MATH 601 (DUE 10/23)

HIDENORI SHINOHARA

Contents

1. Field Extension 1

1. Field Extension

Exercise. (Problem 1) Let p be a prime number. Let $K = \mathbb{Z}/p\mathbb{Z}(t)$ be the fraction field of $\mathbb{Z}/p\mathbb{Z}[t]$.

- (i) What is the characteristic of K?
- (ii) What is the characteristic of any extension field of K?
- (iii) Show that the Frobenius endormophism, $F: K \to K$ is not a ring isomorphism.
- (iv) Let $f(x) = x^p t \in K[x]$. Prove that f(x) is irreducible.
- (v) Prove that f(x) is not a separable polynomial.
- (vi) Construct an explicit field extension $K \subset L$ such that $f(x) \in L[x]$ has a factor of positive degree < p.
- (vii) With f and L above find all the roots of f(x) in L and determine their multiplicities.

Proof.

(i) We will write $k \cdot 1$ to denote $1 + 1 + \cdots + 1$ (k times). Since $p \cdot 1 = 0$ in K, the characteristic of K is at most p. Let k denote the characteristic of K. Let $i : \mathbb{Z}/p\mathbb{Z} \to (\mathbb{Z}/p\mathbb{Z})[t], i' : \mathbb{Z}/p\mathbb{Z}[t] \to K$ be inclusions. Then $i' \circ i : \mathbb{Z}/p\mathbb{Z} \to K$ is an injective ring homomorphism. $k \cdot 1 \neq 0$ in $\mathbb{Z}/p\mathbb{Z}$. Thus $(i' \circ i)(k \cdot 1) = k \cdot (i' \circ i)(1) = k' \cdot 1 = 0$. Since $i' \circ i$ is injective, this implies $k \cdot 1 = 0$. Therefore, $k \geq p$, so k must be equal to p.

Exercise. (Problem 2) Let F be a field of characteristic 0. Let $f(x) \in F[x]$ be an irreducible polynomial. Then f(x) is separable.

Proof. Since f(x) is irreducible, f(x) is not a unit. Since F is a field, all polynomials of degree 0 are units. Thus $\deg(f(x)) \geq 1$.

Finish the proof. Check Notability for a sketch.

Exercise. (Problem 3) Let F be a field. Let $f(x) \in F[x]$ be an irreducible polynomial which is not separable. Show that $f'(x) = 0 \in F[x]$.

Proof. Suppose f(x) is irreducible. Then $f(x) \neq 0$ and f(x) is not a unit by definition. Thus $\deg(f(x)) \geq 1$.

Since f(x) is not separable, there exists a non-unit $g(x) \in F[x]$ such that $g(x) \mid f(x)$ and $g(x) \mid f'(x)$ by Lemma 3.2 from the Field Extension handout. Since f(x) is irreducible and g(x) is not a unit, f(x) is the product of g(x) and a unit. This implies that $\deg(f(x)) = \deg(g(x))$.

Since $g(x) \mid f'(x), f'(x) = h(x)g(x)$. If f'(x) = 0, we are done. Suppose otherwise. Then $\deg(f'(x)) = \deg(h(x)) + \deg(g(x)) = \deg(h(x)) + \deg(f(x)) \geq \deg(f(x))$. However, by the definition of the 'operator, $\deg(f'(x)) < \deg(f(x))$. This is a contradiction, so f'(x) = 0. \square

Exercise. (Problem 4) Let F be a field of prime characteristic p. Let $f(x) = \sum_{i=0}^{n} a_i x^i \in F[x]$ be an irreducible polynomial. Give a necessary and sufficient criterion for f(x) to be inseparable in terms of the coefficients a_i .

Proof. We claim that $\forall i, (i \notin p\mathbb{Z} \implies a_i = 0)$ is a necessary and sufficient criterion.

- Suppose f(x) is inseparable. By Lemma 5.5 from the Field Extension handout, f'(x) = 0. If f'(x) = 0, then $ia_i = 0$ for each i. Since p is a prime, a_i must be 0 if $i \notin p\mathbb{Z}$.
- Suppose $\forall i, (i \notin p\mathbb{Z} \implies a_i = 0)$. Then f'(x) = 0, so $f(x) \mid f(x), f(x) \mid f'(x)$ and f(x) is not a unit since f(x) is irreducible. Therefore, $GCD(f(x), f'(x)) \neq F^{\times}$, so f is inseparable by Lemma 3.2.

Hence, $\forall i, (i \notin p\mathbb{Z} \implies a_i = 0)$ is a necessary and sufficient criterion.

Exercise. (Problem 5) What is the characteristic of the ring $\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/10\mathbb{Z}$?

Proof. Define $\phi : \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/10\mathbb{Z}$ such that $\phi(k) = (k, 0, 0)$. Then ϕ is injective, so the characteristic is 0.