Solution for Exercise 9.5

Since $N_{en\xi}=3$ and $N_{en\eta}=2$, the element interpolation functions are determined from the following expression:

$$N_i(\xi, \eta) = \Lambda_j^{(2)}(\xi) * \Lambda_k^{(1)}(\eta)$$
 (1)

where the relationship between the indices $i,\,j,\,$ and k is given in Table 1. Thus

$$N_1 = \Lambda_3^2 * \Lambda_2^1 = \frac{(\xi - \xi_1)(\xi - \xi_2)}{(\xi_3 - \xi_1)(\xi_3 - \xi_2)} * \frac{(\eta - \eta_1)}{(\eta_2 - \eta_1)} = \frac{1}{4}\xi(1 + \xi)(1 + \eta)$$
 (2)

$$N_2 = \Lambda_1^2 * \Lambda_2^1 = \frac{(\xi - \xi_2)(\xi - \xi_3)}{(\xi_1 - \xi_2)(\xi_1 - \xi_3)} * \frac{(\eta - \eta_1)}{(\eta_2 - \eta_1)} = \frac{1}{4}\xi(\xi - 1)(1 + \eta)$$
 (3)

$$N_2 = \Lambda_2^2 * \Lambda_1^1 = \frac{(\xi - \xi_2)(\xi - \xi_3)}{*} * \frac{(\eta - \eta_2)}{*} = \frac{1}{-\xi}(1 - \xi)(\eta - 1)$$
 (4)

$$N_4 = \Lambda_3^2 * \Lambda_1^1 = \frac{(\xi - \xi_1)(\xi - \xi_2)}{(\xi_3 - \xi_1)(\xi_3 - \xi_2)} * \frac{(\eta - \eta_2)}{(\eta_1 - \eta_2)} = \frac{1}{4}\xi(1 + \xi)(1 - \eta)$$
 (5)

$$N_5 = \Lambda_2^2 * \Lambda_2^1 = \frac{(\xi - \xi_1)(\xi - \xi_3)}{(\xi_2 - \xi_1)(\xi_2 - \xi_3)} * \frac{(\eta - \eta_1)}{(\eta_2 - \eta_1)} = \frac{1}{2}(1 - \xi^2)(1 + \eta)$$
 (6)

$$N_6 = \Lambda_2^2 * \Lambda_1^1 = \frac{(\xi - \xi_1)(\xi - \xi_3)}{(\xi_2 - \xi_1)(\xi_2 - \xi_3)} * \frac{(\eta - \eta_2)}{(\eta_1 - \eta_2)} = \frac{1}{2}(1 - \xi^2)(1 - \eta) \tag{7}$$

Careful inspection of N_1 to N_6 reveals that they satisfy Equation (9.1) in the textbook; viz.,

$$N_i(\xi_j, \eta_j) = \delta_{ij}$$
 (8)

To begin the check of completeness, begin with the interpolation functions themselves; viz.,

$$\begin{split} &\sum_{i=1}^{6} N_{i} = \frac{(1+\eta)}{4} \left[\xi(1+\xi) + \xi(\xi-1) + 2(1-\xi^{2}) \right] + \frac{(1-\eta)}{4} \left[\xi(1-\xi) + \xi(1+\xi) + 2(1-\xi^{2}) \right] \\ &= \frac{1}{2} (1+\eta) + \frac{1}{2} (1-\eta) \\ &= \frac{1}{2} (1+\eta+1-\eta) = 1 \end{split} \tag{9}$$

Thus the "rigid body mode" corresponding to a constant state of $\hat{\phi}$ shall be exactly represented by

We next consider constant states of the first derivative of $\hat{\phi}(\xi, \eta)$. For the special case of constant

$$\sum_{i=1}^{6} \frac{\partial N_i}{\partial \xi} = 0 \quad \text{and} \quad \sum_{i=1}^{6} \frac{\partial N_i}{\partial \eta} = 0$$
(10)

The derivatives of the interpolation functions with respect to the local coordinates are easily

Table 2: Nodal Values of ξ and η in the Parent Element Domain

or gainer of the the						
	i	ξ_i	η_i			
	1	1	1	1		
	2	-1	1			
	3	-1	-1			
	4	1	-1			
	5	0	1			
	6	0	-1			

$$\begin{split} \dot{\phi} &= \sum_{i=1}^{6} N_{i} \dot{\phi}_{i}^{(e)} \\ &= e \sum_{i=1}^{6} N_{i} \dot{\xi}_{i} \\ &= e \left[\frac{1}{4} \xi(1+\xi)(1+\eta) * (1) + \frac{1}{4} \xi(\xi-1)(1+\eta) * (-1) + \frac{1}{4} \xi(1-\xi)(\eta-1) * (-1) \right] \\ &+ e \left[\frac{1}{4} \xi(1+\xi)(1-\eta) * (1) + 0 + 0 \right] \\ &= e \left[\frac{1}{2} \xi(1+\xi) + \frac{1}{2} \xi(1-\xi) \right] = e \xi \end{split}$$
(18)

$$\begin{split} \hat{\phi} &= \sum_{i=1}^{6} N_{i} \hat{\phi}_{i}^{(c)} \\ &= g \sum_{i=1}^{6} N_{i} \hat{\eta}_{i} \\ &= g \left[\frac{1}{4} \xi(1 + \xi)(1 + \eta) * (1) + \frac{1}{4} \xi(\xi - 1)(1 + \eta) * (1) + \frac{1}{4} \xi(1 - \xi)(\eta - 1) * (-1) \right] \\ &+ g \left[\frac{1}{4} \xi(1 + \xi)(1 - \eta) * (-1) + \frac{1}{4} (1 - \xi^{2})(1 + \eta) * (1) + \frac{1}{4} (1 - \xi^{2})(1 - \eta) * (-1) \right] \\ &= g \left[\xi^{2} \eta + \eta(1 - \xi^{2}) \right] = g \eta \end{split}$$
(19

The six-node element under consideration is thus complete but is conditionally compatible (i.e., the sides with quadratic approximation are not compatible with those having a linear one). As such, the use of this element is only justifiable for as a transition element.

Table 1: Relation Between Indices for Six-Node Lagrangian Transition Element

i	j	k
1	3	2
2	1	2
3	1	1
4	3	1
5	2	2
6	2	1

$$\frac{\partial N_1}{\partial \xi} = \frac{1}{4}(1+2\xi)(1+\eta) \quad ; \quad \frac{\partial N_1}{\partial \eta} = \frac{1}{4}\xi(1+\xi) \tag{11}$$

$$\frac{\partial N_2}{\partial \xi} = \frac{1}{4}(2\xi - 1)(1 + \eta) \quad ; \quad \frac{\partial N_2}{\partial \eta} = \frac{1}{4}\xi(\xi - 1) \quad (12)$$

$$\frac{\partial N_3}{\partial \epsilon} = \frac{1}{4}(1 - 2\xi)(\eta - 1)$$
; $\frac{\partial N_3}{\partial n} = \frac{1}{4}\xi(1 - \xi)$ (13)

$$\frac{\partial N_4}{\partial \xi} = \frac{1}{4}(1 + 2\xi)(1 - \eta)$$
; $\frac{\partial N_4}{\partial \eta} = -\frac{1}{4}\xi(1 + \xi)$ (14)

$$\frac{\partial N_5}{\partial \epsilon} = -\xi(1 + \eta)$$
; $\frac{\partial N_5}{\partial p} = \frac{1}{2}(1 - \xi^2)$ (15)

$$\frac{\partial N_6}{\partial \xi} = -\xi(1-\eta)$$
; $\frac{\partial N_6}{\partial n} = -\frac{1}{2}(1-\xi^2)$ (16)

Thus.

$$\sum_{i=1}^{6} \frac{\partial N_i}{\partial \xi} = \frac{1}{4} (1 + 2\xi) * 2 + \frac{1}{4} (2\xi - 1) * 2 + (-2)\xi$$

$$= \frac{1}{2} + \xi + \xi - \frac{1}{2} - 2\xi = 0 \qquad (17)$$

with $\sum\limits_{i=1}^{6}\frac{\partial N_{i}}{\partial \eta}=0$ evident by inspection

 $\stackrel{i=1}{\longrightarrow} 0\eta$ We next must show that for $\mathring{\phi}_i = e\xi_i$, where $i=1,\cdots 6$ and e is a constant, that $\mathring{\phi} = e\xi$. Similarly, for $\mathring{\phi}_i = g\eta_i$, we must show that $\mathring{\phi} = g\eta$, where g is a constant. From Figure 9.29 it follows that the nodal values ξ_i and η_i are as given in Table 2. Thus,