激活函数

维基百科,自由的百科全书

在计算网络中,一个节点的**激活函数(Activation Function)**定义了该节点在给定的输入或输入的集合下的输出。标准的计算机芯片电路可以看作是根据输入得到开(1)或关(\mathbf{o})输出的<u>数字电路</u>激活函数。这与神经网络中的<u>线性感知机</u>的行为类似。然而,只有<u>非线性</u>激活函数才允许这种网络仅使用少量节点来计算非平凡问题。在人工神经网络中,这个功能也被称为传递函数。

函数

下表列出了几个激活函数,它们的输入为单一变量。

名称	函数图形	方程式	导数	区间	Order of continuity
恒等函数		f(x) = x	f'(x)=1	$(-\infty,\infty)$	C^{∞}
单位阶跃函数		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$	{0,1}	C-1
逻辑函数 (也被 称为 <u>S函数</u>)		$f(x) = \sigma(x) = \frac{1}{1 + e^{-x}}$ [1] (https://zh.wikipedia.or g/wiki/%E6%BF%80%E6%B4%BB%E5%87%BD%E6%9 5%B0#endnote_logistic1)	f'(x) = f(x)(1 - f(x))	(0,1)	C^{∞}
双曲正切函数		$f(x)= anh(x)=rac{(e^x-e^{-x})}{(e^x+e^{-x})}$	$f'(x) = 1 - f(x)^2$	(-1,1)	C [∞]
反正切函数		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	C [∞]
Softsign函 数[1][2]		$f(x) = \frac{x}{1 + x }$	$f'(x)=\frac{1}{(1+ x)^2}$	(-1,1)	C^1
反平方根函数 (ISRU) ^[3]		$f(x) = \frac{x}{\sqrt{1 + \alpha x^2}}$	$f'(x) = \left(rac{1}{\sqrt{1+lpha x^2}} ight)^3$	$\left(-\frac{1}{\sqrt{\alpha}}, \frac{1}{\sqrt{\alpha}}\right)$	C [∞]
<u>线性整流函数</u> (ReLU)		$f(x) = \left\{ egin{array}{ll} 0 & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{array} ight.$	$f'(x) = \left\{egin{array}{ll} 0 & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{array} ight.$	$[0,\infty)$	C ⁰
带泄露线性整流 函数(Leaky ReLU)		$f(x) = \left\{egin{array}{ll} 0.01x & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{array} ight.$	$f'(x) = \left\{ egin{array}{ll} 0.01 & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{array} ight.$	$(-\infty,\infty)$	C ⁰
参数化线性整流 函数(PReLU) ^[4]		$f(lpha,x) = egin{cases} lpha x & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{cases}$	$f'(lpha,x) = egin{cases} lpha & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{cases}$	$(-\infty,\infty)$	C ⁰
带泄露随机线性 整流函数 (RReLU) ^[5]		$f(\alpha, x) = \begin{cases} \alpha x & \text{for } x < 0 \text{ [2] (https://zh.wikipedia.} \\ x & \text{for } x \ge 0 \end{cases}$ $\text{org/wiki/\%E6\%BF\%80\%E6\%B4\%BB\%E5\%87\%BD\%E6\%}$ $95\%B0\#\text{endnote_alpha_random)}$	$f'(lpha,x) = egin{cases} lpha & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{cases}$	$(-\infty,\infty)$	C^0
指数线性函数 (ELU) ^[6]		$f(lpha,x) = egin{cases} lpha(e^x-1) & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{cases}$	$f'(\alpha, x) = \begin{cases} f(\alpha, x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$(-lpha,\infty)$	$egin{cases} C_1 & ext{when } c \ C_0 & ext{otherw} \end{cases}$
扩展指数线性函 数(SELU) ^[7]		$f(lpha,x)=\lambdaigg\{egin{array}{ll} lpha(e^x-1) & ext{for } x<0 \ x & ext{for } x\geq0 \ \end{array}$ with $\lambda=1.0507$ and $lpha=1.67326$	$f'(lpha, x) = \lambda egin{cases} lpha(e^x) & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{cases}$	$(-\lambda lpha, \infty)$	C^0
S 型线性整流激 活函数 (SReLU) ^[8]		$f_{t_l,a_l,t_r,a_r}(x) = egin{cases} t_l + a_l(x-t_l) & ext{for } x \leq t_l \ x & ext{for } t_l < x < t_r \ t_r + a_r(x-t_r) & ext{for } x \geq t_r \end{cases}$ t_l,a_l,t_r,a_r are parameters.	$f'_{t_l,a_l,t_r,a_r}(x) = egin{cases} a_l & ext{for } x \leq t_l \ 1 & ext{for } t_l < x < t_r \ a_r & ext{for } x \geq t_r \end{cases}$	$(-\infty,\infty)$	C^0
反平方根线性函 数(ISRLU) ^[3]		$f(x) = \left\{ egin{array}{ll} rac{x}{\sqrt{1+lpha x^2}} & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{array} ight.$	$f'(x) = \left\{ egin{pmatrix} rac{1}{\sqrt{1+lpha x^2}} \end{pmatrix}^3 & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{cases}$	$\left(-\frac{1}{\sqrt{lpha}},\infty\right)$	C ²
自适应分段线性 函数(APL) ^[9]		$f(x) = \max(0,x) + \sum_{s=1}^S a_i^s \max(0,-x+b_i^s)$	$f'(x) = H(x) - \sum_{s=1}^{S} a_i^s H(-x + b_i^s)$ [3] (https://zh.wikipedia.org/wiki/%E6% BF%80%E6%B4%BB%E5%87%BD%E6%9 5%B0#endnote_heaviside)	$(-\infty,\infty)$	C ⁰
SoftPlus函数 ^[10]		$f(x) = \ln(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$	$(0,\infty)$	C^{∞}
弯曲恒等函数		$f(x)=\frac{\sqrt{x^2+1}-1}{2}+x$	$f'(x) = \frac{x}{2\sqrt{x^2+1}} + 1$	$(-\infty,\infty)$	C^{∞}
Sigmoid- weighted linear unit (SiLU) ^[11] (也被称为 Swish ^[12])		$f(x) = x \cdot \sigma(x)$ [4] (https://zh.wikipedia.org/wiki/%E 6%BF%80%E6%B4%BB%E5%87%BD%E6%95%B0#end note_logistic2)	$f'(x) = f(x) + \sigma(x)(1 - f(x))^{[5]}$ (htt ps://zh.wikipedia.org/wiki/%E6%BF%8 0%E6%B4%BB%E5%87%BD%E6%95%B 0#endnote_logistic3)	$[pprox -0.28, \infty)$	C^{∞}

名称	函数图形	方程式	导数	区间	Order of continuity
SoftExponential 函数 ^[13]		$f(lpha,x) = egin{cases} -rac{\ln(1-lpha(x+lpha))}{lpha} & ext{for } lpha < 0 \ x & ext{for } lpha = 0 \ rac{e^{lpha x}-1}{lpha} + lpha & ext{for } lpha > 0 \end{cases}$	$f'(lpha, oldsymbol{x}) = \left\{ egin{array}{ll} rac{1}{1-lpha(lpha+oldsymbol{x})} & ext{for } lpha < 0 \ e^{lphaoldsymbol{x}} & ext{for } lpha \geq 0 \end{array} ight.$	$(-\infty,\infty)$	C^{∞}
正弦函数		$f(x) = \sin(x)$	$f'(x) = \cos(x)$	[-1,1]	C^∞
Sinc函数		$f(x) = egin{cases} 1 & ext{for } x = 0 \ rac{\sin(x)}{x} & ext{for } x eq 0 \end{cases}$	$f'(x) = \left\{ egin{array}{ll} 0 & ext{for } x=0 \ rac{\cos(x)}{x} - rac{\sin(x)}{x^2} & ext{for } x eq 0 \end{array} ight.$	[≈217234,1]	C [∞]
高斯函数		$f(x)=e^{-x^2}$	$f'(x) = -2xe^{-x^2}$	(0,1]	C^{∞}

- ^ 此处*H*是单位阶跃函数。
- ^ α是在训练时间从均匀分布中抽取的随机变量,并且在测试时间固定为分布的期望值。
- ^ ^ ^ 此处σ是逻辑函数。

下表列出了几个激活函数,它们的输入为多个变量。

<u>名称</u>	方程式	导数	区间	Order of continuity
Softmax函 数	$f_i(\vec{x}) = \frac{e^{x_i}}{\sum_{j=1}^J e^{x_j}}$ for $i = 1,, J$	$\frac{\partial f_i(\vec{x})}{\partial x_j} = f_i(\vec{x})(\delta_{ij} - f_j(\vec{x}))^{[6] \text{ (https://zh.wikipedia.org/wiki/%E6%BF%80%E6%B4%BB%E5%87%B)}}{\text{D%E6%95\%B0\#endnote_kronecker_delta)}}$	(0, 1)	C^{∞}
Maxout函 数[14]	$f(\vec{x}) = \max_i x_i$	$rac{\partial f}{\partial x_j} = egin{cases} 1 & ext{for } j = rgmax x_i \ 0 & ext{for } j eq rgmax x_i \end{cases}$	$(-\infty,\infty)$	C ⁰

 $^{\circ}$ 此处 $^{\circ}$ 是克罗内克 $^{\circ}$ 函数。

参见

- 逻辑函数
- 线性整流函数
- Softmax函数
- 人工神经网络
- 深度学习

参考资料

- 1. Bergstra, James; Desjardins, Guillaume; Lamblin, Pascal; Bengio, Yoshua. Quadratic polynomials learn better image features". Technical Report 1337. Département d' Informatique et de Recherche Opérationnelle, Université de Montréal. 2009. (原始内容存档于2018-09-25)
- 2. Glorot, Xavier; Bengio, Yoshua, Understanding the difficulty of training deep feedforward neural networks (PDF), International Conference on Artificial Intelligence and Statistics (AISTATS' 10), Society for Artificial Intelligence and Statistics, 2010
- 3. Carlile, Brad; Delamarter, Guy; Kinney, Paul; Marti, Akiko; Whitney, Brian. Improving Deep Learning by Inverse Square Root Linear Units (ISRLUs). 2017-11-09. arXiv:1710.09967 [cs.LG].
- 4. He, Kaiming; Zhang, Xiangyu; Ren, Shaoqing; Sun, Jian. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. 2015-02-06. arXiv:1502.01852 [cs.CV].
- 5. Xu, Bing; Wang, Naiyan; Chen, Tianqi; Li, Mu. Empirical Evaluation of Rectified Activations in Convolutional Network. 2015-05-04. arXiv:1505.00853 [cs.LG].
- 6. Clevert, Djork-Arné; Unterthiner, Thomas; Hochreiter, Sepp. Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs). 2015-11-23. arXiv:1511.07289 [cs.LG].
- 7. Klambauer, Günter; Unterthiner, Thomas; Mayr, Andreas; Hochreiter, Sepp. Self-Normalizing Neural Networks. 2017-06-08. arXiv:1706.02515 [cs.LG].
- 8. Jin, Xiaojie; Xu, Chunyan; Feng, Jiashi; Wei, Yunchao; Xiong, Junjun; Yan, Shuicheng. Deep Learning with S-shaped Rectified Linear Activation Units. 2015-12-22. arXiv:1512.07030 [cs.CV].
- 9. Forest Agostinelli; Matthew Hoffman; Peter Sadowski; Pierre Baldi. Learning Activation Functions to Improve Deep Neural Networks. 21 Dec 2014. arXiv:1412.6830 [cs.NE].
- 10. Glorot, Xavier; Bordes, Antoine; Bengio, Yoshua. <u>Deep sparse rectifier neural networks</u> (PDF). International Conference on Artificial Intelligence and Statistics. 2011.
- 11. Sigmoid-Weighted Linear Units for Neural Network Function Approximation in Reinforcement Learning (https://arxiv.org/abs/1702.03 118)
- 12. Searching for Activation Functions (https://arxiv.org/abs/1710.05941)
- 13. Godfrey, Luke B.; Gashler, Michael S. A continuum among logarithmic, linear, and exponential functions, and its potential to improve generalization in neural networks. 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and

Knowledge Management: KDIR. 2016-02-03, 1602: 481–486. Bibcode:2016arXiv160201321G. arXiv:1602.01321.

14. Goodfellow, Ian J.; Warde-Farley, David; Mirza, Mehdi; Courville, Aaron; Bengio, Yoshua. Maxout Networks. JMLR WCP. 2013-02-18, **28** (3): 1319–1327. Bibcode:2013arXiv1302.4389G. arXiv:1302.4389.

取自 "https://zh.wikipedia.org/w/index.php?title=激活函数&oldid=56775457"

本页面最后修订于2019年11月6日 (星期三) 23:01。

本站的全部文字在知识共享署名-相同方式共享 3.0协议之条款下提供,附加条款亦可能应用。(请参阅<u>使用条款</u>) Wikipedia®和维基百科标志是维基媒体基金会的注册商标;维基™是维基媒体基金会的商标。 维基媒体基金会是按美国国内税收法501(c)(3)登记的<u>非营利慈善机构</u>。