SF2943 Project Presentation, Group 2

Carl Elgcrona Eric Oldgren
Felix Steinberger Eriksson Stina Gustavsson

8 May 2024

Introduction

Data selection

- Daily minimum temperature in Melbourne 1981-1990 (n = 3650) from Kaggle
- Analysis was performed in R

Figure: Daily minimum temperature

Expectations

SF2943 Project Presentation, Group 2

- Temperature data should have a static variance over time
- Daily temperature should be periodic of 365 days
- Global warming is a large issue theory: linear trend

Figure: Seasonal component

Cleaning the Data

Filtered data

Carl Elgcrona, Eric Oldgren Felix Steinberger Eriksson, Stina Gustavsson

Validation of the cleaned Data

Carl Elgcrona, Eric Oldgren Felix Steinberger Eriksson, Stina Gustavsson

Validation of the cleaned Data

Fitting the model

Estimating the parameters

Our ARMA(2,2) model:

$$X_t = 1.21X_{t-1} - 0.23X_{t-2} + Z_t - 0.75Z_{t-1} - 0.19Z_{t-2}$$

with

$$\{Z_t\} \sim WN(0,7.74)$$

Forecast

Evaluation of residuals

 Residuals normally distributed

Difficulties and Alternatives

- Python was hard in the beginning
- Difficult to find an appropriate dataset
- More complicated models like ARIMA / SARIMA could provide a better fit

Thank you!

Carl Elgcrona, Eric Oldgren Felix Steinberger Eriksson, Stina Gustavsson