

Advanced Deep Learning for Robotics - Final Presentation

Multimodal Sensor Fusion in Differentiable Bayesian Filters

Ali Rabeh, Tim Gerstewitz 10.08.2023

Too big? Push it!

ПШ

Motivation

Taken from [1]

Pushing is hard though ...

- Point of Contact?
- Pushing Angle?
- Material?
- Shape?
- ..

Analytical Modelling is difficult

→ Use data-driven model instead

State Estimation with Learned Models

Problem Statement

Goal: estimate pose of pushed object

$$bel(\boldsymbol{x}_t) = p(\boldsymbol{x}_t|\boldsymbol{z}_{1:t}, \boldsymbol{u}_{1:t})$$

https://web.mit.edu/mcube//push-dataset/

Use Structure of Bayes' Filter:

Learned Forward Model

$$p(\boldsymbol{x}_t|\boldsymbol{x}_{t-1},\boldsymbol{u}_t)$$

Learned Observation Model

$$p(\boldsymbol{z}_t|\boldsymbol{x}_t)$$

More than a million ways to be pushed

Experimental Setup

https://web.mit.edu/mcube//push-dataset/

MIT Push dataset:

- 11 objects
- 4 surface materials
- 250 Hz sampling rate
- → more than a million pushes

Use subset for training/testing:

- rectangular shape on plywood
- v = 100 mm/s, a = 0 mm/s²
- downsample to 50 Hz

Architectures

Methods

Training the models

Methods

- Pre-Train forward model
 - Minimize pose error over
 1, 2, 4, 8 and 16 prediction steps into the future
 - L2-Loss
- Train forward model and observation model end-to-end
 - Use same sequence of steps
 - Serves to finetune forward model together with observation model

Prediction steps into the future

Unimodal Filter Models

Results

Forward Model	Pusher pose	Pusher pose	
Observ. Model	Forces	Images	

Multimodal Filter Models

Results

Forward Model Pusher pose		Pusher pose & Images	
Observ. Model	Forces & Images	Forces	

 \rightarrow Informed proposal distribution

Numerical Comparison

Results

Models

RMSE in [cm/rad]

		only Forces	only Images	Forces & Images	Proposal Images
	Pose x	0.92	1.01	0.79	0.87
	Pose y	0.79	0.77	0.79	1.15
	Pose theta	0.24	0.24	0.26	0.23
	Position	0.86	0.90	0.79	1.02

- <u>Test dataset:</u> 10 pushing trajectories
- Perform 3 runs across all test trajectories for each model
 - → Average results

How does the filtering look like?

Results

Why has the filter a hard time?

Discussion

- Difficult training
- Resampling makes difference during training
 - → Observation model gets better

BUT: Filtering without known process or observation model possible!

→ combining modalities can lead to better results

"Classic" process model and observation model slightly better than a measurement-informed proposal distribution in this pushing scenario.

Thank you for your attention!

Questions?

References

[1] Mericli, Tekin & Veloso, Manuela & Akin, H. Levent, "Achievable push-manipulation for complex passive mobile objects using past experience", in 12th International Conference on Autonomous Agents and Multiagent Systems 2013, AAMAS 2013, pp. 71-78.

[2] K. T. Yu, M. Bauza, N. Fazeli, and A. Rodriguez, "More than a Million Ways to Be Pushed: A High-Fidelity Experimental Data Set of Planar Pushing", in 2016 IEEE/RSJ Internation Conference on Intelligent Robots and Systems (IROS), 2016, pp. 30–37.

Backup

Differentiable Particle Filters

Methods

Loss end-to-end training

