Lecture 13: Gradient descent

Ciaran Evans

Recap: optimization

Possibilities so far

- Derivatives are hard / expensive to find (or we don't want to calculate them)
 - Derivative-free optimization!
- Derivatives can be calculated and lead to a closed-form solution
 - Example: the usual linear regression model

Another possibility

- Derivatives can be calculated, but there is no closed-form solution to the system
 - Example: logistic regression

Today: Begin iterative procedures using derivative information

When is there no closed form?

Answer: almost always! A few examples:

- Nonlinear least squares: Minimize $L(\beta) = \sum_{i=1}^{n} (Y_i m(X_i, \beta))^2 \text{ for some nonlinear function } m$
- **Logistic regression:** Minimize $L(\beta) = -\sum_{i=1}^{n} \left\{ Y_i(\beta_0 + \beta_1 X_i) \log(1 + e^{\beta_0 + \beta_1 X_i}) \right\}$
- ▶ **Robust regression:** Minimize $L(\beta) = \sum_{i=1}^{n} \rho(Y_i \beta_0 \beta_1 X_i)$ where

$$\rho(Y_i - \beta_0 - \beta_1 X_i) = \begin{cases} \frac{1}{2} (Y_i - \beta_0 - \beta_1 X_i)^2 & |Y_i - \beta_0 - \beta_1 X_i| \le \gamma \\ \gamma |Y_i - \beta_0 - \beta_1 X_i| - \frac{1}{2} \gamma^2 & \text{else} \end{cases}$$

A univariate example

Want to minimize
$$f$$
. Derivative:
$$f'(x) = \chi^3 - \cos(x)$$

$$= 67$$

$$form!$$

Bisection method

Idea: look for sign changes in the derivative

Start with initial interval that contains the sign change in the derivative:

Calculate the midpoint of the interval:

Question: Where should we look next?

If
$$sign(f'(x_0)) = sign(f'(a_0))$$
, update the interval to $[a_1, b_1] = [x_0, b_0]$. Otherwise, update the interval to $[a_1, b_1] = [a_0, x_0]$

Bisection method

Advantages:

easy to implement

· easy to analyze

· robust - works very nell without too many assumptions

Disadvantages:

. may struggle ut local minima (the for most methods)

Bisection failing:

find root

Sign

apply if we assume is some minimum)

· generally slow

· Somewhat more complex in higher dimensions

Another approach

Suppose we are at x = -2:

Question: In which direction should we move to try and find the minimum?

now right - downhill!

Initial guess:
$$x^{(0)} = -2$$

Gradient: $f'(x^{(0)}) = -7.584$

Updated guess: $x^{(1)} = x^{(0)} - \alpha f'(x^{(0)})$

The size of the size

X

Example: $\alpha = 0.2$

$$x^{(0)} = -2$$

$$x^{(1)} = x^{(0)} - \alpha f'(x^{(0)}) = -0.4832$$

Question: What should we do next?

Iterate!

Example: $\alpha = 0.2$

$$x^{(1)} = -0.4832$$

$$x^{(2)} = x^{(1)} - \alpha f'(x^{(1)}) = -0.2836$$

Question: Why did we move further on the first step than the second? $f'(\chi'')$ $\zeta f'(\chi'')$

Х

Iterate!

Example: $\alpha = 0.2$

- $x^{(2)} = -0.2836$
- $x^{(3)} = x^{(2)} \alpha f'(x^{(2)}) = -0.0870$

After 10 iterations

gets closer to 0, and we move smaller amounts

Gradient descent: the step size

- ▶ Specify **step size** $\alpha > 0$
- ► Update: $x^{(k+1)} = x^{(k)} \alpha f'(x^{(k)})$

Questions:

- ▶ What would happen if α is too *big*?
- ▶ What would happen if α is too *small*?

When the step size is too big

The sequence diverges when α is too large. Using a step size of $\alpha=0.6$ with the previous example:

$$x^{(3)} = -8, \ x^{(4)} = 288, \dots$$

When the step size is too small

When α is too small, the process takes a **long** time. Using a step size of $\alpha=0.01$ in the previous example:

$$x^{(99)} = -0.2537, \ x^{(100)} = -0.2439, \dots$$

Choosing a step size

- Choosing an appropriate step size is important to actually optimize the function
- Next week: discuss methods for selecting step size and modifications
 - Line search
 - Adaptive step size methods
- ► **Future:** Using second-derivative information

Gradient descent in more dimensions

- Points $\mathbf{x} = (x_1, ..., x_d)^T \in \mathbb{R}^d$
- $ightharpoonup f(\mathbf{x}) \in \mathbb{R}$
- ► Gradient:

$$abla f(\mathbf{x}) = egin{pmatrix} rac{\partial f}{\partial x_1} \\ dots \\ rac{\partial f}{\partial x_d} \end{pmatrix} \in \mathbb{R}^d$$

 $ightharpoonup \alpha > 0$

Same idea:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha \nabla f(\mathbf{x}^{(k)})$$

Example

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$\mathbf{f}(\mathbf{x}) = 5x_1^2 + 0.5x_2^2$$

$$f(\mathbf{x}) = 5x_1^2 + 0.5x_2^2$$

$$\nabla f(\mathbf{x}) = \begin{pmatrix} \log_{\mathbf{x}_1} \\ \chi_2 \end{pmatrix}$$

Example

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, f(\mathbf{x}) = 5x_1^2 + 0.5x_2^2$$

Suppose
$$\mathbf{x}^{(0)} = \begin{pmatrix} 1 \\ 20 \end{pmatrix}$$
 and $\alpha = 0.1$

$$\nabla f(\mathbf{x}^{(0)}) = \begin{pmatrix} 10 \cdot 1 \\ 20 \end{pmatrix} = \begin{pmatrix} 10 \\ 20 \end{pmatrix}$$

$$\mathbf{x}^{(1)} = \mathbf{x}^{(0)} - \alpha \nabla f(\mathbf{x}^{(0)})$$

$$\begin{pmatrix} 1 \\ 2o \end{pmatrix} - 0.1 \begin{pmatrix} 1 & 0 \\ 2o \end{pmatrix} = \begin{pmatrix} 0 \\ 18 \end{pmatrix}$$

Homework 4

https://sta379-s25.github.io/homework/hw4.html

- ▶ Implementation of compass search and modifications, in C++
- Weighted least squares
- ► Gradient descent for robust regression
 - Note: there are many questions, but most of them are quite short