Gittins Indices for Bayesian Optimization: Insights from Pandora's Box

Qian Xie (Cornell ORIE)

Joint work with Raul Astudillo, Peter Frazier, Ziv Scully, and Alexander Terenin

NYC Ops Day'24 Joint PhD Colloquium

Goal: optimize expensive-to-evaluate black-box function

∈ decision-making under uncertainty

Goal: optimize expensive-to-evaluate black-box function

∈ decision-making under uncertainty

Applications:

Hyperparameter tuning
Drug discovery
Control design

Goal: optimize expensive-to-evaluate black-box function

∈ decision-making under uncertainty

Applications:

Hyperparameter tuning
Drug discovery
Control design

Goal: optimize expensive-to-evaluate black-box function

Applications:

Hyperparameter tuning
Drug discovery
Control design

x: hyperparameter/configuration

mean: prediction

variance: confidence/uncertainty

Objective: find global optimum $x^* = \operatorname{argmax}_{x \in \mathcal{X}} f(x)$

Decision: evaluate a set of points

Goal: optimize expensive-toevaluate black-box function

Applications:

Hyperparameter tuning Drug discovery Control design

x: hyperparameter/configuration

Objective: find global optimum $x^* = \operatorname{argmax}_{x \in \mathcal{X}} f(x)$

Decision: evaluate a set of points

Goal: optimize expensive-toevaluate black-box function

An unknown random function $f: \mathcal{X} \to \mathbb{R}$ drawn from a Gaussian $_{0.0}$ process prior

Applications:

Hyperparameter tuning
Drug discovery
Control design

x: hyperparameter/configuration

Decision: adaptively evaluate a set of points

$$x_1, x_2, \dots, x_T \in \mathcal{X}$$

T: time budget

Goal: optimize expensive-toevaluate black-box function

0.4

Applications:

Hyperparameter tuning Drug discovery Control design

x: hyperparameter/configuration

Objective: optimize best observed value at time *T*

0.0

$$\max_{\text{policy}} \mathbb{E} \max_{t=1,2,\dots,T} f(x_t)$$

Decision: adaptively evaluate a set of points

1.0

0.8

$$x_1, x_2, \dots, x_T \in \mathcal{X}$$

T: time budget

⇒ Optimal policy unknown!

Continuous

Correlated

Correlated

Correlated

21

budget

budget max (best observed – costs) max best observed Continuous Discrete Correlated Independent Lagrangian relaxation Hard budget constraint Cost per sample

costs

Optimal policy: Gittins index [Weitzman'79]

- How to translate?
- Is Pandora's Box Gittins index (PBGI) good?

- Develop PBGI policy for Bayesian optimization
- Is Pandora's Box Gittins index (PBGI) good?

- Develop PBGI policy for Bayesian optimization
- Show performance against baselines on synthetic & empirical experiments

- Develop PBGI policy for Bayesian optimization
- Show performance against baselines on synthetic & empirical experiments

How is our PBGI policy different from baselines?

mean: prediction

variance: confidence/uncertainty

Trade-off between

- exploitation (high mean) and
- exploration (high uncertainty)

D: observed data

y_{best}: current best observed value

mean: prediction

variance: confidence/uncertainty

Trade-off between

- exploitation (high mean) and
- exploration (high uncertainty)

 $EI_{f|D}(x;y) = \mathbb{E}[((f|D)(x) - y)^+]$ D: observed data y_{best} : current best

y_{best}: current best observed value

mean: prediction

variance: confidence/uncertainty

Trade-off between

- exploitation (high mean) and
- exploration (high uncertainty)

 $EI_{f|D}(x;y) = \mathbb{E}[((f|D)(x) - y)^+]$ D: observed data y_{best} : current best

y_{best}: current best observed value

Other heuristics:

simple

- Upper Confidence Bound
- Thompson Sampling (TS)
- Predictive Entropy Search

slow

- Knowledge Gradient
- Multi-step Lookahead EI

Expected improvement

$$\mathbb{E}I_{f|D}(x;y) = \mathbb{E}[((f|D)(x) - y)^+]$$

mean: prediction

variance: confidence/uncertainty

Trade-off between

- exploitation (high mean) and
- exploration (high uncertainty)

D: observed data

y_{best}: current best observed value

New One-step Heuristic: PBGI

Other heuristics:

- Upper Confidence Bound
- Thompson Sampling (TS)
- Knowledge Gradient
- Predictive Entropy Search
- Multi-step Lookahead EI

Pandora's box Gittins index

 $\alpha^*(x)$: Gittins index function

PBGI policy: evaluate $\operatorname{argmax}_{x} \alpha^{*}(x)$

New One-step Heuristic: PBGI

Other heuristics:

- Upper Confidence Bound
- Thompson Sampling (TS)
- Knowledge Gradient
- Predictive Entropy Search
- Multi-step Lookahead EI

Pandora's box

λ: cost-per-sample (Lagrange multiplier)

$$\operatorname{EI}_{f|D}(x;y) = \mathbb{E}[((f|D)(x) - y)^{+}] \underset{\alpha^{*}(x): \text{ solution to } \operatorname{EI}_{f|D}(x;\alpha^{*}(x)) = \lambda$$

PBGI policy: evaluate argmax_x $\alpha^*(x)$

Experiment Results: PBGI vs EI vs TS

• Propose easy-to-compute PBGI policy for Bayesian optimization

- Propose easy-to-compute PBGI policy for Bayesian optimization
- Show the effectiveness of PBGI on synthetic & empirical experiments particularly on medium-high dimensions and relatively-large domains!

- Propose easy-to-compute PBGI policy for Bayesian optimization
- Show the effectiveness of PBGI on synthetic & empirical experiments
- Extend to Bayesian optimization with heterogeneous evaluation costs

Heterogeneous-cost Experiment Results

- Show the effectiveness of PBGI on synthetic & empirical experiments
- Extend to Bayesian optimization with heterogeneous evaluation costs

- Propose easy-to-compute PBGI policy for Bayesian optimization
- Show the effectiveness of PBGI on synthetic & empirical experiments
- Extend to Bayesian optimization with heterogeneous evaluation costs
- Open door for complex BO (freeze-thaw, multi-fidelity, function network, etc.)

