Lecture 1 - A brief introduction to mixed models

Alencar Xavier, Gota Morota October 26, 2018

Instructors

Alencar Xavier

- · Quantitative Geneticist, Corteva Agrisciences
- · Adjunct professor, Purdue University
- http://alenxav.wixsite.com/home/

Gota Morota

- Assistant professor, Virginia Tech
- http://morotalab.org/

Outline

Part 1: Concepts

- History of mixed models
- Mixed models in plant breeding
- · Fixed and random terms
- Model notation
- Variance decomposition

Part 2: Applications

- · Selection models
- Practical examples
- · Variance components
- Ridges and Kernels

Part 1 - Concepts

History of mixed models

Francis Galton - 1886: Regression and heritability

Ronald Fisher - 1918: Infinitesimal model (P = G + E)

Sewall Wright - 1922: Genetic relationship

Charles Henderson - 1950, 1968: BLUP using relationship

Mixed models in plant breeding

- Heart and soul of plant breeding (Xavier et al 2017)
- Variance components and heritability
- Trait associations (Gianola and Sorensen 2014)
- Estimation of genetic values (Piepho et al 2008)
- Estimation of breeding values
- Prediction of unphenotyped lines (de los Campos et al 2013)
- Selection index
- Genome-wide association analysis (Yang et al 2014)
- All sorts of inference (Robinson 1991)

Fixed and random terms

Fixed effect

- Assumed to be invariable (often you cannot recollect the data)
- Inferences are made upon the parameters
- · Results can not be extrapolated to other datasets
- · Example: Overall mean and environmental effects

Random effects

- · You may not have all the levels available
- · Inference are made on variance components
- Prior assumption: coefficients are normally distributed
- · Results can not be extrapolated to other datasets
- · Example: Genetic effects

Let's unleash the beast

Model notation

- Linear model: y = Xb + Zu + e
- · With variance: $y \sim N(Xb, ZKZ\sigma_u^2 + I\sigma_e^2)$

Assuming: $u \sim N(0, K\sigma_u^2)$ and $e \sim N(0, I\sigma_e^2)$

Henderson equation

$$egin{bmatrix} X'X & Z'X \ X'Z & Z'Z + \lambda K^{-1} \end{bmatrix} egin{bmatrix} b \ u \end{bmatrix} = egin{bmatrix} X'y \ Z'y \end{bmatrix}$$

Summary:

- We know (data): $x = \{y, X, Z, K\}$
- We want (parameters): $\theta = \{b, u, \sigma_a^2, \sigma_e^2\}$
- · Estimation based on Gaussian likelihood: $L(x|\theta)$

Model notation

- y = vector of observations (n)
- $X = \text{design matrix of fixed effects } (n \times p)$
- · $Z = design (or incidence) matrix of random effects (<math>n \times p$)
- $K = \text{random effect correlation matrix } (q \times q)$
- u = vector of random effect coefficients (q)
- b = vector of fixed effect coefficients (p)
- e = vector of residuals (n)
- σ_a^2 = marker effect variance (1)
- σ_u^2 = random effect variance (1)
- σ_e^2 = residual variance (1)
- $\lambda = \sigma_e^2/\sigma_u^2$ (Regularization parameters) (1)

Model notation

The mixed model can also be notated as follows

$$y = Wg + e$$

Solved as

$$[W'W + \Sigma]g = [W'y]$$

Where

$$W = [X, Z]$$

$$g = [b, u]$$

$$\Sigma = egin{bmatrix} 0 & 0 \ 0 & \lambda K^{-1} \end{bmatrix}$$

Variance decomposition

Part 2 - Applications

Selection

1 Genetic values

- BLUPs or BLUEs from replicated trials
- Captures additive and non-additive genetics together

2 Breeding values

- Use pedigree information to create K
- Captures additive genetics (heritable)
- Trials not necessarily replicated

3 Genomic Breeding values

- Genotypic information replaces pedigree
- Any signal: additivity, dominance and epistasis

- Example 1: Balanced data, no kinship
- · Example 2: Balanced data, with kinship
- Example 3: Unbalanced data, with kinship
- · Example 4: Balanced data, missing individual

Data:

```
Env Gen Phe
## 1
         G1 47
      E1 G2 51
## 3
      E1 G3 46
## 4
      E1 G4 58
## 5
      E2 G1
            52
## 6
      E2 G2
            46
      E2 G3 52
## 8
      E2 G4 54
         G1 53
## 10
     E3 G2 48
## 11
     E3
         G3 58
## 12 E3 G4 52
```

Model: $Phenotype = Environment_{(F)} + Genotype_{(R)}$

Design matrix W:

##		EnvE1	EnvE2	EnvE3	GenG1	GenG2	GenG3	GenG4
##	1	1	0	0	1	0	0	0
##	2	1	0	0	0	1	0	0
##	3	1	0	0	0	0	1	0
##	4	1	0	0	0	0	0	1
##	5	0	1	0	1	0	0	0
##	6	0	1	0	0	1	0	0
##	7	0	1	0	0	0	1	0
##	8	0	1	0	0	0	0	1
##	9	0	0	1	1	0	0	0
##	10	0	0	1	0	1	0	0
##	11	0	0	1	0	0	1	0
##	12	0	0	1	0	0	0	1

W'W:

##		EnvE1	EnvE2	EnvE3	GenG1	GenG2	GenG3	GenG4
##	EnvE1	4	0	0	1	1	1	1
##	EnvE2	0	4	0	1	1	1	1
##	EnvE3	0	0	4	1	1	1	1
##	GenG1	1	1	1	3	0	0	0
##	GenG2	1	1	1	0	3	0	0
##	GenG3	1	1	1	0	0	3	0
##	GenG4	1	1	1	0	0	0	3

Left-hand side ($W'W + \Sigma$):

```
EnvE1 EnvE2 EnvE3 GenG1 GenG2 GenG3 GenG4
##
                               1.00 1.00 1.00
## EnvE1
                          1.00
## EnvE2
                       0 1.00
                               1.00
                                     1.00 1.00
                      4 1.00
                               1.00
                                     1.00 1.00
## EnvE3
## GenG1
                       1 3.17 0.00
                                     0.00 0.00
## GenG2
                      1 0.00
                              3.17
                                     0.00 0.00
                       1 0.00
                               0.00
                                     3.17 0.00
## GenG3
## GenG4
                       1 0.00 0.00 0.00 3.17
```

Assuming independent individuals: K = I

Regularization:
$$\lambda = \sigma_e^2/\sigma_u^2 = 1.64/9.56 = 0.17$$

Right-hand side (W'y):

```
## EnvE1 202
## EnvE2 204
## EnvE3 211
## GenG1 152
## GenG2 145
## GenG3 156
## GenG4 164
```

We can find coefficients through least-square solution

$$g = (LHS)^{-1}(RHS) = (W'W + \Sigma)^{-1}W'y$$

```
## EnvE1 50.50
## EnvE2 51.00
## EnvE3 52.75
## GenG1 -0.71
## GenG2 -2.92
## GenG3 0.55
## GenG4 3.08
```

Shrinkage

$$BLUE = rac{w'y}{w'w} = rac{sum}{n}$$
 = simple average

$$BLUP = rac{w'y}{w'w + \lambda} = rac{sum}{n + \lambda}$$
 = biased average = $BLUE imes h^2$

Note:

- More observations = less shrinkage
- Higher heritability = less shrinkage: $\lambda = \frac{h^2-1}{h^2}$

If we know the relationship among individuals:

```
## GenG1 GenG2 GenG3 GenG4
## GenG1 1.00 0.64 0.23 0.48
## GenG2 0.64 1.00 0.33 0.67
## GenG3 0.23 0.33 1.00 0.31
## GenG4 0.48 0.67 0.31 1.00
```

Then we estimate λK^{-1}

```
## GenG1 GenG2 GenG3 GenG4
## GenG1 0.15 -0.09 0.00 -0.01
## GenG2 -0.09 0.22 -0.02 -0.10
## GenG3 0.00 -0.02 0.10 -0.02
## GenG4 -0.01 -0.10 -0.02 0.17
```

Regularization: $\lambda = \sigma_e^2/\sigma_u^2 = 1.64/17.70 = 0.09$

And the left-hand side becomes

##		EnvE1	EnvE2	EnvE3	GenG1	GenG2	GenG3	GenG4
##	EnvE1	4	0	0	1.00	1.00	1.00	1.00
##	EnvE2	0	4	0	1.00	1.00	1.00	1.00
##	EnvE3	0	0	4	1.00	1.00	1.00	1.00
##	GenG1	1	1	1	3.15	-0.09	0.00	-0.01
##	GenG2	1	1	1	-0.09	3.22	-0.02	-0.10
##	GenG3	1	1	1	0.00	-0.02	3.10	-0.02
##	GenG4	1	1	1	-0.01	-0.10	-0.02	3.17

We can find coefficients through least-square solution

$$g = (LHS)^{-1}(RHS) = (W'W + \Sigma)^{-1}W'y$$

```
## EnvE1 51.05
## EnvE2 51.55
## EnvE3 53.30
## GenG1 -1.32
## GenG2 -3.34
## GenG3 0.03
## GenG4 2.45
```

Genetic coefficients shrink more: Var(A) < Var(G)

What if we have missing data?

```
Env Gen Phe
## 1
         G1 47
      E1 G2 51
## 3
      E1 G3 NA
## 4
         G4
             58
## 5
         G1
             52
## 6
         G2
             46
      E2 G3
             52
## 8
         G4
             NA
         G1
             53
## 10
      E3 G2
             48
## 11
      E3
         G3
             58
## 12 E3
         G4 52
```

Rows of missing points are removed

##		EnvE1	EnvE2	EnvE3	GenG1	GenG2	GenG3	GenG4
##	1	1	0	0	1	0	0	0
##	2	1	0	0	0	1	0	0
##	4	1	0	0	0	0	0	1
##	5	0	1	0	1	0	0	0
##	6	0	1	0	0	1	0	0
##	7	0	1	0	0	0	1	0
##	9	0	0	1	1	0	0	0
##	10	0	0	1	0	1	0	0
##	11	0	0	1	0	0	1	0
##	12	0	0	1	0	0	0	1

W'W:

##		EnvE1	EnvE2	EnvE3	GenG1	GenG2	GenG3	GenG4
##	EnvE1	3	0	0	1	1	0	1
##	EnvE2	0	3	0	1	1	1	0
##	EnvE3	0	0	4	1	1	1	1
##	GenG1	1	1	1	3	0	0	0
##	GenG2	1	1	1	0	3	0	0
##	GenG3	0	1	1	0	0	2	0
##	GenG4	1	0	1	0	0	0	2

Left-hand side ($W'W + \Sigma$):

```
EnvE1 EnvE2 EnvE3 GenG1 GenG2 GenG3 GenG4
##
                    0 1.00 1.00 0.00 1.00
## EnvE1
## EnvE2
                    0 1.00 1.00 1.00 0.00
          0 0 4 1.00 1.00 1.00 1.00
## EnvE3
        1 1 3.10 -0.06 0.00 -0.01
## GenG1
        1 1 -0.06 3.15 -0.01 -0.07
## GenG2
          0 1 1 0.00 -0.01 2.07 -0.01
## GenG3
                    1 -0.01 -0.07 -0.01 2.11
## GenG4
```

Regularization: $\lambda=\sigma_e^2/\sigma_u^2=1.21/19.61=0.06$

Right-hand side (W'y):

```
## EnvE1 156
## EnvE2 150
## EnvE3 211
## GenG1 152
## GenG2 145
## GenG3 110
## GenG4 110
```

Find coefficients through least-square solution

$$g = (LHS)^{-1}(RHS) = (W'W + \Sigma)^{-1}W'y$$

```
## EnvE1 54.14
## EnvE2 51.70
## EnvE3 53.82
## GenG1 -2.56
## GenG2 -4.68
## GenG3 2.15
## GenG4 0.81
```

What if we are missing data from a individual?

```
Env Gen Phe
## 1
         G1
             NA
      E1 G2 51
## 3
      E1 G3 46
## 4
             58
         G4
## 5
         G1
             NA
## 6
         G2
             46
      E2 G3
             52
## 8
         G4
             54
         G1
             NA
## 10
      E3
         G2
             48
## 11
      E3
         G3
             58
## 12 E3 G4 52
```

Rows of missing points are removed

##		EnvE1	EnvE2	EnvE3	GenG1	GenG2	GenG3	GenG4
##	2	1	0	0	0	1	0	0
##	3	1	0	0	0	0	1	0
##	4	1	0	0	0	0	0	1
##	6	0	1	0	0	1	0	0
##	7	0	1	0	0	0	1	0
##	8	0	1	0	0	0	0	1
##	10	0	0	1	0	1	0	0
##	11	0	0	1	0	0	1	0
##	12	0	0	1	0	0	0	1

W'W:

##		EnvE1	EnvE2	EnvE3	GenG1	GenG2	GenG3	GenG4
##	EnvE1	3	0	0	0	1	1	1
##	EnvE2	0	3	0	0	1	1	1
##	EnvE3	0	0	3	0	1	1	1
##	GenG1	0	0	0	0	0	0	0
##	GenG2	1	1	1	0	3	0	0
##	GenG3	1	1	1	0	0	3	0
##	GenG4	1	1	1	0	0	0	3

Left-hand side ($W'W + \Sigma$):

```
EnvE1 EnvE2 EnvE3 GenG1 GenG2 GenG3 GenG4
##
                    0 0.00 1.00 1.00 1.00
## EnvE1
                    0 0.00 1.00 1.00 1.00
## EnvE2
          0 0 3 0.00 1.00 1.00 1.00
## EnvE3
          0 0 0.14 -0.08 0.00 -0.01
## GenG1
        1 1 1 -0.08 3.19 -0.02 -0.09
## GenG2
        1 1 1 0.00 -0.02 3.09 -0.01
## GenG3
          1 1 1 -0.01 -0.09 -0.01 3.15
## GenG4
```

Regularization:
$$\lambda=\sigma_e^2/\sigma_u^2=1.79/22.78=0.08$$

Right-hand side (W'y):

```
## EnvE1 155
## EnvE2 152
## EnvE3 158
## GenG1 0
## GenG2 145
## GenG3 156
## GenG4 164
```

Find coefficients through least-square solution

$$g = (LHS)^{-1}(RHS) = (W'W + \Sigma)^{-1}W'y$$

```
## [,1]
## EnvE1 52.06
## EnvE2 51.06
## EnvE3 53.06
## GenG1 -1.82
## GenG2 -3.48
## GenG3 -0.07
```

GenG4 2.38

Variance components

Expectation-Maximization REML (1977)

$$\sigma_u^2=rac{u'K^{-1}u}{q-\lambda tr(K^{-1}C^{22})}$$
 and $\sigma_e^2=rac{e'y}{n-p}$

Bayesian Gibbs Sampling (1993)

$$\sigma_u^2=rac{u'K^{-1}u+S_u
u_u}{\chi^2(q+
u_u)}$$
 and $\sigma_e^2=rac{e'e+S_e
u_e}{\chi^2(n+
u_e)}$

Predicted Residual Error Sum of Squares (PRESS) (2017)

- \cdot $\lambda = argmin(\sum e_i^2/(1-h_{ii})^2)$
- Where $H=(I+K\lambda)^{-1}$ and $e=y-\mu-Hy$

Kernel methods:

- Genetic signal is captured by the relationship matrix K
- Random effect coefficients are the breeding values (BV)
- Efficient to compute BV when $markers \gg individuals$
- Easy use and combine pedigree, markers and interactions

Ridge methods:

- ullet Genetic signal is captured by the design matrix M
- Random effect coefficients are the marker effects
- · Easy way to make predictions of unobserved individuals
- Enables to visualize where the QTLs are in the genome

Kernel

$$y = Xb + Zu + e$$
 , $u \sim N(0, K\sigma_u^2)$

Ridge

$$y = Xb + Ma + e$$
 , $a \sim N(0, I\sigma_a^2)$

Where

- M is the genotypic matrix, $m_{ij} = \{0,1,2\}$
- $K = \alpha MM'$
- u = Ma
- $\sigma_a^2=lpha\sigma_u^2$

Kernel model

$$egin{bmatrix} X'X & Z'X \ X'Z & Z'Z + K^{-1}(\sigma_e^2/\sigma_u^2) \end{bmatrix} egin{bmatrix} b \ u \end{bmatrix} = egin{bmatrix} X'y \ Z'y \end{bmatrix}$$

Ridge model

$$egin{bmatrix} X'X & M'X \ X'M & M'M + I^{-1}(\sigma_e^2/\sigma_a^2) \end{bmatrix} egin{bmatrix} b \ a \end{bmatrix} = egin{bmatrix} X'y \ M'y \end{bmatrix}$$

Both models capture same genetic signal (de los Campos 2015)

```
K = tcrossprod(M)/ncol(M)
GBLUP = reml(y=y,K=K); Kernel_GEBV = GBLUP$EBV
RRBLUP = reml(y=y,Z=M); Ridge_GEBV = M%*%RRBLUP$EBV
plot(Kernel_GEBV,Ridge_GEBV, main='Comparing results')
```

Comparing results

Break