MAT157: Analysis I — Tutorial 8

Topics: Value theorems, Derivatives.

Question 1. Suppose $f: \mathbb{R} \to \mathbb{R}$ is continuous, and there is $\alpha > 0$ such that $f(x) = f(x + \alpha)$ for all $x \in \mathbb{R}$. Prove that there is $c \in [0, \frac{\alpha}{2}]$ such that $f(c) = f(c + \frac{\alpha}{2})$.

Question 2. In this question, we will extend the intermediate value theorem.

Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function, and define

$$a = \lim_{x \to \infty} f(x), \quad b = \lim_{x \to -\infty} f(x).$$

If ab < 0, prove that there is $c \in \mathbb{R}$ such that f(c) = 0. Hint: if a > 0, show that $f(x_0) > 0$ for a sufficiently large x_0 .

Question 3. Find all continuous functions $f:[0,1]\to\mathbb{Q}$ such that f(0)=157.

Question 4. Suppose U is an open neighbourhood of c, and $f: U \to \mathbb{R}$ is a function.

- (a) If f is differentiable at c, prove that $f'(c) = \lim_{h\to 0} \frac{f(c) f(c-h)}{h}$.
- (b) If $\lim_{h\to 0} \frac{f(c) f(c-h)}{h}$ exists, must f be differentiable at c?

Bonus Problem. Suppose $f:[a,b]\to\mathbb{R}$ is continuous and injective. Must f be monotone?