Applied Combustion Technology, Inc.

DISTRIBUTION STATISTICAL A

Approved for public release: Distribution Unlimited

82 10 27 006

Applied Combustion Technology, Inc.

ACT

APPLIED COMBUSTION TECHNOLOGY, INC. 2010 N ORANGE AVENUE ORLANDO, FLORIDA 32804

FILE COPY

FINAL REPORT on

Expanded Ignition Effectiveness Tests of Selected Igniter Materials with Navy Propellants.

Contract No. N00174-81-C-0453

Performance Period October 1981 - September 1982

Submitted to

Gun Systems Engineering Nayal Ordnance Station Indian Head, MD 20640

Submitted by

A. Michael Varney and John Martino Applied Combustion Technology, Inc. 2910 N. Orange Avenue Orlando, FL 32804

UNCLASSITIED

ACRES SEASSISICATION OF THIS PAGE (When Dela Friered)

REPORT DOCUMENTATION PA	GE	READ INSTRUCTIONS
1. REPORT NUMBER 2. C	GOVT ACCESSION NO.	BEFORE COMPLETING FORM 3. RECIPIENT'S CATALOG NUMBER
ACT-TR-8136	D-A120790	
4. TITLE (and Sublitle) Expanded Ignition Effectivenes of Selected Igniter Materials Navy Propellants	ss Tests	5. TYPE OF REPORT & PERIOD COVERED Final Report October 1981-Sept. 198 6. PERFORMING ORG. REPORT NUMBER
		ACT-TR-8136
Varney, A. Michael and Martino	o, John	N00174-81-C-0453
9. PERFORMING ORGANIZATION NAME AND ADDRESS Applied Combustion Technology, 2910 N. Orange Avenue Orlando, FL 32804	Inc.	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Gun Systems Engineering Naval Ordnance Station		September 1982 13. NUMBER OF PAGES
Indian Head, MD 20640 14. MONITORING AGENCY NAME & ADDRESS(II different from	n Controlling Office)	41 15. SECURITY CLASS. (of this report)
MONITORING AGENCY NAME & ASSICES, A CONTROL SOL		Unclassified
· · · · · · · · · · · · · · · · · · ·		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		
Distribution Unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Blo	ock 20, if different from	Report)
18. SUPPLEMENTARY NOTES		
- •		
9. KEY WORDS (Continue on reverse side if necessar, and iden	ntily by block number)	
NACO Propellant Black Power NOSOL-318 Propellant Boron Pota NOSOL-363 Propellant Magnesium-LOVA Propellant Nitrocella Igniter Energy Boron moly Boron Moly Continue on reverse aids If necessary and identifications in the continue on reverse aids If necessary and identifications in the continue on reverse aids If necessary and identifications in the continue on reverse aids If necessary and identifications in the continue on reverse aids If necessary and identifications in the continue on reverse aids If necessary and identifications in the continue of t	assium Nitra -teflon-viton ulose ybdenum trion	n
Diagnostic ignition experi a high-pressure flow through con effectiveness of black powder, magnesium-teflon-viton, nitroce trioxide with four propellants- LOVA. Over 250 experiments have the ability of various igniter	iments have bombustor to elements boron potassellulose, andNACO, NOSOI	evaluate the ignition sium nitrate, d boron molybdenum 5-318, NOSOL-363 and acted to determine

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE SECURITY CLASSIFICATION OF THIS PAGE(

Data Entered

propellants beyond the immediate vicinity of the gun igniter—that is after filtering through and being cooled by an inert propellant simulant zone positioned between the igniter and the live propellant. The ignition effectiveness has been determined quantitatively by the amount of igniter thermal energy, based on its heat of explosion, required to ignite a propellant 50 percent of the time. Analyses and results are given which present the relative effectiveness of the igniter materials in terms of the different ignition stimuli (e.g., gases, liquids, and solids ratios).

Acce	ssion For	
ľ	ISAFA	172
DTIC		Ď
•	becauce	
Just	ification_	
Ву		
Dist:	ribution/	
Ava	llability (
	Avail and	/or
Dist	Special	
D		
1		

COPY

PREFACE

This report summarizes project analyses and results for the experimental documentation of the ignition effectiveness of BP, BKNO3, NC, MTV, and BMOO3 igniter materials with NACO, NOSOL-318, NOSOL-363, and LOVA propellants. The experimental program was conducted under Contract N00174-81-C-0453 for the Naval Ordnance Station, Indian Head, Maryland from October 1981 to September 1982 by Applied Combustion Technology, Inc., Orlando, Florida. Mr. Charles Irish served as technical monitor for NOSIH and Dr. Michael Varney served as Principal Investigator for Applied Combustion Technology, Inc.

TABLE OF CONTENTS

A CREATER OF WALL AS TO USE TO USE	Page
Title Page	i
DD1473	ii
PREFACE	iv
TABLE OF CONTENTS	v
LIST OF FIGURES	_
	vi
LIST OF TABLES	vii
1.0 INTRODUCTION	1
1.1 Background1.2 Project Objectives1.3 Achievements	1 1 1
2.0 EXPERIMENTAL	_ 4
2.1 IECD Hardware Description2.2 Experimental Procedures2.3 Fifty Percent Firepoint Results	4 _ 6 11
3.0 SUPPORTING ANALYTICAL PROCEDURES	20
 3.1 Qualitative Picture of IECD Ignition Process 3.2 Igniter Simulation 3.3 Igniter Effectiveness Rankings 	20 21 29
4.0 REFERENCES	_ 37
APPENDIX A: IECD Expanded Ignition Diagnostic Tests	38
APPENDIX B: IECD Data Reduction	39
APPENDIX C: Bruceton Method Computations for Calculating 50% Firepoint	40
APPENDIX D: IECD Data Analysis Working Curves	41

LIST OF FIGURES

Title	Page
Assembly IECD	5
	7
Pressure-time Profiles Showing	
in Igniter Analysis	9
IECD Pressure-time Profile Showing	
Primer Pulse and NACO Combustion	12
Pressure-time Nomenclature	
Assigned to IECD Data Reduction	13
	15
LOVA	16
Schematic Representation of TECD	
	22
	22
	26
	20
	27
	2,
	28
	Assembly IECD Igniter Assembly Pressure-time Profiles Showing Important Highlights Considered in Igniter Analysis IECD Pressure-time Profile Showing Primer Pulse and NACO Combustion Pressure-time Nomenclature Assigned to IECD Data Reduction Ignition Effectiveness Data for NACO, NOSOL-318 and NOSOL-363 Ignition Effectiveness Data for

LIST OF TABLES

Table	Title	Page
2.1	50% Firepoint Results: Energy Distribution (kJ)	18
2.2	50% Firepoint Results: Bed Input Pressure (psia)	18
2.3	Fifty Percent Firepoint Relative Ranking Based on Energy Level	18
3.1	Inert Gas Phase Heating Augmentation Factors	31
3.2	Igniter Material Characterization	32
3.3	Calculated Performance Factors of	72
2.4	Igniter Materials	34
3.4	Calculated Relative Ranking of Igniter Materials	34

1.0 INTRODUCTION

1.1 Background

Applied Combustion Technology, Inc. has been involved in research to further understand the ignition effectiveness of various igniter materials with U. S. Navy propellants. As part of this ongoing research, Applied Combustion Technology, Inc. has designed, fabricated, and developed an ignition energetics characterization device (IECD) capable of conducting controlled ignition experiments under simulated gun conditions. The results presented herein document the ignition effectiveness of black powder (BP), boron potassium nitrate (BKNO₃), IMR 4895 (NC), magnesium teflon-viton (MTV), and boron molybdenum trioxide (BMoO₃) with NACO, NOSOL-318, NOSOL-363, and LOVA propellants.

1.2 Project Objectives

In order to quantitize the ignition effectiveness of an igniter material, it is desirable to establish both the total energy deposition and the rate of energy deposition required to produce a sustained ignition in a live propellant bed. The primary objective of the current project was to use the igniter system developed under the initial phase of Contract N00174-80-C-0138 and conduct a series of diagnostic experiments to investigate the ignitibility of NACO, NOSOL-318, NOSOL-363, and LOVA propellants when subjected to different ignition stimuli (e.g., hot gases, liquids, solids) as represented by BP, BKNO3, NC, MTV, and BMOO3 igniter materials.

1.3 Achievements

During the current project, Applied Combustion Technology, Inc. has achieved the following goals:

- 1. Conducted 278 ignition effectiveness tests with NACO, NOSOL-318, and NOSOL-363 using BP, BKNO₃, NC, MTV, and BMoO₃ igniter materials.
- 2. Conducted Bruceton sensitivity analyses for seventeen (17) series of ignition effectiveness test data.
- 3. Developed an analytical model describing the igniter performance in terms of experimentally measured pressure-time data.
- 4. Performed relative rankings of all igniter materials and identified plausible ignition stimuli modes for each material.

Ignition effectiveness tests were conducted using the Ignition Energetics Characterization Device (Ref. 1) with a fixed zone of inert propellant simulant separating the igniter vent exit plane and the live propellant zone. Calculated igniter performance criteria suggest that the effective stimuli for each igniter material are:

Overall Calculated Ranking	<u>Material</u>	Effective Stimuli
1 (Best)	MTV	Liquids
2	bkno3	Gases, vapors, and solids
3	BP	Liquids
4 (Worst)	NC	Gases

The calculated rankings and the experimentally determined rankings based upon 50 percent firepoint energy levels are given on the next page:

	erall nking	Calculated Ranking	50% Firepoint Ranking	
·· 1	(Best	MTV	BP	
2		BKNO ₃	bkno ₃	
3		BP	MTV	
4	(Worst)	NC	NC	

Comparisons between calculated results and the experimentally determined results are presented herein with supporting test data, analyses, and conclusions.

2.0 EXPERIMENTAL

2.1 IECD Hardware Description

The IECD hardware, Figure 2.1, consists of five functional elements, listed below:

- 1. Igniter Assembly. The igniter assembly consists of an end closure cap machined to accept an electrically initiated primer and a variety of different igniter configurations, including axial vent (shown), radial vent, and bayonet type systems.
- 2. Combustion Chamber. The combustion chamber is made from aircraft grade E-4340 steel, hardened to a minimum yield strength of 200 ksi. The nominal chamber volume is 1945 cc minus the volume of the igniter vent assembly, and is equipped with six (6) access ports to monitor pressure and/or light generation response during ignition and flame spreading.
- 3. Mixing Chamber. The mixing chamber is connected to the combustion chamber via a control nozzle (variable in size and replaceable) and serves the function of mixing the combustion gases exiting from the combustion chamber as well as controlling the combustion chamber p-t profile.
- 4. Auxiliary Test Chamber. The auxiliary test chamber is a combustion gas diagnostic section designed to permit determination of the composition and enthalpy level of the gases exiting the propellant bed.

5. Blowdown Nozzle. The blowdown nozzle permits venting of the entire system and is installed with a burst diaphragm or a constant area bleed vent.

The igniter system, Figure 2.2, is designed to provide overall event sequencing for data acquisition while facilitating some general design variations which can be easily achieved without extensive rework during the igniter testing and development. this objective, an Olin Corporation M52A3B1 electric primer was chosen as the base element in the ignition train. To provide some flexibility in choice of igniter materials, an axial vent igniter with a cavity volume of 1 in 3 (16.39 cc) was designed with provisions for up to 5 axial vents. Individual vents consist of a No. 10-32 tapped hole in the velocity control element, each of which can be fitted with a pre-drilled (or blank) Allen-head set screw. This technique permits the easy variation of vent diameter from test to test and/or the replacement of eroded vents. center vent has been oversized to accept a PCB-111A (10,000 psi) transducer to permit primer calibration and primer/igniter coupling calibration.

2.2 Experimental Procedures

2.2.1 Igniter Calibration Tests

Pressure profiles for the primer and the various igniter materials were acquired for calibration and data correlation. Primary control variables available for the igniter calibration tests consisted of:

- 1. Axial vent variations in outflow area
- 2. Igniter material type
- 3. Igniter material quantity

Figure 2.2 Igniter Assembly

Axial vent outflow variations were achieved by selecting the outflow orifice size desired for up to five outflow elements. This type of variation permits control over the output velocity and mass flow delivered to the propellant bed. The igniter materials used in the test series consisted of commercially available black powder (Goex, Inc.), BKNO₃ pellets, BKNO₃ granules, NC (IMR 4895), MTV, and BMOO₃. Initial tests included calibration of the primer-only and the igniter system yielding pressure time profiles, as typically shown in Figure 2.3, obtained by installing a pressure transducer in the centerline vent location. Each primer function pressure-time record, Figure 2.3a, was analyzed for:

- 1. Ignition delay time referenced with respect to event signal initiation
- 2. Pressurization rate
- 3. Peak pressure
- 4. Time to reach peak pressure
 - 5. Overall event duration.

Each ignition function test, Figure 2.3b, was analyzed for:

- 1. Primer peak pressure
- 2. Igniter material ignition pressure
- 3. Igniter material pressurization rate
- 4. Peak igniter pressure
- 5. Time to reach peak igniter pressure
- 6. Event duration.

Using combinations of vent geometry, igniter material type and igniter mass, 74 development tests were conducted and reported in References 1 and 2; an additional 15 calibration tests with the baseline igniter have been conducted with BP, BKNO₃, NC, MTV, and BMoO₃ igniter materials to aid in data reduction

a. Primer Function Test

b. Igniter Function Test

Figure 2.3 Pressure-time profiles showing important highlights considered in igniter analysis

for the ignition effectiveness tests conducted in the present project.

2.2.2 Ignition Effectiveness Tests

Ignition effectiveness tests were conducted using the IECD with a fixed zone length of inert simulant separating the igniter vent exit and the live propellant zone by 1.5 in (3.8 cm). Ignition effectiveness was determined quantitatively by the amount of thermal energy, based on its heat of explosion, required to ignite the propellant bed 50 percent of the time after filtering through the inert simulant zone. Seventeen (17) experimental series consisting of 287 diagnostic tests were conducted for the following propellant/igniter material combinations:

Igniter Material

Propellant	BP	BKNO3	MTV	NC	BMoO ₃
NACO	x	x	'X .	· x	x
NOSOL-318	x	x	x	x	
NOSOL-363	x	x	x	x	
LOVA	x	x	x	x	

Each experimental series was conducted in order to determine the fifty percent firepoint (energy basis) of the propellant/igniter combination based upon an up-and-down (Bruceton) test technique (Ref. 3). A preliminary series of pre-Brucetons was conducted in

order to determine the approximate 50% firepoint as the starting energy level for limited Bruceton series consisting of ten (10) shots each. Test data for each event included a Yes/No fire observation and an in-bore oscilloscope record, Figure 2.4, of the pressure-time profile at the interface of the inert zone and the live propellant zone. A complete run log of the IECD ignition diagnostic tests is included as Appendix A, Tables A-1 through A-4, respectively for:

Table A-1. Series 100: NACO Propellant
Table A-2. Series 200: NOSOL-318 Propellant
Table A-3. Series 300: NOSOL-363 Propellant
Table A-4. Series 400: LOVA Propellant

2.3 Fifty Percent Firepoint Results

Sixteen series of Bruceton tests were conducted to evaluate the ignition effectiveness of BP, BKNO₃, NC, and MTV igniter materials with NACO, NOSOL-318, NOSOL-363, and LOVA propellants; one additional series was conducted to evaluate BMOO₃ igniter material with NACO propellant. Initial data reduction consisted of reading the oscilloscope records of each shot to record the pertinent pressure-time data indicated in Figure 2.5 and listed below:

- P₂₀ ~ Maximum igniter pressure at entrance to live propellant zone prior to propellant ignition.
- P₂₁ ~ Pressure value at entrance to live propellant zone prior to onset of propellant ignition.
- 3. P_{2max} ~ Maximum combustion pressure at entrance to live propellant zone during propellant burning.

Figure 2.4 IECD Pressure-time Profile Showing Primer Pulse and NACO Combustion

Figure 2.5 Pressure-time Nomenclature Assigned to IECD Data Reduction

- 4. Tign ~ Ignition delay time from event initiation to onset of propellant combustion pressure rise.
- 5. Tpeak ~ Time from event initiation to peak propellant combustion pressure.

 Data for all seventeen Bruceton ignition effectiveness tests are presented in Appendix B, Tables B-1 through B-20.

The igniter energy flux into the bed was determined for each shot in the test series and plotted against the total igniter energy in Figure 2.6 for NACO, NOSOL-318, and NOSOL-363, respectively. The data for each ignition material are linear with energy flux and separate into two groups, one including BP and BKNO3 and the other containing NC and MTV. Since the test series was conducted with igniter total energy as a control variable for a fixed vent geometry igniter, the energy flux ratio is a result of the test; consequently, it is not currently known if this linear relationship between energy and energy rate is indicative of the igniter housing performance or the igniter material effectiveness. Similar results were observed for LOVA propellant as shown in Figure 2.7. With respect to the LOVA firing data, it should be mentioned that an increased vent size igniter (5115) was utilized to accommodate the larger igniter mass loading required to ignite LOVA propellant.

Each IECD ignition effectiveness test series consisted of 9-12 shots each conducted in an up-down staircase fashion for NACO, NOSOL-318, NOSOL-363, and LOVA propellants. Each test series was statistically reduced using a sensitivity method devleoped by Brownlee and Hodges (Ref. 3) for small samples to determine the

COMPOSITE FIRING DATA FOR NACO, NOSOL-318, AND NOSOL-363

Figure 2.6 Ignition Effectiveness Data for NACO, NOSOL-318 and NOSOL-363

Figure 2.7 Ignition Effectiveness Data for LOVA

50 percent firepoint mean and standard deviation; these Bruceton 50 percent firepoint results are tabulated for each igniter/propellant combination and presented in Appendix C. Based upon the IECD ignition effectiveness data, the following results have been tabulated at the 50 percent mean firepoint for each igniter/propellant combination:

- Fifty Percent Firepoint Energy Level (Table 2.1)
- 2. Fifty Percent Firepoint Bed Input Pressure Level (Table 2.2)
- 3. Fifty Percent Firepoint Relative Ranking Based Upon Energy Level (Table 2.3)

The 50 percent firepoint energy distributions in Table 2.1 indicate that NACO was the easiest propellant to ignite while LOVA was the most difficult, with LOVA requiring approximately 2.5 times as much energy to ignite as NACO. NOSOL-318 was approximately 1.7 times more difficult to ignite than NACO while NOSOL-363 was approximately 2.3 times more difficult to ignite than NACO. For NACO and LOVA propellants, BP and BKNO₃ igniter materials were the most effective whereas NC and MTV were the least effective (the BMOO₃ results are not included in the present comparisons). For NOSOL-318, MTV, and BKNO₃ igniter materials were more effective than BP and NC whereas for NOSOL-363, BP and NC were more effective than MTV and BKNO₃.

The IECD data records were reviewed to determine the bed input pressure levels at the 50 percent fire-points. These data, Table 2.2, indicate that, on the average, NACO ignited at bed pressure levels of 165 psia whereas LOVA required higher input pressure levels of 2000 psi. NOSOL-318 ignited at an average

Table 2.1
50% Firepoint Results: Energy Distribution (kJ)

Igniter Material

Propellant	BP	BKNO ₃	NC	MTV	BMo0 ₃
NACO	4.7	5.6	9.6	6.7	12.
N318	12.6	11.3	12.3	9.9	-
N363	13.6	17.9	14.4	16.3	-
LOVA	16.5	16	17.4	17.9	-

Table 2.2

50% Firepoint Results: Bed Input Pressure (psia)

Igniter Material

Propellant	BP	BKNO ₃	NC -	MTV	BMoO ₃
NACO	265	115	120	175	75
N318	1200	425	125	375 -	
N363	1350	850	1800	650	-
LOVA	2550	1400	3000	1000	_

Table 2.3

Fifty Percent Firepoint Relative Ranking Based on Energy Level

Propellant	BP	BKNO3	NC	MTV	BMoO ₃
NACO	1*	2	4	3	5
N318	4	2	3	1	-
N363	1	4	2	3	-
LOVA	<u>2</u>	<u>1</u>	_3	_4	_
Total	8	9	12	11	-

^{* ~} Lowest Energy Level (1)

input pressure of 550 psia whereas NOSOL-363 ignited at approximately 1200 psia. NC igniter material resulted in low pressure ignitions for NACO and NOSOL-318, but required the highest pressure levels for NOSOL-363 and LOVA.

An overall igniter effectiveness ranking based on mean energy levels is presented in Table 2.3 for all igniter materials. Each igniter material is ranked in effectiveness for a given propellant using a score of 1 (lowest energy) to 5 (highest energy) and then totaled for an overall ranking. BP igniter material was most effective for NACO and NOSOL-363, whereas BKNO₃ was most effective for LOVA and MTV was most effective for NOSOL-318. Overall effectiveness ranking for the igniter materials for all propellants tested is:

- 1. BP
- 2. $BKNO_3$
- 3. MTV
- 4. NC

Analyses and implications of these rankings are presented in the next section.

3.0 SUPPORTING ANALYTICAL PROCEDURES

3.1 Qualitative Picture of IECD Ignition Process

The IECD ignition process consists of an igniter jet emerging from a number of axial flow vents and entering a finite thickness bed of inert simulant grains followed by a finite thickness bed of live propellant grains. The igniter jet is comprised of up to four different inert or chemically active stream types:

- 1. Hot gases
- Hot vapors capable of undergoing a phase change to either a liquid state or a solid state,
- 3. Hot liquids capable of undergoing a phase change to a solid state, and
- 4. Hot solids.

The manner in which the inert simulant bed affects each of these streams is speculation, but is postulated as follows. First, the inert simulant acts as a radiation buffer which is effective in reducing the igniter radiation incident upon the live propellant zone; consequently, the primary propellant ignition stimulus is presumed to be associated with the energy transported by the flowing igniter stream. Under this presumption, it then becomes important to establish the buffering effect of the inert simulant zone upon the multi-phase igniter stream as it flows from the igniter vent through the inert simulant. Since the inert simulant zone consists of a large number of randomly positioned pellets, it is reasonable to assume that the gas stream can pass through the inert bed relatively easily while experiencing a loss in both pressure and temperature prior to entering the live propellant zone, the losses being

dependent uporun the porosity and length of the inert simulant zone. . Considering next the hot vapors, one can presume tithat the vapors can pass through the inert bed with the same relative ease as the hot gas stream; however, the pressure loss and temperature drop experienced by the gases and vapors would tend to drive the vapors toward a change in phase, presumably to a liquid which would be relatively effective in the inert heating phase of the live propellant ignition process. With regard to the hot liquids contained in the igniter stream, one can envision that the inert zone pellets may become westted by the liquid stream during the flow process, thus reducing the initial liquid content potentially avesilable for the live propellant zone. perhaps more significance is the possibility that the liquids initially present in the igniter products may undergo a phe se change from liquid to solid within the confines of the inert zone, thus significantly reducing the potential effectiveness of the igniter stream to initiate compustion in the live propellant zone. Finally, if one applies the previous logic to the igniter solids flowing through the inert simulant bed, the higher trajectory momer tum of the solids makes them less capable of traversing the inert zone without impacting the inert simulant pellets and becoming trapped in the inert zone, thus reducing the ignition potential of the igniter stream.

3.2 Igniter Simulation

Following the work of Kuo (Ref. 4), the IECD igniter system is treated as a quasi-steady, one-dimensional flow of an ideal gas. Referring to the igniter control volume shown schematically in Figure 3.1, igniter gases are generated from the burning

Figure 3.1 Schematic Representation of IECD Showing Igniter Control Volume

solid and introduced into the igniter control volume at a rate \dot{m}_s equal to the igniter mass generation rate. Conservation of mass coupled with the ideal gas law gives

$$\frac{P_{c}}{RT_{c}}\frac{\dot{m}_{s}}{\rho_{s}} + V_{c}\frac{d}{dt}\left(\frac{P_{c}}{RT_{c}}\right) = \dot{m}_{s} - \dot{m}_{out}$$
 (1)

where

 P_{C} = igniter chamber pressure

 $T_C = igniter chamber temperature$

V_c = igniter chamber free volume

 ρ_s = density of igniter material

The igniter exit flow, \hat{m}_{out} , may consist of gases, vapors, liquids and solids, all flowing with the mean gas velocity as calculated from one-dimensional, ideal flow theory. Equation (1) may be solved for the rate of temperature change in the control volume to give

$$\frac{dT_{C}}{dt} = \frac{T_{C}}{P_{C}} \frac{dP_{C}}{dt} + \frac{RT_{C}^{2}}{V_{C}P_{C}} \dot{m}_{S} \left(\frac{P_{C}}{RT_{C}\rho_{S}} - 1\right) + \frac{RT_{C}^{2}}{V_{C}P_{C}} \dot{m}_{out}$$
(2)

Conservation of energy applied to the igniter gas phase gives

$$\frac{d}{dt} \left(\frac{P_c C_v V_c}{R} \right) = \dot{m}_s C_p T_f - \dot{m}_{out} (C_p T_{out} + \frac{1}{2} V_{out}^2)$$
 (3)

where it has been assumed that the gases entering the control volume from the burning surface are at the adiabatic flame temperature, T_f . Equation (3) can be solved for the igniter mass generation rate, \dot{m}_s , in terms of igniter variables and the exit mass flow rate, \dot{m}_{out} , according to

$$\dot{m}_{s} = \frac{v_{c} \frac{dP_{c}}{dt} + (\gamma - 1) \dot{m}_{out} (C_{p} T_{c})_{out}}{(\gamma - 1) C_{p} T_{f} - \frac{P_{c}}{\rho_{s}}}$$
(4)

If the exit flow is assumed to consist of gases and vapors which behave as gases and liquids and solids which travel as a condensed phase with the gas flow field, then

$$\dot{m}_{out} = \dot{m}_{g} + \dot{m}_{cp} \tag{5}$$

In the present simplified treatment of the igniter system, not enough information is available to adequately predict the condensed phase exit flow rate, so the assumption is made that the condensed flow rate is proportional to the igniter mass generation rate, $\dot{m}_{\rm c}$

$$\dot{m}_{\rm cp} = \beta \dot{m}_{\rm s} \tag{6}$$

Substituting equations (5) and (6) into equation (4) gives a relationship for \mathring{m}_{S} in terms of the experimentally measured igniter pressure, P_{C} ,

$$\dot{m}_{s} = \frac{v_{c} \frac{dP_{c}}{dt} + (\gamma - 1)C_{p}T_{c}\dot{m}_{g}}{(\gamma - 1)C_{p}T_{f} - (\gamma - 1)C_{p}T_{c} - \frac{P_{c}}{\rho_{s}}}$$
(7)

For ideal, one-dimensional flow, the exit gas flow rate, $\mathring{\textbf{m}}_{\text{g}}\text{,}$ is given by

$$\dot{m}_{g} = \frac{P_{c}^{A}e}{\sqrt{RT_{c}}}$$
 (8)

where $A_e = vent exit area.$

Equations (2), (7), and (8) characterize the igniter behavior in terms of thermochemical data, igniter geometry, experimentally measured pressure data, and the unknown condensed phase fraction, β . Using the assumption that igniter burnout occurs at igniter peak pressure, the cast of equations may be iteratively solved using assumed values of β subject to the constraint that the integral of the igniter mass generation rate over the burning period is equal to the amount of igniter mass used to conduct the experiment.

The equations have been formulated into a computer model and solved for each of the igniter materials used in the current project, as illustrated in Figures 3.2 through 3.4. The igniter calibration pressure-time profile is shown in Figure 3.2 for 2 g of black powder for the baseline vent configuration (4080AV) and is used as the "input" curve for P_c and dP_c/dt in the analytical model. Mass flow rates for the gas-vapor phase and the condensed phases are shown in Figure 3.3 and indicate that, at peak conditions, the condensed phase to gas phase mass flow ratio is about 0.20. Using the mass flow rates presented in Figure 3.3, the igniter energy flux into the bed is calculated for the gas phase, \dot{E}_g , and the condensed phase, \dot{E}_{cp} , respectively, by

$$\dot{\mathbf{E}}_{\mathbf{g}} = \dot{\mathbf{m}}_{\mathbf{g}} \left[\frac{2C_{\mathbf{p}}T_{\mathbf{C}}}{(\gamma+1)} + \frac{\gamma}{(\gamma+1)} RT_{\mathbf{C}} \right]$$
 (9)

and

$$\dot{E}_{CP} = \dot{m}_{CP} \left[C_{P_{CP}} T_{f} + \frac{\gamma}{\gamma + 1} R T_{C} \right]$$
 (10)

IGNITER CALIBRATION DATA FOR IECD ANALYTICAL MODEL

Figure 3.2 Igniter Calibration Data for IECD Analytical Model

FUNCTION FOR BLACK POWDER

IGNITER DATA TEST NO. 26 BP, 2G VENT 4080 AV HOE 684 CAL/G T_F 19300K

Figure 3.3 Calculated Igniter Response Function for Black Powder

CALCULATED IGNITER ENERGY FLUX INTO INERT SIMULANT BED

Figure 3.4 Calculated Igniter Energy Flux into Inert Simulant Bed

where the condensed phase liquids and solids are assumed to be generated at the adiabatic flame temperature and are not permitted to equilibrate with the gas temperature, $T_{\rm C}$. Energy flux rates for the case in consideration are presented in Figure 3.4 and indicate that, at peak conditions, the condensed phase to gas phase energy flux ratio is about 0.45.

Igniter calibration data have been combined with the analytical model to generate a set of working curves to facilitate data reduction of the IECD ignition effectiveness test results; these results are presented in Appendix D.

3.3 Igniter Effectiveness Rankings

Based upon the previous qualitative picture of the IECD ignition process, an expression for the dependence of convective heat transfer to the bed was developed with respect to the thermodynamic and transport properties of the igniter product stream. An expression for the inert gas phase is offered and used as a basis for applying augmentation factors for the increased density vapor, liquid, and solid phases. The base expression and the augmentation factors were evaluated using thermochemical code values and used as the basis for ranking the effectiveness of the different ignition stimuli.

The convective heat transfer from the hot igniter stream may be functionally expressed as

$$\frac{\dot{Q}}{A} \sim h_e * (T_p - T_q)$$
 (11)

where h_e = Effective heat transfer coefficient for composite stream

 T_p = Inert simulant, or propellant temperature T_g = Temperature of igniter gas stream.

The heat transfer coefficient is generally proportional to the specific heat, the density, and the velocity of the flowing stream, or

$$h \sim C_p \rho V$$
 (12)

If the effective heat transfer coefficient for the composite igniter stream is based upon the gas phase, then it will be assumed that the effective heat transfer coefficient is given by

$$h_e \sim h_g (1 + I) (1 + J) (1 + K)$$
 (13)

where I, J, and K are the vapor, liquid, and solid phase augmentation factors and h_g is the gas phase heat transfer coefficient.

Since I, J, and K are proportional to the mass flux per unit area of the composite flow field, it seems reasonable to represent I, J, and K by the product fraction mass ratios, as determined by thermochemical code calculations, multiplied by the ratio of specific heats of the phase in question divided by the gas phase specific heat, or

$$I = \frac{C_{pv}}{C_{p}} * (Vapor mass fraction)$$

$$J = \frac{C_{pl}}{C_{p}} * (Liquid mass fraction)$$

$$K = \frac{C_{s}}{C_{p}} * (Solid mass fraction)$$
(14)

Igniter material characterizations based upon NASA Lewis code results at a chamber pressure of 500 psi, Table 3.1, have been used to determine augmentation factors for BP, BKNO₃, NC, MTV, and BMoO₃ as shown in Table 3.2.

Table 3.1
INERT GAS PHASE HEATING AUGMENTATION FACTORS

	BMo03	.127	.018	.302	.558	1.1	1.7	1.3	.02	.51	ר
ATERIAL	VIEW	£30°	968.	.477	.124	1.1	1.7	1.3	. 44	.81	y.
IGNITER MATERIAL	, N	. 902	0	900.	0	ਜ ਼	1.7	H.	0	0	(
	BKN	.247	. 549	.035	.169	1.1	1.7	1.3	.61	90.	C
	BP	. 548	.01	. 409	. 024	1.1	1.7	1.3	.01	.70	ć
	Item	Gas phase mass fraction	Vapor phase mass fraction	Liquid phase mass fraction	Solid phase mass fraction	$c_{ m pV}^{\rm C}$ (Assumed)	$c_{ m pl}/c_{ m p}$ (Assumed)	C _s /C _p (Assumed)	I (Vapor)	J (Liquid)	

Table 3.2

IGNITER MATERIAL CHARACTERIZATION

	BMo0 ₃	1.7	200	2390	27	1.41	1.04	58		8-1	30.2	55.8		87.8 12.2	100.0
	MTV	1.5	1450	2650	26	1.01	1.09	09		39.6	47.7	12.4	: (99.7 0.3	100.0
IGNITER MATERIAL	NC	1.2	965	2350	62	.46	1.22	25		0	0.6	0	ų C	90.2	*8°06
	BKNO ₃	1.4	1500	2895	25	1.61	1.08	63		54.9	3.5	16.9	ր Մ	24.7	100.0
	ag	1.6	684	1930	28	.62	1.11	56		1.0	40.9		41.9	54.8	*4.96
	Item	Density (g/cc)	HOE (cal/g)	Flame Temperature $^{(T)}_{ m p}$, $^{(K)}$	Gas Constant (ft-lb _f /lbm- ^O R)	Specific Heat, C (BTU/1bm-R) P	Ratio of Specific Heats	Molecular Weight	Production Fraction (% Weight)	Vapor-Solid	Liquid-Solid	Solid	Total Solid @14.7 psi	Gas	Total

*Balance Water Vapor

In order to calculate a relative number for the gas phase heat transfer coefficient, the following argument based upon transport theory is given:

$$h_g \sim C_p^{\rho V}$$
 (15)
 $\sim C_p^{MR^{1/2}T^{1/2}}$
 $\sim C_p^{M^{1/2}T^{1/2}}$

The overall heat transfer to the bed is then proportional to

$$\frac{\dot{Q}}{A}\bigg|_{q} \sim C_{p}M^{1/2}T^{3/2} \tag{16}$$

Equation (16) will be used as the inert heat transfer base for the gas phase and modified by the augmentation factors to indicate the overall effectiveness of the igniter materials according to

$$\frac{\dot{Q}}{A} = C_p M^{1/2} T^{3/2} (1+I) (1+J) (1+K)$$
 (17)

Calculated performance factors for the igniter materials tested in the current project are presented in Table 3.3 and relative rankings are presented in Table 3.4. These results suggest that the effective stimuli for each igniter material is as follows:

Overall Calculated Ranking	Material	Effective Stimuli
l (Best)	VTM	Liquids, vapors
2	BKNO ₃	Gases, vapors, and solids
3	BP	Liquids
4 (Worst)	NC	Gases

Table 3.3

Calculated Performance Factors of Igniter Materials

Item	BP	BKNO ₃	NC	MTV	BMoO ₃
Hot Gas					
$(C_{p}^{M^{1/2}T^{1/2}})$	1.01	1.23	1.11	1.18	1.12
Vapor (1+I)	1.01	1.6	1.0	1.4	1.02
Liquid (1+J)	1.7	1.06	1.0	1.8	1.5
Solid (1+K)	1.03	1.2	J. • 0	1.16	1.7
Effective Composite	1.8	2.5	1.1	3.4	2.9

Table 3.4

Calculated Relative Ranking of Igniter Materials

Igniter Characteristic Stimuli

Ranking	<u>Overall</u>	Gases	Vapors	Liquids	Solids
1 (Best)	MTV	BKNO ₃	BKNO ₃	MTV	вкио 3
2	BKNO ₃	VTM	MTV	BP	MTV
3	BP	NC	BP	BKNO ₃	BP
4 (Worst)	NC	BP	NC	NC	NC

The calculated rankings and the experimentally determined rankings based upon 50 percent firepoint energy levels are given below:

Overall Ranking	Calculated Ranking	50% Firepoint Ranking
l (Best)	MTV	BP
2	BKNO ₃	bkno ₃
3	BP	MTV
4	NC	NC

The experimentally determined number one ranking for BP suggests that the BP product liquids are very effective in penetrating the inert simulant bed without undergoing a phase change to the solid state, whereas the liquid phase in the MTV product steam is not. This ranking observation between BP and MTV is consistent with the experimental observation that round, frozen molten spheres of metal were found in the MTV firings indicating that this effective heating stimuli was filtered out by the inert simulant bed.

The BKNO₃ effective stimuli appears to be the high concentration of vapors in the reaction products. Since the combined fraction of vapors, liquids, and solids is higher for BKNO₃ than BP, it appears that the inert simulant bed was effective in preventing all, or part, of the solid phase energy from reaching the live propellant zone.

The experimentally observed rankings for MTV and NC firings were a close 3 and 4, respectively. The last place results of NC suggest that a high gas output igniter system in the absence of vapors, solids, and liquids, is not very effective. As mentioned earlier, it appears that a large portion of the MTV liquids

experienced a phase change, thus suggesting that the effective MTV ignition stimuli is via the vapor phase.

4.0 REFERENCES

- 1. Martino, J., Hassler, T., and Varney, M., "An Exploratory Investigation of the Influence of Igniter Chemistry on Ignition in Porous Bed Gun Propellants: Phase I. Igniter Development," Final Technical Report on Contract N00174-80-C-0138, ACT-TR-8125, April 1981.
- 2. Martino, J. and Varney, M., "An Exploratory Investigation of the Influence of Igniter Chemistry on Ignition in Porous Bed Gun Propellants: IECD Combustion Tests," Final Technical Report on Contract N00174-80-C 0138 Mod P00002, ACT-TR-8125-2, September 1981.
- 3. Brownlee, K. A., Hodges, J. L., and Rosenblatt, M., "The Up-and-Down Method with Small Samples," J. of American Statistical Association, Volume 48, 1953.
- 4. Kuo, K. K., Moore, B. B., and Chen, D. Y., "Characterization of Mass Flow Rates for Various Percussion Primers," Seventh International Colloquim on Gasdynamics of Explosions and Reactive Systems, Gottingen, West Germany, August 1979.

APPENDIX A

IECD EXPANDED IGNITION DIAGNOSTIC TESTS

Table A-1 Series 100: NACO

Table A-2 Series 200: NOSOL-318 Propellant

Table A-3 Series 300: NOSOL-363 Propellant

Table A-4 Series 400: LOVA Propellant

TABLE A-1

IECD EXPANDED IGNITION DIAGNOSTIC TESTS

(Inert Simulant Zone 1 Thickness 1.50 in)

Series 100: NACO Propellant

					Pı	opellar	
Test Number	Igniter Configuration	: Material	Mass (g)	δm (g)	Material	Mass (g)	Ignition (Yes/No)
Muliber	configuración	racciaai	197	197	raccitat	(9)	(105/10)
101E	4080AV-R	BP	.6	.1	NACO	40	N
102E	4080AV-R	BP	.7	.1	NACO	40	N
103E	4080AV-R	BP	.8	.1	NACO	40	N
104E	4080AV-R	BP	.9	.1	NACO	40	N
105E	4080AV-R	BP	1.0	٠,	NACO	40	N
106E	4080AV-R	BP	1.31	.1	NACO	40	N
107E	4080AV	BP	1.31	.1	NACO	40	Y
108E	4080AV _	BP	1.0	.1	NACO	40	Y
101	4080AV -	BP	.7	.1	NACO	40	N
102	4080AV	BP	.8	.1	NACO	40	N
103	4080AV	BP	.9	.1	NACO	40	Y
104	4080AV	BP	.8	.1	NACO	40	N
105	4080AV	BP	.9	.1	NACO	40	N
106	4080AV	BP	1.0	.1	NACO	40	N
107	4080AV	BP	1.1	.1	NACO	40	Y
108	4080AV	BP	1.0	.1	NACO	40	N
109	4080AV	BP	1.1	.1	NACO	40	N
110	4080AV	BP	1.2	.1	NACO	40	N
111	4080AV	BP	1.3	.1	NACO	40	N
112	4080AV	BP	1.4	.1	NACO	40	N
113	4080AV	BP	1.5	.1	NACO	40	N
13.4	4080AV	BP	1.6	.1	NACO	40	N
115	4080AV	BP	1.2	.3	NACO	40	N
116	4080AV	BP	1.5	.3	NACO	40	N
117	4080AV	BP	1.8	.3	NACO	40	N
118	4080AV	BP	2.1	.3	NACO	40	Y

				•	P	ropellar	
Test Number	Igniter Configuration	: Material	Mass (g)	δm (g)	Material	Mass (g)	Ignition (Yes/No)
		BP	1.8	.3			
119	4080AV				NACO	40	Y
120	4080AV	BP	1.5	.3	NACO	40	N
121	4080AV	BP	1.8	.3	NACO	40	Y
122	4080AV	BP	1.5	.3	NACO	40	Y
123	4080AV	BP	1.2	.3	NACO	40	N
124	4080AV	BKN	.8	.2	NACO	40	Y
125	4080AV	BKN	.6	.2	NACO	40	N
126	4080AV	BKN	.8	.2	NACO	40	N
127	4080AV	BKN	1.0	.2	NACO	40	N
128	4080AV	BKN	1.2	.2	NACO	40	Y
129	4080AV	BKN	1.0	.2	NACO	40	Y
130	4080AV	BKN	.8	.2	NACO	40	N
131	4080AV	BKN	1.0	.2	NACO	40	Y
132	4080AV	BKN	.8	.2	NACO	40	Y
133	4080AV	NC	1.4	.3	NACO	40	N
134	4080AV	NC	1.7	.3	NACO	40	N
135	4080AV	NC	2.0	.3	NACO	40	N
136	4080AV	NC	2.3	.3	NACO	40	N
137	4080AV	NC	2.6	.3	NACO	40	Y
138	4080AV	NC	2.3	.3	NACO	40	Y
139	4080AV	NC	2.0	.3	NACO	40	N
140	4080AV	NC	2.3	.3	NACO	40	Y
141	4080AV	NC	2.0	.3	NACO	40	N
142	4080AV	NC	2.3	.3	NACO	40	N
143	4080AV	NC	2.6	.3	NACO	40	N
144	4080AV	NC	2.9	.3	NACO	40	Y
145	4080AV	MTV	1.2	.3	NACO	40	N
146	4080AV	MTV	2.0	.3	NACO	40	Y
147	4080AV	MTV	1.7	.3	NACO	40	Y
148	4080AV	MTV	1.4	.3	NACO	40	Y

					P	ropella	nt
Test	Ignite		Mass	δm		Mass	Ignition
Number	Configuration	Material	<u>(g)</u>	<u>(g)</u>	<u>Material</u>	<u>(g)</u>	- (Yes/No)
149	4080Ay	MTY	1.1	.3	NACO	40	N
150	4080AY	MTV	1.4	.3	NACO	40	Y
151	4080AV	M:TV	1.1	.3	NACO	40	N
152	4080AV	MTV	1.4	.3	NACO	40	Y
153	4080AV	MTV	1.1	.3	NACO	40	Y
154	4080AV	MTV	.8	.3	NACO	40	N
155	4080AV	MTV	1.1	.3	NACO	40	Y
156	4080AV	MTV	.8	.3	NACO	40	N
157	4080AV	BMO	3.0	.5	NACO	40	N
158	4080AV	BMO	5.0	.5	NACO	40	Y
159	4080AV	BMO	4.0	.5	NACO	40	N
160	4080AV	BMO	4.5	.5	NACO	40	N
161	4080AY	BMO	5.0	.5	NACO	40	N
162	4080AV	PMO	5.5	.5	NACO	40	N
163	4080AV	BMO	6.0	.5	NACO	40	Y
164	4080AY	BMO	5.5	•5	NACO	40	Y
165	4080AV	BMO	5.0	.5	NACO	40	N
166	4080AV	BMO	5.5	.5	NACO	40	Y
167	4080AV	BMO	5.0	.5	NACO	40	N
168	4080AV	BMO	5.5	.5	NACO	40	N
169	4080AV	BMO	6.0	•5	NACO	40	N
170	4080AV	BMO	6.5	.5	NACO	40	Y
171	4080AV	BMO	6.0	.5	NACO	40	N
172	4080AV	BMO	6.5	.5	NACO	40	N

TABLE A-2

IECD EXPANDED IGNITION DIAGNOSTIC TESTS

(Inert Simulant Zone 1 Theikness 1.50 in)

Series 200: NOSOL-318 Propellant

Test	* 2 4			•	1	Propella	nt
Number	Igniter Configuration	Material	Mass	δm	•• . • -	Mass	Ignition
	oo ii 2 garacion	Macerial	<u>(g)</u>	<u>(g)</u>	Material	(g)	(Yes/No)
201	4080AV	BP	1.65	.6	N318	40	N
202	4080AV	BP	2.25	.6	N318	40	Y
203	4080AV	BP	1.65	.6	N318	40	N
204	4080AV	BP	2.25	.6	N318	40	N
205	4080AV	BP	2,85	.6	N318	40	N
206	4080AV	BP	3.45	.6	N318	40	N
207	4080AV	BP	4.05	.6	N318	40	N
208	4080AV	BP	3.45	.6	N318	40	Y
209	4080AV	BP	2.00	.6	N318	40	n
210	4080AV	BP	3.00	.6	N318	40	
211	4080AV	BP	4.65	.6	N318	40	Y N
212	4080AV	BP	5.25	.6	N318	40	
213	4080AV	BP	4.65	.6	N318	40	Y N
214	4080AV	BP	5.25	.6	N318	40	
215	4080AV	BP	4.65	.6	N318	40	Y Y
216	4080AV	BP	4.05	.6	N318	40	n
217		No	Test Co			40	IN
218	4080AV	BP	4.70	.3	N318	40	N
219	4080AV	BP	5.00	.3	N318	40	
220	4080AV	BP	4.70	.3	N318	40	Y Y
221	4080AV	BP	4.40	.3	N318	40	
222	4080AV	BP	4.70	.3			N
223	4080AV	BP			N318	40	Y
224	4080AV		4.40	.3	N318	40	N
225		BP	4.70	.3	N318	40	Y
	4080AV	BP	4.40	.3	N318	40	Y
226	4080AV	BP	4.10	.3 .	N318	40	Y

m 1				_	P	ropella	
Test Number	Igniter Configuration	: Material	Mass (g)	δm (g)	Material	Mass (g)	Ignition (Yes/No)
							(res/NO)
227	4080AV	B₽	3.80	.3	N318	40	Y
228	4080AV	BP	3.50	.3	N318	40	N
229	4080AV	BP	3.80	.3	N318	40	¥
230	4080AV	BKN	2.00	.5	N318	40	N
231	4080AV	BKN	2.50	.5	N318	40	Y
232	4080AV	BKN	2.00	.5	N318	40	N
233	4080AV	BKN	2.50	.2	N318	40	¥
234	4080AV	BKN	2.30	.2	N318	40	Y
235	4080av	BKN	2.10	.2	N318	40	Y
236	4080AV	BKN	1.90	.2	N318	40	N
237	4080AV	BKN	2.10	.2	N318	40	¥
238	4080AV	BKN	1.90	.2	N318	40	Y
239	4080ay	BKN	1.70	.2	N318	40	N
240	4080av	BKN	1.90	.2	N318	40	Y
241	4080AV	BKN	1.70	.2	N318	40	N
242	4080ay	BKN	1.90	.2	N318	40	Y
243	4080AV	BKN	1.70	.2	N318	40	Y
244	4080AV	BKN	1.50	.2	N318	40	N
245	4080AV	BKN	1.70	.2	N318	40	Y
246	4080AV	NC	5.00	1.0	N318	40	Y
247	4080AV	NC	4.00	1.0	N318	40	y.
248	4080AV	NC	3.00	1.0	N318	40	Y
249	4080AV	NC	2.00	1.0	N318	40	n
250	4080AV	NC	2.30	.3	N318	40	N
251	4080AV	NC	2.60	.3	N318	40	N
252	4080av	NC	2.90	.3	N318	40	n
253	4080AV	NC	3.20	.3	N318	40	Y
254	4080AV	NC	2.90	.3	N318	40	N
255	4080AV	NC	3.20	.3	N318	40	Y
256	4080AV	NC	2.90	.3	N318	40	N
							44

m+				_	P	ropellar	nt
Test Number	Ignites Configuration		Mass	δm		Mass	Ignition
Manner	Configuration	Material	<u>(g)</u>	<u>(g)</u>	Material	<u>(g)</u>	(Yes/No)
257	4080AY	NC	3.20	.3	N318	40	N
258	4080AV	NC	3.50	.3	N318	40	Y
259	4080AV	NC	3.20	.3	N318	40	Y
260	4080AV	NC	2.90	.3	N318	40	Y
261	4080AV	NC	2.60	.3	N318	40	N
262	4080AV	MTV	2.00	.3	N318	40	Y
263	4080AV	MTV	1.70	.3	N318	40	Y
264	4080AV	MTV	1.40	.3	N318	40	N
265	4080AV	MTV	1.70	.3	N318	40	Ą
266	4080AV	MTV	1.40	.3	N318	40	N
267	4080AV	VTM	1.70	.3	N318	40	N
268	4080AV	MTV	2.00	.3	N318	40	Y
269	4080AV	MTV	1.70 -	.3	N318	40	Y
270	4080AV	MTV	1.40	.3	N318	40	N
271	4080AV	MTV	1.70	.3	N318	40	Y

TABLE A-3

IECD EXPANDED IGNITION DIAGNOSTIC TESTS

(Inert Simulant Zone 1 Thickness 1.50 in)

Series 300: NOSOL-363 Propellant

					ropella	pellant		
Test Number	Igniter Configuration	r Material	Mass (g)	δm (α)	Matorial	Mass	Ignition	
		114	(9)	<u>(g)</u>	Material	<u>(g)</u>	(Yes/No)	
301	4080AV	BP	1.8	.5	N363	39.2	N	
302	4080AV	BP	2.3	•5	N363	39.2	N	
303	4080AV	BP	2.8	.5	N363	39.2	N	
304	4080AV	BP	3.3	.5	N363	39.2	N	
305	4080AV	BP	3.8	.5	N363	39.2	N	
306	4080AV	BP	4.3	.5	N363	39.2	N	
307	4080AV	BP	4.8	.5	N363	39.2	Y	
308	4080AV	BP	4.3	•5	N363	39.2	N	
309	- 4080AV	BP	4.8	.5	N363	39.2	¥	
310	4080AV	BP	4.6	.3	N363	39.2	N	
311	- 4080AV	BP	4.9	.3	N363	39.2	¥	
312	4080AV	BP	4.6	.3	N363	39.2	N	
313	4080AV	BP	4.9	•3	N363	39.2	N	
314	4080AV	BP	5.2	.3	N363	39.2	Y	
315	4080AV	BP	4.9	.3	N363	39.2	Y	
316	4080AV	BP	4.6	.3	N363	39.2	Y	
317	4080AV	BP	4.3	.3	N363	39.2	N	
318	4080AV	BP	4.6	.3	N363	39.2	N	
319	4080AV	BP	4.9	.3	N363	39.2	Y	
320	4080AV	BP	4.6	.3	N363	39.2	N	
321	4080AV	BP	4.9	.3	N3 63	39.2	Y	
322	4080AV	BKN	2.5	.5	N363	39.2	Y	
323	4030AV	BKN	2.0	.5	N363	39.2	N	
324	4080AV	BKN	2.5	.5	N363	39.2	N	
325	· 4080AV	BKN	3.0	.5	N363	39.2	N	
326	4080AV	BKN	3.5	.5	N363	39.2	N	

Ma a t	Tunito	_	Wo o -	•	P	Propellant			
Test Number	Igniter Configuration	<u>Material</u>	Mass (g)	ბm (g)	Material	Mass	Ignition (Yes/No)		
207	4080AV	BKN	4.0						
327 328	4080AV	BKN	3.5	.5	N363	39.2	Y		
328	4080AV	BKN	3.0	.5	N363	39.2	Y		
330	4080AV	BKN	2.7	.3	N363	39.2	Y		
	4080AV	BKN		.3	N363	39.2	Y		
331			2.4	.3	M363	39.2	N		
332	4080AV	BKN	2.7	.3	N363	39.2	Y		
333	4080AV	BKN	3.4	.3	N363	39.2	No Test		
334	4080AV	BKN	2.4	.3	N363	39.2	N		
335	4080AV	BKN	2.7	.3	N363	39.2	N		
336	4080AV	BKN	3.0	.3	N363	39.2	N		
337	4080AV	BKN	3.3	.3	N363	39.2	Y		
338	4080AV	BKN	3.0	.3	N363	39.2	N		
339	4080AV	BKN	3.3	.3	N363	39.2	Y		
340	4080AV	BKN	3.0	.3	N363	39.2	Y		
341	4080AV	NC	3.5	•5	N363	39.2	N		
342	4080AV	NC	4.0	.5	N363	39.2	Y		
343	4080AV	NC	3.5	.5	N363	39.2	N		
344	4080AV	NC	4.0	.5	N363	39.2	Y		
345	4080AV	NC	3.5	.5	N363	39.2	Y		
346	4080AV	NC	3.0	.5	N363	39.2	N		
347	4080AV	NC	3.3	.3	N363	39.2	N		
348	4080AV	NC	3.6	.3	N363	39.2	N		
349	4080AV	NC	3.9	.3	N363	39.2	Y		
350	4080AV	NC	3.6	.3	N363	39.2	Y		
351	4080AV	NC	3.3	.3	N363	39.2	N		
352	4080AV	NC	3.6	.3	N363	39.2	Y		
353	4080AV	NC	3.3	.3	N363	39.2	N		
354	4080AV	NC	3.6	.3	N363	39.2	Y		
355	4080AV	NC	3.3	.3	N363	39.2	N		
356	4080AV	NC	3.6	.3	N363	39.2	N		

Ma a t			Mage	- 2-	Propellant				
Test	Ignite		Mass	δm		Mass	Ignition		
Number	Configuration	Material	<u>(g)</u>	<u>(g)</u>	<u>Material</u>	<u>(g)</u>	(Yes/No)		
357	4080AV	NC	3.9	.3	N363	39.2	Y		
358	4080AV	MTV	3.0	.3	N363	40	Y		
359 _.	4080AV	MTV	2.7	.3	N363	40	Y		
360	4080AV	MTV	2.4	.3	N363	40	N		
361	4080AV	MTV	2.7	.3	N363	40	N		
362	4080AV	MTV	3.0	.3	11363	40	Y		
3 63	4080AV	MTV	2.7	.3	N363	40	Y		
364	4080AV	MTV	2.4	.3	N363	40	N		
365	4080AV	VTM	2.7	.3	N363	40	N		
366	4080AY	MTV	3.0	.3	N363	40	Y		
367	4080AV	MŢV	2.7	.3	N363	40	Y		

TABLE A-4

IECD EXPANDED IGNITION DIAGNOSTIC TESTS

(Inert Simulant Zone 1 Thickness 1.50 in)

Series 400: "LOVA Propellant"

.					ropellant		
Test Number	Igniter Configuration	Material	Mass (g)	ბm (g)	Material	Mass (g)	Ignition (Yes/No)
401	4080AV	BP	4.5	•5	LOVA	40	N
402	4080AV	BP	5.0	.5	LOVA	40	n
403	4080AV	BP	5.5	.5	LOVA	40	n
404	4080AV	BP	6.0	.5	LOVA	40	N
405	4080AV	BP	7.0	1.0	LOVA	40	N
406	4080AV	BKN	3.0	1.0	LOVA	40	N
407	4080AV	BKN	4.0	1.0	LOVA	40	N
408	4080AV	BKN	5.0	1.0	LOVA	40	N
409	4080AV	NC	5.0	1.0	LOVA	40	N
410	4080AV	BKN	5.0	1.0	LOVA	51	N
411	5113	BKN	5.0	1.0	LOVA	51	Y
412	5113	BKN	3.0	1.0	LOVA	51	N
413	5113	BKN	4.0	1.0	LOVA	51	N
414	4113-205	BKN	4.0	1.0	LOVA	51	N
415	4113-205	BKN	5.0	1.0	LOVA	51	N
416	5113	BKN	5.0	1.0	LOVA	51	N
417	5113	BKN	6.0	1.0	.OVA	51	Y
418	5113	BKN	5.0	1.0	LOVA	51	Y
419	5113	BKN	4.0	1.0	LOVA	51	Y
420	5113	BKN	2.0	1.0	LOVA	40	N
421	5113	BKN	3.0	1.0	LOVA	40	Y
422	5113	3KN	4.0	1.0	LOVA	40	Y
423	5110	BKN	3.0	1.0	LOVA	40	Y
424	5113	BKN	2.5	1.0	LOVA	40	Y
425	5113	BKN	2.5	1.0	LOVA	40	Y
426	5113	BKN	3.0	1.0	LOVA	40	Y
427	5113	BKN	4.0	1.0	LOVA	40	Y
428	5113	BKN	2.5	1.0	LOVA	40	Y
429	5113	BKN	3.0	1.0	LOVA	40	Y

			Propellant				
Test Number	Igniter Configuration	Material	Mass (g)	δm (g)	Material	Mass (g)	Ignition (Yes/No)
					- ACCLIAL	. 197_	(1es/NO)
430	5113	BKN	2.5	•5	LOVA	40	N
431	5113	BKN	3.0	.5	LOVA	40	Y
432	5113	BKN	2.5	.5	LOVA	40	Y
433	5113	BKN	2.0	•5	LOVA	40	N
434	5113	BKN	2.5	.5	LOVA	40	N
435	5113	BKN	3.0	.5	LOVA	40	Y
436	5113	BKN	2.5	.5	LOVA	40	Y
437	5113	BKN	2.0	.5	LOVA	40	N
438	5113	BKN	2.5	.5	LOVA	40	N
439	5113	BKN	3.0	.5	LOVA	40	Y
440	5113	BP	6.0	1.0	LOVA	40	N
441	5113	BP	7.0	1.0	LOVA	40	Y
442	5113	BP	6.0	1.0	LOVA	40	Y
443	5113	BP	5.0	1.0	LOVA	40	Y
444	5113	BP	4.0	1.0	LOVA	40	N
445	5113	BP	5.0	1.0	LOVA	40	N
446	5113	BP	6.0	1.0	LOVA	40	N
447	5113	BP	7.0	1.0	LOVA	40	Y
448	5113	BP	6.0	1.0	AVOL	40	Y
449	5113	BP	5.0	1.0	LOVA	40	Y
450	5113	MTV	3.0	0.5	LOVA	40	N
451	5113	MTV	3.5	0.5	LOVA	40	Y
452	5113	MTV	3.0	0.5	LOVA	40	Y
453	5113	MTV	2.5	0.5	LOVA	40	N
454	5113	MTV	3.0	0.5	LOVA	40	Y
455	5113	MTV	2.5	0.5	LOVA	40	n
456	5113	MTV	3.0	0.5	LOVA	40	N
457	5113	MTV	3.5	0.5	LOVA	40	Y
458	5113	MTV	3.0	0.5	LOVA	40	Y
459	5113	MTV	2.5	0.5	LOVA	40	N
460	5113	NC	4.0	0.5	LOVA	40	N
461	5113	NC	5.0	0.5	LOVA	40	Y

					Propellant				
Test	Ignite	r	Mass	δm		Mass	Ignition		
Number	<u>Configuration</u>	<u>Material</u>	(g)	<u>(g)</u>	Material	(g)	(Yes/No)		
462	5113	NC	4.0	0.5	LOVA	40	Y		
							-		
463	5113	NC	3.0	0.5	LOVA	40	N		
464	5113	NC	4.0	0.5	LOVA	40	27		
101	J11 3		4.0	0.5	TOAN	40	N		
465	5113	NC	5.0	0.5	LOVA	40	Y		
455	F310						_		
466	5113	NC	4.0	0.5	LOVA	40	N		
467	5113	NC	5.0	0.5	LOVA	40	Y		
			•••	0.5	TOAY	40	I		
468	5113	NC	4.0	0.5	LOVA	40	N		
465	5330								
469	5113	NC	5.0	0.5	LOVA	40	Y		

APPENDIX B

IECD DATA REDUCTION

Propellant	BP	вкио 3	MTV	NC	BMoO ₃
NACO	x	x	x	x	x
NOSOL-318	x	x	x	x	
NOSOL-363	x	x	x	x	
LOVA	x	x	×	x	

- 1. Igniter Calibration Data with Baseline Igniter
- 2. 50% Firepoint Results: Mass Distribution (g)
- 3. 50% Firepoint Results: Energy Distribution (cal)

TABLE B-1
IECD DATA REDUCTION: BP/NACO

	peak (ms)	•	i	ŧ	ı	2200	1	2320	2590	1
	tign (ms)	ı	•	ı	1	2100	ı	2240	2500	ı
ropellant	P_2max (psi)	ı	ı	ı	ı	3450	ı	2250	3110	ı
д	P ₂₁ (psi)									
	P20 (psi)	120	210	320	340	320	250	320	210	120
	Ignition (Yes/No)	Z	z	z	≯	×	z	×	×	Z
	Matl	NACO								
Igniter	Mass (g)	1.2	1.5	1.8	2.1	1.8	1.5	1.8	1.5	1.2
	Mat1	BP	BP	BP	BP	ВР	BP	ВР	ВР	BP
	Test	115	116	117	118	119	120	121	122	123

Fifty percent firepoint $\overline{m} = 1.65 \pm .26$

NFR ~ No Film Record

B-1

TABLE B-2
IECD DATA REDUCTION: BKN/NACO

	Tpeak (ms)	ı	1	ı	ı	1290	1750	1 1	1700	2530
	Tign (ms)	1	i	ı	ı	1260	1660	1	1580	2420
ropellant	P_2max (psi)	1	ı	1	ı	2750	3350	1	2700	1800
<u>α</u>	P ₂₁ (psi)	NFR	1	1	1	15	15	ı	15	15
	P20 (ps1)	100	80	100	120	280	130	100	120	100
	Ignition (Yes/No)	×	z	z	z	×	×	z	×	×
	Matl	NACO								
Igniter	Mass (g)	œ	9.	æ	1.0	1.2	1.0	8.	1.0	8.
	Mat1	BKN								
	Test	124	125	126	127	128	129	130	131	132

TABLE B-3
IECD DATA REDUCTION: NC/NACO

	Tpeak (ms)	ı	i	ı	1	80	3720	ı	06	•	1	ı	06
	rign (ms)	ı	ı	ı	ı	30	3680	t	40	t	•	•	30
ropellant	P_2max (psi)	1	ı	1	ı	3520	2350	1	2550	1	•	1	1900
Δi	P ₂₁ (psi)												
	P ₂₀ (psi)	20	90	700	110	140	100	100	100	06	100	110	160
	Ignition (Yes/No)	z	z	z	z	×	≯	z	×	z	z	z	≯
	Matl	NACO	NACO	NACO	NACO	NACO	NACO	NACO	NACO	NACO	NACO	NACO	NACO
Igniter	Mass (g)	1.4	1.7	2.0	2.3	2.6	2.3	2.0	2.3	2.0	2.3	5.6	2.9
	Matl	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	Test	133	134	135	136	137	138	139	140	141	142	143	144

Fifty percent firepoint m = 2.381.35

TABLE B-4
IECD DATA REDUCTION: MTV/NACO

.

	Tpeak (ms)	65	09	}	09	ı	55	5000+	1	3000+	ı
	rign (ms)	30	15	ì	25	1	20	5000 +	1	3000+	ı
ropellant	P_2max (psi)	3400	3500	ı	3400	ŧ	3300	NFR	ı	NFR	1
д	P ₂₁ (psi)										
	P20 (psi)	400	300	200	250	200	250	150	100	200	100
	Ignition (Yes/No)	≯	X	Z	×	Z	×	×	Z	×	Z
	Mat1	NACO	NACO	NACO	NACO						
Igniter	Mass (g)	1.7	1.4	1.1	1.4	1.1	1.4	1.1	0.8	1.1	0.8
	Matl	MTV	MTV	MTV	MTV	MTV	WIW	WTW	WIW	MTV	MTV
	Test	147	148	149	150	151	152	153	154	155	156

Fifty percent firepoint m = 1.10±.14

TABLE B-5
IECD DATA REDUCTION: BMO/NACO

	T peak (ms)	ı	1	\$000 +	3020	ı	2200	ı	1	ı	2000+	ì	1
	rign (ms)	1	•	5000+	2880	•	2050	\$	ı	1	5000+	1	1
ropellant	P_2max (psi)	ı	ı	NFR	2400	ı	3600	1	ı	ı	NFR	1	1
P4	P ₂₁ (psi)												
	P ₂₀	20	20	75	20	20	20	20	20	20	20	20	20
	Ignition (Yes/No)	z	z	×	×	Z	×	Z	z	Z	×	z	z
	Matl	NACO	NACO	NACO	NACO	NACO	NACO	NACO	NACO	NACO	NACO	NACO	NACO
Igniter	Mass (g)	5.0	5.5	0.9	5.5	5.0	5.5	5.0	ស ទ.	6.0	6.5	6.0	6.5
	Mat1	ВМО	BMO	CME	BMO	BMO	BMO	BMO	BMO	BMO	BMO	BMO	BMO
	Test	191	162	163	164	165	166	167	168	169	170	171	172

ż

Fifty percent firepoint $\overline{m} = 5.75\pm.67$

TABLE B-6

IECD DATA REDUCTION: BP/N318

	Tpeak (ms)	1	35	45	í	75	t	80	210	155	5000+	-	+0006
	tign (ms)	ŧ	10	S	ı	70	ı	15	40	25	500r+	ı	+0006
ropellant	P _{2max} (psi)	ı	009	009	i	200	1	650	1100	1600	NFR	1	NFR
щ	P ₂₁ (psi)												
	P ₂₀	1100	1200	1200	1300	1300	1200	1350	1200	1100	006	1100	1100
	Ignition (Yes/No)	z	×	×	z	X	z	X	×	X	×	z	×
	Mat1	N318	N318	N318	N318	N318	N31.8	N318	N318	N318	N318	N318	N318
Igniter	Mass (g)	4.7	5.0	4.7	4.4	4.7	4.4	4.7	4.4	4.1	3.8	3.5	3.8
	Matl	ВР	BP	ВР	BP	ВР	BP	BP	BP	BP	BP	BP	BP
	Test	218	219	220	221	222	223	224	225	226	227	228	229

Fifty percent firepoint m = 4.40±1.1

TABLE B-7
IECD DATA REDUCTION: BKN/N318

	peak (ms)	+0009	2000 +	+0009	1	9350	10000+	1	6250	1	6180	6520	ı	7550
	rign (ms)	+0009	2000+	+0009	ı	9200	10000+	ı	6150	1	6050	6400	ı	7400
ropellant	P_2max (psi)	NFR	NFR	NFR	ı	700	NFR	ı	300	ı	1100	1500	1	700
Ω,	P ₂₁ (psi)	15	15	15	ı	. 51	15	•	15		15	15	,	15
	P ₂₀	700	700	009	400	2 005	200	300	400	300	400	350	250	400
	Ignition (Yes/No)	×	×	×	z	X	×	z	*	Z	*	X	Z	₩
	Matl	N318	N318	N318	N31.8	N318	N318	N318	N318	N318	N318	N318	N318	N318
Igniter	Mass (g)	2.5	2.3	2.1	1.9	2.1	1.9	1.7	1.9	1.7	1.9	1.7	1.5	1.7
	Mat1	BKN	BKN	BKN	BKN	BKN	BKN	BKN	BKN	BKN	BKN	BKN	BKN	BKN
	Test	233	234	235	236	237	238	239	240	241	242	243	244	*245

Fifty percent firepoint m = 1.8±.17

TABLE B-8
IECD DATA REDUCTION: NC/N318

	peak (ms)	1	1	1	ı	•	25	ı	ı	7000+	15	10000+	t
	ign (ms)	ı	1	1	ı	i	15	•	ı	1000+	10	10000+	t
Propellant	P_2max (psi)	1	ı	•	ı	ı	1500	ı	ı	NFR	1650	NFR	ı
-	P ₂₁ (psi)												
	P ₂₀ (psi)	20	75	100	150	75	150	125	150	150	150	100	100
	Ignition (Yes/No)	z	z	z	×	z	¥	Z	Z	*	×	ĸ	Z
	Matl	N318	N318	N318	N318	N318	N318	N318	N318	N318	N318	N318	N318
Igniter	Mass (g)	2.3	5.6	2.9	3.2	2.9	3.2	2.9	3.2	3.5	3.2	2.9	2.6
	Mat1	NC	NG NG	NC	NC	S	NC						
	Test	250	251	252	253	254	255	256	257	258	259	260	261

Fifty percent firepoint m = 3.05±.21

TABLE 8-9 IECD DATA REDUCTION MTV/N318

	T peak (ms)	+0009	5100	•	4620	ı	ı	2900	5710) ;	4710
	tign (ms)	+ 0009	5010	ı	4550	1	ı	5750	5650	ı	4600
ropellant	P_2max (psi)	NFR	1400	•	1500	ı	1	2450	1500	ı	1750
Δi	P ₂₁ (psi)										
	P ₂₀	300	200	350	300	200	350	400	400	300	400
	Ignition (Yes/No)	≯	*	N	×	z	Z	×	×	Z	≯
	Matl	N318	N318	N318	N318	N318	N318	N318	N318	N318	N318
Igniter	Mass (g)	2.0	1.7	1.4	1.7	1.4	1.7	2.0	1.7	1.4	1.7
	Mat1	VIM	MTV	MTV	WTW	WIW	MTV	MTV	ΛJ_{W}	MTV	MTV
	Test	262	263	264	265	266	267	268	569	270	271

Fifty percent firepoint $\overline{m} = 1.63 \pm .10$

TABLE B-10

IECD DATA REDUCTION: BP/N363

	Tpeak (ms)	1	110	ŧ	ı	ı	09	125	i	i	3500+	1	105
	rign (ms)	ı	80	ı	ŧ	i	40	20	ı	i	3500+	ı	70
ropellant	P_2max (psi)	ı	1700	ı	ı	ı	200	800	ı	ı	NFR	i	009
Ω,	P ₂₁ (psi)												
	P ₂₀ (psi)	1100	1250	1000	1100	1750	1750	1100	1000	1400	1500	1250	1500
	Ignition (Yes/No)	Z	¥	Z	z	×	×	×	z	Z	×	Z	×
	Matl	N363	N363	N363									
Igniter	Mass (g)	4.6	4.9	4.6	4.9	5.2	4.9	4.6	4.3	4.6	4.9	4.6	6.4
	Mat1	ВР	BP	BP	вР	BP	BP	BP	ВР	въ	ВР	ВР	BP
	Test	310	311	312	313	314	315	316	317	318	319	320	321

Fifty percent firepoint $\overline{m} = 4.75 \pm .18$

TABLE B-11
IECD DATA REDUCTION: BKN/N363

	peak (ms)	140	+0009	1	150		i	i	ı	100	ì	7000+	5000+
	tign (ms)	30	+0009	ŧ	ΦŪ		1	ı	ı	25	ŧ	4000 4	5000+
Propellant	P_2max (psi)	2100	NFR	i	1750		1	ı	1	1100	ı	NFR	NFR
-	P ₂₁ (psi)						ı	•	•	15	ı	15	15
	P ₂₀	850	850	550	750		009	800	006	1100	1000	1100	1300
	Ignition (Yes/No)	×	×	Z	×		Z	Z	z	×	z	×	×
	Matl	N363	N363	N363	N363		N363	N363	N363	N363	N363	N363	N363
Igniter	Mass (g)	3.0	2.7	2.4	2.7	13	2.4	2.7	3.0	3.3	3.0	3,3	3.0
•	Mat1	BKN	BKN	BKN	BKN	No Test	BKN	BKN	BKN	BKN	BKN	BKW	BKN
	Test	329	330	331	322	333	334	335	336	337	338	339	340

Fifty percent firepoint m = 2.85±.40

TABLE B-12
IECD DATA REDUCTION: NC/N363

	Tpeak (ms)	ı	•	110	140	ı	65	ı	120	ŧ	ı	80
	ign (ms)	ı	ı	30	30	1	30	1	30	ı	ı	30
ropellant	P _{2max} T (psi)	1	i	850	009	1	1500	ı	1600	ı	ı	009
щ	P21 (psi)	ı	ı	15	15	ı	15	ı	15	ı	•	15
	P ₂₀ (psi)	1300	1900	1900	1800	1400	1900	1300	1800	1250	1900	2100
	Ignition (Yes/No)	z	z	¥	*	z	×	z	×	Z	z	×
	Matl	N363										
Igniter	Mass (g)	3.3	3.6	3.9	3.6	3.3	3.6	3.3	3.6	3,3	3.6	3.9
	Mat1	NC										
	Test	347	348	349	350	351	352	353	354	355	356	357

Fifty percent firepoint m = 3.57±.13

TABLE B-13
IECD DATA REDUCTION: MTV/N363

Propellant	Parx tign Tpeak (psi) (ms)	2500 4700	650 7500	1	1	2600 40	1400 50	i	1	2100 50	3200
	P ₂₁ (psi)	15	15	ı	1	4 50	100	1	ı	100	400
	P ₂₀ (psi)	800	200	009	750	850	009	009	700	800	250
	Ignition (Yes/No)	×	×	z	z	X	*	z	z	×	>
	Matl	N363	N363	N363	N363	N363	N363	N363	N363	N363	M363
Igniter	Mass (g)	3.0	2.7	2.4	2.7	3.0	2.7	2.4	2.7	3.0	,
	Mat1	VIM	MTV	MTV	MTV	MTV	WIW	MTV	WIW	MTV	Merrey
	Test	358	359	360	361	362	363	364	365	366	100

Fifty percent firepoint m = 2.701.14

Fifty percent firepoint $\overline{m} = 2.55\pm.22$

TABLE B-14
IECD DATA REDUCTION: BKN/LOVA

	peak (ms)	ı	105	145	ı	1	92	125	ı	1	06
opellant	tign (ms)	ı	25	40	1	ı	30	20	ı		25
	P _{2max} (psi)	1	3700	2400	1	1	2000	4200	1	ı	4800
Д	P ₂₁ (psi)										
	P20 (ps1)	1200	1800	1400	800	1400	1800	1400	800	1200	1800
	Ignition (Yes/No)	z	*	≯	z	Z	¥	×	z	Z	> +
	Mat1	LOVA									
Igniter	Mass (g)	2.5	3.0	2.5	2.0	2.5	3.0	2.5	2.0	2.5	3.0
	Matl	BKN	BKN	BKW	BKN						
	Test	430	431	432	433	434	435	436	437	438	439

TABLE B-15
IECD DATA REDUCTION: BP/LOVA

	Tpeak (ms)	1	55	100	110	ı	ı	ı	70	100	75
opellant	tign (ms)	i	15	30	20	ı	ı	1	15	25	15
	P_2max (psi)	•	6800	3200	3200	i	ı	i	2400	3600	7600
Δi	P ₂₁ (psi)										
	P20 (psi)	2400	3000	2600	1800	1200	2000	2400	2800	2600	2000
	Ignition (Yes/No)	Z	*	,	×	Z	z	z	×	×	×
	Matl	LOVA	LOVA	LOVA	LOVA	LOVA	LOVA	LOVA	LOVA	LOVA	LOVA
Igniter	Mass (g)	0.9	7.0	6.0	5.0	4.0	5.0	0.9	7.0	6.0	5.0
	Matl	ВЪ	BP	ВР	ВР	ΝÞ	ВР	ВР	ВР	BP	BP
	Test	440	441	442	443	444	445	446	447	448	449

TABLE B-16
IECD DATA REDUCTION: MTV/LOVA

	T Deak (ms)	1	105	100	1	155	ı	1	80	140	1
	rign (mg)	ı	25	10	•	40	1	ı	15	15	•
ropellant	P 2max (psi)	t	31.00	7800	•	3000	1	ı	6500	3000	i
щ	P ₂₁ (psi)	1	1000	P20	ı	009	1	1	800	006	ı
	P20 (psi)	1000	1100	1000	009	1000	800	006	006	006	700
	Ignition (Yes/No)	z	×	¥	z	>1	z	Z	×	≯	Z
	Matl	LOVA	LOVA	LOVA	LOVA	LOVA	LOVA	LOVA	LOVA	LOVA	LOVA
Igniter	Mass (g)	3.0	3.5	3.0	2.5	3.0	2.5	3.0	3.5	3.0	2.5
	Matl	MTV	MTV	MTV	MTV	MTV	MTV	MTV	MTV	MTV	WIW
	Test	450	451	452	453	454	455	456	457	458	459

Fifty percent firepoint $\overline{m} = 2.95\pm.22$

Fifty percent firepoint m = 4.30±.31

TABLE B-17
IECD DATA REDUCTION: NC/LOVA

	t peak (ms)	ı	80	100	•	* + ⁻	. 2 <u>0</u>	· I	55	* I	50
	rign (ms)	ı	9	40	ı	•	15	ı	15	ı	10
ropellant	P_2max (psi)	1	3100	2000	ı	1	6200	ı	3200	1	7000
Д	P ₂₁ (psi)										
	P20 (psi)										
	Ignition (Yes/No)	z	*	*	z	Z	*	Z	×	z	×
	Matl	LOVA	LOVA	LOVA	LOVA	LOVA	LOVA	LOVA	LOVA	LOVA	LOVA
Igniter	Mass (g)	4.0	5.0	4.0	3.0	4.0	5.0	4.0	5.0	4.0	5.0
	Matl	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	Test	460	461	462	463	464	465	466	467	468	469

TABLE B-18
IGNITER CALIBRATION DATA WITH BASELINE IGNITER

Pmx/m (psi/ms-q)	564	765	825	979	1500	1100	1335	170	142	1143	1277	1600	932	857	175
F max (m (psi/g)	1240	1530	1485	1565	1500	1550	1600	1700	1700	3400	3580	1600	260	514	06
Δp. Δτmax Δtmax P. max (psi/ms)	564	1530	2890	5875	1500	2200	4000	170	283	4000	5750	1600	2330	3000	1000
final (ms)	ω	ထ	5.3	5.3	7.2	7.2	7.0	16	12	9	5.2	3.5	4.6	3.2	ø
T pmax (ms)	2.2	7	1.8	1.6	н	1.4	1.2	10	7	ო	2.8	សំ	9	9.	4.
P max (psi)	1240	3060	5200	9400	1500	3100	4800	1700	3400	12000	16100	800	1400	1800	800
M-Mass (g)	н	Ο1	3.5	6.0	г	2.0	ო	н	7	3.5	4.5	н	2.5	3.5	5.75
Material	Bē	BP	BP	ВР	BKNO ₃	BKNO ₃	BKNO ₃	NC	NC	NC	NC	VIM	MTV	WIW	BMo0 ₃
Test.	35	56	4-8	5-8	38	52	89	010B	900	3-8	7-8	1-8	2-8	8-8	5-8

TABLE B-19
50% FIREPOINT RESULTS:
MASS DISTRIBUTION (9)

	BM _O O ₃	5.75	1	1	ı
		1.10		2.70	
IGNITER MATERIAL	NC	2.38	3.05	3.57	4.30
	BKN	06.	1.80	2.85	2.55
	88	1.65	4.40	4.75	5.75
	Propellant	NACO	N318	N363	LOVA

TABLE B-20

50% FIREPOINT RESULTS: ENERGY DISTRIBUTION (cal)

	BMo0 ₃	2875	1	1	i
21	MTV	1595	2360	3900	4280
IGNITER MATERIAL	NC	2300	2940	3450	4150
	BKN	1350	2700	4280	3825
	요	1130	3010	3250	3933
	Propellant	NACO	N318	N363	LOVA

APPENDIX C

BRUCETON METHOD COMPUTATIONS FOR CALCULATING 50% FIREPOINT

BRUCETON METHOD OF DETERMINING 50% FIRE POINT

DATE MARCH 1982 IGNITER-BLACK POWDER PROPELLANT-NACO

MEAN- 1.65 STD DEV-0.257

	1741 -462 mm	*********
MASS	NUMBER	NUMBER
(G)	OF FIRES	CF NO FIRES
1.20	Ø	2 -
1.50	1	2
1.80	2	1
2.10	1	Ø

TOTAL	4	5

BRUCETON METHOD OF DETERMINING 50% FIRE POINT

DATE MARCH 1982 IGNITER-BKN03 PROPELLANT-NACO

MEAN- 0.90 STD DEV-0.171

MASS (G) Ø.60 Ø.80 1.20	NUMBER OF FIRES Ø 2 2 1	NUMBER OF NO FIRES 1 2 1 0
TOTAL	5	4

BRUCETON METHOD OF DETERMINING 50% FIRE POINT

DATE MARCH 1982 IGNITER-NITROCELLULOSE PROPELLANT-NACO

MEAN- 2.38

STD DEV-0.348

MASS (G) 1.40 1.70 2.00 2.30 2.60 2.92	NUMBER OF FIRES Ø Ø Ø 2 1	NUMBER OF NO FIRES 1 1 3 2 1
TOTAL	4	6

BRUCETON METHOD OF DETERMINING 50% FIRE POINT

DATE JUNE 82 IGNITER-MTV PROPELLANT-NACO

MEAN- 1.10 STD DEV-0.136

MASS	NUMBER	NUMBER
_ (G)	OF FIRES	OF NO FIRES
Ø.8Ø	Ø	2
1.10	2	2
1.40	·· 3	Ø ·
1.70	1	Ø
		*
TOTAL	6	4

BRUCETON METHOD OF DETERMINING 50% FIRE POINT

DATE JUNE 82 IGNITER-BM003 PROPELLANT-NACO

MEAN- 5.75 STD DEV-0.671

MASS (G) 5.00 5.50 6.00 6.50	NUMBER OF FIRES Ø 2 1 2	- (NUMBER OF NO FIRES 3 2 2 2

TOTAL	5	-	7

BRUCETON METHOD OF DETERMINING 50% FIRE POINT

DATE MARCH 82 IGNITER-BLACK POWDER PROPELLANT-NOSOL-318

MEAN- 4.40

STD DEV-1.108

MASS	NUMBER	NUMBER
(G)	OF FIRES	OF NO FIRES
3.50	Ø	1
3.80	2	Ø
4.10	1	Ø
4.40	1	2
4.70	3	1
5.00	1	Ø

TOTAL	8	4

BRUCETON METHOD OF DETERMINING 50% FIRE POINT

DATE MARCH 82
IGNITER-BKNO3
PROPELLANT-NOSOL-318

MEAN- 1.80

STD DEV-0.171

MASS	NUMBER	NUMBER
(G)	OF FIRES	OF NO FIRES
1.50	Ø	1
1.70	2	2
1.90	3	1
2.10	2 -	Ø
2.30	1	Ø
2.50	1	Ø
		
TOTAL	9	4

BRUCETON METHOD OF DETERMINING 50% FIRE POINT

DATE MARCH 82 IGNITER-NITROCELLULOSE PROPELLANT-NOSOL-318

MEAN- 3.05

STD DEV-0.208

MASS (G) 2.30 2.60 2.90 3.20 3.50	NUMBER OF FIRES Ø 1 3	NUMBER OF NO FIRES 1 2 3 1
-		-
TOTAL	5	7

BRUCETON METHOD OF DETERMINING 50% FIRE POINT

DATE JUNE 82 IGNITER-MTV PROPELLANT-NOSOL-318

MEAN- 1.63 STD DEV-0.105

MASS (G) 1.40 1.70	NUMBER OF FIRES Ø 4	NUMBER OF NO FIRES 3 1
2.00 TOTAL	6	

BRUCETON METHOD OF DETERMINING 50% FIRE POINT

DATE APRIL 82 IGNITER-BLACK POWDER PROPELLANT-NOSOL 363

MEAN- 4.75 STD DEV-0.176

MASS (G) 4.30	NUMBER OF FIRES Ø	NUMBER • OF NO FIRES 1
4.60	· 1	4
4.90	4 1	
5.20	1	Ø

TOTAL	6	. 6

BRUCETON METHOD OF DETERMINING 50% FIRE POINT

DATE APRIL 82 IGNITER-BKNO3 PROPELLANT-NOSOL 363

MEAN- 2.85

STD DEV-0.403

MASS (G) 2.40 2.70 3.00 3.30	NUMBER OF FIRES Ø . 2 2 2	NUMBER OF NO FIRES 2 - 1 - 2
	***	-
TOTAL	6	5

BRUCETON METHOD OF DETERMINING 50% FIRE POINT

DATE APRIL 82 IGNITER-NITROCELLULOSE PROPELLANT-NOSOL 363

MEAN- 3.57 STD DEV-0.131

: .

MASS (G) 3.30 3.60 3.90	NUMBER OF FIRES Ø 3 2	NUMBER OF NO FIRES 4 2 0
-		*
TOTAL	5	6

BRUCETON METHOD OF DETERMINING 50% FIRE POINT

DATE JUNE 82 IGNITER-MTV PROPELLANT-NOSOL-363

MEAN- 2.70 STD DEV-0.136

MASS	NUMBER	NUMBER	
(G)	OF FIRES	OF NO FIRES	
2.40	Ø	2	
2.70	3	2	
3.00	. 3	Ø	
•			
TOTAL	6	4	

BRUCETOM METHOD OF DETERMINING SUR FIRE POINT

DATE JULY 82 IGNITER-SP PROPELLANT-LOVA

MEAN- 5.75 STD DEV-1.161

MASS (G) 4.00 5.00 6.00 7.00	NUMBER OF FIRES 0 2 2 2	NUMBER OF NO FIRES 1 1 2	
TOTAL	6	4	

BRUCETON METHOD OF DETERMINING 50% FIRE POINT

> DATE JULY 82 IGNITER-BK* 03 PROPELLANT-LOVA

MEAN- 2.55 STD DEV-0.218

MASS	NUMBER	Number
(G)	OF FIRES	OF NO FIRES
2.00	Ø	. 2
2.50	2	3
3.09	3	Ø
	-	
TOTAL	5	5 .

APPLIED CONFUSTION TUCHNOLOGY

IECD IGNITION AFFECTIVENESS TESTS

BRUCETON METHOD OF DETERMINING 50% FIRE POINT

DATE JULY 82 IGNITER-NC PROPELLANT-LOVA

MEAN- 4.30 STD DEV-6.306

(G) 3.00 4.00 15.00	NUMBER OF FIRES 0 1 4	NUMBER OF NO FIRES 1 4
٠		·
TOTAL	5	5

APPLIED COMBUSTION TECHNOLOGY

IECD IGNITION EFFECTIVENESS TASTS

BRUCETON METHOD OF DETERMINIES 52% FIRE POINT

DATE JULY 32 IGNITER-MTV PROPELLANT-LOVA

MEAN- 2.95 STD DEV-0.218

MASS (G) 2.50 3.00 3.50	State of the state of	NUMBEI OF FIRI Ø 3 2		,	ER FIRES 3 2
	-	•	<u> </u>		
TOTAL	,	5			5 * ,

APPENDIX D

IECD DATA ANALYSIS WORKING CURVES

Data Analysis

Igniter calibration data have been combined with the analytical model to generate a set of working curves to facilitate data reduction of the IECD ignition effectiveness test results. To provide a common basis for presenting the ignition data, it was decided to evaluate the igniter performance at peak conditions, e.g., peak pressure, peak energy flux, etc. These working curves are presented in this section.

Igniter calibration data were generated for EP, BKNO $_3$, NC, and MTV over the range of igniter mass loadings utilized in the IECD ignition effectiveness test series. Peak igniter pressure (P $_{\rm C}$) data and average pressurization rate (dP $_{\rm C}$ /dt) data are presented in Figures D-1 through D-4, respectively for BP, BKNO $_3$, NC, and MTV. Using the igniter analytical model, igniter mass generation rates, $\dot{m}_{\rm g}$, gas phase flow rates, $\dot{m}_{\rm g}$, and condensed phase flow rates, $\dot{m}_{\rm g}$, were generated for each igniter material tested over a β -value range from 0 to 0.8; these results are shown in Figures D-5 through D-9 as a function of igniter pressure. Gas phase and condensed phase energy fluxes as a function of mass flow rate are presented in Figures D-10 and D-11, respectively.

Total energy into the bed and total energy flux into the bed have been expressed in terms of igniter mass loading in Figures D-12 and D-13, respectively. The procedure for using these curves for any particular IECD ignition effectiveness test is as follows:

- 1. Test Number
- 2. Propellant
- 3. Igniter Material Type
- 4. Igniter Material Mass (g)
- 5. Igniter Vent Configuration

- 6. Peak Pressure (P_C) as function of igniter mass: Figures D-1 to D-4
- Gas phase flow rate (\tilde{m}_g) as function of Pc: Figures D-5 to D-8
- Mass generation rate (m_s) as function of Pc: Figures D-5 to D-8
- 9. Determine β from Nasa Lewis Code at P_C
- Condesned phase flow rate (\dot{m}_{CP}) as function 10. of \dot{m}_{S} , β : Figure D-9
- Gas phase energy flux $(\dot{\textbf{E}}_g)$ as function of 11. mg: Figure D-10
- Condensed phase energy flux (Ecp) function 12. of mcp: Figure D-11
- Total energy into bed Etot) as function of 13.
- mass: Figure D-12
 Total energy flux into bed (Et.ot) as 14. function of mass: Figure D-13

D-4

D-7

GNITER PERFORMANCE

IGNITER PERFORNIANCE

D-11

VARNEY 8/82

LGNITER PERFORMANCE

IGNITER PERFORMANCE

__ IGNITER PERFORMANCE

ENERGY INTO BEC

D-14

VARNE: 5/31 ---~ 5113 VENT

Figure D-13 Calculated Igniter Performance Characteristics: Energy Flux into Bed

VERNEY ___