Low-Cost Integration of 1.8-V FeFET on 0.18- μ m CMOS:

+1 Mask and a Single ALD Tool, with Reliability Assessment

Shinichi Samizo

Independent Semiconductor Researcher Former Engineer at Seiko Epson Corporation Email: shin3t72@gmail.com GitHub: https://github.com/Samizo-AITL

Abstract—Ferroelectric FETs (FeFETs) are promising CMOS-compatible embedded NVMs. This paper demonstrates a 1.8 V FeFET module integrated on a legacy 0.18 μ m CMOS process with only one additional mask and a single ALD tool. Fabricated devices show endurance exceeding 10^5 program/erase cycles and retention longer than 10 years at 85°C. Reliability was characterized on FeCAP/FeFET structures: time-zero dielectric breakdown (TZDB), time-dependent dielectric breakdown (TDDB), endurance, and retention. The approach provides a cost-effective path to extend mature-node lifetimes and to enable embedded NVM for automotive/industrial/IoT, while high-temperature retention remains the key limiter.

I. Introduction

FeFETs based on HfO₂ have gained traction as CMOS-compatible NVMs. Most prior work targets advanced nodes; however, mature nodes (\sim 0.18 μ m) remain widely used in automotive/industrial markets where long supply lifetimes and low cost are critical. **This work contributes**: (i) a +1 mask low-cost module, (ii) only one ALD tool added to the line, (iii) a yield-friendly *SRAM+FeFET* system usage model, and (iv) comprehensive reliability evidence on FeCAP/FeFET.

II. PROCESS INTEGRATION

Baseline is a 0.18 μ m CMOS platform (1.8 V core, optional 3.3 V I/O). The FeFET module is inserted after poly definition and salicide/RTA, requiring minimal line modification.

A. Process Flow

B. Cross Section

III. Devices and Methods

Test structures include FeCAPs (flat/comb) and 100 μ m × 100 μ m FeFET cells. Programming used ±2.3–2.7 V, 1–50 μ s pulses. Keysight B1500A and a manual probe were used.

Protocols: TZDB: DC ramp ≈ 0.1 V/s at RT-125°C. TDDB: constant-voltage stress at $\pm 2.3/2.5/2.7$ V, 85°C and 125°C; Weibull fitting. Endurance: ± 2.5 V, 10 μ s, 10 kHz up to 10^5 cycles. Retention: 25°C, 85°C, 125°C, with Arrhenius extrapolation.

Fig. 1. Process flow of FeFET integration.

p-Si substrate	
Al ₂ O ₃ 1–2 nm	
HZO 8-12 nm	
TiN 30-50 nm	

Fig. 2. Cross section of HZO/Al₂O₃/TiN stack.

IV. RESULTS

A. TZDB

Breakdown statistics indicate early-failure tails due to defects.

B. TDDB (Weibull/Arrhenius)

Weibull plots yield $\beta \approx 1.3$. Arrhenius analysis gives activation energies consistent with oxygen-vacancy diffusion: $E_a \approx 0.78$ eV @ 2.3 V, 0.84 eV @ 2.5 V, 0.88 eV @ 2.7 V.

(c) TDDB CDF under all stress conditions.

(b) TDDB Weibull plots with fitted lines (β, η) .

(d) Endurance characteristics (ΔV_{th} vs. cycles).

Fig. 3. Reliability results summary.

C. Endurance

Up to 10⁵ cycles verified; the window shrinks 20–30%. A compact fit is $\Delta V_{\text{th}}(N) = 1.12 - 0.05 \log_{10} N$.

D. Retention

Arrhenius extrapolation with $E_a \approx 1.1$ eV predicts: >100 years @ 25°C, >10 years @ 85°C, and only months @ 150°C.

V. System Architecture (SRAM + FeFET)

The SoC uses a single 1.8 V core domain for logic, SRAM, and FeFET access. Write/erase pulses ($\pm 2.3-2.7$ V, $1-50~\mu s$) are generated by an on-chip charge pump. A lightweight backup controller copies SRAM contents to the FeFET array on power-fail detection and restores them at power-up. An optional 3.3 V peripheral domain is kept for I/O and AMS (ADC/DAC, LDO).

Fig. 4. System architecture with SRAM + FeFET backup.

Fig. 5. Backup/restore flow between SRAM and FeFET.

VI. Discussion

The HZO/Al₂O₃/TiN stack provides sufficient reliability for industrial/consumer embedded NVM. For high-temperature

automotive, improvements are required: IL optimization, crystallinity control, refresh/rewrite, and ECC.

VII. Conclusion

We realized an FeFET module on 0.18 μ m CMOS with one extra mask and one ALD tool. Devices exhibit > 10^5 cycles and > 10 years retention at 85° C. The method extends maturenode lifetime and enables cost-effective embedded NVM for automotive/industrial/IoT.

ACKNOWLEDGMENT

The author thanks collaborators for helpful discussions.

REFERENCES

- [1] T. Böscke et al., Appl. Phys. Lett., vol. 99, p. 102903, 2011.
- [2] J. Müller et al., Appl. Phys. Lett., vol. 99, p. 112901, 2012.
- [3] T. Mikolajick et al., J. Appl. Phys., vol. 125, p. 204103, 2019.
- [4] J. Müller et al., IEEE Trans. Electron Devices, vol. 62, no. 12, pp. 4158–4166, 2015.

- [5] J. Park et al., IEEE Electron Device Lett., vol. 41, no. 5, pp. 711–714, 2020.
- [6] H. Nakamura et al., IEEE Trans. Device Mater. Rel., vol. 3, no. 4, pp. 132–136, 2003.
- [7] K. Yamazaki et al., Jpn. J. Appl. Phys., vol. 57, 04FB07, 2018.

BIOGRAPHY

Shinichi Samizo has over 25 years of experience in semi-conductor process integration and actuator development. After studying control theory and EM modeling in academia, he joined Seiko Epson in 1997 and worked on 0.35–0.18 μ m CMOS logic/memory/HV integration, DRAM, and LCD drivers. Later he contributed to PZT actuator development and the PrecisionCore inkjet head. He is currently an independent researcher, publishing educational materials via the "Project Design Hub".