BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI-HYDERABAD CAMPUS FIRST SEMESTER 2019-20

BIO G512: MOLECULAR MECHANISMS OF GENE EXPRESSION

Surprise Quiz 2 (Closed-	Book)	Date: 19-09-2019	Marks: 10	Duration: 20 Minutes
Name:				
Please circ	le or write the	e most appropriate	e answer (10 x 1	.=10 marks)
	The answers	are marked or writ	tten in bold fon	t
•	•	directionally from	a point of replic	ation initiation, which of
the following statement				
I. DNA replication of lea	_	-		
II. DNA replication of lag		•		
	_			on will not act as leading
strand for replication pr a) I and II only b	_	• •		All of the above
	•	-		
2. Which of the following	g statements	in general are true	?	
I. Gain-of-function muta	ition in a tumo	or suppressor gene	could lead to ca	ancer
II. Gain-of-function mut	ation in a prot	ooncogene gene c	ould lead to can	cer
III. Loss-of-function mut				cancer
IV. Loss-of-function mut		-		
a) I & III b) II & III	c) I & IV	d) II 8	₹ IV
3. Based on partial seq sequence?	uences given	which of the follo	owing CANNOT	be a 12 bp palindromic
a) GCCGCCG b) TAATAAT	c) ATTCATT	d) G(CGATTA
4. In creating 'Phosphor	nimics' amino	acid(I)	is replaced by a	amino acid(II)
Among the given pool o	f amino acids,	pick one amino ad	cid each for (I) a	nd (II).
Given amino acids are:	Tyrosine, Gluta	amate, Aspartate, S	Serine	
Answer: (I) Tyrosine or	(11) ((II) Glutamate or Aspartate		
5. Which of the followi	ng epigenetic	marks in general a	are associated v	with transcriptional gene
silencing in eukaryotes?				
I. Deacetylation II	. Cytosine met	thylation of promo	ters	
III. Specific Histone Lysir	ne methylatio	า		
a) I and II only b) II and III only	c) I and III o	nly d) Al	I the above
6. Known DNA polymera	ases have bee	n shown to possess	s which of the fo	ollowing activities?
I. 5' to 3' polymerase ac	tivity	I. 5' to 3' exonucle	ase activity	
III. 3' to 5' polymerase a	•		•	
a) I, II and III b) II, III and IV	c) I, II and I	v d) I, I	II and IV

which of the following I. Their son will receivable. Their daughter wild III. Both their son and IV. All children of the	ig is/are true for this cove one copy of the imp I receive one copy of tl I daughter will receive Fir daughter will receive	ouple? orinted G gene but not he imprinted G gene bu one copy of imprinted one copy of imprinted	ut not their son		
a) I and IV	contributing any impr b) II and IV	c) III and IV	d) III only		
a) The effect of an in:b) The effect of an in:c) The effect of an in:insulating	sulator may result in e	lencing of the gene whe xpression of the gene when the sene when the se	which it is insulating lencing of the gene which it is		
d) Insulator has no ef	fect on the expression	of the gene which it is	sinsulating		
9. Assume that DNA polymerase called DP1 is used to synthesize 5 Kb long DNA, similarly DP2 to to synthesize 10 Kb long DNA and DP3 to synthesize 15 Kb long DNA. The number of point mutations (base-pair substitutions) found for DP1, DP2 and DP3 were 5, 9 and 16, respectively. Then the correct ranking of the three polymerases based on their fidelity is:					
a) DP1>DP2>DP3	b) DP2>DP1>DP3	c) DP3>DP2>DP1	d) DP1=DP2=DP3		
10. Which of the follofar?	owing is correct about	DNA methylation base	ed on what has been known so		
II. Cytosine methylati III. Adenine methylat	on is more common ir ion is more common ir	eukaryotes than in pronger of the prokaryotes than in ender of the prokaryotes than in pronger of the prokaryotes than in pronger of the proper of the prope	ukaryotes ukaryotes		
a) I and III	b) I and IV	c) II and III	d) III and IV		