Homework 8, Math 401

due on April 3, 2020

Before you start, please read the syllabus carefully.

- 1. Let F be an arbitrary field with $\operatorname{char}(F) = p$. Prove that $\mathbb{F}_p \subset F$, i.e., \mathbb{F}_p is a subfield of F. (This is a quick proof of $\mathbb{F}_p \subset S$ of Claim 2 in class.)
- 2. Prove that for an irreducible polynomial $f(x) \in \mathbb{F}_p[x]$, the field extension $\mathbb{F}_p[x]/\langle f(x) \rangle$ is also the splitting field of f(x). (Hint: prove that $f(x)|x^q x$ for $q = p^{\deg(f)}$.)
- 3. Prove that \mathbb{F}_{p^d} is a subfield of \mathbb{F}_{p^n} if and only if d|n.
- 4. For an arbitrary field F, we define a formal operation on $f(x) \in F[x]$ called *derivative* as following

$$f'(x) := \sum_{n} a_n \cdot n \cdot x^{n-1},$$

if $f(x) = \sum_{n} a_n \cdot x^n$.

(a) Prove that

$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x),$$

for F[x] for arbitrary field F.

- (b) Prove that if f(x) has a multiple root α , equivalently $(x \alpha)^2 | f(x)$, then α is also a root of f'(x).
- (c) Does the converse from above holds? i.e., if $f'(\alpha) = 0$, does it imply that α is a multiple root f(x)? If yes, give a proof, if no, give a counter example or give a correct statement.
- (d) Prove that $f(\alpha) = f'(\alpha) = \cdots = f^{(k)}(\alpha) = 0$ if and only if $(x \alpha)^{k+1} | f(x)$ for f(x) in polynomial ring F[x] where F is an arbitrary field. (Does this remind you of Taylor expansion in calculus?)
- 5. Let $f(x) = x^2 + x + 1 \in \mathbb{F}_p[x]$ where p > 3 is a prime number.
 - (a) Determine if f(x) is irreducible in $\mathbb{F}_p[x]$. (Give a criteria on when f(x) is irreducible.)
 - (b) For p = 5, using your criteria to determine whether f(x) is irreducible. If yes, denote $K = \mathbb{F}_5[x]/\langle f(x) \rangle$. Show that K contains all 24-th roots of unity ζ_{24} (i.e. elements α such that $\alpha^{24} = 1$).
 - (c) For p = 7, using your criteria to determine whether f(x) is irreducible. If no, determine the factorization of f(x).
 - (d) The largest prime number ever found up to now is $p = 2^{82589933} 1$. Use your criteria to determine whether f(x) is irreducible. You are not allowed to use computer.

- 6. Let $f_p(x) = x^{p-1} + x^{p-2} + \dots + 1 \in \mathbb{F}_3[x]$ where p > 3 is a prime number. Denote K_p to be the splitting field of $f_p(x)$ over \mathbb{F}_3 .
 - (a) Prove that $x^r 1|x^s 1$ in $\mathbb{F}_3[x]$ if and only if r|s.
 - (b) Prove that $f_p(x)|x^q x$ for $q = 3^n$ if and only if $p|3^n 1$.
 - (c) Determine $[K_p : \mathbb{F}_p]$.
 - (d) **Bonus** Determine when $f_p(x)$ is irreducible in $\mathbb{F}_3[x]$. For p=7,11,13, use your criteria to determine yes/no.

Answer: a) it is clear that if s = rd, then we can write $x^s - 1 = (x^r - 1)((x^r)^{d-1} + \dots + 1)$. On the other hand, if s = rq + r' with 0 < r' < r, then we have $x^s - 1 = (x^{rq} - 1)x^{r'} + (x^{r'} - 1)$. We know that $x^r - 1|(x^{rq} - 1)x^{r'}$ and $x^r - 1 \nmid x^{r'} - 1$, so $x^r - 1 \nmid x^s - 1$.

- b) Denote $f_p(x)(x-1) = g(x) = x^p 1$. Notice that $g'(x) = px^{p-1}$ which has no common roots with g(x), so g(x) has distinct roots. Therefore x-1 and $f_p(x)$ are relatively prime to each other. It is clear that $x-1|x^{q-1}-1$. By the unique factorization of polynomials over fields, $f_p(x)|x^{q-1}-1$ and $x-1|x^{q-1}-1$ if and only if $g(x)|x^{q-1}-1$ (since f_p and x-1 are relatively prime). Again by the unique factorization of polynomials in $\mathbb{F}_p[x]$, $f_p(x)|x^q-x$ if and only if $f_p(x)|x^{q-1}-x$ since the irreducible factor $x \nmid f_p(x)$. Therefore $f_p(x)|x^q-x$ if and only if $g(x)|x^{q-1}-1$. Finally $g(x)=x^p-1|x^{q-1}-1$ if and only if $p|3^n-1$ by a).
- c) Since g(x) has distinct roots, we know that $f_p(x)$ splits in K if and only if $f_p(x)|x^q-x=\prod_{\beta\in\mathbb{F}_q}(x-\beta)$ if and only if p|q-1. Therefore denote $[K_p:\mathbb{F}_3]=n$, then 3^n is the smallest integer n such that $p|3^n-1$. Equivalently, this is the order of 3 in \mathbb{F}_p^* .
- d) $f_p(x)$ is irreducible if and only if $[K_p : \mathbb{F}_3] = p 1$. So we compute the order of 3 in \mathbb{F}_p^* , we get yes, no, no.
- 7. Given $\sigma: \mathbb{F}_q \to \mathbb{F}_q$ such that $\sigma(x) = x^p$. Prove that σ is a ring isomorphism.