\leftarrow	Natural Language Processing & Word Embeddings Graded Quiz • 30 min			Due Feb 10, 3:59 PM CST
		✓ Congratulations! You passed! TO PASS 80% or higher	GRADE 100%	
	L	Natural Language Processing & Word Embe	ddings	
	1	 Suppose you learn a word embedding for a vocabulary of 10000 words. Then the embedding vectors should dimensional, so as to capture the full range of variation and meaning in those words. True False Correct	be 10000 1 / 1 point	
	2	The dimension of word vectors is usually smaller than the size of the vocabulary. Most common size vectors ranges between 50 and 400. What is t-SNE?	1/1 point	
(Natural Language Processing & Word Embeddings			Due Feb 10, 3:59 PM CST
		 ✓ Correct Yes 		
	3	Suppose you download a pre-trained word embedding which has been trained on a huge corpus of text. You word embedding to train an RNN for a language task of recognizing if someone is happy from a short snippe using a small training set.	then use this 1 / 1 point t of text,	
		x (input text) y (happy?) I'm feeling wonderful today! 1 I'm bummed my cat is ill. 0 Really enjoying this! 1		
		Then even if the word "ecstatic" does not appear in your small training set, your RNN might reasonably be exprecognize "I'm ecstatic" as deserving a label $y=1$. $ \blacksquare $ True	pected to	
		 Correct Yes, word vectors empower your model with an incredible ability to generalize. The vector for "ecstar contain a positive/happy connotation which will probably make your model classified the sentence a 		
←	Natural Language Processing & Word Embeddings			Due Feb 10, 3:59 PM CST
		$ ightharpoonup e_{boy} - e_{girl} pprox e_{brother} - e_{sister}$		
		Yes! $e_{boy} - e_{girl} pprox e_{sister} - e_{brother}$ $e_{boy} - e_{brother} pprox e_{girl} - e_{sister}$		
		✓ Correct Yes!		
		$lacksquare$ $e_{boy} - e_{brother} pprox e_{sister} - e_{girl}$		
	5	Let E be an embedding matrix, and let o_{1234} be a one-hot vector corresponding to word 1234. Then to get the of word 1234, why don't we call $E*o_{1234}$ in Python? It is computationally wasteful. The correct formula is E^T*o_{1234} . This doesn't handle unknown words (<unk>).</unk>	e embedding 1 / 1 point	
		 None of the above: calling the Python snippet as described above is fine. ✓ Correct Yes, the element-wise multiplication will be extremely inefficient. 		
←	Natural Language Processing & Word Embeddings			Due Feb 10, 3:59 PM CST
		TrueFalse		
		✓ Correct		
	7	In the word2vec algorithm, you estimate $P(t \mid c)$, where t is the target word and c is a context word. How ar chosen from the training set? Pick the best answer. $\bigcirc c \text{ is a sequence of several words immediately before } t.$	e t and c	
		\bigcirc c is the one word that comes immediately before t . \bigcirc c is the sequence of all the words in the sentence before t .		
		igodots c and t are chosen to be nearby words.		
	8	. Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The words uses the following softmax function: $P(t\mid c) = \frac{e^{\theta_t^T c_c}}{\sum_{l=1}^{10000} e^{\theta_t^T c_c}}$	2vec model 1/1 point	
		Which of these statements are correct? Check all that apply.		
\leftarrow	Natural Language Processing & Word Embeddings Graded Quiz • 30 min	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		Due Feb 10, 3:59 PM CST
		$igsim heta_t$ and e_c are both trained with an optimization algorithm such as Adam or gradient descent.		
←	Natural Language Processing & Word Embeddings	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		Due Feb 10, 3:59 PM CST
`	Graded Quiz • 30 min	minimizes this objective: $\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (\theta_i^T e_j + b_i + b_j' - log X_{ij})^2$		
		Which of these statements are correct? Check all that apply. $\label{eq:theta} \ \ \theta_i \ \text{and} e_j \text{should be initialized to 0 at the beginning of training.}$		
		$igsim heta_i$ and e_j should be initialized randomly at the beginning of training.		
		$igstar{}{igstar} X_{ij}$ is the number of times word j appears in the context of word i. $igstar{}{}$ Correct		
		Correct		
		Correct The weighting function helps prevent learning only from extremely common word pairs. It is not necessate that it satisfies this function.	essary	
	1	0. You have trained word embeddings using a text dataset of m_1 words. You are considering using these word for a language task, for which you have a separate labeled dataset of m_2 words. Keeping in mind that using m_2 embeddings is a form of transfer learning, under which of these circumstance would you expect the word enbe helpful?	vord	