資料壓縮 HW2

學號:113522118 姓名:韓志鴻

一、運作流程

1. 影像檔案與資料夾準備:

- i. 讀取輸入圖像:根據指定資料夾(image/),取得所有待壓縮的.raw 格式圖像。
- ii. 判斷圖像類型:根據檔名判斷為灰階或彩色(rgb)。
- iii. 建立輸出資料夾:建立儲存重建.raw 檔與.jpeg 圖檔的資料夾(result/raw、result/jpeg)。

2. Quality Factor (QF) 參數設定:

- i. 設定多組 QF 值:如 90、80、50、20、10、5,分別代表不同壓縮品質等級。
- ii. 每一張影像都會針對每一組 QF 進行完整壓縮與重建流程。

3. 動態產生量化表:

- i. 根據 QF 調整量化表:利用 JPEG 標準計算方式,根據不同 QF 產生亮度(Y)與色差(C) 的量化表,決定每一區塊頻率係數的壓縮強度。
- ii. OF 越高,保留資訊越多,壓縮損失較小; OF 越低,壓縮率提升但畫質損失增加。

4. 分塊與前處理

- i. 將影像切分為 8×8 的區塊:無論灰階或彩色,每一通道都進行分塊。

5. 離散餘弦轉換 (DCT)

i. 對每一個 8×8 區塊執行 2D DCT: 將空間域像素轉換為頻率域資料, 低頻資訊集中在 左上角, 高頻資訊集中在右下角。

6. 量化

i. 將 DCT 結果進行量化:每個係數除以對應的量化表元素,四捨五入成整數,降低高頻 資訊來達到壓縮目的。

7. Zigzag 掃描

i. 將 8×8 量化係數以 Zigzag 順序攤平成一維陣列:優先排列低頻(左上)到高頻(右下), 利於 Run-Length 編碼。

8. 霍夫曼編碼與壓縮(Entropy Coding)

- i. DC 分量編碼:以差分方式紀錄區塊間 DC 值變化,並根據標準 Huffman 表進行編碼。
- ii. AC 分量編碼:進行 Run-Length 編碼壓縮連續零,再用 Huffman 表壓縮。
- iii. 所有區塊資料串接成完整壓縮位元流。

9. 影像重建

- i. 反量化:將壓縮過的量化係數乘回原本的量化表。
- ii. 反 DCT (IDCT): 將頻率域還原成空間域像素。
- iv. 儲存重建的 .raw 及 .jpeg 圖像。

10. 壓縮品質與效率評估

- i. 計算 PSNR:評估壓縮前後畫質差異。
- ii. 計算壓縮率:比較壓縮檔案與原始影像的大小,得到壓縮率與 bpp (每像素平均位元數)。
- iii. 列印統計:輸出每張影像、每個 QF 下的 PSNR、壓縮後大小、壓縮比與 bpp 等資訊。

11. 輸出結果與紀錄

i. 將所有重建與壓縮結果存檔。

二、壓縮結果

1. Baboon.raw (灰階)

QF	PSNR (dB)	Bytes	Ratio	bpp
5	21.52	13762	19.05	0.420
10	23.42	23807	11.01	0.727
20	25.26	38172	6.87	1.165
50	28.23	64053	4.09	1.955
80	32.60	96413	2.72	2.942
90	37.12	127437	2.06	3.889

2. <u>BaboonRGB.raw (彩色)</u>

QF	PSNR (dB)	Bytes	Ratio	bpp
5	20.38	28409	83.05	0.289
10	21.60	49141	48.01	0.500
20	22.68	80073	29.46	0.815
50	25.32	145455	16.22	1.480
80	29.97	241119	9.78	2.453
90	34.87	335122	7.04	3.409

3. Lena.raw (灰階)

QF	PSNR (dB)	Bytes	Ratio	bpp
5	27.33	8310	31.55	0.254
10	30.41	12410	21.12	0.379
20	32.97	18808	13.94	0.574
50	35.83	32528	8.06	0.993
80	38.58	53505	4.90	1.633
90	40.89	76200	3.44	2.325

QF 5	QF 10
_	_

4. <u>LenaRGB.raw (彩色)</u>

QF	PSNR (dB)	Bytes	Ratio	bpp
5	26.24	18816	125.39	0.191
10	28.61	27231	86.64	0.277
20	30.42	40928	57.65	0.416
50	32.52	72444	32.57	0.737
80	34.93	123950	19.03	1.261
90	37.23	183040	12.89	1.862

三、執行方式

- 1. python main.py
- 2. 執行後會產生 result 資料夾,將結果存成.raw 檔並放在 raw 子資料夾。另外為了方便觀察, 也存成.jpeg 檔並存入 jpeg 子資料夾。

四、參考資料

- [1] Microsoft Word T081E.DOC, https://www.w3.org/Graphics/JPEG/itu-t81.pdf
- [2] 深入学习 JPEG 压缩原理与过程, https://blog.csdn.net/eieihihi/article/details/143068225
- [3] DC 系数和 AC 系数, https://blog.csdn.net/qingkongyeyue/article/details/58130001