.1. Отображения. Композиция отображений.

 $\mathfrak{Def}\colon \ A,B\ -$ множества. $\Gamma_f\subset A\times B$ Γ — график отображения если выполнены два условия:

1. $\forall a \in A \exists b \in B(a,b) \in \Gamma_f$

$$2. \ \forall a \in A \exists b_1, b_2 \in B(a,b_1) \in \varGamma_f \land (a,b_2) \in \varGamma_f \Rightarrow b_1 = b_2$$

 $\mathfrak{Def}\colon\ A,B,\Gamma_f\subset A\times B$

говорим, что задано отображение f из A в B с графком Γ_f

$$f: A \to B$$

$$A \xrightarrow{f} B$$

 $(a,b) \in \Gamma_f \Leftrightarrow b = f(a)$

A — область определения

В — область назначения

$$f:A\to B$$

$$f_1:A_1\to B_1$$

$$f = f_1 \Leftrightarrow A = A_1, B = B_1, \Gamma_f = \Gamma_{f_1}$$

Def: Композиция отображения

$$A \xrightarrow{f} B \xrightarrow{g} C$$

$$g \circ f : A \to C$$

$$(g \circ f)(a) = g(f(a))$$

$$\Gamma_{q \circ f}$$

$$(a,c) \in \varGamma_{g \circ f} \Leftrightarrow \exists b \in B(a,b) \in \varGamma_f \land (b,c) \in \varGamma_g$$

Область определение $g\circ f$ — область определения f Dom(f)

Область назначения $g \circ f$ — область назначения g coDom(f)

Теорема .1.1. Композиция отображения ассоциативна.

$$h \circ (q \circ f) = (h \circ q) \circ f$$

$$A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D$$

▶ Область определения $Dom(h \circ (g \circ f)) = Dom(g \circ f) = Dom(f) = A$ $Dom((h \circ g) \circ f) = Dom(f) = A$

Область назначений
$$Dom(h\circ (g\circ f))=coDom(h)=D$$
 $Dom((h\circ g)\circ f)=coDom((h\circ g))=coDom(h)=D$

$$\forall a \in A$$

$$(h\circ (g\circ f))(a)=h(g\circ f(a))=h(g(f(a)))$$

$$((h \circ g) \circ f)(a) = (h \circ g)(f(a)) = h(g(f(a)))$$

.2. Обратимые отображения и их свойства

f:A o B $\mathfrak{Def}\colon$ f — обратное справа, если $\exists g:B o A$ $f\circ g=id_B$ f — обратим слева, если $\exists g:B o A$ $g\circ f=id_A$ f обратимо, если $\exists g:B o A$

$$g\circ f=id_A, f\circ g=id_B$$

g — отображение, обратное к f.(обозначение f^{-1})

Теорема .2.1. .

- 1. f обратимо \Leftrightarrow f обратимо слава и справа.
- 2. f обратимо, то обратное отображение единственно.

1. f обратимо ⇒ f обратимо слева и справа.

Если у f есть и левый и правый обратный, то они совпадают.

g — правый обратный к f, h — левый.

$$(h \circ f) \circ g = id_A \circ g = g$$

$$h\circ (f\circ g)=h\circ id_B=h$$

$$\Rightarrow g = h$$

2. Пусть f обратимое и g и h — два обратных. В частности g — обратное справа, h — обратное слева.