Obsah

1	Teó	a strojového učenia I	2
	1.1	Matematický model	. 2
	1.2	Analýza veľkostí chýb	. 3
		1.2.1 Teoretické limity	. 3
		1.2.2 Bias-variance tradeoff	. 4
		1.2.3 Bias-variance tradeoff, verzia 2	. 7
	1.3	Ako sa vysporiadať s preučením/podučením?	. 8

Kapitola 1

Teória strojového učenia I

Chceme sa naučiť na základe nejakých vstupných dát x predikovať y. Môžeme si to predstaviť tak, že príroda vie poskytovať pozorovania, každé v tvare dvojice (x,y). Dostali sme od nej sadu t pozorovaní, na základe ktorých chceme navrhnúť nejakú funkciu h, ktorá predpovedá y na základe x. Dobrá funkcia je taká, ktorá je schopná zovšeobecňovať, teda sa jej "dobré darí" aj na dátach mimo trénovacej množiny. Proces, ktorým h zostrojíme, si môžeme predtaviť ako algoritmus, ktorý berie ako vstupy trénovacie dáta a vráti nám funkciu.

1.1 Matematický model

Z matematického hľadiska, prírodu vieme formalizovať ako pravdepodobnostnú distribúciu P. Množinu všetkých možných x označíme X, množinu možných y označíme Y.

V tejto časti sa nebudeme zaoberať výpočtovou stránkou strojového učenia, od detailov ako časová zložitosť, ..., abstrahujeme. Algoritmus si teda predstavíme iba ako niečo, čo vezme ako vstup trénovacie dáta $(x_1, y_1), \ldots, (x_t, y_t)$ a na výstup vráti funkciu $h: X \to Y$. Túto funkciu budeme volať hypotéza. Množinu všetkých možných funkcii, ktoré môže náš algoritmus vrátiť, budeme volať množina hypotéz a značiť ho H.

Chyba hypotézy. Ako vyjadriť mieru toho, že sa funkcii "dobre darí"? Spravíme tak pomocou chybovej funkcie err : $Y \times Y \to \mathbb{R}^+$, ktorej význam je nasledovný: $\operatorname{err}(y, y')$ vyjadruje, ako veľmi sa od seba líšia y a y'. Pomocou tejto funkcie vieme odmerať priemernú chybu hypotézy h, ktorú budeme tiež označovať err, nasledovne:

$$\operatorname{err}(h) = \underset{x,y}{\operatorname{E}} \left[\operatorname{err}(h(x), y) \right]$$

Pod $E_{x,y}$ sa rozumie stredná hodnota cez (x,y) z pravdepodobnostnej distribúcie P, teda $(x,y) \sim P$. Pri klasifikácii sa zvykne používať chybová funkcia

$$\operatorname{err}(y, y') = \begin{cases} 0, & \text{ak } y = y' \\ 1, & \text{inak} \end{cases}$$

a potom zrejme

$$\mathop{\mathbf{E}}_{x,y}\left[\mathrm{err}(h(x),y)\right] = \mathop{\mathbf{P}}_{x,y}\left(h(x) \neq y\right).$$

Pri regresii máme viacero možností, bežné voľby sú kvadratická chyba $(y - y')^2$ a absolútna chyba |y - y'|.

Chyba algoritmu. Ako vyjadriť chybu celého učiaceho algoritmu? Uvedomme si, že výstup algoritmu je závislý od trénovacích dát $T = \{(x_1, y_1), \dots, (x_t, y_t)\}$, ktoré dostane. Takže výstupná funkcia je od nich závislá, budeme ju označovať \hat{h} . Potom priemerná chyba algoritmu (alebo inak priemerná chyba priemernej hypotézy), braná cez všetky možné vzorky trénovacích dát, je rovná

$$\underset{T}{\mathbf{E}} \left[\operatorname{err}(\hat{h}) \right] = \underset{T}{\mathbf{E}} \left[\underset{x,y}{\mathbf{E}} \left[\operatorname{err}(\hat{h}(x), y) \right] \right].$$

Pod E_T sa rozumie stredná hodnota cez všetky možné t-tice trénovacích dát T, brané nezávisle z pravdepodobnostnej distribúcie P.

Trénovacia chyba. Pri vyššie uvedených chybách sme vždy merali vzhľadom na skutočnú distribúciu P. Môže nás ale zaujímať, aká je priemerná chyba hypotézy na trénovacích dátach T. Túto chybu budeme označovať $\operatorname{err}_T(h)$, a vypočítame ju ako

$$\operatorname{err}_T(h) = \mathop{\mathbf{E}}_{x_i, y_i} \left[\operatorname{err}(h(x_i), y_i) \right] = \frac{1}{t} \cdot \sum_{i=1}^t \operatorname{err}(h(x_i), y_i).$$

Priemerná trénovacia chyba z pohľadu algoritmu bude

$$\underset{T}{\mathbf{E}}\left[\mathrm{err}_{T}(\hat{h})\right].$$

V nasledujúcom texte budeme vynechávať premenné, cez ktoré prebiehajú stredné hodnoty, všade tam, kde budú zrejmé z kontextu.

1.2 Analýza veľkostí chýb

V tejto časti sa podrobnejšie pozrieme na to, ako závisia vyššie uvedené štatistiky (tj. priemerná testovacia a trénovacia chyba priemernej hypotézy) od veľkosti trénovacej množiny T a od veľkosti množiny hypotéz H.

V celej časti budeme predpokladať, že úloha je regresného charakteru a chyba sa meria ako kvadratická odchýlka, teda

$$\operatorname{err}(y, y') = (y - y')^2.$$

1.2.1 Teoretické limity

Najprv sa ale pozrieme na teoretické limity toho, ako dobrá vôbec môže nejaká funkcia byť. Označme h^{\square} najlepšiu možnú funkciu, nemusí byť nutne z H. Teda

$$h^{\square} = \underset{h}{\operatorname{arg\,min}} \left(\operatorname{err}(h)\right) = \underset{h}{\operatorname{arg\,min}} \left(\underset{x,y}{\operatorname{E}} \left[(h(x) - y)^2 \right] \right).$$

Jediné obmedzenia kladené na h sú, že je to funkcia: pre každé x musí vrátiť vždy jednu a tú istú hodnotu. Distribúcia P ale nemusí pre dané x vždy vrátiť to isté y: môže byť zašumená, alebo jednoducho x neobsahuje dostatočnú informáciu. Napríklad, ak podľa plochy bytu určujeme jeho cenu, niektoré dva byty môžu mať rovnakú plochu a predsa rôznu cenu. Ako uvidíme, tento nedeterminizmus je jediný dôvod, prečo hypotéza h^{\square} nemusí mať nulovú chybu.

Chybu ľubovoľnej hypotézy h vieme upraviť nasledovne:

$$\operatorname{err}(h) = \underset{x,y}{\operatorname{E}} \left[(h(x) - y)^2 \right] \tag{1.1}$$

$$= \underset{x}{\mathbf{E}} \left[\underset{y|x}{\mathbf{E}} \left[(h(x) - y)^2 \right] \right] \tag{1.2}$$

Pozrime sa na vnútornú strednú hodnotu. V nej je x konštanta, a teda aj h(x) = c je konštanta. Aká konštanta minimalizuje danú strednú hodnotu? Nie je ťažké vidieť (napríklad zderivovaním), že minimum sa nadobúda pre c = E[y]. Takže

$$h^{\square}(x) = \underset{y|x}{\mathrm{E}}[y],$$

a jeho priemerná chyba je

$$\operatorname{err}(h^{\square}) = \operatorname{E}_{x} \left[\operatorname{E}_{y|x} \left[(y - \operatorname{E}[y]) \right] \right] = \operatorname{E}_{x} \left[\operatorname{Var}(y) \right].$$

Vidíme teda, že pokiaľ je y jednoznačne určené x-om, tak h^{\square} bude mať nulovú chybu.

1.2.2 Bias-variance tradeoff

V tomto odseku si ukážeme zaujímavý výsledok, ktorý nám za určitých predpokladov umožňuje vyjadriť chyby pomocou iných, jasnejších veličín: tzv. *výchylky* a *rozptylu*.

Odvodenie. Označme najlepšiu hypotézu z množiny H ako h^* , teda

$$h^* = \operatorname*{arg\,min}_h \left(\operatorname{err}(h) \right).$$

Budeme upravovať výraz reprezentujúci priemernú chybu priemernej hypotézy \hat{h} .

chyba algoritmu =
$$\underset{T}{\mathbf{E}} \left[\operatorname{err}(\hat{h}) \right]$$
 (1.3)

$$= \underset{T}{\mathbf{E}} \left[\underset{x,y}{\mathbf{E}} \left[(\hat{h}(x) - y)^2 \right] \right] \tag{1.4}$$

$$= \underset{T}{\mathbf{E}} \left[\underset{x,y}{\mathbf{E}} \left[\left((\hat{h}(x) - h^{\star}(x)) + (h^{\star}(x) - y) \right)^{2} \right] \right]$$
 (1.5)

V tomto momente prichádza netriviálny technický krok, ktorý si vyžaduje dodatočné predpoklady. Tieto technické detaily prenecháme na koniec časti, sústreďme sa na to hlavné.

chyba algoritmu =
$$\underset{T}{\mathbf{E}} \left[\underset{x,y}{\mathbf{E}} \left[(\hat{h}(x) - h^{\star}(x))^{2} \right] \right] + \underset{T}{\mathbf{E}} \left[\underset{x,y}{\mathbf{E}} \left[(h^{\star}(x) - y)^{2} \right] \right]$$

Druhý zo sčítancov sa dá ešte zjednodušiť. Kedže h^* ani y nezávisia od trénovacích dát, môžeme sa zbaviť vonkajšej strednej hodnoty. Dostávame tak výslednú rovnosť

chyba algoritmu =
$$\underbrace{\mathbf{E}}_{T} \left[\underbrace{\mathbf{E}}_{x,y} \left[(\hat{h}(x) - h^{\star}(x))^{2} \right] \right] + \underbrace{\mathbf{E}}_{x,y} \left[(h^{\star}(x) - y)^{2} \right] \cdot \underbrace{\mathbf{E}}_{v \circ chylka} \left[(h^{\star}(x) - y)^{2} \right].$$

Prvý zo sčítancov budeme volať rozptyl. Vyjadruje, ako ďaleko je naša funkcia od najlepšej možnej, vrámci množiny hypotéz H. Druhý zo sčítancov budeme volať výchylka. Vyjadruje chybu, ktorá je spôsobená výberom množiny hypotéz.

Výchylku vieme upraviť ďalej. Pretože hypotéza h^* ani y nezávisia od trénovacej množiny T, merať chybu na testovacích dátach x, y je to isté, ako merať ju na trénovacích dátach x_i, y_i , berúc ich náhodný výber. Teda

výchylka =
$$\underset{T}{\text{E}} \left[\underset{x_i, y_i}{\text{E}} \left[(h^*(x_i) - y_i)^2 \right] \right]$$
 (1.6)

$$= \mathop{\rm E}_{T} \left[\mathop{\rm E}_{x_{i}, y_{i}} \left[\left((h^{\star}(x_{i}) - \hat{h}(x_{i})) + (\hat{h}(x_{i}) - y_{i}) \right)^{2} \right] \right]$$
 (1.7)

Opäť, použitím toho istého technického kroku dostaneme:

výchylka =
$$\underbrace{\mathbb{E}\left[\mathbb{E}\left[\left(h^{\star}(x_{i}) - \hat{h}(x_{i})\right)^{2}\right]\right]}_{\text{trénovací rozptyl}} + \underbrace{\mathbb{E}\left[\mathbb{E}\left[\left(\hat{h}(x_{i}) - y_{i}\right)^{2}\right]\right]}_{\text{priemerná trénovacia chyba}}$$
(1.8)

Trénovací rozptyl vyjadruje, ako ďaleko je naša hypotéza \hat{h} od najlepšej možnej h^* z H. Na rozdiel od rozptylu ale túto vzdialenosť meriame na trénovacích dátach, nie na testovacích. To spraví rozdiel, nakoľko \hat{h} je závislé od trénovacích dát. Priemerná trénovacia chyba je priemerná chyba, ktorej sa dopustí výstup z algoritmu \hat{h} na tých istých dátach, pomocou ktorých sme \hat{h} zostrojili.

Závery. Podarilo sa nám teda rozložiť chybu algoritmu na dve, prípadne tri časti. Načo je to ale dobré? Ukážeme si, ako pomocou nich vieme získať intuíciu o tom, ako sa správa chyba algoritmu v závislosti od veľkosti trénovacej množiny a veľkosti (tj. zložitosti) množiny hypotéz. TODO obrázok kriviek učenia, vysvetlenie TODO podučenie, preučenie

Technické detaily. Nakoniec sa vyjadríme k spomínanému technickému kroku. Začneme jeho znením a potom uvedieme jeho predpoklady.

Veta 1. Predpokladajme, že vstupom do hypotéz sú vektory reálnych čísel (tj. $X = \mathbb{R}^n$), cieľom je predpovedať jedno reálne číslo (tj. $Y = \mathbb{R}$), a že pravdepodobnostné rozdelenie P je spojité.

Nech množina hypotéz H je uzavretá na lineárne kombinácie a na limity (teda ak postupnosť funkcii v H konverguje, jej limita je tiež v H).

Ďalej predpokladajme, že trénovací algoritmus vždy vráti takú funkciu $\hat{h} \in H$, ktorá minimalizuje trénovaciu chybu. Inak zapísané,

$$\hat{h} = \underset{h \in H}{\operatorname{arg min}} \left(\underset{T}{\operatorname{E}} \left[\operatorname{err}_{T}(h) \right] \right).$$

Potom platí

$$\underset{T}{\mathbf{E}} \left[\underset{x,y}{\mathbf{E}} \left[\left((\hat{h}(x) - h^{\star}(x)) + (h^{\star}(x) - y) \right)^{2} \right] \right] = \underset{T}{\mathbf{E}} \left[\underset{x,y}{\mathbf{E}} \left[(\hat{h}(x) - h^{\star}(x))^{2} \right] \right] + \underset{T}{\mathbf{E}} \left[\underset{x,y}{\mathbf{E}} \left[(h^{\star}(x) - y)^{2} \right] \right]$$

Poznámka 1. Dokazovaná rovnosť je ekvivalentná s nasledovnou, stručnejšou:

$$\operatorname{E}_{T}\left[\operatorname{E}_{x,y}\left[\left(\hat{h}(x)-h^{\star}(x)\right)\cdot\left(h^{\star}(x)-y\right)\right]\right]=0.$$

Túto kratšiu verziu získame roznásobením a použitím linearity strednej hodnoty. V dôkaze budeme dokazovať túto rovnosť.

Poznámka~2.~ Všimnite si, že potrebujeme uzavretosť množiny H na limity na to, aby bolo $\arg\min_{h\in H}(\ldots)$ dobre definované. Vo všeobecnosti nemusí existovať taká funkcia, ale môže existovať nekonečná postupnosť funkcii, každá ďalšia lepšia, ako tá predchádzajúca. (Inak povedané, neexistuje minimum, iba infimum.)

Poznámka 3. Veta by sa dala rozšíriť aj na iné množiny X,Y, napríklad keď predpovedaná premenná je vektor $(Y=\mathbb{R}^m)$, ... Možno ani P nemusí byť spojité. Pre jednoduchosť argumentu ale budeme uvažovať vetu tak, ako je popísaná vyššie.

Poznámka 4. Predpoklady vety sú značne obmedzujúce. Napríklad si uvedomte, že ju nie je možné použiť na klasifikáciu, či dokonca ani na ľubovoľnú ohraničenú regresiu (kde rozumné hodnoty y sú ohraničené). Ale taká je teória.

Pri našom dôkaze využijeme niekoľko vlastností funkcii, ktoré uvádzame v nasledujúcom odseku. Skúsený čitateľ-matematik ho môže preskočiť.

Definícia 1. (Skalárny súčin.) Nech f,g sú funkcie zX do \mathbb{R} , z nejakej príjemne sa správajúcej množiny funkcii (tj. rovnomerne spojité, ..., čokoľvek, aby nasledujúce argumenty prešli). Definujeme ich skalárny súčin $\langle \cdot, \cdot \rangle$ ako

$$\langle f, g \rangle = \int f(x) \cdot g(x) \ d\rho x$$
 (1.9)

$$= \mathop{\mathbf{E}}_{x} \left[f(x) \cdot g(x) \right], \tag{1.10}$$

kde ρ je hustota pravdepodobnosti distribúcie P. Rozmyslite si, že takto definovaný skalárny súčin má všetky vlastnosti, ktoré sa bežne požadujú od skalárnych súčinov:

- Je symetrický od svojich argumentov, teda $\langle f, g \rangle = \langle g, f \rangle$.
- Je lineárny: $\langle f, g + h \rangle = \langle f, g \rangle + \langle f, h \rangle$ a tiež $\langle k \cdot f, g \rangle = k \cdot \langle f, g \rangle$.
- $\bullet\ \langle f,f\rangle \geq 0$ pre ľubovoľné f, pričom rovnosť nastáva práve vtedy, keď je f konštantne nulové.

Definícia 2. (Kolmosť.) Dve funkcie f, g sú na seba kolmé, ak ich skalárny súčin je 0. Značíme $f \perp g$.

Definícia 3. (Norma.) Podľa skalárneho súčinu definujeme normu funkcie (jej "dĺžku"):

$$||f|| = \sqrt{\langle f, f \rangle} = \sqrt{\mathop{\mathbf{E}}_{x} [f^{2}(x)]}$$

Spĺňa trojuholníkovú nerovnosť: pre ľubovoľné funkcie f, g platí

$$||f|| + ||g|| \ge ||f + g||$$
.

Definuje nám teda (euklidovskú) metriku nad funkciami, podľa ktorej definujeme limity a konvergenciu.

Lemma 1. (Pytagorova veta.) Nech $f \perp g$. Potom platí:

$$||f||^2 + ||g||^2 = ||f + g||^2$$

 $D\hat{o}kaz$. Pozrime sa na pravú stranu. Iba v nej zapíšeme normu ako skalárny súčin a využijeme jeho linearitu a symetriu:

$$||f + g||^2 = \langle f + g, f + g \rangle$$
 (1.11)

$$= \langle f, f \rangle + \langle g, g \rangle + 2 \cdot \langle f, g \rangle \tag{1.12}$$

Pretože $f \perp g$, posledný sčítanec je nulový, čím dostávame dokazované tvrdenie.

Definícia 4. (Projekcia na množinu.) Nech H je množina funkcii, ktorá je uzavretá na lineárne kombinácie a na limity, a nech f je funkcia. *Projekciu* funkcie f na množinu H budeme označovať f_H a budeme pod ňou rozumieť nasledovný výraz:

$$f_H = \operatorname*{arg\,min}_{h \in H} d(f, h)$$

Lemma 2. (Kolmosť projekcie.) Pre ľubovoľnú funkciu $h \in H$ platí $h \perp f - f_H$.

 $D\hat{o}kaz$. Sporom, predpokladajme, že $h \not\perp f - f_H$. Takže $\langle h, f - f_H \rangle \neq 0$. Ukážeme, že potom existuje v H funkcia, ktorá je k funkcii f bližšie, ako funkcia f_H . To bude hľadaný spor s definíciou f_H .

Pozrime sa na všetky funkcie, ktoré ležia na priamke $f_H + \Delta \cdot h$. Tieto funkci sú v množine H, pretože $f_H, h \in H$ a množina H je uzavretá na lineárne kombinácie. Každú z týchto funkcii vieme asociovať s jedným reálnym číslom Δ . Pozrime sa na ich vzdialenosti od funkcie f, vyjadrené ako funkcia od Δ :

$$\operatorname{dist}(\Delta) = d(f, f_H + \Delta \cdot h) \tag{1.13}$$

$$= \langle (f - f_H) + \Delta \cdot h, (f - f_H) + \Delta \cdot h \rangle \tag{1.14}$$

$$= \langle f - f_H, f - f_H \rangle + 2\Delta \cdot \langle h, f - f_H \rangle + \Delta^2 \cdot \langle h, h \rangle \tag{1.15}$$

Pozrime sa na deriváciu tejto funkcie. Podľa definície f_H by malo byť $f - f_H$ najkratšie možné, teda pre $\Delta = 0$ by mala funkcia dist nadobúdať minimum, a teda mať tam nulovú deriváciu. Uvidíme, že tomu tak nie je:

$$\frac{\partial \operatorname{dist}}{\partial \Delta}(0) = \lim_{\Delta \to 0} \left(\frac{\operatorname{dist}(\Delta) - \operatorname{dist}(0)}{\Delta} \right) \tag{1.16}$$

$$= \lim_{\Delta \to 0} \left(\frac{2\Delta \cdot \langle h, f - f_H \rangle + \Delta^2 \cdot \langle h, h \rangle}{\Delta} \right) \tag{1.17}$$

$$= 2 \cdot \langle h, f - f_H \rangle \tag{1.18}$$

To je nenulové, nakoľko $h \not\perp f - f_H$. Čo je hľadaný spor.

TODO dokončiť dôkaz

1.2.3 Bias-variance tradeoff, verzia 2.

V literatúre pod názvom bias-variance tradeoff vystupuje aj podobný, ale predsa odlišný výsledok, ako bolo uvedené vyššie. Ukážeme a odvodíme si ho.

Veta 2. Nech $y: X \to \mathbb{R}$ je funkcia, ktorú sa snažíme modelovať. Predpokladajme, že sa dá rozložiť na časti: $y = f(x) + \varepsilon$, kde ε hrá rolu šumu: je nezávislý od všetkého a $\mathrm{E}[\varepsilon] = 0$. Označíme jeho pravdepodobnostnú distribúciu E.

Nech výstupom trénovacieho algoritmu je \hat{f} . Za chybovú funkciu zvoľme kvadratickú chybu. Chybu algoritmu vieme teda vypočítať nasledovne:

chyba algoritmu =
$$\mathop{\mathbf{E}}_{(x,y)\sim P,T\sim P^t,\varepsilon\sim E}\left[(\hat{f}(x)-y)^2\right].$$

Tvrdíme, že sa dá rozložiť na tri nasledovné časti:

chyba algoritmu =
$$\underbrace{\operatorname{Var}(\hat{f}(x) - f(x))}_{\text{rozptyl}} + \underbrace{\left(\operatorname{E}[\hat{f}(x)] - \operatorname{E}[f(x)]\right)^{2}}_{\text{wichylles}^{2}} + \underbrace{\operatorname{Var}(\varepsilon)}_{\text{sum}}$$

Poznámka 5. V poslednej rovnici sme kvôli stručnosti vynechali pri stredných hodnotách a rozptyloch premenné a distribúcie, z ktorých ich berieme. V dôkaze budeme vždy brať všetky premenné z ich príslušných distribúcii.

Poznámka 6. Funkcia f hrá v podstate tú istú rolu, čo najlepšia možná hypotéza spomedzi všetkých funkcii (nielen tých v množine hypotéz), h^{\square} .

Poznámka 7. V tomto znení bias-variance tradeoff-u názvy rozptyl a výchylka zodpovedajú príslušným štatistickým/pravdepodobnostným pojmom.

Poznámka 8. Na rozdiel od predchádzajúcej verzie bias-variance tradeoff-u, tu nebudeme potrebovať žiadne dodatočné predpoklady od algoritmu ani od jeho množiny hypotéz. (Nemusí teda vracať hypotézu, ktorá je spomedzi hypotéz v H najlepšia na daných trénovacích dátach. Takisto od množiny hypotéz nepožadujeme žiadne vlastnosti.)

Dôkaz. Upravujme pôvodný výraz.

chyba algoritmu =
$$E\left[(\hat{f}(x) - y)^2\right]$$
 (1.19)

$$= E\left[(\hat{f}(x) - f(x) - \varepsilon)^2 \right]$$
 (1.20)

$$= \mathrm{E}\left[(\hat{f}(x) - f(x))^{2} \right] + \mathrm{E}\left[\varepsilon^{2} \right] - 2 \cdot \mathrm{E}\left[\varepsilon \cdot (\hat{f}(x) - f(x)) \right]$$
(1.21)

$$= E\left[\left(\hat{f}(x) - f(x) \right)^2 \right] + E\left[\varepsilon^2 \right]$$
 (1.22)

Výraz sme upravili, roznásobili a využili linearitu strednej hodnoty. V poslednom kroku sme použili $E[ab] = E[a] \cdot E[b]$, ktorý platí pre ľubovoľné nezávislé premenné, s $a := \varepsilon$, $b := \hat{f}(x) - f(x)$. Zamerajme sa ďalej na prvý sčítanec.

prvý sčítanec =
$$E\left[(\hat{f}(x) - f(x))^2\right]$$
 (1.23)

$$= E[\hat{f}(x)^{2}] + E[f(x)^{2}] - 2 \cdot E[\hat{f}(x) \cdot f(x)]$$
(1.24)

$$= (\operatorname{Var}(\hat{f}(x)) + \operatorname{E}[\hat{f}(x)]^{2}) + (\operatorname{Var}(f(x)) + \operatorname{E}[f(x)]^{2}) - 2 \cdot \operatorname{E}[\hat{f}(x) \cdot f(x)] \quad (1.25)$$

V poslednom kroku sme využili vzťah $Var(a) = E[a^2] - E[a]^2$. Pokračujme ďalej v úpravách.

prvý sčítanec =
$$\operatorname{Var}(\hat{f}(x)) + \operatorname{Var}(f(x)) + (\operatorname{E}[\hat{f}(x)] - \operatorname{E}[f(x)])^2 + 2 \cdot \operatorname{E}[\hat{f}(x)] \cdot \operatorname{E}[f(x)] - 2 \cdot \operatorname{E}[\hat{f}(x) \cdot f(x)]$$
 (1.26)

$$= \operatorname{Var}(\hat{f}(x)) + \operatorname{Var}(f(x)) + (\operatorname{E}[\hat{f}(x)] - \operatorname{E}[f(x)])^{2} - 2 \cdot \operatorname{Cov}(\hat{f}(x), f(x))$$
 (1.27)

$$= \operatorname{Var}(\hat{f}(x) - f(x)) + (\operatorname{E}[\hat{f}(x)] - \operatorname{E}[f(x)])^{2}$$
(1.28)

Využili sme najprv vzťah $Cov(a, b) = E[ab] - E[a] \cdot E[b]$, a potom $Var(a - b) = Var(a) + Var(b) - 2 \cdot Cov(a, b)$. Keď to teda celé dáme do jednej rovnice, dostaneme

chyba algoritmu =
$$\underbrace{\operatorname{Var}(\hat{f}(x) - f(x))}_{\text{rozptyl}} + \underbrace{\left(\operatorname{E}[\hat{f}(x)] - \operatorname{E}[f(x)]\right)^{2}}_{\text{výchylka}^{2}} + \underbrace{\operatorname{Var}(\varepsilon)}_{\text{šum}}$$

1.3 Ako sa vysporiadať s preučením/podučením?

TODO regularizácia

TODO holdout testing

TODO k-fold cross validation

TODO best practices