Problem Set 2

Math 255: Analysis I

Due: Thursday, Feb 1st at 11:59pm EST

Problem 1.

- 1. Using the Peano axioms and our subsequent definitions of addition and multiplication on \mathbb{N} prove: Note that by lemma proved in class, we can induct on \mathbb{N}_0 instead of \mathbb{N} for the following proofs.
 - (a) Commutativity of addition, $\forall a, b \in \mathbb{N}$ a + b = b + a.

Proof. We will prove by induction on a.

Base Case: Consider a = 0.

$$a+b=0+b$$

= b (by definition of addition)
= $b+0$ (proven earlier through induction in class)
= $b+a$

Thus, the base case holds since a + b = b + a.

Inductive Step: Assume the statement is true for some natural number a, i.e., a + b = b + a. We need to show it holds for S(a).

$$S(a) + b = S(a + b)$$
 (by definition of addition)
= $S(b + a)$ (by the inductive hypothesis)
= $b + S(a)$ (proven earlier through induction in class)

Therefore, the inductive case also holds, completing the proof.

(b) Associativity of addition. $\forall a, b, c \in \mathbb{N}$ (a+b)+c=a+(b+c).

Proof. We will prove this by induction on a.

Base Case: Consider a = 0.

$$(a+b)+c=(0+b)+c$$

= $b+c$ (by definition of addition)
= $0+(b+c)$ (by definition of addition)
= $a+(b+c)$ (since $a=0$)

Thus, the base case holds.

Inductive Step: Assume the statement is true for some natural number a, i.e., (a + b) + c = a + (b + c). We need to show it holds for S(a). Consider (S(a) + b) + c.

$$(S(a) + b) + c = S(a + b) + c$$
 (by the definition of addition)
 $= S((a + b) + c)$ (by the definition of addition)
 $= S(a + (b + c))$ (by the inductive hypothesis)
 $= S(a) + (b + c)$ (by the definition of addition)

Therefore, the inductive step holds, completing the proof.

(c) Commutativity of multiplication. $\forall a, b \in \mathbb{N}$ $a \times b = b \times a$.

Proof. We will prove this by induction on a.

Base Case: Consider a = 0.

$$a \times b = 0 \times b$$

= 0 (by definition of multiplication)
 $b \times a = b \times 0$
= 0 (we will prove this below)

We will prove $b \times 0 = 0$ by induction on b.

Base Case': Consider b = 0.

$$b \times 0 = 0 \times 0$$

= 0 (by definition of multiplication)

Inductive Step': Assume the statement is true for some natural number b, i.e., $b \times 0 = 0$. We need to show it holds for S(b).

$$S(b) \times 0 = b \times 0 + 0$$

= 0 + 0 (by the inductive hypothesis)
= 0 (by definition of addition)

Therefore, the base case holds.

Inductive Step: Assume the statement is true for some natural number a, i.e., $a \times b = b \times a$. We need to show it holds for S(a). Consider $S(a) \times b$.

$$S(a) \times b = (a \times b) + b$$
 (by definition of multiplication)
= $(b \times a) + b$ (by the inductive hypothesis)
= $b \times S(a)$ (we will prove this below)

We will prove $(b \times a) + b = b \times S(a)$ by induction on b.

Base Case": Consider b = 0.

$$(b \times a) + b = (0 \times a) + 0$$

= $0 + 0$ (by definition of multiplication)
= $0 \times S(a)$ (by definition of multiplication)
= $b \times S(a)$

Inductive Step": Assume the statement is true for some natural number b, i.e., $(b \times a) + b = b \times S(a)$. We need to show it holds for S(b).

$$(S(b) \times a) + S(b) = ((b \times a) + a) + S(b)$$
 (by definition of multiplication)
 $= S(b) + ((b \times a) + a)$ (by commutativity of addition)
 $= S(b + ((b \times a) + a))$ (by definition of addition)
 $= S((b + (b \times a)) + a)$ (by associativity of addition)
 $= S(b + (b \times a)) + S(a)$ (by definition of addition)
 $= S((b \times a) + b) + S(a)$ (by commutativity of addition)
 $= S(b \times S(a)) + S(a)$ (by the inductive hypothesis)
 $= S(b) \times S(a)$ (by definition of multiplication)

Therefore, the inductive step holds, completing the proof.

(d) Associativity of multiplication. $\forall a, b, c \in \mathbb{N}$, $(a \times b) \times c = a \times (b \times c)$. Before we prove associativity of multiplication, we will first prove distributivity holds in \mathbb{N} , i.e. that $\forall a, b, c \in \mathbb{N}$, $(a + b) \times c = (a \times c) + (b \times c)$.

Proof. We will prove this by induction on a.

Base Case: Consider a = 0.

$$\begin{array}{l} (a+b)\times c = (0+b)\times c\\ \\ = b\times c\\ \\ = 0+(b\times c)\\ \\ = (0\times c)+(b\times c) \end{array} \qquad \begin{array}{l} \text{(by definition of addition)}\\ \text{(by definition of multiplication)} \end{array}$$

Inductive Step: Assume the statement is true for some natural number a, i.e., $(a + b) \times c = (a \times c) + (b \times c)$. We need to show it holds for S(a).

$$\begin{split} (S(a)+b)\times c &= S(a+b)\times c & \text{(by definition of addition)} \\ &= ((a+b)\times c) + c & \text{(by definition of multiplication)} \\ &= ((a\times c) + (b\times c)) + c & \text{(by the inductive hypothesis)} \\ &= ((a\times c) + c) + (b\times c) & \text{(by asso. and comm. of addition)} \\ &= (S(a)\times c) + (b\times c) & \text{(by definition of multiplication)} \end{split}$$

Therefore, the inductive step holds, completing the proof.

No we return to the proof of associativity of multiplication.

Proof. We will prove this by induction on a.

Base Case: Consider a = 0.

$$(a \times b) \times c = (0 \times b) \times c$$

 $= 0 \times c$ (by definition of multiplication)
 $= 0$ (by definition of multiplication)
 $= 0 \times (b \times c)$ (by definition of multiplication)
 $= a \times (b \times c)$ (since $a = 0$)

Inductive Step: Assume the statement is true for some natural number a, i.e., $(a \times b) \times c = a \times (b \times c)$. We need to show it holds for S(a).

$$(S(a) \times b) \times c = ((a \times b) + b) \times c$$
 (by definition of multiplication)

$$= ((a \times b) \times c) + (b \times c)$$
 (by distributivity in \mathbb{N})

$$= (a \times (b \times c)) + (b \times c)$$
 (by the inductive hypothesis)

$$= S(a) \times (b \times c)$$
 (by definition of multiplication)

Note that we have assumed $\forall a, b \in \mathbb{N}$, $a \times b \in \mathbb{N}$ in our application of distributivity. We will prove that addition and multiplication are well defined in \mathbb{N} , i.e. $\forall a, b \in \mathbb{N}$, $a + b \in \mathbb{N}$ and $a \times b \in \mathbb{N}$.

Proof. We will prove that addition and multiplication are well defined in \mathbb{N} by induction on a. First, addition.

Base Case: Consider a = 0.

3

Inductive Step: Assume the statement is true for some natural number a, i.e., $a + b \in \mathbb{N}$. We need to show it holds for S(a).

$$S(a) + b = S(a + b)$$
 (by definition of addition)
 $\in \mathbb{N}$ ($a + b \in \mathbb{N}$ by inductive step and Peano Axiom (II))

Therefore, addition is well defined in \mathbb{N} .

Now, multiplication.

Base Case: Consider a = 0.

$$\begin{aligned} a\times b &= 0\times b\\ &= 0\\ &\in \mathbb{N} \end{aligned} \qquad \text{(by definition of multiplication)}$$

$$\in \mathbb{N} \qquad \text{(since $0\in\mathbb{N}$, in this case \mathbb{N}_0, but can treat the same because of lemma in class)}$$

Inductive Step: Assume the statement is true for some natural number a, i.e., $a \times b \in \mathbb{N}$. We need to show it holds for S(a).

$$S(a) \times b = (a \times b) + b$$
 (by definition of multiplication)
 $\in \mathbb{N}$ ($a \times b \in \mathbb{N}$ by inductive step and addition well-defined)

Therefore, multiplication is well defined in \mathbb{N} .

2. Using our formal construction of \mathbb{Z} from \mathbb{N} and the subsequent definition of addition on \mathbb{Z} - prove the commutativity of addition in \mathbb{Z} .

Proof. We will prove that
$$\forall [n-m], [k-l] \in \mathbb{Z}, [n-m] + [k-l] = [k-l] + [n-m].$$

$$[n-m] + [k-l] = [(n+k) - (m+l)] \qquad \text{(by definition of addition on } \mathbb{Z})$$

$$= [(k+n) - (l+m)] \qquad \text{(by commutativity of addition in } \mathbb{N})$$

$$= [k-l] + [n-m] \qquad \text{(by definition of addition on } \mathbb{Z})$$

Therefore, the commutativity of addition in \mathbb{Z} holds.

3. Using our formal construction of $\mathbb Q$ from $\mathbb Z$ and the subsequent definition of addition on $\mathbb Z$ - prove the commutativity of addition in $\mathbb Q$.

Proof. Before proving the commutativity of addition in \mathbb{Q} , we will prove the commutativity of multiplication in \mathbb{Z} . We will prove that $\forall [n-m], [k-l] \in \mathbb{Z}, [n-m] \times [k-l] = [k-l] \times [n-m]$.

$$[n-m] \times [k-l] = [(n \times k + m \times l) - (m \times k + n \times l)]$$
 (by definition of multiplication on \mathbb{Z})
$$= [(k \times n + l \times m) - (k \times m + l \times n)]$$
 (by commutativity of multiplication in \mathbb{N})
$$= [(k \times n + l \times m) - (l \times n + k \times m)]$$
 (by commutativity of addition in \mathbb{N})
$$= [k-l] \times [n-m]$$
 (by definition of multiplication on \mathbb{Z})

Proof. We will prove that $\forall [p//q], [r//s] \in \mathbb{Q}, [p//q] + [r//s] = [r//s] + [p//q].$

$$[p//q] + [r//s] = [(p \times s + q \times r)//q \times s]$$
 (by definition of addition on \mathbb{Q})

$$= [(r \times q + s \times p)//q \times s]$$
 (by commutativity of addition in \mathbb{Z})

$$= [(r \times q + s \times p)//s \times q]$$
 (by commutativity of multiplication in \mathbb{Z})

$$= [r//s] + [p//q]$$
 (by definition of addition on \mathbb{Q})

Therefore, the commutativity of addition in \mathbb{Q} holds.

 $^{^1}$ Try to convince yourselves that one can indeed prove all the properties of a field on $\mathbb Q$ using our constructions.

Problem 2. Using induction on $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$ and the definition of addition prove the following:

1. Cancellation law: $\forall n, m, k \in \mathbb{N}_0$ if n + k = n + m then k = m.

Proof. We will prove this by induction on n.

Base Case: Consider n = 0.

$$n + k = n + m \implies 0 + k = 0 + m$$

 $\implies k = m$ (by definition of addition)

Thus, the base case holds.

Inductive Step: Assume the statement is true for some natural number n, i.e., n+k=n+m implies k=m. We need to show it holds for S(n).

$$S(n) + k = S(n) + m \implies S(n+k) = S(n+m)$$
 (by definition of addition)
 $\implies S(k) = S(m)$ (by the inductive hypothesis)
 $\implies k = m$ (by Peano Axiom (IV), i.e., S is surjective)

Therefore, the inductive step holds, completing the proof.

2. If $k_1, k_2 \in \mathbb{N}_0$ satisfy $k_1 + k_2 = 0$ then $k_1 = k_2 = 0$.

Proof. We will prove the contrapositive statement: If $k_1 \neq 0$ or $k_2 \neq 0$, then $k_1 + k_2 \neq 0$.

Suppose, for the sake of contradiction, that $k_1 \neq 0$ or $k_2 \neq 0$ and $k_1 + k_2 = 0$. Without loss of generality, assume $k_1 \neq 0$. This means k_1 is a successor of some number in \mathbb{N}_0 , say $k_1 = S(p)$ for some $p \in \mathbb{N}_0$.

By the definition of addition:

$$k_1 + k_2 = S(p) + k_2 = S(p + k_2)$$

Since S(p) is the successor of p, $S(p+k_2)$ cannot be 0 by the properties of natural numbers (specifically, no natural number's successor is 0).

Hence, $k_1 + k_2 = S(p + k_2) \neq 0$, which contradicts our assumption. Therefore, if $k_1 + k_2 = 0$, it must be the case that $k_1 = k_2 = 0$.

Problem 3. Recall that for all $n, m \in \mathbb{N}_0$ we defined n < m if and only if m = n + k for some $k \in \mathbb{N}$. Prove that \mathbb{N}_0 with this relation is an ordered set, i.e. prove:

1. Trichotomy: $\forall n, m \in \mathbb{N}_0$ exactly one of the following holds

$$n < m$$
 or $n = m$ or $m < n$.

Proof. We consider the following cases:

- If n=m, then neither n < m nor m < n can be true by the definition of < in \mathbb{N}_0 .
- If n < m, i.e., m = n + k for some $k \in \mathbb{N}$, then $n \neq m$ and $m \neq n + k'$ for any $k' \in \mathbb{N}$, hence m < n cannot be true.

• Similarly, if m < n, then neither n < m nor n = m can be true.

Thus, exactly one of n < m, n = m, or m < n holds for any $n, m \in \mathbb{N}_0$.

2. Transitivity: $\forall n, m, k \in N_0 \text{ if } n \leq m \text{ and } m \leq k \text{ then } n \leq k.$

Proof. We consider the following cases:

- If n = m and m = k, then clearly n = k.
- If n = m and m < k, i.e., k = m + r for some $r \in \mathbb{N}$, then k = n + r, implying n < k.
- If n < m and m = k, i.e., m = n + q for some $q \in \mathbb{N}$, then k = n + q, implying n < k.
- If n < m and m < k, i.e., m = n + q and k = m + r for some $q, r \in \mathbb{N}$, then k = n + q + r. Since $q + r \in \mathbb{N}$, we have n < k.

In all cases, $n \leq k$.

Problem 4.

1. Prove that $\mathbb{Q}(\sqrt{2}) := \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$, together with the usual addition and multiplication operations, is a field.

Proof. For any two elements $a+b\sqrt{2}, c+d\sqrt{2}\in\mathbb{Q}(\sqrt{2})$, we define addition and multiplication as follows:

$$(a+b\sqrt{2}) + (c+d\sqrt{2}) = (a+c) + (b+d)\sqrt{2}$$
$$(a+b\sqrt{2}) \times (c+d\sqrt{2}) = (ac+2(bd)) + (ad+bc)\sqrt{2}$$

Note: We will use the shorthand for multiplication in \mathbb{Q} , i.e., $a \times b = ab$.

We will prove that $\mathbb{Q}(\sqrt{2})$ is a field by showing that it satisfies all the properties of a field.

Commutativity of addition: $\forall a + b\sqrt{2}, c + d\sqrt{2} \in \mathbb{Q}(\sqrt{2})$, we have

$$(a+b\sqrt{2})+(c+d\sqrt{2})=(a+c)+(b+d)\sqrt{2}$$
 (by definition of addition)
= $(c+a)+(d+b)\sqrt{2}$ (by commutativity of addition in \mathbb{Q})
= $(c+d\sqrt{2})+(a+b\sqrt{2})$ (by definition of addition)

Associativity of addition: $\forall a + b\sqrt{2}, c + d\sqrt{2}, e + f\sqrt{2} \in \mathbb{Q}(\sqrt{2}),$ we have

$$((a + b\sqrt{2}) + (c + d\sqrt{2})) + (e + f\sqrt{2})$$

$$= ((a + c) + (b + d)\sqrt{2}) + (e + f\sqrt{2})$$

$$= ((a + c) + e) + ((b + d) + f)\sqrt{2}$$
(by def. of add.)
$$= (a + (c + e)) + (b + (d + f))\sqrt{2}$$
(by asso. of addition in \mathbb{Q})
$$= (a + b\sqrt{2}) + ((c + e) + (d + f)\sqrt{2})$$
(by def. of add.)
$$= (a + b\sqrt{2}) + ((c + d\sqrt{2}) + (e + f\sqrt{2}))$$
(by def. of add.)

Existence of neutral element for addition: $\exists 0 + 0\sqrt{2} \in \mathbb{F} : \forall a + b\sqrt{2} \in \mathbb{Q}(\sqrt{2})$, we have

$$(a+b\sqrt{2})+(0+0\sqrt{2})=(a+0)+(b+0)\sqrt{2}$$
 (by definition of addition)
$$=a+b\sqrt{2}$$
 (by $\mathbb Q$ is field, add. neutral element)

Existence of additive inverse: $\forall a + b\sqrt{2} \in \mathbb{Q}(\sqrt{2})$, we have

$$(a+b\sqrt{2})+((-a)+(-b)\sqrt{2})=(a+(-a))+(b+(-b))\sqrt{2} \qquad \text{(by definition of addition)}$$

$$=0+0\sqrt{2} \qquad \text{(by } \mathbb{Q} \text{ is field, additive inverse)}$$

$$=0 \qquad \text{(by definition of addition in } \mathbb{Q})$$

Commutativity of multiplication: $\forall a + b\sqrt{2}, c + d\sqrt{2} \in \mathbb{Q}(\sqrt{2})$, we have

$$(a+b\sqrt{2}) \times (c+d\sqrt{2}) = (ac+2(bd)) + (ad+bc)\sqrt{2}$$
 (by definition of multiplication)
 $= (ca+2(db)) + (da+cb)\sqrt{2}$ (by commutativity of multiplication in \mathbb{Q})
 $= (ca+2(db)) + (cb+da)\sqrt{2}$ (by commutativity of addition in \mathbb{Q})
 $= (c+d\sqrt{2}) \times (a+b\sqrt{2})$ (by definition of multiplication)

Associativity of multiplication: $\forall a + b\sqrt{2}, c + d\sqrt{2}, e + f\sqrt{2} \in \mathbb{Q}(\sqrt{2}),$ we have

$$\begin{array}{l} ((a+b\sqrt{2})\times(c+d\sqrt{2}))\times(e+f\sqrt{2})\\ =((ac+2(bd))+(ad+bc)\sqrt{2})\times(e+f\sqrt{2})\\ =((ac+2bd)e+2(ad+bc)f)+((ac+2(bd))f+(ad+bc)e)\sqrt{2}\\ =(ace+2bde+2adf+2bcf)+(acf+2bdf+ade+bce)\sqrt{2}\\ =(ace+2adf+2bde+2bcf)+(acf+ade+bce+2bdf)\sqrt{2}\\ =(a(ce+2(df))+2b(cf+de))+(a(cf+de)+b(ce+2(df)))\sqrt{2}\\ =(a+b\sqrt{2})\times((ce+2(df))+(cf+de\sqrt{2}))\\ =(a+b\sqrt{2})\times((ce+d\sqrt{2})\times(e+f\sqrt{2})) \end{array} \qquad \begin{array}{l} \text{(by def. of multi.)}\\ \text{(by def. of multi.)}$$

Existence of neutral element for multiplication: $\exists 1 + 0\sqrt{2} \in \mathbb{F} : \forall a + b\sqrt{2} \in \mathbb{Q}(\sqrt{2})$, we have

$$(a+b\sqrt{2})\times(1+0\sqrt{2}) = (a\times 1+2b\times 0) + (a\times 0+b\times 1)\sqrt{2}$$
 (by definition of multiplication)
$$= a+b\sqrt{2}$$
 (by definition of multiplication in \mathbb{Q})

Existence of multiplicative inverse: $\forall a + b\sqrt{2} \in \mathbb{Q}(\sqrt{2})$, we have

$$(a+b\sqrt{2}) \times \left(\frac{a}{a^2-2b^2} + \left(-\frac{b}{a^2-2b^2}\right)\sqrt{2}\right)$$

$$= \left(a\frac{a}{a^2-2b^2} + 2\left(b\left(-\frac{b}{a^2-2b^2}\right)\right)\right) + \left(a\left(-\frac{b}{a^2-2b^2}\right) + b\frac{a}{a^2-2b^2}\right)\sqrt{2}$$
(by definition of multiplication)
$$= \left(\frac{a^2}{a^2-2b^2} + \frac{-2b^2}{a^2-2b^2}\right) + \left(\frac{-ab}{a^2-2b^2} + \frac{ab}{a^2-2b^2}\right)\sqrt{2}$$
(by definition of multiplication in \mathbb{Q})
$$= \frac{a^2-2b^2}{a^2-2b^2} + 0\sqrt{2}$$
(by definition of addition in \mathbb{Q})
$$= 1$$
(by definition of multiplication in \mathbb{Q})

Distributivity of multiplication over addition: $\forall a+b\sqrt{2}, c+d\sqrt{2}, e+f\sqrt{2} \in \mathbb{Q}(\sqrt{2})$, we have

$$(a+b\sqrt{2})\times((c+d\sqrt{2})+(e+f\sqrt{2}))$$
 (by definition of addition)
$$=(a(c+e)+2b(d+f))+(a(d+f)+b(c+e))\sqrt{2}$$
 (by definition of multiplication)
$$=(ac+ae+2bd+2bf)+(ad+af+bc+be)\sqrt{2}$$
 (by distributivity in \mathbb{Q})
$$=(ac+ae+2bd+2bf)+(ad+bc)\sqrt{2}+(bc+be)\sqrt{2}$$
 (by distributivity in \mathbb{Q})
$$=(ac+2bd)+(ad+bc)\sqrt{2}+(ae+2bf)+(af+be)\sqrt{2}$$
 (by distributivity in \mathbb{Q})
$$=(ac+2bd)+(ad+bc)\sqrt{2}+(ae+2bf)+(af+be)\sqrt{2}$$
 (by asso., comm., in \mathbb{Q})
$$=(a+b\sqrt{2})\times(c+d\sqrt{2})+(a+b\sqrt{2})\times(e+f\sqrt{2})$$
 (by definition of multiplication)

Therefore, $\mathbb{Q}(\sqrt{2})$ is a field.

2. Verify that in $\mathbb{F}_5 = \{0,1,2,3,4\}$ together with multiplication mod 5, every non-zero element has a multiplicative inverse.²

Proof. Here is the multiplication mod 5 table for \mathbb{F}_5 :

	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

We can see that every non-zero element has a multiplicative inverse, i.e., $1 \cdot 1 = 1$, $2 \cdot 3 = 1$, $3 \cdot 2 = 1$, and $4 \cdot 4 = 1$.

 $^{^2{\}rm This}$ is indeed a field.

Problem 5.

1. Let \mathbb{F} be any field and let $x, y \in \mathbb{F}$. Prove that if $x \cdot y = 0$ then x = 0 or y = 0.

Proof. Suppose, towards a contradiction, that both $x \neq 0$ and $y \neq 0$. In a field \mathbb{F} , every non-zero element has a multiplicative inverse. Thus, there exist elements x^{-1} and y^{-1} in \mathbb{F} such that $x \cdot x^{-1} = 1$ and $y \cdot y^{-1} = 1$.

Multiply both sides of the equation $x \cdot y = 0$ by x^{-1} on the left and y^{-1} on the right:

$$x^{-1} \cdot (x \cdot y) \cdot y^{-1} = x^{-1} \cdot 0 \cdot y^{-1}.$$

Using the associativity of multiplication in fields, we have:

$$(x^{-1} \cdot x) \cdot y \cdot y^{-1} = 0.$$

Substituting the identity elements, we get:

$$1 \cdot y \cdot y^{-1} = 0.$$

$$1 \cdot 1 = 0.$$

$$1 = 0$$
.

This is a contradiction because in a field, the identity elements for addition and multiplication are distinct. Therefore, either x = 0 or y = 0.

2. Let $\mathbb{F}_m = \{0, 1, 2, ..., m-1\}$ together with addition and multiplication mod m. Prove that if m is not prime then \mathbb{F}_m is not a field.

Proof. Suppose, towards a contradiction, that \mathbb{F}_m is a field and m not prime. Then there exist $x, y \in \mathbb{F}_m$ such that $x \neq 0, y \neq 0$, and $a \cdot b = m \mod m = 0$. By Problem 5.1, this implies that x = 0 or y = 0, which is a contradiction. Therefore, \mathbb{F}_m is not a field.

Problem 6. Let S be an ordered set and let A and B be two subsets of S. Prove the following:

1.	If A has a maximum then it also has a supremum and $\sup A = \max A$.
	<i>Proof.</i> Let $\max A = m$ be the maximum element of A . By definition, for all $a \in A$, $a \le m$. To show m is the supremum of A , we must prove that m is an upper bound of A and that any other upper bound of A is greater than or equal to m .
	Since m is the maximum, it is an upper bound of A (no element in A is greater than m). Now suppose there is another upper bound u of A . Since $m \in A$ and u is an upper bound, it must be that $m \le u$.
	Therefore, m is the least upper bound or supremum of A , and hence $\sup A = \max A$.
2.	Assume there exists a supremum for A in S and a supremum for B in S . If for all $a \in A$ there exists $b \in B$ satisfying $a \le b$ then sup $A \le \sup B$

2 $b \in B$ satisfying $a \leq b$ then $\sup A \leq \sup B$.

Proof. Let $\sup A = s_A$ and $\sup B = s_B$. By assumption, for each $a \in A$, there exists a $b \in B$ such that $a \leq b$. Since s_B is an upper bound of B, it must be that $b \leq s_B$ for all $b \in B$. Combining these inequalities, we have $a \leq b \leq s_B$ for all $a \in A$. (By transitivity of order, shown in problem 3, part 2.) This means s_B is an upper bound of A. Since s_A is the least upper bound of A, it follows that $s_A \leq s_B$.

3. Assume as in (2) that $\sup A$, $\sup B$ exist and assume further that for all $a \in A$ there exists $b \in B$ satisfying a < b. Does this necessarily mean that sup $A < \sup B$?

Proof. No, consider the following counterexample. Let $A = \{\frac{n}{n+1} : n \in \mathbb{N}\}$ and $B = \{\frac{n}{n+1} : n \in \mathbb{N}\} \cup \{1\}$. Then for all $a \in A$, there exists $b \in B$ such that a < b, i.e. $1 \in B$. However, $\sup A = \sup B = 1$. \square