

Design for Low Power

In a building far away

A man made a prediction

On surprisingly little data

That has defined an industry

Moore's Law

Moore's Original Issues

- Design cost
- Power dissipation
- What to do with all the functionality possible

Problems of Power Dissipation

- Continuously increasing performance demands
- → Increasing power dissipation of technical devices
- → Today: power dissipation is a main problem

- High **Power dissipation** leads to:
- Reduced time of operation
- B Higher weight (batteries)
- **®** Reduced mobility

- By High efforts for cooling
- Encreasing operational costs
- **8** Reduced reliability

Outline

- What is the problem?
- Power Components
- Historical Context
- Solutions

Dynamic Energy Consumption

Energy/transition =
$$C_L * V_{DD}^2 * P_{0/1 \rightarrow 1/0}$$

Power = $C_L * V_{DD}^2 * f$

Dynamic Energy Consumption

Energy/transition =
$$t_{sc} * V_{DD} * I_{peak} * P_{0/1 \rightarrow 1/0}$$

Power = $t_{sc} * V_{DD} * I_{peak} * f$

Leakage Energy

Independent of switching

Power Equations in CMOS

$$P = a f C_L V_{DD}^2 + V_{DD} I_{peak} (P_{0\to 1} + P_{1\to 0}) + V_{DD} I_{leak}$$

Dynamic power $(\approx 40 - 70\% \text{ today})$ and decreasing relatively)

Short-circuit power $(\approx 10 \% \text{ today and } (\approx 20 - 50 \% \text{ today})$ decreasing absolutely)

Leakage power and increasing)

Dynamic vs Static Power

Source: Leon Stok, DAC 42©

The 80's Power Problem

- Until mid 80s technology was mixed
 - nMOS, bipolar, some CMOS
- Supply voltage was not scaling / power was rising
 - nMOS, bipolar gates dissipate static power

Module Heat , Flux(watts/cm)

Solution: Move to CMOS

And then scale Vdd

Scaling MOS Devices

JSSC Oct 74, pg 256

- In this ideal scaling
 - V scales to α V, L scales to α L
 - So C scales to α C, i scales to α i (i/ μ is stable)
 - Delay = CV/I scales as α
 - Energy = CV^2 scales as α^3

Processor Power

Continued to grow, even when Vdd was scaled

Why Power Increased

Growing die size, fast frequency scaling

Good News

Die growth & super frequency scaling have stopped

Bad News

- Voltage scaling has stopped as well
 - kT/q does not scale
 - Vth scaling has power consequences

- If Vdd does not scale
 - Energy scales slowly

ISSCC, Feb. 2001, Keynote

Patrick P. Gelsinger
Senior Vice President
General Manager
Digital Enterprise Group
INTEL CORP.

"Ten years from now, microprocessors will run at 10GHz to 30GHz and be capable of processing 1 trillion operations per second – about the same number of calculations that the world's fastest supercomputer can perform now.

"Unfortunately, if nothing changes these chips will produce as much heat, for their proportional size, as a nuclear reactor. . . ."

Low Power Design Techniques

Three main classes of methods to reduce energy:

- Cheating
 - Reducing the performance of the design
- Reducing waste
 - Stop using energy for stuff that does not produce results
 - Stop waiting for stuff that you don't need (parallelism)
- Problem reformulation
 - Reduce work (less energy and less delay)

Cheating

- Many low-power papers talk only about energy
 - Don't consider performance
- Reducing performance can always reduce energy
 - But there are many ways to reduce performance
- Good technique must lower the optimal curve
 - "Sensitivity" of technique
 - Must be better than current curve
 - This depends on location on the curve

Reducing Energy Waste

- Clock gating
 - If a section is idle, remove clock
 - Removes clock power
 - Prevents any internal node from transitioning
- Create system power states
 - Turn on subsystems only when they are needed
 - Can have different "off" states
 - Power vs. wakeup time
 - Disk (do you stop it from spinning?)

Embedded Power Gating

Since transistors still leak when power is off

- Can reduce leakage
 - 250x reported
- But costs
 - Performance
 - Drop in Vdd, Gnd

Royannez, et al, 90nm Low Leakage SoC Design Techniques for Wireless Applications, ISSCC 2005

Parallelism

If the application has data parallelism

- Parallelism is a way to improve performance
 - With low additional energy cost

Existing Processors

Problem Reformulation

- Best way to save energy is to do less work
 - Energy directly reduced by the reduction in work
 - But required time for the function decreases as well
 - Convert this into extra power gains
 - Shifts the optimal curve down and to the right

Saving power using multi-cores

[Kumar et al]

Constant Power Scaling

- Foxton controller on Itanium II
 - Raises Vdd/boosts F when most units idle
 - Lowers Vdd for parallel code to stay in budget

Exploit Specialization

- Optimize execution units for different applications
 - Reformulate the hardware to reduce needed work
 - Can improve energy efficiency for a class of applications
- Stream / Vector processing is a current example
 - Exploit locality, reuse
 - High compute density

Bill Dally et al, Stanford Imagine

Exploit Integration

- Moving units onto one chip
 - Reduces the number of I/Os on system
 - I/O can take significant power today
 - Allows even larger integration

TI - OMAP2420

Royannez, et al, 90nm Low Leakage SoC Design Techniques for Wireless Applications, ISSCC 2005

- Specialization
- And power domains
 - Most units are off
- OMAP 2420
 - 5 Power Domains
 - #1: MCU Core
 - #2: DSP Core
 - #3: Graphic Accelerator
 - #4: Core + Periph.
 - #5: Always On logic

Low-Power PowerPC

Nowka et al., Lowpower PowerPC, ISSCC

Low Power Design

- Reduce dynamic power
 - <u>α</u>:
 - C:
 - V_{DD}:
 - f:
- Reduce static power

Low Power Design

- Reduce dynamic power
 - α: clock gating, sleep mode
 - C: small transistors (esp. on clock), short wires
 - V_{DD}: lowest suitable voltage
 - f: lowest suitable frequency
- Reduce static power

Low Power Design

- Reduce dynamic power
 - α: clock gating, sleep mode
 - C: small transistors (esp. on clock), short wires
 - V_{DD}: lowest suitable voltage
 - f: lowest suitable frequency
- Reduce static power
 - Selectively use low V_t devices
 - Leakage reduction:
 stacked devices, body bias, low temperature

Power Saving Opportunities

A power-conscious design methodology addresses power at every level of the design hierarchy

Source: Pedram, 1999

Conclusions

- Power is the ultimate limiter for technology scaling.
 - Besides the physical limits
- Dynamic power has been dominating until about five years ago
 - Leakage power catches up due to Vt and Tox scaling
- Power optimization has changed the semiconductor industry
- Need to optimize power in each design stage
- Early and accurate power analysis is essential

4/4/2024