

Agrupando Redes com Atributos usando as Divergências de Bregman

Felipe Schreiber Fernandes

Orientadores:

Daniel Ratton Figueiredo (UFRJ) Maximilien Dreveton (EPFL, Suíça) January 22, 2025

Clusterização

Metodo para agrupar dados com similaridade.

- Problema estudado há mais de 40 anos (Kmeans 1956)
- Como encontrar agrupamentos?

• E se tivéssemos um grafo? (Louvain 2008)

Clusterização de Redes

Figure 1: Rede de citações

Clusterização de Redes

Figure 2: Rede de citações

Nossa contribuição

- Modelo matemático para redes esparsas com atributos
- Algoritmos baseados em inferência estatística para obter o agrupamento
- Novos métodos de inicialização
- Avaliação e comparação do algoritmo em redes sintéticas e reais

22/01/2025 CTD 4/28

Modelo proposto

Computação Assumimos a independência condicional entre atributos e rede

- Para a geração dos dados:
 - Gerar os atributos dos vértices $\mathbb{P}(Y|z) = \mathbb{P}(Y|z,\nu)$
 - Gerar as arestas e pesos da rede $\mathbb{P}(X|z) = \mathbb{P}(X|z,p,\mu)$

$$P = \begin{bmatrix} 0.4 & 0.02 & 0.02 \\ 0.02 & 0.4 & 0.02 \\ 0.02 & 0.02 & 0.4 \end{bmatrix} \qquad \mu = \begin{bmatrix} 10 & 9 & 9 \\ 9 & 10 & 9 \\ 9 & 9 & 10 \end{bmatrix}$$

$$\nu = \begin{cases} 1. & 0. \\ -0.5 & 0.86 \\ -0.5 & -0.86 \end{cases}$$

Modelo proposto (Cont.)

A verossimilhança tem a seguinte forma:

$$\mathbb{P}(X,Y|z) = \prod_{1 \leq i < j \leq n} f_{z_i z_j}(X_{ij}) \prod_{i=1}^n h_{z_i}(Y_i)$$

- $f_{k\ell}(x)$ denota a probabilidade de dois vértices em blocos k e l possuírem uma relação $x \in X$. a
- $h_k(y)$ denota a probabilidade de um vértice no bloco $k \in [K]$ possuir um atributo $y \in Y$.
- Z é um vetor contendo as classes para cada vértice

A log-likelihood da densidade $p_{\psi,\theta}$ de uma distribuição da família exponencial se relaciona com a divergência de Bregman por:

$$\log p_{\psi,\theta}(x) = -d_{\psi^*}(x,\mu) + \psi^*(x),$$

onde $\mu = \mathbb{E}_{p_{\psi,\theta}}(X)$ é a média da distribuição.

 $a_{f_U}(x) = (1 - p_U)\delta_0(x) + p_Uf_U^*(x)$

Hard Clustering

Algorithm 7 Bregman hard clustering of node attributed SBM

Entrada: : Matriz de adjacências $X \in \mathcal{X}^{n \times n}$, atributos dos vértices $Y \in \mathcal{Y}^n$, funções convexas ψ^*, ϕ^* , labels iniciais $Z_{init} \in \mathcal{Z}_{n.K}$.

Computar p, μ, ν de acordo com as equações (4.11)

Faça

Para cada $i = 1, \dots, N$ faça

Encontrar as comunidades de cada vértice i dados os parâmetros (4.10)

Atualizar p, μ, ν de acordo com as equações (4.11)

Enquanto Não convergir

Retornar as comunidades Z

Inicialização

Alternativa 1: Utilizar ou a rede ou os atributos

• Alternativa 2: Utilizar ambas as fontes de informação

Avaliação

Precisamos avaliar e comparar algoritmos em diferentes cenários.

Atributos

 Especificar os centros das distribuições sobre um círculo de raio R

Rede

- Obter a rede pelo modelo SBM. $p_{in} = a \frac{\log n}{n}, \ p_{out} = b \frac{\log n}{n}$
- Especificar os pesos da rede w_{in} e w_{out}

Comparação de Algoritmos

- Apenas atributos GMM (Modelo de Mistura Gaussiana)
- Apenas a rede Leiden
- Hard clustering com ambas as fontes de informação e Divergências de Bregman
- Soft clustering com ambas as fontes de informação e Divergências de Bregman
- Attributed Stochastic Block Model ¹
- Contextual Stochastic Block Model (IR_sLS)²

22/01/2025 CTD 10/28

¹STANLEY, N., BONACCI, T., KWITT, R., et al. "Stochastic Block Models with Multiple Continuous Attributes" - Applied Network Science 2019

²BRAUN, G., TYAGI, H., BIERNACKI, C. "An iterative clustering algorithm for the Contextual Stochastic Block Model with optimality guarantees" - ICML 2022

(a) Aumentando a informação da rede

(b) Aumentando a informação dos atributos

Robustez a Distribuição

Um dos parâmetros é a distribuição dos dados

 Entretanto a metodologia é robusta nesse sentido, de não utilizar a distribuição exata

Figure 5: Várias divergências d_{ψ^*} . Poisson é o modelo correto.

Dados Reais

- Cora: n = 2708, m = 10556, d = 1433, K = 7;
- Citeseer: n = 3327, m = 9104, d = 3703, K = 6;
- Wiscosin: n = 251, m = 515, d = 1703, K = 5;
- **Texas**: n = 183, m = 325, d = 1703, K = 5;
- Cornell: n = 183, m = 298, d = 1703, K = 5;
- n Número de vértices; m Número de arestas; d Dimensão dos atributos; K Número de comunidades

ARI	ARI_std	algorithm	dataset
0.23	0.0	$both_soft+SC$	CiteSeer
0.20	0.0	$both_hard+SC$	CiteSeer
0.16	0.0	attSBM	CiteSeer
0.02	0.0	leiden	CiteSeer
0.26	0.0	$both_soft+SC$	Cora
0.12	0.0	$both_hard+SC$	Cora
0.08	0.0	attSBM	Cora
0.18	0.0	leiden	Cora
0.44	0.0	$both_soft+SC$	Cornell
0.48	5.5e-17	$both_hard+SC$	Cornell
0.46	0.0	attSBM	Cornell
0.00	0.0	leiden	Cornell
0.45	0.0	$both_soft+SC$	Texas
0.32	0.0	$both_hard+SC$	Texas
0.44	0.0	attSBM	Texas
0.00	0.0	leiden	Texas
0.43	0.0	$both_soft+SC$	Wisconsin
0.40	0.0	$both_hard+SC$	Wisconsin
0.43	0.0	attSBM	Wisconsin
0.00	0.0	leiden	Wisconsin

Conclusão

- Nosso método generaliza vários algoritmos permitindo qualquer distribuição exponencial a priori e grafos esparsos com pesos
- Discutimos novos métodos de inicialização
- Avaliações empíricas demonstram a superioridade do nosso modelo ao comparar com algoritmos competitivos
- O método foi capaz de lidar bem com ambas as fontes de informação
- Artigo publicado na Neurips 2023

OBRIGADO

Trabalhos futuros

- Construir um algoritmo escalável, e comparar com outros benchmarks da literatura.
- Explorar outras divergências, de forma a generalizar para distribuições além da família exponencial, ex. t-student e Cauchy.
- Métodos de inicialização mais eficientes

Formulação (Cont.)

• Assumimos que as redes são esparsas, portanto:

$$f_{ab}(x) = (1 - p_{ab})\delta_0(x) + p_{ab}f_{ab}^*(x),$$

• Finalmente, assumimos que as distribuições $\{f_{ab}^*\}$ e $\{h_a\}$ pertencem à família exponencial:

$$f_{ab}^*(x) = e^{<\theta_{ab},x>-\psi(\theta_{ab})}$$
 and $h_a(y) = e^{<\eta_a,y>-\phi(\eta_a)}$

• E.g. (gaussian): $f_{ab}^*(x) = e^{-\frac{(x-\mu_{ab})^2}{2\sigma^2}}$

Soft Clustering

Recall that ommitting the constants that depends on x we have:

•
$$f_{ab}(x) = \exp \{-d_{KL}(A_{ij}, p_{ab}) - A_{ij}d_{\psi^*}(X_{ij}, \mu_{ab})\}$$

•
$$h_{ab}(x) = \exp\{-d_{\phi^*}(x, \mu_a)\}$$

Now we rewrite the Likelihood in the exponential form:

$$\begin{split} \mathbb{P}(X,Y \mid z) &= \prod_{1 \leq i < j \leq n} f_{z_i z_j}(X_{ij}) \prod_{i=1}^n h_{z_i}(Y_i) \\ &= \exp\{-\sum_{i,i} \left[\mathsf{d}_{\mathrm{KL}}(A_{ij}, p_{z_i, z_j}) + A_{ij} d_{\psi^*}(X_{ij}, \mu_{z_i, z_j}) \right] - d_{\phi^*}(Y_i, \nu_{z_i}) \}. \end{split}$$

Update rule

E-step:

$$\tau_{ia} = p(z_i = a|X, Y, z_{-i}) \propto p(X, Y|z_{-i}, z_i = a)p(z_i = a)$$

$$\propto \pi_{m{a}} \exp \left\{ -\sum_{i,j} \left[\mathsf{d}_{\mathrm{KL}}(A_{ij}, p_{m{a}, z_j}) + A_{ij} d_{\psi^*}(X_{ij}, \mu_{m{a}, z_j})
ight] - d_{\phi^*}(Y_i,
u_{m{a}}) - c_i
ight.$$

In practice, in order to have a stable exponent, we simply add a constant c_i for every node:

$$c_i = \min_{a} \{ \sum_{i} [d_{net}(j)] + d_{\phi^*}(Y_i, \nu_a) \}$$

• M-step:

$$\hat{\pi}_k = \frac{1}{n} \sum_i \hat{\tau}_{ik}, \quad \hat{\mu}_{k\ell} = \frac{\sum_{i \neq j} \hat{\tau}_{ik} \hat{\tau}_{j\ell} X_{ij}}{\sum_{i \neq j} \hat{\tau}_{ik} \hat{\tau}_{j\ell}} \quad \text{and} \quad \hat{\nu}_k = \frac{\sum_i \hat{\tau}_{ik} Y_i}{\sum_j \hat{\tau}_{ik}}.$$

Computação Samos a divergência de Chernoff-Hellinger para medir qual fonte dos dados nos dá maior informação:

• Com Z_{rede} para calcular:

$$C_{rede} = \min_{a \neq b} \sup_{t \in (0,1)} (1-t) \sum_{c=1}^{K} \pi_c \, \mathsf{D}_t \, (f_{bc} \| f_{ac})$$

• Com Z_{atributos} para calcular:

$$C_{atributos} = \min_{a \neq b} \sup_{t \in (0,1)} (1 - t) \left[\frac{1}{n} D_t (h_a || h_b) \right]$$

• Retornar Z_{rede} se $C_{rede} > C_{atributos}$, do contrário retornar $Z_{atributos}$.

Inicialização Espectral

- 1. Construir duas matrizes de similaridade, uma para os atributos e outra para a rede
- 2. Obter o Laplaciano
- 3. Computar os K menores autovetores de cada, deixando primeiro de fora
- 4. Concatenar os autovetores e agrupar no espaço projetado

Inicialização Espectral

Algorithm 9 Spectral clustering on concatenated matrix

Require: : Observed network data X, attributes Y, a (symmetric) kernel function Φ , number of clusters K.

- 1: Do some preprocessing on X to obtain \tilde{X} (e.g., compute Jaccard similarity between the neighbourhood of different nodes, normalize by degrees, or do nothing);
- 2: Let $\tilde{Y} \in \mathbb{R}_+^{n \times n}$ such that $\tilde{Y}_{ij} = K(Y_i, Y_j)$
- 3: (i) Let the eigendecomposition of \tilde{X} be $\tilde{X} = \sum_{i=1}^{n} \lambda_i u_i u_i^t$, with $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ and eigenvectors u_1, \cdots, u_n . Denote $U = (u_1, \cdots, u_K) \in \mathbb{R}^{n \times K}$ the leading eigenspace, and $\Lambda = (\lambda_1, \cdots, \lambda_K) \in \mathbb{R}^{K \times K}$ the leading eigenvalues.
- 4: (ii) Similarly, denote let $\tilde{Y} = \sum_{i=1}^{n} \sigma_i v_i v_i^T$, with $\sigma_1 \geq \cdots \geq \sigma_n$. Denote $V = (v_1, \cdots, v_K)$ and $\Sigma = (\sigma_1, \cdots, \sigma_K)$.
- 5: (iii) Apply k-means on the rows of $[U\Lambda, V\Sigma] \in \mathbb{R}^{n \times 2K}$, where $[\cdot, \cdot]$ denotes the concatenation between two matrices.
- 6: Return estimated clusters \hat{Z} obtained by k-means at step (iii).

(a) Binary network with Gaussian attributes. Varying the p_{in} and r.

(b) zero-inflated Gaussian weights. We fix $w_{out} \sim \mathcal{N}(0,1)$. Varying $w_{in} \sim \mathcal{N}(\mu,1)$ and r

Figure 6: Phase transition of exact recovery. Each pixel represents the empirical probability that Algorithm 1 succeeds at exactly recovering the clusters (over 50 runs), and the red curve shows the theoretical threshold.

Resultados

Figure 7: Adjusted Rand Index (ARI) averaged over 20 realisations
(a) n = 400, k = 4, $f_{12} = (1 - p)\delta_{2}(x) + pPoi(y_{12})$ and $f_{13} = (1 - p)\delta_{2}(x)$

(a) n=400, k=4, $f_{in}=(1-p)\delta_0(x)+p\mathrm{Poi}(\mu_{in})$ and $f_{out}=(1-q)\delta_0(x)+q\mathrm{Poi}(5)$, with p=0.04 and q=0.01. Attributes are 2d-Gaussians with unit variances and mean equally spaced the circle of radius r=2.

(b) n=400, k=2, $f_{in}=(1-p)\delta_0(x)+p\mathrm{Nor}(2,1)$ and $f_{out}=(1-q)\delta_0(x)+q\mathrm{Nor}(0,1)$, with p=0.04 and q=0.01. Attributes are Poisson with means ν_1 (for nodes in cluster 1) and 3

Resultados

1.0
0.8

W
0.6
0.4
0.2
0.0
0 1 2 3 4 5

Figure 8: (a) Fixamos $p_{out} = 5\frac{\log n}{n}$ e r = 1. Variamos $p_{in} = a\frac{\log n}{n}$ (b) Fixamos $p_{out} = 5\frac{\log n}{n}$, e $p_{in} = 8\frac{\log n}{n}$. Variamos o raio R. Ambos experimentos: atributos Gaussianos, grafo sem peso

Contextual Stochastic Block Model ³

- It also assumes Stochastic Block Model for the network and Gaussian Mixtures for the attributes.
- Doesn't rely on MLE.
- Optimization procedure is done via iterative refinement.

 $^{^3}$ An iterative clustering algorithm for the Contextual Stochastic Block Model with optimality guarantees [braun2022iterative] - ICML 2022

S&S	S&S_std	CC	CC_std	algorithm	dataset
0.53	0.00	0.06	0.01	both_hard	CiteSeer
0.60	0.00	0.20	0.00	both_hard+SC	CiteSeer
0.52	0.00	0.04	0.01	both_soft	CiteSeer
0.62	0.00	0.24	0.00	both_soft+SC	CiteSeer
0.55	0.00	0.10	0.00	kmeans	CiteSeer
0.54	0.01	0.07	0.01	both_hard	Cora
0.57	0.00	0.13	0.00	both_hard+SC	Cora
0.62	0.04	0.24	0.07	both_soft	Cora
0.63	0.00	0.26	0.00	both_soft+SC	Cora
0.53	0.00	0.05	$6.94 \cdot 10^{-18}$	kmeans	Cora
0.51	0.00	0.03	0.01	both_hard	Cornell
0.75	0.00	0.50	0.00	both_hard+SC	Cornell
0.54	0.02	0.08	0.04	both_soft	Cornell
0.73	0.00	0.46	0.00	both_soft+SC	Cornell
0.68	0.00	0.36	0.00	kmeans	Cornell
0.57	0.04	0.14	0.07	both_hard	Texas
0.66	0.00	0.33	0.00	both_hard+SC	Texas
0.67	0.04	0.34	0.07	both_soft	Texas
0.73	0.00	0.45	0.00	both_soft+SC	Texas
0.74	0.00	0.48	$5.55 \cdot 10^{-17}$	kmeans	Texas
0.58	0.02	0.16	0.03	both_hard	Wisconsin
0.70	0.00	0.40	0.00	both_hard+SC	Wisconsin
0.64	0.01	0.28	0.02	both_soft	Wisconsin
0.72	0.00	0.44	$5.55 \cdot 10^{-17}$	both_soft+SC	Wisconsin
0.69	0.00	0.37	0.00	kmeans	Wisconsin