PHYS 410 Homework 2

Gavin Pringle, 56401938

October 24, 2024

Introduction

Review of Theory

Numerical Approach

Implementation

Results

Conclusions

Appendix A - rk4step.m Code

```
_{1} % Problem 1 - Single Fourth Order Runge-Kutta Step
  % Function that computes a single fourth order Runge-Kutta Step.
  %
4
  % Inputs
  %
                   Function handle for right hand sides of ODEs (returns
           fcn:
  %
                   length-n column vector).
  %
           t0:
                   Initial value of independent variable.
  %
                   Time step.
           dt:
  %
                   Initial values (length-n column vector).
           y0:
10
  %
11
  % Output
12
                   Final values (length—n column vector)
13
           yout:
   function yout = rk4step(fcn, t0, dt, y0)
14
      % Compute terms in RK step
15
       f0 = fcn(t0, y0);
16
       f1 = fcn(t0 + dt/2, y0 + (dt/2)*f0);
17
       f2 = fcn(t0 + dt/2, y0 + (dt/2)*f1);
18
       f3 = fcn(t0 + dt, y0 + dt*f2);
       % Add terms to compute full RK step
20
       yout = y0 + (dt/6)*(f0 + 2*f1 + 2*f2 + f3);
21
  _{
m end}
22
```

Appendix B - trk4step.m Code

```
‰ Problem 1 − Single Fourth Order Runge-Kutta Step
  % Function that computes a single fourth order Runge-Kutta Step.
  %
4
  % Inputs
  %
                   Function handle for right hand sides of ODEs (returns
           fcn:
  %
                   length-n column vector).
  %
           t0:
                   Initial value of independent variable.
  %
           dt:
                   Time step.
  %
           y0:
                   Initial values (length-n column vector).
10
  %
11
  % Output
12
                   Final values (length—n column vector)
13
           yout:
   function yout = rk4step(fcn, t0, dt, y0)
14
      % Compute terms in RK step
15
       f0 = fcn(t0, y0);
16
       f1 = fcn(t0 + dt/2, y0 + (dt/2)*f0);
17
       f2 = fcn(t0 + dt/2, y0 + (dt/2)*f1);
18
       f3 = fcn(t0 + dt, y0 + dt*f2);
       % Add terms to compute full RK step
20
       yout = y0 + (dt/6)*(f0 + 2*f1 + 2*f2 + f3);
21
  _{
m end}
22
```