Question 1

What is the optimal value of alpha for ridge and lasso regression? What will be the changes in the model if you choose double the value of alpha for both ridge and lasso? What will be the most important predictor variables after the change is implemented?

The optimal alpha values for Ridge and Lasso are identified as 2 and 0.001, respectively, resulting in an R2 of approximately 0.83. Upon doubling these alpha values, the prediction accuracy holds steady at around 0.82, albeit with slight adjustments in the coefficient values. The updated model is implemented and showcased in the Jupyter notebook, illustrating the alterations in the coefficients.

Ridge Regression Model

	Ridge Co-Efficient		Ridge Doubled Alpha Co-Efficient
Total_sqr_footage	0.169122	Total_sqr_footage	0.149028
GarageArea	0.101585	GarageArea	0.091803
TotRmsAbvGrd	0.067348	TotRmsAbvGrd	0.068283
OverallCond	0.047652	OverallCond	0.043303
LotArea	0.043941	LotArea	0.038824
CentralAir_Y	0.032034	Total_porch_sf	0.033870
LotFrontage	0.031772	CentralAir_Y	0.031832
Total_porch_sf	0.031639	LotFrontage	0.027526
Neighborhood_StoneBr	0.029093	Neighborhood_StoneBr	0.026581
Alley_Pave	0.024270	OpenPorchSF	0.022713
OpenPorchSF	0.023148	MSSubClass_70	0.022189
MSSubClass_70	0.022995	Alley_Pave	0.021672
RoofMatl_WdShngl	0.022586	Neighborhood_Veenker	0.020098
Neighborhood_Veenker	0.022410	BsmtQual_Ex	0.019949
SaleType_Con	0.022293	KitchenQual_Ex	0.019787
HouseStyle_2.5Unf	0.021873	HouseStyle_2.5Unf	0.018952
PavedDrive_P	0.020160	MasVnrType_Stone	0.018388
KitchenQual_Ex	0.019378	PavedDrive_P	0.017973
LandContour_HLS	0.018595	RoofMatl_WdShngl	0.017856
SaleType_Oth	0.018123	PavedDrive_Y	0.016840

Lasso Regression Model

	Lasso Co-Efficient		Lasso Doubled Alpha Co-Efficient
Total_sqr_footage	0.202244	Total_sqr_footage	0.204642
GarageArea	0.110863	GarageArea	0.103822
TotRmsAbvGrd	0.063161	TotRmsAbvGrd	0.064902
OverallCond	0.046686	OverallCond	0.042168
LotArea	0.044597	CentralAir_Y	0.033113
CentralAir_Y	0.033294	Total_porch_sf	0.030659
Total_porch_sf	0.028923	LotArea	0.025909
Neighborhood_StoneBr	0.023370	BsmtQual_Ex	0.018128
Alley_Pave	0.020848	Neighborhood_StoneBr	0.017152
OpenPorchSF	0.020776	Alley_Pave	0.016628
MSSubClass_70	0.018898	OpenPorchSF	0.016490
LandContour_HLS	0.017279	KitchenQual_Ex	0.016359
KitchenQual_Ex	0.016795	LandContour_HLS	0.014793
BsmtQual_Ex	0.016710	MSSubClass_70	0.014495
Condition1_Norm	0.015551	MasVnrType_Stone	0.013292
Neighborhood_Veenker	0.014707	Condition1_Norm	0.012674
MasVnrType_Stone	0.014389	BsmtCond_TA	0.011677
PavedDrive_P	0.013578	SaleCondition_Partial	0.011236
LotFrontage	0.013377	LotConfig_CulDSac	0.008776
PavedDrive_Y	0.012363	PavedDrive_Y	0.008685

Overall since the alpha values are small, we do not see a huge change in the model after doubling the alpha.

Question 2

You have determined the optimal value of lambda for ridge and lasso regression during the assignment. Now, which one will you choose to apply and why?

The optimal lambda values for Ridge and Lasso are determined to be 2 and 0.0001, respectively. The Mean Squared Error (MSE) for Ridge is found to be 0.0018396090787924262, and for Lasso, it is 0.0018634152629407766. Notably, the MSE values for both models are nearly identical. Given Lasso's ability to facilitate feature reduction by causing certain feature coefficients to become zero, it holds a distinct advantage over Ridge. Consequently, Lasso is recommended as the preferred final model.

The top five predictor variables identified in the current Lasso model are as follows:

Total_sqr_footage GarageArea TotRmsAbvGrd OverallCond LotArea

After removing these attributes and constructing a new Lasso model in the Jupyter notebook, the R2 of the updated model decreases to 0.73. Additionally, there is an increase in the Mean Squared Error, which rises to 0.0028575670906482538. This indicates that the excluded predictor variables were contributing significantly to the model's predictive performance, and their removal has resulted in a decrease in the model's accuracy.

The new Top 5 predictos are:

Lasso Co-Efficient	l	La	S	S	0	С	0-	Æ	ffi	ci	e	'n	t
--------------------	---	----	---	---	---	---	----	---	-----	----	---	----	---

LotFrontage	0.146535
Total_porch_sf	0.072445
HouseStyle_2.5Unf	0.062900
HouseStyle_2.5Fin	0.050487
Neighborhood_Veenker	0.042532

Question 3

After building the model, you realised that the five most important predictor variables in the lasso model are not available in the incoming data. You will now have to create another model excluding the five most important predictor variables. Which are the five most important predictor variables now?

In accordance with Occam's Razor, when comparing two models with similar performance on finite training or test data, the preference is for the one exhibiting fewer complexities. Several reasons support this inclination:

Generality and Applicability: Simpler models tend to be more generic and widely applicable. **Efficient Training:** Simpler models require fewer training samples for effective training compared to more complex ones, making them easier to train.

Robustness: Simpler models demonstrate greater robustness. In contrast, complex models may undergo drastic changes with variations in the training dataset, leading to high variance and low bias.

To enhance a model's robustness and generalizability, it is advocated to keep the model simple but not excessively so. Regularization is a valuable technique for achieving this balance. In regression, regularization involves introducing a term to the cost function that penalizes the absolute values or squares of the model parameters.

Additionally, the pursuit of model simplicity contributes to the Bias-Variance Trade-off:

Model Stability: Complex models exhibit instability, changing significantly with even minor alterations in the dataset. Simpler models, abstracting patterns from given data points, are less likely to undergo wild changes, even with the addition or removal of data points.

Bias and Variance: A complex model, given sufficient training data, can accurately predict outcomes but might have a high bias. Conversely, overly simplistic models, behaving uniformly across all inputs, may have a large bias. Striking a balance between bias and variance is crucial for maintaining model accuracy.

By navigating the delicate equilibrium between bias and variance, model accuracy can be upheld, minimizing total error, as depicted in the accompanying graph.

