0.1 矩阵函数

定义 0.1 (复方阵幂级数)

设有n 阶复方阵序列 $\{A_p\}$:

$$A_p = \begin{pmatrix} a_{11}^{(p)} & \cdots & a_{1n}^{(p)} \\ \vdots & & \vdots \\ a_{n1}^{(p)} & \cdots & a_{nn}^{(p)} \end{pmatrix},$$

 $B = (b_{ij})$ 是一个同阶方阵, 若对每个 (i, j), 序列 $\{a_{ii}^{(p)}\}$ 均收敛于 b_{ij} , 即

$$\lim_{p\to\infty}a_{ij}^{(p)}=b_{ij},$$

则称矩阵序列 $\{A_p\}$ 收敛于 B, 记为

$$\lim_{n\to\infty} A_p = B.$$

否则称 $\{A_p\}$ 发散.

设

$$f(z) = a_0 + a_1 z + a_2 z^2 + \cdots$$

是一个幂级数,记

$$f_p(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_p z^p$$

是其部分和. 若矩阵序列 $\{f_p(A)\}$ 收敛于 B, 则称矩阵级数

$$f(A) = a_0 I + a_1 A + a_2 A^2 + \cdots$$

收敛, 极限为 B, 记为 f(A) = B. 否则称 f(A) 发散. 用变量矩阵 X 代替 A, 便可定义矩阵幂级数

$$f(X) = a_0 I + a_1 X + a_2 X^2 + \cdots$$

定理 0.1 (复矩阵极限的性质)

设n 阶复方阵序列 $\{A_p\}$ 和 $\{B_p\}$.

$$A_{p} = \begin{pmatrix} a_{11}^{(p)} & \cdots & a_{1n}^{(p)} \\ \vdots & & \vdots \\ a_{n1}^{(p)} & \cdots & a_{nn}^{(p)} \end{pmatrix}, \quad B_{p} = \begin{pmatrix} b_{11}^{(p)} & \cdots & b_{1n}^{(p)} \\ \vdots & & \vdots \\ b_{n1}^{(p)} & \cdots & b_{nn}^{(p)} \end{pmatrix},$$

f 是任意一个复系数多项式, 即 $f \in \mathbb{C}[x]$. 我们有

$$\begin{split} &(1) &\lim_{p \to +\infty} \left(A_p \pm B_p \right) = \lim_{p \to +\infty} A_p \pm \lim_{p \to +\infty} B_p; \\ &(2) &\lim_{p \to +\infty} \left(A_p B_p \right) = \lim_{p \to +\infty} A_p \cdot \lim_{p \to +\infty} B_p; \\ &(3) &\lim_{p \to +\infty} f \left(A_p \right) = f \left(\lim_{p \to +\infty} A_p \right), 特別地, \left| \lambda I - \lim_{p \to +\infty} A_p \right| = \lim_{p \to +\infty} \left| \lambda I - A_p \right|. \end{split}$$

证明

(1) 由极限的四则运算性质可知

$$\lim_{p \to +\infty} \left(a_{ij}^{(p)} \pm b_{ij}^{(p)} \right) = \lim_{p \to +\infty} a_{ij}^{(p)} \pm \lim_{p \to +\infty} b_{ij}^{(p)}, \quad \forall i, j \in \{1, 2, \cdots, n\}.$$

因此 $\lim_{p\to +\infty} (A_p \pm B_p) = \lim_{p\to +\infty} A_p \pm \lim_{p\to +\infty} B_p$. (2) 由极限的四则运算性质可知

$$\lim_{p \to +\infty} \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik}^{(p)} b_{kj}^{(p)} = \sum_{i=1}^{n} \sum_{k=1}^{n} \left(\lim_{p \to +\infty} a_{ik}^{(p)} \cdot \lim_{p \to +\infty} b_{kj}^{(p)} \right), \quad \forall i, j \in \{1, 2, \dots, n\}.$$

因此 $\lim_{p\to+\infty} (A_p B_p) = \lim_{p\to+\infty} A_p \cdot \lim_{p\to+\infty} B_p$.

(3) 由 (1)(2) 的结论立得. 特别地, 记 $\lambda I - A_p = \left(c_{ij}^{(p)}\right)$, 则由行列式的组合定义可知

$$\left| \lambda I - \lim_{p \to +\infty} A_p \right| = \left| \lim_{p \to +\infty} \left(\lambda I - A_p \right) \right| = \sum_{1 \leqslant i_1, i_2, \dots, i_n \leqslant n} \left[(-1)^{\tau(i_1 i_2 \dots i_n)} \lim_{p \to +\infty} c_{1 i_1}^{(p)} \lim_{p \to +\infty} c_{1 i_2}^{(p)} \dots \lim_{p \to +\infty} c_{1 i_n}^{(p)} \right]$$

$$= \lim_{p \to +\infty} \sum_{1 \leqslant i_1, i_2, \dots, i_n \leqslant n} \left[(-1)^{\tau(i_1 i_2 \dots i_n)} c_{1 i_1}^{(p)} c_{1 i_2}^{(p)} \dots c_{1 i_n}^{(p)} \right] = \lim_{p \to +\infty} \left| \lambda I - A_p \right|.$$

命题 0.1 设 A 是 n 阶矩阵, 证明: $\lim_{k\to\infty}A^k$ 存在的充要条件是 A 的特征值的模长小于 1, 或者特征值等于 1 并且 A 关 于特征值 1 的 Jordan 块都是一阶的. 此时, 极限矩阵为

$$\lim_{k \to \infty} A^k = P \operatorname{diag}\{1, \dots, 1, 0, \dots, 0\} P^{-1},$$

其中1的个数等于A的特征值1的代数重数.

证明 设 P 为非异阵, 使得 $P^{-1}AP = J = \operatorname{diag}\{J_{r_1}(\lambda_1), J_{r_2}(\lambda_2), \cdots, J_{r_n}(\lambda_s)\}\$ 为 A 的 Jordan 标准型, 则

$$A^k = PJ^kP^{-1} = P\operatorname{diag}\{J_{r_1}(\lambda_1)^k, J_{r_2}(\lambda_2)^k, \cdots, J_{r_s}(\lambda_s)^k\}P^{-1},$$

因此 $\lim_{k\to\infty}A^k$ 存在当且仅当 $\lim_{k\to\infty}J_{r_i}(\lambda_i)^k(1\leqslant i\leqslant s)$ 都存在. 不妨取 k>n, 由命题??(5) 计算可得 Jordan 块 $J_{r_i}(\lambda_i)$ 的 k 次幂为

$$J_{r_{i}}(\lambda_{i})^{k} = \begin{pmatrix} \lambda_{i}^{k} & C_{k}^{1} \lambda_{i}^{k-1} & C_{k}^{2} \lambda_{i}^{k-2} & \cdots & C_{k}^{r_{i}-1} \lambda_{i}^{k-r_{i}+1} \\ \lambda_{i}^{k} & C_{k}^{1} \lambda_{i}^{k-1} & \cdots & C_{k}^{r_{i}-2} \lambda_{i}^{k-r_{i}+2} \\ & \lambda_{i}^{k} & \cdots & C_{k}^{r_{i}-3} \lambda_{i}^{k-r_{i}+3} \\ & & \ddots & \vdots \\ & & & \lambda_{i}^{k} \end{pmatrix},$$

故当 $|\lambda_i| \geqslant 1$ 且 $\lambda_i \neq 1$ 时, $\lim_{k \to \infty} \lambda_i^k$ 发散; 当 $\lambda_i = 1$ 且 $r_i \geqslant 2$ 时, $\lim_{k \to \infty} C_k^1 \lambda_i^{k-1}$ 发散; 当 $\lambda_i = 1$ 且 $r_1 = 1$ 时, $\lim_{k\to\infty} J_{r_i}(\lambda_i)^k = J_1(1);$ 当 $|\lambda_i| < 1$ 时, $\lim_{k\to\infty} J_{r_i}(\lambda_i)^k = O$. 因此, $\lim_{k\to\infty} A^k$ 存在的充要条件是 A 的特征值的模长小于 1,或者特征值等于 1 并且 A 关于特征值 1 的 Jordan 块都是一阶的. 此时,极限矩阵 $\lim_{k\to\infty} A^k = P$ diag { $1, \dots, 1, 0, \dots, 0$ P^{-1} , 其中 1 的个数等于 A 的特征值 1 的代数重数.

设
$$f(z) = \sum_{i=0}^{\infty} a_i z^i$$
 是复幂级数, 则

(1) 方阵幂级数 f(X) 收敛的充分必要条件是对任一非异阵 $P, f(P^{-1}XP)$ 都收敛, 这时

$$f(P^{-1}XP) = P^{-1}f(X)P;$$

(2) 若 $X = \text{diag}\{X_1, \dots, X_k\}$, 则 f(X) 收敛的充分必要条件是 $f(X_1), \dots, f(X_k)$ 都收敛, 这时

$$f(X) = \operatorname{diag}\{f(X_1), \cdots, f(X_k)\};$$

(3) 若 f(z) 的收敛半径为 r,J_0 是特征值为 λ_0 的 n 阶 Jordan 块

$$J_0 = \begin{pmatrix} \lambda_0 & 1 & & & \\ & \lambda_0 & 1 & & \\ & & \ddots & \ddots & \\ & & & \ddots & 1 \\ & & & & \lambda_0 \end{pmatrix},$$

则当 $|\lambda_0| < r$ 时 $f(J_0)$ 收敛, 且

$$f(J_0) = \begin{pmatrix} f(\lambda_0) & \frac{1}{1!}f'(\lambda_0) & \frac{1}{2!}f^{(2)}(\lambda_0) & \cdots & \frac{1}{(n-1)!}f^{(n-1)}(\lambda_0) \\ & f(\lambda_0) & \frac{1}{1!}f'(\lambda_0) & \cdots & \frac{1}{(n-2)!}f^{(n-2)}(\lambda_0) \\ & & f(\lambda_0) & \cdots & \frac{1}{(n-3)!}f^{(n-3)}(\lambda_0) \\ & & \ddots & \vdots \\ & & & f(\lambda_0) \end{pmatrix}. \tag{1}$$

证明 设 $f_p(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_p z^p$ 是 f(z) 前 p+1 项的部分和.

(1) 注意到 $f_p(z)$ 是多项式, 从而有

$$f_p(P^{-1}XP) = P^{-1}f_p(X)P.$$

由于n 阶矩阵序列的收敛等价于 n^2 个数值序列的收敛,故

$$\begin{split} f(P^{-1}XP) &= \lim_{p \to \infty} f_p(P^{-1}XP) = \lim_{p \to \infty} P^{-1}f_p(X)P \\ &= P^{-1}(\lim_{p \to \infty} f_p(X))P = P^{-1}f(X)P. \end{split}$$

(2) 注意到 $f_p(z)$ 是多项式, 从而有

$$f_p(X) = f_p(\text{diag}\{X_1, \dots, X_k\}) = \text{diag}\{f_p(X_1), \dots, f_p(X_k)\}.$$

由于分块矩阵序列的收敛等价于每个分块的矩阵序列的收敛,故

$$f(X) = \lim_{p \to \infty} f_p(X) = \lim_{p \to \infty} \operatorname{diag}\{f_p(X_1), \cdots, f_p(X_k)\}$$
$$= \operatorname{diag}\{\lim_{p \to \infty} f_p(X_1), \cdots, \lim_{p \to \infty} f_p(X_k)\} = \operatorname{diag}\{f(X_1), \cdots, f(X_k)\}.$$

(3) 由命题??(5) 可知

$$f_p(J_0) = \begin{pmatrix} f_p(\lambda_0) & \frac{1}{1!} f_p'(\lambda_0) & \frac{1}{2!} f_p^{(2)}(\lambda_0) & \cdots & \frac{1}{(n-1)!} f_p^{(n-1)}(\lambda_0) \\ & f_p(\lambda_0) & \frac{1}{1!} f_p'(\lambda_0) & \cdots & \frac{1}{(n-2)!} f_p^{(n-2)}(\lambda_0) \\ & & f_p(\lambda_0) & \cdots & \frac{1}{(n-3)!} f_p^{(n-3)}(\lambda_0) \\ & & \ddots & \vdots \\ & & & f_p(\lambda_0) \end{pmatrix}.$$

令 $p \to \infty$, 由矩阵序列收敛与 n^2 个数值序列收敛的等价性和幂级数的相关性质即得结论.

定理 0.3

设 f(z) 是复幂级数, 收敛半径为 r. 设 A 是 n 阶复方阵, 特征值为 $\lambda_1, \lambda_2, \cdots, \lambda_n$, 定义 A 的**谱半径**

$$\rho(A) = \max_{1 \leqslant i \leqslant n} |\lambda_i|.$$

- (1) 若 $\rho(A) < r$, 则 f(A) 收敛;
- (2) 若 $\rho(A) > r$, 则 f(A) 发散;
- (3) 若 $\rho(A) = r$, 则 f(A) 收敛的充分必要条件是: 对每一模长等于 r 的特征值 λ_j , 若 A 的属于 λ_j 的初等 因子中最高幂为 n_i 次, 则 n_i 个数值级数

$$f(\lambda_i), f'(\lambda_i), \cdots, f^{(n_j-1)}(\lambda_i).$$
 (2)

都收敛;

(4) 若 f(A) 收敛,则 f(A) 的特征值为

$$f(\lambda_1), f(\lambda_2), \cdots, f(\lambda_n).$$

证明

- (1) 设 A 的 Jordan 标准型为 $J = \text{diag}\{J_1, J_2, \dots, J_k\}$. 显然 f(A) 的收敛性等价于所有 $f(J_i)(i = 1, \dots, k)$ 的收敛性. 由定理 0.2即知 (1) 成立.
- (2) 若某一个 $|\lambda_i| > r$, 则 $f(\lambda_i)$ 发散, 因此 $f(J_i)$ 发散, 故 f(A) 发散, 这就证明了 (2).
- (3) 当 $\rho(A) = r$ 时,对 $|\lambda_i| < r$ 的 $J_i, f(J_i)$ 收敛.对 $|\lambda_j| = r$ 的特征值 λ_j ,注意到 f(z) 的任意次导数的收敛半径仍为r,又初等因子 $(\lambda \lambda_j)^{n_j}$ 对应的 Jordan 块为 n_j 阶,从(1)式即可知道 $f(J_j)$ 的收敛性等价于(2)式中 n_j 个级数的收敛性.
- (4) 最后若 f(A) 收敛,则 f(A) 与 f(J) 有相同的特征值,即为 $f(\lambda_1), f(\lambda_2), \cdots, f(\lambda_n)$.

定义 0.2

于是对一切方阵,定义

$$e^{A} = I + \frac{1}{1!}A + \frac{1}{2!}A^{2} + \frac{1}{3!}A^{3} + \cdots,$$

$$\sin A = A - \frac{1}{3!}A^{3} + \frac{1}{5!}A^{5} - \frac{1}{7!}A^{7} + \cdots,$$

$$\cos A = I - \frac{1}{2!}A^{2} + \frac{1}{4!}A^{4} - \frac{1}{6!}A^{6} + \cdots$$

都有意义. 若 A 所有特征值的模长都小于 1,则

$$\ln(I + A) = A - \frac{1}{2}A^2 + \frac{1}{3}A^3 - \frac{1}{4}A^4 + \cdots$$

也有意义. 同理还可以定义幂函数、双曲函数等.

注 由复分析知道:

$$e^{z} = 1 + \frac{1}{1!}z + \frac{1}{2!}z^{2} + \frac{1}{3!}z^{3} + \cdots,$$

$$\sin z = z - \frac{1}{3!}z^{3} + \frac{1}{5!}z^{5} - \frac{1}{7!}z^{7} + \cdots,$$

$$\cos z = 1 - \frac{1}{2!}z^{2} + \frac{1}{4!}z^{4} - \frac{1}{6!}z^{6} + \cdots,$$

$$\ln(1+z) = z - \frac{1}{2}z^{2} + \frac{1}{3}z^{3} - \frac{1}{4}z^{4} + \cdots.$$

前 3 个级数在整个复平面上收敛, 而 $\ln(1+z)$ 的收敛半径为 1. 于是由定理 0.3可知 e^{A} , $\sin A$, $\cos A$, $\ln A$ 都收敛, 从而都有意义. 故上述定义是良定义的.

定理 0.4

证明:
$$\cos A = \frac{e^{iA} + e^{-iA}}{2}, \quad \sin A = \frac{e^{iA} - e^{-iA}}{2i}.$$

证明 由定义 0.2可知

$$e^{iA} = I + \frac{1}{1!}iA - \frac{1}{2!}A^2 - \frac{1}{3!}iA^3 - \dots + \frac{(-1)^k}{2k!}A^{2k} + \frac{(-1)^k}{(2k+1)!}iA^{2k+1} + \dots,$$

$$e^{-iA} = I - \frac{1}{1!}iA - \frac{1}{2!}A^2 + \frac{1}{3!}iA^3 - \dots + \frac{(-1)^k}{2k!}A^{2k} + \frac{(-1)^{k+1}}{(2k+1)!}iA^{2k+1} + \dots.$$

从而

$$\frac{e^{iA} + e^{-iA}}{2} = I - \frac{1}{2!}A^2 + \dots + \frac{(-1)^k}{2k!}A^{2k} + \dots = \cos A,$$

4

$$\frac{e^{iA} - e^{-iA}}{2i} = \frac{1}{1!}A - \frac{1}{3!}A^3 + \dots + \frac{(-1)^k}{(2k+1)!}A^{2k+1} \dots = \sin A.$$

命题 0.2

求证: 若 n 阶矩阵 A, B 乘法可交换, 则 $e^A \cdot e^B = e^B \cdot e^A$.

注 对一般来说对矩阵 A, B, 下面的等式并不一定成立:

$$e^{A} \cdot e^{B} = e^{A+B} = e^{B} \cdot e^{A}$$
.

如对

$$\boldsymbol{A} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \boldsymbol{B} = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix},$$

通过计算不难验证 AB = A, BA = B, 并且

$$e^{A} = \begin{pmatrix} e & e-1 \\ 0 & 1 \end{pmatrix}, \quad e^{B} = \begin{pmatrix} 1 & 0 \\ e-1 & e \end{pmatrix}, \quad e^{A+B} = \begin{pmatrix} \frac{e^{2}+1}{2} & \frac{e^{2}-1}{2} \\ \frac{e^{2}-1}{2} & \frac{e^{2}+1}{2} \end{pmatrix}$$

故 $e^A \cdot e^B \neq e^{A+B}$.

证明 设 $f(z) = e^z$, 并且 $f_p(z) = 1 + \frac{1}{1!}z + \frac{1}{2!}z^2 + \dots + \frac{1}{p!}z^p$ 为 f(z) 的部分和, 因为 f(z) 的收敛半径为 $+\infty$, 所以对任一矩阵 A, $\lim_{p\to\infty} f_p(A) = f(A) = e^A$. 由于 AB = BA, 故对任意的正整数 p, q, 成立 $f_p(A)f_q(B) = f_q(B)f_p(A)$. 先固定 p, 0, 则可得

$$f_p(A)f(B) = f_p(A) \left(\lim_{q \to \infty} f_q(B) \right) = \lim_{q \to \infty} \left(f_p(A) f_q(B) \right) = \lim_{q \to \infty} \left(f_q(B) f_p(A) \right)$$
$$= \left(\lim_{q \to \infty} f_q(B) \right) f_p(A) = f(B) f_p(A)$$

同理, 再对上式令 $p \to \infty$, 则可得 f(A)f(B) = f(B)f(A), 即结论成立.

推论 0.1

若 f(z), g(z) 是两个收敛半径都是 $+\infty$ 的复幂级数,则对任意乘法可交换的 A, B, 均有 f(A)g(B)=g(B)f(A).

证明 由命题 0.2类似的讨论可证明.

定义 0.3 (矩阵的范数)

设 $A = (a_{ij})$ 是 n 阶复矩阵, 定义 A 的**范数**为其所有元素模长的平方和的算术平方根, 即 $\|A\| = \sqrt{\sum_{i,j=1}^{n} |a_{ij}|^2}$.

命题 0.3 (矩阵的范数的基本性质)

设 $A = (a_{ii})$ 是n 阶复矩阵, $B = (b_{ii})$ 也是n 阶复矩阵,求证:

- (1) $||A|| \ge 0$, 等号成立当且仅当 A = 0;
- $(2) ||A + B|| \leq ||A|| + ||B||;$
- $(3) ||AB|| \leq ||A|| \cdot ||B||.$

证明 (1) 显然成立.

(2) 注意到

$$||A + B||^2 = \sum_{i,j=1}^{n} |a_{ij} + b_{ij}|^2 = \sum_{i,j=1}^{n} (|a_{ij}|^2 + |b_{ij}|^2 + 2|a_{ij}b_{ij}|)$$

$$= \sum_{i,j=1}^{n} |a_{ij}|^2 + \sum_{i,j=1}^{n} |b_{ij}|^2 + 2 \sum_{i,j=1}^{n} |a_{ij}b_{ij}|$$

于是

$$(\|A\| + \|B\|)^{2} = \|A\|^{2} + \|B\|^{2} + 2\|A\| \cdot \|B\|$$

$$= \sum_{i,j=1}^{n} |a_{ij}|^{2} + \sum_{i,j=1}^{n} |b_{ij}|^{2} + 2\sqrt{\left(\sum_{i,j=1}^{n} |a_{ij}|^{2}\right) \left(\sum_{i,j=1}^{n} |b_{ij}|^{2}\right)}$$

$$\stackrel{\text{Cauchy-Schwarz } \checkmark \stackrel{\text{\neq}}{\Rightarrow} \sum_{i,j=1}^{n} |a_{ij}|^{2} + \sum_{i,j=1}^{n} |b_{ij}|^{2} + 2\sqrt{\left(\sum_{i,j=1}^{n} |a_{ij}b_{ij}|\right)^{2}}$$

$$= \sum_{i,j=1}^{n} |a_{ij}|^{2} + \sum_{i,j=1}^{n} |b_{ij}|^{2} + 2\sum_{i,j=1}^{n} |a_{ij}b_{ij}|$$

$$= \|A + B\|^{2}.$$

故结论得证.

(3) 注意到
$$||AB||^2 = \sum_{i,j=1}^n \left| \sum_{k=1}^n a_{ik} b_{kj} \right|^2, ||A||^2 \cdot ||B||^2 = \left(\sum_{i,k=1}^n |a_{ik}|^2 \right) \cdot \left(\sum_{k,j=1}^n |b_{kj}|^2 \right),$$
 任取 $i, j \in \{1, 2, \dots, n\}$,

固定i和j,由 Cauchy-Schwarz 不等式可

$$\left|\sum_{k=1}^{n} a_{ik} b_{kj}\right|^{2} \leqslant \left(\sum_{k=1}^{n} a_{ik}^{2}\right) \cdot \left(\sum_{k=1}^{n} b_{kj}^{2}\right).$$

从而先对i求和可得

$$\sum_{i=1}^{n} \left| \sum_{k=1}^{n} a_{ik} b_{kj} \right|^{2} \leqslant \sum_{i=1}^{n} \left(\sum_{k=1}^{n} a_{ik}^{2} \right) \cdot \left(\sum_{k=1}^{n} b_{kj}^{2} \right) = \left(\sum_{k=1}^{n} b_{kj}^{2} \right) \left(\sum_{i=1}^{n} \left(\sum_{k=1}^{n} a_{ik}^{2} \right) \right).$$

再对 j 求和可得

$$\begin{split} \sum_{i,j=1}^{n} \left| \sum_{k=1}^{n} a_{ik} b_{kj} \right|^{2} &\leq \sum_{j=1}^{n} \left[\left(\sum_{k=1}^{n} b_{kj}^{2} \right) \left(\sum_{i=1}^{n} \left(\sum_{k=1}^{n} a_{ik}^{2} \right) \right) \right] \\ &= \left(\sum_{i=1}^{n} \left(\sum_{k=1}^{n} a_{ik}^{2} \right) \right) \left(\sum_{j=1}^{n} \left(\sum_{k=1}^{n} b_{kj}^{2} \right) \right) \\ &= \left(\sum_{i,k=1}^{n} |a_{ik}|^{2} \right) \cdot \left(\sum_{k,j=1}^{n} |b_{kj}|^{2} \right). \end{split}$$

由此即得结论.

如果 A 与 B 乘法可交换, 即 AB = BA, 则 $e^A \cdot e^B = e^{A+B}$ 必成立.

注 利用这个命题也可给出**命题** 0.2的另一证明. 证明 设 $f(z) = e^z$, 并且 $f_p(z) = 1 + \frac{1}{1!}z + \frac{1}{2!}z^2 + \cdots + \frac{1}{p!}z^p$ 为 f(z) 的部分和. 注意到 AB = BA, 经简单的计算可 知, $f_p(A)f_p(B)$ 展开后的单项包含 $f_p(A+B)$ 展开后的所有单项,且剩余单项可表示为 $\frac{A^l}{i!}\frac{B^J}{i!}$ 的形式,其中 i+j>p, 故由矩阵的范数的基本性质 (3)可得

$$\| f_p(A)f_p(B) - f_p(A+B) \| \le \sum_{k>p} \left(\sum_{i+j=k} \frac{\|A\|^i}{i!} \frac{\|B\|^j}{j!} \right) = \sum_{k>p} \left(\sum_{i=0}^k \frac{\|A\|^i}{i!} \frac{\|B\|^{k-i}}{(k-i)!} \right)$$

$$\begin{split} &= \sum_{k>p} \left(\sum_{i=0}^k \frac{k!}{i! \ (k-i)!} \frac{\parallel A \parallel^i \parallel B \parallel^{k-i}}{k!} \right) = \sum_{k>p} \left(\sum_{i=0}^k C_k^i \frac{\parallel A \parallel^i \parallel B \parallel^{k-i}}{k!} \right) \\ &= \sum_{k>p} \frac{(\parallel A \parallel + \parallel B \parallel)^k}{k!}. \end{split}$$

由于数项级数 $\sum_{k=0}^{\infty} \frac{1}{k!} (\|A\| + \|B\|)^k$ 收敛到 $\mathrm{e}^{\|A\| + \|B\|}$,故当 p 充分大时,上式右边趋于零. 令 $p \to \infty$,则由上式即得 $\|f(A)f(B) - f(A+B)\| = 0$,再次由矩阵的范数的基本性质 (1)可得 $\mathrm{e}^A \cdot \mathrm{e}^B = \mathrm{e}^{A+B}$.

推论 0.2

若矩阵幂级数 e^A 绝对收敛,则矩阵级数的 Cauchy 乘积

$$e^{A+B} = \sum_{p=0}^{\infty} \left(\sum_{i+j=p} \frac{A^i}{i!} \frac{B^j}{j!} \right)$$

收敛到

$$\left(\sum_{i=0}^{\infty} \frac{A^i}{i!}\right) \cdot \left(\sum_{j=0}^{\infty} \frac{B^j}{j!}\right) = e^A \cdot e^B.$$

注注意矩阵级数的 Cauchy 积有

$$\begin{split} \mathbf{e}^{A+B} &= \sum_{p=0}^{\infty} \frac{(A+B)^p}{p!} = \sum_{p=0}^{\infty} \left(\sum_{i=0}^p \mathbf{C}_p^i \frac{A^i B^{p-i}}{p!} \right) \\ &= \sum_{p=0}^{\infty} \left(\sum_{i=0}^p \frac{p!}{i! (p-i)!} \frac{A^i B^{p-i}}{p!} \right) = \sum_{p=0}^{\infty} \left(\sum_{i=0}^p \frac{A^i}{i!} \frac{B^{p-i}}{(p-i)} \right) \\ &= \sum_{p=0}^{\infty} \left(\sum_{i+j=p} \frac{A^i}{i!} \frac{B^j}{j!} \right). \end{split}$$

证明 由命题 0.4立得.

命题 0.5

设 t 是一个数值变量,A 是一个 n 阶复方阵. $P^{-1}AP = J = \text{diag}\{J_1, \dots, J_k\}$ 是 A 的 Jordan 标准型, J_i 是特征值为 λ_i 的 r 阶 Jordan 块,则

$$e^{tA} = \mathbf{P}e^{t\mathbf{J}}\mathbf{P}^{-1}.$$

其中

$$e^{t\mathbf{J}} = \begin{pmatrix} e^{t\mathbf{J}_{1}} & & & \\ & \ddots & \\ & & e^{t\mathbf{J}_{k}} \end{pmatrix}, \quad e^{t\mathbf{J}_{i}} = e^{t\lambda_{i}} \begin{pmatrix} 1 & t & \frac{1}{2!}t^{2} & \frac{1}{3!}t^{3} & \cdots & \frac{1}{(r-1)!}t^{r-1} \\ & 1 & t & \frac{1}{2!}t^{2} & \cdots & \frac{1}{(r-2)!}t^{r-2} \\ & & 1 & t & \cdots & \frac{1}{(r-3)!}t^{r-3} \\ & & \ddots & \ddots & \vdots \\ & & & \ddots & \ddots & \vdots \\ & & & & 1 \end{pmatrix}.$$

证明 证法一: 若令 $f(z) = e^{tz}$, 则由定理 0.2即得 $f(A) = e^{tA}$ 的计算结果.

证法二: 注意到

$$\boldsymbol{J}_i = \lambda_i \boldsymbol{I} + \boldsymbol{N},$$

其中N是r阶基础幂零阵,即

$$N^r = O, \quad N = \begin{pmatrix} 0 & 1 & & & \\ & 0 & 1 & & & \\ & & \ddots & \ddots & \\ & & & \ddots & 1 \\ & & & & 0 \end{pmatrix}.$$

于是

$$e^{N} = I + N + \frac{1}{2!}N^{2} + \frac{1}{3!}N^{3} + \dots + \frac{1}{(r-1)!}N^{r-1}.$$

因为 $(\lambda_i I)N = N(\lambda_i I)$, 故由命题 0.4可知

$$\mathbf{e}^{\mathbf{J}i} = \mathbf{e}^{\lambda_i \mathbf{I} + \mathbf{N}} = \mathbf{e}^{\lambda_i \mathbf{I}} \cdot \mathbf{e}^{\mathbf{N}} = \mathbf{e}^{\lambda_i} \cdot \mathbf{e}^{\mathbf{N}}$$
$$= \mathbf{e}^{\lambda_i} \mathbf{I} + \mathbf{e}^{\lambda_i} \mathbf{N} + \frac{1}{2!} \mathbf{e}^{\lambda_i} \mathbf{N}^2 + \dots + \frac{1}{(r-1)!} \mathbf{e}^{\lambda_i} \mathbf{N}^{r-1}.$$

同理

$$e^{t\mathbf{J}_{i}} = e^{t\lambda_{i}} \cdot e^{tN} = e^{t\lambda_{i}} \left[t\mathbf{I} + t\mathbf{N} + \frac{t}{2!} \mathbf{N}^{2} + \frac{t}{3!} \mathbf{N}^{3} + \dots + \frac{t}{(r-1)!} \mathbf{N}^{r-1} \right]$$

$$= e^{t\lambda_{i}} \begin{pmatrix} 1 & t & \frac{1}{2!} t^{2} & \frac{1}{3!} t^{3} & \dots & \frac{1}{(r-1)!} t^{r-1} \\ 1 & t & \frac{1}{2!} t^{2} & \dots & \frac{1}{(r-2)!} t^{r-2} \\ & 1 & t & \dots & \frac{1}{(r-3)!} t^{r-3} \\ & & \ddots & \ddots & \vdots \\ & & & \ddots & t \\ & & & & 1 \end{pmatrix}.$$

又注意到

$$e^{tA} = e^{P(tJ)P^{-1}} = Pe^{tJ}P^{-1},$$

$$e^{tJ} = \begin{pmatrix} e^{tJ_1} & & \\ & \ddots & \\ & & e^{tJ_k} \end{pmatrix}.$$

于是将 e^{tJ_i} 的式子代入上面的式子即可求出 e^{tA} .

命题 0.6 (矩阵三角函数的性质)

设 A 是 n 阶矩阵, 求证:

- $(1) \sin^2 A + \cos^2 A = I_n.$
- $(2) \sin 2A = 2\sin A\cos A.$

证明 由定理 0.4可知

$$\cos A = \frac{1}{2}(e^{iA} + e^{-iA}), \quad \sin A = \frac{1}{2i}(e^{iA} - e^{-iA}). \tag{3}$$

由命题 0.2和命题 0.4可知

$$e^{iA}e^{-iA} = e^{-iA}e^{iA} = e^{iA-iA} = I_n, (e^{iA})^2 = e^{2iA}, (e^{-iA})^2 = e^{-2iA}.$$
 (4)

(1) 由(3)和(4)式可得

$$\sin^2 A + \cos^2 A = \frac{1}{4} (e^{2iA} + 2I_n + e^{-2iA}) - \frac{1}{4} (e^{2iA} - 2I_n + e^{-2iA}) = I_n.$$

(2) 由(3)和(4)式可得

$$2\sin A\cos A = \frac{1}{2}\left(e^{\mathrm{i}A} - e^{-\mathrm{i}A}\right)\left(e^{\mathrm{i}A} + e^{-\mathrm{i}A}\right) = \frac{1}{2}\left(e^{\mathrm{i}2A} - e^{-\mathrm{i}2A}\right) = \sin 2A.$$

例题 0.1 计算 $\sin(e^{cI})$ 及 $\cos(e^{cI})$, 其中 c 是非零常数.

解 由指数矩阵函数的定义可得

$$e^{cI} = I + \frac{1}{1!}(cI) + \frac{1}{2!}(cI)^2 + \frac{1}{3!}(cI)^3 + \cdots$$
$$= \left(1 + \frac{1}{1!}c + \frac{1}{2!}c^2 + \frac{1}{3!}c^3 + \cdots\right)I = e^cI.$$

因此

$$\sin(e^{cI}) = \sin(e^{c}I) = e^{c}I - \frac{1}{3!}(e^{c}I)^{3} + \frac{1}{5!}(e^{c}I)^{5} - \frac{1}{7!}(e^{c}I)^{7} + \cdots$$

$$= \left(e^{c} - \frac{1}{3!}(e^{c})^{3} + \frac{1}{5!}(e^{c})^{5} - \frac{1}{7!}(e^{c})^{7} + \cdots\right)I = (\sin e^{c})I,$$

$$\cos(e^{cI}) = \cos(e^{c}I) = I - \frac{1}{2!}(e^{c}I)^{2} + \frac{1}{4!}(e^{c}I)^{4} - \frac{1}{6!}(e^{c}I)^{6} + \cdots$$

$$= \left(1 - \frac{1}{2!}(e^{c})^{2} + \frac{1}{4!}(e^{c})^{4} - \frac{1}{6!}(e^{c})^{6} + \cdots\right)I = (\cos e^{c})I.$$

命题 0.7

设A 是n 阶方阵,证明: e^A 的行列式为 $e^{tr(A)}$.

证明 设 A 的特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$,则由命题??可知 e^A 的特征值为 $e^{\lambda_1}, e^{\lambda_2}, \dots, e^{\lambda_n}$,因此

$$|e^A| = e^{\lambda_1} e^{\lambda_2} \cdots e^{\lambda_n} = e^{\lambda_1 + \lambda_2 + \cdots + \lambda_n} = e^{\operatorname{tr}(A)}$$

推论 0.3

求证: 对任一n 阶方阵 $A.e^A$ 总是非异阵.

证明 由命题 0.7可知 $|e^A| = e^{tr(A)} \neq 0$, 从而 e^A 非异. 也可由命题 0.4得到

$$e^A e^{-A} = e^{A-A} = I_n,$$

于是 e^A 非异且 $(e^A)^{-1} = e^{-A}$.