Задание № 3 Электродвижущие силы и потенциалы

- 3.1. Напишите уравнение реакции, протекающей на левом электроде в равновесных условиях, и уравнение для расчета потенциала этого электрода.
- 3.2. Определите среднюю ионную активность электролита a_{\pm} в левом электроде гальванического элемента A на основании справочных значений среднего ионного коэффициента активности электролита [КС] при моляльной концентрации m_1 (табл. 3.1) и температуре 298 К.
- 3.3. Определите электродный потенциал левого электрода при 298 К. Стандартный электродный потенциал возьмите из справочника [КС].
- 3.4. Напишите уравнение реакции, протекающей на правом электроде в равновесных условиях, и уравнение для расчета потенциала этого электрода
- 3.5. Определите среднюю ионную активность электролита a_{\pm} в правом электроде гальванического элемента A на основании справочных значений среднего ионного коэффициента активности электролита [КС] при моляльной концентрации m_2 (табл. 3.1) и температуре 298 К.
- 3.6. Определите электродный потенциал правого электрода при 298 К. Стандартный электродный потенциал возьмите из справочника [КС].
- 3.7. Напишите электродные реакции, протекающие на отрицательном и положительном электродах и суммарную химическую реакцию, протекающую самопроизвольно при работе гальванического элемента *А*. Примите, что в реакции участвует один электрон.
- 3.8. Определите электродвижущую силу (ЭДС) гальванического элемента A и максимальную полезную, электрическую работу, которую можно получить при работе данного элемента при температуре 298 К.
- 3.9. Вычислите константу равновесия реакции, протекающей самопроизвольно а гальваническом элементе *А* при температуре 298 К. Примите, что в реакции участвует один электрон.

Таблица 3.1

Вариант	Γ альванический элемент A	<i>m</i> ₁ , моль/кг H ₂ O	т₂, моль/кг Н₂О
1	Zn ZnSO ₄ KCl AgCl _(κp) ,Ag	0,005	0,2
2	Pt,H ₂ H ₂ SO ₄ KCl Hg ₂ Cl _{2(kp)} ,Hg	0,005	0,2
3	Cu CuCl ₂ CdSO ₄ Hg ₂ SO _{4(κρ)} ,Hg	0,005	0,2
4	Pb,PbSO ₄ Na ₂ SO ₄ HCl H ₂ ,Pt	0,005	0,2
5	Fe FeCl ₂ H ₂ SO ₄ Ag ₂ SO _{4(kp)} ,Ag	0,01	0,1
6	Pb,PbI _(KD) KI SnCl ₂ Sn	0,01	0,1
7	Cd CdSO ₄ HCl Cl ₂ ,Pt	0,005	0,2
8	Hg,HgSO ₄ CdSO ₄ AgNO ₃ Ag	0,001	0,05
9	Pt,H ₂ H ₂ SO ₄ NaBr AgBr _(кр) ,Ag	0,005	0,2
10	Cd CdSO ₄ HCl CuCl _(KD) ,Cu	0,01	0,1
11	Pb PbNO ₃ KI I ₂ ,Pt	0,001	0,05
12	Ni NiSO ₄ KBr Hg ₂ Br _{2(кр)} ,Hg	0,1	0,5
13	Ca,Ca(OH) _{2(KP)} NaOH SnCl ₂ Sn	0,01	0,1
14	Tl TlCl CdCl ₂ Cl ₂ ,Pt	0,001	0,05
15	Tl,TlI _(кр) KI CuSO ₄ Cu	0,005	0,2
16	Tl,TlCl _(κp) NaCl BaCl ₂ Cl ₂ ,Pt	0,01	0,1
17	Cu,Cu ₂ O _(кp) KOH KOH O ₂ ,Pt	0,1	0,5
18	Pb,PbBr _{2(kp)} NaBr KBr Br ₂ ,Pt	0,005	0,2
19	Pt,H ₂ NaOH NaCl PbCl _{2(kp)} ,Pb	0,1	0,5
20	Cu,CuI _(кp) NaI CdCl ₂ Cl ₂ ,Pt	0,1	0,2
21	Li LiCl KI AgI _(кр) ,Ag	0,01	0,1
22	$Zn ZnCl_2 NaI Hg_2I_{2(\kappa p)}$, Hg	0,1	0,5
23	Cd CdI ₂ NaOH HgO _(κp) ,Hg	0,1	0,5
24	Cs CsCl KOH Ag2O(kp),Ag	0,1	0,5
25	Cd CdCl ₂ HCl Sb ₂ O _{3(кр)} ,Sb	0,001	0,05
26	Cd CdSO ₄ KI I ₂ ,Pt	0,005	0,2