杭州电子科技大学信息工程学院(2014)学生期末考试卷A卷

2015 6月 日 微积分2 考试日期 考试时间 共120分钟

注意: 试题答案务必写在答题纸相应位置, 否则不得分。

- 一、填空题(每小题 3 分, 共 30 分)
- 1. 极限 $\lim_{\substack{x\to 0\\x\to 0}} \frac{xy}{|x|+|y|} =$ ______.
- 2. 设方程 $y'' 4y' + 4y = xe^{2x}$,则方程一个含待定系数的特解可设为 $y^* =$
- 3. 设 $f(x,y) = x + (x + \arcsin xy) \arctan y$, 则 $f'_x(0,0) =$ ______.
- $4 \cdot \bar{x} z = \arctan \frac{y}{r}$ 的全微分 $dz = \underline{\qquad}$
- | 5. 若函数 $f(x,y) = x^2 + bxy + ay^2 6x + b$ 在点 (4,-2) 取到极值,则 a + b =
- | 6. 设 $D = \{(x, y) | x^2 + y^2 2x + 2y \le 0 \}$, 二重积分 $\iint d\sigma =$ ______.
- 7. 改变二次积分的积分次序 $\int_{-1}^{1} dy \int_{-1}^{2} f(x,y) dx = \underline{\qquad}$
- 8. 问级数 $\sum_{n=0}^{\infty} \ln(1 + \frac{1}{n})$ 的敛散性? ______.
- 9. 设 f(u,v) 可微, $z = f(e^x, \sin x)$,则 $\frac{dz}{dx} = \underline{\hspace{1cm}}$.
- 10 . 微分方程 $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 0$ 的通解 y =_____.
- 二、选择题(每小题 3 分, 共 30 分)
- 1. 设 $D = \{(x,y) | x^2 + y^2 \le a^2 \}$, 若 $\iint \sqrt{a^2 x^2 y^2} \, dx dy = \pi$, 则 a = ().
- (A) 1 (B) $\sqrt[3]{\frac{3}{2}}$ (C) $\sqrt[3]{\frac{3}{4}}$ (D) $\sqrt[3]{\frac{1}{2}}$

- 2.求方程 $yy'' (y')^2 = 0$ 的通解时,可令().

 - (A) y' = P, y'' = P' (B) y' = P, $y'' = P \frac{dP}{dy}$

 - (C) y' = P, $y'' = P \frac{dP}{dx}$ (D) y' = P, $y'' = P' \frac{dP}{dx}$
- $3.y_1(x), y_2(x)$ 是方程 y'' + py' + qy = f(x) 的两个解,则().
 - (A) $y_1(x) y_2(x) \not\equiv y'' + py' + qy = f(x)$ 的解 (B) $y_1(x) y_2(x) \not\equiv y'' + py' + qy = 0$ 的解

(C) y₁(x), y₂(x) 线性相关

- (D) y₁(x), y₂(x)线性无关
- 4.下列方程哪一个表示的曲面是柱面?().

(A)
$$x^2 + y^2 + z^2 - 6x + 4y - 3 = 0$$
 (B) $z^2 = a^2(x^2 + y^2)$

(B)
$$z^2 = a^2(x^2 + y^2)$$

(C)
$$z = a^2(x^2 + y^2)$$
 (D) $z = a^2x^2$

$$(D) \quad z = a^2 x$$

- $\int 5.$ 级数 $\sum_{n=0}^{\infty} \frac{(x+1)^n}{3^n}$ 的收敛域是().

 - $(A) \quad [-4,2] \qquad \qquad (B) \quad (-4,2] \qquad \qquad (C) \quad [-4,2)$
- (D) (-4,2)
- $\left| 6. \partial_a \right|$ 3 方常数,则级数 $\sum_{i=1}^{\infty} \left(\frac{\sin na}{n^2} \frac{1}{\sqrt{n}} \right)$ ().
 - (A) 绝对收敛

(B) 条件收敛

(C) 发散

- (D) 敛散性与a的值有关
- 7. 二次积分 $\int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{\sin\theta} f(\rho\cos\theta, \rho\sin\theta)\rho d\rho$ 可化为(

(A)
$$\int_0^1 dy \int_0^{\sqrt{y-y^2}} f(x,y) dx$$
 (B) $\int_0^1 dy \int_0^{\sqrt{1-y^2}} f(x,y) dx$

(B)
$$\int_{0}^{1} dy \int_{0}^{\sqrt{1-y^2}} f(x, y) dx$$

(C)
$$\int_0^1 dx \int_0^{\sqrt{1-x^2}} f(x,y) dy$$
 (D) $\int_0^1 dx \int_0^{\sqrt{x-x^2}} f(x,y) dy$

(D)
$$\int_{0}^{1} dx \int_{0}^{\sqrt{x-x^2}} f(x, y) dy$$

- 8.设z = z(x,y) 由方程 $yz^3 + xe^z + 1 = 0$ 所确定的隐函数,则 $\frac{\partial z}{\partial x}\Big|_{x=0} = ($).
 - (A) $-\frac{1}{3e}$ (B) $\frac{1}{3e}$ (C) $-\frac{e}{3}$ (D) $\frac{e}{3}$

9. 函数
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$
, 则下列四个命题中正确的是().

- (A) $\lim_{(x,y)\to(0,0)} f(x,y) = \frac{1}{2}$ (B) f(x,y)在点(0,0)连续 (C) $f'_x(0,0) = 0$, $f'_y(0,0) = 0$ (D) 全微分 $df\Big|_{(0,0)} = 0$

10. 设
$$z = \ln \frac{1}{r}$$
, $r = \sqrt{x^2 + y^2}$, 则 $z''_{xx} = ($).

- (A) $\frac{x^2 y^2}{(x^2 + y^2)^2}$ (B) $\frac{y^2 x^2}{(x^2 + y^2)^2}$ (C) $\frac{2xy}{(x^2 + y^2)^2}$ (D) $-\frac{2xy}{(x^2 + y^2)^2}$

三、是非题(每小题 2 分, 共 10 分)

- 1. 球心在 (1,2,3), 半径为 2 的球面方程为 $(x-1)^2 + (y-2)^2 + (z-3)^2 = 2$. ()
- 2. 如果函数 z = f(x, y) 在点 $P(x_0, y_0)$ 处具有连续偏导数,那么 z = f(x, y) 在 $P(x_0, y_0)$ 点连续. ()
- 3.将二重积分化为二次积分时,二次积分的下限必须小于上限.()
- 4. 若级数 $\sum_{n=1}^{\infty} a_n$ 收敛,则 $\sum_{n=1}^{\infty} a_n^2$ 必收敛. ()
- 5.y'' + yy' + x = 0 是线性微分方程.()

四、计算题(每小题 6 分, 共 24 分)

1. 设平面薄片由曲线 $y = x^2$, y = x + 2 所围成,其上每点的质量密度为 $\mu(x, y) = x$,求此平面薄片 的质量.

2. 用拉格朗日乘数法分析函数 z = x + y 在区域 $D = \{(x,y) | x^2 + y^2 + 2x \le 1\}$ 上的最大、最小值.

3. 求微分方程 $\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^2$ 的通解.

4. 求幂级数 $\sum_{n=1}^{\infty} \frac{x^n}{n}$ 的收敛域及和函数.

五、证明题(6分) 设 f(x) 在区间[0, c] 上连续,证明

$$\int_0^c dy \int_0^y f(x) dx = \int_0^c (c - x) f(x) dx$$

杭州电子科技大学信息工程学院 2014-2015学年第二学期微积分期末考试卷A卷 答题纸

课程名称	微积分 2	考试	日期	2015年6月22日		日成绩	ŧ	
考生姓名			任课教师姓名					
学号(8)位			班纺	及			专业	

注意: 试题答案写在指定的位置,写错位,当错误处理。

一、填空题

1. ______; 2.
$$x^2(ax+b)e^{2x}$$
 ; 3. ______1 ;

4.
$$\frac{-y dx + x dy}{x^2 + y^2}$$
 ; 5. $\frac{2}{x^2 + y^2}$; 6. $\frac{2\pi}{x^2 + y^2}$

10.
$$(C_1 + C_2 x)e^{-x}$$
.

二、选择题

1	2	3	4	5	6	7	8	9	10
В	В	В	D	D	С	A	A	С	A

三、是非题

1	2	3	4	5
×	✓	✓	×	X

四、计算题 (要有解题过程)

```
得驻点 (0,1), (-2,-1).....5分
    求导\left\{L_{y}=1+2\lambda y=0\right\}
3.解 y = e^{\int \frac{2dx}{x+1}} \left[ \int (x+1)^2 e^{-\int \frac{2dx}{x+1}} dx + C \right]. 3分
    4.解 \lim_{n \to +\infty} \left| \frac{u_{n+1}(x)}{u_n(x)} \right| = |x| < 1 时收敛, ∴ R = 1
    检查在收敛区间(-1,1) 两端点知,收敛区间为[-1,1)......3分
    设 s(x) = \sum_{n=0}^{\infty} \frac{x^n}{n} (-1 \leq x < 1),先求导再积分
s(x) = s(x) - s(0) = \int_0^x s'(x) dx = \int_0^x \sum_{n=1}^\infty \left(\frac{x^n}{n}\right)' dx = \int_0^x \left(\sum_{n=1}^\infty x^{n-1}\right) dx
          \therefore s(x) = \sum_{n=0}^{\infty} \frac{x^n}{n} = -\ln(1-x) \quad (-1 \le x < 1) \dots 6
五、证明 交换积分顺序
       \int_{0}^{c} dy \int_{0}^{y} f(x)dx = \int_{0}^{c} dx \int_{x}^{c} f(x)dy \dots 3 
                 = \int_0^c (c-x)f(x)dx \dots 6
```