2/7/2018

Quiz: Quiz 4

Quiz 4

Started: Feb 7 at 7:42pm

Quiz Instructions

Question 1	1 pts

Choose the strongest statement (from among the following options) for the following hash family.

()	Jniversal
	inivergal

Question 2 1 pts

Choose the strongest statement (from among the following options) for the following hash family.

()	LIDIVATOA
	universa

3-universal

Question 3	1 pts
Suppose you have a hash family H that is 3-universal, and it contains hash functions that map $\{0,1,2,\ldots,n-1\}$ to $\{1,2,\ldots,n\}$.	
True or False: the number of distinct functions in H can be $O(n^2)$.	
○ True	
False	

Question 4	1 pts
We saw for a fixed dictionary S of size N , we can construct a hash function h so that all query operations take constant time, assuming universal hash functions can be evaluated in $O(1)$ time. True or False: this function h can be found in $O(N)$ expected time.	ions
• True	
○ False	

Question 5 1 pts
In the streaming lecture, we saw a deterministic algorithm to return the majority element in a stream of length n (if one exists), based on incrementing and decrementing counters. Each element belongs to a universe Σ . Which of the following statements is true about this algorithm?
Can return false positives
Can return false negatives
Can return both false positives and false negatives
\bigcirc Uses storage of size $\Omega(n)$
\bigcirc Uses storage of size $\Omega(\Sigma)$

Question 6	1 pts
We also saw a randomized algorithm to maintain heavy hitters in a stream given both Given an element e , this algorithm returns an estimate $est(e)$.	n inserts and deletes.
Which of the following statements are always true about this estimate?	
The estimate is an under-estimate	
The estimate is an over-estimate	
The estimate can sometimes be an under-estimate, and sometimes an over-estimate	
Question 7	0.5 pts
- Question /	0.5 μισ
In the Karp-Rabin algorithm, suppose we have a text of length $m{m}$, and want to find a	string of length $m{n}$.
After we pick the random prime, what is the tightest bound of the runtime of this algor	rithm?
$\bigcirc \ O(\lg(m) + \lg(n))$	
$oldsymbol{\circ} O(m+n)$	
$\bigcirc \ O(n\log(m))$	
$\bigcirc \ O(m\log(n))$	
\bigcirc $O(mn)$	
Question 8	0.5 pts
The Karp-Rabin algorithm may yield which of the following:	
false positives	
O false negatives	
Question 9	1 pts

\bigcirc lg lg n	
$\bigcirc \lg n$	
○ n	
○ n ²	
$\bigcirc 2^n$	
Question 10	1 p
Question 10 Siven any number x in the range $\{2,3,\ldots,n\}$, the number x in the range found from among the following the smallest correct upper bound from among the following the fo	er of distinct prime divisors of $oldsymbol{x}$ is at most what
Given any number x in the range $\{2,3,\ldots,\ n\}$, the numb	er of distinct prime divisors of $oldsymbol{x}$ is at most what
Given any number x in the range $\{2,3,\ldots,n\}$, the number n in the range n in the ran	er of distinct prime divisors of $oldsymbol{x}$ is at most what
Given any number x in the range $\{2,3,\ldots,\ n\}$, the number n 0 bick the smallest correct upper bound from among the follows:	er of distinct prime divisors of $oldsymbol{x}$ is at most what

Question 11 1 p	ts
Given an n -bit number x, we want to check whether x is a prime or not. One algorithm is to first check that x is 2 or not, and then for each odd number y in the range $[3\lfloor \sqrt{x}\rfloor]$, check that y is not a divisor of x.	x
True or false: This algorithm runs in time polynomial in the number of bits n.	
○ True • False	
• False	