Ch3

Thursday, 23 January 2025 6:19 PM

Vector Subspace

Contains the zoro voctor

Definition 1.

A Subspace V of R" is any non-empty subset of R";

1. V is closed under vector addition; (n, veV, we have n tv EV)

is closed under scalar multiplication (NEV, KEIR, we have kneV)

Example 2:

· NOT rector space

lemma 33.

If s is a set of m linearly independent vectors in Rn, Then m ≤ n.

Theorem 3.4

A subset V is a vector subspace of R" iff it ends VI, V2, ..., Vm s.t. V = Sporn (VI, V2, ..., Vn)

Definition 3.5.

· If V is a vector gace with V= Span (v, ... Vn), than

{v1,..., vn} is ~ Spanning (generating set for V.

Activity: Show
$$V = \left\{ \begin{pmatrix} x - y \\ x + y \end{pmatrix} : x, y \in \mathbb{R} \right\}$$

(1) Using Definition 2.1:

- Can take any kx, ky.

- Can take any addition

(2) Using finding a generating set for V.

Konche Coyell

- Unique: - lust ref(A) no pivot - every rref(c) home pivot

- Inf. mmy: - Inst Mef(A) No pivot - Inst ref(c) no plot

- Incongistent : - (m) rief(h) has pind

$\{(\frac{1}{6})\vec{x}, (\frac{1}{1})\vec{y}\}$

3.2 Bases.

Definition 3.6.

Let V be a vector subspace of R.

A subset B = {b, , b, , b, , ..., b, } of R is called a Basis.

- if it is a linearly independent generating Set.

> bi, ..., but linearly independent

- Boses are not unique.

Theorem 3.8. Let V be a vector subspace of RM. Then size of any bossis for V is unique.

Definition 3-9

Let V be a victor subspace of Rn.

Dimension of V as dim V, is equal to

the size of any basis for V.

- dim f 0} = 0.

Activity

Let
$$V = Span(V_1, V_2, V_3, V_4)$$
 be a vector subspace of \mathbb{R}^n
 $A = (V_1, V_2, V_3, V_4)$
 $- rref(A)$ has pivot at column 1, 3, 4.

(1) $V_2 \in Span(V_1, V_3, V_4)$

(2) $\{V_1, V_3, V_4\}$ is a linearly independent sext.

Lemma. 3.10. $A = (\overrightarrow{V_1} \quad \overrightarrow{V_2} \quad ... \quad \overrightarrow{V_m})$ $rref(h) = (\overrightarrow{X_1} \quad \overrightarrow{X_2} \quad ... \quad \overrightarrow{X_n})$ $rref(A) \quad column \quad \overrightarrow{X_m} \quad has \quad no \quad pirot \quad (NO7 pint column)$ $Then \quad Span(v_1, v_2, ..., v_n) = Span(v_1, v_2, ... \cdot V_{n-1})$ f $REMOVE \quad \overrightarrow{V_m}$

Theorem 3.11 (finding Boses)

Let V be the vector subspace of Rn

V = Span(V,..., Vn)

⇒ If A is anothic with column vectors $\overrightarrow{v_1}, ..., \overrightarrow{v_m}$ ⇒ pirot columns of A will form basis for V.

⇒ RREF of A has k pirots ⇒ dim(V) * K.

Problem set 3. P.3.1, P.3.3, P.3.6, P.3.7, P.3.10

P.3.1: Prove IF S is a set of m linearly independent vectors in \mathbb{R}^n , then $m \le n$. Let $S = \{ \vec{v}_1, \vec{v}_2, \vec{v}_3, ..., \vec{v}_m \}$

Since IRn has dimension of n, any basis of IRn consists exactly a linearly independent vectors.

OneNote

in IRM is n.

independent vectors than the dimension of IRn.

P. 3.3 (Therem 3.11)

. Show that any set of n linearly independent vectors in IRn forms a basis for IRn.

Let $S = \{ \vec{V}_1, \vec{V}_2, ..., \vec{V}_n \}$ be a set with a linearly independent revious

Let $C = \{ \vec{V}_1, \vec{V}_2, ..., \vec{V}_n \}$.

Since all vectors in S ove linearly independent, all columns in C are pivot columns.

Thus, in columns (linearly lindependent vectors) form the basis for IRM.

P.3.6. True / False:

If W and V are subspaces of \mathbb{R}^n ,

then $WUV:=\{\vec{x}\in\mathbb{R}^n: \vec{x}\in W \text{ or } \vec{x}\in V\}$ is a subspace of \mathbb{R}^n .

· True.

W \ V satisfies the 3 subspace properties:

1. $\vec{O} \in W$ and $\vec{O} \in V$, $\vec{c} : \vec{O} \in \vec{W} \cap \vec{V}$

2. Let $\vec{x}, \vec{y} \in W \cap V$.

Since W is a subspace, $\vec{x} + \vec{y} \in W$.

Since V is a subspace, $\vec{x} + \vec{y} \in V$.

i. $\vec{x} + \vec{y} \in W \cap V$, thus closure under addition

3. Let $\vec{x} \in W \cap V$. Let k be any scalar.

Since W is a subspace, $k\vec{x} \in V$.

Since V is a subspace, $k\vec{x} \in V$.

i. $k\vec{x} \in W \cap V$, thus dosove under multiplication.

i. W N V is a subspace of 1Rh

P.3.7 True or Folg;

if W and V owe subspaces of \mathbb{R}^n , then $W \cup V := \{\vec{x} \in \mathbb{R}^n : \vec{x} \in W \text{ or } \vec{x} \in V\}$ is a subspace of \mathbb{R}^n .

Folse.

Let NZZ, I.C. OVINCENSION IN

Take W= { (t) | 261R.}

Take V = { (s) | s & 1 }

Take () and (?) from WUV,

addition of both gives (1).

However, (1) is not in WVV.

i. Closure under addition does not apply here.

i. WUV is not a subspace of 182.

i. We have disproved the veguiner statement.

P. 3. 10 Let V and W be vector subspaces of $1R^5$ with $V \cap W = \{\vec{0}, \vec{1}\}$

Suppose that V has basis $\{\overrightarrow{V_1}, \overrightarrow{V_2}\}_1$. W has basis $\{\overrightarrow{W_1}, \overrightarrow{W_2}\}_2$.

Find a basis for the vector space VtW, and justify how you know this is a basis.

Since $V \cap W = \{0\}$, we know that $\overrightarrow{V_1}, \overrightarrow{V_2}, \overrightarrow{W_1}, \overrightarrow{W_2}$ are linearly independent vectors of $V \neq W$, as none of the 4 vectors overlap except the zero vector from V and W.

i. Since $\overrightarrow{V_1}, \overrightarrow{V_2}, \overrightarrow{W_1}, \overrightarrow{W_2}$ are all in $V \neq W$ and $W \in \mathbb{R}$ and are linearly independent, i.

i. $\{V_1, V_2, V_1, V_2\}$ form the basis for VtW.