Chapter 4.4

Polynomial and Rational Inequalities

4.4.1 Polynomial Inequalities

Example 1 Solution of a Polynomial Inequality Using Its Graph

Solve
$$(x+3)(x-1)^2 > 0$$
 by graphing $f(x) = (x+3)(x-1)^2$

Solution:

Step 1: End behavior: The graph of f resembles that of the power function $y = x^3$ for large values of |x|, i.e.

$$\lim_{x \to -\infty} f(x) = -\infty \text{ and } \lim_{x \to \infty} f(x) = \infty$$

Step 2: The y-intercept is f(0) = 3. To find the x-intercepts, solve the equation f(x) = 0.

Therefore, we get $f(x) = (x+3)(x-1)^2 = 0$ giving x = -3 or x = 1.

Thus, the y-intercept is 3 and the x-intercepts are -3 and 1.

Step 3: The intercept -3 is a zero of multiplicity 1, so the graph of f crosses the x-axis at -3. The other intercept 1 is a zero of multiplicity 2, so the graph of f touches the x-axis at 1.

Step 4: Since f is a polynomial function of degree 3, the graph of f will have at most two turning points.

Step 5: Behavior near zeros:

Near -3: $f(x) = (x+3)(x-1)^2 \approx (x+3)(-3-1)^2 = 16(x+3)$ which is a line with slope 16 Near 1: $f(x) = (x+3)(x-1)^2 \approx (1+3)(x-1)^2 = 4(x-1)^2$ which is a parabola that opens up

Use the real zeros -3 and 1 to divide the real number line into three intervals:

$$(-\infty, -3), \quad (-3,1), \quad (1, +\infty)$$

To draw the conclusion, prepare the following table:

Interval	Number picked	Value of f	Point on graph	Location of graph
$(-\infty, -3)$	-4	f(-4) = -25	(-4, -25)	Below the x-axis
(-3,1)	-2	f(-2) = 9	(-2,9)	Above the x-axis
$(1,+\infty)$	2	f(2) = 5	(2, 5)	Above the x-axis

We evaluated f at -4, -2 and 2 to help establish the scale on the y-axis.

Step 6: Figure 45 illustrates the information obtained from Step 1 to Step 5.

From the graph, we see that f(x) > 0 for -3 < x < 1 or x > 1. Because the original inequality is strict, the solution set is

$$S = \{x: -3 < x < 1 \text{ or } x > 1\}$$

or, in interval notation $(-3, 1) \cup (1, \infty)$.

Example (Extra) Solution of a Polynomial Inequality Algebraically

Solve $(x+3)(x-1)^2 > 0$ algebraically and graph the solution set.

Solution:

Step I: The y-intercept is f(0) = 3. To find the x-intercepts, solve the equation f(x) = 0.

Therefore, we get $f(x) = (x+3)(x-1)^2 = 0$ giving x = -3 or x = 1.

Thus, y-intercept is 3 and the x-intercepts are x = -3 and 1.

Step II: Use the real zeros -3 and 1 to divide the real number line into three intervals:

$$(-\infty, -3), (-3,1), (1,+\infty)$$

Step III: To draw the conclusion, prepare the following table:

Interval	Number picked	Value of f	Point on graph	Location of graph
$(-\infty, -3)$	-4	f(-4) = -25	(-4, -25)	Below the x-axis
(-3,1)	-2	f(-2) = 9	(-2,9)	Above the x-axis
$(1,+\infty)$	2	f(2) = 5	(2, 5)	Above the x-axis

From the Table, we can conclude that f(x) > 0 for all numbers x for which -3 < x < 1 or x > 1. Because the original inequality is strict, the solution set of the given inequality is

$$S = \{x: -3 < x < 1 \text{ or } x > 1\}$$

or, in interval notation $(-3, 1) \cup (1, \infty)$.

Example 2 Solution of a Polynomial Inequality Algebraically

Solve the inequality $x^4 > x$ algebraically and graph the solution set.

Solution: See the Textbook.

Table 16

4.4.2 Rational Inequalities

Example 3 Solution of a Rational Inequality Using Its Graph

Solve
$$\frac{x-1}{x^2-4} \ge 0$$
 by graphing $R(x) = \frac{x-1}{x^2-4}$.

Solution: See the Textbook (Example 1, Section 4.3, Figure 47)

Figure 47

Step I: We have
$$R(x) = \frac{x-1}{x^2-4} = \frac{x-1}{(x+2)(x-2)}$$

Therefore, $Dom(R) = \{x : x \neq -2, x \neq 2\}.$

Step II: Since there are no common factors between the numerator and denominator, *R* is in lowest terms.

Step III: Since 0 is in the domain of R, the y-intercept is $f(0) = \frac{1}{4}$. To find x-intercepts, solve x-1=0 or x=1. Therefore, the only real zero of the numerator is 1, i.e. the only x-intercept of the graph of R is 1.

Near 1:
$$R(x) = \frac{x-1}{(x+2)(x-2)} \approx \frac{x-1}{(-1+2)(-1-2)} = -\frac{1}{3}(x+1)$$
 which is a line with slope $-\frac{1}{3}$

Plot the point (1,0) and draw a line through (1,0) with a negative slope.

Step IV: Since R is in lowest terms, the vertical asymptotes are x = -2 and x = 2.

Step V: Since *R* is proper, the horizontal asymptote is y = 0. The graph of *R* intersected the horizontal asymptote at (1,0) because

$$R(x) = \frac{x-1}{(x+2)(x-2)} = 0 \implies x-1 = 0 \implies x = 1$$

Step VI: Since the zero of the numerator is 1 and the zeros of the denominator are -2 and 2, divide the *x*-axis into four intervals:

$$(-\infty, -2), \quad (-2,1), \quad (1,2), \quad (2,+\infty)$$

Step VII: To draw the conclusion, prepare the following table:

Interval	Number picked	Value of R	Point on graph	Location of graph
$(-\infty, -2)$	-3	$R(-3) = -\frac{4}{5}$	$\left(-3,-\frac{4}{5}\right)$	Below the x-axis
(-2,1)	0	$R(0) = \frac{1}{4}$	$\left(0,\frac{1}{4}\right)$	Above the x-axis

(1,2)	$\frac{3}{2}$	$R\left(\frac{3}{2}\right) = -\frac{2}{7}$	$\left(\frac{3}{2}, -\frac{2}{7}\right)$	Below the <i>x</i> -axis
$(2,+\infty)$	3	$R(3) = \frac{2}{5}$	$\left(3,\frac{2}{5}\right)$	Above the <i>x</i> -axis

From the graph, we see that $R(x) \ge 0$ for $-2 < x \le 1$ or x > 2. Therefore, the solution set of the given inequality is

$$S = \{x : -2 < x \le 1 \text{ or } x > 2\}$$

or, in interval notation $(-2, 1] \cup (2, \infty)$.

Example (Extra) Solution of a Rational Inequality Algebraically

Solve $\frac{x-1}{x^2-4} \ge 0$ algebraically and graph the solution set.

Solution: See the Textbook (Example 1, Section 4.3, Figure 47)

Step I: To find the real zeros (*x*-intercepts of the graph), solve x-1=0 or x=1. Therefore, the only real zero of the numerator is 1.

Step II: Since the zero of the numerator is 1 and the zeros of the denominator are -2 and 2, divide the real number line into four intervals:

$$(-\infty, -2), (-2,1), (1,2), (2,+\infty)$$

Step III: To draw the conclusion, prepare the following table:

Interval	Number picked	Value of R	Point on graph	Location of graph
$(-\infty, -2)$	-3	$R(-3) = -\frac{4}{5}$	$\left(-3,-\frac{4}{5}\right)$	Below the <i>x</i> -axis
(-2,1)	0	$R(0) = \frac{1}{4}$	$\left(0,\frac{1}{4}\right)$	Above the <i>x</i> -axis
(1,2)	$\frac{3}{2}$	$R\left(\frac{3}{2}\right) = -\frac{2}{7}$	$\left(\frac{3}{2}, -\frac{2}{7}\right)$	Below the <i>x</i> -axis
$(2,+\infty)$	3	$R(3) = \frac{2}{5}$	$\left(3,\frac{2}{5}\right)$	Above the <i>x</i> -axis

From the above table, we can conclude that $R(x) \ge 0$ for all real numbers x for which $-2 < x \le 1$ or x > 2. We did not include -2 and 2 in the solution set because they are not in the domain of R. Therefore, the solution set of the given inequality is

$$S = \{x : -2 < x \le 1 \text{ or } x > 2\}$$

or, in interval notation $(-2, 1] \cup (2, \infty)$.

Example 4 Solution of a Rational Inequality Algebraically

Solve the inequality $\frac{4x+5}{x+2} \ge 3$ algebraically and graph the solution set.

Solution: See the Textbook.

Table 17

4.4 Assess your understanding

Skill Building

Solve the inequality by using the graph of the function.

[**Hint:** The graphs were drawn in Problem 69-74 of Section 4.1]

9. Solve f(x) < 0, where $f(x) = x^2(x-3)$

Solution:

Step 1: End behavior: The graph of f resembles that of the power function $y = x^3$ for large values of |x|, i.e.

$$\lim_{x \to \infty} f(x) = -\infty$$
 and $\lim_{x \to \infty} f(x) = \infty$

Step 2: The y-intercept is f(0) = 0. To find the x-intercepts, solve the equation f(x) = 0.

Therefore, we get $f(x) = x^2(x-3) = 0$ giving x = 0 or x = 3.

Thus, the *y*-intercept is 0 and the *x*-intercepts are 0 and 3.

Step 3: The intercept 0 is a zero of multiplicity 2, so the graph of f touches the x-axis at 0. The other intercept 3 is a zero of multiplicity 1, so the graph of f crosses the x-axis at 3.

Step 4: Since f is a polynomial function of degree 3, the graph of f will have at most two turning points.

Step 5: Behavior near zeros:

Near 0: $f(x) = x^2(x-3) \approx x^2(0-3) = -3x^2$ which is a parabola that opens down

Near 3: $f(x) = x^2(x-3) \approx 3^2(x-3) = 9(x-3)$ which is a line with slope 9

Step 6: Use the real zeros -3 and 1 to divide the real number line into three intervals: $(-\infty,0), (0,3), (3,+\infty)$

To draw the conclusion, prepare the following table:

Interval	Number picked	Value of f	Point on graph	Location of graph
$(-\infty,0)$	-1	f(-1) = -4	(-1, -4)	Below the x-axis
(0,3)	2	f(2) = -4	(2, -4)	Below the x-axis
$(3,+\infty)$	4	f(4) = 16	(4, 16)	Above the x-axis

We evaluated f at -1, 2 and 4 to help establish the scale on the y-axis.

Z

69. Step 1:
$$y = x^3$$

Step 2: *x*-intercepts: 0, 3; *y*-intercept: 0

Step 3: 0: multiplicity 2, touches; 3: multiplicity 1, crosses

Step 4: At most 2 turning points

Step 5: Near 0: $f(x) \approx -3x^2$; Near 3: $f(x) \approx 9(x-3)$

Step 6:

From the graph, we see that f(x) < 0 for x < 0 or 0 < x < 3. Because the original inequality is strict, the solution set of the given inequality is

$$S = \{x : x < 0 \text{ or } 0 < x < 3\}$$

or, in interval notation $(-\infty,0) \cup (0,3)$.

11. Solve $f(x) \ge 0$, where $f(x) = (x+4)(x-2)^2$

Solution:

Step 1: End behavior: The graph of f resembles that of the power function $y = x^3$ for large values of |x|, i.e.

$$\lim_{x \to -\infty} f(x) = -\infty \text{ and } \lim_{x \to \infty} f(x) = \infty$$

Step 2: The y-intercept is f(0) = 16. To find the x-intercepts, solve the equation f(x) = 0.

Therefore, we get $f(x) = (x+4)(x-2)^2 = 0$ giving x = -4 or x = 2.

Thus, the y-intercept is 16 and the x-intercepts are -4 and 2.

Step 3: The intercept -4 is a zero of multiplicity 1, so the graph of f crosses the x-axis at -4. The other intercept 2 is a zero of multiplicity 2, so the graph of f touches the x-axis at 2.

Step 4: Since f is a polynomial function of degree 3, the graph of f will have at most two turning points.

Step 5: Behavior near zeros:

Near
$$-4$$
: $f(x) = (x+4)(x-2)^2 \approx (x+4)(-4-2)^2 = 36(x+4)$ which is a line with slope 36

Near 2:
$$f(x) = (x+4)(x-2)^2 \approx (2+4)(x-2)^2 = 6(x-2)^2$$
 which is a parabola that opens up

Step 6: Use the real zeros -4 and 2 to divide the real number line into three intervals:

$$(-\infty, -4), \quad (-4,2), \quad (2,+\infty)$$

To draw the conclusion, prepare the following table:

Interval	Number picked	Value of f	Point on graph	Location of graph
$(-\infty, -4)$	-5	f(-5) = -49	(-5, -49)	Below the x-axis
(-4, 2)	-2	f(-2) = 32	(-2,32)	Above the x-axis
$(2,+\infty)$	4	f(4) = 32	(4, 32)	Above the x-axis

We evaluated f at -5, -2 and 4 to help establish the scale on the y-axis.

71. Step 1: $y = x^3$

Step 2: x-intercepts: -4, 2; y-intercept: 16

Step 3: -4: multiplicity 1, crosses; 2: multiplicity 2, touches

Step 4: At most 2 turning points

Step 5: Near -4: $f(x) \approx 36(x+4)$; Near 2: $f(x) \approx 6(x-2)^2$

Step 6:

From the graph, we see that $f(x) \ge 0$ for $x \ge -4$. Because the original inequality is not strict, the solution set of the given inequality is

$$S = \{x : x \ge -4\}$$

or, in interval notation $[-4, \infty)$.

13. Solve $f(x) \le 0$, where $f(x) = -2(x+2)(x-2)^3$ Solution set $S = \{x : x \le -2 \text{ or } x \ge 2\}; (-\infty, -2] \cup [2, \infty)$

Solve the inequality by using the graph of the function.

[**Hint:** The graphs were drawn in Problems 7-10 of Section 4.3]

15. Solve R(x) > 0, where $R(x) = \frac{x+1}{x(x+4)}$

Solution: (a) $Dom(R) = \{x : x \neq 0, x \neq -4\}.$

- (b) Since there are no common factors between the numerator and denominator, R is in lowest terms.
- (c) Since 0 is not in the domain of R, there is no y-intercept. To find x-intercepts, solve x+1=0 or x=-1. Therefore, the only real zero of the numerator is x=-1, i.e. the only x-intercept of the graph of R is x=-1.

Near -1:
$$R(x) = \frac{x+1}{x(x+4)} \approx \frac{x+1}{(-1)(-1+4)} = -\frac{1}{3}(x+1)$$

Plot the point (-1,0) and draw a line through (-1,0) with a negative slope.

- (d) Since R is in lowest terms, the vertical asymptotes are x = 0 and x = -4.
- (e) Since R is proper, the horizontal asymptote is y = 0 intersected at (-1,0) because

$$R(x) = \frac{x+1}{x(x+4)} = 0 \Rightarrow x+1 = 0 \Rightarrow x = -1$$

(f) Now construct a table.

Interval	Number picked	Value of R	Point on graph	Location of graph
$(-\infty, -4)$	-5	$R(-5) = -\frac{4}{5}$	$\left(-5, -\frac{4}{5}\right)$	Below the <i>x</i> -axis
(-4,-1)	-2	$R(-2) = \frac{1}{4}$	$\left(-2,\frac{1}{4}\right)$	Above the <i>x</i> -axis
(-1,0)	$-\frac{1}{2}$	$R\left(-\frac{1}{2}\right) = -\frac{2}{7}$	$\left(-\frac{1}{2}, -\frac{2}{7}\right)$	Below the <i>x</i> -axis
$(0,+\infty)$	1	$R(1) = \frac{2}{5}$	$\left(1,\frac{2}{5}\right)$	Above the <i>x</i> -axis

From the graph, we see that R(x) > 0 for -4 < x < -1 or x > 0. Because the original inequality is strict, the solution set of the given inequality is

$$S = \{x : -4 < x < -1 \text{ or } x > 0\}$$

or, in interval notation $(-4, -1) \cup (0, \infty)$.

17. Solve $R(x) \le 0$, where $R(x) = \frac{3x+3}{2x+4}$

Solution: (a) $Dom(R) = \{x : x \neq -2\}.$

- (b) Since there are no common factors between the numerator and denominator, *R* is in lowest terms.
- (c) Since 0 is in the domain of R, the y-intercept is $R(0) = \frac{3}{4}$. To find x-intercepts, solve 3(x+1) = 0 or x = -1. Therefore, the only real zero of the numerator is -1, i.e. the only x-intercept of the graph of R is -1.

Near -1:
$$R(x) = \frac{3(x+1)}{2(x+2)} \approx \frac{3(x+1)}{2(-1+2)} = \frac{3}{2}(x+1)$$

Plot the point (-1,0) and draw a line through (-1,0) with a positive slope.

- (d) Since R is in lowest terms, the only vertical asymptote is x = -2.
- (e) Since R is proper, the horizontal asymptote is $y = \frac{3}{2}$ which does not intersect at (-1,0) because

$$R(x) = \frac{3x+3}{2x+4} = \frac{3}{2} \implies 6x+12 = 6x+6 \implies 12 = 6$$
 is absurd

(f) Now construct a table.

Interval	Number picked	Value of R	Point on graph	Location of graph
$(-\infty, -2)$	-3	R(-3) = 3	(-3,3)	Above the <i>x</i> -axis
(-2,-1)	$-\frac{3}{2}$	$R\left(-\frac{3}{2}\right) = -\frac{3}{2}$	$\left(-\frac{3}{2}, -\frac{3}{2}\right)$	Below the <i>x</i> -axis
$(-1,+\infty)$	0	$R(0) = \frac{3}{4}$	$\left(0,\frac{3}{4}\right)$	Above the <i>x</i> -axis

From the graph, we see that $R(x) \le 0$ for $-2 < x \le -1$. Because the original inequality is not strict, the solution set of the given inequality is

$$S = \{x : -2 < x \le -1\}$$

or, in interval notation (-2,-1].

Solve the following inequalities algebraically.

19.
$$(x-5)^2(x+2) < 0$$

Solution set $S = \{x : x < -2\}; (-\infty, -2)$

21.
$$x^3 - 4x^2 > 0$$

Solution set $S = \{x : x > 4\}; (4, \infty)$

23.
$$2x^3 > -8x^2$$

Solution set $S = \{x : -4 < x < 0 \text{ or } x > 0\}; (-4,0) \cup (0,\infty)$

25.
$$(x-1)(x-2)(x-3) \le 0$$

Solution set $S = \{x : x \le 1 \text{ or } 2 \le x \le 3\}; (-\infty, 1] \cup [2, 3]$

27.
$$x^3 - 2x^2 - 3x > 0$$

Solution set $S = \{x: -1 < x < 0 \text{ or } x > 3\}; (-1,0) \cup (3,\infty)$

29.
$$x^4 > x^2$$

Solution set $S = \{x : x < -1 \text{ or } x > 1\}; (-\infty, -1) \cup (1, \infty)$

31.
$$x^4 > 1$$

Solution set $S = \{x : x < -1 \text{ or } x > 1\}; (-\infty, -1) \cup (1, \infty)$

33.
$$\frac{x+1}{x-1} > 0$$

Solution set $S = \{x : x < -1 \text{ or } x > 1\}; (-\infty, -1) \cup (1, \infty)$

35.
$$\frac{(x-1)(x+1)}{x} \le 0$$

Solution set $S = \{x : x \le -1 \text{ or } 0 < x \le 1\}; (-\infty, -1] \cup (0, 1]$

$$37. \frac{(x-2)^2}{x^2-1} \ge 0$$

39.
$$\frac{x+4}{x-2} \le 1$$

41.
$$\frac{3x-5}{x+2} \le 2$$

43.
$$\frac{1}{x-2} < \frac{2}{3x-9}$$