# Лабораторная работа №406D

В данной работе осваиваются методы проектирования цифровых модулей модулятора передатчика и дешифратора сигналов стандарта MIL-1553 (ГОСТ 26765.52-87, ГОСТ Р. 52070-2003).

Формат сигнала, аналоговые методы его формирования и дешифрации изучались в лабораторных работах №406A\_V1 и №406A\_V2. В приложении 5.1 приведен вариант цифровой схемы шифратора сигналов MIL-1553, написанный на языке Verilog и предназначенный для реализации на программируемой логической интегральной схеме (ПЛИС) макета Nexys2. Выходами модулятора передатчика являются сигналы ТХР и ТХN. Запускается модулятор фронтом сигнала txen. Если высокий уровень txen сохраняется и после окончания передачи контрольного слова, то следующими передается слова данных. Сигналом к смене данных DAT на входе модулятора может служить сигнал конца кадра (t\_end).

В соответствии со стандартом размер кадра - 20 бит. Первые 3 бита — (3 мкс) сигнал синхронизации (два импульса по 1.5 мкс разной полярности), затем 16 бит данных и последний бит в кадре — дополнение до нечетности. Слово данных (WD) отличается от контрольного слова (CW) только полярностью сигнала синхронизации. Контрольное слово (CW) начинается с положительного, а слово данных (WD) с отрицательного импульса синхронизации. На рис.1 показано слово данных.



Рис.1 Временные диаграммы сигналов MIL-1553

Получить от преподавателя номер набора параметров (из таблицы 1), в который входят: контрольное слово CW и слово данных WD.

Таблица 1

|                     |          | Таолица Т |
|---------------------|----------|-----------|
| $N_{\underline{0}}$ | CW (HEX) | WD (HEX)  |
| 1                   | 1234     | 5678      |
| 2                   | 5678     | 789A      |
| 3                   | 9ABC     | 6523      |
| 4                   | DEF0     | 2233      |
| 5                   | FEDC     | 55AA      |
| 6                   | BA98     | 8811      |
| 7                   | 7654     | 1188      |
| 8                   | 3210     | 6699      |
| 9                   | 1122     | 7711      |
| 10                  | 3344     | BCDE      |
| 11                  | 5566     | C3A5      |
| 12                  | 7788     | A587      |
| 13                  | 6699     | 2D0F      |
| 14                  | AA55     | E178      |
| 15                  | CC33     | 3C5A      |
| 16                  | 00FF     | 4D20      |

| 17 | FF00 | 55AA |
|----|------|------|
| 18 | F0F0 | CC33 |
| 19 | 0FF0 | 4DD4 |
| 20 | F00F | 8181 |

# 1. Задание к допуску

- 1.1. Начертить или написать в тетради схему модуля MIL\_TXD модулятора MIL-1553 (см. приложение 5.1).
- 1.2. Начертить в тетради эскиз временных диаграмм сигналов SY1, SY2, sdat, fd\_cp, TXP и TXN модуля модулятора MIL\_TXD для заданных CW и WD (см. таблицу 1).

## 2. Задание к выполнению

Создать проект с именем Lab406D, для ПЛИС, используемой в макете Nexys или Nexys2. Если на ПК установлен Modelsim и в окне Properties проекта в строке Simulator выбрать Modelsim и в дальнейшем моделирование рекомендуется проводить в Simulate Post Translate Verilog Model. Если на ПК не установлен Modelsim, то в окне Properties проекта в строке Simulator – выбрать ISE Simulator.

2.1. В окне источников (Sources) создать (New Source) создать модуль MIL\_TXD генератора сигналов TXP и TXN стандарта MIL-1553 и далее на Verilog-е или в «схематике» составить схему этого модуля (см. приложение 5.1).

Создать, если необходимо, схемотехнический символ модуля (Design Utilites/Create Schematic Symbol).

Создать для этого модуля задание на моделирование (Test Bench Waveform или Verilog Test Fixture). Параметры периодического сигнала синхронизации clk в Verilog Test Fixture можно задать через параметр период

```
parameter PERIOD = 20;
```

```
always begin clk1 = 1'b0; #(PERIOD/2) clk1 = 1'b1; #(PERIOD/2); end или непосредственно, через длительности 0 и 1 (в наносекундах): always begin clk1 = 1'b0; #10 clk1 = 1'b1; #10; end
```

В блоке "initial begin...end" вначале (#100) установить заданное значение контрольного слова и через и с задержкой ~10 мкс (#10000) слова данных. Суммарная длительность сиинала txen должна быть больше длительности контрольного слова. Например: initial begin

```
\begin{array}{ll} clk1=0; & dat=0; & txen=0; //\\ \#100; & dat=16\text{'h}1234; & txen=1; // CW\\ \#10000; & dat=16\text{'h}5678; & txen=1; // WD\\ \#24000; & dat=16\text{'h}0000; & txen=0;\\ & end & \end{array}
```

Установить заданные значения контрольного слова и слова данных.

2.2. Провести моделирование работы модуля для заданных слов (см. например, Verilog Test Fixture в 5.2 Приложений). При моделировании в ISE Simulator-е рекомендуется использовать режим Simulate Behavioral Model. При этом все регистры модулей должны быть инициализированы (например, приравнены к нулю). Подкорректировать, если необходимо, схему и временные диаграммы входных сигналов. Установить удобную для моделирования скорость. Получить содержательные временные диаграммы (например, такие как 5.3 приложений). Зарисовать полученные временные диаграммы.

# 3. Задание к сдаче работы

3.1. Составить схему модуля MIL\_RXD приемника-дешифратора сигналов TXP и TXN модулятора. При составлении схемы дешифратора можно воспользоваться «идеями» схемам дешифратора MIL\_RXD из лабораторной работы Lab406A.



Рис.2 Временные диаграммы сигналов возможного варианта дешифратора (Lab104A\_V1)

На этом рисунке:

DRXN – задержанный на 1.5 мкс сигнал RXN,

INT - интегратор (счетчик),

OK\_SY – импульс превышения порога (INT>REF\_SY),

EN\_RX- разрешение приема,

cb\_TACT – счетчик тактов с емкостью (Ttact/Tclk= 1 мкс/ 20 нс=50),

dRXPN – импульсы всех перепадов входных сигналов,

 $EN_WR$  - интервал разрешения реагирования на перепада  $EN_WR = (REF_L < cb_TACT < REF_H)$ .

- 3.2. Провести предварительное моделирование работы фрагментов схем модуля MIL\_RXD. Подкорректировать, если необходимо, схему и временные диаграммы входных сигналов.
- 3.3. Составить для моделирования схему SCH1\_LAB406D, состоящую из последовательно соединенных модулей MIL\_TXD и MIL\_RXD (см. например 5.4 приложений).
- 3.4. Создать файл задания для моделирования (Verilog Test Fixture см. например 5.5 Приложений). Провести моделирование работы схемы. Подкорректировать, если необходимо, схемы модулей и временные диаграммы сигналов. Получить содержательные временные диаграммы (например, такие как 5.6 приложений). Начертить в тетради эскизы полученных временных диаграмм.
- 3.5. Определить диапазон допустимой относительной разности периодов сигналов синхронизации модулей MIL TXD и MIL\_RXD.
- 3.6 Для загрузки в макет Nexys2 составить схему SCH2\_LAB406D (см. например 5.7 Приложений). В состав схемы, кроме MIL\_TXD и MIL\_RXD должен входить и модуль (Display) отображения передаваемых и принимаемых данных. Выводы модулей MIL\_TXD и MIL\_RXD можно вывести на разъёмы JA, JB, JC, JD макета, например, так, как приведено в приложении 5.8.
- 3.7 Для схемы SCH2\_LAB406D создать Implementation Constraints File (см. 5.7 Приложений).
- 3.8 Создать файл конфигурации SCH2\_LAB406D.bit (Generate Programming File) или \*.mcs (Generate PROM, ACE, or JTAG File), загрузить его в макет. Продемонстрировать

при помощи осциллографа работу передатчика. Проверить соответствие осциллограмм сигналов sdat, TXP и TXN показаниям семи сегментного индикатора. Зарисовать осциллограммы сигналов sdat, TXP и TXN (см. например, 5.9 приложений: осциллограммы сигналов sdat и TXP модуля MIL TXD).

3.9 Соединить выходы передатчика со входами приемника. Сопоставить показания индикатора передаваемых и принимаемых данных. Провести при помощи осциллографа наблюдение выведенных сигналов дешифратора. При необходимости отладить схему дешифратора. После достижения правильной работы дешифратора зарисовать осциллограммы его сигналов.

#### 4. Контрольные вопросы

- 4.1 Осенить предельно допустимую относительную разность периодов эталонов времени передатчика и дешифратора.
- 4.2 Влияет ли небольшая не симметрия сигналов RXP и RXN на качество работы дешифратора?
- 4.3 Влияет ли наличие промежутков между соответствующими фронтами и спадами сигналов RXP и RXN на качество работы дешифратора?
- 4.4 Можно ли использовать для декодирования сигнала синхронизации кадра MIL-1553 линию задержки (регистр сдвига SR\_SY[m-1:0], m=1500ns/20ns) и счетчик длительности? 4.5 Как можно определить, чему соответствуют принятые данные: контрольному слову (CW) или слову данных (WD)?

## 5. Приложения

#### 5.1 Схема модуля модулятора передатчика MIL-1553

```
module MIL TXD
                                  output wire TXP,
           ( input clk,
                                  output wire TXN,
             input[15:0]dat,
             input txen,
                                  output wire SY1,
                                  output wire SY2,
                                  output reg en_tx=0,
                                  output reg T_dat=0,
                                  output wire T end,
                                  output wire sdat,
                                  output reg fd_cp=0,
                                  output reg [4:0]cb_bit )=0;
parameter cp tx = 1; //Дополнение до нечетности
parameter TXvel = 1000000; // 1MHz
parameter Fclk = 50000000; // 50 MHz
reg [5:0]cb_cet =0;
reg bf_SY1=0, bf_SY2=0, CW_WD=0, ttxen=0, q =0;
wire start = ttxen & !en_tx;
assign SY1 = en tx & bf SY1; // Первый импульс синхронизации
assign SY2 = en tx & bf SY2; // Второй импульс синхронизации
reg [15:0]sr_dat=0 ;// Регистр сдвига данных
wire st1 = (cb\_bit==1) \& en\_tx;
```

```
wire st2 = (cb\_bit==2) \& en\_tx;
wire st18 = (cb bit==18) \& en tx; //Конец интервала данных
assign T_{end} = (cb_{bit}=19) \& en_{tx}://Конец кадра, бит контроля четности
assign TXP = en_tx & ((CW_WD & SY1))
                     (!CW_WD & SY2)
                     (T_dat & (sr_dat[15]^q))
                     (T_end & (fd_cp^q)));
assign TXN = en_tx & ((!CW_WD & SY1))
                      (CW_WD & SY2)
                      (T_dat & (sr_dat[15]^!q)) |
                      (T_end & (fd_cp^!q));
assign sdat = sr dat[15] & T dat \frac{1}{2} Последовательные данные
assign cet = (cb_cet == (Fclk/(2*TXvel)));
always @ (posedge clk) begin
cb_cet <= cet? 1 : cb_cet+1;
q <= cet? !q : q ;// Триггер меандра модулятора последовательных данных
end
always @ (posedge clk) if (cet) begin
bf SY1 \le (st1 \& !q)? 0 : ((T end \& q) | (txen \& !en tx))? 1 : SY1;
bf_SY2 \le (st1 \& !q)? 1 : (st2 \& q)? 0 : SY2;
end
wire MIL_ce = cet \& q;
always @ (posedge clk) if (MIL_ce) begin
ttxen <= txen;
en_tx <= ttxen? 1 : (!txen & T_end)? 0 : en_tx ;
CW_WD \le T_end? 0 : start? 1 : CW_WD;
cb_bit <= (!en_tx | T_end)? 0 : en_tx? cb_bit+1 : cb_bit;
T_dat \le st2? 1 : st18? 0 : T_dat ;
sr dat \le st2? dat : T dat? sr dat << 1 : sr dat;
fd_cp \le st2? cp_tx : (T_dat \& sr_dat[15])? !fd_cp : fd_cp ;
end
endmodule
5.2 Пример Verilog Test Fixture - текстового задания на моделирование модуля
MIL_TXD
module test_MIL_TXD_v;
                           // Outputs
      // Inputs
      wire TXP;
                           wire TXN;
      reg clk1;
                            wire SY1:
      reg [15:0] dat;
                            wire SY2;
                            wire en tx;
      reg txen;
                            wire T dat;
                            wire T_end;
                            wire sdat;
                            wire fd_cp;
```

```
wire [4:0] cb_bit;
       // Instantiate the Unit Under Test (UUT)
       MIL_TXD uut (
              .clk(clk1),
                             .TXP(TXP),
                             .TXN(TXN),
              .txen(txen),
              .dat(dat),
                             .SY1(SY1),
                             .SY2(SY2),
                             .en_tx(en_tx),
                             .T_dat(T_dat),
                             T end(T end),
                             .sdat(sdat),
                             .fd_cp(fd_cp),
                             .cb_bit(cb_bit));
// Генератор сигнала синхронизации передатчика
// parameter PERIOD = 20;
// always begin clk1 = 1'b0; \#(PERIOD/2) clk1 = 1'b1; \#(PERIOD/2); end
always begin clk1 = 1'b0;
                           #10 \text{ clk1} = 1\text{'b1};
                                                  #10; end
//Последовательное задание входных сигналов.
initial begin
clk1=0;
              dat = 0;
                                    txen = 0; //
              dat = 16'h1234;
                                    txen = 1; // CW
#100;
              dat = 16'h5678;
#10000;
                                    txen = 1; // WD
#24000;
              dat = 16'h0000;
                                    txen = 0;
end
endmodule
```

#### 5.3 Пример результатов моделирования сигналов передатчика MIL\_TXD



## 5.4 Пример схемы лабораторной работы для моделирования



```
//
                                              Выходы приемника
                                         output wire
                                                       dx_IN,
                                         output wire
                                                       RX clk,
                                         output wire [4:0]cb rx bit,
                                         output wire ce_rx_dat,
                                         output wire
                                                       ok_SY,
                                         output wire
                                                       en rx,
                                         output wire
                                                       ft_cp,
                                         output wire
                                                       ok rx,
                                         output wire [15:0] rx_dat);
// Модуль передатчика
MIL_TXD DD1 (
                    .clk(clk),
                                         .TXP(TXP),
                                         .TXN(TXN),
                    .dat(dat),
                    .txen(txen),
                                         .SY1(tx_SY1),
                                         .SY2(tx_SY2),
                                         .en_tx(en_tx),
                                         .T_dat(T_dat),
                                         T end(T end),
                                         .sdat(tx_sdat),
                                         .cb_bit(cb_tx_bit)
                                  );
// Модуль приемника
MIL_RXD DD2 (
                    .clk(clk1),
                                         .dx_IN(dx_IN),
                    .RXP(TXP),
                                         .stb_clk(RX_clk),
                    .RXN(TXN),
                                         .sr dat(rx dat),
                                         .ok_SY(ok_SY),
                                         .cb_bit(cb_rx_bit),
                                         .en rx(en rx),
                                         .ce_dat(ce_rx_dat),
                                         .ft_cp(ft_cp),
                                         .ok_rx(ok_rx));
endmodule
5.5 Пример текстового задания Verilog Test Fixture - на моделирование схемы
SCH1_LAB406D
module test_LAB406D;
// Входы
             схемы
      reg clk, clk1, txen;
      reg [15:0] dat;
// Выходы передатчика
       wire TXP, TXN, tx_SY1, tx_SY2, T_end, T_dat, en_tx, tx_sdat;
       wire [4:0]cb_tx_bit;
// Выходы приемника
wire en_rx, ce_rx_dat, ok_SY, ft_cp, ok_rx, RX_clk, dx_IN;
wire [4:0]cb_rx_bit;
wire [15:0]rx_dat;
// Генератор сигнала синхронизации передатчика, PERIOD = 20 +/- 1;
// always begin clk1 = 1'b0; #10 clk1 = 1'b1; #9; end // PERIOD = 19
  always begin clk1 = 1'b0; #10 clk1 = 1'b1; #10; end // PERIOD = 20
// always begin clk1 = 1'b0; #10 clk1 = 1'b1; #11; end // PERIOD = 21
```

```
Генератор
                  сигнала
                              синхронизации приемника
parameter PERIOD = 20;
always begin clk = 1'b0; #(PERIOD/2) clk = 1'b1; #(PERIOD/2); end
// Все выводы тестируемой схемы (UUT)
SCH1__LAB406D uut
     (//Входы схемы
                        Выходы передатчика
              .clk(clk),
                                   .TXP(TXP),
                                   .TXN(TXN),
              .txen(txen),
              .clk1(clk1),
                                   .tx_SY1(tx_SY1),
                                   .tx_SY2(tx_SY2),
              .dat(dat),
                                   .en_tx(en_tx),
                                   .T_dat(T_dat),
                                   .T_{end}(T_{end}),
                                   .tx sdat(tx sdat),
                                   .cb_tx_bit(cb_tx_bit),
//
                               Выходы приемника
                                   .dx_IN(dx_IN),
                                   .ok_SY(ok_SY),
                                   .en rx(en rx),
                                   .RX_clk(RX_clk),
                                   .ce_rx_dat(ce_rx_dat),
                                   .ft_cp(ft_cp),
                                   .cb_rx_bit(cb_rx_bit),
                                   .rx_dat(rx_dat),
                                   .ok_rx(ok_rx));
// Временные параметры и данные входных сигналов
initial begin
                    // Initialize Inputs
              dat = 0:
                                   txen = 0; // Wait 100 ns for global reset to finish
#100;
             dat = 16'h1234;
                                   txen = 1; // CW
                                   txen = 1; //WD
#10000;
              dat = 16'h5678;
//#100;
             dat = 16'hEDCB;
                                   txen = 1;
//#10000;
             dat = 16'hA987;
                                   txen = 1;
#24000;
             dat = 16'h0000;
                                   txen = 0;
end
endmodule
```





```
5.7 Выводы схемы SCH2_Lab406D для макета Nexys2
   module SCH2 Lab406D
                              //Выходы Дисплея
                               output wire[7:0] seg, // Сегменты
            (input F50MHz,
             input [1:0]SWT,
                               output wire[3:0] an, // Аноды
                               output wire[7:0] ld, //Светодиоды
  //------Выводы модулей MIL TXD и MIL RXD------
      input JB1,
                                     //MIL_RXP
      input JB2,
                                     //MIL RXN
                  output wire JA1,
                                     //MIL TXP
                  output wire JA2,
                                     //MIL_TXN
                  output wire JA3,
                                     //MIL SY1
                  output wire JA4,
                                     //MIL_SY2
                  output wire JC1,
                                     // MIL SDAT
                  output wire JC2,
                                     // ok SY
                  output wire JC3,
                                     // ok_rx
                  output wire JC4,
                                     //en rx
                  output wire JD1,
                                     //ce rx dat
                  output wire JD2,
                                     //RL
                                     //RH
                  output wire JD3,
                  output wire JD4);
                                     //MIL_en_tx
assign JA1 = TXP
                         ; assign JA2 = TXN;
                                                 //Выходы передатчика
assign JA3 = SY1
                         ; assign JA4 = SY2;
                                                 //Выходы передатчика
assign JC1 = MIL_SDAT ; assign JC2 = ok_SY ;
assign JC3 = ok_rx
                         ; assign JC4 = MIL_en_tx; // Выходы дешифратора
assign JD1= ce rx dat
                         ; assign JD2 = RL ;
                                                 // Выходы дешифратора
assign JD3 = RH
                         ; assign JD4 = en_rx;
                                                 // Выходы дешифратора
   5.8 Выводы ПЛИС XC3500E-4fg320 макета Nexys2
   NET "JA1" LOC = "L15" ;#Pin1
   NET "JA2" LOC = "K12" ;#Pin2
   NET "JA3" LOC = "L17" ;#Pin3
   NET "JA4" LOC = "M15" ;#Pin4
   NET "JB1" LOC = "M13" ;#Pin1
   NET "JB2" LOC = "R18";#Pin2
   NET "JC1" LOC = "G15" ;#Pin1
   NET "JC2" LOC = "J16" :#Pin2
   NET "JC3" LOC = "G13" ;#Pin3
   NET "JC4" LOC = "H16" ;#Pin4
   NET "JD1" LOC = "J13" ;#Pin1
   NET "JD2" LOC = "M18" :#Pin2
   NET "JD3" LOC = "N18" ;#Pin3
   NET "JD4" LOC = "P18"; #Pin4
   NET "an<0>" LOC = "F17" ; #AN0
   NET "an < 1 > " LOC = "H17" ; #AN1
   NET "an<2>" LOC = "C18"; #AN2
   NET "an<3>" LOC = "F15"; #AN3
   NET "F50MHz" LOC = "B8"; \#F50MHz
   NET "seg<0>" LOC = "L18"; #CA
   NET "seg<1>" LOC = "F18" ; #CB
   NET "seg<2>" LOC = "D17" ; #CC
   NET "seg<3>" LOC = "D16" ; #CD
```

NET "seg<4>" LOC = "G14"; #CE NET "seg<5>" LOC = "J17"; #CF NET "seg<6>" LOC = "H14"; #CG NET "seg<7>" LOC = "C17"; #CP NET "SWT<0>" LOC = "G18"; #SWT0 NET "SWT<1>" LOC = "H18"; #SWT1



