Universidade Federal do Rio Grande do Sul Escola de Engenharia

ENG10001 Circuitos Elétricos I-C

Trabalho Bônus 1 Associação de Quadripolos

Pedro Lubaszewski Lima (00341810)

Turma A

Sumário

1.1	Circuitos Sorteados	2
2.1	Circuito Equivalente de Thevénin da Entrada	4
3.1	Análise da Associação de Quadripolos	7
	3.1.1 Representação dos Circuitos	7
	3.1.2 Parâmetros do Quadripolo Q1	7
	3.1.3 Parâmetros do Quadripolo Q2	
	3.1.4 União dos Quadripolos	7
4.1	Circuito Equivalente de Norton da Saída	8
5.1	Ganho de Tensão da Saída V_2/V_1	Ć
6.1	Exemplos	1(

1.1 Circuitos Sorteados

Primeiramente, com o meu número de matrícula $0\ 0\ 3\ 4\ 1\ 8\ 1\ 0$, observa-se os seguintes dígitos sorteadores:

- $N_1 = 3$;
- $N_2 = 4;$
- $N_3 = 1;$
- $N_4 = 8;$
- $N_5 = 1$;
- $N_6 = 0$.

A partir deles, sabe-se que os circuito a serem analisados são os seguintes:

• Circuito de Entrada:

Figura 1: Circuito de Entrada 2

• Primeira Topologia de Quadripolo:

Figura 2: Topologia de Quadripolo 2 (Q1)

• Segunda Topologia de Quadripolo:

Figura 3: Topologia de Quadripolo 3 (Q2)

• Associação dos Quadripolos:

Figura 4: Associação dos Quadripolos Q1 e Q2

• Circuito de Saída:

Figura 5: Circuito de Saída 1

2.1 Circuito Equivalente de Thevénin da Entrada

Partindo do circuito de entrada sorteado, pode-se adotar a estratégia de transformação de fontes repetidas vezes até chegar-se no circuito equivalente de Thevénin:

Assim, com a sequência ilustrada acima, chegou-se ao circuito equivalente de Thevénin da entrada com $V_{TH}=\frac{27}{2}{\rm V}=13,5{\rm V}$ e $R_{TH}=\frac{95}{22}\Omega=4,3\overline{18}\Omega.$

- 3.1 Análise da Associação de Quadripolos
- $3.1.1 \quad {\bf Representação \ dos \ Circuitos}$
- 3.1.2 Parâmetros do Quadripolo $\mathbb{Q}1$
- 3.1.3 Parâmetros do Quadripolo Q2
- 3.1.4 União dos Quadripolos

4.1	Circuito Equivalente de Norton da Saída

5.1 Ganho de Tensão da Saída V_2/V_1

6.1 Exemplos

Figura 6: Violin Plot de Consumo Médio

Modelo	Média dos MSE	Desvio Padrão dos MSE
kNN	5,4293	2,3616
Random Forest	1,9517	1,1847
Regressão Linear	1,6631	0,9758
Redes Neurais	1,8377	1,0418
SVM	3,3739	1,3368

Tabela 1: Médias e Desvios Padrões dos MSE