

Flavor network and the principles of food pairing

SUBJECT AREAS:

STATISTICAL PHYSICS, THERMODYNAMICS AND NONLINEAR DYNAMICS

APPLIED PHYSICS

SYSTEMS BIOLOGY

STATISTICS

Yong-Yeol Ahn^{1,2,3}*, Sebastian E. Ahnert^{1,4}*, James P. Bagrow^{1,2} & Albert-László Barabási^{1,2}

¹Center for Complex Network Research, Department of Physics Northeastern University, Boston, MA 02115, ²Center for Cancer Systems Biology Dana-Farber Cancer Institute, Harvard University, Boston, MA 02115, ³School of Informatics and Computing Indiana University, Bloomington, IN 47408, ⁴Theory of Condensed Matter, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK.

STATISTICS

Cambridge CB3 OHE, Uk

Introduction

- Are there any general patterns that determine the ingredient combinations used in food today or principles that transcend individual tastes and recipes?
- A flavor network that captures the flavor compounds shared by culinary ingredients
- Food Paring Hypothesis: "Ingredients sharing flavor compounds are more likely to taste well together than ingredients that do not"
- A systematic understanding of culinary practice.
 - Number of recipes (cookpad): 10⁶
 - Number of potential recipes: $> 10^{30}$
 - Number of recipes used for the studies: 56498

Summary

- The flavor network allows us to reformulate the food pairing hypothesis as a topological property: Do we more frequently use ingredient pairs that are strongly linked in the flavor network or do we avoid them?
- To test this hypothesis we need data on ingredient combinations preferred by humans, information readily available in the current body of recipes.
- For generality, 56,498 recipes, provided by two American repositories (epicurious.com and allrecipes.com), were used.
- To avoid a distinctly Western interpretation of the world's cuisine, we also used a Korean repository (menupan.com).
- The recipes are grouped into geographically distinct cuisines (North American, Western European, Southern European, Latin American, and East Asian).

Basis of Flavor Network:

- (i) 381 ingredients used in recipes throughout the world, and
- (ii) 1,021 flavor compounds that are known to contribute to the flavor of each of these ingredients.

$$< k > = 214$$

www.epicurious.com www.allrecipes.com

B Flavor network

The average number of ingredients used in a recipe is around eight, and the overall distribution is bounded, indicating that recipes with a very large or very small number of ingredients are rare.

Ingredients Jasmine tea, Jamaican rum, and 14 other ingredients are used only in one recipe.

Backbone extraction algorithm

How to create a random cuisine? (Strategy -1)

- (1) Corresponding to every recipe, create its size-controlled randomized version by randomly sampling ingredients from the 'Ingredients Basket' (without replacement).
- (2) Having thus created 'a randomized cuisine', create a large number of such cuisines (say, 100) for statistical analysis.

Randomize cuisine 1

Randomize cuisine 100

How to create a random cuisine? (Strategy − 2)

- (1) Find the 'recipe size distribution' of the cuisine.
- (2) Find the 'cumulative recipe size distribution' of the cuisine.
- (3) Generate a random number to pick a recipe size.
- (4) Create the recipe by randomly sampling ingredients from the 'Ingredients Basket' (without replacement).
- (5) Generate a large number of recipes (say, 100 times the total number of recipes) for statistical analysis.

Generating the desired recipe size distribution of the cuisine

Ideas

- A theoretical model for food pairing.
- Starting with a 'basket of ingredients and their flavor profile, implement strategies for 'pairing' and observe the cuisine architecture.
- Create a python library for the analysis of cuisine, starting with cuisine data imported in a certain format.
- Recipe size distribution, ingredient popularity stats
- Category composition analysis
- Itemset analysis
- Food pairing analysis
- Random cuisine generation

- Create Computational Gastronomy Kaggle challenges

- For a given set of recipes, predict their cuisine.
- Given the flavor profile of an (unlabeled) ingredient, predict its cuisine.
- Given a molecule (SMILE format), predict its taste (bitter, sweet, tasteless).
- and more.

Random Cuisine and comparison of food pairing

North American and Western European cuisines exhibit a statistically significant tendency towards recipes whose ingredients share flavor compounds.

By contrast, East Asian and Southern European cuisines avoid recipes whose ingredients share flavor compounds.

Z = Touisine Touisine-Rand Grand Navisine Ns ausme-Rand

Distribution of Ns

Ns: observed number of shared compounds characterizing the cuisines.

East Asian (Korean) cuisine the more flavor compounds two ingredients share, the less likely they are used together.

Contribution of individual ingredients towards the observed food pairing phenomena

C Co-occurrence in recipes

- Western Cuisines use ingredient pairs that share many flavor compounds
- By contrast, Korean cuisine tend to avoid compound sharing ingredients.

Contribution of an ingredient towards the food pairing pattern

$$\chi_i \left(\frac{1}{N_c} \sum_{R \ni i} \frac{2}{n_R(n_R - 1)} \sum_{j \neq i(j, i \in R)} |C_i \cap C_j| \right) - \left(\frac{2f_i}{N_c \langle n_R \rangle} \frac{\sum_{j \in c} f_j |C_i \cap C_j|}{\sum_{j \in c} f_j} \right)$$