Assignment 2: Ontologies / ER Diagram Design Exercise

Felicia Liu (<u>liu318@illinois.edu</u>)

CS598: Foundations of Data Curation

1. Evidence of in-depth examination of data sources (steps 1 & 2)

[10 points] Create an ER diagram for the Pre-owned dealer database, as described in the attached file.

ER Diagram for pre-owned cars dealer company

"MDS_Exercise2_File A" is an Excel file and it contains table "Transactions" and table "Customers" respectively.

- In the "Transactions" table, column "Transaction" works as both primary key in this table and foreign key to link the table "Customers". Besides the column "Transaction", there are columns "Associate_Name", "Buy", "Trade(Buy and Sell)", "Sale", "Buy Price" constituting this table.
- In the "Customers" table, column "Transaction" serves as the primary key
 because it is the unique number to differentiate the customers. What is
 more, it is also the foreign key to link table "Transaction". This table also
 includes customer's personal information like "Customer_Name", "Phone",
 "Street", "City", etc.

2. Evidence of in-depth examination of data sources (steps 1 & 2)

[10 points] Create a separate ER diagram that reflects the schema you designed for Assignment 1. You may update the schema based on feedback you received from instructors after submitting Assignment 1.

ER Diagram for auto dealer company

The relationship for the three schemas is presented as below.

- In the "Inventory" table, column "VIN" acts as the primary key since it is
 the unique number for each vehicle. In the "Sales" table, column "VIN"
 serves as the foreign key to link the "Inventory" table and "Sales" table.
- In the "Customer Relations" table, column "CustomerID" is the primary key
 because this table aims at managing the customer information, and each
 customer should have a unique ID. In the "Sales" table, column
 "CustomerID" works as the foreign key to link the "Customer Relations"
 table and "Sales" table.
- In the "Sales" table, the column "SaleID" is the primary key since it stands for each unique order.

3. Evidence of understanding ER diagrams and data integration (steps 3 & 4)

Create at least 3 intermediate ER diagrams that showcase your integration process [15 points]. These diagrams should be accompanied by narrative prose (either in a separate document or as annotations directly to the diagram) that describe each of the integration steps taken on the diagram [20 points]. See the integration process described in the data integration slides for examples of what this might look like, and follow the example shown in the "Schema integration: an example" lecture. There is no one right way to do this, but your decisions should be justifiable, and should minimize the potential for information loss. Be sure to justify your design decisions in your narrative prose! Discussion of both various curatorial objectives and the pros and cons of various integration steps is necessary.

For the auto dealer company from assignment 1, we mainly created 3 different tables: "Sales", "Customers" and "Inventory".

For the pre-owned cars dealer company, we mainly created 2 different tables: "Transactions" and "Customers".

As a consequence, I decided to integrate table "Sales" from auto dealer company and table "Transactions" from pre-owned cars dealer company as integrated table 1, and integrate table "Customers" from auto dealer company and table "Customers" from pre-owned cars dealer company as integrated table 2, and leave the table "Inventory" separately as integrated table 3.

In order to generate the 3 intermediate ER diagrams, the following procedures are performed:

• Step 1:

To aggregate table "Sales" from auto dealer company and table "Transactions" from pre-owned cars dealer company, we needed to compare these two databases.

• Step 2:

As can be observed in the below picture, the "Sales" table is included in the "Transaction" table because the "Transaction" table includes both "buy" and "sales" transactions. In addition, the column "SaleID" in the "Sales" table and the column "Transaction" in the "Transactions" table appear to refer to the same attributes. Hence, while integrating these two tables, we are able to replace column "SaleID" with the title "Transaction". Furthermore, the column "CustomerID" and its corresponding derivative columns from the "Sale" table and the column "Associate_Name" from the "Transactions" table are also pointing to the customer's personal information. Therefore, we can add the columns "CustomerID", "Last name", "First name" etc to table "Transactions". Additionally,

the column "VIN" from table "Sales" and column "VIN" from table "Transactions" are both referring to the inventory reference number, which are deemed as the same attribute.

Step 3:

Based on the step 2 analysis, the "Sales" table is included in the "Transactions" table. What is more, we combined the column "SaleID" and the respective columns into column "Transaction", and expanded "Associate Name" to "CustomerID" to include more customer's information as is indicated in the below picture. No information loss was identified after integrating these two tables.

• Step 4:

After integrating the two databases, the integrated ER Diagram for the integrated table 1 will be shown as the following picture:

	Table: Sales	
PK	SaleID	
FK1	CustomerID	
FK2	VIN	
	Lastname	
	Firstname	
	МІ	
	SaleDate	
	Discount	
	Tradeln	
	TradeInValue	
	PurchasePrice	
	RepeatCustomer	

Table: Transactions						
PK, FK1	TRANSACTION					
	ASSOCIATE_NAME					
	BUY					
	TRADE (BUY AND SALE)					
	SALE					
	BUY_PRICE					
	TRADE_VALUE					
	STICKER					
	SALE_PRICE					
	DATE					
FK2	VIN					
	NOTES					

Table: Transactions				
PK, FK1	Transaction			
FK2	CustomerID			
FK3	<u>VIN</u>			
	Lastname			
	Firstname			
	Associate Name			
	мі			
	RepeatCustomer			
	Discount			
	Buy			
	Trade (Buy and Sale)			
	Sale			
	Buy_Price			
	Tradeln			
	TradeInValue			
	Sticker			
	Sale_Price			
	Notes			

Step 5:

To aggregate table "Customer" from auto dealer company and table "Customers" from pre-owned cars dealer company, we made a comparison between these two databases.

As is shown in the below picture, the "Customers" table from the Auto dealer company contains customer's personal information including the customer's last name, first name, address, and etc. Similarily, the "Customers" table from the Auto dealer company also contains customer's information including customer's name, phone, street, and etc. Specifically, the "Customers" table from the Auto dealer company also includes "Transaction" information.

• Step 6:

Based on the step 5 analysis, the integrated table 2 which combines the "Customers" table from the auto dealer company and the "Customers" table from the pre-owned cars dealer company should include columns "Transaction", "CustomerID", "Phone", "Last name", "First name" and etc. Since the original "Customers" table from the auto dealer company does not contain "Transaction", we should obtain the "SaleID" from the "Sales" table as the "Transaction". In addition, we should assign a unique number as customer ID to the customers from the pre-owned cars dealer company.

There is no information loss for the below integrated "Customers" table.

• Step 7:

After integrating the two databases, the integrated ER Diagram for the integrated table 2 will be shown as the following picture:

Step 8:

There is an "Inventory" table from the auto dealer company, however, there is no similar "Inventory" table from the pre-owned cars dealer company. Nevertheless, from the "Transactions" table of the pre-owned cars dealer company, we can identify "Buy_VIN" and "Sale_VIN" columns from the "Transactions" table, which is considered the same as "VIN" column from the "Inventory" table.

Step 9:

Based on the step 8 analysis, the integrated table 3 which combines the "Inventory" table from the auto dealer company and the certain columns from "Transactions" table of the pre-owned cars dealer company should include columns "VIN", "Year", "Model", "Power", and etc. After further analyzing the two databases, the "Transactions" table should be included in the "Inventory" table since both the "Buy_VIN" and "Sale_VIN" columns should be set up as "VIN" in the "Inventory" table. What is more, the "Inventory" table also contains the car information like "Model", "Power", "Drive". We determined that these columns should also be included in the integrated table 3 in order not to lose critical information.

Step 10:

After integrating the two databases, the integrated ER Diagram for the integrated table 3 will be shown as the following picture:

4. Thoughtful discussion of data integration objectives and decisions (steps 3 & 4)

Finally, create one integrated ER diagram representing the merged schemas of the two dealerships (i.e., the final product of the integration process) [10 points]. Be sure to describe any final integration steps taken at this point (as described in step 3 above) [10 points]. Be sure to justify your design decisions in your narrative prose! Discussion of both various curatorial objectives and the pros and cons of the final design is necessary. Consider how you could have done things differently and in which areas the design can still be improved.

• Step 1:

As is indicated in the below picture, 3 intermediate ER diagrams are generated in the previous step.

• Step 2:

To aggregate the 3 intermediate ER diagrams into 1 integration ER Diagram, we need to analyze the current table structures.

As can be seen in the diagram below, the 1 integration diagram is constituted by 3 intermediate diagrams, which are "Inventory" table, "Transactions" table, and "Customers" table respectively.

• Step 3:

In the "Inventory" table, the column "VIN" serves as the primary key, and it includes vehicle information like "Year", "Model", "Drive", "DoorNumber" and etc.

• Step 4:

In the "Customers" table, the column "CustomerID" acts as the primary key, and the database will store customer's personal information including "First Name", "Last Name", "City", "Address" and etc.

• Step 5:

In the "Transactions" table, the column "Transaction" works as the primary key, what is more, columns "VIN" and "CustomerID" are also included in this database to link the 3 intermediate tables. Additionally, transaction information like "Discount", "TradeIn", "Trade In Price", "Buy Price", "Sale Price" are presented in this table.

• Step 6:

After integrating the the 3 intermediate ER diagrams into 1 integration ER Diagram, the final integrated ER Diagram is presented as the following picture:

	Table: Transactions		Table: Customers		Table: Inventor
K1	Transaction	PK, FK1	CustomerID	PK, FK	VIN
8	CustomerID	FK2	Transaction		Year
g	VIN		CUSTOMER_NAME		Model
	Lastname		Lastname		Power
	Firstname		Firstname		Drive
	Associate Name		Phone		Color
	М		Street		DoorNumber
	RepeatCustomer		MI		Engine
	Discount		Address		MSRP
	Buy		City	17	
	Trade (Buy and Sale)		State		
	Sale		Country	//	
	Buy_Price		Zipcode	//	
	Tradeln			//	
	TradeInValue			//	
	Sticker			//	
	Sale_Price			//	
	Notes			//	
			77 //		
		73	One Integration Table		
		PK1			
		_	Transaction		
		PK2	CustomeriD		
		РКЗ	VIN		
			Lastname		
			Firstname		
			Associate Name		
			MI		
			RepeatCustomer		
			Discount		
			Buy		
			Trade (Buy and Sale)		
			Sale		
			Buy_Price		
			Tradeln		
			TradeInValue		
			Sticker		
			Sale_Price		
			Notes		
			CUSTOMER_NAME		
			Assessment Etch		
			Lastname		
			Firstname		
			Phone		
			Street		
			MI		
			Address		
			City		
			State		
			Country		

Zipcode
Drive
Color
DoorNumber
Engine
MSRP
Year
Model