B.TECH/CSE/4TH SEM /MATH 2201/2016 2016

NUMBER THEORY AND ALGEBRAIC STRUCTURES (MATH 2201)

Time Allotted: 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group - A (Multiple Choice Type Questions)

(Multiple Choice Type Questions)					
	Choose the correct alternatives for the following:				10 × 1=10
	(i)	The notation * defined by a*b= $\frac{a+b}{5}$ is a binary relation on the			
		(a) set of all integers (b) set of positive integers (c) set of negative integers (d) set of rationals.			gers
	(ii)	In \mathbb{Z}_7 , (a) $\overline{7} = \overline{15}$	(b) $\overline{7} = \overline{48}$	(c) $\overline{7} = \overline{70}$	$(d) \overline{7} = \overline{1}$
	(iii)	In the additive gro (a) 1/8	oup (Z,+), 2 ⁻³ is (b) -8	(c) -6	(d) 8
	(iv)	A group G is a simple group if the order of G is			
		(a) 6	(b) 8	(c) 10 ⁴	(d) 13.
	(v)	If the cyclic group G contains 11 distinct elements then the of its generators are			
		(a) 2	(b) 7	(c) 9	(d) 10.
	(vi) If a is prime to b and a is prime to c, then a is prime to (a) $b^2 + c^2$ (b) $b^3 + c^3$ (c) ab (d) $a^2 - b^2$				$) a^2 - b^2$
	(vii)	A connected planar graph with the same number of vertioces and edges determines			
		(a) 1 region		(b) 2 regions (d) 4 regions.	
(c) 3 regions			1	(u) 4 regions.	

B.TECH/CSE/4TH SEM /MATH 2201/2016 B.TECH/CSE/4TH SEM /MATH 2201/2016 (viii) In the field $\mathbb{Z}_7 = {\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}}$, the multiplicative inverse of $\overline{6}$ is Group - D (b) $\overline{3}$ (c) $\overline{5}$ (d) none of the others. Prove that intersection of any two subgroups of a group $(G, ^{\ast})$ is a 6.1, (a) A divisor of zero in Z₈, the ring of integers modulo 8, is subgroup of G. Is a similar result true for union? Justify. (ix) (b) [3] (c) [5] (d) [4]. Show that every proper subgroup of a group of order 6 is cyclic. The number of subrings of $2\mathbb{Z} = \{0, \pm 2, \pm 4, \pm 6, \pm 8, \dots\}$ is (x) 4+2+6=12 (b) 2 (c) 4 (d) infinite. Let H and K be subgroups of a finite group G. Then prove that $|HK| = \frac{|H||K|}{|H\cap K|}$. 7. (a) Group - B (a) If p is a prime and is not a divisor of a, then prove that $a^{p-1} \equiv 1 \pmod{p}$ Show that the 8-th roots of unity form a cyclic group. Find all (b) (b) Find the greatest common divisor of 624 and 441by using the generators of this group. Eucledian algorithm and express it as 624x+441y, where x and y are 6 + 6 = 126 + 6 = 12Group - E State the Chinese Remainder Theorem. Use it to solve the following 3. (a) Prove that every field is an integral domain. 8. (a) set of simultaneous congruences : $x \equiv 1 \pmod{3}$, $x \equiv 2 \pmod{5}$, $x \equiv$ If in a ring K with unity, $(xy)^2 = x^2y^2$ for all $x, y \in K$, then prove that *K* is commutative. (b) Prove that there is an infinite number of prime numbers. 4 + 8 = 127+5=12 Prove that, for any positive n, the ring Z_n of all integers modulo n, is (a) Group - C an integral domain if and only if n is a prime integer. (i) Determine whether *defined as a*b=ab+3 is a binary (a) If a,b be two elements of a field F where b≠0 and (ab)2=ab2+bab-b2, operation. then prove that a=1. (ii) Determine whether $(\mathbb{R}^+,*)$, * given by $a*b=\sqrt{ab}$ is a group. 6 + 6 = 12Let G be a group and $a, b \in G$. Show that $(aba^{-1})^n = aba^{-1}$ iff $b = b^n$ (3+3)+6=125. (a) Show that all the roots of $x^4=1$ forms a commutative group under the operation multiplication. (b) Prove that the order of a permutation on a finite set is the lcm of length of its disjoint cycles. 6 + 6 = 12

MATH 2201

MATH 2201