2020~ 2021 学年第二学期高等数学[(2)机电]

期末A卷参考答案及评分标准

一、选择题(本大题共10小题,每小题3分,总计30分)

					D				
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)

二、填空题(本大题共5小题,每小题2分,总计10分)

(11)	(12)	(13)	(14)	(15)
$y = x^2 - \sin x + x + 1$	2	1	$\int_0^1 dx \int_{x^2}^1 f(x, y) dy$	$\sum_{n=0}^{\infty} (-1)^n \frac{1}{3^{n+1}} (x-3)^n$

三、解答题(本大题共6小题,每小题10分,总计60分)

16、解: 设
$$F(x,y,z) = 2xy - xe^z - 3$$
,则 $F_x = 2y - e^z$, $F_y = 2x$, $F_z = -xe^z$

由方程 $2xy - xe^z = 3$ 得 x = -1, y = -1 时 z = 0

(1)
$$\frac{\partial z}{\partial x}\Big|_{\substack{x=-1\\y=-1}} = -\frac{F_x}{F_z}\Big|_{\substack{x=-1\\y=-1}} = 3, \quad \frac{\partial z}{\partial y}\Big|_{\substack{x=-1\\y=-1}} = -\frac{F_y}{F_z}\Big|_{\substack{x=-1\\y=-1}} = 2$$

故
$$dz|_{(-1,-1)} = 3dx + 2dy$$
 (5 分)

(2)
$$\vec{n}|_{(-1,-1,1)} = (F_x, F_y, F_z)|_{(-1,-1,1)} = (-3,-2,1)$$

所以在点(-1,-1,0)处的切平面方程为: 3x+2y-z+5=0

法线方程为:
$$\frac{x+1}{-3} = \frac{y+1}{-2} = \frac{z}{1}$$
 (5 分)

17、解:
$$\Leftrightarrow u = e^{2x+y}$$
, 即 $z = f(u)$, 则 $\frac{\partial z}{\partial x} = 2e^{2x+y}f'(u)$, $\frac{\partial z}{\partial y} = e^{2x+y}f'(u)$

曲
$$\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} = e^{2x+y}(z+1)$$
 得 $2e^{2x+y}f'(u) - e^{2x+y}f'(u) = e^{2x+y}(z+1)$

即
$$f'(u) - f(u) = 1$$
(5分)

而 f'(u) - f(u) = 1 为一阶线性微分方程, 其中 P(u) = -1, Q(u) = 1,

$$f(u) = e^{-\int P(u)du} (\int Q(u)e^{\int P(u)dx}du + C) = e^{-\int (-1)dx} (\int e^{\int (-1)du}du + C) = -1 + Ce^{-u}$$

由 f(0) = 0 得 C = 1. 于是函数 f(u) 的表达式为

$$f(u) = e^{u} - 1$$
 (5 $\%$)

18、解: $令 P = e^x \sin y - y^2, Q = e^x \cos y - x^3$,则

$$\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = e^x \cos y - 3x^2 - (e^x \cos y - 2y) = 2y - 3x^2$$

于是,由格林公式有

$$I = \iint_{x^2 + y^2 \le 2} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \iint_{x^2 + y^2 \le 2} (2y - 3x^2) dx dy \qquad \dots (5 \%)$$

$$= \iint_{x^2 + y^2 \le 2} 2y dx dy - \iint_{x^2 + y^2 \le 2} 3x^2 dx dy = 0 - \frac{3}{2} \iint_{x^2 + y^2 \le 2} (x^2 + y^2) dx dy$$

$$= -\frac{3}{2} \int_0^{2\pi} d\theta \int_0^{\sqrt{2}} \rho^3 d\rho = -3\pi \qquad \dots (5 \%)$$

19、解: 令 $P = z^2 + x$, Q = 0, R = -z, Ω 是曲面 $z = \frac{1}{2}(x^2 + y^2)$ 与平面 z = 2 围成的闭区域.

 Σ_1 是平面 z=2 ($x^2+y^2\leq 4$)的部分的上侧,由于 $\Sigma+\Sigma_1$ 取的是 Ω 的整个边界曲面的外侧,故由高斯公式有

$$I = \iint_{\Sigma} (z^{2} + x) dy dz - z dx dy = \iint_{\Sigma + \Sigma_{1}} (z^{2} + x) dy dz - z dx dy - \iint_{\Sigma_{1}} (z^{2} + x) dy dz - z dx dy$$

$$= \iiint_{\Omega} (\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}) dv - \iint_{\Sigma_{1}} (z^{2} + x) dy dz + \iint_{\Sigma_{1}} z dx dy$$

$$= \iiint_{\Omega} (1 + 0 - 1) dv - 0 + \iint_{x^{2} + y^{2} \le 4} 2 dx dy$$

$$= 8\pi \qquad \dots (10 / \pi)$$

20、解: (1) 令
$$a_n = \frac{n}{2^{n-1}}$$
,
$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{2} \lim_{n \to \infty} \frac{n+1}{n} = \frac{1}{2}$$
, 所以收敛半径 $R = 2$

当
$$x = 2$$
 时,级数 $\sum_{n=1}^{\infty} \frac{n}{2^{n-1}} x^n = \sum_{n=1}^{\infty} 2n$ 发散;
当 $x = -2$ 时,级数 $\sum_{n=1}^{\infty} \frac{n}{2^{n-1}} x^n = \sum_{n=1}^{\infty} (-1)^n 2n$ 发散;
所以幂级数 $\sum_{n=1}^{\infty} \frac{1}{n2^{n-1}} x^n$ 收敛域为 $(-2,2)$ (5分)

(2) 设和函数为s(x), 即 $s(x) = \sum_{n=1}^{\infty} \frac{n}{2^{n-1}} x^n$, $x \in (-2,2)$

由逐项求导得:

$$s(x) = \sum_{n=1}^{\infty} \frac{n}{2^{n-1}} x^n = \sum_{n=1}^{\infty} \frac{x}{2^{n-1}} n x^{n-1} = \sum_{n=1}^{\infty} \frac{x}{2^{n-1}} (x^n)' = \sum_{n=1}^{\infty} 2x (\frac{x^n}{2^n})' = 2x \left[\sum_{n=1}^{\infty} \left(\frac{x}{2} \right)^n \right]'$$

$$= 2x \left(\frac{\frac{x}{2}}{1 - \frac{x}{2}} \right)' = 2x \left(\frac{x}{2 - x} \right)' = \frac{4x}{(2 - x)^2},$$

即所求和函数为 $s(x) = \frac{4x}{(2-x)^2}, -2 < x < 2$ (5 分)

21、解: 先求驻点,令
$$\begin{cases} f_x(x,y) = e^{2y}(2x+2) = 0 \\ f_y(x,y) = 2e^{2y}(x^2+2x+y) + e^{2y} = 0 \end{cases}$$

解得
$$\begin{cases} x = -1 \\ y = \frac{1}{2} \end{cases}$$
 即驻点为 $(-1, \frac{1}{2})$

为了判断这个驻点是否为极值点, 求二阶偏导数

$$\begin{cases} f_{xx}(x,y) = 2e^{2y} \\ f_{xy}(x,y) = 4e^{2y}(x+1) \\ f_{yy}(x,y) = 4e^{2y}(x^2 + 2x + y + 1) \end{cases}$$
 (5 %)

$$\text{ for } A = f_{xx}(-1, \frac{1}{2}) = 2e, \ B = f_{xy}(-1, \frac{1}{2}) = 0, \ C = f_{yy}(-1, \frac{1}{2}) = 2e$$

因为
$$A = 2e > 0$$
, $AC - B^2 = 4e^2 > 0$,

所以
$$(-1,\frac{1}{2})$$
是极小值点,极小值为 $f(-1,\frac{1}{2}) = -\frac{e}{2}$ (5分)