A Simple Parcel Theory Model of Downdrafts in Atmospheric Convection

Thomas Schanzer
https://github.com/tschanzer/taste-of-research-21T3

Supervisor: Prof. Steven Sherwood

UNSW School of Physics

Thursday 25 November 2021

Aim and Motivation

(b) Forecasting dangerous microbursts

(a): IPCC AR6 interactive atlas. (b): US National Weather Service.

Question

Which processes and conditions initiate, and which maintain or inhibit, downdrafts?

Aim and Motivation

(b) Forecasting dangerous microbursts

(a): IPCC AR6 interactive atlas. (b): US National Weather Service.

Question

Which processes and conditions initiate, and which maintain or inhibit, downdrafts?

Literature

Knupp and Cotton (1985) ¹ identify four downdraft types:

- Precipitation-associated (PR)Cloud-edge (E)

Penetrative (P)

Overshooting (O)

Adapted from Knupp and Cotton (1985).

¹Knupp, KR & Cotton, WR 1985, 'Convective cloud downdraft structure: An interpretive survey', Reviews of geophysics (1985), vol. 23, no. 2, pp. 183-215. 4 D > 4 P > 4 P > 4 P >

Background: Parcel Theory

Vertical motion under buoyant forces only:

$$b = rac{
ho_{
m env} -
ho_{
m parcel}}{
ho_{
m parcel}} g.$$

▶ Descent is (dry or moist) adiabatic

Goal: calculate parcel temperature \rightarrow density as functions of height

Complication: entrainment

Supply *any* environmental temperature and moisture profile

$$\frac{d^2z}{dt^2} = b(z).$$

 $\begin{tabular}{ll} \textbf{Goal:} & calculate parcel temperature \rightarrow density as functions of height \\ \end{tabular}$

Complication: *entrainment*

Supply *any* environmental temperature and moisture profile

$$\frac{d^2z}{dt^2} = b(z).$$

Goal: calculate parcel temperature \rightarrow density as functions of height

Complication: entrainment

Supply *any* environmental temperature and moisture profile

$$\frac{d^2z}{dt^2} = b(z).$$

PRES	HGHT	TEMP	DWPT
hPa	m	С	C
1021.0	 8	22.2	4.2
1018.0	34	21.0	4.5
1017.0	42	20.6	4.6

Goal: calculate parcel temperature \rightarrow density as functions of height

Complication: entrainment

Supply *any* environmental temperature and moisture profile

$$\frac{d^2z}{dt^2}=b(z).$$

Results: Precipitation Enhances Downdrafts

Results: Entrainment Inhibits Downdrafts

Results: Atmospheric Dryness Enhances Downdrafts

Results: DCAPE and DCIN

$$\mathsf{DCAPE} = \int_{\mathsf{surface}}^{\mathsf{min} \ T_W} \mathsf{max}\{b^*(z), 0\} \ \mathsf{d}z \qquad \mathsf{DCIN} = \int_{\mathsf{surface}}^{\mathsf{min} \ T_W} \mathsf{min}\{b^*(z), 0\} \ \mathsf{d}z$$

- No entrainment
- Moist descent only
- Pseudoadiabatic

- ► Fixed integration limits
- Fixed initial conditions

Results: DCAPE and DCIN

$$\mathsf{DCAPE} = \int_{\mathsf{surface}}^{\min T_W} \max\{b^*(z), 0\} \; \mathrm{d}z \qquad \mathsf{DCIN} = \int_{\mathsf{surface}}^{\min T_W} \min\{b^*(z), 0\} \; \mathrm{d}z$$

Conclusions

Conclusions: downdraft strength and penetration are

- Increased by precipitation evaporation and condensate loading,
- Reduced by entrainment of environmental air,
- Increased by atmospheric dryness,
- Strongly linked to DCAPE and DCIN.

Next Steps

Application: supplement basic sounding analysis methods used in weather forecasting

Source: NOAA Storm Prediction Center

Future Work:

- Consider other forces, e.g. drag
- ► Model more advanced dynamics, e.g. entrainment from updrafts
- Support the findings of more advanced models

Next Steps

Application: supplement basic sounding analysis methods used in weather forecasting

Future Work:

- Consider other forces, e.g. drag
- Model more advanced dynamics, e.g. entrainment from updrafts
- Support the findings of more advanced models