任课教师: 专业: 年级: 学号: 姓名: 成绩:

 $\begin{array}{c|c} & \\ \hline \end{array}$ 二、 (15分) 定义在 $\mathbb R$ 上的单调函数 f, 其不连续点是至多可数集.

得 分

三、 (15分) 设 $\{E_n\}_{n=1}^{\infty}$ 为 \mathbb{R} 中一列可测集. 若存在 $x \in \mathbb{R}$ 使得

$$\lim_{\epsilon \to 0} \frac{m(E_n \cap (x - \epsilon, x + \epsilon))}{2\epsilon} = 1$$

对于所有的自然数 n 均成立. 证明: $\{E_n\}_{n=1}^{\infty}$ 中任意有限多个集合的交均不为零测集.

得 分

四、(15分) 设 f 为 \mathbb{R} 上的连续实值函数, g 为 \mathbb{R} 上的可测函数. 证明: $g \circ f$ 为可测函数.

得 分

五、 (15分) 设 f 为可测集 E 上的 Lebesgue 可积函数. 证明: 对于任意的 $\lambda > 0$, 均有

$$m(\{x \in E : |f(x)| > \lambda\}) \leqslant \frac{1}{\lambda} \cdot \int_{E} |f| dm.$$

得分 六、 (15分) 设 E 为可测集, $m(E) < +\infty$, $\{f_n\}_{n=1}^{\infty}$ 为 E 上一列几乎处处有限的可测函数. 若 $\lim_{n\to\infty}\int_{E}|f_n|dm=0$. 证明: $\{f_n\}_{n=1}^{\infty}$ 在 E 上依测度收敛到零.

得分 七、 (15分) 证明:
$$\int_0^\infty \frac{\sin t}{e^t - x} dt = \sum_{n=1}^\infty \frac{x^{n-1}}{n^2 + 1},$$
其中 $-1 \le x \le 1$.