Procesamiento de Bajo Nivel

REALZADO DE IMÁGENES

Autor: Dr. Boris X. Vintimilla

Escuela Superior Politécnica del Litoral Facultad de Ingeniería en Electricidad y Computación

Sesión VI

VI. REALZADO DE IMÁGENES

Imagen original Imagen realzada

Sesión VI

VI. REALZADO DE IMÁGENES

- 1. Introducción
- 2. Modificación de escala de grises
- 3. Sharpening de imágenes
- 4. Suavizado de imágenes

Niveles de procesamiento

Para qué sirven?

- Las técnicas de realzado de imágenes son usadas para enfatizar y resaltar características de imágenes para su posterior análisis y/o visualización.
- Algunas aplicaciones de DIP o VC usan el realzado de imagen como un paso de preprocesamiento para facilitar la solución a un problema, por ejemplo, resaltar los contornos de un objeto de interés en la escena. También es útil, donde la visualización humana es requerida antes del futuro procesamiento.

Realzado de Imágenes

• Otro camino para usar las operaciones de realzado es como un estado de postprocesamiento, para mejorar la apariencia de una imagen, por ejemplo: en un proceso de compresión de imagen para disminuir el efecto "blocky" que se genera en la imagen resultante después de la descompresión.

• Los métodos de realzado son aplicaciones específicas y muchas veces son desarrolladas empíricamente.

Modelo General del Sistema: Dominios de trabajo

Modelo general sistema-realzado de imagen

Dominios de trabajo

- Normalmente los métodos de realzado operan en el dominio espacial manipulando los datos de píxeles, o en el dominio frecuencial modificando las componentes espectrales.
 Algunos algorítmos de realzado usan ambos dominios espacial y frecuencial.
- Existen diversas técnicas para realzar los píxeles de una imagen. Estas técnicas usualmente se basan en:
 - Operaciones de punto
 - Operaciones de máscara
 - Operaciones globales

Tipos de técnicas

- Operaciones de punto: cada píxel es modificado de acuerdo a una ecuación que no depende de otros valores de píxeles.
- Operaciones de máscara: cada píxel es modificado de acuerdo a los valores de los píxeles vecinos (usando máscaras de convolución).
- Operaciones globales: cada píxel es modificado tomando en consideración todos los valores de los píxeles.

Realzado de Imágenes

- Los métodos de realzado que trabajan en el dominio espacial incluyen los 3 tipos de técnicas: operaciones de punto, máscara y globales.
- Mientras que, los que trabajan en el dominio frecuencial, por naturaleza de las transformadas frecuenciales, solo incluye las operaciones globales.

Sesión IV

IV. REALZADO DE IMÁGENES

1. Introducción

- 2. Modificación de escala de grises
- 3. Sharpening de imágenes
- 4. Suavizado de imágenes

Para qué sirven?

- Los métodos de modificación de escala de grises realzan la imagen aplicando la *técnica de operaciones de punto*, para esto usan una ecuación de mapeo que cambia los valores de brillo de los píxeles de la imagen.
- Esta <u>ecuación de mapeo típicamente es lineal</u> y mapea los valores de nivel de gris a otros valores especificados.
- Las aplicaciones típicas incluyen: realzado de contraste y realzado de características.

Para qué sirven?

- Las operaciones iniciales aplicadas al rango de escala de grises de una imagen son para comprimir o alargar el <u>rango</u> de distribución de los valores de nivel de gris.
- Típicamente, se comprime los rangos de nivel de gris que son de poco interés, y por otro lado, alargamos los rangos de niveles de gris donde deseamos más información.
- Una gráfica de este efecto es mostrado en la siguiente diapositiva:

Cómo trabajan?

• Este método selecciona valores de nivel de gris específicos de interés para ser mapeados luego a valores determinados.

Imagen cortada (sliced) para enfatizar los valores de gris

Cómo trabajan?

• Si después de haber aplicado la ecuación de mapeo, la pendiente de la recta resultante de la distribución de los niveles de gris está entre 0 y 1, el proceso ejecutado es llamado *compresión de niveles de gris*, mientras que si la pendiente es mayor que uno, este es llamado *alargamiento de niveles de gris*.

Sesión VI

VI. REALZADO DE IMÁGENES

- 1. Introducción
- 2. Modificación de escala de grises

- 2.1 Modificación de histogramas
- 2.2 Ecualización de histogramas
- 2.3 Realzado adaptativo del contraste
- 3. Sharpening de imágenes
- 4. Suavizado de imágenes

Modificación de Histogramas

- La modificación de histogramas es un camino alterno a la modificación de niveles de gris.
- El histograma de una imagen representa las frecuencias de los diferentes valores de gris en la imagen (f.d.p. de intensidades).

Frecuencia (número de píxele

0

127

255

Nivel de gris

Imagen alto contraste

Imagen bajo contraste

b. Histogram of image (a).

d. Histogram of image (c).

histograma con distribución ancha

histograma con distribución baja

• En general, un histograma con una baja distribución tiene un bajo contraste, mientras que un histograma con una ancha distribución tiene un alto contraste.

Modificación de Histogramas

- Una característica de la distribución de un histograma, es que si la distribución se agrupa en la parte baja del rango producirá una imagen oscura y un histograma con valores agrupados en la parte superior del rango producirá una imagen con demasiado brillo.
- Tomando en cuenta estas características, el histograma de una imagen puede ser modificado mediante el uso de una función de mapeo.

Modificación de Histogramas

- Existen 3 formas para realizar la modificación de histogramas:
 - Alargamiento de histogramas (stretch)
 - Compresión de histogramas (shrink)
 - Desplazamiento de histogramas (slide)

El efecto de aplicar estas técnicas es mostrado a continuación:

Modificación de Histogramas

- Alargamiento de histograma
- La función de mapeo viene definida por la siguiente ecuación:

$$STRETCH(I(r,c)) = \left[\frac{I(r,c) - I(r,c)_{MIN}}{I(r,c)_{MAX} - I(r,c)_{MIN}}\right] [MAX - MIN] + MIN$$

 $I(r,c)_{MAX}$ = es el valor de nivel de gris mas alto en la imagen I(r,c). $I(r,c)_{MIN}$ = es el valor de nivel de gris mas bajo en la imagen I(r,c). MAX y MIN = corresponden al valor máximo y mínimo de nivel de gris posible (para una imagen de 8 bits, estos son: 0 y 255).

Modificación de Histogramas

- Alargamiento de histograma
- Su función principal es incrementar el contraste de una imagen de bajo contraste.
- Un ejemplo que muestra el resultado obtenido de aplicar esta operación sobre una imagen degradada es mostrado abajo:

Imagen original bajo contraste

Imagen después del alargado de histograma con corte en valores alto y bajo

histograma original

histograma alargado

Modificación de Histogramas

- Compresión de Histograma
- Esta operación es la opuesta a la operación de alargamiento de histograma. Su función es disminuir el contraste de la imagen comprimiendo la distribución de los niveles de gris.
- La función de mapeo viene definida como:

$$SHRINK(I(r,c)) = \left[\frac{Shrink_{MAX} - Shrink_{MIN}}{I(r,c)_{MAX} - I(r,c)_{MIN}}\right] [I(r,c) - I(r,c)_{MIN}] + Shrink_{MIN}$$

 $Shrink_{MAX}$ y $Shrink_{MIN}$ corresponden al valor máximo y mínimo deseado en el histograma comprimido.

Imagen original

Imagen después de la compresión de histograma

b. Histogram of image (a).

d. Histogram of image (c).

histograma original

histograma comprimido

Modificación de Histogramas

- Desplazamiento de Histograma
- Su función es hacer una imagen más oscura o más clara, reteniendo la relación entre los valores de nivel de gris.
- Este proceso es ejecutado simplemente añadiendo o sustrayendo un número fijo a todos los valores de nivel de gris, tal como se define en la ecuación:

$$SLIDE(I(r,c)) = I(r,c) + offset$$

offset es el valor de desplazamiento a aplicar sobre el histograma.

Modificación de Histogramas

- Desplazamiento de Histograma
- Si los valores desplazados sobrepasan los valores máximos y mínimos permitidos, este cortará en el máximo valor o mínimo respectivo, produciéndose de esta forma, una saturación.
- Un ejemplo de aplicar este operador es mostrado a continuación:

Imagen original

Imagen después del desplazamiento de histograma

b. Histogram of original image.

histograma original

histograma desplazado

Sesión VI

VI. REALZADO DE IMÁGENES

- 1. Introducción
- 2. Modificación de escala de grises
 - 2.1 Modificación de histogramas

- 2.2 Ecualización de histogramas
- 2.3 Realzado adaptativo del contraste
- 3. Sharpening de imágenes
- 4. Suavizado de imágenes

Ecualización de Histogramas

• La ecualización del histograma es una transformación definida de forma que el histograma resultante se reparte uniformemente en todo el rango de grises.

Histograma original

Función f

Histograma resultante

• f es una función : f: array [0..255] de byte

Ecualización de Histogramas

Imagen de entrada: A

Imagen ecualizada: R

Histograma A

Función f

Histograma R

Ecualización de Histogramas

- El proceso de ecualización del histogramas para imágenes digitales consiste de cuatro pasos:
 - 1) Hallar la suma corrida de los valores del histograma.
- 2) Normalizar los valores del paso 1) dividiendo por el número total de píxeles.
- 3) Multiplicar los valores del paso 2) por el máximo valor de nivel de gris (según el número de bits/pixels en la imagen), y luego se procede a redondear este valor resultante.
- 4) Mapear los valores originales de nivel de gris a los valores resultantes obtenidos en el paso 3), usando una correspondencia uno-a-uno.

Ecualización de Histogramas

• <u>Ejemplo</u>: Considere una imagen con 8 bits/píxel, tal que el posible rango de valores es de 0 a 255, y su actual histograma es como se muestra en la siguiente tabla:

Valores de nivel de gris	# píxeles (valores del histograma)
0	10
1	8
2	9
3	2
4	14
5	1
6	5
7	2

Ecualización de Histogramas

• <u>Ejemplo</u>: Considere una imagen con 8 bits/píxel, tal que el posible rango de valores es de 0 a 255, y su actual histograma es como se muestra en la siguiente tabla:

Valores de nivel de gris 0 10 8 9 27 3 4 5

Ecualización de Histogramas

• <u>Paso 1</u>: Realiza una suma corrida de los valores del histograma. Esto significa si el primer valor es 10, el segundo es 10+8=18, el próximo 10+8+9=27, y así sucesivamente.

Por tanto, tendremos $\Rightarrow 10, 18, 27, 29, 43, 44, 49, 51$.

• <u>Paso 2</u>: El número total de píxeles es:

$$10+8+9+2+14+1+5+2=51.$$

Por tanto, tendremos $\Rightarrow 10/51$, 18/51, 27/51, 29/51, 43/51, 44/51, 49/51, 51/51.

Ecualización de Histogramas

• <u>Paso 3</u>: Multiplique este valor por el valor máximo de nivel de gris, en este caso 255, y luego redondee el resultado al entero más cercano.

Por tanto, tendremos \Rightarrow 50, 90, 135, 145, 215, 220, 245, 255

• <u>Paso 4</u>: Esto es hecho como sigue:

Valores de nivel de gris original	valores resultantes → histograma ecualizado
0	50
1	90
2	135
3	145
4	215
5	220
6	245
7	255

Ecualización de Histogramas

- Por tanto, todos los píxeles con nivel de gris 0 son fijados a 50, los valores de 1 son fijados a 90, los valores de 2 son fijados a 135, los de 3 a 145, y así sucesivamente.
- La siguiente gráfica muestra el histograma original y el histograma ecualizado resultante para este ejemplo:

Ecualización de Histogramas

Ecualización de Histograma

Despúes de la Ecualización

Ecualización de Histogramas

imagen original

histograma original

Imagen resultante después de la ecualización de histograma

histograma ecualizado

Ecualización de Histogramas

imagen original

Imagen resultante despúes de la ecualización de histograma

histograma original

histograma ecualizado

- ✓ Especificación de histograma:
 - Es el proceso de definir un histograma y a partir de este modificar el histograma de la imagen original. Este proceso puede ser realizado como sigue:
 - 1) Encontrar la tabla de mapeo para el histograma ecualizado de la imagen original.
 - 2) Especificar el histograma deseado.
 - 3) Encontrar la tabla de mapeo para el histograma ecualizado deseado.

Ecualización de Histogramas: caso especial

- ✓ Especificación de histograma:
 - 4) Mapear los valores originales a los valores del paso 3, usando la tabla del paso 1.

Un ejemplo que detalla los pasos necesarios para la aplicación del operador de histograma especificado es el siguiente:

- ✓ Especificación de histograma:
- <u>Paso 1</u>:

Valores de nivel de gris original - O	valores histograma ecualizado - H
0	50
1	90
2	135
3	145
4	215
5	220
6	245
7	255

- ✓ Especificación de histograma:
- *Paso 2*:

Valores de nivel de gris	# de píxeles: en histograma deseado
0	1
1	5
2	10
3	15
4	20
5	0
6	0
7	0

Ecualización de Histogramas: caso especial

- ✓ Especificación de histograma:
- *Paso 2*:

Valores de nivel de gris

de píxeles: en histograma deseado

- ✓ Especificación de histograma:
- <u>Paso 3</u>:

Valores de nivel de gris	valores histograma ecualizado - S
0	redondear $(1/51)*255 = 5$
1	redondear $(6/51)*255 = 30$
2	redondear $(16/51)*255 = 80$
3	redondear $(31/51)*255 = 155$
4	redondear $(51/51)*255 = 255$
5	redondear $(51/51)*255 = 255$
6	redondear $(51/51)*255 = 255$
7	redondear $(51/51)*255 = 255$

- ✓ Especificación de histograma:
- <u>Paso 4</u>: Mapear los valores originales a los valores del paso 3 usando la tabla del paso 1. Esto es hecho fijando una tabla que resulta de combinar las tablas del paso 1 y 3.
- La tabla combinada consistirá de *O* y *H* del paso 1, *S* del paso 3 y *M* que facilita los valores de nivel de gris resultantes, tal como:

0	H	S	M
0	50	5	1
1	90	30	2
2	135	80	3
3	145	155	3
4	215	255	4
5	220	255	4
6	245	255	4
7	255	255	4

- ✓ Especificación de histograma:
- La columna *M* para esta tabla se obtuvo mapeando el valor de *H* al valor más cercano en *S* y luego usando la correspondiente fila en *O* para la entrada en *M*.
- Por ejemplo : la primera entrada en *H* es "50". Encontrando el valor más cercano en *S* es "30". Este "30" de *S* aparece en la fila 1, por tanto escribimos un "1" para aquella entrada en *M*.

- ✓ Especificación de histograma:
- Para los valores "215, 220. 245 y 255" de *H*, el valor mas cercano en *S* aparece en las filas 4-5-6-7. Si escogemos el máximo valor, esto producirá un máximo contraste, mientras si el valor más bajo es seleccionado esto producirá una imágen cambiando más gradualmente.
- Típicamente el valor más bajo es seleccionado.

Sesión VI

VI. REALZADO DE IMÁGENES

- 1. Introducción
- 2. Modificación de escala de grises
 - 2.1 Modificación de histogramas
 - 2.2 Ecualización de histogramas

- 2.3 Realzado adaptativo del contraste
- 3. Sharpening de imágenes
- 4. Suavizado de imágenes

Realzado Adaptativo del Contraste: Cómo trabaja?

- El operador *ACE* (adaptive contrast enhancement) modifica los valores de nivel de gris de una imagen basado en algún criterio que ajusta ciertos parámetros de la imagen, tales como cambio de características locales.
- Típicamente este operador es ejecutado sobre un bloque de la imagen original (subimágen), en lugar de hacerlo sobre la imagen entera. Por lo que es llamado *Realzado local*.
- El filtro de ACE es usado para ajustar el contraste en diferentes regiones de la imagen.

Realzado Adaptativo del Contraste

• Este *filtro es adaptativo* dado que su comportamiento cambia basado en estadísticas locales de la imagen. La relación que define el filtro ACE es:

$$ACE = k_1 \left[\frac{m_{I(r,c)}}{\sigma_I(r,c)} \right] \left[I(r,c) - m_I(r,c) \right] + k_2 m_I(r,c)$$

donde:

 $m_{I(r,c)}$: media para la imagen entera I(r, c)

 σ_l : desviación estándar local (ventana bajo consideración centrado en el

píxel (r,c))

 m_1 : media local (ventana bajo consideración centrado en el píxel (r,c))

 $\overline{k_1, k_2}$: constantes variando entre 0 y 1.

Realzado Adaptativo del Contraste

• De la ecuación anterior podemos ver que este filtro sustrae la media local $(m_l(r,c))$ de los datos originales (I(r,c)) y pesa este resultado por el factor de ganancia local:

$$ACE = k_1 \left[\frac{m_{I(r,c)}}{\sigma_I(r,c)} \right] \left[I(r,c) - m_I(r,c) \right] \cdots$$

$$k_1 \left[\frac{m_{I(r,c)}}{\sigma_I(r,c)} \right]$$

- Esto tiene el efecto de <u>intensificar las variaciones locales</u> y puede ser <u>controlada por la constante</u> k_1 , por ejemplo:
 - \checkmark Áreas de bajo contraste (valores bajos de $\sigma_l(r,c)$) son aumentados.

Realzado Adaptativo del Contraste

• Al final de la ecuación la media local es añadida al resultado, pesada por k₂, lo cual sirve para restaurar el brillo promedio de la región local en la imagen.

$$ACE = k_1 \left[\frac{m_{I(r,c)}}{\sigma_I(r,c)} \right] \left[I(r,c) - m_I(r,c) \right] + \frac{k_2 m_I(r,c)}{m_I(r,c)}$$

- En la práctica a veces es útil comprimir el histograma de la imagen antes de aplicar este filtro, y además, limitar el factor de ganancia local.
- Un ejemplo de evaluación de este operador sobre una imagen de prueba es mostrado en la siguiente diapositiva:

Realzado Adaptativo del Contraste

Imagen e Histograma original

Imagen e Histograma resultante - Filtro ACE, k_1 =0.6; k_2 =0.9; máscara: 7x7

Realzado Adaptativo del Contraste

Filtro de Realzado de Contraste Adaptativo.

Imagen original

Versión Shrink histograma, [25,60]

Filtro ACE con parámetros k_1 =0.9; k_2 =1.0, ganancia local máxima = 5

Sesión VI

VI. REALZADO DE IMÁGENES

- 1. Introducción
- 2. Modificación de escala de grises

- 3. Sharpening de imágenes (afinamiento)
- 4. Suavizado de imágenes

REALZADO DE IMÁGENES

Deber - Laboratorio #8:

- → Deber: Implementar los algoritmos de realzado:
 - → Modificación de histogramas:
 - 1) Alargamiento, 2) Compresión, y
 - 3) Desplazamiento.
 - Próxima clase: 5 minutos c/exposición.
- → Otros ejercicios propuestos (sólo para practicar).
 - 1) Implementar el algoritmo de Modificación de Escala de Grises, Desplazamiento de histograma, ...

¿ Preguntas ?

