PATTERN RECOGNITION ON ORIENTED MATROIDS: κ^* -VECTORS AND REORIENTATIONS

ANDREY O. MATVEEV

ABSTRACT. The components of κ^* -vectors associated to a simple oriented matroid \mathcal{M} are the numbers of general or special tope committees for \mathcal{M} . Using the principle of inclusion-exclusion, we determine how the reorientations of \mathcal{M} on one-element subsets of its ground set affect κ^* -vectors.

Contents

1.	Introduction	1
2.	The Number of Tope Committees	3
3.	The Number of Tope Committees Containing no Pairs of	
	Opposites	4
4.	κ^* -Vectors and Reorientations on One-Element Sets	7
References		8

1. Introduction

Let $\mathcal{M} := (E_t, \mathcal{T})$ be a simple oriented matroid on the ground set E_t := $\{1, \ldots, t\}$, with set of topes \mathcal{T} ; throughout we will suppose that it is *simple*, that is, it contains no loops, parallel or *antiparallel* elements.

See, e.g., [2, 3, 4, 5, 12, 13, 15] on oriented matroids.

Associated to each element $e \in E_t$ are the corresponding positive half-space $\mathcal{T}_e^+ := \{T \in \mathcal{T} : T(e) = +\}$ and negative halfspace $\mathcal{T}_e^- := \{T \in \mathcal{T} : T(e) = -\}$ of \mathcal{M} . If $\mathcal{T}_e^{\bullet} \subset \mathcal{T}$ is a halfspace of \mathcal{M} then we denote by $\binom{\mathcal{T}_e^{\bullet}}{j}$ the family of j-subsets of the set \mathcal{T}_e^{\bullet} .

If $G \subseteq \mathcal{T}$ is a subset of topes then -G stands for the set of their opposites $\{-T: T \in G\}$.

If $A \subseteq E_t$ then $_{-A}\mathcal{M}$ denotes the oriented matroid obtained from \mathcal{M} by reorientation on the set A; if $a \in E_t$ then we write $_{-a}\mathcal{M}$ instead of $_{-\{a\}}\mathcal{M}$.

Key words and phrases. Blocking set, committee, halfspace, inclusion-exclusion, oriented matroid, tope.

²⁰¹⁰ Mathematics Subject Classification: 05E45, 52C40, 90C27.

A subset $\mathcal{K}^* \subset \mathcal{T}$ is called a *tope committee* for \mathcal{M} if for each element $e \in E_t$ it holds

$$|\{T \in \mathcal{K}^*: T(e) = +\}| > \frac{1}{2}|\mathcal{K}^*|,$$

see [7, 8, 9, 10]; in other words, if we replace the components – and + of the maximal covectors of the oriented matroid \mathcal{M} by the real numbers –1 and 1, respectively, then a collection $\mathcal{K}^* \subset \mathcal{T}$ is a committee for \mathcal{M} iff the strict inequality

$$\sum_{T \in \mathcal{K}^*} T > \mathbf{0}$$

holds componentwise.

Let $\mathbf{K}_k^*(\mathcal{M})$ denote the family of tope committees, of cardinality k, for \mathcal{M} , and let $\mathbf{K}^*(\mathcal{M}) := \dot{\bigcup}_{1 \leq k \leq |\mathcal{T}|-1} \mathbf{K}_k^*(\mathcal{M})$ denote the family of all tope committees for \mathcal{M} . By definition, the kth component $\kappa_k^*(\mathcal{M}) := \# \mathbf{K}_k^*(\mathcal{M})$ of the vector $\kappa^*(\mathcal{M}) \in \mathbb{N}^{|\mathcal{T}|/2}$, $1 \leq k \leq |\mathcal{T}|/2$, is the number of committees in the family $\mathbf{K}_k^*(\mathcal{M})$.

Similarly, we associate to each family $\mathbf{K}_{k}^{*}(\mathcal{M})$, $1 \leq k \leq |\mathcal{T}|/2$, of tope committees, of cardinality k, that contain no pairs of opposites, the kth component $\mathring{\kappa}_{k}^{*}(\mathcal{M}) := \# \mathbf{K}_{k}^{*}(\mathcal{M})$ of the vector $\mathring{\kappa}^{*}(\mathcal{M}) \in \mathbb{N}^{|\mathcal{T}|/2}$.

We always have $\overset{\circ}{\kappa}_2^*(\mathcal{M}) = \kappa_2^*(\mathcal{M}) = 0$. The oriented matroid \mathcal{M} is acyclic iff $\overset{\circ}{\kappa}_1^*(\mathcal{M}) = \kappa_1^*(\mathcal{M}) = 1$. If \mathcal{M} is not acyclic then $\overset{\circ}{\kappa}_1^*(\mathcal{M}) = \kappa_1^*(\mathcal{M}) = 0$ and $\overset{\circ}{\kappa}_3^*(\mathcal{M}) = \kappa_3^*(\mathcal{M})$.

If $\mathcal{K}^* \in \mathbf{K}_j^*(\mathcal{M})$, for some $j, 1 \leq j \leq |\mathcal{T}|/2$, then there are $|\mathcal{T}|/2 - j$ pairs of topes $\{T, -T\} \subset \mathcal{T}$ such that $|\mathcal{K}^* \cap \{T, -T\}| = 0$. If we add any such pairs of opposites to the set \mathcal{K}^* then the resulting set is a committee for \mathcal{M} . Thus, given an integer k such that $j \leq k \leq |\mathcal{T}|/2$ and the difference k - j is even, in the family $\mathbf{K}_k^*(\mathcal{M})$ there are exactly $\binom{|\mathcal{T}|-2j/2}{(k-j)/2}$ tope committees which contain the committee \mathcal{K}^* as a subset. We see that

$$\kappa_k^*(\mathcal{M}) = \sum_{\substack{1 \le j \le k: \\ j \equiv k \pmod{2}}} \binom{(|\mathcal{T}| - 2j)/2}{(k - j)/2} \cdot \mathring{\kappa}_j^*(\mathcal{M}) , \quad 1 \le k \le |\mathcal{T}|/2 ;$$

for example, $\kappa_3^*(\mathcal{M}) = \frac{|\mathcal{T}|-2}{2} \cdot \mathring{\kappa}_1^*(\mathcal{M}) + \mathring{\kappa}_3^*(\mathcal{M})$, and $\kappa_5^*(\mathcal{M}) = \frac{(|\mathcal{T}|-4)(|\mathcal{T}|-2)}{8} \cdot \mathring{\kappa}_1^*(\mathcal{M}) + \frac{|\mathcal{T}|-6}{2} \cdot \mathring{\kappa}_3^*(\mathcal{M}) + \mathring{\kappa}_5^*(\mathcal{M})$.

The family $\mathbf{A}^*(\mathcal{M})$ of anti-committees for the oriented matroid \mathcal{M} is defined as the family $\{-\mathcal{K}^*: \mathcal{K}^* \in \mathbf{K}^*(\mathcal{M})\}.$

Let A be any subset of the ground set E_t . The tope sets of the oriented matroids $_{-A}\mathcal{M}$ and $_{-(E_t-A)}\mathcal{M}$ coincide and, thanks to the composite bijection

$$\mathbf{K}^*({}_{-A}\mathcal{M}) \to \mathbf{A}^*({}_{-A}\mathcal{M}) \to \mathbf{A}^*({}_{-(E_t-A)}\mathcal{M}) \to \mathbf{K}^*({}_{-(E_t-A)}\mathcal{M}) ,$$

$$\mathcal{K}^* \mapsto -\mathcal{K}^* \mapsto -\mathcal{K}^* \mapsto \mathcal{K}^* ,$$

the (anti-)committee structures of $_{-A}\mathcal{M}$ and $_{-(E_t-A)}\mathcal{M}$ are identical; in particular, we have

$$\kappa^*({}_{-A}\mathcal{M}) = \kappa^*({}_{-(E_t-A)}\mathcal{M})$$

and

$$\overset{\circ}{\kappa}^*({}_{-A}\mathcal{M}) = \overset{\circ}{\kappa}^*({}_{-(E_t - A)}\mathcal{M}) \ .$$

In this paper we compare κ^* -vectors of the oriented matroids \mathcal{M} and ${}_{-A}\mathcal{M}$, where $A := \{a\}$ are one-element subsets of the ground set E_t . In Section 4 we sum up the observations that concern general tope committees and committees containing no pairs of opposites, made in Sections 2 and 3, respectively.

2. The Number of Tope Committees

Consider general tope committees for the oriented matroid \mathcal{M} and begin by restating expression [7, (3.2)]:

Lemma 2.1. The number $\#\mathbf{K}_k^*(\mathcal{M})$ of tope committees, of cardinality k, $1 \leq k \leq |\mathcal{T}| - 1$, for the oriented matroid $\mathcal{M} := (E_t, \mathcal{T})$, is

$$#\mathbf{K}_{k}^{*}(\mathcal{M}) = \begin{pmatrix} |\mathcal{T}| \\ |\mathcal{T}| - \ell \end{pmatrix} + \sum_{\substack{\mathcal{G} \subseteq \bigcup_{e \in E_{t}} \binom{\mathcal{T}_{e}^{+}}{\lfloor (\ell+1)/2 \rfloor} : \\ 1 \leq \#\mathcal{G} \leq \binom{\ell}{\lfloor (\ell+1)/2 \rfloor}, \\ |\bigcup_{G \in \mathcal{G}} G| \leq \ell}} (-1)^{\#\mathcal{G}} \cdot \begin{pmatrix} |\mathcal{T}| - |\bigcup_{G \in \mathcal{G}} G| \\ |\mathcal{T}| - \ell \end{pmatrix},$$

$$(2.1)$$

where $\ell \in \{k, |\mathcal{T}| - k\}$.

Fix an integer k, $1 \le k \le |\mathcal{T}|/2$, a ground element $a \in E_t$, and an integer $\ell \in \{k, |\mathcal{T}| - k\}$. If we set

$$\alpha_{k}(a, \mathcal{M}) := \begin{pmatrix} |\mathcal{T}| \\ |\mathcal{T}| - \ell \end{pmatrix} + \sum_{\substack{\mathcal{G} \subseteq \bigcup_{e \in E_{t} - \{a\}} \binom{\mathcal{T}_{e}^{+}(\mathcal{M})}{\lfloor (\ell+1)/2 \rfloor} : \\ 1 \leq \#\mathcal{G} \leq \binom{\ell}{\lfloor (\ell+1)/2 \rfloor}, \\ |\bigcup_{G \in \mathcal{G}} G| \leq \ell}} (-1)^{\#\mathcal{G}} \cdot \begin{pmatrix} |\mathcal{T}| - |\bigcup_{G \in \mathcal{G}} G| \\ |\mathcal{T}| - \ell \end{pmatrix}$$

then, according to (2.1), we have

$$\kappa_{k}^{*}(\mathcal{M}) = \alpha_{k}(a, \mathcal{M})
+ \sum_{\substack{\mathcal{G}' \subseteq \left(\frac{\tau_{e}^{+}(\mathcal{M})}{\lfloor(\ell+1)/2\rfloor}\right) - \bigcup_{e \in E_{t} - \{a\}} \left(\frac{\tau_{e}^{+}(\mathcal{M})}{\lfloor(\ell+1)/2\rfloor}\right) : 1 \leq \#\mathcal{G}' \leq \left(\frac{\ell}{\lfloor(\ell+1)/2\rfloor}\right), \ |\bigcup_{G \in \mathcal{G}'} G| \leq \ell,}
\mathcal{G}'' \subseteq \bigcup_{e \in E_{t} - \{a\}} \left(\frac{\tau_{e}^{+}(\mathcal{M})}{\lfloor(\ell+1)/2\rfloor}\right) : 0 \leq \#\mathcal{G}'' \leq \left(\frac{\ell}{\lfloor(\ell+1)/2\rfloor}\right) - \#\mathcal{G}', \ |\bigcup_{G \in \mathcal{G}' \cup \mathcal{G}''} G| \leq \ell}
\cdot \left(\frac{|\mathcal{T}| - |\bigcup_{G \in \mathcal{G}' \cup \mathcal{G}''} G|}{|\mathcal{T}| - \ell}\right) . \quad (2.2)$$

In an analogous expression for $\kappa_k^*(_{-a}\mathcal{M})$ the families \mathcal{G}' range over subfamilies of the family $\binom{\mathcal{T}_a^-(\mathcal{M})}{|(\ell+1)/2|} - \bigcup_{e \in E_t - \{a\}} \binom{\mathcal{T}_e^+(\mathcal{M})}{|(\ell+1)/2|}$.

3. The Number of Tope Committees Containing no Pairs of Opposites

Before proceeding to consider the tope committees that contain no pairs of opposites, we collect a few observations:

Let m be a positive integer, and $\pm[1,m]$ the 2m-set $\{-m,\ldots,-1,1,\ldots,m\}$. If we fix a subset $W\subseteq\pm[1,m]$ and denote by -W the set $\{-w:\ w\in W\}$ then we have

$$|\pm [1, m]| - |W| - 2\#\{\{i, -i\} \subseteq \pm [1, m] : |\{i, -i\} \cap W| = 0\}$$

= $|W \cup -W| - |W|$ (3.1)

and

$$\#\{\{i,-i\} \subseteq \pm[1,m]: |\{i,-i\} \cap W| = 0\} = m - \frac{1}{2}|W \cup -W|$$
. (3.2)

Recall that the number of k-subsets $V \subset \pm [1, m]$, such that

$$v \in V \implies -v \notin V , \qquad (3.3)$$

is $\binom{m}{k}2^k$ — this is the number of (k-1)-dimensional faces of an m-dimensional crosspolytope, see [6].

If $W \neq \pm [1, m]$ then consider some nonempty k-set $V \subset \pm [1, m]$ such that $|V \cap W| = 0$ and implication (3.3) holds. Let $V = V' \dot{\cup} V''$ be the partition of V into two subsets with the following properties:

$$v' \in V' \implies -v' \in W ,$$
 (3.4)

$$v'' \in V'' \implies -v'' \notin W . \tag{3.5}$$

Let |V'|=:j and |V''|=:k-j, for some j. In fact, (3.1) and (3.2) imply that there are $\binom{|W\cup -W|-|W|}{j}$ sets $V'\subset \pm[1,m]$ such that |V'|=j, $|V'\cap W|=0$ and (3.4) holds; there are $\binom{m-\frac{1}{2}|W\cup -W|}{k-j}2^{k-j}$ sets $V''\subset \pm[1,m]$ such that |V''|=k-j, $|V''\cap W|=0$ and (3.5) holds.

Let $\mathbb{B}(2m)$ denote the Boolean lattice of subsets of the set $\pm [1, m]$. The empty subset of $\pm [1, m]$ is denoted by $\hat{0}$. If $b \in \mathbb{B}(2m) - \{\hat{0}\}$ then we let -b denote the set of the negations of elements from b.

Let r be a rational number, $0 \le r < 1$, and k an integer number, $1 \le k \le m$. If Λ is an antichain in $\mathbb{B}(2m)$, such that $\lfloor r \cdot k \rfloor + 1 \le \min_{\lambda \in \Lambda} \rho(\lambda)$, then consider the subset

$$\overset{\circ}{\mathbf{I}}_{r,k} \big(\mathbb{B}(2m), \Lambda \big) := \big\{ b \in \mathbb{B}(2m) : \\
\rho(b) = k, \ b \wedge -b = \hat{0}, \ \rho(b \wedge \lambda) > r \cdot k \quad \forall \lambda \in \Lambda \big\} \subset \mathbb{B}(2m)^{(k)},$$

where $\rho(\cdot)$ denotes the poset rank of an element in $\mathbb{B}(2m)$, and $\mathbb{B}(2m)^{(k)}$:= $\{b \in \mathbb{B}(2m) : \rho(b) = k\}$. The collection $\mathbf{I}_{r,k}(\mathbb{B}(2m), \Lambda)$ is the set of relatively r-blocking elements $b \in \mathbb{B}(2m)^{(k)}$ (with the additional property $b \wedge -b = \hat{0}$) for the antichain Λ in the lattice $\mathbb{B}(2m)$; relative blocking is discussed in [11].

Denote by $\mathfrak{I}(\lambda)$ the principal order ideal of the lattice $\mathbb{B}(2m)$ generated by an element $\lambda \in \Lambda$. Using the principle of inclusion-exclusion [1, 14], we obtain

$$|\mathbf{\tilde{I}}_{r,k}(\mathbb{B}(2m), \Lambda)| = \binom{m}{k} 2^{k} + \sum_{D \subseteq \min \bigcup_{\lambda \in \Lambda} (\mathbb{B}(2m)^{(\rho(\lambda) - \lfloor r \cdot k \rfloor)} \cap \Im(\lambda)): |D| > 0}$$

$$(-1)^{|D|} \cdot \sum_{0 \le j \le k} \binom{\rho(\bigvee_{d \in D} d \vee - \bigvee_{d \in D} d) - \rho(\bigvee_{d \in D} d)}{j}$$

$$\cdot \binom{m - \frac{1}{2}\rho(\bigvee_{d \in D} d \vee - \bigvee_{d \in D} d)}{k - j} 2^{k - j}, \quad (3.6)$$

where \min · denotes the set of minimal elements of a subposet. Consider the lattice

$$\mathcal{E} := \Bigl\{ \bigvee_{d \in D} d: \ D \subseteq \min \bigcup_{\lambda \in \varLambda} \bigl(\mathbb{B}(2m)^{(\rho(\lambda) - \lfloor r \cdot k \rfloor)} \cap \Im(\lambda) \bigr), \ |D| > 0 \Bigr\} \ \dot{\cup} \ \{ \hat{0} \} \ ,$$

where $\hat{0}$ is a new least element adjoined. If we let $\mu_{\mathcal{E}}(\cdot, \cdot)$ denote the *Möbius function* of the lattice \mathcal{E} , then we have

$$|\mathbf{\tilde{I}}_{r,k}(\mathbb{B}(2m), \Lambda)| = \binom{m}{k} 2^k + \sum_{z \in \mathcal{E}: \ z > \hat{0}} \mu_{\mathcal{E}}(\hat{0}, z)$$

$$\cdot \sum_{0 \le j \le k} \binom{\rho(z \lor -z) - \rho(z)}{j} \binom{m - \frac{1}{2}\rho(z \lor -z)}{k - j} 2^{k - j}, \quad (3.7)$$

where $\rho(z)$ denotes the poset rank of an element z in the lattice $\mathbb{B}(2m)$.

It was shown in [7] that any tope committee $\mathcal{K}^* \in \mathbf{K}_k^*(\mathcal{M})$ for the oriented matroid \mathcal{M} is a blocking k-set for the family $\bigcup_{e \in E_t} \binom{\mathcal{T}_e^+}{\lfloor (|\mathcal{T}| - k + 1)/2 \rfloor}$ of tope subsets, of cardinality $\lfloor (|\mathcal{T}| - k + 1)/2 \rfloor$, each of which is contained in some positive halfspace, see Lemma 2.1. As a consequence, the subfamily $\mathbf{K}_k^*(\mathcal{M}) \subset \mathbf{K}_k^*(\mathcal{M})$ is precisely the collection of blocking k-sets, that are free of opposites, for the family $\bigcup_{e \in E_t} \binom{\mathcal{T}_e^+}{\lfloor (|\mathcal{T}| - k + 1)/2 \rfloor}$. With the help of (3.6), we come to the following conclusion:

Lemma 3.1. The number $\#\mathbf{K}_k^*(\mathcal{M})$ of tope committees, of cardinality k, $1 \leq k \leq |\mathcal{T}|/2$, that contain no pairs of opposites, for the oriented matroid $\mathcal{M} := (E_t, \mathcal{T})$, is

$$\# \mathbf{K}_{k}^{\circ}(\mathcal{M}) = \binom{|\mathcal{T}|/2}{k} 2^{k} + \sum_{\substack{\mathcal{G} \subseteq \bigcup_{e \in E_{t}} \binom{\tau_{e}^{+}}{(\lfloor (|\mathcal{T}|-k+1)/2\rfloor}): \\ 1 \leq \#\mathcal{G} \leq \binom{|\mathcal{T}|-k}{\lfloor (|\mathcal{T}|-k+1)/2\rfloor}, \\ |\bigcup_{G \in \mathcal{G}} G| \leq |\mathcal{T}|-k} \\
\cdot \sum_{0 \leq j \leq k} \binom{|\bigcup_{G \in \mathcal{G}} G \cup -\bigcup_{G \in \mathcal{G}} G| - |\bigcup_{G \in \mathcal{G}} G|}{j} \\
\cdot \binom{\frac{1}{2}(|\mathcal{T}| - |\bigcup_{G \in \mathcal{G}} G \cup -\bigcup_{G \in \mathcal{G}} G|)}{k-j} 2^{k-j} . (3.8)$$

If \mathcal{G} is a family of tope subsets then we denote by $\mathcal{E}(\mathcal{G})$ the join-semilattice $\{\bigcup_{F\in\mathcal{F}}F: \mathcal{F}\subseteq\mathcal{G}, \ \#\mathcal{F}>0\}$ that consists of the unions of the sets from the family \mathcal{G} ordered by inclusion and augmented by a new least element $\hat{0}$ which is interpreted as the empty set. The Möbius function of the lattice $\mathcal{E}(\mathcal{G})$ is denoted by $\mu_{\mathcal{E}}(\cdot,\cdot)$.

With the help of (3.7), Lemma 3.1 can be restated in the following way:

Proposition 3.2. The number $\#\mathbf{K}_k^*(\mathcal{M})$ of tope committees which are free of opposites, of cardinality k, $1 \leq k \leq |\mathcal{T}|/2$, for the oriented matroid $\mathcal{M} := (E_t, \mathcal{T})$, is:

$$\begin{split} \#\overset{\circ}{\mathbf{K}}_{k}^{*}(\mathcal{M}) &= \binom{|\mathcal{T}|/2}{k} 2^{k} + \sum_{G \in \mathcal{E}(\bigcup_{e \in E_{t}} \binom{\mathcal{T}_{e}^{+}}{\lfloor \lfloor (|\mathcal{T}|-k+1)/2 \rfloor})): \ 0 < |G| \leq |\mathcal{T}|-k} \\ &\cdot \sum_{0 \leq j \leq k} \binom{|G \cup -G| - |G|}{j} \binom{\frac{1}{2}(|\mathcal{T}| - |G \cup -G|)}{k-j} 2^{k-j} \ . \end{split}$$

If an integer $k, 1 \leq k \leq |\mathcal{T}|/2$, and a ground element $a \in E_t$ are fixed, then we set

$$\beta_{k}(a,\mathcal{M}) := \binom{|\mathcal{T}|/2}{k} 2^{k} + \sum_{\substack{\mathcal{G} \subseteq \bigcup_{e \in E_{t} - \{a\}} \binom{\mathcal{T}_{e}^{+}(\mathcal{M})}{\lfloor \lfloor |\mathcal{T}| - k + 1)/2 \rfloor} \}: \\ 1 \leq \#\mathcal{G} \leq \binom{|\mathcal{T}| - k}{\lfloor \lfloor \lfloor |\mathcal{T}| - k + 1)/2 \rfloor}, \\ |\bigcup_{G \in \mathcal{G}} G| \leq |\mathcal{T}| - k} \\ \cdot \sum_{0 \leq j \leq k} \binom{|\bigcup_{G \in \mathcal{G}} G \cup -\bigcup_{G \in \mathcal{G}} G| - |\bigcup_{G \in \mathcal{G}} G|}{j} \\ \cdot \binom{\frac{1}{2}(|\mathcal{T}| - |\bigcup_{G \in \mathcal{G}} G \cup -\bigcup_{G \in \mathcal{G}} G|)}{k - j} 2^{k - j}.$$

In view of (3.8), we have

$$\overset{\circ}{\kappa}_{k}^{*}(\mathcal{M}) = \beta_{k}(a, \mathcal{M})
+ \sum_{\substack{\mathcal{G}' \subseteq \left(\frac{\mathcal{T}_{a}^{+}(\mathcal{M})}{\lfloor (|\mathcal{T}|-k+1)/2|} \right) - \bigcup_{e \in E_{t} - \{a\}} \left(\frac{\mathcal{T}_{e}^{+}(\mathcal{M})}{\lfloor (|\mathcal{T}|-k+1)/2|} \right) : 1 \le \#\mathcal{G}' \le \left(\frac{|\mathcal{T}|-k}{\lfloor (|\mathcal{T}|-k+1)/2|} \right), \ |\bigcup_{G \in \mathcal{G}'} G| \le |\mathcal{T}|-k,
\mathcal{G}'' \subseteq \bigcup_{e \in E_{t} - \{a\}} \left(\frac{\mathcal{T}_{e}^{+}(\mathcal{M})}{\lfloor (|\mathcal{T}|-k+1)/2|} \right) : 0 \le \#\mathcal{G}'' \le \left(\frac{|\mathcal{T}|-k}{\lfloor (|\mathcal{T}|-k+1)/2|} \right) - \#\mathcal{G}', \ |\bigcup_{G \in \mathcal{G}' \cup \mathcal{G}''} G| \le |\mathcal{T}|-k
\cdot \sum_{0 \le j \le k} \left(|\bigcup_{G \in \mathcal{G}' \cup \mathcal{G}''} G \cup -\bigcup_{G \in \mathcal{G}' \cup \mathcal{G}''} G| - |\bigcup_{G \in \mathcal{G}' \cup \mathcal{G}''} G| \right)
\cdot \left(\frac{1}{2} (|\mathcal{T}| - |\bigcup_{G \in \mathcal{G}' \cup \mathcal{G}''} G \cup -\bigcup_{G \in \mathcal{G}' \cup \mathcal{G}''} G| \right) \right) 2^{k-j} . \quad (3.9)$$

In an analogous expression for $\overset{\circ}{\kappa}_{k}^{*}(_{-a}\mathcal{M})$ the families \mathcal{G}' range over subfamilies of the family $\binom{\mathcal{T}_{a}^{-}(\mathcal{M})}{\lfloor(|\mathcal{T}|-k+1)/2\rfloor} - \bigcup_{e \in E_{t}-\{a\}} \binom{\mathcal{T}_{e}^{+}(\mathcal{M})}{\lfloor(|\mathcal{T}|-k+1)/2\rfloor}$.

4. κ^* -Vectors and Reorientations on One-Element Sets

To find the differences of the components of κ^* -vectors associated to the oriented matroid \mathcal{M} and to the oriented matroid $_{-a}\mathcal{M}$ which is obtained from \mathcal{M} by reorientation on a one-element subset $\{a\} \subset E_t$, we combine expressions (2.2) and (3.9) related to \mathcal{M} with analogous expressions related to $_{-a}\mathcal{M}$:

Proposition 4.1. Let a be an element of the ground set E_t of the oriented matroid $\mathcal{M} := (E_t, \mathcal{T})$. For an integer $k, 1 \leq k \leq |\mathcal{T}|/2$, the sum

$$\begin{split} \sum_{\mathcal{G''} \subseteq \bigcup_{e \in E_t - \{a\}}} & (-1)^{\#\mathcal{G''}} \\ \mathcal{G''} \subseteq \bigcup_{e \in E_t - \{a\}} \left(\frac{\mathcal{T}_e^+(\mathcal{M})}{\lfloor (|\mathcal{T}| - k + 1)/2 \rfloor} \right) : \\ 0 \leq \#\mathcal{G''} \leq \left(\frac{|\mathcal{T}| - k}{\lfloor (|\mathcal{T}| - k + 1)/2 \rfloor} \right) - 1, \\ & |\bigcup_{G \in \mathcal{G''}} G| \leq |\mathcal{T}| - k \end{split}$$

$$\cdot \left(\sum_{\mathcal{G'} \subseteq \left(\frac{\mathcal{T}_a^-(\mathcal{M})}{\lfloor (|\mathcal{T}| - k + 1)/2 \rfloor} \right) - \bigcup_{e \in E_t - \{a\}} \left(\frac{\mathcal{T}_e^+(\mathcal{M})}{\lfloor (|\mathcal{T}| - k + 1)/2 \rfloor} \right) : \\ 1 \leq \#\mathcal{G'} \leq \left(\frac{|\mathcal{T}| - k}{\lfloor (|\mathcal{T}| - k + 1)/2 \rfloor} \right) - \#\mathcal{G''}, \\ & |\bigcup_{G \in \mathcal{G'}} G| \leq |\mathcal{T}| - k, \end{split}$$

$$- \sum_{\mathcal{G'} \subseteq \left(\frac{\mathcal{T}_a^+(\mathcal{M})}{\lfloor (|\mathcal{T}| - k + 1)/2 \rfloor} \right) - \bigcup_{e \in E_t - \{a\}} \left(\frac{\mathcal{T}_e^+(\mathcal{M})}{\lfloor (|\mathcal{T}| - k + 1)/2 \rfloor} \right) : \\ 1 \leq \#\mathcal{G'} \leq \left(\frac{|\mathcal{T}| - k}{\lfloor (|\mathcal{T}| - k + 1)/2 \rfloor} \right) - \#\mathcal{G''}, \\ |\bigcup_{G \in \mathcal{G'}} G| \leq |\mathcal{T}| - k, \end{split}$$

and the sum

$$\begin{split} &\sum_{G'' \in \mathcal{E}(\bigcup_{e \in E_t - \{a\}} \binom{T_e^+(\mathcal{M})}{\lfloor (|\mathcal{T}| - k + 1)/2 \rfloor})):} \\ &G'' \in \mathcal{E}(\bigcup_{e \in E_t - \{a\}} \binom{T_e^+(\mathcal{M})}{\lfloor (|\mathcal{T}| - k + 1)/2 \rfloor})):} \\ &\cdot \left(\sum_{G' \in \mathcal{E}(\binom{T_a^-(\mathcal{M})}{\lfloor (|\mathcal{T}| - k + 1)/2 \rfloor}) - \bigcup_{e \in E_t - \{a\}} \binom{T_e^+(\mathcal{M})}{\lfloor (|\mathcal{T}| - k + 1)/2 \rfloor})):} \\ &- \sum_{G' \in \mathcal{E}(\binom{T_a^+(\mathcal{M})}{\lfloor (|\mathcal{T}| - k + 1)/2 \rfloor}) - \bigcup_{e \in E_t - \{a\}} \binom{T_e^+(\mathcal{M})}{\lfloor (|\mathcal{T}| - k + 1)/2 \rfloor})):} \\ &G' \in \mathcal{E}(\binom{T_a^+(\mathcal{M})}{\lfloor (|\mathcal{T}| - k + 1)/2 \rfloor}) - \bigcup_{e \in E_t - \{a\}} \binom{T_e^+(\mathcal{M})}{\lfloor (|\mathcal{T}| - k + 1)/2 \rfloor})):} \\ &O < |G''| \le |\mathcal{T}| - k \end{split}$$

both calculate the difference

$$\kappa_k^*(_{-a}\mathcal{M}) - \kappa_k^*(\mathcal{M})$$

under

$$Q(\mathcal{G}',\mathcal{G}'') := \binom{|\mathcal{T}| - |\bigcup_{G \in \mathcal{G}' \dot{\cup} \mathcal{G}''} G|}{k} \quad and \quad \mathfrak{Q}(G',G'') := \binom{|\mathcal{T}| - |G' \cup G''|}{k} \right).$$

These sums calculate the difference

$$\overset{\circ}{\kappa}_{k}^{*}(_{-a}\mathcal{M}) - \overset{\circ}{\kappa}_{k}^{*}(\mathcal{M})$$

under

$$Q(\mathcal{G}', \mathcal{G}'') := \sum_{0 \le j \le k} \binom{|\bigcup_{G \in \mathcal{G}' \cup \mathcal{G}''} G \cup -\bigcup_{G \in \mathcal{G}' \cup \mathcal{G}''} G| - |\bigcup_{G \in \mathcal{G}' \cup \mathcal{G}''} G|}{j}$$
$$\cdot \binom{\frac{1}{2}(|\mathcal{T}| - |\bigcup_{G \in \mathcal{G}' \cup \mathcal{G}''} G \cup -\bigcup_{G \in \mathcal{G}' \cup \mathcal{G}''} G|)}{k - j} 2^{k - j}$$

and

$$\mathfrak{Q}(G', G'') := \sum_{0 \le j \le k} \binom{|(G' \cup G'') \cup -(G' \cup G'')| - |G' \cup G''|}{j} \cdot \binom{\frac{1}{2}(|\mathcal{T}| - |(G' \cup G'') \cup -(G' \cup G'')|)}{k - j} 2^{k - j}.$$

References

- M. Aigner, Combinatorial Theory, Classics in Mathematics, Reprint of the 1979 original, Springer-Verlag, Berlin, 1997.
- [2] A. Bachem and W. Kern, Linear Programming Duality. An Introduction to Oriented Matroids. Universitext. Springer-Verlag, Berlin, 1992.
- [3] A. Björner, M. Las Vergnas, B. Sturmfels, N. White and G.M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics, 46, Cambridge University Press, Cambridge, 1993. Second edition 1999.

- [4] J.G. Bokowski, Computational Oriented Matroids. Equivalence Classes of Matrices within a Natural Framework. Cambridge University Press, Cambridge, 2006.
- [5] J.A. De Loera, J. Rambau and F. Santos, Triangulations. Structures for Algorithms and Applications. Algorithms and Computation in Mathematics, 25. Springer-Verlag, Berlin Heidelberg, 2010.
- [6] M. Henk, J. Richter-Gebert and G.M. Ziegler, Basic Properties of Convex Polytopes. Chapter 16 in Handbook of Discrete and Computational Geometry (J.E. Goodman and J. O'Rourke, eds.), Chapman & Hall/CRC Press, Boca Raton, second ed., 2004, 355–382.
- [7] A.O. Matveev, Pattern Recognition on Oriented Matroids: Halfspaces, Convex Sets and Tope Committees, arXiv:1008.4100.
- [8] A.O. Matveev, Pattern Recognition on Oriented Matroids: Layers of Tope Committees, arXiv:math/0612369.
- [9] A.O. Matveev, Pattern Recognition on Oriented Matroids: The Existence of a Tope Committee, arXiv:math.CO/0607570.
- [10] A.O. Matveev, Pattern Recognition on Oriented Matroids: Three-Tope Committees, arXiv:0812.0156.
- [11] A.O. Matveev, Relative Blocking in Posets, J. Comb. Optim. 13 (2007), no 4, 379-403. Corrigendum: arXiv:math.CO/0411026.
- [12] J. Richter-Gebert and G.M. Ziegler, Oriented Matroids. Chapter 6 in Handbook of Discrete and Computational Geometry (J.E. Goodman and J. O'Rourke, eds.), Chapman & Hall/CRC Press, Boca Raton, second ed., 2004, 129–152.
- [13] F. Santos, Triangulations of Oriented Matroids. Mem. Amer. Math. Soc., 156 (2002), no. 741.
- [14] R.P. Stanley, Enumerative Combinatorics. Vol. 1, Corrected reprint of the 1986 original. Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, Cambridge, 1997.
- [15] G.M. Ziegler, Lectures on Polytopes. Graduate Texts in Mathematics, 152. Springer-Verlag, New York, 1995.

E-mail address: andrey.o.matveev@gmail.com