Lecture 04

Trees

The Tree Data Structure

 Trees are the first data structure different from what you've seen in your first-year programming courses

Trees

A rooted tree data structure stores information in *nodes*

- Similar to linked lists:
 - There is a first node, or *root*
 - Each node has variable number of references to successors
 - Each node, other than the root, has exactly one node pointing to it

- All nodes will have zero or more child nodes or children
 - I has three children: J, K and L

- For all nodes other than the root node, there is one parent node
 - H is the parent I

 The degree of a node is defined as the number of its children: deg(I) = 3

- Nodes with the same parent are siblings
 - J, K, and L are siblings

Phylogenetic trees have nodes with degree 2 or 0:

 Nodes with degree zero are also called leaf nodes

•

 All other nodes are said to be internal nodes, that is, they are internal to the tree

Leaf nodes:

Wesley-Hunt, G. D.; Flynn, J. J. "Phylogeny of the Carnivora: basal relationships among the Carnivoramorphans, and assessment of the position of 'Miacoidea'

Internal nodes:

These trees are equal if the order of the children is ignored

unordered trees

They are different if order is relevant (ordered trees)

- We will usually examine ordered trees (linear orders)
- In a hierarchical ordering, order is not relevant

The shape of a rooted tree gives a natural flow from the *root node*, or just *root*

A path is a sequence of nodes $(a_0, a_1, ..., a_n)$

where a_{k+1} is a child of a_k is

The length of this path is *n*

E.g., the path (B, E, G) has length 2

Paths of length 10 (11 nodes) and 4 (5 nodes)

 For each node in a tree, there exists a unique path from the root node to that node

•

- The length of this path is the depth of the node, e.g.,
 - E has depth 2
 - L has depth 3

Nodes of depth up to 17

 The height of a tree is defined as the maximum depth of any node within the tree

- The height of a tree with one node is 0
 - Just the root node

• For convenience, we define the height of the empty tree to be -1

• The height of this tree is 17

Wesley-Hunt, G. D.; Flynn, J. J. "Phylogeny of the Carnivora: basal relationships among the Carnivoramorphans, and assessment of the position of 'Miacoidea'

- If a path exists from node a to node b:
 - a is an ancestor of b
 - b is a descendent of a

•

- Thus, a node is both an ancestor and a descendant of itself
 - We can add the adjective strict to exclude equality: a is a strict descendent of b if a is a descendant of b but a ≠ b

•

The root node is an ancestor of all nodes

• The descendants of node B are B, C, D, E, F, and G:

The ancestors of node I are I, H, and
A:

All descendants (including itself) of the indicated node

 All ancestors (including itself) of the indicated node

- Another approach to a tree is to define the tree recursively:
 - A degree-0 node is a tree
 - A node with degree n is a tree if it has n children and all of its children are disjoint trees (i.e., with no intersecting nodes)

 Given any node a within a tree with root r, the collection of a and all of its descendants is said to be a subtree of the tree with root a

