### Key concepts on Deep Neural Networks

Quiz, 10 questions



# size of the hidden layers $n^{[l]}$ Key concepts on Deep Neural Networks

| Quiz, a o question. | Quiz, | 10 | guestion |
|---------------------|-------|----|----------|
|---------------------|-------|----|----------|

|          | activation values $a^{[l]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Un-s     | elected is correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Corre    | number of layers $L$ in the neural network $oxed{	ext{ect}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | learning rate $lpha$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Corre    | ect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | 1 (I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | bias vectors $b^{[l]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Un-s     | elected is correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | number of iterations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Corre    | ect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>~</b> | 1 / 1 points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| vvnicn   | of the following statements is true?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0        | The deeper layers of a neural network are typically computing more complex features of the input than the earlier layers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Corre    | ect Control of the Co |
|          | The earlier layers of a neural network are typically computing more complex features of the input than the deeper layers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

### Key concepts on Deep Neural Networks



4.

Vectorization allows you to compute forward propagation in an L-layer neural network without an explicit for-loop (or any other explicit iterative loop) over the layers l=1, 2, ...,L. True/False?

|  | Т | rue |
|--|---|-----|
|  |   |     |



#### Correct

Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines ( $a^{[2]}=g^{[2]}(z^{[2]})$ ,  $z^{[2]}=W^{[2]}a^{[1]}+b^{[2]}$ , ...) in a deeper network, we cannot avoid a for loop iterating over the layers: ( $a^{[l]}=q^{[l]}(z^{[l]})$ ,  $z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]}$ , ...).



0/1 points

5.

Assume we store the values for  $n^{[l]}$  in an array called layers, as follows: layer\_dims =  $[n_x, 4,3,2,1]$ . So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to initialize the parameters for the model?

```
0
```

```
for(i in range(1, len(layer_dims)/2)):
parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01
parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```



#### This should not be selected

```
1 for(i in range(1, len(layer_dims)/2)):
2  parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01
3  parameter['b' + str(i)] = np.random.randn(layers[i-1], 1) * 0.01
```

```
1 for(i in range(1, len(layer_dims))):
2  parameter['W' + str(i)] = np.random.randn(layers[i-1], layers[i])) * 0.01
3  parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```



1 for(i in range(1, len(layer\_dims))):

Key concepts a correct by the first Method random random (layers[i], layers[i-1])) \* 0.01

parameter [ b + str(i)] = np.random.random (layers[i], 1) \* 0.01

Quiz, 10 questions



1/1 points

6.

Consider the following neural network.



How many layers does this network have?



The number of layers L is 4. The number of hidden layers is 3.



Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers.

- The number of layers L is 3. The number of hidden layers is 3.
- The number of layers L is 4. The number of hidden layers is 4.
- The number of layers L is 5. The number of hidden layers is 4.



1/1 points

7.

During forward propagation, in the forward function for a layer l you need to know what is the activation function in Kelycongraph, sanned to know what is the activation function in the forward function function function for layer l, since the gradient depends on it. True/False?

| iuiz, ru questions ration rational aye. V, since the gradient depends on it. Haer dise.                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| True                                                                                                                                                                                                                                                                             |
| <b>Correct</b> Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be able to compute the correct derivative.                                    |
| ☐ False                                                                                                                                                                                                                                                                          |
| 1/1 points                                                                                                                                                                                                                                                                       |
| 8. There are certain functions with the following properties:                                                                                                                                                                                                                    |
| (i) To compute the function using a shallow network circuit, you will need a large network (where we measure size by the number of logic gates in the network), but (ii) To compute it using a deep network circuit, you need only an exponentially smaller network. True/False? |
| True                                                                                                                                                                                                                                                                             |
| Correct                                                                                                                                                                                                                                                                          |
| False                                                                                                                                                                                                                                                                            |

**/** 

1/1 points

9.

## Consider the following 2 hidden layer neural network: Key concepts on Deep Neural Networks



Which of the following statements are True? (Check all that apply).



**Un-selected is correct** 

| Key concepts on Deep Neural Networks $W^{[2]}$ will have shape (3, 4) Quiz, 10 questions  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| <b>Correct</b><br>Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$ . |  |  |  |  |  |  |
| $b^{[2]}$ will have shape (1, 1)                                                          |  |  |  |  |  |  |
| Un-selected is correct                                                                    |  |  |  |  |  |  |
| $W^{[2]}$ will have shape (3, 1)                                                          |  |  |  |  |  |  |
| Un-selected is correct                                                                    |  |  |  |  |  |  |
| $b^{[2]}$ will have shape (3, 1)                                                          |  |  |  |  |  |  |
| <b>Correct</b><br>Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$ .          |  |  |  |  |  |  |
| $W^{[3]}$ will have shape (3, 1)                                                          |  |  |  |  |  |  |
| Un-selected is correct                                                                    |  |  |  |  |  |  |
| $b^{[3]}$ will have shape (1, 1)                                                          |  |  |  |  |  |  |
| <b>Correct</b><br>Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$ .          |  |  |  |  |  |  |
| $W^{[3]}$ will have shape (1, 3)                                                          |  |  |  |  |  |  |
| <b>Correct</b><br>Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$ . |  |  |  |  |  |  |
| $b^{[3]}$ will have shape (3, 1)                                                          |  |  |  |  |  |  |
| Un-selected is correct                                                                    |  |  |  |  |  |  |

## Key concepts on Deep Neural Networks

Quiz, 10 questions

10.

Whereas the previous question used a specific network, in the general case what is the dimension of W^{[l]}, the weight matrix associated with layer l?

- $igcup W^{[l]}$  has shape  $(n^{[l+1]}, n^{[l]})$
- $igcup W^{[l]}$  has shape  $(n^{[l]}, n^{[l-1]})$

#### Correct

True

- $igcup W^{[l]}$  has shape  $(n^{[l]}, n^{[l+1]})$
- $igcup W^{[l]}$  has shape  $(n^{[l-1]},n^{[l]})$

