# **Chapter 6**

**Equivalence Class Testing** 

#### **Outline**

- Motivation. Why bother?
- Equivalence Relations and their consequences
- "Traditional" Equivalence Class Testing
- Four Variations of Equivalence Class Testing
- Examples



#### **Motivation**

- In chapter 5, we saw that all four variations of boundary value testing are vulnerable to
  - gaps of untested functionality, and
  - significant redundancy, that results in extra effort
- The mathematical notion of an equivalence class can potentially help this because
  - members of a class should be "treated the same" by a program
  - equivalence classes form a partition of the input space
- Recall (from chapter 3) that a partition deals explicitly with
  - redundancy (elements of a partition are disjoint)
  - gaps (the union of all partition elements is the full input space)



#### Motivation (continued)

- If you were testing the Triangle Program, would you use these test cases?
  - (3, 3, 3), (10, 10, 10), (187, 187, 187)
- In Chapter 5, the normal boundary value test cases covered June 15 in five different years. Does this make any sense?
- Equivalence class testing provides an elegant strategy to resolve such awkward situations.



#### **Equivalence Class Testing**



Equivalence class testing uses information about the functional mapping itself to identify test cases

#### Equivalence Relations

- Given a relation R defined on some set S, R is an equivalence relation if (and only if), for all, x, y, and z elements of S:
  - R is reflexive, i.e., xRx
  - R is symmetric, i.e., if xRy, then yRx
  - R is transitive, i.e., if xRy and yRz, then xRz
- An equivalence relation, R, induces a partition on the set S, where a partition is a set of subsets of S such that:
  - The intersection of any two subsets is empty, and
  - The union of all the subsets is the original set S
- Note that the intersection property assures no redundancy, and the union property assures no gaps.

#### **Equivalence Partitioning**



- Define a relation R on the input domain D as:  $\forall$  x, y  $\in$  D, xRy iff F(x) = F(y), where F is the program function.
- R is the "treated the same" relation
- Exercise: show that R is an equivalence relation

#### Equivalence Partitioning (continued)

- Works best when F is a many-to-one function
- Test cases are formed by selecting one value from each equivalence class.
- Identifying the classes may be hard

\_



## Forms of Equivalence Class Testing

- "Traditional"—focus on invalid inputs
- Normal: classes of valid values of inputs
- Robust: classes of valid and invalid values of inputs
- Weak: (single fault assumption) one from each class
- Strong: (multiple fault assumption) one from each class in Cartesian Product
- We compare these for a function of two variables, F(x<sub>1</sub>, x<sub>2</sub>)
- Extension to problems with 3 or more variables is "obvious".



#### "Traditional" Equivalence Class Testing

- Programmer arrogance:
  - in the 1960s and 1970s, programmers often had very detailed input data requirements.
  - if input data didn't comply, it was the user's fault
  - the popular phrase—Garbage In, Garbage Out (GIGO)
- Programs from this era soon developed defenses
  - (many of these programs are STILL legacy software)
  - as much as 75% of code verified input formats and values
- "Traditional" equivalence class testing focuses on detecting invalid input.
  - (almost the same as our "weak robust equivalence class testing")



#### Continuing Example

- (only 2-dimensions for drawing purposes)
- easy to extend to more variables
- F(x<sub>1</sub>, x<sub>2</sub>) has these classes...
  - valid values of  $x_1$ : a ≤  $x_1$  ≤ b
  - invalid values of  $x_1$ :  $x_1 < a$ ,  $b < x_1$
  - valid values of  $x_2$ : c ≤  $x_2$  ≤ d
  - invalid values of  $x_2$ :  $x_2 < c$ ,  $d < x_2$

#### Process

- test F for valid values of all variables,
- then test one invalid variable at a time
- (note this makes the single fault assumption)



#### Example



## Weak Normal Equivalence Class Testing

- Identify equivalence classes of valid values.
- Test cases have all valid values.
- Detects faults due to calculations with valid values of a single variable.
- OK for regression testing.
- Need an expanded set of valid classes
  - valid classes:  $\{a \le x1 \le b\}$ ,  $\{b \le x1 \le c\}$ ,  $\{c \le x1 \le d\}$ ,  $\{e \le x2 \le f\}$ ,  $\{f \le x2 \le g\}$
  - invalid classes: {x1 < a}, {x1 > d}, {x2 < e}, {x2 > g}



#### Weak Normal Equivalence Class Test Cases



## Weak Robust Equivalence Class Testing

- Identify equivalence classes of valid and invalid values.
- Test cases have all valid values except one invalid value.
- Detects faults due to calculations with valid values of a single variable.
- Detects faults due to invalid values of a single variable.
- OK for regression testing.



#### Weak Robust Equivalence Class Test Cases





## Strong Normal Equivalence Class Testing

- Identify equivalence classes of valid values.
- Test cases from Cartesian Product of valid values.
- Detects faults due to interactions with valid values of any number of variables.
- OK for regression testing, better for progression testing.



#### Strong Normal Equivalence Class Test Cases





## Strong Robust Equivalence Class Testing

- Identify equivalence classes of valid and invalid values.
- Test cases from Cartesian Product of all classes.
- Detects faults due to interactions with any values of any number of variables.
- OK for regression testing, better for progression testing.
  - (Most rigorous form of Equivalence Class testing, BUT,
  - Jorgensen's First Law of Software Engineering applies.)
- Jorgensen's First Law of Software Engineering:
  - The product of two big numbers is a really big number.
  - (More elegant: scaling up can be problematic)



#### Strong Robust Equivalence Class Test Cases



#### Selecting an Equivalence Relation

- There is no such thing as THE equivalence relation.
- •If x and y are days, some possibilities for Nextdate are:
  - x R y iff x and y are mapped onto the same year
  - x R y iff x and y are mapped onto the same month
  - x R y iff x and y are mapped onto the same date
  - x R y iff x(day) and y(day) are "treated the same"
  - x R y iff x(month) and y(month) are "treated the same"
  - x R y iff x(year) and y(year) are "treated the same"
- Best practice is to select an equivalence relation that reflects the behavior being tested.



#### NextDate Equivalence Classes

Month: – M1 = { month : month has 30 days} – M2 = { month : month has 31 days} – M3 = { month : month is February} Day - D1 = {day : 1 <= day <= 28}  $- D2 = {day : day = 29}$  $- D3 = {day : day = 30}$  $- D4 = {day : day = 31}$ Year (are these disjoint?)  $- Y1 = {year : year = 2000}$ Y2 = {year : 1812 <= year <= 2012 AND (year ≠ 0 Mod 100)</p> and (year = 0 Mod 4)

 $- Y3 = \{ \text{year} : (1812 \le \text{year} \le 2012 \text{ AND } (\text{year} \ne 0 \text{ Mod } 4) \}$ 

#### Not Quite Right

- A better set of equivalence classes for year is
  - Y1 = {century years divisible by 400} i.e., century leap years
  - Y2 = {century years not divisible by 400} i.e., century common years
  - Y3 = {non-century years divisible by 4} i.e., ordinary leap years
  - Y4 = {non-century years not divisible by 4} i.e., ordinary common years
- All years must be in range: 1812 <= year <= 2012</li>
- Note that these equivalence classes are disjoint.



#### Weak Normal Equivalence Class Test Cases

Select test cases so that one element from each input domain equivalence class is used as a test input value. The number of test cases is the same as the highest number of equivalence classes for a variable.

| Test<br>Case | Input Domain<br>Equiv. Classes | Input Values  | Expected Outputs |
|--------------|--------------------------------|---------------|------------------|
| WN-1         | M1, D1, Y1                     | April 1 2000  | April 2 2000     |
| WN-2         | M2, D2, Y2                     | Jan. 29 1900  | Jan. 30 1900     |
| WN-3         | M3, D3, Y3                     | Feb. 30 1812  | impossible       |
| WN-4         | M1, D4, Y4                     | April 31 1901 | impossible       |

Notice that all forms of equivalence class testing presume that the variables in the input domain are independent; logical dependencies are not recognized.



#### Strong Normal Equivalence Class Test Cases

- With 4 day classes, 3 month classes, and 4 year classes, the Cartesian Product will have 48 equivalence class test cases. (Jorgensen's First Law of Software Engineering strikes again!)
- Note some judgment is required. Would it be better to have 5 day classes, 4 month classes and only 2 year classes? (40 test cases)
- Questions such as this can be resolved by considering Risk.



#### Revised NextDate Domain Equivalence Classes

```
Month:
   -M1 = { month : month has 30 days}
    -M2 = { month : month has 31 days except December}
    -M3 = { month : month is February}
   -M4 = {month : month is December}
Day
   -D1 = {day : 1 \le day \le 27}
   -D2 = \{day : day = 28\}
    -D3 = \{day : day = 29\}
    -D4 = \{day : day = 30 \}
   -D5 = {day : day = 31}
Year (are these disjoint?)
   -Y1 = {year : year is a leap year}
    -Y2 = {year : year is a common year}
```

The Cartesian Product of these contains 40 elements.

#### When to Use Equivalence Class Testing

- Variables represent logical (rather than physical) quantities.
- Variables "support" useful equivalence classes.
- Try to define equivalence classes for
  - The Triangle Problem
    - 0 < sideA < 200
    - 0 < sideB < 200
    - 0 < sideC < 200
  - The Commission Problem (exercise)



#### Another Equivalence Class Strategy

- "Work backwards" from output classes.
- For the Triangle Problem, could have
  - {x, y, z such that they form an Equilateral triangle}
  - $\{x, y, z \text{ such that they form an Isosceles triangle with } x = y\}$
  - $\{x, y, z \text{ such that they form an Isosceles triangle with } x = z\}$
  - $\{x, y, z \text{ such that they form an Isosceles triangle with } y = z\}$
  - {x, y, z such that they form a Scalene triangle}
- How many equivalence classes will be needed for x,y,z such that they are not a triangle?



#### In-Class Exercise

- Apply the "working backwards" approach to develop equivalence classes for the Commission Problem.
- Hint: use boundaries in the output space.



## **Assumption Matrix**

|                | Valid Values                 | Valid and<br>Invalid Values            |
|----------------|------------------------------|----------------------------------------|
| Single fault   | Boundary Value               | Robust Boundary<br>Value               |
|                | Weak Normal<br>Equiv. Class  | Weak Robust<br>Equiv. Class            |
| Multiple fault | Worst Case<br>Boundary Value | Robust Worst<br>Case Boundary<br>Value |
|                | Strong Normal Equiv. Class   | Strong Robust<br>Equiv. Class          |

