

QUAD LOW-TO-HIGH VOLTAGE LEVEL SHIFTER

- INDIPENDENCE OF POWER SUPPLY SEQUENCE CONSIDERATIONS V_{CC} CAN EXCEED V_{DD}, INPUT SIGNALS CAN EXCEED BOTH V_{CC} AND V_{DD}
- UP AND DOWN LEVEL SHIFTING CAPABILITY
- THREE-STATE OUTPUTS WITH SEPARATE ENABLE CONTROLS
- STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS
- QUIESCENT CURRENT SPECIFIED UP TO 20V
- 5V, 10V, AND 15V PARAMETRIC RATINGS
- INPUT LEAKAGE CURRENT I_I = 100nA (MAX) AT V_{DD} = 18V T_A = 25°C
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDEC JESD13B "STANDARD SPECIFICATIONS FOR DESCRIPTION OF B SERIES CMOS DEVICES"

DESCRIPTION

HCF40109B is a monolithic integrated circuit fabricated in Metal Oxide Semiconductor technology available in DIP and SOP packages. HCF40109B contains four low-to-high voltage level shifting circuits. Each circuit will shift a low-voltage digital-logic input signal (A, B, C, D) with logical 1 = V_{CC} and logical 0 = V_{SS} to a higher voltage output signal (E, F, G, H) with logical 1 = V_{DD} and logical 0 = V_{SS} . HCF40109B, unlike other

ORDER CODES

PACKAGE	TUBE	T&R
DIP	HCF40109BEY	
SOP	HCF40109BM1	HCF40109M013TR

low-to-high level-shifting circuits, does not require the presence of the high voltage supply (V_{DD}) before the application of either the low-voltage supply (V_{CC}) or the input signals. There are no restrictions on the sequence of application of V_{DD}, V_{CC}, or the input signals. In addition, there are no restrictions on the relative magnitudes of the supply voltages or input signals within the device maximum ratings; V_{CC} may exceed V_{DD} , and input signals may exceed V_{CC} and V_{DD}. When operated in the mode V_{CC} V_{DD}, HCF40109B will operate as a high-to-low level-shifter. HCF40109B features individual three-state output capability. A low level on any of the separately enabled three-state output controls produces a high-impedance state in the corresponding output.

PIN CONNECTION

May 2003 1/10

INPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
3, 6, 10, 14	A, B, C, D	Low Input Voltage
4, 5, 11, 13	E, F, G, H	High Input Voltage
2, 7, 9, 15	ENABLE A, B, C, D	Enable Input
12	NC	Not Connected
1	V _{CC}	Low Supply Voltage
8	V_{SS}	Negative Supply Voltage
16	V_{DD}	Positive Supply Voltage

TRUTH TABLE

	INP	OUTPUT		
MODE	A, B, C, D	Enable A, B, C, D	E, F, G, H	
Laurta Himb	L	Н	L	
Low to High Level Shift	Н	Н	Н	
Lovel Office	X	L	Z	

X : Don't Care Z : High Impedance

FUNCTIONAL DIAGRAM

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DD}	Supply Voltage	-0.5 to +22	V
V _I	DC Input Voltage	-0.5 to +18	V
II	DC Input Current	± 10	mA
P_{D}	Power Dissipation per Package	200	mW
	Power Dissipation per Output Transistor	100	mW
T _{op}	Operating Temperature	-55 to +125	°C
T _{stg}	Storage Temperature	-65 to +150	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

All voltage values are referred to V_{SS} pin voltage.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	3 to 20	V
V _I	Input Voltage	-0.5 to 15V	V
T _{op}	Operating Temperature	-55 to 125	°C

DC SPECIFICATIONS

			Test Con	dition		Value							
Symbol	Parameter	Vı	v _o	ΙΙ _Ο Ι	V _{DD}	Т	A = 25°	С	-40 to	85°C	-55 to	125°C	Unit
		(V)	(V)	(μ A)	(V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
ΙL	Quiescent Current	0/5			5		0.02	1		30		30	
		0/10			10		0.02	2		60		60	μΑ
		0/15			15		0.02	4		120		120	μΑ
		0/20			20		0.04	20		600		600	
V _{OH}	High Level Output	0/5		<1	5	4.95			4.95		4.95		
	Voltage	0/10		<1	10	9.95			9.95		9.95		V
		0/15		<1	15	14.95			14.95		14.95		
V_{OL}	Low Level Output	5/0		<1	5		0.05			0.05		0.05	
	Voltage	10/0		<1	10		0.05			0.05		0.05	V
		15/0		<1	15		0.05			0.05		0.05	
V_{IH}	High Level Input		0.5/4.5	<1	5	3.5			3.5		3.5		V
	Voltage		1/9	<1	10	7			7		7		
			1.5/13.5	<1	15	11			11		11		
V_{IL}	Low Level Input		4.5/0.5	<1	5			1.5		1.5		1.5	
	Voltage		9/1	<1	10			3		3		3	V
			13.5/1.5	<1	15			4		4		4	
I _{OH}	Output Drive	0/5	2.5	<1	5	-1.53	-3.2		-1.36		-1.1		
	Current	0/5	4.6	<1	5	-0.52	-1		-0.44		-0.36		mΑ
		0/10	9.5	<1	10	-1.3	-2.6		-1.1		-0.9		шА
		0/15	13.5	<1	15	-3.6	-6.8		-3.0		-2.4		
l _{OL}	Output Sink	0/5	0.4	<1	5	0.52	1		0.44		0.36		
	Current	0/10	0.5	<1	10	1.3	2.6		1.1		0.9		mΑ
		0/15	1.5	<1	15	3.6	6.8		3.0		2.4		
I _I	Input Leakage Current	0/18	Any In	put	18		±10 ⁻⁵	±0.1		±1		±1	μΑ
C _I	Input Capacitance		Any In	put			5	7.5					pF

The Noise Margin for both "1" and "0" level is: 1V min. with V_{DD} =5V, 2V min. with V_{DD} =10V, 2.5V min. with V_{DD} =15V

DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{amb} = 25$ °C, $C_L = 50$ pF, $R_L = 200$ K Ω , $t_r = t_f = 20$ ns)

			Test Con	dition	,	Value (*	·)	Unit
Symbol	-		V _{DD} (V)	SHITFING MODE	Min.	Тур.	Max.	
t _{PHL} t _{PLH}	Propagation Delay Time :	5	10			300	600	
	(Data input to output)	5	15	L-H		220	440	
	High to Low Level	10	15			180	360	20
		10	5			850	1600	ns
		15	5	H-L		850	1600	
		15	10			290	580	
	Low to High Level	5	10			130	260	
		5	15	L-H		120	240	
		10	15			70	140	
		10	5			230	460	ns
		15	5	H-L		230	460	
		15	10	1		80	160	
t _{PHZ}	3-State Disable DelayTime	5	10			60	120	
	Output High to High	5	15	L-H		50	100	
	Impedance	10	15	1		35	70	
		10	5			120	240	ns
		15	5	H-L		120	240	1
		15	10	1		40	80	
t _{PZH}	High Impedance to Output	5	10			320	640	
High		5	15	L-H		230	460	
		10	15	1		180	360	
		10	5			800	1500	ns
		15	5	H-L		800	1500	1
		15	10	1		280	560	
t _{PLZ}	Output Low to High	5	10			370	740	
	Impedance	5	15	L-H		300	600	
		10	15	-		250	500	1
		10	5			850	1600	ns
		15	5	H-L		850	1600	
		15	10	-		350	700	
t _{PZL}	High Impedance to Output	5	10			100	200	
	Low	5	15	L-H		80	160	
		10	15	1		40	80	
		10	5			120	240	ns
		15	5	H-L		120	240	
		15	10	1		40	80	
t _{THL} ,t _{TLH}	Transition Time	5	10			50	100	
,		5	15	L-H		40	80	
		10	15	1		40	80	
		10	5			100	200	ns
		15	5	H-L		100	200	
		15	10	1		50	100	

TEST CIRCUIT

TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	V_{DD}
t _{PZH} , t _{PHZ}	V _{SS}

 C_L = 50pF or equivalent (includes jig and probe capacitance) R_L = 200K Ω

WAVEFORM: PROPAGATION DELAY TIMES (f=1MHz; 50% duty cycle)

47/ 6/10

 $R_T^{-} = Z_{OUT}$ of pulse generator (typically 50 Ω)

Plastic DIP-16 (0.25) MECHANICAL DATA

DIM.		mm.		inch		
DIIVI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
е		2.54			0.100	
e3		17.78			0.700	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z			1.27			0.050

SO-16 MECHANICAL DATA

DIM		mm.			inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
Α			1.75			0.068		
a1	0.1		0.2	0.004		0.008		
a2			1.65			0.064		
b	0.35		0.46	0.013		0.018		
b1	0.19		0.25	0.007		0.010		
С		0.5			0.019			
c1			45°	(typ.)				
D	9.8		10	0.385		0.393		
E	5.8		6.2	0.228		0.244		
е		1.27			0.050			
e3		8.89			0.350			
F	3.8		4.0	0.149		0.157		
G	4.6		5.3	0.181		0.208		
L	0.5		1.27	0.019		0.050		
М			0.62			0.024		
S	8		° (r	nax.)	.	1		

Tape & Reel SO-16 MECHANICAL DATA

DIM		mm.			inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
А			330			12.992		
С	12.8		13.2	0.504		0.519		
D	20.2			0.795				
N	60			2.362				
Т			22.4			0.882		
Ao	6.45		6.65	0.254		0.262		
Во	10.3		10.5	0.406		0.414		
Ko	2.1		2.3	0.082		0.090		
Po	3.9		4.1	0.153		0.161		
Р	7.9		8.1	0.311		0.319		

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com