(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-166705

(43)公開日 平成11年(1999)6月22日

(51) Int.Cl.⁵

識別記号

F23C 11/00

F 2 3 D 11/16

301 F 2 3 C 11/00

FΙ

F23D 11/16

301

審査請求 未請求 請求項の数4 OL (全 6 頁)

(21)出願番号

特願平9-333036

(22)出願日

平成9年(1997)12月3日

(71)出額人 390008936

株式会社全眞電力エンジニヤリング

神奈川県平塚市代官町10番14号 ネオシテ

ィ湘南201号

(71)出願人 597168929

宮本 医

東京都調布市西つつじケ丘1-56-18

(72) 発明者 森 正弘

神奈川県平塚市代官町10番14号 ネオシテ ィ湘南平塚201 株式会社全貨電力エンジ

ニヤリング内

(74)代理人 弁理士 飯田 敏三

最終頁に続く

(54) 【発明の名称】 水-化石燃料混合エマルジョンの燃焼方法及び燃焼装置

(57)【要約】

【課題】 エネルギー効率よく水ー化石燃料混合エマル ジョンを燃焼させ、高い燃焼カロリーが得られる水ー化 石燃料混合エマルジョンの燃焼方法及び燃焼装置を提供 する。

【解決手段】 水ー化石燃料混合エマルジョンを昇温、 気化装置3で昇温、気化し、次いでこの昇温、気化によ って生じた水ー化石燃料混合ガスをバーナ7より噴射さ せ、該混合ガス流に、ブラウンズガス燃焼バーナ5のブ ラウンズガス炎を接触させ、該水ー化石燃料混合ガスを 燃焼させる水ー化石燃料混合エマルジョンの燃焼方法及 び燃焼装置。

【特許請求の範囲】

【請求項1】 水ー化石燃料混合エマルジョンを昇温、 気化し、次いでこの昇温、気化によって生じた水ー化石 燃料混合ガス流に、ブラウンズガス燃焼によるブラウン ズガス炎を接触させ、該水ー化石燃料混合ガスを燃焼さ せることを特徴とする水ー化石燃料混合エマルジョンの 燃焼方法。

【請求項2】 水-化石燃料混合エマルジョン中の化石 燃料の割合が容量比で10~30%であることを特徴と する請求項1記載の水-化石燃料混合エマルジョンの燃 焼方法。

【請求項3】 水-化石燃料混合エマルジョンにマイクロ波を照射して該エマルジョンを昇温、気化することを特徴とする請求項1又は2記載の水-化石燃料混合エマルジョンの燃焼方法。

【請求項4】 水ー化石燃料混合エマルジョンを昇温、 気化する装置と、昇温、気化して生じた水ー化石燃料混 合ガスを噴射する混合ガスバーナと、ブラウンズガス燃 焼バーナと、前記混合ガスバーナとブラウンズガスバー ナを設けた燃焼室を具備してなり、該燃焼室において該 ブラウンズガス燃焼バーナのブラウンズガス炎が該混合 ガスパーナから噴射されるガス流に接触しうるようにし たことを特徴とする水ー化石燃料混合エマルジョンの燃 焼装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、水と石油等の化石 液体燃料の混合エマルジョンの燃焼方法及び燃焼装置に 関する。さらに詳しくは本発明は、エネルギー効率よく 水一化石燃料混合エマルジョンを燃焼させることがで き、かつ、環境を汚染する排出ガスの少ない水一化石燃 料混合エマルジョンの燃焼方法及び燃焼装置に関する。

[0002]

【従来の技術】従来、省エネ等の観点から、化石液体燃 料に水を混合して燃料エマルジョンとして燃焼すること が種々提案されている。このような燃料エマルジョンと しては例えば、石油系燃料に添加して親水性の高いゲル 状にすることのできる特殊乳化剤を用いたエマルジョン 燃料などがある。また、この燃料エマルジョンの燃焼方 法としては、陽イオン化水を用いたエマルジョン燃料 を、水が分解する高温に加熱された熱陰極チャンバー内 に噴射して燃焼させる方法などが提案されている。燃料 エマルジョンは水を含有するため、通常の化石燃料のよ うに常温の空気中でバーナーなどで着火して完全に燃焼 させることはできず、特に水分量の多い燃料エマルジョ ンの場合には通常の方法では着火しない。従来、このよ うな水を含む燃料エマルジョンを完全に燃焼させて燃料 として利用するには、燃焼環境の温度を約1600℃と いう高温にしなければならなかった。このため、燃料エ マルジョン自体は種々の用途での利用が期待されている

にもかかわらず、ごく特殊な環境においてのみ完全燃焼が実現されているにすぎなかった。また、例えば一般に実用化されている炉、ボイラ、ガスタービンなどでこのような高温の環境を維持することは、スチームやガス流が熱を取り去っていくものであるため困難であり、エネルギー効率や経済性の面からもその普及、実用化に大きな問題となっていた。さらに近年、地球規模でCO2

(炭酸ガス)の排出削減が求められており、一定の燃焼カロリーをできるだけ少ない CO2 排出で得られる燃料燃焼システムが要望されている。水一化石燃料混合エマルジョンは、水を混合したことにより化石燃料よりも燃焼時の CO2 排出量を低減でき、この点からも水一化石燃料混合エマルジョンを効率よく経済的に燃焼させる方法、装置の開発が望まれていた。

[0003]

【発明が解決しようとする課題】したがって本発明は、エネルギー効率よく水ー化石燃料混合エマルジョンを燃焼させ、高い燃焼カロリーが得られる水ー化石燃料混合エマルジョンの燃焼方法を提供することを目的とする。さらに本発明は、効率よく経済的に水ー化石燃料混合エマルジョンを燃焼させうる燃焼装置を提供することを目的とする。

[0004]

【課題を解決するための手段】本発明者らは上記課題に 鑑み鋭意研究した結果、水一化石燃料混合エマルジョン を昇温、気化したガス流を、ブラウンズガスを燃焼させ た高温の炎とを接触、反応させて燃焼させることによ り、上記課題が解決できることを見出し、この知見に基 づき本発明をなすに至った。すなわち本発明は、(1) 水一化石燃料混合エマルジョンを昇温、気化し、次いで この昇温、気化によって生じた水一化石燃料混合ガス流 に、ブラウンズガス燃焼によるブラウンズガス炎を接触 させ、該水一化石燃料混合ガスを燃焼させることを特徴 とする水一化石燃料混合エマルジョンの燃焼方法、

(2) 水-化石燃料混合エマルジョン中の化石燃料の割合が容量比で10~30%であることを特徴とする

(1)項記載の水ー化石燃料混合エマルジョンの燃焼方法、(3)水ー化石燃料混合エマルジョンにマイクロ波を照射して該エマルジョンを昇温、気化することを特徴とする(1)又は(2)項記載の水ー化石燃料混合エマルジョンの燃焼方法、及び(4)水ー化石燃料混合エマルジョンを昇温、気化する装置と、昇温、気化して生じた水ー化石燃料混合ガスを噴射する混合ガスバーナと、ブラウンズガス燃焼バーナと、前記混合ガスバーナとブラウンズガスバーナを設けた燃焼室を具備してなり、該燃焼室において該ブラウンズガス燃焼バーナのブラウンズガス炎が該混合ガスバーナから噴射されるガス流に接触しうるようにしたことを特徴とする水ー化石燃料混合エマルジョンの燃焼装置を提供するものである。

[0005]

【発明の実施の形態】本発明において燃焼させる水ー化 石燃料混合エマルジョンは、水及び化石燃料液体を含ん でなる液体燃料である。化石燃料液体としては例えば灯 油、軽油、重油などがある。水は、水道水、蒸留水など 特に制限はない。本発明において用いることのできる水 - 化石燃料混合エマルジョンの水と化石燃料液体の混合 割合は特に制限はないが、通常、エマルジョン(一般に 水中油型エマルジョン) 中の化石燃料液体のの割合は容 量比で5~85%であり、燃焼時のCO2排出量の低減 の観点からは10~30%が好ましい。例えば本発明者 らの先に提案したヒドロキシルイオン水(pH8.5~ 10) を用いて水の割合を多くした水-化石燃料混合工 マルジョン(特願平9-308958号)などを好適に 用いることができる。また、水ー化石燃料混合エマルジ ョンには水と化石燃料の他に、必要に応じて界面活性剤 や電気石などを添加することができる。

【0006】本発明においては、上記水-化石燃料混合エマルジョンを昇温、気化して、噴射ノズルからガス流を噴射させ、燃焼させる。ガス流の温度を150℃以上とするのが好ましく、180~300℃がさらに好ましい。加熱昇温の方法は特に制限はないが、燃焼コストの点からは熱エネルギーを用いる方法より、マイクロ波

(極超短波)をエマルジョンに照射してエマルジョン中の水分子の運動によって昇温させる方法が好ましい。また、マイクロ波照射によれば、水と化石燃料とがそれぞれ気化して均質に混在する混合ガスとすることができ、より良好な燃焼状態とすることができる。マイクロ波は2450~3000MHzが好ましい。マイクロ波照射に要する外部入力は、水一化石燃料混合エマルジョン燃焼によって発生する熱量の通常3%以下である。気化は、通常0.5~1.5MPaに減圧するなどして行うことができる。

【0007】上記のようにして昇温、気化させて噴射さ せた水ー化石燃料混合ガス流に、ブラウンズガス炎を接 触させる。本発明において用いるブラウンズガス自体 は、水素と酸素が体積比2:1で混合された、水の電気 分解によって得られる非爆発性の混合ガスであり、燃焼 によって分子又は原子の水素、酸素が反応熱を生ずるこ とから、極めて高い燃焼温度となることが知られてい る。本発明では、トーチノズルと点火火花を発する着火 器などを用いてブラウンズガスを燃焼させて約2300 ℃の高還元性炎を作り、好ましくは反応性の良好な炎の 先端部を、上記混合ガス流に接触させる。これにより、 混合ガスが高温燃焼する。これは、ブラウンズガス炎が 混合ガス流を加熱するとともに、混合ガス中の化石燃料 より発生した活性化学種との間で相互作用し化石燃料ガ スを燃焼させ、高熱を発し、この高熱により混合ガス中 の水分がさらに水蒸気爆発して水素/酸素ガス炎(ブラ ウンズガス炎)として高速燃焼し、火炎伝播を生じて混 合ガス全体を燃焼させるものと考えられる。この水蒸気

爆発による高速燃焼の速度は、例えば、プロパンの燃焼の約6.75倍 (線速度2.7m/s)である。上記の燃焼メカニズムにおいて、活性化学種は水蒸気爆発によって生ずる酸素と反応することから、燃焼時に外部より 供給しなければならない酸素量が通常の燃焼よりもはるかに少なく、実質的に空気を利用しない燃焼システムとすることも可能である。例えば水:化石燃料が容量比で9:1のエマルジョンの場合、燃焼のために外部より要求される酸素量は従来の10分の1以下となると考えられる。本発明の燃焼方法及び燃焼装置は、化石燃料の使用量を低減した水ー化石燃料混合エマルジョンを用いて高い燃焼カロリーを得ることができるため、経済的であり、空気中で化石燃料等を燃焼させる場合に比べ公害の原因となる排出ガスもはるかに少なくすることができる

【0008】次に、本発明の燃焼方法及び燃焼装置につ いて図面を参照してさらに詳細に説明する。図1は本発 明の装置の一実施態様の構成を示す説明図であり、水ー 化石燃料混合エマルジョンの昇温にマイクロ波照射を用 いた例である。図中、1は水-化石燃料混合エマルジョ ンの貯蔵タンク、2は水-化石燃料混合エマルジョン供 給ポンプ、3はマイクロ波照射装置、4はブラウンズガ ス発生装置、5はブラウンズガス燃焼バーナ、7は混合 ガスバーナ、8は燃焼室、9は水-化石燃料混合エマル ジョン気化室、10はノズル、11は耐熱被覆材であ り、 $V_1 \sim V_5$ はそれぞれバルブである。この装置にお いて、貯蔵タンク1より供給ポンプ2によってバルブV 1 を経由してマイクロ波照射装置3に送り込まれた水ー 化石燃料混合エマルジョンは、マイクロ波照射により昇 温され、ノズル10を介して気化室9に送られて減圧さ れ、気化して水ー化石燃料混合ガスとなる。この気化室 9は気液分離室も兼ねており、該室内に溜った液状物は バルブV5 を開いて排出できる。減圧の結果約150~ 200℃となっている混合ガスは、バルブV2を介して 燃焼室8の混合ガスパーナ7から噴射される。この高温 ガスの移送に際しては、配管を耐熱被覆材11で被覆し ておくことが好ましい。一方、混合ガスパーナ7の近傍 のブラウンズガス燃焼バーナ5は、ブラウンズガス発生 装置4で作られたブラウンズガスをバルブV3を介して 噴射し、着火器(図示しない)で点火して混合ガスバー ナ7からのガス流に接触するブラウンズガス炎を作り、 混合ガス流を燃焼させる。燃焼室8の雰囲気は通常の周 囲雰囲気であるが、外部よりバルブV4を介して空気、 酸素又はオゾンの1種以上を導入することができ、燃焼 室8内の気体の組成を調整(例えば酸素過剰に、等)す ることができる。本発明においては水ー化石燃料混合工 マルジョンの燃焼に際し燃焼室8全体を高温にする必要 はなく、ブラウンズガス炎の接触によって水ー化石燃料 混合エマルジョンより生じたガスを完全燃焼させること ができる。

【0009】図2に、ブラウンズガス燃焼バーナ5から の炎と混合ガスバーナ7からのガス流との状態を拡大し た説明図を示した。混合ガスバーナ7から噴射された混 合ガス流のP点にブラウンズガス燃焼バーナ5からのブ ンラウンズガス炎21 (約2300℃) の、好ましくは 先端を接触させると、混合ガス中の化石燃料成分はブラ ウンズガス炎との反応で4000℃を越える高温で燃焼 する。この高温で、混合ガス中の水蒸気は分解し、ブラ ウンズガスを主体とするガスとなる。このガスはP点で 瞬時に自己燃焼し、この燃焼が火炎伝播となってP点か らA方向、B方向に連鎖燃焼し、混合ガスバーナ7から 噴射する混合ガス全体が燃焼することになる。図中、2 2 は混合ガス燃焼の炎を示す。このとき、混合ガス流と ブラウンズガス炎との接触、交差角度が15~30°と なるよう混合ガスバーナ7とブラウンズガス燃焼バーナ 5を設置するのが好ましい。また、ブラウンズガス炎が 接触するP点の位置は、通常、混合ガス流の温度が低下 せずに適正に維持されている範囲内であり、混合ガスバ ーナ7のノズル先端より5cm程度の位置が好ましい。

【0010】また、図3には図1の装置のマイクロ波照射装置3の一例についての模式的な説明図である。マグネトロン31で発信された波長2450MHzのマイクロ波34をアンテナ32、カップラー33を介して耐圧構造の石英ガラス35の窓から導波管36に導入し、ここで入口37より導入された水一化石燃料混合エマルジョンを加熱して出口38より気化室へ送る。

【0011】本発明の燃焼方法及び燃焼装置は、温風やスチームなどによって稼働する種々のシステムに利用することができ、例えば上記した燃焼室に炉、ボイラー、温風発生機、ガスタービン発電機などを接続して用いることができる。

[0012]

【実施例】次に、本発明を実施例に基づいてさらに詳細 に説明する。

実施例1

図4に示した構成のボイラシステムを運転し、発生熱量等を測定した。図中、図1と同符号は同じものを示し、41は完全自動ボイラ(川崎重工社製、KSK-SGボイラ)を示す。水一化石燃料混合エマルジョンは、蒸留水と灯油が容量比90:10で、水の3重量%のトルマリン(粒径1.0μm)を添加したものを用いた。水一灯油混合エマルジョンは4.5MPaでポンプ2によって34リットル/時間で24時間供給した。マイクロ波照射で20℃の水一灯油混合エマルジョンを約90秒で249℃に加熱し、気化室9で0.5MPaに減圧して気化した。バーナ7から噴出する混合ガスの温度は150℃であった。バーナ5からのブラウンズガスに着火器(図示しない)で点火して、2300℃のブラウンズガス炎の先端(バーナ先端より5cm)をバーナ7からの混合ガス流

にあてたところ、混合ガスが燃焼して炎を発し、燃焼し続けた。水一灯油混合エマルジョンのこのボイラにおける発熱量を、入口水の熱量と出口蒸気の熱量より発熱量を自動計測する蒸気熱計測システムにより測定したところ約6000kcal/kgであった。

【0013】灯油(燃焼カロリー約10300kcal/kg、コスト50円/kg)と同一の燃焼カロリーを上記ボイラシステムにおいて発生する水一灯油混合エマルジョン(燃焼カロリー約6000kcal/kg、コスト7円/kg)の、灯油に対するコストの比を計算すると

(10300/6000) \times (7/50) \Rightarrow 0.24 となり、実施例1で用いた水一灯油混合エマルジョンは灯油の24%の燃料コストで同一の燃焼ガロリーが得られることになる。また、1時間当り発生したスチームの熱出力は233kWであるのに対し、外部入力はマイクロ波照射に12kW、ブラウンズガス発生に7kWを要し、これらの入力の約12倍の熱出力があった。

【0014】比較例

実施例1と全く同じボイラシステムで、ブラウンズガス 発生装置を停止し、実施例1で用いたと同じ水一灯油混 合エマルジョンを昇温、気化した混合ガスにプロパンガ ス炎で着火しようとしたところ、混合ガスは全く燃焼し なかった。

[0014]

【発明の効果】本発明によれば、化石燃料の含有量の低い水ー化石燃料混合エマルジョンを効率よく燃焼し、少ないCO2 発生量で高い燃焼カロリーを得ることができる。本発明ではブラウンズガス炎を水ー化石燃料混合エマルジョンを気化させた混合ガス流に接触させることにより、従来のように燃焼環境全体を非常に高温にすることなく、経済的に、かつ、エネルギー効率よく、混合ガス全体を高温で燃焼させることができる。

【図面の簡単な説明】

【図1】本発明の燃焼装置の構成の説明図である。

【図2】本発明の燃焼装置における混合ガス流とブラウンズガス炎の説明図である。

【図3】マイクロ波照射装置の一例を示す説明図であ

【図4】本発明を用いたボイラシステムの一例の構成の 説明図である。

【符号の説明】

- 1 水ー化石燃料混合エマルジョンの貯蔵タンク
- 2 水-化石燃料混合エマルジョン供給ポンプ
- 3 マイクロ波照射装置
- 4 ブラウンズガス発生装置
- 5 ブラウンズガス燃焼バーナ
- 7 混合ガスバーナ
- 8 燃焼室
- 9 水ー化石燃料混合エマルジョン気化室

10 ノズル

11 耐熱被覆材

 $v_1 \sim v_5$ // //

21 ブラウンズガス炎

22 混合ガス炎

31 マグネトロン

32 アンテナ

33 カップラー

34 マイクロ波

35 石英ガラス

3 6 導波管

37 水-化石燃料混合エマルジョンの入口

38 水ー化石燃料混合エマルジョンの出口

41 完全自動ポイラ

【図1】

[図4]

フロントページの続き

(72)発明者 佐藤 利安 神奈川県平塚市八重咲町26番19-302号 ブルーハイツ高風荘

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.