Package 'qPCRtools'

November 2, 2023

Version 1.0.1
Title Tools for qPCR
Description PKG_DESC.
<pre>URL https://github.com/lixiang117423/qPCRtools</pre>
<pre>BugReports https://github.com/lixiang117423/qPCRtools/issues</pre>
License MIT + file LICENSE
Imports broom, dplyr, ggplot2, ggpmisc, ggthemes, kableExtra, magrittr, multcomp, rstatix, stats, tibble, tidyr
RoxygenNote 7.2.3
NeedsCompilation no
Author Xiang LI [cre, aut]
Maintainer Xiang LI < lixiang 117423@gmail.com>
Repository CRAN
Date/Publication 2023-11-02 13:10:05 UTC
R topics documented:
CalCurve
CalExp2dCt
CalExp2ddCt
CalExpCurve
CalExpRqPCR
CalRTable
Index 8

2 CalCurve

CalCurve

Standard Curve Calculation.

Description

The function can calculate the standard curve. At the same time, it can get the amplification efficiency of primer(s). Based on the amplification efficiency, we can know which method can be used to calculate the expression level.

Arguments

cq.table The data frame of the position and Cq value.

concen.table The data frame of the position and concentration.

highest.concen The highest concentration for calculation.

lowest.concen The lowest concentration for calculation.

dilution Dilution factor of cDNA template. The default value is 4.

by.mean Calculation by mean Cq value or not. The default value is TRUE.

Value

A list.

Author(s)

Xiang LI < lixiang 117423@gmail.com>

```
df.1.path <- system.file("examples", "calsc.cq.txt", package = "qPCRtools")
df.2.path <- system.file("examples", "calsc.info.txt", package = "qPCRtools")
df.1 <- read.table(df.1.path, header = TRUE)
df.2 <- read.table(df.2.path, header = TRUE)

CalCurve(
    cq.table = df.1,
    concen.table = df.2,
    lowest.concen = 4,
    highest.concen = 4096,
    dilu = 4,
    by = "mean"
) -> p

p[["table"]]
p[["figure"]]
```

CalExp2dCt 3

Cal	Fx	n2	d۲	+
Сат	ᆫᄼ	ν	uc	·

Calculate expression using standard curve.

Description

Calculate expression using standard curve.

Arguments

cq. table The data frame of the position and cq value.

design.table The data frame of the position and corresponding information.

ref.gene The name of reference gene.

Value

A list contain a table and a figure.

Author(s)

Xiang LI < lixiang 117423@gmail.com>

Examples

CalExp2ddCt

Calculate expression using standard curve.

Description

Calculate expression using standard curve.

4 CalExp2ddCt

Arguments

The data frame of the position and cq value. cq.table design.table The data frame of the position and corresponding information. correction Correct expression value by reference gene. The name of reference gene. ref.gene ref.group The name of reference group. stat.method Statistical method. remove.outliers Remove the outliers of each group and gene, or not. fig.type Output image type, 'box' represents 'boxplot', 'bar' represents 'barplot'.

Number of columes of figure.

Value

fig.ncol

A list contain a table and a figure.

Author(s)

Xiang LI < lixiang 117423@gmail.com>

CalExpCurve 5

CalExpCurve	Calculate expression using standard curve.	

Description

Calculate expression using standard curve.

Arguments

cq.table	The data frame of the position and Cq value.
design.table	The data frame of the position and corresponding information.
correction	Correct expression value by reference gene.
ref.gene	The name of reference gene.
stat.method	Statistical method.
ref.group	The name of reference group.
fig.type	Output image type, 'box' represents 'boxplot', 'bar' represents 'barplot'.
fig.ncol	Number of columes of figure.

Value

A list contain a table and a figure.

Author(s)

Xiang LI < lixiang 117423@gmail.com>

```
df1.path = system.file("examples", "cal.exp.curve.cq.txt", package = "qPCRtools")
df2.path = system.file("examples", "cal.expre.curve.sdc.txt", package = "qPCRtools")
df3.path = system.file("examples", "cal.exp.curve.design.txt", package = "qPCRtools")

cq.table = read.table(df1.path, header = TRUE)
curve.table = read.table(df2.path, sep = "\t", header = TRUE)
design.table = read.table(df3.path, header = TRUE)

CalExpCurve(
    cq.table,
    curve.table,
    design.table,
    correction = TRUE,
    ref.gene = "OsUBQ",
    stat.method = "t.test",
    ref.group = "CK",
    fig.type = "box",
    fig.type = "box",
    fig.ncol = NULL) -> res
```

6 CalExpRqPCR

```
res[["table"]]
res[["figure"]]
```

CalExpRqPCR

Calculate expression using standard curve.

Description

Calculate expression using standard curve.

Arguments

The data frame of the position and cq value. cq.table design.table The data frame of the position and corresponding information. Correct expression value by reference gene. correction ref.gene The name of reference gene. The name of reference group. ref.group stat.method Statistical method. fig.type Output image type, 'box' represents 'boxplot', 'bar' represents 'barplot'. fig.ncol Number of columes of figure.

Value

A list contain a table and a figure.

Author(s)

Xiang LI < lixiang 117423@gmail.com>

CalRTable 7

```
res[["table"]]
res[["figure"]]
```

CalRTable Calculate RNA volume for reverse transcription.

Description

The first step of qPCR is usually the preparation of cDNA. We need to calculate the column of RNA for reverse transcription to cDNA. So, if we have the concentration of RNA, we can use the function 'CalRTable' to do that.

Arguments

data A data frame contained the sample names and the concentration value. The

default unit of concentration is ng/uL.

template A data frame contained the information of reverse transcription. In this data frame

there must be a column called 'all'.

RNA.weight RNA weight required for reverse transcription. Default is 1 ug.

Value

A list contain a table and a figure.

Author(s)

Xiang LI < lixiang 117423@gmail.com>

```
df.1.path <- system.file("examples", "crtv.data.txt", package = "qPCRtools")
df.2.path <- system.file("examples", "crtv.template.txt", package = "qPCRtools")
df.1 <- read.table(df.1.path, sep = "\t", header = TRUE)
df.2 <- read.table(df.2.path, sep = "\t", header = TRUE)
result <- CalRTable(data = df.1, template = df.2, RNA.weight = 2)
head(result)</pre>
```

Index

CalCurve, 2
CalExp2dCt, 3
CalExp2ddCt, 3
CalExpCurve, 5
CalExpRqPCR, 6
CalRTable, 7