MATH 308 Assignment 8:

Exercises 4.4

Nakul Joshi

March 10, 2014

1

Population median: 5.5 Mean of sample medians: 5.7

Mean of minimums: 4.8

6

From the CLT, the sample mean is approximately distributed normally with $\mu_{\overline{X}} = \mu = 48$ and $\sigma_{\overline{X}}^2 = \frac{\sigma^2}{n} = 9^2/20 = 2.7$. Thus the probability of the sample mean being greater than 51 is 1-pnorm(51,mean=48,sd=sqrt(2.7)) which evaluates to $\approx 3\%$.

9

The mean μ of the distribution is $\int_2^6 f(x) \, \mathrm{d}x = 4$. The variance σ^2 is $\int_2^6 (x-\mu)^2 f(x) \, \mathrm{d}x = 2.4$. By CLT, the distribution of the sample mean \overline{X} is approximated by $\mathcal{N}(\mu, \frac{\sigma^2}{n}) = \mathcal{N}(4, 3/305)$. Thus, $P(\overline{X} >= 4.2)$ is 1-pnorm(4.2,mean=4,sd=sqrt(2.4)), which evaluates to $\approx 2\%$.

10

By CLT, the number of people with degrees is approximately normally dustributed with $\mu = np$ and $\sigma^2 = np(1-p)$. Thus, the probability of between 220 and 230 people in the sample having a degree is:

```
n=800
p=0.286
m=n*p
sd=sqrt(n*p*(1-p))
pn=
pnorm(230+0.5,m,sd)
-pnorm(220-0.5,m,sd)
```

Which evaluates to 0.3194833. The exact probability is given by

which evaluates to 0.2959644. The error in the approximation is (pn-pb)/pb which evaluates to $\approx 8\%$.

15

By definition, $W \sim \chi_n^2$. The sampling distributions of W_n for $n \in \{2, 3, 4, 5\}$ are shown in the accompanying figure. The means and variances are tabulated as:

n	μ	σ^2
2	2.02	4.07
3	2.99	5.82
4	3.98	7.80
5	4.99	10.01

From the table, we can see that $\mu = n$ and $\sigma^2 = 2n$.

density.default(x = sample)

18

a)

The sampling distribution is shown below:

density.default(x = means)

b)

The mean from sample is 3.00 with standard error 0.55. From CLT, we expect $\mu_{\overline{X}} = \mu = (1/3)^{-1} = 3$ and $\sigma_{\overline{X}} = \sigma/\sqrt{n} = (1/3)^{-1}/\sqrt{30} \approx 0.55$, giving a difference of < 1%.

c)

We get P = 0.83.

d)

We get P = 0.82, which is only $\approx 1\%$ off.

20

a) Distribution of Sample Minimum

$$P(X_{\min} \ge x) = \prod_{i=1}^{n} P(X_i \ge x)$$

$$\implies 1 - F_{\min}(x) = (1 - F(x))^n$$

$$\implies -f_{\min}(x) = n(1 - F(x))^{n-1}(-f(x))$$

$$\implies f_{\min}(x) = n(1 - F(x))^{n-1} f(x) \quad \Box$$

b) Distribution of Sample Maximum

$$P(X_{\max} \le x) = \prod_{i=1}^{n} P(X_i \le x)$$

$$\Longrightarrow F_{\max}(x) = F^n(x)$$

$$\Longrightarrow f_{\max}(x) = nF^{n-1}(x)f(x) \quad \Box$$

22

a)

 $F(x) = \int_1^x \frac{2}{x^2} dx = 2 - 2/x$, so from previous result $f_{\text{max}} = 2\left(2 - \frac{2}{x}\right)^{2-1} \frac{2}{x^2} = 2\left(2 - \frac{2}{x}\right) \frac{2}{x^2}$.

b)

 $E_{X_{\text{max}}} = \int_{1}^{2} x f_{\text{max}}(x) \, \mathrm{d}x \approx 1.55.$

25

$$f_{X_1+X_2}(x) = P(X_1 + X_2 = x)$$

$$= \sum_{i=0}^{x} \left(\frac{\lambda_1^i}{i!} e^{-\lambda_1} \frac{\lambda_2^{x-i}}{(x-i)!} e^{-\lambda_2} \right)$$

$$= e^{-(\lambda_1+\lambda_2)} \sum_{i=0}^{x} \frac{\lambda_1^i \lambda_2^{x-i}}{i!(x-i)!}$$

$$= \frac{e^{-(\lambda_1+\lambda_2)}}{x!} \sum_{i=0}^{x} \left(\frac{x!}{i!(x-i)!} \lambda_1^i \lambda_2^{x-i} \right)$$

$$= \frac{e^{-(\lambda_1+\lambda_2)}}{x!} \sum_{i=0}^{x} \left(\binom{x}{i} \lambda_1^i \lambda_2^{x-i} \right)$$

$$= \frac{e^{-(\lambda_1+\lambda_2)}}{x!} (\lambda_1 + \lambda_2)^x$$

$$= f_Z(x), \text{ where } Z \sim \mathcal{P}(\lambda_1 + \lambda_2)$$

$$\implies X \sim \mathcal{P}\left(\sum_{i=1}^{10} \lambda_i\right)$$

$$\implies X \sim \mathcal{P}(30)$$

$$\implies f_X(x) = \frac{30^x}{x!}e^{30}$$

27 a)

The distribution seems quite close to normal.

b)

Theoretical mean $\mu_{\overline{X}} = \mu = 10.17$. Actual mean is 10.02. Difference is $\approx 1.5\%$.

c)

Theoretical s.e. $\sigma_{\overline{X}} = \frac{\sigma}{n} \sqrt{\frac{N-n}{N-1}} \approx 4.55$. Actual s.e. 4.56. Difference is < 1%.

 \mathbf{d}

The differences reduce with increasing n.

It can be seen from the plots below that the distribution of sample variances is approximately normal, and the fit to normal improves with sample size.

