TEC0001

TEORIA DA COMPUTAÇÃO UDESC – CENTRO DE CIÊNCIAS TECNOLÓGICAS BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

ACADÊMICO MARLON HENRY SCHWEIGERT LISTA DE EXERCÍCIOS – MÁQUINA DE TURING

1. Definir formalmente uma máquina de turing que compute a palavra inversa (Entrada w, saída w^{-1}).

Utilizando o modelo de Máquina de Turing de Hopcroft, provado em sala ter o mesmo poder computacional que a máquina descrita por Sipser, teremos a seguinte função programa:

MTH =
$$<$$
 Q, E, R, G, q0, acp, $_{-}>$ Q = $\{q0, q1, q2, q3, q4, q5, qf, acp\}$ E = $\{0, 1\}$ R = $\{0, 1, \#\}$ G = $\{$ g(q0, 0) \rightarrow (q1, 0, $<$) g(q0, 1) \rightarrow (q1, 1, $<$) g(q2, 1) \rightarrow (q2, $\#$, $>$) g(q2, 0) \rightarrow (q4, $\#$, $<$) g(q2, $\#$) \rightarrow (q2, $\#$, $>$) g(q2, $\#$) \rightarrow (q2, $\#$, $>$) g(q2, $\#$) \rightarrow (q3, $\#$, $<$) g(q3, $\#$) \rightarrow (q3, $\#$, $<$) g(q3, $\#$) \rightarrow (q3, $\#$, $<$) g(q3, 0) \rightarrow (q3, 0, $<$) g(q3, 1) \rightarrow (q3, 1, $<$) g(q3, $\#$) \rightarrow (q5, 1, $>$)

```
g(q4, 0) \rightarrow (q4, 0, <)
g(q4, 1) \rightarrow (q4, 1, <)
g(q4, __) \rightarrow (q5, 0, >)
g(q5, 1) \rightarrow (q5, 1, >)
g(q5, 0) \rightarrow (q5, 0, >)
g(q5, \#) \rightarrow (q2, \#, >)
g(qf, \#) \rightarrow (qf, __, <)
g(qf, 1) \rightarrow (acp, 1, <)
g(qf, 0) \rightarrow (acp, 0, <)
```

2. Carlistos Turing Machine:

}

- Finita à Direita (infinita à esquerda).
- Símbolo especial no alfabeto da fita (R), *, que não pertence ao alfabeto E.
 - Serve para marcar a célula mais à direita da fita.
- Caso esteja em (*) e efetue >, é rejeitado.

Simulando SM (Sipser) em CM (Carlitos):

- O primeiro movimento será adicionar um símbolo # no inicio da palavra w.

$$\#W_1W_2W_3...W_n*$$

- Caso seja efetuado um movimento que pise em (*), deverá manejar toda a palavra a esquerda de tal modo que insira-se um espaço em branco para continuar o processamento:

$$\#W_1W_2W_3...W_n$$
 *

- Caso tenha algum movimento que leia #, insira primeiramente # e mova-o uma casa a esquerda, efetuando este movimento:

$$\#_{w_1} w_1 w_2 w_3 ... w_n^*$$

Simulando CM (Carlitos) em SM (Sipser):

- Inicialmente trata-se a entrada:

$$q_0 w_1 w_2 ... w_n \rightarrow *w_n w_{n-1} ... w_2 q_0 w_1$$

- Inverte-se a ordem de todos os passos da função g:

$$> \rightarrow <$$

$$< \rightarrow >$$

$$P \rightarrow P$$

- Caso leia *, indo a direita, leve ao estado de rejeição.
- 3. Prove que a classe das linguagens reconhecíveis é fechada para a operação de união de conjuntos.

Operação União (U) é binária entre duas linguagens, L1 e L2.

L1 reconhecível
$$\rightarrow$$
 MT A tal que L(A) = L1

L2 reconhecivel
$$\rightarrow$$
 MT B tal que L(B) = L2

MT A e B são reconhecíveis.

$$W \rightarrow A \ v \ B \rightarrow R$$

Caso A responda, teremos uma resposta.

Caso B responda, teremos uma resposta.

Caso um deles esteja em Loop, o outro poderá responder ou entrar em loop também. Nesse caso, se houver uma resposta, também funcionará a união. Caso entre em loop em ambas, a entrada W não pertencerá ao conjunto L1 U L2.