License Plate Recognition

CHOLJUNHO 22172113 ANDRE IVAN 22172304 YUN JUNGUN 22181250

Outline

1. Framework

- Dataset preparation
- License plate detection networks
- License plate recognition network

2. Evaluation Result

Data preparation (Plate detection)

- Binary class label for segmentation
- [X, Y, W, H] plate position
- Plate characters
- Manually remove missing or wrongly annotated data

Data preparation (Plate recognition)

- Encode Korean characters
- Create dictionary

License plate detection (Parking)

- Dark images
- Plate size are similar
- Unbalanced plate type distribution

Network

Semantic segmentation approach using U-Net⁽¹⁾

License plate detection (Parking)

License plate detection (CCTV)

- Variative license plate size
- Using U-Net alone leads to poor result
- Adopt coarse-to-fine approach (car detection → plate detection)

Network

- Car detection using YOLO v3 (2)
 - Pre-trained model (COCO dataset)
- Semantic segmentation approach using U-Net

License plate detection (CCTV)

	Туре	Filters	Size	Output
	Convolutional	32	3×3	256 × 256
	Convolutional	64	$3 \times 3/2$	128 × 128
	Convolutional	32	1 × 1	
1×	Convolutional	64	3×3	
	Residual			128 × 128
	Convolutional	128	$3 \times 3/2$	64×64
1	Convolutional	64	1 × 1	
2×	Convolutional	128	3×3	
	Residual			64×64
	Convolutional	256	3×3/2	32×32
	Convolutional	128	1 × 1	
8×	Convolutional	256	3×3	
	Residual			32×32
- 07	Convolutional	512	$3 \times 3/2$	16 × 16
1	Convolutional	256	1 x 1	
8×	Convolutional	512	3×3	
	Residual			16×16
	Convolutional	1024	$3 \times 3/2$	8 × 8
Ī	Convolutional	512	1 x 1	
4×	Convolutional	1024	3×3	
	Residual			8×8
	Avgpool		Global	
	Connected		1000	
	Softmax			

< Feature extraction network of YOLO v3 >

< Car detection result >

License plate detection (CCTV)

- Choose 3 largest detected cars
- Choose 1 largest detected plate

License plate detection (Parking)

Training details

Items	Value Value
Input size	320×320×1
Loss function	Binary cross entropy + weight decay (gradient clipping)
Learning rate	0.01 to 0.0001 (90% decay rate at 20 and 30 epoch)
Optimizer	Stochastic Gradient Descent (SGD)
Batch size	8
Epoch	40

License plate recognition

- Various character length
- Different position of characters
- Low resolution plate
- Ambiguous label

Network

Automatic character recognition LPR-Net⁽³⁾

Layer Type	Parameters
Input	94x24 pixels RGB image
Convolution	#64 3x3 stride 1
MaxPooling	#64 3x3 stride 1
Small basic block	#128 3x3 stride 1
MaxPooling	#64 3x3 stride (2, 1)
Small basic block	#256 3x3 stride 1
Small basic block	#256 3x3 stride 1
MaxPooling	#64 3x3 stride (2, 1)
Dropout	0.5 ratio
Convolution	#256 4x1 stride 1
Dropout	0.5 ratio
Convolution	# class_number 1x13 stride 1

Target platform	1 LP processing time
GPU + cuDNN	3 ms
CPU (using Caffe [22])	11-15 ms
CPU + FPGA (using DLA [23])	4 ms ¹
CPU (using IE from Intel OpenVINO [24])	1.3 ms

License plate recognition

#Possible characters in Korean plate

License plate detection (Parking)

Training details

Items	Value
Input size	94×24×1
Loss function	Connectionist Temporal Classification (CTC) (4) loss
Learning rate	0.001 (90% decay rate every 2000 iteration)
Optimizer	Adam
Batch size	16
Epoch	600

Evaluation Result

Parking dataset

Test 1

Item	Value
num_bbox_examples	285
num_bbox_corrects	270
bbox_accuracy	94.74
num_rec_examples	285
num_rec_corrects	183
rec_accuracy	64.21
avg_pt	71.84
score	161.76

Test 2

Item	Value
num_bbox_examples	285
num_bbox_corrects	270
bbox_accuracy	94.74
num_rec_examples	285
num_rec_corrects	183
rec_accuracy	64.21
avg_pt	109.6
score	157.99

Evaluation Result

CCTV dataset

Test 1

ltem	Value
num_bbox_examples	451
num_bbox_corrects	399
bbox_accuracy	88.47
num_rec_examples	436
num_rec_corrects	269
rec_accuracy	61.7
avg_pt	189.91
score	141.18

Test 2

Item	Value
num_bbox_examples	451
num_bbox_corrects	399
bbox_accuracy	88.47
num_rec_examples	436
num_rec_corrects	269
rec_accuracy	61.7
avg_pt	116.95
score	148.47

Conclusion

- Segmentation approach to detect license plate
- Coarse-to-fine approach for small plates (CCTV)
- Automatic and robust character recognition with small and fast network

• Total score: **310.23**