Linear Algebra Brushup

David Brander

2 September 2016

Vector Spaces

A vector space is a space V where you can take *linear combinations* without leaving the space, i.e.,

$$a\mathbf{u} + b\mathbf{v} \in V$$
,

for any vectors \mathbf{u} , $\mathbf{v} \in V$ and scalars a, $b \in \mathbb{R}$.

Examples

- $\blacktriangleright \ \mathbb{R}, \mathbb{R}^2, \mathbb{R}^3, \ldots, \mathbb{C}, \mathbb{C}^2, \mathbb{C}^3, \ldots.$
- ▶ The set of *solutions* to a homogeneous linear equation:

$$A\mathbf{x} = 0.$$

▶ The set of real (or complex) polynomials of degree *n*.

Vector space axioms: see textbook

Vector Spaces

A vector space is a space V where you can take *linear combinations* without leaving the space, i.e.,

$$\mathbf{au} + \mathbf{bv} \in V$$
,

for any vectors \mathbf{u} , $\mathbf{v} \in V$ and scalars a, $b \in \mathbb{R}$.

Examples

- $ightharpoonup \mathbb{R}, \mathbb{R}^2, \mathbb{R}^3, \ldots, \mathbb{C}, \mathbb{C}^2, \mathbb{C}^3, \ldots$
- ▶ The set of *solutions* to a homogeneous linear equation:

$$A\mathbf{x} = 0$$
.

▶ The set of real (or complex) polynomials of degree *n*.

Vector space axioms: see textbook.

Span and spanning set

The *span* of a set of vectors $T \subseteq V$:

span
$$T = \{a_1 \mathbf{v}_1 + \cdots + a_n \mathbf{v}_n \mid a_i \in \mathbb{R}, \ \mathbf{v}_i \in T\}.$$

If V = span T, then T is called a *spanning set* for V.

e.g.
$$T = \{(1,0,0), (0,2,0), (1,1,0)\}$$

is a spanning set for the *xy*-plane $V = \mathbb{R}^2 \times \{0\} \subset \mathbb{R}^3$.

Linearly independent set

 $T \subset V$ is called *linearly dependent* if there exists a non trivial linear combination of vectors in T that gives zero, i.e.:

$$a_1\mathbf{v}_1+\cdots+a_n\mathbf{v}_n=0,$$

for some scalars a_i and vectors $v_i \in T$.

e.g.
$$T = \{(1,0,0), (0,2,0), (1,1,0)\}$$
 is linearly dependent:

$$(1,0,0) + (1/2)(0,2,0) - (1,1,0) = (0,0,0).$$

Otherwise we call the set T linearly independent.

Basis and dimension

A basis of a vector space V is a linearly independent spanning set.

e.g. standard basis for $\ensuremath{\mathbb{R}}^2$

$$e_1 = (1,0), \quad e_2 = (0,1).$$

Another basis:

$$\tilde{e}_1 = (1,1), \quad \tilde{e}_2 = (1,-1).$$

Check for linear independence:

$$\text{det}[\tilde{e}_1;\,\tilde{e}_2] = \text{det}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = -2 \neq 0$$

The cardinality of any basis for *V* is the same, called the *dimension*.

Basis and dimension

A *basis* of a vector space *V* is a linearly independent spanning set.

e.g. standard basis for \mathbb{R}^2

$$e_1 = (1,0), \quad e_2 = (0,1).$$

Another basis:

$$\tilde{e}_1 = (1,1), \quad \tilde{e}_2 = (1,-1).$$

Check for linear independence:

$$\text{det}[\tilde{e}_1;\tilde{e}_2]=\text{det}\begin{pmatrix}1&1\\1&-1\end{pmatrix}=-2\neq 0.$$

The cardinality of any basis for *V* is the same, called the *dimension*.

Basis and dimension

A *basis* of a vector space *V* is a linearly independent spanning set.

e.g. standard basis for \mathbb{R}^2

$$e_1 = (1,0), \quad e_2 = (0,1).$$

Another basis:

$$\tilde{e}_1 = (1,1), \quad \tilde{e}_2 = (1,-1).$$

Check for linear independence:

$$det[\tilde{e}_1;\tilde{e}_2]=det\begin{pmatrix}1&1\\1&-1\end{pmatrix}=-2\neq 0.$$

The cardinality of any basis for *V* is the same, called the *dimension*.

Digression: Affine Spaces

An affine space is like a vector space if you forget about the origin.

Cannot add points consistently:

$$(0,0) + (1,1) = (1,1)$$
 but $(1,3) + (2,4) = (3,7)$

Can *subtract* points to get a *vector* between them:

$$(1,1)-(0,0)=(1,1)$$
 and $(2,4)-(1,3)=(1,1)$

Affine Combinations

Arbitrary linear combinations make no sense in affine space. Instead consider affine combinations

$$\sum_{j=1}^{n} a_j \mathbf{v}_j, \quad \text{where} \quad \sum_{j=1}^{n} a_j = 1.$$

If we translate the \mathbf{v}_j by T then the affine combination is also translated by T:

$$\sum_{j=1}^{n} a_j(\mathbf{v}_j + T) = \sum_{j=1}^{n} a_j \mathbf{v}_j + \left(\sum_{j=1}^{n} a_j\right) T$$
$$= \left(\sum_{j=1}^{n} a_j \mathbf{v}_j\right) + T.$$

Linear Maps between Vector Spaces

Let U and V be vector spaces. A map $L: U \to V$ is called *linear* if it preserves linear combinations. Equivalently, we require:

- ▶ $L(\mathbf{u} + \mathbf{v}) = L(\mathbf{u}) + L(\mathbf{v})$ for all $\mathbf{u}, \mathbf{v} \in U$.
- ▶ $L(\alpha \cdot \mathbf{u}) = a \cdot L(\mathbf{u})$ for all $\mathbf{u} \in U$ and $a \in \mathbb{R}$.

Examples of linear maps are

- Rotation, scaling, and shearing of geometric vectors.
- Projection from vectors in space to a vectors in a plane.
- ▶ Differentiation $C^{\infty}(\mathbb{R},\mathbb{R}) \to C^{\infty}(\mathbb{R},\mathbb{R}) : f \mapsto f'$.
- ▶ Differentiation $C^n(\mathbb{R},\mathbb{R}) \to C^{n-1}(\mathbb{R},\mathbb{R}) : f \mapsto f'$.
- ▶ Integration $C^0(\mathbb{R}, \mathbb{R}) \to C^0(\mathbb{R}, \mathbb{R}) : f \mapsto (x \mapsto \int_0^x f(t) dt)$

Linear Maps between Vector Spaces

Let U and V be vector spaces. A map $L: U \to V$ is called *linear* if it preserves linear combinations. Equivalently, we require:

- ► $L(\mathbf{u} + \mathbf{v}) = L(\mathbf{u}) + L(\mathbf{v})$ for all $\mathbf{u}, \mathbf{v} \in U$.
- ▶ $L(\alpha \cdot \mathbf{u}) = a \cdot L(\mathbf{u})$ for all $\mathbf{u} \in U$ and $a \in \mathbb{R}$.

Examples of linear maps are

- Rotation, scaling, and shearing of geometric vectors.
- Projection from vectors in space to a vectors in a plane.
- ▶ Differentiation $C^{\infty}(\mathbb{R}, \mathbb{R}) \to C^{\infty}(\mathbb{R}, \mathbb{R}) : f \mapsto f'$.
- ▶ Differentiation $C^n(\mathbb{R}, \mathbb{R}) \to C^{n-1}(\mathbb{R}, \mathbb{R}) : f \mapsto f'$.
- ▶ Integration $C^0(\mathbb{R},\mathbb{R}) \to C^0(\mathbb{R},\mathbb{R}) : f \mapsto (x \mapsto \int_0^x f(t) dt)$

Matrix of a linear map of finite dimensional spaces

Let $L: U \to V$ be a linear map, and let $\mathbf{e}_1, \dots, \mathbf{e}_n$ and $\mathbf{f}_1, \dots, \mathbf{f}_m$ be bases for U and V respectively.

For each \mathbf{e}_j he vector $L(\mathbf{e}_j)$ can be expressed uniquely in terms of $\mathbf{f}_1, \dots, \mathbf{f}_m$:

$$L(\mathbf{e}_j) = \sum_{i=1}^m a_{ij}\mathbf{f}_i.$$

The matrix of the linear map *L* with respect to these bases is

$$\mathbf{A} = \begin{pmatrix} a_{1\,1} & \dots & a_{1\,n} \\ \vdots & \ddots & \vdots \\ a_{m\,1} & \dots & a_{m\,n} \end{pmatrix}.$$

- Addition and scalar multiplication of linear maps
 addition and scalar multiplication of the matrices
- ▶ Composition of linear maps ← matrix multiplication.

Matrix of a linear map of finite dimensional spaces

Let $L: U \to V$ be a linear map, and let $\mathbf{e}_1, \dots, \mathbf{e}_n$ and $\mathbf{f}_1, \dots, \mathbf{f}_m$ be bases for U and V respectively.

For each \mathbf{e}_j he vector $L(\mathbf{e}_j)$ can be expressed uniquely in terms of $\mathbf{f}_1, \dots, \mathbf{f}_m$:

$$L(\mathbf{e}_j) = \sum_{i=1}^m a_{ij}\mathbf{f}_i.$$

The matrix of the linear map L with respect to these bases is

$$\mathbf{A} = \begin{pmatrix} a_{1\,1} & \dots & a_{1\,n} \\ \vdots & \ddots & \vdots \\ a_{m\,1} & \dots & a_{m\,n} \end{pmatrix}.$$

- Addition and scalar multiplication of linear maps
 addition and scalar multiplication of the matrices.
- ▶ Composition of linear maps ←→ matrix multiplication.

Determinants

An $n \times n$ matrix A corresponds to a linear map from $\mathbb{R}^n \to \mathbb{R}^n$.

The *determinant* of *A* tells you how volumes are distorted.

e.g.
$$A = \begin{pmatrix} -2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix}$$
, $\det A = -16$.

Computing determinants

The determinant can be defined recursively in terms of $(n-1) \times (n-1)$ sub-matrices.

e.g. cofactor expansion along the first row:
$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
$$= a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$$
$$= a_1(b_2c_3 - b_3c_2) - a_2(b_1c_3 - b_3c_1) + a_3(b_1c_2 - b_2c_1);$$

or along the second column:

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = -a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + b_2 \begin{vmatrix} a_1 & a_3 \\ c_1 & c_3 \end{vmatrix} - c_2 \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix}$$

$$= -a_2(b_1c_3 - b_3c_1) + b_2(a_1c_3 - a_3c_1) - c_2(a_1b_3 - a_3b_1);$$

Le $L:V\to V$ be a linear map from a vector space to itself. An *eigenvector* \mathbf{v} with *eigenvalue* λ is non zero vector $\mathbf{v}\in V\setminus\{\mathbf{0}\}$ such that

$$L(\mathbf{v}) = \lambda \cdot \mathbf{v}$$

If V has a basis $\mathbf{v}_1, \dots, \mathbf{v}_n$ consisting of eigenvectors of L then the corresponding matrix is

$$\mathbf{\Lambda} = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{pmatrix} ,$$

where the λ_i 'es are the eigenvalues. We say that L is *diagonalised*.

A scalar λ is an eigenvalue if and only if

$$\det(\mathbf{A} - \lambda I) = 0,$$

Le $L:V\to V$ be a linear map from a vector space to itself. An *eigenvector* \mathbf{v} with *eigenvalue* λ is non zero vector $\mathbf{v}\in V\setminus\{\mathbf{0}\}$ such that

$$L(\mathbf{v}) = \lambda \cdot \mathbf{v}$$

If V has a basis $\mathbf{v}_1, \dots, \mathbf{v}_n$ consisting of eigenvectors of L then the corresponding matrix is

$$\mathbf{\Lambda} = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{pmatrix} ,$$

where the λ_i 'es are the eigenvalues. We say that L is diagonalised.

A scalar λ is an eigenvalue if and only if

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \mathbf{0},$$

Euclidean spaces

The inner product between two vectors in the plane or space.

An Euclidian vector space is a real vector space V equipped with an inner product. That is, a positive definite, symmetric, bilinear pairing $\langle,\rangle:V\times V\to\mathbb{R}$, i.e.,

- $ightharpoonup \langle \mathbf{v}, \mathbf{v} \rangle \geq 0.$
- $\qquad \qquad \langle \mathbf{v}, \mathbf{v} \rangle = \mathbf{0} \iff \mathbf{v} = \mathbf{0}.$
- $\blacktriangleright \langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle.$
- $\langle \mathbf{u}, \lambda \mathbf{v} \rangle = \lambda \langle \mathbf{u}, \mathbf{v} \rangle.$

Euclidean spaces

The inner product between two vectors in the plane or space.

An Euclidian vector space is a real vector space V equipped with an inner product. That is, a positive definite, symmetric, bilinear pairing $\langle,\rangle:V\times V\to\mathbb{R}$, i.e.,

- $ightharpoonup \langle \mathbf{v}, \mathbf{v} \rangle \geq 0.$
- $\qquad \qquad \triangleright \ \langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle.$
- $\qquad \qquad \langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle.$
- $\langle \mathbf{u}, \lambda \mathbf{v} \rangle = \lambda \langle \mathbf{u}, \mathbf{v} \rangle.$

Orthonormal basis

Orthonormal set of vectors:

$$\langle \mathbf{e}_i, \mathbf{e}_j \rangle = \delta_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j, \end{cases}$$

It is easy to expand in an orthonormal basis:

$$\mathbf{v} = \sum_{i=1}^{n} \langle \mathbf{v}, \mathbf{e}_i \rangle \, \mathbf{e}_i.$$

Orthonormal basis

Orthonormal set of vectors:

$$\langle \mathbf{e}_i, \mathbf{e}_j \rangle = \delta_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j, \end{cases}$$

It is easy to expand in an orthonormal basis:

$$\mathbf{v} = \sum_{i=1}^{n} \langle \mathbf{v}, \mathbf{e}_i \rangle \, \mathbf{e}_i.$$

Let V be an Euclidean vector space.

An *isometry* is a linear map $L: V \to V$ such that $\langle L(\mathbf{u}), L(\mathbf{v}) \rangle = \langle \mathbf{u}, \mathbf{v} \rangle$ for all $\mathbf{u}, \mathbf{v} \in V$.

If we equip V with an orthonormal basis then a linear map is an isometry if and only if its matrix is orthogonal: $AA^t = I$.

A *symmetric* map is a linear map $L: V \to V$ such that $\langle L(\mathbf{u}), \mathbf{v} \rangle = \langle \mathbf{u}, L(\mathbf{v}) \rangle$ for all $\mathbf{u}, \mathbf{v} \in V$.

If we equip V with an orthonormal basis then a linear map is symmetric if and only if its matrix is symmetric.

If $L: V \to V$ is a symmetric linear map then V has an orthonormal basis consisting of eigenvectors.

Equivalently

A symmetric $n \times n$ matrix **A** can be factorized as $\mathbf{A} = \mathbf{U} \Lambda \mathbf{U}^T$, where **U** is orthogonal and Λ is diagonal.

The elements of Λ are the eigenvalues and the columns of U are the (coefficients of) the eigenvectors.

A *symmetric* map is a linear map $L: V \to V$ such that $\langle L(\mathbf{u}), \mathbf{v} \rangle = \langle \mathbf{u}, L(\mathbf{v}) \rangle$ for all $\mathbf{u}, \mathbf{v} \in V$.

If we equip V with an orthonormal basis then a linear map is symmetric if and only if its matrix is symmetric.

If $L: V \to V$ is a symmetric linear map then V has an orthonormal basis consisting of eigenvectors.

Equivalently

A symmetric $n \times n$ matrix **A** can be factorized as $\mathbf{A} = \mathbf{U} \Lambda \mathbf{U}^T$, where **U** is orthogonal and Λ is diagonal.

The elements of Λ are the eigenvalues and the columns of U are the (coefficients of) the eigenvectors.

A *symmetric* map is a linear map $L: V \to V$ such that $\langle L(\mathbf{u}), \mathbf{v} \rangle = \langle \mathbf{u}, L(\mathbf{v}) \rangle$ for all $\mathbf{u}, \mathbf{v} \in V$.

If we equip V with an orthonormal basis then a linear map is symmetric if and only if its matrix is symmetric.

If $L: V \to V$ is a symmetric linear map then V has an orthonormal basis consisting of eigenvectors.

Equivalently:

A symmetric $n \times n$ matrix **A** can be factorized as $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T$, where **U** is orthogonal and $\mathbf{\Lambda}$ is diagonal.

The elements of ${\bf \Lambda}$ are the eigenvalues and the columns of ${\bf U}$ are the (coefficients of) the eigenvectors.

Singular Value Decomposition (motivation)

e.g.: Iterated closest point algorithm

Fig. 15.3 Two similar meshes, one rotated and translated w.r.t. the other

- 1. For each vertex $p_i \in M_1$ find closest vertex $q_i \in M_2$.
- 2. Find the rotation R and translation T that brings all p_i as close as possible to q_i :

$$\min_{R,T} \sum_{i} ||(Rp_i + T) - q_i||^2.$$

- 1. For each vertex $p_i \in M_1$ find closest vertex $q_i \in M_2$.
- 2. Find the rotation R and translation T that brings all p_i as close as possible to q_i :

$$\min_{R,T} \sum_{i} ||(Rp_i + T) - q_i||^2.$$

One can find T by center of mass considerations. Thus we end up with a matrix problem of the form

$$\min_{R} ||PR - Q||^2,$$

for some known matrices P and Q.

This can be solved by a singular value decomposition.

Singular value decomposition

Any $m \times n$ matrix **A** can be factorized as

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$$

U orthogonal $m \times m$, **V** orthogonal $n \times n$, and Σ is a *diagonal* is $m \times n$ matrix with non-negative diagonal elements:

$$\sigma_1 \geq \ldots, \geq \sigma_k \geq 0$$
,

where k = min(m, n).

The scalars σ_i are called the *singular values* of **A**.

Note, writing $D = \text{diag}(\sigma_1, \dots, \sigma_k)$, then

$$\Sigma = [D, 0], \text{ or } \Sigma = \begin{bmatrix} D \\ 0 \end{bmatrix}.$$

Singular value decomposition

Any $m \times n$ matrix **A** can be factorized as

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$$

U orthogonal $m \times m$, **V** orthogonal $n \times n$, and Σ is a *diagonal* is $m \times n$ matrix with non-negative diagonal elements:

$$\sigma_1 \geq \ldots, \geq \sigma_k \geq 0$$
,

where k = min(m, n).

The scalars σ_i are called the *singular values* of **A**.

Note, writing $D = \text{diag}(\sigma_1, \dots, \sigma_k)$, then

$$\mathbf{\Sigma} = [D, \mathbf{0}], \text{ or } \mathbf{\Sigma} = \begin{bmatrix} D \\ \mathbf{0} \end{bmatrix}.$$

More on SVD

If
$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$$
, then

$$\mathbf{A}\mathbf{A}^T = \mathbf{U}\mathbf{\Sigma}\mathbf{\Sigma}^T\mathbf{U}^T\,, \qquad \mathbf{A}^T\mathbf{A} = \mathbf{V}\mathbf{\Sigma}^T\mathbf{\Sigma}\mathbf{V}^T\,.$$

So the columns of **U** and **V** are the eigenvectors of $\mathbf{A}\mathbf{A}^T$ and $\mathbf{A}^T\mathbf{A}$ respectively. The square of the singular values $\sigma_1^2,\ldots,\sigma_k^2$ are the (non-zero) eigenvalues of both $\mathbf{A}\mathbf{A}^T$ and $\mathbf{A}^T\mathbf{A}$. This is one way to find the SVD.

More on SVD

If
$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$$
, then

$$\mathbf{A}\mathbf{A}^T = \mathbf{U}\mathbf{\Sigma}\mathbf{\Sigma}^T\mathbf{U}^T, \qquad \mathbf{A}^T\mathbf{A} = \mathbf{V}\mathbf{\Sigma}^T\mathbf{\Sigma}\mathbf{V}^T.$$

So the columns of **U** and **V** are the eigenvectors of $\mathbf{A}\mathbf{A}^T$ and $\mathbf{A}^T\mathbf{A}$ respectively. The square of the singular values $\sigma_1^2,\ldots,\sigma_k^2$ are the (non-zero) eigenvalues of both $\mathbf{A}\mathbf{A}^T$ and $\mathbf{A}^T\mathbf{A}$. This is one way to find the SVD.

SVD Example

$$\begin{pmatrix} 1 & 0 \\ 0 & 2 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ 1 & 0 & 0 \\ 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & \sqrt{2} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Applications of SVD

The *Moore-Penrose pseudo inverse* of a matrix $A = U\Sigma V^t$ is

$$A^+ = V \Sigma^+ U^t,$$

where, if the diagonal elements of Σ are σ_i , then the diagonal elements of Σ^+ are $1/\sigma_i$.

If *A* is invertible then $A^+ = A^{-1}$.

Consider the problem Ax = b, and set $\tilde{x} = A^+b$. Then

▶ If the system Ax = b is overdetermined, \tilde{x} is the least square solution, i.e. the solution to

$$\min_{x} ||Ax - b||^2.$$

▶ If the system Ax = b is *undertermined*, we obtain the *least norm solution*, i.e., the solution to

$$\min_{x} ||x||^2$$
, such that $Ax = b$.

Applications of SVD

The *Moore-Penrose pseudo inverse* of a matrix $A = U\Sigma V^t$ is

$$A^+ = V\Sigma^+ U^t$$

where, if the diagonal elements of Σ are σ_i , then the diagonal elements of Σ^+ are $1/\sigma_i$.

If *A* is invertible then $A^+ = A^{-1}$.

Consider the problem Ax = b, and set $\tilde{x} = A^+b$. Then

▶ If the system Ax = b is overdetermined, \tilde{x} is the least square solution, i.e. the solution to

$$\min_{x} ||Ax - b||^2.$$

▶ If the system Ax = b is *undertermined*, we obtain the *least norm* solution, i.e., the solution to

$$\min_{x} ||x||^2$$
, such that $Ax = b$.

