SIA-TP1:Rompecabezas de 8 números

- Julián Francisco Arce
- Ignacio Agustín Manfredi
- Gian Luca Pecile

Contenidos

01

Introducción

Introducción del problema a resolver.

02

Algoritmos

Descripción de los algoritmos usados.

03

Resultados

Presentación de los resultados encontrados.

04

Conclusiones

Observaciones de lo hallado.

01 Intro<u>ducción</u>

Tablero (3x3)

Discusiones:

- ¿Cómo evitamos pasar por estados repetidos?
- ¿Existen tableros sin posibles soluciones?
- ¿Cómo lo representamos de una forma sencilla?

Estados

3	2	1
4	5	6
7		8

Se corresponde con el id: 321456708

02 Algoritmos - Estrategias de Búsqueda

02.1: No Informadas

bfs

Búsqueda Por Anchura (BPA).

dfs

Búsqueda Por Profundidad (BPP).

vds

Búsqueda Por Profundidad Variable (BPPV).

02.1: Informadas

local_heuristic

Herística local.

global_heuristic

Heurística global.

a_star

A*.

02.3: Heurísticas Desarrolladas

02.3.1: Manhattan Distance

02.3.2: Hamming Distance

1	2	3
4	5	6
7	8	

3	2	1
4	5	6
7		8

1	2	3	4	5	6	7	8	0
3	2	1	4	5	6	7	0	8

02.3.3: No Admisible

1	2	3
4	5	6
7	8	

3	2	1
4	5	6
7		8

1	2	3	4	5	6	7	8	0
3	2	1	4	5	6	7	0	8

02.3.3: No Admisible

1	2	3
4	5	6
7	8	

1	2	3
4	5	6
7		8

1	2	3	4	5	6	7	8	0
1	2	3	4	5	6	7	0	8

03 Resultados

Formato de datos exportados (txt)

```
Configuration: {'algorithm': 'a_star', 'heuristic': 'manhattan', 'initial_state':
'123456708', 'final_state': '123456780', 'initial_depth': '', 'qty': None}
Result: Solved with success
Deep: 1
Cost: 1
Expanded Nodes: 1
Frontier nodes: 2
Time: 0:00:00
Number of plays: 1
Play: 0
123
456
708
Play: 1
123
456
780
```

Formato de datos exportados (csv)

initial_state	final_state	algorithm	heuristic	initial_depth	result	deep	cost	expanded_n odes	frontier_nod es	time	number_of_ plays
180572643	123456780	global_heuri stic_ham	hamming		success	114	114	1038	622	0:00:00.058 842	114
			<u> </u>						-		
		global_heuri								0:00:00.003	
180572643	123456780	stic_man	manhattan		success	52	52	96	71	020	52
		global_heuri	not_adm_he							0:00:00.053	
180572643	123456780	stic_nah	u		success	114	114	1063	637	856	114

Todos los algoritmos

Comparación de algoritmos bajo mismo estado inicial (180572643)

8

5

6

Todos los algoritmos

1	8	
5	7	2
6	4	3

Todos los algoritmos - Tiempos

Comparación de tiempos bajo mismo estado inicial (180572643)

Algoritmos no informados

Comparación de algoritmos bajo mismo estado inicial (108572643)

BPPV con distintas profundidades iniciales

algorithm

BPPV con distintas profundidades iniciales

Métodos informados

6

Método A* con distintas heurísticas

8

Método A* con distintas heurísticas

Heurística local con distintas heurísticas

Heurística global con distintas heurísticas

04 Conclusiones

 El <u>algoritmo BPPV</u> es más costoso en tiempo y en memoria.

04.1: Conclusiones generales

 El <u>algoritmo A*</u> es el que mejores resultados ofrece, dando soluciones óptimas con poco consumo de tiempo y memoria.

La <u>heurística</u> de <u>distancia</u>
 <u>manhattan</u> es la que ofrece
 mejores resultados en la
 mayoría de los casos.

 El <u>DFS</u> tiene la desventaja de expandir demasiados nodos en comparación al BFS.

04.2: Métodos no informados

 El <u>algoritmo VDS (BPPV)</u> sufre un incremento de tiempo de ejecución significativo al aumentar la máxima profundidad inicial.

 En (BPPV), si el paso inicial es muy grande se comportará como un DFS. Al contrario, procederá a actuar como un BFS.

04.3: **Métodos** informados

 El método A* ofrece los mejores resultados.

 Las <u>heurísticas local y global</u> ofrecen rendimientos similares en cuanto a tiempo

 La <u>heurística local</u> expande muchos más nodos para llegar a la solución, llegando a soluciones con mayor costo.

04.4: Heurísticas

La <u>heurística distancia</u>
 <u>manhattan</u> da mejores
 resultados en los métodos <u>A*</u> y <u>heurística global</u>.

 La <u>heurística hamming</u> no destaca frente a las otras, obteniendo resultados intermedios.

La <u>heurística no admisible</u>
 propuesta tiene muy buenos
 resultados con el método
 <u>heurística local</u>.

¡Gracias!

¿Preguntas?

juarce@itba.edu.ar imanfredi@itba.edu.ar gpecile@itba.edu.ar