

UNIVERSITY OF WASHINGTON COLLEGE OF ENGINEERING

DEPARTMENT OF MINING, METALLURGICAL, AND CERAMIC ENGINEERING
SEATTLE, WASHINGTON 98195

Contract

N00123-73-C-1200

Principal Investigators

GORDON L. MITCHELL and WILLIAM D. SCOTT

AD NO.

Prepared for Naval Electronic Laboratory Center (Code 2500) San Diego, California 92152

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

BY

(2)4pp.

W. D. SCOTT and A. GADDIPATTI

1 September 1, 1977

(15) NAP123-73-C-1244

Principal Investigators

William D. Scott,

A. Gade patte

Gordon L. Mitchell

Prepared for:

Naval Ocean Systems Center (Code 2500) San Diego, California 92152

409464

DISTRIBUTION STATEMENT A
Approved for public release;
Distribution Unlimited

LB

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (end Substitle) Strength of Long Glass Fibers	5. Type of REPORT & PERIOD COVERED Final 2 Dec 74 to 29 Fgb 7 6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)	N00123-73-C-1200
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
University of Washington FB-10 Seattle, WA 98195 (206) 543-2032	TASK UW/TA 008
11. CONTROLLING OFFICE NAME AND ADDRESS	Sept. 1, 1977
	13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report) Unclassified
	154. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public release, distribution unlimited to the statement (of the abetract entered in Block 20, if different from the statement (of the abetract entered in Block 20, if different from the statement (of the abetract entered in Block 20, if different from the statement (of the abetract entered in Block 20, if different from the statement (of the abetract entered in Block 20, if different from the statement (of the abetract entered in Block 20, if different from the statement (of the abetract entered in Block 20, if different from the statement (of the abetract entered in Block 20, if different from the statement (of the abetract entered in Block 20, if different from the statement (of the abetract entered in Block 20, if different from the statement (of the abetract entered in Block 20, if different from the statement (of the abetract entered in Block 20, if different from the statement (of the abetract entered in Block 20, if different from the statement (of the abetract entered in Block 20, if different from the statement (of the abetract entered in Block 20, if different from the statement (of the abetract entered in Block 20, if different from the statement entered in Block 20, if different from the statement entered in Block 20, if different entered in Block 20, i	
TV. DISTRIBUTION STATEMENT (B) are abstract entered in Disease 20, it entered in	
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Waveguide Strength Fiber optics Weibull statistics Fiber strength Fiber coating	
Long silica fibers were drawn and coated in-line wi of specimens from 0.05 to 11.96 meters was measured tion of 119 specimens, 1.06 meters long, was also m estimating the parameters of the Weibull statistica	, and the strength distribu- neasured. Three methods of

and the influence of bimodal populations on the shape of an assumed Weibull distribution is demonstrated and applied to the test sample of 119 silica fibers.

DD 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102 LF 014 6601

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

ABSTRACT

The mechanical reliability of long lengths of glass fiber optical waveguides is important to the development of optical communications systems. In the present work, long silica fibers were drawn and coated in-line with polyethylene. The strength of specimens from 0.05 to 11.96 meters was measured, and the strength distribution of 119 specimens, 1.06 meters long was also measured.

Three methods of estimating the parameters of the Weibull statistical distribution are compared, and the influence of bimodal populations on the shape of an assumed Weibull distribution are explored. A technique for extracting a bimodal distribution is demonstrated and applied to the test sample of 119 silica fibers.

CONTENTS

I	Introduction	1
11	Fiber Fabrication and Strength	2
111	Statistics of the Strength of Brittle Materials	12
IV	Estimation of Weibull Parameters	13
v	Weibell Parameters and the Resulting	
	Distribution Functions	15
VI	Analysis of Experimental Strength Data	23
VII	Conclusions	31
VIII	References	33

I INTRODUCTION

Optical waveguides using long glass fibers about 100 to 200 µm diameter require reliable and predictable strength characteristics in service. The problem is basically that of predicting the probability of failure, or the minimum extreme strength, of a one kilometer glass fiber from mechanical strength measurements on much shorter samples. The nature of brittle failure, the need to include a significant size parameter in scaling up the test by a factor of 1000 or more, and the need to predict the population behavior from a limited sample all require the application of statistical methods of design reliability.

The purposes of the research carried out under this task were the following: to develop techniques for drawing long silica fibers with in-line polymer coating, to test the mechanical strength of long glass fibers, and to examine the validity of techniques commonly employed to apply the Weibull statistical model to brittle strength data.

The experimental result of this work has already been summarized in the Final Report, "Optical Coupling Techniques, April 1, 1976.(1)

1. Drawing Silica Fibers

The final fiber drawing device developed for the production of coated silica fibers is shown schematically in Fig. 1. From the top downwards, the following features were incorporated in the apparatus:

(a) Variable speed feed mechanism to lower the preform into the furnace at a constant rate. (b) Graphite succeptor nitrogen protected induction furnace capable of 2000°C, shown in Fig. 2. Milmaster Model SSE-5R to monitor a preset diameter between 100 to 200 µm within 5%. (d) Polyethylene coating unit consisting of a pressurized, heated annular tank, shown in Fig. 3. (e) A cooling station for air cooling or water mist cooling of the polyethylene coating. (f) Precision machined aluminum winding drum with variable speed drive. (g) Traversing base driven from the winding motor to maintain constant pulling position. This is the same apparatus used in pulling special waveguide shapes for optical coupling structures. (2)

The silica fibers used in this study were drawn from as received 5 mm diameter silica rods.* They were not duplex core cladding fibers nor were optical transmission characteristics controlled or measured. Typical diameters were 125 to 140 μm with a coating thickness of 125 μm .

2. Strength Tests

Attempts to test the strength of fibers several hundred meters long used a drum to drum device described earlier. (2) This approach was abandoned because of occasional random failure of the fiber while resting under tension on the winding drum and the uncertainty and

^{*}Optosil Tll from Amersil, Inc., Hillside, N.J.

Fig. 1. Fiber Drawing Apparatus. Basic design after Bell Laboratories

Fig. 2. Induction heater for drawing silica fibers.

Fig. 3. Polyethylene coating unit.

non-uniformity true stress introduced by curvature on the drums. The best estimate of minimum strength found in fiber lengths up to 300 m was 66.4 MN/m^2 (9500 psi).

Fibers 8 to 12 meters long were tested while suspended vertically in a utility well. Constant loading rate was obtained by running water into a container from a constant head supply. Individual results from these tests are given in Table I.

Fibers 1.4 meter and less in length were tested in an Instron

Testing machine at constant strain rate which is equivalent to constant

load rate for materials in their elastic range. Table II gives strength

results for various size fibers while Table III gives results for a

large sample of 119 fibers, 1.06 meters long.

A major experimental difficulty throughout this program was that of obtaining effective mechanical gripping through or on the polyethylene coating. The results reported on Tables I, II and III used grip pads made from polyethylene blocks which were fused to the ends of the fiber with molten polyethylene. This was a very time consuming and tedious procedure. At the high stress levels commonly obtained for short gage length fibers (Table II) many failures occurred by shearing of the coating, and fiber strengths greater than about 2750 MN/m2 (400 ksi) were very difficult to measure. Some later trials using roller grips where the fiber was wrapped several turns around a 3 cm diameter roller surfaced with rubber pads appeared to be a promising technique.

3. Sequential Tests and the Weakest Link Theory

A basic postulate in the theory of brittle fracture is that failure occurs at the largest flaw in the system - the so-called Weakest Link

Table I Tensile Strength of Coated Silica Fibers.

Test No.	Gage Length	Fracture Strength
	meters	MN/m ²
2	11.96	551.6
3	11.96	537.8
4	11.99	448.2
5	8.38	413.7
6 .	8.28	524.0
7	8.33	475.8
9	8.31	620.5
10	8.41	572.3

Table II Tensile Strength of Coated Silica Fibers
Tested in an Instron Testing Machine

	rested in an instron resting ma	acnine
Test No.	Gage Length meters	Fracture Stress
	- more con-	
1	0.05	>3102.7
2	11	11
3	n n	>2413.
4	n	>2068
5	u	>2758
		2.30
6	n	>3447
7-17	0.076	>1930
8-18	"	>2102
9-22	n	>1220
10-23	n	>1772
10-23		-1112
11-24		882.6
12	0.102	>2758
13	0.254	>3102
14	11	>2758
15	11	>3102
13		73102
16	11	>3448
17	11	>3448
18	11	>3448
19	n	>2758
20 .		>2758
		2.50
21	0.333	>3102
22-15	0.356	>1448
22-16	n	1930.6
23	1.09	1551.4
24	1.14	482.6
25	II .	>1379
26	TI .	2413.2
27	1.17	620.5
28	1.19	827.4
29	1.22	482.6
30	11	>2413
31	1.27	413.7
32-20	1.37	958.4
33-21	11	827.4

Strengths with > symbol indicate failure shear of the coating without fiber fracture.

Table III. Ordered Strength Results for 119 coated silica fiber Specimens 1.06 m long.

Number MN/m² Frequency (1/n+1) 1 24A.2 1 1 .00d 2 337.9 1 2 .017 3 482.6 1 3 .025 4 510.2 1 4 .033 5 530.9 1 5 .042 6 537.8 1 6 .050 7 599.9 1 7 .058 8 627.4 1 8 .067 9 634.3 2 10 .093 10 64R.1 1 11 .092 11 661.9 1 12 .100 12 696.4 1 13 .109 13 710.2 1 14 .117 14 737.8 1 15 .125 15 744.7 1 16 .133 16 758.5 1 17 .142 17 779.1 1 18 .150 18 786.0 2 20 .167 19 792.9 2 22 .183 20 799.8 2 24 .200 21 806.7 2 26 .217 22 820.5 1 27 .225 23 827.4 1 28 .233 24 834.3 2 30 .250 25 841.2 4 34 .263 26 84R.1 1 35 .292 27 855.0 1 36 .300 28 866.8 1 37 .308 29 882.6 2 39 .325 30 933.7 2 40 .333 31 910.1 2 42 .350 31 923.9 2 44 .307 32 923.9 2 44 .307 33 937.7 2 46 .333 31 910.1 2 42 .350 33 937.7 2 46 .333 31 910.1 2 42 .350 33 937.7 2 46 .333 34 944.6 1 47 .392 37 965.3 1 51 .425 38 979.1 1 53 .4425 39 979.1 1 53 .4425 39 979.1 1 53 .4425 34 999.8 1 59 .4492 443 1006.7 1 59 .4492 443 1006.7 1 59 .4492 444 .999.9 4 58 .4483 449 .999.9 1 59 .4492 447 1006.7 1 59 .4492 448 .4450 449 .999.9 1 59 .4492 449 .4450 440 .999.9 1 59 .4492 447 1006.7 1 59 .4492 448 .450	Class	Strength	Frequency	Cumulative	Probability
2 337.9 1 2 017 3 482.6 1 3 .025 4 510.2 1 4 .033 5 530.9 1 5 .042 6 537.8 1 6 .050 7 599.9 1 7 .058 8 627.4 1 8 .067 9 634.3 2 10 .083 10 648.1 1 11 .092 11 661.9 1 12 .100 12 656.4 1 13 .108 13 710.2 1 14 .117 14 737.8 1 15 .125 15 744.7 1 16 .133 16 758.5 1 17 .142 17 779.1 1 18 .150 18 786.0 2 20 .167 19 792.9 2 22 .183 20 799.8 2 24 .200 21 800.7 2 26 .217 22 820.5 1 27 23 827.4 1 28 .233 24 834.3 2 30 .250 25 841.2 4 34 .283 26 848.1 1 35 .292 27 855.0 1 36 .300 28 866.8 1 37 .308 29 882.6 2 39 .325 30 903.2 1 40 .333 31 910.1 2 42 .350 32 923.9 2 44 .367 33 937.7 2 46 .383 34 944.6 1 47 .392 36 958.4 1 50 .333 37 965.3 1 51 .425 38 972.2 1 52 .433 39 979.1 1 53 .442 40 986.0 1 54 .450 41 992.9 4 .58 43 999.9 1 59 .492 44 .360 45 999.9 1 59 .492 44 .367 37 965.3 1 51 .52 38 972.2 1 52 .433 39 979.1 1 53 .442 40 986.0 1 54 .450 41 992.9 4 .58 43 999.9 1 59 .492 44 .360 45 999.9 1 59 .492 44 .360 45 999.9 1 59 .492 44 .360 45 999.9 1 59 .492 44 .360 45 999.9 1 59 .492 44 .360 45 999.9 1 59 .492 44 .360 45 999.9 1 59 .492 44 .360 45 999.9 1 59 .492 44 .360 45 999.9 1 59 .492 45 .62 .517	Number	MN/m ²		Frequency	(i/n+1)
2 337.9 1 2 017 3 482.6 1 3 .025 4 510.2 1 4 .033 5 530.9 1 5 .042 6 537.8 1 6 .050 7 599.9 1 7 .058 8 627.4 1 8 .067 9 634.3 2 10 .083 10 648.1 1 11 .092 11 661.9 1 12 .100 12 656.4 1 13 .108 13 710.2 1 14 .117 14 737.8 1 15 .125 15 744.7 1 16 .133 16 758.5 1 17 .142 17 779.1 1 18 .150 18 786.0 2 20 .167 19 792.9 2 22 .183 20 799.8 2 24 .200 21 800.7 2 26 .217 22 820.5 1 27 23 827.4 1 28 .233 24 834.3 2 30 .250 25 841.2 4 34 .283 26 848.1 1 35 .292 27 855.0 1 36 .300 28 866.8 1 37 .308 29 882.6 2 39 .325 30 903.2 1 40 .333 31 910.1 2 42 .350 32 923.9 2 44 .367 33 937.7 2 46 .383 34 944.6 1 47 .392 36 958.4 1 50 .333 37 965.3 1 51 .425 38 972.2 1 52 .433 39 979.1 1 53 .442 40 986.0 1 54 .450 41 992.9 4 .58 43 999.9 1 59 .492 44 .360 45 999.9 1 59 .492 44 .367 37 965.3 1 51 .52 38 972.2 1 52 .433 39 979.1 1 53 .442 40 986.0 1 54 .450 41 992.9 4 .58 43 999.9 1 59 .492 44 .360 45 999.9 1 59 .492 44 .360 45 999.9 1 59 .492 44 .360 45 999.9 1 59 .492 44 .360 45 999.9 1 59 .492 44 .360 45 999.9 1 59 .492 44 .360 45 999.9 1 59 .492 44 .360 45 999.9 1 59 .492 44 .360 45 999.9 1 59 .492 45 .62 .517					
2 337.9 1 2 017 3 482.6 1 3 .025 4 510.2 1 4 .033 5 530.9 1 5 .042 6 537.8 1 6 .050 7 599.9 1 7 .058 8 627.4 1 8 .067 9 634.3 2 10 .083 10 648.1 1 11 .092 11 661.9 1 12 .100 12 656.4 1 13 .108 13 710.2 1 14 .117 14 737.8 1 15 .125 15 744.7 1 16 .133 16 758.5 1 17 .142 17 779.1 1 18 .150 18 786.0 2 20 .167 19 792.9 2 22 .183 20 799.8 2 24 .200 21 800.7 2 26 .217 22 820.5 1 27 23 827.4 1 28 .233 24 834.3 2 30 .250 25 841.2 4 34 .283 26 848.1 1 35 .292 27 855.0 1 36 .300 28 866.8 1 37 .308 29 882.6 2 39 .325 30 903.2 1 40 .333 31 910.1 2 42 .350 32 923.9 2 44 .367 33 937.7 2 46 .383 34 944.6 1 47 .392 36 958.4 1 50 .333 37 965.3 1 51 .425 38 972.2 1 52 .433 39 979.1 1 53 .442 40 986.0 1 54 .450 41 992.9 4 .58 43 999.9 1 59 .492 44 .360 45 999.9 1 59 .492 44 .367 37 965.3 1 51 .52 38 972.2 1 52 .433 39 979.1 1 53 .442 40 986.0 1 54 .450 41 992.9 4 .58 43 999.9 1 59 .492 44 .360 45 999.9 1 59 .492 44 .360 45 999.9 1 59 .492 44 .360 45 999.9 1 59 .492 44 .360 45 999.9 1 59 .492 44 .360 45 999.9 1 59 .492 44 .360 45 999.9 1 59 .492 44 .360 45 999.9 1 59 .492 44 .360 45 999.9 1 59 .492 45 .62 .517		248.2	1	1	.008
3			i		
4 510.2 1 5 0.042 5 530.9 1 5 .042 6 537.8 1 6 .050 7 599.9 1 7 .058 8 627.4 1 8 .067 9 634.3 2 10 .083 10 648.1 1 11 .092 11 661.9 1 12 .100 12 696.4 1 13 .108 13 710.2 1 14 .117 14 737.8 1 15 .125 15 744.7 1 16 .133 16 758.5 1 17 .142 17 779.1 1 18 .150 18 786.0 2 20 .167 19 792.9 2 22 .183 20 799.8 2 24 .200 21 800.7 2 26 .217 22 820.5 1 27 .225 23 827.4 1 28 .233 24 834.3 2 30 .250 25 841.2 4 34 .283 26 848.1 1 35 .292 27 855.0 1 36 .300 28 868.8 1 37 .308 29 882.6 2 39 .325 30 903.2 1 40 .333 31 910.1 2 42 .350 32 923.9 2 44 .367 33 937.7 2 46 .383 34 944.6 1 47 .392 36 958.4 1 50 .417 37 965.3 1 51 .425 38 979.1 1 53 .442 40 986.0 1 54 .450 41 992.9 4 58 .433 39 979.1 1 53 .442 40 986.0 1 54 .450 41 992.9 4 58 .433 39 979.1 1 52 .434 40 986.0 1 54 .450 41 992.9 4 58 .433 39 979.1 1 52 .433 39 979.1 1 53 .442 40 999.9 1 59 .492 41 1013.6 2 62 .517			1	3	
5 530.9 1 5 .042 6 537.8 1 6 .050 7 599.9 1 7 .058 8 627.4 1 8 .067 9 634.3 2 10 .083 10 648.1 1 11 .092 11 661.9 1 12 .100 12 696.4 1 13 .108 13 710.2 1 14 .117 14 737.9 1 15 .125 15 744.7 1 16 .133 16 758.5 1 17 .142 17 779.1 1 8 .150 18 786.0 2 20 .167 19 792.9 2 22 .183 20 799.8 2 24 .200 21 800.7 2 26 .217 22 820.5 1 27 .225 23 827.4 1 28 .233 24 834.3 2 30 .2550 25 841.2 4 34 .283 26 848.1 1 35 .292 27 855.0 1 36 .300 28 866.8 1 37 .308 29 882.6 2 39 .325 30 903.2 1 40 .333 31 910.1 2 42 .350 32 923.9 2 44 .367 33 937.7 2 46 .383 34 944.6 1 47 .392 35 .951.5 2 49 .408 36 958.4 1 50 .336 37 955.3 1 51 .57 38 979.1 1 52 .425 38 979.1 1 52 .433 39 979.1 1 53 .442 40 986.0 1 54 .450 41 997.9 4 .58 .483 42 999.8 1 59 .442 43 1006.7 1 59 .442 44 1 997.9 4 .58 .483 49 .492 41 999.8 1 59 .442 43 1006.7 1 59 .442 44 .367 47 .392 48 .483 49 .999.8 1 59 .442 440 .493 44 .999.9 1 58 .442 440 .496.0 1 54 .450 44 .999.9 1 58 .442 440 .499.9 1 58 .442 441 .997.9 4 .58 .443			i		
6			<u>_</u>	5	.042
7 599.9 1 7 .058 # 627.4 1 8 .067 9 634.3 2 10 .083 10 648.1 1 1 11 .092 11 661.9 1 12 .100 12 696.4 1 13 .108 13 710.2 1 14 .117 14 737.9 1 15 .125 15 744.7 1 16 .133 16 758.5 1 17 .142 17 779.1 1 18 .150 18 786.0 2 20 .167 19 792.9 2 22 .183 20 799.8 2 24 .200 21 806.7 2 26 .217 22 820.5 1 27 .225 23 827.4 1 28 .233 24 834.3 2 30 .250 25 841.2 4 34 .283 26 848.1 1 35 .292 27 855.0 1 36 .300 28 868.8 1 37 .308 29 868.8 1 37 .308 39 903.2 1 40 .333 31 910.1 2 42 .350 38 987.7 2 46 .383 34 944.6 1 47 .392 35 .951.5 2 49 .408 36 .958.4 1 50 .417 37 .965.3 1 51 .425 38 .979.1 1 52 .433 39 .979.1 1 52 .433 39 .979.1 1 52 .433 39 .979.1 1 52 .433 39 .979.1 1 52 .443 39 .999.9 1 58 .443 49 .492 443 49 .492 440 43 .493 499.9 1 59 .443 499.9 1 59 .443 499.9 1 59 .442 499.9 1 59 .443 499.9 1 59 .443 499.9 1 59 .443 499.9 1 59 .443 443 440 .999.9 1 59 .443 440 .999.9 1 59 .443 440 .999.9 1 59 .443 440 .999.9 1 59 .443 440 .999.9 1 59 .443 441 .999.9 4 58 .4483 42 .999.9 1 59 .492 44 .3106.7 1 60 .500 441 .999.9 4 58 .4483 440 .999.9 1 59 .492 441 .999.9 1 59 .492 441 .999.9 1 59 .492 441 .999.9 1 59 .492 441 .999.9 1 59 .492 441 .999.9 1 59 .492 441 .999.9 1 59 .492 441 .999.9 1 59 .492 441 .999.9 1 59 .492 441 .999.9 1 59 .492 441 .999.9 1 59 .492 442 .999.9 1 59 .492 443 .999.9 1 59 .492 444 .999.9 1 59 .492 444 .999.9 1 59 .492 444 .999.9 1 59 .492 444 .999.9 1 59 .492 444 .999.9 1 59 .492 444 .999.9 1 59 .492 444 .999.9 1 59 .492 444 .999.9 1 59 .492 444 .999.9 1 59 .492 444 .999.9 1 59 .492 444 .999.9 1 59 .492 444 .999.9 1 59 .492 444 .999.9 1 59 .492 444 .999.9 1 59 .492 444 .999.9 1 59 .492 444 .999.9 1 59 .492 444 .999.9 1 59 .492 444 .999.9 1 59 .492 444 .999.9			1	6	•050
# 627.4 1 8 .067 9 634.3 2 10 .083 10 648.1 1 1 11 .092 11 661.9 1 12 .100 12 696.4 1 13 .108 13 710.2 1					.058
q 634.3 2 10 .083 10 648.1 1 11 .092 11 661.9 1 12 .100 12 696.4 1 13 .108 13 710.2 1 14 .117 14 737.8 1 15 .125 15 744.7 1 16 .133 16 758.5 1 17 .142 17 779.1 1 18 .150 18 786.0 2 20 .167 19 792.9 2 22 .183 20 799.8 2 24 .200 21 806.7 2 26 .217 22 820.5 1 27 .225 23 827.4 1 28 .233 24 834.3 2 30 .250 25 841.2 4 34 .283 26 848.1 1 35 .292			1	8	.067
10 648.1 1 1 11 .092 11 661.9 1 12 .100 12 696.4 1 13 .108 13 710.2 1 14 .117 14 737.8 1 15 .125 15 744.7 1 16 .133 16 758.5 1 17 .142 17 779.1 1 18 .150 18 786.0 2 20 .167 19 792.9 2 22 .183 20 799.8 2 24 .200 21 806.7 2 26 .217 22 820.5 1 27 .225 23 827.4 1 28 .233 24 834.3 2 30 .250 25 841.2 4 34 .283 26 848.1 1 35 .292 27 855.0 1 36 .300 28 868.8 1 37 .308 29 882.6 2 39 .325 30 903.2 1 40 .333 31 910.1 2 42 .350 32 923.9 2 44 .367 33 937.7 2 46 .383 34 944.6 1 47 .392 35 .951.5 2 49 .408 36 958.4 1 50 .417 37 965.3 1 51 .425 483 49 979.1 1 53 .442 40 986.0 1 54 .450 41 992.9 4 58 .483 42 999.8 1 59 .492 43 1006.7 1 56 .492 44 .367 44 .367 44 .367 44 .368 44 .369 45 .468 46 .368 47 .369 48 .367 48 .367 48 .367 48 .367 48 .367 48 .367 49 .367 37 .366.3 1 .51 .425 38 .399.9 1 .55 .442 40 .367 37 .366.7 .392 44 .367 37 .366.7 .392 44 .367 37 .366.7 .392 44 .367 38 .399.9 .399.9 .399 39 .399.9 .399.9 .399 39 .399.9 .399.9 .399 39 .399.9 .399.9 .399 39 .399.9 .399.9 .399 39 .408 30 .369.9 .408 30 .369.9 .408 30 .369.9 .408 30 .369.9 .408 30 .369.9 .408 30 .369.9 .408 30 .960.0 1 .560 41 .992.9 .4 .58 .483 42 .999.8 1 .59 .492 43 .1006.7 .1 .60 .500 44 .1013.6 2 .62			2	10	•083
11 661.9 1 12 100 12 696.4 1 13 108 13 710.2 1 1 14 117 14 737.8 1 15 125 15 744.7 1 16 133 16 758.5 1 17 .142 17 779.1 1 - 18 .150 18 786.0 2 20 .167 19 792.9 2 22 .183 20 799.8 2 24 .200 21 806.7 2 26 .217 22 820.5 1 27 .225 23 827.4 1 28 .233 24 834.3 2 30 .250 25 841.2 4 34 .283 26 848.1 1 35 .292 27 855.0 1 36 .300 28 868.8 1 37 .308 29 882.6 2 39 .325 30 903.2 1 40 .333 31 910.1 2 42 .350 32 923.9 2 44 .367 33 937.7 2 46 .383 34 944.6 1 47 .392 35 .951.5 2 49 .408 36 958.4 1 50 .417 37 965.3 1 51 .425 38 972.2 1 52 .433 39 979.1 1 53 .442 40 986.0 1 54 .450 41 997.9 4 58 .483 42 999.9 1 59 .492 43 1006.7 1 60 .500	10		1	11	.092
17 696.4 1 13 .108 13 710.2 1 14 .117 14 737.8 1 15 .125 15 744.7 1 16 .133 16 758.5 1 17 .142 17 779.1 1 18 .150 18 786.0 2 20 .167 19 792.9 2 22 .183 20 799.8 2 24 .200 21 806.7 2 26 .217 22 820.5 1 27 .225 23 827.4 1 28 .233 24 834.3 2 30 .250 25 841.2 4 34 .263 26 848.1 1 35 .292 27 855.0 1 36 .300 28 866.8 1 37 .308 29 882.6 2 39 .325					.100
17 710.2 1 14 117 14 737.8 1 15 .125 15 744.7 1 16 .133 16 758.5 1 17 .142 17 779.1 1 18 .150 18 786.0 2 20 .167 19 792.9 2 22 .183 20 799.8 2 24 .200 21 806.7 2 6 .217 22 820.5 1 27 .225 23 827.4 1 28 .233 24 834.3 2 30 .250 25 841.2 4 34 .283 26 848.1 1 35 .292 27 855.0 1 36 .300 28 866.8 1 37 .308 29 882.6 2 39 .325 30 903.2 1 40 .333 31 910.1 2 42 .350 32 923.9 2 44 .367 33 937.7 2 46 .383 34 944.6 1 47 .392 35 .951.5 2 49 .408 36 958.4 1 50 .417 37 965.3 1 51 .52 .425 38 972.2 1 52 .433 39 979.1 1 53 .4425 40 986.0 1 54 .450 41 992.9 4 .58 .483 42 999.9 1 59 .492 44 .1006.7 1 60 .500 44 1013.6 2 62 .517)	13	.108
14 737.8 1 15 .125 15 744.7 1 16 .133 16 758.5 1 17 .142 17 779.1 1 18 .150 18 786.0 2 20 .167 19 792.9 2 22 .183 20 799.8 2 24 .200 21 806.7 2 26 .217 22 820.5 1 27 .225 23 827.4 1 28 .233 24 834.3 2 30 .250 25 841.2 4 34 .283 26 848.1 1 35 .292 27 855.0 1 36 .300 28 848.3 2 39 .325 30 826.8 1 37 .308 29 882.6 2 39 .325 30 93.2 1 40 .333					
15			i	15	
16 758.5 1 17 .142 17 .779.1 1 18 .150 18 .779.1 1 18 .150 19 .786.0 2 20 .167 19 .792.9 2 .22 .183 20 .799.8 2 .24 .200 21 .806.7 2 .26 .217 .225 23 .827.4 1 .28 .233 24 .834.3 2 .30 .250 25 .841.2 4 .34 .283 26 .848.1 1 .35 .292 27 .855.0 1 .36 .300 28 .866.8 1 .37 .308 29 .882.6 2 .39 .325 30 .903.2 1 .40 .333 31 .910.1 2 .42 .350 32 .923.9 2 .44 .367 33 .937.7 2 <th></th> <th></th> <th></th> <th></th> <th></th>					
17 779.1 1 18 .150 18 786.0 2 20 .167 19 792.9 2 22 .183 20 799.8 2 24 .200 21 806.7 2 26 .217 22 820.5 1 27 .225 23 827.4 1 28 .233 24 834.3 2 30 .250 25 841.2 4 34 .283 26 848.1 1 35 .292 27 855.0 1 36 .300 28 868.8 1 37 .308 29 882.6 2 39 .325 30 903.2 1 40 .333 31 910.1 2 42 .350 32 923.9 2 44 .367 33 937.7 2 46 .383 34 944.6 1 47 .392			i		
18 786.0 2 20 .167 19 792.9 2 22 .183 20 799.8 2 24 .200 21 806.7 2 26 .217 22 820.5 1 .27 .225 23 827.4 1 .28 .233 24 834.3 2 30 .250 25 841.2 4 34 .283 26 848.1 1 35 .292 27 855.0 1 36 .300 28 868.8 1 37 .308 29 882.6 2 39 .325 30 903.2 1 40 .333 31 910.1 2 42 .350 32 923.9 2 44 .367 33 937.7 2 46 .383 34 944.6 1 47 .392 35 .951.5 2 49 .408 <th></th> <th></th> <th></th> <th></th> <th></th>					
19 792.9 2 22 .183 20 799.8 2 24 .200 21 806.7 2 26 .217 22 820.5 1 27 .225 23 827.4 1 28 .233 24 834.3 2 30 .250 25 841.2 4 34 .283 26 848.1 1 35 .292 27 855.0 1 36 .300 28 868.8 1 37 .308 29 882.6 2 39 .325 30 903.2 1 40 .333 31 910.1 2 42 .350 32 923.9 2 44 .367 33 937.7 2 46 .383 34 944.6 1 47 .392 35 951.5 2 49 .408 36 958.4 1 50 .417			,		
20 799.8 2 24 .200 21 80h.7 2 26 .217 22 820.5 1 27 .225 .23 827.4 1 .28 .233 .24 834.3 2 30 .250 .25 .841.2 4 .34 .283 .26 .848.1 1 .35 .292 .27 .855.0 1 .36 .300 .28 .868.8 1 .37 .308 .29 .882.6 2 .39 .325 .30 .932.2 1 .40 .333 .31 .910.1 2 .42 .350 .32 .923.9 2 .44 .367 .33 .937.7 2 .46 .383 .34 .944.6 1 .47 .392 .35 .951.5 2 .49 .408 .36 .958.4 1 .50 .417 .37 .965.3 1 <					
21 806.7 2 26 .217 22 820.5 1 27 .225 23 827.4 1 28 .233 24 834.3 2 30 .250 25 841.2 4 34 .283 26 848.1 1 35 .292 27 855.0 1 36 .300 28 368.8 1 37 .308 29 882.6 2 39 .325 30 903.2 1 40 .333 31 910.1 2 42 .350 32 923.9 2 44 .367 33 937.7 2 46 .383 34 944.6 1 47 .392 35 .951.5 2 49 .408 36 958.4 1 50 .417 37 965.3 1 51 .425 34 977.2 1 52 .433					
22 820.5 1 27 .225 23 827.4 1 28 .233 24 834.3 2 30 .250 25 .841.2 4 .34 .283 26 .848.1 1 .35 .292 27 .855.0 1 .36 .300 28 .868.8 1 .37 .308 29 .882.6 2 .39 .325 30 .903.2 1 .40 .333 31 .910.1 2 .42 .350 32 .923.9 2 .44 .367 33 .937.7 2 .46 .383 34 .944.6 1 .47 .392 35 .951.5 2 .49 .408 36 .958.4 1 .50 .417 37 .965.3 1 .51 .425 38 .972.2 1 .52 .433 39 .979.1 1 .53					
23 827.4 1 28 .233 24 834.3 2 30 .250 25 841.2 4 34 .283 26 848.1 1 35 .292 27 855.0 1 36 .300 28 868.8 1 37 .308 29 882.6 2 39 .325 30 903.2 1 40 .333 31 910.1 2 42 .350 32 923.9 2 44 .367 33 937.7 2 46 .383 34 944.6 1 47 .392 35 951.5 2 49 .408 36 958.4 1 50 .417 37 965.3 1 51 .425 38 972.2 1 52 .433 39 979.1 1 53 .442 40 986.0 1 54 .450					
24 834.3 2 30 .250 25 841.2 4 34 .283 26 848.1 1 35 .292 27 855.0 1 36 .300 28 868.8 1 37 .308 29 882.6 2 39 .325 30 903.2 1 40 .333 31 910.1 2 42 .350 32 923.9 2 44 .367 33 937.7 2 46 .383 34 944.6 1 47 .392 35 .951.5 2 49 .408 36 958.4 1 50 .417 37 .965.3 1 51 .425 38 .972.2 1 52 .433 39 .979.1 1 53 .442 40 .986.0 1 54 .450 41 .992.9 4 58 .483					
25 841.2 4 34 .283 26 848.1 1 35 .292 27 855.0 1 36 .300 28 868.8 1 37 .308 29 882.6 2 39 .325 30 903.2 1 40 .333 31 910.1 2 42 .350 32 923.9 2 44 .367 33 937.7 2 46 .383 34 944.6 1 47 .392 35 .951.5 2 49 .408 36 958.4 1 50 .417 37 .965.3 1 51 .425 38 .972.2 1 52 .433 39 .979.1 1 53 .442 40 .986.0 1 54 .450 41 .992.9 4 58 .483 42 .999.8 1 59 .492			2		
26 848.1 1 35 .292 27 855.0 1 36 .300 28 866.8 1 37 .308 29 882.6 2 39 .325 30 903.2 1 40 .333 31 910.1 2 42 .350 32 923.9 2 44 .367 33 937.7 2 46 .383 34 944.6 1 47 .392 35 .951.5 2 49 .408 36 958.4 1 50 .417 37 965.3 1 51 .425 38 979.2 1 52 .433 39 979.1 1 53 .442 40 986.0 1 54 .450 41 992.9 4 58 .483 42 999.8 1 59 .492 43 1006.7 1 60 .500 <th></th> <th></th> <th></th> <th></th> <th></th>					
27 855.0 1 36 .300 28 868.8 1 37 .308 29 882.6 2 39 .325 30 903.2 1 40 .333 31 910.1 2 42 .350 32 923.9 2 44 .367 33 937.7 2 46 .383 34 944.6 1 47 .392 35 951.5 2 49 .408 36 958.4 1 50 .417 37 965.3 1 51 .425 38 972.2 1 52 .433 39 979.1 1 53 .442 40 986.0 1 54 .450 41 992.9 4 58 .483 42 999.8 1 59 .492 43 1006.7 1 60 .500 44 1013.6 2 62 .517 <th></th> <th></th> <th>1</th> <th></th> <th></th>			1		
28 868.8 1 37 .308 29 882.6 2 39 .325 30 903.2 1 40 .333 31 910.1 2 42 .350 32 923.9 2 44 .367 33 937.7 2 46 .383 34 944.6 1 47 .392 35 951.5 2 49 .408 36 958.4 1 50 .417 37 965.3 1 51 .425 38 972.2 1 52 .433 39 979.1 1 53 .442 40 986.0 1 54 .450 41 992.9 4 58 .483 42 999.8 1 59 .492 43 106.7 1 60 .500 44 1013.6 2 62 .517					.300
29 882.6 2 39 .325 30 903.2 1 40 .333 31 910.1 2 42 .350 32 923.9 2 44 .367 33 937.7 2 46 .383 34 944.6 1 47 .392 35 .951.5 2 49 .408 36 958.4 1 50 .417 37 .965.3 1 51 .425 38 .972.2 1 52 .433 39 .979.1 1 53 .442 40 .986.0 1 54 .450 41 .992.9 4 58 .483 42 .999.8 1 59 .492 43 .1006.7 1 60 .500 44 .1013.6 2 62 .517			i		.308
30 903.2 1 40 .333 31 910.1 2 42 .350 32 923.9 2 44 .367 33 937.7 2 46 .383 34 944.6 1 47 .392 35 951.5 2 49 .408 36 958.4 1 50 .417 37 965.3 1 51 .425 38 972.2 1 52 .433 39 979.1 1 53 .442 40 986.0 1 54 .450 41 992.9 4 58 .483 42 999.8 1 59 .492 43 1006.7 1 60 .500 44 1013.6 2 62 .517			2	39	.325
31 910.1 2 42 .350 32 923.9 2 44 .367 33 937.7 2 46 .383 34 944.6 1 47 .392 35 951.5 2 49 .408 36 958.4 1 50 .417 37 965.3 1 51 .425 38 977.2 1 52 .433 39 979.1 1 53 .442 40 986.0 1 54 .450 41 992.9 4 58 .483 42 999.8 1 59 .492 43 1006.7 1 60 .500 44 1013.6 2 62 .517			1	40	•333
32 923.9 2 44 .367 33 937.7 2 46 .383 34 944.6 1 47 .392 35 .951.5 2 49 .408 36 .958.4 1 50 .417 37 .965.3 1 51 .425 38 .977.2 1 52 .433 39 .979.1 1 53 .442 40 .986.0 1 54 .450 41 .992.9 4 58 .483 42 .999.8 1 59 .492 43 .106.7 1 60 .500 44 .1013.6 2 62 .517			2	42	.350
33 937.7 2 46 .383 34 944.6 1 47 .392 35 951.5 2 49 .408 36 958.4 1 50 .417 37 965.3 1 51 .425 38 972.2 1 52 .433 39 979.1 1 53 .442 40 986.0 1 54 .450 41 992.9 4 58 .483 42 999.8 1 59 .492 43 1006.7 1 60 .500 44 1013.6 2 62 .517			2	44	.367
34 944.6 1 47 .392 35 .951.5 2 49 .408 36 .958.4 1 50 .417 37 .965.3 1 .51 .425 38 .977.2 1 52 .433 39 .979.1 1 53 .442 40 .986.0 1 54 .450 41 .992.9 4 .58 .483 42 .999.8 1 59 .492 43 .1006.7 1 60 .500 44 .1013.6 2 62 .517				46	.383
35 951.5 2 49 .408 36 958.4 1 50 .417 37 965.3 1 51 .425 38 977.2 1 52 .433 39 979.1 1 53 .442 40 986.0 1 54 .450 41 992.9 4 58 .483 42 999.8 1 59 .492 43 1006.7 1 60 .500 44 1013.6 2 62 .517			1	47	.392
36 958.4 1 50 .417 37 965.3 1 51 .425 38 977.2 1 52 .433 39 979.1 1 53 .442 40 986.0 1 54 .450 41 992.9 4 58 .483 42 999.8 1 59 .492 43 1006.7 1 60 .500 44 1013.6 2 62 .517				49	
37 965.3 1 51 .425 38 972.2 1 52 .433 39 979.1 1 53 .442 40 986.0 1 54 .450 41 992.9 4 58 .483 42 999.8 1 59 .492 43 1006.7 1 60 .500 44 1013.6 2 62 .517	36		1	50	
3H 977.2 1 52 .433 39 979.1 1 53 .442 40 986.0 1 54 .450 41 992.9 4 58 .483 42 999.8 1 59 .492 43 1006.7 1 60 .500 44 1013.6 2 62 .517			1	51	
39 979.1 1 53 .442 40 986.0 1 54 .450 41 992.9 4 58 .483 42 999.8 1 59 .492 43 1006.7 1 60 .500 44 1013.6 2 62 .517		977.7	1	52	
40 986.0 1 54 .450 41 992.9 4 58 .483 42 999.8 1 59 .492 43 1006.7 1 60 .500 44 1013.6 2 62 .517		979.1	1	53	
41 992.9 4 58 .483 42 999.8 1 59 .492 43 1006.7 1 60 .500 44 1013.6 2 62 .517			1	54	
47 999.9 1 59 .492 43 1006.7 1 60 .500 44 1013.6 2 62 .517			4	58	
43 1006.7 1 60 .500 44 1013.6 2 62 .517			1	59	
44 1013.6 2 62 .517			1	60	
			5		
				63	•525

Table III., (continued)

Class Number	Strength MN/m ²	Frequency	Cumulative Frequency	Probability (1/n+1)
46	1034.2	S	65	.542
47	1048.0	i	66	•550
48	1054.9	2	. 68	.567
49	1075.6	2	70	.583
50	1089.4	ī	71	.592
51	1110.1	i	72	.600
52	1117.0	i	73	.608
53	1123.9	2	75	.625
54	1144.5	2	77	.642
55	1151.5	i	78	.650
56	1158.4	1	79	.658
57	1172.2	1	80	.667
58	1179.0	2	82	.683
59	1192.8	2	84	.700
60	1199.7	1	85	.708
61	1241.1	i i	86	.717
62	1254.9		• A7	.725
63	1282.5		88	.733
64	1303.2		89	.742
65	1316.9	i	90	.750
66	1330.7	i	91	.758
67	1365.2		92	.767
68	1420.4		93	.775
69	1441.1		94	.783
70	1454.8	1	95	.792
71	1475.5		97	.808
72	1482.4	2	99	.825
73	1496.2	,	100	.833
74	1537.6	1	101	.842
75	1675.5		102	.850
76	1723.7		103	.858
77	1751.3	i	104	. 867
78	1806.5		105	.875
79	1847.9	i	106	.883
80	1972.0		107	.892
81			108	.900
82	2144.3	i	109	.908
83	2323.6	i	110	.917
84	2427.0		, 111	.925
85	2468.4	i	iiż	.933
86	2640.A		113	.942
87	2716.6		114	.950
AA	2875.2		115	.958
. 89	. 2978.6	i	116	.967
90	3385.4		117	.975
91	3585.4	i	118	.983
92	3771.6	1	119	.992
			117	• 776

Theory. In order to test this hypothesis, broken sections of longer fibers were retested. The results are shown in Table IV. In every case, the secondary fractures were at higher stresses than the initial fracture.

Not only does this agree with the weakest link theory, but also shows that the polyethylene coating was effective in preventing externally caused damage to the fibers during handling and testing, and that mechanical properties of the fibers were not degraded by subjecting them to prior stressing. These latter points are important considerations in proof testing for fiber reliability and degradation of fiber strength in service.

4. Statistical Analysis of Strength Results

The data of Table III, 119 specimens, 1.06 meters long, was analyzed in detail to determine if the two-parameter Weibull distribution would adequately model these results and permit valid inferences on the effect of specimen size on strength. In the following sections, the Weibull model and methods of estimating Weibull parameters are briefly reviewed. The effects of variations of Weibull parameters on the shape of calculated distribution functions are shown, and the influence of bimodal distributions on the commonly used linear plotting technique are calculated. The data of Table III is then re-considered as a bimodal distribution, and the size effect on strength is plotted.

Tabel IV Sequential Strength Tests of Silica Fibers

FIRST TI	EST	SECON	D TEST	THIRD T	EST
Gage Length meters	Strength MN/m ²	Gage Length meters	Strength MN/m ²	Gage Length meters	Strength MN/m ²
Test 9, Ta	able I				
8.33	620.5	1.02 1.02 1.02	882.6 703.3 675.7	0.04 0.08 0.08 0.30 0.30	855 >1710 >2758 >1517 >1237
Test 32-20	958.4	→ 0.06 1.02 1.22	>2517 >2034 1172.1		
Test 7, Ta	able I				
8.33	475.8	-> 0.91 1.07 1.07 1.07 1.07 1.07 1.52	827.4 586.1 599.9 910.1 792.9 861.9 620.5		

III STATISTICS OF THE STRENGTH OF BRITTLE MATERIALS

The mechanical failure of a brittle material is caused by the propagation of a microscopic crack or Griffith flaw. In the case of glass fibers, these flaws are a few micrometers or less in size and occur primarily on the surface of the material. The flaw size, the number of flaws and their frequency of occurrence may be described by statistical distributions. The general problem is one of predicting the minimum extreme value of strength resulting from a sample (flaw) population of a given size. The exact solution for extreme value distributions has been given by Gumbel (3,4) and Epstein (5,6) has published extreme value formulations for a number of different statistical distributions. One type of extreme value model which has wide applicability in failure statistics of many kinds and brittle failure in particular is the Weibull model (7,8).

The Weibull cumulative distribution function (CDF) relating the probability of failure, F(x) to the strength, x is

$$F(x) = 1 - \exp \left\{-(x/\sigma)^{\lambda}\right\} \tag{1}$$

where σ and λ are the scale parameter and the shape parameter respectively.* The corresponding probability density function (PDF) defined as dF(x)/dx is

$$f(x) = (\lambda/\sigma)(x/\sigma)^{\lambda-1} \exp\{-(x/\sigma)^{\lambda}\}$$

$$0 < x, \sigma, \lambda$$
(2)

Transposing and taking the logarithm twice transforms Eq. 1 into

$$\ln \ln \left(1/(1-F(x))\right) = \lambda \ln x - \lambda \ln \sigma \tag{3}$$

^{*}The notation and nomenclature will follow that of K.V. Bury

<u>Statistical Models in Applied Science</u>, Ref. 9, where the derivation and properties of this and other models are given in detail.

The effect of specimen size on observed strength is actually observed as the variation of the extreme value of flaw severity when the flaw sample size is increased, i.e. the number of flaws "sampled" in a given individual strength test. Following Bury (9) the sample size enters the Weibull CDF as

$$F(x) = \exp \left\{-\left(L/L_1\right)(x/\sigma)^{\lambda}\right\} \tag{4}$$

where L_1 is a unit length (or area or volume) containing N_1 flaws with associated contant σ_1 . L is some greater length with the same number of flaws per unit area and $\sigma=\sigma_1/(N_1)^{1/\lambda}$ At constant probability of failure, e.g. 0.5, the relation of size to failure stress is

$$x_1/x_2 = (L_2/L_1)^{1/\lambda}$$
 (5)

This was originally established by Weibull (7) on empirical grounds and utilized recently by Tarliyal and Kalish (10), Kalish et al.(11), Kurkjian et al. (12), and Mauer et al. (13).

IV ESTIMATION OF THE WEIBULL PARAMETERS σ and λ

1. Linear Plotting

The most common technique for estimating the parameters σ and λ is to plot the observed data in the linear form of Eq. 3. The expected value of F(x) is obtained from the ordered data where

$$F(x) = i/(n+1)$$
 (6)

in which i is the ith order of failure and n is the total number of specimens in the sample. In addition to initial estimates of σ and λ , this plot also gives information as to the suitability of the proposed model. Substantial systematic curvature in what should be a linear plot indicated the need for a third parameter

in the Weibull function (9) or, as will be shown later, a bimodal or multi-modal population.

2. Maximum Likelihood Method

A second method called Maximum Likelihood (ML) minimizes the variance of the parameters σ and λ , Thoman, Bain and Antle (14) analyzed this technique for the Weibull distribution and published confidence intervals for the parameters and unbiasing factors for the shape parameter as a function of sample (test) size. The Maximum Likelihood value of λ is found by an interative procedure and the expression given by Thoman (Ref. 14, Sec. 5) converges to within \pm 0.001 in about four iterations using starting values from the linear plot of Eq. 3. The ML estimate of σ is then found directly.

3. Non-Linear Least Squares Estimation

Davies (15) proposed using direct non-linear least squares curve fit to the CDF, Eq. 1 as an improvement in some situations over linear fits to Eq. 3 or maximum likelihood estimates. Non-linear curve fitting programs are not generally available, however, a well documented public computer program called NLWOOD* has been described by Daniel and Wood (16). It is an iterative routine which will evaluate σ and λ directly from Eq. 1. While the program does not minimize the squared residuals, it permits a user selected criteria of relative change in fitted parameters and/or sum of squared residuals as a test of fit. It provides confidence intervals on the parameters, sum of the squared residuals and useful graphical information on the individual residuals. A comparison of the three methods for estimation of Weibull parameters has also been given by Heavens and Murgatroyd (17).

^{*}The source program, FORTRAN listing and User's Manual is available from the SHARE Library (Number 360D-13.6.007), for IBM, and the VIM Library (Number G2-CAL-NLWOOD), for CDC.

V. WEIBULL PARAMETERS AND THE RESULTING DISTRIBUTING FUNCTIONS

Theoretical Weibull distributions were generated by assuming values for σ and λ , and a sample size of 60 and calculating the corresponding strength using Equations 1 and 6. Plots were made of Equations 1, 2 and 3 for the assumed parameters to observe the effect of systematic parameter variations on the shapes and locations of the various curves. In addition, the effect of bimodal distributions on the shape of "linear" plots was studied by merging two sets of calculated strength values, reordering, and replotting the merged set as if it was a single unkown sample. The Weibull distributions selected were similar to distributions observed in our laboratory for the strength of 7 and 10mm glass rods in 3-point bending.

Figure 4 shows the effect of varying σ with constant λ , (Table V). This is essentially the size effect for a given population where the smallest specimen size is represented by curve D and the largest size by curve A, nearly 2200 times larger than D. (An extrapolation of 50cm fiber tests to 1km is a size effect of 2000). Although the Weibull parameter λ determines the slope of the linear plot (Fig. 4c) it is clearly incorrect to say that λ determines the "steepness" of the CDF (Fig. 4a) or the dispersion of the PDF (Fig. 4b). These two features which relate to the variability of a set of measurements around the mode or average are a function of both the shape parameter and scale parameters and only in the case where the scale parameter (or the more directly measured, average strength) is the same will the shape parameter alone determine the "steepness" of the CDF.

Figs. 4a, 4b. Calculated Weibull CDF and PDF curves with λ constant and σ increasing left to right. See Table V. This is equivalent to change in specimen size (e.g., length) in a constant population in which A specimens are nearly 2200 times longer than E specimens. The PDF curves are scaled to equal areas.

Fig. 4c. Linear forms of the Weibull functions of 4a and 4b. The data points were calculated from two individual functions and then merged, reordered and plotted as if coming from a single sample.

TABLE V

PARAMETERS USED IN CALCULATING WEIBULL FUNCTIONS

					Curve		
			A	В	C	D	E
Fig.	4	σ	200	300	400	500	600
		λ	7.0	7.0	7.0	7.0	7.0
Fig.	5	σ	200	300	400	500	600
		λ	5.0	7.0	9.0	11.0	13.0
Fig.	6	σ	400	400	400	400	500
		λ	7	6	5	4	3

The points in Figure 4c are the merged, calculated values from curves A-B, A-C, A-D, and A-E, i.e. sampling values which might arise if the real populations were an unknown bimodal distribution. As seen in Figure 4c, λ for lower strength distribution (A) would be fairly accurately determined from the slope of the low strength points. However, lno, which is the value on the abscissa where the linear plot intersects the horizontal line of ln ln (ϕ) = 0, would have substantial error. Virtually no accurate information can be obtained from this plot for the higher distribution of the pair.

Figure 5 is an example where both σ and λ increase (Table V). This produces PDF curves with very similar central portions but different tails skewed to the left. Again errors in estimating σ from the merged samples will arise if the lower strength population is assumed to coincide with the data points. This error occurs in the lower part of Figures 4c and 5c because the order plotting function for each of the true populations is i/(n+1) while for the merged population it was i/(2n+1). As pointed out by Tariyal and Kalish (10), to separate bimodal distributions, one should know the fraction of observations belonging to each distribution. With this information and only the lower part of the strength data, e.g. 30 of the 60 values, the order plotting would be correct and more accurate estimates of σ and λ would result.

Figs. 5a, 5b. Calculated Weibull CDF and PDF curves with increasing λ and $\,\sigma$ (Table V).

Fig. 5c. Linear forms of the Weibull functions of 5a and 5b. The data points are merged samples as described in Fig. 4c.

Curves A through D in Figures 6a and 6b have constant σ and decreasing λ . Curve E has higher σ and lower λ (Table V). This set was selected as an example of bimodal distributions with substantial overlap. The shape of the merged points in Figs. 6c, d, and e is similar to that observed for the strength of glass fibers in the present work and by Mauer (18).

Figs. 6a, 6b. Calculated Weibull CDF and PDF curves. A through D have constant σ and decreasing λ . Curve E has higher σ and lowest λ . (See Table V).

Figs. 6c, 6d, 6e. Linear forms of the Weibull functions of 3a and 3b. The data points are merged as described in 1c.

VI ANALYSIS OF EXPERIMENTAL STRENGTH DATA

Figure 7 shows the direct CDF plot for the 119 specimens 1.06m long listed in Table III. The dashed line is the curve calculated using the ML estimates of the Weibull Parameters, and the solid line was obtained using parameters from the non-linear direct fit. The deviation at the higher strength is very similar to that seen by Davies (15) in silicon nitride. Figure 8 shows the "linear" plot of this data assuming Equations 3 and 6.

One possible correction for the curvature in Figure 8 is the introduction of a location parameter μ in the Weibull CDF as

$$F(x,\mu,\alpha) = 1 - \exp\left\{-\left(\frac{x-\mu}{\sigma}\right)^{\lambda}\right\}$$
 (7)

This corresponds to a minimum strength, μ , below which failure does not occur. A third parameter was introduced in steps of 35 MN/m² from zero to the minimum observed strength of 248 MN/m², and the resulting CDF curve calculated at each trial. Although the ML CDF fit (as well as the non-linear direct fit) improves slightly as judged by a reduction in sum of squared residuals, the curvature of the linear plot or the fit at the upper end of the CDF was not significantly improved.

Based on Fig. 6 and other similar trials, the curvature in Fig. 8 was assumed to arise from an overlapping bimodal distribution. The parameters of the two distributions were estimated as follows: Based on straight line portions at the ends of the curve of Fig. 8, the population totals were estimated to be 80 specimens for the lower portion and 39 for the upper portion. These sample sets will be called Set 1 and Set II respectively. Using these

Fig. 7. Direct CDF plot for 119 coated silica glass fibers 106 cm long. The dashed line is the Weibull function calculated from parameters estimated by the Maximum Likelihood Method, the solid line from the non-linear direct fit.

Fig. 8. · Strength of 119 coated silica glass fibers plotted according to Eq. 3.

population sub-sets and assuming the lower 40 and upper 30 data points of the total set to belong to each of the individual distributions alone, the 30 data points were re-ordered against their respective sub-set population. Weibull parameters were estimated using either straight line probability plotting or non-linear curve fitting to this partial data. Maximum likelihood estimates could not be used because the 30 points are not the entire sample.

Two pairs of Weibull parameters σ and λ were estimated from these plots. Theoretical sets of 80 and 39 data points were then calculated using these parameters, and two theoretical sets, i and ii were merged and re-ordered to correspond to the original experimental observation. The ordered positions of individual points belonging to set i and Set ii were determined in the merged population. For example, in the merged 119 theoretical points, the following positions were occupied by points from Set ii: Position No. 1,4,8,14,21,30,39,49,59,67,75,82,87,91,93-to-119. These same positions were then selected from the ordered experimental data and assigned to Set II with the remaining assigned to Set I. Weibull parameters were then recalculated for the experimental data and the results are given in Table VI and Fig. 9. There is a large variation in the parameters estimated by the three different techniques for the full set of 119 specimens. The estimation techniques are much more consistent for the assumed subsets.

One can now calculate the influence of these two distributions on the strength of long fibers, e.g. 1000 m. Using Eq. 4, the failure probability for each distribution at lkm and various stresses

TABLE VI

RESULTS OF VARIOUS METHODS OF WEIBULL PARAMETER ESTIMATION

	Ful	1 Data	Full Data Set, 119		Part	ial Dat	Partial Data, Set I		Part	Partial Data, Set II	, Set I	
Method	Sample Size		Sigma Lambda	95% C.L.	Sample Size	Sigma	Sigma Lambda	95% C.L.	Sample Size	Sigma Lambda		95% C.L.
NLLS	119	1170	1170 3.29	3.10	3.10 40 of 3.49 80	1005	1005 4.71	4.21	30 of 39	1916 2.14	2.14	1.86
NLLS	•	1	1	ı	80 of 80	1017	1017 5.08	4.94	4.94 39 of 5.23 39	1910 2.05	2.05	1.94
TTS	119	1338	1338 2.54		80 of 80		1030 4.70	ı	39 of 39	1954 2.01	2.01	•
Ä	119	1359	1359 2.03	1.79	3 1.79 80 of 2.26 80		1029 4.79 4.08 39 of	4.08	39 of 39	1942 2.05		1.54
	NLLS	- Non L	inear Le	ast Sqi	uares.	LLS. = L	Non Linear Least Squares. LLS = Linear Least Squares. ML = Max. Likelihood.	ast Squ	lares.	M. = Max	. Likel	Thood.

Fig. 9. Weibull CDF curves for assumed bimodal population from the samples of Figs. 7 and 8 (See Table VI).

Fig. 10. Weibull PDF curves corresponding to Fig. 9. The curves are scaled to equal areas.

is obtained. The total failure probability is then

$$P_{\text{Total}} = 2 P_1/3 + P_{II}/3$$

assuming the fraction of the populations from each distribution remains 2/3 and 1/3. The results are given in Fig. 11 which shows the calculated size effect on strength using Eq. 1 and the joint probability of two distributions. Data points for the experimental results for fiber lengths from 1.06 to 11.93m are also shown. In calculating the contribution to failure from the two distributions it was found that the tail of the low λ distribution dominated at long lengths. It is interesting that the data from which this distribution was extracted was in the higher strength portion of the original experimental measurement.

Fig. 11. Average strength of experimental fibers and the calculated 0.5 probability from the joint distribution.

VII CONCLUSIONS

As in any statistical modeling, the foregoing analysis is an attempt to define functions which represent the underlying phenomenon. The fact that one can obtain functions which appear to do this is not a confirmation of the nature of the underlying phenomenon but with hypothesis testing, only places some confidence measurement on the validity of the assumed model.

In mechanical property testing of brittle materials where bimodal distributions are suspected, independent physical confirmation of different failure modes and measurement of the fraction belonging to each distribution should be attempted. Direct fractographic analysis which would indicate different types of flaw origins would be useful. However, it would be very tedious and perhaps impossible for large numbers of high strength fibers. The analytical techniques recently published by Matthews et al. (19) may be useful in defining different independent populations of flaw origins.

Maximum Likelihood method of estimation of Weibull parameters is the most attractive since no ordering of the data is required, the convergence is very rapid, and the form of the expression given by Thoman et al. (14) easily adapted to a computer. Thoman et al. have also provided the analysis of the inferences on the Weibull parameters. However the ML method can not give correct

results if the underlying distribution is not in fact a single Weibull distribution. For this reason, probability plotting should be employed as a check on the assumption of the statistical model and to furnish a first estimate of λ needed for the ML iteration. When the estimates obtained by least squares, non-linear direct fit and Maximum Likelihood are widely different, it is an indication that the assumption of a single modal Weibull distribution is incorrect.

VIII REFERENCES

- G. L. Mitchell, W. D. Scott, R. B. Smith, "Optical Coupling Techniques," Final Report, Contract NOO123-73-C-1200, April 1, 1976. (AD-A026-126)
- W.D. Scott, G. Achutaramayya and R. Matsumoto, "Fabrication of Special Waveguide Shapes and Mechanical Properties of Glass Fiber Waveguides," Final Report, Task 004, Contract N00123-73-C-1200, January 31, 1975. (AD-A 016 300)
- 3. E. J. Gumbel, <u>Statistics of Extremes</u>, Columbia University Press, (1958).
- 4. E. J. Gumbel, "Statistical Theory of Extreme Values and Some Practical Applications," Nat'l Bur. Stats. Appl. Math. Series, No. 33, (Feb. 1954).
- 5. Benjamin Epstein, "Application of the Theory of Extreme Values in Fracture Problems," Amer. Statistical Association J., pp. 403-12, (Sept. 1948).
- Benjamin Epstein, "Statistical Aspects of Fracture Problems,"
 J. Appl. Phys. 19, [2], (1948).
- W. Weibull, "A Statistical Theory of the Strength of Materials," <u>Proc. Royal Swedish Inst. for Eng. Res.</u>, No 151 (1939).
- W. Weibull, "A Statistical Distribution Function of Wide Applicability," J.Appl. Mech., p. 293-97, (Sept. 1951).
- 9. K. V. Bury, Statistical Models in Applied Science, Wiley, (1976)
- 10. B. K. Tariyal and D. Kalish, "Application of Weibull-type Analysis to the Strength of Optical Fibers, " Mat. Sci. and Engr., 27, 69-71 (1977).
- 11. D. Kalish, B. K. Tariyal, and R. O. Pickwick, "Strength and Gage Length Extrapolations in Optical Fibers," Amer. Ceram. Soc. Bulletin, 56 [5], 491 (1977)
- C.R. Kurkjian, R. V. Albarino, J. T. Krause, H. N. Vazirani,
 F. V. DiMarcello, S. Torza, and H. Schonhorn, "Strength of
 0.04-50-M Lengths of Coated Fured Silica Fibers," Appl. Phys. Let., 28, [10], 588-90 (1976).
- R. D. Mauer, R. A. Miller, D. D. Smith, J. C. Trondsen, "Optimization of Optical Waveguides-Strength Studies," Office of Naval Research, March 1974, AD777118.
- 14. D. R. Thoman, Lee J. Bain, C. E. Antle, "Inferences on the Parameters of the Weibull Distribution," <u>Technometrics</u>, <u>11</u>, [3], 445-60, (1969).

- D. G. S. Davies, "The Staistical Approach to Engineering Design in Ceramics," <u>Proc. Brit. Ceram. Soc.</u>, p.429-52, (1973).
- Cuthbert Daniel and Fred S. Wood, <u>Fitting Equations to Data</u>, Wiley-Interscience, (1971).
- J.W. Heavens and P. N. Murgatroyd, "Analysis of Brittle Fracture Stress Statistics," J. Amer. Ceram. Soc., 53 [9], 503-5, (1970)
- 18. Robert D. Mauer, Strength of Optical Waveguides, Applied Physics Letters, 27 [4] 220-21, (1975).
- 19. J. R. Matthews, F. A. McClintock and W. J. Shack, "Statistical Determination of Surface Flaw Density in Brittle Materials," J. Amer. Ceram. Soc., 59 [7-8], 304-8, (1976).