Interim Report

# Predicting Algae Bloom spread in the Marlborough Sounds using Bayesian Inference Luke Pearson



## **Abstract**

Toxic Algae blooms cause shellfish in the affected area to be infected, causing them to carry the toxins that can cause severe illness to humans when they are consumed. When these blooms occur, it causes the shellfish industry in the Marlborough Sounds to shut down collection region-wide out of an abundance of caution, which increases costs. Therefore, they have an interest in predicting Algae blooms, and in particular the size and the spread in an effort to narrow the extent of the shutdown.

For the purposes of this project, the Marlborough sounds have been divided into a set of 386 polygonal approximations of areas of the sounds. The volumes of these polygons have been calculated, and a transport matrix depicting the proportion of particles that move from site i to site j in a particular time interval. (Ross Vennell, 2022)

Our data is recording concentrations of samples retrieved from these sites at discrete time intervals, observed with an error. This data is also observed sparsely.

Due to timing, the actual data is not currently available, so the scope of this project will involve simulating data with randomly generated parameters, and then trying to predict the data by deducing the values of the parameters.

This will be done by constructing a forward in time statistical model of the mass and then using bayesian inference, via a Metropolis-Hastings algorithm to determine the model parameters.

This model will be based upon an exponential growth component during active blooms, a decay component and a transfer component based upon the transport matrix.

# Introduction

# **Bayesian Inference**

Bayesian inference is a branch of statistical modeling based upon Bayes' theorem

$$P(X|Y) = \frac{P(Y|X) \times P(X)}{P(Y)}$$

Where:

- P(X) is the *prior* distribution
- P(Y|X) is the *likelihood* distribution
- P(X|Y) is the *posterior* distribution

Where instead of the usual approach where the parameters X are fixed and the data Y is variable to determine the likelihood, the data is used as the fixed variable to determine the distribution of the unknown parameters. Since the data is fixed, P(Y) will be constant.

For the purposes of this project, we can use the likelihood for the Concentrations and an educated construction of prior distributions to determine the distribution of the parameters, or  $P(Parameters | Concentration) \propto P(Concentration | Parameters) \times P(Parameters)$ .

However, due to the complex nature of the likelihood in this case  $\left(Where\ C_{it} \sim N\left(log\left(\delta_i + \frac{M_{it}}{V_i}\right), \frac{1}{\sqrt{\tau}}\right)\right)$ , deriving the posterior distribution mathematically provides a result that is not useful. Therefore, an analytical method of approximating these distributions is needed.

# **Metropolis-Hastings**

The Metropolis-Hastings algorithm is a Monte Carlo Markov Chain sampling method that can be used to approximate a distribution that is otherwise hard to sample from. This method utilises the bayesian inference ideas above, but also uses a *proposal* distribution to control the chain.

#### **General Method**

For each parameter  $\theta$ , the algorithm generates a candidate value  $\theta^*$  from a proposal distribution  $q\left(\theta^*|\theta_{s-1}\right)$  that is dependent on the previous value for  $\theta$ . It then calculates a ratio of

$$r = \frac{P(Y|\theta^*) \times P(\theta^*) \times P(\theta_{s-1}|\theta^*)}{P(Y|\theta_{s-1}) \times P(\theta_{s-1}) \times Q(\theta^*|\theta_{s-1})} \text{ with:}$$

- $P(Y|\theta)$  being calculated from the *likelihood* distribution
- P(Y) being calculated from the *prior* distribution
- $P(\theta_a | \theta_b)$  being calculated from the *likelihood* distribution

And then the probability of accepting  $\theta$  \* as  $\theta$  s is r, with the probability of accepting  $\theta$  s is 1-r

#### **Application**

Because our likelihood is different for each site i and time t, the total likelihood  $P(Y|\theta)$  is actually  $\prod_{i=1}^n \binom{T}{t=1} \left( P(Y_{it}|\theta) \right).$  Since our simulation will involve 10 sites and 100 times, this will be the product of 10000 probabilities; to avoid our code rounding the value to zero,  $\sum_{i=1}^n \binom{T}{t=1} \left( log(P(Y_{it}|\theta)) \right) \text{ will be more useful. Therefore, our total ratio is}$ 

$$ratio = log(P(Y|\theta^*)) + log(P(\theta^*)) + log(P(\theta^*)) + log(P(\theta^*|\theta^*)) - log(P(Y|\theta^*)) + log(P(\theta^*|\theta^*)) + log(P(\theta^*|\theta^*)) + log(P(\theta^*|\theta^*)) + log(P(\theta^*|\theta^*)) + log(P(\theta^*)) + log(P(\theta^*)$$

And then the probability of accepting  $\theta^*$  as  $\theta_s$  is  $e^{ratio}$ , with the probability of accepting  $\theta_{s-1}$  as  $\theta_s$  is  $1-e^{ratio}$ .

# **Transportation Matrix**

In preparation for this project, Ross Vennell has constructed a transportation matrix, P, to represent the proportion of mass that moves between sites across the Marlborough Sounds.

This matrix was constructed by building 386 polygons to approximate the geometry of the sounds, with the location of the sites labeled in *Figure X*. Then, Vennell simulated a set of particles in each site and determined the number that had traveled to each other site after a single time event.

P is an  $n \times n$  matrix where  $P_{ij}$  is equal to the proportion of particles in site i that travels to site j, with two main properties:

- $0 \le P_{ij} \le 1$  for all i, j
- $\bullet \quad \sum_{j=1}^{n} P_{ij} = 1 \, for \, all \, i$

Figure X + 1 is a heatmap of P. P is a very sparse matrix, with 97% of values being 0, and P is also close to a diagonal matrix with the average value of P is being 0.935. As a result, we shouldn't expect algae spread amongst a lot of sites such that a bloom should stay relatively contained to the sites in the near vicinity.



Figure~X:~Map~of~Marl borough~Sounds~with~locations~of~sites~labeled



Figure X + 1: Heatmap of P

# **Our Model**

#### Mass

Mass is observed as:

- *n* Sites and *T* discrete Times
- Growth parameter  $\alpha$
- Decay parameter β
- Dispersion Matrix P where  $p_{ij}$  is the proportion of Mass at site i that travels to site j (Such that  $\sum_{i=1}^{n} p_{ij} = 1$  for all  $i \in \{1,...,n\}$ )
- N events
- Each of  $k \in \{1,..., N\}$  events has:
  - Starting site  $I_k$  with uniform probability  $\frac{1}{n}$
  - Starting time  $T_{k} \in \{1,...,T\}$
  - $\circ$  Length of time  $W_{k}$
  - $\circ$  Starting size  $S_k$

Where the equation for  $M_{i,t}$  is:

$$M_{i,t} = \alpha A_{i,t} M_{i,t-1} + \beta \left( \sum_{j=1}^{n} p_{i,j} M_{j,t-1} \right) + B_{i,t}$$

Where

$$A_{i,t} = I \left( \sum_{k=1}^{n} I(I_{k} = i) I(T_{k} \le t \le T_{k} + W_{k}) > 0 \right)$$

$$B_{i,t} = \sum_{k=1}^{n} I(I_k = i)I(T_k = t)S_k$$

#### **Concentration**

Concentration is calculated from Mass where:

- Each site  $i \in \{1,...,n\}$  has volume  $V_{i}$
- $\delta$  is a concentration offset of approximately 0  $^+$
- Precision parameter τ

Where the equation for  $C_{i,t}$  is

$$log(Y_{i,t}) \sim N(log(\delta + \frac{M_{i,t}}{V_i}), \frac{1}{\tau}^2)$$

#### **Parameters**

#### **Known Parameters:**

- Number of sites, *n*
- Time period, T
- Dispersion Matrix, P
- Number of events, N
- Volumes, *V*
- Concentration offset,  $\delta$

#### Parameters to be estimated

- Growth Parameter, α
- Decay Parameter, β
- Event site, I k
- Event Starting time, T
- Event time length,  $W_{k}$
- Event size,  $S_k$
- Precision τ

#### **Priors**

$$\alpha \sim Gamma(a_{\alpha}, b_{\alpha})$$

$$\beta \sim Beta(a_{\beta}, b_{\beta})$$

$$I_{k} \sim DiscreteUniform(1, n)$$

$$T_k \sim DiscreteUniform(1, T)$$

$$W_{k} \sim NegBinomial(r_{W}, p_{W})$$

$$S_{k} \sim Gamma(a_{S}, b_{S})$$

$$\tau \sim Gamma(a_{\tau}, b_{\tau})$$

## Where:

$$a_{\beta'} a_{\beta'} a_{\tau'} b = 1$$

$$a_{\alpha} = 2$$

$$r_{W} = 6$$

$$p_{W} = 0.75$$

## **Pseudocode**

## $\mathbf{FindM}_{\mathsf{New}}$

#### Inputs:

- M
- α
- β
- P
- A
- B

$$growth = \alpha \times (AM)$$
  
 $transport = \beta \times (P \cdot M)$   
 $M_{New} = B + growth + transport$ 

#### Outputs:

• M <sub>New</sub>

#### RunSimulation

Inputs:

 $\alpha \sim Gamma(2, 1)$ 

 $\beta \sim Beta(4, 3)$ 

 $N \sim DiscreteUniform(1, \frac{T}{10})$ 

*For x in* 1: *N*:

 $i \sim DiscreteUniform(1, n)$ 

 $t \sim DiscreteUniform(1, T)$ 

 $w \sim NegBinom(6, 0.75) + 1$ 

 $s \sim Gamma(1, 1)$ 

$$A_{t:min(t+w,T),i} = 1$$

$$B_{t,i} = s$$

$$\left[ M_{0,0}, ..., M_{n,0} \right] = 0$$

*For t in* 1: *T*:

$$M_{New} = FindM_{New} \left( \begin{bmatrix} M_{0, t-1}, ..., M_{n, t-1} \end{bmatrix}, \alpha, \beta, P_{i:n, i:n'} \begin{bmatrix} A_{t, 1}, ..., A_{t, n} \end{bmatrix}, \begin{bmatrix} B_{t, 1}, ..., B_{t, n} \end{bmatrix} \right)$$

$$\begin{bmatrix} M_{0, t'}, ..., M_{n, t} \end{bmatrix} = M_{New}$$

Outputs:

- $\bullet \quad \left[ \left[ M \quad _{0,\,1},...,\; M \quad _{n,\,1} \right],...,\left[ M \quad _{0,\,T},...,\; M \quad _{n,\,T} \right] \right]$

- • N
   • [I ₀,..., I N]
   • [T ₀,..., T N]
   • [W ₀,..., W N]
   • [S ₀,..., S N]

#### **GetSample**

Inputs:

- ρ
  α
  β
  N
  [I<sub>1</sub>,..., I<sub>N</sub>]
  [t<sub>1</sub>,..., t<sub>N</sub>]
  [W<sub>1</sub>,..., W<sub>N</sub>]
  [s<sub>1</sub>,..., s<sub>N</sub>]

*For x in* 1: *N*:

$$A_{t_{x}:min(t_{x}+W_{x},t),I_{x}} = 1$$

$$B_{t,i} = s_x$$

$$\left[ M_{0,0}, ..., M_{n,0} \right] = 0$$

*For t in* 1: *T*:

$$M_{New} = FindM_{New} \Big( \Big[ M_{0, t-1}, ..., M_{n, t-1} \Big], \ \alpha, \ \beta, \ P_{i:n, i:n'} \ \Big[ A_{t, 1}, ..., A_{t, n} \Big], \ \Big[ B_{t, 1}, ..., B_{t, n} \Big] \Big) \Big[ M_{0, t'}, ..., M_{n, t} \Big] = M_{New}$$

Outputs:

• 
$$[[M_{0,1},...,M_{n,1}],...,[M_{0,T},...,M_{n,T}]]$$

#### ConvertConcentration

Inputs:

- n
- T
- M
- V
- δ

For *i* in 1: n:

$$C_{i,1:T} = \frac{M_{i,1:T}}{V_i}$$

 $\textit{Concentration} = \log(C + \delta)$ 

Outputs:

• Concentration

#### ConvertY

Inputs:

- (
- •

$$Y_{log} \sim N\left(C, \frac{1}{\sqrt{\tau}}\right)$$

Outputs:

• Y log

#### **Metropolis-Hastings Algorithm**

Inputs:

```
n = 10
T = 100
\delta~=~1^{~-10}
\tau_{True} \sim Gamma(1, 1)
\begin{bmatrix} V_{1}, \dots, V_{n} \end{bmatrix} \sim NegBinom(1, 1) + 1
C_{True} = ConvertCalculation(n, T, M_{True}, V, \delta)
Y = ConvertY(C_{True}, \tau_{True})
\alpha_0 \sim Gamma(2, 1)
\beta_0 \sim Beta(1, 1)
N = N_{True}
\begin{bmatrix} I_{0,1}, \dots, I_{0,N} \end{bmatrix} \sim DiscreteUniform(1, n)
\begin{bmatrix} t \\ 1,1,\dots, t \end{bmatrix} \sim DiscreteUniform(1, T)
\left[ w_{0.1}, ..., w_{0.N} \right] \sim NegBinom(6, 0.75)
[s_{0.1},...,s_{0.N}] \sim Gamma(1, 1)
\tau_0 \sim Gamma(1, 1)
\Phi = \left[\alpha_{0}, \beta_{0}, N, \left[I_{0,1}, ..., I_{0,N}\right], \left[t_{0,1}, ..., t_{0,N}\right], \left[w_{0,1}, ..., w_{0,N}\right], \left[s_{0,1}, ..., s_{0,N}\right], \tau_{0}\right]
For each parameter _{0} in \phi:
         Array_{parameter} = parameter_{0}
         Accept_{parameter} = 0
```

#### *For s in* 1: 10000:

#### **Alpha**

$$\alpha$$
 Candidate  $\sim N \left( \alpha$  Candidate,  $\frac{1}{2}^2 \right)$ 

$$M_{Candidate} = GetSample(n, T, \alpha_{Candidate'}, \phi_{\beta'}, \phi_{N'}, \phi_{l'}, \phi_{M'}, \phi_{S})$$

$$C_{Candidate} = ConvertConcentration(n, T, M_{Candidate}, V, \delta)$$

$$M_{Current} = GetSample(n, T, \varphi_{\alpha'}, \varphi_{\beta'}, \varphi_{N'}, \varphi_{l'}, \varphi_{M'}, \varphi_{S})$$

$$C_{Current} = ConvertConcentration(n, T, M_{Current}, V, \delta)$$

$$p_{prior_{Candidate}} = Gamma(2, 1). logPDF(\alpha_{Candidate})$$

$$p_{prior} = Gamma(2, 1).logPDF(\phi_{\alpha})$$

$$p_{Likelihood_{Candidate}} = \sum_{t=1}^{T} \left( \sum_{i=1}^{n} N \left( C_{Candidate_{it}}, \frac{1}{\sqrt{\phi_{\tau}}} \right) . logPDF \left( Y_{True_{it}} \right) \right)$$

$$p_{Likelihood_{Current}} = \sum_{t=1}^{T} \left( \sum_{i=1}^{n} N \left( C_{Current_{it}}, \frac{1}{\sqrt{\phi_{\tau}}}^{2} \right) . logPDF \left( Y_{True_{it}} \right) \right)$$

$$p_{Q_{Candidate}} = N(\phi_{1}, \frac{1}{2}^{2}). logPDF(\alpha_{Candidate})$$

$$p_{Q_{Current}} = N \left( \alpha_{Candidate}, \frac{1}{2}^{2} \right) . logPDF \left( \phi_{\alpha} \right)$$

$$ratio_{\alpha} = min \left( p_{prior_{Candidate}} + p_{Likelihood_{Candidate}} - p_{prior_{Current}} - p_{Likelihood_{Current}} + p_{Q_{Current}} - p_{Q_{Candidate}}, 1 \right)$$

$$u \sim U(0, 1)$$

if ratio 
$$> log(u)$$
:

$$\varphi_{\alpha} = \alpha_{\textit{Candidate}}$$

$$Accept_{\alpha} = Accept_{\alpha} + 1$$

$$Likelihood \quad \underset{s}{\alpha} = \sum_{t=1}^{T} \left( \sum_{i=1}^{n} N \left( C_{candidate_{it}}, \frac{1}{\sqrt{\phi_{\tau}}} \right) . logPDF \left( Y_{True_{it}} \right) \right)$$

else:

$$Likelihood \quad \underset{s}{\alpha} = \sum_{t=1}^{T} \left( \sum_{i=1}^{n} N \left( C_{Current}, \frac{1}{\sqrt{\phi_{\tau}}}^{2} \right) . logPDF \left( Y_{True_{it}} \right) \right)$$

#### **Beta**

$$\beta_{Candidate} \sim Beta(1, 1)$$

$$M_{Candidate} = GetSample \Big( n, \ T, \ \varphi_{\alpha'} \ \beta_{Candidate'}, \ \varphi_{N'} \ \varphi_{l'}, \ \varphi_{T'}, \ \varphi_{W'}, \ \varphi_{S} \Big)$$

$$C_{Candidate} = ConvertConcentration(n, T, M_{Candidate}, V, \delta)$$

$$M_{Current} = GetSample(n, T, \varphi_{\alpha'}, \varphi_{\beta'}, \varphi_{N'}, \varphi_{l'}, \varphi_{T'}, \varphi_{W'}, \varphi_{S})$$

$$C_{Current} = ConvertConcentration(n, T, M_{Current}, V, \delta)$$

$$p_{prior_{Candidate}} = Beta(1, 1). logPDF(\beta_{Candidate})$$

$$p_{prior} = Beta(1, 1).logPDF(\phi_2)$$

$$p_{Likelihood_{Candidate}} = \sum_{t=1}^{T} \left( \sum_{i=1}^{n} N \left( C_{Candidate_{it}}, \frac{1}{\sqrt{\phi_{\tau}}} \right) . logPDF \left( Y_{True_{it}} \right) \right)$$

$$p_{Likelihood_{Current}} = \sum_{t=1}^{T} \left( \sum_{i=1}^{n} N \left( C_{Current_{it}}, \frac{1}{\sqrt{\phi_{\tau}}}^{2} \right) . logPDF \left( Y_{True_{it}} \right) \right)$$

$$p_{Q_{Candidate}} = Beta(1, 1). logPDF(\beta_{Candidate})$$

$$p_{Q_{Current}} = Beta(1, 1). logPDF(\phi_{2})$$

$$ratio_{\beta} = min \left( p_{prior_{Candidate}} + p_{Likelihood_{Candidate}} - p_{prior_{Current}} - p_{Likelihood_{Current}} + p_{Q_{Current}} - p_{Q_{Candidate}}, 1 \right)$$

$$u \sim U(0, 1)$$

if ratio > u:

$$\varphi_{\beta} = \beta_{Candidate}$$

$$Accept_{\beta} = Accept_{\beta} + 1$$

$$Likelihood \quad _{\beta \ \ s} \ \, = \sum\limits_{t \, = \, 1}^{T} \left( \sum\limits_{i \, = \, 1}^{n} N \left( C \ \ \, \underset{it}{Candidate} \ \, \underset{it}{,} \ \, \frac{1}{\sqrt{\varphi \ \, }_{\tau}}^{2} \right) . \ logPDF \left( Y \ \ \, \underset{it}{True} \ \, \underset{it}{u} \right) \right)$$

else:

$$\textit{Likelihood} \quad \text{$_{\beta$}$} \quad = \sum_{t=1}^{T} \left( \sum_{i=1}^{n} N \left( C \quad \text{$_{Current}$} \quad , \quad \frac{1}{\sqrt{\varphi}} \right) . \ logPDF\left( Y \quad \text{$_{True}$} \quad i \right) \right)$$

*f or k in* 1: *n*:

$$I_{k_{Candidate}} \sim DiscreteUniform(1, n)$$

$$I_{Candidate} = \phi_{3}$$

$$I_{Candidate} = I_{Candidate}$$

$$M_{Candidate} = GetSample(n, T, \varphi_{\alpha'}, \varphi_{\beta'}, \varphi_{N'}, I_{Candidate'}, \varphi_{T'}, \varphi_{W'}, \varphi_{S})$$

$$C_{Candidate} = ConvertConcentration(n, T, M_{Candidate}, V, \delta)$$

$$M_{Current} = GetSample \Big( n, \ T, \varphi_{\alpha'}, \varphi_{\beta'}, \varphi_{N'}, \varphi_{I'}, \varphi_{W'}, \varphi_S \Big)$$

$$C_{Current} = ConvertConcentration(n, T, M_{Current}, V, \delta)$$

$$p_{prior_{Candidate}} = DiscreteUniform(1, n).logPMF \left(I_{Candidate_k}\right)$$

$$p_{prior} = DiscreteUniform(1, n).logPMF(\phi_{I_k})$$

$$p_{Likelihood\ Candidate}\ =\ \sum_{t=1}^{T} \left(\sum_{i=1}^{n} N \left(C_{Candidate\ it}, \frac{1}{\sqrt{\Phi_{\tau}}}^{2}\right). logPDF\left(Y_{True\ it}\right)\right)$$

$$p_{Likelihood_{Current}} = \sum_{t=1}^{T} \left( \sum_{i=1}^{n} N \left( C_{Current_{it}}, \frac{1}{\sqrt{\phi_{\tau}}}^{2} \right) . logPDF \left( Y_{True_{it}} \right) \right)$$

$$p_{Q_{Candidate}} = DiscreteUniform(1, n).logPMF \left(I_{Candidate_k}\right)$$

$$p_{Q_{Current}}DiscreteUniform(1, n).logPMF(\phi_{I_{k}})$$

$$ratio_{I_k} = min \left( p_{prior_{Candidate}} + p_{Likelihood_{Candidate}} - p_{prior_{Current}} - p_{Likelihood_{Current}} + p_{Q_{Current}} - p_{Q_{Candidate}} - p_{Q_{Candidate}} \right)$$

$$u \sim U(0, 1)$$

if ratio > log(u):

$$\phi_I = I_{Candidate}$$

$$Accept_{I} = Accept_{I} + \frac{1}{N}$$

$$Likelihood = \sum_{I=1}^{T} \left( \sum_{i=1}^{n} N \left( C_{candidate}, \frac{1}{\sqrt{\phi_{\tau}}} \right) . logPDF \left( Y_{True_{it}} \right) \right)$$

else:

$$Likelihood I_{s,k} = \sum_{t=1}^{T} \left( \sum_{i=1}^{n} N \left( C_{current}, \frac{1}{\sqrt{\Phi_{\tau}}}^{2} \right) . logPDF \left( Y_{True_{it}} \right) \right)$$

T

*f or k in* 1: *n*:

$$T_{k_{Candidate}} \sim DiscreteUniform(1, T)$$

$$T_{Candidate} = \phi_{T}$$

$$T_{Candidate_k} = T_{Candidate}$$

$$M_{Candidate} = GetSample(n, T, \varphi_{\alpha}, \varphi_{\beta}, \varphi_{N}, \varphi_{I}, T_{Candidate}, \varphi_{W}, \varphi_{S})$$

$$C_{Candidate} = ConvertConcentration(n, T, M_{Candidate}, V, \delta)$$

$$M_{Current} \ = \ GetSample \Big( n, \ T, \ \varphi_{\alpha'} \ \varphi_{\beta'} \ \varphi_{N'} \ \varphi_{l'} \ \varphi_{T'} \ \varphi_{W'} \ \varphi_S \Big)$$

$$C_{Current} = ConvertConcentration(n, T, M_{Current'}, V, \delta)$$

$$p_{prior_{Candidate}} = DiscreteUniform(1, T).logPMF(T_{Candidate_k})$$

$$p_{prior} = DiscreteUniform(1, T).logPMF(\phi_{T_k})$$

$$p_{Likelihood_{Candidate}} = \sum_{t=1}^{T} \left( \sum_{i=1}^{n} N \left( C_{Candidate_{it}}, \frac{1}{\sqrt{\phi_{\tau}}} \right) . logPDF \left( Y_{True_{it}} \right) \right)$$

$$p_{Likelihood_{Current}} = \sum_{t=1}^{T} \left( \sum_{i=1}^{n} N \left( C_{Current_{it}}, \frac{1}{\sqrt{\phi_{\tau}}}^{2} \right) . logPDF \left( Y_{True_{it}} \right) \right)$$

$$p_{Q_{Candidate}} = DiscreteUniform(1, T).logPMF(T_{Candidate_k})$$

$$p_{Q_{Current}} = DiscreteUniform(1, T).logPMF \left( \phi_{A_{k}} \right)$$

$$ratio_{T_k} = min \left( p_{prior_{Candidate}} + p_{Likelihood_{Candidate}} - p_{prior_{Current}} - p_{Likelihood_{Current}} + p_{Q_{Current}} - p_{Q_{Candidate}}, 1 \right)$$

$$u \sim U(0, 1)$$

if ratio > log(u):

$$Accept_{T} = Accept_{T} + \frac{1}{N}$$

$$Likelihood \prod_{T \in S, k} = \sum_{t=1}^{T} \left( \sum_{i=1}^{n} N \left( C \prod_{Candidate \ it}^{n} \frac{1}{\sqrt{\Phi_{\tau}}}^{2} \right) \cdot logPDF \left( Y \prod_{True \ it}^{n} \right) \right)$$

else:

$$Likelihood_{T_{s,k}} = \sum_{t=1}^{T} \left( \sum_{i=1}^{n} N \left( C_{Current_{it}}, \frac{1}{\sqrt{\phi_{\tau}}} \right) . logPDF \left( Y_{True_{it}} \right) \right)$$

#### W

*f or k in* 1: *n*:

$$W_{k_{Candidate}} \sim Binom \left(T, \frac{1+\phi_{W_k}}{2+T}\right)$$

$$W_{Candidate} = \phi_{W}$$

$$W_{Candidate_k} = W_{Candidate}$$

$$M_{Candidate} = GetSample(n, T, \varphi_{\alpha'}, \varphi_{\beta'}, \varphi_{N'}, \varphi_{l'}, \varphi_{T'}, W_{Candidate'}, \varphi_{S})$$

$$C_{Candidate} = ConvertConcentration(n, T, M_{Candidate}, V, \delta)$$

$$M_{Current} = GetSample(n, T, \varphi_{\alpha'}, \varphi_{\beta'}, \varphi_{N'}, \varphi_{l'}, \varphi_{W'}, \varphi_{S})$$

$$C_{Current} = ConvertConcentration(n, T, M_{Current}, V, \delta)$$

$$p_{prior_{Candidate}} = DiscreteUniform(1, T).logPMF(W_{Candidate_k})$$

$$p_{prior} = DiscreteUniform(1, T).logPMF \left( \phi_{W_k} \right)$$

$$p_{Likelihood\ Candidate}\ =\ \sum_{t=1}^{T} \left(\sum_{i=1}^{n} N \left(C_{Candidate\ it}, \frac{1}{\sqrt{\Phi_{\tau}}}^{2}\right). logPDF\left(Y_{True\ it}\right)\right)$$

$$p_{Likelihood} = \sum_{t=1}^{T} \left( \sum_{i=1}^{n} N \left( C_{Current}, \frac{1}{\sqrt{\phi_{\tau}}}^{2} \right) . logPDF \left( Y_{True_{it}} \right) \right)$$

$$p_{Q_{Candidate}} = Binom \left(T, \frac{1+\phi_{W_k}}{2+T}\right). logPMF \left(W_{Candidate_k}\right)$$

$$p_{Q_{Current}}Binom\left(T, \frac{1+W_{Candidate_k}}{2+T}\right). logPMF\left(\phi_{W_k}\right)$$

$$ratio_{W_k} = min \left( p_{prior_{Candidate}} + p_{Likelihood_{Candidate}} - p_{prior_{Current}} - p_{Likelihood_{Current}} + p_{Q_{Current}} - p_{Q_{Candidate}} - p_{Q_{Candidate}} \right)$$

$$u \sim U(0, 1)$$

if ratio > log(u):

$$\Phi_W = W_{Candidate}$$

$$Accept_{W} = Accept_{W} + \frac{1}{N}$$

$$Likelihood W_{s,k} = \sum_{t=1}^{T} \left( \sum_{i=1}^{n} N \left( C_{candidate,it}, \frac{1}{\sqrt{\phi_{\tau}}} \right) \right) \cdot logPDF \left( Y_{True,it} \right)$$

else:

$$Likelihood_{W_{s,k}} = \sum_{t=1}^{T} \left( \sum_{i=1}^{n} N \left( C_{Current_{it}}, \frac{1}{\sqrt{\phi_{\tau}}} \right) . logPDF \left( Y_{True_{it}} \right) \right)$$

S

*f or k in* 1: *n*:

$$S_{k_{Candidate}} \sim N\left( \phi_{S_k}, 1^2 \right)$$

$$S_{Candidate} = \phi_{S}$$

$$S_{Candidate_k} = S_{Candidate}$$

$$M_{Candidate} = GetSample(n, T, \phi_{\alpha'}, \phi_{\beta'}, \phi_{N'}, \phi_{l'}, \phi_{T'}, \phi_{W'}, S_{Candidate})$$

$$C_{Candidate} = ConvertConcentration(n, T, M_{Candidate}, V, \delta)$$

$$M_{Current} = GetSample(n, T, \varphi_{\alpha'}, \varphi_{\beta'}, \varphi_{N'}, \varphi_{l'}, \varphi_{T'}, \varphi_{W'}, \varphi_{S})$$

$$C_{Current} = ConvertConcentration(n, T, M_{Current}, V, \delta)$$

$$p_{prior_{Candidate}} = Gamma(1, 1). logPDF(S_{Candidate_k})$$

$$p_{prior} = Gamma(1, 1). logPDF(\phi_{S_k})$$

$$p_{Likelihood_{Candidate}} = \sum_{t=1}^{T} \left( \sum_{i=1}^{n} N \left( C_{Candidate_{it}}, \frac{1}{\sqrt{\phi_{\tau}}} \right) . logPDF \left( Y_{True_{it}} \right) \right)$$

$$p_{Likelihood_{Current}} = \sum_{t=1}^{T} \left( \sum_{i=1}^{n} N \left( C_{Current_{it}}, \frac{1}{\sqrt{\phi_{\tau}}}^{2} \right) . logPDF \left( Y_{True_{it}} \right) \right)$$

$$p_{Q_{Candidate}} = N(\phi_{S_k}, 1^2). logPDF(S_{Candidate_k})$$

$$p_{Q_{Current}} N(S_{Candidate}, 1^2). logPDF(\phi_{S_k})$$

$$ratio_{S_k} = min \left( p_{prior_{Candidate}} + p_{Likelihood_{Candidate}} - p_{prior_{Current}} - p_{Likelihood_{Current}} + p_{Q_{Current}} - p_{Q_{Candidate}}, 1 \right)$$

$$u \sim U(0, 1)$$

if ratio > log(u):

$$\phi_S = S_{Candidate}$$

$$Accept_{S} = Accept_{S} + \frac{1}{N}$$

Likelihood 
$$S_{s,k} = \sum_{y=1}^{T} \left( \sum_{x=1}^{N} N \left( C_{candidate}, \frac{1}{\sqrt{\Phi_{\tau}}}^{2} \right) . logPDF(Y_{True}) \right)$$

else:

$$Likelihood S_{s,k} = \sum_{y=1}^{T} \left( \sum_{x=1}^{N} N \left( C_{current'}, \frac{1}{\sqrt{\phi_{\tau}}}^{2} \right) . logPDF(Y_{True}) \right)$$

#### Tau

$$\tau_{Candidate} \sim N \left( \phi_{\tau}, \frac{1}{2}^2 \right)$$

$$M_{Candidate} = GetSample(n, T, \varphi_{\alpha'}, \varphi_{\beta'}, \varphi_{N'}, \varphi_{I'}, \varphi_{W'}, \varphi_{S})$$

$$C_{Candidate} = ConvertConcentration(n, T, M_{Candidate}, V, \delta)$$

$$M_{Current} \ = \ GetSample \Big( n, \ T, \ \varphi_{\alpha'}, \ \varphi_{\beta'}, \ \varphi_{N'}, \ \varphi_{l'}, \ \varphi_{W'}, \ \varphi_{S} \Big)$$

$$C_{Current} = ConvertConcentration(n, T, M_{Current}, V, \delta)$$

$$p_{prior_{Candidate}} = Gamma(1, 1).logPDF(\tau_{Candidate})$$

$$p_{prior} = Gamma(1, 1). logPDF(\phi_{\tau})$$

$$p_{Likelihood_{Candidate}} = \sum_{t=1}^{T} \left( \sum_{i=1}^{n} N \left( C_{Candidate_{it}}, \frac{1}{\sqrt{\tau_{Candidate}}} \right) . logPDF \left( Y_{True_{it}} \right) \right)$$

$$p_{Likelihood_{Current}} = \sum_{t=1}^{T} \left( \sum_{i=1}^{n} N \left( C_{Current_{it}}, \frac{1}{\sqrt{\phi_{\tau}}}^{2} \right) . logPDF \left( Y_{True_{it}} \right) \right)$$

$$p_{Q_{Candidate}} = N \left( \phi_{\tau}, \frac{1}{2}^2 \right) . logPDF \left( \tau_{Candidate} \right)$$

$$p_{Q_{Current}}N\left(\tau_{Candidate'}, \frac{1}{2}^{2}\right).logPDF\left(\phi_{\tau}\right)$$

$$ratio_{\tau} = min \left( p_{prior_{Candidate}} + p_{Likelihood_{Candidate}} - p_{prior_{Current}} - p_{Likelihood_{Current}} + p_{Q_{Current}} - p_{Q_{Candidate}}, 1 \right)$$

$$u \sim U(0, 1)$$

if ratio > log(u):

$$\phi_{\tau} = \tau_{\textit{Candidate}}$$

$$Accept_{\tau} = Accept_{\tau} + 1$$

$$Likelihood_{\tau_{s}} = \sum_{t=1}^{T} \left( \sum_{i=1}^{n} N \left( C_{Candidate_{it}}, \frac{1}{\sqrt{\phi_{\tau}}} \right) . logPDF \left( Y_{True_{it}} \right) \right)$$

else:

$$Likelihood = \sum_{t=1}^{T} \left( \sum_{i=1}^{n} N \left( C \right)_{Current}, \frac{1}{\sqrt{\phi_{\tau}}}^{2} \right) \cdot logPDF \left( Y \right)_{True}$$

#### **Proposal Distributions**

$$\alpha^* \sim N\left(\phi_{1'} \frac{1}{2}^2\right)$$

$$\beta^* \sim Beta(1, 1)$$

$$I_{k}^{*} \sim DiscreteUniform(1, n)$$

$$T \underset{k}{\overset{*}{\sim}} DiscreteUniform(1, T)$$

$$W_k^* \sim Binom \left(T, \frac{1+\phi_{W_k}}{2+T}\right)$$

$$S \stackrel{*}{\underset{k}{\sim}} N \left( \varphi \stackrel{}{\underset{S}{\longrightarrow}} 1^2 \right)$$

$$\tau^* \sim N\left(\phi_{\tau'}, \frac{1}{2}^2\right)$$

#### **Acceptance Probabilities**

#### **Alpha**

$$p_{prior_{Candidate}} = log(\alpha_{Candidate}) - \alpha_{Candidate}$$

$$p_{prior_{Current}} = log(\alpha_{Current}) - \alpha_{Current}$$

$$p_{Likelihood_{Candidate}} = \frac{-\tau}{2} \sum_{t=1}^{T} \left( \sum_{i=1}^{n} \left( Y_{True_{it}} - C_{Candidate_{it}} \right)^{2} \right)$$

$$p_{Likelihood_{Current}} = \frac{-\tau}{2} \sum_{t=1}^{T} \left( \sum_{i=1}^{n} \left( Y_{True_{it}} - C_{Current_{it}} \right)^{2} \right)$$

$$p_{Q_{Candidate}} = -2(\alpha_{Candidate} - \alpha_{Current})^2$$

$$p_{Q_{Candidate}} = -2(\alpha_{Current} - \alpha_{Candidate})^2$$

$$ratio_{log} = log \left(\frac{\alpha_{Candidate}}{\alpha_{Current}}\right) - \alpha_{Candidate} + \alpha_{Current} + \frac{\tau}{2} \sum_{t=1}^{T} \left(\sum_{i=1}^{n} \left(Y_{True_{it}} - C_{Current_{it}}\right)^{2} - \left(Y_{True_{it}} - C_{Candidate_{it}}\right)^{2}\right)$$

$$P_{Acceptance}(\alpha) = e^{ratio_{log}}$$

#### Beta

$$p_{prior_{Candidate}} = 0$$

$$p_{prior} = 0$$

$$p_{Likelihood_{Candidate}} = \frac{-\tau}{2} \sum_{t=1}^{T} \left( \sum_{i=1}^{n} \left( Y_{True_{it}} - C_{Candidate_{it}} \right)^{2} \right)$$

$$p_{Likelihood_{Current}} = \frac{-\tau}{2} \sum_{t=1}^{T} \left( \sum_{i=1}^{n} \left( Y_{True_{it}} - C_{Current_{it}} \right)^{2} \right)$$

$$p_{Q_{Candidate}} = 0$$

$$p_{Q_{Candidate}} = 0$$

$$ratio_{log} = \frac{\tau}{2} \sum_{t=1}^{T} \left( \sum_{i=1}^{n} \left( Y_{True_{it}} - C_{Current_{it}} \right)^{2} - \left( Y_{True_{it}} - C_{Candidate_{it}} \right)^{2} \right)$$

$$P_{Acceptance}(\beta) = e^{ratio_{log}}$$

#### $I_{k}$

$$p_{prior_{Candidate}} = -log(n)$$

$$p_{prior} = -log(n)$$

$$p_{Likelihood_{Candidate}} = \frac{-\tau}{2} \sum_{t=1}^{T} \left( \sum_{i=1}^{n} \left( Y_{True_{it}} - C_{Candidate_{it}} \right)^{2} \right)$$

$$p_{Likelihood_{Current}} = \frac{-\tau}{2} \sum_{t=1}^{T} \left( \sum_{i=1}^{n} \left( Y_{True_{it}} - C_{Current_{it}} \right)^{2} \right)$$

$$p_{Q_{Candidate}} = -log(n)$$

$$p_{Q_{Candidate}} = -log(n)$$

$$ratio_{log} = \frac{\tau}{2} \sum_{t=1}^{T} \left( \sum_{i=1}^{n} \left( Y_{True_{it}} - C_{Current_{it}} \right)^{2} - \left( Y_{True_{it}} - C_{Candidate_{it}} \right)^{2} \right)$$

$$P_{Acceptance}(I_k) = e^{ratio_{log}}$$

#### $T_k$

$$p_{prior_{Candidate}} = -log(T)$$

$$p_{prior} = -log(T)$$

$$p_{Likelihood_{Candidate}} = \frac{-\tau}{2} \sum_{t=1}^{T} \left( \sum_{i=1}^{n} \left( Y_{True_{it}} - C_{Candidate_{it}} \right)^{2} \right)$$

$$p_{Likelihood_{Current}} = \frac{-\tau}{2} \sum_{t=1}^{T} \left( \sum_{i=1}^{n} \left( Y_{True_{it}} - C_{Current_{it}} \right)^{2} \right)$$

$$p_{Q_{Candidate}} = -log(T)$$

$$p_{Q_{Candidate}} = -log(T)$$

$$ratio_{log} = \frac{\tau}{2} \sum_{t=1}^{T} \left( \sum_{i=1}^{n} \left( Y_{True_{it}} - C_{Current_{it}} \right)^{2} - \left( Y_{True_{it}} - C_{Candidate_{it}} \right)^{2} \right)$$

$$P_{Acceptance}(T_k) = e^{ratio_{log}}$$

#### $W_k$

$$\begin{aligned} p &_{prior \ Candidate} = log \bigg( \bigg( W &_{Candidate \ k} + 5 \bigg) C \bigg( W &_{Candidate \ k} \bigg) \bigg) + 6 log \bigg( \frac{3}{4} \bigg) - W &_{Candidate \ k} log (4) \\ p &_{prior \ Current} = log \bigg( \bigg( W &_{Current \ k} + 5 \bigg) C \bigg( W &_{Current \ k} \bigg) \bigg) + 6 log \bigg( \frac{3}{4} \bigg) - W &_{Current \ k} log (4) \\ p &_{Likelihood \ Candidate} = \frac{-\tau}{2} \sum_{t=1}^{T} \bigg( \sum_{i=1}^{n} \bigg( Y &_{True \ it} - C &_{Candidate \ it} \bigg) \bigg) \bigg) \\ p &_{Likelihood \ Current} = \frac{-\tau}{2} \sum_{t=1}^{T} \bigg( \sum_{i=1}^{n} \bigg( Y &_{True \ it} - C &_{Current \ it} \bigg) \bigg) \bigg) \bigg) \\ p &_{Q \ Candidate} = log \bigg( (T)C \bigg( W &_{Candidate \ s} \bigg) \bigg) + W &_{Candidate \ k} log \bigg( W &_{Current \ s} + 1 \bigg) + \bigg( T - W &_{Candidate \ s} \bigg) log \bigg( T + 1 - W &_{Current \ s} \bigg) + Tlog (T + 2) \\ p &_{Q \ Candidate \ s} = log \bigg( (T)C \bigg( W &_{Current \ s} \bigg) \bigg) + W &_{Current \ s} log \bigg( W &_{Candidate \ s} \bigg) \bigg) + \bigg( W &_{Current \ s} \bigg) \bigg) \bigg( V &_{Current \ s} \bigg) \bigg( V &_{Current \ s} \bigg) \bigg) \bigg( V &_{Current \ s} \bigg) \bigg( V &_{Current \ s} \bigg) \bigg( V &_{Current \ s} \bigg) \bigg) \bigg( V &_{Current \ s} \bigg) \bigg) \bigg( V &_{Current \ s} \bigg) \bigg( V &_{Current \ s} \bigg) \bigg) \bigg( V &_{Current \ s} \bigg) \bigg) \bigg( V &_{Current \ s} \bigg) \bigg( V &_{Current \ s} \bigg) \bigg( V &_{Current \ s} \bigg) \bigg) \bigg( V &_{Current \ s} \bigg) \bigg( V &_{Current \ s} \bigg) \bigg) \bigg( V &_{Current \ s} \bigg) \bigg) \bigg( V &_{Current \ s} \bigg) \bigg( V$$

 $P_{Acceptance}(W_k) = e^{ratio_{log}}$ 

#### $\mathbf{S}_{\mathbf{k}}$

$$p_{prior_{Candidate}} = -S_{Candidate_k}$$

$$p_{prior} = -S_{Current}$$

$$p_{Likelihood_{Candidate}} = \frac{-\tau}{2} \sum_{t=1}^{T} \left( \sum_{i=1}^{n} \left( Y_{True_{it}} - C_{Candidate_{it}} \right)^{2} \right)$$

$$p_{Likelihood_{Current}} = \frac{-\tau}{2} \sum_{t=1}^{T} \left( \sum_{i=1}^{n} \left( Y_{True_{it}} - C_{Current_{it}} \right)^{2} \right)$$

$$p_{Q_{Candidate}} = -\frac{1}{2} \left( S_{Candidate_k} - S_{Current_k} \right)^2$$

$$p_{Q_{Candidate}} = -\frac{1}{2} \left( S_{Current_k} - S_{Candidate_k} \right)^2$$

$$ratio_{log} = -S_{Candidate_{k}} + S_{Current_{k}} + \frac{\tau}{2} \sum_{t=1}^{T} \left( \sum_{i=1}^{n} \left( Y_{True_{it}} - C_{Current_{it}} \right)^{2} - \left( Y_{True_{it}} - C_{Candidate_{it}} \right)^{2} \right)$$

$$P_{Acceptance}(S_k) = e^{ratio_{log}}$$

#### Tau

$$p_{prior_{Candidate}} = log(\tau_{Candidate}) - \tau_{Candidate}$$

$$p_{prior} = log(\tau_{Current}) - \tau_{Current}$$

$$p_{Likelihood_{Candidate}} = \frac{-\tau_{Candidate}}{2} \sum_{t=1}^{T} \left( \sum_{i=1}^{n} \left( Y_{True_{it}} - C_{Candidate_{it}} \right)^{2} \right)$$

$$p_{Likelihood_{Current}} = \frac{-\tau_{Current}}{2} \sum_{t=1}^{T} \left( \sum_{i=1}^{n} \left( Y_{True_{it}} - C_{Current_{it}} \right)^{2} \right)$$

$$p_{Q_{Candidate}} = -2(\tau_{Candidate} - \tau_{Current})^2$$

$$p_{Q_{Candidate}} = -2(\tau_{Current} - \tau_{Candidate})^2$$

Since for 
$$\tau$$
,  $C_{Candidate} = C_{Current}$  for all  $i$ ,  $t$ 

$$ratio_{log} = log \left( \frac{\tau_{Candidate}}{\tau_{Current}} \right) - \tau_{Candidate} + \tau_{Current}$$

$$P_{Acceptance}(\tau) = e^{ratio_{log}}$$

## **Results - With source sites missing**





## **Parameters**

| Parameter<br>P(Acceptance) |        | Walk of value | Walk of Likelihood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Scatter Plot of<br>Likelihood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Histogram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Prior PDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------|--------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| α                          | 0.1543 | Walk of Alpha | Walk of Likelihood of Ajoha  Foliation  The state of the  | Scatterplot of Likelihood of Alpha  Scatterplot of Likelihood of A | Histogram of Alpha  To all the state of the  | POF of Alpha prior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| β                          | 0.0101 | Walk of Beta  | Walk of Likelihood of Beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Scatterplot of Likelihood of Beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Histogram of Beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | POF of Beta prior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| I                          | 0.1038 | Walk of I     | Walk of Likelihood of T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Scatterplot of Likelihood of I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Historian of I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PARIOT Sprior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| T                          | 0.0111 | Walk of T     | Walk of Likelihood of 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Scatterplot of Likelihood of T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Histogram of T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PAS of T prior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| W                          | 0.2137 | Walk of W     | Walk of Likelihood of W  Valle of Likelihood of W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Scatterolot of Likelihood of W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Histogram of W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | THE Of WIP PLOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| S                          | 0.1420 | White of 5    | Wask of Lizelihood of S  Valid of Lizelihood of S  To a second se | Scatterplot of Likelihood of S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Histogram of 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TO SECOND STATE OF THE SEC |
| τ                          | 0.0444 | Walk of Tau   | Walk of Likelihood of Tau  Walk of Likelihood of Tau  An A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Scatterplot of Likelihood of Tau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Histogram of Tau  No. 100 Miles Library 110 Mile | PDF of Tau prior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |