#### The South African Art Market

#### **Explosive Behaviour**

Laurie Binge

GFM Presentation

15 February 2016



- Introduction
- Data
- Methodology
- Comparison and Evaluation
- Bubbles
- Conclusion



### Introduction





#### The South African Art Market

Surge in popularity of Modern and Contemporary South African art

Huge increase in prices in run-up to Great Recession

Record prices at international and local auctions

- Irma Stern's "Arab Priest" sold for £2.7m in 2011 Bonhams in London
- Irma Stern's "Two Arabs" sold for R19m by Strauss & Co

Prompted many claims of a "bubble" in the art market

#### Objectives:

- Construct indicators of art market prices over time
- Test for a "bubble" in the SA art market





#### **Arab Priest - Irma Stern**







### **Data**





#### **South African Art Auction Data**

#### AuctionVault/Citadel auction data:

- 2000-2015
- 8 auction houses
- 50.560 sales
- 4,361 artists
- Various characteristics for each records

Public auction prices vs. private prices

Bought-in lots



### **Turnover**







#### **Sales and Prices**







### Methodology





# **Measurement Methodology**

#### Accurate measurement is difficult:

- Assets are heterogeneous (unique) & involve large transaction costs
- Less liquid than traditional assets & low transaction frequency
- Small part of the overall market is traded at any given time
- Composition & quality not constant

#### Estimation methodologies:

- Naïve or central tendency methods
- Repeat sales regressions
- Hedonic regressions
- 4 Hybrid models





## **Central Tendency methods**

Average (median) price over time

Slight improvement by stratification e.g. ABSA

- Median price
- Stratified Fisher indices





# **Central Tendency Indices**







### Hedonic regression methodology

Prices described by characteristics:

$$\ln P_{it} = \alpha + \sum_{j=1}^{z} \beta_j X_{ij} + \sum_{t=1}^{\tau} \gamma_t D_{it} + \epsilon_{it}$$

Strip observable characteristics to obtain "standard asset"

Control for quality by attributing implicit prices to characteristics

Omitted variable & misspecification bias





#### **Artwork Attributes**

Artist reputation

$$\text{Artist reputation index} = \frac{\prod_{i=1}^{n} (P_{i,y})^{\frac{1}{n}} / \prod_{i=1}^{m} (P_{i,0})^{\frac{1}{m}}}{\exp\left[\sum_{j=1}^{z} \beta_{j} (\sum_{i=0}^{n} \frac{X_{ij,y}}{n} - \sum_{i=1}^{m} \frac{X_{ij,0}}{m})\right]}$$

- Size
- Auction houses
- Mediums
- Authenticity dummies
- Number of works in the lot
- Date dummies





### **Adjacent Periods**







#### **Hedonic Estimation Results**







# Repeat Sales Regression Method

Track repeated sale of a specific asset over time (e.g. Case-Shiller)

Estimate average return on set of assets in each period

$$\ln \frac{P_{t+1}}{P_t} = \sum_{i=1}^t \gamma_i d_i + \epsilon_i$$

Controls for all factors contributing to the variation in price growth

But wasteful of data (resale may only occur infrequently)

Possible sample selection bias

• e.g. low-quality houses often sell more frequently



## Hybrid Models: The Pseudo Repeat Sales Method

Limited number of repeat sales pairs (561)

• perfect matches (Wheat Field with Crows)

Match similar assets over time (Sunflowers series)

Address problem of lack of repeat sales

Create (many) pseudo sales pairs:

- Hedonic matching by artist and medium
- Set distance metric





### Index construction methodology

Repeat sales regressions on pseudo pairs:

$$\ln P_{bsj} - \ln P_{arj} = \sum_{k=1}^K \beta_k (X_{bsjk} - X_{arjk}) + \sum_{t=0}^\tau \gamma_t d_t + \epsilon_{srabj}$$

Control for many possible omitted variables by taking first differences

- includes perfect matches
- interaction and squared terms
- finer mediums, materials (e.g. linocuts)





## **Pseudo Repeat Sales Results**







### **Comparison and Evaluation**





# **Comparison of the indices**







#### **Correlations**

Table 1:Correlations in DLogs

|             | Hedonic | Adj1y   | Adj2y   | Roll    | ps.RS(1%) | ps.RS(0.1%) | ps.RS(0) |
|-------------|---------|---------|---------|---------|-----------|-------------|----------|
| Hedonic     |         |         |         |         |           |             |          |
| Adj1y       | 0.93*** |         |         |         |           |             |          |
| Adj2y       | 0.96*** | 0.99*** |         |         |           |             |          |
| Roll        | 0.96*** | 0.96*** | 0.97*** |         |           |             |          |
| ps.RS(1%)   | 0.41*** | 0.38**  | 0.37**  | 0.37**  |           |             |          |
| ps.RS(0.1%) | 0.46*** | 0.46*** | 0.46*** | 0.45*** | 0.71***   |             |          |
| ps.RS(0)    | 0.55*** | 0.57*** | 0.59*** | 0.54*** | 0.45***   | 0.68***     |          |
| Median      | 0.07    | 0.13    | 0.13    | 0.23    | 0.05      | 0.14        | 0.05     |





### **Evaluating index smoothness**

Table 2:Smoothness Indicators

|                | vol  | ac.1  |
|----------------|------|-------|
| Hedonic_Full   | 0.14 | -0.39 |
| Adjacent_1y    | 0.14 | -0.35 |
| Adjacent_2y    | 0.14 | -0.39 |
| Rolling        | 0.14 | -0.36 |
| ps.RS(1%)      | 0.13 | -0.30 |
| ps.RS(0.1%)    | 0.15 | -0.31 |
| ps.RS(nearest) | 0.16 | -0.44 |
| Median         | 0.84 | -0.31 |





### Compared to international art price indices







### **Bubbles**





#### **Bubbles in Asset Prices**

Rational bubbles: willing to pay more than fundamental value

expect asset price will exceed its fundamental value in future

Gap between market fundamental and the actual price

Present value of asset:

$$P_t = F_t + B_t$$

$$F_t = E_t \left[ \sum_{i=1}^n \frac{1}{1 + r_f} (\gamma_{t+n}) \right]$$

$$B_t = \frac{1}{1 + r_f} E_t (B_{t+n})$$

Properties of  $P_t$  are determined by those of  $F_t$  and  $B_t$ If bubble is present,  $B_t \neq 0$ , prices exhibit explosive behaviour So look for mildly explosive behaviour in price series



### Methodology: Explosive Behaviour

Method proposed by Phillips et al (2011)

Recursive autoregressive models (log real indices):

$$\Delta y_t = \alpha_w + (\rho_w - 1)y_{t-1} + \sum_{i=1}^k \phi_w^i \Delta y_{t-i} + \epsilon_t$$

Right-tailed Augmented Dickey-Fuller tests

Critical values from Monte Carlo simulations

Date stamp origination and termination



#### **Results: No Drift or Trend**







#### Results: Drift







#### **Bubble Dates**

Table 3:Dates of explosive behaviour

|                | None-Start | None-End | Drift-Start | Drift-End |
|----------------|------------|----------|-------------|-----------|
| Hedonic_Full   | 2007Q1     | 2008Q3   | 2007Q1      | 2008Q2    |
| Adjacent_1y    | 2007Q1     | 2008Q3   | 2006Q3      | 2008Q2    |
| Adjacent_2y    | 2007Q1     | 2008Q4   | 2006Q3      | 2008Q2    |
| Rolling        | 2007Q4     | 2008Q3   | 2007Q1      | 2008Q2    |
| ps.RS(1%)      | 2006Q1     | 2009Q2   | 2005Q4      | 2008Q3    |
| ps.RS(0.1%)    | 2006Q1     | 2009Q2   | 2005Q4      | 2008Q2    |
| ps.RS(nearest) | 2005Q3     | 2008Q3   | 2005Q3      | 2008Q1    |



### **Conclusion**





### **Conclusion**

Sukkel sukkel...









