IN THE CLAIMS:

Please amend claim 1 as follows:

(currently amended) A liquid crystal display apparatus, comprising:
a pair of opposed-boards and facing substrates,

a liquid crystal layer and a liquid crystal driving unit which are held in being sandwiched between said facing substrates, and

polarizer and phase plates which are located on an upper side and on a lower side of said facing substrates, respectively, wherein a pixel of said liquid crystal display apparatus includes a reflection display unit whose reflections applied voltage characteristic is a normally-closed type and a transmission display unit whose layer thickness is thicker than that of a liquid crystal layer constituting said reflection display unit, said polarizer and said phase plate located on said lower side of said facing substrates forming an elliptical polarizer.

- 2. (original) The liquid crystal display apparatus as claimed in Claim 1, wherein, when a layer-gap between said transmission display unit and said reflection display unit is set to be d, an effective birefringence of a liquid crystal material is set to be Δn , and a wavelength of a transmission light is set to be λ , an angle θ formed between a slow axis of said lower-side phase plate and a transmission axis of said lower-side polarizer falls in a range of 40° 180° × Δnd / λ < θ < 50° 180° × Δnd / λ .
- 3. (original) The liquid crystal display apparatus as claimed in Claim 1, wherein, when a layer-gap between said transmission display unit and said reflection display unit is set to be d, an effective birefringence of a liquid crystal material is set to be Δn , and a wavelength of a transmission light is set to be λ , an angle θ formed between a slow axis of said lower-side phase plate and a transmission axis of said lower-side polarizer falls in a range of 43° 180° × Δnd / λ .

- 4. (original) The liquid crystal display apparatus as claimed in Claim 1, wherein said lower-side phase plate includes a first lower-side phase plate and a second lower-side phase plate, a retardation of said first lower-side phase plate falling in a range of 180 nm to 220 nm, a retardation of said second lower-side phase plate falling in a range of 200 nm to 400 nm.
- 5. (original) The liquid crystal display apparatus as claimed in Claim 1, wherein said lower-side phase plate includes a first lower-side phase plate and a second lower-side phase plate, a retardation of said second lower-side phase plate being larger than that of said first lower-side phase plate, and a difference therebetween falling in a range of 180 nm to 220 nm, said retardation of said first lower-side phase plate falling in a range of 50 nm to 180 nm.
- 6. (original) The liquid crystal display apparatus as claimed in Claim 1, wherein said lower-side phase plate includes a first lower-side phase plate and a second lower-side phase plate, a retardation of said first lower-side phase plate falling in a range of 50 nm to 180 nm, a retardation of said second lower-side phase plate falling in a range of 100 nm to 200 nm.
- 7. (original) The liquid crystal display apparatus as claimed in Claim 1, wherein a twist angle of said liquid crystal layer falls in a range of 40° to 70°, a retardation of said liquid crystal layer falling in a range of 200 nm to 350 nm, a retardation of said upper-side phase plate falling in a range of 280 nm to 470 nm, a retarded-phase axis azimuth-angle of said upper-side phase plate falling in a range of 30° to 75°, an absorption axis azimuth-angle of said upper-side polarization plate falling in a range of 30° to 90°.

- 8. (original) The liquid crystal display apparatus as claimed in Claim 1, wherein a twist angle of said liquid crystal layer falls in a range of 75° to 85°, a retardation of said liquid crystal layer falling in a range of 200 nm to 310 nm, a retardation of said phase plates falling in a range of 320 nm to 460 nm, a slow axis azimuthal angle of said phase plates falling in a range of 105° to 145°, an absorption axis azimuthal angle of said polarization plates falling in a range of 25° to 65°.
- 9. (original) The liquid crystal display apparatus as claimed in Claim 1, wherein a twist angle of said liquid crystal layer falls in a range of 50° to 100°, said upper-side phase plate including a first upper-side phase plate and a second upper-side phase plate, a retardation of said second upper-side phase plate falling in a range of 50 nm to 280 nm, a retardation of said first upper-side phase plate being larger than that of said second upper-side phase plate, and a difference therebetween falling in a range of 70 nm to 190 nm.
- 10. (original) The liquid crystal display apparatus as claimed in Claim 1, wherein a twist angle of said liquid crystal layer falls in a range of 50° to 100°, said upper-side phase plate including a first upper-side phase plate and a second upper-side phase plate, a retardation of said second upper-side phase plate falling in a range of 350 nm to 480 nm, a retardation of said second upper-side phase plate being larger than that of said first upper-side phase plate, and a difference therebetween falling in a range of 10 nm to 50 nm.
- 11. (original) The liquid crystal display apparatus as claimed in Claim 1, wherein a twist angle of said liquid crystal layer falls in a range of 50° to 100°, said upper-side phase plate including a first upper-side phase plate and a second upper-side phase plate, a retardation of said second upper-side phase plate falling in a range of 380 nm to 480 nm, a retardation of said first upper-side phase plate being

larger than that of said second upper-side phase plate, and a difference therebetween falling in a range of 80 nm to 120 nm.

- 12. (original) The liquid crystal display apparatus as claimed in Claim 4, wherein, when an angle formed between a slow axis of said second lower-side phase plate and a transmission axis of said lower-side polarizer is set to be ϕ , an angle formed between a slow axis of said first lower-side phase plate and said transmission axis of said lower-side polarizer falls in a range of $2\phi + 35^{\circ}$ to $2\phi + 55^{\circ}$.
- 13. (original) The liquid crystal display apparatus as claimed in Claim 5, wherein, when an angle formed between a slow axis of said second lower-side phase plate and a transmission axis of said lower-side polarizer is set to be ϕ , an angle formed between a slow axis of said first lower-side phase plate and said transmission axis of said lower-side polarizer falls in a range of $2\phi + 35^{\circ}$ to $2\phi + 55^{\circ}$.