# STAT 339: Statistical Theory

Bayesian Interval Estimation

**Anthony Scotina** 



# Bayesian Credible Intervals

# Interval Estimates (Recap)

#### **Frequentist Interval Estimation**

A (1-lpha) imes 100% confidence interval is an interval  $[\hat{ heta}_L,\hat{ heta}_U]$  such that  $P(\hat{ heta}_L \leq heta \leq \hat{ heta}_U) = 1-lpha,$ 

$$P(\hat{ heta}_L \leq heta \leq \hat{ heta}_U) = 1 - lpha_L$$

where 1-lpha is the confidence coefficient.

- $[\hat{ heta}_L,\hat{ heta}_U]$   $\longrightarrow$  random interval
- $\theta \longrightarrow \mathsf{fixed}$

Because  $\theta$  is fixed, we do NOT interpret this interval as "the probability that  $\theta$  is in the interval.

# Interval Estimates (Recap)

#### **Bayesian Interval Estimation**

The parameter  $\theta$  is random variable with a:

- ullet prior distribution that reflects our prior beliefs about the variability of heta
- posterior distribution,  $\theta \mid \mathbf{y}$ , that reflects our updated understanding of  $\theta$  after observing data.

Suppose  $\theta$  has a posterior distribution  $\theta \mid \mathbf{y}$  with posterior pdf  $f(\theta \mid \mathbf{y})$ . Then the probability that  $\theta$  is in the interval (a,b) (given the observed data) is

$$P(a \leq heta \leq b \mid \mathbf{y}) = \int_a^b f( heta \mid \mathbf{y}) \, d heta.$$

If  $P(a \le \theta \le b \mid \mathbf{y}) = 0.95$ , then we say that (a,b) is a 95% credible interval for  $\theta$ .

### **Animal Crossing!**

Suppose a group of college students are interested in starting an Animal Crossing club.

• In order to estimate demand, the students want to provide an interval estimate for  $\theta$ , the proportion of students who play Animal Crossing.



From a few weeks ago:

• Prior:  $\theta \sim Beta(10,40)$ 

• Data:  $Y \mid \theta \sim Binomial(30, \theta)$ , where we observe Y = 12

• Posterior:  $\theta \mid Y \sim Beta(22,58)$ 

### Bayesian Credible Interval

Using the posterior  $\theta \mid Y$ , we can find a 95% credible interval by finding the 2.5th and 97.5th posterior percentiles.

• These mark the middle 95% of posterior plausible values for  $\theta$ .



```
c(qbeta(0.025, 22, 58), qbeta(0.975, 22, 58))
```

### Bayesian Credible Interval

```
c(qbeta(0.025, 22, 58), qbeta(0.975, 22, 58))
```

## [1] 0.1834550 0.3771967

There is a 95% posterior probability that somewhere between 18.3% and 37.7% of college students play Animal Crossing.

ullet Posterior mean: 22/(22+58)=0.275
ightarrow27.5%

#### Another way to think about this:

$$P(0.183 \le \theta \le 0.377 \mid Y = 12) = \int_{0.183}^{0.377} f(\theta \mid y = 12) d\theta$$

$$= \int_{0.183}^{0.377} \frac{\Gamma(22 + 58)}{\Gamma(22)\Gamma(58)} \theta^{22-1} (1 - \theta)^{58-1} d\theta$$

$$= 0.95$$

Note: If we want to find, say, a 90% credible interval, we just mark the middle 90% of the posterior distribution instead!

### Comparison to Frequentist CI for *p*

Recall that a 95% confidence interval for p is given by

$$\hat{p}\pm 1.96\sqrt{rac{\hat{p}(1-\hat{p})}{n}}.$$

In our example...

- $\hat{p} = 12/30 = 0.4$
- n = 30

**95% Confidence Interval**: (0.225, 0.575)

**95% Credible Interval**: (0.183, 0.377)

• Why so different? 🤥

It has to do with our choice of prior!

(Not to mention these intervals actually have very different meanings!)

#### Interpreting Credible Intervals

Unlike with frequentist confidence intervals, the Bayesian setup allows us to say that  $\theta$  is inside (0.183, 0.377) with some probability, not 0 or 1.

• Under the Bayesian framework,  $\theta$  is a random variable with a probability distribution.

The 95% confidence interval of (0.225,0.575) is just one of the possible realized values of the random interval

$$\left(\hat{p}-1.96\sqrt{\hat{p}(1-\hat{p})}n,\hat{p}+1.96\sqrt{\hat{p}(1-\hat{p})}n
ight)$$

• Under the frequentist framework,  $\theta$  does not move! It is fixed and is inside (0.225, 0.575) with probability either 0 or 1.

## **Bayesian Probability**

Bayesians and frequentists also interpret probabilities differently, so it is important not to confuse **credible** (Bayesian) and **coverage** (frequentist) probability!

- Credible probability: Reflects the experimenter's subjective beliefs, which are expressed in the prior distribution and updated in the posterior distribution after observing DATA.
- Coverage probability: Represents a long-run relative frequency of identical trials; 95% of realized confidence intervals will cover  $\theta$ .

[Moose pic to fill space  $\P$ ]

# Cool Beans (yes, that one.)

Let  $Y_i$ , the number of people in front of you in line at Cool Beans on day i be distributed according to a Poisson distribution with parameter  $\lambda$ :

$$Y_i \mid \lambda \sim Poisson(\lambda)$$



- Prior:  $\lambda \sim Gamma(11,1)$
- Data: n = 5 days; y = (15, 12, 5, 8, 10)

Find a 99% credible interval for  $\lambda$ .

#### Gamma-Exponential Credible Interval

Suppose we want to estimate the lifetime (in hours),  $\theta$ , of a certain electrical component.

Consider the following:

• Prior:  $\theta \sim Gamma(\alpha, \beta)$ , where

$$f( heta) = rac{eta^lpha}{\Gamma(lpha)} heta^{lpha-1} e^{-eta heta}$$

ullet Likelihood:  $Y_1,Y_2,\ldots,Y_n\mid heta \sim Exponential( heta)$ , where

$$f(y_i \mid heta) = heta e^{- heta y_i}$$

Construct a 90% credible interval for  $\theta$  and the mean of the exponential population,  $\mu=1/\theta$ .

#### Credible Intervals for the Mean

#### The Normal-Normal Conjugacy

#### From Practice 5:

If:

- Prior:  $\mu \sim N(\theta, au^2)$
- Data:  $Y_i \mid \mu \sim N(\mu, \sigma^2)$  ( $\mu$  is unknown but  $\sigma^2$  is known)

then the posterior distribution is also Normally distributed:

$$\mu \mid \mathbf{y} \sim N\left( heta rac{\sigma^2}{n au^2 + \sigma^2} + ar{y} rac{n au^2}{n au^2 + \sigma^2}, rac{ au^2\sigma^2}{n au^2 + \sigma^2}
ight).$$

#### Credible Intervals for a Normal Mean

Because  $\mu \mid \mathbf{y}$  is Normally distributed (and hence, symmetric), we can use techniques similar to those used to derive frequentist CIs for a Normal mean!

Want: a and b such that

$$P(a \le \mu \le b \mid \mathbf{y}) = 1 - \alpha$$

#### Know:

- Posterior Distribution: Normal! 🔔
- ullet Posterior Mean:  $\mu_1\equiv hetarac{\sigma^2}{n au^2+\sigma^2}+ar{y}rac{n au^2}{n au^2+\sigma^2}$
- ullet Posterior Variance:  $\sigma_1^2\equivrac{ au^2\sigma^2}{n au^2+\sigma^2}$

$$\implies P(\mu_1 - z_{lpha/2}\sigma_1 < \mu < \mu_1 + z_{lpha/2}\sigma_1 \mid \mathbf{y}) = 1 - lpha$$

#### Credible Intervals for a Normal Mean

If:

- Prior:  $\mu \sim N(\theta, au^2)$
- Data:  $Y_1,Y_2,\ldots,Y_n\mid \mu\sim N(\mu,\sigma^2)$ •  $\mu$  is unknown and  $\sigma^2$  is <code>known</code>

Then: A (1-lpha) imes 100% Bayesian credible interval for  $\mu$  is

$$\mu_1\pm z_{lpha/2}\sigma_1,$$

where  $\mu_1$  is the **posterior mean** (and the Bayes estimator) and  $\sigma_1^2$  is the **posterior variance**.

#### The Stroop Test

The **Stroop Effect** describes the psychological phenomenon that occurs when the processing of one particular stimulus feature interferes with the simultaneous processing of a second stimulus feature.



A random sample of n=8 study participants yielded the following reaction times (in seconds per hundred reactions):

• 95, 99, 106, 107, 107, 114, 120, 127

We'll assume  $Y_i \mid \mu \sim N(\mu, 12^2)$ 

Based on prior studies, it is reasonable to assume that reaction times are normally distributed with mean 100 and standard deviation 15.

Construct a 95% Bayesian credible interval for  $\mu$ , the population mean reaction time for the Stroop Test.

# Large-Sample Credible Intervals

# Large-Sample Normal Approximation to the Posterior

Suppose we have data  $Y_1, Y_2, \ldots, Y_n$  modeled from some (preferably named) distribution with parameter  $\theta$ .

ullet For example, in the **Animal Crossing** example,  $Y \mid heta \sim Binomial(n, heta)$ .

If n is large, we can use the Normal distribution to approximate the posterior:

$$egin{aligned} heta \mid \mathbf{y} \sim (approx) \ Normal\left(\hat{ heta}_{MLE}, rac{1}{I(\hat{ heta}_{MLE})}
ight). \end{aligned}$$

- $\hat{ heta}_{MLE}$  is the MLE for heta in the data model.
- $I(\hat{ heta}_{MLE}) = \left. rac{d^2}{d heta^2} \mathrm{log} \, L( heta) 
  ight|_{ heta = \hat{ heta}_{MLE}}$  is the Fisher information.

#### Large-Sample Approximation

Suppose instead of surveying n=30 students regarding their Animal Crossing preferences, we survey n=500.

- $Y \mid \theta \sim Binomial(500, \theta)$
- Note: Because we're using a large sample approximation, it doesn't really matter what prior we use.
  - Though this is just for illustration! If you use a conjugate prior, there's no reason to do this...

Binomial MLE:  $\hat{ heta}_{MLE} = Y/n$ 

$$ullet$$
 For large  $n, heta \mid Y \sim (approx) \ Normal \left( \hat{ heta}_{MLE}, rac{1}{I(\hat{ heta}_{MLE})} 
ight)$  .

### Calculating Fisher Information

We just need to find  $I(\hat{ heta}_{MLE}) = \left. - rac{d^2}{d heta^2} {
m log} \, L( heta) 
ight|_{ heta = \hat{ heta}_{MLE}}$ 

$$ullet \log L( heta) = \log \left[inom{n}{y} heta^y (1- heta)^{n-y}
ight] = \log inom{n}{y} + y \log heta + (n-y) \log (1- heta)$$

• 
$$\frac{d}{d\theta} \log L(\theta) = \frac{y}{\theta} + \frac{n-y}{1-\theta} \cdot (-1)$$

$$ullet rac{d^2}{d heta^2}{
m log}\,L( heta) = (-1)rac{y}{ heta^2} + (-1)rac{n-y}{(1- heta)^2}(-1)(-1)$$

$$\implies I(\hat{ heta}_{MLE}) = rac{y}{\hat{ heta}_{MLE}^2} + rac{n-y}{(1-\hat{ heta}_{MLE})^2}$$

### Comparing Approximation to Exact

#### Assuming...

- $\theta \sim Beta(10,40)$
- $Y \mid heta \sim Binomial(n=500, heta)$  with observed Y=100

Then the **exact** posterior is  $\theta \mid Y \sim Beta(10+100,40+500-100) = Beta(110,440).$ 

Using the large-sample Normal approximation,  $\theta \mid Y \sim (approx) \; N(0.2, 0.00032).$ 





### Small Samples

This approximation doesn't work as well with small n.

Assuming...

- $\theta \sim Beta(10,40)$
- $Y \mid heta \sim Binomial(n=10, heta)$  with observed Y=2

Then the exact posterior is  $\theta \mid Y \sim Beta(10+2,40+10-2) = Beta(12,48)$ .

Using the large-sample Normal approximation,  $heta \mid Y \sim (approx) \; N(0.2, 0.016).$ 



