1 Элементы группового анализа ДУ

Уравнение первого порядка в общем виде:

$$P(x,y)dx + Q(x,y)dy = 0 (1)$$

Если выполняется $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}\Rightarrow F(x,y)=const$ – решение уравнения в полных дифференциалах.

Если же $\frac{\partial P}{\partial u} \neq \frac{\partial Q}{\partial x}$, то ищется интегрирующий множитель $\mu(x,y)$:

 $\mu P dx + \mu \tilde{Q} dy = \tilde{0}$ – уравнение в полных дифференциалах.

$$P\frac{\partial\mu}{\partial y} - Q\frac{\partial\mu}{\partial x} = \mu\frac{\partial Q}{\partial x} - \mu\frac{\partial P}{\partial y} \tag{2}$$

$$P(y)dx + \varphi(x)dy = 0, (3)$$

уравнение с разделяющимися переменными.

Если ДУ может быть приведено к виду (3), то оно интегрируемо. Рассмотрит, к каким переменным нужно перейти, чтобы уравнение $y' = \frac{dy}{dx} = f(x,y)$ свелось бы к уравнению с разделяющимися переменными.

1.1 Однопараметрические группы

Пусть имеется множество взаимно однозначных преобразований \mathbb{R}^n : $\tau(\mathbb{R}^n)$. Это множество образуем группу (относительно композиции). Каждому $a \in \mathbb{R}$ соответствием φ сопоставим преобразованиие $g_a = \varphi(a) \in \tau(\mathbb{R}^n)$.

Следует ответить, что ассоциативность следует из ассоциативности матричного умножения.

Причем $\varphi(a+b)=\varphi(a)\cdot\varphi(b)$ и $\varphi(0)=E$, т.е. φ осуществляет изоморфизм коммутативной группы $\mathbb R$ на группу $\tau(\mathbb R^n)$.Образ $\varphi(R)\in\tau(\mathbb R^n)$ называется однопараметрической группой преобразований.

Было доказано, что однопараметрической группой будет фазовый поток автоновной системы ДУ. Эта группа $g_a = g_a(M(\vec{x})) = M(\overrightarrow{x})$ задается в виде:

$$\overline{x^i} = \varphi^i(x^1, \ldots, x^n) = \varphi^i(\vec{x}, a), i = \overline{1, n}$$
 или

$$\overrightarrow{\overline{x}} = \overrightarrow{\varphi}(\overrightarrow{x}, a) \tag{4}$$

Т.к. группа коммутативна, то $\vec{\varphi}(\vec{x}, a + b) = \vec{\varphi}(\vec{\varphi}(\vec{x}, a), b) = \vec{\varphi}(\vec{\varphi}(\vec{x}, b), a)$, а $\vec{\varphi}(\vec{x}, 0) = \vec{x}$. Будем предпологать, что вектор-функция $\vec{\varphi}(\vec{x}, a)$ непрерывно дифференцируема по всем своим аргументами.

Рассмотрим однопараметрическую группу преобразований плоскости $(x,y)(\mathbb{R}^2)$ —

$$g_a = g_a(M(x,y)) \Rightarrow \vec{x} = \varphi(x,y,a) , \ \vec{y} = \psi(x,y,a),$$

$$\varphi(x,y,0) = x, \psi(x,y,0) = y$$
 (5)

Определение 1.1. траекторией (или орбита группы) – параметрическое предстачление кривой γ , проходящей через x; y, при фиксированных x, y, (5).

Кривая γ при сделанных предположениях является гладкой кривой, поэтому с ней можно связать векторное поле, т.е. в каждой точке M(x,y) поставим в соответствие вектор $\vec{h}(\xi(x,y),\zeta(x,y))$, касательный к γ , проходящей через эту точку.

Компоненты вектора \vec{h} , косательного к кривой γ в точке (x,y) равны

$$\xi(x,y) = \frac{\partial \varphi}{\partial a}|_{a\to 0}, \ \zeta(x,y) = \frac{\partial \psi}{\partial a}|_{a\to 0},$$

а само векторное поле определено как отображение:

$$(x,y) \to \partial g_a(M(x,y)) = \vec{h}(\xi(x,y), \zeta(x,y)) = \frac{dg_a}{da}|_{a\to 0}$$
(6)

Это векторное поле называется касательным векторным полем группы. Рассмотрим

$$\frac{dg_{a+b}(M)}{db}|_{b\to 0} = \frac{d(g_a \cdot g_b)}{db}|_{b\to 0} = \frac{d(g_b \cdot g_a)}{db}|_{b\to 0} =$$

$$= (\frac{dg_a}{db}|_{b\to 0})g_a = \partial g_a(g_a(M(x,y))) = \partial g_a(x,y,a) = \vec{h}(\xi(x,y),\zeta(x,y)).$$
(7)

Т.к. $\vec{h}(\xi(x,y),\zeta(x,y))$ является косательным к γ при фиксированным a, то кривая γ является физовой траекторией автономной системы.

$$\begin{cases} \frac{\vec{x}}{da} = \xi(\vec{x}, \vec{y}) = \varphi_a'(\vec{x}, \vec{y}), \\ \frac{\vec{y}}{da} = \zeta(\vec{x}, \vec{y}) = \psi_a'(\vec{x}, \vec{y}), \end{cases}$$
(8)

Система (8) (она записывается в виде $\partial_a g(x,y,a) = \vec{h}(g_a(x,y,a)))$ называется уравнением Ли.

Ранее было получено, что любая автоновная система определяем однопараметрическую группу преобразований (фазовый поток).

Оператор
$$X = \xi \frac{\partial}{\partial x} + \zeta \frac{\partial}{\partial y}$$
 — генератор группы (9)

Т.к. $X(u)=\xi \frac{\partial u}{\partial x}+\zeta \frac{\partial u}{\partial y}$, то становится ясно, что генератор группы является оператором дифференцирования в силу системы Ли (группы Ли) или оператором дифференцирования по направлению векторного поля группы.

Функция F(x,y) называется инвариантом группы (5), если $F(\vec{x},\vec{y}) = F(x,y) \forall a$, т.е. F постоянна на любой траектории 5.

Т.о., если функция F(x,y) является инвариантом группы, то $X(F(x,y)) = \xi \frac{\partial F}{\partial x} + \zeta \frac{\partial F}{\partial y} = \xi \cdot 0 + \zeta \cdot 0 = 0$, и ь.о. инвариант группы 5 является просто первым интегралом 8. Расммотрим группы $\vec{x} = x + a$, $\vec{y} = y$ – группа смещений \Rightarrow генератор группы $X = 1 \frac{\partial}{\partial x} + 0 \frac{\partial}{\partial y} = \frac{\partial}{\partial x}$, а инвариантом этой группы является любой F(x,y) = f(y).

Теорема 1.1. Любая однопараметрическая группа с генератором 9 может быть с помощью подходящей замены

$$t = t(x,y), u = (u(x,y))$$
 (10)

приведена к группе смещений

$$\vec{t} = t + a, \ \vec{u} = u. \tag{11}$$

Замечание: в новых переменных генератор имеет вид $X = \frac{\partial}{\partial t}$, и инвариант группы остается инвариантом и в новых переменных (см. инвариантность ПИ относительно гладкой замены).

Доказательство. Имеется

$$\xi \frac{\partial}{\partial x} + \zeta \frac{\partial}{\partial y} = \xi (\frac{\partial}{\partial t} t_x' + \frac{\partial}{\partial u} u_x') + \zeta (\frac{\partial}{\partial t} t_y' + \frac{\partial}{\partial u} u_y') = X(t) \frac{\partial}{\partial t} + X(u) \frac{\partial}{\partial u}.$$

Отсюда получаем, что функции (10), которые приводят группу к группе смещений, должны удовлетворять условиям:

$$X(t) = 1 \Rightarrow \xi \frac{\partial t}{\partial x} + \zeta \frac{\partial t}{\partial y} = 1; \ X(u) = 0 \Rightarrow \xi \frac{\partial u}{\partial x} + \zeta \frac{\partial u}{\partial y} = 0.$$
 (12)

Так определенные переменные t и u называются **каноническими переменными**. Заметим, что переменные и являются инвариантом исходной группы, поскольку X(u)=0

Теорема 1.2. Орбиты группы либо совпадают, либо не пересекаются.

Доказательство. 1) Пусть произошло пересечение: $g_a(M,a) = g_b(M_1,b)$, причем M_1 не принадлежит орбите точки M. Пусть b < a, подействуем g_{-b} на последнее равенство:

$$g_{-b}(g_a(M,1)) = g_{-b}(g_b(M_1,b)) \Rightarrow g_{-b+a}(M,a) = E(M_1) \Rightarrow$$

т. M_1 принадлежит орбите т.M – противоречие.

Рассмотрим ДУ:

$$y' = \frac{dy}{dx} = f(x,y) \tag{13}$$

Будем говорить, что группа g_a является группой симметрии ДУ (13) или что (13) допускает группу g_a , если форма ДУ (13) остается неизменной после замены переменных при замене

$$\begin{cases} \overline{x} = \varphi(x, y, a), \\ \overline{y} = \psi(x, y, a) \end{cases}$$
 (14)

т.е. $\frac{d\overline{y}}{d\overline{x}} = f(\overline{x}, \overline{y})$, где f то же самое, что и в (13).

Если ДУ (13) допускает группу, то тогда $f(\overline{x}, \overline{y}) = f(x,y) \, \forall a$, и правая часть (13) является инвариантом группу. Тогда, перейдя к каноническим переменным, получим, что в таких переменных t и u уравнение примет вид:

$$\frac{du}{dt} = g(u),\tag{15}$$

т.е. получили уравнение с разделяющимися переменными.