1 Kvocientni prostori

1.1 Kvocientna topologija

1. Kvocientna topologija

Naj bo (X, \mathcal{T}) topološki prostor in \sim ekvivalenčna relacija na X.

- Definicija. Ekvivalenčni razred elementa $x \in X$. Kvocientna množica. Kvocientna projekcija.
- Opomba. Kako si lahko predstavljamo ekvivalenčni razredi? Ali so disjunktne?
- **Definicija.** Kvocientna topologija.
- Trditev. $T/_{\sim}$ je topologija na $X/_{\sim}$
- Opomba. Karakteriziraj odprte/zaprte množice v $X/_{\sim}$. Kaj pomeni vsaka implikacija posebej?
- *Primer*. Ali je kvocientna projekcija vedno odprta/zaprta?
- **Definicija.** Nasičenje množice $A \subseteq X$
- **Trditev.** Naj bo $A \subseteq X$
 - Kdaj je $q_*(A) \subseteq X/_{\sim}$ odprta/zaprta?
 - Zadosten pogoj, da je kvocientna projekcija odprta/zaprta.

1.2 Kvocientne preslikave

1. Kvocientne preslikave

Naj bo (X, \mathcal{T}) topološki prostor in \sim ekvivalenčna relacija na X.

• Trditev. Kdaj je f določa preslikavo $\overline{f}: X/_{\sim} \to Y$? Kaj za njo velja? Kdaj je \overline{f} zvezna, surjektivna ali injektivna?

- Opomba. Kdaj je \overline{f} homeomorfizem v jeziku množic iz Y?
- **Definicija.** Kvocientna preslikava. Kvocientnost v ožjem smislu.
- *Opomba*. Ali je kvocientna projekcija kvocientna preslikava?
- Lema. Naj bo $f: X \to Y$ zvezna in surjektivna. Zadosten pogoj, da je f kvocientna.
- Izrek. O prepoznavi kvocienta.
- 2. Operacije s kvocientnimi preslikavami
 - **Trditev.** Naj bosta $f: X \to Y$ in $g: Y \to Z$ preslikavi.
 - Kaj lahko povemo o kompozitumu kvocientnih presliakav?
 - Kaj če je $g \circ f$ kvocientna in sta f, g zvezni?
 - Trditev. Zadostni pogoji na f, da porodi homeomorfizem \overline{f} :

1.3 Deljivost topoloških lastnosti

1. Deljivost topoloških lastnosti

Naj bo (X, \mathcal{T}) topološki prostor in \sim ekvivalenčna relacija na X.

- **Definicija.** Kdaj rečemo, da je topološka lastnost deljiva?
- **Trditev.** Karakterizacija T_1 za prostor $X/_{\sim}$
- Izrek. Izrek Aleksandrova [brez dokaza]
- *Opomba*. Kako lahko karakteriziramo Cantorjevo množico? Kako jo lahko surjektivno zvezno preslikamo na interval [0, 1]? Ali je preslikava iz izreka Aleksandrova kvocientna?
- Trditev. Deljive in nedeljive lastnosti.

1.4 Topološke grupe in delovanja

- 1. Topološke grupe
 - **Definicija.** Topološka grupa.
 - *Primer*. Topološke grupe:
 - Poljubna grupa G, opremljena z diskretno topologijo.
 - Podgrupa $H \leq G$ topološke grupe G z inducirano topologijo.
 - $-(\mathbb{R},+), (\mathbb{C},+), (\mathbb{H},+), \text{ tudi } (\mathbb{R}^*,\cdot), (\mathbb{C}^*,\cdot), (\mathbb{H}^*,\cdot)$
 - Norma je multiplikativna $\rightsquigarrow (S^0,\cdot), (S^1,\cdot), (S^3,\cdot)$. Ali tudi S^2 dopušča strukturo topološke grupe?
 - Produkt topoloških grup, opremljen z operacijama po komponentah in produktno topologijo.
 - Topološke grupe linearnih izomorfizmov ($GL_n(\mathbb{F})$) in njihove standardne podgrupe.
 - Definicija. Leva (desna) translacija.
 - Trditev. Ali je leva (desna) translacija homeomorfizem?
 - Posledica. Ali je topološka grupa homogen prostor? Kaj to pomeni?
- 2. Delovanja grup
 - **Definicija.** Levo delovanje topološke grupe G na prostor X.
 - Opomba. Ali tudi delovanje določa translacijo, ki je homeomorfizem prostora X?
 - Opomba. Kaj lahko povemo o orbitah delovanja? Kaj to pomeni za nas?
 - **Definicija.** Prostor orbit.
 - **Definicija.** Stabilizatorska podgrupa G_x .
 - Opomba. V kakšnem odnosu sta $G \cdot x$ in $G/_{G_x}$?
 - Trditev. Ali je kvocientna projekcija na prostor orbit vedno odprta?

1.5 Konstrukcije kvocientov

- 1. Zlepki
 - **Definicija.** Zlepek prostorov X in Y.
 - Opomba. Kako zgledajo ekvivalenčni razredi v zlepku?
 - Izrek. Zadosten pogoj za normalnost zlepka.
 - Trditev. Zadosten pogoj, da je zlepek 2-števen. Zadosten pogoj, da je zlepek T_2 .