Ho Chi Minh City National University University of Information Technology Computer Engineering

REPORT

DIGITAL LOGIC DESIGN

LogicCore-9: A Verilog-Based Finite State Machine for Sequential Arithmetic and Bitwise Operations on Signed Operands

Class: CE118.N22.MTCL-EN

Lecturers: Hồ Ngọc Diễm

Student: Trương Thiên Quý - 23521321

Ho Chi Minh City, 05/2024

Content

Version 1 (Register sharing)	3 - 8
Datapath	4,5,6
Controller	6,7
Waveform	7,8
Version 2 (Register sharing)	8 - 13
Datapath	9, 10,11
Controller	11,12
Waveform	12,13
Version 3 (Functional unit sharing+ REG sharing)	14 - 19
Datapath	15,16,17
Controller	17,18
Waveform	18,19
Version 4 (Functional unit sharing + Bus sharing + REG sharing)	19-24
Datapath	20,21,22
Controller	22,23
Waveform	23,24
Version 5 (Datapath pineline)	24-39
Datapath	25-30
Controller	30-38
Waveform	38–39
Version 6 (Functional unit pineline)	39–57
Datapath	40-46
Controller	46-55
Waveform	55-57
Version 7(Datapath pineline + Functional unit pineline)	58-76
Datapath	
Controller	
Waveform	

I. Version 1:

Circuit (includes controller and datapath):

1. Datapath:

- Variable groups:
 - O R1 = {In1, T1, X}
 - o R2 = {In2, T2, Y, T4, T6}
 - \circ R3 = {T3, T5}

Each group connect with 1 register

• Absolute block (ABS): Use 1 Abs/Sub block and 1 Mux 2-1

- Calculate 0 number.
- If sign bit of result = 0, Output = this result.
- If sign bit of result = 1, Output = this number

Min/Max Block: Use 1 Sub block and 1 Mux 2-1

If Control = 0 output = min(A,B)

If Control =1, output = max(A,B)

• Add/sub: If select = 0 : Calculate A+B ; Else Calculate A-B

2. Controller:

Controller Block

CR[5..4]: Control input of R1
 CR[3..1]: Control input of R2
 CR[0]: Control input of R3
 Done: Output in last state

Done: Output in last state

• Identify Next state:

	Q Start				Q+	
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	Χ	0	1	0
0	1	0	Χ	0	1	1
0	1	1	Χ	1	0	0
1	0	0	Χ	1	0	1
1	0	1	Χ	1	1	0
1	1	0	Χ	1	1	1
1	1	1	Χ	0	0	0

Bảng xác định tín hiệu next state

- When start equal 1 ,jump to program.
- In state 7, get output.

Use K-Map:

Q0+		Q0 Start						
QU		0 0	0 1	11	10			
	0 0	0	1	0	0			
Q2 Q1	0 1	1	1	0	0			
ا ليک ليا	11	1	1	0	0			
	10	1	1	0	0			
$O_0^+ = \overline{O_0}S + O_1\overline{O_0} + O_2\overline{O_0}$								

Q1+		Q0 Start						
		0 0	0 1	11	10			
	0 0	0	0	1	1			
Q2 Q1	0 1	1	1	0	0			
Q2 Q1	11	1	1	0	0			
	10	0	0	1	1			
$Q_1^+ = \overline{Q_1}Q_0 + Q_1\overline{Q_0}$								

Q2+			Q0 Start					
QZT	Q2+		0 1	11	10			
	0 0	0	0	0	0			
Q2 Q1	0 1	0	0	1	1			
ا ليک ليا	11	1	1	0	0			
	10	1	1	1	1			
	$Q_2^+ = \overline{Q_2}Q_1Q_0 + Q_2\overline{Q_0} + Q_2\overline{Q_1}$							

- Table of identify controll in each state:

State	CR[54	4] (R1)	CR[31] (R2)			CR[0] (R3)	Done
S0	0	0	0	0	0	х	0
S1	0	1	0	0	1	Х	0
S2	1	0	0	1	0	х	0
S3	1	0	0	1	0	0	0
S4	1	0	0	1	1	1	0
S5	1	0	1	0	0	х	0
S6	1	0	Х	Х	Х	х	0
S 7	х	х	Х	Х	Х	х	1

			Q1 Q0					Q1 Q0			
CR[C	0]	0.0	01	11	10	CR[1	IJ	0 0	01	11	10
00	0	0	0	0	0	Q2	0	0	1	0	0
Q2	1	1	0	0	0	QZ	1	1	0	0	0
	CR[0] =	$Q_2\overline{Q_1}\ \overline{Q}$	0			C	R[1] =	$Q_2\overline{Q_1}$ \overline{Q}	$\overline{Q_0} + \overline{Q_2}$	$\overline{Q_1} Q_0$	
001			Q1	Q0		CR[3	01		Q1	Q0	
CR[2	2]	0 0	0 1	11	10	CRE)]	0 0	0 1	11	10
00	0	0	0	1	1	Q2	0	0	0	0	0
Q2	1	1	0	1	1	QZ	1	0	1	1	0
C	CR[2] =	$Q_1 + \overline{Q}$	Q_0 Q_2			C	R[3] =	$Q_2 Q_0$			
CDI	41		Q1	Q0		CDIE	1		Q1	Q0	
CR[4	+]	0 0	0 1	11	10	CR[5	ı]	0 0	0 1	11	10
Q2	0	0	1	0	0	Q2	0	0	0	1	1
QZ	1	0	0	0	0	Q2	1	1	1	1	X
($CR[4] = \overline{Q_2} \ \overline{Q_1} \ Q_0$				C	R[5] =	$Q_2 + Q$	1			

Done = Q2 Q1 Q0

3. Waveform:

Every 7 cycles after the start signal turns on, output the result (S7), and after S7 reset back to S0.

Test:

Input1 = -3 and Input2 = -4	Input1= 12 and Input2 = -16
S0: a = -3 , b = -4	S0: a = 12 , b = -16
S1: $t1 = a = 3$, $t2 = b = 4$	S1: $t1 = a = 12$, $t2 = b = 16$
S2: $x = max(t1, t2) = 4$, $y = min(t1, t2) = 3$	S2: x = max(t1, t2)= 16, y = min(t1, t2)= 12
S3: t3 = x >>3 = 0, t4 = y>>1 = 1	S3: t3 = x >>3 = 2, t4 = y>>1 = 6
S4: t5 = x - t3 = 4	S4: t5 = x - t3 = 4
S5: t6 = t5+ t4 = 5	S5: t6 = t5+ t4 = 20
S6: $t7 = max(t6, x) = 5$	S6: t7= max(t6, x) = 20
S7: result = t7 = 5	S7: result = t7 = 20

II. Version 2

Circuit (includes controller and datapath):

version 2 is almost the same as version 1, but different in the group of variables

1. Datapath

- Variable groups:

- o R1 = {In1, T1, X, T7}
- o R2 = {In2, T2, Y, T3, T5, T6}
- \circ R3 = {T4}

• Absolute block (ABS): Use 1 Abs/Sub block and 1 Mux 2-1

- Calculate 0 number.
- If sign bit of result = 0, Output = this result.
- If sign bit of result = 1, Output = this number

• Min/Max Block: Use 1 Sub block and 1 Mux 2-1

If Control = 0 output = min(A,B)

If Control =1, output = max(A,B)

Add/sub: If select = 0 : Calculate A+B ; Else Calculate A-B

2. Controller

Controller Block

Controller of version2 differs from version1 in datapath block control signal

- CR[5]: Write Enable of R3
- CR[4..3]: Control input of R1
- CR[2..0]: Control input of R2
- Done: Output in last state

Identify Next state:

	Q		Start		Q+	
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	Χ	0	1	0
0	1	0	Χ	0	1	1
0	1	1	Χ	1	0	0
1	0	0	Χ	1	0	1
1	0	1	Χ	1	1	0
1	1	0	Χ	1	1	1
1	1	1	Χ	0	0	0

Bảng xác định tín hiệu next state

- When start equal 1 ,jump to program.
- In state 7, get output.

Use K-Map:

Q0+			Q0 Start					
		0 0	0 1	11	10			
	0 0	0	1	0	0			
Q2 Q1	0 1	1	1	0	0			
Q2 Q1	11	1	1	0	0			
	10	1	1	0	0			
$Q_0^+ = \overline{Q_0}S + Q_1\overline{Q_0} + Q_2\overline{Q_0}$								

Q1+			Q0 Start					
		0 0	0 1	11	10			
	0 0	0	0	1	1			
Q2 Q1	0 1	1	1	0	0			
البك كيا	11	1	1	0	0			
	10	0	0	1	1			
$Q_1^+ = \overline{Q_1}Q_0 + Q_1\overline{Q_0}$								

Q2+			Q0 Start				
QZT	QZ+		0 1	11	10		
	0 0	0	0	0	0		
Q2 Q1	0 1	0	0	1	1		
Q2 Q1	11	1	1	0	0		
	10	1	1	1	1		
$Q_2^+ = \overline{Q_2}Q_1Q_0 + Q_2\overline{Q_0} + Q_2\overline{Q_1}$							

- Table of identify controll in each state:

State	CR[4	3] (R1)	CR[20] (R2)			CR[5] (R3)	Done
S0	0	0	0	0	0	0	0
S1	0	1	0	0	1	0	0
S2	1	0	0	1	0	0	0
S3	1	0	0	1	1	0	0
S4	1	0	1	0	0	1	0
S5	1	0	1	0	1	0	0
S6	1	0	х	х	х	0	0
S7	х	х	х	х	Х	0	1

			Q1	Q0		CR[1	1		Q1	Q0	
CR[0)]	0 0	0 1	11	10	CK[1]	0 0	0 1	11	10
	0	0	1	1	0	Q2	0	0	0	1	1
Q2	1	0	1	X	Х	QZ	1	0	0	Х	X
C	$CR[0] = Q_0$					C	R[1] =	Q_1			
0.00	Q1 Q0					CDIS	1		Q1	Q0	
CR[2	2]	0 0	0 1	11	10	CR[3]		0 0	0 1	11	1 0
Q2	0	0	0	1	1	Q2	0	0	1	0	0
Q2	1	0	0	X	X	QZ	1	0	0	X	X
(CR[2] =	Q_2				C	R[3] =	$\overline{Q_2}Q_0\overline{Q_1}$			
CR	41		Q1	I Q0		CR	re1		Q1 Q0		
CR	4]	0 0	0 1	11	1 0	CK	[9]	0 0	0 1	11	10
Q2	0	0	0	1	1	Q2	0	0	0	0	0
QZ.	1	1	1	X	X	Q2	1	1	0	X	Х
$CR[4] = Q_2 + Q_1$						CR[5] =	$=\overline{Q_0}Q_2\overline{Q}$	1			

Done = Q2 Q1 Q0

3. Waveform

Every 7 cycles after the start signal turns on, output the result (S7), and after S7 reset back to S0.

Test:

Input1 = 6 and Input2 = -8	Input1= 20 and Input2 = -15
S0: a = 6, b = -8	S0: a = 20 , b = -15
S1: $t1 = a = 6$, $t2 = b = 8$	S1: $t1 = a = 20$ (10100), $t2 = b = 15$ (1111)
S2: $x = max(t1, t2) = 8$, $y = min(t1, t2) = 6$	S2: $x = max(t1, t2) = 20$, $y = min(t1, t2) = 15$
S3: t3 = x >>3 = 1, t4 = y>>1 = 3	S3: t3 = x >>3 = 2, t4 = y>>1 = 7
S4: $t5 = x - t3 = 7$	S4: $t5 = x - t3 = 18$
S5: t6 = t5+ t4 = 10	S5: t6 = t5+ t4 = 25
S6: t7= max(t6, x) = 10	S6: t7= max(t6, x) = 25
S7: result = t7 = 10	S7: result = t7 = 25

III. Version 3:

Circuit (includes controller and datapath):

In version 3, We use "Functional logic sharing", to reduce and reuse Functional logic.

1. Datapath

- Functional logic sharing:
 - o ABS/Max
 - o ABS/Min/+/-
 - o Shift 3
 - o Shift 1
- Groups:
 - o R1: Input1, result of ABS/Max
 - o R2: Input2, result of ABS/min/+/-, Shift 3
 - o R3: Shift 1
- Use 1 mux 2-1 to select input for Block ABS/Min/+/-

ABS/max :

- Use 1 Full adder/subtract, 2 Mux 2-1
- If Control = 0, Calculate ABS
 - If sign bit of result = 0, result = this Result
 - Else result = this number
- If Control = 1, Calculate Max
 - If sign bit of result = 0, result = A
 - Else result = B

• ABS/Min/+/-:

- Use 1 Full adder/subtract, 2 Mux 2-1
- If Control = 00, Calculate ABS
 - o If sign bit of result = 0, result = this Result

- Else result = this number
- If Control = 01, Calculate Max
 - o If sign bit of result = 0, result = A
 - Else result = B
- If Control = 10, Calculate A+B
- If Control = 11, Calculate A-B

2. Controller

Controller Block

Controller of version2 differs from version1, version 2 in datapath block control signal

- Select[2]: Control input of R1
- Select[1..0]: Control input of R2
- Load: Write Enable of R1
- S: Select Input for Block ABS/Min/+/-
- Control[2]: Select function of ABS/Max
- Control[1..0] Select function of ABS/Min/+/-
- R: Write Enable of R3
- Done: Output in last state
- Identify Next state:

	Q		Start			
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	Χ	0	1	0
0	1	0	Χ	0	1	1
0	1	1	Х	1	0	0
1	0	0	Χ	1	0	1
1	0	1	Х	1	1	0
1	1	0	Х	1	1	1
1	1	1	Χ	0	0	0

Bảng xác định tín hiệu next state

- When start equal 1, jump to program.
- In state 7, get output.

Use K-Map:

Q0+			Q0 Start					
QU		0 0	0 1	11	10			
	0 0	0	1	0	0			
Q2 Q1	0 1	1	1	0	0			
Q2 Q1	11	1	1	0	0			
	10	1	1	0	0			
$Q_0^+ = \overline{Q_0}S + Q_1\overline{Q_0} + Q_2\overline{Q_0}$								

Q1+		Q0 Start						
QIT		0 0	0 1	11	10			
	0 0	0	0	1	1			
Q2 Q1	0 1	1	1	0	0			
Q2 Q1	11	1	1	0	0			
	10	0	0	1	1			
	$Q_1^+ = \overline{Q_1}Q_0 + Q_1\overline{Q_0}$							

Q2+		Q0 Start						
QZT		0 0	0 1	11	10			
	0 0	0	0	0	0			
Q2 Q1	0 1	0	0	1	1			
ليك ليا ا	11	1	1	0	0			
	10	1	1	1	1			
$Q_2^+ = \overline{Q_2}Q_1Q_0 + Q_2\overline{Q_0} + Q_2\overline{Q_1}$								

- Table of identify controll in each state:

State		Select[20]			S	(Control[2	20]			Lond	R	Done
State	R1	F	2		3	ABS/Max	AB	S/N	lin/+/-		Load	K	Done
S0	0	0	0		0	X	Х		X		1	0	0
S1	1	0	1		0	0	0		0		1	0	0
S2	1	0	1		0	1	0		1		0	0	0
S3	1	1	0		0	X	Х		X		0	0	0
S4	1	0	1		0	0	1		1		0	1	0
S5	1	0	1		1	0	1		0		1	0	0
S6	Х	X	X		1	0	0		0		0	0	0
S7	Х	X	X		1	X	Х		X		X	0	1
0.1.400	Q1 Q0					Select[1]			Q1 Q	0			
Select[2]	00	0 1	11	10			0.0		0 1	11	10	_	
Q2	0 0	1	1 1	1	Q2	0	0	+	0	1 x	0 x	-	
Sol				-		Select		.0.	_	^		1	
361	$Select [2] = \overline{Q_2} \overline{Q}_1 \overline{Q_0}$					Jeieet	[-] — 6	140)				
Select[0]	1	Q1	Q0			S			Q1 Q0				
Selectio	00	0 1	11	10			0 0		01	11	10	_	
Q2	0 0	1	0 x	1 X	Q2	0	0		1	0	0	<u> </u>	
Select [0]=	-(0-+0). + 0-)((_		$S = Q_2(Q_1)$	_						
Select [0]-	- (V ₂ + V	1 T V0/(4	2 T V1 T	Q0)	Γ,	$ Q_2(Q_1$	⊤ (0)						
Control[2	n	Q1 (Co	ontrol[1]			Q1 Q0				
Control	- 00	0 1		10			0.0			11	10		
Q2	0 x 1 0	0	X	0	Q2	1	1 1		0	X	0 x		
Contr	$rol[2] = Q_1$	$\overline{O_{\circ}}$				Control[1]	= 00						
Contr	01[2] 91	~0	· · · · · · · · · · · · · · · · · · ·	[JOING OILT	- Q2						
Control	[0]	Q1				Load	0 0	0 1	Q1 Q0	4	10		
	0 x	0 1	0	1 0		0	1	1	1 0		0		
Q2 —	1 1	0	x	x	Q2	1	0	1	Х		0		
Cont	$trol[0] = Q_t$	$_{2}\overline{Q_{0}}+Q_{1}\overline{Q_{0}}$	$\overline{Q_0}$		L	.oad $=ar{Q}_2ar{Q}_2$	$\bar{Q}_1 + \bar{Q}_1$	Q_0					

$$\begin{aligned} \mathbf{R} &= Q_2 \overline{Q}_1 \overline{Q_0} \\ \mathbf{Done} &= \mathbf{Q2} \ \mathbf{Q1} \ \mathbf{Q0} \end{aligned}$$

3. Waveform

Every 7 cycles after the start signal turns on, output the result (S7), and after S7 reset back to S0 – same as Version1 and Version 2.

Test:

Input1 = 10 and Input2 = -6	Input1= 9 and Input2 = -12
S0: a = 10 , b = -6	S0: a = 9 , b = 12
S1: $t1 = a = 10(1010)$, $t2 = b = 6(110)$	S1: $t1 = a = 9$ (1001), $t2 = b = 12$ (1100)
S2: x = max(t1, t2)= 10, y = min(t1, t2)= 6	S2: $x = max(t1, t2) = 12$, $y = min(t1, t2) = 9$
S3: t3 = x >>3 = 1, t4 = y>>1 = 3	S3: t3 = x >>3 = 1, t4 = y>>1 = 4
S4: t5 = x - t3 = 9	S4: t5 = x - t3 = 11
S5: t6 = t5+ t4 = 12	S5: t6 = t5+ t4 = 15
S6: t7= max(t6, x) = 12	S6: t7= max(t6, x) = 15
S7: result = t7 = 12	S7: result = t7 = 15

IV. Version 4:

Circuit (includes controller and datapath):

Version combine from Functional logic sharing and bus sharing.

1. Datapath

- Functional logic sharing:
 - o ABS/Max
 - o ABS/Min/+/-
 - o Shift 3
 - o Shift 1
- Bus Sharing:
 - o Bus 1: R1, R3
 - o Bus 2: R2
 - o Bus 3: ABS/Max, Input1, Shift 1
 - o Bus 4: ABS/Min/+/-, Input2, Shift 3

• ABS/max:

- Use 1 Full adder/subtract, 2 Mux 2-1
- If Control = 0, Calculate ABS
 - If sign bit of result = 0, result = this Result
 - Else result = this number
- If Control = 1, Calculate Max
 - If sign bit of result = 0, result = A
 - Else result = B

• ABS/Min/+/-:

- Use 1 Full adder/subtract, 2 Mux 2-1
- If Control = 00, Calculate ABS
 - o If sign bit of result = 0, result = this Result
 - Else result = this number
- If Control = 01, Calculate Max
 - o If sign bit of result = 0, result = A
 - Else result = B
- If Control = 10, Calculate A+B
- If Control = 11, Calculate A-B

2. Controller

Controller Block

Controller of version2 differs from version1, version 2 in datapath block control signal

- B1[1..0]: Control Bus1
- B3[2..0]: Control Bus3
- B4[2..0]: Control Bus4
- Op[2..0]: Select Function for Block ABS/Min/+/- and ABS/Max
- RL[2..0]: Write Enable for 3 Register
- Done: Output in last state
- Identify Next state:

	Q		Start	Q+			
0	0	0	0	0	0	0	
0	0	0	1	0	0	1	
0	0	1	Х	0	1	0	
0	1	0	Х	0	1	1	
0	1	1	Χ	1	0	0	
1	0	0	Χ	1	0	1	
1	0	1	Χ	1	1	0	
1	1	0	Χ	1	1	1	
1	1	1	Χ	0	0	0	

Bảng xác định tín hiệu next state

- When start equal 1, jump to program.
- In state 7, get output.

Use K-Map:

Q0+		Q0 Start						
QU		0 0	0 1	11	10			
	0 0	0	1	0	0			
Q2 Q1	0 1	1	1	0	0			
الإكلايا	11	1	1	0	0			
	10	1	1	0	0			
$Q_0^+ = \overline{Q_0}S + Q_1\overline{Q_0} + Q_2\overline{Q_0}$								

Q1+		Q0 Start						
QIT		0 0	0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1		10			
	0 0	0	0	1	1			
Q2 Q1	0 1	1	1	0	0			
Q2 Q1	11	1	1	0	0			
	10	0	0	1	1			
$Q_1^+ = \overline{Q_1}Q_0 + Q_1\overline{Q_0}$								

Q2+		Q0 Start						
QZŦ		0 0						
	0 0	0	0	0	0			
Q2 Q1	0 1	0	0	1	1			
ا ليک کيا	11	1	1	0	0			
	10	1	1	1	1			
$Q_2^+ = \overline{Q_2}Q_1Q_0 + Q_2\overline{Q_0} + Q_2\overline{Q_1}$								

- Table of identify controll in each state:

State	Bu	ıs1		Bus3		Bus4		Opcode			RL			
	R1	R3	AU1	ln1	SHIFT 1	AU2	ln2	SHIFT 3	ABS/max	ABS/mir	ŋ/+/ ₋	R1	R2	R3
S0	0	0	0	1	0	0	1	0	0	0	0	1	1	0
S1	1	0	1	0	0	1	0	0	0	0		1	1	0
S2	1	0	1	0	0	1	0	0	1	0	1	1	1	0
S3	1	0	0	0	1	0	0	1	0	0		0	1	1
S4	1	0	0	0	0	1	0	0	0	1	1	0	1	0
S5	0	1	0	0	0	1	0	0	0	1	0	0	1	0
S6	1	0	1	0	0	0	0	0	1	0		1	0	0
S7	1	0	0	0	0	0	0	0	0	0	0	0	0	0

*Note:

- AU1: ABS/Max; AU2: ABS/Min/+/-
- If Register need to load new value, Write Enable is turn on; Else Write Enable turn off (no change value in Register)

3. Waveform

Every 7 cycles after the start signal turns on, output the result (S7), and after S7 reset back to S0 – same as Version 1, Version 2, Version 3.

Test:

Input1 = -3 and Input2 = 1	Input1= 7 and Input2 = 20
S0: a = -3 , b = 1	S0: a = 7, b = 20
S1: $t1 = a = 3(011)$, $t2 = b = 1(001)$	S1: $t1 = a = 20$ (10100), $t2 = b = 7$ (111)
S2: $x = max(t1, t2) = 3$, $y = min(t1, t2) = 1$	S2: x = max(t1, t2)= 20, y = min(t1, t2)= 7
S3: t3 = x >>3 = 0, t4 = y>>1 = 0	S3: t3 = x >>3 = 2, t4 = y>>1 = 3
S4: t5 = x - t3 = 3	S4: t5 = x - t3 = 18
S5: t6 = t5+ t4 = 3	S5: t6 = t5+ t4 = 21
S6: $t7 = max(t6, x) = 3$	S6: t7= max(t6, x) = 21
S7: result = t7 = 3	S7: result = t7 = 21

V. Version 5:

Circuit (includes controller and datapath):

Version 5 use method: "Functional unit pineline". Version 5 is different from the previous 4 versions, the number of states increased by 1.

1. Datapath

- The datapath has 20 inputs and 1 output, of which 2 inputs (8 bits) transmit the number to be calculated, the remaining 18 inputs are control signals (opcodes of AU blocks, read/write signals of registers, tries, CLK), the output for the final result.
- The datapath consists of 3 registers and an AU blocks, "Shift3" block and "Shift1" block. AU Block are controlled by 3 bit opcodes, the registers store the following values,

R1 =
$$[a, t1, x, t7]$$

R2 = $[b, t2, t3, t5, t6]$
R3 = $[t4]$

(About AU, we divide each calculation into 2 states to reduce the time each state)

 AU (is used to calculating add/sub/abs/min/max and controlled by Opcode[2..0]):

- Use 4 D-FF to devide each calculation into 2 states, the first D-FF save Input1, the 2nd D-FF save result of "Add_sub" Block, the highest bit of it is sign bit, the 3rd save Input2 and the last D-FF save control signal (C[1..0]).
- In A[7..0] of "Add_sub" Block, we connect with ((C[2] + C[1] + C[0]).In1), so only C[2] = C[1] = C[0] = $0 \Rightarrow$ A[7..0] = 0. Then result of "Add_sub" Block is 0-B this state is used to calculating Absolute.
- We use Result[7] as a sign bit to control 2 Mux Block following.

- "Add_sub" Block:

"Control" Block:

Select	Function
0	Add
1	Sub

	Sign		IN			OUT		Function	Output of ALL	
	Sigii	C[2]	C[1]	C[0]	S1	S0	Select	Function	Output of AU	
	0	0	0	0	0	X	1	abs	В	
	0	0	0	1	1	1	1	max	Α	
	0	0	1	0	0	X	1	min	В	
A>B	0	0	1	1	1	0	0	add		
1	0	1	0	0	1	0	1			
	0	1	0	1	1	0	1	sub	Result of Add_sub	
	0	1	1	0	1	0	1	Sub		
	0	1	1	1	1	0	1			
	1	0	0	0	0	X	1	abs	В	
	1	0	0	1	0	X	1	max	В	
	1	0	1	0	1	1	1	min	Α	
A <b< td=""><td>1</td><td>0</td><td>1</td><td>1</td><td>1</td><td>0</td><td>0</td><td>add</td><td></td></b<>	1	0	1	1	1	0	0	add		
AND	1	1	0	0	1	0	1			
	1	1	0	1	1	0	1	sub	Result of Add_sub	
	1	1	1	0	1	0	1	500		
	1	1	1	1	1	0	1			

S1	C[1]_C[0]					
31		00	01	11	10	
	00	0	1	1	0	
Sign_C[2]	01	1	1	1	1	
31g11_0[2]	11	1	1	1	1	
	10	0	0	1	1	

S0	C[1]_C[0]						
30		00	01	11	10		
	00	X	1		X		
Sign C(2)	01						
Sign_C[2]	11						
	10	х	х		1		

$$\textbf{S1} = C[2] + Sign.C[1] + Sign'.C[0]$$

$$S0 = C[2]'.C[0]' + C[2]'.C[1]'$$

Selec		C[1]_C[0]					
Jelev	00	01	11	10			
	00	1	1	0	1		
Sign C(2)	01	1	1	1	1		
Sign_C[2]	11	1	1	1	1		
	10	1	1	0	1		

Select = $(C[2]' \times C[1] \times C[0])'$

• Register:

- Register if created by 8 D-FF and "Mux2_1".
- The input Select decides that the register loads new value or not. If Select = 0 => no load new value and put previous value (S0) into D-FF so it can stores value, otherwise, Select = 1 => load new value (S1).
- In quartus, we can use only 1 DFF to save bus data.

• Shift 3 (8 bits):

Connect bits [7..3] of input to bits[4..0] of output, remaining bits of output are GND.

• Shift 1 (8 bits):

Connect bits [7..1] of input to bits[6..0] of output, remaining bit of output is GND. We can change 2 "Not" logic gate by 1 "carry" logic gate

2. Controller

Note (according to datapath):

- o Bus3:
- C[6]: control tri allows transferring data from Input1 to Bus 3.
- C[8]: control tri allows transferring data from AU to Bus 3.
- C[10]: control tri allows transferring data from Shift1 to Bus_3. (in the same time only Input1 or AU or Shift1 load data to Bus_3)

o Bus2:

- C[2]: control tri allows loading data from Register1 to Bus_2.
- C[3] control tri allows loading data from Register2 to Bus_2. (in the same time only register1 or register2 load data to Bus_2)

Bus4:

- C[5]: control tri allows transferring data from Shift3 to Bus_4.
- C[7]: control tri allows transferring data from AU to Bus_4.
- C[9]: control tri allows transferring data from Input2 to Bus_4. (in the same time only Input2 or AU or Shift3 load data to Bus_4)

Bus1:

- C[1]: control tri allows transferring data from Register1 to Bus_1.
- C[4]: control tri allows transferring data from Register3 to Bus_1. (in the same time only Register1 or Register3 load data to Bus_1)
- C[0]: when state is S12 (after successfully calculated final result we will have the output is result, in other states output is "X")

o Write Enable:

- N[0]: Allows to load data to Register 1.
- N[1]: Allows to load data to Register 2.
- N[2]: Allows to load data to Register3.
- Opcode[2..0]: control AU.

Next state:

Temporarily removed Start to easy to draw K_map, after that we or(+) Q_{0+} with Start.S₀, because Start = 1 only in case that input(Q3_Q2_Q1_Q0) = 0000 and output(Q3+_Q2+_Q1+_Q0+) = 0001:

STATE			IN			OUT			
STATE	Start	Q3	Q2	Q1	Q0	Q3	Q2	Q1	Q0
S0	0	0	0	0	0	0	0	0	0
S0	1	0	0	0	0	0	0	0	1
S1	X	0	0	0	1	0	0	1	0
S2	X	0	0	1	0	0	0	1	1
S3	X	0	0	1	1	0	1	0	0
S4	X	0	1	0	0	0	1	0	1
S5	X	0	1	0	1	0	1	1	0
S6	X	0	1	1	0	0	1	1	1
S7	X	0	1	1	1	1	0	0	0
S8	X	1	0	0	0	1	0	0	1
S9	X	1	0	0	1	1	0	1	0
S10	X	1	0	1	0	1	0	1	1
S11	X	1	0	1	1	1	1	0	0
S12	X	1	1	0	0	0	0	0	0
S13	X	1	1	0	1	X	X	Х	Х
S14	X	1	1	1	0	X	X	Х	Х
S15	Х	1	1	1	1	Χ	Χ	Х	Х

	Q3+		Q1_Q0						
_ u	J+	00	01	11	10				
	00								
03 03	01			1					
Q3_Q2	11		X	X	X				
	10	1	1	1	1				

02	Q2+		Q1_Q0							
_ <u>_</u>		00	01	11	10					
	00			1						
Q3_Q2	01	1	1		1					
Q3_Q2	11		Х	X	X					
	10			1						

$$\begin{aligned} Q_{2+} &= Q_3\text{'}.Q_2.Q_1\text{'} + \\ Q_2\text{'}.Q_1.Q_0 + \\ Q_2.Q_1.Q_0\text{'} \end{aligned}$$

$$Q_{3+} = Q_3.Q_2$$
' + $Q_2.Q_1.Q_0$

0	1+		Q1_Q0							
ď	1+	00	01	11	10					
	00		1		1					
02 03	01		1		1					
Q3_Q2	11		X	X	X					
	10		1		1					

$$Q_{1+} = Q_1 \bigoplus Q_0$$

$$\begin{aligned} Q_{0+} &= Q_1.Q_0 + Q_3.Q_2'.Q_0' + \\ Q_3'.Q_2.Q_0' \\ &+ Start.Q_3'.Q_2'.Q_1'.Q_0' \end{aligned}$$

	Q0+		Q1_Q0						
_ Q	J+	00	01 11 10						
	00				1				
Q3_Q2	01	1			1				
Q3_Q2	11		X	X	X				
	10	1			1				

- Decoder from state to controll:

CTATE		II	V											OUT								
STATE	Q3	Q2	Q1	Q0		I1B3	12B4	R1B1	R3B1	R1B2	R2B2	S3B4	S1B3	AU1B3	AU1B4	LR1	LR2	LR3	OP[2]	OP[1]	OP[0]	DONE
S0	0	0	0	0]	1	1									1	1					
S1	0	0	0	1]					1									0	0	0	
S2	0	0	1	0	1						1			1		1			0	0	0	
S3	0	0	1	1]										1		1					
S4	0	1	0	0]			1			1								0	0	1	
S5	0	1	0	1	1			1			1	1			1	1	1		0	1	0	
S6	0	1	1	0]			1			1		1	1				1	1	Х	Х	
S7	0	1	1	1	1									1			1					
S8	1	0	0	0	1				1		1								0	1	1	
S9	1	0	0	1	1										1		1					
S10	1	0	1	0	1			1			1								0	0	1	
S11	1	0	1	1	1									1		1						
S12	1	1	0	0				1														1
S13	1	1	0	1	1	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	X
S14	1	1	1	0	1	Χ	Х	Х	Х	Х	Χ	X	X	Х	X	Х	Х	Х	Х	Х	Х	X
S15	1	1	1	1		Х	Х	Х	Х	Х	Х	Х	X	Х	X	X	Х	Х	Х	Х	X	X

111	I1B3		Q1_Q0						
111	55	00	01	11	10				
03.03	00	1							
	01								
Q3_Q2	11		X	X	Х				
	10								

$$I1B3 = Q_3'.Q_2'.Q_1'.Q_0'$$

D1	R1B1		Q1_Q0					
N1	DI	00 01 11 10						
	00	X	X	X	X			
Q3_Q2	01	1	1	X	1			
Q3_Q2	11	1	X	X	X			
	10	0	X	X	1			

$$\mathbf{R}\mathbf{1}\mathbf{B}\mathbf{1} = \mathbf{Q}_2 + \mathbf{Q}_1$$

D1	R1B2		Q1_Q0						
N1	02	00	01 11 10						
	00	0	1	0	0				
Q3_Q2	01	0	0	0	0				
Q3_Q2	11	0	0	0	0				
	10	0	0	0	0				

$$\mathbf{R1B2} = \mathbf{Q_3'.Q_2'.Q_1'.Q_0}$$

$$I2B4 = Q_3'.Q_2'.Q_1'.Q_0'$$

DS	R3B1		Q1_Q0						
N3	DI	00	01	11	10				
	00	0	0	0	0				
03 03	01	0	0	0	0				
Q3_Q2	11	0	0	0	0				
	10	1	0	0	0				

$$\mathbf{R3B1} = Q_3.Q_2'.Q_1'.Q_0'$$

D2	R2B2		Q1_Q0						
N2	DZ	00	01	11	10				
	00	Х	0	X	1				
03 03	01	1	1	Х	1				
Q3_Q2	11	Х	Х	X	Х				
	10	1	Х	Х	1				

$$\mathbf{R2B2} = Q_3 + Q_2 + Q_1$$

C 2	S3B4		Q1_Q0						
33	U4	00	01	11	10				
03.03	00								
	01		1						
Q3_Q2	11								
	10								

$$S3B4 = Q_3'.Q_2.Q_1'.Q_0$$

Ç1	S1B3		Q1_Q0						
31	03	00	01 11 10						
	00								
03 03	01				1				
Q3_Q2	11								
	10								

$$S1B3 = Q_3'.Q_2.Q_1.Q_0'$$

1.0	LR1		Q1_Q0						
LI	11	00	01	11	10				
	00	1			1				
Q3_Q2	01		1						
Q3_Q2	11		X	X	X				
	10			1					

$$\mathbf{LR1} = \mathbf{Q_3}'.\mathbf{Q_2}'.\mathbf{Q_0}' + \mathbf{Q_2}.\mathbf{Q_1}'.\mathbf{Q_0} + \mathbf{Q_3}.\mathbf{Q_1}.\mathbf{Q_0}$$

- 10	LR2		Q1_Q0					
L	12	00	01	11	10			
03.03	00	1		1				
	01		1	1				
Q3_Q2	11		Х	Х	Х			
	10		1					

 $LR2 = Q_3'.Q_2'.Q_1'.Q_0' + Q_2.Q_0 + Q_3.Q_1'.Q_0 + Q_3'.Q_1.Q_0$

LR3		Q1_Q0						
L	13	00 01 11 10						
02.02	00							
	01				1			
Q3_Q2	11		X	X	X			
	10							

$$LR3 = Q_2.Q_1.Q_0$$

OP[1]		Q1_Q0				
		00	01	11	10	
Q3_Q2	00	Х	0	X	0	
	01	0	1	X	Х	
	11	Х	X	X	Х	
	10	1	Х	Х	0	

OP[1] =
$$Q_2.Q_0 + Q_3.Q_1$$

AUB4		Q1_Q0			
		00	01	11	10
Q3_Q2	00	0	X	1	X
	01	X	0	X	X
	11	X	X	X	X
	10	X	1	X	X

$$\mathbf{AUB4} = \mathbf{Q}_3 + \mathbf{Q}_1$$

AUB3		Q1_Q0			
		00	01	11	10
Q3_Q2	00	0	X	X	1
	01	Х	1	1	0
	11	Х	Х	Х	Х
	10	Х	Х	1	Х

$$AUB3 = Q_3'.Q_2'.Q_1 + Q_0$$

$$\mathbf{OP[3]} = Q_2.Q_1$$

OP[1]		Q1_Q0			
		00	01	11	10
Q3_Q2	00	X	0	X	0
	01	1	0	X	Х
	11	X	X	X	Х
	10	1	Х	Х	1

$$\mathbf{OP[0]} = Q_3 + Q_1'.Q_0'$$

OP[1]		Q1_Q0			
		00	01	11	10
Q3_Q2	00				
	01				
	11	1	X	X	X
	10				

DONE = $Q_3 \cdot Q_2$

3. Waveform


```
Input1 = -3 and Input2 = 4
                                                                Input1= 6 and Input2 = -8
                                                    S0: a = 6, b = -8
S0: a = 3, b = -4
S1: t1 = |a| = 3(011),
                                                    S1: t1 = |a| = 6 (110),
S2: t2 = |b| = 1(100)
                                                    S2:t2 = |b| = 8 (1000)
S3: x = max(t1, t2) = 4, t3 = x >> 3 = 0
                                                    S3: x = max(t1, t2) = 8, t3 = x >> 3 = 1
S4: t4 = min(t1, t2) >> 1 = 1
                                                    S4: t4 = min(t1,t2) >> 1 = 3
S5: t5 = x - t3 = 4
                                                    S4: t5 = x - t3 = 7
S6: t6 = t5+ t4 = 5
                                                    S5: t6 = t5+ t4 = 10
S7: t7 = max(t6, x) = 5
                                                    S6: t7 = max(t6, x) = 10
                                                    S7: result = t7 = 10
S8: result = t7 = 5
```

VI. Version 6:

Version 5 is update of version4, and it use datapath pineline.

Circuit (includes controller and datapath):

1. Datapath

- The datapath has 19 inputs and 1 output, of which 2 inputs (8 bits) transmit the number to be calculated, the remaining 17 inputs are control signals

(opcodes of AU blocks, read/write signals of registers, tries), the output for the final result.

- The datapath consists of 7 registers and 2 AU blocks, "Shift3" block and "Shift1" block. "AU1" and "AU2" are controlled by 4 bit opcodes (Opcode[3..2] control AU2, Opcode[1..0] control AU1), the registers store the following values, "AU1" and "AU2" perform the following funtions:

$$R1 = [a, t1] R3 = [t3, t5, t6, t7]$$

$$R2 = [b, t2] R4 = [x]$$

$$AU1 = [abs/min/max] R5 = [t4]$$

$$AU2 = [+/-/max]$$

• AU1 (is used to calculating abs/min/max and controlled by Opcode[1..0]):

AU1									
Opcode	Function								
00	min								
01	max								
10	abs								
11	abs								

- Opcode[1] connects to "Mux2_1" block to choose result of "Abs" block or "Min_max" block, Opcode[0] connects to "Min_max" block to control *min* or *max* calculation.
- If Opcode[1] = 1 then "AU1" performs *absolute* calculation, otherwise Opcode[1] = 0, "AU1" will choose the result calculated in the "Min_max" block.
- The "Min_max" block is controlled by Opcode[0], if Opcode[0] = 0 calculates *min*, Opcode[0] = 1 calculates *max*.

- Min_Max:

Add_sub:

Select	Function				
0	Add				
1	Sub				

Connect vcc to Select of "Add_sub" block to calculate A-B. Then take the sign bit against the controller signal to decide whether to choose A or B to match the signal. In "Mux21" connect A to S1, B to S0:

М	ux
Select	Result
0	S0
1	S1

	Result[7]	Control	Select	Function
S1>=S0	0	0	0	min
	0	1	1	max
S1 <s0< td=""><td>1</td><td>0</td><td>1</td><td>min</td></s0<>	1	0	1	min
31<30	1	1	0	max

Select = Control XOR Result[7]

- A >= B => A B > 0 => Result[7] = 0
 - Control = 0 => Select = Control XOR Result[7] = 0 XOR 0 = 0 => Select S0 (B) (min)
 - Control = 1 => Select = Control XOR Result[7]
 = 0 XOR 1 = 1 => Select S1 (A) (max)
- $A < B \Rightarrow A B < 0 \Rightarrow Result[7] = 1$
 - Control = 0 => Select = Control XOR Result[7] = 0 XOR 1 = 1 => Select S1 (A) (min)
 - Control = 1 => Select = Control XOR Result[7]

$$= 1 \text{ XOR } 1 = 0 \Rightarrow \text{Select SO (B) (max)}$$

- Abs:

Connect vcc to Select and GND to A[7..0] of "Add sub" block to calculate 0-B.

- o If B < 0 then 0 B > 0, so Result[7]=0 => Select = Result[7]'=1 => Output = S1 = 0 B = -B.
- o If B > 0 then 0 B < 0, so Result[7]=1 => Select = Result[7]' = 0 => Output = S0 = B.

• AU2:

AU2									
Opcode	Funtion								
00	+								
01	-								
10	max								
11	max								

- Opcode[1] connects to "Mux2_1" block to choose result of "Add_sub" block or "Min_max" block.
- If Opcode[1] = 1 then "AU2" will choose the result calculated in the "Min_max" block, otherwise Opcode[1] = 0, "AU2" will choose the result calculated in the "Add sub" block.
- Connect GND to always calculate *max* and the "Add_sub" block is controlled by Opcode[0], if Opcode[0] = 0 calculates *addition*, Opcode[0] = 1 calculates *subtraction*.

("Add sub" block and "Min max" block are explained in "AU1")

• Register:

- Register if created by 8 D-FF and "Mux2_1".
- The input Select decides that the register loads new value or not. If Select = 0 => no load new value and put previous value (S0) into D-FF so it can stores value, otherwise, Select = 1 => load new value (S1).

• Shift 3 (8 bits):

Connect bits [7..3] of input to bits[4..0] of output, remaining bits of output are GND.

• Shift 1 (8 bits):

Connect bits [7..1] of input to bits[6..0] of output, remaining bit of output is GND.

2. Controller:

Controller includes "Next_state" block, Register always load new value and a block to decode from state into control signal to control datapath.

• Next state:

			IN				O	UT		
	Start	Q3	Q2	Q1	Q0	Q3+	Q2+	Q1+	Q0+	
S0	0	0	0	0	0	0	0	0	0	S0
S0	1	0	0	0	0	0	0	0	1	S1
S1	X	0	0	0	1	0	0	1	0	S2
S2	X	0	0	1	0	0	0	1	1	S3
S3	X	0	0	1	1	0	1	0	0	S4
S4	X	0	1	0	0	0	1	0	1	S5
S5	X	0	1	0	1	0	1	1	0	S6
S6	X	0	1	1	0	0	1	1	1	S7
S 7	X	0	1	1	1	1	0	0	0	S8
S8	X	1	0	0	0	1	0	0	1	S9
S9	X	1	0	0	1	0	1	0	1	S5
S10	X	1	0	1	0	X	X	X	X	
S11	X	1	0	1	1	X	X	X	X	
S12	X	1	1	0	0	X	X	X	X	
S13	X	1	1	0	1	X	X	X	X	
S14	X	1	1	1	0	X	X	X	X	
S15	X	1	1	1	1	X	X	X	X	

Temporarily removed Start to easy to draw K_map, after that we or(+) Q_{0+} with Start.S₀, because Start = 1 only in case that input(Q3_Q2_Q1_Q0) = 0000 and output(Q3+_Q2+_Q1+_Q0+) = 0001:

0	3+		Q1_Q0								
ų,	J+	00	01	11	10						
	00										
Q3_Q2	01			1							
Q3_Q2	11										
	10	1									

$$Q_{3+} = Q_3'.Q_2.Q_1.Q_0 + Q_3.Q_2'.Q_1'.Q_0'$$

0	2+		Q1_Q0								
_ u	24	00	01	11	10						
	00			1							
03 03	01	1	1		1						
Q3_Q2	11										
	10		1								

$$Q_{2+} = Q_3.Q_2.Q_1' + Q_3'.Q_2'.Q_1.Q_0 + Q_3'.Q_2.Q_1.Q_0'$$

+ $Q_3.Q_2'.Q_1'.Q_0$

0	0+		Q1_Q0								
ų,	UŦ	00	01	11	10						
	00				1						
03 03	01	1			1						
Q3_Q2	11										
	10	1	1								

$$Q_{1+} = Q_3.Q_1'.Q_0 + Q_3'.Q_1.Q_0'$$

		Q1_Q0								
Q	1+	00	01	11	10					
	00		1		1					
02 02	01		1		1					
Q3_Q2	11									
	10									

$$Q_{0+} = Q_3'.Q_1.Q_0 + Q_3.Q_2'.Q_1' + Q_3'.Q_2.Q_0'$$

+ Start. $Q_3'.Q_2'.Q_1'.Q_0'$

• Register always load:

• Decoder from state to control:

STATE		II	N											OUT										
SIAIE	Q3	Q2	Q1	Q0	I1B3	12B4	R1B2	R2B2	AU1B3	AU1B4	S3B7	R4B5	R5B5	AU2B7	LR1	LR2	LR4	LR5	OP[3]	OP[2]	OP[1]	OP[0]	DONE	
S0	0	0	0	0	1	1									1	1			X	X	X	X		
S1	0	0	0	1			1		1						1				X	X	1	X		
S2	0	0	1	0				1		1						1			X	X	1	X		nth pair
S3	0	0	1	1				1										1	Х	X	0	1		
S4	0	1	0	0				1			1						1		X	X	0	0		
S5	0	1	0	1	1	1		1				1		1	1	1			0	1	X	X		
S6	0	1	1	0			1		1				1	1	1				0	0	1	X		
S7	0	1	1	1				1		1		1		1		1			1	X	1	X		(n+1)th pair
S8	1	0	0	0				1										1	X	X	0	1	1	
S9	1	0	0	1				1			1						1		Х	X	0	0		
S10	1	0	1	0	X	X	X	X	X	X	X	X	X	X	X	X	Х	Х	X	X	X	X	X	
S11	1	0	1	1	X	X	X	Х	Х	X	X	X	X	Х	X	X	X	X	X	X	X	X	X	
S12	1	1	0	0	X	X	X	X	Х	X	X	X	Х	Х	X	X	X	Х	X	X	X	X	X	
S13	1	1	0	1	X	Х	X	Х	Х	X	X	X	Х	Х	X	X	Х	Х	Х	X	X	X	Х	
S14	1	1	1	0	X	X	X	Х	X	X	X	X	X	Х	X	X	X	Х	X	X	X	X	X	
S15	1	1	1	1	X	Х	X	Х	Х	X	X	Х	Х	Х	X	X	Х	Х	Х	X	X	X	Х	

111	В3		Q1_Q0								
11	55	00	01	11	10						
	00	1									
Q3_Q2	01		1								
us_uz	11	Х	Х	X	Х						
	10			X	Х						

 $\mathbf{I1B3} = \mathbf{Q_3}$ '. $\mathbf{Q_2}$ '. $\mathbf{Q_1}$ '. $\mathbf{Q_0}$ ' + $\mathbf{Q_2}$. $\mathbf{Q_1}$ '. $\mathbf{Q_0}$

R1B2		Q1_Q0			
N1	02	00	01	11	10
	00		1		
Q3_Q2	01				1
Q5_Q2	11	X	X	X	X
	10			X	X

$$\mathbf{R1} = \mathbf{Q}_3'.\mathbf{Q}_2'.\mathbf{Q}_1'.\mathbf{Q}_0 + \mathbf{Q}_2.\mathbf{Q}_1.\mathbf{Q}_0'$$

AU1B3			Q1_Q0				
_ ^0.	103	00	01	11	10		
03.03	00		1				
	01				1		
Q3_Q2	11	Х	X	X	X		
	10			Х	Х		

 $AU1B3 = Q_3'.Q_2'.Q_1'.Q_0 + Q_2.Q_1.Q_0'$

S3B7		Q1_Q0				
33	D7	00	01 11 10			
	00					
Q3_Q2	01	1				
Q3_Q2	11	X	X	X	X	
	10		1	X	X	

$$S3B7 = Q_2.Q_1'.Q_0' + Q_3.Q_1'.Q_0$$

$$\mathbf{I2B4} = \mathbf{Q_3}'.\mathbf{Q_2}'.\mathbf{Q_1}'.\mathbf{Q_0}' + \mathbf{Q_2}.\mathbf{Q_1}'.\mathbf{Q_0}$$

D2	R2B2		Q1_Q0			
N2	02	00	00 01 11 1 1 1 1 1 X X X X			
	00			1	1	
02 02	01	1	1	1		
Q3_Q2	11	Х	X	X	Х	
	10	1	1	X	X	

$$\mathbf{R2B2} = Q_3 + Q_1.Q_0 + Q_2 \oplus Q_1$$

ALL	AU1B4		Q1_Q0			
AU.	104	00	01	11	10	
00	00				1	
Q3_Q2	01			1		
US_U2	11	Х	X	X	X	
	10			Х	Х	

$$AU1B4 = Q_2.Q_1.Q_0 + Q_2'.Q_1.Q_0'$$

D/I	R4B5		Q1_Q0			
N-4			01	11	10	
	00					
Q3_Q2	01		1	1		
Q3_Q2	11	X	X	X	Х	
	10			Х	Х	

$$R4B5 = Q_3'.Q_2.Q_0$$

R5B5			Q1_Q0			
K.3	00	00	01	11	10	
	00					
Q3_Q2	01				1	
us_uz	11	X	X	X	X	
	10			Х	Х	

 $R5B5 = Q_2.Q_1.Q_0$

1.5	LR1		Q1_Q0				
L	11	00	01	11	10		
	00	1	1				
Q3_Q2	01		1		1		
US_U2	11	Х	Х	Х	X		
	10			X	X		

 $\mathbf{LR1} = \mathbf{Q_3'}.\mathbf{Q_2'}.\mathbf{Q_1'} + \mathbf{Q_2}.\mathbf{Q_1'}.\mathbf{Q_0} + \mathbf{Q_2}.\mathbf{Q_1}.\mathbf{Q_0'}$

1.0	LR4		Q1_Q0			
L	\+	00			10	
	00					
Q3_Q2	01	1				
Q3_Q2	11	X	X	X	X	
	10		1	X	X	

 $\mathbf{LR4} = \mathbf{Q}_2.\mathbf{Q}_1'.\mathbf{Q}_0' + \mathbf{Q}_3.\mathbf{Q}_0$

OP[3]			Q1	_Q0	
Ur	ادا	00	01	11	10
02.02	00	X	X	X	X
	01	Х	0	1	0
Q3_Q2	11	X	X	X	X
	10	Х	Х	Х	Х

$$\mathbf{OP[3]} = Q_1.Q_0$$

OP[1]		Q1_Q0			
		00	01	11	10
02.03	00	X	1	0	1
	01	0	X	1	1
Q3_Q2	11	X	X	X	Х
	10	0	0	Х	Х

$$\mathbf{OP[1]} = Q_3'.Q_2'.Q_1' + Q_2.Q_0 + Q_1.Q_0'$$

DONE		Q1_Q0			
	INL	00	01	11	10
	00	0	0	0	0
03 03	01	0	0	0	0
Q3_Q2	11	X	Х	X	X
	10	1	0	Х	Х

 $\mathbf{DONE} = Q_3.Q_0'$

ALI:	AU2B7		Q1_Q0						
AU2B7		00	01	11	10				
	00								
Q3_Q2	01		1	1	1				
Q3_Q2	11	X	X	X	X				
	10			X	X				

 $\mathbf{AU2B7} = \mathbf{Q_3}$ '. $\mathbf{Q_2}$. $\mathbf{Q_1} + \mathbf{Q_3}$ '. $\mathbf{Q_2}$. $\mathbf{Q_0}$

10	LR2		Q1_Q0					
L			01	11	10			
	00	1			1			
03 03	01		1	1				
Q3_Q2	11	X	X	X	X			
	10			X	X			

 $\mathbf{LR2} = \mathbf{Q_3}'.\mathbf{Q_2}'.\mathbf{Q_0}' + \mathbf{Q_2}.\mathbf{Q_0}$

1.0	LR5		Q1_Q0						
L			01	11	10				
	00			1					
03 03	01								
Q3_Q2	11	Х	Х	Х	Х				
	10	1		Х	X				

$$\mathbf{LR5} = Q_3.Q_1'.Q_0' + Q_2'.Q_1.Q_0$$

0.0	OP[2]		Q1_Q0						
Ur.	[4]	00	01	11	10				
	00	X	X	X	Х				
03 03	01	Х	1	Х	0				
Q3_Q2	11	Х	Х	Х	Х				
	10	Х	Х	Х	Х				

$$OP[2] = Q_0$$

OP[0]		Q1_Q0						
Or Or	[U]	00	01	11	10			
Q3_Q2	00	X	X	1	X			
	01	0	Х	Х	Х			
	11	Х	Х	Х	Х			
	10	1	0	Х	Х			

$$\mathbf{OP[0]} = Q_1 + Q_2'.Q_0'$$

Note (according to datapath):

- I1B3: control tri allows transferring data from Input1 to Bus 3.
- AU1B3: control tri allows transferring data from AU1 to Bus_3. (in the same time only Input1 or AU1 load data to Bus_3)
- R1B2: control tri allows loading data from Register1 to Bus 2.
- R2B2: control tri allows loading data from Register2 to Bus_2. (in the same time only register1 or register2 load data to Bus_2)
- I2B4: control tri allows transferring data from Input2 to Bus 4.
- AU1B4: control tri allows transferring data from AU1 to Bus_4. (in the same time only Input2 or AU1 load data to Bus_4)
- S3B7: control tri allows transferring data from Shift3 to Bus_7.
- AU2B7: control tri allows transferring data from AU2 to Bus_7. (in the same time only Shift3 or AU2 load data to Bus_7)
- R4B5: control tri allows transferring data from Register4 to Bus_5.
- R5B5: control tri allows transferring data from Register5 to Bus_5. (in the same time only Register4 or Register5 load data to Bus_5)
- LR1: Allows to load data to Register1.
- LR2: Allows to load data to Register2.
- LR3: Allows to load data to Register3.
- LR4: Allows to load data to Register4.
- LR5: Allows to load data to Register5.
- OP[3..0]: Opcode (OP[3..2] control AU2, OP[1..0] control AU1).
- Done: when state is S8 (after successfully calculated final result we will have the output is result, in other states output is "X")

1. Waveform (input and output according to color respectively):


```
a = 8

b = -6

t1 = |a| = 8

t2 = |b| = 6

t4 = min(t1, t2)>>1 = 3

x = max(t1, t2) = 8

t3 = max(t1, t2)>>3 = 1

t5 = x - t3 = 7

t6 = t4 + t5 = 10

t7 = max(t6, x) = 10

Result = t7 = 10
```

```
a = 3

b = 4

t1 = |a| = 3

t2 = |b| = 4

t4 = min(t1, t2) >> 1 = 1

x = max(t1, t2) = 4

t3 = max(t1, t2) >> 3 = 0

t5 = x - t3 = 4

t6 = t4 + t5 = 5

t7 = max(t6, x) = 5

Result = t7 = 5
```

```
a = -6

b = -8

t1 = |a| = 6

t2 = |b| = 8

t4 = min(t1, t2) >> 1 = 3

x = max(t1, t2) = 8

t3 = max(t1, t2) >> 3 = 1

t5 = x - t3 = 7

t6 = t4 + t5 = 10

t7 = max(t6, x) = 10

Result = t7 = 10
```



```
a = -12

b = 8

t1 = |a| = 12

t2 = |b| = 8

t4 = min(t1, t2) >> 1 = 4

x = max(t1, t2) = 12

t3 = max(t1, t2) >> 3 = 1

t5 = x - t3 = 11

t6 = t4 + t5 = 15

t7 = max(t6, x) = 15

Result = t7 = 15
```

```
a = 11
b = -25
t1 = |a| = 11
t2 = |b| = 25
t4 = min(t1, t2) >> 1 = 5
x = max(t1, t2) = 25
t3 = max(t1, t2) >> 3 = 3
t5 = x - t3 = 22
t6 = t4 + t5 = 27
t7 = max(t6, x) = 27
Result = t7 = 27
```

```
a = 1

b = 32

t1 = |a| = 1

t2 = |b| = 32

t4 = min(t1, t2) >> 1 = 0

x = max(t1, t2) = 32

t3 = max(t1, t2) >> 3 = 4

t5 = x - t3 = 28

t6 = t4 + t5 = 28

t7 = max(t6, x) = 32

Result = t7 = 32
```

VII. Version 7:

Circuit (includes controller and datapath):

Version 7 is combination of version 5 and version 6 (Functional logic pineline + Datapath pineline).

1. Datapath

- Datapath in version7 use AU1 block (ABS/Min/Max) 2 state and AU2 Block (Max/add/Sub) 2
 state (Functional unit pineline + datapath pineline)
 - The datapath has 22 inputs and 1 output, of which 2 inputs (8 bits) transmit the number to be calculated, the remaining 20 inputs are control signals (opcodes of AU blocks, read/write signals of registers, tries, CLK), the output for the final result.

- The datapath consists of 5 registers and 2 AU blocks, "Shift3" block and "Shift1" block. "AU1" and "AU2" are controlled by 4 bit opcodes (Opcode[3..2] control AU2, Opcode[1..0] control AU1), the registers store the following values, "AU1" and "AU2" perform the following funtions:

$$R1 = [a, t1] \qquad R3 = [t3, t5, t6, t7]$$

$$R2 = [b, t2] \qquad R4 = [x]$$

$$AU1 = [abs/min/max] \qquad R5 = [t4]$$

$$AU2 = [+/-/max]$$

(About AU, we divide each calculation into 2 states to reduce the time each state)

• AU1 (is used to calculating abs/min/max and controlled by Opcode[1..0]):

AU1						
Opcode	Function					
00	abs					
01	max					
10	min					
11	min					

- Use 4 D-FF to devide each calculation into 2 states, the first D-FF save Input1, the 2nd D-FF save result of "Add_sub" Block, the highest bit of it is sign bit, the 3rd save Input2 and the last D-FF save control signal (C[1..0]).

- Connect Select of "Add_sub" Block to alway calculate A-B.
- In A[7..0] of "Add_sub" Block, we connect with ((C[1] + C[0]).In1), so only $C[1] = C[0] = 0 \Rightarrow A[7..0] = 0$. Then result of "Add_sub" Block is 0-B, we use Result[7] as a sign bit to control 2 Mux Block following.
- "Control" Block:

		Input			Output	t	Output of AU1
	Sign	C[1]	C[0]	S1	S0	Funtion	
	0	0	0	1	0	abs	Result
A>B	0	0	1	1	1	max	Α
A/B	0	1	0	0	X	min	В
	0	1	1	0	X	min	В
	1	0	0	0	X	abs	В
A <b< td=""><td>1</td><td>0</td><td>1</td><td>0</td><td>X</td><td>max</td><td>В</td></b<>	1	0	1	0	X	max	В
A <b< td=""><td>1</td><td>1</td><td>0</td><td>1</td><td>1</td><td>min</td><td>Α</td></b<>	1	1	0	1	1	min	Α
	1	1	1	1	1	min	Α

Mux							
Select	Result						
0	S0						
1	S1						

	S0			C[10]						
			00	01	11	10				
	Sign	0	0	1	Х	Х				
	Sign	1	X	X	1	1				

$$S1 = C[1] + C[0]$$

$$S0 = Sign.C[1] + Sign'.C[0]'$$

Add_sub:

AU2 (is used to calculating add/sub/max and controlled by

Select	Function		
0	Add		
1	Sub		

Opcode[3..2]:

- The same as AU1, only different "Control" block and the Select of "Add_sub" Block:

- "Control" Block:

	Control AU1								
		Input				Ou	tput		Output of AU1
	Sign	C[1]	C[0]		S1	S0	Select	Funtion	
	0	0	0		1	0	0	Add	Result of Add_sub
A>B	0	0	1		1	0	1	Sub	Result of Add_sub
A/B	0	1	0		1	1	1	Max	Α
	0	1	1		1	0	1	Sub	Result of Add_sub
	1	0	0		1	0	0	Add	Result of Add_sub
A <b< td=""><td>1</td><td>0</td><td>1</td><td></td><td>1</td><td>0</td><td>1</td><td>Sub</td><td>Result of Add_sub</td></b<>	1	0	1		1	0	1	Sub	Result of Add_sub
AND	1	1	0		0	x	1	Max	В
	1	1	1		1	0	1	Sub	Result of Add_sub

	S1		C[10]					
31		00	01	11	10			
Cian	0	1	1	1	1			
Sign	1	1	1	0	1			

Sol	ect		C[10]						
361	Select		00 01 11 1						
Cian	0	0	1	1	1				
Sign	1	0	1	1	1				

s	0	C[10]					
7	U	00	00 01 11 10				
Sign	0	0	0	0	1		
Sign	1	0	0	0	x		

$$S1 = (C[1].C[0]'.Sign)'$$

$$Select = C[1] + C[0]$$

$$S0 = C[1].C[0]$$

• Register:

- Register if created by 8 D-FF and "Mux2_1".
- The input Select decides that the register loads new value or not. If Select = 0 => no load new value and put previous value (S0) into D-FF so it can stores value, otherwise, Select = 1 => load new value (S1).

• Shift 3 (8 bits):

Connect bits [7..3] of input to bits[4..0] of output, remaining bits of output are GND.

• Shift 1 (8 bits):

Connect bits [7..1] of input to bits[6..0] of output, remaining bit of output is GND.

2. Controller

Controller includes "Next_state" block, Register always load new value and a block to decode from state into control signal to control datapath.

Note (according to datapath):

- I1B3: control tri allows transferring data from Input1 to Bus 3.
- AU1B3: control tri allows transferring data from AU1 to Bus_3. (in the same time only Input1 or AU1 load data to Bus_3)
- R1B2 (Bus2[0]): control tri allows loading data from Register1 to Bus 2.

- R2B2 (Bus2[1]): control tri allows loading data from Register2 to Bus_2. (in the same time only register1 or register2 load data to Bus_2)
- I2B4: control tri allows transferring data from Input2 to Bus_4.
- AU1B4: control tri allows transferring data from AU1 to Bus_4. (in the same time only Input2 or AU1 load data to Bus_4)
- S3B7: control tri allows transferring data from Shift3 to Bus_7.
- AU2B7: control tri allows transferring data from AU2 to Bus_7. (in the same time only Shift3 or AU2 load data to Bus_7)
- R4B5 (Bus5[0]): control tri allows transferring data from Register4 to Bus 5.
- R5B5 (Bus5[1]): control tri allows transferring data from Register5 to Bus_5. (in the same time only Register4 or Register5 load data to Bus_5)
- LR1: Allows to load data to Register1.
- LR2: Allows to load data to Register2.
- LR3: Allows to load data to Register3.
- LR4: Allows to load data to Register4.
- LR5: Allows to load data to Register5. (LR5-LR1 corresponding to LR[4..0])
- Opcode[3..0]: OP[3..2] control AU2, OP[1..0] control AU1.
- Done: when state is S8 (after successfully calculated final result we will have the output is result, in other states output is "X")

• Next state:

CTATE			IN				0	UT	
STATE	Start	Q3	Q2	Q1	Q0	Q3+	Q2+	Q1+	Q0+
S0	0	0	0	0	0	0	0	0	0
S0	1	0	0	0	0	0	0	0	1
S1	X	0	0	0	1	0	0	1	0
S2	X	0	0	1	0	0	0	1	1
S3	X	0	0	1	1	0	1	0	0
S4	X	0	1	0	0	0	1	0	1
S5	X	0	1	0	1	0	1	1	0
S6	X	0	1	1	0	0	1	1	1
S7	X	0	1	1	1	1	0	0	0
S8	X	1	0	0	0	1	0	0	1
S9	X	1	0	0	1	1	0	1	0
S10	X	1	0	1	0	1	0	1	1
S11	X	1	0	1	1	1	1	0	0
S12	X	1	1	0	0	1	1	0	1
S13	X	1	1	0	1	0	1	1	1
S14	X	1	1	1	0	X	X	X	Х
S15	X	1	1	1	1	X	X	X	Х

Temporarily removed Start to easy to draw K map, after that we or (+) Q_{0+} with Start.S₀, because Start = 1 only in case that input(Q3_Q2_Q1_Q0) = 0000 and output(Q3+ Q2+ Q1+ Q0+) = 0001:

Q:	от		Q1_Q0						
Ų,	5 T	00	00 01 11						
	00								
02 02	01			1					
Q3_Q2	11	1		X	X				
	10	1	1	1	1				

$$Q_{3+} = Q_3.Q_2' + Q_3.Q_0' + Q_2.Q_1.Q_0'$$

Q) <u> </u>		Q1_Q0						
	21	00	01	11	10				
	00			1					
02.02	01	1	1		1				
Q3_Q2	11	1	1	X	Х				
	10			1					

$$Q_{3+} = Q_3.Q_2' + Q_3.Q_0' + Q_2.Q_1.Q_0$$

$$Q_{2+} = (Q_2+Q_1) \times (Q_2+Q_0) \times (Q_2.Q_1.Q_0)'$$

Q	14		Q1_	_Q0	
u	LŦ	00	01	11	10
	00	1			1
02.02	01		1		1
Q3_Q2	11		1	X	X
	10		1		1

$$Q_{1+} = (Q_1+Q_0) \times (Q_1.Q_0)$$

	1.		Q1_Q0						
Q	JŦ	00	01	11	10				
	00				1				
02.02	01	1			1				
Q3_Q2	11		1	X	Х				
	10	1			1				

$$Q_{0+} = Q_1.Q_0' + Q_3'.Q_2.Q_0' + Q_3.Q_2'.Q_0' + Q_3.Q_2.Q_0$$

+ Start. $Q_3'.Q_2'.Q_1'.Q_0'$

• Decoder from state to controll:

		- 1	N												OL	JT									
STATE	Q3	Q2	Q1	Q0		I1B3	1284	R1B2	R2B2	AU1B3	AU1B4	S3B7	R4B5	R5B5	AU2B7	LR1	LR2	LR3	LR4	LR5	OP[3]	OP[2]	OP[1]	OP[0]	DONE
S0	0	0	0	0	1	1	1									1	1						X	X	
S1	0	0	0	1]			1															0	0	
S2	0	0	1	0	1				1	1						1							0	0	
S3	0	0	1	1	1				1		1						1						0	0	
S4	0	1	0	0]																		1	X	
S5	0	1	0	1	1				1											1			0	1	
S6	0	1	1	0	1							1						1	1				Х	X	
S7	0	1	1	1]	1	1						1			1	1				0	1	X	X	
S8	1	0	0	0				1							1			1					0	0	
S9	1	0	0	1	1				1	1				1		1					0	0	0	0	
S10	1	0	1	0]						1				1		1	1					0	0	
S11	1	0	1	1]				1				1								1	0	1	X	
S12	1	1	0	0	1				1						1			1		1			0	1	
S13	1	1	0	1]							1						1	1				Х	X	1
S14	1	1	1	0		X	X	X	Х	X	X	X	X	X	X	X	X	X	X	Х	X	X	X	X	X
S15	1	1	1	1]	X	Х	X	Х	Х	Х	X	Х	Х	Х	X	Х	X	X	Х	Х	Х	X	X	Х

11	02		Q1_Q0						
111	55	00	01	11	10				
	00	1							
Q3_Q2	01			1					
Q5_Q2	11			X	X				
	10								

121	D //		Q1_Q0						
121	D4	00	01	11	10				
	00	1							
Q3_Q2	01			1					
Q3_Q2	11			X	X				
	10								

$$\mathbf{I1B3} = Q_3'.Q_2'.Q_1'.Q_0' + Q_2.Q_1.Q_0$$

R1	רם		Q1_Q0					
KI	DZ	00	01	11	10			
	00		1					
Q3_Q2	01							
Q3_Q2	11			X	X			
	10	1						

$$\pmb{\textbf{I2B4}} = Q_3\text{'}.Q_2\text{'}.Q_1\text{'}.Q_0\text{'} + Q_2.Q_1.Q_0$$

	D.		Q1_Q0					
R2	B2	00	01	11	10			
	00	0	X	1	1			
Q3_Q2	01	1	1	X	X			
Q3_Q2	11	1	X	X	X			
	10	0	1	1	Х			

$$\mathbf{R1B2} = \mathbf{Q_3'.Q_2'.Q_1'.Q_0} + \mathbf{Q_3.Q_2'.Q_1'.Q_0'}$$

AU1B3			Q1_	_Q0	
AU.	100	00	01	11	10
	00				1
Q3_Q2	01				
Q5_Q2	11			X	X
	10		1		

$$\mathbf{R2B2} = \mathbf{Q}_2 + \mathbf{Q}_0 + \mathbf{Q}_1$$

ALL	AU1B4		Q1_	Q0	
AU.	104	00	01	11	10
	00			1	
Q3_Q2	01				
Q3_Q2	11			X	Χ
	10				1

$$\mathbf{AU1B3} = \mathbf{Q}_3'.\mathbf{Q}_2'.\mathbf{Q}_1.\mathbf{Q}_0' + \mathbf{Q}_3.\mathbf{Q}_2'.\mathbf{Q}_1'.\mathbf{Q}_0$$

$$\mathbf{AU1B4} = Q_3.Q_1.Q_0' + Q_3'.Q_2'.Q_1.Q_0$$

S3B7			Q1_	_Q0	
33	D/	00	01 11 10		10
	00				
03 02	01				1
Q3_Q2	11		1	X	X
	10				

 $S3B7 = Q_2.Q_1.Q_0' + Q_3.Q_2.Q_0$

R5B5			Q1_Q0			
67	65	00	01	01 11 10		
	00					
03.02	01					
Q3_Q2	11			X	X	
	10		1			

$$R5B5 = Q_3 \cdot Q_2' \cdot Q_1' \cdot Q_0$$

LR1		Q1_Q0				
LF	(1	00	01	11	10	
	00	1			1	
03.02	01			1		
Q3_Q2	11			X	X	
	10		1			

$$\mathbf{LR1} = Q_3'.Q_2'.Q_0' + Q_2.Q_1.Q_0 + Q_3.Q_2'.Q_1'.Q_0 \qquad \mathbf{LR2} = Q_3'.Q_2'.Q_1 + Q_2.Q_1.Q_0 + Q_3.Q_1.Q_0'$$

$$\mathbf{LR3} = \mathbf{Q}_3.\mathbf{Q}_2 + \mathbf{Q}_3.\mathbf{Q}_0' + \mathbf{Q}_2.\mathbf{Q}_1.\mathbf{Q}_0'$$

LR5			Q1_Q0			
LF	(3	00	01	01 11 10		
	00					
03 03	01		1			
Q3_Q2	11	1		X	X	
	10					

$$LR5 = Q_3.Q_2.Q_0' + Q_3'.Q_2.Q_1'.Q_0$$

D4	R4B5		Q1_Q0			
K4	00	00	01 11 10		10	
00	00					
03.02	01			1		
Q3_Q2	11			X	X	
	10			1		

 $\mathbf{R4B5} = \mathbf{Q}_3.\mathbf{Q}_1.\mathbf{Q}_0 + \mathbf{Q}_2.\mathbf{Q}_1.\mathbf{Q}_0$

ATTO	AU2B7		Q1_	_Q0	
AU2	. D /	00	01	01 11	
	00				
03.02	01				
Q3_Q2	11	1		X	X
	10	1			1

$$AU2B7 = Q_3.Q_0$$

LR2			Q1_Q0				
L	12	00	01 11 10		10		
	00		1	1			
03.02	01			1			
Q3_Q2	11			X	X		
	10				1		

$$LR2 = O_3' \cdot O_2' \cdot O_1 + O_2 \cdot O_1 \cdot O_0 + O_3 \cdot O_1 \cdot O_0'$$

LR4			Q1_Q0			
		00	01	11	10	
	00					
03 03	01				1	
Q3_Q2	11		1	X	X	
	10					

$$LR4 = Q_3.Q_2.Q_0 + Q_2.Q_1.Q_0$$

ODF31			Q1_Q0				
OP	[3]	00	01 11 10		10		
	00	X	X	X	X		
03 03	01	X	X	0	X		
Q3_Q2	11	X	X	X	X		
	10	X	0	1	X		

$$\mathbf{OP[3]} = Q_3.Q_1$$

OP[2]			Q1_Q0				
	[-]	00	01 11 v		10		
	00	X	X	X	Х		
03 03	01	X	X	1	X		
Q3_Q2	11	X	X	X	X		
	10	X	0	0	X		

OP[2]	$= Q_3$
--------------	---------

OP[0]		Q1_Q0			
		00	01	11	10
Q3_Q2	00	X	0	0	0
	01	X	1	X	X
	11	1	X	X	X
	10	0	0	X	0

$$\mathbf{OP}[\mathbf{0}] = \mathbf{Q}_2$$

OP[1]		Q1_Q0			
		00	01	11	10
Q3_Q2	00	X	0	0	0
	01	1	0	X	X
	11	0	X	X	X
	10	0	0	1	0

$$\mathbf{OP[1]} = \mathbf{Q_3'.Q_1'.Q_0'} + \mathbf{Q_3.Q_1.Q_0}$$

DONE		Q1_Q0			
		00	01	11	10
Q3_Q2	00				
	01				
	11		1	X	X
	10				

$$\mathbf{DONE} = Q_3.Q_2.Q_0$$

3. Waveform


```
a = 3

b = -4

t1 = |a| = 3

t2 = |b| = 4

t4 = min(t1, t2) >> 1 = 1

x = max(t1, t2) = 4

t3 = max(t1, t2) >> 3 = 0

t5 = x - t3 = 4

t6 = t4 + t5 = 5

t7 = max(t6, x) = 5

Result = t7 = 5
```

```
a = -6
b = 8
t1 = |a| = 6
t2 = |b| = 8
t4 = min(t1, t2)>>1 = 3
x = max(t1, t2) = 8
t3 = max(t1, t2)>>3 = 1
t5 = x - t3 = 7
t6 = t4 + t5 = 10
t7 = max(t6, x) = 10
Result = t7 = 10
```

```
a = -40

b = 32

t1 = |a| = 40

t2 = |b| = 32

t4 = min(t1, t2) >> 1 = 16

x = max(t1, t2) = 40

t3 = max(t1, t2) >> 3 = 5

t5 = x - t3 = 35

t6 = t4 + t5 = 51

t7 = max(t6, x) = 51

Result = t7 = 51
```



```
a = 66

b = -64

t1 = |a| = 66

t2 = |b| = 64

t4 = min(t1, t2) >> 1 = 32

x = max(t1, t2) = 66

t3 = max(t1, t2) >> 3 = 8

t5 = x - t3 = 58

t6 = t4 + t5 = 90

t7 = max(t6, x) = 90

Result = t7 = 90
```

```
a = -95

b = 70

t1 = |a| = 95

t2 = |b| = 70

t4 = min(t1, t2) >> 1 = 35

x = max(t1, t2) = 95

t3 = max(t1, t2) >> 3 = 11

t5 = x - t3 = 84

t6 = t4 + t5 = 119

t7 = max(t6, x) = 119

Result = t7 = 119
```