| ${\mathfrak l}_{1^{-}}^{\#2}{}_{\alpha}$ | 0                                                                                    | 0                                                                                | 0                                                                                                                                                                 | $\frac{2ik}{t_1 + 2k^2t_1}$        | $-\frac{i\sqrt{2}k(2k^2(r_1+r_5)\cdot t_1)}{(t_1+2k^2t_1)^2}$ | 0                           | $\frac{-4k^4(r_1+r_5)+2k^2t_1}{(t_1+2k^2t_1)^2}$                 |
|------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------|-----------------------------|------------------------------------------------------------------|
| $\mathfrak{r}_{1^{-}}^{\#1}{}_{\alpha}$  | 0                                                                                    | 0                                                                                | 0                                                                                                                                                                 | 0                                  | 0                                                             | 0                           | 0                                                                |
| $\sigma_{1^{-}\alpha}^{\#2}$             | 0                                                                                    | 0                                                                                | 0                                                                                                                                                                 | $\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$ | $\frac{-2 k^2 (r_1 + r_5) + t_1}{(t_1 + 2 k^2 t_1)^2}$        | 0                           | $\frac{i\sqrt{2} k(2k^2 (r_1 + r_5) - t_1)}{(t_1 + 2k^2 t_1)^2}$ |
| $\sigma_{1^{-}\alpha}^{\#1}$             | 0                                                                                    | 0                                                                                | 0                                                                                                                                                                 | 0                                  | $\frac{\sqrt{2}}{t_1 + 2k^2t_1}$                              | 0                           | $-\frac{2ik}{t_1+2k^2t_1}$                                       |
| ${\tau_1^{\#1}}_{\alpha\beta}$           | $i \sqrt{2} k(t_1 - 2t_2) $ $(1 + k^2) (3t_1 t_2 + 2k^2 (2r_1 + r_5) (t_1 + t_2))$   | $\frac{ik(6k^2(2r_1+r_5)+t_1+4t_2)}{(1+k^2)^2(3t_1t_2+2k^2(2r_1+r_5)(t_1+t_2))}$ | $\frac{k^2 (6k^2 (2r_1 + r_5) + t_1 + 4t_2)}{(1+k^2)^2 (3t_1t_2 + 2k^2 (2r_1 + r_5)(t_1 + t_2))}$                                                                 | 0                                  | 0                                                             | 0                           | 0                                                                |
| $\sigma_{1}^{\#2}{}_{\alpha\beta}$       | $\frac{\sqrt{2} (t_1 - 2t_2)}{(1 + k^2) (3t_1 t_2 + 2k^2 (2t_1 + t_5) (t_1 + t_2))}$ |                                                                                  | $-\frac{ik(6k^2(2r_1+r_5)+t_1+4t_2)}{(1+k^2)^2(3t_1t_2+2k^2(2r_1+r_5)(t_1+t_2))} \frac{k^2(6k^2(2r_1+r_5)+t_1+4t_2)}{(1+k^2)^2(3t_1t_2+2k^2(2r_1+r_5)(t_1+t_2))}$ | 0                                  | 0                                                             | 0                           | 0                                                                |
| $\sigma_{1}^{\#1}{}_{\alpha\beta}$       | 341 t2+2                                                                             | (1+k                                                                             | $\frac{i\sqrt{2}k(t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2(2r_1+r_5)(t_1+t_2))}$                                                                                           | 0                                  | 0                                                             | 0                           | 0                                                                |
|                                          | $\sigma_{1}^{\#1} + ^{\alpha \beta}$                                                 | $\sigma_{1}^{#2} + \alpha \beta$                                                 | $\tau_{1}^{\#1} + \alpha \beta$                                                                                                                                   | $\sigma_{1}^{\#_1} +^{\alpha}$     | $\sigma_{1}^{\#2} +^{\alpha}$                                 | $\tau_{1}^{\#1} +^{\alpha}$ | $\tau_1^{\#2} + \alpha$                                          |



|                                             | $\sigma_{2^{+}lphaeta}^{\#1}$            | $	au_2^{\#1}_{lpha eta}$             | $\sigma_{2^{-}\alpha\beta\chi}^{\#1}$ |
|---------------------------------------------|------------------------------------------|--------------------------------------|---------------------------------------|
| $\sigma_{2}^{\sharp 1} \dagger^{lphaeta}$   | $\frac{2}{(1+2k^2)^2t_1}$                | $-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$ | 0                                     |
| $	au_2^{\#1} \dagger^{lphaeta}$             | $\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$ | $\frac{4k^2}{(1+2k^2)^2t_1}$         | 0                                     |
| $\sigma_2^{\sharp 1} \dagger^{lphaeta\chi}$ | 0                                        | 0                                    | $\frac{2}{2 k^2 r_1 + t_1}$           |

|                                          | $\omega_{2^{+}\alpha\beta}^{\#1}$ | $f_{2^{+}\alpha\beta}^{\#1}$ | $\omega_{2^{-} \alpha \beta \chi}^{\# 1}$ |
|------------------------------------------|-----------------------------------|------------------------------|-------------------------------------------|
| $\omega_{2}^{\#1} \dagger^{\alpha\beta}$ | <u>t</u> 1<br>2                   | $-\frac{ikt_1}{\sqrt{2}}$    | 0                                         |
| $f_{2+}^{\#1}\dagger^{\alpha\beta}$      | $\frac{i k t_1}{\sqrt{2}}$        | $k^2 t_1$                    | 0                                         |
| $\omega_{2}^{#1}\dagger^{lphaeta\chi}$   | 0                                 | 0                            | $k^2 r_1 + \frac{t_1}{2}$                 |

|                    | #            | 1                     | 1                                                     | 3                                                | 3                                | 3                                                                | 2                                                                        | 16       |
|--------------------|--------------|-----------------------|-------------------------------------------------------|--------------------------------------------------|----------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|----------|
| Source constraints | SO(3) irreps | $\tau_{0+}^{#2} == 0$ | $\tau_{0^+}^{\#1} - 2  i  k  \sigma_{0^+}^{\#1} == 0$ | $t_1^{\#2}\alpha + 2ik \sigma_1^{\#2}\alpha = 0$ | $\tau_{1}^{\#1}{}^{\alpha} == 0$ | $\tau_{1+}^{\#1}\alpha\beta+ik\ \sigma_{1+}^{\#2}\alpha\beta==0$ | $\tau_{2+}^{\#1}\alpha\beta$ - 2 i k $\sigma_{2+}^{\#1}\alpha\beta$ == 0 | Total #: |

|                           | $\omega_{\scriptscriptstyle 0}^{\scriptscriptstyle \#1}$ | $f_{0}^{#1}$      | $f_{0}^{#2}$ | $\omega_{0}^{#1}$ |
|---------------------------|----------------------------------------------------------|-------------------|--------------|-------------------|
| $\omega_{0}^{\#1}$ †      | -t <sub>1</sub>                                          | $i \sqrt{2} kt_1$ | 0            | 0                 |
| $f_{0^{+}}^{#1}$ †        | $-i \sqrt{2} kt_1$                                       | $-2 k^2 t_1$      | 0            | 0                 |
| $f_{0+}^{#2} \dagger$     | 0                                                        | 0                 | 0            | 0                 |
| $\omega_{0}^{\sharp 1}$ † | 0                                                        | 0                 | 0            | $t_2$             |

## Lagrangian density

| $\omega_1^{\#1}$ $\omega_1^{\#1}$                             |
|---------------------------------------------------------------|
| 3 \(\frac{1}{2}\)                                             |
| $\frac{t_1+t_2}{3}$                                           |
| $-\frac{1}{3}ik(t_1+t_2)\left \frac{1}{3}k^2(t_1+t_2)\right $ |
| )                                                             |
| 0                                                             |
| 0                                                             |
| 0                                                             |





## Unitarity conditions $r_1 < 0 \&\& r_5 > -2 r_1 \&\& t_1 > 0 \&\& -t_1 < t_2 < 0$