CONSENSO

- Aplicação distribuída tem por **finalidade principal** aumentar a confiabilidade
 - . Aplicação é replicada em diversas máquinas (nós)
- Deseja-se que a aplicação seja:
 - Segura contra falhas:
 - Garante que uma ou mais falhas não cause **prejuízo** ao sistema e usuários
 - . A aplicação pode não estar mais funcional
 - **Tolerante a falhas:**
 - A aplicação continua **funcional** apesar de uma ou mais falhas

- . Uma aplicação distribuída **não é automaticamente** segura à falhas ou tolerante a falhas
 - Considere o algoritmo de Ricart-Agrawala para exclusão mútua distribuída
 - . A aplicação requer a colaboração de todos os nós
 - Caso um dos nós falhe, a aplicação entra em deadlock
- Considere uma arquitetura distribuída confiável em que:
 - Os dados de entrada podem provir da mesma fonte ou não
 - Dados podem ser originados em um único sensor
 - Dados podem vir de vários sensores replicados para aumentar a confiabilidade

- . Cada um dos nós processa os dados de entrada e produz uma saída
- . Considerando as saídas, uma determinada ação deve ser tomada

Temperature CPU CPU Comparator CPU CPU

- . Algumas questões devem ser observadas:
 - Quando sensores são replicados, eles não indicam exatamente o mesmo valor.
 - Os diversos nós podem receber dados de entrada ligeiramente diferentes
 - Sensores podem produzir **dados espúrios** que ultrapassam a faixa de valores consideradas pelos algoritmos
 - Se todos os nós **usarem o mesmo software**, o sistema **não é tolerante a falhas** decorrentes de *bugs* no software

- Se não usarem o mesmo software, os resultados podem diferir para os mesmos dados de entrada:
 - . Programadores são propensos a fazer interpretações equivocadas das especificações do software
- . Nestas condições, um sistema tolerante a falhas deve decidir qual das respostas obtidas é a correta
- Em aplicações distribuídas, isto corresponde a um problema de consenso:
 - . Cada um dos nós encontra um valor inicial
 - De todos os valores encontrados, cada nó deve optar por um resultado
 - . Todos os nós devem optar pelo **mesmo valor**

- . Se **não houver falhas**, a escolha é trivial:
 - . Cada nó manda para os demais a opção inicial
 - . Um algoritmo simples determina a resposta da maioria
 - Como todos os nós têm os mesmos dados (das escolhas) e o mesmo algoritmo de maioria
 - . A opção da maioria é igual em todos os nós.
- · Há dois tipos de falhas a serem consideradas:
 - Falhas de quebra:
 - . O nó com a falha para de mandar mensagens
 - **Falhas Bizantinas:**
 - . O nó com a falha manda mensagens aleatórias

PROBLEMA DOS GENERAIS BIZANTINOS

. Usado para modelar a obtenção de consenso em problemas de comunicação

. Enunciado:

- . Um grupo de exércitos Bizantinos está cercando uma cidade inimiga
- . O equilíbrio de forças é tal que:
 - . Se todos os exércitos **atacarem ao mesmo tempo**, eles conseguem capturar a cidade
 - Caso contrário, eles terão que se retirar para evitar a derrota
- Os generais de cada exército tem mensageiros confiáveis que podem usar para enviar mensagens a qualquer outro general dos demais exércitos

- Entretanto, alguns generais podem ser **traidores** querendo que os exércitos sejam derrotados
- . É preciso encontrar um algoritmo de modo que os generais **leais** possam chegar a um **consenso** sobre a estratégia adequada a ser usada
- . A decisão final precisa ser a mesma da maioria dos votos iniciais
- . Caso a decisão seja equilibrada, deve-se optar pela retirada

No problema dos Generais Bizantinos, ambas as falhas ocorrem na seguinte forma:

Falha de quebra :

O general traidor pára de enviar o mensageiro em um determinado ponto da execução do algoritmo.

Falha bizantina:

- O general traidor manda mensagens arbitrárias, não apenas as requeridas pelo algoritmo
- As falhas de quebra podem ser determinadas estipulando um tempo máximo de resposta (timeout) para que cada nó envie a mensagem
 - Se não for possível estipular este prazo, o problema não tem solução

ALGORITMO DA SOLUÇÃO TRIVIAL

```
tipoPlano planoFinal
tipoPlano planos[numGenerais]
planos[IDLocal] = escolhaAtaqueRetirada();
Para todos os outros generais G
     send(G, IDLocal, planos[IDLocal]);
Fim Para
Para todos os outros generais G
     receive(G, planos[G]);
Fim Para
planoFinal = maioria(planos);
```

- · Valores para tipoPlano podem ser A (Ataque) ou R (Retirada)
- . Cada general escolhe uma estratégia e envia para os demais
- Analisando a escolha dos demais, a estratégia final deve ser de acordo com a maioria
- · Vamos analisar o que ocorre em um cenário de falha de quebra:
 - . Considerando 3 generais, sendo:
 - . 2 leais (Leo e Zoe)
 - . 1 traidor (Basil)
 - . Zoe e Basil escolhem ataque e Leo escolhe Retirada
 - . Zoe e Leo funcionam normalmente

Basil quebra após enviar uma mensagem a Leo, mas antes de enviar a Zoe, resultando nas tabelas:

Leo				
general	plan			
Basil	А			
Leo	R			
Zoe	А			
majority	А			

Zoe				
general	plans			
Basil	1			
Leo	R			
Zoe	Α			
majority	R			

. A decisão final de Leo é **Ataque**, enquanto que para Zoe a decisão é **Retirada**!

ALGORITMO DOS GENERAIS BIZANTINOS

- O problema do algoritmo anterior vem do fato que não usa o fato de que certos generais são leais e outros não
- Em um sistema distribuído, não há como um nó determinar quais são os traidores diretamente
- . É preciso assegurar que a estratégia escolhida pelos generais traidores não afete a escolha de estratégia dos generais leais
- Para tanto, são introduzidas rodadas extras de envio de mensagens

- . Na **primeira rodada** de mensagens, cada nó deve enviar a sua própria estratégia
- Na segunda rodada, cada nó deve enviar o que recebeu dos outros generais sobre as suas estratégias
 - Os generais leais sempre replicam exatamente as mesmas estratégias que receberam
 - Além disso, para reduzir as mensagens, cada general não precisa enviar:
 - . A sua própria escolha para si mesmo
 - . A escolha feita de um general para o próprio

```
tipoPlano planoFinal
tipoPlano planos[numGenerais]
tipoPlano planRep[numGenerais][numGenerais]
tipoPlano planMaioria[numGenerais]
planos[IDLocal] = escolhaAtaqueRetirada();
// Primeira rodada de mensagens
Para todos os outros generais G
     send(G, IDLocal, planos[IDLocal]);
Fim Para
Para todos os outros generais G
     receive(G, planos[G]);
Fim Para
```

```
// Segunda rodada de mensagens
Para todos os outros generais G
    Para todos os outros generais H exceto G
       send(H, IDLocal,G, planos[G]);
    Fim_Para
Fim_Para
Para todos os outros generais G
    Para todos os outros generais H exceto G
       receive(G,H, planRep[G][H]);
    Fim Para
Fim Para
```

```
// Define primeiro voto de cada nó pela maioria
Para todos os outros generais G
    planMaioria[G] = maioria(planos[G], planRep[*][G])
Fim_Para
planMaioria[IDLocal] = planos[IDLocal];
// Define o consenso, pela maioria
planoFinal = maioria(planMaioria);
```

- Vamos analisar um cenário de falha de quebra com 3 generais, descrito anteriormente:
 - . Zoe e Leo, generais leais, decidem por ataque e retirada

Basil, general traidor, decide por ataque. Envia a mensagem para Leo, mas quebra antes de enviar a Zoe

. Os dados com Leo, ficam:

Leo						
general	plan	report	ed by	majority		
		Basil	Zoe			
Basil	Α	_		А		
Leo	R			R		
Zoe	Α	_		А		
majority				А		

. Estratégia final: Ataque

. Os dados com Zoe, ficam:

Zoe						
general	plan	report	ed by	majority		
		Basil	Leo			
Basil	_	Α		А		
Leo	R	_		R		
Zoe	А			А		
majority				А		

. Estratégia final: Ataque

- Em um segundo cenário, supondo que o traidor:
 - . Mande todas as mensagens da primeira rodada
 - . Envie apenas a primeira mensagem da segunda rodada e depois quebre
- . Dados de Leo:

Leo						
general	plan	report	ed by	majority		
		Basil	Zoe			
Basil	Α	А		А		
Leo	R			R		
Zoe	Α	А		А		
majority				А		

Estratégia Final: Ataque

Dados de Zoe:

Zoe						
general	plan	report	ed by	majority		
		Basil	Leo			
Basil	Α	А		А		
Leo	R	_		R		
Zoe	А			А		
majority				А		

Estratégia Final: Ataque

Falhas Bizantinas com 3 generais

- Vimos que o algoritmo consegue o consenso no caso de falhas de quebra de um general em três
- Vamos ver um cenário em que o traidor ocasiona uma falha bizantina, ou seja:
 - . Uma mensagem aleatória é enviada
- . A primeira rodada de mensagens fica:

 Usando o algoritmo trivial (uma rodada) temos decisões diferentes:

Leo				
general	plans			
Basil	А			
Leo	R			
Zoe	Α			
majority	Α			

Zoe			
general	plans		
Basil	R		
Leo	R		
Zoe	Α		
majority	R		

- . Para o algoritmo dos generais bizantinos (duas rodadas):
 - . Basil indica o mesmo plano para Zoe e Leo na primeira rodada
 - . Indica o plano correto de Leo para Zoe
 - . Indica o plano errado de Zoe para Leo

Leo						
general	plans	report	ed by	majority		
		Basil	Zoe			
Basil	Α	А		А		
Leo	R			R		
Zoe	Α	R		R		
majority				R		

Zoe							
general	plans	report	ed by	majority			
		Basil Leo					
Basil	Α	А		А			
Leo	R	R		R			
Zoe	Α			А			
majority				А			

. Neste caso, decisões diferentes são tomadas.

Falhas Bizantinas com 4 generais

- Neste caso, estamos considerando a existência de mais um general leal
- . Neste cenário temos:
 - . Basil, John e Leo generais leais
 - . Basil e John escolhem Ataque
 - . Leo escolhe retirada
 - . Zoe general traidor
- Vamos analisar os dados parciais obtidos por Basil

Basil						
general	plan	rep	reported by			
		John Leo Zoe				
Basil	Α				А	
John	Α		Α	?	А	
Leo	R	R		?	R	
Zoe	?	?	?		?	
majority					?	

. Observe que as mensagens enviadas por Zoe não podem mudar o resultado da maioria para John e Leo

- Vamos considerar agora que Zoe mande mensagens na primeira rodada indicando:
 - . Para John que seu plano é Ataque
 - . Para os demais indique que seu plano é Retirada

Basil						
general	plans	rep	orted	by	majority	
		John	John Leo Zoe			
Basil	Α				А	
John	Α		Α	?	А	
Leo	R	R		?	R	
Zoe	R	Α	R		R	
					R	

- Como os demais generais são leais, todos terão exatamente as mesmas opções indicadas por Zoe.
- . Todas as quatro opções são iguais para os 3 generais.
- . Escolherão a mesma estratégia!

Complexidade do algoritmo dos Generais Bizantinos

- Para cada traidor adicional, é necessário acrescentar uma rodada adicional de mensagens
- . O número total de generais deve ser 3t+1, sendo t o número de traidores
- . Cada general manda:
 - Na primeira rodada: (n-1) mensagens
 - Na segunda rodada: (n-1)*(n-2) mensagens
 - Na terceira rodada: (n-2)*(n-3) mensagens
 - e assim por diante

. Como são *n* generais, o total de mensagens enviadas é:

$$n \cdot \left[(n-1) + \sum_{k=1}^{t} (n-k) \cdot (n-k-1) \right]$$

Assim, com o aumento do número de traidores, a quantidade de mensagens cresce rapidamente

Traidores	Generais	Mensagens		
1	4	36		
2	7	392		
3	10	1790		
4	13	5408		

ALGORITMO REI

- . Modificação do algoritmo dos generais bizantinos
- . Requer menos mensagens quando o número de traidores aumenta
- Requer um general leal adicional por traidor, ou seja:
 - . Número total de generais é 4t+1, sendo t número de traidores
- O algoritmo baseia-se no fato de que poucos traidores não afetarão o consenso se houver uma maioria esmagadora
- Para um traidor, há duas etapas, cada uma com duas rodadas de envio de mensagens

. Em cada etapa:

- . Um dos nós é escolhido Rei
- . Cada nó envia para os demais o plano que escolheu
- . É escolhido um plano por maioria e guardado o número de votos
- . Se o nó for Rei
 - . Envia a sua maioria para os demais
 - . A sua maioria passa a ser o seu próprio plano
- . senão
 - . Recebe a maioria do Rei

- Se a própria maioria teve cotação esmagadora:
 - . O sua maioria passa a ser o seu plano
- . senão
 - . A maioria do rei passa a ser o seu plano

- Na execução da segunda etapa, o Rei deve ser um general diferente da primeira
- . Como há apenas um traidor, pelo menos um dos Reis será leal

O algoritmo Rei está descrito a seguir:

```
tipoPlano planoFinal, minhaMaioria, planoRei
tipoPlano planos[numGenerais]
int votosMaioria, IDRei
planos[IDLocal] = escolhaAtaqueRetirada();
Repita duas vezes
    // Primeira rodada de mensagens
    Para todos os outros generais G
        send(G, IDLocal, planos[IDLocal]);
    Fim_Para
    Para todos os outros generais G
       receive(G, planos[G]);
    Fim Para
```

```
minhaMaioria = maioria(planos)
 votosMaioria = qtdadeVotosMaioria()
 // Segunda rodada de mensagens
Se for minha vez de ser Rei então
  Para todos os outros generais G
     send(G, IDLocal, minhaMaioria)
  Fim Para
   planos[IDLocal]= minhaMaioria
senão
    receive(IDRei, planosRei);
Fim se
```

- Vamos considerar um cenário com 5 generais:
 - . Leais:
 - . Basil e John escolhendo Ataque
 - Leo e Zoe escolhendo Retirada
 - Traidor: Mike Manda dois avisos de cada (A e R)

. Após a primeira rodada de mensagens temos:

Basil									
Basil John Leo Mike Zoe myMajority votesMajority kingPlan									
Α	Α	R	R	R	R	3			

John									
Basil John Leo Mike Zoe myMajority votesMajority kingPlan									
Α	Α	R	Α	R	А	3			

Leo									
Basil John Leo Mike Zoe myMajority votesMajority kingPlan									
Α	Α	R	Α	R	А	3			

Zoe									
Basil	John	Leo	Mike	Zoe	myMajority	votesMajority	kingPlan		
Α	Α	R	R	R	R	3			

. Tendo sido Zoe escolhido primeiro Rei, e como ninguém teve votação esmagadora, temos:

Basil										
Basil	John	Leo	Mike	Zoe	myMajority	votesMajority	kingPlan			
R							R			

John									
Basil John Leo Mike Zoe myMajority votesMajority kingPlan									
	R						R		

	Leo										
Basil	John	Leo	Mike	Zoe	myMajority	votesMajority	kingPlan				
		R					R				

Zoe									
Basil	John	Leo	Mike	Zoe	myMajority	votesMajority	kingPlan		
				R					

. Na terceira rodada, todos obtém maioria esmagadora:

Basil									
Basil	John	Leo	Mike	Zoe	myMajority	votesMajority	kingPlan		
R	R	R	?	R	R	4–5			

John									
Basil	John	Leo	Mike	Zoe	myMajority	votesMajority	kingPlan		
R	R	R	?	R	R	4–5			

Leo									
Basil	John	Leo	Mike	Zoe	myMajority	votesMajority	kingPlan		
R	R	R	?	R	R	4–5			

	Zoe										
Basil John Leo Mike Zoe myMajority votesMajority kingPlan											
R	R	R	?	R	R	4–5					

- Qualquer que seja o voto de Mike, a opção da maioria não é alterada
- . Observe também que o segundo Rei não vai alterar o consenso obtido
- Consideremos agora a situação em que o primeiro Rei é o traidor
- Independente do que foi enviado na primeira rodada, o Rei traidor pode mandar qualquer plano para os demais
 - . Por exemplo: A para Leo e John e R para Basil e Zoe

. Após a segunda rodada, temos (não há maioria esmagadora):

Basil										
Basil	John	Leo	Mike	Zoe	myMajority	votesMajority	kingPlan			
R							R			

	John										
Basil John Leo Mike Zoe myMajority votesMajority kingPla											
	Α						А				

	Leo										
Basil John Leo Mike Zoe myMajority votesMajority kingPla											
		Α					А				

	Zoe									
Basil John Leo Mike Zoe myMajority votesMajority kingPlan										
				R			R			

. Na segunda etapa, o Rei é um general leal (por exemplo, Zoe)

	Basil										
Basil John Leo Mike Zoe myMajority votesMajority kingPlan											
R	Α	Α	?	R	?	3					

	John										
Basil John Leo Mike Zoe myMajority votesMajority kingPlan											
R	Α	Α	?	R	?	3					

	Leo										
Basil John Leo Mike Zoe myMajority votesMajority kingPlan											
R	Α	Α	?	R	?	3					

	Zoe										
Basil John Leo Mike Zoe myMajority votesMajority kingPlan											
R	Α	Α	?	R	?	3					

- Neste caso, a opção da maioria depende da opção de Mike,
 mas não será maioria em nenhum caso
- . Suponhamos que o novo Rei obteve A
- Este plano será enviado aos demais (**igual para todos**)
- Logo todos terão consenso na mesma opção.

	Basil										
Basil John Leo Mike Zoe myMajority votesMajority kingPla											
Α							А				

	John										
Basil John Leo Mike Zoe myMajority votesMajority kingPla											
	А						А				

	Leo										
Basil John Leo Mike Zoe myMajority votesMajority kingPlan											
		Α					А				

Zoe								
Basil	John	Leo	Mike	Zoe	myMajority	votesMajority	kingPlan	
				Α				

Complexidade do Algoritmo do Rei

- O algoritmo requer um general a mais: 4t+1, sendo t o número de traidores
- . Requer **menos** mensagens:
 - . Na primeira rodada: n*(n-1) mensagens
 - . Na segunda rodada: (n-1) mensagens (apenas o Rei manda)
 - . Além disso, são necessárias *t*+1 etapas de duas rodadas
 - Logo, o total é: (t+1)*(n+1)*(n-1) mensagens

. Comparando os dois algoritmos:

		nerais Intinos	Algoritmo Rei	
Traidores	Generais	Mensagens	Generais	Mensagens
1	4	36	5	48
2	7	392	9	240
3	10	1790	13	672
4	13	5408	17	1440