Johnson-Lindenstrauss lema Kratek opis

Klara Doler in Eva Winkler

17. 12. 2021

1 Definicije in leme

Johnson-Lindenstraussova lema

Naj bo $0 < \varepsilon < 1$ in $n \in \mathbb{N}$. Predspostavimo, da je $k > \frac{8 \log(n)}{\varepsilon^2}$. Potem za vsak nabor m točk iz množice $X \subset \mathbb{R}^d$ obstaja taka preslikava $f : \mathbb{R}^d \to \mathbb{R}^k$, da za vse $u, v \in X$ velja:

$$(1 - \varepsilon) \|u - v\|^2 \le \|f(u) - f(v)\|^2 \le (1 + \varepsilon) \|u - v\|^2$$

Zgornje lahko zapišemo tudi kot:

$$(1+\varepsilon)^{-1} ||f(u) - f(v)||^2 \le ||u - v||^2 \le (1-\varepsilon)^{-1} ||f(u) - f(v)||^2$$

Slika 1: Slika prikazuje preslikavo točk s $f:\mathbb{R}^N\to\mathbb{R}^M,$ za N>M

Johnson-Lindenstraussova distribucija

Sorodna lema je distribucijska Johnson-Lindenstraussova lema. Ta lema pravi, da za katerakoli $0<\varepsilon,\ \delta<\frac{1}{2}$ in pozitivno celo število d, obstaja porazdelitev na $\mathbb{R}^{k\times d}$, iz katere je sestavljena matrika A, tako da za $k=O(\varepsilon-2\log(\frac{1}{\delta}))$ in za kateri koli enotski vektor $\mathbf{x}\in\mathbb{R}^d$ velja spodnja trditev:

$$P(|||Ax||_2^2 - 1| > \varepsilon) < \delta$$

Vidimo lahko, da lahko lemo JL pridobimo iz distribucijske različice tako, da nastavimo $x=\frac{u-v}{\|u-v\|^2}$ in $\delta<\frac{1}{n^2}$ za nek par $u,v\in X$.

Definicija 1.1 Končno razsežen vektorski prostor nad \mathbb{R} opremljen s skalarnim produktom imenujemo evklidski prostor.

Definicija 1.2 V n-razsežnem evklidskem prostoru \mathbb{R}^n je dolžina vektorja $\vec{x} = [x_1, x_2, \cdots x_n]$ določena z

$$\vec{x} = \sqrt{(x_1)^2 + (x_2)^2 + (x_3)^2 + \dots + (x_n)^2}.$$

Imenujemo jo evklidska norma.

2 Opis problema in navodilo

V projektni nalogi se bova ukvarjali z Johnson-Lindenstraussovo lemo, poimenovano po Williamu B. Johnsonu in Joramu Lindenstraussu. Lema pravi, da je mogoče množico točk iz visokodimenzionalnega prostora projecirati v podprostor dimenzije $O(\frac{log(n)}{\varepsilon^2})$ tako, da se razdalja med poljubnima točkama z veliko verjetnostjo spremeni za največ ε . V najini nalogi bova preverili veljavnost leme.

3 Opis dela

Za izvedbo najinega problema bova uporabili programski jezik Python. Programirali bova vCocalc - u, ki ima vgrajene funkcije za delo z matrikami. Izvedli bova poskuse, s katerimi bova preverili, ali distribucijska JL lema drži:

- \bullet izbrali bova vzorec točk v prostoru določene dimenzije, ki je odvisen od ε ,
- naredili bova projekcijo izbranih točk na podprostor,
- primerjale bova razdaljo med točkami v podprostoru z originalno razdaljo,
- za konec bova še pogledali, kakšna je verjetnost, da je razdalja med toč-kami spremenjena za največ ε (ter npr. $\frac{\varepsilon}{2}$).