Mechanizm multilateracji w rozproszonej sieci sensorów audio

Gabriel Budziński

Praca napisana pod kierunkiem dra inż. Przemysława Błaśkiewicza

20 czerwca 2024

Multiateracja

Weźmy punkt $(x,y) \in \mathbb{R}^2$ i oznaczmy go N, ponadto weźmy zbiór n punktów $\{(x_i,y_i): i \in [n]\} \subset \mathbb{R}^2$, który oznaczmy \mathcal{O} , a punkty należące do zbioru odpowiednio O_i . Niech d_i będzie odległością $d(N,O_i)$. Znając współrzędne punktów O_i oraz odległości d_i chcemy znaleźć (x,y).

Postać wyjściowa

$$\begin{cases} (x - x_1)^2 + (y - y_1)^2 = d_1^2 \\ (x - x_2)^2 + (y - y_2)^2 = d_2^2 \\ \vdots \\ (x - x_n)^2 + (y - y_n)^2 = d_n^2 \end{cases}$$

Obrane przekształcenie

$$\begin{bmatrix} 1 & -2x_1 & -2y_1 & -2z_1 \\ 1 & -2x_2 & -2y_2 & -2z_2 \\ & \vdots & & \\ 1 & -2x_n & -2y_n & -2z_n \end{bmatrix} \begin{bmatrix} x^2 + y^2 + z^2 \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} d_1^2 - x_1^2 - y_1^2 - z_1^2 \\ d_2^2 - x_2^2 - y_2^2 - z_2^2 \\ \vdots \\ d_n^2 - x_n^2 - y_n^2 - z_n^2 \end{bmatrix}$$

 $A \cdot x = b$

Rozwiązanie

Obrano rozwiązanie aproksymacyjne w sensie najmniejszych kwadratów:

$$\sum_{i=1}^{n} \left| \sum_{j=1}^{m} A_{ij} x_j - b_i \right|^2 = ||A\hat{x} - b||^2,$$

które otrzymujemy poprzez rozwiązania normalnego

$$A^T A \hat{x} = A^T b$$

Istnienie rozwiązania

Zakładając, że żadna trójka odbiorników nie jest współliniowa (rank A=m), co daje odwracalność A i istnienie \hat{x} .

Metody synchronizacji

- Synchronizacja programowa
 - Synchronizacja NTP
 - Synchronizacja pomiaru przesunięć
- Synchronizacja sprzętowa
 - Synchronizacja mikrofonowa

1.0

Rysunek: synchronizacja NTP

Rysunek: synchronizacja pomiaru przesunięć

Rysunek: synchronizacja mikrofonowa

Eksperymenty

Dziękuję za uwagę.