PAT-NO: JP02001319995A

DOCUMENT-IDENTIFIER: JP 2001319995 A

TITLE: MANUFACTURING METHOD OF SEMICONDUCTOR DEVICE

PUBN-DATE: November 16, 2001

INVENTOR-INFORMATION:

NAME COUNTRY OKADA, TETSUYA N/A

ASSIGNEE-INFORMATION:

NAME COUNTRY SANYO ELECTRIC CO LTD N/A

APPL-NO: JP2000137479

APPL-DATE: May 10, 2000

INT-CL (IPC): H01L023/14;H01L021/3065 ;H01L021/304
;H01L021/52 ;H01L021/56
;H01L021/301 ;H01L023/12

ABSTRACT:

PROBLEM TO BE SOLVED: To provide a method for manufacturing a semiconductor device which gives a compact package where a packaging area is reduced, at the same time, uses a silicon substrate, does not have any via holes, and can manufacture inexpensively.

SOLUTION: A sticking electrode 44a that is buried into a silicon substrate 41, and a demountable electrode 44b are formed, a semiconductor chip 45 is die-bonded on the sticking electrode 44a, the electrode 46 of a semiconductor chip 45 is electrically connected to the demountable electrode 44b, and covering is made by an insulating resin 49 for removing the silicon substrate

41 from a back surface, thus achieving the manufacturing method of the semiconductor device for appropriately packaging an extremely thin and inexpensive, minute semiconductor chip.

COPYRIGHT: (C) 2001, JPO

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-319995 (P2001-319995A)

(43)公開日 平成13年11月16日(2001.11.16)

(51) Int.Cl.7		識別記号	識別記号 FI				テーマコード(参考)		
H01L	23/14		-	H01	L 21/304		631	5 F 0 O 4	
	21/3065				21/52		C	5 F 0 4 7	
	21/304	6 3 1			21/56		E	5F061	
	21/52				23/14		S		
	21/56				21/302		J		
			審査請求	未請求	請求項の数4	OL	(全 6 頁)	最終頁に続く	

(21)出願番号 特願2000-137479(P2000-137479)

(22) 出願日 平成12年5月10日(2000.5.10)

(71) 出願人 000001889

三洋電機株式会社

大阪府守口市京阪本通2丁目5番5号

(72)発明者 岡田 哲也

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

(74)代理人 100111383

弁理士 芝野 正雅

Fターム(参考) 5F004 DB01 DB03

5F047 AA02 BA52

5F061 AA01 BA07 CA04 CB13

(54) 【発明の名称】 半導体装置の製造方法

(57)【要約】

【課題】 実装面積を縮小した小型のパッケージを得る と共に、シリコン基板を用いたビアホールのない安価に 製造できる半導体装置の製造方法を提供する。

【解決手段】 シリコン基板41に埋め込まれた固着電極44aおよび取り出し電極44bを形成した後に、固着電極44a上に半導体チップ45をダイボンドし、半導体チップ45の電極46と取り出し電極44bとを電気的に接続し、絶縁性樹脂49で被覆してからシリコン基板41を裏面より除去することにより、極めて薄型で安価な微小半導体チップの実装に最適の半導体装置の製造方法が実現される

1

【特許請求の範囲】

PROPERTY OF THE PARTY OF THE PA

【請求項1】 シリコン基板の表面の予定の固着電極及 び取り出し電極となる部分にトレンチ溝を形成する工程

前記トレンチ溝の少なくとも側面および底面に酸化膜を 形成した後、前記トレンチ溝の底面の前記酸化膜を除去 する工程と、

前記トレンチ溝に埋め込まれた導電性金属よりなる前記 固着電極および取り出し電極を形成する工程と、

前記固着電極上に半導体チップをダイボンドし、前記半 10 導体チップの電極と前記取り出し電極とを電気的に接続 する工程と、

前記半導体チップを含み前記シリコン基板表面を絶縁性 樹脂で被覆する工程と、

前記シリコン基板を裏面より除去して前記固着電極及び 取り出し電極の裏面を露出する工程と、

前記絶縁性樹脂をダイシングして個別の半導体素子に分 離する工程とを具備することを特徴とする半導体装置の 製造方法。

【請求項2】 前記導電性金属は金あるいは銅のメッキ で形成されることを特徴とする請求項1に記載の半導体 装置の製造方法。

【請求項3】 前記半導体チップの電極と前記取り出し 電極とはボンデイングワイヤーで接続されることを特徴 とする請求項1に記載の半導体装置の製造方法。

【請求項4】 前記シリコン基板は裏面より研削により 除去されることを特徴とする請求項1に記載の半導体装 置の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は半導体装置の製造方 法に関し、特にシリコン基板上に設けた固着電極及び取 り出し電極を用いて半導体チップの組み立てを行う半導 体装置の製造方法に関する。

[0002]

【従来の技術】従来の半導体装置の組立工程において は、ウェハからダイシングして分離した半導体チップを リードフレームに固着し、金型と樹脂注入によるトラン スファーモールドによって半導体チップを封止し、リー ドフレームを切断して個々の半導体装置毎に分離する。 という工程が行われている。この手法によって得れらる 半導体装置は、図9に示したように、半導体チップ1の 周囲を樹脂層2で被覆し、該樹脂層2の側部から外部接 続用のリード端子3を導出した構造になる(例えば特別 平05-129473号)。

【0003】この構造は、樹脂層2の外側にリード端子 3が突出すること、リードフレームの加工精度の問題や 金型との位置あわせ精度の問題により、外形寸法とその 実装面積の縮小化には限界が見えていた。

等あるいは近似した寸法にまで縮小する事が可能な、ウ ェハスケールCSP (チップサイズパッケージ) が注目 され始めている。これは、図10(A)を参照して、半 導体ウェハ11に各種拡散などの前処理を施して多数の 半導体チップ12を形成し、図10(B)に示したよう に半導体ウェハ11の上部を樹脂層13で被覆すると共 に樹脂層13表面に外部接続用の電極14を導出し、そ の後半導体ウェハ11のダイシングラインに沿って半導 体チップ11を分割して、図10(C)に示したような 完成品としたものである。樹脂層13は半導体チップ1 2の表面(裏面を被覆する場合もある)を被覆するだけ であり、半導体チップ12の側壁にはシリコン基板が露 出する。電極14は樹脂層13下部に形成された集積回 路網と電気的に接続されており、実装基板上に形成した 導電パターンに対して電極14を対向接着することによ りこの半導体装置の実装が実現する。

【0005】斯かる半導体装置は、装置のパッケージサ イズが半導体チップのチップサイズと同等であり、実装 基板に対しても対向接着で済むので、実装占有面積を大 幅に減らすことが出来る利点を有する。また、後工程に 拘わるコストを大幅に減じることが出来る利点を有する ものである。(例えば、特開平9-64049号)そこ で、チップサイズが1mm角に満たない程度のチップで は図11(A)(B)(C)に示すように実装されてい

【0006】図中、21はセラミックやガラスエポキシ 等からなる絶縁基板であり、それらが1枚あるいは数枚 重ね合わされて、板厚が250~350μmと製造工程 における機械的強度を維持し得る厚みと、長辺×短辺が 1.0mm×0.8mm程度の矩形形状を有している。 【0007】絶縁基板21の表面には、タングステン等 の金属ペーストの印刷と、電解メッキ法による前記金属 ペースト上への金メッキによって導電パターンを形成 し、アイランド部22と電極部23a、23bとを形成 している。アイランド部22の上には、Agペーストな どの導電性接着剤24によって半導体チップ25が固着 されている。

【0008】半導体チップ25の表面にはアルミ電極パ ッド26が形成され、電極パッド26と電極部23a、 23bとが、ボンディングワイヤ27によって電気接続 される。電極パッド26側に1stボンド、電極部23 側に2ndボンドが打たれる。バイポーラトランジスタ で有れば、電極部23a、23bはエミッタとベースに 対応し、パワーMOSFETで有れば、ソースとゲート に対応する。

【0009】前記絶縁基板21の裏面側には、同じく金 メッキ層によって第1の外部接続電極28と第2の外部 接続電極29a、29bが形成される。絶縁基板21に はこれを貫通する、円形の第1のビアホール30と第2 【0004】近年、外形寸法を半導体チップサイズと同 50 のビアホール31a、31bが形成され、各ビアホール

30、31a、31bの内部はタングステンなどの導電材料によって埋設される。素材としては、電気的導電性と熱伝導性に優れた素材で埋設する。該ビアホール30、31a、31bによって、アイランド部22と第1の外部接続電極28とを、電極部23a、23bと第2の外部接続電極29a、29bとを、各々電気接続する。第1の外部接続電極28が例えばコレクタ電極となり、第2の外部接続電極29a、29bが例えばベース、エミッタ電極となる。

【0010】絶縁基板21の上方は、半導体チップ25とボンディングワイヤ27とを封止する樹脂層32で被覆される。樹脂層32は絶縁基板21と共にパッケージ外形を構成する。パッケージの周囲4側面は樹脂層32と絶縁基板21の切断面で形成され、パッケージの下面は絶縁基板21の裏面側で形成される。

[0011]

【発明が解決しようとする課題】しかしながら図11で示した実装構造においていろいろな問題点がある。第1に、セラミックやガラスエポキシ等の高価な基板材料を20用い、更にタングステン等の高価な金属ペーストを用いているので、ローコストの実装構造とは言えない。第2に、両面の電極等を接続するために、絶縁基板を貫通するビアホールが不可欠であり、この加工精度も0.15m程度が限界であるので、更なる小型化の障害となっている。第3にこのビアホール内を金属ペーストで充填するため作業性が極めて悪く、コスト高の原因となる。第4に半導体チップを形成する前工程と絶縁基板を用いて半導体チップを組み立てる後工程に区分されており、リードタイムが長く、製造コストも高くなる等々の多くの30問題点が発生している。

[0012]

【課題を解決するための手段】本発明は上述した種々の問題点に鑑みてなされたものであり、シリコン基板の表面の予定の固着電極及び取り出し電極となる部分にトレンチ溝を形成する工程と、前記トレンチ溝の少なくとも側面および底面に酸化膜を形成した後、前記トレンチ溝の側面の前記酸化膜を除去する工程と、前記トレンチ溝に埋め込まれた導電性金属よりなる前記固着電極上に半導に埋め込まれた導電性金属よりなる前記固着電極上に半導体チップをダイボンドし、前記半導体チップの電極と前記取り出し電極とを電気的に接続する工程と、前記半導体チップを含み前記シリコン基板表面を絶縁性樹脂で被覆する工程と、前記シリコン基板を裏面より除去して前記固着電極及び取り出し電極の裏面を露出する工程と、前記絶縁性樹脂をダイシングして個別の半導体素子に分離する工程とから構成されることに特徴を有する。

[0013]

【発明の実施の形態】図1から図8を参照して本発明の 半導体装置の製造方法を詳述する。

【0014】本発明は、シリコン基板41の表面の予定 の固着電極44aおよび取り出し電極44bとなる部分 にトレンチ溝42を形成する工程と、前記トレンチ溝4 2の少なくとも側面および底面に酸化膜43を形成した 後、前記トレンチ溝42の底面の前記酸化膜43を除去 する工程と、前記トレンチ溝42に埋め込まれた導電性 金属よりなる前記固着電極44 a および取り出し電極4 4bを形成する工程と、前記固着電極44a上に半導体 チップ45をダイボンドし、前記半導体チップ45の電 極46と前記取り出し電極44bとを電気的に接続する 工程と、前記半導体チップ45を含み前記シリコン基板 41表面を絶縁性樹脂49で被覆する工程と、前記シリ コン基板41を裏面より除去して前記固着電極44aお よび取り出し電極44bの裏面を露出する工程と、前記 絶縁性樹脂49をダイシングして個別の半導体素子に分 離する工程から構成されている。

【0015】本発明の第1の工程は、図1に示す如く、シリコン基板41の表面の予定の固着電極44aおよび取り出し電極44bとなる部分にトレンチ溝42を形成することにある。

【0016】本工程では、約200 μ mの厚みのシリコン基板41を準備し、予定の固着電極44a及び取り出し電極44bとなる部分を露出して他の部分をホトレジスト層で被覆し、シリコン基板41表面を選択的にドライエッチングして約10~50 μ mの深さのトレンチ42を形成する。予定の固着電極44aを形成するトレンチ溝42aは半導体チップよりやや大きく形成され、予定の取り出し電極44bはボンディングワイヤーが固着できるように一辺200 μ mの正方形状にトレンチ溝42bが形成される。

【0017】本発明の第2の工程は、図2および図3に示す如く、トレンチ溝42の少なくとも側面および底面に酸化膜43を形成した後、トレンチ溝42の底面の酸化膜43を除去することにある。

【0018】本工程では、シリコン基板41表面を熱酸化して全面に約5000Åから10000Åの厚い酸化膜43を形成する(図2)。従って、酸化膜43はシリコン基板41表面、トレンチ溝42の側面および底面に形成される。続いてこの酸化膜43を異方性ドライエッチングしてシリコン基板41表面およびトレンチ溝42底面の酸化膜43を選択的に除去する(図3)。これによりトレンチ溝42の側面に酸化膜43が残る。

【0019】本発明の第3の工程は、図4に示す如く、トレンチ溝42に埋め込まれた導電性金属よりなる固着電極44aおよび取り出し電極44bを形成することにある。

【0020】本工程では、銅または金等の導電性金属を電気メッキして、少なくともトレンチ溝42を埋める。 導電性金属のメッキ膜はトレンチ溝42を含めてシリコン基板41に全面に形成された後、ホトエッチングによ .

りトレンチ溝42の導電性金属のメッキ膜を残してエッ チング除去される。

【0021】本発明の第4の工程は、図5に示す如く、 固着電極44a上に半導体チップ45をダイボンドし、 半導体チップ45の電極46と取り出し電極44bとを 電気的に接続することにある。

【0022】本工程では、半導体チップ45は固着電極 44a表面にAgペーストなどの導電接着剤48によっ て固着され、半導体チップ45の電極パッド46と取り 出し電極44 bとをボールボンディングにより各々ボン 10 することにある。 ディングワイヤ47で接続する。

【0023】半導体チップ45は、N+/N型構造のよ うに、裏面側に高濃度不純物層を有しており、該高濃度 層を介して、ダイオード素子で有ればアノード又はカソ ードの一方の端子を、バイポーラ型トランジスタで有れ ばコレクタ端子を、パワーMOSFETで有ればドレイ ン端子を導出する構造である。そして、該高濃度層が導 電性接着剤48を介して固着電極44aに電気接続され る。

【0024】半導体チップ45の表面にはアルミ電極パ 20 ッド46が形成され、電極パッド46と取り出し電極4 4 bとが、ボンディングワイヤ47によって電気接続さ れる。電極パッド46側に1stボンド、取り出し電極 44 b 側に2 n d ボンドが打たれる。バイポーラトラン ジスタで有れば、取り出し電極44bはそれぞれエミッ タとベースに対応し、パワーMOSFETで有れば、ソ ースとゲートに対応する。

【0025】本発明の第5の工程は、図6に示す如く、 半導体チップ45を含みシリコン基板41表面を絶縁性 樹脂49で被覆することにある。

【0026】本工程では、シリコン基板41の上方に移 送したディスペンサ (図示せず) から所定量のエポキシ 系液体樹脂を滴下(ポッティング)し、すべての半導体 チップ45を共通の樹脂層49で被覆する。前記液体樹 脂として例えばCV576AN(松下電工製)を用い た。滴下した液体樹脂は比較的粘性が高く、表面張力を 有しているので、その表面が湾曲する。樹脂層49の湾 曲した表面を平坦面に加工するには、樹脂が硬化する前 に平坦な成形部材を押圧して平坦面に加工する手法と、 滴下した樹脂層49を100~200度、数時間の熱処 40 理(キュア)にて硬化させた後に、湾曲面を例えばダイ シングブレードで研削することによって平坦面に加工す る手法とが考えられる。

【0027】本発明の第6の工程は、図7に示す如く、 シリコン基板41を裏面より除去して固着電極44 a お よび取り出し電極44bの裏面を露出することにある。 【0028】本工程は本発明の特徴とするものであり、 シリコン基板41を裏面より研削する。シリコン基板4 1は約200μmの厚み有するので、大部分をバックグ ラインドにより機械的に研削し、残りの10~20µm 50

をスピンエッチングにより化学的に除去する。シリコン 基板41の表面は樹脂層49で被覆されているので、樹 脂層49の持つ機械的強度でシリコン基板41が割れる ことはない。この結果、固着電極44aおよび取り出し 電極44bの裏面が樹脂層49の裏面側に露出される。 このとき酸化膜43は固着電極44aおよび取り出し電 極44bの電気的絶縁材として働いている。

【0029】本発明の最終工程は、図8に示す如く、絶 縁性樹脂49をダイシングして個別の半導体素子に分離

【0030】本工程では、半導体チップ45毎に樹脂層 49とシリコン基板41を切断して各々の半導体素子に 分離する。切断にはダイシング装置を用い、点線で示す ダイシングライン50に沿って樹脂層49とシリコン基 板41とをダイシングブレード51で同時に切断するこ とにより、半導体チップ45毎に分割した半導体装置を 形成する。ダイシング工程においてはシリコン基板41 の裏面側にブルーシート(たとえば、商品名: UVシー ト、リンテック株式会社製)を貼り付け、前記ダイシン グブレードがブルーシートの表面に到達するような切削 深さで切断する。

[0031]

【発明の効果】以上に説明したように、本発明によれ ば、リードフレームを用いた半導体装置よりも更に小型 化できるパッケージ構造を提供できる利点を有する。こ のとき、リード端子が突出しない構造であるので、実装 したときの占有面積を低減し、高密度実装を実現でき

【0032】また、半導体チップを固着する基板をシリ コン基板で形成できるので、従来のセラミック基板に比 べて大幅にコストを削減できる。

【0033】更に、シリコン基板は既存の設備で加工が でき、新たな設備が不要である。シリコン基板も前工程 で処理できるので、後工程が極めて短く、リードタイム を大幅に短縮できる。

【0034】更に、ビアホールが不要となるので、スル ーホール工程を全面的に排除でき、大幅な工程短縮がで

【0035】更に、シリコン基板は半導体チップを作る 基板より大口径のものを用いれば、大量生産に有利とな

【図面の簡単な説明】

- 【図1】本発明を説明するための断面図である。
- 【図2】本発明を説明するための断面図である。
- 【図3】本発明を説明するための断面図である。
- 【図4】本発明を説明するための断面図である。
- 【図5】本発明を説明するための断面図である。
- 【図6】本発明を説明するための断面図である。
- 【図7】本発明を説明するための断面図である。
- 【図8】本発明を説明するための平面図である。

【図9】従来例を説明するための断面図である。 【図10】従来例を説明するための図である。

【図11】他の従来例を説明するための図である。

【図2】

【図1】

【図3】

【図5】

【図7】

50 41 >9>>基板

【図8】

2 労債層

【図9】

【図10】

13 根網短

フロントページの続き

(51) Int. C1.7 H O 1 L 21/301 23/12

識別記号

FI HO1L 21/78 23/12 řーマコート* (参考) L