Universidad Modelo

Escuela de Ingeniería.

Carrera: Ingeniería en Desarrollo de Tecnología y Software

Asignatura: Fundamentos de La nube

Nombre de la Actividad: Practica AWS

Fecha de Entrega: marzo 11 del 2021

Nombre del Alumno: Sinuhe Arturo Evia Campos

Image 1Instance being created for the usage of the test.

```
ubuntu@ip-125-26-10-122:~$ sudo -s
root@ip-125-26-10-122:/home/ubuntu# cd ...
root@ip-125-26-10-122:/home# git clone https://github.com/
sinuheArturo/FundamentosNube.git
Cloning into 'FundamentosNube'...
Username for 'https://github.com': sinuheArturo
Password for 'https://sinuheArturo@github.com':
remote: Enumerating objects: 148, done.
remote: Counting objects: 100% (148/148), done.
remote: Compressing objects: 100% (65/65), done.
Receiving objects:
                    15% (23/148), 100.01 KiB
                                                185.00 KiB/
                    16% (24/148), 100.01 KiB
Receiving objects:
                                                185.00 KiB/
Receiving objects:
                    17% (26/148), 100.01 KiB
                                                185.00 KiB/
Receiving objects:
                    18% (27/148), 100.01 KiB
                                                185.00 KiB/
Receiving objects:
                    19% (29/148), 100.01 KiB
                                                185.00 KiB/
Receiving objects:
                    20% (30/148), 100.01 KiB
                                                185.00 KiB/
```

Image 2-In this instance, we are currently creating the super user (or root) And we perform a "gitclone" action

```
Receiving objects: 100% (148/148), 1.99 MiB | 2.18 MiB/s, done.
Resolving deltas: 100% (81/81), done.
root@ip-125-26-10-122:/home# ls
FundamentosNube ubuntu
root@ip-125-26-10-122:/home# ■
```

Image 3- checking the files that are indeed in the ubuntu server.

root@ip-125-26-10-122:/home#¹vi installdocker.sh Image 4- creating the file install docker.

```
curl \
                    gnupg-agent \
                        software-properties-common
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt
sudo apt-key fingerprint 0EBFCD88
sudo add-apt-repository \
        "deb [arch=amd64] https://download.docker.com/linux/ubuntu
           $(lsb_release -cs) \
              stable"
sudo apt-get update
sudo apt-get install docker-ce docker-ce-cli containerd.io
#install docker compose
sudo curl -L
"https://github.com/docker/compose/releases/download/1.28.5/docker
name -s)-$(uname -m)" -o /usr/local/bin/docker-compose
sudo chmod +x /usr/local/bin/docker-compose
sudo ln -s /usr/local/bin/docker-compose /usr/bin/docker-compose
```

Image 5-

This file is used to install the necessary libraries to install docker and

usage of docker.

```
<.sh" [New] 97L, 929C written
root@ip-125-26-10-122:/home# chmod +755 installdocker.sh
root@ip-125-26-10-122:/home# ls
FundamentosNube installdocker.sh ubuntu
root@ip-125-26-10-122:/home# </pre>
```

Image 6- We give the necessary permissions in order to use the execution command in order to move forward.

```
root@ip-125-26-10-122/home/ubuntu# docker ps
CONTAINER ID IMAGE <sup>I</sup>COMMAND CREATED STATUS POR
TS NAMES
```

Image 7- shows the verification that let us see if the

docker compose is there, giving us a green light that we successfully installed the required items.

```
ose up -d
Creating network "web_default" with the default driver
Creating web_measurementApp_1 ... done
root@ip-125-26-10-122:/home/FundamentosNube/web#
```

Image 8-

Here we clone the address by using the action "docker compose"

Manual snapshots ?

You can create a snapshot to back up your instance, its system disk, and attached disks.

+ Create snapshot Give your snapshot a name. ServerWeb1-copia1

Image 9-

We created the snapshot that was solicited in the instructions.

Manual snapshots?

You can create a snapshot to back up your instance, its system disk, and attached disks.

Image 10-

The result of the action that was made for the snapshot.

Image 11- We create a new instance from the snapshot.

Image 12-

Here we created successfully both instances, one is the original, the second is created from the snapshot.

This load balancer will cost 18 USD per month.

Create load balancer

Image 13-

We are creating a load balancer.

Image 14-

Created the balancer succesfully.

X Okay, got it!

Target instances

Traffic will be evenly distributed to the following instances:

Image 15-

Here we attacked both instances from the server web in the load balancer.

Image 16- here we used a top command in Linux, let us see the work load of both servers, here we separated the loads on two servers.

Image 17-

Here we simply delete every instance, secure the termination of load balancer and snapshots to secure that we are charged more money in the end of the month.