

Representing Numbers in a Computer (Continued)

Introduction to Computer Science

Module Code: 4CC509

Overview

- Last time we looked at how unsigned integers, signed integers and fixed-point numbers are stored.
- This week, we will look at an alternative (and more common) mechanism for storing decimal numbers.

Floating Point

We can represent any decimal number using a mantissa multiplied by 10 to the power of an exponent i.e.

mantissa * 10 exponent

Examples

42652.7	can be written as 4.26527 * 10 ⁴
4265.27	can be written as 4.26527 * 10 ³
426.527	can be written as 4.26527 * 10 ²

42.6527 can be written as 4.26527 * 10¹

4.26527 can be written as 4.26527 * 10°

426527 can be written as 4.26527 * 10⁵

Examples

0.426527	can be written	as 4.26527 * 10-1
J. : — J J — :		<u> </u>

0.0426527	can be written as 4.26527 *	10-2
0.0 120021	dan bo wintton at 1.20021	10

0.00426527 can be written as 4.26527 * 10⁻³

0.000426527 can be written as 4.26527 * 10⁻⁴

0.0000426527 can be written as 4.26527 * 10⁻⁵

0.00000426527 can be written as 4.26527 * 10⁻⁶

Floating Point

- A positive exponent shifts the decimal point to the right
- A negative exponent shifts the decimal point to the left

Floating Point in Binary

Floating point in binary works exactly the same as for decimal, except that we store numbers in the form:

mantissa * 2 exponent

IEEE 754

- IEEE 754 is an industry standard for representing floating-point numbers in computers.
- Officially adopted in 1985 and superseded in 2008 by IEEE 754-2008.
- The most widely used format for floating-point computation
- IEEE 754 defines both single and double precision representations (stored as 32-bit or 64-bit values).
- For those of you doing Programming 1, in C# you would represent these using the types *float* or *double*.

IEE 754

- Single-precision floating-point numbers in IEEE 754 format consist of three fields:
 - a sign bit,
 - a biased exponent (8 bits). The bias is 127.
 - a fraction (23 bits) and an implied '1' before the decimal point (the mantissa).

Source: http://en.wikipedia.org/wiki/IEEE_754-1985

Example

- => Number in binary = 1.01×2^{-3}
- => Number in binary = 0.00101
- => Number in decimal = 0.15625

Notes - The Mantissa

- Because of the implied '1' before the decimal point, the number represented by the fractional part f is actually 1 + f.
- This has the additional side effect of giving us a little bit more precision since we now have 24 bits in the mantissa, but only need 23 bits to represent it.

Notes - The Exponent

- The exponent is stored as a biased number, i.e. it is the actual exponent + 127.
- This means that we can store exponents in the range -126 to +127 as numbers in the range 1 to 254 and not have to worry about the sign.
- Storing the biased exponent before the mantissa means we can compare IEEE values as if they were signed integers.

Converting an IEEE 754-1985 value to Decimal

The decimal value is given by:

$$(1 - 2s) \times (1 + f) \times 2^{e-bias}$$

- where:
 - 1 2s is 1 or -1 depending on whether the sign bit is 0 or 1
 - bias = 127

Our Example From Last Week

The particular 4 bytes of memory contain the following values:

1000000	1011000	0000000	0000000
1	0	0	0

If we treat the contents of these 4 bytes as a floating point value:

Our Example

This gives a value of:

$$(1-2) \times (1 + .011) \times 2^{3-127}$$

- => -1.011 x 2 -124
- => 6.4652189 x 10⁻³⁸ (rounded)

Special Values

- The smallest and largest values for the exponent (00000000 and 11111111) are reserved for special values.
 - If the exponent is 0, the number stored represents zero
 - If the exponent is all 1 and the mantissa is all 0, then the value represents infinity (positive or negative depending on the sign bit)
 - If the exponent is all 1 and the mantissa contains a non-zero value, then the value stored is "Not a number" (or NaN).
 - Produced in error situations

Range of Single Precision Floating Point Values

- Just considering positive numbers:
 - The largest possible value (i.e. not a special value) is $(2 2^{-23}) \times 2^{127}$
 - The smallest positive non-zero number is 2-126
- By comparison, the largest unsigned integer that can be represented in 32 bits is 2³² – 1 and the smallest non-zero value is 1
- So we can represent a much larger range of numbers using floating point values than we can using integers that take up the same number of bits
- How can this be?

Finiteness

- The problem is that given 32 bits, we can only store 2³² numbers (approximately 4 billion), regardless of how we represent them
- Therefore, if we are representing a much larger range of numbers, then it means that there will be gaps in that range, i.e. there are some numbers in that range that we cannot represent
- This causes some real problems when we start doing floating point arithmetic.

Finiteness

- Problems:
 - Not all values in the range can be represented
 - Small roundoff errors can quickly accumulate with multiplication, resulting in big errors
 - Rounding errors can invalidate many basic arithmetic rules such as the associative law

i.e.
$$(x + y) + z = x + (y + z)$$

 The IEEE 754 standard guarantees that all machines will produce the same results – but those results may not be mathematically correct.

Finiteness - Simple Example using Decimals

- Imagine if 6 digits are used to store the mantissa:
- How is the number 123,456,000,000 stored?
- How is the number 123,456,400,000 stored?

1.23456 * 1011

1.23456 * 1011

Loss of Precision

- Note the loss of precision in the last example. This is because we are only using 6 digits to store the mantissa. This means that very large or very small numbers will lose precision when converted to floating point.
- The more digits we can use to store the mantissa, the less likely we are to lose precision

Limits of Number Representation

Similarly, some numbers cannot be represented in the IEEE 754 format:

```
int x = 33554431; float y = 33554431;
```

- What happens to y?
- Some decimal numbers cannot be finitely represented in binary at all:

```
 0.10_{10} = 0.0001100110011...._2
```


Rounding Errors

- You can have problems on arithmetic operations if one value is much smaller than another.
- For example:
 - $(1.5 \times 10^{38}) + 1.0 = 1.5 \times 10^{38}$
 - The 1.0 that has been added has been completely lost

So why use floating point?

- Speed
 - Most processors these days include floating point processing units that are designed to perform arithmetic operations on floating point values quickly
- Do not use floating point if accuracy is vitally important e.g. operations involving money. In these cases, it is preferable to use a fixed-point type (in C# you could use the type decimal). However, floating point is commonly used for graphics operations where the loss of precision is not usually so critical.

Summary

The important thing to take away from these last two lectures is that the type of the information stored in a location in memory is important for determining what that information means.

Summary

Our 4 bytes of memory:

1000000	1011000	0000000	0000000
1	0	0	0

contain:

2175795200 if we treat is as an unsigned integer

- -2119172096 if we treat is as a signed integer
- -32336.0 if we treat it as a fixed-point decimal number
- 6.4652189 x 10-38 if we treat it as a floating-point decimal number.

Summary

- Of course, those 4 bytes of memory might not contain a 32-bit number.
- They could contain part of a 64-bit number, characters from a string or even a machine instruction.
- So how we view what is in memory depends completely on the context of what the piece of memory is used for.

This Week

- Another formative test has been placed on Course Resources for you to test your knowledge of what has been covered last week and this week
- It can be found in the same location as the slides for the lecture this week.

