DL Lab3: seq2seq model

程式實現

首先建立兩個字典,用於將文本數據轉換成數字形式,讓模型能看得懂並且進行訓練及預測,最後為了將預測輸出轉換成可讀的文本,需要再將數字轉換回相應的字符。

```
char2index = {'sos': 0, 'eos': 1, 'pad': 2, **{char: i + 3 for i, char in enumerate(string.ascii_lowercase)}}
index2char = {i: char for char, i in char2index.items()}
```

- char2index: 為每個字符定義唯一的索引值,其中 sos、eos 和 pad 是三個特殊的符號,分別代表 Start of sequence、End of sequence 和 padding。
- index2char:將索引值轉換回對應的字符,這裡透過對 char2indax 字典的項目進行迭代,並將鍵(字符)和值(索引)交換位置來實現。

接著將資料載入,並處理成要輸入到模型裡的形式。

```
def max_length_in_json(json_file):
    with open(json_file, 'r') as file:
        data = json.load(file)
    max_length = 0
        __init__(self, root, split = 'train', padding = 21):
super(SpellCorrectionDataset, self).__init__()
self.data, self.targets = self.load_data(root, split)
                                                                                                                                                                                                                                                                   for item in data:
                                                                                                                                                                                                                                                                          for word in item['input']:
    max_length = max(max_length, len(word))
 def load_data(self, root, split):
    file_path = f"{root}/{split}.json"
    with open(file_path, 'r') as file:
        data = json.load(file)
    input_list, target_list = [], []
                                                                                                                                                                                                                                                                  return max_length
                                                                                                                                                                                                                                                        print("Train data:", max_length_in_json('train.json'))
print("Test data:", max_length_in_json('test.json'))
print("New Test data:", max_length_in_json('new_test.json'))
         for item in data:
    input_list.extend(item['input'])
    target_list.extend([item['target']] * len(item['input']))
                                                                                                                                                                                                                                                     ✓ 0.0s
                                                                                                                                                                                                                                                 Train data: 19
          return input_list, target_list
                                                                                                                                                                                                                                                 Test data: 16
New Test data: 13
def tokenize(self, text):
    return [char2index.get(char, char2index['pad']) for char in text]
def __len__(self):
    return len(self.data)
          __getitem__(self, index):
input_text = self.data[index]
       input_last = setf.tagets[index]
input_ids = [char2index['sos']] + self.tokenize(input_text) + [char2index['eos']] + [char2index['pad']] * (self.padding - len(input_text) - 2)
target_ids = [char2index['sos']] + self.tokenize(target_text) + [char2index['eos']] + [char2index['pad']] * (self.padding - len(target_text) - 2)
return torch.tensor(input_ids, dtype = torch.long), torch.tensor(target_ids, dtype = torch.long)
```

資料集中最長的單字長度為 19,加上 sos 和 eos 兩個 token,因此將 padding 設為 19+2=21,指定每個序列的填充長度,用於確保所有序列在處理時具有一致的長度。

- 文本標記化(tokenize):透過查找每個字符在 char2index 字典中索引,將 文本進行轉換。如果字符不在字典中,則使用 pad 索引。
- 獲取指定索引的數據(__getitem__): 根據索引獲取特定的 input 和 target,接著透過 tokenize 進行轉換,並在開頭加上 sos,末尾加上 eos,並用 pad 將序列長度補到 21。

最後透過 DataLoader 將 train.json、test.json、new_test.json 三個檔案載入,分別用於訓練、驗證及測試。

```
root_path = '../data/'
trainset = SpellCorrectionDataset(root_path, split = 'train')
trainloader = DataLoader(trainset, batch_size = 16, shuffle = True)
valset = SpellCorrectionDataset(root_path, split = 'test')
valloader = DataLoader(valset, batch_size = 16, shuffle = False)
testset = SpellCorrectionDataset(root_path, split = 'new_test')
testloader = DataLoader(testset, batch_size = 16, shuffle = False)
```

LSTM 程式碼調整及結果比較

1. Teacher Forcing

在 Seq2Seq 的 class 中,有設定一個 Teacher forcing 的機制是用來選擇下一個 time step 的輸入要是什麼:當隨機給定的 boolean 值為 True,就會使用真實的目標輸出,若 boolean 值為 False,則使用模型的預測輸出。這種方法可以加速訓練過程,並幫助模型更有效地學習產生準確的輸出序列。

這裡有使用兩種方法:

(1) 對每個 time step 重新評估是否使用 Teacher forcing,提供了更多的隨機性和靈活性。因為它允許模型在每個 time step 經歷不同的訓練條件,這有助於模型學習如何在不依賴於真實目標輸出的情況下進行預測。

```
input = trg[0,:]
for t in range(1, trg_len):
    output, hidden = self.decoder(input, hidden)
    outputs[t] = output
    teacher_force = random.random() < teacher_forcing_ratio
    top1 = output.argmax(1)
    input = trg[t] if teacher_force else top1
outputs_T = torch.transpose(outputs,0,1)
return outputs_T</pre>
```

(2) 對每個 batch 統一決定是否使用 Teacher forcing,提供了更穩定的訓練環境。因為這樣做使得模型在整個 batch 的所有 time step 都經歷相同的都訓練條件,這有助於模型學習如何在一致的環境下進行預測。

```
input = trg[0,:]
use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False
for t in range(1, trg_len):
    output, hidden = self.decoder(input, hidden)
    outputs[t] = output
    input = trg[t] if use_teacher_forcing else output.argmax(1)
outputs_T = torch.transpose(outputs, 0, 1)
return outputs_T</pre>
```

2. Compare performance changes due to different parameters and model structures

基本模型架構及參數設定:

✓ Input/Output dimension: 29 ✓ Embedding dimension: 256

✓ Hidden dimension: 512

✓ Batch size: 16✓ Optimizer: SGD✓ Learning rate: 0.05

在下方的表格中,有嘗試了其他參數及架構的調整,主要列出了六種進行 比較。針對此項拼字修正的任務,從實驗中可以發現Encoder和Decoder的 Layer不適合太深,且兩種Teacher forcing的機制看起來沒有太大的差異。 然而在加入momentum和學習率調整策略後,模型可以在較少的訓練epoch數量中,實現更好的準確率和Bleu-4 score。

另外除了最終的準確率及Bleu-4 score,表格中還有特別列出整個訓練過程中,test.json和new_test.json兩個測試集平均效果最好的準確率及其Bleu-4 score。

LSTM	1	2	3	4	5	6
Layer	3	2	2	2	2	2
Teacher forcing	Single letter			Whole word		
Momentum	None			0.9		
Scheduler	None	0.9	0.95	0.5	0.5	0.5
(gamma/step)		100	50	50	50	30
Epoch	400	300	300	300	150	150
Final accuracy (test/new_test)	60/30	74/44	90/42	62/40	82/48	88/52
Bleu-4 score	0.865	0.884	0.958	0.842	0.932	0.959
(test/new_test)	0.640	0.662	0.625	0.649	0.699	0.682
Best accuracy (test/new_test)	84/48	86/46	94/48	92/60	94/52	92/58
Bleu-4 score	0.923	0.896	0.967	0.944	0.960	0.971
(test/new_test)	0.713	0.654	0.689	0.751	0.695	0.717

3. Compare different methods through graphs

從下方的圖表中,可以看到模型在加了 momentum 之後,收斂的速度提升了許多。而模型 4 和模型 6 在 150 個 epoch 前的 Cross Entropy loss 和 Bleu-4 score 都有良好的表現,模型 4 在大約 150 個 epoch 之後,Bleu-4 score 就停滯了,甚至有所下降,從這個趨勢可以看到模型 4 在測試集的泛化能力有限,因此減少模型 4 的 epoch 數量,並且嘗試在更少的迭代次數中進行學習率衰減,最後呈現模型 6 的效果。

Transformer 結果比較

1. Compare performance changes due to different parameters

基本模型架構及參數設定:

✓ Token embedding layer: 29✓ Hidden dimension: 512

✓ Number of Layers: 8

✓ Multi-head: 8

✓ Feedforward dimension: 1024

✓ Optimizer: SGD

✓ Epoch: 150

在下方的表格中,主要嘗試了batch size和scheduler的調整,這邊列出了三種進行比較。因為使用了8層的網路,需要花比較多的訓練時間,所以一開始決定將batch size設大一點,這裡嘗試64,但訓練的最終結果及最佳結果在test.json及new_test.json測試集中分別只有40%和20%左右的準確率。後來嘗試調整layer、learning rate、scheduler等參數都沒有太大的改善,最後有明顯的效果提升是將batch size調小到16,最佳的準確率有到98%。

Transformer	1	2	3	
Batch size	64	16	16	
Learning rate	0.001	0.001	0.001	
Epoch	150			
Scheduler	0.5	0.5	0.5	
(gamma/step)	25	25	30	
Final accuracy	40/20	96/48	90/50	
(test/new_test)	40/20	90/48	90/30	
Bleu-4 score	0.677/0.580	0.974/0.667	0.935/0.690	
(test/new_test)	0.077/0.380	0.974/0.007	0.933/0.090	
Best accuracy	42/20	98 /48	92/50	
(test/new_test)	42/20	90/40		
Bleu-4 score	0.693/0.585	0.982/0.691	0.943/0.705	
(test/new_test)	0.073/0.363	0.962/0.091		

2. Compare different methods through graphs

觀察下方的圖表,其中模型 1 的 batch size 為 64,它的 Cross Entropy loss 和 Bleu-4 score 曲線在 epoch 70 之後就趨於平緩,藉由結果可以看出它沒有找到全局最佳解,但我嘗試把學習率調小後的模型表現更差。最後是將batch size 調整為 16 後,才呈現出模型 2 的結果,雖然收斂速度相對較慢,但從結果來看有了大大的提升,表示模型 2 其較小的 batch size 在此項任務中具有更好的泛化能力,

LSTM 和 Transformer 比較

針對兩種網路的程式碼進行了幾點比較如下(詳細內容須至 ipynb 檔案查看):

	LSTM	Transformer		
Encoder 和 Decoder 架構	nn.LSTM 是一個循環神經網路層,在 time step 之間遞歸地處理資訊。	TransformerEncoder 和 TransformerDecoder 內部利用了 自注意力機制(Self-Attention) 和前饋網絡(Feedforward Network)。		
位置編碼	由於其遞歸的結構,能夠自然處理序列的時間資訊,所以不需要位置編碼。	Positional Encoding 類提供了序列中單詞位置資訊的編碼,這是 Transformer 架構的一個核心特點,因為 Transformer 本身不具備處理序列位置資訊的能力。		
嵌入層	均採用了 nn.Embedding 來將輸入的詞彙索引轉換為密集向量。			
Mask 和 序列生成	LSTM 的 Seq2Seq 結構不需要 Mask,因為 Decoder 在生成每 一輸出時只依賴於其前一個 time step 的隱藏狀態和最新生成的輸出。	在 Decoder 中,需要傳入 tgt_mask,以防止在預測下一詞 時看到未來的詞。這是通過 att_mask 實現的,避免 Decoder 在生成輸出時作弊。		
参數數量與複雜性	LSTM 的參數通常少於 Transformer,但由於其遞歸的 特性,訓練可能需要更多的時 間。	Transformer 通常擁有更多的參數,因為它使用了多頭注意力機制,而每個 head 都擁有自己的權重。此外,它還採用了獨立的 Encoder 和 Decoder 網絡,每個網絡都包含多個層次。		

^{*}繳交的 LSTM 程式檔為模型 6 的, Transformer 程式檔為模型 2 的。