Continuum Elastoplasticity - Finite Strain

Constrained tension example

Domain: $5 \times 1 \times 1$

Mesh: $420 \times 8 \times 8$ (non-uniform spacing)

Boundary conditions: $\mathbf{u} = 0$ at $x_1 = 0$; $u_1 = 0.1$ at $x_1 = 5$

Parameter	Value
Lamé constant λ	100.6582e9
Lamé constant μ	45.6473e9
Yield stress	33.014025e6
Linear hardening coefficient	100
Basis function order	1
Quadrature order	2
Pseudo-time steps	400

Figure 1: Plot of equivalent plastic strain, α . Deformation scaled by $10 \times$.

Figure 2: Plot of von Mises stress. Deformation scaled by $10\times.$

Figure 3: Plot of displacement magnitude. Deformation scaled by $10\times$.

Domain: $5 \times 1 \times 1$

Mesh: $420\times8\times8$ (non-uniform spacing)

Boundary conditions: $\boldsymbol{u}=0$ at $x_1=0;$ $u_1=0.5$ at $x_1=5$

Parameter	Value
Lamé constant λ	100.6582e9
Lamé constant μ	45.6473e9
Yield stress	33.014025e6
Linear hardening coefficient	2.0259e9
Basis function order	1
Quadrature order	2
Pseudo-time steps	200

Figure 4: Deformation scaled by $1\times$.