Appendix

Christophe Ambroise

2021-2022

Snooker Frequentist example I

Let consider a snooker table, and a ball. The ball A is launched perpendicularly to a reference edge and stop at a distance I from this billiard edge.

A second ball B is thrown n times and we denote by X the number of times that B stops at a distance I' of the edge such that I' > I.

We try to estimate the proportion p the number of times u l' > l knowing that X = x. We assume that $X \sim \mathcal{B}(n, p)$ (binomial distribution).

In this case we have a sample of size 1 and the likelihood of parameter p writes:

$$\ell(p;x)=C_n^xp^x(1-p)^{n-x},$$

and by canceling the first derivative of the log-likelihood, we obtain

$$\hat{p}_{MV} = \arg\max_{p} \ell(p; x) = \frac{x}{n}$$

Snooker Frequentist example II

If many launches have been performed, the estimate of p will be satisfactory. On the other hand, if only one throw is observed, we find:

- x = 0 gives $\hat{p} = 0$;
- x = 1, which gives $\hat{p} = 1$.

In both cases the estimate appears intuitively of very poor quality.

Bayesian Statistics in a nutshell I

The maximum likelihood framework produces point estimates

Reverend T. Bayes (1701-1761)

Two years after the death of the Reverend T. Bayes (1701-1761), a friend of this one, published his essay in view of solving the doctrine of chances (Bayes 1763).

Parameters are random variables

In this little booklet, which is the source of the inference modern Bayesian statistic,

- Parameters are no longer treated as deterministic quantities but random as are observations.
- The dual role of the parameters θ and the observations x is described thanks to conditioning by Bayes' theorem:

Bayes Theorem

For a distribution (called *Prior*) π on the parameter θ , and a observation x of density $f(x|\theta)$, the distribution of θ conditionally on x

$$\pi(\theta|x) = \frac{f(x|\theta)\pi(\theta)}{\int f(x|\theta)\pi(\theta)d\theta}.$$

The main innovation of the Bayesian statistical model is the law π on the model parameters.

Prior, Posterior, Cost

Thus, in the context of a Bayesian statistical approach three functions must be specified:

- the law of the observations, the so-called likelihood $f(x|\theta)$;
- the prior distribution on the parameters, $\pi(\theta)$;
- the cost C associated with the decision δ for parameters θ .

Cost is a numerical measure of the quality of a decision.

We call the Bayes estimator associated with a prior distribution π and a cost C, any estimator δ^{π} which, given an observation vector x, minimizes the cost a posteriori

$$\rho(\pi, \delta | x) = E^{\pi}[C(\theta, \delta) | x] = \int_{\theta} C(\theta, \delta) \pi(\theta | x) d\theta.$$

$$|C(\theta - \delta)^{2}|_{\mathcal{A}} = |C(\theta, \delta)^{2}|_{\mathcal{A}} = |C(\theta, \delta)^{2}|_{\mathcal{A}}$$

$$|C(\theta - \delta)^{2}|_{\mathcal{A}} = |C(\theta, \delta)^{2}|_{\mathcal{A}} = |C(\theta, \delta)^{2}|_{\mathcal{A}}$$

$$|C(\theta - \delta)^{2}|_{\mathcal{A}} = |C(\theta, \delta)^{2}|_{\mathcal{A}} = |C(\theta, \delta)^{2}|_{\mathcal{A}}$$

$$|C(\theta - \delta)^{2}|_{\mathcal{A}} = |C(\theta, \delta)^{2}|_{\mathcal{A}} = |C(\theta, \delta)^{2}|_{\mathcal{A}}$$

$$|C(\theta - \delta)^{2}|_{\mathcal{A}} = |C(\theta, \delta)^{2}|_{\mathcal{A}} = |C(\theta, \delta)^{2}|_{\mathcal{A}}$$

$$|C(\theta - \delta)^{2}|_{\mathcal{A}} = |C(\theta, \delta)^{2}|_{\mathcal{A}} = |C(\theta, \delta)^{2}|_{\mathcal{A}}$$

$$|C(\theta - \delta)^{2}|_{\mathcal{A}} = |C(\theta, \delta)^{2}|_{\mathcal{A}} = |C(\theta, \delta)^{2}|_{\mathcal{A}}$$

$$|C(\theta - \delta)^{2}|_{\mathcal{A}} = |C(\theta, \delta)^{2}|_{\mathcal{A}} = |C(\theta, \delta)^{2}|_{\mathcal{A}}$$

$$|C(\theta - \delta)^{2}|_{\mathcal{A}} = |C(\theta, \delta)^{2}|_{\mathcal{A}} = |C(\theta, \delta)^{2}|_{\mathcal{A}}$$

$$|C(\theta - \delta)^{2}|_{\mathcal{A}} = |C(\theta, \delta)^{2}|_{\mathcal{A}} = |C(\theta, \delta)^{2}|_{\mathcal{A}}$$

$$|C(\theta - \delta)^{2}|_{\mathcal{A}} = |C(\theta, \delta)^{2}|_{\mathcal{A}} = |C(\theta, \delta)^{2}|_{\mathcal{A}}$$

$$|C(\theta - \delta)^{2}|_{\mathcal{A}} = |C(\theta, \delta)^{2}|_{\mathcal{A}} = |C(\theta, \delta)^{2}|_{\mathcal{A}}$$

$$|C(\theta - \delta)^{2}|_{\mathcal{A}} = |C(\theta, \delta)^{2}|_{\mathcal{A}} = |C(\theta, \delta)^{2}|_{\mathcal{A}} = |C(\theta, \delta)^{2}|_{\mathcal{A}}$$

$$|C(\theta - \delta)^{2}|_{\mathcal{A}} = |C(\theta, \delta)^{2}|_{\mathcal{A}} = |C(\theta, \delta)^{2}|_{\mathcal{A}} = |C(\theta, \delta)^{2}|_{\mathcal{A}}$$

$$|C(\theta - \delta)^{2}|_{\mathcal{A}} = |C(\theta, \delta)^{$$

Conjugate Prior

When the prior and the posterior have the same form, we say that the prior is a conjugate prior for the corresponding likelihood. Conjugate priors are widely used because they simplify computation, and are easy to interpret

The posterior $p(\theta|x)$ summarizes everything we know about the unknown quantities θ .

Posterior Mean, Median, Mode

We can easily compute a point estimate of an unknown quantity by computing the posterior mean, median or mode.

However, the posterior mode, aka the MAP estimate, is the most popular choice:

- it reduces to an optimization problem, for which efficient algorithms often exist.
- MAP estimation can be interpreted in non-Bayesian terms, by thinking of the log prior as a regularizer (see Lasso e.g.)

Fonctions Comma & Orta y=(x-1) La bordon Came est bession continue de $\begin{cases}
\rho(\alpha) = (\alpha - 1)
\end{cases}$ $\Gamma(\lambda) = \int_{0}^{\infty} \alpha^{d-1} e^{-2} d\alpha$ Si LEDV alors ((d) = (d-1)] Montrons M (d+1) = d M (d) $\Gamma(\Delta H) = \frac{1}{3} (\alpha + 1) = \frac$ =[-eagd] + (+ea 2 2 1 da = lin-end or-20 + d See of do $\int \int (1)^{-1}$

Montress
$$D(A,B) = \frac{\Gamma(A)\Gamma(B)}{\Gamma(A+B)}$$
 $\Gamma(A)\Gamma(Y) = \int_{U=0}^{\infty} e^{-U} x^{-1} du \int_{X=0}^{\infty} e^{-X} y^{-1} dx$
 $= \int_{U=0}^{\infty} e^{-U-X} x^{-1} du \int_{X=0}^{\infty} e^{-X} y^{-1} dx$
 $U=ZF$
 $V=Z(1-F)$
 $V=F(2,F)$
 $V=F(2,F)$

 $\mathcal{B}(\lambda,\beta) = \int_0^1 \alpha^{d-1} (1-2)^{p-1} d\alpha$

$$\begin{aligned}
&\text{IE}[X] = \frac{1}{5(d,\beta)} & \text{Sad}(1-a)^{[3-l]} dx \\
&= \frac{1}{5(d,\beta)} & \text{Sad}(1-a)^{[3-l]} dx \\
&= \frac{1}{5(d,\beta)} & \text{Sad}(1-a)^{[3-l]} dx \\
&= \frac{1}{5(d+1)} & \text{Sad}(1-a)^{[3-l]} dx \\
&= \frac{1}{5(d$$

$$P(\alpha \langle p \langle b \rangle X = \alpha) = \int_{\alpha}^{b} {p^{\alpha}(1-p)^{n-\alpha}} dp$$

$$P(\alpha \langle p \langle b \rangle X = \alpha) = \int_{\alpha}^{b} {n \choose \alpha} p^{\alpha}(1-p)^{n-\alpha} dp$$

$$P(x = \alpha) = \int_{\alpha}^{b} {n \choose \alpha} p^{\alpha}(1-p)^{n-\alpha} dp = {n \choose \alpha} \int_{\alpha}^{b} {p \choose \alpha} p^{\alpha}(1-p)^{n-\alpha} dp$$

$$P(\alpha \langle p \langle b | X = \alpha) = \int_{\alpha}^{b} {n \choose \alpha} p^{\alpha}(1-p)^{n-\alpha} dp$$

$$P(\alpha \langle p \langle b | X = \alpha) = \int_{\alpha}^{b} {n \choose \alpha} p^{\alpha}(1-p)^{n-\alpha} dp$$

$$P(\alpha \langle p \langle b | X = \alpha) = \int_{\alpha}^{b} {n \choose \alpha} p^{\alpha}(1-p)^{n-\alpha} dp$$

$$P(\alpha \langle p \langle b | X = \alpha) = \int_{\alpha}^{b} {n \choose \alpha} p^{\alpha}(1-p)^{n-\alpha} dp$$

$$P(\alpha \langle p \langle b | X = \alpha) = \int_{\alpha}^{b} {n \choose \alpha} p^{\alpha}(1-p)^{n-\alpha} dp$$

$$P(\alpha \langle p \langle b | X = \alpha) = \int_{\alpha}^{b} {n \choose \alpha} p^{\alpha}(1-p)^{n-\alpha} dp$$

$$P(\alpha \langle p \langle b | X = \alpha) = \int_{\alpha}^{b} {n \choose \alpha} p^{\alpha}(1-p)^{n-\alpha} dp$$

$$P(\alpha \langle p \langle b | X = \alpha) = \int_{\alpha}^{b} {n \choose \alpha} p^{\alpha}(1-p)^{n-\alpha} dp$$

$$P(\alpha \langle p \langle b | X = \alpha) = \int_{\alpha}^{b} {n \choose \alpha} p^{\alpha}(1-p)^{n-\alpha} dp$$

$$P(\alpha \langle p \langle b | X = \alpha) = \int_{\alpha}^{b} {n \choose \alpha} p^{\alpha}(1-p)^{n-\alpha} dp$$

$$P(\alpha \langle p \langle b | X = \alpha) = \int_{\alpha}^{b} {n \choose \alpha} p^{\alpha}(1-p)^{n-\alpha} dp$$

$$P(\alpha \langle p \langle b | X = \alpha) = \int_{\alpha}^{b} {n \choose \alpha} p^{\alpha}(1-p)^{n-\alpha} dp$$

$$P(\alpha \langle p \langle b | X = \alpha) = \int_{\alpha}^{b} {n \choose \alpha} p^{\alpha}(1-p)^{n-\alpha} dp$$

$$P(\alpha \langle p \langle b | X = \alpha) = \int_{\alpha}^{b} {n \choose \alpha} p^{\alpha}(1-p)^{n-\alpha} dp$$

$$P(\alpha \langle p \langle b | X = \alpha) = \int_{\alpha}^{b} {n \choose \alpha} p^{\alpha}(1-p)^{n-\alpha} dp$$

$$P(\alpha \langle p \langle b | X = \alpha) = \int_{\alpha}^{b} {n \choose \alpha} p^{\alpha}(1-p)^{n-\alpha} dp$$

$$P(\alpha \langle p \langle b | X = \alpha) = \int_{\alpha}^{b} {n \choose \alpha} p^{\alpha}(1-p)^{n-\alpha} dp$$

$$P(\alpha \langle p \langle b | X = \alpha) = \int_{\alpha}^{b} {n \choose \alpha} p^{\alpha}(1-p)^{n-\alpha} dp$$

$$P(\alpha \langle p \langle b | X = \alpha) = \int_{\alpha}^{b} {n \choose \alpha} p^{\alpha}(1-p)^{n-\alpha} dp$$

$$P(\alpha \langle p \langle b | X = \alpha) = \int_{\alpha}^{b} {n \choose \alpha} p^{\alpha}(1-p)^{n-\alpha} dp$$

$$P(\alpha \langle p \langle b | X = \alpha) = \int_{\alpha}^{b} {n \choose \alpha} p^{\alpha}(1-p)^{n-\alpha} dp$$

$$P(\alpha \langle p \langle b | X = \alpha) = \int_{\alpha}^{b} {n \choose \alpha} p^{\alpha}(1-p)^{n-\alpha} dp$$

$$P(\alpha \langle p \langle b | X = \alpha) = \int_{\alpha}^{b} {n \choose \alpha} p^{\alpha}(1-p)^{n-\alpha} dp$$

$$P(\alpha \langle p \langle b | X = \alpha) = \int_{\alpha}^{b} {n \choose \alpha} p^{\alpha}(1-p)^{n-\alpha} dp$$

$$P(\alpha \langle p \langle b | X = \alpha) = \int_{\alpha}^{b} {n \choose \alpha} p^{\alpha}(1-p)^{n-\alpha} dp$$

$$P(\alpha \langle p \langle b | X = \alpha) = \int_{\alpha}^{b} {n \choose \alpha} p^{\alpha}(1-p)^{n-\alpha} dp$$

$$P(\alpha \langle p \langle b | X = \alpha) = \int_{\alpha}^{b} {n \choose \alpha} p^{\alpha}(1-p)^{n-\alpha} dp$$

$$P(\alpha \langle p \langle b | X = \alpha) = \int_{\alpha}^{b} {n \choose \alpha} p^{\alpha}(1-p)^{n-\alpha} dp$$

$$P(\alpha \langle p \langle b | X = \alpha) = \int_{\alpha}^{b} {n \choose \alpha} p^{\alpha}(1-p)^{n-\alpha} dp$$

 $p(x=\alpha|p) = \binom{n}{\alpha} p^{\alpha} (1-p)^{n-\alpha}$

Example of Bayesian inference I

Let us take the snooker example again and look for Bayesian approach

- the law on the observations is a binomial, $X \sim \mathcal{B}(n, p)$
- the ball can equally probably stop ny distance from the edge. Hence $p \sim U_{[0,1]}$: let consider a quadratic cost: $C(p,\delta) = (p-\delta)^2$.

In that case,

$$\pi(p|X=x) = \frac{C_n^x p^x (1-p)^{n-x} \mathbb{I}_{\{p \in [0,1]\}}}{\int_0^1 C_n^x p^x (1-p)^{n-x} dp}$$
$$= \frac{p^x (1-p)^{n-x} \mathbb{I}_{p \text{ in}[0,1]\}}}{\int_0^1 p^x (1-p)^{n-x} dp}.$$

Example of Bayesian inference II

The posterior distribution is therefore a beta distribution, $\mathcal{B}e(x+1,n-x+1)$. It is easy to show that the Bayes estimator associated with a distribution π and a quadratic cost is the posterior mean

$$\delta^{\pi}(x) = E^{\pi}[p|x] = \int p \cdot \pi(p|x) dp.$$

The expectation of a random variable X following a beta distribution, $\mathcal{B}e(\alpha,\beta)$ is given by

$$E[X] = \frac{\alpha}{\alpha + \beta}.$$

The Bayes estimator associated with the quadratic cost is therefore written

$$\delta^{\pi}(x) = \frac{x+1}{n+2}.$$

If many launches have been performed, the estimate of p by this Bayesian procedure will be very close to the estimator of the maximum of likelihood. On the other hand, if only one throw is observed, we find:

- x = 0 gives $\hat{p} = \frac{1}{3}$; x = 1 gives $\hat{p} = \frac{2}{3}$.

Both of these results seem reasonable.

Note that by taking a cost which is equal to 0 if the decision is correct and 1 otherwise (cost 0-1), the Bayes estimator is, in this case, the same as that obtained by the maximum likelihood method.

Note that the Bayes estimators are justified for a size of finite sample, unlike estimators of the maximum of likelihood which only have asymptotic properties.

Comparing Bayesian and Frequentist estimator for $p = \frac{1}{4}$ and $n \in \{1, 10, 100, 1000\}$.

Frequentist

Bayesian

Christophe Ambroise Appendix 2021-2022 13 / 16

Dirichlet distribution $Dir(\alpha)$ I

- Peter Gustav Lejeune Dirichlet (13 février 1805, Düren · 5 mai 1859, Göttingen)
- ullet continuous multivariate probability distribution parameterized by a vector $oldsymbol{lpha}$ of positive reals.
- used as prior distributions in Bayesian statistics,
- conjugate prior of the categorical distribution and multinomial distribution.

The Dirichlet distribution of order $K \geq 2$ with parameters $\alpha_1,...,\alpha_K > 0$ has a probability density function

$$f(x_1,\ldots,x_K;\alpha_1,\ldots,\alpha_K) = \frac{1}{\mathrm{B}(\boldsymbol{\alpha})} \prod_{i=1}^K x_i^{\alpha_i-1}$$

where the normalizing constant is the multivariate beta function.

Christophe Ambroise Appendix 2021-2022 14 / 16

Figure 1: Dirichlet distributions

Denoting $\alpha_0 = \sum_{i=1}^K \alpha_i$, we have

$$E[X_i] = \frac{\alpha_i}{\alpha_0},$$

$$Var[X_i] = \frac{\alpha_i(\alpha_0 - \alpha_i)}{\alpha_0^2(\alpha_0 + 1)}.$$

$$Cov[X_i, X_j] = \frac{-\alpha_i \alpha_j}{\alpha_0^2 (\alpha_0 + 1)}.$$