Electrical Science-II (15B11EC211)

Tutorial-2

- 1. Determine the forced response for the inductor current i when
 - i_s=1A
 - i_s =0.5t A
 - i_s =2e -250t A,

For the circuit shown in fig.1, R=100/65 Ω , C=1mF & L=10mH.

Fig.1

Ans: 1 A, 5t-3.25x10⁻³ A, & 0.0133te^{-250t} A

2. Find v (t) for t>0, for circuit shown in fig.2.

Fig.2

Ans:
$$v(t)=[8-16e^{-t}+16e^{-3t}]u(t)+[-8+16e^{-(t-2)}-16e^{-3(t-2)}]u(t-2)$$
 Volt

3. Find v (t) for t>0, for circuit shown in fig.3, when V(0)=1 volt & $i_L(0)=0$.

Fig.3

Ans:
$$v(t) = 25e^{-3t} - \frac{429e^{-4t} - 21cost + 33sint}{17} volt$$

4. Find Vc(t) for t>0, for circuit shown in fig.4.

Ans: v (t) =0.123e^{-5.65t}+0.877e^{-0.35t}+1 volt

5. In fig.5 determine the inductor current i(t) when i_s =5u(t) A. Assume that i(0)=0 & $v_c(0)$ =0.

Ans: i(t)=5+e^{-2t}[-5 cos 5t-2 sin 5t] A