1. From Nicholas Quinn.

2. From Nicholas Bishop.

2 a. $f_{a}(n) = f_{a}(n)$ b. $f_{b}(n) = f_{b}(n) = f_{b}(n)$ f. $f_{b}(n) = f_{b}(n) = f_{b}(n)$ i. $f_{b}(n) = f_{b}(n) = f_{b}(n)$ and $f_{b}(n) = f_{b}(n)$ for $f_{b}(n) $f_{b}(n) = f_{b}(n)$ and $f_{b}(n) = f_{b}(n)$ for $f_{b}(n) = f_{b}(n)$ for $f_{b}(n) = f_{b}(n)$ and $f_{b}(n) = f_{b}(n)$ for $f_{b}(n) = f_{b}(n)$ for $f_{b}(n) = f_{b}(n)$ and $f_{b}(n) = f_{b}(n)$ for $f_{b}(n) = f_{b}(n)$ for $f_{b}(n) = f_{b}(n)$ and $f_{b}(n) = f_{b}(n)$ for $f_{b}(n) = f_{b}(n)$ for $f_{b}(n) = f_{b}(n)$ for $f_{b}(n) = f_{b}(n)$ and $f_{b}(n) = f_{b}(n)$ for $f_{b}(n$

3. From Ryan Duffy.

3. (e)
$$f(n) = O((f(n))^{\alpha})$$

Suppose $f(n) = \frac{1}{n} \Rightarrow [f(n)]^{\alpha} = [\frac{1}{n}]^{\alpha} = \frac{1}{n!} = g(n)$

Let $c = 1$
 $f(n) \leq c \cdot g(n)$

This implies it not it mand $c = 1$ then $f(n) \neq 1$
 $f(n) \neq c = 1$
 $f(n) \neq c = 1$

Suppose $f(n) = e^{n} \Rightarrow f(\frac{n}{2}) = e^{n/2} = g(n)$

Suppose $f(n) = e^{n} \Rightarrow f(\frac{n}{2}) = e^{n/2} = g(n)$
 $f(n) \leq c \cdot g(n)$
 $f(n)$

4. From Jacob Montpetit.

4. Analysis: (10 points) Your client is developing two new algorithms. $f_1(n)$ and $f_2(n)$ are the worst-case running time for these two algorithms: $f_1(n) = nlgn$, and $f_2(n) = 128n$. As a consultant, which algorithm will you recommend to your client? Justify your answer. (Hint: Please consider the asymptotical growth of the functions and also consider the reality.)

 $nlg(n) \le 128n$ when n is less or equal to 2^{128} this inequality holds true. When n is greater than 2^{128} 128n gives better performance. I would recommend using the nlg(n) unless n is 2^{128} typically. 2^{128} is approximately 3.4028237e + 38, which is a very large number.

Work: $nlg(n) \le 128n$

x1g(n) < 128x \(\frac{128}{128} \)
\(\frac{128}{128} \)

5. From Etienne Buhrle.

Since this input size is rather unusual, algorithm 1 with running time f_1 is probably still better in most applications.

5 Pseudocode Analysis

For the running time, we get

$$T_{Mystery}(n) = c_1 + (n^2 + 1)c_2 + c_3 \sum_{i=1}^{n^2} (i+1) + c_4 \sum_{i=1}^{n^2} i + c_5$$

$$= c_1 + c_5 + (n^2 + 1)c_2 + (c_3 + c_4) \sum_{i=1}^{n^2} i + c_3 \sum_{i=1}^{n^2} 1$$

$$= c_1 + c_5 + (n^2 + 1)c_2 + (c_3 + c_4) \frac{1}{2} n^2 (n^2 + 1) + c_3 n^2$$

$$= c_1 + c_5 + c_2 n^2 + c_2 + (c_3 + c_4) \frac{1}{2} (n^4 + n^2) + c_3 n^2$$

$$= \Theta(n^4)$$