Reading Material

CS 5135/6035 Learning Probabilistic Models Lecture 13: Introduction to Bayesian Estimation

Gowtham Atluri

October 16, 2018

 Larry Wasserman, Lecture Notes 14 Bayesian Inference http://www.stat.cmu.edu/~larry/=stat705/Lecture14.pdf

• David Barber, Bayesian Reasoning and Machine Learning

 Chapter 9. Learning as Inference http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/090310.pdf

Gowtham Atluri

CS 5135/6035 Learning Probabilistic Models

October 16, 2018 1/

Gowtham Atlui

S 5135/6035 Learning Probabilistic Mo

ctober 16, 2018

Topics

- Bayes' rule
 - Bayesian statistics
- Bayesian parameter estimation
 - Introduction
 - Properties
 - Why? Why not?
- Examples
 - Discrete parameters
 - Continuous parameters

Bayes' Rule

Definition

If A and B are events in F, and P(B) > 0, then the conditional probability of A given B, written P(A|B), is

$$P(A|B) = \frac{P(A,B)}{P(B)}$$

Theorem (Bayes' Rule)

If A and B are events in F, then Bayes' Rule states

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^c)P(A^c)}$$

Gowtham Atlu

CS 5135/6035 Learning Probabilistic Models

ctober 16, 2018 3

Gowtham Atlu

CS 5135/6035 Learning Probabilistic Models

October 16, 2018 4

Application to Down Syndrome screening

If a pregnant woman was tested for Down syndrome and it was positive, what is the probability that the child will have Down syndrome?

- ullet Let D indicate a child with Down syndrome and D^c the opposite.
- ullet Let '+' indicate a positive test result and a negative result.

sensitivity
$$= P(+|D) = 0.94$$

specificity $= P(-|D^c) = 0.77$
prevalence $= P(D) = 1/1000$

$$P(D|+) = \frac{P(+|D)P(D)}{P(+)} = \frac{P(+|D)P(D)}{P(+|D)P(D)+P(+|D^c)P(D^c)} = \frac{0.94 \cdot 0.001}{0.94 \cdot 0.001 + 0.23 \cdot 0.999} \approx 1/250$$

$$P(D|-) \approx 1/10,000$$

Bayes' Rule

• Bayes' Rule applied to a <u>partition</u> of sample space of $A = \{A_1, A_2, \ldots\},$

$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{P(B)} = \frac{P(B|A_i)P(A_i)}{\sum_{i=1}^{\infty} P(B|A_i)P(A_i)}$$

 Bayes' Rule also applies to <u>probability density (or mass) functions</u>, e.g.

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)} = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}$$

where the integral plays the role of the sum in the previous statement.

Gowtham Atluri

CS 5135/6035 Learning Probabilistic Models

October 16, 2018

Gowtham Atlu

CC E12E /602E Learning Drobabilistic Made

October 16, 2018

Bayesian statistics

• Parameter estimation:

$$p(\theta|y, M)$$

where M is a model with parameter (vector) θ and y is data assumed to come from model M with true parameter θ_0 .

• Hypothesis testing/model comparison:

$$p(M_i|y,\mathcal{M})$$

where \mathcal{M} is a set of models with $M_j \in \mathcal{M}$ for $i=1,2,\ldots$ and y is data assumed to come from some model $M_0 \in \mathcal{M}$.

• Prediction:

$$p(\tilde{y}|y, M)$$

where \tilde{y} is unobserved data and y and \tilde{y} are both assumed to come from M

Carrellana Aslan

CS E12E /602E Learning Brokabilistic Madel

Ostobox 16, 2019 7

Parameter Estimation

- E.g.: 20 apples from a large lot of apples were inspected and 3 were found to be damaged. If four apples are randomly sampled from the lot, find the probability that at least one apple in the sample of four is defective.
- To answer this probabilitic inference question we need to know the probability distribution $p(x=0), p(x=1), \ldots$
- Parameter estimation invovles estimation of parameters given a parametric model and <u>observed data</u> drawn from it.
- Parametric Model:

$$p(x) = \binom{n}{x} a^{x} (1-a)^{n-x}, \quad x = 0, 1, 2, \dots n$$

- Observed data: 3 out of 20 appples were found to be damaged.
- Parameter that needs to be estimated: a

owtham Atluri

CS 5135/6035 Learning Probabilistic Mod

October 16, 2018

8 / 30

Parameter Estimation

• Why is it non-trivial?

• This (3 out of 20) can be a result several Binomial distributions, which one would have generated this.

Gowtham Atlu

CS 5135/6035 Learning Probabilistic Models

tober 16, 2018

Approaches for parameter estimation - I

Maximum Likelihood Estimation (MLE)

- Parameters are assumed to be fixed but unknown
- ML solution seeks the solution that best explains the dataset y

$$\hat{\theta}_{MLE} = argmax_{\theta} p(y|\theta)$$

Gowtham Atlur

CS 5135/6035 Learning Probabilistic Models

October 16 2018

10 / 30

Approaches for parameter estimation - II

Bayesian Estimation

- \bullet Parameters are assumed to be random variables with some known a priori distribution $p(\theta)$
- Prior distribution is either a belief or prior knowledge
- ullet Bayesian methods seek to estimate the posterior density $p(\theta|y)$

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)} = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}$$

Terminology	Notation
Posterior	$p(\theta y)$
Prior	$p(\theta)$
Model	$p(y \theta)$
Prior predictive distribution	p(y)
(marginal likelihood)	,

Gowtham Atluri CS 5135/6035 Learning Probabilistic Me

October 16, 2018 11 / 30

Bayesian estimation: Why and Why not?

Why do a Bayesian analysis?

- Incorporate prior belief or existing knowledge via $p(\theta)$
- Coherent with rules of probability, i.e. everything follows from specifying $p(\theta|y)$
- Captures uncertainty in the parameter estimates
- Interpretability of results, e.g. the probability the parameter is in (L,U) is 95%

Why not do a Bayesian analysis?

- Need to specify $p(\theta)$
- Computational cost of evaluating the likelihood function
- Does not guarantee coverage

CC E12E (602E Learning Dephabilistic Medi

Bayesian estimation: update posterior with new data

• Bayes' Rule provides a formula for updating from prior beliefs to our posterior beliefs based on the data we observe, i.e.

$$p(\theta|y) = \frac{p(y|\theta)}{p(y)}p(\theta) \propto p(y|\theta)p(\theta)$$

• Suppose we gather y_1, \ldots, y_n sequentially (and we assume y_i independent conditional on θ), then we have

$$p(\theta|y_1) \propto p(y_1|\theta)p(\theta)$$

$$p(\theta|y_1, y_2) \propto p(y_1, y_2|\theta)p(\theta)$$

$$p(\theta|y_1, y_2) \propto p(y_2|\theta)p(y_1|\theta)p(\theta)$$

$$p(\theta|y_1, y_2) \propto p(y_2|\theta)p(\theta|y_1)$$

and

$$p(\theta|y_1,\ldots,y_i) \propto p(y_i|\theta)p(\theta|y_1,\ldots,y_{i-1})$$

So Bayesian learning is

$$p(\theta) \to p(\theta|y_1) \to p(\theta|y_1, y_2) \to \cdots \to p(\theta|y_1, \ldots, y_n).$$

Example: Betting on random coin flips

Consider this hypothetical situation:

- Bets are placed on the result of a coin flip
- You have been watching the results of this coin flip
- How do you determine if this is a fair coin?
- All you have is observations of the earlier coin flips

To approach this problem...

- Identify what needs to be estimated: probability of heads.
- Determine the model.
- A prior needs to be selected $p(\theta)$.
- Determine the Likelihood $p(y|\theta)$
- Compute the posterior distribution $p(\theta|y)$ using Bayes' rule.

Learning the bias of a coin

• Consider a set of samples $y = \{y_1, y_2, \dots, y_n\}$ expressing the results of tossing a coin.

$$y_n = \left\{ egin{array}{ll} 1 & \mbox{if on toss } n \mbox{ the coin comes up heads} \\ 0 & \mbox{if on toss } n \mbox{ the coin comes up tails} \end{array}
ight.$$

Our aim is to estimate the probability θ that the coin will be a head, $\theta = p(y=1).$

• if p(y=1) deviates from 0.5, we conclude that the coin is biased.

Note that

- The data points are binary.
- \bullet Only one parameter needs to be estimated θ
 - Let's try the Bayesian approach!

CS 5135/6035 Lea

Bayesian Estimation

- We would like to determine the probability distribution over possible
- ullet We first express our belief or prior knowledge of the distribution of hetaas $p(\theta)$
- Write the likelihood function $p(y|\theta)$
- ullet We compute the posterior distribution of heta

$$p(\theta|y_1,\ldots,y_n) = \frac{p(y_1,\ldots,y_n,\theta)}{p(y_1,\ldots,y_n)} = \frac{p(y_1,\ldots,y_n|\theta)p(\theta)}{p(y_1,\ldots,y_n)}$$
$$\propto p(y_1,\ldots,y_n|\theta)p(\theta)$$

Defining The Prior $p(\theta)$

To avoid complexities resulting from continuous variables, we'll consider a discrete θ with only three possible states, $\theta \in \{0.1, 0.5, 0.8\}$.

Specifically, we assume

•
$$p(\theta = 0.1) = 0.15$$

•
$$p(\theta = 0.5) = 0.8$$

•
$$p(\theta = 0.8) = 0.05$$

The prior indicates that we believe the coin is more likely to be fair.

Likelihood $p(y|\theta)$

From our experience with MLE:

$$p(y|\theta) = p(y_1, \dots, y_n|\theta)$$

$$= p(y_1|\theta) \dots p(y_n/\theta) \text{ (assuming i.i.d.)}$$

$$= \prod_{i=1}^{n} p(y_i|\theta)$$

Because each coin toss is a Bernoulli trial, the probability of each sample y_i is

$$p(y_i|\theta) = \theta^{\mathbb{I}[y_i = H]} (1 - \theta)^{\mathbb{I}[y_i = T]}$$

The likelihood then is

$$p(y|\theta) = \prod_{i=1}^n \theta^{\mathbb{I}[y_i = H]} (1 - \theta)^{\mathbb{I}[y_i = T]}$$

CS 5135/6035 Learning Probabilistic Models

Posterior $p(\theta|y)$

$$\begin{split} \rho(\theta|y_1,\ldots,y_n) &\propto \rho(y_1,\ldots,y_n|\theta)\rho(\theta) \\ &\propto \Big(\prod_{i=1}^n \theta^{\mathbb{I}[y_i=H]}(1-\theta)^{\mathbb{I}[y_i=T]}\Big)\Big(\rho(\theta)\Big) \\ &\propto \rho(\theta)\theta^{\sum_{i=1}^n \mathbb{I}[y_i=H]}(1-\theta)^{\sum_{i=1}^n \mathbb{I}[y_i=T]} \\ &\propto \rho(\theta)\;\theta^{N_H}(1-\theta)^{N_T} \end{split}$$

 N_H is the number of occurrences of heads. N_T is the number of tails.

$$N_H = \sum_{i=1}^n \mathbb{I}[y_i = H]$$

$$N_T = \sum_{i=1}^n \mathbb{I}[y_i = T]$$

Gowtham Atlui

S 5135/6035 Learning Probabilistic Models

ctober 16, 2018

6, 2018 19

Coin Posterior

- For an experiment we have 2 heads and 8 tails
 - $N_H = 2$ and $N_T = 8$
- Our prior distribution is

$$p(\theta = 0.1) = 0.15, p(\theta = 0.5) = 0.8, p(\theta = 0.8) = 0.05$$

• Our posterior equation is

$$p(\theta|y_1,\ldots,y_n) \propto p(\theta) \; \theta^{N_H} (1-\theta)^{N_T}$$

ullet Our posterior for heta=0.1 is

$$p(\theta = 0.1|y_1, \dots, y_n) \propto p(\theta = 0.1)0.1^{N_H}(1 - 0.1)^{N_T}$$

Similarly,

$$p(\theta = 0.5|y_1, \dots, y_n) \propto p(\theta = 0.5)0.5^{N_H}(1 - 0.5)^{N_T}$$

$$p(\theta = 0.8|y_1, \dots, y_n) \propto p(\theta = 0.8)0.8^{N_H}(1 - 0.8)^{N_T}$$

owtham Atluri

CS 5135/6035 Learning Probabilistic Models

ctober 16, 2018

Coin Posterior

$$p(\theta = 0.1|y_1, \dots, y_n) \propto 6.4 \times 10^{-4}$$

$$p(\theta = 0.5|y_1, \dots, y_n) \propto 7.8 \times 10^{-4}$$

$$p(\theta = 0.8|y_1, \dots, y_n) \propto 8.2 \times 10^{-8}$$

We know that

$$p(\theta = 0.1|y_1, \dots, y_n) + p(\theta = 0.5|y_1, \dots, y_n) + p(\theta = 0.8|y_1, \dots, y_n) = 1$$

By dividing each of the values by

$$p(\theta = 0.1|y_1,...,y_n) + p(\theta = 0.5|y_1,...,y_n) + p(\theta = 0.8|y_1,...,y_n),$$

We get,

$$p(\theta = 0.1|y_1, \dots, y_n) = 0.45$$

$$p(\theta = 0.5|y_1, \dots, y_n) = 0.55$$

$$p(\theta = 0.8|y_1, \dots, y_n) = 0$$

Gowtham Atluri

CS 5135/6035 Learning Probabilistic Models

October 16, 2018

Coin Posterior $(N_H = 2, N_T = 8)$

- Most likely state is $\theta = 0.5$; $\theta = 0.1$ is also appreciable.
- aposteriori is close to the apriori belief than to the observed data.

Gowtham Atlur

CS 5135/6035 Learning Probabilistic Models

October 16, 2018

Coin Posterior ($N_H = 20, N_T = 80$)

Repeating the above with $N_H = 20$, $N_T = 80$, the posterior changes to

- The posterior belief in $\theta = 0.1$ dominates.
 - Heads are unlikely to result from this coin.
- aposteriori is very different from our apriori belief

Posteriori Effect

• Posterior is a compromise between the data and the prior

$$p(\theta|y_1,\ldots,y_n) \propto p(y_1,\ldots,y_n|\theta)p(\theta)$$

- In both cases $N_T/N_H = 4$
 - ullet only when $N_H=20, N_T=80$ we are much more confident that heta=0.1

rtham Atluri CS 5135/6035 Learning Probabilistic Models

Continuous Parameters

- ullet In the previous example, we considered only discrete values of heta. Here will consider continuous values.
- We first examine the case of a 'flat' prior $p(\theta) = k$
 - for some constant k.
- Any probability density function must hold

$$\int_0^1 p(\theta) d\theta = 1 \implies k\theta|_0^1 = 1 \implies k = 1$$

- Priori $p(\theta) = 1$.
- Our posterior equation is

$$\begin{split} \rho(\theta|y_1,\ldots,y_n) &\propto \rho(\theta) \; \theta^{N_H} (1-\theta)^{N_T} \; (\text{using a flat prior } \rho(\theta)=1) \\ &\propto \theta^{N_H} (1-\theta)^{N_T} \\ &= \frac{1}{c} \theta^{N_H} (1-\theta)^{N_T} \end{split}$$

Gowtham Atluri

CS 5135/6035 Learning Probabilistic Models

tober 16, 2018 25

Continuous Parameters

- Our posterior is $p(\theta|y_1,\ldots,y_n) = \frac{1}{\epsilon}\theta^{N_H}(1-\theta)^{N_T}$
 - The constant c ensures that $\int_0^1 p(\theta|y_1,\ldots,y_n)=1$.
- We recognize, the part $\theta^{N_H}(1-\theta)^{N_T}$ is the same as the functional form of Beta distribution

$$Beta(x|\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}, \quad \text{for } 0 < x < 1$$

- Comparing the corresponding exponents in the posterior and Beta dist., we get
 - $\alpha = N_H + 1$ and $\beta = N_T + 1$
- ullet From this we can say that the Posterior has the form $Beta(N_H+1,N_T+1)$

Gowtham Atlur

CS 5135/6035 Learning Probabilistic Models

r 16, 2018 26 /

Coin posterior - using a continuous prior

- From an experiment we have $N_H=2$ and $N_T=8$
- Prior distribution is $p(\theta) = 1$
- Likelihood is $\theta^{N_H}(1-\theta)^{N_T}$
- Posterior $p(\theta|y_1,\ldots,y_n) = \frac{1}{c}\theta^{N_H}(1-\theta)^{N_T}$
 - Same as $Beta(N_H + 1, N_T + 1)$.
- We can compute the probabilities $p(\theta|y_1,...,y_n)$ directly from the pdf $Beta(N_H+1,N_T+1)$

Computing the posterior probabilities in Julia

Posterior Distribution for our observations $N_H=2$ and $N_T=8$

Gowtham Atlu

CS 5135/6035 Learning Probabilistic Models

per 16, 2018 27

Gowtham Atlu

S 5135/6035 Learning Probabilistic Models

October 16, 2018

28 / 30

Computing the posterior probabilities in Julia

Posterior Distribution for our observations $N_H=20$ and $N_T=80$

Coin Posterior

- Maximum of the posterior is at $\theta=0.2$
 - for both cases $N_H = 2$, $N_T = 8$ and $N_H = 20$, $N_T = 80$
 - because $N_T/N_H=4$
- The posterior is much narrower for $N_H = 20, N_T = 80$

cham Atluri CS 5135/6035 Learning Probabilistic Mod

October 16, 2018