

CAPSTONE PROJECT

POWER SYSTEM FAULT DETECTION AND CLASSIFICATION

Presented By:

Rishu-Hemvati Nandan Bahuguna Garhwal University-Computer Science & Engineering(Al/ML)

OUTLINE

- Problem Statement
- Proposed Solution
- System Development Approach
- Algorithm & Deployment
- Result
- Conclusion
- Future Scope
- References

PROBLEM STATEMENT

Design a machine learning model to detect and classify different types of faults in a power distribution system. Using electrical measurement data (e.g., voltage and current phasors), the model must distinguish between:

- Normal operating conditions
- Fault types:
 - Line-to-ground
 - Line-to-line
 - Three-phase faults

Goal: Enable rapid and accurate fault identification to support grid stability and reliability.

PROPOSED SOLUTION

The proposed model will:

- Ingest electrical measurement data.
- Preprocess and clean the dataset.
- Use supervised machine learning to classify fault types.
- Provide real-time or near-real-time fault classification.
- Be deployed using IBM Cloud Lite services.

SYSTEM APPROACH

Technology Used:

- Python (Data processing, model training)
- IBM Cloud Lite (Deployment platform)
- Jupyter Notebook (Exploratory analysis)

Libraries:

- NumPy, Pandas, Scikit-learn
- Matplotlib, Seaborn (visualization)

Dataset:

Kaggle Dataset:

(https://www.kaggle.com/datasets/ziya07/power-system-faults-dataset)

ALGORITHM & DEPLOYMENT

Algorithm Selection:

Random Forest / Decision Tree / SVM

Input Features:

- Voltage measurements
- Current phasors & Fault duration and type

Training:

- Data split into train/test sets
- Cross-validation applied

Deployment:

- Model exported as .pkl
- Web UI (optional) hosted on IBM Cloud Lite

Best Performing Model: Random Forest Classifier **Accuracy (Cross Validation):** 0.409 **Other Models Tested:**

- Snap Logistic Regression (Accuracy: 0.393)
- Another Random Forest variant (Accuracy: 0.376)

Enhancements Used:

- Hyperparameter Optimization
- Feature Engineering

Cross Validation

HPO-2

HPO-1 FE HPO-2

00:01:29

00:02:57

0.409

0.393

O Random Forest Classifier

Snap Logistic Regression

Pipeline 8

Pipeline 4

2

Pipeline leaderboard ♥

	Rank ↑	Name	Algorithm	Specialization	Accuracy (Optimized) Cross Validation	Enhancements	Build time
*	1	Pipeline 8	• Random Forest Classifier		0.409	HPO-1 FE HPO-2	00:01:29
	2	Pipeline 4	• Snap Logistic Regression		0.393	HPO-1 FE HPO-2	00:02:57

	Rank ↑	Name	Algorithm	Specialization	Accuracy (Optimized) Cross Validation	Enhancements	Build time
*	1	Pipeline 8	• Random Forest Classifier		0.409	HPO-1 FE HPO-2	00:01:29
	2	Pipeline 4	• Snap Logistic Regression		0.393	HPO-1 FE HPO-2	00:02:57
	3	Pipeline 3	• Snap Logistic Regression		0.393	HPO-1 FE	00:02:03
	4	Pipeline 7	• Random Forest Classifier		0.376	HPO-1 FE	00:01:18

CONCLUSION

- Fault classification using ML models is feasible and efficient.
- Accurate fault type detection improves grid reliability.
- ML techniques can complement traditional fault detection systems.
- IBM Cloud enables smooth deployment and accessibility.
- Random Forest Classifier was most effective with an accuracy of 40.9%.
- AutoAl automated feature selection, optimization, and model testing.
- IBM Cloud Lite successfully supported the deployment.
- Real-time classification of power system faults is feasible but can be further improved with additional data or ensemble methods.

FUTURE SCOPE

- Integration with real-time SCADA systems.
- Use of deep learning (e.g., LSTM) for time-series data.
- Fault severity prediction.
- Deployment in industrial control environments.

REFERENCES

Kaggle Dataset: https://www.kaggle.com/datasets/ziya07/power-system-faults-dataset

- Research papers on power fault classification
- Scikit-learn documentation
- IBM Cloud Documentation

IBM Cloud Lite

Deployment of Machine Learning Models using IBM Cloud Lite

https://cloud.ibm.com

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

Rishu Saini

Has successfully satisfied the requirements for:

Getting Started with Artificial Intelligence

Issued on: Jul 18, 2025 Issued by: IBM SkillsBuild

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

Rishu Saini

Has successfully satisfied the requirements for:

Journey to Cloud: Envisioning Your Solution

Issued on: Jul 19, 2025 Issued by: IBM SkillsBuild

IBM.

Verify: https://www.credly.com/badges/34743822-3bc9-45a4-b821-ae948e1b072b

IBM CERTIFICATIONS

IBM SkillsBuild

Completion Certificate

This certificate is presented to

Rishu Saini

for the completion of

(ALM-COURSE_3824998)
According to the Adobe Learning Manager system of record

Completion date: 24 Jul 2025 (GMT)

Learning hours: 20 mins

THANK YOU!

