Lineare Algebra 2 Hausaufgabenblatt Nr. 4

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: December 4, 2023)

Problem 1. Beweisen oder Widerlegen Sie:

- (a) Es sei $A \in \mathbb{K}^{n \times n}$ und $p \in \mathbb{K}[x]$ ein beliebiges Polynom, dann gilt: Ist λ ein Eigenwert von A, dann ist $p(\lambda)$ ein Eigenwert von p(A).
- (b) Angenommen wir haben in (a) eine Konstellation in der λ ein Eigenwert von A und $p(\lambda)$ ein Eigenwert von p(A) ist, dann stimmen jeweils auch die geometrischen Vielfachheiten überein.
- (c) Eine $n \times n$ Matrix mit n paarweise verscheidenen Eigenwerten ist invertierbar.
- (d) Im Falle der Intervierbarkeit ist λ ein Eigenwert von $A \in \mathbb{K}^{n \times n}$ genau dann, wen λ^{-1} ein Eigenwert von A^{-1} ist.
- (e) Sind zwei Matrizen A und B ähnlich, dann haben sie dieselben Eigenwert.
- (f) Sind zwei Matrizen A und B äquivalent, dann haben sie dieselben Eigenwert.
- (g) Sind zwei Matrizen A und B ähnlich so folgt: Ist λ ein Eigenwert von A dann ist λ ein Eigenwert von (A+B)/2.

Proof. (a) Wahr. Sei $p = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$.

Sei v ein Eigenvektor von A mit Eigenwert λ . Es gilt

$$p(A)v = (a_0 + a_1A + a_2A^2 + \dots + a_nA^n)v$$

$$= a_0v + a_1Av + a_2A^2v + \dots + a_nA^nv$$

$$= a_0v + a_1\lambda v + a_2\lambda^2v + \dots + a_n\lambda^nv$$

$$= (a_0 + a_1\lambda + a_2\lambda^2 + \dots + a_n\lambda^n)v$$

$$= p(\lambda)v$$

^{*} jun-wei.tan@stud-mail.uni-wuerzburg.de

- (b) Wahr. Aus (a) wissen wir, dass die Eigenvektoren sich nicht verändern. Also bezüglich A entscheiden wir uns für eine Basis, deren Dimension die geometrische Vielfachheit ist, dann bleibt die auch eine Basis für das Eigenraum bezüglich das Eigenwert $p(\lambda)$.
- (c) Wahr. Es gibt eine Basis von n Eigenvektoren (es ist eine Basis, weil die linear unabhängig sind (Korollar 6.59)).

Dann ist $\{\lambda_i v_i | i \in 1, 2, ..., n\}$ auch eine Basis, weil Multiplikation durch ein Konstant kann die linear Unabhängigkeit nicht verletzten.

(d) Wahr. Sei v ein Eigenvektor von A mit Eigenwert λ . Es gilt per Definition

$$Av = \lambda v$$
.

Außerdem gilt

$$Av = A^{-1}AAv = A^{-1}A(\lambda v) = \lambda A^{-1}Av,$$

also

$$\frac{1}{\lambda}Av = A^{-1}(Av).$$

Das heißt, dass Avein Eigenvektor von A^{-1} mit Eigenwert λ^{-1} ist.

Sei jetzt v ein Eigenvektor von A^{-1} mit Eigenwert λ . Ähnlich gilt

$$A^{-1}v = AA^{-1}A^{-1}v = AA^{-1}(\lambda v) = \lambda AA^{-1}v$$

und die andere Richtung folgt.

(e) Wahr. Sei $A=Q^{-1}BQ$. Sei außerdem v ein Eigenvektor von A mit Eigenwert λ . Es gilt QA=BQ und

$$QAv = Q\lambda v = \lambda(Qv)$$
$$=BQv = B(Qv)$$

also Qv ist ein Eigenvektor von B mit Eigenwert λ . Wir können die Rollen von A und B vertauschen.

(f) Falsch.

Definition

Seien $A, B \in M_{n \times m}(\mathbb{K})$. Dann heißen A und B äquivalent, falls es $Q \in GL_n(\mathbb{K})$ und $P \in GL_m(\mathbb{K})$ gibt, sodass

$$A = QBP$$
.

Sei $A=\operatorname{diag}(4,4),\ B=1_2,\ Q=P=\operatorname{diag}(2,2).$ Dann hat A nur das Eigenwert 4 während B nur das Eigenwert 1 hat.

(g) Falsch.

Problem 2. Es seien A, B in $\mathbb{K}^{n \times n}$ diagonalisierbar und D_A, D_B zugehörige Diagonalmatrizen. Zeigen Sie:

(a) Existiert ein $U \in GL_n(\mathbb{K})$ mit

$$D_A = U^{-1}AU, \qquad D_B = U^{-1}BU$$

so gilt für den Kommutator [A, B] = 0.

(b) Ist [A, B] = 0, dann existiert eine geordnete Basis $V = \{v_1, \dots, v_n\}$ aus Eigenvektoren von A zu den Eigenwerten $\lambda_1, \dots, \lambda_r$ bezüglich derer gilt

$$_{V}[B]_{V} = \begin{pmatrix} B_{1} & & \\ & B_{2} & \\ & & \ddots & \\ & & & B_{r} \end{pmatrix}$$

mit $B_1 \in \mathbb{K}^{d_i \times d_i}$ und d_i die geometrische Vielfachheit von λ_i für $i=1,\ldots,r$.

- (c) Jedes der B_i wie in (b) ist selbst wieder diagonalisierbar für $i=1,\ldots,r$.
- (d) Ist [A, B] = 0, so existiert ein U mit

$$D_A = U^{-1}AU, \qquad D_B = U^{-1}BU.$$

Proof. (a) Es gilt

$$[A, B] = AB - BA$$

$$=UD_AU^{-1}UD_BU^{-1}-UD_BU^{-1}UD_AU^{-1}$$

$$=UD_AD_BU^{-1}-UD_BD_AU^{-1}$$

$$=UD_AD_BU^{-1}-UD_AD_BU^{-1}$$
 Diagonal
matrizen kommutieren
$$=0$$

(b) Sei v ein Eigenvektor von A mit Eigenwert λ . Es gilt

$$[A, B]v = 0v = 0$$
$$= (AB - BA)v$$
$$= ABv = B(\lambda v)$$
$$\lambda Bv = A(Bv)$$

Dann ist Bv ein Eigenvektor von A mit gleichen Eigenwert.

Problem 3. Es sei

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & -1 & 1 \\ 2 & -1 & 1 & 1 \\ 3 & -1 & -1 & 3 \end{pmatrix}$$

ein reelle Matrix.

- (a) Bestimmen Sie das charakteristische Polynom von A.
- (b) Bestimmen Sie alle Eigenwerte und dazugehörige Eigenräume.
- (c) Im Falle der Diagonalisierbarkeit, bestimmen Sie explizit die Projektoren P_1, \ldots, P_r auf die r-vielen Eigenräume, sodass gilt

$$A = \sum_{i=1}^{r} \lambda_i P_i.$$