Programa de posiciones relativas entre rectas y planos

Trabajo integrador Programación de estructuras lineales y álgebra

Autores:

Cristina Díez Daniel Sabbagh Javier Taborda Ignacio Lucas

ÍNDICE

ÍNDICE	2
ESQUEMA DE CASUÍSTICAS	3
PLANTEAMIENTO DEL PROGRAMA	4
RECTAS	6
VECTORIAL	6
PARAMÉTRICA	6
CONTINUA	7
IMPLÍCITA	7
PLANOS	_
VECTORIAL	8
PARAMÉTRICA	8
GENERAL	9
CANÓNICA	9
FUENTES	10

ESQUEMA DE CASUÍSTICAS

PLANTEAMIENTO DEL PROGRAMA

El usuario tendrá varias opciones para hallar la intersección entre:

- Dos rectas
- Una recta y un plano
- Dos planos
- Tres planos

Depende de su decisión anterior, se le pedirá que elija la forma en la que quiere insertar la primera recta o plano. (*ver todas las opciones en el esquema de casuísticas)

Para las rectas tendrá las opciones de:

- Ecuación implícita
- Ecuación paramétrica
- Ecuación vectorial
- Ecuación continua

Para los **planos** tendrá las opciones de:

- Ecuación general
- Ecuación paramétrica
- Ecuación vectorial
- Ecuación canónica

El programa imprimirá si los objetos se cortan , son paralelos o coincidentes para obtener la posiciones relativas entre objetos.

Para representar los resultados vamos a utilizar la librería "imgui" (https://github.com/ocornut/imgui)

Para el cálculo de datos relacionados con las rectas y los planos utilizaremos "matlab", un programa diseñado para resolver operaciones matemáticas y realizar gráficas de datos. (https://es.mathworks.com/products/matlab.html)

ESTRUCTURA MATLAB

La estructura que seguimos se basa en scripts de matlab. A estos scripts se les pasa los datos en forma de vectores y puntos y matlab calcula los resultados y genera una imagen de rectas y planos.

RECTAS

VECTORIAL

COMPOSICIÓN

La forma vectorial es:

```
(x,y,z) = (x_0, y_0, z_0) + \lambda (u_1,u_2,u_3)
```

Donde x0,y0 y z0 son los puntos de la recta, y u1,u2 y u3 el vector director.

PEDIR AL USUARIO

Imprimir

```
Recta en forma vectorial tiene esta forma: (x,y,z) = (x0, y0, z0) + \lambda (u1,u2,u3)
```

Donde "(x0, y0, z0)" son los valores de un punto de la recta, λ un parámetro y "(u1,u2,u3)" el vector director de la recta.

```
Introduzca los valores del punto: (x0, y0, z0)
Y los valores del vector director: (u1,u2,u3)
```

Almacenar estos valores para crear la función multiplicando el vector director por un parámetro (λ por ejemplo) y sumar las coordenadas del punto.

PARAMÉTRICA

COMPOSICIÓN

La forma paramétrica de la recta es:

 $x = x_0 + \lambda u_1$

 $y = y_0 + \lambda u_2$

 $z = z_0 + \lambda u_3$

Donde x0,y0 y z0 son los puntos de la recta, y u1,u2 y u3 el vector director.

PEDIR AL USUARIO

Imprimir

Recta en forma paramétrica tiene esta forma:

 $x = x_0 + \lambda u_1$

 $y = y_0 + \lambda u_2$

 $z = z_0 + \lambda u_3$

Donde "(x0, y0, z0)" son los valores de un punto de la recta, λ un parámetro y "(u1,u2,u3)" el vector director de la recta.

Introduzca los valores del punto: (x0, y0, z0)
Y los valores del vector director: (u1,u2,u3)

Almacenar los datos

CONTINUA

COMPOSICIÓN

La forma paramétrica de la recta es:

$$x - x_0 / u_1 = y - y_0 / u_2 = z - z_0 / u_3$$

Donde x0,y0 y z0 son los puntos de la recta, y u1,u2 y u3 el vector director.

*Inciso: Tener en cuenta que <u>desaparece el parámetro</u> y que la expresión está <u>igualada</u> entre las 3 expresiones. Además, todas ellas están <u>divididas</u> entre una componente del vector director.

PEDIR AL USUARIO

Imprimir

Recta en forma continua tiene esta forma:

$$x - x_0 / u_1 = y - y_0 / u_2 = z - z_0 / u_3$$

Donde "(x0, y0, z0)" son los valores de un punto de la recta y "(u1,u2,u3)" el vector director de la recta.

Introduzca los valores del punto: (x0, y0, z0)

Y los valores del vector director: (u1,u2,u3)

Almacenar los datos

IMPLÍCITA

COMPOSICIÓN

La forma implícita de la recta es la intersección de dos planos:

$$Ax + By + Cz + D = 0$$

 $A'x + B'y + C'z + D' = 0$

Donde A,B,C y D son números (primer plano) y A´,B´,C´ y D´(segundo plano).

*Inciso: Son ecuaciones de dos planos que se interseccionan, puesto que dos planos que se cortan dan una recta.Guardar las variables de un plano por separado de las del otro.

PEDIR AL USUARIO

Imprimir

Recta en forma implícita tiene esta forma:

$$Ax + By + Cz +D = 0$$

 $A'x + B'y + C'z +D' = 0$

Donde se pueden observar dos ecuaciones de dos planos que se cortan.

Introduzca los valores del primer plano: (A,B,C,D)
Y los valores del segundo plano: (A´,B´,C´,D´)

Almacenar los datos distinguiendo los dos planos

PLANOS

VECTORIAL

COMPOSICIÓN

```
La forma vectorial es:
```

```
(x,y,z) = (x_0, y_0, z_0) + \lambda (u_1,u_2,u_3) + \mu(v_1,v_2,v_3)
```

Donde x0,y0 y z0 son los puntos de la recta; u1,u2 y u3 el primer vector director; y v1,v2 y v3 el segundo vector director. λ y μ son dos parámetros.

PEDIR AL USUARIO

Imprimir

```
Plano en forma vectorial tiene esta forma:

(x,y,z) = (x0, y0, z0) + \lambda (u1,u2,u3) + \mu(v1,v2,v3)
```

Donde "(x0, y0, z0)" son los valores de un punto del plano, λ y μ parámetros y "(u1,u2,u3)" y "(v1,v2,v3)" vectores directores del plano.

```
Introduzca los valores del punto: (x0, y0, z0)
Los valores del primer vector director: (u1,u2,u3)
Y los valores del segundo vector director: (v1,v2,v3)
```

Almacenar estos valores para crear la función multiplicando los vectores directores por parámetros (λ y μ por ejemplo) y sumar las coordenadas del punto.

PARAMÉTRICA

COMPOSICIÓN

La forma paramétrica de un plano es:

```
x = x_0 + \lambda u_1 + \mu v_1

y = y_0 + \lambda u_2 + \mu v_2

z = z_0 + \lambda u_3 + \mu v_3
```

Donde x0,y0 y z0 son los puntos de la recta; u1,u2 y u3 el primer vector director; y v1,v2 y v3 el segundo vector director. λ y μ son dos parámetros.

PEDIR AL USUARIO

Imprimir

```
Plano en forma paramétrica tiene esta forma:

x = x0 + \lambda u1 + \mu v1
```

 $y = y0 + \lambda u2 + \mu v2$ $z = z0 + \lambda u3 + \mu v3$

Donde "(x0, y0, z0)" son los valores de un punto del plano, λ y μ parámetros y "(u1,u2,u3)" y "(v1,v2,v3)" vectores directores del plano.

```
Introduzca los valores del punto: (x0, y0, z0)
Los valores del primer vector director: (u1,u2,u3)
Y los valores del segundo vector director: (v1,v2,v3)
```

Almacenar los datos

GENERAL

COMPOSICIÓN

La forma implícita o general del plano es:

$$Ax + By + Cz + D = 0$$

Donde A,B,C y D son números.

PEDIR AL USUARIO

Imprimir

Plano en forma general tiene esta forma:

$$Ax + By + Cz +D = 0$$

Donde A,B C y D son números a introducir a continuación.

Introduzca los valores del plano: (A,B,C,D)

Almacenar los datos distinguiendo los dos planos

CANÓNICA

COMPOSICIÓN

La forma canónica del plano es:

$$x/a + y/b + z/c = 1$$

Donde a,b,y c son números distintos de 0.

PEDIR AL USUARIO

Imprimii

Plano en forma canónica tiene esta forma:

$$x/a + y/b + z/c = 1$$

Donde a,b,y c son números distintos de 0.

Introduzca los valores del plano: (a,b,c)

Almacenar los datos. <u>Controlar que no sean 0.</u>

FUENTES

 $\frac{https://www.\,superprof.\,es/apuntes/escolar/matematicas/analitica/recta/ecuaciones-de-la-recta-en-el-espacio.\,html \# tema\,\,ecuacion-implicita-de-la-recta\,\,ecuaciones\,\,de\,\,la\,\,recta-el-espacio.\,html \# tema\,\,ecuacion-implicita-de-la-recta\,\,ecuaciones\,\,de\,\,la\,\,recta-el-espacio.\,html \# tema\,\,ecuacion-implicita-de-la-recta\,\,ecuaciones\,\,de\,\,la\,\,recta-el-espacio.\,html \# tema\,\,ecuacion-implicita-de-la-recta-el-espacio.\,html \# tema\,\,ecuacion-implicita-el-espacio-el-esp$

 $\frac{https://www.\,superprof.\,es/apuntes/escolar/matematicas/analitica/recta/ecuaciones-del}{-plano.\,html}\,\,ecuaciones\,del\,plano}$