١	B	5 B
2	B	6 0
3	Ħ	7 🗗
4	D	

1. For the following circuits, find the closed loop voltage gain and the input resistance.

Assume ideal op-amps.

- 2. Design an ideal inverting amplifier with a closed loop gain of -5V/V. The output voltage is limited to $-10 \text{ V} \le v_0 \le 10\text{V}$, and the maximum current in any resistor is limited to $50\mu\text{A}$.
- 3. Using the standard inverting configuration with an ideal op-amp, design for a closed loop gain of -1000 V/V. The maximum resistor value allowed in 100 k Ω . What is the input resistance? Use the circuit with the T resistor feedback and the same maximum resistor value, design the circuit for the same closed-loop gain of -1000 V/V. What is the input resistance for this circuit?

$$G = -1000 \text{ V/V}$$

$$\text{Max} \Omega = \{00k5\}$$

$$\Omega_{i} = \frac{2}{3} \text{ Respectively}$$

$$\Omega_{i} = \frac$$

$$|\cos z| = \frac{100 \times 10^3}{R_3} = \frac{1000 \times 10^3}{R_3} = \frac{100 \times 10^3}{R_3} = \frac{100 \times 10^3}{R_3} = \frac{1000 \times 10^3}{R_3} = \frac{$$

4. Design a weighted summer circuit for the following equations:

a.
$$v_0 = -2v_1 - 8v_2$$

b.
$$v_0 = -12v_1 - 3v_2 + 2v_3$$

Resistors should range between 10k Ω and 1M Ω

5. For the following circuits, find the closed loop voltage gain and the input resistance. Assume ideal op-amps.

6. We worked an example where a potentiometer was used to divide the resistance between R1 and R2 for a typical non-inverting amplifier configuration. We found that the range of gain was 1 to infinity. For this problem, consider how you might add a fixed resistor to the circuit to prevent the gain from increasing above 11 V/V. Draw the circuit and show how you calculated the new range of closed loop gain from 1 to 11 V/V.

7. ••••••••••••••••••••••••••

For the following circuits, find the closed loop voltage gain and the input resistance.
 Assume ideal op-amps.

2. Design an ideal inverting amplifier with a closed loop gain of -5V/V. The output voltage is limited to $-10 \text{ V} \le v_0 \le 10\text{V}$, and the maximum current in any resistor is limited to $50\mu\text{A}$.

$$N_{D max} = 10V$$
 $|N_{I max}| = 10/5 = 2V$
 $i_{max} = \frac{N_{I}}{R_{i}} = \frac{2}{R_{i}} = \frac{50 \times 10^{-6}}{2}$
 $Q_{i} = 40 k \Lambda$

4. Design a weighted summer circuit for the following equations:

a.
$$v_0 = -2v_1 - 8v_2$$

b.
$$v_0 = -12v_1 - 3v_2 + 2v_3$$

Resistors should range between $10k\Omega$ and $1M\Omega$

$$N_0 = \frac{-\Omega P}{R_1} N_1 - \frac{\Omega P}{R_2} N_Z$$
; $\frac{\Omega P}{R_1} = Z$ $\frac{\Omega P}{R_2} = 8$

Large 400kg
$$l_1 = \frac{RP}{Z} = 200k JZ$$
 $l_2 = \frac{RP}{R} = 50kJZ$

Let
$$RP = 600 \text{ k}\Lambda$$
 $R_3 = \frac{Ry}{Rx}$, $\frac{RP}{2}$: $R_3 = 300 \text{ k}\Omega$
 $R_4 = 10 \text{ k}\Lambda$
 $R_4 = 10 \text{ k}\Lambda$
 $R_4 = \frac{RP}{12} = 50 \text{ k}\Omega$
 $R_5 = \frac{RP}{3} = 200 \text{ k}\Lambda$

Viou con design tuese with different values, so as long as these values lie within the range, tuen it is a valid design.

7. For both the inverting and non inverting configurations, show how the closed loop gain varies if the op-amp has finite open loop gain of. 100, 1000, 10,000, 100,000, and 1,000,000.

Inverting ump:

$$\Omega_{12} = 100 \text{ kg}$$
 (moose these $\Omega_{11} = 5 \text{ kg}$ at random

ideal: $G_{12} = -\frac{2}{1} / 2 = \frac{-\frac{1}{1}}{1} / 2 =$

Non-inverting

ideal:
$$\Omega_{2} = 100 \text{ k.D.}$$
 $\frac{1}{1000} = 14 \frac{\Omega_{2}}{\Omega_{1}} = 21 \frac{V}{V}$

Non ideal $G_{7} = \frac{14 \frac{\Omega_{2}}{\Omega_{1}}}{14 \frac{14 \frac{\Omega_{2}}{\Omega_{1}}}{14 \frac{1}{1000}} = \frac{A}{1000} = \frac{16 \frac{V}{V}}{1000} = \frac{17.35}{10,000}$

1000,000 20.995

1,000,000 20.9996

October 1 notes

U Closed loop voltage gain:
$$G_7 = \frac{N_0}{N_{I}}$$

URITAL Animating

ONE IR

6. We worked an example where a potentiometer was used to divide the resistance between R1 and R2 for a typical non-inverting amplifier configuration. We found that the range of gain was 1 to infinity. For this problem, consider how you might add a fixed resistor to the circuit to prevent the gain from increasing above 11 V/V. Draw the circuit and show how you calculated the new range of closed loop gain from 1 to 11 V/V.

When X=0 (mexgain)

$$R_1 = RA$$
 $R_2 = 10kD$
 $R_3 = 10kD$
 $R_4 = 10 + RA$
 $R_5 = 10kD$
 $R_6 = \frac{R_2}{R_1} + 1 = 11$
 $\frac{R_2}{R_1} = 10 = \frac{10kD}{RA} = 10$; $RA = 1kD$

Metric Prefix	Symbol	Multiplier (Traditional Notation)	Exponential	Description
Yotta	Y	1,000,000,000,000,000,000,000	10 ²⁴	Septillion
Zetta	z	1,000,000,000,000,000,000,000	10 ²¹	Sextillion
Exa	E	1,000,000,000,000,000,000	10 ¹⁸	Quintillion
Peta	P	1,000,000,000,000,000	10 ¹⁵	Quadrillion
Tera	т	1,000,000,000,000	10 ¹²	Trillion
Giga	G	1,000,000,000	10 ⁹	Billion
Mega	м	1,000,000	10 ⁶	Million
kilo	k	1,000	10 ³	Thousand
hecto	h	100	10 ²	Hundred
deca	da	10	10 ¹	Ten
base	b	1	10°	One
deci	d	1/10	10-1	Tenth
centi	С	1/100	10 ⁻²	Hundredth
milli	m	1/1,000	10 ⁻³	Thousandt
micro	р	1/1,000,000	10-6	Millionth
nano	n	1/1,000,000,000	10-9	Billionth
pico	р	1/1,000,000,000,000	10-12	Trillionth
femto	f	1/1,000,000,000,000,000	10-15	Quadrillion
atto	a	1/1,000,000,000,000,000,000	10-18	Quintillion
zepto	z	1/1,000,000,000,000,000,000,000	10-21	Sextilliont
yocto	У	1/1,000,000,000,000,000,000,000,000	10-24	Septilliont