Ejercicios Parte de Interpolación. Curso de Física Computacional

M. en C. Gustavo Contreras Mayén

1. La densidad del aire ρ varía con la altura de la siguiente manera:

Define $\rho(h)$ como una función cuadrática a partir del método de Lagrange.

2. Usando el método de Newton, encuentra un polinomio que se ajuste a los siguientes puntos:

3. El calor específico del alumino c_p depende de la temperatura T como sigue:

$$T(^{\circ}C)$$
 | -250 | -200 | -100 | 0 | 100 | 300 | $c_p(kJ/kgK)$ | 0.0163 | 0.318 | 0.699 | 0.870 | 0.941 | 1.04

Calcula c_p en $T=200^{\circ}\mathrm{C}$ y $T=400^{\circ}\mathrm{C}$

4. Dados los puntos de la siguiente tabla:

Calcula el valor de la raíz y(x) = 0

Este es un ejemplo de interpolación inversa, donde los roles de x, y se inverten, esto es, dado y se calcula x, debemos de encontrar x que corresponda a un y dado (en el ejercicio y = 0).

Aquí hay dos puntos que resolver, primero, que modifiques el código de Newton-Gregory para que te evalúe un sólo dato, luego a partir de la indicación del cambio de papeles en las variables, que construyas la tabla de diferencias divididas y evalúes el polinomio.

La raíz obtenida es x = 3.8317.