Monash University
Faculty of Information Technology

Lecture 6
Finite Automata

Slides by David Albrecht (2011), modified by Graham Farr (2013).

FIT2014 Theory of Computation

Overview Definition How they are used to define languages Representations Complement Languages Comparison with Regular Expressions

Finite Automaton Sometimes known as a Deterministic Finite Automaton. Used for determining whether a word does or does not belong to a Regular Language. Used for defining a Regular Language. Used in Lexical Analysers.

Finite automata

Every string traces a *unique* path in the automaton, starting from the Start State and following the transitions, letter by letter.

Definitions

A string is **accepted** by a FA if its path ends on a Final State. Otherwise the string is **rejected**.

The *language recognised* by a FA is the set of all strings it accepts.

We say the FA **recognises** the language, or **accepts** the language.

Special Cases

- All words accepted.
- Only the empty word accepted.
- A single word accepted.

Complements

If L is a language over an alphabet, then its **complement** \overline{L} is set of strings of letters from the alphabet that are not words in L.

The complement of L is sometimes denoted by L' or L^c .

EVEN-EVEN

EVEN-EVEN is the set of strings that contain an **even** number of **a**'s **and** an **even** number of **b**'s.

E.g. ε aa bb aaaa aabb abab abba baab

EVEN-EVEN is the set of strings which contain an **odd** number of **a**'s **or** an **odd** number of **b**'s.

E.g.
a b ab ba aaa aab aba abb baa ...

Complement Finite Automaton (FA)

- Suppose some FA accepts the language L
 Change all the final states in this FA to non-final states, and all the non-final states to final states.
- This new FA now accepts all the strings not accepted by the original FA (i.e., all the words in \bar{L}), and rejects all the words that the original accepted (i.e., the words in L).
- ullet So the new FA accepts $ar{L}$.

Comparison with Regular Expressions

- It is easier to write down a regular expression that defines a language than to design a FA to accept this language.
- It is easier to check whether a given string is accepted by a FA than it is to see whether it matches a regular expression.
- It is easier to find complements using a FA than by using a regular expression.

Some Generalizations of Finite Automata

- For every state and letter, there is **not** a **unique** transition.
- Change state without reading any letter.
- Read more than one letter at a time.
- Read strings which match regular expressions.

Nondeterministic Finite Automaton (NFA) Definition

- Like a Finite Automaton (FA) except for transitions
- Transitions
- For **some** states and letters there is a transition.
- $^{\circ}$ The labels may include the empty word ϵ .
- So for a given letter and state there may be:
 - No transition
 - More than one transition
- For a given string, the path it takes ...
 - might **not exist**
 - might **not be unique**

Properties

- If there is **no transition** for the **current** letter and state the machine **crashes**.
- Paths from the **Start State** to a **Final State** for a given input:
 - One
 - None
 - Several (Nondeterministic)
- Accept a string if there is at <u>least one</u> path from the **Start State** to a **Final State**.
- Reject a string if there are <u>no paths</u> from the **Start State** to a **Final State**.

Revision

- Finite Automata (FA)
 - Definition. How to use them.
 - ${}^{\textstyle \bullet}$ How to construct a Finite Automaton to accept a language.
- Complement Languages
 - · What they are. Designing FA to accept them.
- Nondeterministic Finite Automata (NFA)
 - Definition. How to use them
 - ${}^{\bullet}$ How to construct a Nondeterministic Finite Automata to accept a language.
- Reading: Sipser Ch I.