# EEE-6512: Image Processing and Computer Vision

October 30, 2018

Lecture #10: Features/Feature Extraction I

Damon L. Woodard, Ph.D.

Dept. of Electrical and Computer Engineering

dwoodard@ece.ufl.edu

#### Outline

Topics so Far (Image Processing)

What are doing next? (Computer Vision)

Introduction

Global Shape Features

### Course Topics So Far (Image Processing)

#### Focused on low level features

- Digital Image Fundamental (Chapter 2)
- Spatial Filtering (Chapter 3)
- Frequency Domain Filtering (Chapter 4)
- Color Image Processing (Chapter 7)
- Morphological Image Processing (Chapter 9)
- Image Segmentation/Edge Detection (Chapter 10)

#### **Input and Output are Images**

# What are we doing next? (Computer Vision)

# Focus on semantics or geometric descriptions

- Feature Extraction
- Model Fitting
- Classification

Input is an image and output is object (faces, people, chairs, etc.)

#### Introduction

- The goal in image analysis is to extract useful information for solving application-based problems.
- The first step to this is to reduce the amount of image data using methods that we have discussed before:
  - Image segmentation
  - Filtering in frequency domain

#### Introduction

- The next step would be to extract features that are useful in solving computer imaging problems.
- What features to be extracted are application dependent.
- After the features have been extracted, then analysis can be done.

#### Introduction

The goal is to generate features that exhibit high information packing properties:

- Extract the information from the raw data that is most relevant for discrimination between classes.
- Extract features with low within-class variability and high between class variability.
- Discard redundant information

- Depend on a silhouette (outline) of an image
  - Shape is a very powerful feature
  - Objects may be recognized from their shape.

All that is needed is a binary image



- 2D shape analysis useful in machine vision applications
- Medical image analysis
- Aerial image analysis
- Object detection

#### Binary Object Features

- In order to extract object features, we need an image that has undergone image segmentation and any necessary morphological filtering.
- This will provide us with a clearly defined object which can be labeled and processed independently.

#### Binary Object Features

- After all the binary objects in the image are labeled, we can treat each object as a binary image.
  - The labeled object has a value of '1' and everything else is '0'.
- The labeling process goes as follows:
  - Define the desired connectivity.
  - Scan the image and label connected objects with the same symbol.

#### Binary Object Features

- After we have labeled the objects, we have an image filled with object numbers.
- This image is used to extract the features of interest.
- Among the global binary object features include area, center of area, axis of least second moment, perimeter, Euler number, projections, thinness ratio, aspect ratio, and moments.

## Global Shape Features

## Global Shape Features – Area

The area of the ith object is defined as follows:

$$A_i = \sum_{r=0}^{height-1} \sum_{c=0}^{width-1} I_i(r,c)$$

• The area  $A_i$  is measured in pixels and indicates the relative size of the object.

#### Global Shape Features - Center of Area

The center of area is defined as follows:

$$\overline{r}_{i} = \frac{1}{A_{i}} \sum_{r=0}^{height-1} \sum_{c=0}^{width-1} rI_{i}(r,c)$$

$$\overline{c}_{i} = \frac{1}{A_{i}} \sum_{r=0}^{height-1} \sum_{c=0}^{width-1} cI_{i}(r,c)$$

 These correspond to the row and column coordinate of the center of the ith object.

# Global Shape Features – Axis of Least Second Moment

• The Axis of Least Second Moment is expressed as  $\theta$  - the angle of the axis relatives to the vertical axis.

$$\theta_{i} = \frac{1}{2} \tan^{-1} \left( \frac{2 \sum_{r=0}^{height-1} \sum_{c=0}^{width-1} (r - \overline{r})(c - \overline{c}) I_{i}(r, c)}{\sum_{r=0}^{height-1} \sum_{c=0}^{width-1} (r - \overline{r})^{2} I_{i}(r, c) - \sum_{r=0}^{height-1} \sum_{c=0}^{width-1} (c - \overline{c})^{2} I_{i}(r, c)} \right)$$

# Global Shape Features – Axis of Least Second Moment



- This assumes that the origin is as the center of area.
- This feature provides information about the object's orientation.
- This axis corresponds to the line about which it takes the least amount of energy to spin an object.

## Global Shape Features- Perimeter

- The perimeter is defined as the total pixels that constitutes the edge of the object.
- Perimeter can help us to locate the object in space and provide information about the shape of the object.
- Perimeters can be found by counting the number of '1' pixels that have '0' pixels as neighbors.

#### Global Shape Features - Perimeter

- Perimeter can also be found by applying an edge detector to the object, followed by counting the '1' pixels.
- The two methods above only give an estimate of the actual perimeter.
- An improved estimate can be found by multiplying the results from either of the two methods by  $\pi/4$ .

### Global Shape Features - Thinness Ratio

- The thinness ratio, *T*, can be calculated from perimeter and area.
- The equation for thinness ratio is defined as follows:

$$T_i = 4\pi \left(\frac{A_i}{P_i^2}\right)$$

#### Global Shape Features – Thinness Ratio

The thinness ratio is used as a measure of roundness.

- It has a maximum value of 1, which corresponds to a circle.
- As the object becomes thinner and thinner, the perimeter becomes larger relative to the area and the ratio decreases.

#### Global Shape Features – Irregularity Ratio

- The inverse of thinness ration is called compactness or irregularity ratio, 1/T.
- This metric is used to determine the regularity of an object:

Regular objects have less vertices (branches) and hence, less perimeter compare to irregular object of the same area.

### Global Shape Features - Aspect Ratio

- The aspect ratio (also called elongation or eccentricity) is defined by the ratio of the bounding box of an object.
- This can be found by scanning the image and finding the minimum and maximum values on the row and column where the object lies.

### Global Shape Features - Aspect Ratio

The equation for aspect ratio is as follows:

$$\frac{c_{\text{max}} - c_{\text{min}} + 1}{r_{\text{max}} - r_{\text{min}} + 1}$$

- It reveals how the object spread in both vertical and horizontal direction.
- High aspect ratio indicates the object spread more towards horizontal direction.

### Global Shape Features – Euler Number

- Euler number is defined as the difference between the number of objects and the number of holes.
  - Euler number = num of object number of holes
- In the case of a single object, the Euler number indicates how many closed curves (holes) the object contains.

#### Global Shape Features – Euler Number

 Euler number can be used in tasks such as optical character recognition (OCR).



a. This image has eight objects and one hole, so its Euler number is 8 - 1 = 7. The letter V has Euler number of 1, i = 2, s = 1, o = 0, and n = 1.



b. This image has three objects and two holes, so the Euler number is 3 - 2 = 1.

### Global Shape Features – Euler Number

- Euler number can also be found using the number of convexities and concavities.
  - Euler number = number of convexities number of concavities
- This can be found by scanning the image for the following patterns:



## Global Shape Features - Projection

- The projection of a binary object, may provide useful information related to object's shape.
- It can be found by summing all the pixels along the rows or columns.
  - Summing the rows give horizontal projection.
  - Summing the columns give the vertical projection.

### Global Shape Features - Projection

• We can defined the horizontal projection  $h_i(r)$  and vertical projection  $v_i(c)$  as:

$$h_i(r) = \sum_{c=0}^{width-1} I_i(r,c)$$
 $v_i(c) = \sum_{r=0}^{height-1} I_i(r,c)$ 

An example of projections is shown in the next slide:

#### Global Shape Features – Projection



#### Moments are statistical measures of data.

- They come in integer orders.
- Order 0 is just the number of points in the data.
- Order 1 is the sum and is used to find the average.
- Order 2 is related to the variance, and order 3 to the skew of the data.
- Higher orders can also be used, but don't have simple meanings.

• Let r be a random variable, and  $g(r_i)$  be normalized (as the probability of value  $r_i$  occurring), then the moments are

$$\mu_n(r) = \sum_{k=0}^{K-1} (r_i - m)^n g(r_i)$$

where 
$$m = \sum_{i=0}^{K-1} r_i g(r_i)$$

a b

#### FIGURE 11.15

(a) Boundary segment.

(b) Representation as a 1-D function.





 For a 2-D continuous function f(x,y), the moment of order (p+q) is defined as

$$m_{pq} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^p y^q f(x, y) dx dy$$
 for  $p, q = 1, 2, 3, ...$ 

The central moments are defined as

$$\mu_{pq} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \overline{x})^p (y - \overline{y})^q f(x, y) dx dy$$
where  $\overline{x} = \frac{m_{10}}{m_{00}}$  and  $\overline{y} = \frac{m_{01}}{m_{00}}$ 

• If f(x,y) is a digital image, then

$$\mu_{pq} = \sum_{x} \sum_{y} (x - \overline{x})^{p} (y - \overline{y})^{q} f(x, y)$$

The central moments of order up to 3 are

$$\mu_{00} = \sum_{x} \sum_{y} (x - \overline{x})^{0} (y - \overline{y})^{0} f(x, y) = \sum_{x} \sum_{y} f(x, y) = m_{00}$$

$$\mu_{10} = \sum_{x} \sum_{y} (x - \overline{x})^{1} (y - \overline{y})^{0} f(x, y) = m_{10} - \frac{m_{10}}{m_{00}} (m_{00}) = 0$$

$$\mu_{01} = \sum_{x} \sum_{y} (x - \overline{x})^{0} (y - \overline{y})^{1} f(x, y) = m_{01} - \frac{m_{01}}{m_{00}} (m_{00}) = 0$$

$$\mu_{11} = \sum_{x} \sum_{y} (x - \overline{x})^{1} (y - \overline{y})^{1} f(x, y) = m_{11} - \frac{m_{10} m_{01}}{m_{00}}$$

$$= m_{11} - \overline{x} m_{01} = m_{11} - \overline{y} m_{10}$$

The central moments of order up to 3 are

$$\mu_{20} = \sum_{x} \sum_{y} (x - \overline{x})^{2} (y - \overline{y})^{0} f(x, y) = m_{20} - \overline{x} m_{10}$$

$$\mu_{02} = \sum_{x} \sum_{y} (x - \overline{x})^{0} (y - \overline{y})^{2} f(x, y) = m_{02} - \overline{y} m_{01}$$

$$\mu_{21} = \sum_{x} \sum_{y} (x - \overline{x})^{2} (y - \overline{y})^{1} f(x, y) = m_{21} - 2\overline{x} m_{11} - \overline{y} m_{20} + 2\overline{x} m_{01}$$

$$\mu_{12} = \sum_{x} \sum_{y} (x - \overline{x})^{1} (y - \overline{y})^{2} f(x, y) = m_{12} - 2\overline{y} m_{11} - \overline{x} m_{02} + 2\overline{y} m_{10}$$

$$\mu_{30} = \sum_{x} \sum_{y} (x - \overline{x})^{3} (y - \overline{y})^{0} f(x, y) = m_{30} - 3\overline{x} m_{20} + 2\overline{x}^{2} m_{10}$$

$$\mu_{03} = \sum_{x} \sum_{y} (x - \overline{x})^{0} (y - \overline{y})^{3} f(x, y) = m_{03} - 3\overline{y} m_{02} + 2\overline{y}^{2} m_{01}$$

 The normalized central moments are defined as

$$oldsymbol{\eta}_{pq} = rac{oldsymbol{\mu}_{pq}}{oldsymbol{\mu}_{00}^{\gamma}}$$

where 
$$\gamma = \frac{p+q}{2} + 1$$
 for  $p+q = 2,3,...$ 

 Seven invariant moments can be derived from the second and third moments:

$$\begin{aligned} \phi_1 &= \eta_{20} + \eta_{02} \\ \phi_2 &= (\eta_{20} - \eta_{02})^2 + 4\eta_{11}^2 \\ \phi_3 &= (\eta_{30} - 3\eta_{12})^2 + (3\eta_{21} - \eta_{03})^2 \\ \phi_4 &= (\eta_{30} + \eta_{12})^2 + (\eta_{21} + \eta_{03})^2 \\ \phi_5 &= (\eta_{30} - 3\eta_{12})(\eta_{30} + \eta_{12}) \left[ (\eta_{30} + \eta_{12})^2 - 3(\eta_{21} + \eta_{03})^2 \right] \\ &+ (3\eta_{21} - \eta_{03})(\eta_{21} + \eta_{03}) \left[ 3(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2 \right] \end{aligned}$$

 Seven invariant moments can be derived from the second and third moments:

• 
$$\phi_6 = (\eta_{20} - \eta_{02}) [(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2]$$
  
 $+ 4\eta_{11}(\eta_{30} + \eta_{12})(\eta_{21} + \eta_{03})$   
 $\phi_7 = (3\eta_{21} - \eta_{03})(\eta_{30} + \eta_{12}) [(\eta_{30} + \eta_{12})^2 - 3(\eta_{21} + \eta_{03})^2]$   
 $+ (3\eta_{12} - \eta_{30})(\eta_{21} + \eta_{03}) [3(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2]$ 

 This set of moments is invariant to translation, rotation, and scale change.



a b c d e f

FIGURE 12.37 (a) Original image. (b)–(f) Images translated, scaled by one-half, mirrored, rotated by 45°, and rotated by 90°, respectively.

TABLE 12.5

Moment invariants for the images in Fig. 12.37.

| Moment<br>Invariant | Original<br>Image | Translated | Half Size | Mirrored | Rotated 45° | Rotated 90° |
|---------------------|-------------------|------------|-----------|----------|-------------|-------------|
| $\phi_1$            | 2.8662            | 2.8662     | 2.8664    | 2.8662   | 2.8661      | 2.8662      |
| $\phi_2$            | 7.1265            | 7.1265     | 7.1257    | 7.1265   | 7.1266      | 7.1265      |
| $\phi_3$            | 10.4109           | 10.4109    | 10.4047   | 10.4109  | 10.4115     | 10.4109     |
| $\phi_4$            | 10.3742           | 10.3742    | 10.3719   | 10.3742  | 10.3742     | 10.3742     |
| $\phi_5$            | 21.3674           | 21.3674    | 21.3924   | 21.3674  | 21.3663     | 21.3674     |
| $\phi_6$            | 13.9417           | 13.9417    | 13.9383   | 13.9417  | 13.9417     | 13.9417     |
| $\phi_7$            | -20.7809          | -20.7809   | -20.7724  | 20.7809  | -20.7813    | -20.7809    |

There are several simple geometric measures that can be useful for describing a boundary.

- The length of a boundary: the number of pixels along a boundary gives a rough approximation of its length.
- Curvature: the rate of change of slope
  - To measure a curvature accurately at a point in a digital boundary is difficult
  - The difference between the slops of adjacent boundary segments is used as a descriptor of curvature at the point of intersection of segments

### Boundary Feature Representation: Chain Codes

- Image regions (including segments) can be represented by either the border or the pixels of the region. These can be viewed as external or internal characteristics, respectively.
- Chain codes: represent a boundary of a connected region.



### Boundary Feature Representation: Chain Codes

- Problems
  - Chain codes can be long
  - Small disturbances in the boundary can cause large changes in code
- Solution
  - Resample on large grid spacing

## Boundary Feature Representation: Chain Code





#### FIGURE 11.2

(a) Digital boundary with resampling grid superimposed.(b) Result of resampling.(c) 4-directional



chain code. (d) 8-directional









### Boundary Feature Representation: Chain Code

- Chain codes can be based on either 4-connectedness or 8-connectedness.
- The first difference of the chain code:
  - This difference is obtained by counting the number of direction changes (in a counterclockwise direction)
  - For example, the first difference of the 4-direction chain code 10103322 is 3133030.
- Assuming the first difference code represent a closed path, rotation normalization can be achieved by circularly shifting the number of the code so that the list of numbers forms the smallest possible integer.
- Size normalization can be achieved by adjusting the size of the resampling grid.



#### **FIGURE 12.16**

All shapes of order 4, 6, and 8. The directions are from Fig. 12.3(a), and the dot indicates the starting point.



- Given a chain-coded boundary, its shape number is that particular cyclic permutation of the first difference which is lexicographically smallest among all the cyclic permutations
- The order n of a shape number is defined as the number of digits in its representation.

a b

#### **FIGURE 12.17**

Steps in the generation of a shape number.



Chain code: 0 0 0 0 3 0 0 3 2 2 3 2 2 2 1 2 1 1

Difference: 3 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0

Shape no.: 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0 3

## Boundary Feature Representation: Fourier Descriptor

- This is a way of using the Fourier transform to analyze the shape of a boundary.
  - The x-y coordinates of the boundary are treated as the real and imaginary parts of a complex number.
  - Then the list of coordinates is Fourier transformed using the DFT (chapter 4).
  - The Fourier coefficients are called the Fourier descriptors.
  - The basic shape of the region is determined by the first several coefficients, which represent lower frequencies.
  - Higher frequency terms provide information on the fine detail of the boundary.

## Boundary Feature Representation: Fourier Descriptor



FIGURE 12.19 (a) Boundary of a human chromosome (2868 points). (b)–(h) Boundaries reconstructed using 1434, 286, 144, 72, 36, 18, and 8 Fourier descriptors, respectively. These numbers are approximately 50%, 10%, 5%, 2.5%, 1.25%, 0.63%, and 0.28% of 2868, respectively. Images (b)–(h) are shown as negatives to make the boundaries easier to see.

### Summary

 Shape is a powerful cue for object recognition with many applications

 Shape features allow significant data reduction while retaining information relevant to object shape.

### Questions?

# Next Time: Interest Point Features (Corners), SIFT Features

#### **Slide Credits**

Images taken from Digital Image Processing by Gonzalez and Woods Text.

Material taken from Jen-Chang Liu lecture slides