

Digital Integrated Circuits A Design Perspective

Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Designing Sequential Logic Circuits

April 15, 2004

Class Notes

- □ Pls. Respond to "Move Final" email
- □ Pls. Don't fall behind on project.
- □ Policy on Project Collaboration
 - Discussions welcome!
 - Reverse-engineering welcome!
 - Copying binary layouts NOT welcome!
 - We will compare your final cell layouts

Master-Slave (Edge-Triggered) Register

Two opposite latches trigger on edge Also called master-slave latch pair

Master-Slave Register

Multiplexer-based latch pair

Clk-Q Delay

Setup Time

Reduced Clock Load Master-Slave Register

Avoiding Clock Overlap

Overpowering the Feedback Loop — Cross-Coupled Pairs

NOR-based set-reset

Cross-Coupled NAND

Cross-coupled NANDs

Added clock

This is not used in datapaths any more, but is a basic building memory cell

Sizing Issues

Output voltage dependence on transistor width

Transient response

Storage Mechanisms

Static

Dynamic (charge-based)

Making a Dynamic Latch Pseudo-Static

More Precise Setup Time

Other Latches/Registers: C²MOS

"Keepers" can be added to make circuit pseudo-static

Insensitive to Clock-Overlap

Pipelining

Reference

Clock Period	Adder	Absolute Value	Logarithm
1	$a_1 + b_1$		
2	$a_2 + b_2$	$ a_1+b_1 $	
3	$a_3 + b_3$	$ a_2 + b_2 $	$\log(a_1+b_1)$
4	a_4+b_4	$ a_3 + b_3 $	$\log(a_2+b_2)$
5	<i>a</i> ₅ + <i>b</i> ₅	$ a_4 + b_4 $	$\log(a_3+b_3)$

Pipelined