

PROVA SCRITTA DI FISICA I - LT INGEGNERIA ELETTRONICA E INFORMATICA DEL 20/06/2018

Esercizio n. 1

Il giocatore di pallavolo Ivan Zaytzev detiene il record della battuta piu' veloce. Supponiamo che la velocita' della palla immediatamente prima che tocchi il suolo sia v=84.1 km/h.. Supponiamo inoltre che la palla percorra la distanza D=18 m prima di cadere al suolo, che venga lanciata orizzontalmente da una altezza iniziale h=3.3 m

- 1) calcolare la velocita' iniziale v_o con cui parte la palla (senza alcuna rotazione iniziale)
- 2) verificare che la palla superi la rete di altezza pari a h_{rete} = 2.43 m posta a distanza d=D/2 dal punto di lancio
- 3) calcolare l'angolo α di incidenza della palla al suolo, ossia l'angolo che la velocita' finale forma con il pavimento orizzontale, e le componenti x e y della velocita' finale

Supponiamo ora che un difensore riesca ad intercettare la palla, immediatamente prima che tocchi terra facendola "rimbalzare sulle proprie braccia" in modo da rispedire indietro la palla con velocita' uguale in modulo e direzione, ma verso opposto. (m_palla=280 gr). Il piano di rimbalzo formato dalle braccia e' perpendicolare alla direzione della palla.

- 4) Determinare direzione, verso e modulo dell'impulso esercitato dalle braccia del difensore (per direzione e verso aiutarsi con un disegno)
- 5) Calcolare la forza esercitata dalla palla sulle braccia del difensore, sapendo che l'urto palla-braccia dura un intervallo di tempo τ =0.15 sec e che tale forza e' costante nel tempo

(TUTTI I RISULTATI VANNO ESPRESSI NEL SISTEMA INTERNAZIONALE . Si trascurino tutti gli effetti di interazione con l'aria (attrito, effetto magnus))

Cognome e Nome	n. matricola
Corso di Laurea	Firma
PROVA SCRITTA DI FISICA LT ING	ELETTR. INFORMATICA DEL 20/06/2018

Esercizio n. 2

In un recipiente cilindrico sono contenute n=10 moli di gas perfetto (c_p =5/2 R, c_v =3/2 R), alla temperatura T_A =300 K, il recipiente e' chiuso da un coperchio di massa m=50 kg e superficie S=1 dm². Sapendo che il gas si trova in equilibrio con l'ambiente.

1) calcolare la pressione P_A ed il volume V_A del gas

Il gas viene ora riscaldato molto lentamente e portato ad una nuova configurazione di equilibrio con temperatura T_B = 600K (il coperchio e' libero di scorrere sulle pareti senza attrito)

- 2) che tipo di trasformazione e' ? (isocora, isobara, isoterma, reversibile, irreversibile)
- e disegnare tale trasformazione nel piano di Clapeyron se possibile
- 3) calcolare il calore Q_{AB} scambiato dal gas, e' assorbito o ceduto dal gas?
- 4) calcolare il volume V_B
- 5)Per riportare il gas alla temperatura iniziale T_A , viene posto a contatto con un blocco di Ferro di massa M=10 Kg, calcolare la temperatura iniziale del ferro T_{Fe}

(TUTTI I RISULTATI VANNO ESPRESSI NEL SISTEMA INTERNAZIONALE, si ricordano i seguenti valori Patm= $1.013\ 10^5$ Pa , R= $8.314\ J/$ (K mole), il ferro ha calore specifico $c_{Fe}=448\ J/(Kg\ K)$)

Cognome e Nome	n. matricola
Corso di Laurea	Firma_

DIPARTIMENTO DI INGEGNERIA UNIVERSITÀ DI FERRARA

Soluzione Esercizio 1 1) conservazione dell'energia meccanica mgh+1/2 m vo^2 = $\frac{1}{2}$ m v^2 pero' so anche che la vx=vo (la componente x della velocita' non cambia nel moto del proiettile) quindi v^2=vo^2+vy^2 e andando a sostituire trovo vy^2= 2gh => vo = radq(v^2 -vy^2)=21.9 m/s
Si poteva arrivare allo stesso risultato anche utilizzando le leggi orarie del moto del proiettile x=vo t vx=vo y=h-1/2 g t^2 vy=-gt e imponendo la condizione che per x=D sia y=0: si ricava cosi : $t*=D/vo$ $t*=radq(2h/g)$ => $D/vo=radq(2h/g)$ => $vo=D radq(g/2h)=21.9 m/s$ => $vy=-g t=-radq(2hg)=-8.04 m/s$ inoltre tg (alfa)= vy/vx Cosi' si rispondeva subito anche alla domanda 3)
2)leggi orarie x=vo t y= h-1/2 g t^2 (ho scelto asse y diretto verso l'alto, asse x verso destra) devo verificare che per x=D/2 y> hrete : $x=D/2 => t= D/(2vo) => y= h-\frac{1}{2} g D^2/(4vo^2) = 2.47 m > hrete$
3) vo= v cosalfa => cosalfa=vo/v => alfa=20.1 gradi vx= vo = 21.9 m/s vy= - vo senalfa = -8.04 m/s
4) La palla rimbalza con una velocita' $\mathbf{vf} = -\mathbf{v}$ $\mathbf{J} = \text{Delta}\mathbf{p} = \mathbf{m} \mathbf{vf} - \mathbf{m} \mathbf{v} = -2\mathbf{m} \mathbf{v}$ Quindi J ha la stessa direzione di \mathbf{v} ma verso opposto, in modulo vale $\mathbf{J} = 2\mathbf{m} \mathbf{v} = 13.1 \text{kg m/s}$
5) per il teorema dell'impulso, per una forza costante, la forza esercitata dalle braccia sulla palla e' Fbraccia = $\bf J$ / tau diretta come J, per il principio di azione razione la palla esercita una forza sulle braccia uguale in modulo e opposta in verso: Fpalla = - $\bf J$ / tau . In modulo pari a Fpalla= 2 m v / tau= 87.4 N
Soluzione esercizio 2 1)PA VA =nR TA dove PA=Patm+mg/S => VA= nRT/P= 0.166 m3 2) isobara reversibile, si puo' disegnare perche' e reversibile, e' una espansione Cognome e Nome

Firma____

Corso di Laurea____

- 3) QAB= n cp (TB- TA)= $6.23 \cdot 10^4 \text{ J}$ = 13 Kcal calore assorbito
- 4) TA/VA=TB/VB => VB=VA TB/TA= 2 VA= 0.33 m3
- 5) M cFe (TA- TFe)+ n c_p (TA- TB)=0
- \Rightarrow TFe= [M cFe TA+ n cp (TB-TA)] / (M cFe) = 287 K

PROVA SCRITTA VALIDA COME ORALE DI FISICA I - LT INGEGNERIA ELETTRONICA E INFORMATICA DEL 20/06/2018

Domanda n.1

Si scriva l'espressione vettoriale della forza elastica unidimensionale (legge di Hook), spiegando i vari termini e le relative unita' di misura nel sistema internazionale. Aiutarsi con un disegno per la spiegazione dei vari termini. La forza elastica e' conservativa? Giustificare la risposta

Domanda n.2

Si scriva l'espressione della Spinta di Archimede, spiegando i vari termini e le relative unita' di misulta. Si dimostri come si ricava tale espressione.

Se immergo un blocchetto di ferro in acqua, galleggia o affonda? Giustificare la risposta

Cognome e Nome	n. matricola
Corso di Laurea	Firma
PROVA SCRITTA DI FISICA LT	ING. ELETTR. INFORMATICA DEL 20/06/2018