HOMEWORK 12

SAI SIVAKUMAR

Suppose $f:[a,b]\to\mathbb{R}$ is bounded. Let

$$C = \sup\{|f(x)| : x \in [a, b]\}.$$

(i) Show, for any $a \le x, y \le b$, that

$$|f(x)^2 - f(y)^2| \le 2C|f(x) - f(y)|.$$

(ii) Fix $a \le c < d \le b$ and let m, M denote the infimum and supremum of the set $\{f(x): x \in [c,d]\}$ respectively. Show, for any $c \le x, y \le d$, that

$$|f(x)^2 - f(y)^2| \le 2C(M - m).$$

(iii) Let m^*, M^* denote the infimum and supremum of the set $\{f(x)^2 : x \in [c, d]\}$. Prove

$$M^* - m^* \le 2C(M - m).$$

(iv) Prove if f is integrable, then so is f^2 .

I spoke with Nicholas Kapsos about details of the proof.

Proof. Let $f: [a,b] \to \mathbb{R}$ be bounded with $C = \sup\{|f(x)| : x \in [a,b]\}$ as given.

(i) For $x, y \in [a, b]$,

$$|f(x)^{2} - f(y)^{2}| = |f(x) + f(y)||f(x) - f(y)|$$

$$\leq (|f(x)| + |f(y)|)|f(x) - f(y)|$$

$$\leq 2C|f(x) - f(y)|.$$

(ii) Fix $a \le c < d \le b$ and let m and M denote the infimum and supremum of the set $\{f(x): x \in [c,d]\}$ respectively. We have $m \le f(x), f(y) \le M$, for $x,y \in [c,d]$. It follows that $f(x)-f(y) \le M-m$, and by taking the absolute value $|f(x)-f(y)| \le M-m$. Then

$$|f(x)^2 - f(y)^2| \le 2C|f(x) - f(y)| \le 2C(M - m).$$

(iii) Let m^* and M^* denote the infimum and supremum of the set $\{f(x)^2 : x \in [c,d]\}$ respectively. Then given any $\eta > 0$, there exists $u, v \in [c,d]$ such that

$$M^* - \eta \le f(u)^2$$

$$m^* + \eta \ge f(v)^2,$$

so that $M^* - m^* - 2\eta \le f(u)^2 - f(v)^2$. Since $m^* \le M^*$, it follows that

$$M^* - m^* \le f(u)^2 - f(v)^2 + 2\eta$$

$$\le |f(u)^2 - f(v)^2| + 2\eta$$

$$\le 2C(M - m) + 2\eta.$$

Since $\eta > 0$ was arbitrary, $M^* - m^* \leq 2C(M - m)$.

(iv) Suppose f is integrable. Since the space of integrable functions is a vector space, it follows that 2Cf is integrable. Then given $\varepsilon > 0$, there is a partition $P = \{a = x_0, x_1, \dots, x_{n-1}, x_n = b\}$ such that $U(2Cf, P) - L(2Cf, P) \le \varepsilon$.

Let m_i^* and M_i^* denote the infimum and supremum of the set $\{f(x)^2 : x \in [x_i, x_{i+1}]\}$ respectively and let m_i and M_i denote the infimum and supremum of the set $\{f(x) : x \in [x_i, x_{i+1}]\}$ respectively. Then by the result of (iii), we have

$$U(f^{2}, P) - L(f^{2}, P) = \sum_{i} (M_{i}^{*} - m_{i}^{*})(x_{i+1} - x_{i})$$

$$\leq \sum_{i} 2C(M_{i} - m_{i})(x_{i+1} - x_{i})$$

$$= U(2Cf, P) - L(2Cf, P) \leq \varepsilon.$$

Hence f^2 is integrable.