	Problem solved	
1.	Calculate the enthalpy change of the reaction, ΔH_r^o , $C_2H_4(g) + H_2(g) \rightarrow C_2H_6(g)$ Given data are as follows	
	$C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(l)$ $\Delta H_r^o = -1401 \text{ kJ}$	
	$C_2H_6(g) + 3\frac{1}{2}O_2(g) \rightarrow 2CO_2(g) + 3H_2O(l)$ $\Delta H_r^o = -1550 \text{ kJ}$	
	$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l)$ $\Delta H_r^o = -286 \text{ kJ}$	
2.	Illustrate the Hess's cycle for the reaction,	
	$2NaHCO3(s) \rightarrow Na2CO3(s) + CO2(g) + H2O(l).$	
	Calculate the enthalpy change of this reaction from the following data:	
	$\Delta H_{f(NaHCO_3)}^o = -840.9 \text{ kJmol}^{-1}, \Delta H_{f(Na_2CO_3)}^o = -1130.7 \text{ kJmol}^{-1},$	
	$\Delta H_{f(CO_2)}^o = -393.5 \text{ kJmol}^{-1}, \Delta H_{f(H_2O)}^o = -286 \text{ kJmol}^{-1}.$	
3.	0.53 g of C ₄ H ₄ S(1) is burnt to raise the temperature of a copper made beaker containing 200 g	
	water. The temperature rises from 18.5 to 35.5 °C. Mass of the beaker is 100 g and specific heat	
	for copper and water are 0.385 and 4.18 Jg ⁻¹⁰ C ⁻¹ , respectively. Calculate enthalpy change of	
	combustion.	
4.	A quantity of 200 mL 1.2 molL ⁻¹ HCl is mixed with 200 mL 0.50 molL ⁻¹ Ba(OH) ₂ in a calorimeter	
	that has a heat capacity of 453 JK ⁻¹ . The initial temperature of both the solutions before mixing	
	was 20 °C. Calculate the final temperature of the mixed solution. Given that $\Delta H_n = -56.2 \text{ kJmol}^{-1}$	
	and specific heat for aqueous solution is 4.18 JK ⁻¹ g ⁻¹ .	