AER210—Fluids

Jonah Chen

September 21, 2021

1

Contents

1 Tutorial 1

2	Intro to Fluid Flow		
	2.1 Description of Mechanics .		
	2.2 Flow visualization		
3	Flow Distinction		3
1	Tutorial 1		
	• 15.1 #15		
		$\int_{1}^{4} \int_{0}^{2} (6x^2y - 2x) \mathrm{d}y \mathrm{d}x$	(1.1)
		$=\int_{1}^{4} (12x^{2}-4x)dx$	(1.2)
		= (256 - 32) - (4 - 2) $= 222$	(1.3) (1.4)
	• 15.1 #29		
		$\iint_{R} \frac{xy^{2}}{x^{2} + 1} dA, R = \{(x, y) 0 \le x \le 1, -3 \le y \le 3\}$	(1.5)
		$= \int_0^1 \int_{-3}^3 \frac{xy^2}{x^2 + 1} \mathrm{d}y \mathrm{d}x$	(1.6)
		$=18\int_0^1 \frac{x}{x^2+1} \mathrm{d}x$	(1.7)
		$=18 imes rac{1}{2} \log (x^2+1) \bigg _0^1$	(1.8)
		$=9\log 2$	(1.9)

• 15.1 #31

$$\iint_{R} x \sin(x+y) dA, R = \left[0, \frac{\pi}{6}\right] \times \left[0, \frac{\pi}{3}\right]$$
 (1.10)

$$= \int_0^{\frac{\pi}{6}} \int_0^{\frac{\pi}{3}} x \sin(x+y) dy dx$$
 (1.11)

$$= \int_0^{\frac{\pi}{6}} x \cos(x) - x \cos\left(x + \frac{\pi}{3}\right) \tag{1.12}$$

$$=x\left(\sin x - \sin\left(x + \frac{\pi}{3}\right)_0^{\frac{\pi}{6}}\right) - \int_0^{\frac{\pi}{6}} \sin x - \sin\left(x + \frac{\pi}{3}\right) \mathrm{d}x \tag{1.13}$$

$$= \frac{\pi}{6}(\frac{1}{2} - 1) - \left(-\cos x + \cos\left(x + \frac{\pi}{3}\right)\right)_0^{\frac{\pi}{6}} \tag{1.14}$$

$$=\frac{\sqrt{3}-1}{2}-\frac{\pi}{12}\tag{1.15}$$

2 Intro to Fluid Flow

2.1 Description of Mechanics

Definition: [Lagrangian Description] Describe fluids as a small "fluid particle", describe fluids like particles in solid mechanics. i.e. obey euler-lagrange equations.

$$\mathbf{r}(t) = (x, y, z) \tag{2.1}$$

$$\mathbf{v}(t) = (\dot{x}, \dot{y}, \dot{z}) = (u, v, w) \tag{2.2}$$

Definition: [Eulerian Description] Uses density at each points of the fluid in a flow field.

$$\mathbf{v}(x, y, z, t) \tag{2.3}$$

More suitible for analysis of a continum.

2.2 Flow visualization

There are three common concepts used in flow visualization

Streamlines

- A line that is tangent to the local velocity vector at each point at a given instant.
- No flow across a streamline.
- Can use particle image velocimetry(PIV) to find streamlines experimentally.
 - * Streamtubes are streamline

Pathlines

- A path a particle takes as it moves.
- Experimentally, particle tagged and captured using large exposure.

Streaklines

- A line that connects all the fluid particles that have passed through the same point in space at a previous time
- Experimentally, use smoke o

3 Flow Distinction

- A steady flow is when velocity, pressure, temperature, and density is time-independent.
- A unsteady flow is when these are time-dependent.
- The streamline, streakline, and pathline passing through a particular location will be identical in a steady flow.
- Viscous flow regions are regions in which frictional effects are significant.
- Invicid flow regions are regions where viscous forces are negligibly small compared to other forces.

_