COMP9418: Advanced Topics in Statistical Machine Learning

Learning Bayesian Network Parameters with Maximum Likelihood

Instructor: Gustavo Batista

University of New South Wales

Introduction

- Consider this Bayesian network structure and dataset
 - Each row in the dataset is called a case and represent a medical record for a patient
 - Some cases are incomplete, where "?" indicates unavailability
- Therefore, the dataset is said to be incomplete due to these missing values
 - Otherwise it is called *complete*
- The objective of this lecture is to provide techniques for estimating parameters of a network structure from data
 - Given both complete and incomplete datasets

Case	Cold	Flu	Tonsillitis	Chilling	Body ache	Sore throat	Fever
1	Т	?	Т	Т	F	F	F
2	F	F	Т	T	Т	F	Т
3	?	Т	F	F	?	Т	F
					•••	•••	

Introduction

- We can construct a network structure by
 - Design information
 - Working with domain experts
- In this lecture, we discuss techniques to estimate the CPTs from data
- Also, we will discuss techniques for learning the network structure itself
 - Although we focus on the complete datasets for this subtask
- The next slides list some possible learning tasks

Known Structure, Complete Data

- This is the simplest setting
 - Given a network that factorizes *P**
 - Dataset with IID samples from *P**
 - We need to output the CPTs

Known Structure, Incomplete Data

- Incomplete data complicates the problem considerably
 - Given a network that factorizes P*
 - Dataset with IID samples from P^* with unknown values
 - We need to output the CPTs

Known Structure, Latent Variables

- Latent variables are not recorded in data
 - Given a network that factorizes *P**
 - Dataset with IID samples from P^* with unknown values and latent variables
 - We need to output the CPTs

Unknown Structure, Complete Data

- We may also want to learn the network structure
 - Given a set of random variables
 - Dataset with IID samples from P*
 - We need to output the edges connectivity and CPTs

Unknown Structure, Incomplete Data

A challenging scenario

Given a set of random variables

■ Dataset with IID samples from P^* with unknown values

We need to output the edges connectivity and CPTs

R

P(C)0.5

Estimating Parameter from Complete Data

- Consider this simple network
 - Our goal is to estimate its parameters from the data
- Our assumption are
 - These cases are generated independently
 - According to their true probabilities
- Under these assumptions
 - We can define an empirical distribution $P_{\mathcal{D}}$
 - According to this distribution, the empirical probability of an instantiation is simply its frequency of occurrence

<u> </u>	11	J	
1	h	\overline{S}	e
2	h	\bar{S}	e
2 3	$ar{h}$	S	\bar{e}
4	\overline{h}	\bar{S}	e
5 6 7	h	\bar{S}	\bar{e}
6	h	<u>s</u>	e
7	\overline{h}	\overline{S}	\bar{e}
8	h	\bar{S}	e
9	h	\overline{S}	e
10	$ar{h}$	\overline{S}	e
11	h	\bar{S}	e
12	h	S	e
13	h	S	e
14	h	S	e
15	h	\bar{S}	e
16	h	Ī	e

Case | H

Н	S	Е	$P_{\mathcal{D}}(.)$
h	S	e	2/16
h	S	\bar{e}	0/16
h	\bar{S}	e	9/16
h	\bar{S}	\bar{e}	1/16
\overline{h}	S	e	0/16
\overline{h}	S	$ar{e}$	1/16
\overline{h}	\overline{S}	e	2/16
\overline{h}	\overline{S}	\bar{e}	1/16

Estimating Parameter from Complete Data

• Empirical distribution $P_{\mathcal{D}}$

$$P_{\mathcal{D}}(h, s, e) = \frac{\mathcal{D}\#(h, s, e)}{N}$$

- where
 - \mathcal{D} #(h, s, e) is the number of cases in dataset \mathcal{D} that satisfies instantiation h, s, e
 - *N* is the dataset size

	11		
1	h	\overline{S}	e
2	h	\bar{S}	e
2 3 4	$ar{h}$	S	\bar{e}
	$ar{h}$	\overline{S}	e
5 6 7	h	\overline{S}	\bar{e}
6	h	S	e
7	\overline{h}	\overline{S}	\bar{e}
8	h	\bar{S}	e
9	h	\overline{S}	e
10	\overline{h}	\bar{S}	e
11	h	\bar{S}	e
12	h	S	e
13	h	\bar{S}	e
14	h	S	e
15	h	\bar{S}	e
16	h	\overline{S}	e

Case H S

Н	S	E	$P_{\mathcal{D}}(.)$
h	S	e	2/16
h	S	\bar{e}	0/16
h	\bar{S}	e	9/16
h	\bar{S}	\bar{e}	1/16
\overline{h}	S	e	0/16
$ar{h}$	S	$ar{e}$	1/16
\overline{h}	\overline{S}	e	2/16
\overline{h}	\bar{S}	$ar{e}$	1/16
			10

Estimating Parameter from Complete Data

- We can now estimate parameters based on the empirical distribution
- For example, the parameter $\theta_{s|h}$
 - Corresponds to $P_{\mathcal{D}}(s|h)$
 - Probability a person will smoke given they are health-aware

$$P_{\mathcal{D}}(s|h) = \frac{P_{\mathcal{D}}(s,h)}{P_{\mathcal{D}}(h)} = \frac{2/16}{12/16} = \frac{1}{6}$$

Н	S	E	$P_{\mathcal{D}}(.)$
h	S	e	2/16
h	S	\bar{e}	0/16
h	\bar{S}	e	9/16
h	\bar{S}	\bar{e}	1/16
\overline{h}	S	e	0/16
\overline{h}	S	\bar{e}	1/16
\overline{h}	\bar{S}	e	2/16
\overline{h}	\bar{S}	$ar{e}$	1/16

Empirical Distribution: Definition

- A dataset $\mathcal D$ for variables $\pmb X$ is a vector $\pmb d_1, ..., \pmb d_N$ where each $\pmb d_i$ is called a case and represents a partial instantiation of variables $\pmb X$
 - The dataset is complete if each case is a complete instantiation of variables X
 - Otherwise, the dataset is incomplete
- The empirical distribution for a complete dataset D is defined as

$$P_{\mathcal{D}}(\alpha) \stackrel{\text{def}}{=} \frac{\mathcal{D}\#(\alpha)}{N}$$

- where
 - $\mathcal{D}\#(\alpha)$ is the number of cases d_i in the dataset \mathcal{D} that satisfy the event α

Complete Data Parameter Estimation: Definition

• We can estimate the parameter $\theta_{x|u}$ by the empirical probability

$$\theta_{x|\boldsymbol{u}}^{ml} \stackrel{\text{def}}{=} P_{\mathcal{D}}(x|\boldsymbol{u}) = \frac{\mathcal{D}\#(x,\boldsymbol{u})}{\mathcal{D}\#(\boldsymbol{u})}$$

- The count $\mathcal{D}\#(x, \boldsymbol{u})$ is called a *sufficient statistic*
 - More generally, any function of the data is called a statistic
 - A sufficient statistic is a statistic that contains all the information in the data needed for a particular estimation task
- Considering the network structure and corresponding dataset
 - We have the following parameter estimates

Н	$\mid heta_H^{ml} \mid$	_1	Н	S	$ heta_{S H}^{ml}$	Н	E	$\mid heta_{E H}^{ml} \mid$
h	3/4 1/4		h	S	1/6	h	e	11/12
\overline{h}	1/4	1	h	\bar{S}	5/6	h	\bar{e}	1/12
			\overline{h}	S	1/2			1/2
			\overline{h}	\overline{S}	1/2	\overline{h}	\bar{e}	1/2

<u>H</u>	S	E	$P_{\mathcal{D}}(.)$
h	S	e	2/16
h	S	\bar{e}	0/16
h	\bar{S}	e	9/16
h	\overline{S}	\bar{e}	1/16
\overline{h}	S	e	0/16
\overline{h}	S	\bar{e}	1/16
$ar{h}$	\overline{S}	e	2/16
$ar{h}$	\bar{S}	\bar{e}	1/16
			•

Complete Data Parameter Estimation: Definition

- We expect the variance of $\theta^{ml}_{x|u}$ will decrease as the dataset increases in size
 - If the dataset is an IID sample of a distribution *P*
 - The Central Limit Theorem tells us $\theta_{x|u}^{ml}$ is asymptotically Normal
 - It can be approximated by a Normal distribution with
 - Mean
 - Variance
- The variance depends on N, P(u) and P(x|u)
 - It vey sensitive to P(u), and it is difficult to estimate this parameter when this probability is small
 - Small P(u) and not large enough N leads to the problem of zero counts
 - We have seen this problem before in the Naïve Bayes lecture and will return to it when we discuss Bayesian learning

$$\frac{P(X|\mathbf{u})}{P(x|\mathbf{u})(1-P(x|\mathbf{u}))}$$

$$\frac{NP(\mathbf{u})}{NP(\mathbf{u})}$$

Maximum Likelihood (ML) Estimates

- Let θ be the set of all parameter estimates for a network G
 - P_{θ} be the probability distribution induced by G and θ
- We define the likelihood of these estimates as
 - That is, the likelihood of estimates θ is the probability of observing the dataset D under these estimates
- We can show that given a complete dataset \mathcal{D} , the parameters $\theta_{x|u}^{ml}$ are the only estimates that maximize the likelihood function
 - For this reason, these estimates are called maximum likelihood (ML)
 estimates
 - They are denoted by θ^{ml}

$$L(\theta; \mathcal{D}) \stackrel{\text{def}}{=} \prod_{i=1}^{N} P_{\theta}(\boldsymbol{d}_{i})$$

$$\theta^* = argmax_{\theta} L(\theta; \mathcal{D})$$

$$iff$$

$$\theta_{x|\mathbf{u}}^* = P_{\mathcal{D}}(x|\mathbf{u})$$

$$\theta^{ml} = argmax_{\theta} L(\theta; \mathcal{D})$$

ML Estimates and KL Divergence

- ML estimates also minimize the KL divergence between the learned Bayesian network and the empirical distribution
 - For a complete dataset $\mathcal D$ and variables $\pmb X$

$$\operatorname{argmax}_{\theta} L(\theta; \mathcal{D}) = \operatorname{argmin}_{\theta} \operatorname{KL}(P_{\mathcal{D}}(X), P_{\theta}(X))$$

- ML estimates are unique for a given structure G and complete dataset \mathcal{D}
 - lacktriangle Therefore, the likelihood of these parameters is a function of G and ${\mathcal D}$
 - We define the likelihood of structure G given $\mathcal D$ as
 - Where θ^{ml} are the ML estimates for structure G and dataset \mathcal{D}

$$L(G; \mathcal{D}) \stackrel{\text{def}}{=} L(\theta^{ml}; \mathcal{D})$$

Log-Likelihood

 Often, it is more convenient to work with the logarithm of the likelihood function

$$LL(\theta; \mathcal{D}) \stackrel{\text{def}}{=} \log L(\theta; \mathcal{D}) = \sum_{i=1}^{N} \log P_{\theta}(\boldsymbol{d}_{i})$$

■ The log-likelihood of structure *G* is defined similarly

 $LL(G; \mathcal{D}) \stackrel{\text{def}}{=} \log L(G; \mathcal{D})$

- Maximizing the log-likelihood is equivalent to maximizing the likelihood function
 - Although likelihood is ≥ 0 and log-likelihood is ≤ 0
 - We use log₂ for the log-likelihood but suppress the base 2

Log-Likelihood

- A key property of log-likelihood function is that it decomposes into several components
 - One for each family in the Bayesian network structure
- Let G be a structure and \mathcal{D} a complete dataset of size N. If XU ranges over the families of structure G, then

$$LL(G; \mathcal{D}) = -N \sum_{XU} H_{\mathcal{D}}(X|U)$$

• Where $H_{\mathcal{D}}(X|U)$ is the conditional entropy, defined as

$$H_{\mathcal{D}}(X|\boldsymbol{U}) = -\sum_{x\boldsymbol{u}} P_{\mathcal{D}}(x\boldsymbol{u}) \log_2 P_{\mathcal{D}}(x|\boldsymbol{u})$$

Estimating Parameters from Incomplete Data

- The parameter estimates considered so far have a number of interesting properties
 - They are unique, asymptotically Normal, and maximize the probability of data
 - They are easy to compute with a single pass on the dataset

- Given these properties, we could seek for maximum likelihood estimates for incomplete data as well
 - However, the properties of these estimates will depend on the nature of incompleteness

- For example, consider the network structure on the right
 - C is a medical condition and T a test for detecting this condition
 - Let's also suppose the true parameters are given by the tables
 - Hence, we have $P(ve) = P(\overline{ve}) = .5$

\mathcal{D}^1	\mathcal{C}	T
1	?	ve
2	?	ve
3	?	\overline{ve}
4	?	\overline{ve}
5	?	\overline{ve}
6	?	ve
7	?	ve
8	?	\overline{ve}

\mathcal{D}^2	С	T
1	yes	ve
2	yes	ve
3	yes	\overline{ve}
4	no	?
5	yes	\overline{ve}
6	yes	ve
7	no	?
8	no	\overline{ve}

\mathcal{D}^3	С	T
1	yes	ve
2	yes	ve
3	?	\overline{ve}
4	no	?
5	yes	\overline{ve}
6	?	ve
7	no	?
8	no	\overline{ve}

\mathcal{C}	θ_c
yes	.25
no	.75

<u>C</u>	T	$\theta_{t c}$
yes	ve	.80
yes	\overline{ve}	.20
no	ve	.40
no	\overline{ve}	.60

- Let us consider the first dataset \mathcal{D}^1
 - The cases split equally between ve and \overline{ve} values of T
 - We expect this to be true in the limit given the distribution of this data
- We can show the ML estimates are not unique for this dataset
 - The ML estimates for \mathcal{D}^1 are characterized by the following equation

$$\theta_{T=ve|C=yes} \; \theta_{C=yes} + \theta_{T=ve|C=no} \theta_{C=no} = \frac{1}{2}$$

- The true parameters satisfy this equation
 - But the following estimates do as well

$$\theta_{C=yes} = 1,$$
 $\theta_{T=ve|C=yes} = \frac{1}{2}$

• With $\theta_{T=ve|C=no}$ taking any value

C	θ_c
yes	.25
no	.75

С	T	$\theta_{t c}$
yes	ve	.80
yes	\overline{ve}	.20
no	ve	.40
no	\overline{ve}	.60

\mathcal{D}^1	С	T
1	?	ve
2	?	ve
3	?	\overline{ve}
4	?	\overline{ve}
5	?	\overline{ve}
6	?	ve
7	?	ve
8	?	\overline{ve}

- Therefore, ML estimates are not unique for this dataset
 - This is not surprising since incomplete datasets may not contain enough information to pin down the true parameters
 - The nonuniqueness of ML estimates is a desirable property

		θ_c	\mathcal{D}^1	С	T
yes	s .	25	1	?	ve
no	•	75	2	?	ve
С	T	Α.	3	?	\overline{ve}
	_	$\frac{\theta_{t c}}{.80}$	4	?	\overline{ve}
	$\frac{ve}{\overline{u}}$.20	5	?	\overline{ve}
	ve		6	?	ve
	$\frac{ve}{\overline{a}}$.40	7	?	ve
no	ve	.60	8	?	\overline{ve}

- Consider now dataset \mathcal{D}^2 to illustrate why data may be missing:
 - People who do not suffer from the condition tend to not take the test. That is, the data is missing because the test is not performed
 - People who test negative tend not to report the result. That is, the test is performed but its value is not recorded
- These two scenarios are different in a fundamental way
 - In the second scenario, the missing value provides some evidence its true value must be negative
 - ML estimates give the intended results for the first scenario but not for the second one as it does not integrate all the information about the second scenario
 - However, we return to this topic later to show that ML can still be applied under the second scenario but requires some explication of the missing data mechanism

\mathcal{D}^2	С	T
1	yes	ve
2	yes	ve
3	yes	\overline{ve}
4	no	?
5	yes	\overline{ve}
6	yes	ve
7	no	?
8	no	\overline{ve}

Expectation Maximization (EM)

- Consider the Bayesian network on the right
 - lacktriangle Suppose our goal is to find ML estimates for the dataset ${\mathcal D}$
 - We start with initial estimates θ^0 with the following likelihood

$$L(\theta; \mathcal{D}) = \prod_{i=1}^{5} P_{\theta^0}(\boldsymbol{d}_i)$$

$$= P_{\theta^0}(b, \bar{c}) P_{\theta^0}(b, \bar{d}) P_{\theta^0}(\bar{b}, c, d) P_{\theta^0}(\bar{b}, c, d) P_{\theta^0}(b, \bar{d})$$

$$= (.135)(.184)(.144)(.144)(.184) = 9.5 \times 10^{-5}$$

- Evaluating the terms in this product generally requires inference on the Bayesian network
 - Contrary, the complete data case each term can be evaluated using the chain rule for the Bayesian network

A	В	$\theta_{b a}^{0}$	A	
a	b	.75	K	X
a	\overline{b}	.25	(B)	$\left(C\right)$
\overline{a}	b	.10		0
\bar{a}	\overline{b}	.90	<u>\psi_</u>	
Α	С	$\theta_{c a}^{0}$	D	
				_

A	С	$\theta_{c a}^0$
a	С	.50
\boldsymbol{a}	\bar{c}	.50
\bar{a}	С	.25
ā	\bar{c}	.75

		ı		
${\mathcal D}$	A	В	$\boldsymbol{\mathcal{C}}$	D
1	?	b	\bar{c}	?
2	?	b	?	\bar{d}
3	?	\overline{b}	С	d
4	?	\overline{b}	С	d
5	?	b	?	\bar{d}

В	D	$\theta_{b d}^{0}$
b	d	.20
b	$ar{d}$.80
\overline{b}	d	.70
\overline{b}	$ar{d}$.30
		24

Expectation Maximization (EM)

- The expectation maximization (EM) algorithm is based on the complete data method
 - EM first completes the dataset, inducing an empirical distribution
 - Then it estimates parameters using ML
 - The new set of parameters are guaranteed to have no less likelihood than the initial parameters
 - This process is repeated until some convergence condition is met
- For instance, the first case of dataset \mathcal{D} has variables A and D with missing values
 - There are four possible completions for this case
 - Although we do not know which one is correct, we can compute the probability of each completion based on the initial set of parameters

A	В	$\theta_{b a}^0$	(A	
a	b	.75	K	
a	\overline{b}	.25	(B)	
\bar{a}	b	.10		(
\bar{a}	\overline{b}	.90	<u>\psi_</u>	
		•		

A	С	$\theta_{c a}^{0}$
a	С	.50
a	\bar{C}	.50
\bar{a}	С	.25
\bar{a}	\bar{C}	.75

		•		
\mathcal{D}	A	В	С	D
1	?	b	\bar{c}	?
2	?	b	?	$ar{d}$
3	?	\overline{b}	С	d
4	?	\overline{b}	С	d
5	?	b	?	\bar{d}

A	θ_a^{0}
a	.20
\bar{a}	.80

В	D	$\theta_{b d}^0$
b	d	.20
b	$ar{d}$.80
\overline{b}	d	.70
\overline{b}	$ar{d}$.30
		25

Expected Empirical Dist

- This tables lists for each case d_i
 - The probability of each completion, $P_{\theta^0}(c_i|d_i)$
 - Where, C_i are the variables with missing values in d_i
- The completed dataset defines an (expected) empirical distribution
 - The probability of an instantiation is computed considering all its occurrences in the completed dataset
 - However, instead of counting the number of occurrences, we add up the probabilities
- For instance, there are 3 occurrences of instantiation a,b,\bar{c},\bar{d} in cases d_1,d_2 and d_5

	\mathcal{D}	A	В	С	D	$P_{\theta^0}(\boldsymbol{C}_i \boldsymbol{d}_i)$
+	d_1	?	b	\bar{c}	?	
		а	b	\bar{c}	d	$111 = P_{\theta^0}(a, d b, \bar{c})$
		а	b	\bar{c}	$ar{d}$.444
		\bar{a}	b	\bar{c}	d	.089
		ā	b	\bar{c}	$ar{d}$.356
	d_2	?	b	?	$ar{d}$	
		а	b	С	$ar{d}$	$326 = P_{\theta^0}(a,c b,\bar{d})$
		а	b	\bar{c}	$ar{d}$.326
		ā	b	С	$ar{d}$.087
		ā	b	\bar{c}	$ar{d}$.261
	d_3	?	\bar{b}	С	d	
-		а	\overline{b}	С	d	$122 = P_{\theta^0}(a \bar{b},c,d)$
		\bar{a}	$ar{b}$	С	d	.878
	d_4	?	\bar{b}	С	d	
-		а	\overline{b}	С	d	$122 = P_{\theta^0}(a \bar{b},c,d)$
		\bar{a}	$ar{b}$	С	d	.878
•	d_5	?	b	?	\bar{d}	
-		а	b	С	$ar{d}$	$326 = P_{\theta^0}(a,c b,\bar{d})$
		а	b	\bar{c}	$ar{d}$.326
		ā	b	С	$ar{d}$.087
		\bar{a}	b	\bar{c}	\bar{d}	.261

Expected Empirical Dist

• The probability, $P(a, b, \bar{c}, \bar{d})$, of seeing these completions is

$$\frac{P_{\theta^0}(a, \bar{d}|b, \bar{c}) + P_{\theta^0}(a, \bar{c}|b, \bar{d}) + P_{\theta^0}(a, \bar{c}|b, \bar{d})}{N}$$

$$= \frac{.444 + .326 + .326}{5} = .219$$

• We can define the *expected empirical distribution* of dataset $\mathcal D$ under parameters θ^k as

$$P_{\mathcal{D},\theta^k}(\alpha) \stackrel{\text{def}}{=} \frac{1}{N} \sum_{\boldsymbol{d}_i, \boldsymbol{c}_i \models \alpha} P_{\theta^k}(\boldsymbol{c}_i | \boldsymbol{d}_i)$$

- Where α is an event and \boldsymbol{C}_i are the variables with missing values in case \boldsymbol{d}_i
- $d_i, c_i \models \alpha$ means that event α is satisfied by complete case d_i, c_i

${\mathcal D}$	A	В	С	D	$P_{\theta^0}(\boldsymbol{C}_i \boldsymbol{d_i})$
d_1	?	b	Ē	?	
	а	b	\bar{c}	d	$111 = P_{\theta^0}(a, d b, \bar{c})$
	а	b	ī	$ar{d}$.444
	\bar{a}	b	\bar{c}	d	.089
	\bar{a}	b	$\bar{\mathcal{C}}$	$ar{d}$.356
d_2	?	b	?	$ar{d}$	
	а	b	С	\bar{d}	$.326 = P_{\theta^0}(a,c b,\bar{d})$
	а	b	\bar{c}	$ar{d}$.326
	ā	b	С	$ar{d}$.087
	ā	b	\bar{c}	$ar{d}$.261
d_3	?	\bar{b}	С	d	
	а	\overline{b}	С	d	$.122 = P_{\theta^0}(a \bar{b},c,d)$
	ā	\overline{b}	С	d	.878
d_4	?	\overline{b}	С	d	
	а	$ar{b}$	С	d	$.122 = P_{\theta^0}(a \bar{b},c,d)$
	ā	\overline{b}	С	d	.878
d_5	?	b	?	\bar{d}	
	а	b	С	\bar{d}	$.326 = P_{\theta^0}(a,c b,\bar{d})$
	а	b	\bar{c}	$ar{d}$.326
	ā	b	С	$ar{d}$.087
	\bar{a}	b	\bar{c}	\bar{d}	.261

Expected Empirical Distribution

- Given the definition of expected empirical distribution we can compute $P_{\mathcal{D},\theta^0}$ for all instantiations of variables A, B, C and D
- When the dataset is complete
 - $P_{\mathcal{D},\theta^k}(.)$ reduces to the empirical probability $P_{\mathcal{D}}(.)$, which is independent of parameter θ^k
 - Moreover, $NP_{\mathcal{D},\theta^k}(x)$ is called *expected count* of instantiation x
- We can use the expected empirical distribution to estimate parameters
 - Similarly we did for the complete data
 - For instance, for the parameter $\theta_{c|\bar{a}}$

$$\theta_{c|\bar{a}}^{1} = P_{\mathcal{D},\theta^{0}}(c|\bar{a}) = \frac{P_{\mathcal{D},\theta^{0}}(c,\bar{a})}{P_{\mathcal{D},\theta^{0}}(\bar{a})} \approx .666$$

A	В	С	D	$P_{\mathcal{D},\theta^0}(.)$
a	b	С	d	0
a	b	С	$ar{d}$.130
a	b	\bar{C}	d	.022
a	b	\bar{c}	$ar{d}$.219
a	\overline{b}	С	d	.049
a	\overline{b}	С	$ar{d}$	0
a	\overline{b}	\bar{c}	d	0
a	\overline{b}	\bar{c}	$ar{d}$	0
\bar{a}	b	С	d	0
\bar{a}	b	С	$ar{d}$.035
\bar{a}	b	\bar{c}	d	.018
\bar{a}	b	\bar{c}	$ar{d}$.176
\bar{a}	\overline{b}	С	d	.351
\bar{a}	\overline{b}	С	$ar{d}$	0
\bar{a}	\overline{b}	\bar{c}	d	0
\bar{a}	\overline{b}	\bar{c}	$ar{d}$	0

Expectation Maximization (EM)

- The figure on the right shows all parameter estimates based on $P_{\mathcal{D},\theta^0}$ leading to new estimates θ^1
- The new estimates θ^1 have the following likelihood for dataset $\mathcal D$

$$L(\theta^{1}; \mathcal{D}) = \prod_{i=1}^{5} P_{\theta^{1}}(\boldsymbol{d}_{i})$$

$$= (.290)(.560)(.255)(.255)(.560)$$

$$= 5.9 \times 10^{-3} > L(\theta^{0}|\mathcal{D})$$

• Therefore, we can define the EM estimates for a dataset \mathcal{D} and parameters θ^k as

$$\theta_{x|u}^{k+1} \stackrel{\text{def}}{=} P_{\mathcal{D},\theta^k}(x|u)$$

A	В	$\theta_{b a}^1$	A
а	b	.883	
a	\overline{b}	.117	(R)
\bar{a}	b	.395	
\bar{a}	\overline{b}	.605	<u>\psi}</u>
4	0	1 01	(D)

A	С	$\theta_{c a}^1$
\boldsymbol{a}	С	.426
\boldsymbol{a}	\bar{C}	.574
\bar{a}	С	.666
\bar{a}	\bar{C}	.334

а	C	. •	334	4	
$\overline{\mathcal{D}}$	A	B	\overline{C}	D	
1	?	b	\overline{C}	?	
2	?	b	?	\bar{d}	
3	?	\overline{b}	С	d	
4	?	\overline{b}	С	d	
_	2	h	2	\bar{d}	

В	D	$\theta_{b d}^1$
b	d	.067
b	$ar{d}$.933
\overline{b}	d	1
\overline{b}	$ar{d}$	0
		29

Expectation Maximization (EM)

- EM estimates can be computed without constructing the expected empirical distribution
 - The expected empirical distribution of dataset $\mathcal D$ given parameters θ^k can be computed as
 - That is, we simply iterate over the dataset cases computing the probability of α for each case
 - The EM estimates can now be computes as
- This equation computes EM estimates performing inference in a Bayesian network parametrizes by θ^k . For example

$$\theta_{c|\bar{a}}^{1} = \frac{\sum_{i=1}^{5} P_{\theta^{0}}(c, \bar{a}|\boldsymbol{d}_{i})}{\sum_{i=1}^{N} P_{\theta^{0}}(\bar{a}|\boldsymbol{d}_{i})} = \frac{0 + .087 + .878 + .878 + .087}{.444 + .348 + .878 + .878 + .348} = .666$$

$$P_{\mathcal{D},\theta^k}(\alpha) = \frac{1}{N} \sum_{i=1}^{N} P_{\theta^k}(\alpha | \boldsymbol{d}_i)$$

$$\theta_{x|u}^{k+1} = \frac{\sum_{i=1}^{N} P_{\theta^k}(xu|d_i)}{\sum_{i=1}^{N} P_{\theta^k}(u|d_i)}$$

\mathcal{D}	A	В	С	D
1	?	b	\overline{C}	?
2	?	b	?	$ar{d}$
3	?	\overline{b}	С	d
4	?	\overline{b}	C	d
5	?	b	?	\bar{d}

EM: Algorithm

```
k \leftarrow 0
\theta^k \leftarrow \text{initial parameter values}
\textbf{while } \text{convergence criterion is not met } \textbf{do}
c_{xu} \leftarrow 0 \text{ for each family instantiation } xu
\textbf{for } i \leftarrow 1 \text{ to } N \text{ do}
\textbf{for each family instantiation } xu \text{ do}
c_{xu} \leftarrow c_{xu} + P_{\theta^k}(xu|\textbf{d}_i) \qquad \text{\# requires inference on network } (G, \theta^k)
\theta^{k+1}_{x|u} \leftarrow c_{xu} / \sum_{x^*} c_{x^*u}
k \leftarrow k+1
\textbf{return } \theta^k
```

Note:

• The stop criterion usually employed is a small difference between θ^k and θ^{k+1} or a small change in log-likelihood

EM Algorithm: Observations

- There are a few observations about the behaviour of the EM algorithm
 - lacktriangle The algorithm may converge to different parameters depending on the initial estimate $heta^{\,0}$
 - It is common to run the algorithm multiple times, starting with different estimates in each iteration
 - In this case, we return the best estimates across all iterations
- Each iteration of the EM algorithm will have to perform inference on a Bayesian network
 - In each iteration, the algorithm computes the probability of each instantiation $xm{u}$ given each case $m{d}_i$ as evidence
 - These computations correspond to posterior marginals over network families
 - Therefore, we can use an algorithm such as the jointree that efficiently computes family marginals

Missing Data Mechanism

- Let us consider again the network where C represents a medical condition and T a test for detecting this condition
 - We depict two extended network structures for this problem
 - Each includes an additional variable I that indicates whether the test result is missing in the dataset
- In the left network, the missing data depends on the condition
 - E.g., people who do not suffer from the condition tend not to take the test
- In the right network, the missing data depends on the test result
 - E.g., individuals who test negative tend not to report the result
- Hence, these networks structures explicate different dependencies between missing data missingness
 - We say the structures explicate different missing data mechanisms

Missing Data Indicator

- Our goal is to discuss ML estimates that we would obtain with respect to structures that explicate missing data mechanisms
 - And compare these estimates with those obtained when ignoring such mechanisms
 - E.g., when we use the simpler structure on the top
- Let M be the variables of a network G that have missing values in the data set
 - We define I as a set of variables called missing data indicators that are in one-to-one correspondence with variables M
 - A network structure that results from adding variables I as leaf nodes to G is said to explicate the *missing data mechanism* and is denoted by G_I

Missing Data Indicator

- In these figures, variable *I* is the *missing data indicator*
 - It corresponds to variable T
 - I is always observed, as its value is determined by whether the value of
 T is missing
 - We use D_I to denote an extension of the dataset D that includes missing data indicators

- To the original structure $C \to T$ and the original dataset \mathcal{D}
- lacktriangle To the extended structure on the left and dataset \mathcal{D}_I
- lacktriangle To the extended structure on the right and dataset \mathcal{D}_I

	_		
\mathcal{D}_I	C	T	I
1	yes	ve	no
2	yes	ve	no
3	yes	\overline{ve}	no
4	no	?	yes
5	yes	\overline{ve}	no
6	yes	ve	no
7	no	?	yes
8	no	\overline{ve}	no

Missing Data Indicator

- We are ignoring the missing data mechanism in the first case and accounting for it in the remaining ones
 - All three approaches yield estimates for C and T
 - The question is whether ignoring the missing data mechanism will change the ML estimates
- It turns out the first and second approaches yield identical estimates
 - These estimates are different from the second approach
 - This suggests that missing data mechanism can be ignored in the second case but not in the third one

			_
\mathcal{D}_{I}	<i>C</i>	T	Ι
1	yes	ve	no
2	yes	ve	no
3	yes	\overline{ve}	no
4	no	?	yes
5	yes	\overline{ve}	no
6	yes	ve	no
7	no	?	yes
8	no	\overline{ve}	no

Missing at Random (MAR)

- Let G_I be a network structure that explicates the missing data mechanism of structure G and data set \mathcal{D}
 - Let **0** be variables that are always observed in data set **D**
 - Let *M* be the variables that have missing values in the data set
 - We say that G_I satisfies the missing at random (MAR) assumption if I and M are d-separated by O in structure G_I
- Intuitively, G_I satisfies MAR assumption if once we know the values of variables O, the specific values of M become irrelevant to whether these values are missing in the dataset
 - For the left network, once we know the condition, the test value becomes irrelevant to whether the test is missing
 - For the right network, even if we know the condition, the test result may still be relevant to whether it will be missing

\mathcal{D}_I	C	T	I
1	yes	ve	no
2	yes	ve	no
3	yes	\overline{ve}	no
4	no	?	yes
5	yes	\overline{ve}	no
6	yes	ve	no
7	no	?	yes
8	no	\overline{ve}	no

Missing at Random (MAR)

- If the MAR assumption holds, the missing data mechanism can be ignored
 - Under MAR assumption we obtain the same ML estimates θ if we include or ignore the missing data mechanism

$$argmax_{\theta}LL(\theta; \mathcal{D}) = argmax_{\theta} \max_{\theta_{I}} LL(\theta, \theta_{I}; \mathcal{D}_{I})$$

Conclusion

- In this lecture, we discussed approaches based on Maximum Likelihood for parameter estimation
 - When the dataset is complete, the problem is easy
 - We can estimate the parameters using the empirical distribution
 - The algorithm is simple and efficient. We can compute all parameters with a single pass over the data
 - When the dataset is incomplete, the problem involves inference in the Bayesian network
 - A common approach is to use Expectation Maximization
 - This approach estimates the parameter using an expected empirical distribution
 - The algorithm is more intricate. It requires inference over the Bayesian network since we need to compute condition probabilities $P(C_i|d_i)$ for missing variables