Greek characters

Name	Symbol	Typical use(s)
alpha	α	angle, constant
beta	β	angle, constant
gamma	γ	angle, constant
delta	δ	limit definition
epsilon	ϵ or ε	limit definition
theta	θ or ϑ	angle
pi	π or π	circular constant
phi	ϕ or φ	angle, constant

Named sets

empty set	Ø
real numbers	\mathbf{R}
ordered pairs	\mathbf{R}^2

integers	\mathbf{Z}
positive integers	$\mathbf{Z}_{>0}$
positive reals	$\mathbf{R}_{>0}$

Set symbols

Meaning	Symbol	
is a member	\in	
subset	\subset	
intersection	\cap	

Meaning	Symbol
union	U
complement	superscript ^C
set minus	\

Logic symbols

Meaning	Symbol
negation	_
and	\wedge
or	V
implies	\implies

Meaning	Symbol
	Symbol
equivalent	=
iff	\iff
for all	A
there exists	∃

Arithmetic properties of R

$$\begin{array}{ll} (\forall a,b \in \mathbf{R})(a+b=b+a) & \text{commutivity} \\ (\forall a,b,c \in \mathbf{R})(a+(b+c)=(a+b)+c) & \text{associative} \\ (\forall a,b \in \mathbf{R})(ab=ba) & \text{commutivity} \\ (\forall a,b,c \in \mathbf{R})(a(bc)=(ab)c) & \text{associative} \\ (\forall a,b,c \in \mathbf{R})(a(b+c)=ab+ac) & \text{distributive} \end{array}$$

Intervals

For numbers a and b, we define the intervals

$$\begin{aligned} (a,b) &= \{x \in \mathbf{R} \mid a < x < b\} \\ [a,b) &= \{x \in \mathbf{R} \mid a \le x < b\} \\ (a,b] &= \{x \in \mathbf{R} \mid a < x \le b\} \\ [a,b] &= \{x \in \mathbf{R} \mid a \le x \le b\} \end{aligned}$$

Distance & Midpoint

The distance between the points (x_1, y_1) and (x_2, y_2) is

$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$
.

The midpoint is the point

$$\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right).$$

Exponents

For a, b > 0 and m, n real:

$$a^{0} = 1,$$
 $0^{a} = 0$
 $1^{a} = 1,$ $a^{n}a^{m} = a^{n+m}$
 $a^{n}/a^{m} = a^{n-m},$ $(a^{n})^{m} = a^{n \cdot m}$
 $a^{-m} = 1/a^{m},$ $(a/b)^{m} = a^{m}/b^{m}$

Radicals

$$\sqrt[n]{a} = a^{1/n}$$

$$\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b} \quad \text{(provided } a, b \ge 0\text{)}$$

$$\sqrt[m]{\sqrt[n]{a}} = \sqrt[m]{a}$$

$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

$$\sqrt[n]{a^n} = \begin{cases} a & n \text{ odd} \\ |a| & n \text{ even} \end{cases}$$

Identities

$$\begin{split} a(b+c) &= ab + ac \\ &((a+b)(c+d)) = ac + ad + bc + bd \\ &\frac{ab+ac}{a} = b + c \quad \text{(provided } a \neq 0\text{)} \\ &\frac{\frac{a}{b}}{\frac{c}{a}} = \frac{ad}{bc} \quad \text{(provided } b, d \neq 0\text{)} \\ &\sqrt{ab} = \sqrt{a}\sqrt{b} \quad \text{(provided } a \geq 0, b \geq 0\text{)} \\ &\ln(ab) = \ln(a) + \ln(b) \quad \text{(provided } a \geq 0, b \geq 0\text{)} \end{split}$$

Solution of Equations

Algebraic

Suppose X, Y, P, and Q possibly depend on the unknown x; and suppose a, b, and c do not depend on the unknown.

$$\begin{split} \left[XY=0\right] &\equiv \left[X=0 \text{ or } Y=0\right] \\ \left[X^2=Y^2\right] &\equiv \left[X=Y \text{ or } X=-Y\right] \\ \left[\frac{X}{Y}=0\right] &\equiv \left[X=0 \text{ and } Y\neq 0\right] \\ \left[\frac{X}{Y}=\frac{P}{Q}\right] &\equiv \left[XQ=YP \text{ and } Y\neq 0 \text{ and } Q\neq 0\right] \\ \left[|X|=|Y|\right] &\equiv \left[X=Y \text{ or } X=-Y\right] \\ \left[\sqrt{X}=Y\right] &\equiv \left[X=Y^2 \text{ and } Y\geq 0\right] \end{split}$$

For $a \neq 0$,

$$\left[ax^{2} + bx + c = 0\right] \equiv \left[x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}\right]$$

Logarithmic and Exponential

$$\begin{split} \left[\ln(X) = 0\right] &\equiv \left[X = 1\right] \\ \left[e^X = 1\right] &\equiv \left[X = 0\right] \\ \left[\log_a(X) = b\right] &\equiv \left[X = a^b\right] \\ \left[a^X = a^Y\right] &\equiv \left[X = Y\right] \\ \left[\log_a(X) = \log_a(Y)\right] &\equiv \left[X = Y \text{ and } X > 0\right] \end{split}$$

Logarithms

For x > 0 and y > 0

$$\log_a(x) = \frac{\ln(x)}{\ln(a)}$$

$$\log_a(y) + \log_a(y) = \log_a(xy)$$

$$\log(x^z) = z\log(x)$$

Graph Translations

For the graph of F(x, y) = 0

- The graph of F(x h, y) = 0 is the graph of F(x, y) = 0 translated h units to the right.
- The graph of F(x, y k) = 0 is the graph of F(x, y) = 0 translated k units up.
- The graph of F(x/c, y) = 0 is the graph of F(x, y) = 0 stretched a factor of c horizontally.
- The graph of F(x, y/c) = 0 is the graph of F(x, y) = 0 stretched a factor of c vertically.

Circles

Equation of circle centered at (h, k) with radius r is

$$(x-h)^2 + (y-k)^2 = r^2.$$

Expanded the equation is

$$x^2 - 2hx + y^2 - 2ky = r^2 - h^2 - k^2.$$

Parabolas & Lines

The vertex of the parabola $ax^2 + bx + c = y$ is

$$\left(x = -\frac{b}{2a}, y = c - \frac{b^2}{4a}\right).$$

An equation of the line that contains the points (x_1, y_1) and (x_2, y_2) is

$$y - y_1 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)(x - x_1).$$

The number $\frac{y_2 - y_1}{x_2 - x_1}$ is the slope.

Function notation

dom(F)	domain of function F
range(F)	range of function F

Domains, Ranges, and Zeros

Function	Domain	Range	Zeros
ln, log	$(0,\infty)$	$(-\infty, \infty)$	1
exp	$(-\infty,\infty)$	$(0,\infty)$	Ø
abs	$(-\infty,\infty)$	$(0,\infty)$	0
	$(0,\infty)$	$(0,\infty)$	0
3/	$(-\infty, \infty)$	$(-\infty, \infty)$	0
floor	$(-\infty, \infty)$	\mathbf{Z}	[0,1)
ceiling	$(-\infty,\infty)$	\mathbf{Z}	(-1,0]

Compound Interest

Current value A, principal P, APY r, time t, then $A = P(1+r)^t$

Exponential Growth

The exponential function that contains the points $(t = t_o, y = y_o)$ and $(t = t_1, y = y_1)$ is

$$y = y_o \left(\frac{y_1}{y_o}\right)^{\frac{t-t_o}{t_1-t_o}}.$$

Common Errors

Error	Correct or Example
x/0 = 0 or x	x/0 is undefined
$-x^2 = x^2$	$-x^2 = -(x^2)$
a/(b+c) = a/b + a/c	$1/(1+1) \neq 1/1 + 1/1$
a+bx/a = 1 + bx	a+bx/a = 1 + bx/a
$(a+b)^2 = a^2 + b^2$	$(a+b)^2 = a^2 + 2ab + b^2$
$\sqrt{a+b} = \sqrt{a} + \sqrt{b}$	$\sqrt{1+1} \neq \sqrt{1} + \sqrt{1}$

Summations

$$\sum_{k=1}^{n} 1 = n$$

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{n} z^{k} = \frac{z^{n+1} - z}{z - 1}, z \neq 1$$

Sequences

A sequence is arithmetic if $f_n = an + b$; it is geometric if $f_n = ca^n$ where a, b, c are real numbers.

Graphs

Graph of natural logarithm

Graph of natural exponential

Revised May 8, 2023 by Barton Willis. This work is licensed under Attribution 4.0 International (CC BY 4.0). For the current version of this document, visit