STEPS

1. Data Scraping

4. Long-Term

Stochastic

Forecasting

6. Disaggregation

and Combination

8. Markov Chain

Model

10. Hourly-Shape

Analysis

12. Cash Flow

2. Collinearity and

Dependency

Detection

5. Daily Volatility &

Spike Model

9. Predictive

Modeling

7. Judgmental

Adjustment

11. Resource

Dispatch

3. Multiplicative

Decomposition

Outlier + Seasonality x

Trend x Noise

Objective

- Quantify market risk that utilities are exposed to, through stochastic simulation of loads, resources and market prices.
- Portray appropriate tail risk with 1,000 or more stochastic iterations.
- Capture the following data characteristics:
- Autocorrelation
- Heteroscedasticity
- Seasonal and weekly shape
- Mutivariate cross-correlation and non-linear dependency
- Non-normal distributions
- Extreme peaks and drops
- vii. Negative prices
- viii. Max and min caps
- Reasonable long-term distributions
- Consistency with market and utility expectations

Background Facts

- The wholesale power market is the most volatile market of all commodity markets.
- means that utilities need to manage market risks.
- Some utilities set annual budgets probabilistically, meaning that the chance of insolvency given a specified certain threshold.
- Many utilities hedge risk by trading forwards or options.

DATA

[objective]

Daily historical data

- On-peak **Load**
- Off-peak Load
- **Hydro** generations
- Natural gas prices
- Power prices

[i – viii]

9

riable

Stochastic

Optimization

Dispatch

esource

alysis

Demand

[iv, x]

External LT forecasts in

monthly granularity.

- Econometric load forecasts
- Metrological hydro forecasts

[i - v, viii - x]

Market settlement data

- Forward prices [x]

Wind data is independent and does not fit AR model. [iii, v, viii]

Hourly congestion price shapes at multiple (10 - 30) nodes. [i – viii]

Generation by

thermal resources are determined economically based on prices and its capability. Need to take into account of future **outage** schedules set by utilities.

Ultimately, we want some Risk Metrics that guide us to avert risks.

Aggregation 13. Scenario & Hedge Analysis 14. Portfolio Optimization

METHODS

Hierarchical Clustering

Collinear variables are taken out of the main AR model and derived later using predictive models.

Grubb's Outlier Test

Applied twice before and after decomposition.

Fourier series

LOESS

Subset Regression

Weekly shapes and auto-regression factors are captured here after decomposition.

Multivariate Gaussian Model Héston Model ARIMA(1,2,0)

If an external LT forecast does not exist, it is derived from trend and seasonality components (step 3).

Seasonal Block Bootstrapping Multiple Regression

Denton Disaggregation

Monthly LT forecasts (step 4) need to be disaggregated into daily time series, before combining with daily noise (step 5).

Temporal Hierarchical Reconciliation

Generated stochastic data is reconciled so that means match with market expectations.

Random Forest **Feature Selection**

Collinear or dependent variables (step 2) are derived using predictive models. All trees of RF are utilized to capture variability.

Logical Dispatch Calculation

Given resource unit specifications, determine the optimal economic dispatch schedule for each stochastic iteration. This achieves the perfect hindsight dispatch.

Logistic Regression/Random Forest

In reality, resources does not dispatch like the logical model, due to lack of knowledge in future prices. Predictive models simply derive dispatch patterns from the historical generation, instead of optimizing the cash flow.

Portfolio Analysis through R-Shiny App

A user can interactively analyze stochastic scenarios and run hypothetical forward or option trades through shiny app.

Report through Rmarkdown

Hedge analysis can be made into a html report through the app.

Hedged vs. Unhedged Portfolio Cash Flow

- Consumers pay a relatively flat electricity rate to utilities. This
- cash reserve must be below a