More Applications of the Pumping Lemma

1

The Pumping Lemma:

- \cdot Given a infinite regular language L
- there exists an integer m
- for any string $w \in L$ with length $|w| \ge m$
- we can write w = x y z
- with $|x y| \le m$ and $|y| \ge 1$
- such that: $x y^i z \in L$ i = 0, 1, 2, ...

Non-regular languages $L = \{vv^R : v \in \Sigma^*\}$

$$L = \{vv^R : v \in \Sigma^*\}$$

Regular languages

Theorem: The language

$$L = \{vv^R : v \in \Sigma^*\} \qquad \Sigma = \{a, b\}$$

is not regular

Proof: Use the Pumping Lemma

$$L = \{vv^R : v \in \Sigma^*\}$$

Assume for contradiction that $\,L\,$ is a regular language

Since L is infinite we can apply the Pumping Lemma

5

$$L = \{vv^R : v \in \Sigma^*\}$$

Let m be the integer in the Pumping Lemma

Pick a string w such that: $w \in L$ and $|w| \ge m$

We pick
$$w = a^m b^m b^m a^m$$

Write
$$a^m b^m b^m a^m = x y z$$

From the Pumping Lemma

it must be that length $|x y| \le m$, $|y| \ge 1$

$$xyz = \overbrace{a...aa...a}_{x} \underbrace{a...ab...bb...ba...a}_{m} \underbrace{m}_{m}_{m} \underbrace{m}_{m}$$

Thus:
$$y = a^k, k \ge 1$$

$$x y z = a^m b^m b^m a^m \qquad y = a^k, \quad k \ge 1$$

From the Pumping Lemma: $x y^i z \in L$ i = 0, 1, 2, ...

Thus:
$$x y^2 z \in L$$

$$x y z = a^m b^m b^m a^m \qquad y = a^k, \quad k \ge 1$$

From the Pumping Lemma: $x y^2 z \in L$

$$xy^{2}z = \overbrace{a...aa...aa...a...ab...bb...ba...a}^{m + k} \in L$$

Thus: $a^{m+k}b^mb^ma^m \in L$

 $a^{m+k}b^mb^ma^m \in L \qquad k \ge 1$

BUT: $L = \{vv^R : v \in \Sigma^*\}$

 $a^{m+k}b^mb^ma^m \notin L$

CONTRADICTION!!!

Therefore: Our assumption that $\,L\,$

is a regular language is not true

Conclusion: L is not a regular language

11

Non-regular languages

$$L = \{a^n b^l c^{n+l} : n, l \ge 0\}$$

Regular languages

Theorem: The language

$$L = \{a^n b^l c^{n+l} : n, l \ge 0\}$$

is not regular

Proof: Use the Pumping Lemma

13

$$L = \{a^n b^l c^{n+l} : n, l \ge 0\}$$

Assume for contradiction that $\,L\,$ is a regular language

Since L is infinite we can apply the Pumping Lemma

$$L = \{a^n b^l c^{n+l} : n, l \ge 0\}$$

Let m be the integer in the Pumping Lemma

Pick a string w such that: $w \in L$ and $|\operatorname{length}| |w| \ge m$

We pick
$$w = a^m b^m c^{2m}$$

15

Write $a^m b^m c^{2m} = x y z$

From the Pumping Lemma

it must be that length $|x y| \le m$, $|y| \ge 1$

$$xyz = \overbrace{a...aa...aa...ab...bc...cc...c}^{m}$$

$$xyz = \overbrace{a...aa...aa...ab...bc...cc...c}^{m}$$

Thus: $y = a^k$, $k \ge 1$

$$x y z = a^m b^m c^{2m} \qquad y = a^k, \quad k \ge 1$$

From the Pumping Lemma:
$$x y^i z \in L$$
 $i = 0, 1, 2, ...$

Thus:
$$x y^0 z = xz \in L$$

$$x y z = a^m b^m c^{2m} \qquad y = a^k, \quad k \ge 1$$

From the Pumping Lemma: $xz \in L$

$$xz = \overbrace{a...aa...ab...bc...cc...c}^{m-k} \in L$$

Thus:
$$a^{m-k}b^mc^{2m} \in L$$

$$a^{m-k}b^mc^{2m} \in L$$

 $k \ge 1$

BUT: $L = \{a^n b^l c^{n+l} : n, l \ge 0\}$

$$a^{m-k}b^mc^{2m} \notin L$$

CONTRADICTION!!!

10

Therefore: Our assumption that L

is a regular language is not true

Conclusion: L is not a regular language

Non-regular languages $L = \{a^{n!}: n \ge 0\}$

Regular languages

21

Theorem: The language $L = \{a^{n!}: n \ge 0\}$

is not regular

 $n! = 1 \cdot 2 \cdot \cdot \cdot (n-1) \cdot n$

Proof: Use the Pumping Lemma

$$L = \{a^{n!}: n \ge 0\}$$

Assume for contradiction that $\,L\,$ is a regular language

Since L is infinite we can apply the Pumping Lemma

22

$$L = \{a^{n!}: n \ge 0\}$$

Let m be the integer in the Pumping Lemma

Pick a string w such that: $w \in L$

length $|w| \ge m$

We pick $w = a^{m!}$

Write
$$a^{m!} = x y z$$

From the Pumping Lemma

it must be that length $|x y| \le m$, $|y| \ge 1$

$$xyz = a^{m!} = \underbrace{a...aa...aa...aa...aa...aa}_{x y y} \underbrace{a...aa...aa...aa...aa}_{z}$$

Thus:
$$y = a^k$$
, $1 \le k \le m$

$$x \ y \ z = a^{m!} \qquad \qquad y = a^k, \ 1 \le k \le m$$

From the Pumping Lemma: $x y^i z \in L$

$$i = 0, 1, 2, \dots$$

Thus: $x y^2 z \in L$

$$x y z = a^{m!}$$

$$y = a^k, \quad 1 \le k \le m$$

From the Pumping Lemma: $x y^2 z \in L$

$$xy^{2}z = \overbrace{a...aa...aa...aa...aa...aa...aa...aa}^{m+k} \underbrace{m!-m}_{x} \in L$$

Thus:

$$a^{m!+k}$$

L

27

$$a^{m!+k} \in L$$

 $1 \le k \le m$

Since:
$$L = \{a^{n!}: n \ge 0\}$$

There must exist p such that:

$$m!+k = p!$$

However:
$$m!+k \le m!+m$$
 for $m>1$

$$\le m!+m!$$

$$< m!m+m!$$

$$= m!(m+1)$$

$$= (m+1)!$$

$$m!+k < (m+1)!$$

$$m!+k \ne p!$$
 for any p

$$a^{m!+k} \in L \qquad 1 \leq k \leq m$$

$$BUT: \quad L = \{a^{n!}: n \geq 0\}$$

$$a^{m!+k} \notin L$$

$$CONTRADICTION!!!$$

Therefore: Our assumption that L is a regular language is not true

Conclusion: L is not a regular language

31

Lex

Lex: a lexical analyzer

- · A Lex program recognizes strings
- For each kind of string found the lex program takes an action


```
In Lex strings are described with regular expressions
```

Lex program

```
Regular expressions

"+"
"-" /* operators */
"="

"if"
"then" /* keywords */
```

35

Lex program

```
Regular expressions
```

$$(a|b|..|z|A|B|...|Z)+$$
 /* identifiers */


```
A small lex program

%%

[\t\n] ; /*skip spaces*/

[0-9]+ printf("Integer\n");

[a-zA-Z]+ printf("Identifier\n");
```

Input Output Integer Identifier Identifier Integer Integer

Output Input Integer 1234 test Identifier var 566 78 Identifier Integer 9800 + Integer temp Integer Error in line: 3 Identifier

Lex matches the longest input string

Example: Regular Expressions "if"

"ifend"

Input: ifend if

Matches: "ifend" "if"

