Eksploracja duĹĽych wolumenĂłw danych Projekt – Sprawozdanie I

SformuĹ, owanie problemu i przetwarzanie danych

ImiÄTM Nazwisko ImiÄTM Nazwisko

27 listopada 2012

1 SformuĹ,owanie problemu

Krótka informacja o wybranym konkursie: nazwa, strona internetowa, nagroda :), zakończony.

1.1 KrĂłtki opis problemu

KrÅłtki i konkretny opis zadania konkursowego. (maks. 1/2 strony)

1.2 Opis danych

Opis zbioru uczÄ...cego, walidujÄ...cego (jeĹĽeli jest) i testowego wraz z podstawowymi statystykami: rozmiar, liczba atrybutĂłw, liczba przykĹ,adĂłw.

Warto przedstawi A‡ posta
A‡ typowych przyk L,ad Āłw ucz A. . . cych oraz testowych.

Należy również opisać sposĂłb ostatecznej weryfikacji algorytmĂłw: trwajÄ...cy konkurs (wynik koĹ,,cowy w konkursie; ocena na podstawie tablicy wynikĂłw, czyli na zbiorze walidujÄ...cym), moĹĽliwoĹ>ć weryfikacji po zakoĹ,,czeniu konkursu na jego stronie, wewnÄTMtrzny zbiĂłr testowy (rozmiar, jak zostaĹ, wyodrÄTMbniony, kiedy zostanie wykorzystany, itp.). (maks. 3/4 strony)

1.3 Opis metody oceny rozwiÄ...zaĹ,

DokĹ,
adny i zwiÄ $^{\rm TM}$ zĹ,
y opis metody oceny rozwiÄ...zania (jeĹĽeli algorytm b
Ä $^{\rm TM}$ dzie testowany wewnÄ $^{\rm TM}$ trznie, to naleĹ
Ľy napisać odpowiednie oprogramowania oceniajÄ...ce rozwiÄ...zanie).

(maks. 1/2 strony)

2 Reprezentacja danych w pami $\ddot{\mathbf{A}}^{\mathrm{TM}}$ ci zewn $\ddot{\mathbf{A}}^{\mathrm{TM}}$ trznej

Kr Ăłtki opis (bardzo zwi
Ä $^{\rm TM}$ z Ĺ,y i konkretny) z uwzgl Ä $^{\rm TM}$ dnieniem:

- opisu reprezentacji z jej zaletami i wadami, rĂłwnieĹŁ z perspektywy eksperymentów, które naleţy przeprowadzić,
- dyskusji na temat konfiguracji i administracji danego rozwiÄ...zania,
- \bullet dyskusji na temat czasu utworzenia i obj
Ä $^{\rm TM}$ to Ĺ>ci reprezentacji danych,
- dyskusji na temat napotkanych trudnoĹ>ci.

 $Mo\acute{L}\check{L}$ na opisa ć wi
Ä TM cej ni Ĺ \check{L} jedno rozwi Ä. . . zanie, w celach por Ăłw
nawczych. (maks. 2 strony)

3 Reprezentacja danych w pamiÄTMci operacyjnej

Kr Äłtki opis (bardzo zwi
Ä $^{\rm TM}$ z Ĺ,y i konkretny) z uwzgl Ä $^{\rm TM}$ dnieniem:

- opisu reprezentacji z jej zaletami i wadami, rĂłwnieĹŁ z perspektywy eksperymentów, które naleţy przeprowadzić,
- dyskusji na temat czasu wczytywania do pamiÄTMci, dostÄTMpu do danych i objÄTMtoĹ>ci danych,
- $\bullet\,$ dyskusji na temat napotkanych trudno Ĺ>ci.

Można opisać wiÄ $^{\rm TM}$ cej niĹĽ jedno rozwiÄ. . . zanie, w celach porĂłwnawczych. (maks. 2 strony)

4 Eksperyment

4.0.1 Wyszukiwanie najbliĹĽszych sÄ...siadĂłw

Wyszukiwanie najbli Liszych sä...siad Ałw zosta Lo przetestowane dla 9, 86, 862 i 8623 lekcji oraz x, xx, xxx i xxxx autor Ałw czyli dla odpowiednio 0,1%, 1%, 10% i 100%. Wyniki czasowe wraz z odchyleniem standardowym zebrano w tabelach.

W tym rozdziale naleĹĽy umieĹ>cić wyniki eksperymentĂłw. NaleĹĽy zamieĹ>cić krĂłtkie komentarze oraz tabele z wynikami (Tabela 2 jest przykĹ,adem jak stworzyć tabelÄ $^{\rm TM}$ w IATEX'u).

Należy wykonać nastÄTMpujÄ...ce zapytania:

- 1. Grupowanie,
- 2. Wyszukiwanie najbli Ĺ
Ľszych k=50sÄ...siad Ăłw.

IloĹ>ć lekcji	Procent lekcji	Ĺšredni czas odpowiedzi	Odchylenie standardowe
9	0,1%	6754,6	734,93
86	1%	56039,4	4509,16
862	10%	6754,6	734,93
8623	100%	6754,6	734,93

Tablica 1: Wyniki eksperymentu dla wideo lekcji

To sÄ kolumny	zawierajÄce np.	czas odpowiedzi na zapytanie itp.
Opis i liczby:	99.99%	99.99%
Opis i liczby:	99.99%	99.99%
Opis i liczby:	99.99%	99.99%

Tablica 2: Wyniki eksperymentalne

Dla otrzymanych partycji danych (przez grupowanie i wyszukanie najbli ĹĽszych sÄ...siadĂłw) nale ży zastosować dowolnÄ... funkcjÄTM agregujÄ...cÄ... na dowolnych atrybutach. Oczywi Ĺ>cie, najlepiej jest wybrać atrybut decyzyjny (wyj Ĺ>ciowy).

Dla wszystkich eksperymentów należy podać czas wykonania.

Najbli ĹĽszych s
Ä. . . siad Åłw nale ĹĽy wyszuka ć dla maksymalnie pierwszych 10 tys. przyk Ĺ,
ad Ăłw, ale szukanie odbywa si Ä $^{\rm TM}$ w ca Ĺ,
ym zbiorze danych.

CaĹ,y eksperyment moĹĽna powtĂłrzyć parokrotnie i uĹ>rednić wyniki (moĹĽna podać bĹ,Ä...d standardowy). Przy wyznaczaniu czasĂłw nie naleĹĽy brać pod uwagÄTM czasu wyĹ>wietlania wynikĂłw.

W zaleĹĽnoĹ>ci od rodzaju problemu, proszÄTM, stosować siÄTM do poniĹĽej opisanych wytycznych. JeĹĽeli dany problem nie pasuje do ĹĽadnego wyĹĽej opisanego typu, to proszÄTM o kontakt.

(maks. 4 strony (razem z tabelami)).

4.1 Tabelaryczne dane nominalne

W przypadku danych nominalnych należy przeprowadzić grupowanie:

- po wszystkich atrybutach (w przypadku duĹĽej liczby atrybutĂłw, grupowanie powinno dotyczyć tylko pierwszych 20 atrybutĂłw),
- dla kaĹĽdego z atrybutu z osobna,
- oraz dla kaĹĹdej pary atrybutÅłw (maksymalnie dla pierwszych 100 atrybutÅłw).

Jako miar \ddot{A}^{TM} podobie \acute{L} ,
stwa przy wyszukiwaniu najbli \acute{L} Łszych s \ddot{A} ... siad
 \ddot{A} łw nale \acute{L} Ły zastosowa \ddot{A} ‡ wsp \breve{A} ł
 \acute{L} ,czynnik Jaccarda. Mierzy on podobie \acute{L} ,
stwo mi \ddot{A}^{TM} dzy dwoma zbiorami i jest zdefiniowany jako iloraz mocy cz $\ddot{A}^{TM}\acute{L}>$ ci wsp \breve{A} łlnej zbior \breve{A} łw i mocy sumy tych zbior \breve{A} łw:

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

gdzie A i B sä... zbiorami, kt Åłre odpowiadajä... obiektom opisanym przez atrybuty nominalne (proszäTM zwr Åłciä‡ uwagäTM, Ĺ Łe atrybut binarny czäTMsto wskazuje, czy dana warto Ĺ>ä‡ wystäTMpuje, czy te ĹLinie).

Dla poniĹĽszego przykĹ,
adu zbiĂłr $A = \{\text{czerwony, duĹLy, kombi}\}\$ odpowiada pierwszemu obiektowi, a zbiĂłr $B = \{\text{niebieski, duLLy, coupe, kabriolet}\}\$ drugiemu. WspĂłĹ,
czynnik Jaccarda wynosi:

$$J(A,B) = \frac{1}{6}$$

kolor	rozmiar	kombi	sedan	coupe	kabriolet	limuzyna	minivan
czerwony	duĹĽy	1	0	0	0	0	0
niebieski	duĹĽy	0	0	0	1	1	0

Można też dokonać wczeĹ>niejszej binaryzacji wszystkich wielowartoĹ>ciowych atrybutĂłw nominalnych i dalej operować na atrybutach binarnych, ktĂłre wskazujÄ... czy dany element wystÄTMpuje w zbiorze.

4.2 Tabelaryczne dane numeryczne

W celu pogrupowania danych numerycznych dla każdego atrybutu należy przeprowadzić dyskretyzacjÄTM wartoĹ>ci numerycznych do 5 wartoĹ>ci. KaĹĽda wartoĹ>ć odpowiada przedziaĹ,owi wartoĹ>ci dla atrybutu numerycznego. NaleĹĽy przeprowadzić dyskretyzacjÄTM wedĹ,ug rĂłwnej czÄTMstoĹ>ci, czyli otrzymane przedziaĹ,y sÄ... mniej wiÄTMcej rĂłwnoliczne.

Dla tak przeksztaĹ,conych atrybutĂłw naleĹĽy wykonać normalne grupowanie, zgodnie z z opisem w punkcie 4.1.

Przy poszukiwaniu najbli Liszych sä... siad Ałw nale Liy siäTM pos Liy jednak ustandaryzowa twarto Liy i atrybut Ałw, tzn. od warto Liy jednak ustandaryzowa twarto Liy i atrybut Liy jednak ustandaryzowa twarto Liy i atrybut Liy i

4.3 Tabelaryczne dane nominalne i numeryczne

W przypadku wymieszanych danych nominalnych i numerycznych dzielimy dane na dwie czä $^{\rm TM}$ Ĺ>ci i wykonujemy eksperymenty osobno dla kaĹĽdej czä $^{\rm TM}$ Ĺ>ci zgodnie z opisem w dwĂłch powyĹĽszych punktach.

4.4 Dane tekstowe

Dane tekstowe należy zamienić na dane nominalne, gdzie kaĹĽdy atrybut odpowiada jednemu sĹ,owu. Eksperyment naleĹĽy wykonać dla 100 najczÄTMĹ>ciej wystÄTMpujÄ...cych sĹ,Ălw. MoĹĽna (nie jest konieczne) wykonać odpowiednie przeksztaĹ,cenia danych tekstowych, takie jak stematyzacja lub lematyzacja.

Dla tak przeksztaĹ,conych danych naleĹĽy postÄTMpować zgodnie z opisem w punkcie 4.1.

4.5 Dane macierzowe

W niekt Äłrych konkursach dane maj Ä... posta ć zale ĹĽno Ĺ>ci pomi ÄTMdzy dwoma typami obiekt Åłw, np. u ĹĽytkownikami i produktami. W takim przypadku nale ĹĽy wykona ć grupowanie dla ka ĹĽdego typu obiekt Ăłw osobno. Je ĹĽeli jedyn Ä... informacj ÄTM o obiekcie jest jego identyfikator, to grupowanie dotyczy ć b ÄTMdzie tylko jednego atrybutu. W innym przypadku nale ĹĽy stosowa ć si ÄTM do opis Řłw w powy ĹĽszych punktach.

Wyszukiwanie najbli ĹŠszych sÄ...siadĂłw w tym przypadku powinno polegać na wyszukiwaniu podobnych u ĹLytkownikĂłw ze wzglÄTMdu na wybrane produkty, oraz wyszukiwaniu podobnych produkt Materia w ze wzglÄTMdu na "wybierajÄ...cych" u ŁLytkownikĂłw. W obydwAłch przypadkach nale LLy wykorzystać wspAłĹ,czynnik Jaccarda w celu obliczenia podobie L, stwa.

5 Podsumowanie

Na koĹ "cu jest zawsze miejsce na kr \check{A} łtkie podsumowanie (maks. 1/2 strony). $Ca\acute{L}$, $o\acute{L}$ > \ddot{A} ‡ raportu nie mo \acute{L} Le przekracza \ddot{A} ‡ 8 stron.