Twitter sentiment analysis

For the Deep Learning project I took the dataset containing multiple covid tweets from Kaggle at https://www.kaggle.com/gpreda/covid19-tweets

With that in mind, my goal is to study, analyse, clean and then kame a sentiment analysis model with a Recurrent Neural Network.

Exploratory data

As usual I'll start by importing the various libraries I need to work on the data

```
# Matplot for plots
# Scikit-learn, I'll need especially for the final plots
# Keras for Deep Learning
# Natural language toolkit
# Word2vec
# Utility
```

```
from collections import Counter
import logging
import time
import pickle
import itertools
```

and I'll also set the log as well as downloading the "stopwords" from the natural language processing library

```
# Set log
logging.basicConfig(format='%(message)s', level=logging.INFO)

nltk.download('stopwords')
```

With that in mind, I can start getting the data from the file and inspect the first 10 lines

```
# read the data from the file
filepath = 'covid19-tweets.csv'
data = pd.read_csv(filepath, sep=',')

data.head(10)
```

is_retwee	source	hashtags	text	date	user_verified	user_favourites	user_friends	user_followers	user_created	user_description	user_location	user_name	
Fals	Twitter for iPhone	NaN	If I smelled the scent of hand sanitizers toda	25/07/2020 12:27	False	18775	950	624	26/05/2017 05:46	wednesday addams as a disney princess keepin i	astroworld	Viete:	0
Fals	Twitter for Android	NaN	Hey @Yankees @YankeesPR and @MLB - wouldn't it	25/07/2020 12:27	True	24	1677	2253	16/04/2009 20:06	Husband, Father, Columnist & Commentator, Auth	New York, NY	Tom Basile us	1
Fals	Twitter for Android	[covib1a]	@diane3443 @wdunlap @realDonaldTrump Trump nev	25/07/2020 12:27	False	7254	9525	9275	28/02/2009 18:57	#Christian #Catholic #Conservative #Reagan #Re	Powce Valley, KY	Time4fisticuffs	2
Fals	Twitter for iPhone	[conp1a]	@brookbanktv The one gift #COVID19 has give me	25/07/2020 12:27	False	1488	987	197	07/03/2019 01:45	#Browns #Indians #ClevelandProud #[_[] #Cavs	Stuck in the Middle	othel mertz	3
Fals	Twitter for Android	['CoronaVirusUpdate s', 'COVID19']	25 July : Media Bulletin on Novel #CoronaVirus	25/07/2020 12:27	False	101	168	101009	12/02/2017 06:45	Official Twitter handle of Department of Inf	Jammu and Kashmir	DIPRJ&K	4
Fals	Twitter Web App	['coronavirus', 'covid19']	#coronavirus #covid19 deaths continue to rise	25/07/2020 12:27	False	1287	1071	1180	19/03/2018 16:29	я∰ #Новоро́ссия #Novcrossiya #оставайсядома #S	Новорбския	Franz Schubert	5
Fals	Buffer	[COVID19', 'Recruiting']	Hew #COVID19 Will Change Work in General (and	25/07/2020 12:27	False	3801	54810	79956	12/08/2008 18:19	Workplace tips and advice served up in a frien	Gainesville, FL	hr barlender	6
Fals	TweetDeck	NaN	You now have to wear face coverings when out s	25/07/2020 12:27	False	95	355	608	03/02/2012 18:08	NaN	NaN	Derbyshire LPC	7
Fals	Twitter for Android	['covid19', 'covidPositive']	Praying for good health and recovery of @Chouh	25/07/2020 12:26	False	18	29	25	25/04/2015 08:15	A poet, reiki practitioner and a student of law.	NaN	Prathamesh Bendre	
Fals	Twitter for iPhone	['HurricaneHanna', 'COVID19']	POPE AS GOD - Prophet Sadhu Sundar Selvaraj, W	25/07/2020 12:26	False	29802	34239	55201	17/08/2014 04:53	Just as the body is one & has many members, &	Qtocation at link belowQ	Member of Christ CNUSTNEDGRNGEDRU	9

and then inspect the content of the *main attributes* for this dataset with data.dtypes

```
    user_name
    object

    user_location
    object

    user_description
    object
```

```
user_created
                    object
user_followers
                     int64
user_friends
                     int64
user_favourites
                     int64
user_verified
                      bool
date
                    object
text
                    object
hashtags
                    object
source
                    object
is_retweet
                      bool
dtype: object
```

Visual representation

I will make some visual representation of the various data I have to have a better visual representation of the information I have

```
plt.figure(figsize=(15, 4))
plt.plot(data.user_verified, data.is_retweet, ls='', marker='o')

0.04
0.02
-0.02
-0.04
-0.04
-0.04
-0.04
-0.06
-0.06
-0.07
-0.08
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.09
-0.0
```

```
plt.figure(figsize=(15, 4))
plt.plot(data.user_followers, data.is_retweet, ls='', marker='o')

0.04
0.02
-0.02
-0.04
-0.04
-1
2
3
4
5
le7
```

```
plt.figure(figsize=(15, 4))
plt.plot(data.user_friends, data.is_retweet, ls='', marker='o')
```


and plot the heatmap as well

Data cleaning and feature engineering

I want to check the data and see if it's skewed or if there's something to be working on. Since I'll work on a DeepLearning model, the more features I have, the better I can work on, but I still need to ensure that the information is cleaned for the processing. To see if the data are skewed I use a simple displot and see if they're already normalized

As it seems almost all the data we have is in a range 0-1 with the majority being in the 0, therefore no further data cleaning is required, and I can keep these features for making analysis on the data.

Deep Learning model

In order to create a sentiment analysis I start by creating a new column into our DataFrame with random value and then adjust it for simple decoding sentiments for starting information

```
# Add column with zeroes
data['target'] = np.random.choice([-1, 0, 1], data.shape[0])

dec_map = {-1: "Negative",0: "Neutral", 1: "Positive"}

# Simple function to decode the sentiment
def dec_sentiment(label):
    return dec_map[int(label)]

# We add the column target on the DataFrame
data.target = data.target.apply(lambda x: dec_sentiment(x))
```

With that in mind, I can add the information for the English language

```
sw = stopwords.words("english")
stem = SnowballStemmer("english")
```

It's important now to clean the text for the tweets from information regarding users and links, and for that a regex will be used

```
def text_preprocess(text, stem=False):
    text = re.sub("@\S+|https?:\S+|http?:\S|[^A-Za-z0-9]+", ' ', str(text).lower()).strip()
```

```
tokens = []

for token in text.split():
    if token not in stop_words:
        if stem:
            tokens.append(stemmer.stem(token))
        else:
            tokens.append(token)
    return " ".join(tokens)

data.text = data.text.apply(lambda x: text_preprocess(x))
```

And then split our data for train and test split (with 70-30 split)

```
X_train, X_test = train_test_split(data, test_size=0.3, random_state=42)
print("train size:", len(X_train))
print("test size:", len(X_test))
```

with which I'll have

train size: 125375test size: 53733

Using word2vec

I now add the w2v library to learn word associations from a large document

```
doc = [_text.split() for _text in X_train.text]

w2v = gensim.models.word2vec.Word2Vec(vector_size=200, window=7, min_count=7, workers=8)

w2v.build_vocab(doc)
```

and from that I can create my words vocabulary

```
words = w2v.wv.index_to_key
vocabulary_size = len(words) # in my case it will 15467
```

and with that I can train my model (I'll stick to 50 epochs to make it a bit faster)

```
w2v.train(doc, total_examples=len(doc), epochs=50)
```

Test the results

After the train is complete, I can inspect the content of the model and look for the most similar sentiment content given specific information, for example I can try with

```
w2v.wv.most_similar("covid") and I get the following
```

```
[('covid19', 0.4595447778701782),
  ('coronavirus', 0.38082993030548096),
  ('364', 0.2836289703845978),
  ('842', 0.273364782333374),
  ('corona', 0.25135260820388794),
  ('versus', 0.24311982095241547),
  ('covid19sa', 0.239445760846138),
  ('new', 0.2327510267496109),
  ('associated', 0.2262677699327469),
  ('90', 0.22575807571411133)]
```

I can now tokenize the text, create the new training and test data, and encode the information

```
print("Total words with the new vocubalary", vocabulary_size_new)
enc = LabelEncoder()
enc.fit(X_train.target.tolist())
y_train = enc.transform(X_train.target.tolist())
y_test = enc.transform(X_test.target.tolist())
# Add an emberring layer
for word, i in tokenizer.word_index.items():
  if word in w2v.wv:
# Embed it
embedding_layer = Embedding(vocabulary_size_new, 200, weights=[layer_matrix], input_length=200,
```

Finally, I can build, compile and run the model

```
# Numpy requirement
# https://stackoverflow.com/questions/66207609/notimplementederror-cannot-convert-a-symbolic-
tensor-lstm-2-strided-slice0-t
model = Sequential()
model.add(embedding_layer) # note that it requires numpy 1.19
model.add(Dropout(0.5))
```

With that in place, the final thing remained is to create the function for prediction, add the test and prediction to it and plot the confusion matrix

```
def dec(score):
    if score <= -0.4:
        return "Negative"
    elif score >= 0.4:
        return "Positive"

    return "Neutral"

def predict(text):
    start_at = time.time()

# Tokenize text
    X_test = pad_sequences(tokenizer.texts_to_sequences([text]]), maxlen=200)

# Predict
    score = model.predict([X_test])[0]

# Decode sentiment
    label = decode_sentiment(score)
    return ("label": label, "score": float(score), "elapsed_time": time.time()-start_at)

y_pred_new = []
    y_test_new = list(X_test.target)

scores = model.predict((X_test_new, verbose=1, batch_size=5000)
    y_pred_new = [dec(score) for score in scores]
```

Summary

In case the model need to be reused I can simply save it

```
model.save('model.h5')
w2v.save('w2v_model.w2v')
pickle.dump(tokenizer, open('tokenizer.pkl', 'wb'), protocol=0)
pickle.dump(enc, open('encoder.pkl', 'wb'), protocol=0)
```

Even though the model works well, it is to be said that I had to provide the various initial sentiments, and for that the accuracy itself could have been biased.

It should be tested again a larger dataset containing the various information about the initial sentiment and make it running for longer epochs to ensure that it is more accurate.