Optimality of Zeno executions for Hybrid Systems

M. Oprea¹ and W. Clark²

 1 Center for Applied Mathematics, Cornell University 2 Department of Mathematics, Cornell University

2023 American Control Conference San Diego

2 May 2023

Hybrid Systems

$$\begin{cases} \dot{x} = f(x), & x \in M \setminus S \\ x^+ = \Delta(x^-), & x \in S \end{cases}$$

Hybrid Systems

$$\begin{cases} \dot{x} = f(x), & x \in M \setminus S \\ x^+ = \Delta(x^-), & x \in S \end{cases}$$

Hybrid dynamical system (M, S, f, Δ)

Zeno

Definition

Let $\varphi_t^{\mathcal{H}}$ be a hybrid flow. A point $x \in M$ has a Zeno trajectory if there exists an increasing sequence of times $\{t_i\}_{i=1}^{\infty}$ such that $\varphi_{t_i}^{\mathcal{H}}(x) \in S$ for all i and $t_i \to t_{\infty} < \infty$.

Zeno

Definition

Let $\varphi_t^{\mathcal{H}}$ be a hybrid flow. A point $x \in M$ has a Zeno trajectory if there exists an increasing sequence of times $\{t_i\}_{i=1}^{\infty}$ such that $\varphi_{t_i}^{\mathcal{H}}(x) \in S$ for all i and $t_i \to t_{\infty} < \infty$.

Hybrid control system

Definition

A hybrid control system is a 5-tuple $(M, \mathcal{U}, S, X, \Delta)$ where

- $M \approx \text{state space}$
- $\mathcal{U} \approx$ admissible controls
- $X: M \times \mathcal{U} \to TM \approx \text{vector field}$
- $S \subset M \approx \text{guard} \approx h^{-1}(0)$
- $\Delta: S \to M \approx \text{reset}$

Optimal control

Goal: find $u(\cdot) \in \mathcal{F}(\mathcal{U})$ that minimizes

$$J(x_0, u(\cdot)) = \int_0^{T_f} \ell(x(s), u(s)) ds,$$

subject to
$$\begin{cases} \dot{x} = X(x, u), x \in M/S \\ x^+ = \Delta(x^-), x \in S \end{cases}$$

and boundary conditions $x(0) = x_0$ and $x(T_f) = x_f$

Continuous part

$$\hat{H}(x,p) = \min_{u} H(x,p,u) = \min_{u} \ell(x,u) + \langle p, f(x,u) \rangle$$

Hamilton's e.o.m.:

$$\dot{x} = \frac{\partial \hat{H}}{\partial p}, \quad \dot{p} = -\frac{\partial \hat{H}}{\partial x}$$

Discrete part

Discrete part

inward pointing momentum

$$\tilde{S} = \left\{ (x, p) \in T^*M|_{S} : dh_x \left(\frac{\partial H}{\partial p} \right) < 0 \right\}$$

Discrete part

inward pointing momentum

$$\tilde{S} = \left\{ (x, p) \in T^*M|_{S} : dh_x \left(\frac{\partial H}{\partial p} \right) < 0 \right\}$$

• $x^+ = \Delta(x^-)$ and p^+ such that:

$$\begin{cases} H \circ \tilde{\Delta} = H(x^+, p^+) = H(x^-, p^-) \\ p^+ = p^- + \epsilon dh \end{cases}$$

The bouncing ball with dissipation

• e.o.m.
$$\begin{cases} \dot{x} = \frac{1}{m}y\\ \dot{y} = -mg + u \end{cases}$$

- guard: $S = x = 0 = h^{-1}(0)$, h(x, y) = x.
- reset: $\Delta(x, y) = (x, -c^2y), 0 < c < 1.$
- cost: $J = \int_0^T \frac{u^2}{2} dt$.

Optimal control solution

$$\hat{H}(x,y,p_x,p_y) = \min_{u} \left\{ \frac{1}{2}u^2 + \frac{1}{m}yp_x + (-mg + u)p_y \right\} \implies u = -p_y$$

Continuous dynamics:

$$\dot{x} = \frac{y}{m}$$

$$\dot{y} = -mg - p_y$$

$$\dot{p}_x = 0$$

$$\dot{p}_x = \frac{p_x}{m}$$

Discrete dynamics:

$$x^{+} = x^{-}$$

$$y^{+} = -c^{2}y^{-}$$

$$p_{x}^{+} = -\frac{1}{c^{2}}p_{y}^{-} + \frac{m}{2c^{2}}\frac{(p_{y}^{-})^{2}}{y}(1 - c^{-4})$$

$$+ \frac{m^{2}g}{c^{2}}\frac{p_{y}}{y}(1 + c^{-2})$$

$$p_{y}^{+} = -\frac{1}{c^{2}}p_{y}^{-}$$

9/18

Zeno for the bouncing ball

No controls \implies every trajectory is Zeno.

$$\zeta(x_0, y_0) = \frac{1}{mg}y_0 + \frac{3}{g(1-c^2)}\sqrt{\frac{y_0^2}{m^2} + 2gx_0}$$

Zeno becomes locally optimal if $T>\zeta+\sqrt{\frac{6}{g}}$ with cost

$$J_{Zeno} = \frac{2}{3}g\sqrt{6g}$$

Numerical observations

 $J_{optimal} = \min\{J_{shoot}, J_{Zeno}\}$

Maximum principle trajectories

Zeno trajectories

Phase space comparison

Numerical observations

- Zeno doesn't satisfy the extended reset map but still optimal
 Maximum principle is not neccesary for optimality!
- The value function is constant in the Zeno area! What is the boundary?

Questions?

Paper: arXiv:2210.01056

Optimality of Zeno executions for Hybrid Systems

M. Oprea¹ and W. Clark²

¹Center for Applied Mathematics, Cornell University

²Department of Mathematics, Cornell University

Funding: NSF grant DMS-1645643, Army Research Office Biomathematics Program Grant W911NF-18-1-0351.