Multiple Linear Regression: Inference

EC 320: Introduction to Econometrics

Amna Javed Winter 2020

Prologue

Housekeeping

Problem Set 4

Due Friday by 5 pm.

Midterm 2

Exam on Monday (Feb 24th).

- Will upload practice midterm
- Exam packet will have statistical tables.

OLS Variances

OLS Variances

Multiple regression model: $Y_i = eta_0 + eta_1 X_{1i} + eta_2 X_{2i} + \dots + eta_k X_{ki} + u_i$.

The variance of a slope estimator \hat{eta}_j on an independent variable X_j is

$$ext{Var} \Big(\hat{eta}_j \Big) = rac{\sigma^2}{\Big(1 - R_j^2 \Big) \sum_{i=1}^n ig(X_{ji} - ar{X}_j ig)^2},$$

where R_j^2 is the R^2 from a regression of X_j on the other independent variables and an intercept.

OLS Variances

$$ext{Var} \Big(\hat{eta}_j \Big) = rac{\sigma^2}{\Big(1 - R_j^2 \Big) \sum_{i=1}^n ig(X_{ji} - ar{X}_j ig)^2}$$

Moving parts

- 1. **Error variance:** As σ^2 increases, $\mathrm{Var}\Big(\hat{eta}_j\Big)$ increases.
- 2. **Total variation in** X_j : As $\sum_{i=1}^n \left(X_{ji} \bar{X}_j\right)^2$ increases, $\mathrm{Var}\Big(\hat{\beta}_j\Big)$ decreases.
- 3. **Relationships between independent variables:** As R_j^2 increases, $\mathrm{Var}\Big(\hat{eta}_j\Big)$ increases.

Suppose that we want to understand the relationship between crime rates and poverty rates in US cities. We could estimate the model

$$Crime_i = \beta_0 + \beta_1 Poverty_i + \beta_2 Income_i + u_i,$$

where Income_i controls for median income in city i .

Before obtaining standard errors and conducting hypothesis tests, we need:

$$\operatorname{Var}\!\left(\hat{eta}_{1}
ight) = rac{\sigma^{2}}{\left(1-R_{1}^{2}
ight)\sum_{i=1}^{n}\left(\operatorname{Poverty}_{i}-\overline{\operatorname{Poverty}}
ight)^{2}}.$$

 R_1^2 is the R^2 from a regression of poverty on median income:

$$\text{Poverty}_i = \gamma_0 + \gamma_1 \text{Income}_i + v_i.$$

Scenario 1: If $Income_i$ explains most of the variation in $Poverty_i$, then R_1^2 will approach one.

· If R_1^2 is one, then $\operatorname{Poverty}_i$ and Income_i are perfectly collinear (violates the *no perfect collinearity* assumption).

Scenario 2: If $Income_i$ explains none of the variation in $Poverty_i$, then R_1^2 is zero.

Question: In which scenario is the variance of the poverty coefficient smaller?

$$\operatorname{Var}\!\left(\hat{eta}_{1}
ight) = rac{\sigma^{2}}{\left(1 - R_{1}^{2}
ight)\sum_{i=1}^{n}\left(\operatorname{Poverty}_{i} - \overline{\operatorname{Poverty}}
ight)^{2}}$$

Answer: Scenario 2.

As the relationships between the variables increase, R_j^2 increases.

For high R_j^2 , $\mathrm{Var}\Big(\hat{eta}_j\Big)$ is large:

$$ext{Var} \Big(\hat{eta}_j \Big) = rac{\sigma^2}{\Big(1 - R_j^2 \Big) \sum_{i=1}^n ig(X_{ji} - ar{X}_j ig)^2}.$$

This phenomenon is known as multicollinearity.

- · Some view multicollinearity as a "problem" to be solved.
- \cdot Can increase n or drop independent variables that are highly related to the others.
- · Warning: Dropping variables can generate omitted variable bias.

Example: Effect of different types of school spending on high school graduation rates.

$$ext{Graduation}_i = eta_0 + eta_1 ext{Salaries}_i + eta_2 ext{Athletics}_i \ + eta_3 ext{Textbooks}_i + eta_4 ext{Facilities}_i + u_i$$

- Schools that spend more on teachers also tend to spend more on athletic programs, textbooks, and building maintenance.
- While total spending likely has a statistically significant effect on graduation rates, might not be able to detect statistically significant effects for individual line items.

Potential solutions: Re-define research question to consider the effect of total spending on graduation rates or gather more data to decrease OLS variances (i.e., increase n).

Irrelevant Variables

Suppose that the true relationship between birth weight and *in utero* exposure to toxic air pollution is

$$(\text{Birth Weight})_i = \beta_0 + \beta_1 \text{Pollution}_i + u_i.$$

Suppose that, instead of estimating the "true model," an analyst estimates

$$(\mathrm{Birth}\ \mathrm{Weight})_i = ilde{eta_0} + ilde{eta_1} \mathrm{Pollution}_i + ilde{eta_2} \mathrm{NBA}_i + u_i,$$

where NBA_i is the record of the nearest NBA team during the season before birth.

One can show that $\mathbb{E}\Big(\hat{ ilde{eta}_1}\Big)=eta_1$ (i.e., $\hat{ar{eta}_1}$ is unbiased).

However, the variances of $\hat{\tilde{\beta_1}}$ and $\hat{\beta_1}$ differ.

Irrelevant Variables

Irrelevant Variables

The variance of $\hat{\beta}_1$ from estimating the "true model" is

$$\operatorname{Var}\!\left(\hat{eta}_{1}
ight) = rac{\sigma^{2}}{\sum_{i=1}^{n}\left(\operatorname{Pollution}_{i} - \overline{\operatorname{Pollution}}
ight)^{2}}.$$

The variance of $\hat{ ildeeta}_1$ from estimating the model with the irrelevant variable is

$$\operatorname{Var}\!\left(\hat{ ilde{eta}}_{1}
ight) = rac{\sigma^{2}}{\left(1-R_{1}^{2}
ight)\sum_{i=1}^{n}\left(\operatorname{Pollution}_{i}-\overline{\operatorname{Pollution}}
ight)^{2}}.$$

Notice that $\mathrm{Var}\Big(\hat{eta}_1\Big) \leq \mathrm{Var}\Big(\hat{ ilde{eta}}_1\Big)$.

Including irrelevant control variables can increase OLS variances!

Estimating Error Variance

We cannot observe σ^2 , so we must estimate it using the residuals from an estimated regression:

$$s_u^2 = rac{\sum_{i=1}^n \hat{u}_i^2}{n-k-1}$$

- $\cdot k + 1$ is the number of parameters (one "slope" for each X variable and an intercept).
- $\cdot n k 1$ = degrees of freedom.
- · Using the first 5 OLS assumptions, one can prove that s_u^2 is an unbiased estimator of σ^2 .

Standard Errors

The formula for the standard error is the square root of $\mathrm{Var}ig(\hat{eta}_jig)$:

$$ext{SE}(\hat{eta}_{j}) = \sqrt{rac{s_{u}^{2}}{(1-R_{j}^{2})\sum_{i=1}^{n}(X_{ji}-ar{X}_{j})^{2}}}.$$

Inference

OLS Classical Assumptions

- 1. **Linearity:** The population relationship is linear in parameters with an additive error term.
- 2. **No perfect collinearity:** No *X* variable is a perfect linear combination of the others.
- 3. **Random Sampling:** We have a random sample from the population of interest.
- 4. **Exogeneity:** The X variable is exogenous (i.e., $\mathbb{E}(u|X)=0$).
- 5. **Homoskedasticity:** The error term has the same variance for each value of the independent variable (i.e., $Var(u|X) = \sigma^2$).
- 6. **Normality:** The population error term is normally distributed with mean zero and variance σ^2 (i.e., $u \sim N(0, \sigma^2)$)

1-4 imply unbiasedness.

1-5 imply **efficiency.**

Sampling Distribution

We can only estimate σ^2 , so we use the t distribution:

$$\cdot \; rac{\hat{eta}_j - eta_j}{ ext{SE}ig(\hat{eta}_jig)} \sim t_{n-k-1} = t_{ ext{df}} \; .$$

 \cdot Use this to construct t -statistics and conduct hypothesis testing.

Where are the critical values?

- \cdot Critical values describe specific quantiles of the $t_{
 m df}$ distribution.
- \cdot $t_{
 m df}$ is the entire sampling distribution.

Hypothesis Testing

Conduct a one-sided (right tail) test at the 5% level.

$$t_{
m stat} = 6.45$$
 and $t_{0.95,\,1823-3} = 1.65$

Reject H
$$_0$$
 if $t_{
m stat}=6.45>t_{0.95,\,1823-3}=1.65$.

Statement is true, so we **reject** H_0 at the 5% level.

Hypothesis Testing

Conduct a two-sided test at the 5% level.

Statement is true, so we **reject H₀** at the 5% level.

Hypothesis Testing

Conduct a two-sided test at the 5% level.

$$\mathsf{H}_0$$
: $eta_{\mathrm{Lunch}} = -1$ vs. H_{a} : $eta_{\mathrm{Lunch}}
eq -1$

$$t_{
m stat}=rac{\hat{eta}_{
m Lunch}-eta_{
m Lunch}^0}{{
m SE}(\hat{eta}_{
m Lunch})}=39.49$$
 and $t_{0.975,\,1823-3}=1.96$

Reject H
$$_0$$
 if $|t_{
m stat}| = |39.49| > t_{0.975,\,1823-3} = 1.96$.

Statement is true, so we **reject H₀** at the 5% level.

ttests allow us to test simple hypotheses involving a single parameter.

$$\cdot$$
 e.g., $eta_1=0$ or $eta_2=1$.

F tests allow us to test hypotheses that involve multiple parameters.

$$\cdot$$
 e.g., $eta_1=eta_2$ or $eta_3+eta_4=1$.

Example

Economists often say that "money is fungible."

We might want to test whether money received as income actually has the same effect on consumption as money received from tax credits.

$$\operatorname{Consumption}_i = \beta_0 + \beta_1 \operatorname{Income}_i + \beta_2 \operatorname{Credit}_i + u_i$$

Example, continued

We can write our null hypothesis as

$$H_0:\ eta_1=eta_2\iff H_0:\ eta_1-eta_2=0$$

Imposing the null hypothesis gives us a **restricted model**

$$ext{Consumption}_i = eta_0 + eta_1 ext{Income}_i + eta_1 ext{Credit}_i + u_i$$

$$\operatorname{Consumption}_i = \beta_0 + \beta_1 \left(\operatorname{Income}_i + \operatorname{Credit}_i \right) + u_i$$

Example, continued

To test the null hypothesis $H_o: eta_1=eta_2$ against $H_a: eta_1
eq eta_2$, we use the F statistic

$$F_{q,\,n-k-1} = rac{\left(\mathrm{RSS}_r - \mathrm{RSS}_u
ight)/q}{\mathrm{RSS}_u/(n-k-1)}$$

which (as its name suggests) follows the F distribution with q numerator degrees of freedom and n-k-1 denominator degrees of freedom.

Here, q is the number of restrictions we impose via H_0 .

Example, continued

The term \mathbf{RSS}_r is the sum of squared residuals (RSS) from our **restricted model**

$$\operatorname{Consumption}_i = eta_0 + eta_1 \left(\operatorname{Income}_i + \operatorname{Credit}_i \right) + u_i$$

and RSS_u is the sum of squared residuals (RSS) from our $\mathbf{unrestricted}$ \mathbf{model}

$$\operatorname{Consumption}_i = \beta_0 + \beta_1 \operatorname{Income}_i + \beta_2 \operatorname{Credit}_i + u_i$$

Finally, we compare our F -statistic to a critical value of F to test the null hypothesis.

If $F > F_{\mathrm{crit}}$, then reject the null hypothesis at the lpha imes 100 percent level.

 \cdot Find $F_{
m crit}$ in a table using the desired significance level, numerator degrees of freedom, and denominator degrees of freedom.

RSS is usually a large cumbersome number.

Alternative: Calculate the F -statistic using R^2 .

$$F=rac{\left(R_u^2-R_r^2
ight)/q}{(1-R_u^2)/(n-k-1)}$$

Where does this come from?

$$\cdot TSS = RSS + ESS$$

$$\cdot R^2 = \mathrm{ESS}/\mathrm{TSS}$$

$$\cdot RSS_r = TSS(1 - R_r^2)$$

$$\cdot RSS_u = TSS(1 - R_u^2)$$

Application: Hedonic Modeling

Hedonic Modeling

Questions

- How much are home buyers willing to pay for houses with additional bedrooms?
- How much salary are workers willing to give up in exchange for safer working conditions?
- What is the market value of my neighbor's house?

Answers?

Hedonic modeling is a specific application of multiple regression.

- Prices or wages on the left hand side.
- Attributes of a good or a job on the right-hand side.
- Use coefficient estimates and fitted values.

Hedonic Modeling

Example

Using data on home sales, you run a regression and obtain the fitted model

$$\hat{\text{Price}}_i = 75000 + 50 \cdot (\text{Sq. ft.})_i + 16000 \cdot \text{Bedrooms}_i + 10000 \cdot \text{Bathrooms}_i$$

What is the forecasted price of a 1000-square-foot house with 1 bedroom and 1 bathroom?

$$\hat{ ext{Price}} = 75000 + 50 \cdot (1000) + 16000 \cdot (1) + 10000 \cdot (1) = 1.51 imes 10^5$$

A homeowner is thinking about adding 1500 square feet to their home with 3 more bedrooms and an additional bathroom. How much extra money could she expect if she completed the addition and sold her home?

$$\Delta ext{Price} = 50 \cdot (1500) + 16000 \cdot (3) + 10000 \cdot (1) = 1.33 imes 10^5$$