# Technologie cloud et systèmes distribués Le Cloud Computing

#### Mohamed-Lamine MESSAI

ICOM - Université Lumière Lyon 2



M2 BI&BD, 2021-2022



# Sommaire

- I. Les systèmes distribués
- II. Le Cloud Computing
- III. Conclusion

# Sommaire

I. Les systèmes distribués

II. Le Cloud Computing

III Conclusion

#### Le contexte



 Traditionnellement, les traitements ont toujours été fait en local sur une seule machine en utilisant les ressources de la machine :



- Traditionnellement, les traitements ont toujours été fait en local sur une seule machine en utilisant les ressources de la machine :
  - Le processeur;





- Traditionnellement, les traitements ont toujours été fait en local sur une seule machine en utilisant les ressources de la machine :
  - Le processeur;
  - La mémoire vive;



- Traditionnellement, les traitements ont toujours été fait en local sur une seule machine en utilisant les ressources de la machine :
  - Le processeur;
  - La mémoire vive;
  - Le disque dur.



 Traditionnellement, les traitements ont toujours été fait en local sur une seule machine en utilisant les ressources de la machine :

- Le processeur
- La mémoire vive
- Le disque dur
- Conséquence



- Traditionnellement, les traitements ont toujours été fait en local sur une seule machine en utilisant les ressources de la machine :
  - Le processeur
  - La mémoire vive
  - Le disque dur
- Conséquence
  - Les performances sont limitées



#### **Définitions**

#### Coulouris et al. 1994

"Un système distribué est un ensemble de machines autonomes connectées par un réseau, et équipées d'un logiciel dédié à la coordination des activités du système ainsi qu'au partage de ses ressources." [Coulouris et al. Distributed Systems-Concepts and Design, 2nd Ed. Addison-Wesley Publishers Ltd., 1994].

#### **Définitions**

#### Coulouris et al. 1994

"Un système distribué est un ensemble de machines autonomes connectées par un réseau, et équipées d'un logiciel dédié à la coordination des activités du système ainsi qu'au partage de ses ressources." [Coulouris et al. Distributed Systems-Concepts and Design, 2nd Ed. Addison-Wesley Publishers Ltd., 1994].

#### Tanenbaum 1994

"Un système distribué est un système qui s'exécute sur un ensemble de machines sans mémoire partagée, mais que pourtant l'utilisateur voit comme une seule et unique machine." [A. Tanenbaum. Systèmes d'exploitation: systèmes centralisés et systèmes distribués. Interéditions, Paris, 1994.]

• Une étape de plus vers une solution satisfaisante : HPC par ex.

#### Le traitement distribué

• Une étape de plus vers une solution satisfaisante : HPC par ex.



## Le traitement distribué

Une étape de plus vers une solution satisfaisante : HPC par ex.



Comment faire pour le stockage?

## Le traitement distribué

Une étape de plus vers une solution satisfaisante : HPC par ex.



Comment faire pour le stockage?

HDD

Une étape de plus vers une solution satisfaisante : HPC par ex.



Comment faire pour le stockage?



Le partitionnement des données à la charge de l'utilisateur.

# Le traitement distribué

• Une étape de plus vers une solution entièrement satisfaisante :

## Le traitement distribué

• Une étape de plus vers une solution entièrement satisfaisante :



Introduction
Le traitement distribué
Les possibilités

#### Le traitement distribué

• Une étape de plus vers une solution entièrement satisfaisante :



Traitement distribué

Introduction
Le traitement distribué
Les possibilités

## Le traitement distribué

• Une étape de plus vers une solution entièrement satisfaisante :

```
CPU CPU CPU CPU
RAM RAM RAM RAM
HDD HDD HDD HDD
```

- Traitement distribué
- Stockage de données distribué

• Une étape de plus vers une solution entièrement satisfaisante :



- Traitement distribué
- Stockage de données distribué
  - Capable de gérer le partitionnement et la réplication des données.

#### Le traitement distribué

Système distribué (CPU & RAM & HDD).

- Système distribué (CPU & RAM & HDD).
  - Aucun problème de performance

- Système distribué (CPU & RAM & HDD).
  - Aucun problème de performance
  - Mais... l'ensemble des données n'est pas accessible en une fois

- Système distribué (CPU & RAM & HDD).
  - Aucun problème de performance
  - Mais... l'ensemble des données n'est pas accessible en une fois
- Conséquences :

- Système distribué (CPU & RAM & HDD).
  - Aucun problème de performance
  - Mais... l'ensemble des données n'est pas accessible en une fois
- Conséquences :
  - Pour le système : besoin d'un réseau de communication.

- Système distribué (CPU & RAM & HDD).
  - Aucun problème de performance
  - Mais... l'ensemble des données n'est pas accessible en une fois
- Conséquences :
  - Pour le système : besoin d'un réseau de communication.
  - Pour les algorithmes : données partielles -> résultats partiels.

# Le traitement distribué

Une solution entièrement satisfaisante :

• Une solution entièrement satisfaisante :



• Une solution entièrement satisfaisante :



Traitement et stockage distribué

• Une solution entièrement satisfaisante :



- Traitement et stockage distribué
- Une communication réseau rapide et fiable

• Une solution entièrement satisfaisante :



- Traitement et stockage distribué
- Une communication réseau rapide et fiable
- Une réplication des données pour la tolérance aux pannes

# Le traitement distribué

Avantage principale : LA SCALABILITE SELON VOS BESOINS

#### Le traitement distribué

Avantage principale : LA SCALABILITE SELON VOS BESOINS



Avantage principale: LA SCALABILITE SELON VOS BESOINS



 Cette scalabilité permet de rajouter de nouvelle machine sans interrompre le traitement.



Traitement local Introduction Le traitement distribué Les possibilités

- Le traitement itératif des données
  - Le déplacement des données à travers le réseau

Traitement local Introduction Le traitement distribué Les possibilités

- · Le traitement itératif des données
  - Le déplacement des données à travers le réseau
- Besoin d'un système de stockage distribué intelligent
  - Couplé à une unité de calcul

- Le traitement itératif des données
  - Le déplacement des données à travers le réseau
- Besoin d'un système de stockage distribué intelligent
  - Couplé à une unité de calcul
- Solution:

- Le traitement itératif des données
  - Le déplacement des données à travers le réseau
- Besoin d'un système de stockage distribué intelligent
  - Couplé à une unité de calcul
- Solution:
  - HDFS, une implémentation ouverte de Google FS

- Le traitement itératif des données
  - Le déplacement des données à travers le réseau
- Besoin d'un système de stockage distribué intelligent
  - Couplé à une unité de calcul
- Solution:
  - HDFS, une implémentation ouverte de Google FS
  - Apache Cassandra, Amazon S3, ...

 Partage des ressources (données, applications, périphériques chers). Optimisation de leur utilisation.

- Partage des ressources (données, applications, périphériques chers). Optimisation de leur utilisation.
- Fléxibilité, facilité d'extension du système. Sauvegarde de l'existant.

- Partage des ressources (données, applications, périphériques chers). Optimisation de leur utilisation.
- Fléxibilité, facilité d'extension du système. Sauvegarde de l'existant.
- Tolérance aux pannes (fiabilité, disponibilité).

- Partage des ressources (données, applications, périphériques chers). Optimisation de leur utilisation.
- Fléxibilité, facilité d'extension du système. Sauvegarde de l'existant.
- Tolérance aux pannes (fiabilité, disponibilité).
- Les prix des processeurs de petite puissance est inférieur à ceux de grande puissance.

 Transparence à la localisation (la localisation géographique n'est pas connue).

- Transparence à la localisation (la localisation géographique n'est pas connue).
- Transparence d'accès (que ce soit local ou distant, l'accès se fait de la même manière).

- Transparence à la localisation (la localisation géographique n'est pas connue).
- Transparence d'accès (que ce soit local ou distant, l'accès se fait de la même manière).
- Transparence à l'hétérogénéité (l'utilisateur n'a pas à se soucier des différences matérielles ou logicielles).

- Transparence à la localisation (la localisation géographique n'est pas connue).
- Transparence d'accès (que ce soit local ou distant, l'accès se fait de la même manière).
- Transparence à l'hétérogénéité (l'utilisateur n'a pas à se soucier des différences matérielles ou logicielles).
- Transparence aux pannes (les pannes sont cachées à l'utilisateur).

- Transparence à la localisation (la localisation géographique n'est pas connue).
- Transparence d'accès (que ce soit local ou distant, l'accès se fait de la même manière).
- Transparence à l'hétérogénéité (l'utilisateur n'a pas à se soucier des différences matérielles ou logicielles).
- Transparence aux pannes (les pannes sont cachées à l'utilisateur).
- Transparence à l'extension des ressources (extension ou réduction du système sans occasionner de gène pour l'utilisateur).

# Sommaire

I. Les systèmes distribués

II. Le Cloud Computing

III Conclusion

#### National Institute of Standards and Technology - NIST

Le Cloud Computing est l'accès via un réseau de télécommunications, à la demande et en libre-service, à des ressources informatiques partagées configurables.

#### National Institute of Standards and Technology - NIST

Le Cloud Computing est l'accès via un réseau de télécommunications, à la demande et en libre-service, à des ressources informatiques partagées configurables.

#### Larousse

Informatique en nuage (Cloud computing), modèle d'organisation informatique permettant l'accès à des ressources numériques dont le stockage est externalisé sur plusieurs serveurs.

Délocalisation des données

- Délocalisation des données
- Délocalisation du traitement

- Délocalisation des données
- Délocalisation du traitement
- Accessible depuis internet

• Une nouvelle manière de communiquer (réseaux sociaux,...).

- Une nouvelle manière de communiquer (réseaux sociaux,...).
- Des services accessibles par Internet (Google Docs, Agenda, ).

- Une nouvelle manière de communiquer (réseaux sociaux,...).
- Des services accessibles par Internet (Google Docs, Agenda, ).
- Un espace de stockage (Dropbox, Google Drive,...).

- Une nouvelle manière de communiquer (réseaux sociaux,...).
- Des services accessibles par Internet (Google Docs, Agenda, ).
- Un espace de stockage (Dropbox, Google Drive,...).
- La disparition programmée des supports physiques (CD, DVD, ...).

 Une façon de tirer avantage d'un système informatisé délocalisé.

- Une façon de tirer avantage d'un système informatisé délocalisé.
- Internet est au cœur de l'organisation informatique.

- Une façon de tirer avantage d'un système informatisé délocalisé.
- Internet est au cœur de l'organisation informatique.
- Utilisation de ressources matérielles distantes pour créer des services accessibles en ligne.

- Une façon de tirer avantage d'un système informatisé délocalisé.
- Internet est au cœur de l'organisation informatique.
- Utilisation de ressources matérielles distantes pour créer des services accessibles en ligne.
- L'entreprise paye du service.

## Un peu d'histoire

• Avec le World Wide Web et les premiers navigateurs internet les premiers site web d'entreprise sont apparus.

# Un peu d'histoire

- Avec le World Wide Web et les premiers navigateurs internet les premiers site web d'entreprise sont apparus.
- L'accroissement de la vitesse et de la fiabilité d'internet ont fait naître des entreprises fournisseurs d'applications hébergées (Application Service Provider, ASP). Ex. Yahoo, Google, Amazon...

## Un peu d'histoire

- Avec le World Wide Web et les premiers navigateurs internet les premiers site web d'entreprise sont apparus.
- L'accroissement de la vitesse et de la fiabilité d'internet ont fait naître des entreprises fournisseurs d'applications hébergées (Application Service Provider, ASP). Ex. Yahoo, Google, Amazon...
- Dans les années 90 le Grid computing a fait son apparition, avec l'abondance des ressources informatiques et leur interconnexion.

· L'augmentation des prix des serveurs.

- · L'augmentation des prix des serveurs.
- Dans la recherche scientifique les chercheurs ont voulu faire des économies en utilisant les ressouces informatiques délaissées.

- · L'augmentation des prix des serveurs.
- Dans la recherche scientifique les chercheurs ont voulu faire des économies en utilisant les ressouces informatiques délaissées.

#### Le résultat :

Ils se sont alors aperçus qu'ils étaient capables de traiter pratiquement 240 GigaFLOPS (le GigaFLOP correspond à 1 milliard d'opérations en virgule flottante par seconde), soit l'équivalent de quatre serveurs Sun Entreprise 10000, en reliant en interne, 2000 PC de type Pentium cadencés à 166Mhz et une centaine de Pentium III à 4 Ghz

#### Les débuts :

En 2006 Amazon a été le premier à proposer le service de cloud computing presque malgré lui. En 2002, le géant a investit dans un énorme parc informatique pour éviter le surcharge des serveurs à l'approche de Nöel, et se retrouve avec une grande quantité de ressources inutilisées. Il décide alors de créer une plateforme hautement disponible et virtualisée pour louer ces ressources à des entreprises, profitant d'internet pour rentabiliser ses équipements.



Figure - De 1960 à nos jours

## Ce qui a changé

• Les fournisseurs de services dans le Cloud se sont multipliés.

### Ce qui a changé

- Les fournisseurs de services dans le Cloud se sont multipliés.
- Les entreprises, quelque soit leur taille, ont accès à des ressources quasi illimitées.

## Ce qui a changé

- Les fournisseurs de services dans le Cloud se sont multipliés.
- Les entreprises, quelque soit leur taille, ont accès à des ressources quasi illimitées.
- Les habitudes des utilisateurs ont changées (Google photos, Apple Music, Spotify, ...).

Cloud Public

- Cloud Public
  - Mutualisé

- Cloud Public
  - Mutualisé
  - Ouvert à tous

- Cloud Public
  - Mutualisé
  - Ouvert à tous
  - Amazon, Google, ...

- Cloud Public
  - Mutualisé
  - Ouvert à tous
  - Amazon, Google, ...
- Cloud Privé

- Cloud Public
  - Mutualisé
  - Ouvert à tous
  - Amazon, Google, ...
- Cloud Privé
  - Monté pour une utilisation dédiée à un client

- Cloud Public
  - Mutualisé
  - Ouvert à tous
  - Amazon, Google, ...
- Cloud Privé
  - Monté pour une utilisation dédiée à un client
  - Peut être interne à l'entreprise

- Cloud Public
  - Mutualisé
  - Ouvert à tous
  - Amazon, Google, ...
- Cloud Privé
  - Monté pour une utilisation dédiée à un client
  - Peut être interne à l'entreprise
  - Ou externe géré par un prestataire

- Cloud Public
  - Mutualisé
  - Ouvert à tous
  - Amazon, Google, ...
- Cloud Privé
  - Monté pour une utilisation dédiée à un client
  - Peut être interne à l'entreprise
  - Ou externe géré par un prestataire
- Cloud Hybrid

- Cloud Public
  - Mutualisé
  - Ouvert à tous
  - Amazon, Google, ...
- Cloud Privé
  - Monté pour une utilisation dédiée à un client
  - Peut être interne à l'entreprise
  - Ou externe géré par un prestataire
- Cloud Hybrid
  - Fait appel à la fois au cloud public et au cloud privé

- Cloud Public
  - Mutualisé
  - Ouvert à tous
  - Amazon, Google, ...
- Cloud Privé
  - Monté pour une utilisation dédiée à un client
  - Peut être interne à l'entreprise
  - Ou externe géré par un prestataire
- Cloud Hybrid
  - Fait appel à la fois au cloud public et au cloud privé
- Cloud communautaire

- Cloud Public
  - Mutualisé
  - Ouvert à tous
  - Amazon, Google, ...
- Cloud Privé
  - Monté pour une utilisation dédiée à un client
  - Peut être interne à l'entreprise
  - Ou externe géré par un prestataire
- Cloud Hybrid
  - Fait appel à la fois au cloud public et au cloud privé
- Cloud communautaire
  - Utilisé par plusieurs organisations qui ont des besoins communs (ex. CMed, cloud pour les laboratoires pharmaceutiques)





Figure - Source: https://www.guru99.com/cloud-computing-for-beginners.html



Dans le *Cloud computing* tout peut se décliner *As A Service*. On peut citer trois services de base :

Infrastructure As A Service (laaS):

- Infrastructure As A Service (laaS):
  - Les ressources sont louées à l'utilisateur (CPU, Disque).

- Infrastructure As A Service (laaS):
  - Les ressources sont louées à l'utilisateur (CPU, Disque).
  - L'utilisateur est libre d'installer ce qu'il souhaite.

- Infrastructure As A Service (laaS):
  - Les ressources sont louées à l'utilisateur (CPU, Disque).
  - L'utilisateur est libre d'installer ce qu'il souhaite.
  - Les acteurs : Amazon, Microsoft Azure, OVH, ...

- Infrastructure As A Service (laaS):
  - Les ressources sont louées à l'utilisateur (CPU, Disque).
  - L'utilisateur est libre d'installer ce qu'il souhaite.
  - Les acteurs : Amazon, Microsoft Azure, OVH, ...
- Platform As A Service (PaaS):

- Infrastructure As A Service (IaaS):
  - Les ressources sont louées à l'utilisateur (CPU, Disque).
  - L'utilisateur est libre d'installer ce qu'il souhaite.
  - Les acteurs : Amazon, Microsoft Azure, OVH, ...
- Platform As A Service (PaaS):
  - IaaS + la plateforme d'exécution logiciel.

- Infrastructure As A Service (laaS):
  - Les ressources sont louées à l'utilisateur (CPU, Disque).
  - L'utilisateur est libre d'installer ce qu'il souhaite.
  - Les acteurs : Amazon, Microsoft Azure, OVH, ...
- Platform As A Service (PaaS):
  - laaS + la plateforme d'exécution logiciel.
  - Un marché en pleine croissance.

- Infrastructure As A Service (laaS):
  - Les ressources sont louées à l'utilisateur (CPU, Disque).
  - L'utilisateur est libre d'installer ce qu'il souhaite.
  - Les acteurs : Amazon, Microsoft Azure, OVH, ...
- Platform As A Service (PaaS):
  - IaaS + la plateforme d'exécution logiciel.
  - Un marché en pleine croissance.
  - Pour qui: les applications mobiles, les entreprises consommatrices standards.

- Infrastructure As A Service (laaS):
  - Les ressources sont louées à l'utilisateur (CPU, Disque).
  - L'utilisateur est libre d'installer ce qu'il souhaite.
  - Les acteurs : Amazon, Microsoft Azure, OVH, ...
- Platform As A Service (PaaS):
  - IaaS + la plateforme d'exécution logiciel.
  - Un marché en pleine croissance.
  - Pour qui: les applications mobiles, les entreprises consommatrices standards.
- Software as a Service (SaaS):

- Infrastructure As A Service (laaS):
  - Les ressources sont louées à l'utilisateur (CPU, Disque).
  - L'utilisateur est libre d'installer ce qu'il souhaite.
  - Les acteurs : Amazon, Microsoft Azure, OVH, ...
- Platform As A Service (PaaS):
  - IaaS + la plateforme d'exécution logiciel.
  - Un marché en pleine croissance.
  - Pour qui : les applications mobiles, les entreprises consommatrices standards.
- Software as a Service (SaaS):
  - C'est l'application qui est mise à la disposition de l'utilisateur.

- Infrastructure As A Service (laaS):
  - Les ressources sont louées à l'utilisateur (CPU, Disque).
  - L'utilisateur est libre d'installer ce qu'il souhaite.
  - Les acteurs : Amazon, Microsoft Azure, OVH, ...
- Platform As A Service (PaaS):
  - IaaS + la plateforme d'exécution logiciel.
  - Un marché en pleine croissance.
  - Pour qui: les applications mobiles, les entreprises consommatrices standards.
- Software as a Service (SaaS):
  - C'est l'application qui est mise à la disposition de l'utilisateur.
  - L'utilisateur ouvre un compte, paie éventuellement un abonnement et utilise l'application.



- Infrastructure As A Service (laaS):
  - Les ressources sont louées à l'utilisateur (CPU, Disque).
  - L'utilisateur est libre d'installer ce qu'il souhaite.
  - Les acteurs : Amazon, Microsoft Azure, OVH, ...
- Platform As A Service (PaaS):
  - IaaS + la plateforme d'exécution logiciel.
  - Un marché en pleine croissance.
  - Pour qui: les applications mobiles, les entreprises consommatrices standards.
- Software as a Service (SaaS):
  - C'est l'application qui est mise à la disposition de l'utilisateur.
  - L'utilisateur ouvre un compte, paie éventuellement un abonnement et utilise l'application.
  - Ce qu'on utilise de plus en plus : Spotify, Google apps, ...

### Les modèles Cloud



• "Any place, any time, any devices".

- "Any place, any time, any devices".
- Scalabilité : l'infrastructure gère la scalabilité et non pas l'application.

- "Any place, any time, any devices".
- Scalabilité : l'infrastructure gère la scalabilité et non pas l'application.
- Elasticité: l'augmentation des ressources quand le besoin se fait sentir.

- "Any place, any time, any devices".
- Scalabilité : l'infrastructure gère la scalabilité et non pas l'application.
- Elasticité : l'augmentation des ressources quand le besoin se fait sentir.
- Payez ce que vous utilisez.

# Les principaux fournisseurs

Figure 1: Magic Quadrant for Cloud Infrastructure and Platform Services



Source: Gartner (July 2021)

Un comparateur de fournisseur Cloud : https://www.cloudorado.com/

### Inconvénients du Cloud

• La connectivité réseau : la perturbation du réseau => le service peut être interrompu.

## Inconvénients du Cloud

- La connectivité réseau : la perturbation du réseau => le service peut être interrompu.
- Le suivi et la gestion des coûts d'utilisation pour éviter toute surprise.

## Inconvénients du Cloud

- La connectivité réseau : la perturbation du réseau => le service peut être interrompu.
- Le suivi et la gestion des coûts d'utilisation pour éviter toute surprise.
- Perte de contrôle. Dans les environnements Cloud, les ressources logicielles et les données sont confié à un tiers.

## Inconvénients du Cloud

- La connectivité réseau : la perturbation du réseau => le service peut être interrompu.
- Le suivi et la gestion des coûts d'utilisation pour éviter toute surprise.
- Perte de contrôle. Dans les environnements Cloud, les ressources logicielles et les données sont confié à un tiers.
- Considérations relatives à la sécurité du Cloud.

# XaaS: Le modèle Anything as a Service

XaaS (Anything as a Service) couvre tout : tout peut désormais être un service.

- AaaS (Analytics as a Service)
- FaaS (Functions as a Service)
- STaaS (Storage as a Service)
- CaaS, DBaaS, ...

#### Les utilisateurs du Cloud

- Les utilisateurs de Google Drive, Dropbox, ... etc
- Les startup: déployer des ressources sans trop investir dans l'infrastructure.
- Les entreprises : DevOps.

# Sommaire

I. Les systèmes distribués

II. Le Cloud Computing

III. Conclusion

• Une entreprise qui héberge ses serveurs dans le Cloud

- Une entreprise qui héberge ses serveurs dans le Cloud
  - La capacité à apporter des changements et des ajustements continus.

- Une entreprise qui héberge ses serveurs dans le Cloud
  - La capacité à apporter des changements et des ajustements continus.
  - Maîtrise du coût "informatique".

- Une entreprise qui héberge ses serveurs dans le Cloud
  - La capacité à apporter des changements et des ajustements continus.
  - Maîtrise du coût "informatique".
  - Le Système d'information devient agile et élastique.

- Une entreprise qui héberge ses serveurs dans le Cloud
  - La capacité à apporter des changements et des ajustements continus.
  - Maîtrise du coût "informatique".
  - Le Système d'information devient agile et élastique.
- Pour les informaticiens

- Une entreprise qui héberge ses serveurs dans le Cloud
  - La capacité à apporter des changements et des ajustements continus.
  - Maîtrise du coût "informatique".
  - Le Système d'information devient agile et élastique.
- Pour les informaticiens
  - Un impact sur le SI de l'entreprise.

- Une entreprise qui héberge ses serveurs dans le Cloud
  - La capacité à apporter des changements et des ajustements continus.
  - Maîtrise du coût "informatique".
  - Le Système d'information devient agile et élastique.
- Pour les informaticiens
  - Un impact sur le SI de l'entreprise.
  - Nouvelles compétences, nouveaux métiers.

# Fin



# Références

• Cours de R. Rado.