FCAI fcai.fi

Reinforcement Learning

States $s \in \mathcal{S}$

Actions $a \in \mathcal{A}$

Transition function $P(s_{t+1} \mid s_t, a_t)$

Reward function $r_t = r(s_t, a_t)$

Start state s_0 Discount factor $\gamma \in [0,1]$

Policy $\pi: \mathcal{S} \to \mathscr{A}$

Goal:

 $\max_{\pi} \mathbb{E}_{\pi,P} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \mid s_{0} = s, \pi \right]$

Value function:

 $V_{\pi}(s) = \mathbb{E}_{\pi,P} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \mid s_{0} = s, \pi \right]$

Action-value function (aka Q-function):

 $Q_{\pi}(s, a) = \mathbb{E}_{\pi, P} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \mid s_{0} = s, a_{0} = a, \pi \right]$

Markov Decision Process (MDP)

Reinforcement Learning

Markov Decision Process (MDP)

States $s \in \mathcal{S}$

Actions $a \in \mathcal{A}$

Transition function $P(s_{t+1} \mid s_t, a_t)$

Reward function $r_t = r(s_t, a_t)$

Start state s_0

Discount factor $\gamma \in [0,1]$

Policy $\pi:\mathcal{S}\to\mathcal{A}$

Goal:

$$\max_{\pi} \mathbb{E}_{\pi,P} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \mid s_0 = s, \pi \right]$$

Value function:

$$V_{\pi}(s) = \mathbb{E}_{\pi,P} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \mid s_0 = s, \pi \right]$$

Action-value function (aka Q-function):

$$Q_{\pi}(s, a) = \mathbb{E}_{\pi, P} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \mid s_{0} = s, a_{0} = a, \pi \right]$$

FCAI

Reinforcement Learning

