

UNIVERSIDAD NACIONAL AUTÓNOMA DE HONDURAS FACULTAD DE CIENCIAS – ESCUELA DE FÍSICA DEPARTAMENTO DE MATERIA CONDENSADA FÍSICA GENERAL II – FS200

PROBLEMAS PROPUESTOS POR OBJETIVO

A continuación, se presentan los principales objetivos que se pretenden cumplir en el estudiante al finalizar el curso, y considerando una serie de problemas propuestos del libro de texto y de un libro de referencia. Durante los exámenes parciales se evaluarán estos objetivos, con problemas de igual o similar dificultad.

Tema	Tipo de Objetivo	Objetivo	Sears, Zemansky (13va Ed.)		Serway, Jewett (10ma Ed.)				
			Cap.	Problemas	Ca p.	Problemas			
PRIMERA UNIDAD: OSCILACIONES									
	Mínimo	Describir las oscilaciones en términos de amplitud, periodo, frecuencia y frecuencia angular.		2, 3, 4, 5	15	3			
		Analizar detalladamente el movimiento armónico simple para un sistema idealizado masa-resorte, en términos de su ecuación de movimiento. Usando esta ecuación para determinar la amplitud y el ángulo de fase de la oscilación, a partir de las condiciones iniciales.		9, 11, 65, 66		3, 4, 9			
		Definir, a partir de la ecuación de movimiento de un sistema masa-resorte, la velocidad y aceleración de dicha masa. Reconocer donde suceden y cuáles son los valores máximos de estas cantidades dinámicas.	14	13, 17, 18, 19, 21		7, 11			
Movimiento		Examinar la energía mecánica total del sistema masa-resorte en movimiento armónico simple, definiendo su energía cinética y potencial.		23, 24, 27, 30, 33, 38, 67		10, 11, 12, 13, 15			
Periódico		Identificar situaciones en las cuales el movimiento armónico simple inicie a partir de otra situación física estudiada anteriormente (colisiones, desplazamiento con fricción, etc.).		39, 72, 73		37			
		Estudiar el movimiento de un péndulo simple, en términos de su periodo, frecuencia y frecuencia angular.		45, 48, 49, 74		17, 21			
		Estudiar el movimiento de un péndulo físico, en términos de su periodo, frecuencia y frecuencia angular.		53, 56, 57, 79, 96		19, 20, 22			
	Avanzado	Resolver problemas que incluyan todos los conceptos aprendidos e impliquen un nivel matemático y de razonamiento avanzado.		26, 70, 75, 80, 85, 91, 94, 97, 98, 99		35, 39, 41, 46, 47, 48			

		Manejar en problemas la ecuación de una onda $y(x,t)$, y todas las magnitudes comprendidas o relacionadas con ella (por supuesto, saber colocar la constante de fase que corresponda), manejar igualmente la velocidad y aceleración transversal, $v(x,t)$ y $a(x,t)$.		3, 6, 8, 10, 11, 13	16	7, 8, 9
Ondas Mecánicas	Mínimo	Resolver problemas que involucren el cálculo de velocidad de onda mediante las características de inercia y elasticidad del medio. En particular los de cuerdas con un peso colgante. Se incluyen cálculo de energía y potencia.		16, 18, 19, 21, 28, 52, 53		10, 11, 12, 13, 14, 15, 17
		Resolver problemas de interferencia y superposiciones de ondas.	15	35, 39	17	1, 7, 49
		Relacionar la ecuación de una onda $y(x, t)$ con la de una onda estacionaria en una cuerda y con ella el cálculo de amplitudes, posición de nodos y demás conceptos relacionados.		37, 43, 44, 45		9, 10, 34,
		Resolver problemas de modos normales en una cuerda y de resonancia.		42, 46, 47, 49		11, 12, 13, 14, 15, 17, 18
	Avanzado	Resolver problemas que incluyan todos los conceptos aprendidos e impliquen un nivel matemático y de razonamiento avanzado.		54, 62, 63, 69, 72, 77, 81, 82, 83		40, 46, 47
		SEGUNDA UNIDAD: TERMODINÁMICA				
		Resolver problemas que involucren expansión térmica lineal, superficial o volumétrica, para un material.		15, 17, 18, 19	18	6, 7, 8, 9, 10, 11, 13, 14, 15, 33, 34
		Resolver problemas de conversión energía no calorífica a calor.	17	32, 35, 37, 51, 93	19	2, 9, 11, 12, 14
Temperatura y Calor	Mínimo	Cálculos de calor absorbido por una sustancia con y sin cambios de fase.		26, 27, 29, 31, 48, 49, 50, 52		3, 4, 7, 10, 37
Caror		Resolver problemas de mezclas que pueden incluir cambios de fase entre los cuerpos que intercambian calor.		38, 39, 41, 44, 45, 56, 57, 59, 60, 61		13, 43,
		Resolver problemas de conducción térmica incluyendo los que involucren: el uso del concepto de estado estacionario para uniones de materiales distintos.		62, 63, 64, 65, 66, 68, 69, 70, 71		23, 24, 27
	Avanzado	Resolver problemas que incluyan todos los conceptos aprendidos e impliquen un nivel matemático y de razonamiento avanzado.		101, 102, 103, 105, 109, 111, 115, 125		36, 44, 46
	Mínimo	Resolver problemas que combinen magnitudes microscópicas y macroscópicas. en un gas ideal (ecuaciones de estado, involucrando la teoría cinética).	18	1, 6, 8, 13, 14, 16, 22, 26, 34, 37, 39	18	18, 19, 20, 21, 22, 23, 25, 26
Propiedades		Resolver problemas que involucren el uso de las fórmulas para las capacidades molares.		41, 42, 43, 44	20	9, 11, 12, 13
Térmicas de la Materia	Avanzado	Resolver problemas que incluyan todos los conceptos aprendidos e impliquen un nivel matemático y de razonamiento avanzado.		63, 64, 66, 69, 71	18	40, 46
	11vanzado			00, 01, 00, 07, 71	20	29

Primera Ley de la Termodinámica		Calcular trabajo W mediante la fórmula de la integral W = $\int P dV$, para los procesos en gases en que el resultado de la integral ya esté dado.		1, 27		16				
	Mínimo	Manejar los signos de calor Q y trabajo W y sus relaciones con la ecuación de estado así como el trazo de diagramas pV .		6, 8, 11, 15, 17, 25, 26, 38, 39, 40, 42, 43, 46, 47, 48	19	17, 18, 19, 22				
		Realizar cálculos de Q, W y energía interna ΔU para procesos: Adiabáticos, Isobáricos, isotérmicos e Isocórico en gases ideales. Usar primera Ley, ecuación de estado y capacidades caloríficas.	19	22, 24,38, 45, 46, 47, 48		29, 40				
		Utilizar la ecuación de adiabáticas para gases ideales.		29, 31, 32, 33	20	18, 19, 21, 34, 35, 36				
	Avanzado	Resolver problemas que incluyan todos los conceptos aprendidos e impliquen un nivel matemático y de razonamiento avanzado.		61, 62, 66, 69	19	30, 31				
				1 2 5 21	20	42				
	Mínimo	Aprender que es una máquina térmica y calcular su eficiencia.	-	1, 3, 5, 21		1, 2, 3				
Máquinas Térmicas		Efectuar cálculos con el ciclo de Carnot.	20		21	7, 9, 11, 12, 14, 15				
	Avanzado	Resolver problemas que incluyan todos los conceptos aprendidos e impliquen un nivel matemático y de razonamiento avanzado.		52, 54, 64		33, 37, 41, 45				
	TERCERA UNIDAD: ELECTRICIDAD									
	Mínimo	Hacer cálculos en que se involucre número de electrones (o equivalente), a partir de valores de fuerza o campo electrostáticos.		2, 4, 6, 8		1, 2				
		Calcular fuerzas y/o campos electrostáticos con configuraciones bidimensionales de carga (formando líneas, triángulos isósceles o rectángulos).	21	19, 21, 22, 31, 37, 66	22	10, 11, 12, 13, 17, 19, 21				
<u> </u>		Resolver problemas con diagrama de cuerpo libre en que además de fuerzas electrostáticas se involucren otro tipo de fuerzas (como ser, el peso).		29, 32, 68, 73		31, 32, 33, 34, 37				
Fuerza y Campo Eléctrico		Encontrar posiciones donde el campo o la fuerza sean nulos, a partir de configuraciones lineales de cargas puntuales ya dadas.		15, 65, 75		30				
		Resolver problemas de trayectorias de partículas cargadas en presencia de campos uniformes en una dimensión (movimiento vertical u horizontal)		25, 27, 28		24, 25, 28				
	Avanzado	Resolver problemas que incluyan todos los conceptos aprendidos e impliquen un nivel matemático y de razonamiento avanzado.		89, 90, 91, 97, 98, 99	22	41, 43, 44, 47, 48				
					23	1, 6, 7, 8, 40, 41				

Potencial Eléct ri co	Mínimo	Resolver problemas de cálculos dinámicos de velocidad, aceleración de partículas cargadas en base a energía potencial o diferencia de potencial.	23	1, 9, 12, 13, 14, 23, 50		2
		Calcular energía potencial almacenada o trabajo para almacenarla en sistemas de cargas puntuales.		2, 3, 8, 11, 15	. 24	7, 8, 11, 12
		Calcular potencial eléctrico de cualquier tipo de configuraciones de carga puntuales.		17, 18, 20, 22		15
		Manejar el concepto de superficie equipotencial.		32, 44, 49		3, 4, 5
		Calcular cargas y potenciales en conductores esféricos que, estando separados a larga distancia, se interconectan.		27, 28, 36		
		Obtener el valor de campo eléctrico a partir del potencial eléctrico		45, 46, 57		21, 22, 24
	Avanzado	Resolver problemas que incluyan todos los conceptos aprendidos e impliquen un nivel matemático y de razonamiento avanzado.		57, 59, 84		48
	Mínimo	Resolver problemas de cálculo de corriente con información de la configuración atómica de conductores y de uso de los conceptos de corriente, densidad de corriente y velocidad de arrastre.		1, 4, 5, 6, 8	26	4
		Calcular resistencia en base a las características del conductor (de sección constante).	- 25	16, 17, 19, 20, 23, 59		10, 13, 14
Corriente y		Usar la Ley de Ohm para los resistores.		11, 12, 13, 22, 23		11, 25, 26
Resistencia		Resolver problemas de cálculo de corriente en el circuito simple básico (elemento productor de energía, elemento consumidor de energía).		28, 29, 30, 35, 38	27	31, 34
		Calcular potencia entregada y disipada en resistores.		49, 51, 53, 62, 72	26	25, 38, 41
	Avanzado	Resolver problemas que incluyan todos los conceptos aprendidos e impliquen un nivel matemático y de razonamiento avanzado.		65, 66, 68, 73	26	39

Coordinador:

Roberto Enrique Mejia roberto.mejia@unah.edu.hn