Monday June 27, 2016 Lecture 24 Basics of Counting

Notables

- Homework #13
 - □ Page 405, Problems 2 and 6
 - □ Page 432, Problem 16
 - □ Page 581, Problems 2, 6, and 8
 - □ Page 606, Problem 3
 - □ Page 615, Problem 2
 - □ Page 616, Problems 24, and 36
 - Due Wednesday June 29
- Read Chapter 9

The Pigeonhole Principle

Section 6.2

5

The Pigeonhole Principle

- Theorem: The Pigeonhole Principle: Let *S* and *T* be finite sets such that |S| > |T|. Then there is no one-to-one function $f: S \to T$
 - □ Proof: Trivial!
- Example: The decimal expansion of a rational number which is not an integer is periodic, that is, after a while the numbers repeat themselves.

Example: 29/54 = 0.5370370370370....

Computing 29/54

- 10*29 = 5*54 + 20
- 10*20 = 3*54 + 38
- 10*38 = 7*54 + 2
- 10*2 = 0*54 + 20
- 10*20 = 3*54 + 38
- 29/54 = 0.53703...

5

Consider the case 0 < m < n

$$\frac{m}{n} = 0.d_1 d_2 d_3 \dots$$

Let's perform the following division now:

 $10 \times m = q \times n + r = 10 \times (n \times 0.d_1d_2d_3...) = n \times (d_1 + 0.d_2d_3d_4...)$

 $=d_1\times n+n\times 0.d_2d_3...$

Thus,

 $10 \times m = d_1 \times n + r_1$ where $r_1 = n \times 0.d_2d_3d_4...$ Note that $0 \le r_1 < n$

Similarly, $10 \times r_1 = d_2 \times n + r_2$ where $r_2 = n \times 0.d_3d_4d_5...$

In general, we would have $10 \times r_j = d_{j+1} \times n + r_{j+1}$

where $r_{i+1} \in \{0, 1, 2, ..., n-1\}$

So, after a while the r's must repeat and thus the d's must repeat.

Example

- Claim: Let $d_1, d_2, ..., d_n$ be positive integers, not necessarily distinct. Then, some of these numbers add up to a number which is a multiple of n.
 - □ For example, 1, 1, 5, 5, 10, 20, 36. Here n = 7.

```
Proof: Define the following:
b_0 = 0
                                      \Rightarrow b_0 = k_0 \times n + r_0
b_1 = d_1
                                      \Rightarrow b_1 = k_1 \times n + r_1
b_2 = d_1 + d_2
                                      \Rightarrow b_2 = k_2 \times n + r_2
b_3 = d_1 + d_2 + d_3
                                      \Rightarrow b_3 = k_3 \times n + r_3
b_n = d_1 + d_2 + d_3 + \dots + d_n \implies b_n = k_n \times n + r_n
Note that r_i \in \{0, 1, ..., n-1\} and thus there must be b_i and b_i
such that r_i = r_i. WLOG, assume j > i, (:.b_i > b_i). Then we have
b_i - b_i = k_i \times n + r_i - k_i \times n - r_i = (k_i - k_i)n. Therefore,
d_1 + d_2 + \dots + d_i - (d_1 + d_2 + \dots + d_i) = d_{i+1} + d_{i+2} + \dots + d_i = \ell \times n.
```

Relations and Their **Properties**

Section 9.1

5

Outline

- Review & Introduction
- Functions as Relations
- Relations on a Set
- Properties of Relations
 - Reflexive, symmetric, antisymmetric, transitive, equivalence
- Combining Relations
- u Union, intersection, difference
- Composition of relations, Powers of relations

Review: Cartesian Products

- Definition: An *ordered n-tuple* $(a_1, a_2, ..., a_n)$ is the ordered collection that has a_1 as its first element, a_2 as its second element..., and a_n as its nth element.
- 2-tuples are called *ordered pairs*.
 - a (a,b) = (c,d) if and only if a=c and b=d
 - a $(a,b) \neq (b,a)$ unless a=b

5

Cartesian Product ...

Definition: The *Cartesian product* of the sets A_1 , $A_2, ..., A_n$, denoted $A_1 \times A_2 \times ... \times A_n$, is the set of ordered *n*-tuples $(a_1, a_2, ..., a_n)$, where a_i belongs to set A_i for i = 1, 2, ..., n.

$$A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) \mid a_i \in A_i \text{ for } i=1, 2, ..., n\}$$

Binary Relations

- Definition: Let A and B be sets. A binary relation R from A to B is a subset of the Cartesian product A×B.
- Notation: xRy means $(x,y) \in R$, and x is said to be related to y under R. xRy denotes $(x,y) \notin R$.

71

Example

- Let *A* be the set of all cities, and let *B* be the set of all states in the U.S.
 - Define the relation R from A to B by: $(a,b) \in R$ if city a is in state b.
- Some ordered pairs belonging to relation R:
 R= {(East Lansing, Michigan), (Boulder, Colorado), (Chicago, Illinois), (Columbus, Ohio), ...}

714

Another Example

 $A = \{a, b, c, d\}$ $B = \{1, 2, 3\}$ $R = \{(a,2), (b,1), (b, 2), (c,3), (d,2)\}.$

Is this a function?

5

R	1	2	3
а		х	
b	х	x	
С			x
d		x	

71:

Functions As Relations

- Recall that: Let $f: A \to B$ be a function. The *graph* of f is the set of ordered pairs $G_f = \{(x, f(x)) \mid x \in A\}.$
- The graph of a function from A to B is a relation from A to B.
- Conversely, if R is a relation from A to B such that every element in A is the first element of exactly <u>one</u> ordered pair of R, then a function can be defined with R as its graph.

5 716

Relations on a Set

- Definition: A relation on a set A is a relation from A to A, that is, a subset of $A \times A$.
- Example: Let $A = \{1, 2, 3, 4\}$, and

 $R = \{(a,b) \mid a \text{ evenly divides } b\}.$

• What are the elements of R?

 $R = \{(1,1), (1,2), (1,3), (1,4),$

(2,2), (2,4), (3,3), (4,4)

5

Example

R can be displayed graphically and in tabular form:

R1234

1 x x x x 2 x x 3 x

4 x

S

Relations on a Set...

- Let A be a set with n elements. How many distinct relations are there on A?
 - Answer: The number of relations is the same as the number of subsets of $A \times A$. There are n^2 elements in $A \times A$. Thus, $P(A \times A)$, the power set of $A \times A$, has 2^{n^2} elements. Therefore, there are 2^{n^2} relations on a set with n elements.

Types of Relations

- Definition: A relation R on a set A is called *reflexive* if $(a,a) \in R$ for every element $a \in A$, that is, $\forall a (a \in A \rightarrow (a,a) \in R)$
- Definition: A relation R on a set A is called *irreflexive* if $(a,a) \notin R$ for every element $a \in A$, that is, $\forall a (a \in A \rightarrow (a,a) \notin R)$
- Note that a relation can be both not reflexive and not irreflexive.

5

Example

5

- Consider the following relations on {1,2,3,4}. Which are reflexive, irreflexive, neither?
 - $\ \ \, \square \quad R_1 = \{(1,1),\, (1,2),\, (2,1),\, (2,2),\, (3,3),\, (4,4)\}$
 - Reflexive
 - $R_2 = \{(2,4), (4,2)\}$
 - Irreflexive
 - $R_3 = \{(1,2), (2,3), (3,4)\}$
 - Irreflexive
 - $R_4 = \{(1,1), (2,2), (3,3), (4,4)\}$ Reflexive
 - $R_5 = \{(1,3), (1,4), (2,3), (2,4), (3,1), (3,4)\}$
 - Irreflexive
 □ R₆ = {(2,2), (2,3), (2,4), (3,2), (3,3), (3,4)}
 - Neither

5

Symmetric Relations

- Definition: A relation R on a set A is called *symmetric* if $(b,a) \in R$ whenever $(a,b) \in R$ for $a,b \in A$, that is,
 - $\forall a \forall b (a \in A \land b \in A \land aRb \rightarrow bRa)$
- Definition A relation R on a set A is called antisymmetric if whenever $(a,b) \in R$ and $(b,a) \in R$, then a = b, for a, b in A, that is,

 $\forall a \forall b (a \in A \land b \in A \land aRb \land bRa \rightarrow a = b)$

Note that these definitions are not complementary.

5

722

Example

- Consider the following relations on {1,2,3,4}. Which are symmetric, antisymmetric, both, or neither?
 - $\ \ \, \square \quad R_1 = \{(1,1),\, (1,2),\, (2,1),\, (2,2),\, (3,3),\, (4,4)\}$
 - Symmetric
 R₂ = {(2,4), (4,2)}
 - $R_2 = \{(2,4), (4,2)\}$
 - $\qquad R_3 = \{(1,2), (2,3), (3,4)\}$
 - Antisymmetric
 - $\square \qquad R_4 = \{(1,1),\, (2,2),\, (3,3),\, (4,4)\}$
 - Both

 R₅= {(1,3), (1,4), (2,3), (2,4), (3,1), (3,4)}
 - Neither
 - The "divides" relation on the set of positive integers
 Antisymmetric
 - $R_6 = \{(2,2), (2,3), (2,4), (3,2), (3,3), (3,4)\}$ Neither
- Nei

5

Transitive Relations

■ Definition: A relation R on a set A is called *transitive* if whenever $(a,b) \in R$ and $(b,c) \in R$, then $(a,c) \in R$, for a, b, c in A, that is,

 $\forall a \forall b \forall c (a \in A \land b \in A \land c \in A \land aRb \land bRc \rightarrow aRc)$

5

```
Example

Consider the following relations on \{1,2,3,4\}. Which are transitive?

R_1 = \{(2,2), (2,3), (2,4), (3,2), (3,3), (3,4)\}

Transitive

R_2 = \{(1,1), (1,2), (2,1), (2,2), (3,3), (4,4)\}

Transitive

R_3 = \{(2,4), (4,2)\}

Not Transitive

R_4 = \{(1,2), (2,3), (3,4)\}

Not Transitive

R_5 = \{(1,1), (2,2), (3,3), (4,4)\}

Transitive

R_6 = \{(1,3), (1,4), (2,3), (2,4), (3,1), (3,4)\}

Not Transitive

Transitive

The "divides" relation on the set of positive integers

Transitive
```

```
Example Summary

Consider the following relations on \{1,2,3,4\}. Name its properties?

R_1 = \{(2,2), (2,3), (2,4), (3,2), (3,3), (3,4)\}

R_2 = \{(1,1), (1,2), (2,1), (2,2), (3,3), (4,4)\}

R_3 = \{(2,4), (4,2)

R_4 = \{(1,2), (2,3), (3,4)\}

R_5 = \{(1,1), (2,2), (3,3), (4,4)\}

R_6 = \{(1,3), (1,4), (2,3), (2,4), (3,1), (3,4)\}
```

```
Example Summary

• Consider the following relations on \{1,2,3,4\}. Name its properties?

• R_1 = \{(2,2), (2,3), (2,4), (3,2), (3,3), (3,4)\}

• T

• R_2 = \{(1,1), (1,2), (2,1), (2,2), (3,3), (4,4)\}

• R_3 = \{(2,4), (4,2)\}

• S

• R_4 = \{(1,2), (2,3), (3,4)\}

• A

• R_5 = \{(1,1), (2,2), (3,3), (4,4)\}

• R_5 = \{(1,3), (1,4), (2,3), (2,4), (3,1), (3,4)\}

• None

• The "divides" relation on the set of positive integers

• R/A/T

• Keys: R = Reflexive, S = Symmetric, A = Antisymmetric, T = Transitive
```