Our goal is to explore various monte carlo method for computing

$$\alpha = \int_0^1 h(x) dx$$

where

$$h(x) = 100 \cdot I_{(0,1/100]}(x) + 1 \cdot I_{(1/100,1)}(x).$$

Of course, the exact value shall be

$$\alpha = 1.98.$$

Pretended not to know the exact value, we have used OMC with exact sampling of uniform random variable, denoted by omc_integral(n).

1. Find F_1 , the cdf of p_1 given by

$$p_1(x) = \frac{1}{C} (2 \cdot I_{(0,1/100]}(x) + 1 \cdot I_{(1/100,1)}(x)),$$

for some constanst C.

- 2. Find F_1^{-1} .
- 3. Implement Pseudocode inverse_transform_sampling (F^{-1}, n) :
 - Generate iid U(0,1) random variables

$${Y_i : i = 1, \dots, n}.$$

Compute

$${X_i = F^{-1}(Y_i) : i = 1, ..., n}.$$

- 4. Implement Pseudocode importance_sampling_integral(n):
 - \bullet Generate iid p_1 samples, denoted by

$${X_i : i = 1, 2, \dots, n}.$$

• Compute the average of the integrand h adjusted by likelyhood ratio (also referred to radon-nikodym derivative) p/p_1 , i.e.

$$\bar{\alpha}_n = \frac{1}{n} \sum_{i=1}^n h(X_i) \cdot \frac{p(X_i)}{p_1(X_i)}.$$

- 5. Demonstrate the convergence rate of the above importance sampling.
- 6. Could you find a pdf p_2 better than p_1 ?