Valores

H

ALGA — Agrupamento IV (ECT, EET, EI)

Exame de Recurso

1 de fevereiro de 2016 — Duração: **2h30**

Nome							N.° M∈	ec	
Curso _					N°	Folhas su	olementai	res	
	que desiste						5101110111001		ssinatura)]
Questão	1	2	3	4	5	6	7	8	total
Cotação	45	20	30	15	30	35	16	9	200
Classif.	43	20	30	13	30	33	10		200
1. Esta p	orimeira ques	stão é consti	tuída por 5	alíneas de es	scolha múltij	pla.			
Atri	(pontos por pontos por pontos por	cada respo	sta em branc	eo e		E\C 0 0 000 1 -03 2 -06 3 -09 4 -12 5 -15	06 15 15 15 15 15 15 15 15 15 15 15 15 15	3 4 5 27 36 45 24 33 21
Cada	alínea tem ui	ma única op	ção correta	que deve ass	sinalar com	uma × no [corresp	ondente.	
(a)	Dadas as ma	trizes A e B	$8 \text{ ambas } n \times$	n tem-se					
(c)	$(A^{-1}B)$ $A^{T}B^{-1}$ $2A^{T}B^{T}$ O subespaço $\{(x, y, z]$ \mathbb{R}^{3} $\{(x, y, z]$ o plano o $\det(A - \det(A - \det(aI))$ $\det(AA)$	$= 2(BA)^T$ $\det \mathbb{R}^3 \text{ gerae}$ $) \in \mathbb{R}^3 : x - 1$ $) \in \mathbb{R}^3 : x - 2$ $\det \text{ equação } 2$ $\exists \text{ identidade}$ $\exists aI) = 0$ $\exists aI) = \det(AI)$ $\exists aI \in AI$	do pelos vet $+ y + z = 2$ $+ y = x$ $+ 2x + 2y + 2$ $= I, \text{ uma ma}$ $(A) - a$	$\{2z=3$ atriz A , amba	as $3 imes3$, e u	m escalar qu	alquer $a\in \mathbb{R}$		
(d)		oaço gerado	por a, b, c	d tem dime	nsão 4.	(1, -1, 0) e	d = (1, 2, 3)).	
				bespaço $F \subseteq$					
	Os vetor	$\operatorname{es} a, b \in c \operatorname{sa}$	ão linearme	nte independ	lentes.				
ĺ	Os vetor	es a e c form	nam uma ba	ase de \mathbb{R}^3 .					
(e)	Considere o								
						no \mathcal{P} é $(3,1)$			
						no \mathcal{P} é $(3, 1,$	3).		
				$\mathcal{B} = (X_1, X_2)$					
	A projeç	ão ortogona	ıl do vetor 2	X = (3, 1, 3)	sobre o plan	no \mathcal{P} é $(6,1,$	6).		

Nos exercícios 2, 3, 4, 5 e 6 seguintes considere as matrizes:

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ 3 & 2 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ a & 0 & 1 & b \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 1 - a & b - a \end{bmatrix}.$$

A matriz B é uma forma escalonada por linhas reduzida da matriz A. A matriz D é uma forma escalonada por linhas da matriz C=[M|Y], com $Y=(1,1,b)\in\mathbb{R}^3$. Nas matrizes C, D e M e no vetor Y, $a,b\in\mathbb{R}$ são parâmetros.

2	Considere	9	matriz	Λ

(a) Uma base para o espaço das colunas de A , $C(A)$, é

(b) O espaço nulo de
$$A, \mathcal{N}(A)$$
, é

(c) Indique
$$\dim \mathcal{C}(A) = \boxed{}$$
 e $\dim \mathcal{N}(A) = \boxed{}$

3. Considere o plano de equação geral
$$ax+z=b$$
, com $a,b\in\mathbb{R}$, e a reta de equações cartesianas $\begin{cases} x+y+z=1\\ x-y+z=1 \end{cases}$.

Note que a matriz D é uma forma escalonada por linhas da matriz C.

(a) Os valores de
$$a$$
 e b para os quais a reta e o plano são estritamente concorrentes são:

(b) Os valores de
$$a$$
 e b para os quais a reta e o plano são estritamente paralelos são:

(c) Indique uma equação da reta que passa no ponto
$$Q=(4,3,1)$$
 e é ortogonal ao plano $\mathcal P$ de equação $x+z=3$.

(d) Calcule
$$dist(Q, \mathcal{P})$$
, a distância do ponto $Q = (4, 3, 1)$ ao plano \mathcal{P} de equação $x + z = 3$.

^{4.} A matriz B^TB é invertível? Justifique detalhadamente e sem efetuar o produto das matrizes.

(a)	Justifique que o espaço nulo de B , $\mathcal{N}(B)$, é subespaço próprio de B .
(b)	Indique <u>o subespaço próprio</u> associado ao valor próprio 1:
(c)	Indique o conjunto de <u>vetores próprios</u> associados ao valor próprio 0:
(d)	A matriz B é diagonalizável? Justifique.
(e)	Determine, se possível, a matriz D diagonal e a matriz P diagonalizante de A tais que $P^{-1}AP=D$:
	$D=egin{bmatrix} egin{bmatrix} e$
6. Cons	sidere a matriz A , dada anteriormente, e a transformação linear $\phi: \mathbb{R}^3 \to \mathbb{R}^3$ dada por $\phi(X) = AX$ para todos $X \in \mathbb{R}^3$.
(a)	Determine a imagem de ϕ , $\operatorname{im}(\phi)$, e uma sua base.
(b)	ϕ é sobrejetiva? Justifique.
(c)	Indique o núcleo de ϕ , $\ker(\phi)$, e uma sua base.
(d)	ϕ é injetiva? Justifique.

5. Considere a matriz B. Os valores próprios da matriz B são 0 e 1.

(e) Encontre a matriz G representativa da transformação ϕ relativamente à base $\mathcal{S} = \big((1,1,0),(1,1,1),(1,0,0)\big)$.
(f) Usanda a matriz C (ahtida na alínea antariar) galaula d(1, 1, 1)
(f) Usando a matriz G (obtida na alínea anterior), calcule $\phi(1,1,1)$.
7. Usando o método de eliminação de Gauss, ou de Gauss-Jordan, e indicando todas as passagens, resolva o sistema de $2x_1 + 2x_2 + 3x_3 = 4$
equações lineares $\begin{cases} 2x_1 - x_2 + 3x_3 = 1 \end{cases}$. Resolva o sistema numa folha suplementar, mas explicite, no espaço
$\begin{cases} 4x_1 + x_2 + 6x_3 = 5 \\ \text{reservado, o seu conjunto de soluções.} \end{cases}$
O conjunto de soluções do sistema é
8. Identifique, escrevendo A, B e C na caixa correspondente, os conjuntos definidos pelas seguintes equações.
$A: \ x^2 + 2x = 2y^2 + 4y + z^2 \ em \ \mathbb{R}^3; \qquad B: \ x^2 - 6x = -y^2 - z^2 \ em \ \mathbb{R}^3; \qquad C: \ x^2 - 4x = y^2 + 4y + z \ em \ \mathbb{R}^3.$
elipse hipérbole parábola cónica degenerada quádrica degenerada
elipsóide hipérbolóide de 1 ou 2 folhas parabolóide elíptico ou hiperbólico