

Process Oriented Data Science Lab (Tuesdays)

Data Science in Action...in Action!

Process (mining) vocabulary

Campus d'Excel·lència Internacional

Process model Event type

Process instance Trace Event

Process mining LAB Tools

Lightweight

 Disco from Fluxicon

Fluxicon BV T.U.Eindhoven Academic Open-source

ProM Lite

T.U.Eindhoven

Open-source

Apromore

University of Melbourne and University of Tartu Enterprise

• SAP Signavio (*)

Celonis

(*) Academic license only for modelling

IT Leaders .*.

blueprism Business

Process

Mining

Deloitte.

TU/e

Fraunhofer

IBM

K M S

BPM® LATAM

STANSFORMS.

FUĴĨTSU

in Verbis

Hasso

Plattne

Institut

ProcessMining

NcoL

Integrating People & Solutions

POSTECH

PROCESS CHEMISTRY

UNIVERSITY OF TARTU

UNIVERSITÀ BEILSTUNISME ALDO MORO

RWITH AACHEN UNIVERSITY

SINTEF

אוניברסיטת חיפה

SAPIENZA

Structure

- First half of the semester: Hands-on, Modeling, Tooling (Bring your computer!)
- Second half of the semester: course project

Course project:

- Groups of 3-5 students
- Submission of a report & presentation day
- Types: comparison projects, repeatability, use-case, implementation
- All projects require experimental work, ie., running different algorithms on certain data and measure results

- 60% final exam: similar to the exercises in class
- 40% lab, of which:
 - 20 % 2 Graded exercise in-lab (10% each).
 - 80% course Project.

Weekly Schedule

Week	Date	Lab (Tuesdays)	Date	Reading	Theory & Exercises (Thursdays)
1	10/9	Disco Hands-on (I) & Process Maps	12/9	V1	PM Introduction & contextualization Process models & event data: intro
2	17/9	Disco Hands-on (II)	19/9	R1	Process models & event data: basics
3	24/9		26/9	R2	Process models & event data: properties, algorithms & challenges
4	1/10	Disco Hands-on (III)	3/10	R3	•Quality dimensions for relating observed & modeled processes •Process Discovery: Alpha family
5	8/10	Process Modeling	10/10		Process Discovery: Advanced techniques
6	15/10	Graded Exercise 1 ProM/Apromore (event data & discovery)	17/10	R4	Conformance checking: rule checking & token replay
7	22/10	Apromore (compliance & performance)	24/10		Methodology for PODS
8	29/10	Apromore (performance & variant)	31/10	R5	Midterm exams
10	5/11	Midterm exams	7/11		Midterm exams
11	12/11	Apromore (simulation)	14/11		Process enhancement techniques: basics techniques •Predictive process monitoring •Social network analysis
12	19/11	Graded Exercise 2 Project work	21/11		Assorted advanced techniques I
13	26/11	Project work	28/11		Assorted advanced techniques II
14	3/12	Project work	5/12		TBD: Celonis, DCR
15	10/12	Project work	12/12		Projects Presentations I,
16	17/12	Project work & Project Submission	19/12		Project Presentations II

Use your @upc.edu account to get the academic licenses

Always bring your own laptop to class

To get access to Apromore and SAP Signavio Workspace

 You will receive an email at your "@upc.edu" mails with the invitation links.

Starting September 17th:

- Group 11: From 15h to 17h
- Group 12: From 17h to 19h

Josep Carmona

Josep Carmona Computer Scientist jcarmona@cs.ucp.edu

- Most of the material of this course is taken from my colleagues:
 - RWTH Aachen (Prof. Wil van der Aalst)
 - Humboldt University zu Berlin (Prof. Matthias Weidlich)
 - Technishe Universiteit Eindhoven (Prof. Boudewijn van Dongen)
 - University of Tartu (Prof. Marlon Dumas)
 - University of Melbourne (Prof. Marcello La Rosa)
 - Technical University of Denmark (Prof. Andrea Burattin)
- Hence, this material is only provided for your learning, please do not share nor publish

