



# DeepETA: A Spatial-temporal Sequential Neural Network Model for Estimating Time of Arrival in Package Delivery System

### Motivation

- Over 100 million packages are delivered each day in China
- Estimating time of arrival (ETA) of packages at any time during delivery
  - reducing the anxiety of customers
  - improving the customer experience
  - measuring the service ability and quality of couriers

# Challenge



- Multiple destinations
  - Delivery sequence and locations
- Time-variant delivery status
  - The latest route, the delivery pattern
- Time-invariant delivery features
  - Geographical and package properties

### **Problem Definition**

- The latest route  $Route_{a_s,a_c}^d$  and the predicted location  $a_i$
- Relative routes from history that are similar with the current route symbolized as  $\mathcal{H}_{route}$
- Undelivered location set  $Set_{t_i}^d$  and all similar sets from history as  $\mathcal{F}_{set}$
- Find the most possible delivery time  $dt_{a_i}$  from historical relative routes:

$$dt_{a_i} = f(\mathcal{H}_{route}, \mathcal{F}_{set})$$

### Methology

- End to end structure
- Latest route encoder
- The frequent pattern encoder
- The prediction module



Model structure

### Latest Route Encoder



- · Spatial encoder
  - Location  $a_i$  is transformed into Geohash encoding, namely  $G_{a_i}$  $V_{a_i} = f(W_a G_{a_i} + b_a)$

#### BiLSTM

• Spatial encoder  $V_{a_i}$ , time-variant features  $V_{tv}$  and time-invariant features  $V_{ti}$  as  $X_t = [V_{a_i}, V_{tv}, V_{ti}]$ 

$$h_t = LSTM(h_{t-1}, X_t)$$

### Frequent Pattern Encoder



- Route encoder
  - $\widetilde{\mathcal{H}}_{\mathsf{t}}^{\mathsf{k}} = \mathsf{LSTM}(\widetilde{\mathcal{H}}_{\mathsf{t-1}}^{\mathsf{k}}, \mathcal{H}_{route})$  and  $\widetilde{\mathcal{F}}_{\mathsf{t}}^{\mathsf{k}} = \mathsf{DNN}(\widetilde{\mathcal{F}}_{\mathsf{t-1}}^{\mathsf{k}}, \mathcal{F}_{\mathsf{set}})$
- Pattern selector
  - An attention-based layer
  - $f(\widetilde{\mathcal{H}}_t^k, h_t) = tanh(\widetilde{\mathcal{H}}_t^k W_{score} h_t), \ \sigma(z)_k = \frac{e^{z_k}}{\sum_{i=1}^K e^{z_i}}$  and  $V_{fp} = \sum (\sigma(z)_j \widetilde{\mathcal{H}}_t^j)$

# Jointly Training and Prediction

- Loss function
  - The fully connected layer:  $\tilde{y}_t = \sigma(W_{fc}[h_t, V_{fp}, V_{ti}] + b_{fc})$

$$\mathcal{L}(\theta) = \sum_{i=1}^{N} \left( (\tilde{y}_t - y_t)^2 + \lambda \left( \frac{\tilde{y}_t - y_t}{y_t} \right)^2 \right)$$

### Experiment

| Methods  | RMSE (min) | MAPE (%) |
|----------|------------|----------|
| LR       | 144.18     | 43.5     |
| DNN      | 127.58     | 37.4     |
| XGBoost  | 123.66     | 38.2     |
| LSTM     | 110.37     | 34.9     |
| DeepTTE  | 97.85      | 29.7     |
| DeepMove | 72.43      | 24.3     |
| DeepETA  | 63.58      | 20.6     |

- Real world delivery dataset
- Evaluation metric

$$MAPE = \frac{1}{N} \sum_{i=1}^{N} \frac{\left| \hat{y}_t^j - y_t^j \right|}{y_t^j}$$

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left( \hat{y}_t^j - y_t^j \right)^2}$$

• DeepETA achieves the lowest RMSE (63.58 minutes) and the lowest MAPE which improves the best performance of the baseline methods by 13.8% (RMSE) and 16.5% (MAPE)