Epreuve écrite

Examen de fin d'études secondaires 2010

Section: EFG

Branche: MATHEMATIQUES

Numéro d'ordre du candidat

- I.1) a) Etablir un système d'équations cartésiennes de la droite d passant par les points A(1,-1,0) et B(3,0,-1).
 - b) Etablir une équation cartésienne du plan π passant par les points P(1,1,1), Q(3,2,0) et R(0, $-\frac{5}{2}$,0).
 - c) Déterminer l'intersection de la droite d et du plan π .
 - 2) On donne la droite $d' = \begin{cases} 2x + y 1 = 0 \\ -x + z 3 = 0 \end{cases}$. Déterminer un vecteur directeur de d'.

12+3=15 points

- II. a) Résoudre l'équation suivante : $\left(e^{3-x}\right)^2 = \frac{1}{e^{x-2}}$
 - b) Résoudre l'inéquation suivante : $2 \cdot \ln(3-x) \ln(2x-4) \le \ln\left(\frac{x+1}{2}\right)$

2+7=9 points

III. a) Soit f la fonction définie par : $f(x) = 2 \cdot \ln \frac{1-3x}{x+2}$.

Déterminer son domaine de définition et sa dérivée.

- b) Calculer $\int_{e}^{e^2} \frac{1}{x \ln^2 x} dx$.
- c) Calculer $\int_0^1 (1-2x)e^x dx$.

6+4+4=14 points

- IV. a) Dans un repère orthonormé du plan, construire point par point le graphe de la fonction $f: x \mapsto e^x$.
 - b) En déduire le graphe de la fonction $g: x \mapsto 1 e^x$ (expliquer!).
 - c) Déterminer, par calcul, l'abscisse du point d'intersection des graphes de f et de g.
 - d) Déterminer l'aire de la partie du plan délimitée par l'axe Oy et les graphes de f et de g.

2+4+2+4=12 points

- V) 1) On tire simultanément cinq cartes d'un jeu de 32 cartes.
 - a) Combien de tirages sont possibles?
 - b) Combien de tirages comportent exactement un as et deux rois?
 - 2) On effectue cinq tirages successifs sans remise dans un jeu de 32 cartes.
 - a) Combien de tirages sont possibles?
 - b) Combien de tirages comportent deux cartes de la même couleur ?
 - c) Combien de tirages comportent au moins une dame?

10 points