(Weighted) Log-rank Tests with application scenarios

On the Proportional Hazards vs. Non-Proportional Hazards models

Youlan Shen, Zijian Xu, Zhengwei Song

Introduction

Survival function: the Probability of living longer than t

$$S(t) = \Pr(T > t) = \int_{t}^{\infty} f(s)ds$$

T = Time to death, w.r.t the p.d.f. f(t)

What does it look like?

Survival function: each group

Consider two groups

- Group 1 new treatment
- Group 0 placebo or control

Have the subjects in Group 1 became better in general than those in Group 0?

Hypothesis Testing!

$$H_0: S_1(t) = S_0(t) \text{ vs. } H_a: S_1(t) \neq S_0(t)$$

Our project question: Do different hypothesis tests perform differently in testing the treatment effect?

Project Outline

Apply Test

Test Comparasion Conclusion

Survial Data

Hypothesis Test

Type I Error/ Power

Recommendation

Proportional Model: Exponential Weibull

Nonpropotional
Model:
Time Effect:
Indicator

Four Tests:
Logrank Test
Weighted LogrankEarly Effect
Weighted LogrankLate Effect
Maximum Logrank
Test

Under Multiple
Tests
Compare:
Type I Error α
Power (1-β)

Final Take Home
Message:
Which test is
recommendated?

Data Simulations

Hazard

Hazard Function: instantaneous risk of failure at time t given that a patient has survived until time t.

$$h_i(t) = \lim_{\Delta t \to 0} \frac{\Pr(T \in (t, t + \Delta t) | T > t)}{\Delta t} = \frac{f(t)}{S(t)} = h_0(t) e^{\beta_1 x_i + \beta_2 x_i f(t)}$$

Hazard Ratio: Frequencies of a event happens in group 1 compared to in group 2, over time

$$rac{h(t|x_1)}{h(t|x_2)} = e^{eta_1^T(x_1-x_2)}$$
 does NOT depend on t, as **Proportional Hazards**;

$$\frac{h(t|x_1)}{h(t|x_2)} = e^{\beta_1^T(x_1-x_2)+\beta_2 f(t)(x_1-x_2)}$$
 does depend on t, as **Non-Proportional Hazards**.

Hazard Ratio

$$hazard\ ratio = \frac{control\ group}{treatment\ group} < 1 \quad \frac{\text{Treatment\ arms\ have}}{\text{higher\ S(t)}}.$$

The treatment effect is summarized by the hazard ratio (HR) between the control and treatment arms:

$$hazard \ ratio = \frac{control \ group}{treatment \ group} = 1$$
 Two arms share similar S(t).

$$hazard\ ratio = \frac{control\ group}{treatment\ group} > 1$$
 Control arms have higher S(t).

Proportional and Non-proportional models

Simulations-Proportional Model

Exponential Model

E.g. $\lambda = 0.1$, $\beta = 0$, maxt = 7.5

Hazard Function

Hazard Ratio

$$h_i(t) = \lambda e^{\beta_1 X_i} \frac{h(t|x_1)}{h(t|x_2)} = e^{\beta_1^T(x_1 - x_2)}$$

In R, the *simsurv* package, we will be able to set different λ and β 1, where:

 λ – the different shapes of the survival probability lines

 β 1 – different hazard ratio, ratio is equal to 1 if beta1 is equal to 0

Simulations-Proportional Model

Weibull Model

Hazard Function

$$h_i(t) = \lambda \gamma t^{\gamma - 1} e^{\beta_1 X_i}$$

In R, the *simsurv* package, we will be able to set different λ , γ and β 1, where:

 λ , γ – the different shapes of the survival probability lines

 β 1 – different hazard ratio, ratio is equal to 1 if beta1 is equal to 0

E.g.
$$\lambda = 0.1$$
, $\gamma = 1.5$, $\beta = -0.5$, maxt = 7.5

Non-Proportional

Hazard Function

$$h_i(t) = \lambda \gamma t^{(\gamma-1)} e^{eta_1 X_i + eta_2 X_i f(t)} \quad \Longrightarrow \quad h_i(t) = \lambda \gamma t^{(\gamma-1)} e^{eta_1 X_i - eta_1 X_i I(t)} \ rac{h_0(t)}{h_1(t)} = \lambda \gamma t^{(\gamma-1)} e^{eta_1 (X_0 - X_1) - eta_1 (X_0 - X_1) I(t)} \ I_{early}(t) = egin{cases} 1 & t > t_0 \ 0 & otherwise \end{cases} \qquad \qquad I_{late}(t) = egin{cases} 1 & t < t_0 \ 0 & otherwise \end{cases}$$

In R, the *simsurv* package, we will be able to set different λ , γ and β 1, β 2, f(t)where:

 $\lambda,\,\gamma$ – the different shapes of the survival probability lines

β1 – different hazard ratio, ratio is equal to 1 if beta1 is equal to 0

 β 2 – for the indicator function I(t), we set β 2=- β 1

B2f(t) (h)

COLUMBIA MAILMAN SCHOOL OF PUBLIC HEALTH

Non-Proportional

In R, the *simsurv* package, we will be able to set different λ , γ and β 1, β 2, f(t)where:

```
\lambda,\,\gamma – the different shapes of the survival probability lines \beta 1 – different hazard ratio, ratio is equal to 1 if beta1 is equal to 0 \beta 2 – for the indicator function I(t), we set \beta 2=-\beta 1 \beta 2 f(t)- I(t)
```

Strata + trt=0 + trt=1

Apply Hypothesis Tests

Hypothesis Testing

Control Group, $S_0(t)$

Treatment Group, S₁(t)

$$H_0: S_1(t) = S_0(t) \text{ vs. } H_a: S_1(t) \neq S_0(t)$$

 H_0 : Hazard Ratio = 1 vs. H_a : Hazard Ratio \neq 1

Four Tests:

Logrank Test

Weighted Logrank Test – Early/Late

Maximum Logrank Test

Log-rank Test

Test statistic

$$S_{Logrank} = \frac{\sum_{j=1}^{J} (O_j - E_j)}{\sqrt{\sum_{j=1}^{J} V_j}} \sim N(0, 1)$$

Where do O, E, V come from???

Pure calculations!

 O_j = "observed" # of failures at the j-th failure time E_j = "expected" # of failures at the j-th failure time V_i = the variance of the O_i

Weighted Log-rank Test

Test statistic

$$S_{Logrank}^{w} = \frac{\sum_{j=1}^{J} W_{j}(O_{j} - E_{j})}{\sqrt{\sum_{j=1}^{J} W_{j}V_{j}}}$$

 O_j = "observed" # of failures at the jth failure time E_j = "expected" # of failures at the jth failure time V_i = the variance of the O_i

$$W_{j}(t)$$
 = weight function = $\widehat{S}(t)^{\rho}(1-\widehat{S}(t))^{\gamma}$

 ρ = 0, γ = 1 puts more weight on late events; ρ = 1, γ = 0 puts more weight on early events.

WAY much fair for non-proportional hazards!

Log-rank max test: Take the maximum statistic over the previous three log-rank

Test Comparison

Test Comparison

Under Multiple Tests Compare:

Type I Error α

Power $(1-\beta)$

α smaller, power higher, perform better

Fact	Test Result	4 Tests
No Treatment Effect	Yes	Type I Error α
Treatment Effect Exists	Yes	Power

Exponential Model - Type I Error

Change of Parameters

Lambda	Beta	Maxt	Iteration
0.1	0	7.5	100
0.2	0	7.5	100
0.3	0	7.5	100
0.4	0	7.5	100
•••	0	7.5	100

Example Survival Probability Plot

Exponential Model - Type I Error

Type I Error of 4 Test in Exponential Model of Lambda from 0.1 to 1

Exponential Model - Power

Change of Parameters

Lambda	Beta	Maxt	Iteration
0.1	0.1	7.5	100
0.1	0.2	7.5	100
0.1	0.3	7.5	100
0.1	0.4	7.5	100
0.1		7.5	100

Example Survival Probability Plot

Exponential Model - Power

Power of 4 Test in A Sequence of Beta--Ratio e^0.1 to e Under Exponent

Weibull Model - Type I Error

Change of Parameters

Lambda	Gamma	Beta	Maxt	Iteration
0.1	1.5	0	7.5	100
0.1	1.5	0	7.5	100
0.1	1.5	0	7.5	100
0.1	1.5	0	7.5	100
	1.5	0	7.5	100

Example Survival Probability Plot

Weibull Model - Type I Error

Type I Error of 4 Test in Weibull Model of Lambda from 0.1 to 1

Weibull Model - Power

Change of Parameters

Lambda	Gamma	Beta	Maxt	Iteration
0.1	1.5	0.1	7.5	100
0.1	1.5	0.2	7.5	100
0.1	1.5	0.3	7.5	100
0.1	1.5	0.4	7.5	100
	1.5	0.5	7.5	100

Example Survival Probability Plot

Weibull Model - Power

Power of 4 Test in A Sequence of Beta--Ratio e^0.1 to e Under Weibull

Test Comparison — Proportional Model

Under Proportional Model, whose Hazard Ratio is independent of time t :

E.g.

Exponential Model
Weibull Model

Conclusion:

- When Control Group and Treatment Group have similar S(t), all four test perform good.
- 2. When Control Group and Treatment Group have different S(t), Logrank test is recommended.
- 3. Moreover, if hazard ratio is over 1.6 or lower than 0.6, all tests's Power is near 100%.

This is late effect data with significant difference between groups

Lamb	da Gamma	Beta	Maxt	Beta2	F(t)	Iteration
0.1	1	seq(0.1,1,0.05)	5	-Beta	I_late(t)	50
0.1	1	seq(0.1,1,0.05)	10	-Beta	I_late(t)	50

Late effect shape

Power curve

Comparison of Tests in A Sequence of Beta--Ratio Under Late effect Logrank Test LRT for Late LRT for Early LRT Max 0.2 0.0 0.2 0.4 0.6 0.8 1.0 Beta Value

This is early effect data with significant difference between groups

Lambda	Gamma	Beta	Maxt	Beta2	F(t)	Iteration
0.1	1	seq(0.1,1,0.05)	5	-Beta	I_eary(t)	50
0.1	1	seq(0.1,1,0.05)	10	-Beta	I_eary(t)	50

Early effect shape

Power curve

Early Effect with Different End Time

(maxt = 5 VS maxt 10)

Test Comparison — Non Proportional Model

Under Nonproportional Model, whose
Hazard Ratio is not independent of time t:
E.g.
Indicator function

Log function

Exponential function

Conclusion:

- When survival curve have the shape like "early effect shape" we use early weight logrank test is recommended.
- 2. When survival curve have the shape like "late effect shape" we use late weight logrank test is recommended.
- 3. The power of the test is related to hazard ratio and end time. If we we have a long time survival data and larger hazard ratio under the truth, the test result will be better.

Conclusion

Conclusion for Real Survival Analysis

If the survival data we believe is under proportional assumption,

Example - Melanoma

Test Suggestions:

- If we believe two groups have similar S(t), all four logrank test are recommended.
- 2. If we believe two groups have different S(t), Logrank test is the best choice.
- 3. If we believe two groups have different S(t), and hazard ratio is much different from 1, for example, higher than 1.6 or lower than 0.6, all four tests performs similar.

Conclusion for Real Survival Analysis

If the survival data we believe is under non-proportional assumption,

Test Suggestions:

- In a real situation, the hazard function of non-proportional data will be more complicated, but based on the discrimination of the survival curve's shape for the early and the late effect, we can use the corresponding logrank test for test.
- 2. More data volume and longer time series are always welcome for increasing the accuracy for test.

Thank You!