EI SEVIER

Contents lists available at ScienceDirect

Fluid Phase Equilibria

journal homepage: www.elsevier.com/locate/fluid

Solubility of carbon dioxide (CO₂) in aqueous solution of 3-(dimethylamino)-1-propylamine (DMAPA)

Devjyoti Nath, Amr Henni *

Acid Gas Removal Laboratory, Clean Energy Technologies Research Institute (CETRi), University of Regina, Regina, SK, Canada

ARTICLE INFO

Article history:
Received 29 October 2019
Received in revised form
20 December 2019
Accepted 31 January 2020
Available online 4 February 2020

Keywords: Solubility Carbon dioxide 3-(Dimethylamino)-1-propylamine Electrolyte-NRTL model

ABSTRACT

The main objective of this study is to investigate the efficiency of 3-(Dimethylamino)-1-propylamine (DMAPA) as a solvent for carbon dioxide (CO₂) capture. The solubility of CO₂ in aqueous solutions of DMAPA was measured at (313.15 and 333.15) K and at a partial pressure of CO₂ up to 275 kPa using the pressure-decay method. Measurements were performed at two concentrations of DMAPA (15 wt % and 30 wt %). DMAPA exhibited high CO₂ loading when compared with other benchmark amines for CO₂ absorption technology such as mono-ethanolamine (MEA) and piperazine (PZ). In this study, the highest CO₂ loading recorded was 1.46 at 313.15 K at a CO₂ partial pressure of 271 kPa. The experimental solubility data were correlated with the electrolyte-NRTL model, and the Redlich-Kwong (RK) equation of state was used for the estimation of the vapor phase fugacity coefficients at equilibrium. Excess enthalpy (H^E) for DMAPA-water binary system was measured using a C80 flow calorimeter at (313.15 and 333.15) K. Binary NRTL parameters for DMAPA/H₂O were regressed from the excess enthalpy (H^E) data of the DMAPA-water system; and some other parameters such as the molecule-ion pair parameters, equilibrium constants, etc. were regressed using vapor-liquid equilibrium (VLE) data. Finally, the Gibbs-Helmholtz equation was used to predict the heat of absorption of CO₂ solubility in the amine solution based on solubility data.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

More than 80% of energy is generated by burning fossil fuels. Unfortunately, this process is accelerating global warming by emitting large amounts of CO₂ into the atmosphere. In 2016, emissions set a new record of about 1.1 °C above the pre-industrial period. According to a report by the World Meteorological Organization (WMO) in 2019 [1], the annual mean concentration of CO₂ in 2018 was 408 ppm (about 2 ppm higher than the concentration in 2017), and the arctic sea-ice extent reached its lowest level ever in July 2019. Therefore, the capture of CO₂ from flue gases has become crucial to protect the environment. One of the most technologically advanced methods to capture CO₂ for mitigating emissions from large stationary point sources is its absorption by liquid solvent, mainly mixtures of amines. One of the major challenges of this research is to find a cost-effective and environmentally friendly liquid solvent. It is a great challenge to come up with a commercially successful solvent, as many liquid solvents have already been

* Corresponding author. E-mail address: amr.henni@uregina.ca (A. Henni). proposed by different researchers to capture CO₂ from flue gas. However, all solvents have their own benefits and demerits.

Although CO₂ capture with amine-based solvent is one of the most common and advanced technologies available nowadays for post-combustion CO₂ capture, this technology is still not economically viable due to high regeneration cost, high solvent degradation rate and high corrosivity of amine-base solvent. Therefore, a major research challenge nowadays in investigating CO2 absorption is to find an environmentally friendly liquid solvent taking these concerns into account. Several amines have already been tested as potential solvents for CO₂ capture, but all the amine-based solvents have demonstrated advantages and disadvantages. For example, monoethanolamine (MEA) demonstrated decent CO2 loading (amount of CO₂ absorbed in amine), high kinetics (absorption rate), etc. but it also demonstrated high degradation rate and caused corrosion problems. Another common amine, methyldiethanolamine (MDEA), demonstrated a higher capacity to absorb CO2 but it showed poor kinetics rates. Piperazine (PZ), a diamine with two secondary amino groups in its structure, demonstrated better performance for CO₂ capture when compared to MEA and MDEA in terms of reaction rate, thermal and oxidative stability and CO2 loading [2], but PZ is not highly soluble in water, and therefore, there is high possibility of precipitation of PZ during absorption/stripping [3]. There was also a chance of the formation of nitrosamine (NNO) which is one of the most carcinogenic by-products by the reaction of NO₂ in the flue gas with piperazine solvent [4]. Even though piperazine demonstrated a high potential as a solvent for CO₂ capture but it cannot be used as a standalone solvent in post-combustion CO₂ capture, and several piperazine derivatives such as 1-methylpiperazine and 2-methylpiperazine have therefore been tested by a number of researchers [2,5]. These piperazine based derivatives demonstrated high cyclic CO₂ capacity, however, they exhibited lower reaction rate compared to piperazine [6].

Simulation is the most common and effective way of optimizing the process design and operations of CO₂ capture technology [7]. A proper thermodynamic model is essential for an effective process simulation. The developed thermodynamic model will use the experimental results to provide the opportunity to predict the performance of an amine solvent at different operating conditions. It is important to note that experimental results acquired over a wide range of temperatures and pressures are necessary to develop such a model

Several thermodynamic models have been used to model vaporliquid equilibrium (VLE) data of CO₂-amine-water system. Klyamer et al. (1973) first modeled the vapor-liquid equilibrium (VLE) data of CO₂- ethanolamine-water system [8], and the activity coefficients of the species present in the liquid phase were estimated using Debye-Hückel limiting law. Kent and Eisenberg correlated VLE data of CO₂-amine-water system by setting the activity coefficient models to unity [8]. A rigorous activity coefficient based model was proposed by Deshmukh and Mather to model several VLE data of CO₂-amine-water systems. In this model, the Debye-Hückel limiting law was used to estimate the activity coefficient of the species present in the liquid phase, the Peng-Robinson equation of state (EOS) was employed to estimate the vapor phase fugacity coefficient, and all the equilibrium constants were taken from the previously published articles. Later, Chen and Evans proposed an excess Gibbs energy based model, the electrolyte-NRTL (elec-NRTL) model [9]. They used the Pitzer-Debey-Hückel equation to predict the long-range interactions and reformulated the NRTL equation for electrolytes to predict the short-range interactions. The electrolyte-NRTL model is considered as the most rigorous and is a widely used model for electrolyte systems nowadays.

Due to the high regeneration cost, higher rate of solvent degradation and corrosiveness of all commercially available solvents till now, investigations are still underway to find better amine solvent for post-combustion CO₂ capture. A recent amine screening study suggested a number of new amines for CO₂ capture from the flue gas [10]. In a more recent study reported by El Hadri et al. [11], 3-(dimethylamino)-1-propylamine (DMAPA) was shown to have a great potential as a solvent of CO₂ capture; and thereafter in 2018, the solubility of CO₂ in 2M aqueous DMAPA at 313.15 K and at a limited range of CO₂ partial pressures less than 101 kPa has been published in a different study [12]. DMAPA is a diamine with a primary and a tertiary amino group in its structure. Cachaza et al. (2018) studied the absorption rate and cyclic capacity of CO2 in DMAPA [13], and mentioned that 3-dimethylamino-propylamine can be considered an appropriate amine to industrial carbon dioxide absorption process.

The main objective of this present study is to investigate further the solubility of CO_2 in DMAPA at different operating conditions (a wider range of temperatures and pressures). The solubility of CO_2 in aqueous diamine, 3-(dimethylamino)-1-propylamine (DMAPA), was measured at (313.15 and 333.15) K and at partial pressures of CO_2 up to 300 kPa using the pressure-decay method in a stirred cell reactor. In the present study, CO_2 solubility was measured at two

different concentrations of DMAPA (15 wt % and 30 wt %) of industrial relevance at both temperatures, DMAPA exhibited high CO₂ loading compared with the other benchmark amines for CO2 absorption such as MEA and piperazine. DMAPA exhibited about 1.35 and 1.94 times more CO₂ loading capacity at the same temperature (313.15 K) and pressure (271 kPa) compared to piperazine and MEA, respectively. Based on this study, DMAPA can be considered a promising solvent for carbon capture from natural and flue gases. Finally, the experimental solubility data were correlated with the electrolyte-NRTL model, and the Redlich-Kwong (RK) equation of state was used for estimation of vapor phase fugacity coefficient of the equilibrium. The model was developed in two stages: (i) binary NRTL parameters for DMAPA/H₂O were regressed from the excess enthalpy (H^E) data of the DMAPA-water system in first steps, and (ii) the elec-NRTL parameters (molecule-ion pair parameters) and equilibrium constants were regressed from the experimental data of CO₂ solubility in aqueous DMAPA. Excess enthalpies for the DMAPA-water binary system were measured using C80 Setaram flow calorimeter at (313.15 and 333.15) K. Gibbs-Helmholtz equation was used to estimate the heat of absorption of CO2 solubility in amine from the solubility data.

2. Experimental methodology

2.1. Materials

3-(Dimethylamino)-1-propylamine (DMAPA) and monoethanolamine (MEA) were purchased from Sigma-Aldrich and used without further purification. Carbon dioxide was purchased from Praxair. The structures, suppliers, purities and water contents of all the chemicals used in the present study are listed in Table 1.

2.2. Measurement of CO₂ solubility

The schematic diagram of the experimental setup that used in this study is shown in Fig. 1. This experimental setup contains a stirred cell reactor and a stainless steel gas reservoir. A 1 L stirred cell glass reactor from Autoclave Engineers was used in this study to measure the CO₂ solubility in the aqueous phase. One motor-driven mechanical stirrer was attached to the reactor to mix the CO₂ into the aqueous solvent and therefore reduce the time to reach equilibrium conditions. A K-type thermocouple with an uncertainty of 0.5 K and a pressure transmitter with an uncertainty of 0.89 kPa were connected to the reactor. The reactor temperature was maintained by flowing hot water through the water jacket of the reactor from a water bath. A 300 ml stainless steel gas reservoir was submerged into another hot water bath to preheat the gas up to the reaction condition. The pressure of the gas reservoir was measured by a pressure gauge with an accuracy of $\pm 0.25 \%$ of full-scale (FS). To ensure the temperature of the water bath, Ertco-Hart RTD digital thermometer (model 850C) with the uncertainty of 0.01 K was

Pressure decay method was used to measure the solubility of CO₂ in aqueous amine solution and a similar method was also used in various literatures to perform the experiment on vapor-liquid equilibrium [14,15]. In this study, the actual volume of the reactor was measured to reduce the experimental error. The solubility of the CO₂ was measured at 313.15 K and 333.15 K. Before starting the solubility experiment, the reactor was flashed with N₂ three times to ensure that there was no oxygen left inside the reactor, then a known volume of aqueous solvent was transferred into the reactor and the stirrer was turned on to raise the temperature of the liquid sample up to the required experimental condition. Once the temperature of the liquid sample reached the desired temperature, the sample was kept inside the reactor for another 4 h before

 Table 1

 Structure, abbreviation, supplier and purity of the chemicals used in this present study.

Compound	Structure	IUPAC names (Abbreviation)	Source and Purity
3-(Dimethylamino)-1-propylamine	H ₃ C NH ₂	N',N'-dimethylpropane-1,3-diamine (DMAPA)	Sigma-Aldrich (99 wt%) ^a
Monoethanolamine	HO NH ₂	2-aminoethanol (MEA)	Sigma-Aldrich (\geq 98 wt%) ^a
Carbon dioxide	0=C=O	Carbon dioxide (CO ₂)	Praxair (99.995 vol%) ^a
Distilled Water	H ^O H	Water (H ₂ O)	Prepared in the lab

^a Provided by supplier.

Fig. 1. Schematic diagram of the experimental set-up.

introducing the CO_2 to make sure all amine-water system reached thermal equilibrium. When the pressure was stable, its value was recorded. On the other hand, CO_2 was preheated inside the reactor for about 2 h and the pressure of the CO_2 was recorded. Then the valve between the reactor and the CO_2 vessel was opened to transfer the CO_2 inside the reactor. When the pressure of the reactor and vessel became equal, the valve was turned off. The temperature of the vessel might have changed due to the pressure change; therefore, the pressure reading of the vessel was taken after 10-15 min so that the temperature of the vessel reached back to the desired temperature. The amount of CO_2 transferred into the reactor was estimated with the gas law based on the pressure and temperature readings at the beginning and the end of the CO_2 transfer (Eq. (1)).

$$n_{\text{CO}_2} = \frac{P_i V_g}{RTZ_i} - \frac{P_f V_g}{RTZ_f} \tag{1}$$

where, n_{CO_2} represents the number of moles of CO_2 transferred into the reactor, P_i and P_f represent the pressure at the beginning and the end of CO_2 transfer. V_g , R, T and Z_i are the volume of the vessel, the gas constant, the operating temperature and compressibility

factor of CO₂, respectively.

When the CO_2 transfer to the reactor was completed, the valve between the reactor and gas vessel was turned off to the close position. The stirrer was then turned on at 100 rpm speed and equilibrium was reached after about 8 h. The pressure inside the reactor was recorded if it stayed constant for at least 1 h. The amount of CO_2 in the gas phase was estimated from the real gas law, and the amount of CO_2 absorbed was estimated from the difference between the CO_2 transferred to the reactor and the rest of CO_2 that existed in the gas phase.

2.3. Measurement of excess enthalpy

The excess enthalpies (H^E) for the DMAPA-water binary system were estimated using a C80 flow calorimeter at (313.15 and 333.15) K by following the experimental methodology published by Mathonat et al. (1994) [16]. A mixing flow unit (manufactured for us by Setaram Instrument, France) integrated into a C-80 calorimeter (Setaram Instrument, France) was used to measure the excess enthalpy. Details about the experimental set-up were published by Rayer and Henni (2014) [17]. The mixing unit is connected to two ISCO (Model 100 DM) high-pressure syringe pumps in order to feed

the water and the amine to the mixing unit at a selected flow rate. These syringe pumps can maintain a stable flow rate with a relative uncertainty of 0.2%. The flow rates were varied in between (0.1 and 0.5) mL·min⁻¹ for maintaining the mole-fraction of amine and water at the experimental conditions. The pressure of the system was maintained at constant pressure with an uncertainty of 0.05 MPa using a Swagelok stainless steel back-pressure regulator (model type KPB1P0D412P2000) that was placed at the end of the flow line. The pressure was measured by three electronic Keller-pressure gauges (LEO1/300 bar/81002C) with an accuracy of 0.25%. Fluids were preheated at the set temperature with a Julabo Model F25 water bath (±1 K). Temperatures of the fluids were maintained at the correct temperature with preheaters to within 0.05 K.

At first, one fluid was fed to the mixing unit using one ISCO pump. When the base-line signal for the first liquid flowing through the calorimeter was well stabilized for 20–30 min, the second pump was turned-on to feed the second fluid into the mixing unit. The signal for the mixing of two liquids started to increase and reached the 'plateau'. The 'plateau' signal which corresponds to the actual mixing effect was achieved within 30 min after starting the mixing process. When the 'plateau' signal was well established for 40–60 min, one pump was turned off to stop introducing the fluid; allowing the signal to come back to the base-line value. The values of the Excess enthalpies (H^E) were estimated using Eq. (2).

$$H^E = \frac{S_M - S_B}{n} \tag{2}$$

where, S_M , S_B and n represent the 'plateau' signal (mW), base-line signal (mW) and total molar flow-rate of the mixture (mol·s⁻¹), respectively.

2.4. Verification of solubility data measurement

Two isotherm experiments were performed at 313.15 K to estimate the solubility of CO_2 in 15 wt % of aqueous MEA and a comparison was done with the results from several literature studies. The comparison between the results is shown in the form of P-x plots in Fig. 2 (solubility data are reported in Table S1 in supplementary information). In the present study, the estimated solubility data for CO_2 in 15 wt % MEA were found to be in good agreement with those published in the literature at low pressures (less than 3% AAD).

Fig. 2. Solubility data of CO_2 in 15 wt% of MEA at the temperature 313.15 K was compared with the literature. \blacktriangle : Run 1 (this study) and \spadesuit : Run 2 (this study), \diamondsuit : Shen and Li [18], \square : Lee et al. [19], and \bigcirc : Lee et al. [20].

3. Model

3.1. Chemical reaction and equilibrium

3-(Dimethylamino)-1-propylamine (DMAPA) is a diamine with a primary and a tertiary amino group in its structure. The primary amino group can either be protonated (DMAPAH⁺) or reacts with CO₂ to form carbamate (DMAPACOO⁻). Again, the tertiary amino group of the protonated amine (DMAPAH⁺) or carbamate (DMAPACOO⁻) can also be protonated. Tissier and Barillier (1969) reported the first and second dissociation constant values [21]. The reactions mentioned below are considered to happen and are included in the thermodynamic model.

$$H_2O \stackrel{K_1}{\leftrightarrow} H^+ + OH^- \tag{3}$$

$$CO_2 + H_2O \stackrel{K_2}{\leftrightarrow} HCO_3^- + H^+ \tag{4}$$

$$HCO_3^{-} \stackrel{K_3}{\leftrightarrow} CO_3^{2-} + H^+ \tag{5}$$

$$DMAPA + HCO_3^{-} \stackrel{K_4}{\leftrightarrow} DMAPACOO^{-} + H_2O$$
 (6)

$$DMAPAH^{+} \stackrel{K_{5}}{\leftrightarrow} DMAPA + H^{+}$$
 (7)

$$H^+DMAPAH^+ \stackrel{K_6}{\leftrightarrow} DMAPAH^+ + H^+$$
 (8)

$$H^+DMAPACOO^- \xrightarrow{K_7} DMAPACOO^- + H^+$$
 (9)

Chemical equilibrium can be expressed by the activity of the reactants and products, and the equilibrium constants of the abovementioned reactions can be expressed by Eq. (10) [5].

$$lnK_{j} = \sum_{i} v_{i,j} ln(a_{i}) = \sum_{i} v_{i,j} ln(x_{i}\gamma_{i})$$

$$(10)$$

where, K_j represents the equilibrium constant of j reaction, $\nu_{i,j}$ represents the reaction stoichiometric coefficient of component i in j reaction, and a_i , x_i & γ_i represent the activity, mole-fraction and activity coefficient of component i, respectively.

The standard state convention was applied for normalization to specify the reference state. The symmetric convention was applied when water and DMAPA are represented as the solvent in the liquid phase, and the activity coefficient of solvent (water or DMAPA) became the unity when the mole fraction is close to unity [2].

$$\gamma_s \rightarrow 1$$
 when $x_s \rightarrow 1$

Infinite dilution was defined as the reference state for the other molecular solutes and ions in the aqueous phase at temperature and pressure of the mixture [2]. HDMAPACOO was treated as the non-volatile Henry's components in the liquid phase [2].

$$\gamma^* \rightarrow 1$$
 when $x_i \rightarrow 0$

The equilibrium constants of the above-mentioned reactions can be expressed as temperature dependent function shown in Eq. (11). Coefficients of this function for various equilibrium constants are given in Table 2.

$$lnK = A + \frac{B}{T} + ClnT + DT$$
 (11)

Equilibrium constants of Eqs. (7) and (8) were estimated from the data of dissociation constant of DMAPA provided by Tissier and Barillier (1969) [21]. Mole fraction base equilibrium (K_x^*) constant was estimated from molality base asymmetric equilibrium constant

 Table 2

 Coefficients in temperature dependent function of equilibrium constants.

	A	В	С	D	T	Source
K ₁	132.899	-13445	-22.4773	0	_	Aspen Data Bank
K_2	231.465	-12092.1	-36.7816	0	-	Aspen Data Bank
K_3	216.05	-12431.7	-35.4819	0	-	Aspen Data Bank
K_4	114.734	5459.51	-21.8464	0	313-333	This work ^b
K_5	9.63165	-11261.95	0	0	288-318	This work ^a
K_6	11.7466	-10322.43	0	0	288-318	This work ^a
K_7	-216.241	3478.72	31.1114	0	313-333	This work ^b

^a Regressed with data from Tissier and Barillier (1969) [21].

 (K_m^*) with Eq. (12) [22,23].

$$\ln K_{x}^{*} = \ln K_{m}^{*} + \ln \left(\frac{MW_{w}}{1000}\right) \sum_{i \neq w} v_{i} + \ln \gamma_{\text{amine}}^{\infty}$$
(12)

where, MW_w is the molecular weight of water, and ν_i is the stoichiometric coefficient of the reaction.

3.2. Vapor phase equilibria

In this work, the Redlich-Kwong (RK) equation of state (EOS) was used for the vapor phase equilibria. At equilibrium, the liquid phase fugacity for each component is equal to the vapor phase fugacity. Vapor-liquid equilibrium of CO_2 can be represented with Eq. (13) associated with physical solubility (Henry's Law) and vapor-liquid equilibrium of the solvent species can be presented with Eq. (14), where, φ^v is the fugacity coefficient of species in the vapor phase.

$$\varphi^{\nu} y_{i} P = x_{i} \gamma_{i}^{*} H_{i} \exp\left(\frac{v_{i}^{\infty} \left(P - P_{solv}^{0}\right)}{RT}\right) where, i = co_{2}$$
(13)

$$\varphi^{\nu}y_{i}P = x_{i}\gamma_{i}P_{i}^{0}\exp\left(\frac{\nu_{i}\left(P - P_{i}^{0}\right)}{RT}\right) where i = DMAP \text{ or } H_{2}O$$
 (14)

Fugacity coefficient (φ^{ν}) at the vapor phase was estimated with Redlich-Kwong (RK) equation of state (EOS) which is given at Eq. (15) [24,25].

$$P = \frac{RT}{\nu_m - b} - \frac{a/T^{0.5}}{\nu_m(\nu_m + b)} \tag{15}$$

where, $a_i = 0.4278 \frac{R^2 T_{ci}^{2.5}}{P_{ci}}$, $= 0.0867 \frac{RT_{ci}}{P_{ci}}$, T_{ci} and P_{ci} are the critical temperature and pressure of the component i, respectively.

3.3. Electrolyte-NRTL model

In this work, the electrolyte-NRTL (elec-NRTL) was used for the liquid phase equilibria [5,7,23,26]. The electrolyte-NRTL, an activity coefficient based model, was used to estimate the excess Gibbs free energy by considering three types of contribution as shown in Eq. (16). The first contribution is the ion-ion long-range interaction due to the electrostatic force among all the ions, and this contribution is estimated with the Pitzer-Debye-Hückel formulation (PDH) [7,26]. Second contribution which is the ion-reference-state-transfer contribution is estimated with Born formulation by accounting the change in reference state for mixed solvent [7,26]. The last contribution is the local contribution which accounts for ion-ion short-range interaction [7,26], and this contribution is estimated with NRTL formulation.

$$\frac{G^{E}}{RT} = \frac{G^{E,PDH}}{RT} + \frac{G^{E,Born}}{RT} + \frac{G^{E,lc}}{RT}$$
(16)

The Pitzer-Debye-Hückel formulation to estimate the long-range ion-ion interaction which is shown in Eq. (17) is a function of molecular weight (M_s), the Debye-Hückel parameter (A_ϕ), the charge of the components (Z_i), the 'closest approach parameter' (ρ) and the ionic strength (I_x) [5,23]. The ionic strength (I_x) and the Debye-Hückel parameter (A_ϕ) are estimated with Eqs. (18) and (19), respectively.

$$\ln \gamma_i^{PDH} = \left(\frac{1000}{M_s}\right)^{1/2} A_{\varphi} \left[\left(\frac{2Z_i^2}{\rho}\right) \ln\left(1 + \rho I_X^{1/2}\right) + \frac{Z_i^2 I_X^{1/2}}{1 + \rho I_X^{1/2}} \right]$$
(17)

$$I_{x} = \frac{1}{2} \sum_{i} x_{i} z_{i}^{2} \tag{18}$$

$$A_{\varphi} = \frac{1}{3} \left(\frac{2\pi N_A d_s}{1000} \right)^{1/2} \left(\frac{Q_e^2}{\varepsilon_W kT} \right)^{3/2} \tag{19}$$

where, N_A , d_s , Q_e , ε_W and k are the Avogadro's number, solvent density, charge of electron, the dielectric constant for water and Boltzmann constant, respectively.

Born correction was used to adjust the activity coefficient by accounting for the change in the reference state of mixed solvent as shown in Eq. (20).

$$\ln \gamma_i^{Born} = \frac{G^{*E,Born}}{RT} = \frac{Q_e^2}{2kT} \left(\frac{1}{\varepsilon_m} - \frac{1}{\varepsilon_w} \right) \frac{\sum_i x_i Z_i^2}{r_i} 10^{-2}$$
 (20)

where, ε_m , ε_w and r_i are the dielectric constant of the mixed solvent, dielectric constant of the water and Born radius. Dielectric constant of a mixed solvent can be estimated from the pure-component dielectric constant. Dielectric constant of pure component (B) shown in Eq. (21) is temperature dependent function, and dielectric constant of mixed solvent can be estimated by using Eq. (22).

$$\varepsilon_B(T) = A_B + B_B \left[\frac{1}{T} - \frac{1}{C_B} \right] \tag{21}$$

$$\varepsilon_{m} = \sum_{i} W_{m_{i}}^{sf} D_{i} \tag{22}$$

where, $w_{m_i}^{sf}$ is the solute free mass fraction, and D_i is the pure component dielectric constant.

NRTL formulation shown in Eq. (23) is used to estimate excess Gibbs energy accounted for short-range interaction among the species [7].

$$\frac{G_{m}^{*E,lc}}{RT} = \sum_{m} X_{m} \frac{\sum_{j} X_{j} G_{jm} \tau_{jm}}{\sum_{k} X_{k} G_{km}} + \sum_{c} X_{c} \sum_{a'} \left(\frac{X_{a'}}{\sum_{a''} X_{a''}} \right) \frac{\sum_{j} X_{j} G_{jc,a'c} \tau_{jc,a'c}}{\sum_{k} X_{k} G_{kc,a'c}} + \sum_{a} X_{a} \sum_{c'} \left(\frac{X_{c'}}{\sum_{c''} X_{c''}} \right) \frac{\sum_{j} X_{j} G_{ja,a'c} \tau_{ja,a'c}}{\sum_{k} X_{k} G_{ka,a'c}}$$
(23)

where,
$$G_{jm} = \exp(-\alpha_{jm}\tau_{jm})$$
, $G_{jc,ca} = \exp(-\alpha_{jc,ca}\tau_{jc,ca})$, $G_{jc,ac} = \exp(-\alpha_{jc,ac}\tau_{jc,ac})$, $G_{cm} = \frac{\sum_a X_a G_{ca,m}}{\sum_{a'} X_{a'}}$, $G_{am} = \frac{\sum_c X_c G_{ca,m}}{\sum_{c'} X_{c'}}$, $\alpha_{mc} = \alpha_{cm} = \frac{\sum_a X_a \alpha_{m,ca}}{\sum_{a'} X_{a'}}$, $\alpha_{ma} = \alpha_{am} = \frac{\sum_c X_c \alpha_{m,ca}}{\sum_{c'} X_{c'}}$

b Regressed at this work.

Table 3 Physical properties of the components used in this work.

Properties	CO ₂	H ₂ O	DMAPA	Source
T_c (K)	304.2	647.30	593.3	Aspen database
P_c (kPa)	7376.46	22048.3	3586	Aspen database
V_c (m³/kmol)	0.0939446	0.0558953	0.369	Aspen database
V_B (m³/kmol)	0.0356374	0.0196361	0.143238	Aspen database
ω	0.225	0.344	0.4544	Aspen database
Z^{RA}	0.273615	0.243172	0.26792	Aspen database
$T_{freezpt}$ (K)	216.6	273.2	194.442	Aspen database

 $\tau_{ma,ca} = \tau_{am} - \tau_{ca,m} + \tau_{m,ca}$ and $\tau_{mc,ac} = \tau_{cm} - \tau_{ca,m} + \tau_{m,ca}$.

Activity coefficient of any species i (ion or molecule) can be estimated from the partial derivative of excess Gibbs energy with respect to the number of mole of species i using Eq. (24) [7].

$$ln\gamma_{i} = \frac{G_{m}^{*E}}{RT} = \left\lceil \frac{\delta \left(nG_{m}^{*E} / RT \right)}{\delta n_{i}} \right\rceil$$
 (24)

The above-mentioned electrolyte-NRTL model consists of adjustable non-random factor parameters (α) and the binary interaction energy parameters (τ) . The relationship among the adjustable parameter for any molecule-electrolyte, electrolyte-molecule and electrolyte-electrolyte pair are $\alpha_{i,j}=\alpha_{j,i}$ and $\tau_{i,j}\neq\tau_{j,i}$, (where, i and j both represent the molecule and electrolyte pair). Interaction between the ion pair – ion pair is often neglected in the electrolyte-NRTL model. Temperature-dependent functions of molecule-molecule binary parameter, molecule-electrolyte pair parameter and electrolyte-molecule pair parameter are shown in Eqs. 25–27.

$$\tau_{m,m} = A_{ij} + \frac{B_{ij}}{T} + E_{ij} \ln(T) + F_{ij}T$$
 (25)

$$\tau_{m,ca} = C_{m,ca} + \frac{D_{m,ca}}{T} + E_{m,ca} \left[\frac{\left(T^{ref} - T\right)}{T} + \ln\left(\frac{T}{T^{ref}}\right) \right]$$
 (26)

$$\tau_{ca,m} = C_{ca,m} + \frac{D_{ca,m}}{T} + E_{ca,m} \left\lceil \frac{\left(T^{ref} - T\right)}{T} + \ln\left(\frac{T}{T^{ref}}\right) \right\rceil$$
 (27)

where, $T^{ref} = 298.15K1$

3.4. Parameter setting

Several pure components data (pure parameter), data for mixed solvents (binary parameters) and electrolyte-NRTL pair data are necessary to perform the thermodynamic model of $\rm CO_2$ -aminewater systems. All the necessary pure components data for $\rm CO_2$ and water and the binary data for $\rm CO_2$ -water systems already exist in the Aspen Plus databank. Few pure component data of DMAPA

were already present in Aspen databank, and few data were taken from the literature. All necessary data to perform this modeling work were already present in the database or were taken from the literature are provided in the following tables. The values of the physical properties of the pure components used in this electrolyte-NRTL model are given in Table 3. Standard properties e.g. standard free energy of formation and standard enthalpy of formation that were used to define the reference state in this study provided in Table 4.

Henry's law constant for CO_2 in water is already available in Aspen databank. The coefficients of the temperature-dependent function of Henry's law constant (Eq. (28)) are provided in Table 5. H⁺DMAPACOO⁻ is a charge-neutral component and non-volatile, therefore, a very small Henry's law constant have been assigned [2].

$$\ln H(kPa) = a + \frac{b}{T(K)} + c \ln T(K) + dT(K)$$
 (28)

The values of the vapor pressures of CO_2 , H_2O and DMAPA are available in the Aspen databank as temperature-dependent function as shown in Eq. (29). This is an extended Antoine equation (PLXANT), and the coefficients of this equation for different components used in this model are presented in Table 6. The values of the vapor pressure for all ions associated with CO_2 and CO_3 and CO_3 and other ions associated with DMAPA [5] were taken from the database.

$$\ln p_i^0(kPa) = C_{1i} + \frac{C_{2i}}{T(K) + C_{3i}} + C_{4i}T(K) + C_{5i}\ln T(K) + C_{6i}T(K)$$
(29)

Aspen plus relates the heat of vaporization, the specific heat capacity and the ideal gas enthalpy with Eqs. (30) and (31) [23]; where, $H_i^l(T^{ref})$, H_i^{ig} and $C_{p,i}^l$ are the reference enthalpy at 298.15 K, the ideal gas enthalpy and liquid heat capacity of component i, respectively; and $(H_i^v-H_i^{ig})$ is the departure of the vapor enthalpy [23]. The liquid heat capacity and heat of vaporization for H_2O and DMAPA were already available in the Aspen databank. Coefficients of the temperature-dependent DIPPR equation (Eq. (32)) for estimating heat of vaporization of DMAPA are given in Table 7.

$$H_i^l - H_i^l \left(T^{ref} \right) = \int_{T^{ref}}^T C_{p,i}^l dT \tag{30}$$

Table 5Coefficient of Henry's law constant in H₂O.

Solvent	a	b	с	d	Source
CO ₂		-8477.71	-21.9574	0.005781	Aspen databank
HDMAPACOO		0	0	0	This work

Table 4Reference state properties used in this model.

	$\Delta_f G_i^{ig}$ (kJ/kmol)	$\Delta_f H_i^{ig}$ (kJ/kmol)	$\Delta_f G_i^{\infty}$ (kJ/kmol)	$\Delta_f H_i^{\infty}$ (kJ/kmol)	Source
CO ₂	-394648	-393769	-385980	-413800	Aspen databank
H_2O	-228767	-241997			Aspen databank
DMAPA	179700	-31890			Aspen databank
H^+		1.54E+06	0	0	Aspen databank
OH^-		-143510	-157244	-229994	Aspen databank
HCO_3^-			-586770	-691990	Aspen databank
CO_3^{2-}			-527810	-677140	Aspen databank

 Table 6

 Coefficients for Antoine equation (PLXANT) to estimate the vapor pressure.

Component	C ₁	C ₂	C ₃	C ₄	C ₅	C ₆	C ₇
H ₂ O	65.6422	-7206.7	0	0	-7.1385	4.046E-6	2
CO_2	65.9214	-3403.28	0	0.009491	-8.56034	2.91E-16	6
DMAPA	57.9002	-7163.1	0	0	-5.9473	7.689E-18	6
Ions	-1.00E+20	0	0	0	0	0	0

Table 7 Heat of vaporization (kJ/kmol).

Component	C _{1i}	C_{2i}	C_{3i}	C_{4i}	C_{5i}	Source
DMAPA	60583	0.65909	-0.63598	0.35445	0	Aspen databank

$$H_i^l(T^{ref}) = H_i^{ig} + (H_i^{\nu} - H_i^{ig}) - \Delta H_i^{\nu ap}$$
(31)

$$\Delta_{vap}H_{i}^{*} = C_{1i}(1 - T_{ri})^{\left(C_{2i} + C_{3i}T_{ri} + C_{4i}T_{ri}^{2} + C_{5i}T_{ri}^{3}\right)}$$
(32)

Ideal gas heat capacity and heat capacity in aqueous-phase infinite dilution are very important model parameters, and they are required to estimate standard properties of any molecule and ionic species. The ideal gas heat capacities of the pure components (DMAPA, H_2O and CO_2) are already available at the Aspen plus databank as a function of temperature shown in Eq. (33) (Eq. (34) was used for DMAPA). Infinite dilution aqueous phase heat capacity for H^+ and OH^- are also available at the Aspen plus databank as a function of temperature shown in Eq. (35). However, the heat capacity of HCO_3^- and CO_3^{2-} at infinite dilution were not available. They were taken from Chen et al. (2013) [2]. All the coefficients of the temperature-dependent functions are provided at Table 8.

$$C_{p,i}^{ig} = C_1 + C_2T + C_3T^2 + C_4T^3 + C_5T^4 + C_6T^5$$
 (33)

$$C_{p,i}^{ig} = C_1 + C_2 \left(\frac{C_3/T}{\sinh(C_3/T)}\right)^2 + C_4 \left(\frac{C_5/T}{\cosh(C_5/T)}\right)^2$$
 (34)

$$C_{p,i}^{\infty,aq} = C_1 + C_2 T + C_3 T^2 + \frac{C_4}{T} + \frac{C_5}{T^2} + \frac{C_6}{\sqrt{T}}$$
(35)

The dielectric constants for all the pure components involved in electrolyte-NRTL model are necessary. Dielectric constants for ${\rm CO_2}$ and ${\rm H_2O}$ are already available in Aspen databank but the value of the dielectric constant for DMAPA was not available. Functional groups such as ${\rm OH^-}$, ${\rm COOH^-}$, etc. have a significant effect on the value of dielectric constant of the molecule; however, without these functional groups, the values of dielectric constant of various amines with similar structure including primary, secondary or tertiary (e.g. Butylamine, Diethylamine, Pentylamine, Dipropylamine, etc.) are in very close range, and varied from 2.8 to 4.5 at

298.15 K. Due to the unavailability of data, the dielectric constant value of diethylamine was used for this work. Coefficients of temperature-dependent function (Eq. (21)) of the dielectric constant of the molecules are given in Table 9. Eq. (22) is used to estimate the dielectric constant of the mixture from the total combined effect of mass fraction and dielectric constant of the pure component.

NRTL parameters for H₂O-CO₂ are already available in Aspen databank. NRTL parameters for H₂O-DMAPA were regressed from the excess enthalpy (H^E) data and results are shown in Table 10. Few temperature-dependent pair parameters for water-ion pair are already available in Aspen databank (shown in Table 10); and some common CO₂-ion pair interaction parameters which were used in the models for other CO₂+amine systems' in the literature [7] were used as default in this study (shown in Table 10). All ion pair — ion pair interaction parameters were neglected in this model. All unregressed water-ion pair interaction parameter (τ_{H_2O-CA}) and ion pair-water interaction parameters $(\tau_{\text{CA-}H_2\text{O}})$ were set at default values of 8.015 and -4.072, respectively; and all other molecule-ion pair interaction parameters $(\tau_{molecule-CA})$ and ion pair-molecule interaction parameters ($\tau_{CA-\text{ molecule}}$) were set at default values of 15 and -8, respectively. Nonrandomness factors (\propto) were fixed at 0.2 for water-ion pair parameters, and 0.1 for other molecule-ion pair parameters. All the important molecule-ion pair parameters which were regressed in this study from the experimental VLE data for the tertiary system of DMAPA-H2O-CO2 are provided in Table 10

3.5. Regression of solubility data

Aspen Plus V10 was used to model the vapor-liquid equilibrium (VLE) data. Various thermodynamic parameters were determined by the regression of experimental data with the data regression system (DRS) incorporated in Aspen. The Britt-Luecke algorithm was used for regression to minimize the errors in all measured variables by using the Maximum likelihood objective function shown in Eq. (36) [2,5].

Table 9Coefficients of dielectric constants.

Molecule	A_B	B_B	C_B	Source
CO ₂	1.6	0	293.15	Aspen databank
H ₂ O	78.54	31989.4	298.15	Aspen databank
DMAPA	3.753	1532.2	298.15	Used in this work

Table 8 Ideal gas heat capacity $(C_{n,i}^{ig}, kJ.kmol^{-1}.K^{-1})$ for molecules and infinite dilution aqueous phase heat capacity $(C_{n,i}^{\infty,aq}, kJ.kmol^{-1}.K^{-1})$ for ions.

	F 7*				F >*		
	C ₁	C_2	C ₃	C_4	C ₅	C ₆	Source
DMAPA	126.14	366.91	1941.2	278.43	849.76		Aspen databank
H_2O	33.7381	-0.00702	2.73E-05	-1.66E-08	4.30E-12	-4.17E-16	Aspen databank
CO_2	19.7952	0.073437	-5.60E-05	1.72E-08	0	0	Aspen databank
H^+	0	0	0	0	0	0	Aspen databank
OH^-	-148.5	0	0	0	0	0	Aspen databank
HCO_3^-	211	-0.882	0.000875	-18800	0	0	Chen et al. (2013) [2]
CO ₃ ²⁻	1330	-5.56	0.00519	-119000	0	0	Chen et al. (2013) [2]

Table 10 NRTL parameters and pair parameters used in this work.

Parameter	NRTL parameter					
	\overline{A}_{12}	A ₂₁	B ₁₂	B ₂₁	α	Ref
H ₂ O(1)-CO ₂ (2) H ₂ O(1)-DMAPA(2)	10.064 16.6874	10.064 -0.0421	-3268.14 -3790.07	-3268.14 -785.359	0.2 0.2	Aspen databank This study
Parameter	Pair parameters					
	$A_{m,ca}$	$A_{ca,m}$	$B_{m,ca}$	$B_{ca,m}$	α	Ref
$\tau_{H_2O-(H^+,OH^-)}$	8.045	-4.072	-	-	0.2	Aspen databank
$\tau_{\text{H}_2\text{O}-(\text{H}^+,\text{HCO}_3^-)}$	8.045	-4.072	-	-	0.2	Aspen databank
$\tau_{H_2O-(H^+,CO_3^{2-})}$	8.045	-4.072	-	-	0.2	Aspen databank
$\tau_{\text{CO}_2-(\text{H}^+,\text{OH}^-)}$	15	-8	-	-	0.1	Liu et al. (1999) [7]
$\tau_{\text{CO}_2-(\text{H}^+,\text{HCO}_3^-)}$	15	-8	-	-	0.1	Liu et al. (1999) [7]
$\tau_{\text{CO}_2-(\text{H}^+,\text{CO}_3^{2-})}$	15	-8	-	-	0.1	Liu et al. (1999) [7]
$\tau_{\text{H}_2\text{O}-(\text{DMAPAH}^+,\text{HCO}_3^-)}$	8.88369	-2.86392	-	-	0.2	This study
$\tau_{\text{H}_2\text{O}-(\text{DMAPAH}^+,\text{DMAPACOO}^-)}$	15.18194	-5.68643	-	-	0.2	This study
$\tau_{\text{H}_2\text{O}-(\text{DMAPAH}^+,\text{CO}_3^{2-})}$	-0.543699	-	-	-	0.2	This study
TDMAPA-(DMAPAH+,HCO ₃)	-	-12.8786	-	-	0.1	This study
TDMAPA-(DMAPAH+,DMAPACOO-)	-	-17.5548	-	-	0.1	This study
$\tau_{\text{DMAPA}-(\text{DMAPAH}^+,\text{CO}_2^{2-})}$	-	-16.2204	-	-	0.1	This study
THDMAPACOO-(DMAPAH+,HCO ₃ -)	-	-18.6923	-	-	0.1	This study
THDMAPACOO-(DMAPAH+,DMAPACOO-)	-	-25.5610	-	-	0.1	This study
$\tau_{\text{HDMAPACOO}-(\text{DMAPAH}^+,\text{CO}_3^{2^-})}$	-	3.50153	-	-	0.1	This study
TCO ₂ -(DMAPAH ⁺ ,DMAPACOO ⁻)	-	-24.9587	-	-	0.1	This study

Table 11 Solubility of CO₂ in 15 wt % of DMAPA.

$T = 313.15 \text{ K}^{a} (\text{Run 1})$		$T = 333.15 \text{ K}^{a} (Ru$	n 2)	$T = 333.15 \text{ K}^{a} (\text{Run 3})$		
P_{CO_2} (kPa) ^b	$\alpha_{\text{CO}_2} \left(= \frac{mol_{\text{CO}_2}}{mol_{\text{DMAPA}}} \right)^{c}$	$P_{CO_2} \text{ (kPa)}^{\text{b}}$	$\alpha_{\text{CO}_2} \left(= \frac{mol_{\text{CO}_2}}{mol_{DMAPA}} \right)^{c}$	P_{CO_2} (kPa) ^b	$\alpha_{\text{CO}_2} \left(= \frac{\text{mol}_{\text{CO}_2}}{\text{mol}_{\text{DMAPA}}} \right)^{c}$	
0.3	0.418	1.2	0.482	0.5	0.518	
2.6	0.827	15.1	0.939	25.3	0.975	
13.6	1.053	77.2	1.103	100.6	1.114	
55.3	1.201	165.8	1.197	179.5	1.183	
120.5	1.307	234.5	1.254	230.2	1.225	
182.9	1.377	274.5	1.291	260.2	1.252	
230.7	1.421					
271.0	1.456					

Table 12 Solubility of CO₂ in 30 wt % of DMAPA.

$T = 313.15 \text{ K}^{a} (R)$	un 4)	$T = 313.15 \text{ K}^{a}$ (Rt	un 5)	$T = 333.15 \text{ K}^{a}$ (R)	$T = 333.15 \text{ K}^{a} (Run 6)$	
P_{CO_2} (kPa)	$\alpha_{\text{CO}_2} \left(= \frac{\text{mol}_{\text{CO}_2}}{\text{mol}_{\text{DMAPA}}} \right)^{c}$	P_{CO_2} (kPa)	$ \alpha_{CO_2} \left(= \frac{mol_{CO_2}}{mol_{DMAPA}} \right)^{c} $	P_{CO_2} (kPa)	$\alpha_{CO_2} \left(= \frac{mol_{CO_2}}{mol_{DMAPA}} \right)^c$	
0.2	0.747	0.2	0.760	0.9	0.307	
2.4	0.881	10.2	0.979	1.8	0.621	
13.2	1.002	60.5	1.114	10.5	0.835	
55.2	1.116	123.1	1.181	47.6	0.980	
131.9	1.199	174.6	1.220	103.6	1.056	
215.4	1.258	222.8	1.250	162.4	1.099	
				214.1	1.126	

^a Standard uncertainty u(T)=0.5 K.

^b Standard uncertainty u(P)=0.89 kPa.

^c Standard uncertainty $u(\alpha_{CO_2})=0.107$.

^aStandard uncertainty u(T) = 0.5 K. ^bStandard uncertainty u(P) = 0.89 kPa. ^cStandard uncertainty u(α_{CO_2}) = 0.107.

Fig. 3. Experimental solubility data of CO₂ in aqueous DMAPA shown with symbol (diamond, 313.15 K and triangle 333.15 K) and data from model correlation shown with line. [Solubility data in 15 wt % and 30 wt % DMAPA shown in (a) (Δ : run 2, and Δ: run 3) and (b) (Φ : run 4, and Φ: run 5), respectively.

$$OF = \sum_{i=1}^{N} \left[\left(\frac{T_i^{est} - T_i^{exp}}{\sigma_{T_i}} \right)^2 + \left(\frac{P_i^{est} - P_i^{exp}}{\sigma_{P_i}} \right)^2 + \left(\frac{x_i^{est} - x_i^{exp}}{\sigma_{x_i}} \right)^2 \right]$$
(36)

where, OF is objective function, N is the number of dataset, est and exp are the corresponding estimated and measured variables (temperature, pressure and mole-fraction), and σ is the standard deviation of corresponding measured value.

4. Results and discussion

The solubility of CO₂ in two aqueous solutions of DMAPA, at 15 wt% and 30 wt%, were measured with a pressure decay method, at 313.15 K and 333.15 K, and up-to a partial pressure of CO₂ 275 kPa. All experimental results of the solubility of CO₂ are summarized in Tables 11 and 12, respectively. The experimental loadings (mole of CO₂ absorbed in per mole of DMAPA) at different temperatures and the corresponding equilibrium pressures are also plotted in Fig. 3. Experimental data demonstrate that the partial pressure of CO₂ increases exponentially with loading. At 100 kPa

Fig. 4. Comparison of the solubility of CO₂ in aqueous DMAPA with other common amines at 313.15 K. (a) Loading, $\alpha = \text{mol}_{\text{CO2}}/\text{mol}_{\text{amine}}$ (b) Loading, $\alpha' = \text{mol}_{\text{CO2}}/\text{mol}_{\text{alkalinity}}$ and (c) Absorption Capacity = $\text{mol}_{\text{CO2}}/\text{kg}$ -amine. Diamond (♠) with line: 15 wt% DMAPA (this work), ♠: MEA (15 wt%) [19], ♠: DEA (25 wt % at 310.92 K) [27], Δ : DIPA (45 wt%) [28], ■: MAPA (17.877 wt%) [29], and □: PZ (10.3 & 17.2 wt%) [30,31].

partial pressure of CO_2 , the loadings of CO_2 in 15 wt % of DMAPA are about 1.303 and 1.144 at 313.15 K and 333.15 K, respectively. These are quite high loadings for such low partial pressures compared to the other common amine-based solvents.

Solubility of CO₂ in 15 wt% aqueous solution of DMAPA estimated in this study was compared with the solubility of CO₂ in other common amines such as monoethanolamine (MEA) [19]. diethanolamine (DEA) [27], diisopropanolamine (DIPA) [28], 3-(methylamino)- propylamine (MAPA) [29] and piperazine (PZ) [30,31] in Fig. 4. DMAPA and MAPA exhibited very high loading $(\alpha = \text{mol}_{CO2}/\text{mol}_{amine})$ compared to other amines in Fig. 4a. Since MEA, DEA and DIPA have only one amino group in their structure, while, the others amines are diamines (two amino groups in their structure); therefore, the solubility of CO₂ in amine was also compared in terms of mole of CO₂ absorbed in per mole of amine alkalinity ($\alpha' = \text{mol}_{CO2}/\text{mol}_{alkalinity}$) and mole of CO_2 absorbed in per kilogram (kg) amine. Although DEA showed slightly higher loading (mol_{CO2}/mol_{alkalinity}) based on alkalinity in Fig. 4b, but DEA demonstrates very low CO₂ loading (mol_{CO2}/mol_{amine}) in Fig. 4a and low CO₂ absorption capacity (mol_{CO2}/kg-amine) in Fig. 4c. According to this comparison, DMAPA demonstrated a very high CO₂ absorption capacity compared to the other amines except for MAPA. DMAPA exhibited about 1.35 and 1.94 times more CO₂ loading at the same temperature (313.15 K) and pressure (271 kPa) compared to Piperazine and MEA, respectively. In Fig. 5, the solubility of CO₂ in DMAPA was also compared with various piperazine derivatives: piperazine (PZ) [30,31], 1 methyl-piperazine (1MPZ) [32], 1-ethyl piperazine (1EPZ) [32], 1-(2-hydroxyethyl) piperazine (HEP) [32] and 1.4-dimethyl piperazine (DMPZ) [32]. Fig. 5 demonstrated that DMAPA demonstrated higher solubility compared with all the piperazine derivatives.

Excess enthalpy (H^E) for the binary DMAPA + H_2O system was measured using a flow calorimeter at (313.15 and 333.15) K and at 0.5 MPa. Detailed excess enthalpy (H^E) data for DMAPA + H_2O system are reported in Table S2 in the supplementary information section. NRTL parameters for H_2O -DMAPA were regressed from the excess enthalpy data. Aspen Plus model correlation is compared with the experimental results in Fig. 6.

The model was developed in two stages. In first stage, the NRTL parameters for DMAPA/H₂O were regressed from the excess enthalpy (H^E) data of the DMAPA-water system and equilibrium constants (Eqs. (7) and (8)) for the dissociation DMAPA were regressed from the first and second pKa value of DMAPA provided by Tissier and Barillier (1969) [21]. In the second stage the elec-NRTL parameters (molecule-ion pair parameters) and equilibrium

constants for the reactions related to formation DMAPA carbamate and formation of protonated DMAPA carbamate were regressed simultaneously from the VLE data for the tertiary system of DMA-PA-H₂O-CO₂ provided in Tables 11 and 12. The overall %AAD between the experimental value and corresponding estimated value during the regression analysis for total pressure, temperature and mole-fraction of the components were 0.04%, 0.41% and 0.18%. respectively. The regressed value of the equilibrium constants (K 4 and K_7) for the reactions shown in Eqs. (6) and (9) are shown in Table 2, and regressed NRTL parameter for H₂O-DMAPA and the regressed important molecule-ion pair parameters were provided in Table 10. The measured values of temperature (K), pressure (kPa) and mole-fraction from the experiment were compared with the estimated value obtained during the data regression in Fig. 7. The ratios of the experimental pressure to the estimated pressure (Pexp./Pest.) are close to unity, but the ratio of the experimental temperature to the estimated temperature $(T_{exp.}/T_{est.})$ and the ratio of the experimental mole-fraction to the estimated mole-fraction $(x_{\text{exp.}}/x_{\text{est.}})$ are little scattered. Fig. 7c shows that the ratios of all the experimental mole-fraction of water to the estimated molefraction of water are on the line of unity; whereas, the ratios of experimental mole-fraction to estimated mole-fraction of DMAPA and CO2 are little scattered. The %AAD of the deviations between experimental mole-fraction and estimated mole-fraction for DMAPA and CO₂ were 0.25% and 0.28%, respectively. Loading and the corresponding partial pressure of CO₂ in 15 wt% and 30 wt% solution of DMAPA at the temperatures 313.15 K and 333.15 K were

Fig. 6. Excess enthalpy (H^E) for the binary DMAPA + H_2O system: 313.15 K (\spadesuit) , 333.15 K (\diamondsuit) and Aspen Plus model prediction (lines).

15

Fig. 5. Comparison of the solubility of CO₂ in DMAPA with the solubility of CO₂ in piperazine derivatives at 313.15 K. (a) Loading, $\alpha' = \text{mol}_{CO2}/\text{mol}_{alkalinity}$ and (b) Absorption Capacity = mol $_{CO2}/\text{mol}_{amine}$. Diamond: DMAPA (♦: 15 wt % and ♦:30 wt %), •: PZ (10.3 & 17.2 wt %) [30,31], ▲: 1MPZ (30 wt %) [32], ■: 1EPZ (30 wt %) [32], ○: HEP (30 wt %) [32] and □: DMPZ (30 wt %) [32].

Fig. 7. Comparison among the measured values from experiment and estimated values during regression analysis over various CO_2 loadings. (a) Experimental temperature (K) and estimated temperature (KPa), and (c) experimental mole-fraction and estimated mole-fraction ($\Diamond:x_{DMAPA,exp.}/x_{DMAPA,exp.}/x_{DMAPA,exp.}/x_{CO_2,exp.}/x_{CO_$

Fig. 8. Predicted liquid-phase speciation in 30 wt% DMAPA solution over CO2 loadings from 0 to 1.5: (a) at 313.15 K and (b) and 333.15 K.

predicted using the model and compared with the experimental results in Fig. 3.

Plot of the speciation concentration can be used to analyze the simulation results of absorber design for CO_2 capture [7]. Concentrations of key species in the liquid phase were predicted with the electrolyte-NRTL model; and the variations of key species in the liquid phase with the CO_2 loading from 0 to 1.5 in 30 wt % aqueous solution of DMAPA at (313.15 and 333.15) K were shown in Fig. 8. Trends for the concentration changes of key species such as DMAPA, carbamate (DMAPACOO $^-$), HCO_3^- , etc. were found similar to the other CO_2 -amine systems [2,7,33,34]. Fig. 8 shows that the concentration of DMAPA decreases with CO_2 loading, and

it almost diminished after the CO₂ loading of 1.0. From Fig. 8, we can infer that major key species in the liquid phase are DMAPACOO⁻, H⁺DMAPACOO⁻, HCO₃⁻, DMAPAH⁺ and H⁺DMAPAH⁺. The concentration of DMAPACOO⁻ increases with the incremental increase of CO₂ loading at the beginning, and then the concentration starts to decline after a certain loading of CO₂ (around 0.6); whereas, the concentration of H⁺DMAPACOO⁻ was very low at the beginning compared to DMAPACOO⁻; however, the concentration of H⁺DMAPACOO⁻ increased with the CO₂ loading and it crossed the concentration of DMAPACOO⁻ at certain loading. The concentration of HCO₃ increased over the range of CO₂ loading between 0 and 1.5; however, the

Table 13 Summary of ¹³C NMR spectroscopy for CO₂ loaded 15 wt% and 30 wt% DMAPA.

15 wt% DMAPA	
δ (ppm)	Species
22.384	Second Carbon from primary amino group of DMAPA/protonated-DMAPA
25.086	Second Carbon from primary amino group of carbamate/protonated-carbamate
36.564	Carbon next to primary amino group of DMAPA/protonated-DMAPA
37.671	Carbon next to primary amino group of carbamate/protonated-carbamate
42.396	Methyl carbon next to tertiary amino group of DMAPA/protonated-DMAPA
54.206	Methylene carbon next to tertiary amino group of DMAPA/protonated-DMAPA
55.089	Methylene carbon next to tertiary amino group of carbamate/protonated-carbamate
160.265	Carbon of carbonate/bicarbonate species
164.257	Carbamate Carbon of carbamate/protonated-carbamate
30 wt% DMAPA	
δ (ppm)	Species
22.432	Second Carbon from primary amino group of DMAPA/protonated-DMAPA
25.096	Second Carbon from primary amino group of carbamate/protonated-carbamate
36.558	Carbon next to primary amino group of DMAPA/protonated-DMAPA
37.776	Carbon next to primary amino group of carbamate/protonated-carbamate
42.319	Methyl carbon next to tertiary amino group of DMAPA/protonated-DMAPA
54.125	Methylene carbon next to tertiary amino group of DMAPA/protonated-DMAPA
54.978	Methylene carbon next to tertiary amino group of carbamate/protonated-carbamate
160.311	Carbamate Carbon of carbonate/bicarbonate species
164.054	Carbamate Carbon of carbamate/protonated-carbamate

Fig. 9. ¹³C NMR spectroscopy for CO₂ loaded 30 wt% DMAPA.

concentration was very low up to 0.15 in loading. The concentration of CO_2 was insignificant at the beginning, but increased significantly after the CO_2 loading of 1.25.

Carbamate formation of aqueous DMAPA solution was monitored with ^{13}C NMR spectroscopy. NMR spectroscopy of CO $_2$ loaded 15 wt% and 30 wt% DMAPA solution was obtained with Varian INOVA LC-500MHz NMR spectrometer. CO $_2$ was bubbled into aqueous

DMAPA solutions about an hour at room temperature to perform NMR spectroscopy to observe the carbamate formation. ¹³C NMR spectroscopy provided the information of carbamate DMAPA, unreacted DMAPA and other species such as bicarbonate and carbonate. Summary for ¹³C NMR spectroscopy is provided in Table 13. Chemical shifts of various species including DMAPA/protonated-DMAPA, carbamate/protonated-carbamate and bicarbonate/

Fig. 10. Predicted heat of absorptions of CO₂ in aqueous DMAPA solution at 313.15 K (♦: 15 wt% DMAPA and ♦: 30 wt% DMAPA).

carbonate are provided in ppm. Peak location of various species in 15 wt% and 30 wt% DMAPA solution were very close. A sample spectrum acquired for CO₂ loaded 30 wt% DMAPA is shown in Fig. 9.

The heat of absorption of CO₂ in 15 wt% and 30 wt% of DMAPA was estimated using the Gibbs-Helmholtz equation (Eq. (37)). Fugacities of CO₂ for various loadings were predicted at various temperatures using this model with the regressed parameters. The natural log of the CO₂ fugacities for each loading were plotted against the inverse temperatures to predict the heat of absorption, while the changes in temperature are very small (0.1 K) [2]. The Predicted heat of absorption values are presented in Fig. 10.

$$\frac{\Delta H_{abs}}{R} = \left[\frac{d \ln f_{CO_2}}{d(1/T)} \right]_{\alpha_{CO_2}}$$
(37)

The predicted heat of absorption of CO₂ in aqueous DMAPA solution using the Gibbs Helmholtz equation is higher compared with bench-marked amines such as mono-ethanolamine (MEA) and piperazine (PZ). Estimated heat of absorption using calorimeter for CO₂ in 30 wt% MEA and 6.9 wt% PZ for zero loading (as the loading approaches to zero) at 313.15 K are around 85 kJ/mol-CO₂ and 73 kJ/mol-CO₂ [35], respectively; and heat of absorption for CO₂ in 19 wt% PZ for zero loading at 318.15 K is around 92 kJ/mol-CO₂ [36]. However, the predicted heat of absorption from the Gibbs Helmholtz equation may have uncertainties ranging between 20 and 30% when the solubility data is accurate to 2–3% [5,37].

5. Conclusion

The solubility of CO_2 in aqueous DMAPA was measured at (313.15 and 333.15) K and at partial pressures of CO_2 up to 275 kPa using the pressure-decay method. In the present study, CO_2 solubility was measured at two aqueous concentrations of DMAPA (15 wt % and 30 wt %) at both temperatures. DMAPA exhibited high CO_2 loading compared with other bench-marked amines such as MEA and Piperazine. Excess enthalpies (H^E) for the DMAPA-water binary systems were measured using a C80 flow calorimeter at (313.15 and 333.15) K. Finally, the experimental solubility data were correlated with the electrolyte-NRTL model, and the Redlich-Kwong (RK) equation of state was used for the estimation of vapor phase fugacity coefficients at equilibrium. The heats of absorption of CO_2 in 15 wt% and 30 wt% of DMAPA was predicted with the Gibbs-Helmholtz at 313.15 K. The experimental solubility data would qualify DMAPA as a promising solvent for CO_2 removal from flue gas.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Amr Henni: Conceptualization, Resources, Supervision, Project administration, Writing - review & editing, Funding acquisition.

Acknowledgements

The authors would like to acknowledge research funding from the Natural Sciences and Engineering Research Council of Canada (Discovery Grants Program).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.fluid.2020.112506.

References

- [1] L. Peter Siegmund, P.C. (CSIRO author (Royal N.M.I.J.A. (University of G.A. Omar Baddour (WMO), C.N. d'Etudes C.S.C.A. Anny Cazenave (Laboratoire d'Etudes en Géophysique et Océanographie Spatiales, A.G. (Météo-F.S. and O.M.-P.F. Chris Derksen (Environment and Climate Change Canada), J.K. (UK S.H. (Environment and C.C.C.M.H. (ETH Z. Kirsten Isensee (IOC-UNESCO), S.R. (Food and A.O. of M.O.R.M. (Danish M.I. Rodica Nitu (WMO), B.T. (Bureau of M. the U.N.K.S. (IOC-U.M.S. (WMO) Oksana Tarasova (WMO), M.Z. (Deutscher W. Australia), The Global Climate in 2015–2019, World Meteorological Organization, Geneva, Switzerland, 2019. https://library.wmo.int/index.php? lvl=notice_display&id=21522#.Xflv.EPx7mM8.
- [2] X. Chen, G.T. Rochelle, Thermodynamics of CO2/2-methylpiperazine/water, Ind. Eng. Chem. Res. 52 (2013) 4229–4238, https://doi.org/10.1021/ ie3023725.
- [3] S.A. Freeman, R. Dugas, D. Van Wagener, T. Nguyen, G.T. Rochelle, Carbon dioxide capture with concentrated, aqueous piperazine, Energy Procedia 1 (2009) 1489–1496, https://doi.org/10.1016/j.egypro.2009.01.195.
- [4] N.A. Fine, P.T. Nielsen, G.T. Rochelle, Decomposition of nitrosamines in CO2 capture by aqueous piperazine or monoethanolamine, Environ. Sci. Technol. 48 (2014) 5996–6002, https://doi.org/10.1021/es404949v.
- [5] A.V. Rayer, Y. Armugam, A. Henni, P. Tontiwachwuthikul, High-pressure solubility of carbon dioxide (CO2) in AQUEOUS 1-methyl piperazine solution, J. Chem. Eng. Data 59 (2014) 3610–3623, https://doi.org/10.1021/je500526m.
- [6] A.V. rayer, K.Z. sumon, A. Henni, P. Tontiwachwuthikul, Kinetics of the reaction of carbon dioxide (CO2) with cyclic amines using the stopped-flow technique, Energy Procedia 4 (2011) 140–147, https://doi.org/10.1016/j.egvpro.2011.01.034.
- [7] Y. Liu, L. Zhang, S. Watanasiri, Representing Vapor-Liquid equilibrium for an aqueous MEA-CO 2 system using the electrolyte nonrandom-two-liquid model, Ind. Eng. Chem. Res. 38 (5) (1999) 2080–2090, https://doi.org/10.1021/je980600v.
- [8] R.H. Weiland, T. Chakravarty, A.E. Mather, Solubility of carbon dioxide and hydrogen sulfide in aqueous alkanolamines, Ind. Eng. Chem. Res. 32 (1993) 1419–1430, https://doi.org/10.1021/ie00019a016.
- [9] C.-C. Chen, L.B. Evans, A local composition model for the excess Gibbs energy of aqueous electrolyte systems, AIChE J. 32 (1986) 444–454, https://doi.org/ 10.1002/aic.690320311.
- [10] F.A. Chowdhury, H. Yamada, T. Higashii, K. Goto, M. Onoda, CO2 capture by tertiary amine absorbents: a performance comparison study, Ind. Eng. Chem. Res. 52 (2013) 8323–8331, https://doi.org/10.1021/ie400825u.
- [11] N. El Hadri, D.V. Quang, E.L.V. Goetheer, M.R.M. Abu Zahra, Aqueous amine solution characterization for post-combustion CO2 capture process, Appl. Energy 185 (2017) 1433—1449, https://doi.org/10.1016/ j.apenergy.2016.03.043.
- [12] R. Zhang, Q. Yang, B. Yu, H. Yu, Z. Liang, Toward to efficient CO 2 capture solvent design by analyzing the effect of substituent type connected to Natom, Energy 144 (2018) 1064–1072, https://doi.org/10.1016/ j.energy.2017.12.095.
- [13] A. Cachaza, D. Gómez-Díaz, A. Montáns, J.M. Navaza, A. Rumbo, Carbon dioxide chemical absorption by solvents based on diamine and amines blend, AIChE J. 64 (2018) 2702–2710, https://doi.org/10.1002/aic.16137.
- [14] M.R. Bohloul, A. Vatani, S.M. Peyghambarzadeh, Experimental and theoretical study of CO2 solubility in N-methyl-2-pyrrolidone (NMP), Fluid Phase Equil. 365 (2014) 106–111, https://doi.org/10.1016/j.fluid.2013.12.019.

- [15] M.M. Taib, T. Murugesan, Solubilities of CO 2 in aqueous solutions of ionic liquids (ILs) and monoethanolamine (MEA) at pressures from 100 to 1600kPa, Chem. Eng. J. 181–182 (2012) 56–62, https://doi.org/10.1016/j.ccj.2011.09.048.
- [16] C. Mathonat, V. Hynek, V. Majer, J.-P.E. Grolier, Measurements of excess enthalpies at high temperature and pressure using a new type of mixing unit, J. Solut. Chem. 23 (1994) 1161–1182, https://doi.org/10.1007/BF00974028.
- [17] A.V. Rayer, A. Henni, Heats of absorption of CO2 in aqueous solutions of tertiary amines: N-methyldiethanolamine, 3-Dimethylamino-1-propanol, and 1-Dimethylamino-2-propanol, Ind. Eng. Chem. Res. 53 (2014) 4953–4965, https://doi.org/10.1021/je4041324.
- [18] K.P. Shen, M.H. Li, Solubility of carbon dioxide in aqueous mixtures of monoethanolamine with methyldiethanolamine, J. Chem. Eng. Data 37 (1992) 96–100, https://doi.org/10.1021/je00005a025.
- [19] J.I. Lee, F.D. Otto, A.E. Mather, The solubility of H2S and CO2 in aqueous monoethanolamine solutions, Can. J. Chem. Eng. 52 (1974) 803–805, https://doi.org/10.1002/cice.5450520617
- [20] J.I. Lee, F.D. Otto, A.E. Mather, Equilibrium between carbon dioxide and aqueous monoethanolamine solutions, J. Appl. Chem. Biotechnol. 26 (1) (1976) 541–549, https://doi.org/10.1002/jctb.5020260177.
- [21] C. Tissier, P. Barillie, Acidity constants and thermodynamic functions of acids conjugated with some propanediamines, C. R. Hebd. Seances Acad. Sci. Ser. C 268 (1969) 1953.
- [22] H. Li, P.T. Frailie, G.T. Rochelle, J. Chen, Thermodynamic modeling of piperazine/2-aminomethylpropanol/CO2/water, Chem. Eng. Sci. 117 (2014) 331–341, https://doi.org/10.1016/j.ces.2014.06.026.
- [23] M.D. Hilliard, A Predictive Thermodynamic Model for an Aqueous Blend of Potassium Carbonate, Piperazine, and Monoethanolamine for Carbon Dioxide Capture from Flue Gas, 2008, p. 1061. https://repositories.lib.utexas.edu/ handle/2152/3900
- [24] G. Soave, Equilibrium constants from a modified Redlich-Kwong equation of state, Chem. Eng. Sci. 27 (1972) 1197–1203, https://doi.org/10.1016/0009-2509(72)80096-4
- [25] O. Redlich, J.N.S. Kwong, On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions, Chem. Rev. 44 (1949) 233–244, https://doi.org/10.1021/cr60137a013.
- [26] C.-C. Chen, Y. Song, Generalized electrolyte-NRTL model for mixed-solvent electrolyte systems, AlChE J. 50 (2004) 1928–1941, https://doi.org/10.1002/ aic.10151.
- [27] J.D. Lawson, A.W. Garst, Gas sweetening data: equilibrium solubility of

- hydrogen sulfide and carbon dioxide in aqueous monoethanolamine and aqueous diethanolamine solutions, J. Chem. Eng. Data 21 (1976) 20–30, https://doi.org/10.1021/je60068a010.
- [28] A. Haghtalab, H. Eghbali, A. Shojaeian, Experiment and modeling solubility of CO2 in aqueous solutions of Diisopropanolamine + 2-amino-2-methyl-1propanol + Piperazine at high pressures, J. Chem. Thermodyn. 71 (2014) 71–83, https://doi.org/10.1016/j.jct.2013.11.025.
- [29] M.W. Arshad, H.F. Svendsen, P.L. Fosbøl, N. Von Solms, K. Thomsen, Equilibrium total pressure and CO2solubility in binary and ternary aqueous solutions of 2-(Diethylamino)ethanol (DEEA) and 3-(Methylamino)propylamine (MAPA), J. Chem. Eng. Data 59 (2014) 764–774, https://doi.org/10.1021/ie400886w
- [30] S. Kadiwala, A.V. Rayer, A. Henni, High pressure solubility of carbon dioxide (CO2) in aqueous piperazine solutions, Fluid Phase Equil. 292 (2010) 20–28, https://doi.org/10.1016/j.fluid.2010.01.009.
- [31] V. Ermatchkov, Á. Pérez-Salado Kamps, D. Speyer, G. Maurer, Solubility of carbon dioxide in aqueous solutions of piperazine in the low gas loading region, J. Chem. Eng. Data 51 (2006) 1788–1796, https://doi.org/10.1021/ ie0601917.
- [32] H. Li, Y. Le Moullec, J. Lu, J. Chen, J.C.V. Marcos, G. Chen, Solubility and energy analysis for CO2 absorption in piperazine derivatives and their mixtures, Int. J. Greenh. Gas Contr. 31 (2014) 25–32, https://doi.org/10.1016/ j.ijggc.2014.09.012.
- [33] S. Bishnoi, G.T. Rochelle, Thermodynamics of piperazine/methyldiethanolamine/water/carbon dioxide, Ind. Eng. Chem. Res. 41 (2002) 604–612, https:// doi.org/10.1021/ie0103106.
- [34] H. Li, Y. Le Moullec, J. Lu, J. Chen, J.C. Valle Marcos, G. Chen, F. Chopin, CO2 solubility measurement and thermodynamic modeling for 1-methylpiperazine/water/CO2, Fluid Phase Equil. 394 (2015) 118–128, https://doi.org/10.1016/j.fluid.2015.03.021.
- [35] J. Liu, S. Wang, H.F. Svendsen, M.U. Idrees, I. Kim, C. Chen, Heat of absorption of CO2 in aqueous ammonia, piperazine solutions and their mixtures, Int. J. Greenh. Gas Contr. 9 (2012) 148–159, https://doi.org/10.1016/ LIIGGC.2012.03.013.
- [36] H. Svensson, C. Hulteberg, H.T. Karlsson, Heat of absorption of CO2 in aqueous solutions of N-methyldiethanolamine and piperazine, Int. J. Greenh. Gas Contr. 17 (2013) 89–98, https://doi.org/10.1016/J.IJGGC.2013.04.021.
- [37] I. Kim, H.F. Svendsen, Heat of absorption of carbon dioxide (CO2) in monoethanolamine (MEA) and 2-(aminoethyl)ethanolamine (AEEA) solutions, Ind. Eng. Chem. Res. 46 (2007) 5803–5809, https://doi.org/10.1021/ie0616489.