REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Afrington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

collection of information if it doe	es not display a currently v	alid OMB control number. PLE	ASE DO NOT RETURN YOUR FO	ORM TO THE ABOVE A	e subject to any penalty for failing to comply with a DDRESS.
1. REPORT DATE (DD	-MM-YYYY)	2. REPORT TYPE Technical Papers			B. DATES COVERED (From - To)
4. TITLE AND SUBTIT	LE				5a. CONTRACT NUMBER
				<u> </u>	5b. GRANT NUMBER
				<u> </u>	DDOCDAM EL EMENT AUGUS
				1	c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S)					id. PROJECT NUMBER
					ie. TASK NUMBER
					m 208
					f. WORK UNIT NUMBER
7. PERFORMING ORG	ANIZATION NAME	S) AND ADDRESS(ES)	8	. PERFORMING ORGANIZATION
Air Force Research L	aboratory (AEM)	7)			REPORT
AFRL/PRS	Laboratory (AFIVIC	-)		*	en de la companya de
5 Pollux Drive					
Edwards AFB CA 93	3524-7048				
9. SPONSORING / MOI	NITORING AGENCY	NAME(S) AND ADDF	RESS(ES)		0. SPONSOR/MONITOR'S
				A	CRONYM(S)
Air Force Research L	aboratory (AFMC	C) .	•		1
AFRL/PRS		,		1	1. SPONSOR/MONITOR'S
5 Pollux Drive				'	NUMBER(S)
Edwards AFB CA 93	524-7048			1	
12. DISTRIBUTION / AV	AILABILITY STAT	EMENT			:
A 10 11		f.			
Approved for public i	elease; distribution	on unlimited.		•	
13. SUPPLEMENTARY	NOTES				1
	110120			•	İ
14. ABSTRACT					
14. ABSTRACT	**	•			
		*			
				0	
					•
		*			
				17 :	21 025
15. SUBJECT TERMS				110	21 025
16. SECURITY CLASSIF	ICATION OF:		17. LIMITATION	18. NUMBER	100 NAME OF PEOPONOUS:
			OF ABSTRACT	OF PAGES	19a. NAME OF RESPONSIBLE PERSON
a. REPORT h	. ABSTRACT	T. THO DAGE			Leilani Richardson
	. ADSTRACT	c. THIS PAGE			19b. TELEPHONE NUMBER (include area code)
Unclassified U	Inclassified	Unclassified	$\begin{pmatrix} A \end{pmatrix}$		(661) 275-5015

62

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18

TP-FY99-\$114 ERC#? (no letter)

MEMORANDUM FOR PRR (Contractor/In-House Publication)

FROM: PROI (TI) (STINFO)

27 May 1999

SUBJECT: Authorization for Release of Technical Information, Control Number: AFRL-PR-ED-TP-FY99-0114 Wilson and Christe (ERC) and Sheehy and Boatz Synthesis of Catenated Polynitrogen Compounds"

Presentation at HEDM Conference Poster Session

(Public Release)

SYNTHESIS OF CATENATED POLYNITROGEN COMPOUNDS

KARL O. CHRISTE^a

WILLIAM W. WILSON^a

JERRY A. BOATZ

JEFFREY A. SHEEHY

PROPULSION SCIENCES AND ADVANCED CONCEPTS DIVISION

AIR FORCE RESEARCH LABORATORY

AFRL/PRS

10 E. SATURN BOULEVARD, BLDG 8451

20021121

EDWARDS AIR FORCE BASE, CA 93524-7680

^aRAYTHEON ITSS CORPORATION

025

DISTRIBUTION STATEMENT A: Approved for Public Release **Distribution Unlimited**

PROGRAM OVERVIEW

• SYNTHESIS OF NOVEL MONDELLANTS CONSISTING OF HIGHLY

ENDOTHERMIC POLYNITROGEN ALLOTROPES

USE TECHNIQUES DEVELOPED IN SYNTHESIS OF OTHER ENERGETIC MATERIALS TO PURSUE CATENATED RATHER THAN POLYCYCLIC POLYNITROGEN SOC

COMPOUNDS

RING CLOSURE REACTIONS FOR POLYCYCLIC COMPOUNDS ARE

UNKNOWN AND DIFFICULT TO ENVISION

IN CONTRAST, ONE CAN CONCEIVE OF REACTIONS THAT MIGHT LEAD

TO CATENATED COMPOUNDS

USE THEORY AND CALCULATIONS TO GUIDE SYNTHESIS EFFORTS •

HIGH-RISK, HIGH-PAYOFF PROGRAM

PROPOSED COMPOUNDS ARE EXTREMELY ENERGETIC

STABILITY OF ENERGETIC MATERIALS TYPICALLY DECREASES WITH

INCREASING ENDOTHERMICITY

CALCULATIONS ON CATENATED POLYNITROGEN SPECIES

HAVE DEMONSTRATED THE FEASIBILITY OF

AB INITIO CALCULATIONS SHOW THESE SPECIES TO BE VIBRATIONALLY STABLE

STATE OF THE ART IN HOMOLEPTIC CATENATED POLYNITROGEN COMPOUNDS

ONLY TWO COMPOUNDS KNOWN WHICH CAN BE PREPARED "IN BULK"

 ${
m N_2}$ LONG KNOWN, BUT FIRST ISOLATED IN PURE FORM ONLY IN

1772 INDEPENDENTLY BY

RUTHERFORD

SCHEELE

CAVENDISH

AZIDE, N₃, DISCOVERED IN 1890 BY

CURTIUS

 THE ABSENCE OF ANY OTHER SUCH COMPOUND IS A TESTIMONY TO THE PROBLEMS THAT CAN BE EXPECTED FOR THE SYNTHESIS OF NEW POLYNITROGEN COMPOUNDS

SYNERGISM OF THEORY AND SYNTHESIS

- AFRL HAS EXCELLENT CAPABILITIES IN BOTH THEORY AND SYNTHESIS THANKS TO AFOSR PROGRAM
- INFRARED SPECTRA, RAMAN SPECTRA, AND NMR CHEMICAL SHIFTS QUANTUM-CHEMICAL CALCULATIONS ARE USED TO IDENTIFY PROMISING DECOMPOSITION PATHWAYS AND ENERGY BARRIERS CANDIDATES AND HELP CHARACTERIZE NEW COMPOUNDS THERMODYNAMIC PROPERTIES
- GENERAL APPROACH TO SYNTHESIS OF PROMISING CANDIDATES SYNTHESIZE COMPOUNDS ON A VERY SMALL SCALE PROPELLANT SPECIFIC IMPULSE
- SCALE UP THE SYNTHESIS OF VIABLE NEW MATERIALS GET SENSITIVITY DATA AND PHYSICAL PROPERTIES

IDENTIFY AND CHARACTERIZE THE NEW COMPOUNDS

PROBLEMS WITH SYNTHESIS OF POLYNITROGEN HEDM

- ALL THE ENERGY MUST COME FROM ENDOTHERMICITY WHICH MAKES POLYNITROGEN HEDM EXTREMELY DANGEROUS
- BASIS FOR HIGH ENERGY CONTENT ARE THE LARGE DIFFERENCES IN BOND

ENERGIES FOR N-N BONDS

+34 ————— CH≡CH 194	-(CH=CH) _n - 85 + 143	-90 N≡N 228	-(N=N) _n - 38 + 100
194 kcal/mol	S≡C	228 kcal/mol	N
143 kcal/mol	O=0	100 kcal/mol	N N
85 kcal/mol	ပု	38 kcal/mol	Z-Z

EXCEPTIONS: N₂, O₂

STABLE MONOMERS UNSTABLE POLYMERS

NORMAL CASE:

STABLE POLYMERS UNSTABLE MONOMERS

GENERAL CONCEPT FOR POLYNITROGEN HEDM SYNTHESIS

- ALL POLYNITROGEN COMPOUNDS ARE UNSTABLE WITH RESPECT TO N_2
- ACTIVATION ENERGY BARRIER TOWARD N₂ ELIMINATION IS DETERMINED BY THE WEAKEST BOND IN POLYNITROGEN COMPOUND
- THE BARRIER AND METASTABILITY OF POLYNITROGEN COMPOUNDS MUST BE INCREASED BY SUITABLE RESONANCE STRUCTURES

$$[\mid N-N=N \mid] \quad \longleftarrow \quad [\langle N=N=N \rangle \mid] \quad \longleftarrow \quad [\mid N=N-N \mid]$$

- DOUBLE BOND CHARACTER OF N-N BONDS IN AZIDE ION EXPLAINS ITS **EXCEPTIONAL STABILITY**
- HOW CAN THIS STABILIZATION EFFECT BE TAKEN ADVANTAGE OF?

EXPANSION OF THE AZIDE STRUCTURE

• ADDITION OF [N)] UNITS TO N3

$$(N=N=N)^{-1} + [N)^{+1} + [N=N=N)^{-1}$$

$$^{+}[N=N=N=N] + [N]^{+} + [N=N=N=N]^{+}$$

HOWEVER, THEORETICAL CALCULATIONS SHOW THAT $D_{\infty h} \, N_4$ IS NOT STABLE

RETAIN DOUBLE BOND CHARACTER WHILE AVOIDING NEIGHBORING CHARGES NO PLAUSIBLE RESONANCE STRUCTURES CAN BE WRITTEN FOR N₄ WHICH OF EQUAL SIGN

EXPANSION OF THE AZIDE STRUCTURE TO N5+

THE SAME PROBLEM EXISTS FOR ${
m N_5}^+$ WITH NEIGHBORING POSITIVE CHARGES

RESONANCE STRUCTURES, HOWEVER, CAN BE WRITTEN WHICH AVOID THIS

AB INITIO CALCULATIONS (CCSD(T) AND B3LYP) CONFIRM THE STABILITY OF THIS C_{2v} STRUCTURE

SELECTION OF SUITABLE STARTING MATERIALS FOR N₅⁺ SYNTHESIS

REQUIREMENTS

STARTING FRAGMENTS MUST HAVE ALREADY BUILT IN WEAKENED BONDS CHOICE OF SUITABLE SOLVENT (HEAT SINK, STABILIZATION, SAFETY) MUST HAVE A FORMAL POSITIVE CHARGE (IP OF $N_2 = 359 \text{ kcal/mol}$) COUPLING REACTION MUST BE EXOTHERMIC

• IDEAL CANDIDATE SYSTEM

SYNTHESIS OF N2F MF6 (M = As, Sb) STARTING MATERIAL

KNOWN SYNTHESIS

GRAPHITE + AsF₅ —
$$C_{10}$$
·AsF₅

$$2 C_{10}$$
·AsF₅ + N_2 F₄ \longrightarrow $2 C_{10}$ ⁺AsF₆ + trans- N_2 F₂
trans- N_2 F₂

$$C_{10}$$
·AsF₅ + M F₅ \longrightarrow C_{10} ·AsF₆ + C_{10} ·AsF₆ + C_{10} ·AsF₇

ATTEMPTS TO SIMPLIFY N2F*MF6 SYNTHESIS WERE UNSUCCESSFUL

$$N_2 + F_2 + SbF_5 \longrightarrow N_2F^+SbF_6$$

(VARYING TEMPERATURES AND PRESSURES)

(METHOD COMPARABLE TO SUCCESSFUL SYNTHESIS OF NF₄ *SbF₆)

$$NF_3 + F_2 + SbF_5 \longrightarrow NF_4^+SbF_6$$

(250 °C AND 150 ATM PRESSURE)

ACTUAL SYNTHESIS OF N5 TASF6

SYSTEM WORKED AS PLANNED

$$N_2F^{+}AsF_6^{-} + HN_3 \xrightarrow{HF} N_5^{+}AsF_6^{-} + HF$$
-78°C
HIGH YIELD

ONLY OTHER BYPRODUCT 20-40% H₂N₃ *AsF₆ ⁻

2 MMOL (0.5 G) SCALE

PROPERTIES OF N5 ASF6

WHITE SOLID WHICH IS SPARINGLY SOLUBLE IN HF

MARGINALLY STABLE AT 22 °C

HIGHLY ENERGETIC, REACTS VIOLENTLY WITH WATER AND ORGANICS

CALCULATED △H_f ° N₅ (g) = 353 kcal/mol

POWERFUL OXIDIZER

1st I.P. OF $O_2 = 288 \text{ kcal/mol}$ 1st I.P. OF $N_2 = 359 \text{ kcal/mol}$

SYNTHESIS OF 15N LABELED N5 ASF6

၁_°08

2 NaN*NN + 2 CH₃(CH₂)₁₆CO₂H —

 \longrightarrow HN*NN + HNNN* + 2 NaO₂C(CH₂)₁₆CH₃

 $2 N_2 F^+ AsF_6^- + HN^*NN + HNNN^*$

[N*NNNI]*AsF₆ + [NNN*NN]*AsF₆ +

 $^{15}\mathrm{N}$ Labeled $\mathrm{N}_5\mathrm{AsF}_6$ needed for positive identification of

N₅⁺ BY SPECTROSCOPIC METHODS

CHARACTERIZATION OF N5 TASF6

- 14N AND 15N NMR SPECTRA
- LOW-TEMPERATURE RAMAN AND INFRARED SPECTRA OF NORMAL AND

ISOTOPICALLY LABELED N₅⁺

- NORMAL COORDINATE ANALYSIS
- MASS SPECTROSCOPY
- THEORETICAL CALCULATIONS

OPTIMIZED GEOMETRY VIBRATIONAL SPECTRA ISOTOPIC SHIFTS NMR SHIFTS HEAT OF FORMATION

[14N-14N-14N-14N-14N] AsF₆ LOW-TEMPERATURE RAMAN SPECTRUM

$^{\circ}$ = ASF ₆		Frequency,	CIII.
N ₅ ⁺	OBSD (cm ⁻¹)	CCSD(T) (cm ⁻¹)	B3LYP (cm ⁻¹)
ν ₁ (A1).	2271	2229	2336
∨ ₇ (B2)	2211	2175	2282
∨ ₂ (A1)	871	818	850
ν ₄ (A1)	209	181	193

Intensity

$\frac{[^{15}N^{-14}N^{-14}N^{-14}N^{-14}N]^{+} AsF_{6}}{[^{14}N^{-14}N^{-15}N^{-14}N^{-14}N]^{+} AsF_{6}}$

LOW-TEMPERATURE RAMAN SPECTRUM

14N-15N SHIFTS (cm⁻¹)

	OBSD	CALCD
V_1	12	11.8
V ₇	21	21.4
ν ₂	14	14.1

A MATOL YAMPICO0015./PG (local)

NITROGEN NMR SPECTRA OF

 $[^{15}N^{-14}N^{-14}N^{-14}N^{-14}N]^{+}$ AND $[^{14}N^{-14}N^{-15}N^{-14}N^{-14}N]^{+}$

FORCE FIELD ANALYSIS FOR N5+

TWO MOST IMPORTANT FORCE CONSTANTS

 $f_r = 20.08 \text{ mdyn/Å}$

 $f_R = 6.59 \text{ mdyn/Å}$

TYPICAL FORCE CONSTANT VALUES FOR N-N

SINGLE BONDS DOUBLE BONDS TRIPLE BONDS

3.6 mdyn/Å 10.2 mdyn/Å 22.4 mdyn/Å

THUS N(2)-N(3) HAS BOND ORDER OF ~1.5 AND IS RESONANCE

STABILIZED AT THE EXPENSE OF N(1)-N(2)

WHAT NEXT?

STABILITY TESTS SAFETY TESTS

MAKE A BETTER POLY-N CATION N(N₃)₄⁺, XeN₃⁺, etc.

MAKE A LARGER POLY-N ANION

 $N(N_3)_2$, etc.

 \rightarrow

SCALE UP

PROCESS IMPROVEMENT

TESTING

PRODUCTION

ESTIMATED ENERGY CONTENT OF N5 + N3

HEAT OF FORMATION OF N5 N3

$$\Delta$$
 H_f²⁹⁸ N₅ (g) = 351 kcal/mol

$$\Delta H_f^{298} N_{3(9)} = 43.2 \text{ kcal/mol}$$

$$U_L N_5^+ N_3^- \sim 130 \pm 20 \text{ kcal/mol}$$

$$\Delta H_f^{298} N_5^+ N_3^- (s) = 351 + 43 - 130 = 264 \pm 25 \text{ kcal/mol}$$

• ENERGY DENSITY OF
$$N_5^+N_3^-(s) = 2.36 \text{ kcal/g}$$

COMPARISON OF ENERGY DENSITIES (kcal/g)

$$O_3 C(N_3)_3^+ N(NO_2)_2^-$$

$$N_5^+N_3^-$$

 HN_3

 H_2/O_2

1.42

SUMMARY

- THE FEASIBILITY OF POLYNITROGEN BASED HEDM COMPOUNDS HAS BEEN DEMONSTRATED BY THE SUCCESSFUL BULK SYNTHESIS OF N_5^+
- $_{\wedge}$ THE ${
 m N_5}^+{
 m AsF}_6^-$ SALT IS OF SURPRISING STABILITY AND WAS UNAMBIGUOUSLY IDENTIFIED BY VIBRATIONAL AND NMR SPECTROSCOPY OF UNLABELED AND ¹⁵N LABELED N₅⁺ AND THEORETICAL CALCULATIONS
- KNOWN COMPOUND OF THIS TYPE BESIDES ELEMENTAL NITROGEN AND AZIDE ullet THE ${
 m N_5}^+$ CATION IS THE FIRST NEW CATENATED HOMOLEPTIC POLYNITROGEN COMPOUND PREPARED IN BULK IN OVER 100 YEARS AND ONLY THE THIRD
- THEORETICAL CALCULATIONS PLAYED A CRUCIAL ROLE IN THE SUCCESSFUL IDENTIFICATION OF $\mathrm{N_5}^+$ AND DEMONSTRATE THE POWERFUL SYNERGISM OF THEORY AND SYNTHESIS

ACKNOWLEDGEMENT

DR. MARIO FAJARD0

(MASS SPECTRA)

DR. JOHN STANTON

(NMR SHIFT CALCULATIONS)

MR. ALAN KERSHAW

(NITROGEN NMR SPECTRA)

Table 1. Observed and Calculated Nitrogen NMR Data for N_5^+

		chemical	shifts, ^a ppm
	obs	served ^b	calculated, CCSD(T)/QZP
	¹⁵ N	¹⁴ N	N_1 N_2 N_3
$[^{15}N_1 - {}^{14}N_2 - {}^{14}N_3 - {}^{14}N_2 - {}^{14}N_1]^+$	-237.3	-165 3 ^d -2	235 -166 -95 glignment
$[^{14}N_1 - {}^{14}N_2 - {}^{15}N_3 - {}^{14}N_2, - {}^{14}N_1,]^+$	-100.4	-100.5 Z	which is a second of the secon

⁽a) Chemical shifts are given relative to neat CH_3NO_2 as external standard. (b) The spectra were recorded hydrogen-coupled at -63 °C in anhydrous HF solution which was acidified with AsF₅. (c) An empirical correction of -20 ppm was applied to all calculated values, based on a comparison between the calculated and observed shifts of a number of closely related molecules and ions. (d) The other two resonances are badly exchange broadened and were not detected in the ¹⁴N spectrum.

Table 2. Low-temperature Raman and Infrared Spectra of Solid ¹⁴N₅⁺ AsF₆⁻ and Their Assignments Compared to the Calculated Harmonic Frequencies of Free Gaseous N₅⁺

observed freq,	cm ⁻¹ (rel intens)	assi	gnt (point group)	cal	cd freq ^d , (intens) ^b
Raman	IR	$^{14}N_{5}^{+}(C_{2v})$	$AsF_6(O_h)$	B3LYP	CCSD(T)
-130°C	-196°C				•
2271 [44]	2270 m	$\nu_1(A_1)$		2336 (22)	2229 (13) [215]
2211 [8]	2210 s	$v_7(B_2)$		2282 (147)	2175 (105) [42]
	1088 s	$v_8(B_2)$,	1167 (141)	1032 (138) [2]
871 [7]	872 w	$v_2(A_1)$		850 (4)	818 (0.5) [5]
	704 vs		$\nu_3(F_{1u})$		
686 [100]	680 sh		$v_1(A_{1g})$		
672 [17]		$v_3(A_1)$	or part of v	678 (1)	644 (2) [1]
669 [18]			$_{l}(A_{1g})$ or $\nu_{3}(F_{1u})$		
579 [16]	575 w		$v_2(E_g)$		entropy of the second
377 [TO]		$v_5(A_2)$	_ · •	502 (0)	475 (0) [1]
	420 sh	$v_6(B_1)$		424 (7)	405 (6) [0]
		$v_9(B_2)$		436 (0.6)	399 (1) [0.5]
	394 vs		ν ₄ (F _{1u})		
372 [32]	380 sh		$v_5(F_{2g})$		
	360 sh		ν 5(1 2g)		
209 [44]		$v_4(A_1)$		193 (0.5)	181 (0.3) [6]
127 [55]		lattice vibration	•		

⁽a) Using a 6-311 + G(2d) basis set. (b) IR intensities in km/mol; Ra intensities in ${\rm Å^4/amu.}$ (c) The Ra intensities were calculated at the RHF level.

Table 3. Comparison of the Calculated (B3LYP) and Observed 15N Isotopic Shifts for N5

Ns ⁺ Isotopomer	sotos	pom	Jer				calcula	calculated frequencies (shifts), cm 1	icies (shifts	.), cm ⁻¹ —			Γ		observ	ed frequencie	observed frequencies (shifts), cm ⁻¹		
													,						
z C Ž	Ž.	(S)	ICD-NC	N(1)-N(2)-N(3)-N(2)-N(1) v4(A ₁)		v ₉ (B ₂)	۷ ₆ (Β ₁)	v _s (A ₂)	۷٫(۸٫)	v ₂ (A ₁)	v _s (B ₂)	v,(B2)	v,(A,)	V ₁ (A ₁).		V ₇ (B ₂)	N	V ₁ (A ₁).	RA
7	=		<u>†</u>		193.1(0) 4	424.1(0)	436.3(0)	502.4(0)	678.1(0)	850.0(0)	1116.9(0)	2281.7(0)	2336.3(0)	872(0)	871(0)	2210(0)	2211(0)	2271(0)	2271(0)
<u> </u>	4 15	5 14	4 14		191.8(1.3) 4	422.0(2.1)	436.0(.2)	502.4(0)	(1.)5(.7)	833.3(16.7) 1138.0(28.9)	1138.0(28.9)	2281.2(.5)	2336.3(.1)	858(14)	855(16)	2209.8	2211(1)	2270.8	3271(0)
15	=		-		190,8(2,2)	422.3 (1.8)	434.7(1.5)	500.7(1.7)	674.4(3.7)	847.4(2.6), 1163.4(3.5)	1163.4(3.5)	2259.8(21.9)	2324.5(11.9)	870(2)	869(2)	2189.0(21)	2189.0(21) 2190(21)	2259.0(12)	2259(12)
11 15	2	= =	<u> </u>		192.6(.4)	419.4(4.7)	430.4(5.8)	496.1(6.3)	(5.0)9:019	846.6(3.4) 1165.0(1.8)	1165.0(1.8)	2253.3(28.4)	2321.6(14.8)						
=	5 15		<u> </u>	_	. (7.1)4.191	417.4(6.8)	430,2(6.0)	496.1(6.3)	669.9(8.2)	829.9(20.1) 1136.0(30.8)	1136.0(30.8)	2252.9(28.8)	2321.5(14.9)						
15		_	<u> </u>		189.6(3.5)	420,2(3.9)	434.5(1.8)	500.7(1.7)	673.8(4.3)	830.6(19,4) 1134.5(32.4)	1134.5(32.4)	2259.3(22.4)	2324.4(12.0)						
14 15	2 - 2	_	15 14		192.2(.9)	415.6(8.5)	424.9(11.4)	489.0(13.4)	662.9(15.3)	843.3(6.8) 1163.2(3.7)	1163.2(3.7)	2240.1(41.5)	2291.5(44.8)						
15	15 14	_	<u> </u>		190.4(2.7)	417.3(6.8)	428.8(7.4)	494.6(7.8)	(0.11)1.756	844.1(5.9)	1161.8(5.1)	(2222.9(58.7)	2317.3(19.0)						
-	15 14		11 15		190.4(2.7)	417.9(6.2)	428.9(7.4)	494.1(8.3)	(211)6999	844.1(6.0)	1161.5(5.3)	2243.4(38.3)	2297.7(38.6)						
1.5	<u>-</u>	· -	14 15		188.6(4.5)	420.5(3.6)	433.1(3.1)	498.9(3.5)	670.6(7.5)	845.0(5.0) 1159.8(7.0)	1159.8(7.0)	2247.4(34.2)	2303.1 (33.2)					-	
=	5	15	15 14	_	191.0(2.1)	413.4(10.7)	424.7(11.6)	489.0(13.4)	662.1(16.0)	826.4(23.6) 1134.1(32.8)	1134.1(32.8)	2239.7(41.9)	2291.5(44.8)						
15	-	- 51	14 14		189.2(3.9)	415.2(8.9)	428.6(7.6)	494.6(7.8)	(9.11)5.999	827.2(22.8)	827.2(22.8) 1132.8(34.1)	2222.5(59.1)	2317.1(19.2)						
- 5	==	12	15 14		9.2(3.9)	189.2(3.9) 415.8(8.3)	428.7(7.6)	494.1(8.3)	(8.11)899	827.2(22.9) 1132.5(34.4)	1132.5(34.4)	2242.9(38.8)	2297.6(38.7)						
. 13	_	5	14 15		7.4(5.7)	187.4(5.7) 418.4(5.7)	432.9(3.3)	498.9(3.5)	670.2(8.0)	828.0(22.0)	828.0(22.0) 1130.9(36.0)	2246.9(34.8)	2303.0(33.3)		•			٠	
15	5	4	15 14		189.9(3.1)	413.7(10.4)	423.3(13.0)	487.2(15.2)	659.3(18.8)	840.7(9.3) 1159.9(7.0)	(0.7)6.9211	2217.3(64.3)	2279.7(56.6)						
15	5	=	14 15		188.2(4.9)	415.8(8.3)	427.3(9.0)	492.6(9.8)	663.3(14.8)	841.7(8.4) 1158.2(8.7)	1158.2(8.7)	2218.4(63.2)	2288.1(48.3)						
15	15	15	15 14		188.8(4.3)	411.6(12.5)	423.1(13.1)	487.2(15.2)	658.7(19.5)	823.8(26.2)	823.8(26.2) 1130.8(36.1)	2216.9(64.8)	2279.6(56.7)						
. 5	15	15 1	14 15		187.0(6.1)	413.7(10.4)	427.1(9.2)	492.6(9.8)	662.8(15.3)	824.7(25.4) 1129.2(37.7)	129.2(37.7)	2218.0(63.7)	2287.9(48.4)				*		
~	. 2	=	15 15		187.7(5.4)	411,9(12.2)	421.7(14.6)	485.4(17.0)	655.8(22.4)	838.4(11.7)	838.4(11.7) 1156.6(10.3)	2205.0(76.6)	2257.4 (78.9)				٠.		
5	15 1	15	15 15		6.5(6.5)	186.5(6.5) 409 8(14 3)	421.5(14.7)	485.4(17.0)	655.2(22.9)	821.3(28.7)	821.3(28.7) 1127.4(39.4) 2204.5(77.1)	2204.5(77.1)	2257.4(79.0)						

Table 4. Results from the Normal Coordinate Analysis^a of N₅⁺

—potential energy distribution ^a , % —	(CCSDT)	93(1) + 6(2)	62(2) + 23(3) + 13(4) + 2(1)	39(3) + 33(2) + 23(4) + 5(1)	64(4) + 37(3) - 1(2)	100(5)	100(6)		96(7) + 4(8)	95(8) + 4(7)	99(9) + 1(8)	
	F44				.373(.425)			•				
SDT (B3LYP)—	F33			1.540(1.427)	(0.108)			Руд			.358(.423)	
symmetry force constants ^b , CC SDT (B3LYP)-	F ₂₂	•	5.546(6.952)	1,377(1,535).	(0.204(1312)			F88		4.780(5.927)	Q.085(1159)	
symmetry for	FII	F ₁₁ 19.573(21.314)	F ₂₂ 0 .702(.843)	F33 \$085(4137)	F44 0167(6171)	F ₅₅ Q0266\$0281)	F ₆₆ (10236(.0246)	F77	F ₇₇ 19.491(21.272)	F ₈₈ 1.197(1.359)	F99 9.200(1195)	
frequency, cm ⁻¹	CCSD(T)(B3LYP)	2229 (2336)	818 (850)	644 (678)	181 (193)	475 (502)	405 (424)		2175 (2282)	1032 (1167)	399 (436)	
— freque		2270	872		209				2210	1088		
- approx mode description	m point group C _{2v}	A ₁ v ₁ in phase terminal stretches	sym central stretch	central bending	in phase terminal bends	A2 v5 torsion	B ₁ v ₆ torsion		B ₂ v ₇ out of phase term stretch	asym central stretch	bg out of phase terminal bends	
gde L	±	A ₁ υ ₁	v ₂	ξα	04	A2 vs	B ₁ v ₆		B2 v7	08 0	იმ	

from the calculated symmetry force constants and the observed frequencies are (1,2)=20.08 mdyn/Å and (2,3)=6.59 mdyn/Å. Streching constants in mdyn/Å, deformation constants in $S_5 = \tau(1-2-3-2') + \tau(2-3-2'-1'); S_6 = \tau(1-2-3-2'-1'); S_7 = v(1-2) - v(1'-2'); S_8 = v(2-3) - v(2'-3); S_9 = \tilde{S}(1-2-3) - \tilde{S}(1'-2'-3).$ (b) The two most important internal force constants, estimated (a) The following symmetry coordinates were used for $[N_1-N_2-N_3-N_1-1]^2$; $S_1=v(1-2)+v(1-2)$; $S_2=v(2-3)+v(2-3)+v(2-3)$; $S_3=\delta(2-3-2)$; $S_4=\delta(1-2-3)+\delta(1-2-3)$; mdyn/Å/rad², and stretch-bend interaction constants in mdyn/rad.