HTWK

Prof. Dr. habil. H.-J. Dobner

§ 31. Determinanten

31.1 Die Determinante einer Matrix

Wir beschäftigen uns in diesem Paragraphen nochmals mit Matrizen mit dem Ziel, diese mittels einer Kenngröße zu charakterisieren. Dies gelingt mit der Einführung der Determinante.

=>> INFORMATIK

Bewertung (numerischer) Algorithmen.

Prof. Dr. H.-J. Dobner, MNZ, HTWK Leipzig

Definition 1

Ist **A** eine $n \times n$ Matrix, so definieren wir $\mathbf{A}_{i,j}$ als die $(n-1) \times (n-1)$ Matrix, die aus **A** durch Streichen der (n-1) Teile und (n-1) Spalte entsteht.

Beispiel 1

$$\mathbf{A} = \begin{bmatrix} 2 & 4 & 6 & 8 \\ 1 & 5 & 6 & 8 \\ 0 & 7 & 6 & 8 \\ 3 & 9 & 6 & 8 \end{bmatrix} \qquad \mathbf{A}_{23} = \begin{bmatrix} 2 & 4 & 8 \\ 0 & 7 & 8 \\ 3 & 9 & 8 \end{bmatrix}$$

Prof. Dr. H.-J. Dobner, MNZ, HTWK Leipzi

Definition 2

Für eine $n \times n$ Matrix **A** definieren wir die Determinante Schreibweise:

$$n=1:\detig(ig(aig)ig)=a$$

$$n>1:\left|\mathbf{A}
ight|:=\det\left(\mathbf{A}
ight):=\sum_{j=1}^{n}\left(-\mathbf{1}
ight)^{\mathbf{1}+j}\cdot a_{\mathbf{1}j}\cdot\det\left(\mathbf{A}_{\mathbf{1},j}
ight)$$

$$\mathbf{A} = \begin{pmatrix} 3 & -4 \\ 5 & 8 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 3 & -4 \\ 5 & 8 \end{pmatrix}$$

$$\Rightarrow \det(\mathbf{A}) = (-1)^{1+1} \cdot a_{11} \cdot \det(\mathbf{A}_{1,1}) + (-1)^{1+2} \cdot a_{12} \cdot \det(\mathbf{A}_{1,2})$$

$$\mathbf{A} = \begin{pmatrix} 3 & -4 \\ 5 & 8 \end{pmatrix} \qquad \mathbf{A}_{1,1} = \begin{pmatrix} 3 & 4 \\ 5 & 8 \end{pmatrix} \qquad \mathbf{A}_{1,2} = \begin{pmatrix} 3 & 4 \\ 5 & 8 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 3 & -4 \\ 5 & 8 \end{pmatrix} \qquad \mathbf{A}_{1,1} = \frac{\begin{pmatrix} 3 & -4 \\ 5 & 8 \end{pmatrix}}{\begin{pmatrix} 5 & 8 \end{pmatrix}} \qquad \mathbf{A}_{1,2} = \frac{\begin{pmatrix} 3 & 4 \\ 5 & 8 \end{pmatrix}}{\begin{pmatrix} 5 & 8 \end{pmatrix}}$$

$$\Rightarrow \det \left(\mathbf{A} \right) = \left(-1 \right)^{1+1} \cdot a_{11} \cdot \det \left(\mathbf{A}_{1,1} \right) + \left(-1 \right)^{1+2} \cdot a_{12} \cdot \det \left(\mathbf{A}_{1,2} \right)$$

$$= 3 \cdot \det \left(\left(8 \right) \right) \qquad + \left(-1 \right) \cdot \left(-4 \right) \det \left(\left(5 \right) \right)$$

