

BLG 335E – Analysis of Algorithms I Fall 2017, Recitation 5 28.11.2017

R.A. Doğan Altan daltan@itu.edu.tr – 4316 R.A. Cumali Türkmenoğlu turkmenogluc@itu.edu.tr

Question 1

- Consider inserting the keys 10, 22, 31, 4, 15, 28, 17, 88, 59 into a hash table of length m = 11 using open addressing with the primary hash function $h'(k) = k \mod m$.
- Illustrate the result of inserting these keys using **linear probing**, using **quadratic probing** with $c_1 = 1$ and $c_2 = 3$, and using **double hashing** with $h_2(k) = 1 + (k \mod (m 1))$.

Answer 1: Using Linear Probing itü

- Linear probing: $h(k,i) = (h'(k) + i) \mod m$
- $h'(k) = k \mod m$
- $m = 11, i = \{0, 1, 2, ..., m 1\}$
- Set of keys: {10, 22, 31, 4, 15, 28, 17, 88, 59}

$$h(10,0) = 10$$
 $h(28,0) = 6$ $h(59,0) = 4$
 $h(22,0) = 0$ $h(17,0) = 6$ $h(59,1) = 5$
 $h(31,0) = 9$ $h(17,1) = 7$ $h(59,2) = 6$
 $h(4,0) = 4$ $h(88,0) = 0$ $h(59,3) = 7$
 $h(15,0) = 4$ $h(88,1) = 1$ $h(59,4) = 8$

□ The resulting hash table:

STANBUL TEKNIK UNIVERSITES $= \{22, 88, nil, nil, 4, 15, 28, 17, 59, 31, 10\}$

Answer 1: Using Quadratic Probing irii

- Quadratic probing: $h(k,i) = (h'(k) + c_1i + c_2i^2) mod m$
- $h'(k) = k \mod m, c_1 = 1, c_2 = 3$
- $m = 11, i = \{0, 1, 2, ..., m 1\}$
- Set of keys: {10, 22, 31, 4, 15, 28, 17, 88, 59}

$$h(10,0) = 10$$
 $h(17,0) = 6$ $h(88,3) = 8$
 $h(22,0) = 0$ $h(17,1) = 10$ $h(88,4) = 8$
 $h(31,0) = 9$ $h(17,2) = 9$ $h(88,5) = 3$
 $h(4,0) = 4$ $h(17,3) = 3$ $h(88,6) = 4$
 $h(15,0) = 4$ $h(88,0) = 0$ $h(88,7) = 0$
 $h(15,1) = 8$ $h(88,1) = 4$ $h(88,8) = 2$
 $h(28,0) = 6$ $h(88,2) = 3$ $h(59,0) = 4$
 $h(59,1) = 8$
 $h(59,2) = 7$

The resulting hash table:

Answer 1: Using Double Hashing itü

- Double Hashing: $h(k,i) = (h_1(k) + ih_2(k)) \mod m$
- $h_1(k) = k \mod m \text{ and } h_2(k) = 1 + k \mod (m-1)$
- $m = 11, i = \{0, 1, 2, ..., m 1\}$
- Set of keys: {10, 22, 31, 4, 15, 28, 17, 88, 59}

$$h(10,0) = 10$$
 $h(15,2) = 5$ $h(88,2) = 7$
 $h(22,0) = 0$ $h(28,0) = 6$ $h(59,0) = 4$
 $h(31,0) = 9$ $h(17,0) = 6$ $h(59,1) = 3$
 $h(4,0) = 4$ $h(17,1) = 3$ $h(59,2) = 2$
 $h(15,0) = 4$ $h(88,0) = 0$
 $h(15,1) = 10$ $h(88,1) = 9$

□ The resulting hash table:

 $H_{\text{TEKNIK}} = \{22, nil, 59, 17, 4, 15, 28, 88, nil, 31, 10\}$

Question 2

- Insert the following sequence of numbers into a 2-3-4 tree
 - {53, 27, 75, 25, 70, 41, 38, 16, 59, 36, 73, 65, 60, 46, 55, 33, 68, 79, 48}

Solution 2

- **2-3-4 tree:** Perfect balance by allowing 1, 2, or 3 keys per node:
 - 2-node: one key, two children.
 - 3-node: two keys, three children.
 - 4-node: three keys, four children.
- Every path from root to leaf has the same length.

• {**53**, 27, 75, 25, 70, 41, 38, 16, 59, 36, 73, 65, 60, 46, 55, 33, 68, 79, 48}

53

• {53, **27**, 75, 25, 70, 41, 38, 16, 59, 36, 73, 65, 60, 46, 55, 33, 68, 79, 48}

27 53

• $\{53, 27, 75, 25, 70, 41, 38, 16, 59, 36, 73, 65, 60, 46, 55, 33, 68, 79, 48\} \rightarrow \text{causes a split}$

• $\{53, 27, 75, 25, 70, 41, 38, 16, 59, 36, 73, 65, 60, 46, 55, 33, 68, 79, 48\} \rightarrow \text{causes a split}$

• $\{53, 27, 75, 25, 70, 41, 38, 16, 59, 36, 73, 65, 60, 46, 55, 33, 68, 79, 48\} \rightarrow \text{causes a split}$

• $\{53, 27, 75, 25, 70, 41, 38, 16, 59, 36, 73, 65, 60, 46, 55, 33, 68, 79, 48\} \rightarrow \text{causes a split}$

• {53, 27, 75, 25, 70, 41, 38, 16, 59, 36, 73, 65, 60, **46**, 55, 33, 68, 79, 48} → causes a split that propagates up to the root

• {53, 27, 75, 25, 70, 41, 38, 16, 59, 36, 73, 65, 60, **46**, 55, 33, 68, 79, 48} → causes a split that propagates up to the root

Question 3

- 2-3-4 trees are balanced and can be searched in O(logn), but they have different node structures.
- To get 2-3-4 tree advantages in a binary tree format, we can represent it as a red-black tree.
- Convert the following 2-3-4 tree to a red-black tree

Solution 3

- Properties of a red-black tree:
 - the root is always black
 - black condition: every path from the root to a leaf node has the same number of black nodes
 - red condition: every red node has a black parent

• 2-nodes: can be represented with a black node

• 4-nodes: center value becomes the parent (black) and the others become children (red)

Note:

- 1. Red-black trees are not unique
- 2. However, the corresponding 2-3-4 tree is unique

- Top-down conversion algorithm (start at the root):
 - 1. Apply red-black tree representation to each node
 - 2. Repeat for next level...

Question 4

- Insert the following sequence of numbers into a red-black tree
 - $-\{2, 1, 4, 5, 9, 3, 6, 7\}$

Solution 4

□ {**2**, 1, 4, 5, 9, 3, 6, 7}

2

□ {2, **1**, 4, 5, 9, 3, 6, 7}

□ {2, 1, **4**, 5, 9, 3, 6, 7}

 \square {2, 1, 4, 5, 9, 3, 6, 7} \rightarrow recoloring

 \square {2, 1, 4, 5, 9, 3, 6, 7} \rightarrow recoloring and rotation

 \square {2, 1, 4, 5, 9, 3, 6, 7} \rightarrow recoloring

□ {2, 1, 4, 5, 9, 3, **6**, 7}

 \square {2, 1, 4, 5, 9, 3, 6, **7**} \rightarrow recoloring

Asırlardır Çağdaş

 \square {2, 1, 4, 5, 9, 3, 6, **7**} \rightarrow 2 rotations

