MEF03-MFC: Feuille de TD 2

1. Tube de Pitot supersonique

Un tube de Pitot est disposé dans un écoulement supersonique $(M_1 > 1)$ dont la pression statique est $P_1 = 0.4$ bar.

On assimile localement l'onde de choc formée devant le tube de Pitot à une onde de choc plane. Dès lors, on peut déterminer la pression totale mesurée par le tube de Pitot par une approche monodimensionnelle.

- 1. Justifier pourquoi le tube le Pitot donne une mesure de la pression d'arrêt en amont de l'onde de choc?
- 2. Etablir la formule de Raleigh qui consiste à exprimer le rapport de pression P_{t_2}/P_1 en fonction de M_1 .
- 3. Déterminer la valeur du nombre de Mach de l'écoulement lorsque que la mesure effectuée par le Pitot donne $P_{t_2} = 3$ bars (cf. figure).

2. Tuyère de Laval avec onde de choc droite

Un réservoir contenant de l'air sec à une pression P_{t_0} et masse volumique ρ_{t_0} alimente une tuyère convergente-divergente dont la section au col est A_c . L'écoulement présente une onde de choc droite (ODC) au milieu de la partie divergente de la tuyère. L'aire de la tuyère au niveau du choc est A_{choc} . On notera par l'indice (1) les grandeurs en amont de l'ODC et par l'indice (2)

les grandeurs en aval de l'ODC. Le gaz, de coefficient polytropique γ , sera considéré comme thermodynamiquement et calorifiquement parfait. On suppose que l'écoulement est isentropique jusqu'au niveau de l'ODC, puis entre l'ODC et la sortie de la tuyère. On considère que P_{t_0} , ρ_{t_0} γ sont des données du problème. L'écoulement est permanent et quasi-monodimensionel.

- 1. Pourquoi les grandeurs statiques et totales sont égales dans le réservoir ?
- 2. Sachant que la vitesse du son a_1 juste en amont de l'ODC est connue, exprimer le nombre de Mach amont M_1 en fonction de P_{t_0} , ρ_{t_0} et a_1 .
- 3. Montrer qu'on peut aussi calculer M_1 connaissant A_{choc} et A_c . En déduire les expressions de ρ_1 et P_1 .
- 4. Montrer que le débit massique peut s'écrire:

$$\dot{m} = A \frac{\sqrt{\gamma}}{\sqrt{R}} \frac{P_{t_1}}{\sqrt{T_{t_1}}} \frac{M_1}{\left(1 + \frac{\gamma - 1}{2} M_1^2\right)^{\frac{\gamma + 1}{2(\gamma - 1)}}} \tag{1}$$

- 5. Le débit de l'écoulement étudié est-il le débit maximal qu'on puisse obtenir (justifier) ?
- 6. Les relations de saut pour la densité et la pression statique s'écrivent:

$$\rho_2/\rho_1 = \frac{(\gamma+1)M_1^2}{(\gamma-1)M_1^2 + 2} \tag{2}$$

$$P_2/P_1 = 1 + \frac{2\gamma}{\gamma + 1}(M_1^2 - 1) \tag{3}$$

Exprimer le rapport ρ_2/ρ_1 en fonction de P_2/P_1 . Pourquoi ne retrouvonsnous l'équation de Laplace ?

- 7. Etablir une expression pour le Mach en aval de l'ODC M_2 en fonction de grandeurs connues.
- 8. Sachant que la section de sortie de la tuyère A_3 sont des données du problème, montrer qu'il est possible d'établir une équation permettant de calculer numériquement la valeur du nombre de Mach en sortie de tuyère M_3 (on ne cherchera pas à déterminer M_3 analytiquement)

3. Validité de l'hypothèse d'incompressibilité

Un avion de déplace au niveau de la mer à une vitesse de $U_1 = 160$ km/h (aux conditions de pression et de température p_1 et T_1). L'écoulement est accéléré au niveau de l'extrados de l'aile à une vitesse maximale $U_2 = 240$ km/h

1. Montrer en combinant le 1er principe avec l'équation de quantité de mouvement pour un écoulement 1D non-visqueux de gaz parfait, que pour des conditions isentropiques : $c_p dT + d\left(\frac{U^2}{2}\right) = 0$

- 2. Calculer la valeur de la pression ${\cal P}_2^{comp}$ au niveau de l'extrados.
- 3. Considérant désormais l'écoulement comme incompressible, déterminer pression $P_2^{incomp}.$
- 4. Discuter de la pertinence de cette hypothèse en calculant l'erreur relative commise et la valeur du nombre de Mach de vol

A.N: $p_1 = 101300$ Pa, $T_1 = 300$ K, $\gamma = 1.4,\, r = 287$ J/kg/K