- 19.1 Let H be a Hilbert space and U a closed linear subspace of H. Use the Riesz Representation Theorem to show that any $\phi \in U^*$ has an extension to an element $f \in H^*$ such that $f(x) = \phi(x)$ for every $x \in U$ and $||f||_{H^*} = ||\phi||_{U^*}$.
- 19.2 Show that the extension obtained in the previous exercise is unique.
- 19.3 Let X be a normed space and U a subspace of X that is not closed. If $\hat{\phi} \colon U \to \mathbb{K}$ is a linear map such that

$$|\hat{\phi}(x)| \le M||x||$$
 for every $x \in U$

show that $\hat{\phi}$ has a unique extension ϕ to \overline{U} (the closure of U in X) that is linear and satisfies

$$|\phi(x)| \le M||x||$$

for every $x \in \overline{U}$. (For any $x \in \overline{U}$ there exists a sequence $(x_n) \in U$ such that $x_n \to x$. Define

$$\phi(x) := \lim_{n \to \infty} \hat{\phi}(x_n).$$

Show that this is well defined and has the required properties.)

TIGI HUBERT H, UEH dosed Unear Subspace

HOLUX, 3 extension for st. fix)= Q(x) & you, I fly = 10 14

of: USHUisdosed: Uis Hilbert

by Riesz Representation, \$\phi_{:}u \rightarrow_{1}P'\$ can be equivalent to \$\phi_{(u)}=(u,u_0)\$ \$\forall u\$, some \$u_0\$\$ \$\left\{ \left\| u\right\| u\right

let fiu)== (uin) tuth . II flh*= II y| = 11 plux, f satisfies the requirement

(De Ut. U hilbert >> 0 is linear, cts & bold necessarily)

T1912: Show fin T19.1 is unique

of: Tetig. 14 us is unique by Riesze Repreth

if 7 extension fit, fz, filu=filu thus fitu)=(u,u)=filu)=(u,u) on U, uitu

(U, U1-UZ)=0 DN U

let u=u1-u2, then ||U1-u2||2=0 = U1=u2=> fi=fz unique!

T(93) $U \leq (\chi \cdot || \cdot || \cdot \chi)$ not closed, $\hat{\phi} : U \to || k$ is linear. $|\hat{\phi}(x)| \leq M \cdot || \cdot \chi || || \forall \chi \in U$ $\Rightarrow \hat{\phi}$ has unique extension $\hat{\phi}$ to \bar{U} , $|| \hat{\phi}(x)| \leq M \cdot || \cdot \chi || || \forall \chi \in \bar{U}$