What do we expect from an LP algorithm?

- · Detect type of LP (finite opt, unbounded, infeasible).
- · If IP is finite return optimal solution.
- . If LP is unbounded -> return certificate of unboundedness

max cTx $A \times \leq b$ dythq i \ \ \ |R_{20} \

with

(i) Ay < b

(ii) $Aq \leq 0$ (iii) $C^{T}q > 0$

Further nice-to-haves of an LP algorithm

- · In case of finite LPI
 - If possible, return optimal solution that is a corner.
 - Certificate of optimality.
- · In case of infeasible LP:
 - Certificate of infeasibility.

1.1.2 Example applications

Example 1: production planning

Coal power plant with 2 types of coal: A & B.

Emission limits

Maximum amount of sulfur dioxide (SO₂) 30 mg/m³ air Maximum amount of smoke 12 kg/h

Maximize tons of steam per hour under given constraints.

Modeling as an LP

Decision variables

 $X_1 \in \mathbb{R}_{\geq 0}$: tous of coal A bount per hour $X_2 \in \mathbb{R}_{\geq 0}$: " " B " " "

Objective function

max 24 x_1 + 20 x_2

Constraints

smoke emission: $0.5 \times 1 + 1 \times 2 \leq 12$ kg of smoke emitted emission limit for smoke per hour

 SO_2 : $19 \cdot \frac{x_1}{x_1 + x_2} + 38 \cdot \frac{x_2}{x_1 + x_2} \leq 30$

(linearization)

transport constraint: X, $+ X_2 \leq 20$

mill performance: $\frac{1}{16} \times_1 + \frac{1}{24} \times_2 \leq 1$

Mathematical formulation:

max
$$24x_1 + 20x_2$$

$$\frac{1}{2}x_1 + x_2 \leq 12 \qquad \text{(smoke emission)}$$

$$x_1 + x_2 \leq 20 \qquad \text{(transport capacity)}$$

$$\frac{1}{16}x_1 + \frac{1}{24}x_2 \leq 1 \qquad \text{(mill performance)}$$

$$12x_1 - 8x_2 \geq 0 \qquad \text{(GO_2 emission)}$$

$$x_1 \geq 0 \qquad \text{(non-negativity)}$$

$$x_2 \geq 0 \qquad \text{(non-negativity)}$$

"Graphical solution method"

Example 2: shortest s-t path

(think of dn as distance) from s to n

max
$$d_{\downarrow}$$

$$d_{s} = 0$$

$$\int dw \leq du + l(|u_{i}w|) \qquad \text{for every } u \to w \text{ arc}$$

$$d_{u} \geq 0 \qquad \text{for every vertex } u$$

These constraints make some that du is no larger than the actual son distance.

An optimal LP solution:

