Search Algorithms for Multi-player Games

Presentation by: Brandon Wilson

Introduction

- Research in multi-player game-tree search significantly behind work on two-player games
- "Which algorithm to use?" is still open question for multi-player games
- This talk considers games that are:
 - Multi-player (3 or more players)
 - Perfect-information
 - Deterministic

Terminology Related to Game Trees (review)

Terminology Related to Game Trees (review)

- Claude Shannon's minimax algorithm generalized to n-player games
- Evaluations of leaves are *n*-tuples, called evaluation vectors
- Maxⁿ values computed assuming players maximize own payoff

- Claude Shannon's minimax algorithm generalized to n-player games
- Evaluations of leaves are *n*-tuples, called evaluation vectors
- Maxⁿ values computed assuming players maximize own payoff

- Claude Shannon's minimax algorithm generalized to n-player games
- Evaluations of leaves are *n*-tuples, called evaluation vectors
- Maxⁿ values computed assuming players maximize own payoff

- Claude Shannon's minimax algorithm generalized to n-player games
- Evaluations of leaves are *n*-tuples, called evaluation vectors
- Maxⁿ values computed assuming players maximize own payoff

- Claude Shannon's minimax algorithm generalized to n-player games
- Evaluations of leaves are *n*-tuples, called evaluation vectors
- Maxⁿ values computed assuming players maximize own payoff

Maxⁿ Properties and Limitations

- Many Maxⁿ values may exist for a single tree
 - Value may change drastically depending on tie breaking rule
 E.g., (2,3,3) vs. (2,1,7)
 - Each one is a Nash equilibrium
- Deep pruning (e.g., alpha-beta) is **impossible**
- Shallow pruning (pruning children based on parent bounds) works
 - Requires:
 - Upper and lower bound on each player's score
 - Upper bound on sum of all player's scores
 - · Provides minimal benefit

Paranoid

- Assumes all players "gang up" on paranoid player
 - Paranoid player maximizes own payoff on his turn
 - Other players minimize Paranoid's payoff on their turn

Paranoid

- Assumes all players "gang up" on paranoid player
 - Paranoid player maximizes own payoff on his turn
 - Other players minimize Paranoid's payoff on their turn

Paranoid Properties and Limitations

- Like Minimax:
 - there is a single paranoid value for a tree
 - the paranoid value is a guaranteed lower bound on one's score
- Alpha-beta can be utilized
 - As number of players increase, benefit of pruning decreases
 - For 3-6 player games, 20-50% deeper search than Maxⁿ
- Paranoid assumption is very pessimistic...
 - May lead to overly cautious play
 - When wrong, deeper search may have negative effect

Motivation

- Algorithms seen thus far experience limited success
- Partially due to the presence of dynamic relationships among players
 - Teams form and dissolve over time
 - Human players may hold grudges
- Social relationships part of strategy in some games (e.g., Risk)
- Maxⁿ and Paranoid make simplifying assumptions:
 - Maxⁿ assumes all players are selfish
 - Paranoid assumes that all opponents attack the Paranoid player

Motivation

- Algorithms seen thus far experience limited success
- Partially due to the presence of dynamic relationships among players
 - Teams form and dissolve over time
 - Human players may hold grudges
- Social relationships part of strategy in some games (e.g., Risk)
- Maxⁿ and Paranoid make simplifying assumptions:
 - Maxⁿ assumes all players are selfish
 - Paranoid assumes that all opponents attack the Paranoid player

Fundamental Question: How do we describe and reason about these relationships during gameplay?

Social Orientations

 Social Orientation is the how much one cares about one's own payoff w.r.t. that of others'

Two-player Social Orientation Spectrum

- Social orientations can be represented as a matrix
 - Matrix element (i, j) represents how player i feels about player j's score

Maxⁿ and Paranoid Assumptions as Matrices

Social orientations assumed by Maxⁿ and Paranoid are:

- Maxⁿ can be achieved with the identity matrix
 - For each *i*, player *i* cares only about his/her own score (individualist)
 - For example, $c = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ for a 3-player game
- Paranoid can be achieved with individualist orientation for paranoid player and aggressive orientations for others
 - For each $i \neq 1$, player i wants to minimize player 1's score
 - For example, $c = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}$ for a 3-player game

Socially Oriented Search (SOS)

- Socially Oriented Evaluation (SOE) is the dot-product of a social orientation with an evaluation vector
- Assume players maximize SOE during propagation in game tree

Experimental Domain: Quoridor

- A four-player game played on a 9×9 grid
- Pawn location for each player is the center of one of the four edges
- Each player has 5 walls that can block a path
- Each turn a player can place a wall or move to an adjacent grid location
- Goal is to reach opposite side first

Quoridor board

Example mid-game board

Experimental Methodology

- 500 Quoridor games
- Two players with random preferences are generated for each game
- Games played with two sets of players:
 - Maxⁿ, SOS, random_1, random_2
 - Paranoid, SOS, random_1, random_2

Experimental Results (given true social preferences)

SOS consistently outperformed both Paranoid and Maxⁿ

Ad-hoc Heuristic for Learning Social Preferences

- Problem: social orientations are not usually explicitly known
- Goal: learn social orientations by observing previous behavior
- Estimate the effect of move from state s_1 to state s_2 as:

$$\Delta(s_1, s_2) = eval(s_2) - eval(s_1)$$

• Estimate player's social orientation as average effect of last *k* moves.

• Used same experimental setup to test SOS with ad-hoc heuristic

Experimental Results (learned social preferences, k = 5)

SOS consistently outperformed both Paranoid and Maxⁿ

Summary

- Introduced an algorithm (SOS) that reasons about social orientations
- Proposed an ad-hoc heuristic for learning social orienations
- Showed empirically that SOS outperforms both Maxⁿ and Paranoid

Discussion and Future Work

- Comparison against human agents or human-devised agents
- Expand the algorithm to be applicable in more domains:
 - Games with elements of chance
 - Games of incomplete information