

ФГОБУ ВПО "СибГУТИ" **Кафедра вычислительных систем**

ПРОГРАММИРОВАНИЕ ЯЗЫКИ ПРОГРАММИРОВАНИЯ

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ"Циклические конструкции"

Преподаватель:

Доцент Кафедры ВС, к.т.н.

Поляков Артем Юрьевич

вычисления минимального числа в последовательности произвольной длины

Дано:

На вход с клавиатуры вводятся последовательность $a = (a_1, a_2, ..., a_{n-1}, a_n)$, состоящая из n чисел.

Требуется:

Определить значение наименьшего числа в последовательности

АЛГОРИТМ?

вычисления минимального числа в последовательности произвольной длины

Дано:

На вход с клавиатуры вводятся последовательность $a = (a_1, a_2, ..., a_{n-1}, a_n)$, состоящая из n чисел. **Требуется:**

Определить значение наименьшего числа в последовательности

Проблемы:

- 1. Неизвестно количество переменных!
- 2. Неизвестно количество шагов (количество строк в программе меняется в зависимости от входных данных!!)

вычисления минимального числа в последовательности произвольной длины

Проблема:

1. Неизвестно количество переменных!

Решение:

- Вводить числа по одному
- Хранить только одно число (x) наименьшее из введенных значений

Алгоритм одного шага

Решение:

- Вводить числа по одному
- Хранить только одно число (x) наименьшее из введенных значений

АЛГОРИТМ ОДНОГО ШАГА?

Циклическая конструкция

Цикл — разновидность управляющей конструкции в высокоуровневых языках программирования, предназначенная для организации многократного исполнения набора инструкций.

Цикл while

OneparopWhile = "while" "(" Выраж ")" Оператор.

Выражение — условие продолжения цикла. Рассматривается как логическое: нулевое значение — ЛОЖЬ, иначе — ИСТИНА

Оператор выполняется до тех пор, пока **Выражение** является ИСТИННЫМ.

Поиск минимального из введенных чисел

min_s.c

```
#include <stdio.h>
#include <math.h>
int main()
    int n, min, t, i = 0;
    printf("Input n: ");
    scanf("%d", &n);
    scanf("%d", &min);
    while ( i < (n-1) ) {
        scanf("%d", &t);
         if( t < min ) {</pre>
              min = t;
         i++;
    printf("min = %d", min);
    return 0;
)© Кафедра вычислительных систем ФГОБУ БПО
```


Трассировка min_s в GDB

1. При компиляции программы необходимо указать специальный ключ: **-g**

```
gcc -g -o min_s min_s.c
```

2. Запуск программы производится под контролем GDB:

```
$ gdb roots1
GNU gdb (GDB) 7.2-ubuntu
Copyright (C) 2010 Free Software Foundation, Inc.
...
Reading symbols from .../roots1...done.
(gdb)
```

3. Входные данные: последовательность из 4 чисел: **8**, **5**, **3**, **9**

Трассировка min_s в GDB (2)

Трассировка min_s в GDB (3)

4. Установка точки останова на функции main

```
(gdb) b main
Breakpoint 1 at 0x804841d: file min_s.c, line 5.
(gdb) r
Starting program: .../src/min_s
Breakpoint 1, main () at min_s.c:5
5 int n, min, t, i = 0;
(gdb)
```

5. Отображение значений ячеек *min* и *t* на каждом шаге программы

```
(gdb) display i
1: i = -1209431675
(gdb) display min
2: min = 134513883
(gdb) display t
3: t = -1208022144
```

Трассировка min_s в GDB (4)

6. Пошаговое выполнение последовательной части программы

```
(qdb) next
6 printf("Input n: ");
3: t = -1208022144
2: \min = 134513883
(qdb) next
7 scanf("%d", &n);
3: t = -1208022144
2: \min = 134513883
(qdb) next
  Input n:
8 scanf("%d", &min);
3: t = -1208022144
2: \min = 134513883
1: i = 0
(qdb) next
9 while (i < (n-1))
3: t = -1208022144
2: \min = 8
1: i = 0
```

Значения неинициализированных переменных (min, t) не определены.
Значения инициализированных переменных (i) заданы с начала выполнения программы

Трассировка min_s в GDB (5)

6. Пошаговое выполнение цикла

```
9 (qdb) next
9 while (i < (n-1))
                                   9 while ( i < (n-1) ) {
3: t = -1208022144
2: min = 8
                                   2: \min = 5
1: i = 0
(qdb) next
                                 (gdb) next
10 scanf("%d", &t);
                                 10 scanf("%d", &t);
3: t = -1208022144
                                   3: t = 5
2: min = 8
                                   2: \min = 5
1: i = 0
(qdb) next
                                    (qdb) next
  5
11 if( t < min ) {
                                   11 if( t < min ){
3: t = 5
                                   3: t = 3
2: \min = 8
                                   2: \min = 5
(qdb) next
                                   (qdb) next
12 \min = t;
                                   12 \min = t;
3: t = 5
                                   3: t = 3
                                   2: \min = 5
(qdb) next
                                   (qdb) next
14 i++;
                                   14 i++;
2: \min = 5
1: i = 0
  © Кафедра вычислительных систем ФГОБУ ВПО «СибБУТИ»
```


Трассировка min_s в GDB (6)

6. Пошаговое выполнение цикла

```
(qdb) next
                                     (qdb) next
 while ( i < (n-1) ) {
                                     16 printf("min = %d", min);
                                    2: \min = 3
(qdb) next
10 scanf("%d", &t);
2: \min = 3
(qdb) next
11 if( t < min ){
(qdb) next
(qdb) next
 while ( i < (n-1) )  {
2: \min = 3
1: i = 3
© Кафедра вычислительных систем ФГОБУ ВПО «СибГУТИ»
```


Алгоритм поиска максимума двух чисел

Дано:

На вход с клавиатуры вводятся последовательность $a = (a_1, a_2, ..., a_{n-1}, a_n)$, состоящая из n чисел.

Требуется:

Определить значение наибольшего числа в последовательности

Модифицировать рассмотренный алгоритм. А.ЛГОРИТМ?

вычисление суммы чисел в последовательности произвольной длины

Дано:

На вход с клавиатуры вводятся последовательность $a = (a_1, a_2, ..., a_{n-1}, a_n)$, состоящая из n чисел.

Требуется:

Найти сумму ее элементов

АЛГОРИТМ?

Алгоритм одного шага

	шаг 1	шаг 2	шаг 3	шаг 4	шаг 5	шаг 6				
t	10	3	5	2	15	4				
sum	10	13	18	20	35	39				
sum = sum + t										

Алгоритм решения задачи №2

вычисление произведения чисел в последовательности произвольной длины

Дано:

На вход с клавиатуры вводятся последовательность $a = (a_1, a_2, ..., a_{n-1}, a_n)$, состоящая из n чисел.

Требуется:

Найти произведение ее элементов

АЛГОРИТМ?

Алгоритм одного шага

	шаг 1	шаг 2	шаг 3	шаг 4	шаг 5	шаг 6		
t	10	3	5	2	1	4		
mul	10	30	150	300	300	1200		

Алгоритм решения задачи №3

вычисление значения полиномиальной функции

Дано:

Известно, что функция f(x) является полиномом вида: $f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \ldots + a_n x^n$

Требуется:

Для заданных x, n и a_0 , a_1 , ... a_n вычислить значение f(x).

Замечание:

- 1. Вычисление x^i по алгоритму задачи №3
- 2. Вычисление суммы произведений: алгоритм задачи №2.
 - 3. Вложенные циклы: x^i нужно вычислять n раз!

АЛГОРИТМ?

вычисление значения полиномиальной функции

Требуется:

Для заданных x, n и a_0 , a_1 , ... a_n вычислить значение $f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \ldots + a_n x^n$

Решение:

1.
$$f = 0$$

2. $f = f + a_0$
3. $f = f + a_1 \cdot x$
4. $f = f + a_2 \cdot x \cdot x$
5. $f = f + a_3 \cdot x \cdot x \cdot x$
6. $f = f + a_4 \cdot x \cdot x \cdot x \cdot x$

. . . .

$$(n+1).f = f + a_n \underbrace{x \cdot x \cdot x \dots \cdot x}_{n}$$

Алгоритм решения задачи №4

