TD₅

Exercice 1.

Dans les énoncés suivants, Σ est un ensemble de formules closes sur un langage \mathcal{L} et σ est une formule close de \mathcal{L} .

- 1. Σ est \odot ssi il existe une formule σ telle que $\Sigma \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.5em} \sigma$ et $\Sigma \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.5em} \neg \sigma$ ssi pour toute formule σ telle que $\Sigma \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.5em} \sigma$ et $\Sigma \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.5em} \neg \sigma$.
- 2. $\Sigma \sim \sigma \operatorname{ssi} \Sigma \cup \{\neg \sigma\} \operatorname{est} \mathfrak{S}$.
- 3. (Finitude) Si $\Sigma \sim \sigma$ alors il existe un ensemble fini $\Sigma_0 \subseteq \Sigma$ tel que $\Sigma_0 \sim \sigma$.
- 4. (Compacité) Si pour tout ensemble fini $\Sigma_0 \subseteq \Sigma$, Σ_0 est \odot alors, Σ est \odot .
- 5. (Complétude) Si Σ est cohérant (\mathfrak{Q}), Σ est satisfiable (\mathfrak{Q}).
- 6. (Complétude) Si $\Sigma \models \sigma$ alors $\Sigma \vdash \sigma$.
- **1.** Prouver les 4 premiers énoncés syntaxiquement (© := cohérant, © := contradictoire, $| \sim := | \rightarrow)$ et prouver les 2 premiers énoncés sémantiquement (© := satisfaisable, © := contradictoire, $| \sim := | \rightarrow)$.
- **2.** Prouver l'équivalence entre l'énoncé de finitude et celui de compacité.
- 3. Prouver l'équivalence entre les 2 énoncés de complétude.
- 4. Prouver la compacité (sémantique) à l'aide des autres énoncés (préciser lesquels).

On note PA l'arithmétique de Peano, \mathcal{L} son langage, et PA $_0$ l'arithmétique de Peano sans schéma de récurrence. On rappelle que le modèle standard de PA est la \mathcal{L} -structure définie sur \mathbb{N} où les symboles de \mathcal{L} sont interprétés de la manière évidente (0 par 0, s par $n \mapsto n+1$, etc.) Dans tout ce qui suit, on ne considère que des modèles égalitaires.

Exercice 2.

Modèles de l'arithmétique

Soit $\mathcal M$ un modèle égalitaire de l'arithmétique (PA). On considère l'application $\phi:\mathbb N\to\mathcal M$ définie par

$$\phi(0) = 0^{\mathcal{M}}$$
 et $\phi(n+1) = s^{\mathcal{M}}(\phi(n))$ $(n \in \mathbb{N})$

1. Montrer que ϕ est injective. Est-elle nécessairement surjective?

Soit $\mathcal{M}_0 = \phi(\mathbb{N})$ l'image de \mathbb{N} par ϕ .

- 2. Montrer que \mathcal{M}_0 est un sous-modèle de \mathcal{M} isomorphe au modèle standard. (On rappelle qu'un sous-modèle de \mathcal{M} est une sous- \mathcal{L} -structure qui est un modèle de la théorie considérée.)
- 3. En déduire que si l'application $\phi:\mathbb{N}\to\mathcal{M}$ est surjective, alors \mathcal{M} est isomorphe au modèle standard.

On dit qu'un modèle \mathcal{M} de PA est *non standard* si l'injection $\phi : \mathbb{N} \to \mathcal{M}$ n'est pas surjective.

4. Montrer que l'arithmétique admet un modèle non standard. (Indication : cf un certain exercice d'un certain td précédent)

Exercice 3. Modèles non standard

Soit \mathcal{M} un modèle non standard de PA, et $\mathcal{M}_0 = \phi(\mathbb{N})$ le sous-modèle standard de \mathcal{M} (isomorphe à \mathbb{N} d'après l'exercice précédent), dont les éléments sont appelés les *éléments standard* de \mathcal{M} . Étant donnés deux éléments $x,y\in\mathcal{M}$, on note $x\leq^{\mathcal{M}}y$ s'il existe $z\in\mathcal{M}$ tel que $x+^{\mathcal{M}}z=y$.

- 1. Montrer que la relation $\leq^{\mathcal{M}}$ est une relation d'ordre total sur \mathcal{M} . Est-ce un bon ordre ? En déduire que \mathcal{M}_0 n'est pas définissable dans \mathcal{M} . (Indication : On pourra raisonner sur le plus petit entier x tel que $\neg A(x)$, où A(x) est une formule définissant \mathcal{M}_0 .)
- 4. Montrer que tout élément de $\mathcal M$ plus petit qu'un élément standard est lui-même un élément standard.
- 3. En déduire que si une formule A(x) à une variable libre x est satisfaite par une infinité d'entiers standards dans \mathcal{M} , alors elle est satisfaite par au moins un entier non standard de \mathcal{M} .

Exercice 4. Un autre modèle est possible

Soient X un ensemble non vide et f une fonction de $X \times X$ dans X. On considère la \mathcal{L} -structure \mathcal{M} dont l'ensemble de base est $\mathcal{M} = \mathbb{N} \cup (X \times \mathbb{Z})$ et où les symboles de \mathcal{L} sont interprétés de la manière suivante :

- \mathcal{M} est une extension de \mathbb{N} ;
- $s^{\mathcal{M}}(x,n) = (x,n+1)$
- -(x,n) + M m = m + M (x,n) = (x,n+m)
- $-(x,n) + ^{\mathcal{M}}(y,m) = (y,n+m)$
- $-0 \times (y,m) = 0$ et $n \times (y,m) = (y,n \times m)$ si $n \neq 0$
- $-(x,n) \times^{\mathcal{M}} m = (x,nm)$
- $-(x,n) \times^{\mathcal{M}} (y,m) = (f(x,y), nm)$

(pour tous $x, y \in X$, $n, m \in \mathbb{N}$).

- 1. Montrer que \mathcal{M} est un modèle de PA_0 .
- 2. Les formules suivantes sont-elles conséquence de PA₀?

$$\forall x \ \forall y \ (x+y=y+x) \qquad \forall x \ \forall y \ \forall z \ (x \times (y \times z) = (x \times y) \times z)$$

$$\forall x \ (x \times 0 = 0) \qquad \forall x \ \forall y \ (x \leq y \wedge y \leq x \Rightarrow x = y)$$

3. Construire un modèle de PA_0 dans lequel + n'est pas associatif.

Exercice 5. *Structure des modèles non standard*

Soit \mathcal{M} un modèle non standard de PA. On considère la relation binaire $x\cong y$ sur \mathcal{M} définie par : $x\cong y$ ssi il existe deux éléments $n,m\in\mathbb{N}$ tels que $x+^{\mathcal{M}}\phi(n)=y+^{\mathcal{M}}\phi(m)$.

- 1. Montrer que la relation \cong est une relation d'équivalence.
- 2. Soient a, a', b et b' des éléments de \mathcal{M} , tels que $a \cong a'$ et $b \cong b'$. Montrer que $a +^{\mathcal{M}} b \cong a' +^{\mathcal{M}} b'$.

On appelle E l'ensemble des classes d'équivalence de \mathcal{M} pour \cong . On définit sur E la relation R par : x R y ssi il existe $a \in x$ et $b \in y$ tels que $\mathcal{M} \models a \leq b$.

- 3. Montrer que la relation R est une relation d'ordre total. Montrer que E, muni de cet ordre, a un plus petit élément mais pas de plus grand élément.
- 4. Vérifier que $PA \vdash \forall x \exists y \ (x+x=y \lor x+x=y+1)$. En déduire habilement que R est un ordre dense sur E.

Ce dernier point permet en fait d'établir qu'un modèle non standard dénombrable est isomorphe à $\mathbb{N} \cup (\mathbb{Q} \times \mathbb{Z})$.