

En algoritmisk tilgang til arbitrage-prisfastsættelse i fler-periode-modeller. Eller: Standardeksamensopgaven

> Matematisk Finansiering 1 Efterår 2020

> > 29. september

Planen: Flerperiodeanalyse

I sidste uge så vi på arbitrage-fri optionsprisfastsættelse i 1-periode-modeller med usikkerhed. Den slags man aldrig helt færdig med.

Men vi går videre idag:

- Afsnit 5.1 om fler-periode-modeller; forstår man "flere = 2"-tilfældet, så er man godt hjulpet.
- En meget typisk eksamensopgave; opgave 1, MatFin1, november 2018

Fler-periode-modeller

Komplethed kræver # aktiver \geq # tilstande.

Over længere tidshorisonter er det urealistisk at modellere aktiekurser med kun to tilstande.

Sic transit gloria mundi? (Eller: Øv ...?)

Nej! Stykker vi 1-periode-modeller sammen og handler dynamisk, så kan vores replikationsargumenter genbruges. Selv den mest komplicerede fler-periode-model er bygget op af 1-periode-delmodeller.

Forskellige grafiske repræsentationer

d	A	В	C	D	E	F	G	Н
	S		110,30	div		0	r	0,02
		105,67	104,00		3	0		
	100	90	73,50	0	2	0		
	q-op'er		1a	Risiko-neutrale ssh' (g'er t.v.) for 1-periode-delmodeller				
		0,60		bestemmes fra $S(t) = E_t^Q ((S(t+1)+div(t+1))/(1+r)), dvs.$				
	0.00	0.00			1 17 -	ar ir	7 de	

Afsnit 5.1: "Flere = 2"

Selv-finansierende (handels)strategier/porteføljer: Ingen penge skydes ind eller trækkes ud undervejs.

Replikation: Man arbejder sig rekursivt baglæns igennem træet (eller gitteret).

Vi har ofte ikke brug for at løse ligningsystemer, men bruger den fundamentale prisfastsættelsesregel (eller -formel eller -repræsentation):

$$\operatorname{pris}(t) = \frac{1}{R} E \overline{\frac{\mathbf{Q}}{|\mathbf{t}|}} (\operatorname{pris}(t+1)).$$

Her er det vigtigt/praktisk at alt er lokalt, dvs. kun t og t+1 optræder.

Og: Ligningen gælder for alle aktiver.

For den rene repræsenterer boksene ting, vi først vil definere præcist og analysere stringent senere (det' resten af kapitel 5):

- Betinget middelværdi (eller: forventning)
- Skift til et ækvivalent martingalmål

Men nu fokuseres på anvendelser; en algoritmisk synvinkel.

Standardeksamensopgaven

Case in point: MatFin1, november 2018, opgave 1; $\frac{6}{12}$ af sættet.

Struktur & "kodeord":

- Ofte et startspørgsmål til fundamental forståelse; Ved du hvad en afkastrate er? Kan du regne en varians ud?
- "Nok at tjekke for alle 1-periode-modeller". Og/men de behøver ikke være ens.

- Udregn en (eller flere) priser kan også være for amerikanske optioner; nemmere gjort end sagt (beskrevet i noternes afsnit 6.5) .
- Bestem (som regel: initial sammensætning af) replikerende portefølje(r). (Julelege: Dividender, tre tilstande, brug option, ...)
- Bestem arbitragefrit prisinterval via lineær programmering med Solver som beskrevet i afsnit 2.7.2. (Dette får nogle gange sin egen opgave.)

Det kommer hvert år til eksamen. Også oktober 2020. You do the math.