Numerikus módszerek 1.

1. előadás: Gépi számábrázolás, Hibaszámítás

Krebsz Anna

ELTE IK

Tartalomjegyzék

1 "Furcsa" jelenségek...

2 Gépi számok: a lebegőpontos számok egy modellje

3 A hibaszámítás elemei

Tartalomjegyzék

1 "Furcsa" jelenségek...

Q Gépi számok: a lebegőpontos számok egy modellje

3 A hibaszámítás elemei

Mennyi $sin(\pi)$ értéke?

1.224646799147353e-016

Mennyi
$$\sum_{k=1}^{+\infty} \frac{1}{k}$$
 értéke?

Mennyi az *n*-edik részletösszeg, valamely nagy *n*-re? $\left(\sum_{k=1}^{n} \frac{1}{k}\right)$

Összegezhetünk oda vagy vissza ...

$$n = 100000000$$
-re

18.997896413852555

18.997896413853447

Mennyi $\sqrt{2017} - \sqrt{2016}$ értéke? Más alakban is számolható:

$$\sqrt{2017} - \sqrt{2016} = (\sqrt{2017} - \sqrt{2016}) \cdot \frac{\sqrt{2017} + \sqrt{2016}}{\sqrt{2017} + \sqrt{2016}} =
= \frac{2017 - 2016}{\sqrt{2017} + \sqrt{2016}} = \frac{1}{\sqrt{2017} + \sqrt{2016}}.$$

Próbáljuk ki mindkét számolási módot!

0.011134504483941 0.016926965158418

4. furcsa jelenség Matlab-ban

A Matlab-ban

$$a = 1e - 20 (= 10^{-20}), b = 1.$$

Mennyi lesz a + b értéke?

1

Igaz-e az asszociativatás a Matlab-ban?

$$(a+b)-b, \ a+(b-b)=?$$

Próbáljuk ki!

1

1.00000000000000e-020

A Matlab-ban mennyi $\cosh(20) - \sinh(20)$ és $\exp(-20)$ értéke?

$$\cosh(20) - \sinh(20) = \frac{\exp(20) + \exp(-20)}{2} - \frac{\exp(20) - \exp(-20)}{2} = \exp(-20)$$

Próbáljuk ki a kétféle számítási módot!

Mennyi a

$$T_n := \int_0^1 f_n(x) = \int_0^1 \frac{x^n}{x + 10} dx$$

határozott integrál értéke? Analitikusan nehéz megadni az értékét. (A geometriai szemléltetésből látszik, hogy mindig pozitív és nullához tart az integrál értéke.)

$$T_n := \int_0^1 \frac{x^n}{x+10} dx = \int_0^1 \frac{(x+10-10)x^{n-1}}{x+10} dx =$$

$$= \int_0^1 x^{n-1} dx - 10 \cdot \int_0^1 \frac{x^{n-1}}{x+10} dx = \frac{1}{n} - 10 \cdot T_{n-1}$$

$$T_0 = \int_0^1 \frac{1}{x+10} \, dx = \left[\ln(x+10) \right]_0^1 = \ln(11) - \ln(10) = \ln(1.1)$$

Tehát a rekuzió:

$$T_0 := \ln(1.1), \quad T_n := \frac{1}{n} - 10 \cdot T_{n-1} \ (n = 1, 2...).$$

Számoljuk a kapott rekurzió alapján a T_{20} . tagot Matlab-bal!

Rendezzük át a rekurziót csökkenően:

$$10T_{n-1} = \frac{1}{n} - T_n \quad \Leftrightarrow$$

$$T_{n-1} = \frac{1}{10} \cdot \left(\frac{1}{n} - T_n\right)$$

Indítsuk a rekurziót egy M>>n értékből,

$$T_M := 0, \quad T_{n-1} = \frac{1}{10} \cdot \left(\frac{1}{n} - T_n\right) \quad (n = M, \dots, m+1).$$

Számoljuk a második rekurzió alapján is a T_{20} . tagot! A két algoritmus közül melyik stabil?

Algoritmus stabilitása

Definíció:

A *numerikus algoritmus* aritmetikai és logikai műveletek véges sorozata.

Definíció:

A numerikus algoritmus stabil, ha létezik olyan C>0 konstans, hogy a kétféle B_1,B_2 bemenő adatból kapott K_1,K_2 kimenő adatokra

$$||K_1 - K_2|| \le C \cdot ||B_1 - B_2||.$$

Példa

A Fibonacci sorozat rekurziója instabil. Lásd gyakorlaton.

Tartalomjegyzék

1 "Furcsa" jelenségek...

2 Gépi számok: a lebegőpontos számok egy modellje

A hibaszámítás elemei

Motiváció

- Gyakorlati és tudományos számításokban sokszor szükségünk van valós számok kezelésére.
- A számítógépeken csak egy véges halmaz elemei közül választhatunk.
- Ráadásul ezek több nagyságrenddel eltérhetnek.

Lebegőpontos számok egy modellje

Lebegőpontos számok, normalizált alak: 324 \rightarrow +0.324 \cdot 10³. Kettes számrendszerben: 101000100 \rightarrow +0.101000100 \cdot 2⁹. Általában: $\pm 0.\underbrace{1 - \dots }_{t \text{ jegy}} \cdot 2^k$ $(k^- \le k \le k^+).$

Definíció: Normalizált lebegőpontos szám

Legyen
$$m=\sum\limits_{i=1}^t m_i\cdot 2^{-i}$$
, ahol $t\in\mathbb{N},\ m_1=1,m_i\in\{\,0,1\,\}.$

Ekkor az $a = \pm m \cdot 2^k$ ($k \in \mathbb{Z}$) alakú számot *normalizált lebegőpontos számnak* nevezzük.

m: a szám mantisszája, hossza t

k: a szám karakterisztikája, $k^- \le k \le k^+$

Lebegőpontos számok egy modellje

Jelölés:
$$a = \pm [m_1 \dots m_t | k] = \pm 0.m_1 \dots m_t \cdot 2^k$$
.

Jelölés: $M=M(t,k^-,k^+)$ a gépi számok halmaza, adott $k^-,k^+\in\mathbb{Z}$ és $t\in\mathbb{N}$ esetén. (Általában $k^-<0$ és $k^+>0$.)

Definíció: Gépi számok halmaza

$$M(t, k^{-}, k^{+}) =$$

$$= \left\{ a = \pm 2^{k} \cdot \sum_{i=1}^{t} m_{i} \cdot 2^{-i} : \begin{array}{c} k^{-} \leq k \leq k^{+}, \\ m_{i} \in \{0, 1\}, m_{1} = 1 \end{array} \right\} \bigcup \{0\}$$

Gyakorlatban még hozzávesszük: $\infty, -\infty$, NaN,...

Gépi számok tulajdonságai, nevezetes értékei

- 1 $\frac{1}{2} \le m < 1$
- 2 *M* szimmetrikus a 0-ra.
- 3 M legkisebb pozitív eleme:

$$\varepsilon_0 = [100...0|k^-] = \frac{1}{2} \cdot 2^{k^-} = 2^{k^- - 1}$$

4 M-ben az 1 után következő gépi szám és 1 különbsége:

$$\varepsilon_1 = [100...01|1] - [100...00|1] = 2^{-t} \cdot 2^1 = 2^{1-t}$$

6 *M* legnagyobb eleme:

$$M_{\infty} = [111...11|k^{+}] = 1.00...00 \cdot 2^{k^{+}} - 0.00...01 \cdot 2^{k^{+}} =$$

= $(1 - 2^{-t}) \cdot 2^{k^{+}}$

6 M elemeinek száma (számossága):

$$|M| = 2 \cdot 2^{t-1} \cdot (k^+ - k^- + 1) + 1$$

Példa gépi számhalmazra

Példa

$$M(3,-1,2)$$
 gépi számainak alakja: $\pm\,0.1__\cdot2^k,\quad (-1\leq k\leq 2)$

Elemei
$$k = 0$$
 esetén: 0.100, 0.101, 0.110, 0.111, azaz $\frac{1}{2}$, $\frac{5}{8}$, $\frac{6}{8}$, $\frac{7}{8}$.

Valamint k=-1 esetén ezek fele, k=1 esetén ezek kétszerese, k=2 esetén ezek négyszerese. (Továbbá negatív előjellel...)

$$\varepsilon_0 = [100|-1] = 0.100 \cdot 2^{-1} = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} = 0.25$$

$$\varepsilon_1 = [101|1] - 1 = 0.101 \cdot 2^1 - 1 = \frac{1}{8} \cdot 2 = \frac{1}{4} = 0.25$$

$$M_{\infty} = [111|2] = 0.111 \cdot 2^2 = \frac{7}{8} \cdot 4 = \frac{7}{2} = 3.5$$

$$|M| = 2 \cdot 2^2 \cdot 4 + 1 = 33$$

Példa gépi számhalmazra

float $\sim M(23, -128, 127)$, double $\sim M(52, -1024, 1023)$ bitek, nevezetes értékek?

Valós számok ábrázolása

Hogyan feleltetünk meg egy \mathbb{R} -beli számnak egy gépi számot? Jelöljük \mathbb{R}_M -mel az ábrázolható számok tartományát, azaz $\mathbb{R}_M:=\{x\in\mathbb{R}:\ |x|\leq M_\infty\}.$

Definíció: Input függvény

Az $fl: \mathbb{R}_M \to M$ függvényt input függvénynek nevezzük, ha

$$fl(x) = \begin{cases} 0 & \text{ha } |x| < \varepsilon_0, \\ \tilde{x} & \text{ha } \varepsilon_0 \le |x| \le M_\infty, \end{cases}$$

ahol \tilde{x} az x-hez legközelebbi gépi szám (a kerekítés szabályai szerint).

Valós számok ábrázolása

Tehát már az is egyfajta hibát okoz számításkor, hogy valós számokat számítógépre viszünk...de mekkorát?

Tétel: Input hiba

Minden $x \in \mathbb{R}_M$ esetén

$$|x - fl(x)| \le \begin{cases} \varepsilon_0 & \text{ha } |x| < \varepsilon_0, \\ \frac{1}{2}|x| \cdot \varepsilon_1 & \text{ha } \varepsilon_0 \le |x| \le M_\infty, \end{cases}$$

Következmény: Input hiba

Ha $\varepsilon_0 \leq |x| \leq M_{\infty}$, akkor

$$\frac{|x - f(x)|}{|x|} \le \frac{1}{2} \cdot \varepsilon_1 = 2^{-t}.$$

A hiba tehát lényegében ε_1 -től, azaz t-től függ.

Mennyi a hiba, ha $|x| > M_{\infty}$?

Bizonyítás:

- **1** Ha $|x| < \varepsilon_0$, akkor f(x) = 0, így $|x f(x)| = |x| < \varepsilon_0$.
- **2** Ha $|x| \ge \varepsilon_0$ és $x \in M$, akkor f(x) = x, így |x f(x)| = 0.
- **3** A meggondolandó eset, amikor $|x| \ge \varepsilon_0$ és $x \notin M$.

Elegendő csak pozitív x-ekkel foglalkoznunk a 0-ra való szimmetria miatt. Keressük meg azt a két szomszédos gépi számot:

x' < x < x'' és $x', x'' \in M$, amelyek közrefogják x-et.

Legyen $x' = [1_ ... _|k]$ alakú. Mennyi x' és x'' távolsága?

Ha x-ben az utolsó helyiértékhez 1-et adunk, akkor x''-t kapjuk. Tehát $x'' - x' = 2^{-t} \cdot 2^k = 2^{k-t}$.

Valós számok ábrázolása

Ha x az intervallum első felében van, akkor fl(x)=x', ha a második felében, akkor fl(x)=x''. Ezért x és fl(x) eltérése legfeljebb az intervallum fele, azaz $\frac{1}{2} \cdot 2^k \cdot 2^{-t}$. Vagyis

$$|x-f|(x)|\leq \frac{1}{2}\cdot 2^k\cdot 2^{-t}.$$

Viszont x abszolút értékére, fenti alakját figyelembe véve $0.1 \cdot 2^k = \frac{1}{2} \cdot 2^k \le |x|$ is teljesül, ezért a becslést így folytathatjuk:

$$|x - f(x)| \le |x| \cdot 2^{-t} = \frac{1}{2} \cdot |x| \cdot 2^{1-t} = \frac{1}{2} \cdot |x| \cdot \varepsilon_1.$$

Tartalomjegyzék

1 "Furcsa" jelenségek...

Q Gépi számok: a lebegőpontos számok egy modellje

3 A hibaszámítás elemei

Hibák mérőszámai

Definíció: Hibák jellemzése

Legyen A egy pontos érték, a pedig egy közelítő értéke. Ekkor:

$$\Delta a := A - a$$
 a közelítő érték (pontos) hibája,

$$|\Delta a| := |A - a|$$
 a közelítő érték abszolút hibája,

$$\Delta_a \geq |\Delta a|$$
 az a egy abszolút hibakorlátja,

$$\delta a := \frac{\Delta a}{A} pprox \frac{\Delta a}{a}$$
 az a relatív hibája,

$$\delta_a \ge |\delta a|$$
 az a egy relatív hibakorlátja.

Példa

Vizsgáljuk meg a 3.14 számot mint a π két tizedesjegyre kerekített értékét!

Tétel: az alapműveletek hibakorlátai

$$\begin{split} \Delta_{a\pm b} &= \Delta_a + \Delta_b \\ \Delta_{a\cdot b} &= |b| \cdot \Delta_a + |a| \cdot \Delta_b \\ \Delta_{a/b} &= \frac{|b| \cdot \Delta_a + |a| \cdot \Delta_b}{b^2} \end{split} \qquad \begin{aligned} \delta_{a\pm b} &= \frac{|a| \cdot \delta_a + |b| \cdot \delta_b}{|a \pm b|} \\ \delta_{a\cdot b} &= \delta_a + \delta_b \end{aligned}$$

Megjegyzés: a kapott korlátok két esetben lehetnek nagyságrendileg nagyobbak, mint a kiindulási értékek hibái:

- $oldsymbol{0}$ $\delta_{a\pm b}$ esetén, amikor közeli számokat vonunk ki egymásból.
- $\mathbf{2} \ \Delta_{a/b}$ esetén, amikor kicsi számmal osztunk.

Ezeket az eseteket az algoritmusok implementálásakor el kell kerülni.

Hibák terjedése

Biz.: az összeadást és kivonást azonos előjelű számok között értjük. Az $a\pm b$ hibája

$$\Delta(a\pm b)=(A\pm B)-(a\pm b)=(A-a)\pm(B-b)=\Delta a\pm \Delta b$$

$$|\Delta(a\pm b)|=|\Delta a\pm \Delta b|\leq |\Delta a|+|\Delta b|\leq \Delta_a+\Delta_b=\Delta_{a\pm b}.$$

Biz.: az összeadás, kivonás hibakorlátai

Nézzük a relatív hibát

$$\frac{\Delta(a \pm b)}{a \pm b} = \frac{\Delta a \pm \Delta b}{a \pm b} = \frac{a \cdot \delta a \pm b \cdot \delta b}{a \pm b}$$

$$\frac{|\Delta(a \pm b)|}{|a \pm b|} = \frac{|a \cdot \delta a \pm b \cdot \delta b|}{|a \pm b|} \le \frac{|a| \cdot |\delta a| + |b| \cdot |\delta b|}{|a \pm b|} \le \frac{|a| \cdot \delta_a + |b| \cdot \delta_b}{|a \pm b|} = \delta_{a \pm b}$$

A szorzás hibája

$$\begin{split} \Delta(a \cdot b) &= A \cdot B - a \cdot b = A \cdot B - A \cdot b + A \cdot b - a \cdot b = \\ &= A(B-b) + b(A-a) = A \cdot \Delta b + b \cdot \Delta a = \\ &= (a + \Delta a) \cdot \Delta b + b \cdot \Delta a \approx a \cdot \Delta b + b \cdot \Delta a \\ &\quad (\Delta a \cdot \Delta b \text{ elhanyagolhat\'o}) \end{split}$$

$$|\Delta(a \cdot b)| \leq |a| \cdot |\Delta b| + |b| \cdot |\Delta a| \leq |a| \cdot \Delta_b + |b| \cdot \Delta_a = \Delta_{a \cdot b}$$

A relatív hiba

$$\delta(a \cdot b) = \frac{\Delta(a \cdot b)}{a \cdot b} \approx \frac{a \cdot \Delta b + b \cdot \Delta a}{a \cdot b} = \frac{\Delta b}{b} + \frac{\Delta a}{a} = \delta b + \delta a$$
$$|\delta(a \cdot b)| \le |\delta a| + |\delta b| \le \delta_a + \delta_b = \delta_{a \cdot b}$$

Az osztás hibája

$$\begin{split} \Delta\left(\frac{a}{b}\right) &= \frac{A}{B} - \frac{a}{b} = \frac{A \cdot b - a \cdot B}{Bb} = \\ &= \frac{A \cdot b - a \cdot b + a \cdot b - a \cdot B}{Bb} = \frac{b \cdot (A - a) - a \cdot (B - b)}{Bb} = \\ &= \frac{b \cdot \Delta a - a \cdot \Delta b}{(b + \Delta b) \cdot b} \approx \frac{b \cdot \Delta a - a \cdot \Delta b}{b^2} \\ &(\Delta b \cdot b \text{ elhanyagolható}) \end{split}$$

$$\left|\Delta\left(\frac{a}{b}\right)\right| \leq \frac{|b|\cdot|\Delta a| + |a|\cdot|\Delta b|}{b^2} \leq \frac{|b|\cdot\Delta_a + |a|\cdot\Delta_b}{b^2} = \Delta_{a/b}$$

Biz.: az osztás hibája

Az osztás relatív hibája

$$\delta\left(\frac{a}{b}\right) = \frac{\Delta\left(\frac{a}{b}\right)}{\frac{a}{b}} \approx \frac{b \cdot \Delta a - a \cdot \Delta b}{b^2} \cdot \frac{b}{a} =$$

$$= \frac{b \cdot \Delta a - a \cdot \Delta b}{b \cdot a} = \frac{\Delta a}{a} - \frac{\Delta b}{b} =$$

$$= \delta a - \delta b = \delta\left(\frac{a}{b}\right)$$

$$\left|\delta\left(\frac{a}{b}\right)\right| \le \left|\delta a\right| + \left|\delta b\right| \le \delta_a + \delta_b = \delta_{a/b}$$

1. Tétel: a függvényérték hibája

Ha $f \in C^1(k_{\Delta_a}(a))$ és $k_{\Delta_a}(a) = [a - \Delta_a; a + \Delta_a]$, akkor

$$\Delta_{f(a)} = M_1 \cdot \Delta_a$$

ahol $M_1 = \max\{ |f'(\xi)| : \xi \in k_{\Delta_a}(a) \}.$

Biz.: a Lagrange-féle középértéktétel felhasználásával.

$$\Delta f(a) = f(A) - f(a) = f'(\xi) \cdot (A - a) = f'(\xi) \cdot \Delta a,$$

valamely $\xi \in k_{\Delta_a}(a)$ értékre. Vizsgáljuk az abszolút hibát.

Jó felső becslést adva nyerjük az abszolút hibakorlátot:

$$|\Delta f(a)| = |f'(\xi)| \cdot |\Delta a| \le M_1 \cdot \Delta_a = \Delta_{f(a)},$$

2. Tétel: a függvényérték hibája

Ha
$$f \in C^2(k_{\Delta_a}(a))$$
 és $k_{\Delta_a}(a) = [a - \Delta_a; a + \Delta_a]$, akkor

$$\Delta_{f(a)} = |f'(a)| \Delta_a + \frac{M_2}{2} \cdot \Delta_a^2,$$

ahol $M_2 = \max\{ |f''(\xi)| : \xi \in k_{\Delta_a}(a) \}.$

Biz.: a Taylor-formula felhasználásával.

$$\Delta f(a) = f(A) - f(a) = f'(a) \cdot (A - a) + \frac{f''(\xi)}{2} \cdot (A - a)^2,$$

valamely $\xi \in k_{\Delta_a}(a)$ értékre. Vizsgáljuk az abszolút hibát.

Jó felső becslést adva nyerjük az abszolút hibakorlátot:

$$|\Delta f(a)| = |f'(a)| \cdot |\Delta a| + \frac{|f''(\xi)|}{2} \cdot |\Delta a|^2 \le$$

$$\le |f'(a)| \cdot \Delta_a + \frac{M_2}{2} \cdot \Delta_a^2 = \Delta_{f(a)},$$

Következmény: függvényérték relatív hibája

Ha
$$\Delta_a$$
 kicsi, akkor $\delta_{f(a)} = \frac{|a||f'(a)|}{|f(a)|} \cdot \delta_a$.

Definíció: Az f függvény a-beli kondíciószáma

A $c(f, a) = \frac{|a||f'(a)|}{|f(a)|}$ mennyiséget az f függvény a-beli kondíciószámának nevezzük.

Hibák terjedése

Biz.: Ha Δ_a kicsi, akkor a 2. tételben szereplő eredményben a Δ_a^2 -es tagot elhanyagolhatjuk, így felhasználva, hogy $\Delta_a=|a|\cdot\delta_a$

$$|\delta f(a)| \approx \frac{|f'(a)| \cdot \Delta_a}{|f(a)|} = \frac{|a| \delta_a \cdot |f'(a)|}{|f(a)|} = \frac{|a| |f'(a)|}{|f(a)|} \cdot \delta_a.$$