Compte rendu de leçon de chimie

Préparation à l'agrégation de physique de L'ENS Paris-Saclay

BENHAMOU-BUI Benjamin PLO Juliette

Leçon n° 20

Détermination de constantes d'équilibre

Table des matières

1	Obj	jectifs de la leçon	2
2	Plar	n de la leçon	2
	2.1	Introduction	2
	2.2	Importance de la constante d'équilibre	2
		2.2.1 Loi de Guldberg et Waage	2
		2.2.2 Sens d'évolution d'une réaction	2
		2.2.3 Détermination d'une constante à l'aide de tables	3
	2.3	Détermination de la constante d'acidité du couple CH_3COOH/CH_3COO^- :	3
		2.3.1 Théorie	3
		2.3.2 Expérience	4
	2.4	Détermination de constantes d'équilibre de l'Aluminium	4
		2.4.1 Produit de solubilité	4
		2.4.2 Constante de formation du complexe $Al(OH)_4^-$	4
	2.5	Conclusion	5
3	Que	m estions/Remarques	5

1 Objectifs de la leçon

Niveau : CPGE (2eme année)

Pr'e-requis:

- -Thermodynmanique, thermochimie, loi de Hess
- -Définition du quotient Réactionnel
- -Principe d'un dosage
- -Acide/Base
- -Solubilité
- -Complexation

Les objectifs disciplinaires de cette leçon sont :

- savoir prévoir le sens d'évolution d'une réaction chimique
- savoir utiliser des tables pour calculer une constante d'équilibre à l'aide de l'enthalpie libre de réaction
- savoir déterminer la valeur de la constante d'équilibre pour une équation de réaction, combinaison linéaire d'équations dont les constantes thermodynamiques sont connues
- exploiter une courbe de titrage pour déterminer une valeur expérimentale d'une constante thermodynamique d'équilibre.

2 Plan de la leçon

2.1 Introduction

Durant leurs cursus, les élèves rencontrent plusieurs fois ce genre de données (tableau avec des valeurs de Ka, β , etc) dans un énoncé de DS, concours. Ils se sont peut être demandés comment elles étaient déterminées, et bien ce sera le cœur de la leçon et on tentera de répondre à cette question. Avant tout un peu de rappel sur la constante d'équilibre, et son importance.

2.2 Importance de la constante d'équilibre

2.2.1 Loi de Guldberg et Waage

Par thermochimie on a $\Delta rG = \sum \mu_i(P,T)\underline{\nu_i}$ avec $\underline{\nu_i}$ =coeff stochio algébrique et on a $\mu_i(P,T) = \mu_i^0(T)RT \ln(a_i)$ \rightarrow on remplace dans la formule de ΔrG et on trouve :

$$\Delta rG = \Delta rG^0 + RT\ln(Q)$$

A l'équilibre, on a $\Delta rG=0$, on trouve alors $0=\Delta rG^0(T)+RT\ln(Q_{eq})$

A l'équilibre, le quotient réactionnel tend vers une constante thermodynamique, qui dépend uniquement de T :

$$\boxed{Q_{eq} = K^0(T) = \exp(-\frac{\Delta r G^0(T)}{RT})} \quad \text{loi de Guldberg et Waage}$$

On voit qu'à l'équilibre, la composition du système dépend uniquement de $K^0(T)$, donc en connaissant cette dernière, on peut remonter à la composition du système à l'équilibre ("premier rôle")

2.2.2 Sens d'évolution d'une réaction

On réécrit $\Delta rG = RT \ln(\frac{Q}{K^0(T)})$ et on a par la thermo le critère suivant : $\Delta rGd\xi \leq 0$, d'où :

-si
$$\Delta rG < 0 \Rightarrow Q < K^0(T) \Rightarrow$$
 sens direct
-si $\Delta rG > 0 \Rightarrow Q > K^0(T) \Rightarrow$ sens indirect
-si $\Delta rG = 0 \Rightarrow Q = K^0(T) \Rightarrow$ équilibre chimique

Connaissant $K^0(T)$, il est possible de savoir dans quel sens évolue la réaction considérée ("deuxième rôle").

2.2.3 Détermination d'une constante à l'aide de tables

On vient de trouver une nouvelle expression de la constante d'équilibre : $K^0(T) = \exp(-\frac{\Delta r G^0(T)}{RT})$ Avec thermochimie, on a $\Delta r G^0(T) = \Delta r H^0(T) - T \Delta r S^0(T)$ Par loi de Hess : $\Delta r H^0(T) = \sum \underline{\nu_i} \Delta f H^0_i(T)$ Par définition : $\Delta r S^0(T) = \sum \underline{\nu_i} \Delta S^0_{m,i}(T)$ Or les valeurs de $\Delta f H^0_i(T) et \Delta S^0_{m,i}(T)$ sont tabulées, on peut donc remonter à la valeur de $K^0(T)$.

Exemple:

$$4Fe_3O_4(s) + O_2(g) \rightleftharpoons 6Fe_2O_3(s)$$

1) Détermination de $K^0(T)$:

On trouve avec valeurs tabulées (cf diaporama) $\Delta r H^0(300K)$ =-500kJ/mol et $\Delta r S^0(300K)$ =-260 J/K/mol et $K^0(T)$ =3.10⁷³

2) Détermination de la composition du système à l'équilibre :

$$K^{0}(T) = \frac{p^{0}}{p(O_{2})_{eq}} \Rightarrow \underline{p(O_{2})_{eq}} = 0, 3.10^{-73} \text{ bar}$$

3) Quel sens d'évolution?

Initialement $4Fe_3O_4$ a l'air ambiant, donc on est à pression atmosphérique donc $p(O_2)_i = p^0$, donc $Q_i=1$. On a alors $Q_i < K^0(T) \Rightarrow \underline{\text{sens d'évolution direct}}$

Ccl: on vient de montrer que l'équilibre d'une réaction est décrit par une constante thermodynamique $K^0(T)$, et qu'elle nous permet de connaître le sens d'évolution de la réaction et la composition du système à l'équilibre. Cependant, cette détermination à l'aide de tables n'est pas tjrs faisable, on peut alors procéder à une détermination expérimentale.

2.3 Détermination de la constante d'acidité du couple CH_3COOH/CH_3COO^- :

2.3.1 Théorie

On considère la dissociation de l'acide éthanoïque dans l'eau :

$$K_A = \frac{[H_3O^+]_{eq}[CH_3COO^-]_{eq}}{[CH_3COOH]_{eq} c^0} = \frac{x^2}{(c_i - x)c^0}$$

. Loi de Kolrausch : $\sigma = (\lambda_{H_3O^+}^0 + \lambda_{CH_3COO^-}^0)x$

D'où :
$$\left(\frac{\sigma}{\lambda_{H_3O^+}^0 + \lambda_{CH_3COO^-}^0} \right)^2 = K_A c^0 \left(c_i - \frac{\sigma}{\lambda_{H_3O^+}^0 + \lambda_{CH_3COO^-}^0} \right)$$

à 25°C,
$$\lambda_{H_3O^+}^0 =$$
 34.9 $mS.m^2/mol$ et $\lambda_{CH_3COO^-}^0 =$ 4.1 $mS.m^2/mol.$

En faisant varier c_i et donc σ , il est possible de remonter à la valeur de K_A avec la pente en traçant

y=f(x) avec y=
$$\left(\frac{\sigma}{\lambda_{H_3O^+}^0 + \lambda_{CH_3COO^-}^0}\right)^2$$
 et x= $\left(c_i - \frac{\sigma}{\lambda_{H_3O^+}^0 + \lambda_{CH_3COO^-}^0}\right)$

2.3.2 Expérience

- \rightarrow slide avec protocole : échelle de concentration $c_i = [0.01, 0.03, 0.05, 0.1, 0.3] \text{ mol/L}$
- \rightarrow manipulation en direct : dilution pour avoir un nouveau point $c_i = 0.15 \text{ mol/L}$

En direct, le conductimètre a mis du tps à se stabiliser, donc j'ai pris la valeur de la préparation, on trouve $pK_A=4.9$ et $pK_{A,tabule}=4.8$ à 25°C.

2.4 Détermination de constantes d'équilibre de l'Aluminium

 \rightarrow slide présentant l'expérience : titrage par suivi pH-métrique des ions Al^{3+} par soude On va retenir qu'un point anguleux sur une courbe pH=f(V) : apparition/disparition d'un précipité

2.4.1 Produit de solubilité

On a
$$Al^{3+}$$
 (aq) + $3HO^{-}$ (aq) $\rightleftharpoons Al(OH)_3$ (s)

$$K_s = \frac{[Al^{3+}]_{eq}[HO^{-}]_{eq}^3}{(c^0)^4} \text{ et on introduit } K_e = \frac{[H_3O^{+}]_{eq}[HO^{-}]_{eq}}{(c^0)^2}$$

On peut montrer que
$$pK_s = -log\left(\frac{[Al^{3+}]_{eq}}{c^0}\right) + 3pK_e - 3pH$$

. Apparition du précipité (1er pt anguleux) on considère $[Al^{3+}]_{eq} = [Al^{3+}]_0$.

On lit alors sur la courbe expérimentale du titrage pH(1er pt anguleux)= $3.8 \pm 0.1 \rightarrow pK_{s,exp} = 31.9 \pm 0.3$ et $pK_{s,tab} = 33.5$ à 25° C.

2.4.2 Constante de formation du complexe $Al(OH)_4^-$

Dans le bécher, on a par la suite : $Al(OH)_3$ (s) + HO^- (aq) $\rightleftharpoons Al(OH)_4^-$ (aq) On fait apparaître une combinaison linéaire :

$$Al(OH)_{3\,(s)} \rightleftharpoons Al^{3+}_{(aq)} + 3\,HO^-_{(aq)}$$
 de constante K_s + $Al^{3+}_{(aq)} + 4\,HO^-_{(aq)} \rightleftharpoons Al(OH)^-_{4\,(aq)}$ de constante β_4 =
$$Al(OH)_{3\,(s)} + HO^-_{(aq)} \rightleftharpoons Al(OH)^-_{4\,(aq)}$$
 de constante $\beta_4\,K_s$

On a alors $\beta_4 K_s = \frac{[Al(OH)_4^-]_{eq}}{[HO^-]_{eq}}$ et en faisant la même méthode que précédemment on obtient :

$$log \beta_4 = log \left(\frac{[Al(OH)_4^-]_{eq}}{c^0} \right) - pH + pK_e + pK_s$$

. Disparition du précipité (2ème point anguleux) on considère $n(Al(OH)_4^-)_{eq} = n(Al^{3+})_0$ il n'y a plus de $\overline{Al^{3+}}$ et $Al(OH)_3$, tout s'est transformé en $\overline{Al(OH)_4^-}$. Puis si on néglige la dilution, on peut dire que $[Al(OH)_{4}^{-}]_{eq} = [Al^{3+}]_{0}.$

On lit alors sur la courbe expérimentale du titrage pH(2eme pt anguleux)= $11.2 \pm 0.3 \rightarrow log \beta_{4,exp} = 33.4 \pm 0.6$ et $log \beta_{4,tab} = 33.3 \text{ à } 25^{\circ}\text{C}.$

On trouve des valeurs satisfaisantes!! sources d'erreurs : on était pas à la même température ($T_{labo}=19^{\circ}C$), lecture verrerie pdt le titrage puis point anguleux pas très net! changer les concentrations de l'expérience pour avoir de meilleurs résultats.

2.5 Conclusion

Il existe d'autres méthodes de détermination expérimentales. En tout cas, il faut retenir que la constante d'équilibre $K^0(T)$ est importante pour savoir dans quel sens évolue la réaction et pouvoir caractériser le système à l'équilibre, ce qui est primordial en industrie par ex pour savoir comment on peut influencer la réaction pour avoir ce qu'on veut à la fin \rightarrow ouverture sur la notion d'optimisation/stratégie de synthèse.

Questions/Remarques 3

- démonstration de l'inégalité $\Delta rGd\xi < 0$
- on a $\Delta r H^0(T)$ et $\Delta r S^0(T)$ qui dépendent de T? non on considère approximation Ellingham.
- dérivée de ΔrH par rapport à T?
- pourquoi $\Delta f H^0(O_2(g))=0$? $O_2(g)$ état standard de référence de l'élément O.
- pour quoi on a en général $\lambda^0_{H_3O^+}\gg\lambda^0_{ion}$? échange facilité des H^+ via les molécules d'eau (solvant). comment marche conductimètre?
- qu'est ce que la constante de cellule? et quelle est son expression? on peut définir $k = \frac{L}{S}$ avec S surface des électrodes, et L= distance entre les 2 électrodes, k en m^{-1} .
- ATTENTION!! aux chiffres significatifs pour les concentrations, il faut garder à l'esprit qu'un titrage, c'est précis!!!
- Pour avoir meilleur pt anguleux, on peut essayer peut-être $[Al^{3+}]_0$ =0.050 mol/L d'un volume V=100mL et $[HO^{-}]=0.50 \text{ mol/L}$.