

Licence 1ère année, 2019-2020, MATHÉMATIQUES ET CALCUL 1 (MC1)

## Feuille de TD n°3 : Suites (1ère partie)

Exercice 1. Ces suites sont-elles arithmétiques? géométriques? Le c as échéant, préciser leur raison. Dans tous les cas, calculer leur terme général  $u_n$ .

a) 
$$\begin{cases} u_{n+1} = -\frac{\pi u_n}{\sqrt{17}} \\ u_0 = 3 \end{cases}$$
 b) 
$$\begin{cases} u_{n+1} = 1 - u_n \\ u_0 = 0 \end{cases}$$
 c) 
$$\begin{cases} u_{n+1} = u_n^2 \\ u_0 = 1 \end{cases}$$
 d) 
$$\begin{cases} u_{n+1} = -\frac{1}{2} (3 - 2u_n) \\ u_0 = \frac{1}{2} \end{cases}$$

Exercice 2. Donner l'expression du terme général des suites suivantes :

- 1)  $(t_n)$  suite arithmétique de raison 10 telle que  $t_{1000} = 0$ .
- 2)  $(u_n)$  suite arithmétique telle que  $u_0 = -2$  et  $u_{10} = 118$ .
- 2)  $(v_n)$  suite géométrique réelle telle que  $v_0 = 3$  et  $v_5 = -96$ .
- 3)  $(w_n)$  une suite géométrique de raison -2 telle que  $w_5 = 320$ .

**Exercice 3.** Soient  $(x_n)$  et  $(y_n)$  les deux suites définies par

$$x_{n+1} = \frac{x_n - y_n}{2}$$
 et  $y_{n+1} = \frac{x_n + y_n}{2}$ ,

pour tout n, et dont les termes initiaux sont  $x_0 = 1$  et  $y_0 = 0$ .

On définit la suite à valeur complexe de terme général  $z_n = x_n + iy_n$ . Pour tout n, calculer  $z_{n+1}$  en fonction de  $z_n$  et en déduire les termes généraux de  $(x_n)$  et  $(y_n)$  ainsi que les limites de ces deux suites.

**Exercice 4.** Soit  $(u_n)$  la suite définie par  $u_0 = 0$  et la récurrence  $u_{n+1} = \frac{1}{2}\sqrt{u_n^2 + 12}$  pour tout  $n \in \mathbb{N}$ .

- 1) Calculer  $u_1$  et  $u_2$ .
- 2) Montrer que la suite  $(v_n)$  définie par  $v_n = u_n^2 4$  est géométrique.
- 3) En déduire la limite de la suite  $(v_n)$  puis celle de la suite  $(u_n)$ .

Exercice 5. Calculer les sommes suivantes :

a) 
$$\sum_{k=0}^{n} \frac{5}{2^k}$$
 b)  $\sum_{k=0}^{n} 3^{2k+1}$  c)  $\sum_{k=0}^{n} \frac{1+4^k}{3^k}$  d)  $\sum_{k=0}^{n} \frac{\cos(k\theta)}{2^k}$ 

Exercice 6. Les suites suivantes sont-elles majorées? minorées? croissantes? décroissantes? convergentes?

a) 
$$u_n = (-3)^n + 3^n$$
 b)  $u_n = \frac{n+1000}{n+2012}$  c)  $u_n = \frac{2^n}{n!}$  d)  $\begin{cases} u_0 = 1 \\ u_{n+1} = u_n + \frac{1}{2^{n+1}} \end{cases}$ 

**Exercice 7.** On considère les deux suites  $(x_n)$  et  $(y_n)$  définies par

$$\begin{cases} x_0 = 1 \\ x_{n+1} = \frac{3x_n + 2y_n}{5} \end{cases} \text{ et } \begin{cases} y_0 = 2 \\ y_{n+1} = \frac{2x_n + 3y_n}{5} \end{cases} , \text{ pour } n \in \mathbb{N}.$$

- 1) On considère la suite  $(w_n)$  définie par  $w_n = y_n x_n$  pour  $n \in \mathbb{N}$ . Démontrer que  $(w_n)$  est géométrique, convergente et déterminer sa limite.
  - 2) Montrer que la  $(x_n)$  est croissante et que la suite  $(y_n)$  est décroissante.
  - 3) Montrer que les suites  $(x_n)$  et  $(y_n)$  convergent vers la même limite que nous noterons L.
  - 4) Calculer  $x_n + y_n$  pour tout  $n \in \mathbb{N}$ . En déduire la valeur de L.

**Exercice 8.** Parmi les énoncés suivants, déterminer et prouver ceux qui sont vrais, donner un contre exemple pour les autres.

- a) Toute suite non minorée tend vers  $-\infty$ .
- b) Toutes suite bornée est convergente.
- c) Toute suite convergente est bornée.
- d) Si  $(u_n)$  tend vers l > 0, alors  $(u_n)$  est positive ou nulle à partir d'un certain rang.
- e) Toute suite croissante tend vers  $+\infty$ .
- f) Si la suite  $(|u_n|)$  converge alors la suite  $(u_n)$  converge aussi.
- g) Si la suite  $(u_n)$  converge vers une limite l, alors  $(|u_n|)$  converge vers la même limite.
- h) Si les suites  $(u_n)$  et  $(v_n)$  n'ont pas de limite, alors  $(u_n + v_n)$  n'a pas de limite.
- i) Si la suite  $(u_n)$  converge, alors la suite  $(u_{n+1} u_n)$  converge vers 0.
- j) Si la suite  $(u_n)$  vérifie que  $(u_{n+1} u_n)$  converge vers 0, alors la suite  $(u_n)$  converge.

Soit a un réel et  $(u_n)$  la suite définie par  $u_0 = a$  et la récurrence  $u_{n+1} = \frac{1}{2}u_n^2 + \frac{1}{2}$  pour tout  $n \in \mathbb{N}$ . 1) Montrer que  $(u_n)$  est croissante.

2) Montrer que si  $(u_n)$  converge alors sa limite est nécessairement 1.

3) On suppose  $a \in [0,1]$ . Montrer par récurrence que  $u_n \leq 1$ . En déduire que  $(u_n)$  est convergente.

4) On suppose a > 1. Montrer que  $(u_n)$  diverge.

5) On suppose a < 0. Calculer  $u_1$ . Pour quelles valeurs de a la suite  $(u_n)$  converge-t-elle?

Parmi les énoncés suivants, déterminer ceux qui sont vrais et donner un contre exemple pour les Exercice 10. autres.

- 1) Si  $u_n \leq v_n$  pour tout n,  $(u_n)$  converge vers l et  $(v_n)$  est décroissante, alors  $(v_n)$  converge vers l.
- 2) Si  $u_n \leq v_n$  pour tout n,  $(u_n)$  croissante,  $(v_n)$  décroissante alors  $(u_n)$  et  $(v_n)$  convergent.
- 3) Si  $u_n \leqslant v_n$ ,  $(u_n)$  croissante,  $(v_n)$  décroissante, et  $(u_n v_n)$  tend vers 0, alors  $(u_n)$  et  $(v_n)$  convergent vers la
  - 4) Si  $u_n \leq v_n \leq w_n$ ,  $(u_n)$  et  $(w_n)$  convergent, alors  $(v_n)$  converge.

**Exercice 11.** Dans chacun des cas qui suivent, montrer que les suites 
$$(u_n)$$
 et  $(v_n)$  sont adjacentes.  
1)  $u_n = -\frac{1}{n+1}$  et  $v_n = \frac{1}{n+3}$ ,  $n \in \mathbb{N}$ .  
2)  $u_n = 1 - \frac{1}{n}$  et  $v_n = 1 + \sin\left(\frac{1}{n}\right)$ ,  $n \in \mathbb{N}^*$ .

## Exercice 12 (Lemme de Cesaro).

On souhaite montrer le résultat suivant : Si  $(u_n)_{n\in\mathbb{N}^*}$  est une suite de réels qui converge vers une limite  $L\in\mathbb{R}$ , alors la suite  $(v_n)_{n\in\mathbb{N}^*}$  définie par  $v_n=\frac{1}{n}\left(u_1+u_2+\ldots+u_n\right)$  converge aussi vers L.

- 1) Dans cette question, on suppose que L=0. Soit  $\varepsilon>0$ .
- 1)a) Montrer qu'il existe un entier  $N \in \mathbb{N}$  tel que  $|u_n| \leqslant \frac{\varepsilon}{2}$  pour tout  $n \geqslant N$ .

1)b) Montrer que 
$$\forall n > N$$
,  $\left| \frac{1}{n} (u_{N+1} + u_{N+2} + \ldots + u_n) \right| \leqslant \frac{\varepsilon}{2}$ .

- 1)c) Montrer qu'il existe un entier  $P \in \mathbb{N}$  tel que  $\forall n > P$ ,  $\left| \frac{1}{n} (u_1 + u_2 + \ldots + u_N) \right| \leqslant \frac{\varepsilon}{2}$
- 1)d) En déduire que pour tout  $n > \max(N, P)$ , on a  $|v_n| \le \varepsilon$ , et conclure que  $\lim(v_n) = 0$ .
- 2) On considère maintenant le cas où L est quelconque. Montrer que  $\lim(v_n) = L$  (on pourra considérer une suite annexe définie par  $u'_n = u_n - L$ ).
  - 3) Déduire du lemme de Cesaro que si  $(x_n)_{n\in\mathbb{N}^*}$  est une suite réelle telle que  $\lim_{n\to\infty}(x_{n+1}-x_n)=L$ , alors  $\lim_{n\to\infty}\frac{x_n}{n}=L$ .
  - 4) Application : calcular  $\lim_{n\to\infty} \left(\frac{n^n}{n!}\right)^{\frac{1}{n}}$ .

Exercice 13 (DM 3). Soit a > 2. Le but de cet exercice est de donner un sens à l'écriture

$$\phi = a - \frac{1}{a - \frac{1}{a - \frac{1}{\dots}}}.$$

Pour ce faire, on considère la suite  $(\phi_n)$  définie par  $\phi_0 = a$  et la récurrence  $\phi_{n+1} = a - \frac{1}{\phi_n}$  pour tout  $n \in \mathbb{N}$ .

- 1) Écrire (sans simplifier) les termes  $\phi_1$ ,  $\phi_2$ ,  $\phi_3$ , puis expliquer en quoi cette suite est liée à l'écriture de  $\phi$ .
- 2) Montrer par récurrence que la suite  $(\phi_n)$  est bien définie et vérifie  $1 \leq \phi_n \leq a$  pour tout  $n \in \mathbb{N}$ .
- 3) Calculer, en fonction de a, les racines du polynôme  $P = X^2 aX + 1$ , notées  $r_1$  et  $r_2$  (avec  $r_1 \le r_2$ ).
- 4) Montrer que  $\forall n \in \mathbb{N}$ ,  $\phi_{n+1} \phi_n = \frac{-1}{\phi_n} (\phi_n r_1)(\phi_n r_2)$ .
- 5) Montrer par récurrence que  $\phi_n \geqslant r_2$  pour tout  $n \in \mathbb{N}$  (on pourra utiliser, en le justifiant, que  $a r_2 = \frac{1}{r_2}$ ).
- 6) En déduire que la suite  $(\phi_n)$  est décroissante, puis qu'elle converge vers une limite que l'on précisera.
- 7) Calculer  $4 \frac{1}{4 \frac{1}{4 \frac{1}{4}}}$ .

Exercice 14 (DM 3). Soient a et b deux réels strictement positifs. On considère les deux suites  $(u_n)$  et  $(v_n)$ définies par  $u_0 = a$ ,  $v_0 = b$  et les récurrences

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{u_n + v_n}{2}, \quad v_{n+1} = \frac{2}{\frac{1}{u_n} + \frac{1}{v_n}}.$$

- 1) Montrer par récurrence que  $u_n > 0$  et  $v_n > 0$  pour tout  $n \in \mathbb{N}$ .
- 2) Exprimer  $u_{n+1} v_{n+1}$  en fonction de  $u_n$  et  $v_n$ . En déduire que  $v_n \leqslant u_n$  pour tout  $n \geqslant 1$ .
- 3) Calculer  $u_{n+1} u_n$  en fonction de  $u_n$  et  $v_n$ . En déduire que  $(u_n)$  est décroissante.
- 4) Montrer de même que  $(v_n)$  est croissante.
- 5) Montrer que les suites  $(u_n)$  et  $(v_n)$  sont convergentes, puis qu'elles ont la même limite (notée L).
- 6) Exprimer  $u_{n+1}v_{n+1}$  en fonction de  $u_n$  et  $v_n$ . En déduire l'expression explicite de L en fonction de a et b.

  7) En déduire que  $\frac{2}{\frac{1}{a} + \frac{1}{b}} \le \sqrt{ab} \le \frac{a+b}{2}$  (inégalité des 3 moyennes).