		basisverzameling	toevoegen verzameling
proevenverzameling naamgeving		TXT_testset_klei	3
antal proeven		18	0
pgeven parameters karakteristieke waarden en p	artiele materiaalfactoren et	fectieve schuifsterktepara	ameters
		phi (a2) [-]	cohesie (a1) [kPa]
gemiddelde waarden (automatisch)		(0.55)	(2.8)
gemiddelde waarden (handmatig snijpunt y-as opgeven)		0.555	2.80
karakteristieke ondergrenswaarden (eerste benadering)		(0.55)	(1.23)
karakteristieke ondergrenswaarden (handmatig)		0.56	0.00
partiële materiaalfactoren γn		1.15	1.20
		α [-]	
ype verzameling: lokaal = 1,0; regionaal = 0,75		0.75	
Resultaten effectieve schuifsterkteparameters			
sterkteparameters	tan phi	phi	cohesie
-]	[-]	[°]	[kPa]
verwachtingswaarde (gemiddelde)	0.67	33.7	3.36
karakteristieke waarde	0.68	34.1	0.00
ekenwaarde	0.59	30.4	0.00
standaarddeviatie / variatiecoefficient Prostab standaarddeviatie / variatiecoefficient D-geostability	-0.002 / 0 -0.001 / 0	-0.1 / nvt -0.06 / nvt	2.21 / 0.66 1.22 / nvt
	-0.00170	-0.00 / HVt	
Analyse resultaten egressie verwachtingswaarde			correlatiecoëfficiënt 0.99
	orkennis uit OED of CRS e	n partiele materiaalfactore	0.99
Opgeven parameters voor fitten S, macht o.b.v. vo	In schuifsterkteratio S;eind	schuifsterkteratio S;eind	sterkte toename exponent = m
Opgeven parameters voor fitten S, macht o.b.v. vo parameters -]	In schuifsterkteratio S;eind	schuifsterkteratio S;eind [-]	sterkte toename exponent = m [-]
Opgeven parameters voor fitten S, macht o.b.v. vo larameters -] emiddelde waarden (automatisch)	In schuifsterkteratio S;eind	schuifsterkteratio S;eind	sterkte toename exponent = m
Opgeven parameters voor fitten S, macht o.b.v. voor parameters 	In schuifsterkteratio S;eind [-] (-1.08)	schuifsterkteratio S;eind [-] (0.34)	sterkte toename exponent = m [-] (m >0,6 a 0,7 en <1,0)
Opgeven parameters voor fitten S, macht o.b.v. voorarameters -] gemiddelde waarden (automatisch) verwachtingswaarde (gemiddelde) standaardeviatie	In schuifsterkteratio S;eind [-] (-1.08) -1.08	schuifsterkteratio S;eind [-] (0.34) 0.34	sterkte toename exponent = m [-] (m > 0.6 a 0.7 en < 1.0) 0.88
Opgeven parameters voor fitten S, macht o.b.v. voorarameters	In schuifsterkteratio S;eind [-] (-1.08) -1.08 0.03	schuifsterkteratio S;eind [-] (0.34) 0.34 nvt	sterkte toename exponent = m [-] (m > 0,6 a 0,7 en <1,0) 0.88 0.02
Opgeven parameters voor fitten S, macht o.b.v. voorarameters -] gemiddelde waarden (automatisch) verwachtingswaarde (gemiddelde) standaardeviatie partiële materiaalfactoren γn Resultaten ongedraineerde schuifsterkteparamete	In schuifsterkteratio S;eind [-] (-1.08) -1.08 0.03	schuifsterkteratio S;eind [-] (0.34) 0.34 nvt 1.05	sterkte toename exponent = m [-] (m >0,6 a 0,7 en <1,0) 0.88 0.02 1.05
Opgeven parameters voor fitten S, macht o.b.v. voor narameters -] -]	In schuifsterkteratio S;eind [-] (-1.08) -1.08 0.03	schuifsterkteratio S;eind [-] (0.34) 0.34 nvt	sterkte toename exponent = m [-] (m > 0,6 a 0,7 en <1,0) 0.88 0.02 1.05
Opgeven parameters voor fitten S, macht o.b.v. voor parameters -] -] -] -] -] -] -] -] -] -] -] -] -]	In schuifsterkteratio S;eind [-] (-1.08) -1.08 0.03	schuifsterkteratio S;eind [-] (0.34) 0.34 nvt 1.05 Ongedr. schuifsterkterati	sterkte toename exponent = m [-] (m > 0.6 a 0.7 en < 1.0) 0.88 0.02 1.05
Degeven parameters voor fitten S, macht o.b.v. voor narameters] emiddelde waarden (automatisch) enwachtingswaarde (gemiddelde) tandaardeviatie artiële materiaalfactoren γn Resultaten ongedraineerde schuifsterkteparamete terkteparameters] enwachtingswaarde bij OCR=1-4 (op basis van regre arakteristieke waarden met voorkennis	In schuifsterkteratio S;eind [-] (-1.08) -1.08 0.03	schuifsterkteratio S;eind [-] (0.34) 0.34 nvt 1.05 Ongedr. schuifsterkterat [-] 0.34 0.31	sterkte toename exponent = m [-] (m > 0,6 a 0,7 en <1,0) 0.88 0.02 1.05 io S sterkte toename exponent = m in relatie: S _u /a _{vc} = S OCR ^m 0.88 0.88
Opgeven parameters voor fitten S, macht o.b.v. voor parameters -] pemiddelde waarden (automatisch) perwachtingswaarde (gemiddelde) standaardeviatie partiële materiaalfactoren γn Resultaten ongedraineerde schuifsterkteparamete sterkteparameters -] perwachtingswaarde bij OCR=1-4 (op basis van regregarakteristieke waarden met voorkennis	In schuifsterkteratio S;eind [-] (-1.08) -1.08 0.03	schuifsterkteratio S;eind [-] (0.34) 0.34 nvt 1.05 Ongedr. schuifsterkterati [-] 0.34	sterkte toename exponent = m [-] (m >0.6 a 0.7 en <1.0) 0.88 0.02 1.05 to S sterkte toename exponent = m in relatie: S _d /\sigma_{vc}' = S OCR^m 0.88
Opgeven parameters voor fitten S, macht o.b.v. voor parameters	In schuifsterkteratio S;eind [-] (-1.08) -1.08 0.03	schuifsterkteratio S;eind [-] (0.34) 0.34 nvt 1.05 Ongedr. schuifsterkterat [-] 0.34 0.31 0.30 0.36	sterkte toename exponent = m [-] $(m > 0.6 \text{ a } 0.7 \text{ en } < 1.0)$ 0.88 0.02 1.05 io S sterkte toename exponent = m in relatie: S_u/σ_{vc} = S OCR ^m 0.88 0.88 0.88
Pogeven parameters voor fitten S, macht o.b.v. voorarameters	In schuifsterkteratio S;eind [-] (-1.08) -1.08 0.03	Schuifsterkteratio S;eind [-] (0.34) (0.34) (0.34) (0.34) (0.35) (0.36) (0.36) (0.36) (0.02) (0.36) (0.02) (0.36) (0.02) (0.36) (0.02) (0.36) (0.02) (0.36) (0.02) (0.36) (0.02) (0.36) (0.02) (0.36) (0.02) (0.36) (0.02) (0.36) (0.02) (0.36) (0.02) (0.36) (0.02) (0.36) (0.02) (0.	sterkte toename exponent = m [-] (m > 0,6 a 0,7 en <1,0) 0.88 0.02 1.05 io S sterkte toename exponent = m in relatie: S _u /a _{vc} = S OCR ^m 0.88 0.88
Opgeven parameters voor fitten S, macht o.b.v. voor parameters	In schuifsterkteratio S;eind [-] (-1.08) -1.08 0.03	schuifsterkteratio S;eind [-] (0.34) 0.34 nvt 1.05 Ongedr. schuifsterkterat [-] 0.34 0.31 0.30 0.36	sterkte toename exponent = m [-] $(m > 0.6 \text{ a } 0.7 \text{ en } < 1.0)$ 0.88 0.02 1.05 io S sterkte toename exponent = m in relatie: S_u/σ_{vc} = S OCR ^m 0.88 0.88 0.88
Opgeven parameters voor fitten S, macht o.b.v. voor parameters	In schuifsterkteratio S;eind [-] (-1.08) -1.08 0.03	Schuifsterkteratio S;eind [-] (0.34) (0.34) (0.34) (0.34) (0.35) (0.36) (0.36) (0.36) (0.02) (0.36) (0.02) (0.36) (0.02) (0.36) (0.02) (0.36) (0.02) (0.36) (0.02) (0.36) (0.02) (0.36) (0.02) (0.36) (0.02) (0.36) (0.02) (0.36) (0.02) (0.36) (0.02) (0.36) (0.02) (0.36) (0.02) (0.	sterkte toename exponent = m [-] $(m > 0.6 \text{ a } 0.7 \text{ en } < 1.0)$ 0.88 0.02 1.05 io S sterkte toename exponent = m in relatie: S_u/σ_{vc} = S OCR ^m 0.88 0.88 0.88
Opgeven parameters voor fitten S, macht o.b.v. voorameters -] gemiddelde waarden (automatisch) verwachtingswaarde (gemiddelde) standaardeviatie bartiële materiaalfactoren γn Resultaten ongedraineerde schuifsterkteparamete sterkteparameters -] verwachtingswaarde bij OCR=1-4 (op basis van regre karakteristieke waarden met voorkennis rekenwaarden met voorkennis verwachtingswaarde S uit proeven met OCR=1 standaarddeviatie uit proeven met OCR=1 karakteristieke waarde uit proeven met OCR=1	In schuifsterkteratio S;eind [-] (-1.08) -1.08 0.03 rs bij eindsterkte	Schuifsterkteratio S;eind [-] (0.34) 0.34 nvt 1.05 Ongedr. schuifsterkterati [-] 0.34 0.31 0.30 0.36 0.02 0.32	sterkte toename exponent = m [-] (m > 0.6 a 0.7 en < 1.0) 0.88 0.02 1.05 sterkte toename exponent = m in relatie: S _v /σ _{vc} ' = S OCR ^m 0.88 0.83 nvt
Degeven parameters voor fitten S, macht o.b.v. voorarameters -] gemiddelde waarden (automatisch) gerwachtingswaarde (gemiddelde) standaardeviatie partiële materiaalfactoren γn Resultaten ongedraineerde schuifsterkteparamete sterkteparameters -] gerwachtingswaarde bij OCR=1-4 (op basis van regre carakteristieke waarden met voorkennis ekenwaarden met voorkennis gerwachtingswaarde S uit proeven met OCR=1 standaarddeviatie uit proeven met OCR=1 carakteristieke waarde uit proeven met OCR=1	In schuifsterkteratio S;eind [-] (-1.08) -1.08 0.03	Schuifsterkteratio S;eind [-] (0.34) (0.34) (0.34) (0.34) (0.35) (0.36) (0.36) (0.36) (0.02) (0.36) (0.02) (0.36) (0.02) (0.36) (0.02) (0.36) (0.02) (0.36) (0.02) (0.36) (0.02) (0.36) (0.02) (0.36) (0.02) (0.36) (0.02) (0.36) (0.02) (0.36) (0.02) (0.36) (0.02) (0.36) (0.02) (0.	sterkte toename exponent = m [-] (m >0.6 a 0.7 en <1.0) 0.88 0.02 1.05 io S sterkte toename exponent = m in relatie: S _u /\alpha_{vc}' = S OCR ^m 0.88 0.88 0.83
Opgeven parameters voor fitten S, macht o.b.v. voor parameters	In schuifsterkteratio S;eind [-] [-1.08) -1.08 0.03 rs bij eindsterkte volumegewicht nat [kN/m³] 17.30	schuifsterkteratio S;eind [-] (0.34) 0.34 nvt 1.05 Ongedr. schuifsterkterat [-] 0.34 0.31 0.30 0.36 0.02 0.32 volumegewicht droog [kN/m³] 12.00	sterkte toename exponent = m [-] (m > 0.6 a 0,7 en <1,0) 0.88 0.02 1.05 sterkte toename exponent = m in relatie: S _u /\alpha_{uc}' = S OCR^m 0.88 0.83 nvt watergehalte [%] 41.04
Opgeven parameters voor fitten S, macht o.b.v. voorarmeters gemiddelde waarden (automatisch) verwachtingswaarde (gemiddelde) standaardeviatie oartiële materiaalfactoren γn Resultaten ongedraineerde schuifsterkteparamete sterkteparameters gewachtingswaarde bij OCR=1-4 (op basis van regre verwachtingswaarde bij OCR=1-4 (op basis van regre verwachtingswaarde bij OCR=1-4 (op basis van regre verwachtingswaarde S uit proeven met OCR=1 standaarddeviatie uit proeven met OCR=1 verwachtingswaarde S uit proeven met OCR=1 verwachtingswaarde S uit proeven met OCR=1 verwachtingswaarde s uit proeven met OCR=1 verwachtingswaarde sit proeven met OCR=1 verwachtingswaarde eigenschappen	In schuifsterkteratio S;eind [-] [-1.08] -1.08 0.03 rs bij eindsterkte volumegewicht nat [kN/m²] 17.30 1.07	Schuifsterkteratio S;eind [-] (0.34) (0.34) (0.34) (0.34) (0.34) (0.34) (0.34) (0.34) (0.34) (0.36) (0.36) (0.32) (0.	sterkte toename exponent = m [-] (m > 0.6 a 0,7 en < 1,0) 0.88 0.02 1.05 io S sterkte toename exponent = m in relatie: S _u /a _{ve} = S OCR ^m 0.88 0.83 nvt watergehalte [%] 41.04 15.28
Opgeven parameters voor fitten S, macht o.b.v. voor parameters	In schuifsterkteratio S;eind [-] [-1.08) -1.08 0.03 rs bij eindsterkte volumegewicht nat [kN/m³] 17.30	schuifsterkteratio S;eind [-] (0.34) 0.34 nvt 1.05 Ongedr. schuifsterkterat [-] 0.34 0.31 0.30 0.36 0.02 0.32 volumegewicht droog [kN/m³] 12.00	sterkte toename exponent = m [-] (m > 0.6 a 0,7 en <1,0) 0.88 0.02 1.05 sterkte toename exponent = m in relatie: S _u /\sigma_{vc}' = S OCR^m 0.88 0.83 nvt watergehalte [%] 41.04
Opgeven parameters voor fitten S, macht o.b.v. voorarmeters gemiddelde waarden (automatisch) verwachtingswaarde (gemiddelde) standaardeviatie oartiële materiaalfactoren γn Resultaten ongedraineerde schuifsterkteparamete sterkteparameters gewachtingswaarde bij OCR=1-4 (op basis van regre verwachtingswaarde bij OCR=1-4 (op basis van regre verwachtingswaarde bij OCR=1-4 (op basis van regre verwachtingswaarde S uit proeven met OCR=1 standaarddeviatie uit proeven met OCR=1 verwachtingswaarde S uit proeven met OCR=1 verwachtingswaarde S uit proeven met OCR=1 verwachtingswaarde s uit proeven met OCR=1 verwachtingswaarde sit proeven met OCR=1 verwachtingswaarde eigenschappen	In schuifsterkteratio S;eind [-] [-1.08] -1.08 0.03 rs bij eindsterkte volumegewicht nat [kN/m²] 17.30 1.07 0.06	Schuifsterkteratio S;eind [-] (0.34) (0.34) (0.34) (0.34) (0.34) (0.34) (0.34) (0.31) (0.30) (0.36) (0.02) (0.32) (0.32) (0.32) (0.32) (0.32) (0.32)	sterkte toename exponent = m [-] (m > 0.6 a 0.7 en < 1.0) 0.88 0.02 1.05 sterkte toename exponent = m in relatie: S _u /σ _{vc} = S OCR ^m 0.88 0.83 nvt watergehalte [%] 41.04 15.28 0.37
Opgeven parameters voor fitten S, macht o.b.v. voor parameters	In schuifsterkteratio S;eind [-] [-1.08] -1.08 0.03 rs bij eindsterkte volumegewicht nat [kN/m²] 17.30 1.07	Schuifsterkteratio S;eind [-] (0.34) (0.34) (0.34) (0.34) (0.34) (0.34) (0.34) (0.34) (0.34) (0.36) (0.36) (0.32) (0.	sterkte toename exponent = m [-] (m > 0.6 a 0,7 en < 1,0) 0.88 0.02 1.05 io S sterkte toename exponent = m in relatie: S _u /a _{ve} = S OCR ^m 0.88 0.83 nvt watergehalte [%] 41.04 15.28
Opgeven parameters voor fitten S, macht o.b.v. voor parameters -] gemiddelde waarden (automatisch) verwachtingswaarde (gemiddelde) standaardeviatie vartiële materiaalfactoren γn Resultaten ongedraineerde schuifsterkteparamete sterkteparameters -] verwachtingswaarde bij OCR=1-4 (op basis van regre carakteristieke waarden met voorkennis ekenwaarden met voorkennis verwachtingswaarde S uit proeven met OCR=1 standaarddeviatie variatiecoefficient	In schuifsterkteratio S;eind [-] [-1.08] -1.08 0.03 rs bij eindsterkte volumegewicht nat [kN/m²] 17.30 1.07 0.06	Schuifsterkteratio S;eind [-] (0.34) (0.34) (0.34) (0.34) (0.34) (0.34) (0.34) (0.31) (0.30) (0.36) (0.02) (0.32) (0.	sterkte toename exponent = m [-] (m > 0.6 a 0.7 en < 1.0) 0.88 0.02 1.05 io S sterkte toename exponent = m in relatie: S _o /o _{vc} = S OCR ^m 0.88 0.88 0.83 nvt watergehalte [%] 41.04 15.28 0.37
Opgeven parameters voor fitten S, macht o.b.v. voorarmeters gemiddelde waarden (automatisch) verwachtingswaarde (gemiddelde) standaardeviatie oartiële materiaalfactoren γn Resultaten ongedraineerde schuifsterkteparamete sterkteparameters gewachtingswaarde bij OCR=1-4 (op basis van regre verwachtingswaarde bij OCR=1-4 (op basis van regre verwachtingswaarde bij OCR=1-4 (op basis van regre verwachtingswaarde S uit proeven met OCR=1 standaarddeviatie uit proeven met OCR=1 verwachtingswaarde S uit proeven met OCR=1 verwachtingswaarde S uit proeven met OCR=1 verwachtingswaarde s uit proeven met OCR=1 verwachtingswaarde sit proeven met OCR=1 verwachtingswaarde eigenschappen	In schuifsterkteratio S;eind [-] [-1.08] -1.08 0.03 rs bij eindsterkte volumegewicht nat [kN/m²] 17.30 1.07 0.06 plasticiteitsindex [%]	Schuifsterkteratio S;eind [-] (0.34) (0.34) (0.34) (0.34) (0.34) (0.34) (0.34) (0.34) (0.34) (0.34) (0.36) (0.36) (0.32) (0.	sterkte toename exponent = m [-] (m > 0.6 a 0.7 en < 1.0) 0.88 0.02 1.05 sterkte toename exponent = m in relatie: S _d /o _{vc} = S OCR ^m 0.88 0.83 nvt watergehalte [%] 41.04 15.28 0.37 Nkt [-]

variatiecoefficient #DEEL/0! 0.26

0.18

Effective stress s' [kPa]

volumegewicht nat [kN/m3]

078365537:0.17

