1 Suites de Cauchy et Complétude

Definition 1.1 (Suite de Cauchy). Une suite $(x_n)_{n\in\mathbb{N}}$ dans un espace métrique E est dite suite de Cauchy si pour tout $\varepsilon > 0$, il existe $N \in \mathbb{N}$ tel que pour tous $n, p \geq N$, on a $d(x_p, x_n) \leq \varepsilon$.

Proposition 1.2. Toute suite convergente est une suite de Cauchy.

Preuve. Supposons que $\lim_{n\to\infty} x_n = x$. Pour $\varepsilon > 0$, on peut trouver $N \in \mathbb{N}$ tel que $d(x, x_n) \le \varepsilon/2$ pour tout $n \ge N$. Alors pour tous $n, p \ge N$, on a

$$d(x_n, x_p) \le d(x_n, x) + d(x, x_p)$$

$$< \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Ainsi $(x_n)_{n\in\mathbb{N}}$ est une suite de Cauchy.

Proposition 1.3. Toute suite de Cauchy est bornée.

Preuve. Soit $(x_n)_{n\in\mathbb{N}}$ une suite de Cauchy. Par définition (en prenant $\varepsilon=1$), il existe N tel que $d(x_n,x_p)\leq 1$ pour $n,p\geq N$. En particulier $d(x_n,x_N)\leq 1$ pour $n\geq N$. On a donc pour tout $n\in\mathbb{N}$,

$$d(x_n, x_N) \le \max(\{d(x_1, x_N), \dots, d(x_{N-1}, x_N)\} \cup \{1\}) =: r_0.$$

Ainsi $x_n \in B(x_N, r_0)$ pour tout $n \in \mathbb{N}$.

Definition 1.4 (Espace complet). Un espace métrique (E, d) est dit complet si toute suite de Cauchy dans E est convergente.

Theorem 1.5. \mathbb{R}^d muni de la distance canonique est complet.

2 Intérieur et Adhérence

Definition 2.1 (Intérieur). Soit $A \subset E$. Un point $x \in E$ est intérieur à A s'il existe $\delta > 0$ tel que $B(x,\delta) \subset A$. L'ensemble des points intérieurs à A se note Int(A) et s'appelle l'intérieur de A.

Proposition 2.2. Int(A) est le plus grand ouvert inclus dans A, ou de manière équivalente la réunion de tous les ouverts inclus dans A.

Definition 2.3 (Adhérence). Soit $A \subset E$. Un point $x \in E$ est adhérent à A si $B(x,r) \cap A \neq \emptyset$ pour tout r > 0. L'ensemble des points adhérents à A se note Adh(A) et s'appelle l'adhérence ou la fermeture de A.

Proposition 2.4. Adh(A) est le plus petit fermé contenant A, ou de manière équivalente l'intersection de tous les fermés contenant A.

Proposition 2.5. $x \in Adh(A)$ si et seulement s'il existe une suite $(x_n)_{n \in \mathbb{N}}$ d'éléments de A telle que $x = \lim_{n \to \infty} x_n$.

Example 2.6. Soit $A = \{(x, y) \in \mathbb{R}^2 : 2x + 3y < 4\}$. Déterminer $\operatorname{Int}(A)$ et $\operatorname{Adh}(A)$.

- $Int(A) = A = \{(x, y) \in \mathbb{R}^2 : 2x + 3y < 4\}$. A est ouvert.
- $Adh(A) = C = \{(x, y) \in \mathbb{R}^2 : 2x + 3y \le 4\}$. C est fermé et contient A.

Example 2.7. Soit $A = \{(x, y) \in \mathbb{R}^2 : x > 0, y = \sin(1/x)\}$. Déterminer Adh(A) et Int(A).

- $\operatorname{Int}(A) = \emptyset$. Car $\operatorname{Int}(A)$ est un ouvert inclus dans A. Or A ne contient aucune boule ouverte.
- $Adh(A) = A \cup \{(0, y) : y \in [-1, 1]\}.$

3 Exercices Résolus

Example 3.1. Soit $A = \{(x, y) \in \mathbb{R}^2 : |x| < 1, |y| < 1\}$. Déterminer $\operatorname{Int}(A)$ et $\operatorname{Adh}(A)$.

Solution. 1. On dessine A, c'est un carré ouvert.

- 2. On pense que $\operatorname{Int}(A) = B = A = \{(x,y) \in \mathbb{R}^2 : |x| < 1, |y| < 1\}$ et $\operatorname{Adh}(A) = C = \{(x,y) \in \mathbb{R}^2 : |x| \le 1, |y| \le 1\}$.
- 3. Montrons que B = Int(A).
 - B est ouvert et $B \subset A$. Vrai par définition de B.
 - Soit $X \in A \setminus B = \emptyset$. Donc il n'y a pas de points de A qui ne sont pas dans B. Ainsi B = Int(A).
- 4. Montrons que C = Adh(A).
 - C est fermé et $A \subset C$. Vrai par définition de C.
 - Montrons que $C \subset Adh(A)$. Pour chaque $X \in C$, on cherche une suite (X_n) avec $X_n \in A$ et $\lim X_n = X$. Soit $X = (x, y) \in C$, i.e., $|x| \leq 1$, $|y| \leq 1$. On prend $X_n = (x 1/n, y 1/n)$ (si x = 1, on prend x 1/n, similarly for y). Plus précisément, soit $X_n = (x_n, y_n)$ avec $x_n = x \frac{1}{n} \text{sign}(x)$ si $x \neq 0$ et $x_n = -1/n$ si x = 0, et $y_n = y \frac{1}{n} \text{sign}(y)$ si $y \neq 0$ et $y_n = -1/n$ si y = 0. Alors $X_n \in A$ et $\lim X_n = X$.

Example 3.2. Soit $A = \{(x, y) \in \mathbb{R}^2 : x > 0, y = \sin(1/x)\}$. Déterminer Adh(A) et Int(A).

Solution. 1. On dessine A. C'est le graphe de $\sin(1/x)$ pour x > 0.

- 2. On pense que $Int(A) = \emptyset$ et $Adh(A) = A \cup \{(0,y) : y \in [-1,1]\}$. Soit $C = A \cup \{(0,y) : y \in [-1,1]\}$.
- 3. Montrons que $Int(A) = \emptyset$. Si $Int(A) \neq \emptyset$, alors Int(A) est un ouvert non vide inclus dans A. Donc

 $\operatorname{Int}(A)$ contient une boule $B(X_0,r)\subset A$. Mais A est le graphe d'une fonction, il n'y a pas de boule dans A. Donc $\operatorname{Int}(A)=\emptyset$.

- 4. Montrons que $Adh(A) = C = A \cup \{(0, y) : y \in [-1, 1]\}.$
 - C est fermé et $A \subset C$. A n'est pas fermé. C est fermé, car si $(X_n) \in C$ et $X_n \to X$, alors $X \in C$. Si $X_n = (x_n, y_n) \in A$, alors $x_n > 0, y_n = \sin(1/x_n)$. Si $X_n \to X = (x, y)$, alors $x_n \to x, y_n \to y$. Si x > 0, alors $X \in A \subset C$. Si x = 0, on ne peut pas dire que $y = \sin(1/x)$. Mais on sait que $-1 \le \sin(1/x_n) \le 1$, donc $-1 \le y_n \le 1$, donc $-1 \le y \le 1$. Donc si x = 0, X = (0, y) avec $y \in [-1, 1]$, donc $X \in C$.
 - Montrons que $C \subset Adh(A)$. Pour $X \in C$, si $X \in A$, alors $X \in Adh(A)$. Si $X \in C \setminus A = \{(0,y) : y \in [-1,1]\}$, i.e., X = (0,y) avec $y \in [-1,1]$. On doit montrer que $X \in Adh(A)$. On cherche une suite $X_n \in A$ avec $X_n \to X$. On prend $X_n = (\frac{1}{n\pi + \arcsin(y)}, \sin(n\pi + \arcsin(y))) = (\frac{1}{n\pi + \arcsin(y)}, y)$. Alors $X_n \in A$ et $X_n \to (0,y) = X$. Donc $X \in Adh(A)$.