Virusi in bakterije

Virusi

- Virusov ne uvrščamo med živa bitja, ker
 - nimajo lastne presnove,
 - ne premikajo se aktivno,
 - ne morejo se samostojno razmnoževati.
- Viruse delimo glede na nukleinsko kislino (DNA ali RNA) in glede na gostiteljske celice.
- <u>Virusi iste vrste</u> namreč napadajo le eno vrsto organizmov.
- So <u>manjši od bakterij</u>.

Zgradba virusov

- Virus je zgrajen iz nukleinske kisline (DNA ali RNA) in kapside (iz beljakovin), ki obdaja nukleinsko kislino.
- Nekateri virusi imajo še dodaten membranski ovoj, ki izvira iz gostiteljske celice.
- Lahko so kroglasti, paličasti ali poliedrični.
- Bolj zapleteno zgradbo imajo večinoma virusi, ki zajedajo bakterije.
- Imenujemo jih bakteriofagi ali fagi.

Bakteriofagi

- V poliedrično oblikovani glavici (kapsidi) bakteriofaga je nukleinska kislina.
- V večini primerov je DNA.
- Na glavico je pritrjen votel beljakovinski repek.
- Nitasti izrastki na koncu repka omogočajo, da fag prepozna ustrezno gostiteljsko celico in se nanjo veže.
- Kapsido gradijo beljakovinske podenote, kapsomere, ki so vse enake.

Razmnoževanje virusov

- Virus se pritrdi na membrano celice.
- Temu sledi vstop nukleinske kisline v celico, medtem ko kapsida večinoma ostane zunaj nje.
- Lizni cikel (hiter razpad gostiteljske celice) virulentni virusi:
 - Virusna nukleinska kislina preusmeri presnovo gostiteljske celice v izdelovanje novih virusov.
 - Sintetizirajo se nove virusne nukleinske kisline, ki sprožijo sintezo beljakovon virusne kapside.
 - Novonastale molekule se združijo v nove viruse, ki se sprostijo.
 - Sprostitev je pogosto povezana z razpadom gostiteljske celice.
 - Novi virusi lahko vstopijo v nove celice.
- Lizogeni cikel (gostiteljska celica ne razpade) temperirani virusi:
 - Pri nekaterih virusih se nukleinska kislina vgradi v DNA gostiteljske celice in se skupaj z njo podvojuje.
 - Vgrajen virusni dedni zapis celici ne škoduje, pač pa se prenaša na hčerinske celice.
 - Vgrajen dedni zapis ni več v celoti virus; imenujemo ga provirus, pri bakteriofagih pa profag.

RNA virusi, retrovirusi in prioni

- V RNA virusih (npr. virus gripe) je poleg molekule RNA prisoten še encim RNA replikaza, ki omogoči <u>nastanek mRNA na modelu RNA</u>.
- V retrovirusih (npr. virus HIV) je poleg molekule RNA prisoten še encim reverzna transkriptaza, ki <u>prepiše virusni RNA v DNA</u>, tako da se lahko <u>virusni genski zapis vključi v DNA gostiteljske celice</u>.
- Prioni so infekcijske beljakovine, ki povzročajo hude bolezni.
- Prioni imajo enako primarno strukturo kot beljakovina gostiteljske celice, ampak nenormalno tridimenzionalno strukturo.

RAZMNOŽEVANJE VIRUSA HIV

Bakterije

- Bakterije so prokariontski enoceličarji: nimajo jedra, njihov genetski material je prost v citosolu.
- Prokarionti se razmnožujejo nespolno: vsaka celica se razcepi na dve celici, ki sta genetsko identični njej sami (takim celicam pravimo kloni).
- Poleg razmnoževanja poznamo pri bakterijah <u>še tri mehanizme</u> prenosa genetske informacije:
 - konjugacija,
 - transformacija,
 - transdukcija.

Konjugacija

Prof. Danja Bregant - Znanstveni licej Simon Gregorčič - Gorica Šolsko leto 2016/17

Konjugacija

- F⁺ = celica, ki je sposobna konjugacije.
- F = celica, ki ni sposobna konjugacije.

- <u>Najpomembnejši prenos</u> bakterijskih genetskih informacij je konjugacija.
- Med konjugacijo prideta v stik donorska in recipientska celica.
- Donor sintetizira konjugativni pil, s katerim se pritrdi na recipientsko celico.
- Preko konjugativnega pila ena veriga plazmidne* DNA preide iz donorske v recipientsko celico.
- Po prenosu DNA pride do sinteze komplementarne verige DNA.
- Tudi celica F⁻ postane F⁺.

Plazmidi

Plazmid pod elektronskim mikroskopom

- *Plazmid je kratka (vsebuje le nekaj desetin genov), krožna molekula DNA v bakterijski celici, ki se samostojno podvojuje po modelu odvijajočega se kroga.
- Bakterija lahko ima več plazmidov.
- Plazmidi F (Fertility) vsebujejo informacije za nastanek pilusov in torej za konjugacijo.
- Plazmidi R (Resistance) vsebujejo gene za odpornost proti antibiotikom.
 - V populaciji neodpornih celic postanejo, ob prisotnosti odporne celice, v kratkem času vse celice odporne.

 Včasih se plazmid vključi v gostiteljev kromosom podobno kot profag in nastane tip celice imenovan HFR (High frequency of recombination), velika pogostost rekombinacij.

Konjugacija celic HFR

CELICA HFR

Bakterijski kromosom

Celica je postala HFR, ko se je plazmid F integriral v njen kromosom.

Celica je postala HFR, ko se je plazmid F integriral v njen kromosom.

Celica HFR prenaša v celico F⁻ kopijo plazmida F, skupaj z genoma a in b.

Gena a^+ in b^+ lahko rekombinirata z genoma a^- in b^- .

Ker sta gena a^+ in b^+ aktivna, a^- in b^- pa neaktivna, je celica pridobila lastnosti, ki jih prej ni imela.

Transformacija

- Transformacija je vključitev enojne verige DNA v bakterijsko celico in njena rekombinacija z bakterijskim kromosomom.
- V naravi se proste DNA pojavijo ob razpadu celic.
- Celice, ki so zmožne transformacije, imenujemo kompetentne celice.
- <u>Transformacija</u> je <u>osnova</u> vseh modernih <u>tehnik genske</u> <u>manipulacije</u>.

Transformacija

Transdukcija

- Do transdukcije pride, ko donorsko bakterijo okuži fag.
- Po pomoti se nekateri fragmenti bakterijske DNA vključijo v kapsido.
- Nastane transducentni fag, ki po smrti celice, okuži recipientsko bakterijo.
- Tako DNA donorske bakterije rekombinira s kromosomom recipientske bakterije.

Transdukcija

Transpozoni

- so fragmenti DNA, ki se premeščajo z enega na drugo mesto istega kromosoma ali pa na drug kromosom;
- odkrila jih je Barbara McClintock (1950);
- prisotni so bodisi v evkariontih kot v prokariontih;
- lahko povzročajo mutacije.
- Transpozaza je encim, ki katalizira njihovo premeščanje;
- pred premeščanjem se transpozon podvoji, tako da ne izgine z izvornega mesta.

Transpozaza prepozna zaporedje nukleotidov, ki mu pravimo TARČNO ZAPOREDJE.

c Transpozon se veže na stopničasta konca.

Stopničasti konec

D Ob straneh transpozona nastaneta enaki tarčni zaporedji.

Kompleksni transpozoni

vsebujejo gene, ki kodificirajo druge beljakovine.

B Ob vključitvi transpozona se sintetizira komplementarna DNA, tako da se segmenta strukturnega gena 2 obnovita.

- V rastlinah in sesalcih, vključeno s človekom, so v veliki meri prisotni retrotranspozoni ali retroelementi;
- To so fragmenti DNA, ki se prepišejo v RNA in nato, s pomočjo reverzne transkriptaze, ponovno v DNA, ki se vključi na drugo mesto v kromosomu.