Claims

We claim:

1	1.	A light-emitting device, comprising:
2	an ac	tive region configured to generate light in response to injected charge; and
3	a cur	rent confinement structure located to direct charge into the active region and
4	including a s	train compensating layer adjacent an oxide-forming layer.
1	2.	The light-emitting device of claim 1, in which the current confinement
		-
2		nprises an additional strain compensating layer adjacent the oxide-forming
3	layer, where the oxide-forming layer is sandwiched between the strain compensating	
4	layers.	
1	3.	The light-emitting device of claim 1, in which the strain compensating
2	layer compri	ses gallium, indium and phosphorus.
1	4.	The light-emitting device of claim 1, in which the oxide-forming layer
2	comprises aluminum, gallium and arsenic.	
1	5.	The light-emitting device of claim 1, in which the strain compensating
2	layer consist	s essentially of $Ga_{1-x}In_xP$, where $x \le 0.5$.
1	6.	The light-emitting device of claim 1, in which the oxide-forming layer
2	consists essentially of $Al_xGa_{1-x}As$, where $x \ge 0.96$.	
_	- 0.50.	

1	7. The light-emitting device of claim 1, in which:		
2	the strain compensating layer consists essentially of gallium indium phosphide		
3	GaInP; and		
4	the oxide-forming layer consists essentially of aluminum gallium arsenide		
5	AlGaAs.		
1	8. The light-emitting device of claim 7, in which:		
2	the strain compensating layer consists essentially of gallium indium phosphide		
3	$Ga_{1-x}In_x P$ in which $x \le 0.5$; and		
4	the oxide-forming layer essentially of aluminum gallium arsenide Al _x Ga _{1-x} As in		
5	which $x \ge 0.96$.		
1	9. The light-emitting device of claim 1, structured to generate light having a		
2	wavelength between 620 nm and 1650 nm.		
1	10. A method of making a strain compensating structure, the method		
2	comprising:		
3	providing a substrate;		
4	forming over the substrate a strain compensating layer of a first semiconductor		
5	material;		
6	forming an oxide-forming layer of a second semiconductor material juxtaposed		
7	with the strain compensating layer to form the strain compensating structure; and		
8	oxidizing at least part of the oxide-forming layer.		
1	11. The method of claim 10, in which:		
2	the first semiconductor material comprises indium, gallium and phosphorus; and		
3	the second semiconductor material comprises aluminum, collium and arcenide		

1	12. The method of claim 11, further comprising:		
2	forming the strain compensating layer using $Ga_{1-x}In_xP$, where $x \le 0.5$; and		
3	forming the oxide layer using $Al_xGa_{1-x}As$, where $x \ge .96$.		
1	13. A method for generating light, the method comprising:		
2	forming an optical cavity;		
3	locating an active region in the optical cavity, the active region configured to		
4	generate light in response to injected current;		
5	forming a current confinement structure located to direct current into the active		
6	region, including:		
7	forming a strain compensating layer of a first semiconductor material		
8	including gallium (Ga), indium (In) and phosphorus (P);		
9	forming an oxide-forming layer of a second semiconductor material		
10	including aluminum (Al) gallium (Ga) and arsenic (As);		
11	oxidizing at least part of the oxide-forming layer; and		
12	injecting current into the active region using the current confinement		
13	structure.		
1	14. The method of claim 13, in which the active region is configured to		
2	generate light having a wavelength between 620 nm and 1650 nm.		
1	15. A strain compensating structure, comprising:		
2	a strain compensating layer of a first semiconductor material including gallium		
3	(Ga), indium (In) and phosphorus (P); and		
4	an oxide-forming layer of a second semiconductor material including aluminum		
5	(Al) gallium (Ga) and arsenic (As) juxtaposed with the strain compensating layer.		
1	16. The strain compensating structure of claim 15, in which the first		
2	semiconductor material consists essentially of gallium indium phosphide $Ga_{1-x}In_x P$ in		
3	which $x \leq 0.5$.		

1	17. The strain compensating structure of claim 15, in which the second	
2	semiconductor material consists essentially of aluminum gallium arsenide Al _x Ga _{1-x} As in	
3	which $x \ge 0.96$.	
1	18. The strain compensating structure of claim 15, in which:	
2	the first semiconductor material consists essentially of gallium indium phosphide	
3	(GaInP); and	
4	the second semiconductor material consists essentially of aluminum gallium	
5	arsenide (AlGaAs).	
1	19. The strain compensating structure of claim 18, in which:	
2	the first semiconductor material consists essentially of gallium indium phosphide	
3	$Ga_{1-x}In_xP$ in which $x \le 0.5$; and	
4	the second semiconductor material essentially of aluminum gallium arsenide	
5	$Al_xGa_{1-x}As$ in which $x \ge 0.96$.	