Optimal transport

I Monge and Kantorovich problems

Seongho, Joo

August 7, 2025

Seoul National University

Notation

- ullet In the following, we assume that X is a complete and separable metric space.
- We denote $\mathcal{C}(X)$ the space of continuous functions, $\mathcal{C}_0(X)$ be the space of continuous function vanishing at infinity and $\mathcal{C}_b(X)$ be the space of bounded continuous functions.
- \bullet We denote $\mathcal{M}(X)$ the space of Borel regular measures on X with finite total mass and

$$\mathcal{M}^+(X) := \{ \mu \in \mathcal{M}(X) \mid \mu \le 0 \}$$

$$\mathcal{P}(X) := \{ \mu \in \mathcal{M}^+(X) \mid \mu(X) = 1 \}$$

Reminders

Definition 0.1 (Lower semi-continuous function). On a metric space Ω , a function $f:\Omega\to\mathbb{R}\cup\{+\infty\}$ is said to be lower semi-continuous (l.s.c) is for every sequence $x_n\to x$ we have $f(x)\leq \liminf_n f(x_n)$.

Definition 0.2 A metric space Ω is said to be compact if from any sequence x_n , we can extract a converging subsequence $x_{n_k} \to x \in \Omega$.

Theorem 0.3 (Weierstrass). If $f:\Omega\to\mathbb{R}\cup\{+\infty\}$ is l.s.c and Ω is compact, then there exists $x^*\in\Omega$ such that $f(x^*)=\min\{f(X)\,|\,x\in\Omega\}$.

Definition 0.4 (Weak and weak-* convergence) A sequence x_n is a Banach space $\mathcal X$ is said to weakly converging to x and we write $x_n \to x$, if for every $\eta \in \mathcal X'$ we have $\langle \eta, x_n \rangle \to \langle \eta, x \rangle$. A sequence $\eta_n \in \mathcal X'$ is a said to be weakly-* converging to $\eta \in \mathcal X'$, and we write $\eta_n \xrightarrow{w} \eta$, if for every $x \in \mathcal X$ we have $\langle \eta_n, x \rangle \to \langle \eta, x \rangle$.

Theorem 0.5 (Banach-Alaoglu) If \mathcal{X}' is separable and φ_n is bounded sequence in \mathcal{X} , there exists a subsequence φ_{n_k} weakly-* converging to some $\varphi \in \mathcal{X}'$.

Reminders

Theorem 0.6 (Riesz) Let X be a compact metric space and $\mathcal{X}=C(X)$ then every element of X is represented in a unique way as an element of $\mathcal{M}^+(X)$, this if for every $\eta \in \mathcal{X}$ there exists a unique $\lambda \in \mathcal{M}^+(X)$ such that $\langle \eta, \varphi \rangle = \int_X \varphi \, \mathrm{d}\lambda$ for every $\varphi \in \mathcal{X}$.

Definition 0.7 (Narrow convergence) A sequence of finite measures $(\mu_n)_{n\geq 1}$ on X narrowly converges to $\mu\in\mathcal{M}(X)$ if

$$\forall \varphi \in C_b(X), \quad \lim_{n \to \infty} \int_X \varphi_n \, \mathrm{d}\mu_n = \int_X \varphi \, \mathrm{d}\mu_n$$

Monge problem

Definition 1 (Push-forward and transport map)

Let X,Y be metric spaces, $\mu\in\mathcal{M}(X)$ and $T:X\to Y$ be a measurable map, The push-forward of μ by T is the measure $T_\#\mu$ on Y defined by

$$\forall B \subseteq Y, \ T_{\#}\mu(B) = \mu(T^{-1}(B))$$

or equivalently, if the following change-of-variable formula holds for all measurable and bounded $\varphi:Y\to\mathbb{R}$:

$$\int_{Y} \varphi(y) \, \mathrm{d}T_{\#} \mu(y) = \int_{X} \varphi(T(x)) \, \mathrm{d}\mu x$$

A measurable map $T:X\to Y$ such that $T_\#\mu=\nu$ is also called a *transport map* between μ and ν .

Monge problem

Example. If
$$Y = \{y_1, \dots y_n\}$$
, then $T_{\#}\mu = \sum_{1 \le i \le n} \mu(T^{-1}(\{y_i\}))\delta_{y_i}$

Example. Assume that T is C^1 diffeomorphism between open sets X,Y of \mathbb{R}^d , and assume also that the probability measures μ,ν have continuous densities ρ,σ with respect to the Lebesgue measure. Then,

$$\int_{Y} \varphi(y)\sigma(y) \,\mathrm{d}y = \int_{X} \varphi\left(T(x)\right)\sigma(T(x)) \mathsf{det}(\mathrm{D}T(x)) \,\mathrm{d}x$$

Hence, T is a transport map between μ and ν iff

$$\forall \varphi \in C_b(X), \ \int_X \varphi(T(x))\sigma(T(x))\det(\mathrm{D}T(x))\,\mathrm{d}x = \varphi(T(x))\rho(x)\,\mathrm{d}x$$

Hence, \boldsymbol{T} is a transport map iff the non-linear Jacobian equation holds

$$\rho(x) = \sigma(T(x)) \det(\mathrm{D}T(x)).$$

Monge problem

Definition 2 (Monge problem)

Consider two metric spaces X,Y, two probability measures $\mu\in\mathcal{P}(X).\nu\in\mathcal{P}(Y)$ and a cost function $c:X\times Y\to\mathbb{R}\cup\{+\infty\}$. Monge's problem is the following optimization problem

$$\mathsf{(MP)} := \inf \left\{ \int_X c(x,T(x)) \, \mathrm{d}\mu(X) \, | \, T:X \to Y \text{ and } T_\#\mu = \nu \right\}$$

This problem exhibits several difficulties, one of which is that both the constraint $(T_{\#}\mu\nu)$ and the functional are non-convex.

Example. There might exist no transport map between $\mu and\nu$. For instance, consider $\mu=\delta_x$ for some $x\in X$. Then $T_\#\mu(B)=\mu(T^{-1}(B))=\delta_{T(x)}$. In particular if $\operatorname{card}(\operatorname{spt}(\nu))>1$, there exists no transport map between μ and ν .

Example. The infimum might not be attained even if μ is atomless. Consider for instance $\mu=\frac{1}{2}\lambda|_{\{\pm 1\}\times[-1,1]}$ on \mathbb{R}^2 and $\nu=\lambda|_{\{0\}\times[-1,1]}$, where λ is the Lebesgue measure. One solution is to allow mass to split, leading to Kantrovich's relaxation of Monge's problem.

Kantorovich problem

Definition 3 (Marginals)

The Marginals of a measure γ on a product space $X\times Y$ are the measures $\pi_{X\#}\gamma$ and $\pi_{Y\#}\gamma$, where $\pi_X:X\times Y\to X$ and $\pi_Y:X\times Y\to Y$ are the projection maps.

Definition 4 (Transport plan)

A transport plan between two probability measure μ, ν on two metric spaces X and Y is a probability measure γ on the product space $X \times Y$ whose marginals are μ and ν . The space of transport plans is denotes as $\Pi(\mu, \nu)$, i.e.

$$\Pi(\mu,\nu) = \left\{ \gamma \in \mathcal{P}(X \times Y) \,|\, \pi_{X\#} \gamma = \mu, \; \pi_{Y\#} \gamma = \nu \right\}$$

Note that $\Pi(\mu, \nu)$ is a convex set.

Example. (Tensor product) Note that the set of transport plans $\Pi(\mu,\nu)$ is never empty, as it contains the measure $\mu\otimes\nu$.

Example. (Transport plan associated to a map) Let T be a transport map between μ, ν , and define $\gamma_T = (id, T)_{\#} \nu$. Then, γ_T is a transport plan between μ and ν .

Kantorovich problem

Definition 5 (Kantorovich problem)

Consider two metric spaces X,Y, two probability measures $\mu\in\mathcal{P}(X).\nu\in\mathcal{P}(Y)$ and a cost function $c:X\times Y\to\mathbb{R}\cup\{+\infty\}$. Kantorovich's problem is the following optimization problem

$$\mathsf{(KP)} := \inf \left\{ \int_{X \times Y} c(x,y) \, \mathrm{d} \gamma(x,y) \, | \, \gamma \in \Pi(\mu,\nu) \right\}$$

Remark. The infimum in Kantorovich problem is less than the infimum in Monge problem. Indeed, consider a transport map satisfying $T_{\#}\mu=\nu$ and the associated transport plan γ_T . Then, by the change of variable one has

$$\int_{X\times Y} c(x,y) \,\mathrm{d}(id,T)_{\#} \mu(x,y) = \int_X c(x,T(x)) \,\mathrm{d}\mu$$

Example. (Finite support) Assume that $X=Y=\{1\dots N\}$ and that μ,ν are the uniform probability measures over X and Y. Then monge's problem can be rewritten as a minimization problem over bijections between X and Y:

$$\min \left\{ \frac{1}{N} \sum_{1 \leq i \leq N} c(i, \sigma(i)) \, | \, \sigma \in \mathfrak{G}_N \right\}$$

Cont.

In kantorovich's relaxation, the set of transport plans $\Pi(\mu,\nu)$ agrees with the set of bijection stochastic matrices:

$$\gamma \in \Pi(\mu, \nu) \iff \gamma \ge 0, \sum_i \gamma(i, j) = \frac{1}{N} = \sum_j \gamma(i, j)$$

By Birkhoff's theorem, any extremal bi-stochastic matrix is induced by a permutation. This shows that, in this case, the solution to Monge's and Kantorovich's problem agrees.

Cont.

In kantorovich's relaxation, the set of transport plans $\Pi(\mu,\nu)$ agrees with the set of bijection stochastic matrices:

$$\gamma \in \Pi(\mu, \nu) \iff \gamma \ge 0, \sum_{i} \gamma(i, j) = \frac{1}{N} = \sum_{j} \gamma(i, j)$$

By Birkhoff's theorem, any extremal bi-stochastic matrix is induced by a permutation. This shows that, in this case, the solution to Monge's and Kantorovich's problem agrees.

Definition 6 (Support)

Let Ω be a separable metric space. The *support* of a non-negative measure μ is the smallest closed set on which μ is concentrated

$$\operatorname{spt}(\mu) := \bigcap \{ A \subseteq \Omega \mid A \text{ is closed and } \mu(\Omega \setminus A) = 0 \}$$

A point x belongs to $\operatorname{spt}(\mu)$ iff for every r>0 one has $\mu(B(x,r))>0$.

Cont(2).

Proposition 1

Let
$$\gamma\in\Pi(\mu,\nu)$$
 and $T:X\to Y$ measurable be such that $\gamma\left(\{(x,y)\in X\times Y\,|\,T(x)\neq y\}\right)=0.$ Then $\gamma=\gamma_T.$

Proof.

Cont(2).

Proposition 1

Let
$$\gamma\in\Pi(\mu,\nu)$$
 and $T:X\to Y$ measurable be such that $\gamma\left(\{(x,y)\in X\times Y\,|\,T(x)\neq y\}\right)=0.$ Then $\gamma=\gamma_T.$

Proof.

Solutions to Kantorovich's problem

Theorem 1

Let X,Y be two compact spaces, and $c:X\times Y\to\mathbb{R}\cup\{+\infty\}$ be a lower semi-continuous cost function, which is bounded from below. Then kantorovich's problem admits a minimizer.

Lemma 1 (Lower semi-continuity of measure)

Let $f:X\to\mathbb{R}\cup\{+\infty\}$ be a lower semi-continuous function, which is also bound from below. Define $\mathcal{F}:\mathcal{P}(X)\to\mathbb{R}\cup\{+\infty\}$ through $\mathcal{F}(\mu)=\int_X f\,\mathrm{d}\mu$. Then, \mathcal{F} is lower-semicontinuous for the narrow convergence, i.e.

$$\forall \mu_n \rightharpoonup \mu, \lim_{n \to \infty} \inf \mathcal{F}(\mu_n) \ge \mathcal{F}(\mu)$$

Theorem Proof.

Kantorovich as a relaxation of Monge

The question that we consider here is the equality between the infimum in Monge problem and the minimum in Kantorovich problem.

Theorem 2

Let X=Y be a compact subset of \mathbb{R}^d , $c\in C(X\times Y)$ and $\mu\in \mathcal{P}(X)$, $\mu\in \mathcal{P}(Y)$. Assume that μ is atomelss. Then,

$$\inf(\mathsf{MP}) = \min(\mathsf{KP})$$

Example 3.3 Consider $\mu_i=\frac{1}{2}(\delta_{x_i}+\alpha\lambda_{B(y_i,1)})$ with $\alpha=\frac{1}{\lambda(B(y_i,1))}$ on \mathbb{R}^2 with $c(x,y)=\|x-y\|$. Then, any transport map must transport the Dirac to the Dirac and the ball to the ball, so that is cost is $\|x_1-x_2\|+\|y_1-y_2\|$. On the other hand, a transport plan can transport δ_{x_1} to $\alpha\lambda_{B(y_2,1)}$ with cost $\leq \|x_1-y_2\|+1$. The total cost of this transport plan is $2=\|x_1-y_2\|+\|x_2-y_1\|$, which can be lower that $\|x_1-x_2\|+\|y_1-y_2\|$.

Cont.

Lemma 2

If $\mu, \nu \in \mathcal{P}(\mathbb{R}^d)$ and μ has no atoms, then $\exists T: \mathbb{R}^d \to \mathbb{R}^d$ measurable such that $T_\#\mu = \nu$.

Lemma 3

Let K be a compact metric space. For any $\varepsilon>0$, there exists a (measurable) partition $K_1,\ldots K_N$ of K such that for every i, $\operatorname{diam}(K_i)\leq \varepsilon$

Proof. By compactness, there exists N points $x_1, \ldots x_N$ such that $K \subseteq \bigcup_i \mathrm{B}(x_i, \varepsilon)$. The partition K_1, \ldots, K_N of K defined recursively by

$$K_i=\{x\in K\setminus (K_1\cup\cdots\cup K_{i-1})\,|\,\forall j\in [N]_{-i},\;d(x,x_i)\leq d(x,x_j)\}$$
 so that $K_i\subseteq \mathrm{B}(x_i,\varepsilon)$

Theorem ?? Proof.

Let write down the constraint $\gamma \in \Pi(\mu, \nu)$ as follows: if $\gamma \in \mathcal{M}^+(X \times Y)$ we have

$$\sup_{\varphi,\psi} \int_X \varphi \,\mathrm{d}\mu + \int_Y \varphi \,\mathrm{d}\nu + \int_{X\times Y} (\varphi(x) + \psi(y)) \,\mathrm{d}\gamma = \begin{cases} 0 & \text{if } \gamma \in \Pi(\mu,\nu), \\ +\infty & \text{otherwise }, \end{cases}$$

where the supremum is taken on $C_b(X) \times C_b(Y)$. We can now remove the constraint on γ in (KP)

$$\inf_{\gamma \in \mathcal{M}^+(X \times Y)} \int_{X \times Y} c \, \mathrm{d}\gamma + \sup_{\varphi, \psi} \int_X \varphi \, \mathrm{d}\mu + \int_Y \psi \, \mathrm{d}\nu - \int_{X \times Y} (\varphi(x) + \psi(y)) \, \mathrm{d}\gamma$$

and by interchanging sup and inf we get

$$\sup_{\varphi,\psi} \int_X \varphi \, \mathrm{d}\mu + \int_Y \psi \, \mathrm{d}\nu + \inf_{\gamma \in \mathcal{M}^+(X \times Y)} \int_{X \times Y} (c(x,y) - \varphi(x) - \psi(y)) \, \mathrm{d}\gamma$$

One can now rewrite the inf in γ as constraint on φ and ψ as

$$\inf_{\gamma \in \mathcal{M}^+(X \times Y)} \int_{X \times Y} (c - \varphi \oplus \psi) \, \mathrm{d}\gamma = \begin{cases} 0 & \text{if } \varphi \oplus \psi \leq c \text{ on } X \times Y \\ -\infty & \text{otherwise} \end{cases}$$

where $\varphi \oplus \psi(x,y) := \varphi(x) + \psi(y)$

Definition 7 (Dual Problem)

Given $\mu\in\mathcal{P}(X), \nu\in\mathcal{P}(Y)$ and a cost function $c\in C(X\times Y)$. The dual problem is the following optimization problem

$$(\mathsf{DP}) := \sup \left\{ \int_X \varphi \, \mathrm{d}\mu + \int_Y \psi \, \mathrm{d}\nu \, | \, \varphi \in C_b(X), \psi \in C_b(Y), \varphi \oplus \psi \leq c \right\}$$

Remark. One trivially has the weak duality inequality (KP) \geq (DP). Indeed, denote

$$L(\gamma, \varphi, \psi) = \int_{X \times Y} (c - \varphi \oplus \psi) \, \mathrm{d}\gamma) + \int_X \varphi \, \mathrm{d}\mu + \int_Y \psi \, \mathrm{d}\nu$$

one has for any $(\varphi, \psi, \gamma) \in C_b(X) \times C_b(X) \times \mathcal{M}^+(X \times Y)$,

$$\inf_{\tilde{\gamma} \geq 0} L(\tilde{\gamma}, \varphi, \psi) \leq L(\gamma, \varphi, \psi) \leq \sup_{\tilde{\varphi}, \tilde{\psi}} L(\gamma, \tilde{\varphi}, \tilde{\psi})$$

Taking the supremum with respect to (φ, ψ) on the left and the infimum with respect to γ on the right gives $\inf (KP) \ge \sup (DP)$. When $\sup (DP) = \int (KP)$, one talks of strong duality.

We now focus on the existence of a pair (φ, ψ) which solves (DP).

Definition 8 (c-transform and \bar{c} -transform)

Given a function $f:x\to \bar{\mathbb{R}}$, we define its \bar{c} -transform $f^c:Y\to \mathbb{R}bar\mathbb{R}$ by

$$f^{c}(y) = \inf_{x \in X} c(x, y) - f(x)$$

We also define the $\bar{c}\text{-transform}$ of $g:Y\to\bar{\mathbb{R}}$ by

$$g^{\bar{c}}(x) = \inf_{y \in Y} c(x, y) - g(y)$$

We also way that a function ψ on Y is \bar{c} -concave if there exists f such that $\psi=f^c$.

If we consider f^c , we have that $f^c(y) = \inf_x \tilde{f}_x(y)$ with $\tilde{f}_x(y) = c(x,y) - f(x)$, and the functions \tilde{f}_x satisfy $\tilde{f}_x(y) - \tilde{f}_x(y) \leq w(d_Y(y,y'))$. This implies that f^c actually shares the same continuity modulus of c.

Theorem 3

Suppose X and Y are compact and $c \in C(X \times Y)$. Then there exists a pair $(\varphi^{c\bar{c}}, \varphi^c)$ which solves (DP).

Proof. Let us first denote by $J(\varphi, \psi)$ the following functional

$$J(\varphi, \psi) = \int_X \varphi \, \mathrm{d}\mu + \int_Y \psi \, \mathrm{d}\nu$$

note that for every constant λ , $J(\varphi-\lambda,\psi+\lambda)=J(\varphi,\psi)$. Given now a maximizing sequence (φ_n,ψ_n) we can improve it by means of the c- and \bar{c} -transform obtaining a new one $\varphi_n^{c\bar{c}},\varphi_n^c$. Notice that by the consideration above the sequences $\varphi_n^{c\bar{c}},\varphi_n^c$ are uniformly equicontinuous. Since φ_n^c is continuous on a compact set we can always subtract is minimum and assume that $\min \varphi_n^c = 0$. This implies that the sequence φ_n^c is also equibounded as $0 \le \varphi_n^c \le w(\operatorname{diam}(Y))$. We also deduce uniform bounds on $\varphi_n^{c\bar{c}}$ as $\varphi_n^{c\bar{c}} = \inf_Y c(x,y) - \varphi^c(y)$. This let us apply Ascoli-Arzela's theorem and extract two uniformly converging subsequences $\varphi_n^{c\bar{c}} \to \bar{\varphi}$ an $\varphi_{n_K}^c \to \bar{\psi}$ where the pair $(\bar{\varphi},\bar{\psi})$ satisfies the inequality constraint. Moreover, since $(\varphi_n^{c\bar{c}},\varphi_n^c)$ is a maximising sequence we get that the pair $(\bar{\varphi},\bar{\psi})$ is optimal. Now one can apply again the c- and $\bar{c}-$ -transforms obtaining an optimal pair of the form $(\bar{\varphi}^{c\bar{c}},\bar{\varphi}^c)$