```
Analysis
[Matrix] c^T c = ||c||^2 = c_1^2 + \dots + c_k^2, cc^T is k \times k matrix with (i, j)th element as c_i c_j,
[Max, Min] \max(a,b) = \frac{1}{2}(a+b+|a-b|), \min(a,b) = \frac{1}{2}(a+b-|a-b|)
[Moments] \mu^k = E(X^k) = \int x^k f(x) dx
Deduce X=0 If X \ge 0 a.s. and EX=0 then X=0 a.s.
[Variance, Covariance] Var(X) = E[(X - EX)(X - EX)^T], Cov(X, Y) = E[(X - EX)(Y - EY)^T], Corr(X, Y) = Cov(X, Y)/(\sigma_X \sigma_Y),
E(a^TX) = a^TEX, Var(a^TX) = a^TVar(X)a
[CHF] \phi_X(t) = E\left[exp(\sqrt{-1}t^TX)\right] = E\left[\cos(t^TX) + \sqrt{-1}\sin(t^TX)\right] \ \forall \ t \in \mathbb{R}^d, well defined with |\phi_X| \le 1
[MGF] \psi_X(t) = E[exp(t^T X)] \ \forall \ t \in \mathcal{R}^d,
[MGF properties] \psi_{-X}(t) = \psi_X(-t), if \psi(t) < \infty \ \forall \ ||t|| < \delta \Rightarrow E|X|^a < \infty \ \forall \ a > 1 \text{ and } \phi_X(t) = \psi_X(\sqrt{-1}t)
[Conditional Exp] f_{X|Y}(x|Y=y) = \frac{f_{X,Y}(x,y)}{f_Y(y)} = \frac{f_{Y|X}(y|X=x)f_X(x)}{f_Y(y)}
[MCT] 0 \le f_1 \le f_2 \le \cdots \le f_n and \lim_n f_n = f a.e. \Rightarrow \int \lim_n f_n d\nu = \lim_n \int f_n d\nu
Fatou f_n \ge 0 \Rightarrow \int \liminf_n f_n d\nu \le \liminf_n \int f_n d\nu
[DCT] \lim_{n\to\infty} f_n = f and |f_n| \le g a.e. \Rightarrow \int \lim_n f_n d\nu = \lim_n \int f_n d\nu. g is an integrable function.
Interchange Diff and Int ① \partial f(\omega,\theta)/\partial \theta exists in (a,b) ② |\partial f(\omega,\theta)/\partial \theta| \leq g(\omega) a.e. \Rightarrow
① \partial f(\omega, \theta)/\partial \theta integrable in (a, b) ② \frac{d}{d\theta} \int f(\omega, \theta) d\nu(\omega) = \int \frac{\partial f(\omega, \theta)}{\partial \theta} d\nu(\omega)
[Change of Var] Y = g(X), X = g^{-1}(Y) = h(Y) and A_i disjoint, f_Y(y) = \sum_{j:1 \le j \le m, y \in g(A_j)} \left| \det \left( \frac{\partial h_j(y)}{\partial y} \right) \right| f_X(h_j(y)). Simple version:
f_Y(y) = |det(\partial h(y)/\partial y)| f_X(h(y))
Inequalities
[Cauchy-Schewarz] Cov(X,Y)^2 \le Var(X)Var(Y), and E^2[XY] \le EX^2EY^2
Jensen \varphi is convex \Rightarrow \varphi(EX) \leq E\varphi(X) e.g. (EX)^{-1} < E(X^{-1}) and E(logX) < log(EX)
[Chebyshev] If \varphi(-x) = \varphi(x), and \varphi non-decreasing on [0,\infty) \Rightarrow \varphi(t)P(|X| \geq t) \leq \int_{\{|X| \geq t\}} \varphi(X)dP \leq E\varphi(X) \forall \ t \geq 0. e.g. P(|X-\mu| \geq t) \leq \varphi(x)
t) \le \frac{\sigma_X^2}{t^2} and P(|X| \ge t) \le \frac{E|X|}{t} [Hölder] p,q > 0 and 1/p + 1/q = 1 or q = p/(p-1) \Rightarrow E|XY| \le (E|X|^p)^{1/p}(E|Y|^q)^{1/q}. Equality \Leftrightarrow |X|^p and |Y|^q linearly dependent
Young ab \leq \frac{a^p}{p} + \frac{b^q}{q}, equality \Leftrightarrow a^p = b^q
[Minkowski] p \ge 1, (E|X + Y|^p)^{1/p} \le (E|X|^p)^{1/p} + (E|Y|^p)^{1/p}
[Lyapunov] for 0 < s < t, (E|X|^s)^{1/2} \le (E|X|^t)^{1/t}
[KL] K(f_0, f_1) = E_0 \log \frac{f_0(X)}{f_1(X)} = \int \log \left(\frac{f_0(x)}{f_1(x)}\right) f_0(x) d\nu(x) \ge 0 equality \Leftrightarrow f_1(\omega) = f_0(\omega)
[a.s] X_n \xrightarrow{\text{a.s.}} X if P(\lim_{n\to\infty} X_n = X) = 1. Can show \forall \epsilon > 0, \sum_{i=1}^{\infty} P(|X_n - X| > \epsilon) < \infty via BC lemma
[Infinity often] \{A_n \ i.o.\} = \bigcap_{n\geq 1} \bigcup_{j\geq n} A_j := \limsup_{n\to\infty} A_n
Borel-Cantelli lemmas (First BC) If \sum_{n=1}^{\infty} P(A_n) < \infty, then P(A_n \ i.o.) = 0 (Second BC) Given pairwisely independent events \{A_n\}_{n=1}^{\infty}, if \sum_{n=1}^{\infty} P(A_n) = \infty, then P(A_n \ i.o.) = 1
[L^p] X_n \xrightarrow{L_p} X if \lim_{n\to\infty} E|X_n - X|^p = 0, given p > 0, E|X|^p < \infty and E|X_n|^p < \infty
[Probability] X_n \xrightarrow{P} X if \forall \epsilon > 0 \lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0. Can show E(X_n) = X, \lim_{n \to \infty} Var(X_n) = 0
[Distribution] X_n \xrightarrow{D} X if \lim_{n \to \infty} F_n(x) = F(x) for every x \in \mathcal{R} at which F is continuous
Relationships between convergence
(1) L^p \Rightarrow L^q \Rightarrow P (2) a.s. \Rightarrow P, P \Rightarrow D (3) X_n \rightarrow_D C \Rightarrow X_n \rightarrow_P C (4) If X_n \rightarrow_P X \Rightarrow \exists sub-seq s.t. X_{n_i} \rightarrow_{a.s.} X.
Continuous mapping If g: \mathbb{R}^k \to \mathbb{R} is continuous and X_n \stackrel{*}{\to} X, then g(X_n) \stackrel{*}{\to} g(X), where * is either (a) a.s. (b) P \odot D.
[Convengence properties]
① Unique in limit: X = Y if X_n \to X and X_n \to Y for ⓐ a.s., ⓑ P, ⓒ L^p. ⓓ If F_n \to F and F_n \to G, then F(t) = G(t) \ \forall \ t
② Concatenation: (X_n, Y_n) \to (X, Y) when ⓐ P ⓑ a.s. ⓒ (X_n, Y_n) \xrightarrow{D} (X, c) only when c is constant. ③ Linearity: (aX_n + bY_n) \to aX + bY when ⓐ a.s. ⓑ P ⓒ L^p ⓓ NOT for distribution.
(4) Cramér-Wold device: for k-random vectors, X_n \xrightarrow{D} X \Leftrightarrow c^T X_n \xrightarrow{D} c^T X for every c \in \mathcal{R}^k
[Lévy continuity] X_n \xrightarrow{D} X \Leftrightarrow \phi_{X_n} \to \phi_X pointwise [Scheffés theorem] If \lim_{n\to\infty} f_n(x) = f(x) \Rightarrow \lim_{n\to\infty} \int |f_n(x) - f(x)| d\nu = 0 and P_{f_n} \to P_f. Useful to check pdf converge in distribution.
[Slutsky's theorem] If X_n \xrightarrow{D} X and Y_n \xrightarrow{D} c for constant c. Then X_n + Y_n \xrightarrow{D} X + c, X_n Y_n \xrightarrow{D} cX, X_n / Y_n \xrightarrow{D} X / c if c \neq 0
[Skorohod's theorem] If X_n \xrightarrow{D} X, then \exists Y, Y_1, Y_2, \cdots s.t. P_{Y_n} = P_{X_n}, P_Y = P_X and Y_n \xrightarrow{\text{a.s.}} Y
[\delta-method - first order] If \{a_n\} > 0 and \lim_{n \to \infty} a_n = \infty and a_n(X_n - c) \xrightarrow{D} Y and c \in \mathcal{R} and g'(c) exists at c, then a_n[g(X_n) - g(c)] \xrightarrow{D} Y
```

 $\begin{array}{l} X_n/Y_n \xrightarrow{P} 0 \\ \hline \text{[Stochastic Order Properties]} \ \textcircled{1} \ \text{If} \ X_n \xrightarrow{\text{a.s.}} X, \ \text{then} \ \{\sup_{n \geq k} |X_n|\}_k \ \text{is} \ O_p(1). \ \textcircled{2} \ \text{If} \ X_n \xrightarrow{D} X \ \text{for a rvs, then} \ X_n = O_P(1) \ \text{(tightness)}. \\ \hline \textcircled{3} \ \text{If} \ E|X_n| = O(a_n), \ \text{then} \ X_n = O_P(a_n) \ \textcircled{4} \ \text{If} \ E|X_n| = o(a_n), \ \text{then} \ X_n = o_P(a_n) \\ \hline \hline \text{[SLLN, iid]} \ E|X_1| < \infty \Leftrightarrow \frac{1}{n} \sum_{i=1}^n X_1 \xrightarrow{\text{a.s.}} EX_1 \end{array}$

[Stochastic order - RV] ① $X_n = O_{\text{a.s.}}(Y_n) \Leftrightarrow P\{|X_n| = O(|Y_n|)\} = 1$ ② $X_n = o_{\text{a.s.}}(Y_n) \Leftrightarrow X_n/Y_n \xrightarrow{\text{a.s.}} 0$, ③ $\forall \epsilon > 0$, $\exists C_{\epsilon} > 0$, $n_{\epsilon} \in \mathcal{N}s.t.$ $X_n = O_P(Y_n) \Leftrightarrow \sup_{n > n_{\epsilon}} P\left(\{\omega \in \Omega : |X_n(\omega) \ge C_{\epsilon}|Y_n(\omega)|\}\right) < \epsilon$ ④ If $X_n = O_P(1)$, $\{X_n\}$ is bounded in probability. ⑤ $X_n = o_P(Y_n) \Leftrightarrow S_n = O_P(Y_n) \Leftrightarrow S$

 δ -method - higher order If $g^{(j)}(c) = 0$ for all $1 \leq j \leq m-1$ and $g^{(m)}(c) \neq 0$. Then $a_n^m[g(X_n) - g(c)] \xrightarrow{D} \frac{1}{m!}g^{(m)}(c)Y^m$

[Stochastic order - Real] for a constant c > 0 and all n, ① $a_n = O(b_n) \Leftrightarrow |a_n| \le c|b_n|$ ② $a_n = o(b_n) \Leftrightarrow \lim_{n \to \infty} a_n/b_n = 0$

 $[\underline{\delta\text{-method - multivariate}}] \text{ If } X_i, Y \text{ are } k\text{-vectors rvs and } c \in \mathcal{R}^k \text{ and } a_n[g(X_n) - g(c)] \xrightarrow{D} \nabla g(c)^T Y$

g'(c)Y

[SLLN, non-idential but independent] If $\exists p \in [1,2]$ s.t. $\sum_{i=1}^{\infty} \frac{E|X_i|^p}{i^p} < \infty$, then $\frac{1}{n} \sum_{i=1}^{n} (X_i - EX_i) \xrightarrow{\text{a.s.}} 0$ [USLLN, idd] Suppose ① $U(x,\theta)$ is continuous in θ for any fixed x ② for each θ , $\mu(\theta) = EU(X,\theta)$ is finite ③ Θ is compact ④ There exists function M(x) s.t. $EM(X) < \infty$ and $|U(x,\theta) \le M(x)|$ for all x, θ . Then $P\left\{\lim_{n\to\infty} \sup_{\theta\in\Theta} \left|\frac{1}{n}\sum_{i=1}^n U(X_j,\theta) - \mu(\theta)\right| = 0\right\} = 1$ [WLLN, iid] $a_n = E(X_1 I_{\{|X_1| \le n\}}) \in [-n, n] \ nP(|X_1| > n) \to 0 \Leftrightarrow \frac{1}{n} \sum_{i=1}^n X_i - a_n \xrightarrow{P} 0$ [WLLN, non-identical but independent] If $\exists p \in [1,2]$ s.t. $\lim_{n\to\infty} \frac{1}{n^p} \sum_{i=1}^n E|X_i|^p = 0$, then $\frac{1}{n} \sum_{i=1}^n (X_i - EX_i) \xrightarrow{P} 0$ [Weak Convergency] $\int f d\nu_n \to \int f d\nu$ for every bounded and continous real function $f: X_n \xrightarrow{D} X \Leftrightarrow E[h(X_n)] \to E[h(X)]$ [CLT, iid] Suppose $\Sigma = Var X_1 < \infty$, then $\frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i - EX_i) \xrightarrow{D} N(0, \Sigma)$ [CLT, non-identical but independent] Suppose ① $k_n \to \infty$ as $n \to \infty$ ② (Lindeberg's condition) $0 < \sigma_n^2 = Var\left(\sum_{j=1}^{k_n} X_{nj}\right) < \infty$. ③ If for any $\epsilon > 0$, $\frac{1}{\sigma_n^2} \sum_{j=1}^{k_n} E\left\{ (X_{nj} - EX_{nj})^2 I_{\{|X_{nj} - EX_{nj}| > \epsilon \sigma_n\}} \right\} \to 0$. Then $\frac{1}{\sigma_n} \sum_{j=1}^{k_n} (X_{nj} - EX_{nj}) \xrightarrow{D} N(0,1)$ [Check Lindeberg condition] Option ① (Lyapunov condition) $\frac{1}{\sigma_n^{2+\delta}} \sum_{j=1}^{k_n} E|X_{nj} - EX_{nj}|^{2+\delta} \to 0$ for some $\delta > 0$ Option ② (Uniform boundedness) If $|X_{nj}| \leq M$ for all n and j and $\sigma_n^2 = \sum_{j=1}^{k_n} Var(X_{nj}) \to \infty$ [Feller's condition] Ensures Lindeberg's condition is sufficient and necessary (else only sufficient). $\lim_{n\to\infty} \max_{j\leq k_n} \frac{Var(X_{nj})}{\sigma^2} = 0$ [NEF] $f_{\eta}(X) = \exp\left\{\eta^T T(X) - \mathcal{C}(\eta)\right\} h(x)$, where $\eta = \eta(\theta)$ and $\mathcal{C}(\eta) = \log\left\{\int_{\Omega} \exp\left\{\eta^T T(X)\right\} h(X) dX\right\}$. NEF is full rank if Ξ contains open set in \mathcal{R}^p , $\Xi = \{\eta(\theta) : \theta \in \Theta\} \subset \mathcal{R}^p$. Suppose $X_i \sim f_i$ independently with f_i Exp Fam, then joint distribution X is also Exp Fam. Showing non Exp Fam For an exp fam P_{θ} , there is nonzero measure λ s.t. $\frac{dP_{\theta}}{d\lambda}(\omega) > 0$ λ -a.e. and for all θ . Consider $f = \frac{dP_{\theta}}{d\lambda}I_{(t,\infty)}(x)$, $\int f d\lambda = 0, f \ge 0 \Rightarrow f = 0$. Since $\frac{dP_{\theta}}{d\lambda} > 0$ by assumption, then $I_{(t,\infty)}(x) = 0 \Rightarrow v([t,\infty)) = 0$. Since t is arbitary, consider $v(\mathcal{R}) = 0$ (contradiction) [NEF MGF] Suppose η_0 is interior point on Ξ , then $\psi_{\eta_0}(t) = \exp \{ \mathcal{C}(\eta_0 + t) - \mathcal{C}(\eta_0) \}$ and is finite in neighborhood of t = 0. [NEF Moments] Let $A(\theta) = \mathcal{C}(\eta_0(\theta))$, $\frac{dA(\theta)}{d\theta} = \frac{d\mathcal{C}(\eta_0(\theta))}{d\eta_0(\theta)} \cdot \frac{d\eta_0(\theta)}{d\theta}$, $T(x) = \frac{\partial \mathcal{C}(\eta)}{\partial \eta}$ (a) $E_{\eta_0}T = \frac{d\psi_{\eta_0}}{dt}|_{t=0} = \frac{d\mathcal{C}}{d\eta_0} = \frac{A'(\theta)}{\eta'_0(\theta)}$, (b) $E_{\eta_0}T^2 = \mathcal{C}''(\eta_0) + \mathcal{C}'(\eta_0)^2$, (c) $Var(T) = \mathcal{C}''(\eta_0) = \frac{A''(\theta)}{[\eta_0(\theta)]^2} - \frac{\eta_0(\theta)''A'(\theta)}{[\eta_0(\theta)']^3} = \frac{\partial^2 \mathcal{C}(\eta)}{\partial \eta \partial \eta^T}$ [NEF Differential] $G(\eta) := E_{\eta}(g) = \int g(\omega) \exp\left\{\eta^T T(\omega) - \mathcal{C}(\eta)\right\} h(\omega) d\nu(\omega)$ for η in interior of Ξ_g (1) G is continuous and has continuous derivatives of all orders. ② Derivatives can be computed by differentiation under the integral sign. $\frac{dG(\eta)}{d\eta} = E_{\eta} \left[g(\omega) \left(T(\omega) - \frac{\partial}{\partial \eta} \xi(\eta) \right) \right]$

NEF Min Suff] ① If there exists $\Theta_0 = \{\hat{\theta}_0, \theta_1, \cdots, \theta_p\} \subset \Theta$ s.t. vectors $\eta_i = \eta(\theta_i) - \eta(\theta_0), i \in [1, p]$ are linearly independent in \mathbb{R}^p , then T is also minimal sufficient. Check $det([\eta_1, \cdots, \eta_p])$ is non-zero ② $\Xi = \{\eta(\theta) : \theta \in \Theta\}$ contains (p+1) points that do not lie on the same hyperplane ③ Ξ is full rank.

NEF complete and sufficient] If \mathcal{P} is NEF of full rank then T(X) is complete and sufficient for $\eta \in \Xi$ NEF MLE] $\hat{\theta} = \eta^{-1}(\hat{\eta})$ or solution of $\frac{\partial \eta(\theta)}{\partial \theta}T(x) = \frac{\partial \xi(\theta)}{\partial \theta}$ NEF Fisher Info] If $\underline{I}(\eta)$ is fisher info natural parameter η , then $Var(T) = \underline{I}(\eta)$. Let $\psi = E[T(X)]$. Suppose $\overline{I}(\psi)$ is fisher info matrix for parameter ψ , then $Var(T) = [\overline{I}(\psi)]^{-1}$ NEF RLEs] RLE regularity condition (1, 2, 3, 4) holds due to proposition 3.2 and theorem 2.1, and result for (3). Only need to check

where Ξ_g is set η such that $\int |g(\omega)| \exp\{\eta^T T(\omega) - \mathcal{C}(\eta)\} h(\omega) d\nu(\omega) < \infty$

condition on Fisher Info, then when n is large, there exists $\hat{\eta}_n$ s.t. $g(\hat{\eta}_n) = \hat{\mu}_n$ and $\hat{\eta}_n \to_{\text{a.s.}} \eta \sqrt{n}(\hat{\eta}_n - \eta) \to_D N \left(0, \left[\frac{\partial^2}{\partial \eta \partial \eta^T} \mathcal{C}(\eta)\right]^{-1}\right)$ Where $g(\eta) = \frac{\partial \mathcal{C}(\eta)}{\partial \eta}$ and $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n T(X_i)$ [UMP NEF] (a) UMP T(Y) = I(Y > c) (i) $\eta(\theta)$ increasing and $H_1 : \theta \ge \theta_0$ (ii) $\eta(\theta)$ decreasing and $H_1 : \theta \le \theta_0$ (b) Reverse inequalities T(Y) = I(Y < c) (i) $\eta(\theta)$ increasing and $H_1 : \theta \le \theta_0$ (ii) $\eta(\theta)$ decreasing and $H_1 : \theta \ge \theta_0$ [UMP Normal results] Given $X_i \sim N(\mu, \sigma^2)$ and $H_0 : \sigma^2 = \sigma_0^2$ (a) $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ independent to \bar{X} (b) $V = \frac{1}{\sigma_0^2} \sum_{i=1}^n (X_i - \bar{X})^2$

 $\bar{X})^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2 \ \ \textcircled{o} \ \ t = \frac{\sqrt{n}(\bar{X}-\mu)/\sigma}{\sqrt{V/(n-1)}} = \frac{Z}{\sqrt{V/(n-1)}} \sim t_{(n-1)} \ \ (\text{only if } X_i \sim N)$ [UMPU NEF $\eta(\theta) = \theta$] Require: ① suff stat Y for θ ② suff and complete U for φ such that φ is full-rank
[UMPU NEF $H_0: \theta \leq \theta_1$ or $\theta \geq \theta_2$ $H_1: \theta_1 < \theta < \theta_2$] $T(Y, U) = I(c_1(U) < Y < c_2(U))$ s.t. $E_{\theta_1}[T(Y, U)|U = u] = E_{\theta_2}[T(Y, U)|U = u] = E_{\theta_2}[T($

[UMPU NEF $H_0: \theta_1 \leq \theta \leq \theta_2$ $H_1: \theta < \theta_1$ or $\theta > \theta_2$] $T(Y, U) = I(Y < c_1(U) \text{ or } Y > c_2(U)) \text{ s.t. } E_{\theta_1}[T(Y, U)|U = u] = E_{\theta_2}[T(Y, U)|U = u] = \alpha$ [UMPU NEF $H_0: \theta = \theta_0$ $H_1: \theta \neq \theta_0$] $T(Y, U) = I(Y < c_1(U) \text{ or } Y > c_2(U)) \text{ s.t. } E_{\theta_0}[T_*(Y, U)|U = u] = \alpha \text{ and } E_{\theta_0}[T_*(Y, U)Y|U = u] = \alpha$ [UMPU NEF $H_0: \theta \leq \theta_0$ $H_1: \theta > \theta_0$] $T(Y, U) = I(Y > c(U)) \text{ s.t. } E_{\theta_0}[T(Y, U)|U = u] = \alpha$

[UMPU NEF $H_0: \theta \leq \theta_0$ $H_1: \theta > \theta_0$] T(Y, U) = I(Y > c(U)) s.t. $E_{\theta_0}[T(Y, U)|U = u] = \alpha$ [UMPU Normal] Require UMPU NEF ①, ② and ③ V(Y, U) independent of U under H_0 [UMPU Normal $H_0: \theta \leq \theta_1$ or $\theta \geq \theta_2$ $H_1: \theta_1 < \theta < \theta_2$] ④ V to be increasing in $Y T(V) = I(c_1 < V < c_2)$ s.t. $E_{\theta_1}[T(V)] = E_{\theta_2}[T(V)] = \alpha$ [UMPU Normal $H_0: \theta_1 \leq \theta \leq \theta_2$ $H_1: \theta < \theta_1$ or $\theta > \theta_2$] ④ V to be increasing in $Y \Rightarrow T(V) = I(V < c_1)$ or $V > C_2$ s.t. $E_{\theta_1}[T(V)] = C_{\theta_2}[T(V)] = C_{\theta_2}[T(V)] = C_{\theta_1}[T(V)]$

 $E_{\theta_2}[T(V)] = \alpha$ $[UMPU \text{ Normal } H_0: \theta = \theta_0 \text{ } H_1: \theta \neq \theta_0] \text{ (4)} V(Y, U) = a(u)Y + bU \Rightarrow T(V) = I(V < c_1 \text{ or } V > c_2) \text{ s.t. } E_{\theta_0}[T(V)] = \alpha \text{ and } E_{\theta_0}[T(V)V] = \alpha \text{ and } E_{\theta_0}[T(V)] = \alpha \text{ and } E_{\theta_0}[$

 $\alpha E_{\theta_0}(V)$ [UMPU Normal $H_0: \theta \leq \theta_0$ $H_1: \theta > \theta_0$] (4) V to be increasing in $Y \Rightarrow T(V) = I(V > c)$ s.t. $E_{\theta_0}[T(V)] = \alpha$ [MLR for one-param exp fam] $\eta(\theta)$ nondecreasing in $\theta \Rightarrow \eta'(\theta) > 0$.
Statistics
[Sufficiency] T(X) is sufficient for $P \in \mathcal{P} \Leftrightarrow P_X(x|Y=y)$ is known and does not depend on P. T sufficient for \mathcal{P}_0 but not necessarily \mathcal{P}_1 ,

 $\mathcal{P}_0 \subset \mathcal{P} \subset \mathcal{P}_1$.

[Factorization theorem] T(X) is sufficient for $P \in \mathcal{P} \Leftrightarrow$ there are non-negative Borel functions h with ① h(x) does not depend on P ② $g_P(t)$ which depends on P s.t. $\frac{dP}{d\nu}(x) = g_P(T(x))h(x)$

[Minimal sufficiency] T is minimal sufficient $\Leftrightarrow T = \psi(S)$ for any other sufficient statistics S. Min suff is unique and usually exist. [Min Suff-Method 1] (Theorem A) Suppose $\mathcal{P}_0 \subset \mathcal{P}$ and \mathcal{P}_0 -a.s. implies \mathcal{P} -a.s. If T is sufficient for $P \in \mathcal{P}$ and minimal sufficient

for $P \in \mathcal{P}_0$, then T is minimal sufficient for $P \in \mathcal{P}$ (Theorem B) Suppose \mathcal{P} contains PDFs f_0, f_1, \cdots w.r.t a σ -finite measure. (a) Define $f_{\infty}(x) = \sum_{i=0}^{\infty} c_i f_i(x)$ and $T_i(x) = f_i(x)/f_{\infty}(x)$, then $T(X) = (T_0(X), T_1(X), \cdots)$ is minimal sufficient for \mathcal{P} . Where $c_i > 0, \sum_{i=0}^{\infty} c_i = 1, f_{\infty}(x) > 0.$ (b) If $\{x : f_i(x) > 0\} \subset \{x : f_0(x) > 0\}$ for all i, then $T(X) = (f_1(x)/f_0(x), f_2(x)/f_0(x), \cdots$ is minimal sufficient for \mathcal{P} Min Suff-Method 2 (Theorem C) If (a) T(X) is sufficient, and (b) $\exists \phi$ s.t. for $\forall x, y$. $f_P(x) = f_P(y)\phi(x,y) \ \forall \ P \in \mathcal{P} \Rightarrow T(x) = T(y)\phi(x,y)$ Then T(X) is minimal sufficient for \mathcal{P} Ancillary statistics A statistics V(X) is ancillary for \mathcal{P} if its distribution does not depend on population $P \in \mathcal{P}$ (First-order ancillary)

if $E_P[V(X)]$ does not depend on $P \in \mathcal{P}$

Completeness T(X) is complete for $P \in \mathcal{P} \Leftrightarrow$ for any Borel function $g, E_P g(T) = 0$ implies g(T) = 0, boundedly complete $\Leftrightarrow g$ is bounded. Completeness + Sufficiency \Rightarrow Minimal Sufficiency

[Basu's theorem] If V is ancillary and T is boundedly complete and sufficient, then V and T are independent w.r.t any $P \in \mathcal{P}$

[Completeness for Varying Support] $\int_0^\theta g(x)x^{n-1}dx = 0 \implies g(\theta)\theta^{n-1} = 0, \implies g(\theta) = g(X_{(n)}) = 0$ and thus $X_{(n)}$ is complete Fisher information $I(\theta) = E\left(\frac{\partial}{\partial \theta}\log f_{\theta}(X)\right)^2 = \int \left(\frac{\partial}{\partial \theta}\log f_{\theta}(X)\right)^2 f_{\theta}(X)d\nu(x) = E\left\{\frac{\partial}{\partial \theta}\log f_{\theta}(X)\left[\frac{\partial}{\partial \theta}\log f_{\theta}(X)\right]^T\right\}$

Parameterization If $\theta = \psi(\eta)$ and ψ' exists, $\tilde{I}(\eta) = \psi'(\eta)^2 I(\psi(\eta))$

Twice differentiable Suppose f_{θ} is twice differentiable in θ and $\int \frac{\partial^2}{\partial \theta^2} f_{\theta}(x) I_{f_{\theta}(x) > 0} d\nu = 0$, then $I(\theta) = -E \left| \frac{\partial^2}{\partial \theta \partial \theta^T} \log f_{\theta}(X) \right|$

[Independent samples] If $\int \frac{\partial}{\partial \theta} f_{\theta}(x) d\nu = 0$ holds, then $I_{(X,Y)}(\theta) = I_X(\theta) + I_Y(\theta)$, and $I_{(X_1,\dots,X_n)}(\theta) = nI_{X_1}(\theta)$ Compare decision rules as good as if $R_{T_1}(P) \leq P_{T_2}(P)$. $\forall P \in \mathcal{P}$ better if $R_{T_1}(P) < R_{T_2}(P)$ for some $P \in \mathcal{P}$ (and T_2 is

dominated by T_1). © equivalent if $R_{T_2}(P) = R_{T_2}(P)$ for all $P \in \mathcal{P}$ Optimal T_* is \mathcal{J} -optimal if T_* is as good as any other rule in \mathcal{J} , Admissibility $T \in \mathcal{J}$ is \mathcal{J} -admissible if no $S \in \mathcal{J}$ is better than T in terms of the risk.

Minimaxity $T_* \in \mathcal{J}$ is \mathcal{J} -minimax if $\sup_{P \subset \mathcal{P}} R_{T_*}(P) \leq \sup_{P \subset \mathcal{P}} R_T(P)$ for any $T \in \mathcal{J}$ Bayes Risk A form of averaging $R_T(P)$ over $P \in \mathcal{P}$. Bayes risk $r_T(\Pi) = \int_{\mathcal{P}} R_T(P) d\Pi(P)$, $R_T(\Pi)$ is Bayes risk of T wrt a known

probability measure Π .

Bayes rule T_* is \mathcal{J} -Bayes rule wrt Π if $r_{T_*}(\Pi) \leq r_T(\Pi)$ for any $T \in \mathcal{J}$.

Finding Bayes rule Let $\tilde{\theta} \sim \pi$, $X | \tilde{\theta} \sim P_{\tilde{\theta}}$, then $r_{\pi}(T) = E\left[L(\tilde{\theta}, T(X))\right] = E\left[E\left[L(\tilde{\theta}, T(X))\right] | X\right]$ where E is taken jointly over $(\tilde{\theta}, X)$. Then find $T_*(x)$ that minimises the conditional risk.

Rao-Blackwell a Suppose L(P,a) is convex and T is sufficient and S_0 is decision rule satisfying $E_P|||S_0|| < \infty$ for all $P \in \mathcal{P}$. Let $S_1 = E[S_0(X)|T]$, then $R_{S_1}(P) \leq R_{S_0}(P)$. (b) If L(P,a) is strictly convex in a, and S_0 is not a function of T, then S_0 is inadmissible

and dominated by S_1 . MOM

[MoM] $\mu_j = E_{\theta} X^j = h_j(\theta)$, $\implies \hat{\theta} = h_j^{-1}(\hat{\mu}_j)$. Provided h_j^{-1} exists and $\hat{\mu}_j = \frac{1}{n} \sum_{i=1}^n X_i^j$. [MOM asymptotic] θ_n is unique if $h^{-1}(X)$ exists. Strongly consistent if h^{-1} is continuous via SLLN and continuous mapping. If h^{-1} is differentiable and $E|X_1|^{2k} < \infty$ then use CLT and δ -method. V_{μ} is $k \times k$ with $(i,j) = \mu_{i+j} - \mu_i \mu_j \sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow{D} N(0, [\nabla g]^T V_{\mu} \nabla g)$ MOM is \sqrt{n} -consistent, and if k = 1 $amse_{\hat{\theta}_n}(\theta) = g'(\mu_1)^2 \sigma^2/n$, $\sigma^2 = \mu_2 - \mu_1^2$

 \mathbf{MLE} [MLE] $\hat{\theta} = \arg \max_{\theta} L(\theta)$. Consider (a) boundary opint (b) $\partial L(\theta)/\partial \theta = 0$ and $\partial^2 L(\theta)/\partial \theta^2 < 0$ (Concave), note MLE may not exist [MLE Consistency] Suppose ① Θ is compact ② $f(x|\theta)$ is continuous in θ for all x ③ There exists a function M(x) s.t. $E_{\theta_0}[M(X)] < \infty$

[RLE] [Roots of the Likelihood Equation] θ that solves $\frac{\partial}{\partial \theta} \log L_n(\theta) = 0$ RLE regularity conditions Suppose ① Θ is open subset of \mathcal{R}^{k} ② $f(x|\theta)$ is twice continuously differentiable in θ for all x, and

and $|\log f(x|\theta) - \log f(x|\theta_0)| \le M(x)$ for all x, θ (4) identifiability holds $f(x|\theta) = f(x|\theta_0) \nu$ -a.e. $\Rightarrow \theta = \theta_0$. Then MLE estimate $\hat{\theta}_n \xrightarrow{\text{a.s.}} \theta_0$

 $\frac{\partial}{\partial \theta} \int f(x|\theta) d\nu = \int \frac{\partial}{\partial \theta} f(x|\theta) d\nu, \quad \frac{\partial}{\partial \theta} \int \frac{\partial}{\partial \theta^T} f(x|\theta) d\nu = \int \frac{\partial^2}{\partial \theta \partial \theta^T} f(x|\theta) d\nu. \quad \text{(3)} \quad \Psi(x,\theta) = \frac{\partial^2}{\partial \theta \partial \theta^T} \log f(x|\theta), \text{ there exists a constant } c \text{ and non-negative function } H \text{ s.t. } EH(X) < \infty \text{ and } \sup_{|\theta-\theta_*||< c} ||\Psi(x,\theta)|| \le H(x). \quad \text{(4)} \text{ Identifiable}$ [RLE consistency] Under RLE regularity conditions, there exists a sequence of $\hat{\theta}_n$ s.t. $\frac{\partial}{\partial \theta} \log L_n(\hat{\theta}_n) = 0$ and $\hat{\theta}_n \to_{a.s.} \theta_*$.

[RLE asymptotic normality] Assume RLE regularity conditions, and $I(\theta) = \int \frac{\partial}{\partial \theta} \log f(x|\theta) \left[\frac{\partial}{\partial \theta} \log f(x|\theta) \right]^T d\nu(x)$ is positive definite and

 $\theta = \theta_*$. Then any consistent sequence $\{\tilde{\theta_n}\}$ of RLE it holds $\sqrt{n}(\tilde{\theta_n} - \theta_*) \xrightarrow{D} N\left(0, \frac{1}{I(\theta_*)}\right)$ One-step MLE Often asym efficient, useful to adjust an non asym efficient estimators provided $\hat{\theta}_n^{(0)}$ is \sqrt{n} -consistent. $\hat{\theta}_n^{(1)} = \hat{\theta}_n^{(0)}$ $\left[\nabla s_n(\hat{\theta}_n^{(0)})\right]^{-1} s_n(\hat{\theta}_n^{(0)})$

Unbiased Estimators **[UMVUE]** T(X) is UMVUE for $\theta \Leftrightarrow Var(T(X) \leq Var(U(X))$ for any $P \in \mathcal{P}$ and any other unbiased estimator U(X) of θ **Lehmann-Scheffé** If T(X) is sufficient and complete for θ . If θ is estimable, then there is a unique unbiased estimator of θ that is of

the form h(T). [UMVUE method1] Using Lehmann-Scheffé, suppose T is sufficient and complete manipulate $E(h(T)) = \theta$ to get θ .

[UMVUE method2] Using Rao-Blackwellization. Find (1) unbiased estimator of $\theta = U(X)$ (2) sufficient and complete statistics T(X) (3) then E(U|T) is the UMVUE of θ by Lehmann-Scheffé. [UMVUE method3] Useful when no complete and sufficient statistics. Can use to find UMVUE, check if estimator is UMVUE, show

nonexistence of UMVUE. T(X) is UMVUE $\Leftrightarrow E[T(X)U(X)] = 0$ (a) T is unbiased estimator of η with finite variance, \mathcal{U} is set of all unbiased estimators of 0 with finite variances. (b) T = h(S), where S

is sufficient and h is Borel function, \mathcal{U}_S is subset of \mathcal{U} consisting of Borel functions of S. [Using method3] ① Find U(x) via E[U(x)] = 0 ② Construct T = h(S) s.t. T is unbiased ③ Find T via E[TU] = 0

Corollary If T_j is UMVUE of η_j with finite variances, then $T = \sum_{j=1}^k c_j T_j$ is UMVUE of $\eta = \sum_{j=1}^k c_j \eta_j$. If T_1, T_2 are UMVUE of η with finite variances, then $T_1 = T_2$ a.s. $P, P \in \mathcal{P}$ [Cramér-Rao Lower Bound] Suppose ① Θ is an open set and P_{θ} has pdf f_{θ} ② f_{θ} is differentiable and $\frac{\partial}{\partial \theta} \int f_{\theta}(x) d\nu = \int \frac{\partial}{\partial \theta} f_{\theta}(x) d\nu = 0$.

3 $g(\theta)$ is differentiable and T(X) is unbiased estimator of $g(\theta)$ s.t. $g'(\theta) = \frac{\partial}{\partial \theta} \int T(x) f_{\theta}(x) d\nu = \int T(x) \frac{\partial}{\partial \theta} f_{\theta}(x) d\nu$, $\theta \in \Theta$. Then

 $Var(T(X)) \ge \frac{g'(\theta)^2}{I(\theta)} = \left[\frac{\partial}{\partial \theta}g(\theta)\right]^T [I(\theta)]^{-1} \frac{\partial}{\partial \theta}g(\theta)$ [CR LB for biasd estimator] $Var(T) \geq \frac{[g'(\theta) + b'(\theta)]^2}{I(\theta)}$ [CR LB iff] CR achieve equality (a) $\Leftrightarrow T = \left\lceil \frac{g'(\theta)}{I(\theta)} \right\rceil \frac{\partial}{\partial \theta} \log f_{\theta}(X) + g(\theta)$ (b) $\Leftrightarrow f_{\theta}(X) = \exp(\eta(\theta)T(x) - \xi(\theta))h(x)$, s.t. $\xi'(\theta) = g(\theta)\eta'(\theta)$ and $I(\theta) = \eta'(\theta)g'(\theta)$ [UMVUE asymptotic] Typically consistent, exactly unbiased, ratio of mse over Cramér-Rao LB converges to 1 (asym they are the same). Other estimators [Upper semi-continuous (usc)] $\lim_{\rho \to 0} \left\{ \sup_{|\theta' - \theta| < \rho} f(x|\theta') \right\} = f(x|\theta)$ [USC in θ] Suppose (1) Θ is compact with metric $d(\cdot,\cdot)$ (2) $f(x|\theta)$ is use in θ and for all x (3) there exists a function M(x) s.t. $E_{\theta_0}[M(X)] < \infty$ and $\log f(x|\theta) - \log f(x|\theta_0) \le M(x)$ for all x and θ (4) for all $\theta \in \Theta$ and sufficiency small $\rho > 0$, $\sup_{\theta(\theta',\theta) < \rho} f(x|\theta')$ is measurable in x (5) identifiable $f(x|\theta) = f(x|\theta_0)$ ν -a.e. $\Rightarrow \theta = \theta_0$. Then $d(\hat{\theta}_n, \theta_0) \rightarrow_{\text{a.s.}} 0$ Asym Covariance Matrix $V_n(\theta)$ is $k \times k$ positive definite matrix called asym covariance matrix. $V_n(\theta)$ is usually in form of $n^{-\delta}V(\theta)$. higher δ means faster convergence. $[V_n(\theta)]^{-1/2}(\hat{\theta}_n - \theta) \to_D N_k(0, I_k)$ Information Inequalities $A \leq B$ means B - A is positive semi-definite. Suppose two estimators θ_{1n}, θ_{2n} satisfy asym covariance matrix with $V_{1n}(\theta), V_{2n}(\theta)$. $\hat{\theta}_{1n}$ is asym more efficient thant $\hat{\theta}_{2n}$ if (1) $V_{1n}(\theta) \leq V_{2n}(\theta)$ for all $\theta \in \Theta$ and all large n (2) $V_{1n}(\theta) \leq V_{2n}(\theta)$ for at least one $\theta \in \Theta$ But note $\hat{\theta}_n$ is asym unbiased but CR LB might not hold even if regularity condition is satisfied. **M**-estimators General method to find $\hat{\theta}_n$ maximises criterion function $S_{\theta}(x)$, for MLE $s_{\theta}(x) = \log f(x|\theta)$. $E_{\theta_0}s_{\theta}(X) < E_{\theta_0}s_{\theta_0}(X)$ $\theta \neq \theta_0. \ \theta \mapsto S_n(\theta) = \frac{1}{n} \sum_{i=1}^n s_{\theta}(X_i)$ [Consistency of *M*-estimators] $S_n(\theta)$ is random function while $S(\theta)$ is fixed s.t. $\sup_{\theta \in \Theta} |S_n(\theta) - S(\theta)| \to_P 0$ and for every $\rho > 0$

 $\sup_{\theta:d(\theta,\theta_0)>\rho} S(\theta) < S(\theta_0)$. Then any sequence of estimators $\hat{\theta}_n$ with $S_n(\hat{\theta}_n) \geq S_n(\theta_0) - o_P(1)$ converges in probability to θ_0 [Hodges' estimator] $X_i \sim N(\theta, 1)$, $\hat{\theta}_n = \bar{X}_n$ if $\bar{X}_n \geq n^{-1/4}$ and $t\bar{X}_n$ otherwise. $V_n(\theta) = 1/n$ if $\theta \neq 0$ and t^2/n otherwise. if $\theta \neq 0$:

 $\sqrt{n}(\hat{\theta} - \theta) = \sqrt{n}(\bar{X}_n - \theta) - (1 - t)\sqrt{n}\bar{X}_n I_{|\bar{\theta}_n| < n^{-1/4}} \text{ if } \theta = 0: = t\sqrt{n}(\bar{X}_n - \theta) + (1 - t)\sqrt{n}\bar{X}_n I_{|\bar{X}_n| > n^{-1/4}}$ Super-efficiency Point where UMVUE failed Hodeges' estiamtor in information inequality (2). But under the basic regularity condition and if Fisher Information is positive definite at $\theta = \theta_*$, if $\hat{\theta}_n$ satisfies Asym covariance matrix, then there is a $\Theta_0 \subset \Theta$ with Lebesgue measure 0 s.t. information inequality (2) holds for any $\theta \notin \Theta_0$

Asym efficiency Assume Fisher Info $I_n(\theta)$ is well-defined and positive definite for every n, seq of estimators $\{\hat{\theta}_n\}$ satisfies asym cov matrix is asym efficient or asym optimal if and only if $V_n(\theta) = [I_n(\theta)]^{-1}$. Asymptotics Consistency of point estimators (a) consistent $T_n(X) \xrightarrow{P} \theta$ (b) strongly consistent $T_n(X) \xrightarrow{\text{a.s.}} \theta$ (c) a_n -consistent $a_n(T_n(X) - \theta) = O_P(1)$,

 $\{a_n\} > 0$ and diverge to ∞ d L_r -consistent $T_n(X) \xrightarrow{L^P} \theta$ for some fixed r > 0. Remark on consistency A combination of LLN, CLT, Slustky's, continuous mapping, δ -method are used. If T_n is (strongly) consistent

for θ and g is continuous at θ then $g(T_n)$ is (strongly) consistent for $g(\theta)$

[Affine estimator] Consider $T_n = \sum_{i=1}^n c_{ni} X_i$ ① If $c_{ni} = c_i/n$ s.t. $\frac{1}{n} \sum_{i=1}^n c_i \to 1$ and $\sup_i |c_i| < \infty$ then T_n is strongly consistent. ② If population variance is finite, then T_n is consistent in mse $\Leftrightarrow \sum_{i=1}^n c_{ni} \to 1$ and $\sum_{i=1}^n c_{ni}^2 \to 0$ [Asymptotic distribution] $\{a_n\} > 0$ and either (a) $a_n \to \infty$ (b) $a_n \to a > 0$, s.t. $a_n(T_n - \theta) \xrightarrow{D} Y$. When estimator's expectations or second moment are not well defined, we need asymptotic behaviours.

[Asymptotic bias] $\tilde{b}_{T_n} = EY/a_n$, asymptotically unbiased if $\lim_{n\to\infty} \tilde{b}_{T_n}(P) = 0$, $b_{T_n}(P) := ET_n(X) - \theta$ [Asymptotic expectation] If $a_n \xi_n \to^D \xi$, $E|\xi| < \infty$, then asymptotic expectation of ξ_n is $E\xi/a_n$ Asymptotic MSE asymptotic expectation of $(T_n - \theta)^2$ or amse $_{T_n}(P) = EY^2/a_n^2$ (Remark) $EY^2 \leq \liminf_{n \to \infty} E[a_n^2(T_n - v)^2]$ (amse is

no greater than exact mse) [Asymptotic variance] $\sigma_{T_n}^2(P) = Var(Y)/a_n^2$

[Asym Relative Efficiency] $e_{T_{1n},T_{2n}} = amse_{T_{2n}(P)}/amse_{T_{1n}(P)}$. Note efficiency of estimator T refers to $1/[I(\theta)MSE_T(\theta)]$ [δ -method corollary] If $a_n \to \infty$, g is differentiable at θ , $U_n = g(T_n)$. Then (a) amse of U_n is $[g'(\theta)^2 EY^2]/a_n^2$ (b) asym var of U_n is

 $[g'(\theta)^2 Var(Y)]/a_n^2$

[Quantiles asymptotic] $F(\theta) = \gamma \in (0,1)$ and $\hat{\theta}_n := \lfloor \gamma n \rfloor$ -th order statistics, $F'(\theta) > 0$ and exists. $\sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow{D} N\left(0, \frac{\gamma(1-\gamma)}{\lceil F'(\theta) \rceil 2}\right)$ Hypothesis testing Hypothesis tests Let \mathcal{P} be a family of distributions, $\mathcal{P}_0 \subset \mathcal{P}, \mathcal{P}_1 = \mathcal{P} \setminus \mathcal{P}_0$. Hypothesis testing decides between $H_0: P \in \mathcal{P}_0, H_1: P \in \mathcal{P}_1$.

Action space $\mathcal{A} = \{0,1\}$, decision rule is called a test $T: \mathcal{X} \to \{0,1\} \Rightarrow T(X) = I_C(X)$ for some $C \subset \mathcal{X}$. C is called the region/critical

[0-1 loss] Common loss function for hypo test, L(P,j)=0 for $P\in\mathcal{P}_j$ and =1 for $P\in\mathcal{P}_{1-j}, j\in\{0,1\}$ Risk $R_T(P)=P(T(X)=1)=0$

 $P(X \in C)$ if $P \in \mathcal{P}_0$ or $P(T(X) = 0) = P(X \notin C)$ if $P \in \mathcal{P}_1$ [Type I and II errors] Type I: H_0 is rejected when H_0 is true. $\beta_T(\theta_0) = E_{H_0}(T) \le \alpha$ (within controlled with size α) Error rate: $\alpha_T(P) = 0$ $P(T(X) = 1), P \in \mathcal{P}_0$ Type II: H_0 is accepted when H_0 is false. $1 - \beta_T(\theta)$ for $\theta \in \Theta_1$ Error rate: $1 - \alpha_T(P) = P(T(X) = 1), P \in \mathcal{P}_1$

Power function of T $\alpha_T(P)$, Type I and Type II error rates cannot be minimized simultaneously. [Significance level] Under Neyman-Pearson framework, assign pre-specified bound α (significance level of test): $\sup_{P \in \mathcal{P}_0} P(T(X) = 1) \leq 1$

size of test α' is the size of the test $\sup_{P \subset \mathcal{P}_0} P(T(X) = 1) = \alpha'$ NP Test Steps (1) Find joint distribution f(X) and determine MLR and/or NEF (2) Formulate hypothesis H_0, H_1 - simple/composite about θ and not $f(\theta)$ (3) Form N-P test structure T_* (4) Find test distribution and rejection region.

[Generalised NP] ϕ is the T (Test framework) $\max_{\phi} \int \phi f_{m+1} d\nu$ s.t. $\int \phi f_i d\nu \leq t_i \ \forall \ i \in (1, m)$, (Required condition) If $\exists \ c_1, \dots, c_m \ \text{s.t.}$ $\phi_*(x) = I[f_{m+1}(x) > \sum_{i=1}^m c_i f_i(x)], \text{ then } \phi_* \text{ maximises objective function with equality constraint. If } c_i \geq 0 \text{ then } \phi_* \text{ maximises with } c_i \leq 0$ inequality constraint.

[UMP] ① $H_0: P = p_0 \ H_1: P = p_1 \Rightarrow T(X) = I(p_1(X) > cp_0(X)), \ \beta_T(p_0) = \alpha$ ② $H_0: \theta \leq \theta_0 \ H_1: \theta > \theta_0 \Rightarrow T(Y) = I(Y > c),$ $\beta_T(\theta_0) = \alpha$ (3) $H_0: \theta \leq \theta_1$ or $\theta \geq \theta_2$ $H_1: \theta_1 < \theta < \theta_2, \Rightarrow T(Y) = I(c_1 < Y < c_2), \beta_T(\theta_1) = \beta_T(\theta_2) = \alpha$ UMP Satisfy (1) pre-set size $\alpha = E_{H_0}(T)$ (2) max power $\beta_T(P) = E_{H_1}(T)$

No UMP $H_0: \theta = \theta_1, H_1: \theta \neq \theta_1 \text{ and } H_0: \theta \in (\theta_1, \theta_2) H_1: \theta \notin (\theta_1, \theta_2)$

```
[N-P lemma] NP test has non-trival power \alpha < \beta_{H_1}(T) unless P_0 = P_1, and is unique up to \gamma (randomised test)
Show T_* is UMP in simple hypothesis UMP when E_1[T_*] - E_1[T] \ge 0, key equation: (T_* - T)(f_1 - cf_0) \ge 0. \Rightarrow \int (T_* - T)(f_1 - cf_0) = \int 
\beta_{H_1}(T_*) - \beta_{H_1}(T) \ge 0.
[UMP unique up to randomised test in simple hypothesis] (T_* - T)(f_1 - cf_0) \ge 0, \int (T_* - T)(f_1 - cf_0) = 0 \Rightarrow (T_* - T)(f_1 - cf_0) = 0 and
[Composite hypothesis] Simple \Rightarrow Composite when \beta_T(\theta_0) \ge \beta_T(\theta \in H_0) and/or \beta_T(\theta_0) \le \beta_T(\theta \in H_1) (or does not depend on \theta). For
MLR this is satisfied, others need to check.
[Monotone Likelihood Ratio] \theta_2 > \theta_2, increasing likelihood ratio in Y if g(Y) = \frac{f_{\theta_2}(Y)}{f_{\theta_1}(Y)} > 1 or g'(Y) > 0.
Simultaneous (Bonferroni) adjust each paramter level to \alpha_t = \alpha/k (Bootstrap) Monte Carlo percentile estimate
Asymptotic test
[LR test] \lambda(X) = \frac{\sup_{\theta \in \theta_0} \ell(\theta)}{\sup_{\theta \in \Theta} \ell(\theta)} Rejects H_0 \Leftrightarrow \lambda(X) < c \in [0,1]. 1-param Exp Fam LR test is also UMP.
Assume MLE regularity condition, under H_0, -2 \log \lambda(X) \to \chi_r^2, where r := dim(\theta) \ T(X) = I\left[\lambda(X) < \exp(-\chi_{r,1-\alpha}^2/2)\right] where \chi_{r,1-\alpha}^2
is the (1-\alpha)th quantile of \chi_r^2.
[Wald's test] W_n = R(\hat{\theta})^T \{C(\hat{\theta})^T I_n^{-1}(\hat{\theta}) C(\hat{\theta})\}^{-1} R(\hat{\theta}), where C(\theta) = \partial R(\theta) / \partial \theta, I_n(\theta) is fisher info for X_1, \dots, X_n, \hat{\theta} is unrestricted
MLE/RLE of \theta. [Wald's test - easy case] if H_0: \theta = \theta_0 \Rightarrow R(\theta) = \theta - \theta_0, and W_n = (\hat{\theta} - \theta_0)^T I_n(\hat{\theta})(\hat{\theta} - \theta_0)
[Rao's score test] Q_n = s_n(\tilde{\theta})^T I_n^{-1}(\tilde{\theta}) s_n(\tilde{\theta}). where score function s_n(\theta) = \partial \log \ell(\theta)/\partial \theta, \tilde{\theta} is MLE/RLE of \theta under H_0: R(\theta) = 0.
Asymptotic Tests Same test structure for LR, Wald', Rao's score test. H_0: R(\theta) = 0, \lim_{n\to\infty} W_n, Q_n \sim \chi_r^2, T(X) = I(W_n > \chi_{r,1-\alpha}^2)
or I(Q_n > \chi^2_{r,1-\alpha})
Non-param tests
[Sign test] X_i \sim^{iid} F, u is fixed constant, p = F(u), \triangle_i = I(X_i - u \le 0), P(\triangle_i = 1) = p, p_0 \in (0,1) H_0: p \le p_0 H_1: p > p_0 \Rightarrow T(Y) = I(Y > m), Y = \sum_{i=1}^n \triangle_i \sim Bin(n,p), m, \gamma s.t. \alpha = E_{p_0}[T(Y)] H_0: p = p_0 H_1: p \ne p_0 \Rightarrow T(Y) = I(Y < c_1 \text{ or } Y > c_2),
E_{p_0}[T] = \alpha \text{ and } E_{p_0}[TY] = \alpha n p_0
Permutation test X_{i1}, \dots, X_{in_i} \sim^{iid} F_i, i = 1, 2 H_0: F_1 = F_2 H_1: F_1 \neq F_2, \Rightarrow T(X) with \frac{1}{n!} \sum_{z \in \pi(x)} T(z) = \alpha \pi(x) is set of n! points obtained from x by permuting components of x E.g. T(X) = I(h(X) > h_m), h_m := (m+1)^{th} largest \{h(z: z \in \pi(x))\} e.g.
```

 $\begin{array}{l} h(X) = |\bar{X}_1 - \bar{X}_2| \text{ or } |S_1 - \bar{S}_2| \\ \hline \text{[Rank test]} \ X_i \sim^{iid} \ F, \ Rank(X_i) = \#\{X_j : X_j \leq X_i\}, \ H_0 : F \text{ symm ard } 0, \ H_1 : H_0 \text{ false, } R^o_+ \text{ vector of ordered } R_+. \text{ (Wilcoxon)} \\ T(X) = I[W(R^o_+) < c_1 \text{ or } W(R^o_+ > c_2)], \ W(R^o_+) = J(R^o_{+1}/n) + \dots + J(R^o_{+n_*}/n) \ c_1, c_2 \text{ are } (m+1)^{th} \text{ smallest/largest of } \{W(y) : y \in \mathcal{Y}\}, \end{array}$ $\gamma = \alpha 2^n / 2 - m$ [KS test] $X_i \sim^{iid} F$ $H_0: F = F_0$, $H_1: F \neq F_0$, $\Rightarrow T(X) = I(D_n(F_0) > c)$, $D_n(F) = \sup_{x \in \mathcal{R}} |F_n(x) - F(x)|$ With F_n Emp CDF, and for any $d, n > 0, P(D_n(F) > d) \le 2 \exp(-2nd^2),$ [Cramer-von test] Modified KS with $T(X) = I(C_n(F_0) > c)$, $C_n(F) = \int \{F_n(x) - F(x)\}^2 dF(x) \ nC_n(F_0) \xrightarrow{D} \sum_{j=1}^{\infty} \lambda_j \chi_{1j}^2$, with $\chi_{1j}^2 \sim \chi_1^2$

and $\lambda_j = j^{-2}\pi^{-2}$ [Empirical LR] $X_i \sim^{iid} F$, $H_0: \Lambda(F) = t_0 \ H_1: \Lambda(F) \neq t_0, \Rightarrow T(X) = I(ELR_n(X) < c) \ ELR_n(X) = \frac{\ell(\hat{F}_0)}{\ell(\hat{F})}, \ \ell(G) = \prod_{i=1}^n P_G(\{x_i\}), \ \ell(G) = \prod_{i=1}^n P_G(\{x$ $G \in \mathcal{F}$. (\mathcal{F} := collection of CDFs, P_G := measure induced by CDF G)

Shortest CI require unimodal: $f'(x_0) = 0$ f'(x) < 0, $x < x_0$ and f'(x) > 0, $x > x_0$ Pivotal $(T-\theta)/U$, f unimodal at x_0 Interval $[T-b_*U, T-a_*U]$, shortest when $f(a_*)=f(b_*)>0$ $a_*\leq x_0\leq b_*$ Pivotal T/θ , $x^2 f(x)$ unimodal at x_0 Interval $[b_*^{-1}T, a_*^{-1}T_*]$ shortest when $a_*^2 f(a_*) = b_*^2 f(b_*) > 0$ $a_* \le x_0 \le b_*$

[General CI] Require f > 0, integrable, unimodal at x_0 , (Objective) min b - a s.t. $\int_a^b f(x)dx$ and $a \le b$ (Solution) a_*, b_* satisfy (1) $a_* \le x_0 \le b_*$ ② $f(a_*) = f(b_*) > 0$ ③ $\int_{a_*}^{b_*} f(x) dx = 1 - \alpha$ forms the shortest CI, note it has to exactly the formulation above.

Confidence set $C(X): X \to \mathcal{B}(\Theta)$, Require $\inf_{P \in \mathcal{P}} P(\theta \in C(X)) \ge 1 - \alpha$, that is confidence coeff should be more than level

[CI via pivotal qty] $C(X) = \{\theta : c_1 \leq \mathcal{R}(X, \theta) \leq c_2\}$, not dependent on P common pivotal qty: $(X_i - \mu)/\sigma$

invert accept region $C(X) = \{\theta : x \in A(\theta)\}$, Acceptance region $A(\theta) = \{x : T_{\theta_0}(x) \neq 1\}$. $H_0 : \theta = \theta_0$, any H_1 satisfy

[Asymptotic pivotal] $\mathcal{R}_n(X,\theta) = \hat{V}_n^{-1/2}(\hat{\theta}_n - \theta)$ does not depend on P in limit

[Asymptotic LR CI] $C(X) = \left\{ \theta : \ell(\theta, \hat{\varphi}) \ge exp(-\chi^2_{r,1-\alpha} - \alpha/2)\ell(\hat{\theta}) \right\}$

[Asymptotic CI] Require $\lim_{n\to} P(\theta \in C(X)) \ge 1 - \alpha$,

[Asymptotic Wald CI] $C(X) = \left\{ \theta : (\hat{\theta} - \theta)^T \left[C^T \left(I_n(\hat{\theta}) \right)^{-1} C \right]^{-1} (\hat{\theta} - \theta) \le \chi_{r, 1 - \alpha}^2 \right\}$

[Asymptotic Rao CI] $C(X) = \left\{\theta : \left[s_n(\theta, \hat{\varphi})\right]^T \left[I_n(\theta, \hat{\varphi})\right]^{-1} \left[s_n(\theta, \hat{\varphi})\right] \le \chi_{r, 1-\alpha}^2\right\}$ Bayesian

[Bayes formula] $\frac{dP_{\theta|X}}{d\Pi} = \frac{f_{\theta}(X)}{m(X)}$

Bayes action $\delta(x)$ arg min_a $E[L(\theta, a)|X = x]$, when $L(\theta, a) = (\theta - a)^2$, $\delta(x) = E(\theta|X = x)$, and bayes risk $r_{\delta}(\theta) = Var(\theta|X)$ [Generalised Bayes action] $\arg \min_a \int_{\Theta} L(\theta, a) f_{\theta}(x) d\Pi$, works for improper prior where $\Pi(\Theta) \neq 1$

Interval estimation - Credible sets $P_{\theta|x}(\theta \in C) = \int_C p_x(\theta) d\lambda \ge 1 - \alpha$

[HPD highest posterior dentsity] $C(x) = \{\theta : p_x(\theta) \geq c_\alpha\}$, often shortest length credible set. Is a horizontal line in the posterior density plot. Might not have exact confidence level $1 - \alpha$.

[Hierachical Bayes] With hyper-priors as hyper-parameters on the priors. Empirical Bayes] Estimate hyper-parameter via data using MoM (no MLE as not independent). $X_i \sim N(\mu, \sigma^2), \ \mu | \xi \sim N(\mu_0, \sigma_0^2), \ \sigma^2$ known, $\xi = (\mu_0, \sigma_0^2), \text{ Using MoM } E_{\xi}(X|\xi) = E_{\xi}(E[X|\mu, \xi]) = E_{\xi}(\mu | \xi) = \mu_0 \approx \bar{X}, \ E_{\xi}(X^2|\xi) = E_{\xi}(\mu^2 + \sigma^2 | \xi) = \sigma^2 + \mu_0^2 + \sigma_0^2 \approx \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2 - \sigma^2$

[Normal posterior] Normal posterior $N(\mu_*(x), c^2)$ with prior unknown μ and known σ^2 : $\mu_*(x) = \frac{\sigma^2}{\sigma^2 + n\sigma_0^2} \mu_0 + \frac{n\sigma_0^2}{\sigma^2 + n\sigma_0^2} \bar{x}$, $c^2 = \frac{\sigma_0^2 \sigma^2}{n\sigma_0^2 + \sigma^2}$ $C(x) = [\mu_*(x) - cz_{1-\alpha/2}, \ \mu_*(x) + cz_{1-\alpha/2}].$

[Decision theory] (Admissibility) (1) $\delta(X)$ unique \Rightarrow admissible, (2, 3) $r_{\delta}(\Pi) < \infty$, $\Pi(\theta) > 0$ for all θ and δ is Bayes action with respect to $\Pi \Rightarrow$ admissible. Not true for improper priors, Improper priors require excessive risk ignorable, take limit and observe if risk is

admissible. (Bias) Under squared error loss, $\delta(X)$ is biased unless $r_{\delta}(\Pi) = 0$. Not applicable to improper priors. (Minimax) If T is

```
(unique) Bayes estimator under \Pi and R_T(\theta) = \sup_{\theta'} R_T(\theta') \pi-a.e., then T is (unique) minimax. Limit of Bayes estimators If T has constant risk and \liminf_i r_i \geq R_T, then T is minimax.
```

[Admissibility] $\delta(X)$ is a Bayes rule with prior Π , δ is admissible if (1) if δ is unique (2) If Θ is countable, $\Pi(\theta) > 0 \ \forall \Theta$. Note, not true for generalised Bayes rules unless limit is Bayes rule.

[Simul est] Simultaneous estimate vector-valued \mathcal{V} with e.g. squared loss $L(\theta, a) = ||a - \theta||^2 = \sum_{i=1}^p (a_i - \theta_i)^2$

Bayes Asymptotic Property] (Posterior Consistency) $X \sim P_{\theta_0}$ and $\Pi(U|X_n) \xrightarrow{P_{\theta_0}} 1$ for all open U containing θ_0 . (Wald type consistency) Assume $p_{\theta}(x)$ is continuous, measurable, θ_* is unique maximizer then MLE converge to true parameter θ^* P_* a.s. Furthermore, if θ^* is in the support of the prior, then posterior converges to θ^* in probability. (Posterior Robustness) all priors that lead to consistent posteriors are equivalent.

Bernstein-von Mises] Assume MLE regularity conditions, posterior $T_n = \sqrt{n}(\hat{\theta_n} - \hat{\theta_n}) \sim \mathcal{N}(\hat{\theta}_n, V^*/n)$ asymptotically. (Well-specified) $V^* = I(\theta^*)^{-1} = E_* \left[-\nabla_{\theta}^2 \log p_{\theta^*}(Y) \right]^{-1}$ (same as MLE, with θ^* as true parameter, CI = CR) $\sqrt{n} \left(\hat{\theta}_n - E_{\theta}[\theta | X_1, \dots, X_n] \right) \stackrel{P}{\to} 0$ (If MLE

has asym normality, so is posterior mean) (Mis-specified) $V^* = \mathbb{E}_* \left[-\nabla_{\theta}^2 \log p_{\theta_*}(Y) \right]^{-1}$, θ_* is projection of θ^* onto parameter space, or unique maximizer of $\ell^*(\theta) = E_*[\log p_{\theta}(Y)]$

[MLE asymptotic variance under model misspecification] $\mathbb{E}_* \left[-\nabla_{\theta}^2 \log p_{\theta^*}(Y) \right]^{-1} \operatorname{Var}_* \left(\nabla \log p_{\theta^*}(Y) \right) \mathbb{E}_* \left[-\nabla_{\theta}^2 \log p_{\theta^*}(Y) \right]^{-1}$ (differ from MLE, with θ_* the projection of P_* to parameter space)

Linear Model

[Linear Model] $X = Z\beta + \epsilon$ (or $X_i = Z_i^T\beta + \epsilon_i$) Estimate with $b = \min_b ||X - Zb||^2 = ||X - Z\hat{\beta}||^2$, [Generalised inverse] Moore-Penrose inverse $A^+AA^+ = A^+$, $A = (Z^TZ)$ [Projection matrix] $P_Z = Z(Z^TZ)^-Z^T$, $P_Z^2 = P_Z$, $P_ZZ = Z$, $rank(P_Z) = tr(P_Z) = r$

[LM Solution] (solution = normal equation) $Z^Zb = Z^TX$ (when Z is full rank): $\hat{\beta} = (Z^TZ)^{-1}Z^TX$ (when Z is not full rank): $\hat{\beta} = (Z^TZ)^{-2}Z^TX$

[LM assumptions] (A1 Gaussian noise) $\epsilon \sim N_n(0, \sigma^2 I_n)$ (A2 homoscedastic noise) $E(\epsilon) = 0$, $Var(\epsilon) = \sigma^2 I_n$ (A3 general noise) $E(\epsilon) = 0$, $Var(\epsilon) = \Sigma$

[Estimable $\ell\beta$] Estimate linear combination of coefficient (General) necessary and Sufficient condition: $\ell \in R(Z) = R(Z^T Z)$ (under A3) LSE $\ell^T \hat{\beta}$ is unique and unbiased (under A1) if $\ell \notin R(Z)$, $\ell^T \beta$ not estimable

[LM property under A1] ① LSE $\ell^T \hat{\beta}$ is UMVUE of $\ell^T \beta$, ② UMVUE of $\hat{\sigma}^2 = (n-r)^{-1} \|X - Z\hat{\beta}\|^2$, r is rank of Z ③ $\ell \hat{\beta}$ and $\hat{\sigma}^2$ are independent, $\ell^T \hat{\beta} \sim N(\ell^T \beta, \sigma^2 \ell^T (Z^T Z) - \ell)$, $(n-r)\hat{\sigma}/\sigma^2 \sim \chi^2_{n-r}$

[LM property under A2] LSE $\ell^T \hat{\beta}$ is BLUE (Best Linear Unbiased Estimator, best as in min var)

[LM property under A3] Following are equivalent: (a) $\ell^T \hat{\beta}$ is BLUE for $\ell^T \beta$ (also UMVUE), (b) $E[\ell^T \hat{\eta}^T X) = 0$], any η is s.t. $E[\eta^T X] = 0$ (c) $Z^T var(\epsilon)U = 0$, for U s.t. $Z^T U = 0$, $R(U^T) + R(Z^T) = R^n$ (d) $Var(\epsilon) = Z\Lambda_1 Z^T + U\Lambda_2 U^T$, for some Λ_1, Λ_2, U s.t. $Z^T U = 0$, $R(U^T) + R(Z^T) = R^n$ (e) $Z(Z^T Z)^T Z^T Var(\epsilon)$ is symmetric

[LM consistency] $\lambda_{+}[A]$ is the largest eigenvalue of $A_{n}=(Z^{T}Z)^{-}$. Suppose $\sup_{n}\lambda_{+}[Var\epsilon)]<\infty$ and $\lim_{n\to\infty}\lambda_{+}[A_{n}]=0,\ \ell^{T}\hat{\beta}$ is consistent in MSE.

[LM asymptotic normality] $\ell^T(\hat{\beta} - \beta) / \sqrt{Var(\ell^T\hat{\beta})} \xrightarrow{D} N(0, 1)$. sufficient condition: $\lambda_+[A_n] \to 0$ and $Z_n^T A_n Z_n \to 0$ as $n \to \infty$ and there exist $\{a_n\}$ s.t. $a_n \to \infty$, $a_n/a_{n+1} \to 1$ and $Z^T Z/a_n$ converge to positive definite matrix.

[LM Hypothesis testing] Under A1, $\ell \in R(Z)$, θ_0 fixed constant

[LM hypothesis testing - simple] $\ell \in R(Z)$, (a) $H_0: \ell^T \beta \leq \theta_0$, $H_1: \ell^T \beta > \theta_0$, (b) $H_0: \ell^T \beta = \theta_0$, $H_1: \ell^T \beta \neq \theta_0$, Under $H_0: t(X) = \frac{\ell^T \hat{\beta} - \theta_0}{\sqrt{\ell^T (Z^T Z)^- \ell \sqrt{SSR/(n-r)}}} \sim t_{n-r}$, UMPU reject $t(X) > t_{n-r,\alpha}$ or $|t(X)| > t_{n-r,\alpha/2}$

[LM hypothesis testing - multiple] $L_{s\times p}$, $s \leq r$ and all rows = $\ell_j \in R(Z)$ (a) $H_0: L\beta = 0$, $H_1: L\beta \neq 0$ Under $H_0: W = \frac{(\|X-Z\hat{\beta}_0\|^2 - \|X-Z\hat{\beta}\|^2)/s}{\|X-Z\hat{\beta}\|^2/(n-r)} \sim F_{s,n-r}$ with non-central param $\sigma^{-2}\|Z\beta - \Pi_0Z\beta\|^2$, reject $W > F_{s,n-r,1-\alpha}$

[LM confidence set] Pivotal qty: $\mathcal{R}(X,\beta) = \frac{(\hat{\beta}-\beta)^T Z^T Z(\hat{\beta}-\beta)/p}{\|X-Z\hat{\beta}\|^2/(n-p)} \sim F_{p,n-p}$, where $\hat{\beta}$ is LSE of β , $C(X) = \{\beta : \mathcal{R}(X,\beta) \leq F_{p,n-p,1-\alpha}\}$