Eine Woche, ein Beispiel 9.18 reps of p-adic groups

This is also an unfinished task. I'm afraid that I forget those materials I organized. main ref: The Local Langlands Conjecture for GL(2)

Now you can see [GL case]: https://github.com/ramified/personal_handwritten_collection/raw/main/Langlands/GL_case.pdf

Process

- 1 new notations
- 2. preliminaries

 - group chain order
- 3 statement of classification (without proof)

4. fin dim

https://mathoverflow.net/questions/34374/any-finite-dimensional-admissiblesmooth-irreducible-representation-of-gl2-q-p

realization

5. other principal series

- construction

- proof

6. Cuspidal reps

7. Applications

1 new notations

I don't want to bother you or make you confused, so I collect my notations here. Often it's not rigorous defined. You can view this section as a dictionary of notations.

From archi local field.

$$A = M_{2x2}(F) \qquad G = GL_2(F)$$

$$B = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \qquad T = \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix} \qquad N = \begin{pmatrix} 1 & 0 \\ 0 & * \end{pmatrix} \qquad N_j = \begin{pmatrix} 0 & 0 \\ 0 & * \end{pmatrix} \qquad N_j = \begin{pmatrix} 0 & 0 \\ 0 & * \end{pmatrix}$$

$$W = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \qquad T^0 = \begin{pmatrix} 0 & 0 \\ 0 & 0 & * \end{pmatrix} \qquad N_j = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad N_j = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

page	name	symbol	case en=1	case e=2
86	O-lattice chain	Z.	ե_ _, ⊕ ե_, ≈ 0⊕ 0 ≈ եՔեг	p-60 = 000 = 00p=
87	0-orders chain order	A = A2	m=(00)	J = (00)
88	prime element	π	(^π π)	(π ')
88	Jacobson radical	Jac(A)	$Jac(m) = \begin{pmatrix} \mu & \mu \\ \mu & \mu \end{pmatrix}$	Jac(J) = (P O)
88		UA= UA = A*	Ko = (0 0)x	$I_{\circ} = \begin{pmatrix} \mathcal{O} & \mathcal{O} \\ \mathcal{P} & \mathcal{O} \end{pmatrix}^{x} = \begin{pmatrix} \mathcal{O}^{x} & \mathcal{O} \\ \mathcal{P} & \mathcal{O} \end{pmatrix}$
88		(n) UA = 1+Jac(A)	$K_n = 1 + \begin{pmatrix} \mu^n & \mu^n \\ \mu^n & \mu^n \end{pmatrix}$	$I_{2k-1} = 1 + \binom{p^k p^{k-1}}{p^k p^k} I_{2k} = 1 + \binom{p^k p^k}{p^{k+1} p^k}$
89		K,A	/<。×/ <(^π π)>	I.× (PO)

Rmk: For the convenience of handwritting and recognization, we use slightly different notations, which are listed as follows:

 $\overline{w} \mapsto \overline{\pi}$, $\mathcal{U} \mapsto A$: I can not write original letters smoothly. $K \mapsto K_0$: K is kept to denote arbitrary cpt open subgp.

(Luckily we won't meet any K-theory in this document) usually a bracket after it. rad $A \mapsto Jac(A)$. to avoid confusion with other radicals of a ring. Jac(A). Jacobson radical $J:=\begin{pmatrix}0\\0\\0\end{pmatrix}$ $U \mapsto U$: avoid confusion with union. $U_F:=U_F=0^\times$ $U_F:=1+p^n$ $U_A:=U_A=1+Jac(A)^n$ $N \ge 1$

$$U_{a}^{Z} = U_{a}^{Z,1} = U_{a}^{Z,1} = U_{a}^{Z,2}$$

Cov $l(\pi) = 0 \iff \pi|_{K_1}$ is trivial. Rmk. $K_n \triangleleft K_0$, $I_n \triangleleft I_0$ are open normal subgps.