Science for Primary Teachers 3

COURSEWORK							
Content/Unit	Specific Objectives	Taxonomy	Type of Item	Weighting			
Unit 1	10. Investigate and give examples of reflection or refraction of light.	Application Analysis Comprehension	Experiment	1 item @ 15 %			
Unit 3	8. Describe how pulleys make work easier: simple, double, fixed, moving	Create Synthesis Application	Create a model & Experiment	1 item @ 15 %			
Units 1 - 3	All objectives	Knowledge Comprehension Application Analysis	Test/Quiz	1 item @ 20 %			

NB: Students should do either the Reflection or Refraction of Light Lab.

Experiment to Investigate Reflection or Refraction of Light

Objective: To observe and measure the phenomena of reflection and refraction of light using simple materials.

Materials:

- Light source (laser pointer or flashlight)
- Plane mirror
- Glass block or acrylic block
- Protractor
- Ruler
- White sheet of paper
- Pencil
- Water (optional for additional refraction experiment)

Procedure:

1. Reflection Experiment:

- o Set up the plane mirror on a flat surface.
- Position the light source so that it shines directly at the mirror at a known angle (e.g., 30 degrees).
- Use the protractor to measure the angle of incidence (the angle between the incoming light ray and the normal line perpendicular to the mirror surface).
- o Observe the angle of reflection (the angle between the reflected ray and the normal).
- o Record your observations and measure both angles using the protractor.
- o Repeat the experiment at different angles (e.g., 15°, 45°, 60°) and document the results.

(Method to be placed in past tense: 3mark=no errors, 1mark=1 – 2 errors, mark=over 3 errors = 0 marks)

Data analysis:

• Compare the angles of incidence and reflection in the reflection experiment to verify the law of reflection (angle of incidence = angle of reflection). (4marks)

Discussion:

- Address the following questions:
- Discuss the results observed in the experiment. 3 marks
- Reflect on how the findings relate to the principles of reflection. 3 marks

Conclusion:

• Suggest improvements or extensions to the experiment for further investigation.

2marks

2. Refraction Experiment:

- o Place the glass block or acrylic block on the white sheet of paper.
- o Shine the light source at the block at an angle (e.g., 30 degrees).
- Oraw the incident ray and the refracted ray as they pass through the block, marking the normal line where the light enters.
- Measure the angle of incidence and the angle of refraction using the protractor.
- o Repeat this for different angles of incidence and document your observations.
- Optional) Conduct a similar experiment using water in a transparent container to observe the refraction of light through water.

(Method to be placed in past tense: 3 marks=no errors, 1 mark=1-2 errors, over 3 errors = 0 marks)

Data analysis

• In the refraction experiment, analyze how the angles of incidence and refraction relate to each other and to the material (4 marks)

Discussion:

- o Address the following questions:
- Discuss the results observed in the experiment. 3 marks
- Reflect on how the findings relate to the principles of refraction. 3 marks

Conclusion:

Suggest improvements or extensions to the experiment for further investigation.

(2marks)

TOTAL 15 MARKS

Assignment: Exploring Pulleys and Their Impact on Work

Objective: To investigate how pulleys reduce the amount of force needed to lift objects

Materials Needed:

- Various types of pulleys (fixed, movable, and)
- Weights (bags of sand or small weights)
- String
- Spring scale (to measure force)
- A ruler or measuring tape
- Stopwatch (optional)

2. Method:

- Set up the pulley system using the materials provided
- Measure and record the weight of the object they will lift.
- Use the spring scale to measure the force required to lift the weight without the pulley.
- Next, use the moveable and fixed pulley to lift the same weight and record the required force.
- Repeat the measurements at least three times to ensure accuracy.
- Calculate the differences between the force required to lift the weight with and without the pulleys.

(Method to be placed in past tense: 3 marks=no errors, 2 marks=1-2 errors, over 3 errors = 0 marks

3. Observation:

- o What force was required to lift the weight with the two types of pulleys. 1 mark
- What was the force required to lift the weight without the pulley. 1 mark
- State the differences between the forces required to lift the weight with and without the pulley. 2 marks

4. Discussion:

Address the following questions:

- o What was the advantage of using a single moveable pulley? 2 marks
- What are two real-world applications of pulleys that you can think of? 2 marks
- o How do you think the design of a pulley affects its efficiency? 2 marks

5. Conclusion: Appropriate conclusion 2 marks

TOTAL 15 MARKS