HW 1

Exercise 1. Let A = (1, 2), B = (3, 1). Draw the points A + B, A + 2B, A + 3B, A - B, A - 2B, and A - 3B on a sheet of graph paper (or a reasonably drawn set of axes).

Exercise 2. Which of the following pairs of vectors are perpendicular?

- (1,-1,1),(2,1,5)
- (1,-1,1),(2,3,1)
- \bullet (-5,2,7),(3,-1,2)
- $(\pi, 2, 1), (2, -\pi, 0)$

Exercise 3. Suppose $A = (a_1, a_2, a_3)$ is perpendicular to every vector X. Show that A is the zero vector. (Hint: if this holds for every X, it holds in particular for E_1 , E_2 , and E_3)

Exercise 4. Determine the interior angles of the triangle whose vertices are (2, -1, 1), (1, -3, -5), and (3, -4, -4). (Hint: label the points as P, Q, and R. Then, for instance, one of the angles can be found by computing the angle between the vectors \overrightarrow{PQ} and \overrightarrow{PR} . Then you can do this for the other angles.)

Exercise 5. Let A_1, \ldots, A_r be nonzero vectors which are mutually perpendicular (i.e. $A_i \cdot A_j = 0$ whenever $i \neq j$). Suppose c_1, \ldots, c_r are numbers such that

$$c_1 A_1 + \dots + c_r A_r = 0.$$

Show that we must have $c_i = 0$ for each i = 1, ..., r.

Exercise 6. Let P = (1, 3, -1) and Q = (-4, 5, 2). Determine the coordinates of the following points

- \bullet The midpoint of the line segment between P and Q
- The point on this line segment that is two thirds of the way from P to Q.

Exercise 7. Find the equation of the plane passing through the points (2, 1, 1), (3, -1, 1), and (4, 1, -1). (Hint: to obtain a normal vector to this plane, label the points P, Q, and R and form the vectors \overrightarrow{PQ} and \overrightarrow{PR} . What is true of $\overrightarrow{PQ} \times \overrightarrow{PR}$?)

Exercise 8. Find a parametric representation for the line of intersection of the planes

$$2x + y + 5z = 2$$

$$3x - 2y + z = 3.$$

(Hint: notice that when two planes intersect, the line of intersection is perpendicular to the normals of both planes.)

Exercise 9. Compute the area of the parallelogram spanned by the vectors (3, -2, 4) and (5, 1, 1).