The University of British Columbia

Mini Project 2

ELEC 301 – Electronic Circuits

porgery

Bryan Zhang 69238335 10-24-2022

Contents

Part 1	1	2
a)	2N3904 datasheet lookup	2
b)	2N3904 characteristics	2
(Comparing Measured value to datasheet values	5
c)	Biasing	5
ı	Biassing from measured plot (i)	5
ı	Biassing using the 1/3 rule (ii)	6
ι	Using standard resistors (iii)	7
d)	2N2222A and 2N4401 d.c operating points (iv)	7
Part 2	2	8
a)	2N3904 & 2N4401 Common Emitter Amplifier	8
b)	Midband Voltage Transfer Curve	11
c)	Input Impedance at midband	12
d)	Output Impedance at midband	12
e)	Transistor selection	13
Part 3	3	13
a)	2N2222A Common Base Amplifier poles & zeros	13
b)	Voltage Transfer Curve	16
c)	Midband Input Impedance	16
d)	Midband Output Impedance	16
Refer	rences	17
Anne	endix	18

Part 1

a) 2N3904 datasheet lookup

The datasheet values for the 2N3904 transistor at $V_{CE}=10V$, $I_{C}=1mA$, f=1kHz, and T=1kHz are shown below.

Symbol Description		Minimum	Maximum
$h_{fe} = \beta$	DC Current Gain	100	400
$h_{ie} = r_{\pi}$	Input Impedance	1.0 kΩ	10 kΩ
$h_{oe} = 1/r_0$	Output Admittance	1.0 μmhos	40 μmhos

b) 2N3904 characteristics

Here is the circuit used to obtain the graph of $I_b \ vs \ V_{BE}$. I set $V_{CE} = 5V$ and then sweep V_{BE} from 0 to 0.7V in 0.01V increments.

Figure 1: I_B vs V_{BE} graph

583m

To find I_C vs V_{CE} with I_B as the varying parameter the circuit below is simulated. V_{CE} is swept from 0-6V in 20mV increments and I_B is swept from 1-10 μ A in 0.5 μ A increments.

Figure 2: I_C vs V_{CE} with varying I_B

Each line represents a different characteristic, with the bottom line being when I_B is 1 μ A and the top line when I_B is 10 μ A. The 'a' cursor is set to the value of V_{CE} =5V and the 'c' cursor is set to the value of I_C = 1 μ A. The intersection of the 2 cursors falls on the 3 ν d line from the top, so therefore

$$I_{B} = 10 - 3 \cdot 0.5\mu A = \underline{8.5\mu A}.$$

$$\xrightarrow{yields} \beta = \frac{I_{C}}{I_{B}} = \frac{1mA}{8.5\mu A} = \boxed{118}$$

$$g_{m} = \frac{I_{C}}{V_{T}} = \frac{1mA}{25mV} = \boxed{0.04S}$$

$$r_{\pi} = \frac{\beta}{g_m} = \boxed{2950\Omega}$$

Finally, we can find I_C vs V_{CE} with varying V_{BE} by simulating the below circuit. V_{CE} is the primary and is swept from 0-6V in 20mV increments, and V_{BE} is the secondary swept from 0.55-0.70V in 0.01V increments.

Xa: 5.000 Xb: 1.000 a-b: 4.000 Yc: 6.607m Yd: 6.356m c-d: 251 9u

Figure 3: I_C vs V_{CE} with varying V_{BE}

Observe that at I_C=1mA at the intersected curve corresponds to $\frac{V_{BE}=0.65V}{D_{BE}=0.65V}$. The slope of the top curve can be calculated as $m=\frac{c-d}{a-b}$ where a, b, c, d are the cursor positions.

$$m = \frac{c - d}{a - b} = \frac{251.9 \cdot 10^{-6} A}{4V} = 6.30 \cdot 10^{-5} S$$

An equation of the line can be found using point-slope form $y - y_1 = m(x - x_1)$. The X_b, Y_d point is selected but any of the two points may be used.

$$I_C - 6.356 \cdot 10^{-3} = 6.30 \cdot 10^{-5} (V_{CE} - 1)$$

Now the early voltage can be found at the x-intercept when $I_C=0$:

$$-6.356 \cdot 10^{-3} = 6.30 \cdot 10^{-5} (V_A - 1) \xrightarrow{\text{yields}} V_A = |-100| = 100V$$

$$r_0 = \frac{V_A}{I_C} = \frac{100}{1mA} = \boxed{100k\Omega}$$

Comparing Measured value to datasheet values

The measured values of β , r_{π} , and $1/r_0$ all fall in between the minimum and maximum value found in the data sheet for the 2N3904 transistor.

c) Biasing

Biassing from measured plot (i)

The measured parameters from the curves are $\beta = 118$ and $V_{BE} = 0.65V$.

In addition, $V_{CC} = 15V$, $I_C = 1mA$, $V_{CE} < 4V$, $R_E = R_C/2$. The other currents may be determined as follows:

$$I_B = \frac{I_C}{\beta} = \frac{1mA}{118} = 8.47\mu A$$

$$I_E = I_B + I_C = 8.47\mu A + 1mA = 1.0084mA$$

Next R_C and R_E can be determined by doing KVL from V_{CC} to ground across the collector-emitter junction. V_{CE} can be set to 3V since it is less than 4V.

$$V_{CC} = I_{C}R_{C} + I_{E}R_{E} + V_{CE} = I_{C}R_{C} + \frac{1}{2}I_{E}R_{C} + V_{CE}$$

$$V_{CC} = I_{C}R_{C} + I_{E}R_{E} + V_{CE} = I_{C}R_{C} + \frac{1}{2}I_{E}R_{C} + V_{CE}$$

$$P_{CC} = I_{C}R_{C} + I_{E}R_{E} + V_{CE} = I_{C}R_{C} + \frac{1}{2}I_{E}R_{C} + V_{CE}$$

$$P_{CC} = I_{C}R_{C} + I_{E}R_{E} + V_{CE} = I_{C}R_{C} + \frac{1}{2}I_{E}R_{C} + V_{CE}$$

$$P_{CC} = I_{C}R_{C} + I_{E}R_{E} + V_{CE} = I_{C}R_{C} + \frac{1}{2}I_{E}R_{C} + V_{CE}$$

$$P_{CC} = I_{C}R_{C} + I_{E}R_{E} + V_{CE} = I_{C}R_{C} + \frac{1}{2}I_{E}R_{C} + V_{CE}$$

$$P_{CC} = I_{C}R_{C} + I_{E}R_{E} + V_{CE} = I_{C}R_{C} + \frac{1}{2}I_{E}R_{C} + V_{CE}$$

$$P_{CC} = I_{C}R_{C} + I_{E}R_{E} + V_{CE} = I_{C}R_{C} + \frac{1}{2}I_{E}R_{C} + V_{CE}$$

$$P_{CC} = I_{C}R_{C} + I_{E}R_{E} + V_{CE} = I_{C}R_{C} + \frac{1}{2}I_{E}R_{C} + V_{CE}$$

$$P_{CC} = I_{C}R_{C} + I_{E}R_{E} + V_{CE} = I_{C}R_{C} + \frac{1}{2}I_{E}R_{C} + V_{CE}$$

$$P_{CC} = I_{C}R_{C} + I_{E}R_{E} + V_{CE} = I_{C}R_{C} + \frac{1}{2}I_{E}R_{C} + V_{CE}$$

$$P_{CC} = I_{C}R_{C} + I_{E}R_{E} + V_{CE} = I_{C}R_{C} + \frac{1}{2}I_{E}R_{C} + V_{CE}$$

$$P_{CC} = I_{C}R_{C} + I_{E}R_{E} + V_{CE} = I_{C}R_{C} + \frac{1}{2}I_{E}R_{C} + V_{CE}$$

$$P_{CC} = I_{C}R_{C} + I_{E}R_{E} + V_{CE} = I_{C}R_{C} + I_{E}R_{C} + V_{CE}$$

$$P_{CC} = I_{C}R_{C} + I_{E}R_{C} + V_{CE} = I_{C}R_{C} + I_{E}R_{C} + V_{CE}$$

$$P_{CC} = I_{C}R_{C} + I_{E}R_{C} + I_{E}R_{C} + V_{CE}$$

$$P_{CC} = I_{C}R_{C} + I_{E}R_{C} + V_{CE}$$

$$P_{CC} = I_{C}R_{C} + I_{E}R_{C} + V_{CE}$$

$$P_{CC} = I_{C}R_{C} + I_{E}R_{C} + I_{E}R_{C} + V_{CE}$$

$$P_{CC} = I_{C}R_{C} + I_{C}R_{C}$$

$$V_B = V_E + V_{BE} = 4.012V + 0.65V = 4.662V$$

The following 2 equations can be used to determine the values of R_{B1} and R_{B2}.

$$KCL: \frac{V_{CC} - V_B}{R_{B1}} = I_B + \frac{V_B}{R_{B2}}$$

$$KVL: V_{CC}\left(\frac{R_{B2}}{R_{B1} + R_{B2}}\right) - I_B(R_{B1}||R_{B2}) - V_B = 0$$

These equations do not provide a unique solution, so I arbitrarily chose R_{B1} =10k Ω which gives

 R_{B2} =4.55 k Ω .

R_{C}	R _E	R _{B1}	R _{B2}
7978Ω	3989Ω	10kΩ	4.55kΩ

Here are the results of the simulation for the d.c operating point for the 2N3904.

I _C	I _B	Ι _Ε	V _B	V _C	V _E
998.6μΑ	8.590 μΑ	1.007mA	4.664V	7.034V	4.017V

Biassing using the 1/3 rule (ii)

I will use the first version of the 1/3 rule which states that:

$$V_B = \frac{1}{3}V_{CC} = 5V, V_C = \frac{2}{3}V_{CC} = 10V, I_1 = \frac{I_E}{\sqrt{\beta}}$$

Using $\beta=118$ and V_{BE} = 0.65V we find that $V_E=V_B-V_{BE}=4.35V$

Subsequently the currents are calculated

$$I_B = \frac{I_C}{\beta} = \frac{1mA}{118} = 8.47\mu A$$

$$I_E = I_B + I_C = 8.47\mu A + 1mA = 1.0084mA$$

$$I_1 = \frac{I_E}{\sqrt{\beta}} = \frac{1.0084mA}{\sqrt{118}} = 92.83\mu A$$

$$I_2 = I_1 - I_B = 92.83\mu A - 8.47\mu A = 84.36\mu A$$

Finally, the resistances are calculated

$$R_C = \frac{V_{CC} - V_C}{I_C} = 5k\Omega$$

$$R_E = \frac{V_E}{I_E} = \frac{4.35V}{1.0084mA} = 4.314k\Omega$$

$$R_{B1} = \frac{V_{CC} - V_B}{I_1} = \frac{10V}{92.83\mu A} = 107.72k\Omega$$

$$R_{B2} = \frac{V_B}{I_2} = \frac{5V}{84.36\mu A} = 59.27k\Omega$$

The d.c operating point values of the biased circuit using the 1/3 rule is shown below.

Ic	I _B	Ι _Ε	V _B	Vc	VE
1.001mA	8.431μΑ	1.010mA	5.002V	9.994V	4.356V

Using standard resistors (iii)

Replace the resistances calculated using the 1/3 rule with standard resistors.

$$R_C = 5.1k\Omega, R_E = 4.3k\Omega, R_{B1} = 110k\Omega, R_{B2} = 62k\Omega$$

Ic	I _B	Ι _Ε	V_{B}	V _C	V _E
1.020mA	8.575μΑ	1.028mA	5.067V	9.801V	4.420V

Every method biases the circuit correctly however using the 1/3 rule is much faster and still provides accurate results while allowing versatility when selecting the resistances.

d) 2N2222A and 2N4401 d.c operating points (iv)

Using the same standard resistance values, we replace the 2N3904 with the 2N2222A and 2N4401 and measure their d.c operating points.

	Ic	Ι _Β	lE	V_{B}	Vc	VE
2N3904	1.020mA	8.575μΑ	1.028mA	5.067V	9.801V	4.420V
2N222A	1.055mA	6.285μΑ	1.061mA	5.158V	9.629V	4.556V
2N4401	1.035mA	6.971μΑ	1.042mA	5.131V	9.731V	4.472V

The BJTs are still biased properly in the active region. Therefore the 1/3 rule is a valid method of biasing BJTs even with different β values.

Part 2

a) 2N3904 & 2N4401 Common Emitter Amplifier

Here is the biased common emitter amplifier using the 2N3904.

The magnitude and phase(degrees) bode plots are <u>included in the appendix</u> simulated from 1mHz to 100GHz. Calculate C_{π} and C_{μ} using the d.c operating point g_m =0.04S and V_{CB} = 5V and the SPICE model parameters of the 2N3904.

$$C_{\pi} = 2 \cdot CJE + TF \cdot g_{m} = 2 \cdot 4.5pF + 400ps \cdot 0.04 = 25pF$$

$$C_{\mu} = \frac{CJC}{\left(1 + \frac{V_{B}}{VIC}\right)^{MJC}} = \frac{3.5pF}{(1 + \frac{5}{0.75})^{0.330}} \approx 2pF$$

The complete small-signal model is created for the 2N3904. Recall r_{π} = 2950 Ω and β =118 from part 1.

Applying Miller's theorem and Thevenin equivalent for the CE amplifier like in the course notes can yield the zeros and poles. There are two coupling capacitors so it is known that there will be 2 low

frequency zeros at zero. This is the Low Frequency Small-Signal Model.

This is the High Frequency Small-Signal Model.

$$\begin{array}{c}
R_{S} \\
V_{S} \\
\hline
\end{array}$$

$$\begin{array}{c}
R_{B} = r_{\pi} || R_{BB} \\
F_{Hp1} = \frac{1}{2\pi ((R_{BB}||r_{\pi})||R_{S})(c_{\pi} + g_{m} \cdot R_{L}||R_{C})} = 15.5 \, \text{MHz} \\
f_{Hp2} = \frac{1}{2\pi (R_{C}||R_{L})c_{\mu}} = 34.9 \, \text{MHz}
\end{array}$$

Here are the locations of the poles and zeros estimated using linear approximation.

This table summarizes the calculated and graphically measured locations of the poles and zeros in Hz.

2N3904	f _{Lz1}	f_{Lz2}	f _{Lp1}	f_{Lp2}	f_{Lz3}	f_{Lp3}	f _{Hp1}	f _{Hp2}	f_{Hz1}
Calculated	0	0	0.432	1.56	3.70	635	15.5M	34.9M	∞
Measured	0	0	0.400	2.2	4	600	10M	600M	5G
% error	0	0	8%	29.1%	7.5%	5.83%	55%	94.1%	

The graphically measured values are quite like the calculated values other than the high frequency poles. There was also a high frequency zero in the simulated result.

Now replace the 2N3904 with the 2N4401. The magnitude and phase bode plots simulated from 1mHz to 100GHz for the 2N4401 are included in the appendix. Recalculate the location of the poles and zeros the same way as done before, except with new parameters for the parasitic capacitances of the 2N4401, and then recalculate β and r_{π} . β = 148, r_{π} = 3586 Ω . C_{π} =67.28pF, C_{μ} =5.2pF.

Then, graphically measure the poles/zeros with linear approximation and compare with the calculated.

Here are the calculated and graphically measured frequencies in Hz for the 2N4401.

2N4401	f _{Lz1}	f_{Lz2}	f _{Lp1}	f _{Lp2}	f_{Lz3}	f _{Lp3}	f _{Hp1}	f _{Hp2}	f _{Hz1}	f _{Hz2}
Calculated	0	0	0.426	1.56	3.70	655	5.19M	11.9M	∞	∞
Measured	0	0	0.390	2	3.40	600	4M	190M	1G	10G
% error	0	0	9.23%	22%	8.82%	9.17%	29.8%	93.7%		

Again, the graphically measured values are quite like the calculated values other then the high frequency poles. There are also two a high frequency zero in the simulated result.

b) Midband Voltage Transfer Curve

A midband frequency of 100kHz is selected for this test. The input voltage source amplitude is varied from 0-0.3V.

The non-linear behavior starts to happen around <u>0.1V</u> for both transistors.

c) Midband Input Impedance

Here is the circuit at midband. CE will be shorted, and so the emitter will be grounded.

The input impedance for the 2N3904 can be <u>calculated</u> as $Z_{in}=R_{BB}||r_{\pi}=\boxed{2745\Omega}$

The input impedance for the 2N4401 is $Z_{in}=R_{BB}||r_{\pi}=\boxed{3289\Omega}$

To measure the input impedance set the AC source to 100kHz with 1V amplitude and then use the AC multimeter to measure the input current and base voltage.

$$Z_{in} = \frac{V_B}{I_{in}} = \frac{6.12mV}{1.755\mu A} = \boxed{3487\Omega} (2N3904)$$

$$Z_{in} = \frac{V_B}{I_{in}} = \frac{6.14mV}{1.379\mu A} = \boxed{4453\Omega} (2N4401)$$

d) Midband Output Impedance

At the midband the impedance seen at the output impedance is simply R_c. A 10mV, 10kHz source is used.

$$Z_{out} = R_C = \boxed{5.1k\Omega}$$

The output impedance is measured by

$$Z_{out} = \frac{V_o}{I_{out}} = \frac{570.1 mV}{111.8 \mu A} = \boxed{5.1 k\Omega} (2N3904)$$

$$Z_{out} = \frac{V_o}{I_{out}} = \frac{592.4 mV}{116.2 \mu A} = \boxed{5.1 k\Omega} (2N4401)$$

e) <u>Transistor selection</u>

The 2N3904 has a larger bandwidth than the 2N4401 with other characteristics remaining similar. For an amplifier a wider bandwidth gives the best performance, so the 2N3904 should be selected.

Part 3

a) 2N2222A Common Base Amplifier poles & zeros

Calculate c_{π} =75.7pF and c_{μ} =7.76pF with the new circuit parameters. The d.c operating point calculated in part 1 for the *2N2222A* can be used to calculate β = 168, g_m = 0.0422, and r_{π} = 3981 Ω . There are 2 zeros at zero due to the coupling capacitors. We find the locations of the remaining poles/zeros using formulas taught in the class.

$$f_{Lz1} = f_{Lz2} = 0 Hz$$

$$f_{Lz3} = \frac{1}{2\pi R_{BB}C_B} = 0.401 Hz$$

$$f_{Lp1} = \frac{1}{2\pi (R_{BB}||(r_{\pi} + (1+\beta)R_E))C_B} = 0.423 Hz$$

$$f_{Lp2} = \frac{1}{2\pi (R_C + R_L)C_{C2}} = 1.56 Hz$$

$$f_{Lp3} = \frac{1}{2\pi \left(\frac{r_{\pi}}{1+\beta} || R_E + R_S\right) C_{C1}} = 217 \text{ Hz}$$

$$f_{Hp1} = \frac{1}{2\pi (R_C || R_L) c_{\mu}} = 8.04 \text{ MHz}$$

$$f_{Hp2} = \frac{1}{2\pi \left(\frac{r_{\pi}}{1+\beta} || R_E || R_S\right) c_{\pi}} = 132 \text{ MHz}$$

Approximate the locations using linear approximation. There must be a low frequency pole and zero that occur in the same location (as shown in the calculations), these are marked in the table by *.

Here are the calculated and approximated values for the locations of the poles in Hz. The cusp at ~1GHz may be caused by multiple zeros or a complex pole.

2N2222A	f _{Lz1}	f_{Lz2}	f_{Lz3}	f _{Lp1}	f _{Lp2}	f_{Lp3}	f _{Hp1}	f _{Hp2}
Calculated	0	0	0.401	0.423	1.56	217	8.04M	132M
Measured	0	0	0.401*	0.423*	1.80	220	8M	130M
% error	0	0	0	0	13.3%	1.36%	0.5%	1.54%

b) Voltage Transfer Curve

Use a 1kHz source and vary the amplitude. It starts to become non-linear at around $V_s = 0.1V$.

c) Midband Input Impedance

Calculate the input impedance as $Z_{in} = R_E || \frac{1}{1+\beta} r_{\pi} = \boxed{23.4\Omega}$

To measure the input impedance, short the source resistance and apply a source with 10mV amplitude and 100kHz frequency. Use the AC RMS multimeter to measure the emitter voltage and input current.

$$Z_{in} = \frac{V_E}{I_{in}} = \frac{1.011mV}{40.09\mu A} = \boxed{25.2\Omega}$$

d) Midband Output Impedance

The output impedance is simply $Z_{out} = R_{\mathcal{C}} = \boxed{5.1k\Omega}$

$$Z_{out} = \frac{V_C}{I_{in}} = \frac{70.36mV}{13.97\mu A} = \boxed{5.04k\Omega}$$

<u>References</u>

- 1. ELEC 301 Course Notes
- 2. A. Sedra and K. Smith, "Microelectronic Circuits," 5 th (or higher) Ed., Oxford University Press, New York
- 3. CircuitMaker™ User's Manual
- 4. 2N3904 datasheet [https://datasheetspdf.com/pdf-file/1114626/Motorola/2N3904/1]
- 5. Standard Resistor and Capacitor Values

<u>Appendix</u>

Part 2a:

2N3904 magnitude/phase bode plot:

2N4401 magnitude/phase bode plot:

