and artificial that the second second

ļ.

REMARKS

The above amendments have been made to place the application in a more traditional format.

Attached hereto is a marked-up version of the changes made to the specification and claims by the current amendment. The attached pages are captioned "Version With Markings To Show Changes Made."

Respectfully submitted,

NIXON & VANDERHYE P.C.

By:

Leonard C. Mitchard Reg. No. 29,009

LCM:Iks

1100 North Glebe Road, 8th Floor

Arlington, VA 22201-4714 Telephone: (703) 816-4000

Facsimile: (703) 816-4100

VERSION WITH MARKINGS TO SHOW CHANGES MADE

IN THE CLAIMS

- 5. (Amended) A compound according to claim 2 [or claim 4] wherein R^1 , R^2 and R^3 are each methyl.
- 6. (Amended) A compound according to [any one of claims 2, 4 or 5] claim 2 wherein R⁴ is hydrogen.
- 7. (Amended) A compound according to [any one of claims 2, 4, 5 or 6] claim 2 wherein R^6 is hydrogen, halogeno, amino, carboxy, hydroxy, $C_{1.7}$ alkoxy or a group Y^4R^{35} (wherein Y^4 is $\cdot C(0)$ -, $\cdot 0$ or $\cdot 0SO_2$ and R^{35} is $C_{1.7}$ alkyl, $C_{1.7}$ alkoxy (which alkyl or alkoxy may bear one or more substituents selected from halogeno), R^{48} (wherein R^{48} is a benzyl group) or R^{53} (wherein R^{53} is a 5-6-membered saturated heterocyclic group (linked via carbon or nitrogen) with 1-2 heteroatoms selected independently from 0, S and N)).
- 8. (Amended) A compound according to [any one of claims 2, 4, 5, 6 or 7] <u>claim 2</u> wherein R⁶ is hydrogen, C(0)OCH₃ or methoxy.
- 9. (Amended) A compound according to [any one of claims 2, 4, 5, 6, 7 or 8] claim 2 wherein R⁵ is hydrogen, halogeno, amino, carboxy, carbamoyl,

C_{1.7}alkanoyl, C_{1.7}thioalkoxy, or a group ·Y⁴R³⁵

(wherein Y⁴ is -C(O)-, -OC(O)-, -O-, -SO-, -OSO₂-, -NR³⁶-, -NR³⁷C(O)- or -C(O)NR³⁸-

(wherein R^{36} , R^{37} and R^{38} , which may be the same or different, each represents hydrogen, $C_{1\cdot 3}$ alkyl or $C_{1\cdot 3}$ alkoxy $C_{1\cdot 3}$ alkyl) and

 R^{35} is a sugar moiety, a mono-peptide, a di-peptide, a tri-peptide, a tetrapeptide, $C_{1.7}$ alkyl, $C_{1.7}$ alkoxy, $C_{1.7}$ alkanoyl, $C_{1.7}$ alkanoylamino $C_{1.7}$ alkyl,

(which alkyl, alkoxy, alkanoyl, alkanoylaminoalkyl may bear one or more substituents selected from:

halogeno, amino, hydroxy, carboxy, and a group $-Y^5R^{40}$ (wherein Y^5 is -C(O)-O- or -O-C(O)- and R^{40} is $C_{1.7}$ alkyl or a group R^{43} wherein R^{43} is a benzyl group),

R⁴⁸ (wherein R⁴⁸ is a phenyl group, a benzyl group or a 5-10-membered aromatic heterocyclic group (linked via carbon or nitrogen) with 1-4 heteroatoms selected independently from O, N and S, which phenyl, benzyl or aromatic heterocyclic group may bear one or more substituents selected from

hydroxy, fluoro, amino, $C_{1.4}$ alkoxy, $C_{1.4}$ hydroxyalkyl, $C_{1.4}$ aminoalkyl, $C_{1.4}$ alkylamino, di($C_{1.4}$ alkyl)amino, di($C_{1.4}$ alkyl)amino $C_{1.4}$ alkyl, di($C_{1.4}$ aminoalkyamino $C_{1.4}$ alkyl, di($C_{1.4}$ aminoalkyamino $C_{1.4}$ alkyl, $C_{1.4}$ hydroxyalkoxy, carboxy, $C_{1.4}$ carboxyalkyl, cyano, $C_{1.4}$ CONR 49 R 50 , $C_{1.4}$ COR 52 (wherein R 49 , R 50 , R 51 and R 52 , which may be the same or different, each represents hydrogen, $C_{1.3}$ alkyl or $C_{1.3}$ alkoxy $C_{2\cdot3}$ alkyl) and $C_{1.4}$ alkylR 53 (wherein R 53 is as defined herein),

C_{1.7}alky1R⁴⁸ (wherein R⁴⁸ is as defined herein),

R⁵³ (wherein R⁵³ is a 5-6-membered saturated heterocyclic group (linked via carbon or nitrogen) with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear 1 or 2 substituents selected from

oxo, hydroxy, fluoro, chloro, alkyl, $C_{1.4}$ hydroxyalkyl, $C_{1.4}$ alkoxy, $C_{1.4}$ carboxyalkyl, $C_{1.4}$ aminoalkyl, di($C_{1.4}$ alkyl)amino $C_{1.4}$ alkyl, $C_{1.4}$ alkoxy $C_{1.4}$ alkyl, $C_{1.4}$ alkyl and $C_{1.4}$

oxo, hydroxy, halogeno, $C_{1.4}$ alkyl, $C_{1.4}$ hydroxyalkyl, $C_{1.4}$ alkoxy, $C_{1.4}$ alkoxy $C_{1.4}$ alkyl and $C_{1.4}$ alkylsulphonyl $C_{1.4}$ alkyl)), or

 $(CH_2)_a Y^6 (CH_2)_b R^{53}$ (wherein R^{53} is as defined herein, a is 0, or an integer 1-4, b is 0 or an integer 1-4 and Y^6 represents a direct bond, $\cdot O_{-}$, $\cdot C(O)_{-}$, $\cdot NR^{55}_{-}$, $\cdot NR^{50}C(O)_{-}$ or $\cdot C(O)NR^{57}_{-}$ (wherein R^{55} , R^{56} , and R^{57} , which may be the same or different, each represents hydrogen, $C_{1\cdot 3}$ alkyl or $C_{1\cdot 3}$ alkoxy $C_{2\cdot 3}$ alkyl), and wherein one or more of the $(CH_2)_a$ or

(CH₂)_b groups may bear one or more substituents selected from hydroxy, amino and halogeno));

with the proviso that R^5 is not alkoxy, substituted alkoxy (wherein R^5 is Y^4R^{35} and Y^4 is -O-and R^{35} is $C_{1.7}$ alkyl bearing one or more substituents selected from the list given herein), -O- $C_{1.7}$ alkanoyl or benzyloxy.