集成学习

高阳,李文斌

http://cs.nju.edu.cn/rl

2023年03月16日

一样()

三个臭皮匠能不能顶个诸葛亮?

大纲

集成学习原理

Bagging和随机森林

Boosting和GBDT、XGboost

Adaboost

其他

集成学习原理

Bagging和随机森林

Boosting和GBDT、XGboost

Adaboost

其他

16-Mar-23

PS-77-88-85

原理

- ✓三个臭皮匠,抵上诸葛亮
- ✓是一个预测模型的元方法

例子

- □ 回归树
 - 决策规则跟决策树一样
 - 每个叶子节点包含一个分数

Input: age, gender, occupation, ...

Like the computer game X

例子

- □ 回归树集成
 - 多棵树一起决策

Prediction of is sum of scores predicted by each of the tree

特点(分类)

- ✓ 多个分类器集成在一起,以提高分类准确率
- ✓ 由训练数据构建基分类器,然后根据预测结果进行投票
- ✓ 集成学习本身不是一种分类器, 而是分类器结合方法
- ✓通常集成分类器性能会好于单个分类器

	准确度较	准确度较高,差异度较低					准确度较低,差异度较高					
	测试例1	测试例2	测试例3	涉	则试例1	测试例2	测试例3	I	间试例1	测试例2	测试例3	
h_1	√	√	×	h_1	√	√	×	h_1	√	×	×	
h_2	×	\checkmark	\checkmark	h_2	\checkmark	√ .	×	h_2	×	\checkmark	×	
h_3	\checkmark	×	\checkmark	h_3	\checkmark	√	×	h_3	×	×	√	200
集成	€ √	√	√	集成	√	√	×	集成	×	×	×	
(a) 集成提升性能				(b) 集成不起作用				(c) 集成起负作用				

举例分析

- ✓ 例: 以多数投票法为结合方法
- ✓ 每个二分类器的分类精度为p
- ✓ 则集成T个分类器的分类精度为

(假设基学习器的的精度相互独立)

$$\sum_{k=\frac{T}{2}+1}^{T} {T \choose k} p^k (1-p)^{T-k}$$

p > 0.5且 $T \rightarrow \infty$,上式 $\rightarrow 1$

准确性、多样性之间的矛盾

Bias-Variance tradeoff

□ Bias (学习结果的期望与真实规律的差距)

$$Bias = E\left[\hat{f}(x)\right] - f(x)$$

□ Variance (学习结果自身的不稳定性)

$$Variance = E\left[(\hat{f}(x) - E[\hat{f}(x)])^2 \right]$$

□ Total Error (以均方误差为例)

$$Err(x) = Bias^2 + Variance + Random Error$$

核心问题

- □ 序列集成(基学习器)法
 - ✓利用基学习器之间的依赖关系,依次生成
 - ✓减小偏差bias
- □ 并行集成(基学习器)法
 - ✓利用基学习器之间的独立关系,并行生成
 - ✓减小方差variance

Q1: 如何训练每个学习器;

Q2: 如何结合每个学习器。

结合策略

- □ 平均法(回归问题)
 - ✓ 简单平均
 - ✓ 加权平均
- □ 投票法(分类问题)
 - ✓ 绝对多数
 - ✓ 相对多数
 - ✓ 加权投票
- □ 学习法(Stacking): 本讲最后讨论

多样性策略(学习基学习器)

□ 数据层面

- ✓输入样本的扰动,构建基学习器
- ✓输出样本的扰动,构建基学习器

□ 属性层面

✓ 随机选择部分属性,构建基学习器

□ 参数层面

✓ 算法模型参数的扰动,构建基学习器

集成学习原理

Bagging和随机森林

Boosting和GBDT、XGboost

Adaboost

其他

16-Mar-23

())是一大门哥

Bagging

- □ Bagging (Bootstrap aggregating)基本原理
 - ✓ 有放回采样方法。统计上的目的是得到统计量分布以及置信区间。

15

Bagging

□ Bagging集成学习框架

Bagging集成学习优点

- □降低分类器方差,改善泛化
 - ✓ 其性能依赖于基分类器的稳定性。如果基分类器稳定,则 其误差主要由基分类器的bias决定;
 - ✓由于采样概率相同, bagging方法并不侧重于任何特定实例;
 - ✓ 代表性算法: 随机森林 (Random Forest)

16-Mar-23 17

代表性算法: 随机森林RF

✓ 用N来表示训练用例(样本)的个数,M表示特征数目;输入特征数目m, 用于确定决策树上一个节点的决策结果;其中m应远小于M。

- ✓ 从N个训练用例(样本)中以有放回抽样的方式,取样N次,形成一个训练集 (即bagging取样),并用未抽到的用例(样本)作预测,评估其误差。
- ✓ 对于每一个节点,随机选择m个特征(通常为M的均方根 $log_2 M$),根据这m个特征,计算其最佳的分裂方式。
- ✓ 每棵树都会完整成长而不会剪枝,这有可能在建完一棵正常树状分类器后会被采用。
- ✓ 以上过程做充分多次,以产生足够多的随机树。

代表性算法: 随机森林RF

Random Forest Classifier

集成学习原理

Bagging和随机森林

Boosting和GBDT、XGboost

Adaboost

其他

が一大刀が

提升 (Boosting)

元初為

- □ PAC学习理论
 - ✓ 能否从假设空间H中学习到一个好的假设h
 - ✓近似正确:泛化误差E(h)足够小
 - ✓可能正确:以多大概率达到近似正确
- □强学习器&弱学习器(Kearns&Valiant, 1984)
 - ✓ 强学习器与弱学习器(略好于随机猜测)等价
 - ✓ 可通过提升方法(Boosting)将弱学习器转为强学习器

Boosting集成学习框架

前向分步加法模型

□ 加法模型

$$f(x) = \sum_{m=1}^M eta_m b(x; \gamma_m)$$

基函数(共M个): $b(x;\gamma_m)$

基函数系数: β_m

前向分步加法模型

□ 加法模型的目标函数

$$min_{(eta_m,\gamma_m)} \sum_{i=1}^N L(y_i,\sum_{m=1}^M eta_m b(x_i;\gamma_m))$$

优化复杂!

前向分步算法(forward stagewise algorithm): 学习目标函数为加法模型,如果能够从前向后,每一步只学习一个基函数及其系数,逐步逼近要优化的总目标函数,就可以简化优化的复杂度。

16-Mar-23 24

前向分步加法模型

□ 前向分步算法

输入: 训练数据集 $T = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$; 损失函数 L(Y, f(x)); 基函数集 $\{b(X; \gamma)\}$;

输出:加法模型 f(x)。

- (1) 初始化 $f_0(x) = 0$
- (2) 对 m = 1, 2, ..., M
 - (a) 极小化损失函数: $(eta_m,\gamma_m)=argmin_{eta,\gamma}\sum_{i=1}^NL(y_i,f_{m-1}(x_i)+eta b(x_i;\gamma))$ 得到参数 eta_m,γ_m
 - (b) 更新: $f_m(x) = f_{m-1}(x) + eta_m b(x;\gamma_m)$
- (3)得到加法模型: $f(x) = f_M(x) = \sum_{m=1}^M eta_m b(x; \gamma_m)$

提升树(Boosting Tree)

- □ 提升(Boosting)方法主要采用加法模型,即基函数的线性组合,与前向分步算法。
- □ 以决策树为基函数的提升方法称为提升树(boosting tree)

$$f_M(x) = \sum_{m=1}^M h_m(x)$$

其中 $h_m(x)$ 表示决策树,M为决策树的个数

提升树(Boosting Tree)

- □回归问题
- \square 初始化 $f_0(x)=0$
- \square 对 $m=1,2,\cdots M$
 - ✓ 计算 argmin $\sum_{i=1}^{N} L(y_i, f_{m-1}(x_i) + h_m(x_i))$
 - ✓ 得到 $h_m(x)$
 - ✓ 更新 $f_m(x) = f_{m-1}(x) + h_m(x)$
- □ 得到回归问题提升树
 - $\checkmark f_M(x) = \sum_{m=1}^M h_m(x)$

残差

$$L(y, f_{m-1}(x)) \longrightarrow h_m(x)$$

$$L(y, f_m(x)) = L(y, f_{m-1}(x) + h_m(x))$$

当采用平方误差损失函数

$$L(y, f_{m-1}(x) + h_m(x)) = (y - f_{m-1}(x) - h_m(x))^2 = (r - h_m(x))^2$$

推广到一般损失:第m轮第i个样本的负梯度

$$-\left[\frac{\partial L(y, f(x_i))}{\partial f(x_i)}\right]_{f=f_{m-1}}$$

提升树(Boosting Tree)

- □回归问题
- **口** 初始化 $f_0(x) = 0$
- \square 对 $m=1,2,\cdots M$
 - ✓ 计算残差 $r_{m_i} = y_i f_{m-1}(x), i = 1,2,\dots, N$
 - ✓ 拟合残差 r_{m_i} 学习一个回归树,得到 $h_m(x)$
 - ✓ 更新 $f_m(x) = f_{m-1}(x) + h_m(x)$
- □ 得到回归问题提升树
 - $\checkmark f_M(x) = \sum_{m=1}^M h_m(x)$

梯度提升树GBDT

Algorithm 10.3 Gradient Tree Boosting Algorithm.

- 1. Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$.
- 2. For m = 1 to M:
 - (a) For $i = 1, 2, \dots, N$ compute

$$r_{im} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f=f_{m-1}}.$$

(c) For
$$j = 1, 2, \dots, J_m$$
 compute

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{jm}} L(y_i, f_{m-1}(x_i) + \gamma).$$

(d) Update
$$f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$$
.

3. Output
$$\hat{f}(x) = f_M(x)$$
.

梯度提升树GBDT

- □ Gradient Boosting Decision Tree算法流程
 - ✓ 初始化弱分类器
 - ✓ 循环
 - ✓ 对每个样本计算负梯度
 - ✓ 构建新的样本集合
 - ✓ 根据对树的约束,构建CART树
 - ✓ 计算叶子区域最佳拟合值
 - ✓ 更新得到强学习器
 - ✓ 得到最终的强学习器

Decision Tree, Boosting, Gradient Boosting

GBDT例子

□输入样本

- ✓ <样本0: 年龄5岁, 体重20KG, 身高(预测标签值)1.1米>
- ✓ <样本1: 年龄7岁, 体重30KG, 身高(预测标签值)1.3米>
- ✓ <样本2: 年龄21岁, 体重70KG, 身高(预测标签值)1.7米>
- ✓ <样本3: 年龄30岁, 体重60KG, 身高(预测标签值)1.8米>

□预测样本

✓ <样本4: 年龄52岁, 体重65KG, 身高(预测标签值)? 米>

□学习参数

✓ 学习率0.1, 迭代次数5, 树深度=3

GBDT例子

□第一步:初始化弱分类器

$$\sum_{i=0}^{N} \frac{\partial \left(\frac{1}{2}(y_i - c)^2\right)}{\partial c} = \sum_{i=0}^{N} (c - y_i)$$

最小化,即是样本均值

c = 1.475

□ 第二步: 根据残差构造新的样本集合

✓ <样本0': 年龄5岁, 体重20KG, 身高(预测标签值)-0.375米>

✓ <样本1': 年龄7岁, 体重30KG, 身高(预测标签值)-0.175米>

✓ <样本2': 年龄21岁,体重70KG,身高(预测标签值)0.225米>

✓ <样本3': 年龄30岁,体重60KG,身高(预测标签值)0.325米>

□ 第三步:构建CART树

拟合残差

$$Y_{j1} = \underbrace{argmin}_{X_i \in R_{j1}} L(y_i, f_0(x_i) + Y)$$

GBDT例子

□ 第四步: 更新强学习器

$$f_1(x) = f_0(x) + \alpha \sum_{j=1}^4 \Upsilon_{j1} I(x \in R_{j1})$$

□ 最后一步:

$$f_5(x) = f_0(x) + \sum_{m=1}^5 \sum_{j=1}^4 \Upsilon_{jm} I(x \in R_{jm})$$

XGBoost

- ☐ Extreme Gradient Boosting(XGBoost)
 - ✓是GBDT的一种高效实现
 - ✓ 目标函数通过二阶泰勒展开式做近似
 - ✓ 定义了树的复杂度,并应用到目标函数中
 - ✓ 分裂节点处通过结构打分和分割损失动态生长
 - ✓ 分裂节点的候选集合通过一种分布式Quantile Sketch得到
 - ✓可以处理稀疏、缺失数据
 - ✓可以通过特征的列采样防止过拟合

https://xgboost.readthedocs.io/en/stable/tutorials/model.html

树的复杂度

□优化树的定义

- \circ $w \in R^T$ 为叶子节点分数构成的向量,其中T为叶子的个数
- o q将每个数据样本点指定到相应的叶子节点

树的复杂度

$$\Omega(f_t) = \gamma T + \frac{1}{2}\lambda \sum_{j=1}^T w_j^2$$
Number of leaves L2 norm of leaf scores

$$\Omega = \gamma 3 + \frac{1}{2}\lambda(4 + 0.01 + 1)$$

目标函数

$$Obj^{(t)} = \sum_{i=1}^{n} l\left(y_i, \hat{y}_i^{(t-1)} + f_t(x_i)\right) + \Omega(f_t) + constant$$

$$Obj^{(t)} \simeq \sum_{i=1}^{n} \left[l(y_i, \hat{y}_i^{(t-1)}) + g_i f_t(x_i) + \frac{1}{2} h_i f_t^2(x_i) \right] + \Omega(f_t) + constant$$

$$Obj^{(t)} \simeq \sum_{i=1}^{n} \left[g_{i} f_{t}(x_{i}) + \frac{1}{2} h_{i} f_{t}^{2}(x_{i}) \right] + \Omega(f_{t})$$

$$= \sum_{i=1}^{n} \left[g_{i} w_{q(x_{i})} + \frac{1}{2} h_{i} w_{q(x_{i})}^{2} \right] + \gamma T + \lambda \frac{1}{2} \sum_{j=1}^{T} w_{j}^{2}$$

$$= \sum_{j=1}^{T} \left[\left(\sum_{i \in I_{j}} g_{i} \right) w_{j} + \frac{1}{2} \left(\sum_{i \in I_{j}} h_{i} + \lambda \right) w_{j}^{2} \right] + \gamma T$$

$$w_{j}^{*} = -\frac{G_{j}}{H_{j} + \lambda}$$
 $Obj = -\frac{1}{2} \sum_{j=1}^{T} \frac{G_{j}^{2}}{H_{j} + \lambda} + \gamma T$

树的打分和分裂

g1, h1

g2, h2

g3, h3

g4, h4

g5, h5

一阶、二阶梯度值

$$Obj = -\sum_{j} \frac{G_{j}^{2}}{H_{j} + \lambda} + 3\gamma$$
 当前树的打分

节点分裂:

 $Gain = \frac{1}{2} \left[\frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{(G_L + G_R)^2}{H_L + H_R + \lambda} \right] - \gamma$ 左子树分数 右子树分数

集成学习原理

Bagging和随机森林

Boosting和GBDT、XGboost

Adaboost

其他

16-Mar-23

PSE-17 SESSION

Boosting

- 概率近似正确(Probably approximately correct, PAC)学习理论 (Kearns&Valiant, 1984):
 - ✓ 强可学习(strongly learnable): 在PAC框架中,一个概念(类),如果存在一个多项式的学习算法能够学习它,并且正确率很高,那么就称这个概念是强可学习的;
 - ✓ <mark>弱可学习(weakly learnable)</mark>: 在PAC框架中,一个概念(类),如果存在一个多项式的学习算法能够学习它,学习的正确率仅比随机猜测略好,那么就称这个概念是弱可学习的。

Boosting

- □ PAC学习理论(Kearns&Valiant, 1984):
 - ✓ 强学习器与弱学习器是等价的 (Robert E. Schapire, 1990)
 - ✓ 一个概念是强可学习的充分必要条件是这个概念是弱可学习的
 - ✓ 可通过提升方法(Boosting)将弱学习器转为强学习器。

☐ Adaptive Boost

思想: 从弱学习算法出发,通过改变训练数据的概率分布(权值分布),反复学习,得到一系列弱分类器,然后进行组合,构成一个强分类器。

策略:

- ✓ 权值分布:提高那些被前一轮弱分类器错误分类样本的权值, 降低那些被正确分类样本的权值;
- ✓弱分类器组合:采用加权多数表决策略;增大分类误差率小的弱分类器的权重,减小分类误差率大的弱分类器的权重;

☐ Adaptive Boost

- ✓ 如何计算分类误差率?
- ✓如何更新样本权重?
- ✓ 如何得到弱学习器权重?
- ✓ 使用何种结合策略?

训练样本集合

$$T = \{(x_1, y_1), (x_1, y_2), \dots, (x_m, y_m)\}$$

第k个弱分类器的输出样本权重

$$D_k = (w_{k,1}, w_{k,2}, \dots, w_{k,m})$$
 $w_{1,i} = \frac{1}{m}$ $i = 1, \dots, m$

□ 以分类问题为例: 分类器的误差率和权重系数

第k个弱分类器 $G_k(x)$ 在训练集上的加权分类误差率为

$$e_k = \sum_{i=1}^m w_{k,i} I(G_k(x_i) \neq y_i)$$

第k个弱分类器 $G_k(x)$ 的权重系数为

$$\alpha_k = \frac{1}{2} \log \frac{1 - e_k}{e_k}$$

分类误差率越大, 权重系数越小

□ 以分类问题为例: 样本的权重和集合策略

第k+1个弱分类器 $G_{k+1}(x)$ 的样本权重为

$$w_{k+1,i} = \frac{w_{k,i}}{Z_K} exp(-\alpha_k y_i G_k(x_i))$$

规范化因子

更新训练数据集的权值分布

$$D_{k+1} = \left(w_{k+1,1}, w_{k+1,2}, \cdots, w_{k+1,m}\right)$$

$$Z_K = \sum_{i=1}^m w_{k,i} exp(-\alpha_k y_i G_k(x_i))$$

□ 以分类问题为例: 样本的权重和集合策略

构建基分类器的线性组合

$$f(x) = \sum_{k=1}^{K} \alpha_k G_k(x_i)$$

Adaboost采用加权表决

$$f(x_i) = sign\left(\sum_{k=1}^K \alpha_k G_k(x_i)\right)$$

Box1~Box3为按顺序执行的3个Learner, D1~D3分别为各个Box的决策 边界, "+-"表示正负样本, Box4综合了基学习器的决策边界

集成学习原理

Bagging和随机森林

Boosting和GBDT、XGboost

Adaboost

其他

16-Mar-23

PSE-MARKE

其他

□学习法: Stacking算法

Stacking先从初始数据集训练出初始学习器,然后"生成"一个新数据集用于训练次级学习器(元学习器)。在这个新的数据集中,初始学习器的输出被当作样例输入特征,而初始样本的标记仍被当作样例标记。

其他

- □学习法: Stacking算法原理
 - ✓ 对于Model_1,将训练集D分为k份,对于每一份,用剩余数据集训练模型,然后预测出这一份的结果
 - ✓ 重复上面步骤,直到每一份都预测出来。得到次级模型的训练集
 - ✓ 得到k份测试集,平均后得到次级模型的测试集

- ✓ 对于Model 2、Model 3.....重复以上情况,得到M维数据
- ✓ 选定次级模型,进行训练预测 ,一般这最后一层用Logistic Regression

Stacking

口算法流程

Algorithm

- 1: Input: training data $D = \{x_i, y_i\}_{i=1}^m$
- Ouput: ensemble classifier H
- 3: Step 1: learn base-level classifiers
- 4: for t = 1 to T do
- learn h_t based on D
- 6: end for
- 7: Step 2: construct new data set of predictions
- 8: for i = 1 to m do
- $D_h = \{x_i', y_i\}, \text{ where } x_i' = \{h_1(x_i), ..., h_T(x_i)\}$
- 10: end for
- 11: Step 3: learn a meta-classifier
- 12: learn H based on D_h
- 13: return H

Stacking

- □Stacking或者Stacked Generalization堆栈泛化模型的特点
- ✓ 集成学习中异源集成(Heterogenous ensembles)的典型代表
- ✓ 通过使用第一阶段(level 0)的预测作为下一层预测的特征,比起相互 独立的预测模型能够有更强的非线性表述能力,降低泛化误差。
- ✓ 它的目标是同时降低机器学习模型的Bias-Variance。

Stacking中的元学习器

- □统计方法类: 投票、平均
- □易解释的学习方法类: LR, C45/CART
- □非线性学习算法类: XGBoost, NN, K-NN, RF
- □加权一次/二次线性模型类: Weighted Linear/Quadrtic
- □其他复杂类: 在线学习、深度学习、群体智能

□三种集成方法的对比

Stacking

□三种集成方法的对比

Bagging

□三种集成方法的对比

Boosting

16-Mar-23

350-1775年

□三种集成方法的对比

Stacking

□三种集成方法的对比

	Target	Data	Classifier	Aggregation
Bagging	mainly variance	replacement resampling (bootstrap) based randomization (parallel)	homogeneous uncorrelated (sub)-learner	voting for classification
				averaging for regression
Boosting	mainly bias	stepwise misclassification based decorrelation (sequential)	homogeneous weak learner	weighted majority voting
Stacking	both bias and variance	various	heterogeneous strong learner	meta-learner

集成学习的延伸

• 深度学习时代的随机森林?

Deep Forest: Towards an Alternative to Deep Neural Networks. IJCAI 2017

March 16, 2023

扩展阅读

Zhi-Hua Zhou. Ensemble Methods: Foundations and Algorithms, 2012.

XGBoost: https://xgboost.readthedocs.io/en/stable/tutorials/model.html

周志华: Boosting学习理论的探索 —— 一个跨越30年的故事:

https://mp.weixin.qq.com/s/Jnh7yIOmzbTvWk77zh2-lA

