PRINTABLE VERSION

Quiz 5

You scored 100 out of 100

Question 1
Your answer is CORRECT.
An outline for a proof of an implication $P \Rightarrow Q$ is provided below:
$\text{Proposition. } P\Rightarrow Q$
Proof. Suppose P .
$\overline{Missing}$ steps involving P and Q and any previously established facts
Therefore Q . \square
What type of proof was described in the outline?
a) A proof by introspection is described in this outline.
b) Wait a minute The proof described in this outline isn't a valid proof technique!
c) A proof by contradiction is described in this outline.
d) A proof by contrapositive is described in this outline.
e) A direct proof is described in this outline.
Question 2
Your answer is CORRECT.
Suppose a mathematician wants to prove a statement of the form $P \lor Q$. However, they wish to do so using a proof by contradiction. Of the following options which could be used as a first step in this proof?
a) \bigcirc Suppose $\neg P$.
b) \bigcirc Suppose $\neg P \land Q$.
c) \bigcirc Suppose $\neg P \land \neg Q$.
d) \bigcirc Suppose $\neg P \lor \neg Q$.
e) Suppose ¬Q
Question 3
Your answer is CORRECT.
Given two sets A and B one can prove $A \subseteq B$ by
a) \bigcirc First supposing $x \notin B$, and then showing $x \in A$.
b) \bigcirc First supposing $x \notin A$, and then showing $x \in B$.
c) \bigcirc First supposing $x \in A$, and then showing $x \notin B$.
d) \bigcirc First supposing $x \in B$, and then showing $x \in A$.

e) \odot First supposing $x \in A$, and then showing $x \in B$.
Question 4
Your answer is CORRECT.
Given two sets A and B one can prove $B \subseteq A$ by
a) \bigcirc First supposing $x \notin B$, and then showing $x \in A$.
b) \bigcirc First supposing $x \notin A$, and then showing $x \in B$.
c) \bigcirc First supposing $x \notin A$, and then showing $x \notin B$.
d) \bigcirc First supposing $x \notin B$, and then showing $x \notin A$.
e) \bigcirc First supposing $x \in A$, and then showing $x \notin B$.
Question 5
Your answer is CORRECT.
A lovely little proof is presented below:
Proposition. The empty set is a subset of every set.
Devel Cumpage the proposition is follow
Proof. Suppose the proposition is false. This means $\exists S, \emptyset \nsubseteq S$.
By (negating the) definition of subset it follows that $\exists x \in \emptyset$, $x \notin S$.
However, this implies that the empty set contains an element x .
Therefore $x \in \emptyset$ and, by definition of \emptyset , $x \notin \emptyset$. $\Rightarrow \Leftarrow$
Determine the type of proof used.
a) A direct proof was used.
b) A proof by contrapositive was used.
c) Wait a minute This so-called "proof" did not actually show the Proposition was true. Whoever wrote this deserves 0 points.
d) A proof by contradiction was used.
e) A proof by indoctrination was used.
Question 6
Your answer is CORRECT.
A proposition and an attempt at its proof are presented below.

Proposition. The sum of an odd integer and an even integer is odd.

Proof. (Direct)

- (1) Suppose $x, y \in \mathbb{Z}$ are integers.
- (2) We can assume x is odd and that y is even.
- (3) Since x is odd, it follows that $\exists y \in \mathbb{Z}, x = 2y + 1$.
- (4) Since y is even, it follows that $\exists m \in \mathbb{Z}, y = 2m$.
- (5) We now have x + y = (2y + 1) + y = 3y + 1 = 3(2m) + 1 = 2(3m) + 1.
- (6) Because x + y has the form of an odd number it is odd. \square

Identify the mistake, if any, in this proof.

- a) \bigcirc There is an error in Line (1) since we cannot simply assume $x, y \in Z$.
- b) There is an error in Line (3) where the variable name "y" is used when this name already refers to a different variable.
- c) There is an error in Line (2) since we do not know which integer is odd or even.
- d) There is an algebraic mistake in Line (5).
- e) There is an error in Line (4) since where the definition of "even" is misapplied.

Question 7

Your answer is CORRECT.

A proposition and an attempt at its proof are presented below.

Proposition. $\forall n \in \mathbb{N}, n(n+1)$ is even.

Proof. (Direct)

(1) Let $n \in \mathbb{N}$. We will use cases to prove the proposition.

Case 1: n is even.

- (2) In this case we have n = 2m for some $m \in \mathbb{N}$.
- (3) Because n is even, it follows that when n is divided by 2, there is no remainder.
- (4) n being even implies n+1 is odd.
- (5) It now follows that $n(n+1)=(2m)(2m+1)=2\cdot \left(m(2m+1)\right)$ which has the form of an even number.
- (6) Therefore n(n+1) is even, proving the proposition in this case.

Case 2: n is odd.

- (7) In this case we have $n = 2\ell + 1$ for some $\ell \in \mathbb{Z}$.
- (8) If n is not odd then it is even and Case 1 applies.
- (9) It follows that $n(n+1) = (2\ell+1)(2\ell+1+1) = (2\ell+1)(2\ell+2) = 2(2\ell+1)(\ell+1)$
- (10) Because the expression above has the form of an even number, n(n+1) is even.
- (11) If n(n+1) is odd, then there is a contradiction.
- (12) This completes the proof. \square

One or more lines in this proof are not needed -- the proof works perfectly well without them (in fact, it works better without them). Which lines are not needed?

- a) Only lines (3),(4),(8), and (11) are not needed. All other lines are needed.
- **b)** Only line (8) is not needed. All other lines are needed.
- c) Only lines (4) and (11) are not needed. All other lines are needed.
- d) All lines are needed.
- e) Only lines (3) and (11) are not needed. All other lines are needed.

Question 8

Your answer is CORRECT.

Suppose we want to write a contrapositive proof of the proposition below:

$$\forall x \in \mathbb{Z}$$
, if $x^2 - 6x + 5$ is even, then x is odd.

Which of the following statements or properties do we need to use when composing this proof?

a)
$$x^2 - 6x + 5 \le x^2 - 6x + \pi$$
.

b)
$$(2a)^2 - 6(2a) + 5 = 10a^2 - 12a + 5 = 2(5a^2 - 6a + 2)$$
.

(2a)
$$(2a)^2 - 6(2a) + 5 = 10a^2 - 12a + 5 = 2(5a^2 - 6a + 2) + 1$$
.

d) \bigcirc Therefore x = 2a + 1 for some $a \in Z$.

Question 9

Your answer is CORRECT.

A proposition is stated below. Take a few moments to carefully read it, and make sure you understand what, exactly, it claims to be true. $\forall n \in \mathbb{N}, \exists a \in \mathbb{N}, a \geq n$.

Of the following options, which one best describes what needs to be done in order to prove this claim?

- a) \odot We would need to let $n \in \mathbb{N}$ be an arbitrary natural number and then argue that a natural number a satisfies $a \ge n$.
- b) \bigcirc We would need to let $a \in N$ be an arbitrary natural number and then argue that there exists a natural number n that satisfies $a \ge n$.
- c) This can only be proved by paying someone else to do it for me.