Tema 2a. Propiedades mecánicas

- Deformación elástica y plástica: generalidades
- 2. Propiedades y mecanismos relacionados con la deformación plástica
 - Ensayo de tracción-flexión. Endurecimiento y reblandecimiento
 - Ensayo de dureza
 - Ensayo de termofluencia
- 3. Propiedades y mecanismos relacionados con la fractura
 - Ensayo de impacto
 - Ensayo de fractura
 - Ensayo fatiga

Deformación elástica y plástica

- Deformación elástica: al eliminar la tensión aplicada sobre el material, éste vuelve a su longitud inicial. Los átomos del material se desplazan momentáneamente de sus posiciones de equilibrio
- Deformación plástica: al eliminar la tensión aplicada sobre el material, éste no recupera sus dimensiones iniciales. Los átomos del material se desplazan definitivamente a otras nuevas posiciones

Deformación uniaxial, $\varepsilon = \Delta I/I_0$ Tensión o esfuerzo uniaxial, $\sigma = F/A_0$

Deformación cortante, $\gamma = a/h = tg\theta$ Esfuerzo cortante o cizalladura, $\tau = S/A_0$

Mecanismo de la deformación plástica

Deslizamiento de las dislocaciones

- 1) Al aplicar un esfuerzo cortante, la dislocación existente puede romper los enlaces atómicos de los planos atómicos contiguos (en un sentido)
- 2) Los planos con enlaces rotos se desplazan ligeramente y en sentido contrario para reestablecer sus enlaces atómicos con otros planos
- 3) Esta recombinación hace que la dislocación se desplace por el material
- 4) Finalmente el material queda deformado.

Factores determinantes en el deslizamiento de dislocaciones

- 1. Las direcciones de deslizamiento usuales son las direcciones *compactas* del material (distancia menor entre átomos)
- 2. Los planos de deslizamiento son los de mayor empaquetamiento atómico del material y con mayor distancia interplanar
- 3. El tipo de enlace interatómico: enlaces covalente o iónico (muy intensos) impiden el deslizamiento de dislocaciones; enlace metálico (débil) facilita el deslizamiento de dislocaciones.

Sistemas cristalográficos de deslizamiento

Sistema de deslizamiento: combinación de un plano compacto y de una dirección cristalográfica *compacta* sin tensiones locales incluida en dicho plano.

Estructura cristalina	Plano de deslizamiento	Dirección de deslizamiento	Número de sistemas de deslizamiento	Geometría de la celda unidad	Ejemplos
bee	{110}	<Ī11>	6 × 2 = 12		Fe-α, Mo, W
fec	{111}	<110>	4 × 3 = 12		Al, Cu, Fe-γ, Ni
hcp	(0001)	<20>	$1 \times 3 = 3$		Cd, Mg, Ti-α, Zn

Ley de Schmid para el deslizamiento de dislocaciones

- Sobre un material se aplica un esfuerzo cortante τ=F/A cuya fuerza forma un ángulo λ respecto de cierta dirección de deslizamiento.
- El esfuerzo cortante efectivo o resultante a lo largo de dicha dirección de deslizamiento se debe sólo a la componente de la fuerza F_R=Fcosλ.
- La sección real de la muestra sobre la que actúa es A_R=A/cos
 .
- Por ello, el esfuerzo cortante efectivo o resultante a lo largo de dicha dirección de deslizamiento será τ_R = F_R/A_R = Fcosλ/ (A/cosφ) = (F/A)cosλcosφ = τcosλcosφ.
- Si $\tau_R > \tau_C$, donde τ_C es el esfuerzo cortante crítico (característico del material), la dislocación se desplazará dando lugar a la deformación.

Importancia de las dislocaciones y su deslizamiento. Implicaciones

- El deslizamiento de las dislocaciones explica por qué la resistencia mecánica de un metal es menor de lo esperable (enlace metálico no direccional) y pueden deformarse (materiales dúctiles)
- 2. Los materiales iónicos y cerámicos ofrecen una alta resistencia al deslizamiento
 - Fuertes enlaces iónicos o covalentes
 - Repulsión electrostática durante el deslizamiento/enlace direccional
 - Materiales no dúctiles o frágiles
- 3. El deslizamiento proporciona ductilidad al material (facilidad de deformación). De no existir la posibilidad de deslizamiento, el material sería frágil
- 4. Controlar el movimiento de las dislocaciones (introducir impurezas, defectos, solidificación, etc...) permite controlar las propiedades mecánicas del material

Endurecimiento del material: creación de impedimentos al deslizamiento de las dislocaciones

Fronteras de grano-Soluciones sólidas-Trabajo del material en frío-...

Ensayos de tracción y de flexión (sistemas experimentales).

Ensayo de tracción Módulo de elasticidad o de Young = σ/ϵ Deformación plástica

> Ensayo de flexión (materiales frágiles) Resistencia a la flexión = $3F \cdot L/(2wh^2)$ Módulo en flexión = $L^3 \cdot F/(4wh^3d)$

Ensayo de tracción. Diagrama tensióndeformación (I)

Fensión (MPa)

Algunos parámetros importantes:

Regiones elástica y plástica. Límite elástico. Módulo de Young Resistencia máxima a la tensión Módulo de resilencia Módulo de Poisson, $\mu = -\epsilon_{lateral}/\epsilon_{longitudi}$

% elongacion =
$$\frac{\Delta l}{l_0}$$
 x 100% % reduccion de area = $\frac{\Delta A}{A_0}$ x 100%

Diagrama tensión-deformación (II)

Ejemplos en tipo de materiales (metálicos)

Diferencia entre los diagramas de tensión-deformación (estricción):

- a) real: $\sigma_r = F/A$, $\epsilon_r = \ln(I/I_0)$
- b) Ingenieril: $\sigma_i = F/A_0$, $\varepsilon_r = \Delta I/I_0$

Mecanismos de endurecimiento (I)

- Fronteras de grano: actúan como barreras al deslizamiento de las dislocaciones (mayor resistencia y endurecimiento del material)
 - Menor tamaño del grano-mayor número de granos y fronteras de grano en el material------Mayor resistencia y dureza del material
- Soluciones sólidas
 - Factor de tamaño relativo: distorsiones creadas por los diferentes tamaños atómicos
 - Orden de corto alcance:
 diferentes estructuras de enlace

Mecanismos de endurecimiento (II)

Mecanismos de endurecimiento (III)

 Trabajo en frío: al deformar un material, se aumenta el número de dislocaciones y éstas se desplazan con mayor dificultad

Aumento de la resistencia o endurecimiento del material

Mecanismos de endurecimiento (IV)

Ventajas y desventajas del trabajo en frío

- 1. Endurece y moldea el material simultáneamente
- 2. Acabados superficiales (y de otros tipos) excelente
- 3. Método económico para fabricar piezas metálicas
- 4. Grado reducido de trabajo en frío para materiales frágiles (Mg, pocos sistemas de deslizamiento en la red hcp)
- 5. Disminución de la ductilidad del material moldeado
- 6. Generación de tensiones residuales (beneficioso o no)
- 7. Algunas técnicas de deformación sólo pueden aplicarse por medio de un trabajo en frío muy controlado (véase el ejemplo).

Mecanismos de reblandecimiento (I): recocido

Elimina las tensiones residuales (recocido a baja temperatura), reblandece y aumenta la ductilidad del material (contrario al trabajo en frío).

- 1) Recuperación: calentamiento por debajo de la recristalización, reordenación de las dislocaciones (estructura subgranular poligonizada) y reducción de las tensiones residuales. Mejora de las propiedades eléctricas.
- 2) Recristalización: Formación de granos en los bordes de la celda poligonizada. Eliminación de dislocaciones. Aumento de la ductilidad v disminución de la resistencia mecánica del material

3) Crecimiento de grano

Mecanismos de reblandecimiento (II): recocido

Algunas consideraciones sobre el recocido

- La temperatura de recristalización disminuye al incrementar la cantidad de trabajo en frío (aumento de dislocaciones)
- 2. Un tamaño inicial de grano pequeño disminuye la temperatura de recristalización (mayor número de puntos donde favorecer la nucleación)
- Al aumentar el tiempo de recocido se reduce la temperatura de recristalización (más tiempo para la nucleación y crecimiento de los granos recristalizados)
- 4. El tamaño final del grano recristalizado es menor cuanto mayor sea la deformación inicial (menor temperatura de recristalización)
- 5. Los metales puros se recristalizan a temperaturas menores que las aleaciones
- 6. Las aleaciones con un punto de fusión alto tienen una temperatura de recristalización mayor (la recristalización es un proceso controlado por la difusión.

Trabajo en caliente: moldeado y recristalización simultánea

- Deformación plástica del material (moldeado) a una temperatura superior a la de recristalización: durante el trabajo en caliente el material se moldea y cristaliza continuamente (recristalización dinámica)
- a) Deformación plástica ilimitada durante el trabajo en caliente (ideal para piezas grandes y con tamaño final de grano muy fino)
- b) Eliminación de las imperfecciones (porosidades, diferencias de composición, etc...)
- c) Estructura final del material anisotrópica (gradientes térmicos, granos fibrosos en la dirección del laminado,...)
- d) Peor acabado superficial y precisión que el trabajo en frío

Ensayos de dureza: sistemas experimentales y propiedades.

 Se utilizan para medir la resistencia de la superficie de un material a ser deformado

Ensayo	Penetrador	Forma de la indentación Vista lateral Vista superior		Carga	Expresión para el índice de dureza	
Brinell	Esfera de 10 mm de acero o de carburo de wolframio	←D* 	→ d -	В <i>Р</i>	$HN = \frac{2P}{\pi D \left[D - \sqrt{D^2 - d^2} \right]}$	
Vickers	Pirámide de diamante	136°	d_1	Р	VHN - 1,72 <i>P</i> / <i>d</i> ₁ ²	
Microdureza Knoop	Pirámide de diamante _	1/b = 7,11 † b/t = 4,00	b	P	$KHN = 14,2P/l^2$	
Rockwell	A C D Cono de diamante D B Esfera de acero de 1/6 de pulgada de diámetro	120°		60 kg 150 kg 100 kg 100 kg 60 kg 150 kg	$R_{A} = R_{C} = R_{D} = R_{D} = R_{B} = R_{F} = R_{G} = R_{E} = R_{E$	
	E Bestera de acero de 1/8 de pulgada de diámetro			100 kg 60 kg	$R_H = $	

FUENTE: H. W. Hayden, W. G. Moffat y J. Wulff, The Structure and Properties of Materials, Vol. 3: Mechanical Behaviour, John Wiley & Sons, Inc.,

Ensayo de deformación plástica dependiente del tiempo (termofluencia)

Al aplicar una tensión a un material a una temperatura elevada, éste puede deformarse y romperse incluso si la tensión es menor que el límite elástico a dicha temperatura.

La deformación a alta temperatura se denomina *termofluencia*

- Ascenso de las dislocaciones (alta temperatura)
- Dependencia de la termofluencia con el tiempo

Ensayos de impacto: sistema experimental y propiedades.

- Aplicación de un golpe súbito e intenso al material
- La velocidad de aplicación de la tensión o carga es extremadamente alta a diferencia de los ensayos de tracción y flexión
- Comportamiento distinto del material (más frágil)
- Sirve para medir la capacidad de un material para resistir una brusca carga de impacto (tenacidad).

Ensayo de fractura (I): experimento y mecanismos

Tenacidad a la fractura: capacidad de un material que contiene un defecto (fisura o grieta) para resistir una carga aplicada sin que el defecto progrese. Cantidad de energía que el material puede absorber antes de fracturar.

Tipos de fractura:

- Dúctil: aparece bajo intensas deformaciones plásticas. Fases: 1) estrangulamiento y microcavidades, 2) grieta y propagación y 3) ruptura
- Frágil: la fractura se propaga a lo largo de ciertos planos cristalográficos (materiales con pocos planos de deslizamiento). Bajas deformaciones plásticas

Propiedades y mecanismos de la fractura (II)

Algunos factores relacionados con la tenacidad de un material:

- Defectos grandes reducen la máxima tensión admisible (menor tenacidad)
- La capacidad de deformación de un material es crítica (mayor ductilidad mayor tenacidad)
- Elementos más gruesos y rígidos dan lugar a una tenacidad menor que en los elementos delgados
- La tenacidad se reduce al aplicar rápidamente la tensión sobre el material
- La tenacidad aumenta al aumentar la temperatura
- Una estructura de granos pequeños mejora la tenacidad del material
- La tenacidad disminuye con el número de defectos puntuales y dislocaciones

Ensayo de fractura por fatiga

Un material sometido durante largo tiempo a una tensión cíclica puede romperse (incluso estando dicha tensión por debajo del límite elástico)

Proceso de fractura por fatiga: (1) creación de la grieta en algún punto de la superficie del material (2) propagación de la grieta por la acción periódica de la tensión y (3) ruptura cuando la sección restante (no agrietada) es insuficiente para soportar la tensión aplicada

Factores que disminuyen la resistencia de un material a la fatiga:

- a) La presencia de concentradores de tensión (cualquier irregularidad en la sección de la pieza)
- b) Rugosidad superficial
- Estado superficial (endurecimiento, aislantes superficiales,...) C)
- d) Medio ambiente