\$3.14 Exercícios

Seção 3.1

Calcular a partir da tabela de $y = \operatorname{sen}(x)$

Assim, uma melhor aproximação é $\psi \approx 11,7418$. De fato, f(11,7418) = -0,0704. Repetindo

mais uma vez o processo, tem-se

11.8068

x = -7.0594y = 11.5000

r = 11.7418

11.7418 11.8068

y = 11.5000

r = 11.7440

-0.0704

x = -7.0594

		_	
y	0,2955	0,3894	0,4794
x	6,0	0,4	0,5

os valores de

 $3.1. P_1(0,33).$

 $3.2. P_2(0,33)$.

3.3. $P_1(0,38)$.

3.4. P₂(0,38).

O robusto e eficiente método de van Wijngaarden-Dekker-Brent para cálculo de raiz de equação, visto na Seção 6.4.2, é baseado em interpolação inversa quadrática (ver Exem-

plo 6.29, na página 306).

Usando a interpolação inversa quadrática foi possível obter as coordenadas (11,8068; 2,1426), (11,7418; -0,0704) e (11,7440; 0,0023), que cada vez mais se aproximam da raiz $(\psi \ f(\psi))$.

Análise dos resultados

Esta é, sem dúvida, a melhor das três aproximações, visto que f(11,7440) = 0,0023.

3.5. Comparar cada valor interpolado acima com o resultado exato.

Seção 3.2

Seja a tabela

_				
y	0,8415	1,2526	1,6858	1,8186
x	1,0	1,3	1,7	2,0
7.				
	;			
		- 2		-3

Calcular L₁(1,1).

3.7. Avaliar $L_2(1,1)$ por (3.5).

3.8. Calcular $L_2(1,1)$ por (3.6).

9. Estimar $L_3(1,2)$.

3.10. Implementar o algoritmo do polinômio de lagrange apresentado na Figura 3.2, utilizando qualquer linguagem de programação, e resolver se Exercícios 3.8–3.9 por meio do programa.

Seção 3.3

Considere a tabela

2,0 0,9803 2,2 1,1695 2,4 1,3563 2,5 1,4488 2,7 1,6321 2,7 1,6321 2,9 1,8131							
2,0 2,4 2,4 2,5 2,7 2,7	â	0,9803	1,1695	1,3563	1,4488	1,6321	1,8131
	3	2,0	2,2	2,4	2,2	2,2	2,9

3.11. Calcular $P_1(2,1), P_2(2,1)$ e $P_3(2,1)$ por intermédio de (3.10).

3.12. Comparar os três resultados acima com o valor exato f(2,1)=1,0752.

3.13. Implementar, usando qualquer linguagem de programação, o algoritmo do polinômio de Newton dado na Figura 3.3.

3.14. Resolver o Exercício 3.11 usando o programa escrito no Exercício 3.13.

3.15. Mostrar que o polinômio $P_1(x)$ de Newton é igual ao $L_1(x)$ de Lagrange.

Seção 3.4

Seja a tabela

		٠.		
y	0,3693	0,5137	0,6732	0,8424
x	2,1	2,2	2,3	2,4

3.16. Construir a tabela de diferenças finitas ascendentes e a de diferenças divididas e verificar a relação (3.11).

3.17. Calcular $P_1(2,15)$, $P_2(2,15)$ e $P_3(2,15)$ por meio de (3.12) e comparar com o resultado exato f(2,15)=0,4393.

3.18. Implementar o algoritmo do polinômio de Gregory-Newton mostrado na Figura 3.4 em qualquer linguagem de programação.