	TP2 Pression - Charpin Chevillard	Pt		Α	В	C D	Note	
I.	Régulation de pression simple boucle (10 pts)							
:	Donner le schéma électrique correspondant au cahier des charges.	1	Х				0	
2	Programmer votre T2550 afin de réaliser la régulation représentée ci-dessus.	1	Α				1	
3	Régler votre maquette pour avoir une mesure de 50% pour une commande de 50%.	1	Α				1	
4	Relever l'évolution de la mesure X en réponse à un échelon de commande Y. En déduire le sens de fonctionnement du régulateur (inverse ou direct).	1	Α				1	
į	Régler la boucle de régulation, en utilisant la méthode de Ziegler & Nichols. On choisira un correcteur PID.	4	Α				4	
(Enregistrer la réponse de la mesure à un échelon de consigne W.	2	Α				2	
II.	Régulation de proportion (10 pts)							
- :	Rappeler le fonctionnement d'une boucle de régulation de proportion.	1	Α				1	
2	Programmer le régulateur pour obtenir le fonctionnement en régulation de proportion conformément au schéma TI cidessus.	3	В				2,25	La valeur du gain k est erroné.
3	Régler la boucle de régulation menée en utilisant la méthode par approches successives. On ne changera pas le réglage de la boucle menante.	2	А				2	
	Enregistrer la réponse des mesures à un échelon de consigne W.	2	Α				2	
ţ	Expliquez l'intérêt d'une régulation de proportion en vous aidant de vos enregistrements. Citez un autre exemple pratique.	2	А				2	

Note: 18,25/20

TP2 Pression

I. Régulation de pression simple boucle

1)

2)

Entrée :

TagName	01M01_04		LIN Name	01M01_04	
Туре	AI_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>04	
			Sitello	1	
PV	102.0	%	Channel	1	
HR	100.0	%	InType	mA	
LR	0.0	%	HR_in	20.00	mA
			LR_in	4.00	mA
НіНі	100.0	%	AI	20.32	mA
Hi	100.0	%	Res	0.000	Ohms
Lo	0.0	%			
LoLo	0.0	%	CJ_type	Auto	
Hyst	0.5000	%	CJ_temp	0.000	Deg C

Sortie:

TagName	02P01_04		LIN Name	02P01_04	
Туре	AO_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>04	
			Sitello	2	
OP	100.0	%	Channel	1	
HR	100.0	%	OutType	mA	
LR	0.0	%	HR_out	20.00	mA
			LR_out	4.00	mA
Out	100.0	%	A0	20.00	mA
Track	0.0	%			
Trim	0.000	mA	Options	>0000	
			Status	>0000	

Bloc PID:

TagName	PID		LIN Name	PID	
Туре	PID		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
Mode	AUTO		Alarms		
FallBack	AUTO				
			HAA	100.0	%
PV	91.9	%	LAA	0.0	%
SP	100.0	%	HDA	100.0	%
OP	58.1	%	LDA	100.0	%
SL	100.0	%			
TrimSP	0.0	%	TimeBase	Secs	
RemoteSP	0.0	%	XP	100.0	%
Track	0.0	%	TI	0.00	
			TD	0.00	
HR_SP	100.0	%			
LR_SP	0.0	%	Options	00101100	

TagName	PID	
Туре	PID	
Task	3 (110ms)	
Mode	MANUAL	
FallBack	MANUAL	
PV	50.0	%
SP	0.0	%
OP	50.0	%
SL	0.0	%
TrimSP	0.0	%
RemoteSP	0.0	%
Track	0.0	%

Réponse à un échellon de 20% sur Op%, lorsque on ouvre la vanne la mesure augmente, donc le procédé est direct. Le régulateur est donc inverse.

Quand la mesure augmente il faut ouvrir la vanne donc augmenter diminuer la sortie du régulateur. Le régulateur est donc inverse...

- PID.OP.% - PID.PV.% - PID.SL.%

1,7×Xpc =1,7*26=44,2 Ti=Tc/2=4,8/2=2,4s Td=Tc/8=4,8/8=0,6s

Tc=4.8s

TimeBase	Secs	
XP	44.2	%
TI	2.40	
TD	0.60	

J'ai donc modifié les parametre Pid pour stabiliser la mesure et moins faire bouger la vanne...

TimeBase	Secs	
XP	50.0	%
TI	3.00	
TD	0.60	

J'ai augmenter Xp et Ti légèrement..

II. Régulation de proportion

1)

La régulation de proportion sert ici a avoir un rapport constant entre les deux pression, elle sert à maintenir constant un rapport de pression. Il y à une grandeur menante et une menée, la mesure de la grandeur menante sert à calculer lea consigne du régulateur de la boucle menée.

ADD2:

TagName	Gain	
Туре	ADD2	
Task	3 (110ms)	
→ PV_1	49.2	%
K_1	0.8000	
PV_2	0.0	%
K_2	1.000	
OP	39.3	%
HL_OP	100.0	%
LL_OP	0.0	%

Menée :

TagName	menee		LIN Name	menee	
Туре	PID		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
Mode	REMOTE		Alarms		
FallBack	REMOTE				
			HAA	100.0	%
PV	0.0	%	LAA	0.0	%
SP	0.0	%	HDA	100.0	%
OP	0.0	%	LDA	100.0	%
SL	0.0	%			
TrimSP	0.0	%	TimeBase	Secs	
RemoteSP	0.0	%	XP	100.0	%
Track	0.0	%	TI	0.00	
			TD	0.00	
HR_SP	100.0	%			
LR_SP	0.0	%	Options	00101100	
HL_SP	100.0	%	SelMode	00001100	
LL_SP	0.0	%			
			ModeSel	00001001	
HR_OP	100.0	%	ModeAct	00001000	
LR_OP	0.0	%			
HL_OP	100.0	%	FF_PID	50.0	%
LL_OP	0.0	%	FB_OP	0.0	%

Méthode:

Réponse à un échelon de 40 à 60% (20%)..

On voit que lorque la mesure de la grandeur menante augmente ; la mesure de la grandeur menée suit et la sortie du régulateur augmente (la vanne se ferme).

Parametre de la boucle PID menée :

TimeBase	Secs	
XP	20.0	%
TI	5.00	
TD	1.00	
		İ

5)

Elle permet ici d'avoir les deux pression qui sont proportionnel. Une pression bouge avec une autre, elle se suive.