Discussion

CS 5/7320 Artificial Intelligence

Solving problems by searching AIMA Chapter 3

Slides by Michael Hahsler based on slides by Svetlana Lazepnik with figures from the AIMA textbook.

This work is licensed under a <u>Creative Commons</u> Attribution-ShareAlike 4.0 International License.

State Space

- Number of different states the agent and environment can be in.
- Reachable states are defined by the initial state and the transition model. Not all states may be reachable from the initial state.
- Search tree spans the state space. Note that a single state can be represented by several search tree nodes if we have redundant paths.
- State space size is an indication of problem size.

State Space Size Estimation

- Even if the used algorithm represents the state space using atomic states, we may know that internally they have a factored representation that can be used to estimate the problem size.
- The basic rule to calculate (estimate) the state space size for factored state representation with n fluents (variables) is:

$$|x_1| \times |x_2| \times \cdots \times |x_n|$$

where $|\cdot|$ is the number of possible values.

State representation

The state consists of variables called fluents that represent conditions that can change over time.

Source: Permutations/Combinations Cheat Sheets by Oleksii Trekhleb https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5

Binomial Coefficient: $\binom{n}{r} = C(n,r) = {}_{n}C_{r}$ Read as "n choose r" because it is the number of ways can we choose r out of n objects? Special case for r = 2: $\binom{n}{2} = \frac{n(n-1)}{2}$

#Python import scipy.special

the two give the same results scipy.special.binom(10, 5) scipy.special.comb(10, 5)

Source: Permutations/Combinations Cheat Sheets by Oleksii Trekhleb https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5

Examples: What is the state space size?

Dirt

- **Permutation:** A and B are different rooms, order does matter!
- With repetition: Dirt can be in both rooms.
- There are 2 options (clean/dirty)

$\rightarrow 2^2$

Robot location

Can be in 1 out of 2 rooms.

$$\rightarrow 2$$

Total: $2 \times 2^2 = 2^3 = 8$

Examples: What is the state space size?

Often a rough upper limit is sufficient to determine how hard the search problem is.

Examples: What is the state space size?

Often a rough upper limit is sufficient to determine how hard the search problem is.

Maze

Positions the agent can be in.

n = Number of white squares.

8-queens problem

All arrangements with 8 queens on the board.

$$n < 2^{64} \approx 1.8 \times 10^{19}$$

We can only have 8 queens: $n = \binom{64}{8} \approx 4.4 \times 10^9$

All arrangements of 9 elements.

8-puzzle problem

$$n \leq 9!$$

Half is unreachable:

$$n = \frac{9!}{2} = 181,440$$

Tic-tac-toe

All possible boards.

$$n < 3^9 = 19.683$$

Many boards are not legal (e.g., all x's)

Assignment

Q&A