Climatic adaptation and phylogenetic history shape the intra-specific variation of CSR strategies in a widespread grass

Lele Liu, Meigi Yin, Yaolin Guo, Huijia Song, Xiao Guo, Weihua Guo

PII: S2468-2659(25)00100-3

DOI: https://doi.org/10.1016/j.pld.2025.06.001

Reference: PLD 582

To appear in: Plant Diversity

Received Date: 24 January 2025

Revised Date: 3 June 2025 Accepted Date: 5 June 2025

Please cite this article as: Liu, L., Yin, M., Guo, Y., Song, H., Guo, X., Guo, W., Climatic adaptation and phylogenetic history shape the intra-specific variation of CSR strategies in a widespread grass, *Plant Diversity*, https://doi.org/10.1016/j.pld.2025.06.001.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copyright © 2025 Kunming Institute of Botany, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

Climatic adaptation and phylogenetic history shape the intra-specific variation of CSR strategies in a widespread grass

Lele Liu (刘乐乐) ^a, Meiqi Yin (尹美淇) ^a, Yaolin Guo (郭耀霖) ^b, Huijia Song (宋慧佳) ^c, Xiao Guo (郭霄) ^d, Weihua Guo (郭卫华) ^{a*}

- ^a Qingdao Key Laboratory of Ecological Protection and Restoration, Ministry of Natural Resources Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China
- ^b School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
- ^e National Natural History Museum of China, 126 Tianqiao South Street, Beijing 100050, China
- ^d College of Landscape Architecture and Forestry, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, China
- *Corresponding author: Weihua Guo whguo_sdu@163.com

1	Abstract
2	The competitor, stress tolerator, and ruderal strategy (CSR) framework has been widely
3	applied to explain ecological processes across species. However, its utility in revealing intra-
4	specific trade-offs and genetic adaptation to climate remains unclear. In this study, we
5	examined whether the CSR strategy estimated by leaf traits can identify adaptations to climate
6	in the common reed <i>Phragmites australis</i> . For this purpose, we integrated functional trait data
7	from field surveys and a three-year common garden experiment to compare CSR scores
8	between two typical populations of <i>P. australis</i> from western and eastern China. We further
9	assessed the associations of CSR scores with latitude, bioclimatic factors, and
10	phylogeographical sources using a global dataset including two invaded lineages the in North
11	America. We found that competitor scores were positively correlated with latitude, whereas
12	stress tolerator scores were negatively correlated. Competitor scores were positively
13	correlated with bioclimatic factors, even when controlling for phylogeny. All CSR scores
14	displayed significant phylogenetic signals, with the invasive lineage in the higher latitudes
15	(haplotype M) exhibiting higher stress tolerator scores than the native lineage. Differences in
16	competitor and stress tolerator scores between western and eastern Chinese populations of P.
17	australis were consistent across field and common garden experiments. Although intra-
18	species variation in CSR strategy may be influenced by phylogenetic history, our finding that
19	CSR strategy in <i>P. australis</i> populations is correlated with latitude suggests these plants have
20	adapted to local climates along a latitudinal gradient.
21	
22	Keywords: ecological strategy, CSR, functional traits, latitudinal pattern, plant invasion, plant
23	adaptation, Phragmites australis

1. Introduction

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Understanding how species adapt to climate changes is a central goal in ecology. The study of plant functional traits, including morphological, physiological, and chemical characteristics (Pérez-Harguindeguy et al., 2013), is particularly critical within the field of global change biology, as it offers valuable insights into how plant species adapt to climate and interact ecologically (May et al., 2017; Ren et al., 2020; Liao et al., 2021). These traits in plants typically entail trade-offs, revealing diverse strategies employed by plants to thrive in the face of environmental variation. The concept that describes how organisms make trade-offs and allocation decisions when facing complex environmental changes is called ecological strategy theory. Ecological strategy theory can facilitate the prediction of plant responses to environmental shifts, guiding conservation efforts for plant populations and enhancing ecosystem restoration and management strategies. Numerous frameworks and analytical tools have been developed to quantify and assess the relationships among functional traits in ecological studies (Agrawal, 2020). Drawing inspiration from the r-K strategy for animals, Grime formulated a parallel theory for plants, known as the competitor (C), stress tolerator (S), and ruderal (R) strategy theory. Competitors are robust species adapted to stable, resource-rich environments, where they can outcompete others for essential resources. Stress tolerators can withstand harsh conditions, such as drought or extreme temperatures, by conserving water and nutrients. Ruderals, on the other hand, are fast-growing species that quickly colonize disturbed or ephemeral habitats, focusing on rapid growth and reproduction (Grime, 1974). This theory can reflect plant functional trade-offs in response to the environmental stress and disturbance during the established (or adult) phase of plant life-history (Grime, 1974). For example, taller plants, typically competitors, often feature larger leaves to optimize light capture and resource acquisition. Conversely, denser plants, typically stress tolerators, prioritize resource conservation by

51	investing in thicker leaves. Reproductive traits, such as flowering time, are pivotal in
52	determining ruderal strategies related to disturbance response and regeneration. Physiological
53	traits like nutrient content, photosynthetic rate and water use efficiency embody the interplay
54	between acquisitive and conservative resource economics, providing direct insights into CSR
55	strategy (Hodgson et al., 1999). A recently developed tool called <i>StrateFy</i> provides a
56	standardized, quantitative approach for comparing plant ecological strategies across different
57	ecosystems and biomes (Pierce et al., 2017) that has allowed researchers to study ecological
58	adaptation, plant invasion, community assembly and other ecological issues (Guo et al., 2018,
59	2019; Liao et al., 2021; Zhang et al., 2024).
60	Intra-specific variation in ecological strategy can be influenced by three major factors:
61	phenotypic plasticity, genetic adaptation, and phylogenetic history. Phenotypic plasticity in
62	plants allows for short-term adjustments to the environment, whereas genetic variation
63	provides the potential for long-term adaptation through natural selection (McIntyre and
64	Strauss, 2014; Ren et al., 2025; Song et al., 2021a). Natural selection favors genotypes
65	adapted to local conditions along latitudinal gradients, resulting in specialized ecological
66	strategies within species. This is evident in the latitudinal trends of functional traits, indicating
67	clinal adaptations to climatic zones. For example, many plant species exhibit clinal patterns in
68	traits such as plant size and flowering time (Vasseur et al., 2018; Ren et al., 2020). However,
69	phylogenetic history may limit adaptive potential due to the lack of the genetic variation in
70	certain clades (Ackerly, 2009; Wu et al., 2022). Phylogenetic conservatism, the tendency of
71	related species or lineages to share similar traits (e.g., ecological strategies and functional
72	traits) due to their common ancestry, can lead to the retention of ancestral traits within a
73	lineage, even if those traits are not necessarily optimal in the current environment. However,
74	few studies have examined whether and to what extent phenotypic plasticity, genetic
75	adaptation, and phylogenetic history mediate intra-specific variation in CSR strategy.

Previous studies have found that in <i>Arabidopsis</i> intra-specific variation in CSR strategy
plays a role in functional adaptation to climatic changes (May et al., 2017; Vasseur et al.,
2018; Estarague et al., 2022). For example, research has shown that S scores in <i>Arabidopsis</i>
plants are positively correlated with temperature at their geographical origin, whereas R
scores are negatively correlated with this temperature (May et al., 2017). High-throughput
phenotyping platforms and greenhouse studies have confirmed that Arabidopsis grown in
distinct environmental conditions exhibit intra-specific variation in ecological strategies, and
that S and R scores in Arabidopsis populations are positively and negatively correlated with
latitude, respectively (Vasseur et al., 2018). Researchers have speculated that Arabidopsis in
Europe vary from the center to the margins of their natural range in several traits, including C
score, R score, leaf area and fruit number (Estarague et al., 2022). Although some studies
have investigated intra-specific CRS strategy in other plant species (Dayrell et al., 2018;
Hasigerili et al., 2023), most research has been limited to either field survey data, which may
indicate variation regulated by both environmental plasticity and genetic effect, or common
garden experiments, which show variation determined by genetics. Few studies have
combined these approaches to elucidate the contributions to ecological and evolutionary
forces to the intra-specific variation.
One important use of CSR strategy classification is for the prediction of plant species
distribution and biological invasion potential. A large-scale study found that global and native
range sizes of species were positively associated with the R score; species naturalized range
size was positively associated with the C score; and all range-size measurements were
negatively associated with the S score (Liao et al., 2021). Species exhibiting C- or R-selected
strategies and having large native ranges tended to be cultivated in domestic and botanic
gardens, became naturalized outside their native ranges, and occupied more regions in their
naturalized ranges (Guo et al., 2019). Across different plant life forms, the C score has been

101	found to be positively, and the S score, negatively associated with both the probability of
102	naturalization and the number of regions where the species has naturalized (Guo et al., 2018).
103	During a 60-year secondary succession, alien plant species were shown to exhibit higher R
104	and lower S scores compared to those of native species in the later stage (Zhang et al., 2024).
105	Research on the Mountain Tianmu National Nature Reserve in China found that invasive
106	plant species are R-selected, whereas natives are C-selected (Hasigerili et al., 2023).
107	Phragmites australis, commonly known as the common reed, is an ideal model for
108	studying the underlying causes of variation in CSR strategy within one species (Guo et al.,
109	2024) and how shifts in functional strategies can drive population growth and range
110	expansion. P. australis is a globally distributed wetland plant. It exhibits high intra-specific
111	variation in functional traits and is remarkably adapted to a variety of environments (Eller et
112	al., 2017; Ren et al., 2020; Sheng et al., 2024). P. australis is composed of several
113	phylogeographical groups (lineages) with notable diversity in ploidy levels (Lambertini et al.,
114	2012; Liu et al., 2018, 2022). These lineages differ significantly in morphology, life-history,
115	and ecological strategies (Williams et al., 2019; Ren et al., 2020; Wu et al., 2022; Guo et al.,
116	2024; Sheng et al., 2024). Parallel common garden experiments have shown that intra-specific
117	variation in <i>P. australis</i> functional traits is mediated by both latitudinal adaptation and
118	phenotypic plasticity (Ren et al., 2020). P. australis has developed various ecotypes in
119	response to local environmental factors such as salinity and water level (Zhou et al., 2021;
120	Song et al., 2021a). Even at a small geographic scale, there is considerable geographic
121	variation in genetic composition and plant functional traits (Liu et al., 2021a, 2021b).
122	Here, we examined whether the CSR strategy estimated by leaf traits can reveal
123	adaptation to climate in the common reed <i>Phragmites australis</i> . In addition, we determined
124	which factors (i.e., phenotypic plasticity, genetic adaptation, or phylogenetic history) mediate
125	intra-specific variation in CSR strategy in this species. For this purpose, we collected data on

the functional traits of *P. australis* from a field survey in two China wetlands and a three-year common garden experiment with accessions spanning the global species distribution range. We compared CSR scores from an eastern and western population of *P. australis* in China, and examined whether CSR scores from a global *P. australis* dataset were correlated with latitude and bioclimatic factors. We then examined the relationship between CSR scores and genetic distances based on microsatellite markers. Trait-climate correlations were also tested in the models of phylogenetic generalized least squares. Taken together, this information documents and identifies the climatic and phylogenetic mechanisms that drive global geographical patterns of intra-specific variation in CSR strategies in this cosmopolitan species.

2. Materials and Methods

2.1 Study Materials and Experimental Design

To disentangle genetic and environmental contributions to intraspecific trait variation in *Phragmites australis*, we conducted both common garden experiments and field surveys. Field surveys provided insights into naturally occurring trait variation across environmental gradients, establishing ecological relevance. The common garden experiments isolated genetic-driven trait divergence among populations by controlling environmental conditions. This dual approach allowed us to (1) identify trait-environment associations in natural settings, and (2) validate whether observed field differences persist under standardized conditions, confirming genetic adaptation. By integrating both methods, we rigorously distinguish heritable adaptations from transient plasticity, strengthening conclusions about evolutionary strategies.

In our common garden experiments, we included six major lineages of *Phragmites*

australis, representing the global distribution range of the species: the European lineage (EU,

and its invaded population in North America named INT), the Mediterranean lineage (MED,

151	and its invaded population in North America named Delta), the native lineage in North
152	American (NAT), the land ecotype along Gulf of Mexico (LAND), the east Asian and
153	Australian lineage (FEAU), and the Chinese (CN). The CN lineage was delimited recently
154	(Liu et al., 2022; Wang et al., 2024), and was not previously compared to other lineages in
155	common garden experiments (Pyšek et al., 2018; Ren et al., 2020; Guo et al., 2024).
156	2.2 Field Survey
157	Field surveys are a robust method for showcasing the natural intraspecific variation in
158	ecological strategies within the environment. This variation is the cumulative outcome of
159	environmental plasticity and genetic evolution, and it is closely associated with ecological
160	interactions and processes. We investigated the functional traits of <i>Phragmites australis</i>
161	populations in the Ningxia Plain (NX; 104°59′-106°53′E, 37°26′-39°13′N) and the Yellow
162	River Delta (YRD; 118°07′-119°10′E, 36°55′-38°12′N) in July and August of 2018 (Liu et
163	al., 2021b). The Ningxia Plain, in western China, has a low annual precipitation of about 200
164	mm; the Yellow River Delta, in eastern China, has a high annual precipitation of 530-630 mm
165	(Figure 1). We sampled 144 shoots across 30 sites of NX, and 150 shoots across 30 sites of
166	YRD (Liu et al., 2021b). Shoot height (H), diameter (D) and node number (NN) were directly
167	measured or counted in the field. Three fully expanded green leaves from each shoot were
168	selected to measure leaf area (LA), leaf dry matter content (LDMC), specific leaf area (SLA),
169	and leaf thickness (LT). Biomass per shoot and leaf dry weight were obtained after oven
170	drying at 80 °C for 48 h. Leaf area was determined by scanning on a flatbed scanner (9000SF,
171	Canon, Japan), followed by processing using ImageJ version 1.51 (National Institutes of
172	Health, Bethesda, USA). The panicle emergence for each shoot was also recorded.
173	Additionally, nineteen rhizomes were collected from each region (NX and YRD) for common
174	garden experiments.

Figure 1 Sampling locations of *Phragmites australis* in the field survey (plus signs) and the common garden (circles). Colors indicate different lineages / groups: the European lineage (EU, and its invaded population in North America named INT), the Mediterranean lineage (MED, and its invaded population in North America named Delta), the native lineage in North American (NAT), the land ecotype along Gulf of Mexico (LAND), the east Asian and Australian lineage (FEAU), the Chinese lineage (CN), the Ningxia Plain population (NX) in western China, and the Yellow River Delta population (YRD) in eastern China. Details on sample distribution in NX and YRD can be found in Liu et al. (2021b).

2.3 Common Garden Experiments

The common garden experiment can mitigate the influence of growth environments on variation in ecological strategies, and it is considered a reliable standard for differentiating between genetic adaptation and phenotypic plasticity in response to environmental fluctuations. This approach is a powerful tool that allows us to elucidate the adaptive significance of ecological strategies within the context of evolutionary biology.

Common garden experiments were performed during 2019-2021 at Qingdao campus of Shandong University (36°36′N, 120°69′E), Qingdao, China. Every year, trait measurements

were performed in early September. In 2019 and 2020, the common garden included 19 samples from NX, 19 samples from YRD, and 26 samples from other regions, including four inland provinces (Qinghai, Gansu, Henan and Yunnan) and four coastal provinces (Liaoning, Jiangsu, Zhejiang and Guangdong) of China. All plants were cultivated with rhizomes in 16 L pots filled with sand. In 2021, we rebuilt a common garden with 88 global genotypes of *Phragmites australis* (Figure 1). All plants were cultivated with rhizomes in 50 L pot filled with soil and sand (volume ratio of 1:1). The management and maintenance of the common garden were detailed previously (Ren et al., 2020). A series of functional traits were measured, including H, D, LA, LDMC, SLA, LT, density (shoot number), leaf width, leaf height, leaf and shoot stoichiometry (N and P), photosynthetic rate, transpiration rate, and stomatal conductance following common procedures (Liu et al., 2021b). The number of panicles and their colors (light or dark) were documented for each sample. Light colors encompassed white and green, while the dark category was represented by purple.

2.5 Calculation of CSR Scores

The original CSR ordination used four traits (i.e., canopy height, lateral spread and litter accumulation) to define the C strategy, while maximum relative growth rate in the seeding phase defined the S strategy (Grime, 1977). Grime et al. (1997) also expanded the CSR ordination with a principal component analysis (PCA) of 67 traits in 43 common plants of the British flora. Hodgson et al. (1999) described a practical method for rapid CSR classification for herbaceous species with seven functional traits including canopy height, leaf dry matter content (LDMC), flower period, flowering start, lateral spread, leaf dry weight, and specific dry weight. More recently, Pierce et al. (2017) developed the *StrateFy* tool to calculate CSR scores with only three simple leaf traits, including leaf area (LA), LDMC, and specific leaf area (SLA). The tool was calibrated by data from global vascular plants (both herbaceous and woody species) at inter-specific levels, and has been shown to be applicable across a wide

217	range of biomes and growth forms. It is available as an Excel spreadsheet tool. For the
218	repeatability of the calculation of CSR scores with StrateFy algorithm, we rewrote the script
219	with R code (https://github.com/commonreed/StrateFy).
220	The usage of the <i>StrateFy</i> tool assumes that the three leaf traits (LA, LDMC and SLA)
221	are correlated with functional traits across other organs and with the whole plant related to
222	CSR strategy, e.g., the seven traits used by Hodgson et al. (1999). From the perspective of
223	trait integration, the quantification of CSR strategy relies on a multivariate space determined
224	by two plant spectrums: plant resource economics (a trade-off between traits conferring
225	resource acquisition and internal conservation) and the size of plants and plant organs (Grime
226	et al., 1997; Pierce et al., 2013; Díaz et al., 2016). This assumption was well tested by
227	multivariate analysis at the inter-specific level with a global plant dataset when it was
228	developed (Pierce et al., 2017), but few studies have examined the relationship at an intra-
229	specific level (Takou et al., 2019; Agrawal, 2020; Laughlin, 2024). To test whether the
230	estimation method of CSR strategy by leaf traits is reliable at the intra-specific level, we
231	tested the association of leaf-based CSR scores to the whole-plant traits by examining
232	whether the first two axis in PCA of functional traits represented the economics spectrum and
233	size spectrum, respectively. Specifically, principal component analysis (PCA) was performed
234	for all measured traits of <i>Phragmites australis</i> using the rda function from the <i>vegan</i> R
235	package, with the scale parameter set to true.
236	2.6 Analysis of Phylogenetic Signal
237	Phylogenetic relationships were constructed from 42 nuclear microsatellite markers (provided
238	in Table S1). High-throughput sequencing-based microsatellite genotyping was conducted by
239	the Genesky Biotechnologies Inc (Shanghai, China) (Cui et al., 2022). We calculated Bruvo's
240	distances between samples with the function meandistance.matrix in R package polysat (Clark

and Jasieniuk, 2011). Based on this distance matrix, we performed principal coordinates

242	analysis (PCoA) and constructed a neighbor-joining (JN) tree with the R package ape (Paradis
243	and Schliep, 2019).
244	To test the relationship between phylogenetics and ecological strategy, we employed

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

Blomberg's K and Pagel's λ as model-dependent metrics to quantify phylogenetic signal under Brownian motion expectations using the function phylosig in R package phytools (Revell, 2012). Given potential uncertainties in *Phragmites australis* intraspecific phylogenetic reconstruction (e.g., branch length calibration), we complemented these analyses with Mantel tests that correlate trait and phylogenetic distance matrices without assuming explicit evolutionary models. The Mantel test is a statistical method used to test the correlation between two distance matrices. In evolutionary biology, it is commonly used to test whether there is a significant correlation between a matrix of genetic distances among lineages and a matrix of differences in a particular trait (Stelkens et al., 2012). If there is a correlation, it may indicate that the similarity of the trait is influenced by genetic relatedness, i.e., the presence of phylogenetic conservation. Blomberg's K and Pagel's λ are two common methods to quantify the conservation of a trait on a phylogenetic tree. They compare the observed rate of trait evolution to the expected rate if the trait were randomly distributed across the tree. If the K value is significantly greater than 1, it suggests that the trait is more conserved evolutionarily than would be expected by chance. If K or λ is close to 1, it indicates that the distribution of the trait is strongly influenced by phylogenetic relationships, showing high phylogenetic conservation. If K or λ is close to 0, it indicates that the distribution of the trait is almost independent of phylogenetic relationships, showing randomness or influence by other factors such natural selection.

The complementary nature of these methods can strengthen our conclusions. While K and λ quantify the magnitude and topological dependence of phylogenetic signal under model frameworks, the Mantel test independently verifies whether trait-phylogeny correlations

persist when relaxing these assumptions. For instance, concordance (e.g., high K/λ with
significant Mantel correlation) reinforces signal robustness, whereas discordance (e.g., strong
λ but weak Mantel correlation) could indicate either model inadequacy or topological
inaccuracies—a critical consideration given the complexities of intraspecific phylogenies in
Phragmites australis. By integrating these approaches, we mitigate risks from single-method
biases, especially where phylogenetic reconstruction uncertainty exists.
2.7 Data Analyses
For the eastern (YRD) and western (NX) populations of China, we compared three functional
traits (H, D and LT) and CSR scores with unpaired t-tests. For the comparisons between
phylogenetic groups, Kruskal-Wallis tests were conducted with the kruskal function from the
R package agricolae (de Mendiburu, 2023), because the data of the leaf traits and CSR scores
were non-normal according to the Shapiro-Wilk tests finished with the shapiro.test function
from the base R package stats (R Core Team, 2025). To prevent over-representation of
specific geographic regions and to reduce bias in the statistical models, only one sample each
was randomly chosen from the NX and YRD regions for the subsequent analyses.
To test the relationship between CSR scores and bioclimatic factors of their origins, we
downloaded bioclimate data from WorldClim version 2.1 with a resolution of 2.5 minutes of a
degree using the function worldclim_global in R package geodata (Hijmans et al., 2024). We
extracted Annual Mean Temperature (Bio1), Temperature Seasonality (Bio4), Max
Temperature of Warmest Month (Bio5), Min Temperature of Coldest Month (Bio6), and
Annual Precipitation (Bio12) for the provenance of origin of the 88 genotypes included in the
2021 common garden experiments using the function extract in R package terra (Hijmans,
2025). Correlation between CSR scores and bioclimatic factors was tested by Pearson
correlation analysis and linear models fitted with generalized least squares (GLS). To control
for phylogeny, phylogenetic generalized least squares (PGLS) was used to test the correlation

292	between CSR scores and climatic factors across genotypes with a phylogenetic covariance
293	matrix from the microsatellite-based phylogeny. PGLS was performed with the R package
294	caper (Orme et al., 2023).
295	3. Results
296	3.1 Intra-specific variation in CSR strategies and their association to other functional
297	traits
298	In the both field studies and the common garden, <i>Phragmites australis</i> used the stress
299	tolerator strategy, but displayed significant intra-specific variation (Figure 2A-D). C scores for
300	Phragmites australis ranged from 12.0-85.2% in the field and 6.4-51.8% in gardens, whereas
301	S scores ranged from 29.1-82.1% (field) and 37.2-84.1% (gardens). In contrast, R scores
302	were low across several environmental conditions (0-33.7% in field; 0.9-30.9% in gardens).
303	In the field, 48.3% of <i>P. australis</i> were CS type, 24.8% were S/CSR, and 14.6% were
304	CS/CSR. In the first year of the common garden experiment (2019), 45.3% of plants were
305	S/CS and 35.9% were S/CSR types. In the second year (2020), S/CS and S/CSR types
306	accounted for 42.2% and 40.6% of <i>P. australis</i> , respectively. In the third year (2021), S/CSR
307	and CS/CSR types accounted for 60.0% and 21.7% . In all years, the first axis of PCA (36.0%
308	in 2018, 39.6% in 2019, 29.7% in 2020, 65.2% in 2021) indicated the size spectrum, while the
309	second axis (22.7% in 2018, 20.7% in 2019, 14.6% in 2020, and 15.0% in 2021) indicated the
310	economics spectrum (Figure 2E-F).

Figure 2 The CSR ternary diagrams (A-D) and PCA plots (E-H) of *Phragmites australis* in the field and the common gardens. NX denotes the Ningxia Plain in western China, and YRD denotes the Yellow River Delta in eastern China. LA, leaf area; LDMC, leaf dry matter content; SLA, specific leaf area; NN, node number; LL, leaf length; LW, leaf width; LT, leaf thickness; E, transpiration rate; A, photosynthetic rate; PN, panicle number.

CSR scores were correlated with functional traits not used in calculations of CSR scores (Figure 3; Figure S1). Across all years, C scores were positively correlated with shoot biomass, height, diameter, and leaf thickness; in addition, the S and R scores were generally negatively correlated with these functional traits. S scores were negatively correlated with leaf N and root N. R scores from 2020 were positively correlated with transpiration rate, leaf P and stem P. In addition, R scores were negatively correlated with panicle emergence or number in 2018 and 2021, but not from 2019 to 2020. Panicle emergence time was not significantly correlated with R score, either (2019, r = -0.134, p = 0.340; 2021, r = 0.267, p = 0.077; record lack in 2020 due to the COVID-19 lockdown). Panicle color was related to the R score, with a

high R score indicating a green, not purple, panicle.

Figure 3 Pearson correlations between CSR scores and functional traits in the field (A) and common gardens (B, 2019; C, 2020; D, 2021). The color denotes r values (the red denotes positive correlation, while the blue denotes negative correlations), and the asterisk denotes the significance (* p < 0.05; ** p < 0.01; *** p < 0.001). LA, leaf area; LDMC, leaf dry matter content; SLA, specific leaf area; NN, node number; LL, leaf length; LW, leaf width; LT, leaf thickness; density, shoot number; E, transpiration rate; A, photosynthetic rate; PC, panicle color; PN, panicle number.

3.2 Differences in functional traits and CSR strategies between the eastern and western populations across years

Field surveys indicated that shoot height and leaf thickness were greater in western *Phragmites australis* populations than in eastern populations; however, shoot diameter was smaller in western plants than in eastern plants (Figure 4). In the common garden experiments, shoot height, shoot diameter, and leaf thickness of western plants were significantly smaller than those of eastern plants. In both field and common garden surveys, S scores were higher in western populations / lineages than in eastern populations / lineages, whereas C scores were lower. R scores were higher in western populations / lineages than in eastern populations / lineages in 2020 and 2021, but not in field surveys from 2019 or the first-year common garden experiments.

Figure 4 The comparisons of the functional traits and CSR scores between the eastern (YRD) and western (NX) populations of China. The asterisk denotes the significance of the t test (* p

< 0.05; ** p < 0.01; *** p < 0.001). 349 3.3 Correlations between CSR strategies and climatic factors for global samples 350 S scores for global *Phragmites australis* samples were positively correlated with latitude; in 351 contrast C scores were negatively correlated with latitude (Figure S2; Table 1). The C score 352 was positively correlated with several climatic factors, including Annual Mean Temperature, 353 Max Temperature of Warmest Month, Min Temperature of Coldest Month, and Annual 354 Precipitation. The S score was negatively correlated with Annual Mean Temperature. The R 355 score was positively correlated with Temperature Seasonality, but negatively correlated to 356 Annual Mean Temperature, Max Temperature of Warmest Month, Min Temperature of 357 Coldest Month, and Annual Precipitation. 358

Table 1 Relationships of leaf functional traits and CSR scores with climatic factors based on generalized least squares (GLS) and phylogenetic generalized least squares (PGLS, indicated by **).

Trait	Latitude	Latitude [#]	Bio1	Bio1 [#]	Bio4	Bio4 [#]	Bio5	Bio5 [#]	Bio6	Bio6 [#]	Bio12	Bio12 [#]
LA	-99***	-11	154***	69*	-0.928	-0.390	158***	73*	71***	31	1.029**	0.741
LDMC	0.26***	0.37	-0.08	-0.10	-0.001	< 0.001	-0.10	-0.04	0.01	-0.04	-0.001	-0.002
SLA	0.08	-0.17	-0.35***	-0.11	0.004**	0.002	-0.33***	-0.07	-0.22***	-0. 07	-0.003**	< 0.001
C	-0.86***	-0.20	1.21***	0.53*	0.006	-0.004	1.23***	0.49*	0.54***	0.25*	0.008**	-0.006
S	0.65***	0.53	-0.38*	-0.22	-0.005	-0.002	-0.48*	-0.28	-0.03	-0.03	-0.002	-0.006
R	0.21	-0.33	-0.82***	-0.31	0.010**	0.007	-0.75***	-0.20	-0.51***	-0.22	-0.006***	<0001

Note: Bio1, Annual Mean Temperature; Bio4, Temperature Seasonality; Bio5, Max Temperature of Warmest Month; Bio6, Min Temperature of Coldest Month; Bio12, Annual Precipitation. LA, leaf area; LDMC, leaf dry matter content; SLA, specific leaf area. The asterisk denotes the significance (*p < 0.05; **p < 0.01; ***p < 0.001).

3.4 Relationships between CSR strategies and phylogeny for global samples In PCoA, the FEAU, CN and LAND groups well clustered together (Figure S4). The European group (EU, MED, INT and DELTA) and native group of North America (NAT) were very close (Figure S3). Mantel tests did not show any significant correlations between phylogenetic distance and C, S or R distance. Tests based on Blomberg's K and Pagel's λ revealed significant signals of all CSR scores and functional traits (Table 2; Figure S4). Analyses of phylogenetic generalized least squares showed C scores was negatively correlated with Max Temperature of Warmest Month (Table 1).

Table 2 The relationship of CSR scores and functional traits with phylogenetic background based on Mantel test, Blomberg's K and Pagel's λ .

	3.6 . 1	3.6 . 1	D 11 0	0 0	D1 1 1	0 77
	Mantel r	Mantel p	Pagel's λ	p for λ	Blomberg's	p for K
					K	
С	0.014	0353	0.889	<0.001	0.977	<0.001
S	0.035	0.219	0.622	<0.001	0.564	0.028
R	< 0.001	0.470	0.797	<0.001	0.565	0.019
Height	0.060	0.113	0.757	<0.001	0.619	0.011
Diameter	0.023	0.300	0.954	<0.001	1.348	<0.001
Density	-0.036	0754	0895	<0001	0.788	<0.001
LL	0.052	0.142	0.749	<0.001	0.521	0.065
LW	0.002	0.470	0.816	<0.001	0.692	0.001
LT	0.047	0.156	0.659	<0.001	0.602	0.012
PN	-0.042	0.782	1.000	0.015	0.633	0.071
LA	0.054	0.128	0.782	<0.001	0.613	0.013
LDMC	0.083	0.063	0.498	<0.001	0.522	0.063
SLA	-0.039	0.791	0.838	<0.001	0.632	0.006

The highest C score among phylogeographical groups was observed in LAND, which had the lowest S and R scores (Figure 5). The lowest C score and the highest S score were observed in the EU group. The original and introduced groups (EU vs INT, and MED vs DELTA) did not differ significantly in CSR scores. S scores were higher in the introduced groups (EU and INT) than in the native counterpart in North America (NAT) (Figure 5E). The R score was higher in the CN lineage than in the FEAU lineage, however, the C score was lower (Figure 5D-F).

Figure 5 Comparisons of functional traits and CSR scores between different phylogeographical groups. Different letters mean the significant difference between groups based on Kruskal-Wallis tests (p < 0.05).

4. Discussion

4.1 CSR strategy reveals clinal and local adaptation to climate

Phenotypic plasticity can be a non-negligible driver for plant intra-specific variation

in ecological strategy (Ren et al., 2020; Song et al., 2021b). In our study, there were
no significant differences in the R score between the two Chinese populations of
Phragmites australis in the field or the first-year common garden, but the R score of
the western population increased in the following years in the common garden.
Similarly, we observed the reversion between the two populations in leaf thickness.
This finding may not be the result of sampling bias, as we had the same samples in the
first two years of the common garden. Instead, the likely explanation for these
differences is phenotypic plasticity. In 2019, the region where the common garden
experiments were conducted experienced an extreme heat and drought event (Annual
Mean Temperature was 14.07 °C in 2019, while 13.27 °C in 2020 and 13.55 °C in
2021; Annual Precipitation was 481 mm in 2019, while 1224 mm in 2020 and 1022
mm in 2021; Figure S5), which may have led to the phenotypic plasticity. In addition,
the traits of <i>P. australis</i> during the first-year common garden may have been
influenced by parental effects, especially since the experiment employed rhizome
propagation. The common garden experiments were conducted in eastern China, near
the YRD region. Thus, the traits of plants from the NX population might have been
induced by the altered environmental factors over the following years. Although field
surveys revealed trait divergence was correlated with environmental conditions, the
common garden experiment confirmed that these differences persisted under common
conditions, indicating that the key driver behind these changes was genetic
differentiation. This integration rules out plasticity as the sole explanation for the
observed variation.
Notably, our findings extend recent work by Guo et al. (2024), who examined
intraspecific CSR variation in 89 Phragmites australis genotypes using common
garden experiments. While their study identified genetically driven divergence in

414	ecological strategies under standardized conditions, our integrated approach
415	(combining field surveys with multi-year common garden data) provides critical
416	insights into how environmental gradients and plasticity interact with genetic
417	adaptation. For instance, Guo et al. (2024) attributed trait differences solely to genetic
418	factors, as their experimental design excluded plasticity by focusing on a single
419	growing season. In contrast, our common garden data revealed temporally dynamic
420	trait shifts (e.g., R score increases in the western population), highlighting the role of
421	plasticity in modulating genetically based strategies under fluctuating climates.
422	Furthermore, field surveys allowed us to validate that population-level trait
423	differences observed in situ (e.g., stress-tolerance adaptations in arid habitats) align
424	with genetic differentiation confirmed in the common garden. This dual-method
425	framework resolves a key limitation of single-environment studies by disentangling
426	transient plasticity from heritable adaptations, thereby advancing our understanding of
427	how P. australis evolves context-dependent ecological strategies.
428	Consistent with a previous study in A. thaliana (Vasseur et al., 2018), we found
429	that S scores were positively correlated with the origin latitude. High-latitude ranges
430	usually have lower productivity with strict resource limitations. Previous research on
431	Phragmites australis has reported that longer leaf lifespans were found in genotypes
432	from higher latitudes, indicating an S strategy (Ren et al., 2020). Unlike the negative
433	correlation between R scores and latitude in A. thaliana (Vasseur et al., 2018), we
434	found that these factors are positively correlated in <i>P. australis</i> . The disturbance
435	regimes of <i>P. australis</i> at high latitudes are still unclear. They may originate from
436	multiple sources, including the freezing period in winter, artificial mowing, and/or
437	fire. Previous studies also noted that flowering time is earlier for higher-latitude <i>P</i> .
438	australis (Ren et al., 2020). The higher R strategy might imply more sexual

439	propagations, leading to a higher level of intra-specific genetic diversity (Liu et al.,
440	2024). Furthermore, vegetative propagation may also contribute to the R strategy in P.
441	australis, as we observed a higher density of higher-latitude samples in our current
442	and previous study (Ren et al., 2020). Additionally, the C score was negatively
443	correlated with latitude in P. australis, which fits our intuition that southern
444	populations grow larger and taller due to fierce intra- and inter-specific competitions.
445	Temperature and precipitation are two major climatic factors that shape intra-
446	specific variation in CSR strategy. In <i>Phragmites australis</i> , Annual Mean Temperature
447	(Bio 1) and Annual Precipitation (Bio 12) were significantly linked to all three CSR
448	scores. At the same latitude, the distance to the sea results in a precipitation gradient
449	from east to west in China. We found the eastern population (YRD) had a higher C
450	score and a lower S score than the western population (NX) in both field surveys and
451	common garden experiments, which is similar to the pattern of latitude and annual
452	precipitation. The major evolutionary mechanisms that underlie these patterns may be
453	local adaptation, as these two populations share a similar gene pool: (1) there was a
454	unidirectional gene flow due to the hydrochory dispersal by the Yellow River (Liu et
455	al., 2021a, 2021b), (2) they share a common lineage named CN (or tetraploid lineage
456	O) (Liu et al., 2021b, 2022), and (3) some tolerance features can occur in parallel in
457	different lineages of <i>P. australis</i> (Sheng et al., 2024). However, the phylogenetic
458	background (i.e., the existence of lineage FEAU, which had a low S score but a high
459	C score) may also contribute to the intra-specific variation in functional traits and
460	ecological strategies (Liu et al., 2021b; Wu et al. 2022).
461	4.2 Phylogenetic background may limit intra-specific variation of CSR strategy
462	Although <i>Phragmites australis</i> is regarded as one species, there is strong phylogenetic
463	differentiation within this species (Lambertini et al., 2006; Liu et al., 2018; Wang et

al., 2024). Therefore, we can test the effect of phylogenetic background on functional
traits and ecological strategies using the methods based on Brownian motion models
with a phylogenetic tree (Wu et al., 2022). According to these statistics, including
Pagel's λ and Blomberg's K , all functional traits and CSR scores had significant
phylogenetic signals. However, according to the model based on direct Mantel
correlation analysis between trait and genetic distances, only LDMC showed
significant phylogenetic relatedness, and S score might be marginally related to
phylogenetic distance. According to the direct comparison among phylogenetic
groups (lineages), significant differences in functional traits and CSR scores existed
commonly among lineages, indicating a phylogenetic relatedness of these traits and
scores. Therefore, the Mantel tests might be too conservative to infer the phylogenetic
relatedness of plant traits.
Previous studies provided substantial evidence for relation of the high R score
with range size, naturalization probability, and invasiveness (Guo et al., 2018; Liao et
al., 2021; Zhang et al., 2024). The R strategy implies rapid growth ability,
reproductive capacity, and dispersal ability, which aid in invasion. The wide
distribution of lineages CN and EU can be attributed to their high R scores. The high
R score might also boost the invasion of EU in North America. However, invaded
populations (INT and DELTA) did not evolve a higher R score than their original
populations (EU and MED, respectively) or their native counterpart in North America
(NAT and LAND, respectively). The differentiation in the R strategy was primarily
influenced by resource differences associated with varying latitudes: higher R scores
in the higher-latitude groups (EU, INT, and NAT), and lower R scores in the lower-
latitude groups (MED, Delta, and LAND). The higher S score of the invaded lineage
(including EU and INT populations) might be one of reasons for its success in

coemption with native lineages (NAT) in some brackish habitats (Bhattarai and
Cronin, 2014). The unexpected finding that invasive lineages of <i>Phragmites australis</i>
were more stress-adapted than native lineages was also confirmed recently by another
common garden experiment in the Czech Republic (Guo et al., 2024). However, the
effects of salt tolerance on the invasion of <i>P. australis</i> is debated (Eller et al., 2017). In
a previous greenhouse experiment with four lineages, the S score was not a good
indicator of salt tolerance (Sheng et al., 2024). Considering the conservation of the
ecological strategies of the P. lineages during the invasion, pre-adaptation of
ecological strategies may be an important mechanism for successful invasion (Guo et
al., 2014). However, how this pre-adaptation specifically interacts with the
environment of the invaded range and how it outcompetes the local population require
additional study with more environmental surveys and experimental manipulations.
4.3 CSR strategy highlights consistent trait trade-offs across organs within
4.3 CSR strategy highlights consistent trait trade-offs across organs within species
species
species Grime's CSR strategy theory was proposed to explain vegetation classification
species Grime's CSR strategy theory was proposed to explain vegetation classification (Grime, 1974). When discussing the concept of CSR strategy, we typically refer to
species Grime's CSR strategy theory was proposed to explain vegetation classification (Grime, 1974). When discussing the concept of CSR strategy, we typically refer to plant trait associations (trade-offs and co-expressions) at the individual level. That is
species Grime's CSR strategy theory was proposed to explain vegetation classification (Grime, 1974). When discussing the concept of CSR strategy, we typically refer to plant trait associations (trade-offs and co-expressions) at the individual level. That is to say, we focus on how the organism, as a whole, responds to environmental
species Grime's CSR strategy theory was proposed to explain vegetation classification (Grime, 1974). When discussing the concept of CSR strategy, we typically refer to plant trait associations (trade-offs and co-expressions) at the individual level. That is to say, we focus on how the organism, as a whole, responds to environmental disturbances. The approach to estimating CSR scores based on leaf traits assumes that
species Grime's CSR strategy theory was proposed to explain vegetation classification (Grime, 1974). When discussing the concept of CSR strategy, we typically refer to plant trait associations (trade-offs and co-expressions) at the individual level. That is to say, we focus on how the organism, as a whole, responds to environmental disturbances. The approach to estimating CSR scores based on leaf traits assumes that the trade-offs among leaf characteristics are in alignment with those within other
species Grime's CSR strategy theory was proposed to explain vegetation classification (Grime, 1974). When discussing the concept of CSR strategy, we typically refer to plant trait associations (trade-offs and co-expressions) at the individual level. That is to say, we focus on how the organism, as a whole, responds to environmental disturbances. The approach to estimating CSR scores based on leaf traits assumes that the trade-offs among leaf characteristics are in alignment with those within other organs and among organs within the organism. Many previous studies have
Species Grime's CSR strategy theory was proposed to explain vegetation classification (Grime, 1974). When discussing the concept of CSR strategy, we typically refer to plant trait associations (trade-offs and co-expressions) at the individual level. That is to say, we focus on how the organism, as a whole, responds to environmental disturbances. The approach to estimating CSR scores based on leaf traits assumes that the trade-offs among leaf characteristics are in alignment with those within other organs and among organs within the organism. Many previous studies have demonstrated that the key trait associations, such as resource economics and size

514	spectrums within one species in both field and common gardens (Figure 2).
515	Associations of leaf traits with whole-plant growth traits were also frequently
516	observed. These results suggest that the plant trait associations used by the <i>StrateFy</i>
517	algorithm hold true across various levels of organization, from individuals and
518	genotypes to populations and species, indicating that Pierce's (2017) CSR framework
519	is suitable and reliable for intra-specific analyses.
520	In the original formulation of the CSR types (Grime, 1974), species were
521	ordinated for the C score according to a 'competitive' or 'morphology' index, which
522	was a composite of canopy height, lateral spread and litter accumulation. In our study,
523	we measured the shoot height and found that the estimated C score was positively
524	correlated with height, as expected. For the S score, species were similarly ordinated
525	according to maximum relative growth rate in the seedling phase (Hodgson et al.,
526	1999). Although we did not measure the maximum relative growth rate, we measured
527	related traits such as photosynthetic rate and plant nitrogen content, which were
528	negatively correlated with S scores in our study. No explicit R definition or ordination
529	was attempted in the original CSR framework (Grime, 1974), which has remained
530	problematic for a long time (Hodgson et al., 1999). Flower start and period are widely
531	regarded as the indicator traits for R scores, but flower period is only relevant to
532	Northern Hemisphere temperate biomes (Hodgson et al., 1999; Pierce et al., 2013).
533	However, our study on <i>Phragmites australis</i> and previous studies on <i>A. thaliana</i> (May
534	et al., 2017) did not find the relationship between flower start and R score. Previous
535	research showed that in A. thaliana the number of seeds produced is positively
536	correlated with the R score (May et al., 2017), although this was not what we found in
537	P. australis. The clonal features of P. australis might account for this conflict between
538	R score and flowering traits. The positive correlations between shoot density and R

539	score were found in 2020 and 2021, which suggest a significant role of vegetative
540	spread in the R strategy in clonal plants.
541	The range of CSR scores within one widespread plant species might very large.
542	Phragmites australis occupied more than 40% of C and S spaces in the common
543	garden and occupied even more in the field, likely due to phenotypic plasticity.
544	Studies have shown that Arabidopsis thaliana occupies more than 90% of S and R
545	spaces under controlled conditions (Vasseur et al., 2018; Takou et al., 2019). For more
546	species in the field, the variation of CSR scores was found to be generally large
547	(Hasigerili et al., 2023). Considering the frequent presence of significant intra-specific
548	variation, it is important to recognize that representing a species as a single point in
549	the CSR space may not fully capture the complexity of population-level differences.
550	Both interspecific and intraspecific studies contribute valuable insights. We cannot
551	ignore this variation when using the CSR framework in the studies on biogeography,
552	plant invasion, and community assembly. Intra-specific data of leaf traits for CSR
553	calculation are needed in more plant species for future studies.
554	5. Conclusions
555	The functional traits of <i>Phragmites australis</i> can be effectively decoded along plant
556	size and economic spectrums. The CSR scores estimated from leaf traits were
557	significantly correlated with whole-plant growth and other functional traits both in the
558	field and under common garden conditions, indicating the suitability of the CSR
559	framework (StrateFy) for intra-specific analyses. The differences in C and S scores
560	between western and eastern Chinese populations of P. australis were consistent
561	across field and common garden experiments, with the eastern population, which
562	experiences wetter climatic conditions, exhibiting higher C scores and lower S scores.
563	The C scores were positively correlated with latitude, whereas S scores were

564	negatively correlated with latitude. CSR scores also exhibited significant associations
565	with bioclimatic factors. The observed latitudinal pattern of CSR strategy indicates
566	clinal adaptation to climate in P. australis, although the variation in CSR strategy may
567	also be influenced by phylogenetic history. Two invasive lineages introduced from
568	Europe to North America did not show significant changes in CSR scores. All CSR
569	scores displayed significant phylogenetic signals, with the invasive lineage in the
570	higher latitudes (haplotype M) exhibiting higher S scores than the native lineage. The
571	implications of intra-specific CSR strategy for cryptic invasion pathways warrant
572	further investigation.
573	Open Research statement: Data and code are available on Zenodo at
574	https://doi.org/10.5281/zenodo.14132823.
575	Acknowledgements
576	This work is supported by the National Natural Science Foundation of China (No.
577	32100304; 32470388; U22A20558; 32271588). We thank to Prof. Elena Hamann
578	from Heinrich-Heine University for her contribution to manuscript revision, to Miss
579	Xiangyan Ma for her assist in garden management, and to Miss Jingwen Wang for her
580	help in field survey.
581	CRediT authorship contribution statement
582	Lele Liu: Writing – original draft, Visualization, Investigation, Methodology, Formal
583	analysis, Funding acquisition, Conceptualization. Meiqi Yin: Writing – review &
584	editing, Investigation, Methodology, Formal analysis. Huijia Song: Writing – review
585	& editing, Methodology, Formal analysis. Xiao Guo : Writing – review & editing.
586	Weihua Guo: Writing – review & editing, Supervision, Methodology, Investigation,
587	Funding acquisition, Conceptualization.

Conflict of Interest Statement

The authors declare no conflicts of interest.

590 References

- 591 Ackerly, D, 2009. Conservatism and diversification of plant functional traits:
- Evolutionary rates versus phylogenetic signal. Proc. Natl. Acad. Sci. 106, 19699-19706.
- Agrawal, A.A, 2020. A scale-dependent framework for trade-offs, syndromes, and specialization in organismal biology. Ecology 101, e02924.
- Bhattarai, G.P., Cronin J.T., 2014. Hurricane activity and the large-scale pattern of spread of an invasive plant species. PLos One. 9, e98478.
- Clark, L.V., Jasieniuk, M., 2011. *polysat*: an R package for polyploid microsatellite analysis. Mol. Ecol. Resour. 11, 562-566.
- 600 Cui, X.C., Li, C.H., Qin, S.Y., et al., 2022. High-throughput sequencing-based 601 microsatellite genotyping for polyploids to resolve allele dosage uncertainty and 602 improve analyses of genetic diversity, structure and differentiation: A case study 603 of the hexaploid *Camellia oleifera*. Mol. Ecol. Resour. 22, 199-211.
- Dayrell, R.L.C., Arruda A.J., Pierce, S., et al., 2018. Ontogenetic shifts in plant ecological strategies. Funct. Ecol. 32, 2730-2741.
- de Mendiburu, F. agricolae: Statistical Procedures for Agricultural Research. R package version 1.3-7, 2023, https://CRAN.R-project.org/package=agricolae
- Díaz, S., Kattge, J., Cornelissen, J.H.C., et al., 2016. The global spectrum of plant form and function. Nature 529, 167-171.
- Eller, F., Skálová, H., Caplan, J.S., et al., 2017. Cosmopolitan species as models for ecophysiological responses to global change: the common reed *Phragmites* australis. Front. Plant Sci. 8, 1833.
- Estarague, A., Vasseur, F., Sartori, K., et al., 2022. Into the range: a latitudinal gradient or a center-margins differentiation of ecological strategies in *Arabidopsis* thaliana? Ann. Bot. 129, 343-356.
- 616 Grime, J. 1974. Vegetation classification by reference to strategies. Nature 250, 26-31.
- 617 Grime, J.P., 1977. Evidence for the existence of three primary strategies in plants and 618 its relevance to ecological and evolutionary theory. Am. Nat. 111, 1169-1194.
- 619 Grime, J.P., Thompson, K., Hunt, R., et al., 1997. Integrated screening validates primary 620 axes of specialisation in plants. Oikos. 79, 259-281.
- 621 Guo, W., Čuda, J., Skálová, H.,et al., 2024. Climate and genome size shape the 622 intraspecific variation in ecological adaptive strategies of a cosmopolitan grass 623 species. Funct. Ecol. 9, 2054-2066.
- Guo, W.Y., van Kleunen M., Pierce, S., et al., 2019. Domestic gardens play a dominant role in selecting alien species with adaptive strategies that facilitate naturalization. Glob. Ecol. Biogeogr. 28, 628-639.
- Guo, W.Y., van Kleunen, M., Winter, M., et al., 2018. The role of adaptive strategies in plant naturalization. Ecol. Lett. 21, 1380-1389.

- 629 Guo, W.Y., Lambertini, C., Nguyen, L.X.,et al., 2014. Preadaptation and post-630 introduction evolution facilitate the invasion of *Phragmites australis* in North 631 America. Ecol. Evol. 4, 4567-4577.
- Hasigerili, K. Guo, M., Zheng, M., et al., 2023. Intraspecific variations of adaptive strategies of native and invasive plant species along an elevational gradient. Flora 304, 152297.
- Hijmans, R. terra: Spatial Data Analysis. R package version 1.8-29, 2025,
 https://CRAN.R-project.org/package=terra
- Hijmans, R.J., Barbosa, M., Ghosh, A., et al., 2024, https://CRAN.R-project.org/package=geodata
- Hodgson, J.G., Wilson, P.J., Hunt, R., et al., 1999. Allocating C-S-R plant functional types: a soft approach to a hard problem. Oikos 85, 282-294.
- Lambertini, C., Gustafsson, M.H.G., Frydenberg, J., et al., 2006. A phylogeographic study of the cosmopolitan genus *Phragmites* (Poaceae) based on AFLPs. Plant Syst. Evol. 258, 161-182.
- Lambertini, C., Sorrell, B.K., Riis, T., et al., 2012. Exploring the borders of European *Phragmites* within a cosmopolitan genus. AoB Plants 2012, pls020.
- Laughlin, D.C., 2024. Unifying functional and population ecology to test the adaptive value of traits. Biol. Rev. 99, 1976-1991.
- Liao, H., Li, D., Zhou, T., et al., 2021. The role of functional strategies in global plant distribution. Ecography 44, 493-503.
- Liu, L., Guo, Y., Wu, Y., et al., 2024. Revealing biogeographic patterns in genetic diversity of native and invasive plants and their association with soil community diversity in the Chinese coast. Oikos 2024, e10116.
- Liu, L., Pei, C., Liu, S., et al., 2018. Genetic and epigenetic changes during the invasion of a cosmopolitan species (*Phragmites australis*). Ecol. Evol. 8, 6615-6624.
- Liu, L., Wang, J., Ma, X., et al., 2021a. Impacts of the Yellow River and Qingtongxia dams on genetic diversity of *Phragmites australis* in Ningxia Plain, China. Aquat. Bot. 169, 103341.
- Liu, L., Yin, M., Guo, X., et al., 2022. Cryptic lineages and potential introgression in a mixed-ploidy species (*Phragmites australis*) across temperate China. J. Syst. Evol. 60, 398-410.
- 661 Liu, L., Yin, M., Guo, X., et al., 2021b. The river shapes the genetic diversity of 662 common reed in the Yellow River Delta via hydrochory dispersal and habitat 663 selection. Sci. Total Environ. 764, 144382.
- May, R.L., Warner, S., Wingler, A., 2017. Classification of intra-specific variation in plant functional strategies reveals adaptation to climate. Ann. Bot. 119, 1343-1352.
- McIntyre, P.J., Strauss, S.Y., 2014. Phenotypic and transgenerational plasticity promote local adaptation to sun and shade environments. Evol. Ecol. 28, 229-246.
- Orme, D., Freckleton, R., Thomas, G., et al., 2023, https://CRAN.R-project.org/package=caper
- Paradis, E., Schliep, K., 2019. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526-528.

- Pérez-Harguindeguy, N., Díaz, S., Garnier, E., et al., 2013. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167-234.
- Pierce, S., Brusa, G., Vagge, I., et al., 2013. Allocating CSR plant functional types: the use of leaf economics and size traits to classify woody and herbaceous vascular plants. Funct. Ecol. 27, 1002-1010.
- Pierce, S., Negreiros, D., Cerabolini, B.E.L., et al., 2017. A global method for calculating plant CSR ecological strategies applied across biomes world-wide. Funct. Ecol. 31, 444-457.
- Pyšek, P., Skálová, H., Čuda, J., et al., 2018. Small genome separates native and invasive populations in an ecologically important cosmopolitan grass. Ecology 99, 79-90.
- Reich, P.B, 2014. The world-wide "fast-slow" plant economics spectrum: a traits manifesto. J. Ecol. 102, 275-301.
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2025, https://www.R-project.org/
- Ren, L., Guo, X., Liu, S., et al., 2020. Intraspecific variation in *Phragmites australis*:
 Clinal adaption of functional traits and phenotypic plasticity vary with latitude of origin. J. Ecol. 108, 2531-2543.
- Ren, L., Guo, X., Sorrell, B.K., et al., 2025. Responses to cold temperature determine clinal patterns of photosynthetic acclimation of a cosmopolitan grass genus and challenge the concept of quantifying phenotypic plasticity. Funct. Ecol. 39, 583-595.
- Revell, L.J, 2012. *phytools*: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217-223.
- Sheng, W., Liu, L., Wu, Y., et al., 2024. Exploring salt tolerance and indicator traits across four temperate lineages of the common wetland plant, *Phragmites australis*. Sci. Total Environ. 912, 169100.
- Song, H., Guo, X., Yu, X., et al., 2021a. Is there evidence of local adaptation of *Phragmites australis* to water level gradients and fluctuation frequencies? Sci. Total Environ. 756, 144065.
- Song, H., Jespersen, E., Guo, X., et al., 2021b. Differences in relative air humidity affect responses to soil salinity in freshwater and salt marsh populations of the dominant grass species *Phragmites australis*. Hydrobiologia 848, 3353-3369.
- Stelkens, R.B., Jaffuel, G., Escher, M., et al., 2012. Genetic and phenotypic population divergence on a microgeographic scale in brown trout. Mol. Ecol. 21, 2896-2915.
- Takou, M., Wieters, B., Kopriva, S., et al., 2019. Linking genes with ecological strategies in *Arabidopsis thaliana*. J. Exp. Bot. 70, 1141-1151.
- Vasseur, F., Sartori, K., Baron, E., et al., 2018. Climate as a driver of adaptive variations in ecological strategies in *Arabidopsis thaliana*. Ann. Bot. 122, 935-945.
- Wang, C., Liu, L., Yin, M., et al., 2024. Chromosome-level genome assemblies reveal genome evolution of an invasive plant *Phragmites australis*. Commun. Biol. 7, 1-14.

- Williams, J., Lambert, A.M., Long, R., et al., 2019. Does hybrid *Phragmites australis* differ from native and introduced lineages in reproductive, genetic, and morphological traits? Am. J. Bot. 106, 29-41.
- Wu, Y., Liu, L., Yin, M., et al., 2022. Phylogenetic relationship and soil salinity shape
 intraspecific trait variability of *Phragmites australis* in the Yellow River Delta.
 Front. Mar. Sci. 9, 980695.
- Zhang, Y., Meiners, S.J., Meng, Y., et al., 2024. Temporal dynamics of Grime's CSR strategies in plant communities during 60 years of succession. Ecol. Lett. 27, e14446.
- Zhou, D., Ni, Y., Yu, X., et al., 2021. Trait-based adaptability of *Phragmites australis* to the effects of soil water and salinity in the Yellow River Delta. Ecol. Evol. 11,
 11352-11361.

- Phragmites australis populations from wetter climates exhibit higher
 C scores and lower S scores.
- The latitudinal pattern of *Phragmites australis* C scores indicates a clinal adaptation to climate.
- Phylogenetic history limits the evolution of CSR strategy.
- CSR scores from leaf traits well reflect whole-plant growth and tradeoffs.

Declaration of interests

oximes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
☐ The author <i>Click here to enter your name</i> is Choose an item for <i>Click here to enter the journal's name</i> and was not involved in the editorial review or the decision to publish this article.
☐ The authors declare the following financial interests (e.g., any funding for the research project)/personal relationships (e.g., the author is an employee of a profitable company) which may be considered as potential competing interests:
Click here to enter your full declaration