Model Checking

Principles

Kripke Model

- Kripke Structure + Labeling Function
 - Let AP be a non-empty set of atomic propositions.
 - Kripke Model: $M = (S, s_0, R, L)$

S

finite set of states

 $s_0 \in S$

initial state

 $R{\subset} S\times S$

transition relation

L: $S \rightarrow 2^{AP}$

labeling function

Specification

- Often expressed in temporal logic
 - Propositional logic with temporal aspect
 - Describes ordering of events without explicitly using the concept of time
 - Several variants: LTL, CTL, CTL*

Why Use Temporal Logic?

- Requirements of concurrent, distributed, and reactive systems are often phrased as constraints on sequences of events or states or constraints on execution paths.
- Temporal logic provides a formal, expressive, and compact notation for realizing such requirements.
- The temporal logics we consider are also strongly tied to various computational frameworks (e.g., automata theory) which provides a foundation for building verification tools.

Temporal Logics

- Express properties of event orderings in time
 - Linear Time
 - Every moment has a unique successor
 - Infinite sequences (words)
 - Linear Temporal Logic (LTL)

Branching Time

- Every moment has several successors
- Infinite tree
- Computation Tree Logic (CTL)

Computational Tree Logic (CTL)

Syntax

Semantic Intuition

AG p ...along All paths p holds Globally temporal operator

EG p ...there Exists a path where p holds Globally

AF p ...along *All* paths p holds at some state in the *Future*

EF p ...there Exists a path where p holds at some state in the Future

Computational Tree Logic (CTL)

Syntax

Semantic Intuition

```
AX p ...along All paths, p holds in the neXt state
```

EX p ...there Exists a path where p holds in the neXt state

A[p U q] ...along All paths, p holds Until q holds

E[p U q] ...there Exists a path where p holds Until q holds

Example CTL Specifications

For any state, a request (e.g., for some resource) will eventually be acknowledged

AG(requested -> AF acknowledged)

From any state, it is possible to get to a restart state

AG(EF restart)

An upwards travelling elevator at the second floor does not changes its direction when it has passengers waiting to go to the fifth floor

AG((floor=2 && direction=up && button5pressed)
-> A[direction=up U floor=5])

CTL Example

CTL Semantics

- M, s |= p if $p \in L(s)$
- M, s $\mid = \neg p$ if not M, s $\mid = p$
- M, s $\mid = p \land q$ if M, s $\mid = p$ and M, s $\mid = q$
- M, s $|= p \lor q$ if M, s |= p or M, s |= q

- M, s |= Ap if $\forall \pi \in \pi(s)$: M, π |= p
- M, s |= Ep if $\exists \pi \in \pi(s)$: M, π |= p

CTL Semantics

• M,
$$\pi \mid = Xp$$
 if M, $\pi_1 \mid = p$

• M,
$$\pi \models Gp$$
 if $\forall i \geq 0$: M, $\pi_i \models p$

• M,
$$\pi \models pUq$$
 if $\exists i \geq 0$: M, $\pi_i \models q$ and $\forall j < i$: M, $\pi_i \models p$

$$M = p$$
 if $M, s_0 = p$

CTL Satisfiability

- If a CTL formula is satisfiable, then the formula is satisfiable by a finite Kripke model.
- CTL Model Checking: O(|p|-(|S|+|R|))

Example: traffic light controller

- Guarantee no collisions
- Guarantee eventual service

Specifications

Safety (no collisions)

```
AG - (E_Go \wedge (N_Go \mid S_Go));
```

Liveness

```
AG (\neg N_Go \land N_Sense \Rightarrow AF N_Go);
AG (\neg S_Go \land S_Sense \Rightarrow AF S_Go);
AG (\neg E_Go \land E_Sense \Rightarrow AF E_Go);
```

Fairness constraints

```
AF \neg(N_Go \wedge N_Sense);
AF \neg(S_Go \wedge S_Sense);
AF \neg(E_Go \wedge E_Sense);
```

Equivalence

EXp	EGp	E(pUq)
AXp	$\equiv \neg EX \neg p$	
AFp	$\equiv \neg EG \neg p$	
AGp	≡ ¬EF¬p	
A(pUq)	= ¬E(¬pR-	¬q)
EFp	≡ E(true U	p)

CTL Model Checking

Six Cases:

- p is an atomic proposition
- $-p = \neg q$
- $-p = q \lor r$
- -p = EXq
- -p = EGq
- -p = E(qUr)

Example: Microwave Oven

CTL Specification

- We would like the microwave to have the following properties (among others):
 - No heat while door is open
 - **AG**(*Heat* → *Close*):
 - If oven starts, it will eventually start cooking
 - AG (Start → AF Heat)
 - It must be possible to correct errors
 - **AG**(*Error* → **AF** ¬ *Error*):
- Does it? How do we prove it?

CTL Model Checking Algorithm

- Iterate over subformulas of f from smallest to largest
 - For each s ∈ S, if subformula is true in s, add it to labels(s)
- When algorithm terminates
 - $-M,s \models f \text{ iff } f \in labels(s)$

Any CTL formula can be expressed in terms of:
 ¬, ∨, EX, EU, and EG, therefore must consider 6 cases:

```
Atomic proposition
    if ap \in L(s), add to labels(s)
\neg f_{1}
    if f_1 \notin labels(s), add \neg f_1 to labels(s)
f_1 \vee f_2
    if f_1 \in labels(s) or f_1 \in labels(s), add f_1 \vee f_2 to labels(s)
\mathbf{EX} f_1
    add EX f_1 to labels(s) if successor of s, s', has f_1 \in labels(s')
```

• $E[f_1 U f_2]$

- Find all states s for which $f_2 \in labels(s)$
- Follow paths backwards from s finding all states that can reach s on a path in which every state is labeled with f₁
- Label each of these states with $\mathbf{E}[f_1 \mathbf{U} f_2]$

- **EG** f_1 Basic idea look for one infinite path on which f1 holds.
- Decompose M into nontrivial strongly connected components
 - A strongly connected component (SCC) C is
 - a maximal subgraph such that every node in C is reachable by every other node in C on a directed path that contained entirely within C.
 - C is nontrivial iff either
 - it has more than one node or
 - it contains one node with a self loop
- Create M' = (S',R',L') from M by removing all states s ∈ S in which f₁ ∉labels(s) and updating S, R, and L accordingly

• Lemma $M,s \models \mathbf{EG} f_1$ iff

1.
$$s \in S'$$

- 2. There exists a path in M' that leads from s to some node t in a nontrivial strongly connected component of the graph (S', R', L').
- Proof left as exercise, but basic idea is
 - Can't have an infinite path over finite states without cycles
 - So if we find a path from s to a cycle and f_1 holds in every state (by construction), then we've found an infinite path over which f_1 holds

Checking EG f₁

```
procedure CheckEG(f_1)
      S' = \{s \mid f_1 \in labels(s)\};
      SCC = \{C \mid C \text{ is a nontrivial SCC of S}\};
      T = \bigcup_{C \in SCC} \{s \mid s \in C\};
      for all s \in T do labels(s) = labels(s) \cup {EG f_1};
      while T \neq \emptyset do
          choose s \in T;
           T = T \setminus \{s\};
          for all t such that t \in S' and R(t,s) do
             if EG f_1 \notin labels(t) then
                          labels(t) = labels(t) \cup \{ \mathbf{EG} \ f_1 \};
                                        T = T \cup \{t\}:
             end if;
          end for all;
      end while;
end procedure;
```

- Checking AG(Start → AF Heat)
 - Rewrite as ¬EF(Start ∧ EG ¬Heat)
 - Rewrite as ¬ E[true U (Start ∧ EG ¬Heat)]
- Compute labels for smallest subformulas
 - Start, Heat
 - ¬ Heat

Formulas/States	1	2	3	4	5	6	7
Start		x			x	х	x
Heat				Х			х
¬ Heat	х	x	х		x	х	
EG ¬Heat							
Start ∧ EG ¬ <i>Heat</i>							
E[true U (<i>Start</i> ∧ EG ¬ <i>Heat</i>)]							
¬ E[true U(Start ∧ EG ¬Heat)]							

- Compute labels for EG ¬Heat
- $S' = \{1,2,3,5,6\}$
- $SCC = \{\{1,2,3,5\}\}$
- $T = \{1,2,3,5\}$
- No other state in S' can reach a state in T along a path in S'.
- Computation terminates. States 1,2,3, and 5 labelled with **EG** ¬*Heat*

Formulas/States	1	2	3	4	5	6	7
Start		х			х	Х	х
Heat				х			х
¬ Heat	х	х	x		x	х	
EG ¬ <i>Heat</i>	х	х	х		x		
Start ∧ EG ¬ <i>Heat</i>							
E[true U (<i>Start</i> ∧ EG ¬ <i>Heat</i>)]							
¬ E[true U(Start ∧ EG ¬Heat)]							

• Compute labels for *Start* ∧ **EG** ¬*Heat*

Formulas/States	1	2	3	4	5	6	7
Start		х			x	Х	Х
Heat				X			x
¬ Heat	х	х	x		x	Х	
EG ¬ <i>Heat</i>	x	x	x		x		
Start ∧ EG ¬ <i>Heat</i>		х			х		
E[true U (<i>Start</i> ∧ EG ¬ <i>Heat</i>)]							
¬ E[true U(<i>Start</i> ∧ EG ¬ <i>Heat</i>)]							

- E[true U(Start ∧ EG ¬Heat)]
- Start with set of states in which Start ∧ EG ¬Heat holds i.e., {2,5}
- Work backwards marking every state in which true holds

Formulas/States	1	2	3	4	5	6	7
Start		х			x	x	x
Heat				х			Х
¬ Heat	х	х	x		x	x	
EG ¬ <i>Heat</i>	х	х	х		х		
Start ∧ EG ¬ <i>Heat</i>		х			х		
E[true U (<i>Start</i> ∧ EG ¬ <i>Heat</i>)]	х	х	х	х	х	Х	x
¬ E[true U(Start ∧ EG ¬Heat)]							

- Check ¬ E[true U(Start ∧ EG ¬Heat)]
- Leaves us with the empty set, so this property doesn't hold over our microwave oven

Formulas/States	1	2	3	4	5	6	7
Start		х			х	Х	х
Heat				x			x
¬ Heat	х	x	х		х	х	
EG ¬ <i>Heat</i>	х	х	х		х		
Start ∧ EG ¬Heat		х			х		
E[true U (<i>Start</i> ∧ EG ¬ <i>Heat</i>)]	х	х	х	х	х	х	х
¬ E[true U(Start ∧ EG ¬Heat)]							

Genealogy

Turing Awards in Verification

Amir Pnueli (1996)
 Temporal logics for specifying system behavior

Edmund Clarke, Allen Emerson, and Joseph Sifakis (2007)Development of model checking