CLAIMS

What is claimed is:

1	1.	A method for transparency rendering in a graphics pipeline, comprising:
2	(a)	collecting colored-transparency information from a plurality of depth layers
3		in a scene to be rendered;
4	(b)	storing the collected colored-transparency information in memory; and
5	(c)	blending the colored-transparency information from the depth layers in a
6		predetermined order.
1	2.	The method as recited in claim 1, wherein the colored-transparency
2		information is collected from at least two depth layers.
1	3.	The method as recited in claim 1, wherein the colored-transparency
2		information is stored in a plurality of texture maps.
1	4.	The method as recited in claim 3, wherein each of the texture maps
2		corresponds with one of the depth layers.
1	E	The most of as recited in claim 4 wherein the tayture mans are stored in
1	5.	The method as recited in claim 4, wherein the texture maps are stored in
2		memory.
1	6.	The method as recited in claim 1, and further comprising rendering opaque
2	0.	objects in the scene.
_		00 ,000,000,000
1	7.	The method as recited in claim 6, the opaque objects in the scene are
2		rendered prior to blending the colored-transparency information therewith.
1	8.	The method as recited in claim 1, wherein the memory includes a frame
2		buffer.

1	9.	The method as recited in claim 1, wherein the blending includes linear
2		blending.

- 1 10. The method as recited in claim 1, wherein the colored-transparency 2 information is collected utilizing depth peeling.
- 1 11. The method as recited in claim 10, wherein the depth peeling includes
 2 executing a first rendering pass for collecting colored-transparency
 3 information relating to a first depth layer, and executing additional rendering
 4 passes for collecting additional colored-transparency information relating to
 5 additional depth layers.
- 1 12. The method as recited in claim 11, wherein the first rendering pass produces 2 a shadow map relating to the first depth layer.
- 1 13. The method as recited in claim 11, wherein a shadow-mapping feature is
 2 enabled during the additional rendering passes for defining a previous depth
 3 layer.
- 1 14. The method as recited in claim 11, wherein the additional rendering passes 2 are taken from the same eye position from which the first rendering pass is 3 taken.
- 1 15. The method as recited in claim 1, wherein the colored-transparency
 2 information is collected utilizing depth peeling including executing a first
 3 rendering pass for generating a shadow map from which first colored4 transparency information relating to a first depth layer is collected, and
 5 executing additional rendering passes with a shadow-mapping feature
 6 enabled and from the same eye position from which the first rendering pass is

7	taken for collecting additional colored-transparency information relating to
8	additional depth layers.

- 1 16. The method as recited in claim 15, wherein the additional coloredtransparency information relating to the additional depth layers is collected by removing a portion of the scene associated with a previous depth layer.
- 1 17. The method as recited in claim 16, wherein the additional coloredtransparency information relating to the additional depth layers is collected by performing a test to determine which portion of the scene to remove.
- 1 18. The method as recited in claim 17, wherein the test determines whether the portion of the scene is behind the previous depth layer.
- 1 19. The method as recited in claim 18, wherein the portion of the scene is
 2 removed upon the test determining that the portion of the scene is behind the
 3 previous depth layer.
- The method as recited in claim 19, wherein the test calculates a difference
 between a previous z-value relating to the previous depth layer and a present
 z-value relating to one of the additional depth layers.
- The method as recited in claim 20, wherein the portion of the scene is removed upon no difference being calculated between the previous z-value relating to the previous depth layer and the present z-value relating to one of the additional depth layers.
- 1 22. The method as recited in claim 21, wherein the z-values relating to all depth
 2 layers are produced with the same interpolation-related method for
 3 improving an accuracy of the test.

- A computer program product for transparency rendering in a graphics 1 23. 2 pipeline, comprising: computer code for collecting colored-transparency information from a 3 (a) plurality of depth layers in a scene to be rendered; 4 computer code for storing the collected colored-transparency information in 5 (b) 6 memory; and computer code for blending the colored-transparency information from the 7 (c) 8 depth layers in a predetermined order. A system for transparency rendering in a graphics pipeline, comprising: 1 24. logic for collecting colored-transparency information from a plurality of 2 (a) depth layers in a scene to be rendered; 3 memory for storing the collected colored-transparency information; and 4 (b) 5 a renderer coupled to the memory for blending the colored-transparency (c) 6 information from the depth layers in a predetermined order. A system for transparency rendering in a graphics pipeline, comprising: 1 25. 2 logic for collecting colored-transparency information from a plurality of (a) depth layers in a scene to be rendered; 3 memory for storing the collected colored-transparency information; and 4 (b) 5 register combiners coupled to the memory for blending the colored-(c) 6 transparency information from the depth layers in a predetermined order.
 - 1 26. A method for transparency rendering in a graphics pipeline, comprising:
 - 2 (a) collecting colored-transparency information from at least two depth layers in
 - 3 a scene;
 - 4 (b) storing the collected colored-transparency information in the form of a
 - 5 plurality of texture maps;
 - 6 (c) rendering the opaque objects in the scene;
 - 7 (d) storing the rendering of the opaque objects in memory;
 - 8 (e) identifying one of the depth layers to be blended;

9	(f)	blending the colored-transparency information from the identified depth layer
10		with contents of the memory utilizing a corresponding one of the texture
11		maps;
12	(g)	storing results of (f) in the memory; and
13	(h)	repeating acts (e)-(g).
1	27.	A computer program product for transparency rendering in a graphics
2		pipeline, comprising:
3	(a)	computer code for collecting colored-transparency information from at least
4		two depth layers in a scene;
5	(b)	computer code for storing the collected colored-transparency information in
6		the form of a plurality of texture maps;
7.	(c)	computer code for rendering opaque objects in the scene;
8	(d)	computer code for storing the opaque object in memory;
9	(e)	computer code for identifying one of the depth layers to be blended;
10	(f)	computer code for blending the colored-transparency information from the
11		identified depth layer with contents of the memory utilizing a corresponding
12		one of the texture maps;
13	(g)	computer code for storing results of (f) in the memory; and
14	(h)	computer code for repeating acts (e)-(g).
- 1	28.	A method for transparency rendering in a graphics pipeline, comprising:
2	(a)	collecting colored-transparency information from a plurality of depth layers
3		in a scene to be rendered by:
4		(i) executing a first rendering pass for generating a shadow map and for
5		collecting first colored-transparency information relating to a first depth
6		layer, and
7		(ii) executing additional rendering passes with a shadow-mapping feature
8		enabled and from the same eye position from which the first rendering pass is

taken for generating additional shadow maps and for collecting additional

colored-transparency information relating to additional depth layers;

9

10

15

11	(b)	storing the collected colored-transparency information in memory; and
12	(c)	blending the colored-transparency information from the depth layers.
1	29.	A computer program product for transparency rendering in a graphics
2		pipeline, comprising:
3	(a)	computer code for collecting colored-transparency information from a
4		plurality of depth layers in a scene to be rendered by:
5		(i) executing a first rendering pass for generating a shadow map and for
6		collecting first colored-transparency information relating to a first depth
7		layer, and
8		(ii) executing additional rendering passes with a shadow mapping feature
9		enabled and from the same eye position from which the first rendering pass i
10		taken for generating additional shadow maps and for collecting additional
11		colored-transparency information relating to additional depth layers;
12	(b)	computer code for storing the collected colored-transparency information in
13		memory; and
14	(c)	computer code for blending the colored-transparency information from the

depth layers.