

Machine Learning

Session 11 - T

Tree-Based Models – Part 1

Degree in Applied Data Science 2024/2025

Feature Space

• Linearly separable data – the feature space can be well separated by a line or hyperplane;

• **Linearly inseparable** data – the feature space cannot be effectively divided by a single line or hyperplane.

Feature Space

 Although linear models with linear boundaries offer intuitive interpretation, interpreting nonlinear decision boundaries presents challenges.

- Therefore, there is a need to build models that:
 - allow complex decision boundaries;
 - are easy to interpret.

Interpretable Models

 People from diverse backgrounds have historically relied on interpretable models to distinguish between various classes of objects and phenomena.

What Type of Data? Continuous Data Discrete Data Normally Distributed Skewed 2 groups > 2 groups > 2 groups Nonpaired 2 groups 2 groups > 2 groups Paired Expected Nonpaired Paired Nonpaired Paired Expected counts ≥ 5 in counts ≥ 5 in ≥ 75% cells < 75% cells Wilcoxon Paired ANOVA Wilcoxon Nonpara-Fisher's McNemar's Rank Sum Signed Rank t-test metric Square Test **Exact Test** Square Test ANOVA Ho: mean Ho: means Ho: Ho: Ho: differences are equal proportions proportions are equal medians median medians proportions proportions are equal are equal differences are equal are equal are equal are equal are equal are equal

ENGINEERING FLOWCHART

Source: Waning B, Montagne M: Pharmacoepidemiology: Principles and Practice: http://www.accesspharmacy.com

Copyright @ The McGraw-Hill Companies, Inc. All rights reserved.

Tree-Based Models

• Flow charts like in the previous examples can be formulated as mathematical models (graphs) for classification and regression.

- These models are:
 - Interpretable by humans;
 - Have complex decision boundaries;
 - The decision boundaries are a combination of linear boundaries that are mathematically simple to describe.

- Mathematically, a decision tree can be defined as a directed acyclic graph, comprising:
 - Nodes: Represent decision points or conditions.
 - Edges: Connect nodes and represent the outcomes of decisions.
 - Root Node: The initial decision point, representing the entire dataset.
 - Decision Nodes: Decision points where a split is made based on a feature or attribute.
 - Leaf Nodes: Terminal nodes representing final outcomes or predictions.

Root Node

https://www.datacamp.com/tutorial/decision-tree-classification-python

Age	Weight	Smoker	Prediction
35	80	yes	High Risk
25	80	yes	?

 Tree-based based methods work by partitioning the feature space into rectangles;

Predictions are made by either averaging values or based on the

most frequently class in each rectangle.

Beaulac, C., & Rosenthal, J. S. (2019). Predicting University Students' Academic Success and Major Using Random Forests. In Research in Higher Education (Vol. 60, Issue 7, pp. 1048–1064). Springer Science and Business Media LLC. https://doi.org/10.1007/s11162-019-09546-v

We will never get a split like this one!

 X_1

BRAGA

• Linear models vs Decision Trees

Decision Trees: Decision Nodes

Binary Feature

Categorical Feature

Numeric Feature

Decision Trees: Leaf Types

Classification

• Regression

Probability Estimate

$$P(y=0) = 0.2$$

 $P(y=1) = 0.3$
 $P(y=2) = 0.5$

Decision Trees: Algorithm

Trees are built using a greedy algorithm: Recursive binary partitioning

- This involves the following steps:
 - The definition of a splitting criterion;
 - The definition of a stopping rule;
 - Tree **pruning**.

Greedy means that each split is made in order to minimize a loss **without looking ahead** at future splits!

Decision Trees: Splitting Criteria

At each step, a new split is picked by finding the featue x_j and split point s
that best partitions the data into two half-spaces.

$$\{\mathbf{x}: x_j < s\} \quad \{\mathbf{x}: x_j \ge s\}.$$

• For regression we want the split that minimizes the residual sum os squares (RSS)

$$RSS = \sum_{j=1}^{J} \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2,$$

where \hat{y}_{R_i} is the mean values for the training data whithin the jth box.

- For **classification**, we can use:
 - Entropy and Information Gain
 - Gini Index

Pure

• "In information theory, the entropy of a random variable is the average level of "information", "uncertainty" or "surprise", inherent in the variable's possible outcomes."

 In the context of Decision Trees, entropy measures the disorder or impurity of a node.

$$E = -\sum_{i=1}^n p_i log_2(p_i)$$
 Very Impure Less Impure

p_i is the probability of randomly picking an example of the class i.

 $Information Gain = Entropy_{parent} - Entropy_{children}$

 $Information Gain = Entropy_{parent} - \underbrace{WeightedAvgEntropy_{children}}$

$$\text{Average Entropy} = \frac{n_{subnode_1}}{n_{parent}} E_{-} \text{subnode}_1 + \frac{n_{subnode_2}}{n_{parent}} E_{-} subnode_2 + \ldots + \frac{n_{subnode_n}}{n_{parent}} E_{-} subnode_n$$

$$E(Parent) = -\frac{16}{30}\log_2\left(\frac{16}{30}\right) - \frac{14}{30}\log_2\left(\frac{14}{30}\right) \approx 0.99$$

$$E(Balance < 50K) = -\frac{12}{13}\log_2\left(\frac{12}{13}\right) - \frac{1}{13}\log_2\left(\frac{1}{13}\right) \approx 0.39$$

$$E(Balance > 50K) = -\frac{4}{17}\log_2\left(\frac{4}{17}\right) - \frac{13}{17}\log_2\left(\frac{13}{17}\right) \approx 0.79$$

Weighted Average of entropy for each node:

$$E(Balance) = \frac{13}{30} \times 0.39 + \frac{17}{30} \times 0.79$$
$$= 0.62$$

Information Gain:

$$IG(Parent, Balance) = E(Parent) - E(Balance)$$

= 0.99 - 0.62
= 0.37

$$E(Parent) = -\frac{16}{30}\log_2\left(\frac{16}{30}\right) - \frac{14}{30}\log_2\left(\frac{14}{30}\right) \approx 0.99$$

$$E(Residence = OWN) = -\frac{7}{8}\log_2\left(\frac{7}{8}\right) - \frac{1}{8}\log_2\left(\frac{1}{8}\right) \approx 0.54$$

$$E(Residence = RENT) = -\frac{4}{10}\log_2\left(\frac{4}{10}\right) - \frac{6}{10}\log_2\left(\frac{6}{10}\right) \approx 0.97$$

$$E(Residence = OTHER) = -\frac{5}{12}\log_2\left(\frac{5}{12}\right) - \frac{7}{12}\log_2\left(\frac{7}{12}\right) \approx 0.98$$

Weighted Average of entropies for each node:

$$E(Residence) = \frac{8}{30} \times 0.54 + \frac{10}{30} \times 0.97 + \frac{12}{30} \times 0.98 = 0.86$$

Information Gain:

$$IG(Parent, Residence) = E(Parent) - E(Residence)$$

= 0.99 - 0.86
= 0.13

 The Gini Index measures the probability of misclassifying a randomly chosen element based on label distribution;

 Lower values indicate higher purity and better separation of classes in a decision tree node.

$$Gini = 1 - \sum_{i=1}^{j} P(i)^2$$
 or $Gini = 1 - \sum_{i=1}^{j} P(i)(1 - P(i))$

where j represents the number of classes in the target variable

$$Gini_{split} = Weighted Avg Gini_{nodes}$$
 Weighted Avg Gini = $\frac{n_{subnode_1}}{n_{parent}} Gini_{subnode_1} + \frac{n_{subnode_2}}{n_{parent}} Gini_{subnode_2} + ... + \frac{n_{subnode_n}}{n_{parent}} Gini_{subnode_n} + ... + \frac{n_{subnode_n}}{n_{parent}} Gini_{subnode_$

$$Gini_{(Balance < 50)} = 1 - (\frac{12}{13})^2 - (\frac{1}{13})^2 = 0.142$$

$$Gini_{(Balance \ge 50)} = 1 - (\frac{4}{17})^2 - (\frac{13}{17})^2 = 0.360$$

$$Gini = \frac{13}{30} * 0.142 + \frac{17}{30} * 0.360 = 0.266$$

$$Gini_{(OWN)} = 1 - (\frac{7}{8})^2 - (\frac{1}{8})^2 = 0.219$$

$$Gini_{(RENT)} = 1 - (\frac{4}{10})^2 - (\frac{6}{10})^2 = 0.48$$

$$Gini_{(OTHER)} = 1 - (\frac{5}{12})^2 - (\frac{7}{12})^2 = 0.486$$

$$Gini = \frac{8}{30} * 0.219 + \frac{10}{30} * 0.48 + \frac{12}{30} * 0.486 = 0.4128$$

Decision Trees: Splitting Criteria

• Why not minimize the missclassification error?

Decision Trees: Stopping Rules

- Maximum depth: limits the depth of the tree;
- Minimum samples per leaf: limits the minimum number of samples a leaf node can have;
- Minimum samples per split: limits the minimum number of samples required to perform a split;
- Maximum number of leaf nodes: caps the total number of lead nodes in a tree;

 Impurity threshold: a split is only performed if it reduces impurity by a certain amount;

 The flexibility/complexity of decision trees is mainly decided by the tree depth:

To obtain a small bias we need a deep tree!

However, this results in high variance!

- To improve the performance:
 - Pruning: grow deep trees (small bias, high variance) which then are pruned into smaller ones (reduce variance);
 - Ensemble methods (next session): combine multiple simple trees.
 - Bagging and Random Forests
 - Boosted trees

Decision Trees: Tree Pruning

 Deep trees often overfit the training data resulting in poor test performance;

• We could stop spliting as soon the information gain does not improve at least a pre-specified amount;

 However, "weak" splits early can sometimes lead to a really good split later;

Solution: Grow a deep tree and then prune it back.

Cost complexity pruning aka weakest link pruning:

Mathematically, the cost complexity measure for a tree T is given by:

$$R_{\alpha}(T) = R(T) + \alpha |T|$$

Where:

* R(T) is the risk of the tree T (overall RSS, Gini/Entropy/etc)

 $^{*}\left| \mathrm{T} \right|$ is the number of leaf nodes in the tree T

* lpha is the penalty/regularization parameter

Cost complexity pruning

Pruning rule:

prune all child nodes of t if:

$$\underbrace{(|T_t|-1)\alpha}_{\text{Penalty}} > \underbrace{R(t)-R(T_t)}_{\text{Reward}} \Rightarrow \alpha > \frac{R(t)-R(T_t)}{|T_t|-1}$$

•
$$R(t) = 0.168 * (54/150) = 0.06048$$

•
$$R(T_t) = 0.0408 * (58/150) + 0.4444 * (6/150)$$

= 0.033552

- |T| = 2
- $\frac{R(t) R(T_t)}{|T_t| 1}$ = (0.06048 0.033552) / (2-1) = 0.026928
- So, if:
 - α = 0.02 we don't prune
 - α = 0.03 we do prune
- Question:
 - How to choose the value of α ?

- Question:
 - How to choose the value of α ?
- Using cross-validation!

Decision Trees: Depth vs Error

Looks like a small 3-leaf tree has the lowest CV error!

Decision Trees: Advantages

- Interpretability: easy to understand and interpret, making them suitable for explaining the reasoning behind decisions to non-experts.
- No Data Preprocessing: can handle both numerical and categorical data without requiring extensive preprocessing such as normalization or scaling.
- Handles Non-linear Relationships: can capture non-linear relationships between features and the target variable without explicitly modeling them.
- **Handles Missing Values:** can handle missing values by simply excluding them from the splitting process, making them robust to missing data.
- Feature Importance: provide a measure of feature importance, which can help identify the most influential features in the dataset.
- **Efficiency:** have a relatively fast training time, especially for smaller datasets, compared to more complex algorithms.

Decision Trees: Limitations

- Overfitting: are prone to overfitting, especially when they grow too deep or are not pruned properly, capturing noise or specific patterns in the training data that do not generalize well.
- Instability: small variations in the data can lead to different tree structures, making decision trees unstable and sensitive to changes in the training data.
- Bias Toward Dominant Classes: in classification tasks with imbalanced classes, decision trees may exhibit a bias toward the dominant classes, leading to poor performance on minority classes.
- Greedy Nature: use a greedy, top-down approach to recursively partition the feature space, which may not always lead to the globally optimal tree structure.

Resources

Koning, M., & Smith, C. (2017). Decision trees and random forests.
 Independently Published.

https://www.youtube.com/watch?v=_L39rN6gz7Y

https://www.youtube.com/watch?v=_L39rN6gz7Y

https://www.youtube.com/watch?v=wpNl-JwwplA

https://www.youtube.com/watch?v=D0efHEJsfHo