未命名 - Jupyter Notebook 2023/12/20 下午2:59

```
In [1]: import numpy as np
    import xarray as xr
    import pandas as pd
    import matplotlib.pyplot as plt
    import cartopy.crs as ccrs
    import cartopy.feature as cfeature
    import netCDF4 as nc
    from sklearn.linear_model import LinearRegression
    import matplotlib.ticker as ticker
```

```
In [2]: data = pd.read_csv("global.1751_2014.csv")
    data_conv = data.iloc[:, :2]
    data_conv_dr = data_conv.drop(0)
    data_conv_dr
```

Out[2]:

	Year	Total carbon emissions from fossil fuel consumption and cement production (million metric tons of C)
1	1751	3
2	1752	3
3	1753	3
4	1754	3
5	1755	3
260	2010	9128
261	2011	9503
262	2012	9673
263	2013	9773
264	2014	9855

264 rows × 2 columns

```
In [3]: # 1.1
# I've got great help from my friend yuguang Zhu.

# Make sure the emission column is of floating point type and direc data_conv_dr['PGC'] = data_conv_dr['Total carbon emissions from fos # Create a new DataFrame containing a specific row ppm_df = data_conv_dr[['Year', 'PGC']].loc[237:254]
ppm_df
```

Out[3]:

	Year	PGC
237	1987	5.725
238	1988	5.936
239	1989	6.066
240	1990	6.074
241	1991	6.142
242	1992	6.078
243	1993	6.070
244	1994	6.174
245	1995	6.305
246	1996	6.448
247	1997	6.556

```
N1 = 740  # Carbon concentration in the atmosphere
N2 = 900  # Carbon concentration at the ocean surface
k12 = 105 / 740  # Atmosphere-to-ocean transfer coefficient
k21 = 102 / 900  # Ocean-to-atmosphere transfer coefficient
# I wonder the coefficient is a fixed value or it changes with the
# Ensure that the length of years matches the number of lines in ppi
num_years = len(ppm_df)

for i in range(num_years):
    year = ppm_df['Year'].iloc[i]
    gamma = ppm_df['PGC'].iloc[i]
```

 $dN1_dt = -k12 * N1 + k21 * N2 + gamma$

```
dN2_dt = k12 * N1 - k21 * N2

dt = 1
N1 += dN1_dt * dt
N2 += dN2_dt * dt

calculation_without_buffer.append(N1 / 2.13)

print(f"Year: {year}, Atmospheric CO2 concentration: {N1 / 2.13}
```

```
Year: 1987, Atmospheric CO2 concentration: 348.70 ppm
Year: 1988, Atmospheric CO2 concentration: 350.05 ppm
Year: 1989, Atmospheric CO2 concentration: 351.44 ppm
Year: 1990, Atmospheric CO2 concentration: 352.80 ppm
Year: 1991, Atmospheric CO2 concentration: 354.17 ppm
Year: 1992, Atmospheric CO2 concentration: 355.48 ppm
Year: 1993, Atmospheric CO2 concentration: 356.78 ppm
Year: 1994, Atmospheric CO2 concentration: 358.12 ppm
Year: 1995, Atmospheric CO2 concentration: 359.51 ppm
Year: 1996, Atmospheric CO2 concentration: 360.95 ppm
Year: 1997, Atmospheric CO2 concentration: 362.41 ppm
Year: 1998, Atmospheric CO2 concentration: 363.86 ppm
Year: 1999, Atmospheric CO2 concentration: 365.28 ppm
Year: 2000, Atmospheric CO2 concentration: 366.77 ppm
Year: 2001, Atmospheric CO2 concentration: 368.31 ppm
Year: 2002, Atmospheric CO2 concentration: 369.87 ppm
Year: 2003, Atmospheric CO2 concentration: 371.59 ppm
Year: 2004, Atmospheric CO2 concentration: 373.43 ppm
```

```
In [14]: years = np.arange(1987, 2005, 1)
          co2_concentration = np.array(calculation_without_buffer).reshape(-1
          # Convert year and CO2 concentration data into NumPy arrays for lin
          X = years.reshape(-1, 1) # Convert to a two-dimensional array to f
          y = co2_concentration
          regressor = LinearRegression()
          regressor.fit(X, y)
          predicted_co2 = regressor.predict(X)
          plt.figure(figsize=(11, 6))
          plt.scatter(X, y, label='Atmosphere (N1)',color='black')
plt.plot(X, predicted_co2, color='blue', linestyle='--', label='Line
          plt.xlabel('Year')
          plt.ylabel('Concentration (ppm)')
          plt.xlim(1986, 2004)
          plt.title('Atmospheric CO2 Concentration with Linear Regression (19
          plt.legend()
          plt.show()
```



```
N2 = 900
k12 = 105 / 740
k21 = 102 / 900
N20 = 821 # The balance of ocean surface carbon
for i in range(num_years):
    year = ppm df['Year'].iloc[i]
    gama = ppm_df['PGC'].iloc[i]
    z = N1 / 2.13 # Atmospheric CO2 concentration in parts per mil
    # Calculate the buffer factor
    xi = 3.69 + 1.86 * 10**(-2) * z - 1.80 * 10**(-6) * z**2
    dN1 dt = -k12 * N1 + k21 * (N20 + xi * (N2 - N20)) + qama
    dN2 dt = k12 * N1 - k21 * (N20 + xi * (N2 - N20))
    dt = 1
    N1 += dN1_dt * dt
    N2 += dN2 dt * dt
    calculation_with_buffer.append(N1 / 2.13)
    print(f"Year: {year}, Atmospheric CO2 concentration: {N1 / 2.13
```

```
Year: 1987, Atmospheric CO2 concentration: 386.25 ppm
Year: 1988, Atmospheric CO2 concentration: 379.05 ppm
Year: 1989, Atmospheric CO2 concentration: 384.78 ppm
Year: 1990, Atmospheric CO2 concentration: 386.37 ppm
Year: 1991, Atmospheric CO2 concentration: 389.31 ppm
Year: 1992, Atmospheric CO2 concentration: 391.79 ppm
Year: 1993, Atmospheric CO2 concentration: 394.41 ppm
Year: 1994, Atmospheric CO2 concentration: 397.03 ppm
Year: 1995, Atmospheric CO2 concentration: 399.73 ppm
Year: 1996, Atmospheric CO2 concentration: 402,49 ppm
Year: 1997, Atmospheric CO2 concentration: 405.30 ppm
Year: 1998, Atmospheric CO2 concentration: 408.11 ppm
Year: 1999, Atmospheric CO2 concentration: 410.92 ppm
Year: 2000, Atmospheric CO2 concentration: 413.81 ppm
Year: 2001, Atmospheric CO2 concentration: 416.77 ppm
Year: 2002, Atmospheric CO2 concentration: 419.77 ppm
Year: 2003, Atmospheric CO2 concentration: 422.95 ppm
Year: 2004, Atmospheric CO2 concentration: 426.29 ppm
```

```
In [15]: years = np.arange(1987, 2005, 1)
         co2_concentration_2 = np.array(calculation_with_buffer).reshape(-1,
         X_2 = years.reshape(-1, 1)
         y_2 = co2_concentration_2
         regressor = LinearRegression()
         regressor.fit(X_2, y_2)
         predicted_co2_2 = regressor.predict(X_2)
         plt.figure(figsize=(11, 6))
         plt.scatter(X_2, y_2, label='Atmosphere (N1)',color='black')
         plt.plot(X_2, predicted_co2_2, color='orange', linestyle='--', labe
         plt.xlabel('Year')
         plt.ylabel('Concentration (ppm)')
         plt.xlim(1986, 2004)
         plt.title('Atmospheric CO2 Concentration with Linear Regression (19
         plt.legend()
         plt.show()
```



```
In [8]: # 1.3

data = pd.read_csv('co2_annmean_mlo.csv', comment='#')

# Filter data from 1986 to 2004
filtered_data = data[(data['year'] >= 1986) & (data['year'] <= 2004</pre>
```

```
# Obtain filtered year and CO2 concentration data
years with 1986 = filtered data['year']
observations_with_1986 = filtered_data['mean']
plt.figure(figsize=(8, 6))
plt.scatter(years_with_1986, observations_with_1986, color='black',
plt.plot(X, predicted_co2, color='orange', linestyle='-', label='ca
plt.plot(X_2, predicted_co2_2, color='blue', linestyle='-', label='
# Set the scale to face in
plt.tick_params(axis='x', direction='in')
plt.tick_params(axis='y', direction='in', which='both')
# Set chart labels and titles
plt.xlabel('Year', fontsize=12)
plt.ylabel('CO2 Concentration (ppm)', fontsize=12)
plt.title('CO2 Concentration Over Years', fontsize=16, fontweight='
# Add grid
plt.grid(False)
# Set x-axis ticks with 5-year intervals
plt.xticks(np.arange(1985, 2006, 5))
plt.xlim(1985, 2005)
plt.ylim(340, 430)
plt.legend(fontsize=10)
plt.tight_layout()
plt.show()
```


未命名 - Jupyter Notebook 2023/12/20 下午2:59


```
In []:
In [9]: # Bonus
# Again thanks to yuguang Zhu for the help.

co2_observations = pd.read_csv('1750-2000C02.csv')
land_use_data = pd.read_excel('Global_land-use_flux-1750_2005.xls')
ff_emissions = pd.read_csv('global_1751_2016.csv')

land_use_data = land_use_data[['Year', 'Global']]
land_use_data['LandUseChange'] = land_use_data['Global'] / (1000 * ff_emissions = ff_emissions[['Year', 'Total carbon emissions from ff_emissions['FossilFuelEmissions'] = ff_emissions.iloc[:, 1] - ff_emissions[:, 1] - ff_emissions[:, 1] - ff_emissions[:, 1] - ff_emissions[:, 1]
```

ff_emissions['EmissionFactor'] = ff_emissions['FossilFuelEmissions'

```
In [10]: k12, k21, k23, k24, k32, k34, k43, k45, k51, k67, k71 = [60 / 615, 
         N2 0 = 842 / 2.13
         initial_conditions = [615 / 2.13, 842 / 2.13, 9744 / 2.13, 26280 /
         f0 = 62 / 2.13
         P0 = 615 / 2.13
         # Explore the Beta value
         beta values = [0.38, 0.5]
         results = []
         for beta in beta_values:
             N1, N2, N3, N4, N5, N6, N7 = initial_conditions.copy()
             atmosphere = [N1]
             for year in range(1751, 2001):
                 gamma = ff emissions[ff emissions['Year'] == year]['Emission']
                 delta = land_use_data[land_use_data['Year'] == year]['LandU
                 xi = 3.69 + 0.0186 * N1 - 0.0000018 * N1**2
                 f = f0 * (1 + beta * np.log(N1 / P0))
                 # Calculate the rate of change for each part
                 dN1_dt = -k12 * N1 + k21 * (N2_0 + xi * (N2 - N2_0)) + gamma
                 dN2_dt = k12 * N1 - k21 * (N2_0 + xi * (N2 - N2_0)) - k23 *
                 dN3 dt = k23 * N2 - k32 * N3 - k34 * N3 + k43 * N4
                 dN4_dt = k34 * N3 - k43 * N4 + k24 * N2 - k45 * N4
                 dN5 dt = k45 * N4 - k51 * N5
                 dN6 dt = f - k67 * N6 - 2 * delta
                 dN7_dt = k67 * N6 - k71 * N7 + delta
                 # Update the values of each section
                 N1 += dN1 dt
                 N2 += dN2_dt
                 N3 += dN3_dt
                 N4 += dN4 dt
                 N5 += dN5 dt
                 N6 += dN6 dt
                 N7 += dN7_dt
                 atmosphere.append(N1)
             results.append(atmosphere)
```

```
In [11]: plt.figure(figsize=(12, 8))
    plt.scatter(co2_observations['year'], co2_observations['mean'], label
    plt.text(1850, 300, 'Calculations', fontsize=12)
    plt.text(1900, 290, 'Observations', fontsize=12)
    plt.text(1950, 345, 'β=0.38', fontsize=12, color='red')
    plt.text(1980, 320, 'β=0.50', fontsize=12, color='rblue')

# Draw the results of each beta value directly, with the colors red plt.plot(range(1750, 2001), results[0], color='red', label='β=0.38' plt.plot(range(1750, 2001), results[1], color='blue', label='β=0.50

plt.xlabel('Year', fontsize=14)
    plt.ylabel('CO2 Concentration (ppm)', fontsize=14)

plt.legend()

plt.show()
```


In []: