A Comparative Study on Wavelets and Residuals in Deep Super-Resolution

Ruofan Zhou, Fayez Lahoud, Majed El Helou, and Sabine Süsstrunk

Image and Visual Representation Lab

Super-Resolution

Obtaining a high-resolution image from a low-resolution image

Deep learning[1] comes in 2014

Super-resolution architectures

Multiple models

Multiple inputs

• Unclear effects

Super-Resolution Networks

Residual learning

- Reduced and stable training
- Higher accuracy
- Easier than predicting a natural image

Residual learning

Residual blocks

Residual learning

Residual blocks

Wavelet Decomposition

Residual learning

Residual blocks

Wavelet Decomposition

S

- Three parameters
 - Without | With residual learning $(\neg R_L | R_L)$
 - Spatial input | Wavelet input (S|W)
 - Without | With residual blocks $(\neg R_B | R_B)$
- Training dataset (at least 2K)
 - DIV2K[2]
 - Training 800 high-resolution images
 - Validation 100 high-resolution images

DIV2K

- All networks
 - 12 convolutional layers
 - 64 kernels of 3 x 3
 - Patches 64 x 64
 - 100 epochs
 - Adam optimizer with lr = 0.001
 - decayed by factor of 10 every 30 epochs
 - Same initialization (Xavier)
- Scales x2, x3, and x4 using MATLAB's imresize (bicubic)

Set5

BSDS100

Set14

Urban100

Manga109

- Network configuration $(S, R_L, \neg R_B)$
- Performance evaluation
 - PSNR
 - SSIM
- Statistical significance
 - T-test

Set	Set5			Set14			BSDS100				Urban100		Manga109			
Scale	x2	х3	x4	x2	х3	x4	x2	х3	x4	x2	x3	x4	x2	х3	x4	
Bicubic	31.79	26.95	26.69	28.00	24.44	23.81	26.11	24.66	22.38	25.43	21.30	21.70	26.79	24.61	22.05	
$(S, \neg R_L, \neg R_B)$	34.52	27.77	28.43	29.36	24.58	24.47	25.93	24.72	21.91	28.25	21.13	22.93	27.22	25.99	22.28	
$(S, \neg R_L, R_B)$	34.94	27.99	28.81	29.58	24.66	24.64	25.99	24.73	21.86	28.65	21.13	23.24	27.47	26.21	22.37	
$(\mathcal{S}, R_L, \neg R_B)$	34.99	28.02	28.89	29.62	24.66	24.66	25.89	24.73	23.17	28.67	21.14	23.22	27.38	26.31	22.45	
(\mathcal{S}, R_L, R_B)	34.80	27.99	28.88	29.51	24.64	24.67	25.91	24.70	21.82	28.51	21.10	23.24	27.35	26.23	22.35	
$(\mathcal{W}, \neg R_L, \neg R_B)$	34.42	27.80	28.75	29.23	24.58	24.57	26.25	24.71	21.89	27.96	21.09	23.13	27.50	26.04	22.36	
$(\mathcal{W}, \neg R_L, R_B)$	34.89	27.95	28.85	29.57	24.61	24.70	26.46	24.70	21.98	28.51	21.06	23.28	27.87	26.18	22.62	
$(\mathcal{W}, R_L, \neg R_B)$	34.84	27.96	28.94	29.51	24.62	24.74	26.35	24.70	21.93	28.42	21.06	23.28	27.87	26.19	22.46	
(\mathcal{W},R_L,R_B)	34.80	28.00	28.93	29.54	24.64	24.69	26.33	24.70	21.93	28.43	21.07	23.30	27.90	26.20	22.47	

Set	Set5			Set14			BSDS100				Urban100		Manga109		
Scale	x2	х3	x4	x2	x3	x4	x2	х3	х4	x2	х3	x4	x2	х3	x4
Bicubic	31.79	26.95	26.69	28.00	24.44	23.81	26.11	24.66	22.38	25.43	21.30	21.70	26.79	24.61	22.05
$(\mathcal{S}, \neg R_L, \neg R_B)$	34.52	27.77	28.43	29.36	24.58	24.47	25.93	24.72	21.91	28.25	21.13	22.93	27.22	25.99	22.28
$(\mathcal{S}, \neg R_L, R_B)$	34.94	27.99	28.81	29.58	24.66	24.64	25.99	24.73	21.86	28.65	21.13	23.24	27.47	26.21	22.37
$(\mathcal{S}, R_L, \neg R_B)$	34.99	28.02	28.89	29.62	24.66	24.66	25.89	24.73	23.17	28.67	21.14	23.22	27.38	26.31	22.45
(\mathcal{S}, R_L, R_B)	34.80	27.99	28.88	29.51	24.64	24.67	25.91	24.70	21.82	28.51	21.10	23.24	27.35	26.23	22.35
$(\mathcal{W}, \neg R_L, \neg R_B)$	34.42	27.80	28.75	29.23	24.58	24.57	26.25	24.71	21.89	27.96	21.09	23.13	27.50	26.04	22.36
$(\mathcal{W}, eg R_L, R_B)$	34.89	27.95	28.85	29.57	24.61	24.70	26.46	24.70	21.98	28.51	21.06	23.28	27.87	26.18	22.62
$(\mathcal{W}, R_L, \neg R_B)$	34.84	27.96	28.94	29.51	24.62	24.74	26.35	24.70	21.93	28.42	21.06	23.28	27.87	26.19	22.46
(\mathcal{W},R_L,R_B)	34.80	28.00	28.93	29.54	24.64	24.69	26.33	24.70	21.93	28.43	21.07	23.30	27.90	26.20	22.47
Closest ne	et to b	icubic	: (S, –	R_L , $-$	R_B										

 $t_{psnr} = 3.92, p_{psnr} = 10^{-5} \mid t_{ssim} = 4.98, p_{ssim} = 7 \times 10^{-7}$

Set	Set5			Set14			BSDS100				Urban100		Manga109			
Scale	x2	х3	x4	x2	х3	x4	x2	х3	x4	x2	х3	x4	x2	х3	x4	
Bicubic	31.79	26.95	26.69	28.00	24.44	23.81	26.11	24.66	22.38	25.43	21.30	21.70	26.79	24.61	22.05	
$(\mathcal{S}, \neg R_L, \neg R_B)$	34.52	27.77	28.43	29.36	24.58	24.47	25.93	24.72	21.91	28.25	21.13	22.93	27.22	25.99	22.28	
$(\mathcal{S}, \neg R_L, R_B)$	34.94	27.99	28.81	29.58	24.66	24.64	25.99	24.73	21.86	28.65	21.13	23.24	27.47	26.21	22.37	
$(\mathcal{S}, R_L, \neg R_B)$	34.99	28.02	28.89	29.62	24.66	24.66	25.89	24.73	23.17	28.67	21.14	23.22	27.38	26.31	22.45	
(\mathcal{S}, R_L, R_B)	34.80	27.99	28.88	29.51	24.64	24.67	25.91	24.70	21.82	28.51	21.10	23.24	27.35	26.23	22.35	
$(\mathcal{W}, \neg R_L, \neg R_B)$	34.42	27.80	28.75	29.23	24.58	24.57	26.25	24.71	21.89	27.96	21.09	23.13	27.50	26.04	22.36	
$(\mathcal{W}, eg R_L, R_B)$	34.89	27.95	28.85	29.57	24.61	24.70	26.46	24.70	21.98	28.51	21.06	23.28	27.87	26.18	22.62	
$(\mathcal{W}, R_L, \neg R_B)$	34.84	27.96	28.94	29.51	24.62	24.74	26.35	24.70	21.93	28.42	21.06	23.28	27.87	26.19	22.46	
(\mathcal{W},R_L,R_B)	34.80	28.00	28.93	29.54	24.64	24.69	26.33	24.70	21.93	28.43	21.07	23.30	27.90	26.20	22.47	

No residuals, lowest performance

Set	Set5			Set14			BSDS100				Urban100		Manga109		
Scale	x2	х3	x4	x2	х3	x4	x2	х3	x4	x2	х3	x4	x2	х3	x4
Bicubic	31.79	26.95	26.69	28.00	24.44	23.81	26.11	24.66	22.38	25.43	21.30	21.70	26.79	24.61	22.05
$(S, \neg R_L, \neg R_B)$	34.52	27.77	28.43	29.36	24.58	24.47	25.93	24.72	21.91	28.25	21.13	22.93	27.22	25.99	22.28
$(S, \neg R_L, R_B)$	34.94	27.99	28.81	29.58	24.66	24.64	25.99	24.73	21.86	28.65	21.13	23.24	27.47	26.21	22.37
$(\mathcal{S}, R_L, \neg R_B)$	34.99	28.02	28.89	29.62	24.66	24.66	25.89	24.73	23.17	28.67	21.14	23.22	27.38	26.31	22.45
(\mathcal{S}, R_L, R_B)	34.80	27.99	28.88	29.51	24.64	24.67	25.91	24.70	21.82	28.51	21.10	23.24	27.35	26.23	22.35
$(\mathcal{W}, \neg R_L, \neg R_B)$	34.42	27.80	28.75	29.23	24.58	24.57	26.25	24.71	21.89	27.96	21.09	23.13	27.50	26.04	22.36
$(\mathcal{W}, eg R_L, R_B)$	34.89	27.95	28.85	29.57	24.61	24.70	26.46	24.70	21.98	28.51	21.06	23.28	27.87	26.18	22.62
$(\mathcal{W},R_L,\neg R_B)$	34.84	27.96	28.94	29.51	24.62	24.74	26.35	24.70	21.93	28.42	21.06	23.28	27.87	26.19	22.46
(\mathcal{W},R_L,R_B)	34.80	28.00	28.93	29.54	24.64	24.69	26.33	24.70	21.93	28.43	21.07	23.30	27.90	26.20	22.47

$$t_{psnr} = 4.45, p_{psnr} = 5 \times 10^{-4} \mid t_{ssim} = 7.11, p_{ssim} = 5 \times 10^{-6}$$

Set		Set5		Set14				BSDS100			Urban100		Manga109			
Scale	x2	х3	x4	x2	х3	x4	x2	х3	x4	x2	x3	x4	x2	х3	x4	
Bicubic	31.79	26.95	26.69	28.00	24.44	23.81	26.11	24.66	22.38	25.43	21.30	21.70	26.79	24.61	22.05	
$(\mathcal{S}, \neg R_L, \neg R_B)$	34.52	27.77	28.43	29.36	24.58	24.47	25.93	24.72	21.91	28.25	21.13	22.93	27.22	25.99	22.28	
$(S, \neg R_L, R_B)$	34.94	27.99	28.81	29.58	24.66	24.64	25.99	24.73	21.86	28.65	21.13	23.24	27.47	26.21	22.37	
$(\mathcal{S}, R_L, \neg R_B)$	34.99	28.02	28.89		24.66	24.66	25.89	24.73	23.17	28.67	21.14	23.22	27.38	26.31	22.45	
(\mathcal{S}, R_L, R_B)	34.80	27.99	28.88	29.51	24.64	24.67	25.91	24.70	21.82	28.51	21.10	23.24	27.35	26.23	22.35	
$(\mathcal{W}, \neg R_L, \neg R_B)$	34.42	27.80	28.75	29.23	24.58	24.57	26.25	24.71	21.89	27.96	21.09	23.13	27.50	26.04	22.36	
$(\mathcal{W}, \neg R_L, R_B)$	34.89	27.95	28.85	29.57	24.61	24.70	26.46	24.70	21.98	28.51	21.06	23.28	27.87	26.18	22.62	
$(\mathcal{W}, R_L, \neg R_B)$	34.84	27.96	28.94	29.51	24.62	24.74	26.35	24.70	21.93	28.42	21.06	23.28	27.87	26.19	22.46	
(\mathcal{W},R_L,R_B)	34.80	28.00	28.93	29.54	24.64	24.69	26.33	24.70	21.93	28.43	21.07	23.30	27.90	26.20	22.47	
$t_{psnr}=1.91, p_{psnr}=0.07$ $\overline{PSNR_{\mathcal{W}}}=26.15 \mid \overline{PSNR_{\mathcal{S}}}=26.09$																
$t_{ssim} = 1$	SSIM	$\overline{w} = 0$	0.798	$ \overline{SS}$	$\overline{IM_S}$ =	= 0.79	97 18									

Stability in training

Scale=2

Scale=3

Scale=4

Qualitative Results

Qualitative Results

Runtime performance (1024 x 1024)

	Memory
$(S, \neg R_L, \neg R_B)$	5412MB
$(S, \neg R_L, R_B)$	5412MB
$(S, R_L, \neg R_B)$	5432MB
(S, R_L, R_B)	5432MB
$(\mathcal{W}, \neg R_L, \neg R_B)$	1380MB
$(\mathcal{W}, \neg R_L, R_B)$	1380MB
$(\mathcal{W}, R_L, \neg R_B)$	1460MB
(\mathcal{W}, R_L, R_B)	1460MB

H x W

H/2 x W/2 x 4

Residual Connection Structure

PixelShuffle (PS)

Proposed Residual Connection

ShuffleNet vs $(R_L, \neg R_B)$

- 5450MB -> 3500MB for spatial input
- 1500MB -> 900 MB for wavelet input

1024 x 1024 Image

ShuffleNet vs $(R_L, \neg R_B)$

- 5450MB -> 3500MB for spatial input
- 1500MB -> 900 MB for wavelet input

1024 x 1024 Image

Set	Set5			Set14			BSDS100				Urban100		Manga109		
Scale	x2	x3	x4	x2	х3	x4	x2	х3	x4	x2	х3	x4	x2	х3	x4
$(\mathcal{S}, R_L, \neg R_B)$	34.99	28.02	28.89	29.62	24.66	24.66	25.89	24.73	23.17	28.67	21.14	23.22	27.38	26.31	22.45
(δ, ShuffleNet)	34.92	27.94	28.74	29.79	24.61	24.54	25.80	24.77	22.85	28.55	21.03	23.07	27.34	26.18	22.40
$(\mathcal{W}, R_L, \neg R_B)$	34.84	27.96	28.94	29.51	24.62	24.74	26.35	24.70	21.93	28.42	21.06	23.28	27.87	26.19	22.46
(₩, ShuffleNet)	34.92	27.89	28.69	29.51	24.56	24.57	26.18	24.67	22.04	27.82	20.99	23.09	27.71	26.18	22.47

$$\overline{PSNR_S}(R_L, \neg R_B) = 26.25 \mid \overline{PSNR_S}(ShuffleNet) = 26.18$$

$$\overline{PSNR_{\mathcal{W}}}(R_L, \neg R_B) = 26.19 \mid \overline{PSNR_{\mathcal{W}}}(ShuffleNet) = 26.09$$

Qualitative Comparison

 $(\mathcal{W},\mathsf{ShuffleNet})$

 $(\mathcal{S}, R_L, \neg R_B)$

 $(\mathcal{W}, R_L, \neg \overline{R_B})$

Conclusion

• Residuals improve training speed and network performance

No performance impact between spatial and wavelets inputs

Wavelets reduce memory requirements