1^a Lista de Exercícios de Geometria Analítica (SMA300)

1^o Semestre de 2018

Recomendamos que vocês façam todos os exercícios da lista e discutem suas duvidas e soluções nas monitorias online no Tidia-ae.usp.br.

- 1. Sejam M, N e P os pontos médios dos segmentos de reta AB, BC, CA respectivamente, onde os pontos A, B e C são os vértices um triângulo qualquer ABC. Exprima os vetores \overrightarrow{BP} , \overrightarrow{AN} e \overrightarrow{CM} em função dos vetores \overrightarrow{AB} e \overrightarrow{AC} .
- 2. Seja \overrightarrow{ABC} um triângulo qualquer, com medianas dadas pelos segmentos de retas \overrightarrow{AD} , \overrightarrow{BE} e \overrightarrow{CF} . Prove que \overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} = $\overrightarrow{0}$.
- 3. Resolva o sistema nas incógnitas vetoriais \vec{x} e \vec{y} : $\begin{cases} \vec{x} + 3\vec{y} = \vec{u} \\ 3\vec{x} \vec{y} = 4\vec{u} 2\vec{v} \end{cases}$
- 4. Seja ABCDEF um hexágono regular de centro O. Mostre que

$$\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{AF} = 6\overrightarrow{AO}$$
.

- 5. São dados um triângulo \overrightarrow{ABC} e os pontos $X, Y \in Z$, tais que tenhamos as seguinte identidades $\overrightarrow{AX} = m\overrightarrow{XB}, \overrightarrow{BY} = n\overrightarrow{YC}, \overrightarrow{CZ} = p\overrightarrow{ZA}$, onde $m, n \in \mathbb{R}$. Exprima os vetores $\overrightarrow{CX}, \overrightarrow{AY}, \overrightarrow{BZ}$ em função dos vetores \overrightarrow{CA} e \overrightarrow{CB} e m, n, p.
- 6. Sejam ABC um triângulo e X um ponto do segmento AB. Mostre que

$$\overrightarrow{CX} = \frac{||\overrightarrow{BX}||}{||\overrightarrow{AB}||}\overrightarrow{CA} + \frac{||\overrightarrow{AX}||}{||\overrightarrow{AB}||}\overrightarrow{CB}.$$

- 7. Dado um triângulo \overrightarrow{ABC} , seja $\overrightarrow{u} = \frac{1}{2}\overrightarrow{CA} + \frac{1}{3}\overrightarrow{CB}$. Seja X um ponto do segmento de reta \overrightarrow{AB} tal que o vetor \overrightarrow{CX} é paralelo ao vetor \overrightarrow{u} .
 - (a) Exprima \overrightarrow{CX} como combinação linear dos vetores \overrightarrow{CA} e \overrightarrow{CB} .
 - (b) Calcule $\frac{||\overrightarrow{AX}||}{||\overrightarrow{XB}||}$ e a razão em que X divide o segmento de reta AB (ver Exercício 8).
- 8. A razão em que um ponto P divide um segmento orientado não nulo AB é o número real r tal que $\overrightarrow{AP} = r\overrightarrow{PB}$.
 - (a) Seja r a razão em que um ponto P divide um segmento orientado não nulo AB. Prove que $r \neq -1$ e que $\overrightarrow{AP} = \frac{r}{1+r}\overrightarrow{AB}$.
 - (b) No triângulo ABC na Figura 1(a), M divide AB e N divide CB na mesma razão r. Prove que $MN \parallel AC$ e calcule $\frac{||\overrightarrow{MN}||}{||\overrightarrow{AC}||}$.
 - (c) No quadrilátero ABCD na Figura 1(b), M divide AB, N divide CB, P divide CD e Q divide AD, todos na mesma razão r. Prove que o quadrilátero MNPQ é um paralelogramo.
 - (d) Suponha que o quadrilátero ABCD do item anterior seja um paralelogramo. Mostre que as quatro diagonais, duas de ABCD e duas de MNPQ, tem um ponto em comum.

Figura 1:

- 9. Se os vetores não nulos \vec{u} , \vec{v} , \vec{w} são L.D. no espaço, então o vetor \vec{w} é uma combinação linear de \vec{u} e \vec{v} ? Justifique sua resposta.
- 10. Seja $\mathbf{E} = (\vec{u}, \vec{v}, \vec{w})$ uma base de V^3 . Dado um vector \vec{t} , sabemos que existem números reais $\alpha, \beta, \gamma \in \mathbb{R}$, tais que $\vec{t} = \alpha \vec{u} + \beta \vec{v} + \gamma \vec{w}$. Mostre que o conjunto $\{\vec{u} + \vec{t}, \vec{v} + \vec{t}, \vec{w} + \vec{t}\}$ é formado por vetores não coplanares se, e somente se, $\alpha + \beta + \gamma + 1 \neq 0$.
- 11. Seja **E** uma base de V^3 . Determine $m \in \mathbb{R}$, de modo que o vetor $\vec{u} = (1, 2, 2)_{\mathbf{E}}$ seja combinação linear dos vetores $\vec{v} = (m-1, 1, m-2)_{\mathbf{E}}$ e $\vec{w} = (m+1, m-1, 2)_{\mathbf{E}}$. Determine também $m \in \mathbb{R}$, para que os vetores \vec{u} , \vec{v} , \vec{w} sejam L.D.
- 12. Seja ${\bf E}$ uma base de V^3 . Determine $m\in \mathbb{R},$ de modo que a sequência de vetores abaixo sejam L.D.
 - (a) $(m, 1, m)_{\mathbf{E}}, (1, m, 1)_{\mathbf{E}}$ (b) $(1 m^2, 1 m, 0)_{\mathbf{E}}, (m, m, m)_{\mathbf{E}}$
- 13. Sejam $\mathbf{E} = (\vec{e}_1\,,\vec{e}_2\,,\vec{e}_3)$ uma base de $V^3,\,\vec{u} = (1,2,-1)_{\mathbf{E}},\,\vec{f}_1 = \vec{e}_1 + \vec{e}_2 + \vec{e}_3,\,\vec{f}_2 = m\vec{e}_1 + 2m\vec{e}_2 \vec{e}_3$ e $\vec{f}_3 = 4\vec{e}_2 + 3\vec{e}_3$.
 - (a) Para que valores de $m \in \mathbb{R}$, $\mathbf{F} = (\vec{f_1}, \vec{f_2}, \vec{f_3})$ é uma base de V^3 ?
 - (b) Nas condições do item (a), calcule $m \in \mathbb{R}$, para que $\vec{u} = (0, 1, 0)_{\mathbf{F}}$.
- 14. Sejam $\mathbf{E} = (\vec{e}_1, \vec{e}_2, \vec{e}_3)$ uma base de V^3 , $\vec{f}_1 = \vec{e}_1 \vec{e}_2$, $\vec{f}_2 = \vec{e}_2 \vec{e}_3$ e $\vec{f}_3 = 3\vec{e}_3$.
 - (a) Mostre que $\mathbf{F} = (\vec{f_1}, \vec{f_2}, \vec{f_3})$ é uma base de V^3 .
 - (b) Calcule $m \in \mathbb{R}$, para que os vetores $\vec{u} = (0, m, 1)_{\mathbf{E}}$ e $\vec{v} = (0, 1, -1)_{\mathbf{F}}$ sejam L.D.
- 15. Consideremos à base $\mathbf{E} = (\vec{e_1}\,,\vec{e_2}\,,\vec{e_3})$ de V^3 , e as relações: $\vec{f_1} = \vec{e_1} \vec{e_2} \vec{e_3}$ $\vec{f_2} = \vec{e_1} + 2\vec{e_2} + \vec{e_3}$ $\vec{f_3} = 2\vec{e_1} + \vec{e_2} + 4\vec{e_3}$.
 - a) Verificar que $\mathbf{F} = (\vec{f_1}, \vec{f_2}, \vec{f_3})$ é uma base de V^3 .
 - b) Achar a matriz de mudança de base, da base $\mathbf{E} = (\vec{e_1}, \vec{e_2}, \vec{e_3})$ para a base $\mathbf{F} = (\vec{f_1}, \vec{f_2}, \vec{f_3})$.
 - c) Sendo $\vec{u} = 3\vec{e_1} 5\vec{e_2} + 4\vec{e_3}$, achar a expressão do vetor \vec{v} em relação à base $\mathbf{F} = (\vec{f_1}, \vec{f_2}, \vec{f_3})$.
- 16. Sejam $\mathbf{E} = (\vec{e}_1, \vec{e}_2, \vec{e}_3)$ base de V^3 e $\mathbf{F} = \{(1, 1, 1)_{\mathbf{E}}, (1, 2, 0)_{\mathbf{E}}, (1, 1, 0)_{\mathbf{E}}\}$ e $\mathbf{G} = \{(2, 1, -1)_{\mathbf{E}}, (3, 0, 1)_{\mathbf{E}}, (2, 0, 1)_{\mathbf{E}}\}$.
 - a) Mostre que \mathbf{F} e \mathbf{G} são bases de V^3 .
 - b) Determine a matriz de mudança de base, da base $\bf E$ para a base $\bf F$, isto é, $M_{\bf EF}$.
 - c) Se $\vec{u} = (m, 2, 1)_{\mathbf{E}}$, $\vec{v} = (1, 1, 1)_{\mathbf{F}}$ e $\vec{w} = (2, -1, 1)_{\mathbf{F}}$, determinar $m \in \mathbb{R}$, de modo que os vetores $\{\vec{u}, \vec{v}, \vec{w}\}$ não formem uma base de V^3 .

Nos exercício abaixo $\mathbf{B} = (\vec{i}, \vec{j}, \vec{k})$ é uma base ortonormal positiva de V^3 .

- 17. Sabendo que $\vec{u} + \vec{v} + \vec{w} = \vec{0}$, $||\vec{u}|| = 3/2$, $||\vec{v}|| = 1/2$, $||\vec{w}|| = 2$, calcule $\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u}$.
- 18. Demonstrar que a soma dos quadrados dos comprimentos das diagonais de um paralelogramo é igual à soma dos quadrados dos comprimentos dos quatro lados; em outras palavras, provar que $\|\vec{u} + \vec{v}\|^2 + \|\vec{u} \vec{v}\|^2 = 2 \|\vec{u}\|^2 + 2 \|\vec{v}\|^2$.
- 19. (a) Prove que $||\vec{u} + \vec{v} + \vec{w}||^2 = ||\vec{u}||^2 + ||\vec{v}||^2 + ||\vec{w}||^2 + 2(\vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w})$, quaisquer que sejam $\vec{u}, \vec{v} \in \vec{w}$.
 - (b) Dados os vetores não nulos $\vec{u}, \vec{v} \in \vec{w}$, sejam $\alpha = \arg(\vec{u}, \vec{v}), \beta = \arg(\vec{u}, \vec{w}), \gamma = \arg(\vec{v}, \vec{w}).$ Prove que $-3/2 \le \cos \alpha + \cos \beta + \cos \gamma \le 3$.
 - (c) Supondo, no item anterior, que $\alpha = \beta = \gamma$, verifique se $(\vec{u}, \vec{v}, \vec{w})$ é base.
- 20. Decomponha o vetor $\vec{v} = (-1, -3, 2)_{\mathbf{B}}$ como soma de dois vetores \vec{p} e \vec{q} , de modo que \vec{p} seja paralelo e \vec{q} seja ortogonal a $\vec{u} = (0, 1, 3)_{\mathbf{B}}$.
- 21. Sejam

$$\vec{u} = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})_{\mathbf{B}}, \ \vec{v} = (-\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}})_{\mathbf{B}}, \ \vec{w} = (0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})_{\mathbf{B}}.$$

- (i) Prove que $\mathbf{F} = (\vec{u}, \vec{v}, \vec{w})$ é uma base ortonormal positiva.
- (ii) Calcule a área do triângulo determinado pelos vetores $2\vec{u} + \vec{v}$ e $\vec{u} \vec{v}$.
- (iii) Determine a projeção ortogonal do vetor $3\vec{u} + 5\vec{v}$ sobre o vetor $2\vec{u}$.
- 22. Sejam os vetores $\vec{u} = (3, 1, -1)_{\mathbf{B}}$ e $\vec{v} = (a, 0, 2)_{\mathbf{B}}$. Calcule o valor de $a \in \mathbb{R}$, para que a área do paralelogramo determinado pelos vetores \vec{u} e \vec{v} seja igual a $2\sqrt{6}$.
- 23. Dados os vetores $\vec{u} = (0, 1, -1)_{\mathbf{B}}$, $\vec{v} = (2, -2, -2)_{\mathbf{B}}$ e $\vec{w} = (1, -1, 2)_{\mathbf{B}}$, determinar as coordenadas do vetor \vec{x} , em relação à base \mathbf{B} , que seja paralelo ao vetor \vec{w} e que satisfaça $\vec{x} \wedge \vec{u} = \vec{v}$.
- 24. Dados os vetores $\vec{u} = 2\vec{i} 3\vec{j} + 2\vec{k}$ e $\vec{v} = 4\vec{i} \vec{j} + 2\vec{k}$.
 - a) Calcular $\vec{u} \wedge \vec{v}$
 - b) Calcular o seno do ângulo entre os vetores \vec{u} e \vec{v} .
- 25. Sejam $\vec{a}, \vec{b}, \vec{c}$ vetores de V^3 , tais que $\|\vec{a}\| = \|\vec{b}\| = 3 \|\vec{c}\| = 6$ e $\vec{a} + \vec{b} + \vec{c} = \vec{O}$. Calcular $\vec{a} \wedge \vec{b} + \vec{a} \wedge \vec{c} + \vec{b} \wedge \vec{c}$.
- 26. Suponhamos que os vetores $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ de V^3 verificam as relações $\vec{a} \wedge \vec{b} = \vec{c} \wedge \vec{d}$ e $\vec{a} \wedge \vec{c} = \vec{b} \wedge \vec{d}$. Prove que os vetroes $(\vec{a} \vec{d}), (\vec{b} \vec{c})$ são L.D.
- 27. Se os vetores \vec{u}, \vec{v} são L.I. em V^3 e o vetor \vec{w} satisfaz $\vec{w} \wedge \vec{u} = \vec{w} \wedge \vec{v} = \vec{O}$, mostrar que $\vec{w} = \vec{0}$.
- 28. Resolva o seguinte sistema na incógnita \vec{x}

$$\begin{cases} \vec{x} \cdot (2\vec{i} + 3\vec{j} + 4\vec{k}) &= 9 \\ \vec{x} \wedge (-\vec{i} + \vec{j} - \vec{k}) &= -2\vec{i} + 2\vec{k} \end{cases}$$

29. Prove que, qualquer que seja o vetor \vec{v} , $||\vec{v} \wedge \vec{i}||^2 + ||\vec{v} \wedge \vec{j}||^2 + ||\vec{v} \wedge \vec{k}||^2 = 2||\vec{v}||^2$.