Optimisation et recherche opérationnelle (ORO)

Contrôle continu n°1 - 29 septembre 2022 Conditions d'optimalité et méthodes de gradient

Durée : 1 heure – Calculatrice autorisée Fiches de cours autorisées (fiches distribuées + max 4 pages manuscrites)

L'énoncé est constitué de 4 exercices. Vous devez traiter les exercices 1 et 2, et au choix, l'exercice 3 ou l'exercice 4.

Exercice 1.

On définit la fonction $J: \mathbb{R}^2 \to \mathbb{R}$ par :

$$J(x,y) = (x-1)^2 + 10(x^2 - y)^2.$$

- 1. Vérifier que J est deux fois dérivable au sens de Fréchet sur \mathbb{R}^2 ; calculer son gradient et son hessien en tout point.
- 2. Évaluer le hessien de J au point (0,1). La fonction J est-elle convexe? Justifier.
- 3. Justifier que J a un unique point qui réalise le minimum global et le calculer.

Correction:

1. J est deux fois dérivable comme fonction polynôme en x,y. En notant J' son gradient et J'' son hessien, on a

$$\forall (x,y) \in \mathbb{R}^2, \quad J'(x,y) = \begin{pmatrix} 2(x-1) + 40x(x^2 - y) \\ -20(x^2 - y) \end{pmatrix},$$
$$J''(x,y) = \begin{pmatrix} 120x^2 - 40y + 2 & -40x \\ -40x & 20 \end{pmatrix}.$$

2. D'après la question 1, on a

$$J''(0,1) = \begin{pmatrix} -38 & 0\\ 0 & 20 \end{pmatrix}.$$

Cette matrice a deux valeurs propres de signes différents, donc elle n'est pas semi-définie positive. D'où J n'est pas convexe (théorème 12 bis du cours).

3. Raisonnons par conditions nécessaires. Soit $u=(x^*,y^*)$ un point qui réalise le minimum global de J. Alors u réalise un minimum local, donc on a J'(u)=0, ce qui se réécrit

$$\begin{cases} 2(x^* - 1) + 40x^*((x^*)^2 - y^*) = 0\\ -20((x^*)^2 - y^*) = 0 \end{cases}$$

On en déduit $y^* = (x^*)^2$ et $x^* = 1$ donc finalement u = (1, 1). On a donc au plus un point qui réalise le minimum.

 $\overline{\mathbf{I}}$ reste à vérifier que ce point réalise bien le minimum global de J. On a clairement

$$\forall (x,y) \in \mathbb{R}^2, \ J(x,y) \ge 0 = J(u)$$

donc u réalise le minimum global de J.

Exercice 2.

On considère l'ellipse E d'équation $\frac{x^2}{4} + y^2 = 1$, et la fonctionnelle J définie sur \mathbb{R}^2 par J(x,y) = x - y. On cherche les extrema relatifs de J sur E.

- 1. Qu'est-ce qui permet d'affirmer que des extrema existent? On énoncera un résultat précis.
- 2. Écrire sous la forme d'un système d'équations la condition nécessaire donnée par la méthode des multiplicateurs de Lagrange, que doit satisfaire tout point qui réalise un extremum relatif.
- 3. Résoudre le système et donner les points qui réalisent un extremum relatif de J sur E.

Correction:

- 1. La fonctionnelle J est continue et E est un compact de \mathbb{R}^2 (fermé borné) donc J atteint un minimum et un maximum sur E.
- 2. Supposons que le point u=(x,y) réalise un extremum relatif de J sur E. Posons

$$\Phi(x,y) = \frac{x^2}{4} + y^2 - 1.$$

Alors d'après la méthode des multiplicateurs de Lagrange. il existe un $\lambda \in \mathbb{R}$ tel que

$$\begin{cases} J'(u) + \lambda \Phi'(u) = 0 \\ \Phi(u) = 0 \end{cases}$$

Ici on a

$$J'(x,y) = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \quad \Phi'(x,y) = \begin{pmatrix} \frac{x}{2} \\ 2y \end{pmatrix}.$$

Le système devient donc

$$\begin{cases} 1 + \lambda \frac{x}{2} = 0 \\ -1 + \lambda 2y = 0 \\ \frac{x^2}{4} + y^2 - 1 = 0 \end{cases}$$

3. On raisonne par conditions nécessaires sur le système de la question 2. Nécessairement, x et y sont non nuls, et on peut écrire

$$\lambda = \frac{1}{2y}$$

de sorte que la première équation devient

$$1 + \frac{x}{4y} = 0$$

soit x=-4y. En injectant cette égalité dans la troisième équation, on obtient $5y^2=1$, soit $y=\pm\frac{1}{\sqrt{5}}$. Les solutions appartiennent donc à l'ensemble $\{u,-u\}$ avec

$$u = \left(\frac{-4}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right).$$

On vérifie aisément que u et -u satisfont le système de la question 2 avec $\lambda = \sqrt{5}/2$ ou $\lambda = -\sqrt{5}/2$. Or, on sait que J a sur E un point qui réalise le minimum et un point qui réalise le maximum, ces points sont distincts car J n'est pas constante sur E, et nécessairement ces points sont solutions du système de la question 2 donc ce sont bien u et -u.

Exercice 3.

Le but de l'exercice est de montrer l'existence d'une unique solution au problème (P1) énoncé dans le théorème 11 vu en cours, que l'on rappelle ici. Soit donc H un espace de Hilbert, K un convexe fermé non vide. Soit $a: H \times H \to \mathbb{R}$ une forme bilinéaire symétrique continue et elliptique, i.e.

$$\exists \alpha, C > 0, \quad \forall u, v \in H, |a(u, v)| \le C ||u|| ||v||, \quad a(v, v) \ge \alpha ||v||^2.$$

Soit $f: H \to \mathbb{R}$ une forme linéaire continue, et $c \in \mathbb{R}$ fixé. On note $\langle \cdot, \cdot \rangle$ le produit scalaire dans H, et on pose pour $v \in H$,

$$J(v) = \frac{1}{2}a(v, v) - f(v) + c.$$

On s'intéresse au problème suivant.

$$(P_1)$$
 Trouver $u \in K$ tel que $J(u) \leq J(v), \forall v \in K$.

- 1. Justifier que J est dérivable sur H (au sens de Fréchet). Soit $h \in H$, que vaut $\langle J'(v), h \rangle$?
- 2. En utilisant la question précédente, montrer que J est strictement convexe.
- 3. Justifier que *J* est continue et coercive. En déduire l'existence et l'unicité d'une solution au problème (P1).

Correction:

1. Montrons d'abord que J est dérivable (au sens de Fréchet). Pour cela, prenons $v, h \in H$. Alors

$$J(v+h) = J(v) + \frac{1}{2}(a(v,h) + a(h,v)) - f(h) + \frac{1}{2}a(h,h)$$
$$= J(v) + a(v,h) - f(h) + \frac{1}{2}a(h,h).$$

Fixons v et posons l(h) = a(v, h) - f(h): l est une application linéaire, et continue par rapport à h (par continuité de a et f). De plus, par la continuité de a, on a

$$|a(h,h)| \le C||h||^2$$
 donc $a(h,h) = o(h)$.

On en déduit donc que J est dérivable au sens de Fréchet et que l est la dérivée au sens de Fréchet de J au point v, i.e.

$$\langle J'(v), h \rangle = l(v) = a(v, h) - f(h).$$

2. Nous allons montrer que J est strictement convexe en utilisant le théorème 12. Soient donc $v, w \in H$, on a

$$\langle J'(v) - J'(w), v - w \rangle = a(v, v - w) - f(v - w) - a(w, v - w) + f(v - w)$$

= $a(v - w, v - w) \ge \alpha ||v - w||^2 > 0 \text{ si } v \ne w.$

On en déduit que J est strictement convexe.

3. La fonction J est continue puisqu'elle est dérivable. Montrons qu'elle est coercive. f étant continue, il existe k > 0 tel que $\forall v \in H, |f(v)| \le k||v||$. On a alors

$$\forall v \in H, \ J(v) \ge \frac{\alpha}{2} \|v\|^2 - k\|v\| + c \ \to +\infty \text{ quand } \|v\| \to +\infty.$$

Ainsi, J est coercive. On est donc dans les hypothèses du corollaire 10: J est convexe, continue, coercive, K est convexe fermé non vide, donc il existe un point qui réalise le minimum de J sur K. De plus, puisque J est strictement convexe, ce point est unique.

Exercice 4.

Soient $a \in \mathbb{R}$ et $J: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par : $J(x_1, x_2) = 2x_1^2 + ax_2^2 - 2x_1x_2 + 2x_1$.

- 1. On pose $\langle \cdot, \cdot \rangle$ le produit scalaire usuel sur \mathbb{R}^2 . Écrire J sous la forme d'une fonctionnelle quadratique : $J(x) = \frac{1}{2} \langle Ax, x \rangle \langle b, x \rangle$, en précisant A et b.
- 2. Déterminer les valeurs de a pour lesquelles cette fonction admet un minimum en un point unique de \mathbb{R}^2 . Calculer ce point en fonction de a.
- 3. On se place dans le cas a=1. Appliquer une itération de l'algorithme du gradient à pas optimal à J en partant de $x^{(0)}=(0,1)$.

Correction:

1. On peut mettre J sous la forme demandée avec

$$A = \begin{pmatrix} 2 & -1 \\ -1 & a \end{pmatrix} \quad \text{ et } \quad b = \begin{pmatrix} 2 \\ 0 \end{pmatrix}.$$

2. J est quadratique donc son hessien est constant J''(v) = A. Dans ce cas précis, on a l'équivalence entre

- J admet un unique point de minimum
- J est strictement convexe
- A est définie positive : $\langle Av,v\rangle>0, \forall v\in\mathbb{R}^2$
- toutes les valeurs propres de A sont strictement positives.

Soient λ_1 et λ_2 les valeurs propres de A, elles vérifient

$$\lambda_1 \lambda_2 = \det(A) = 2a - 1, \quad \lambda_1 + \lambda_2 = \operatorname{tr}(A) = 2 + a.$$

On a

$$J$$
 strictement convexe $\iff \lambda_1 > 0 \text{ et } \lambda_2 > 0$
 $\iff \lambda_1 \lambda_2 > 0 \text{ et } \lambda_1 + \lambda_2 > 0$
 $\iff 2a - 1 > 0 \text{ et } 2 + a > 0$
 $\iff a > \frac{1}{2}.$

On suppose cette condition réalisée. Pour calculer le point de minimum, il faut résoudre J'(u) = 0, soit

$$\begin{cases} 4x_1 - 2x_2 + 2 = 0 \\ 2ax_2 - 2x_1 = 0 \end{cases}$$

La solution est $u = \left(\frac{a}{1 - 2a}, \frac{1}{1 - 2a}\right)$.

3. On prend a=1 et $x^{(0)}=(0,1)$. Le calcul du gradient de J en $x^{(0)}$ donne alors

$$w^{(0)} = J'(x^{(0)}) = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$

et le pas optimal vérifie alors

$$\rho_0 = \frac{\|w^{(0)}\|^2}{\langle Aw^{(0)}, w^{(0)} \rangle}$$

avec

$$\langle Aw^{(0)}, w^{(0)} \rangle = \left\langle \begin{pmatrix} -2 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \end{pmatrix} \right\rangle = 4, \quad \|w^{(0)}\|^2 = 4.$$

Finalement, on a donc $\rho_0 = 1$ et donc $x^{(1)} = x^{(0)} - \rho_0 w^{(0)} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} - 1 \begin{pmatrix} 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$.

Optimisation et recherche opérationnelle (ORO)

Contrôle continu n°1 - 29 septembre 2022 Conditions d'optimalité et méthodes de gradient

Durée : 1 heure – Calculatrice autorisée Fiches de cours autorisées (fiches distribuées + max 4 pages manuscrites)

L'énoncé est constitué de 4 exercices. Vous devez traiter les exercices 1 et 2, et au choix, l'exercice 3 ou l'exercice 4.

Exercice 1.

= x2-2x+1+ lo(x4-221y2+y4)

On définit la fonction $J: \mathbb{R}^2 \to \mathbb{R}$ par :

$$J(x,y) = (x-1)^2 + 10(x^2 - y)^2.$$

- 1. Vérifier que J est deux fois dérivable au sens de Fréchet sur \mathbb{R}^2 ; calculer son gradient et son hessien en tout point.
- 2. Évaluer le hessien de J au point (0,1). La fonction J est-elle convexe? Justifier.
- 3. Justifier que J a un unique point qui réalise le minimum global et le calculer.

Exercice 2.

On considère l'ellipse E d'équation $\frac{x^2}{4} + y^2 = 1$, et la fonctionnelle J définie sur \mathbb{R}^2 par J(x,y) = x - y. On cherche les extrema relatifs de J sur E.

- 1. Qu'est-ce qui permet d'affirmer que des extrema existent? On énoncera un résultat précis.
- 2. Écrire sous la forme d'un système d'équations la condition nécessaire donnée par la méthode des multiplicateurs de Lagrange, que doit satisfaire tout point qui réalise un extremum relatif.
- 3. Résoudre le système et donner les points qui réalisent un extremum relatif de J sur E.

Exercice 3.

Le but de l'exercice est de montrer l'existence d'une unique solution au problème (P1) énoncé dans le théorème 11 vu en cours, que l'on rappelle ici. Soit donc H un espace de Hilbert, K un convexe fermé non vide. Soit $a:H\times H\to \mathbb{R}$ une forme bilinéaire symétrique continue et elliptique, i.e.

$$\exists \alpha, C > 0, \quad \forall u, v \in H, |a(u, v)| \le C ||u|| ||v||, \quad a(v, v) \ge \alpha ||v||^2.$$

Soit $f: H \to \mathbb{R}$ une forme linéaire continue, et $c \in \mathbb{R}$ fixé. On note $\langle \cdot, \cdot \rangle$ le produit scalaire dans H, et on pose pour $v \in H$,

$$J(v) = \frac{1}{2}a(v, v) - f(v) + c.$$

On s'intéresse au problème suivant.

(P₁) Trouver
$$u \in K$$
 tel que $J(u) \leq J(v), \forall v \in K$.

- 1. Justifier que J est dérivable sur H (au sens de Fréchet). Soit $h \in H$, que vaut $\langle J'(v), h \rangle$?
- 2. En utilisant la question précédente, montrer que J est strictement convexe.
- 3. Justifier que J est continue et coercive. En déduire l'existence et l'unicité d'une solution au problème (P1).

Exercice 4.

Soient $a \in \mathbb{R}$ et $J: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par : $J(x_1, x_2) = 2x_1^2 + ax_2^2 - 2x_1x_2 + 2x_1$.

- 1. On pose $\langle \cdot, \cdot \rangle$ le produit scalaire usuel sur \mathbb{R}^2 . Écrire J sous la forme d'une fonctionnelle quadratique : $J(x) = \frac{1}{2} \langle Ax, x \rangle \langle b, x \rangle$, en précisant A et b.
- 2. Déterminer les valeurs de a pour lesquelles cette fonction admet un minimum en un point unique de \mathbb{R}^2 . Calculer ce point en fonction de a.
- 3. On se place dans le cas a=1. Appliquer une itération de l'algorithme du gradient à pas optimal à J en partant de $x^{(0)}=(0,1)$.