

PSoC® Creator™ Project Datasheet for Rugemaskine

Creation Time: 05/26/2014 21:38:40

User: WIN-C8TFSBJA6FM\Simon Mouridsen

Project: Rugemaskine

Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709 Phone (USA): 800.858.1810 Phone (Intl): 408.943.2600

http://www.cypress.com

Copyrights

Copyright © 2014 Cypress Semiconductor Corporation. All rights reserved. Any design information or characteristics specifically provided by our customer or other third party inputs contained in this document are not intended to be claimed under Cypress's copyright.

PSoC and CapSense are registered trademarks of Cypress Semiconductor Corporation. PSoC Designer is a trademark of Cypress Semiconductor Corporation. All other trademarks or registered trademarks referenced herein are the property of their respective owners.

Purchase of I2C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name, NXP Semiconductors.

The information in this document is subject to change without notice and should not be construed as a commitment by Cypress. While reasonable precautions have been taken, Cypress assumes no responsibility for any errors that may appear in this document. No part of this document may be copied, or reproduced for commercial use, in any form or by any means without the prior written consent of Cypress.

Disclaimer

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Flash Code Protection

Cypress products meet the specifications contained in their particular Cypress PSoC Datasheets. Cypress believes that its family of PSoC products is one of the most secure families of its kind on the market today, regardless of how they are used. There may be methods, unknown to Cypress, that can breach the code protection features. Any of these methods, to our knowledge, would be dishonest and possibly illegal. Neither Cypress nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Cypress is willing to work with the customer who is concerned about the integrity of their code. Code protection is constantly evolving. We at Cypress are committed to continuously improving the code protection features of our products.

Table of Contents

1 Overview	1
2 Pins	3
2.1 Hardware Pins	4
2.2 Software Pins	7
3 System Settings	8
3.1 System Configuration	8
3.2 System Debug Settings	8
3.3 System Operating Conditions	8
4 Clocks	
4.1 System Clocks	10
4.2 Local and Design Wide Clocks	10
5 Interrupts and DMAs	. 12
5.1 Interrupts	. 12
5.2 DMAs	12
6 Flash Memory	. 13
7 Design Contents	
7.1 Schematic Sheet: Page 1	14
8 Components	
8.1 Component type: CyControlReg [v1.70]	15
8.1.1 Instance MotorControlRegister	
8.2 Component type: I2C [v3.30]	
8.2.1 Instance I2C_HIH61xx	
8.3 Component type: PWM [v3.0]	
8.3.1 Instance Heater_PWM	
8.4 Component type: SPI_Slave [v2.60]	
8.4.1 Instance SPIS_1	. 18
8.5 Component type: Timer [v2.50]	. 19
8.5.1 Instance Humidity_timer	
8.5.2 Instance MotorTimer	
8.5.3 Instance SlowTime	
8.5.4 Instance Timer_1	. 23
8.6 Component type: UART [v2.30]	
8.6.1 Instance UART_1	
9 Other Resources	. 27

1 Overview

The Cypress PSoC 3 is a family of 8-bit devices with the following characteristics:

- An 8-bit single cycle pipelined 8051 processor, running up to 67 MHz, with a nested vectored interrupt controller (NVIC) and a high-performance DMA controller. The single cycle 8051 CPU runs ten times faster than a standard 8051 processor.
- Digital system that includes configurable Universal Digital Blocks (UDBs) and specific function peripherals, such as USB, CAN and I2C
- Analog subsystem that includes configurable switched (SC) and continuous time (CT) blocks, up to 20-bit Delta Sigma converters (ADC), SAR ADCs, 8-bit DACs that can be configured for 12-bit operation, op amps, comparators, PGAs, and more
- Several types of memory elements, including SRAM, flash, and EEPROM
- Programming and debug system through JTAG, serial wire debug (SWD), and single wire viewer (SWV)
- · Flexible routing to all pins

Figure 1 shows the major components of a typical <u>CY8C38</u> family member PSoC 3 device. For details on all the systems listed above, please refer to the <u>PSoC 3 Technical Reference Manual</u>.

Figure 1. CY8C38 Device Family Block Diagram

Table 1 lists the key characteristics of this device.

Table 1. Device Characteristics

Name	Value
Architecture	PSoC 3
Family	CY8C38
CPU speed (MHz)	67
Flash size (kBytes)	64
SRAM size (kBytes)	8
EEPROM size (Bytes)	2048
Trace Buffer (kBytes)	4
Vdd range (V)	1.7 to 5.5
Automotive qualified	No (Industrial
	Grade Only)
Temp range (Celcius)	-40 to 85
JTAG ID	0x1E028069

NOTE: The CPU speed noted above is the maximum available speed. The CPU is clocked by BUS_CLK, listed in the $\underline{\text{System Clocks}}$ section below.

Table 2 lists the device resources that this design uses:

Table 2. Device Resources

Name	Resources in	Total
	Use	Resources
Digital alask dividers	F (60 F9/)	Available
Digital clock dividers	5 (62.5%)	8
Analog clock dividers	0 (0.0%)	4
Pins	17 (23.6%)	72
UDB Macrocells	36 (18.8%)	192
UDB Unique Pterms	49 (12.8%)	384
UDB Datapath Cells	10 (41.7%)	24
UDB Status Cells	7 (29.2%)	24
UDB Control Cells	5 (20.8%)	24
DMA Channels	0 (0.0%)	24
Interrupts	6 (18.8%)	32
DSM Fixed Blocks	0 (0.0%)	1
VIDAC Fixed Blocks	0 (0.0%)	4
SC Fixed Blocks	0 (0.0%)	4
Comparator Fixed Blocks	0 (0.0%)	4
Opamp Fixed Blocks	0 (0.0%)	4
CapSense Buffers	0 (0.0%)	2
CAN Fixed Blocks	0 (0.0%)	1
Decimator Fixed Blocks	0 (0.0%)	1
I2C Fixed Blocks	1 (100.0%)	1
Timer Fixed Blocks	2 (50.0%)	4
DFB Fixed Blocks	0 (0.0%)	1
USB Fixed Blocks	0 (0.0%)	1
LCD Fixed Blocks	0 (0.0%)	1
EMIF Fixed Blocks	0 (0.0%)	1
LPF Fixed Blocks	0 (0.0%)	2

2 Pins

Figure 2 shows the pin layout of this device.

Figure 2. Device Pin Layout

2.1 Hardware Pins

Table 3 contains information about the pins on this device in device pin order. (No connection ["n/c"] pins have been omitted.)

Table 3. Device Pins

Pin	Port	Name	Type	Drive Mode	Reset State
1	P2[5]	GPIO [unused]	7.		HiZ Analog Unb
2	P2[6]	GPIO [unused]			HiZ Analog Unb
3	P2[7]	miso	Dgtl Out	Strong drive	HiZ Analog Unb
4	P12[4]	SIO [unused]			HiZ Analog Unb
5	P12[5]	SIO [unused]			HiZ Analog Unb
6	P6[4]	SS	Dgtl In	HiZ digital	HiZ Analog Unb
7	P6[5]	mosi	Dgtl In	HiZ digital	HiZ Analog Unb
8	P6[6]	GPIO [unused]			HiZ Analog Unb
9	P6[7]	sclk	Dgtl In	HiZ digital	HiZ Analog Unb
10	Vssb	Vssb	Power		
11	Ind	Power			
12	Vb	Vb	Power		
13	Vbat	Vbat	Power		
14	Vssd	Vssd	Power		
15	XRES_N	XRES_N	Power		
16	P5[0]	GPIO [unused]			HiZ Analog Unb
17	P5[1]	GPIO [unused]			HiZ Analog Unb
18	P5[2]	GPIO [unused]			HiZ Analog Unb
19	P5[3]	GPIO [unused]			HiZ Analog Unb
20	P1[0]	GPIO [unused]			HiZ Analog Unb
21	P1[1]	GPIO [unused]			HiZ Analog Unb
22	P1[2]	GPIO [unused]			HiZ Analog Unb
23	P1[3]	GPIO [unused]			HiZ Analog Unb
24	P1[4]	GPIO [unused]			HiZ Analog Unb
25	P1[5]	GPIO [unused]			HiZ Analog Unb
26	Vio1	Vio1	Power		
27	P1[6]	GPIO [unused]			HiZ Analog Unb
28	P1[7]	GPIO [unused]			HiZ Analog Unb
29	P12[6]	SIO [unused]			HiZ Analog Unb
30	P12[7]	SIO [unused]			HiZ Analog Unb
31	P5[4]	GPIO [unused]			HiZ Analog Unb
32	P5[5]	GPIO [unused]			HiZ Analog Unb
33	P5[6]	GPIO [unused]			HiZ Analog Unb
34	P5[7]	GPIO [unused]			HiZ Analog Unb
35	P15[6]	USB [unused]			HiZ Analog Unb
36	P15[7]	USB [unused]			HiZ Analog Unb
37	Vddd	Vddd	Power		
38	Vssd	Vssd	Power		
39	Vccd	Vccd	Power		
42	P15[0]	GPIO [unused]			HiZ Analog Unb
43	P15[1]	GPIO [unused]			HiZ Analog Unb
44	P3[0]	GPIO [unused]			HiZ Analog Unb
45	P3[1]	GPIO [unused]			HiZ Analog Unb
46	P3[2]	GPIO [unused]			HiZ Analog Unb
47	P3[3]	GPIO [unused]			HiZ Analog Unb

Pin	Port	Name	Type	Drive Mode	Reset State
48	P3[4]	GPIO [unused]			HiZ Analog Unb
49	P3[5]	GPIO [unused]			HiZ Analog Unb
50	Vio3	Vio3	Power		
51	P3[6]	GPIO [unused]			HiZ Analog Unb
52	P3[7]	GPIO [unused]			HiZ Analog Unb
53	P12[0]	SIO [unused]			HiZ Analog Unb
54	P12[1]	SIO [unused]			HiZ Analog Unb
55	P15[2]	GPIO [unused]			HiZ Analog Unb
56	P15[3]	GPIO [unused]			HiZ Analog Unb
63	Vcca	Vcca	Power		
64	Vssa	Vssa	Power		
65	Vdda	Vdda	Power		
66	Vssd	Vssd	Power		
67	P12[2]	SIO [unused]			HiZ Analog Unb
68	P12[3]	SIO [unused]			HiZ Analog Unb
69	P4[0]	GPIO [unused]			HiZ Analog Unb
70	P4[1]	GPIO [unused]			HiZ Analog Unb
71	P0[0]	Pin_1	Dgtl Out	Strong drive	HiZ Analog Unb
72	P0[1]	GPIO [unused]			HiZ Analog Unb
73	P0[2]	Pin_2	Dgtl Out	Strong drive	HiZ Analog Unb
74	P0[3]	GPIO [unused]			HiZ Analog Unb
75	Vio0	Vio0	Power		
76	P0[4]	Pin_3	Dgtl Out	Strong drive	HiZ Analog Unb
77	P0[5]	GPIO [unused]			HiZ Analog Unb
78	P0[6]	Pin_4	Dgtl Out	Strong drive	HiZ Analog Unb
79	P0[7]	GPIO [unused]			HiZ Analog Unb
80	P4[2]	GPIO [unused]			HiZ Analog Unb
81	P4[3]	GPIO [unused]			HiZ Analog Unb
82	P4[4]	GPIO [unused]			HiZ Analog Unb
83	P4[5]	Circulation_Pin	Dgtl Out	Strong drive	HiZ Analog Unb
84	P4[6]	Humidity_out		Strong drive	HiZ Analog Unb
85	P4[7]	Heater_Pin	Dgtl Out	Strong drive	HiZ Analog Unb
86	Vccd	Vccd	Power		
87	Vssd	Vssd	Power		
88	Vddd	Vddd	Power		
89	P6[0]	SCL_HIH61xx	Dgtl I/O	OD, DL	HiZ Analog Unb
90	P6[1]	Tx_1	Dgtl Out	Strong drive	HiZ Analog Unb
91	P6[2]	SDA_HIH61xx	Dgtl I/O	OD, DL	HiZ Analog Unb
92	P6[3]	GPIO [unused]			HiZ Analog Unb
93	P15[4]	GPIO [unused]			HiZ Analog Unb
94	P15[5]	GPIO [unused]			HiZ Analog Unb
95	P2[0]	GPIO [unused]			HiZ Analog Unb
96	P2[1]	GPIO [unused]			HiZ Analog Unb
97	P2[2]	GPIO [unused]			HiZ Analog Unb
98	P2[3]	GPIO [unused]			HiZ Analog Unb
99	P2[4]	GPIO [unused]			HiZ Analog Unb
100	Vio2	Vio2	Power		

Abbreviations used in Table 3 have the following meanings:

- HiZ Analog Unb = Hi-Z Analog Unbuffered
- Dgtl Out = Digital Output
- Dgtl In = Digital Input
- HiZ digital = High impedance digital
- Dgtl I/O = Digital In/Out

• OD, DL = Open drain, drives low

2.2 Software Pins

Table 4 contains information about the software pins on this device in alphabetical order. (Only software-accessible pins are shown.)

Table 4. Software Pins

Name	Port	Type	Reset State
Circulation_Pin	P4[5]	Dgtl Out	HiZ Analog Unb
Heater_Pin	P4[7]	Dgtl Out	HiZ Analog Unb
Humidity_out	P4[6]		HiZ Analog Unb
miso	P2[7]	Dgtl Out	HiZ Analog Unb
mosi	P6[5]	Dgtl In	HiZ Analog Unb
Pin_1	P0[0]	Dgtl Out	HiZ Analog Unb
Pin_2	P0[2]	Dgtl Out	HiZ Analog Unb
Pin_3	P0[4]	Dgtl Out	HiZ Analog Unb
Pin_4	P0[6]	Dgtl Out	HiZ Analog Unb
Power	Ind		
SCL_HIH61xx	P6[0]	Dgtl I/O	HiZ Analog Unb
sclk	P6[7]	Dgtl In	HiZ Analog Unb
SDA_HIH61xx	P6[2]	Dgtl I/O	HiZ Analog Unb
SS	P6[4]	Dgtl In	HiZ Analog Unb
Tx_1	P6[1]	Dgtl Out	HiZ Analog Unb

Abbreviations used in Table 4 have the following meanings:

- Dgtl Out = Digital Output
- HiZ Analog Unb = Hi-Z Analog Unbuffered
- Dgtl In = Digital Input
- Dgtl I/O = Digital In/Out

For more information on reading, writing and configuring pins, please refer to:

- Pins chapter in the <u>System Reference Guide</u>
 - CyPins API routines
- Programming Application Interface section in the cy_pins component datasheet

3 System Settings

3.1 System Configuration

Table 5. System Configuration Settings

Name	Value
Device Configuration Mode	Compressed
Enable Error Correcting Code (ECC)	False
Store Configuration Data in ECC Memory	True
Instruction Cache Enabled	True
Enable Fast IMO During Startup	True
Clear SRAM During Startup	True
Unused Bonded IO	Disallowed

3.2 System Debug Settings

Table 6. System Debug Settings

Name Value			
Debug Select	SWD+SWV (serial wire debug and viewer)		
Enable Device Protection	False		
Use Optional XRES	False		

3.3 System Operating Conditions

Table 7. System Operating Conditions

Name	Value
Vddd (V)	5.0
Vdda (V)	5.0
Variable Vdda	False
Vddio0 (V)	5.0
Vddio1 (V)	5.0
Vddio2 (V)	5.0
Vddio3 (V)	5.0
Temperature Range	-40C -
	85/125C

4 Clocks

The clock system includes these clock resources:

- Four internal clock sources increase system integration:
 - o 3 to 62.6 MHz Internal Main Oscillator (IMO) ±1% at 3 MHz
 - o 1 kHz, 33 kHz, 100 kHz Internal Low Speed Oscillator (ILO) outputs
 - 12 to 67 MHz clock doubler output, sourced from IMO, MHz External Crystal Oscillator (MHzECO), and Digital System Interconnect (DSI)
 - 24 to 67 MHz fractional Phase-Locked Loop (PLL) sourced from IMO, MHzECO, and DSI
- Clock generated using a DSI signal from an external I/O pin or other logic
- Two external clock sources provide high precision clocks:
 - o 4 to 25 MHz External Crystal Oscillator (MHzECO)
 - o 32.768 kHz External Crystal Oscillator (kHzECO) for Real Time Clock (RTC)
- Dedicated 16-bit divider for bus clock
- Eight individually sourced 16-bit clock dividers for the digital system peripherals
- Four individually sourced 16-bit clock dividers with skew for the analog system peripherals
- IMO has a USB mode that synchronizes to USB host traffic, requiring no external crystal for USB. (USB equipped parts only)

Figure 3. System Clock Configuration

4.1 System Clocks

Table 8 lists the system clocks used in this design.

Table 8. System Clocks

Name	Domain	Source	Desired	Nominal	Accuracy	Start	Enabled
			Freq	Freq	(%)	at	
			(MHz)	(MHz)		Reset	
USB_CLK	DIGITAL	IMO	48	0	±0	False	False
BUS_CLK	DIGITAL	MASTER_CLK	0	24	±1	True	True
MASTER_CLK	DIGITAL	PLL_OUT	0	24	±1	True	True
Digital Signal	DIGITAL		0	0	±0	False	False
XTAL 32kHz	DIGITAL		0.0328	0	±0	False	False
XTAL	DIGITAL		24	0	±0	False	False
ILO	DIGITAL		0	0.001	-50,+100	True	True
PLL_OUT	DIGITAL	IMO	24	24	±1	True	True
IMO	DIGITAL		3	3	±1	True	True

4.2 Local and Design Wide Clocks

Local clocks drive individual analog and digital blocks. Design wide clocks are a user-defined optimization, where two or more analog or digital blocks that share a common clock profile (frequency, etc) can be driven from the same clock divider output source.

Figure 4. Local and Design Wide Clock Configuration

Table 9 lists the local clocks used in this design.

Table 9. Local Clocks

Name	Domain	Source	Desired	Nominal	Accuracy	Start	Enabled
			Freq	Freq	(%)	at	
			(MHz)	(MHz)		Reset	
Clock_1	DIGITAL	MASTER_CLK	12	12	±1	True	True
clock_2	DIGITAL	IMO	0.01	0.01	±1	True	True
UART_1_In-	DIGITAL	MASTER_CLK	0.9216	0.9231	±1	True	True
tClock							
PWM_Clock	DIGITAL	IMO	0.5	0.5	±1	True	True
Timer_clock	DIGITAL	IMO	0.0001	0.0001	±1	True	True
I2C_HIH61xx	DIGITAL	BUS_CLK	0	24	±1	True	True
BusClock							
timer_clock_1	DIGITAL	BUS_CLK	0	24	±1	True	True

For more information on clocking resources, please refer to:

• Clocking System chapter in the PSoC 3 Technical Reference Manual

- Clocking chapter in the <u>System Reference Guide</u>
 CyPLL API routines
 CyIMO API routines
 CyILO API routines
 CyMaster API routines
 CyXTAL API routines

5 Interrupts and DMAs

5.1 Interrupts

This design contains the following interrupt components: (0 is the highest priority)

Table 10. Interrupts

Name	Priority	Vector
Humidity_ISR	7	0
I2C_HIH61xx_I2C_IRQ	7	15
MotorISR	7	18
PID_ISR	7	1
rx_isr	7	3
TimerISR	7	2

For more information on interrupts, please refer to:

- Interrupt Controller chapter in the PSoC 3 Technical Reference Manual
- Interrupts chapter in the <u>System Reference Guide</u>
 Cylnt API routines and related registers
- Datasheet for cy isr component

5.2 DMAs

This design contains no DMA components.

6 Flash Memory

PSoC 3 devices offer a host of Flash protection options and device security features that you can leverage to meet the security and protection requirements of an application. These requirements range from protecting configuration settings or Flash data to locking the entire device from external access.

Table 11 lists the Flash protection settings for your design.

Table 11. Flash Protection Settings

Start	End	Protection Level
Address	Address	
0x0	0xFFFF	U - Unprotected

Flash memory is organized as rows with each row of flash having 256 bytes. Each flash row can be assigned one of four protection levels:

- U Unprotected
- F External read protect (Factory upgrade)
- R External write protect (Field upgrade)
- W Full Protection

For more information on Flash memory and protection, please refer to:

- Flash Protection chapter in the <u>PSoC 3 Technical Reference Manual</u>
- Flash and EEPROM chapter in the System Reference Guide
 - o CyFlash API routines
 - CyWrite API routines

7 Design Contents

This design's schematic content consists of the following schematic sheet:

7.1 Schematic Sheet: Page 1

Figure 5. Schematic Sheet: Page 1

This schematic sheet contains the following component instances:

- Instance Heater_PWM (type: PWM_v3_0)
- Instance <u>Humidity_timer</u> (type: Timer_v2_50)
- Instance I2C_v3_30)
- Instance <u>MotorControlRegister</u> (type: CyControlReg_v1_70)
- Instance MotorTimer (type: Timer_v2_50)
- Instance SlowTime (type: Timer v2 50)
- Instance <u>SPIS_1</u> (type: SPI_Slave_v2_60)
- Instance <u>Timer_1</u>(type: Timer_v2_50)
- Instance <u>UART_1</u> (type: UART_v2_30)

8 Components

8.1 Component type: CyControlReg [v1.70]

8.1.1 Instance MotorControlRegister

Description: The Control Register allows the firmware to set values for to use for digital

signals.

Instance type: CyControlReg [v1.70]

Datasheet: online component datasheet for CyControlReg

Table 12. Component Parameters for MotorControlRegister

Parameter Name	Value	Description
Bit0Mode	DirectMode	Defines bit 0 mode
Bit1Mode	DirectMode	Defines bit 1 mode
Bit2Mode	DirectMode	Defines bit 2 mode
Bit3Mode	DirectMode	Defines bit 3 mode
Bit4Mode	DirectMode	Defines bit 4 mode
Bit5Mode	DirectMode	Defines bit 5 mode
Bit6Mode	DirectMode	Defines bit 6 mode
Bit7Mode	DirectMode	Defines bit 7 mode
BitValue	3	Defines bit value
BusDisplay	false	Displays the output terminals as bus
ExternalReset	false	Shows the reset terminal
NumOutputs	4	Defines the number of outputs needed (1-8)

8.2 Component type: I2C [v3.30]

8.2.1 Instance I2C_HIH61xx

Description: Standard I2C communication interface

Instance type: I2C [v3.30]

Datasheet: online component datasheet for I2C

Table 13. Component Parameters for I2C_HIH61xx

Parameter Name	Value	Description
Address_Decode	Hardware	Determines either hardware or
		software address match logic.
BusSpeed_kHz	100	I2C Data Rate in kbps.
		Standard settings are 50, 100,
		400 or 1000. The value must be
		between 1 and 1000.
EnableWakeup	false	Determines if I2C is selected as
		wakeup source.
ExternalBuffer	false	Exposes scl and sda in and out
		terminals outside the
		component.
Externi2cIntrHandler	false	Allows I2C interrupt handler to
		be set outside the I2C
		component. This feature
		intended only for PM/SM bus
		usage.

Parameter Name	Value	Description
ExternTmoutIntrHandler	false	Allows I2C timeout interrupt
Exterminoutinumanulei	laise	handler to be set outside the
		I2C component. This feature
		intended only for PM/SM bus
		· ·
		usage.
Hex	false	Indicates that address has been input in hexadecimal format.
I2C_Mode	Master	Determines I2C mode -
_		(Slave/Master/Multi
		Master/Multi-Master-Slave).
I2cBusPort	Any	Determines which I2C pins have
		been selected. Select I2C0/I2C1
		and connect to corresponding
		pins to be able use I2C as
		wakeup source.
Implementation	FixedFunction	Determines either I2C
F		implementation Fixed Function
		or UDB.
NotSlaveClockMinusTolerance	25	Internal component clock
Trotola vo Glockivii rao Folora rao		negative tolerance value in
		Master, Multi-Master or Multi-
		Master-Slave mode.
NotSlaveClockPlusTolerance	5	Internal component clock
Notolave Clocki lus i olei ai ice		positive tolerance value in
		Master, Multi-Master or Multi-
		Master-Slave mode.
PrescalerEnabled	false	
FrescalerEriabled	laise	Enables prescaler (7-bit counter) to expand timeout
		timer range.
PrescalerPeriod	3	Prescaler period of timeout
Frescalerrenou	3	timer.
SclTimeoutEnabled	false	Enables low time monitoring of
ScrimeoutEnabled	laise	scl line.
SdaTimeoutEnabled	false	***************************************
SaarimeoutEnabled	false	Enables low time monitoring of sda line.
Olava Adda a		
Slave_Address	8	7-bits I2C slave address.
SlaveClockMinusTolerance	5	Internal component clock
		negative tolerance value in
		Slave mode.
SlaveClockPlusTolerance	50	Internal component clock
		positive tolerance value in Slave
		mode.
TimeoutImplementation	UDB	Determines either timeout timer
		feature implementation as UDB
		or Fixed Function. The Fixed
		Function implementation only
		available for PSoC5LP.
TimeOutms	25	Determines maximum time
		allowed for scl or sda to be low
		state (in mS). The timeout timer
		generates interrupt after timeout
T: 15 : 16		expires.
TimeoutPeriodff	39999	Period of timeout timer (Fixed
		Function).
TimeoutPeriodUdb	39999	Period of timeout timer (UDB).
UdbInternalClock	false	Determines either internal or
		external clock source for I2C
		UDB.

Parameter Name	Value	Description
UdbSlaveFixedPlacementEnable	false	Enables fixed placement for I2C UDB. Only available in slave
		mode.

8.3 Component type: PWM [v3.0]

8.3.1 Instance Heater_PWM

Description: 8 or 16-bit Pulse Width Modulator

Instance type: PWM [v3.0]
Datasheet: online component datasheet for PWM

Table 14. Component Parameters for Heater PWM

Parameter Name	Value	Description
CaptureMode	None	Defines the functionality of the capture Input. The parameter determines which signal on the capture input is required to capture the current count value to the FIFO.
CompareStatusEdgeSense	true	Enables edge sense detection on compare outputs for use in edge sensitive interrupts
CompareType1	Less	Sets the compare value comparison type setting for the compare 1 output
CompareType2	Less	Sets the compare value comparison type setting for the compare 2 output
CompareValue1	0	Compares Output 1 to value
CompareValue2	127	Compares Output 2 to value
DeadBand	Disabled	Defines whether dead band outputs are desired or not.
DeadTime	1	Defines the number of required dead band clock cycles
DitherOffset	0.00	Allows the user to implement dither to get more bits out of a 8 or 16 bit PWM.
EnableMode	Software Only	Specifies the method of enabling the PWM. This can be either hardware or software.
FixedFunction	false	Determines whether the fixed function counter timer is used or the UDB implementation is used.
InterruptOnCMP1	false	Enables the interrupt on compare1 true event
InterruptOnCMP2	false	Enables the interrupt on compare2 true event
InterruptOnKill	false	Enables the interrupt on a kill event
InterruptOnTC	false	Enables the interrupt on terminal count event
KillMode	Disabled	Parameter to select the kill mode for build time.

Parameter Name	Value	Description
MinimumKillTime	1	Sets the minimum number of
		clock cycles that a kill must be
		active on the outputs when
		KillMode is set to Minimum Kill
		Time mode
Period	255	Defines the PWM period value
PWMMode	Two Outputs	Defines the overall mode of the
		PWM
Resolution	8	Defines the bit width of the
		PWM (8 or 16 bits)
RunMode	Continuous	Defines the run mode options to
		be either continuous or one shot
TriggerMode	None	Determines the mode of starting
		the PWM, i.e. triggering the
		PWM counter to start
UseInterrupt	true	Enables the placement and
		usage of the status register

8.4 Component type: SPI_Slave [v2.60]

8.4.1 Instance SPIS_1

Description: Serial Peripheral Interface Slave

Instance type: SPI_Slave [v2.60]

Datasheet: online component datasheet for SPI_Slave

Table 15. Component Parameters for SPIS_1

Parameter Name	Value	Description
BidirectMode	false	Bidirectional mode setting
ClockInternal	false	Defines whether internal clock is used or not
DesiredBitRate	1000000	Desired Bit Rate in Hz
FixedPlacementEnabled	false	
InterruptOnByteComplete	true	Set Initial Interrupt Source to Enable Interrupt on Byte Transfer Complete
InterruptOnDone	false	Set Initial Interrupt Source to Enable Interrupt on SPI Done
InterruptOnRXEmpty	false	Set Initial Interrupt Source to Enable Interrupt on RX FIFO Empty
InterruptOnRXFull	false	Set Initial Interrupt Source to Enable Interrupt on RX FIFO full
InterruptOnRXNotEmpty	true	Set Initial Interrupt Source to Enable Interrupt on RX Not Empty
InterruptOnRXOverrun	false	Set Initial Interrupt Source to Enable Interrupt on RX FIFO overrun
InterruptOnTXEmpty	false	Set Initial Interrupt Source to Enable Interrupt on TX FIFO Empty
InterruptOnTXFull	false	Set Initial Interrupt Source to Enable Interrupt on TX FIFO full
InterruptOnTXNotFull	false	Set Initial Interrupt Source to Enable Interrupt on TX FIFO not full
Rugemacking Datacheet	05/26/	2014 21:38

Parameter Name	Value	Description
Mode	CPHA =	Allows for setting the SPI Clock
	1, CPOL	Polarity and Clock Phase from
	= 1	one of the four well known
		modes
MultiSlaveEnable	true	Allows using of the SPI MISO
		output enable terminal for
		multislave mode support
NumberOfDataBits	16	Data Width (3-16 bits)
RxBufferSize	4	RAM size used to store RX
		Data
ShiftDir	MSB	Data Shift Direction (MSB First
	First	or LSB First)
TxBufferSize	4	RAM size used to store TX Data
UseInternalInterrupt	false	Defines whether internal
		interrupt is used or not
UseRxInternalInterrupt	false	Defines whether Rx internal
		interrupt is used or not
UseTxInternalInterrupt	false	Defines whether Tx internal
		interrupt is used or not

8.5 Component type: Timer [v2.50]

8.5.1 Instance Humidity_timer

Description: 8, 16, 24 or 32-bit Timer Instance type: Timer [v2.50] Datasheet: online component datasheet for Timer

Table 16. Component Parameters for Humidity_timer

Parameter Name	Value	Description
CaptureAlternatingFall	false	Enables data capture on either edge but not until a valid falling edge is detected first.
CaptureAlternatingRise	false	Enables data capture on either edge but not until a valid rising edge is detected first.
CaptureCount	2	The CaptureCount parameter works as a divider on the hardware input "capture". A CaptureCount value of 2 would result in an actual capture taking place every other time the input "capture" is changed.
CaptureCounterEnabled	false	Enables the capture counter to count capture events (up to 127) before a capture is triggered.
CaptureMode	None	This parameter defines the capture input signal requirements to trigger a valid capture event

Parameter Name	Value	Description
EnableMode	Software Only	This parameter specifies the methods in enabling the component. Hardware mode makes the enable input pin visible. Software mode may reduce the resource usage if not enabled.
FixedFunction	true	Configures the component to use fixed function HW block instead of the UDB implementation.
InterruptOnCapture	false	Parameter to check whether interrupt on a capture event is enabled or disabled.
InterruptOnFIFOFull	false	Parameter to check whether interrupt on a FIFO Full event is enabled disabled.
InterruptOnTC	true	Parameter to check whether interrupt on a TC is enabled or disabled.
NumberOfCaptures	1	Number of captures allowed until the counter is cleared or disabled.
Period	2999	Defines the timer period (This is also the reload value when terminal count is reached)
Resolution	16	Defines the resolution of the hardware. This parameter affects how many bits are used in the Period counter and defines the maximum resolution of the internal component signals.
RunMode	Continuous	Defines the hardware to run continuously, run until a terminal count is reached or run until an interrupt event is triggered.
TriggerMode	None	Defines the required trigger input signal to cause a valid trigger enable of the timer

8.5.2 Instance MotorTimer

Description: 8, 16, 24 or 32-bit Timer Instance type: Timer [v2.50]

Datasheet: online component datasheet for Timer

Table 17. Component Parameters for MotorTimer

Parameter Name	Value	Description
CaptureAlternatingFall	false	Enables data capture on either edge but not until a valid falling edge is detected first.
CaptureAlternatingRise	false	Enables data capture on either edge but not until a valid rising edge is detected first.

Parameter Name	Value	Description
CaptureCount	2	The CaptureCount parameter works as a divider on the hardware input "capture". A CaptureCount value of 2 would result in an actual capture taking place every other time the input "capture" is changed.
CaptureCounterEnabled	false	Enables the capture counter to count capture events (up to 127) before a capture is triggered.
CaptureMode	None	This parameter defines the capture input signal requirements to trigger a valid capture event
EnableMode	Software Only	This parameter specifies the methods in enabling the component. Hardware mode makes the enable input pin visible. Software mode may reduce the resource usage if not enabled.
FixedFunction	true	Configures the component to use fixed function HW block instead of the UDB implementation.
InterruptOnCapture	false	Parameter to check whether interrupt on a capture event is enabled or disabled.
InterruptOnFIFOFull	false	Parameter to check whether interrupt on a FIFO Full event is enabled disabled.
InterruptOnTC	true	Parameter to check whether interrupt on a TC is enabled or disabled.
NumberOfCaptures	1	Number of captures allowed until the counter is cleared or disabled.
Period	65535	Defines the timer period (This is also the reload value when terminal count is reached)
Resolution	16	Defines the resolution of the hardware. This parameter affects how many bits are used in the Period counter and defines the maximum resolution of the internal component signals.
RunMode	Continuous	Defines the hardware to run continuously, run until a terminal count is reached or run until an interrupt event is triggered.
TriggerMode	None	Defines the required trigger input signal to cause a valid trigger enable of the timer

8.5.3 Instance SlowTime

Description: 8, 16, 24 or 32-bit Timer Instance type: Timer [v2.50] Datasheet: online component datasheet for Timer

Table 18. Component Parameters for SlowTime

Parameter Name	Value	Description
CaptureAlternatingFall	false	Enables data capture on either
3 1		edge but not until a valid falling
		edge is detected first.
CaptureAlternatingRise	false	Enables data capture on either
	100	edge but not until a valid rising
		edge is detected first.
CaptureCount	2	The CaptureCount parameter
	_	works as a divider on the
		hardware input "capture". A
		CaptureCount value of 2 would
		result in an actual capture
		taking place every other time
		the input "capture" is changed.
CaptureCounterEnabled	false	Enables the capture counter to
·		count capture events (up to
		127) before a capture is
		triggered.
CaptureMode	None	This parameter defines the
		capture input signal
		requirements to trigger a valid
		capture event
EnableMode	Software Only	This parameter specifies the
		methods in enabling the
		component. Hardware mode
		makes the enable input pin
		visible. Software mode may
		reduce the resource usage if not
Fine dEmetion	falaa	enabled.
FixedFunction	false	Configures the component to
		use fixed function HW block
		instead of the UDB implementation.
InterruntOnConture	false	·
InterruptOnCapture	laise	Parameter to check whether
		interrupt on a capture event is enabled or disabled.
InterruptOnFIFOFull	false	Parameter to check whether
	laise	interrupt on a FIFO Full event is
		enabled disabled.
InterruptOnTC	true	Parameter to check whether
Interruption	lide	interrupt on a TC is enabled or
		disabled.
NumberOfCaptures	1	Number of captures allowed
Namber Or Ouptures	'	until the counter is cleared or
		disabled.
Period	2999	Defines the timer period (This is
	2000	also the reload value when
		terminal count is reached)
	1	.Similar South to rodoriod)

Parameter Name	Value	Description
Resolution	16	Defines the resolution of the
		hardware. This parameter
		affects how many bits are used
		in the Period counter and
		defines the maximum resolution
		of the internal component
		signals.
RunMode	Continuous	Defines the hardware to run
		continuously, run until a terminal
		count is reached or run until an
		interrupt event is triggered.
TriggerMode	None	Defines the required trigger
		input signal to cause a valid
		trigger enable of the timer

8.5.4 Instance Timer_1

Description: 8, 16, 24 or 32-bit Timer Instance type: Timer [v2.50] Datasheet: online component datasheet for Timer

Table 19. Component Parameters for Timer_1

Parameter Name	Value	Description
CaptureAlternatingFall	false	Enables data capture on either edge but not until a valid falling edge is detected first.
CaptureAlternatingRise	false	Enables data capture on either edge but not until a valid rising edge is detected first.
CaptureCount	2	The CaptureCount parameter works as a divider on the hardware input "capture". A CaptureCount value of 2 would result in an actual capture taking place every other time the input "capture" is changed.
CaptureCounterEnabled	false	Enables the capture counter to count capture events (up to 127) before a capture is triggered.
CaptureMode	Rising Edge	This parameter defines the capture input signal requirements to trigger a valid capture event
EnableMode	Software Only	This parameter specifies the methods in enabling the component. Hardware mode makes the enable input pin visible. Software mode may reduce the resource usage if not enabled.
FixedFunction	false	Configures the component to use fixed function HW block instead of the UDB implementation.

Parameter Name	Value	Description
InterruptOnCapture	false	Parameter to check whether
		interrupt on a capture event is
		enabled or disabled.
InterruptOnFIFOFull	false	Parameter to check whether
		interrupt on a FIFO Full event is
		enabled disabled.
InterruptOnTC	true	Parameter to check whether
		interrupt on a TC is enabled or
		disabled.
NumberOfCaptures	1	Number of captures allowed
		until the counter is cleared or
		disabled.
Period	999	Defines the timer period (This is
		also the reload value when
Deschation	0.4	terminal count is reached)
Resolution	24	Defines the resolution of the
		hardware. This parameter affects how many bits are used
		in the Period counter and
		defines the maximum resolution
		of the internal component
		signals.
RunMode	Continuous	Defines the hardware to run
		continuously, run until a terminal
		count is reached or run until an
		interrupt event is triggered.
TriggerMode	None	Defines the required trigger
		input signal to cause a valid
		trigger enable of the timer

8.6 Component type: UART [v2.30]

8.6.1 Instance UART_1

Description: Universal Asynchronous Receiver Transmitter

Instance type: UART [v2.30]
Datasheet: online component datasheet for UART

Table 20. Component Parameters for UART_1

Parameter Name	Value	Description
Address1	0	This parameter specifies the RX Hardware Address #1.
Address2	0	This parameter specifies the RX Hardware Address #2.
BaudRate	115200	Sets the target baud rate.
BreakBitsRX	13	Specifies the break signal length for the RX (detection) channel.
BreakBitsTX	13	Specifies the break signal length for the TX channel.
BreakDetect	false	Enables the break detect hardware.
CRCoutputsEn	false	Enables the CRC outputs.
EnIntRXInterrupt	false	Enables the internal RX
		interrupt configuration and the ISR.

Parameter Name	Value	Description
EnIntTXInterrupt	false	Enables the internal TX interrupt
		configuration and the ISR.
FlowControl	None	Enable the flow control signals.
HalfDuplexEn	false	Enables half duplex mode on the RX Half of the UART module.
HwTXEnSignal	false	Enables the external TX enable signal output.
InternalClock	true	Enables the internal clock. This parameter removes the clock input pin.
InterruptOnTXComplete	false	This is an Interrupt mask used to enable/disable the interrupt on 'TX complete' event.
InterruptOnTXFifoEmpty	false	This is an Interrupt mask used to enable/disable the interrupt on 'TX FIFO empty' event.
InterruptOnTXFifoFull	false	This is an Interrupt mask used to enable/disable the interrupt on 'TX FIFO full' event.
InterruptOnTXFifoNotFull	false	This is an Interrupt mask used to enable/disable the interrupt on 'TX FIFO not full' event.
IntOnAddressDetect	false	Enables the interrupt on hardware address detected event by default
IntOnAddressMatch	false	Enables the interrupt on hardware address match detected event by default
IntOnBreak	false	Enables the interrupt on break signal detected event by default
IntOnByteRcvd	false	Enables the interrupt on RX byte received event by default
IntOnOverrunError	false	Enables the interrupt on overrun error event by default
IntOnParityError	false	Enables the interrupt on parity error event by default
IntOnStopError	false	Enables the interrupt on stop error event by default
NumDataBits	8	Defines the number of data bits. Values can be 5, 6, 7 or 8 bits.
NumStopBits	1	Defines the number of stop bits. Values can be 1 or 2 bits.
OverSamplingRate	8	This parameter defines the over sampling rate.
ParityType	Even	Sets the parity type as Odd, Even or Mark/Space
ParityTypeSw	false	This parameter allows the parity type to be changed through - software by using the WriteControlRegister API
RXAddressMode	None	Configures the RX hardware address detection mode
RXBufferSize	4	The size of the RAM space allocated for the RX input buffer.
RXEnable	false	Enables the RX in the UART

Parameter Name	Value	Description
TXBitClkGenDP	true	When enabled, this parameter
		enables the TX clock generation on DataPath resource. When
		disabled, TX clock is generated from Clock7.
TXBufferSize	4	The size of the RAM space allocated for the TX output buffer.
TXEnable	true	Enables the TX in the UART
Use23Polling	true	Allows the use of 2 out of 3 polling resources on the RX UART sampler.

9 Other Resources

The following documents contain important information on Cypress software APIs that might be relevant to this design:

- Standard Types and Defines chapter in the <u>System Reference Guide</u>
 - Software base types
 - Hardware register types
 - Compiler defines
 - Cypress API return codes
 - Interrupt types and macros
- Registers
 - o The full PSoC 3 register map is covered in the PSoC 3 Registers Technical Reference
 - o Register Access chapter in the System Reference Guide

 - § CY_GET API routines § CY_SET API routines
- System Functions chapter in the **System Reference Guide**
 - General API routines
 - o CyDelay API routines
 - o CyVd Voltage Detect API routines
- Power Management
 - o Power Supply and Monitoring chapter in the PSoC 3 Technical Reference Manual
 - o Low Power Modes chapter in the PSoC 3 Technical Reference Manual
 - o Power Management chapter in the System Reference Guide
 - § CvPm API routines
- Watchdog Timer chapter in the System Reference Guide
 - CyWdt API routines
- Cache Management
 - o Cache Controller chapter in the PSoC 3 Technical Reference Manual
 - o Cache chapter in the System Reference Guide