Stadiul Actual în Domeniul Localizării prin LoRaWAN

1. Dominanța GNSS și Limitările Sale

GNSS (Global Navigation Satellite System) rămâne tehnologia principală pentru localizare în spații deschise, oferind acoperire globală și precizie ridicată. Totuși, prezintă două limitări majore:

- Consum ridicat de energie: Receptoarele autonome GNSS sunt ineficiente pentru dispozitive IoT cu baterii de durată.
- Performanță slabă în medii ostile: Semnalele GNSS sunt perturbate în medii urbane/indoor din cauza lipsei liniei vizuale (LoS) sau a fenomenului de multipath, reducând acuratețea la >10 metri[1,2].

2. Alternative la GNSS și Provocări

S-au dezvoltat tehnologii alternative, fiecare cu compromisuri:

- Rețele celulare (GSM, OFDM): Acoperire bună, dar consum energetic ridicat și complexitate algoritmică[3].
- Wi-Fi și Bluetooth: Potențial pentru indoor, dar cu rază scurtă de acțiune (<100m) și sensibile la interferențe[4,17].
- UWB (Ultra-Wideband): Precizie sub-30 cm în medii controlate, dar cost ridicat și neadaptat pentru aplicații IoT la scară largă[5,28].
- LPWAN (Low-Power Wide Area Networks): Emerg ca soluții promițătoare datorită razei lungi (>10 km) și consumului redus de energie[6,11].

3. Rolul LoRaWAN în Localizare

LoRaWAN (Long Range Wide Area Network) este o tehnologie LPWAN cu avantaje unice:

- Rază extinsă: Până la 15 km în medii rurale[39].
- Rezistență la interferențe: Modulația CSS (Chirp Spread Spectrum) reduce fading-ul multipath[10,13].
- Flexibilitate în consum energetic: Poate fi ajustat în funcție de aplicație [12].

Tabele Comparative:

Tehnologie	Precizie (m)	Consum Energie	Acoperire (km)	Cost
GNSS	1–10	Ridicat	Global	Mediu
Wi-Fi	3–10	Moderat	0.1	Scăzut
UWB	0.1–0.3	Ridicat	0.05	Ridicat

LoRaWAN (RSSI)	200– 400[26,27]	Foarte scăzut	15	Scăzut
LoRaWAN (TDoA)	23– 100[19,25]	Scăzut	8.6	Mediu

4. Metode de Localizare în LoRaWAN

- RSSI (Received Signal Strength Indicator):
 - Măsoară puterea semnalului, dar este foarte sensibil la obstacole și condiții atmosferice.
 - Eroare medie: 214–398 m în medii urbane[26].
 - Limitări: Variații mari datorită canalelor radio nepredictibile.
 - TDoA (Time Difference of Arrival):
 - Principiu: Calculează diferențele de timp de sosire a semnalului la gateway-uri sincronizate.

$$\Delta tij = ti - tj = (x-ai)2 + (y-bi)2 - (x-aj)2 + (y-bj)2c\Delta tij = ti - tj = c(x-ai)2 + (y-bi)2 - (x-aj)2 + (y-bj)2$$

unde cc = viteza luminii, (x,y)(x,y) = poziția nodului, (ai,bi)(ai,bi) = poziția gatewayului.

- Precizie: 100 m cu sincronizare GNSS[19], îmbunătățită la 23 m în condiții LoS ideale[Sec. IV].
- Dependența de GNSS: Toate soluțiile TDoA existente folosesc GNSS pentru sincronizarea gateway-urilor, crescând costul și inutilizabile în medii fără sateliți[19,25,29].
- AoA (Angle of Arrival):

Determină unghiul de sosire a semnalului, dar necesită antene complexe și este sensibil la reflexii.

Avantaj: Combinația AoA + TDoA reduce eroarea cu 73% față de TDoA pur[31].

5. Provocări Curente

- Sincronizarea fără GNSS: Lipsa unor metode robuste de sincronizare între gateway-uri este bariera principală[Sec. II].
- Constrângeri de bandă: Sincronizarea frecventă consumă resurse în rețele LoRaWAN cu debit redus (ALOHA pur)[6,10].
- Deriva de ceas: Oscilatoarele ieftine au deriva de 5 ppm, ducând la erori de până la 105105 m fără compensație[Sec. III-A].
- Duty Cycle: Limita de 1–10% în unele regiuni (e.g., Europa) reduce frecvența transmisiilor, crescând eroarea[20].

6. Concluzii Stadiu Curent

Localizarea prin LoRaWAN este fezabilă pentru aplicații IoT ce necesită low-cost și low-power, dar:

- Precizia este moderată: 23–400 m, inferioară față de GNSS/UWB.
- Sincronizarea rămâne un punct slab: Soluțiile existente depind de GNSS, limitând utilizarea în medii subterane/urbane dense
- Cercetarea se concentrează pe:
 - Metode "GNSS-free" (e.g., noduri de sincronizare dedicate)[Sec. III].
 - Hibridizarea TDoA cu AoA sau filtre Kalman[25,31].
 - Compensarea derivei de ceas prin algoritmi DTDoA (Differential TDoA) sau oscilatoare cu compensare termică[33,36].

Referinte Cheie din Document:

- [19] B. C. Fargas and M. N. Petersen, "GPS-free geolocation using LoRa in low-power WANs," in Proc. Global Internet Things Summit, Jun 2017, pp. 1–6.
- [25] W. Bakkali, M. Kieffer, M. Lalam, and T. Lestable, "Kalman filter based localization for Internet of Things LoRaWANTM end points," in Proc. IEEE 28th Annu. Int. Symp. Pers. Indoor Mobile Radio Commun. (PIMRC), Oct 2017, pp. 1–6.
- [26,27] M. Aernouts, R. Berkvens, K. Van Vlaenderen, and M. Weyn, "Sigfox and LoRaWAN Datasets for Fingerprint Localization in Large Urban and Rural Areas," Data, vol. 3, no. 2, p. 13, Apr 2018; Z. A. Pandangan and M. C. R. Talampas, "Hybrid LoRaWAN localization using ensemble learning," in Proc. Global Internet Things Summit (GIoTS), June 2020, pp. 1–6.
- [29] D. Plets, N. Podevijn, J. Trogh, L. Martens, and W. Joseph, "Experi mental Performance Evaluation of Outdoor TDoA and RSS Positioning in a Public LoRa Network," in Proc. IEEE Int. Conf. Indoor Position. Indoor Navig., Sep. 2018, pp. 1–8
- [31] M. Aernouts, N. BniLam, N. Podevijn, D. Plets, W. Joseph, R. Berkvens, and M. Weyn, "Combining TDoA and AoA with a particle filter in an outdoor LoRaWAN network," in Proc. IEEE/ION Position Location Navigat. Symp., Apr 2020, pp. 1060–1069.