Basics for a grammar engine to verbalize logical theories in isiZulu

C. Maria Keet¹ and Langa Khumalo²

Department of Computer Science, University of Cape Town, South Africa, mkeet@cs.uct.ac.za

² Linguistics Program, School of Arts, University of KwaZulu-Natal, South Africa, Khumalol@ukzn.ac.za

RuleML'14, Prague, August 18-20, 2014

Outline

- Motivation
- 2 isiZulu intro
- 3 isiZulu NLG
 - Universal Quantification
 - Subsumption
 - Conjunction
 - Existential Quantification
- Discussion and Conclusions

Natural language interfaces with some NLG

- Many tools, webpages, etc. with some natural language component
- Querying of information in natural language (cf. a query language SQL, SPARQL)
- Business rules typically specified in a natural language
- etc.

Example: Saadiq Moolla's mobile healthcare app

Chest Pain

Have you had any recent pain in your chest? - Uke waba nobuhlungu esifubeni maduzane?

Does the pain radiate to your jaw, neck or arm? - Engabe ubuhlungu bakho bujikeleza emihlathini, emqaleni noma nasezingalweni?

Does anything precipitate or relieve the pain? - Ingabe ikhona into eyenza ubuhlungu buqhubeke noma eyehlisa ubuhlungu?

Dyspnoea

Are you breathless at any time? - Uke uphelelwe umoya kwezinye izikhathi?

Chest Pain

Have you had any recent pain in your chest? - Ingaba kutshanje ukhe weva iintlungu esifubeni?

Does the pain radiate to your jaw, neck or arm? - Ingaba iintlungu zinwenwela emhlathini, entanyeni okanye engalweni?

Does anything precipitate or relieve the pain? - Ingaba ikhona into ezivuselelayo okanye ezidambisayo iintlungu?

Dyspnoea

NLG, principal approaches

- Canned text
- Templates
 - Notably for English [Fuchs et al.(2010), Schwitter et al.(2008), Third et al.(2011), Curland and Halpin(2007)],
 - but also other languages [Jarrar et al.(2006)]
- Grammar engines, such as [Kuhn(2013)], Grammatical Framework (http://www.grammaticalframework.org/)
- ⇒ Controlled Natural Language

Question

- Can the template-based approach be used also for isiZulu NLG?
 - If so, create those templates
 - If not, start with basics for a grammar engine
- Use a practically useful language to benefit both ICT and linguists and, possibly, some subject domain (e.g., medicine, NRS [Alberts et al.(2012)])

- Most populous language in SA, first (home) language of $\pm 23\%$ (≥ 10 million)
- Member of the Bantu language group, spoken by some 300 million people
- Bantu languages have characteristically agglutinating morphology
- System of noun classes, controls the concordance of all words in a sentence

Abafana abancane bazozithenga izincwadi ezinkulu aba-fana aba-ncane ba- zo- zi- thenga izi-ncwadi e-zi-nkulu 2.boy 2.small 2.SUBJ-FUT-10.OBJ-buy 10.book REL-10.big 'The little boys will buy the big books'

NC	AU	PRE	Stem (ex- ample)	Meaning	Exan	ıple
1	u-	m(u)-	-fana	humans and other	umfana	boy
2	a-	ba-	-fana	animates	abafana	boys
1a	u-	-	-baba	kinship terms and proper	ubaba	father
2a	0-	-	-baba	names	obaba	fathers
3a	u-	-	-shizi	nonhuman	ushizi	cheese
(2a)	0-	-	-shizi		oshizi	cheeses
3	u-	m(u)-	-fula	trees, plants, non-paired	umfula	river
4	i-	mi-	-fula	body parts	imifula	rivers
5	i-	(li)-	-gama	fruits, paired body parts,	igama	name
6	a-	ma-	-gama	and natural phenomena	amagama	names
7	i-	si-	-hlalo	inanimates and manner/	isihlalo	chair
8	i-	zi-	-hlalo	style	izihlalo	chairs
9a	i-	-	-rabha	nonhuman	irabha	rubber
(6)	a-	ma-	-rabha		amarabha	rubbers
9	i(n)-	-	-ja	animals	inja	dog
10	i-	zi(n)-	-ja		izinja	dogs
11	u-	(lu)-	-thi	inanimates and long thin	uthi	stick
(10)	i-	zi(n)-	-thi	objects	izinthi	sticks
14	u-	bu-	-hle	abstract nouns	ubuhle	beauty
15	u-	ku-	-cula	infinitives	ukucula	to sing
17		ku-		locatives, remote/ general		locative

- Roughly OWL 2 EL
- OWL 2 EL is a W3C-standardised profile of OWL 2
- Tools, ontologies in OWL 2 (notably SNOMED CT)
- On the 'roughly': minus transitivity, but with negation, amounting to \mathcal{ALC}
 - of that, we have patterns for universal and existential quantification, subsumption, negation (disjointness), and conjunction

Universal Quantification

- Consider here only the universal quantification at the start of the concept inclusion axiom (nominal head)
- 'all'/'each' uses -onke, prefixed with the oral prefix of the noun class of that first noun (OWL class/DL concept) on lhs of ⊑

```
    (U1) Boy ⊆ ...
        wonke umfana ...
        bonke abafana ...
        ('each boy...'; u- + -onke)
        bonse abafana ...
        ('all boys...'; ba- + -onke)
        (U2) Phone ⊑ ...
        lonke ifoni ...
        ('each phone...'; li- + -onke)
        onke amafoni ...
        ('all phones...'; a- + -onke)
```

NC	QC (all)		NEG SC	PRON	RC	QC_{dwa}	EC
	$QC_{oral+onke}$	QC_{nke}					
1	u -onke \rightarrow wonke	wo-	aka-	yena	0-	ye-	mu-
2	ba -onke $\rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
1a	u -onke \rightarrow wonke	wo-	aka-	yena	0-	ye-	mu-
2a	ba -onke $\rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
3a	u -onke \rightarrow wonke	wo-	aka-	wona	0-	ye-	mu-
(2a)	ba -onke $\rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
3	u -onke \rightarrow wonke	wo-	awu-	wona	0-	wo-	mu-
4	i -onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	mi-
5	li -onke $\rightarrow lonke$	lo-	ali-	lona	eli-	lo-	li-
6	a -onke \rightarrow onke	0-	awa-	wona	a-	wo-	ma-
7	si -onke \rightarrow sonke	so-	asi-	sona	esi-	so-	si-
8	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi	zo-	zi-
9a	i -onke \rightarrow yonke	уо-	ayi-	yona	e-	yo-	yi-
(6)	a -onke \rightarrow onke	0-	awa-	wona	a-	wo-	ma-
9	i-onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	yi-
10	zi -onke $\rightarrow zonke$	ZO-	azi-	zona	ezi-	zo-	zi-
11	lu -onke $\rightarrow lonke$	lo-	alu-	lona	olu-	lo-	lu-
(10)	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi-	zo-	zi-
14	ba -onke $\rightarrow bonke$	bo-	abu-	bona	obu-	bo-	bu-
15	ku -onke \rightarrow konke	zo-	aku-	khona	oku-	zo-	ku-

$\overline{\mathbf{NC}}$	QC (all)		NEG SC	PRON	RC	QC _{dwa}	EC
	$\mathrm{QC}_{\mathrm{oral}+\mathrm{onke}}$	QC_{nke}					
1	u -onke \rightarrow wonke	wo-	aka-	yena	0-	ye-	mu-
2	ba -onke $\rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
1a	u -onke \rightarrow wonke	wo-	aka-	yena	0-	ye-	mu-
2a	ba -onke $\rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
3a	u -onke \rightarrow wonke	wo-	aka-	wona	0-	ye-	mu-
(2a)	ba -onke $\rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
3	u -onke \rightarrow wonke	wo-	awu-	wona	0-	wo-	mu-
4	i-onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	mi-
5	li -onke $\rightarrow lonke$	lo-	ali-	lona	eli-	lo-	li-
6	a -onke \rightarrow onke	0-	awa-	wona	a-	wo-	ma-
7	si -onke \rightarrow sonke	so-	asi-	sona	esi-	so-	si-
8	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi	zo-	zi-
9a	i-onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	yi-
(6)	a -onke \rightarrow onke	0-	awa-	wona	a-	wo-	ma-
9	i-onke \rightarrow yonke	уо-	ayi-	yona	e-	уо-	yi-
10	zi -onke \rightarrow $zonke$	zo-	azi-	zona	ezi-	zo-	zi-
11	lu -onke $\rightarrow lonke$	lo-	alu-	lona	olu-	lo-	lu-
(10)	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi-	zo-	zi-
14	ba -onke $\rightarrow bonke$	bo-	abu-	bona	obu-	bo-	bu-
15	ku -onke \rightarrow konke	zo-	aku-	khona	oku-	zo-	ku-

Discussion and Conclusions

\overline{NC}		QC (all)		NEG SC	PRON	RC	QC_{dwa}	\mathbf{EC}
	QC _{oral}	-onke	$\mathrm{QC}_{\mathrm{nke}}$					
1	u-onke -		wo-	aka-	yena	0-	ye-	mu-
2	ba-onke	\rightarrow bonke	bo-	aba-	bona	aba-	bo-	ba-
1a	u-onke –	wonke	wo-	aka-	yena	0-	ye-	mu-
2a	ba-onke	\rightarrow bonke	bo-	aba-	bona	aba-	bo-	ba-
3a	u-onke –	wonke	wo-	aka-	wona	0-	ye-	mu-
(2a)	ba-onke	\rightarrow bonke	bo-	aba-	bona	aba-	bo-	ba-
3	u-onke –	wonke	wo-	awu-	wona	0-	wo-	mu-
4	i-onke \rightarrow	yonke	yo-	ayi-	yona	e-	yo-	mi-
5	li-onke -	lonke	lo-	ali-	lona	eli-	lo-	li-
6	a-onke -	onke	0-	awa-	wona	a-	wo-	ma-
7	si-onke -	sonke	SO-	asi-	sona	esi-	so-	si-
8	zi-onke -	> zonke	zo-	azi-	zona	ezi	zo-	zi-
9a	i-onke \rightarrow	yonke	yo-	ayi-	yona	e-	уо-	yi-
(6)	a-onke -	onke	0-	awa-	wona	a-	wo-	ma-
9	i-onke \rightarrow	yonke	yo-	ayi-	yona	e-	уо-	yi-
10	zi-onke -	zonke	zo-	azi-	zona	ezi-	zo-	zi-
11	lu-onke -	→ lonke	lo-	alu-	lona	olu-	lo-	lu-
(10)	zi-onke -	> zonke	ZO-	azi-	zona	ezi-	zo-	zi-
14	ba-onke	\rightarrow bonke	bo-	abu-	bona	obu-	bo-	bu-
15	ku-onke	\rightarrow konke	ZO-	aku-	khona	oku-	zo-	ku-

Subsumption

- Two different ways of carving up the nouns to determine which rules apply: semantic and syntactic
- Syntactic: still two options for copulative, depending on second noun

```
(S1) MedicinalHerb 
 Plant
 ikhambi ngumuthi ('medicinal herb is a plant')
```

(S2) Giraffe ⊆ Animal
indlulamithi yisilwane ('giraffe is a animal')

- Copulative is omitted
- Combines the negative subject concord (NEG SC) of the noun class of the first noun (azi-) with the pronomial (PRON) of the noun class of second noun (-yona)

```
(SN1) Cup \sqsubseteq \negGlass 

<u>zonke</u> izindebe aziyona ingilazi ('all cups <u>not a</u> glass')
```

NC	QC (all)		NEG SC	PRON	RC	QC_{dwa}	EC
	$QC_{oral+onke}$	QC_{nke}					
1	u -onke \rightarrow wonke	wo-	aka-	yena	0-	ye-	mu-
2	ba -onke $\rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
1a	u -onke \rightarrow wonke	wo-	aka-	yena	0-	ye-	mu-
2a	ba -onke $\rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
3a	u -onke \rightarrow wonke	wo-	aka-	wona	0-	ye-	mu-
(2a)	ba -onke $\rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
3	u -onke \rightarrow wonke	wo-	awu-	wona	0-	wo-	mu-
4	i -onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	mi-
5	li -onke $\rightarrow lonke$	lo-	ali-	lona	eli-	lo-	li-
6	a -onke \rightarrow onke	0-	awa-	wona	a-	wo-	ma-
7	si -onke \rightarrow sonke	so-	asi-	sona	esi-	so-	si-
8	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi	zo-	zi-
9a	i -onke \rightarrow yonke	уо-	ayi-	yona	e-	yo-	yi-
(6)	a -onke \rightarrow onke	0-	awa-	wona	a-	wo-	ma-
9	i-onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	yi-
10	zi -onke \rightarrow $zonke$	ZO-	azi-	zona	ezi-	zo-	zi-
11	lu -onke $\rightarrow lonke$	lo-	alu-	lona	olu-	lo-	lu-
(10)	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi-	zo-	zi-
14	ba -onke $\rightarrow bonke$	bo-	abu-	bona	obu-	bo-	bu-
15	ku -onke \rightarrow konke	zo-	aku-	khona	oku-	zo-	ku-

Discussion and Conclusions

NC	QC (all)		NEG SC	PRON	RC	QC_{dwa}	EC
	$ m QC_{oral+onke}$	$ \mathrm{QC}_{\mathrm{nke}} $					
1	u -onke \rightarrow wonke	wo-	aka-	yena	0-	ye-	mu-
2	ba -onke $\rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
1a	u -onke \rightarrow wonke	wo-	aka-	yena	0-	ye-	mu-
2a	ba -onke $\rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
3a	u -onke \rightarrow wonke	wo-	aka-	wona	0-	ye-	mu-
(2a)	ba -onke $\rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
3	u -onke \rightarrow wonke	wo-	awu-	wona	0-	wo-	mu-
4	i -onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	mi-
5	li -onke $\rightarrow lonke$	lo-	ali-	lona	eli-	lo-	li-
6	a -onke \rightarrow onke	0-	awa-	wona	a-	wo-	ma-
7	si -onke \rightarrow sonke	so-	asi-	sona	esi-	so-	si-
8	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi	zo-	zi-
9a	i -onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	yi-
(6)	a -onke \rightarrow onke	0-	awa-	wona	a-	wo-	ma-
9	i-onke \rightarrow yonke	уо-	ayi-	yona	e-	yo-	yi-
10	zi -onke \rightarrow $zonke$	ZO-	azi-	zona	ezi-	zo-	zi-
11	lu -onke $\rightarrow lonke$	lo-	alu-	lona	olu-	lo-	lu-
(10)	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi-	zo-	zi-
14	ba -onke $\rightarrow bonke$	bo-	abu-	bona	obu-	bo-	bu-
15	ku -onke \rightarrow konke	zo-	aku-	khona	oku-	zo-	ku-

$\overline{\mathbf{NC}}$	QC (all)			PRON	\mathbf{RC}	QC_{dwa}	EC
	$ m QC_{oral+onke}$	QC_{nke}					
1	u -onke \rightarrow wonke	wo-	aka-	yena	D-	ye-	mu-
2	ba -onke $\rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
1a	u -onke \rightarrow wonke	wo-	aka-	yena	O-	ye-	mu-
2a	ba -onke $\rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
3a	u -onke \rightarrow wonke	wo-	aka-	wona	D -	ye-	mu-
(2a)	ba -onke $\rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
3	u -onke \rightarrow wonke	wo-	awu-	wona	D -	wo-	mu-
4	i -onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	mi-
5	li -onke $\rightarrow lonke$	lo-	ali-	lona	eli-	lo-	li-
6	a -onke \rightarrow onke	0-	awa-	wona	a-	wo-	ma-
7	si -onke \rightarrow sonke	so-	asi-	sona	esi-	so-	si-
8	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi	zo-	zi-
9a	i -onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	yi-
(6)	a -onke \rightarrow onke	0-	awa-	wona	a-	wo-	ma-
9	i-onke \rightarrow yonke	уо-	ayi-	yona	e-	yo-	yi-
10	zi -onke \rightarrow $zonke$	zo-	azi-	zona	ezi-	zo-	zi-
11	lu -onke $\rightarrow lonke$	lo-	alu-	lona	olu-	lo-	lu-
(10)	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi-	zo-	zi-
14	ba -onke $\rightarrow bonke$	bo-	abu-	bona	obu-	bo-	bu-
15	ku -onke \rightarrow konke	zo-	aku-	khona	oku-	zo-	ku-

Discussion and Conclusions

- Plain subsumption:
 - N_1 <copulative ng/y depending on first letter of $N_2 > N_2$.
- And with negation:
 - <All-concord for NC_x >onke <plural N_1 , being of NC_x > <NEG SC of NC_x > <PRON of NC_y > < N_2 with NC_y >.

```
1: C set of classes, language L with \sqsubseteq for subsumption and \neg for negation; variables: A
     axiom, NC_i nounclass, c_1, c_2 \in \mathcal{C}, a_1 term, a_2 letter; functions: getFirstClass(A),
     getSecondClass(A), getNC(C), pluralizeNoun(C, NC_i), checkNegation(A),
     qetFirstChar(C), qetNSC(NC_i), qetPNC(NC_i).
Require: axiom A with a \square has been retrieved
 2: c_1 \leftarrow getFirstClass(A)
                                                                                             {get subclass}
 3: c_2 \leftarrow qetSecondClass(A)
                                                                                           {get superclass}
 4: NC_1 \leftarrow aetNC(c_1)
                                                   determine noun class by augment and prefix or dictionary
 5: NC_2 \leftarrow aetNC(c_2)
                                                   determine noun class by augment and prefix or dictionary
 6: if checkNegation(A) = true then
          NC'_1 \leftarrow \text{lookup plural nounclass of } NC_1
 7:
                                                                                          {from known list}
 8:
          c_1' \leftarrow pluralizeNoun(c_1, NC_1')
          a_1 \leftarrow \text{lookup quantitative concord for } NC'_1
                                                                     {from quantitative concord (QC(all)) list}
10:
          n \leftarrow aetNSC(NC'_1)
                                                                       \{\text{get negative subject concord for } c'_1\}
11:
          p \leftarrow getPNC(NC_2)
                                                                                      \{\text{get pronomial for } c_2\}
12:
           Result \leftarrow ' a_1 c'_1 np c_2.'
                                                                                 {verbalise the disjointness}
13: else
14:
           a_2 \leftarrow getFirstChar(c_2)
                                                                                   \{\text{retrieve first letter of } c_2\}
15:
           select case
16:
                a_2 =  'i' then
17:
                     Result \leftarrow ' c_1 vc_2'
                                                                {verbalise as taxonomic subsumption with y}
                a_2 = \{\text{`a', 'o', 'u'}\} \text{ then }
18:
19:
                     Result \leftarrow ' c_1 \operatorname{ng} c_2'
                                                               {verbalise as taxonomic subsumption with ng}
20:
                a_2 \notin \{\text{`a', 'i', 'o', 'u',}\} \text{ then }
                     Result ← 'this is not a well-formed isiZulu noun'
21:
22:
           end select case
23: end if
24: return RESULT
```

```
1: C set of classes, language L with \sqsubseteq for subsumption and \neg for negation; variables: A
     axiom, NC_i nounclass, c_1, c_2 \in \mathcal{C}, a_1 term, a_2 letter: functions: actFirstClass(A),
     qetSecondClass(A), qetNC(C), pluralize
                                                                                                   tion(A).
                                                                   retrieve class and get
     qetFirstChar(C), qetNSC(NC_i), qetPNC(NC_i)
                                                                        its noun class
Require: axiom A with a \square has been retrieved
 2: c_1 \leftarrow getFirstClass(A)
                                                                                               get subclass
 3: c_2 \leftarrow qetSecondClass(A)
                                                                                            {get superclass
 4: NC_1 \leftarrow aetNC(c_1)
                                                   determine noun class by augment and prefix or dictionary
 5: NC_2 \leftarrow aetNC(c_2)
                                                    determine noun class by augment and prefix or dictionary
 6: if checkNegation(A) = true then
          NC'_1 \leftarrow \text{lookup plural nounclass of } NC_1
 7:
                                                                                            {from known list}
 8:
          c_1' \leftarrow pluralizeNoun(c_1, NC_1')
          a_1 \leftarrow \text{lookup quantitative concord for } NC'_1
                                                                     {from quantitative concord (QC(all)) list}
10:
           n \leftarrow aetNSC(NC'_1)
                                                                        \{\text{get negative subject concord for } c'_1\}
11:
          p \leftarrow getPNC(NC_2)
                                                                                       \{\text{get pronomial for } c_2\}
12:
           Result \leftarrow ' a_1 c'_1 np c_2.'
                                                                                  {verbalise the disjointness}
13: else
14:
           a_2 \leftarrow getFirstChar(c_2)
                                                                                    \{\text{retrieve first letter of } c_2\}
15:
           select case
16:
                a_2 =  'i' then
17:
                     Result \leftarrow ' c_1 vc_2'
                                                                 {verbalise as taxonomic subsumption with y}
                a_2 = \{\text{`a', 'o', 'u'}\} \text{ then }
18:
19:
                     Result \leftarrow ' c_1 \operatorname{ng} c_2'
                                                               {verbalise as taxonomic subsumption with ng}
                a_2 \notin \{\text{`a', 'i', 'o', 'u',}\} \text{ then }
20:
                     Result ← 'this is not a well-formed isiZulu noun'
21:
22:
           end select case
23: end if
24: return RESULT
```

```
1: C set of classes, language L with \sqsubseteq for subsumption and \neg for negation; variables: A
    axiom, NC_i nounclass, c_1, c_2 \in \mathcal{C}, a_1 term, a_2 letter; functions: getFirstClass(A),
    getSecondClass(A), getNC(C), pluralizeNoun(C, NC_i), checkNegation(A),
    qetFirstChar(C), qetNSC(NC_i), qetPNC(NC_i).
Require: axiom A with a \square has been retrieved
 2: c_1 \leftarrow getFirstClass(A)
                                                                                            {get subclass}
 3: c_2 \leftarrow qetSecondClass(A)
                                                                                          {get superclass}
 4: NC_1 \leftarrow aetNC(c_1)
                                                  determine noun class by augment and prefix or dictionary
 5: NC_2 \leftarrow aetNC(c_2)
                                                  determine noun class by augment and prefix or dictionary
 6: if checkNegation(A) = true then
          NC'_1 \leftarrow \text{lookup plural nounclass of } NC_1
 7:
                                                                                         {from known list}
          c'_1 \leftarrow pluralizeNoun(c_1, NC'_1)
 8:
          a_1 \leftarrow \text{lookup quantitative concord for } NC'_1
                                                                    {from quantitative sensord (QC(all)) list}
10:
          n \leftarrow aetNSC(NC'_1)
                                                                                                 \mathsf{vrd} for c'_i }
                                                                      {get
11:
          p \leftarrow getPNC(NC_2)
                                                                               'simple' ISA
                                                                                                 ial for co
12:
          Result \leftarrow ' a_1 c'_1 np c_2.'
                                                                                W anse the disjointness
13: else
14:
          a_2 \leftarrow getFirstChar(c_2)
                                                                                  {retrieve first letter of c2
15:
          select case
16:
                a_2 =  'i' then
17
                     Result \leftarrow ' c_1 vc_2'
                                                               {verbalise as taxonomic subsumption with v
                a_2 = \{\text{`a', 'o', 'u'}\} \text{ then }
18
                    Result \leftarrow ' c_1 \operatorname{ng} c_2'
19:
                                                              verbalise as taxonomic subsumption with no
20
                a_2 \notin \{\text{`a', 'i', 'o', 'u',}\} \text{ then }
21
                    Result ← 'this is not a well-formed isiZulu noun'
22
          end select case
23: end if
24: return RESULT
```

```
1: C set of classes, language L with \sqsubseteq for subsumption and \neg for negation; variables: A
     axiom, NC_i nounclass, c_1, c_2 \in \mathcal{C}, a_1 term, a_2 letter; functions: getFirstClass(A),
     getSecondClass(A), getNC(C), pluralizeNoun(C, NC_i), checkNegation(A),
     qetFirstChar(C), qetNSC(NC_i), qetPNC(NC_i).
Require: axiom A with a \square has been retrieved
 2: c_1 \leftarrow getFirstClass(A)
                                                                                             {get subclass}
 3: c_2 \leftarrow qetSecondClass(A)
                                                                                                    erclass
                                                                  negation (disjointness)
 4: NC_1 \leftarrow aetNC(c_1)
                                                  determine
                                                                                                  ctionary
 5: NC_2 \leftarrow aetNC(c_2)
                                                  determine noun class by ament and prefix or dictionary
 6: if checkNegation(A) = true then
          NC'_1 \leftarrow \text{lookup plural nounclass of } NC_1
 7:
                                                                                          from known list
 8:
          c'_1 \leftarrow pluralizeNoun(c_1, NC'_1)
 9:
          a_1 \leftarrow \text{lookup quantitative concord for } NC'_1
                                                                    {from quantitative concord (QC(all)) list}
10:
           n \leftarrow getNSC(NC'_1)
                                                                       \{\text{get negative subject concord for } c'_1\}
11:
          p \leftarrow getPNC(NC_2)
                                                                                      \{\text{get pronomial for } c_2\}
12:
           Result \leftarrow ' a_1 c'_1 np c_2.'
                                                                                 {verbalise the disjointness}
13: eise
14:
           a_2 \leftarrow getFirstChar(c_2)
                                                                                  {retrieve first letter of c2}
15:
           select case
16:
                a_2 =  'i' then
17:
                     Result \leftarrow ' c_1 vc_2'
                                                                {verbalise as taxonomic subsumption with y}
                a_2 = \{\text{`a', 'o', 'u'}\} \text{ then }
18:
19:
                     Result \leftarrow ' c_1 \operatorname{ng} c_2'
                                                              {verbalise as taxonomic subsumption with ng}
20:
                a_2 \notin \{\text{`a', 'i', 'o', 'u',}\} \text{ then }
                     Result ← 'this is not a well-formed isiZulu noun'
21:
22:
           end select case
23: end if
24: return RESULT
```

Conjunction

- Conjunction as enumeration uses na
- Changes into (a + i =) ne or (a + u =) no, depending on the first letter of the second noun

isiZulu NLG

- Prefixed to the second noun that drops its first letter
- Conjunction as connective of clauses: kanye or futhi
 - (C1) Milk □ Butter Ubisi nebhotela (Ubisi + na + Ibhotela)
 - (C2) Butter ☐ Milk Ibhotela nobisi (Ibhotela + na + Ubisi)
 - (C3) ...∃has_filling.Cream □ ∃has_Icing.Lemon_flavour... ...kune zigcwalisa ukhilimu kanye nezinye uqweqwe olunambitheka_ulamula...

23:

24: end if 25: return RESULT

end if

Algorithm 2 Determine the verbalization of conjunction in an axiom

```
1: \mathcal{R} is the set of relationships, \mathcal{A} of attributes, \mathcal{C} of classes, and language \mathcal{L}
     uses \sqcap to denote conjunction; variables: e_2, c_1 a letter, A axiom; functions:
     getNextVocabularyElement(A), getFirstChar(e_2).
Require: axiom with a \partial has been retrieved and position in string is known
 2: e_2 \leftarrow getNextVocabularyElement(A)
                                                                                  {retrieve element after the □}
 3: if e_2 \in \mathcal{R} \cup \mathcal{A} then
           Result \leftarrow 'kanve'
                                                                                         {verbalise 

as kanye}
 5: else
 6:
           if e_2 \in \mathcal{C} then
                 c_1 \leftarrow qetFirstChar(e_2)
                                                                                       {retrieve first letter of e_2}
                 select case
 8:
                       c_1 = 'i' then
 9:
10:
                            e_2^- \leftarrow \text{drop } c_1 \text{ from } e_2
11:
                            RESULT \leftarrow 'nee<sub>2</sub>''
                                                                                    {verbalise □ with ne- prefix}
12:
                       c_1 = 'u' then
13:
                            e_2^- \leftarrow \text{drop } c_1 \text{ from } e_2
14:
                            Result \leftarrow 'noe<sub>2</sub>''
                                                                                    {verbalise 

with no- prefix}
15:
                       c_1 =  'a' then
16:
                            e_2^- \leftarrow \text{drop } c_1 \text{ from } e_2
17:
                            RESULT \leftarrow 'nae_2''
                                                                                    {verbalise 

with na- prefix}
18:
                       c_1 \notin \{\text{'i', 'u', 'a'}\} \text{ then }
                            Result ← 'this is not a well-formed isiZulu noun'
19:
20:
                 end select case
21:
           else
22:
                 Result ← 'this is not a well-formed axiom'
```

25: return RESULT

```
Algorithm 2 Determine the verbalization of conjunction in an axiom
 1: R is the set of relationships, A of attributes
                                                                                           language \mathcal{L}
     uses □ to denote conjunction; variables:
                                                                                                     ctions:
                                                                  enum-and or conn-and?
     qetNextVocabularyElement(A), qetFirstCharacteristics
Require: axiom with a | has been retrieved and position string is known
 2: e_2 \leftarrow getNextVocabularuElement(A)
                                                                                {retrieve element after the □}
 3: if e_2 \in \mathcal{R} \cup \mathcal{A} then
          Result \leftarrow 'kanve'
                                                                                      {verbalise 

as kanye}
 5: else
 6:
          if e_2 \in \mathcal{C} then
                c_1 \leftarrow qetFirstChar(e_2)
                                                                                    {retrieve first letter of e_2}
                select case
 8:
                      c_1 = 'i' then
 9:
10:
                           e_2^- \leftarrow \text{drop } c_1 \text{ from } e_2
11:
                           RESULT \leftarrow 'nee<sub>2</sub>''
                                                                                 {verbalise □ with ne- prefix}
12:
                      c_1 = 'u' then
13:
                           e_2^- \leftarrow \text{drop } c_1 \text{ from } e_2
14:
                           Result \leftarrow 'noe<sub>2</sub>''
                                                                                 {verbalise 

with no- prefix}
15:
                      c_1 =  'a' then
16:
                           e_2^- \leftarrow \text{drop } c_1 \text{ from } e_2
17:
                           RESULT \leftarrow 'nae_2''
                                                                                 {verbalise 

with na- prefix}
18:
                      c_1 \notin \{\text{'i', 'u', 'a'}\} \text{ then }
                           Result ← 'this is not a well-formed isiZulu noun'
19:
20:
                end select case
21:
           else
22:
                 Result \leftarrow 'this is not a well-formed axiom'
23:
           end if
24: end if
```

21:

22:

23:

24: end if 25: return RESULT

else

end if

```
Algorithm 2 Determine the verbalization of conjunction in an axiom
 1: \mathcal{R} is the set of relationships, \mathcal{A} of attributes, \mathcal{C} of classes, and language \mathcal{L}
     uses \sqcap to denote conjunction; variables: e_2, c_1 a letter, \underline{A} axiom; functions:
     getNextVocabularyElement(A), getFirstChar(e_2)
                                                                              connective-and
Require: axiom with a \pi has been retrieved and posit
 2: e_2 \leftarrow getNextVocabularuElement(A)
                                                                                  D neve element after the □
 3: if e_2 \in \mathcal{R} \cup \mathcal{A} then
           Result \leftarrow 'kanve'
                                                                                         {verbalise 

as kanye}
 5: else
 6:
           if e_2 \in \mathcal{C} then
                 c_1 \leftarrow qetFirstChar(e_2)
                                                                                      {retrieve first letter of e_2}
                 select case
 8:
                       c_1 = 'i' then
 9:
10:
                            e_2^- \leftarrow \text{drop } c_1 \text{ from } e_2
11:
                            RESULT \leftarrow 'nee<sub>2</sub>''
                                                                                    {verbalise □ with ne- prefix}
12:
                       c_1 = 'u' then
13:
                            e_2^- \leftarrow \text{drop } c_1 \text{ from } e_2
14:
                            Result \leftarrow 'noe<sub>2</sub>''
                                                                                    {verbalise 

with no- prefix}
15:
                       c_1 =  'a' then
16:
                            e_2^- \leftarrow \text{drop } c_1 \text{ from } e_2
17:
                            RESULT \leftarrow 'nae_2''
                                                                                    {verbalise 

with na- prefix}
18:
                       c_1 \notin \{\text{'i', 'u', 'a'}\} \text{ then }
                            Result ← 'this is not a well-formed isiZulu noun'
19:
20:
                 end select case
```

Result ← 'this is not a well-formed axiom'

25: return RESULT

Algorithm 2 Determine the verbalization of conjunction in an axiom

R is the set of relationships, A of attributes, C of classes, and language L
uses □ to denote conjunction; variables: e₂, c₁ a letter, A axiom; functions:
getNextVocabularyElement(A), getFirstChar(e₂).

```
Require: axiom with a \partial has been retrieved and position in string is known
 2: e_2 \leftarrow getNextVocabularyElement(A)
                                                                                      {retrieve element after the □}
 3: if e_2 \in \mathcal{R} \cup \mathcal{A} then
           Result \leftarrow 'kanve'
                                                                                  enumerative-and
                                                                                                             s kanye}
 5: else
           if e_2 \in \mathcal{C} then
                  c_1 \leftarrow qetFirstChar(e_2)
                                                                                           \{\text{retrieve first letter of } e_2\}
 8:
                 select case
 9:
                        c_1 = 'i' then
10:
                             e_2^- \leftarrow \text{drop } c_1 \text{ from } e_2
11:
                             RESULT \leftarrow 'nee<sub>2</sub>''
                                                                                        {verbalise 

with ne- prefix}
12:
                        c_1 = 'u' then
13:
                             e_2^- \leftarrow \text{drop } c_1 \text{ from } e_2
                             RESULT \leftarrow 'noe<sub>2</sub>'
14:
                                                                                        {verbalise 

with no- prefix}
15:
                        c_1 =  'a' then
16:
                             e_2^- \leftarrow \text{drop } c_1 \text{ from } e_2
17:
                             RESULT \leftarrow 'nae_2''
                                                                                        {verbalise 

with na- prefix}
18:
                        c_1 \notin \{\text{'i', 'u', 'a'}\} \text{ then }
                             RESULT ← 'this is not a well-formed isiZulu noun'
19:
20:
                  end select case
21:
            else
22:
                  Result ← 'this is not a well-formed axiom'
23:
            end if
24: end if
```

Existential Quantification

'simple' option in front of the object property

Some other examples, and breakdown:

noun	NC	RC	QC	QSuffix
ihlamvana ('twig')	class 5	eli-	-lo-	-dwa
<i>isifundo</i> ('module')	class 7	esi-	-50-	-dwa
ushizi ('cheese')	class 3a	0-	- <i>ye</i> -	-dwa

• Pattern: $\langle All\text{-concord for NC}_x \rangle$ onke $\langle pl. N_1$, is in NC_x \rangle <conjugated verb> < N_2 of NC $_V>$ <RC for NC $_V>$ <QC for NC_{ν} >dwa.

NC	QC (all)		NEG SC	PRON	RC	QC_{dwa}	EC
	$ m QC_{oral+onke}$	QC_{nke}					
1	u -onke \rightarrow wonke	wo-	aka-	yena	0-	ye-	mu-
2	ba -onke $\rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
1a	u -onke \rightarrow wonke	wo-	aka-	yena	0-	ye-	mu-
2a	ba -onke $\rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
3a	u -onke \rightarrow wonke	wo-	aka-	wona	0-	ye-	mu-
(2a)	ba -onke $\rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
3	u -onke \rightarrow wonke	wo-	awu-	wona	0-	wo-	mu-
4	i-onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	mi-
5	li -onke $\rightarrow lonke$	lo-	ali-	lona	eli-	lo-	li-
6	a -onke \rightarrow onke	0-	awa-	wona	a-	wo-	ma-
7	si -onke \rightarrow sonke	so-	asi-	sona	esi-	so-	si-
8	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi	zo-	zi-
9a	i -onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	yi-
(6)	$\text{a-onke} \to \text{onke}$	0-	awa-	wona	a-	wo-	ma-
9	i -onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	yi-
10	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi-	zo-	zi-
11	lu -onke $\rightarrow lonke$	lo-	alu-	lona	olu-	lo-	lu-
(10)	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi-	zo-	zi-
14	ba -onke $\rightarrow bonke$	bo-	abu-	bona	obu-	bo-	bu-
15	ku -onke \rightarrow konke	zo-	aku-	khona	oku-	zo-	ku-

NC	QC (all)		NEG SC	PRON	RC	QC_{dwa}	EC
	$ m QC_{oral+onke}$	$ \mathbf{QC_{nke}} $					
1	u -onke \rightarrow wonke	wo-	aka-	yena	0-	ye-	mu-
2	ba -onke $\rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
1a	u -onke \rightarrow wonke	wo-	aka-	yena	0-	ye-	mu-
2a	ba -onke $\rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
3a	u -onke \rightarrow wonke	wo-	aka-	wona	0-	ye-	mu-
(2a)	ba -onke $\rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
3	u -onke \rightarrow wonke	wo-	awu-	wona	0-	wo-	mu-
4	i-onke \rightarrow yonke	yo-	ayi-	yona	e-	уо-	mi-
5	li -onke $\rightarrow lonke$	lo-	ali-	lona	eli-	lo-	li-
6	a -onke \rightarrow onke	0-	awa-	wona	a-	wo-	ma-
7	si -onke \rightarrow sonke	SO-	asi-	sona	esi-	so-	si-
8	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi	zo-	zi-
9a	i -onke \rightarrow yonke	yo-	ayi-	yona	e-	уо-	yi-
(6)	a -onke \rightarrow onke	0-	awa-	wona	a-	wo-	ma-
9	i-onke \rightarrow yonke	yo-	ayi-	yona	e-	уо-	yi-
10	zi -onke \rightarrow $zonke$	zo-	azi-	zona	ezi-	zo-	zi-
11	lu -onke $\rightarrow lonke$	lo-	alu-	lona	olu-	lo-	lu-
(10)	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi-	zo-	zi-
14	ba -onke $\rightarrow bonke$	bo-	abu-	bona	obu-	bo-	bu-
15	ku -onke \rightarrow konke	zo-	aku-	khona	oku-	zo-	ku-

NC	QC (all)		NEG SC	PRON	RC	QC_{dwa}	EC
	${ m QC}_{ m oral+onke}$	QC_{nke}					
1	u -onke \rightarrow wonke	wo-	aka-	yena	0-	ye-	mu-
2	ba -onke $\rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
1a	u -onke \rightarrow wonke	wo-	aka-	yena	0-	ye-	mu-
2a	ba -onke $\rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
3a	u -onke \rightarrow wonke	wo-	aka-	wona	0-	ye-	mu-
(2a)	ba -onke $\rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
3	u -onke \rightarrow wonke	wo-	awu-	wona	0-	wo-	mu-
4	i-onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	mi-
5	li -onke \rightarrow $lonke$	lo-	ali-	lona	eli-	lo-	li-
6	a -onke \rightarrow onke	0-	awa-	wona	a-	wo-	ma-
7	si -onke \rightarrow sonke	so-	asi-	sona	esi-	SO-	si-
8	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi	zo-	zi-
9a	i-onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	yi-
(6)	a-onke \rightarrow onke	0-	awa-	wona	a-	wo-	ma-
9	i-onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	yi-
10	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi-	zo-	zi-
11	lu -onke $\rightarrow lonke$	lo-	alu-	lona	olu-	lo-	lu-
(10)	zi -onke $\rightarrow zonke$	ZO-	azi-	zona	ezi-	zo-	zi-
14	ba -onke $\rightarrow bonke$	bo-	abu-	bona	obu-	bo-	bu-
15	ku -onke \rightarrow konke	zo-	aku-	khona	oku-	ZO-	ku-

Algorithm 3 Determine the verbalization of existential quantification with object property (first, basic, version)

```
    C set of classes, language L with □ for subsumption and ∃ for existential quan-

    tification; variables: A axiom, NC_i noun class, c_1, c_2 \in C, o \in R, a_1 a term;
    r_2, q_2 concords; functions: getFirstClass(A), getSecondClass(A), getNC(C),
    pluralizeNoun(C, NC_i), getRC(NC_i) getQC(NC_i).
Require: axiom A with a \sqsubseteq and a \exists on the rhs of the inclusion has been retrieved
2: c_1 \leftarrow qetFirstClass(A)
                                                                                          { get subclass }
3: c_2 \leftarrow qetSecondClass(A)
                                                                                        { get superclass }
4: o ← qetObjProp(A)
                                                                                    {get object property}
5: NC_1 \leftarrow qetNC(c_1)
                                                {determine noun class by augment and prefix or dictionary}
6: NC_2 \leftarrow qetNC(c_2)
                                                {determine noun class by augment and prefix or dictionary}
7: NC'_1 \leftarrow \text{lookup plural nounclass of } NC_1
                                                                                       {from known list}
8: c'_1 \leftarrow pluralizeNoun(c_1, NC'_1)
9: a_1 \leftarrow \text{lookup quantitative concord for } NC'_1
                                                                  {from quantitative concord (QC(all)) list}
10: o' ← AlgoConjugate(o, NC<sub>1</sub>)
                                                            {call algorithm AlgoConjugate to conjugate o}
11: r_2 \leftarrow aetRC(NC_2)
                                                                             \{\text{get relative concord for } c_2\}
12: q_2 \leftarrow getQC(NC_2)
                                                      \{get\ quantitative\ concord\ for\ c_2\ from\ the\ QC_{dwa}-list\}
13: Result \leftarrow ' a_1 c'_1 o' c_2 r_2q_2dwa.'
                                                                             {verbalise the simple axiom}
14: return RESULT
```

Example

• $\forall x \; (\mathsf{Professor}(x) \to \exists y \; (\mathsf{teaches}(x,y) \land \mathsf{Course}(y)))$

isiZulu NLG

00000000000000

- Each Professor teaches at least one Course

Example

Motivation

• $\forall x \; (\mathsf{Professor}(x) \to \exists y \; (\mathsf{teaches}(x,y) \land \mathsf{Course}(y)))$

isiZulu NLG

00000000000000

- Professor
 ☐ ∃ teaches.Course
- Each Professor teaches at least one Course
- $\forall x \ (\mathsf{uSolwazi}(x) \to \exists y \ (\mathsf{ufundisa}(x,y) \land \mathsf{lsifundo}(y)))$
- ?

 $\forall x \ (\mathsf{uSolwazi}(x) \to \exists y \ (\mathsf{ufundisa}(x,y) \land \mathsf{lsifundo}(y)))$ $\mathsf{uSolwazi} \sqsubseteq \exists \ \mathsf{ufundisa.lsifundo}$

$\forall x \ (\underline{uSolwazi}(x) \rightarrow$	NC	ATT	PRE	ľ v	v) ^	lsifundo(v)))
		AU		_^,	NC	QC (all)
uSolwazi ⊑ ∃ ufunc	1	u-	m(u)-	ŀ		
doctivazi = 1 draik	2	a-	ba-	ŀ		QC _{oral+onke}
laali iin NO	1a	u-	-	Ī.	1	u -onke \rightarrow wonke
look-up NC	$_{2a}$	0-	-		2	ba -onke $\rightarrow bonke$
pluralise ———	3a	u-	-	ļ.	1a	u -onke \rightarrow wonke
	(2a)	0-	-			<u>ba-onke</u> → bonke
for-all ————	3	u-	m(u)-	ļ.	3a	u -onke \rightarrow wonke
	4	i-	mi-		(2a)	ba -onke \rightarrow $bonke$
	5	i-	(li)-	ļ.	3	u -onke \rightarrow wonke
	6	a-	ma-		4	i-onke \rightarrow yonke
	7	i-	si-		5	li -onke \rightarrow $lonke$
	8	i-	zi-		6	a -onke \rightarrow onke
	9a	i-	-	ļ.	7	$si-onke \rightarrow sonke$
	(6)	a-	ma-		8	zi -onke \rightarrow $zonke$
	9	i(n)-	-	ļ.	9a	i-onke → yonke
	10	i-	zi(n)-		(6)	a -onke \rightarrow onke
	11	u-	(lu)-	ŀ	9	i-onke → yonke
	(10)	i-	zi(n)-		10	zi-onke → zonke
	14	u-	bu-	ŀ	11	lu -onke $\rightarrow lonke$
	15	u-	ku-	ŀ	(10)	zi -onke $\rightarrow zonke$
	17		ku-		14	ba-onke → bonke
Bonke oSolwazi					15	ku -onke \rightarrow konke

```
\forall x \; (\mathsf{uSolwazi}(x) \to \exists y \; (\mathsf{ufundisa}(x,y) \land \mathsf{lsifundo}(y)))
\mathsf{uSolwazi} \sqsubseteq \exists (\mathsf{ufundisa})! \dots \; \mathsf{for} \; \mathsf{relevant} \; \mathsf{NC}. \; \mathsf{Here}: \\ ngi- \\ u- \\ u- \\ si- \\ ni- \\ ba-
```


$$\forall x \ (uSolwazi(x) \rightarrow \exists y \ (ufundisa(x,y) \land lsifundo(y)))$$

 $uSolwazi \sqsubseteq \exists \ ufundisa(lsifundo)$

Bonke oSolwazi bafundisa Isifundo esisodwa

- Template-based approach is not applicable to isiZulu (and, more generally: Bantu languages that have noun classes)
 - Or: grammar engine needed
- Devising the patterns hampered by outdated literature
- Several preferences for patterns
- Algorithms nontrivial; covering:
 - 'simple' existential and universal quantification
 - taxonomic subsumption
 - negation (class disjointness)
 - conjunction

Conclusions

- Verbalizing formally represented knowledge in isiZulu requires a grammar engine even for the relatively basic language constructs
- Due to, principally:
 - the system of noun classes,
 - the system of complex agreement,
 - phonological conditioned copulatives, and
 - verb conjugation

A few constructors, their typical verbalization in English, and the basic options in isiZulu

DL sym-	Sample verbalization	Sample verbalization in isiZulu		
bol	English	(see text for additional rules)		
	is a	Depends on what is on the rhs of and desideratum:		
		A) semantic distinction		
		i) yi/ongu/uyi/ngu	(living thing)	
		ii) iyi	(non-living thing)	
		B) syntactic distinction		
		iii) ng (nouns commencing with a, o, or u		
		iv) y (nouns	(nouns commencing with i)	
П	and	Depends on the use of the □:		
		i) na/ne/no	(list of things)	
		ii) 1) futhi	(connective)	
		2) kanye	(connective)	
\neg	not	angi/akusiso/akusona/akubona/akulona/asibona/ akalona/akuyona		
3	1) some	Depends on position in axiom:		
	2) there exists	I. quantified over class, depends on meaning of class:		
	3) at least one	i) kuno	(living thing)	
		ii) kune	(non-living thing)	
		II. includes relation (preposition issue omitted):		
		1) [concords]dwa		
		2) noma [copulative + concord]phi		
		3) thize		
\forall	1) for all	Depends on what it is quantified over:		
	2) each	A) semantic distinction		
		i) wonke/bonke/sonke/zonke	(living thing)	
		ii) onke/konke/lonke/yonke	(non-living thing)	
		B) another semantic distinction		
		i) use noun class	🖹 🕨 🖪 (see Table 8) 🌱	

- To be done for 'full' OWL 2 EL and \mathcal{ALC} , mainly:
 - Transitivity
 - More elaborate axioms, such as $\forall R.C \sqsubseteq \exists S.(D \sqcap E)$
 - Negation in other cases
 - Union
- Conjugation of verbs present and past tense, and the prepositions (taught by, works for)
- Implement it

References I

Ronell Alberts, Thomas Fogwill, and C. Maria Keet,

Several required OWL features for indigenous knowledge management systems.

In P. Klinov and M. Horridge, editors, 7th Workshop on OWL: Experiences and Directions (OWLED 2012), volume 849 of CEUR-WS, page 12p, 2012. 27-28 May, Heraklion, Crete, Greece.

isiZulu NLG

M. Curland and T. Halpin.

Model driven development with NORMA.

In Proceedings of the 40th International Conference on System Sciences (HICSS-40), pages 286a-286a.

Los Alamitos, Hawaii.

Norbert E. Fuchs, Kaarel Kaliurand, and Tobias Kuhn.

Discourse Representation Structures for ACE 6.6.

Technical Report ifi-2010.0010, Dept of Informatics, University of Zurich, Switzerland, 2010.

Mustafa Jarrar, C. Maria Keet, and Paolo Dongilli.

Multilingual verbalization of ORM conceptual models and axiomatized ontologies.

Starlab technical report, Vrije Universiteit Brussel, Belgium, February 2006.

Tobias Kuhn.

A principled approach to grammars for controlled natural languages and predictive editors.

Journal of Logic, Language and Information, 22(1):33-70, 2013.

R. Schwitter, K. Kaljurand, A. Cregan, C. Dolbear, and G. Hart.

A comparison of three controlled natural languages for OWL 1.1.

In Proceedings of OWL: Experiences and Directions (OWLED'08 DC), 2008.

Washington, DC, USA metropolitan area, on 1-2 April 2008.

References II

Allan Third, Sandra Williams, and Richard Power.

OWL to English: a tool for generating organised easily-navigated hypertexts from ontologies. ${\color{blue} {\sf poster/demo\ paper},\ 2011}.$

10th International Semantic Web Conference (ISWC'11), 23-27 Oct 2011, Bonn, Germany.