Mathematical foundations for dynamics

Jonathan Dushoff, McMaster University

http://lalashan.mcmaster.ca/DushoffLab

Goals

- This lecture will explain
 - exponential growth (and decline)
 - simple qualitative methods for analyzing ODE-based dynamical systems
 - the importance of linear equations
 - some basic ideas about matrices and eigenvalues

1 Exponential change

Modeling decline

- We have some bacteria in a tank
- They have no food, so they are simply dying at a $per\ capita$ rate of 0.02/hr.
- If the current density is 100 bacteria/ml, what will be the density after 1 hr?
- What will be the density after 1 wk?

A simple model of population growth

- $\frac{dN}{dt} = (b-d)N$
- $\bullet \ \frac{dN}{dt} = rN$
- This is the only differential equation you need to solve!
- $\bullet \ N(t) = N(0)e^{rt} = N(0)\exp(rt)$
- Bacteria example

2 Population growth example

A more realistic model of population growth

- Populations don't grow forever
 - or decline forever
- Probably the birth rate will decline if the population is too crowded
- Let's let the birth rate go down as population goes up:

•
$$\frac{dN}{dt} = (b_0 \exp(-N/N_b) - d)N$$

• We don't want to solve this equation!

What can we do instead?

- Computer simulations: what will happen with particular parameters?
- Qualitative analysis: what can we learn in general?

Population growth model

- Structure: $\frac{dN}{dt} = (b_0 \exp(-N/N_b) d)N$
- Parameters?
 - $-b_0$: per capita birth rate [1/time]
 - d: per capita death rate [1/time]
 - $-N_b$: Scale of population regulation [indiv]
- State variables?
 - -N: Population size [indiv]

Computer simulation

Density-dependent birth

What will this model do?

Density-dependent birth

What will this model do?

Density-dependent birth

Computer simulation

Density-dependent birth

Qualitative analysis

- Find equilibria points where the population will not change
 - Structure: $\frac{dN}{dt} = f(N)$
 - Equilibria when f(N) = 0

- \bullet Analyze equilibrium stability if we are near the equilibrium, we will move toward it or away from it?
 - How does f(N) change near an equilibrium?

Linearization

Density-dependent birth

Zoom to extinction equilibrium

Density-dependent birth

Zoom to carrying capacity

Density-dependent birth

Zoom to other point

Density-dependent birth

Linearization

- Near an equilibrium, the system behaves like:
- $\bullet \ \frac{dx}{dt} = Jx$

-x is the distance from equilibrium

$$-J = \frac{\partial f}{\partial x}$$

- The solution is $x(t) = x(0) \exp(Jt)$
 - Moves away exponentially if J > 0
 - Moves in exponentially if J < 0

3 Disease model

What about our simple disease model?

$$\begin{array}{rcl} \frac{dS}{dt} & = & \mu N - \beta \frac{SI}{N} - \mu S \\ \frac{dI}{dt} & = & \beta \frac{SI}{N} - \gamma I - \mu R \\ \frac{dR}{dt} & = & \gamma I - \mu R \end{array}$$

Disease model

- Parameters?
 - $-\mu$: Death rate [1/time]

- $-\beta$: Transmission rate [1/time]
- $-\gamma$: Recovery rate [1/time]
- -N: Population size [indiv]
- State variables?
 - $-\ S, I, R$ but we are going to ignore R

*

*

Equilibria

- I = 0, S = N
 - The disease-free equilibrium (DFE)
- $S = \gamma/\beta$, I =(something)
 - The endemic equilibrium (EE)

Qualitative analysis

•

$$\frac{dS}{dt} = f(S, I)$$

$$\frac{dI}{dt} = g(S, I)$$

- We still have linear equations near the equilibrium
- This is the only kind of equation we can solve
- Behaviour is determined by

•

$$J = \begin{pmatrix} \frac{\partial f}{\partial S} & \frac{\partial f}{\partial I} \\ \frac{\partial g}{\partial S} & \frac{\partial g}{\partial I} \end{pmatrix}$$

4 Matrices and eigenvalues

Rabbits

- Imagine we have a population of rabbits
 - Baby rabbits become adults after one month
 - Each pair of adult rabbits produces one pair of baby rabbits each month
 - Rabbits never die
- What happens to this population?

Matrix equations

• We describe this as equations for Adult and Baby rabbits:

$$-A'=A+B$$

$$-B'=A$$

• In matrix terms, we write:

$$\left(\begin{array}{c} A' \\ B' \end{array}\right) = \left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{c} A \\ B \end{array}\right)$$

Eigenvectors and eigenvalues

- We describe matrix dynamics using eigenvectors and eigenvalues
 - An eigenvector is a vector which keeps its shape when multiplied by the matrix (it is just multiplied by a regular number)
 - An eigenvalue is the number we multiply by

Dominant values

- Usually, matrix dynamics have a single *dominant* eigenvalue (and eigenvector)
 - This is just the one that is most important for the dynamics we are studying

Disease example

Disease-free equilibrium

- Dominant eigenvalue is (usually) $\beta \gamma$
 - Describes how fast the epidemic grows exponentially
 - Eigenvector describes relationship between increase in I and decrease in S
- Other eigenvalue describes how fast susceptibles recover to equilibrium when there is no disease

Endemic equilibrium

- There is a pair of *complex* eigenvalues
 - -a + bi, where $i = \sqrt{-1}$
- In complex eigenvalues:
 - real part (a) describes exponential growth (or decline)
 - imaginary part (b) describes rate of oscillation

© 2016, Jonathan Dushoff. May be reproduced and distributed, with this notice, for non-commercial purposes only.