2 Backrop in Practice: Staged Computation

For the function f(x, y, z) = (x + y)z:

- (a) Decompose f into two simpler functions.
- (b) Draw the network that represents the computation of f.

$$f(x,y,z) = g(h(x,y), z)$$

$$g(a,b) = a \cdot b$$

$$h(a,b) = a + b$$

(c) Write the forward pass and backward pass (backpropagation) in the network.

def forward(x, y, z):

$$h = x + y$$

 $f = h * z$
return f
def backward(x, y, z):
 $df_dz = h$
 $df_dh = z$
 $df_dx = df_dh$
 $df_dy = df_dh$

(d) Update your network drawing with the intermediate values in the forward and backward pass. Use the inputs x = -2, y = 5, and z = -4.

3 Backpropagation Practice

scalar output

(a) Chain rule of multiple variables: Assume that you have a function given by $f(x_1, x_2, ..., x_n)$, and that $g_i(w) = x_i$ for a scalar variable w. How would you compute $\frac{d}{dw} f(g_1(w), g_2(w), ..., g_n(w))$? What is its computation graph?

(b) Let $Z = XW + \mathbf{1}b^T$, where $Z \in \mathbb{R}^{d_n \times d_{out}}$, $X \in \mathbb{R}^{d_n \times d_{in}}$, $W \in \mathbb{R}^{d_{in} \times d_{out}}$, b is a vector in $\mathbb{R}^{d_{out}}$, and $\mathbf{1}$ is a column vector in \mathbb{R}^{d_n} . Given $\frac{\partial L}{\partial Z} \in \mathbb{R}^{d_n \times d_{out}}$, where l is a scalar loss, calculate $\frac{\partial L}{\partial W}$ and $\frac{\partial L}{\partial b}$.

1 Decision Space

Let's further the intuition about how we can compose arbitrarily complex decision boundaries with a neural network. Consider the images below. For each one, build a network of units with a single output that fires if the input is in the shaded area.

Take-away: MLPs can capture any classification boundary. MLPs are universal classifiers. Note that we haven't said anything yet about their ability to generalize.

2 Backrop in Practice: Staged Computation

For the function f(x, y, z) = (x + y)z:

- (a) Decompose f into two simpler functions.
- (b) Draw the network that represents the computation of f.
- (c) Write the forward pass and backward pass (backpropagation) in the network.
- (d) Update your network drawing with the intermediate values in the forward and backward pass. Use the inputs x = -2, y = 5, and z = -4.

3 Backpropagation Practice

- (a) Chain rule of multiple variables: Assume that you have a function given by $f(x_1, x_2, ..., x_n)$, and that $g_i(w) = x_i$ for a scalar variable w. How would you compute $\frac{d}{dw} f(g_1(w), g_2(w), ..., g_n(w))$? What is its computation graph?
- (b) Let $Z = XW + \mathbf{1}b$, where $Z \in \mathbb{R}^{d_n \times d_{out}}, X \in \mathbb{R}^{d_n \times d_{in}}, W \in \mathbb{R}^{d_{in} \times d_{out}}, b$ is a row vector in $\mathbb{R}^{d_{out}}$, and $\mathbf{1}$ is a column vector in $\mathbb{R}^{d_{in}}$. Given $\frac{\partial L}{\partial Z} \in \mathbb{R}^{d_n \times d_{out}}$, where l is a scalar loss, calculate $\frac{\partial L}{\partial W}$ and $\frac{\partial L}{\partial b}$.

4 Model Intuition

- (a) What can go wrong if you just initialize all the weights in a neural network to exactly zero? What about to the same nonzero value?
- (b) Adding nodes in the hidden layer gives the neural network more approximation ability, because you are adding more parameters. How many weight parameters are there in a neural network with architecture specified by $d = \left[d^{(0)}, d^{(1)}, ..., d^{(N)}\right]$, a vector giving the number of nodes in each of the *N* layers? Evaluate your formula for a 2 hidden layer network with 10 nodes in each hidden layer, an input of size 8, and an output of size 3.
- (c) Consider the two networks in the image below, where the added layer in going from Network A to Network B has 10 units with linear activation. Give one advantage of Network A over Network B, and one advantage of Network B over Network A.

