ULA → processa duas ou mais operações aritméticas, relacionais e lógicas

#### Duas arquiteturas básicas:

- 1) Convencional
- 2) Pipeline  $\rightarrow$  semelhante a linha de produção

#### **Arquitetura** → variantes:

- a) Mux's + funções Booleanas (MSI)
- b) Funções Booleanas de dois níveis
- c) Funções Booleanas multi-nível
- d) Funções lógicas transistorizadas (porta complexa)

ULA → processa duas ou mais operações aritméticas, relacionais e lógicas

#### Vamos estudar

#### **Arquitetura:**

1) Convencional

#### **Arquitetura** → variantes:

- a) Mux's + funções Booleanas (MSI)
- b) Funções Booleanas de dois níveis
- c) Funções Booleanas multi-nível

#### Estilos de projeto:

- a) Rede Iterativa
- b) Funções MSI

# Estilos de projeto:

# a) Rede iterativa; b) Funções MSI

# Exemplo-1:



| Seleção<br>M. S4. S0 | Operação (A, B)                    |
|----------------------|------------------------------------|
| M S1 S0              |                                    |
| 0 0 0                | A mais 1; Se Cin-0=1               |
| 0 0 1                | A menos 1; Se Cin- <sub>0</sub> =0 |
| 0 1 0                | A mais B mais Cin-0                |
| 0 1 1                | B menos A; Se Cin- <sub>0</sub> =1 |
| 1 0 0                | Transferência de A                 |
| 1 0 1                | Complemento e transf. de A         |
| 1 1 0                | Lógica XOR                         |
| 1 1 1                | Lógica XNOR                        |

### Estilos de projeto: Rede iterativa



| Seleção | Operação (A, B)            |  |
|---------|----------------------------|--|
| M S1 S0 |                            |  |
| 0 0 0   | A mais 1; Se Cin-₀=1       |  |
| 0 0 1   | A menos 1; Se Cin-o=0      |  |
| 0 1 0   | A mais B mais Cin-o        |  |
| 0 1 1   | B menos A; Se Cin-₀=1      |  |
| 1 0 0   | Transferência de A         |  |
| 1 0 1   | Complemento e transf. de A |  |
| 1 1 0   | Lógica XOR                 |  |
| 1 1 1   | Lógica XNOR                |  |



#### **ULA Ripple Carry**

# Projeto da célula básica: Rede Iterativa Técnica: síntese por operação (XOR)

| Seleção<br>M S1 S0 | Operação (A, B)                   | Função F  | Função Cout      |
|--------------------|-----------------------------------|-----------|------------------|
| 0 0 0              | A mais 1; Se Cin- <sub>0</sub> =1 | A ⊕Cin    | A Cin            |
| 0 0 1              | A menos 1; Se Cin-0=0             | _A ⊕Cin   | A + Cin          |
| 0 1 0              | A mais B mais Cin-o               | A ⊕B ⊕Cin | A B + (A ⊕B) Cin |
| 0 1 1              | B menos A; Se Cin-0=1             | Ā ⊕B ⊕Cin | ĀB+(Ā⊕B) Cin     |
| 1 0 0              | Transferência de A                | A         | X                |
| 1 0 1              | Complemento e transf. de A        | Ā         | X                |
| 1 1 0              | Lógica XOR                        | A ⊕B      | X                |
| 1 1 1              | Lógica XNOR                       | A⊕B       | X                |

# Projeto de ULA (unidade lógica e aritmética) Técnica: síntese por operação (XOR)

| Seleção<br>M S1 S0 | Operação (A, B)            | Função F  | Função Cout                                    |
|--------------------|----------------------------|-----------|------------------------------------------------|
| 0 0 0              | A mais 1; Se Cin-o=1       | A ⊕Cin    | A Cin                                          |
| 0 0 1              | A menos 1; Se Cin-0=0      | _A ⊕Cin   | A + Cin                                        |
| 0 1 0              | A mais B mais Cin-o        | A ⊕B ⊕Cin | A B + (A ⊕B) Cin                               |
| 0 1 1              | B menos A; Se Cin-0=1      | Ā ⊕B ⊕Cin | $\overline{A} B + (\overline{A \oplus B}) Cin$ |
| 1 0 0              | Transferência de A         | A         | X                                              |
| 1 0 1              | Complemento e transf. de A | Ā         | χ                                              |
| 1 1 0              | Lógica XOR                 | A ⊕B      | X                                              |
| 111                | Lógica XNOR                | A ⊕B      | Х                                              |

#### Como obter as funções

Sabendo que: Si=Ai⊕Bi⊕Cin e Ri=Ai'⊕Bi⊕Bin Cout=AiBi + (Ai⊕Bi)Cin / Bout=A'B + (Ai⊕Bi)'Bin

A mais 1 → A ⊕B(0)⊕Cin → soma zero em B, elimina o operando B: A⊕Cin

Para Cout  $\rightarrow$  AB(0) + (A $\oplus$ B(0))Cin $\rightarrow$  0 + ACin

A menos 1 → A ⊕B(1)⊕Cin → soma hum em B, decrementa A: A'⊕Cin

Para Cout  $\rightarrow$   $AB(1) + (A \oplus B(1))Cin$   $A + A'Cin \rightarrow A + Cin$ 

# Projeto de ULA (unidade lógica e aritmética) Técnica: síntese por operação (XOR)

| Seleção<br>M S1 S0 | Operação (A, B)            | Função F  | Função Cout      |
|--------------------|----------------------------|-----------|------------------|
| 0 0 0              | A mais 1; Se Cin-o=1       | A ⊕Cin    | A Cin            |
| 0 0 1              | A menos 1; Se Cin-o=0      | _A ⊕Cin   | A + Cin          |
| 0 1 0              | A mais B mais Cin-o        | A ⊕B ⊕Cin | A B + (A ⊕B) Cin |
| 0 1 1              | B menos A; Se Cin-0=1      | Ā ⊕B ⊕Cin | ĀB+(Ā⊕B) Cin     |
| 1 0 0              | Transferência de A         | A         | Х                |
| 1 0 1              | Complemento e transf. de A | Ā         | Х                |
| 1 1 0              | Lógica XOR                 | A ⊕B      | Х                |
| 111                | Lógica XNOR                | A ⊕B      | χ                |

#### Como obter as funções

Sabendo que: Si=Ai⊕Bi⊕Cin e Ri=Ai'⊕Bi⊕Bin Cout=AiBi + (Ai⊕Bi)Cin / Bout=A'B + (Ai⊕Bi)'Bin

Para B menos A → fazendo por soma e usando complemento de 2, temos:

- 1) A' complemento de 1 e
- 2) complemento de 2 -> soma Cin-0=1

Onde: Ai'⊕Bi → (Ai⊕Bi)'

#### Rede iterativa: célula básica -> usando XOR

| Seleção | Operação (A, B)            | Função F  | Função Cout                                    |
|---------|----------------------------|-----------|------------------------------------------------|
| M S1 S0 | Operação (A, D)            | Í         |                                                |
| 0 0 0   | A mais 1; Se Cin-o=1       | A ⊕Cin    | A Cin                                          |
| 0 0 1   | A menos 1; Se Cin-o=0      | — A ⊕Cin  | A + Cin                                        |
| 0 1 0   | A mais B mais Cin-o        | A ⊕B ⊕Cin | A B + (A ⊕B) Cin                               |
| 011     | B menos A; Se Cin-₀=1      | Ā ⊕B ⊕Cin | $\overline{A} B + (\overline{A \oplus B}) Cin$ |
| 1 0 0   | Transferência de A         | A         | X                                              |
| 1 0 1   | Complemento e transf. de A | Ā         | X                                              |
| 110     | Lógica XOR                 | A ⊕B      | X                                              |
| 111     | Lógica XNOR                | A ⊕B      | X                                              |

#### Mapa de Karnaught reduzido





Rede iterativa: célula básica

Usando a técnica de Mapa-K-reduzido

Arquitetura: Mux's + Função com XOR



 $F=\overline{M} \ \overline{S_1}(A \oplus Cin \oplus S_0) + \overline{M} \ S_1(A \oplus B \oplus Cin \oplus S_0) + \overline{M} \ \overline{S_1}(A \oplus S_0) + \overline{M} \ S_1(A \oplus B \oplus S_0)$ 

Termo: M'S1'(S0'(A $\oplus$ Cin)+S0(A $\oplus$ Cin)')  $\rightarrow$  M'S1'(A $\oplus$ Cin $\oplus$ S0)

#### Rede iterativa: célula básica

# **Arquitetura: Mux + lógica XOR**



#### Rede iterativa: célula básica

# Arquitetura: Mux + lógica XOR

| W/S | 00   | 01           | 11         | 10             |
|-----|------|--------------|------------|----------------|
| 0   | ACin | <del> </del> | AB+(AB)Cin | A B + (A B)Cin |
| 1   | Х    | Х            | Х          | Х              |

1/2)
S1'S0'ACin + S1'S0(A+Cin)
S1'(S0'ACin + S0A + S0Cin)
S1'(S0'ACin+S0Cin (A+A') + S0A)
S1'(S0'ACin + S0ACin + S0A'Cin+S0A)
S1'(S0A(Cin +1) + Cin(S0'A+S0A'))
S1'(S0A + Cin(A⊕S0))



```
3)
S1(S0Cin(A⊕B)' + S0'Cin(A⊕B))
S1Cin(S0⊕A⊕B)
4)
S1(S0A'B + S0'AB)
S1B(S0⊕A)
```

Frout =  $S1'(S0A + Cin(A \oplus S0)) + S1(Cin(S0 \oplus A \oplus B) + B(S0 \oplus A))$ 

#### Rede iterativa: célula básica

# **Arquitetura: Mux + lógica XOR**



# Projeto de ULA (unidade lógica e aritmética) Rede iterativa: célula básica Arquitotura: Euroão Roglogna multi pívol

# Arquitetura: Função Booleana multi-nível

|  | Seleção<br>M S1 S0 |   | ção | Operação (A, B)                    | Função F            | Função Cout      |
|--|--------------------|---|-----|------------------------------------|---------------------|------------------|
|  |                    |   | S0  | Operação (A, B)                    |                     |                  |
|  | 0                  | 0 | 0   | A mais 1; Se Cin-0=1               | A ⊕Cin              | A Cin            |
|  | 0                  | 0 | 1   | A menos 1; Se Cin- <sub>0</sub> =0 | Ā ⊕Cin              | A + Cin          |
|  | 0                  | 1 | 0   | A mais B mais Cin-o                | A ⊕B ⊕Cin           | A B + (A ⊕B) Cin |
|  | 0                  | 1 | 1   | B menos A; Se Cin- <sub>0</sub> =1 | Ā ⊕B ⊕Cin           | Ā B + (Ā ⊕B) Cin |
|  | 1                  | 0 | 0   | Transferência de A                 | A                   | x                |
|  | 1                  | 0 | 1   | Complemento e transf. de A         | Ā                   | x                |
|  | 1                  | 1 | 0   | Lógica XOR                         | A ⊕B                | x                |
|  | 1                  | 1 | 1   | Lógica XNOR                        | <b>A</b> ⊕ <b>B</b> | x                |

#### Rede iterativa: célula básica

# Arquitetura: Função Booleana multi-nível

| Seleção<br>M S1 S0 | Operação (A, B)            | Função F                              | Função Cout      |
|--------------------|----------------------------|---------------------------------------|------------------|
| 0 0 0              | A mais 1; Se Cin-o=1       | A ⊕Cin                                | A Cin            |
| 0 0 1              | A menos 1; Se Cin-0=0      | ————————————————————————————————————— | A + Cin          |
| 0 1 0              | A mais B mais Cin-o        | A ⊕B ⊕Cin                             | A B + (A ⊕B) Cin |
| 0 1 1              | B menos A; Se Cin-0=1      | Ā ⊕B ⊕Cin                             | ĀB+(Ā⊕B) Cin     |
| 100                | Transferência de A         | A                                     | X                |
| 1 0 1              | Complemento e transf. de A | Ā                                     | X                |
| 1 1 0              | Lógica XOR                 | A ⊕B                                  | X                |
| 1 1 1              | Lógica XNOR                | <del>A</del> ⊕B                       | Х                |

#### Análise da Função F

# Projeto de ULA (unidade lógica e aritmética) Rede iterativa: célula básica

# Arquitetura: Função Booleana multi-nível

| Seleção<br>M S1 S0 |   | Operação (A, B) |   | Função F                   | Função Cout                           |                  |
|--------------------|---|-----------------|---|----------------------------|---------------------------------------|------------------|
|                    | 0 | 0               | 0 | A mais 1; Se Cin-o=1       | A ⊕Cin                                | A Cin            |
|                    | 0 | 0               | 1 | A menos 1; Se Cin-o=0      | ————————————————————————————————————— | A + Cin          |
|                    | 0 | 1               | 0 | A mais B mais Cin-o        | A ⊕B ⊕Cin                             | A B + (A ⊕B) Cin |
|                    | 0 | 1               | 1 | B menos A; Se Cin-0=1      | Ā ⊕B ⊕Cin                             | ĀB+(Ā⊕B) Cin     |
|                    | 1 | 0               | 0 | Transferência de A         | A                                     | X                |
|                    | 1 | 0               | 1 | Complemento e transf. de A | Ā                                     | X                |
|                    | 1 | 1               | 0 | Lógica XOR                 | A ⊕B                                  | X                |
|                    | 1 | 1               | 1 | Lógica XNOR                | <del>A</del> ⊕B                       | X                |

#### Análise da Função Cout

```
M'S1'→ S0'(ACin) + S0(A + Cin)→
S0'(ACin) + S0(A + A'Cin) →
AS0 + Cin(S0'A + S0A') →
M'S1"→ AS0 + Cin(A⊕S0)
```

```
M'S1→ S0'(AB + (A⊕B)Cin) + S0(A'B + (A⊕B)'Cin)'→
S0'(AB + (A'B + AB')Cin) +
S0(A'B + (A'B' + AB) Cin →
S0'AB + S0A'B → B(S0 ⊕A)
Cin(S0'AB' + S0'A'B + S0AB + S0A'B') →
Cin(S0⊕A⊕B)
```

 $M'S1 \rightarrow B(S0 \oplus A) + Cin(S0 \oplus A \oplus B)$ 

#### Rede iterativa: célula básica

# Arquitetura: Função Booleana multi-nível



 $F=(S_1B)\oplus (\overline{M} Cin)\oplus (A\oplus S_0)$ 



Cout=A S<sub>0</sub>  $\overline{S_1}$  + S<sub>1</sub> B(S<sub>0</sub>  $\oplus$ A) + (BS<sub>1</sub>) $\oplus$ (A $\oplus$  S<sub>0</sub>) Cin

#### Rede iterativa: célula básica

# Arquitetura: Função Booleana multi-nível



# Estilos de projeto: b) Funções MSI

### Exemplo-2:



Se M=0→ realiza adição binário puro

Se M=1→ realiza adição BCD

A e B são números naturais

Regra: Soma > 9 em BCD soma 6

# Estilos de projeto: b) Funções MSI



# Estilos de projeto: b) Funções MSI

Exemplo-2: lógica





L=M Carry1 + M S3 S1 + M S3 S2

# Estilos de projeto: Funções MSI

# Exemplo-3:



| Sele | eção  |           |
|------|-------|-----------|
| C=0  | S0 S1 | Operação  |
| 0=0  | 11    | A mais B  |
|      | 0 0   | A mais 1  |
| C=1  | 0 1   | B mais 1  |
|      | 1 0   | A menos B |

# Projeto de ULA (unidade lógica e aritmética) Estilos de projeto: Funções MSI Exemplo-3:

