

Camada de Rede: Protocolo IP

Instituto Superior de Engenharia de Lisboa

Departamento de Engenharia de Electrónica e Telecomunicações e de

Computadores

Redes de Computadores

Nível Rede - Internet Protocol (IP)

Características

- Fornece comunicação não fiável entre duas máquinas
 - Define unidade de transferência do protocolo Datagramas
- Responsável pelo encaminhamento dos datagramas
- Verifica a validade do cabeçalho dos datagramas recebidos
 - Não dá garantias acerca da integridade dos dados
- Testa o MTU (Maximum Transfer Unit) da rede
- Fragmenta os datagramas de acordo com o MTU
- Recebe e envia mensagens ICMP de controle e informação de erros
- Definido no RFC 791

Datagrama IP (1)

Datagrama IP (2)

Campos do Datagrama

VERS - Versão do IP (actualmente v4 - futuramente v6)

HLEN - Dimensão do *header* (0..15 em múltiplos de 32 bit)

SERVICE TYPE - ver adiante

TOTAL LEN - Dimensão do Datagrama

IDENTIFICATION, FLAGS, FRAGMENT OFFSET - ver adiante

TTL - Time To Live - Número de routers que o Datagrama pode passar

PROTOCOL - Protocolo de nível superior

HEADER CHECKSUM - Campo de verificação da integridade do header

SOURCE IP - Endereço de origem

DESTINATION IP - Endereço de destino

OPTIONS, PADDING - ver adiante

Datagrama IP (3) - Campo Protocol

ip	0	IP	# internet protocol, pseudo protocol number
icmp	1	ICMP	# internet control message protocol
igmp	2	IGMP	# Internet Group Management
ggp	3	GGP	# gateway-gateway protocol
ipencap	4	IP-ENCAP	# IP encapsulated in IP (officially ``IP")
tcp	6	TCP	# transmission control protocol
egp	8	EGP	# exterior gateway protocol
udp	17	UDP	# user datagram protocol
xns-idp	22	XNS-IDP	# Xerox NS IDP
rdp	27	RDP	# "reliable datagram" protocol
iso-tp4	29	ISO-TP4	# ISO Transport Protocol class 4
ddp	37	DDP	# Datagram Delivery Protocol
ospf	89	OSPFIGP	# Open Shortest Path First IGP
ipip	94	IPIP	# Yet Another IP encapsulation
encap	98	ENCAP	# Yet Another IP encapsulation
	icmp igmp ggp ipencap tcp egp udp xns-idp rdp iso-tp4 ddp ospf ipip	icmp 1 igmp 2 ggp 3 ipencap 4 tcp 6 egp 8 udp 17 xns-idp 22 rdp 27 iso-tp4 29 ddp 37 ospf 89 ipip 94	icmp 1 ICMP igmp 2 IGMP ggp 3 GGP ipencap 4 IP-ENCAP tcp 6 TCP egp 8 EGP udp 17 UDP xns-idp 22 XNS-IDP rdp 27 RDP iso-tp4 29 ISO-TP4 ddp 37 DDP ospf 89 OSPFIGP ipip 94 IPIP

Datagrama IP (4) - Service Type

Formato do campo Service Type

Precedência: 0 - Normal → 7 Network control

D - Low Delay

T - High Throughput

R - High Reliability

C - Low Cost

n - reservado

(exclusivos)

Definido no RFC 1340 e 1349

Routing baseado no ToS

- Implementação IP nos Routers
 - Queues de datagramas independentes consoante o ToS
 - Definição dos custos das interfaces consoante o ToS
- Aplicações
 - Protocolos geram ToS com base na funcionalidade
 - Telnet e Comandos FTP (D low delay) / Dados FTP (T high throughput)
 - Encaminhar tráfego com base no tipo de meio físico
 - Cabo Submarino (D) / Ligação por satélite (T)

Datagrama IP (5) - Fragmentação

Controle da Fragmentação de Datagramas

15

IDENTIFICATION

r D M FRAGMENT OFFSET

FRAGMENT OFFSET:

Medido em múltiplos de 64 bits (8 bytes)

D: 1 - Não fragmentar (DF)

M: 1 - Há mais fragmentos a seguir

r: Reservado

Fragmentação IP

Objectivos

 Partir os dados em blocos com uma dimensão que seja possível enviar através das redes físicas (visto que estas possuem limitações) ou seja respeitando o MTU (Maximum Transfer Unit)

Fragmentação IP (cont.)

Características

- O header Original é copiado para cada fragmento
 e depois modificado (flags, fragment offset, length,...)
 - Algumas opções IP também são copiadas (RFC 791)
- Fragmentos podem ser fragmentados de novo ao longo do caminho
 - Sub-fragmentos têm o mesmo formato dos fragmentos
- Se o DF bit está activo e é necessário fragmentar:
 - O datagrama é descartado
 - É gerada uma mensagem ICMP
- Os headers das camadas transporte e aplicação não aparecem em todos os fragmentos.
 - Problema se for preciso espreitar nesses headers (Firewalls).

Fragmentação IP

DATAGRAM	DATA 1	1 1 1	DATA 2	1	DATA 3
HEADER	600 OCTETS	I I	600 OCTETS	l I	200 OCTETS

FRAGMENT 1 HEADER	DATA 1	FRAGMENTO 1 (offset = 0)
----------------------	--------	--------------------------

FRAGMENT 2	DATA 2	
HEADER	DAIA 2	FRAGMENTO 2 (offset = 600 / 8)

FRAGMENT 3	DATA3	
HEADER	DAIAS	FRAGMENTO 3 (offset = 1200 / 8)

Reagrupamento (Reassembly)

Características

- O reagrupamento de fragmentos é feito no destino final
- Se um fragmento se perde, todo o datagrama é descartado (passado um tempo)

Exemplo de fragmentação IP (1)

	No.	Status	Source Address	Dest Address	Summary	Len (By F	Delta Time
] 1	M	[141.29.155.91]	[141.29.155.114]	ICMP: Echo	1514	0.000.000
] 1] 2		[141.29.155.91]	[141.29.155.114]	IP: Continuation of frame 1; 1500 Bytes of data	1514	0.000.106
	-			-	IP: D=[141.29.155.114] S=[141.29.155.91] LEN=		
] 3		[141.29.155.91]	[141.29.155.114]	IP: Continuation of frame 1; 1468 Bytes of data	1482	0.000.109
					IP: D=[141.29.155.114] S=[141.29.155.91] LEN=		
] 4		[141.29.155.114]	[141.29.155.91]	ICMP: Echo reply	1514	0.000.954
] 5		[141.29.155.114]	[141.29.155.91]	IP: Continuation of frame 4; 1500 Bytes of data	1514	0.000.107
					IP: D=[141.29.155.91] S=[141.29.155.114] LEN=		
] 6		[141.29.155.114]	[141.29.155.91]	IP: Continuation of frame 4; 1468 Bytes of data	1482	0.000.116
L					IP: D=[141.29.155.91] S=[141.29.155.114] LEN=		

```
⊕ BDLC: Ethertype=0800, size=1514 bytes
□ IP: ---- IP Header -----
    🕒 IP:
    IP: Version = 4, header length = 20 bytes
    IP: Type of service = 00
    🚺 IP: 000. .... = routine
           ...0 .... = normal delay
.... 0... = normal throughput
    🛂 IP:
           .... .0.. = normal reliability
              .... .. 0. = ECT bit - transport protocol will ignore the CE bit
              \dots 0 = CE bit - no congestion
    IP: Total length = 1500 bytes
    🚨 IP: Identification = 36920
    🚨 IP: Flags
    IP: .0.. ... = may fragment
          ..1. .... = more fragments
    🔼 IP: Fragment offset = 0 bytes
    🛂 IP: Time to live 📁 = 128 seconds/hops
    IP: Protocol = 1 (ICMP)
    🛂 IP: Header checksum = 33E0 (correct)
    IP: Source address = [141.29.155.91]
    IP: Destination address = [141.29.155.114]
    IP: No options
    🔊 IP:
🗓 📆 ICMP: Echo
```

Exemplo de fragmentação IP (2)

No.	Status	Source Address	Dest Address	Summary	Len (By F	Delta Time
1	М		[141.29.155.114]		1514	0.000.000
2		[141.29.155.91]	[141.29.155.114]	IP: Continuation of frame 1; 1500 Bytes of dat-	1514	0.000.106
				IP: D=[141.29.155.114] S=[141.29.155.91] LEN=		
3		[141.29.155.91]	[141.29.155.114]	IP: Continuation of frame 1; 1468 Bytes of data	1482	0.000.109
				IP: D=[141.29.155.114] S=[141.29.155.91] LEN=		
4		[141.29.155.114]		ICMP: Echo reply	1514	0.000.954
5		[141.29.155.114]	[141.29.155.91]	IP: Continuation of frame 4; 1500 Bytes of dat-	1514	0.000.107
				IP: D=[141.29.155.91] S=[141.29.155.114] LEN=		
6		[141.29.155.114]	[141.29.155.91]	IP: Continuation of frame 4; 1468 Bytes of dat-		0.000.116
				IP: D=[141.29.155.91] S=[141.29.155.114] LEN=		

```
F IP: Continuation of frame 1
    🔊 IP: ---- IP Header -----
    🛂 IP:
    🚨 IP: Version = 4, header length = 20 bytes
    IP: Type of service = 00
    IP: 000. .... = routine
          ...0 .... = normal delay
          .... 0... = normal throughput
.... .0.. = normal reliability
              .... ..0. = ECT bit - transport protocol will ignore the CE bit
            \dots 0 = CE bit - no congestion
    🔼 IP: Total length 📁 = 1500 bytes
    IP: Identification = 36920
    ☑ IP: Flags = 2X
    🎒 IP:
          .0.. .... = may fragment
          ..1. .... = more fragments
    IP: Fragment offset = 1480 bytes
    🔼 IP: Time to live 📁 = 128 seconds/hops
    IP: Protocol = 1 (ICMP)
    🔊 IP: Header checksum = 3327 (correct)
    IP: Source address = [141.29.155.91]
    IP: Destination address = [141.29.155.114]
    🚨 IP: No options
    IP:
    IP: [1480 bytes of continuation data]
    IP:
```

Exemplo de fragmentação IP (3)

No.	Status	Source Address	Dest Address	Summary	Len (By	Delta Time
1	M	[141.29.155.91]	[141.29.155.114]		1514	0.000.000
2		[141.29.155.91]	[141.29.155.114]	IP: Continuation of frame 1; 1500 Bytes of dat-	1514	0.000.106
				IP: D=[141.29.155.114] S=[141.29.155.91] LEN=		
3		[141.29.155.91]	[141.29.155.114]	IP: Continuation of frame 1; 1468 Bytes of dat-		0.000.109
				IP: D=[141.29.155.114]		
4		[141.29.155.114]		ICMP: Echo reply	1514	0.000.954
5		[141.29.155.114]	[141.29.155.91]	IP: Continuation of frame 4; 1500 Bytes of data		0.000.107
				IP: D=[141.29.155.91] S=[141.29.155.114] LEN=		
6		[141.29.155.114]	[141.29.155.91]	IP: Continuation of frame 4; 1468 Bytes of data		0.000.116
				IP: D=[141.29.155.91] S=[141.29.155.114] LEN=		

```
F IP: Continuation of frame 1
    IP: ---- IP Header -----
    🎒 IP:
    🛂 IP: Version = 4, header length = 20 bytes
    IP: Type of service = 00
          000. .... = routine
    🛂 IP:
          ...0 .... = normal delay
    🛂 IP:
          .... 0... = normal throughput
.... .0.. = normal reliability
    🛂 IP:
    🛂 IP:
              .... ..0. = ECT bit - transport protocol will ignore the CE bit
            .... ... 0 = CE bit - no congestion
    IP: Total length = 1468 bytes
    IP: Identification = 36920
    ☑ IP: Flags = OX
    🛂 IP:
          .0.. .... = may fragment
          ..0. .... = last fragment
    🔼 IP: Fragment offset = 2960 bytes
    IP: Time to live = 128 seconds/hops
    IP: Protocol = 1 (ICMP)
    🔼 IP: Header checksum = 528E (correct)
    IP: Source address = [141.29.155.91]
    IP: Destination address = [141.29.155.114]
    🚨 IP: No options
    🕒 IP:
    IP: [1448 bytes of continuation data]
    🕒 IP:
```

Opções IP (1)

CODE	LEN	PTR			
1	1	1	4	4	4

- Loose Source Routing (83h) Caminho do datagrama com eventuais saltos
- Strict Source Routing (89h) Caminho exacto a percorrer pelo datagrama
- Record Route (07h) "Grava" o caminho percorrido
- Time Stamp (44h) Determina o tempo calculado no percurso
- Stream Identifier Identifica o tipo de dados transportados no datagrama (obsoleta)
- Security Handling Os dados poderão estar cifrados ou apenas acessíveis para um grupo específico (uso militar)
- No Operation (01h) Para as opções serem múltiplas de 32 bits (padding 1 byte)
- End Option List (00h) Marca o fim da lista de opções (padding 1 byte)
- Tamanho máximo de 40 bytes visto que o header IP tem no máximo 60 bytes (15x4)

Opções IP (2)

Campo Option Code

0

7

СОРҮ	OPTION CLASS	OPTION NUMBER
------	-----------------	---------------

COPY:

- 1 A opção deve ser copiada para todos os fragmentos
- 0 A opção deve ser apenas copiada para o primeiro fragmento

OPTION CLASS:

- 0 Datagram or Network Control
- 1 Reservada
- 2 Debugging e Medida
- 3 Reservada

Opções IP (3)

RECORD ROUTE

POINTER - Indica a próxima posição livre na lista de IP

Opções IP – Record Route


```
Status | Source Address
                          Dest Address
                                                                   Len ∭Delta Time
                                          Summary
10
11
            [141.29.155.91] [180.142.78.91]
                                          ICMP: Echo
                                                                        0.000.000
            [180.142.78.91] [141.29.155.91]
                                          ICMP: Echo reply
                                                                        0.002.795
7|15
            [141.29.155.91] [180.142.78.91]
                                                                        0.998.142
                                          ICMP: Echo
□ | 16
            [180.142.78.91] [141.29.155.91]
                                          ICMP: Echo reply
                                                                        0.002.793

→ ■ DLC: Ethertype=0800, size=94 bytes

□ IP: ----- IP Header -----
    ·D IP:
    🔝 IP: Version = 4, header length = 40 bytes
    IP: Type of service = 00
    🋂 IP:
          000. .... = routine
    - IP:
             ...0 .... = normal delay
          .... 0... = normal throughput
    🛂 IP:
    🎒 IP:
              .... .0.. = normal reliability
    🋂 IP:
              .... .. 0. = ECT bit - transport protocol will ignore the CE bit
    🛂 IP:
          \dots \dots 0 = CE bit - no congestion
    🛂 IP: Total length 📁 = 80 bytes
    🔝 IP: Identification = 22795
    🚨 IP: Flags
                = 0X
           .0.. .... = may fragment
    🎒 IP:
    🛂 IP:
          ..0. .... = last fragment
    🚨 IP: Fragment offset = 0 bytes
    🎑 IP: Time to live 💎 = 127 seconds/hops
    🔚 IP: Protocol
                    = 1 (ICMP)
    🔁 IP: Header checksum = 7F25 (correct)
    IP: Source address = [180.142.78.91]
    IP: Destination address = [141.29.155.91]
    🛂 IP:
    IP: Options follow
    IP: Record route
          Length = 19, pointer = 12
    🛂 IP:
         Routing data:
          [180.142.79.167]
    IP: [180.142.78.91]
    🛂 IP: End-of-options
    🕒 IP:
  MA TOMP. Poke monter
00000000: 00 e0 00 17 a6 23 00 e0 7b 86 92 0b 08 00 4a <mark>00</mark> .à..¦#.à{∥´...J.
00000020: 95 55 07 13 0c 54 8e 4f a7 54 8e 4e 55 00 00 00 [[...'108'1N[..
```

Opções IP (4)

SOURCE ROUTE

 POINTER - Indica a posição na lista do endereço IP que deve ser analisado e seguido no próximo router

Opções IP (5)

TIMESTAMP

FLAGS	Significado
0 0	Gateways preenchem apenas Timestamp.
0 1	Gateways preenchem Timestamp e endereço IP.
11	Endereço IP colocado pelo emissor.
	Apenas preenchem o Timestamp as Gateways que constarem na lista de IPs.

Opções IP – Timestamp


```
Status | Source Address
                              Dest Address
                                                                          Len (B) | Delta Time
                                               Summary
10
11
15
16
              [141.29.155.91] [180.142.78.91]
                                                ICMP: Echo
                                                                          110 | 0.000.000
              [141.29.155.91] [180.142.78.91]
                                                ICMP: Echo
                                                                          110
                                                                                0.965.296
             | [180 142 78 91] | [141 29 155 91]
                                                ICMP: Echo reply
                                                                          110 ||
                                                                                0 002 778

■ DLC: Ethertype=0800, size=110 bytes

🖹 🍞 IP: ---- IP Header -----
    🚨 IP:
     🛂 IP: Version = 4, header length = 56 bytes
     🔛 IP: Type of service = 00
                 000. .... = routine
     🕒 IP:
                ...0 .... = normal delay
                .... 0... = normal throughput
                .... .0.. = normal reliability
     IP:
                .... .. 0. = ECT bit - transport protocol will ignore the CE bit
                \dots 0 = CE bit - no congestion
     🔛 IP: Total length 📁 = 96 bytes
    IP: Identification = 22721
     🛂 IP: Flags
                           = 0X
                .0.. .... = may fragment
             ..0. .... = last fragment
     🚨 IP: Fragment offset = 0 bytes
     🚨 IP: Time to live
                        = 127 seconds/hops
    IP: Protocol
                      = 1 (ICMP)
     🛂 IP: Header checksum = OD54 (correct)
     IP: Source address = [180.142.78.91]
     IP: Destination address = [141.29.155.91]
     IP:
     🛂 IP: Options follow
     🚨 IP: Internet timestamp
             Length = 36, pointer = 13
     IP:
             Type = 1 (Internet addresses included)
     🚨 IP:
             Timestamp data:
     🛂 IP:
             [180.142.78.91] = BC495A03
     🛂 IP:
             [0.0.0.0] = 0
    🚇 IP:
             [0.0.0.01 = 0]
     IP:
🗓 🎒 ICMP: Echo reply
```

Sumário

- Endereços IP Generalidades
- Protocolo IP
- Fragmentação de pacotes IP
- Opções IP

Camada de Rede: Protocolo ICMP

Instituto Superior de Engenharia de Lisboa

Departamento de Engenharia, Electrónica, Telecomunicações e Computadores

Redes de Computadores

Internet Control Message Protocol - ICMP

Funcionalidades

- Informar máquina de origem da ocorrência de erros
- Detectar problemas e falhas na rede
- Configuração de Routers e máquinas

Características

- Implementado juntamente com o IP
- Transportado num datagrama IP
- Não permite informar os routers intermédios
- Não especifica o que fazer quando há erros

Formato da trama ICMP

Formato da trama ICMP (2)

- Campos
 - Type
 - Code

Туре	Code	Description
0		Echo reply.
3	0	Net unreachable.
3	1	Host unreachable.
3	2	Protocol unreachable.
3	3	Port unreachable.
3	4	Fragmentation needed and DF set.
3	5	Source route failed.
4		Source quench.
5	0	Redirect datagrams for the network.
5	1	Redirect datagrams for the host.
5	2	Redirect datagrams for the type of service and network.
5	3	Redirect datagrams for the type of service and host.
8		Echo request.
11	0	Time to live exceeded in transit.
11	1	Fragment reassemble time exceeded.
12		Parameter problem.
13		Timestamp.
14		Timestamp reply.
15		Information request.
16		Information reply.
17		Address Mask Request
18		Address Mask Reply

Tramas ICMP (1)

- Echo Request / Reply
 - Mensagens para funções de teste e controlo da rede
 - Usadas pelo comando PING
- Destination Unreachable
 - Enviado por um router que deita fora um Datagrama (nem todos os datagramas perdidos são detectados)
 - CODE Indica a razão da perda do datagrama
- Timestamp Request / Reply
 - Mensagens para sincronização dos relógios das máquinas

Tramas ICMP (2)

Echo Request/Reply

- IDENTIFIER Distingue entre aplicações na mesma máquina
- SEQ. NUMBER Distingue entre mensagens da mesma aplicação
- O comando ping usa estas tramas

Comando Ping

- Usado para:
 - testar se um destino é atingivel por IP
 - Calcular o round trip time (RTT)
 - contar o número de hops para o destino (usa o TTL)
 - Pode usar a opção de record route.
- Exemplo de output:
 - Reply from 164.107.144.3: 48 bytes in 47 msec. TTL: 253

Comando PING


```
Usage: ping [-a] [-n count] [-l size] [-f] [-i TTL] [-v TOS] [-r count] [-s count] [[-j host-list] | [-k host-list]] [-w timeout] destination-list
```

Options:

- -a Resolve addresses to hostnames.
- -n count Number of echo requests to send.
- -I size Send buffer size.
- -f Set Don't Fragment flag in packet.
- -i TTL Time To Live.
- -v TOS Type Of Service.
- -r count Record route for count hops.
- -s count Timestamp for count hops.
- -j host-list Loose source route along host-list.
- -k host-list Strict source route along host-list.
- -w timeout Timeout in milliseconds to wait for each reply.

Tramas ICMP (3)

Destination Unreachable (Type 3)

Code

0	Network Unreachable
1	Host Unreachable
2	Protocol Unreachable
3	Port Unreachable
4	Fragmentation needed and DF set
5	Source Route Failed
6	Destination Network Unknown

7	Destination Host Unknown
8	Source Host Isolated
9	Communication with Destination Network
	Administratively Prohibited
10	Communication with Destination Host
	Administratively Prohibited
11	Network Unreachable for type of service
12	Host Unreachable for type of service

ICMP Destination Unreachable (Type 3)


```
Status | Source Address
                           Dest Address
                                           Summary
                                                                        Len [] Delta Time
            [141.29.155.143] [10.10.4.5]
                                           ICMP: Echo
                                                                         74 | 0.000.000
                                           Expert: ICMP Host Unreachable
                                                                             0.088.133
            [10.2.157.53]
                           [141.29.155.143]
                                           ICMP: Destination unreachable
■ DLC: Ethertype=0800, size=70 bytes
⊟ 📆 ICMP: ---- ICMP header -----
    ICMP:
    ICMP: Type = 3 (Destination unreachable)
    ICMP: Code = 1 (Host unreachable)
    ICMP: Checksum = A7A2 (correct)
    ICMP:
    ICMP: [Normal end of "ICMP header".]
    🔊 ICMP:
    🔲 ICMP: IP header of originating message (description follows)
    ICMP:
    ICMP: ---- IP Header -----
    👅 ICMP:
    📠 ICMP: Version = 4, header length = 20 bytes
    ICMP: Type of service = 00
            000. .... = routine
    ICMP:
    ICMP:
               ...0 .... = normal delay
    ICMP:
                .... 0... = normal throughput
    ICMP:
            .... .0.. = normal reliability
    ICMP:
                .... .. 0. = ECT bit - transport protocol will ignore the CE bit
    ICMP:
                .... ... 0 = CE bit - no congestion
    ICMP: Total length = 60 bytes
    🔊 ICMP: Identification = 11068
    🏹 ICMP: Flags
                   = 0X
    ICMP:
                .0.. .... = may fragment
    ICMP:
               ..0. .... = last fragment
    ICMP: Fragment offset = 0 bytes
    ICMP: Time to live = 125 seconds/hops
    ICMP: Protocol
                    = 1 (ICMP)
    🎑 ICMP: Header checksum = DBC9 (correct)
    ICMP: Source address = [141.29.155.143]
    ICMP: Destination address = [10.10.4.5]
    ICMP: No options
    👅 ICMP:
    ICMP: [First 8 byte(s) of data of originating message]
```

Cabeçalho IP + 8 bytes dos dados


```
⊟ ∰ ICMP: ---- ICMP header -----
    🚨 ICMP:
    ICMP: Type = 3 (Destination unreachable)
    🎑 ICMP: Code = 1 (Host unreachable)
    🎑 ICMP: Checksum = A7A2 (correct)
    ICMP:
    ICMP: [Normal end of "ICMP header".]
    🔊 ICMP: IP header of originating message (description follows)
    🔊 ICMP: ---- IP Header --
     ICMP: Version = 4, header length = 20 bytes
    🔼 ICMP: Type of service = 00
    ICMP: 000. .... = routine
             ...0 .... = normal delay
.... 0... = normal throughput
    ■ ICMP:
                .... .O.. = normal reliability
     ICMP:
    ICMP:
                 .... ..0. = ECT bit - transport protocol will ignore the CE bit
             .... ... 0 = CE bit - no congestion
    ICMP: Total length = 60 bytes
    🎑 ICMP: Identification = 11068
    🎑 ICMP: Flags
    ICMP:
                 .0.. .... = may fragment
                 ... 0. .... = last fragment
    ICMP: Fragment offset = 0 bytes
    ▲ ICMP: Time to live = 125 seconds/hops
    ICMP: Protocol = 1 (ICMP)
    🎑 ICMP: Header checksum = DBC9 (correct)
    ICMP: Source address = [141.29.155.143]
    ICMP: Destination address = [10.10.4.5]
    🔊 ICMP: No options
    ICMP
    💹 ICMP: [First 8 byte(s) of data of originating message
00000000: 00 e0 00 17 a8 1f 00 e0 7b 86 92 0b 08 00 <mark>45 00</mark> .à..¨..à{¶´...<mark>E</mark>.
00000010: 00 38 e4 13 00 00 fd 01 09 cd 0a 02 9d 35 8d 1d .8ä...∳..Î...∎5▮.
00000020: 9b 8f 03 01 a7 a2 00 00 00 00 45 00 00 3c 2b 3c ▮▮...$¢....E..<+<
00000030: 00 00 7d 01 db c9 8d 1d 9b 8f 0a 0a 04 05 08 00 ..}.ÛÉ[..[........
00000040: c0 5b 02 00 8b 00
```

Tramas ICMP (4)

Timestamp Request/Reply

0	8	16 24	31		
TYPE (13 ou 14)	CODE (0)	CHECKSUM			
IDEN	TIFIER	SEQUENCE NUMBER			
ORIGINATE TIMESTAMP					
RECEIVE TIMESTAMP					
TRANSMIT TIMESTAMP					

- IDENTIFIER Distingue entre aplicações na mesma máquina
- SEQ. NUMBER Distingue entre mensagens da mesma aplicação
- Usado para sincronização de relógio entre máquinas

Tramas ICMP (5)

Redirect

O router informa que o datagrama devia ter sido enviado para outro router

Tramas ICMP (6)

- Time Exceeded for a Datagram
 - O campo TTL do datagrama chegou a zero
 - CODE = 0 em trânsito (router decrementa 1 unidade)
 - CODE = 1 no processamento (router decrementa mais que 1 unidade)
- Address Mask Request / Reply
 - Para uma máquina diskless pedir a sua máscara de rede (usado em conjunto com o protocolo RARP)
- Parameter Problem on a datagram
 - Problemas não contemplados nas outras mensagens ICMP

ICMP Time-to-live exceeded in transit


```
Len ∬ Delta Time
       Status | Source Address
                             Dest Address
\neg \mid 1
             [141.29.155.143] [10.2.157.53]
                                              Expert: Time-to-live expiring
                                                                                        106 0.000.000
                                               ICMP: Echo
\square | 2
             [141.29.155.254] [141.29.155.143]
                                              Expert: Time-to-live exceeded in transmit 70 0.001.732
                                               ICMP: Time exceeded (Time to live exceeded
⊕ ■ DLC: Ethertype=0800, size=70 bytes

☐ TP: D=[141.29.155.143] S=[141.29.155.254] LEN=36 ID=0

⊟ 🥰 ICMP: ---- ICMP header -----
    ICMP:
    ICMP: Type = 11 (Time exceeded)
    ICMP: Code = 0 (Time to live exceeded in transit)
    ICMP: Checksum = 0E7B (correct)
    ICMP:
    ICMP: [Normal end of "ICMP header".]
    ICMP:
    🔼 ICMP: IP header of originating message (description follows)
    🖲 ICMP:
    🕒 ICMP: ---- IP Header -----
    ICMP:
    📕 ICMP: Version = 4, header length = 20 bytes
    ICMP: Type of service = 00
                  000. .... = routine
    ICMP:
    ICMP:
                ...0 .... = normal delay
    ICMP:
                 .... 0... = normal throughput
    ICMP:
                 .... .0.. = normal reliability
    ICMP:
                 .... .. 0. = ECT bit - transport protocol will ignore the CE bit
    ICMP:
                 \dots 0 = CE bit - no congestion
    ICMP: Total length = 92 bytes
    ICMP: Identification = 11075
    🐧 ICMP: Flags
                     = 0X
    ICMP:
                  .0.. .... = may fragment
    ICMP:
                 ... 0. .... = last fragment
    ICMP: Fragment offset = 0 bytes
    ICMP: Time to live = 0 seconds/hops
    ICMP: Protocol = 1 (ICMP)
ICMP: Header checksum = BE7A...should be BE7A....
    ICMP: Source address = [141.29.155.143]
    ICMP: Destination address = [10.2.157.53]
    ICMP: No options
    👅 ICMP:
    ICMP: [First 8 byte(s) of data of originating message]
```

Path MTU Discovery

- Path MTU mais pequeno MTU num caminho entre duas máquinas
- Mecanismo "Path MTU Discovery" pode ser usado no TCP e UDP:
 - Enviar datagramas grandes de teste com a flag "Don't fragment" activa
 - Se o datagrama precisar de ser fragmentado serão recebidas mensagens
 ICMP
 - Reduzir o tamanho até não serem recebidas mensagens ICMP
 - Enviar datagramas de dados com a dimensão máxima encontrada

Sumário

- Funcionalidades ICMP
- Mensagens ICMP