HUMBER ENGINEERING

MENG 3510 – Control Systems LECTURE 3

LECTURE 3 Block Diagrams & Signal Flow Graphs

- Block Diagram Representation
 - Series, Parallel & Feedback Connections
- Block Diagram Reduction Techniques
 - Moving a Comparator
 - Moving a Branch Point
- Signal Flow Graph
 - Definitions of Signal Flow Graph Terms
 - Mason's Gain Formula
 - SFG & State-space Equations
- Case Study: Antenna Control System

Chapter 4

- **Block diagram representation**, is usually used by control engineers to represent control systems because of its simplicity and versatility to show the interconnection of the system components.
- It provides a graphical approach to describe how components of a control system interact.
- Basic elements of block diagram representation
 - Rectangles \rightarrow Subsystems transfer functions: G(s), H(s),
 - Arrows \rightarrow Signal flow directions : u(t), e(t), y(t) ..., U(s), E(s), Y(s),
 - Circles → Comparators to add or subtract signals
- Each subsystem is represented by a function block, labeled with the corresponding transfer function

- Control systems may consist of several interconnected subsystems.
 - Series Connection
 - Parallel Connection
 - Feedback Connection

- How to simplify a complicated block diagram and determine the overall transfer function?
- There are two general approaches:
 - ✓ Applying block diagram reduction techniques
 - ✓ Mason's Formula based on Signal Flow Graphs

Series Connection:

$$\begin{array}{c|c}
U(s) & Y(s) \\
\hline
G_1(s) G_2(s) & \end{array}$$

$$\frac{Y(s)}{U(s)} = G_1(s)G_2(s)$$

Parallel Connection:

$$\frac{Y(s)}{U(s)} = G_1(s) + G_2(s)$$

$$G_1(s) + G_2(s)$$

Feedback Connection (Negative Feedback):

$$\frac{Y(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)}$$

$$\begin{array}{c|c}
R(s) & G(s) & Y(s) \\
\hline
1 + G(s)H(s) & \end{array}$$

Feedback Connection (Positive Feedback):

$$\frac{Y(s)}{R(s)} = \frac{G(s)}{1 - G(s)H(s)}$$

Example 1

Find the closed-loop transfer function from Y(s) to R(s).

First determine the transfer function of internal feedback loop from Z(s) to E(s):

$$\frac{Z(s)}{E(s)} = \frac{G(s)}{1 + G(s)H(s)} = \frac{\frac{4}{s}}{1 + \left(\frac{4}{s}\right)(2)} = \frac{\frac{4}{s}}{1 + \frac{8}{s}} = \frac{\frac{4}{s}}{\frac{s+8}{s}} = \frac{4}{s+8}$$

Thus, the overall transfer function from Y(s) to R(s) is:

$$\frac{Y(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)} = \frac{\frac{4}{s(s+8)}}{1 + \frac{4}{s(s+8)}(1)} = \frac{\frac{4}{s(s+8)}}{\frac{s(s+8)+4}{s(s+8)}} = \frac{4}{s^2 + 8s + 4}$$

• In some cases, it is required to apply more block diagram transformation techniques to simplify the overall block diagram.

- There are some block diagram transformation techniques to simplify the topology of a block diagram.
 - ✓ Moving a Comparator
 - ✓ Moving a Branch Point

■ Moving a Comparator Behind a Block

$$Y(s) = G(s)[U_1(s) + U_2(s)] = G(s)U_1(s) + G(s)U_2(s)$$

■ Moving a Comparator Ahead of a Block

$$Y(s) = G(s)U_1(s) + U_2(s) = G(s)[U_1(s) + \frac{1}{G(s)}U_2(s)]$$

☐ Moving a Branch Behind a Block

■ Moving a Branch Ahead of a Block

Example 2

Find the closed-loop transfer function utilizing the block diagram transformation techniques.

$$G_4 = \frac{G_2}{1 + G_2 G_3 H_1} \qquad G_5 = \frac{G_1 G_4}{1 + G_1 G_4 H_2}$$

$$\frac{Y(s)}{R(s)} = G_5 G_3 = \frac{G_1 G_4 G_3}{1 + G_1 G_4 H_2} = \frac{G_1 \left(\frac{G_2}{1 + G_2 G_3 H_1}\right) G_3}{1 + G_1 \left(\frac{G_2}{1 + G_2 G_3 H_1}\right) H_2}$$

$$\frac{Y(s)}{R(s)} = \frac{G_1 G_2 G_3}{1 + G_2 G_3 H_1 + G_1 G_2 H_2}$$

Example 3

Find the closed-loop transfer function utilizing the block diagram transformation techniques.

$$G_4 = \frac{G_3}{1 - G_3 H_1 H_3} \qquad G_5 = \frac{G_2 G_4}{1 + G_2 G_4 H_2 H_3}$$

$$\frac{Y(s)}{R(s)} = G_1 G_5 = \frac{G_1 G_2 G_4}{1 + G_2 G_4 H_2 H_3} = \frac{G_1 G_2 \left(\frac{G_3}{1 - G_3 H_1 H_3}\right)}{1 + G_2 \left(\frac{G_3}{1 - G_3 H_1 H_3}\right) H_2 H_3}$$

$$\frac{Y(s)}{R(s)} = \frac{G_1 G_2 G_3}{1 - G_3 H_1 H_3 + G_2 G_3 H_2 H_3}$$

Quick Review

1) Find the overall closed-loop transfer function from Y(s) to R(s).

$$G_1(s) = 10,$$
 $G_2(s) = \frac{1}{s+2},$ $G_3(s) = \frac{s+2}{s+10}$

a)
$$\frac{Y(s)}{R(s)} = \frac{10(s+2)}{s^2+12s+20}$$

b)
$$\frac{Y(s)}{R(s)} = \frac{10(s+2)}{s^2 + 23s + 122}$$

c)
$$\frac{Y(s)}{R(s)} = \frac{5(s+10)}{s^2+5s+22}$$

d)
$$\frac{Y(s)}{R(s)} = \frac{5(s+10)}{s^2+4s+100}$$

Block diagram reduction technique can be quite time-consuming for very complicated systems

- Mason's Gain Formula is a systematic way to compute transfer function from any input to any output in the diagram
- The method is algorithmic and based on Signal-Flow Graphs (SFG)

- Signal-Flow Graph (SFG) is an alternative graphical approach to show the interconnection of a control system.
- Basic elements of SFG:
 - Nodes \rightarrow Signals: U(s), Y(s), E(s)
 - Branches → Connects nodes. It has a gain and shows direction of signal flow
 - Transmittance → Gain between two nodes (Transfer functions): G(s), H(s), ...

SGF Algebra: The value of the variable in a node is equal to the sum of all signals entering the node.

☐ Series Connection

□ Parallel Connection

☐ Feedback Connection

Draw Signal Flow Graph (SGF) of the following block diagram.

Step 1: Label all systems inputs-outputs

Step 2: Place all the nodes of SFG

Step 3: Draw the branches of SFG

Step 4: Simplify the SFG

■ Definitions of SFG Terms

- The following terms are useful for the purpose of identification and execution of the SFG algebra.
 - Input Node (Source) → A node that has only outgoing branches.
 - Output Node (Sink) → A node that has only incoming branches.

- Input nodes: r, d
- Output node: y

■ Definitions of SFG Terms

- The following terms are useful for the purpose of identification and execution of the SFG algebra.
 - Forward Path → A path from an input-node (source) and to an output-node (sink) that does not cross any nodes more than once. The path must be in the same direction of branches.
 - Forward Path Gain → Product of the branch gains of a forward path.

- Forward paths gain from r to y: $G_1G_2G_3G_4G_5$ $G_1G_6G_5$
- Forward path gain from d to y: G_5

■ Definitions of SFG Terms

- The following terms are useful for the purpose of identification and execution of the SFG algebra.
 - Loop → A path that originates and terminates on the same node, and along which no other node is encountered more than once. The path must be in the same direction of branches.
 - Loop Gain → Product of the branch gains (transmittances) of a loop.
 - Non-touching Loops → Loops with no common node.

- Loop gains: $-G_2H_1$, $-G_5H_2$, $-G_2G_3H_3$
- Non-touching loops: $(-G_2H_1)$ and $-G_5H_2$, $(-G_2G_3H_3)$ and $-G_5H_2$

Quick Review

- 1) Given the SFG determine the following terms:
 - Input Node:
 - **Output Node:**
 - **Number of Forward Paths:**
 - **Forward Path Gains:**
 - Number of Loops:
 - **Loop Gains:**
 - **Non-touching Loops:**

• Mason's Gain Formula is a systematic method based on SFG to determine the overall transfer function or gain between input node and output node without applying the block diagram reduction techniques.

$$M = \frac{Y_{out}}{Y_{in}} = \frac{1}{\Delta} \sum_{k=1}^{N} M_k \Delta_k$$

Δ and Δ_k are determined as below:

 $\Delta = 1 - (\text{sum of all loop gains})$

+ (sum of products of all combinations of two non-touching loops)

- (sum of products of all combinations of three non-touching loops)

+ (sum of products of all combinations of four non-touching loops)

-

M: Transfer function or Gain

*Y*_{in}: Input node variable/signal

Y_{out}: Output node variable/signal

N: Total number of forward paths between Y_{in} and Y_{out}

 M_k : Gain of the kth forward path between Y_{in} and Y_{out}

Δ : Determinant of SFG

 Δ_k : Cofactor of path M_k

 Δ_k = the Δ of the SFG non-touching with the forward path M_k when M_k has been removed

■ Steps to Calculate Mason's Gain Formula

 $M = \frac{Y_{out}}{Y_{in}} = \frac{1}{\Delta} \sum_{k=1}^{N} M_k \Delta_k$

- 1) Determine input node and output node of the SFG $\rightarrow Y_{in}$ and Y_{out}
- 2) Calculate all forward path gains from the input node to output node $\rightarrow M_k$ and N
- 3) Calculate all loop gains of the SFG (if any) $\rightarrow L_i$
- 4) Calculate all non-touching loops of the SFG (if any) $\rightarrow L_{ij}$
- 5) Calculate determinant of the SFG $\rightarrow \Delta$
- 6) Calculate cofactors of path $M_k \rightarrow \Delta_k$

Example 5

Find the system transfer function from *Y* to *R* for the following SFG

$$\frac{Y}{R} = \frac{1}{\Delta} \sum_{k=1}^{N} M_k \Delta_k$$

R: Input node

Y: Output node

N: Total number of forward paths between R and Y

 M_k : Gain of the kth forward path between R and Y

Δ : Determinant of SFG

 Δ_k : Cofactor of path M_k

Example 5

Find the system transfer function from *Y* to *R* for the following SFG

$$\frac{Y}{R} = \frac{1}{\Delta} \sum_{k=1}^{N} M_k \Delta_k$$

Step 1: Determine the input node and output node

R: Input node

Y: Output node

Step 2: Calculate all forward path gains between *R* and *Y*

N: Total number of forward paths between R and Y

 M_k : Gain of the kth forward path between R and Y

Example 5

Find the system transfer function from *Y* to *R* for the following SFG

Step 2: Calculate all forward path gains between *R* and *Y*

There are three forward paths, so N = 3

$$M_1 = G_1 G_2 G_3 G_5$$
 $M_2 = G_1 G_7$
 $M_3 = G_1 G_6 G_5$

$$\frac{Y}{R} = \frac{1}{\Delta} \sum_{k=1}^{3} M_k \Delta_k$$

$$\frac{Y}{R} = \frac{M_1 \Delta_1 + M_2 \Delta_2 + M_3 \Delta_3}{\Delta}$$

Example 5

Find the system transfer function from *Y* to *R* for the following SFG

Step 3: Calculate all loop gains

Step 4: Determine the non-touching loops

$$L_1 = -G_2H_1 \qquad L_4 = G_4$$

Find the system transfer function from *Y* to *R* for the following SFG

Step 5: Calculate determinant of the SFG $\rightarrow \Delta$

 $\Delta = 1 - (\text{sum of all loop gains})$

- + (sum of products of all combinations of two non-touching loops)
- (sum of products of all combinations of three non-touching loops)
- + (sum of products of all combinations of four non-touching loops)

$$L_1 = -G_2H_1$$

$$L_3 = G_6 H_1 H_2$$
$$L_4 = G_4$$

$$L_2 = -G_3H_2$$

$$L_4=G_4$$

$$L_1 = -G_2H_1$$

$$L_4=G_4$$

$$\Delta = 1 - (L_1 + L_2 + L_3 + L_4) + (L_1 L_4)$$

$$\Delta = 1 - (-G_1H_1 - G_3H_2 + G_6H_1H_2 + G_4) + (-G_4G_2H_1)$$

Example 5

Find the system transfer function from Y to R for the following SFG

Step 6: Calculate cofactors of path $M_k \rightarrow \Delta_k$

 Δ_k = the Δ of the SFG non-touching with the forward path M_k when M_k has been removed

For Δ_1 remove $M_1 = G_1G_2G_3G_5$

$$\frac{Y}{R} = \frac{M_1 \Delta_1 + M_2 \Delta_2 + M_3 \Delta_3}{\Delta}$$

Example 5

Find the system transfer function from *Y* to *R* for the following SFG

Step 6: Calculate cofactors of path $M_k \rightarrow \Delta_k$

 Δ_k = the Δ of the SFG non-touching with the forward path M_k

when M_k has been removed

For Δ_1 remove $M_1 = G_1G_2G_3G_5$

$$\Delta_1 = 1$$

For Δ_2 remove $M_2 = G_1G_7$

Example 5

Find the system transfer function from *Y* to *R* for the following SFG

Step 6: Calculate cofactors of path $M_k \rightarrow \Delta_k$

 Δ_k = the Δ of the SFG non-touching with the forward path M_k

when M_k has been removed

For Δ_1 remove $M_1 = G_1G_2G_3G_5$

$$\frac{Y}{R} = \frac{M_1 \Delta_1 + M_2 \Delta_2 + M_3 \Delta_3}{\Delta}$$

For Δ_2 remove $M_2 = G_1G_7$

$$\Delta_2 = 1 - (L_2 + L_4) = 1 - (-G_3H_2 + G_4)$$

For Δ_3 remove $M_3 = G_1G_6G_5$

Example 5

Find the system transfer function from *Y* to *R* for the following SFG

Step 6: Calculate cofactors of path $M_k \rightarrow \Delta_k$

 Δ_k = the Δ of the SFG non-touching with the forward path M_k

when M_k has been removed

For Δ_1 remove $M_1 = G_1G_2G_3G_5$

$$\frac{Y}{R} = \frac{M_1 \Delta_1 + M_2 \Delta_2 + M_3 \Delta_3}{\Delta}$$

For Δ_2 remove $M_2 = G_1G_7$

$$\Delta_2 = 1 - (L_2 + L_4) = 1 - (-G_3H_2 + G_4)$$

For Δ_3 remove $M_3 = G_1G_6G_5$

$$\Delta_3 = 1$$

Example 5

Find the system transfer function from *Y* to *R* for the following SFG

Step 7: Calculate the overall transfer function

$$egin{aligned} M_1 &= G_1 G_2 G_3 G_5 \ M_2 &= G_1 G_7 \ M_3 &= G_1 G_6 G_5 \end{aligned} egin{aligned} L_1 &= -G_2 H_1 \ L_2 &= -G_3 H_2 \ L_3 &= G_6 H_1 H_2 \ L_4 &= G_4 \end{aligned}$$

$$L_{1} = -G_{2}H_{1}$$

$$L_{2} = -G_{3}H_{2}$$

$$L_{3} = G_{6}H_{1}H_{2}$$

$$L_{4} = G_{4}$$

$$\Delta_1 = 1$$
 $\Delta_2 = 1 + G_3H_2 - G_4$
 $\Delta_3 = 1$

$$\Delta = 1 - (L_1 + L_2 + L_3 + L_4) + (L_1 L_4)$$

$$\frac{Y}{R} = \frac{1}{\Delta} \sum_{k=1}^{N} M_k \Delta_k$$

$$N=3$$

$$\frac{Y}{R} = \frac{1}{\Delta} \sum_{k=1}^{N} M_k \Delta_k$$

$$\frac{Y}{R} = \frac{1}{\Delta} \sum_{k=1}^{3} M_k \Delta_k = \frac{M_1 \Delta_1 + M_2 \Delta_2 + M_3 \Delta_3}{\Delta}$$

$$\frac{Y}{R} = \frac{G_1G_2G_3G_5 + G_1G_7(1 + G_3H_2 - G_4) + G_1G_6G_5}{1 - (-G_1H_1 - G_3H_2 + G_6H_1H_2 + G_4) + (-G_4G_2H_1)}$$

Quick Review

Determine the transfer function from *Y* to *R* for the following SFG.

Step 1: Determine the input node and output node

Step 2: Calculate all forward path gains between R and Y

Step 3: Calculate all loop gains

Step 4: Determine the non-touching loops

Step 5: Calculate determinant of the SFG

Step 6: Calculate the cofactors of each forward path

Step 7: Calculate the overall transfer function

$$\frac{Y}{R} = \frac{1}{\Delta} \sum_{k=1}^{N} M_k \Delta_k$$

- State Diagram, is an extension of the SFG to portray state equations and differential equations.
- A state diagram is constructed following all the rules of the SFG using the Laplace-transformed state equations.
- The basic elements of a state diagram are similar to the conventional SFG, except for the integration operation.
- Consider the following state and output equations:

$$\begin{cases} \dot{x}_1 = 2x_1 - 5x_2 + 2r \\ \dot{x}_2 = -6x_1 - 2x_2 + 5r \\ y = -4x_1 + 6x_2 \end{cases}$$

- 1) First identify the following nodes:
 - Input node and output node,
 - One node for each state variable
 - One node for derivative of state variables
- 2) Next connect the state variables and their derivatives with the defining integration 1/s.
- 3) Then using the state and output equations, feed to each node the indicated signals.

Example 6

Draw a signal-flow graph for the following state and output equations.

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -16 & -8 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t)$$

First rewrite the state and output equations.

$$\dot{x}_1 = x_2
\dot{x}_2 = x_3
\dot{x}_3 = -6x_1 - 16x_2 - 8x_3 + u
y = 6x_1 + 8x_2 + 2x_3$$

 $U(s) \bullet \qquad \qquad 1/s \qquad \qquad 1/s \qquad \qquad 1/s \qquad \qquad 0$ $V(s) \bullet \qquad \qquad V(s) \qquad V(s) \qquad \qquad V(s) \qquad$

 $y(t) = [6 \ 8 \ 2]\mathbf{x}(t)$

- 1) Identify the following nodes:
 - Input node and output node,
 - One node for each state variable
 - One node for derivative of state variables
- 2) Connect the state variables and their derivatives with the defining integration 1/s.
- 3) Using the state and output equations, feed to each node the indicated signals.

- SFG and the state-space representation can be derived directly from the <u>transfer function</u> model, which is helpful to find SFG of simple control system block diagrams.
- ☐ First-order Transfer Function with no Zero:

$$\frac{Y(s)}{U(s)} = \frac{b}{s+a}$$

☐ First-order Transfer Function with a single Zero:

$$\frac{Y(s)}{U(s)} = \frac{s+b}{s+a}$$

☐ Second-order Transfer Function with no Zero:

$$\frac{Y(s)}{U(s)} = \frac{c}{s^2 + as + b}$$

☐ Second-order Transfer Function with a single Zero:

$$\frac{Y(s)}{U(s)} = \frac{s+c}{s^2 + as + b}$$

Example 7

Draw a signal-flow graph for the following cascade system. Given the state variables as x_1 , x_2 and x_3 derive a state-space representation from the SFG.

Defining the state variables as x_1 , x_2 and x_3 .

$$\dot{x}_1 = -4x_1 + x_2$$

$$\dot{x}_2 = -3x_2 + x_3$$

$$\dot{x}_3 = -2x_3 + 24r$$

$$y = x_1$$

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} -4 & 1 & 0 \\ 0 & -3 & 1 \\ 0 & 0 & -2 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \\ 0 \\ 24 \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \mathbf{x}(t)$$

Example 8

Draw a signal-flow graph for the following feedback control system. Define appropriate state variables and derive a state-space model.

First, model the forward path transfer function in cascade form.

$$\frac{C(s)}{E(s)} = \left(\frac{100}{s+2}\right) \left(\frac{s+5}{s+3}\right)$$

$$\frac{100}{E(s)} = \frac{1}{\sqrt{s+3}}$$

$$\frac{1}{\sqrt{s+3}} = \frac{1}{\sqrt{s+3}}$$

Next add the feedback and input paths to complete the SFG.

Example 8

Draw a signal-flow graph for the following feedback control system. Define appropriate state variables and derive a state-space model.

To find the state-scape model from SFG, first, define the state variables as the output node of the integrators.

Next, derive the state and output equations.

$$\begin{cases} \dot{x}_1 = -3x_1 + x_2 \\ \dot{x}_2 = -2x_2 + 100(r - c) \rightarrow \dot{x}_2 = -2x_2 + 100(r - 2x_1 - x_2) = -200x_1 - 102x_2 + 100r \\ y = c \rightarrow y = 5x_1 + (x_2 - 3x_1) = 2x_1 + x_2 \end{cases}$$

State-space model in vector-matrix form.

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} -3 & 1 \\ -200 & -102 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \\ 100 \end{bmatrix} r(t)$$
$$y(t) = \begin{bmatrix} 2 & 1 \end{bmatrix} \mathbf{x}(t)$$

- Consider the motor-driven antenna azimuth position control system example from Lecture 1.
- We determined the block diagram of the control system as below:

- In this part, we will represent the <u>SFG of overall closed-loop system</u> and find the <u>state-space</u> representation of the closed-loop system.
- We also evaluate the overall transfer function model by applying Mason's gain formula.

For the antenna azimuth position control system with the given simplified unity-feedback block diagram model:

a) Represent each subsystem with a signal-flow graph and find the state-space representation of the closed-loop system from the signal-flow graph.

First, model the forward path transfer function in cascade form.

$$\frac{\theta_o(s)}{E(s)} = \left(\frac{K}{\pi}\right) \left(\frac{100}{s+100}\right) \left(\frac{0.2083}{s(s+1.71)}\right)$$

Next add the feedback and input paths to complete the SFG.

For the antenna azimuth position control system with the given simplified unity-feedback block diagram model:

a) Represent each subsystem with a signal-flow graph and find the state-space representation of the closed-loop system from the signal-flow graph.

To find the state equations, first, define the state variables as the outputs of the integrators, then write the state equations by inspection of the SFG.

$$\begin{cases}
\dot{x}_1 = x_2 \\
\dot{x}_2 = -1.71x_2 + 0.2083x_3 \\
\dot{x}_3 = -100x_3 + \frac{100K}{\pi}(\theta_i - \theta_o) = -100x_3 + 31.83K\theta_i - 31.83Kx_1
\end{cases}$$

$$y = \theta_o \rightarrow y = x_1$$

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -1.71 & 0.2083 \\ -31.83K & 0 & -100 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \\ 0 \\ -31.83K \end{bmatrix} \theta_i(t)$$

$$y(t) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \mathbf{x}(t)$$

For the antenna azimuth position control system with the given simplified unity-feedback block diagram model:

b) Use the signal-flow graph found in part (a) along with Mason's gain formula to find the closed-loop transfer function.

Power

Step 1: Determine the input node and output node

Input Node: θ_i

Output Node: θ_{o}

Step 2: Calculate all forward path gains between input and output

$$M_1 = \left(\frac{K}{\pi}\right)(100)\left(\frac{1}{s}\right)(0.2083)\left(\frac{1}{s}\right)\left(\frac{1}{s}\right) = \frac{6.63K}{s^3}$$

Step 3: Calculate all loop gains

$$L_1 = -\frac{100}{S}$$
, $L_2 = -\frac{1.71}{S}$, $L_3 = -\frac{6.63K}{S^3}$

Step 4: Determine the non-touching loops

 L_1 and L_2 are non-touching loops

Step 5: Calculate determinant of the SFG

$$\Delta = 1 - (L_1 + L_2 + L_3) + (L_1 L_2) = 1 + \frac{100}{S} + \frac{1.71}{S} + \frac{6.63K}{S^3} + \frac{171}{S^2} = \frac{S^3 + 101.71S^2 + 171S + 6.63K}{S^3}$$

Preamplifier

$$\frac{Y}{R} = \frac{1}{\Delta} \sum_{k=1}^{N} M_k \Delta_k$$

Motor, load,

For the antenna azimuth position control system with the given simplified unity-feedback block diagram model:

b) Use the signal-flow graph found in part (a) along with Mason's gain formula to find the closed-loop transfer function.

Step 6: Calculate the cofactors of each forward path

$$\Delta_1 = 1$$

Step 7: Calculate the overall transfer function

$$\frac{Y(s)}{R(s)} = \frac{M_1 \Delta_1}{\Delta}$$

$$\frac{Y(s)}{R(s)} = \frac{M_1 \Delta_1}{\Delta} = \frac{\left(\frac{6.63K}{s^3}\right)(1)}{\frac{s^3 + 101.71s^2 + 171s + 6.63K}{s^3}} = \frac{6.63K}{s^3 + 101.71s^2 + 171s + 6.63K}$$

$$\frac{Y}{R} = \frac{1}{\Delta} \sum_{k=1}^{N} M_k \Delta_k$$

THANK YOU

