Post-quantum-secure public-key encryption from the Learning With Errors problem

Course 01410, Crypto I

Christian Majenz

Associate Professor, Cybersecurity Engineering Section, DTU Compute

Plan for today

Part I

Part III

Post-quantum public-key cryptography and the NIST competition

DH

DH

Luckily, public-key encryption and key exchange can also be constructed based on the hardness of

Lattice problems

DH

- Lattice problems
- Solving systems of multivariate polynomial equations

DH

- Lattice problems
- Solving systems of multivariate polynomial equations
- Decoding "obfuscated" error correction codes

DH

- Lattice problems
- Solving systems of multivariate polynomial equations
- Decoding "obfuscated" error correction codes
- Finding an isogeny between supersingular elliptic curvers

Post-quantum cryptography

⇒We have

- Lattice-based
- Multivariate-polynomial-based
- Code-based
- Isogeny-based

Public-key encryption/key exchange

Digital signatures are "easier"! Additionally

- Hash-based signatures
- MPC-in-the-head signatures

► Goal: Standardize at least one PQ-secure scheme of each:

- ► Goal: Standardize at least one PQ-secure scheme of each:
 - Key Encapsulation Mechanism (KEM, ~public-key encryption)

- Goal: Standardize at least one PQ-secure scheme of each:
 - Key Encapsulation Mechanism (KEM, ~public-key encryption)
 - Digital Signature scheme (DSS)

- Goal: Standardize at least one PQ-secure scheme of each:
 - Key Encapsulation Mechanism (KEM, ~public-key encryption)
 - Digital Signature scheme (DSS)
- Initially: All classes represented

- ► Goal: Standardize at least one PQ-secure scheme of each:
 - Key Encapsulation Mechanism (KEM, ~public-key encryption)
 - Digital Signature scheme (DSS)
- Initially: All classes represented
- ► To be standardized:

- ► Goal: Standardize at least one PQ-secure scheme of each:
 - Key Encapsulation Mechanism (KEM, ~public-key encryption)
 - Digital Signature scheme (DSS)
- Initially: All classes represented
- ► To be standardized:
 - ▶ 1 Lattice KEM: Crystals-Kyber

- ► Goal: Standardize at least one PQ-secure scheme of each:
 - Key Encapsulation Mechanism (KEM, ~public-key encryption)
 - Digital Signature scheme (DSS)
- Initially: All classes represented
- ► To be standardized:
 - 1 Lattice KEM: Crystals-Kyber
 - 3 DSS: 2 based on lattices: Crystals-Dilithium&Falcon, 1 hashbased: SPHICS+

- ► Goal: Standardize at least one PQ-secure scheme of each:
 - Key Encapsulation Mechanism (KEM, ~public-key encryption)
 - Digital Signature scheme (DSS)
- Initially: All classes represented
- ► To be standardized:
 - 1 Lattice KEM: Crystals-Kyber
 - 3 DSS: 2 based on lattices: Crystals-Dilithium&Falcon, 1 hashbased: SPHICS+
- 4th round: New call for signature proposals, 3 code-based KEMs under consideration

- Goal: Standardize at least one PQ-secure scheme of each:
 - Key Encapsulation Mechanism (KEM, ~public-key encryption)
 - Digital Signature scheme (DSS)
- Initially: All classes represented
- ► To be standardized:
 - ▶ 1 Lattice KEM: Crystals-Kyber
 - 3 DSS: 2 based on lattices: Crystals-Dilithium&Falcon, 1 hashbased: SPHICS+
- 4th round: New call for signature proposals, 3 code-based KEMs under consideration

Remainder of today's lecture:

- ► The Learning With Errors (LWE) problem
- ► The Regev encryption scheme
- Short outlook: What's missing to get to Kyber?

Part II: The Lerning With Errors problem (LWE)

Warm-up: Gaussian elimination

• Exercise: Solve the following linear system over \mathbb{Z}_{23} using Gaussian elimination:

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} \begin{pmatrix} 13 \\ 20 \end{pmatrix} = \begin{pmatrix} 7 \\ 4 \\ 1 \end{pmatrix} \mod 23$$

Hint: $21^{-1} = 11 \mod 23$

A slightly harder problem

• Exercise: Solve the following "noisy" linear system over \mathbb{Z}_{23} using Gaussian elimination:

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} \begin{pmatrix} 9 \\ 10 \end{pmatrix} = \begin{pmatrix} 6 \\ 19 \\ 13 \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \end{pmatrix} \mod 23$$

Promise: $\epsilon_i \in \{-1,0,1\}$ for i = 1,2,3

Hint: $21^{-1} = 11 \mod 23$

A slightly harder problem

For Example 2. Solve the following "noisy" linear system over \mathbb{Z}_{23} using "mination:

Promise: $\epsilon_i \in \{-1,0,1\}$ for i

Hint: $21^{-1} = 11 \mod 23$

Part III: Regev encryption