SPHERIC Beijing International Workshop Oct 18-20, 2017, Beijing, China

Application of particle-based computational acoustics to sound propagation and scattering

Dr. Yong Ou Zhang

Wuhan University of Technology

Contents

- 1. Motivation
 - 2. Governing equations
 - 3. Numerical method
 - 4. Tests and discussion
 - 5. Future Work

The acoustic properties of ship wake are the basic factors to

track and identify.

Particle Method (Meshfree & Lagrangian approach)

c. moving boundaries a

d. local support domair

Acoustic Problems

a. bubble Acoustics

Particle Method (Meshfree & Lagrangian approach)

- a. no numerical error in computing advection term;
- b. complex domain geometry;
- c. moving boundaries ar
- d. local support domain

Acoustic Problems

- a. bubble acoustics
- b. human voice

SPHERIC Beijing 2017, China

Particle Method (Meshfree & Lagrangian approach)

- a. no numerical error in computing advection term;
- b. complex domain geometry;
- c. moving boundaries and interface
- d. local support domain suitable for

Acoustic Problems

- a. bubble acoustics
- b. human voice
- c. combustion noise

Particle Method (Meshfree & Lagrangian approach)

a. no numerical error in computing advection term;

b. complex domain geometry.

c. moving boundaries and

d. local support domain s

Acoustic Problems

- a. bubble acoustics
- b. human voice
- c. combustion noise
- d. cavitation noise

SPHERIC Beijing 2017, China

Particle Method (Meshfree & Lagrangian approach)

- a. no numerical error in computing advection term;
- b. complex domain geometry;
- c. moving boundaries and interface capture;
- d. local support domain suitable for parallel computing.

Acoustic Problems

- a. bubble acoustics
- b. human voice
- c. combustion noise
- d. cavitation noise

Particle-based
Computational Acoustics
(PCA)

SPHERIC Beijing 2017, China

Contents

- 1. Motivation
- 2. Governing Equations
 - 3. Numerical Method
 - 4. Tests and Discussion
 - 5. Future Work

Governing Equations

What do we need from SPH computation?

- I. Direct numerical simulation
 - · include full flow-sound interaction
- II. Acoustic perturbation model (hybrid method :CFD + CA)
 - · separate sound from background flow (LEE)
 - · partial coupling
- III. Equivalent sound source model
 - · use sound source to replace the target

Contents

- 1. Motivation
- 2. Governing Equations
- 3. Numerical Method
 - 4. Tests and Discussion
 - 5. Future Work

Numerical Method

- I. Smoothed particle hydrodynamics (SPH)
 - · widely used fundamental particle method
- II. Corrective smoothed particle method (CSPM)
 - · modify SPH with Taylor series expansion
- III. Symmetrical smoothed particle hydrodynamics (SSPH) /
- Finite difference particle method (FDPM)
 - · developed from generalized finite difference scheme

Numerical Method (acoustic boundary)

Acoustic boundary conditions can be represented with different finite difference scheme to obtain high order accuracy.

Absorbing boundary:

$$f^{n}(i+3,j) = f^{n-1}(i,j) + \frac{c_0 \Delta t - u_0 \Delta t - 3\Delta x}{c_0 \Delta t - u_0 \Delta t + 3\Delta x} \Big[f^{n}(i,j) - f^{n-1}(i+3,j) \Big]$$

Contents

- 1. Introduction
- 2. Governing Equations
- 3. Numerical Method
- 4. Tests and Discussion
 - 5. Future Work

Test 1 acoustic boundary (acoustic wave equation)

Rigid boundary

Absorbing boundary
SPHERIC Beijing 2017, China

Test 1 acoustic boundary (scattering)

Test 2 nonlinear acoustic wave equation

	$r_{\rm s}$	x	Δx	$\varepsilon_{ m RMS}$	ε_{MAX}	CPU time (s)
CSPM	constant	[-0.5, 21.5]	0.01	0.0047	0.0223	208
FDPM	variable	[-0.5, 21.5]	0.05	0.0045	0.0166	196

SPHERIC Beijing 2017, China

Test 3 sound propagation in mean flow (sound source)

Sound pressure contour after
4.0 s propagation
Inlet flow comes from left
with Mach number as 0.2

Test 4 Sound generation from rigid object falling into water

Test 5 sound propagation in pipeline (hybrid method)

Test 6 sound propagation in vortex (hybrid method)

Test 7 vortex scattering (hybrid method)

Test 7 vortex scattering

Future Work

- I. Sound generation from rigid object falling into water;
- II. Acoustic scattering from bubble flow;
- III. Acoustic scattering from wake flow over an airfoil;

Thanks for your attention