Porbeagle shark, Lamna nasus

Sensitivity Assessment

Table 1. Sensitivity assessment for the porbeagle shark (*Lamna nasus***).** NR = not relevant, NA = not assessed, NEv = no evidence, H = high, M = medium, L = low, NS = not sensitive.

Pressures		Associated	Resistance					Resil	ience			References			
Classification	Pressure type	sector(s)	Score	QoE	AoE	DoC	Score	QoE	AoE	DoC	Score	QoE	AoE	DoC	
Physical	Physical loss (to land or freshwater habitat)	o	NA	NR	NR	NR	NA	NR	NR	NR	NA	NR	NR	NR	-
	Physical change (to another seabed type)	O, F	NA	NR	NR	NR	NA	NR	NR	NR	NA	NR	NR	NR	-
	Physical change (to another sediment type)	O, F	NA	NR	NR	NR	NA	NR	NR	NR	NA	NR	NR	NR	-
	Habitat structure change-removal of substratum (extraction)	О	NA	NR	NR	NR	NA	NR	NR	NR	NA	NR	NR	NR	-
	Abrasion/disturb ance of substratum surface or seabed	O, F	NEv	NR	NR	NR	NA	NR	NR	NR	NA	NR	NR	NR	-
	Penetration or disturbance of substratum subsurface	O, F	NA	NR	NR	NR	NA	NR	NR	NR	NA	NR	NR	NR	-

Table 1. cont. **Sensitivity assessment for the porbeagle shark (***Lamna nasus***).** Associated sectors include activities related to offshore renewable energy (O), Fishing (F), or shipping (S).

Pressures					Resil	ience			References						
Classificatio n	Pressure type	Associated sector(s)	Score	QoE	AoE	DoC	Score	QoE	AoE	DoC	Score	QoE	AoE	DoC	
Physical	Changes in suspended solids (water clarity)	O, F	NA	NR	NR	NR	NA	NR	NR	NR	NA	NR	NR	NR	-
	Smothering and siltation changes (light)	0	NA	NR	NR	NR	NA	NR	NR	NR	NA	NR	NR	NR	-
	Smothering and siltation changes (heavy)	0	NA	NR	NR	NR	NA	NR	NR	NR	NA	NR	NR	NR	-
	Underwater noise	O, F, S	Н	L	М	L	Н	L	L	L	NS	L	NR	NR	-
	Electromagnetic energy	0	Н	L	М	L	Н	L	М	L	NS	L	NR	NR	-
	Barrier to species movement	O, F	NEv	NR	NR	NR	NEv	NR	NR	NR	NA	NR	NR	NR	-
	Death or injury by collision	O, F, S	NA	L	М	М	NA	L	M	М	NA	NR	NR	NR	-
Hydrological	Water flow changes	0	NA	NR	NR	NR	NA	NR	NR	NR	NA	NR	NR	NR	-
Chemical	Transition elements & organo-metal contamination	O, F, S	NEv	М	Н	М	NEv	M	M	Н	Sensitiv e	M	M	М	14, 15

Table 1. cont. Sensitivity assessment for the porbeagle shark (Lamna nasus).

Pressures		Associated	Resistance					Resil	ience			References			
Classification	Pressure type	sector(s)	Score	QoE	AoE	DoC	Score	QoE	AoE	DoC	Score	QoE	AoE	DoC	
	Hydrocarbon & PAH contamination	O, F, S	NA	NR	NR	NR	NA	NR	NR	NR	NA	NR	NR	NR	23
	Synthetic compound contamination	O, F, S	NEv	Н	Н	L	NA	Н	Н	NR	NA	Н	Н	L	20
	Introduction of other substances	O, F, S	NA	NR	NA	NR	NR	NA	NR	NR	NR	NA	NR	NR	-
	Deoxygenation	0	NEv	NR	NEv	NR	NR	NEv	NR	NR	NR	NA	NR	NR	-
	Organic enrichment	0	NA	NR	NA	NR	NR	NA	NR	NR	NR	NA	NR	NR	-
Biological	Introduction or spread of invasive non-indigenous species	O, F, S	NR	NR	NR	NR	NR	NR	NR	NR	NA	NR	NR	NR	-
	Removal of target species	F	L	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	1, 3, 6, 8, 9 - 13, 21, 24, 25, 30, 31, 37
	Removal of non- target species	F	L	Ħ	H	Н	L	H	H	Н	Н	H	H	Н	3 – 5, 7, 8 – 10, 12 – 19, 25 - 30, 33, 35 - 37

References for sensitivity assessment

- 1. Silva, J., and Ellis, J. (2019). Bycatch and discarding patterns of dogfish and sharks taken in English and Welsh commercial fisheries. Journal of Fish Biology, 94:966–980.
- 2. Haugen, J., and Papastamatiou, Y. (2019). Observation of a porbeagle shark *Lamna nasus* aggregation at a North Sea oil platform. Journal of Fish Biology, 95:1496–1499.
- 3. Hurley, P. (1998). A review of the fishery for pelagic sharks in Atlantic Canada. Fisheries Research, 39:107–113.
- 4. Benz, G., Kingman, A., and Borucinska, J. (2001). Gillnet survival and healing by a Porbeagle, *Lamna nasus*. Canadian Field-naturalist, 115:506–509.
- 5. Ellis, J., and Shackley, S. (1995). Notes on porbeagle sharks, *Lamna-nasus*, from the Bristol Channel. Journal of Fish Biology 46:368–370.
- 6. Montevecchi, W., Lamarre, J., Rouxel, Y., Montevecchi, M., Blackmore, R., Bourne, C., and Spiegel, C. (2023). High-contrast banners designed to deter seabirds from gillnets reduce target fish catch. Marine Ornithology, 51:115–123.
- 7. Campana, S., and Joyce, W. (2004). Temperature and depth associations of porbeagle shark (*Lamna nasus*) in the northwest Atlantic. Fisheries Oceanography, 13:52–64.
- 8. Campana, S., Joyce, W., Fowler, M., and Showell, M. (2016). Discards, hooking, and post-release mortality of porbeagle (*Lamna nasus*), shortfin mako (*Isurus oxyrinchus*), and blue shark (*Prionace glauca*) in the Canadian pelagic longline fishery. ICES Journal of Marine Science, 73:520–528.
- 9. Cortés, E., Arocha, F., Beerkircher, L., Carvalho, F., Domingo, A., Heupel, M., Holtzhausen, H., Santos, M.N., Ribera, M., and Simpfendorfer, C. (2010). Ecological risk assessment of pelagic sharks caught in Atlantic pelagic longline fisheries. Aquatic Living Resources, 23:25–34.
- 10. Lipej, L., Uhan, J., Mavric, B., and Vujcic-Karlo, S. (2016). A record of porbeagle, Lamna nasus (Bonnaterre, 1788), in the Gulf of Trieste with discussion on its occurrence in the Adriatic Sea. ACTA Adriatica, 57;305–314.
- 11. Sebastian, H., Haye, P., and Shivji, M. (2008). Characterization of the pelagic shark-fin trade in north-central Chile by genetic identification and trader surveys. Journal of Fish Biology, 73:2293–2304.
- 12. Dufflocq, P., Larrain, M., and Araneda, C. (2022). Species substitution and mislabeling in the swordfish (*Xiphias gladius*) market in Santiago, Chile: Implications in shark conservation. Food Control, 133:10.1016/j.foodcont.2021.108607.
- 13. Campana, S., Joyce, W., and Fowler, M. (2010). Subtropical pupping ground for a cold-water shark. Canadian Journal of Fisheries and Aquatic Sciences, 67:769–773.
- 14. Bendall, V., Barber, J., Papachlimitzou, A., Bolam, T., Warford, L., Hetherington, S., Silva, J., McCully, S., Losada, S., Maes, T., et al. (2014). Organohalogen contaminants and trace metals in North-East Atlantic porbeagle shark (*Lamna nasus*). Marine Pollution Bulletin, 85:280–286.
- 15. Nicolaus, E., Bendall, V., Bolam, T., Maes, T., and Ellis, J. (2016). Concentrations of mercury and other trace elements in porbeagle shark *Lamna nasus*. Marine Pollution Bulletin, 112:406–410.
- 16. Belleggia, M., Colonello, J., Cortés, F., and Figueroa, D. (2021). Eating catch of the day: the diet of porbeagle shark *Lamna nasus* (Bonnaterre 1788) based on stomach content analysis, and the interaction with trawl fisheries in the south-western Atlantic (52° S-56° S). Journal of Fish Biology, 99: 1591–1601.
- 17. Scacco, U., Gennari, E., Di Crescenzo, S., and Fanelli, E. (2023). Looking into the prevalence of bycatch juveniles of critically endangered elasmobranchs: a case study from pelagic longline and

trammel net fisheries of the Asinara Gulf (western Mediterranean). Frontiers in Marine Science, 10: 10.3389/fmars.2023.1303961.

- 18. Campana, S. (2016). Transboundary movements, unmonitored fishing mortality, and ineffective international fisheries management pose risks for pelagic sharks in the Northwest Atlantic. Canadian Journal of Fisheries and Aquatic Sciences, 73:1599–1607.
- 19. Natanson, L., Mello, J., and Campana, S. (2002). Validated age and growth of the porbeagle shark (*Lamna nasus*) in the western North Atlantic Ocean. Fishery Bulletin, 100:266–278.
- 20. Marler, H., Xie, J., Adams, D., Nielsen, C., Wu, Y., and Chen, D. (2022). Legacy and emerging flame retardants in sharks from the Western North Atlantic Ocean. Science of the Total Environment, 829:10.1016/j.scitotenv.2022.154330.
- 21. Cassoff, R., Campana, S., and Myklevoll, S. (2007). Changes in baseline growth and maturation parameters of Northwest Atlantic porbeagle, *Lamna nasus*, following heavy exploitation. Canadian Journal of Fisheries and Aquatic Sciences, 64:19–29.
- 22. Renaguli, A., Fernando, S., Holsen, T., Hopke, P., Adams, D., Balazs, G., Jones, T., Work, T., Lynch, J., and Crimmins, B. (2021). Characterization of Halogenated Organic Compounds in Pelagic Sharks and Sea Turtles Using a Nontargeted Approach. Environmental Science & Technology, 55:16390–16401.
- 23. Serre, S., Jung, A., Cherel, Y., Gamblin, C., Hennache, C., Le Loc'h, F., Lorrain, A., Priac, A., Schaal, G., and Stephan, É. (2024). Stable isotopes reveal intrapopulation heterogeneity of porbeagle shark (*Lamna nasus*). Regional Studies in Marine Science, 69:10.1016/j.rsma.2023.103340.
- 24. Hoolihan, J., Luo, J., Abascal, F., Campana, S., De Metrio, G., Dewar, H., Domeier, M., Howey, L., Lutcavage, M., Musyl, M., et al. (2011). Evaluating post-release behaviour modification in large pelagic fish deployed with pop-up satellite archival tags. ICES Journal of Marine Science, 68:880–889.
- 25. Campana, S., Joyce, W., Marks, L., Natanson, L., Kohler, N., Jensen, C., Mello, J., Pratt, H., and Myklevoll, S. (2002). Population dynamics of the porbeagle in the northwest Atlantic Ocean. North American Journal of Fisheries Management, 22:106–121.
- 26. Carruthers, E., Schneider, D., and Neilson, J. (2009). Estimating the odds of survival and identifying mitigation opportunities for common bycatch in pelagic longline fisheries. Biological Conservation, 142:2620–2630.
- 27. Ferretti, F., Myers, R., Serena, F., and Lotze, H. (2008). Loss of large predatory sharks from the Mediterranean Sea. Conservation Biology, 22:952–964.
- 28. Bowlby, H., Benoît, H., Joyce, W., Sulikowski, J., Coelho, R., Domingo, A., Cortés, E., Hazin, F., Macias, D., Biais, G., et al. (2021). Beyond Post-release Mortality: Inferences on Recovery Periods and Natural Mortality From Electronic Tagging Data for Discarded Lamnid Sharks. Frontiers in Marine Science, 8:10.3389/fmars.2021.619190.
- 29. Foster, D., Epperly, S., Shah, A., and Watson, J. (2012). Evaluation of hook and bait type on the catch rates in the western North Atlantic Ocean pelagic longline fishery. Bulletin of Marine Science, 88:529–545.
- 30. Francis, M., and Stevens, J. (2000). Reproduction, embryonic development, and growth of the porbeagle shark, Lamna nasus, in the southwest Pacific Ocean. Fishery Bulletin, 98:41–63.
- 31. Parra, H., Pham, C., Machete, M., Santos, M., Bjorndal, K., and Vandeperre, F. (2023). The Portuguese industrial pelagic longline fishery in the Northeast Atlantic: Catch composition, spatiotemporal dynamics of fishing effort, and target species catch rates. Fisheries Research, 264:10.1016/j.fishres.2023.106730.
- 32. Pade, N., Queiroz, N., Humphries, N., Witt, M., Jones, C., Noble, L., and Sims, D. (2009). First results from satellite-linked archival tagging of porbeagle shark, *Lamna nasus*: Area fidelity, wider-

scale movements and plasticity in diel depth changes. Journal of Experimental Marine Biology and Ecology, 370:64–74.

- 33. Francis, M., Holdsworth, J., and Block, B. (2015). Life in the open ocean: seasonal migration and diel diving behaviour of Southern Hemisphere porbeagle sharks (*Lamna nasus*). Marine Biology, 162:2305–2323.
- 34. Skomal, G., Marshall, H., Galuardi, B., Natanson, L., Braun, C., and Bernal, D. (2021). Horizontal and Vertical Movement Patterns and Habitat Use of Juvenile Porbeagles (*Lamna nasus*) in the Western North Atlantic. Frontiers in Marine Science, 8:10.3389/fmars.2021.624158.
- 35. Berrow, S. (1994). incidental capture of elasmobranchs in the bottom-set gill-net fishery off the south coast of Ireland. Journal of the Marine Biological Association of the United Kingdom, 74:837–847.
- 36. Doherty, P., Alfaro-Shigueto, J., Hodgson, D., Mangel, J., Witt, M., and Godley, B. (2014). Big catch, little sharks: Insight into Peruvian small-scale longline fisheries. Ecology and Evolution, 4:2375–2383.
- 37. Cameron, L., Roche, W., Houghton, J., and Mensink, P. (2019). Population structure and spatial distribution of porbeagles (*Lamna nasus*) in Irish waters. ICES Journal of Marine Science, 76:1581–1590.
- 38. Biais, G., Coupeau, Y., Séret, B., Calmettes, B., Lopez, R., Hetherington, S., and Righton, D. (2017). Return migration patterns of porbeagle shark (*Lamna nasus*) in the Northeast Atlantic: Implications for stock range and structure. ICES Journal of Marine Science, 74:1268–1276.
- 39. Saunders, R., Royer, F., and Clarke, M. (2011). Winter migration and diving behaviour of porbeagle shark, *Lamna nasus*, in the Northeast Atlantic. ICES Journal of Marine Science, 68:166–174.

Literature search

Web of Science search terms

AB=("Porbeagle*" OR "bottle-nose shark*" OR "bluedog" OR "Atlantic mackerel shark" OR "Beaumaris shark" OR "Lamna nasus" OR "L. nasus" OR "maraîche" OR "Mackerel shark") AND AB=("angl*" OR "beam" OR "bottom trawl*" OR "by-catch" OR "dredge*" OR "fish*" OR "gear" OR "gillnet*" OR "hook*" OR "injury" OR "net*" OR "otter trawl*" OR "remov*" OR "aggregate*" OR "anchor*" OR "ballast" OR "barrier*"OR "beach*" OR "launch*" OR "moor*" OR "noise" OR "ship*" OR "steaming" OR "collision*" OR "construction" OR "electro*" OR "turbine*"OR "renewable*" OR "wave" OR "wind" OR "wind farm*" OR "anoxia" OR "copper" OR "current*" OR "deoxy*" OR "disease*" OR "disturbance" OR "endocrine disru*" OR "eutrophication" OR "exposure" OR "heavy metals" OR "hydrocarbon" OR "hypoxia" OR "litter*" OR "non-native*" OR "nitrate*" OR "nitrite*" OR "noise" OR "radionuclide" OR "nutrient*" OR "oil" OR "PAH*" OR "PCB*" OR "regime" OR "sedimentation" OR "silt*" OR "tributyltin" OR "turbid*")

Database

ISI Web of Science

Search date

8th March 2024 - 76 results

https://www.webofscience.com/wos/woscc/summary/8df005e4-c99b-4d74-aaba-e92a0eb7c02d-d2d3dcd0/relevance/1

Search output and screening process

Abstracts screened for relevance i.e. must describe tope sharks and mention of one of the listed sectors and/or pressures from MARESA. Workflow follows the Rapid Evidence Assessment approach. The title and all auxiliary information (including abstract) were downloaded from ISI Web of Science in a .ris and excel format. In Excel, abstracts were read and listed to either pass or fail the initial screening process with a reason provided.

Outcome from screening

52 (68%) abstracts passed initial screening. Of these, 9 (17%) did not pass secondary screening (i.e., on further reading were determined as not relevant, 4 (8%) could not be accessed and therefore applicability could not be determined, and 39 (75%) passed secondary screening and were accessible, Sensitivity assessments were therefore made based on evidence provided by the resultant 39 papers.