Автомат Глушкова

Линеаризация

Определение

Если регулярное выражение $r \in \mathcal{RE}$ содержит п вхождений букв алфавита Σ , тогда линеаризованное регулярное выражение Linearize(r) получается из r приписыванием i-ой по счёту букве, входящей в r, индекса i.

Пример

Рассмотрим регулярное выражение:

$$(ba | b)aa(a | ab)^*$$

Его линеаризованная версия:

$$(b_1a_2 \mid b_3)a_4a_5(a_6 \mid a_7b_8)^*$$

Множества First, Last, Follow

Определение

Пусть $r \in \mathcal{RE}$, тогда:

- множество First это множество букв, с которых может начинаться слово из $\mathcal{L}(\mathbf{r})$ (если $\varepsilon \in \mathcal{L}(\mathbf{r})$, то оно формально добавляется в First);
- множество Last это множество букв, которыми может заканчиваться слово из $\mathcal{L}(r)$;
- множество Follow(c) это множество букв, которым может предшествовать c. Т.е.

$$\{d \in \Sigma \mid \exists w_1, w_2(w_1 c dw_2 \in \mathcal{L}(r))\}.$$

Множество Follow в теории компиляции обычно определяется иначе — это множество символов, которые могут идти за выводом из определённого нетерминального символа. Два этих определения можно унифицировать, если рассматривать каждую букву в r как «обёрнутую»

First, Last, Follow — пример

Построим указанные множества для регулярного выражения $r = (\mathtt{ba} \mid \mathtt{b})\mathtt{aa}(\mathtt{a} \mid \mathtt{ab})^*.$

Начнём с исходного регулярного выражения.

Исходное регулярное выражение

- First $(r) = \{b\}$.
- Last $(r) = \{a, b\}.$
- $Follow_r(a) = \{a, b\}; Follow_r(b) = \{a\}.$

Хотя данные множества описывают, как устроены слова из $\mathscr{L}(r)$ локально, однако они не исчерпывают всей информации о языке, поскольку разные вхождения букв в регулярное выражения никак не различаются.

Например, по множествам First и Last можно предположить, что $b \in \mathcal{L}(r)$, хотя это не так.

First, Last, Follow — пример

Построим указанные множества для регулярного выражения $r = (ba \mid b)aa(a \mid ab)^*.$

Вспомним, что $r_{Lin} = (b_1 a_2 \mid b_3) a_4 a_5 (a_6 \mid a_7 b_8)^*$.

Линеаризованное выражение

- $\bullet \ \mathsf{First}(r_{\mathsf{Lin}}) = \big\{ \mathtt{b_1}, \mathtt{b_3} \big\}.$
- Last $(r_{Lin}) = \{a_5, a_6, b_8\}.$
- $$\begin{split} \bullet \ \, & \text{Follow}_{r_{\text{Lin}}}(b_1) = \big\{a_2\big\}; \, \text{Follow}_{r_{\text{Lin}}}(a_2) = \big\{a_4\big\}; \\ & \text{Follow}_{r_{\text{Lin}}}(b_3) = \big\{a_4\big\}; \, \text{Follow}_{r_{\text{Lin}}}(a_4) = \big\{a_5\big\}; \\ & \text{Follow}_{r_{\text{Lin}}}(a_5) = \big\{a_6, a_7\big\}; \, \text{Follow}_{r_{\text{Lin}}}(a_6) = \big\{a_6, a_7\big\}; \\ & \text{Follow}_{r_{\text{Lin}}}(a_7) = \big\{b_8\big\}; \, \text{Follow}_{r_{\text{Lin}}}(b_8) = \big\{a_6, a_7\big\}. \\ \end{aligned}$$

В описании данных множеств содержится исчерпывающая информация о языке $\mathcal{L}(r_{\mathsf{Lin}})$.

Конструкция автомата Глушкова

Алгоритм построения Glushkov(r)

- Строим линеаризованную версию r: $r_{\mathsf{Lin}} = \mathsf{Linearize}(r)$.
- ullet Ищем $\mathsf{First}(r_\mathsf{Lin})$, $\mathsf{Last}(r_\mathsf{Lin})$ и $\mathsf{Follow}_{r_\mathsf{Lin}}(c)$ для $\mathsf{всеx}\ c \in \Sigma_{r_\mathsf{Lin}}.$
- Все состояния автомата, кроме начального (назовём его S), соответствуют буквам $c \in \Sigma_{r_{Lin}}$.
- Из начального состояния строим переходы в те состояния, для которых $c \in \mathsf{First}(r_\mathsf{Lin})$. Переходы имеют вид $S \stackrel{c}{\to} c$.
- Переходы из состояния с соответствуют элементам d множества Follow $_{r_{\rm lin}}(c)$ и имеют вид $c \stackrel{d}{\to} d$.
- Конечные состояния такие, что $c \in \mathsf{Last}(r_\mathsf{Lin})$, а также S, если $\varepsilon \in \mathscr{L}(\mathsf{R})$.
- Теперь стираем разметку, построенную линеаризацией, на переходах автомата. Конструкция завершена.

Пример автомата Глушкова

Исходное регулярное выражение:

$$(ba | b)aa(a | ab)^*$$

Линеаризованное регулярное выражение:

$$(b_1a_2 | b_3)a_4a_5(a_6 | a_7b_8)^*$$

Автомат Глушкова:

Подграфы, распознающие регулярные выражения, являющиеся подструктурами исходного, не имеют общих вершин. Это свойство автомата Глушкова используется в реализациях match-функций некоторых библиотек регулярных выражений.

Свойства автомата Глушкова

- Не содержит ε-переходов.
- Число состояний равно длине регулярного выражения (без учёта регулярных операций), плюс один (стартовое состояние).
- В общем случае недетерминированный.

Примечание

Для 1-однозначных регулярных выражений r автомат Glushkov(r) является детерминированным. Эту его особенность активно используют в современных библиотеках регулярных выражений, например, в RE2. Выигрыш может получиться колоссальным: например, $Thompson((\alpha^*)^*)$ является экспоненциально неоднозначным, а $Glushkov((\alpha^*)^*)$ однозначен и детерминирован!

Бисимуляция

Labelled Transition Systems

Понятие бисимуляции возникло в контексте систем размеченных переходов (LTS).

Определение

Labelled Transition System — тройка $\langle S, \Sigma, Q \rangle$, где S — множество состояний, Σ — множество меток, Q — множество переходов (троек из $S \times \Sigma \times S$).

LTS похожи на конечные автоматы, но допускают бесконечные множества S и Q. Кроме того, в LTS нет начальных и финальных состояний.

Трансформационный моноид также строится в контексте LTS, то есть без учёта финальности состояний. Поэтому из ДКА, по которому строится трансформационный моноид, предварительно удаляются все ловушки, иначе в нём могут появиться правила переписывания, не имеющие никакого отношения к языку ДКА.

Симуляция и бисимуляция

Определение

Если \lesssim — симуляция для LTS = $\langle S, \Sigma, Q \rangle$, то

$$\forall \mathfrak{p},\mathfrak{q} \in S(\mathfrak{p} \precsim \mathfrak{q} \Rightarrow (\exists \mathfrak{p}',\mathfrak{a}((\mathfrak{p} \overset{\alpha}{\longrightarrow} \mathfrak{p}') \Rightarrow \exists \mathfrak{q}'(\mathfrak{q} \overset{\alpha}{\longrightarrow} \mathfrak{q}' \And \mathfrak{p}' \precsim \mathfrak{q}'))$$

Если одновременно выполняются условия $p \lesssim q$ и $q \lesssim p$, то говорят, что p и q находятся в отношении бисимуляции (обозначается $p \sim q$).

Можно считать, что если р \lesssim q, то множество путей в LTS, стартующих в р, вкладывается в множество путей с началом в q. Бисимуляция состояний в единственной LTS легко обобщается и на бисимуляцию между двумя разными LTS. Поскольку в них нет начальных состояний, и они не обязаны быть связными, можно рассматривать несколько LTS как одну LTS с несколькими компонентами и искать бисимуляцию между элементами этих компонент.

10 / 24

Бисимилярность НКА

Чтобы определить отношение бисимуляции на конечных автоматах, к отношению бисимуляции на LTS нужно добавить ограничения на бисимуляцию начальных и конечных состояний. Более точно, для бисимуляции НКА \mathcal{A}_1 и \mathcal{A}_2 необходимы следующие условия:

- каждому состоянию \mathcal{A}_1 бисимилярно состояние \mathcal{A}_2 , и наоборот;
- стартовому состоянию \mathcal{A}_1 бисимилярно стартовое состояние \mathcal{A}_2 ;
- **3** каждому финальному состоянию \mathcal{A}_1 бисимилярно финальное состояние \mathcal{A}_2 , и наоборот.

Лемма

Бисимилярные НКА распознают равные языки.

Пример бисимилярных НКА

Рассмотрим следующие два автомата, распознающие язык $\mathfrak{a}^*\mathfrak{b}$. Автомат \mathscr{A}_1 :

Их бисимуляция:

$$\{\langle S, S' \rangle, \langle T, S' \rangle, \langle F, F' \rangle\}$$

Состояния S и T бисимилярны одному и тому же состоянию S'.

Автомат \mathcal{A}_2 :

Бисимуляция и равенство

В равных НКА состояния бисимилярны, однако только условия существования бисимуляции и биекции бисимилярных состояний недостаточно, чтобы гарантировать равенство.

Пример неравных бисимилярных НКА

(автор примера: А. Д. Дельман)

Следующие два автомата бисимилярны и имеют одинаковое число состояний, однако не равны:

Бисимилярность состояний в НКА

Определение

Состояния q_i q_j в НКА \mathscr{A} бисимилярны $(q_i \sim_{\mathscr{A}} q_j)$, если они связаны LTS-бисимуляцией и имеют одинаковую финальность в \mathscr{A} .

- С учётом определения выше, бисимуляцию НКА можно переформулировать как отношение бисимуляции состояний НКА такое, что стартовые состояния бисимилярны.
- Отношение ~ имеет важное свойство: бисимилярные состояния в автомате можно объединить без изменения его семантики. Это преобразование часто позволяет существенно упростить НКА.

Бисимилярность состояний в НКА

Определение

Состояния q_i q_j в НКА $\mathscr A$ бисимилярны $(q_i \sim_\mathscr A q_j)$, если они связаны LTS-бисимуляцией и имеют одинаковую финальность в $\mathscr A$.

Пример

Все состояния-ловушки в любом полном автомате (т.е. с явно присутствующими переходами по всем буквам алфавита) бисимилярны друг другу. Все финальные состояния без переходов из них (кроме как в ловушки) также бисимилярны.

Пример слияния по бисимуляции

Исходный автомат:

Итоговый автомат:

Бисимуляция: $\left\{\left\{q_3,q_6\right\}, \bigcup_{i \neq 3\& i \neq 6}\left\{q_i\right\}\right\}$

Кроме q_3 и q_6 , все состояния не бисимилярны никаким другим.

Например, $q_1
eg q_5$, поскольку $q_1 \xrightarrow{b} q_0$, $q_5 \xrightarrow{b} q_6$, но $q_0 \xrightarrow{a} q_1$ (и q_1 — не финальное), а из q_6 есть переход только в финальное состояние q_2 . 15/24

Трансформационный моноид

Функции переходов по слову в ДКА

Правила перехода в ДКА \mathscr{A} над алфавитом Σ и множеством состояний Q определяются функцией $\Sigma \times Q \to Q$. Если специализировать её по первому аргументу, получится функция $F_{\xi}:Q\to Q$ ($\xi\in\Sigma$). Эту функцию можно продолжить на строки, положив $F_{\xi}\circ F_{\eta}=F_{\eta\,\xi}$.

Пусть мы строим функцию переходов по слову ab в автомате \mathcal{A} . Сначала определим функции F_a , F_b , определяющие его поведение на буквах a и b. Тогда поведение переходов на слове ab получится композицией F_a и F_b .

	q_0	q_1	q_2
а	q_1	q_2	q_2
b	q ₂	q_1	q_1
ab	q_1	q_1	q_1

Функции переходов по слову в ДКА

Свойства множества функций переходов ДКА А

- Существует единичная функция F_{ϵ} такая, что $F_{\epsilon} \circ F_{\xi} = F_{\xi} \circ F_{\epsilon} = F_{\xi}.$
- Композиция о ассоциативна.

Таким образом, функции переходов по словам из Σ^* в ДКА \mathscr{A} образуют моноид относительно композиции.

Если ДКА представлен в краткой (trim) форме, некоторые переходы могут вести «в никуда». На самом деле они ведут в (единственное!) состояние-ловушку, существование которого неявно подразумевается. Однако наличие нескольких ловушек в ДКА повлечёт ошибки при построении функции переходов.

Определение и свойства

Определение

Трансформационный моноид $\mathcal{M}_{\mathscr{A}}$ для ДКА \mathscr{A} — это моноид функций F_ξ таких, что $\mathsf{F}_\xi(\mathsf{q}_\mathfrak{i}) = \mathsf{q}_\mathfrak{j} \Leftrightarrow (\mathsf{q}_\mathfrak{i} \overset{\xi}{\longrightarrow} \mathsf{q}_\mathfrak{j} \ \mathsf{B}$ $\mathscr{A}).$ Иначе можно сказать, что трансформационный моноид $\mathcal{M}_\mathscr{A}$ определяется множеством классов эквивалентности $\left\{w \mid w \in \Sigma^+\right\}$ таким, что $w_\mathfrak{i} = w_\mathfrak{j} \Leftrightarrow \mathsf{F}_{w_\mathfrak{i}} = \mathsf{F}_{w_\mathfrak{j}}.$

Определение и свойства

- $\mathcal{M}_{\mathscr{A}}$ определяется фактормножеством классов эквивалентности и правилами переписывания, задающими эквивалентность. ε обычно не включается в множество w_i .
- Поскольку множество функций F_{w_i} в случае ДКА конечно, то $\mathcal{M}_{\mathscr{A}}$ содержит конечное число классов эквивалентности (верно и обратное: каждый такой моноид определяет ДКА).
- Трансмоноид строится для ДКА без ловушек; переход в ловушку обозначается в таблице переходов просто прочерком.
- Для единообразия записи трансформаций и перестановок в алгебре, в таблице переходов пишут только номера состояний \mathscr{A} .

Построение трансф. моноида

Определим соответствие между буквами и множествами переходов по ним и будем расширять этот список новыми словами в лексикографическом порядке. Если очередное слово задаёт такую же трансформацию, как и уже рассмотренное, порождаем соответствующее правило переписывания.

Классы э	кви	вал	ентности	Правила переписывания
	0	1	2	
a	1	1	1	
b	0	2	2	
c		1	2	

Построение трансф. моноида

				· ·			
Классы эн	квин	вало	ентности	Правила переписывания			
	0	1	2				
a	1	1	1	$aa \rightarrow a$	$\alpha c \to \alpha$		
	0			ba o a	$bb \to b$		
c	_	1	2	$cb \rightarrow bc$	$cc \to c$		
ab	2	2	2	abc o ab	$bca \rightarrow ca$		
bc	_	2	2	$cab \rightarrow bc$			
ca	_	1	1				

Всего классов эквивалентности: 6

Синтаксический моноид

Определим отношение синтаксической конгруэнтности слов:

$$w_i \sim_{\mathscr{L}} w_j \Leftrightarrow \forall x, y (x w_i y \in \mathscr{L} \Leftrightarrow x w_j y \in \mathscr{L})$$

Синтаксический моноид $\mathcal{M}(\mathscr{L})$ — это множество его классов эквивалентности относительно \mathscr{L} . То есть такая полугруппа с единицей над $w \in \Sigma^*$, что $w_i = w_j \Leftrightarrow w_i \mathscr{L} w_j$ (равенство здесь понимается в алгебраическом смысле: как возможность преобразовать w_i и w_j к одному и тому же слову).

Лемма

Синтаксический моноид регулярного языка \mathscr{L} совпадает с трансф. моноидом минимального ДКА, его распознающего.

Синтаксический моноид (так же, как и минимальный ДКА) — атрибут *языка*, а трансф. моноид — атрибут *конкретного ДКА*.

Суффиксная конгруэнтность

Предшествующие понятия рассматривали структуру переходов автомата без учёта начальных и конечных состояний, хотя неявно они использовались, чтобы удалить недостижимые состояния и состояния-ловушки при подготовке к построению моноида. Однако если чуть-чуть специализировать отношение $\sim_{\mathscr{L}}$, положив возможные префиксы пустыми, получится отношение эквивалентности, напрямую зависящее от положения стартовых и

Определим отношение эквивалентности по Нероуду как:

финальных состояний в минимальном ДКА.

$$w_i \equiv_{\mathscr{L}} w_j \Leftrightarrow \forall y (w_i y \in \mathscr{L} \Leftrightarrow w_j y \in \mathscr{L})$$

Обозначение $\sim_{\mathscr{L}}$ может использоваться в литературе как в смысле синтаксической конгруэнции, так и в смысле эквивалентности по Нероуду. Лучше дополнительно уточнить.

Критерий регулярности языка

Теорема Майхилла-Нероуда

Язык $\mathscr L$ регулярен тогда и только тогда, когда множество классов эквивалентности по $\equiv_{\mathscr L}$ конечно.

 \Rightarrow : Пусть \mathscr{L} регулярен. Тогда он порождается некоторым DFA \mathscr{A} с конечным числом состояний N. Значит, множество $\left\{q_i \mid q_0 \stackrel{w}{\longrightarrow} q_i\right\}$ конечно, а для каждых двух w_1, w_2 таких, что $q_0 \stackrel{w_1}{\longrightarrow} q_i$ и $q_0 \stackrel{w_2}{\longrightarrow} q_i$, выполняется $w_1 \equiv_{\mathscr{L}} w_2$.

 \Leftarrow : Пусть все слова в Σ^* принадлежат N классам эквивалентности A_1,\dots,A_n по $\equiv_{\mathscr L}$. Построим по ним DFA $\mathscr A$, распознающий $\mathscr L$. Классы A_i сопоставим состояниям:

- Начальным объявим класс эквивалентности A_0 такой, что $\epsilon \in A_0$.
- Конечными объявим такие A_j , что $\forall w \in A_j (w \in \mathcal{L})$.
- Если $w \in A_i$, $w a_k \in A_j$, тогда добавляем в δ правило $\langle A_i, a_k, A_j \rangle$.

Трансформационный моноид и $\equiv_{\mathscr{L}}$

- Классы эквивалентности по Майхиллу–Нероуду можно извлечь из трансформационного моноида минимального ДКА для языка \mathcal{L} : они являются подмножеством факторслов, которые переводят стартовое состояние в какое-то другое (непустое) состояние.
- Для каждой пары таких факторслов w_i и w_j , переводящих стартовое состояние в разные состояния q_i и q_j , в синтаксическом моноиде обязательно найдётся различающий суффикс (т.е. класс эквивалентности и такой, что w_i $u \in \mathcal{L}$ & w_j $u \notin \mathcal{L}$, либо наоборот).
- Если в ДКА существует ловушка (возможно, неявная), то в трансформационном моноиде найдётся класс эквивалентности, переводящий в неё стартовое состояние. Таких классов может быть несколько, но с точки зрения эквивалентности по Майхиллу–Нероуду, они не различаются.

23 / 24

Пример

Включим в число факторслов ε и выделим по одному факторслову для каждого состояния q_i , переводящему стартовое слово в q_i . Для каждого из них определим множество суффиксов, которые оставляют слова этих классов в языке. После этого достаточно собрать вместе все суффиксы и префиксы и выкинуть из полученной таблицы дубли столбцов.

	Фактор	слова-і	Таблица классов эквивалентности						
_	префикс	0 →?	суффиксы			ε	b	ab	
	3	0	ab		ε	_	_	+	
	a	1	b, ab ε, b, ab		ı	_	+	+	
	ab	2	ε, b, ab	al)	+	+	+	