Olimpíada de Matemática do Estado do Rio de Janeiro 2012 - 2019

		1	0	1	1 4	-	
		1	2	3	4	5	6
N3	12						
N4	12						
N3	13						
N4	13						
$\overline{N3}$	14						
N4	14						
$\overline{\mathrm{N3}}$	15						
N4	15						
N3	16						
N4	16						
N3	17						
N4	17						
N3	18						
N4	18						
N3	19						
N4	19						

Na Figura 1, há um tabuleiro com números nas suas casas. Em cada passo, pode-se somar 1 a cada casa de uma linha, somar 1 a cada casa de uma coluna, subtrair 1 de cada casa de uma linha ou subtrair 1 de cada casa de uma coluna. Mostre uma série de passos que transforme o tabuleiro da Figura 1 em um tabuleiro da Figura 2.

1	2	3	5	5	5
4	5	6	5	5	5
7	8	9	5	5	5

Figura 2

PROBLEMA 2

Considere um decágono regular $A_1A_2...A_{10}$. De quantas maneiras podemos pintar os vértices deste decágono com as cores azul e vermelho de forma que todo retângulo com vértices no conjunto $\{A_1, A_2, ..., A_{10}\}$ possua pelo menos dois vértices pintados com cores distintas?

PROBLEMA 3

Determine todos os algarismos não nulos distintos dois a dois O, M, E, R e J tais que

Figura 1

$$\frac{(OM)_{10}}{(ERJ)_{10}} = 0, ERERERERERER...$$

Observação. As notações $(OM)_{10}$ e $(ERJ)_{10}$ denotam as representações decimais de ambos os números.

Observação. A notação 0, ERERERERERERERER... denota a dízima periótica com período $(ER)_{10}$.

PROBLEMA 4

Encontre todos os inteiros positivos n tais que n^2 pode ser escrito como soma de exatamente n quadrados perfeitos não nulos. Por exemplo, $3^2 = 9$ pode ser escrito como $3^2 = 2^2 + 2^2 + 1^2$.

PROBLEMA 5

No triângulo acutângulo ABC, as alturas BE e CF se intersectam em H, com E no lado AC e F no lado AB. Suponha que o circuncentro de ABC pertence ao segmento EF. Demonstre que $HA^2 = HB^2 + HC^2$.

PROBLEMA 6

Seja n um inteiro positivo. Divide-se um círculo em n setores circulares iguais. Considere o seguinte processo:

- (a) Inicialmente, coloca-se uma joia em um dos setores e escreve-se o número 0 neste setor.
- (b) Na etapa 1, move-se a joia um setor, no sentido horário, e escreve-se o número 1 no novo setor onde a joia está.
- (c) Na etapa k, move-se a joia k setores, no sentido horário, e escreve-se o número k no novo setor onde a joia está.

Terminamos o processo ao fim da etapa n-1. Para quais valores de n, ao fim do processo, todos os setores possuem um número escrito?

Abaixo, encontra-se o resultado final do processo para n = 7.

Considere a sequência $1, 2, 4, 3, 5, 7, 6, 8, 10, 12, 9, 11, 13, 14, 17, \ldots$, construída do seguinte modo: escrevemos o primeiro número ímpar, depois os dois primeiros números pares, depois os três ímpares seguintes, depois os quatro pares seguintes, depois os cinco ímpares seguintes e assim por diante.

- (a) Qual número desta sequência ocupa a posição 2019?
- (b) Em qual posição encontra-se o número 2019 nessa sequência.

Observação. Por exemplo, o número 1 se encontra na primeira posição, o número 4 na terceira posição e o número 10 está na nona posição.

PROBLEMA 2

Seja $n \geq 2$ um número inteiro. Considere um polígono regular de 2n lados $A_1A_2...A_{2n}$. De quantas maneiras podemos pintar os vértices deste polígono com as cores azul e vermelho de forma que todo retângulo com vértices no conjunto $\{A_1, A_2, ..., A_{2n}\}$ possua pelo menos dois vértices pintados com cores distintas?

PROBLEMA 3

Determine todos os algarismos não nulos distintos dois a dois O, M, E, R e J tais que

$$\frac{(OM)_{10}}{(ERJ)_{10}} = 0, ERERERERERER...$$

Observação. As notações $(OM)_{10}$ e $(ERJ)_{10}$ denotam as representações decimais de ambos os números.

Observação. A notação 0, ERERERERERERERER... denota a dízima periótica com período $(ER)_{10}$.

PROBLEMA 4

Sejam ABC um triângulo e AD, BE e CF suas alturas, com D, E e F nos lados BC, CA e AB, respectivamente. Suponha que o ortocentro H é o ponto médio da altura AD. Determine o menor valor possível que

$$\frac{HB}{HE} + \frac{HC}{HF}$$

pode assumir.

PROBLEMA 5

Seja n um inteiro positivo. Divide-se um círculo em n setores circulares iguais. Considere o seguinte processo:

- (a) Inicialmente, coloca-se uma joia em um dos setores e escreve-se o número 0 neste setor.
- (b) Na etapa 1, move-se a joia um setor, no sentido horário, e escreve-se o número 1 no novo setor onde a joia está.
- (c) Na etapa k, move-se a joia k setores, no sentido horário, e escreve-se o número k no novo setor onde a joia está.

Terminamos o processo ao fim da etapa n-1. Para quais valores de n, ao fim do processo, todos os setores possuem um número escrito?

Abaixo, encontra-se o resultado final do processo para n = 7.

PROBLEMA 6

Seja n um inteiro positivo. Calcule

$$\sum_{1 \le a_1 < a_2 < \dots < a_n \le 2n} (2 - a_1) \cdot (4 - a_2) \cdot \dots \cdot (2n - a_n)$$

onde a soma percorre todas as sequências crescentes (a_1, a_2, \ldots, a_n) com termos no conjunto $\{1, 2, \ldots, 2n\}$.

Um número natural é chamado de factorion se ele é igual a soma dos fatoriais dos seu dígitos decimais. Encontre todos os números de 3 dígitos que são factorions.

Observação: O fatorial de um número inteiro não negativo e definido da seguinte forma: 0! = 1 e para n inteiro positivo, $n! = 1 \times 2 \times 3 \times \cdots \times n$. Por exemplo, $6! = 1 \times 2 \times 3 \times 4 \times 5 \times 6 = 720$.

PROBLEMA 2

Considere um triângulo equilátero ABC de lado 1. Um círculo C_1 é construído tangenciando os lados AB e AC. Um círculo C_2 , de raio maior que o raio de C_1 , é construído tangenciando os lados AB e AC e tangenciando externamente o círculo C_1 . Sucessivamente, para n inteiro positivo, o círculo C_{n+1} , de raio maior que o raio de C_n , tangencia os lados AB e AC e tangencia externamente o círculo C_n . Determine os possíveis valores para o raio de C_1 de forma que caibam 4, mas não 5 círculos dessa sequência, inteiramente contidos no interior do triângulo ABC.

PROBLEMA 3

Seja n um inteiro positivo. Uma função $f:\{1,2,\ldots,2n\}\to\{1,2,3,4,5\}$ é dita boa se f(j+2) e f(j) têm a mesma paridade para todo $j=1,2,\ldots,2n-2$. Prove que a quantidade de funções boas é um quadrado perfeito.

PROBLEMA 4

Seja ABC um triângulo acutângulo inscrito na circunferência Γ . Sejam D e E pontos em Γ tais que AD é perpendicular a BC e AE é diâmetro. Seja F o ponto de interseção de AE com BC. Prove que se $\angle DAC = 2\angle DAB$, então DE = CF.

PROBLEMA 5

Sejam n um inteiro positivo e $\sigma = (a_1, \dots, a_n)$ uma permutação de $\{1, \dots, n\}$. O número de cadência de σ é o número de blocos decrescentes maximais. Por exemplo, se n = 6 e $\sigma = (4, 2, 1, 5, 6, 3)$, então o número de cadência de σ é 3, pois σ possui 3 blocos (4, 2, 1), (5), (6, 3) descrescentes e maximais. Note que os blocos (4, 2) e (2, 1) são decrescentes, mas não são maximais, já que estão contidos no bloco (4, 2, 1).

Calcule a soma das cadências de todas as permutações de $\{1, \ldots, n\}$.

PROBLEMA 6

Dois quadrados perfeitos são ditos amigáveis se um é obtido a partir do outro acrescentando o dígito 1 à esquerda. Por exemplo, $1225 = 35^2$ e $225 = 15^2$ são amigáveis. Prove que existem infinitos pares de quadrados perfeitos amigáveis e ímpares.

Sejam ABC um triângulo e k um número real positivo menor do que 1. Tome A_1 , B_1 e C_1 pontos nos lados BC, AC e AB de modo que

$$\frac{A_1B}{BC} = \frac{B_1C}{AC} = \frac{C_1A}{AB} = k.$$

- (a) Calcule em função de k a razão entre as áreas dos triângulos $A_1B_1C_1$ e ABC.
- (b) Mais geralmente, para todo $n \ge 1$, constrói-se o triângulo $A_{n+1}B_{n+1}C_{n+1}$, de modo que A_{n+1} , B_{n+1} e C_{n+1} sejam pontos nos lados B_nC_n , A_nC_n e A_nB_n satisfazendo

$$\frac{A_{n+1}B_n}{B_nC_n} = \frac{B_{n+1}C_n}{A_nC_n} = \frac{C_{n+1}A_n}{A_nB_n} = k.$$

Determine os valores de k de modo que a soma das áreas de todos os triângulos $A_nB_nC_n$, para $n=1,2,3,\ldots$ seja igual a $\frac{1}{3}$ da área do triângulo ABC.

PROBLEMA 2

Seja (a_n) uma sequência de números inteiros tal que $a_1 = 1$ e para $n \ge 1$ inteiro positivo, $a_{2n} = a_n + 1$ e $a_{2n+1} = 10a_n$. Quantas vezes o número 111 aparece nessa sequência?

PROBLEMA 3

Sejam n e k inteiros positivos. Uma função $f:\{1,2,3,4,\ldots,kn-1,kn\}\to\{1,\cdots,5\}$ é dita boa se f(j+k)-f(j) é múltiplo de k para todo $j=1,2,\cdots,kn-k$.

- (a) Prove que se k=2, então a quantidade de funções boas é um quadrado perfeito para todo n inteiro positivo.
- (b) Prove que se k=3, então a quantidade de funções boas é um cubo perfeito para todo n inteiro positivo.

PROBLEMA 4

Encontre todos os valores reais que a pode assumir de modo que o sistema

$$\begin{cases} x^3 + y^2 + z^2 = a \\ x^2 + y^3 + z^2 = a \\ x^2 + y^2 + z^3 = a \end{cases}$$

possua solução com x,y,z reais distintos dois a dois.

PROBLEMA 5

Sejam Θ_1 e Θ_2 circunferências com centros O_1 e O_2 , respectivamente, tangentes exteriormente. Sejam A e B pontos sobre Θ_1 e Θ_2 , respectivamente, tais que a reta AB é tangente comum externa a Θ_1 e Θ_2 . Sejam C e D pontos no semiplano determinado por AB que não contém O_1 e O_2 tais que ABCD é um quadrado. Se O é o centro deste quadrado, determine os possíveis valores do ângulo $\angle O_1OO_2$.

PROBLEMA 6

Dois quadrados perfeitos são ditos amigáveis se um é obtido a partir do outro acrescentando o dígito 1 à esquerda. Por exemplo, $1225 = 35^2$ e $225 = 15^2$ são amigáveis. Prove que existem infinitos pares de quadrados perfeitos amigáveis e ímpares.

Seja ABCD um retângulo com lados AB = 6 e BC = 8. Por um ponto X do lado AB com AX < XB, traça-se uma reta paralela a BC. Esta reta, juntamente com as diagonais e os lados do retângulo, determinará 3 quadriláteros. Sabendo que a soma das áreas desses quadriláteros é a maior possível, calcule a medida do segmento AX.

PROBLEMA 2

Luiza quer pintar os vértices de um prisma triangular com 5 cores, de modo que se dois vértices estão ligados por uma aresta, então eles têm cores diferentes. De quantas maneiras Luiza pode pintar esse prisma?

PROBLEMA 3

Encontre todos os reais a para os quais o sistema de equações

$$x^{2} - yz = ax^{2}$$
$$y^{2} - xz = ax^{2}$$
$$z^{2} - xy = ax^{2}$$

possui pelo menos uma solução real (x, y, z) com $x \neq 0$.

PROBLEMA 4

Sejam Γ uma circunferência de centro O e ℓ uma reta tangente a Γ em A. Tome B um ponto em Γ (diferente do ponto diametralmente oposto a A em Γ) e seja B' o simétrico de B em relação a ℓ . Sejam E, distinto de A, o ponto de interseção de Γ com a reta B'A e D, distinto de E, a interseção das circunferências circunscritas aos triãngulos BB'E e AOE

- (a) Calcule a medida do ângulo $\angle B'BE$.
- (b) Prove que B, O e D são colineares.

PROBLEMA 5

Seja N um número inteiro positivo com uma quantidade par de algarismos, cuja representação decimal é $(a_{2k}a_{2k-1} \dots a_4a_3a_2a_1)_{10}$ Definimos o alternado de N como sendo o número $M = (a_{2k-1}a_{2k} \dots a_3a_4a_1a_2)_{10}$. Por exemplo, o alternado de 489012 é 840921. Encontre todos os inteiros positivos N tais que M = 2N - 1, onde M é o alternado de N.

PROBLEMA 6

Encontre todas as funções $f: \mathbb{R} \to \mathbb{R}$ tais que

$$f(x+yf(x)) + f(y-f(x)) = 2xf(y)$$

para todos x e y reais.

Seja ABCD um paralelogramo. Por um ponto X do lado AB, com AX < XB, traça-se uma reta paralela a BC. Esta reta, juntamente com as diagonais e os lados do paralelogramo, determinará 3 quadriláteros. Sabendo que a soma das áreas desses quadriláteros é a maior possível, calcule a razão $\frac{AX}{AB}$.

PROBLEMA 2

Encontre todos os números reais x que satisfaçam

$$x = \frac{1}{2} \left\lfloor x \right\rfloor^2 + 3 \left\lfloor x \right\rfloor + 2.$$

PROBLEMA 3

Pedro quer pintar os vértices de um tabuleiro $2 \times n$ de modo que cada quadradinho deste tabuleiro possua exatamente um vértice pintado.

- (a) Determine o número máximo de vértices que Pedro pode pintar.
- (b) Determine o número mínimo de vértices que Pedro pode pintar.

PROBLEMA 4

Seja N um número inteiro positivo com uma quantidade par de algarismos, cuja representação decimal é $(a_{2k}a_{2k-1} \dots a_4a_3a_2a_1)_{10}$ Definimos o alternado de N como sendo o número $M=(a_{2k-1}a_{2k}\dots a_3a_4a_1a_2)_{10}$. Por exemplo, o alternado de 489012 é 840921. Encontre todos os inteiros positivos N tais que M=2N-1, onde M é o alternado de N.

PROBLEMA 5

Seja ABC um triângulo acutângulo e seja AD, com D em BC, a altura relativa ao vértice A. Sejam Γ_1 e Γ_2 as circunferências circunscritas aos triângulos ABD e ACD, respectivamente. A circunferência Γ_1 intersecta o lado AC nos pontos A e P, enquanto Γ_2 intersecta o lado AB nos pontos B e Q. Seja X o ponto de interseção da reta BP com Γ_2 de modo que P está entre B e X. Da mesma forma, seja Y o ponto de interseção da reta CQ com Γ_1 de modo que Q está entre C e Y. Sabendo que A, X e Y são colineares, calcule o menor valor possível para o ângulo $\angle BAC$.

PROBLEMA 6

Encontre todas as funções $f: \mathbb{R} \to \mathbb{R}$ tais que

$$f(x + yf(x)) + f(y - f(x)) = 2xf(y)$$

para todos $x \in y$ reais.

A professora de Joãozinho escreveu no quadro um sistema de equações. Joãozinho, quando copiou do quadro o sistema, escreveu errado um, e somente um, coeficiente do sistema. Esse foi o sistema que Joãozinho escreveu em seu caderno:

$$x + y + 2z = 6$$
$$3x + 2y + z = 7$$

$$4x + 2y + 3z = 12$$

Sabendo que o sistema original tem todos os coeficientes inteiros e sua solução é $(\frac{5}{11}, \frac{21}{11}, \frac{20}{11})$, encontre o sistema original.

PROBLEMA 2

Seja $\lfloor x \rfloor$ a parte inteira de x, isto é, o maior inteiro menor ou igual a x. Seja $\{x\}$ a parte fracionária de x, definida como $\{x\} = x - \lfloor x \rfloor$. Um número real é dito replicante se $x = \{10x\}$. Encontre a soma de todos os números replicantes.

PROBLEMA 3

Encontre o número de sequências a_1, a_2, \ldots, a_{10} satisfazendo $a_n \in \{1, 2, 3, 4\}$ para todo $n = 1, 2, 3, \ldots, 10$ e $a_{n+1} = a_1 + a_2 + \cdots + a_n$ para todo $n = 1, 2, \ldots, 9$.

PROBLEMA 4

Sejam x, y e z reais satisfazendo $x, y, z \ge -1$ e $x + y \ge 2, x + z \ge 2, y + z \ge 2$. Prove que $xy + yz + zy \ge 3$.

PROBLEMA 5

Seja Γ uma circunferência de centro O e seja P um ponto no interior de Γ . Seja O' o ponto tal que P é ponto médio de OO'. Suponha que a circunferência Γ' de centro O' que passa por P é secante a Γ e seja A um ponto na interseção de Γ com Γ' . Se B é o outro ponto de interseção da reta AP com Γ , calcule $\frac{PB}{PA}$.

PROBLEMA 6

Seja p ¿ 3 um número primo. Sejam $a_1, a_2, \ldots, a_{p-1}$ números inteiros tais que a_1 não é múltiplo de p e $a_1^k + a_2^k + \cdots + a_{p-1}^k$ é múltiplo de p para todo $k = 1, \ldots, p-2$. Prove que a_i não é múltiplo de p para todo $i = 1, 2, \ldots, p-1$, e que $a_i - a_j$ não é múltiplo de p para todos $i, j = 1, 2, \ldots, p-1$ com $i \neq j$.

Escrevendo-se a representação decimal de 40! da esquerda para direita, qual o último digito não nulo que foi escrito? (Por exemplo 11! = 39916800, logo o último dígito não nulo de 11! é 8.)

PROBLEMA 2

Encontre o número de sequências a_1, a_2, \ldots, a_{10} satisfazendo que $a_n \in \{1, 2, 3, 4\}$ para todo $n = 1, 2, \ldots, 10$ e que $a_{n+1} = a_1 + a_2 + \cdots + a_n$ para todo $n = 1, 2, \ldots, 9$.

PROBLEMA 3

Seja $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = \{10x\}$. Um número é dito tri-replicante se ele satisfaz

$$f(f(f(x))) = x.$$

Encontre a soma de todos os números tri-replicantes.

Observação: $\{x\}$ é a parte fracionária de x, isto é, $\{x\} = x = \lfloor x \rfloor$, onde $\lfloor x \rfloor$ é o menor inteiro maior ou igual a x.

PROBLEMA 4

Seja Γ uma circunferência de centro O e seja P um ponto no interior de Γ . Seja O' o ponto tal que P é ponto médio de OO'. Suponha que a circunferência Γ' de centro O' que passa por P é secante a Γ e seja A um ponto na interseção de Γ com Γ' . Se B é o outro ponto de interseção da reta AP com Γ , calcule $\frac{PB}{PA}$.

PROBLEMA 5

Encontre todos os polinômios P com coeficientes reais tais que

$$xP(x) + yP(y) \ge 2P(xy)$$

para quaisquer $x \in y$ reais.

PROBLEMA 6

Sejam ABC um triângulo acutângulo e Γ sua circunferência circunscrita. Sejam D, E e F os pontos de tangência da circunferência inscrita com os lados BC, AC e AB, respectivamente. Sejam A_1 , A_2 , B_1 , B_2 , C_1 , C_2 os pontos de interseção de Γ com as retas DE, DF e EF de modo que A_1 e A_2 se encontram no arco menor BC, B_1 e B_2 se encontram no arco menor AC, e C_1 e C_2 se encontram no arco menor AB. Se $A_1A_2 = B_1B_2 = C_1C_2$, prove que o triângulo ABC é equilátero.

PROBLEMA 2

PROBLEMA 3

PROBLEMA 4

PROBLEMA 5

PROBLEMA 6

Encontre todas as funções $f:\mathbb{Z}\to\mathbb{Z}$ tais que

$$f(x - f(y)) = f(x) - f(y)$$

para todos x e y inteiros.

PROBLEMA 2

PROBLEMA 3

PROBLEMA 4

PROBLEMA 5

Encontre todas as funções $f:\mathbb{R} \to \mathbb{R}$ tais que

$$f(xy - f(x)) = xf(y)$$

para todos x e y reais.

PROBLEMA 2

PROBLEMA 3

PROBLEMA 4

PROBLEMA 5