ساختارهای گسسته

نيمسال دوم ۹۷-۹۸

دانشکدهی مهندسی کامپیوتر

- . نشان دهید اگر G ناهمبند باشد، \overline{G} همبند است.
- ۲. نشان دهید هر گراف که $m > {n-1 \choose 1}$ باشد، همبند است.
- $d_1\geqslant \cdots \geqslant d_n$ وجود داشته باشد که $\mathbf{d}=(d_1,\ldots,d_n)$ وجود داشته باشد که $\mathbf{d}=(d_1,\ldots,d_n)$. " فان دهید اگر گراف ساده ای با دنباله ی درجات $1\leqslant k\leqslant n$ داریم:

$$\sum_{i=1}^{k} d_i \leqslant k(k-1) + \sum_{i=k+1}^{n} \min(k, d_i)$$

جالب است بدانید که عکس این گزاره نیز برقرار است.

- ۴. نشان دهید گراف سادهای با دنباله ی درجات (d_1,\ldots,d_n) و جود دارد که $d_1\geqslant\cdots\geqslant d_n$ ، اگر و تنها اگر گراف سادهای با دنباله ی درجات $\mathbf{d}'=(d_1-1,\ldots,d_{n+1}-1,d_{d_1+1},\ldots,d_n)$ و جود داشته باشد.
- ۵. نشان دهید به ازای هر گراف G، زیرگراف دوبخشی پوشای H از G وجود دارد که در آن درجه هر رأس حداقل نصف درجه ش در G باشد.
- باشد. $\left| \frac{d(v)}{r} \right|$ باشد. وشان دهید هر گراف را میتوان طوری جهت دهی کرد که درجه ی خروجی هر رأس v حداقل v باشد.
- ۷. گراف دلخواه G را در نظر بگیرید. یک زیرگراف (نه لزوماً القایی) یکریخت با C_* از آن را انتخاب کرده و یک یال دلخواه آن زیرگراف را حذف میکنیم.
 - (آ) نشان دهید همبندی و دوبخشی بودن یک گراف تحت این عمل تغییر نمی کند.
- (ب) با شروع از K_n ، این عمل را آنقدر تکرار میکنیم که زیرگرافی یکریخت با C_* باقی نماند. کمترین تعداد یال باقی مانده ی ممکن چند است؟
- ۸. یالهای K_n را که $n \geqslant n$ ، با دو رنگ رنگ آمیزی کردهایم. ثابت کنید دوری همیلتونی وجود دارد که یا تکرنگ است و یا از دو مسیر تکرنگ تشکیل شده است.
- ۹. روی تمامی یالهای گراف کامل n رأسی، $n \geqslant n$ ، اعداد صحیح میگذاریم. ثابت کنید مجموع اعداد یالهای هر دور زوج است، اگر و تنها اگر مجموع اعداد یالهای هر مثلث زوج باشد.
- ۱۰. یک گراف را زوج میگوییم هرگاه درجهی همهی رئوسش زوج باشند. روی تمامی یالهای گراف کامل n رأسی، $n \ge n$ اعداد صحیح میگذاریم. ثابت کنید مجموع اعداد یالهای هر زیرگراف زوج، زوج است، اگر و تنها اگر مجموع اعداد یالهای هر دور زوج، زوج باشد.
 - |X|=|Y| داریم G[X,Y] داریم -kدان دهید در گراف دوبخشی در سنظم ایاد. نشان دهید در در گراف دوبخشی
- ی و $x\in X$ که $xy\in E$ را در نظر بگیرید که راس منزوی ندارد و به ازای هر یال $x\in X$ که $xy\in X$ که $xy\in X$ او $xy\in X$ د اریم $y\in X$ د نشان دهید $|X|\leqslant |Y|$ نشان دهید $y\in X$

- 17. اتاقی مستطیل شکل را با کاشی هایی مستطیلی (نه لزوماً مشابه) فرش کرده ایم. یعنی تمام اتاق را با این کاشی ها پوشانده ایم و هیچ دو کاشی ای روی هم نیافتاده اند. ثابت کنید اگر هر کاشی ضلعی به طول صحیح داشته باشد، اتاق نیز ضلعی به طول صحیح دارد.
 - است. C_{Y} است، $\sum_{v \in V} {d(v) \choose {\mathsf{Y}}} > {n \choose {\mathsf{Y}}}$ است. ۱۴
 - .۱۵ نشان دهید هر گراف ساده با بیش از $(\sqrt{4n-4}+1)$ یال شامل یک C_{4} است.
 - ۱۶. نشان دهید هر گراف ساده با حداقل دو رأس، دو رأس با درجهی برابر دارد.
 - ۱۷. نشان دهید هر گراف ساده ی G یک مسیر به طول $\delta(G)$ دارد.
 - دارد. نشان دهید هر گراف ساده ی G که G که G که $\delta(G) > 1$ دارد. نشان دهید هر گراف ساده ی دارد.
- v اشان دهید هر گراف ساده ی G شامل رأسی مانند v و $\left\lfloor \frac{d(v)}{\mathsf{r}} \right
 floor$ دور است که دوبه دوی این دورها، در رأس v اشتراک دارند.
 - .۲۰ گراف بدون مثلث G را در نظر بگیرید.
 - . $d(u)+d(v)\leqslant n$ داریم $uv\in E(G)$ میل برای هر
 - $\sum_{v \in V(G)} d(v)^{\mathsf{Y}} \leqslant mn$ ب نشان دھید
 - ج) نتیجه بگیرید هر گراف بدون مثلث حداکثر $\frac{n^{\gamma}}{4}$ تا یال دارد.
 - .۲۱. در گراف بدون مثلث G داریم $\frac{r_n}{\delta} > \frac{r_n}{\delta}$. نشان دهید این گراف دوبخشی است.
- 77. گرافی را که بتوان رئوس آن را به k مجموعه ی مستقل افراز کرد، گراف k-بخشی می گوییم. گراف k-بخشیای را که هر دو رأس از دو بخش مختلف به هم متصل باشند، گراف k-بخشی کامل می گویند. نشان دهید بین همه ی گرافهای k-بخشی، گراف k-بخشی کاملی که تعداد رئوس هر بخش آن $\left \lfloor \frac{n}{k} \right \rfloor$ یا نشان دهید بیش ترین تعداد یال را دارد. بیش ترین تعداد یال ممکن برای یک گراف k-رنگ پذیر n-رأسی را به دست آورید.
- v[F]=p در گراف G داریم G داریم V(G)=k و بالاV(G)=k و بالاG در گراف G داریم V(G)=k در گراف S(G)=k در گراف
- - ۲۵. نشان دهید در هر تورنمنت رأسی وجود دارد که به هر رأس دیگری مسیری به طول حداکثر ۲ دارد.
- ۲۶. در تورنمنتی فقط یک رأس وجود دارد که به هر رأس دیگر مسیری به طول حداکثر دو داشته باشد. نشان دهید درجه ی خروجی این رأس n-1 است.
 - ۲۷. نشان دهید هر تورنمنت، یک مسیر همیلتونی جهتدار دارد.
 - ۲۸. نشان دهید هر تورنمنت قویاً همبند با حداقل ۳ رأس، شامل یک دور همیلتونی جهتدار است.
- ۲۹. نشان دهید هر تورنمنت همیلتونی n رأسی، به ازای هر $k \in \{ \mathtt{m}, \mathtt{m}, \mathtt{m}, \mathtt{m} \}$ شامل یک دور جهت دار به طول k است.
- ۰۳۰. نشان دهید هر گراف جهتداری که شامل یک گشت بسته به طول فرد باشد، شامل یک دور جهتدار به طول فرد است.

- .۳۱ گراف G را خودمکمل می گوییم هرگاه با \overline{G} یک ریخت باشد.
- الف) فرض کنید G یک گراف خودمکمل باشد. نشان دهید گراف G' که از گراف $G \cup P_*$ با متصل کردن رئوس اول و سوم P_* به تمام رئوس G به دست می آید، یک گراف خودمکمل است. است.
- ب) نشان دهید گراف خودمکمل n رأسی وجود دارد، اگر و تنها اگر n به پیمانهی \star برابر صفر یا یک باشد.
 - ۳۲. نشان دهید هر دو طولانی ترین مسیر یک گراف، یک رأس مشترک دارند.
 - ۳۳. نشان دهید هر گراف ساده با n+4 رأس شامل دو دور مجزای یالی است.
 - ۳۴. نشان دهید هر ترسیمی از یک گراف مسطح روی صفحه، تعداد نواحی یکسانی دارد.
 - ۳۵. نشان دهید هر گراف مسطح، رأسی از درجهی حداکثر ۵ دارد.
 - ۳۶. نشان دهید هر گراف مسطح ۵_رنگپذیر است.
- ۳۷. نشان دهید گراف G را هرطور روی صفحه رسم کنیم، حداقل m-n+9 جفت یال یک دیگر را قطع خواهند کرد.
- میده و با g(G) نمایش میدهیم. نشان دهید در هر گراف را کمر آن گراف نامیده و با g(G) نمایش میدهیم. نشان دهید در هر گراف . $|E(G)| \leqslant \frac{g(G)}{g(G)-1}(|V(G)|-1)$
 - ٣٩. نشان دهيد مكمل هر گراف مسطح با حداقل ١١ رأس نامسطح است.
- $\theta(G)$ باشد، خامت گراف G مینامیم و با G مینامیم و با G باشد، خامت گراف G مینامیم و با G مینامیم و با G دمایش میدهیم. نشان دهید $\frac{|E(G)|}{\|F\|V(G)\|-\|F\|}$
 - $(H^{1}, \theta(G)) \geqslant \left\lceil \frac{|E(G)|}{\operatorname{Y}|V(G)|-\operatorname{Y}} \right
 ceil$ ، نشان دهید در گراف دوبخشی ،G
 - ۴۲. عدد رنگی یک گراف جهتدار را برابر عدد رنگی گراف زمینهی آن تعریف میکنیم.
- الف) نشان دهید در هر گراف جهت دار D، طول بلندترین مسیر جهت دار حداقل به اندازه ی $\chi(D)$ است.
- $\chi(G)$ نشان دهید برای هر گراف G، جهت دهیای وجود دارد که طول بلندترین مسیر جهت دار آن باشد.
- ج) نتیجه بگیرید عدد رنگی گراف، برابر با کمترین طول بلندترین مسیر بین همهی جهت دهیهای بدون دور آن گراف است. یعنی اگر طول بلندترین مسیر گراف جهت دار D را با D نمایش دهیم، عدد رنگی گراف D برابر کمترین مقدار D بین همهی گرافهای جهت دار D است که گراف زمینهی آنها D باشد.
- ۴۳. نشان دهید در هر رنگ آمیزی معتبر از گراف G با $\chi(G)$ رنگ، به ازای هر رنگ c، رأسی به رنگ c وجود دارد که در همسایگی آن هر رنگ دیگری ظاهر شده است.
 - ۴۴. نشان دهید در هر گراف G، حداقل $\chi(G)$ رأس از درجه حداقل $\chi(G)$ وجود دارد.
 - $\chi(G)\leqslant \chi(G_1)\chi(G_1)$ را در نظر بگیرید. نشان دهید $G=G_1\cup G_1$ گراف. ۴۵.
 - . $\chi(G)\leqslant \Delta$ اشتراک رأسی داشته باشند، آنگاه Δ دور یک گراف G اشتراک رأسی داشته باشند، آنگاه Δ

- دهید. نشان دهید. نشان دهید. $\mathbf{d}=(d_1,d_7,\dots,d_n)$ را در نظر بگیرید. نشان دهید. $\chi\leqslant \max_{1\leqslant i\leqslant n}\{\min\{d_i+1,i\}\}$
 - $\chi \leqslant \lceil \sqrt{\Upsilon m} \rceil$ نتيجه بگيريد
 - $\mathsf{Y}\sqrt{n}\leqslant \chi(G)+\chi(\overline{G})\leqslant n+1$ نشان دهید .۴۸
- باشد، تعداد رنگ آمیزی های گراف G با K رنگ را با C(G,k) نمایش می دهیم. اگر e یال دلخواهی از G باشد، منظور از $G\setminus e$ ، گراف حاصل از حذف یال e از گراف G است و منظور از $G\setminus e$ ، گراف حاصل از یکی کردن دو سر یال e و ایجاد یک ابررأس از دو رأس مجاور یال e است. همسایه های این ابررأس، اجتماع همسایه های دو رأس قبلی خواهد بود. نشان دهید $C(G,k) = C(G\setminus e,k) C(G/e,k)$
- ۵۰. یک رنگ آمیزی از یالهای گراف G را سره می گوییم هرگاه هیچ دو یال مجاوری همرنگ نباشند. به کمترین تعداد رنگی که گراف G رنگ آمیزی یالی سره داشته باشد، عدد رنگی یالی گراف G می گوییم و آن را با $\chi'(G)$ نشان می دهیم. عدد رنگی یالی دورها را مشخص کنید.
 - $\chi'(K_n)=n-1$ فرد باشد $\chi'(K_n)=n$ و اگر $\chi'(K_n)=n$ فرد باشد ۱ د. ثابت کنید اگر
- ۵۲. الف) نشان دهید هر گراف دوبخشی مانند G که A(G)=k، با یک زیرگراف القایی یک گراف دوبخشی -k
 - ب) نشان دهید عدد رنگی یالی هر گراف دوبخشی G برابر $\Delta(G)$ است.
- ۵۳. نشان دهید درختی با دنباله ی درجات $\mathbf{d}=(d_1,\dots,d_n)$ که d_i ها اعداد صحیح مثبت هستند، وجود دارد . $\sum_{i=1}^n d_i = \mathsf{T} n \mathsf{T}$ اگر و تنها اگر ۲ تنها اگر ۲ میلاند.
- ۵۴. مرکز گراف به رأسی میگوییم که بیشترین فاصلهاش تا رئوس دیگر کمینه باشد. نشان دهید هر درخت یک مرکز یا دو مرکز مجاور دارد.
 - . $\delta(G) = |V(T)| 1$ درخت ریشه دار T و گراف ساده ی G داده شده است، طوری که T
- الف) نشان دهید برای هر رأس دلخواه V(G)، زیرگرافی از G وجود دارد که با T یکریخت است و v رأس متناظر با ریشه ی v است.
 - ب نتیجه بگیرید T با یک زیرگراف G یکریخت است.
- ۵۶. نشان دهید هر گراف ساده با میانگین درجات حداقل (k-1)، که k-1 عددی صحیح و مثبت است، به ازای هر درخت k+1 رأسی زیرگرافی یکریخت با آن درخت دارد.
- ۵۷. میخواهیم تعداد درختهای متفاوت روی n رأس نامگذاری شده را بشماریم. این عملیات را برای ساختن یک درخت ریشه دار در نظر بگیرید: در هر مرحله، یک جنگل ریشه دار داریم. یک رأس دلخواه و یک درخت درخت درختی که شامل رأس مورد نظر است، انتخاب میکنیم و ریشه ی درخت مذکور را فرزند آن رأس قرار می دهیم. این کار را n-1 بار تکرار میکنیم.
 - الف) نشان دهید خروجی این عملیات یک درخت ریشهدار است.
 - ب) به چند طریق می توان عملیات فوق را انجام داد؟
 - ج) هر درخت ریشهدار به چند طریق توسط عملیات فوق ساخته می شود؟
 - د) تعداد درختهای ریشه
دار روی n رأس متمایز را بشمارید.
 - ه) تعداد درختهای روی n رأس متمایز را بشمارید.

- .0۸ تعداد درختهای پوشای گراف همبند G را با G را با G نمایش می دهیم. اگر e یال دلخواهی از G باشد، منظور از G باشد، منظور از G گراف حاصل از حذف یال e از گراف G است و منظور از G، گراف حاصل از یکی کردن دو سر یال e و ایجاد یک ابررأس از دو رأس مجاور یال e است. همسایههای این ابررأس، اجتماع همسایههای دو رأس قبلی خواهد بود. نشان دهید E نشان دهید E است.
- ۵۹. درخت دلخواه T با k برگ را در نظر بگیرید. نشان دهید T اجتماع $\left\lceil \frac{k}{7} \right\rceil$ مسیر است که دوبهدو اشتراک رأسی دارند.
- G. درخت پوشای T از گراف وزندار همبند G را به این صورت میسازیم: در هر مرحله، سنگین ترین یال باقی مانده را انتخاب میکنیم و اگر حذف آن باعث ناهمبندی گراف نمی شد، آن را حذف میکنیم. نشان دهید درخت G است.
- ۶۱. درخت گلوگاهی گراف وزندار همبند G به زیرگرافی پوشا از G میگویند که درخت است و وزن سنگین ترین یال آن، بین همهی درختهای پوشای G کمینه است. نشان دهید هر درخت پوشای کمینه ی یک درخت گلوگاهی G نیز هست.