

UAVSAR

The primary objective of the UAVSAR Project is to:

• Develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for use on an unmanned aerial vehicle (UAV) or minimally piloted vehicle

• JPL

- · Designed, fabricated, and will operate the radar instrument
- Conduct data analysis
- Dryden Flight Research Center
 - Provide RPI (Repeat Pass Interferometry) interim platform (NASA G-III) and head up flight operations
 - Develop Platform Precision Autopilot (PPA) capability
- First Flight of SAR on G-III expected Fall 2007

NASA Dryden's G-III Aircraft

Aircraft Dimensions

- Wing: span 77 ft 10 in; area 934.6 ft²
- Fuselage and tail: length 83 ft 1 in; height 24 ft 4.5 in
- Large Internal Volume (1500 cu. Ft.)

Aircraft Performance

- Max Mach 0.85
- Max Operating altitude 45Kft
- Typical Cruise 400 to 500 kts
- Max Range ~3000 nautical miles
- Climb Rate up to 4,000 fpm

Aircraft Instrumentation

- Control surface positions
- Flight Director
- Air Data Computer
- INS
- Aircraft GPS
- On-board experiments

UAVSAR High Level System Architecture

Platform Precision Autopilot (PPA) Requirements

Performance Requirements

- The PPA shall fly the G-III within a 10 m (32.8 ft) diameter tube for at least 90% of each data take in conditions of calm to light atmospheric disturbances, as defined in MIL-STD-1797.
- Minimize motion during data collection
 - For best imaging, it is important to operate on a steady platform.

PPA Development Plan

Design Approach

- Software is designed to be flexible with uploadable parameters
 - Algorithms are developed and tested in Matlab/Simulink
 - Simulink models are auto-coded and ported to the host computer
 - Software development efforts are geared toward developing tools to allow for rapid software updates.
 - Navigation, guidance, and controller algorithms are refined based on flight test data
- The final version will include the following features:
 - Automation of parameters currently manually entered
 - Built-in gain tables (transparent to user)
 - Biases and scale factors
 - Enhanced safety features
 - Prevent inadvertent engagement of controller outside flight envelop
 - Alert operator to internal faults, invalid navigation data, etc.
 - Improved user-interface
 - Read in JPL course file
 - Allow selection of different courses

PPA Development Flight Test Plan

PPA Cycle I Controller Test Flights

- Description: Initial flight test of closed-loop PPA
- Objective: Demonstrate closed-loop operation of PPA
 - Secondary Objective of demonstrating 10 m tube performance
- Currently, near completion
- Results shown later in presentation

Cycle II Controller Test Flights

- Description: Flight test of revised PPA applying lessons learned from previous flights.
- Objective: Demonstrate PPA performance with an expanded flight envelope.

Cycle III Controller Test Flights

- Description: Flight test of revised PPA
- Objective: Demonstrate operation of PPA to the customer (JPL).

PPA Control Loop Visualization

- PPA provides Outer Outer-Loop Control
- Aircraft Outer Loop controlled by G-III Flight Director
- Aircraft Inner-Loop dynamics stabilized by G-III Autopilot

Motivation for Hardware Architecture

 To minimize the impact on the GIII certification, the project elected to input signals through the Navigation Receiver to the Flight Director and baseline G-III Autopilot

Advantage:

Preserves the safety limits of the G-III Flight Director and G-III Autopilot

Challenges:

- Navigation Receiver
 - Modulated RF (I²S)
 - Noise, scaling, & offsets
- Flight Director
 - Additional inputs determine output
 - Variable scaling of inputs
 - Variable rate limits

PPA Pallet on Experiment Rack

Autopilot Interface Computer

ILS Interface System Power
Distribution
Panel

Aircraft Configuration with PPA

PPA Enable

Switch

PPA Station (Operator Station, AIC, I2S, & dGPS)

DCAPS Station

PPA Operator Station

Anticipated Courses

Courses

- Distance between start and end waypoints up to 200 km
- All headings
- Within few degrees of poles
- Cross equator and prime meridian
- Constant heading or great earth circle
- GPS or pressure altitude
- Pilot flies aircraft near the segment between the lead-in and start waypoints
 - Navigation guidance from PPA operator
- Operator will determine when to engage PPA during flights

PPA Planned Flight Envelope

Monte Carlo Simulation Results 10 m. Tube Performance

- Monte Carlo analysis conducted with GIII simulation
 - Consists of randomly perturbing simulation parameters within specified bounds.
 - Approximately 45 simulation parameters perturbed including: aerodynamics, mass properties, system timing, winds.
 - 500 simulation runs were conducted at each specific flight condition.
 - With and without light turbulence

Initial Flight Test Results

- Cycle 1 PPA Flight #5 14 May 2007
 - Fourth closed loop flight
 - 35,000 ft Mach 0.75
 - Light turbulence
 - Northbound course

Cycle 1 PPA Flight #5 – 14 May 2007

Cycle 1 PPA Flight #5 – 14 May 2007

Flight Data Results 10 m. Tube Performance

- Cycle 1 PPA Flight #5 14 May 2007
- Total Time Tracking in Ten Meter Tube = 580 sec
- dGPS Altitude
- Geodetic Course

Flight Data Results

- JPL Desired Aircraft Euler Angles and Rates
 - Maximum angular variation for a 200 km run:
 - Roll Angle: 5 deg
 - Maximum angular rates:
 - Roll Rate: 1 deg/s

Flight Data Results

- JPL Desired Aircraft Euler Angles and Rates
 - Maximum angular variation for a 200 km run:
 - Pitch Angle: 5 deg
 - Maximum angular rates:
 - Pitch Rate: 0.45 deg/s

Flight Data Results

- JPL Desired Aircraft Euler Angles and Rates
 - Maximum angular variation for a 200 km run:
 - Yaw Angle: 15 deg
 - Maximum angular rates:
 - Yaw Rate: 0.45 deg/s

Repeat Pass Trajectories

- Cycle 1 PPA Flight #5 14 May 2007
 - Repeat pass trajectories
 - Fourth closed loop flight
 - 35,000 ft Mach 0.75
 - Light turbulence
 - East-West course

Repeat Pass Trajectories

Conclusions

Five Cycle 1 precision autopilot flights have been completed as of May 14, 2007

- First flight was open-loop controller
- Second, third, fourth, and fifth flights were closed loop
 - Fifth flight demonstrated increasing duration within ten meter tube (approximately 90% of the time in the ten meter tube over a 200km course)

Additional Work:

- Expand flight envelope in Cycle II
- Further refinement of Navigation, Guidance, and Control algorithms
- User-friendly interface and customer tailoring for Cycle III

Questions?

Backup Slides

Global DGPS, Inmarsat, & Iridium

Differential GPS

- Developed by JPL
- Provides Earth Centered Earth Fixed (ECEF) positions in meters
- 1 Hz update rate

Inmarsat

 Three Inmarsat geosynchronous communication satellites are used to relay GPS correction messages on their L-band global beams.

Iridium

Also, provides GPS corrections

Pod Design External Views

UAVSAR Pod

PID Controllers

- PID controller generates localizer and glideslope deviations sent to the G-III Flight Director via the G-III Navigation Receiver.
- Localizer & Glideslope Controllers share the same architecture.
 - Difference between the two is the Glideslope includes a vertical acceleration feedback loop

Basic Controller Architecture

PPA Hardware Subsystems

Autopilot Interface Computer (AIC)

- Hosts the PPA guidance, navigation, and control algorithms
- Interface to external digital data sources
 - G-III navigation data via DCAPS from G-III ARINC 429 bus
 - Differential GPS from dGPS in radar pod
- Output commands to I²S
- Interface to operator station for waypoint, reference, gain input, and AIC telemetry

ILS Interface System (I²S)

- Modulates the ILS control signal based on input from AIC
- Provides the ILS glideslope (GS) and localizer (LOC) RF signals

PPA Hardware Subsystems (cont.)

Operator's Station

- · Display status and performance information in flight
- Record the telemetry data (entire PPA input/output plane)
- Upload gains, waypoints, altitude
- Command navigation initialization and error status reset
- Command PPA engage and disengage

RF Switches

- Select between baseline external ILS antennas and the I²S signal
- Power Distribution Panel (PDP)
 - Fuse protection for PPA components
 - Power control for PPA components

PPA Hardware Interfaces

Instrument Landing System

- ILS consists of two radio transmitters each with a signal at 90 Hz and 150 Hz
 - VHF transmitter for Localizer
 - UHF transmitter for Glideslope
- Localizer and Glideslope receivers on aircraft measure Difference in Depth Modulation (DDM) of the 90Hz and 150 Hz signals.
 - DDM of localizer signal indicates if aircraft is left or right of centerline
 - DDM of glideslope signal indicates if aircraft is above or below glideslope
 - DDM of zero indicates aircraft is along centerline or glideslope

