Homework 8: Limits of Functions

Directions. Do not use the Sequential Criterion for Functional Limits (Theorem 5.1.8) for any of these problems.

- 1. §5.1, #7(a), #13 (the Squeeze Theorem).
- 2. For $\lim_{x\to 2}(x^2+2x+3)=11$, illustrate the $\epsilon-\delta$ definition of a limit by finding values of δ that correspond to $\epsilon=1$ and $\epsilon=0.1$.
- 3. Determine the following limits, and then use the $\epsilon \delta$ definition of limit to prove your answers.
 - (a) $\lim_{x \to 3} \frac{x^2 + 2x 15}{x 3}$
 - (b) $\lim_{x \to 2} x^4$
- 4. Use the Squeeze Theorem to prove that $\lim_{x\to 0} \left(x \sin\left(\frac{1}{x}\right)\right) = 0$. Make sure to state what D is.
- 5. Let $f: D \to \mathbb{R}$ and let a be a limit point of D. Suppose that $\lim_{x \to a} f(x) > 0$. Prove that there exists a deleted neighborhood $N_{\delta}^*(a)$ of a such that f(x) > 0 for all $x \in N_{\delta}^*(a) \cap D$.