Sztuczna inteligencja. Przeszukiwanie z wiedzą o problemie

Paweł Rychlikowski

Instytut Informatyki UWr

8 marca 2023

Problemy bezczujnikowe (sensorless)

- Czujniki są drogie. Czasem wolimy na przykład znaleźć sekwencje akcji, która doprowadzi do celu niezależnie od stanu.
- Przykład 1 Szeroko działający antybiotyk
- Przykład 2 Robot w linii produkcyjnej, który składa jakieś części wykonując akcje niezależne od tego, jak te części się ułożyły.

Uwaga

Oczywiście rozwiązanie problemu bezczujkowego nie jest optymalne w środowisku z dostępem do sensorów. Zakładamy na przykład, że pewne akcje będą "puste".

Problemy bezczujnikowe (przykładowy odkurzacz)

Wszyscy wiemy o inteligentych odkurzaczach. Ten będzie trochę prostszy:

Przestrzeń przekonań

Definicja

Stanem przekonań jest zbiór stanów oryginalnego problemu, w których agent (być może) się znajduje.

Pytanie 1

Jak się poruszać w takiej przestrzeni?

Pytanie 2

Jaka sekwencja akcji jest rozwiązaniem problemu bezczujnikowego (napiszmy ją na tablicy).

Przestrzeń przekonań odkurzacza. Przykład

(pętle dla wszystkich stanów usunięte ze względu na czytelność.)

Graf przestrzeni przekonań

- Przejścia w przestrzeni przekonań powstają przez zaaplikowanie funkcji przejścia do stanu (obliczenia obrazu funkcji)
- Stan jest końcowy jeżeli wszystkie stany w nim zawarte są końcowe.
- Koszt jednostkowy (jeżeli oryginalny był jednostkowy)
- Stan startowy: zbiór wszystkich stanów.

Komandos z mapą. Mniej trywialny przykład

- Rozważmy zadanie, w którym do labiryntu wrzucony zostaje komandos z mapą...
- ale zrzut jest w nocy i nie wiadomo, gdzie trafił.
- Problem:

znajdź sekwencję akcji, która **na pewno** doprowadzi do jednego z celów (akcje niedozwolone nie przesuwają komandosa).

Komandos. Jak go rozwiązać

- Zadanie z komandosem będzie na liście P2.
- Zbadajmy, jak działa taka przestrzeń przekonań.

Zmniejszanie niepewności,

Zobaczmy, jakie są możliwości zmniejszania niepewności w tym zadaniu (program commando_z_wykladu.py).

Rozpoczynamy kolejny mini-dział, czyli przeszukiwanie z wiedzą o problemie

Dodatkowa wiedza o problemie

- Opłaca się iść w kierunku rozwiązania.
- Co to oznacza?

Zakładamy, że umiemy szacować odległość od rozwiązania.

Przykłady

- Odległość w linii prostej w zadaniu szukania drogi.
- Odległość taksówkowa (Manhattan distance) w labiryncie.

Przeszukiwanie zachłanne

- Rozwijamy ten węzeł, który wydaje się najbliższu rozwiązania.
- Proste, intuicyjne, ale są problemy. Jakie?

Można ten algorytm "oszukiwać", w skrajnym przypadku sprawić, żeby rozwiązanie w ogóle nie zostało znalezione

Algorytm A*

Definicje

- g(n) koszt dotarcia do węzła n
- h(n) szacowany koszt dotarcia od n do (najbliższego) punktu docelowego $(h(s) \ge 0)$
- $\bullet \ \mathsf{f(n)} = \mathsf{g(n)} + \mathsf{h(n)}$

Algorytm

Przeprowadź przeszukanie, wykorzystując f(n) jako priorytet węzła (czyli rozwijamy węzły od tego, który ma najmniejszy f).

Algorytm A*. Uwagi

- Zwróćmy uwagę, że algorytm przypomina BFS (w którym, jak pamiętamy, używamy kolejki FIFO) oraz algorytm UCS (uniform cost search, Dijkstry).
- Jedyną różnicą między A* i UCS jest użycie funkcji f, a nie funkcji g jako priorytetu w kolejce priotytetowej.

Wymagania dla heurystyki

Oczywiście od wyboru funkcji h (nazywanej heurystyką) zależą właściwości algorytmu A^*

Wymienimy najważniejsze właściwości funkcji h.

- **1** Nieujemna: $h(s) \ge 0$, dla każdego s
- **8** Rozsądna: $h(s_{end}) = 0$
- Dopuszczalna (admissible): h(s) ≤ prawdziwy koszt dotarcia ze stanu s do stanu końcowego Inaczej: optymistyczna
- **Spójna** (consistent), s_1 , s_2 to sąsiednie stany:

$$cost(s_1,s_2)+h(s_2)\geq h(s_1)$$

Ostatnia własność przypomina własność trójkąta w definicji metryki (na tablicy)

O optymizmie

Pojęcie **optymistyczna** wydaje się dość intuicyjne w kontekście heurystyki.

Zwróćmy uwagę, że:

- Dla zadania: dojechać z punktu A do B po drogach publicznych, heurystyka szacująca koszt dotarcia do B jako odległość euklidesową z punktu X, w którym jesteśmy, do celu jest optymistyczna: zakładamy bowiem optymistycznie, że istnieje prosta, pozbawiona zakrętów droga prościutko do B
- Jeżeli podróżujemy po Manhattanie (czyli w miejscu, gdzie wszystkie drogi przecinają się pod kontem prostym), poprzednia heurystyka nadal będzie optymistyczna. Ale bardziej realistyczne będzie liczenie tzw. odległości taksówkowej, która jest po prostu sumą różnic na współrzędnych x oraz y.

O optymizmie

Jak wkrótce zobaczymy, wybór bardziej realistycznej (ale ciągle optymistycznej) heurystyki zaowocuje lepszym działaniem algorytmu A*.

Konwencja

- Ponieważ h ma być szacowaną odległością od celu, umówimy się, że własność nieujemności i rozsądności funkcji h są konieczne, żeby mówić o algorytmie A*
- Pozostałe dwie własności z poprzedniego slajdu (optymistyczna i spójna) są "mile widziane", ale niekonieczne.

Kilka prostych faktów

- **1** UCS to A^* z super-optymistyczną heurystyką (h(s) = 0)
- Spójna heurystyka jest optymistyczna Dowód: Indukcja po węzłach (na ćwiczeniach, okolice C2)

A^* w labiryncie (1)

Używamy odległości taksówkowej między bieżącą kratką a celem jako heurystyki (czyli **optymistycznie** zakładamy, że nie spotkamy po drodze żadnej ściany).

Kolor różowy: węzy w kolejce, kolor purpurowy – węzły rozwinięte. Jedynie dwa rozwinięte węzły są poza optymalną ścieżka. Na tym rysunku (i kolejnych) widzimy stan algorytmu w momencie osiągnięcia węzła końcowego.

A* w labiryncie (2)

W dolnej części labiryntu heurystyka trochę prowadzi na manowce

A* w labiryncie (3)

... ale jeżeli w poprzednim labiryncie przebić drzwi, to wówczas znowu jest prawie idealnie.

A* w labiryncie (4)

Heurystyka mocno "oszukana" przebiegiem labiryntu.

Kontury A*

Figure 3.20 Map of Romania showing contours at $f=380,\,f=400,\,$ and $f=420,\,$ with Arad as the start state. Nodes inside a given contour have f=g+h costs less than or equal to the contour value.

Właściwości A*

Twierdzenie 1

A* jest zupełny (warunki jak dla UCS).

Twierdzenie 2

Jeżeli h jest spójna, to A^* zwraca optymalną ścieżkę (wersja grafowa)

Twierdzenie 3

Jeżeli h jest optymistyczna, to A^* w drzewie zwraca optymalną ścieżkę.

Dowody: będą, ale najpierw jeszcze trochę praktyki.

Drobna uwaga

A* oczywiście nie daje gwarancji znalezienia rozwiązania dla grafów nieskończonych, w których istnieją nieskończone ścieżki o skończonej sumie wag krawędzi

Heurystyki dla ósemki

Uwaga

Pewne aspekty tworzenia heurystyk można dość dobrze prześledzić na przykładzie ósemki

Pytanie

Jak (optymistycznie) oszacować odległość tych dwóch stanów?

- Heurystyka musi być prosta do policzenia.
- Przy projektowaniu heurystyki kluczowe jest pilnowanie optymizmu (czyli że niedoszacujemy odległości).
- Choć teoretycznie wymagany jest silniejszy warunek (spójności), ale w praktyce naturalne optymistyczne heurystyki są spójne...
- ... a o optymizm łatwiej zadbać (i łatwiej przypomnieć sobie definicję)

Heurystyki dla ósemki (2)

Pomysł 1

Jak coś jest nie na swoim miejscu, to musi się ruszyć o co najmniej 1 krok. Zliczajmy zatem, ile kafelków jest poza punktem docelowym ($h_1(s) = 8$)

Pomysł 2

Jak coś jest nie na swoim miejscu, to musi pokonać cały dystans do punktu docelowego. Zliczajmy zatem, ile kroków od celu jest każdy z kafelków ($h_2(s) = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18$)

Pytanie

Która intuicyjnie jest lepsza?

- Intuicja mówi, że jeżeli coś dokładniej szacujemy, to algorytm bazujący na tych dokładniejszych szacunkach będzie działał lepiej
- Z dwóch optymistycznych heurystyk ta, która daje większe wartości, jest dokładniejsza.

Efektywność w praktyce

- Dla h_2 efektywność A^* jest 50000 razy większa niż IDS.
- Istnieją heurystyki dające jeszcze 10000 krotne przyspieszenie dla 15-ki, a milionowe dla 24-ki (wobec h₂)

Relaksacja

Kiedy możliwy jest ruch w łamigłówce ósemka? Docelowe pole jest: (koniunkcja warunków):

- sąsiadujące
- wolne

Możemy rezygnować z części (lub wszystkich) warunków, otrzymując łatwiejsze łamigłówki.

Uwaga

Liczba ruchów w łatwiejszym zadaniu od startu do punktu docelowego jest często sensowną heurystyką w zadaniu orygialnym.

Relaksacja

Heurystyka h₁

Ruch możliwy jest zawsze.

Heurystyka *h*₂

Ruch możliwy jest gdy pole jest obok (niekoniecznie puste).

Heurystyka h₃

Ruch możliwy jest gdy pole jest puste (niekoniecznie obok).

Relaksacja na mapie

Relaksacja w zadaniu poszukiwania w labiryntach lub przy podróży samochodem drogami:

Relaksacja na mapie

Relaksacja w zadaniu poszukiwania w labiryntach lub przy podróży samochodem drogami:

W labiryncie: pomijanie ścian, czyli odległość taksówkową

Relaksacja na mapie

Relaksacja w zadaniu poszukiwania w labiryntach lub przy podróży samochodem drogami:

- W labiryncie: pomijanie ścian, czyli odległość taksówkową
- W atlasie drogowym: pomijanie dróg, czyli odległość euklidesową (helikopterem)

Operacja maksimum dla heurystyk

- Jak mamy dwie heurystyki h_1 i h_2 , obie optymistyczne
- to możemy zdefiniować $h_3(x) = \max(h_1(x), h_2(x))$

Uwaga

 h_3 też będzie optymistyczna!

Bazy wzorców

Heurystyki możemy budować korzystając z baz wzorców, zapamiętujących koszty rozwiązań podproblemów danego zadania.

Przykład:

Działanie bazy wzorców

- Znajdujemy wszystkie podproblemy dla danego stanu (które mamy w bazie)
- A następnie bierzemy maksimum kosztów jako wartość heurystyki
- Możemy do tego maksimum dołożyć jakieś proste heurystyki (typu h_2).

Pytanie

A czy nie moglibyśmy użyć sumowania, zamiast maksimum?

Działanie bazy wzorców (2)

- Niestety suma daje niedopuszczalne heurystyki (bo pewne ruchy liczymy wielokrotnie, gwiazdki w jednym wzorcu są istotnymi kafelkami w innym)
- Pytanie: Jak temu zapobiec?
- Odpowiedź: stosując "rozłączne" wzorce (nic się nie powtarza) i w każdym wzorcu liczyć tylko ruchy kafelków z liczbami.

To to są te najefektywniejsze heurystyki dla 8-ki

Uwaga

Niemniej warto wiedzieć, że czasem rezygnuje się z optymalności i stosuje niedopuszczalne heurystyki (które czasem przeszacowują odległość), ze względu na szybkość działania.

Wyszukiwanie dróg (Google Maps, etc)

Figure 3.28 A Web service providing driving directions, computed by a search algorithm.

Charakterystyka:

- Duży graf, dany explicite
- Wynik potrzebny od zaraz
- Możliwy preprocessing (bo zapytania mogą być podobne do siebie)

Punkty orientacyjne

Landmarks

Zakładamy istnienie pewnej liczby punktów orientacyjnych, będziemy się do nich odwoływać przy liczeniu heurystycznej odległości między węzłami

Zakładamy, że policzyliśmy odległości między **każdym p.o.** a **każdym** węzłem.

Heurystyka

$$h(n) = \min_{L \in Landmarks} (C^*(n, L) + C^*(L, goal))$$

Ogólnie nie jest optymistyczna, chyba że ścieżka przechodzi przez jakiś punkt orientacyjny!

Differential heuristic

Differential heuristic

$$h(n) = \max_{L \in Landmarks} (C^*(n, L) - C^*(L, goal))$$

(jak wyjdzie ujemna, to dajemy 0)

- Myślimy, że punkt orientacyjny jest za celem (jadąc do L mijamy cel po drodze)
- Jak cel jest trochę z boku drogi, to tracimy dokładność, ale nie optymizm.