Généralités sur les fonctions

Vocabulaire

Soit D un ensemble de R

Définir une fonction f sur D, c'est associer à chaque réel x de D un unique réel noté f(x).

On écrit : $f: x \mapsto f(x)$ (on lit : « f est la fonction qui à x associe f de x »)

D est l'ensemble de définition de la fonction f.

x est la variable.

f(x) est l'image de x par f.

Si y = f(x), on dit que x est un antécédent de y par f.

Représentation graphique

Un repère du plan étant choisi, on appelle courbe représentative d'une fonction f, notée C_f , l'ensemble des points M de coordonnées (x; f(x)) où $x \in D$.

Dire « M(x; y) appartient à la courbe représentative de f » équivaut à dire « x appartient à D et y = f(x) ». On dit que la courbe a pour équation y = f(x).

Sens de variations

I est un intervalle contenu dans l'ensemble de définition D de la fonction f.

Dire que f est strictement croissante sur I signifie que pour tous réels x_1 et x_2 de I:

 $Si \ x_1 < x_2 \ alors \ f(x_1) < f(x_2).$

(Une fonction croissante conserve l'ordre.)

Dire que f est strictement décroissante sur I signifie que pour tous réels x_1 et x_2 de I:

 $Si \ x_1 < x_2 \ alors \ f(x_1) > f(x_2).$

(Une fonction décroissante change l'ordre.)

Pour une fonction croissante ou décroissante, on remplace les inégalités strictes de $f(x_1)$ et $f(x_2)$ par des inégalités larges.

Dire que f est constante sur I signifie que pour tous réels x_1 et x_2 de I, on a $f(x_1) = f(x_2)$.

Une fonction monotone sur I est une fonction soit croissante sur I, soit décroissante sur I.

Maximum - Minimum

Mest le maximum de f sur I signifie que M est la plus grande valeur prise par f sur I: Pour tout réel x de I $f(x) \leq M = f(a)$.

m est le minimum de f sur I signifie que m est la plus petite valeur prise par f sur I: Pour tout réel x de I $f(x) \ge m = f(b)$.

Parité

Fonction paire

On dit que f est paire si pour tout x de D, on $a:(-x) \in D$ et f(-x) = f(x).

Soit C la courbe représentative d'une fonction f.

C est symétrique par rapport à l'axe des ordonnées.

Fonction impaire

g est impaire si pour tout x de D on $a : -x \in D$ et g(-x) = -g(x).

Soit C la courbe représentative d'une fonction g.

C est symétrique par rapport à O.

Résolution d'une équation :

Résolution f(x) = k.

On trace la droite d'équation y = k et on lit les abscisses des points d'intersection avec la courbe.

$$S = \{x_1, x_2\}$$

Résolution de f(x) = g(x).

On trace les deux courbes C_f et C_g et on lit les abscisses des points d'intersection.

$$S = \{x_1, x_2, x_3\}$$

Résolution d'une inéquation

Résolution $f(x) \ge 0$.

On lit les intervalles sur lesquels la courbe est au-dessus des axes des abscisses.

$$S = [x_1, x_2] \cup [x_3, +\infty[$$

Résolution $f(x) \ge k$.

On trace la droite d'équation y = ket on lit les intervalles sur lesquels la courbe est au-dessus de cette droites.

 $S = [x_1, x_2]$

Résolution de $f(x) \ge g(x)$.

On trace les deux courbes C_f et C_g et on lit les intervalles sur lesquels C_f est au-dessus de C_g .

Fonctions de références : parabole-hyperbole

Soit (O, i, j) un repère orthogonal.

Parabole

- *)La courbe représentative de la fonction f définie sur R par $f(x) = ax^2$, $a \ne 0$ est une parabole de sommet O et d'axe de symétrie la droite d'équation x = 0.
- *) La courbe représentative de la fonction f définie sur R par $f(x) = a(x \beta)^2$, $a \neq 0$ est une parabole de sommet $S(\alpha,0)$ et d'axe de symétrie la droite d'équation x=a.
- *) La courbe représentative de la fonction f définie sur R par $f(x) = x^2 + \beta$, $a \neq 0$ est une parabole de sommet $S(0,\beta)$ et d'axe de symétrie la droite d'équation x = 0.
- *)La fonction f définie sur R par $f(x) = ax^2 + bx + c$, $a \neq 0$,
- f(x) peut s'écrire sous la forme $f(x) = a(x-\alpha)^2 + \beta$, $\alpha \neq 0$

Donc la courbe représentative de f est une parabole de sommet $S(\alpha, \beta)$ et d'axe de symétrie la droite d'équation $x = \alpha$.

Soit le trinôme $f(x) = ax^2 + bx + c$ avec $a \neq 0$.

Hyperbole

- *) La courbe représentative de la fonction $f(x) = \frac{a}{x}$, $a \neq 0$ est une hyperbole de centre O et d'asymptotes les droites d'équations x = 0 et y = 0.
- *) La courbe représentative de la fonction $f(x) = \frac{1}{x} + \beta$ est une hyperbole de centre $I(0,\beta)$ et d'asymptotes les droites d'équations x = 0 et $y = \beta$.
- *) La courbe représentative de la fonction $f(x) = \frac{a}{x+a}$, $a \neq 0$ est une hyperbole de centre I(-a,0) et d'asymptotes les droites d'équations x = -a et y = 0.

*) La courbe représentative de la fonction $f(x) = \frac{ax+b}{cx+d}$, $c \neq 0$ est une hyperbole de centre $I\left(-\frac{d}{c}, \frac{a}{c}\right)$ et d'asymptotes les droites d'équations $x = -\frac{d}{c}$ et $y = \frac{a}{c}$.

Exemples (tous les cas possibles)

$$g: \mathbb{R} \to \mathbb{R} ; a \neq 0$$
$$x \mapsto ax^2$$

 $Si \ a > 0$ (exemple a = 4)

$$Si \ a < 0 \ (exemple \ a = -4)$$

$$p(x) = 3x^2 - 2x + 1$$

(exemple
$$g(x) = \frac{3}{x}$$
)

(exemple
$$g(x) = \frac{-3}{x}$$
)

(exemple $h(x) = \frac{1}{x} + 3$)

(exemple
$$k(x) = \frac{2}{x+3}$$
)

(exemple $p(x) = \frac{2x+5}{4x-3}$)

