## 1 Introduction

#### Definition 1.1

Let  $\Sigma = \{0, \dots, \sigma - 1\}$  be a finite, ordered set. The elements of  $\Sigma$  are called *characters* or *symbols* and  $\Sigma$  is called an *alphabet* of size  $\sigma$ .

#### Definition 1.2

A string S is a sequence of characters from an alphabet  $\Sigma$ .

- We usually use n = |S| to be the length of the string.
- The *i*-th character of S is S[i]. Indices are 0-based.
- The substring from the *i*-th to the *j*-th character is S[i..j].
- A substring with i=0 is called *prefix*. A substring with j=n-1 is called *suffix*.
- The *i*-th suffix is S[i..n-1].

## 1.1 Suffix Tries

## Definition 1.3

Let  $S = \{S_0, S_1, \dots, S_{N-1}\}$  be a set of strings over an alphabet  $\Sigma$ . A *trie*  $\mathcal{T}$  is a tree, where each node represents a different prefix in the set S. The root represents the empty prefix  $\varepsilon$ . Vertex u representing prefix Y is a child of vertex v representing prefix X, if and only if Y = Xc for some character  $c \in \Sigma$ . The edge (v, u) is then labeled c. If S is the set of all suffixes of a string T, the trie is called *suffix trie*.

#### Example 1.4

Figure 1.1 shows the suffix trie for the string "banana\$". The dollar sign "\$" is a sentinel that does not appear elsewhere in the text. This guarantees, that no suffix is a prefix of another suffix and the suffix trie therefore has n + 1 leaves.

To construct a trie over string set  $S = \{S_0, \ldots, S_{N-1}\}$ , we need  $\mathcal{O}(|S_0| + \ldots + |S_{N-1}|)$  steps. This bound is tight: If all characters are pairwise distinct in all strings and no two strings share a character, than the number of different prefixes and therefore vertices is given by  $1 + \sum_{i=0}^{N-1} |S_i|$ , where the additional 1 represents the empty prefix  $\varepsilon$ . The time needed to search for a string T of length m = |T| in the trie depends on the

The time needed to search for a string T of length m = |T| in the trie depends on the implementation of the tree. If the children of each vertex are stored in a list, the time is in  $\mathcal{O}(m\sigma)$ . If the children are stored in a sorted array (using the order of the characters



Figure 1.1: The suffix trie for the string "banana\$"

in the alphabet), the time is in  $\mathcal{O}(m \log \sigma)$ . By using a hash table and perfect hashing, the time is in  $\mathcal{O}(m)$ .

The space needed to store the suffix trie  $\mathcal{T}$  for a string of length n is in  $\mathcal{O}(n^2 \log \sigma + n^2 \log n)$  bits. The first summand is the space needed to store the  $\mathcal{O}(n^2)$  edge labels of one character  $c \in \Sigma$  each. The second summand is the space needed to store the pointers to the children of each node.

## 1.2 Suffix Trees

#### Definition 1.5

A suffix tree  $\mathcal{T}$  for a string S is the suffix trie of S where each unary path is converted into a single edge. Those edges are labeled with the concatenation of the characters from the replaced edges. The leaves of the suffix tree store the text position where the corresponding suffix starts.

## Example 1.6

Figure 1.2 shows the suffix tree for the string "banana\$". It contains only 11 vertices compared to the 23 vertices of the suffix trie.

The suffix array can be constructed in time  $\mathcal{O}(n)$  with algorithms by WEINER[4], MC-CREIGHT[2] or UKKONEN[3]. It needs  $\mathcal{O}(n \log n + n \log \sigma)$  bits. The first summand is the space needed for the pointers to the children and the indices stored in the leaves. The second summand is the space needed for the edge labels. To achieve this space, the edge



Figure 1.2: The suffix tree for the string "banana\$".

labels must not be stored explicitly. Instead we can store pointers to the first and last position of the label in the text.

In practice, a suffix tree needs more than 20 times the space of the original text. Based on the required functionality, this can even be worse.

## 1.3 Bitvectors

#### Definition 1.7

A *bitvector* B is an array of bits that are compactly stored. A bitvector supports the following operations:

- access(i) returns the *i*-th element in B.
- rank(i) returns the number of set bits in the prefix [0..i-1] of B.
- select(i) returns the position of the *i*-th set bit.

#### Theorem 1.8

The rank-Operation on bitvectors can be done constant time and o(n) additional space.[1]

PROOF Let B be a bitvector of length n. Precompute the following information:

- 1. Divide B into superblocks  $SB_1, \ldots, SB_{\lceil \frac{n}{L} \rceil}$  of size L.
- 2. For each superblock  $SB_j$  now store  $\sum_{i=0}^{(j-1)L-1} B[i]$ . This is the number of set bits in the first j superblocks. For each superblock this needs  $\mathcal{O}(\log n)$  bits of space.
- 3. Now further divide each superblock  $B_j$  into blocks  $B_1^j, \ldots, B_{\lceil \frac{L}{S} \rceil}^j$  of size S.
- 4. For each block  $B_k^j$  of superblock  $SB_j$  store  $\sum_{i=(j-1)L}^{(j-1)L+kS-1} B[i]$ . This is the number of set bits in the first k blocks of superblock  $SB_j$ . For each block this needs  $\mathcal{O}(\log L)$

bits.

For a given  $\operatorname{rank}(i)$  query we now calculate the corresponding superblock  $SB_j$  and block  $B_k$ . We use the precomputed sums to get the number of set bits in all superblocks before  $SB_j$  and all blocks before  $B_k$ . All thats missing now is the number of set bits in block  $B_k$  until position i. If the blocks are small enough, this information can be precomputed efficiently for all possible blocks and positions (Four-Russians-Trick).

We still need to choose L and S:

$$L = \log^2 n \tag{1.1}$$

$$S = \frac{1}{2}\log n\tag{1.2}$$

The total amount of space needed is in  $\mathcal{O}(\frac{n}{\log n} + \frac{n \log \log n}{\log n} + \sqrt{n} \log n \log \log n)$  bits.

## 1.4 Wavelet Trees

#### Definition 1.9

A wavelet tree is a compact datastructure that stores a sequence S and generalizes the operations of a bitvector to an arbitrary alphabet.

- access(i) returns the *i*-th element of the sequence.
- rank<sub>q</sub>(i) returns the number of occurrences of q in the prefix S[0..i-1].
- select<sub>q</sub>(i) returns the position of the i-th occurrence of q in S.

The root of the wavelet tree stores the whole sequence. Each vertex recursively divides its sequence to its two children. The left child contains the first half of the remaining alphabet, the right child contains the second half of the remaining alphabet. A bitvector in every vertex stores the corresponding child for each element.

#### Lemma 1.10

A wavelet tree can be stored in  $n\lceil \log \sigma \rceil$  bits space.

PROOF The wavelet tree has height  $\lceil \log \sigma \rceil$  and stores n bits on every layer (maybe even less on the last layer). Therefore  $n\lceil \log \sigma \rceil$  bits are needed to store the bitvectors. A wavelet tree can be implemented fully via bitvectors and does not need any pointers. This will be demonstrated in more detail below.

## Example 1.11

## 1 Introduction



Figure 1.3: The wavelet tree for the string "abracadabra".

When storing the wavelet tree in a single bitvector B as in Example 1.11, each vertex can be described by two indices giving the position of the bitvector of the vertex in B. For example the root corresponds to the pair [0, n-1]. Algorithm 1 shows how to get the level of a vertex v of the wavelet tree. This just uses the fact, that every level contains n bits. Algorithm 2 just calculates the length of the string stored in the given vertex. Algorithm 3 and Algorithm 4 return the indices for the left and the right child of the given vertex. Assuming that we can execute the rank queries in constant time (Theorem 1.8), they both run in constant time. It is also possible to implement a parent-function, but this needs additional information, such as whether the current vertex is a left or a right child of its parent.

#### Algorithm 1 level

**Eingabe** Vertex v = [l, r] of the wavelet tree.

**Ausgabe** Level l that v is on.

1: **return**  $\lceil \frac{l}{n} \rceil$ 

## Algorithm 2 size

**Eingabe** Vertex v = [l, r] of the wavelet tree.

**Ausgabe** The number of elements in this vertex.

1: **return** r - l + 1

## Algorithm 3 left child

**Eingabe** Vertex v = [l, r] of the wavelet tree.

**Ausgabe** The left child [l', r'].

- 1:  $l' \leftarrow l + n$
- 2:  $r' \leftarrow l' + \operatorname{size}(v) (\operatorname{rank}(r+1) \operatorname{rank}(l))$
- 3: **return** [l', r']

## Algorithm 4 right child

**Eingabe** Vertex v = [l, r] of the wavelet tree.

**Ausgabe** The right child [l', r'].

- 1:  $l' \leftarrow l' + \operatorname{size}(v) (\operatorname{rank}(r+1) \operatorname{rank}(l)) + 1$
- $2: r' \leftarrow r + n$
- 3: **return** [l', r']

#### Theorem 1.12

The access(i)-operation can be implemented in  $\mathcal{O}(\log \sigma)$ .

PROOF To access the *i*-th element we check the *i*-th position in the root-bitvector. If it is 0, the element is stored in the left child and the new index there is i - rank(i). If it is 1, the element is in the right child and the new index there is  $i - \text{rank}_0(i)$ , where  $\text{rank}_0(i) := i - \text{rank}(i)$  is the number of 0-bits before position *i*.

This can be done in  $\mathcal{O}(\log \sigma)$ , because the wavelet tree has a height of  $\log \sigma$  and the rank queries can be done in constant time on bitvectors.

#### Theorem 1.13

The rank<sub>q</sub>(i)-operation can be implemented in  $\mathcal{O}(\log \sigma)$ .

PROOF  $\operatorname{rank}_q(i)$ -queries can be answered the same way as  $\operatorname{access}(i)$ -queries. The  $\operatorname{access}(i)$ -query descents into the leaf containing all q symbols with some modified index i'. The rank is the number of elements before i', so i'-1. Since no additional work needs to be done, the runtime is in  $\mathcal{O}(\log \sigma)$ .

#### Theorem 1.14

The select<sub>a</sub>(i)-operation can be implemented in  $\mathcal{O}(\log \sigma)$ .

PROOF For a select<sub>q</sub>(i)-query we start in the leave corresponding to symbol q at position i. This can be found the same way as in the access-operation. Now we recursively process the parents until reaching the root. If the current vertex is a left child, the new position is the position of the i-th 0 in the parent bitvector. If it is a right child, the new position is the position of the i-th 1 in the parent bitvector. This needs select-queries on bitvectors, which can be done in constant time (not part of this document yet).

# Index

- Alphabet, 1
- Bitvector, 3
- Character, 1
- Prefix, 1
- String, 1
- Suffix, 1
- Suffix Tree, 2
- Suffix Trie, 1
- Symbol, 1
- Trie, 1
- Wavelet Tree, 4

# **Bibliography**

- [1] G. Jacobson. "Space-efficient static trees and graphs". In: 30th Annual Symposium on Foundations of Computer Science. Oct. 1989, pp. 549–554. DOI: 10.1109/SFCS. 1989.63533.
- Edward M. McCreight. "A Space-Economical Suffix Tree Construction Algorithm".
  In: J. ACM 23.2 (Apr. 1976), pp. 262-272. ISSN: 0004-5411. DOI: 10.1145/321941.
  321946. URL: http://doi.acm.org/10.1145/321941.321946.
- E. Ukkonen. "On-line construction of suffix trees". In: Algorithmica 14.3 (Sept. 1995),
  pp. 249-260. ISSN: 1432-0541. DOI: 10.1007/BF01206331. URL: https://doi.org/10.1007/BF01206331.
- [4] Peter Weiner. "Linear Pattern Matching Algorithms". In: Proceedings of the 14th Annual Symposium on Switching and Automata Theory (Swat 1973). SWAT '73. Washington, DC, USA: IEEE Computer Society, 1973, pp. 1–11. DOI: 10.1109/SWAT.1973.13. URL: https://doi.org/10.1109/SWAT.1973.13.