CS420 Combining Automata & Closed Operations

Thursday, September 20, 2022

UMass Boston Computer Science

Announcements

- HW 1
 - Due Sun 9/25 11:59pm EST

Last Time: Is Union Closed For Regular Langs?

In this course, we are interested in closed operations for a set of languages (here the set of regular languages)

(In general, a set is closed under an operation if applying the operation to members of the set produces a result in the same set)

The class of regular languages is closed under the union operation.

Want to prove this statement

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

A member of the set of regular languages is ...

... a regular language, which itself is a set (of strings) ...

... so the **operations** we're interested in are **set operations**

Union: $A \cup B = \{x | x \in A \text{ or } x \in B\}$

Last Time: Union of Languages

Let the alphabet Σ be the standard 26 letters $\{a, b, \ldots, z\}$.

If
$$A = \{ \text{good}, \text{bad} \}$$
 and $B = \{ \text{boy}, \text{girl} \}$, then

$$A \cup B = \{ good, bad, boy, girl \}$$

Last Time: Is Union Closed For Regular Langs?

THEOREM

The class of regular languages is closed under the union operation.

Want to prove this statement

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$

Need to show this language is regular (where A_1 and A_2 are regular)

Given

A language is called a *regular language* if some finite automaton recognizes it.

- How do we prove that a language is regular?
 - Create a DFA recognizing it!
- So to prove this theorem ... create a DFA that recognizes $A_1 \cup A_2$
 - But! We don't know what A_1 and A_2 are!
 - What do we know about A_1 and A_2 ???

<u>Proof</u>

• Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,

Want: *M* that can simultaneously be in both an M_1 and M_2 state

- Construct: $M = (Q, \Sigma, \delta, q_0, F)$, using M_1 and M_2 , that recognizes $A_1 \cup A_2$
- $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ • states of *M*: This set is the *Cartesian product* of sets Q_1 and Q_2

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*, ¹
- **4.** $q_0 \in Q$ is the **start state**, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

A state of *M* is a <u>pair</u>:

- the first part is a state of M_1 and
- the second part is a state of M_2

So the states of *M* is all possible combinations of the states of M_1 and M_2 128

<u>Proof</u>

- Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,
- Construct: $M=(Q,\Sigma,\delta,q_0,F)$, using M_1 and M_2 , that recognizes $A_1 \cup A_2$
- $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the **Cartesian product** of sets Q_1 and Q_2 • states of *M*:

A finite automaton is a 5-tuple
$$(Q, \Sigma, \delta, q_0, F)$$
, where $a) = (\delta_1(r_1, a), \delta_2(r_2, a))$ A step in M is both

a step in M_1 , and a step in M_2

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the **start state**, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

<u>Proof</u>

- Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,
- Construct: $M=(Q,\Sigma,\delta,q_0,F)$, using M_1 and M_2 , that recognizes $A_1 \cup A_2$
- states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets Q_1 and Q_2
- *M* transition fn: $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$
- M start state: (q_1, q_2) Start state of M is both start states of M_1 and M_2

<u>Proof</u>

- Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,
- Construct: $M=(Q,\Sigma,\delta,q_0,F)$, using M_1 and M_2 , that recognizes $A_1 \cup A_2$
- states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets Q_1 and Q_2
- *M* transition fn: $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$
- M start state: (q_1, q_2)

Accept if either M_1 or M_2 accept

Remember:
Accept states must
be subset of *Q*

• *M* accept states: $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$

Another operation: Concatenation

Example: Recognizing street addresses

Concatenation of Languages

Let the alphabet Σ be the standard 26 letters $\{a, b, \ldots, z\}$.

If $A = \{ \text{good}, \text{bad} \}$ and $B = \{ \text{boy}, \text{girl} \}$, then

 $A \circ B = \{ goodboy, goodgirl, badboy, badgirl \}$

Is Concatenation Closed?

THEOREM

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

- Construct a <u>new</u> machine M recognizing $A_1 \circ A_2$? (like union)
 - Using **DFA** M_1 (which recognizes A_1),
 - and **DFA** M_2 (which recognizes A_2)

 M_1

PROBLEM:

Can only read input once, can't backtrack

Let M_1 recognize A_1 , and M_2 recognize A_2 .

<u>Want</u>: Construction of *M* to recognize $A_1 \circ A_2$

Need to switch machines at some point, but when?

 M_2

Overlapping Concatenation Example

- Let M_1 recognize language $A = \{ab, abc\}$
- and M_2 recognize language $B = \{cde\}$
- Want: Construct M to recognize $A \circ B = \{abcde, abccde\}$
- If *M* sees ab ...
- *M* must decide to <u>either</u>:

Overlapping Concatenation Example

- Let M_1 recognize language $A = \{ab, abc\}$
- and M_2 recognize language $B = \{cde\}$
- Want: Construct *M* to recognize $A \circ B = \{abcde, abccde\}$
- If *M* sees ab ...
- M must decide to either:
 - stay in M_1 (correct, if full input is abc cde)

Overlapping Concatenation Example

- Let M_1 recognize language $A = \{ab | abc\}$
- and M_2 recognize language $B = \{cde\}$
- Want: Construct *M* to recognize $A \triangleleft B = \{abcde, abccde\}$
- If *M* sees ab ...
- *M* must decide to either:
 - stay in M_1 (correct, if full input is abccde)
 - or switch to M_2 (correct, if full input is **abcde**)

A DFA can't do this!

(We need a new kind of machine)

- But to recognize $A \circ B$, it needs to handle both cases!!
 - Without backtracking

Nondeterminism

Deterministic vs Nondeterministic

Deterministic computation

Deterministic vs Nondeterministic

Finite Automata: The Formal Definition

DEFINITION

deterministic

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the **start state**, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

Also called a **Deterministic Finite Automata (DFA)**

Precise Terminology is Important

- A finite automata or finite state machine (FSM) defines computation with a <u>finite</u> number of states
- There are many kinds of FSMs

- We've learned one kind, the Deterministic Finite Automata (DFA)
 - (So currently, the terms **DFA** and **FSM** refer to the same definition)
- We will learn other kinds, e.g., Nondeterministic Finite Automata (NFA)
- Be careful with terminology!

Nondeterministic Finite Automata (NFA)

DEFINITION

Compare with DFA:

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- 2. Σ is a finite alphabet,

1. Q is a finite set called the *states*,

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the **start state**, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,

Difference

- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

Power set, i.e. a transition results in <u>set</u> of states

Power Sets

• A power set is the set of all subsets of a set

• <u>Example</u>: *S* = {a, b, c}

- Power set of *S* =
 - {{ }, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}
 - Note: includes the empty set!

Nondeterministic Finite Automata (NFA)

DEFINITION

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- 2. Σ is a finite alphabet,
- 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and

Transition label can be "empty", accept states.

i.e., machine can transition
without reading input

$$\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$$

NFA Example

• Come up with a formal description of the following NFA:

DEFINITION

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- **2.** Σ is a finite alphabet,
- **3.** $\delta \colon Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

The formal description of N_1 is $(Q, \Sigma, \delta, q_1, F)$, where

1.
$$Q = \{q_1, q_2, q_3, q_4\},\$$

- 2. $\Sigma = \{0,1\},$
- 3. δ is given as

Result of transition is a set

 q_1 $\{q_3\}$

Empty transition

(no input read)

- **4.** q_1 is the start state, and
- 5. $F = \{q_4\}.$

Multiple 1 transitions

153

 $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$

In-class Exercise

Come up with a formal description for the following NFA

• $\Sigma = \{ a, b \}$

DEFINITION

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set of states,
- **2.** Σ is a finite alphabet,
- **3.** $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

In-class Exercise Solution

```
Let N = (Q, \Sigma, \delta, q_0, F)
                                         \delta(q_1, a) = \{\}
• Q = \{ q_1, q_2, q_3 \}
                                         \delta(q_1, b) = \{q_2\}
• \Sigma = \{ a, b \}
                                         \delta(q_1, \varepsilon) = \{q_3\}
                                         \delta(q_2, a) = \{q_2, q_3\}
                                     \rightarrow \delta(q_2, b) = \{q_3\}
• δ ... –
                                         \delta(q_2, \varepsilon) = \{\}
                                         \delta(q_3, a) = \{q_1\}
• q_0 = q_1
                                         \delta(q_3, b) = \{\}
• F = \{ q_1 \}
                                         \delta(q_3, \varepsilon) = \{\}
```

Next Time: Running Programs, NFAs (JFLAP demo): **010110**

Check-in Quiz 9/20

On gradescope