Decision Tree Exercise Report

The purpose of this exercise was to modify parameters to optimize the accuracy or runtime of the decision tree that was made to classify MNIST samples. I found that when researching the most important changes to a decision tree was within the max depth and the minimum of samples per leaf. It states in [1] "The default values for the parameters controlling the size of the trees (e.g. max_depth, min_samples_leaf, etc.) lead to fully grown and unpruned trees which can potentially be very large on some data sets. To reduce memory consumption, the complexity and size of the trees should be controlled by setting those parameter values." Since this was advised I only modified these 2 parameters; I changed the parameters alone first then did both at the same time.

<u>First and foremost</u>, the most important change was to change the default function to measure a split from 'gini' to 'entropy' since we previously discussed entropy and information gain. The time taken to train was improved while testing time took longer but the accuracy increased.

CRITERION AND MAX DEPTH

DEPTH	LEAVES	TRAIN TIME	TEST TIMES	ACC ON	ACC ON TEST	
				TRAIN		
10	929	8.712839 secs	0.020990 secs	0.863032	0.831857	
20	<mark>4900</mark>	11.484385 secs	0.020983 secs	0.996762	0.873000	
30	5082	11.727436 secs	0.021909 secs	1	0.872429	
40	5082	11.700648 secs	0.026978 secs	1	0.872429	
50	5082	11.613911 secs	0.020990 secs	1	0.872429	

CRITERION AND MIN SAMPLE LEAVES

MIN SAMP	LEAVES	TRAIN TIME	TEST TIMES	ACC ON	ACC ON TEST
LEAVES				TRAIN	
1(DEFAULT)	5082	12.268816 secs	0.021992 secs	1	0.872429
2	4249	11.552864 secs	0.021982 secs	0.974508	0.867571
4	3216	11.559186 secs	0.021983 secs	0.947952	0.867714
8	2236	11.021868 secs	0.020991 secs	0.914048	0.863571
16	1465	10.762563 secs	0.020992 secs	0.883365	0.847714

Although I modified the minimum number of samples required to be at a leaf node it didn't yield better results and the combination of the best of the two parameters is just the same as testing with only a max depth of 20, hence there is no need for a new table of results. A new test was made to find out if the max_leaf_nodes parameter influenced anything at all.

DEPTH	MAX LEAF	LEAVES	TRAIN TIME	TEST TIMES	ACC ON	ACC ON
	NODES				TRAIN	TEST
20	2000	2000	14.564323 secs	14.722437 secs	0.938714	0.873000
20	3000	3000	14.598027 secs	0.020990 secs	0.964159	0.870857
20	4000	4000	14.852098 secs	0.028981 secs	0.982746	0.870857
20	5000	4892	14.752832 secs	0.022989 secs	0.996762	0.871286
20	6000	4892	14.722437 secs	0.021986 secs	0.996762	0.871286

In conclusion the best change regarding runtime and accuracy was only modifying the max_depth parameter to be 20 with the criterion='entropy'. Even though this is how I tested, I am sure there is better parameter modifications that can be made but I was unable to find an optimal way of testing.

References

[1] "sklearn.tree.DecisionTreeClassifier¶." [Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html. [Accessed: 27-Oct-2020].