

RNA-seq analysis II

ISCD

Initiative en systèmes computationnels et de données

Instructor: Ariel Madrigal Aguirre

Facilitator: Zahra Takavol

<u>Mission</u>: aims to deliver inter-disciplinary research programs and empower the use of data in health research and health care delivery

https://www.mcgill.ca/micm

Outline:

- Differential expression using DESeq2
- 2 GSEA and ORA
- 3 Concluding remarks

Acknowledgements

Material:

Reinnier Padilla Adrien Osakwe

Exercises:

DESeq2 vignette fgsea vignette Enrichr vignette

Data:

Link

This is an interactive workshop:)

Feel free to interrupt or raise your hand to ask questions

Part 1: Differential Expression using DESeq2

- Statistical modelling concepts used in DESeq2
- Log-fold shrinkage
- Introduction to design matrices for gene expression experiments
- Multi-factor designs
- Hands-on activity 1

Statistical modelling concepts used in DESeq2 and its differences with respect to edgeR

	edgeR	DESeq2
Dispersion	Negative Binomial dispersions capture global trend, quasi-dispersions account for gene-specific variability.	Gene-specific dispersion shrunken towards the trend using a MAP
Normalization	TMM	Median of ratios
Test	Quasi-likelihood F-tests	Wald-tests

Model used in DESeq2

DESeq2 models the counts using a negative binomial distribution

$$K_{ij} \sim \text{NB}(\text{mean} = \mu_{ij}, \text{dispersion} = \alpha_i)$$

 $\mu_{ij} = s_{ij}q_{ij}$ (1)

$$\log q_{ij} = \sum_{r} x_{jr} \beta_{ir}. \tag{2}$$

```
K_{ij} counts of reads for gene i, sample j
```

 μ_{ij} fitted mean

 α_i gene-specific dispersion

 s_j sample-specific size factor

 s_{ij} gene- and sample-specific normalization factor

 q_{ij} proportional to true concentration of fragments

 x_{ir} elements of the design matrix X

 β_{ir} the logarithmic fold change for gene i and covariate r

Love, M. et al (2014) Genome Biology

Uneven distribution of information

Replication introduces variance

Uneven distribution of information

Love, M. et al (2014) Genome Biology

What is dispersion?

Within-group variability (the variability between replicates), is modeled by the dispersion parameter

$$K_{ij} \sim \text{NB}(\text{mean} = \mu_{ij}, \text{dispersion} = \alpha_i)$$

$$\operatorname{Var} K_{ij} = \mu_{ij} + \alpha_i \mu_{ij}^2$$

 K_{ij} counts of reads for gene i, sample j

 μ_{ij} fitted mean

 α_i gene-specific dispersion

Love, M. et al (2014) Genome Biology

Shrinkage estimation of dispersion

Fig 1A, adapted from: Love, M. et al (2014) Genome Biology

Wald tests

$$W=rac{\hat{eta}}{SE(\hat{eta})}$$
 .

We can assume the log fold change under the null hypothesis to be distributed normally with mean zero and variance that depends on the standard error.

From there, we can compute a two-sided p-value

Love, M. et al (2014) Genome Biology

Part 1: Differential Expression using DESeq2

- Statistical modelling concepts used in DESeq2
- Log-fold shrinkage
- Introduction to design matrices for gene expression experiments
- Multi-factor designs
- Hands-on activity 1

Log-fold shrinkage

Shrinkage of FC addresses two issues:

- Log-fold changes are noisier when counts are low
- Genes with high dispersion should be less reliable

Love, M. et al (2014) Genome Biology

Part 1: Differential Expression using DESeq2

- Statistical modelling concepts used in DESeq2
- Log-fold shrinkage
- Introduction to design matrices for gene expression experiments
- Multi-factor designs
- Hands-on activity 1

Models for covariate and factor variables

Factors: categorical variables (e.g. genotype)

Design and contrast matrices

Design matrix

Contrast matrix

Gene expression modelled by a group factor

~ group

Matrix > model.matrix(~group) tricecept tricecept

Gene expression modelled by a group factor (excluding intercept)

```
\sim 0 + group
```


Law, C. et al (2020) F1000 Research

Part 1: Differential Expression using DESeq2

- Statistical modelling concepts used in DESeq2
- Log-fold shrinkage
- Introduction to design matrices for gene expression experiments
- Multi-factor designs
- Hands-on activity 1

An interaction model captures a synergistic effect

~ treat1 * treat2 equivalent to ~ treat1 + treat2 + treat1:treat2

One plus one is greater than two

A group factor can represent two factors (tissue sample and cell type)

```
##
     expression
                       id tissue cells
                                           group
            1.01
                  MOUSE1
                            LUNG
                                          LUNG B
            1.04
                  MOUSE2
                            LUNG
                                          LUNG B
           1.04
                  MOUSE3
                                          LUNG B
                           LUNG
            1.99
                 MOUSE 4
                           BRATN
                                         BRAIN B
            2.36
                 MOUSE 5
                           BRATN
                                         BRAIN B
            2.00
                  MOUSE 6
                           BRAIN
                                         BRAIN B
            2.89
                 MOUSE 7
                           LUNG
                                          LUNG T
            3.12
                  MOUSE8
                           LUNG
                                          LUNG T
            2.98
                  MOUSE 9
                           LUNG
                                          LUNG T
            5.00
                 MOUSE10
                           BRAIN
                                         BRAIN T
   11
            4.92 MOUSE11
                           BRAIN
                                         BRAIN T
## 12
            4.78 MOUSE12
                           BRAIN
                                        BRAIN T
```

A group factor can represent two factors (tissue sample and cell type)

 $\sim 0 + group$

Hands-on 1

Part 2: GSEA and ORA

- Statistical concepts used in GSEA
- Statistical concepts used in ORA
- When to use GSEA or ORA?

Hands-on activity 2

Gene Set Enrichment Analysis (GSEA)

Subramanian, A. et al (2005) PNAS

Part 2: GSEA and ORA

- Statistical concepts used in GSEA
- Statistical concepts used in ORA
- When to use GSEA or ORA?

Hands-on activity 2

Enrichr

	In Pathway	Not in Pathway	Total
Selected genes	k	n-k	n
Not selected genes	K-k	N-K-(n-k)	N-n
Total	K	N-K	N

Where:

- N = total number of genes in the background (e.g. all detected genes).
- K = number of genes in the pathway.
- n = number of genes selected as "significant" (e.g. DE genes).
- k = overlap between selected genes and pathway genes.

P-value comes from a hypergeometric test

$$p = \sum_{i=k}^{\min(n,K)} rac{{K \choose i}{N-K \choose n-i}}{{N \choose n}}$$

Chen E. et al (2013) BMC Bioinformatics

Part 2: GSEA and ORA

- Statistical concepts used in GSEA
- Statistical concepts used in ORA
- When to use GSEA or ORA?

Hands-on activity 2

When to use GSEA or ORA?

	GSEA	ORA
Input	Ranked list of all genes	Significant gene list + background
Test type	Hypergeometric	Running-sum enrichment score + permutation
Uses cutoff?	Yes (DE)	No

ORA asks: Are my DE genes enriched in this pathway?

GSEA asks: Are genes from this pathway enriched towards the top or bottom of the ranked list?

Hands-on 2

Part 3: Concluding remarks

Now you are ready to:

- Perform a standard DGE, GSEA and ORA analyses
- Modify design matrices to address biological questions
- Choose between GSEA and ORA depending on the question at hand

Thanks for your attention!

Keep an eye for the workshops offered by the MiCM!

info-micm@mcgill.ca
https://www.mcgill.ca/micm/

Initiative en systèmes computationnels et de données

References

- Love, M., Anders, S., & Huber, W. (2014). Differential analysis of count data—the DESeq2 package. Genome Biol, 15(550), 10-1186.
- Subramanian, A., Kuehn, H., Gould, J., Tamayo, P., & Mesirov, J. P. (2007). GSEA-P: a desktop application for Gene Set Enrichment Analysis. *Bioinformatics*, *23*(23), 3251-3253.
- Chen, E. Y., Tan, C. M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G. V., ... & Ma'ayan, A. (2013). Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. *BMC bioinformatics*, 14(1), 128.
- Law, C. W., Zeglinski, K., Dong, X., Alhamdoosh, M., Smyth, G. K., & Ritchie, M. E. (2020). A guide to creating design matrices for gene expression experiments. *F1000Research*, 9, 1444.

Normalization in DESeq2

Median of ratios

$$\mu_{ij} = s_{ij}q_{ij}$$
Size factor
$$s_j = \underset{i: K^R \neq 0}{\text{median}} \frac{K_{ij}}{K^R} \quad \text{with}$$

Size factor
$$s_{j} = \underset{i: K_{i}^{R} \neq 0}{\operatorname{median}} \frac{K_{ij}}{K_{i}^{R}} \quad \text{with} \quad K_{i}^{R} = \left(\prod_{j=1}^{m} K_{ij}\right)^{1/m}.$$

Geometric mean

counts of reads for gene i, sample j K_{ij} fitted mean μ_{ij} gene-specific dispersion α_i sample-specific size factor s_i gene- and sample-specific normalization factor s_{ij} proportional to true concentration of fragments q_{ij}

Love, M. et al (2014) Genome Biology

