Package 'bqror'

February 7, 2020

1 Columny 7, 2020
Type Package
Title Bayesian Quantile Regression for Ordinal Models
Version 0.1.0
Imports MASS, pracma, tcltk, GIGrvg, truncnorm, NPflow, invgamma
Maintainer Prajual Maheshwari <pre></pre>
Description Provides an estimation technique for Bayesian quantile regression in ordinal models. Two algorithms are considered - one for an ordinal model with three outcomes and the other for an ordinal model with more than 3 outcomes. It further provides model performance criteria and trace plots for Markov chain Monte Carlo (MCMC) draws. Rahman, M. A. (2016) <doi:10.1214 15-ba939="">. Greenberg, E. (2012) <doi:10.1017 cbo9781139058414="">. Spiegelhalter, D. J., Best, N. G., Carlin B. P. and Linde A. (2002) <doi:10.1111 1467-9868.00353="">.</doi:10.1111></doi:10.1017></doi:10.1214>
License GPL (>=2)
Encoding UTF-8
LazyData true
Repository CRAN
RoxygenNote 6.1.1
NeedsCompilation no
Author Dr. Mohammad Arshad Rahman Developer [aut], Prajual Maheshwari [cre]
R topics documented:
alcdf 2 alcdfstdg3 3 bqror 4 data25j3 6 data25j4 6 data50j3 7 data50j4 8

2 alcdf

	data75j3	9 10 12 14
	drawdeltag3	17 19 20
	drawsigma3	23 25 27
	inefficiency_factorg3	29 30 33
	quan_reg3quan_regg3rndaldtrace_plot3trace_plotg3	36 39 40
Index	trace_protg5	43

alcdf

Asymmetric Laplace Distribution

Description

This function computes the cumulative distribution (CDF) for an asymmetric Laplace distribution.

Usage

```
alcdf(x, mu, sigma, p)
```

Arguments

 $\begin{array}{lll} & & scalar \ value. \\ & \text{mu} & & location \ parameter \ of \ ALD. \\ & \text{sigma} & scale \ parameter \ of \ ALD. \\ & p & quantile \ or \ skewness \ parameter, \ p \ in \ (0,1). \end{array}$

Details

Computes the cumulative distribution function for the asymmetric Laplace distribution.

$$CDF(x) = F(x) = P(X \le x)$$

where X is a random variable

alcdfstdg3

Value

Returns a scalar with cumulative probability value at point 'x'.

References

Rahman, M. A. (2016). "Bayesian Quantile Regression for Ordinal Models." Bayesian Analysis, 11(1): 1-24.

Koenker, R. and Machado, J. (1999). "Goodness of Fit and Related Inference Processes for Quantile Regression." Journal of American Statistics Association, 94(3): 1296-1309.

Keming, Y. and Zhang, J. (2005). "A Three-Parameter Asymmetric Laplace Distribution." Communications in Statistics - Theory and Methods, 34(9): 1867-1879.

See Also

cumulative distribution function, asymmetric Laplace distribution

Examples

```
set.seed(101)
x <- -0.5428573
mu <- 0.5
sigma <- 1
p <- 0.25
ans <- alcdf(x, mu, sigma, p)
# ans
# 0.1143562</pre>
```

alcdfstdg3

CDF of a standard Asymmetric Laplace Distribution

Description

This function computes the CDF of a standard asymmetric Laplace distribution i.e. AL(0,1,p).

Usage

```
alcdfstdg3(x, p)
```

Arguments

```
x scalar value.
```

p quantile level or skewness parameter, p in (0,1).

4 bqror

Details

Computes the CDF of a standard asymmetric Laplace distribution.

$$CDF(x) = F(x) = P(X \le x)$$

where X is a random variable that follows AL(0, 1, p).

Value

Returns the probability value from the CDF of an asymmetric Laplace distribution.

References

Rahman, M. A. (2016). "Bayesian Quantile Regression for Ordinal Models." Bayesian Analysis, 11(1): 1-24.

Koenker, R. and Machado, J. (1999). "Goodness of Fit and Related Inference Processes for Quantile Regression." Journal of American Statistics Association, 94(3): 1296-1309.

Keming, Y. and Zhang, J. (2005). "A Three-Parameter Asymmetric Laplace Distribution." Communications in Statistics - Theory and Methods, 34(9): 1867-1879.

See Also

asymmetric Laplace distribution

Examples

```
set.seed(101)
x <- -0.5428573
p <- 0.25
ans <- alcdfstdg3(x, p)
# ans
# 0.1663873</pre>
```

bqror

Bayesian Quantile Regression for Ordinal Models

Description

This package serves the following 3 purposes for Ordinal Models under bayesian analysis:

- Package provides an estimation technique for Bayesian quantile regression in ordinal models.
 Two algorithms are considered
 - one for an ordinal model with three outcomes.
 - second for an ordinal model with more than three outcomes.
- Package provides model performance criteria's.
- It also provides trace plots for Markov chain Monte Carlo (MCMC) draws.

bqror 5

Details

Package:bqror

Type: Package

Version: 0.1.0

License: GPL(>=2)

Package **bqror** provides the following functions:

• For an Ordinal Model with three outcomes:

quan_reg3, drawlatent3, drawbeta3, drawsigma3, drawnu3, deviance3, negLoglikelihood, rndald, trace_plot3, inefficiency_factor3

• For an Ordinal Model with more than three outcomes:

quan_regg3, qrminfundtheorem, qrnegloglikensum, drawbetag3, drawwg3, drawlatentg3, drawdeltag3, devianceg3, alcdfstdg3, alcdf, trace_plotg3, inefficiency_factorg3

Author(s)

Dr. Mohammad Arshad Rahman

Prajual Maheshwari <prajual 1391@gmail.com>

References

Rahman, M. A. (2016). "Bayesian Quantile Regression for Ordinal Models." Bayesian Analysis, 11(1): 1-24, <doi:10.1214/15-BA939>.

Spiegelhalter, D. J., Best, N. G., Carlin B. P. and Linde A. (2002). "Bayesian Measures of Model Complexity and Fit." Journal of the Royal Statistical Society B, Part 4: 583-639, <doi:10.1111/1467-9868.00353>.

Greenberg, E. (2012). "Introduction to Bayesian Econometrics." Cambridge University Press, Cambridge, <doi:10.1017/CBO9781139058414>.

See Also

rgig, mvrnorm, ginv, rtruncnorm, mvnpdf, rinvgamma, mldivide, rand, qnorm, rexp, rnorm, std, sd, Reshape, setTkProgressBar, tkProgressBar.

6 data25j4

data25j3

data25j3 Data with 300 observations for p = 0.25 with 3 outcomes

Description

data25j3 Data with 300 observations for p = 0.25 with 3 outcomes

Usage

```
data(data25j3)
```

Details

Generates 300 observations for the simulation study at the 25^{th} quantile. The specifications are $\beta = (2, 2, 1), X \sim MVN(0_2, \Sigma)$ where $\Sigma = [1, 0.25; 0.25, 1],$ and $\epsilon \sim AL(0, \sigma = 1, p = 0.25).$

The errors are generated from an asymmetric Laplace distribution by using its normal–exponential mixture formulation.

The continuous value are classified into 3 categories using the cut-points (0, 4).

Value

Returns a list with components

- x: a matrix of covariates.
- y: a matrix of ordinal outcomes.

References

Kozumi, H. and Kobayashi, G. (2011). "Gibbs Sampling Methods for Bayesian Quantile Regression." Journal of Statistical Computation and Simulation, 81(11), 1565–1578.

See Also

mvrnorm, Asymmetric Laplace Distribution

data25j4

data25j4 Data with 300 observations for p = 0.25 with 4 outcomes

Description

data25j4 Data with 300 observations for p = 0.25 with 4 outcomes

Usage

```
data(data25j4)
```

data50j3 7

Details

Generates 300 observations for the simulation study at the 25^{th} quantile. The specifications are $\beta = (-2, 3, 4), X \sim MVN(0_2, \Sigma)$ where $\Sigma = [1, 0.25; 0.25, 1],$ and $\epsilon \sim AL(0, \sigma = 1, p = 0.25).$

The errors are generated from an asymmetric Laplace distribution by using its normal–exponential mixture formulation.

The continuous value are classified into 4 categories using the cut-points (0, 2, 3).

Value

Returns a list with components

- x: a matrix of covariates.
- y: a matrix of ordinal outcomes.

References

Kozumi, H. and Kobayashi, G. (2011). "Gibbs Sampling Methods for Bayesian Quantile Regression." Journal of Statistical Computation and Simulation, 81(11): 1565–1578.

See Also

mvrnorm, Asymmetric Laplace Distribution

data50j3

data50j3 Data with 300 observations for p = 0.5 with 3 outcomes

Description

data50j3 Data with 300 observations for p = 0.5 with 3 outcomes

Usage

```
data(data50j3)
```

Details

Generates 300 observations for the simulation study at the 50^{th} quantile. The specifications are $\beta = (2, 2, 1)$, $X \sim MVN(0_2, \Sigma)$ where $\Sigma = [1, 0.25; 0.25, 1]$, and $\epsilon \sim AL(0, \sigma = 1, p = 0.50)$.

The errors are generated from an asymmetric Laplace distribution by using its normal–exponential mixture formulation.

The continuous value are classified into 3 categories using the cut-points (0, 4).

Value

Returns a list with components

- x: a matrix of covariates.
- y: a matrix of ordinal outcomes.

8 data50j4

References

Kozumi, H. and Kobayashi, G. (2011). "Gibbs Sampling Methods for Bayesian Quantile Regression." Journal of Statistical Computation and Simulation, 81(11): 1565–1578.

See Also

mvrnorm, Asymmetric Laplace Distribution

data50j4

data50j4 Data with 300 observations for p = 0.5 with 4 outcomes

Description

data50j4 Data with 300 observations for p = 0.5 with 4 outcomes

Usage

```
data(data50j4)
```

Details

Generates 300 observations for the simulation study at the 50^{th} quantile. The specifications are $\beta = (-2, 3, 4), X \sim MVN(0_2, \Sigma)$ where $\Sigma = [1, 0.25; 0.25, 1],$ and $\epsilon \sim AL(0, \sigma = 1, p = 0.50).$

The errors are generated from an asymmetric Laplace distribution by using its normal–exponential mixture formulation.

The continuous value are classified into 4 categories using the cut-points (0, 2, 3).

Value

Returns a list with components

- x: a matrix of covariates.
- y: a matrix of ordinal outcomes.

References

Kozumi, H. and Kobayashi, G. (2011). "Gibbs Sampling Methods for Bayesian Quantile Regression." Journal of Statistical Computation and Simulation, 81(11): 1565–1578.

See Also

mvrnorm, Asymmetric Laplace Distribution

data75j3

data75j3

data75j3 Data with 300 observations for p = 0.75 with 3 outcomes

Description

data75j3 Data with 300 observations for p = 0.75 with 3 outcomes

Usage

```
data(data75j3)
```

Details

Generates 300 observations for the simulation study at the 75^{th} quantile. The specifications are $\beta = (2, 2, 1), X \sim MVN(0_2, \Sigma)$ where $\Sigma = [1, 0.25; 0.25, 1],$ and $\epsilon \sim AL(0, \sigma = 1, p = 0.75).$

The errors are generated from an asymmetric Laplace distribution by using its normal–exponential mixture formulation.

The continuous value are classified into 3 categories using the cut-points (0, 4).

Value

Returns a list with components

- x: a matrix of covariates.
- y: a matrix of ordinal outcomes.

References

Kozumi, H. and Kobayashi, G. (2011). "Gibbs Sampling Methods for Bayesian Quantile Regression." Journal of Statistical Computation and Simulation, 81(11): 1565–1578.

See Also

mvrnorm, Asymmetric Laplace Distribution

data75j4

data75j4 Data with 300 observations for p = 0.75 with 4 outcomes

Description

data75j4 Data with 300 observations for p = 0.75 with 4 outcomes

Usage

```
data(data75j4)
```

10 deviance3

Details

Generates 300 observations for the simulation study at the 75^{th} quantile. The specifications are $\beta = (-2, 3, 4), X \sim MVN(0_2, \Sigma)$ where $\Sigma = [1, 0.25; 0.25, 1],$ and $\epsilon \sim AL(0, \sigma = 1, p = 0.75).$

The errors are generated from an asymmetric Laplace distribution by using its normal–exponential mixture formulation.

The continuous value are classified into 4 categories using the cut-points (0, 2, 3).

Value

Returns a list with components

- · x: a matrix of covariates.
- y: a matrix of ordinal outcomes.

References

Kozumi, H. and Kobayashi, G. (2011). "Gibbs Sampling Methods for Bayesian Quantile Regression." Journal of Statistical Computation and Simulation, 81(11): 1565–1578.

See Also

mvrnorm, Asymmetric Laplace Distribution

deviance3

Deviance Information Criteria for Ordinal Models with 3 outcomes

Description

Function for computing the Deviance Information Criteria for ordinal models with 3 outcomes.

Usage

```
deviance3(y, x, gammacp, p, post_mean_beta, post_std_beta, post_mean_sigma,
    post_std_sigma, beta_draws, sigma_draws, burn, iter)
```

Arguments

```
\begin{array}{lll} & & \text{dependent variable i.e. ordinal outcome values.} \\ & & \text{covariate matrix of dimension } (nxk) \text{ including a column of ones.} \\ & & \text{gammacp} & \text{row vector of cutpoints including -Inf and Inf.} \\ & & \text{quantile level or skewness parameter, p in } (0,1). \\ & & & \text{post\_mean\_beta} \\ & & & \text{mean value of } \beta \text{ obtained from MCMC draws.} \\ & & & & \text{standard deviation of } \beta \text{ obtained from MCMC draws.} \\ \end{array}
```

deviance3

Details

The Deviance is -2*(log likelihood) and has an important role in statistical model comparision because of its relation with Kullback-Leibler information criteria.

Value

Returns a list with components

```
DIC = 2 * avgdeviance - devpostmean pd = avgdeviance - devpostmean devpostmean = -2 * (logLikelihood)
```

.

References

Rahman, M. A. (2016). "Bayesian Quantile Regression for Ordinal Models." Bayesian Analysis, 11(1): 1-24.

Spiegelhalter, D. J., Best, N. G., Carlin B. P. and Linde A. (2002). "Bayesian Measures of Model Complexity and Fit." Journal of the Royal Statistical Society B, Part 4: 583-639.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. "Bayesian Data Analysis." 2nd Edition, Chapman and Hall.

See Also

decision criteria

```
set.seed(101)
data("data25j3")
x <- data25j3$x
y <- data25j3$y
p <- 0.25
ans <- quan_reg3(y, x, mc = 50, p)
gammacp <- c(-Inf, 0, 4, Inf)
p <- 0.25
post_mean_beta <- ans$post_mean_beta</pre>
```

12 devianceg3

```
post_std_beta <- ans$post_std_beta
post_mean_sigma <- ans$post_mean_sigma</pre>
post_std_sigma <- ans$post_std_sigma</pre>
beta_draws <- ans$beta_draws</pre>
sigma_draws <- ans$sigma_draws</pre>
mc = 50
burn <- 10
iter <- burn + mc
deviance <- deviance3(y, x, gammacp, p, post_mean_beta, post_std_beta,
post_mean_sigma, post_std_sigma, beta_draws, sigma_draws, burn, iter)
# deviance$dic
      474.4673
 deviance$pd
      5.424001
# deviance$devpostmean
      463.6193
```

devianceg3

Deviance Information Criteria for Ordinal Models with more than 3 outcomes

Description

Function for computing the Deviance Information Criteria for ordinal models with more than 3 outcomes.

Usage

```
devianceg3(y, x, deltastore, burn, iter, post_mean_beta, post_mean_delta,
   beta_draws, p)
```

Arguments

р

quantile level or skewness parameter, p in (0,1).

devianceg3 13

Details

The Deviance is -2*(log likelihood) and has an important role in statistical model comparision because of its relation with Kullback-Leibler information criteria.

Value

Returns a list with components

```
DIC = 2 * avgdeviance - devpostmean pd = avgdeviance - devpostmean devpostmean = -2 * (logLikelihood)
```

.

References

Rahman, M. A. (2016). "Bayesian Quantile Regression for Ordinal Models." Bayesian Analysis, 11(1): 1-24.

Spiegelhalter, D. J., Best, N. G., Carlin B. P. and Linde A. (2002). "Bayesian Measures of Model Complexity and Fit." Journal of the Royal Statistical Society B, Part 4: 583-639.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. "Bayesian Data Analysis." 2nd Edition, Chapman and Hall.

See Also

decision criteria

```
set.seed(101)
data("data25j4")
x <- data25j4$x
y <- data25j4$y
p < -0.25
ans <- quan_regg3(y, x, mc = 50, p, 0.1)
mc < -50
deltastore <- ans$delta_draws
burn <- 0.25*mc
iter <- burn + mc
post_mean_beta <- ans$post_mean_beta</pre>
post_mean_delta <- ans$post_mean_delta</pre>
beta_draws <- ans$beta_draws</pre>
deviance <- devianceg3(y, x, deltastore, burn, iter,
post_mean_beta, post_mean_delta, beta_draws, p)
# deviance$DIC
     616.2173
# deviance$pd
     24.95203
```

14 drawbeta3

```
# deviance$devpostmean
# 566.3133
```

drawbeta3

Samples β *for an Ordinal Model with 3 outcomes*

Description

This function samples β from its conditional posterior distribution for an ordinal model with 3 outcomes.

Usage

```
drawbeta3(z, x, sigma, nu, tau2, theta, invB0, invB0b0)
```

Arguments

z dependent variable i.e. ordinal outcome values. x covariate matrix of dimension (nxk) including a column of ones.

sigma scale factor, a scalar value.

nu modified scale factor, row vector.

tau2 2/(p(1-p)). theta (1-2p)/(p(1-p)).

invB0 inverse of prior covariance matrix of normal distribution.

invB0b0 prior mean pre-multiplied by invB0.

Details

Function samples a vector of β from a multivariate normal distribution.

Value

Returns a column vector of β from a multivariate normal distribution.

References

Rahman, M. A. (2016). "Bayesian Quantile Regression for Ordinal Models." Bayesian Analysis, 11(1): 1-24.

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988). "The New S Language. Wadsworth & Brooks/Cole."

Casella, G., George E. I. (1992). "Explaining the Gibbs Sampler." The American Statistician, 46(3): 167-174.

Geman, S., and Geman, D. (1984). "Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images." IEEE Transactions an Pattern Analysis and Machine Intelligence, 6(6): 721-741.

drawbetag3 15

See Also

Gibbs sampling, normal distribution, rgig

Examples

```
set.seed(101)
z \leftarrow c(21.01744, 33.54702, 33.09195, -3.677646,
21.06553, 1.490476, 0.9618205, -6.743081, 21.02186, 0.6950479)
x <- matrix(c(
     1, -0.3010490, 0.8012506,
     1, 1.2764036, 0.4658184,
        0.6595495, 1.7563655,
     1,
     1, -1.5024607, -0.8251381,
     1, -0.9733585, 0.2980610,
     1, -0.2869895, -1.0130274,
     1, 0.3101613, -1.6260663,
     1, -0.7736152, -1.4987616,
     1, 0.9961420, 1.2965952,
     1, -1.1372480, 1.7537353),
     nrow = 10, ncol = 3, byrow = TRUE)
sigma <- 1.809417
nu \leftarrow c(5, 5, 5, 5, 5, 5, 5, 5, 5, 5)
tau2 <- 10.6667
theta <- 2.6667
invB0 <- matrix(c(
     1, 0, 0,
     0, 1, 0,
     0, 0, 1),
     nrow = 3, ncol = 3, byrow = TRUE)
invB0b0 <- c(0, 0, 0)
ans <- drawbeta3(z, x, sigma, nu, tau2, theta, invB0, invB0b0)
# ans
    -0.74441 1.364846 0.7159231
```

drawbetag3

Samples β *for an Ordinal Model with more than 3 outcomes*

Description

This function samples β from its conditional posterior distribution for an ordinal model with more than 3 outcomes.

Usage

```
drawbetag3(z, x, w, tau2, theta, invB0, invB0b0)
```

16 drawbetag3

Arguments

Z	Gibbs draw of latent response variable, a column vector.
х	covariate matrix of dimension (nxk) including a column of ones.
W	latent weights, row vector.
tau2	2/(p(1-p)).
theta	(1-2p)/(p(1-p)).
invB0	inverse of prior covariance matrix of normal distribution.
invB0b0	prior mean pre-multiplied by invB0.

Details

Function samples a vector of β from a multivariate normal distribution.

Value

Returns a column vector of β from a multivariate normal distribution.

References

Rahman, M. A. (2016). "Bayesian Quantile Regression for Ordinal Models." Bayesian Analysis, 11(1): 1-24.

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988). "The New S Language. Wadsworth & Brooks/Cole."

Casella, G., George E. I. (1992). "Explaining the Gibbs Sampler." The American Statistician, 46(3): 167-174.

Geman, S., and Geman, D. (1984). "Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images." IEEE Transactions an Pattern Analysis and Machine Intelligence, 6(6): 721-741.

See Also

Gibbs sampling, normal distribution, ginv, myrnorm

drawdeltag3 17

```
1, 0.0514888733, -0.105132425,
     1, -0.3159992662, -0.902003846,
    1, -0.4490888878, -0.070475600,
    1, -0.3671705251, -0.633396477,
    1, 1.7655601639, -0.702621934,
    1, -2.4543678120, -0.524068780,
        0.3625025618, 0.698377504,
    1, -1.0339179063, 0.155746376,
    1, 1.2927374692, -0.155186911,
    1, -0.9125108094, -0.030513775,
    1, 0.8761233001, 0.988171587,
        1.7379728231, 1.180760114,
    1,
        0.7820635770, -0.338141095,
     1, -1.0212853209, -0.113765067,
        0.6311364051, -0.061883874,
    1,
        0.6756039688, 0.664490143),
    nrow = 20, ncol = 3, byrow = TRUE)
w <- 1.114347
tau2 <- 10.66667
theta <- 2.666667
invB0 <- matrix(c(
    1, 0, 0,
    0, 1, 0,
    0, 0, 1),
    nrow = 3, ncol = 3, byrow = TRUE)
invB0b0 <- c(0, 0, 0)
ans <- drawbetag3(z, x, w, tau2, theta, invb0, invb0b0)
## End(Not run)
# ans
   -1.2230077 0.9520024 0.7102855
```

drawdeltag3

Samples the δ for an Ordinal Model with more than 3 outcomes

Description

This function samples the δ using a random-walk Metropolis-Hastings algorithm for an ordinal model with more than 3 outcomes.

Usage

```
drawdeltag3(y, x, beta, delta0, d0, D0, tune, Dhat, p)
```

Arguments

Х

```
dependent variable i.e. ordinal outcome values..
У
                  covariate matrix of dimension (nxk) including a column of ones.
```

Gibbs draw of coefficients of dimension (kx1). beta

18 drawdeltag3

delta0	initial value for δ .
d0	prior mean of normal distribution.
D0	prior variance-covariance matrix of normal distribution.
tune	tuning parameter.
Dhat	negative inverse Hessian from maximization of log-likelihood.
р	quantile level or skewness parameter, p in (0,1).

Details

Samples the δ using a random-walk Metropolis-Hastings algorithm.

Value

Returns a list with components

- deltaReturn: a vector with δ values using MH algorithm.
- accept: an indicator for acceptance of proposed value of δ .

References

Rahman, M. A. (2016). "Bayesian Quantile Regression for Ordinal Models." Bayesian Analysis, 11(1): 1-24.

Chib, S., Greenberg E. (1995). "Understanding the Metropolis-Hastings Algorithm." The American Statistician, 49(4): 327-335.

Hastings, W.K. (1970). "Monte Carlo Sampling Methods Using Markov Chains and Their Applications." Biometrika, 57: 1317-1340.

See Also

NPflow, Gibbs sampling, mvnpdf

```
set.seed(101)
data("data25j4")
x <- data25j4$x
y <- data25j4$y
p < -0.25
beta <- c(-1.429465, 1.135585, 2.107666)
delta0 <- c(-0.9026915, -2.2488833)
d0 \leftarrow matrix(c(0, 0),
              nrow = 2, ncol = 1, byrow = TRUE)
D0 \leftarrow matrix(c(0.25, 0.00, 0.00, 0.25),
                 nrow = 2, ncol = 2, byrow = TRUE)
tune <- 0.1
nrow = 2, ncol = 2, byrow = TRUE)
p < -0.25
ans <- drawdeltag3(y, x, beta, delta0, d0, D0, tune, Dhat, p)
```

drawlatent3 19

```
# ans$deltareturn
# -0.9097306 -2.232673
# ans$accept
# 1
```

drawlatent3

Samples the Latent Variable z for an Ordinal Model with 3 outcomes

Description

This function samples the latent variable z from a truncated normal distribution for an ordinal model with 3 outcomes.

Usage

```
drawlatent3(y, x, beta, sigma, nu, theta, tau2, gammacp)
```

Arguments

y dependent variable i.e. ordinal outcome values. x covariate matrix of dimension (nxk) including a column of ones. beta column vector of coeffcients of dimension (kx1). sigma scale factor, a scalar value. nu modified scale factor, row vector. theta (1-2p)/(p(1-p)). tau2 2/(p(1-p)). row vector of cutpoints including -Inf and Inf.

Details

Function samples the latent variable z from a truncated normal distribution.

Value

Returns a column vector of values for latent variable z.

References

Albert, J. and Chib, S. (1993). "Bayesian Analysis of Binary and Polychotomous Response Data." Journal of the American Statistical Association, 88(422): 669–679.

Casella, G., George E. I. (1992). "Explaining the Gibbs Sampler." The American Statistician, 46(3): 167-174.

Geman, S., and Geman, D. (1984). "Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images." IEEE Transactions an Pattern Analysis and Machine Intelligence, 6(6): 721-741.

20 drawlatentg3

See Also

Gibbs sampling, truncated normal distribution, rtruncnorm

Examples

```
set.seed(101)
data("data25j3")
x \leftarrow data25j3$x
y <- data25j3$y
beta <- c(1.7201671, 1.9562172, 0.8334668)
sigma < - 0.9684741
nu \leftarrow c(5, 5, 5, 5, 5, 5, 5, 5, 5, 5)
theta <- 2.6667
tau2 <- 10.6667
gammacp \leftarrow c(-Inf, 0, 4, Inf)
ans <- drawlatent3(y, x, beta, sigma, nu,
theta, tau2, gammacp)
# ans
    12.79298 20.40747 1.557821
    26.07846 17.41031 12.86016
    3.364703 21.61075 2.666627 .. soon
```

drawlatentg3

Samples the Latent Variable z for an Ordinal Models with more than 3 outcomes

Description

This function samples the latent variable z from a truncated normal distribution for an ordinal model with more than 3 outcomes.

Usage

```
drawlatentg3(y, x, beta, w, theta, tau2, delta)
```

Arguments

У	dependent variable i.e. ordinal outcome values.	
Х	covariate matrix of dimension (nxk) including a column of ones.	
beta	Gibbs draw of coeffcients of dimension $(kx1)$.	
W	latent weights vector.	
theta	(1-2p)/(p(1-p)).	
tau2	2/(p(1-p)).	
delta	row vector of cutpoints including -Inf and Inf.	

drawlatentg3 21

Details

Function samples the latent variable z from a truncated normal distribution.

Value

Returns a column vector of values for latent variable, z.

References

Albert, J. and Chib, S. (1993). "Bayesian Analysis of Binary and Polychotomous Response Data." Journal of the American Statistical Association, 88(422): 669–679.

Casella, G., George E. I. (1992). "Explaining the Gibbs Sampler." The American Statistician, 46(3): 167-174.

Geman, S., and Geman, D. (1984). "Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images." IEEE Transactions an Pattern Analysis and Machine Intelligence, 6(6): 721-741.

See Also

Gibbs sampling, truncated normal distribution, rtruncnorm

```
set.seed(101)
data("data25j4")
x \leftarrow data25j4$x
y <- data25j4$y
p < -0.25
beta <- c(-1.429465, 1.135585, 2.107666)
w < -1.114347
theta <- 2.666667
tau2 <- 10.66667
delta <- c(-0.9026915, -2.2488833)
ans <- drawlatentg3(y, x, beta, w, theta, tau2, delta)
# ans
     0.9812363 -1.09788 -0.9650175 8.396556
    1.39465 -0.8711435 -0.5836833 -2.792464
    0.1540086 -2.590724 0.06169976 -1.823058
     0.06559151 0.1612763 0.161311 4.908488
     0.6512113 0.1560708 -0.883636 -0.5531435 ... soon
```

22 drawnu3

drawnu3

Samples the scale factor ν for an Ordinal Model with 3 outcomes

Description

This function samples the ν from a generalized inverse Gaussian (GIG) distribution for an ordinal model with 3 outcomes.

Usage

```
drawnu3(z, x, beta, sigma, tau2, theta, lambda)
```

Arguments

Z	Gibbs draw of latent response variable, a column vector.
X	covariate matrix of dimension (nxk) including a column of ones.
beta	Gibbs draw of coefficients of dimension $(kx1)$.
sigma	scale factor, a scalar.
tau2	2/(p(1-p)).
theta	(1-2p)/(p(1-p)).

Details

lambda

Function samples the ν from a GIG distribution.

Value

Returns a row vector of the ν from GIG distribution.

References

Rahman, M. A. (2016), "Bayesian Quantile Regression for Ordinal Models." Bayesian Analysis, 11(1), 1-24.

index parameter of GIG distribution which is equal to 0.5

Dagpunar, J. S. (1989). "An Easily Implemented Generalised Inverse Gaussian Generator." Communication Statistics Simulation, 18: 703-710.

See Also

GIGrvg, Gibbs sampling, rgig

drawsigma3 23

Examples

```
set.seed(101)
z \leftarrow c(21.01744, 33.54702, 33.09195, -3.677646,
 21.06553, 1.490476, 0.9618205, -6.743081, 21.02186, 0.6950479)
x <- matrix(c(
     1, -0.3010490, 0.8012506,
     1, 1.2764036, 0.4658184,
     1, 0.6595495, 1.7563655,
     1, -1.5024607, -0.8251381,
     1, -0.9733585, 0.2980610,
     1, -0.2869895, -1.0130274,
     1, 0.3101613, -1.6260663,
     1, -0.7736152, -1.4987616,
     1, 0.9961420, 1.2965952,
     1, -1.1372480, 1.7537353),
     nrow = 10, ncol = 3, byrow = TRUE)
beta < c(-0.74441, 1.364846, 0.7159231)
sigma < -3.749524
tau2 <- 10.6667
theta <- 2.6667
lambda <- 0.5
ans <- drawnu3(z, x, beta, sigma, tau2, theta, lambda)
# ans
     5.177456 4.042261 8.950365
     1.578122 6.968687 1.031987
     4.13306 0.4681557 5.109653
     0.1725333
```

drawsigma3

Samples the σ for an Ordinal Model with 3 outcomes

Description

This function samples the σ from an inverse-gamma distribution for an ordinal model with 3 outcomes.

Usage

```
drawsigma3(z, x, beta, nu, tau2, theta, n0, d0)
```

Arguments

Z	Gibbs draw of latent response variable, a column vector.
X	covariate matrix of dimension (nxk) including a column of ones.
beta	Gibbs draw of coeffcients of dimension $(kx1)$.
nu	modified scale factor, row vector.

24 drawsigma3

```
tau2 2/(p(1-p)).

theta (1-2p)/(p(1-p)).

n0 prior hyper-parameter for \sigma.

d0 prior hyper-parameter for \sigma.
```

Details

Function samples the σ from an inverse gamma distribution.

Value

Returns a column vector of the σ from an inverse gamma distribution.

References

Albert, J. and Chib, S. (1993). "Bayesian Analysis of Binary and Polychotomous Response Data." Journal of the American Statistical Association, 88(422): 669–679.

Casella, G., George E. I. (1992). "Explaining the Gibbs Sampler." The American Statistician, 46(3): 167-174.

Geman, S., and Geman, D. (1984). "Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images." IEEE Transactions an Pattern Analysis and Machine Intelligence, 6(6): 721-741.

See Also

rinvgamma, Gibbs sampling

```
set.seed(101)
z < -c(21.01744, 33.54702, 33.09195, -3.677646,
 21.06553, 1.490476, 0.9618205, -6.743081, 21.02186, 0.6950479)
x <- matrix(c(
     1, -0.3010490, 0.8012506,
     1, 1.2764036, 0.4658184,
     1, 0.6595495, 1.7563655,
     1, -1.5024607, -0.8251381,
     1, -0.9733585, 0.2980610,
     1, -0.2869895, -1.0130274,
     1, 0.3101613, -1.6260663,
     1, -0.7736152, -1.4987616,
     1, 0.9961420, 1.2965952,
     1, -1.1372480, 1.7537353),
     nrow = 10, ncol = 3, byrow = TRUE)
beta <-c(-0.74441, 1.364846, 0.7159231)
nu \leftarrow c(5, 5, 5, 5, 5, 5, 5, 5, 5, 5)
tau2 <- 10.6667
theta <- 2.6667
n0 <- 5
d0 <- 8
```

drawwg3 25

```
ans <- drawsigma3(z, x, beta, nu, tau2, theta, n0, d0)  
# ans  
# 3.749524
```

drawwg3

Samples the latent weight w for an Ordinal Model with more than 3 outcomes

Description

This function samples the latent weight w from a Generalized inverse-Gaussian distribution (GIG) for an ordinal model with more than 3 outcomes.

Usage

```
drawwg3(z, x, beta, tau2, theta, lambda)
```

Arguments

z Gibbs draw of latent response variable, a column vector.

x covariate matrix of dimension (nxk) including a column of ones.

beta Gibbs draw of coefficients of dimension (kx1).

tau2 2/(p(1-p)). theta (1-2p)/(p(1-p)).

lambda index parameter of GIG distribution which is equal to 0.5

Details

Function samples a vector of the latent weight w from a GIG distribution.

Value

Returns a column vector of w from a GIG distribution.

References

Rahman, M. A. (2016). "Bayesian Quantile Regression for Ordinal Models." Bayesian Analysis, 11(1): 1-24.

Casella, G., George E. I. (1992). "Explaining the Gibbs Sampler." The American Statistician, 46(3): 167-174.

Geman, S., and Geman, D. (1984). "Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images." IEEE Transactions an Pattern Analysis and Machine Intelligence, 6(6): 721-741.

26 drawwg3

See Also

GIGrvg, Gibbs sampling, rgig

```
set.seed(101)
z \leftarrow c(0.9812363, -1.09788, -0.9650175, 8.396556,
1.39465, -0.8711435, -0.5836833, -2.792464,
 0.1540086, -2.590724, 0.06169976, -1.823058,
 0.06559151, 0.1612763, 0.161311, 4.908488,
 0.6512113, 0.1560708, -0.883636, -0.5531435)
x <- matrix(c(
     1, 1.4747905363, 0.167095186,
     1, -0.3817326861, 0.041879526,
     1, -0.1723095575, -1.414863777,
     1, 0.8266428137, 0.399722073,
     1, 0.0514888733, -0.105132425,
     1, -0.3159992662, -0.902003846,
     1, -0.4490888878, -0.070475600,
     1, -0.3671705251, -0.633396477,
     1, 1.7655601639, -0.702621934,
     1, -2.4543678120, -0.524068780,
     1, 0.3625025618, 0.698377504, 1, -1.0339179063, 0.155746376,
     1, 1.2927374692, -0.155186911,
     1, -0.9125108094, -0.030513775,
     1, 0.8761233001, 0.988171587,
     1, 1.7379728231, 1.180760114,
     1, 0.7820635770, -0.338141095,
     1, -1.0212853209, -0.113765067,
     1, 0.6311364051, -0.061883874,
     1, 0.6756039688, 0.664490143),
     nrow = 20, ncol = 3, byrow = TRUE)
beta <- c(-1.583533, 1.407158, 2.259338)
tau2 <- 10.66667
theta <- 2.666667
lambda <- 0.5
ans <- drawwg3(z, x, beta, tau2, theta, lambda)
# ans
    0.16135732
     0.39333080
     0.80187227
     2.27442898
     0.90358310
     0.99886987
     0.41515947 ... soon
```

inefficiency_factor3 27

```
inefficiency_factor3
```

Inefficiency Factor for Ordinal Models with 3 outcomes

Description

This function calculates the inefficiency factor from the MCMC draws of (β, σ) for an ordinal model with 3 outcomes. The inefficiency factor is calculated using the batch-means method.

Usage

```
inefficiency_factor3(beta_draws, nlags = 2, sigma_draws)
```

Arguments

```
beta_draws Gibbs draw of coeffcients of dimension (kxiter).

nlags scalar variable with default = 2.

sigma_draws Gibbs draw of scale factor.
```

Details

Calculates the inefficiency factor of (β, σ) using the batch-means method.

Value

Returns a list with components

- inefficiency_beta: a vector with inefficiency facor for each β .
- inefficiency_sigma: a vector with inefficiency factor for each σ .

References

Greenberg, E. (2012). "Introduction to Bayesian Econometrics." Cambridge University Press, Cambridge.

See Also

pracma

```
set.seed(101)
data("data25j3")
x <- data25j3$x
y <- data25j3$y
p <- 0.25
ans <- quan_reg3(y, x, mc = 50, p)
beta_draws <- ans$beta_draws</pre>
```

inefficiency_factorg3

```
sigma_draws <- ans$sigma_draws
inefficiency <- inefficiency_factor3(beta_draws, 2, sigma_draws)
# inefficiency$inefficiency_beta
# 1.322590
# 1.287309
# 1.139322
# inefficiency$inefficiency_sigma
# 1.392045</pre>
```

```
inefficiency_factorg3
```

Inefficiency Factor for Ordinal Models with more than 3 outcomes

Description

This function calculates the inefficiency factor from the MCMC draws of (β, δ) for an ordinal model with more than 3 outcomes. The inefficiency factor is calculated using the batch-means method.

Usage

```
inefficiency_factorg3(beta_draws, nlags = 2, delta_draws)
```

Arguments

```
beta_draws Gibbs draw of coeffcients of dimension (kxiter).

nlags scalar variable with default = 2.

delta_draws Gibbs draw of cut-points.
```

Details

Calculates the inefficiency factor of (β, δ) using the batch-means method.

Value

Returns a list with components

- inefficiency_delta: a vector with inefficiency factor for each δ .
- inefficiency_beta: a vector with inefficiency facor for each β .

References

Greenberg, E. (2012). "Introduction to Bayesian Econometrics." Cambridge University Press, Cambridge.

negLoglikelihood 29

See Also

pracma

Examples

```
set.seed(101)
data("data25j4")
x <- data25j4$x
y <- data25j4$y
p < -0.25
ans <- quan_regg3(y, x, mc = 50, p, 0.1)
beta_draws <- ans$beta_draws
delta_draws <- ans$delta_draws
nlags = 2
inefficiency <- inefficiency_factorg3(beta_draws, nlags, delta_draws)</pre>
# inefficiency$inefficiency_delta
      1.433599
      1.426150
# inefficiency$inefficiency_beta
     0.6035289
      1.2967271
      1.2751728
```

negLoglikelihood Negl

NegLoglikelihood function for Ordinal Models with 3 outcomes

Description

This function computes the negative of the log-likelihood for quantile ordinal model with 3 outcomes where the error is assumed to follow an Asymmetric Laplace distribution.

Usage

```
negLoglikelihood(y, x, gammacp, beta, sigma, p)
```

Arguments

У	dependent variable i.e. ordinal outcome values.
X	covariate matrix of dimension (nxk) including a column of ones.
gammacp	row vector of cutpoints including -Inf and Inf.
beta	column vector of coeffcients of dimension $(kx1)$.
sigma	scale factor, a scalar.
р	quantile level or skewness parameter, p in $(0,1)$.

30 qrminfundtheorem

Details

Computes the negative of the log-likelihood for quantile ordinal model with 3 outcomes where the error is assumed to follow an asymmetric Laplace distribution.

Value

Returns the negative log-likelihood value.

References

Rahman, M. A. (2016). "Bayesian Quantile Regression for Ordinal Models." Bayesian Analysis, 11(1): 1-24.

See Also

likelihood maximization

Examples

```
set.seed(101)
data("data25j3")
x <- data25j3$x
y <- data25j3$y
p <- 0.25
gammacp <- c(-Inf, 0, 4, Inf)
beta <- c(1.7201671, 1.9562172, 0.8334668)
sigma <- 0.9684741
ans <- negLoglikelihood(y, x, gammacp, beta, sigma, p)
# ans
# 231.8096</pre>
```

qrminfundtheorem

Minimize the negative of log-likelihood

Description

This function minimizes the negative of the log-likelihood for an ordinal quantile model with respect to the cut-points δ using the Fundamental Theorem of Calculus.

Usage

```
qrminfundtheorem(deltain, y, x, beta, cri0, cri1, stepsize, maxiter, h, dh,
   sw, p)
```

qrminfundtheorem 31

Arguments

deltain	initialization of cut-points.
У	dependent variable i.e. ordinal outcome values.
х	covariate matrix of dimension (nxk) including a column of ones.
beta	column vector of coeffcients of dimension $(kx1)$.
cri0	initial criterion, $cri0 = 1$.
cri1	criterion lies between (0.001 to 0.0001).
stepsize	learning rate lies between (0.1, 1).
maxiter	maximum number of iteration.
h	change in value of each δ , holding other δ constant for first derivatives.
dh	change in each value of $\delta,$ holding other δ constant for second derivaties.
SW	iteration to switch from BHHH to inv(-H) algorithm.
р	quantile level or skewness parameter, p in (0,1).

Details

First derivative from first principle

$$dy/dx = [f(x+h) - f(x-h)]/2h$$

Second derivative from First principle

$$f''(x) = [(f(x+h) - f(x))/h - (f(x) - f(x-h))/h]/h$$
$$= [(f(x+h) + f(x-h) - 2f(x))]/h^2$$

f'(x-h) = (f(x) - f(x-h))/h

cross partial derivatives

$$f(x) = [f(x + dh, y) - f(x - dh, y)]/2dh$$

= 0.25*[(f(x+dh,y+dh)-f(x+dh,y-dh))-(f(x-dh,y+dh)-f(x-dh,y-dh))]/dh2

$$f(x,y) = [(f(x+dh,y+dh) - f(x+dh,y-dh))/2dh - (f(x-dh,y+dh) - f(x-dh,y-dh))/2dh]/2dh$$

32 qrminfundtheorem

Value

Returns a list with components

- dmin: a vector with cutpoints that minimize the log-likelihood function.
- sumlogl: a scalar with sum of log-likelihood values.
- log1: a vector with log-likelihood values.
- G: a gradient vector, (nxk) matrix with i-th row as the score for the i-th unit.
- H: represents Hessian matrix.

References

Rahman, M. A. (2016). "Bayesian Quantile Regression for Ordinal Models." Bayesian Analysis, 11(1): 1-24.

See Also

differential calculus, functional maximization, ginv, mldivide

```
set.seed(101)
deltain <- c(-0.9026915, -2.2488833)
data("data25j4")
x <- data25j4$x
y <- data25j4$y
p < -0.25
beta <- c(-1.429465, 1.135585, 2.107666)
        <- 1
cri0
       <- 0.001
cri1
stepsize <- 1
maxiter <- 10
         <- 0.002
dh
        <- 0.0002
        <- 20
ans <- qrminfundtheorem(deltain, y, x, beta, cri0, cri1, stepsize, maxiter, h, dh, sw, p)
# ans$deltamin
     0.2674061 -0.6412074
# ans$negsum
     247.9525
# ans$log1
     -2.30530839
#
     -1.60437267
      -0.52085599
      -0.93506872
      -0.91064423
     -0.49535299
     -1.53635828
     -1.36311002
     -0.35753865
```

qrnegloglikensum 33

```
-0.55554991.. soon
# ans$G
     0.84555485 0.00000000
     0.84555485 0.00000000
     0.00000000 0.00000000
    -0.32664119 -0.13166332
    -0.32664119 -0.13166332
    -0.32664119 -0.13166332
     0.93042126 0.00000000
    -0.32664119 -0.13166332
    -0.32664119 -0.13166332
     0.00000000 0.00000000
    -0.32664119 -0.13166332.. soon
 ans$H
     -47.266464 -2.379509
     -2.379509 -13.830474
 ans$checkoutput
     Ω
        0 0
                         0
                              0
                                   0 ... soon
```

qrnegloglikensum

Negative log-likelihood for Ordinal Models with more than 3 outcomes

Description

Function for calculating negative log-likelihood for Ordinal models with more than 3 outcomes.

Usage

```
qrnegloglikensum(deltain, y, x, beta, p)
```

Arguments

```
deltain initialization of cut-points. 
y dependent variable i.e. ordinal outcome values. 
x covariate matrix of dimension (nxk) including a column of ones. 
beta column vector of coeffcients of dimension (kx1). 
p quantile level or skewness parameter, p in (0,1).
```

Details

Computes the negtaive of the log-likelihood function using the asymmetric Laplace distribution over the iid random variables.

Value

Returns a list with components

- nlogl: a vector with likelihood values.
- negsumlogl: a scalar with value of negative log-likelihood.

34 quan_reg3

References

Rahman, M. A. (2016). "Bayesian Quantile Regression for Ordinal Models." Bayesian Analysis, 11(1): 1-24.

See Also

likelihood maximization

Examples

```
set.seed(101)
deltain <- c(-0.9026915, -2.2488833)
data("data25j4")
x \leftarrow data25j4$x
y <- data25j4$y
p < -0.25
beta <- c(-1.429465, 1.135585, 2.107666)
ans <- qrnegloglikensum(deltain, y, x, beta, p)
# ans$nlog1
     3.36678284
     2.66584712
     0.52085599
     0.60451039
     0.58008590
     0.18984750
     2.79497033
     1.03255169
     0.12144529
     0.55554991... soon
 ans$negsumlogl
     283.1566
```

quan_reg3

Bayesian Quantile Regression for Ordinal Models with 3 outcomes

Description

This function estimates the Bayesian Quantile Regression for ordinal model with 3 outcomes and reports the posterior mean and posterior standard deviations of (β, σ) .

Usage

```
quan_reg3(y, x, mc = 15000, p)
```

quan_reg3 35

Arguments

y dependent variable i.e. ordi	inal outcome values.
--------------------------------	----------------------

x covariate matrix of dimension (nxk) including a column of ones.

mc number of MCMC iterations, post burn-in.

p quantile level or skewness parameter, p in (0,1).

Details

Function implements the Bayesian quantile regression for ordinal models with 3 outcomes using a Gibbs sampling procedure.

Function initializes prior and then iteratively samples β , δ and latent variable z. Burn-in is taken as 0.25*mc and iter = burn-in + mc.

Value

Returns a list with components

- post_mean_beta: a vector with mean of sampled β for each covariate.
- post_mean_sigma: a vector with mean of sampled σ .
- post_std_beta: a vector with standard deviation of sampled β for each covariate.
- post_std_sigma: a vector with standard deviation of sampled σ .
- DIC_result: results of the DIC criteria.
- beta_draws: a matrix with all sampled values for β .
- sigma_draws: a matrix with all sampled values for σ .

References

Rahman, M. A. (2016). "Bayesian Quantile Regression for Ordinal Models." Bayesian Analysis, 11(1): 1-24.

Yu, K. and Moyeed, R. A. (2001). "Bayesian Quantile Regression." Statistics and Probability Letters, 54(4): 437–447.

Casella, G., George E. I. (1992). "Explaining the Gibbs Sampler." The American Statistician, 46(3): 167-174.

Geman, S., and Geman, D. (1984). "Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images." IEEE Transactions an Pattern Analysis and Machine Intelligence, 6(6): 721-741.

See Also

teltk, rnorm, qnorm, ginv, Gibbs sampling

36 quan_regg3

Examples

```
set.seed(101)
data("data25j3")
x <- data25j3$x
y <- data25j3$y
p < -0.25
ans < quan_reg3(y, x, mc = 50, p)
# ans$post_mean_beta
      1.7201671 1.9562172 0.8334668
# ans$post_std_beta
      0.2400355 0.2845326 0.2036498
# ans$post_mean_sigma
      0.9684741
# ans$post_std_sigma
      0.1962351
# ans$Dic_Result
 dic
     474.4673
#
 pd
     5.424001
 devpostmean
     463.6193
 ans$beta_draws
     0.0000000 0.000000 0.0000000
     -3.6740670 1.499495 1.3610085
    -1.1006076 2.410271 1.3379175
    -0.5310387 1.604194 0.7830659
     0.4870828 1.761879 0.6921727
      0.9481320 1.485709 1.0251322... soon
 ans$sigma_draws
#
      2.0000000
      3.6987793
      3.2785105
      2.9769533
      2.9273486
      2.5807661
      2.2654222... soon
```

quan_regg3

Bayesian Quantile Regression for Ordinal Models with more than 3 outcomes

Description

This function estimates the Bayesian Quantile Regression for ordinal models with more than 3 outcomes and reports the posterior mean and posterior standard deviations of (β, δ) .

quan_regg3 37

Usage

```
quan_regg3(y, x, mc = 15000, p, tune = 0.1)
```

Arguments

y dependent variable i.e. ordinal outcome values. \times covariate matrix of dimension (nxk) including a column of ones. \times number of MCMC iterations, post burn-in. \times quantile level or skewness parameter, p in (0,1).

tune tuning parameter.

Details

Function implements the Bayesian quantile regression for ordinal models with more than 3 outcomes using a combination of Gibbs sampling procedure and Metropolis-Hastings algorithm.

Function initialises prior and then iteratively samples β , δ and latent variable z. Burn-in is taken as 0.25*mc and iter = burn-in + mc.

Value

Returns a list with components:

- post_mean_beta: a vector with mean of sampled β for each covariate.
- post_mean_beta: a vector with mean of sampled β for each covariate.
- post_mean_delta: a vector with mean of sampled δ for each cut point.
- post_std_beta: a vector with standard deviation of sampled β for each covariate.
- post_std_delta: a vector with standard deviation of sampled δ for each cut point.
- gamma: a vector of cut points including Inf and -Inf.
- catt
- acceptance_rate: a scalar to judge the acceptance rate of samples.
- DIC_result: results of the DIC criteria.
- beta_draws: a matrix with all sampled values for β .
- delta_draws: a matrix with all sampled values for δ .

References

Rahman, M. A. (2016). "Bayesian Quantile Regression for Ordinal Models." Bayesian Analysis, 11(1): 1-24.

Yu, K. and Moyeed, R. A. (2001). "Bayesian Quantile Regression." Statistics and Probability Letters, 54(4): 437–447.

Casella, G., George E. I. (1992). "Explaining the Gibbs Sampler." The American Statistician, 46(3): 167-174.

38 quan_regg3

Geman, S., and Geman, D. (1984). "Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images." IEEE Transactions an Pattern Analysis and Machine Intelligence, 6(6): 721-741.

Chib, S., Greenberg E. (1995). "Understanding the Metropolis-Hastings Algorithm." The American Statistician, 49(4): 327-335.

Hastings, W.K. (1970). "Monte Carlo Sampling Methods Using Markov Chains and Their Applications." Biometrika, 57: 1317-1340.

See Also

tcltk, rnorm, qnorm, ginv, Gibbs sampler

```
set.seed(101)
data("data25j4")
x <- data25j4$x
y <- data25j4$y
p < -0.25
ans <- quan_regg3(y, x, mc = 50, p, 0.1)
# ans$post_mean_beta
      -1.429465 1.135585 2.107666
# ans$post_mean_delta
      -0.9026915 -2.2488833
# ans$post_std_beta
     0.2205048 0.2254232 0.2138562
# ans$post std delta
     0.08928597 0.15501941
# ans$gamma
     0.0000000
#
      0.4054768
#
     0.5109938
# ans$catt
      0.48870702 0.04928897 0.01202798 0.44997603
# ans$acceptancerate
#
      84
# ans$DIC_result
# DIC
     616.2173
# pd
     24.95203
# devpostmean
     566.3133
# ans$beta_draws
      0.8062498 - 5.000849 - 1.2760778 - 3.4372516 - 1.43872552
      0.3855340 - 2.500238 - 0.1594546 - 1.2534485 - 0.04680966
      0.7940649 -0.552560 0.1777754 0.9850913 0.56634550 ... soon
# ans$delta_draws
     -1.111202 -1.105643 -1.098417 -1.084080 -1.052632
      -2.165620 -2.105090 -2.148234 -2.230976 -2.255488 ... soon
```

rndald 39

rndald

Generates random numbers from an Asymmetric Laplace Distribution

Description

This function generates a vector of random numbers from an asymmetric Laplace distribution with quantile p.

Usage

```
rndald(sigma, p, n)
```

Arguments

sigma scale factor, a scalar.

p quantile or skewness parameter, p in (0,1).

n number of observations

Details

Generates a vector of random numbers from an asymmetric Laplace distribution, as a mixture of normal–exponential distributions.

Value

Returns a vector (nx1) of random numbers using an AL $(0, \sigma, p)$

References

Kozumi, H. and Kobayashi, G. (2011). "Gibbs Sampling Methods for Bayesian Quantile Regression." Journal of Statistical Computation and Simulation, 81(11): 1565–1578.

Koenker, R. and Machado, J. (1999). "Goodness of Fit and Related Inference Processes for Quantile Regression.", Journal of American Statistics Association, 94(3): 1296-1309.

Keming Yu and Jin Zhang (2005). "A Three-Parameter Asymmetric Laplace Distribution." Communications in Statistics - Theory and Methods: 1867-1879.

See Also

asymmetric Laplace distribution

40 trace_plot3

Examples

```
set.seed(101)
sigma <- 2.503306
p <- 0.25
n <- 1
ans <- rndald(sigma, p, n)
# ans
# 1.07328</pre>
```

trace_plot3

Trace Plots for Ordinal Models with 3 outcomes

Description

This function generates trace plots of MCMC samples for (β, σ) in the quantile regression model with 3 outcomes.

Usage

```
trace_plot3(beta_draws, sigma_draws)
```

Arguments

```
beta_draws Gibbs draw of \beta vector of dimension (kxiter). sigma_draws Gibbs draw of scale parameter, \sigma.
```

Details

Trace plot is a visual depiction of the values generated from the Markov chain versus the iteration number.

Value

Returns trace plots for each element of β and σ .

References

Rahman, M. A. (2016). "Bayesian Quantile Regression for Ordinal Models." Bayesian Analysis, 11(1): 1-24.

See Also

traces in MCMC simulations

trace_plotg3 41

Examples

```
set.seed(101)
data("data25j3")
x <- data25j3$x
y <- data25j3$y
p <- 0.25
ans <- quan_reg3(y, x, mc = 50, p)
beta_draws <- ans$beta_draws
sigma_draws <- ans$sigma_draws
trace_plot3(beta_draws, sigma_draws)</pre>
```

trace_plotg3

Trace Plots for Ordinal Models with more than 3 outcomes

Description

This function generates trace plots of MCMC samples for (β, δ) in the quantile regression model with more than 3 outcomes.

Usage

```
trace_plotg3(beta_draws, delta_draws)
```

Arguments

```
beta_draws Gibbs draw of \beta vector of dimension (kxiter). delta_draws Gibbs draw of \delta.
```

Details

Trace plot is a visual depiction of the values generated from the Markov chain versus the iteration number.

Value

Returns trace plots for each element of β and δ .

References

Rahman, M. A. (2016). "Bayesian Quantile Regression for Ordinal Models." Bayesian Analysis, 11(1): 1-24.

See Also

traces in MCMC simulations

42 trace_plotg3

```
set.seed(101)
data("data25j4")
x <- data25j4$x
y <- data25j4$y
p <- 0.25
ans <- quan_regg3(y, x, mc = 50, p, 0.1)
beta_draws <- ans$beta_draws
delta_draws <- ans$delta_draws
trace_plotg3(beta_draws, delta_draws)</pre>
```

Index

*Topic datasets	qnorm, 5, 35, 38
data25j3 ,6	qrminfundtheorem, $5,30$
data25j4 <mark>,6</mark>	qrnegloglikensum, 5, 33
data50j3 ,7	quan_reg3, 5, 34
data50j4,8	quan_regg3, 5, 36
data75j3, <mark>9</mark>	
data75j4, <mark>9</mark>	rand, 5
	Reshape, 5
alcdf, 2, 5	rexp, 5
alcdfstdg3, 3 , 5	rgig, <i>5</i> , <i>15</i> , 22, 26
	rinvgamma, <i>5</i> , <i>24</i>
bqror,4	rndald, 5, 39
bqror-package (bqror), 4	rnorm, 5, 35, 38
A-+-0F-10 6	rtruncnorm, 5, 20, 21
data25j3,6	_
data25j4,6	sd, 5
data50j3, 7	setTkProgressBar,5
data50j4,8	std, <i>5</i>
data75j3,9	+1-D
data75j4,9	tkProgressBar, 5
deviance3, 5, 10	trace_plot3, 5, 40
devianceg3, 5, 12	trace_plotg3,5,41
drawbeta3, 5, 14	
drawbetag3, 5, 15 drawdeltag3, 5, 17	
drawlatent3, 5, 19	
drawlatents, 5, 19	
drawnu3, 5, 22	
drawsigma3, 5, 23	
drawwg3, 5, 25	
urawwg3, 3, 23	
ginv, 5, 16, 32, 35, 38	
inefficiency_factor3, 5, 27	
inefficiency_factorg3, 5, 28	
mldivide, 5, 32	
mvnpdf, 5, 18	
mvrnorm, 5-10, 16	
negLoglikelihood, 5, 29	