Exercise 3

$$(2, 0) \rightarrow I = 0$$
 und $j = 2$ und $I = 2$ und $j = 1$

Some true dependencies here:

$$a[i + 2][j - 1] = b * a[i][j] + 4;$$

from lecture

The **dependence** direction vector $D(\vec{i}, \vec{j})$ is a vector of length n such that

The dependence direction vector
$$D(\vec{t}, \vec{j})$$

$$D(\vec{t}, \vec{j})_k = \begin{cases} "<" & if \left(d(\vec{t}, \vec{j})_k > 0\right) \\ "=" & if \left(d(\vec{t}, \vec{j})_k = 0\right) \\ ">" & if \left(d(\vec{t}, \vec{j})_k < 0\right) \end{cases}$$

$$\text{With } d(\vec{t}, \vec{j})_k = j_k - i_k$$

Dep	Source	Туре	Sink	Dist Vec	Dir Vec	Loop carried	Loop ind.	Dependence carried by
								loop
Dep1	a[i+2][j-	True	a[i][j]	(2,-1)	(<, >)	Х		i, j -loop
	1]	dependency						

 $A[i+2][j-1] \ which are actually being read later on: i in interval [0,4] \ and j in interval [1,4]$

	j=1	2	3	4
i = 0	A[2][0]	A[2][1]	A[2][2]	A[2][3]
1	A[3][0]	A[3][1]	A[3][2]	A[3][3]
2	A[4][0]	A[4][1]	A[4][2]	A[4][3]
3	A[5][0]	A[5][1]	A[5][2]	A[5][3]
4	A[6][0]	A[6][1]	A[6][2]	A[6][3]

The green statements

are not dependent and can be parallelized, the red ones can't.