Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-222. Вариант 4

1. Пусть
$$z = \frac{3}{2} - \frac{3\sqrt{3}i}{2}$$
. Вычислить значение $\sqrt[4]{z^3}$, для которого число $\frac{\sqrt[4]{z^3}}{\frac{1}{2} - \frac{\sqrt{3}i}{2}}$ имеет аргумент $-\frac{17\pi}{12}$.

2. Решить систему уравнений:

$$\begin{cases} x(10+2i) + y(-1-10i) = -72 - 88i \\ x(-2-2i) + y(-5-15i) = -234 + 118i \end{cases}$$

- 3. Найти корни многочлена $4x^6-68x^5+540x^4-2380x^3+6096x^2-9472x+7680$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1=4-4i,\,x_2=1+2i,\,x_3=4.$
- 4. Даны 3 комплексных числа: 22+25i, 14+5i, -5+11i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = -\frac{1}{2} \frac{\sqrt{3}i}{2}, z_2 = \frac{1}{2} \frac{\sqrt{3}i}{2}$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z - 4 - 4i| < 3 \\ |arg(z - 4 + 3i)| < \frac{\pi}{6} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (0, -3, -5), b = (5, 4, 5), c = (9, -2, -6). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-3,9,12) и плоскость P: -8x 4y + 50z + 702 = 0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-8, 13, 8), $M_1(2, -10, 10)$, $M_2(34, -2, 10)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} 32x + 6y - 6z - 514 = 0 \\ 19x + 9y - 11z - 383 = 0 \end{cases} \qquad L_2: \begin{cases} 13x - 3y + 5z + 681 = 0 \\ -6x - 4y + 7z + 31 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L_1 и L_2 .