$$A_{1} = \begin{bmatrix}
0 & 1 & 2 \\
1 & 1 & 1 \\
1 & 0 & -1
\end{bmatrix}
\quad
A_{2} = \begin{bmatrix}
-1 & 8 & 6 \\
-1 & 11 & 6 \\
4 & -8 & -3
\end{bmatrix}
\quad
A_{3} = \begin{bmatrix}
3 & 1 & -1 \\
1 & 1 & 1 \\
2 & 0 & 2
\end{bmatrix}$$

$$A_{4} = \begin{bmatrix}
0 & 1 & -2 \\
-1 & 0 & 2 \\
2 & -2 & 0
\end{bmatrix}
\quad
A_{5} = \begin{bmatrix}
1 & 1 & 1 & a \\
1 & 1 & a & 1 \\
1 & a & 1 & 1
\end{bmatrix}
\quad
A_{6} = \begin{bmatrix}
1 & 1 & 1 & a \\
1 & 1 & a & 1 \\
1 & a & 1 & 1
\end{bmatrix}$$

avec $a \in \mathbb{K}$. Pour tout $k \in [1, 5]$, et pour tout $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$,

- Réuire A_k dans $M_3(\mathbb{K})$ et $M_4(\mathbb{K})$;
- Trouver le polynôme minimal de A_k ;
- Calculer A_k^n pour tout $n \in \mathbb{N}$;
- Déterminer $\mathcal{C}(A_k) = \{M \in M_3(\mathbb{K})(M_4(\mathbb{K})) | MA_k = A_k M \}$, appelé commutant de A_k .
- 2 Réduire les matrices suivantes :

$$M_{1} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & & \\ \vdots & \ddots & \\ 1 & & & 1 \end{bmatrix} \in M_{n+1}(\mathbb{C}) \qquad M_{2} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 1 & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 0 & 1 \\ 0 & \cdots & 0 & 1 & 0 \end{bmatrix} \in M_{n}(\mathbb{C})$$

$$\begin{bmatrix} 5 & \text{Soient } p \in \mathbb{N}^{*} \text{ et } a_{0}, \cdots, a_{p-1} \in \mathbb{C}. \text{ On définit par récurrence la suite } (x_{n})_{n \in \mathbb{N}} \text{ par } \begin{cases} \forall n \in [[0, p-1]], & x_{n} = a_{n} \\ \forall n \in \mathbb{N}, & x_{n+p} = \frac{1}{p} \sum_{k=0}^{p-1} x_{n+k} \end{cases}$$

$$M_{3} = \begin{bmatrix} e_{n} & e_{1} \cdots & e_{n-1} \end{bmatrix} \in M_{n}(\mathbb{C})$$
étudier la convergence de $(x_{n})_{n \in \mathbb{N}}$.

$$\begin{array}{c} \textbf{Réduction des Endomorphismes} \\ A_1 = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 1 & 1 \\ 1 & 0 & -1 \end{bmatrix} & A_2 = \begin{bmatrix} -1 & 8 & 6 \\ -1 & 11 & 6 \\ 4 & -8 & -3 \end{bmatrix} & A_3 = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 1 & 1 \\ 2 & 0 & 2 \end{bmatrix} \\ A_4 = \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 2 \\ 2 & -2 & 0 \end{bmatrix} & A_5 = \begin{bmatrix} 1 & 1 & 1 & a \\ 1 & 1 & 1 \\ 1 & a & 1 & 1 \end{bmatrix} & M_5 = \begin{bmatrix} 1 & 1 & 1 & a \\ 1 & 1 & a & 1 \\ 1 & a & 1 & 1 \\ 1 & a & 1 & 1 \\ 1 & a & 1 & 1 \end{bmatrix} & M_6 = \begin{bmatrix} a_0 & a_1 & \cdots & a_n \\ a_n & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_1 \\ a_1 & \cdots & a_n & a_0 \end{bmatrix} \in M_{n+1}(\mathbb{C}) \\ \textbf{3} \text{ Soit } M \in M_n(\mathbb{R}), \text{ antisymétrique. Étudier la parité de χ_M.}$$

3 Soit $M \in M_n(\mathbb{R})$, antisymétrique. Étudier la parité de χ_M .

4 Donner une condition nécessaire et suffisante sur les complexes a, b, c, d, e, f pour que la matrice suivante soit diagonalisable dans $M_4(\mathbb{C})$:

$$\left[\begin{array}{cccc} 1 & a & b & c \\ & 1 & d & e \\ & & -1 & f \\ & & & -1 \end{array}\right]$$

$$\begin{cases} \forall n \in [|0, p - 1|], & x_n = a_n \\ \forall n \in \mathbb{N}, & x_{n+p} = \frac{1}{p} \sum_{k=0}^{p-1} x_{n+k} \end{cases}$$

étudier la convergence de $(x_n)_{n\in\mathbb{N}}$.

6 Soit $u \in \mathcal{L}(\mathbb{R}^n)$. On suppose que χ_u a une racine complexe non réelle $\alpha + i\beta$ avec C'est un sous-espace de $\mathcal{L}(E)$. Calculer sa dimension en fonction du degré de π_f . $\alpha, \beta \in \mathbb{R}$ et $\beta \neq 0$. Montrer qu'il existe un plan P stable par u et une base de P, dans laquelle l'endomorphisme induit par u a pour matrice

$$\left[\begin{array}{cc} \alpha & -\beta \\ \beta & \alpha \end{array}\right]$$

7 Soit $P \in \mathbb{K}[X]$, unitaire de degré $n \in \mathbb{N}^*$. On appelle matrice compagnon de P la matrice

$$C_{P} = \begin{bmatrix} 0 & 0 & \cdots & 0 & -P_{0} \\ 1 & \ddots & \ddots & \vdots & \vdots \\ & \ddots & \ddots & 0 & \vdots \\ & & \ddots & 0 & -P_{n-2} \\ & & & 1 & -P_{n-1} \end{bmatrix} \in M_{n}(\mathbb{K})$$

Calculer son polynôme caractéristique et sonpolynôme minimal. Montrer que ses sous-espaces propres sont tous de dimension 1. À quelle condition C_p est-elle diagonalisable?

8 Soit $A \in M_n(\mathbb{R})$ telle que $A(A^2 + A + I_n) = 0$. Montrer que le rang de A est pair.

9 Soit $A \in M_n(\mathbb{R})$ telle que $A^3 + 3A - 4I_n = 0$. Montrer que det A.

Trouver toutes les matrices $A \in M_n(\mathbb{R})$ telles que $A^5 = A^2$ et $\operatorname{Tr} A = n$.

11 Soit $M \in M_2(\mathbb{Z})$. On suppose qu'il existe $n \in \mathbb{N}^*$ tel que $M^n = I_2$. Montrer que $M^{12} = I_2$.

| 12 | Soient E un K-espace vectoriel de dimension n non nulle, et $f \in \mathcal{L}(E)$. On note

$$\mathbb{K}[f] = \operatorname{Vect}(f^k)_{k \in \mathbb{N}}$$

13 On suppose E de dimension finie $n \in \mathbb{N}^*$. Soient $u \in \mathcal{L}(E)$ et λ une valeur propre de u. Montrer que les assertions suivantes sont équivalentes :

 $1.E_{\lambda}(u) = \operatorname{Ker}(u - \lambda \operatorname{id}_{E})^{2};$

2. $E_{\lambda}(u)$ et $\operatorname{Im}(u - \lambda \operatorname{id}_{E})$ sont supplémentaires;

3. $E_{\lambda}(u)$ a un supplémentaires stable par u;

4. Les multiplicités algébrique et géométrique de λ sont égales;

5. λ est racine simple de π_f . Si ces conditions sont satisfaites, montrer que $\operatorname{Im}(u - \lambda \operatorname{id}_E)$ est le seul supplémentaires de $E_{\lambda}(u)$ stable par u.

14 Soient A et B dans $M_n(\mathbb{K})$. Montrer que $\chi_{AB} = \chi_{BA}$. Et si A et B ne sont pas carrées?

Indication: Commencer par supposer A inversible. Ensuite, vous devez savoir quoi faire.

15 Soient $A, B \in M_n(\mathbb{C})$. Calculer le polynôme caractéristique de $\begin{vmatrix} A & B \\ B & A \end{vmatrix}$ en fonction de χ_{A+B} et χ_{A-B} .

16 Soit E un C-espace vectoriel, de dimension finie non nulle. Soit $f \in \mathcal{L}(E)$ tel que f^2 est diagonalisable. Montrer que f est diagonalisable si, et seulement si, $\operatorname{Ker} f = \operatorname{Ker} f^2$.

17 Soient
$$A \in M_n(\mathbb{C})$$
 et $B = \begin{bmatrix} 0 & A \\ I_n & 0 \end{bmatrix} \in M_{2n}(\mathbb{C})$.

Calculer χ_B en fonction de χ_A et discuter la diagonalisabilité de B en fonction de celle de A.

18 Soient $A \in GL_n(\mathbb{K})$. Comparer les polynômes caractéristiques et minimaux des $A \text{ et } A^{-1}.$

 $\boxed{19} \text{ Soient } A \in M_n(\mathbb{C}). \text{ On pose } B = \begin{bmatrix} 4A & 2A \\ -3A & -A \end{bmatrix} \in M_{2n}(\mathbb{C}). \text{ Montrer que } B \text{ est diagonalisable si, et seulement si, } A \text{ est diagonalisable. Quelle est la relation entre Sp} A \text{ et Sp} B ?$

Indication : Commencer par réduire $\begin{bmatrix} 4 & 2 \\ -3 & -1 \end{bmatrix} \in M_2(\mathbb{C}).$

20 Soient $A, B \in M_n(\mathbb{C})$ telles que $\chi_A = \chi_B$. Soit $P \in \mathbb{C}[X]$. Montrer que P(A) et P(B) ont le même polynôme caractéristique. A-t-on un résultat similaire pour les polynôme minimaux?

21 Soient $A, B \in M_2(\mathbb{C})$, qui ne sont pas des homothéties. Montrer que A et B sont semblables si, et seulement si, $\chi_A = \chi_B$.

Si on retire l'hypothèse "qui ne sont pas des homothéties" par quelle hypothèse sur les polynômes minimaux faut-il la remplacer pour avoir encore l'équivalence?

22 Soient $A, B \in M_3(\mathbb{C})$. Montrer que A et B sont semblables si, et seulement si, $\chi_A = \chi_B$ et $\pi_A = \pi_B$. Montrer que ce résultat n'est plus vrai dans $M_4(\mathbb{C})$.

23 Soit $A \in M_n(\mathbb{C})$. Montrer que les assertions suivantes sont équivalentes :

- 1. A est nilpotente;
- 2. Pour tout $k \in [|1, n|]$, la trace de A^k est nulle.

Ensuite, prouver que si $\text{Tr}A^k=0$ pour $k\in[|1,n-1|]$ et $\text{Tr}A^n\neq 0$, alors A est diagonalisable.

Une preuve du théorème de Cayley-Hamilton. Soient E de dimension $n \in \mathbb{N}^*$ et f un endomorphisme de E. On fixe $x \in E$ et on note

$$U_{f,x} = \text{Vect}(f^k(x))_{k \in \mathbb{N}}$$
 $I_f(x) = \{ P \in \mathbb{K}[X] | P(f)(x) = 0 \}.$

1. Vérifier que $U_{f,x}$ est stable par f et montrer qu'il existe un unique $\pi_{f,x} \in \mathbb{K}[X]$, unitaire, tel que : $\forall Q \in \mathbb{K}[X]$, $Q \in I_f(x) \iff \pi_{f,x}|Q$.

- 2. On note $p \in \mathbb{N}$ le degré de $\pi_{f,x}$. Montrer que $(f^k x)_{0 \le k \le p-1}$ est une base de $U_{f,x}$.
- 3. Montrer que $\pi_{f,x}|\chi_f$ et conclure.
- Soient $A, B \in M_n(\mathbb{C})$. Montrer que les assertions suivantes sont équivalentes :
- 1. Il existe $U \in M_n(\mathbb{C})$, non nulle, telle que UA = BU;
- 2. $\chi_B(A)$ n'est pas inversible;
- 3. A et B ont une valeur propre en commun.

Indication : Pour prouver (3) \Rightarrow (1), prendre un vecteur propre x de A et un vecteur propre y de tB , relatifs à la valeur propre commune. Construire la matrice U à partir de x et ty .

26 Soient $A, B \in M_n(\mathbb{K})$ et $r \in [|1, n|]$. Montrer que, s'il existe $U \in M_n(\mathbb{K})$ de rang r telle que UA = BU, alors χ_A et χ_B ont un diviseur commun de degré r.

Indication : Comme d'habitude lorsque le rang est fixé...

Endomorphismes cycliques On suppose E de dimension $n \in \mathbb{N}^*$ et $f \in \mathcal{L}(E)$; on suppose qu'il existe $x \in E$ tel que $B = (x, \dots, f^{n-1}x)$ est une base de E (on dit alors que f est un endomorphisme cyclique).

- 1. Donner la matrice de f dans B ainsi que son polynôme caractéristique, en fonction de $[f^nx]_B$.
- 2. Soit $g \in \mathcal{L}(E)$. Montrer que f et g commutent si, et seulement si, il existe $P \in \mathbb{K}[X]$ tel que g = P(f).
- 3. Quelle est la dimension du commutant de f?

Invariance du polynôme minimal par extension de corps Soient \mathbb{K} et \mathbb{L} deux corps, tels que $\mathbb{K} \subset \mathbb{L}$. Alors tout \mathbb{L} -espace vectoriel a aussi une structure de \mathbb{K} -espace vectoriel.

Soient $n \in \mathbb{N}^*$ et $M \in M_n(\mathbb{K})$. Alors M est aussi dans $M_n(\mathbb{L})$ et on aimerait savoir si son polynôme minimal dans $\mathbb{K}[X]$ et dans $\mathbb{L}[X]$ sont égaux.

1. Montrer que les polynôme caractéristiques sont les mêmes dans $\mathbb{K}[X]$ et $\mathbb{L}[X]$.

- 2. Soient p et q deux entiers non nuls, et x_1, \ldots, x_p dans \mathbb{K}^q . Montrer que $\operatorname{rg}_{\mathbb{K}}(x_1, \ldots, x_p) = \operatorname{rg}_{\mathbb{L}}(x_1, \ldots, x_p)$.
- 3. Soit $M \in M_n(\mathbb{K})$. Montrer que son polynôme minimal dans $\mathbb{K}[X]$ et dans $\mathbb{L}[X]$ sont égaux.

29 Soit G un sous-groupe de $GLn(\mathbb{C})$, dequi tous les éléments sont diagonalisables et tel que $\{\operatorname{Tr} g|g\in G\}$ est fini. On note V le sous-espace de $M_n(\mathbb{C})$ engendré par G. On note $p\in\mathbb{N}^*$ sa dimension et (g_1,\cdots,g_p) une base.

1. Montrer que l'application

$$\varphi: \mathbb{C} \longrightarrow \mathbb{C}^p$$
 est injective.
 $g \mapsto (\operatorname{Tr}(gg_1), \cdots, \operatorname{Tr}(gg_p))$

Indication : Si $\varphi(g) = \varphi(h)$, prouver que $gh^{-1} - I_n$ est nilpotent.

- 2. En déduire que G est fini.
- 3. Application : Soit G un sous-groupe de $GLn(\mathbb{C})$. On suppose qu'il existe $m \in \mathbb{N}$ tel que $\forall g \in G, \quad g^m = I_n$. Montrer que G est fini.

Vocubulaire

Chinois
不变子空间
诱导映射
特征值
特征向量
与λ对应的特征子空间
谱
可对角化的
可三角化的
特征多项式
代数重数
几何重数
零化多项式
核
理想
最小多项式
幂零的
特征子空间
核嵌套引理