(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-296486 (P2001-296486A)

(43)公開日 平成13年10月26日(2001.10.26)

(51) Int.Cl.7

識別記号

FΙ

テーマコード(参考)

G 0 2 B 26/08

B81B 1/00

G 0 2 B 26/08

E 2H041

B 8 1 B 1/00

審査請求 未請求 請求項の数1 OL (全 7 頁)

(21)出願番号

特顧2000-111795(P2000-111795)

(71)出願人 000183266

住友大阪セメント株式会社

東京都千代田区六番町六番地28

(22)出顧日 平成12年4月13日(2000.4.13)

(72)発明者 柳澤 恒夫

千葉県船橋市豊富町585番地 住友大阪セ

メント株式会社新規技術研究所内

(72) 発明者 菅又 徹

千葉県船橋市豊富町585番地 住友大阪セ

メント株式会社新規技術研究所内

(74)代理人 100079049

弁理士 中島 淳 (外3名)

最終頁に続く

(54) 【発明の名称】 マトリクス光スイッチ

(57)【要約】

【課題】 応答レスポンスが良好で、寿命の長いマイクロマシン用のマトリクス光スイッチを提供する。

【解決手段】 マトリクス光スイッチが、周縁部に光ファイバ端部の外周面を挟持して入力ポート又は出力ポートを形成するための複数の切欠きが形成された上蓋11 aと本体部12aとにより形成されるパッケージ32、反射機構16から構成され、上蓋11a、本体部12 a、入力側光ファイバ20a~20dの端部の外周縁及び出力側光ファイバ22a~22hの端部の外周縁がシール剤14によりシールされて、内部が真空で密閉されたパッケージ32が形成されている。

【特許請求の範囲】

【請求項1】 外部から入力されたレーザ光束を入力光路に導く少なくとも1つの入力ポートと、

前記入力光路を伝播するレーザ光束を反射或いは通過させて出力光路に導く選択的反射手段と、

前記選択的反射手段により反射或いは通過されたレーザ 光束が伝播する出力光路の終端に設けられた出力ポート と、を備え、

少なくとも前記入力光路、前記選択的反射手段、及び、 前記出力光路を、筐体内部が真空で、かつ、密閉した筐 体の内部に設けたことを特徴とする請求項1に記載のマ トリクス光スイッチ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、マトリクス光スイッチにかかり、特に、マイクロマシンに用いられるマトリクス光スイッチに関するものである。

[0002]

【従来の技術】従来より、複数行の入力光路と複数列の 出力光路との交差点位置の各々に反射ミラーを設け、制 御部からの制御信号に基いて選択された出力光路との交 差点位置の反射ミラーにより入力光路からの光を反射し て、選択された出力光路に導く構成のマトリクス光スイ ッチが知られている。

【0003】例えば、特開平5-134195号公報に は、図5に示すように、アクチュエータ50により反射 角度を維持した状態で上下動される反射ミラー52が入 力光路と出力光路との交差点位置のすべてに対応して設 けられたマトリクス光スイッチが開示されている。この マトリクス光スイッチでは、反射ミラー52は、通常、 光路の上方に退避されており、選択された位置の可動反 射ミラー52(図5では、斜線で示した位置のアクチュ エータに上下動される反射ミラー52)のみがアクチュ エータ50により光路内に挿入されることにより、入力 光路を通過するレーザ光束を反射して出力光路に導く。 【0004】また、Electrostatic Micro Torsion Mirr ors for an Optical Switch Matrix(JOURNAL OF MICROE LECTROMECANICAL SYSTEMS, VOL. 5, NO4, p231~p237, DECEM BER1996) には、図6に示すように、薄いポリシリコンの トーションバー54により光路の上方に軸支された平面 ミラー56を、静電気力により上方に引き付けて光路か ら退避させる構成のマトリクス光スイッチが提案されて いる。

【0005】何れの構成のマトリクス光スイッチも、入力側の光ファイバからのレーザ光束を、入力側のカップリング用レンズにより平行光束に変換して入力光路に入射させ、該入力光路と交差する複数の出力光路のうちから選択した1つの出力光路の交差位置の反射ミラーによりレーザ光束を反射して出力光路に導き、該出力光路を通ったレーザ光束を出力光路の出力端で出力側のカップ

リング用レンズにより収束させて、出力側の光ファイバに入力する。

【0006】近年、光マイクロマシン技術の発達により、光マイクロマシン技術に用いるマトリクス光スイッチの重要性が増してきており、図6に示す光マイクロマシン技術用の光スイッチ等が提案されてきている。

[0007]

【発明が解決しようとする課題】しかしながら、光マイクロマシン技術に用いるマトリクス光スイッチは、従来構成のマトリクス光スイッチに比べて非常にサイズが小さいため、応答レスポンスが悪くなりやすく、また、反射ミラーの光反射率が低下しやすく寿命が短い、という問題がある。

【0008】そのため、本発明では、応答レスポンスが良好で、反射ミラーの光反射率が低下し難く、寿命の長いマトリクス光スイッチを提供することを目的としている。

[0009]

【課題を解決するための手段】上記目的を達成するために請求項1に記載の発明は、外部から入力されたレーザ光束を入力光路に導く少なくとも1つの入力ポートと、前記入力光路を伝播するレーザ光束を反射或いは通過させて出力光路に導く選択的反射手段と、前記選択的反射手段により反射或いは通過されたレーザ光束が伝播する出力光路の終端に設けられた出力ポートと、を備え、少なくとも前記入力光路、前記選択的反射手段、及び、前記出力光路を筐体内部が真空で、かつ、密閉した筐体の内部に設けたことを特徴としている。

【0010】すなわち、本発明者らは、マトリクス光スイッチにおいて応答レスポンスが悪くなり、寿命を短くする原因として、以下の3つの要因を発見した。

- (1) 大気中の水蒸気の付着
- (2) 大気中の塵や埃などの異物による影響
- (3)空気抵抗の影響

まず、(1)の要因について述べる。大気中の水蒸気が 反射ミラーと反射ミラーを支持する部分に付着して結露 する現象が起きると、反射ミラーと反射ミラーを支持す る部分とが結露した水の表面張力によって引き寄せられ てしまうため、反射ミラーの駆動がスムーズに行えず、 応答レスポンスが悪化する。

【0011】また、反射ミラーが大気中の酸素や水、及び結露した水により酸化されて反射ミラーが酸化・腐蝕し、反射ミラーの光反射率が低下させると共に、酸化・腐蝕した部分が反射ミラーの光学性能を変化させ、迷光発生の原因となる。

【0012】特に、マイクロマシンのマトリクス光スイッチでは、反射ミラーのサイズが非常に小さいので、一部でも反射ミラーが酸化・腐蝕すると、反射ミラーの光学特性が著しく悪化するので大きな問題である。この反射ミラーの光学特性の悪化はマトリクス光スイッチの寿

命を短くする原因にもなっている。

【0013】つぎに、(2)の要因について述べる。大気中に浮遊する塵や埃などの異物がマトリクス光スイッチ内に入り込むと光路を伝播中のレーザ光束が散乱されて出力ポートに導かれるレーザ光束の光強度が減少する。それだけでなく、発生した迷光が他の出力ポートに入り込んで誤動作を起こす原因となる恐れもがある。

【0014】特に、この問題は、マイクロマシン用のマトリクス光スイッチが微小であるためにマトリクス光スイッチの寸法に対して塵や埃の寸法が相対的に大きくなるので、微量の塵や埃であってもマトリクス光スイッチの光学特性に大きな影響を及ぼしてしまい、深刻である。

【0015】また、塵や埃が反射ミラーと反射ミラーを 支持する部分との間に入り込んで反射ミラーの駆動性能 を悪化させると言う恐れもある。

【0016】さらに、(3)の要因について述べる。マイクロマシン用のマトリクス光スイッチは微小であるため、空気抵抗を大きく受けてしまう。この空気抵抗によって反射ミラーにかかる負荷が大きくなり、駆動性能が低下し、応答レスポンスが悪化することとなる。

【0017】以上のことから請求項1の発明では、少なくとも入力光路、選択的反射手段、及び出力光路を内部が真空の密閉した筐体内に設けて、入力光路、選択的反射手段、及び出力光路が外部環境から遮断することにより、外部環境からの影響を受けにくくしている。

【0018】すなわち、大気中の水蒸気、塵や埃などの 異物が筐体内に入り込む恐れがないので、水蒸気が選択 的反射手段に付着して選択的反射手段を構成する(例え ば反射ミラーなどの)反射部を酸化・腐蝕したり、光学 性能を悪化させたり、選択的反射手段に付着して選択的 反射手段の駆動を妨害するのを防止できる。そのため、 マトリクス光スイッチを常に安定した光学特性に維持で きるだけでなく、良好な駆動性能を長い期間維持させる ことができる。

【0019】また、筐体内は真空状態が維持されているので、選択的反射手段が空気抵抗の影響を受けず、よって空気抵抗による選択的反射手段の駆動性能の低下も発生せず、応答レスポンスが良好で、寿命の長いマトリクス光スイッチとなる。

【0020】なお、前記筐体内を真空にするには、真空チャンバー内でマトリクス光スイッチを組み立てる方法、及び、筐体内を密閉した後、予め筐体に設けた流通路を介して筐体内を真空引きした後、流通路を塞ぐ方法などにより行うことができる。

【0021】なお、前記入力光路を伝播するレーザ光束を出力光路に導く選択的反射手段は、入力光路上に反射面を配置してレーザ光束を反射してレーザ光束の伝播方向を変えて出力光路に導くものでもよいし、入力光路から反射面を退避させてレーザ光束を通過させ、レーザ光

東の伝播方向を変えずに出力光路に導くものでもよい。 更に、1つの入力光路に対して複数の選択的反射手段が 設けられている場合、複数の選択的反射手段は、選択さ れた1つの選択的反射手段がレーザ光束を反射し、その 他の選択的反射手段が入力光路から退避してレーザ光束 を通過させることによりレーザ光束を出力光路に導くよ うに制御される。

【0022】また、選択的反射手段は、光路から退避した位置にレーザ光の伝搬方向と交差しないように設けられた回転軸部材と、前記回転軸部材に軸支されて回動可能に設けられ、対応する入力光路から入力されたレーザ光が対応する出力光路に導かれるようにレーザ光を反射するものとすることができる。なお、回転軸部材は、光路の上方で光路に平行になるように設けたり、垂直になるように設けることができる。また、回転軸部材は、光路の側方の光路から退避した位置に光路に平行になるように設けたり、垂直になるように設けることも可能である。

[0023]

【発明の実施の形態】以下、図面を参照して本発明の実施の形態の一例を詳細に説明する。図1に示すように、本実施の形態のマイクロマシン用のマトリクス光スイッチ10は、上蓋11aと本体部12aとにより形成されるパッケージ32a、反射機構16(図1では、反射ミラー(すなわち、反射機構16の反射面)のみ図示する。)から構成されている。なお、パッケージ32aは本発明の筐体に相当し、反射機構16は、本発明の選択的反射手段に相当する。

【0024】パッケージ32aを構成する上蓋11a及 び本体部12aのそれぞれの周縁部には、光ファイバ端 部の外周面を挟持して入力ポート又は出力ポートを形成 するための複数の切欠きが形成されている。

【0025】これらの切欠きにより、本体部12aに上蓋11aを載置したときにパッケージ32aの側面に開口が形成される。この開口により入力側光ファイバ20a~20dの端部の外周面又は出力側光ファイバ22a~22hの端部の外周面が保持されて入力側光ファイバ20a~20d及び出力側光ファイバ22a~22hとマトリクス光スイッチが一体化される。

【0026】なお、上蓋11a、本体部12a、入力側 光ファイバ20a~20dの端部の外周縁及び出力側光 ファイバ22a~22hの端部の外周縁はシール剤14 によりシールされており、密閉したパッケージ32aと なっている。

【0027】反射機構16は、複数の入力光路と複数の 出力光路の全ての交差位置の光路の上方に設けられており、通常は光路から退避した位置に反射面を配置してレ ーザ光束を通過させるが、図示しない制御部により選択 されると、レーザ光束の光路中に反射面を配置してレー ザ光束を反射して光路を変更し、対応する出力ポートに 導く。なお、図示しないが制御部はマトリクス光スイッチの光路変更状態を制御するものであり、特定の位置の反射機構16を選択し反射ミラー(反射面)を光路上に配置させることによりレーザ光束の伝播方向を変更している。

【0028】このように、上蓋11a、本体部12a、 入力側光ファイバ20a~20dの端部の外周縁及び出力側光ファイバ22a~22hの端部の外周縁はシール 剤14によりシールされているため、大気中の水蒸気や 塵や埃が反射機構16に付着することがない。従って、 常に良好な応答レスポンスを得ることができ、反射機構 16の反射面の酸化や腐蝕を抑えることができ、反射面 の寿命を延ばすことができる。

【0029】また、大気中の塵や埃がパッケージ32aの内部に入り込むことがないので、パッケージ32a内を伝播するレーザ光束が散乱されるのを防止できる。

【0030】なお、このマイクロマシン用のマトリクス 光スイッチ10は、組み立て時に、例えば、1.0×1 0-3 Pa以上1.0 Pa以下程度の真空度にしたチャン バー内で組み立てて密封することにより、パッケージ3 2 a内の真空度を例えば、1.0×10-3 Pa以上1. 0 Pa以下程度としている。

【0031】本実施の形態とのマトリクス光スイッチの性能を確認したところ、挿入損失、消光比ともに±1dB程度以内であった。このマトリクス光スイッチを約4年間の使用した後、再び挿入損失、消光比を計測したところ、共に±1dB程度以内であり、スイッチの応答速度も殆ど変わらなかった。

【0032】これに対して、比較例として、パッケージを密閉せずに大気がパッケージ内を出入りできるように構成した従来のマトリクス光スイッチは、挿入損失が15dB程度、消光比は60dB程度であった。さらに、従来構成のマトリクス光スイッチを2年間使用して再び挿入損失、消光比を計測したところ、反射ミラーの腐蝕・曇化により、挿入損失が20dBに増大し、消光比も30dB程度にまで低下していた。

【0033】また、従来のマトリクス光スイッチでは、スイッチの応答速度は、5ms(200Hz)程度までが限度であっが、本実施の形態のマトリクス光スイッチでは、3.3ms(300Hz)程度までの応答速度が実現できた。

【0034】なお、以上述べたマトリクス光スイッチは、上蓋11aと本体部12aとがほぼ対称的な形状であるため、上蓋11aと本体部12aとの両方に切欠きを設けて、光ファイバ端部を挟んで保持する構成について述べたが、本発明はこの構成に限定しない。

【0035】例えば、図2に示すように、本体部12bの一方側のみに光ファイバの直径と同程度又は光ファイバの直径よりも長い深さを持つ切欠きを設け、平板状に構成した上蓋11bを載置して、本体部12bと光ファ

イバ端部とをシール剤14密着させるとともに、上蓋1 1bと、本体部12b及び光ファイバ端部の上方領域と をシール剤14により密着させることにより密閉したパッケージa32bを用いることができる。

【0036】また、別の構成として、図3に示すように、箱状に形成した本体部12cの側面に予め光ファイバの直径より若干大きめの開口を設けておき、光ファイバの端部を前記開口に挿入した状態でシール剤14によりシールして固定した後、平板状に構成した上蓋11bと本体部12cの開口縁部とをシール剤14により密着させることにより密閉したパッケージa32cを用いることができる。

【0037】更に、別の構成として、図4に示すように、複数の柱状部材18により入力光路と出力光路とを規定したパッケージ32dを用いてもよく、この場合、パッケージ32d内の真空度を高くしても複数の柱状部材18がパッケージ32dの上面と下面とを支えるので、パッケージ32dが歪むのを防止できるという効果がある。

【0038】また、図1~図3のマトリクス光スイッチでは、レーザ光束の光路の上方に反射機構16を設けた構成としているが、図4に示すように、入力光路と出力光路近傍の光路から退避した位置に、レーザ光束の伝播に影響しないように反射機構16を設けることもできる。

【0039】なお、図4では、入力光路と出力光路近傍の光路から退避した位置に回転軸24を立設して設け、該回転軸24の回転により反射ミラーなどの反射部材26を入力光路中に配置してレーザ光束を反射させて出力光路に導いたり、反射部材26を光路から退避した位置に配置してレーザ光束を通過させたりしている。

【0040】なお、以上は全て組み立て時に、例えば、1.0×10⁻³ Pa以上1.0 Pa以下程度の真空度にしたチャンバー内で組み立てて密封する場合が前提であるが、例えば、蓋又は本体のいずれか一方に予め一端部が開口するチューブを設けておき、全ての組立てが終了した後に、チューブの他端部を真空引き装置に繋げてチューブを介してパッケージ32a~32d内を真空引した後、チューブを切断してチューブ端部の開口を閉塞することによってもパッケージ32a~32d内が真空のマトリクス光スイッチを得ることが可能である。

[0041]

【発明の効果】以上説明したように本発明によれば、水蒸気、塵及び埃による種々の影響を抑え、応答レスポンスが良好で、空気抵抗の影響を受けず、寿命の長いマトリクス光スイッチが得られる、という効果がある。

【図面の簡単な説明】

【図1】本発明の実施の形態のマトリクス光スイッチの 概略構成図である。

【図2】本発明の別の実施の形態のマトリクス光スイッ

チの概略構成図である。

【図3】本発明の更に別の実施の形態のマトリクス光スイッチの概略構成図である。

【図4】本発明の更に別の実施の形態のマトリクス光スイッチの概略構成図である。

【図5】従来のマトリクス光スイッチの概略を示す斜視説明図である。

【図6】従来のマトリクス光スイッチの反射装置の別の 構成を示す説明図である。

【符号の説明】

10 マトリクス光スイッチ

11a~11c 上蓋

12a~12c 本体部

14 シール剤

16 反射機構

18 柱状部材

20a~20d入力側光ファイバ22a~22h出力側光ファイバ

24 回転軸

26 反射部材

32a~32d パッケージ

【図1】

【図2】

入力側 ファイバ 56 54 54 レーザ光

フロントページの続き

(72)発明者 坂本 敏弘

千葉県船橋市豊富町585番地 住友大阪セメント株式会社新規技術研究所内

(72) 発明者 竹村 安弘

千葉県船橋市豊富町585番地 住友大阪セメント株式会社新規技術研究所内 Fターム(参考) 2H041 AA16 AA18 AB13 AC01 AZ02 AZ06

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-296486

(43)Date of publication of application: 26.10.2001

(51)Int.CI.

G02B 26/08

B81B 1/00

(21)Application number: 2000-111795 (71)Applicant: SUMITOMO OSAKA

CEMENT CO LTD

(72)Inventor: YANAGISAWA TSUNEO (22)Date of filing: 13.04.2000

SUGAMATA TORU

SAKAMOTO TOSHIHIRO TAKEMURA YASUHIRO

(54) MATRIX OPTICAL SWITCH

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a matrix optical switch for micromachine having a good response and long service life.

SOLUTION: The matrix optical switch consists of a package 32 formed of a top cover 11a having a plurality of notches for forming an input port or an output port and a main body part 12a while holding the outer peripheral surface of an optical fiber end at a peripheral part, and a reflecting mechanism 16. The top cover 11a, main body part 12a, peripheral edge of the end of input side optical fibers 20a-20d, and peripheral edge of the end of output side optical fibers 22a-22h are sealed by a sealing compound 14, and thus a package 32 whose inside is sealed under vacuum is formed.

Japan Pat nt Office is not responsible for any

damages caused by th use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.*** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] At least one input port which leads the laser beam bunch inputted from the outside to an input optical path, The alternative reflective means which is made to reflect or pass the laser beam bunch which spreads the aforementioned input optical path, and is led to an output optical path, It has the output port prepared in the termination of the output optical path which the laser beam bunch reflected or passed by the aforementioned alternative reflective means spreads. the interior of a case at least the aforementioned input optical path, the aforementioned alternative reflective means, and the aforementioned output optical path under vacuum And the matrix optical switch according to claim 1 characterized by preparing in the interior of the sealed case.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[The technical field to which invention belongs] this invention starts a matrix optical switch and relates to the matrix optical switch especially used for a micro machine. [0002]

[Description of the Prior Art] Conventionally, a reflective mirror is prepared in each of the crossing position of the input optical path of a multi-line, and the output optical path of two or more trains, the light from an input optical path is reflected by the reflective mirror of a crossing position with the output optical path chosen based on the control signal from a control section, and the matrix optical switch of composition of leading to the selected output optical path is known.

[0003] For example, as shown in <u>drawing 5</u>, the matrix optical switch in which the reflective mirror 52 which moves up and down where the degree of angle of reflection is maintained with an actuator 50 was formed corresponding to all the crossing positions of an input optical path and an output optical path is indicated by JP,5-134195,A. In this matrix optical switch, by being evacuated above the optical path and usually, inserting only the movable reflective mirror 52 (reflective mirror 52 which moves up and down to the actuator of the position shown with the slash in <u>drawing 5</u>) of the selected position into an optical path by the actuator 50, the reflective mirror 52 reflects the laser beam bunch which passes an input optical path, and leads it to an output optical path.

[0004] Moreover, as shown in <u>drawing 6</u>, the matrix optical switch of composition of an electrostatic force drawing up the flat-surface mirror 56 supported to revolve above the optical path by the torsion bar spring 54 of contest thin polysilicon, and evacuating it from an optical path is proposed by Electrostatic Micro Torsion Mirrors for an Optical Switch Matrix (JOURNAL OF MICROELECTROMECANICAL SYSTEMS, VOL. 5, NO4, p231- p237, DECEMBER1996).

[0005] Any matrix optical switch of composition the laser beam bunch from the optical fiber of an input side Change into the parallel flux of light with the lens for distributor shaft couplings of an input side, and incidence is carried out to an input optical path. Reflect a laser beam bunch by the reflective mirror of the intersection position of one output optical path chosen from from among two or more output optical paths which intersect this input optical path, and it leads to an output optical path. The laser beam bunch which passed along this output optical path is completed with the lens for distributor shaft couplings of an output side by the outgoing end of an output optical path, and it inputs into the optical fiber of an output side.

[0006] in recent years, the importance of the matrix optical switch used for optical micro machine technology is increasing by development of optical micro machine technology, and the optical switch for the Hikari micro machine technology shown in <u>drawing 6</u> has been proposed

[0007]

[Problem(s) to be Solved by the Invention] However, the matrix optical switch used for optical micro machine technology has conventionally the problem that a life is short, compared with the matrix optical switch of composition that a response tends to become bad and the rate of a light reflex of a reflective mirror tends to fall since size is very small.

[0008] Therefore, in this invention, a response is good, the rate of a light reflex of a reflective mirror cannot fall easily, and it aims at offering the long matrix optical switch of a life.

[0009]

[Means for Solving the Problem] In order to attain the above-mentioned purpose invention according to claim 1 At least one input port which leads the laser beam bunch inputted from the outside to an input optical path, The alternative reflective means which is made to reflect or pass the laser beam bunch which spreads the aforementioned input optical path, and is led to an output optical path, It has the output port prepared in the termination of the output optical path which the laser beam bunch reflected or passed by the aforementioned alternative reflective means spreads, the interior of a case at least the aforementioned input optical path, the aforementioned alternative reflective means, and the aforementioned output optical path under vacuum And it is characterized by preparing in the interior of the sealed case.

[0010] That is, in the matrix optical switch, the response became bad, and this invention persons considered as the cause which shortens a life, and discovered the following three factors.

(1) Describe influence **** of the influence (3) air resistance by foreign matters, such as dust in the adhesion (2) atmosphere of the steam in the atmosphere, and dust, and the factor of (1). If the phenomenon in which the steam in the atmosphere adheres and dews the portion which supports a reflective mirror and a reflective mirror occurs, since it will

be able to draw near with the surface tension of the water which the portion which supports a reflective mirror and a reflective mirror dewed, a reflective mirror cannot be driven smoothly and a response gets worse.

[0011] Moreover, while a reflective mirror oxidizes with the oxygen in the atmosphere, water, and the water that dewed, a reflective mirror oxidizes and corrodes and the rate of a light reflex of a reflective mirror makes it fall, oxidization and the corroded portion change the optical-character ability of a reflective mirror, and cause stray light generating.

[0012] Since the size of a reflective mirror is very small, if a reflective mirror also oxidizes and corrodes a part in the matrix optical switch of a micro machine, since the optical property of a reflective mirror will get worse remarkably especially, it is a big problem. Aggravation of the optical property of this reflective mirror is also the cause which shortens the life of a matrix optical switch.

[0013] Below, the factor of (2) is described. If foreign matters which float in the atmosphere, such as dust and dust, enter in a matrix optical switch, the optical intensity of the laser beam bunch which laser beam bunches while spreading an optical path are scattered about, and is led to an output port will decrease. It is, although it does not come out so much, and the generated stray light becomes the cause of entering into other output ports and starting a malfunction and is also afraid.

[0014] Since the matrix optical switch for micro machines is minute and the size of dust or dust becomes large relatively to the size of a matrix optical switch, even if especially this problem is the dust and dust of a minute amount, it has big influence on the optical property of a matrix optical switch, and is serious.

[0015] Moreover, a possibility of saying that it enters between the portions which support a reflective mirror and a reflective mirror, and the drive performance of a reflective mirror is worsened also has dust and dust.

[0016] Furthermore, the factor of (3) is described. Since the matrix optical switch for micro machines is minute, it will receive air resistance greatly. By this air resistance, the load concerning a reflective mirror becomes large, a drive performance will fall, and a response will get worse.

[0017] Influence from an external environment is made hard to be influenced, when the interior prepares an input optical path, an alternative reflective means, and an output optical path in the case which the vacuum sealed and an input optical path, an alternative reflective means, and an output optical path intercept them from an external environment at least in invention of the above thing to the claim 1.

[0018] That is, since there is no possibility that foreign matters, such as a steam in the atmosphere, dust, and dust, may enter in a case, a steam can oxidize and corrode the reflective sections (for example, reflective mirror etc.) which adhere to an alternative reflective means and constitute an alternative reflective means, can worsen optical-character ability, or can prevent adhering to an alternative reflective means and blocking the drive of an alternative reflective means. therefore, long in a drive performance a matrix optical switch being not only maintainable to the always stabilized optical property but good -- period maintenance can be carried out

[0019] Moreover, in a case, since the vacua is maintained, an alternative reflective means is not influenced of air resistance, therefore the drive performance degradation of the alternative reflective means by air resistance is not generated, either, but a response is

good and serves as a long matrix optical switch of a life.

[0020] In addition, after carrying out vacuum length of the inside of a case through the circulation way beforehand established in the case after sealing the inside of the method of assembling a matrix optical switch within a vacuum chamber, and a case, in order to have made the inside of the aforementioned case into the vacuum, it can carry out by the method of taking up a circulation way etc.

[0021] In addition, on an input optical path, an alternative reflective means lead the laser beam bunch which spreads the aforementioned input optical path to an output optical path may arrange a reflector, may reflect a laser beam bunch, may change the propagation of a laser beam bunch, may lead it to an output optical path, may evacuate a reflector from an input optical path, may pass a laser beam bunch, and may be led to an output optical path, without changing the propagation of a laser beam bunch. Furthermore, when two or more alternative reflective meanses are established to one input optical path, one selected alternative reflective means reflects a laser beam bunch, and two or more alternative reflective meanses are controlled to lead a laser beam bunch to an output optical path, when other alternative reflective meanses evacuate from an input optical path and pass a laser beam bunch.

[0022] Moreover, a laser beam shall be reflected so that it may be led to the output optical path to which the laser beam which the alternative reflective means was supported to revolve by the axis-of-rotation member prepared so that the propagation direction of a laser beam might not be intersected in the position evacuated from the optical path, and the aforementioned axis-of-rotation member, was established possible [rotation], and was inputted from the corresponding input optical path corresponds. In addition, it can prepare, or an axis-of-rotation member can be prepared so that it may become perpendicular so that it may become parallel to an optical path in the upper part of an optical path. Moreover, an axis-of-rotation member can also be prepared so that it may become parallel to an optical path in the position evacuated from the optical path of the side of an optical path, and may prepare or may become perpendicular.

[0023]

[Embodiments of the Invention] Hereafter, with reference to a drawing, an example of the gestalt of operation of this invention is explained in detail. As shown in <u>drawing 1</u>, the matrix optical switch 10 for the micro machines of the gestalt of this operation consists of package 32a formed of top-cover 11a and this soma 12a, and a reflective mechanism 16 (in <u>drawing 1</u>, it is reflective-mirror(namely, reflector of the reflective-mechanism 16)-accepted, and illustrates.). In addition, package 32a is equivalent to the case of this invention, and the reflective mechanism 16 is equivalent to the alternative reflective means of this invention.

[0024] Two or more notches for pinching the periphery side of an optical fiber edge and forming input port or an output port are formed in each periphery section of top-cover 11a which constitutes package 32a, and this soma 12a.

[0025] Of these notches, when top-cover 11a is laid in this soma 12a, opening is formed in the side of package 32a. The periphery side of an input-side optical fibers [20a-20d] edge or the periphery side of an output side optical fibers [22a-22h] edge is held by this opening, and the input-side optical fibers 20a-20d and the output side optical fibers 22a-22h, and a matrix optical switch are unified.

[0026] In addition, the seal of the periphery edge of a top-cover 11a, this soma 12a, and

input-side optical fibers [20a-20d] edge and the periphery edge of an output side optical fibers [22a-22h] edge is carried out by the sealing compound 14, and they have become sealed package 32a.

[0027] Although the reflective mechanism 16 is established above two or more input optical paths and the optical path of all the intersection positions of two or more output optical paths, a reflector is arranged in the position usually evacuated from the optical path and a laser beam bunch is passed, if chosen by the control section which is not illustrated, into the optical path of a laser beam bunch, a reflector is arranged, a laser beam bunch is reflected, and an optical path will be changed and will be led to a corresponding output port. In addition, although not illustrated, a control section controls the optical-path change state of a matrix optical switch, and has changed the propagation of a laser beam bunch by choosing the reflective mechanism 16 of a specific position and arranging a reflective mirror (reflector) on an optical path.

[0028] Thus, since the seal of the periphery edge of a top-cover 11a, this soma 12a, and input-side optical fibers [20a-20d] edge and the periphery edge of an output side optical fibers [22a-22h] edge is carried out by the sealing compound 14, the steam, dust, or dust in the atmosphere do not adhere to the reflective mechanism 16. Therefore, an always good response can be obtained, oxidization and corrosion of the reflector of the reflective mechanism 16 can be suppressed, and the life of a reflector can be prolonged.

[0029] Moreover, since the dust or dust in the atmosphere do not enter the interior of package 32a, it can prevent that the laser beam bunches which spread the inside of package 32a are scattered about.

[0030] In addition, the matrix optical switch 10 for these micro machines is setting the degree of vacuum in package 32a to 1.0x10 - 3 or more-Pa about 1.0Pa or less by assembling and sealing within the chamber made into 1.0x10 - 3 or more Pa degree of vacuum of about 1.0Pa or less at the time of an assembly.

[0031] When the performance of a matrix optical switch with the gestalt of this operation was checked, the insertion loss and the extinction ratio were less than about **1dB. After using this matrix optical switch for about four years, when the insertion loss and the extinction ratio were measured again, it is less than about **1dB both, and the speed of response of a switch hardly changed, either.

[0032] On the other hand, as for the conventional matrix optical switch constituted so that the inside of a package of the atmosphere could be gone in and out as an example of comparison, without sealing a package, the insertion loss of about 15dB and the extinction ratio was about 60dB. Furthermore, when the insertion loss and the extinction ratio were measured again conventionally, using the matrix optical switch of composition for two years, by the corrosion and overcast-ization of a reflective mirror, the insertion loss increased to 20dB and the extinction ratio was also falling to about 30dB.

[0033] Moreover, at the conventional matrix optical switch, the speed of response of a switch has realized the speed of response to 3.3ms (300Hz) grade by the matrix optical switch of the gestalt of this operation [5ms (200Hz) grade] of **** in a limit.

[0034] In addition, although the matrix optical switch described above described the composition which prepares a notch in both top-cover 11a and this soma 12a, and is held across an optical fiber edge since top-cover 11a and this soma 12a are almost symmetrical configurations, this invention is not limited to this composition.

[0035] For example, as shown in drawing 2, prepare a notch with the depth [of the same

grade as the diameter of an optical fiber or] longer than the diameter of an optical fiber only in the one side of this soma 12b, and top-cover 11b constituted in plate-like is laid. While sticking this soma 12b and an optical fiber edge sealing-compound 14, package a32b sealed by sticking top-cover 11b and the upper part field of this soma 12b and an optical fiber edge by the sealing compound 14 can be used.

[0036] Moreover, as another composition, as shown in <u>drawing 3</u>, larger opening a little than the diameter of an optical fiber is beforehand prepared in the side of this soma 12c formed in box-like. After carrying out the seal of the edge of an optical fiber by the sealing compound 14 in the state where it inserted in the aforementioned opening and fixing, package a32c sealed by sticking top-cover 11b and the opening marginal part of this soma 12c which were constituted in plate-like by the sealing compound 14 can be used.

[0037] Furthermore, since two or more pillar-shaped members 18 support the upper surface and the inferior surface of tongue which is package 32d as another composition even if it may use package 32d which specified the input optical path and the output optical path by two or more pillar-shaped members 18 and makes high the degree of vacuum in package 32d in this case as shown in <u>drawing 4</u>, it is effective in the ability to be able to prevent that package 32d is distorted.

[0038] Moreover, although considered as the composition which established the reflective mechanism 16 above the optical path of a laser beam bunch in the matrix optical switch of <u>drawing 1</u> - <u>drawing 3</u>, as shown in <u>drawing 4</u>, the reflective mechanism 16 can also be formed in the position evacuated from the input optical path and the optical path near the output optical path so that propagation of a laser beam bunch may not be influenced.

[0039] in addition, the position evacuated from the input optical path and the optical path near the output optical path in <u>drawing 4</u> -- the axis of rotation 24 -- setting up -- preparing -- rotation of this axis of rotation 24 -- reflection of a reflective mirror etc. -- a member 26 is arranged in an input optical path, and a laser beam bunch is reflected -- making -- leading to an output optical path **** -- reflection -- it arranges in the position which evacuated the member 26 from the optical path, and the laser beam bunch is passed

[0040] In addition, although the case where assemble and all the above is sealed within the chamber made into 1.0x10 - 3 or more Pa degree of vacuum of about 1.0Pa or less at the time of an assembly is a premise For example, the tube in which the end section carries out opening to either a lid or a main part beforehand is prepared. After tying the other end of a tube to vacuum length equipment after all assemblies are completed, and ******(ing) the inside of package 32a-32d through a tube, The inside of package 32a-32d is able to obtain a vacuous matrix optical switch also by cutting a tube and blockading opening of a tube edge.

[0041]

[Effect of the Invention] The influences of various by the steam, dust, and dust are suppressed, according to this invention, as explained above, a response is good and is not influenced of air resistance, but it is effective in the long matrix optical switch of a life being obtained.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] It is the outline block diagram of the matrix optical switch of the gestalt of operation of this invention.

[Drawing 2] It is the outline block diagram of the matrix optical switch of the gestalt of another operation of this invention.

[Drawing 3] It is the outline block diagram of the matrix optical switch of the gestalt of still more nearly another operation of this invention.

[Drawing 4] It is the outline block diagram of the matrix optical switch of the gestalt of still more nearly another operation of this invention.

[Drawing 5] It is tropia explanatory drawing showing the outline of the conventional matrix optical switch.

[Drawing 6] It is explanatory drawing showing another composition of the reflector of the conventional matrix optical switch.

[Description of Notations]

10 Matrix Optical Switch

11a-11c Top cover

12a-12c This soma

14 Sealing Compound

16 Reflective Mechanism

18 Pillar-shaped Member

20a-20d Input-side optical fiber

22a-22h Output side optical fiber

24 Axis of Rotation

26 Reflection -- Member

32a-32d Package

DRAWINGS

[Drawing 2]

[Drawing 4]

