

Station Explorer for X-ray Timing and Navigation Technology Architecture Overview

Monther A. Hasouneh
for the SEXTANT team

ION GNSS 2014
Tampa, FL
September 8-12, 2014

Outline

- X-ray pulsar Navigation (XNAV)
 - Background
 - Concept
- Missions
 - NICER Science
 - SEXTANT tech demo
- Architecture
 - NICER XTI
 - Flight software
 - Ground system
 - Ground testbed and end-to-end simulation
- Future activity

X-ray pulsar navigation (XNAV)

- Pulsars were discovered in 1967 and immediately recognized as a tool for Galactic navigation
- Millisecond pulsars (MSPs)
 - Rival atomic clocks as time-keepers on long time scales (>year)
 - Pulse phase and Doppler can be precisely measured
 - Provides GPS-like nav & time throughout solar system and beyond
 - MSPs are distributed throughout the Galaxy

Pioneer Plaque: Flown on the Pioneer 10&11 Spacecraft

X-ray pulsar navigation (XNAV)

B0329

Vela

Crab

J0437

B1937

- These are the radio light curves, X-ray curves maybe different.
- This slide borrowed with permission from Neil Ashby's presentation on XNAV at NIST Metrology Seminar June 7, 2012. Content drawn from public website: <http://www.jb.man.ac.uk/pulsar/Education/Sounds/sounds.html>

XNAV concept

GPS

$$\|x_1 - x\| = c(t - t_1)$$

$$\|x_2 - x\| = c(t - t_2)$$

XNAV

$$\hat{n}_1 \cdot x = c(t_1 - t)$$

$$\hat{n}_2 \cdot x = c(t_2 - t)$$

NICER XTI

SEXTANT
algorithms

Station Explorer for X-Ray Timing and Navigation Technology (SEXTANT)
NASA GSFC

Neutron star Interior Composition Explorer (NICER) Mission

- NICER
 - SMD competitively selected purely on science
 - Launch in August 2016 on Space-X Dragon
 - 18 Month mission on Express Logistics Carrier (ELC) 2
 - X-ray (0.2–12 keV) *concentrator optics* and silicon-drift detectors; GPS position and 300 ns absolute time tagging
- SEXTANT — Station Explorer for X-Ray Timing and Navigation Technology
 - STMD funded technology enhancement to use NICER
 - Demonstrate X-ray pulsar navigation (XNAV), enable other applications
 - Only enhanced flight software on NICER, same hardware

Neutron star Interior Composition Explorer (NICER) Mission

- Address NASA and National Academy of Sciences strategic questions
 - Resolve the nature of *ultra-dense* matter at the threshold of collapse to a black hole
 - **Structure**—Reveal the nature of matter in the interiors of neutron stars
 - **Dynamics**—Uncover the physics responsible for the dynamic behavior of neutron stars
 - **Energetics**—Determine how energy is extracted from neutron stars
- NICER offers a fundamental investigation of extremes in gravity, material density, and electromagnetic fields

Station Explorer for X-Ray Timing and Navigation Technology (SEXTANT)
NASA GSFC

Station Explorer for X-Ray Timing and Navigation Technology (SEXTANT) Demo

- Demonstrate GPS-like autonomous position determination (absolute) anywhere in the Solar System using X-ray observations of Millisecond Pulsars (MSPs)
 - Provide *1st real-time, on-orbit demo* of XNAV concept
 - Determine practical limitations of Pulsar Navigation
- Other benefits
 - Evaluate the use of pulsars as part of a more universal time standard
 - Potentially demonstrate the use of X-rays in communication (XCOM)

SEXTANT System Architecture

Station Explorer for X-Ray Timing and Navigation Technology (SEXTANT)
NASA GSFC

NICER X-ray Timing Instrument

- 56 co-aligned X-ray concentrator optics and associated Silicon Drift Detectors (SDDs) in Focal Plane Modules (FPMs)
- 7 Measurement/Power Units
- The FPMs detect X-rays arriving from the concentrators
- MPUs time-tag and packetize photon events
- < 300 nsec absolute time resolution
- > 2000 cm² effective area
- Moderate (CCD-like) energy resolution

Stowed, deploying, and observing

Flight Software

SEXTANT flight software architecture diagram

Ground System

- The ground system maintains the pulsar catalog
 - incorporates data from radio telescopes, other X-ray telescopes, and the NICER XTI, once operational
 - provide current timing models, or ephemerides, and pulse profile templates to meet SEXTANT navigation needs

- The ground system is also responsible for performance monitoring and telemetry collection for post-processing purposes

Ground Testbed

- Provides ***end-to-end simulation capability*** for evaluation of XNAV performance for arbitrary mission concepts specifying
 - Mission design parameters
 - X-ray optics/detector models
 - Pulsar models/catalogs and observation schedules
 - Photon processing and orbit determination algorithms
- Leverages NASA Goddard GN&C engineering and X-ray detector lab technologies
- Offers three *simulation modes* with varying levels of fidelity
- Standardized interfaces defined to foster collaboration

Ground testbed end-to-end simulation flow

Three modes of simulation.
(no HWIL) shortcut the measurement process to allow faster-than-real-time simulations

GXLT hardware testbed

Goddard XNAV Lab Testbed (GXLT)

Control program

Loads different scenarios (receiver orbits, pulsar observation schedule, etc.) for testing

MXS driver

Firmware + Software simulates receiver dynamics and drives MXS hardware

Modulated X-ray Source (MXS) and
Silicon Drift Detector (SDD)

Photon simulation

Matlab simulation of photon arrival process

Modulated X-ray source modulating signal and photon arrivals

Future Activity

- Ground activity
 - Broad improvements to modeling fidelity
 - Extensive algorithm testing
- Flight activity
 - SEXTANT engineering-unit hardware integration
 - Flight software development & integration
 - Payload integration & test
 - On-orbit demonstration (baseline) and experimentation

Backup slides

GXLT components

Mission
Design Tool

GSFC's General Mission Analysis Tool:
Scenario-definition-> Spacecraft ephem.

Pulse Phase
Models

XNAV meas model (DDG - Delay Doppler Gen.):
Spacecraft ephem. -> Pulsar pulse phase truth

Modulated X-
Ray Source &
Driver

Modulated X-ray source and driver:
Pulsar pulse truth -> X-rays with correct inst. rate

Photon
Detector and
Time Tagging

Silicon drift detectors/and time stamping electronics:
X-ray photons time-stamped to < 300ns (UTC)

Pulse phase
Estimation

Algorithms for batch processing photons to extract
phase and Doppler measurements

Navigation
Filters

Extended Kalman Filters: OD-toolbox and GEONS
Fuse Spacecraft dynamic models and pulse phase and Doppler
measurements to generate estimated Spacecraft ephem.

Preliminary results: simulation setup

- Scenario modeled on SEXTANT ISS-like LEO orbit
- Observation schedule set to observe three pulsars sequentially, making 10 independent phase/Doppler measurements from each before switching. The cycle of 30 measurements was repeated 4 times, leading to a 16 day simulation

Name	PSR B1937+21	PSR B1821-24	PSR J0218+4232
Pulse Frequency (F_0)	641.92 Hz	327.40 Hz	430.46 Hz
Source Photon Arrival Rate (α)	0.030 cts/s	0.083 cts/s	0.079 cts/s
Background Photon Arrival Rate (β)	0.050 cts/s	0.410 cts/s	0.086 cts/s
Observation Time (t_{obs})	2710 s	1940 s	30010 s
Cramér-Rao Lower Bound (CRLB)	5 μ s	10 μ s	10 μ s
Shape	A plot showing a series of sharp, narrow peaks of varying heights, representing the pulse profile of PSR B1937+21.	A plot showing a series of sharp, narrow peaks of varying heights, representing the pulse profile of PSR B1821-24.	A plot showing a series of broad, multi-peaked pulses, representing the pulse profile of PSR J0218+4232.

Preliminary results (nominal rates)

- Expected error level of ~1km achieved after a few orbits (typical conv. time for nav. filters)
- Consistent results obtained for different Modeling Schemes

Preliminary results (100X rates)

- Pulsar rates increased by factor of 100 to reduce sim. time to 4 hours for real-time MS2 hardware
- Results similar to previous case