Vapnik-Chervonenkis Dimension

Ruixin Guo

Department of Computer Science Kent State University

Mar 10, 2023

Contents

• Growth Function and Vapnik-Chervonenkis Dimension

Vapnik-Chervonenkis Theorem and Its Proof

Contents

• Growth Function and Vapnik-Chervonenkis Dimension

Vapnik-Chervonenkis Theorem and Its Proof

Recall

In machine learning, we want to use a function f to approximate the target function F. We assume f belongs to a function class \mathcal{F} , and search for the best f in \mathcal{F} that approximates F.

The error in machine learning can be separated into Approximation Error and Estimation Error. We want to find a bound for Estimation Error.

$$R^{\mathsf{true}}(f_m) - R^* = \underbrace{[R^{\mathsf{true}}(f^*) - R^*]}_{\mathsf{Approximation \; Error}} + \underbrace{[R^{\mathsf{true}}(f_m) - R^{\mathsf{true}}(f^*)]}_{\mathsf{Estimation \; Error}}$$

The estimation error can be bounded by

$$R^{\mathsf{true}}(f_m) - R^{\mathsf{true}}(f^*) \leq 2 \sup_{f \in \mathcal{F}} |R^{\mathsf{true}}(f) - R^{\mathsf{emp}}(f)|$$

And we can bound $|R^{\rm true}(f)-R^{\rm emp}(f)|$ by concentration inequalities like Hoeffding Inequality.

Usually we consider one-side bound for $R^{\mathsf{true}}(f) - R^{\mathsf{emp}}(f)$. The two-side bound is $P[|R^{\mathsf{true}}(f) - R^{\mathsf{emp}}(f)| \leq \epsilon] = 2P[R^{\mathsf{true}}(f) - R^{\mathsf{emp}}(f) \leq \epsilon]$, because the Hoeffding Bound is symmetric.

Recall

For a single $f \in \mathcal{F}$ we can bound the $R^{\mathsf{true}}(f) - R^{\mathsf{emp}}(f)$ as

$$P\left[R^{\mathsf{true}}(f) - R^{\mathsf{emp}}(f) \le \sqrt{\frac{\log \frac{1}{\delta}}{2m}}\,\right] \ge 1 - \delta$$

However this bound is not useful because it is only for a single f. Not all fs in $\mathcal F$ will satisfy this bound. When we search for f, we try to minimize $R^{\mathsf{emp}}(f)$, this tends to make the gap $R^{\mathsf{true}}(f) - R^{\mathsf{emp}}(f)$ big. So we are more likely to find an f that not satisfies the bound.

The solution is to use the union bound, i.e., we use the bound for all fs in \mathcal{F} , not just a single one. If the size of \mathcal{F} is finite, let's say $|\mathcal{F}|=N$, then we can write the union bound as:

$$\forall f \in \mathcal{F} \quad P \quad \left| R^{\mathsf{true}}(f) - R^{\mathsf{emp}}(f) \le \sqrt{\frac{\log N + \log \frac{1}{\delta}}{2m}} \right| \ge 1 - \delta$$

The union bound tells us when N is bigger, the estimation error is bigger.

Question: How do we find a bound for the estimation error when $|\mathcal{F}|$ is infinite?

Growth Function

When functions in \mathcal{F} is uncountable, we use a countable measure for \mathcal{F} . The key idea is to group functions based on the sample.

Given the samples $z_1, z_2, ..., z_m$, consider the set

$$\mathcal{F}_{z_1, z_2, \dots, z_m} = \{ f(z_1), f(z_2), \dots, f(z_m) : f \in \mathcal{F} \}$$

For binary classification, $f(z) \in \{0,1\}$, then $|\mathcal{F}_{z_1,z_2,...,z_m}| \leq 2^m$, which means the set is always finite.

Here we put the functions that generate the same classification result in a group, and $\mathcal F$ is partitioned into $|\mathcal F_{z_1,z_2,\dots,z_m}|$ disjoint groups. Now we consider the maximum number of groups as a measure for $\mathcal F$:

Definition (Growth Function): The growth function is the maximum number of ways into which m points can be classified by the function class:

$$S_{\mathcal{F}}(m) = \sup_{(z_1, z_2, \dots, z_m)} |\mathcal{F}_{z_1, z_2, \dots, z_m}|$$

Shattering and VC dimension

In order to figure out how to compute $S_{\mathcal{F}}(m)$, we need to use VC dimension.

Definition (Shattering): We say \mathcal{F} shatters an m-point dataset if $S_{\mathcal{F}}(m)=2^m$.

• This means there is a dataset of size m points such that ${\mathcal F}$ can generate any classification on these points.

Definition (VC Dimension): The VC Dimension of a function class \mathcal{F} is the largest h such that $S_{\mathcal{F}}(h)=2^h$.

• The VC dimension of ${\cal F}$ is the maximum number of points that ${\cal F}$ can shatter.

Note that VC dimension is an attribute of the function class \mathcal{F} . Let h be the VC dimensions of \mathcal{F} and m be the number of points of an dataset. If $m \leq h$, then $S_{\mathcal{F}}(m) = 2^m$; if m > h, then $S_{\mathcal{F}}(m) < 2^m$.

Example of VC Dimension

Example 1: When $\mathcal{F} = \{f(\boldsymbol{x}) = \mathbf{1}_{\boldsymbol{w}^T\boldsymbol{x}+b>0}, \boldsymbol{x} \in \mathbb{R}^2, \boldsymbol{w} \in \mathbb{R}^2, b \in \mathbb{R}\}$, i.e., \mathcal{F} is a set of all non-vertical lines in 2D space. Then the VC dimension of \mathcal{F} is 3, because it can scatter at most 3 points:

Example of VC Dimension

One may argue that when the 3 points are on a line, the function class $\mathcal{F} = \{f(\boldsymbol{x}) = \boldsymbol{1}_{\boldsymbol{w}^T\boldsymbol{x}+b>0}, \boldsymbol{x} \in \mathbb{R}^2, \boldsymbol{w} \in \mathbb{R}^2, b \in \mathbb{R}\} \text{ cannot shatter it. For example, we cannot find an } f \in \mathcal{F} \text{ that classifies the points into the following cases:}$

This is true. However, remember that VC dimension is data independent. If we can find at least one dataset of size m that \mathcal{F} can shatter, then we say the VC dimension of \mathcal{F} is m.

In Example 1 we have shown that $\mathcal F$ can shatter 3 points. However, for any 4 points dataset, $\mathcal F$ cannot shatter it (The Theorem on page 11 proves this). So the VC dimension of $\mathcal F$ cannot be 4.

Example of VC Dimension

Example 2: Consider the function class $\mathcal{F} = \{f(\boldsymbol{x}) = \mathbf{1}_{kx_2 \leq \theta}, \boldsymbol{x} = [x_1, x_2]^T \in \mathbb{R}^2, k \in \mathbb{R}, \theta \in \mathbb{R}\}$. That is, \mathcal{F} is the set of all horizontal line classifiers. It can shatter at most 2 points but cannot shatter 3 points, so the VC dimension of \mathcal{F} is 2.

When we use \mathcal{F} to classify a 3 points dataset, it can only make 6 classification cases. So the Growth Number $S_{\mathcal{F}}(3)=6$. (The last two cases below cannot be classified by \mathcal{F} .)

The VC Dimension of Linear Classifier

Theorem: Let $S = \{x_1, x_2, ..., x_m\} \in \mathbb{R}^n$ be a point set in n-dimensional space. Let $\mathcal{F} = \{f(x) = \mathbf{1}_{w^Tx+b>0}, w \in \mathbb{R}^n, b \in \mathbb{R}\}$ be the function class of all linear classifier in \mathbb{R}^n . Then \mathcal{F} shatters S only when $x_1, x_2, ..., x_m$ are linearly independent and $m \leq n+1$.

Proof: Let $z_i = [1 \ x_i^T]^T$, we can write $\mathcal F$ as $\mathcal F = \{f(x) = I(\theta^Tz > 0), \theta \in \mathbb R^{n+1}\}$. Let $Z = [z_1 \ z_2 \ ... \ z_m] \in \mathbb R^{(n+1) \times m}$, we want the system of linear equations $Z^T\theta = y$ solvable for arbitrary $y \in \mathbb R^m$ (each element in y can either be > 0 or < 0 in order to cover all possible cases). This means $\mathrm{rank}(Z) = \mathrm{rank}(y) = m$ and θ has unique solution. Since $\mathrm{rank}(Z) = \min\{m, n+1\}$, we must have $m \le n+1$. Since Z is of full rank and $m \le n+1$, all its column vectors $z_1, z_2, ..., z_m$ are linearly independent, which means $x_1, x_2, ..., x_m$ are linearly independent.

Sauer's Lemma

Consider such a case, when m is far greater than the VC dimension of \mathcal{F} , what will the growth function be like? The following theorem gives us a upper bound.

Theorem (Sauer's Lemma): Let \mathcal{F} be a function class of binary output functions and its VC dimension is h. Then for all $m \in \mathbb{N}$:

$$S_{\mathcal{F}}(m) \le \sum_{i=0}^{h} \binom{m}{i}$$

Furthermore, for all $m \geq h$, we have

$$S_{\mathcal{F}}(m) \leq \left(\frac{em}{h}\right)^h$$

Proof: For the first inequality, we prove it by induction. When $m \leq h$, $S_{\mathcal{F}}(m) = 2^m = \sum_{i=0}^h \binom{m}{i}$, so this inequality holds.

When m > h, assume $S_{\mathcal{F}}(m-1) \leq \sum_{i=0}^{h} {m-1 \choose i}$ is true. By induction, we want to prove $S_{\mathcal{F}}(m) \leq \sum_{i=0}^{h} {m \choose i}$ is true.

Consider a dataset $X'=\{x_1,x_2,...,x_{m-1}\}$ having m-1 points, and $\mathcal F$ can generate $S_{\mathcal F}(m-1)$ classification results on X'. Let's add a new point x_m to the dataset, i.e., let the new dataset $X=X'\cup\{x_m\}$. Now consider the classification results of $\mathcal F$ on X.

	${\cal F}$					\mathcal{F}_1						\mathcal{F}_2			
	x_1	x_2	x_3	x_4	x_5		x_1	x_2	x_3	x_4		x_1	x_2	x_3	x_4
f_1	0	1	1	0	0	\rightarrow	0	1	1	0					
f_2	0	1	1	0	1						\rightarrow	0	1	1	0
f_3	0	1	1	1	0	\rightarrow	0	1	1	1					
f_4	1	0	0	1	0	\rightarrow	1	0	0	1					
f_5	1	0	0	1	1						\rightarrow	1	0	0	1
f_6	1	1	0	0	1	\rightarrow	1	1	0	0					

We partition \mathcal{F} into \mathcal{F}_1 and \mathcal{F}_2 . Let f_i s be the groups of \mathcal{F} . Each group corresponds to a classification result of X. If we ignore x_m , there can be at most two fs in \mathcal{F} that generate the same label on $x_1,...,x_{m-1}$. If there exists two, we put one into \mathcal{F}_1 and another into \mathcal{F}_2 . If there exists only one, we put it into \mathcal{F}_1 . The above table shows an example of m=5. Therefore, we have the induction

$$S_{\mathcal{F}}(m) = S_{\mathcal{F}_1}(m-1) + S_{\mathcal{F}_2}(m-1)$$

It is obvious that the number of groups in \mathcal{F}_1 will be the same as $S_{\mathcal{F}}(m-1)$, i.e., $S_{\mathcal{F}_1}(m-1)=S_{\mathcal{F}}(m-1)$.

For \mathcal{F}_2 , if there exists a set $T\subset X'$ such that \mathcal{F}_2 shatters T, then \mathcal{F} shatters $T\cup\{x_m\}$. This is because for every f in \mathcal{F}_2 , we can always find its counterpart in \mathcal{F}_1 such that they generate the same label on $x_1,x_2,...,x_{m-1}$ but different on x_m . Therefore, $\mathsf{VCDim}(\mathcal{F}_2) \leq \mathsf{VCDim}(\mathcal{F}) - 1$. Since $\mathsf{VCDim}(\mathcal{F}) = h$, $\mathsf{VCDim}(\mathcal{F}_2) \leq h - 1$. By assumption, we have $S_{\mathcal{F}_2}(m-1) \leq \sum_{i=0}^{h-1} {m \choose i}$.

Therefore,

$$S_{\mathcal{F}}(m) = S_{\mathcal{F}_1}(m-1) + S_{\mathcal{F}_2}(m-1)$$

$$= S_{\mathcal{F}}(m-1) + S_{\mathcal{F}_2}(m-1)$$

$$\leq \sum_{i=0}^{h} {m-1 \choose i} + \sum_{i=0}^{h-1} {m-1 \choose i}$$

$$= \sum_{i=0}^{h} {m-1 \choose i} + \sum_{i=0}^{h} {m-1 \choose i-1}$$

$$= \sum_{i=0}^{h} {m \choose i}$$

The last equality above uses the fact that $\binom{m}{i} = \binom{m-1}{i} + \binom{m-1}{i-1}$ for any i < m-1.

The second inequality $S_{\mathcal{F}}(m) \leq (\frac{em}{h})^h$ is because, when $m \geq h$,

$$S_{\mathcal{F}}(m) \le \sum_{i=0}^{h} \binom{m}{i} \le \left(\frac{m}{h}\right)^{h} \sum_{i=0}^{h} \binom{m}{i} \left(\frac{h}{m}\right)^{i} \le \left(\frac{m}{h}\right)^{h} \left(1 + \frac{h}{m}\right)^{m} \le \left(\frac{em}{h}\right)^{h}$$

The last inequality uses the fact that $(1+\frac{1}{m})^m \le e \Rightarrow (1+\frac{h}{m})^m \le e^h$.

The Sauer's Lemma shows the relationship between Growth Function and VC Dimension. Since $\log S_{\mathcal{F}}(m) = O(m)$ when $m \leq h$ and $\log S_{\mathcal{F}}(m) = O(\log m)$ when m > h, we can draw the figure as follows:

Contents

• Growth Function and Vapnik-Chervonenkis Dimension

2 Vapnik-Chervonenkis Theorem and Its Proof

Vapnik-Chervonenkis Theorem

Theorem (Vapnik-Chervonenkis): For any $\delta > 0$, with respect to a random draw of the data,

$$\forall f \in \mathcal{F} \quad P\left[R^{\mathsf{true}}(f) - R^{\mathsf{emp}}(f) \leq 2\sqrt{2\frac{\log S_{\mathcal{F}}(2m) + \log\frac{4}{\delta}}{m}}\,\right] \geq 1 - \delta$$

Note that the above bound uses the Growth Function $S_{\mathcal{F}}$ instead of $|\mathcal{F}|$. $|\mathcal{F}|$ is infinite, but we can use $S_{\mathcal{F}}$ as a finite measure to bound $R^{\mathsf{true}}(f) - R^{\mathsf{emp}}(f)$.

The following pages will prove the Vapnik-Chervonenkis Theorem. I will first introduce some basics of statistics, then Symmetrization Lemma which is utilized in the proof, and finally make the proof by combining all the pieces.

Remember that
$$R^{\mathsf{true}}(f) = E(R^{\mathsf{emp}}(f))$$
. For simplicity, I denote $Z_i = \mathbf{1}_{f(z_i) \neq y_i} \in \{0,1\}$, $Z = \frac{1}{m} \sum_{i=1}^m Z_i = R^{\mathsf{emp}}(f)$ and $E(Z) = R^{\mathsf{true}}(f)$.

Some Basics

• Let A and B be two events. If A happens, B will necessary happen (i.e., $A\Rightarrow B$), then $P(A)\leq P(B)$.

Proof: Let $\neg A$ be the event that A does not happen. Use the Law of Total Probability, we can write P(B) as:

$$P(B) = P(B|A)P(A) + P(B|\neg A)P(\neg A)$$

Since P(B|A) = 1 and $P(B|\neg A)P(\neg A) \ge 0$, we have $P(B) \ge P(A)$.

• Let t_1 and t_2 be two variables, a and b be two constant, then $t_1 \geq a$ and $t_2 \geq b \Rightarrow t_1 + t_2 \geq a + b$, $t_1 + t_2 \geq a + b \Rightarrow t_1 \geq a$ or $t_2 \geq b$. That is,

$$P(t_1 \ge a \text{ and } t_2 \ge b) \le P(t_1 + t_2 \ge a + b)$$

 $P(t_1 + t_2 \ge a + b) \le P(t_1 \ge a \text{ or } t_2 \ge b)$

Some Basics

 \bullet Uniform Bound: Let $S=\{s_1,s_2,...,s_n\}$ be a set of random variables. Let t be a constant, then

$$P\left[\sup_{s\in S}\{s\}\leq t\right]=P\left[s_1\leq t \text{ and } s_2\leq t \text{ and } \dots \text{ and } s_n\leq t\right]$$

Or we can say $P\left[\sup_{s\in S}\{s\}\leq t\right]$ means $\forall s\in S, P\left[s\leq t\right].$

Let $A: \{\sup_{s \in S} \{s\} \le t\}$ and $B: \{s_1 \le t \text{ and } s_2 \le t \text{ and } \dots \text{ and } s_n \le t\}$ be two events, we have $A \Leftrightarrow B$, thus P(A) = P(B).

Similarly, $P\left[\sup_{s\in S}\{s\}\geq t\right]$ means $\exists s\in S, P\left[s\geq t\right].$ That is

$$P\left[\sup_{s \in S} \{s\} \ge t\right] = 1 - P\left[s_1 \le t \text{ and } s_2 \le t \text{ and } \dots \text{ and } s_n \le t\right]$$
$$= P\left[s_1 \ge t \text{ or } s_2 \ge t \text{ or } \dots \text{ or } s_n \ge t\right]$$

Let $C:\{s_1\geq t \text{ or } s_2\geq t \text{ or } ... \text{ or } s_n\geq t\}$ be another event, we have $C\Leftrightarrow \neg B$, thus P(B)+P(C)=1.

Symmetrization Lemma

Lemma (Symmetrization): Let $Z_1,Z_2,...,Z_m$ be m samples from D. Each $Z_i \in [0,1]$. Let $Z=\frac{1}{m}\sum_{i=1}^m Z_i$ be the sample mean of the m samples. Let $Z'=\frac{1}{m}\sum_{i=1}^m Z_i'$ where $Z_1',Z_2',...,Z_m'$ are another m samples from D. Z and Z' are independent. Then for any $t>\sqrt{\frac{2}{m}}$,

$$P[E(Z) - Z \ge t] \le 2P\left[Z' - Z \ge \frac{t}{2}\right]$$

This shows we can bound E(Z)-Z using the difference of two samples $Z^\prime-Z$. Here we call Z^\prime a "ghost sample".

Proof: Since

$$\begin{split} P\left[E(Z)-Z\geq t\right]P\left[E(Z')-Z'\leq \frac{t}{2}\right] &= P\left[E(Z)-Z\geq t \text{ and } E(Z')-Z'\leq \frac{t}{2}\right]\\ &\leq P\left[\left(E(Z)-Z\right)-\left(E(Z')-Z'\right)\geq t-\frac{t}{2}\right]\\ &= P\left[Z'-Z\geq \frac{t}{2}\right] \end{split}$$

And we can bound $P[E(Z') - Z' \le \frac{t}{2}]$ using Chebyshev's Inequality:

$$P\left[E(Z') - Z' \geq \frac{t}{2}\right] \leq P\left[|E(Z') - Z'| \geq \frac{t}{2}\right] \leq \frac{4\mathsf{Var}(Z_i)}{mt^2} \leq \frac{1}{mt^2}$$

$$P\left[E(Z') - Z' \geq \frac{t}{2}\right] \leq P\left[|E(Z') - Z'| \geq \frac{t}{2}\right] \leq \frac{4\mathsf{Var}(Z_i)}{mt^2} \leq \frac{1}{mt^2}$$

The last inequality is because $Z_i \in [0,1] \Rightarrow Z_i^2 < Z_i$, thus

$$Var(Z_i) = E(Z_i^2) - E^2(Z_i) \le E(Z_i) - E^2(Z_i) \le \frac{1}{4}$$

Therefore, $P\left[E(Z') - Z' \leq \frac{t}{2}\right] \geq \left(1 - \frac{1}{mt^2}\right)$, and

$$P\left[E(Z) - Z \ge t\right] \left(1 - \frac{1}{mt^2}\right) \le P\left[Z' - Z \ge \frac{t}{2}\right]$$

$$P\left[E(Z) - Z \ge t\right] \le \frac{mt^2}{mt^2 - 1} P\left[Z' - Z \ge \frac{t}{2}\right]$$

Since for any $t > \sqrt{\frac{2}{m}} \Rightarrow mt^2 > 2$ the above inequality holds, we have

$$P[E(Z) - Z \ge t] \le 2P\left[Z' - Z \ge \frac{t}{2}\right]$$

Note that the Symmetrization Lemma also has a two-side form which can be proved similarly:

$$P[|E(Z) - Z| \ge t] \le 2P[|Z' - Z| \ge \frac{t}{2}]$$

Proof of the VC Theorem

We can bound $P\left[Z'-Z\geq \frac{t}{2}\right]$ using the Hoeffding Bound:

$$\begin{split} P\left[Z'-Z \geq t\right] &= P\left[Z'-E(Z')+E(Z)-Z \geq t\right] \\ &\leq P\left[Z'-E(Z') \geq \frac{t}{2} \text{ or } E(Z)-Z \geq \frac{t}{2}\right] \\ &\leq P\left[Z'-E(Z') \geq \frac{t}{2}\right] + P\left[E(Z)-Z \geq \frac{t}{2}\right] \\ &\leq e^{-mt^2/2} + e^{-mt^2/2} \quad \text{[one-side Hoeffding Bound]} \\ &= 2e^{-mt^2/2} \end{split}$$

Therefore,

$$P\left[Z' - Z \ge \frac{t}{2}\right] \le 2e^{-mt^2/8}$$

Proof of the VC Theorem

Now we put all the pieces together:

$$\begin{split} &P\left[\sup_{f\in\mathcal{F}}\left(R^{\mathsf{true}}(f)-R^{\mathsf{emp}}(f)\right)\geq t\right]\\ &\leq 2P\left[\sup_{f\in\mathcal{F}}\left(R^{\mathsf{emp}\prime}(f)-R^{\mathsf{emp}}(f)\right)\geq t/2\right] \quad [\mathsf{Symmetrization \ Lemma}]\\ &=2P\left[\sup_{f\in\mathcal{F}_{z_1,...,z_m,z'_1,...,z'_m}}\left(R^{\mathsf{emp}\prime}(f)-R^{\mathsf{emp}}(f)\right)\geq t/2\right] \quad [\mathsf{restrict \ to \ data}]\\ &\leq 2\sum_{f\in\mathcal{F}_{z_1,...,z_m,z'_1,...,z'_m}}P\left[\left(R^{\mathsf{emp}\prime}(f)-R^{\mathsf{emp}}(f)\right)\geq t/2\right] \quad [\mathsf{union \ bound}]\\ &\leq 2\sum_{f\in\mathcal{F}_{z_1,...,z_m,z'_1,...,z'_m}}2e^{-mt^2/8} \quad [\mathsf{Hoeffding \ bound}]\\ &=4e^{-mt^2/8}\sum_{f\in\mathcal{F}_{z_1,...,z_m,z'_1,...,z'_m}}1\\ &=4S_{\mathcal{F}}(2m)e^{-mt^2/8} \end{split}$$

On previous page, the first inequality

$$P\left[\sup_{f\in\mathcal{F}}\left(R^{\mathsf{true}}(f)-R^{\mathsf{emp}}(f)\right)\geq t\right]\leq 2P\left[\sup_{f\in\mathcal{F}}\left(R^{\mathsf{emp}\prime}(f)-R^{\mathsf{emp}}(f)\right)\geq t/2\right]$$

uses the Symmetrization Lemma for the uniform bound. This is because, let $f^* = \operatorname{argmax}(R^{\operatorname{true}}(f) - R^{\operatorname{emp}}(f))$, we have

$$\begin{split} &P\left[\sup_{f\in\mathcal{F}}(R^{\mathsf{true}}(f)-R^{\mathsf{emp}}(f))>\epsilon\right] = P\left[R^{\mathsf{true}}(f^*)-R^{\mathsf{emp}}(f^*)>\epsilon\right]\\ &\leq 2P\left[R^{\mathsf{emp}'}(f^*)-R^{\mathsf{emp}}(f^*)>\frac{\epsilon}{2}\right] \leq 2P\left[\sup_{f\in\mathcal{F}}(R^{\mathsf{emp}'}(f)-R^{\mathsf{emp}}(f))>\frac{\epsilon}{2}\right] \end{split}$$

In the second equality

$$P\left[\sup_{f\in\mathcal{F}}\left(R^{\mathsf{emp}\prime}(f)-R^{\mathsf{emp}}(f)\right)\geq\frac{t}{2}\right]=P\left[\sup_{f\in\mathcal{F}_{z_1,\ldots,z_m,z_1',\ldots,z_m'}}\left(R^{\mathsf{emp}\prime}(f)-R^{\mathsf{emp}}(f)\right)\geq\frac{t}{2}\right]$$

We project the fs in $\mathcal F$ on the double sample $z_1,...,z_m,z_1',...,z_m'$, thus $S_{\mathcal F}(2m)$ groups in total. Remember that $R^{\mathsf{emp'}}(f) = \frac{1}{m} \sum_{i=1}^m f(z_i')$ and $R^{\mathsf{emp}}(f) = \frac{1}{m} \sum_{i=1}^m f(z_i)$, thus $R^{\mathsf{emp'}}(f) - R^{\mathsf{emp}}(f) = \frac{1}{m} \sum_{i=1}^m (f(z_i') - f(z_i))$. We can consider this as a transformation $g: X \to Y$ where $X = \{(f(z_1),...,f(z_m),f(z_1'),...,f(z_m')): f \in \mathcal F\}$ and $Y = \{R^{\mathsf{emp'}}(f) - R^{\mathsf{emp}}(f): f \in \mathcal F\}$. The number of elements in X is known as $S_{\mathcal F}(2m)$.

Let $g: X \to Y$ be a transformation where X is the domain and Y is the codomain.

• The key idea is, since the number of elements in $\mathcal F$ is infinite, the probability $P\left[\sup_{f\in\mathcal F}\left(R^{\mathrm{true}}(f)-R^{\mathrm{emp}}(f)\right)\geq t\right]$ cannot be calculated, however we can upperbound it by $P\left[\sup_{f\in\mathcal F}\left(R^{\mathrm{emp}\prime}(f)-R^{\mathrm{emp}}(f)\right)\geq \frac{t}{2}\right]$. For the upperbound, we can find a domain $\mathcal F_{z_1,\dots,z_m,z_1',\dots,z_m'}$ mapping to $\{R^{\mathrm{emp}\prime}(f)-R^{\mathrm{emp}}(f):f\in\mathcal F\}$ such that the number of elements in the domain is finite, thus the probability of the upperbound can be calculated.

So why must we need the domain X to be finite? I will explain this by the Law of Total Probability. Generally, let $X = \{x_1, x_2, ..., x_m\}$, where m is the number of elements in X. Let A be the event that x_i happens. Suppose for each x_i , $P(A = x_i) = 1/m$. Let B be another event, we can write the probability as

$$P(B) = \sum_{i=1}^{m} P(B|A = x_i) P(A = x_i) = \frac{1}{m} \sum_{i=1}^{m} P(B|A = x_i)$$

Suppose $P(B|A=x_i)$ is identical for any x_i , we have $P(B)=P(B|A=x_i)$. This shows for a single B the probability P(B) does not depend on m, even m is infinite. However, when calculating the union probability

$$P((B|A = x_1) \cup (B|A = x_2) \cup ... \cup (B|A = x_m)) \le \sum_{i=1}^{m} P(B|A = x_i) = mP(B)$$

The union probability goes to infinity when $m \to \infty$. We do not wish this happen!

Proof of the VC Theorem

Therefore,

$$\begin{split} P\left[\sup_{f\in\mathcal{F}}\left(R^{\mathsf{true}}(f)-R^{\mathsf{emp}}(f)\right) \geq t\right] &\leq 4S_{\mathcal{F}}(2m)e^{-mt^2/8} \\ P\left[\sup_{f\in\mathcal{F}}\left(R^{\mathsf{true}}(f)-R^{\mathsf{emp}}(f)\right) \leq t\right] \geq 1-4S_{\mathcal{F}}(2m)e^{-mt^2/8} \end{split}$$

Let $\delta=4S_{\mathcal{F}}(2m)e^{-mt^2/8}$, then $t=\sqrt{\frac{8}{m}\log\frac{4S_{\mathcal{F}}(2m)}{\delta}}=2\sqrt{2\frac{\log S_{\mathcal{F}}(2m)+\log 4/\delta}{m}}$. Then we have

$$P\left[\sup_{f\in\mathcal{F}}\left(R^{\mathsf{true}}(f) - R^{\mathsf{emp}}(f)\right) \le 2\sqrt{2\frac{\log S_{\mathcal{F}}(2m) + \log\frac{4}{\delta}}{m}}\,\right] \ge 1 - \delta$$

Combining Sauer's Lemma and VC Theorem

Remember in Sauer's Lemma we can bound the growth function by $S_{\mathcal{F}}(m) \leq (\frac{em}{h})^h$ when $m \geq h$. By plugging this into the bound of VC Theorem, we get

$$\forall f \in \mathcal{F} \quad P\left[R^{\mathsf{true}}(f) - R^{\mathsf{emp}}(f) \le 2\sqrt{2\frac{h\log\frac{2em}{h} + \log\frac{4}{\delta}}{m}}\,\right] \ge 1 - \delta$$

This shows the difference between $R^{\mathsf{true}}(f)$ and $R^{\mathsf{emp}}(f)$ is at most of order $\sqrt{\frac{h\log m}{m}}$.

References

- [1] Prediction: Machine Learning And Statistics. Lecture 14. https://ocw.mit.edu/courses/
 15-097-prediction-machine-learning-and-statistics-spring-2012/
 pages/lecture-notes/
- [2] Statistical Learning Theory. Lecture 5. https://www.stat.purdue.edu/~jianzhan/STAT598Y/
- [3] Introduction to Machine Learning. Lecture 16. https://www.cs.cmu.edu/~epxing/Class/10701/lecture.html
- [4] https://www.cs.princeton.edu/courses/archive/spr08/cos511/scribe_notes/0220.pdf
- [5] https://courses.cs.washington.edu/courses/cse522/11wi/scribes/lecture9.pdf