Online Optimization, Learning, and Games (O2LG) Lesson 2: Basic elements of Game Theory

Vinh Thanh Ho*, Panayotis Mertikopoulos

*Faculté des Sciences et Techniques Université de Limoges vinh-thanh.ho@unilim.fr

Table of Contents

- Mixed strategies
- Nash's theorem
- 3 Potential games
- 4 Congestion games

Recall: Definition of finite game

Definition 1 (Finite games)

A *finite game in normal (or strategic) form* is a tuple $(\mathcal{N}, \{\mathcal{A}_i\}_{i \in \mathcal{N}}, \{u_i\}_{i \in \mathcal{N}})$, where:

- $\mathcal{N} = \{1, 2, \dots, N\}$ is a finite set of *players*.
- For each player $i \in \mathcal{N}$, \mathcal{A}_i is a finite set of *actions* (or *pure strategies*) for player i.
- For each player $i \in \mathcal{N}$, $u_i : \prod_{j \in \mathcal{N}} \mathcal{A}_j \to \mathbb{R}$ is a **payoff function** mapping each combination (or *profile*) of actions $(a_1, ..., a_N)$ to a real number $u_i(a_1, ..., a_N)$ that is the payoff to player i when players 1, 2, ..., N do actions $a_1, a_2, ..., a_N$, respectively.

Notation: finite game $\Gamma \equiv \Gamma(\mathcal{N}, \mathcal{A}, u)$.

Mixed strategies

00000000

Instead of playing pure strategies, players could **mix** their actions:

- **Mixed strategy** of player $i \in \mathcal{N}$: probability distribution x_i on A_i .
- **Notation**: x_{i,a_i} is the probability that the player i selects the strategy $a_i \in A_i$.
- **Strategy space** of player *i*:

$$\mathcal{X}_i := \Delta(\mathcal{A}_i) = \left\{ x_i \in \mathbb{R}^{\mathcal{A}_i} : x_{i,a_i} \geq 0 \text{ and } \sum_{a_i \in \mathcal{A}_i} x_{i,a_i} = 1
ight\}$$

• **Support** of x_i : the set of actions played with positive probability under x_i .

$$\mathsf{supp}(x_i) := \{a_i \in \mathcal{A}_i : x_{i,a_i} > 0\}$$

• x_i is **pure** when supp (x_i) is a singleton.

Return to the Rock-Paper-Scissors game!

Playing the Rock-Paper-Scissors game with mixed strategies

- Players: $\mathcal{N} = \{1, 2\}$
- Actions: $A_i = \{R, P, S\}, i \in \mathcal{N}$
- Mixed strategy space: $X_i = \Delta\{R, P, S\}$
 - Choose a mixed strategy $x_i \in \mathcal{X}_i$.

For example,
$$x_i = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$$
 or $x_{i,R} = x_{i,P} = x_{i,S} = \frac{1}{3}$.

• Choose action $a_i \sim x_i$.

Mixed strategies: collective

When all players mix their actions:

- Each player $i \in \mathcal{N}$ uses a mixed strategy $x_i \in \mathcal{X}_i$.
- Probability of selecting the action profile $a = (a_1, \ldots, a_N) \in A$:

$$x_{a_1,...,a_N} = \prod_{j \in \mathcal{N}} x_{j,a_j}$$

Probability of selecting the action $a_{-i} \in A_{-i}$:

$$\mathbf{x}_{-i,a_{-i}} = \prod_{j \in \mathcal{N}, j \neq i} \mathbf{x}_{j,a_j}$$

Mixed strategy profile:

$$x = (x_1, \ldots, x_N) \in \mathcal{X} := \prod_{i \in \mathcal{N}} \mathcal{X}_i$$

Mixed strategy profile of i's opponents:

$$\mathbf{x}_{-i} = (\mathbf{x}_1, \dots, \mathbf{x}_{i-1}, \mathbf{x}_{i+1}, \dots, \mathbf{x}_N) \in \mathcal{X}_{-i} := \prod_{j \in \mathcal{N}, j \neq i} \mathcal{X}_j$$

Expected payoffs under mixed strategies

Expected payoff to a player under a mixed strategy profile:

$$u_i(x) = \sum_{a \in \mathcal{A}} x_{a_1,\ldots,a_N} u_i(a_1,\ldots,a_N)$$

or, in terms of other players' strategies:

$$u_i(x_i, x_{-i}) = \sum_{a_i \in A_i} \sum_{a_{-i} \in A_{-i}} x_{i,a_i} x_{-i,a_{-i}} u_i(a_i, a_{-i})$$

Expected payoff to a pure strategy under a mixed strategy profile:

$$v_{i,a_i}(x) := u_i(a_i, x_{-i}) = \sum_{a_{-i} \in A_{-i}} x_{-i,a_{-i}} u_i(a_i, a_{-i})$$

Mixed payoff vector of a player:

$$v_i(x) = (v_{i,a_i}(x))_{a_i \in A_i} = (u_i(a_i, x_{-i}))_{a_i \in A_i}$$

Note that (i) $u_i(x) = \langle v_i(x), x_i \rangle$; (ii) u_i is linear in x_i ; (iii) v_{i,a_i} and v_i are **independent** of x_i .

Playing the Rock-Paper-Scissors game with mixed strategies

Players: $\mathcal{N} = \{1, 2\}$

0000000

- **Actions**: $A_i = \{R, P, S\}, i \in \mathcal{N}$
- Mixed strategies: $x_i \in \mathcal{X}_i = \Delta \{R, P, S\}$

Mixed strategy payoffs: $u_1(x_1, x_2)$, $u_2(x_1, x_2)$?

$$u_1(x_1, x_2) = x_1^{\top} A x_2$$
, where $A = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}$.

$$u_2(x_1,x_2)=-u_1(x_1,x_2).$$

Mixed extensions

Definition 2 (Mixed extensions of a finite game)

A **mixed extension** of a finite game $\Gamma = \Gamma(\mathcal{N}, \mathcal{A}, u)$ is a **continuous** game $\Delta(\Gamma)$ with

- Players $i \in \mathcal{N} = \{1, ..., N\}$
- Actions $x_i \in \mathcal{X}_i = \Delta(\mathcal{A}_i)$ per player $i \in \mathcal{N}$
- Payoff functions $u_i : \mathcal{X} \to \mathbb{R}$, $i \in \mathcal{N}$

Remark that

00000000

- *Continuous game*: game with *continuous* action spaces (here \mathcal{X}_i instead of \mathcal{A}_i).
- Without confusing Γ and $\Delta(\Gamma)$ are indistinguishable.

Table of Contents

- Mixed strategies
- Nash's theorem

- 3 Potential games
- 4 Congestion games

Mixed best responses

Extending the notion of best-responding to mixed strategies

Definition 3 (Mixed best responses)

• A mixed strategy $x_i^* \in \mathcal{X}_i$ is a **mixed best response** of player i to a mixed strategy profile $x_{-i} \in \mathcal{X}_{-i}$ for the other players if $u_i(x_i^*, x_{-i}) \ge u_i(x_i, x_{-i})$ for all $x_i \in \mathcal{X}_i$,

equivalently,

$$x_i^* \in \operatorname{argmax}_{x_i \in \mathcal{X}_i} u_i(x_i, x_{-i}) = \operatorname{argmax}_{x_i \in \mathcal{X}_i} \langle v_i(x), x_i \rangle.$$

• A *mixed best-response correspondence* of player *i* is a set-valued function $BR_i: \mathcal{X}_{-i} \to \mathcal{X}_i$ defined by

$$BR_i(x_{-i}) := argmax_{x_i \in \mathcal{X}_i} u_i(x_i, x_{-i})$$

• A *collective best-response correspondence* BR : $\mathcal{X} \to \mathcal{X}$ is defined by:

$$\mathsf{BR}(x) := (\mathsf{BR}_i(x_{-i}))_{i \in \mathcal{N}}.$$

Playing the Rock-Paper-Scissors game with mixed strategies

- Players: $\mathcal{N} = \{1, 2\}$
- Actions: $A_i = \{R, P, S\}, i \in \mathcal{N}$
- Mixed strategies: $x_i^* \in \mathcal{X}_i = \Delta\{R, P, S\}$

Mixed strategy payoffs at $x^* = (x_1^*, x_2^*)$ with $x_1^* = x_2^* = (1/3, 1/3, 1/3)^{\top}$:

$$u_1(x_1^*, x_2^*) = u_2(x_1^*, x_2^*) = 0.$$

More generally, $u_1(x_1, x_2^*) = 0 = u_2(x_1^*, x_2)$ for all $x_1 \in \mathcal{X}_1, x_2 \in \mathcal{X}_2$.

In other words, $u_1(x_1, x_2^*) < u_1(x_1^*, x_2^*), \forall x_1 \in \mathcal{X}_1$, i.e. $x_1^* \in BR_1(x_2^*) = BR_1(x_1^*)$. Similarly, $X_2^* \in \mathsf{BR}_2(X_2^*)$. More precisely, $\mathsf{BR}_1(X_2^*) = \mathcal{X}_1$, $\mathsf{BR}_2(X_2^*) = \mathcal{X}_2$, and $\mathsf{BR}(X_2^*) = \mathcal{X}_1 \times \mathcal{X}_2 = \mathcal{X}$.

Nash equilibrium in mixed strategies

Definition 4 (Nash equilibrium)

A mixed strategy profile $x^* = (x_1^*, \dots, x_N^*)$ is a **Nash equilibrium** if $x^* \in BR(x^*)$, i.e.

$$x_i^* \in \mathsf{BR}_i(x_{-i}^*)$$
 for all $i \in \mathcal{N}$

or, equivalently, if

$$u_i(x_i^*, x_{-i}^*) \ge u_i(x_i, x_{-i}^*)$$
 for all $i \in \mathcal{N}$ and for all $x_i \in \mathcal{X}_i$.

Nash's theorem

The Rock-Paper-Scissors game admits a Nash equilibrium in mixed strategies. Is this always the case?

Theorem 1 (Nash 1950)

Every finite game admits a Nash equilibrium in mixed strategies.

Table of Contents

Mixed strategies

- 2 Nash's theorem
- 3 Potential games
- 4 Congestion games

Potential games

Return to pure strategies:

- In single-player games: Nash equilibria trivially exist
- In multi-player games: Not true.

What is the bridge between single-player and multi-player settings?

Definition 5 (Potential games, Monderer et al. 1996)

A finite game $\Gamma \equiv \Gamma(\mathcal{N}, \mathcal{A}, u)$ is a **potential game** if there exists a function $\Phi : \mathcal{A} \to \mathbb{R}$ such that

$$u_i(a'_i, a_{-i}) - u_i(a''_i, a_{-i}) = \Phi(a'_i, a_{-i}) - \Phi(a''_i, a_{-i})$$

for all $i \in \mathcal{N}$, $a_{-i} \in \mathcal{A}_{-i}$, and $a'_i, a''_i \in \mathcal{A}_i$.

Here the function Φ is called the **potential function**.

Potential games: A simple example

Consider a game Γ with payoff matrix:

Player 1

A B

$$(5,2)$$
 $(-5,-4)$
 $(5,2)$ $(1,4)$

Show that Γ is a potential game. What is its potential function Φ ?

Potential games: Existence of equilibria

- Any **global maximizer** $a^* \in \operatorname{argmax} \Phi$ of Φ is a (pure) Nash equilibrium.
- Any *unilateral maximizer* $a^* \in A$ of Φ , i.e.

$$\Phi(a^*) \geq \Phi(a_i, a_{-i}^*)$$
 for all $i \in \mathcal{N}$ and $a_i \in \mathcal{A}_i$,

is a (pure) Nash equilibrium.

Question: When does a game become potential?

Proposition 1 (Theorem 4.5, Monderer et al. 1996)

Let Γ be a game in which the strategy sets are intervals of real numbers. Suppose the payoff functions are twice continuously differentiable. Γ is a potential game if and only if

$$\nabla_{x_i} v_i(x) = \nabla_{x_i} v_j(x)$$
 for all $x \in \mathcal{X}$ and $i, j \in \mathcal{N}$,

where $v_i(x) = (u_i(a_i, x_{-i}))_{a_i \in A_i}$ is the mixed payoff vector of player $i \in \mathcal{N}$.

Best-response dynamics

A natural updating process:

- Players may choose a new action at each stage n = 1, 2, ...
- Players select the best-responses that maximize their payoffs given the strategies of the other players.

Definition 6 (Best-response dynamics)

The **best-response dynamics** are defined by the recursion

$$a_{i_n,n+1} \in \left\{ egin{array}{ll} \mathsf{BR}_{i_n}(a_{-i_n,n}) & \mathsf{if} \ a_{i_n,n}
otin \mathsf{BR}_{i_n}(a_{-i_n,n}) \\ \{a_{i_n,n}\} & \mathsf{otherwise} \end{array}
ight.$$

where i_n is any player updating at stage n and $a_{i,n}$ is the action of player i at stage n.

Convergence of Best-response dynamics (BRD)

Does (BRD) converge?

• No - and different modes of updating do not help.

Fortunately, one has good convergence properties in potential games:

Proposition 2 (Monderer et al. 1996)

Let Γ be a finite potential game. Then the iterative version of (BRD) converges to a pure Nash equilibrium after finitely many steps.

Table of Contents

- Mixed strategies
- 2 Nash's theorem
- 3 Potential games
- 4 Congestion games

Congestion games

- **Network**: graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$.
- $(O_i, D_i)_{i \in \mathcal{N}}$: player i travels from the origin O_i to destination D_i and induces 1 unit of traffic.
- **Paths** A_i : (sub)set of paths joining $O_i \sim D_i$.
- **Path choice**: player *i* chooses path $a_i \in A_i$.

Congestion games

- **Network**: graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$.
- $(O_i, D_i)_{i \in \mathcal{N}}$: player i travels from the origin O_i to destination D_i and induces 1 unit of traffic.
- **Paths** A_i : (sub)set of paths joining $O_i \sim D_i$.
- **Path choice**: player *i* chooses path $a_i \in A_i$.
- **Load** $\ell_e(a) = \sum_{i \in \mathcal{N}} \mathbb{1}(e \in a_i)$: total traffic load along edge e in a strategy profile $a \in \mathcal{A}$.
- **Edge cost function** $c_{\theta}(\ell_{\theta}(a))$: cost along edge when edge load is $\ell_{\theta}(a)$ with $a \in A$.
- Player cost: $c_i(a) = \sum_{e \in a_i} c_e(\ell_e(a))$ for $a \in A$.

Congestion game: $\Gamma = (\mathcal{G}, \mathcal{N}, \mathcal{A}, c)$

- Atomic: all players have non-negligible traffic.
- Non-splittable: not split the traffic among various paths.

Congestion games

Rosenthal's Theorem

Theorem 2 (Rosenthal 1973)

Any congestion game admits the potential function:

$$\Phi(a) = \sum_{e \in \mathcal{E}} \sum_{k=1}^{\ell_e(a)} c_e(k) \ \ \textit{for all } a \in \mathcal{A}.$$

Price of anarchy

Define $C(a) := \sum_{i \in \mathcal{N}} c_i(a)$ as the congestion game's **social cost** function.

Definition 7 (Social optimum)

The **social optimum** of a congestion game $\Gamma = (\mathcal{G}, \mathcal{N}, \mathcal{A}, c)$ is the value

$$\mathsf{Opt} = \min_{a \in \mathcal{A}} C(a).$$

Definition 8 (Price of anarchy, Koutsoupias et al. 1999)

The **Price of Anarchy** (PA) of a congestion game Γ is defined as

$$\mathsf{PA} = \max_{a^* \in \mathsf{Eq}(\Gamma)} \frac{C(a^*)}{\mathsf{Opt}}.$$

Here Eq(Γ) is the set of pure Nash equilibria for the game Γ .

Bound of PA with linear costs

Consider the games with the linear cost function, i.e. $c_e(\ell) = A_e \ell + b_e, \forall e$.

Theorem 3 (Christodoulou et al. 2005)

For any congestion game with linear cost functions, PA is at most $\frac{5}{2}$.

Mixed strategies Nash's theorem Potential games Congestion games 000000000 00000 000000 000000€

Summary

After two lessons of Game Theory

- Finite games: definitions & examples
- Strategies: pure & mixed
- Strategic dominance: strict, weak, iterated
- Best responses: pure & mixed
- Nash equilibrium: pure, mixed, existence
- Potential game
- Best-response dynamics
- Congestion game
- Price of anarchy

Next lesson

- Game dynamics
- Exponential weights and the replicator dynamics
- Rationality analysis
- ...

References

- [1] George Christodoulou and Elias Koutsoupias. The Price of Anarchy of Finite Congestion Games. In: *Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing*. STOC '05. Baltimore, MD, USA: Association for Computing Machinery, 2005, pp. 67–73 (cited at slide -1).
- [2] Elias Koutsoupias and Christos Papadimitriou. Worst-Case Equilibria. In: *STACS 99*. Ed. by Christoph Meinel and Sophie Tison. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 404–413 (cited at slide -2).
- [3] Dov Monderer and Lloyd S. Shapley. Potential Games. In: *Games and Economic Behavior* 14.1 (1996), pp. 124–143 (cited at slides -11, -9, -7).
- [4] John F. Nash. Equilibrium points in *n*-person games. In: *Proceedings of the National Academy of Sciences* 36.1 (1950), pp. 48–49 (cited at slide -13).
- [5] Robert W. Rosenthal. A class of games possessing pure-strategy Nash equilibria. In: *International Journal of Game Theory* 2.1 (Dec. 1973), pp. 65–67 (cited at slide -3).