fn make_count

Sílvia Casacuberta, Grace Tian, Connor Wagaman

This proof resides in "contrib" because it has not completed the vetting process.

Proves soundness of make_count in mod.rs at commit f5bb719 (outdated¹).

make_count returns a Transformation that computes a count of the number of records in a vector. The length of the vector, of type usize, is exactly casted to a user specified output type TO. If the length is too large to be represented exactly by TO, the cast saturates at the maximum value of type TO.

Vetting History

• Pull Request #513

1 Preconditions

- TIA (atomic input type) is a type with trait Primitive. Primitive implies TIA has the trait bound:
 - CheckNull so that TIA is a valid atomic type for AllDomain
- TO (output type) is a type with trait Number. Number further implies TO has the trait bounds:
 - InfSub so that the output domain is compatible with the output metric
 - CheckNull so that TO is a valid atomic type for AllDomain
 - ExactIntCast for casting a vector length index of type usize to TO. ExactIntCast further implies
 TO has the trait bound:
 - * ExactIntBounds, which gives the MAX_CONSECUTIVE value of type TO
 - One provides a way to retrieve TO's representation of 1
 - DistanceConstant to satisfy the preconditions of new_stability_map_from_constant

2 Pseudocode

```
def make_count():
    input_domain = VectorDomain(AllDomain(TIA))
    output_domain = AllDomain(TO)

def function(data: Vec[TIA]) -> TO:
    size = input_domain.size(data)
    try:
    return TO.exact_int_cast(size)
    except FailedCast:
    return TO.MAX_CONSECUTIVE
```

¹See new changes with git diff f5bb719..b08bace57 rust/src/transformations/count/mod.rs

```
input_metric = SymmetricDistance()
output_metric = AbsoluteDistance(TO)

stability_map = new_stability_map_from_constant(TO.one())

return Transformation(
input_domain, output_domain, function,
input_metric, output_metric, stability_map)
```

3 Postcondition

For every setting of the input parameters (TIA, TO) to make_count such that the given preconditions hold, make_count raises an exception (at compile time or run time) or returns a valid transformation. A valid transformation has the following properties:

- 1. (Appropriate output domain). For every element v in input_domain, function(v) is in output_domain or raises a data-independent runtime exception.
- 2. (Domain-metric compatibility). The domain input_domain matches one of the possible domains listed in the definition of input_metric, and likewise output_domain matches one of the possible domains listed in the definition of output_metric.
- 3. (Stability guarantee). For every pair of elements u, v in input_domain and for every pair (d_in, d_out), where d_in has the associated type for input_metric and d_out has the associated type for output_metric, if u, v are d_in-close under input_metric and stability_map(d_in) \leq d_out, then function(u), function(v) are d_out-close under output_metric.

Proofs

Proof. (Part 1 – appropriate output domain). The output_domain is AllDomain(TO), so it is sufficient to show that function always returns non-null values of type TO. By the definition of the ExactIntCast trait, TO.exact_int_cast always returns a non-null value of type TO or raises an exception. If an exception is raised, the function returns TO.MAXIMUM_CONSECUTIVE, which is also a non-null value of type TO. Thus, in all cases, the function (from line 7) returns a non-null value of type TO. □

Proof. (Part 2 - domain-metric compatibility). Our input_metric of SymmetricDistance is compatible with any domain of the form VectorDomain(inner_domain), and our input_domain of VectorDomain(AllDomain(TIA)) is of this form. Therefore our input_domain and input_metric are compatible.

Our output_metric of AbsoluteDistance is compatible with any domain of the form AllDomain(T) where T has the trait InfSub, and our output_domain of AllDomain(TO) is of this form and TO has the necessary trait. Therefore our input_domain and input_metric are compatible.

Before proceeding with proving the validity of the stability map, we provide a couple lemmas.

Lemma 3.1. $|function(u) - function(v)| \le |len(u) - len(v)|$, where len is an alias for input_domain.size.

Proof. By CollectionDomain, we know size on line 6 is of type usize, so it is non-negative and integral. Therefore, by the definition of ExactIntCast, the invocation of T0.exact_int_cast on line 8 can only fail if the argument is greater than T0.MAX_CONSECUTIVE. In this case, the value is replaced with T0.MAX_CONSECUTIVE. Therefore, function(u) = min(len(u), c), where c = T0.MAX_CONSECUTIVE. We use this equality to prove the lemma:

$$|function(u) - function(v)| = |min(len(u), c) - min(len(v), c)|$$

 $\leq |len(u) - len(v)|$ since clamping is stable

Lemma 3.2. For vector v with each element $\ell \in v$ drawn from domain \mathcal{X} , $len(v) = \sum_{z \in \mathcal{X}} h_v(z)$.

Proof. Every element $\ell \in v$ is drawn from domain \mathcal{X} , so summing over all $z \in \mathcal{X}$ will sum over every element $\ell \in x$. Recall that the definition of SymmetricDistance states that $h_v(z)$ will return the number of occurrences of value z in vector v. Therefore, $\sum_{z \in \mathcal{X}} h_v(z)$ is the sum of the number of occurrences of each unique value; this is equivalent to the total number of items in the vector.

Since CollectionDomain is implemented for VectorDomain<allIDomain<TIA», we depend on the correctness of the implementation Conditioned on the correctness of the implementation of CollectionDomain for VectorDomain<allIDomain<TIA», the variable size is of type usize containing the number of elements in arg. Therefore, $\sum_{z \in \mathcal{X}} h_v(z)$ is equivalent to size.

Proof. (Part 3 – stability map). Take any two elements u, v in the input_domain and any pair (d_in, d_out), where d_in has the associated type for input_metric and d_out has the associated type for output_metric. Assume u, v are d_in-close under input_metric and that stability_map(d_in) \leq d_out. These assumptions are used to establish the following inequality:

$$\begin{split} |\text{function}(u) - \text{function}(v)| &\leq |\text{len(u)} - \text{len(v)}| & \text{by 3.1} \\ &= |\sum_{z \in \mathcal{X}} h_{\mathbf{u}}(z) - \sum_{z \in \mathcal{X}} h_{\mathbf{v}}(z)| & \text{by 3.2} \\ &= |\sum_{z \in \mathcal{X}} (h_{\mathbf{u}}(z) - h_{\mathbf{v}}(z))| & \text{by algebra} \\ &\leq \sum_{z \in \mathcal{X}} |h_{\mathbf{u}}(z) - h_{\mathbf{v}}(z)| & \text{by triangle inequality} \\ &= d_{Sym}(u, v) & \text{by SymmetricDistance} \\ &\leq \mathbf{d}_{-} \mathbf{in} & \text{by the first assumption} \\ &\leq \text{T0.inf_cast(d_in)} & \text{by InfCast} \\ &\leq \text{T0.one().inf_mul(T0.inf_cast(d_in))} & \text{by InfMul} \\ &= \text{stability_map(d_in)} & \text{by pseudocode line 15} \\ &\leq \mathbf{d}_{-} \text{out} & \text{by the second assumption} \end{split}$$

It is shown that function(u), function(v) are d_out-close under output_metric.