Recommender systems

Making recommendations

Predicting movie ratings

User rates movies using one to five stars

		Zero		
Movie	Alice(1)	Bob(2)	Carol(3)	Dave(4
Love at last	5	5	0	0
Romance forever	5	?	?	0
Cute puppies of love	(?)	(4)	0	?
Nonstop car chases	0	0	5	4
Swords vs. karate	0	0	5	?

$n_u = 4$	r(1,1)=1
•	

$$n_m = 5$$
 $r(3,1) = 0$ $y^{(3,2)} = 4$

	R	atin	gs	
*				
*	*			
*	*	*		
*	*	*	*	
*	*	*	*	*

 $n_u = no.$ of users

 $_{m}$ = no. of movies

r(i,j)=1 if user j has rated movie i

 $n_u = 4$

 $y^{(i,j)}$ = rating given by user j to movie i (defined only if r(i,j)=1)

per-item features

What if we have features of the movies?

3					1	1	$n_{m} = 5$
Movie	Alice(1)	Bob(2)	Carol(3)	Dave(4)	x ₁ (romance)	x ₂ (action)	n = 2
Love at last	5	5	0	0	0.9	0	
Romance forever	5	?	?	0	1.0	0.01	$x^{(1)} = \begin{bmatrix} 0 \end{bmatrix}$
Cute puppies of love	?	4	0	?	0.99	0	-0.00-
Nonstop car chases	0	0	5	4	0.1	(1.0)	$x^{(3)} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix}$
Swords vs. karate	0	0	5	?	0	0.9	[0]

For user 1: Predict rating for movie i as: $\mathbf{w}^{(1)} \cdot \mathbf{x}^{(i)} + \mathbf{b}^{(1)}$ just linear regression

$$\mathbf{w}^{(1)} = \begin{bmatrix} 5 \\ 0 \end{bmatrix} \quad \mathbf{b}^{(1)} = 0 \quad \mathbf{x}^{(3)} = \begin{bmatrix} 0.9 \\ 0 \end{bmatrix}$$

$$W^{(1)} \cdot X^{(3)} + b^{(1)} = 4.95$$

> For user j: Predict user j's rating for movie i as

Cost function

Notation:

$$\rightarrow$$
 $r(i,j) = 1$ if user j has rated movie i (0 otherwise)

$$y^{(i,j)}$$
 = rating given by user j on movie i (if defined)

$$\rightarrow$$
 w^(j), b^(j) = parameters for user j

$$\mathbf{x}^{(i)}$$
 = feature vector for movie i

For user
$$j$$
 and movie i , predict rating: $w^{(j)} \cdot x^{(i)} + b^{(j)}$
 $m^{(j)} = \text{no. of movies rated by user } j$

To learn
$$w^{(j)}$$
, $b^{(j)}$

$$\min_{w^{(j)}b^{(j)}} J(w^{(j)}, b^{(j)}) = \frac{1}{2m^{(j)}} \sum_{i:r(i,j)=1} (w^{(j)} \cdot x^{(i)} + b^{(j)} - y^{(i,j)})^2 + \frac{\lambda}{2m^{(j)}}$$

$$\sum_{j} (w^{(j)} \cdot x^{(i)} +$$

$$\left(\frac{(i,j)}{2m^{(j)}}\right)^2 + \frac{\lambda}{2m^{(j)}} \sum_{k=1}^n \left(w_k^{(j)}\right)^2$$

Cost function

To learn parameters $w^{(j)}, b^{(j)}$ for user j:

$$J(w^{(j)}, b^{(j)}) = \frac{1}{2} \sum_{i:r(i,j)} (w^{(j)} \cdot x^{(i)} + b^{(j)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{k=1}^{n} (w_k^{(j)})^2$$

To learn parameters $w^{(1)},b^{(1)},\ w^{(2)},b^{(2)},\cdots\ w^{(n_u)},b^{(n_u)}$ for all users :

$$J\begin{pmatrix} w^{(1)}, & \dots, w^{(n_u)} \\ b^{(1)}, & \dots, b^{(n_u)} \end{pmatrix} = \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i:r(i,j)=1}^{n_u} (\underbrace{w^{(j)} \cdot x^{(i)} + b^{(j)}}_{f(x)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (w_k^{(j)})^2$$

Collaborative Jiltering algorithm > 色过物作频的 电级图改

Problem motivation

							122
Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x ₁ (romance)	x ₂ (action)	がクチ
Love at last	5	5	0	0	?	?	プグライン まり
Romance forever	5	?	?	0 ←	?	? x ⁽²⁾	12301 B
Cute puppies of love	?	4	0	? ←	?	? $\chi^{(3)}$, 41 ×9 ~
Nonstop car chases	0	0	5	4 ←	?	?	E1, 64
Swords vs. karate	0	0	5	? ←	?	?	Wkb

Cost function

Given $w^{(1)}, b^{(1)}, w^{(2)}, b^{(2)}, \dots, w^{(n_u)}, b^{(n_u)}$

to learn
$$\underline{x^{(i)}}$$
:
$$J(x^{(i)}) = \frac{1}{2} \sum_{j:r(i,j)=1} (\underline{w^{(j)} \cdot x^{(i)} + b^{(j)}} - \underline{y^{(i,j)}})^2 + \frac{\lambda}{2} \sum_{k=1}^{n} (x_k^{(i)})^2$$

→ To learn $x^{(1)}, x^{(2)}, \dots, x^{(n_m)}$:

$$J(x^{(1)}, x^{(2)}, \dots, x^{(n_m)}) = \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j: r(i,j)=1}^{n_m} (w^{(j)} \cdot x^{(i)} + b^{(j)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^{n} (x_k^{(i)})^2$$

Cost function to learn $w^{(1)}, b^{(1)}, \dots w^{(n_u)}, b^{(n_u)}$

(n_u)	:	_
	2	/

j=1j=2j=3Alice Carol (5 (3) Movie2

Cost function to learn $x^{(1)}, \dots, x^{(n_m)}$:

$$\min_{x^{(1)}, \dots, x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j: r(i,j)=1} (w^{(j)} \cdot x^{(i)} + b^{(j)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^{n} (x_k^{(i)})^2$$

Put them together:

$$\min_{\substack{w^{(1)}, \dots, w^{(n_u)} \\ b^{(1)}, \dots, b^{(n_u)}}} J(w, b, x) = \frac{1}{2} \sum_{\substack{(i,j): r(i,j)=1}} (w^{(j)} \cdot x^{(i)} + b^{(j)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n_u} (w_k^{(j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^{n_m} (x_k^{(i)})^2$$

Gradient Descent

collaborative filtering

Linear regression (course 1)

repeat {

$$w_{i} = w_{i} - \alpha \frac{\partial}{\partial w_{i}} J(w, b)$$

$$h = h - \alpha \frac{\partial}{\partial w_{i}} I(w, b)$$

$$w_{i} = w_{i} - \alpha \frac{\partial}{\partial w_{i}} J(w, b)$$

$$b = b - \alpha \frac{\partial}{\partial b} J(w, b)$$

$$w_{i}^{(j)} = w_{i}^{(j)} - \alpha \frac{\partial}{\partial w_{i}^{(j)}} J(w, b, x)$$

$$b^{(j)} = b^{(j)} - \alpha \frac{\partial}{\partial b^{(j)}} J(w, b, x)$$

$$x_k^{(i)} = x_k^{(i)} - \alpha \frac{\partial}{\partial x_k^{(i)}} J(w,b,x)$$

}

parameters W, b, x x is also a parameter

labels: Saws likes Binary labels and clicks

Movie	Alice(1)	Bob(2)	Carol(3)	Dave(4)
Love at last	1	1	0	0
Romance forever	1	? ←	? -	0
Cute puppies of love	? <	- 1	0	? ←
Nonstop car chases	0	0	1	1
Swords vs. karate	0	0	1	? <

Example applications

- \rightarrow 1. Did user j purchase an item after being shown? $\downarrow, 0, ?$
- → 2. Did user j fav/like an item? 1, 0, ?
- → 3. Did user j spend at least 30sec with an item? 1, 0, ?
- → 4. Did user j click on an item? 1, 0, ?

Meaning of ratings:

- -> 1 engaged after being shown item
- 0 did not engage after being shown item
- ? item not yet shown

From regression to binary classification

- Previously:
- \rightarrow Predict $y^{(i,j)}$ as $w^{(j)} \cdot x^{(i)} + b^{(j)}$
- For binary labels:

Predict that the probability of $y^{(i,j)} = 1$ is given by $g(w^{(j)} \cdot x^{(i)} + b^{(j)})$

where
$$g(z) = \frac{1}{1+e^{-z}}$$

Cost function for binary application

Previous cost function:

$$\frac{1}{2} \sum_{(i,j):r(i,j)=1} \left(\underbrace{w^{(j)} \cdot x^{(i)} + b^{(j)}}_{f(X)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n \left(x_k^{(i)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n \left(w_k^{(j)} \right)^2$$

Loss for binary labels $y^{(i,j)}$: $f_{(w,b,x)}(x) = g(w^{(j)} \cdot x^{(i)} + b^{(j)})$

$$L\left(f_{(w,b,x)}(x),y^{(i,j)}\right) = -y^{(i,j)}\log\left(f_{(w,b,x)}(x)\right) - (1-y^{(i,j)})\log\left(1-f_{(w,b,x)}(x)\right)$$
Loss for single example

$$J(w,b,x) = \sum_{(i,j):r(i,j)=1} L(f_{(w,b,x)}(x), y^{(i,j)}) \qquad \text{cost for all examples}$$

形对抢于至二进制

Mean normalization 13-10 for Run Foster

Users who have not rated any movies

Movie	Alice(1)	Bob (2)	Carol (3)	Dave (4)	Eve (5)
Love at last	5	5	0	0	?	0
Romance forever	5	?	?	0	?	0
Cute puppies of love	?	4	0	?	?	0
Nonstop car chases	0	0	5	4	?	0
Swords vs. karate	0	0	5	?	?	0

XT等的产 電母 Mean Norma... 日下の分別O

Mean Normalization

For user *j*, on movie *i* predict:

$$w^{(1)} \cdot \chi^{(i)} + b^{(1)} + \mu_i$$

May Par Xan

User 5 (Eve):

TensorFlow implementation

Derivatives in ML

Gradient descent algorithm

Repeat until convergence

$$\underline{w} = w - \underbrace{\partial}_{w} J(w,b)$$

Derivative

Learning rate

Implementation in TensorFlow

Gradient descent algorithm

Repeat until convergence

Instantiate an optimizer. optimizer = keras.optimizers.Adam(learning_rate=1e-1)

iterations = 200 for iter in range(iterations): Use TensorFlow's GradientTape

to record the operations used to compute the cost with tf.GradientTape() as tape:

Compute the cost (forward pass is included in cost)
cost_value = cofiCostFuncV(X)(W, b,) Ynorm, R, Z num_users, num_movies, lambda) $n_{\rm u}$ $n_{\rm m}$ # Use the gradient tape to automatically retrieve

the gradients of the trainable variables with respect to the loss grads = tape.gradient(cost_value, [X,W,b]) <</pre>

Run one step of gradient descent by updating # the value of the variables to minimize the loss.

optimizer.apply_gradients(zip(grads, [X,W,b]))

Dataset credit: Harper and Konstan. 2015. The MovieLens Datasets: History and Context

Finding related items

Finding related items

The features of item i are quite hard to interpret.

To find other items related to it, find item k with $x^{(k)}$ similar to $x^{(i)}$

romance

action

i.e. with smallest distance

$$\sum_{l=1}^{n} \left(x_l^{(k)} - x_l^{(i)} \right)^2$$

$$\left\|\boldsymbol{x}^{(k)}-\boldsymbol{x}^{(i)}\right\|^2$$

Limitations of Collaborative Filtering

- Cold start problem. How to
- rank new items that few users have rated?
- show something reasonable to new users who have rated few items?
- Use side information about items or users:
- Item: Genre, movie stars, studio,
- User: Demographics (age, gender, location), expressed ? preferences, ...

Second Recommender system

Collaborative Silfering Us Content-based Silfering

Collaborative filtering vs Content-based filtering

Collaborative filtering:

Recommend items to you based on rating of users who gave similar ratings as you

Content-based filtering:

Recommend items to you based on features of user and item to find good match

```
(i,j) = 1 if user j has rated item i
(i,j) rating given by user j on item i (if defined)
```

Examples of user and item features

User features:

- Age
- Gender (| hot)
- Country (| ho+,200)
- Movies watched (1000)
- Average rating per genre

Movie features:

- Year
- Genre/Genres
- Reviews
 - Average rating

Content-based filtering: Learning to match

Predict rating of user j on movie i as

computed from
$$x_u^{(i)}$$
.

vie i as

user's preferences

$$V_{0}^{(i)} = \begin{bmatrix} 4.9 \\ 0.1 \\ 32 \end{bmatrix}$$

iikes

movie features

 $V_{0}^{(i)} = \begin{bmatrix} 4.5 \\ 0.2 \end{bmatrix}$

romance action

Deep learning for content-based filtering

Neural network architecture

Prediction : $\bigvee_{v}^{(j)} \cdot \bigvee_{m}^{(i)}$ $g(v_{u}^{(j)} \cdot v_{m}^{(i)})$ to predict the probability that $y^{(i,j)}$ is 1

Cost
$$J = \sum_{(i,j): r(i,j)=1} (v_u^{(j)} \cdot v_m^{(i)} - y^{(i,j)})^2 + \text{NN regularization term}$$

Learned user and item vectors:

 $v_u^{(j)}$ is a vector of length 32 that describes user j with features $x_u^{(j)}$

 $oldsymbol{v}_m^{(i)}$ is a vector of length 32 that describes movie i with features $oldsymbol{x}_m^{(i)}$

To find movies similar to movie i:

$$||v_{m}^{(k)} - v_{m}^{(i)}||^{2}$$
 small $||x^{(k)} - x^{(i)}||^{2}$

~1005

Note: This can be pre-computed ahead of time

神经网络

Recommending from a large catalogue

How to efficiently find recommendation fro a large set of items?

- Movies
- Ads
- Songs
 - Products (

$$x_u \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0$$

$$(x_m) \rightarrow (x_m) \rightarrow (x_m$$

Two steps: Retrieval & Ranking

Retrieval:

- Generate large list of plausible item candidates
 - 1) For each of the last 10 movies watched by the user, find 10 most similar movies

- 2) For most viewed 3 genres, find the top 10 movies
- 3) Top 20 movies in the country
- Combine retrieved items into list, removing duplicates and items already watched/purchased

Display ranked items to user

Retrieval step

- Retrieving more items results in better performance, but slower recommendations.
- To analyse/optimize the trade-off, carry out offline experiments to see if retrieving additional items results in more relevant recommendations (i.e., $p(y^{(i,j)}) = 1$ of items displayed to user are higher).

100 500

Ethical use of recommender systems

What is the goal of the recommender system?

Recommend:

- Movies most likely to be rated 5 stars by user
- Products most likely to be purchased
- Ads most likely to be clicked on thigh bid
 - Products generating the largest profit
 - Video leading to maximum watch time

Ethical considerations with recommender systems

Travel industry

Good travel experience to more users

Payday loans

Squeeze customers more

Amelioration: Do not accept ads from exploitative businesses

Other problematic cases:

- Maximizing user engagement (e.g. watch time) has led to large social media/video sharing sites to amplify conspiracy theories and hate/toxicity
 - Amelioration : Filter out problematic content such as hate speech, fraud, scams and violent content
- Can a ranking system maximize your profit rather than users' welfare be presented in a transparent way?
 - -> Amelioration : Be transparent with users

```
Tensor I low implementation
                                                     user_NN = tf.keras.models.Sequential([
                                                        tf.keras.layers.Dense (256, activation='relu'), <
                                                        tf.keras layers.Dense 128, activation='relu'), 4
tf.keras layers.Dense (32)
                                                     item_NN = tf.keras.models.Sequential([
                                                        tf.keras.layers.Dense 256, activation='relu'),
                                                        tf.keras layers.Dense 128, activation='relu'),
                                                        tf.keras layers.Dense(32)
             # create the user input and point to the base network
             input user = tf.keras.layers.Input(shape=(num_user_features))
            vu = user NN(input user)
             vu = tf.linalg.12 normalize(vu, axis=1)
             # create the item input and point to the base network
             input item = tf.keras.layers.Input(shape=(num_item_features))
            (vm) = (item_NN dinput item)
                = tf.linalg.12 normalize(vm, axis=1)
             # measure the similarity of the two vector outputs
                                                                                    Prediction
             output = tf.keras.layers.Dot(axes=1)([vu, vm])
             # specify the inputs and output of the model model = Model([input_user, input_item],  ### Model([input_user, input_item])
             # Specify the cols also called normalizing the 12 norm of the vector,
```