HairSplitter: assembling long reads in an unknown number of haplotypes

Roland Faure^{1,2}, Jean-François Flot¹, Dominique Lavenier²

¹Université libre de Bruxelles (ULB)

²Université de Rennes, IRISA

November 2022

Genome assembly

Genome assembly: similar regions get collapsed

When divergence is small compared to the error rate of reads, SNPs are discarded as errors

Genome assembly: similar regions get collapsed

Screenshot of the Flye assembly of diploid Adineta vaga

Loss of heterozygous information!

Obtaining uncollapsed assemblies

▶ We want to recover the lost diversity

Obtaining uncollapsed assemblies

- ▶ We want to recover the lost diversity
- State of the art (long reads): phase the collapsed contigs using HapDup, WhatsHap, HapCut, H-PopG...

AACTGGTCCCT-TAGAGCGATTCGCGAGCGTA
AACGGTGTCCCTATGGAGCG-TCGCGACCGTA
AACTGTGTCCCT-TAGAGCGATTCGCGAGCGTA
AACTGTGTCCCT-TAGAGCGATTCGCGAGCGTA
AACGGTGTCCCTATAGAGCGATTCGCGACCGTA
AACGGTGTCCCTATAGAGCGATTCGCGACCGTA
AACTGTGACCCTATAGAGCGATTACGCGACCGTA
AACTGTGTCCCT-TAGAGCGATTCGCAAGCGTA
AACTGCGTCCCTATAGAGCGATTCGCAAGCGTA
AACTGCGTCCCTATAGAGCGATTAGGCGACCGTA
AACTGCGTCCCTATAGAGCGATTAGGCGACCGTA

6/20

▶ In many cases the copy-number of a contig is unknown: polyploid genomes, repeats, metagenomic assemblies...

HairSplitter

AACTGTCCCT-TAGAGCGATTGCGAGCGTA
AACGTGTCCCTATAGAGCGATTGCGAGCGTA
AACTGTGTCCCTATAGAGCGATTGCGAGCGTA
AACTGTGTCCCT-TAGAGCGATTGCGAGCGTA
AACGTGTCCCTATAGAGCGATTCGCAACGTA
AACGTGTCCCTATAGAGCGATTCGCAACGTA
AACTGTCCCTATAGAGCGATTCGCAACGTA
AACTGTCCCT-TAGAGCGATTCGCAACGGTA
AACTGTCCCT-TAGAGCGATTAGCGAACGTA
AACTGTCCCTATAGAGCGATTAGCGAACGTA
AACTGGTCCCTATAGAGCGATTAGGCGACCGTA
AACTGGTCCCTATAGAGCGATTAGGCGACCGTA

HairSplitter

AACTGTCCCCT-TAGAGGCATTCGCGAGGGTA
AACGGTGTCCCTATGAGGGGT-TGGGGAGGTG
AACTGTGCCCTATAGAGGGATTCGCGAGGGTA
AACGGTGTCCCTATAGAGCGATTCGCGAGCGTA
AACGGTGTCCCTATAGAGCGATTCGGGACCGTA
AACGGTGTCCCTATAGAGCGATTCGGAACGGTA
AACTGTGCCCTATAGAGCGATTCGCAACGGTA
AACTGTGCCCTATAGAGCGATTCGCAAGGGTA
AACTGGTCCCTATAGAGCGATTCGCAAGGGTAACGGTA
AACTGGTCCCTATAGAGCGATTCGCAAGGGTA

► Hairsplitter: a person who argues about differences that are too small to be important - Britannica.com

- ref AACTGTGTCCCTATAGAGCGATTCGCGACCGTACCTCGGAAGCTGAAGTGT
- r1 AACTGTGTCCCT-TAGAGCGATTCGCGAGCGTATCTCGGAAGCTGAAGTGT
- r2 aac**g**gtgtcc**a**tat**g**gagcg--tcgcgaccgta**t**ctcg**a**aagc**a**gaagtgt
- r3 AACTGTGTCCCTATAGAGCGATACGCGACCGTACCTCGGAAGCTGAA-TGT
- r4 AACTGTGTCCAT-TAGAGCGATTCGCGAGCGTATCTCGGAAGCTGAAGTGT
- r5 AACGGTGTCCATATAGAGCGATTCGCGACCGTACCTCGAAAGCTGAAGTGT
- r6 AACGGTGTCCCTATAGAGCGATTCGCGACCGTACCTCGAAAGCAGAAGTGT
- AACGGTGTCCCTATAGAGCGATTCGCGACCGTACCTCGAAAGCAGAAGTG
- r7 aactgtgaccctatagagcgatacgcgaccgtacctcggaagcagaa-tgt
- r8 AACTGTGTCCAT-TAGAGCGATTCGCAAGCGTACCTCGGAAGCTGAAGTGT
- r9 AACTGCGTCCCTATAGAGCGATACGCGACCGTACCTCGGAAGCAGAA-TGT

Reads are aligned on the (collapsed) contig

Positions with high divergence are selected

(TGTTGGTTT): {r2,r5,r6}, {r1,r3,r4,r7,r8,r9} (CACAACCAC): {r2,r4,r5,r8}, {r1,r3,r6,r7,r9} (-AA-AA-A): {r1,r4,r8}, {r2,r3,r5,r6,r7,r9} (TTATTTATA): {r3,r7,r9}, {r1,r2,r4,r5,r6,r8} (GCCGCCCGC): {r1,r4,r8}, {r2,r3,r5,r6,r7,r9} (TTCTCCCC): {r1,r2,r4}, {r3,r5,r6,r7,r8,r9} (GAGGAAGGG): {r2,r5,r6}, {r1,r3,r4,r7,r8,r9} (TATTTAATA): {r2,r6,r7,r9}, {r1,r3,r4,r5,r8} (GG-GGA-G-): {r3,r7,r9}, {r1,r2,r4,r5,r8}

Each position partitions the reads in two groups

▶ We can use the *V-measure* (*V*) between two partitions to define a distance *d* between two positions:

$$d(TGTTGGTTT,GAGGAAGGG) = V(\begin{cases} r2,r5,r6 \\ \{r2,r5,r6 \} \\ \{r1,r3,r4,r7,r8,r9 \} \end{cases}) = 0$$

$$d(TGTTGGTTT,CACAACCAC) = V \begin{pmatrix} \{r2,r5,r6\} \{r1,r3,r4,r7,r8,r9\} \\ \{r2,r4,r5,r8\} \{r1,r3,r6,r7,r9\} \end{pmatrix} = 0.16$$

Use this distance to cluster positions

- Recurring partitions correspond to SNPs
- Isolated positions correspond to error-prone positions (the probability of two random partitions being close decreases exponentially with coverage)

► Reads are separated, then the 3 versions of the contig are created using Racon

Dataset

- In silico mix of 3 strains of Saccharomyces cerevisiae
- ► Nanopore reads with > 5% error rate
- Assembled with Flye--keep-haplotypes
- ► We get a collapsed assembly

Result!

Result!

▶ Our "solution genome" = the 3 genomes assembled separately

	Size of assembly (Mbp)	Missing k-mers	Missing haplotype- specific k-mers
Solution	35.8	-	-
Before Hairsplitter	12.7	29.4 %	55.3 %
After Hairsplitter	33.9	8.5 %	16 %

Comparison with WhatsHap polyphase

edge_132 of the assembly

	proportion of unassigned reads	proportion of mis-assigned reads
HairSplitter	0%	4.5%
Whatshap-polyphase	51%	8.2%

► HairSplitter much faster because does not need variant calling

Splitting the assembly

► First phase all contigs

Splitting the assembly

- ► First phase all contigs
- ► Then improve the contiguity of the assembly!

After HairSplitter

Result!

Example on the triploid yeast

▶ N50 went from 373 to 465kbp (assembled separately: 767kbp)

Pros and cons of HairSplitter

Limitations of HairSplitter:

- Not very fast: it re-polishes the whole assembly
- Limited in the number of haplotypes

Strengths of HairSplitter:

- Very modular, can be used with any assembler
- Naive: makes no assumption on ploidy, parameter-free
- ► Safe: won't artificially duplicate contigs

Take-home message

- HairSplitter splits collapsed assemblies from "draft" assemblies obtained by any means
- HairSplitter can recover haplotypes and distinguish repeated elements
- Only needs sequencing reads, potentially error-prone

Take-home message

- HairSplitter splits collapsed assemblies from "draft" assemblies obtained by any means
- HairSplitter can recover haplotypes and distinguish repeated elements
- Only needs sequencing reads, potentially error-prone
- Not really available yet (github.com/RolandFaure/HairSplitter)

Acknowledgements

- Dominique Lavenier and Jean-François Flot for their supervision
- ▶ The EEB-EBE and GenScale teams

Similarity between random partitions

Probability of two positions being clustered together by HS, in function of the error rate at these position

With high coverage, the erroneous positions won't cluster