SUBJECT INDEX

A	pulsars in, 286, 292, 303-7, 323, 537, 554-67, 572-	giant, 378-79, 382-88, 390-91, 393, 403-4,
A stars, peculiar, 432-35	73	407-12
Abundances	RS Canum Venaticorum-type,	supergiant, 378-79, 381-
in interstellar medium, 525-	400, 404–5, 414	88, 390-91, 400-4,
		408, 412–13
31	Wolf-Rayet stars in, 362,	
molecular, in stars, 92-96,	364, 368, 370	mass-loss rates from, 337-38
102-3	Black holes	molecular opacities of, 96-
solar, 398-99	in active galactic nuclei, 172	101
Accretion disk in active galax-	in quasars, 189-90	spectral classification of, 104,
ies, 172, 178, 194, 196-98	and supernova explosions,	106-11
Accretion phase of stellar evolu-	218, 226, 361	Copernicus satellite observa-
tion, 52		tions, 329, 500, 511, 516,
Active galactic nuclei, 171-203.	C	518, 520, 524-25, 530
		Coronal mass ejections, 395
See also Seyfert galaxies,	C-1 02 06 102 105	
Active galaxies	Carbon stars, 93-96, 102, 105-	Cosmic microwave background
black holes in, 172	10, 113–14, 116	radiation, 530-31
polarization in, 183-84	Cassiopeia A, 220, 223, 228,	Cosmic-ray events, effect on
Active galaxies, 171-203	347-48	CCDs of, 268
cloud models for broad-line	Centaurus A, 468-69	Cosmic rays, 192, 461, 463,
region of, 186-96	Charge-coupled devices, 21,	472, 479
noncloud models for broad-	255-83	Crab Nebula pulsar, 208, 293-
line region of, 196-98	astronomical applications of,	95, 299, 318-19, 539
photoionization in, 173, 182,	280–81	CS stars, 93-94
185–90	charge-transfer efficiency in,	C3 31413, 75-74
		D
Akn 120, 179, 188	269-71	D
Akn 564, 177	drift scanning in, 278-79	
Alpha Aquarii, 384, 388, 398,	effect of cosmic-ray events	Deuterium, interstellar, 529
412	on, 268	Doppler shifts in solar spectrum,
Alpha Aurigae, 404	flat-fielding procedures for,	35–39
Alpha Bootes, 113-14, 390,	276-79	Dynamo theory, 460, 481-86
400	intrapixel nonuniformity in,	
Alpha Cygni, 413	279	E
Alpha Eridani, 522–23	luminescence effects on, 268	_
Alpha Herculis, 116, 379, 390	photon detection in silicon in,	Einstein telescope observations,
	265–67	132
Alpha Orionis, 114, 117, 388,		
390, 401–2	principles of, 256-61	Emission nebulae, 50-52. See
Alpha Scorpii, 390	readout noise in, 273-76	also H II regions
Alpha Tauri, 390	readout procedures in, 271-76	Eta Carinae, 357
Alpha Trianguli Australis, 387-	thermal effects on, 267-68	
88, 394	used for detecting interstellar	F
Aperture synthesis, 132-33,	gas, 510	
138, 147-49, 162-63	used as X-ray detectors, 282	F stars, 434-35
Atomic clock, 538-40, 548-49	Circumstellar envelopes, 115-	Faraday rotation, 460-67, 469-
7 HOME CIOCK, 550 10, 510 17	20, 402-3, 407, 413	80, 487
В	Circumstellar lines, 385, 392,	Fornax system, 422, 426-27,
В	408	435
B		
B stars, interstellar reddening	Circumstellar shells, 337, 339-	Fourier transform, 127-33, 159,
of, 14-16	40, 345–47, 382, 388	165
Bayesian method, 137-38, 141,	Color-magnitude diagrams, 437,	
146-47	444-53	G
Becklin-Neugebauer object, 81	Cool stars, 377-420. See also G	
Beta Aquarii, 384, 412	stars, K stars, M stars	G stars
Beta Geminorum, 390	chromospheres of, 378-95,	giant, 379, 382, 404
Beta Ursae Minoris, 390	399–402, 410	supergiant, 383-85, 388,
Binary systems	mass loss from, 377-420	412-13
	111d35 1055 110HI, 577-420	712-13
	durant 270 200 01 204	Galactic bulge stelles nonvie
mass-loss rates from, 368, 378, 403-5	dwarf, 378, 380-81, 384- 86, 391, 399	Galactic bulge, stellar popula- tion of, 19-22

Galactic center, 19 Galactic halo, 479-80, 487-88 Galactic structure, star counts and, 577-611 Galaxies colors of, 18 magnitudes of, 16-17 molecules as population indicators in, 110-11 stellar populations of, 21 Galaxies, barred spiral, 488-89 Galaxies, dwarf, 489 Galaxies, edge-on, 468, 478-80 Galaxies, elliptical, 18, 421, 425-28, 435-37 Galaxies, irregular, 469, 477 Galaxies, peculiar, 469 Galaxies, spiral, 425, 428 magnetic fields in, 459-97 Scd, 474-76 supernovae in, 206-7 Galaxy black hole in center of, 172 collapse of, 453-55 distribution of stars in, 578-83, 585, 596-609 formation of, 421-23, 453-55 interstellar medium in, 50-52, 499-535 interstellar reddening in, 14-16 magnetic field in, 172, 467-68, 477-78, 487-88 magnetic halo in, 479-80, 487-88 pulsar population in, 297-303 supernovae frequency in, 206 thick disk of, 602-4 Galaxy, disk of cold-cloud interstellar medium in, 513-15 hot gas component of interstellar medium in. 518-21 warm-gas interstellar medium in, 516-18 Galaxy model, 579-96 galactic bulge in, 591, 607-9 globular cluster feature in, 594, 600-1 kinematics in, 607-8 massive halo in, 592, 605-6 Population I disk stars in, 589-93 luminosity functions of, 592-93, 601, 604 scale lengths and scale heights of, 595-96, 602 Population II spheroid stars in, 589-91, 593-94

luminosity functions of,

593-94

heights of, 595-96, 602 Gamma Cassiopeiae, 530 General relativity, 537-75 Globular cluster feature of Galaxy model, 594, 600-1 Globular clusters, 421-28, 436, 515 ages of, 446, 449-52 asymptotic giant branch of, 405-7, 453 colors of, 14-15 distances of, 447-48 luminosity functions of, 453, 593-94 luminosity normalization of, 448 49 magnetic fields in, 469 main sequences of, 429-35, 446-53 mass loss in stars in, 405-10 stellar evolution and HR diagram of, 429-32 Gravitation, alternative theories of, 566-67 Gravitational rotation, 558-60 Gravitational-wave background, 569-73 Gravitational waves, pulsar timing and, 567-73 Groombridge 1830, 438 G320.4 - 1.2, 294 H H II regions blister-type, 77-79, 82-83

scale lengths and scale

compact, 68, 72-76 E-type, 50-52, 76 formation phase of, 69-70 ionization and recombination in, 59-61, 71-72 magnetohydrodynamics in, 55-57 radiation transfer in, 57-59 S-type, 51-52, 69-83 temperatures in, 54-63 ultracompact, 73, 76, 81-82 H II regions, evolution of, 49boundary conditions in, 63-68 champagne phase of, 76-80, 82-83 expansion phase of, 70-71, 76-80 microphysical processes in, 55, 64-68 recombination phase of, 71-72, 80-81 HD 19557, 95 HD 19945, 433 HD 72127A,B, 524

HD 84903, 410 HD 93521, 518 HD 140283, 433 HD 165195, 408 HR diagram, 423, 435 asymptotic giant branch of, 405-7, 453 main-sequence position in, 430-32, 437-46 mass-loss effects on, 329, 341-44, 355, 369, 390-95 HR diagram of globular clusters, 429-32 HR diagram of luminous stars, 348-53 HR 1040, 413 HR 1099, 400, 404 HR 8752, 413 Hubble constant, 243 Hubble-Sandage objects, see Stars, luminous blue variable Hyades cluster stars, 386-87

IC 342, 475-76 Image restoration, 127-70 in aperture synthesis mapping, 132-34, 138, 147-49, 162-63 need for nonlinearity in, 133, 151, 163-66 in single aperture case, 129-32, 149-50 superresolution in, 133-34, 144, 154, 165 Image restoration methods a priori information in, 128, 133-34, 140-41, 147, 167 Clean algorithm for, 128, 152, 162-64, 166-67 Maximum Entropy Method, 127 - 70positivity-enforcing algorithms for, 165-66 Infrared observations of B stars, 15 of Galactic bulge, 19-21 Infrared sources, 52, 75 Infrared spectra of cool stars, 93-96, 104-10, 114, 117 Interferometric devices for interstellar gas studies, 508-Interferometric positions of pul-

sars, 552-53

Interferometry, image restoration

in, 127-29, 132-34, 159-

noise-free, 142-46 with noisy data, 146-49 Intergalactic magnetic field, 492-93 Interstellar deuterium, 529-30 Interstellar gas CCDs used in measuring, 510 interferometric devices for measuring, 508-10 in local region, 502-3, 521-23 optical instruments for measuring, 508-11 techniques for measuring, 503-8 ultraviolet instruments for measuring, 511-13 Interstellar lithium, 529-30 Interstellar magnetic fields, 459-67, 487-92 Interstellar medium, 49-52, 499-535 abundances in, 525-31 cold clouds of the, 501-2, 513-15, 525-28 enrichment by mass loss, 358-61 hot coronal gas in, 501, 503, 518-23 and pulsar arrival times, 539and supernova remnants, 503, 523-25 warm gas of the, 501-3, 516-18, 525-28 Interstellar reddening, 14-16 IUE observations, 94, 180, 191, 329, 334, 390, 500, 511, 516, 520 K K stars dwarf, 606 giant, 20, 108-9, 113-14, 383 supergiant, 383-84

L

Lambda Andromedae, 382, 404 Large Magellanic Cloud, 288, 353, 365, 406, 469, 477 Liners, 65, 68, 176-77 Lithium, interstellar, 529-30

Kleinmann-Low region, 75, 82

M

M stars dwarf, 93-94, 105, 109-11, 118

emergent fluxes in, 103-5 giant in bulge population, 20-22 mass loss in, 381-82 molecular spectra of, 94-96, 102-5, 108-10, 112, 114, 116-17 metal-deficient, 110-11, 381 spectral classification of, 93-96, 106-11 subdwarf, 110-11 supergiant, 109, 114, 117, 119 Magellanic Clouds, 511. See also Large Magellanic Cloud and Small Magellanic Cloud Magnetic field bisymmetric-spiral, 460, 465-67, 470-78, 480, 484-94 in Galaxy, 172, 460-64, 467-68, 477-78, 487-88 dynamo theory of, 481-86 intergalactic, 492-94 of neutron stars, 542 ring-configuration, 460, 465, 467, 470-71, 480-84, 486, 489-90, 492-93 Magnetic fields galactic, 492-93 global, 487-88 interstellar, 459-67, 487-92 in pulsars, 294-95, 297, 306, 321-22 solar, 24, 26, 28, 31, 44-46, 395 in spiral galaxies, 459-97 Magnetic halo, 478-80, 487-88 Magnetohydrodynamics, 55-57, 459-60, 478, 490 Main-sequence position, 437-46. 448-53 Mass loss from cool stars, 377-420 observational contraints on theory of, 413-15 radio-frequency determinations of, 388-965 detected from spectroscopic observations, 378-90 from dwarf stars, 395-400 effects on HR diagram of, 329, 341-44, 348-53, 355, 369, 390-95 from globular cluster stars, 405-10 from massive stars, 329-75 coronal theory of, 334, 337

338

338

hot-cool star connection in,

radiation pressure theory of, 333-34, 337 from metal-deficient stars, 352-53, 405-10 in Population I stars, 380-81, 386, 390-95, 406 from the Sun, 378-79, 384, 386, 395-99 from supergiants, 337-38, 344-47, 351-53, 355-56, 366-67 Mass-loss rates for early-type stars, 333-37, 352 for late-type stars, 337-38, 353, 378-90, 400-3 for OB supergiants, 333-37, 350-51 parameterization of, 410-13 radio techniques for determining, 334, 388-90 UV techniques for determining, 334, 385-88 velocities of, 378-90 X rays used in determining, 393-95 Massive stars galactic distribution of, 366-69 as supernova precursors, 206-12, 226-28, 347-48 Massive stars, evolution of, 329-75 at constant mass, 330-33, 347, 355 convective overshooting in, 353-55, 368, 406 core He-burning phase, 331, 341-47, 355 core and shell H-burning phases of, 331, 339-47, 354 effects of mass loss on, 339-48 effects of metallicity on, 352-53, 366-67 Maximum entropy images, properties of, 141-54 Maximum Entropy Method of image restoration, 127a priori information in, 140-41 algorithms for, 154-60 default approach to controlling, 151-52, 161-62, least-squares, 147-53, 156, fluctuation theory of, 334, nonlinearity in, 143-44, 149

for polarization mapping,

resolution variation in, 152

159-61

in single-aperture case, 149- 50	NGC 598, 471–72 NGC 891, 479	Kleinmann-Low region in, 75, 82
for spectral imaging, 161-62	NGC 1052, 177	OSO 7 observations, 37
Mira variables, 95, 114-17, 402	NGC 1058, 227	OSO 8 observations, 35-38
Molecular clouds, 50–54, 77–	NGC 1068, 174, 183–84	obo o observations, 55 50
80, 82, 500-1	NGC 2685, 469	
Molecular opacities, 96–105,	NGC 2903, 476	P
118		
	NGC 3031, 469, 473–74, 487	P. C: 244
Molecules	NGC 3034, 469	P Cygni, 344
fluorescent lines of, 115	NGC 3079, 478	Parametrized Post-Newtonian
thermodynamical properties of, 91-92	NGC 3623, 468–69 NGC 3718, 469	coordinate system (PPN), 543-53
Molecules in circumstellar en-	NGC 3783, 181	Photoelectric photometry, 1-3,
velopes, 115-20	NGC 4051, 177	11-19
Molecules in stars, 89-125	NGC 4147, 434	Planetary nebulae, 50, 53, 64
abundances of, 92-96, 102-3,	NGC 4151, 179-81, 183, 185	Polarization, 159-61, 167
113	NGC 4216, 468–69	in active galactic nuclei, 183-
as population indicators, 110-	NGC 4258, 476	84
11 Md- 270, 177	NGC 4565, 468	in galaxies, 460-61
Mrk 279, 177	NGC 4590, 468–69	optical observations of,
Mrk 359, 177	NGC 4618, 228	467–69
Mrk 876, 177	NGC 4631, 479	radio observations of, 469-
Mrk 926, 177	NGC 4699, 223	78
Mrk 1014, 185	NGC 5055, 468, 476	in pulsars, 292-93, 307-11,
MS stars, 93, 106	NGC 5128, 468-69	316, 322
Mu Cassiopeiae, 441	NGC 5194, 472-73	Population I disk stars
M 3, 429, 435, 442-43, 449-	NGC 5236, 476, 488-89	distribution of, 579-93
51, 600	NGC 6717, 407	luminosity function of, 592-
M 5, 435	NGC 6822, 426, 428	93, 601, 604
M 13, 430, 435, 453, 594, 600	NGC 6838, 452	scale heights and scale
M 15, 442, 451–52	NGC 6946, 220, 474–75, 487	lengths in, 595-96, 602
M 22, 515	NGC 7213, 177	Population I stars, 220–21. See
M 31, 19, 427, 429, 435–36,	NGC 7331, 469	also Stellar populations
	NGC 7814, 468	
469-70, 481, 489		main sequence, 443, 445
M 32, 18, 426–27, 435	Nucleosynthesis	mass loss in, 380-81, 386,
M 33, 471–72	in massive stars, 329, 355-	390–95, 406
M 51, 472-73	61, 363, 368	Population II spheroid stars,
M 67, 436	in standard model for Type I	579–602
M 71, 407	supernovae, 241-42, 246	axis ratio of, 597-98
M 81, 469, 473-74, 487	in Type II supernovae, 211-	distribution of, 579-94
M 82, 469	12, 218, 223–26	luminosity function of, 593-
M 83, 476, 488-89		94, 600
M 8/, 166, 425	0	scale heights and scale
M 92, 429-30, 435, 442-43,		lengths in, 595-96, 602
449, 452, 594, 600	O stars	Population II stars, 422, 426,
777 1027 5717 656	and H II regions, 69, 79	428-45. See also Stellar
N	interstellar reddening of, 15-	populations
14	16	main sequence, 437–46
N stars, 94, 107, 109		
	mass loss from, 333, 337,	mass loss from, 405-10
Nebulae	346, 352–53, 363–69	Presupernova evolution, 206-12
bipolar, 50	OB associations, 54, 65, 68,	228–30, 347–48
emission, see Emission	71, 80-81, 83, 369, 524-	PSR 0525 + 21, 319
nebulae	25	PSR 0529 - 66, 288
Neutrino transport model, 213-	OB stars, 54, 72, 329	PSR 0531 + 21 (Crab Nebula
14, 217–19	mass loss from, 333-36, 346-	pulsar), 293-95, 299, 318-
Neutron stars, 205, 208, 218,	51, 355	19, 539
285, 293-95, 303-7, 316-	Optical absorption-line studies	PSR 0655 + 64, 301, 303-4,
17, 323, 542, 560, 573	of interstellar gas, 499-535	565
NGC 147, 427, 435	instruments for, 508-11	PSR 0809 + 74, 312-13

NGC 185 427 435	Orion Nebula 16 82	PSR 0818 - 13 312
NGC 185, 427, 435 NGC 188, 443	Orion OR association 518 525	PSR 0818 - 13, 312 PSR 0820 + 02 305-6
NGC 188, 443	Orion OB association, 518, 525	PSR 0820 + 02, 305-6

carbon, see Carbon stars

chromospheres of, 379-88

PSR 0833 - 45 (Vela X pul-Small Magellanic Cloud, 353, 365, 406, 426, 476-77 sar), 293-95, 299, 309, Quasars, see also Quasi-stellar SN 1006, 230 318-19 PSR 0950 + 08, 299, 310, objects SN 1885a, 247 316 black holes in, 189-90 SN 1954a, 247 PSR 1237 + 25, 570 broad-line region in, 185-91, SN 1957a, 233, 247 PSR 1509 - 58, 293-95, 196, 198 SN 1961v, 227-28 Quasi-stellar objects, 171-203 SN 19621, 245 299 PSR 1855 + 09, 286, 304 emission-line region of, 177-SN 19641, 245 PSR 1913 + 16, 303-4, 537, 81 SN 19691, 220, 222 563-64, 567, 572-73 SN 1972e, 236-37 SN 1979c, 220 PSR 1929 + 10, 299 R SN 1980i, 247 PSR 1937 + 21, 286, 288, SN 1980k, 220 292, 303-7, 537, 540, 543, R Andromedae, 96 545, 547-49, 553, 571 SN 1981b, 236 R Cygni, 94 PSR 1944 + 17, 312-13 SN 1983k, 223 Radio astronomy, image restora-PSR 1953 + 29, 286, 304-7 SN 1983n, 245-46 tion in, 127-70 PSR 2303 + 46, 304 SN 1983v, 247 Radio-frequency emission, mass-SN 19841, 245 Pulsar as coordinate time clock, loss determined from, 388-547-49 SN 1985f. 228 Pulsar spin stability, 542-43 Solar atmosphere, 395-99 Radio galaxies, 171-203 Pulsar timing, 290-91, 537-75 abundances in, 398-99 broad-line region of, 185-98 and gravitational waves, 567-Solar atmosphere, transition redisk emission in, 198 73 gion of, 23-48 emission-line region of, 175, Pulsars, 285-327, 479-80 Doppler wavelength shifts in 177-85 spectra of, 35-39 arrival-time of Radio sources, extragalactic, model of, 549-62 dynamical energy balance 479-80 observations of, 538-43 models of, 42-46 Rho Cassiopeiae, 413 in binary systems, 286, 292, electron density in, 28-29 RR Lyrae variables, 424-26, 303-7, 323, 537, 554empirical models of, 26-31 428-29, 433-37, 443, 446jets in, 39-42 67, 572-73 52 birth and evolution of, 294loop model of, 43-46 RS Canum Venaticorum sys-307 static energy balance models tems, 400, 404-5, 414 birth rate of, 297, 302, 322 of, 31-32, 45 R 127, 344 distances of, 288, 299-300 temporal fluctuations in, 37distribution of, 286-87, 322 38 5 spatial, 300-1 turbulent events in, 39 ultraviolet emission lines in, emission mechanism in, 307-S stars, 93-94, 96, 106-7, 114 23-28, 33-42 21 with interpulses, 315-16, 322 Solar corona, 23-26, 33-35, 41, Sagittarius A. 172 luminosity evolution of, 295-SC stars, 93, 106-7 44-46, 398-99, 414 Sculptor system, 422, 426, 435 97, 302-3 Solar coronal holes, 395-97, Seyfert galaxies, 171-203. See 399, 414 luminosity function of, 300-1 magnetic fields in, 295, 297, also Active galactic nuclei, Solar wind, 23, 26, 41, 395-99, 306, 321-22, 542 Active galaxies 413-15 magnetospheric theory of broad-line region of, 172-73, Spicules, 26, 38-43, 46 emission of, 316-19 177-98 Spiral arms formation of, 459-60 narrow-line region of, 173millisecond, 286, 288, 292, 298, 304-7, 316, 323, 76, 181-85, 198-200 magnetic field alignment 543-45, 547-49, 553, radial flow in, 174-75, 182with, 468-69, 472-78 Star-burst galaxies, 176 83, 191-94 571 noise in, 542-43, 547-48 Star counts, 349-50, 366-68, Seyfert 1 galaxies, 172-73, periods of, 288-91, 294-99, 177-84 577-611 Star formation, 50, 72-76, 492 broad-line region in, 177-82 322-23 polarization in, 292-93, 307narrow lines in, 181-82 11, 316, 322 variations in spectra of, 179-A-type, see A stars spectra of, 293-94 80 asymptotic giant branch, 405subpulse drift and nulling in, Seyfert 2 galaxies, 65, 68, 172-7, 453 B-type, see B stars 312-15 76, 182-85 binary, see Binary systems narrow-line region in, 173supernova remnants, 294-95, 303 76, 182 blue supergiant, 345-46

Skylab observations, 25, 28,

35-37, 39, 395

velocities of, 301-2

waveforms of, 288-90

cool, see Cool stars, G stars, K stars, M stars distribution of, in Galaxy, 578-83 dwarf, mass loss from, 395dwarf Population II, 428, 437-46 F-type, see F stars G-type, see G stars high-velocity, 422-25, 428, 432-38 hydrogen-ionizing flux in, 69-73, 80 intermediate white dwarf. 433-35 K-type, see K stars luminous blue variable (Hubble-Sandage variables), 329, 344-45, 349, 357, 363-64 M-type, see M stars magnitudes of, 16-18 main-sequence, 429-32, 437-49, 453 mass loss in, 52, 65, 75, 117, 329-75, 377-420 massive, see Massive stars metal-deficient, mass loss from, 381, 405-10 metallicity of, 422-23, 432-35 molecules in, 89-125 O-type, see O stars OB, see OB stars red giant, 93, 119, 347, 430. See also K stars, M stars red supergiant, 331-33, 345-47, 353, 355, 364, 366mass-loss rates for, 337-38 S-type, see S stars subdwarf, 433-35, 441-45, 448, 454-55 supergiant, 329, 332-33, 344-46, 351-53, 366-

super-metal-rich, 20-22 symbiotic, 50, 405 velocity distribution of, 423-25 Stellar atmospheres abundances of molecules in, 92-96, 113 effect of molecules on structure of, 101-3, 118 inhomogeneity of, 113-15 Stellar evolution accretion phase of, 52, 72, 75 and H II regions, 50-54, 65mass loss and, 329-75, 377-420 HR diagram of globular clusters and, 429-32

Stellar populations, 421-58. See also Population I stars, Population II stars subsystems of, 437

Stellar winds and H II regions, 68, 80, 82 and mass loss, 329, 333-38. 344-45, 348, 353, 358-61, 368, 385, 387, 391-94, 399, 408, 415

Sun chromosphere of, 23-26, 37, 45

magnetic field of, 6, 24, 26, 28, 31, 44-46, 395 mass loss from, 378-79, 384, 386, 395-99 molecular spectra of, 111-12,

114-15 ultraviolet observations of, 395-97

ultraviolet spectra of, 23-42 nonthermal line broadening in, 33-35

Sunspot spectra, molecules observed in, 94, 96, 115 Supernova explosions, 54, 80, 205-53, 307, 358-61, 522

Supernova remnants and H II regions, 52-53 and the interstellar medium, 503, 523-25 and pulsars, 294-95, 299,

303 Supernovae, evolution of, 205-53

Supernovae, Type I, 206, 213, 228-47, 502, 524 evolution leading to, 228-30, 243-45

frequency of, 206 Hubble constant and, 243 nucleosynthesis in, 241-42, 246

peculiar, 245-47 standard model of, 234-42 thermonuclear models of, 230-42

Supernovae, Type II, 206-228, 524 "delayed" explosions of, 217-

19, 225 evolution of, 206-19, 226-27 core collapse in, 212-16 from massive stars, 226-27 frequency of, 206 light-curves of, 219-23 nucleosynthesis in, 223-26

rotation of, 219 subclasses of, 219-23 unusual, 227-28

T Tauri, 52 Time, 537-75 Time clock, pulsar as a coordinate, 547-49 Time coordinate, relativistic, 543-49 Time scales, 539-42 TAI, 539-40, 544, 546-49 TDB, 539-40, 546-47 UTC, 539-40

TX Pisces, 94-95

U

Ultraviolet absorption-line studies of interstellar gas, 499-535 instruments used for, 511-13

Ultraviolet observations of active galactic nuclei, 180, 191

Ultraviolet spectroscopy, solar Doppler shifts in, 35-37 nonthermal line broadening in. 33-35

Ultraviolet spectrum, used for mass-loss detection, 329, 378, 385-88, 390 UX Arietis, 400

Vela X, 293-95, 299, 309, 318-19, 524 VLA observations, 172, 184, 389-90, 400, 476, 478, 488 VLBI astrometry, 299

Voyager observations, 399

White dwarfs in pulsar binary systems, 304-7 as supernovae precursors, 206-7, 229-36, 243-44, 246 Wolf-Rayet stars abundances in, 357-58

emission nebulae around, formation of, 363-65

galactic distribution of, 366–68 mass loss in, 329, 342–47, 350, 353 mass-loss rates in, 333–37, 342 nucleosynthesis in, 355–61 properties of, 361–63, 365–

66 spectra of, 361-62 W49N, 76 XYZ

X-ray imaging, 132 use of CCDs for, 282 Y Canum Venaticorum, 95, 105 YY Orionis, 52 Zeeman effect, 6, 464 Zero-age main sequence, 52–53, 65, 72–73, 349, 355, 369, 442–45, 447

X-ray emission, 393-95, 524

Zeta-Aurigae/VV Cephei systems, 403-4

MISCELLANEOUS

22 Vulpeculae, 392 47 Tucanae, 407, 430, 443, 449, 452, 594, 600 1 Zw 92, 175 III Zw 77, 181