ESP8266 应用笔记 固件下载协议

版本 1.0 版权 © 2016

关于本手册

本文介绍了 ESP8266 的固件下载协议,结构如下所示。

章	标题	内容
第1章	概述	介绍固件下载的硬件准备和下载流程。
第 2 章	传输协议	介绍下载固件到 Flash 时传输的数据格式。
第3章	固件格式	介绍在 Flash 中的固件格式。
附录I	编程举例	介绍相关编程举例。

发布说明

日期	版本	发布说明
2016.05	V1.0	首次发布。

相关手册

请通过如下链接下载相关手册。

官网: http://www.espressif.com/zh-hans/support/download/documents

官方论坛: http://bbs.espressif.com/viewtopic.php?f=67&t=225

文档类型	文档名称
西/比卡	《ESP8266 硬件描述》
硬件指南	《ESP-WROOM-02 技术规格表》
开发指南	《ESP8266 SDK 入门指南》
	《ESP8266 Non-OS SDK AT 指令集》

目录

1.	概述.		. 1
	1.1.	硬件准备	.1
		1.1.1. 硬件设置	.1
		1.1.2. 硬件连接	.1
	1.2.	下载流程	.2
2.	传输	办议	.3
	2.1.	数据头	.3
		数据体	
		各式	
l.	附录	- 编程举例	.7
		checksum	
	1.11.	erase flash	.7
	1.111.	参考资料	8.

1. 概述

1.1. 硬件准备

ESP8266 处于 UART 下载模式时,可以通过外部 MCU 将固件下载到 ESP8266。

1.1.1. 硬件设置

硬件设置如表 1-1 所示。

 设置项
 值

 UART 下载模式
 GPIO0 和 GPIO15: 低电平 GPIO2: 高电平

 波特率
 自适应

 数据位
 8

 停止位
 1

 校验位
 无

 流控
 关闭

表 1-1. 硬件设置

1.1.2. 硬件连接

硬件连接如图 1-1 所示。

图 1-1. 硬件连接

1.2. 下载流程

图 1-2. 下载流程

- 同步: 发送同步帧同步波特率。
- 擦除数据:根据要下载的固件大小和下载地址擦除 Flash 相应的块区域。
- 发送数据:将固件封装成多帧发送给 ESP8266。
- 发送结束帧:发送下载结束帧给 ESP8266。

2.

传输协议

传输协议采用 SLIP (Serial Line Internet Protocol) 的封装格式。

- 每个数据包都以 0xC0 开始和结束。
- 如果 0xC0 出现在数据包内部,就将 0xC0 替换成两个字节 0xDB 0xDC;如果 0xDB 出现在数据包内部,则替换为 0xDB 0xDD。
- 在数据帧里,数据包由数据头和长度不定的数据体组成,如图 2-1 所示。
- 所有多字节字段的存储模式均为小端模式。

图 2-1. 数据包格式

说明:

数据头 Data size 统计的是不替换前的长度。

2.1. 数据头

数据头的格式如表 2-1 所示。

表 2-1. 数据头格式

数据类型	字节	请求	应答
Туре	0	始终为 0x00。	始终为 0x01。
Command	1	操作代码详细信息请参考表 2-2。	
Data size	2~3	数据体的大小。	

数据类型	字节	请求	应答
Checksum/ Response	4~7	payload(数据体中 16 字节之后的固件数据)的异或校验。 Checksum 计算方法请参考"附录 — 编程举例"。	响应数据。
Body	8~n	取决于操作。	
Status	8	-	状态标志,成功(0)或失 败(1)。
Error	9	-	成功(null)或失败(错误码)。

表 2-2. 操作代码

代码	名称	说明
02	Flash DownLoad Start	擦除 Flash 中的数据。 • Word0:擦除扇区的数量,每个扇区 4096 字节。 • Word1:发送数据包的数量。 • Word2:发送数据包的大小,如 0x400。 • Word3:偏移地址。 说明: 关于擦除数据的代码示例请参考"附录 - 编程举例"。
03	File Packet Send	发送数据。 • Word0: 发送数据包的大小(填 0x400)。 • Word1: 发送数据包的序列号。 • Word2: 0x0 • Word3: 0x0
04	Flash DownLoad Stop	停止发送数据。
08	Sync Frame Send	<pre>sync_frame[36] = { 0x07, 0x07, 0x12, 0x20, 0x55, 0x55,</pre>

2.2. 数据体

数据体格式如图 2-2 所示。

图 2-2. 数据体格式

数据体前 16 个字节(Word0~Word3)是描述数据体的,不同的数据指令,其描述也不同。

3.

固件格式

固件包含文件头和数目可变的数据块(数据块的大小可能不同),如图 3-1 所示。所有多字节字段的存储模式均为小端模式。

图 3-1. 固件格式

文件头格式如表 3-1 所示。

表 3-1. 固件格式说明

字节	数据类型	说明
0	Magic Code	值始终为 0XE9。
1	Block Number	数据块的数量。
2	SPI Mode	SPI 的工作模式。 • 0x00: QIO 模式 • 0x01: QOut 模式 • 0x02: DIO 模式 • 0x03: DOut 模式
3	SPI Flash Info	SPI Flash 的大小和频率。 高 4 位: 0x0 = 512 kB; 0x1 = 256 kB; 0x2 = 1 MB; 0x3 = 2 MB; 0x4 = 4 MB 低 4 位: 0x0 = 40 MHz; 0x1 = 26 MHz; 0x2 = 20 MHz; 0XF = 80 MHz
4~7	Entry Address	CPU 入口地址。

Ι.

附录 - 编程举例

I.I. checksum

```
uint32_t espcomm_calc_checksum(unsigned char *data, uint16_t
    data_size)
{
        uint16_t cnt;
        uint32_t result;
        result = 0xEF;
        for(cnt = 0; cnt < data_size; cnt++)
        {
            result ^= data[cnt];
        }
        return result;
}</pre>
```

I.II. erase flash

```
#define BLOCKSIZE_FLASH 0x400
#define FLASH_DOWNLOAD_BEGIN 0x02
uint32 flash packet[];
//uint32_t size:firmware real size, uint32_t address: download
offset address
int erase_flash(uint32_t size, uint32_t address)
const int sector_size = 4096;
const int sectors_per_block = 16;
const int first sector index = address / sector size;
const int total_sector_count = ((size % sector_size) == 0) ?
                                (size / sector_size) : (size /
sector_size + 1);
const int max_head_sector_count = sectors_per_block -
(first_sector_index % sectors_per_block);
const int head_sector_count = (max_head_sector_count >
total_sector_count) ?
```



```
total_sector_count :
max_head_sector_count;
// SPIEraseArea function in the esp8266 ROM has a bug which causes
extra area to be erased.
// If the address range to be erased crosses the block boundary,
// then extra head_sector_count sectors are erased.
// If the address range doesn't cross the block boundary,
// then extra total_sector_count sectors are erased.
const int adjusted sector count = (total sector count > 2 *
head sector count) ?
                                  (total sector count -
head sector count):
                                  (total_sector_count + 1) / 2;
erase_size = adjusted_sector_count * sector_size;
flash_packet[0] = erase_size;
flash_packet[1] = (size + BLOCKSIZE_FLASH - 1) / BLOCKSIZE_FLASH;
flash packet[2] = BLOCKSIZE FLASH;
flash packet[3] = address;
espcomm_send_command(FLASH_DOWNLOAD_BEGIN, (unsigned char*)
&flash_packet, 16);
```

I.III. 参考资料

- (1) igrr/esptool-ck url: https://github.com/igrr/esptool-ck
- (2) themadinventor/esptool url: https://github.com/themadinventor/esptool

免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。

文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。本文档在此未以禁止反言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。

Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。蓝牙标志是 Bluetooth SIG 的注册商标。 文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

版权归© 2016 乐鑫所有。保留所有权利。