Evaluation of Microservice Architecture Designs in an IoT-Context

Abramov Sviatoslav svyatabram@gmail.com

Supervisor: Prof. Dr.-Ing Günter Schäfer Supervisor: Associate Prof. Dr. Igor Anikin

Content

- **►** Introduction
- **▶** Requirements
- ► State of the Art
- ► The system overview
- **►** Results
- **►** Conclusion
- ► Future Work

Introduction

The thesis overview

Introduction

The main goal is to find the best MSA architecture design of in an IoT context.

We compared:

- Interconnection methods
- ▶ Database management systems
- ► Load balancing strategies

What we have done

- Analyzed most demanded technologies in MSA context.
- Built the MSA application, satisfying most common requirements.
- 3. Developed a load generation, simulating IoT devices.
- 4. Implemented a monitoring system
- 5. Processed measurements.

Requirements

The system requirements

Functional requirements

- 1. Provide connectivity for IoT devices.
- 2. Provide basic authentication system.
- 3. Transform IoT device data model to the system data model.

Non-functional Requirements

Qualitative

- Testable
- Reproducible
- Deployable

Quantitative

- Response time
- Scalable

State of the art

Literature overview

Basic articles

M. S. Hatem Hamad and R. Abed, "Performance evaluation of restful web services for mobile devices," *Computer Engineering Department, Islamic University of Gaza, Palestine, International Arab Journal of e-Technology*, 2010.

In the article advantages of RESTful web services before SOAP web services are shown:

- RESTful web services provide less message size.
- RESTful web services provide less response time.

Basic articles

P. J. Amaral M. and C. D., "Performance evaluation of microservices architectures using containers.," *IEEE 14th International Symposium on Network Computing and Applications*, 2015.

In this article Server Virtualization provides performance improvement is shown.

- SV increases a server throughput
- SV decreases a server latency

Basic articles

 J. F. Kunhua Zhu and Y. Li, Research the performance testing and performance improvement strategy in web application", 2nd international Conference on Education Technology and Computer. 2010.

This article provides a survey about overall MSA based application testing :

- Functional and load testing of web MSA based web applications basis.
- Prediction of an application response time changing with an increasing user load.
- User load impact on application throughput.
- Possible bottlenecks caused by system utilization.

The system overview

Explaining the system components

Component diagram

Component diagram (gRPC)

Load generation sequence diagram

Test scenario sequence diagram

Results

The Results discussion

The measuring system

- To measure response we used *distributed tracing* system.
- We stored trace logs in *document-oriented* DB.
- We used search engine to retrieve and analyze logs

Interconnection comparison

- Messaging provides the lowest response time less than 1 millisecond.
- Async. HTTP provides the highest response time, a bit higher 70 milliseconds.

WWW.TU-ILMENAU.DE 11/29/2019 Seite 20

Transaction duration by service

- gRPC interconnection provides lowest transaction duration time of persistence services.
- The messaging one provides the lowest transaction duration time of non-persistence services.

www.tu-ilmenau.de 29.11.2019 Seite 21

Load balancing strategies comparison

- Client-side LB strategy provides about 10% less the system response time, scaling persistency services.
- Server-side LB strategy improves the system response by almost the same amount but by scaling edge service.

Impact of LB on services

 Here need to add additional info on the plot

www.tu-ilmenau.de 29.11.2019 Seite 23

DBMS comparison

- Key-Value DBMS requires significantly less time to execute database operations.
- Despite a data structure it needs about 8 milliseconds to process an operation.

www.tu-ilmenau.de 29.11.2019 Seite 24

Conclusion

Summing up the thesis

Conclusion

- The fastest an IoT device request handling can provide a microservice system with messaging middleware interconnection to non-persistency services and gRPC interconnection to persistency services.
- Document-oriented key-value DBMS can ensure the lowest transaction duration of persistency services.
- Load balancing strategy choice depends on where a microservice system has a bottleneck.

Future work

- To test the microservice system with some additional services satisfying more realistic requirements.
- Improve the load generation.
- Survey about how caching might affect the system response time.
- Prove our research on a production made application.

Thank you for attention