Assignment-01

Submitted by: TASNIM RAHMAN MOUMITA

ID: 22301689

Course Title: Computer Graphics

Course Code: C5E423

Section : 14

Semestere: Summer 2025

Date of submission: 13.07.2025

Am. to the g. No-01 (a)

Given Points,

for slope,

$$dx = -10 - 16 = -26$$

$$dy = -7 - 17 = -24$$

$$\therefore \text{ slope, } m = \frac{dy}{dz} = \frac{-24}{-26}$$

$$\approx 0.923 \qquad \therefore \left[m < 1 \right]$$

from A and B,

$$dx = x_1 - x_0 = 16 - (-10) = 26$$

$$dy = y_1 - y_0 = 17 - (-7) = 24$$

: We know,
$$d = 2dy - dz = 2 \cdot (24) - 26$$

	Nows	(110	M. Oi	'ant of an	
			7	NE/E	d updating	pixel
1		-7		NE	d = d + 2dy - 2dz $= 18$	(-10, -7)
2	-9	-6	18	NE	d = d + 2dy - 2dx = 18+ (-4) = 14	(-9, -6)
	-8			NE	d = d + 2dy - 2dz $= 14 + (-4) = 10$	(-8,-5)
	- 7			NE	d = d + 2dy - 2dx = 10+(-4) = 6	(-7,-4)
	-6	-		NE	d = d + 2dy - 2dx = $6 + (-4) = 2$	(-6,-3)
	-5	1	1	NE	d = d + 2dy - 2dx = $2 + (-4) = -2$	(-5,-2)
7	- 4 .	-1	-2	E d	d= d+2dy = -2+48 = 46	(-4,- 1)
8	- 3	`-1	46	NE	d = d + 2dy - 2dx = 46 + (-4) = 42	(-3,-1)
9	-2	0	42	NE	d = d + 2dy - 2dx $= 42 + (-4) = 38$	(-2.0)
,	-1	1	38	NE	d = d+2dy - 2dx = $38+(-4) = 34$	(-1,1)
	0.11.9					

ine first 10 pixels A got from the given line segment A (16,17) to B (-10,-7) using the Midpoint line dreawing algorithm are:

$$(-10, -7),$$
 $(-9, -6),$
 $(-8, -5),$
 $(-7, -4),$
 $(-6, -3),$
 $(-5, -2),$
 $(-4, -1),$
 $(-3, -1),$
 $(-2, 0)$ &

(-1,1)

= testingic (161, 121)

(Ame)

Steps delarmination

P. T.O.]

Am. to the g. NO-01(b)

Given two endpoints,

$$A(2,4) \rightarrow (\chi_1, \chi_1)$$

$$B(10,5) \rightarrow (\chi_2, \chi_2)$$

Now,

$$dx = x_2 - x_1$$
= 10 - 2 = 8
$$dy = y_2 - y_1$$
= 5 - 4 = 1

Now, $A(2,4) \rightarrow (\alpha_1, \beta_1)$ $B(10,5) \rightarrow (\alpha_2, \beta_2)$ $\gamma_{K+1} = \gamma_K + 1$ $\gamma_{K+1} = \gamma_K + m$

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{dy}{dx}$$

$$= \frac{1}{8}$$

$$= 0.125$$

:-1(m < 1

using DDA Algorethm:

Increment Calculation
$$\Rightarrow \alpha_{inc} = \frac{d\alpha}{Steps} = \frac{8}{8} = 1$$

$$\forall_{inc} = \frac{dy}{Steps} = \frac{1}{8} = 0.125$$

DDA Algorithm Table:

& cwount	8 cwarent	y (round off)	Pixel
2.000	4.000	4	(2,4)
2+1 = 3.000	4.000+0.125=4.125	4	(3,4)
3.000+1=4.000	4-125+0-125=4-250	and kodpion	(4,4)
4.000 +1= 5.000	4·250+ 0·125 = 4· 375	4	(5,4)
5.000+1=6.000	4·375+0·125 = 4·500	5	(6,5)
6 •000+1= 7 • 000	4·500+0·125 = 4·625	also (Oast)	(7,5)
7.000+1=8.000	4·625+0·125 = 4·750	5. choig 00	(8,5)
8.000+1=9.000	4.750 + 0.125 = 4.875	5	(9,5)
9.000+1=10.000	4·875+0·125 = 5·000	5	(10,5)

: All the pixels points for given two endpoints

A (2,4) and B (10,5) using DDA Algorithm

are:

(2,4),
(3,4),
(4,4),
(5,4),

(7,5), (8,5)

(9,5), &

(10,5)

(Ams)

Am. to the g. NO-02(a)

We Know,

Total pixels

= Horazontal Resolution

X Vertical Resolution

=(2340 x 1080) pixels

= 2527200 pixels.

Giveno

Resolution = 2340 x 1080

pixels

Frame rate = 67 fps

GIPU Speed = 82000

pixel/ms

(Am:)

Am. to the S. NO-02(6)

ela We know, usuje not elning about out III.

Time perc ficame = 1 Frame Rate

= 0.014925 seconds

= 0.014925 x 1000 milliseconds

= 14.925 milliseconds

Am. to the g. NO - 02(C)

We Know,

Time needed by GIPU to render one frame,

Pixels Perc Milliseconds

= 2527200

= 30. 8195122 ms

≈ 30.82 ms

from (b),

We get,

available time = 14.925 ms

but here, the GIPU needs = 30.82 ms

: 30.82 ms > 14.925 ms

.: No, the GIPU cannot render one entire frame within the required time to maintain 67 fps.

(Ams)