朴素贝叶斯

李波

• 在有监督学习任务中, 样本输入与样本输出存在一个关系

$$y = f(x)$$

- 有监督学习算法从众多(可能无数多个)假设中(hypothesis)找出一个假设,逼近真实关系y = f(x).
- 从统计学角度讲,一个很好的逼近关系为

在逻辑回归中,

$$p(y|\mathbf{x}) = \begin{cases} \sigma(\mathbf{\omega}^T \mathbf{x} + b) & \text{if } \mathbf{y} = 1 \\ 1 - \sigma(\mathbf{\omega}^T \mathbf{x} + b) & \text{if } \mathbf{y} = 0 \end{cases}$$

• 可否直接估计或计算p(y|x)?

贝叶斯公式

$$p(y|\mathbf{x}) = \frac{p(y,\mathbf{x})}{p(\mathbf{x})} = \frac{p(y)p(\mathbf{x}|y)}{p(\mathbf{x})}$$

贝叶斯公式

类别y出现的概率

$$p(y|\mathbf{x}) = \frac{p(y,\mathbf{x})}{p(\mathbf{x})} = \frac{p(y)p(\mathbf{x}|y)}{p(\mathbf{x})}$$

在类别y给定条件下, 样本特征x的概率

给定一个样本输入特征, 样本类别为y的概率

样本特征x的概率

贝叶斯公式

先验概率

类别y出现的概率

 $p(y|\mathbf{x}) \propto p(y) p(\mathbf{x}|y)$

后验概率

给定一个样本输入特征, 样本类别为y的概率

似然概率

在类别y给定条件下,样本特征x的概率

- 先验概率 (prior): 类别y出现的概率.
- **似然概率** (likelihood): 在类别y给定条件下,样本特征x的概率.
- · 后验概率 (posterior): 给定一个样本输入特征,样本类别为y的概率.

估计先验概率和似然概率

- 训练数据为 $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$, 其中 $x_i \in \mathbb{R}^{m \times 1}$, $y_i \in \{0,1\}$.
- 标签为0的训练样本有 n_0 个,标签为1的训练样本有 n_1 个.
- 先验概率的估计为

$$p(y = 0) = \frac{n_0}{n}$$
 $p(y = 1) = \frac{n_1}{n}$

- 如果特征都是连续变量
 - ✓ f(x|y)是什么分布?

估计先验概率和似然概率

- 训练数据为 $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$, 其中 $x_i \in \mathbb{R}^{m \times 1}$, $y_i \in \{0,1\}$.
- 标签为1的训练样本有 n_0 个,标签为0的训练样本有 n_1 个.
- 先验概率的估计为

$$p(y = 0) = \frac{n_0}{n}$$
 $p(y = 1) = \frac{n_1}{n}$

- 如果特征都是连续变量
 - ✓ f(x|y)是什么分布?

多维高斯分布.

✓ 高斯分布的参数都是什么?有多少个?

估计先验概率和似然概率

- 训练数据为 $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$, 其中 $x_i \in \mathbb{R}^{m \times 1}$, $y_i \in \{0,1\}$.
- 标签为1的训练样本有 n_0 个,标签为0的训练样本有 n_1 个.
- 先验概率的估计为

$$p(y = 0) = \frac{n_0}{n}$$
 $p(y = 1) = \frac{n_1}{n}$

- 如果特征都是连续变量
 - ✓ f(x|y)是什么分布?

多维高斯分布.

✓ f(x|y)是高斯分布,参数都是什么?有多少个?

高斯分布有两个参数,均值和协方差矩阵。均值有m个参数;协方差矩阵有 $\frac{m^2+m}{2}$ 个参数.

估计先验概率和似然概率

- 训练数据为 $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$, 其中 $x_i \in \mathbb{R}^{m \times 1}, y_i \in \{0,1\}$.
- 标签为1的训练样本有 n_0 个,标签为0的训练样本有 n_1 个.
- 先验概率的估计为

$$p(y = 0) = \frac{n_0}{n}$$
 $p(y = 1) = \frac{n_1}{n}$

- 如果特征都是离散变量
 - ✓ 计算p(x|y)需要每个类别条件下m个特征的联合概率,会出现**特征组合爆炸情况**.

特征组合爆炸

- 以银行贷款为例,特征为 性别 (男、女), 收入(中、低、高), 教育程度(高中,本科,研究生).
- 类别为通过贷款(y=1),未通过贷款(y=0).
- 共计有36种特征组合,需要估计所有特征可能组合的概率

$$y = 1$$

男、低、高中	男、中、高中	男、高、高中	女、低、高中	女、中、高中	女、高、高中
男、低、本科	男、中、本科	男、高、本科	女、低、本科	女、中、本科	女、高、本科
男、低、研	男、中、研	男、高、研	女、低、研	女、中、研	女、高、研

$$y = 0$$

男、低、高中	男、中、高中	男、高、高中	女、低、高中	女、中、高中	女、高、高中
男、低、本科	男、中、本科	男、高、本科	女、低、本科	女、中、本科	女、高、本科
男、低、研	男、中、研	男、高、研	女、低、研	女、中、研	女、高、研

为解决特征组合爆炸问题, 假设标签给定条件下m个特征相互独立

$$p(\mathbf{x}|y) = p(x_1, x_2, \dots, x_m|y) = p(x_1|y)p(x_2|y) \dots p(x_m|y) = \prod_{j=1}^m p(x_j|y)$$

需要估计或计算概率的个数,从36个降低到16个.

对于**连续**数值特征,同样假设在标签给定条件下m个特征相互独立

$$f(\mathbf{x}|y) = f(x_1, x_2, \dots, x_m|y) = f(x_1|y)f(x_2|y) \dots f(x_m|y) = \prod_{j=1}^m f(x_j|y)$$

- 仍然假设在类别给定条件下,每个特征高斯分布,具有两个参数,即均值和方差。
- 对一个类别, m个特征共有m个均值和m个方差, 共计2m个参数。参数数量从

$$\frac{m^2+m}{2}+m$$
降低到2 m 。

问题: 如果某个特定特征值在训练数据中出现次数比较少怎么办? 比如在银行贷款例子中, 如果具有教育程度为 "高中" 的样本很少, 那么估计p(高中|Y|=1)和p(高中|Y|=0)变得不准确。

男性	女性	低收入	中等收入	高收入	高中	本科	研究生
15	5	8	11	1	9	6	5

解决方法: 拉普拉斯平滑(Laplace smoothing)。假设每个特征都人为增加k

$$p(A_{ji}|Y=0) \approx \frac{n_{0ji}}{n_0} \longrightarrow p(A_{ji}|Y=0) \approx \frac{n_{0ji}+k}{n_0+mk}$$

,其中 A_{ji} 表示第j个特征的第i个取值。

拉普拉斯平滑(Laplace smoothing)。假设每个特征都人为增加k

$$p(A_{ji}|Y=0) \approx \frac{n_{0ji}}{n_0}$$
 \longrightarrow $p(A_{ji}|Y=0) \approx \frac{n_{0ji}+k}{n_0+mk}$

比如,贷款例子中,类别为0中,

男性	女性	低收入	中收入	高收入	高中	本科	研究生
15	5	8	11	1	9	6	5

男性	女性	低收入	中收入	高收入	高中	本科	研究生
15 + k	5 + k	8 + k	11 + k	1 + k	9 + k	6 + k	5 + k

$$p$$
(高收入 $|Y=0) \approx \frac{1}{20}$

$$p($$
高收入 $|Y=0)$ $\approx \frac{1}{20}$ \longrightarrow $p($ 高收入 $|Y=0)$ $\approx \frac{1+k}{20+8k}$

拉普拉斯平滑(Laplace smoothing)。假设每个特征都人为增加k

$$p(A_{ji}|Y=0) \approx \frac{n_{0ji}}{n_0}$$
 \longrightarrow $p(A_{ji}|Y=0) \approx \frac{n_{0ji}+k}{n_0+mk}$

比如,贷款例子中,类别为0中,

男性	女性	低收入	中收入	高收入	高中	本科	研究生
15	5	8	11	1	9	6	5

男性	女性	低收入	中收入	高收入	高中	本科	研究生
15 + k	5 + k	8 + k	11 + k	1 + k	9 + k	6 + k	5 + k

$$p$$
(高收入 $|Y=0) \approx \frac{1}{20}$

$$p($$
高收入 $|Y=0)$ $\approx \frac{1}{20}$ \longrightarrow $p($ 高收入 $|Y=0)$ $\approx \frac{1+k}{20+8k}$

训练过程:

1. 估计p(y=0), p(y=1), $p(x_{.i}|y=0)$, $p(x_{.i}|y=1)$, $i=1,2,\cdots,m$.

测试过程

- 1. 计算p(y = 0|x)和p(y = 1|x).
- 2. 如果p(y = 0|x) > p(y = 1|x), 预测标签 $\hat{y} = 0$.
- 3. 如果p(y = 0|x) < p(y = 1|x), 预测标签 $\hat{y} = 1$.

朴素贝叶斯学习优缺点

优点:

- 易于理解,代码易于实现;
- 训练容易, 没有复杂的参数估计问题;
- 预测速度快,可在线运行。

缺点

- 标签给定条件下特征相互独立假设;
- 小概率特征概率估计不准确。

典型应用

- 垃圾邮件分类
- 本文情感分类
- 在线行为预测

