

Big Data System Design

Lecture 1: Course Overview

Jeong-Hun Kim (etyanue@chungbuk.ac.kr)

Agenda Layout

Course Instructors 02 **Course Objectives and Features** 03 **Course Schedule and Evaluation** 04 **Project and Policies**

Course Instructors

김정훈

Researcher & Lecturer/PhD (etyanue@chungbuk.ac.kr)

Office: \$4-1, 304
Tue. 13:00 – 17:00

Open Chat

Link available on CBNU Blackboard

Office: Kakao Tue 13:00 – 17:00

Do you still use Relational DBMS?

410 systems in ranking, March 2023

	Rank				Score		
Mar 2023	Feb 2023	Mar 2022	DBMS	Database Model	Mar 2023	Feb 2023	Mar 2022
1.	1.	1.	Oracle 🚹	Relational, Multi-model 🚺	1261.29	+13.77	+9.97
2.	2.	2.	MySQL #	Relational, Multi-model 👔	1182.79	-12.66	-15.45
3.	3.	3.	Microsoft SQL Server ₽	Relational, Multi-model 👔	922.01	-7.08	-11.77
4.	4.	4.	PostgreSQL 😷	Relational, Multi-model 👔	613.83	-2.67	-3.10
5.	5.	5.	MongoDB ⊞	Document, Multi-model 👔	458.78	+6.02	-26.88
6.	6.	6.	Redis 😷	Key-value, Multi-model 👔	172.45	-1.39	-4.31
7.	7.	7.	IBM Db2	Relational, Multi-model 👔	142.92	-0.04	-19.22
8.	8.	8.	Elasticsearch	Search engine, Multi-model 🔞	139.07	+0.47	-20.88
9.	9.	↑ 10.	SQLite [1]	Relational	133.82	+1.15	+1.64
10.	10.	4 9.	Microsoft Access	Relational	132.06	+1.03	-3.37

Source: https://db-engines.com/en/ranking

Do you still use Relational DBMS?

Source: https://db-engines.com/en/ranking

Course Objectives

Objective 1

NoSQL

Understand how NoSQL databases can provide flexibility and scalability in handling a large amount of data

Objective 2

MongoDB

Know how to store and retrieve data from a database using MongoDB query and aggregation frameworks

Objective 3

MongoDB Tools

Compass and MongoDB Management Studio, PyCharm, Jupyter Notebook

Objective 4

Big Data Management

Manage big data efficiently using various tools, such as replication and sharding

Objective 5

Implementation Experience

Develop big data-driven applications using Python

Course Features

Big Data

Learning about Big
Data and NoSQL
database

Project

Real-world applications using Big Data

Practice

Practice developing Big Data applications using MongoDB

Future

Use-cases and Prospects of Big Data

Monthly Schedule

*Note that the course schedule may change depending on students' understanding

Seven Databases in Seven Weeks

A Guide to Modern Databases and the NoSQL Movement

Eric Redmond and Jim R. Wilson

Series editor: Bruce A. Tate Development editor: Jacquelyn Carter

Textbook and References

PPT Slides from Course

Jeong-Hun Kim, CBNU, 2024

> MongoDB: The **Definitive Guide**

Kristina Chodorow, Oreilly 2013

> Seven Databases in Seven Weeks

Erid Redmond, The progmatic Bookshelf, 2012

Course Evaluation

30%

30%

30%

10%

Mid-Term Examination

Mid semester and related to RDBMS, NoSQL and MongoDB, querying

Project Presentation

A semester-long team project with three members. Should develop a big data driven application

Homework

Weekly tasks that will be used to check your progress

Attitude

Late submission of homework, being late for the lectures

Project Evaluation

No	Requirements	Done
1	Choose publicly available data (JSON).Note that your data must have a large sizeYou can also use the dataset from your own project	V
2	Store the data in MongoDB	V
3	Create queries (at least 8)	V
4	Visualize your data	$\overline{\mathbf{V}}$
5	Perform optimization - indexing, replication, sharding	V
6	Make project presentation	V

Project Details

For this course, there is a semester-long team project (3 members) that involves creating a database-driven application using MongoDB.

Course Policies

Lecture Style

Lecture 50% and practice 50%

Lecture Notes

Lecture notes will be available via CBNU
Blackboard 10 minutes before the
lecture

Homework

The homework will be announced via CBNU Blackboard after practice

Examination

Cheating students will receive the disciplinary actions (F grade).

Department Rules

Read the rules carefully and make sure you follow the instructions

Prevention

Wear mask, no food or drinks, maintain social distance, record your health status

COVID-19 Attendance

Stay home if you feel sick (Only two times per semester). Still have to do the homework

No Cheating

Violation of these rules may negatively impact scholarship and other benefits

Questions?

See you next time!