A Hennessy-Milner Property for Many-Valued Modal Logics

Michel Marti and George Metcalfe, University of Bern

December 13, 2015

Overview

- Many-Valued Modal Logics
- 2 Modal Equivalence and Bisimulation
- 3 Divisible Chain Based Modal Logics

MTL-Chains

Definition

An MTL-chain is an algebraic structure

$$\mathbf{A} = \langle A, \wedge, \vee, \cdot, \rightarrow, \perp, \top \rangle$$

satisfying

- **1** $\langle A, \wedge, \vee, \perp, \top \rangle$ is a bounded lattice where $a \leq b \Leftrightarrow a \wedge b = a$.
- (A, \cdot, \top) is a commutative monoid.
- 3 $a \cdot b \le c$ if and only if $a \le b \to c$ for all $a, b, c \in A$
- \bullet \leq is a linear order on A

A is **complete** iff $\bigwedge B$ and $\bigvee B$ exist in A for all $B \subseteq A$.

t-Norms

If the universe of **A** is the real unit interval [0,1], then the monoidal operation \cdot is a **t-norm** with unit 1 and residual \rightarrow .

- Łukasiewicz logic, · is the Łukasiewicz t-norm max(0, x + y 1)
- ② Gödel logic, \cdot is the minimum t-norm min(x, y)
- 3 product logic, \cdot is the product t-norm xy (multiplication)

Language and Formulas

Our language consists of

- constants ⊥, ⊤
- a fixed countably infinite set Var of (propositional) variables, denoted p, q, \ldots
- binary connectives \rightarrow , \land , \lor , \cdot
- unary (modal) connectives □ and ◊

We define negation by $\neg \varphi := \varphi \to \bot$.

The set of **formulas** of this language is denoted by $\operatorname{Fm}_{\Box\Diamond}$, with arbitrary members denoted $\varphi, \psi, \chi, \ldots$ We also denote the set of (purely) **propositional formulas** by Fm .

Semantics

Definition

- A (crisp) frame is a pair $\langle W, R \rangle$ where $W \neq \emptyset$ is a set of states and $R \subseteq W \times W$ is a binary accessibility relation.
- For a complete MTL-chain **A**, a K(**A**)^C-model is a triple $\mathfrak{M} = \langle W, R, V \rangle$ where $\langle W, R \rangle$ is a frame and $V \colon \mathrm{Var} \times \mathrm{W} \to \mathrm{A}$ is a mapping, called a **valuation**. The valuation V is extended to $V \colon \mathrm{Fm}_{\Box \Diamond} \times \mathrm{W} \to \mathrm{A}$ by

$$V(\bot, w) = \bot, \quad V(\top, w) = \top$$
 $V(\varphi \star \psi, w) = V(\varphi, w) \star V(\psi, w) \quad \text{for } \star \in \{\land, \lor, \to, \cdot\}$
 $V(\Box \varphi, w) = \bigwedge \{V(\varphi, v) : Rwv\}$
 $V(\Diamond \varphi, w) = \bigvee \{V(\varphi, v) : Rwv\}$

Modal Equivalence

Definition

Let **A** be a complete MTL-chain, $\mathfrak{M} = \langle W, R, V \rangle$ and $\mathfrak{M}' = \langle W', R', V' \rangle$ two K(**A**)^C-models. $w \in W$ and $w' \in W'$ are **modally equivalent**, written $w \iff w'$, iff

$$V(\varphi, w) = V'(\varphi, w')$$
 for all $\varphi \in \operatorname{Fm}_{\square \Diamond}$

Bisimulation

Definition

A non-empty binary relation $Z \subseteq W \times W'$ is a **bisimulation** between \mathfrak{M} and \mathfrak{M}' iff the following conditions are satisfied:

- If wZw', then V(p, w) = V'(p, w') for all $p \in Var$.
- ② If wZw' and Rwv, then there exists $v' \in W'$ such that vZv' and R'w'v' (the forth condition).
- If wZw' and R'w'v', then there exists $v \in W$ such that vZv' and Rwv (the back condition).

We say that $w \in W$ and $w' \in W'$ are **bisimilar**, written $w \equiv w'$, iff there exists a bisimulation Z between \mathfrak{M} and \mathfrak{M}' such that wZw'.

Bisimilarity implies Modal Equivalence

Lemma

Let $\mathfrak{M} = \langle W, R, V \rangle$ and $\mathfrak{M}' = \langle W', R', V' \rangle$ be $\mathsf{K}(\mathbf{A})^\mathsf{C}$ -models. If $w \in W$ and $w' \in W'$ are bisimilar, then they are modally equivalent.

The Hennessy-Milner Property

Definition

A class \mathcal{K} of $K(\mathbf{A})^C$ -models has the **Hennessy-Milner property** if for any models $\mathfrak{M} = \langle W, R, V \rangle$ and $\mathfrak{M}' = \langle W', R', V' \rangle$ in \mathcal{K} , whenever the states $w \in W$ and $w' \in W'$ are modally equivalent, they are bisimilar.

Definition

A K(**A**)^C-model is **image-finite** iff $R[w] = \{v \in W : Rwv\}$ is finite for each $w \in W$.

The Hennessy-Milner Property for Image-Finite Models

Question: For which A does the class of image-finite $K(A)^{C}$ -models have the Hennessy-Milner property?

Failure of H.M. property

Example

Consider the four-valued Gödel modal logic $K(G_4)^C$ where

$$\textbf{G}_{\textbf{4}} = \langle \{0, \frac{1}{3}, \frac{2}{3}, 1\}, \mathsf{min}, \mathsf{max}, \mathsf{min}, \rightarrow_{\mathsf{G}}, 0, 1 \rangle$$

 w_0 and v_0 are modally equivalent, but not bisimilar.

Failure of H.M. property

So the class of image-finite $K(\textbf{G_4})^C$ -models does not have the Hennessy-Milner property.

A Sufficient Condition

Lemma

Suppose that for any distinct $a,b\in A$, there is a one-variable propositional formula $\psi_{a,b}(p)\in \mathrm{Fm}$ such that $\psi_{a,b}[a]=\top$ and $\psi_{a,b}[b]\neq \top$. Then the class of image-finite $\mathsf{K}(\mathbf{A})^\mathsf{C}$ -models has the Hennessy-Milner property.

Example: Three-Valued Łukasiewicz Logic

Example

Consider the algebra \mathbf{t}_3 for three-valued Łukasiewicz logic. We can distinguish values using the following formulas:

$$\begin{split} \psi_{1,0} &= (p \leftrightarrow \top), & \psi_{1,\frac{1}{2}} &= (p \cdot p), & \psi_{\frac{1}{2},0} &= (\neg p \to p) \\ \psi_{0,1} &= (p \leftrightarrow \bot), & \psi_{\frac{1}{2},1} &= (p \to \neg p), & \psi_{0,\frac{1}{2}} &= (\neg p \cdot \neg p). \end{split}$$

By the previous lemma, the class of image-finite $K(\mathbf{t}_3)^C$ -models has the Hennessy-Milner property.

A Necessary and Sufficient Condition

Definition

• Let $\vec{a} \in A^n$ and $\vec{C} = (\vec{c}_1, \dots, \vec{c}_n) \in A^{n \times n}$. A formula $\psi(p_1, \dots, p_n) \in \operatorname{Fm}$ is an \vec{a}/\vec{C} -distinguishing formula if

$$\psi[\vec{a}] > \bigvee_{i=1}^{n} \psi[\vec{c}_i] \quad \text{ or } \quad \psi[\vec{a}] < \bigwedge_{i=1}^{n} \psi[\vec{c}_i]$$

• A has the distinguishing formula property if for all $n \in \mathbb{N}$, $\vec{a} \in A^n$, and $\vec{C} = (\vec{c}_1, \dots, \vec{c}_n) \in A^{n \times n}$ such that $\vec{a} \neq \vec{c}_i$ for $i \in \{1, \dots, n\}$, there is an \vec{a}/\vec{C} -distinguishing formula.

Characterization Theorem

Theorem

The following are equivalent for any complete MTL-chain **A**:

- (1) The class of image-finite $K(\mathbf{A})^{C}$ -models has the Hennessy-Milner property.
- (2) A has the distinguishing formula property.

BL-Chains

Definition

An MTL-chain is a **BL-chain** iff $a \wedge b = a \cdot (a \rightarrow b) = b \cdot (b \rightarrow a)$ for all $a, b \in A$ (divisibility).

Remark

- In the case where A = [0, 1], the monoidal operation \cdot is a **continuous t-norm** and **A** is called a **standard BL-chain**.
- for all $a, b \in A$:

$$a \wedge b = a \cdot (a \rightarrow b)$$

 $a \vee b = ((a \rightarrow b) \rightarrow b) \wedge ((b \rightarrow a) \rightarrow a)$

 \land, \lor can therefore be dropped from our language.

MV-Chains

Definition

An **MV-chain** is a BL-chain satisfying $\neg \neg a = a$ for all $a \in A$.

Consider the MV-chains

$$\mathbf{t}_{n+1} = \langle \{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}, \cdot_{\mathsf{L}}, \rightarrow_{\mathsf{L}}, 0, 1\rangle \quad (n \in \mathbb{Z}^+)$$

$$\mathbf{t}_{\infty} = \langle [0, 1], \cdot_{\mathsf{L}}, \rightarrow_{\mathsf{L}}, 0, 1\rangle$$

where $x \cdot_{\mathbf{L}} y = \min(1, x+y-1)$ and $x \to_{\mathbf{L}} y = \max(0, 1-x+y)$. Every finite MV-chain \mathbf{A} is isomorphic to $\mathbf{t}_{|A|}$ and every standard MV-chain is isomorphic to \mathbf{t}_{∞} .

In general, in the algebras of Łukasiewicz logic, we may distinguish between rational values in [0,1] using unary **McNaughton** functions:

Lemma

For each $\alpha \in \mathbb{Z}^+ \cup \{\infty\}$, the class of image-finite $K(\mathbf{t}_{\alpha})^{\mathsf{C}}$ -models has the Hennessy-Milner property.

Hoops

Definition

A **hoop** is an algebraic structure $\mathbf{H} = \langle H, \cdot, \rightarrow, \top \rangle$ such that $\langle H, \cdot, \top \rangle$ is a commutative monoid and for all $a, b, c \in H$:

- $\mathbf{0} \ a \rightarrow a = \top$.
- $2 a \cdot (a \rightarrow b) = b \cdot (b \rightarrow a).$

 $a \leq b :\Leftrightarrow a \rightarrow b = \top$.

If \leq is linear, then **H** is a **linearly ordered hoop** (**o-hoop**).

An o-hoop is **standard** if H = [0, 1].

Hoops

Definition

- The o-hoop **A** is called **cancellative** iff $a \rightarrow (a \cdot b) = b$ for all $a, b \in A$
- **A** is the **hoop reduct** of an MV-chain $\langle A, \cdot, \rightarrow, \bot, \top \rangle$ if $\mathbf{A} = \langle A, \cdot, \rightarrow, \top \rangle$.

Ordinal Sum of o-hoops

Definition

Let I be a linearly ordered set with bottom element i_0 and suppose that $\mathbf{A}_i = \langle A_i, \cdot_i, \to_i, \top \rangle$ is a non-trivial o-hoop for each $i \in I$. Suppose that $A_i \cap A_j = \{\top\}$ for $i \neq j$ and that \mathbf{A}_{i_0} has a bottom element \bot . Then the **(bounded) ordinal sum** of $(\mathbf{A}_i)_{i \in I}$ is defined as

$$\bigoplus_{i\in I} \mathbf{A}_i = \langle \bigcup_{i\in I} A_i, \cdot, \rightarrow, \bot, \top \rangle$$

$$x \cdot y = \begin{cases} x \cdot_i y & \text{if } x, y \in A_i \\ x & \text{if } x \in A_i \setminus \{\top\}, \ y \in A_j, \ \text{and } i < j \end{cases}$$
$$y & \text{if } y \in A_i \setminus \{\top\}, \ x \in A_j, \ \text{and } i < j \end{cases}$$

and \rightarrow is the residual.

The Structure of BL-Chains

Theorem (Aglianò and Montagna)

Every non-trivial BL-chain is the unique ordinal sum of a family of o-hoops each of which is either the hoop reduct of an MV-chain or a cancellative o-hoop.

H.M. Property

Lemma

Suppose that **A** is the ordinal sum of a family of (non-trivial) o-hoops $(\mathbf{A}_i)_{i\in I}$. If $|I|\geq 3$ or \mathbf{A}_i is cancellative for some $i\in I$, then the class of image-finite $K(\mathbf{A})^C$ -models does not have the Hennessy-Milner property.

Lemma

Let $\mathbf{A} = \mathbf{t}_{\alpha}^{\mathbf{h}} \oplus \mathbf{t}_{\beta}^{\mathbf{h}}$ with $\alpha, \beta \in \mathbb{Z}^+ \cup \{\infty\}$. Then the class of image-finite $K(\mathbf{A})^{\mathsf{C}}$ -models has the Hennessy-Milner property.

Characterization Theorems

Theorem

The following are equivalent for any finite BL-chain A:

- (1) The class of image-finite $K(\mathbf{A})^{C}$ -models has the Hennessy-Milner property.
- (2) **A** is isomorphic to \mathbf{t}_{n+1} or $\mathbf{t}_{n+1}^h \oplus \mathbf{t}_{m+1}^h$ for some $m, n \in \mathbb{N}$.

$\mathsf{Theorem}$

The following are equivalent for any standard BL-chain A:

- (1) The class of image-finite K(**A**)^C-models has the Hennessy-Milner property.
- (2) **A** is isomorphic to \mathbf{t}_{∞} or $\mathbf{t}_{\infty}^{\mathbf{h}} \oplus \mathbf{t}_{\infty}^{\mathbf{h}}$.

Thank you for your attention!