Sean Blanchard 4/20/2021

COMP / IT 420 Database Theory and Design Spring 2020 Homework 4: Concurrency

Introduction

This lab will focus on numerous aspects of concurrency control including timestamp ordering, deadlock detection and prevention and multi-version concurrency control.

Section 1: Timestamping (20pts)

t	T1, TS(T1) = 1	T2, TS(T2) = 2
1	Read(A)	
2	Read(C)	
3		Read(B)
4		Read(C)
5		Write(C)
6		Read(A)
7	Write(C)	
8		Write(B)

1. Assuming a simple timestamp ordering protocol which ignores locks, fill in the following timestamp table with the appropriate values keyed to time index (*t*) from the table above. (8pts)

t	Object	R-TS	W-TS
1	A	1	0
2	С	1	0
3	В	2	0
4	С	2	0
5	С	2	2
6	A	2	0
7	С	0	0
8	В	2	2

2. Assuming a wait / die scheme and locking, answer the following questions about the table below.

t	T1, TS(T1) = 1	T2, TS(T2) = 2
1	Lock (A)	
2	Read (A)	
3		Lock(B)
4		Read(B)
5	Lock(B)	
6	Read(B)	
7		Unlock(B)
8		Lock(A)

a. At what time index(es), if any, will a rollback be triggered for either transaction? (3pts)

The time index that will trigger a rollback would be t = 8. Transaction 2 is requesting a lock from T1 so T2 dies.

b. At what time index will T1 acquire a lock on B? (3pts)

The time index that T1 would acquire a lock on B is t = 7.

3. Assuming a wound / wait scheme and locking, answer the following questions about the table below.

t	T1, TS(T1) = 1	T2, TS(T2) = 2
1	Lock (A)	
2	Read (A)	
3		Lock(B)
4		Read(B)
5	Lock(B)	
6	Read(B)	
7		Unlock(B)
8		Lock(A)

a. At what time index(es), if any, will a rollback be triggered for either transaction? (3pts)

The time index that will trigger a rollback would be t = 5.

b. At what time index will T1 acquire a lock on B? (3pts)The time index that T1 will acquire a lock on B at t = 5.

Section 2: Multi-Version Concurrency Control (20pts)

Follow the guidelines in sections 15.6.1 and 15.6.2 in the posted Database System Concepts 6^{th} edition Chapter 15 on Concurrency.

Given the following transactions, assume:

- 1. That each write operation is changing the value of its object.
- 2. Versioning starts with 0 and increments by one.
- 3. That objects A and B were written in a previous transaction with timestamp 1.

t	T1, TS(T2) = 2	T2, TS(T3) = 3
1	Write(A)	
2	Read(A)	
3		Read(A)
4		Write(B)
5	Read(B)	
6		Write(A)
7	Read(A)	
8		Read(B)

1. Fill in the following table with the correct information regarding the state of each object: (Assume multi-version timestamp-ordering and a declaration of *Read Uncommitted* for T2 and T3.) (10pts)

t	Object	Version	W-TS	R-TS
О	A	0		
О	В	0		
1	A	1	1	0
2	A	1	1	1
3	A	1	1	2
4	В	2	2	0
5	В	2	2	1
6	A	3	2	0
7	A	3	2	1
8	В	3	2	2

- 2. Which object and version will be read at each Read timestep? (5pts) If transaction Ti issues a read(Q), then the value returned is the content of version Qk.
- 3. Assuming that each transaction is declared Serializable and strict 2PL is used for concurrency:
 - a. At which time indexes will T1 need to wait? ("None" is a possible answer.)(2pts)

None

b. At which time indexes will T2 need to wait? ("None" is a possible answer.) (3pts)

6