STANDARD CANDLES.

Rujuta Mokal, Orion Yeung, Michael Wozniak

Contents

Overview

The Distance Ladder

Different Types of Standard Candles

Broader use in Astrophysics and Cosmology

- Standard Candles

- An astrophysical object whose absolute magnitude (M) is known
- Apparent magnitude (m) can be measured
- Used to measure distance (d) through $\mu = m M = 5 \log(d/10 pc)$
- Distances of objects around standard candles can be found
- Commonly known: Cepheids, Type Ia supernovae

Cartoon of Standard Candles

Applications ofStandard Candles

Cartoon of Standard Candles, happy birthday Orion!

- Distance measurements
 - The Cosmic Distance Ladder
- Calculating the value of the Hubble constant (H_o)

Cartoon of Cosmic Distance Ladder

The CosmicDistance Ladder

- Approach to measuring larger scales
- Rungs of ladder → Standard Candles
- Shorter distances (0-100 pc): Parallax
- Intermediate distances (100 10⁷ pc): Variable stars
- Large distances (10⁶- 10¹⁰ pc): Type 1A supernovae, Gravitationally lensed quasars

— Cepheid Variables, RR lyrae (100-106 pc)

At the Harvard Observatory

Cepheid Variables

- Discovered by Henrietta Leavitt
- Found in Small and Large Magellanic clouds
- Luminosity (L) Period (P) relationship discovered by Leavitt

RR Lyrae

- Discovered by Wilhelmina Flemming
- Found in Globular Clusters

Henrietta Leavitt

Movie of Cepheid over 1 month

Wilhelmina Flemming

— Cepheid Variables, RR lyrae (100-106 pc)

Finding distance:

- Photometric observations → Apparent magnitude (m)
- Light curve of m vs pulsation period (P)
- M from P
- $\mu = m M = 5 \log(d/10 pc)$
- Their brightness is limited, only suitable out to
 ≤10⁵pc
 - Farther?

Luminosity-period light curve from LMC and Milky Way

Oscillating brightness of Cepheid

-Tip of Red Giant Branch

Picture of red giant

 $(100-10^6 pc)$

- Upper boundary of red giant branch: H fusion stops, max star size
- He flash: He fusion commences
- For Mass $< \sim 2$ M_sun, He flash \rightarrow specific M
- Photometric measurement infrared band insensitive to star composition
- m_i can be found
- $M, m_1 \rightarrow d$

-Type la supernovae

 $(10^6 - 10^{10} pc)$

- Occurs in binary systems with white dwarfs
- Mass accretes onto white dwarf from companion star
 - Reaches the Chandrasekhar mass
- Runaway fusion reaction causes massive explosion
- Fixed critical mass; give similar peak
 luminosities

Movie of Type IA SN

Gravitationally Lensed Quasars

 $(10^9 - 10^{10} pc)$

- Hot (10¹² K) accretion disk around supermassive black hole
- Intrinsically variable luminosities
- Luminosity variations → Time delay between gravitationally lensed quasar images
- Estimate distance from time-delay distance and redshift

Lensed Quasar smiling at us

Diagram of how lensing informs path lengths

Picture of Spiral Galaxy

- Spiral Galaxies

- Tully Fisher Relation: Correlation between mass and rotational velocity of galaxy (v)
- v measured through width of emission lines
- Constant mass-luminosity ratio; determine luminosity from mass

11

Obtain M from luminosity

Graph of Tully-Fisher Relation

- Planetary Nebulae (106-108 pc)

- Glowing, ionized gas ejected from red giants
- Measure [O III] λ5007 forbidden lines in a galaxy; identify planetary nebulae
- Find distribution of planetary nebula magnitudes at this wavelength
- Distribution will have a cutoff observed at m_c , corresponds to $M_c = -4.48$
- $\mu = m_c M_c$, giving d

Sunyaev-Zeldovich Effect (106-108 pc)

Cartoon of light seen via Sunyaev-Zeldovich effect

- In a galaxy cluster, high energy electrons scatter with CMB photons, giving photons an energy boost
- Distorts radiation spectrum of CMB; magnitude of effect is proportional to gas density (ϱ) and size (S)
- Hot intergalactic gas emits X-rays with luminosity that is proportional to ϱ^2 and S
- Use X-ray luminosity and variations in microwave observations to determine S
- Measure angular size (θ) of cluster directly
- Calculate distance, $d = S / \theta$

— The Hubble Constant (H_o)

- Hubble's Law
 - Expanding universe
 - Astrophysical objects moving away from each other
 - - Recession velocity, $v = cz = H_o d$
- Ways to measure
 - Through distance measurements
 - Cosmic Microwave Background

Cartoon of Hubble's Law

recessional velocity Hubble's Law velocity Hubble's constant X distance

Plot of Hubble's Law demonstrating cosmological expansion

How measuring H₀ changed over past 2 decades

Measuring the Hubble constant

For **z << 1** (When effects of accelerated expansion are less significant)

- 1. Identify standard candles and measure luminosity (L), redshift (z) and flux (f)
- 2. Compute distance, d
- 3. Plot v = cz vs d (for z << 1)
- 4. Slope gives H₀

For higher redshift, deviations from the straight line of cz vs d indicates towards nature of expansion

— Limits of Standard Candles

- Degree of variation between absolute magnitudes of standard candles
- Require identification of specific objects
- Standard candles may not be as standard for all objects
 - Distant type 1a supernovae
- Interstellar dust lowers observed luminosity
- Candle-specific challenges
 - Metallicity effects on period-luminosity relation in cepheids
 - Short duration of type 1a supernovae

— Summary

- Standard candles are objects with identifiable absolute magnitudes (M)
- Variety of types depending on distances to be measured
- Applications in understanding structure and expansion of the universe
- Limitations due to nature of objects and precision of measurement

