QUÈ HEM FET FINS ARA?

El darrer que hem treballat és teoria de conjunts fins a conjunt de les parts.

CLASSE D'AVUI 29/10/2020

Continuem amb la teoria de conjunts.

EX.: (43) Demostreu que $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$.

Demostrem les dues inclusions:

- \subseteq : $\operatorname{Si} X \in \mathcal{P}(A \cap B) \Rightarrow X \subseteq A \cap B \Rightarrow X \subseteq A \mid \exists X \subseteq B \Rightarrow X \in \mathcal{P}(A) \mid X \in \mathcal{P}(B) \Rightarrow X \in \mathcal{P}(A) \cap \mathcal{P}(B)$
- \supseteq : $\operatorname{si} X \in \mathcal{P}(A) \cap \mathcal{P}(B) \Rightarrow X \in \mathcal{P}(A) \ i \ X \in \mathcal{P}(B) \Rightarrow X \subseteq A \ i \ X \subseteq B \Rightarrow X \subseteq A \cap B \Rightarrow X \in \mathcal{P}(A \cap B)$

A posteriori veiem que en el fons les dues inclusions es poden demostrar a la vegada perquè es poden canviar els ⇒ per ⇔.

EX.: (44) Demostreu que $X \in \mathcal{P}(A), Y \in \mathcal{P}(B) \Rightarrow X \cap Y \in \mathcal{P}(A \cap B)$.

Suposem que $X \in \mathcal{P}(A), Y \in \mathcal{P}(B)$ (o sigui $X \subseteq A, Y \subseteq B$) i ara hem de justificar que és cert $X \cap Y \in \mathcal{P}(A \cap B)$. Però això és trivial perquè sabem que $X \subseteq A, Y \subseteq B$ i llavors $X \cap Y \subseteq A \cap B \Rightarrow X \cap Y \in \mathcal{P}(A \cap B)$ com volíem demostrar.

El darrer concepte que tractarem de teoria de conjunts és el de parella ordenada i producte cartesià:

DEF.: Siguin dos conjunts *A* i *B* anomenem:

- la parella ordenada formada per $a \in A$ i $b \in B$ és el parell (a,b) caracteritzades (a,b)=(a',b') si i només si a=a' i b=b' (no és una definició molt formal)
- el producte cartesià del conjunt A pel conjunt B és per definició $A \times B = \{(x,y)|x \in A,y \in B\}$

EX.: Calculeu
$$\{1,2,3,4\} \times \{a,b\}$$
. $\{1,2,3,4\} \times \{a,b\} = \{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b),(4,a),(4,b)\}$

Com a propietats importants a destacar del producte cartesià tenim:

PROP.: Sigui *A* un conjunt. Aleshores:

- **1**. $A \times \emptyset = \emptyset, \emptyset \times A = \emptyset$
- **2**. $A \times (B \cap C) = (A \times B) \cap (A \times C)$
- **3**. $A \times (B \cup C) = (A \times B) \cup (A \times C)$
- $\mathbf{4.} \ \ A \times \ (B-C) = (A \times B) (A \times C)$
- **5**. $|A \times B| = |A| \cdot |B|$

DEM.: (56) Demostrem 1: s'ha de veure que $A \times \emptyset \supseteq \emptyset$ però això és cert sempre; i també s'ha de veure $A \times \emptyset \subseteq ???$ \emptyset i això és cert perquè si $(x,y) \in A \times \emptyset$ arribarem a una contradicció: $(x,y) \in A \times \emptyset \Rightarrow x \in A$ i $y \in \emptyset$ cosa impossible perquè el conjunt buit no té

elements. L'altre igualtat es raona de la mateixa manera.

Demostrem 2:

- $(a,b) \in A \times (B \cap C) \Leftrightarrow a \in A \mid b \in B \cap C \Leftrightarrow a \in A \mid b \in B \mid b \in C$
- $(a,b) \in (A \times B) \cap (A \times C) \Leftrightarrow (a,b) \in A \times B \mid (a,b) \in A \times C \Leftrightarrow a \in A \mid b \in B \mid a \in A \mid b \in C$

les dues expressions són equivalents i per tant com que ho hem demostrat amb ⇔ queda justificada la igualtat de conjunts.

EX.: (57) Demostreu que $A \times B = B \times A \Leftrightarrow A = B$ o $A = \emptyset$ o $B = \emptyset$.

- ullet \Rightarrow : suposem que és cert que $A \times B = B \times A$ i demostrem que A = B o $A = \varnothing$ o $B = \varnothing$; per demostrar això suposem que $A \neq \varnothing$ i $B \neq \varnothing$ i justifiquem que A = ??? B: sigui un $a \in A$ (sabem que n'hi ha perquè no és buit) i vull demostrar que $a \in B$; com que $B \neq \varnothing$ agafo un element qualsevol $b \in B$ i llavors puc afirmar que $(a,b) \in A \times B = B \times A \Rightarrow (a,b) \in B \times A \Rightarrow a \in B$ i $b \in A$, i en particular $a \in B$ just el que volia demostrar; per demostrar l'altre inclusió es procedeix de la mateixa manera.
- \Leftarrow : suposem que és cert que A=B o $A=\varnothing$ o $B=\varnothing$ i hem de deduir que $A\times B={}^{???}$ $B\times A$, per tant haurem d'analitzar tres cassos; si $A=\varnothing$ sabem per la propìetat 1 que $A\times B=A\times\varnothing=\varnothing=\varnothing\times A=B\times A$; si $B=\varnothing$ es raona de la mateixa manera; i si A=B encara és més fàcil perquè $A\times B=B\times B=B\times A$.

EX.: (65) Demostreu que $A \cap \emptyset = \emptyset$.

S'han de demostrar dues inclusions. En primer lloc $A \cap \varnothing \supseteq \varnothing$ que és cert sempre. En segon lloc demostrem $A \cap \varnothing \subseteq ??? \varnothing$ per la qual cosa suposo que tinc un $x \in A \cap \varnothing$ i arribem a una contradicció. Molt fàcil: si $x \in A \cap \varnothing$ llavors

 $x \in A$ i $x \in \emptyset$, en particular $x \in \emptyset$ cosa impossible.

EX.: (66) Demostreu que $A - A = \emptyset$.

S'han de demostrar dues inclusions. En primer lloc $A-A\supseteq\varnothing$ que és cert sempre. En segon lloc demostrem $A-A\subseteq^{???}\varnothing$ per la qual cosa suposo que tinc un $x\in A-A$ i arribem a una contradicció. Molt fàcil: si $x\in A-A$ llavors

 $x \in A$ i $x \notin A$, cosa impossible.

EX.: (67) Demostreu que $\emptyset - A = \emptyset$.

S'han de demostrar dues inclusions. En primer lloc $\emptyset - A \supseteq \emptyset$ que és cert sempre. En segon lloc demostrem $\emptyset - A \subseteq ??? \emptyset$ per la qual cosa suposo que tinc un $x \in \emptyset - A$ i arribem a una contradicció. Molt fàcil: si $x \in \emptyset - A$ llavors

 $x \in \emptyset$ i $x \notin A$, cosa impossible perquè el conjunt no pot tenir cap element.

EX.: (68) Demostreu que $(A - B) \cap B = \emptyset$.

S'han de demostrar dues inclusions. En primer lloc $(A-B)\cap B\supseteq\varnothing$ que és cert sempre. En segon lloc demostrem $(A-B)\cap B\subseteq^{???}\varnothing$ per la qual cosa suposo que tinc un $x\in (A-B)\cap B$ i arribem a una contradicció. Molt fàcil: si $x\in (A-B)\cap B$ llavors $x\in A$ i $x\notin B$ i $x\in B$, per tant, en particular $x\notin B$ i $x\in B$ cosa que és falsa.

EXERCICIS REPÀS INDUCCIÓ

EX.: Siguin els nombres reals $a_i \ge 0$ per a tot i. Demostreu per inducció que per a tot

$$n \ge 1$$
 tenim que $\prod_{i=1}^{n} (1 + a_i) \ge 1 + \sum_{i=1}^{n} a_i$.

Aquesta designaltat diu: $(1 + a_1)(1 + a_2)(1 + a_3)...(1 + a_n) \ge 1 + a_1 + a_2 + a_3 + ... + a_n$. Demostrem-la per inducció:

CAS n = 1: haig de demostrar que és cert $1 + a_1 \ge 1 + a_1$. És cert sempre.

CAS $n-1 \Rightarrow$ CAS n: sigui n > 1 suposem que

$$(1+a_1)(1+a_2)(1+a_3)...(1+a_{n-1}) \ge 1+a_1+a_2+a_3+...+a_{n-1}$$
 (HI)

i volem demostrar que es verifica

$$(1+a_1)(1+a_2)(1+a_3)...(1+a_n) \ge^{???} 1+a_1+a_2+a_3+...+a_n.$$

En efecte:

EX.: Demostreu per inducció que per a tot n > 0 tenim que $\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$.

Escrit d'una altra manera tenim que aquesta afirmació diu

$$1^3 + 2^3 + 3^3 + \ldots + n^3 = \frac{n^2(n+1)^2}{4}.$$

CAS n = 1: haig de demostrar que $1^3 = \frac{1^2(1+1)^2}{4}$; això és cert perquè $1^3 = 1$ i d'altra banda $\frac{1^2(1+1)^2}{4} = \frac{4}{4} = 1$.

CAS n-1 IMPLICA n: sigui n>1; suposem que és cert que $1^3 + 2^3 + 3^3 + ... + (n-1)^3 = \frac{(n-1)^2((n-1)+1)^2}{4}$ (HI) i volem demostrar que $1^3 + 2^3 + 3^3 + \ldots + n^3 = \frac{n^2(n+1)^2}{4}$. Per demostrar-ho calculem els dos membres per separat:

- $1^3 + 2^3 + 3^3 + \dots + n^3 = 1^3 + 2^3 + 3^3 + \dots + (n-1)^3 + n^3 = \frac{(n-1)^2((n-1)+1)^2}{4} + n^3$ = $\frac{(n-1)^2n^2+4n^3}{4} = \frac{n^2((n-1)^2+4n)}{4} = \frac{n^2(n^2+2n+1)}{4}$ $\frac{n^2(n+1)^2}{4} = \frac{n^2(n^2+2n+1)}{4}$

i ja hem vist que són iguals, per tant queda justificat.

EX.: Sigui el nombre real x. Demostreu per inducció que per a tot $n \ge 0$ tenim que $\sum_{i=0}^{n} x^{i} = \frac{x^{n+1}-1}{x-1}.$

EX.: Demostreu per inducció que per a tot $n \ge 0$ tenim que $7^{2n+1} + 1$ és un múltiple de 8.

EX.: Demostreu per inducció que per a tot $n \ge 0$ tenim que $3^{2n+2} + 2^{6n+1}$ és un múltiple de 11.

EX.: Demostreu per inducció que per a tot $n \ge 0$ tenim que $3^{2n+2} - 2^{n+1}$ és un múltiple de 7.

EX.: Demostreu per inducció per a tot $n \ge 1$:

$$\frac{1^2}{1\cdot 3} + \frac{2^2}{3\cdot 5} + \frac{3^2}{5\cdot 7} + \frac{4^2}{7\cdot 9} + \ldots + \frac{n^2}{(2n-1)(2n+1)} = \frac{n(n+1)}{2(2n+1)}.$$

EX.: Demostreu per inducció per a tot $n \ge 1$:

$$\sum_{i=1}^{n} i^5 + \sum_{i=1}^{n} i^7 = \frac{n^4(n+1)^4}{8}.$$

EX.: Demostreu per inducció per a tot $n \ge 1$:

$$\frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \frac{1}{3 \cdot 4 \cdot 5} + \frac{1}{4 \cdot 5 \cdot 6} + \dots + \frac{1}{n(n+1)(n+2)} = \frac{n(n+3)}{4(n+1)(n+2)}.$$

EX.: Demostreu per inducció per a tot $n \ge 3$ i per a tot $x \in \mathbb{R}^+ - \{0\}$: $(1+x)^n > 1 + nx + nx^2$.

EX.: Demostreu per inducció per a tot $n \ge 4$ tenim que $2^n \ge n^2$.