get a practical experience of handling the data using the statistical tools which we have been studying from the last few years.

Also, a thanks to the <u>non-teaching staff</u> of the Statistics Department for their cooperation in making this project a success.

ABSTRACT AND KEYWORDS

ABSTRACT

This project is based on studying the changes in Oil Prices over the years. We study the <u>trends in variations of Oil Prices</u> over the years <u>1989 - 2010</u>.

We use Time Series Analysis to process the data and observe the changes in the prices of <u>Diesel</u>, <u>Petrol</u>, <u>Kerosene and LPG</u> through the time period.

Using the patterns, hence, observed we have <u>estimated and</u> <u>forecasted oil prices</u> for the successive years from <u>2011 - 2020</u> for Diesel, Petrol, Kerosene and LPG each.

KEYWORDS

- ➤ Time Series
- Fitting of Trend Line- Linear, Logarithmic, Exponential, Polynomial Trend Lines.
- > R- Squared Value
- Residual Sum of Squares, Residual Plots.
- Exponential Smoothing
- Double Exponential Smoothing

CHANGES IN OIL PRICES AND HOW THEY EFFECT OUR ECONOMY

This project report is basically focused on the changes in oil prices and how they affect our economy. Oil is an important resource in every walk of our life, may it be our households or our vehicles, and they all are in some way or the other dependent on oil.

The project is focused on the oil prices in India. A major being oil bed in India is situated in Digboi, Assam & Bombay High, Mumbai. Most of our oil is <u>imported from the Arab countries</u> and as the oil prices are affected there, the prices here in India also get affected.

Our industries especially the <u>transportation industry is</u> <u>deeply influenced by the oil prices</u> due to which transportation costs may it be the <u>railway fare</u>, the bus fare or even the local public transport fare is affected by the changes in oil prices. Other than this the <u>chemical industries</u>, import-export business is also affected.

So, in order to take a close look into the topic, the oil prices from the <u>year 1989-2010</u> have been taken as the data. Analysis has been done using different statistical methods.

DATA SOURCE AND SOFTWARES USED

DATA SOURCE

The type of data used is **Secondary** Data.

The address of the website from which the data was obtained is:

in.reuters.com

SOFTWARES USED

- ❖ Microsoft Excel
- ❖ Microsoft Word

TIME SERIES ANALYSIS: DEFINITIONS AND CONCEPTS

Time Series Analysis

A time series or a stochastic process (stochastic means random) is a sequence of data points, measured typically at successive points in time spaced at uniform time intervals. Time series are very frequently plotted via line charts. This involves analysis of data over time with the intention of finding some pattern in order to construct short term forecasting.

<u>Forecasting</u> is the use of a model to predict future values based on previously observed values. If history had been different, we would observe a different outcome, thus we can think of time series as the outcome of a random variable. The difference is that instead of dealing with individuals as units; the unit of interest here is time.

Allowing one to answer question such as what is the causal effect on a variable Y of a change in variable x

Types of Time Series

Continuous Time Series

A time series is said to be continuous when <u>observations are</u> <u>made continuously in time</u>. The term continuous is used for series of this type even when the measured variable can take only discrete set of values.

Discrete Time Series

A time series is said to be discrete when <u>observations are</u> <u>taken at specific time</u>, <u>usually equally spaced</u>. The term discrete is used for series of this type even when the measured variable is a continuous variable.

The Simple Moving Average

The simplest way to smooth a time series is to calculate a simple, or unweighted, moving average. The smoothed statistics is then just the $\underline{\text{mean}}$ of the last k observations:

$$s_t = \frac{1}{k} \sum_{n=0}^{k-1} x_{t-n} = \frac{x_t + x_{t-1} + x_{t-2} + \dots + x_{t-k+1}}{k} = s_{t-1} + \frac{x_t - x_{t-k}}{k},$$

where the choice of an integer k > 1 is arbitrary.

A small value of k will have less of a Smoothing effect and be more responsive to recent changes in the data, while a larger k will have a greater Smoothing effect, and produce a more pronounced lag in the smoothed sequence. This means effectively extrapolating outside the existing data, and the validity of this section would therefore be questionable and not a direct representation of the data.

A major drawback with the SMA is that it lets through a significant amount of the signal shorter than the window length. Worse, it actually inverts it. This can lead to unexpected artefacts, such as peaks in the "smoothed" result appearing where there were troughs in the data. It also leads to the result being less "smooth" than expected since some of the higher frequencies are not properly removed.

The observed phenomenon may be an essentially random process, or it may be an orderly, but noisy, process. Whereas in the simple moving average the past observations are weighted equally, Exponential Smoothing assigns Exponentially decreasing weights over time.

Weighted Moving Average

A slightly more intricate method for Smoothing a raw time series $\{x_t\}$ is to calculate a weighted moving average by first choosing a set of weighting factors

$$\{w_1,w_2,\dots,w_k\}$$
 Such that $\sum\limits_{n=1}^k w_n=1$

and then using these weights to calculate the smoothed statistics $\{s_t\}$:

$$s_t = \sum_{n=1}^k w_n x_{t+1-n} = w_1 x_t + w_2 x_{t-1} + \dots + w_k x_{t-k+1}.$$

In practice the weighting factors are often chosen to give more weight to the most recent terms in the time series and less weight to older data. Notice that this technique has the same disadvantage as the simple moving average technique (i.e., it cannot be used until at least k observations have been made), and that it entails a more complicated calculation at each step of the Smoothing procedure. In addition to this disadvantage, if the data from each stage of the averaging is not available for analysis, it may be difficult if not impossible to reconstruct a changing signal accurately (because older samples may be given less weight). If the number of stages missed is known however, the weighting of values in the average can be adjusted to give equal weight to all missed samples to avoid this issue.

What is Exponential Smoothing?

This is a very popular scheme to produce a smoothed Time Series. Whereas in Single Moving Averages the past observations are weighted equally, <u>Exponential Smoothing assigns Exponentially decreasing weights as the observation get older.</u>

In other words, <u>recent observations are given relatively more</u> weight in forecasting than the older observations.

In the case of moving averages, the weights assigned to the observations are the same and are equal to 1/N. In Exponential Smoothing, however, there are one or more Smoothing parameters to be determined (or estimated) and these choices determine the weights assigned to the observations.

Simple Exponential Smoothening

The Equation used in Simple Exponential Smoothing is

Current Forecast = α *previous value + $(1-\alpha)$ *previous Forecast value

I.e.
$$\hat{Y}_{t+1} = \alpha Y_t + (1-\alpha) \hat{Y}_t$$

Thus \hat{Y}_{t+1} is a Weighted arithmetic mean of Y_t and \hat{Y}_t . In this procedure, the recent past has assigned more weights whereas distant past has assigned discounted weights which decrease exponentially.

Where α is the *Smoothing factor*, and $0 < \alpha < 1$. In other words, the smoothed statistic s_t is a simple weighted average of the previous observation x_{t-1} and the previous smoothed statistic s_{t-1} . The term *Smoothing factor* applied to α here is something of a misnomer, as larger values of α actually reduce the level of Smoothing, and in the limiting case with α = 1 the output series is just the same as the original series (with lag of one time unit). Simple Exponential Smoothing is easily applied, and it produces a smoothed statistic as soon as two observations are available.

Values of α close to one have less of a Smoothing effect and give greater weight to recent changes in the data, while values of α closer to zero have a greater Smoothing effect and are less responsive to recent changes. There is no formally correct procedure for choosing α . Sometimes the statistician's to choose judgment is used an appropriate Alternatively, a statistical technique may used to *optimize* the value of α . For example, the method of least squares might be used to determine the value of α for which the sum of the quantities $(s_{n-1} - x_{n-1})^2$ is minimized.

Why is Exponential Smoothening, Exponential?

By direct substitution of the defining equation for simple Exponential Smoothing back into itself we find that

$$s_{t} = \alpha x_{t-1} + (1 - \alpha)s_{t-1}$$

$$= \alpha x_{t-1} + \alpha (1 - \alpha)x_{t-2} + (1 - \alpha)^{2}s_{t-2}$$

$$= \alpha \left[x_{t-1} + (1 - \alpha)x_{t-2} + (1 - \alpha)^{2}x_{t-3} + (1 - \alpha)^{3}x_{t-4} + \dots + (1 - \alpha)^{t-1}x_{0} \right] + (1 - \alpha)^{t}s_{0}.$$

passes ln other words, as time the smoothed statistic s_t becomes the weighted average of a greater and greater number of the past observations x_{t-n} , and the weights assigned to previous observations are in general proportional the terms of the geometric progression to $\{1, (1-\alpha), (1-\alpha)^2, (1-\alpha)^3, \ldots\}$. A geometric progression is the discrete version of an exponential function, so this is where the name for this Smoothing method originated.

Double Exponential Smoothening

Simple Exponential Smoothing does not do well when there is a <u>trend</u> in the data. In such situations, several methods were devised under the name "Double Exponential Smoothing" or "second-order Exponential Smoothing." The basic idea behind Double Exponential Smoothing is to introduce a term to take into account the possibility of a <u>series exhibiting some form of trend</u>. This slope component is itself updated via Exponential Smoothing.

One method sometimes referred to as "Holt-Winters Double Exponential Smoothing" works as follows:

Again, the raw data sequence of observations is represented by $\{x_t\}$, beginning at time t = 0. We use $\{s_t\}$ to represent the smoothed value for time t, and $\{b_t\}$ is our best estimate of the trend at time t. The output of the algorithm is now written as F_{t+m} , an estimate of the value of x at time t+m, m>0 based on the raw data up to time t. Double Exponential Smoothing is given by the formulas

$$s_1 = x_1$$
$$b_1 = x_1 - x_0$$

And for t > 1 by

$$s_t = \alpha x_t + (1 - \alpha)(s_{t-1} + b_{t-1})$$

$$b_t = \beta(s_t - s_{t-1}) + (1 - \beta)b_{t-1}$$

where α is the data Smoothing factor, $0 < \alpha < 1$, and β is the trend Smoothing factor, $0 < \beta < 1$.

To forecast beyond x_t

$$F_{t+m} = s_t + mb_t$$

Where a_t is level or intercept & b_t is slope of the trend. Single Exponential Smoothing smoothes just the level. We need to smooth out slope (b_t) also since it undergoes frequent ups & downs, F_{t+1} = Current forecast, s_t = previous year's smoothed value of intercept & b_t = previous year's smoothed value of slope of the trend.

We have two smoothing constants (α_1, α_2) . The constant α_1 is used for smoothing the level while α_2 is used for smoothing the slope.

Setting the initial value b_0 is a matter of preference. An option other than the one listed above is $(x_n - x_0)/n$ for some n > 1.

Note that F_0 is undefined (there is no estimation for time 0), and according to the definition $F_1=s_0+b_0$, which is well defined, thus further values can be evaluated.

A second method, referred to as either Brown's Linear Exponential Smoothing (LES) or <u>Brown's Double Exponential Smoothing works</u> as follows.

$$s'_{0} = x_{0}$$

$$s''_{0} = x_{0}$$

$$s'_{t} = \alpha x_{t} + (1 - \alpha) s'_{t-1}$$

$$s''_{t} = \alpha s'_{t} + (1 - \alpha) s''_{t-1}$$

$$F_{t+m} = a_{t} + mb_{t},$$

where a_t , the estimated level at time t and b_t , the estimated trend at time t are:

$$a_t = 2s_t' - s_t''$$

$$b_t = \frac{\alpha}{1 - \alpha} (s_t' - s_t'').$$

EXAMPLES OF TIME SERIES

RICE PRODUCTION

DATA:

The following table gives the average annual Production of Rice in India in million tonnes:

	RICE		RICE		RICE		RICE
YEAR	PROD	YEAR	PROD	YEAR	PROD	YEAR	PROD
1950-		1965-		1980-		1995-	
51	20.58	66	30.59	81	53.63	96	76.98
1951-		1966-		1981-		1996-	
52	21.3	67	30.44	82	53.25	97	81.73
1952-		1967-		1982-		1997-	
53	22.9	68	37.61	83	47.12	98	82.54
1953-		1968-		1983-		1998-	
54	28.21	69	39.76	84	60.1	99	86.08
1954-		1969-		1984-		1999-	
55	25.22	70	40.43	85	58.34	00	89.68
1955-		1970-		1985-		2000-	
56	27.56	71	42.22	86	63.83	01	84.98
1956-		1971-		1986-		2001-	
57	29.04	72	43.07	87	60.56	02	93.34
1957-		1972-		1987-		2002-	
58	25.53	73	39.24	88	56.86	03	71.82
1958-		1973-		1988-		2003-	
59	30.85	74	44.05	89	70.49	04	88.53
1959-		1974-		1989-		2004-	
60	31.68	75	39.58	90	73.57	05	83.13
1960-		1975-		1990-		2005-	
61	34.58	76	48.74	91	74.29	06	91.79

1961- 62	35.66	1976- 77	41.92	1991- 92	74.68	2006- 07	93.35
1962- 63	33.21	1977- 78	52.67	1992- 93	72.86	2007- 08	96.69
1963- 64	37	1978- 79	53.77	1993- 94	80.3	2008- 09	99.18
1964- 65	39.31	1979- 80	42.33	1994- 95	81.81	2009- 10	89.09
						2010- 11	95.98
						2011- 12	105.3

TIME SERIES:

The Time Series, thus, obtained for Prices of Rice grain is as follows:

CONCLUSION:

The Trendline of the <u>Production of Rice from the year 1951-2012</u> shows that the <u>production increases throughout</u>. Initially, we see that the production in the <u>beginning</u> was <u>increasing slowly</u> but after the **GREEN REVOLUTION** in **1975-76** there was a <u>rapid increase</u> in the production of rice, and <u>by 2012</u> the production rose to <u>five times</u> that of the production in 1950's.

GOLD PRICES

DATA:

The following table gives the average annual Gold Prices in National Currency per unit Troy ounce.

(1 Troy ounce= 31.1 grams)

Year	Indian rupee	US dollar	Year	Indian rupee	US dollar
1979	4,189.60	512	1996	13,228.40	369.3
1980	4,620.30	589.8	1997	11,378.70	290.2
1981	3,625.10	397.5	1998	12,230.40	287.8
1982	4,320.00	456.9	1999	12,631.00	290.3
1983	3,995.00	382.4	2000	12,811.30	274.5
1984	3,825.80	308.3	2001	13,332.80	276.5
1985	3,920.60	326.8	2002	16,648.20	347.2
1986	5,061.00	388.8	2003	18,991.40	416.3
1987	6,116.80	484.1	2004	18,935.50	435.6
1988	6,123.10	410.3	2005	23,090.10	513
1989	6,624.80	398.6	2006	27,972.30	632
1990	6,948.90	386.2	2007	32,862.30	833.8
1991	9,080.60	353.2	2008	42,374.20	869.8
1992	9,639.30	332.9	2009	50,606.80	1,087.50
1993	12,252.60	391.8	2010	62,846.90	1,405.50
1994	12,022.10	383.3	2011	81,303.70	1,531.00
1995	13,608.80	387	2012	90,814.40	1,657.50
			2013	74,504.30	1,204.50

TIME SERIES:

The Time Series for Gold Prices in Indian Rupee and US Dollar are as obtained below:

CONCLUSION:

Here, we have plotted the trendline for the <u>Gold Prices</u> (in Indian rupee& US dollar/unit Troy ounce) for the years <u>1979-2013</u>. In the Indian market, we see that the <u>prices are following an increasing trend</u>, but <u>initially</u> the <u>rise</u> in the prices was a <u>lower</u> and <u>after 1999-00</u>, there was a <u>price hike</u> in the gold prices. In the US market, <u>till 2001</u> the trend was <u>approximately constant</u> but suddenly after <u>2002</u>, there was a <u>steep increase</u> in the prices. This also gives a fair idea of the Deterioration of the Indian Rupee in comparison with the US Dollar.

METHODOLOGY	
29	

METHODOLOGY

Our project group consisted of 4 people and our study was about the changes in oil prices and their effect on the economy. We contacted both the Economics and Statistics departments of our college whose guidelines throughout the project proved to be of great help.

In this project, we have made use of <u>Secondary Data</u>. For data collection we have gone through different sites and finally collected the data which consisted of <u>Oil Prices from the year 1989 to 2010 in Rupee per Litre</u>. The data consisted of four categories namely <u>Kerosene</u>, <u>Petrol</u>, <u>Diesel and LPG</u> (liquefied Petroleum gas).

The data was the revision of the prices of the above four categories, so we <u>averaged out the data on monthly basis</u> and did the further analysis. The main focus in this project has been given on time series analysis and its applications.

Firstly, we have <u>plotted the time series</u> for the data then we have <u>fitted different models</u> for the different categories, the models being <u>Linear</u>, <u>Exponential</u>, <u>Logarithmic</u>, <u>Polynomial</u> (with different degrees). Thereby we found out the <u>best fit</u> on the basis of the graphs (Here we found out that though the value of R^2 value was the largest still the fit was not the best fit). Thereafter <u>estimates</u> were calculated from the best fitted curves using the given equation and the <u>Residual Plots</u> plotted using the estimates. Finally we did <u>Exponential Smoothening</u> of the data to reduce the error factor.

MOTIVATION

Today a common man has a lot of issues regarding his day-to-day life. Life is becoming so fast that to compete with it one has to be fast, <u>vehicles</u> at every house appears as a basic need today. There is at least one vehicle at everyone's place these days. If there is no <u>gas connection</u> you'll be frustrated cooking on coal or on a heater.

Even though the standard of living is improving, the <u>prices of goods</u> are pushing it down; especially the oil prices and you can see that they are <u>soaring</u> these days.

When our parents were at high school oil prices at that time was merely a big issue. However days are not the same if we look back the prices of oil was the same as that of the prices of chocolates today. So, you see how days change, values change, affecting the common man. How fascinating would it be if we knew about what will be the prices of oil 10 years from now? There will be a boost in the share market, but it is not possible to tell what will the exact prices of oil be after 10 years but we could try to predict the Prices by carrying a bit of statistical analysis, Forecasting and getting an Estimated value. These things in some way or the other motivated us for doing this project.

DATA OF OIL PRICES

Year	Price of Diesel (Rs./Litre)	Price of Petrol (Rs./Litre)	Price of Kerosene (Rs./Litre)	Price of LPG (Rs./Litre)
1989	3.5	8.5	2.25	57.6
1990	4.565	11.035	2.51	57.6
1991	5.05	14.62	2.52	67.9
1992	6.11	15.71	2.52	82.75
1993	6.11	15.71	2.52	82.75
1994	6.4	16.0666667	2.52	94.8
1995	6.4	16.0666667	2.52	94.8
1996	8.53	21.13	2.52	119.95
1997	10.34	22.84	2.52	136
1998	10	23.115	2.52	136
1999	10.4	23.856	2.52	145.2
2000	15.295	27.2983333	6.27833333	204.308333
2001	17.06	28.7	7.35	222.25
2002	17.463846	28.8838462	8.85461538	240.723077
2003	20.102667	31.4826667	8.99	241.28
2004	23.821667	36.1283333	9.01	261.6
2005	29.116667	41.49	9.05666667	281.6
2006	31.165	44.845	9.0875	281.6
2007	30.365	43.185	9.1075	281.6
2008	33.49	48.0833333	9.18	324.733333
2009	32.216667	43.3233333	9.22	280.7
2010	37.89	48.03	10.22	312.3

TIME SERIES OF OIL PRICES

CONCLUSION:

All The above graphs show an increasing trend.

For each only one The select whether is	is seled tion of	the gra	r the iph de	analy epend	ysis a Is on	nd est its <u>R-s</u>	imation _I	ourpo	se.
For each follows-	fuel,	Trend	Line	fits	and	their	analyses	are	as
				38					

PETROL:

DATA:

Year	Price of Petrol (Rs./Litre)
1989	8.5
1990	11.035
1991	14.62
1992	15.71
1993	15.71
1994	16.06666667
1995	16.0666667
1996	21.13
1997	22.84
1998	23.115
1999	23.856
2000	27.29833333
2001	28.7
2002	28.88384615
2003	31.48266667
2004	36.12833333
2005	41.49
2006	44.845
2007	43.185
2008	48.08333333
2009	43.32333333
2010	48.03

FITTING OF TREND LINES:

We fit the following Trend Lines to the the above data:

1. Linear-

1. Exponential -

3. Logarithmic -

4. Polynomial of degree six-

EQUATIONS:

Hence we obtain the equations of the fit from the graphs as follows:

Trend Line	Equation
Exponential	$y = 6E-65e^{0.075x}$
Linear	y = 1.912x - 3795
Logarithmic	y = 3822.ln(x) - 29029
Polynomial	$y = -5E-07x^6 + 0.006x^5 - 30.40x^4 + 80692x^3 - 1E+08x^2 + 1E+11x - 3E+13$

ESTIMATES:

Using these equations the Petrol prices were estimated as follows:

		Estimates						
Voor	Price of							
Year	Petrol	Polynomial	Linear	Logarithmic	Exponential			
1989	8.5	-108002	7.6658	7.406028	12.08697			
1990	11.035	-108001	9.578	9.327566	13.03618			
1991	14.62	-107999	11.4902	11.24814	14.05992			
1992	15.71	-107998	13.4024	13.16775	15.16406			
1993	15.71	-107996	15.3146	15.08639	16.35491			
1994	16.06666667	-107995	17.2268	17.00408	17.63928			
1995	16.06666667	-107993	19.139	18.9208	19.02451			
1996	21.13	-107992	21.0512	20.83656	20.51853			
1997	22.84	-107990	22.9634	22.75136	22.12987			
1998	23.115	-107988	24.8756	24.6652	23.86776			
1999	23.856	-107986	26.7878	26.57808	25.74212			
2000	27.29833333	-107984	28.7	28.49001	27.76367			
2001	28.7	-107982	30.6122	30.40098	29.94398			
2002	28.88384615	-107980	32.5244	32.311	32.29552			
2003	31.48266667	-107978	34.4366	34.22007	34.83172			
2004	36.12833333	-107976	36.3488	36.12818	37.56709			
2005	41.49	-107973	38.261	38.03534	40.51727			
2006	44.845	-107971	40.1732	39.94154	43.69914			
2007	43.185	-107968	42.0854	41.8468	47.13088			
2008	48.08333333	-107966	43.9976	43.75111	50.83212			
2009	43.32333333	-107963	45.9098	45.65447	54.82402			
2010	48.03	-107961	47.822	47.55689	59.12941			

Here we observe that <u>prices given by the Polynomial fit are</u> <u>not realistic</u> hence we do not consider it.

SUM OF SQUARE OF RESIDUALS (SSR):

For the other fits we calculate the residuals and their SSR. The one with least SSR is considered as the best fit.

Ye	Price of							
ar	Petrol	Lin	ear	Logari	ithmic	Exponential		
		Resid		Resid		Resid		
		ual	SSR	ual	SSR	ual	SSR	
19	0 5	0.834	0.6958	1.093	1.196	11.25	12.86	
89	8.5	2	9	972	774	277	639	
19	11 025		2.1228	1.707	2.915	11.57	4.004	
90	11.035	1.457	49	434	329	918	713	
19	1167	3.129	9.7956	3.371	11.36	10.93	0.313	
91	14.62	8	48	861	945	012	686	
19	15.71	2.307	5.3250	2.542	6.463	12.85	0.298	
92	13.71	6	18	252	047	646	046	
19	15.71	0.395	0.1563	0.623	0.388	15.95	0.415	
93	13.71	4	41	607	886	951	914	
19	16.0666	-		-				
94	6667	1.160	1.3459	0.937	0.878	18.79	2.473	
77	0007	13	09	41	734	942	122	
19	16.0666	-		-				
95	6667	3.072	9.4392	2.854	8.146	22.09	8.748	
		33	32	13	055	685	865	
19	21.13	0.078	0.0062	0.293	0.086	20.43	0.373	
96	21.13	8	09	443	109	973	895	
19	00.51	-						
97	22.84	0.123	0.0152	0.088	0.007	22.25	0.504	
		4	28	642	857	327	281	
19	00 44	-		-		0= 40		
98	23.115	1.760	3.0997	1.550	2.403	25.62	0.566	
		6	12	2	12	836	641	
19	22.054	-	0.5054	-	7 400	20.47	2 557	
99	23.856	2.931	8.5954	2.722	7.409	28.67	3.557	
	07 0000	8	51	08	744	392	433	
20	27.2983	-	1.9646	-	1.420	29.16	0.216	

00	3333	1.401 67	69	1.191 68	099	534	54
20 01	28.7	- 1.912 2	3.6565 09	- 1.700 98	2.893 35	31.85 618	1.547 493
20 02	28.8838 4615	- 3.640 55	13.253 63	3.427 16	11.74 54	35.93 607	11.63 949
20 03	31.4826 6667	- 2.953 93	8.7257 22	2.737 4	7.493 356	37.78 565	11.21 614
20 04	36.1283 3333	- 0.220 47	0.0486 06	0.000 156	2.45E- 08	37.78 756	2.070 021
20 05	41.49	3.229	10.426 44	3.454 664	11.93 47	37.28 827	0.946 196
20 06	44.845	4.671 8	21.825 72	4.903 456	24.04 388	39.02 734	1.312 997
20 07	43.185	1.099 6	1.2091 2	1.338 198	1.790 774	46.03 128	15.56 996
20 08	48.0833 3333	4.085 733	16.693 22	4.332 223	18.76 815	46.74 638	7.555 817
20 09	43.3233 3333	- 2.586 47	6.6898	- 2.331 14	5.434 205	57.41 049	132.2 658
20 10	48.03	0.208	0.0432 64	0.473 115	0.223 838	58.92 141	123.1 969
	Total-		125.1 342		127.0 129		341.6 603

The SSR of Linear is the minimum. <u>Hence Linear fit is the best</u> <u>fit for the Petrol prices.</u>

RESIDUAL PLOT:

After fitting the appropriate Trend Line to the oil prices, the <u>prices were estimated</u> for the collected data using the equations. Then the <u>residuals</u> were obtained as the difference of the observed prices and the estimated prices. Then a <u>graph of the year</u> and the <u>corresponding residual</u> were plotted to obtain a Residual Plot to <u>study the goodness of the fit</u>.

CONCLUSION:

From the graphs we can conclude that the <u>Linear fit</u> for <u>Petrol</u> is good as the Residual Plot does not show any pattern

DIESEL:

DATA:

Year	Price of Diesel (Rs./Litre)
1989	3.5
1990	4.565
1991	5.05
1992	6.11
1993	6.11
1994	6.4
1995	6.4
1996	8.53
1997	10.34
1998	10
1999	10.4
2000	15.295
2001	17.06
2002	17.463846
2003	20.102667
2004	23.821667
2005	29.116667
2006	31.165
2007	30.365
2008	33.49
2009	32.216667
2010	37.89

TREND LINE:

We fit the following Trend Lines to the above data:

1. Exponential-

2. Linear-

3. Logarithmic-

4. Polynomial-

EQUATIONS:

Hence we obtain the equations of the fit from the graphs as follows:

Trend Line	Equation
Exponential	$y = 2E-99e^{0.115x}$
Linear	y = 1.677x - 3336
Logarithmic	y = 3352.1ln(x) - 25461
Polynomial	$y = 1E-05x^6 - 0.174x^5 + 871.6x^4 - 2E+06x^3 + 3E+09x^2 - 3E+12x + 9E+14$

ESTIMATES:

Using these equations the Diesel prices were estimated as follows:

Yea	Price of				
r	Diesel		Est	imation	
		Linea	Logarithm	Exponenti	Polynomia
		r	ic	al	l
			-		-
198		-	1.2618412	4.3589139	9.21545E+
9	3.5	0.447	8	6	13
					-
199			0.4230041	4.8901497	9.12718E+
0	4.565	1.23	9	9	13
					-
199			2.1070032	5.4861291	9.03882E+
1	5.05	2.907	2	6	13
1.00					-
199			3.7901566	6.1547425	8.95039E+
2	6.11	4.584	6	8	13
4.0.0			- 4-0 44-0		-
199			5.4724653	6.9048422	8.86187E+
3	6.11	6.261	5	1	13
100			7 4520204	7 7 4 4 3 5 0 0	-
199		7 000	7.1539301	7.7463590	8.77328E+
4	6.4	7.938	5	7	13
100			0 0245540	0.4004344	
199		0.445	8.8345518	8.6904344	8.6846E+1
5	6.4	9.615	9	8	3
100		11 20	10 514224		 0 E0E04F:
199	0 50	11.29	10.514331	0.7405474	8.59584E+
100	8.53	12.06	4 12.193269	9.7495676	13
199 7	10.24	12.96		10.937780	9 507E : 12
	10.34	•	12 971267	9	-8.507E+13
199	10	14.64	13.871367	12.270805	- 0 41000F:
8	10	6	3	9	8.41808E+

					13
199 9	10.4	16.32	15.548625 2	13.766291 2	- 8.32908E+ 13
200	15.295	18	17.225044 4	15.444036 4	-8.24E+13
200	17.06	19.67 7	18.900625 5	17.326254 2	8.15084E+ 13
200 2	17.463846 15	21.35	20.575369	19.437864 4	8.0616E+1 3
200 3	20.102666 67	23.03	22.249277	21.806823	7.97228E+ 13
200 4	23.821666 67	24.70 8	23.922349	24.464496 3	- 7.88289E+ 13
200 5	29.116666 67	26.38 5	25.594586 8	27.446068 5	- 7.79341E+ 13
200 6	31.165	28.06	27.265990 5	30.791015 3	- 7.70385E+ 13
200 7	30.365	29.73 9	28.936561 2	34.543622 1	- 7.61422E+ 13
200 8	33.49	31.41 6	30.606299 7	38.753572 1	- 7.52451E+ 13
200 9	32.216666 67	33.09	32.275206 9	43.476603 2	- 7.43472E+ 13
201 0	37.89	34.77	33.943283 5	48.775246 2	- 7.34485E+ 13

	e observe that istic_hence w		-	olynomial lir	ne are
SUM OF	SQUARES OF	F RESIDITAL S	S (SSR)•		
For the	other fits we with least SS	calculate th	ne <u>residuals</u>	_	SR.

Ye	Price of						
ar	Diesel	Lin	ear	Logar	ithmic	Expon	ential
		Resid		Resid		Resid	
		ual	SSR	ual	SSR	ual	SSR
40			4F F 7	4 7/4	22 475	-	0.727
19	2 5	2 047	15.57	4.761	22.675	0.858	0.737
89	3.5	3.947	881	841	13	91	733
19			11.12	4.141	17.156	0.325	0.105
90	4.565	3.335	222	996	17.130	15	722
	7.303	3.333		770	13	-	122
19			4.592	2.942	8.6612	0.436	0.190
91	5.05	2.143	449	997	3	13	209
						-	
19			2.328	2.319	5.3816	0.044	0.002
92	6.11	1.526	676	843	73	74	002
						-	
19			0.022	0.637	0.4064	0.794	0.631
93	6.11	-0.151	801	535	5	84	774
40			2 2/5	- 753	0.5404	-	4 042
19		1 520	2.365	0.753	0.5684	1.346	1.812
94	6.4	-1.538	444	93	11	36	683
19			10.33	2.434	5.9270	2.290	5.246
95	6.4	-3.215	623	55	43	43	09
	0.1	3.213	023	-	13	-	0,
19			7.628	1.984	3.9375	1.219	1.487
96	8.53	-2.762	644	33	71	57	345
				-		-	
19			6.911	1.853	3.4346	0.597	0.357
97	10.34	-2.629	641	27	08	78	342
				-		-	<u> </u>
19	4.0		21.58	3.871	14.987	2.270	5.156
98	10	-4.646	532	37	48	81	559
40			3E 00	- E 140	24 500	2 244	14 22
19	10 4	5 022	35.08	5.148	26.508	3.366	11.33
99	10.4	-5.923	193	63	34	29	192

					i		
20			7.317	1.930	3.7250	0.149	0.022
00	15.295	-2.705	025	04	71	04	212
				-		-	
20			6.848	1.840	3.3879	0.266	0.070
01	17.06	-2.617	689	63	02	25	891
	.=	-	4 = 4 5	-	0.404=	-	2 22 4
20	17.4638	3.890	15.13	3.111	9.6815	1.974	3.896
02	4615	15	33	52	78	02	748
20	20 4024	2 020	0 575	- 2 444	4 4070	1 704	2 004
20 03	20.1026	2.928	8.575	2.146	4.6079	1.704	2.904
03	6667	33	136	61	37	16	151
20	23.8216	0.886	0.785	0.100	0.0101	0.642	0.413
04	6667	33	587	68	37	83	23
	29.1166	2.731	7.462	3.522	12.405	1.670	2.790
05	6667	667	003	08	05	598	898
20			9.628	3.899	15.202	0.373	0.139
06	31.165	3.103	609	01	28	985	865
						-	
20			0.391	1.428	2.0404	4.178	17.46
07	30.365	0.626	876	439	38	62	088
						-	
20	22.40	0.07.4	4.301	2.883	8.3157	5.263	27.70
08	33.49	2.074	476	7	28	57	519
20	22 24//	0.076	0.747	- 0 0E0	0.0024	- 11 2E	126.7
20 09	32.2166 6667	0.876	0.767	0.058	0.0034	11.25	126.7
09	0007	33	96	54	27	99	862
20			9.734	3.946	15.576	10.88	118.4
10	37.89	3.12	7.75 4	716	57	52	886
	31.07	J, 12	188.5	, 10	184.6	- J_	327.7
	Total-		002		002		382

The SSR of Logarithmic is the minimum. Hence <u>Logarithmic fit</u> is the best fit for the Diesel prices.

RESIDUAL PLOT:

After fitting the appropriate Trend Line to the oil prices, the <u>prices were estimated</u> for the collected data using the equations. Then the <u>residuals</u> were obtained as the difference of the observed prices and the estimated prices. Then a <u>graph of the year</u> and the <u>corresponding residual</u> were plotted to obtain a Residual Plot to <u>study the goodness of the fit</u>.

CONCLUSION:

The Residual Plot of Diesel shows a <u>certain pattern</u>, which means that the <u>fit is not very good</u>. But due to the <u>limitations</u> of Microsoft Excel other fits, which could be better, cannot be used for the estimation. Hence we proceed with <u>Logarithmic</u> Fit as the best fit for Diesel Prices.

LPG:

DATA: (1 Cylinder= 14.2 Litre)

Year	Price of LPG (Rs./Cylinder)		
1989	57.6		
1990	57.6		
1991	67.9		
1992	82.75		
1993	82.75		
1994	94.8		
1995	94.8		
1996	119.95		
1997	136		
1998	136		
1999	145.2		
2000	204.3083		
2001	222.25		
2002	240.7231		
2003	241.28		
2004	261.6		
2005	281.6		
2006	281.6		
2007	281.6		
2008	324.7333		
2009	280.7		
2010	312.3		

TREND LINE:

We fit the following Trend Lines to the above data:

1. Logarithmic-

2. Exponential-

3. Linear-

4. Polynomial of degree six-

EQUATIONS:

Hence we obtain the equations of the fit from the graphs as follows:

Trend Line	Equation
Exponential	$y = 1E-75e^{0.088x}$
Linear	y = 13.98x - 27782
Logarithmic	y = 27964ln(x) - 21235
Polynomial	$y = 4E-05x^6 - 0.487x^5 + 2432.x^4 - 6E+06x^3 + 1E+10x^2 - 8E+12x + 3E+15$

ESTIMATES:

Using these equations the LPG prices were estimated as follows:

Year	Price of		Estimates					
leai	LPG	Linear	Exponential	Logarithmic	Polynomial			
1989	57.6	35.33592	53.54935556	191162.4099	4.81638E+15			
1990	57.6	49.32144	58.47526021	191176.4657	4.82286E+15			
1991	67.9	63.30696	63.85428958	191190.5144	4.82935E+15			
1992	82.75	77.29248	69.72812576	191204.5561	4.83584E+15			
1993	82.75	91.27799	76.1422851	191218.5907	4.84234E+15			
1994	94.8	105.2635	83.14647091	191232.6183	4.84884E+15			
1995	94.8	119.249	90.79495862	191246.6388	4.85536E+15			
1996	119.95	133.2345	99.14701635	191260.6524	4.86187E+15			
1997	136	147.2201	108.2673642	191274.6589	4.8684E+15			
1998	136	161.2056	118.2266757	191288.6584	4.87492E+15			
1999	145.2	175.1911	129.1021256	191302.6509	4.88146E+15			
2000	204.3083	189.1766	140.9779876	191316.6364	4.888E+15			
2001	222.25	203.1621	153.946288	191330.6149	4.89455E+15			
2002	240.7231	217.1476	168.1075179	191344.5864	4.9011E+15			
2003	241.28	231.1332	183.5714128	191358.551	4.90766E+15			
2004	261.6	245.1187	200.4578023	191372.5085	4.91422E+15			
2005	281.6	259.1042	218.8975391	191386.4591	4.9208E+15			
2006	281.6	273.0897	239.0335126	191400.4028	4.92737E+15			
2007	281.6	287.0752	261.0217565	191414.3395	4.93396E+15			
2008	324.7333	301.0607	285.0326577	191428.2693	4.94054E+15			
2009	280.7	315.0463	311.2522766	191442.1921	4.94714E+15			
2010	312.3	329.0318	339.883789	191456.108	4.95374E+15			

Here we observe that prices given by the Polynomial and Linear are not realistic hence we do not consider it.

SUM OF SQUARES OF RESIDUALS (SSR):

For the <u>other fits</u> we calculate the <u>residuals</u> and their SSR. The one with least SSR is considered as the best fit.

	Price of				
Year	LPG	Linear		Expon	ential
		Residual	SSR	Residual	SSR
1989	57.6	22.26408	495.689	4.050644	16.40772
1990	57.6	8.278558	68.53453	-0.87526	0.76608
1991	67.9	4.593041	21.09603	4.04571	16.36777
1992	82.75	5.457525	29.78457	13.02187	169.5692
1993	82.75	-8.52799	72.72665	6.607715	43.6619
1994	94.8	-10.4635	109.485	11.65353	135.8047
1995	94.8	-24.449	597.7549	4.005041	16.04036
1996	119.95	-13.2845	176.4791	20.80298	432.7641
1997	136	-11.2201	125.8897	27.73264	769.0991
1998	136	-25.2056	635.3211	17.77332	315.8911
1999	145.2	-29.9911	899.4657	16.09787	259.1416
2000	204.3083333	15.13172	228.969	63.33035	4010.733
2001	222.25	19.08787	364.3469	68.30371	4665.397
2002	240.7230769	23.57543	555.801	72.61556	5273.019
2003	241.28	10.14684	102.9583	57.70859	3330.281
2004	261.6	16.48132	271.634	61.1422	3738.368
2005	281.6	22.49581	506.0613	62.70246	3931.599
2006	281.6	8.510288	72.42501	42.56649	1811.906
2007	281.6	-5.47523	29.97813	20.57824	423.4641
2008	324.7333333	23.67259	560.3914	39.70068	1576.144
2009	280.7	-34.3463	1179.666	-30.5523	933.4416
2010	312.3	-16.7318	279.9524	-27.5838	760.8654
	Total-		7384.41		32630.73

The SSR of Linear is the minimum. Hence <u>Linear fit</u> is the best fit for the LPG prices.

RESIDUAL PLOT:

After fitting the appropriate Trend Line to the oil prices, the <u>prices were estimated</u> for the collected data using the equations. Then the <u>residuals</u> were obtained as the difference of the observed prices and the estimated prices. Then a <u>graph of the year</u> and the <u>corresponding residual</u> were plotted to obtain a Residual Plot to <u>study the goodness of the fit</u>.

CONCLUSION:

From the graphs we can conclude that the <u>Linear fit</u> for <u>LPG</u> is good as the Residual Plot does not show any pattern.

KEROSENE:

DATA:

Year	Price of Kerosene				
1989	2.25				
1990	2.51				
1991	2.52				
1992	2.52				
1993	2.52				
1994	2.52				
1995	2.52				
1996	2.52				
1997	2.52				
1998	2.52				
1999	2.52				
2000	6.278333				
2001	7.35				
2002	8.854615				
2003	8.99				
2004	9.01				
2005	9.056667				
2006	9.0875				
2007	9.1075				
2008	9.18				
2009	9.22				
2010	10.22				

TREND LINE:

We fit the following Trend Lines to the above data:

1. Polynomial of degree six-

2. Linear-

3. Logarithmic-

4. Exponential-

EQUATIONS:

Hence we obtain the equations of the fit from the graphs as follows:

Trend Line	Equation
Exponential	$y = 4E-78e^{0.089x}$
Linear	y = 0.461x - 917.6
Logarithmic	y = 923.1ln(x) - 7010
Polynomial	$y = 7E-06x^6 - 0.088x^5 + 443.8x^4 - 1E+06x^3 + 2E+09x^2 - 1E+12x + 5E+14$

ESTIMATES:

Using these equations the Kerosene prices were estimated as follows:

	Price of	Estimates						
Yea	Kerose		Logarithm	Exponenti	Polynomi			
r	ne	Linear	ic	al	al			
198		1.3019971	0.7784425	0.3028668	3.1944E+			
9	2.25	1	36	63	15			
199		1.7659830	1.2402125	0.3310578	3.1979E+			
0	2.51	46	77	9	15			
199		2.2297358	1.7019826	0.3618729	3.2014E+			
1	2.52	82	19	54	15			
199		2.6932558	2.1637526	0.3955563	3.2048E+			
2	2.52	51	6	02	15			
199		3.1565431	2.6255227	0.4323749	3.2083E+			
3	2.52	88	02	16	15			
199		3.6195981	3.0872927	0.4726206	3.2118E+			
4	2.52	27	43	29	15			
199		4.0824208	3.5490627	0.5166124	3.2153E+			
5	2.52	99	85	36	15			
199		4.5450117	4.0108328	0.5646990	3.2188E+			
6	2.52	38	27	27	15			
199		5.0073708	4.4726028	0.6172615	3.2223E+			
7	2.52	76	68	46	15			
199		5.4694985	4.9343729	0.6747166	3.2258E+			
8	2.52	45	1	16	15			
199		5.9313949	5.3961429	0.7375196	3.2293E+			
9	2.52	77	51	37	15			
200	6.27833	6.3930604	5.8579129	0.8061684	3.2328E+			
0	3	03	93	01	15			
200		6.8544950	6.3196830	0.8812070	3.2363E+			
1	7.35	54	34	32	15			
200	8.85461	7.3156991	6.7814530	0.9632303	3.2398E+			
2	5	61	76	03	15			
200	8.99	7.7766729	7.2432231	1.0528883	3.2433E+			

3		53	17	49	15
200		8.2374166	7.7049931	1.1508918	3.2468E+
4	9.01	61	59	18	15
200	9.05666	8.6979305	8.1667632	1.2580175	3.2504E+
5	7	15	01	09	15
200		9.1582147	8.6285332	1.3751145	3.2539E+
6	9.0875	43	42	22	15
200		9.6182695	9.0903032	1.5031109	3.2574E+
7	9.1075	74	84	94	15
200		10.078095	9.5520733	1.6430214	3.2609E+
8	9.18	24	25	53	15
200		10.537691	10.013843	1.7959548	3.2645E+
9	9.22	96	37	61	15
201		10.997059	10.475613	1.9631234	3.268E+1
0	10.22	97	41	01	5

Here we observe that prices given by the <u>Polynomial is not</u> <u>realistic</u> hence we do not consider it.

SUM OF SQUARES OF RESIDUALS (SSR):

For the <u>other fits</u> we calculate the <u>residuals</u> and their SSR. The one with least SSR is considered as the best fit.

	Price	Li	near	Logar	ithmic	Ехро	nential
	of	_		_			
Ye	Keros	Resid		Resid		Resid	
ar	ene	ual	SSR	ual	SSR	ual	SSR
19		0.948	0.89870	1.471	2.1654	0.302	1.94713
89	2.25	003	9479	557	81	867	3137
19		0.744	0.55356	1.269	1.6123	0.331	2.17894
90	2.51	017	1228	787	6	058	211
19		0.290	0.08425	0.818	0.6691	0.361	2.15812
91	2.52	264	3258	017	52	873	7046
		-				0.395	
19		0.173	0.03001	0.356	0.1269	556	2.12444
92	2.52	26	759	247	12	550	3698
		-		-		0.432	
19		0.636	0.40518	0.105	0.0111	375	2.08762
93	2.52	54	7231	52	35	3/3	5084
		-		-		0.472	
19		1.099	1.20911	0.567	0.3218	621	2.04737
94	2.52	6	604	29	21	021	9371
		-		-		0.516	
19		1.562	2.44115	1.029	1.0589	612	2.00338
95	2.52	42	9065	06	7	012	7564
		-		-		0.564	
19		2.025	4.10067	1.490	2.2225	699	1.95530
96	2.52	01	2539	83	83	0//	0973
		-		-		0.617	
19		2.487	6.18701	1.952	3.8126	262	1.90273
97	2.52	37	3875	6	58		8454
		-		-		0.674	_
19		2.949	8.69954	2.414	5.8291	717	1.84528
98	2.52	5	1669	37	97	, 1,	3384
19	2.52	-	11.6376	-	8.2721	0.737	1.78248

99		3.411 39	1569	2.876 14	98	52	0363
20	6.278	0.114	0.01316	0.420	0.1767	0.806	5.47216
00	333	73	2301	42	53	168	4933
20	7.35	0.495	0.24552	1.030	1.0615	0.881	6.46879
01		505	5151	317	53	207	2968
20	8.854	1.538	2.36826	2.073	4.2980	0.963	7.89138
02	615	916	3144	162	02		5082
20	8.99	1.213	1.47216	1.746	3.0512	1.052	7.93711
03		327	2523	777	29	888	1651
20 04	9.01	0.772 583	0.59688 5015	1.305	1.7030	1.150 892	7.85910 8182
20	9.056	0.358	0.12869	0.889	0.7919	1.258	7.79864
05	667	736	1627	903	28	018	9158
20	9.087	0.070	0.00500	0.458	0.2106	1.375	7.71238
06	5	71	0575	967		115	5478
20	9.107	0.510	0.26088	0.017	0.0002	1.503	7.60438
07	5	77	5558	197	96	111	9006
20	9.18	0.898	0.80657	0.372	0.1384	1.643	7.53697
08		1	5055	07	39	021	8547
20	9.22	1.317	1.73631	0.793	0.6301	1.795	7.42404
09		69	2103	84	87	955	5139
20 10	10.22	0.777 06	0.60382	- 0.255 61	0.0653 38	1.963 123	8.25687 6599
	Total		44.4841 3292		38.22 989		103.994 7279

The SSR of Logarithmic is the minimum. Hence <u>Logarithmic fit</u> is the best fit for the Kerosene prices.

RESIDUAL PLOT:

After fitting the appropriate Trend Line to the oil prices, the <u>prices were estimated</u> for the collected data using the equations. Then the <u>residuals</u> were obtained as the difference of the observed prices and the estimated prices. Then a <u>graph of the year</u> and the <u>corresponding residual</u> were plotted to obtain a Residual Plot to <u>study the goodness of the fit</u>.

CONCLUSION:

The Residual Plot of Diesel shows a <u>certain pattern</u>, which means that the <u>fit is not very good</u>. But due to the <u>limitations</u> of Microsoft Excel, other fits, which could be better, cannot be used for the estimation. Hence we proceed with <u>Logarithmic Fit</u> as the best fit for <u>Kerosene</u> Prices.

DOUBLE EXPONENTIAL SMOOTHING

The Prices of <u>Petrol & LPG</u> have a <u>Linear increasing trend</u> & <u>no seasonal variation</u>, hence Double Exponential Smoothing Procedure can be applied to Petrol and LPG's Prices to produce smoothed values of Prices. Simple Exponential Smoothing (SES) requires time series to be stagnant; therefore Double Exponential Smoothing (DES) is applied below.

For both the time series mentioned above the value of smoothing constant is 0.1 for Simple Exponential Smoothing. For Double Exponential Smoothing $\alpha_1 = \alpha_2 = 0.1$ for Petrol's Price Smoothing & $\alpha_1 = 0.1$, $\alpha_2 = 0.4$ for LPG's Price Smoothing.

	Price of			Price		
Year	Petrol	DES	SES	of LPG	DES	SES
1989	8.5	_	_	57.6		_
1990	11.035	10.3025	8.5	57.6	63.8875	57.6
1991	14.62	12.2515	8.7535	67.9	67.0312 5	57.6
1992	15.71	14.387785	9.34015	82.75	70.9253 75	58.63
1993	15.71	16.432663 65	9.977135	82.75	76.3880 725	61.042
1994	16.0666 667	18.265827 8	10.5504215	94.8	81.5589 774	63.2128
1995	16.0666 667	19.929350 59	11.10204602	94.8	87.9474 326	66.37152
1996	21.13	21.387894 26	11.59850808	119.95	93.9711 451	69.214368

1997	22.84	23.204337	12.55165727	136	102.946	74.2879312
		95			64	
1998	23.115	25.006493	13.58049155	136	113.951	80.4591380
1770	23.113	9	13.300-7133	130	721	8
		-			721	0
1999	23.856	26.637019	14.53394239	145.2	124.738	86.0132242
		31			224	7
2000	27.2983	28.150781	15.46614815	204.30	136.184	91.9319018
	333	99		83	548	4
2001	28.7	20 040077	16.64936667	222.25	155.122	103.169545
2001	20.7	29.848877	10.04930007	222.23	025	103.109343
		24			025	
2002	28.8838	31.505840	17.85443	240.72	176.645	115.077590
	462	87		31	039	5
2003	31.4826	32.989272	18.95737162	241.28	200.426	127.642139
2003	667	8	10.73737102	2-11.20	181	1
	007	J			101	•
2004	36.1283	34.569177	20.20990112	261.6	223.519	139.005925
	333	53			054	2
2005	41.49	36.471250	21.80174434	281.6	247.857	151.265332
		01			878	7
2001	44.045	20.7(0.4(0	22.7705/00/	204 (272 442	444 200700
2006	44.845	38.769469	23.77056991	281.6	273.112	164.298799
		41			504	4
2007	43.185	41.234122	25.87801292	281.6	296.181	176.028919
		17			167	5
2008	48.0833	43.305818	27.60871163	324.73	316.359	186.586027
	333	44		33	718	5
2009	43.3233	45.707953	29.6561738	280.7	339.168	200.400758
2009	333	56	<u> </u>	200.7	691	1
	333	JU			U71	'
2010	48.03	47.370028	31.02288975	312.3	352.954	208.430682
		97			686	3

CONCLUSION:

It can be seen that <u>Single Exponential Smoothing does</u> <u>not follow the data well</u> when there is a trend in the data hence this <u>drawback</u> of Simple Exponential Smoothing is <u>overcome by Double Exponential Smoothing</u>.

ESTIMATION OF FUEL PRICES

For estimation purpose we select an equation which gives a realistic value of price of the fuel. Selecting an equation which has a good R^2 value does not always give realistic value of the price. Hence we choose the following equations for the following fuels:

FUEL	Equation Used
Petrol	Linear
Diesel	Logarithmic
LPG	Linear
Kerosene	Logarithmic

PETROL

For estimation of Petrol prices in the following years after 2011 we fit a <u>Linear function</u> to the data of Petrol prices.

We choose this fit because it gave realistic values of prices and its <u>Sum of Squares of Residual is Minimum</u> for this fit. Hence we get the following graph:

The equation of this Exponential function is

$$y = 1.912x - 3795$$

Till 2011 the observed Petrol price and the estimated prices are as follows

Voor	Observed	Estimated
Year	Prices	Price
1989	8.5	7.6658
1707	0.5	7.0050
1990	11.035	9.578
1991	14.62	11.4902
1992	15.71	13.4024
1993	15.71	15.3146
1994	16.06666667	17.2268
1995	16.06666667	19.139
1996	21.13	21.0512
1997	22.84	22.9634
1998	23.115	24.8756
1999	23.856	26.7878
2000	27.29833333	28.7
2001	28.7	30.6122
2002	28.88384615	32.5244
2003	31.48266667	34.4366
2004	36.12833333	36.3488
2005	41.49	38.261
2006	44.845	40.1732

2007	43.185	42.0854
2008	48.08333333	43.9976
2009	43.32333333	45.9098
2010	48.03	47.822

For the <u>successive years the Petrol prices are predicted</u> to be as follows:

Year	Estimated price (in Rs.)
2011	49.7342
2012	51.6464
2013	53.5586
2014	55.4708
2015	57.383
2016	59.2952
2017	61.2074
2018	63.1196
2019	65.0318
2020	66.944

DIESEL:

For estimation of Diesel prices in the following years after 2011 we fit a Logarithmic function to the data of Diesel prices.

We choose this fit because it gave realistic values of prices and its <u>Sum of Squares of Residual is Minimum</u> for this fit. Hence we get the following graph:

The equation of this Linear function is

$$y = 3352.ln(x) - 25461$$

Till 2011 the observed Diesel price and the estimated prices are as follows:

		Estimated prices (in
Year	Observed prices	Rs.)
1989	3.5	-1.26184
1990	4.565	0.42300
1991	5.05	2.107003
1992	6.11	3.790157
1993	6.11	5.472465
1994	6.4	7.15393
1995	6.4	8.834552
1996	8.53	10.51433
1997	10.34	12.19327
1998	10	13.87105
1999	10.4	15.54863
2000	15.295	17.22504
2001	17.06	18.90063
2002	17.46384615	20.57537
2003	20.10266667	22.24928
2004	23.82166667	23.92235
2005	29.11666667	25.59459

2006	31.165	27.26599
2007	30.365	28.93656
2008	33.49	30.6063
2009	32.21666667	32.27521
2010	37.89	33.94328

For the <u>successive years the Diesel prices are predicted</u> to be as follows:

Year	Estimated price (in Rs.)
2011	35.61053052
2012	37.27694865
2013	38.94253874
2014	40.60730163
2015	42.27123812
2016	43.93434905
2017	45.59663522
2018	47.25809746
2019	48.91873658
2020	50.5785534

LPG:

For estimation of LPG prices in the following years after 2011 we fit a Linear function to the data of LPG prices.

We choose this fit because it gave realistic values of prices and its <u>Sum of Squares of Residual is Minimum</u> for this fit. Hence we get the following graph:

The equation of this Linear function is

$$y = 13.98x - 27782$$

Till 2011 the observed LPG price and the estimated prices are as follows:

	Observed	Estimate
Year	Prices	Prices
1989	57.6	36.154
1990	57.6	50.14
1991	67.9	64.126
1992	82.75	78.112
1993	82.75	92.098
1994	94.8	106.084
1995	94.8	120.07
1996	119.95	134.056
1997	136	148.042
1998	136	162.028
1999	145.2	176.014
2000	204.3083333	190
2001	222.25	203.986
2002	240.7230769	217.972
2003	241.28	231.958
2004	261.6	245.944
2005	281.6	259.93
2006	281.6	273.916

2007	281.6	287.902
2008	324.7333333	301.888
2009	280.7	315.874
2010	312.3	329.86

For the <u>successive years the LPG prices are predicted</u> to be as follows:

Year	Estimated price (in Rs.)
2011	343.846
2012	357.832
2013	371.818
2014	385.804
2015	399.79
2016	413.776
2017	427.762
2018	441.748
2019	455.734
2020	469.72

KEROSENE:

For estimation of Kerosene prices in the following years after 2011 we fit a Logarithmic function to the data of Kerosene prices.

We choose this fit because it gave realistic values of prices and its <u>Sum of Squares of Residual is Minimum</u> for this fit. Hence we get the following graph:

The equation of this Logarithmic function is

$$y = 923.1ln(x) - 7010$$

Till 2011 the observed Kerosene price and the estimated prices are as follows:

		Estimate
Year	Observed Prices	Prices
1989	2.25	0.781766474
1990	2.51	1.245777542
1991	2.52	1.709555497
1992	2.52	2.173100573
1993	2.52	2.636413004
1994	2.52	3.099493024
1995	2.52	3.562340865
1996	2.52	4.024956761
1997	2.52	4.487340943
1998	2.52	4.949493643
1999	2.52	5.411415094
2000	6.278333333	5.873105526
2001	7.35	6.334565171
2002	8.854615385	6.795794259
2003	8.99	7.25679302
2004	9.01	7.717561684
2005	9.056666667	8.178100482
2006	9.0875	8.638409641

2007	9.1075	9.098489391
2008	9.18	9.558339961
2009	9.22	10.01796158
2010	10.22	10.47735447

For the <u>successive years the Kerosene prices are predicted</u> to be as follows:

	Estimated price (in
Year	Rs.)
2011	10.93651887
2012	11.395455
2013	11.85416308
2014	12.31264335
2015	12.77089602
2016	13.22892134
2017	13.68671951
2018	14.14429077
2019	14.60163535
2020	15.05875345

CONCLUSION

All the Oil prices show an increasing trend.

Based on the increasing pattern, we observe that the <u>Petrol and LPG</u> prices show a <u>Linear</u> trend while <u>Diesel and Kerosene</u> show a <u>Logarithmic</u> trend.

Also as prices of Petrol and LPG have a Linear increase and <u>no seasonal variation</u>, Double Exponential Smoothing can be applied to them to obtain smoothed values of prices.

Using the selected fits we estimate the oil prices for the successive ten years that is from 2011 to 2020. Hence, by studying the trends in the changes in Oil Prices from 1989-2010, the oil prices for the years 2014 and 2015 are estimated to be as follows:

Fuel	Estimated Prices for 2014 (Rs.)	Estimated Prices for 2015 (Rs.)
Petrol	55.47	57.38
Diesel	40.60	42.27
LPG	385.804	399.79
Kerosene	12.31	12.77

The <u>estimates are approximate</u>, due to the limitations of the data set. Hence the actual prices may or may not differ from estimated values.

SCOPE AND LIMITATIONS

SCOPE

The statistical analysis of Oil Prices can be made on a <u>larger extent by using larger data</u> for a greater number of years. Having studied the previous patterns in changes of Oil Prices, the study enables the <u>approximate prediction of Average Annual Oil Prices for years 2011 - 2020</u>.

If the data set is large enough and consists of monthly, weekly or daily Oil Prices, the use of similar statistical techniques could be <u>extended to predicting the Oil Prices</u> for <u>forthcoming years</u>, on an Annual, Monthly, Weekly and / or <u>Daily basis with Sufficient Accuracy</u>.

LIMITATIONS

- The <u>Residual Plots of Diesel and Kerosene</u> show a <u>certain pattern</u>, which means that their respective <u>fits are not very good</u>. But due to the <u>limitations</u> of <u>Microsoft Excel</u>, other fits, which could be better, cannot be used for estimation.
- The <u>trend line equations obtained in Microsoft Excel</u> <u>seem to be incorrect</u>. They do not provide realistic values of Oil Prices for a given year, even for the trend line having the best R-Squared Value.
- The <u>data</u> represents the <u>Oil Prices in Delhi, Only</u>. They are not the average Oil Prices in the Nation.
- The <u>data</u> of Oil Prices has been <u>obtained</u> for the period <u>1989-2010 only</u>. There were <u>major changes</u> in Oil Prices <u>after 2010</u>, which have not been studied and taken into consideration, while estimating the forecast values for Oil Prices. This may result <u>discrepancies</u> between the <u>Forecasted</u> and <u>Observed Values</u>.
- The Oil Prices in the data are Annual Averages. Oil Prices on a Monthly, Weekly and Daily basis could not be obtained. Hence, <u>Prediction is limited to Annual Prices</u> <u>only</u>. Oil Prices cannot be predicted on a Monthly, Weekly and Daily basis.

REFERENCES

❖ BOOKS

• Discrete Probability for S.Y.B.Sc. - (Nirali Publications)

***** WEBSITES

- http://www.statslab.cam.ac.uk/~rrw1/timeseries/t.p df
- http://en.wikipedia.org/wiki/Time_series
- http://www.public.iastate.edu/~alicia/stat328/Time% 20Series.pdf
- http://www.lancaster.ac.uk/media/lancasteruniversity/contentassets/documents/lums/forecasting/Chap4.pdf