MATH 165 Linear Algebra & Diff. Equation Midterm II Review Note with Examples

Professor Madhu

 \LaTeX by Ethan University of Rochester

Spring 2024

Contents

1	\mathbf{Det}	erminants	2
	1.1	Lecture 9: Def. of Determinants & it's calculation	2
		1.1.1 What is Determinants	2
		1.1.2 How to calculate Determinants	2
		1.1.3 Inverse of 2 by 2 matrix	6
		1.1.4 Determinat of matrix functions	7
		1.1.5 Geometry Application: areas and volumes	7
	1.2	Lecture 10: Rank, Invertibility, Elementary Row Operations & additional	
		properties of determinants	10
2	Vec	tor Spaces	11
	2.1	Lecture 11: Vector Spaces, Zero-Vectors, Dimentions, basis, & Linear Com-	
		binations	11
	2.2	Lecture 12: Vector Subspace & Proof	12
	2.3	Lecture 13: Spanning Set	13
	2.4	Lecture 14: Spanning, Linear Independence & Basis	14
	2.5	Lecture 15: Linear Independence & Basis and dimension	15
	2.6	Lecture 16: Basis, Row and Columns Spaces	16

Chapter 1

Determinants

1.1 Lecture 9: Def. of Determinants & it's calculation

This lecture covers:

- 3.1 The Definition of the Determinant
- 3.3 Cofactor Expansions (partly)

1.1.1 What is Determinants

Definition 1.1.1: Determinants

The **determinants** of a square matrix A, denoted $\det(A)$, is a number associated with the matrix A that is *designed* to carry information about the invertibility (among other things) of the matrix A. We also use the notation |A| to denote the determinant of A.

The way we calculate determinants is derived from the fact of changing the matrix into RREF (Reduce-Row-Echelon-Form) and seeing if the matrix is invertible. If the matrix is invertible, then the determinant is not zero. If the matrix is not invertible, then the determinant is zero. The way we calculate it is based on observation. (P.196)

1.1.2 How to calculate Determinants

1 by 1 matrix The determinant of a 1×1 matrix [a11] is a_{11} . Example.

Calculate the determinant of the matrix A = [3].

$$|3| = 3$$

What is the rank of the matrix A?

The rank of the matrix A is 1.

3

Example.

Calculate the determinant of the matrix A = [0].

$$|0| = 0$$

What is the rank of the matrix A?

The rank of the matrix A is 0. (Since the determinant is 0, the matrix is not invertible.)

2 by 2 matrix The determinant of a 2×2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is given by ad = bc.

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

The way we calculate it is by taking the product of the diagonal elements and subtracting the product of the off-diagonal elements.

Example.

Calculate the determinant of the matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.

$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 1 \cdot 4 - 2 \cdot 3 = 4 - 6 = -2$$

What is the rank of the matrix A?

The rank of the matrix A is 2.

Is the matrix invertible?

Yes, the matrix is invertible, since $-2 \neq 0$.

Example.

Calculate the determinant of the matrix $A = \begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix}$.

$$\begin{vmatrix} 2 & 3 \\ 4 & 6 \end{vmatrix} = 2 \cdot 6 - 3 \cdot 4 = 12 - 12 = 0$$

What is the rank of the matrix A?

The rank of the matrix A is 1.

Is the matrix invertible?

No, the matrix is not invertible, since 0 = 0.

Figure 1.1: Determinant of a 3×3 matrix

3 by 3 matrix The determinant of a 3×3 matrixhas a similar 'diagonals'-type definition:

$$|A| = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = aei + bfg + cdh - ceg - bdi - afh$$

We can use a clever trick with arrows by repeating the first two columns to calculate the determinant of a 3×3 matrix.

Example.

Calculate the determinant of the matrix
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
.

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = 1 \cdot 5 \cdot 9 + 2 \cdot 6 \cdot 7 + 3 \cdot 4 \cdot 8 - 3 \cdot 5 \cdot 7 - 2 \cdot 4 \cdot 9 - 1 \cdot 6 \cdot 8 = 0$$

What is the rank of the matrix A?

The rank of the matrix A is 2.

Is the matrix invertible?

No, the matrix is not invertible, since 0 = 0.

Remark.

If the dimension of a matrix is greater than 3×3 , we won't be able to find the determinant in one step, as the sub-matrices will have dimension at least 3×3 .

Larger matrix Another more common way to find the determinant of a 3×3 matrix is to use the **cofactor expansion** method. The cofactor expansion method is a way to calculate the determinant of a matrix by breaking it down into smaller matrices. This can also apply to **larger matrices**.

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

Theorem 1.1.2: Cofactor Expansion

We may expandalong row i:

$$\det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in} = \sum_{i=1}^{n} a_{ij}C_{ij}$$

We may expand along column j:

$$\det(A) = a_{1j}C_{1j} + a_{2j}C_{2j} + \dots + a_{nj}C_{nj} = \sum_{i=1}^{n} a_{ij}C_{ij}$$

The way you do so is to choose a row or a column (typically, a row or column with the most zeros) and expand the determinant along that row or column. If the matrix after expansion is still not a 2×2 matrix, you can expand it again.

Example.

Calculate the determinant of the matrix
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{bmatrix}$$
.

Let's choose the first row to expand the determinant.

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{vmatrix} = 1 \begin{vmatrix} 6 & 7 & 8 \\ 10 & 11 & 12 \\ 14 & 15 & 16 \end{vmatrix} - 2 \begin{vmatrix} 5 & 7 & 8 \\ 9 & 11 & 12 \\ 13 & 15 & 16 \end{vmatrix} + 3 \begin{vmatrix} 5 & 6 & 8 \\ 9 & 10 & 12 \\ 13 & 14 & 16 \end{vmatrix} - 4 \begin{vmatrix} 5 & 6 & 7 \\ 9 & 10 & 11 \\ 13 & 14 & 15 \end{vmatrix}$$

$$= 1 \times 6 \begin{vmatrix} 11 & 12 \\ 15 & 16 \end{vmatrix} - 2 \times 7 \begin{vmatrix} 9 & 12 \\ 13 & 16 \end{vmatrix} + 3 \times 8 \begin{vmatrix} 9 & 11 \\ 13 & 15 \end{vmatrix} - 4 \times 5 \begin{vmatrix} 10 & 11 \\ 14 & 15 \end{vmatrix} \dots = 0$$

What is the rank of the matrix A?

The rank of the matrix A is 2.

Is the matrix invertible?

No, the matrix is not invertible, since 0 = 0.

1.1.3 Inverse of 2 by 2 matrix

Proposition 1.1.3

Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ be a 2×2 matrix. If $\det(A) \neq 0$, then the inverse of A is given by

$$A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Proof. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ be a 2×2 matrix. If $\det(A) \neq 0$, then

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

$$= \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

$$A \times A^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

$$\frac{1}{ad - bc} (a \times d + b \times (-c)) = \frac{ad - bc}{ad - bc} = 1$$

$$\frac{1}{ad - bc} (a \times (-b) + b \times a) = \frac{-ab + ab}{ad - bc} = 0$$

$$\frac{1}{ad - bc} (c \times d + d \times (-c)) = \frac{cd - cd}{ad - bc} = 0$$

$$\frac{1}{ad - bc} (c \times (-b) + d \times a) = \frac{-bc + ad}{ad - bc} = 1$$

$$A \times A^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$$

Thus,
$$A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
.

Example.

Find the inverse of the matrix
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
.

$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 1 \cdot 4 - 2 \cdot 3 = 4 - 6 = -2$$
 Since $\det(A) = -2 \neq 0$, we can find the inverse of A .

$$A^{-1} = \frac{1}{-2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 3/2 & -1/2 \end{bmatrix}$$

1.1.4 Determinat of matrix functions

Given a matrix function M(t), its determinant det(M(t)) can be found using exactly the same techniques as that of a numerical matrix. The only difference is that the determinant is a function of t.

Example.

Find

$$\begin{vmatrix} \cos(t) & -\sin(t) \\ \cos(t) & \sin(t) \end{vmatrix}$$

$$\begin{vmatrix} \cos(t) & -\sin(t) \\ \cos(t) & \sin(t) \end{vmatrix} = \cos(t) \cdot \sin(t) - (-\sin(t) \cdot \cos(t))$$

$$= \sin(t) \cdot \cos(t) + \sin(t) \cdot \cos(t)$$

$$= 2\sin(t) \cdot \cos(t)$$

$$= \sin(2t)$$

Geometry Application: areas and volumes 1.1.5

Areas Suppose O is the origin in the xy-plane. Let P be a parallelogram with vertices $O = (0,0), A = (a_1, a_2), B = (b_1, b_2), \text{ and } C = (c_1, c_2).$

Fact 1.1.4

The area of the parallelogram P is given by

$$Area(P) = \left| \det \left(\begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} \right) \right|$$

Since the area is always positive, we take the absolute value of the determinant.

Figure 1.2: Area of a parallelogram

Volumes Similarly, the volume of a parallelepiped in \mathbb{R}^3 is given by the absolute value of the determinant of the matrix whose rows are the vectors representing the edges of the parallelepiped.

Fact 1.1.5

The volume of the parallelepiped determined by sides OA, OB, and OC where

$$A = (a_1, a_2, a_3), B = (b_1, b_2, b_3), C = (c_1, c_2, c_3)$$

is given by

Volume =
$$\left| \det \left(\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \right) \right|$$

Proof. The area of the parallelogram is Area = (length of base) \times (perpendicular height). This can be written as

Area =
$$||a||h = ||a||||b|| \sin(\theta)||a \times b||$$

Since the k components of a and b are both zero (since the vectors lie in thexy-plane), substitution from Equation yields

Area =
$$||(a_1b_2 - a_2b_1)k|| = |a_1b_2 - a_2b_1| = |\det(A)|$$
.

Example.

Find the area of the triangle with vertices (1,1),(2,3),(6,9).

$$\begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} = 1 \cdot 3 - 1 \cdot 2 = 3 - 2 = \boxed{1}$$

Note: Since the vector (6,9) is a multiple of the vector (2,3) (linearly dependent), we can ignore the third vertex (6,9).

1.2 Lecture 10: Rank, Invertibility, Elementary Row Operations & additional properties of determinants

Chapter 2

Vector Spaces

2.1 Lecture 11: Vector Spaces, Zero-Vectors, Dimentions, basis, & Linear Combinations

2.2 Lecture 12: Vector Subspace & Proof

2.3 Lecture 13: Spanning Set

2.4 Lecture 14: Spanning, Linear Independence & Basis

2.6 Lecture 16: Basis, Row and Columns Spaces