\mathbf{FIG}_{-1}

FIG_2

FIG_3A

FIG_38

FIG_3C

FIG_3D

FIG_SA

Figure 6

Figure 7

PIE_7/

FIG_78

FIG_7C

Figure 8: Prior Art

FIG_88

F16_10

- All Dins. (MM). - All Dins. Aptrox.

FIG_10A

F1G_108

FIG_10C

FIG_ IIA

FIG_118

Tensile Comparison: 68 gm/m2 Entangled and Patterned -PP Staple Fiber vs. PP Filament Web

וגו
۲
ω
< T
}

				1.00 Per 180									2012	A		であまだれ				
Daneily	g/cm^3	-	0.14	2	900	90.0	0.17	0.08	90 0	0.05	0.07		Edward Land	0.15	0.52	4.0	0.05	900	0 18	90.0
[40 00	51.00		117 00		120.00							37.00	20.00		103.00		111 00	
Elongation	8	58.00	52.00		118.00		137.00 120.00					1		39.00	33.00		127.00		128.00	
sie,#	₩	200	2.00		13.00	96.	14.00	9.60	4.00	8.20	5.80	ţ.f		10.00	8.00		5.00	2.35	8.00	3.80
Strip Ten	8	9	6.0		4.00	2.80	9.00	5.80	2.10	2.40	4.37	ï		3.00	3.00		1.00	1.01	3.00	2.90
Abrasion Strip Tensie, #	cycles	8,8	18.00		40.00		5.00							38.00	10.00		28.00		5.00	
	QW	9.00	15.00		25.00		55.00							9.00	24.00		1.00		16.00	
Trap Tear	9	3.00	7.00		16.00		34.00							4.00	14.00	T I	2.00		9.00	
Grab Tensile	QW	22.00	37.00	-	50.00		116.00					1	Santh.	47.00	51.00		20.00		56.00	
Grab	8	10.00	25.00		29.00		81.00							24.00	32.00	i.	10.00	_	42.00	
Fiber	interlock	99.6	19.15	· ·	46.29	45.22	40.42	41.30	2.3	35.13	19.70				32.46		17.42	21.09	22.21	25.93
ment	frequency	45.43	52.03		34.40	11.86	9.72	9.91	12.46	13.38	13.91	i	4	103.89	26.38		19.07	15.33	17.45	19.54
 Entanglement	completeness frequency	20.	0.98		0.85	1.17	1.18	1.10	1.18	1.10	1.12		*****************************	96.0	0.79		0.58	1.15	98.0	1.13
total energy	6.00 HP-hr/lb.			,	1.10	1.60	0.70	1.90	0.70	1.90	0.50									
					1600 1600		1600		1600		1700						1600 1600		1600	
Se	2.0	L			1600		160		1600 1600		1600 1700 1700 1700 1700	 			_	77			1600 1600 1600	
et pressures	3.00				8		160	_	160		1700	,	-=				8		160	
	0 0 0	L			1200 1200 800		1600 1600		1600 1600		0 170				_		120		1200	\dashv
	1.00 2.00	L	_												_		8		8	
	.	-			<u>8</u>		5		5		100	,			_	****	5		5	
water jets process/pattern					# llor & padtat	Apex 33x28	flatbed & roll ≱	tricot sleeve	flatbed & roll *	tricot sleeve	flatbed & roll 🖈						flatbed & roll *	Apex 33x28	flatbed & roll *	tricot sleeve
denier		2.20	2.20		1.67	1.67	1.67	1.67	3.00	3.00	3.00			1.67	1.67		5.20	2.20	2.20	2.20
	weight	34.00	68.00		8.8	8.8	68.00	08.00	88.00	88.00	100.00	; ;		8.8	68.00		¥ 8	8	88.00	08.00
type		TBCW	TBCW		Spinlace	Spinlace	Spinlace	Spinlace	Spinlace	Spinlace	Spinlace			88	SB		HET	ÆT	ᄪ	ÆT
٥		3	~		106	401A	103	402A	102	402C	302	14		 ≻	2	14	201	401B	204	402B

notes:

Spinlace = water jet entangled continuous filament webs
Spinlace = water jet entangled continuous filament webs
SB = thermally point bonde spunbond
HET = hydroentangled carded staple fiber webs