Algoritmos de Busca I

Prof. Dr. Rafael Teixeira Sousa

UFMT

Outline

- · Problema de Busca
- Busca sem informação:
 - Busca em profundidade
 - Busca em largura
- Busca com informação:
 - Busca Gulosa
 - Busca A*

Problemas de busca

- Um problema de busca consiste em:
 - · Um espaço de estados

• Uma **função** de ações (Com ações e custos)

• Um estado inicial e um estado objetivo

• Uma solução é uma sequência de ações (uma plano) que transforma o estado inicial no estado objetivo

- Estado inicial:
 - Barra do Garças MT
- Estado objetivo:
 - · Goiânia GO
- Espaço de estados:
 - Cidades
- Ações:
 - Dirigir em direção a cidades vizinhas

- Estado inicial:
 - Barra do Garças MT
- Estado objetivo:
 - · Goiânia GO
- Espaço de estados:
 - Cidades
- Ações:
 - Dirigir em direção a cidades vizinhas
- · Métrica de desempenho:
 - Distância
 - Tempo
 - Segurança

- Solução:
 - Procurar por sequência de ações que alcançam o objetivo

Aspirador de pó

• Percorre quadrados procurando por sujeira a limpar

Aspirador de pó

• Percorre quadrados procurando por sujeira a limpar

- Espaço de estados
 - · 2 quadrados, contendo ou não sujeira
 - · 8 estados possíveis

Aspirador de pó – grafo de estados

- Estados
- Ações
 - Esquerda, Direita, Aspira, FazNada
- Objetivo:
 - · Não ter sujeira (estado 7 ou 8)
- Custo:
 - 1 por ação (exceto o *FazNada*)

Quebra-cabeça de 8 peças

• Estados:

 Todas as possíveis posições dos números

• Ações:

 Mover quadrado para esquerda, direita, acima e abaixo

Objetivo:

• Goal State

• Custo:

• 1 por movimento

Goal State

Quebra-cabeça de 8 peças

- Estados:
 - Todas as possíveis posições dos números
- Ações:
 - Mover quadrado para esquerda, direita, acima e abaixo
- Objetivo:
 - · Goal State
- Custo:
 - 1 por movimento

Goal State

NP-hard

8 peças: 181 mil estados

15 peças: 1,3 trilhão de estados

 $24 \text{ peças: } 10^{25} \text{ estados}$

- Estado inicial:
 - Barra do Garças MT
- Estado objetivo:
 - · Goiânia GO
- Espaço de estados:
 - Cidades
- Ações:
 - Dirigir em direção a cidades vizinhas

• Estado inicial

• Estado inicial

É objetivo? → $n\tilde{a}o$

Método de busca: Avaliar uma opção e deixar outras para mais tarde

A escolha do próximo estado a ser avaliado é definido pela **estratégia de busca**

Métodos de busca

- Uma modelagem de problemas de busca em uma árvore de estados
- Algoritmos de busca em grafo são usados para encontrar a solução

Recapitulando...

- Problemas de busca são compostos por espaço de estados, ações, estado inicial e estado objetivo
- Uma solução leva do estado inicial ao final por meio de ações
- Algoritmos de **busca em grafos** podem ser usadas para encontrar soluções válidas

Busca sem informação

- Encontram soluções:
 - · Gerando sistematicamente novos estados e
 - Comparando-os com o objetivo
- São ineficientes na maioria dos casos

- Buscas com informação
 - Usam conhecimento específico do problema
 - · Podem ser mais eficientes
- Exemplo: quebra_cabeca_8.py

Busca com informação

- Busca Heurística
 - · Utilizada conhecimento específico do problema e
 - Definição do próprio problema

• Tentativa de expandir os caminhos mais **promissores** primeiro

 Heurística é a função que estima a distância ao objetivo (qualidade do novo estado)

Heurística

- Heurística provém do grego antigo εύρίσκω, transl. heurísko,
 'eu encontro', 'eu acho'
- Heurísticas são processos cognitivos empregados em decisões não racionais, sendo definidas como estratégias que ignoram parte da informação com o objetivo de tornar a escolha mais fácil e rápida
- Heurística do reconhecimento: é uma das heurísticas mais simples pois tem por base a recaptação de memórias e o reconhecimento de alternativas. Assim que uma alternativa é reconhecida, a procura por alternativas para a decisão é tomada pela alternativa que se reconhece
 - · Vou pedir o sanduíche na lanchonete que já conheço

Busca com informação

- Abordagem geral:
 - Expande nós com base em função de avaliação f(n)
 - · Mede distância até o objetivo, considerando heurística
 - Nó com menor custo é selecionado
 - Vários algoritmos
 - · Funções de avaliações diferentes
- Implementação: Gera uma fila de nós de acordo com f(n)

Busca gulosa

- Tenta expandir nó mais próximo à meta
 - · Supõe que levará a uma solução rápida
 - · Avalia nós usando apenas a função heurística

$$f(n) = h(n)$$

Função heurística h(n): Distância em linha reta até o objetivo

Fila:

Fila:

- 1. Piranhas GO
- 2. Registro do Araguaia GO

330 km 390 km 355 km Gen. Torixoréu -Aragarças -Carneiro -GO MTMT

270 km

Piranhas-GO

280 km

Registro do Araguaia -GO

332 km

B. Do Garças - MT

Busca gulosa

 Como uma busca em profundidade orientada por heurística

- Não garante solução ótima
 - · Avalia apenas o melhor nó seguinte e não toda a solução
- Pode entrar em loop infinito

Busca A*

- Minimiza custo total estimado da solução
- · Avalia nós combinando:
 - g(n): custo real do caminho para alcançar cada nó
 - · Custo do nó inicial até o nó n
 - h(n): custo estimado do nó atual até o objetivo

$$f(n) = g(n) + h(n)$$

Ideia: Evitar expandir caminhos caros

Custo estimado da solução "mais barata" passando por n

Busca A*

- Se a função heurística f(n) satisfaz algumas condições A* é **completa** e **ótima**
 - Em busca me árvore, é ótima se h(n) for heurística admissível
 - **Heurística admissível:** Nunca superestima o custo de alcançar o objetivo.
 - Supõe que o custo da resolução do problema é menor do que é na realidade
 - Assim, f(n) nunca irá superestimar o custo verdadeiro de uma solução.
 - Completo: sempre encontra uma solução
 - Ótimo: sempre encontra a melhor solução

Heurística da linha reta

- h(n) é admissível (distância em linha reta)
- Resultado h(n) sempre vai ser igual ou menor que o custo real
 - · Menor estrada entre duas cidades é uma linha reta

- *h*(*n*) é admissível (distância em linha reta)
- g(n) pode ser calculada pela distância das estradas
- f(n) = g(n) + h(n)

330 km

Aragarças -

GO

- *h*(*n*) é admissível (distância em linha reta)
- g(n) pode ser calculada pela distância das estradas

330 km (1km)

390 km (65 km)

Gen.
Carneiro MT

355 km (56 km)

Torixoréu -MT

332 km

B. Do

Garças

- MT

$$f(n) = 359$$

$$f(n) = 333$$

Piranhas-GO Registro do Araguaia -GO

270 km (88 km)

280 km (52 km)

f(n) = 439 270 km (80 km)Piranhas-GO GOAparecida do Rio Claro- GO 240 km (50 km)

Busca A*

 Complexidade de tempo ainda é exponencial na maioria dos casos

- · Complexidade de espaço é exponencial
 - · Mantém todos os nós na memória
 - Esgota espaço antes de tempo

Busca A* iterativo

- Determinar um limiar máximo de custo para os nós serem salvos
- A cada iteração o limiar sobe

- · Quebra-cabeça de 8 peças
 - h1 = número de blocos em posições erradas
 - · Admissível, pois cada bloco deve ser movido ao menos uma vez
 - *h*2 = distância dos blocos de suas posições objetivo
 - · Admissível, ao menos terá que deslocar h2 vezes

Custo da busca

· Número de nós expandidos para encontrar solução

N° de blocos	Profundidade	A*(h1)	A*(h2)
2	10	6	6
4	112	13	12
6	680	20	18
8	6384	39	25
10	47127	93	39
12	3644035	227	73

Recapitulando...

- Busca com informação utiliza conhecimento específico do problema
- · Heurística é a função que estima a distância ao objetivo
- Busca gulosa.
 - Pode entrar em loop
- Busca A*.
 - Completa
 - Ótima
 - · Alternativa "inteligente" ao Dijkstra
- Exemplo: quebra_cabeca_8_A_star.py