Tarefas de Diferenciação Numérica

Tarefa 01: Desenvolva uma fórmula de derivada segunda na filosofia central de tal forma que o erro seja da ordem de $(\Delta x)^4$.

EQUIPE: MILTON CASSUL MIRANDA ISAAC MILLER

$\Delta x_{(k)}$	f(x)	f''(x)	e(x)
0.5	20.47996	47.219433	
0.25		45.602379	0.035460
0.125		45.205280	0.008784
0.0625		45.106449	0.002191
0.03125		45.081769	0.000547
0.015625		45.075601	0.000137
0.007812		45.074059	0.000034

Pela derivada segunda encontrada analiticamente, temos:

f''(2) = 45.073545

Note: está sendo considerado 6 casas após a vírgula

a) Combinando expansões em série de Taylor de pontos da vizinhança;

1)
$$f(x + \Delta x) = f(x) + f'(x) \Delta x + \frac{1}{2} f''(x) (\Delta x)^2 + \frac{1}{3!} f'''(x) (\Delta x)^3 + \frac{1}{4!} f^{iv}(x) (\Delta x)^4 + \frac{1}{5!} f^{v}(x) (\Delta x)^5 + \frac{1}{6!} f^{vi}(x) (\Delta x)^6$$

2)
$$f(x + \Delta x) = f(x) - f'(x) \Delta x + \frac{1}{2} f''(x) (\Delta x)^2 - \frac{1}{3!} f'''(x) (\Delta x)^3 + \frac{1}{4!} f^{iv}(x) (\Delta x)^4 - \frac{1}{5!} f^{v}(x) (\Delta x)^5 + \frac{1}{6!} f^{vi} x(x) (\Delta x)^6$$

3)
$$f(x+2\Delta x) = f(x) + f'(x) 2\Delta x + \frac{1}{2} f''(x) (2\Delta x)^2 + \frac{1}{3!} f'''(x) (2\Delta x)^3 + \frac{1}{4!} f^{iv}(x) (2\Delta x)^4 + \frac{1}{5!} f^{v}(x) (2\Delta x)^5 + \frac{1}{6!} f^{vi}(x) (2\Delta x)^6$$

4)
$$f(x+2\Delta x) = f(x) - f'(x) 2\Delta x + \frac{1}{2} f''(x) (2\Delta x)^2 - \frac{1}{3!} f'''(x) (2\Delta x)^2 + \frac{1}{4!} f^{iv}(x) (2\Delta x)^4 - \frac{1}{5!} f^{v}(x) (2\Delta x)^5 + \frac{1}{6!} f^{vi}(x) (2\Delta x)^6$$

$$(1) + \alpha (2) + \beta (3) + \gamma (4)$$

Como queremos eliminar f'(x), f'''(x), $f^{iv}(x)$, $e^{iv}(x)$ seguimos os mesmos passos já apresentados em aula, logo: $\alpha = 1$, $\beta = \frac{-1}{16}$ e $\gamma = \frac{-1}{16}$

$$(1) + \alpha (2) + \beta (3) + \gamma (4) = f(x + \Delta x) + f(x - \Delta x) + f(x + 2\Delta x) + f(x - 2\Delta x) =$$

$$f(x)(1 + \alpha + \beta + \gamma) + \frac{1}{2}f''(x)(\Delta x)^{2}(1 + \alpha + 4\beta + 4\gamma) + \frac{1}{6!}f^{vi}(x)(\Delta x)^{6}(1 + \alpha + 32\beta + 32\gamma)$$

Isolando f''(x) e substituindo os valores de α , β , γ

Temos:

$$f''(x) = \frac{1}{(\Delta x)^2} \left(\frac{-1}{12} f(x + 2\Delta x) + \frac{4}{3} f(x + \Delta x) + \frac{4}{3} f(x - \Delta x) - \frac{-1}{12} f(x - 2\Delta x) - \frac{-5}{2} f(x) \right) + \frac{8}{6!} f^{\nu i}(x) (\Delta x)^4$$

b) Usando o polinômio de interpolação de Newton:

i.
$$x(s) = x_0 + (s - 2)\Delta x$$

ii. $s(x) = \frac{(x - x_0)}{\Delta x} + 2$

Derivando (ii) dos dois lados, temos:

$$ds = \frac{dx}{\Delta d} \rightarrow \frac{ds}{dx} = \frac{1}{\Delta x}$$

$$f(x) \approx g(s) = \sum_{j=0}^{n} {s \choose j} \Delta^{j} f_{0}$$

$$= {s \choose 1} \Delta^{1} f_{0} + {s \choose 2} \Delta^{2} f_{0} + {s \choose 3} \Delta^{3} f_{0} + {s \choose 4} \Delta^{4} f_{0}$$

$$\Delta^{0} f_{0} \Delta \Delta^{1} f_{0} \left(\frac{s^{2} - s}{2} \right) \Delta^{2} f_{0} + \left(\frac{s^{3} - 3s^{2} - 2s}{3!} \right) \Delta^{3} f_{0} + \left(\frac{(s^{4} - 6s^{3} + 11s^{2} - 6s)}{4!} \right) \Delta^{4} f_{0}$$

Derivando f(x) 2 vezes e usando a regra da cadeia, além de que $\frac{ds}{dx} = \frac{1}{\Delta x}$:

$$f''(x) = \frac{1}{\Delta x^2} g''(s)$$

$$g''(s) = \Delta^0 f_0 + (s - 1)\Delta^3 f_0 + \frac{6s^2 - 18s + 11}{12} \Delta^4 f_0$$

Como queremos o ponto central, logo s = 2.

$$g''(2) = \Delta^2 f_0 + \Delta^3 f_0 - \frac{1}{12} \Delta^4 f_0$$

Como:

$$\Delta^{2} f_{0} = f_{2} - 2f_{1} + f_{0}$$

$$\Delta^{3} f_{0} = f_{3} - 3f_{2} + 3f_{1} + f_{0}$$

$$\Delta^{4} f_{0} = f_{4} - 4f_{3} + 6f_{2} - 4f_{1} + f_{0}$$

Logo:

$$g''(2) = -\frac{5}{2}f_2 + \frac{4}{3}f_1 - \frac{1}{12}f_0 + \frac{4}{3}f_3 - \frac{1}{12}f_4$$

Sendo assim:

$$f''(x) = \frac{1}{(\Delta x)^2} = \left(-\frac{5}{2}f_2 + \frac{4}{3}f_1 - \frac{1}{12}f_0 + \frac{4}{3}f_3 - \frac{1}{12}f_4\right)$$

Substituindo f_{0} , f_{1} , f_{2} , f_{3} , $e\,f_{4}$ temos:

$$f''(x) = \frac{1}{(\Delta x)^2} \left(\frac{-1}{12} f(x + 2\Delta x) + \frac{4}{3} f(x + \Delta x) + \frac{4}{3} f(x - \Delta x) \frac{-1}{12} f(x - 2\Delta x) - \frac{-5}{2} f(x) \right) + \frac{8}{6!} f^{vi}(x) (\Delta x)^4$$