SH-V/Com. Sc.-503-DSE-I(PR)/19

B.Sc. 5th Semester (Honours) Practical Examination, 2019-20 COMPUTER SCIENCE

Course ID: 51526 Course Code: SH/CSC-503-DSE-I

Course Title: Operational Research(Lab)

Time: 2 Hours Full Marks: 15

The figures in the right hand side margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

1. Perform any one experiment:

 $10 \times 1 = 10$

(a) Use simplex method to verify that the following problem has no finite optimal solution:

Max
$$z = 2x_1 + x_2$$
 subject to
 $x_1 - x_2 - x_3 \le 1$
 $x_1 - 2x_2 + x_3 \le 2$
 $x_1, x_2, x_3 \ge 0$

(b) Solve the following problem using simplex method:

Max
$$z = 5x_1 + 3x_2 + x_3$$
 subject to
 $2x_1 + x_2 + x_3 = 3$
 $-x_1 + 2x_3 = 4$
 $x_1, x_2, x_3 \ge 0$

(c) Solve the following problem by solving its trial:

Min
$$z = x_1 + x_2$$
 subject to

$$2x_1 + x_2 \ge 8$$

$$3x_1 + 7x_2 \ge 21$$

$$x_1, x_2 \ge 0$$

(d) Solve the following problem by the dual simplex method:

Min
$$z = 2x_1 + 3x_2$$
 subject to
 $2x_1 + 3x_2 \le 30, x_1 + 2x_2 \ge 10, x_1 \ge 0, x_2 \ge 0$

(e) Solve the following problem by revised simplex method:

$$Min z = -5x_1 + x_2 - x_3 + 10x_4 - 7x_5$$
 subject to

$$\begin{bmatrix} 3 & -1 & -1 & 0 & 0 \\ 1 & -1 & 1 & 1 & 0 \\ 2 & 1 & 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ 7 \end{bmatrix}, x \ge 0$$

51526/16527 Please Turn Over

B.Sc. 5th Semester (Honours) Practical Examination, 2019-20 COMPUTER SCIENCE

Course ID: 51526 Course Code: SH/CSC-503-DSE-I

Course Title: Numerical Methods(Lab)

Time: 2 Hours Full Marks: 15

The figures in the right hand side margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

1. Perform *any one* experiment:

 $10 \times 1 = 10$

(a) Using Newton's Forward interpolation formula find the polynomial f(x) satisfying the following data:

x	0	5	10	15
f(x)	14	379	1444	3584

(b) The following data are taken from the stream table:

Temperature (°C)	140	150	160	170	180
Pressure (kg/cm ²)	3.685	4.854	6.302	8.076	10.22

Find pressure at temperature 175°C.

- (c) Find the quadratic polynomial that fits $f(x) = x^4$ at x = 0, 1, 2 using Lagranges interpolation formula.
- (d) Using Taylor's series find y at x = 0.1 if $\frac{dy}{dx} = x^2y 1$, given that y(0) = 1.
- (e) Use Euler method to approximate y when x = 0.1, given that $\frac{dy}{dx} = \frac{y-x}{y+x}$ with y = 1 for x = 0.