Übung zur Vorlesung Informatik I

WS 2024/25

Fakultät für Angewandte Informatik

Institut für Informatik

Prof. Dr. J. Hähner, J. Linne, H. Cui, V. Gerling, N. Kemper

Übungsgruppe 69

Abgabe des 4. Übungsblatts

Erik Wiedmann, Marwin Merkl, Manuel Henker

Aufgabe 34

```
a Datei: 34.c
#include < stdio.h>
int increment_if_zero(int *x, int *y){
          printf("\nx und y for funktion: %i, %i", *x, *y);
          if(*y == 0){
                   ++(*x);
                   printf("\nx nach funktion: %i", *x);
                   return 1;
          printf("\nx nach funktion: %i", *x);
10
          return 0;
12 }
13
int main(void){
          int a = -1;
          int b = 0;
          int c = 5;
17
18
          increment_if_zero(&a, &b);
19
          increment_if_zero(&a, &c);
          increment_if_zero(&b, &c);
21
          increment_if_zero(&b, &a);
          increment_if_zero(&c, &a);
          increment_if_zero(&c, &b);
25
          return 0;
26
27 }
```

b Datei: 34b.c

```
#include < stdio.h >

int multiples_of_x(int n, int x, int *lower, int *greater) {
    int i;
    if(lower == NULL || greater == NULL) return 0;
    for(i = n; i >= 1; i--) {
        if(i % x == 0) {
            *lower = i;
            break;
}
```

```
}
10
          }
11
          i = n;
          while(*greater == 0){
                   if(i \% x == 0){
14
                           *greater = i;
15
                   }
16
                   i++;
18
          return 1;
19
20 }
int main(void){
          int x = 7;
          int n = 20;
          int lower = 0;
          int greater = 0;
26
          multiples_of_x(n, x, &lower, &greater);
27
          printf("\nx = \%i", x);
          printf("\nn = %i", n);
          printf("\nlower = %i", lower);
          printf("\ngreater = %i",greater);
33
          return 0;
c Datei: 34c.c
#include < stdio.h>
int flushBuff(void){
          while((c = getchar()) != '\n' && c != EOF){}
          return c != EOF;
 }
7
int read_percent(int *percentage){
          printf("UwU Master-sama bitte übergib mir eine zahl
             zwischen 0 und 100^{\n}");
          scanf("%i", percentage);
          if(*percentage < 0 || *percentage > 100){
                   printf("BAAAKAAAA-sama deine Eingabe ist
                      scheisse grrrr");
                   flushBuff();
14
                   return 0;
15
          }
          return 1;
17
18 }
19
int main(void){
          int pe;
22
          if(read_percent(&pe)) printf("Hier Master-sama deine
             Eingabe^^\n%i", pe);
          return 0;
24
25 }
```

Aufgabe 35

```
Datei: 35.c
#include < stdio.h >
#include < stdlib.h>
int *array_d_filter_even(int *a, int size, int *filterd_size){
          int i;
          int *even = malloc(0);
          filterd_size = 0;
          for(i = 0; i <= size; i++){</pre>
                   if(a[i] % 2 == 0){
                           ++(*filterd_size);
                           even = realloc(even, (sizeof(even) + 1) *
                                sizeof(int));
                            even[*filterd_size] = a[i];
                   }
13
          }
14
          if(even == NULL) return NULL;
          return even;
17 }
18
int *array_d_intersection(int *a, int size_a, int *b, int size_b,
     int *intersected_size){
          int i, n, x = 0;
20
          int *intersection = malloc(sizeof(int));
          for( i = 0; i <= size_a; i++){</pre>
                   for(n = 0; n <= size_b; n++){</pre>
                           if(a[i] == b[n]){
                                    intersection = realloc(
                                        intersection, (sizeof(
                                        intersection) + 1) * sizeof(int
                                       ));
                                    intersection[x] = a[i];
                                    x++;
29
                                    *intersected_size = x;
                                        ab hier keine ausgabe mehr mö
                                        glich, kp warum*/
                                    printf("hello");
31
                           }
                   }
          }
          if(intersection == NULL) return NULL;
          return intersection;
38 }
39
40 int main(void){
          int aa[] = \{2,4,5,6\};
42
          int ba[] = \{1,2,5,6\};
          int *a = aa;
          int *b = ba;
45
         int size_a = 4;
```

```
int size_b = 4;
int *p = 0;
int *x = array_d_intersection(a, size_a, b, size_b, p);
printf("hihi");
printf("\ndie schnittmenge von a und b ist: %n", x);

free(x);
return 0;
}
```