Algoritmos em Grafos

Prof. Fábio Dias

18 de novembro de 2024

Sumário

Definição

2 Representações de Grafos

Definição

Um grafo G = (V, E) é definido pelo par de conjuntos V e E, onde:

- V conjunto não vazio: os vértices ou nós do grafo;
- E conjunto de pares ordenados (v, w), $v \in w \in V$: as arestas do grafo.

Dado dois vértices do grafo, irá existir uma aresta entre eles se houver uma ligação entre esses vértices.

PROFESSOR, QUE TIPO DE LIGAÇÃO????

Definição

Figura: Facebook: Relações entre pessoas.

Definição

Figura: Problema do caminho mínimo: vértices locais, arestas entre esses locais

Exemplos

Vamos definir matemáticamente o grafo G = (V, E) do Facebook:

- $V = \{p : p \text{ \'e uma pessoa }\}$
- $E = \{(v, w) : < v \text{ \'e amigo de } w > \}$

- Cada aresta será representada pelos par de vértices que ela é incidente;
- Quando a relação entre os vértices são simétrica, ou seja, v é amigo de w SSE w é amigo de v, dizemos que o grafo é não direcionado.

Grafos Direcionados

- $V = \{p : p \text{ \'e uma pessoa }\}$
- $E = \{(v, w) : < v \text{ segue } w > \}$

Nesse caso, se existir o arco (aqui as arestas são chamadas de arcos) (v, w), pode não existir o arco (w, v).

Nesse caso, chamamos de grafo direcionado ou orientado ou digrafo.

Grafos Ponderados

- Existe uma função $c: E \rightarrow R$;
- Para toda arestas $(v, w) \in E$, $c(v, w) \in R$ é o peso, custo, valor da aresta (v, w);

Em alguns caso, os vértices também podem ter um valor associado.

Definições

• Um subgrafo G' = (V', E') de um grafo G = (V, E) é uma parte do grafo, ou seja, $V' \subseteq V$ e $E' \subseteq E$:

Definições

• Um subgrafo G' = (V', E') é gerador quando V' = V e $E' \subseteq E$:

Caminho no Grafo

Passeio em grafo: Um passeio em um grafo é uma sequência de vértices dotada da seguinte propriedade: se v e w são vértices consecutivos na sequência, então (v,w) é uma aresta do grafo. Ex: < v1, v2, v4, v2, v3 >.

Caminho em grafo: Um caminho em um grafo é um passeio sem arestas repetidas, ou seja, é um passeio em que as arestas são todas diferentes entre si. Ex: < v1, v2, v4, v3 >.

Um Caminho Simples é um caminho sem repetição de vértices.

Ciclo no Grafo

Ciclo em grafos: Um ciclo é um caminho com origem e destino iguais.

Ex: $C_1 = \langle v2, v3, v5, v4, v2 \rangle$ e $C_2 = \langle v2, v3, v4, v2 \rangle$.

Grafo Acíclico

Grafos Acíclico: Um grafo que não contém ciclos.

Grafo Conexo e Desconexo

Considere os grafos abaixo:

E possível achar um caminho entre os vértices v_1 e v_2 ?

Grafo Conexo e Desconexo

Considere os grafos abaixo:

E possível achar um caminho entre os vértices v_1 e v_2 ?

Grafo Conexo: Um grafo é dito conexo se existir pelo menos um caminho entre cada par de vértices do grafo. Caso contrário, o grafo é chamado de desconexo.

O grafo G_1 acima é conexo, e o grafo G_2 é desconexo.

Componentes em Grafo Desconexo

Cada um dos subgrafos conexos maximais de um grafo desconexo é chamado de uma **componente** do grafo. Ou seja, uma componente é um subgrafo conexo que não esteja estritamente contido em outros subgrafos conexos.

Árvores

Uma árvore é um grafo conexo acíclico.

Grafo Completo

Um grafo é dito ser completo quando há uma aresta entre cada par de seus vértices.

Grafo Bipartite

Acima tem um tipo de grafo chamado de Grafo Bipartidos: Grafos cujos vértices podem ser particionado em dois conjuntos disjuntos, tais que só existe arestas entre esse conjuntos;

Principais Propriedades em Grafos

- Dizemos que um vértice v é vizinho (adjacente) de w, se existe a aresta (v, w). Dizemos que a aresta (u, v) é incidente aos vértices u e v;
- Vizinhança de um vértice v (N(v)) é um subconjunto do conjunto de vértices V contendo os vizinhos de v;

- $N(2) = \{0, 1, 3, 8\}, N(4) = \{1, 5, 7, 9, 10\}.$
- *Grau* do vértice em grafos não direcionados é o número de arestas incidentes ao vértice, ou seja, grau(v) = |N(v)|.
- Grau de entrada (saída) de um vértice em um grafo direcionado número de arcos que entram (saem) dele.

Complexidade Computacional em Grafos

- O tempo de execução para um algoritmo que recebe a entrada sendo um Grafo, estará em função do tamanho de V e E, ou seja, |V| e |E|;
- Um algoritmo com complexidade O(VE), ou $O(V^2 \log E)$;
- Na complexidade, por simplicidade, não iremos colocar as ||.

Representações de Grafos

- Podemos representar um grafo, com uma estrutura que represente os conjuntos V e E;
- Para representar V, basta usamos a nomenclatura de índices: 1, ..., |V|;
- As duas principais formas de representação de arestas são:
 - Lista de Adjacências;
 - Matriz de Adjacências.
- Qualquer desses modos se aplicar a grafos n\u00e3o direcionado quanto direcionado.

Lista de Adjacência

- ullet O grafo consiste de um vetor de |V| listas, uma para cada vértices;
- Para cada $v \in V$, a lista adj[v] contém todos os vértices vizinhos de v;

Lista de Adjacência


```
#include #include ...
int N = 5;
list<int> Adj[N + 1];
Adj[1].push_back(2);
Adj[1].push_back(5);
Adj[2].push_back(1);
Adj[2].push_back(5);
Adj[2].push_back(3);
Adj[2].push_back(4);
Adj[3].push_back(4);
Adj[3].push_back(4);
```


Matriz de Adjacência

- O grafo consiste de uma matriz de dimensão |V|x|V|, onde cada célula da matriz irá conter 1 ou 0;
- matriz[v][w] será 1 se o vértice w é vizinho de v, 0 caso contrário;

Ambas

1	->	2	-	-	4	/
2	-	5	/			
3	->	6	-	>	5	/
4	->	2	/			
5	-	4	1			
6	-	6	1			

	1	2	3	4	5	
	0	1	0	0	1	
2	1	0	1	1	1	
;	0	1	0	1	0	
Ļ	0	1	1	0	1	
		1		1		

	1	2	3	4	5	6
1	0 0 0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	1

Qual é a melhor????

- Quem consome mais memória?
- Qual o custo para saber se um vértice w é vizinho de v?
- Qual o custo para listar todos os vizinho de um vértices?

Quem consome mais memória?

- Observe primeiro que $|E| = O(|V|^2)$;
- Em geral a Matriz de Adjacência consome mais memória:
 - Matriz: $\Theta(|V|^2)$ e Lista: $\Theta(|V| + |E|)$;
 - Principalmente para grafos esparsos;
- Grafos esparsos são aqueles para os quais |E| é muito menor que $|V|^2$;
- Grafos densos são aqueles para os quais |E| está próximo de $|V|^2$;
- Para grafos completos, ou seja, grafos com arestas entre todos os vértices, qual a diferença nas duas em relação a memória?
- Mas, em grafos não ponderados, podemos criar uma matriz de bit

Qual o custo para saber se um vértice w é vizinho de v?

- Matriz de Adjacência: O(1);
- Lista de Adjacência: O(|N(v)|);
- Portanto, a Matriz de Adjacência é mais indicada em aplicações que precisamos saber rapidamente se há uma aresta conectando dois vértices fornecido;

Qual o custo para listar todos os vizinho de um vértices?

- Matriz de Adjacência: O(|V|);
- Lista de Adjacência: O(|N(v)|);
- Portanto, a lista de Adjacência é mais indicada em aplicações que normalmente precisamos saber todos os vizinhos de um vértices;

Qual a melhor?

- Depende da aplicação;
- A maioria dos algoritmos em grafos utilizam a representação com Lista de Adjacência;
- A matriz é mais simples e por isso, em aplicações onde os grafos são pequenos, ela é mais preferível;
- Claro, se memória não for problema, tenha as duas.

Perguntas?!

