September 18, 2015 Quiz 2
1. A 100 gallon tank initially contains 50 gallons of salt water at a concentration of s_0 pounds of salt per gallon. The water is emptied from the tank at a rate of q gallons per minute. Salt water at a concentration of s_r pounds of salt per gallon enters the tank at a rate of r gallons per minute. The top of the tank is open, and, if filled beyond capacity, the excess will spill out.
(a) Find an equation $v(t)$ for the volume of the salt water in the tank at time t that is valid before the tank becomes either full or empty.
v(t) = (r - q) t + 50
rate rate time initial volume
(b) Let $Q(t)$ denote the pounds of salt in the tank at time t . Write an initial value problem for $Q(t)$ that is valid before the tank becomes full or empty.
dQ = Sp.r - Q(t) g - gallons minute
pounds gallons concentration gallons gallon minute in tank atton
(c) If $r = 10$ and $q = 5$, at what time t will the tank become full? $100 = V(t) = (10 - 5)t + 50 \Rightarrow (minut)$
(d) If $r = 10$ and $q = 5$, write a differential equation that $Q_f(t)$ satisfies after the tank becomes full.
(The subscript f denotes that the tank is full) When tank Spills CVC
$\frac{dQ_t}{dt} = S_r \cdot r - \frac{Q_t(t)}{V(t)}r + rate in = rate ou$
(e) Without solving for $Q(t)$, what is the initial value for $Q_f(t)$? Q(10) by Continuity of Solution
(f) If $r = 10$ and $q = 5$, what is the concentration in the tank after a long amount of time? AQF - QF +
(f) If $r = 10$ and $q = 5$, what is the concentration in the tank after a long amount of time? $= \lim_{t \to \infty} \frac{dQ_t}{dt} = S_{r} \cdot r = \lim_{t \to \infty} Q_t(t) r$ $= \lim_{t \to \infty} V(t) r = \lim_{t \to \infty} V(t)$
> im Q (t) /- So. / Note:
Note: $\frac{1}{100}Q_{1}(t) = S_{1}(t)$ $\frac{1}{100}Q_{1}(t) = 100$ $\frac{1}{100}Q_{1}(t) = 100$ but we don't need to split $Q_{1}(t)$ $\frac{1}{100}Q_{1}(t) = 100$
=> lim Qo(t) = Sx but we don't need to solit = (1)
t->0 cf(t)
but we don't need to split Qf(t) to split Qf(t) lim V(t) thing concentration
7110