STANISLAS Exercices

Calcul différentiel Chapitre XVII

PSI 2021-2022

I. Régularité

Exercice 1. [CCP] Soit f la fonction définie par $f(x,y) = \frac{x^3y^3}{x^2+y^2}$ si $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$ et f(0,0) = 0. Montrer que la fonction f ainsi définie est de classe \mathscr{C}^1 sur \mathbb{R}^2 .

Exercice 2. [CCP] On pose $f(x,y) = \frac{x^3 - y^3}{x^2 + y^2}$ pour $(x,y) \neq (0,0)$ et f(0,0) = 0. La fonction f est-elle continue sur \mathbb{R}^2 ? \mathscr{C}^1 sur \mathbb{R}^2 ? Existence et calcul de $\frac{\partial^2 f}{\partial x \partial y}$.

II. Recherche d'extrema

Exercice 3. [CCP] Déterminer les extrema éventuels sur \mathbb{R}^2 de la fonction $f:(x,y)\mapsto x^2+xy+y^2-4x-y$.

Exercice 4. [CCP] Soit $f:(x,y) \in [-1,1]^2 \mapsto y^3x^4 + \ln(1+y^4)$. Cette fonction admet-elle des extrema globaux? locaux?

Exercice 5. Soit φ un endomorphisme symétrique de \mathbb{R}^n dont toutes les valeurs propres sont positives ou nulles et $u=(u_1,\ldots,u_n)\in\mathbb{R}^n$. Pour tout $x\in\mathbb{R}^n$, on pose $f(x)=\langle \varphi(x),x\rangle-\langle u,x\rangle$. On note $A=(a_{i,j})$ la matrice canoniquement associée à φ .

- 1. Montrer que, si toutes les valeurs propres de φ sont strictement positives, alors pour tout $h \in \mathbb{R}^n$ non nul, $\langle \varphi(h), h \rangle > 0$. On dit alors que φ est un endomorphisme symétrique défini positif.
- **2.** Montrer que f est de classe \mathscr{C}^1 et expliciter son gradient en tout point.
- 3. Montrer que f admet un unique point critique si et seulement si φ est défini positif.
- **4.** On suppose que φ n'est pas défini positif. À quelle condition sur u et φ la fonction f possède-t-elle des points critiques?
- 5. On suppose que f admet au moins un point critique z. Montrer que f admet en z un minimum global.
- **6.** La fonction f admet-elle des maximums locaux?

III. Autour des dérivées partielles

Exercice 6. Si f est une fonction à valeurs réelles, définie sur \mathbb{R}_+^* et de classe \mathscr{C}^2 sur cet intervalle, on lui associe la fonction g définie sur l'ouvert $\Omega = \mathbb{R}^2 \setminus \{(0,0)\}$ par $g(x,y) = f(\sqrt{x^2 + y^2})$. Le laplacien Δg de g est défini par $\Delta g = \partial_{1,1}^2 g + \partial_{2,2}^2 g$.

- **1.** Montrer que g est de classe \mathscr{C}^2 sur Ω .
- **2.** Exprimer le gradient de g en fonction de f.
- **3.** Exprimer le laplacien de g en fonction de f.
- **4.** Montrer que $\Delta g = 0$ sur Ω si et seulement si la fonction f est solution, sur \mathbb{R}_+^* de l'équation différentielle tf'' + f' = 0.
- **5.** Déterminer la solution de l'équation $\Delta g=0$ qui s'annule sur l'ensemble $\mathscr{C}=\left\{(x,y)\in\mathbb{R}^2\;;\;x^2+y^2=1\right\}$ et qui vaut 1 au point (1,1).

Exercice 7. [Centrale] Soit, pour tout $n \in \mathbb{N}^*$, $u_n : t \in \mathbb{R}_+ \mapsto \frac{1}{n^2} e^{-nt}$.

- 1. Montrer que $\sum u_n$ converge simplement. On note S sa somme.
- **2.** Montrer que $f:(x,y)\mapsto S(x^2+y^2)$ est continue sur \mathbb{R}^2 .
- **3.** Montrer que les dérivées partielles d'ordre 1 de f existent sur $\mathbb{R}^2 \setminus \{(0,0)\}$.
- **4.** Montrer que le gradient de f est colinéaire à $\begin{pmatrix} x \\ y \end{pmatrix}$. Interpréter géométriquement le résultat.
- 5. Soit γ un arc paramétré \mathscr{C}^1 , régulier et 1-périodique. Soit $K=\gamma(\mathbb{R})$. Montrer que $f_{|K|}$ atteint son minimum.

Exercice 8. [Centrale PC] Résoudre $\frac{\partial f}{\partial x} - xy \frac{\partial f}{\partial y} = 0$. Indication: On posera $(u, v) = (x, y e^{x^2/2})$.

Exercice 9. [X-ENS] Soit k > 1 et f une fonction de classe \mathscr{C}^2 vérifiant :

- (i). $\forall t > 0, \forall (x, y) \in \mathbb{R}^2, f(tx, ty) = t^k f(x, y).$
- (ii). $\forall (x,y) \in \mathbb{R}^2$, $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$.

Exercices XVII PSI

1. Montrer que

$$\forall (x,y) \in \mathbb{R}^2, x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = kf(x,y).$$

En déduire que

$$\forall (x,y) \in \mathbb{R}^2, x^2 \frac{\partial^2 f}{\partial x^2} + y^2 \frac{\partial^2 f}{\partial y^2} + 2xy \frac{\partial^2 f}{\partial x \partial y} = k(k-1)f(x,y).$$

- **2.** On pose $h: \theta \mapsto f(\cos(\theta), \sin(\theta))$. Montrer que $h'' + k^2 h = 0$.
- **3.** Montrer que f est un polynôme en x et en y.
- **4.** Trouver toutes les fonctions à valeurs dans $\mathbb R$ qui vérifient les conditions de l'énoncé.

Exercice 10. [Centrale] Soit f une application \mathscr{C}^2 de \mathbb{R}^2 dans \mathbb{R} . On note $\Delta(f) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$. Soit $\widetilde{f}: (r, \theta) \mapsto f(r\cos(\theta), r\sin(\theta)$.

- 1. Montrer que \widetilde{f} est de classe \mathscr{C}^2 .
- **2.** Calculer $\frac{\partial \tilde{f}}{\partial r}$, $\frac{\partial \tilde{f}}{\partial \theta}$, $\frac{\partial^2 \tilde{f}}{\partial r^2}$, $\frac{\partial^2 \tilde{f}}{\partial \theta^2}$.
- **3.** Montrer que $\Delta f(r\cos\theta, r\sin\theta) = \frac{\partial^2 \tilde{f}}{\partial r^2}(r,\theta) + \frac{1}{r^2} \frac{\partial^2 \tilde{f}}{\partial \theta^2}(r,\theta) + \frac{1}{r} \frac{\partial \tilde{f}}{\partial r}(r,\theta)$.
- **4.** Soit m l'application définie sur $[0, +\infty[$ par $r \mapsto \frac{1}{2\pi} \int_0^{2\pi} \widetilde{f}(r, \theta) d\theta$.
 - a) Montrer que m est de classe \mathscr{C}^2
- **b**) On suppose que f est harmonique, i.e. $\Delta(f) = 0$. Montrer que m est constante et déterminer sa valeur.

IV. Courbes et Surfaces

Exercice 11. [TPE] Trouver les plans tangents à la surface d'équation $z^2 = xy$ et contenant la droite d'équations x = 2 et y + z = 1.

V. Avec Python

Exercice 12. [Centrale] Soit Γ l'arc paramétré défini par

$$t \mapsto ((1 + \cos(t))\cos(t), (1 + \cos(t))\sin(t), 4\sin(t/2))$$

- 1. Déterminer les points réguliers de Γ et le vecteur tangent unitaire en ces points.
- **2.** Montrer que ce vecteur tangent forme un angle constant avec l'axe (Oz).
- **3.** Calculer la longueur de Γ .
- **4.** Tracer les projetés orthogonaux de Γ sur les plans (O, y, z), (O, z, x) et (O, x, y).