MO824F/MC859A - Tópicos em Otimização Combinatória

Primeiro semestre de 2019

Atividade 8 – Problema das p-medianas

Entrega: 11 de junho (até às 19 horas)

Prof. Fábio Luiz Usberti (fusberti@ic.unicamp.br) Prof. Celso Cavellucci (celsocv@ic.unicamp.br)

1 Objetivo

O objetivo desta atividade consiste em um estudo de caso para o problema das p-medianas ("p-median problem" – PMP). Neste estudo de caso serão identificados e testados modelos matemáticos que representam o PMP e métodos de solução heurística.

2 Problema

O PMP é um problema NP-difícil que pode ser descrito da seguinte forma: considere um conjunto de m localizações de facilidades, um conjunto de n usuários e uma matriz $C_{n\times m}$ de custos c_{ij} de um usuário i designado à facilidade j. A solução do PMP envolve determinar um conjunto de p facilidades a serem alocadas em p localizações (das m possíveis), sendo que cada usuário deve ser atendido por uma única facilidade. O objetivo consiste em minimizar a soma dos custos de designação entre os usuários e suas facilidades.

3 Requisitos da atividade

Esta atividade é composta pelas seguintes tarefas:

- 1. Solução de um modelo de programação linear inteira do PMP.
- 2. Implementação de três heurísticas construtivas descritas por Mladenovic et al. (1990): *Greedy*, *Stingy* e *Alternate*.
- 3. Implementação de uma metaheurística para solução do PMP, com pelo menos uma técnica de intensificação (ou diversificação) a sua escolha.
- 4. Comparação de desempenho entre as heurísticas construtivas através do gráfico *performance-profile* utilizando como métrica de comparação o desvio com relação à melhor solução.
- 5. Comparação de desempenho da metaheurística com e sem a técnica de intensificação (ou diversificação) através do gráfico performance-profile, este último utilizando como métrica de comparação o desvio com relação à melhor solução.

Para os experimentos computacionais, deverá ser adotado um tempo limite (para a solução do modelo e para a metaheurística) de 10 minutos por instância. Será fornecido um conjunto de dez instâncias (instance0.pmp-instance9.pmp). Os resultados numéricos deverão ser exibidos em uma tabela com a seguinte estrutura:

	Modelo		Greedy	Stingy	Alternate	M1	M2	
Instância	LI	LS_1		LS_2	LS_3	LS_4	LS_5	LS_6
instance0.pmp	-	-		-	-	-	-	-
instance1.pmp	-	-		-	-	-	-	-
instance2.pmp	-	-		-	-	-	-	-
instance3.pmp	-	-		-	-	-	-	-
instance4.pmp	-	-		-	-	-	-	-
instance5.pmp	-			-	-	-	-	-
instance6.pmp	-	-		-	-	-	-	-
instance7.pmp	-	-		-	-	-	-	-
instance8.pmp	-	-		-	-	-	-	-
instance9.pmp	-	-		-	-	-	-	-

Onde:

- LI: limitante inferior obtido pela solução do modelo.
- LS_1 : limitante superior obtido pela solução do modelo.
- LS_2 : limitante superior obtido pela heurística Greedy.
- LS_3 : limitante superior obtido pela heurística Stingy.
- LS_4 : limitante superior obtido pela heurística Alternate.
- LS_5 : limitante superior obtido pela metaheurística sem intensificação/diversificação (M1).
- LS_6 : limitante superior obtido pela metaheurística com intensificação/diversificação (M2).

4 Submissão

A submissão desta atividade deve conter os códigos-fonte e um relatório com as seguintes informações:

- Descrição do problema e suas aplicações.
- Modelo matemático.
- Descrição das heurísticas construtivas.
- Descrição da metaheurística.
- Experimentos computacionais.
- Discussão dos resultados.

5 Bibliografia

1. Nenad Mladenovic, Jack Brimberg, Pierre Hansen, Jose A. Moreno-Perez. **The p-median problem: A survey of metaheuristic approaches**, European Journal of Operational Research 179, pp.927-939, 2007.