Solutions to Sheet 3

Exercise 1

- 1. Show that $\mathcal{O}_K^{\times} = \{ x \in \mathcal{O}_K \mid \mathcal{N}_{K/\mathbb{Q}} = \pm 1 \}.$
- 2. Suppose that $K = \mathbb{Q}(\sqrt{m})$ for some negative squarefree integer m. Determine \mathcal{O}_K^{\times} .

Solution.

1. We know from the lecture that for any $x \in \mathcal{O}_K$, the norm $N_{K/\mathbb{Q}}(x)$ lies in \mathbb{Z} . It is easy to check (for example by defining the norm via the determinant) that the norm induces a homomorphism of groups $N_{K/\mathbb{Q}}: \mathcal{O}_K^{\times} \to \mathbb{Z}^{\times}$. This shows that units have norm ± 1 .

For the reverse inclusion, there are at least three solutions. One could argue that for $x \in \mathcal{O}_K$ with norm ± 1 , $\mu_x : \mathcal{O}_K \to \mathcal{O}_K$ (given by $\mu_x(a) = ax$) has determinant ± 1 , hence is invertible as a \mathbb{Z} -module homomorphism. Now the inverse comes from $x^{-1} \in K$, which now has to lie in \mathcal{O}_K (after some argumentation). Alternatively one can use the fact that

$$N_{K/\mathbb{Q}}(x) = \prod_{\sigma} \sigma(x) = x \prod_{\sigma \neq \sigma_0} \sigma(x) = \pm 1,$$

where σ runs over all inclusions of K into its algebraic closure.

The coolest solution (of the ones I know and in my naive opinion) uses the fact that $N_{K/\mathbb{Q}}(x)$ is the 0-th coefficient of the minimal polynomial of x. The minimal polynomial yields an equation

$$x^{d} + a_{d-1}x^{d-1} + \dots + a_{1}x + a_{0} = x^{d} + a_{d-1}x^{d-1} + \dots + a_{1}x \pm 1 = 0,$$

and we find

$$x\underbrace{(x^{d-1} + a_{d-1}x^{d-2} + \dots + a_2x + a_1)}_{- + x^{-1} \in \mathcal{O}_{\mathcal{V}}} = \mp 1.$$

2. Note that K/\mathbb{Q} is always an imaginary extension, so there is an embedding $K \hookrightarrow \mathbb{C}$ (well-defined up to complex conjugation) and the unique non-trivial element $\sigma \in \operatorname{Gal}(K/\mathbb{Q})$ is given by complex conjugation. Moreover, the norm is simply given by the square of the complex absolute value.

In what follows, we'll always consider K a subfield of \mathbb{C} . By part 1, we know that all units have absolute value 1, hence they lie on the unit circle. Furthermore, we also know that any $x \in \mathcal{O}_K$ has $\mathrm{Tr}_{K/\mathbb{Q}}(x) = 2 \operatorname{Re} x \in \mathbb{Z}$. These conditions are quite restrictive!

Figure 1: The only points that have a chance of lying in \mathcal{O}_K^{\times} are $\{\pm 1, \pm i, \pm \zeta_6, \pm \zeta_3\}$.

In fact one quickly verifies that the points $\{\pm 1, \pm i, \pm \zeta_6, \pm \zeta_3\}$ are the only points on the unit circle with real value $\in \frac{1}{2}\mathbb{Z}$. We have seen before that $i \in \mathcal{O}_K$ if m = -1 and $\zeta_6^{\mathbb{Z}} \subset \mathcal{O}_K$ if m = -3.

Finally, it is not hard to see that two non-isomorphic quadratic number fields have trivial intersection after choosing embeddings into \mathbb{C} . This follows from the fact that degree-2 extensions don't have intermediate extensions, and that $\mathbb{Q}(\sqrt{m})$ and $\mathbb{Q}(\sqrt{m'})$ are non-isomorphic if $m \neq m'$ (they have different discriminant). This finishes the characterization of the units the ring of integers of $\mathbb{Q}(\sqrt{m})$ for negative square-free integers m. It is given by the following subgroup of the multiplicative group of complex numbers:

$$\mathcal{O}_{\mathbb{Q}(\sqrt{m})}^{\times} = \begin{cases} i^{\mathbb{Z}} \cong \mathbb{Z}/4\mathbb{Z}, & \text{if } m = -1\\ \zeta_6^{\mathbb{Z}} \cong \mathbb{Z}/6\mathbb{Z}, & \text{if } m = -3\\ (-1)^{\mathbb{Z}} \cong \mathbb{Z}/2\mathbb{Z}, & \text{otherwise.} \end{cases}$$

Exercise 2

Let K and L be number fields and let $\varphi: K \to L$ be a ring homomorphism. Show that $\varphi(\mathcal{O}_K) \subset \mathcal{O}_L$.

Solution. We know that \mathcal{O}_L is the integral closure of \mathbb{Z} in L. This means \mathcal{O}_L is the subring of elements in L that arise as roots of polynomials in \mathbb{Z} . The same is true for \mathcal{O}_K in K. If any $x \in \mathcal{O}_K$ is a root of a monic polynomial $f_x(T) \in \mathbb{Z}[T]$. Then $\varphi(x) \in L$ is a root of f as well, as $f(\varphi(x)) = \varphi(f(x)) = 0$ (remember that any ring morphism is a homomorphism of abelian groups. In particular, φ is the identity on \mathbb{Z} and thereby does not change the coefficients of f).

Exercise 3

Let $m \in \mathbb{Z} \setminus \{0, \pm 1\}$ be a squarefree integer. Using Eisenstein's criterion, one shows that $X^3 - m \in \mathbb{Q}[X]$ is irreducible (you do not need to check this). Set $K = \mathbb{Q}[X]/(X^3 - m\mathbb{Q}[X])$, we write x for the image of X in K so that $x^3 = m$.

- 1. Show that $\Delta_{K/\mathbb{Q}}(1, x, x^2) = -3^3 m^2$.
- 2. Let $a, b, c \in \mathbb{Q}$. Compute $N_{K/\mathbb{Q}}(a + bx + cx^2)$.

Solution.

1. Fix a inclusion $K \hookrightarrow \overline{\mathbb{Q}}$ of K in the algebraic closure of \mathbb{Q} . There are two other inclusions of K into $\overline{\mathbb{Q}}$, namely those given by morphism sending x (a primitive element of K) to $\zeta_3 x$ and $\zeta_3^2 x$ (here we also fixed $\zeta_3 \in \overline{\mathbb{Q}}$. By Lemma 1.32 in the script we obtain

$$\Delta_{K/\mathbb{Q}}(1, x, x^2) = \det \begin{pmatrix} 1 & x & x^2 \\ 1 & \zeta_3 x & \zeta_3^2 x \\ 1 & \zeta_3^2 x & \zeta_3 x^2 \end{pmatrix}^2.$$

The determinant of the matrix is readily computed to $3x^3(\zeta_3^2-\zeta_3)$, which has square $9x^6(-3)=-3^3m^2$, as desired.

2. Let $\alpha = a + bx + cx^2$. Let B be the basis $(1, x, x^2)$ of K as a \mathbb{Q} vector space. Then α sends 1 to the vectors (a, b, c), x to the vector (mc, a, b) and x^2 to the vector (mb, mc, a). We find that as a matrix with respect to B, multiplication by α is given by

$$\begin{pmatrix} a & mc & mb \\ b & a & mc \\ c & b & a \end{pmatrix},$$

and the determinant of this matrix is (hopefully)

$$a^3 + mb^3 + m^2c^3 - 3mabc$$
.

This is $N_{K/\mathbb{Q}}(\alpha)$.

Exercise 4

To the right, you do not see the flag of Nepal. The ration of its height to its width is equal to a number $\alpha \in \mathbb{R}$ such that $K := \mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{59 - 24\sqrt{2}})$.

1. Show that $[K : \mathbb{Q}] = 4$ and that

$$\left(1, \sqrt{59 - 24\sqrt{2}}, \sqrt{2}, \sqrt{2}\sqrt{59 - 24\sqrt{2}}\right)$$

is a \mathbb{Q} -basis of K.

- 2. Show that $\beta := (-1 + \sqrt{59 24\sqrt{2}}/\sqrt{2} \in \mathcal{O}_K$.
- 3. Set $F = \mathbb{Q}(\sqrt{2})$. Show that $2(59 24\sqrt{2})\mathcal{O}_K \subset \mathcal{O}_F[\beta]$.

Solution.

1. First, after squaring twice we find that α is a root of the polynomial

$$f(X) = X^4 - 118X^2 + 2329.$$

We find that f is irreducibe by seeing that there are no rational roots to f (we only have to check divisors of 2329), and the approach

$$f(X) = (aX^2 + bX + c)(dX^2 + eX + f)$$

reveals that there is no factorization.¹ This shows that $(1, \alpha, \alpha^2, \alpha^3)$ is a basis for L/\mathbb{Q} . Note that $\mathbb{Q}(\alpha^2) = \mathbb{Q}(\sqrt{2})$. This shows that $(1, \alpha, \sqrt{2}, \sqrt{2}\alpha)$ is a basis too.

2. Note that $\beta^2 = 30 - 12\sqrt{2} \in \mathcal{O}_K$ and that $\beta = \sqrt{2}^{-1}(-1 + \alpha) \in K$. As \mathcal{O}_K in integrally closed in K, this implies that $\beta \in \mathcal{O}_K$. Indeed, $\beta \in K = \operatorname{Frac}(\mathcal{O}_K)$ is a root of the monic polynomial $T^2 - \beta^2 \in \mathcal{O}_K[T]$.

¹Alternatively, ask Wolframalpha or smth idk.

3. As $(1,\beta)$ is an F-basis for K, the lecture notes reveal the fact that

$$\Delta_{K/F}(1,\beta)\mathcal{O}_K \subseteq \mathcal{O}_F + \beta\mathcal{O}_F \subseteq \mathcal{O}_F[\beta].$$

So perhaps calculating the discriminant solves the exercise in an instant. The minimal polynomial of α over F is given by $T^2-(59-24\sqrt{2})=0$, which shows that $\operatorname{Gal}(K/F)$ is the group of order 2 generated by the F-linear K-automorphism σ that sends α to $-\alpha$ (i.e., $\sigma(x+\alpha y)=x-\alpha y$). Writing $\beta=\frac{1-\alpha}{\sqrt{2}}$, we find that

$$\Delta_{K/F}(1,\beta) = \det \begin{pmatrix} 1 & \beta \\ 1 & \sigma(\beta) \end{pmatrix}^2 = (\sigma(\beta) - \beta)^2 = 2\alpha^2.$$

This is exactly what we needed. The result from the lecture now implies

$$\mathcal{O}_F[\beta] \supseteq \Delta_{K/F}(1,\beta)\mathcal{O}_K = 2\alpha^2\mathcal{O}_K = 2(59 - 24\sqrt{2})\mathcal{O}_K.$$