CS323 Assignment1

SID: 12011625

Required Exercises

Exercise 1

```
int a3 = a3 * 3;

7 tokens will be generated:

<int>
<id, pointer to symbol_table entry for a3>

<assign_op>
<id, pointer to symbol_table entry for a3>

<mult_op>
<number, integer value 3>
```

Exercise 2

```
1.n + 1
```

$$2.n-1$$

3. 1

<;>

4. 1

5. If m=n, the number of proper prefix of length m is 0. Else, the number is 1.

6.
$$1 + 1 + 2 + \ldots + n = \frac{n(n+1)}{2} + 1$$

7. 2^n

Exercise 3

- 1. $((\epsilon|a)^*b^*)^*=(a^*b^*)^*$. 空串 ϵ 以及任意由 a 或 b 组成的字符串
- 2. 长度至少为 3 ,倒数第三个字符为 a ,其余字符均为 a 或 b 的字符串
- 3. 长度至少为 3 ,有且仅有 3 个字母 b ,其余字符均为 a 的字符串

Exercise 4

- 1. Define A=[0-9], B=[1-9]. So the regular expression is **86-755-** BA^7 .
- 2. The regular expression is $a(a|b)^*b$.
- 3. Define L=[bcdfghjklmnpqrstvwxyz]. (not containing **aeiou**) So the regular expression is $L^*a(a|L)^*e(e|L)^*i(i|L)^*o(o|L)^*u(u|L)^*$.

Optional Exercises

Exercise 1

We just need to prove that $L((a^*b^*)^*) \subseteq L((a|b)^*)$ and $L((a|b)^*) \subseteq L((a^*b^*)^*)$.

First, obviously, $L(a)\subseteq L(a|b)$. $L(a^*)\subseteq L((a|b)^*)$. Similarly, $L(b^*)\subseteq L((a|b)^*)$. Therefore, $L(a^*b^*)\subseteq L((a|b)^*(a|b)^*)=L((a|b)^*)$. $L((a^*b^*)^*)\subseteq L((a|b)^*)^*=L((a|b)^*)$.

On the other hand, $L(a)\subseteq L(a^*)\subseteq L(a^*b^*)$. $L(b)\subseteq L(b^*)\subseteq L(a^*b^*)$. Therefore, $L(a|b)\subseteq L(a^*b^*|a^*b^*)=L(a^*b^*)$. $L((a|b)^*)\subseteq L((a^*b^*)^*)$.

Therefore, $L((a^*b^*)^*) = L((a|b)^*)$, which means that L_1 and L_2 are equivalent.