DEPARTMENT OF BIOTECHNOLOGY, IIT, MADRAS CHENNAI – 36

BT 3041 Analysis and Interpretation of Biological Data

Class: B.Tech Date: 02-8-2020

Time: 10:00 AM- 1:00 PM END SEMESTER Examination Marks: 50

Part A (1 mark each):

- 1. Which of the following is a graph based clustering method?
 - A) DBSCAN, B) shared nearest neighbor method, C) k-means clustering, D) k-medoids clustering.
- 2. The definiteness of matrix A is:

0 -1]

- A) Positive definite, B) negative definite, C) indefinite, D) positive semi-definite
- 3. The five-number summary of a distribution has the following five quantities:
 - A) [Q1, Q2, Q3, Q4, Q5]
 - B) [Minimum, Q1, Median, Q3, Maximum]
 - C) [Q1, Q2, Q3, first moment, second moment]
 - D) [Mean, median, mode, minimum, maximum]
- 4. Gradient w.r.t. 'x' of the scalar function $f(x) = a^Tx + x^T Ax$, where 'x' is an n-dimensional vector is,
 - A) a + Ax, B) 2a + Ax, C) a + 2Ax, D) $2a^{T} + 2Ax$.
- 5. Which of the following sentences best describes the purpose of Pareto charts?
 - A) To clearly describe the timelines of execution of a project
 - B) To depict the comparative progression of two quantities with time
 - C) To present higher dimensional data in two dimensions
 - D) To highlight the most important ones from among a large set of factors
- 6. Name the type of the plot shown below:

- A) circle plot, B) vector field plot, C) surface plot, D) mesh plot
- 7. The type of the plot shown below is,

- A) circle segment display, B) cone tree, C) scatter plot, D) surface plot
- 8. The type of the plot shown below is,

- A) circle segment display, B) cone tree, C) circos, D) surface plot
- 9. What kind of a plot is the following depiction of IRIS DATA?

- A) Scatter plot, B) Parallel coordinates plot, C) Stream flow plot, D) cone tree
- 10. Which of the following distance measures are particularly suited for asymmetric binary variables?
 - A) Euclidean distance, B) Minkowski distance, C) Jaccard distance, D) Hamming distance
- 11. Which of the following is NOT a property of k-means clustering?
 - A) Existence of Local minima, B) Unique solution, C) existence of an objective function, D) offers a way of finding the "right" number of clusters.
- 12. Agglomerative clustering is a type of,
 - A) Fuzzy clustering, B) hierarchical clustering, C) probabilistic clustering, D) density-based clustering.
- 13. Which of the following is a dimensionality reduction method?
 - A) K-means clustering, B) Self-organizing Map, C) Fuzzy clustering, D) DBSCAN
- 14. The number of edges in a simple, complete directed graph with N vertices is,

- A) N*(N-1)/2
- B) N*(N+1)/2
- C) N * (N-1)
- D) N*N
- 15. For which of the following data sets will K-means be able to detect the right clusters most successfully?

- 16. Which of the following clustering methods offers a way of finding the "right" number of clusters?
 - A) Scale-based clustering, B) agglomerative clustering, C) fuzzy clustering, D) DBSCAN
- 17. Which of the following clustering methods is ideal for discovering the two clusters present in the data set shown below?

- A) K-means clustering, B) Expectation maximization using Gaussian mixture model, C) Fuzzy clustering, D) Shared nearest neighbor clustering
- 18. What is the purpose of 'early stopping' in a Multilayer Perceptron's training?
 - A) Improve training accuracy
 - B) Improve testing accuracy
 - C) Save on training time
 - D) Network pruning

- 19. Which of the following is NOT a necessary property of the hidden layer 'nonlinearity' of a MLP for the universal approximation theorem to apply?
 - A) Continuity
 - B) Boundedness
 - C) Differentiability
 - D) Monotonicity
- 20. Which of the following is NOT a radial basis function?
 - A) $\exp(-||x-w||^2)$, B) $(1 + (w^Tx)^2)$, C) $||x-w||^2$, D) $1/(1+||x-w||^2)$
- 21. The 'interpolation theorem' that assures unique training solution for a Radial Basis Function network requires that,
 - A) The data points are all distinct
 - B) The autocorrelation matrix of the training data has a 'flat spectrum'
 - C) The data points are within a n-dimensional hypercube (n = input dim)
 - D) The number of data points is greater than the number of hidden nodes
- 22. The training algorithm for a Radial Basis Function network is best described as,
 - A) Backpropagation algorithm, B) delta rule, C) k-means and pseudoinverse, D) none of the above.
- 23. The uniqueness of the learning algorithm of a Support Vector Machine compared to backpropagation algorithm consists in optimizing:
 - A) Output error, B) cross entropy, C) margin, D) Kullback-Leibler distance
- 24. Which of the following is the correct formulation of learning for a linear Support Vector Machine? (N is the number of data points.)
 - A) $\max \|w\|^2$, subject to $y_i(w \bullet x_i + b) \ge 1$, j = 1,..., N
 - B) $\min \|w\|^2$, subject to $y_i(w \cdot x_j + b) \ge 0$, j = 1,..., N
 - C) $\max \|w\|^2$, subject to $y_i(w \bullet x_j + b) \le 1$, j = 1,..., N
 - D) $\min \|w\|^2$, subject to $y_i(w \cdot x_j + b) \ge 1$, j = 1,..., N
- 25. The space and time complexities for agglomerative clustering are:
 - A) $O(N^2)$ for time, $O(N^3)$ for space
 - B) O(N³) for time, O(N²) for space
 - C) O(N3) for time, O(N4) for space
 - D) O(N⁴) for time, O(N³) for space
- 26. If a deep network with 3 hidden layers (HL = HL#1,2,3 from input towards output layer) is trained on recognizing faces, what is the pattern of responses of hidden layer neurons that you expect to see?
 - A) HL#1 recognizes whole faces, HL#2 recognizes edges and HL#3 recognizes parts of the face
 - B) HL#1 recognizes whole faces, HL#2 recognizes parts of a face and HL#3 recognizes edges

- C) HL#1 recognizes edges, HL#2 recognizes parts of the face, and HL#3 recognizes whole faces
- D) HL#1 recognizes edges, HL#2 recognizes whole faces and HL#3 recognizes parts of the face
- 27. Specificity of a classifier is defined as: (where, TP = True positives, TN= True Negatives; FP = False positives, FN = False Negatives)
 - A) = TP/(TP+FP)
 - B) = TP/(TP+FN)
 - C) =TN/(TN+FP)
 - D) =TN/(TN+FN)
- 28. The "spectra" (sorted eigenvalues) of autocorrelation matrices of 4 data sets (dim = 10) are shown in figure below. Which of them allows the greatest scope for compression?

- 29. Which of the following visualization methods can best depict hierarchical data? (1 mark)
 - a) Circle segment display, b) Dimensional stacking, c) Chernoff faces, c) Cone trees
- 30. Which of the following visualization methods is NOT a depiction of high dimensional data? (1 mark)
 - b) Circle segment display, b) Dimensional stacking, c) Chernoff faces, c) Cone trees

Part B (2 marks each)

1. A graph representation of a dataset S consisting of 5 points (A to E) is shown below. A pair of points are connected by a link only if their similarity exceeds a certain threshold.

The number of shared nearest neighbors of node pairs (A,D), (B,D), (C,D), (E,D) are:

- A) 3, 2, 2, 3, B) 3,2,3,2,
- C) 3,3,2,2
- D) 2,3,3,2
- 2. The data set $S = \{(0,0), (0,1), (3,0), (3,2), (7,0), (7,5)\}$ is being clustered using Agglomerative clustering. After the first step the points (0,0) and (0,1) are combined to form Cluster #1. The next merger is between the following: (The inter-cluster similarity measure is MIN.)
 - A) (0,0) and (3,0)
 - B) Cluster #1 and (3,0)
 - C) (3,0) and (3,2)
 - D) Cluster # 1 and (3,2)
- 3. The problem setting is the same as in the previous problem. But The inter-cluster similarity measure is MAX. The next merger is between the following:
 - A) (0,0) and (3,0)
 - B) Cluster #1 and (3,0)
 - C) (3,0) and (3,2)
 - D) Cluster # 1 and (3,2)
- 4. Consider the two discriminant functions,

 $y_1 = g(x_1 - x_2 - 0.5)$ and $y_2 = g(x_1 + x_2 - 0.5)$, g(x) is the logistic function.

If $y_1 > y_2$, $X \rightarrow$ Class #1, else $X \rightarrow$ Class #2. The decision surface separating the two classes is described as,

- A) x1 = 0, B) x1-x2 = 0, C) x1 + x2 = 0, D) x2 = 0.
- 5. Consider the 3 layer MLP whose input/output function is defined as follows. $y_1 = g(x_1)$, $y_2 = g(x_2)$, and $y = g(y_1 + y_2 - 1.3)$ where g(x) is the step function. Which of the following statements is TRUE?
 - A) y is non-zero in the first and second quadrants.
 - B) y is non-zero in the first quadrant alone.
 - C) y is non-zero in the third quadrant alone.
 - D) y is zero in the first, second and fourth quadrants.
- 6. A 3-layer MLP is defined as,

$$V_1 = \sigma(x_1 + x_2 - 1.5)$$
 $V_2 = \sigma(x_1 + x_2 - 0.5)$ $y = \sigma(V_1 - V_2 - 0.5)$

where $\sigma()$ is the step function. The function $y = f(x_1, x_2)$ represents which of the following?

- A) OR gate, B) AND gate, C) XOR gate, D) XNOR gate
- 7. The maximum value of the cost $C = x^2 + y^2$, under the constraint 3x + 4y = 10, is:
 - A) 1, B) 2, C) 3,

- 8. If you fit a single Gaussian density function to the following data set, S = {-2, -1, 0, 1, 2}, using Expectation Maximization using Gaussian mixture model, what are the values of μ , σ , and α ? A) μ =1, σ =2, α =0.5, B) μ =0, σ =1.4, α =1, C) μ =0, σ =1.7, α =1, D) μ =1, σ =1.4, α =1.
- 9. A linear discriminant function defined as $y = w^T x w_0$, is used for a binary classification task such that if y>0, X \rightarrow Class #1 (d = +1), else X \rightarrow Class #2 (d = -1). The learning equations for this task, which are invoked only when there is an erroneous classification, are: (1 mark)

A)
$$\Delta w = \eta d_j x_j$$
; $\Delta w_0 = -\eta d_j$, B) $\Delta w = -\eta d_j x_j$; $\Delta w_0 = -\eta d_j$; C) $\Delta w = -\eta d_j x_j$; $\Delta w_0 = \eta d_j$, D) $\Delta w = \eta d_j x_j$; $\Delta w_0 = \eta d_j$.

- 10. Consider a MLP defined as, $y_1 = g(x_1 + x_2 1.5)$, $y_2 = g(x_1 + x_2 0.5)$, and $y = g(y_2 y_1 0.5)$. The region defined by y >0 is best described as,
 - A) An infinitely long rectangular strip, B) a semi-infinite region, C) an angular region with an infinite area, D) none of the above.