Вариант 18. В соответствии с техническими условиями среднее время безотказной работы для приборов должно составлять не менее m=1000 ч. После проверки n=25 случайно выбранных из партии приборов было получено среднее значение $\bar{x}_n=970$ ч. Считая распределение контролируемого признака нормальным со СКО $\sigma=100$ ч, при уровне значимости $\alpha=0.01$ проверить гипотезу о том, что вся партия удовлетворяет техническим условиям.

РЕШЕНИЕ

Обозначим случайную величину X — среднее время безотказной работы. $X \sim N(\mu, \sigma^2)$, причем известно генеральное среднеквадратичное отклонение $\sqrt{D(X)} = \sigma = 100$, мат.ожидание не известно M(X) = m.

Основная гипотеза:

$$H_0 = \{m \ge 1000\}$$

 $H'_0 = \{m = m\}$

 Γ де m0 >= 1000

Альтернативная гипотеза односторонняя, т.к. время безотказной работы для приборов должно составлять не менее 1000:

$$H_1 = \{m < 1000\}$$

 $H'_1 = \{m = m1\}$

 Γ де m1 < 1000

При проверке H_0 против H_1 (в случае известной дисперсии) используется статистика:

$$T(\bar{x}_n) = \frac{m_0 - \bar{x}_n}{\sigma} \sqrt{n}$$

Для W, примем статистику:

$$T_0(\bar{x}_n) = -\frac{\bar{x}_n}{\sigma} \sqrt{n}$$

При истинном значении H_0 статистика имеет стандартное нормальное распределение $T(\bar{x}_n) \sim N(0,1)$. Критическое множество:

$$W = \{\bar{x}_n : T_0(\bar{x}_n) \ge C\}$$

$$P = \{\bar{x}_n \in W \mid H_0\} = \alpha$$

$$P \{T_0(\bar{x}_n) >= C\}$$

P {
$$-\frac{\bar{x}_n}{\sigma}\sqrt{n} + \frac{m_0}{\sigma}\sqrt{n} >= C + \frac{m_0}{\sigma}\sqrt{n}$$
 }

P { $T(\bar{x}_n) >= C + \frac{m_0}{\sigma}\sqrt{n}$ }

Где $T(\bar{x}_n) \sim N(0,1)$

$$P = 1 - \Phi(C + \frac{m_0}{\sigma} \sqrt{n})$$

Необходимо, чтобы P было максимально, тогда Φ должно быть минимально, тогда $m_0 = 1000$.

Тогда
$$\alpha=1-\Phi(C+\frac{1000}{\sigma}\sqrt{n})$$
 $\Phi(C+\frac{1000}{\sigma}\sqrt{n})=1-\alpha$

$$U_{1-\alpha} = C + \frac{1000}{\sigma} \sqrt{n}$$
 — квантиль с уровнем $1 - \alpha$

где $U_{1-\alpha}$ – квантиль стандартного нормального распределения

Тогда C =
$$2.33 - \frac{1000}{100} \sqrt{25} = -47,67$$

$$W = \{ -\frac{\bar{x}_n}{\sigma} \sqrt{n} \ge -47,67 \}$$

$$W = \{ -\frac{970}{100} \sqrt{25} \ge -47,67 \}$$

$$W = \{ -48,5 \ge -47,67 \}$$

Из этого следует, что основная гипотеза НЕ отвергается при уровне значимости 1%. Партия удовлетворяет техническим условиям.