Proyecto 1. Función Booleana con compuertas NAND y NOR

Alumno:

Barrera Peña Víctor Miguel

Grupo: 6

Ciudad universitaria, Ciudad de México

Introducción

Desarrollo

Ejemplo 2

Implementar la siguiente función booleana utilizando exclusivamente compuertas NAND

con nands y nors

NAND

Álgebra de Boole

Convertiremos al función original en una función únicamente compuesta sólo por NAND´S.

Forma objetivo $f=\overline{XY}=\overline{X}+\overline{Y}$

$$f(A, B, C, D) = (A + B)(C + \overline{D})$$

$$f = (\overline{(A + B)(C + \overline{D})})$$

$$f = \overline{(A + B) + \overline{C + \overline{D}}}$$

$$f = \overline{(\overline{A} \cdot \overline{B}) + (\overline{C} \cdot D)}$$

$$\therefore f = \overline{(\overline{A} \cdot \overline{B}) \cdot (\overline{C} \cdot D)}$$

$$(1)$$

Función objetivo:
$$f = \overline{x \cdot y}$$

$$f(A, B, C, D) = (A + B)(C + \overline{D})$$

$$= \overline{(A + B)} + \overline{(C + \overline{D})}$$

$$= \overline{(\overline{A} \cdot \overline{B})} + \overline{(\overline{C} \cdot D)}$$

$$= \overline{(\overline{A} \cdot \overline{B})} \cdot \overline{(\overline{C} \cdot D)}$$

$$= \overline{(\overline{A} \cdot \overline{B})} \cdot \overline{(\overline{C} \cdot D)}$$
*Función expresada en compuertas NAND

Diagrama lógico

Diagrama físico o patigrama

Tabla de verdad

La función propuesta es la siguiente:

$$f(A, B, C, D) = (A+B)(C+\overline{D})$$
 (2)

Α	В	С	D	$(A+B)(C+\overline{D})$
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

DESARROLLO

La función propuesta es la siguiente:

$$f(A,B,C,D)=(A+B)(C+\overline{D})$$

con tabla de verdad:

A	В	C	D	f(A,B,C,D)
0	0	0	0	0 %
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1

U	U		1	U
0	1	0	0	J
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	9	0
1	1	1	0	1
I	1	1	1	1

Implementar dicha función usando exclusivamente compuertas NAND y compuertas NOR.

NOR

Álgebra de Boole

Función objetivo: $f = \overline{x + y}$ $f(A, B, C, D) = (A + B)(C + \overline{D})$ $= \overline{(A + B)(C + \overline{D})}$ $= \overline{(A + B) + (C + \overline{D})}$ *Función expresadas en compuertas NOR

Forma esperada $f=\overline{X+Y}$

Boole

$$f(A, B, C, D) = \underbrace{(A+B)(C+\overline{D})}_{= \overline{(A+B)(C+\overline{D})}}$$

$$= \overline{(A+B)+\overline{C+\overline{D}}}$$
(3)

Diagrama Lógico

![](nand.pdf

Daigrama físico o patigrama

Ensamblado Físico

Compuertas nand tfl 7400 (nand)

Cada uno de los circuitos con compuertaS NAND Y NOR queda ensamblado en una protoboard como se muestra en las siguiente imágenes

*Ambos circuitos ensamblados

*Ambos circuitos ensamblados

Codigo Quartus

```
LIBRARY IEEE;
     USE IEEE.STD_LOGIC_1164.ALL;
4 MENTITY mux IS
5 #PORI(selec2: IN STD_LOGIC; -- selector para elegir si se quiere ascendente o descendente.
         DIS1, DIS2: IN STD LOGIC VECTOR (10 downto 0);
DISF: OUT STD LOGIC VECTOR (10 downto 0));
8 END ENTITY;
10 MARCHITECTURE as_des OF mux IS
         SIGNAL AUX2: STD_LOGIC:
11 SI
12 mBEGIN
                                                                              b
13 E FROCESS(selec2)
14
       IF selec2 = '1' THEN--ascendence
            DISF<=DIS1;
16
17
16 ELSE-sino descendente
            DISE -DIS2;
19
     END IF:
                                                                 3
20
    END PROCESS:
22
22
13 END ARCHITECTURE;
```

Diagrama de bloques

Conclusión

Barrera Peña Victor Miguel

Anexo

Pasar entre compuertas

Booleana NAND's

1.
$$A + 0 = A$$

2. $A + 1 = 1$
3. $A \cdot 0 = 0$
4. $A \cdot 1 = A$
5. $A + A = A$
6. $A + \overline{A} = 1$
7. $A \cdot A = A$
8. $A \cdot \overline{A} = 0$
9. $\overline{\overline{A}} = A$
10. $A + AB = A$
11. $A + \overline{AB} = A + B$
12. $(A + B)(A + C) = A + BC$

A, B o C pueden representar una sola variable o una combinación de variables.

Reglas álgebra de Boole

