P08: Rectangular quantum well – mass dependence

Compare the **1st** allowed energy level for an electron trapped in an *infinite* **1-dimensional** *rectangular* potential well of a length **L = 1 nm**, created in silicon Si.

$$m_e = 0.916 \cdot m_0$$

$$E_n = \frac{\hbar^2 \pi^2}{2m_e} \frac{n^2}{L^2}$$
 n=1

Material	m_e/m_0	E _n [eV]
Si	0.916	0.411

What happens to the energy levels when changing the potential well width?

$$E[eV] = \frac{E[J]}{q}$$

$$h = 6.626 \times 10^{-34} [Js]$$

$$h = \frac{h}{2\pi} = 1.055x10^{-34} [Js]$$

$$m_0 = 9.11 \times 10^{-31} [kg]$$

$$q = 1.602 \times 10^{-19} [C]$$

$$k_B = 1.381 \times 10^{-23} [J/K]$$

$$\varepsilon_0 = 8.854 \times 10^{-12} [F/m]$$

$$c = 3 \times 10^8 [m/s]$$

P08b: Rectangular quantum well – width dependence

Consider an Infinite 1-dimensional rectangular potential well created in silicon. Find the well's length \mathbf{L} , such that the first $\mathbf{N=100}$ energy levels for electrons are located below an energy of $\mathbf{E=1}$ eV.

Solution:
$$E_N = \frac{\hbar^2 \pi^2}{2m_a} \frac{N^2}{L^2} < E$$

$$L > \frac{\hbar \pi N}{\sqrt{2m_e E}}$$

Ε

$$E[eV] = \frac{E[J]}{q}$$

$$m_e/m_0$$
 0.916

$$h = 6.626 \times 10^{-34} [Js]$$
 $h = \frac{h}{2\pi} = 1.055x10^{-34} [Js]$
 $m_0 = 9.11 \times 10^{-31} [kg]$
 $q = 1.602 \times 10^{-19} [C]$
 $k_B = 1.381 \times 10^{-23} [J/K]$
 $\varepsilon_0 = 8.854 \times 10^{-12} [F/m]$
 $c = 3 \times 10^8 [m/s]$