

POLSKA
RZECZPOSPOLITA
LUDOWA

URZĄD
PATENTOWY
PRL

OPIS PATENTOWY

147 748

Patent dodatkowy
do patentu nr —

Zgłoszono: 86 10 17 (P.261904)

Pierwszeństwo —

Int. Cl.⁴ C07C 49/557

Zgłoszenie ogłoszono: 88 06 09

Opis patentowy opublikowano: 89 10 31

Twórcy wynalazku: Beata Szmidt, Maria Bełdowicz, Grzegorz Wiśniewski, Józef Góra,
Urszula Antczak, Danuta Kaledba, Władysław S. Brud

Uprawniony z patentu: Instytut Chemii Przem. -owej, Warszawa (Polska)

SPOSÓB OTRZYMYWANIA JONONÓW I METYLOJONONÓW

Przedmiotem wynalazku jest sposób otrzymywania jononów i metylojononów przez kondensację cytralu z acetonom lub 2-butanonem a następnie cyklizację produktu w znanym sposobie.

Jonony i metylojonony znajdują zastosowanie w przemyśle perfumeryjnym i kosmetycznym jako substancje zapachowe o nutie fiołkowej. Obserwuje się duży postęp w zakresie syntezy tych związków, o czym świadczą liczne publikacje i patenty.

Znane są z publikacji p.t. "Chemia i technologia związków zapachowych" PWN J.Kulesza, J. Góra oraz artykułu "Postępy w syntezie jononów i metylojononów" J.Góra, D.Kaledba zamieszczonego w biuletynie "Tłuszcze, środki piorące, kosmetyki" nr 11-12, 1985 r. liczne metody otrzymywania jononów oraz metylojononów z różnych surowców, w tym również z cytralu.

Znany jest z opisu patentowego ZSRR nr 704 938 oraz czechosłowackiego opisu patentowego nr 129 547 sposób kondensacji krotonowej cytralu z acetonom w obecności wodnego roztworu wodorotlenku sodowego jako katalizatora. W reakcji otrzymuje się pseudojonon z dobrą wydajnością, jednakże ze względu na powstającą dużą ilość stężeń ścieków zawierających wodorotlenek sodowy (stosuje się 0,15 - 0,45 mola wodorotlenku sodowego na mol cytralu) oraz stosowanie 15 - 30 krotnego nadmiaru acetolu, metoda ta jest niekorzystna.

Znany jest z japońskich opisów patentowych nr nr 7 313 087 i 7 328 417 sposób kondensacji cytralu z 2-butanonem w obecności środków odwadniających i alkoholowych roztworów wodorotlenków lub alkoholanów metali alkalicznych, jednakże metoda ta jest również ściekodajna.

Znany jest również z opisów patentowych ZSRR nr nr 739 055 i 925 931 sposób kondensacji cytralu z 2-metylbutanonem wobec 1,5 - 5 % wodnego roztworu siarczynu sodowego w czasie około 10 godzin.

BEST AVAILABLE COPY

Znany jest cały szereg katalizatorów kondensacji cytralu z ketonami, między innymi fenolan lub metanolan sodowy oraz aminy w postaci mieszaniny złożonej z wodorotlenku amonio-wego i związku silnie zasadowego (wodorotlenki, alkoholany, fenolany). Najczęściej stosowane są wodorotlenki: tetrametyloamoniowy, tetraetyloamoniowy, benzylotrimetyloamoniowy. Jak wykazały nasze badania, katalizatory z grupy wymienionych amin prowadzą do niskiej wydajności pseudozwiązków i znacznej ilości ubocznych produktów wielokształtnych.

Stosowane metody kondensacji cytralu z ketonami są ściekodajne lub czasochłonne, a ponadto w procesach periodycznych stosuje się duże ilości roztworów katalizatorów. Nieoczekiwane okazało się, że można otrzymywać jonony i metylojonony z wysoką wydajnością bez powstania stężonych ścieków i w czasie nie dłuższym niż 6 godzin.

Według wynalazku, sposób otrzymywania jononów i metylojononów przez kondensację cytralu z acetonom lub 2-butanorem w obecności katalizatora, a następnie cyklizację powstałego produktu, tym się charakteryzuje, że jako katalizator kondensacji stosuje się anionit z rodzącą dwuwinobenzennowymi kopolimerów styrenowych z czynnymi grupami $-\text{CH}_2\text{-N}/\text{CH}_3/2$ lub $-\text{CH}_2\text{-N}/\text{CH}_3/3$, uprzednio aktywowany, korzystnie różnicowanym roztworem wodnym wodorotlenku sodowego.

Sposób według wynalazku można prowadzić zarówno metodą periodyczną jak i ciągłą. Sposób metodą periodyczną korzystnie prowadzi się przy zachowaniu stosunku molowego cytralu do acetona 1 :8-12 w temperaturze 45-56°C dla jononów, a stosunku molowego cytralu do 2-butanoru 1:9-11 w temperaturze 60-78°C dla metylojononów.

Sposób według wynalazku, obok zmniejszenia ilości powstających ścieków alkalicznych, pozwala również na znaczne ograniczenie ilości polimerycznych produktów ubocznych kondensacji cytralu z acetonom lub 2-butanolem. Dzięki prowadzeniu procesu kondensacji w obecności złożonego anionitu proces według wynalazku można prowadzić metodą ciągłą. W procesie ciągłym uzyskuje się znacznie mniejsze zużycie roztworów katalizatorów w jednostce czasu. Zastosowanie anionitu jako katalizatora pozwala na wielokrotnie użycie go w procesie po uprzedniej regeneracji i aktywacji. Sposób ciągły korzystnie prowadzi się przy zachowaniu stosunku molowego cytralu do acetona 1 :8-12 w temperaturze 45 - 56°C przy natężeniu przepływu 0-4,0 cm³/min w przypadku wytwarzania jononów, a cytralu do 2-butanoru 1 :9-14 w temperaturze 50-75°C przy natężeniu przepływu 1,0-3,0 cm³/min w przypadku wytwarzania metylojononów.

F r z y k ła d I. Odważono 100 g anionitu Wofatit SBW i założano 8 cm³ 5% roztworu wodorotlenku sodowego w wodzie destylowanej, i pozostawiono na 1 godzinę. Jonit przemyto kil-kakrotnie wodą destylowaną, po ostatnim przemyciu woda wykazywała odczyn obojętny.

W kolbie umieszczono 50 g zaktynowanego anionitu i 116 g/2,0 mola acetolu, zawartość kolby ogrzana mieszając do temp. 56°C i w ciągu 15 minut wkraplano 30,4 g/0,2 mola cytralu. Całość ogrzewano w temp. 56°C w ciągu 5 godzin. Po zakończeniu reakcji nad katalizatorem zdekarbowano mieszaninę poreakcyjną. Z warstwy organicznej oddestylowano aceton, a pozostałość poddano destylacji pod zmniejszonym ciśnieniem. Otrzymano 28,0 g/73 % wydajności pseudojononu.

Charakterystyka produktu

współczynnik refrakcji n_D^{20}	= 1.5248 - 1.5260
temperatura wrzenia	98 - 103°C / 106,7 Pa / 0,8 Tr/
	102 - 108°C / 133,3 Pa / 1,0 Tr/
czystość GLC	min. 98 %

Otrzymany pseudojonon cyklizowano w znany sposób, w celu otrzymania jononu.

P r z y k l a d II. Odważono 100 g anionitu Wofatit AD-41 i załano 250 g 4 % roztworu wodorotlenku sodowego w wodzie destylowanej i pozostało na 1 h. Ciecz nad jonitem zdekontamnowano, a jonit przemyto wodą destylowaną do odczynu obojętnego ścieków z ostatniego przemycia.

W kolbie umieszczono 50 g zaktywowanego anionitu i 113 g 1,6 mola/2-butanonu, zawartość kolby ogrzano do 75 - 78°C i wkrapiano 21,5 g /0,14 mola/cytralu. Po zakończeniu reakcji mieszaninę poreakcyjną zdekontamnowano z nad jonitem, a jonit przemyto 2-butanonu. Z połączonych reaktorów pod normalnym ciśnieniem odpędzono nadmiar 2-butanonu a organiczną pozostałość poddano destylacji pod zmniejszonym ciśnieniem. Otrzymano 20,0 g/66 % wydajności teoretycznej/ pseudometylojononu.

Charakterystyka produktu

współczynnik refrakcji	$n_D^{20} = 1,5163 - 1,5209$
temperatura wrzenia	142 - 150°C /667 Pa /5 Tr/
czystość GLC	min. 96 %

Produkt cyklizowano w znany sposób, w celu otrzymania metylojononu.

P r z y k l a d III. Kolumnę szklaną (długość 300 mm, średnica 25 mm) ogrzano za pomocą płaszcza wodnego połączonego z termostatem do temp. 45°C i napełniono 155 g zaktywowanego anionitu.

W kolbie przygotowano mieszaninę 60,8 g /0,4 mola/ cytralu, 232 g /4,0 mola/acetonu i 100 cm³ wody destylowanej. Tak przygotowaną mieszaninę substratów tłoczono do kolumny napełnionej jonitem przez jej dolny zawór, utrzymywano stałe natężenie przepływu 3,29 cm³/min oraz stałą temperaturę płaszcza +45°C.

Po wprowadzeniu całej ilości mieszaniny substratów, rozpoczęto przemywanie kolumny 213 g acetenu w celu wypłukania resztek produktów, /temp., +45°C, natężenie przepływu 3,29 cm³/min.

Z otrzymanej mieszaniny oddestylowano aceton /w ilości około 300 g/. Warstwę organiczną po osuszeniu poddano destylacji próżniowej. Otrzymano 58 g /95,5 % wydajności/ pseudometylojononu.

Charakterystyka produktu

współczynnik refrakcji	$n_D^{20} = 1,5248 - 1,5260$
temperatura wrzenia	98 - 103°C/106,7 Pa /0,8 Tr/
	102 - 108°C/133,3 Pa /1,0 Tr/

czystość GLC min. 98 %

Otrzymany produkt cyklizowano w znany sposób w celu otrzymania jononu.

P r z y k l a d IV. Kolumnę szklaną /długość 1000 mm, szerokość 13 mm/ napełniano 100 g zaktywowanego anionitu Wofatit AD-41. Kolumnę za pomocą płaszcza wodnego ogrzano do temperatury 75°C. Do kolumny przez górny jej wlot dozowano wcześniej przygotowaną mieszaninę substratów /60,8 g - 0,4 mola cytralu i 374,4 g - 5,2 mola 2-butanonu/, utrzymywano stałą temperaturę w złożu jonitu oraz stałe natężenie przepływu mieszaniny reakcyjnej 1,3 cm³/min. Po wprowadzeniu całej ilości mieszaniny substratów rozpoczęto przemywanie kolumny alkoholem etylowym /około 100 g/. Warstwę organiczną produktów połączono z alkoholem, którym przemyto jonit. Z otrzymanej mieszaniny oddestylowano 2-butanon z alkoholem etylowym. Pseudometylojonon wydzielano preparatywnie, w rutynowy sposób, na drodze rektyfikacji pod zmniejszonym ciśnieniem. Otrzymano 52,7 g/64,0 % wydajności/produktu.

Charakterystyka produktu

współczynnik refrakcji	$n_D^{20} = 1,5163 - 1,5209$
temperatura wrzenia	142 - 150°C/666,6 Pa /5,0 Tr/
czystość GLC	min. 96 %

Produkt cyklizowano w znany sposób w celu otrzymania metylojononu.

Z a s t r z e z e n i a p a t e n t o w e

1. Sposób otrzymywania jononów i metylojononów przez kondensację cytralu z acetonom lub 2-butanonem w obecności katalizatora, a następnie cyklizację powstałego produktu, z n a m i e n n y t y m, że jako katalizator kondensacji stosuje się anionit z rodzaju dwuwinylobenzenowych kopolimerów styrenowych z czynnymi grupami $-\text{CH}_2\text{-N/CH}_3/\text{2}$ lub $-\text{CH}_2\text{-N/CH}_3/\text{3}$, uprzednio aktywowany, korzystnie rozcieńczonym wodnym roztworem wodorotlenku sodu.
2. Sposób według zastrz. 1, z n a m i e n n y t y m, że kondensację prowadzi się metodą periodyczną przy zachowaniu stosunku molowego cytralu do acetolu 1:8-12 w temperaturze 45-56°C dla jononów, a stosunku molowego cytralu do 2-butanonu 1:9-11 w temperaturze 60-78°C dla metylojononów.
3. Sposób według zastrz. 1, z n a m i e n n y t y m, że kondensację prowadzi się metodą ciągłą przy zachowaniu stosunku molowego cytralu do acetolu 1:8-12 w temperaturze 45-56°C przy natężeniu przepływu 2,0-4,0 cm^3/min w przypadku wytwarzania jononów, a cytralu do 2-butanonu 1:9-14 w temperaturze 50-75°C przy natężeniu 1,0 - 3,0 cm^3/min w przypadku wytwarzania metylojononów.