Envariabelanalys Sammanfattning av definitioner och satser

Jacob Adlers

March 15, 2016

1 Funktioner

1.1 Definition

En funktion f är en regel som för varje element i en mängd, definitionsmängden av f, tilldelar ett unikt element i värdemängden av f.

1.2 Definition

Om f(x) är en funktion definerad på ett intervall I så säger vi att f(x) är:

- 1. Strängt växande på I om $\forall x_1, x_2 \in I$ $x_2 > x_1 \Rightarrow f(x_2) > f(x_1)$
- 2. Växande på I om $\forall x_1, x_2 \in I$ $x_2 > x_1 \Rightarrow f(x_2) \geq f(x_1)$
- 3. Strängt avtagande på I om $\forall x_1, x_2 \in I \quad x_2 > x_1 \Rightarrow f(x_2) < f(x_1)$
- 4. Avtagande på I om $\forall x_1, x_2 \in I$ $x_2 > x_1 \Rightarrow f(x_2) \leq f(x_1)$

1.3 Definition

Vi säger att f(x) är injektiv om $f(x_1) = f(x_2 \Rightarrow x_1 = x_2)$.

1.4 Sats (Bevis sid 51)

$$cos(s-t) = cos(s)cos(t) + sin(s)sin(t)$$

1.5 Sats

Om f(x) är både jämn och udda då är $f(x) = 0 \quad \forall x$

1.6 Sats

Om p(x) är ett polynom och p(a) = 0 så finns det ett polynom q(x) sådant att p(x) = q(x)(x-a)

2 Gränsvärden

2.1 Definition

Vi säger att f(x) går mot $L \in \mathcal{R}$ när x går mot o
ändligheten $(f(x) \to L$ då $x \to \infty$ $\lim_{x \to \infty} f(x) = L)$.

Det gäller om det $\forall \varepsilon>0$ existerar ett R_ε sådant att om $x>R_\varepsilon$ så $|f(x)-L|<\varepsilon$

2.2 Definition

Vi säger att en funktion f(x) går mot L då x går mot a om det $\forall \varepsilon > 0$ existerar ett $\delta_{\varepsilon} > 0$ sådant att $0 < |x - a| < \delta_{\varepsilon}$. Det medför att $|f(x) - L| < \varepsilon$

2.3 Sats

- 1. $\lim_{x \to \infty} \frac{\log_a(x)}{x^{\alpha}} = 0 \quad \forall \alpha > 0$
- 2. $\lim_{x \to \infty} \frac{x^{\alpha}}{a^x} \quad \forall a > 1, \alpha \in \mathcal{R}$

3 Kontinuitet

3.1 Definition

Vi säger att en funktion f(x) är kontinuerlig i en inre punkt c av sitt definitionsområde om $\lim_{x\to c}f(x)=f(c)$

3.2 Definition

Vi säger att f(x) är vänster/(höger)-kontinuerlig i en punkt c om: $\lim_{x\to c^-} f(x) = f(c)$ $(\lim_{x\to c^+} f(x) = f(c))$

3.3 Sats

Om f(x) och g(x) är kontinuerliga så kommer f(x)+g(x), f(x)-g(x), f(x)g(x) och f(g(x)) att vara kontinuerliga där de är definerade.

3.4 Sats

Om f(x) är kontinuerlig på ett slutet och begränsat intervall [a, b] då kommer det att finnas två punkter $p, q \in [a, b]$ sådant att $f(p) \leq f(x) \leq f(q) \quad \forall x \in [a, b]$

3.5 Sats om mellanliggande värden

Om f(x) är kontinuerlig på [a,b] och om s ligger mellan f(a) och f(b) då finns det ett $x \in [a,b]$ sådant att f(x) = s

4 Derivata

4.1 Definition

Vi säger att derivatan av en funktion f(x) ges av $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ om gränsvärdet existerar.

4.2 Definition

Om f(x) är deriverbar i punkten x_0 så är linjen $y = f'(x_0)(x - x_0) + f(x_0)$ tangenten till f(x) i x_0 .

4.3 Definition

Vi säger att c är ett lokalt $\max/(\min)$ om det finns α, β sådana att: $f(c) \geq f(x) \quad (f(c) \leq f(x)), \quad \forall x \in (\alpha, \beta).$ (LÄGG IN KOPPLING TILL DERIVATA (föreläsning 12))

4.4 Sats

Om f(x) och g(x) är deriverbara så gäller följande:

- 1. D(f(x)) (f(x)) (Summaregeln)
- 2. D(f(x)g(x)) = f'(x)g(x) + f(x)g'(x) (Produktregeln)
- 3. $D(\frac{f(x)}{g(x)}) = \frac{f'(x)g(x) f(x)g'(x)}{(g(x))^2}$ (Kvotregeln) Om $g(x) \neq 0$

4.5 Sats

Om en funktion g(x) är deriverbar i x_0 så är g(x) kontinuerlig i x_0 . Alltså, g(x) deriverbar $\Rightarrow g(x)$ kontinuerlig.

4.6 Sats

- 1. Dx = 1
- 2. $Dx^r = rx^{r-1}$ $r \in \mathcal{R}$
- 3. $D\sin(x) = \cos(x)$
- 4. $D\cos(x) = -\sin(x)$

4.7 Medelvärdessatsen

Om f(x) är kontinuerlig på ett intervall [a,b] och f(x) är deriverbar på (a,b) då finns en punkt $c\in(a,b)$ så att: $\frac{f(b)-f(a)}{b-a}=f'(c)$

4.8 Följdsats till medelvärdessatsen

Antag att f'(x) > 0 på (a, b). Då är f(x) strängt växande på samma intervall.

5 Differentialekvationer

5.1 Definition

Vi säger att $y_h(x)$ är en homogen lösning om $y''_h(x) + ay'_h(x) + by_h(x) = 0$

5.2 Definition

Vi säger att $y_p(x)$ är en partikulärlösning till y''(x) + ay'(x) + by(x) = f(x) om $y_p(x)$ är någon funktion som uppfyller ekvationen.

5.3 Lösningsstrategi

$$y''(x) + ay'(x) + by(x) = f(x), \quad y(x_0) = \alpha, \quad y'(x_0) = \beta$$

- 1. Hitta alla homogena lösningar $y_h(x)$
 - (a) Hitta rötterna till det karakteristiska polynomet $r^2 + ar + b = 0 \Rightarrow r_1, r_2 = -\frac{a}{2} \pm \sqrt{(\frac{a}{2})^2 b}$
 - (b) i. Om $r_1 \neq r_2$ och $r_1, r_2 \in \mathcal{R}$ då är: $y_h(x) = Ce^{r_1x} + De^{r_2x}$ för några $C, D \in \mathcal{R}$
 - ii. Om $r_1=r_2$ och $r_1,r_2\in\mathcal{R}$ då är: $y_h(x)=Cxe^{r_1x}+De^{r_1x}$ för några $C,D\in\mathcal{R}$
 - iii. Om $r_1, r_2 = k \pm i\omega$ då är: $y_h(x) = Ce^{kx}\sin(\omega x) + De^{kx}\cos(\omega x) \text{ för några } C, D \in \mathcal{R}$
- 2. Om $f(x) \neq 0$ gissa en partikulärlösning enligt tabellen och bekräfta den.

f(x)	Gissning av y_p
Konstant	$y_p = \text{Konstant}$
Polynom	$y_p = \text{Polynom av samma grad}$
$e^{\lambda x}$	$y_p = Ae^{\lambda x}$
$e^{\mu x}\sin(\lambda x)$ eller $e^{\mu x}\cos(\lambda x)$	$y_p = Ae^{\mu x}\sin(\lambda x) + Be^{\mu x}\cos(\lambda x)$

Om gissningen är en homogen lösning så multiplicera den partikulära lösningen med x alternativt x^2 om multiplikation med x också är en homogen lösning. Kombination av f(x) ger kombination av gissningar enligt tabellen ovan.

3. Ansätt $y(x) = y_h(x)(+y_p(x))$ och beräkna C och D genom att använda initialdatan. Vi får då ett linjärt ekvationsystem på formen:

$$\begin{cases} y(x_0) = \alpha \\ y'(x_0) = \beta \end{cases}$$

6 Taylorpolynom

Det finns fler satser som leder fram till Taylorpolynomet under föreläsning 12.

6.1 Defintion

Om f(x) är n gånger deriverbar i punkten a, då är Taylorpolynomet av ordning n till funktionen f i punkten a:

$$P_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

6.2 Taylors sats

Om f(x) är (n+1) gånger deriverbar i något öppet intervall kring a och P_n är Taylorpolynomet i a. Då gäller att $f(x) - P_n(x) = \frac{f^{n+1}(s)}{(n+1)!} (x-a)^{(n+1)}$ för något s mellan a och x.

7 Integraler

7.1 Definition

Om det finns exakt ett tal I sådant att $\exists f(x)$ definerad på [a,b], för varje indelning p säger vi att:

$$L(f,p) \le I \le U(f,p) \Rightarrow \int_a^b f(x)dx$$

7.2 Sats

Om f(x) är kontinuerlig på [a,b] så är f(x) integrerbar, dvs $\int_a^b f(x)dx$ existerar.

7.3 Analysens huvudsats

Antag att f(x) är kontinuerlig på ett intervall I (öppet eller slutet) och $a \in I$. Då:

- 1. Om $F(x) = \int_a^x f(t) dt$ så kommer $F'(x) = f(x) \quad \forall x \in I$
- 2. Om G(x) är en primitiv funktion till f(x), dvs (G'(x)=f(x)), och $b\in I$ så kommer $\int_a^b f(x)dx=G(b)-G(a)$

7.4 Definition

Ytan mellan f(x) och g(x) då $a \le x \le b$ ges av $\int_a^b |f(x) - g(x)| dx$

8 Integrationsmetoder

8.1 Variabelsubstitution

8.1.1 Förklaring

Om F(x) är en primitiv till f(x) och g(x) är deriverbar. Då kommer F(g(x)) vara en primitiv funktion till f(g(x))g'(x). Variabelsubstitution används för att beräkna integraler på form $\int_a^b f(g(x))g'(x)dx = F(g(x))\Big|^b$

8.1.2 Exempel

$$\int_{1}^{2} \frac{x}{(x^{2}+4)^{2}} dx = \frac{1}{2} \int_{1}^{2} \frac{2x}{(x^{2}+4)^{2}} dx = \begin{cases} f(x) = \frac{1}{x^{2}} \\ g(x) = x^{2} + 4 \end{cases} = \begin{cases} t = x^{2} + 4, & dt = 2x dx \\ x = 1 \Rightarrow t = 5 \\ x = 2 \Rightarrow t = 8 \end{cases}$$

$$= \frac{1}{2} \int_{5}^{8} \frac{1}{t^{2}} dt = \frac{1}{2} (-\frac{1}{t}) \Big|_{5}^{8} = -\frac{1}{2} \frac{1}{8} + \frac{1}{2} \frac{1}{5} = \frac{1}{10} - \frac{1}{16} = \frac{8}{80} - \frac{5}{80} = \frac{3}{80}$$

8.2 Partiell integration

8.2.1 Förklaring

Partiell integration följer av derivatans produktregel. Enligt produktregeln så ska D(f(x)g(x)) = f'(x)g(x) + f(x)g'(x). Hittar vi sedan den primitiva funktionen till $f(x)g(x) = \int f'(x)g(x)dx + \int f(x)g'(x)dx$ som kan skrivas om till:

$$\int_a^b f(x)g(x)dx = f(x)G(x)\bigg|_a^b - \int_a^b f'(x)G(x)dx$$

8.2.2 Exempel

$$\int_0^{\frac{\pi}{2}} x \sin(x) dx = \begin{cases} f(x) = x \\ g(x) = \sin(x) \end{cases} = x \cdot -\cos(x) \Big|_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} \cos(x) dx$$
$$= -x \cos(x) \Big|_0^{\frac{\pi}{2}} + \sin(x) \Big|_0^{\frac{\pi}{2}} = \sin(x) \Big|_0^{\frac{\pi}{2}} = 1$$

8.3 Partialbråksuppdelning

8.3.1 Förklaring

8.3.2 Exempel