第三届"泰迪杯" 数据分析职业技能大赛

优 秀 报

作品名称:新冠疫情数据分析

荣获奖项:一等奖并获泰迪杯

作品单位: 华南师范大学

作品成员: 邓震 李德庆 丁雨君

此對面为后期添加,原来作品沒有此页對面

目录

1	数据的基本处理	2
	1.1 城市疫情预处理	
	1.1.1 数据探查	
	1.1.2 统计累计病例数量	3
	1.2 省份疫情数据处理	6
	1.3 各省住院人数统计	7
	1.4 疫情传播风险区域	
	1. 4. 1 数据分析	29
	1. 4. 2 条件说明	
	1. 4. 3 疫情传播风险区域	
	1. 4. 4 疫情传播风险区域解除	
	1.4.5 问题分析与求解	
2	2 数字大屏设计	12
	2.1 国内数字大屏	
	2.2 国际数字大屏	
3	2.2 国际数字大屏 3 国际疫情发展分析	15
	3.1 疫情阶段划分	
	3.2 三国疫情防控措施影响分析	
	3. 2. 1 三国的疫情防控措施	
	3. 2. 2 疫情防控措施影响分析	
	3. 2. 3 小结	

1 数据的基本处理

1.1 城市疫情预处理

1.1.1 数据探查

我们发现城市疫情数据表中并不是每一天都有对应的数据,有些天数的数据 是缺失的。

通过观察数据表,我们判断得到结论: **缺失的数据行是因为该区域当天无新**增的确诊、死亡或是治愈病例

而若对新增病例缺失的天数进行补 0 填充,会造成数据的高维稀疏,并且无太大的意义。

因此,我们的处理方法是不对缺失的天数进行补 0 填充。对应的,相应缺失日期的累计确诊数据也并未计算。

当使用缺失日期的累计确诊数据时,我们采取以下方案:

图 1 处理过程示意图

而若要使用某个缺失日期的累计确诊数据时,我们会往前寻找表中记录的最 近数据作为缺失日期当天的数据。

例如: 这是我们处理后得到的累计病例数据,如下图所示:

	Α	В		С	D	E	F	
	城市	7 日期	要	计确诊	累计治愈	累计死亡		
0	保定	2020/1/24		1	0	0		
1	保定	2020/1/25		3	0	0		
2	保定	2020/1/28		6	0	0		
3	保定	2020/1/29		7	0	0		
4	保定	2020/1/30		11	0	0		
5	保定	2020/2/1		13	2	0		
6	保定	2020/2/4		17	2	0		
7	保定	2020/2/5		17	4	n		
	图 2 结果示音图							

图 2 结果示意图

其中缺少保定市 1 月 27 日的病例数据,因为在原始数据表"城市疫情"中 没有1月26、27号这两天的数据,即这两天的病例并无变化,新增确诊、治愈、 死亡均为0。

因此使用往前最近的1月25号的累计病例数据作为1月27号的累计病例数 据。

若要使用某个区域的缺失日期的累计病例数据,而该区域的首次通报病例日 期晚于该缺失日期,则当缺失日期的累计病例数据均为0。

1.1.2 统计累计病例数量

首先统计出每一个城市对应数据行的索引 index, 如下图所示:

```
In [9]: city_list = data. 城市. unique()
           d = dict()
           for i in city_list:
              d[i] = data[data. 城市==i]. index
In [11]: d
           {'武汉': Int64Index([
                                                                                               19.
                                9677, 9837, 9851, 9921, 9957, 9967, 9984, 9995,
                        10021],
                       dtype='int64', length=114),
            *大米区*: Int64Index([ 7, 240, 385, 549, 743, 956, 1374, 15
2028, 2277, 2752, 2993, 3460, 3691, 4121, 4339, 4551,
                                                                        956, 1374, 1592, 1817,
                        10074, 10087, 10099, 10114, 10126, 10135, 10147, 10156, 10175,
                        10186, 10195, 10204, 10212, 10218, 10225, 10234, 10241],
```

	日期	城市	新增确诊	新增治愈	新增死亡
0	2020-01-10	武汉	41	2	1
1	2020-01-11	武汉	0	4	0
2	2020-01-12	武汉	0	1	0
3	2020-01-15	武汉	0	5	1
4	2020-01-16	武汉	4	3	0
9957	2020-05-24	武汉	0	1	0
9967	2020-05-26	武汉	0	1	0
9984	2020-05-29	武汉	0	1	0
9995	2020-05-31	武汉	0	1	0
10021	2020-06-04	武汉	0	3	0

图 3 处理结果示意图

然后对每个城市执行以下操作: 通过 i 遍历城市对应数据行的索引。

In [14]: data.loc[d['武汉']]

Out[14]:

若 i 为 0, **则该数据行是该城市首次通报确诊病例**,则此行的累计确诊、累计治愈、累计死亡为对应的新增数量,进行赋值。

若 i 不为 0,则该数据行非首次通报确诊病例,因此此行累计确诊、累计治愈、累计死亡为当天新增的病例数量加上上一天的累计病例数量。

核心代码如下图所示:

```
for key in list(d.keys()):
    print(key)
    for i in range(len(d[key])):
        if(i=0):
            data.loc[d[key][i], '累计确诊'] = data.loc[d[key][i], '新增确诊']
            data.loc[d[key][i], '累计治愈'] = data.loc[d[key][i], '新增允愈']
            data.loc[d[key][i], '累计允定'] = data.loc[d[key][i], '新增死亡']
        else:
            data.loc[d[key][i], '累计确诊'] = data.loc[d[key][i], '新增充愈'] + data.loc[d[key][i-1], '累计确诊']
            data.loc[d[key][i], '累计治愈'] = data.loc[d[key][i], '新增充愈'] + data.loc[d[key][i-1], '累计治愈']
            data.loc[d[key][i], '累计光心'] = data.loc[d[key][i], '新增死亡'] + data.loc[d[key][i-1], '累计死亡']

武汉
大兴区
深圳
```

图 4 核心代码示意图

即可得到最终结果, 部分数据如下图所示:

1 A	В	С	D	Е
城市	日期	累计确诊	累计治愈	累计死亡
阿坝州	2020/1/30	1	0	0
阿坝州	2020/2/17	1	1	0
阿克苏	2020/1/30	1	0	0
阿克苏	2020/2/13	1	1	0
安徽-境外	2020/4/8	1	0	0
安徽-境外	2020/4/24	1	1	0
安康	2020/1/23	1	0	0
安康	2020/1/24	3	0	0
安康	2020/1/26	7	0	0
安康	2020/1/27	R	Ω	n

图 5 结果示意图

武汉、深圳、保定每月 10、25 日的统计结果为:

丰	1	小生	公计	结果
78	- 1	IEU./X	≦π. ロ	行大

武汉	累计确诊	累计治愈	累计死亡
1月10日	41	2	1
1月25日	618	60	45
2月10日	18454	1173	748
2月25日	47441	12026	2085
3月10日	49978	33264	2423
3月25日	50006	44020	2531
4月10日	50008	46154	2577
4月25日	50333	46452	3869
5月10日	50339	46464	3869
5月25日	50340	46465	3869
6月10日	50340	46471	3869
6月25日	50340	46471	3869

表 2 深圳统计结果

		, , , , , , , , , , , , , , , , , , ,	
深圳	累计确诊	累计治愈	累计死亡
1月10日	0	0	0
1月25日	27	2	0
2月10日	375	56	0
2月25日	417	262	3
3月10日	417	387	3
3月25日	417	414	3
4月10日	419	414	3
4月25日	422	414	3
5月10日	423	414	3
5月25日	423	414	3
6月10日	423	414	3
6月25日	423	414	3

表 3 保定统计结果

保定	累计确诊	累计治愈	累计死亡
1月10日	0	0	0
1月25日	3	0	0
2月10日	30	9	0
2月25日	32	32	0
3月10日	32	32	0
3月25日	32	32	0
4月10日	32	32	0
4月25日	32	32	0
5月10日	32	32	0
5月25日	32	32	0
6月10日	32	32	0
6月25日	45	33	0

1.2 省份疫情数据处理

首先通过 excel 的 vlookup 函数,对 taskl_l.csv 检索得到每个城市对应的省份。

但我们注意到,此时同一天会有一个省份的多条数据记录。因此需要对每一个省份的每一天数据进行汇总,即可得到每个省份的病例数量。

再调整列顺序,即得到最终结果。

部分处理结果如下图所示:

Α	В	С	D	E	F	G	Н
省份	日期	新增确诊	新增治愈	新增死亡	累计确诊	累计治愈	累计死亡
安徽	2020/1/21	1	0	0	1	0	0
安徽	2020/1/22	8	0	0	9	0	0
安徽	2020/1/23	6	0	0	15	0	0
安徽	2020/1/24	24	0	0	39	0	0
安徽	2020/1/25	21	0	0	60	0	0
安徽	2020/1/26	10	0	0	70	0	0
安徽	2020/1/27	36	0	0	106	0	0
安徽	2020/1/28	46	0	0	152	0	0
安徽	2020/1/29	48	2	0	200	2	0
安徽	2020/1/30	37	1	0	237	3	0
安徽	2020/1/31	60	0	0	297	3	0
安徽	2020/2/1	43	2	0	340	5	0
安徽	2020/2/2	68	2	0	408	7	0
安徽	2020/2/3	72	7	0	480	14	0
安徽	2020/2/4	50	6	0	530	20	0
安徽	2020/2/5	61	3	0	591	23	0
安徽	2020/2/6	74	11	0	665	34	0
安徽	2020/2/7	68	13	0	733	47	0
立 纵	2020/2/0	16	10	1	770	EO	1

图 6 部分结果示意图

湖北、广东、河北每月 15 日的统计结果如下所示:

表 4 湖北统计结果表

湖北	新增确诊	新增治愈	新增死亡	累计确诊	累计治愈	累计死亡
1月15	0	5	1	41	12	2
日						
2月15	1839	849	139	56197	5860	1596

日						
3月15 日	4	816	14	67798	55247	3099
4月15 日	0	33	0	67803	63477	3222
5月15日	5	0	0	68134	63616	4512
6月15 日	0	3	0	68135	63623	4512
		表 5	广东统计结	i果表		
广东	新增确诊	新增治愈			累计治愈	累计死亡
1月15 日	0	0	0	0	0	0
2月15 日	22	50	0	1316	434	2
3月15 日	4	5	0	1361	1292	8
4月15 日	5	0	0	1571	1392	8
5月15 日	1	0	0	1589	1392	8
6月15 日	3	0	0	1628	1394	8
		表 6	河北统计结	:里表		
河北	新增确诊	新增治愈		累计确诊	累计治愈	累计死亡
1月15日	0	0	0	0	0	0
2月15 日	9	14	0	300	100	3
3月15日	0	3	0	318	310	6
4月15 日	1	1	0	328	314	6
5月15日	0	1	0	328	319	6
6月15	4	0	0	332	320	6

1.3 各省住院人数统计

假设国内的新冠确诊病人都入院收治,并且治愈病人和死亡病人都已出院。 因此根据任务 1.2 得到的各省份每天累计确诊、治愈、死亡人数,即可计算

每天的住院人数为:确诊人数-治愈人数-死亡人数结果如下所示:

	Α	В	С	D
1	省份	日期	住院人数	
2	安徽	2020/1/21	1	
3	安徽	2020/1/22	9	
4	安徽	2020/1/23	15	
5	安徽	2020/1/24	39	
6	安徽	2020/1/25	60	
7	安徽	2020/1/26	70	
8	安徽	2020/1/27	106	
9	安徽	2020/1/28	152	
10	安徽	2020/1/29	198	
11	安徽	2020/1/30	234	
12	安徽	2020/1/31	294	
13	安徽	2020/2/1	335	
14	安徽	2020/2/2	401	
15	安徽	2020/2/3	466	

图 7 结果示意图

湖北、广东、上海每月 20 日的统计结果如下表所示:

表 7 湖北统计结果表

	C . 1931/18-28-1 - HAIC DC
湖北	住院人数
1月20日	239
2月20日	48725
3月20日	5602
4月20日	102
5月20日	7
6月20日	0

表 8 广东统计结果表

湖北	住院人数
1月20日	14
2月20日	665
3月20日	89
4月20日	182
5月20日	191
6月20日	232

表 9 上海统计结果表

湖北	住院人数
1月20日	1
2月20日	135
3月20日	55

4月20日	115
5月20日	30
6月20日	38

1.4 疫情传播风险区域

1.4.1 数据分析

附件 1 中的 A 市涉疫场所分布表给出了发生疫情的场所、通报时间以及该场所的坐标位置,因此我们可以在平面图绘制出这些场所的分布示意图,见下图:

A市疫情场所分布图

图 7 A 市疫情场所分布图

1.4.2 条件说明

根据题目中给出的信息,我们得知,国内的新冠确诊病人都入院收治,而被传染者有5天的潜伏期,被传染3天后具备传染性,被传染后的第5天出现症状并被确诊入院收治。故我们设定一个周期为5天。

1.4.3 疫情传播风险区域

题目中给出新冠病人的传播半径为 1km,而考虑到病人在确诊前可能会在疫情场所四处走动,因此我们定义疫情传播风险区域为**以发生疫情场所为原点,半径为 1.5 公里的圆形范围内**。

1.4.4 疫情传播风险区域解除

结合现实解除疫情传播风险区域的案例,以及新冠病毒存在变异的可能性, 我们定义疫情传播风险区域**至少**需要**连续两个周期以上没有确诊病例**,才能解除 疫情传播风险区。

1.4.5 问题分析与求解

我们以第6天为例,讨论如何确定疫情传播风险区域。

结合被传染者有 5 天潜伏期,被传染后第 4 天开始具有传染性。A 市第 6 日的疫情传播风险区域应该是前 6 日发生疫情场所的疫情传播风险区域再加上 7 日、8 日发生疫情场所的疫情传播风险区域。这是因为 7 日确诊的患者从 5 日开始已经具有了传染性,而 8 日确诊的患者从 6 日开始已经具有了传染性。根据此,我们绘制出了 A 市第 6 日疫情传播风险区域示意图,见文件 result1/A 市 6 日疫情传播风险区域. html

A市6日疫情传播风险区域

图 8 A 市 6 日疫情传播风险区域示意图

同理可以确定 A 市第 10 日的疫情传播风险区域,并且此时的距离 1 日**并不满足大于两个周期的条件**,因此不需要考虑疫情传播风险区域解除。由此我们绘制出了 A 市第 10 日疫情传播风险区域示意图,见文件 result1/A 市 10 日疫情传播风险区域. html

A市10日疫情传播风险区域

上面两幅图中颜色越深表示危险程度越高。

2 数字大屏设计

2.1 国内数字大屏

我们设计的国内新冠疫情数据大屏截图如下:

图 10 国内数字大屏示意图

我们希望数字大屏可以体现新增确诊病患的地域分布及严重情况,因此设计了基于热力图的时空变化图。

同时为了更好地观测疫情的增长趋势,设计了全国折线图与确诊数量前三省份的折线图,可以更好地观测重点区域。

此外,为了观测全国的病患分布人数之比,与确诊、治愈、死亡之比。我们设计了两个饼图以直观的了解到。**同时可以点击图例以显示或隐藏某个省份的内容。**

其中:

- 左上的为全国各省累计确诊数的时空变化图,可以按时间播放全国的确诊情况.
- 左下的为国内较严重的前十省的概要信息的饼图. 右上的大图为国内新冠 疫情汇总概要信息的时序图.
- 靠右下三张为国内确诊人数前三的省份的汇总概要信息时序图.
- 右下角为全国疫情汇总概要的饼图. 动态可交互的数据大屏保存为 result/result2/全国疫情数据大屏. html
- ① 左上的全国各省累计确诊数的**时空变化图** 这张图体现了国内疫情时空变化情况,若某省的确诊人数大于全国各省确诊 人数的上四分位数,则该省呈现为红色;若某省的确诊人数为 0,则该省呈 现为蓝色.即颜色越偏暖,该省的疫情情况越严重.**地图下面有一个时间轴**,

可以点击播放按钮来播放完整过程的疫情变化, 也可以拖动时间轴. 滚动鼠标滚轮可以缩放地图大小, 按住鼠标可以拖动地图, 指针所停地区会显示名字以及确诊人数.

- ② 左下的汇总概要信息的饼图
 - 这张图体现了国内 6 月 30 日时十个省或地区的累计确诊人数以及治愈人数的占比,可以直观的体现国内疫情较为严重地区的汇总情况.

外圈为累计确诊人数,内圈为累计治愈人数.不论是确诊人数还是治愈人数,湖北省占了绝大部分,可以通过点击图例来暂时隐藏湖北省的数据,来观察其他省的情况.

- ③ 右上的国内疫情概要信息的时序图 这张图体现了国内总的确诊人数,治愈人数,死亡人数随时间的变化.
- ④ 靠右下的三张国内确诊人数前三地区的疫情概要信息的时序图 6月30日的国内确诊人数排前三的是湖北省,广东省和河南省,是应该重点 关注的地区,故这样图体现了这三个省的确诊人数,治愈人数,死亡人数随 时间的变化.
- ⑤ 最右下的国内疫情汇总概要的饼图 这张图直观地体现了国内确诊人数,治愈人数,死亡人数的占比.

2.2 国际数字大屏

我们设计的国际疫情数据大屏如下:

图 11 国际数字大屏

其中,

- 左上的为全球各国累计确诊数的时空变化图,可以按时间播放全球的确诊情况.
- 左下的为全球较严重的前十地区的概要信息的饼图.
- 右上的大图为全球新冠疫情汇总概要信息的时序图.
- 靠右下三张为全球确诊人数前三的地区的汇总概要信息时序图.
- 最右下角为全球疫情汇总概要的饼图. 动态可交互的数据大屏保存为 result/result2/全球疫情数据大屏. html

国际疫情态势:

全球累计确诊人数已经超过 1000 万, 且疫情已经扩散到各个大洲, 其中疫情在各个国家的蔓延十分迅速. 根据我们绘制的时空变化图可见, 美国等国家在短期内迅速变成红色. 因此, 疫情已经构成全球"大流行".

发展变化:

全球累计确诊人数从 3 月 10 日开始迅速激增,分布在全球各大洲,其中美国,巴西,俄罗斯三个国家人数增加十分剧烈,根据绘制的饼图,可以看到这三个国家的累计确诊人数在全球的占比超过 50%. 并且,全球的确诊人数增长趋势未见有放缓的现象.

相关的设计思路与任务 2.1 的设计思路相似,这里不作赘述.

3 国际疫情发展分析

通过与任务一类似的处理,我们得到对印度、伊朗、意大利、加拿大、秘鲁、南非每天的新增病例数量如下图所示:统计的数据表详见附件:result3/国家名.csv

Out[50]:

	日期	国家	累计确诊	累计治愈	累计死亡	新增确诊	新增治愈	新增死亡
1346	2020-03-06	秘鲁	1	0	0	1	0	0
1440	2020-03-07	秘鲁	1	0	0	0	0	0
1538	2020-03-08	秘鲁	6	0	0	5	0	0
1638	2020-03-09	秘鲁	6	0	0	0	0	0
1744	2020-03-10	秘鲁	6	0	0	0	0	0
24482	2020-06-26	秘鲁	268602	156074	8761	3913	4485	175
24703	2020-06-27	秘鲁	272364	159806	8939	3762	3732	178
24924	2020-06-28	秘鲁	275989	164024	9135	3625	4218	196
25145	2020-06-29	秘鲁	279419	167998	9317	3430	3974	182
25366	2020-06-30	秘鲁	282365	171159	9504	2946	3161	187

图 12 结果示意图

3.1 疫情阶段划分

疫情大致分为4个阶段

图 13 阶段划分示意图

阶段 1:

每日新增病例逐日增加。此时说明未能控制病毒传播,病毒在人群中自由扩散,社会上没有很好的防护机制。此时是疫情的开端。

阶段 2:

新增确诊数量趋于稳定且逐渐减少。此时说明政府已采取一定的措施进行防疫,病毒的传播已经受到限制。标志着我们的防治工作开始跑到病毒传播的前头,从跟着追病毒变为围追堵截。

阶段 3:

新增确诊病例数低于死亡和治愈病例之和,这个阶段意味着收治中的病例在减少,医疗资源开始释放能力,医生、病房、器材紧张情况消失,更意味着整个疫情在收敛,这是个关键节点。

阶段 4:

新增确诊病例连续 14 天为零,这是防疫工作彻底胜利的标志,宣布突发卫生事件结束的时刻。

根据上述 4 个阶段的划分,我们以分析意大利为例,判断其所属阶段。绘画意大利的新增确诊病例的折线图如下所示:

图 14 意大利新增确诊病例变化趋势图

在 3 月 22 日, 意大利的新增病例达到顶峰, 然后逐日减少。而在 3 月 22 日前, 新增病例的数量虽有波动, 但仍在稳步上升。

因此在3月22日前,意大利仍处于第一阶段;在3月22后进入第二阶段。

图 15 意大利新增治愈与新增死亡、确诊对比图

而在 5 月 7 日后,意大利的新增治愈病例多余新增的死亡与确诊病例。说明 这个阶段意味着收治中的病例在减少,医疗资源开始释放能力,医生、病房、器 材紧张情况消失,更意味着整个疫情在收敛。

因此在 5 月 7 日后,意大利进入了第三阶段。但是由折线图可以看出,虽然意大利已经进入了第三阶段,但是其每日新增确诊数量仍保持一个平稳的低位水平,所以其还没进入第 4 阶段。

因此意大利的的疫情发展阶段划分为:

表 10 意大利疫情发展阶段划分表						
意大利	阶段1	阶段 2	阶段 3	阶段 4		
时段	1. 31-3. 22	3. 23-5. 7	5.8-6.30	未知		

类似的,我们可以划分印度、伊朗、加拿大、秘鲁、南非的发展阶段。总的划分情况如下表所示:

	表 11 印度图	度情发展阶段划分表	表	
印度	阶段1	阶段 2	阶段	阶段4
			3	
时段	1.30-6.20	6. 21-6. 30	未知	未知

表 12 伊朗疫情发展阶段划分表

伊朗	阶段1	阶段 2	阶段3	阶段
时段	2. 20-5. 22	5. 23-6. 22	6. 22-6. 30	4 未知
	表 13 加拿大	疫情发展阶段划	分表	
加拿大	阶段1	阶段 2	阶段3	阶段4
时段	1. 27-5. 4	5. 4-6. 7	6. 8-6. 30	未知
	表 14 秘鲁疫	医情发展阶段划分	分表	
秘鲁	阶段1	阶段 2	阶段 3	阶段 4
时段	3. 6-5. 31	5. 31-6. 26	6. 26-6. 30	未知
	表 15 南非疫	医情发展阶段划分	分表	
南非	阶段1	阶段 2	阶段3	阶段4
时段	3.6-6.30	未知	未知	未知

3.2 三国疫情防控措施影响分析

3.2.1 三国的疫情防控措施

3.2.1.1 美国

根据附件 2 的信息得知,特朗普 3 月 11 日宣布美国从 3 月 13 日起,限制所有欧洲居民入境美国,为期 30 天,英国除外,与此同时宣布进入国家紧急状态,联邦政府将启动 500 亿美元的紧急资金储备,用于各州医疗机构应对新冠疫情,并且要求各州尽快建立应对新冠的应急指挥中心。3 月 19 日美国加州宣布"封城"。

3. 2. 1. 2 英国

根据附件 2 的信息,我们可以得知,截至 3 月 23 日 12 时英国已经采取了"封国"、"封城"措施。并且英国将从 3 月 23 日开始实施更加严格的管制措施,出购买生活必须品、外出锻炼、求医或是核心工作者通勤外,所有人必须待在家中。

3.2.1.3 俄罗斯

根据附件 2 得知,俄罗斯 3 月 18 日至 5 月 1 日,禁止一切国籍外国人和无国籍公民入境俄罗斯。同时取消全国的体育赛事,首都莫斯科停课,并禁止 50 人以上的聚会。俄罗斯所采取的措施是三国中最严厉的。

3.2.2 疫情防控措施影响分析

根据附件 1 中的国家疫情表,我们绘制出了美国、英国、俄罗斯三国的累计死亡、累计治愈示意图以及新增确诊、新增治愈、新增死亡示意图(见文件"美国新增确诊、新增治愈、新增死亡示意图. html"、"美国累计死亡、累计治愈示意图. html"、"英国新增确诊、新增治愈、新增死亡示意图. html"、"英国累计死亡、累计治愈示意图. html"、"俄罗斯新增确诊、新增治愈、新增死亡示意图. html"、"俄罗斯累计死亡、累计治愈示意图. html"、便于我们对三国疫情防控措施效果的分析。

3. 2. 2. 1 美国

3.2.2.1.1 措施采取原因

观察绘制出的美国新增确诊、新增治愈、新增死亡示意图,可以得到 3 月 11 日美国新增确诊人数达到 300 人时(见下图),立即宣布采取紧急措施。

图 16 3 月中旬美国日新增确诊、治愈、死亡人数示意图

由于在死亡人数以及确诊人数不断增加,治愈人数却久久停留在 10 人(见下图), 美国联邦政府宣布将启动 500 亿美元的紧急资金储备,用于各州医疗机构应对新 冠疫情,并且要求各州尽快建立应对新冠的应急指挥中心。

图 17 3 月上半月美国累计死亡、治愈人数示意图

3.2.2.1.2 措施影响分析

从采取措施起,到 2020 年 4 月 13 日,为期一个月的时间,尽管美国每日新增确诊人数仍在不断叠加,4 月份日新增甚至超过了 **25000** 人,但是其新增治愈率比起 3 月 13 日前有了明显的提高,并且超过了新增死亡人数,请看下图

图 18 3 月 13 日至 4 月 13 日美国新增确诊、治愈、死亡人数示意图

在这样的形势下,美国累计治愈人数,于3月28日成功反超累计死亡人数,并且在这之后,累计治愈人数远远超过了累计死亡人数。

图 19 3月 13日至 4月 13日美国累计治愈、死亡人数示意图

根据上述的数据,我们可以肯定美国联邦政府的拨款显著的提高了美国医疗 机构治愈新冠肺炎的成功率,说明该措施在救治新冠患者方面有着积极的作用。 但是,美国的新增确诊病例却是一天比一天多,累计确诊人数在短短的一月内增 加了数十万,这说明了美国联邦政府采取的措施在疫情控制方面的措施是极差 的,这无异于是在美国的疫情这堆火上,又浇上了一大壶油。

3. 2. 2. 2 英国

3. 2. 2. 2. 1 措施采取原因

图 20 3 月英国日新增确诊、治愈、死亡人数示意图

观察上图,我们可以知道:进入三月份后英国新冠肺炎日确诊人数猛地增加、将新增治愈人数远远抛在后面。在2020年3月22日英国新增确诊新冠人数甚至超过了1000名。而英国也于2020年3月23日宣布采取更为严厉的管控措施。

3. 2. 2. 2. 2 措施影响分析 观察下图:

图 21 3月 23日至 5月 23日英国日新增确诊、治愈、死亡人数示意图

在英国采取所谓的更加严厉的管控措施后,英国的日新增确诊人数、死亡人数仍在不断增加,而日新增治愈人数对比其另外两个指标几乎可以忽略不计。而累计治愈人数对比起累计死亡人数几乎可以忽略不计。

图 22 3 月 23 日至 5 月 23 日英国日累计、治愈、死亡人数示意图

截止 2020 年 5 月 23 日,英国累计死亡人数为 36675 名,累计治愈人数为 539 名,累计死亡人数是累计治愈人数的 68 倍。

通过上面的数据,可以说**英国的疫情防控措施在新冠肺炎面前形同虚设**,这些措施**没有对英国疫情防控起到积极的作用**。

3. 2. 2. 3 俄罗斯

3.2.2.3.1 措施采取原因

图 23 3 月 11 日前俄罗斯日新增确诊、治愈、死亡人数示意图

从上图我们可以得知,截止3月11日为止,俄罗斯确诊人数不超过30人,不存在死亡人数。而在3月11日这一天,当俄罗斯新增确诊人数达到10人时,立刻宣布的严厉的疫情防控措施:禁止一切国籍外国人和无国籍公民入境俄罗斯。同时取消全国的体育赛事,首都莫斯科停课,并禁止50人以上的聚会。可见俄罗斯是三个国家中最重视疫情防控的国家。

3.2.2.3.2 措施影响分析

图 24 3 月 11 日至 5 月 1 日俄罗斯日新增确诊、治愈、死亡人数示意图

图 25 3 月 11 日至 5 月 1 日俄罗斯日累计治愈、死亡人数示意图

观察上面两图图,在四月前俄罗斯的新增确诊人数仍不算多,但是进入到四月俄罗斯国内的疫情就开始不受控制,新增确诊人数不断增加,从4月7日开始,日新增人数均超过了1000人;而新曾治愈人数在不断增加,新增死亡人数极少,从4月6日起,俄罗斯累计治愈人数每一天都有明显的增加。

结合上面的分析,我们可以得知,俄罗斯采取的疫情防控措施在**初期有着比较显著的效果**,但是好景不长,**从4月份开始,俄罗斯采取的疫情防控措施就开始不见效果了**。

3.2.3 小结

通过上面的分析,美国、英国、俄罗斯三者所采取疫情防控的措施中,**俄罗 斯的疫情防控措施是最为严格的,并且在初期取得了比较显著的防控效果**,而另 外两者在初期就控制不住本国的疫情蔓延趋势;但是**总体来说**,三个国家采取的疫情防控措施**都没有很好地抑制本国疫情的蔓延**,**疫情甚至走向了失控的方向**。出去疫情防控因素,美国和俄罗斯在治愈新冠病毒方面的表现还是要优于英语的,两国的累计治愈人数均远远超过了累计死亡人数,请看下图:

图 26 1月 31日至 6月 30日俄罗斯日累计治愈、死亡人数示意图

图 27 1月 27日至 6月 30日美国日累计治愈、死亡人数示意图