UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE ING CIVIL Y MECNICA CARRERA DE ING MECÁNICA ALUMNO: JEFFERSON DIAZ SEMESTRE: Tercero "B" FECHA: 23/10/2017

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

☆

☆

☆☆

☆

☆ ☆

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

☆

☆

☆

☆☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

☆

☆ ☆

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

☆

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

☆ ☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

☆

☆

☆

DEBER # 1 DE ESTADISTICA

EJERCICIO 1

 $\stackrel{\wedge}{\square}$

 $\stackrel{\wedge}{\square}$

☆☆

☆

 $\stackrel{\wedge}{\Longrightarrow}$

 $\frac{1}{2}$

 $\frac{1}{2}$

☆

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\square}$

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\square}$

 $\stackrel{\wedge}{\square}$

☆

 $\stackrel{\wedge}{\square}$

 $\stackrel{\wedge}{\Rightarrow}$

 $\frac{1}{2}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

☆

 $\stackrel{\wedge}{\Longrightarrow}$

☆

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\square}$

 $\stackrel{\wedge}{\square}$

 $\frac{1}{2}$

☆

 $\stackrel{\wedge}{\Longrightarrow}$

☆☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

 $\frac{1}{2}$

 $\stackrel{\wedge}{\square}$

☆

 $\stackrel{\wedge}{\Rightarrow}$

 $\frac{1}{2}$

☆

Pregunta 1

- **♣** 10*X-1
- 0 [1] 99
- **♣** X*X-1
 - o [1] 99
- 4 abs(X*X)-abs(9-X)○ [1] 99
- ↓ 11*X-X+1
 - o [1] 101

Pregunta 2

x=c (1300, 1400, 1500, 2000,3000)

- + sum(x)
 - o [1] 9200
- + x[c(4)]
 - o [1] 2000
- + x[c(5)]-x[c(1)]
 - o [1] 1700
- \leftarrow cummin(x)>10
 - o [1] TRUE TRUE TRUE TRUE TRUE
- + x[c(2)]-x[c(1)]
 - o [1] 100
 - $\circ x[c(3)]-x[c(2)]$
 - 0 [1] 100
- \downarrow cumsum(x)<1000
 - o [1] FALSE FALSE FALSE FALSE FALSE

EJERCICIO 2

Pregunta 3

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE ING CIVIL Y MECNICA CARRERA DE ING MECÁNICA

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆☆

☆

☆

☆

☆ ☆

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

☆

☆

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆ ☆

☆

☆

☆

☆

☆

☆

☆

☆☆

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆☆

☆

☆

☆

☆

☆☆

☆

☆

☆

☆

☆

☆

☆

ALUMNO: JEFFERSON DIAZ

SEMESTRE: Tercero "B"

FECHA: 23/10/2017

- ♣ flights %>% filter(month=='1') %>%
 - o View()
- flights %>% filter(dep_delay>=1) %>%
 - o View()
- **↓** flights %>% filter(hour==24, hour==5) %>%
 - o View()
- flights %>% filter(arr_delay==2*dep_delay) %>%
 - o View()

Pregunta 4

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

☆☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

 $\stackrel{\wedge}{\square}$

 $\frac{1}{2}$

 $\frac{1}{2}$

☆

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\square}$

 $\frac{1}{2}$

 $\stackrel{\wedge}{\Longrightarrow}$

☆

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\square}$

☆

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

☆

 $\stackrel{\wedge}{\Longrightarrow}$

☆

 $\stackrel{\wedge}{\Longrightarrow}$

☆

☆

 $\stackrel{\wedge}{\Longrightarrow}$

☆

 $\stackrel{\wedge}{\Longrightarrow}$

 $\frac{1}{2}$

☆

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\square}$

 $\stackrel{\wedge}{\square}$

 $\stackrel{\wedge}{\square}$

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

 $\frac{1}{2}$

☆

 $\stackrel{\wedge}{\Rightarrow}$

 $\frac{1}{2}$

☆

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

☆

- flights %>% select(dep_delay)
- flights %>% select(arr_delay, -starts_with("-"))

Pregunta 5

- flights %>% arrange(dep_time, year, month, day) %>%
 - o View()

Pregunta 6

- flights %>% filter(air_time, distance) %>%
 - o mutate(Velocidad=air_time*distance, air_time=air_time/60) %>%
 - o View()

Pregunta 7

- flights %>% filter(! is.na(dep_delay)) Filtra los valores de elementos en los retrasos de salida que se están perdiendo.
- ≠ group_by(date, hour) Indica los valores agrupados entre la fecha y la hora.
- **↓** summarise(delay=mean(dep_delay, n=n())) Hace un resumen del promedio de los retrasos.
- \blacksquare filter(n > 10) En esta función apareció error. Error in n > 10 : comparison (6) is possible only for atomic and list types

Pregunta 8

- flights %>% group_by(dest, arr_delay) %>%
 - o summarize(mean(arr_delay, na.rm=TRUE)) %>%
 - o View()

EJERCICIO 3

Pregunta 9

♣ TODO=alldata

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE ING CIVIL Y MECNICA CARRERA DE ING MECÁNICA ALUMNO: JEFFERSON DIAZ

☆

☆

☆

☆

☆

☆ ☆

☆

☆

☆

☆

☆

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆☆

☆

☆

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆ ☆

☆

☆

☆

☆

☆

☆

☆

☆☆

☆

☆

☆

☆☆

☆

☆

☆

☆

☆

☆

☆ ☆

☆

☆

☆

☆

☆

SEMESTRE: Tercero "B"

FECHA: 23/10/2017

- o View(TODO)
- Paises=countries_of_the_world
 - View(Paises)
- **♣** TODO\$'pop'

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

☆

 $\stackrel{\wedge}{\cancel{\sim}}$

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

☆

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

☆☆

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\sim}$

 $\stackrel{\wedge}{\boxtimes}$

 $\stackrel{\wedge}{\square}$

☆

 $\stackrel{\wedge}{\cancel{\sim}}$

☆

 $\stackrel{\wedge}{\Rightarrow}$

 $\frac{4}{4}$

☆

 $\stackrel{\wedge}{\square}$

☆

☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

 $\stackrel{\wedge}{\Longrightarrow}$

☆☆

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

☆☆

☆

 $\stackrel{\wedge}{\boxtimes}$

 $\frac{1}{2}$

 $\stackrel{\wedge}{\sim}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

- o PoblacionTodo=TODO %>% select(Poblacion='pop') %>%
- o mutate(Poblacion=gsub(".*\$", "",Poblacion)) %>%
- o group_by(Poblacion) %>%
- o summarize(PoblacionTotal=n())
- View(PoblacionTodo)
- ♣ PoblacionPaises=Paises %>% select(Poblacion=`X__2`,
 - o Continente=`X_1`) %>%
 - o filter(Continente=="LATIN AMER. & CARIB") %>%
 - o group_by(Poblacion)
 - View(PoblacionPaises)
- dim(PoblacionPaises)
 - 0 [1] 45 2
 - o dim(PoblacionTodo)
 - 0 [1] 2460 2
- ♣ PaisesTodo=inner join(PoblacionPaises, PoblacionTodo, by="Poblacion")
 - View(PaisesTodo)
 - o La tabla sale error porque no hay datos válidos para SUDAMERICA.
- ♣ Podemos calcularlo pero a mi parecer ninguna de las 2 tablas posee datos de antigüedad.
- ♣ Paises\$X 6
 - o PatronMigratorio=Paises %>% select(Migracion='X 6') %>%

- o mutate(Migracion=gsub(" .*\$", "",Migracion)) %>%
- o group by(Migracion) %>%
- o summarise(mean(Migracion, na.rm=TRUE)) %>%
- o View()

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE ING CIVIL Y MECNICA CARRERA DE ING MECÁNICA ALUMNO: JEFFERSON DIAZ SEMESTRE: Tercero "B"

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

☆☆

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

☆☆

 $\stackrel{\wedge}{\Rightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

☆

 $\stackrel{\wedge}{\simeq}$

 $\stackrel{\wedge}{\boxtimes}$

 $\stackrel{\wedge}{\Rightarrow}$

☆☆

☆

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\frac{1}{2}$

 $\stackrel{\wedge}{\sim}$

☆☆

 $\stackrel{\wedge}{\Rightarrow}$

 $\frac{4}{4}$

☆☆

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\sim}$

☆☆

 $\stackrel{\wedge}{\Longrightarrow}$

☆☆

 $\stackrel{\wedge}{\Longrightarrow}$

☆☆

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\boxtimes}$

 $\stackrel{\wedge}{\Longrightarrow}$

☆☆

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\sim}$

☆

☆☆

FECHA: 23/10/2017

 Tenemos la lista de datos de migración pero no pude calcular el patrón migr atorio ya que el pasar de los años aumenta o disminuye dependiendo de la ép oca. ☆

 $\stackrel{\wedge}{\sim}$

☆

☆

☆

☆☆

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\square}$

☆

 $\stackrel{\wedge}{\Longrightarrow}$

☆☆

 $\stackrel{\wedge}{\Longrightarrow}$

☆☆

☆

☆

 $\stackrel{\wedge}{\Longrightarrow}$

☆☆

 $\stackrel{\wedge}{\square}$

☆

☆

☆

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\Longrightarrow}$

☆

☆ ☆

☆☆

 $\stackrel{\wedge}{\simeq}$

☆

☆☆

☆☆

 $\stackrel{\wedge}{\boxtimes}$

☆

☆☆

 $\stackrel{\wedge}{\Longrightarrow}$

☆

☆☆

 $\stackrel{\wedge}{\Rightarrow}$

☆

☆

☆

☆ ☆