Simultaneous Safe Screening of Features and Samples in Doubly Sparse Modeling

Atsushi Shibagaki[†], Masayuki Karasuyama[†], Kohei Hatano[‡], and Ichiro Takeuchi[†]

† Nagoya Institute of Technology, ‡ Kyushu University Japan

June, 2016

Introduction

Motivation: To reduce the cost for training of sparse model

The training process occurs in two steps:

- 1. Identifying active features/samples at optimal solution
- 2. Optimizing the model over active features/samples

Introduction

Motivation: To reduce the cost for training of sparse model

The training process occurs in two steps:

- 1. Identifying active features/samples at optimal solution
- 2. Optimizing the model over active features/samples

Safe screening:

allows us to identify a part of non-active features/samples

Introduction

Contribution: Simultaneous safe screening

Safe screening has been individually studied either

- for feature screening
- for sample screening

We consider doubly sparse modelings:

induce both of feature sparsity and sample sparsity

 \triangleright e.g., L_1 -penalized SVMs

Advantage: synergy effect

Target problems: Doubly Sparse Modeling

Data: $\{(x_i,y_i)\}_{i\in[n]}$, Data matrix $(n\times d)$: X

Regularized Empirical Risk Minimization (Primal problem):

$$w_{\lambda}^* = \arg\min_{w \in \mathbb{R}^d} P_{\lambda}(w) := \lambda \psi(w) + \frac{1}{n} \sum_{i \in [n]} \ell_i(x_i^{\top} w)$$

e.g, L_1 -penalized smoothed SVMs:

- Penalty function: Elastic Net $\psi(w) = \|w\|_1 + \frac{1}{2} \|w\|_2^2$
- Loss function (classification): Smoothed hinge loss

$$\ell_i(x_i^{\top} w) := \begin{cases} 0 & (y_i x_i^{\top} w > 1), \\ 1 - y_i x_i^{\top} w - \frac{\gamma}{2} & (y_i x_i^{\top} w < 1 - \gamma), \\ \frac{1}{2\gamma} (1 - y_i x_i^{\top} w)^2 & (\text{otherwise}), \end{cases}$$

Regularized Empirical Risk Minimization (Dual problem):

$$\alpha^* = \arg\max_{\alpha \in \text{dom} D_{\lambda}} D_{\lambda}(\alpha) := -\lambda \psi^* \left(\frac{1}{\lambda n} X^{\top} \alpha \right) - \frac{1}{n} \sum_{i \in [n]} \ell_i^*(-\alpha_i),$$

Safe fature screening (for Elastic net):

allows us to identify a part of non-active features $w_i^* = 0$

$$\text{KKT condtion: } \frac{1}{\lambda n} X_{:j}^\top \alpha^* \in \begin{cases} \frac{w_j^*}{|w_j^*|} + w_j^* & (w_j^* \neq 0), \\ [-1,1] & (w_j^* = 0) \end{cases}$$

Safe fature screening rule: $UB(|X_{:j}^{\top}\alpha^*|) \leq \lambda n \Rightarrow w_j^* = 0$

Procedure:

- ▶ Construct the region of the optimal solution Θ_{α^*}
- ▶ For $j \in [d]$:
 - 1. Compute $UB(|X_{:i}^{\top}\alpha^*|) := \max X_{:i}^{\top}\alpha$ s.t. $\alpha \in \Theta_{\alpha^*}$
 - 2. Check safe feature screening rule

Safe sample screening (for smoothed hinge loss $(y_i = 1)$):

allows us to identify a part of non-active samples $\alpha_i^* = \{0, 1\}$ $(\alpha_i^* = 0)$

$$\text{KKT condtion: } x_i^\top w^* \in \begin{cases} [1,\infty) & (\alpha_i^* = 0) \\ (-\infty,1-\gamma] & (\alpha_i^* = 1) \\ -\gamma \alpha_i^* + 1 & (\alpha_i^* \in (0,1)) \end{cases}$$

Safe sample screening rules: ↓

$$LB(x_i^{\dagger}w^*) \ge 1 \Rightarrow \alpha_i^* = 0, \quad UB(x_i^{\dagger}w^*) \le 1 - \gamma \Rightarrow \alpha_i^* = 1$$

Procedure:

- lacktriangle Construct the region of the optimal solution Θ_{w^*}
- ▶ For $i \in [n]$:
 - 1. Compute $LB(x_i^\top w^*) := \min x_i^\top \alpha$ s.t. $w \in \Theta_{w^*}$, $UB(x_i^\top w^*) := \max x_i^\top \alpha$ s.t. $w \in \Theta_{w^*}$
 - 2. Check safe sample screening rules

Abstract of Safe Screeing

Construct the region of the optimal solution $\Theta_{\alpha^*}, \Theta_{w^*}$ Theorem 3 in [Ndiaye+, 15]

If D_{λ} is γ/n -strongly concave then

$$\alpha^* \in \Theta_{\alpha^*} := \left\{ \alpha \mid \|\hat{\alpha} - \alpha\|_2 \le \sqrt{2n(P_{\lambda}(\hat{w}) - D_{\lambda}(\hat{\alpha}))/\gamma} \right\},\,$$

for any $\hat{w} \in \text{dom}P_{\lambda}, \hat{\alpha} \in \text{dom}D_{\lambda}$.

• ℓ_i is γ -smooth $\Rightarrow D_{\lambda}$ is γ/n -strongly concave

 Θ_{w^*} as well as Θ_{α^*}

If P_{λ} is λ -strongly convex then

$$w^* \in \Theta_{w^*} := \{ w \mid ||\hat{w} - w||_2 \le \sqrt{2(P_{\lambda}(\hat{w}) - D_{\lambda}(\hat{\alpha}))/\lambda} \},$$

• ψ is Elastic net $\Rightarrow P_{\lambda}$ is λ -strongly convex

Schematic illustration of safe screening

If $\Theta_{\alpha^*}, \Theta_{w^*}$ are sphere then we have closed form solutions of $UB(|X_{:j}^{\top}\alpha^*|), LB(x_i^{\top}w^*), UB(x_i^{\top}w^*).$

safe feature screening

safe sample screening z_w successful example Θ_{w^*} $UB(x_i^\top w^*)$ $z_w = x_i^\top w$ $z_w = x_i^\top w$

Abstract of Safe Screeing

Compute $UB(|X_{:j}^{\top}\alpha^*|), LB(x_i^{\top}w^*), UB(x_i^{\top}w^*)$

Closed form solutions (since $\Theta_{\alpha^*}, \Theta_{w^*}$ are sphere)

$$\begin{split} X_{:j}^\top \alpha^* &\leq UB(|X_{:j}^\top \alpha^*|) := \max_{\alpha} X_{:j}^\top \alpha \quad \text{s.t.} \quad \alpha \in \Theta_{\alpha^*} \\ &= X_{:j}^\top \hat{\alpha} + \|X_{:j}\|_2 \sqrt{2nG_{\lambda}(\hat{w},\hat{\alpha})/\gamma}, \\ x_i^\top w^* &\geq LB(x_i^\top w^*) := \min_{w} x_i^\top w \quad \text{s.t.} \quad w \in \Theta_{w^*} \\ &= x_i^\top \hat{w} - \|x_i\|_2 \sqrt{2G_{\lambda}(\hat{w},\hat{\alpha})/\lambda}, \\ x_i^\top w^* &\leq UB(x_i^\top w^*) := \max_{w} x_i^\top w \quad \text{s.t.} \quad w \in \Theta_{w^*} \\ &= x_i^\top \hat{w} + \|x_i\|_2 \sqrt{2G_{\lambda}(\hat{w},\hat{\alpha})/\lambda} \end{split}$$

, where
$$G_{\lambda}(\hat{w}, \hat{\alpha}) := P_{\lambda}(\hat{w}) - D_{\lambda}(\hat{\alpha})$$

Optimization with safe screening

We need good accurate solution \hat{w} and $\hat{\alpha}$!

Dynamic screening [Bonnefoy+, 14]

- ▶ Input: $\hat{w}_0, \hat{\alpha}_0, t \leftarrow 0$
- ► While convergence do;
 - 1. Safe screening using $(\hat{w}_t, \hat{\alpha}_t)$
 - 2. $(\hat{w}_{t+1}, \hat{\alpha}_{t+1}) \leftarrow \mathsf{Optimization} \; \mathsf{update}(\hat{w}_t, \hat{\alpha}_t)$
 - 3. $t \leftarrow t + 1$

Synergy effect by simultaneous screeing

- Results of safe feature/sample screening can improve a safe sample/feature screening performance
- By alternately iterating feature and sample screening: more and more features and samples could be screened out

safe sample screening \rightarrow safe feature screening

individual safe feature screening:

$$UB(|X_{:j}^{\top}\alpha^*|) = |X_{:j}^{\top}\hat{\alpha}| + \|X_{:j}\|_2 \sqrt{2nG_{\lambda}(\hat{w} - \hat{\alpha})/\gamma}$$

simultaneous safe feature screening:

We know
$$\alpha_i^* = \{0, \pm 1\}$$
 for $i \in \mathcal{S}$, $\bar{\mathcal{S}} := [n] \setminus \mathcal{S}$
$$\begin{split} \tilde{UB}(|X_{:j}^{\top} \alpha^*|) \\ &:= \max_{\alpha} |X_{:j}^{\top} \alpha| \quad \text{s.t.} \quad \|\hat{\alpha} - \alpha\|_2 \leq \sqrt{2G_{\lambda}(\hat{w}, \hat{\alpha})/\lambda}, \alpha_i = \alpha_i^* \ \forall i \in \mathcal{S} \\ &= |X_{\mathcal{S},j}^{\top} \alpha_{\mathcal{S}}^*| + |X_{\bar{\mathcal{S}},j}^{\top} \alpha_{\bar{\mathcal{S}}}| - \|X_{\bar{\mathcal{S}},j}\|_2 \sqrt{2nG_{\lambda}(\hat{w}, \hat{\alpha})/\gamma - \|\hat{\alpha}_{\mathcal{S}} - \alpha_{\mathcal{S}}^*\|_2^2} \\ &\leq UB(|X_{:j}^{\top} \alpha^*|) \end{split}$$

safe feature screening \rightarrow safe sample screening

individual safe sample screening:

$$LB(x_i^{\top} w^*) = x_i^{\top} \hat{w} - ||x_i||_2 \sqrt{2G_{\lambda}(\hat{w}, \hat{\alpha})/\lambda}$$

simultaneous safe sample screening:

We know
$$w_j^*=0$$
 for $j\in\mathcal{F}$, $\bar{\mathcal{F}}:=[d]\setminus\mathcal{F}.$

$$\tilde{LB}(x_i^\top w^*)$$

$$= \min_{w} x_i^\top w \text{ s.t. } \|\hat{w} - w\|_2 \le \sqrt{2G_{\lambda}(\hat{w}, \hat{\alpha})/\lambda}, w_j = 0 \ \forall j \in \mathcal{F}$$

$$= x_{i\bar{\mathcal{F}}}^\top \hat{w}_{\bar{\mathcal{F}}} - \|x_{i\bar{\mathcal{F}}}\|_2 \sqrt{2G_{\lambda}(\hat{w}, \hat{\alpha})/\lambda - \|\hat{w}_{\mathcal{F}}\|_2^2}$$

$$\ge LB(x_i^\top w^*)$$

$$\tilde{UB}(x_i^{\top}w^*)$$
 also

Safe keeping

allows us to identify a part of active features/samples

Safe feature keeping

If P_{λ} is λ -strongly convex then

$$|\hat{w}_j| - \sqrt{2G_{\lambda}(\hat{w}, \hat{\alpha})/\lambda} > 0 \implies w_j^* \neq 0$$

Safe sample keeping

If D_{λ} is γ/n -strongly convex then

$$\begin{split} |\hat{\alpha}_i| - \sqrt{2nG_{\lambda}(\hat{w},\hat{\alpha})/\gamma} > 0 \text{ and} \\ |\hat{\alpha}_i| + \sqrt{2nG_{\lambda}(\hat{w},\hat{\alpha})/\gamma} < 1 \Rightarrow \alpha_i^* \not\in \{0,\pm 1\} \end{split}$$

Advantages of safe keeping

- ▶ We do not have to waste the screening rule evaluation costs for active features/samples
- By combining safe screening and safe keeping

we can calculate

#(features/samples aren't determined to be active or non-active)

This information can be also used as a stopping criteria of dynamic screening and simultaneous screening

Summarize:

- \triangleright Θ_{α^*} can safe feature screening and sample keeping
- \triangleright Θ_{w^*} can safe sample screening and feature keeping

Optimization with simultaneous safe screening and keeping

Algorithm (Dynamic screening)

- ▶ Input: $\hat{w}_0, \hat{\alpha}_0, t \leftarrow 0$
- While convergence do;
 - 1. Safe keeping using $(\hat{w}_t, \hat{\alpha}_t)$
 - 2. While convergence do; (simultaneous safe screening)
 - ► Safe feature screening using the result of sample screening
 - ► Safe sample screening using the result of feature screening
 - 3. $(\hat{w}_{t+1}, \hat{\alpha}_{t+1}) \leftarrow \mathsf{Optimization} \; \mathsf{update}(\hat{w}_t, \hat{\alpha}_t)$
 - 4. $t \leftarrow t+1$

Experiments: Computation time saving

Setups:

- ► L₁-penalized smoothed hinge SVC
- $\lambda_{\max} := \|\operatorname{diag}(y)X^{\top}\mathbf{1}\|_{\infty}$
- \blacktriangleright train at 100 λ s evenly allocated in $[10^{-4}\lambda_{\rm max},\lambda_{\rm max}]$ in the logarithmic scale

Solvers:

- Stochastic Primal-Dual Coordinate (SPDC)
- Stochastic Dual Coordinate Ascent (SDCA)

Experiments: Computation time saving

Setups:

- ► L₁-penalized smoothed hinge SVC
- $\lambda_{\max} := \| \operatorname{diag}(y) X^{\top} \mathbf{1} \|_{\infty}$
- ▶ train at $100 \ \lambda s$ evenly allocated in $[10^{-4} \lambda_{\max}, \lambda_{\max}]$ in the logarithmic scale

Solvers:

- Stochastic Primal-Dual Coordinate (SPDC)
- Stochastic Dual Coordinate Ascent (SDCA)

Computation time and iteration at each λ

Safe sample screening and keeping rates

Safe feature screening and keeping rates

Safe sample screening and keeping rates

