https://r4ds.hadley.nz/ Chapter 3-9

CSCI 297b, Spring 2023

May 3, 2023

The Big Picture

The dplyr package and the nycflights13 dataset

library(nycflights13)
library(tidyverse)

the nycflights13 dataset

```
> glimpse(flights)
Rows: 336,776
Columns: 19
                 <int> 2013, 2013, 2013, 2013,...
$ year
$ month
                 <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
$ day
                 <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
$ dep_time
                 <int> 517, 533, 542, 544, 554...
$ sched_dep_time <int> 515, 529, 540, 545, 600...
$ dep_delay
                <dbl> 2, 4, 2, -1, -6, -4, -5...
$ arr time
                <int> 830, 850, 923, 1004, 81...
$ sched_arr_time <int> 819, 830, 850, 1022, 83...
$ arr_delay
                 <dbl> 11, 20, 33, -18, -25, 1...
$ carrier
                 <chr> "UA", "UA", "AA", "B6",...
$ flight
                 <int> 1545, 1714, 1141, 725, ...
$ tailnum
                 <chr> "N14228", "N24211", "N6...
$ origin
                 <chr> "EWR", "LGA", "JFK", "J...
$ dest
                 <chr> "IAH", "IAH", "MIA", "B...
$ air time
                 <dbl> 227, 227, 160, 183, 116...
$ distance
                 <dbl> 1400, 1416, 1089, 1576,...
$ hour
                 <dbl> 5, 5, 5, 5, 6, 5, 6, 6, ....
$ minute
                 <dbl> 15, 29, 40, 45, 0, 58, ...
$ time_hour
                 <dttm> 2013-01-01 05:00:00. 2...
```

The dplyr package

- The first argument is always a data frame.
- The subsequent arguments typically describe which columns to operate on, using the variable names (without quotes).
- The output is always a new data frame.
- Each verb operates on either
 - rows.
 - columns,
 - groups, or
 - tables

The pipe

```
flights |>
  filter(dest == "IAH") |>
  group_by(year, month, day) |>
  summarize(
    arr_delay = mean(arr_delay, na.rm = TRUE)
)
```

Global options

- Enable "Use native pipe operator."
- This will enable you to produce the pipe with ctrl-shift-M

filter

```
flights |>
 filter(dep_delay > 120)
\#> \# A \text{ tibble: } 9,723 \times 19
#> year month day dep_time sched_dep_time dep_delay ar:
#> <int> <int> <int> <int>
                                   <int>
                                            <dbl>
#> 1 2013 1 1
                        848
                                    1835
                                             853
#> 2 2013 1 1
                      957
                                    733
                                             144
#> 3 2013 1 1
                     1114
                                    900
                                           134
#> 4 2013 1 1 1540
                                   1338
                                           122
#> 5 2013 1 1 1815
                                  1325
                                             290
#> 6 2013
                    1842
                                    1422
                                             260
#> # i 9,717 more rows
#> # i 11 more variables: arr_delay <dbl>, carrier <chr>, f
```

arrange

```
flights |>
 arrange(year, month, day, dep_time)
#> # A tibble: 336,776 × 19
#> year month day dep_time sched_dep_time dep_delay ar:
#> <int> <int> <int> <int>
                                 <int>
                                         <dbl>
#> 1 2013 1 1
                      517
                                   515
#> 2 2013 1 1
                      533
                                   529
#> 3 2013 1 1
                      542
                                   540
#> 4 2013 1 1 544
                                   545
#> 5 2013 1 1 554
                                   600
                                        -6
#> 6 2013 1
                      554
                                   558
                                            -4
#> # i 9,717 more rows
#> # i 11 more variables: arr_delay <dbl>, carrier <chr>, f
```

distinct

```
# Find all unique origin and destination pairs
flights |>
 distinct(origin, dest)
#> # A tibble: 224 × 2
#> origin dest
#> <chr> <chr>
#> 1 EWR. TAH
#> 2 LGA IAH
#> 3 JFK MTA
#> 4 JFK
        BQN
#> 5 LGA ATL
#> 6 EWR
           ORD
#> # i 218 more rows
```

count

```
flights |>
 count(origin, dest, sort = TRUE)
\# # A tibble: 224 × 3
#> origin dest
#> <chr> <chr> <int>
#> 1 JFK LAX 11262
#> 2 LGA ATL 10263
#> 3 LGA ORD 8857
#> 4 JFK SFO 8204
#> 5 LGA CLT 6168
#> 6 EWR ORD
                6100
#> # i 218 more rows
```

Do exercise 6

mutate

gain = dep_delay - arr_delay,

#> 3 -31 408. 2013 1

#> 4 17 517. 2013 1

#> 5 19 394. 2013 1

flights |> mutate(

```
speed = distance / air_time * 60,
   .before = 1
#> # A tibble: 336,776 × 21
#>
     gain speed year month day dep_time sched_dep_time of
    <dbl> <dbl> <int> <int> <int>
#>
                                   <int>
                                                 <int>
    -9 370. 2013
                                     517
                                                   515
#> 1
#> 2 -16 374. 2013 1
                                     533
                                                   529
```

542

544

554

540

545

600

558

554 #> 6 -16 288. 2013 #> # i 336,770 more rows #> # i 12 more variables: sched_arr_time <int>, arr_delay <<

select

```
flights |>
  select(year, month, day)
flights |>
  select(year:day)
flights |>
  select(!year:day)
flights |>
  select(where(is.character))
```

- starts_with("abc"): matches names that begin with "abc".
- ends_with("xyz"): matches names that end with "xyz".
- contains("ijk"): matches names that contain "ijk".
- num_range("x", 1:3): matches x1, x2 and x3.

rename

```
flights |>
 rename(tail_num = tailnum)
#> # A tibble: 336,776 × 19
#>
     year month day dep_time sched_dep_time dep_delay ar:
    <int> <int> <int> <int>
                                              <dbl>
#>
                                     <int>
#> 1
    2013
                         517
                                       515
#> 2 2013
                         533
                                       529
#> 3 2013 1
                         542
                                       540
#> 4 2013
                         544
                                       545
                                                 -1
#> 5 2013
                         554
                                       600
                                                 -6
#> 6
     2013
                         554
                                       558
```

relocate

```
flights |>
  relocate(time_hour, air_time)
#> # A tibble: 336,776 × 19
#>
    time_hour
                        air_time
                                 year month day dep_time
#>
    <dttm>
                           <dbl> <int> <int> <int>
                                                     <int
#> 1 2013-01-01 05:00:00
                             227
                                  2013
                                                       51
#> 2 2013-01-01 05:00:00
                                                       533
                             227
                                 2013
#> 3 2013-01-01 05:00:00
                                                       54:
                             160
                                 2013
#> 4 2013-01-01 05:00:00
                             183
                                 2013
                                                       54
#> 5 2013-01-01 06:00:00
                                                       55
                             116
                                 2013
#> 6 2013-01-01 05:00:00
                             150
                                  2013
                                                       55
```

Do exercise 7

The Pipe

```
flights |>
 filter(dest == "IAH") |>
 mutate(speed = distance / air_time * 60) |>
 select(year:day, dep_time, carrier, flight, speed) |>
 arrange(desc(speed))
#> # A tibble: 7,198 × 7
     year month day dep_time carrier flight speed
#>
#>
    <int> <int> <int> <int> <int>
                                      <int> <dbl>
#> 1 2013
                   9
                          707 UA
                                        226 522.
#> 2 2013
             8 27 1850 UA
                                       1128 521.
             8 28 902 UA
#> 3 2013
                                       1711 519.
             8 28
#> 4 2013
                         2122 UA
                                       1022 519.
#> 5 2013
              6 11
                         1628 UA
                                       1178 515.
#> 6 2013
                  27
                         1017 UA
                                        333 515.
```

The Pipe vs. function nesting

```
arrange(
   select(
    mutate(
       filter(
       flights,
       dest == "IAH"
      ),
      speed = distance / air_time * 60
      ),
      year:day, dep_time, carrier, flight, speed
   ),
   desc(speed)
)
```

The Pipe vs. assignment to temporaries

```
flights1 <- filter(flights, dest == "IAH")
flights2 <- mutate(flights1, speed = distance / air_time * 60)
flights3 <- select(flights2, year:day, dep_time, carrier, flight, speed)
arrange(flights3, desc(speed))</pre>
```

group_by

```
flights |>
  group_by(month)
#> # A tibble: 336,776 × 19
#> # Groups:
               month [12]
#>
      year month
                   day dep_time sched_dep_time dep_delay arr_time sched_arr_tim
     <int> <int> <int>
                           <int>
                                           <int>
                                                      <dbl>
                                                                <int>
#>
                                                                                <int
#> 1
      2013
                             517
                                             515
                                                                  830
                                                                                  81
#> 2
                                                                 850
                                                                                  83
     2013
                             533
                                             529
#> 3 2013
                             542
                                             540
                                                                 923
                                                                                  85
#> 4
      2013
                             544
                                             545
                                                                1004
                                                                                 102
#> 5 2013
                             554
                                             600
                                                         -6
                                                                 812
                                                                                  83
                                                                                  72
#> 6
      2013
                             554
                                             558
                                                         - 4
                                                                 740
```

• All subsequent operations will now work "by month"

summarize

```
flights |>
 group_by(month) |>
  summarize(
    avg_delay = mean(dep_delay)
#> # A tibble: 12 × 2
#>
    month avg_delay
#>
    <int>
               <db1>
#> 1
                  NΑ
#> 2
                  NΑ
#> 3
                  NΑ
#> 4 4
                  NΑ
#> 5
                  NΑ
#> 6
                  NΑ
```

• We forgot na.rm

summarize

summarize with n

```
flights |>
 group_by(month) |>
 summarize(
   delay = mean(dep_delay, na.rm = TRUE),
   n = n()
#> # A tibble: 12 × 3
#>
   month delay n
#> <int> <dbl> <int>
#> 1 1 10.0 27004
#> 2 2 10.8 24951
#> 4 4 13.9 28330
#> 5 5 13.0 28796
#> 6 20.8 28243
```

slice

- df |> slice_head(n = 1) takes the first row from each group.
- df |> slice_tail(n = 1) takes the last row in each group.
- df |> slice_min(x, n = 1)
 takes the row with the smallest value of column x.
- df |> slice_max(x, n = 1) takes the row with the largest value of column x.
- df |> slice_sample(n = 1) takes one random row.

slice

```
flights |>
 group_by(dest) |>
  slice_max(arr_delay, n = 1) |>
 relocate(dest)
#> # A tibble: 108 × 19
#> # Groups:
               dest [105]
    dest year month day dep_time sched_dep_time dep_delay arr_time
#>
     <chr> <int> <int> <int>
#>
                                <int>
                                               <int>
                                                         <dbl>
                                                                  <int>
#> 1 ABQ
            2013
                     7
                          22
                                 2145
                                                2007
                                                            98
                                                                    132
#> 2 ACK
           2013
                          23
                                 1139
                                                 800
                                                           219
                                                                   1250
#> 3 ALB
           2013
                     1
                          25
                                 123
                                                2000
                                                           323
                                                                    229
#> 4 ANC
           2013
                     8
                          17
                                 1740
                                                1625
                                                            75
                                                                   2042
#> 5 ATL
            2013
                          22
                                 2257
                                                759
                                                           898
                                                                    121
                     7
#> 6 AUS
            2013
                          10
                                 2056
                                                1505
                                                           351
                                                                   2347
```

Groiuping by more than one variable

```
daily <- flights |>
 group_by(year, month, day)
daily
#> # A tibble: 336,776 × 19
#> # Groups: year, month, day [365]
     year month day dep_time sched_dep_time dep_delay arr_time sched_arr_tim
#>
    <int> <int> <int>
                         <int>
                                        <int>
                                                  <dbl>
                                                           <int>
#>
                                                                          <int
     2013
                           517
                                          515
                                                      2
                                                             830
                                                                            81
#> 1
#> 2 2013
                           533
                                          529
                                                      4
                                                             850
                                                                            83
#> 3 2013
                           542
                                          540
                                                             923
                                                                            85
#> 4 2013
                           544
                                          545
                                                     -1 1004
                                                                           102
#> 5 2013
                           554
                                          600
                                                    -6
                                                           812
                                                                            83
                                                                            72
#> 6
     2013
                           554
                                          558
                                                     - 4
                                                             740
```

Case study

```
batters <- Lahman::Batting |>
 group_by(playerID) |>
 summarize(
   performance = sum(H, na.rm = TRUE) / sum(AB, na.rm = TRUE),
   n = sum(AB, na.rm = TRUE)
batters
#> # A tibble: 20.166 × 3
#> playerID performance
#> <chr> <dbl> <int>
#> 1 aardsda01 0
#> 2 aaronha01 0.305 12364
#> 3 aaronto01 0.229 944
#> 4 aasedo01 0
#> 5 abadan01 0.0952 21
#> 6 abadfe01 0.111
#> # i 20,160 more rows
```

Case study

```
batters |>
  filter(n > 100) |>
  ggplot(aes(x = n, y = performance)) +
  geom_point(alpha = 1 / 10) +
  geom_smooth(se = FALSE)
```


- The variation in performance is larger among players with fewer at-bats.
- There's a positive correlation between skill (performance) and opportunities to hit the ball (n) because teams want to give their best batters the most opportunities to hit the ball.

Finding the best batters

- http://varianceexplained.org/r/empirical_bayes_ baseball/
- https://www.evanmiller.org/ how-not-to-sort-by-average-rating.html