A forgómozgás vizsgálata

mérést végezte: Méhes Máté Mérés időpontja:2018.10.05. Jegyzőkönyv leadása: 2018.10.12.

A mérés célja

A mérés célja a merev testeket leíró mozgásegyenlet igazolása. Két merev test, egy rúd és egy korong, tehetetlenségi nyomatékának meghatározása rögzített tengely körüli forgás esetén. A forgómozgás alapegyenlete: $\Theta \cdot \beta = M$ ahol Θ a tehetetlenségi nyomaték, β a szöggyorsulás és M a testre ható forgatónyomaték.

Mérőeszközök

- Fonál
- Állócsiga
- Állvány
- Táramérleg
- Tolómérő
- Sciense Workshop 750 interface
- PC, Data studio program
- szenzor állvány
- Smar pulley szenzor
- súlyok (50g)
- Próbatestek

A mérés rövid leírása

Rögzítjük az egyik próbatestet a forgató állványon, aztán az állócsigát elhelyezzük a szenzor érzékelői közé. Az egyik forgástengely vízszintes a másik függőleges irányú. A fonáltárcsára úgy rögzítjük a fonalat, hogy az semmikép ne csússzon meg, majd egy rétegben tekerjük fel, hogy az erőkar a mozgás során ne változzon. A fonalat átvetjük az érzékelők közötti csigán, és a súlyokat a végére helyezzük. A szenzor sebességet mér, a számítógépes program pedig pontokat rajzol ki a képernyőre, melyekre egyenes illesztésével, az egyenes meredekségéből a gyorsulás leolvasható.

A fonál elengedése után elindítjuk a programot, majd megfelelő számú pont kirajzolása utána megállítjuk. Az illesztés után a gyorsulásadatokat feljegyezzük.

A mozgást leíró egyenlet: $\Theta \cdot \beta + S = m \cdot r \cdot (g - a)$ ahol a-ból a szöggyorsulás: $a = \beta \cdot r$

 Θ a tehetetlenségi nyomaték, β a szöggyorsulás, m a gyorsító tömeg, r a fonáltárcsa sugara, g a gravitációs állandó, a a fonáltárcsa gyorsulása.

Az egyik módszer a tehetetlenségi nyomaték meghatározására az, hogy különböző gyorsító súlyokkal elvégezzük a mérést, majd egyenest illesztünk a mért adatainkra, melynek meredeksége a tehetetlenségi nyomaték lesz. Használjuk az $y=m\cdot r\cdot (g-a)$ helyettesítést, ebből következik, hogy $y=\Theta\cdot\beta+S$ egyenes egyenletét kapjuk, ez azért jó nekünk, mert y-t és β -t mérni tudjuk, és S nem befolyásolja a meredekséget.

Mérésünk eredményeit ezután vessük össze az alakzatok paramétereivel meghatározható tehetetlenségi nyomatékokkal. A rúd esetén: $\Theta_r = \frac{1}{12} \cdot m \cdot l^2 + \frac{1}{4} m \cdot \rho^2$. Ahol l a rúd hossza, m a tömege, ρ pedig a sugara.

A korong esetén pedig: $\Theta_k = \frac{1}{2} m \cdot R^2$. Ahol m a korong tömege, R pedig a sugara.

Mérési adatok

Testek adatai

Korong		Fonaltárcsa	
M [g] 922,0		d [mm]	7,60
D [cm]			

Rúd		Fonaltárcsa	
M [g] 224,0		d [mm]	5,40
L [cm]	33,40		
D [mm]	5,00		

Referencia fonaltárcsa		g [m/s²]
m [g]	8,5	9,81

Kísérleti adatok

Korong					
tömag [a]	Gyorsulás [m/s²]				
tömeg [g]	3.				
150	0,0022 0,0021 0,0020				
200	0,0032 0,0032 0,0032				
250	0,0043	0,0041	0,0044		
300	0,0054	0,0052	0,0053		
350	0,0065	0,0063	0,0064		

	Rúd				
45 ma a ar [ar]	Gyorsulás [m/s²]				
tömeg [g]	1. 2. 3.				
150	0,0034	0,0034	0,0033		
200	0,0045	0,0043	0,0044		
250	0,0058	0,0057	0,0056		
300	0,0072	0,0071	0,0070		
350	0,0083	0,0084	0,0083		

Mérés kiértékelése

A mért adatokból a következő táblázatokat készítettem el, amiben azt látjuk, hogy a gyorsítótömeg növelésével hogyan változnak az adataink. Az egyszerűbb számolás érdekében egy átlaggyorsulást számítottam minden tömegértékhez, a korongra és a rúdra egyaránt. Majd a **Bétát** és az **y mért** adatokat a már fent említett képletek segítségével kiszámoltam. A korong esetében:

Korong					
r [m]	átlag gyorsulás	Béta1 [1/s²]	y mért [N]	y illesztett [N]	Eltérés
0,0038	0,0021	0,5526315789	0,005590503	0,0055680962	2,240676E-005
0,0038	0,0032	0,8421052632	0,007453168	0,0074821762	2,900819E-005
0,0038	0,0042666667	1,1228070175	0,0093154467	0,0093382537	2,280705E-005
0,0038	0,0053	1,3947368421	0,011177358	0,0111363288	4,102917E-005
0,0038	0,0064	1,6842105263	0,013038788	0,0130504088	1,162078E-005

Ezek utána diagramon ábrázolom és egyenest illesztek a kapott értékekre.

Korong mért tehetetlenségi nyomatéka

Az illesztés utána látszik, hogy az egyenes meredeksége lesz a korong mért tehetetlenségi nyomatéka.

Most nézzük a rudat.

Rúd					
r [m]	átlag gyorsulás	Béta1 [1/s2]	y mért [N]	y illesztett [N]	Eltérés
0,0027	0,0033666667	1,2469135802	0,0039716865	0,0040965721	0,0001248856
0,0027	0,0044	1,6296296296	0,005295024	0,0051759781	0,0001190459
0,0027	0,0057	2,1111111111	0,0066179025	0,0065339404	8,396207E-005
0,0027	0,0071	2,6296296296	0,007940349	0,0079963615	5,601246E-005
0,0027	0,0083333333	3,0864197531	0,009262575	0,0092846847	2,210974E-005

Rúd mért tehetetlenségi nyomatéka

A mért tehetetlenségi nyomatékok összefoglalása és a hibák meghatározása téglalap módszerrel.

$$\Delta\Theta_{m\acute{e}rt} = \frac{2 \cdot \Delta y}{\beta_{max} - \beta_{min}}$$

Próbatestek	Θ mért	$\Delta\Theta$ (hiba)
korong	0,0066122762	7,2516679E-005
rúd	0,0028203834	0,0001357816

A megfelelő képletekkel számított tehetetlenségi nyomatékuk és a tömeg méréséből adódó hiba kiszáítása.

$$\frac{\Delta\Theta}{|\Theta|} = \frac{\Delta m}{|m|}$$

Próbatestek	Θ számított	$\Delta\Theta$ (hiba)	
korong	0,005477141	5,049425E-005	
rúd	0,0020827287	1,7703194E-005	

Diszkusszió

A mért és az számított eredményeket összehasonlítva nézzük meg az eltéréseket.

Próbatestek	Θ mért	Θ számított	Eltérés
korong	0,0066122762	0,005477141	0,0011351352
rúd	0,0028203834	0,0020827287	0,0007376547

Jól látszik, hogy a rúd esetében jobban sikerülhetett a mérésem ugyanis tízezred pontossággal sikerült meghatároznom a tehetetlenségi nyomatékát. Sajnos a korong esetén már egy ezred pontatlanság ami nagynak tűnik a rúdéhoz képest. Ezekben a pontatlanságokban benne vannak azok a hibák, amiket a testek méreteinek mérésekor véthettem. Összességében kijelenthetjük, hogy a méréssel alátámasztottuk a rögzített tengely körüli forgásra vonatkozó összefüggéseket.