

A Blockchain-Based P2P Solar Energy Sharing Microgrid System

3) SolChain

Abstract:

SolChain is a decentralized solar microgrid platform that leverages blockchain, loT, and also enables secure, peer-to-peer (P2P) energy trading in regions with unstable grid infrastructure. Built on a Proof-of-Stake (PoS) sidechain, SolChain ensures low-latency and high-throughput transaction processing while periodically anchoring Merkle roots to a Layer-1 blockchain (e.g., Ethereum) for auditability and regulatory compliance. Smart contracts manage tokenized microtransactions denominated in SolarTokens (ST), enabling real-time settlement and enforcement of trade agreements. Zero-knowledge proofs (ZK proofs) ensure user data privacy, while **smart meters** with LPWAN (e.g., LoRa) connectivity allow low-cost deployment in off-grid or weak-grid rural areas. Integrated AI/ML modules perform decentralized pricing, anomaly detection, and demand forecasting using distributed edge intelligence. This poster details SolChain's technical architecture, decentralized governance (via DAO), and deployment strategy, establishing a robust, scalable model for community-driven clean energy access in

H Governance

- m Network Membership: KYC onboarding, roles (prosumer, consumer, validator, regulator).
- **m** Business: DAO, AI pricing, 0.1 kWh min trade, SLAs & compliance.
- **Tech:** Nodes by community/partners, IPFS off-chain, anchors to Ethereum.

Security

- ZK privacy, role-based access, bonded fraud proofs.
- Key mgmt in Web3 wallet; anomaly detection on edge.

Partners

Government:

SREDA, BERC, BPDB, IDCOL,

Tech:

SOLshare, smart meter & storage vendors.

Finance/NGO:

ADB, PPPs, local banks, universities.

Token & Incentives

1 ST = 1 kWh;on-chain settlement; validator fee ~0.5%.

Fiat rails via bKash / M-Pesa; local gateways per region.

Prosumers earn; consumers save via dynamic pricing.

A Problem

- **Centralized control** & unstable grids unfair pricing and low transparency.
- ⚠ **High** internet/infra **cost** in rural areas; **low digital trust**.
- <u>A</u> Limited visibility of ownership/distribution; theft & tampering risks.

Solution

- ✓ LAN-first microgrids with smart meters + IPFS-backed logs.
- ✔ Blockchain settlement with 1 kWh = 1 ST; DAO governance.
- ✓ Al-driven matching, pricing, anomaly detection; regulator read-only audits.

Architecture External Systems Users **Energy Flow Energy Flow** SOLshare Hardware SolarChain **Grid Integration** Payment Gateway **Fiat Conversion** Transaction Logs AI/ML Models

Market Snapshot

	Aspect		Details	Aspect		Details
	(5)	Market Size	40% of Bangladesh lacks reliable power	EDGE	Edge	Low cost, transparent, scalable
	D	Problem	Grid instability, diesel dependency	TAM	TAM	\$3.5B Bangladesh energy market
-)(Q -	Solution	P2P solar trading via blockchain + loT	SAM	SAM	\$1.2B off-grid & microgrid users
	\(\sigma\)	Revenue	Transaction fees, subscriptions	Som	som	\$150M target adoption in 5 yrs

Key Benefits

Fair Pricing Decentralized market

Tamper-Proof On-chain settlement

Low Cost LPWAN & edge

Auditable Merkle \leftrightarrow L1

Risks & Mitigation

Risk	Mitigation
Regulatory uncertainty	Engage with policymakers, ensure compliance
Tech adoption resistance	User training, community awareness programs
Cybersecurity threats	Blockchain security, regular audits
Hardware/IoT failure	Local maintenance hubs warranty support
Financial sustainability	Transaction fee model, partnerships, grants
Grid integration challenges	Hybrid model (solar + existing grid fallback)

Platform	Blockchain	Local Pricing	Auditability	Rural Fit
SolChain	Yes	Al/Dynamic	Merkle↔L1	LAN-first
SOLshare	No token econ	Fixed	Limited	Good
IDCOL Projects	No	Admin-set	Low	Wide
Power Ledger	Yes	Varies	High	Urban-first

Competition

Platform	Blockchain Local Pricing		Auditability	Rural Fit
SolChain	Yes	Al/Dynamic	Merkle↔L1	LAN-first
SOLshare	No token econ	Fixed	Limited	Good
IDCOL Projects	No	Admin-set	Low	Wide
Power Ledger	Yes	Varies	High	Urban-first

Ghagra Salem Debnath (BUET) Md Abu Russel (BUET) Md Abu Sufian (KUET) A H M Fuad (BUET)

- Prototype & 10-

Phase 1- 2026

community pilot - PoS sidechains;

Roadmap

- 10,000 kWh traded
- Al smart contracts

Phase 2 - 2027

- 5,000 users;
- BREB + bKash
- Optimize AI; - NGO campaigns
- Regional expansion

Phase 3 - 2028+

- 100k users; 1M kWh/mo
- Global rollout
- Est. SolChain DAO
- SDG 7 & 13 impact