

交互网络 - [免疫浸润-云] 棒棒糖图

网址: https://www.xiantao.love

更新时间: 2023.03.10

目录

基本概念	3
应用场景	4
分析流程	4
主要结果	5
云端数据	6
参数说明	7
特殊参数	7
算法	8
统计	8
映射	9
点 1	10
线 1	11
标注	11
<mark>标题</mark>	12
图注(Legend)	12
坐 <mark>标轴</mark>	13
风格 1	14
图片 1	15
结果说明 1	16
主要结果	16
补充结果 1	17
方法学	18
如何引用 1	19
党口问题 2	20

基本概念

- 免疫浸润分析:利用转录组或者其他组学的数据,通过算法计算组织中免疫细胞的分数情况,推测组织中免疫细胞的构成情况。
- ▶ 免疫浸润算法
 - ssGSEA (single sample GSEA): 用给定的基因集对每一个样本计算对应基因集的富集得分。在免疫浸润中的 ssGSEA 则是利用每一类免疫细胞特定的 markers(来源于说明文本中的引文)作为基因集去计算每个样本中每一类免疫细胞的富集得分,推断单个样本的免疫细胞的浸润情况。
 - estimate: estimate 包提供的通过内置的 markers 计算样本的免疫浸润得分、基质得分和估计得分。(主要<u>看基质得分和免疫浸润得分,可以</u>简单理解得分越高,内环境中基质成分和免疫浸润越高)
- ▶ 棒棒糖图:可以用于可视化 1 个分子和多个细胞分数的相关性情况。此时,圆圈的大小和棒子的高度均代表相关性程度,颜色的深浅代表 p 值的大小情况。
- ▶ 统计方法:
 - Pearson 相关:参数相关性检验,衡量两组之间是否存在线性关系,数据需要满足双正态性。
 - Spearman 相关: 非参数相关性检验,通过秩次来判断两组是否存在相关性。数据可以不需要满足正态性,如果不懂具体的选择条件,可以先选择该方法。

应用场景

基于公共数据(云端数据)直接分析所选分子与预先计算好的免疫细胞分数之间的相关性。一般绘制棒棒糖图进行直观比较。

分析流程

主要结果

通过棒棒糖图展示相关性结果。

- 纵坐标代表算法下的细胞种类,横坐标代表所选择的【y 轴映射】内容。(可选相关系数 或 p 值,注意绘图的默认风格为 xy 轴颠倒)
 - 相关性大小,相关性为负数,则说明分子和对应的细胞负相关;相关性为正数,则说明分子和对应的细胞正相关。
 - p 值显著性, 值越小, 说明对应关系的可靠性越高。
- ▶ 图中点(圈)的颜色为所选择的【颜色映射】内容。(如上图,对应 p 值)
- ▶ 图中点(圈)的大小为所选择的【大小映射】内容。(如上图,对应相关系数绝对值 |Cor|)
 - 相关性程度(|Cor|),相关性程度越高,圆圈相对越大。
- ▶ 可以认为相关性系数达到某个值以上就是相关(0.3, 0.5, 0.7 等等),或者是p 值满足统计学意义认为是相关。

云端数据

本模块提供预清洗好的云端数据,不同平台的云端数据集的分子可能会有不同。注意查看当前数据参数选中的云端数据。

参数说明

(说明:标注了颜色的为常用参数。)

特殊参数

▶ 分子: 下拉框将列出对应所选数据集分子,可以输入关键字搜索分子,基因 symbol 或 Ensembl ID,只能选单个分析。

算法

- ▶ 算法:选择预先计算好的每个样本的免疫细胞浸润分数的方法,可以选择 ssgsea、estimate。不同算法之间对应的内容会有一定差别,选择好算法后, 下面"细胞"参数需要点击"确认"后会进行更新,具体算法的参考文献可查看 返回结果的<方法学>对应的内容。
- ▶ 细胞: 算法下提供的细胞,默认是选择所有内容,具体细胞类型见<方法学>的补充说明。此参数需要点击"确认"后才会根据算法进行更新。可多选。

统计

▶ <mark>统计方法</mark>:可选择 <u>Spearman、Pearson</u>。统计方法的选择依据可以参考"基本概念"中统计方法的说明。

映射

- ▶ y轴映射: 主要影响y轴(默认横坐标)的取值。可选择 <u>相关系数、p值</u>。
- ▶ 颜色映射: 主要影响点(棒子上的圈)的颜色范围,注意映射内容的数值类型,数值型数据为渐变色,不映射时只显示一种颜色。可选择 p 值、相关系数、无。
- ► 大小映射: 主要影响点(棒子上的圈)的相对大小。可选择 <u>相关系数绝对</u> 值、p 值、无。

点

- ▶ 填充色:点的填充色颜色选项,取决于颜色映射参数所选择的内容,展示数值型内容时,修改第一和第二色卡作为数值从小到大的渐变色,最多支持修改2个颜色。受配色方案全局性修改。
- ▶ 描边色:点的描边色颜色选项,取决于颜色映射参数所选择的内容,展示数值型内容时,修改第一和第二色卡作为数值从小到大的渐变色,最多支持修改2个颜色。受配色方案全局性修改。
- ▶ 样式:点的样式类型,可选择 圆形、正方形、菱形、三角形、倒三角。单选,选择后将全局变化。
- ▶ 大小比例:点的大小。
- ▶ 不透明度:点的透明度。0为完全透明,1为完全不透明。

线

轴线与点之间的连线。

▶ 颜色:线的颜色,默认为纯黑,不受配色方案全局性影响。

▶ 类型:线条的类型,可选 <u>实线、虚线</u>。

▶ 粗细:线的粗细,默认为 0.75pt

▶ 不透明度:线的透明度。0为完全透明,1为完全不透明。

标注

▶ 内容: 影响图中右侧的展示信息,默认为相关系数-星号。可以选 不标注、相关系数、相关系数-星号、星号、p值科学计数法、p值科学计数法、p值科学计数法、p值数值(小于 0.001 自动<)。</p>

▶ 标注大小:标注的文字大小。

标题

▶ 大标题: 大标题文本

> x轴标题: x轴标题文本

> y轴标题: y轴标题文本

▶ 补充: 在要换行的中间插入\n。如果需要上标,可以用两个英文输入法下的 大括号括住,比如 {{2}};如果需要下标,可以用两个英文输入法下的中括 号括住,比如 [[2]]

图注(Legend)

▶ 展示: 是否展示图注

▶ 图注位置:可选 默认、右、上,默认为右。

坐标轴

- ➤ X 轴标注旋转: 支持对 x 轴文字进行旋转。适合于 x 轴文字过长的时候。
- ▶ Y轴范围+刻度:(注意:范围的修改如果调整过大会失效)
 - 如果只是想要修改范围,可以只输入两个范围值,比如 -0.5,0.5,自动调整刻度

■ 如果同时想要修改范围+刻度,可以输入比如: -0.5,-0.5,0,0.5,0.5 。注意,此时最大和最小值会被当做范围值,不会作为刻度,如果需要刻度,需要类似于 0.5 那样同时写两次

风格

▶ 边框:是否添加外框

▶ 网格:是否添加网格

> xy 颠倒: 可以颠倒 xy 轴

> 文字大小: 针对图中所有文字整体的大小控制

图片

▶ 宽度: 图片横向长度,单位为 cm

▶ 高度: 图片纵向长度,单位为 cm

> 字体:可以选择图片中文字的字体

结果说明

主要结果

主要结果格式为图片格式,提供 PDF、TIFF、PPTX 格式下载,结果报告可以下载包括 pdf 以及说明文本的内容。

▶ 此外,还提供公共数据中所选分子在不同样本中的表达数据及对应的<mark>免疫浸润得分</mark>,提供 EXCEL 格式下载:

1	A	В	С	D	E	F
1	sample_id	ERBB2	aDC	B cells	CD8 T cells	Cytotoxic ce
2	TCGA-IC-A6RF-01A-13R-A336-31	7.08817977	0.61923636	0.44807042	0.65105878	0.42148459
3	TCGA-IG-A3I8-01A-11R-A24K-31	5.3260591	0.38598375	0.11404171	0.67006305	0.33192069
4	TCGA-IG-A3QL-01A-11R-A24K-31	5.81655619	0.35905094	0.14446447	0.65406727	0.33230351
5	TCGA-IG-A3YA-01A-11R-A24K-31	5.08085802	0.62174938	0.42042542	0.68014127	0.46116118
6	TCGA-IG-A3YB-01A-11R-A36D-31	5.45138587	0.60277327	0.18440524	0.68562326	0.4656253
7	TCGA-IG-A3YC-01A-11R-A24K-31	5.3026371	0.63814237	0.31658942	0.69536115	0.65876444
8	TCGA-IG-A4P3-01A-11R-A260-31	6.24438667	0.70767333	0.42473756	0.71399362	0.65144359
9	TCGA-IG-A50L-01A-11R-A260-31	4.93491274	0.46948508	0.12499211	0.66802117	0.37076345
10	TCGA-IG-A51D-01A-11R-A36D-31	5.84043554	0.68195733	0.30289088	0.67552269	0.57623703
11	TCGA-IG-A5B8-01A-11R-A28J-31	3.43170318	0.52258351	0.12490554	0.66550139	0.45682779
12	TCGA-IG-A5S3-01A-11R-A28J-31	5.85764018	0.47461414	0.27399567	0.66619587	0.44965659
13	TCGA-IG-A625-01A-11R-A31P-31	5.40525041	0.46444336	0.26148114	0.68779561	0.44540146

补充结果

主变量	次变量	自由度(df)	统计量-Pearson	相关系数-Pearson	p值-Pearson	统计量-Spearman	相关系数-Spe
ERBB2	aDC	80	-1.52964	-0.168572	0.1301	1.076e+05	-0.17131
ERBB2	B cells	80	2.3729	0.256428	0.0200	6.954e+04	0.2431
ERBB2	CD8 T cells	80	-1.4 9341	-0.164689	0.1393	1.102e+05	-0.1993
ERBB2	Cytotoxic cells	80	-1.43594	-0.158513	0.1549	1.088e+05	-0.1838
ERBB2	DC	80	-1.3349	-0.147611	0.1857	1.06e+05	-0.1538
ERBB2	Eosinophils	80	-1.64712	-0.181108	0.1035	1.105e+05	-0.2025
ERBB2	IDC	80	-2.02734	-0.221056	0.0460	1.089e+05	-0.1853
ERBB2	Macrophages	80	-3.41582	-0.356768	0.0010	1.276e+05	-0.3882
ERBB2	Mast cells	80	0.747594	0.0832931	0.4569	9.06e+04	0.01398
ERBB2	Neutrophils	80	-1.1801	-0.130806	0.2415	1.05e+05	-0.1426
ERBB2	NK CD56bright cells	80	1.63297	0.179603	0.1064	7.427e+04	0.19171
ERBB2	NK CD56dim cells	80	-2.21746	-0.240635	0.0294	1.159e+05	-0.2616

此表格提供 Pearson 和 Spearman 统计方法的分析结果,即所有的相关性分析结果,提供 EXCEL 格式下载。

方法学

所有分析和可视化均在 R 4.2.1 中进行

涉及的 R 包: ggplot2 包 (用于可视化)

处理过程: 对数据中主变量和免疫浸润矩阵数据之间进行相关性分析, 分析结果

用 ggplot2 包进行棒棒糖图可视化。

如何引用

生信工具分析和可视化用的是 R 语言,可以直接写自己用 R 来进行分析和可视化即可,可以无需引用仙桃,如果想要引用仙桃,可以在致谢部分 (Acknowledge) 致谢仙桃学术(www.xiantao.love)。

方法学部分可以参考对应说明文本中的内容以及一些文献中的描述。

常见问题

1. 方法里面的 Spearman 和 Pearson 方法,应该选择哪一个?

答:

两种方法均可以选择。Pearson 会要求数据是满足正态性,Spearman 可以不需要满足正态性,可以先选择非参数的 Spearman 相关进行尝试。

2. 怎么判断相关性好坏(结果好坏)?

答:

这个没有很统一的标准,可以是相关系数在 0.3、0.5、0.7 以上(不一定说要非常相关(>0.7)才能放文章里面),也可以是 p 值,具体根据研究情况进行判断。

3. ssGSEA 算法(其他一些算法)给到的结果 跟 其他方法(或者别的数据库TIMER 等)趋势不一样,这个是什么原因?

答:

不同算法之间可能是会存在有一定的差别,况且算法只是一种推测手段,实际是什么情况还是需要通过做实验来确定的。所以,如果只是单纯想要拿一些结果来充实自己的研究,那么可以只放满足自己想要的趋势的数据。

4. 免疫浸润可以做什么实验验证?

答:

可以通过免疫组化检测对应的免疫细胞的 markers,也可以对组织做流式分析分析细胞的情况等等。具体要根据研究情况进行安排。

5. 为什么"算法选项卡"中的细胞选项的内容对不上?

答:

如果更换了算法的参数,需要<mark>重新点击"确认"按钮</mark>后,选项卡中的【细胞】选项 才会变成对应算法的选项。

6. 统计学标注可以用具体 p 值吗?

答:

在"标注"选项卡中,【内容】参数,里面有显示具体 p 值的选项,也可以选择展示其他内容。

7. 结果(ssGSEA)里面的有一些英文简写的细胞具体是哪些细胞?答:

可以看方法学中对应的 Immunity 的引文: Bindea, Gabriela, et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39.4 (2013): 782-795. 本模块 ssGSEA 算法基于这篇引文(补充材料)提供的 24 种细胞 markers 计算这 24 种细胞的得分情况。如果想要知道具体某些细胞是什么,可以先查阅上面那篇引文。

8. 在云端数据框内看到的例数和分析时候的例数不同,这个是什么情况? 答:

云端数据的例数一般是对应组学所有的例数,分析时候可能会有剔除样本的情况,本模块使用 去除正常+去除无临床信息 的样本,具体需要看说明文本中对于数据的处理情况的说明。

9. 云端数据在哪可以查询?

答:

模块分析后,在方法学标签中,提供了公共数据(云端数据)的具体信息及下载链接。