# Porównanie wydajności złączeń i zagnieżdżeń dla schematów znormalizowanych i zdenrmalizowanych

### Maciej Bak

5 czerwca 2021

## 1 Wstęp

Przedmiotem analizy było zbadanie i porównanie wydajności kwerend bazujących na złączeniach i zagnieżdżeniach dla schematów znormalizowanych i zdenromalizowanych. Analizę przeprowadzono na dwóch różnych systemach bazodanowych opierających się o koncept relacyjnych baz danych. W trakcie badania wzorowano się na artykule Wydajność złączeń i zagnieżdżeń dla schematów znormalizowanych i zdenormalizowanych

# 2 Konfiguracja sprzętowa i programowa

Testy omówione w niniejszym opracowaniu przeprowadzono na komputerze o następującej specyfikacji:

• CPU: Intel Core i5-8250U, 6M Cache, up to 3.40 GHz

• GPU: NVIDIA GeForce MX150

• RAM: 8 GB

• SSD: M.2

• S.O: Ubuntu 20.04.2 LTS

• PostgreSQL 13.2

• MySQL 8.0.25

### 3 Metodyka testów

W celu zautomatyzowania procedury testowej stworzyłem odpowiednie skrypty uruchamiające wcześniej zdefiniowane kwerendy oraz polecenia. Pozwoliło to na znaczne uproszczenie testowania oraz dobieranie ilości przeprowadzanych serii pomiarowych według potrzeb. Wszystkie niezbędne skrypty zostały umieszczone w repozytorium na GitHubie. Serię testów wyzwala uruchomienie skryptu startBench.sh (uwaga! skrypty będą działać nieprawidłowo na komputerze innym od tego wykorzystanego do testów). Najpierw testowana jest baza MySQL z wykorzystaniem zapytań 1ZL, 2ZL, 3ZG, 4ZG (opisane w dalszej części opracowania) bez założonych indeksów nieklastrowanych. Kolejno, skrypt tworzy indeksy dla odpowiednich kolumn i ponawia procedurę testowania czterema zapytaniami. Czas wykonywania poszczególnych zapytań jest zapisywany do odpowiednich plików. Pliki te są następnie odpowiednio przetwarzane w celu obliczenia średniej wartości czasu trwania poszczególnych kwerend. Testy zostały przeprowadzone w analogiczny sposób dla MySQL oraz PostgreSQL. Po wykonaniu zadań skrypt prezentuje uzyskane wyniki.

```
MvSOL - without indexes
       1 ZL: 576
       2 ZL: 2433
       3 ZG: 40138
       4 ZG: 2488
       with indexes
MySOL -
       1 ZL: 1789
       2 ZL: 2345
       3 ZG: 2393
       4 ZG: 2264
#################################
PostgreSOL - without indexes
       1 ZL: 102
       2 ZL: 176
       3 ZG: 5601
       4 ZG: 100
PostgreSQL - with indexes
       1 ZL: 70
       2 ZL: 154
       3 ZG: 4980
       4 ZG: 77
```

Rys. 1. Przykładowy rezultat działania skryptu testującego

Bazę danych przygotowano wzorując się na tabeli geochronologicznej. Przygotowano ją w wersji znormalizowanej gdzie poszczególne jednostki czasu geologicznego zostały powiązane ze sobą odpowiednimi relacjami oraz w postaci zdenromalizowanej (GeoTabela) - jedna tabela zawierająca wszystkie wykorzystane dane geochronologiczne.

```
CREATE TABLE geochrono.GeoTabela AS

(SELECT * FROM geochrono.GeoPietro NATURAL JOIN geochrono.GeoEpoka
NATURAL JOIN geochrono.GeoOkres NATURAL JOIN geochrono.GeoEra
NATURAL JOIN geochrono.GeoEon );
```

### 4 Zapytania testowe

Wcelu przeprowadzenia testów stworzono tabelę Milion zawierającą syntetyczne dane o jednorodnym rozkładzie od 0 do 999 999

Jak wspomniano w poprzednim pragrafie, do wykonania testów użyto czterech zapytań oznaczonych jako 1ZL, 2ZL, 3ZG, 4ZG.

#### 4.1 1ZL

Złączenie tabeli Milion z tabelą geochronologiczną GeoTabela w postaci zdenormalizowanej:

```
SELECT COUNT(*) FROM geochrono.Milion INNER JOIN geochrono.GeoTabela ON
(mod(Milion.liczba,68)=(GeoTabela.id_pietro));
```

#### 4.2 2ZL

Złączenie tabeli Milion z tabelą geochronologiczną w postaci znormalizowanej (złączenie pięciu tabel):

```
SELECT COUNT(*) FROM geochrono.Milion INNER JOIN geochrono.GeoPietro ON (mod(Milion.liczba,68)=geochrono.GeoPietro.id_pietro)

NATURAL JOIN geochrono.GeoEpoka NATURAL JOI Ngeochrono.GeoOkres

NATURAL JOIN geochrono.GeoEra NATURAL JOIN geochrono.GeoEon;
```

#### 4.3 3ZG

Złączenie tabeli Milion z tabelą geochronologiczną GeoTabela w postaci zdenormalizowanej poprzez zagnieżdżenie skorelowane:

```
SELECT COUNT(*) FROM geochrono.Milion WHERE mod(Milion.liczba,68)=
(SELECT id_pietro FROM geochrono.GeoTabela
WHERE mod(Milion.liczba,68)=(id_pietro));
```

#### 4.4 4ZG

Złączenie tabeli Milion z tabelą geochronologiczną w postaci znormalizowanej poprzez zagnieżdżenie skorelowane:

```
SELECT COUNT(*) FROM geochrono.Milion WHERE mod(Milion.liczba,68) IN (SELECT GeoPietro.id_pietro FROM geochrono.GeoPietro NATURAL JOIN geochrono.GeoEpoka NATURAL JOIN geochrono.GeoEoRoka NATURAL JOIN geochrono.GeoRoka NATURAL JOIN
```

# 5 Analiza wyników

Przeprowadzono 25 serii testów. Wyniki testów w postaci średnich czasów trwania poszczególnych zapytań przedstawiono w tabeli poniżej. Pełny zestaw wyników z czasami poszczególnych zapytań dostępny jest w załączonym repozytorium.

|              | 1ZL    | 2ZL   | 3ZG   | 4ZG  |  |  |  |  |  |
|--------------|--------|-------|-------|------|--|--|--|--|--|
| Bez indeksów |        |       |       |      |  |  |  |  |  |
| MySQL        | 576    | 2433  | 40138 | 2488 |  |  |  |  |  |
| PostgreSQL   | 102    | 176   | 5601  | 100  |  |  |  |  |  |
|              | Z inde | skami |       |      |  |  |  |  |  |
| MySQL        | 1789   | 2345  | 2393  | 2264 |  |  |  |  |  |
| PostgreSQL   | 70     | 154   | 4980  | 77   |  |  |  |  |  |

Tab. 1. Porównanie średnich czasów zapytań [ms]

Wyniki przedstawiono na wykresie poniżej, użyto skali logarytmicznej w celu łatwiejszego wartości odstających.



Rys. 2. Wyniki testów w skali logarytmicznej (wartości w [ms])

Przeanalizowano również plany wykonywania poszczególnych zapytań. Stworzono je dla każdej konfiguracji zapytań (bez i z indeksami) dla dwóch baz danych. Wszystkie rezultaty umieszczono na końcu sprawozdania (pierwsza tabela to zapytania bez indeksacji, druga z indeksami. Odpowiednio dla MySQL i PostgreSQL).

### 6 Wnioski

W ogólności indeksacja poprawiła wydajność wykonywanych zapytań. Przypadkiem odbiegającym od normy jest zapytanie 1ZL dla MySQL, gdzie to indeksacja nie zmniejszyła czasu wykonywanych zapytań. Być może taka sytuacja nie jest związana bezpośrednio z samym procesem indeksacji a innym, obciążającym procesem który działał w tej chwili na komputerze. Zdecydowanie największą poprawę wydajności widać dla zapytania 3ZG w bazie MySQL po dodaniu indeksów. W PostgreSQL, dla tego zapytania również zaobserwowano poprawę, jednak nie jest ona tak znacząca. Ważnym wniosek jest obserwacja, że zagnieżdżenia skorelowane są z reguły wolniejsze od złączeń. Dodatkową, wartą uwagi obserwacją jest fakt, że w większość przypadków czas wykonywania zapytań był mniejszy w PostgreSQL.

# Bibliografia

[1] Ł.Jajeśnica, A.Piórkowski, Wydajność złączeń ii zagnieżdzeń dla schematów znormalizowanych i zdenormalizowanych, (Studia Ingormatica, Volume 31, Number 2A (89), 2010).

|    | 1ZL EXPLAIN SELECT COUNT(*) FROM milion INNER JOIN geotabela ON (mod(milion.liczba,68)=(geotabela.id_pietro)) |           |  |     |  |       |  |         |     |                                            |
|----|---------------------------------------------------------------------------------------------------------------|-----------|--|-----|--|-------|--|---------|-----|--------------------------------------------|
| id | id select_type table partitions type possible_keys key key_len ref rows filtered Extra                        |           |  |     |  | Extra |  |         |     |                                            |
| 1  | SIMPLE                                                                                                        | geotabela |  | ALL |  |       |  | 77      | 100 |                                            |
| 1  | SIMPLE                                                                                                        | milion    |  | ALL |  |       |  | 997,920 | 100 | Using where; Using join buffer (hash join) |

2ZL

|    | 2ZL EXPLAI  | N SELECT CO | OUNT (*) FROM |        | INNER JOIN geopietr<br>JOIN geookres NATU |         |         | czba,68)=geopietro.id_pietro<br>JRAL JOIN geoeon | ) NATURAL | JOIN geo | epoka                                     |
|----|-------------|-------------|---------------|--------|-------------------------------------------|---------|---------|--------------------------------------------------|-----------|----------|-------------------------------------------|
| id | select_type | table       | partitions    | type   | possible_keys                             | key     | key_len | ref                                              | rows      | filtered | Extra                                     |
| 1  | SIMPLE      | geoeon      |               | index  | PRIMARY                                   | PRIMARY | 4       |                                                  | 1         | 100      | Using index                               |
| 1  | SIMPLE      | milion      |               | ALL    |                                           |         |         |                                                  | 997,920   | 100      | Using<br>join<br>buffer<br>(hash<br>join) |
| 1  | SIMPLE      | geopietro   |               | eq_ref | PRIMARY,id_epoka                          | PRIMARY | 4       | func                                             | 1         | 100      | Using where                               |
| 1  | SIMPLE      | geoepoka    |               | eq_ref | PRIMARY,id_okres                          | PRIMARY | 4       | geomysql.geopietro.id_epoka                      | 1         | 100      | Using where                               |
| 1  | SIMPLE      | geookres    |               | eq_ref | PRIMARY,id_era                            | PRIMARY | 4       | geomysql.geoepoka.id_okres                       | 1         | 100      | Using<br>where                            |
| 1  | SIMPLE      | geoera      |               | eq_ref | PRIMARY,id_eon                            | PRIMARY | 4       | geomysql.geookres.id_era                         | 1         | 100      | Using<br>where                            |

3ZG

|   |    | 3ZG EXPLAIN SELECT COUNT(*) F | ROM milion W | WHERE mod(mil: |      | zba,68)= (SELECT<br>d_pietro)) | id_p | ietro FROM | 1 geot | abela WHER | E mod(milio | on.liczba,68)= |
|---|----|-------------------------------|--------------|----------------|------|--------------------------------|------|------------|--------|------------|-------------|----------------|
| I | id | select_type                   | table        | partitions     | type | possible_keys                  | key  | key_len    | ref    | rows       | filtered    | Extra          |
|   | 1  | PRIMARY                       | milion       |                | ALL  |                                |      |            |        | 997,920    | 100         | Using where    |
| ſ | 2  | DEPENDENT SUBQUERY            | geotabela    |                | ALL  |                                |      |            |        | 77         | 10          | Using where    |

|    | EXPLAIN SELEC | T COUNT(*) |            |        | mod(milion.liczba,6<br>JOIN geookres NATUR |         |         | etro.id_pietro FROM geopietro<br>RAL JOIN geoeon) | NATURAL | JOIN geoe | poka                                      |
|----|---------------|------------|------------|--------|--------------------------------------------|---------|---------|---------------------------------------------------|---------|-----------|-------------------------------------------|
| id | select_type   | table      | partitions | type   | possible_keys                              | key     | key_len | ref                                               | rows    | filtered  | Extra                                     |
| 1  | SIMPLE        | geoeon     |            | index  | PRIMARY                                    | PRIMARY | 4       |                                                   | 1       | 100       | Using index                               |
| 1  | SIMPLE        | milion     |            | ALL    |                                            |         |         |                                                   | 997,920 | 100       | Using<br>join<br>buffer<br>(hash<br>join) |
| 1  | SIMPLE        | geopietro  |            | eq_ref | PRIMARY,id_epoka                           | PRIMARY | 4       | func                                              | 1       | 100       | Using where                               |
| 1  | SIMPLE        | geoepoka   |            | eq_ref | PRIMARY,id_okres                           | PRIMARY | 4       | geomysql.geopietro.id_epoka                       | 1       | 100       | Using where                               |
| 1  | SIMPLE        | geookres   |            | eq_ref | PRIMARY,id_era                             | PRIMARY | 4       | geomysql.geoepoka.id_okres                        | 1       | 100       | Using where                               |
| 1  | SIMPLE        | geoera     |            | eq_ref | PRIMARY,id_eon                             | PRIMARY | 4       | geomysql.geookres.id_era                          | 1       | 100       | Using<br>where                            |

|    |             | 1ZL EXPL  | AIN SELECT COU | NT(*) FR | OM milion INNER J | OIN geotabela O | N (mod(mil | ion.li | czba,68)=( | geotabela.io | d_pietro))               |
|----|-------------|-----------|----------------|----------|-------------------|-----------------|------------|--------|------------|--------------|--------------------------|
| id | select_type | table     | partitions     | type     | possible_keys     | key             | key_len    | ref    | rows       | filtered     | Extra                    |
| 1  | SIMPLE      | milion    |                | index    |                   | liczba_idx      | 5          |        | 997,920    | 100          | Using index              |
| 1  | SIMPLE      | geotabela |                | eq_ref   | id_pietro_idx     | id_pietro_idx   | 4          | func   | 1          | 100          | Using where; Using index |

2ZL

|    | 2ZL EXPLAI  | N SELECT C | OUNT (*) FROM | M milior | n INNER JOIN geopietro ON (mod(mil<br>geookres NATURAL JOIN geoe |            |         |                             | geoepoka | NATURAL  | JOIN                                       |
|----|-------------|------------|---------------|----------|------------------------------------------------------------------|------------|---------|-----------------------------|----------|----------|--------------------------------------------|
| id | select_type | table      | partitions    | type     | possible_keys                                                    | key        | key_len | ref                         | rows     | filtered | Extra                                      |
| 1  | SIMPLE      | geoeon     |               | index    | PRIMARY,id_eon_idx                                               | id_eon_idx | 4       |                             | 1        | 100      | Using index                                |
| 1  | SIMPLE      | milion     |               | index    |                                                                  | liczba_idx | 5       |                             | 997,920  | 100      | Using index; Using join buffer (hash join) |
| 1  | SIMPLE      | geopietro  |               | eq_ref   | PRIMARY,id_pietroG_idx,id_epoka                                  | PRIMARY    | 4       | func                        | 1        | 100      | Using where                                |
| 1  | SIMPLE      | geoepoka   |               | eq_ref   | PRIMARY,id_epoka_idx,id_okres                                    | PRIMARY    | 4       | geomysql.geopietro.id_epoka | 1        | 100      | Using where                                |
| 1  | SIMPLE      | geookres   |               | eq_ref   | PRIMARY,id_okres_idx,id_era                                      | PRIMARY    | 4       | geomysql.geoepoka.id_okres  | 1        | 100      | Using where                                |
| 1  | SIMPLE      | geoera     |               | eq_ref   | PRIMARY,id_era_idx,id_eon                                        | PRIMARY    | 4       | geomysql.geookres.id_era    | 1        | 100      | Using<br>where                             |

3ZG

|   | 3ZG EXPLAIN SELECT COUNT ( | *) FROM mil: | ion WHERE mod | d(milion | .liczba,68)= (S | ELECT id_pietr | o FROM ge | eotabe | la WHERE n | nod(milion | .liczba,68)=(id_pietro)) |
|---|----------------------------|--------------|---------------|----------|-----------------|----------------|-----------|--------|------------|------------|--------------------------|
| i | i select_type              | table        | partitions    | type     | possible_keys   | key            | key_len   | ref    | rows       | filtered   | Extra                    |
| 1 | PRIMARY                    | milion       |               | index    |                 | liczba_idx     | 5         |        | 997,920    | 100        | Using where; Using index |
| 2 | DEPENDENT SUBQUERY         | geotabela    |               | eq_ref   | id_pietro_idx   | id_pietro_idx  | 4         | func   | 1          | 100        | Using where; Using index |

|    | EXPLAIN SELE | CT COUNT(*) | ) FROM milio | n WHERE | mod(milion.liczba,68) IN (SELECT geookres NATURAL JOIN geoer |                           |   |                             | geoepoka | NATURAL J | OIN                                        |
|----|--------------|-------------|--------------|---------|--------------------------------------------------------------|---------------------------|---|-----------------------------|----------|-----------|--------------------------------------------|
| id | select_type  | table       | partitions   | type    | possible_keys                                                | possible_keys key_len ref |   | ref                         | rows     | filtered  | Extra                                      |
| 1  | SIMPLE       | geoeon      |              | index   | PRIMARY,id_eon_idx                                           | id_eon_idx                | 4 |                             | 1        | 100       | Using index                                |
| 1  | SIMPLE       | milion      |              | index   |                                                              | liczba_idx                | 5 |                             | 997,920  | 100       | Using index; Using join buffer (hash join) |
| 1  | SIMPLE       | geopietro   |              | eq_ref  | PRIMARY,id_pietroG_idx,id_epoka                              | PRIMARY                   | 4 | func                        | 1        | 100       | Using where                                |
| 1  | SIMPLE       | geoepoka    |              | eq_ref  | PRIMARY,id_epoka_idx,id_okres                                | PRIMARY                   | 4 | geomysql.geopietro.id_epoka | 1        | 100       | Using<br>where                             |
| 1  | SIMPLE       | geookres    |              | eq_ref  | PRIMARY,id_okres_idx,id_era                                  | PRIMARY                   | 4 | geomysql.geoepoka.id_okres  | 1        | 100       | Using where                                |
| 1  | SIMPLE       | geoera      |              | eq_ref  | PRIMARY,id_era_idx,id_eon                                    | PRIMARY                   | 4 | geomysql.geookres.id_era    | 1        | 100       | Using<br>where                             |

```
1ZL
    EXPLAIN SELECT COUNT(*) FROM geochrono.Milion INNER JOIN geochrono.GeoTabela ON (mod(Milion.liczba,68)=
                                              (GeoTabela.id_pietro))
                                                   QUERY PLAN
                            Finalize Aggregate (cost=14664.16..14664.17 rows=1 width=8)
                               -> Gather (cost=14663.95..14664.16 rows=2 width=8)
                                               Workers Planned: 2
                          -> Partial Aggregate (cost=13663.95..13663.96 rows=1 width=8)
                             -> Hash Join (cost=2.73..13262.90 rows=160417 width=0)
                              Hash Cond: (mod(milion.liczba, 68) = geotabela.id_pietro)
                     -> Parallel Seq Scan on milion (cost=0.00..9572.67 rows=416667 width=4)
                                   -> Hash (cost=1.77..1.77 rows=77 width=4)
                           -> Seq Scan on geotabela (cost=0.00..1.77 rows=77 width=4)
2ZL
                EXPLAIN SELECT COUNT(*) FROM geochrono.Milion INNER JOIN geochrono.GeoPietro ON
       (mod(Milion.liczba,68)=geochrono.GeoPietro.id_pietro) NATURAL JOIN geochrono.GeoEpoka NATURAL JOIN
                 geochrono.GeoOkres NATURAL JOIN geochrono.GeoEra NATURAL JOIN geochrono.GeoEon
                                                   QUERY PLAN
                            Finalize Aggregate (cost=13912.92..13912.93 rows=1 width=8)
                               -> Gather (cost=13912.70..13912.91 rows=2 width=8)
                                               Workers Planned: 2
                          -> Partial Aggregate (cost=12912.70..12912.71 rows=1 width=8)
                             -> Hash Join (cost=7.61..12511.66 rows=160417 width=0)
                                Hash Cond: (geoepoka.id okres = geookres.id okres)
                             -> Hash Join (cost=4.23..11250.46 rows=160417 width=4)
                               Hash Cond: (geopietro.id_epoka = geoepoka.id_epoka)
                             -> Hash Join (cost=2.73..10746.75 rows=160417 width=4)
                              Hash Cond: (mod(milion.liczba, 68) = geopietro.id_pietro)
                     -> Parallel Seq Scan on milion (cost=0.00..9572.67 rows=416667 width=4)
                                   -> Hash (cost=1.77..1.77 rows=77 width=8)
                           -> Seq Scan on geopietro (cost=0.00..1.77 rows=77 width=8)
```

-> Hash (cost=1.22..1.22 rows=22 width=8)

-> Seq Scan on geoepoka (cost=0.00..1.22 rows=22 width=8)

-> Hash (cost=3.27..3.27 rows=9 width=4)

-> Hash Join (cost=2.09..3.27 rows=9 width=4)

Hash Cond: (geoera.id\_eon = geoeon.id\_eon)

-> Hash Join (cost=1.07..2.19 rows=9 width=8)

Hash Cond: (geookres.id\_era = geoera.id\_era)

-> Seq Scan on geookres (cost=0.00..1.09 rows=9 width=8)

-> Hash (cost=1.03..1.03 rows=3 width=8)

-> Seq Scan on geoera (cost=0.00..1.03 rows=3 width=8)

-> Hash (cost=1.01..1.01 rows=1 width=4)

-> Seq Scan on geoeon (cost=0.00..1.01 rows=1 width=4)

| Aggregate (cost=2175418.502175418.51 rows=1 width=8)                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -> Seq Scan on milion (cost=0.002175406.00 rows=5000 width=0)                                                                                                                                                                                                      |
| Filter: (mod(liczba, 68) = (SubPlan 1))                                                                                                                                                                                                                            |
| SubPlan 1                                                                                                                                                                                                                                                          |
| -> Seq Scan on geotabela (cost=0.002.16 rows=1 width=4)                                                                                                                                                                                                            |
| Filter: (mod(milion.liczba, 68) = id_pietro)                                                                                                                                                                                                                       |
| JIT:                                                                                                                                                                                                                                                               |
| Functions: 10                                                                                                                                                                                                                                                      |
| Options: Inlining true, Optimization true, Expressions true, Deforming true                                                                                                                                                                                        |
| 4ZG                                                                                                                                                                                                                                                                |
| 4ZG EXPLAIN SELECT COUNT(*) FROM geochrono.Milion WHERE mod(Milion.liczba,68) IN (SELECT GeoPietro.id_pietro FROM geochrono.GeoPietro NATURAL JOIN geochrono.GeoEpoka NATURAL JOIN geochrono.GeoOkres NATURAL JOIN geochrono.GeoEra NATURAL JOIN geochrono.GeoEon) |
| QUERY PLAN                                                                                                                                                                                                                                                         |
| Finalize Aggregate (cost=14093.3314093.34 rows=1 width=8)                                                                                                                                                                                                          |
| -> Gather (cost=14093.1214093.33 rows=2 width=8)                                                                                                                                                                                                                   |
| Workers Planned: 2                                                                                                                                                                                                                                                 |
| -> Partial Aggregate (cost=13093.1213093.13 rows=1 width=8)                                                                                                                                                                                                        |
| -> Hash Semi Join (cost=8.4712692.08 rows=160417 width=0)                                                                                                                                                                                                          |
| Hash Cond: (mod(milion.liczba, 68) = geopietro.id_pietro)                                                                                                                                                                                                          |
| -> Parallel Seq Scan on milion (cost=0.009572.67 rows=416667 width=4)                                                                                                                                                                                              |
| -> Hash (cost=7.507.50 rows=77 width=4)                                                                                                                                                                                                                            |
| -> Hash Join (cost=4.887.50 rows=77 width=4)                                                                                                                                                                                                                       |
| Hash Cond: (geoepoka.id_okres = geookres.id_okres)                                                                                                                                                                                                                 |
| -> Hash Join (cost=1.503.51 rows=77 width=8)                                                                                                                                                                                                                       |
| Hash Cond: (geopietro.id_epoka = geoepoka.id_epoka)                                                                                                                                                                                                                |
| -> Seq Scan on geopietro (cost=0.001.77 rows=77 width=8)                                                                                                                                                                                                           |
| -> Hash (cost=1.221.22 rows=22 width=8)                                                                                                                                                                                                                            |
| -> Seq Scan on geoepoka (cost=0.001.22 rows=22 width=8)                                                                                                                                                                                                            |
| -> Hash (cost=3.273.27 rows=9 width=4)                                                                                                                                                                                                                             |
| -> Hash Join (cost=2.093.27 rows=9 width=4)                                                                                                                                                                                                                        |
| Hash Cond: (geoera.id_eon = geoeon.id_eon)                                                                                                                                                                                                                         |
| -> Hash Join (cost=1.072.19 rows=9 width=8)                                                                                                                                                                                                                        |
| Hash Cond: (geookres.id_era = geoera.id_era)                                                                                                                                                                                                                       |
| -> Seq Scan on geookres (cost=0.001.09 rows=9 width=8)                                                                                                                                                                                                             |
| -> Hash (cost=1.031.03 rows=3 width=8)                                                                                                                                                                                                                             |
| -> Seq Scan on geoera (cost=0.001.03 rows=3 width=8)                                                                                                                                                                                                               |
| -> Hash (cost=1.011.01 rows=1 width=4)                                                                                                                                                                                                                             |
| -> Seq Scan on geoeon (cost=0.001.01 rows=1 width=4)                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                    |

```
1ZL
    EXPLAIN SELECT COUNT(*) FROM geochrono.Milion INNER JOIN geochrono.GeoTabela ON (mod(Milion.liczba,68)=
                                              (GeoTabela.id_pietro))
                                                   QUERY PLAN
                            Finalize Aggregate (cost=12148.01..12148.02 rows=1 width=8)
                               -> Gather (cost=12147.79..12148.00 rows=2 width=8)
                                               Workers Planned: 2
                          -> Partial Aggregate (cost=11147.79..11147.80 rows=1 width=8)
                             -> Hash Join (cost=2.73..10746.75 rows=160417 width=0)
                              Hash Cond: (mod(milion.liczba, 68) = geotabela.id_pietro)
                     -> Parallel Seq Scan on milion (cost=0.00..9572.67 rows=416667 width=4)
                                   -> Hash (cost=1.77..1.77 rows=77 width=4)
                           -> Seq Scan on geotabela (cost=0.00..1.77 rows=77 width=4)
2ZL
                EXPLAIN SELECT COUNT(*) FROM geochrono.Milion INNER JOIN geochrono.GeoPietro ON
       (mod(Milion.liczba,68)=geochrono.GeoPietro.id_pietro) NATURAL JOIN geochrono.GeoEpoka NATURAL JOIN
                 geochrono.GeoOkres NATURAL JOIN geochrono.GeoEra NATURAL JOIN geochrono.GeoEon
                                                   QUERY PLAN
                            Finalize Aggregate (cost=13912.92..13912.93 rows=1 width=8)
                               -> Gather (cost=13912.70..13912.91 rows=2 width=8)
                                               Workers Planned: 2
                          -> Partial Aggregate (cost=12912.70..12912.71 rows=1 width=8)
                             -> Hash Join (cost=7.61..12511.66 rows=160417 width=0)
                                Hash Cond: (geoepoka.id okres = geookres.id okres)
                             -> Hash Join (cost=4.23..11250.46 rows=160417 width=4)
                               Hash Cond: (geopietro.id_epoka = geoepoka.id_epoka)
                             -> Hash Join (cost=2.73..10746.75 rows=160417 width=4)
                              Hash Cond: (mod(milion.liczba, 68) = geopietro.id_pietro)
                     -> Parallel Seq Scan on milion (cost=0.00..9572.67 rows=416667 width=4)
                                   -> Hash (cost=1.77..1.77 rows=77 width=8)
                           -> Seq Scan on geopietro (cost=0.00..1.77 rows=77 width=8)
```

-> Hash (cost=1.22..1.22 rows=22 width=8)

-> Seq Scan on geoepoka (cost=0.00..1.22 rows=22 width=8)

-> Hash (cost=3.27..3.27 rows=9 width=4)

-> Hash Join (cost=2.09..3.27 rows=9 width=4)

Hash Cond: (geoera.id\_eon = geoeon.id\_eon)

-> Hash Join (cost=1.07..2.19 rows=9 width=8)

Hash Cond: (geookres.id\_era = geoera.id\_era)

-> Seq Scan on geookres (cost=0.00..1.09 rows=9 width=8)

-> Hash (cost=1.03..1.03 rows=3 width=8)

-> Seq Scan on geoera (cost=0.00..1.03 rows=3 width=8)

-> Hash (cost=1.01..1.01 rows=1 width=4)

-> Seq Scan on geoeon (cost=0.00..1.01 rows=1 width=4)

| Aggregate (cost=2175418.502175418.51 rows=1 width=8)                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -> Seq Scan on milion (cost=0.002175406.00 rows=5000 width=0)                                                                                                                                                                    |
| Filter: (mod(liczba, 68) = (SubPlan 1))                                                                                                                                                                                          |
| SubPlan 1                                                                                                                                                                                                                        |
| -> Seq Scan on geotabela (cost=0.002.16 rows=1 width=4)                                                                                                                                                                          |
| Filter: (mod(milion.liczba, 68) = id_pietro)                                                                                                                                                                                     |
| JIT:                                                                                                                                                                                                                             |
| Functions: 10                                                                                                                                                                                                                    |
| Options: Inlining true, Optimization true, Expressions true, Deforming true                                                                                                                                                      |
| 4ZG                                                                                                                                                                                                                              |
| EXPLAIN SELECT COUNT(*) FROM geochrono.Milion WHERE mod(Milion.liczba,68) IN (SELECT GeoPietro.id_pietro FROM geochrono.GeoPietro NATURAL JOIN geochrono.GeoEpoka NATURAL JOIN geochrono.GeoOkres NATURAL JOIN geochrono.GeoEon) |
| QUERY PLAN                                                                                                                                                                                                                       |
| Finalize Aggregate (cost=14093.3314093.34 rows=1 width=8)                                                                                                                                                                        |
| -> Gather (cost=14093.1214093.33 rows=2 width=8)                                                                                                                                                                                 |
| Workers Planned: 2                                                                                                                                                                                                               |
| -> Partial Aggregate (cost=13093.1213093.13 rows=1 width=8)                                                                                                                                                                      |
| -> Hash Semi Join (cost=8.4712692.08 rows=160417 width=0)                                                                                                                                                                        |
| Hash Cond: (mod(milion.liczba, 68) = geopietro.id_pietro)                                                                                                                                                                        |
| -> Parallel Seq Scan on milion (cost=0.009572.67 rows=416667 width=4)                                                                                                                                                            |
| -> Hash (cost=7.507.50 rows=77 width=4)                                                                                                                                                                                          |
| -> Hash Join (cost=4.887.50 rows=77 width=4)                                                                                                                                                                                     |
| Hash Cond: (geoepoka.id_okres = geookres.id_okres)                                                                                                                                                                               |
| -> Hash Join (cost=1.503.51 rows=77 width=8)                                                                                                                                                                                     |
| Hash Cond: (geopietro.id_epoka = geoepoka.id_epoka)                                                                                                                                                                              |
| -> Seq Scan on geopietro (cost=0.001.77 rows=77 width=8)                                                                                                                                                                         |
| -> Hash (cost=1.221.22 rows=22 width=8)                                                                                                                                                                                          |
| -> Seq Scan on geoepoka (cost=0.001.22 rows=22 width=8)                                                                                                                                                                          |
| -> Hash (cost=3.273.27 rows=9 width=4)                                                                                                                                                                                           |
| -> Hash Join (cost=2.093.27 rows=9 width=4)                                                                                                                                                                                      |
| Hash Cond: (geoera.id_eon = geoeon.id_eon)                                                                                                                                                                                       |
| -> Hash Join (cost=1.072.19 rows=9 width=8)                                                                                                                                                                                      |
| Hash Cond: (geookres.id_era = geoera.id_era)                                                                                                                                                                                     |
| -> Seq Scan on geookres (cost=0.001.09 rows=9 width=8)                                                                                                                                                                           |
| -> Hash (cost=1.031.03 rows=3 width=8)                                                                                                                                                                                           |
| -> Seq Scan on geoera (cost=0.001.03 rows=3 width=8)                                                                                                                                                                             |
| -> Hash (cost=1.011.01 rows=1 width=4)                                                                                                                                                                                           |
| -> Seq Scan on geoeon (cost=0.001.01 rows=1 width=4)                                                                                                                                                                             |
|                                                                                                                                                                                                                                  |