Министерство образования и науки Республики Казахстан

Astana IT University

НАУЧНЫЙ ПРОЕКТ

на тему:

«Применение алгоритмов построения минимального остовного дерева (МОД)»

Выполнили: Серикбай Арсен, Оралбай Максат

Группа: MCS-2301

Проверила: ассоц. проф. Молдахметова 3. Н.

Астана

СОДЕРЖАНИЕ

ВВЕДЕНИЕ
ГЛАВА1. Теоретические основы минимального остовного дерева
1.1. Сущность и содержание теории графов
1.2. Остовное дерево. Задача построения остовного дерева минимального веса.
1.3. Алгоритм Прима
1.4. Алгоритм Крускала
ГЛАВА2. Реализация и анализ алгоритмов
2.1. Инструменты и технологии
2.2. Реализация алгоритмов
2.3. Применение к реальной задаче
2.4. Сравнительный анализ
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
ПРИЛОЖЕНИЕ

Введение

Актуальность темы исследования:

Актуальность и практическая значимость предлагаемой работы заключается в том, что всегда возникает необходимость поисков эффективных способов планирования сложных процессов и проектов, которые в итоге позволяют создавать методы для минимизации затрат, а далее — принимать оптимальные управленческие решения. Проблема построения минимального остовного дерева (МОД) имеет широкий спектр практических применений в таких областях, как:

- Инфраструктура: Оптимизация прокладки дорог, трубопроводов, кабелей и других сетей.
- Компьютерные сети: Минимизация затрат на подключение серверов и маршрутизаторов.
 - Энергетика: Построение минимальных сетей энергоснабжения.
 - Генетика и биоинформатика: Анализ филогенетических деревьев.

Цель:

Изучить алгоритмы построения минимального остовного дерева (алгоритмы Крускала и Прима), исследовать их эффективность и применить для решения практической задачи.

Задачи работы:

- 1. Описать основные теоретические аспекты задачи минимального остовного дерева.
- 2. Реализовать алгоритмы Крускала и Прима на языке Python.
- 3. Применить эти алгоритмы для оптимизации реальной задачи (например, построение минимальной сети дорог между городами).
- 4. Сравнить эффективность алгоритмов на графах разного размера.
- 5. Визуализировать полученные результаты.

Объект исследования:

Алгоритмы для построения минимального остовного дерева.

Предмет исследования:

Применение алгоритмов прима и крускала для построения минимального остовного дерева.

Методы исследования:

- Теоретический анализ литературы по теме минимального остовного дерева.
- Экспериментальное исследование работы алгоритмов на различных графах.
- Сравнительный анализ временной и пространственной сложности алгоритмов.
- Визуализация результатов с помощью программных инструментов.

Новизна работы:

- Реализация алгоритмов Прима и Крускала на языке Python и их сравнительный анализ.
- Применение алгоритмов к реальной задаче оптимизации сети дорог.
- Визуализация работы алгоритмов на различных графах.

Теоретические основы работы:

Работа базируется на теории графов, алгоритмах жадного типа и их применении в различных областях.

Практическая значимость:

Результаты работы могут быть использованы в транспортном планировании, проектировании компьютерных сетей и других сферах, где необходимо минимизировать затраты на соединение объектов.

Структура работы:

Работа состоит из пяти глав:

- 1. Постановка целей и задач.
- 2. Структура проекта.
- 3. Применение алгоритмов в реальной жизни.
- 4. Используемые инструменты и технологии.
- 5. Этапы выполнения проекта.

ГЛАВА1. Теоретические основы минимального остовного дерева

1.1. Основные понятия теории графов

Теория графов — это раздел дискретной математики, изучающий структуры, состоящие из вершин и рёбер, соединяющих их. Граф определяется как G =

(V, E), где V — множество вершин, а E — множество рёбер, соединяющих вершины. Графы бывают ориентированными и неориентированными, взвешенными и невзвешенными, связными и несвязными.

1.2. Задача построения минимального остовного дерева

Остовное дерево (spanning tree) — это подграф, содержащий все вершины исходного графа, но не содержащий циклов и имеющий минимальное возможное количество рёбер. Минимальное остовное дерево (МОД) — это остовное дерево с минимальной суммой весов рёбер. Построение МОД — это важная задача в теории графов, находящая применение в сетевом планировании, маршрутизации и инфраструктурных проектах.

1.3. Алгоритм Прима

Алгоритм Прима является жадным методом поиска минимального остовного дерева. Он строит остовное дерево, начиная с произвольной вершины, и на каждом шаге добавляет к дереву ближайшую вершину, соединенную минимальным по весу ребром. Основные шаги алгоритма:

- 1. Выбираем произвольную начальную вершину.
- 2. Добавляем минимальное ребро, соединяющее вершину с остальной частью графа.
- 3. Повторяем процесс, пока все вершины не будут включены в дерево.

1.4. Алгоритм Крускала

Алгоритм Крускала — еще один жадный алгоритм, который сортирует все рёбра по весу и последовательно добавляет их в остовное дерево, если они не создают цикла. Основные шаги алгоритма:

- 1. Сортируем рёбра графа по возрастанию веса.
- 2. Инициализируем множество остовного дерева (изначально пустое).
- 3. Последовательно добавляем рёбра, если они не образуют цикла.
- 4. Повторяем процесс, пока не будет добавлено (V 1) рёбер.

Алгоритмы Прима и Крускала широко при

ГЛАВА2. Реализация и анализ алгоритмов.....

3.1. Инструменты и технологии

Для реализации используются язык Python, библиотеки NetworkX и Matplotlib, а также среды разработки Jupyter Notebook и PyCharm.

3.2. Реализация алгоритмов

Алгоритмы Прима и Крускала были реализованы с использованием Python.

Код включает функции для обработки графов, сортировки рёбер и построения минимального остовного дерева.

3.3. Применение к реальной задаче

Алгоритмы были протестированы на задаче оптимального построения сети дорог между городами, позволяя минимизировать затраты на строительство.

3.4. Сравнительный анализ

Были проведены тестирования на различных графах. Алгоритм Крускала оказался быстрее на разреженных графах, тогда как алгоритм Прима показал лучшую производительность на плотных графах.

ЗАКЛЮЧЕНИЕ

В ходе работы были изучены алгоритмы построения минимального остовного дерева, их эффективность и возможности применения в различных областях. Реализация алгоритмов Прима и Крускала в среде Руthon позволила провести сравнительный анализ их производительности. Полученные результаты подтверждают эффективность алгоритмов при решении задач оптимизации сетей. Дальнейшие исследования могут быть направлены на изучение гибридных алгоритмов и их применение в динамических системах.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

Кормен Т. Х. и др. Часть VI. Алгоритмы для работы с графами // Алгоритмы: построение и анализ = Introduction to Algorithms. — 2-е изд. — М.: Вильямс, 2006. — 1296 с.

Лутц М. Программирование на Python, том I, 4-е издание. – Пер. с англ. – СПб.: Символ-Плюс, 2011. – 992 с.

Лутц М. Программирование на Python, том II, 4-е издание. – Пер. с англ. – СПб.: Символ-Плюс, 2011. – 992 с.

https://cyberleninka.ru/article/n/postroenie-minimalnogo-ostovnogo-dereva-algoritmom-boruvki-programmnaya-realizatsiya/viewer

https://cyberleninka.ru/article/n/nahozhdenie-ostovnogo-dereva-minimalnogo-vesa-s-primeneniem-algoritma-kraskala-i-algoritma-prima/viewer