Week 1 - Introduction

- Section 1 Module Overview
 - Introduce the motivation for utilizing AI and ML, and applications of it.
- Section 2 Essential Mathematical Background
 - Special mathematical notation: special sets

Symbol	Meaning
R, R	Set of all real (continuous) numbers
N, N	Set of all natural numbers not including zero
Z , Z	Set of all integer numbers
@, Q	Set of all fractional (rational) numbers
<i>©</i> , C	Set of all complex numbers

• Special mathematical notation: logical statements

Symbol	Meaning
	logical "not" statement
\wedge	logical "and" statement, e.g. ($x=3$) \land ($y=2$), " x is 3 and y is 2"
V	logical "or" statement, e.g. (<i>x</i> =3) ∨ (<i>x</i> =-3) " <i>x</i> is 3 or -3"
∈	is an element of e.g3 ∈ Z
\Rightarrow	logical "if then" statement, e.g. $P \Rightarrow Q$, " P implies Q "
\Leftrightarrow	logical "if and only if" statement, "iff" e.g. $P \Leftrightarrow Q$, " P if and only if Q "
3	"there exists" quantifier
A	"for all" quantifier

• Special mathematical notation: set operations

Week 1 - Introduction

Symbol	Meaning
Ø	the empty set, a set with no elements
U	union of two sets e.g. $\{5,6\} \cup \{-3,5\} = \{5,6,-3\}$
Λ	intersection of two sets e.g. $\{5,6\} \cap \{-3,5\} = \{5\}$
\	subtract from a set e.g. $\{5,6,-3\}\setminus\{5,-3\} = \{6\}$
С	subset or is contained in a set, $\{5,-3\} \subset \mathbf{Z}$ is true, 5 and -3 are integer

Standard mathematical relations

Symbol	Meaning
=	equal to
<	less than
>	greater than
<	less than or equal to
≥	greater than or equal to
>	much greater than
«	much less than
≈	approximately equal to
<i>≠</i>	not equal to

• Function composition, conditionals

• Functions can be **composed** by putting the output of one function into the input of another, so g(f(x)) means first put x into

f, then put the result into g

Example: g(x)=10x and $f(x)=x^2$, then $f(g(x))=(10x)^2=100x^2$

Summation and products

$$\sum_{n=3}^{15} X_n = X_3 + X_4 + \cdots + X_{14} + X_{15}$$

$$\prod_{n=3}^{15} X_n = X_3 * X_4 * \cdots * X_{14} * X_{15}$$

- Future reading
 - 1 The Basics
 - 2 Analytic Geometry
 - 3 Linear Algebra: Vectors, Matrices, and Operations