Groupes

1. Définition

Un *groupe* (G, \star) est un ensemble G auquel est associé une opération \star (la *loi de composition*) vérifiant les quatre propriétés suivantes :

- 1. pour tout $x, y \in G$, $x \star y \in G$ (* est une loi de composition interne)
- 2. pour tout $x, y, z \in G$, (x * y) * z = x * (y * z) (la loi est associative)
- 3. il existe $e \in G$ tel que $\forall x \in G, x \star e = x$ et $e \star x = x$ (e est l'élément neutre)
- 4. pour tout $x \in G$ il existe $x' \in G$ tel que $x \star x' = x' \star x = e$ $(x' \text{ est l'} inverse \text{ de } x \text{ et est noté } x^{-1})$

Si de plus l'opération vérifie

pour tout
$$x, y \in G$$
, $x \star y = y \star x$,

on dit que G est un groupe commutatif (ou abélien). Exemples.

- (\mathbb{R}^*, \times) , (\mathbb{Q}^*, \times) , (\mathbb{C}^*, \times) sont des groupes commutatifs.
- $(\mathbb{Z},+), (\mathbb{Q},+), (\mathbb{R},+), (\mathbb{C},+)$ sont des groupes commutatifs.
- L'ensemble des matrices $n \times n$ inversibles, muni de la multiplication des matrices \times , forme un groupe $(\mathcal{G}\ell_2, \times)$, il est non-commutatif car en général $M \times M' \neq M' \times M$.

Puissance. Soit un groupe (G, \star) et $x \in G$.

$$-x^{n} = \underbrace{x \star x \star \cdots \star x}_{n \text{ fois}},$$

$$-x^{0} = e,$$

$$-x^{-n} = \underbrace{x^{-1} \star \cdots \star x^{-1}}_{n \text{ fois}}.$$

Pour $x, y \in G$ et $m, n \in \mathbb{Z}$ nous avons :

- $-x^m \star x^n = x^{m+n},$
- $(x^m)^n = x^{mn},$
- $(x \star y)^{-1} = y^{-1} \star x^{-1}$, attention à l'ordre!
- Si (G, \star) est commutatif alors $(x \star y)^n = x^n \star y^n$.

2. Sous-groupes

Soit (G,\star) un groupe. Une partie $H\subset G$ est un sous-groupe de G si :

- 1. $e \in H$,
- 2. pour tout $x, y \in H$, on a $x \star y \in H$,
- 3. pour tout $x \in H$, on a $x^{-1} \in H$.

Notez qu'un sous-groupe H est aussi un groupe (H,\star) . La façon la plus rapide de montrer que (H,\star) est un groupe est donc de montrer que c'est un sous-groupe d'un groupe (G,\star) .

Critère pratique pour prouver que H est un sous-groupe de G est :

- H contient au moins un élément,
- et pour tout $x, y \in H$, $x \star y^{-1} \in H$.

Exemples:

- (\mathbb{R}_+^*, \times) est un sous-groupe de (\mathbb{R}^*, \times) .
- (\mathbb{U}, \times) est un sous-groupe de (\mathbb{C}^*, \times) , où $\mathbb{U} = \{z \in \mathbb{C} \mid |z| = 1\}$.
- $(\mathbb{Z},+)$ est un sous-groupe de $(\mathbb{R},+)$.
- $\{e\}$ et G sont les sous-groupes triviaux du groupe G.

Proposition. Les sous-groupes de $(\mathbb{Z}, +)$ sont les $n\mathbb{Z}$, pour $n \in \mathbb{Z}$.

L'ensemble $n\mathbb{Z}$ désigne l'ensemble des multiples de $n: n\mathbb{Z} = \left\{k \cdot n \mid k \in \mathbb{Z}\right\}$.

Soit (G, \star) un groupe et $E \subset G$ un sous-ensemble de G. Le sous-groupe engendré par E est le plus petit sous-groupe de G contenant E.

Exemple : dans $(\mathbb{Z}, +)$ et $E = \{a, b\}$, le sous-groupe engendré est $H = n\mathbb{Z}$ où $n = \operatorname{pgcd}(a, b)$.

3. Morphismes de groupes

Soient (G,\star) et (G',\diamond) deux groupes. Une application $f:G\longrightarrow G'$ est un morphisme de groupes si :

pour tout
$$x, x' \in G$$
 $f(x \star x') = f(x) \diamond f(x')$

Exemple : $\exp : (\mathbb{R}, +) \to (\mathbb{R}_+^*, \times)$, $\exp(x + x') = \exp(x) \times \exp(x')$. Pour un morphisme

- $--f(e_G)=e_{G'},$
- pour tout $x \in G$, $f(x^{-1}) = (f(x))^{-1}$.

Un morphisme bijectif est un *isomorphisme*. Deux groupes G, G' sont *isomorphes* s'il existe un morphisme bijectif $f:G\longrightarrow G'$.

Exemple : $\exp: (\mathbb{R}, +) \to (\mathbb{R}_+^*, \times)$ est un isomorphisme bijectif, sa bijection réciproque étant le morphisme : $\ln: (\mathbb{R}_+^*, \times) \to (\mathbb{R}, +)$ avec $\ln(x \times x') = \ln(x) + \ln(x')$.

Noyau et image

Soit $f: G \longrightarrow G'$ un morphisme de groupes.

— Le *noyau* de *f* est

$$\operatorname{Ker} f = \left\{ x \in G \mid f(x) = e_{G'} \right\}$$

Le noyau est donc l'ensemble des éléments de G qui s'envoient par f sur l'élément neutre de G^\prime .

— L'image de f est

$$\operatorname{Im} f = \left\{ f(x) \mid x \in G \right\}$$

Ce sont les éléments de G^\prime qui ont (au moins) un antécédent par f .

Proposition. Soit $f: G \longrightarrow G'$ un morphisme de groupes.

- 1. Ker f est un sous-groupe de G.
- 2. Im f est un sous-groupe de G'.
- 3. f est injectif si et seulement si Ker $f = \{e_G\}$
- 4. f est surjectif si et seulement si Im f = G'.

4. Le groupe $\mathbb{Z}/n\mathbb{Z}$

Fixons $n \ge 1$. $\mathbb{Z}/n\mathbb{Z}$ est l'ensemble

$$\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}\}$$

où \overline{p} désigne la classe d'équivalence de p modulo n.

$$\overline{p} = \overline{q} \Longleftrightarrow p \equiv q \pmod{n}$$

ou encore $\overline{p} = \overline{q} \Longleftrightarrow \exists k \in \mathbb{Z} \quad p = q + kn$.

L'addition sur $\mathbb{Z}/n\mathbb{Z}$ est définie par : $\overline{p} + \overline{q} = \overline{p+q}$.

Proposition. $(\mathbb{Z}/n\mathbb{Z}, +)$ est un groupe commutatif de cardinal n

L'élément neutre est $\overline{0}$. L'opposé de \overline{k} est $-\overline{k} = \overline{-k} = \overline{n-k}$.

Groupes cycliques de cardinal fini

Un groupe (G,\star) est un groupe $\begin{cases} \begin{cases} \begin{cas$

pour tout
$$x \in G$$
, il existe $k \in \mathbb{Z}$ tel que $x = a^k$

Autrement dit le groupe G est engendré par un seul élément a.

Le groupe $(\mathbb{Z}/n\mathbb{Z},+)$ est un groupe cyclique. En effet il est engendré par $a=\overline{1}$, car tout élément \overline{k} s'écrit $\overline{k}=\underbrace{\overline{1}+\overline{1}+\cdots\overline{1}}=k\cdot\overline{1}$.

Théorème. Si (G, \star) un groupe cyclique de cardinal n, alors (G, \star) est isomorphe à $(\mathbb{Z}/n\mathbb{Z}, +)$.

5. Le groupe des permutations

Fixons un entier $n \ge 2$.

Proposition. L'ensemble des bijections de $\{1,2,\ldots,n\}$ dans lui-même, muni de la composition des fonctions est un groupe, noté (\mathcal{S}_n, \circ) . Le cardinal de \mathcal{S}_n est n!

Une bijection de $\{1,2,\ldots,n\}$ (dans lui-même) s'appelle une *permutation*. Le groupe (\mathcal{S}_n,\circ) s'appelle le *groupe des permutations* (ou le *groupe symétrique*).

L'élément neutre du groupe est l'identité id, le produit est ici la composition et l'inverse correspond à la bijection réciproque.