DIGITAL CIRCUITS

Week-2, Lecture-3 Boolean Algebra

Sneh Saurabh 10th August, 2018

Digital Circuits: Announcements/Revision

Logic Network Analysis: Function $g(x_1, x_2)$

Analysis: Find the function that is represented by the above Logic Network

Approach:

- a) Write the Logic Function
- b) Write the Truth Table

Logic Function:

$$g(x_1, x_2) = \overline{x_1} + x_2$$

x_1	x_2	$g(x_1,x_2)$
0	0	1
0	1	1
1	0	0
1	1	1

Functionally Equivalent Networks (1)

x_1	x_2	$g(x_1, x_2)$
0	0	1
0	1	1
1	0	0
1	1	1

- Truth table of two logic networks are exactly same
- Therefore, the two networks implement the same function
- Such networks are called functionally equivalent network

Functionally Equivalent Networks (2)

Which of the two logic networks is preferable?

• The function $g(x_1, x_2)$ is preferred because it has less number of logic gates

How to find whether two logic networks are functionally equivalent?

- We have established equivalence by comparing truth table
- $\bullet \quad \overline{x_1} + x_1.x_2 \equiv \overline{x_1} + x_2$

Can we establish equivalence by algebraic techniques?

Yes, using Boolean Algebra

Boolean Algebra: Introduction

- George Boole: scheme for algebraic description of processes involved in logical thought and reasoning (1849)
- This scheme later got refined and became known as Boolean Algebra
- In 1930s Claude Shannon showed that Boolean algebra can be used to describe circuits built with switches
- Effective tool for analysis and synthesis of digital circuits

 Boolean algebra is based on a set of rules that are derived from a small number of basic assumptions (axioms)

Boolean Algebra: Axioms

- Elements can take one of the two values: {0, 1}
- Operators "." and "+"

S.No.	(a)	(b)
1	0.0 = 0	1 + 1 = 1
2	1.1 = 1	0 + 0 = 0
3	0.1 = 1.0 = 0	1 + 0 = 0 + 1 = 1
4	If $x = 0$, then $\bar{x} = 1$	If $x = 1$, then $\bar{x} = 0$

Boolean Algebra: Axioms

S.No.	(a)	(b)
1	0.0 = 0	1 + 1 = 1
2	1.1 = 1	0 + 0 = 0
3	0.1 = 1.0 = 0	1 + 0 = 0 + 1 = 1
4	If $x = 0$, then $\bar{x} = 1$	If $x = 1$, then $\bar{x} = 0$

Using above axioms, theorems can be proven by perfect induction.

Prove by induction: x. 0 = 0

Solution:

If x = 0, then $x \cdot 0 = 0.0 = 0$ [By 1(a)]

If x = 1, then $x \cdot 0 = 1.0 = 0$ [By 3(a)]

Prove by induction (For your practice):

$$x + 1 = 1$$

$$x. 1 = x$$

$$x + 0 = x$$

$$x. x = x$$

$$x + x = x$$

$$x. x' = 0$$

$$x + x' = 1$$

$$(x')' = x$$

Boolean Algebra: *Dual* of a logical expression

- Given a logical expression, its dual expression is obtained by:
 - > Replace all "+" operator by "." operator and vice versa
 - > Replace all zeros with ones, and vice versa

Find the dual for the following expression: $x.\bar{z} + y$

Ans: $(x + \bar{z}).y$ [care should be taken to account for precedence]

Find the dual for the following expression: (x.y + 0).z

Ans: ((x + y).1) + z

Boolean Algebra: Principle of Duality

The dual of a true statement is also true.

S.No.	(a)	(b)
1	0.0 = 0	1 + 1 = 1
2	1.1 = 1	0 + 0 = 0
3	0.1 = 1.0 = 0	1 + 0 = 0 + 1 = 1
4	If $x = 0$, then $\bar{x} = 1$	If $x = 1$, then $\bar{x} = 0$

Statements in column (a) and (b) are duals of each other

- In 1904, E. V. Huntington defined Boolean algebra by providing 6 postulates that must be satisfied.
- Set of elements of a Boolean Algebra is represented by B
- Two operators are defined "." and "+"

Postulate 1: Closure

- a) The structure is closed with respect to the operator +
- b) The structure is close with respect to the operator .

Postulate 2: Identity Element

a) The element 0 is the identity element with respect to +

$$x + 0 = 0 + x = x$$

b) The element 1 is the identity element with respect to .

$$x. 1 = 1. x = x$$

Postulate 3: Commutative Property

a) The structure is commutative with respect to +

$$x + y = y + x$$

b) The structure is commutative with respect to .

$$x. y = y. x$$

Postulate 4: Distributive Property

a) The operator . is distributive over +

$$x. (y + z) = x. y + x. z$$

b) The operator + is distributive over .

$$x + (y.z) = (x + y).(x + z)$$

Postulate 5: Existence of a complement

For every element $x \in B$, there exists $x' \in B$ such that:

a.
$$x + x' = 1$$

b.
$$x. x' = 0$$

Postulate 6: Distinct elements

- There exist at least two elements $x, y \in B$ such that $x \neq y$
- Two valued Boolean algebra: $B = \{0, 1\}, 0 \neq 1$
- In this course we will consider only *Two valued Boolean algebra*

We will use Huntington's Postulate to:

- Prove Theorems in Boolean Algebra
- Prove equivalence of two circuits
- Minimize circuits [represent with less number of logic gates]

Prove using Huntington's Postulates:

$$x + 1 = 1$$

Solution:

$$x + 1$$

$$=1.(x+1)$$

$$=(x + x').(x + 1)$$

$$=x + x'.1$$

$$=x + x'$$

=1

2(a)
$$x + 0 = 0 + x = x$$

2(b)
$$x. 1 = 1. x = x$$

$$3(a) x + y = y + x$$

3(b)
$$x. y = y. x$$

$$4(a) x. (y + z) = x. y + x. z$$

4(b)
$$x + (y.z) = (x + y).(x + z)$$

$$5(a) x + x' = 1$$

5(b)
$$x. x' = 0$$

By Duality: x.0 = 0

Prove using Huntington's Postulates:

$$x + x = x$$

Solution:

$$x + x$$

$$=(x + x).1$$

$$=(x+x).(x+x')$$

$$=x + xx'$$

$$=x + 0$$

$$=x$$

2(a)
$$x + 0 = 0 + x = x$$

2(b)
$$x. 1 = 1. x = x$$

$$3(a) x + y = y + x$$

3(b)
$$x. y = y. x$$

$$4(a) x. (y + z) = x. y + x. z$$

4(b)
$$x + (y.z) = (x + y).(x + z)$$

$$5(a) x + x' = 1$$

5(b)
$$x. x' = 0$$

By Duality: $x \cdot x = x$

Prove using Huntington's Postulates:

$$x.\left(x^{\prime }+y\right) =xy$$

Solution:

$$x.(x'+y)$$

$$=x.x'+xy$$

$$=0+xy$$

$$=xy$$

2(a)
$$x + 0 = 0 + x = x$$

2(b)
$$x. 1 = 1. x = x$$

$$3(a) x + y = y + x$$

3(b)
$$x. y = y. x$$

$$4(a) x. (y + z) = x. y + x. z$$

4(b)
$$x + (y.z) = (x + y).(x + z)$$

$$5(a) x + x' = 1$$

5(b)
$$x. x' = 0$$

Prove using Huntington's Postulates:

$$x + x' \cdot y = x + y$$

Solution:

$$x + x'.y$$

$$=(x + x').(x + y)$$

$$=1.(x + y)$$

$$=x + y$$

2(a)
$$x + 0 = 0 + x = x$$

2(b)
$$x. 1 = 1. x = x$$

$$3(a) x + y = y + x$$

3(b)
$$x. y = y. x$$

$$4(a) x. (y + z) = x. y + x. z$$

4(b)
$$x + (y.z) = (x + y).(x + z)$$

$$5(a) x + x' = 1$$

5(b)
$$x. x' = 0$$