See [DK97, Section 5.4].

Proposition 1. Let X be a oriented four manifold, with a principal SU(2) bundle $P \to X$. Then, after picking an orientation of $H_+(X)$, the moduli space of ASD instantons has a natural orientation.

Proof. We there are two steps to do prove this. The first is proving that the moduli space is orientable, and then we have to pick an orientation. \Box

Definition 2. Let A be an ASD connection. Then we have a complex

$$\Omega^0(AdP) \xrightarrow{d_A} \Omega^1(AdP) \xrightarrow{d_A^+} \Omega^2(AdP)$$

We define $H_A^i,\,i=1,2,$ to be the cohomology of this complex. So

$$H_A^1 = \frac{\ker d_A^+}{\operatorname{Im} d_A}, H_A^2 = \ker d_A = \operatorname{coker} d_A^+$$

Remark 3. Using transversality arguments, for a generic metric $H_A^2=0$ at all the irreducible connections.

Proposition 4. Let M^s be the subset of M consisting of the irreducible ASD connections where $H_A^2 = 0$. The moduli space of ASD instantons on P is orientable.

Proof. Recall that the tangent space to the moduli space is the kernel of the elliptic operator

$$\delta_A = (d_A^* \oplus d_A^+) : \Omega^1(\mathrm{Ad}P) \to \Omega^1(\mathrm{Ad}P) \oplus \Omega^2_+(\mathrm{Ad}P).$$

Hence, M^s is orientable if the bundle $\Lambda^{\max} \ker(\delta_A)$ is trivial. Note that

$$\operatorname{coker} \delta_A = \operatorname{coker} d_A^* \oplus \operatorname{coker} d_A^+ = 0,$$

since, by elliptic theory we have that

$$\Omega^0(\mathrm{Ad}P) = \ker d_A \oplus \mathrm{Im} \ d_A^*.$$

The operator $\delta_A: M^s \to \Omega^1(\mathrm{Ad}P) \oplus \Omega^2_+(\mathrm{Ad}P)$ extends to an operator on \mathscr{B}^* .

$$\det\operatorname{ind}\,\delta=\Lambda^{\max}\mathrm{ker}\,\,\delta\oplus\Lambda^{\max}\mathrm{coker}\,\,\delta$$

Hence, if we can prove that detind $\delta \to \mathscr{B}^*$ is trivial, then we will have that M^s is orientable.

We will now prove the following

Proposition 5. The bundle detind $\delta \to \mathscr{B}^*$ is trivial.

Proof. Recall that we can consider the framed instantons as in FramedConnections/Definition 5 . \Box

1

References

[DK97] S. K. Donaldson and P. B. Kronheimer. *The Geometry of Four-Manifolds*. Oxford Mathematical Monographs. Oxford, New York: Oxford University Press, Dec. 4, 1997. 456 pp. ISBN: 978-0-19-850269-2.