Percolation and network resilience

Argimiro Arratia & Ramón Ferrer-i-Cancho

Universitat Politècnica de Catalunya

Complex and Social Networks (2020-2021) Master in Innovation and Research in Informatics (MIRI)

Official website: www.cs.upc.edu/~csn/Contact:

- Ramon Ferrer-i-Cancho, rferrericancho@cs.upc.edu, http://www.cs.upc.edu/~rferrericancho/
- Argimiro Arratia, argimiro@cs.upc.edu, http://www.cs.upc.edu/~argimiro/

Percolation: modeling random node or edge failures From Chapter 16 of [Newman, 2010]

$$\Phi = 0.3$$

 $\Phi = 0.7$

$$\varphi = 1.0$$

- ▶ Site percolation:
 - With occupation probability φ, keep nodes (black)
 - With probability 1ϕ , remove nodes (gray) and their incident edges
- Site percolation studies size of largest connected remaining component as φ changes (the giant cluster)
- Originally studied by physicists when networks are lattices

In today's lecture

Uniform node removal

Non-uniform node remova

Network resilience

If we remove nodes uniformly at random with probability ϕ , will the remaining network still consist of a large connected cluster (aka "the giant cluster")?

If so, then we say that the network is resilient (or robust) to random removal of nodes

Quantifying network resilience I

Uniform removal of nodes in the configuration model

Consider a configuration model network with degree distribution p_k and a percolation process in which vertices are present with occupation probability ϕ

We'll use the generating function for the degree distribution

$$g_0(z) = \sum_{k=0}^{\infty} p_k z^k$$

Consider a node that has survived the random removal

▶ if it is to belong to the giant cluster, then at least one of its neighbors must belong to it as well

Quantifying network resilience II

Uniform removal of nodes in the configuration model

Let u be the average probability that a vertex is not connected to the giant cluster via a specific neighbor

Then, for a vertex of degree k, the total probability of not being in the giant cluster is u^k

The average probability of not belonging to the giant cluster is $\sum_k p_k u^k = g_0(u)$

And so the average probability that a surviving node belongs to the giant cluster is $1-g_0(u)$

Finally, the fraction of vertices (out of the original ones) that belong to the giant cluster is $S=\varphi\ (1-g_0(u))$

Quantifying network resilience III

Uniform removal of nodes in the configuration model

Now we compute u, the probability that a given neighbor is not in the giant cluster

For a neighbor (let's call it A) not to be part of the giant cluster, two things can happen

- \blacktriangleright either A has been removed (w.p. 1ϕ), or
- ▶ A is present (w.p. ϕ), but none of A's other neighbors are part of it (w.p. u^I assuming A has I other neighbors)

Quantifying network resilience IV

Uniform removal of nodes in the configuration model

So, total probability of A not being in the giant cluster is

$$1 - \phi + \phi u'$$

The number of A's other neighbors is distributed according to the excess degree distribution

$$q_{l} = \frac{(l+1)p_{l+1}}{\langle k \rangle}$$

where $\langle k \rangle$ is the average degree of the original network

[An aside: excess degree distribution]

We want to compute the probability that by following an edge we reach a node of degree *I*.

Notice this is different from the degree distribution p_l

The probability of *reaching* a node of degree *I* by following any edge is

$$\frac{\text{stubs adjacent to nodes of deg } \textit{I}}{\text{stubs remaining}} = \frac{\textit{n } \textit{p}_{\textit{I}} \; \textit{I}}{2\textit{m} - 1} \approx \frac{\textit{n } \textit{p}_{\textit{I}} \; \textit{I}}{2\textit{m}} = \frac{\textit{I } \textit{p}_{\textit{I}}}{\langle \textit{k} \rangle}$$

where $\langle k \rangle = \sum_I I \ p_I$ is the average degree

Quantifying network resilience V

Averaging over q_I , we arrive at:

$$u = \sum_{I} q_{I} (1 - \phi + \phi u^{I})$$

$$= 1 \sum_{I} q_{I} - \phi \sum_{I} q_{I} + \phi \sum_{I} q_{I} u^{I}$$

$$= 1 - \phi + \phi g_{1}(u)$$

since $\sum_{l} q_{l} = 1$ and where

$$g_1(z) = \sum_k q_k z^k$$

Quantifying network resilience VI

Not always possible to derive closed form solution for

$$S = \phi (1 - g_0(u))$$
 $u = 1 - \phi + \phi g_1(u)$

Observations:

- $g_1(u) = \sum_k q_k u^k$ is a polynomial with non-negative coefficients
 - $g_1(u) \geqslant 0$ for all $u \geqslant 0$
 - all derivatives are non-negative as well
 - ▶ so in general it is an increasing function of *u* curving upwards

Quantifying network resilience VII

Solution of equation is *u* such that

$$u = 1 - \phi + \phi \ g_1(u)$$

(homework: check that u=1 is always a solution for which S=0)

Quantifying network resilience VIII

Depending on the value of ϕ , two possibilities:

- ightharpoonup u = 1 is the only solution (so no giant cluster), or
- ightharpoonup there is another solution at u < 1 (and there is a giant cluster)

Quantifying network resilience IX

Uniform removal of nodes in the configuration model

Another threshold phenomenon!

The percolation threshold occurs at the critical value of ϕ s.t.

$$\left[\frac{d}{du}(1-\phi+\phi g_1(u))\right]_{u=1}=1$$

and so

$$\phi_c = \frac{1}{g_1'(1)} = \frac{\langle k \rangle}{\langle k^2 \rangle - \langle k \rangle}$$

Quantifying network resilience X

Uniform removal of nodes in the configuration model

The threshold $\phi_c=\frac{\langle k \rangle}{\langle k^2 \rangle - \langle k \rangle}$ tells us the fraction of nodes that we must keep in order for a giant cluster to exist

So, if we want to make a network robust against random failures we'd want that ϕ_c is low, namely $\langle k^2 \rangle \gg \langle k \rangle$

Uniform node removal

Specific network types

Erdös-Rényi networks

For large ER networks (with Poisson degree distribution) we have that $p_k=e^{-c}\frac{c^k}{k!}$ where c is the mean degree, thus $\langle k\rangle=c$ and $\langle k^2\rangle=c(c+1)$ and so $\varphi_c=\frac{1}{c}$

So for large c we will have networks that can withstand the loss of many of its vertices while keeping main connectivity

Scale-free networks

For networks following a power-law degree distribution s.t. $2\leqslant \alpha\leqslant 3$ we have that $\langle k\rangle$ is finite but $\langle k^2\rangle$ diverges (in the limit). So, $\varphi_c=0$ in this case and it is very hard to break a scale-free network

In today's lecture

Uniform node removal

Non-uniform node removal

Random vs. targeted attacks

From [Albert et al., 2000]

(By the way, giant cluster is not always good: think vaccination in the spread of an epidemic!)

What if removal of nodes is not uniform?

Targeted attack!

Now we generalize: let ϕ_k be the probability of occupation for nodes of degree k. Many possible scenarios:

- ightharpoonup if $\phi_k = \phi$ for all k, then we recover the previous model
- ▶ if $\phi_k = 1$ for k < 3 and $\phi_k = 0$ for $k \ge 3$, then we remove all nodes of degree 3 and above

Quantifying the size of the giant cluster ${\sf I}$

Targeted attack!

As before, the probability of a node of degree k belonging to the giant cluster is $\phi_k(1-u^k)$, where u is the average probability of not being connected to the giant cluster via a specific edge.

Now, we average over the degree probability distribution to find the average probability of being in the giant cluster

$$S = \sum_{k} p_k \varphi_k (1 - u^k) = \sum_{k} p_k \varphi_k - \sum_{k} p_k \varphi_k u^k$$
$$= f_0(1) - f_0(u)$$

where

$$f_0(z) = \sum_{k=0}^{\infty} p_k \varphi_k z^k$$

Quantifying the size of the giant cluster II Targeted attack!

Notice that $f_0(z)$ is not normalized in the usual sense:

$$f_0(1) = \sum_k p_k \varphi_k = \bar{\varphi}$$

where $\bar{\Phi}$ is the average probability that a node is occupied.

Now, the probability u of not being part of the giant cluster via a particular neighbor can be computed as follows. Assume neighbor has excess degree I

- either the neighbor is not occupied (w.p. $1 \phi_{l+1}$), or
- ▶ it is occupied (w.p. ϕ_{l+1}) but it is not connected to the giant cluster (w.p. u^l)

Quantifying the size of the giant cluster III Targeted attack!

So, adding these up: $1 - \phi_{l+1} + \phi_{l+1} u^l$

Now we average over the excess degree distribution q_l to obtain value of u:

$$u = \sum_{l} q_{l} \left\{ 1 - \phi_{l+1} + \phi_{l+1} \ u^{l} \right\} = 1 - f_{1}(1) - f_{1}(u)$$

Quantifying the size of the giant cluster IV Targeted attack!

where

$$f_{1}(z) = \sum_{k \geqslant 0} q_{k} \varphi_{k+1} z^{k}$$

$$= \frac{1}{\langle k \rangle} \sum_{k \geqslant 0} (k+1) p_{k+1} \varphi_{k+1} z^{k}$$

$$= \frac{1}{\langle k \rangle} \sum_{k \geqslant 1} k p_{k} \varphi_{k} z^{k-1}$$

So, given p_k , q_k , and ϕ_k , our solution is:

$$S = f_0(1) - f_0(u)$$
 for u s.t. $u = 1 - f_1(1) + f_1(u)$

Size of the giant cluster in a targeted attack I

Special case: exponential networks

In an exponential network, $p_k = (1 - e^{-\lambda})e^{-\lambda k}$ for $\lambda > 0$

Suppose we remove vertices of degree greater than k_0 , that is

$$\phi_k = \begin{cases} 1 & \text{if } k < k_0 \\ 0 & \text{otherwise} \end{cases}$$

Then

$$f_0(z) = \sum_{k \ge 0} p_k \phi_k z^k = (1 - e^{-\lambda}) \sum_{k=0}^{k_0 - 1} e^{-\lambda k} z^k$$
$$= (1 - e^{-\lambda k_0} z^{k_0}) \frac{e^{\lambda} - 1}{e^{\lambda} - z}$$

Size of the giant cluster in a targeted attack II

Special case: exponential networks

where we have used: $\sum_{k=0}^{n} z^k = \frac{1-z^{n+1}}{1-z}$

Moreover,

$$f_{1}(z) = \frac{f'_{0}(z)}{g'_{0}(1)}$$

$$= \left[(1 - e^{-\lambda k_{0}} z^{k_{0}}) - k_{0} e^{-\lambda (k_{0} - 1)} z^{k_{0} - 1} (1 - e^{-\lambda} z) \right] \left(\frac{e^{\lambda} - 1}{e^{\lambda} - z} \right)^{2}$$

 $f_1(z)$ is a polynomial on z, therefore

- to solve $u = 1 f_1(1) + f_1(u)$
- we need to find u^* s.t. $0 = 1 u f_1(1) + f_1(u)$,
- lacktriangle ie u^* is a root of the polynomial $1-u-f_1(1)+f_1(u)$

Size of the giant cluster in a targeted attack III

Special case: exponential networks

Knowing $0 \leqslant u^* \leqslant 1$ we can find the root numerically

References I

Albert, R., Jeong, H., and Barabási, A.-L. (2000). Error and attack tolerance of complex networks. *Nature*, 406(6794):378–382.

Newman, M. (2010).

Networks: An Introduction.

Oxford University Press, USA, 2010 edition.