

Applications of Integration

Calculus & Analytical Geometry MATH-101

Instructor: Dr. Naila Amir (SEECS, NUST)

Volume of solids of revolution:

Compare	Disk Method	Washer Method	Shell Method
Volume formula	$V = \int_a^b \pi [f(x)]^2 dx$	$V = \int_{a}^{b} \pi [(f(x))^{2} - (g(x))^{2}] dx$	$V = \int_{c}^{d} 2\pi y \ g(y) \ dy$
Solid	No cavity in the center	Cavity in the center	With or without a cavity in the center
Interval to partition	[a, b] on x-axis	[a, b] on x-axis	[c, d] on y-axis
Rectangle	Vertical	Vertical	Horizontal
Typical region	$\begin{array}{c} y \\ f(x) \\ a \end{array}$	g(x) a b x	$\frac{d}{c}$
Typical element	ab x	f(x) ab x	g(y)

Volumes by Cylindrical Shells

- Book: Thomas Calculus (11th Edition) by George B. Thomas, Maurice D. Weir, Joel R. Hass, Frank R. Giordano Chapter: 6 (Section: 6.2)
- **Book:** Calculus (5th Edition) by Swokowski, Olinick and Pence Chapter: 6 (Section: 6.3)

- In the previous lecture we found volumes of solids of revolution by using circular disks or washers.
- For certain types of solids, it is convenient to use hollow circular cylinders- that is, thin cylindrical shells of the type illustrated in figure, where r_1 is the *outer radius*, r_2 is the *inner radius*, h is the *altitude*, and $\Delta r = r_1 r_2$ is the *thickness* of the shell. The average radius of the shell is given as:

$$r = \frac{1}{2}(r_1 + r_2).$$

• We can find the volume of the shell by subtracting the volume $\pi r_2^2 h$ of the inner cylinder from the volume $\pi r_1^2 h$ of the outer cylinder as:

$$\pi r_1^2 h - \pi r_2^2 h = \pi (r_1^2 - r_2^2) h$$

$$= 2\pi \cdot \frac{1}{2} (r_1 + r_2) h (r_1 - r_2) = 2\pi r h \Delta r,$$

which gives us the following general rule:

$$V = 2\pi(average\ radius)(altitude)(thickness).$$

 \blacksquare For disks or washers, we defined the volume of a solid S as the definite integral:

$$V = \int_{a}^{b} A(x) \, dx,$$

where A(x) is an integrable cross-sectional area of S from x = a to x = b.

- The area A(x) was obtained by slicing through the solid with a plane perpendicular to the x —axis.
- Now, we use the same integral definition for volume, but obtain the area by slicing through the solid in a different way.
- Now we will slice through the solid using circular cylinders of increasing radii, like cookie cutters.

- We will slice straight down through the solid perpendicular to the x —axis, with the axis of the cylinder parallel to the y —axis.
- The vertical axis of each cylinder is the same line, but the radii of the cylinders increase with each slice. In this way the solid S is sliced up into thin cylindrical shells of constant thickness that grow outward from their common axis, like circular tree rings.
- Unrolling a cylindrical shell shows that its volume is approximately that of a rectangular slab with area A(x) and thickness Δx .
- This allows us to apply the same integral definition for volume as before.
- Before describing the method in general, let's look at an example to gain some insight.

Example:

Let's consider the problem of finding the volume of the solid obtained by rotating about the vertical line x=-1, the region bounded by the curve $y=3x-x^2$ and x—axis.

- If we slice perpendicular to the vertical line x=-1, we get a washer.
- However, to compute the inner radius and the outer radius of the washer, we would have to solve the given equation for x in terms of y.

$$3x - x^{2} = 3x - x^{2} = -y$$

$$\Rightarrow x^{2} - 3(x)(\frac{3}{3}) + (\frac{3}{3})^{2} - (\frac{3}{3})^{2} = -y$$

$$\Rightarrow x - 3 = \pm \sqrt{3} - y$$

$$\Rightarrow x - 3 = \pm \sqrt{3} - y$$

$$\Rightarrow x - 2 = \pm \sqrt{3} - y$$

$$R = \text{order modius} = \frac{3}{3} + \sqrt{\frac{9}{4} - y} - (-1)$$

$$= \frac{3}{3} + \sqrt{\frac{9}{4} - y} + 1$$

$$7 = 2nner radius = \frac{3}{3} - \sqrt{\frac{9}{4} - y} + 1$$

$$\sqrt{\frac{9}{4} + \frac{1}{4}} = \sqrt{\frac{9}{4} + \frac{1}{4}} = \sqrt{\frac{9}{4} - \frac{1}{4}} = \sqrt{\frac{9}{4}} = \sqrt{\frac{9}{4} - \frac{1}{4}} = \sqrt{\frac{9}{4}} = \sqrt$$

Fortunately, there is a method—the method of cylindrical shells—that is easier to use in such a case.

■ Instead of rotating a horizontal strip of thickness Δy we rotate a vertical strip of thickness Δx .

■ This rotation produces a cylindrical shell of height y_k above a point x_k within the base of the vertical strip, radius $1 + x_k$ and of thickness Δx .

S= Jty M

- An example of a cylindrical shell is shown as the orangeshaded region in the figure.
- We can think of the cylindrical shell shown in the figure as approximating a slice of the solid obtained by cutting straight down through it, parallel to the axis of revolution, all the way around close to the inside hole.
- We then cut another cylindrical slice around the enlarged hole, then another, and so on, obtaining *n* cylinders.
- The radii of the cylinders gradually increase, and the heights of the cylinders follow the contour of the parabola.

- Each slice is having thickness Δx , its radius is approximately $1 + x_k$ and its height is approximately $3x_k x_k^2$.
- If we unroll the cylinder and flatten it out, it becomes a rectangular slab with thickness Δx .
- The outer circumference of the kth cylinder is $2\pi \times \text{radius} = 2\pi(1 + x_k)$ and this gives us the length of the rolled-out rectangular slab.

Volume is approximated by that of a rectangular solid:

 ΔV_k = circumference × height × thickness

$$= 2\pi(1+x_k).(3x_k-x_k^2).\Delta x.$$

Summing together the volumes of the individual cylindrical shells over the interval [0, 3] gives the Riemann sum:

$$\sum_{k=1}^{n} \Delta V_k = \sum_{k=1}^{n} 2\pi (x_k + 1) (3x_k - x_k^2) \Delta x.$$

Taking the limit as $n \to \infty$ gives the volume integral:

$$\sum_{k=1}^{3} \Delta V_k = \sum_{k=1}^{3} 2\pi (x_k + 1) (3x_k - x_k^2) \Delta x.$$
The limit as $n \to \infty$ gives the volume integral:
$$V = \int_{0}^{3} 2\pi (1+x) (3x-x^2) dx = 2\pi \int_{0}^{3} (2x^2 + 3x - x^3) dx = \frac{45}{2}\pi.$$

Let S be the solid obtained by rotating about the y —axis the region bounded by the curve y = f(x) [where $f(x) \ge 0$], y = 0, x = a and x = b, where $b > a \ge 0$.

■ Divide the interval [a, b] into n subintervals $[x_{i-1}, x_i]$ of equal width Δx and let be \bar{x}_i the midpoint of the ith subinterval.

- The rectangle with base $[x_{i-1}, x_i]$ And height $f(\overline{x_i})$ is rotated about the y —axis.
- The result is a cylindrical shell with average radius \bar{x}_i , height $f(\bar{x}_i)$, and thickness Δx .
- Thus, the volume of a cylindrical shell is given by:

$$V_i = (2\pi \bar{x}_i)[f(\bar{x}_i)]\Delta x. \checkmark$$

So, an approximation to the volume V of S is given by the sum of the volumes of these shells:

$$V \approx \sum_{i=1}^{n} V_i = \sum_{i=1}^{n} 2\pi \bar{x}_i f(\bar{x}_i) \Delta x$$

Taking the limit as $n \to \infty$ gives the volume integral

$$\lim_{n \to \infty} \sum_{i=1}^{n} 2\pi \bar{x}_i f(\bar{x}_i) \Delta x = \int_a^b 2\pi x f(x) dx = \int_a^b 2\pi x f(x) dx$$

Thus, The volume of the solid obtained by rotating about the y —axis the region under the curve y = f(x) from a to b, is:

$$V = \int_{a}^{b} 2\pi x f(x) dx$$

where $0 \le a < b$.

Here's the best way to remember the formula.

Think of a typical shell, cut and flattened, with radius x, circumference $2\pi x$, height f(x), and thickness Δx or dx, then the volume is given as:

$$V = \int_{a}^{b} \underbrace{(2\pi x)}_{\text{circumference height thickness}} \underbrace{[f(x)]}_{\text{dx}} \underbrace{dx}_{\text{thickness}}$$

Find the volume of the solid obtained by revolving about the y —axis the region bounded by $y = 2x^2 - x^3$ and y = 0.

Solution:

We see that a typical shell has radius x, circumference $2\pi x$, and height $f(x) = 2x^2 - x^3$. So, by the shell method, the volume is:

$$V = \int_0^2 (2\pi x)(2x^2 - x^3) \, dx = 2\pi \int_0^2 (2x^3 - x^4) dx$$

$$= 2\pi \left[\frac{1}{2}x^4 - \frac{1}{5}x^5 \right]_0^2 = 2\pi \left(8 - \frac{32}{5} \right) = \frac{16}{5}\pi.$$

The region bounded by the curve $y = \sqrt{x}$, the x —axis and the line x = 4 is revolved about the y —axis to generate a solid. Determine the volume of the resulting solid.

Solution:

We see that the shell has radius x, circumference $2\pi x$, and height \sqrt{x} . So, by the shell method, the volume is given as:

$$V = \int_0^4 (2\pi x)(\sqrt{x}) \, dx = 2\pi \int_0^4 x^{3/2} \, dx$$

$$=2\pi \left[\frac{x^{5/2}}{5/2}\right]_0^4 = \frac{128}{5}\pi.$$

The region bounded by the curve $y = \sqrt{x}$, the x —axis and the line x = 4 is revolved about the x —axis to generate a solid. Find the volume of the resulting solid.

Solution:

We see that the shell has radius y, circumference $2\pi y$, and height $4-y^2$. So, by the shell method, the volume is given as:

$$V = \int_0^2 (2\pi y)(4 - y^2) \, dy = 2\pi \int_0^2 (4y - y^3) \, dy$$

$$=2\pi \left[4\frac{y^2}{2}-\frac{y^4}{4}\right]_0^2=8\pi.$$

The region in the first quadrant bounded by the graph of the equation $x = 2y^3 - y^4$ and the y —axis is revolved about the x —axis. Set up the integral for the volume of the resulting solid.

Solution:

For the present case:

Thickness of shell: dy

Height: $2y^3 - y^4$

Radius: *y*

Circumference: $2\pi y$

Thus, the volume of solid is given as:

$$V = \int_{0}^{2} 2\pi y [2y^{3} - y^{4}] dy.$$

The region bounded by the graphs of $y = x^2$ and y = x + 2 is revolved about the line x = 3. Set up the integral for the volume of the resulting solid.

Solution:

For the present case:

Thickness of shell: dx

Height: $(x + 2) - x^2$

Radius: $3 - x \checkmark$

Circumference: $2\pi(3-x)$

Thus, the volume of solid is given as:

$$V = \int_{-1}^{2} 2\pi (3-x)[x+2-x^2] dx.$$

For the sake of comparison following table may be helpful:

Method	Axis of revolution	Variable of integration	Formula
Disks	The x — axis	(x)	$V = \pi \int_{a}^{b} [f(x)]^2 dx $
	The y —axis	<u>y</u>	$V = \pi \int_{c}^{d} [f(y)]^2 dy$
Cylindrical Shells	The x — axis	y	$V = 2\pi \int_{c}^{d} y f(y) dy \sqrt{}$
	The y —axis	(x)	$V = 2\pi \int_{a}^{b} x f(x) dx$

Practice Questions

- 1. Determine the volume of the solid of revolution generated by revolving the region bounded by $y = x^2 1$ from x = 1 to x = 3 about y —axis.
- 2. Determine the volume of the solid of revolution generated by revolving the region bounded by $y = x^{1/3}$ from x = 0 to x = 8 about x —axis.
- 3. Determine the volume of the solid of revolution generated by revolving about x —axis, the region bounded by the graphs of y = x, y = 2 x and the x —axis.
- 4. Determine the volume of the solid of revolution generated by revolving about x —axis, the region bounded by $y = 4x x^2$ and the x —axis.
- 5. Determine the volume of the solid of revolution generated by revolving about x —axis, the region bounded by $y=2-x^2$ and $y=x^2$.
- 6. Determine the volume of the solid of revolution generated by revolving the region bounded by $y = \sqrt{x-1}$, y = 0 and x = 10 about the line y = 5.

Practice Questions

- 7. Use the washer method to find the volume of the solid obtained by rotating the region bounded by $y = x x^2$ and y = 0 about the line x = 2.
- 8. Use the shell method to find the volume of the solid generated by revolving the shaded regions about the indicated axes.
 - a. The x-axis

b. The line y = 2

c. The line y = 5

d. The line y = -5/8

Practice Questions

Book: Thomas Calculus (11th Edition) by George B. Thomas, Maurice D. Weir, Joel R. Hass, Frank R. Giordano

Exercise: 6.2Q # 1 to Q # 36

Book: Calculus (5th Edition) by Swokowski, Olinick and Pence

Exercise: 6.3Q # 1 to Q # 30