

COPIE INTERNE 21/08/2025

Dr CARRETTE ALICE INSTITUT BORDET ONCOLOGIE MEDICALE RUE MEYLEMEERSCH,90 1070 BRUXELLES

Centre d'Anatomie Pathologique H.U.B.

Rue Meylemeersch 90 - 1070 Anderlecht Mijlemeerschstraat 90 – 1070 Anderlecht

> **Directrice de Service** Pr Myriam Remmelink

Equipe Médicale

Dr Nicolas de Saint Aubain
Pr Nicky D'Haene
Dr Maria Gomez Galdon
Dr Chirine Khaled
Pr Denis Larsimont
Pr Laetitia Lebrun
Dr Calliope Maris
Pr Jean-Christophe Noël
Dr Anne-Laure Trépant
Dr Marie Van Eycken
Pr Laurine Verset

Consultant (e) s

Dr Sarah Bouri Dr Xavier Catteau Dr Roland de Wind Dr Marie-Lucie Racu Dr Valérie Segers Dr Anne Theunis Dr Marie-Paule Van Craynest

Secrétariat Médical T. +32 (0)2 541 73 23

+32 (0)2 555 33 35

SecMed.AnaPath@hubruxelles.be

Secrétariat Direction T. +32 (0)2 555 31 15

Mme Kathia El Yassini Kathia.elyassini@hubruxelles.be

Mme Véronique Millecamps veronique.millecamps@hubruxelles.be

PATIENT:

ID:

Réf. Externe : 25BB06051 EXAMEN : **25EM01900**

Prélevé le 23/04/2025 à 23/04/2025 15:36 Prescripteur : Dr CARRETTE ALICE

Reçu le 15/05/2025

RECHERCHE PAR « NEXT GENERATION SEQUENCING » DE VARIANTS DANS 39 GENES IMPLIQUES DANS LES GLIOMES ET RECHERCHE DE CO-DELETION 1p19q

(CLINICAL GLIOMA PANEL V2)

HUB – Centre d'Anatomie Pathologique – est accrédité par BELAC sous le numéro de certificat B-727 MED

I. Renseignements anatomopathologiques

N° du prélèvement : 25BB06051-1

Date du prélèvement : 23/04/2025

Origine du prélèvement : Bordet

Type de prélèvement : Carcinome épidermoïde du poumon – recherche mutation FGFR2

II. Evaluation de l'échantillon

- % de cellules tumorales : 50%

- Qualité du séquençage : Optimale (coverage moyen > 1000x)

Les exons à considérer comme non contributifs sont détaillés dans le tableau ci-dessous (point III).

- Commentaires : /

III. Méthodologie (effectué par : THMA)

- Extraction ADN à partir de coupes paraffinées après macrodissection des zones tumorales ou à partir de frottis.
- Détection par « Next Generation Sequencing » (sur Ion Gene Studio S5, Ion Torrent avec Kit AmpliSeq) de variants dans 39 gènes liés aux tumeurs cérébrales :

Gène	RefSeq	Exons testés	Exons Non Contributifs (coverage <250x)*
ACVR1	NM 001105	6-11	7
ATRX	NM_00489	1-35 (whole CDS)	1,9,11,15, 16,28,29
BRAF	NM_004333	-7 -7 7 7 -	
CDK4	NM_000075	1-8 (whole CDS)	7
CDK6	NM_001259	2-8 (whole CDS)	3
CDKN2A	NM_000077	1-3 (whole CDS)	1
	NM_004936 et		
CDKN2B	NM_078487	1-2 (whole CDS)	1
EGFR	NM_005228	1-28 (whole CDS)	
FGFR1	NM_23110	12, 14-16	15
FGFR2	NM 000141	5-7, 9-10, 12, 14	
FGFR3	NM_00142	7, 9, 10, 13-16	16
H3F3A (=H3.3)	NM_002107	2	
H3F3B	NM_005324	2-4 (whole CDS)	
HIST1H3B (=H3C2)	NM_003537	1	
HIST1H3C (=H3C3)	NM_003531	1	
HRAS	NM 005343	2-4 (whole CDS)	
IDH1	NM_005896	4	
IDH2	NM_002168	4	
KRAS	NM_033360	2-4 (whole CDS)	
MDM2	NM 002392	1-11 (whole CDS)	1

Gène	RefSeq	Exons testés	Exons Non Contributifs (coverage <250x)*
MDM4	NM 002393	2-11 (whole CDS)	4
MYCN	NM_1293228	2-3 (whole CDS)	2
NF1	NM_001042492	1-58 (whole CDS)	7, 13, 15, 30, 33
NF2	NM_00268	1-16 (whole CDS)	15
NRAS	NM_002524	2-4 (whole CDS)	
PDGFRA	NM_006206	5-12, 14-15, 18, 21-23	
PIK3CA	NM 006218	1-20 (whole CDS)	
PIK3R1	NM 181523	2-16 (whole CDS)	11
POLD1	NM 001256849	1-27 (whole CDS)	22
POLE	NM 006231	1-49 (whole CDS)	36,46,48
PPM1D	NM 003620	1-6 (whole CDS)	1
PRKCA	NM-002737	1-17 (whole CDS)	
PTEN	NM 00314	1-9 (whole CDS)	
PTPN11	NM 02834	1-15 (whole CDS)	
RB1	NM_00321	1-27 (whole CDS)	1,2,4,22
TERT	NM 001193376	Promoteur	
TP53	NM_00546	1-11 (whole CDS)	4,9
TSC1	NM_000368	3-23 (whole CDS)	
TSC2	NM 000548	2-42 (whole CDS)	6,14,17,31,34

^{*} Un coverage < 250x induit une perte de sensibilité et de spécificité de la méthode.

Sensibilité : Seuls les variants avec une fréquence supérieure à 5% et un variant coverage >30x (sauf promoteur de TERT : variant coverage >20x) sont rapportés.

IV. Résultats

Variants pathogéniques ou présumés pathogéniques :

Gène	Exon	Variant	Coverage	% d'ADN muté
Variants avec impact clinique potentiel				
FGFR2	7	p.W290C	799	62%
PTEN	6	p.Y188Qfs*9	898	45%
Variants avec impact clinique indéterminé				
TP53	5	p.V157D	909	62%

Variants de significations biologiques et cliniques indéterminées :

Gène	Exon	Variant	Coverage	% d'ADN muté
TSC1	19	p.L800Q	1997	23%

V. Discussion

Des mutations du gène FGFR2 sont décrites dans les cancers pulmonaires. L'inhibiteur pan-FGFR erdafitinib est listé par le NCCN pour le traitement des patients avec un NSCLC présentant une altération des gènes FGFR2/3.

www.oncokb.org

Les mutations du gène PTEN sont décrites dans cancers pulmonaires. Bien que la FDA ait approuvé le capivasertib (pan-AKT inhibiteur) en combinaison avec le fulvestrant pour le traitement des patients avec un cancer du sein ER+/HER2- avec une mutation oncogénique du gène PTEN, leur utilité clinique pour les patients avec un cancer du poumon est indéterminée.

oncokb.org

Les mutations du gène TP53 sont fréquentes dans les cancers pulmonaires, leur impact clinique est indéterminé.

VI. Conclusion : (THMA le 23/05/2025)

Présence du variant pathogénique W290C du gène FGFR2.

Présence du variant présumé pathogénique Y188Qfs*9 du gène PTEN.

A noter la présence de la mutation V157D du gène TP53, dont l'impact clinique est indéterminé.

A noter la présence d'un variant de signification biologique et clinique indéterminé dans le gène TSC1.

Pour toute information complémentaire, veuillez nous contacter au 02/555.85.08 ou par mail : Biomol.AnaPath@erasme.ulb.ac.be

N.B. Pour les prélèvements d'histologie et de cytologie ainsi que pour les examens complémentaires de biologie moléculaire, merci d'utiliser les nouvelles prescriptions disponibles sur le site internet du HUB: https://www.hubruxelles.be/sites/default/files/2024-03-04_demande%20analyse%20anapath%20cytologie%20v3.pdf

https://www.hubruxelles.be/sites/default/files/FO-HUB-BM-11%20Demande%20de%20biologie%20mol%C3%A9culaire-IPD%20v1.doc

Dr N D'HAENE

Dr REMMELINK MYRIAM