7.5 - 7.6

Cliff Sun

March 25, 2024

7.5

Definition 0.1. Let \sim_n be the relation

$$\equiv \mod n$$
 (1)

on \mathbb{Z} . Then

$$Z/\sim_n = \{[0], [1], \dots, [n-1]\}$$
 (2)

Our goal today is to view this as a number system, including the operations $+_n$ and \cdot_n . We define these operations to be

Definition 0.2. For integers a and b, we define the following:

- 1. $[a] +_n [b] = [a + b]$
- 2. $[a] \cdot_n [b] = [a \cdot b]$
- 3. The ring of \mathbb{Z}_n or \mathbb{Z}/n is the set \mathbb{Z}/\sim_n equipped with the operations stated above. The term Ring is from abstract algebra and roughly means a set of elements which can be added, subtracted, and multiplied.

To define the operation of $X \cdot_n Y$, we first choose two representatives from X and Y, and multiply them together. Then the equivalence class of this new term xy is the result of $X \cdot_n Y$. WLOG.

Theorem 0.3. $+_n$ and \cdot_n are well-defined. That is if $x \equiv x' \mod n$ and $y \equiv y' \mod n$, then $x + y \equiv x' + y' \mod n$ and $x \cdot y \equiv x' \cdot y' \mod n$

Next, suppose X and Y are sets and \sim is an equivalence relation. Then, let's try to define a function f such that

$$f: X/\sim \to Y$$
 (3)

- 1. For each $x \in X$, we define $f([x]) \in Y$ by referring to x.
- 2. Prove that if [x] = [x'], then f([x]) = f([x']), that is f is well-defined.