Funtores

1. Sean C y \mathcal{D} dos categorías. Probar que $P_1: C \times \mathcal{D} \to C$ tal que $P_1(C, D) = C$ y $P_2: C \times \mathcal{D} \to \mathcal{D}$ tal que $P_2(C, D) = D$ definen functores.

Solución COMPLETAR.

2. Dado un conjunto X, definimos el conjunto List(X) de la listas finitas de elementos de X. Probar que $List: Set \to Set$ es un funtor. Considerando ahora List(X) como un monoide, probar que $List: Set \to Mon$ es un funtor. Determinar si List preserva productos. Ayuda: pensar en cual monoide es isomorfo a List(X) cuando X es un conjunto con un solo elemento.

Solución COMPLETAR.

3. Se ha visto que puede considerarse a un monoide como una categoría con un único objeto, ¿Qué es un funtor entre dos categorías de este tipo? ¿Y entre categorías formadas a partir de conjuntos ordenados?

Solución COMPLETAR.

4. Dados dos funtores $F: \mathcal{C} \to \mathcal{D}$ y $G: \mathcal{D} \to \mathcal{E}$, definir un funtor que componga ambos. ¿Es posible definir una categoría cuyos objetos sean las categorías y sus flechas sean los funtores entre estas?

Solución COMPLETAR.

- 5. Sea \mathcal{C} una categoría con productos, coproductos y exponenciales; y $A \in ob \mathcal{C}$. Probar que las siguientes aplicaciones pueden extenderse con estructura funtorial:
 - a) COMPLETAR.
 - b) COMPLETAR.
 - c) COMPLETAR.
 - d) COMPLETAR.

- e) COMPLETAR.
- f) COMPLETAR.
- g) COMPLETAR.
- h) COMPLETAR.

Soluciones

- a) $\Delta: \mathcal{C} \to \mathcal{C} \times \mathcal{C}$ tal que $\Delta(B) = (B, B)$.
- b) COMPLETAR.
- c) COMPLETAR.
- d) COMPLETAR.
- e) COMPLETAR.
- f) COMPLETAR.
- q) COMPLETAR.
- h) COMPLETAR.
- 6. Sea \mathcal{C} una categoría localmente pequeña, para cada objeto X de \mathcal{C} definimos $Hom(X,-):\mathcal{C}\to Set$ donde Hom(X,-)(Y)=Hom(X,Y) y Hom(X,-)(f)=Hom(X,f). Probar que Hom(X,-) es efectivamente un funtor para cada X. Definir análogamente un funtor Hom(-,X).

Solución COMPLETAR.

7. Si $f: A \to B$ en Set, entonces definimos $f^{-1}(X) = \{a \in A : f(a) \in X\}$ donde $X \subseteq B$. Probar que $I: Set \to Set$ es un funtor contravariante, llevando: $I(A) = \mathcal{P}(A)$ y $I(f) = f^{-1}$.

Solución COMPLETAR.

8. Dado un semigurpo (S,\cdot) , podemos construir un monoide (S',\cdot') donde $S'=S\uplus\{e\},\ (0,x)\cdot'(0,y)=(0,x\cdot y)$ y $(1,e)\cdot'x=x=x\cdot'(1,e)$. Utilizando esta construcción, definir un funtor $F:Sem\to Mon$ y probar que es un monomorfismo en Cat.

Solución COMPLETAR.

9. Probar o refutar: sea C una categoría con productos, y $F: \mathcal{C} \to \mathcal{C}$ un functor, entonces siempre existe un único morfismo $F(A \times B) \to FA \times FB$.

Solución COMPLETAR.

10. Sea $U:Mon \to Set$ el functor que olvida la estructura de monoide. Definimos además $U^2:Mon \to Set$ que en objetos actúa llevando $(X,\otimes,e)\mapsto X\times X$. Probar que a U^2 se lo puede denotar de estructura functorial.

Solución COMPLETAR.

Transformaciones naturales

Adjunctiones

Monadas

Lema de Yoneda

Ejercicios adicionales

- 1. Definimos la asignación $Fr: Set \to Mon$ tal que $Fr(X) = X^{*-1}$ y $Fr(f)(x_1x_2\cdots x_n) = f(x_1)f(x_2)\cdots f(x_n)$. Usando el funtor $U: Mon \to Set$ que se olvida de la estructura de monoide, consideramos $i: X \to U(Fr(X))$ la función que lleva un elemento x de X a la palabra x.
 - a) Probar que Fr es un funtor.

 $^{^{-1}}X^*$ es el monoide de las palabras sobre el alfabeto X con la concatenación como operación. Puede pensar en las palabras de X como las listas de elementos de X.

- b) Probar que dado $f: X \to U(M)$ en Set donde M es un monoide, puedo construir una única $\overline{f}: Fr(X) \to M$ en Mon tal que $U(\overline{f}) \circ i = f$ en Set^2 .
- c) ¿A cuál monoide es isomorfo $Fr\left(X\right)$ donde X es un conjunto de un solo elemento?
- d) ¿Este funtor preserva productos?

Soluciones

- a) COMPLETAR.
- b) COMPLETAR.
- c) COMPLETAR.
- d) COMPLETAR.

Cuando un monoide como Fr(X) satisface esta propiedad, decimos que es el monoide libre sobre X.