

Actividad 1: Proceso de arranque

1. Proceso de arrangue

El arranque de un sistema operativo sigue una secuencia precisa que inicia con la carga y ejecución del firmware de la placa madre (BIOS o EFI) y finaliza con la inicialización del núcleo del sistema operativo. Esta secuencia depende de elementos clave como el esquema de particiones (MBR o GPT) y el tipo de firmware, los cuales interactúan para localizar y cargar el sistema operativo.

1.1. Encender el sistema

- Al encender la computadora, el procesador carga en la RAM el firmware de la placa madre desde la memoria ROM, EEPROM o Flash donde está almacenado.
- El firmware es un software básico que inicializa el hardware y gestiona los primeros pasos del proceso de arranque.

1.2. Verificar el hardware (POST)

- El firmware ejecuta el **Power-On Self Test (POST)**, un proceso que comprueba el estado y funcionamiento básico de los componentes, como la memoria RAM, la CPU, la tarjeta gráfica y los dispositivos de entrada/salida.
- Si POST detecta errores críticos, el arranque se detiene y el sistema puede emitir códigos sonoros (beeps) o mostrar mensajes en pantalla.

1.3. Seleccionar el dispositivo de arranque

- El firmware consulta la configuración del **orden de arranque**, almacenada en la **CMOS RAM**, una pequeña memoria alimentada por una batería en la placa madre.
- Según el orden configurado (por ejemplo, disco duro, unidad USB, red), el firmware selecciona el dispositivo donde buscará el sistema operativo.

1.4. Determinar el esquema de particiones

El firmware utiliza el esquema de particiones del dispositivo de arranque (MBR o GPT) para interpretar cómo está organizado el disco y localizar el cargador de arranque.

- Por qué el firmware necesita un esquema de particiones:
 - El firmware no "sabe" de antemano cómo está estructurado el disco; necesita un estándar como MBR o GPT para:
 - Identificar las particiones disponibles en el disco.
 - Ubicar el código de arranque necesario, que puede estar en el sector de arranque (MBR) o en una partición especial (ESP en GPT).
 - Determinar cómo acceder a los datos siguiendo las reglas definidas por el esquema de particiones.
 - Sin esta información, el firmware no podría localizar ni cargar el cargador de arranque ni el sistema operativo.

Si el sistema utiliza BIOS:

- BIOS busca el Master Boot Record (MBR) en el primer sector del disco (sector 0). Este contiene:
 - Una tabla de particiones que describe las particiones primarias del disco.
 - Un bloque de código de arranque que inicia el cargador del sistema operativo.
 - Una marca de arranque, que es el valor 55AAh en los dos últimos bytes del sector, indicando que el disco es arrancable.
- Si el MBR está presente y válido, el código de arranque se carga en la RAM y el control se transfiere a este código.

• Si el sistema utiliza EFI:

- EFI (o UEFI) es un firmware más avanzado que busca la EFI
 System Partition (ESP), definida en el esquema GPT.
- La EFI System Partition (ESP):
 - Es una partición especial donde se almacenan los cargadores de arranque y aplicaciones de arranque.
 - Utiliza el sistema de archivos **FAT32**, compatible con una amplia variedad de hardware.
 - Contiene archivos como bootx64.efi, que cargan el sistema operativo.
- EFI utiliza la información de GPT para localizar la ESP, cargar el cargador de arranque en la RAM y transferir el control.

1.5. Cargar el manejador de arranque

- Una vez identificado, el manejador de arranque (como GRUB o Windows Boot Manager) toma el control del arranque.
- Presenta un menú (si hay múltiples sistemas operativos) y localiza el núcleo del sistema operativo en el sistema de archivos, cargándolo en la memoria RAM.

1.6. Iniciar el núcleo del sistema operativo

1. El núcleo del sistema operativo se descomprime y comienza la inicialización del hardware.

2. En Linux:

- Se carga el **initramfs** (sistema de archivos inicial).
- Se monta el sistema de archivos raíz.
- Se ejecuta el proceso inicial (init o systemd) para iniciar servicios del usuario.

3. En Windows:

TECNICATURA UNIVERSITARIA EN PROGRAMACIÓN A DISTANCIA

- Se carga el núcleo (ntoskrnl.exe), que inicializa los controladores esenciales y servicios básicos.
- Se activa el registro y se inicializa el entorno gráfico.

1.7. Transición al entorno del usuario

 Una vez cargados los servicios y el núcleo operativo, el sistema está listo para recibir entradas del usuario a través de la interfaz gráfica o la consola.

2. Resumen del Proceso

- El firmware (BIOS/EFI) se carga en la RAM y inicializa el hardware.
- Se selecciona el dispositivo de arranque según el orden definido en la CMOS.
- BIOS busca el MBR (con marca 55AAh); EFI busca la ESP.
- Se carga el manejador de arranque en la RAM.
- El manejador carga el núcleo del sistema operativo.
- El núcleo inicializa el hardware y los servicios.
- Se transfiere el control al entorno del usuario.

Esta secuencia asegura que el sistema operativo pueda iniciarse correctamente, con cada componente cumpliendo un rol esencial en el proceso.