Departamento de Análisis Matemático, Universidad de Granada

Convocatoria ordinaria de Variable Compleja I Grado en Matemáticas y Grado en Física y Matemáticas

Ejercicio 1. (2.5 puntos) Sea Ω un abierto y sean $f, g \in \mathcal{H}(\Omega)$ de modo que $\overline{f}g \in \mathcal{H}(\Omega)$. Probar que $g \equiv 0$ en Ω o f es constante en Ω .

Ejercicio 2. Sea $f \in \mathcal{H}(D(0,1))$ no constante, continua en $\overline{D}(0,1)$ y verificando que |f(z)| = 1 para cada $z \in \mathbb{C}$ con |z| = 1.

- a) (1.5 puntos) Probar que f tiene un numero finito (no nulo) de ceros en D(0,1).
- b) (1 punto) Probar que $f(\overline{D}(0,1)) = \overline{D}(0,1)$.

Ejercicio 3. Para cada $n \in \mathbb{N}$ tomamos $a_n = \frac{1}{n}$ y consideramos la función $f_n : \mathbb{C} \setminus \{a_n\} \longrightarrow \mathbb{C}$ dada por $f_n(z) = \frac{1}{z - a_n}$.

- a) (1.5 puntos) Si $A = \overline{\{a_n \colon n \in \mathbb{N}\}}$, probar que la serie de funciones $\sum_{n \geqslant 1} \frac{f_n(z)}{n^n}$ converge absolutamente en todo punto del dominio $\Omega = \mathbb{C} \setminus A$ y uniformemente en cada subconjunto compacto contenido en Ω .
- b) (1 punto) Deducir que la función dada por $f(z) = \sum_{n=1}^{+\infty} \frac{f_n(z)}{n^n}$ es holomorfa en Ω y estudiar sus singularidades aisladas.
- c) (**Extra: 1 punto**) Probar que para cada $\delta > 0$ el conjunto $f(D(0, \delta) \setminus A)$ es denso en \mathbb{C} .

Ejercicio 4. (2.5 puntos) Sea f holomorfa en $\mathbb{C} \setminus \{1, -1\}$. Supongamos que 1 y -1 son polos de f y que

$$\operatorname{Res}(f,1) = -\operatorname{Res}(f,-1).$$

Probar que f admite primitiva en $\mathbb{C} \setminus [-1, 1]$.