

Contents

- 1.Problem at a glance
- 2.Project LifeCycle
- 3. Variables
- 4. Data Preparation and Visualization
- 5. Predictive Modelling
- 6.Model Interpretation and further pipelines
- 7. Appendix and codes

Problem at a glance

Data Source

Data Set Size

150,000

Problem:

Improve on the state of the art in credit scoring by predicting the probability that somebody will experience financial distress in the next two years

What bank has to do reduce default and improve its business??

Well, vast datasets.

Now, we have to come up with a model which can be useful for the banks

Efficiency

Use Data Mining to learn customers

leading to increase in Business

Time

Data mining black box

Variables

- Debt ratio
- Monthly Income
- Number of Real Estate Loans or Lines
- Revolving Utilization of Unsecured loans
- Number of open credit lines and loans
- Number of times (30-59 days) past due
- Number of times (60-89 days) past due
- Number of times 90 days past due

Consumer Characteristics

- Number of Dependents
- Age

Albert Einstein said,

I Would Spend 55 Minutes Defining the Problem and then Five Minutes Solving It

DATA PREPARATION

Exploring the variables

Exploring the variables

Total customers **150,000**

SeriousDlqin2yrs 150000 non-null category RevolvingUtilizationOfUnsecuredLines 150000 non-null float64 150000 non-null int64 age NumberOfTime30-59DaysPastDueNotWorse 150000 non-null int64 DebtRatio 150000 non-null float64 MonthlyIncome 120269 non-null float64 NumberOfOpenCreditLinesAndLoans 150000 non-null int64 NumberOfTimes90DaysLate 150000 non-null int64 NumberRealEstateLoansOrLines 150000 non-null int64 150000 non-null int64 NumberOfTime60-89DaysPastDueNotWorse NumberOfDependents 146076 non-null float64

Result after describing the data

Monthly income has 20% missing values

No of Dependents has 3% missing values

Next, we explored the distribution of all the other variables when the monthly income is null and not null

Monthly Income	Var1	Var2
Null		
Null		

Monthly Income	Var1	Var2
Not Null		
Not Null		

Monthly Income = not null

RevolvingUtilizationOfUnsecuredLines 1.0 0.8 0.4 0.2 0 200 400 600 800 1000

Monthly Income = null

Monthly Income = not null

40

0.875

0.850

0.825

20

Monthly Income = null

60

100

Monthly Income = not null

Monthly Income = null

Monthly Income = not null

Monthly Income = null

Monthly Income = not null

Monthly Income = null

Analysis from distributions?

The Monthly income values which have 'null' values have different corresponding **DebtRatio** distribution compared to 'not null' values.

Result: Debt Ratio distribution can help in imputing null values of monthly income

intuitive too,

high debt_ratio implies Less Income

Note: For number of dependents, there's the same distribution of the variables when they have null and non-null values, so imputing with the *median* which is 0 4

Outliers analysis

Boxplot outlier analysis Values > 1.5 IQR

NumberOfOpenCreditLinesAndLoans	3980
age	46
NumberOfTimes90DaysLate	8338
DebtRatio	31311
NumberOfTime60-89DaysPastDueNotWorse	7604
NumberRealEstateLoansOrLines	793
NumberOfTime30-59DaysPastDueNotWorse	23982
MonthlyIncome	0
RevolvingUtilizationOfUnsecuredLines	763
NumberOfDependents	0
dtype: int64	

Almost 40% of the data have some outliers, so we cannot remove them all, lets delve deeper

_									
	0	126010		0	141662			442206	
	1 -	126018		1	5243		0	142396	
	1	16033		2	1555		1	5731	\
	2	4598		3	667		2	1118	
	3	1754		4	291		_		
	4	747		5	131		3	318	
	5	342		6	80		4	105	
	6	140		7	38		5	34	
	7	54		8	21				
	8	25		9	19		6	16	
	9	12		10	8 5		7	9	
	10	4		11 12	2		8	2	
	11	1		13	4		l	2	
		2		14	2		9	1	
	12	_		15	2		11	1	
	13	1		17	1		96	5	
\	96	5		96	5				/
	98	264		98	264		98	264	
								· -	
	Viumb	orOfTime?	20	Numbar	OfTimaco	0	Numb	orOfTime	60
,	vumb	erOfTime3	5U- 1		-			erOfTime	
59DaysPastDueNotWorse		avsPastDueNotWorse DavsLate		891	DavsPa	astDueNo	tWorse		

Result: All these 3 variables have most of the value below 20 except 96 and 98 that occur 5 and 264 times in all the 3 datasets. There might be some error or maybe an actual data but anyways a outlier We decided to impute those values with 20

In a similar fashion, we capped NumberRealEstateLoansOrLines to 30 and NumberOfOpenCreditLinesAndLoans to 40

Result:

For these 3 variables, after looking at the ECDF and percentile plots its clearly evident that the values shoot up after the 99.5th percentile

Solution: We removed top .5% values for all of these.

In 150,000, .5% wouldn't matter much and outlier removals and capping is a must to generalize the datasets else it might overfit

On our final step, we just smoothened our debt ratio column so that the machine learning models handle it well, since the ECDF was jumping after some low values.

Before smoothing

After smoothing

"As data piles up, we have ourselves a genuine gold rush. But data isn't the gold. I repeat, data in its raw form is boring crud. The gold is what's discovered therein."

— Eric Siegel, <u>Predictive Analytics: The Power</u> to Predict Who Will Click, Buy, Lie, or Die

PREDICTIVE MODELLING

Only **7%** of our training data has Serious
Delinquency as 1

Intuition before model building: We cannot chose models based on accuracy

Why? Even if we build a dummy model that predicts 0 for any new dataset it will have a accuracy of 93% because

the chance of delinquency is only 7%

Confusion matrix for dummy model			
	Predicted -	Predicted +	
Actual -	34749	0	
Actual +	2492	0	

20

Conclusion: We will look for other metrics like AUC, Precision, Recall to build the best model

Step 1:

11 predictor variables

Tested if we can compress into a few variables using PCA

Result: PCA couldn't explain the variance just using 2-3 principal components So, taking all variables

Step 2: Built different available classifier models using k-fold validation

- ☐ Logistic Regression
- ☐ K- Neighbors Classifier
- DecisionTreeClassifier
- ☐ SVC
- ☐ Linear Discriminant Analysis
- ☐ Quadratic Discriminant Analysis

Result: These models independently didn't perform very good based on AUC score

Step 3: Used one of the most powerful machine learning libraries – Ensemble models

- Random Forest
- ☐ Gradient Boosting gave us an amazing AUC of .85826 on Kaggle's test set

Why ensemble is always better when there is no infrastructure constraint??

Because it reduces bias as well as variance by taking the power of many models and improving the errors of previous ones

Deeper Analysis of our best model – Gradient Boosting

Confusion	Matrix

2011101010111110101111				
	Predicted negative	Predicted positive		
True negative	41527	470		
True positive	2399	604		

$$Precision = \frac{True\ Positive}{True\ Positive + False\ Positive}$$

$$Recall = \frac{True\ Positive}{True\ Positive + False\ Negative}$$

- \Box Precision = .56
- \Box Recall = .20

20% of the people in the test set who actually committed a serious delinquency were classified as people who could commit

56% of the people in the test set for whom the model predicted as highly probable for a chance of commiting serious delinquency did actually commit

ROC Curve RF

Distribution on 2-dim using 11 features

We can get an intuition that the distribution of the datasets of 1s and 0s are so closely distributed.

Result: The distribution is still very close

Interpretation of the resulting metric

High risk appetite

Low risk appetite

Needs more recall value.

Why? Low appetite for default
Decrease the probability threshold to flag as a defaulter

cares less about recall, so focus on precision.
Why? Low appetite for default
Increase the probability threshold to flag as a defaulter

Using model in other pipelines

One machine learning pipeline (or Black box) may not directly be used to affect decision making

Thank you

Questions?