

دانشكده مهندسي كامپيوتر

مبانی و کاربردهای هوش مصنوعی ترم پاییز ۱۴۰۱

ياسخنامه تمرين دوم

سوال ۱ (۲۰ نمره)

الف)

۱- نادرست. اعمال arc consistency به یک CSP با ساختار درختی تضمین می کند که اگر اختصاص متغیرها از ریشه شروع شود و به سمت برگها حرکت کند، نیازی به backtrack نیست، پس پاسخ 0 است.

توجه: در صورتی که کسی پاسخ را درست گرفته باشد و توضیحات بالا را ارائه کرده باشد باز هم نمره تعلق میگیرد.

۲- درست.

<u>(</u>ب

مقدار M کوچکتر یا مساوی E است؛ زیرا minimizer این ضمانت را می دهد که در صورتی که بهینه عمل کند حتما به مقدار M دست می یابد. در صورتی هم که بهینه نباشد و عملکرد رندوم داشته باشد عملکرد بهتری دارد. بنابراین expectimax در تغییرات گرهها نمی تواند کمتر از مینیمم گره successor باشد.

سوال ۲ (۳۰ نمره)

الف) متغيرها: {A, B, C, D, E, F} دامنه: {6, 5, 4, 5, 5, 1, 2

محدوديتها:

1: $A \in \{3, 4\}$

2: $|E-B| \neq 3$

3: $C \in \{1, 6\}$

4: |D-F| = 1

5: |D-E| = 3

6: $|A-C| \neq 1$

7: (C, D) \in {(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6),

(4, 1), (4, 2), (4, 3), (5, 1), (5, 2), (5, 3), (6, 1), (6, 2), (6, 3)

8: $A \neq B \neq C \neq D \neq E \neq F$

برای محدودیت دوم، چهارم، پنجم و ششم نوشتن مجموعه و زوج مرتب هم درست است.

نکته ی قابل مطرح در این سوال این است که با اعمال محدودیت ۱ و ۳، محدودیت ششم هم ارضا می شود. همچنین مورد هفتم هم تنها شامل ۶ زوج مرتب که در آنها C برابر ۱ یا ۶ است می شود، اگر چنین نتیجه گرفته باشید هم در این مورد قابل قبول است؛ هر چند بهتری است که محدودیت ها کامل نوشته شده باشد و هر کدام از محدودیت ها را جدا و مستقل از هم بررسی کنید (مانند موارد نوشته شده).

ب) محدودیت هشتم هر دو متغیر را به هم متصل می کند. در واقع پاسخ این سوال یک گراف کامل با ۶ راس و انتخاب ۲ از ۶ یا ۱۵ یال است.

 $C \in \{1, 6\}$: صورت صورت صورت است ($\epsilon \in \{1, 6\}$

د) تنها یک بار باید Forward Checking اعمال شود و تنها محدودیتی که قابل اجرا کردن است، محدودیت هفتم است؛ زیرا در جدول داده شده مقدار C برابر یک است، پس D نمیتواند مقادیر C و C را بپذیرد. پس از اعمال این محدودیت، مجددا به دلیل مقدار C محدودیت هشتم مقدار C را از تمامی متغیرها حذف می کند. توجه داشته باشید که به طور مثال محدودیت دوم قابل اعمال کردن نیست، زیرا مقادیر موجود برا هر دو متغیر C و C به گونهای است که برای اعمال این محدودیت باید خودمان پیشفرضهایی داشته باشیم و مقادیری را به دلخواه حذف کنیم که جزو عملیات انجام شده در Forward Checking نیست.

A			3	4		
В	1	2	3	4	5	6
С	1					
D	1	2	3	4	5	6
Е	1	2	3	4	5	6
F	1	2	3	4	5	6

(0

A			3	4		
В	1	2	3	4	5	6
С	1					
D	1	2	3	4	5	6
E			3			

F 1 2 3 4 5 6

سوال ۳ (۲۰ نمره)

c2c1

DO

+ IT

NOW

الف)

 $D,O,I,T,N,W \in \{0,1,2,3,4,5,6,7,8,9\}$

 $c1,c2 \in \{0,1\}$

 $\forall x,y \in \{D,O,I,T,N,W\}: x!=y$

DO عدد است. پس: 0=!D

IT عدد است. پس: 0=!I

NOW عدد است. پس: 0=!N

O + T = 10 * c1 + w

D + I + c1 = 10 * c2 + O

N = c2

ب)

ج)

ابتدا آرک کانسیستنی اعمال می کنیم تا دامنه متغیر ها به دامنه محدود شده برسد.

 $O,T,W \subseteq \{0,1,2,3,4,5,6,7,8,9\}$

 $I,D \in \{1,2,3,4,5,6,7,8,9\}$

 $c1 \in \{0,1\}$

 $N,c2 \in \{1\}$

طبق MRV ابتدا باید به c2 یا N مقدار بدهیم. در اینجا انتخاب به صورت رندم اتفاق میافتد. c2 را انتخاب می کنیم. از آنجایی که با LCV ترتیب تغییری نمی کند پس ۱ را برای c2 انتخاب می کنیم. سپس مجدد آرک کانسیستنسی را اعمال می کنیم:

```
O,T,W \subseteq \{0,1,2,3,4,5,6,7,8,9\}
I,D \subseteq \{1,2,3,4,5,6,7,8,9\}
c1 \subseteq \{0,1\}
```

 $N \in \{1\}, c2 = 1$

طبق MRV حالاً باید به N مقدار بدهیم. از آنجایی که با LCV ترتیب تغییری نمی کند پس ۱ را برای N انتخاب می کنیم. سپس مجدد آرک کانسیستنسی را اعمال می کنیم:

O,T,W \in {0,1,2,3,4,5,6,7,8,9} I,D \in {1,2,3,4,5,6,7,8,9} c1 \in {0,1} N = c2 = 1

طبق MRV حالاً باید به c1 مقدار بدهیم. طبق LCV اگر ۱ را انتخاب کنیم دامنه T و O نمیتوانند ، را داشته باشند زیرا ، به اضافه هیچ رقمی بزرگتر از ۱۰ نمی شود، پس ، را برای c1 انتخاب می کنیم. سپس مجدد آرک کانسیستنسی را اعمال می کنیم:

 $T,W \in \{0,1,2,3,4,5,6,7,8,9\}$ $O \in \{0,1,2,3,4,5,6,7,8\}$ نخواهد شد) $O \in \{0,1,2,3,4,5,6,7,8\}$ $O \in \{0,1,2,3,4,5,6,7,8,9\}$ $O \in \{0,1,2,3,4,5,6,7,8,9\}$ $O \in \{0,1,2,3,4,5,6,7,8,9\}$

طبق MRV حالا باید به D یا D مقدار بدهیم. اینجا انتخاب به صورت رندم اتفاق می افتد. D را انتخاب می کنیم. طبق LCV اگر D را انتخاب کنیم، از دامنه D تمام متغیر ها به جز D حذف می شوند و دامنه D نیز به D می شود زیرا مجموع این دو متغیر به خاطر D باید بزرگتر مساوی D باشد و یکان جمعشان نیز در D قرار می گیرد. پس D بیشترین محدودیت دامنه را ایجاد می کند، به همین منوال D متغیر ها را به جز D و D به محدود D محدود می کند. به همین ترتیب اگر پیش برویم هرچه رقم بزرگتر باشد دامنه کمتری محدود می کند پس D را انتخاب می کنیم. سپس مجدد D کانسیستنسی را اعمال می کنیم:

 $T,W \in \{0,1,2,3,4,5,6,7,8,9\}$

 $O \in \{0,1,2,3,4,5,6,7,8\}$

 $I \subseteq \{1,2,3,4,5,6,7,8,9\}$

D = 9, c1 = 0, N = c2 = 1

طبق MRV حالا باید به I مقدار بدهیم. طبق LCV اگر هر رقمی انتخاب شود فقط و فقط یک رقم در O می تواند موجود باشد اما اگر O برابر ۹ باشد، متغیر T باید ، باشد زیرا c1 برابر ، است و جمع O و T کمتر از ۱۰ باید باشد و همچنین دامنه W نیز صرفا ۹ می شود و اگر Λ باشد ، و ۱ برای T و ۹ و Λ برای W باقی می ماند پس هر چه رقم انتخابی برای O کوچکتر باشد دامنه ها کمتر محدود می شوند پس I را باید ۱ مقدار بدهیم تا O بتواند برابر ، شود. سپس مجدد آرک کانسیستنسی را اعمال می کنیم:

 $T,W \in \{0,1,2,3,4,5,6,7,8,9\}$

 $O \in \{0\}$

I = 1, D = 9, c1 = 0, N = c2 = 1

طبق MRV حالاً باید به O مقدار بدهیم. از آنجایی که با LCV ترتیب تغییری نمی کند پس 0 را برای O انتخاب می کنیم. سپس مجدد آرک کانسیستنسی را اعمال می کنیم:

 $T,W \in \{0,1,2,3,4,5,6,7,8,9\}$

O = 0, I = 1, D = 9, c1 = 0, N = c2 = 1

طبق MRV حالا باید به T یا W مقدار بدهیم. اینجا انتخاب به صورت رندم اتفاق میافتد. T را انتخاب می کنیم. از آنجایی که با LCV ترتیب تغییری نمی کند زیرا هر T انتخاب کنیم همان مقدار باید W باشد، پس ۱ را برای T انتخاب می کنیم. سپس مجدد آرک کانسیستنسی را اعمال می کنیم:

 $W \subseteq \{1\}$

T = 1, O = 0, I = 1, D = 9, c1 = 0, N = c2 = 1

طبق MRV حالاً باید به W مقدار بدهیم. از آنجایی که با LCV ترتیب تغییری نمی کند ۱ را برای W انتخاب می کنیم.

(امتیازی ۱۰ نمره)

EAT

+ THAT

FROG

پاسخ این سوال همانند سوال قبل است. یک جوابی که در سوال کار میکند ارائه می گردد اما پاسخ کامل باید تمام مراحل سوال قبل را داشته باشد.

713

+3813

4526

سوال ۴ (۱۰ نمره) الف)

ب)

۱- برای c=2:

در این حالت استفاده از قدرت بهینه است. عامل به راست حرکت می کند و از قابلیتش استفاده می کند و 6=2-7 را به دست می آورد(در واقع حریف را کنترل کرده و 6 برسد، پس در هر صورت استفاده از آن بهتر است چون در حالت عادی مقدار 6 minimax همان 1 است. اما اگر در سمت راست از قابلیتش استفاده کند بهینه است.

برای c=5:

دراین حالت استفاده از قابلیت بهینه نیست چون رفتن به راست به 2=5-7 و رفتن به چپ به 1=6-6 منجر می شود که هر دو از نتیجه استفاده نکردن از آن که 3 است کمترند.

۲- شبه کد اولیه و بدون تغییر به صورت زیر است:

تغییرات در تابع Min_Value اعمال می شوند.

def min-value(state):

initinalize $v = \infty$

initinalize $\mathbf{v}_{\mathrm{m}} = -\infty$

for each successor of state:

$$v = min(v, temp)$$

$$v_m = max(v_m, temp)$$

end for

 $return \ max(v, \, v_{_m} - c)$

سوال ۵ (۲۰ نمره)

الف و ب) نود های قرمز در بخش ب هرس می شوند.

ج) دانستن این که مقادیر در یک بازه محدود یا نامثبت (مقادیر حد بالا داشته) باشند؛ احتمال فرزندان برابر و تعداد فرزندان ثابت باشد؛ یا احتمال هر شاخه مشخص باشد.

د)

الف) x <=2

x < =7 (\rightarrow

ج) ممكن نيست.

د) ممکن نیست زیرا مجموع گره ها ضربدر احتمالشون، تا قبل از گره فعلی، در این نود احتمالی، از مقدار نود احتمالی قبلی بیشتر است و درخت اکسپکت مین است و بازه اعداد هم مثبت اند پس حتما حرص می شود.