Assignment 3

Devansh Jain, 190100044

17th Oct 2021

Contents

1	Log	stic Regression	1
	1.1	CS 337: Logistic Regression	1
	1.2	CS 337: Logistic Regressions Decision surface	1

190100044 Assignment 3

1 Logistic Regression

1.1 CS 337: Logistic Regression

Given Soft-max expression and Categorical cross-entropy function of Multi-class Logistic Regression, we substitute K = 2.

$$P(Y = 1 | \mathbf{w}_{1}, \phi(\mathbf{x})) = \frac{e^{\mathbf{w}_{1}^{T}\phi(\mathbf{x})}}{e^{\mathbf{w}_{1}^{T}\phi(\mathbf{x})} + e^{\mathbf{w}_{2}^{T}\phi(\mathbf{x})}} = \frac{1}{1 + e^{(\mathbf{w}_{2}^{T} - \mathbf{w}_{1}^{T})\phi(\mathbf{x})}}$$

$$P(Y = 2 | \mathbf{w}_{2}, \phi(\mathbf{x})) = \frac{e^{\mathbf{w}_{2}^{T}\phi(\mathbf{x})}}{e^{\mathbf{w}_{1}^{T}\phi(\mathbf{x})} + e^{\mathbf{w}_{2}^{T}\phi(\mathbf{x})}} = \frac{e^{(\mathbf{w}_{2}^{T} - \mathbf{w}_{1}^{T})\phi(\mathbf{x})}}{1 + e^{(\mathbf{w}_{2}^{T} - \mathbf{w}_{1}^{T})\phi(\mathbf{x})}}$$

$$E(\mathbf{w}_{1}, \mathbf{w}_{2}) = -\frac{1}{N} \sum_{i=1}^{N} y_{1}^{(i)} \log(P(Y = 1 | \mathbf{w}_{1}, \phi(\mathbf{x}^{(i)}))) + y_{2}^{(i)} \log(P(Y = 2 | \mathbf{w}_{2}, \phi(\mathbf{x}^{(i)})))$$

$$= -\frac{1}{N} \sum_{i=1}^{N} \frac{y_{1}^{(i)} + y_{2}^{(i)} e^{(\mathbf{w}_{2}^{T} - \mathbf{w}_{1}^{T})\phi(\mathbf{x})}}{1 + e^{(\mathbf{w}_{2}^{T} - \mathbf{w}_{1}^{T})\phi(\mathbf{x})}}$$

Now, we substitute the one-hot vector $[y_1^{(i)}, y_2^{(i)}]$ with $[y^{(i)}, 1 - y^{(i)}]$ and $\mathbf{w}_1 - \mathbf{w}_2$ with \mathbf{w} .

$$P(Y = 1|\mathbf{w}, \phi(\mathbf{x})) = \frac{1}{1 + e^{-\mathbf{w}^T \phi(\mathbf{x})}} = \sigma_{\mathbf{w}}(\mathbf{x})$$

$$P(Y = 2|\mathbf{w}, \phi(\mathbf{x})) = \frac{e^{-\mathbf{w}^T \phi(\mathbf{x})}}{1 + e^{-\mathbf{w}^T \phi(\mathbf{x})}} = 1 - \sigma_{\mathbf{w}}(\mathbf{x})$$

$$E(\mathbf{w}) = -\frac{1}{N} \sum_{i=1}^{N} \frac{y^{(i)} + (1 - y^{(i)})e^{-\mathbf{w}^T \phi(\mathbf{x})}}{1 + e^{-\mathbf{w}^T \phi(\mathbf{x})}}$$

$$= -\frac{1}{N} \sum_{i=1}^{N} \frac{y^{(i)}}{1 + e^{-\mathbf{w}^T \phi(\mathbf{x})}} + \frac{(1 - y^{(i)})e^{-\mathbf{w}^T \phi(\mathbf{x})}}{1 + e^{-\mathbf{w}^T \phi(\mathbf{x})}}$$

$$= -\frac{1}{N} \sum_{i=1}^{N} y^{(i)} \sigma_{\mathbf{w}}(\mathbf{x}) + (1 - y^{(i)})(1 - \sigma_{\mathbf{w}}(\mathbf{x}))$$

Hence, cross entropy function used to train a binary logistic regression is a special case of the categorical cross entropy function given above.

1.2 CS 337: Logistic Regressions Decision surface

The model assigns a value of y = +1 to a point \mathbf{x} if $P(y = +1|\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^T\mathbf{x})} \ge \theta$ which is equivalent to $\mathbf{w}^T\mathbf{x} \ge -\log\left(\frac{1-\theta}{\theta}\right)$ and this forms the decision boundary.

When we say that a model is linear, we mean that its predictions are a linear function of its parameters.

Logistic regression is considered as a linear model because the **decision boundary used for** classification purpose is linear (i.e. $f(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$).