Assignment 4 MAT 458

Q3: Suppose that there is some S so that $S \circ T = id_E$. First we claim that R(T) is closed. Suppose that $x_n \to x$, $Tx_n \to y$. Then we have that Tz = y for some z. By uniqueness of limits and injectivity we have that $Tx_n \to Tx$. Now let S be the left inverse of T. We claim that $\ker S$ is the compliment of R(T). If $v \in \ker S \cap R(T)$, then Sv = 0 but for some w, Tw = v so $0 = STw = id_Ew$ so w = 0 and so v = 0. Now if $v \in F$, $TSv - v = u \in \ker S$ so v = TSv - u. Suppose that R(T) is closed and admits a compliment G. Every $v \in F$ can be written as v = x + y, $v \in R(T)$, $v \in G$. Since $v \in R(T)$ we can write $v \in Tu$. Define $v \in Tu$. This will be our left inverse since $v \in Tu$.