集積回路設計

5. スタティック論理回路

一色剛

工学院情報通信系

isshiki@ict.e.titech.ac.jp

5. スタティック論理回路

- MOSトランジスタの論理の転送
 - nMOSトランジスタの論理「0」「1」の転送特性
- CMOSスタティック論理回路の構造
 - 論理とスイッチ構造
 - · 論理式からCMOS回路構造の導出
 - · CMOS回路構造とトランジスタ数
- CMOSスタティック論理回路(CMOSゲート)の遅延
 - · RC等価回路による遅延見積り
 - · CMOSゲートの線形遅延モデル

nMOSトランジスタの論理の転送

nMOSトランジスタの論理「1」の転送 (nMOSプルアップ動作)

- *ドレイン・ソースの関係: $V_{out} \leq V_{DD}$ なので、 V_{out} 側がソース
- * 動作領域: $V_{DS} = V_{GS} = V_{DD} V_{out} \rightarrow V_{GS} V_{Tn} < V_{DS}$ なので、常に飽和領域で動作する

$$V_{out} = (V_{DD} - V_{Tn}) \left(1 - \frac{2C_L}{2C_L - \beta_n (V_{DD} - V_{Tn})t} \right)$$

nMOSトランジスタの論理「1」の転送 (nMOSプルアップ動作)

$$I_{out} = C_L \frac{dV_{out}}{dt} = \beta_n \frac{(V_{DD} - V_{Tn} - V_{out})^2}{2}$$

$$\frac{dV_{out}}{dt} = \beta_n \frac{(V_{DD} - V_{Tn} - V_{out})^2}{2C_L}$$

$$\frac{dV_{out}}{dt} = \beta_n \frac{\left(V_{DD} - V_{Tn} - V_{out}\right)^2}{2C_L}$$

$$\frac{dt}{dV_{out}} = \frac{2C_L}{\beta_n (V_{DD} - V_{Tn} - V_{out})^2}$$

A:積分定数

$$t = \int \frac{dt}{dV_{out}} \cdot dV_{out} = \int \frac{2C_L}{\beta_n (V_{DD} - V_{Tn} - V_{out})^2} \cdot dV_{out} = \frac{-2C_L}{\beta_n (V_{DD} - V_{Tn} - V_{out})} + A$$

$$A = \frac{2C_L}{\beta_n \left(V_{DD} - V_{Tn} \right)}$$

$$t = 0$$
 のとき $V_{out} = 0$ なので

$$t=0$$
 のとき $V_{out}=0$ なので

$$V_{out} = \left(V_{DD} - V_{Tn}\right) \left(1 - \frac{2C_L}{2C_L - \beta_n \left(V_{DD} - V_{Tn}\right)t}\right) V_{out} = V_{DD} - V_{Tn}$$

$$t = \infty$$
 のとき
 $V_{out} = V_{DD} - V_{Tn}$

MOSトランジスタの論理の転送

CMOS: nMOSは論理「0」を駆動し、pMOSは論理「1」を駆動する論理構造

駆動条件(スイッチング条件)と駆動論理が反転 -> 負論理(negative unate)

CMOSスタティック論理回路の構造

- nMOSブロック : $F(x_1, x_2, ..., x_N) = 1$ の時、出力とGNDを導通
- pMOSブロック : $\overline{F(x_1, x_2, ..., x_N)}$ = 1の時、出力と V_{DD} を導通 $(F(x_1, x_2, ..., x_N)$ = 0の時、出力と V_{DD} を導通)
- CMOSスタティック論理回路: nMOSブロック・pMOSブロックがそれぞれ相補的なスイッチとして論理関数を実現

論理とスイッチ構造

■ 論理積(AND): $F(x_1, x_2) = x_1 \cdot x_2$, $\overline{F(x_1, x_2)} = \overline{x_1 \cdot x_2} = \overline{x_1} + \overline{x_2}$

■ 論理和(OR): $F(x_1, x_2) = x_1 + x_2$, $\overline{F(x_1, x_2)} = \overline{x_1 + x_2} = \overline{x_1} \cdot \overline{x_2}$

NAND回路 · NOR回路

NAND:

NOR:

論理式からCMOS回路構造の導出 (1)

(例1) $F(x_1, x_2, x_3, x_4) = x_1 \cdot x_2 + x_3 + x_4$

1) 論理式の分解

$$\Leftrightarrow Y_1 = x_1 \cdot x_2$$

$$Y_2 = Y_1 + X_3$$

$$Y_3 = Y_2 + x_4 = Y_1 + x_3 + x_4$$

2) 各論理式をスイッチ構造へ変換

 $nMOS: Y_3 = Y_1 + x_3 + x_4$

論理式からCMOS回路構造の導出 (2)

(例1) $F(x_1, x_2, x_3, x_4) = x_1 \cdot x_2 + x_3 + x_4$ $\Leftrightarrow Y_1 = x_1 \cdot x_2$

$$Y_2 = Y_1 + X_3$$

$$Y_3 = Y_2 + x_4 = Y_1 + x_3 + x_4$$

論理式からCMOS回路構造の導出 (3)

論理式からCMOS回路構造の導出 (4)

$$\overline{Y_1} = \overline{x_2} + \overline{x_1}$$

$$\overline{Y_2} = \overline{x_3} \cdot \overline{Y_1}$$

$$\overline{Y_3} = \overline{x_4} + \overline{Y_2}$$

$$\overline{Y_4} = \overline{x_5} \cdot \overline{Y_3}$$

$$Y_1 = x_2 \cdot x_1$$

 $Y_2 = x_3 + Y_1$
 $Y_3 = x_4 \cdot Y_2$
 $Y_4 = x_5 + Y_3$

CMOS回路構造とトランジスタ数

- リテラル数:論理式に現れる変数の個数(NOTは無視)
 - ❖ x₁ x₂ + x₃ + x₄ → リテラル数 = 4
- 1つのCMOSゲートで実現した場合:
 - ❖ トランジスタ数 = リテラル数 * 2(CMOSインバータの数は無視)
 - ❖ 例: $\overline{x_1 \cdot x_2 + x_3 + x_4}$ → 4 * 2 = 8 トランジスタ

❖ 例: $\overline{X_1 \cdot X_2 + X_3 + X_4}$ → $(4-1) \cdot 4 = 12$ トランジスタ

$$y = \overline{x_1 \cdot x_2 + (x_3 + x_4)} = \overline{x_1 \cdot x_2} \cdot (\overline{x_3 + x_4})$$

$$\overline{z_1 = \overline{x_1 \cdot x_2}} \quad \overline{z_2 = \overline{x_3 + x_4}} \quad \overline{z_3 = \overline{z_1 \cdot z_2}} \quad \overline{z_4 = \overline{z_3}}$$

NANDやNORは 4トランジスタ

- ☆ 論理式をまとめて一つのCMOSゲートに纏めた方が少ないトランジスタで実現できる
- **❖ 複雑な論理式を一つのCMOSゲートに纏めた時の問題は?**

CMOSスタティック論理回路の遅延 (1)

CMOSスタティック論理回路の遅延 (2)

■ 複数入力ゲートにおける論理遅延:

- ❖ 1つの入力の変化で出力が変化する 遷移だけを考慮する
- プルアップ動作:3入力全て「1」の状態からある入力が1→0に遷移
- プルダウン動作: 2入力が「1」に固定 のまま、3つ目の入力が0→1に遷移
- *C*₁, *C*₂, *C*₃を無視した場合:
 - ightharpoonup プルアップ遅延: $t_{pH} = R_p C_L$
 - ❖ プルダウン遅延: $t_{pL} = 3R_nC_L$
- C₁, C₂, C₃を考慮した場合:
 - ❖ C₁, C₂, C₃の充放電のため遅延は増加
 - ❖ 変化する入力によって遅延が異なる

RC回路網のElmore近似

$$\begin{aligned} & (V_0 - V_A) = (I_A + I_B + I_C)R_A \\ & (V_A - V_B) = (I_B + I_C)R_B \end{aligned}$$
$$I_A = C_A - C_A -$$

して近似

け複雑になる

- ◆ 電流 I₄の経路の時定数: R₄C₄
- ◆ 電流 I_Rの経路の時定数: (R_A + R_B)C_B
- ❖ 電流 I_Cの経路の時定数: (R_A + R_B + R_C)C_C
- RC回路網の近似時定数(Elmore近似):

$$R_A C_A + (R_A + R_B) C_B + (R_A + R_B + R_C) C_C$$

K段のRC回路網の時定数: RC⋅K(K+1) / 2

各容量を個別に充電

する時定数の総和と

Elmore近似によるNAND3の遅延解析 (1)

■ *x*₁の遷移による *V_{out}* の遷移遅延:

- ❖ 他の入力: x₂ = x₃ = 1
- ***** $V_2 = V_3 = 0: C_2$, C_3 は無視できる
- ❖ プルアップ遅延:

$$t_{pH} = R_p(C_1 + C_L)$$

❖ プルダウン遅延:

$$t_{pL} = 3R_n(C_1 + C_L)$$

Elmore近似によるNAND3の遅延解析 (2)

■ *x*₂の遷移による *V_{out}* の遷移遅延:

- ❖ 他の入力: x₁ = x₃ = 1
- ❖ $V_3 = 0$: C_3 は無視できる
- ☆ プルアップ遅延:

$$t_{pH} = R_p(C_1 + C_L) + (R_p + R_n) C_2$$

❖ プルダウン遅延:

$$t_{pL} = 3R_n(C_1 + C_L) + 2R_nC_2$$

実際には V_{DD} - V_{Tn}ま でしか上が らない

Elmore近似によるNAND3の遅延解析 (3)

CMOSゲートの線形遅延モデル (1)

■ 線形遅延モデル: $t_p = t_{p0} + t_R \cdot C_L$

❖ 出力負荷: C_t

lacktriangle 内部遅延 $(t_{p0}):C_L=0$ とした時の遅延

❖ 出力遅延係数(t_R):単位容量当りの遅延

入力 遷移	出力 遷移	内部遅延(t _{p0})	出力遅延 係数(<i>t_R</i>)
$x_1: 1 \rightarrow 0$	0→1	R_pC_1	R_p
$x_1: 0 \rightarrow 1$	1→0	$3R_nC_1$	$3R_n$
$x_2: 1 \rightarrow 0$	0→1	$R_p(C_1+C_2)+R_nC_2$	R_p
$x_2: 0 \rightarrow 1$	1→0	$3R_nC_1 + 2R_nC_2$	$3R_n$
$x_3: 1 \rightarrow 0$	0→1	$R_pC_1 + (R_p + R_n) C_2 + (R_p + 2R_n) C_3$	R_p
$x_3: 0 \rightarrow 1$	1→0	$3R_nC_1 + 2R_nC_2 + R_nC_3$	$3R_n$

CMOSゲートの線形遅延モデル (2)

簡単のため、以下を仮定:

- ❖ 全てのnMOS・pMOSゲート容量(C_G)とソース・ドレイン容量(C_D , C_S)はそれぞれ同一

- ❖ nMOS·pMOSサイズはそれぞれ同一: R_p, R_n

出力がN個のCMOSインバータ (INVゲート)入力に接続する場合:

CMOSゲートの線形遅延モデル (3)

*	$C_1 = 4C_0$
*	$C_2 = 2C_0$
*	$C_3 = 2C_0$

N個のINVゲート容量:

	入力 遷移	出力 遷移	内部遅延 (t_{p0})	出力遅延 (<i>N * INV</i>)
	1→0	0→1	$4R_pC_0$	$4N \cdot R_p C_0$
<i>X</i> ₁	0→1	1→0	$12R_nC_0$	$12N \cdot R_n C_0$
	1→0	0→1	$(6R_p + 2R_n) C_0$	$4N \cdot R_p C_0$
<i>X</i> ₂	0→1	1→0	$16R_nC_0$	$12N \cdot R_n C_0$
	1→0	0→1	$(8R_p + 6R_n) C_0$	$4N \cdot R_p C_0$
<i>X</i> ₃	0→1	1→0	$18R_nC_0$	$12N \cdot R_n C_0$

- ❖ 内部遅延:各入力によって異なる
- → 出力から遠いほど大きくなる

→ K段のRC回路網の時定数: RC·K(K+1) / 2

複雑なCMOSゲートの遅延解析 (1)

(例2)
$$y = \overline{x_1 \cdot (\overline{x_2} \cdot x_3 + x_2 \cdot x_4)}$$

遷移入力によって出力が変化 する条件

遷移入力	他の入力条件
<i>X</i> ₁	$\overline{x}_2 \cdot x_3 + x_2 \cdot x_4 = 1$
<i>X</i> ₂	$x_1 \cdot (x_3 \oplus x_4) = 1$
<i>X</i> ₃	$x_1 \cdot \overline{x_2} = 1$
<i>X</i> ₄	$x_1 \cdot x_2 = 1$

 $x_3 = 1, x_4 = 0: x_2$ に関して「正」 \rightarrow 入力と出力の遷移方向が同一

 $x_3 = 0, x_4 = 1: x_2$ に関して「負」 \rightarrow 入力と出力の遷移方向が反転

C₀: ソース・ドレイン容量 2C₀: ゲート容量 (Tr 1個当り)

 $C_L = 4NC_0 (N: INV個数)$

24

まとめ

- MOSトランジスタの論理の転送
 - nMOSは論理「0」を駆動し、pMOSは論理「1」を駆動する
- CMOSスタティック論理回路の構造
 - ・ 論理とスイッチ構造:論理式の分解、各論理式のスイッチ構造変換
 - CMOS回路構造とトランジスタ数:
 - 1つのCMOSゲートで論理関数を直接実現: (リテラル数) * 2
 - 2入力ゲートに分解:(リテラル数-1)*4
- CMOSスタティック論理回路(CMOSゲート)の遅延
 - RC回路網のElmore近似 : N段のRC時定数 : RC•N(N + 1) / 2
 - → 直列接続のトランジスタ段数の2乗に比例して内部遅延が増加
 - → 1つのCMOSゲートで実現する論理関数が複雑すぎるとCMOSゲートの内部遅延が悪化
 - CMOSゲートの線形遅延モデル: 出力から遠い入力ほど内部遅延が増える

【課題5】

1. 以下の論理関数を実現するスタティック論理回路を示せ。

a.
$$y = x_1 \cdot x_2 + x_3 \cdot x_4$$

b.
$$y = x_1 + x_2 + x_3 \cdot x_4$$

$$c. y = x_1 + x_2 \cdot x_3 \cdot x_4$$

下図は4入力NANDスタティック論理回路を示す。ここで出力yには $4NC_0$ の出 2. 力負荷容量が接続し、スタティック論理回路の内部寄生容量(nMOS・pMOSト ランジスタのドレイン容量やソース容量)は、図に示す通りであるとする。また、 nMOS・pMOSトランジスタの等価抵抗をそれぞれRnとRpとする。このとき、各 入力 (x_1, x_2, x_3, x_4) からの出力に対するプルアップ遅延 t_{pH} とプルダウン遅

延 t_{pL} をそれぞれ求めよ。

提出〆切:5/21(木)17時 (ただし〆切後も受け付けます)

(3)4入力NANDスタティック論理回路

複雑なCMOSゲートの遅延解析 (3)

遷移入力	他の入力条件
<i>x</i> ₁	$\overline{x}_2 \cdot x_3 + x_2 \cdot x_4 = 1$

$$x_2 = 0$$

 $x_3 = 1$ $= 1$ $= 1$ $= 1$ $= 1$ $= 1$

プルアップ遅延: $4R_pC_0+4N\cdot R_pC_0$

プルダウン遅延: $12R_nC_0+12N\cdot R_nC_0$

複雑なCMOSゲートの遅延解析 (4)

遷移入力	他の入力条件
<i>X</i> ₃	$x_1 \cdot \overline{x_2} = 1$

 $x_1 = 1$ $x_2 = 0$

プルアップ遅延が最大 になる条件: $x_4 = 1$

プルアップ遅延: $(18R_p + 7R_n)C_0 + 8N \cdot R_pC_0$

プルダウン遅延: $20R_nC_0+12N\cdot R_nC_0$

複雑なCMOSゲートの遅延解析 (5)

遷移入力	他の入力条件
<i>X</i> ₄	$x_1 \cdot x_2 = 1$

 $x_1 = 1$ $x_2 = 1$

プルアップ遅延が最大 になる条件: $x_3 = 1$

プルアップ遅延: $(22R_p+7R_n)C_0+8N\cdot R_pC_0$

プルダウン遅延: $(4R_p + 32R_n)C_0 + 12N \cdot R_nC_0$

複雑なCMOSゲートの遅延解析 (6)

遷移入力	他の入力条件
<i>X</i> ₂	$x_1 \cdot (x_3 \oplus x_4) = 1$

 $x_3 = 0, x_4 = 1: x_2$ に関して「負」 \rightarrow 入力と出力の遷移方向が反転

プルアップ遅延: $(22R_p+7R_n)C_0+8N\cdot R_pC_0$

プルダウン遅延: $(4R_p + 30R_n)C_0 + 12N \cdot R_nC_0$

複雑なCMOSゲートの遅延解析 (7)

複雑なCMOSゲートの遅延解析 (2)

(例2)
$$y = \overline{x_1 \cdot (\overline{x_2} \cdot x_3 + x_2 \cdot x_4)}$$

