Exploiting Imprecise Information Sources in Sequential Decision Making Problems under Uncertainty

N.Drougard

under D.Dubois, J-L.Farges and F.Teichteil-Königsbuch supervision
doctoral school: EDSYS institution: ISAE-SUPAERO
laboratory: ONERA-The French Aerospace Lab

retour sur innovation

Overview

- 1 Context
- 2 Introductory example (HMI)
- 3 Advances in the qualitative possibilistic MDPs
- 4 Symbolic solver and factorization
- 5 A hybrid model
- 6 Conclusion/Perspectives

Overview

- 1 Context
- 2 Introductory example (HMI)
- 3 Advances in the qualitative possibilistic MDPs
- 4 Symbolic solver and factorization
- 5 A hybrid model
- 6 Conclusion/Perspectives

Autonomous robotics

Onera, DCSD

Control Engeenering, AI, Flight Dynamics, Cognitive Sciences

Autonomous robotics

Onera, DCSD

Control Engeenering, AI, Flight Dynamics, Cognitive Sciences

among many other works:

- autonomy and human factors
- decision making, planning
- experimental/industrial applications: UAVs, human-machine interaction, exploration robots

Partially Observable Markov Decision Processes (POMDPs)

s_t

a_t

belief state, strategy, criterion

POMDP: $\langle S, A, O, T, O, r, \gamma \rangle$ (Smallwood et al. 1973)

- **transition** function $T(s, a, s') = \mathbf{p}(s' \mid s, a)$
- **observation** function $O(s', a, o') = \mathbf{p}(o' | s', a)$

belief state, strategy, criterion

POMDP: $\langle S, A, O, T, O, r, \gamma \rangle$ (Smallwood et al. 1973)

- **transition** function $T(s, a, s') = \mathbf{p}(s' \mid s, a)$
- **observation** function $O(s', a, o') = \mathbf{p}(o' | s', a)$

belief state: $b_t(s) = \mathbb{P}(s_t = s | a_0, o_1, ..., a_{t-1}, o_t)$

belief state, strategy, criterion

POMDP: $\langle S, A, O, T, O, r, \gamma \rangle$ (Smallwood et al. 1973)

- **transition** function $T(s, a, s') = \mathbf{p}(s' \mid s, a)$
- **observation** function $O(s', a, o') = \mathbf{p}(o' | s', a)$

belief state: $b_t(s) = \mathbb{P}(s_t = s | a_0, o_1, ..., a_{t-1}, o_t)$

probabilistic belief update – a selected, o' received

$$b_{t+1}(s') \propto \mathbf{p}\left(\left.o'\left|\right.\right.s',a\right) \cdot \sum_{s \in \mathcal{S}} \mathbf{p}\left(\left.s'\left|\right.\right.s,a\right) \cdot b_{t}(s)$$

belief state, strategy, criterion

POMDP: $\langle S, A, O, T, O, r, \gamma \rangle$ (Smallwood et al. 1973)

- **transition** function $T(s, a, s') = \mathbf{p}(s' \mid s, a)$
- **observation** function $O(s', a, o') = \mathbf{p}(o' | s', a)$

belief state: $b_t(s) = \mathbb{P}(s_t = s | a_0, o_1, ..., a_{t-1}, o_t)$

probabilistic belief update - a selected, o' received

$$b_{t+1}(s') \propto \mathbf{p}\left(\left.o'\left|\right.\right.s',a\right) \cdot \sum_{s \in \mathcal{S}} \mathbf{p}\left(\left.s'\left|\right.\right.s,a\right) \cdot b_{t}(s)$$

action choices: strategy $\delta(b_t) = a_t \in \mathcal{A}$

maximizing
$$\mathbb{E}_{s_0\sim b_0}\left[\sum_{t=0}^{+\infty}\gamma^t\cdot r\Big(s_t,\deltaig(b_tig)\Big)
ight]$$
, $0<\gamma<1$

Flaws of the POMDP model POMDPs in practice

- optimal strategy computation > **PSPACE**(Papadimitriou et al. 1987)
- probabilities are imprecisely known in practice

prior ignorance management?

practical issues: Complexity, Vision and Initial Belief

■ POMDP optimal strategy computation undecidable in infinite horizon — *Madani et al. (AAAI-99)*

- POMDP optimal strategy computation undecidable in infinite horizon *Madani et al. (AAAI-99)*
- → optimality for "small" or "structured" POMDPs
- \rightarrow approximate computations

- POMDP optimal strategy computation undecidable in infinite horizon *Madani et al. (AAAI-99)*
- → optimality for "small" or "structured" POMDPs
- \rightarrow approximate computations
 - Imprecise model, e.g. vision from statistical learning

- POMDP optimal strategy computation undecidable in infinite horizon *Madani et al. (AAAI-99)*
- → optimality for "small" or "structured" POMDPs
- \rightarrow approximate computations
 - Imprecise model, e.g. vision from statistical learning
- → unknown environments: image variability of the datasets?

practical issues: Complexity, Vision and Initial Belief

- POMDP optimal strategy computation undecidable in infinite horizon *Madani et al. (AAAI-99)*
- → optimality for "small" or "structured" POMDPs
- \rightarrow approximate computations
 - Imprecise model, e.g. vision from statistical learning
- → unknown environments: image variability of the datasets?

Lack of prior information on the system state: initial belief state b_0

- POMDP optimal strategy computation undecidable in infinite horizon *Madani et al. (AAAI-99)*
- → optimality for "small" or "structured" POMDPs
- ightarrow approximate computations
 - Imprecise model, e.g. vision from statistical learning
- → unknown environments: image variability of the datasets?

- Lack of prior information on the system state: initial belief state b_0
- \rightarrow uniform probability distribution \neq ignorance!

Qualitative Possibility Theory

presentation – (max,min) "tropical" algebra

finite scale \mathcal{L}

usually
$$\{0, \frac{1}{k}, \frac{2}{k}, \dots, 1\}$$

events $e \subset \Omega$ (universe) sorted using possibility degrees $\pi(e) \in \mathcal{L}$ \neq

quantified with **frequencies** $\mathbf{p}(e) \in [0,1]$ (probabilities)

Qualitative Possibility Theory

presentation - (max,min) "tropical" algebra

finite scale \mathcal{L}

usually
$$\{0,\frac{1}{k},\frac{2}{k},\dots,1\}$$

events
$$e \subset \Omega$$
 (universe) sorted using possibility degrees $\pi(e) \in \mathcal{L}$

$$\neq$$
quantified with frequencies $\mathbf{p}(e) \in [0,1]$ (probabilities)

$$e_1 \neq e_2$$
, 2 events $\subset \Omega$

 \blacksquare $\pi(e_1) < \pi(e_2) \Leftrightarrow$ " e_1 is less plausible than e_2 "

Qualitative Possibility Theory

Criteria from Sugeno integral

Probability	/ Possibility:
+	max
×	min
$X \in \mathbb{R}$	$X\in\mathcal{L}$
	optimistic:
$\mathbb{E}[X] = \sum_{x \in X} x \cdot \mathbf{p}(x)$	$\mathbb{S}_{\Pi}[X] = \max_{x \in X} \min \left\{ x, \pi(x) \right\}$
	cautious:
	$\mathbb{S}_{\mathcal{N}}[X] = \min_{x \in X} \max\{x, 1 - \pi(x)\}$

Qualitative Possibility Theory qualitative possibilistic POMDP (π-POMDP)

Sabbadin (UAI-98) introduces

the qualitative possibilistic POMDP

 π -POMDP: $\langle \mathcal{S}, \mathcal{A}, \mathcal{O}, T^{\pi}, O^{\pi}, \rho \rangle$

Qualitative Possibility Theory qualitative possibilistic POMDP (π-POMDP)

Sabbadin (UAI-98) introduces

the qualitative possibilistic POMDP

$$\pi$$
-POMDP: $\langle S, A, O, T^{\pi}, O^{\pi}, \rho \rangle$

- transition function $T^{\pi}(s, a, s') = \pi(s' | s, a) \in \mathcal{L}$
- **observation** function $O^{\pi}(s', a, o') = \pi(o' | s', a) \in \mathcal{L}$
- **preference** function $\rho: \mathcal{S} \times \mathcal{A} \to \mathcal{L}$

Sabbadin (UAI-98) introduces

the qualitative possibilistic POMDP

$$\pi$$
-POMDP: $\langle S, A, O, T^{\pi}, O^{\pi}, \rho \rangle$

- transition function $T^{\pi}(s, a, s') = \pi(s' | s, a) \in \mathcal{L}$
- **observation** function $O^{\pi}(s', a, o') = \pi(o' | s', a) \in \mathcal{L}$
- **preference** function $\rho: \mathcal{S} \times \mathcal{A} \to \mathcal{L}$
- belief space trick: POMDP \rightarrow MDP with **infinite** space π -POMDP \rightarrow π -MDP with **finite** space
- $\forall s \in \mathcal{S}$, $\pi(s) = 1 \Leftrightarrow$ total ignorance about s

A possibilistic belief state

finite belief space

$$\Pi_{\mathcal{L}}^{\mathcal{S}} = \left\{ \text{ possibility distributions } \right\}: \#\Pi_{\mathcal{L}}^{\mathcal{S}} \sim \#\mathcal{L}^{\#\mathcal{S}} < +\infty$$
 $\rightarrow i.e.$ finite belief space

A possibilistic belief state

finite belief space

$$\Pi_{\mathcal{L}}^{\mathcal{S}} = \left\{ \text{ possibility distributions } \right\}: \#\Pi_{\mathcal{L}}^{\mathcal{S}} \sim \#\mathcal{L}^{\#\mathcal{S}} < +\infty$$
 $\rightarrow i.e.$ finite belief space

$$b_t^{\pi}(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

A possibilistic belief state

finite belief space

$$\Pi_{\mathcal{L}}^{\mathcal{S}} = \left\{ \text{ possibility distributions } \right\}: \#\Pi_{\mathcal{L}}^{\mathcal{S}} \sim \#\mathcal{L}^{\#\mathcal{S}} < +\infty$$
 $\rightarrow i.e.$ finite belief space

$$b_t^{\pi}(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

possibilistic belief update – a selected, o' received

joint distribution on $\mathcal{S} \times \mathcal{O}$ from b_t^{π} : $\pi(o', s' \mid b_t^{\pi}, a)$

A possibilistic belief state

finite belief space

$$\Pi_{\mathcal{L}}^{\mathcal{S}} = \left\{ \text{ possibility distributions } \right\}: \#\Pi_{\mathcal{L}}^{\mathcal{S}} \sim \#\mathcal{L}^{\#\mathcal{S}} < +\infty$$
 $\rightarrow i.e.$ finite belief space

$$b_t^{\pi}(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

possibilistic belief update – a selected, o' received

joint distribution on $\mathcal{S} imes \mathcal{O}$ from b_t^{π} : $\pi\left(\left.o', s' \left|\right.\right. b_t^{\pi}, a\right)$

$$ightarrow$$
 next belief state: $b_{t+1}^{\pi}(s') = \pi\left(o', s' \mid b_t^{\pi}, a\right)$ unless s' maximizes $\pi\left(o', s' \mid b_t^{\pi}, a\right)$, then $b_{t+1}^{\pi}(s') = 1$

denoted by
$$b^\pi_{t+1}(s') \propto^\pi \pi\left(\left.o', s' \left|\right.\right. b^\pi_t, a
ight)$$

A possibilistic belief state

finite belief space

$$\Pi_{\mathcal{L}}^{\mathcal{S}} = \left\{ \text{ possibility distributions } \right\}: \ \#\Pi_{\mathcal{L}}^{\mathcal{S}} \sim \#\mathcal{L}^{\#\mathcal{S}} < +\infty$$
 $\rightarrow i.e.$ **finite belief space**

$$b_t^{\pi}(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

possibilistic belief update - a selected, o' received

joint distribution on $\mathcal{S} \times \mathcal{O}$ from b_t^{π} : $\pi \left(o', s' \mid b_t^{\pi}, a \right)$

$$ightarrow$$
 next belief state: $b^\pi_{t+1}(s') = \pi \left(o', s' \mid b^\pi_t, a \right)$ unless s' maximizes $\pi \left(o', s' \mid b^\pi_t, a \right)$, then $b^\pi_{t+1}(s') = 1$

denoted by
$$b^\pi_{t+1}(s') \propto^\pi \pi \left(o', s' \mid b^\pi_t, a \right)$$

lacktriangle the update only depends on o', a and b_t^π

Qualitative Possibility Theory:

 \rightarrow simplification, imprecision/prior ignorance modeling

Qualitative Possibility Theory:

- → simplification, imprecision/prior ignorance modeling
 - 1 example of a qualitative possibilistic model
 - 2 advancements and first use of the π -POMDP model
 - 3 simplify computation: ADDs and factorization
 - 4 probabilistic-possibilistic (hybrid) approach
 - 5 conclusion/perspectives

Overview

- 1 Context
- 2 Introductory example (HMI)
- 3 Advances in the qualitative possibilistic MDPs
- 4 Symbolic solver and factorization
- 5 A hybrid model
- 6 Conclusion/Perspectives

joint work with Sergio Pizziol - Context

joint work with Sergio Pizziol - Context

Issue: incorrect human assessment of the machine state \rightarrow accident

joint work with Sergio Pizziol - Context

Issue: incorrect human assessment of the machine state \rightarrow accident

π -POMDP without actions: π -Hidden Markov Process

- **system space** \mathcal{S} : set of human assessments \rightarrow **hidden**
- **observation space** \mathcal{O} : feedbacks/human manipulations

Human error model from expert knowledge

Machine with states A, B, C, ...

state $s_A \in \mathcal{S}$: "human thinks machine state is A"

Human error model from expert knowledge

Machine with states A, B, C, ...

state $s_A \in \mathcal{S}$: "human thinks machine state is A"

Machine state transition $A \rightarrow B$

■ observation: machine feedback $o'_f \in \mathcal{O}$:

human usually aware of feedbacks $\to \pi\left(s_B',o_f'\mid s_A\right)=1$ but may lose a feedback $\to \pi\left(s_A',o_f'\mid s_A\right)=\frac{2}{3}$

Human error model from expert knowledge

Machine with states A, B, C, ...

state $s_A \in \mathcal{S}$: "human thinks machine state is A"

Machine state transition $A \rightarrow B$

■ observation: machine feedback $o'_f \in \mathcal{O}$:

human usually aware of feedbacks $\to \pi\left(s_B',o_f'\mid s_A\right)=1$ but may lose a feedback $\to \pi\left(s_A',o_f'\mid s_A\right)=\frac{2}{3}$

■ observation: **human manipulation** $o'_m \in \mathcal{O}$:

manipulation o_m' normal under $s_A \to \pi\left(s_B', o_m' \mid s_A\right) = 1$ anormal manipulation $= \frac{1}{3}$

Human error model from expert knowledge

Machine with states A, B, C, ...

state $s_A \in \mathcal{S}$: "human thinks machine state is A"

Machine state transition A o B

■ observation: machine feedback $o'_f \in \mathcal{O}$:

human usually aware of feedbacks $\to \pi\left(s_B',o_f'\mid s_A\right)=1$ but may lose a feedback $\to \pi\left(s_A',o_f'\mid s_A\right)=\frac{2}{3}$

lacktriangle observation: **human manipulation** $o_m' \in \mathcal{O}$:

manipulation o_m' normal under $s_A \to \pi\left(s_B', o_m' \mid s_A\right) = 1$ anormal manipulation $= \frac{1}{3}$

■ impossible cases: possibility degree 0

Qualitative Possibilistic Hidden Markov Process: diagnosis tool for Human-Machine interaction (with Sergio Pizziol)

Qualitative Possibilistic Hidden Markov Process: diagnosis tool for Human-Machine interaction (with Sergio Pizziol)

- estimation of the human assessment ⇔ possibilistic belief state
- detection of human assessment errors + diagnosis
- validated with pilots on a flight simulator missions

Overview

- 1 Context
- 2 Introductory example (HMI)
- 3 Advances in the qualitative possibilistic MDPs
- 4 Symbolic solver and factorization
- 5 A hybrid model
- 6 Conclusion/Perspectives

Mixed-Observability (MOMDP) — Ong et al. (RSS-05)

 π -Mixed-Observable Markov Decision Process (π -MOMDP)

contribution (UAI-13):

Mixed-Observability: system state $s \in \mathcal{S} = \mathcal{S}_{v} \times \mathcal{S}_{h}$ *i.e.* state $s = \text{visible component } s_{h}$ hidden component s_{h}

Mixed-Observability (MOMDP) — Ong et al. (RSS-05)

 π -Mixed-Observable Markov Decision Process (π -MOMDP)

contribution (UAI-13):

Mixed-Observability: system state $s \in \mathcal{S} = \mathcal{S}_v \times \mathcal{S}_h$ *i.e.* state $s = \text{visible component } s_v$ & hidden component s_h

■ belief states only over S_h (component s_v observed)

Mixed-Observability (MOMDP) — Ong et al. (RSS-05) π -Mixed-Observable Markov Decision Process (π -MOMDP)

contribution (UAI-13):

Mixed-Observability: system state $s \in \mathcal{S} = \mathcal{S}_v \times \mathcal{S}_h$ *i.e.* state $s = \text{visible component } s_v$ & hidden component s_h

- belief states only over S_h (component s_v observed)
- → π -POMDP: belief space $\Pi_{\mathcal{L}}^{\mathcal{S}}$ $\#\Pi_{\mathcal{L}}^{\mathcal{S}} \sim \#\mathcal{L}^{\#\mathcal{S}}$ → π -MOMDP: computations on $\mathcal{X} = \mathcal{S}_{\mathbf{v}} \times \Pi_{\mathcal{L}}^{\mathcal{S}_h}$ $\#\mathcal{X} \sim \#\mathcal{S}_{\mathbf{v}} \cdot \#\mathcal{L}^{\#\mathcal{S}_h} \ll \#\Pi_{\mathcal{L}}^{\mathcal{S}}$

Use of the π -MOMDP in practice undeterminate horizon

contribution (UAI-13): undeterminate Horizon

Use of the π -MOMDP in practice undeterminate horizon

contribution (UAI-13): undeterminate Horizon

Dynamic Programming scheme: # iterations $<\#\mathcal{X}$

- \blacksquare assumption: \exists artificial "stay" action as in classical planning/ γ counterpart
- criterion non decreasing with iterations

Use of the π -MOMDP in practice undeterminate horizon

contribution (UAI-13): undeterminate Horizon

Dynamic Programming scheme: # iterations $< \# \mathcal{X}$

- lacktriangle assumption: \exists artificial "stay" action as in classical planning/ γ counterpart
- criterion non decreasing with iterations
- action update for states increasing the criterion
- proof of optimality

Use of the π -MOMDP in practice simulations

- **goal:** reach the object A = T1 or T2
- noisy observations of the location of the object A

Overview

- 1 Context
- 2 Introductory example (HMI)
- 3 Advances in the qualitative possibilistic MDPs
- 4 Symbolic solver and factorization
- 5 A hybrid model
- 6 Conclusion/Perspectives

Factored π -MOMDP and computations with ADDs

qualitative possibilistic models to reduce complexity

contribution (AAAI-14): factored π -MOMDP \Leftrightarrow state space $\mathcal{X} = \mathcal{S}_{\nu} \times \Pi^{\mathcal{S}_h}_{\mathcal{L}} =$ Boolean variables (X_1, \dots, X_n) + independence assumptions \Leftarrow graphical model

Factored π -MOMDP and computations with ADDs

qualitative possibilistic models to reduce complexity

contribution (AAAI-14): factored
$$\pi$$
-MOMDP \Leftrightarrow state space $\mathcal{X} = \mathcal{S}_{\nu} \times \Pi_{\mathcal{L}}^{\mathcal{S}_h} = \text{Boolean variables } (X_1, \dots, X_n) + \text{independence assumptions } \Leftarrow \text{ graphical model}$

■ **factorization:** transition functions $T_i^a = \pi\left(X_i' \mid parents(X_i'), a\right)$ stored as **Algebraic Decision Diagrams (ADD)** probabilistic case: SPUDD. *Hoey et al., UAI-99*

Simplify computations with π -MOMDPs Resulting π -MOMDP solver: PPUDD

- probabilistic model: + and $\times \Rightarrow$ new values created \Rightarrow number of ADDs leaves **potentially huge**
- possibilistic model: min and max \Rightarrow values $\in \mathcal{L}$ finite \Rightarrow number of leaves bounded. **ADDs smaller**.

Simplify computations with π -MOMDPs Resulting π -MOMDP solver: PPUDD

- probabilistic model: + and × ⇒ new values created ⇒ number of ADDs leaves potentially huge
- possibilistic model: min and max \Rightarrow values $\in \mathcal{L}$ finite \Rightarrow number of leaves bounded, **ADDs smaller**.

PPUDD: Possibilistic Planning Using Decision Diagrams

factorization ⇒ each DP steps divided into n stages
 → smaller ADDs ⇒ faster computations

Simplify computations with π -MOMDPs Resulting π -MOMDP solver: PPUDD

- probabilistic model: + and × ⇒ new values created ⇒ number of ADDs leaves potentially huge
- possibilistic model: min and max \Rightarrow values $\in \mathcal{L}$ finite \Rightarrow number of leaves bounded. **ADDs smaller**.

PPUDD: Possibilistic Planning Using Decision Diagrams

- factorization ⇒ each DP steps divided into n stages
 → smaller ADDs ⇒ faster computations
- computations on trees: CU Decision Diagram Package.

Natural factorization: belief independence

contribution (AAAI-14):

independent sensors, hidden states, $\ldots \Rightarrow$ graphical model

Natural factorization: belief independence

contribution (AAAI-14):

independent sensors, hidden states, $\ldots \Rightarrow$ graphical model

d-Separation
$$\Rightarrow$$
 $(s_{v}, \beta) = (s_{v,1}, \dots, s_{v,m}, \beta_{1}, \dots, \beta_{l})$
 $\beta_{i} \in \Pi_{\mathcal{L}}^{S_{h,i}}$, belief over $s_{h,i}$

Experiments – perfect sensing: Navigation problem

PPUDD vs SPUDD Hoey et al.

Navigation benchmark: reach a goal – spots with accident risk M1 (resp. M2) optimistic (resp. cautious) criterion

Experiments – perfect sensing: Navigation problem

PPUDD vs SPUDD Hoey et al.

Navigation benchmark: reach a goal – spots with accident risk M1 (resp. M2) optimistic (resp. cautious) criterion

Performances, function of the instance size

reached goal frequency

Experiments – perfect sensing: Navigation problem

computation time

max size of ADDs

- PPUDD + M2 (pessimistic criterion)faster with same performances as SPUDD
- SPUDD only solves the first 5 instances
- verified intuition: ADDs are smaller

Experiments – imperfect sensing: RockSample problem

PPUDD vs APPL *Kurniawati et al.*, solver MOMDP symbolic HSVI *Sim et al.*, solver POMDP RockSample benchmark: recognize and sample "good" rocks

Experiments – imperfect sensing: RockSample problem

PPUDD vs APPL *Kurniawati et al.*, solver MOMDP symbolic HSVI *Sim et al.*, solver POMDP RockSample benchmark: recognize and sample "good" rocks

computation time: probabilistic solvers, prec. 1 PPUDD. exact resolution

average of rewards APPL stopped when

- approximate model + exact resolution solver
 - \rightarrow improvement of computation time and performances

IPPC 2014 – ADD-based approaches: PPUDD vs symbolic LRTDP

PPUDD + BDD mask over reachable states.

Figure: average of rewards over simulations

Overview

- 1 Context
- 2 Introductory example (HMI)
- 3 Advances in the qualitative possibilistic MDPs
- 4 Symbolic solver and factorization
- 5 A hybrid model
- 6 Conclusion/Perspectives

Qualitative possibilistic approach: benefits/drawbacks towards a hybrid POMDP

- granulated belief space (discrete)
- efficient problem simplification (PPUDD 2× better than LRTDP with ADDs)
- ignorance and imprecision modeling

Qualitative possibilistic approach: benefits/drawbacks towards a hybrid POMDP

- granulated belief space (discrete)
- efficient problem simplification (PPUDD 2× better than LRTDP with ADDs)
- ignorance and imprecision modeling
- ADD methods

 → state space search methods

 → winners of IPPC 2014: 2× better than PPUDD
- choice of the qualitative criterion (optimistic/pessimistic)
- preference → non additive degrees
 → same scale as possibility degrees (commensurability)
- coarse approximation of probabilistic model → no frequentist information

A hybrid model

a probabilistic POMDP with possibilistic belief states

hybrid approach

- agent knowledge = possibilistic belief states
- probabilistic dynamics & quantitative rewards

A hybrid model

a probabilistic POMDP with possibilistic belief states

hybrid approach

- agent knowledge = possibilistic belief states
- probabilistic dynamics & quantitative rewards

Usefullness

- \rightarrow **heuristic** for solving POMDPs: results in a standard (finite state space) MDP
- ightarrow problem with **qualitative** & **quantitative** uncertainty

Transitions and rewards

belief-based transition and reward functions

■ possibility distribution $\beta \to \text{probability distribution } \overline{\beta}$ using poss-prob tranformations (*Dubois et al.*, *FSS-92*)

Transition function on belief states

$$\Rightarrow \mathbf{p}\Big(\beta'\Big|\overline{\beta},a\Big) = \sum_{\substack{o' \text{ t.q.} \\ \textit{update}(\beta,a,o') = \beta'}} \mathbf{p}\left(o' \mid \overline{\beta},a\right)$$

Transitions and rewards

belief-based transition and reward functions

■ possibility distribution $\beta \to \text{probability distribution } \overline{\beta}$ using poss-prob tranformations (*Dubois et al.*, *FSS-92*)

Transition function on belief states

$$\Rightarrow \mathbf{p}\Big(\beta'\Big|\overline{\beta},a\Big) = \sum_{\substack{o' \text{ t.q.} \\ update(\beta,a,o') = \beta'}} \mathbf{p}\left(o' \mid \overline{\beta},a\right)$$

lacktriangle reward cautious according to eta

Pessimistic Choquet Integral

$$r(\beta, a) = \sum_{i=1}^{\#\mathcal{L}-1} (I_i - I_{i+1}) \cdot \min_{\substack{s \in \mathcal{S} \text{ s.t.} \\ \beta(s) \geqslant I_i}} r(s, a)$$


```
input: a POMDP \langle S, A, \mathcal{O}, T, O, r, \gamma \rangle; output: the MDP \langle \tilde{S}, A, \tilde{T}, \tilde{r}, \gamma \rangle:
```

translation from hybrid POMDP to MDP – contribution (SUM-15):

```
input: a POMDP \langle \mathcal{S}, \mathcal{A}, \mathcal{O}, \mathcal{T}, \mathcal{O}, r, \gamma \rangle; output: the MDP \langle \tilde{\mathcal{S}}, \mathcal{A}, \tilde{\mathcal{T}}, \tilde{r}, \gamma \rangle:
```

■ state space $\tilde{S} = \Pi_{\mathcal{L}}^{S}$, the set of the possibility distributions over S;

```
input: a POMDP \langle S, A, \mathcal{O}, T, O, r, \gamma \rangle; output: the MDP \langle \tilde{S}, A, \tilde{T}, \tilde{r}, \gamma \rangle:
```

- state space $\tilde{S} = \Pi_{\mathcal{L}}^{S}$, the set of the possibility distributions over S;
- $\forall \beta, \beta'$ possibilistic belief states $\in \Pi_{\mathcal{L}}^{\mathcal{S}}$, $\forall a \in \mathcal{A}$, transitions $\tilde{T}(\beta, a, \beta') = \mathbf{p}(\beta' | \beta, a)$;

```
input: a POMDP \langle S, A, \mathcal{O}, T, O, r, \gamma \rangle; output: the MDP \langle \tilde{S}, A, \tilde{T}, \tilde{r}, \gamma \rangle:
```

- state space $\tilde{S} = \Pi_{\mathcal{L}}^{S}$, the set of the possibility distributions over S;
- $\forall \beta, \beta'$ possibilistic belief states $\in \Pi_{\mathcal{L}}^{\mathcal{S}}$, $\forall a \in \mathcal{A}$, transitions $\tilde{T}(\beta, a, \beta') = \mathbf{p}(\beta' | \beta, a)$;
- reward $\tilde{r}(a,\beta) = \underline{Ch}(r(a,.))$,

input: a POMDP
$$\langle S, A, \mathcal{O}, T, O, r, \gamma \rangle$$
; output: the MDP $\langle \tilde{S}, A, \tilde{T}, \tilde{r}, \gamma \rangle$:

- state space $\tilde{S} = \Pi_{\mathcal{L}}^{S}$, the set of the possibility distributions over S;
- $\forall \beta, \beta'$ possibilistic belief states $\in \Pi_{\mathcal{L}}^{\mathcal{S}}$, $\forall a \in \mathcal{A}$, transitions $\tilde{T}(\beta, a, \beta') = \mathbf{p}(\beta' | \beta, a)$;
- reward $\tilde{r}(a,\beta) = \underline{Ch}(r(a,.))$,

criterion:
$$\mathbb{E}_{\beta_t \sim \tilde{T}} \left[\sum_{t=0}^{+\infty} \gamma^t \cdot \tilde{r} \left(\beta_t, d_t \right) \right]$$
.

3 classes of state variables – state space factorization

variable: visible $s'_v \in \mathbb{S}_v$

inferred hidden $s'_h \in \mathbb{S}_h$

3 classes of state variables – state space factorization

variable: visible $s'_v \in \mathbb{S}_v$

$$S'_{v} \xrightarrow{S'_{v} = O'_{v}} O'_{v}$$

inferred hidden $s_h' \in \mathbb{S}_h$

3 classes of state variables – state space factorization

variable: visible $s'_v \in \mathbb{S}_v$

$$s'_{v} \xrightarrow{s'_{v} = o'_{v}} o'_{v}$$

$$\beta_{t+1}(s'_v) = \mathbb{1}_{\{s'_v = o'_v\}}(s'_v)$$

inferred hidden $s'_h \in \mathbb{S}_h$

3 classes of state variables – state space factorization

variable: visible $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable

$$S'_{v} \xrightarrow{S'_{v} = O'_{v}} O'_{v}$$

$$\beta_{t+1}(s'_v) = \mathbb{1}_{\{s'_v = o'_v\}}(s'_v)$$

inferred hidden $s'_h \in \mathbb{S}_h$

3 classes of state variables – state space factorization

variable: visible $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable

$$\beta_{t+1}(s'_v) = \mathbb{1}_{\{s'_v = o'_v\}}(s'_v)$$

 $s'_{v} \xrightarrow{s'_{v} = o'_{v}} o'_{v}$

inferred hidden $s_h' \in \mathbb{S}_h$

3 classes of state variables – state space factorization

variable: visible $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable

$$\beta_{t+1}(s'_v) = \mathbb{1}_{\{s'_v = o'_v\}}(s'_v)$$

inferred hidden $s_h' \in \mathbb{S}_h$

$$\beta_{t+1}\Big(parents(o'_i)\Big) = \beta_{t+1}(s_h, s_h^a, s_h^b, s_h^c)$$

3 classes of state variables – state space factorization

variable: visible $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable

$$S'_{\nu} \xrightarrow{S'_{\nu} = O'_{\nu}} O'_{\nu}$$

$$\beta_{t+1}(s'_v) = \mathbb{1}_{\{s'_v = o'_v\}}(s'_v)$$

inferred hidden
$$s'_h \in \mathbb{S}_h$$

$$\beta_{t+1}\Big(parents(o'_i)\Big) = \beta_{t+1}(s_h, s_h^a, s_h^b, s_h^c)$$

$$\propto^{\pi} \pi \Big(o_i', \mathit{parents}(o_i') \Big| eta_t, a \Big)$$

3 classes of state variables – state space factorization

variable: visible $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable

$$eta_{t+1}(s_{v}')=\mathbb{1}_{\{s_{v}'=o_{v}'\}}(s_{v}')$$

$$s'_{v} \xrightarrow{s'_{v} = o'_{v}} o'_{v}$$

inferred hidden
$$s'_h \in \mathbb{S}_h$$

$$\beta_{t+1}\Big(parents(o'_i)\Big) = \beta_{t+1}\big(s_h, s_h^a, s_h^b, s_h^c\big)$$

$$\propto^{\pi} \pi\Big(o'_i, parents(o'_i)\Big|\beta_t, a\Big)$$

 S_h^a S_h^b S_h^c

 $\wedge \mathcal{P}(o'_i)$ may contain visible variables.

fully hidden
$$s_f' \in \mathbb{S}_f$$

3 classes of state variables – state space factorization

variable: visible $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable

$$(s'_{v})$$

$$s'_{v} \stackrel{o'_{v} = o'_{v}}{\longrightarrow} o'_{v}$$

inferred hidden
$$s_h' \in \mathbb{S}_h$$

$$\beta_{t+1}\left(parents(o_i')\right) = \beta_{t+1}(s_h, s_h^a, s_h^b, s_h^c)$$

$$\propto^{\pi} \pi \Big(o_i', parents(o_i') \Big| \beta_t, a \Big)$$

 $\beta_{t+1}(s'_{v}) = \mathbb{1}_{\{s'_{v}=o'_{v}\}}(s'_{v})$

 $\wedge \mathcal{P}(o'_i)$ may contain visible variables.

3 classes of state variables – state space factorization

variable: visible $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable

sistic belief variable
$$\beta_{t+1}(s'_v) = \mathbb{1}_{\{s'_v = o'_v\}}(s'_v)$$

$$s'_{v} \xrightarrow{s'_{v} = o'_{v}} o'_{v}$$

inferred hidden
$$s'_h \in \mathbb{S}_h$$

$$\beta_{t+1}\Big(parents(o'_i)\Big) = \beta_{t+1}(s_h, s_h^a, s_h^b, s_h^c)$$

$$\propto^{\pi} \pi \Big(o_i', parents(o_i') \Big| \beta_t, a \Big)$$

 $\wedge \mathcal{P}(o_i')$ may contain visible variables.

$$\beta_{t+1}(s_f') = \pi(s_f' \mid \beta_t, a)$$

3 classes of state variables – state space factorization

variable: visible $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable

$$eta_{t+1}(s_{\scriptscriptstyle V}') = \mathbb{1}_{\{s_{\scriptscriptstyle L}'=o_{\scriptscriptstyle L}'\}}(s_{\scriptscriptstyle V}')$$

inferred hidden $s_h' \in \mathbb{S}_h$

$$\beta_{t+1}\Big(parents(o_i')\Big) = \beta_{t+1}(s_h, s_h^a, s_h^b, s_h^c)$$

$$\propto^{\pi} \pi \Big(o_i', parents(o_i') \Big| \beta_t, a \Big)$$

 $\wedge \mathcal{P}(o'_i)$ may contain visible variables.

fully hidden $s'_f \in \mathbb{S}_f$

 \rightarrow observations don't inform belief state on s'_f .

$$\beta_{t+1}(s_f') = \pi(s_f' \mid \beta_t, a)$$

Possibilistic belief variables

global belief state

bound over the global belief state

$$\beta_{t+1}(s'_1,\ldots,s'_n) = \pi(s'_1,\ldots,s'_n \mid a_0,o_1,\ldots,a_t,o_{t+1})$$

$$\leqslant \min \Biggl\{ \min_{s_j' \in \mathbb{S}_v} \Biggl[\mathbb{1}_{\left\{s_j' = o_j'\right\}} \Biggr], \min_{s_j' \in \mathbb{S}_f} \Biggl[\beta_{t+1} \bigl(s_j'\bigr) \Biggr], \min_{o_i' \in \mathbb{O}_h} \Biggl[\beta_{t+1} \Bigl(parents \bigl(o_i'\bigr) \Bigr) \Biggr] \Biggr\}$$

bound over the global belief state

$$\beta_{t+1}(s'_1,\ldots,s'_n) = \pi(s'_1,\ldots,s'_n \mid a_0,o_1,\ldots,a_t,o_{t+1})$$

$$\leqslant \min \Biggl\{ \min_{s_j' \in \mathbb{S}_v} \Biggl[\mathbb{1}_{\left\{s_j' = o_j'\right\}} \Biggr], \min_{s_j' \in \mathbb{S}_f} \Biggl[\beta_{t+1}(s_j') \Biggr], \min_{o_i' \in \mathbb{O}_h} \Biggl[\beta_{t+1} \left(parents(o_i') \right) \Biggr] \Biggr\}$$

- min of marginals = a **less informative** belief state
- computed using marginal belief states
 - → factorization & smaller state space

Overview

- 1 Context
- 2 Introductory example (HMI)
- 3 Advances in the qualitative possibilistic MDPs
- 4 Symbolic solver and factorization
- 5 A hybrid model
- 6 Conclusion/Perspectives

Conclusion

contributions

■ modeling efforts: → human-machine interaction

Conclusion

contributions

- modeling efforts: → human-machine interaction
- advancements: → mixed-observability modeling
 - \rightarrow undeterminate horizon + optimality proof

Conclusion contributions

- **modeling efforts**: → human-machine interaction
- advancements: → mixed-observability modeling → undeterminate horizon + optimality proof
- simplifying computations: factorization work & PPUDD algorithm

Conclusion contributions

- **modeling efforts**: → human-machine interaction
- advancements: → mixed-observability modeling → undeterminate horizon + optimality proof
- simplifying computations: factorization work
 & PPUDD algorithm
- **experimentations**: real problems
 - ightarrow robust recognition mission with possibilistic beliefs
 - ightarrow validation of the computation time reduction
 - → IPPC 2014

Conclusion contributions

- **modeling efforts**: → human-machine interaction
- advancements: → mixed-observability modeling → undeterminate horizon + optimality proof
- simplifying computations: factorization work
 & PPUDD algorithm
- **experimentations**: real problems
 - ightarrow robust recognition mission with possibilistic beliefs
 - ightarrow validation of the computation time reduction
 - → IPPC 2014
- - → probabilities on possibilistic belief states pessimistic rewards (Choquet integral)
 - \rightarrow factored POMDP $\xrightarrow{\text{translation}}$ factored MPD

Conclusion publications

- Qualitative Possibilistic Mixed-Observable MDPs, UAI-2013
- Structured Possibilistic Planning Using Decision Diagrams, AAAI-2014
- Planning in Partially Observable Domains with Fuzzy
 Epistemic States and Probabilistic Dynamics, SUM-2015
- Processus Décisionnels de Markov Possibilistes à Observabilité Mixte, Revue d'Intelligence Artificielle (RIA)
- A Possibilistic Estimation of Human Attentional Errors, submitted to IEEE-TFS

Conclusion perspectives

- refined criteria (Weng UAI-05, Dubois et al. EJOR-05) ⇒ finer π -POMDP
- link with statistical learning in practice

Conclusion perspectives

- refined criteria (Weng UAI-05, Dubois et al. EJOR-05) ⇒ finer π -POMDP
- link with statistical learning in practice

quantitative information may be available: hybrid work

- IPPC problems (factored POMDPs);
- tests of this approach:
 - **1 simplification:** π distributions definition?
 - **2** imprecision: robust in practice?

Thank you!

