

# APAC Machine Learning & Data Science Community Summit

2017년 5월 20일(토) 상암동 누리꿈스퀘어 비즈니스타워 3층



Le Zhang, Ph. D.

Data Scientist, Microsoft





http://blogs.sas.com/content/subconsciousmusings/2014/08/22/looking-backwards-looking-forwards-sas-data-mining-and-machine-learning/

## Data science on cloud

- Need to run scalable data science.
- Cost-effectiveness.
- Collaborative working environment.
- Share of codes, scripts, data, etc.
- Efficiency in prototyping ideas.
- Ecosystem.



# Data science project



- A data science project is often partitioned into several sub-projects.
- Elastic use of computing resources on cloud is important.



# Elastic use of cloud for data science



- Partition a project into sub-tasks.
- Allocate computing resource for each task.
- Invoke each computing node only when it is needed.



# **Apache Spark**



- Fast and general engine for large scale data processing.
- Java, Scala, Python, and R.
- Combine SQL, streaming, and complex analytics.
- Standalone, Mesos, and YARN as cluster manager.





# **GPU-accelerated deep learning**



- Graphic Processing Unit (GPU).
- Deep neural network.
- Why use GPU for deep learning?



|  | Batch Size | Training Time<br>CPU | Training Time<br>GPU | GPU<br>Speed Up |
|--|------------|----------------------|----------------------|-----------------|
|  | 64 images  | 64 s                 | 7.5 s                | 8.5X            |
|  | 128 images | 124 s                | 14.5 s               | 8.5X            |
|  | 256 images | 257 s                | 28.5 s               | 9.0X            |



|                     | Neural<br>Networks | GPU |
|---------------------|--------------------|-----|
| Inherently parallel | Yes                | Yes |
| Matrix operations   | Yes                | Yes |
| FLOPS               | Yes                | Yes |

# A platform for all





General purpose computing, Spark, deep learning, GPU acceleration, etc.

# Problems in bringing all into one...



- What might bother us?
  - Installation and configuration of environment (e.g., Spark, deep learning toolkit, etc.).
  - Programming languages unfamiliar to Data Scientists.
    - Spark: Scala and Java.
    - Deep learning: CUDA, OpenCL, and C++.
    - Azure Resource Manager: Azure Command Line Interface (CLI).
    - Deployment as a web service: RESTFUL, Javascript, etc.
  - Collaborative workspace, reproducibility of results, and ease of model deployment.

# **Azure Data Science Virtual Machine**



- Curated VM preinstalled with popular data science tools.
- Scenarios
  - Prototyping of POCs.
  - Remote working desktop for experimental analysis.
  - Data science and machine learning education.
  - Elastic computing engine for data science tasks.

# What you can do with DSVM



# 10 things you can do with DSVM

- Explore data and develop models locally on the DSVM using R and Python.
- Use a Jupyter notebook to experiment with your data on a browser.
- 3. Operationalize models built using R and Python on Azure Machine Learning.
- Administer your Azure resources using Azure portal, Powershell, or R.
- Extend storage space and share large-scale datasets / code.
- 6. Share code using GitHub.
- Access various Azure services.
- 8. Build reports and dashboard using the Power BI Desktop.
- 9. Dynamically scale your DSVM.
- 10. Install additional tools on DSVM.

# **Operationalization with DSVM**





# **DSVM** version in Windows and Linux

# VM Versions comparison – Quick Reference

### Windows Edition

- ✓ Microsoft R Open with popular packages pre-installed
- ✓ Microsoft R Server Developer Edition
- ✓ Anaconda Python 2.7, 3.5
- ✓ JuliaPro with popular packages pre-installed
- ✓ Jupyter Notebook Server (R, Python, Julia)
- SQL Server 2016 Developer Edition: Scalable in-database analytics with R services
- ✓ IDEs and Editors
  - → Visual Studio Community Edition 2015 (IDE)
  - → Azure HDInsight (Hadoop), Data Lake, SQL Server Data tools
  - → Node.js, Python, and R tools for Visual Studio
  - → RStudio Desktop
- ✓ Power BI desktop (BI Dashboard Design & Analysis)
- ✓ Machine Learning Tools

  - Microsoft Cognitive toolkit (CNTK) (deep Learning/AI)
  - Xgboost (popular ML tool in data science competitions)
  - Vowpal Wabbit (fast online learner)
  - ➡ Rattle (visual quick-start data and analytics tool)
  - → Mxnet (deep learning/Al)
  - → Tensorflow
- ✓ SDKs to access Azure and Cortana Intelligence Suite of services
- ✓ Tools for data movement and management of Azure and Big Data resources: Azure Storage Explorer, CLI, PowerShell, AdlCopy (Azure Data Lake), AzCopy, dtui (for DocumentDB), Microsoft Data Management Gateway
- ✓ Git, Visual Studio Team Services plugin
- √ Windows port of most popular Linux/Unix command-line utilities accessible through GitBash/command prompt
- ✓ Weka
- ✓ Apache Drill

### Linux Edition

- ✓ Microsoft R Open with popular packages pre-installed
- ✓ Microsoft R Server Developer Edition
- ✓ Anaconda Python 2.7, 3.5 with popular packages pre-installed
- ✓ Julia with popular packages pre-installed
- JupyterHub: Multi-user Jupyter notebooks (R, Python, Julia, PySpark)
- PostgreSQL, SQuirreL SQL (database tool), SQL Server drivers, and command line (bcp, sqlcmd)
- ✓ IDEs and editors
  - □ Eclipse with Azure toolkit plugin
  - → Emacs (with ESS, auctex) gedit
  - → IntelliJ IDEA
  - → PyCharm
  - → Atom
  - → Visual Studio Code
- ✓ Machine Learning Tools

  - Microsoft Cognitive toolkit (CNTK)-(deep Learning/AI)
  - → Xgboost (popular ML tool in data science competitions)
  - → Vowpal Wabbit (fast online learner)
  - Rattle (visual quick-start data and analytics tool)
  - Mxnet (deep learning/AI)
- ✓ SDKs to access Azure and Cortana Intelligence Suite of services
- Tools for data movement and management of Azure and Big Data resources: Azure Storage Explorer, CLI
- ✓ Git
- ✓ Weka
- ✓ Apache Drill
- ✓ Apache Spark local instance



# Use case demo flight delay prediction

# Flight delay prediction



- Flight delay prediction
  - Problem statement: predict flight delay given fleet information.
  - Data.
    - Size: ~1.4 G
    - Features: day of month, day of week, origin, destination, etc.
    - Prediction target: whether or not the flight is delayed.
- Assume we are going to build a pipeline that
  - Uses a sub-sampled (1%) and aggregated version of the original data.
  - Applies Spark for data pre-processing.
  - Trains a neural network model with GPU acceleration.
  - Publishes the model as a web based service.

# Operationalization with DSVM (cont'd)



- Computing resource planning.
- Data pre-processing on Spark, model training with GPU acceleration, and web-based service deployment.

| DSVM name    | DSVM size                                                                      | OS      | Description                                                                   | Price      |
|--------------|--------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------|------------|
| Spark        | Standard D4 v2 – 8 cores with 28 GB m emory                                    | Linux   | Local standalone m ode Spark for data preprocessing and f eature engineering. | \$0.585/hr |
| Deeplearning | Standard NC6 – 6 c<br>ores with 56 GB me<br>mory, and Nvidia Te<br>sla K80 GPU | Windows | Train deep neural n etwork model with GPU acceleration.                       | \$0.9/hr   |
| Webserver    | Standard D4 v2 – 8 cores with 28 GB m emory                                    | Linux   | Server host where web based model s ervice is published and run.              | \$0.585/hr |

# Pipeline for air delay prediction





Whole process of the demo data science project – air delay prediction

# Operationalization in R



Can we do everything in R?

# Operationalization in R



Yes!

# Cloud resource management



- Azure resource management in R.
  - AzureSMR
    - Managing a selection of Azure resources such as storage blobs, HDInsi ght, etc.
  - AzureDSVM
    - Deployment and operation on an Azure DSVM with specified size, OS, a nd user credentials.
    - Remote execution of script and file transfer with a Linux DSVM.
    - Retrieval of cost and expense information of using DSVM.
- Prerequisites
  - Azure subscription.
  - Initial setup for Azure Active Directory.



- DSVM supports local standalone mode Spark.
  - For experimental and debugging purpose.
  - Up-scale code to Spark cluster in Azure HDInsight.
- R frontend for Spark
  - Microsoft R Server.
  - SparkR.
  - sparklyr.



### **E2E Process:**

- Load Data from .csv
- Transform Features
- Split Data: Train + Test
- Fit Model: Logistic Regression (no regularization)
- Predict and Write Outputs

### Configuration:

- 1 Edge Node: 16 cores, 112GB
- 4 Worker Nodes: 16 cores, 112GB
- Dataset: Duplicated Airlines data (.csv)
- Number of columns: 26

# Deep learning and web service



- Deep neural network in MicrosoftML package
  - rxNeuralNet() function.
  - GPU acceleration.
  - NET# language to customize network.
- Web service deployment in mrsdeploy package.
  - remoteLogin(), publishService(), getService(), etc.
  - Supports script-based and realtime based.
  - Supports Swagger.

rxNeuralNet() - https://msdn.microsoft.com/en-us/microsoft-r/microsoftml/packagehelp/neuralnet
NET# - https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-azure-ml-netsharp-reference-guide

Web service with mrsdeploy - https://msdn.microsoft.com/en-us/microsoft-r/operationalize/data-scientist-manage-s ervices#realtime

## Interaction with remote machines





- mrsdeploy() package.
- Remote execution.
- One-box configuration.
- Access control via AAD.



now working at the local R command prompt.

# Try yourself



- The demo can be found at <a href="https://github.com/Microsoft/accel/eratoRs/tree/master/flightDelayPredictionWithDSVM">https://github.com/Microsoft/accel/eratoRs/tree/master/flightDelayPredictionWithDSVM</a>
- Prerequisites:
  - Azure subscription (free for trials).
  - R 3.3.x.
  - Microsoft R Server 9.x.
  - Microsoft R Client.
  - R packages
    - AzureSMR <a href="http://github/Microsoft/AzureSMR">http://github/Microsoft/AzureSMR</a>
    - AzureDSVM <a href="http://github/Azure/AzureDSVM">http://github/Azure/AzureDSVM</a>



# Thank you!