

CSE 5255

INTRODUCTION TO COMPUTER GRAPHICS CLASS NOTES

Dr. William D. Shoaff

Spring 1996

Table of Contents

Introduction
Data Structures for Graphics 1.1
Basic Math for Graphics
Transformations
View Coordinates4.1
Projections and Normalized Device Coordinates5.1
Clipping 6.1
Scan Conversion
Rendering and Illumination Models8.1
Visible Object Algorithms9.1
Color Models10.1
Exams and Quizzes
Bibliography B.1
0 1 0

Projections

- Given an object in 3D view coordinates, project it onto a 2D space
- Two basic types of projections exist: parallel and perspective
- Parallel projections useful in blueprints, schematic diagrams, etc.
- Parallel projections are linear transforms (implemented with a matrix)
- Perspective projections useful in archtectural rendering, realistic views, etc.
- Perspective projections are non-linear transforms
 - They can be implemented with a matrix in projective space followed by a divide by the homogeneous coordinate

- Parallel projections
 - Points on an object are projected to the view plane along parallel lines (projectors)
 - Preserves relative dimensions (angles and line lengths)
 - Projection can be orthographic (perpendicular to image plane)

Projection can be oblique (not perpendicular to image plane)

- Perspective projections
 - Points on an object are projected to the view plane along lines (projectors) that converge to a center of projection
 - Produces realistic views, but does not preserve relative dimensions
 - Distant lines are foreshortened
 - Projection can be orthographic or oblique

Parallel Projections

- Parallel projection determined by (1) view plane and (2) direction of projection (projector)
 - Assume view plane (projection plane) is given by

$$ax + by + cz + d = 0$$

- Assume direction of projection (projector) is given by

$$\langle q, p, r \rangle$$

- Normal vector to projection plane is $\langle a, b, c \rangle$
- Assume normal vector and projector have unit length
- Orthographic projection direction of projection is perpendicular (orthogonal) to projection plane, i.e.,

$$\langle q, p, r \rangle = \langle a, b, c \rangle$$

• Oblique projection — direction of projection is <u>not</u> perpendicular to projection plane, i.e.,

$$\langle q, p, r \rangle \neq \langle a, b, c \rangle$$

The Parallel Projection Operator

- Let ax + by + cz + d = 0 be the projection plane
- Let $\langle q, p, r \rangle$ be the direction of projection
- ullet Let $(x_o,\ y_o,\ z_o)$ be a point on the object to be projected
- Start at (x_o, y_o, z_o) and travel along the line in direction $\langle q, p, r \rangle$ until plane ax + by + cz + d = 0 is hit
- It's easiest to use the parametric equation of the line

$$x = x_o + qt$$

$$y = y_o + pt$$

$$z = z_o + rt$$

ullet At some value of t, when the plane equation is satisfied, we are on the projection plane

$$0 = ax + by + cz + d$$

= $a(x_o + qt) + b(y_o + pt) + c(z_o + rt) + d$
= $ax_o + by_o + cz_o + t(aq + bp + cr) + d$

The Parallel Projection Operator

• Solving for the unknown parameter value

$$t = -\left[\frac{ax_o + by_o + cz_o + d}{aq + bp + cr}\right]$$

provided $aq + bp + cr \neq 0$ (what does this mean?)

• Substituting this value of t into the previous line equation for x, y, and z gives an expression for the projected point (x_p, y_p, z_p)

$$x_{p} = x_{o} - q \left[\frac{ax_{o} + by_{o} + cz_{o} + d}{aq + bp + cr} \right]$$

$$y_{p} = y_{o} - p \left[\frac{ax_{o} + by_{o} + cz_{o} + d}{aq + bp + cr} \right]$$

$$z_{p} = z_{o} - r \left[\frac{ax_{o} + by_{o} + cz_{o} + d}{aq + bp + cr} \right]$$

The Parallel Projection Operator

 With some manipulation we can write this as a matrix equation

- $m_{11} = (bp + cr)/(aq + bp + cr),$ $m_{21} = (-bq)/(aq + bp + cr),$ $m_{31} = (-cq)/(aq + bp + cr),$ $m_{41} = (-dq)/(aq + bp + cr)$
- $m_{12} = (-ap)/(aq + bp + cr)$, $m_{22} = (aq + cr)/(aq + bp + cr)$, $m_{32} = (-cp)/(aq + bp + cr)$, $m_{42} = (-dp)/(aq + bp + cr)$
- $m_{13} = (-ar)/(aq + bp + cr)$, $m_{23} = (-br)/(aq + bp + cr)$, $m_{33} = (aq + bp)/(aq + bp + cr)$, $m_{43} = (-dr)/(aq + bp + cr)$

Parallel Projection Examples

• Orthographic projection onto the projection plane z=0 is performed by the projection matrix

$$\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

• Find a matrix for parallel projections onto the plane

$$3x + y + 4z + 1 = 0$$

when

- (a) an orthographic projection is used
- (b) an oblique projection in direction $\langle 1, 1, 1 \rangle$ is used

Types of Orthographic Projections

- For blueprints, part schematics, etc., we often use
 - elevations front, side, rear
 - plan top
- Axonometric projections allow many sides to be seen
 - Axonometric parallel projection has projectors orthogonal to view plane, but not parallel to any principal axis
 - Isometric projection plane normal (projector)
 makes equal angles with each principal axis (all three axes are equally foreshortened)
 - Dimetric projection plane normal (projector) makes equal angles with two of three principal axes (two of three axes are equally foreshortened)
 - Trimetric projection plane normal (projector)
 makes unequal angles with each principal axis (all three axes are unequally foreshortened)

Examples of Oblique Projections

- Let z=0 be the projection plane with projector $\langle q, p, r \rangle$
- Form the line equation

$$x = x_o + qt$$

$$y = y_o + pt$$

$$z = z_o + rt$$

ullet Find $t=-z_o/r$, so that the projection matrix is

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -q/r & -p/r & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- \bullet When the p and q values are equal, say both 1, a $\phi=45^{\circ}$ projection results
- \bullet It can be shown that $-q/r = L\cos\phi$, $-p/r = L\sin\phi$

Types of Oblique Parallel Projections

- Two common types of oblique parallel projections: cavalier and cabinet
- ullet Cavalier lines perpendicular to projection plane are preserved in length, that is, L=1

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \cos \phi & \sin \phi & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Note the vector $\langle 0,\,0,\,1\rangle$ maps to $\langle\cos\phi,\,\sin\phi,\,0\rangle$ which has length 1
- ullet Cabinet lines perpendicular to projection plane are 1/2 their true length, that is, L=1/2

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ (\cos \phi)/2 & (\sin \phi)/2 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Note the vector $\langle 0, 0, 1 \rangle$ maps to $\langle (\cos \phi)/2, (\sin \phi)/2, 0 \rangle$ which has length 1/2

- Project point along projection lines that meet at a center of projection (x_c, y_c, z_c)
- Produce an image similar to camera (or cyclops)
- Straight lines do not remain straight
- Can not represent with a matrix, except by fudging
- Assume Ax + By + Cz + D = 0 is projection plane
- ullet Assume $(x_o,\ y_o,\ z_o)$ is point to be projected
- ullet Parametric equation of the line from $(x_o,\,y_o,\,z_o)$ to $(x_c,\,y_c,\,z_c)$

$$x = x_o + (x_c - x_o)t$$

$$y = y_o + (y_c - y_o)t$$

$$z = z_o + (z_c - z_o)t$$

• Substitute line into plane and solve for t

$$Ax + By + Cz + D = 0$$

$$A(x_o + (x_c - x_o)t) + B(y_o + (y_c - y_o)t) + C(z_o + (z_c - z_o)t) + D = 0$$

$$Ax_o + By_o + Cz_o + t[A(x_c - x_o) + B(y_c - y_o) + C(z_c - z_o)] + D = 0$$

$$t = -\frac{Ax_o + By_o + Cz_o + D}{A(x_c - x_o) + B(y_c - y_o) + C(z_c - z_o)}$$

• Note denominator for t depends on object point (x_o, y_o, z_o)

- ullet Assume z=0 is projection plane
- Assume (0, 0, d) is center of projection
- ullet From previous equations, $t=-z_o/(d-z_o)$, and

$$x_p = x_o + (0 - x_o)t = \frac{dx_o}{d - z_o}$$
 $y_p = y_o + (0 - y_o)t = \frac{dy_o}{d - z_o}$
 $z_p = z_o + (d - z_o)t = 0$

• Or by similar triangles

$$\frac{x_p}{-d} = \frac{x_o}{z_o - d}$$

$$\frac{y_p}{-d} = \frac{y_o}{z_o - d}$$

$$z_p = 0$$

- Use homogeneous coordinates to express transformation in two steps (1) a matrix multiply, (2) a division by homogeneous coordinate
- Step (1)

$$\begin{bmatrix} x & y & z & w \end{bmatrix} = \begin{bmatrix} x_o & y_o & z_o & 1 \end{bmatrix} \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1/d \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

where

$$w = 1 - z_o/d$$

• Step (2) divide each coordinate in $(x \ y \ z \ w)$ by w to make the homogeneous coordinate become 1

$$x_p = \frac{x_o}{1 - z_o/d}$$

$$y_p = \frac{y_o}{1 - z_o/d}$$

$$z_p = 0$$

Perspective Projection Example

- ullet Let the object point be $(x_o, y_o, z_o) = (2, 7, 8)$
- ullet Project onto the z=0 plane
- ullet Let center of projection be located at $(0,\,0,\,-50)$
- By similar triangles

$$\frac{x_p}{50} = \frac{2}{8 - (-50)}$$

$$\frac{y_p}{50} = \frac{7}{8 - (-50)}$$

and thus

$$x_p = 50/29$$

 $y_p = 350/58$

Types of Perspective Projections

- Parallel lines appear to converge to a vanishing point (provided the lines are not parallel to the projection plane)
- Lines parallel to principal axes converge to a <u>principal</u> vanishing point
- A perspective projection can have 1, 2, or 3 <u>principal</u> vanishing points
- If the projection plane is parallel to 2 principal axes, a one-point projection occurs
- If the projection plane is parallel to 1 principal axis, a two-point projection occurs
- If the projection plane is not parallel to any principal axis, a three-point projection occurs

Normalized Device Coordinates

• Normalized device coordinates are defined by a unit cube

$$0 \le x \le 1$$
, $0 \le y \le 1$, $0 \le z \le 1$

- Some systems support other ranges for NDC
- We need to maps from view coordinates to normalized device coordinates
- One map implements a parallel view
 - For orthographic parallel views the map, a translate and scale are used
 - For oblique parallel views the map, a shear, translate,
 and scale are used
- Another map implements a perspective view
- In either case, a *view volume* (which encloses what can be seen) is mapped to the unit cube in NDC

Orthographic Parallel View to NDC Map

 Assume the view volume, in view coordinates, we want to map to NDC is specified by

$$x_l \le v_x \le x_r, \quad y_b \le v_y \le y_t, \quad z_n \le v_z \le z_f$$

- ullet x_l and x_r stand for the *left* and *right* sides of a box
- ullet y_b and y_t stand for the bottom and top sides of a box
- ullet z_n and z_f stand for the *near* and *far* sides of a box
- The near side is also called the front or hither plane
- The far side is also called the back or yon plane
- Only objects inside the box can be seen

Orthographic Parallel View to NDC Map

- ullet The map transforms the ranges to $[0,\ 1]$
- \bullet For x,

$$x = \frac{1}{x_r - x_l}(v_x - x_l)$$

 \bullet For y,

$$y = \frac{1}{y_t - y_b}(v_y - y_b)$$

 \bullet For z,

$$z = \frac{1}{z_f - z_n} (v_z - z_n)$$

- This implements an orthographic view of the scene
- The general map would allow oblique views as well

• Assume the view volume, in view coordinates, we want to map is specified by view angle

$$0 < \alpha < \pi$$

and near and far clipping planes

$$v_z = z_n$$
 and $v_z = z_f$

• This defines a view frustrum (a truncated pyramid)

Orthographic Perspective View to NDC Map

• We'll first map this frustrum onto the region

$$-1 \le x \le 1, -1 \le y \le 1, 0 \le z \le 1$$

- ullet Consider the slice of this frustrum in the v_xv_z plane
- We find that

$$\tan(\frac{\alpha}{2}) = \frac{x_n}{z_n} = \frac{x_f}{z_f}$$
$$\cot(\frac{\alpha}{2}) = \frac{z_n}{x_n} = \frac{z_f}{x_f}$$

• The (un-normalize) homogeneous points

$$(x_n\cos(\frac{\alpha}{2}), *, *, z_n\sin(\frac{\alpha}{2}))$$

$$(x_f \cos(\frac{\alpha}{2}), *, *, z_f \sin(\frac{\alpha}{2}))$$

both normalize to

$$(1, *, *, 1)$$

 \bullet The points $(-x_n,\,z_n)$ and $(-x_f,\,z_f)$ map to $(-1,\,*,\,*,\,1)$

Orthographic Perspective View to NDC Map

- The same mapping works for the y coordinate
- This yields the matrix transformation

$$\begin{bmatrix} \cos(\frac{\alpha}{2}) & 0 & * & 0 \\ 0 & \cos(\frac{\alpha}{2}) & * & 0 \\ 0 & 0 & * \sin(\frac{\alpha}{2}) \\ 0 & 0 & * & 0 \end{bmatrix}$$

• We want z_n to map to 0 This can be accomplished by the column

$$\left[egin{array}{c} 0 \ 0 \ Q \ -Qz_n \end{array}
ight]$$

for any constant Q

• We want z_f to map to 1. The (un-normalized) homogeneous point

$$(*, *, (z_f - z_n)Q, z_f \sin(\frac{\alpha}{2}))$$

should normalize to

$$(*, *, 1, 1)$$

Thus

$$Q = \frac{z_f \sin(\frac{\alpha}{2})}{z_f - z_n}$$

Orthographic Perspective View to NDC Map

• The perspective view onto $-1 \le x \le 1$, $-1 \le y \le 1$, $0 \le z \le 1$ is given by the matrix

$$egin{bmatrix} \cos(rac{lpha}{2}) & 0 & 0 & 0 \ 0 & \cos(rac{lpha}{2}) & 0 & 0 \ 0 & 0 & Q & \sin(rac{lpha}{2}) \ 0 & 0 & -Qz_n & 0 \ \end{bmatrix}$$

- To map into normalized device coordinates:
 - Translate the x values by 1 and scale x by 1/2
 - Translate the y values by 1 and scale y by 1/2
- The map into NDC space is given by

$$\begin{bmatrix} \cos(\frac{\alpha}{2}) & 0 & 0 & 0 \\ 0 & \cos(\frac{\alpha}{2}) & 0 & 0 \\ 0 & 0 & Q & \sin(\frac{\alpha}{2}) \\ 0 & 0 & -Qz_n & 0 \end{bmatrix} \begin{bmatrix} 1/2 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1/2 & 1/2 & 0 & 1 \end{bmatrix}$$

Screen Coordinates

• We'll define screen coordinates as the region

$$0 \le x \le 1, \quad 0 \le y \le 1$$

 The map from NDC space to screen coordinates is obtained by simply dropping the z coordinate

$$\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

- We assume the device driver has been written to take points in this range and produce values that the hardware can draw
- Note your system may require a different range, for example some systems assume integer coordinates in the range [0, 32767] You will need to supply the appropriate map

Graphics Terminology

- The region in the view coordinates being mapped to NDC space if frequently called the window (an over-used term)
- The window defines our view of the world
- All of NDC space will be displayed, after it is projected to screen space and mapped to device coordinates
- Often we want to want to project different world views to different regions, called *viewports*, of NDC space
- Explain how you would use a parallel view to map a view box to the viewport

$$0 \le x \le 0.5, \quad 0 \le y \le 0.5$$

the lower left corner of the screen

• Explain how you would use a perspective view to map a view frustrum to the viewport

$$0 \le x \le 0.5, \quad 0 \le y \le 0.5$$

the lower left corner of the screen

Problems

- 1. Find the projection operator that performs an orthographic projection onto the plane 2x + 7y + z + 8 = 0.
- 2. Find the matrix that performs an orthographic parallel projection onto the plane 2x + 1y + 4z = 0.
- 3. Find the projection operator that performs an oblique projection onto the plane 2x + 7y + z + 8 = 0 with direction of projection (3, 1, 4).
- 4. Find the matrix that performs an oblique parallel projection onto the plane 2x + 1y + 4z = 0 with projectors given by $\langle 1, 0, 1 \rangle$.
- 5. Show the steps in computing a perspective projection onto the z=0 plane with a center of projection at $(0,\,0,\,40)$.
- 6. Define anoxometric projection.
- 7. Find the matrix that performs an cavalier projection onto the plane z=0 with a 30° angle between the x-axis and lines parallel to the z-axis.
- 8. Find the matrix that performs an cabinet projection onto the plane z=0 with a 30° angle between the x-axis and lines parallel to the z-axis.
- 9. Find the matrix that performs an cavalier projection onto the plane z=0 with angle θ angle between the x-axis and lines parallel to the z-axis.
- 10. Find the matrix that performs an cabinet projection onto the plane z=0 with angle θ angle between the x-axis and lines parallel to the z-axis.
- 11. Find the transformation that performs a perspective projection onto the plane z=0 where the center of projection is at d=-10.
- 12. Find the transformation that performs a perspective projection onto the plane z=0 where the center of projection is at d=-100.
- 13. Find the transformation that performs a perspective projection onto the plane z=0 where the center of projection is at $(1,\,0,\,-10)$.
- 14. Find the transformation that performs a perspective projection onto the plane x+z=0 where the center of projection is at d=-10.

Problems

- 15. Find the transformation that performs a perspective projection onto the plane ax + by + cz + d = 0 where the center of projection is at (c_x, c_y, c_z) .
- 16. What are 1, 2, and 3 point perspective projections?
- 17. How many vanishing points are there for a perspective projection?
- 18. What is the difference between orthographic and oblique perspective projections?
- 19. Find the transformation that performs a parallel map of the following regions into NDC space.
 - $x_1 = -10$, $x_r = 10$, $y_b = 0$, $y_t = 20$, $z_n = 0$, $z_f = 50$.
 - $x_l = 20$, $x_r = 50$, $y_b = 10$, $y_t = 15$, $z_n = 10$, $z_f = 20$.
 - $x_l = -10$, $x_r = 20$, $y_b = 0$, $y_t = 20$, $z_n = -10$, $z_f = 10$.
 - $x_l = -10$, $x_r = 50$, $y_b = 10$, $y_t = 20$, $z_n = -20$, $z_f = 50$.
- 20. Show how to construct a parallel transformation into NDC space where the boundaries are defined by $0 \le x \le 1023, \ 0 \le y \le 767, \ 0 \le z \le 4095$.
- 21. Find the transformation that performs a perspective map of the following regions into NDC space.
 - $\alpha = 90^{\circ}, z_n = 0, z_f = 10.$
 - $\alpha = 120^{\circ}, z_n = 10, z_f = 50.$
 - $\alpha = 60^{\circ}, z_n = 0, z_f = 60.$
 - $\alpha = 45^{\circ}(), z_n = 0, z_f = \infty.$
- 22. Show how to construct a perspective transformation into NDC space where the boundaries are defined by $0 \le x \le 1023$, $0 \le y \le 767$, $0 \le z \le 4095$.