EXERCISES 5.1

In Problems 1-10, evaluate the definite integral. If necessary, review the techniques of integration in your calculus text.

1.
$$\int_{-1}^{3} x(x-1)(x+2) dx$$

$$2. \int_{-1}^{0} t^2 dt + \int_{0}^{2} x^2 dx + \int_{2}^{3} u^2 du$$

3.
$$\int_{1/2}^{1} \sin 2\pi x \, dx$$

4.
$$\int_0^{\pi/8} \sec^2 2x \, dx$$

5.
$$\int_0^4 \frac{dx}{2x+1}$$

6.
$$\int_{\ln 2}^{\ln 3} e^{-x} \, dx$$

7.
$$\int_{2}^{4} xe^{-x/2} dx$$

8.
$$\int_{1}^{e} \ln x \, dx$$

9.
$$\int_{2}^{4} \frac{dx}{x^2 - 6x + 5}$$

10.
$$\int_{2}^{4} \frac{2x-1}{(x+3)^{2}} dx$$

In Problems 11–14, evaluate the line integrals $\int_C G(x, y) dx$, $\int_C G(x, y) dy$, and $\int_C G(x, y) ds$ on the indicated curve C.

11.
$$G(x, y) = 2xy$$
; $x = 5\cos t$, $y = 5\sin t$, $0 \le t \le \pi/4$

12.
$$G(x, y) = x^3 + 2xy^2 + 2x$$
; $x = 2t$, $y = t^2$, $0 \le t \le 1$

13.
$$G(x, y) = 3x^2 + 6y^2$$
; $y = 2x + 1, -1 \le x \le 0$

14.
$$G(x, y) = x^2/y^3$$
; $2y = 3x^{3/2}$, $1 \le t \le 8$

In Problems 15–18, evaluate $\int_C (2x + y) dx + xy dy$ on the given curve from (-1, 2) to (2, 5).

15.
$$y = x + 3$$

16.
$$y = x^2 + 1$$

17.

Figure for Problem 17

Figure for Problem 18

In Problems 19–22, evaluate $\int_C y \, dx + x \, dy$ on the given curve from (0, 0) to (1, 1).

19.
$$y = x^2$$

20.
$$y = x$$

- **21.** C consists of the line segments from (0, 0) to (0, 1) and from (0, 1) to (1, 1).
- **22.** C consists of the line segments from (0, 0) to (1, 0) and from (1, 0) to (1, 1).
- **23.** Evaluate $\int_C (6x^2 + 2y^2) dx + 4xy dy$, where C is given by $x = \sqrt{t}$, y = t, $4 \le t \le 9$.
- **24.** Evaluate $\int_C -y^2 dx + xy dy$, where C is given by x = 2t, $y = t^3$, $0 \le t \le 2$.
- **25.** Evaluate $\int_C 2x^3y \, dx + (3x+y) \, dy$, where C is given by $x = y^2$ from (1, -1) to (1, 1).
- **26.** Evaluate $\int_C 4x \, dx + 2y \, dy$, where C is given by $x = y^3 + 1$ from (0, -1) to (9, 2).

In Problems 27 and 28, evaluate $\oint_C (x^2 + y^2) dx - 2xy dy$ on the given closed curve.

27.

Figure for Problem 27

28.

Figure for Problem 28

In Problems 29 and 30, evaluate $\oint_C x^2 y^3 dx - xy^2 dy$ on the given closed curve.

29.

Figure for Problem 29

30

Figure for Problem 30