COVID-19: Influência de exames na precisão e recall de modelos preditivos

Jairo Freitas Christian Espinoza

Autores

Jairo da Silva Freitas Júnior

Analista de Dados

Ciência da Computação

Christian Espinoza

Estagiário em Ciência de Dados

Ciência da Computação

Sumário

- O desafio e os dados disponibilizados
- Análise Exploratória dos Dados
- Resumo de todos os modelos testados
- Modelo 1 ("Fique em Casa"): melhor recall
- Modelo 2 ("Business As Usual"): melhor precisão
- Backtest em outras infecções respiratórias
- Disclaimers

O desafio e os dados disponibilizados

O dataset contém dados anonimizados de **5.644 pacientes** que foram atendidos no Hospital Israelita Albert Einstein, em São Paulo, que tiveram amostras coletadas para **105 testes laboratoriais** durante a visita hospitalar. **88% dos valores do dataset estão faltantes** (missing values).

Duas variáveis resposta foram incluídas: resultado **SARS-CoV-2-RT-PCR** e **ala de admissão hospitalar**. As variáveis clínicas foram padronizadas para média zero e desvio padrão unitário.

Testes pouco frequentes apresentam vazamento de informação das variáveis resposta pois são realizados em quadros clínicos graves

Figura 1 – Análise das variáveis em relação a frequência, ala de admissão hospital e SARS-CoV-2-RT-PCR

Alguns exames laboratoriais parecem coocorrer na amostra

Aplicando PCA sobre a presença (ou ausência) de exames descobrimos 6 grandes grupos de exames que costumam coocorrer

Figura 4 – Composição de 6 componentes principais

Ao reordenarmos o dataset pelos grupos de exames, vemos a coocorrência dos testes. 62.8% dos pacientes realizaram apenas a testagem SARS-CoV-2-RT-PCR

Figura 5 – Figura 2 reordenada pelos grupos de exames

A coocorrência entre os grupos de exames aumenta com a complexidade da ala de admissão do paciente.

Figura 6 – Coocorrência de grupos de exames por ala de admissão hospitalar

Para reduzir o viés de gravidade do quadro clínico incorporado na realização de mais de um grupo de exames, nossos modelos foram treinados apenas em variáveis do mesmo grupo de exames.

Detecção de SARS-CoV-2: Amostras de hemograma simples mostraram-se as mais eficazes na tarefa preditiva

Grupo de exames	Modelo	F1-Score Macro avg	Recall Macro avg	Precisão Macro avg	Acurácia
Hemograma simples	Baseline	46%	50%	43%	87%
	SVM	66%	68%	65%	83%
	Gradient Boost	67%	66%	67%	85%
	Random Forest	67%	68%	66%	83%
	Ada Boost	66%	73%	64%	79%
Vírus e bactérias "gripais"	Baseline	48%	50%	46%	92%
	SVM	48%	50%	46%	92%
	Gradient Boost	48%	50%	46%	92%
	Random Forest	60%	66%	59%	82%
	Ada Boost	51%	74%	58%	63%
Testes rápidos Influenza	Baseline	48%	50%	46%	92%
	SVM	47%	60%	53%	61%
	Gradient Boost	48%	50%	46%	92%
	Random Forest	49%	57%	52%	70%
	Ada Boost	48%	63%	54%	62%
Urina	Amostragem insuficiente				
Leucograma agravado	Amostragem insuficiente				
Bilirrubinas, gasometria, etc.	Amostragem insuficiente				

Conjunto de treino e teste estratificado por **SARS-CoV-2-RT-PCR** e **ala de admissão**.

Hiperparâmetros otimizados

C, kernel, peso das classes

#Estimadores, profundidade máxima, taxa de aprendizado

#Estimadores, profundidade máxima, # máximo de variáveis, peso das classes

estimadores, profundidade máxima, peso das classes, taxa de aprendizado

Modelo "Fique em Casa" (Ada Boost)

Modelo "Business As Usual" (Gradient Boosting)

Indicadores de performance

Importância das variáveis

Nossa interpretação do modelo (hipóteses)

O Gradient Boosting possui precisão maior pois dá mais importância para sinais de **severidade da infecção**, especialmente leucócitos.

O AdaBoost favorece o recall porque é mais sensível a **componentes do hemograma que apresentam-se precocemente nos processos infecciosos**, especialmente a Proteína C Reativa.

Figura 7 – Cinética dos processos infecciosos com relação a glóbulos brancos

[5] Nardocci Paula, Gullo Caio Eduardo, Lobo Suzana Margareth. Severe virus influenza A H1N1 related pneumonia and community-acquired pneumonia: differences in the evolution. Rev. bras. ter. intensiva [Internet]. 2013 June; 25(2): 123-129. Available from: https://bit.ly/2W8Qe2M

[6] J. Matthew Velkey. Cell Injury, Death, Inflammation, and Repair. Lecture notes. Duke University. Available at: https://slideplayer.com/slide/4382692/

Backtest em outras infecções respiratórias: Nossos modelos diferenciaram SARS-CoV-2 de Influenza B, H1N1 e Rhinovírus

Figura 8 – Pacientes infectados com outras doenças respiratórias (SARS-CoV-2 Neg)

Acurácia dos modelos em amostras de Influenza B, H1N1 e Rhinovírus

Disclaimers

- Os modelos não levam em consideração aspectos demográficos como gênero e etnia, assim como comorbidades dos pacientes.
- A amostra disponível pode não ser representativa da população brasileira, principalmente devido às variações de saúde decorrentes de particularidades regionais e desigualdades socioeconômicas.
- Os modelos apresentados não foram criticados por especialistas médicos.
- Os modelos não foram testados para variações de protocolos de coleta e processamento de amostras que podem apresentar-se ao escalá-lo para nível nacional.