Algèbre élémentaire - Équations trigonométriques

Matéis R.

Septembre 2023

On souhaite résoudre des équations du type :

$$I - \begin{cases} \sin(x) &= a \\ \text{pour} & x \in \mathbb{R} \\ \cos(x) &= a \\ \text{pour} & a \in [-1, 1[$$

Ou:

$$II - \begin{cases} \sin(x) &= \sin(y) \\ \text{pour} & x, y \in \mathbb{R} \\ \cos(x) &= \cos(y) \end{cases}$$

Proposition (Résolution des équations I) 1

Soit $a \in [-1,1]$

L'équation sin(x) = a d'inconnue x a toujours une et une seule solution dans l'intervalle $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ (notée $\arcsin(a)$ en analyse). L'ensemble des solutions de $\sin(x) = a$ est l'ensemble $\{\arcsin(a) + 2k\pi, k \in \mathbb{Z}\} \cup \{-\arcsin(a) + 2k\pi, k \in \mathbb{Z}\}$

L'équation cos(x) = a d'inconnue x a toujours une et une seule solution dans l'intervalle $[0,\pi]$ (notée $\arccos(a)$ en analyse). L'ensemble des solutions de $\cos(x) = a \text{ est l'ensemble } \{\arccos(a) + 2k\pi, k \in \mathbb{Z}\} \cup \{-\arccos(a) + 2k\pi, k \in \mathbb{Z}\}$

Exemple: $\sin(x) = -\frac{\sqrt{3}}{2} \iff x \in \{\frac{\pi}{3} + 2k\pi, k \in \mathbb{Z}\} \cup \{\frac{2\pi}{3} + 2k\pi, k \in \mathbb{Z}\} \iff x = \frac{\pi}{3}[2\pi] \text{ ou } x = \frac{2\pi}{3}[2\pi] \text{ avec la notation modulo}$ $\cos(x) = -\frac{\sqrt{3}}{2} \iff x \in \{\frac{\pi}{6} + 2k\pi, k \in \mathbb{Z}\} \cup \{-\frac{\pi}{6} + 2k\pi, k \in \mathbb{Z}\} \iff x = \frac{\pi}{6}[2\pi] \text{ ou } x = -\frac{\pi}{6}[2\pi] \text{ avec la notation modulo}$

$$\cos(x) = -\frac{\sqrt{3}}{2} \iff x \in \{\frac{\pi}{6} + 2k\pi, k \in \mathbb{Z}\} \cup \{-\frac{\pi}{6} + 2k\pi, k \in \mathbb{Z}\} \iff x = \frac{\pi}{6}[2\pi] \text{ ou } x = -\frac{\pi}{6}[2\pi] \text{ avec la notation modulo}$$

Proposition (Résolution des équations II)

Soit $y \in \mathbb{R}$

L'ensemble des solutions de l'équation $\sin(x)=\sin(y)$ est $\{y+2k\pi,k\in\mathbb{Z}\}\cup\{-y+2k\pi,k\in\mathbb{Z}\}$

L'ensemble des solutions de l'équation $\cos(x)=\cos(y)$ est $\{y+2k\pi,k\in\mathbb{Z}\}\cup\{-y+2k\pi,k\in\mathbb{Z}\}$

Exemple : $\sin(2x) = \sin(x) \iff 2x = x + 2k\pi, k \in \mathbb{Z} \text{ ou } 2x = \pi - x + 2k\pi, k \in \mathbb{Z} \iff x = 2k\pi, k \in \mathbb{Z} \text{ ou } 3x = \pi + 2k\pi, k \in \mathbb{Z} \iff x = 2k\pi, k \in \mathbb{Z} \text{ ou } x = \frac{\pi}{3} + \frac{2k\pi}{3}, k \in \mathbb{Z}$

Avec la notation modulo $\iff x=0[2\pi]$ ou $3x=\pi[2\pi] \iff x=0[2\pi]$ ou $x=\frac{\pi}{3}[2\pi]$

3 Proposition (Résolution des équations avec tan())

Soit $a \in \mathbb{R}$

L'équation $\tan(x) = a$ possède une et une seule solution notée $\arctan(a)$ dans l'intervalle $\left] - \frac{\pi}{2}, \frac{\pi}{2} \right[$. L'ensemble des solutions de l'équation est $\left\{\arctan(a) + k\pi, k \in \mathbb{Z}\right\}$ ou $\left\{\arctan(a)[\pi]\right\}$ en notation modulo.

4 Formules d'addition et de duplication :

Théorème : soient $\alpha, \beta \in \mathbb{R}$

Alors: $\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \sin(\beta)\cos(\alpha)$

Corollaire:

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \sin(\beta)\cos(\alpha)$$

$$\sin(\alpha - \beta) = \sin(\alpha)\cos(\beta) - \sin(\beta)\cos(\alpha)$$

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$

$$\cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)$$

$$\tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha)\tan(\beta)}$$