Breast Cancer Data Analysis Report

Introduction

Breast Cancer is a widely spread disease that affects many women all around the world. In this project we aim to get the most beneficial insights on what triggers this disease, what affects it the most and which women are most vulnerable to it.

Data Source:

The dataset used in this project is the Kaggle Breast Cancer Dataset

Link: Kaggle Breast Cancer Dataset

Data Explanation

This dataset has 31 features and the dependent variable(diagnosis) the features are:

Sure! Here are the rewritten names without quotes and numbered:

- 1. id
- 2. diagnosis
- 3. radius_mean
- 4. texture_mean
- 5. perimeter_mean
- 6. area_mean
- 7. smoothness_mean
- 8. compactness_mean
- 9. concavity_mean
- 10. concave_points_mean
- 11. symmetry_mean
- 12. fractal_dimension_mean
- 13. radius_se

- 14. texture_se
- 15. perimeter_se
- 16. area_se
- 17. smoothness_se
- 18. compactness_se
- 19. concavity_se
- 20. concave_points_se
- 21. symmetry_se
- 22. fractal_dimension_se
- 23. radius_worst
- 24. texture_worst
- 25. perimeter_worst
- 26. area_worst
- 27. smoothness_worst
- 28. compactness_worst
- 29. concavity_worst
- 30. concave_points_worst
- 31. symmetry_worst
- 32. Fractal_dimension_worst

Analysis

First we need to look at the correlation matrix

Note: Almost all features are positively correlated with each other

But we need to look further into the correlation between features and the dependet variable

Lets see the top 10 correlated features with the target

Lets see the distribution of the top 4

Now lets see one of the most important visualtizations

Insights

From the statistical modelling and data analysis that we have done we can assure that:

- Increasing the worst perimeter from 80 to 100 results in a 38% higher chance of having a malignant tumor.
- Increasing concave points_worst from 0.1 to 0.2 results in a 28.5% higher chance of having a malignant tumor.
- Increasing radius_worst from 10 to 20 results in a 61.5% higher chance of having a malignant tumor.
- Increasing concave points_mean from 0.01 to 0.05 results in a 45.7% higher chance of having a malignant tumor.
- Patients with an area_mean greater than 700 have a 94% chance of having a malignant tumor.
- Patients with a compactness_mean greater than 0.13 have an 80% chance of having a malignant tumor.