Week 1 Lecture 2

Review of linear algebra & Introduction to optimization

GEOL 4397: Data analytics and machine learning for geoscientists

Jiajia Sun, Ph.D. Jan. 17th, 2019

	Week	Date	Topics	Comments
			Overview of syllabus	
	1	01/15 Tues	Lecture: Introduction to Machine learning: applications	
		01/17 Thur	Lecture: Review of linear algebra	
	2	01/22 Tues	Lab: Linear algebra in Python	Not graded
		01/24 Thur	Lecture: Introduction to optimization	
	3	01/29 Tues	Lab: Gradient descent + Linear regression	Report due on 02/05 at 5:30 pm
L		01/31 Thur	Lecture: Introduction to machine learning: concepts	
	4	02/05 Tues	Lecture: Logistic regression	
		02/07 Thur	Lab: Logistic regression	Report due on 02/14 at 5:30 pm
	5	02/12 Tues	Lecture: Support vector machine	
		02/14 Thur	Lab: Support vector machine	Report due on 02/21 at 5:30 pm
	6	02/19 Tues	Lecture: Decision trees	
		02/21 Thur	Lab: Decision trees	Report due on 02/28 at 5:30 pm
	7	02/26 Tues	Lecture: Random Forest	
		02/28 Thur	Lab: Random forest	Report due on 03/07 at 5:30 pm
	8	03/05 Tues	Lecture: Ensemble learning	
L		03/07 Thur	Lab: Ensemble learning	Reprot due on 03/19 at 5:30 pm
	9	03/12 Tues	No class due to spring break	
1		03/14 Thur	No class due to spring break	
	10	03/19 Tues	Review & Recap	
		03/21 Thur	Exam	
	11	03/26 Tues	Lecture: Clustering	
		03/28 Thur	Lab: Clustering	Report due on 04/04 at 5:30 pm
	12	04/02 Tues	Lecture: Introduction to TensorFlow	
		04/04 Thur	Lab: TensorFlow	Not graded
	13	04/09 Tues	Lecture: Introduction to neural networks 1	
		04/11 Thur	Lecture: Introduction to neural networks 2	
	14	04/16 Tues	Lab: Deep learning	Report due on 04/23 at 5:30pm
		04/18 Thur	Lecture: Convolutional neural networks 1	
	15	04/23 Tues	Guest lecture: Convolutional neural networks 2	
		04/25 Thur	Lab: CNN (optional)	Report due on 05/02 at 5:30 pm
	16	04/30 Tues	final presentation??	
		05/02 Thur	final presentation??	
	Note	28 class meetings		04/29 last day of class

Today's agenda

Linear regression model

Review of linear algebra

Does money makes people happy?

 Download OECD's Better Life Index data (http://www.oecdbetterlifeindex.org/)

Does money makes people happy?

 Download OECD's Better Life Index data (http://www.oecdbetterlifeindex.org/)

 Download GPD per capita from IMF's website (https://goo.gl/doxvTP)

5. Report for Selected Countries and Subjects

You will find notes on the data and options to download the table below your results.

			Shaded cells indicate IMF staff estimates				
Country	Subject Descriptor	Units	Scale	Country/Series- specific Notes	2015		
Afghanistan	Gross domestic product per capita, current prices	U.S. dollars	Units	В	599.994		
Albania	Gross domestic product per capita, current prices	U.S. dollars	Units	В	3,995.383		
Algeria	Gross domestic product per capita, current prices	U.S. dollars	Units	B	4,318.135		
Angola	Gross domestic product per capita, current prices	U.S. dollars	Units	B	4,100.315		
Antigua and Barbuda	Gross domestic product per capita, current prices	U.S. dollars	Units	B	14,414.302		
Argentina	Gross domestic product per capita, current prices	U.S. dollars	Units	B	13,588.846		
Armenia	Gross domestic product per capita, current prices	U.S. dollars	Units	B	3,534.860		
Australia	Gross domestic product per capita, current prices	U.S. dollars	Units	В	50,961.865		
Austria	Gross domestic product per capita, current prices	U.S. dollars	Units	В	43,724.031		
Azerbaijan	Gross domestic product per capita, current prices	U.S. dollars	Units	В	5,739.433		
The Bahamas	Gross domestic product per capita, current prices	U.S. dollars	Units	В	23,902.805		
Bahrain	Gross domestic product per capita, current prices	U.S. dollars	Units	В	23,509.981		
Bangladesh	Gross domestic product per capita, current prices	U.S. dollars	Units	В	1,286.868		
Barbados	Gross domestic product per capita, current prices	U.S. dollars	Units	В	15,773.555		
Belarus	Gross domestic product per capita, current prices	U.S. dollars	Units	B	5,749.119		
Belgium	Gross domestic product per capita, current prices	U.S. dollars	Units	B	40,106.632		
Belize	Gross domestic product per capita, current prices	U.S. dollars	Units	B	4,841.735		
Benin	Gross domestic product per capita, current prices	U.S. dollars	Units	В	780.063		

Does money makes people happy?

 Download OECD's Better Life Index data (http://www.oecdbetterlifeindex.org/)

 Download GPD per capita from IMF's website (https://goo.gl/doxvTP)

Figure from Aurelien Geron's ML book, page 19

Learn a model from the data

Build a model from the data

• Train a model from the data

Train a model from the training data

- Train a model from the training data
- Make predictions

- Learn a model from the training data
- Make predictions

What is machine learning?

My definition: the field of study that gives
 computers the ability to learn from data (e.g.,
 discovering patterns and relations among input
 data), and make predictions.

Training data

Training data

- Notice that the second for the sec
- There does seem to be a trend!
- Looks like life satisfaction goes up more or less linearly with the country's GDP per capita.

Hypothesis

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

- $h_{\theta}(x)$: life satisfaction
- x : GDP per capita
- θ_0 , θ_1 : model parameters (to be learned from training data)

Linear relationship

 By tweaking the model parameters, we can use the linear regression model to represent any linear function.

Figure from Aurelien Geron's ML book, page 19

Training/Learning

Which one to choose?

Training/Learning

- Which one to choose?
- Or, a more general question is, How to train/learn these model parameters??

Training/Learning

- Which one to choose?
- Or, a more general question is, How to train/learn these model parameters??
- The answer is by

defining a cost function & minimizing it

Cost function: basic idea

- Measures <u>how bad (or good) a candidate model is</u>
- Specifically, measure <u>the difference between</u>
 <u>predictions from our model and the training data</u>

Cost function: basic idea

- Measures <u>how bad (or good) a candidate model is</u>
- Specifically, measure <u>the difference between</u>
 <u>predictions from our model and the training data</u>
- The objective is to minimize the cost function so as to minimize the difference between predictions and observations

Building a cost function

For simplicity, let us focus on one country, say, U.S.

- What is the predicted value for life satisfaction?
- What is the value from training data?

- In our training data, we have M countries. Suppose U.S. is the i^{th} country.
- Predicted value: $h_{\theta}(x^{(i)})$
- True value: $y^{(i)}$

- In our training data, we have M countries. Suppose U.S. is the i^{th} country.
- Predicted value: $h_{\theta}(x^{(i)})$
- True value: $y^{(i)}$
- Difference:

$$(h_{\theta}(x^{(i)}) - y^{(i)})^2$$

- In our training data, we have M countries. Suppose U.S. is the i^{th} country.
- Predicted value: $h_{\theta}(x^{(i)})$
- True value: $y^{(i)}$
- Difference:

$$(h_{\theta}(x^{(i)}) - y^{(i)})^2$$

This is only for U.S.

- In our training data, we have M countries. Suppose U.S. is the i^{th} country.
- Predicted value: $h_{\theta}(x^{(i)})$
- True value: $y^{(i)}$
- Difference:

$$(h_{\theta}(x^{(i)}) - y^{(i)})^2$$

- This is only for U.S.
- Remember that we want our model to fit all of our training data, not just one of them. Therefore, we sum the differences over all countries

- In our training data, we have M countries. Suppose U.S. is the i^{th} country.
- Predicted value: $h_{\theta}(x^{(i)})$
- True value: $y^{(i)}$
- Difference:

$$(h_{\theta}(x^{(i)}) - y^{(i)})^2$$

- This is only for U.S.
- Remember that we want our model to fit all of our training data, not just one of them. Therefore, we sum the differences over all countries

$$\sum_{i=1}^{M} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Cost function

$$\sum_{i=1}^{M} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Remember

$$h_{\theta}(x^{(i)}) = \theta_0 + \theta_1 x^{(i)}$$

Cost function

$$\sum_{i=1}^{M} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Remember

$$h_{\theta}(x^{(i)}) = \theta_0 + \theta_1 x^{(i)}$$

Therefore,

$$\sum_{i=1}^{M} (\theta_0 + \theta_1 x^{(i)} - y^{(i)})^2$$

Cost function

$$\sum_{i=1}^{M} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Remember

$$h_{\theta}(x^{(i)}) = \theta_0 + \theta_1 x^{(i)}$$

Therefore,

$$J(\theta_0, \theta_1) = \sum_{i=1}^{M} (\theta_0 + \theta_1 x^{(i)} - y^{(i)})^2$$

Minimization

- Cost function measures the difference between predicted and true values
- Remember that, we want to minimize this difference, i.e.,

min
$$J(\theta_0, \theta_1) = \sum_{i=1}^{M} (\theta_0 + \theta_1 x^{(i)} - y^{(i)})^2$$

- Learning/training = Minimizing a cost function
- The process of learning a model from training data is essentially the process of minimizing a cost function.

Optimization

- Cost function measures the difference between predicted and true values
- Remember that, we want to minimize this difference, i.e.,

min
$$J(\theta_0, \theta_1) = \sum_{i=1}^{M} (\theta_0 + \theta_1 x^{(i)} - y^{(i)})^2$$

- Learning/training = Minimizing a cost function
- The process of learning a model from training data is essentially the process of minimizing a cost function.
- Optimization: finding optimal parameter values that minimize a cost function

Optimization

- Cost function measures the difference between predicted and true values
- Remember that, we want to minimize this difference, i.e.,

min
$$J(\theta_0, \theta_1) = \sum_{i=1}^{M} (\theta_0 + \theta_1 x^{(i)} - y^{(i)})^2$$

- Learning/training = Minimizing a cost function
- The process of learning a model from training data is essentially the process of optimization.
- Optimization: finding optimal parameter values that minimize a cost function

Best fit model

Figure from Aurelien Geron's ML book, page 20

How does linear algebra come into play?

Hypothesis: linear regression model

$$h_{\theta}(x^{(i)}) = \theta_0 + \theta_1 x^{(i)}$$

- $h_{\theta}(x^{(i)})$: life satisfaction for i^{th} country
- $x^{(i)}$: GDP per capita for i^{th} country
- θ_0 , θ_1 : model parameters (to be learned from training data)

Hypothesis: linear regression model

$$h_{\theta}(x^{(i)}) = \theta_0 + \theta_1 x^{(i)}$$

- $h_{\theta}(x^{(i)})$: output variable/target variable for i^{th} country
- $x^{(i)}$: input variable/feature for i^{th} country
- θ_0 , θ_1 : model parameters (to be learned from training data)

Features

- In previous example, we only have one feature, i.e., GDP per capita, (to predict life satisfaction)
- There are many other relevant features!
 - Employment rate
 - Education
 - Medical care
 - Air quality
 - Crime
 - ...

Hypothesis: multiple input variables

$$h_{\theta}\left(x_{1}^{(i)}, x_{2}^{(i)}, \dots, x_{N}^{(i)}\right) = \theta_{0} + \theta_{1}x_{1}^{(i)} + \theta_{2}x_{2}^{(i)} + \dots + \theta_{N}x_{N}^{(i)}$$

- $h_{\theta}(x_1^{(i)}, x_2^{(i)}, ..., x_N^{(i)})$: output variable/target variable
- $x_j^{(i)}$: <u>jth input variable/features for ith country</u>
- θ_0 , θ_1 , ..., θ_N : model parameters (to be learned from training data)
- A straightforward generalization to multiple input variables

Cost function

Cost function for one input variable

$$J(\theta_0, \theta_1) = \sum_{i=1}^{M} (\theta_0 + \theta_1 x^{(i)} - y^{(i)})^2$$

Cost function for multiple input variables

$$J(\theta) = \sum_{i=1}^{M} (\theta_0 + \theta_1 x_1^{(i)} + \theta_2 x_2^{(i)} + \dots + \theta_N x_N^{(i)} - y^{(i)})^2$$

Let us use linear algebra to simplify the cost function!

Matrix

Rectangular array of numbers

$$\mathbf{A} = \begin{bmatrix} 1402 & 25 \\ 1650 & 46 \\ 2058 & 57 \end{bmatrix}_{3 \times 2}$$

Dimension of a matrix: # of rows X # of columns

Matrix elements

$$\mathbf{A} = \begin{bmatrix} 1402 & 25 \\ 1650 & 46 \\ 2058 & 57 \end{bmatrix}_{3 \times 2}$$

 A_{ij} : the element/entry at the i^{th} row and j^{th} column

Vector: An N X 1 matrix

$$y = \begin{bmatrix} 604 \\ 731 \\ 172 \\ 495 \end{bmatrix}$$

- N = 4, therefore, y is a 4-dimensional vector
- y_i : i^{th} element

Norm

Measures the length of a vector

$$a = \begin{bmatrix} 1 \\ 3 \\ 4 \\ 2 \end{bmatrix}$$

$$||a|| = \sqrt{1^2 + 3^2 + 4^2 + 2^2} = \sqrt{30}$$

$$||a||^2 = 1^2 + 3^2 + 4^2 + 2^2 = 30$$

Matrix addition

$$\begin{bmatrix} 5.2 & 2.0 \\ 4.6 & 0.5 \\ 1.9 & 4.3 \end{bmatrix} + \begin{bmatrix} 0.5 & 1.4 \\ 4.1 & 1.1 \\ 5.8 & 3.7 \end{bmatrix} = \begin{bmatrix} 5.7 & 3.4 \\ 8.7 & 1.6 \\ 7.7 & 8.0 \end{bmatrix}$$

$$3X2 \qquad 3X2 \qquad 3X2$$

$$\begin{bmatrix} 5.2 & 2.0 \\ 4.6 & 0.5 \\ 1.9 & 4.3 \end{bmatrix} + \begin{bmatrix} 0.5 & 1.4 \\ 4.1 & 1.1 \end{bmatrix} = error$$
3X2

Scalar multiplication

$$3 \times \begin{bmatrix} 1 & 0 \\ 2 & 6 \\ 7 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 6 & 18 \\ 21 & 9 \end{bmatrix}$$

$$\begin{bmatrix} 12 & 16 \\ 8 & 4 \end{bmatrix} \div 4 = \begin{bmatrix} 3 & 4 \\ 2 & 1 \end{bmatrix}$$

In-class quiz

$$3 \times \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 5 \\ 3 \\ 7 \end{bmatrix} - \begin{bmatrix} 9 \\ 0 \\ 3 \end{bmatrix} \div 3$$

Remember: division and multiplication take precedence over addition and subtraction

Matrix-vector multiplication

$$A \times \mathcal{X} = \mathcal{Y}$$

$$\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \times \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} ax + by + cz \\ dx + ey + fz \end{bmatrix}$$
2X1

 The number of columns of matrix A must be equal to the number of elements in vector x

Matrix-vector multiplication

$$A \times \mathcal{X} = \mathcal{Y}$$

• To get y_i , multiple the i^{th} row of matrix A with the elements of vector x, and add them up

In-class quiz

$$\begin{bmatrix} 1 & 2 & 5 \\ 0 & 3 & 4 \end{bmatrix} \times \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$

Matrix-matrix multiplication

$$A_{ extsf{mxn}} imes B_{ extsf{nxp}} = C_{ extsf{mxp}}$$

- The ith column of matrix C is obtained by multiplying A with the i^{th} column of B (for i = 1, 2, ..., p)
- Matrix-matrix multiplication is just a sequence of matrix-vector multiplications

In-class quiz

$$\begin{bmatrix} 5 & 2 \\ 3 & 1 \end{bmatrix} \times \begin{bmatrix} 0 & 2 \\ 1 & 3 \end{bmatrix}$$

Identity matrix

$$I_{3\times3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$I_{4\times4} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Matrix inverse

- Suppose A is a m x m matrix, and suppose it has an inverse, then
- We can write the inverse as A^{-1}

$$AA^{-1} = I$$

$$A^{-1}A = I$$

Example

$$\begin{bmatrix} 2 & 0 \\ 0 & 7 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{7} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 5 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} -2 & \frac{5}{3} \\ & \frac{2}{3} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Matrix transpose

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 5 & 1 & 4 \end{bmatrix}$$

$$\bullet B = A^T = \begin{bmatrix} 1 & 5 \\ 3 & 1 \\ 2 & 4 \end{bmatrix}$$

- $B_{ij} = A_{ji}$
- If A is an m x n matrix, then A^T is an n x m matrix

Back to our cost function

$$J(\theta) = \sum_{i=1}^{M} (\theta_0 + \theta_1 x_1^{(i)} + \theta_2 x_2^{(i)} + \dots + \theta_N x_N^{(i)} - y^{(i)})^2$$

Notation

$$oldsymbol{ heta} = egin{bmatrix} heta_0 \ heta_1 \ heta_2 \ heta_N \end{bmatrix}$$

$$x^{(i)} = \begin{bmatrix} 1 \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_N^{(i)} \end{bmatrix}$$

Simplification

$$J(\theta) = \sum_{i=1}^{M} (\theta_0 + \theta_1 x_1^{(i)} + \theta_2 x_2^{(i)} + \dots + \theta_N x_N^{(i)} - y^{(i)})^2$$

$$\theta_0 + \theta_1 x_1^{(i)} + \theta_2 x_2^{(i)} + \dots + \theta_N x_N^{(i)} = \boldsymbol{\theta}^T \boldsymbol{x}^{(i)}$$

Simplification

$$J(\theta) = \sum_{i=1}^{M} (\theta_0 + \theta_1 x_1^{(i)} + \theta_2 x_2^{(i)} + \dots + \theta_N x_N^{(i)} - y^{(i)})^2$$

$$\theta_0 + \theta_1 x_1^{(i)} + \ \theta_2 x_2^{(i)} + \dots + \theta_N x_N^{(i)} = \pmb{\theta}^T \pmb{x}^{(i)}$$

$$J(\theta) = \sum_{i=1}^{M} (\boldsymbol{\theta}^T \boldsymbol{x}^{(i)} - y^{(i)})^2$$

Matrix-vector form

$$J(\theta) = \sum_{i=1}^{M} (\boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)} - \boldsymbol{y}^{(i)})^{2}$$

$$J(\theta) = ||\boldsymbol{X}\boldsymbol{\theta} - \boldsymbol{y}||^{2}$$

$$X = \begin{bmatrix} (x^{(1)})^T \\ \dots \\ (x^{(M)})^T \end{bmatrix} \qquad y = \begin{bmatrix} y^{(1)} \\ \dots \\ y^{(M)} \end{bmatrix}$$

$$Mx(N+1) \qquad Mx1$$