SECTION 5-5: SUBSTITUTION (DAY 2)

1. Compute
$$\int \frac{\sec^2(x)}{\tan(x)} dx$$

Let $u = \tan x$. Then $\frac{du}{dx} = (\sec(x))^2 \Rightarrow \frac{du}{(\sec(x))^2} = dx$.

So $\int \frac{(\sec(x))^2}{\tan(x)} dx = \int \frac{(\sec(x))^2}{u} \cdot \frac{du}{(\sec(x))^2} = \int \frac{du}{a} = \ln|u| + c$
 $= \ln|-\tan(x)| + c$.

2. Compute
$$\int \sec^2(x) \tan(x) dx = \int \sec(x) \left(\sec(x) \tan(x) \right) dx$$
.
Let $u = \sec(x)$. Then $du = \sec(x) \tan(x) dx$ so
$$\int \sec(x) \cdot \sec(x) \tan(x) dx = \int u du = \frac{u^2}{2} + c = \frac{\left(\sec(x) \right)^2}{2} + c$$
.

3. Compute
$$\int \frac{\sin(\theta)}{1+\cos(\theta)}d\theta$$

Let $u = 1 + \cos\theta$. Then $\frac{du}{d\theta} = -\sin\theta \Rightarrow \frac{du}{-\sin\theta} = d\theta$. So
$$\int \frac{\sin\theta}{1+\cos\theta} d\theta = \int \frac{\sin\theta}{u} \cdot \frac{du}{-\sin\theta} = -\int \frac{1}{u} du$$

$$= -\ln|u| + c = -\ln|1+\cos\theta| + c$$
.

4. Compute
$$\int \frac{1}{x \ln(x)} dx$$

Let
$$u = \ln(x)$$
. Then $\frac{du}{dx} = \frac{1}{x}$ so $x du = dx$. Thus
$$\int \frac{1}{x \ln(x)} dx = \int \frac{1}{x \cdot u} (x du) = \int \frac{1}{u} du = \ln|u| + c = \ln|\ln(x)| + c.$$

5. Compute
$$\int \frac{\sin(4/x)}{x^2} dx$$

Let $u = \frac{4}{x} = 4x^{-1}$. Then $\frac{du}{dx} = -4x^{-2} = \frac{-4}{x^2}$. So $\frac{x^2}{-4} du = dx$.

Therefore $\int \frac{\sin(4/x)}{x^2} dx = \int \frac{\sin(u)}{x^2} \left(\frac{x^2}{-4} du\right) = -\frac{1}{4} \int \sin(u) du$
 $= -\frac{1}{4} \left(-\cos(u)\right) + C = \frac{1}{4} \cos(\frac{4}{x}\right) + C$

check:
$$\frac{d}{dx} \left(\frac{1}{4} \cos(\frac{1}{x}) + c \right) = \frac{1}{4} \sin(\frac{1}{x}) \left(\frac{-4}{x^2} \right) = \frac{\sin(\frac{1}{x})}{x^2}$$

6. Compute
$$\int \frac{e^x}{e^x - 3} dx$$

Let
$$u=e^{x}-3$$
. Then $du=e^{x}dx$. So
$$\int \frac{e^{x}dx}{e^{x}-3} = \int \frac{1}{u} du = \ln|u|+c = \ln|e^{x}-3|+c$$

7. Compute
$$\int \frac{1}{9+x^2} dx = \int \frac{1}{9(1+\frac{x^2}{9})} dx = \int \frac{1}{9(1+(\frac{x}{3})^2} dx$$

$$= \frac{1}{9} \int \frac{1}{1+(\frac{x}{3})^2} dx. \quad \text{Let } u = \frac{x}{3} \Rightarrow \frac{du}{dx} = \frac{1}{3} \Rightarrow 3du = dx.$$

So $\frac{1}{9} \int \frac{1}{1+(\frac{x}{3})^2} dx = \frac{1}{9} \int \frac{1}{1+u^2} (3du) = \frac{1}{3} \int \frac{1}{1+u^2} du$

$$= \frac{1}{3} \arctan(u) + c = \frac{1}{3} \arctan(\frac{x}{3}) + c.$$

8. Compute
$$\int \sqrt{x}(x^4 + x) dx$$

$$= \int X \sqrt{2}(x^4 + x) dx = \int X \sqrt{7/2} + x \sqrt{3/2} dx$$

$$= \frac{19/2}{19/2} + \frac{5/2}{5/2} + C = \frac{2x}{19} + \frac{2x}{5} + C.$$

9. Compute
$$\int \cos(x) \sin(\sin(x)) dx$$

Let $u = \sin(x)$. Then $\frac{du}{dx} = \cos(x) \Rightarrow \frac{du}{\cos(x)} = dx$. So

$$\int \cos(x) \sin(x) \sin(x) dx = \int \cos(x) \sin(u) \left(\frac{du}{\cos(x)}\right) = \int \sin(u) du$$

$$= -\cos(u) + c = -\cos(\sin(x)) + c$$

10. Compute
$$\frac{d}{dx} [x \ln(x) - x]$$
. Then compute $\int s^2 \ln(s^3) \ ds$

$$\frac{d}{dx}\left(x \ln(x) - x\right) = x \cdot \frac{1}{x} + \ln(x) - 1 = \ln(x).$$

To compute
$$\int s^2 \ln(s^3) ds$$
, let $u = s^3$. Then $\frac{du}{ds} = 3s^2 \implies \frac{du}{3s^2} = ds$.

$$S_0 \int g^2 \ln(g^3) = \int g^2 \ln(u) \cdot \frac{du}{3g^2} = \frac{1}{3} \int \ln(u) du$$

Observe
$$\frac{d}{dx}(x\ln(x)-x) = \ln(x)$$
, so $\int \ln(x) dx = x\ln(x)-x + c$. So

$$\frac{1}{3} \int \ln \ln du = \frac{1}{3} \left(\ln \ln (u) - u \right) + C = \left[\frac{1}{3} \left(3^3 \ln (s^3) - s^3 \right) + C \right].$$

11. Compute
$$\int x\sqrt{x-1} \, dx$$
 (Hint: Let $u=x-1$. What is x in terms of u ?)

Let
$$u = X - 1$$
. Then $X = u + 1$, and $dx = du$. So

$$\int x \sqrt{x-1} \, dx = \int (u+1) \sqrt{u} \, du = \int u^{3/2} + u^{1/2} \, du$$

$$= \frac{2}{5}u^{5/2} + \frac{2}{3}u^{3/2} + c$$

$$= \frac{2}{5} (x-1)^{5/2} + \frac{2}{3} (x-1)^{3/2} + C$$

12. Compute
$$\int_1^3 \frac{(\ln(x))^3}{x} dx$$
. Let $u = \ln(x)$. Then $\frac{du}{dx} = \frac{1}{x} \implies x du = dx$.

$$1+ x=1, u= ln(1) d if x=3, u=ln(3). So ln(3)$$

$$\int_{1}^{3} \frac{(\ln (x))^{3}}{x} dx = \int_{-\ln (x)}^{\ln (x)} \frac{u^{3}}{x} (x du) = \int_{-\ln (x)}^{\ln (x)} u^{3} du = \frac{u^{3}}{4} \Big|_{\ln (x)}^{\ln (x)}$$

$$= \frac{(\ln(3))^4}{4} - 0 = \frac{(\ln(3))^4}{4}.$$