ZAD. 1.

 $f:\,\mathbb{R}^n\to\mathbb{R}^m \text{ jest zbiezne, jesli } (\,\forall\, x_n\subseteq\mathbb{R}^n\,)\; x_n\to x \implies f(x_n)\to\overline{f(x)}\,.$

f - ciagle, $D\subseteq\mathbb{R}^m$ - domkniety, to $f^{-1}[D]$ tez jest domkniety. Funkcja jest ciagla w punkcie y, jesli

$$(\forall \varepsilon > \emptyset)(\exists \delta)(\forall x_n \in D) d(x_n, y) < \delta \implies d(f(x_n), f(y)) < \varepsilon$$

Zalozmy nie wprost, ze $f^{-1}[D]$ nie jest domkniety, to znaczy istnieje ciag $x_n\subseteq\mathbb{R}^n$ taki, ze $x_n\to y\notin f^{-1}[D]$. Ale poniewaz f jest ciagle, to takze $f(x_n)\to f(y)\notin D$, a wiec D nie jest domkniety.

Obierzmy dowolny $\varepsilon > 0$, wtedy

$$(\exists N)(\forall n > N) d(x_n, y) < \varepsilon$$