Section 14.1

Show that the two given sets have equal cardinality by describing a bijection from one the other. Describe your bijection with a formula (not as a table).	e to
Exercise (1). \mathbb{R} and $(0, \infty)$.	
Solution: Write your answer here.	
Exercise (3). \mathbb{R} and (0,1).	
Solution: Write your answer here.	
Exercise (4). The set of even integers and the set of odd integers.	
Proof: Write your answer here.	
Exercise (12). \mathbb{N} and \mathbb{Z} (SuggestionL: use Exercise 18 from §12.2.)	
Solution: Write your answer here.	
Exercise (13). $\mathcal{P}(\mathbb{N})$ and $\mathcal{P}(\mathbb{Z})$. (Suggestion: use Exercise 12, above.)	
Proof: Write your answer here.	
Section 14.2	
Exercise (1). Prove that the set $A = \{\ln(n) : n \in \mathbb{N}\} \subseteq \mathbb{R}$ is countably infinite.	
Proof: Write your answer here.	
Exercise (2). Prove that the set $A = \{(m, n) \in \mathbb{N} \times \mathbb{N} : m \leq n\}$ is countably infinite.	
Proof: Write your answer here.	
Exercise (7). Prove or disprove: The set \mathbb{Q}^{100} is countably infinite.	
Proof: Write your answer here.	
Section 14.3	
Exercise (1). Suppose B is an uncountable set and A is a set. Given that there is a surject function $f: A \to B$, what can be said about the cardinality of A?	tive
Solution: Write your answer here.	

Proof: Write your answer here.	
Exercise (7). Prove or disprove: If $A \subseteq B$ and A is countably infinite and B is uncountathen $B - A$ is uncountable.	ıble,
Proof: Write your answer here.	
Section 14.4	
Exercise (1). Show that if $A \subseteq B$ and there is an injection $g: B \to A$, then $ A = B $.	
Proof: Write your answer here.	
Exercise (2). Show that $ \mathbb{R}^2 = \mathbb{R} $. Suggestion: Begin by showing $ (0,1) \times (0,1) = (0,1) \times (0,1) $	1) .
Proof: Write your answer here.	
Reflection	
Exercise (Reflection Problem).	
Answers:	
How long did it take you to complete each problem?:	
What was easy?:	

What was challenging? What made it challenging?:

What did you learn from comparing your answers to those in the book?:

.