HOMEWORK 1

SIGNED MEASURES, HAHN AND JORDAN DECOMPOSITION THEOREMS

Let (Ω, \mathcal{F}) be a measurable space and let μ be a *signed* measure on it.

Problem 1. Let $E_1, E_2, ...$ be \mathcal{F} -measurable disjoint sets. Prove that if $\mu(\bigcup_{k=1}^{\infty} E_k) < \infty$ then $\sum_{k=1}^{\infty} \mu(E_k)$ is absolutely summable, meaning that:

$$\sum_{k=1}^{\infty} \left| \mu(E_k) \right| < \infty.$$

Hint: Use the Riemann rearrangement theorem, which you could find online here: https://en.wikipedia.org/wiki/Riemann_series_theorem.

Problem 2. Verify that the difference $\mu := \mu_1 - \mu_2$ of two *positive* measures at least one of which is finite, is a signed measure.

Problem 3. Let $(\Omega, \mathcal{F}, \mathbf{m})$ be an honest measure space and let $f \in L^1(\mathbf{m})$. Define the map $\mathbf{m}_f \colon \mathcal{F} \to [-\infty, \infty]$ by

$$\mathrm{m}_f(E) := \int_E f \, d\mathrm{m} = \int_\Omega f \, \mathbf{1}_E \, d\mathrm{m} \quad \text{for all } E \in \mathcal{F}.$$

- (a) Verify that m_f is a finite signed measure on (Ω, \mathcal{F}) .
- (b) Prove that for any \mathcal{F} -measurable function $g: \Omega \to \mathbb{R}$ we have

$$\int_{\Omega} g \, d\mathbf{m}_f = \int_{\Omega} g \, f \, d\mathbf{m}.$$

Problem 4. Let E, F be two \mathcal{F} -measurable sets. Prove that if $E \subset F$ and $|\mu(F)| < \infty$ then $|\mu(E)| < \infty$.

Problem 5. (monotone convergence theorem for sets) Let E_1, E_2, \ldots be a sequence of \mathcal{F} -measurable sets.

(a) If
$$E_1 \subset E_2 \subset \dots$$
 then $\mu(\bigcup_{n=1}^{\infty} E_n) = \lim_{n \to \infty} \mu(E_n)$.

(b) If
$$E_1 \supset E_2 \supset \dots$$
 and $|\mu(E_1)| < \infty$ then $\mu(\bigcap_{n=1}^{\infty} E_n) = \lim_{n \to \infty} \mu(E_n)$.

Problem 6. Let $\mu := \lambda - \delta_a$, where λ is the Lebesgue measure on \mathbb{R} and δ_a is the Dirac measure on \mathbb{R} centered at the point $a \in \mathbb{R}$.

Find two sets P and N representing a Hahn decomposition of μ .

Problem 7. Find two sets P and N representing a Hahn decomposition of the signed measure \mathbf{m}_f in Problem 3.

Problem 8. Prove the *uniqueness* of the Jordan decomposition $\mu = \mu^+ - \mu^-$ of a signed measure μ .

Problem 9. For every \mathcal{F} -measurable set E show that:

- (a) $|\mu(E)| \leq |\mu|(E)$. This of course implies that $\mu(E)$ and $-\mu(E)$ are both $\leq |\mu|(E)$.
- (b) If $\Omega = P \sqcup N$ is a Hahn decomposition of μ , then $|\mu|(E) = \mu(E \cap P) \mu(E \cap N)$. In particular, $|\mu|(\Omega) = \mu(P) - \mu(N)$.

(c)
$$|\mu|(E) = \max \left\{ \sum_{k=1}^{\infty} |\mu(E_k)| : E_1, E_2, \dots \text{ are disjoint and } E = \bigcup_{k=1}^{\infty} E_k \right\}.$$

Problem 10. Let $\mathcal{M}(\Omega)$ be the space of all finite signed measures on (Ω, \mathcal{F}) . For every $\mu \in \mathcal{M}$ let

$$\|\mu\| := |\mu|(\Omega).$$

Prove that $(\mathcal{M}, \| \|)$ is a normed space.

In fact, this is a Banach space (you may try proving this as well).

Hint: The trickier part is verifying the triangle inequality $\|\mu_1 + \mu_2\| \le \|\mu_1\| + \|\mu_2\|$. Begin by considering a Hahn decomposition $\Omega = P \sqcup N$ for the signed measure $\mu := \mu_1 + \mu_2$. Use Problem 9 part (b) for μ and then part (a) for μ_1 and μ_2 .