EDA on Loan Data

Import Libraries and load data

```
In [1]: # Import necessary Libraries
  import pandas as pd
  import numpy as np
  import seaborn as sns
  import matplotlib.pyplot as plt
  from scipy.stats import zscore
  import warnings
  warnings.filterwarnings('ignore')
```

Loading Data in Pandas DataFrame

```
In [2]: data = pd.read_csv('LoanData.csv')
```

Printing rows of the Data

```
In [3]: # Print the first 5 rows
display(data.head())
```

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coa
0	LP001002	Male	No	0	Graduate	No	5849	
1	LP001003	Male	Yes	1	Graduate	No	4583	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	
4	LP001008	Male	No	0	Graduate	No	6000	
4								•

In [4]: # Print the Last 5 rows
display(data.tail())

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	C
609	LP002978	Female	No	0	Graduate	No	2900	
610	LP002979	Male	Yes	3+	Graduate	No	4106	
611	LP002983	Male	Yes	1	Graduate	No	8072	
612	LP002984	Male	Yes	2	Graduate	No	7583	
613	LP002990	Female	No	0	Graduate	Yes	4583	

In [5]: # Print a specific row by index
display(data.iloc[22])

Loan_ID LP001047 Gender Male Married Yes Dependents Education Not Graduate Self_Employed No ApplicantIncome 2600 CoapplicantIncome 1911.0 LoanAmount 116.0 Loan_Amount_Term 360.0 Credit_History 0.0 Property_Area Semiurban Loan_Status Name: 22, dtype: object

In [6]: display(data)

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	C
0	LP001002	Male	No	0	Graduate	No	5849	
1	LP001003	Male	Yes	1	Graduate	No	4583	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	
4	LP001008	Male	No	0	Graduate	No	6000	
609	LP002978	Female	No	0	Graduate	No	2900	
610	LP002979	Male	Yes	3+	Graduate	No	4106	
611	LP002983	Male	Yes	1	Graduate	No	8072	
612	LP002984	Male	Yes	2	Graduate	No	7583	
613	LP002990	Female	No	0	Graduate	Yes	4583	
614 r	ows × 13 c	olumns						
4							•	,

Printing the column names of the DataFrame

```
In [7]: print(list(data.columns))
          print("\n")
          list val = list(data.columns)
          for li in list val:
               print(li)
          ['Loan_ID', 'Gender', 'Married', 'Dependents', 'Education', 'Self_Employe
d', 'ApplicantIncome', 'CoapplicantIncome', 'Loan_Amount', 'Loan_Amount_Ter
          m', 'Credit_History', 'Property_Area', 'Loan_Status']
          Loan ID
          Gender
          Married
          Dependents
          Education
          Self_Employed
          ApplicantIncome
          CoapplicantIncome
          LoanAmount
          Loan_Amount_Term
          Credit_History
          Property_Area
          Loan_Status
```

Summary of Data Frame

```
In [8]: |print(data.info())
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 614 entries, 0 to 613
        Data columns (total 13 columns):
         #
             Column
                                Non-Null Count Dtype
         0
             Loan_ID
                                614 non-null
                                                object
             Gender
         1
                                601 non-null
                                                object
         2
             Married
                                611 non-null
                                                object
         3
             Dependents
                                599 non-null
                                                object
         4
             Education
                                614 non-null
                                                object
                                582 non-null
         5
             Self_Employed
                                                object
             ApplicantIncome
         6
                                                int64
                                614 non-null
         7
             CoapplicantIncome 614 non-null
                                               float64
         8
             LoanAmount
                                592 non-null
                                                float64
         9
             Loan_Amount_Term
                                600 non-null
                                                float64
         10 Credit_History
                                564 non-null
                                                float64
         11
             Property Area
                                614 non-null
                                                object
         12 Loan Status
                                614 non-null
                                                object
        dtypes: float64(4), int64(1), object(8)
        memory usage: 62.5+ KB
        None
```

Descriptive Statistical Measures of a DataFrame

In [9]: data.describe()

Out[9]:

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History
count	614.000000	614.000000	592.000000	600.00000	564.000000
mean	5403.459283	1621.245798	146.412162	342.00000	0.842199
std	6109.041673	2926.248369	85.587325	65.12041	0.364878
min	150.000000	0.000000	9.000000	12.00000	0.000000
25%	2877.500000	0.000000	100.000000	360.00000	1.000000
50%	3812.500000	1188.500000	128.000000	360.00000	1.000000
75%	5795.000000	2297.250000	168.000000	360.00000	1.000000
max	81000.000000	41667.000000	700.000000	480.00000	1.000000
4					•

Missing Data Handing

```
In [10]:
        tot_records = data.shape
         print("Data Shape: ",tot_records)
         print("\n")
         tot null=data.isnull().sum()
         print("---Total Null Value---")
         print(tot_null)
         print("\n")
         tot not null=data.notnull().sum()
         print("---Total no Null Value---")
         print(tot_not_null)
          Data Shape: (614, 13)
          ---Total Null Value---
          Loan ID
         Gender
                               13
         Married
                                3
         Dependents
                               15
          Education
                                0
          Self_Employed
                               32
         ApplicantIncome
                                0
                                0
          CoapplicantIncome
                               22
          LoanAmount
          Loan_Amount_Term
                               14
          Credit_History
                               50
          Property Area
                                0
          Loan_Status
                                0
          dtype: int64
          ---Total no Null Value---
          Loan_ID
                               614
         Gender
                               601
         Married
                               611
         Dependents
                               599
          Education
                               614
          Self Employed
                               582
         ApplicantIncome
                               614
          CoapplicantIncome
                               614
                               592
          LoanAmount
          Loan_Amount_Term
                               600
          Credit_History
                               564
                               614
          Property_Area
          Loan Status
                               614
          dtype: int64
```

Drop null

```
In [11]:
         data_n = data.copy()
         data_n = data_n.dropna()
         tot_null=data_n.isnull().sum()
         print("---Total Null Value---")
         print(tot_null)
         d=data.shape
         dn = data_n.shape
         print("Shape before: ",d)
         print("Shape after: ",dn)
         ---Total Null Value---
         Loan_ID
         Gender
                               0
         Married
                               0
         Dependents
                               0
         Education
                               0
                               0
         Self Employed
         ApplicantIncome
                               0
         CoapplicantIncome
                               0
         LoanAmount
                               0
         Loan_Amount_Term
         Credit_History
                               0
         Property_Area
                               0
         Loan_Status
                               0
         dtype: int64
         Shape before: (614, 13)
         Shape after: (480, 13)
```

Handling with Mean, Meadian & Mode

```
In [12]:
         data_copy = data.copy()
         # Handling missing values in categorical columns using mode
         categorical_columns = ['Gender', 'Married', 'Dependents', 'Self_Employed']
         for col in categorical columns:
             data copy[col].fillna(data copy[col].mode()[0], inplace=True)
         # Handling numerical columns with mean
         mean columns = ['Loan Amount Term'] # Example: Loan Amount Term has no ext
         for col in mean_columns:
             data copy[col].fillna(data copy[col].mean(), inplace=True)
         # Handling numerical columns with median
         median_columns = ['LoanAmount', 'Credit_History'] # Example: Columns with
         for col in median columns:
             data_copy[col].fillna(data_copy[col].median(), inplace=True)
         # Check if all missing values are handled
         print("Missing values after imputation:")
         print(data_copy.isnull().sum())
         d=data.shape
         dn = data_copy.shape
         print("Shape before: ",d)
         print("Shape after: ",dn)
         data_handled = data_copy.copy()
         Missing values after imputation:
         Loan_ID
                              0
         Gender
                              0
```

```
Married
Dependents
                     0
                     0
Education
Self_Employed
ApplicantIncome
                     0
CoapplicantIncome
LoanAmount
Loan_Amount_Term
                     0
Credit_History
                     0
Property_Area
                     0
Loan_Status
dtype: int64
Shape before: (614, 13)
Shape after: (614, 13)
```

Visualizing Dataframe

Mean, Median, Mode plotting

```
In [13]: | import matplotlib.pyplot as plt
         import seaborn as sns
         def generate_distribution_plot(raw_data, continuous_features):
             # Create a copy of the dataset containing only continuous features
             data = raw_data[continuous_features].copy()
             # Create subplots
             num features = len(data.columns)
             rows = (num_features + 1) // 2 # Calculate rows needed for subplots
             fig, axes = plt.subplots(nrows=rows, ncols=2, figsize=(15, rows * 5))
             fig.subplots_adjust(hspace=0.5, wspace=0.3)
             axes = axes.flatten() # Flatten axes for easy iteration
             # Font settings
             font = {
                 'family': 'serif',
                 'color': 'darkred',
                 'weight': 'normal',
                 'size': 14,
             }
             # Generate distribution plots
             for i, feature in enumerate(data.columns):
                 ax = axes[i]
                 feature_mean = data[feature].mean()
                 feature median = data[feature].median()
                 feature_mode = data[feature].mode().values[0]
                 sns.histplot(data[feature], kde=True, ax=ax, color='skyblue', bins=
                 ax.set_title(f'Analysis of {feature}', fontdict=font)
                 ax.axvline(feature_mean, color='r', linestyle='--', label="Mean")
                 ax.axvline(feature_median, color='g', linestyle='-', label="Median"
                 ax.axvline(feature_mode, color='b', linestyle='-', label="Mode")
                 ax.legend()
             # Remove any unused subplots
             for j in range(len(data.columns), len(axes)):
                 fig.delaxes(axes[j])
             plt.show()
```

In [14]: # Separate numerical and categorical features numerical_features = [feature for feature in data.columns if data[feature]. categorical_features = [feature for feature in data.columns if feature not # Discrete numerical features: Numeric but with fewer unique values (<25 is discrete_features = [feature for feature in numerical_features if len(data[# Continuous numerical features: Remaining numerical features continuous features = [feature for feature in numerical features if feature # Binary categorical features: Categorical features with 2 or 3 unique valu binary categorical features = [feature for feature in categorical features # Print the categorized features print("Numerical Features:", numerical_features) print("Discrete Features:", discrete_features) print("Continuous Features:", continuous_features) print("Categorical Features:", categorical_features) print("Binary Categorical Features:", binary_categorical_features)

Numerical Features: ['ApplicantIncome', 'CoapplicantIncome', 'LoanAmount',
'Loan_Amount_Term', 'Credit_History']
Discrete Features: ['Loan_Amount_Term', 'Credit_History']
Continuous Features: ['ApplicantIncome', 'CoapplicantIncome', 'LoanAmoun
t']
Categorical Features: ['Loan_ID', 'Gender', 'Married', 'Dependents', 'Educ
ation', 'Self_Employed', 'Property_Area', 'Loan_Status']
Binary Categorical Features: ['Gender', 'Married', 'Education', 'Self_Empl
oyed', 'Property_Area', 'Loan_Status']

In [15]: generate_distribution_plot(data_handled, continuous_features)

Encoding categorical data to numeric data

```
In [16]: # Convert categorical features to continuous features with Label Encoding
         encod data = data handled.copy()
         from sklearn.preprocessing import LabelEncoder
         lencoders = {}
         for col in encod_data.select_dtypes(include=['object']).columns:
             lencoders[col] = LabelEncoder()
             encod_data[col] = lencoders[col].fit_transform(encod_data[col])
         encod data.dtypes
Out[16]: Loan ID
                                 int32
         Gender
                                 int32
         Married
                                 int32
         Dependents
                                 int32
         Education
                                 int32
         Self_Employed
                                 int32
         ApplicantIncome
                                 int64
         CoapplicantIncome
                              float64
         LoanAmount
                               float64
         Loan_Amount_Term
                               float64
         Credit_History
                               float64
         Property_Area
                                 int32
         Loan_Status
                                 int32
```

Loan Status distribution

dtype: object

```
In [17]: pic_data = encod_data.copy()
    pic_data['Loan_Status'].replace({'N': 0, 'Y': 1},inplace = True)

In [18]: value_counts = pic_data.Loan_Status.value_counts(normalize=True)
    plt.figure(figsize=(3, 2))
    plt.pie(value_counts, autopct='%1.1f%%', colors=['lightgreen', 'green'], s
    plt.title('Loan Status ')
    plt.legend( value_counts.index, loc="best")
    plt.axis('equal')
    plt.show()
```


Box plot and outlier removal

```
In [19]:
         import matplotlib.pyplot as plt
         import seaborn as sns
         def plot_boxplot(df, continuous_features):
             # Create a copy of the dataset containing only continuous features
             data = df[continuous_features].copy()
             # Number of features and subplots configuration
             num features = len(data.columns)
             cols = 3 # Number of columns for subplots
             rows = (num_features + cols - 1) // cols # Calculate rows dynamically
             # Create subplots
             fig, axes = plt.subplots(nrows=rows, ncols=cols, figsize=(cols * 5, row
             fig.subplots_adjust(hspace=0.5, wspace=0.5)
             axes = axes.flatten() # Flatten the axes array for easier iteration
             # Font settings for titles
             font = {
                 'family': 'serif',
                 'color': 'darkblue',
                  'weight': 'normal',
                 'size': 14,
             }
             # Generate boxplots
             for i, feature in enumerate(data.columns):
                 sns.boxplot(data=data, y=feature, ax=axes[i], color='skyblue')
                 axes[i].set_title(f'Boxplot of {feature}', fontdict=font)
                 axes[i].set_xlabel('')
             # Remove unused subplot axes
             for j in range(num_features, len(axes)):
                 fig.delaxes(axes[j])
             plt.show()
```



```
In [21]: def remove_outliers(df,outliers_features):
    # create copy of dataframe
    data = df.copy()
    for feature in data[outliers_features].columns:
        Q3 = data[feature].quantile(0.75)
        Q1 = data[feature].quantile(0.25)
        IQR = Q3 - Q1
        lower_limit = round(Q1 - 1.5 * IQR)
        upper_limit = round(Q3 + 1.5 * IQR)
        data = data[(data[feature] <= upper_limit) & (data[feature] >= lowe return data
```

```
In [22]: #outlier removal using IQR technique
    data_iqr = remove_outliers(encod_data,continuous_features)
    data_afteroutlier = data_iqr.copy()
    print(data.shape)
    data_afteroutlier.shape
(614, 13)
```

Out[22]: (520, 13)

In [23]: #Box plot after outlier removal plot_boxplot(data_afteroutlier, continuous_features)


```
import numpy as np
In [24]:
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         def plot_correlation_heatmap(df):
             corr = df.corr()
             mask = np.triu(np.ones_like(corr, dtype=bool))
             f, ax = plt.subplots(figsize=(12, 10)) # Adjust figure size for readab
             cmap = sns.diverging_palette(250, 25, as_cmap=True)
             sns.heatmap(
                 corr, mask=mask, cmap=cmap, vmax=1, vmin=-1, center=0, square=True,
                 annot=True, fmt=".2f", linewidths=0.5, cbar_kws={"shrink": 0.8}
             )
             ax.set_title("Correlation Heatmap", fontsize=16, weight='bold')
             plt.show()
         plot_correlation_heatmap(data_afteroutlier)
```

Correlation Heatmap

Pair plot to visualize data correlation

```
In [25]: import seaborn as sns
import matplotlib.pyplot as plt

def plot_pairplot(df, hue=None):
    numerical_columns = [col for col in df.columns if df[col].dtypes in ['i
    sns.pairplot(data=df, vars=numerical_columns, hue=hue, diag_kind="kde",
    plt.suptitle("Pairplot of Numerical Features", y=1.02, fontsize=16, wei
    plt.show()

plot_pairplot(data_afteroutlier, hue='Loan_Status')
```


Sorting DataFrame values

```
In [26]: # with single parameter - Value
    data_new = data_afteroutlier.copy()
    sorted_data_single = data_new.sort_values(by='ApplicantIncome')
    display(sorted_data_single)
```

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Cc
216	216	1	1	0	0	0	150	
468	468	0	1	2	1	0	210	
500	500	0	0	0	0	0	645	
188	188	1	1	0	0	1	674	
77	77	1	1	1	0	1	1000	
598	598	1	1	0	0	1	9963	
210	210	0	0	0	0	0	10000	
319	319	1	1	1	0	1	10000	
148	148	0	0	0	0	0	10000	
435	435	0	1	0	0	0	10047	

520 rows × 13 columns

In [27]: # sorting with multi parameter with order ascending or descending
sort_multi = data_new.sort_values(by=['LoanAmount', 'ApplicantIncome', 'Coa
display(sort_multi)

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Сс
133	133	1	1	0	0	1	3459	
94	94	1	0	0	1	0	3620	
555	555	1	1	1	0	0	5468	
147	147	1	1	1	0	0	1538	
270	270	0	0	0	0	0	3237	
412	412	1	1	0	1	0	6096	
148	148	0	0	0	0	0	10000	
350	350	1	1	0	0	0	9083	
476	476	1	1	2	0	0	6700	
361	361	1	1	2	0	0	5000	

520 rows × 13 columns

Merge Data Frames

```
In [28]: df1 = encod_data.copy()
    df2 = data_new.copy()
    df_merged = pd.merge(df1,df2)
```

Apply Function

```
In [29]: # if year greater than 2019 it is termed as COVID

def fun(value):
    if value>100:
        return "HIGH"
    else:
        return "LOW"

data_c=data_afteroutlier.copy()
data_c['AmountLevel'] = data_c['LoanAmount'].apply(fun)
display(data_c)
```

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Cc
	0	1	0	0	0	0	5849	
	1 1	1	1	1	0	0	4583	
	2 2	1	1	0	0	1	3000	
	3 3	1	1	0	1	0	2583	
	4 4	1	0	0	0	0	6000	
60	8 608	1	1	0	0	0	3232	
60	9 609	0	0	0	0	0	2900	
61	0 610	1	1	3	0	0	4106	
61	2 612	1	1	2	0	0	7583	
61	3 613	0	0	0	0	1	4583	

520 rows × 14 columns

By using the lambda operator

```
In [30]: # adding 10 years to the existing year
data_cpy = data_afteroutlier.copy()
data_cpy['Inc'] = data_copy['ApplicantIncome'].apply(lambda x: x / 10)
display(data_cpy)
```

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Cc
0	0	1	0	0	0	0	5849	
1	1	1	1	1	0	0	4583	
2	2	1	1	0	0	1	3000	
3	3	1	1	0	1	0	2583	
4	4	1	0	0	0	0	6000	
608	608	1	1	0	0	0	3232	
609	609	0	0	0	0	0	2900	
610	610	1	1	3	0	0	4106	
612	612	1	1	2	0	0	7583	
613	613	0	0	0	0	1	4583	
520 r	520 rows × 14 columns							
4								•

Thank You

Sivaprakash V