Support Vector Machine

Il-Chul Moon Dept. of Industrial and Systems Engineering KAIST

icmoon@kaist.ac.kr

Maximizing the Margin

- Good decision boundary?
 - Maximum margin!

•
$$r = \frac{a}{||w||}$$

- Need to consider the both side
- Optimization problem?

•
$$max_{w,b}2r = \frac{2a}{||w||}$$

 $s.t.(wx_j + b)y_j \ge a, \forall j$

- *a* is an arbitrary number and can be normalized
 - $min_{w,b}||w||$ $s.t.(wx_j + b)y_j \ge 1, \forall j$

This becomes a quadratic optimization problem. Why?

Support Vector Machine with Hard Margin

- Support Vector Machine (SVM)
 - Constructs a set of hyperplanes to have the largest distance to the nearest training data point of any class.
- Hard margin
 - No error cases are allowed
 - What If there is an error case?
- Let's implement the hard margin SVM
 - $min_{w,b}||w||$ $s.t.(wx_i + b)y_i \ge 1, \forall j$

