lecture-2024-02-27

Parallel transport

$$\Delta_{\mu}(k') - A_{\mu}(k') = (\alpha_{\mu}, \nu - (\lambda_{\mu}, \alpha_{\lambda})) dx^{\nu}$$

$$\delta_{\mu} = \int_{\mu}^{\lambda} a_{\lambda} dx^{\lambda} \quad (\text{ovarine})$$

$$\delta_{\mu} = -\sum_{\mu}^{\mu} a^{\mu} dx^{\nu} \quad \text{ovarine}$$

$$\delta_{\mu} = -\sum_{\mu}^{\mu} a^{\mu} dx^{\nu} \quad \text{ovariane}$$

Curvature

$$C - \frac{dx^{\nu}}{B}$$

$$\int_{x}^{\infty} A$$

$$\alpha^{\lambda}(A) = \alpha^{\lambda}(R) - \Gamma_{\mu\nu}^{\lambda}(R) \alpha^{\mu}(R) dx^{\nu}$$

$$\alpha^{\lambda}(B) = \alpha^{\lambda}(A) - \Gamma_{\mu}^{\lambda}(A) dx^{\mu}$$

if he small, so Taylor expansion around t

$$\Gamma_{\rho \epsilon}^{\lambda}(\lambda) = \Gamma_{\rho \epsilon}^{\rho \epsilon}(1) + \Gamma_{\lambda}^{\epsilon}(1)$$

a4 AL

$$a^{\lambda}(0) = a^{\lambda} - \Gamma_{\mu\nu} a^{\lambda} \lambda x^{\nu} - \Gamma_{J}^{\lambda} a^{J} \delta x^{0}$$

$$+ \Gamma_{J}^{\lambda} \Gamma_{J}^{J} a^{\lambda} \lambda x^{\nu} + \Gamma_{J}^{\lambda} \Gamma_{J}^{\lambda} a^{J} \delta x^{0} + \int_{J}^{\lambda} \Gamma_{J}^{J} a^{J} a^{J} a^{J} a^{J} a^{J$$

$$\int a^{\lambda} = a^{\lambda}(B) - u^{\lambda}(B)$$

$$= a^{\beta} \left(d \times^{\gamma} k \times^{\sigma} - d \times^{\sigma} k \times^{\gamma} \right) \left(\Gamma_{\rho \sigma}^{\lambda} \Gamma_{\rho \nu}^{\rho} + \Gamma_{\rho \sigma, \nu}^{\lambda} \right)$$

lechange v > 6

Another definition

remarks:

-in flat space
$$\int_{\alpha}^{C} \varphi^{\dagger} \leq 0$$

- in 4D 256 components for easier computation you can use symmetries

number of independent components

Bianchi identity Ve Rabca + DC Rabde + V & Rabec = 0

Ricci scalar:
$$R = R_a$$

$$G^{ab} = R^{ab} - Ig^{ab}R$$
 Einstein tensor

Christoffel symbols

$$a^{\mu}(\underline{P}') = a^{\mu}(\underline{P}) - \Gamma_{0,j}^{\mu}(\underline{P}) a^{\nu}(\underline{P}) dx^{\ell}$$

$$(3_{11} - 3_{16} -$$

Geodesics

$$= \times^{\mu}(\lambda) = \times^{\mu}(\lambda) + \varepsilon_{3}^{\mu}(\lambda)$$

$$\frac{1}{S} = \int_{A} \left(\int_{A} \left($$

$$U^{M} = \chi J = \frac{d \times M}{d \lambda}$$

$$\overline{U}^{M} = \overline{\chi}^{M} = \chi^{M} + \xi \tilde{\chi}^{M} = u^{M} + \xi \tilde{\chi}^{M}$$
Taglor expansion
$$(-2)^{M} = (-2)^{M} + (-2)^{M}$$

Taylor expansion
$$(A) \quad \mathcal{F}(\bar{x}^{\alpha}, \bar{u}^{\alpha}) = \mathcal{F}(x^{\alpha}, u^{\alpha}) + \mathcal{E}(\bar{x}^{\alpha}, \bar{x}^{\alpha}) + \mathcal{$$

(2)
$$\frac{d}{dx} \left(\frac{\partial f}{\partial u^2} \right)^2 = \frac{\partial f}{\partial u} \frac{\partial^2 f}{\partial u^2} + \frac{d}{dx} \left(\frac{\partial f}{\partial u^2} \right)^2$$

$$f(\bar{x},\bar{\alpha}) - f(\bar{x},\bar{\alpha}) = \xi(\frac{\partial f}{\partial x} - \frac{1}{A})\frac{\partial f}{\partial \alpha})\xi + \xi \frac{1}{A}(\frac{\partial f}{\partial \alpha} x \xi^{\alpha})$$

$$\int S = \bar{S} - S = \int S f dS = \int \{f(\bar{x}^{\alpha},\bar{\alpha}^{\alpha}) - \rho(x^{\alpha},\alpha^{\alpha})\}d\lambda$$

$$= \xi \int \{\int \frac{\partial f}{\partial x} - \frac{1}{A}(\frac{\partial f}{\partial \alpha} x)\} \{\int dA + \xi \int \frac{1}{A}(\frac{\partial f}{\partial \alpha} x \xi^{\alpha})d\lambda\}$$

$$= \xi \int \frac{1}{A} \left(\frac{\partial f}{\partial x} - \frac{1}{A}(\frac{\partial f}{\partial \alpha} x)\right) \{\int dA + \xi \int \frac{1}{A}(\frac{\partial f}{\partial \alpha} x \xi^{\alpha})d\lambda\}$$

$$= \xi \int \frac{1}{A} \left(\frac{\partial f}{\partial x} - \frac{1}{A}(\frac{\partial f}{\partial \alpha} x)\right) \{\int dA + \xi \int \frac{1}{A}(\frac{\partial f}{\partial \alpha} x \xi^{\alpha})d\lambda\}$$

$$= \xi \int \frac{1}{A} \left(\frac{\partial f}{\partial \alpha} x - \frac{1}{A}(\frac{\partial f}{\partial \alpha} x)\right) \{\int dA + \xi \int \frac{1}{A}(\frac{\partial f}{\partial \alpha} x \xi^{\alpha})d\lambda\}$$

$$= \xi \int \frac{1}{A} \left(\frac{\partial f}{\partial \alpha} x - \frac{1}{A}(\frac{\partial f}{\partial \alpha} x)\right) \{\int dA + \xi \int \frac{1}{A}(\frac{\partial f}{\partial \alpha} x \xi^{\alpha})d\lambda\}$$

$$= \xi \int \frac{1}{A} \left(\frac{\partial f}{\partial \alpha} x - \frac{1}{A}(\frac{\partial f}{\partial \alpha} x)\right) \{\int dA + \xi \int \frac{1}{A}(\frac{\partial f}{\partial \alpha} x \xi^{\alpha})d\lambda\}$$

$$= \xi \int \frac{1}{A} \left(\frac{\partial f}{\partial \alpha} x - \frac{1}{A}(\frac{\partial f}{\partial \alpha} x)\right) \{\int dA + \xi \int \frac{1}{A}(\frac{\partial f}{\partial \alpha} x \xi^{\alpha})d\lambda\}$$

$$= \xi \int \frac{1}{A} \left(\frac{\partial f}{\partial \alpha} x - \frac{1}{A}(\frac{\partial f}{\partial \alpha} x)\right) \{\int dA + \xi \int \frac{1}{A}(\frac{\partial f}{\partial \alpha} x \xi^{\alpha})d\lambda\}$$

$$= \xi \int \frac{1}{A} \left(\frac{\partial f}{\partial \alpha} x - \frac{1}{A}(\frac{\partial f}{\partial \alpha} x)\right) \{\int dA + \xi \int \frac{1}{A}(\frac{\partial f}{\partial \alpha} x - \frac{1}{A}(\frac{\partial f}{\partial \alpha} x))d\lambda\}$$

$$= \xi \int \frac{1}{A} \left(\frac{\partial f}{\partial \alpha} x - \frac{1}{A}(\frac{\partial f}{\partial \alpha} x)\right) \{\int dA + \xi \int \frac{1}{A}(\frac{\partial f}{\partial \alpha} x)d\lambda\}$$

$$= \xi \int \frac{1}{A} \left(\frac{\partial f}{\partial \alpha} x - \frac{1}{A}(\frac{\partial f}{\partial \alpha} x)\right) \{\int dA + \xi \int \frac{1}{A}(\frac{\partial f}{\partial \alpha} x)d\lambda\}$$

$$= \xi \int \frac{1}{A} \left(\frac{\partial f}{\partial \alpha} x - \frac{1}{A}(\frac{\partial f}{\partial \alpha} x)\right) \{\int dA + \xi \int \frac{1}{A}(\frac{\partial f}{\partial \alpha} x)d\lambda\}$$

$$= \xi \int \frac{1}{A} \left(\frac{\partial f}{\partial \alpha} x - \frac{1}{A}(\frac{\partial f}{\partial \alpha} x)\right) \{\int dA + \xi \int \frac{1}{A}(\frac{\partial f}{\partial \alpha} x)d\lambda$$

$$= \xi \int \frac{1}{A} \left(\frac{\partial f}{\partial \alpha} x - \frac{1}{A}(\frac{\partial f}{\partial \alpha} x)\right) \{\int dA + \xi \int \frac{1}{A}(\frac{\partial f}{\partial \alpha} x)d\lambda$$

$$= \xi \int \frac{1}{A} \left(\frac{\partial f}{\partial \alpha} x - \frac{\partial f}{\partial \alpha} x - \frac{\partial$$

Lagrange function of particle (squared Lagrangian)

$$L = \int_{0}^{\infty} u^{2}u^{2} = f^{2}$$

$$\frac{d}{ds} \left(\frac{\partial E}{\partial u^{2}} \right) - \frac{\partial L}{\partial x^{2}} = 0$$

$$\frac{\partial L}{\partial x^{2}} = \int_{0}^{\infty} u^{2} u^{2}$$

$$\frac{d}{ds}\left(\frac{\partial L}{\partial u^{2}}\right) = 2 \frac{d}{ds} \frac{d}{ds} u^{2} + 2 g_{ped} \frac{du^{m}}{ds}$$

$$= 2 g_{ped} u^{2} u^{2$$

using Euler Lagrange & DL = DL = Tx =

General Relativity

Poisson equation 2 d = 4 G f

$$\frac{dx}{dt} = - \frac{md}{mt} D \phi$$

 $\int_{\mathcal{A}}$ in general not the rest mass density, Volume changes in special Relativity

with these assumptions we can not rewrite the equations in general relativity way

More on EP

example person in elevator or box in different situations

weak EP - universality of free fall

- trajectories of freely falling test particle are independent of the structure and composition

Strong EP

Review by Clifford Will

- weak EP is valid and for gravitating particles
- outcome of experiment independent of velocity of apparatus
- independent where and when

energy momentum tensor

$$T^{nv} = g u^{n} u^{n} = g_{0} g^{2} u^{n} u^{n}$$

$$Sy machic$$

$$T^{no} = g u^{n} u^{n} = g^{2} g^{2}$$

$$T^{ni} = T^{in} = g^{2} g^{2} u^{n}$$
energy flux f^{2} in t direction
$$T^{ij} = g^{2} g^{i} u^{j} u^{j}$$

Minkowski $\partial_{m} \nabla^{m} = 0 \quad \omega My$

Assume a perfect fluid

$$T^{\mu\nu} = (p + \ell_1) u^{\mu}u^{\nu} - \rho g^{\mu\nu}$$

$$\partial_{\mu}(c^2) = \partial_{\mu}(u_{\nu}u^{\nu}) = \partial_{\mu}u_{\nu} u^{\nu} + u^{\nu} \partial_{\mu}u_{\nu} = 2 (\partial_{\mu}u^{\nu})u_{\nu}$$

$$u^{\nu}(\partial_{\mu}u_{\nu}) = h^{\nu}u_{\nu}(\partial_{\mu}u_{\nu}) = u_{\nu}(\partial_{\mu}u^{\nu}) = u_{\nu}(\partial_{\mu}u^{\nu}) = u_{\nu}(\partial_{\mu}u^{\nu})$$

$$\partial_{t}f + \rho(g\bar{u}) = 0 \quad continulty equation$$

f(0+ + v. V) = V. p Ewa equation

Einstein field equations

Connection to Newton

$$R_{00} = \Gamma_{0\mu,0}^{\mu} - \Gamma_{00,\mu}^{\mu} + \Gamma_{0\mu}^{\mu} \Gamma_{00}^{\mu} - \Gamma_{00}^{\mu} \Gamma_{0\mu}^{\mu} = \Gamma_{0\mu,0}^{\mu} - \Gamma_{00,\mu}^{\mu} + \delta(L^{2})$$

$$= 1 \frac{2}{3} \frac{3 L_{00}}{3 \times 3 \times 3} = L(8c^{2}8 - \frac{1}{2}gc^{2}8g_{00}) = \frac{1}{2} L_{1}c^{2}$$

$$I_{1}D^{2}h_{00} = \frac{1}{2} L_{1}gc^{2} \qquad D^{2}b = L_{1}Gc - 2RSG$$

$$g_{00} = 1 + \frac{2b}{C^{2}} \qquad g_{00} = 1 + h_{00}$$

$$h_{00} = \frac{2b}{C^{2}}$$

$$\nabla \frac{26}{c^2} = \mu g c^2$$

$$\nabla \frac{26}{c^2} = \mu g c^2$$

$$\nabla \frac{2}{c^2} = \mu g c^2$$