Ile ma Mach, czyli Falentynistyka

Franciszek Hansdorfer Jacek Winiarczyk

Wydział fizyki doświadczalnej KFnrD

4 maja 2024

Czym jest Mach?

$$M = \frac{v_{ob}}{c}$$

Lab:

Lab:

Aparatura pomiarowa:

Miarka 3m

- Miarka 3m
- Laptop

- Miarka 3m
- Laptop
- Dłonie Franka

- Miarka 3m
- Laptop
- Dłonie Franka
- Dłonie Jacka

- Miarka 3m
- Laptop
- Dłonie Franka
- Dłonie Jacka
- Termometr i higrometr

Zasada działania

$$\Delta t = t_2 - t_1$$

$$v = \frac{2r}{\Delta t}$$

Dane

Dane

Redukcja danych

Pomiar	czas [s]	sigma [s]	liczba pomiarów
3	0.0534	0.00134	245
4	0.0533	0.00127	117
5	0.0544	0.00149	302
6	0.0548	0.00180	688
7	0.0550	0.00119	762

Redukcja danych

Wyniki i dyskusja błędu pomiarowego

Pomiar	temperatura [C]	wilgotność [%]	mach [m/s]
3	29.12	27.83	355.71 ± 8.90
4	31.35	22.14	356.22 ± 8.51
5	20.22	44.42	349.41 ± 9.57
6	18.25	51.11	346.48 ± 11.36
7	18.22	51.53	345.19 ± 7.46

Interpretacja wyników

Prędkość dźwięku rośnie wraz ze wzrostem temperatury i maleje ze wzrostem wilgotności?

I = 6.5cm - długość igły

π - $\overline{\mathsf{ig}}$ igła Buff ona

I = 6.5cm - długość igły d = 8cm - odległość między pionowymi liniami

```
I=6.5cm - długość igły d=8cm - odległość między pionowymi liniami n=665 - liczba rzutów
```

```
I = 6.5cm - długość igły
```

d = 8cm - odległość między pionowymi liniami

n = 665 - liczba rzutów

I = 6.5cm - długość igły

d = 8cm - odległość między pionowymi liniami

n=665 - liczba rzutów

$$p = \frac{2}{\pi} \frac{I}{d}$$

I = 6.5cm - długość igły

d = 8cm - odległość między pionowymi liniami

n = 665 - liczba rzutów

$$p = \frac{2}{\pi} \frac{I}{d}$$

$$\frac{R}{n} = \frac{2}{\pi} \frac{I}{d}$$

I = 6.5cm - długość igły

d = 8cm - odległość między pionowymi liniami

n = 665 - liczba rzutów

$$p = \frac{2}{\pi} \frac{I}{d}$$

$$\frac{R}{n} = \frac{2}{\pi} \frac{I}{d}$$

$$\pi = \frac{2In}{dR}$$

I = 6.5cm - długość igły

d = 8cm - odległość między pionowymi liniami

n = 665 - liczba rzutów

$$p=\frac{2}{\pi}\frac{I}{a}$$

$$\frac{R}{n} = \frac{2}{\pi} \frac{I}{d}$$

$$\pi = \frac{2 \ln}{dR}$$

$$\pi \approx 3.141$$

I = 6.5cm - długość igły

d = 8cm - odległość między pionowymi liniami

n=665 - liczba rzutów

$$p = \frac{2}{\pi} \frac{I}{d}$$

$$\frac{R}{n} = \frac{2}{\pi} \frac{I}{d}$$

$$\pi = \frac{2 \ln}{dR}$$

$$\pi \approx 3.141$$

Dalsze kontynuacje badań

- e
- ullet Przenikalność magnetyczna próżni (ϵ_0)
- ullet Przenikalność elektryczna próżni (μ_0)
- Stała Coulomba (k_e)
- Prędkość światła (c)
- Stała Plancka (h)