Laplace's method and GP classification (cont'd)

Linear Logistic Why Gaussian Regression Regression Process Week 3a Week 2a Bayesian Bayesian Linear Logistic Regression Regression Week 2b Week 3b and today Kernel Kernel Classification Regression Week 4 Week 4 GP GP Classification Regression Week 4 + 5 Today Classification **Neural Networks** Week 7/8 Bayesian

Kernel

Laplace Approximation in Higher Dimensions

Stationary point - local maximum:

$$\nabla f(\mathbf{z}) \Big|_{\mathbf{z}=\mathbf{z_0}} = 0$$

Hessian matrix:

$$\mathbf{A} = -\nabla \nabla \ln f(\mathbf{z}) \Big|_{\substack{\mathbf{z} = \mathbf{z_0} \\ \text{Bishop eq 4.132}}}$$

 $\mathbb{R}^{m\times m}$, m number of dimensions

Multivariate Gaussian - provided that A is positive definite, i.e. z_0 is a local maximum

$$q(\mathbf{z}) = (2\pi)^{-M/2} |\mathbf{A}|^{-1/2} \exp\left\{-\frac{1}{2} (\mathbf{z} - \mathbf{z_0})^{\mathrm{T}} \mathbf{A} (\mathbf{z} - \mathbf{z_0})\right\} = \mathcal{N}(\mathbf{z} | \mathbf{z_0}, \mathbf{A}^{-1})$$

Bishop eq 4.134, GP Book eq 3.11

$$p(\theta | \mathbf{y}, \mathbf{X}) \simeq \mathbf{q}(\theta) = \mathcal{N}(\theta | \theta_{\text{MAP}}, \mathbf{S})$$

$$p(\theta | \mathbf{y}, \mathbf{X}) \propto \mathcal{N}(\mathbf{m_0}, \mathbf{S_0}) \cdot \prod_{n=1}^{N} g_n^{y_n} \{1 - g_n\}^{1 - y_n}$$
Bishop eq 4.144

$$p(\theta | \mathbf{y}, \mathbf{X}) \simeq \mathbf{q}(\theta) = \mathcal{N}(\theta | \theta_{\text{MAP}}, \mathbf{S})$$

Bishop eq 4.144

$$p(\theta | \mathbf{y}, \mathbf{X}) \propto \mathcal{N}(\mathbf{m_0}, \mathbf{S_0}) \cdot \prod_{n=1}^{N} g_n^{y_n} \{1 - g_n\}^{1 - y_n}$$

$$\mathbf{S}^{-1} = - \left. \nabla \nabla \ln f(\mathbf{z}) \right|_{\mathbf{z} = \mathbf{z_0}}$$

Bishop eq 4.132

$$p(\theta | \mathbf{y}, \mathbf{X}) \simeq \mathbf{q}(\theta) = \mathcal{N}(\theta | \theta_{\text{MAP}}, \mathbf{S})$$

Bishop eq 4.144

$$p(\theta | \mathbf{y}, \mathbf{X}) \propto \mathcal{N}(\mathbf{m_0}, \mathbf{S_0}) \cdot \prod_{n=1}^{N} g_n^{y_n} \{1 - g_n\}^{1 - y_n}$$

$$\mathbf{S}^{-1} = -\left. \nabla \nabla \ln f(\mathbf{z}) \right|_{\mathbf{z} = \mathbf{z}_0}$$

Bishop eq 4.132

$$-\ln p(\theta \,|\, \mathbf{y}, \mathbf{X}) = \frac{1}{2} (\theta - \mathbf{m_0})^T \mathbf{S_0}^{-1} (\theta - \mathbf{m_0}) - \sum_{n=1}^{N} \left[y_n \ln g_n + (1 - y_n) \ln(1 - g_n) \right] + \text{const}$$
Bishop eq 4.142

$$p(\theta | \mathbf{y}, \mathbf{X}) \simeq \mathbf{q}(\theta) = \mathcal{N}(\theta | \theta_{\mathbf{MAP}}, \mathbf{S})$$

Bishop eq 4.144

$$\mathbf{S}^{-1} = -\nabla \nabla \ln f(\mathbf{z}) \Big|_{\mathbf{z} = \mathbf{z_0}}$$

$$p(\theta | \mathbf{y}, \mathbf{X}) \propto \mathcal{N}(\mathbf{m_0}, \mathbf{S_0}) \cdot \prod_{n=1}^{N} g_n^{y_n} \{1 - g_n\}^{1 - y_n}$$

$$-\ln p(\theta | \mathbf{y}, \mathbf{X}) = \frac{1}{2} (\theta - \mathbf{m_0})^T \mathbf{S_0}^{-1} (\theta - \mathbf{m_0}) - \sum_{n=1}^{N} [y_n \ln g_n + (1 - y_n) \ln(1 - g_n)] + \text{const}$$
Bishop eq 4.142

$$p(\theta | \mathbf{y}, \mathbf{X}) \simeq \mathbf{q}(\theta) = \mathcal{N}(\theta | \theta_{\text{MAP}}, \mathbf{S})$$

$$p(\theta | \mathbf{y}, \mathbf{X}) \propto \mathcal{N}(\mathbf{m_0}, \mathbf{S_0}) \cdot \prod_{n=1}^{N} g_n^{y_n} \{1 - g_n\}^{1 - y_n}$$

$$= \sum_{n=1}^{N} [y_n \ln g_n + (1 - y_n) \ln(1 - g_n)] + \text{const}$$
Bishop eq 4.142
$$p(\theta | \mathbf{y}, \mathbf{X}) \simeq \frac{1}{2} (\theta - \mathbf{m_0})^T \mathbf{S_0}^{-1} (\theta - \mathbf{m_0}) - \sum_{n=1}^{N} [y_n \ln g_n + (1 - y_n) \ln(1 - g_n)] + \text{const}$$
Bishop eq 4.142

$$\mathbf{S}^{-1} = -\nabla_{\theta} \nabla_{\theta} \log \mathbf{p}(\theta | \mathbf{t}, \mathbf{X}) =$$

$$p(\theta | \mathbf{y}, \mathbf{X}) \simeq \mathbf{q}(\theta) = \mathcal{N}(\theta | \theta_{\text{MAP}}, \mathbf{S})$$

$$\mathbf{S}^{-1} = -\nabla \nabla \ln f(\mathbf{z}) \Big|_{\mathbf{z} = \mathbf{z}_0}$$

Bishop eq 4.144
$$p(\theta \mid \mathbf{y}, \mathbf{X}) \propto \mathcal{N}(\mathbf{m_0}, \mathbf{S_0}) \cdot \prod_{n=1}^{N} g_n^{y_n} \{1 - g_n\}^{1 - y_n}$$

$$-\ln p(\theta \mid \mathbf{y}, \mathbf{X}) = \frac{1}{2} (\theta - \mathbf{m_0})^T \mathbf{S_0}^{-1} (\theta - \mathbf{m_0}) - \sum_{n=1}^{N} [y_n \ln g_n + (1 - y_n) \ln(1 - g_n)] + \text{const}$$
Bishop eq 4.142
Bishop eq 4.142

$$\mathbf{S}^{-1} = -\nabla_{\theta} \nabla_{\theta} \log \mathbf{p}(\theta \mid \mathbf{t}, \mathbf{X}) = \mathbf{S}_{\mathbf{0}}^{-1}$$

$$p(\theta | \mathbf{y}, \mathbf{X}) \simeq \mathbf{q}(\theta) = \mathcal{N}(\theta | \theta_{\text{MAP}}, \mathbf{S})$$

Bishop eq 4.144

$$\mathbf{S}^{-1} = - \left. \nabla \nabla \ln f(\mathbf{z}) \right|_{\mathbf{z} = \mathbf{z_0}}$$

Bishop eq 4.132

Bishop eq 4.142

$$p(\theta | \mathbf{y}, \mathbf{X}) \propto \mathcal{N}(\mathbf{m_0}, \mathbf{S_0}) \cdot \prod_{n=1}^{N} g_n^{y_n} \{1 - g_n\}^{1 - y_n}$$

$$P(\boldsymbol{\sigma}|\mathbf{y}, \mathbf{X}) \propto \mathcal{N}(\mathbf{m_0}, \mathbf{S_0}) \cdot \mathbf{1} \mathbf{1} \mathbf{g}_n \quad \text{Function of } \boldsymbol{w}, \quad \boldsymbol{y}_n = \boldsymbol{\sigma}(\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x_n}))$$

$$-\ln p(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}) = \frac{1}{2} (\boldsymbol{\theta} - \mathbf{m_0})^T \mathbf{S_0}^{-1} (\boldsymbol{\theta} - \mathbf{m_0}) - \sum_{n=1}^{N} [y_n \ln g_n + (1 - y_n) \ln(1 - g_n)] + \text{const}$$

$$[y_n \ln g_n + (1 - y_n) \ln(1 - g_n)] + \text{const}$$

$$\sum_{n=1}^{N} (g_n - y_n) \boldsymbol{\phi}_n$$

$$\mathbf{S}^{-1} = -\nabla_{\theta} \nabla_{\theta} \log \mathbf{p}(\theta \mid \mathbf{t}, \mathbf{X}) = \mathbf{S}_{\mathbf{0}}^{-1} + \sum_{n=1}^{N} g_n (1 - g_n) \boldsymbol{\phi}_n \boldsymbol{\phi}_n^T$$
Bishop eq 4.143

Why Laplacian Approximation Works Well

Recall
$$p(\theta \mid \mathbf{y}, \mathbf{X}) \propto \mathcal{N}(\mathbf{m_0}, \mathbf{S_0}) \cdot \prod_{n=1}^{N} \sigma(\theta^T \phi(\mathbf{x_n}))^{y_n} \left\{ 1 - \sigma(\theta^T \phi(\mathbf{x_n})) \right\}^{1-y_n}$$

Example courtesy of Edinburgh MLPR course https://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/notes/w8a_bayes_logistic_regression_laplace.pdf

Why Laplacian Approximation Works Well

Example courtesy of Edinburgh MLPR course https://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/notes/w8a_bayes_logistic_regression_laplace.pdf

Why Laplacian Approximation Works Well

Recall
$$p(\theta \,|\, \mathbf{y}, \mathbf{X}) \propto \mathcal{N}(\mathbf{m_0}, \mathbf{S_0}) \cdot \prod_{n=1}^N \sigma(\theta^T \boldsymbol{\phi}(\mathbf{x_n}))^{y_n} \big\{ 1 - \sigma(\theta^T \boldsymbol{\phi}(\mathbf{x_n}) \big\}^{1-y_n}$$

This function is concave and have a unique maximum (exercise)

Example courtesy of Edinburgh MLPR course https://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/notes/w8a_bayes_logistic_regression_laplace.pdf

$$p(\mathbf{y}^* | \mathbf{x}^*, \mathbf{X}, \mathbf{y}) = \int \mathbf{p}(\mathbf{y}^* | \mathbf{x}^*, \theta) \, \mathbf{p}(\theta | \mathbf{y}, \mathbf{X}) \, d\theta$$
Sigmoid $\approx \mathcal{N}(\theta; \theta_{\text{MAP}}, \mathbf{S})$

$$p(\mathbf{y}^* | \mathbf{x}^*, \mathbf{X}, \mathbf{y}) = \int \mathbf{p}(\mathbf{y}^* | \mathbf{x}^*, \theta) \, \mathbf{p}(\theta | \mathbf{y}, \mathbf{X}) \, d\theta$$
Sigmoid $\approx \mathcal{N}(\theta; \theta_{\text{MAP}}, \mathbf{S})$

Still analytically intractable

Probit Function

Recall that, the Sigmoid "logistic" function is used in logistic regression because it falls out naturally from the idea of log odd and can be regarded as generalised linear regression

Probit Function

Recall that, the Sigmoid "logistic" function is used in logistic regression because it falls out naturally from the idea of log odd and can be regarded as generalised linear regression

Probit function (closely related to the erf function)

$$\Phi(x) \equiv \int_{-\infty}^{x} \mathcal{N}(x \mid 0, 1) dx$$
Bishop eq 4.114

Probit Function

Recall that, the Sigmoid "logistic" function is used in logistic regression because it falls out naturally from the idea of log odd and can be regarded as generalised linear regression

Probit function (closely related to the erf function)

$$\Phi(x) \equiv \int_{-\infty}^{x} \mathcal{N}(x \mid 0, 1) \, \mathrm{d}x$$
Bishop eq 4.114

is a close analog, and yet makes the previous integral possible

$$\int \Phi(\lambda a) \mathcal{N}(a \mid \mu, \sigma^2) da = \Phi\left(\frac{\mu}{\sqrt{\lambda^{-2} + \sigma^2}}\right)$$

Approximating Sigmoid Function with Probit Function

$$\sigma(a) \simeq \Phi(\lambda a)$$
, with $\lambda^2 = \pi/8$

Figure 4.9 Plot of the logistic sigmoid function $\sigma(a)$ defined by (4.59), shown in red, together with the scaled probit function $\Phi(\lambda a)$, for $\lambda^2 = \pi/8$, shown in dashed blue, where $\Phi(a)$ is defined by (4.114). The scaling factor $\pi/8$ is chosen so that the derivatives of the two curves are equal for a=0.

Approximating Sigmoid Function with Probit Function

$$\sigma(a) \simeq \Phi(\lambda a)$$
, with $\lambda^2 = \pi/8$

$$\int \sigma(a) \mathcal{N}(a \mid \mu, \sigma^2) da \simeq \sigma(\kappa(\sigma^2) \mu)$$

$$\kappa(\sigma^2) = (1 + \pi \sigma^2 / 8)^{-1/2}$$
Bishop eq 4.153

Figure 4.9 Plot of the logistic sigmoid function $\sigma(a)$ defined by (4.59), shown in red, together with the scaled probit function $\Phi(\lambda a)$, for $\lambda^2=\pi/8$, shown in dashed blue, where $\Phi(a)$ is defined by (4.114). The scaling factor $\pi/8$ is chosen so that the derivatives of the two curves are equal for a=0.

$$p(\mathbf{y}^* | \mathbf{x}^*, \mathbf{X}, \mathbf{y}) = \int \mathbf{p}(\mathbf{y}^* | \mathbf{x}^*, \theta) \, \mathbf{p}(\theta | \mathbf{y}, \mathbf{X}) \, d\theta$$
Let
$$\sigma(\theta^T \phi(\mathbf{x}^*)) \approx q(\theta) = \mathcal{N}(\theta | \theta_{\text{MAP}}, \mathbf{S})$$

$$p(\mathbf{y}^* | \mathbf{x}^*, \mathbf{X}, \mathbf{y}) = \int \sigma(a) \, p(a) \, da$$

$$p(\mathbf{y}^* | \mathbf{x}^*, \mathbf{X}, \mathbf{y}) = \int \mathbf{p}(\mathbf{y}^* | \mathbf{x}^*, \theta) \, \mathbf{p}(\theta | \mathbf{y}, \mathbf{X}) \, d\theta$$
Let
$$a = \theta^T \phi(\mathbf{x}^*)$$

$$p(\mathbf{y}^* | \mathbf{x}^*, \mathbf{X}, \mathbf{y}) = \int \sigma(a) \, p(a) \, da$$
Also Gaussian
$$\mathcal{N}(a | \mu_a, \sigma_a^2)$$

$$p(\mathbf{y}^* \mid \mathbf{x}^*, \mathbf{X}, \mathbf{y}) = \int \mathbf{p}(\mathbf{y}^* \mid \mathbf{x}^*, \theta) \, \mathbf{p}(\theta \mid \mathbf{y}, \mathbf{X}) \, d\theta$$
Let
$$\sigma(\theta^T \phi(\mathbf{x}^*)) \approx q(\theta) = \mathcal{N}(\theta \mid \theta_{\text{MAP}}, \mathbf{S})$$

$$p(\mathbf{y}^* \mid \mathbf{x}^*, \mathbf{X}, \mathbf{y}) = \int \sigma(a) \, p(a) \, da$$

$$p(\mathbf{y}^* \mid \mathbf{x}^*, \mathbf{X}, \mathbf{y}) = \int \sigma(a) \, p(a) \, da$$

$$\mu_a = \theta_{\text{MAP}}^T \phi(\mathbf{x}^*)$$
Also Gaussian
$$\sigma_a^2 = \phi^T(\mathbf{x}^*) \, \mathbf{S} \, \phi(\mathbf{x}^*)$$

$$\mathcal{N}(a \mid \mu_a, \sigma_a^2)$$
Bishop eq 4.147, 4.151

$$p(y^* | \mathbf{x}^*, \mathbf{X}, \mathbf{y}) = \int \mathbf{p}(\mathbf{y}^* | \mathbf{x}^*, \theta) \, \mathbf{p}(\theta | \mathbf{y}, \mathbf{X}) \, d\theta$$
Let
$$\sigma(\theta^T \phi(\mathbf{x}^*)) \approx q(\theta) = \mathcal{N}(\theta | \theta_{\text{MAP}}, \mathbf{S})$$

$$a = \theta^T \phi(\mathbf{x}^*)$$

$$p(y^* | \mathbf{x}^*, \mathbf{X}, \mathbf{y}) = \int \sigma(a) \, p(a) \, da$$

$$\mu_a = \theta_{\text{MAP}}^T \phi(\mathbf{x}^*)$$

$$\sigma_a^2 = \phi^T(\mathbf{x}^*) \, \mathbf{S} \, \phi(\mathbf{x}^*)$$

$$\mathcal{N}(a | \mu_a, \sigma_a^2)$$
Bishop eq 4.147, 4.151

$$\simeq \sigma \left(\left(1 + \frac{\pi \sigma_a^2}{8} \right)^{-1/2} \mu_a \right)$$

Bishop eq 4.153

Recall in Gaussian Process Regression

$$p(\mathbf{f} | \mathbf{X}) = \mathcal{N}(\mathbf{f}; \mathbf{0}, \mathbf{K})$$

Recall in Gaussian Process Regression

$$p(\mathbf{f} | \mathbf{X}) = \mathcal{N}(\mathbf{f}; \mathbf{0}, \mathbf{K})$$

we have $y_n \in \{0,1\}$ in classification. We use the same approach as in logistic classification

Recall in Gaussian Process Regression

$$p(\mathbf{f} | \mathbf{X}) = \mathcal{N}(\mathbf{f}; \mathbf{0}, \mathbf{K})$$

we have $y_n \in \{0,1\}$ in classification. We use the same approach as in logistic classification

Key idea — using GP as a intermediate step

Recall in Gaussian Process Regression

$$p(\mathbf{f} | \mathbf{X}) = \mathcal{N}(\mathbf{f}; \mathbf{0}, \mathbf{K})$$

we have $y_n \in \{0,1\}$ in classification. We use the same approach as in logistic classification

Key idea — using GP as a intermediate step

Recall in logistic regression

$$g(\mathbf{x}) = \sigma(\theta^{\mathrm{T}}\phi(\mathbf{x}))$$

Recall in Gaussian Process Regression

$$p(\mathbf{f} | \mathbf{X}) = \mathcal{N}(\mathbf{f}; \mathbf{0}, \mathbf{K})$$

we have $y_n \in \{0,1\}$ in classification. We use the same approach as in logistic classification

Key idea — using GP as a intermediate step

And the "squash" it with a sigmoid function

$$g(\mathbf{x}) = \sigma(f(\mathbf{x}))$$

$$p(y_n | f, \mathbf{x}_n) = \sigma(f(\mathbf{x}_n))^{y_n} (1 - \sigma(f(\mathbf{x}_n))^{1 - y_n})$$

Recall in logistic regression

$$g(\mathbf{x}) = \sigma(\theta^{\mathrm{T}}\phi(\mathbf{x}))$$

Bishop eq 6.73

Recall in Gaussian Process Regression

$$p(\mathbf{f} | \mathbf{X}) = \mathcal{N}(\mathbf{f}; \mathbf{0}, \mathbf{K})$$

we have $y_n \in \{0,1\}$ in classification. We use the same approach as in logistic classification

Key idea — using GP as a intermediate step

And the "squash" it with a sigmoid function

$$g(\mathbf{x}) = \sigma(f(\mathbf{x}))$$

$$p(y_n | f, \mathbf{x}_n) = \sigma(f(\mathbf{x}_n))^{y_n} (1 - \sigma(f(\mathbf{x}_n))^{1 - y_n})$$

Recall in logistic regression

$$g(\mathbf{x}) = \sigma(\theta^{\mathrm{T}}\phi(\mathbf{x}))$$

Substituting the linear model with Gaussian Process

Bishop eq 6.73

Input Variable

$$[\mathbf{x}_1, \mathbf{x}_2, \dots \mathbf{x}_n]$$

Input Variable

Intermediate Variable

$$\mathbf{f} = [f_1, f_2, ... f_n]$$

Response Function, e.g. Sigmoid

Intermediate Variable

$$\mathbf{f} = [f_1, f_2, ... f_n]$$

Target Variable

$$\mathbf{y} = [y_1, y_2, \dots y_n]$$

Gaussian Process for the Intermediate Variable

 $p(\mathbf{f} | \mathbf{X}) = \mathcal{N}(\mathbf{f}; \mathbf{0}, \mathbf{K}) \qquad \mathbf{K}_{nm} = k(\mathbf{x}_n, \mathbf{x}_m | \boldsymbol{\theta})$ Kernel (X, X)

Rishop eq 6.75

Kernel hyperparameters

Gaussian Process for the Intermediate Variable

$$p(\mathbf{f} | \mathbf{X}) = \mathcal{N}(\mathbf{f}; \mathbf{0}, \mathbf{K}) \qquad \mathbf{K}_{nm} = k(\mathbf{x}_n, \mathbf{x}_m | \boldsymbol{\theta})$$
Kernel (X, X)

Bishop eq 6.75

Kernel hyperparameters

Recall from Gaussian Process Regression that

$$p(f^* | \mathbf{x}^*, \mathbf{X}, \mathbf{y}) = \mathcal{N}(f^* | m(\mathbf{x}^*), \sigma^2(\mathbf{x}^*))$$

Gaussian Process for the Intermediate Variable

$$p(\mathbf{f} | \mathbf{X}) = \mathcal{N}(\mathbf{f}; \mathbf{0}, \mathbf{K}) \qquad \mathbf{K}_{nm} = k(\mathbf{x}_n, \mathbf{x}_m | \boldsymbol{\theta})$$
Kernel (X, X)

Bishop eq 6.75

Kernel (X, X)

Kernel hyperparameters

Recall from Gaussian Process Regression that

$$p(f^* | \mathbf{x}^*, \mathbf{X}, \mathbf{y}) = \mathcal{N}(f^* | m(\mathbf{x}^*), \sigma^2(\mathbf{x}^*))$$

$$m(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{X}) (k(\mathbf{X}, \mathbf{X})^{-1} + \sigma^2 \mathbf{I}_N)^{-1} \mathbf{y}$$

$$\sigma^2(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{x}^*) - k(\mathbf{x}^*, \mathbf{X}) (k(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I})^{-1} k(\mathbf{X}, \mathbf{x}^*)$$
Bishop eq 6.78

$$\ln p(\mathbf{f} \mid \mathbf{X}, \mathbf{y}) = \ln p(\mathbf{y} \mid \mathbf{f}, \mathbf{X}) + \ln p(\mathbf{f} \mid \mathbf{X}) + \text{const}.$$

$$\ln p(\mathbf{f} \mid \mathbf{X}, \mathbf{y}) = \ln p(\mathbf{y} \mid \mathbf{f}, \mathbf{X}) + \ln p(\mathbf{f} \mid \mathbf{X}) + \text{const}.$$

$$\mathbf{y}^T \mathbf{f} - \sum_{n=1}^{N} \ln(1 + e^{f_n})$$

Bishop eq 6.79

 $\ln p(\mathbf{f} \mid \mathbf{X}, \mathbf{y}) = \ln p(\mathbf{y} \mid \mathbf{f}, \mathbf{X}) + \ln p(\mathbf{f} \mid \mathbf{X}) + \text{const.}$

$$\mathbf{y}^{T}\mathbf{f} - \sum_{n=1}^{N} \ln(1 + e^{f_n}) \qquad -\frac{1}{2}\mathbf{f}^{T}\mathbf{K}^{-1}\mathbf{f} - \frac{N}{2}\ln(2\pi) - \frac{1}{2}\ln|\mathbf{K}|$$

Bishop eq 6.80, GP Book eq 3.12

Bishop eq 6.79

 $\ln p(\mathbf{f} \mid \mathbf{X}, \mathbf{y}) = \ln p(\mathbf{y} \mid \mathbf{f}, \mathbf{X}) + \ln p(\mathbf{f} \mid \mathbf{X}) + \text{const.}$

Bishop eq 6.79

$$\nabla_{\mathbf{f}} \ln p(\mathbf{f} \mid \mathbf{X}, \mathbf{y}) = \mathbf{y} - \sigma(\mathbf{f}) - \mathbf{K}^{-1} \mathbf{f} = 0$$

Bishop eq 6.81, GP Book eq 3.13, 3.15

 $\ln p(\mathbf{f} \mid \mathbf{X}, \mathbf{y}) = \ln p(\mathbf{y} \mid \mathbf{f}, \mathbf{X}) + \ln p(\mathbf{f} \mid \mathbf{X}) + \text{const.}$

Bishop eq 6.79

Bishop eq 6.80, GP Book eq 3.12

$$\nabla_{\mathbf{f}} \ln p(\mathbf{f} \mid \mathbf{X}, \mathbf{y}) = \mathbf{y} - \sigma(\mathbf{f}) - \mathbf{K}^{-1} \mathbf{f} = 0$$

Bishop eq 6.81, GP Book eq 3.13, 3.15

$$\mathbf{f}_{\mathrm{MAP}} = \mathbf{K}(\mathbf{y} - \sigma(\mathbf{f}_{\mathrm{MAP}}))$$
Bishop eq 6.84, GP Book eq 3.17

$$\ln p(\mathbf{f} \mid \mathbf{X}, \mathbf{y}) = \ln p(\mathbf{y} \mid \mathbf{f}, \mathbf{X}) + \ln p(\mathbf{f} \mid \mathbf{X}) + \text{const.}$$

Bishop eq 6.79

Bishop eq 6.80, GP Book eq 3.12

$$\nabla_{\mathbf{f}} \ln p(\mathbf{f} \mid \mathbf{X}, \mathbf{y}) = \mathbf{y} - \sigma(\mathbf{f}) - \mathbf{K}^{-1} \mathbf{f} = 0$$

Bishop eq 6.81, GP Book eq 3.13, 3.15

Implicit function of $\mathbf{f}_{\mathrm{MAP}}$, e.g. solve with Newton's method

See GP Book eq 3.18-3.19, Algorithm 3.1

$$\ln p(\mathbf{f} \mid \mathbf{X}, \mathbf{y}) = \ln p(\mathbf{y} \mid \mathbf{f}, \mathbf{X}) + \ln p(\mathbf{f} \mid \mathbf{X}) + \text{const}.$$

$$\nabla_{\mathbf{f}} \ln p(\mathbf{f} \mid \mathbf{X}, \mathbf{y}) = \mathbf{y} - \sigma(\mathbf{f}) - \mathbf{K}^{-1}\mathbf{f} = 0$$

 $\ln p(\mathbf{f} \mid \mathbf{X}, \mathbf{y}) = \ln p(\mathbf{y} \mid \mathbf{f}, \mathbf{X}) + \ln p(\mathbf{f} \mid \mathbf{X}) + \text{const.}$

$$\nabla_{\mathbf{f}} \ln p(\mathbf{f} | \mathbf{X}, \mathbf{y}) = \mathbf{y} - \sigma(\mathbf{f}) - \mathbf{K}^{-1} \mathbf{f} = 0$$

$$-\nabla_{\mathbf{f}} \nabla_{\mathbf{f}} \ln p(\mathbf{f} | \mathbf{X}, \mathbf{y}) \Big|_{\mathbf{f}_{MAP}} = \operatorname{diag} \{ \sigma(\mathbf{f}_{MAP}) (1 - \sigma(\mathbf{f}_{MAP})) \} + \mathbf{K}^{-1} \equiv \mathbf{H}$$

Bishop eq 6.82, GP Book eq 3.14, 3.15

$$\ln p(\mathbf{f} \mid \mathbf{X}, \mathbf{y}) = \ln p(\mathbf{y} \mid \mathbf{f}, \mathbf{X}) + \ln p(\mathbf{f} \mid \mathbf{X}) + \text{const.}$$

$$\nabla_{\mathbf{f}} \ln p(\mathbf{f} | \mathbf{X}, \mathbf{y}) = \mathbf{y} - \sigma(\mathbf{f}) - \mathbf{K}^{-1} \mathbf{f} = 0$$

Factorizes into a diagonal matrix because the sample is i.i.d

$$-\nabla_{\mathbf{f}} \nabla_{\mathbf{f}} \ln p(\mathbf{f} | \mathbf{X}, \mathbf{y}) \Big|_{\mathbf{f}_{MAP}} = \operatorname{diag} \{ \sigma(\mathbf{f}_{MAP}) (1 - \sigma(\mathbf{f}_{MAP})) \} + \mathbf{K}^{-1} \equiv \mathbf{H}$$

Bishop eq 6.82, GP Book eq 3.14, 3.15

$$\ln p(\mathbf{f} \mid \mathbf{X}, \mathbf{y}) = \ln p(\mathbf{y} \mid \mathbf{f}, \mathbf{X}) + \ln p(\mathbf{f} \mid \mathbf{X}) + \text{const}.$$

$$\nabla_{\mathbf{f}} \ln p(\mathbf{f} \mid \mathbf{X}, \mathbf{y}) = \mathbf{y} - \sigma(\mathbf{f}) - \mathbf{K}^{-1} \mathbf{f} = 0$$

Factorizes into a diagonal matrix because the sample is i.i.d

$$-\nabla_{\mathbf{f}} \nabla_{\mathbf{f}} \ln p(\mathbf{f} | \mathbf{X}, \mathbf{y}) \Big|_{\mathbf{f}_{MAP}} = \operatorname{diag} \left\{ \sigma(\mathbf{f}_{MAP}) (1 - \sigma(\mathbf{f}_{MAP})) \right\} + \mathbf{K}^{-1} \equiv \mathbf{H}$$

Bishop eq 6.82, GP Book eq 3.14, 3.15

Laplace Approximation
$$q(\mathbf{f}) \simeq p(\mathbf{f} | \mathbf{X}, \mathbf{y}) = \mathcal{N}(\mathbf{f}; \mathbf{f}_{\text{MAP}}, \mathbf{H}^{-1})$$

Bishop eq 6.86

$$p(f^* | \mathbf{x}^*, \mathbf{X}, \mathbf{y}) = \int p(f^* | \mathbf{x}^*, \mathbf{X}, \mathbf{f}) p(\mathbf{f} | \mathbf{X}, \mathbf{y}) d\mathbf{f}$$

$$p(f^* | \mathbf{x}^*, \mathbf{X}, \mathbf{y}) = \int p(f^* | \mathbf{x}^*, \mathbf{X}, \mathbf{f}) p(\mathbf{f} | \mathbf{X}, \mathbf{y}) d\mathbf{f}$$

$$\mathcal{N}(\mathbf{f}; \mathbf{f}_{MAP}, \mathbf{H}^{-1})$$

$$\mathbf{f}_{MAP} = k(\mathbf{X}, \mathbf{X})(\mathbf{y} - \sigma(\mathbf{f}_{MAP}))$$

$$\mathbf{H} = \text{diag} \{ \sigma(\mathbf{f}_{MAP})(1 - \sigma(\mathbf{f}_{MAP})) \} + k(\mathbf{X}, \mathbf{X})^{-1}$$

$$p(f^* \mid \mathbf{x}^*, \mathbf{X}, \mathbf{y}) = \int p(f^* \mid \mathbf{x}^*, \mathbf{X}, \mathbf{f}) p(\mathbf{f} \mid \mathbf{X}, \mathbf{y}) d\mathbf{f}$$

$$\mathcal{N}(f^*; m(\mathbf{x}^*), \sigma^2(\mathbf{x}^*)) \qquad \mathcal{N}(\mathbf{f}; \mathbf{f}_{MAP}, \mathbf{H}^{-1})$$

$$m(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{X}) k(\mathbf{X}, \mathbf{X})^{-1} \mathbf{f} \qquad \mathbf{f}_{MAP} = k(\mathbf{X}, \mathbf{X}) (\mathbf{y} - \sigma(\mathbf{f}_{MAP}))$$

$$\sigma^2(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{x}^*) - k(\mathbf{x}^*, \mathbf{X}) k(\mathbf{X}, \mathbf{X})^{-1} k(\mathbf{X}, \mathbf{x}^*) \qquad \mathbf{H} = \operatorname{diag} \left\{ \sigma(\mathbf{f}_{MAP}) (1 - \sigma(\mathbf{f}_{MAP})) \right\} + k(\mathbf{X}, \mathbf{X})^{-1}$$

$$p(f^* | \mathbf{x}^*, \mathbf{X}, \mathbf{y}) = \int p(f^* | \mathbf{x}^*, \mathbf{X}, \mathbf{f}) p(\mathbf{f} | \mathbf{X}, \mathbf{y}) d\mathbf{f} = \mathcal{N}(\mathbf{f}^*; c, d^2)$$

$$\mathcal{N}(f^*; m(\mathbf{x}^*), \sigma^2(\mathbf{x}^*)) \qquad \mathcal{N}(\mathbf{f}; \mathbf{f}_{MAP}, \mathbf{H}^{-1})$$

$$m(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{X}) k(\mathbf{X}, \mathbf{X})^{-1} \mathbf{f} \qquad \mathbf{f}_{MAP} = k(\mathbf{X}, \mathbf{X}) (\mathbf{y} - \sigma(\mathbf{f}_{MAP}))$$

$$\sigma^2(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{x}^*) - k(\mathbf{x}^*, \mathbf{X}) k(\mathbf{X}, \mathbf{X})^{-1} k(\mathbf{X}, \mathbf{x}^*) \qquad \mathbf{H} = \text{diag} \{ \sigma(\mathbf{f}_{MAP}) (1 - \sigma(\mathbf{f}_{MAP})) \} + k(\mathbf{X}, \mathbf{X})^{-1}$$

$$p(f^* | \mathbf{x}^*, \mathbf{X}, \mathbf{y}) = \int p(f^* | \mathbf{x}^*, \mathbf{X}, \mathbf{f}) p(\mathbf{f} | \mathbf{X}, \mathbf{y}) d\mathbf{f} = \mathcal{N}(\mathbf{f}^*; c, d^2)$$

$$\mathcal{N}(f^*; m(\mathbf{x}^*), \sigma^2(\mathbf{x}^*)) \qquad \mathcal{N}(\mathbf{f}; \mathbf{f}_{MAP}, \mathbf{H}^{-1})$$

$$m(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{X}) k(\mathbf{X}, \mathbf{X})^{-1} \mathbf{f} \qquad \mathbf{f}_{MAP} = k(\mathbf{X}, \mathbf{X}) (\mathbf{y} - \sigma(\mathbf{f}_{MAP}))$$

$$\sigma^2(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{x}^*) - k(\mathbf{x}^*, \mathbf{X}) k(\mathbf{X}, \mathbf{X})^{-1} k(\mathbf{X}, \mathbf{x}^*) \qquad \mathbf{H} = \text{diag} \{ \sigma(\mathbf{f}_{MAP}) (1 - \sigma(\mathbf{f}_{MAP})) \} + k(\mathbf{X}, \mathbf{X})^{-1}$$

$$p(f^* | \mathbf{x}^*, \mathbf{X}, \mathbf{y}) = \int p(f^* | \mathbf{x}^*, \mathbf{X}, \mathbf{f}) p(\mathbf{f} | \mathbf{X}, \mathbf{y}) d\mathbf{f} = \mathcal{N}(\mathbf{f}^*; c, d^2)$$

$$\mathcal{N}(f^*; m(\mathbf{x}^*), \sigma^2(\mathbf{x}^*)) \qquad \mathcal{N}(\mathbf{f}; \mathbf{f}_{MAP}, \mathbf{H}^{-1})$$

$$m(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{X}) k(\mathbf{X}, \mathbf{X})^{-1} \mathbf{f} \qquad \mathbf{f}_{MAP} = k(\mathbf{X}, \mathbf{X}) (\mathbf{y} - \sigma(\mathbf{f}_{MAP}))$$

$$\sigma^2(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{x}^*) - k(\mathbf{x}^*, \mathbf{X}) k(\mathbf{X}, \mathbf{X})^{-1} k(\mathbf{X}, \mathbf{x}^*) \qquad \mathbf{H} = \text{diag} \{ \sigma(\mathbf{f}_{MAP}) (1 - \sigma(\mathbf{f}_{MAP})) \} + k(\mathbf{X}, \mathbf{X})^{-1}$$

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}, \mathbf{H}^{-1})$$
$$p(\mathbf{y} | \mathbf{x}) = \mathcal{N}(\mathbf{y} | \mathbf{A}\mathbf{x} + b, \sigma^2)$$

$$p(f^* | \mathbf{x}^*, \mathbf{X}, \mathbf{y}) = \int p(f^* | \mathbf{x}^*, \mathbf{X}, \mathbf{f}) p(\mathbf{f} | \mathbf{X}, \mathbf{y}) d\mathbf{f} = \mathcal{N}(\mathbf{f}^*; c, d^2)$$

$$\mathcal{N}(f^*; m(\mathbf{x}^*), \sigma^2(\mathbf{x}^*)) \qquad \mathcal{N}(\mathbf{f}; \mathbf{f}_{MAP}, \mathbf{H}^{-1})$$

$$m(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{X}) k(\mathbf{X}, \mathbf{X})^{-1} \mathbf{f} \qquad \mathbf{f}_{MAP} = k(\mathbf{X}, \mathbf{X}) (\mathbf{y} - \sigma(\mathbf{f}_{MAP}))$$

$$\sigma^2(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{x}^*) - k(\mathbf{x}^*, \mathbf{X}) k(\mathbf{X}, \mathbf{X})^{-1} k(\mathbf{X}, \mathbf{x}^*) \qquad \mathbf{H} = \text{diag} \{ \sigma(\mathbf{f}_{MAP}) (1 - \sigma(\mathbf{f}_{MAP})) \} + k(\mathbf{X}, \mathbf{X})^{-1}$$

$$p(f^* | \mathbf{x}^*, \mathbf{X}, \mathbf{y}) = \int p(f^* | \mathbf{x}^*, \mathbf{X}, \mathbf{f}) p(\mathbf{f} | \mathbf{X}, \mathbf{y}) d\mathbf{f} = \mathcal{N}(\mathbf{f}^*; c, d^2)$$

$$\mathcal{N}(f^*; m(\mathbf{x}^*), \sigma^2(\mathbf{x}^*)) \qquad \mathcal{N}(\mathbf{f}; \mathbf{f}_{MAP}, \mathbf{H}^{-1})$$

$$m(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{X}) k(\mathbf{X}, \mathbf{X})^{-1} \mathbf{f} \qquad \mathbf{f}_{MAP} = k(\mathbf{X}, \mathbf{X}) (\mathbf{y} - \sigma(\mathbf{f}_{MAP}))$$

$$\sigma^2(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{x}^*) - k(\mathbf{x}^*, \mathbf{X}) k(\mathbf{X}, \mathbf{X})^{-1} k(\mathbf{X}, \mathbf{x}^*) \qquad \mathbf{H} = \text{diag} \{ \sigma(\mathbf{f}_{MAP}) (1 - \sigma(\mathbf{f}_{MAP})) \} + k(\mathbf{X}, \mathbf{X})^{-1}$$

$$p(f^* | \mathbf{x}^*, \mathbf{X}, \mathbf{y}) = \int p(f^* | \mathbf{x}^*, \mathbf{X}, \mathbf{f}) p(\mathbf{f} | \mathbf{X}, \mathbf{y}) d\mathbf{f} = \mathcal{N}(\mathbf{f}^*; c, d^2)$$

$$\mathcal{N}(f^*; m(\mathbf{x}^*), \sigma^2(\mathbf{x}^*)) \qquad \mathcal{N}(\mathbf{f}; \mathbf{f}_{MAP}, \mathbf{H}^{-1})$$

$$m(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{X}) k(\mathbf{X}, \mathbf{X})^{-1} \mathbf{f} \qquad \mathbf{f}_{MAP} = k(\mathbf{X}, \mathbf{X}) (\mathbf{y} - \sigma(\mathbf{f}_{MAP}))$$

$$\sigma^2(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{x}^*) - k(\mathbf{x}^*, \mathbf{X}) k(\mathbf{X}, \mathbf{X})^{-1} k(\mathbf{X}, \mathbf{x}^*) \qquad \mathbf{H} = \text{diag} \{ \sigma(\mathbf{f}_{MAP}) (1 - \sigma(\mathbf{f}_{MAP})) \} + k(\mathbf{X}, \mathbf{X})^{-1} \mathbf{g}(\mathbf{x}, \mathbf{X}) \}$$

$$c = k(\mathbf{x}^*, \mathbf{X}) (\mathbf{y} - \sigma(\mathbf{f}_{\mathrm{MAP}}))$$
 Bishop eq 6.87, GP Book eq. 3.21

Bishop eq 2.115

$$p(f^* | \mathbf{x}^*, \mathbf{X}, \mathbf{y}) = \int p(f^* | \mathbf{x}^*, \mathbf{X}, \mathbf{f}) p(\mathbf{f} | \mathbf{X}, \mathbf{y}) d\mathbf{f} = \mathcal{N}(\mathbf{f}^*; c, d^2)$$

$$\mathcal{N}(f^*; m(\mathbf{x}^*), \sigma^2(\mathbf{x}^*)) \qquad \mathcal{N}(\mathbf{f}; \mathbf{f}_{MAP}, \mathbf{H}^{-1})$$

$$m(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{X}) k(\mathbf{X}, \mathbf{X})^{-1} \mathbf{f} \qquad \mathbf{f}_{MAP} = k(\mathbf{X}, \mathbf{X}) (\mathbf{y} - \sigma(\mathbf{f}_{MAP}))$$

$$\sigma^2(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{x}^*) - k(\mathbf{x}^*, \mathbf{X}) k(\mathbf{X}, \mathbf{X})^{-1} k(\mathbf{X}, \mathbf{x}^*) \qquad \mathbf{H} = \operatorname{diag} \{ \sigma(\mathbf{f}_{MAP})(1 - \sigma(\mathbf{f}_{MAP})) \} + k(\mathbf{X}, \mathbf{X})^{-1}$$

 $c = k(\mathbf{x}^*, \mathbf{X}) (\mathbf{y} - \sigma(\mathbf{f}_{\text{MAP}}))$ Bishop eq 6.87, GP Book eq. 3.21

Bishop eq 2.115

$$p(f^* | \mathbf{x}^*, \mathbf{X}, \mathbf{y}) = \int p(f^* | \mathbf{x}^*, \mathbf{X}, \mathbf{f}) p(\mathbf{f} | \mathbf{X}, \mathbf{y}) d\mathbf{f} = \mathcal{N}(\mathbf{f}^*; c, d^2)$$

$$\mathcal{N}(f^*; m(\mathbf{x}^*), \sigma^2(\mathbf{x}^*)) \qquad \mathcal{N}(\mathbf{f}; \mathbf{f}_{MAP}, \mathbf{H}^{-1})$$

$$m(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{X}) k(\mathbf{X}, \mathbf{X})^{-1} \mathbf{f} \qquad \mathbf{f}_{MAP} = k(\mathbf{X}, \mathbf{X}) (\mathbf{y} - \sigma(\mathbf{f}_{MAP}))$$

$$\sigma^2(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{x}^*) - k(\mathbf{x}^*, \mathbf{X}) k(\mathbf{X}, \mathbf{X})^{-1} k(\mathbf{X}, \mathbf{x}^*) \qquad \mathbf{H} = \operatorname{diag} \{ \sigma(\mathbf{f}_{MAP})(1 - \sigma(\mathbf{f}_{MAP})) \} + k(\mathbf{X}, \mathbf{X})^{-1}$$

Bishop eq 2.115

$$c = k(\mathbf{x}^*, \mathbf{X}) \left(\mathbf{y} - \sigma(\mathbf{f}_{\text{MAP}}) \right) \text{ Bishop eq 6.87,}$$

$$d^2 = k(\mathbf{x}^*, \mathbf{x}^*) \qquad \text{GP Book eq. 3.21}$$

$$-k(\mathbf{x}^*, \mathbf{X}) \left(\text{diag} \left\{ \sigma(\mathbf{f}_{\text{MAP}}) (1 - \sigma(\mathbf{f}_{\text{MAP}})) \right\}^{-1} \right\}$$
Bishop eq 6.88,
$$+k(\mathbf{X}, \mathbf{X}) \left(-k(\mathbf{X}, \mathbf{X}) \right)^{-1} k(\mathbf{X}, \mathbf{X}^*)$$
GP Book eq 3.22

Finally,
$$p(y^* = 1 \mid x^*, \mathbf{X}, \mathbf{y}) = \int p(y^* = 1 \mid f^*, \mathbf{x}^*) p(f^* \mid \mathbf{x}^*, \mathbf{X}, \mathbf{y}) \, \mathrm{d}f^*$$
 GP Book eq 3.10

Finally,
$$p(y^* = 1 \mid x^*, \mathbf{X}, \mathbf{y}) = \int p(y^* = 1 \mid f^*, \mathbf{x}^*) p(f^* \mid \mathbf{x}^*, \mathbf{X}, \mathbf{y}) \, \mathrm{d}f^*$$

GP Book eq 3.10

 $\mathcal{N}(f^*; c, d^2)$

Finally,
$$p(y^* = 1 \mid x^*, \mathbf{X}, \mathbf{y}) = \int p(y^* = 1 \mid f^*, \mathbf{x}^*) p(f^* \mid \mathbf{x}^*, \mathbf{X}, \mathbf{y}) \, \mathrm{d}f^*$$

$$\sigma(f^*) \qquad \mathcal{N}(f^*; c, d^2)$$

Finally,
$$p(y^* = 1 \mid x^*, \mathbf{X}, \mathbf{y}) = \int p(y^* = 1 \mid f^*, \mathbf{x}^*) p(f^* \mid \mathbf{x}^*, \mathbf{X}, \mathbf{y}) \, \mathrm{d}f^*$$

$$\sigma(f^*) \qquad \mathcal{N}(f^*; c, d^2)$$
GP Book eq 3.10

Recall with Probit approximation

$$\int \sigma(a) \mathcal{N}(a \mid \mu, \sigma^2) da \simeq \sigma(\kappa(\sigma^2) \mu)$$
$$\kappa(\sigma^2) = (1 + \pi \sigma^2/8)^{-1/2}$$

Finally,
$$p(y^* = 1 \mid x^*, \mathbf{X}, \mathbf{y}) = \int p(y^* = 1 \mid f^*, \mathbf{x}^*) p(f^* \mid \mathbf{x}^*, \mathbf{X}, \mathbf{y}) \, \mathrm{d}f^*$$

$$\sigma(f^*) \qquad \mathcal{N}(f^*; c, d^2)$$
GP Book eq 3.10

Recall with Probit approximation

$$\int \sigma(a) \mathcal{N}(a \mid \mu, \sigma^2) da \simeq \sigma(\kappa(\sigma^2) \mu)$$
$$\kappa(\sigma^2) = (1 + \pi \sigma^2/8)^{-1/2}$$

$$p(\mathbf{y}^* = 1 \mid \mathbf{x}^*, \mathbf{X}, \mathbf{y}) = \sigma((1 + \pi d^2/8)^{-1/2} c)$$

$$c = k(\mathbf{x}^*, \mathbf{X}) (\mathbf{y} - \sigma(\mathbf{f}_{MAP})) \text{ Bishop eq 6.87,}$$

$$d^2 = k(\mathbf{x}^*, \mathbf{x}^*) \text{ GP Book eq 3.21}$$

$$-k(\mathbf{x}^*, \mathbf{X}) \left(\text{diag} \left\{ \sigma(\mathbf{f}_{MAP}) (1 - \sigma(\mathbf{f}_{MAP})) \right\}^{-1} \right\}$$
Bishop eq 6.88,
GP Book eq 3.22

Bishop eq 4.153

Figure 6.12 Illustration of the use of a Gaussian process for classification, showing the data on the left together with the optimal decision boundary from the true distribution in green, and the decision boundary from the Gaussian process classifier in black. On the right is the predicted posterior probability for the blue and red classes together with the Gaussian process decision boundary.

Kernel hyperparameter

$$p(\mathbf{y} | \mathbf{X}, \theta) = \mathcal{N}(\mathbf{y}; \mathbf{0}, \mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I})$$
 the marginal likelihood

$$\ln p(\mathbf{y} \mid \mathbf{X}, \theta) = -\sum_{\mathbf{i}} \ln \mathbf{L}_{\mathbf{i}\mathbf{i}} - \frac{1}{2} \mathbf{y}^{\mathrm{T}} \alpha - \frac{\mathbf{N}}{2} \ln(2\pi)$$

$$L = \text{Cholesky } \hat{\mathbf{K}}$$

$$\alpha = \mathbf{L}^{\mathbf{T}} \setminus (\mathbf{L} \setminus \mathbf{y})$$

Kernel hyperparameter

$$p(\mathbf{y} | \mathbf{X}, \theta) = \mathcal{N}(\mathbf{y}; \mathbf{0}, \mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I})$$
 the marginal likelihood

$$\ln p(\mathbf{y} \mid \mathbf{X}, \theta) = -\frac{1}{2} \ln |\hat{\mathbf{K}}| - \frac{1}{2} \mathbf{y}^{\mathrm{T}} \hat{\mathbf{K}}^{-1} \mathbf{y} - \frac{\mathbf{N}}{2} \ln(2\pi)$$

(Bishop eq 6.69)

$$\ln p(\mathbf{y} \mid \mathbf{X}, \theta) = -\sum_{\mathbf{i}} \ln \mathbf{L}_{\mathbf{i}\mathbf{i}} - \frac{1}{2} \mathbf{y}^{\mathrm{T}} \alpha - \frac{\mathbf{N}}{2} \ln(2\pi)$$

$$L = \text{Cholesky } \hat{\mathbf{K}}$$

$$\alpha = \mathbf{L}^{\mathbf{T}} \setminus (\mathbf{L} \setminus \mathbf{y})$$

Kernel hyperparameter

$$p(\mathbf{y} | \mathbf{X}, \theta) = \mathcal{N}(\mathbf{y}; \mathbf{0}, \mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I})$$
 the marginal likelihood

$$\ln p(\mathbf{y} \mid \mathbf{X}, \theta) = -\frac{1}{2} \ln |\hat{\mathbf{K}}| - \frac{1}{2} \mathbf{y}^{\mathrm{T}} \hat{\mathbf{K}}^{-1} \mathbf{y} - \frac{\mathbf{N}}{2} \ln(2\pi)$$

(Bishop eq 6.69)

Learning through gradient descent

$$\frac{\partial}{\partial x} \ln |\mathbf{A}| = \operatorname{Tr} \left(\mathbf{A}^{-1} \frac{\partial \mathbf{A}}{\partial \mathbf{x}} \right)$$
$$\frac{\partial}{\partial x} (\mathbf{A}^{-1}) = -\mathbf{A}^{-1} \frac{\partial \mathbf{A}}{\partial \mathbf{x}} \mathbf{A}^{-1}$$

(Bishop eq C.21, C.22)

$$\ln p(\mathbf{y} \mid \mathbf{X}, \theta) = -\sum_{\mathbf{i}} \ln \mathbf{L}_{\mathbf{i}\mathbf{i}} - \frac{1}{2} \mathbf{y}^{\mathrm{T}} \alpha - \frac{\mathbf{N}}{2} \ln(2\pi)$$

$$L = \text{Cholesky } \hat{\mathbf{K}}$$

$$\alpha = \mathbf{L}^{\mathbf{T}} \setminus (\mathbf{L} \setminus \mathbf{y})$$

Kernel hyperparameter

$$p(\mathbf{y} | \mathbf{X}, \theta) = \mathcal{N}(\mathbf{y}; \mathbf{0}, \mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I})$$
 the marginal likelihood

$$\ln p(\mathbf{y} \mid \mathbf{X}, \theta) = -\frac{1}{2} \ln |\hat{\mathbf{K}}| - \frac{1}{2} \mathbf{y}^{\mathrm{T}} \hat{\mathbf{K}}^{-1} \mathbf{y} - \frac{\mathbf{N}}{2} \ln(2\pi)$$

(Bishop eq 6.69)

(Bishop eq 6.70)

Learning through gradient descent

$$\frac{\partial}{\partial \theta_i} \ln p(\mathbf{y} \mid \mathbf{X}, \theta) = -\frac{1}{2} \operatorname{Tr} \left(\hat{\mathbf{K}}^{-1} \frac{\partial \hat{\mathbf{K}}}{\partial \theta_i} \right) + \frac{1}{2} \mathbf{y}^{\mathrm{T}} \hat{\mathbf{K}}^{-1} \frac{\partial \hat{\mathbf{K}}}{\partial \theta_i} \hat{\mathbf{K}}^{-1} \mathbf{y}$$

$$\frac{\partial}{\partial x} \ln |\mathbf{A}| = \operatorname{Tr} \left(\mathbf{A}^{-1} \frac{\partial \mathbf{A}}{\partial \mathbf{x}} \right)$$
$$\frac{\partial}{\partial x} (\mathbf{A}^{-1}) = -\mathbf{A}^{-1} \frac{\partial \mathbf{A}}{\partial \mathbf{x}} \mathbf{A}^{-1}$$

(Bishop eq C.21, C.22)

$$\ln p(\mathbf{y} \mid \mathbf{X}, \theta) = -\sum_{\mathbf{i}} \ln \mathbf{L}_{\mathbf{i}\mathbf{i}} - \frac{1}{2} \mathbf{y}^{\mathrm{T}} \alpha - \frac{\mathbf{N}}{2} \ln(2\pi)$$

$$L = \text{Cholesky } \hat{\mathbf{K}}$$

$$\alpha = \mathbf{L}^{\mathbf{T}} \setminus (\mathbf{L} \setminus \mathbf{y})$$

$$p(\mathbf{y} | \mathbf{X}, \theta) = \int p(\mathbf{y} | \mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f} | \mathbf{X}, \theta) d\mathbf{f}$$

$$p(\mathbf{f} | \mathbf{X}, \theta) = \mathcal{N}(\mathbf{f}; \mathbf{0}, \mathbf{K})$$

Bishop eq 6.89, GP Book eq 3.30

$$p(\mathbf{y} | \mathbf{X}, \theta) = \int p(\mathbf{y} | \mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f} | \mathbf{X}, \theta) d\mathbf{f}$$

$$p(\mathbf{f} | \mathbf{X}, \theta) = \mathcal{N}(\mathbf{f}; \mathbf{0}, \mathbf{K})$$
Bishop eq 6.89, GP Book eq 3.30
$$\propto p(\mathbf{f} | \mathbf{y}, \mathbf{X}, \theta) \simeq \mathcal{N}(\mathbf{a} | \mathbf{a}_{\text{MAP}}, \mathbf{H}^{-1})$$

$$p(\mathbf{y} | \mathbf{X}, \theta) = \int p(\mathbf{y} | \mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f} | \mathbf{X}, \theta) d\mathbf{f}$$

$$p(\mathbf{f} | \mathbf{X}, \theta) = \mathcal{N}(\mathbf{f}; \mathbf{0}, \mathbf{K})$$
Bishop eq 6.89, GP Book eq 3.30
$$\propto p(\mathbf{f} | \mathbf{y}, \mathbf{X}, \theta) \simeq \mathcal{N}(\mathbf{a} | \mathbf{a}_{\text{MAP}}, \mathbf{H}^{-1})$$

For a scaled Gaussian, the "normalising" constant

$$p(\mathbf{y} | \mathbf{X}, \theta) =$$

$$\int \exp\left(-\frac{1}{2}(\mathbf{f} - \mathbf{f}_{\text{MAP}})^T \mathbf{H} (\mathbf{f} - \mathbf{f}_{\text{MAP}})\right) d\mathbf{f}$$

$$p(\mathbf{y} | \mathbf{X}, \theta) = \int p(\mathbf{y} | \mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f} | \mathbf{X}, \theta) d\mathbf{f}$$

$$p(\mathbf{f} | \mathbf{X}, \theta) = \mathcal{N}(\mathbf{f}; \mathbf{0}, \mathbf{K})$$
Bishop eq 6.89, GP Book eq 3.30
$$\propto p(\mathbf{f} | \mathbf{y}, \mathbf{X}, \theta) \simeq \mathcal{N}(\mathbf{a} | \mathbf{a}_{\text{MAP}}, \mathbf{H}^{-1})$$

For a scaled Gaussian, the "normalising" constant

For a scaled Gaussian, the "normalising" constant
$$p(\mathbf{y} \mid \mathbf{X}, \theta) = p(\mathbf{y} \mid \mathbf{f}_{\text{MAP}}, \mathbf{X}, \theta) p(\mathbf{f}_{\text{MAP}} \mid \mathbf{X}, \theta) \int \exp\left(-\frac{1}{2}(\mathbf{f} - \mathbf{f}_{\text{MAP}})^T \mathbf{H} (\mathbf{f} - \mathbf{f}_{\text{MAP}})\right) d\mathbf{f}$$

$$p(\mathbf{y} | \mathbf{X}, \theta) = \int p(\mathbf{y} | \mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f} | \mathbf{X}, \theta) d\mathbf{f}$$

$$p(\mathbf{f} | \mathbf{X}, \theta) = \mathcal{N}(\mathbf{f}; \mathbf{0}, \mathbf{K})$$
Bishop eq 6.89, GP Book eq 3.30
$$\propto p(\mathbf{f} | \mathbf{y}, \mathbf{X}, \theta) \simeq \mathcal{N}(\mathbf{a} | \mathbf{a}_{\text{MAP}}, \mathbf{H}^{-1})$$

For a scaled Gaussian, the "normalising" constant
$$p(\mathbf{y} \mid \mathbf{X}, \theta) = p(\mathbf{y} \mid \mathbf{f}_{\text{MAP}}, \mathbf{X}, \theta) p(\mathbf{f}_{\text{MAP}} \mid \mathbf{X}, \theta) \int \exp\left(-\frac{1}{2}(\mathbf{f} - \mathbf{f}_{\text{MAP}})^T \mathbf{H} (\mathbf{f} - \mathbf{f}_{\text{MAP}})\right) d\mathbf{f}$$
Bishop eq 4.135, 4.137, GP Book eq 3.31

$$\ln p(\mathbf{y} | \mathbf{X}, \theta) = \ln p(\mathbf{y} | \mathbf{f}_{\text{MAP}}, \mathbf{X}, \theta) + \ln p(\mathbf{f}_{\text{MAP}} | \mathbf{X}, \theta) - \frac{1}{2} \ln |\mathbf{H}| + \frac{N}{2} \ln 2\pi$$

$$p(\mathbf{y} | \mathbf{X}, \theta) = \int p(\mathbf{y} | \mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f} | \mathbf{X}, \theta) d\mathbf{f}$$

$$p(\mathbf{f} | \mathbf{X}, \theta) = \mathcal{N}(\mathbf{f}; \mathbf{0}, \mathbf{K})$$
Bishop eq 6.89, GP Book eq 3.30
$$\propto p(\mathbf{f} | \mathbf{y}, \mathbf{X}, \theta) \simeq \mathcal{N}(\mathbf{a} | \mathbf{a}_{\text{MAP}}, \mathbf{H}^{-1})$$

For a scaled Gaussian, the "normalising" constant
$$p(\mathbf{y} \mid \mathbf{X}, \theta) = p(\mathbf{y} \mid \mathbf{f}_{\text{MAP}}, \mathbf{X}, \theta) p(\mathbf{f}_{\text{MAP}} \mid \mathbf{X}, \theta) \int \exp\left(-\frac{1}{2}(\mathbf{f} - \mathbf{f}_{\text{MAP}})^T \mathbf{H} (\mathbf{f} - \mathbf{f}_{\text{MAP}})\right) d\mathbf{f}$$
Bishop eq 4.135, 4.137, GP Book eq 3.31

$$\ln p(\mathbf{y} \mid \mathbf{X}, \theta) = \ln p(\mathbf{y} \mid \mathbf{f}_{\text{MAP}}, \mathbf{X}, \theta) + \ln p(\mathbf{f}_{\text{MAP}} \mid \mathbf{X}, \theta) - \frac{1}{2} \ln |\mathbf{H}| + \frac{N}{2} \ln 2\pi$$

Goodness of fit at the optimal parameter

$$p(\mathbf{y} | \mathbf{X}, \theta) = \int p(\mathbf{y} | \mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f} | \mathbf{X}, \theta) d\mathbf{f}$$

$$p(\mathbf{f} | \mathbf{X}, \theta) = \mathcal{N}(\mathbf{f}; \mathbf{0}, \mathbf{K})$$

For a scaled Gaussian, the "normalising" constant
$$p(\mathbf{y} \mid \mathbf{X}, \theta) = p(\mathbf{y} \mid \mathbf{f}_{\text{MAP}}, \mathbf{X}, \theta) p(\mathbf{f}_{\text{MAP}} \mid \mathbf{X}, \theta) \int \exp\left(-\frac{1}{2}(\mathbf{f} - \mathbf{f}_{\text{MAP}})^T \mathbf{H} (\mathbf{f} - \mathbf{f}_{\text{MAP}})\right) d\mathbf{f}$$
Bishop eq 4.135, 4.137, GP Book eq 3.31

$$\ln p(\mathbf{y} \mid \mathbf{X}, \theta) = \ln p(\mathbf{y} \mid \mathbf{f}_{\text{MAP}}, \mathbf{X}, \theta) + \ln p(\mathbf{f}_{\text{MAP}} \mid \mathbf{X}, \theta) \left[-\frac{1}{2} \ln |\mathbf{H}| + \frac{N}{2} \ln 2\pi \right]$$

Goodness of fit at the optimal parameter

Complexity / degree of freedom "penalty"

Bishop's textbook: chapter 4.4-4.5, 6.4.5-6.4.6

GP book: http://gaussianprocess.org/gpml/chapters/ chapter 3.1-3.4

- Bayesian Logistic Regression
 - the challenge to computing a non-Gaussian predictive distribution

- Bayesian Logistic Regression
 - the challenge to computing a non-Gaussian predictive distribution
- Laplace Approximation for Bayesian Logistic Regression

- Bayesian Logistic Regression
 - the challenge to computing a non-Gaussian predictive distribution
- Laplace Approximation for Bayesian Logistic Regression
- Gaussian Process Classification

- Bayesian Logistic Regression
 - the challenge to computing a non-Gaussian predictive distribution
- Laplace Approximation for Bayesian Logistic Regression
- Gaussian Process Classification
- Laplace Approximation for Gaussian Process Classification

Tomorrow: recap and unsupervised learning

