நல்வரவு ସୁସ୍ୱାଗତମ సుస్వాగతం સુસ્વાગતમ সুস্বাগতম ಸುಸ್ವಾಗತ തുസ്വാഗതം সুস্বাগতম ਸਆਗਤਮ सुस्वागतम् *र्वेल ग*रार

Introduction to High-Performance Computing

Sowmya shree N HPC Tech, C-DAC Pune (ssowmya@cdac.in)

Agenda

- □ Introduction to Processor Architecture and Classification
- **Evolution of Processor**
- **■** Evolution of Computing Motherboards
- **□** Data Transfer Methodology
- **□** HPC Systems Architecture
- □ Parallel Architectures & Programming Models
- ☐ Use cases of HPC

Traditional Computer Architecture

Instruction and Data bus based Classification

- Von-Neumann Architecture
 - **Same bus is used**
- Harvard Architecture
 - Different bus is used

Instruction and Data Stream based Classification

- Single Instruction, Single Data (SISD)
- Single Instruction, Multiple Data (SIMD)
- Multiple Instruction, Single Data (MISD)
- Multiple Instruction, Multiple Data (MIMD)

- → Scalar Processor
- → Vector Processor
- → Not realistic
- → Super computer (HPC)

Von-Neumann Architecture

von-Neumann Architecture

- ☐ Comprised of four main components:
 - 1. Memory
 - 2. Control Unit
 - 3. Arithmetic Logic Unit
 - 4. Input/Output
- ☐ Read/write, random access memory is used to store both program instructions and data
- ☐ Program instructions are coded data which tell the computer to do something
- ☐ Data is simply information to be used by the program
- ☐ Control unit fetches instructions/data from memory, decodes the instructions and then *sequentially* coordinates operations to accomplish the programmed task.
- ☐ Arithmetic Unit performs basic arithmetic operations
- ☐ Input/Output is the interface to the human operator

Parallel computers still follow this basic design, just multiplied in units.

Flynn's Classification

Single Instruction Single Data (SISD)

Single Instruction Multiple Data (SIMD)

Single Instruction Multiple Data (SIMD)

Multiple Instructions Single Data (MISD)

Multiple Instructions Multiple Data (MIMD)

Core Computing Unit

Core Computing Unit

Multi Core Processor

Multi Core Cluster Processor

Evolution of Motherboard

Motherboard Architecture

L1 - Cache Memory

L2 - Cache Memory

On Chip L1 & L2 - Cache Memory

Multi-Core with On Chip L1 & L2 Cache Memory

Multiple Memory Controller

On Chip Memory Controller

Multiple On Chip Memory Controller

On Chip Main Memory

High Computing Processor Architecture

Data Transfer Generalized Method

Physical View of HPC Elements

ARM FX Compute Node

Nvidia Co-processor

AMD Co-processor

Advanced View of HPC Architecture

Typical HPC System Architecture

Typical HPC System

Detailed View of Compute Node Architecture

DDR-3 MEMORY (1066/1333/1600Mhz) DDR-3 MEMORY (1066/1333/1600Mhz)

Instruction vs Micro-operation (μOps)

Instruction	μOps	Explanation
ADD EAX, EBX	1	EAX ←EAX + EBX
ADD EAX, [MEM]	2	$Reg \leftarrow [MEM]$ $EAX \leftarrow Reg + EAX$
ADD [MEM], EAX	3	$Reg \leftarrow [MEM]$ $Reg \leftarrow Reg + [MEM]$ $[MEM] \leftarrow Reg$

Note: μOps can be executed out-of-order

HPC Software Stack

	Performance Monitoring	HPCC		IMB/OSU		IOR	HPCG	
HPC Programming Tools	Application Libraries	NetCDF/ HDF/ etc.		Math Libraries		Python Libraries	GNU Scientific Library	
	Development Tools	AOCC		GNU		CUDA 1	CUDA Toolkit/ OpenACC	
Middleware Applications	Communication Libraries	MVAPICH2		Open MPI			PGAS	
	Cluster Monitoring/ Help Desk	Ganglia C-DAC Tools Nag		Nagios	XDMoD	osTicket		
	Resource Management/ Scheduling/ Accounting	SLURM			SLURM Accounting			
and Management Operating	Provisioning	OpenHPC (xCAT)						
	File System	NFS		Local FS (XFS)		Lustre		
	Drivers	OFED		CUDA		Net	Network & Storage Drivers	
Systems	Operating System	Linux (CentOS 7.x)						

Parallel File System

Shared Memory Model

o OpenMP

Shared Memory Model

OpenMP

Distributed Memory Model

Message Passing Interface (MPI)

Shared Memory Model

o OpenMP

Message Passing Interface (MPI)

Hybrid Memory Model

 \circ OpenMP + MPI

HPC Interconnection Network (Topology)

High-speed interconnection networks determine the performance of many communication-heavy HPC applications

HPC Interconnection Network (Topology)

Popular Topologies (Last Two decades)

Topologies Used in Top 10 Supercomputers (2021)

S. No	Supercomputer name	Year	Topology	Interconnect
1	Fugaku(Japan)	2020	6D Torus	Tofu
2	Summit(U.S)	2018	Fat-tree	Infiniband
3	Sierra(U.S)	2017	Fat-tree	Infiniband
4	Sunway TaihuLight	2016	Fat-tree	Sunway
5	Perlmutter	2021	Dragonfly +	Infiniband
6	Selene(U.S)	2020	Fat-tree	Infiniband
7	JUWELS	2020	Dragonfly +	Infiniband
8	HPC5	2020	Fat-tree	Infiniband
9	Frontera(U.S)	2019	Fat-tree	Infiniband
10	Tianhe-2A	2017	2D-Tree	Infiniband

One Vision. One Goal... Advanced Computing for Human Advancement...

Topology vs Scalability

Cost vs Scalability vs Topology

Why High Performance Computing?

Different Scientific & Engineering simulation and modeling drive the need for greater computing power.

- **☐** Accurate medical imaging
- **☐** Fast and accurate web searches
- **☐** Realistic computer games, Entertainment
- **□** Climate modeling
- **☐** Protein folding
- **☐** Artificial Intelligence
- ☐ Energy research
- □ Data analysis
- ____

Why Parallel Computing?

Shortens Completion Time

Large Data Size Problems

Massively Complex Phenomena

One Vision. One Goal... Advanced Computing for Human Advancement...

Who are Using Parallel Computing?

Science and Engineering

- **Atmosphere**, Earth, Environment
- **Physics** applied, nuclear, particle, condensed matter, high pressure, fusion, photonics
- **Bioscience**, Biotechnology, Genetics
- Chemistry, Molecular Sciences
- **Geology**, Seismology
- Mechanical Engineering from prosthetics to spacecraft
- Electrical Engineering, Circuit Design, Microelectronics
- Computer Science, Mathematics
- **Defense**, Weapons

Who are Using Parallel Computing?

Industrial and Commercial

- Big Data, databases, data mining
- Artificial Intelligence (AI)
- Oil exploration
- Web search engines, web based business services
- Medical imaging and diagnosis
- Pharmaceutical design
- Financial and economic modeling
- Management of national and multi-national corporations
- Advanced graphics and virtual reality, particularly in the entertainment industry
- Networked video and multi-media technologies
- Collaborative work environments

Challenges in Single Computing System?

- ☐ Limited Computing capacity, not suitable for complex scientific problems
- ☐ Faster clock speed leads to cost and power/heat limitations
- ☐ Maximum memory size constraint for large size problems
- > Solution: Parallel computing divide up the work among numerous linked systems.

Parallel Computing

- Parallel computing is the simultaneous use of multiple compute resources to solve a computational problem
 - A problem is broken into discrete parts that can be solved concurrently
 - Each part is further broken down to a series of instructions
 - Instructions from each part execute simultaneously on different processors
 - An overall control/coordination mechanism is employed

Execution flow of Parallel Systems

Evolution of Computation Techniques

Evolution of Computation Techniques

Computing Terminologies

Parallel Computing

Distributed Computing

Cluster Computing

Grid Computing

0