

Predicting Heart Disease: Investigating the Potential of the 1D CNN for Binary **ECG Classification**

P. Courts¹, M. J. Chappell¹

¹ School of Engineering, University of Warwick, Coventry, CV4 7AL, UK

Introduction

- In April 2023, 25% of all deaths in the UK were attributed to various cardiovascular diseases (CVD) [1].
- The electrocardiogram (ECG) represents the electrical signals produced by the heart and is the key tool used by clinicians in determining heart condition.
- Visual inspection of ECGs can be a time-consuming process and prone to error, partly due to signal noise.
- Methods that automate ECG cardiac health classification whilst enhancing accuracy and efficiency have the potential to alleviate these issues.
- This study investigated the application of data analytic techniques including: support vector machine (SVM) allied to a 1D variant of the convolutional neural network (CNN) on ECG signals, to perform binary classification of healthy vs unhealthy heart status.
- The results demonstrated the 1D CNN had a greater potential so is focussed on in this poster.

Ideal ECGs

- An ECG provides a graphical representation of the electrical signals produce by the heart
- Key features include P and T waves as well as the QRS complex, as illustrated in Fig. 1.
- Clinicians typically the shape, magnitude and these duration of infer features to

Figure 1: An ideal ECG with key features labelled [2] diagnoses.

Database

- Analysis was performed on ECG signals collated in the PTB diagnostic ECG database [3].
- This database contains 290 subject files of which 52 were labelled as healthy with the remaining attributed with a form of CVD.
- The data were filtered based on the length and quality of a patient's signals together with meta information such as their health state.
- A quality check was performed using Neurokit2's qualitative ECG quality algorithm which labelled each signal 'Excellent', 'Barely Acceptable' or 'Acceptable' as shown in Fig 2.
- Filtering resulted in 221 patients (46 healthy) each having from 1-6 signals of quality 'barely acceptable' or better.

Figure 2: Example ECGs of each quality as determined by the Neurokit2 quality check [4].

Connect with me on

LinkedIn!

Feel free to ask questions!

Signal Preprocessing - DWT

- Patient movement, breathing and electrical interference can contribute to noise in ECG signals [5].
- This noise can be reduced through the Discrete Wavelet Transform (DWT) as seen in Fig. 4. x(t)
- The DWT sequentially splits a signal into low, A, and high, frequency components, as shown in Fig. 3.

- Figure 3: Schematic showing the The coefficients considered process undertaken by DWT to to contain noise can then be split a signal, x(t) to the n^{th} order. discarded allowing a denoised signal to be reconstructed from the remaining components.
- The **Daubechies4** wavelet was used to reconstruct signals due to its central frequency factor of 0.7, representing its similarity with the ECG signal [6].

Figure 4: Noise reduction through DWT on a raw channel V1 ECG from an unhealthy patient.

1D Convolutional Neural Network

- The 1D CNN is a recently modified variant of the traditional 2D CNN, designed specifically for 1D data.
- It excels with time series data due to its proficiency in local feature detection, leveraging temporal and spatial invariance for superior pattern recognition [7].
- A 1D CNN takes the denoised time series as inputs and automatically extracts features to classify the data.
- The small size of the database considered here means a shallow network containing a single block is sufficient, illustrated in Fig. 5.

- The convolutional layer contains 16 filters each of kernel size 3 that slide over the inputted signals extracting features of high and low detail.
- The ReLU activation function introduces non-linearity, enabling the network to learn complex relationships beyond linear ones.
- Max pooling (pool size 2) selects the maximum value from every 2 datapoints. This halves the number of data points, increasing computational efficiency whilst

retaining the most prominent features for classification.

- **Dropout** is used to regularise the model; a randomly selected half of the nodes is set to zero during training so that the network does not heavily rely on single features.
- The data are then flattened to a 1D array appropriate for the dense layer to make predictions through a sigmoid activation function.
- The model is trained through the minimisation of the **binary** cross-entropy loss function.

Model Training Evaluation

- Evolution of the model during training is shown in Fig. 6.
- The training accuracy peaks at values in the range of 0.98 before decreasing due to overfitting.
- Early stopping is implemented, returning the model to the optimal weights to improve model generalisation and combat overfitting.

Figure 6: Graphs to show evolution of accuracy (A) and loss (B) of training and validation data with each epoch, over 5 repeats.

Model Performance Evaluation

- The average receiver operating characteristic (ROC) curve and confusion matrix over 5 iterations for the model are shown in Fig. 7.
- An area-under-the-curve (AUC) of 0.95 \pm 0.01 in tandem with only an average of 11 signals misclassified, as shown in the confusion matrix, suggest the model has been very successful in its task.

Figure 7: ROC curve (A) and confusion matrix (B) of validation data, over 5 repeats.

Accuracy	Balanced Accuracy	Precision	F1 Score	Recall
0.96 ± 0.01	0.92 ± 0.03	0.98 ± 0.02	0.91 ± 0.03	0.85 ± 0.06

Table 1: Summary of accuracy metrics portraying performance of model.

Table 1 shows the different accuracy metrics used to further evaluate the performance of the model.

Conclusions and Future Work

- > A 1D CNN has the potential to provide an alternative Al based method of ECG diagnosis consistently achieving accuracies in the range of 0.96%.
- > The model achieved **high precision** whilst the worst metric is *recall*, this suggests the model is **too** conservative with its positive (healthy) predictions and this is likely caused by the skewed nature of the database, despite making class weight allowances.
- The speed at which a diagnosis can be obtained using a pre-trained model compared to manual analysis by a clinician provides further incentive investigation.
- Future work can investigate the generalisability of these models through application to different ECG datasets.
- Through applications on larger datasets, the potential of the CNN in the multiclassification problem of diagnosing specific disease types can also be investigated.

References

[1] BHF., CVD Statistics – UK Factsheet, 2024. [2] Savalia, S. & Emamia, Cardiac arrhythmia classification by multi-layer perceptron and convolution neural networks., Bioengineering., vol 5 no. 2, pp. 35, 2018. [3] Goldberger, A.L et al., PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals., circulation, 101(23), pp.e215-e220., 2000. [4] Makowski, D et al., NeuroKit2: A Python toolbox for neurophysiological signal processing. Behavior research methods, pp.1-8., 2021. [5] Gupta, V et al., A simplistic and novel technique for ECG signal pre-processing. IETE Journal of Research, 70(1), pp.815-826., 2024. [6] Martis, R.J et al., ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Biomedical Signal Processing and Control, 8(5), pp.437-448., 2013. [7] Liu, X et al., Deep learning in ECG diagnosis: A review. Knowledge-Based Systems, 227, p.107187., 2021.

Email: patrick.courts@warwick.ac.uk

