STAT 3355 Introduction to Data Analysis

Lecture 08: Summaries for Univariate Data II

Created by: Qiwei Li Assistant Professor of Statistics Presented by: Octavious Smiley Assistant Professor of Instruction

Department of Mathematical Sciences The University of Texas at Dallas

Last Class

lacksquare Summarize a univariate discrete data x

Discrete	
table(x)	
al barplot(table(x))	
pie(table(x))	
dotchart2(table(x))	

Learning Goals

lacksquare Summarize a univariate continuous data x

	Discrete	Continuous	
Numerical	table(x)		
Graphical	barplot(table(x))		
	pie(table(x))		
	dotchart2(table(x))		

Learning Goals

- Summarize a univariate data in three ways
 - Center
 - Spread
 - Shape
- Numerical summaries for continuous data
 - Center: The sample mean and the sample median
 - Spread: The sample variance (standard deviation) and the IQR

Continuous Data

- Unlikely for a pair of samples to share the same value
- Data type
 - Integer (if the number of unique values is large)
 - Numeric data
- Examples
 - The height of person in cm
 - The weight of a person in lb
 - The age of a person in year
 - The weekly self-learning time for STAT3355 in minute

Denote a univariate continuous dataset by

$$\boldsymbol{x} = [x_1, \dots, x_i, \dots, x_n], \text{ where } x_i \in \mathbb{R}$$

The sample mean

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} (x_1 + \ldots + x_i + \ldots + x_n)$$

- Interpretation
 - The balance point
 - "Centering": Average out the data so that $\bar{x}=0$

$$\hat{\boldsymbol{x}} = [x_1 - \bar{x}, \dots, x_i - \bar{x}, \dots, x_n - \bar{x}]$$

- Implementation in R
 - lacksquare x is a numeric vector

```
\blacksquare mean(x, na.rm = TRUE)
```

- lacksquare x is a numeric variable in a data frame X
 - \blacksquare mean(X\$x_name, na.rm = TRUE)
- $lue{}$ Calculate the mean for each column in a numeric matrix or a data frame $oldsymbol{X}$
 - \blacksquare colMeans(X, na.rm = TRUE)
 - \blacksquare apply(X, MARGIN = 2, mean, na.rm = TRUE)

Examples

```
library(UsingR)
# Load data babies
data("babies")
# Birth weight variable
mean(babies$wt)
# Mother age variable
x <- babies$age
mean(x)
index_99 \leftarrow which(x == 99)
x[index_99] \leftarrow NA
mean(x, na.rm = TRUE)
```

Other Types of Mean

Geometric mean

$$ar{x}_{\mathsf{GM}} = \left(\prod_{i=1}^n x_i\right)^{\frac{1}{n}} = \left(x_1 \dots x_i \dots x_n\right)^{\frac{1}{n}}$$

Rates of growth

Year	GDP (Trillion)	Annual growth	Ratio
2017	59,915	NA	NA
2018	62,805	4.8%	1.048
2019	65,095	3.7%	1.037
2020	63,028	-3.2%	0.968
2021	69,288	9.9%	1.099

Other Types of Mean

Harmonic mean

$$\bar{x}_{\mathsf{HM}} = n \left(\sum_{i=1}^{n} \frac{1}{x_i} \right)^{-1} = \frac{n}{\left(\frac{1}{x_1} + \ldots + \frac{1}{x_i} + \ldots + \frac{1}{x_n} \right)}$$

Ratios, e.g. speed (distance per unit of time)

Date	Flight no.	Speed (mph)	Departure	Arrival
Sep 22	WN5	532	DAL	HOU
Sep 22	WN4	500	HOU	DAL
Sep 21	WN5	492	DAL	HOU
Sep 21	WN4	550	HOU	DAL
Sep 20	WN5	513	DAL	HOU

Relationship: $\bar{x} \geq \bar{x}_{GM} \geq \bar{x}_{HM}$, where equality holds if and only if all x_i 's are equal

Denote a univariate continuous dataset by

$$\boldsymbol{x} = [x_1, \dots, x_i, \dots, x_n], \text{ where } x_i \in \mathbb{R}$$

lacksquare Sort the n values in an ascending order

$$\boldsymbol{x}_{\mathsf{sorted}} = \left[x_{[1]}, \dots, x_{[i]}, \dots, x_{[n]}\right], \text{ where } x_{[i+1]} \geq x_{[i]}$$

The sample median

$$M = \begin{cases} x_{[k+1]} & \text{if } n = 2k+1\\ \left(x_{[k]} + x_{[k+1]}\right)/2 & \text{if } n = 2k \end{cases}$$

- Interpretation
 - The center by count
 - A point that splits the data in half
 - Resistant to the extremely small or large values in x

- Implementation in R
 - lacksquare x is a numeric vector

```
median(x, na.rm = TRUE)
quantile(x, probs = 0.5, na.rm = TRUE)
summary(x)["Median"]
```

- lacksquare x is a numeric variable in a data frame X
 - median(X\$x_name, na.rm = TRUE)
 quantile(X\$x_name, probs = 0.5, na.rm = TRUE)
 summary(X\$x_name)["Median"]
- lacksquare Calculate the median for each column in a numeric matrix or a data frame $oldsymbol{X}$
 - \blacksquare apply(X, MARGIN = 2, median, na.rm = TRUE)

Examples

```
library(UsingR)
# Load data babies
data("babies")
# Birth weight variable
mean(babies$wt)
median(babies$wt)
summary(babies$wt)
# Load data CEO compensation
data("exec.pay")
mean(exec.pay)
median(exec.pay)
```

- Mean and median can give different senses of center
- Examples: Fuel efficiency by year (https://fueleconomy.gov/)
 - Highway MPG

Year	Median	Mean	Ratio
1989	22	22.47	1.02
1992	22	22.44	1.02
1995	22	22.67	1.03
1998	23	23.55	1.02
2001	23	23.33	1.01
2004	23	23.06	1.00
2007	23	23.08	1.00
2010	25	24.97	1.00

- Mean and median can give different senses of center
- Examples: Household net worth in U.S. by year
 - Income

Year	Median (\$)	Mean (\$)	Ratio
1989	79,100	313,600	4.0
1992	75,100	282,900	3.8
1995	81,900	300,400	3.7
1998	95,600	377, 300	3.9
2001	106, 100	487,000	4.6
2004	107,200	517, 100	4.8
2007	126,400	584,600	4.6
2010	77,300	498,800	6.5

- Real-estate prices
- Waiting times for auto repairs/maintenance

Denote a univariate continuous dataset by

$$\boldsymbol{x} = [x_1, \dots, x_i, \dots, x_n], \text{ where } x_i \in \mathbb{R}$$

Sort the n values in an ascending order

$$m{x}_{\mathsf{sorted}} = \left[x_{[1]}, \dots, x_{[i]}, \dots, x_{[n]}\right], \text{ where } x_{[i+1]} \geq x_{[i]}$$

lacksquare The p-th quantile, where $p \in [0,1]$

$$Q(p) = \begin{cases} x_{[k]} & \text{if } k = p(n-1) + 1 \in \mathbb{N} \\ (1-p)x_{[k]} + px_{[k+1]} & \text{if } (n-1)p < k \le (n-1)p + 1 \end{cases}$$

- Interpretation
 - 100p% of the data is less than the value of Q(p)
 - 100(1-p)% of the data is more than the value of Q(p)

- Implementation in R
 - lacksquare x is a numeric vector

```
\blacksquare quantile(x, probs = c(...) na.rm = TRUE)
```

- summary(x)
- lacksquare x is a numeric variable in a data frame X
 - quantile(X\$x_name, probs = c(...), na.rm = TRUE)
 - \blacksquare summary(X\$x_name)
- Calculate the p-th sample quantile for each column in a numeric matrix or a data frame X
 - apply(X, MARGIN = 2, quantile, probs = c(...),
 na.rm = TRUE)

- Special cases
 - $\mathbb{Q}(0.5)$: Median
 - lacksquare Q(0) and Q(1): Minimum and maximum
 - \blacksquare Q(0.25) and Q(0.75): 1st (lower) and 2nd (upper) quartiles
 - $\blacksquare \ Q(0.2), \ Q(0.4), \ Q(0.6), \ {\rm and} \ Q(0.8): \ 1{\rm st}, \ 2{\rm nd}, \ 3{\rm rd}, \ {\rm and} \ 4{\rm th}$ quintiles

Examples

```
# Get Q(0), Q(1)
range(exec.pay)
# Get Q(0), Q(0.25), Q(0.5), Q(0.75), Q(1)
summary(exec.pay)
# Get Q(0.2), Q(0.4), Q(0.6), Q(0.8)
quantile(exec.pay, probs = seq(0.2, 0.8, by
   = 0.2)
# Get any p-th quantile
p < -0.15
quantile(exec.pay, probs = p)
```

The Trimmed Mean

Denote a univariate continuous dataset by

$$\boldsymbol{x} = [x_1, \dots, x_i, \dots, x_n], \text{ where } x_i \in \mathbb{R}$$

The trimmed mean

$$\bar{x}_{\mathsf{TM}}(p) = \frac{\sum_{i=1}^{n} x_i I(Q(p) \le x_i \le Q(1-p))}{\sum_{i=1}^{n} I(Q(p) \le x_i \le Q(1-p))}$$

- Interpretation
 - The "bulk" point after ignoring extreme points at both ends
- Implementation in R
 - mean(x, trim = p, na.rm = TRUE), where $p \in [0, 0.5]$

The Trimmed Mean

Examples

```
mean(exec.pay)
median(exec.pay)
mean(exec.pay, trim = 0.05)
mean(exec.pay, trim = 0.2)
```


- The data set rivers in the package UsingR contains the lengths (in miles) of 141 major rivers in North America
 - What proportion are less than the median length?
 - What proportion are less than the mean length?
 - \blacksquare Compare the mean, median, and 25%-trimmed mean. Is there a big difference among the three numbers?

Solutions

```
# Load data
data("rivers")
x <- rivers
n <- length(x)

# What proportion are less than the mean
   length
x_bar <- mean(x)
print(sum(x < x_bar)/n)</pre>
```

Solutions

```
# Compare the mean, median, and 25%-trimmed
    mean
print(mean(x))
print(median(x))
print(mean(x, trim = 0.25))
```

Denote a univariate continuous dataset by

$$\boldsymbol{x} = [x_1, \dots, x_i, \dots, x_n], \text{ where } x_i \in \mathbb{R}$$

The sample variance

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

- lacktriangle The sample standard deviation s
- Interpretation
 - Large values indicate more spread-out data

- Interpretation
 - "Centering": Average out the data so that $\bar{x} = 0$

$$\hat{\boldsymbol{x}} = [x_1 - \bar{x}, \dots, x_i - \bar{x}, \dots, x_n - \bar{x}]$$

 \blacksquare "Scaling": Average out and normalized the data so that $\bar{x}=0$ and s=1

$$z = \left[\frac{x_1 - \bar{x}}{s}, \dots, \frac{x_i - \bar{x}}{s}, \dots, \frac{x_n - \bar{x}}{s}\right]$$

■ Empirical rule: If the data is bell-shaped, then 68%, 95%, and 99.7% of the data have a z-score in [-1,1], [-2,2], and [-3,3]

- Implementation in R
 - \mathbf{x} is a numeric vector

```
\blacksquare var(x, na.rm = TRUE)
```

- lacksquare x is a numeric variable in a data frame X
 - = var(X\$x_name, na.rm = TRUE)
- Calculate the sample variance for each column in a numeric matrix or a data frame X
 - \blacksquare apply(X, MARGIN = 2, var, na.rm = TRUE)

Examples

```
# Sample variance
var(babies$wt)
# Sample standard deviation
sqrt(var(babies$wt))
# Data scaling (calculating z-scores)
z <- c(scale(babies$wt, center = TRUE, scale
    = TRUE))
z <- (babies$wt - mean(babies$wt))/sqrt(var(</pre>
   babies $wt))
sum(abs(z) \le 1) / length(z)
sum(abs(z) \le 2) / length(z)
sum(abs(z) \le 3) / length(z)
```

The InterQuartile Range (IQR)

Denote a univariate continuous dataset by

$$\boldsymbol{x} = [x_1, \dots, x_i, \dots, x_n], \text{ where } x_i \in \mathbb{R}$$

- lacksquare The lower and upper quartiles of $m{x}$ are Q(0.25) and Q(0.75)
- The interquartile range is

$$IQR = Q(0.75) - Q(0.25)$$

- Interpretation
 - $lue{}$ The range of the middle 50% of $m{x}$
 - lacksquare Resistant to the extremely small or large values in x
 - Range = Q(1) Q(0)

The InterQuartile Range (IQR)

- Implementation in R
 - \mathbf{x} is a numeric vector
 - \blacksquare IQR(x, na.rm = TRUE)
 - diff(quantile(x, probs = c(0.25, 0.75), na.rm = TRUE))
 - lacksquare x is a numeric variable in a data frame X
 - \blacksquare IQR(X\$x_name, na.rm = TRUE)
 - diff(quantile(X\$x_name, probs = c(0.25, 0.75),
 na.rm = TRUE))
 - Calculate the IQR for each column in a numeric matrix or a data frame X
 - \blacksquare apply(X, MARGIN = 2, IQR, na.rm = TRUE)

The InterQuartile Range (IQR)

Examples

```
# IQR
IQR(babies$wt)

# Range
range(babies$wt)
```

The Median Absolute Deviation (MAD)

Denote a univariate continuous dataset by

$$\boldsymbol{x} = [x_1, \dots, x_i, \dots, x_n], \text{ where } x_i \in \mathbb{R}$$

- The median is Q(0.5) or M
- lacksquare Subtract each entry in $oldsymbol{x}$ by M, take the absolute value

$$y = [|x_1 - M|, \dots, |x_i - M|, \dots, |x_n - M|]$$

and sort the n values in an ascending order

The median absolute deviation is

$$\mathsf{MAD} = \begin{cases} 1.4826 \cdot y_{[k+1]} & \text{if } n = 2k+1 \\ 1.4826 \cdot \left(y_{[k]} + y_{[k+1]}\right)/2 & \text{if } n = 2k \end{cases}$$

- Interpretation
 - Resistant to the extreme (especially larger) values

The Median Absolute Deviation (MAD)

- Implementation in R
 - lacksquare x is a numeric vector

```
\blacksquare mad(x, na.rm = TRUE)
```

- lacksquare x is a numeric variable in a data frame X
 - \blacksquare mad(X\$x_name, na.rm = TRUE)
- $lue{}$ Calculate the MAD for each column in a numeric matrix or a data frame $oldsymbol{X}$
 - \blacksquare apply(X, MARGIN = 2, mad, na.rm = TRUE)

The Median Absolute Deviation (MAD)

Examples

```
x <- babies$wt

# Standard deviation
sqrt(var(x))

# Self-defined without the adjustment
median(abs(x - median(x)))

# MAD
mad(x)</pre>
```

- The data set rivers in the package UsingR contains the lengths (in miles) of 141 major rivers in North America
 - Compare the standard deviation, IQR, and MAD. Is there a big difference among the three numbers?
 - Scale the data so that the data has zero-mean and unit variance
 - Verify the empirical rule

Solutions

```
# Load data
data("rivers")
x <- rivers
n <- length(x)
# Compare the standard deviation, IQR, and
   MAD
print(IQR(x))
print(mad(x))
# Obtain the z-scores
x_bar <- mean(x)
s <- sqrt(var(x))
z \leftarrow (x - x_bar) / s
```

Solutions

```
# Verify the empirical rule
sum(abs(z) <= 1) / length(z)
sum(abs(z) <= 2) / length(z)
sum(abs(z) <= 3) / length(z)

# Verify the empirical rule in log scale
z <- (log(x) - mean(log(x))) / sd(log(x))
sum(abs(z) <= 1) / length(z)
sum(abs(z) <= 2) / length(z)
sum(abs(z) <= 3) / length(z)</pre>
```

After-class Reading

- Using R for Introductory Statistics (1st Ed.) by John Verzani
- Chapter 2 Univariate data
 - Section 2.2 Numeric data
 - Subsection 2.2.3 The center: mean, median, and mode
 - Subsection 2.2.4 Variation: the variance, standard deviation, and IQR

After-class Reading

- Using R for Introductory Statistics (2nd Ed.) by John Verzani
- Chapter 2 Univariate data
 - Section 2.3 Numeric summaries