Regular Expression:
Any expression expressed in algebraic fashion
Four rules:- O Any terminal symbol is a regular expression $(\emptyset, \Sigma, E, 0, b, c)$
① The union of 2 regular confression is also a regular expression $(R_1 + R_2)^{(d+D)} = 3$
3) The concatenation of regular expression also a regular expression (R. R.) (d+0+3) (d+0+3) = 34
1) The closure of a Regular expression is also a Regular expression & row no more por solups of a post of a post of
1) Represent the following in Regular expression:
(i) {0,1,29 => RE= 0+1+2 (i) {1,06} => RE= 1.06 (ii) {200, 0, 6,662 => RE = 200+0+6+660
(6) { 1, 11, 111, 111,} => RE= 0 × 10) (7) { 1, 11, 111, 111,} => RE=1+

- Design a regular corpression for following coses over $\mathcal{Z} = \{a,b\}$
 - 1) String length is exactly 2
 - (i) The string length is atleast 2
 - (ii) The string length is atmost 2
- O The source of 2 regular expression is also a rigilar process RE = (a+b)(a+b)
 - (i) RE = (a+b) (a+

The clause of a Pegular expression is also a Regular

- RE = ((+a+b) (E+a+b)
- 3 Design the regular expression over E= {0,6}
 - (Reproved the colowing in Property Expression -1 Even length String
 - (i) odd length string
 - RE = ((a+b)(a+b))* 00-1 38 =
 - 1000 = 3A () odo d. D. 000 () RE = (a+b)((a+b)(a+b))*

S+1+0 -78 = \$5,101 ()

- 1-112- Pro- 11201112)

4) Write a regular expression for strings that either start @ end with or

6) Write a regular expression that have two consecutive 'o's atleast

$$RE = \left[\left((0+1)^{x} O O (0+1)^{x} \right) + \left((0+1)^{x} 1 1 (0+1)^{x} \right) \right]$$

(dioldod) (dlo) (d

- => Conversion of RE to E-NFA using Thompson
 Construction Method:-
 - > For union Expressions (a+b) :-

=> For Concatenation expressions: - (a.b)

=> For Closure expressions: - (a*)

Priority:- () > * > > +

=> Converting DFA to Regular Expression using State Elimination Method: - $RE = a \times b a \times b (a+b)^{x}$ (d+0) do *(d+0) (2) Not required a*b a*b (a+b)* a+b a* $RE = \alpha^*b\alpha^* + \alpha^*b\alpha^* b(a+b)^*$ = 0*ba* (E + b(a+b)*)

$$a(b+c+d)$$

$$\rightarrow (q_1) \xrightarrow{(b+c+d)} (q_2)$$

