Nizovi realnih brojeva

MATEMATIKA 2

Damir Horvat

FOI, Varaždin

$$a_n = a_1 + (n-1)d$$

a) Za petnaestu nagradu dodjeljuje se 1500 kn.

$$a_{15} = a_1 + 14d = 5000 + 14 \cdot (-250) = 1500$$

b)
$$S_n = \frac{n}{2}(a_1 + a_n)$$
 $a_1 = 5000$ $d = -250$ $d = -250$ $S_{15} = \frac{15}{2}(5000 + 1500)$ $S_{15} = \frac{15}{2} \cdot 6500$ $S_{15} = 48750$

Ukupni novčani fond za nagrade iznosi 48 750 kn.

2 / 46

Zadatak 1

Na nekom natjecanju je podijeljeno ukupno 15 nagrada. Uz prvu nagradu dodjeljuje se i novčani iznos od 5000 kn, a uz svaku sljedeću novčani iznos za 250 kn manji nego uz prethodnu nagradu.

- a) Koliki se novčani iznos dodjeljuje uz petnaestu nagradu?
- b) Koliki je ukupni novčani fond za nagrade?
- c) Koliko je ukupno novaca podijeljeno od devete do četrnaeste nagrade?

Rješenje

- Neka je a_n iznos u kunama koji se dodjeljuje za n-tu nagradu.
- Tada je (a_n) aritmetički niz u kojemu je $a_1 = 5000$ i d = -250.

$$a_1 = 5000$$

c)
$$S_n = \frac{n}{2}(2a_1 + (n-1)d)$$

$$S_{14} = \frac{14}{2} (2 \cdot 5000 + 13 \cdot (-250))$$
 $S_8 = \frac{8}{2} (2 \cdot 5000 + 7 \cdot (-250))$

$$S_{14} = \frac{14}{2} \cdot 6750 \qquad \qquad S_8 = \frac{8}{2} \cdot 8250$$

$$S_{14} = 47\,250$$
 $S_8 = 33\,000$

$$S_{14} - S_8 = 47250 - 33000 = 14250$$

Od devete do četrnaeste nagrade podijeljeno je ukupno 14 250 kn.

Petar zarađuje godišnje 40 000 kn. Ako mu se svake godine godišnja zarada poveća za 2% u odnosu na prethodnu godinu, koliko će Petar ukupno zaraditi nakon 10 godina? Koliko će Petar zaraditi u desetoj godini?

Rješenje

- Neka je a_n Petrova zarada u *n*-toj godini.
- Iz uvjeta zadatka imamo

$$a_n = a_{n-1} + \frac{2}{100}a_{n-1} = 1.02a_{n-1}$$

pa je
$$\frac{a_n}{a_{n-1}} = 1.02$$
.

• Stoga je (a_n) geometrijski niz u kojemu je $a_1 = 40\,000$ i q = 1.02.

8 / 46

Nakon 10 godina Petar će zaraditi ukupno 437 988.84 kn.

$$a_n = a_1 \cdot q^{n-1}$$

 $a_{10} = 40\,000 \cdot 1.02^9$
 $a_{10} = 47\,803.70$

U desetoj godini Petar će zaraditi 47 803.70 kn.

Niz (S_n) – dijagram točkama

Zadatak 3

Riješite jednadžbu

$$1 - 5 - 11 - \cdots - x = -207$$

uz pretpostavku da brojevi na lijevoj strani čine aritmetički niz.

Rješenje

Zadanu jednadžbu možemo zapisati u obliku

$$a_1$$
 a_2 a_3 a_n a_n

iz čega dobivamo

$$a_1 = 1$$
, $d = a_2 - a_1 = -5 - 1 = -6$, $a_n = -x$.

14 / 46

Niz (S_n) – uspravni stupci

$$1 + (-5) + (-11) + \cdots + (-x) = -207$$

$$1 + (-5) + (-11) + \dots + (-x) = -207$$

$$S_n = \frac{n}{2}(2a_1 + (n-1)d)$$

$$\frac{n}{2}(2\cdot 1 + (n-1)\cdot (-6)) = -207$$
 $a_1 = 1$ $d = -6$ $a_n = -x$

$$\boxed{a_1 = 1} \boxed{d = -6} \boxed{a_n = -x}$$

$$\frac{n}{2}(2-6n+6)=-207$$

$$\frac{n}{2}(8-6n)=-207$$

$$4n - 3n^2 = -207$$

$$-3n^2 + 4n + 207 = 0$$

$$n_{1,2} = \frac{-4 \pm \sqrt{4^2 - 4 \cdot (-3) \cdot 207}}{2 \cdot (-3)} \qquad x = -(a_1 + 8d)$$
$$x = -(1 + 8) \cdot (-3)$$

$$n_{1,2} = \frac{-4 \pm 50}{-6}$$

$$n_1=-\frac{23}{3}, n_2=9$$

$$ax^{2} + bx + c = 0$$

$$x_{1,2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$n = 9$$

$$x = -a_0$$

$$x = -(a_1 + 8d$$

$$x = -(1+8\cdot(-6))$$

$$x = -(-47)$$

$$x = 47$$

Zadatak 4

Odredite opći član niza (an) koji je definiran rekurzivnom formulom

$$a_n = a_{n-1} + n$$
, $a_1 = 1$.

Riešenie

$$a_{1} = 1$$
 $a_{2} = a_{1} + 2 = 1 + 2 = 3$
 $a_{3} = a_{2} + 3 = 1 + 2 + 3 = 6$
 $a_{4} = a_{3} + 4 = 1 + 2 + 3 + 4 = 10$
 \vdots
 $a_{n} = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$
tvrdimo poznata

Želimo dokazati da za svaki $n \in \mathbb{N}$ vrijedi

$$a_n=\frac{n(n+1)}{2}.$$

Dokaz provodimo matematičkom indukcijom po $n \in \mathbb{N}$.

16/46

Zadatak 5

Ispitajte monotonost i omeđenost sljedećih nizova:

$$a) \ a_n = \frac{3n}{3n+1}$$

c)
$$c_n = \frac{2^{3n}}{n!}$$

b)
$$b_n = \frac{(-1)^n \cdot 6}{n}$$

$$d) d_n = \log_{\frac{1}{2}} \frac{n}{n+2}$$

18 / 46

• Baza indukcije: n = 1 $a_n = \frac{n(n+1)}{2}$ $a_1 = \frac{1 \cdot (1+1)}{2} = 1$ želimo dokazati

iednakost

Korak indukcije

da vrijedi

Pretpostavimo da tvrdnja vrijedi za neki $n \in \mathbb{N}$, tj. da vrijedi

$$a_n=\frac{n(n+1)}{2}.$$

Želimo dokazati da tvrdnja vrijedi za sljedeći prirodni broj n+1.

Riešenie

a) monotonost

$$a_1 = \frac{3 \cdot 1}{3 \cdot 1 + 1} = \frac{3}{4} = 0.7$$

$$a_1 = \frac{3 \cdot 1}{3 \cdot 1 + 1} = \frac{3}{4} = 0.75$$
 $a_2 = \frac{3 \cdot 2}{3 \cdot 2 + 1} = \frac{6}{7} \approx 0.857$

$$a_3 = \frac{3 \cdot 3}{3 \cdot 3 + 1} = \frac{9}{10} = 0.9$$

$$a_3 = \frac{3 \cdot 3}{3 \cdot 3 + 1} = \frac{9}{10} = 0.9$$
 $a_4 = \frac{3 \cdot 4}{3 \cdot 4 + 1} = \frac{12}{13} \approx 0.923$

- Uočavamo da vrijedi $a_1 < a_2 < a_3 < a_4$.
- Tvrdimo da je (a_n) strogo rastući niz, tj. da vrijedi

$$a_1 < a_2 < a_3 < a_4 < \cdots < a_{k-1} < a_k < a_{k+1} < \cdots$$
.

• Moramo dokazati (ili opovrgnuti) da je $a_n < a_{n+1}$ za svaki $n \in \mathbb{N}$.

• Pretpostavimo da niz (a_n) strogo raste.

$$a_n = \frac{3n}{3n+1}$$

$$a_{n} < a_{n+1} \iff \frac{3n}{3n+1} < \frac{3(n+1)}{3(n+1)+1} \iff \frac{n \in \mathbb{N}}{3n+1} < \frac{3n+3}{3n+4} / \cdot \underbrace{(3n+1)(3n+4)}_{>0} \iff \frac{3n(3n+4) < (3n+3)(3n+1)}_{>0} \iff 0 < 3$$

- Kako nejednakost 0 < 3 vrijedi za svaki $n \in \mathbb{N}$, zaključujemo da i početna pretpostavka $a_n < a_{n+1}$ vrijedi za svaki $n \in \mathbb{N}$.
- Dakle, niz (a_n) zaista strogo raste.

20 / 46

21 / 46

Napomena

- Svaki odozdo omeđeni niz realnih brojeva (a_n) ima beskonačno mnogo donjih međi.
- Skup svih donjih međi odozdo omeđenog niza (a_n) ima najveći element koji zovemo **najveća donja međa** ili **infimum** niza (a_n) .
- Svaki odozgo omeđeni niz realnih brojeva (a_n) ima beskonačno mnogo gornjih međi.
- Skup svih gornjih međi odozgo omeđenog niza (a_n) ima najmanji element koji zovemo **najmanja gornja međa** ili **supremum** niza (a_n) .

22 / 46

omeđenost

• Tražimo (ukoliko postoje) $m, M \in \mathbb{R}$ takvi da je $m \leq a_n \leq M$ za svaki $n \in \mathbb{N}$.

 $a_n \leqslant 1 \iff 0$ $\frac{3n}{3n+1} \leqslant 1 / (3n+1) \iff$

 $3n \leqslant 3n + 1 \iff$

- m=0 je jedna donja međa $0 \le 1$ niza (a_n) . Nejednakost $0 \le 1$ vrijedi za svaki $n \in \mathbb{N}$. Stoga početna pretpostavka $a_n \le 1$ vrijedi za svaki $n \in \mathbb{N}$.
 - M = 1 je jedna gornja međa niza (a_n) .
- Niz (a_n) je omeđen jer je omeđen odozdo i odozgo.

Napomena

- $\hat{m} \in \mathbb{R}$ je infimum niza (a_n) ako vrijedi:
 - $\implies \hat{m}$ je donja međa niza (a_n) : $(\forall n \in \mathbb{N})(a_n \geqslant \hat{m})$
 - \blacksquare za svaki $\varepsilon > 0$ interval $[\hat{m}, \hat{m} + \varepsilon)$ sadrži barem jednog člana niza (a_n)
- $\hat{M} \in \mathbb{R}$ je supremum niza (a_n) ako vrijedi:
 - $riangleq \hat{M}$ je gornja međa niza (a_n) : $(\forall n \in \mathbb{N})(a_n \leqslant \hat{M})$
 - \implies za svaki $\varepsilon > 0$ interval $\langle \hat{M} \varepsilon, \hat{M} \rangle$ sadrži barem jednog člana niza (a_n)

$$a_n = \frac{3n}{3n+1}$$

- m = 0 je donja međa niza (a_n) , ali nije njegova najveća donja međa.
- Niz (a_n) strogo raste pa je njegova najveća donja međa jednaka prvom članu tog niza, tj. $\hat{m} = a_1 = \frac{3}{4}$.
- M=1 je gornja međa niza (a_n) , ali je ujedno i njegova najmanja gornja međa, tj. $\hat{M}=1$.
- Niz (a_n) je odozgo omeđeni i monotoni niz pa je konvergentan.
 Stoga se njegova najmanja gornja međa podudara s limesom toga niza.

$$\lim_{n \to +\infty} \frac{3n}{3n+1} = \lim_{n \to +\infty} \frac{(3n+1)-1}{3n+1} = \lim_{n \to +\infty} \left(1 - \frac{1}{3n+1}\right) =$$
$$= 1 - \frac{1}{+\infty} = 1 - 0 = 1$$

24 / 46

25/46

Niz (a_n) — dijagram točkama 0.8 0.6 0.4 0.2 $a_n = \frac{3n}{3n+1}$

• Generiranje prvih 70 članova niza (a_n) u python programskom jeziku (članovi niza su zaokruženi na 5 decimala)

$$b_n = \frac{(-1)^n \cdot 6}{n}$$

$$b_1 = \frac{(-1)^1 \cdot 6}{1} = -6$$

$$b_2 = \frac{(-1)^2 \cdot 6}{2} = 3$$

$$b_3 = \frac{(-1)^3 \cdot 6}{3} = -2$$

$$b_4 = \frac{(-1)^4 \cdot 6}{4} = \frac{3}{2} = 1.5$$

$$b_5 = \frac{(-1)^5 \cdot 6}{5} = -\frac{6}{5} = -1.2$$
 $b_6 = \frac{(-1)^6 \cdot 6}{6} = 1$

$$b_6 = \frac{(-1)^6 \cdot 6}{6} = 1$$

$$-6, 3, -2, 1.5, -1.2, 1, \dots$$

- $b_1 < b_2 \longrightarrow (b_n)$ nije padajući niz
- $b_2 > b_3 \longrightarrow (b_n)$ nije rastući niz
- Dakle, (b_n) nije monoton niz.

• $|z||b_n| \le 6$ slijedi da je $-6 \le b_n \le 6$.

- $b_n = \frac{(-1)^n \cdot 6}{n}$
- m = -6 je jedna donja međa niza (b_n) .
- M = 6 je jedna gornja međa niza (b_n)
- Niz (b_n) je omeđen jer je omeđen odozdo i odozgo.
- niz (b_n) : -6, 3, -2, 1.5, -1.2, 1,...

- podniz od (b_n) s neparnim indeksima: $-6, -2, -1.2, \ldots \leftarrow$
- podniz od (b_n) s parnim indeksima: 3, 1.5, 1, ... \leftarrow padajući niz

$$\lim_{n\to\infty}\frac{(-1)^n\cdot 6}{n}=\lim_{n\to\infty}\left(\underbrace{(-1)^n\cdot 6\atop =\pm 1}\cdot \overbrace{n\atop n}\right)=0$$

- $\hat{m} = b_1 = -6$ je najveća donja međa niza (b_n) .
- $\hat{M} = b_2 = 3$ je najmanja gornja međa niza (b_n)

30 / 46

omeđenost

$$(-1)^1 = (-1)^3 = (-1)^5 = \dots = -1$$

 $(-1)^2 = (-1)^4 = (-1)^6 = \dots = 1$

$$b_n = \frac{(-1)^n \cdot 6}{n}$$

• Tražimo (ukoliko postoje) $m, M \in \mathbb{R}$ takvi da je $m \leqslant b_n \leqslant M$ za svaki $n \in \mathbb{N}$.

$$b_n = \frac{(-1)^n \cdot 6}{n} = \begin{cases} -\frac{6}{n}, & \text{ako je } n \text{ neparan} \\ \frac{6}{n}, & \text{ako je } n \text{ paran} \end{cases}$$

• Dakle, $|b_n| = \frac{6}{n}$.

Nejednakost $1 \leq n$ vrijedi za svaki $n \in \mathbb{N}$. Stoga početna pretpostavka $|b_n| \leq 6$ vrijedi za svaki $n \in \mathbb{N}$.

• Tvrdimo da je $|b_n| \leq 6$ za svaki $n \in \mathbb{N}$.

 $|b_n| \le 6 \iff \frac{6}{n} \le 6 / \underbrace{n} \iff 6 \le 6n / : 6 \iff 1 \le n$

c) monotonost

$$c_1 = \frac{2^{3 \cdot 1}}{1!} = \frac{8}{1} = 8$$
 $c_2 = \frac{2^{3 \cdot 2}}{2!} = \frac{64}{2} = 32$ $c_3 = \frac{2^{3 \cdot 3}}{3!} = \frac{512}{6} \approx 85.33$ $c_4 = \frac{2^{3 \cdot 4}}{4!} = \frac{4096}{24} \approx 170.67$

- Uočavamo da vrijedi $c_1 < c_2 < c_3 < c_4$.
- Tvrdimo da je (c_n) strogo rastući niz, tj. da vrijedi

$$c_1 < c_2 < c_3 < c_4 < \cdots < c_{k-1} < c_k < c_{k+1} < \cdots$$

• Moramo dokazati (ili opovrgnuti) da je $c_n < c_{n+1}$ za svaki $n \in \mathbb{N}$.

34 / 46

• Generiranje prvih 70 članova niza (b_n) u python programskom jeziku (članovi niza su zaokruženi na 5 decimala)

$$[round((-1)**n*6/n,5) for n in range(1,71)]$$

$$\begin{bmatrix} -6.0, & 3.0, & -2.0, & 1.5, & -1.2, & 1.0, \\ -0.85714, & 0.75, & -0.66667, & 0.6, & -0.54545, & 0.5, \\ -0.46154, & 0.42857, & -0.4, & 0.375, & -0.35294, & 0.33333, \\ -0.31579, & 0.3, & -0.28571, & 0.27273, & -0.26087, & 0.25, \\ -0.24, & 0.23077, & -0.22222, & 0.21429, & -0.2069, & 0.2, \\ -0.19355, & 0.1875, & -0.18182, & 0.17647, & -0.17143, & 0.16667, \\ -0.16216, & 0.15789, & -0.15385, & 0.15, & -0.14634, & 0.14286, \\ -0.13953, & 0.13636, & -0.13333, & 0.13043, & -0.12766, & 0.125, \\ -0.12245, & 0.12, & -0.11765, & 0.11538, & -0.11321, & 0.11111, \\ -0.10909, & 0.10714, & -0.10526, & 0.10345, & -0.10169, & 0.1, \\ -0.09836, & 0.09677, & -0.09524, & 0.09375, & -0.09231, & 0.09091, \\ -0.08955, & 0.08824, & -0.08696, & 0.08571 \end{bmatrix}$$

• Pretpostavimo da niz (c_n) strogo raste.

$$c_n < c_{n+1} \iff$$

- (c_n) strogo raste samo do 7. člana.
- \Leftrightarrow (c_n) raste samo do 8. člana.
- Dakle, (c_n) nije rastući niz.

 $c_7 = c_8$

 $c_n = \frac{1}{n!}$

 $\frac{2^{3n}}{n!} < \frac{2^{3n+3}}{(n+1)!} \iff$

$$\underbrace{c_n < c_{n+1} \text{ za } n < 7}_{c_1 < c_2 < \cdots < c_6 < c_7 \leqslant c_8}$$

 $c_n \leqslant c_{n+1}$ za $n \leqslant 7$

 $\frac{2^{3n}}{n!} < \frac{2^{3n} \cdot 2^3}{n! \cdot (n+1)} / \cdot \underbrace{\frac{n! \cdot (n+1)}{2^{3n}}}_{0 \longleftarrow \text{ jer je } n \in \mathbb{N}}$

 $n+1<2^3\iff$

n < 7 ------

- \implies Dakle, (c_n) nije monoton niz.
 - (c_n) strogo pada tek od 8. člana.
 - (c_n) pada tek od 7. člana.
 - \blacksquare Dakle, (c_n) nije padajući niz.

Nejednakost n < 7 ne vrijedi za svaki $n \in \mathbb{N}$. Stoga niti početna pretpostavka $c_n < c_{n+1}$ ne vrijedi za svaki $n \in \mathbb{N}$.

 $c_n \geqslant c_{n+1}$ za $n \geqslant 7$

35 / 46

33 / 46

38 / 46

39 / 46

omeđenost

- $c_n = \frac{2^{3n}}{n!}$
- Tražimo (ukoliko postoje) $m, M \in \mathbb{R}$ takvi da je $m \leqslant c_n \leqslant M$ za svaki $n \in \mathbb{N}$.
- Očito je $2^{3n} > 0$ i n! > 0 za svaki $n \in \mathbb{N}$ pa je $c_n \geqslant 0$ za svaki $n \in \mathbb{N}$. Stoga je m = 0 jedna donja međa niza (c_n) .
- Dokazali smo da niz (c_n) raste do osmog člana, a nakon toga počinje padati i još vrijedi $c_7 = c_8$.

$$c_7 = \frac{2^{3 \cdot 7}}{7!} = \frac{2^{21}}{7!} = \frac{2^{21}}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7} = \frac{2^{21}}{2^4 \cdot 3^2 \cdot 5 \cdot 7} = \frac{2^{17}}{315} = \frac{131072}{315}$$

- Stoga je $c_n \leqslant c_7$ za svaki $n \in \mathbb{N}$ pa je $\hat{M} = c_7$ zapravo najmanja gornja međa niza (c_n) .
- Kako je $\lim_{n\to+\infty} c_n = 0$ (faktorijel puno brže raste od eksponencijalne funkcije), zaključujemo da je $\hat{m} = 0$ najveća donja međa niza (c_n) .
- Dakle, niz (c_n) je omeđen jer je omeđen odozdo i odozgo.

Niz (c_n) – dijagram točkama $c_n = \frac{2^{3n}}{n!}$ $c_n = \frac{2^{3n}}{n!}$

 Generiranje prvih 70 članova niza (c_n) u python programskom jeziku. Članovi niza su ispisani preko mantise i eksponenta pri čemu je mantisa zaokružena na 5 decimala tako da je moguće vidjeti koliko su jako blizu nule članovi niza već za male n-ove.

$d_n = \log_{\frac{1}{2}} \frac{n}{n+2}$

d) monotonost

$$d_1 = \log_{\frac{1}{2}} \frac{1}{1+2} = \log_{\frac{1}{2}} \frac{1}{3} \approx 1.585 \quad d_2 = \log_{\frac{1}{2}} \frac{2}{2+2} = \log_{\frac{1}{2}} \frac{1}{2} = 1$$

$$d_3 = \log_{\frac{1}{2}} \frac{3}{3+2} = \log_{\frac{1}{2}} \frac{3}{5} \approx 0.737 \quad d_4 = \log_{\frac{1}{2}} \frac{4}{4+2} = \log_{\frac{1}{2}} \frac{2}{3} \approx 0.585$$

- Uočavamo da vrijedi $d_1 > d_2 > d_3 > d_4$
- \bullet Tvrdimo da je (d_n) strogo padajući niz, tj. da vrijedi

$$d_1 > d_2 > d_3 > d_4 > \cdots > d_{k-1} > d_k > d_{k+1} > \cdots$$

• Moramo dokazati (ili opovrgnuti) da je $d_n > d_{n+1}$ za svaki $n \in \mathbb{N}$.

40 / 46

41 / 46

• Tražimo (ukoliko postoje) $m, M \in \mathbb{R}$ takvi da je $m \leqslant d_n \leqslant M$ za svaki $n \in \mathbb{N}$.

 $d_n = \log_{\frac{1}{2}} \frac{n}{n+2}$

 $\log_{\frac{1}{2}} \frac{n}{n+2} \geqslant \log_{\frac{1}{2}} \left(\frac{1}{2}\right)^{0} \iff \frac{n}{n+2} \leqslant \left(\frac{1}{2}\right)^{0} \iff \log_{a} x \geqslant \log_{a} y \Leftrightarrow x \leqslant y$

 $\frac{n}{n+2} \leqslant 1 / \cdot (n+2) \iff$

 $n\leqslant n+2\iff$ Nejednakost $0\leqslant 2$ vrijedi za svaki $n\in\mathbb{N}.$ Stoga početna pretpostavka $d_n\geqslant 0$ vrijedi za svaki $n\in\mathbb{N}.$

 \implies Dakle, m=0 je jedna donja međa niza (d_n) .

42 / 46

 $d_n = \log_{\frac{1}{2}} \frac{n}{n+2}$

• Pretpostavimo da niz (d_n) strogo pada.

$$d_n = \log_{\frac{1}{2}} \frac{n}{n+2}$$

 $\log_{\frac{1}{2}} \frac{n}{n+2} > \log_{\frac{1}{2}} \frac{n+1}{(n+1)+2} \iff$

 $d_n > d_{n+1} \iff$

$$\log_{\frac{1}{2}} \frac{n}{n+2} > \log_{\frac{1}{2}} \frac{n+1}{n+3} \iff \log_a x > \log_a y \Leftrightarrow x < y$$

 $\frac{n}{n+2} < \frac{n+1}{n+3} / \cdot \underbrace{(n+2)(n+3)}_{>0} \iff$

 $n(n+3) < (n+1)(n+2) \iff$

 $n^2 + 3n < n^2 + 2n + n + 2 \iff$ \implies Dakle, niz (d_n) zaista 0 < 2 strogo pada.

• Kako nejednakost 0 < 2 vrijedi za svaki $n \in \mathbb{N}$, zaključujemo da i početna pretpostavka $d_n > d_{n+1}$ vrijedi za svaki $n \in \mathbb{N}$.

• Kako niz (d_n) strogo pada, slijedi da je $\hat{M} = d_1 = \log_{\frac{1}{2}} \frac{1}{3}$ najmanja gornja međa niza (d_n) .

funkcija komutiraju

 $\lim_{n \to +\infty} \frac{n}{n+2} = \lim_{n \to +\infty} \frac{(n+2)-2}{n+2} = \lim_{n \to +\infty} \left(1 - \frac{2}{n+2}\right) =$ $= 1 - \frac{2}{n+2} = 1 - 0 = 1$

 $\lim_{n \to +\infty} d_n = \lim_{\substack{n \to +\infty \\ \text{limes i neprekidna}}} \left(\log_{\frac{1}{2}} \frac{n}{n+2} \right) = \log_{\frac{1}{2}} \left(\lim_{n \to +\infty} \frac{n}{n+2} \right) = \log_{\frac{1}{2}} 1 = 0$ $\lim_{n \to +\infty} d_n = \lim_{\substack{n \to +\infty \\ \text{limes i neprekidna}}} \bigoplus \text{Dakle, } (d_n) \text{ je omeđeni niz.}$

• Kako niz (d_n) strogo pada i $\lim_{n\to+\infty} d_n = 0$, slijedi da je $\hat{m} = 0$ najveća donja međa niza (d_n) .

• Generiranje prvih 70 članova niza (d_n) u python programskom jeziku (članovi niza su zaokruženi na 5 decimala)

```
import math
 [round(math.log(n/(n+2),1/2),5)] for n in range(1,71)]
[1.58496, 1.0,
                   0.73697, 0.58496, 0.48543, 0.41504, 0.36257,
 0.32193, 0.28951, 0.26303, 0.24101, 0.22239, 0.20645, 0.19265,
 0.18057, 0.16993, 0.16046, 0.152,
                                    0.14439, 0.1375, 0.13124,
 0.12553, 0.12029, 0.11548, 0.11103, 0.10692, 0.10309, 0.09954,
 0.09622, 0.09311, 0.0902, 0.08746, 0.08489, 0.08246, 0.08017,
 0.078,
          0.07595, 0.074,
                           0.07215, 0.07039, 0.06871, 0.06711,
 0.06559, 0.06413, 0.06274, 0.0614, 0.06012, 0.05889, 0.05772,
 0.05658, 0.0555, 0.05445, 0.05344, 0.05247, 0.05153, 0.05063,
 0.04975, 0.04891, 0.04809, 0.04731, 0.04654, 0.0458, 0.04509,
 0.04439, 0.04372, 0.04307, 0.04244, 0.04182, 0.04122, 0.04064
                                                              46 / 46
```

