

2. Introduction to ML

Prof. Marcelo José Rovai rovai@unifei.edu.br

From coding to learning...

Explicit Coding

Defining rules that determine behavior of a program

Everything is pre-calculated and pre-determined by the programmer

Scenarios are limited by program complexity

https://en.wikipedia.org/wiki/Breakout (video game)

The Traditional Programming Paradigm

Consider Activity Detection


```
if(speed<4){
    status=WALKING;
}</pre>
```



```
if(speed<4){
    status=WALKING;
} else {
    status=RUNNING;
}</pre>
```



```
if(speed<4){
    status=WALKING;
} else if(speed<12){
    status=RUNNING;
} else {
    status=BIKING;
}</pre>
```



```
// ???
```

The Traditional Programming Paradigm

The Traditional Programming Paradigm

Activity Detection with Machine Learning

Label = WALKING

Label = RUNNING

Label = BIKING

1111111111010011101 00111110101111110101 010111010101010101110 1010101010100111110

Label = GOLFING

Label = WALKING

Label = RUNNING

Label = BIKING

1111111111010011101 00111110101111110101 0101110101010101011110 1010101010100111110

Label = GOLFING

Thinking about loss...

A way to measure your accuracy

$$X = \{ -1, 0, 1, 2, 3, 4 \}$$

$$Y = \{?, ?, ?, ?, ?, ?\}$$

$$X = \{ -1, 0, 1, 2, 3, 4 \}$$

$$Y = \{ -3, -1, 1, 3, 5, 7 \}$$

$$Y = p*X + b$$

$$X = \{ -1, 0, 1, 2, 3, 4 \}$$

 $Y = \{ -3, -1, 1, 3, 5, 7 \}$

$$Y = p^*X + b$$

Make a guess!

$$Y = 3X - 1$$

$$X = \{ -1, 0, 1, 2, 3, 4 \}$$

 $Y = \{ -4, -1, 2, 5, 8, 11 \}$

How good is the guess?

$$Y = 3X - 1$$

$$X = \{ -1, 0, 1, 2, 3, 4 \}$$
 $My Y = \{ -4, -1, 2, 5, 8, 11 \}$
 $Real Y = \{ -3, -1, 1, 3, 5, 7 \}$

Let's measure it!

Let's measure it!

Let's measure it!

Houston, we have a problem!

Houston, we have a problem!

What if we **square**² them?

Calculate the mean error:

$$= (1 + 1 + 4 + 9 + 16) / 6$$

= 5.17

$$Y = 2X - 2$$

$$X = \{ -1, 0, 1, 2, 3, 4 \}$$
 $My Y = \{ -4, -2, 0, 2, 4, 6 \}$
 $Real Y = \{ -3, -1, 1, 3, 5, 7 \}$
 $Diff^2 = \{ 1, 1, 1, 1, 1, 1 \}$

Get the same difference, repeat the same process.

$$= (1 + 1 + 1 + 1 + 1 + 1) / 6$$

= 1.00

$$Y = 2X - 1$$

$$X = \{-1, 0, 1, 2, 3, 4\}$$
 $My Y = \{-3, -1, 1, 3, 5, 7\}$
 $Real Y = \{-3, -1, 1, 3, 5, 7\}$
 $Diff^2 = \{0, 0, 0, 0, 0, 0, 0\}$

$$Y = 2X - 1$$

$$X = \{-1, 0, 1, 2, 3, 4\}$$
 $My Y = \{-3, -1, 1, 3, 5, 7\}$
 $Real Y = \{-3, -1, 1, 3, 5, 7\}$
 $Diff^2 = \{0, 0, 0, 0, 0, 0, 0\}$

$$Y = 2X - 1$$

$$X = \{-1, 0, 1, 2, 3, 4\}$$

My Y =
$$\{-3, -1, 1, 3, 5, 7\}$$

Real
$$Y = \{-3, -1, 1, 3, 5, 7\}$$

$$MSE = \{0, 0, 0, 0, 0, 0, 0\} / 6$$

$$egin{equation} ext{MSE} & ext{ } rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y_i})^2 \end{aligned}$$

Exploring Loss and Cost Function

Code Time!

Exploring Loss Cost Function.ipynb

Minimizing loss... Moving down the curve...

It is important to choose the correct Learning Rate (size of the step)

If the Learning Rate is too small it may take a long time to reach the minimum

If the Learning Rate is too large we may never reach the minimum

Gradient Descent algorithm

Epochs

(Back-Propagation)

Thanks

