Sampling

By
Dr. Anjula Mehto
Assistant Professor
Thapar Institute of Engineering and Technology,
Patiala, Punjab
Email-anjula.mehto@thapar.edu

Sampling

Sampling

- A process used in statistical analysis.
- Process of selecting a portion or subset (sample) of the population to represent the entire population.
- Sample- A representative subset of a population.
- Representative subset accurately reflects the characteristics of the population as a whole.

- Find the average height of all adults in this class.
- 2. Find the average height of all adult females in Patiala.

Surveys and Opinion Polls:

Medical Studies:

• Sampling a group of patients to study the effectiveness of a new treatment.

Agriculture:

 Sampling crops to determine their yield and quality.

- 1. Define Target Population:
 - Based on the objective of the study, clearly target the population.
 - Example- For regional election, the target population would be all people who are domiciled in the region and eligible to vote.

- 2. Define Sampling Frame:
 - A subset of the population that defines the pool from which a sample to be selected.
 - Example- The sampling frame would consist of all the people from the population who are in the state and can participate in the study.
- 3. Select Sampling Technique:
 - Select an appropriate sampling technique.

- 4. Determine Sample Size:
 - Refers to the number of items or elements selected from sample frame.
 - If the sample size is too small, the sample may not accurately represent the population.
 - If the sample size is too large, it can be inefficient and time-consuming to collect and analyze the data.

- The appropriate sample size depends on factors such as:
 - The size of the population
 - The confidence level and
 - The margin of error
- 5. Data collection:
 - Once the sample has been selected, the next step is to collect data from the sample.

Types of Sampling

- Simple Random Sampling
- Systematic Sampling
- Stratified Sampling
- Cluster Sampling

Simple Random Sampling

- Pick the sample, at random.
- Applicable when population is small, and homogeneous.
- Example- I want to ask a question in this class, then I can randomly pick any student

Simple Random Sampling

Advantages:

- Easy calculation.
- Every participant has an equal probability of being selected

Disadvantages:

- If sampling frame is large, then it is impracticable.
- Minority subgroups of interest in population may not be present in sample.

Systematic Sampling

- The samples are chosen at regular intervals.
- A random start and then proceeds with the selection of every 'kth' element.
- Example- Select every 10th name from the telephone directory.

Systematic Sampling

Advantages:

- Samples are easy to select.
- Sample evenly spread over entire population.

Disadvantages:

 Sample may be biased if hidden periodicity in population coincides with that of selection.

Stratified Sampling

- The population is divided into subgroups or strata based on a certain characteristic or criterion (age groups, ethnic origin, and gender).
- Each stratum is then sampled as an independent sub-population.
- Individual elements from a sub-population can be randomly selected.

Stratified Sampling

- Example-
- If a company has 500 male employees and 100 female employees.
- To ensure that the sample reflects the gender as well use stratified sampling

Stratified Sampling

- Advantages:
 - Improves the representativeness of the sample
 - Increases efficiency
- Disadvantages:
 - Requires prior knowledge
 - Can be complex
 - Can be time-consuming

Cluster Sampling

- The entire population is divided into smaller groups or clusters, and then a random sample of these clusters is selected.
- The sample size is then determined based on the number of clusters selected.

- Sample a population of 10,000 schools to estimate the average number of students per school.
- Divide the schools into smaller groups or clusters based on geographical locations, for example, schools in each state.
- Now, instead of visiting all 10,000 schools, select a random sample of 5 states, and visit all the schools within those 5 states.
- The data collected from the schools within the 5 selected states will then be used to estimate the average number of students per school for the entire population of 10,000 schools.

Cluster Sampling

Advantages:

 Cuts down on the cost of preparing a sampling frame.

Disadvantages:

 Can introduce bias: If the clusters are not representative of the population, leading to inaccurate results.

Cluster Vs Stratified Sampling

 The main difference between these two methods is how the sample is selected.

Which Sampling Technique to Use?

- Size of the data set:
 - Small data sets- Simple random sampling or Systematic Sampling.
 - Large data sets- May use a more complex technique like Stratified sampling or Cluster sampling.

Which Sampling Technique to Use?

- Nature of the data:
 - For well-defined structured data, Stratified Sampling may be a good choice.
 - While for more complex data sets, Cluster or Systematic Sampling may be better.

Which Sampling Technique to Use?

- Cost and feasibility:
- Simple random sampling may be the most straightforward and cost-effective.
- While more complex techniques like Cluster or Stratified sampling may be more expensive and require more resources.

Why need Sampling?

- Reduces computational cost.
- Reduces processing time of the entire dataset.
- Provides Balance class distribution or treats imbalanced classes.
- Avoid Overfitting.

Imbalanced classes

- Example: To detect fraudulent credit card transactions.
- Suppose your model gives 94% accuracy.

Imbalanced classes

- Unfortunately, that accuracy (94%) is misleading:
 - All those **non-fraudulent** transactions, would have "100%" accuracy.
 - Those transactions which are **fraudulent**, would have "o%" accuracy.
 - Your overall accuracy would be high simply because the most transaction is not fraudulent.

How to Balance Class Distribution?

- Use techniques such as oversampling the minority class or
- Use undersampling the majority class.

How to Balance Class Distribution?

Undersampling and Oversampling

Overfitting

• When a model is too closely aligned to a limited set of data points, but fails to generalize to new data.

Overfitting vs Underfitting

UNDERFIT

GOLDILOCKS ZONE

OVERFIT

How to Reduce Overfitting

K-fold cross-validation

Iteration 1	Iteration 2	Iteration 3		Iteration K
Fold 1	Fold 1	Fold 1		Fold 1
Fold 2	Fold 2	Fold 2	• • •	Fold 2
Fold 3	Fold 3	Fold 3		Fold 3
•	•	•		•
	•	•		•
Fold K	Fold K	Fold K	• • •	Fold K
Training data Test data				

K-fold Cross-Validation

- The original dataset is divided into 'k' subsets or folds of roughly equal size.
- The model is trained on 'k-1' folds.
- The model is evaluated on the remaining fold.
- This process is repeated 'k' times so that each fold is used for evaluation once.
- The average performance across all 'k' iterations is used to evaluate the model's overall performance.

Central tendency measures:

- Describe the center or middle of the sample data.
- Common measures of central tendency include the mean, median, and mode.

Central tendency measures:

- Example: Dataset- {1, 1, 1, 2, 2}
- The mean: (1+1+1+2+2)/5 = 7/5 = 1.4
- The mode: 1
- The median: 1
- Mean, Median, and Mode are similar, it indicates that the sample is representative of the population

Dispersion measures:

- Describe how spread out the sample data is.
- Common measures of dispersion include range, variance, and standard deviation.

Dispersion measures:

- Example: Dataset- {1, 1, 1, 2, 2}
- The range- 1
- The variance: 1.6
- The standard deviation: 0.6
- The range, variance, and standard deviation are small, it indicates that the sample is tightly grouped and has a good dispersion

Normality tests:

- Checks whether the sample data follows a normal distribution.
- Common normality tests include the Shapiro-Wilk test, and the Anderson-Darling test.
- Both the tests can be implemented using the scipy.stats library in Python.

On the basis of type of dataset

- Numerical data:
 - Can use measures of central tendency, dispersion, and normality.
- Categorical data:
 - Can use measures such as relative frequencies or proportions.

On the basis of type of dataset:

- Time series data:
 - Can use measures such as autocorrelation and partial autocorrelation.
 - **statsmodels** library in Python provides functions to calculate these measures.

On the basis of type of dataset:

- Image or multimedia data:
 - Can use measures such as image quality metrics, such as mean squared error or structural similarity index.
 - scikit-image library in Python provides functions to calculate these metrics.

1. Suppose there is a dataset

[3, 1, 6, 2, 4, 4, 2, 0, 1, 6, 4, 6, 4, 5, 9, 6, 8, 9, 7, 7] with four samples: [6, 2, 2, 4, 9], [7, 2, 8, 2, 9], [7, 8, 9, 5, 4], [1, 2, 0, 1, 3], Which one is a good sample?)

- Range- Difference between the largest and smallest values.
- Variance = $(1 / (n 1)) * \sum (x_i \bar{x})^2$ where
 - x_i represents each individual data point, \bar{x} represents the sample mean, \bar{x} data points in the sample
- Standard Deviation- The square root of the variance

Samples 1: [6, 2, 2, 4, 9]

Sample Mean: 4.6

Sample Median: 4.0

Sample Mode: 2

Sample Range: 7

Sample Variance: 7.0

Sample Standard Deviation: 2.7

Samples 2: [7, 2, 8, 2, 9]

Sample Mean: 5.6

Sample Median: 7.0

Sample Mode: 2

Sample Range: 7

Sample Variance: 9.0

Sample Standard Deviation: 3.0

Samples 3: [7, 8, 9, 5, 4]

Sample Mean: 6.6

Sample Median: 7.0

Sample Mode: 4

Sample Range: 5

Sample Variance: 3.44

Sample Standard Deviation: 1.8

Samples 4: [1,2,0,1,3]

Sample Mean: 1.4

Sample Median: 1.0

Sample Mode: 1

Sample Range: 3

Sample Variance: 1.04

Sample Standard Deviation: 1.0

• Answer- Sample 4 is good.

2. Data set [80, 41, 95, 53, 82, 33, 84, 32, 7, 27, 30, 23, 40, 20, 44, 16, 19, 28, 21, 97] with 4 samples [16, 28, 82, 80, 97], [30, 53, 84, 33, 97], [19, 7, 41, 21, 28], [7, 19, 80, 53, 27]. Which one is good?

Sample 1

Sample Mean: 60.6, Sample Median: 80.0 Sample Mode: 16, Sample Range: 81, Sample Variance: 1042.24, Sample Standard Deviation: 32.2

Sample-2

Sample Mean: 59.4, Sample Median: 53.0, Sample Mode: 30, Sample Range: 67, Sample Variance: 724.24, Sample Standard Deviation: 26.91

```
Sample 3
```

Sample Mean: 23.2, Sample Median: 21.0, Sample Mode: 7, Sample Range: 34, Sample Variance: 124.96, Sample Standard Deviation: 11.17

Sample-4

Sample Mean: 37.2, Sample Median: 27.0, Sample Mode: 7, Sample Range: 73, Sample Variance: 685.76, Sample Standard Deviation: 26.18

• Simple Random Sampling:

$$n = (Z^2 * p * (1-p)) / E^2$$

where

- n sample size
- Z Z-score corresponding to the desired level of confidence (e.g. 1.96 for 95% confidence)
- p estimated proportion of the population with a certain characteristic (often assumed to be 0.5)
- E desired margin of error

• Stratified Sampling:

$$n = (Z^2 * p * (1-p)) / (E/S)^2$$

where

- n sample size,
- Z Z-score corresponding to the desired level of confidence (e.g. 1.96 for 95% confidence)
- p estimated proportion of the population with a certain characteristic (often assumed to be 0.5),
- E desired margin of error
- S number of strata.

• Cluster Sampling:

$$n = (Z^2 * p * (1-p)) / (E/C)^2$$

where

- n sample size,
- Z Z-score corresponding to the desired level of confidence (e.g. 1.96 for 95% confidence)
- p estimated proportion of the population with a certain characteristic (often assumed to be 0.5),
- E desired margin of error
- C average size of the clusters.

- Consider a population of 10,000 individuals, and a desired confidence level of 95% and margin of error of 5%. Determine the sample size.
- Solution-Simple random sampling:

$$n = (Z^2 * p * (1-p)) / E^2$$

$$n = (1.96^2 * 0.5 * (1 - 0.5)) / (0.05^2) = 384.16$$

$$n = 384.16$$

$$n = 384$$