Теория игр в топологии

Содержание

🕕 Игра Банаха-Мазура

Theorem 1.1.

 $\dfrac{\Pi y \text{сть}}{\bigcup_n \gamma_n} = X$ для $n \in \omega$. Если BM(X,M) α -благоприятна, то существует открытое непустое $U \subset X$ и дизььюнктное семейство μ_n открытых множеств для $n \in \omega$ так что выполняются условия

- **3** μ_{n+1} вписано в μ_n ;
- lacktriangle если $U_n \in \mu_n$ и $U_{n+1} \subset U_n$ для $n \in \omega$, то $X \cap \bigcap_n U_n \neq \varnothing$;

Пусть s выигрышная стратегия α . Положим $U=s(\varnothing)$. Построим последовательность семейств открытых множеств

$$\mu_0, \mathcal{B}_0, \mu_1, \mathcal{B}_1, \dots$$

Так что

- **1** $\mu_0 = \{U\};$
- $2 \mu_n$ дизьюнктные семейства;
- $oldsymbol{0}$ μ_{n+1} вписано в γ_n ;
- **⑤** \mathcal{B}_n вписанно в μ_n , μ_{n+1} вписанно в \mathcal{B}_n : заданы отображения $\varphi_n: \mu_n \to \mathcal{B}_{n-1}, \ \psi_n: \mathcal{B}_n \to \mu_n$ таким образом, что
 - (a) если $U_n \in \mu_n$, то $U_n \subset \varphi_n(U_n) \in \mathfrak{B}_{n-1}$;
 - (b) если $V_n \in \mathcal{B}_n$, то $V_n \subset \psi_n(V_n) \in \mu_n$.
- пусть
 - (a) $\mathfrak{A}_n = \{(U_0, V_0, U_1, ..., V_{n-1}, U_n) : U_i \in \mu_i$ для $i \leq n$, $V_i \in \mathfrak{B}_i$ для i < n, $\varphi_i(U_i) = V_{i-1}$ для $0 < i \leq n$, $\psi_i(V_i) = U_i$ для $i < n \} = \{(U_0, V_0, U_1, ..., V_{n-1}, U_n) : (U_0, V_0, U_1, ..., V_{n-1}) \in \mathfrak{B}_{n-1}$ и $\varphi_n(U_n) = V_{n-1} \};$
 - (b) $\mathfrak{B}_n = \{(U_0, V_0, U_1, ..., V_{n-1}, U_n, V_n) : (U_0, V_0, U_1, ..., V_{n-1}, U_n) \in \mathfrak{A}_n \text{ in } \psi_n(V_n) = U_n \};$

Тогда $s(U_0, V_0, U_1, ..., V_{n-1}) = U_n$ для $(U_0, V_0, U_1, ..., V_{n-1}, U_n) \in \mathfrak{A}_n$.

Доказательство.

```
Пусть \tau_*(V) — все непустые открытые подмножества V\subset X. Индукцией по n. Положим \mu_0=\{U\}. Пусть n>0. Положим \mathcal{B}'=\bigcup\{\tau_*(W):W\in\gamma_n\}. Для U_{n-1}\in\mu_{n-1} положим Положим \mu=\{s(U_0,V_0,...,U_{n-1},V):((U_0,V_0,...,U_{n-1})\in\mathfrak{A}_{n-1},V\in\mathcal{B}',V\subset U_n\} \mu=\pi-база U. Пусть \mu_n\subset A дизьюнктное семейство и \mu=\pi-база \mu=\pi-база
```