An Approach for Assessing Quality of Labeled Data for a Machine Learning Task in Malaria Detection

Rose Nakasi

Al and Data Science Lab, Makerere University

November 12, 2020

Rose Nakasi November 12, 2020 1 / 14

Malaria burden

Figure: Worldwide malaria death burden(Source: WHO World Malaria Report 2018).

Rose Nakasi November 12, 2020

2 / 14

Motivation

- -Microscopy diagnosis through supervised learning for image analysis notably contributes to malaria detection
- -Manual annotation of training data is prone to inaccuracy thru;
 - bias,
 - Expert subjectivity
 - Unclear images...
- -Results into many false positives
- -No study has assessed the quality of training data for malaria detection task.
- -We intend to classify in respect to positives;
 - the negative-far examples
 - the negative-near examples
 - To assess likelihood for false alarms in training data

Proposed methodology

We follow a six-step methodology;

- Pixel-wise extraction of patches
- Reference positive patch identification
- Class label closeness
- Threshold determination of negative examples
- Model training
- validation

Proposed methodology flow

Captured and annotated image

Figure: Captured image

Figure: Annotated image

Step 1: Pixel-wise extraction of Patches

From 1182 thick blood smear images captured,

- -Positive Patches -taken centered on bounding boxes in annotation
- -Negative patches-no bounding box

Table: Positive and negative patches generated

Threshold used	Pos patches	Neg patches
At 10%	7045	147086
· •	7043	147000
At 90%	7045	16730

Step 2. Identifying reference pixel-wise positive patch

Using image averaging algorithm;

Compute arithmetic mean of intensity values of each pixel position in a set of positive patches. for each positive the mean pixels for the entire positive patch examples, Calculate the mean pixels for the entire positive patch examples,

$$A(N, x, y) = \frac{1}{N} \cdot \sum_{i=1}^{N} I(i, x, y)$$
 (1)

Rose Nakasi November 12, 2020 8 / 14

Step 3. Class label closeness

The MSE between two images (positive,p and negative,n) defined as p(x,y) and negative n(x,y) is defined as shown in equation,

$$MSE = \frac{1}{XY} \sum_{y=1}^{X} \sum_{x=1}^{Y} [p(y,x) - n(y,x)]^{2}$$
 (2)

Goal: To compute the different MSE values that correspond to each negative patch.

Rose Nakasi November 12, 2020 9 / 14

Step 4. Threshold determination of negative examples

Criteria for selection of the negative samples. Fistly, sort MSE values of negative patches(from small value to big)

- At 10th percentile
- At 90th percentile

10 / 14

Rose Nakasi November 12, 2020

Step 5. Model training/selection

to classify negative patches;

- VGG 16 Model was used
- Data was split into 60%, 20% and 20% (train, test and Val)

VGG16 has smaller filters;

-reducing the number of parameters thus increasing the non-linearity

Rose Nakasi

Step 5. Results

Classification Accuracy;

Threshold used	Classification
At 10%	0.7036
At 90%	0.9126

- approach can thus aid in the selection of quality training dataset for a malaria detection task.
- transparent, accountable and trust worthy data for machine learning solutions.

Thank you!

Questions?