Tessar and Dagor lenses

Lens Design OPTI 517

Important basic lens forms

Cooke Triplet 2 Sheets-Sheet 1 (No Model.) H. D. TAYLOR. Patented Sept. 22, 1896.

aberrations

Cooke Triplet Stressed with high high-order

DB Gauss Stressed with Low high order aberration Stical Sciences

Petzval little stress

Prof. Jose Sasian

Measuring lens sensitivity to surface tilts

$$W_{131} = -\frac{1}{2}AB\Delta \left\{ \frac{u}{n} \right\} y$$
 $W_{222} = -\frac{1}{2}B^2\Delta \left\{ \frac{u}{n} \right\} y$

$$W_{222} = -\frac{1}{2}B^2 \Delta \left\{ \frac{u}{n} \right\} y$$

$$cs = \left(\frac{1}{1-m}\right)^2 \frac{1}{y_{stop}} \left(\frac{1}{n'u'}\right)^2 A\Delta \left\{\frac{u}{n}\right\} y \qquad as = \frac{1}{1-m} \frac{1}{B_{stop}} \frac{1}{y_{stop}} \frac{1}{n'u'} B\Delta \left\{\frac{u}{n}\right\} y$$

$$as = \frac{1}{1 - m} \frac{1}{B_{stop}} \frac{1}{y_{stop}} \frac{1}{n'u'} B\Delta \left\{ \frac{u}{n} \right\} y$$

$$CS = \sqrt{\sum_{j} cs^{2}}$$

$$AS = \sqrt{\sum_{j} as^{2}}$$

Lens sensitivity comparison

Coma sensitivity 0.32 Astigmatism sensitivity 0.27

Coma sensitivity 2.87 Astigmatism sensitivity 0.92

Coma sensitivity 0.99 Astigmatism sensitivity 0.18

Actual tough and easy to align designs Off-the-shelf relay at F/6

Coma sensitivity 0.54 Astigmatism sensitivity 0.78

Coma sensitivity 0.14 Astigmatism sensitivity 0.21

Improper opto-mechanics leads to tough alignment

Tessar lens

Paul Rudolph

- More degrees of freedom
- Can be thought of as a re-optimization of the PROTAR
- Sharper than Cooke triplet (low index)
- Compactness
- Tessar, greek, four
- 1902, Paul Rudolph
- New achromat reduces lens stress

5	Radii: $r^1 = +0.215$ $r^2 = \pm \infty$ $r^3 = -0.742$ $r^4 = +0.208$ $r^5 = -1.113$ $r^6 = +0.252$ $r^7 = -0.367$	tnces:			
	Gia	sses used;			
		L1.	Lº,	L3,	L4.
15 nD		1.61132 1.61870 1.62463	1.60457 1.61436 1.62252	1.52110 1.52820 1.53397	1.61132 1.61895 1.62514
	Market Transcore				e of Optical Sciences THE UNIVERSITY OF ARIZONA®

Tessar

- The front component has very little power and acts as a corrector of the rear component new achromat
- The cemented interface of the new achromat: 1) reduces zonal spherical aberration, 2) reduces oblique spherical aberration, 3) reduces zonal astigmatism
- It is a compact lens

Merte's Patent of 1932

Faster Tessar lens F/5.6

March 15, 1932. 1,849,681 W. MERTE ET AL PHOTOGRAPHIC THREE-LENS OBJECTIVE Filed July 10, 1931 Focal length: 100 Thicknesses Radii: and distances: **2.3** - 81.3 = 2.5 4.2 - 322.0 = 1.3 0.6 + 24.2 = 2.2 3.1 21.0 0.7 21.0 Fig.2 Kinds of glass: $I\!\!I\!\!V$ II and III = 1.58315 1.58215 1.67110 47.3 42.0 I and IV $I\!\!I$ Ш - 4.67110 1.62004 1.58215 36.3 Inventors:

Re-optimized Merte's example two

F=10 mm F/5.6 +/- 20 deg

College of Optical Sciences
THE UNIVERSITY OF ARIZONA®

Prof. Jose Sams C Crowd 2007

Performance

Scales are 0.04mm 1 wave And 377 c/mm

College of Optical Sciences
THE UNIVERSITY OF ARIZONA®

College of Optical Sciences
THE UNIVERSITY OF ARIZONA®

Prof. Jose Sasian

Dagor Lens

- A different solution based on a thick meniscus
- Use of cemented surfaces
- Use of the symmetry principle
- 1894
- Emil Von Hoegh
- Double Anastigmatic GoeRz

Hoegh suggestions

(From R. Kingslake)

- 1 Insert a collective interface convex to the stop in the flint element of the rapid rectilinear, thus turning the half-system from a doublet into a triplet
- 2 Use progressively increasing refractive indices outward from the stop
- 3 Use almost equal outside radii of curvature and to thicken the lens sufficiently to give the desired focal length and Petzval sum

Using radial gradient index

$$n = n_0 + A_2 r^2 + A_4 r^4$$

Four classical ways to correct for field curvature A different way is by using radial index glass

From the landscape lens to the Planar lens summary

(Variations in the landscape lens theme or the variations in the doublet lens theme)

- Wollanston meniscus and Chevalier achromatic lens ~1812
- Petzval portrait lens ~1839
- Periscopic lens ~1865
- •New glasses ~1885
- New achromat doublet
- •Rapid rectilinear ~1866
- •Ross concentric (Schroeder) lens ~1890
- •Protar ~1890
- Cooke (D. Taylor) triplet ~1896
- Planar (double Gauss) ~1897
- •Tessar ~1902
- •Dagor ~1894

