Representación temporal de alertas ZTF

-MP2-

Profesor: Pablo Estévez

Estudiantes: Juan Pablo Contreras

Pascual Marcone

Ayudante: Sebastián Guzmán

Contexto

 Replicar AutoEncoder para procesar imágenes, extraer características y agrupar los datos

Base de datos: Science, Template y Difference

Input: Difference Image

Output: Reconstructed Image

Arquitectura del Modelo: Encoder

Encoder: Input imágen 21x21p

- 4 capas convolucionales :
 - o 1era y 3era: stride 1
 - o 2da y 4ta: stride 2
 - Kernel 3x3 y Feature Maps 64
- 2 capas Fully Connected (FCL)
 - Promedio (μ)
 - \circ Varianza (σ^2)

Implementación Encoder

```
self.encoder = nn.Sequential(
     nn. Conv2d(1, 64, kernel size=3, stride=1, padding=1),
     nn. BatchNorm2d(64),
     nn. ReLU(),
     nn. Conv2d(64, 64, kernel size=3, stride=2, padding=1),
     nn. BatchNorm2d(64),
     nn. ReLU(),
     nn. Conv2d(64, 64, kernel size=3, stride=1, padding=1),
     nn. BatchNorm2d(64),
     nn. ReLU(),
     nn. Conv2d(64, 64, kernel size=3, stride=2, padding=1),
     nn. BatchNorm2d(64),
     nn. ReLU(),
     nn. Flatten(),
self.fc mu = nn.Linear(64*6*6, latent dim)
```

 $self.fc\ logvar = nn.Linear(64*6*6, latent dim)$

Arquitectura del Modelo: Decoder

<u>Decoder</u>: Input variables latentes z

- 1 capa Fully Connected (FCL)
 - Output: 64 Features Maps de 6x6

- 6 capas convolucionales:
 - Stride 1, Kernel 3x3 y Feature Maps 64
 - Nearest neighbor interpolation (2da y 4ta)
 - Aumentan la dimensionalidad hasta 21x21

Implementación Decoder

```
self.decoder = nn.Sequential(
     nn .Linear(latent dim, 64*6*6),
     nn . ReLU(),
     nn. Unflatten(1, (64, 6, 6)),
     nn. Conv2d(64, 64, kernel size=3, stride=1, padding=1),
     nn .BatchNorm2d(64),
     nn .ReLU(),
     nn. Conv2d(64, 64, kernel size=3, stride=1, padding=1),
     nn .BatchNorm2d(64),
     nn .ReLU(),
     nn. Upsample (size=(11,11), mode='nearest'),
     nn. Conv2d(64, 64, kernel size=3, stride=1, padding=1),
     nn .BatchNorm2d(64),
     nn . ReLU(),
     nn. Conv2d(64, 64, kernel size=3, stride=1, padding=1),
     nn . BatchNorm2d(64),
     nn .ReLU(),
     nn. Upsample (size=(21,21), mode='nearest'),
     nn. Conv2d(64, 64, kernel size=3, stride=1, padding=1),
     nn .BatchNorm2d(64),
     nn .ReLU(),
     nn. Conv2d(64, 1, kernel size=3, stride=1, padding=1),
     nn . ReLU()
```

Estructura General AutoEncoder

```
class VAE (nn. Module):
   def init (self, latent dim):
        super(VAE, self). init ()
        self.encoder = (...)
        self.decoder = (...)
        self.fc sigma = nn.Sequential(
                nn. Linear (latent dim, 36),
                nn. ReLU(),
                nn. Linear (36, 1),
                nn. Sigmoid() # Auto-Regularization
   def reparametrize(self, mu, logvar):
        std = torch.exp(0.5 * logvar)
        eps = torch.randn like(std)
        return mu + eps * std
   def forward(self, x):
        h = self.encoder(x)
        mu = self. fc mu(h)
        logvar = self.fc logvar(h)
        z = self.reparametrize(mu, logvar)
        sigma = self.fc sigma(z)
        reconstruction = self.decoder(z)
        return reconstruction, mu, logvar, sigma
```

Entrenamiento del Modelo

- Utilizando loss_function entre imagen original y reconstruida
- Usando distintos tamaños de datasets
- 6 modelos. 5 entrenados con datos originales, 1 modelo entrenado con datos ficticios de gaussianas descentradas.

iginal Gaussian

Entrenamiento del Modelo

- Utilizando loss_function entre imagen original y reconstruida
- Usando distintos tamaños de datasets
- 6 modelos. 5 entrenados con datos originales, 1 modelo entrenado con datos ficticios de gaussianas descentradas.

Entrenamiento del Modelo

- Utilizando loss_function entre imagen original y reconstruida
- Usando distintos tamaños de datasets
- 6 modelos. 5 entrenados con datos originales, 1 modelo entrenado con datos ficticios de gaussianas descentradas.

Resultados del modelo

Original

Reconstructed

Gaussian

Reconstructed Gaussian

Experimento

Se experimentó con la base de datos MNIST, se obtuvieron resultados interesantes

Siguientes pasos

- 1. Agregar aumentación al modelo
- 2. Regular el overfitting
- 3. Buscar mejores técnicas de entrenamiento
- 4. Definir mejor las métricas de validación: Loss y Accuracy

Bibliografía

[1] Astorga, N., Huijse, P., Estévez, P. A., Forster, F. (2018, July). Clustering of Astronomical Transient Candidates Using Deep Variational Embedding. In 2018 International Joint Conference on Neural Networks (IJCNN). IEEE

[2] Carrasco-Davis, Rodrigo, et al. "Alert Classification for the ALeRCE Broker System: The Real-time Stamp Classifier." arXiv preprint arXiv:2008.03309 (2020).