Inverting & Non-Inverting Configuration in an OP Amp

Inverting Configuration

In this configuration, the input voltage signal, (V_{IN}) is applied directly to the inverting (-) input terminal which means that the output gain of the amplifier becomes "180 degree" out of phase. wrt input.

Non-Inverting Configuration

In this configuration, the input voltage signal, (V_{IN}) is applied directly to the non-inverting (+) input terminal which means that the output gain of the amplifier becomes "in phase" with the input.

Concept of Virtual Short

• For an open loop configuration op amp, the output is given by:

$$V_0 = A(V_1 - V_2)$$

Implies,
$$V_1 - V_2 = \frac{V_0}{A}$$

The value of gain A is ideally infinite.

Thus,
$$V_1 - V_2 = 0$$

Or
$$V_1 = V_2$$

Concept of Virtual Short

- According to virtual short concept, the potential difference between the two input terminals of an op amp is almost zero.
- In other words both the terminals are approximately at the same potential.
- The input impedance of an OP-AMP is ideally infinite. Hence current flowing from one input terminal to the other will be zero.
- Thus the voltage drop across Ri will be zero and both the terminals will be at the same potential.
- Means they are virtually shorted to each other

Special Case: Concept of Virtual Ground

• For an open loop configuration op amp, the output is given by:

$$V_0 = A(V_1 - V_2)$$

Implies,
$$V_1 - V_2 = \frac{V_0}{A}$$

The value of gain A is ideally infinite.

Thus,
$$V_1 - V_2 = 0$$

Or
$$V_1 = V_2$$

If, $V_1 or V_2$ is grounded, then:

$$V_1 = V_2 = 0 \ volt$$

Explanation

No Current inside an OP amp!

- As the input resistance of the ideal OP-AMP is infinite, the current flowing into it's input terminal is zero.
- Even for the practical OP-AMPs, Rin=2M Ω which is very large. Hence for all the practical purposes we assume that the input current of an OP-AMP is zero.

Inverting OP Amp

$$\frac{V_{\text{out}}}{V_{\text{in}}} = -\frac{R_{\text{F}}}{R}$$

Non Inverting OP Amp

$$\frac{V_{\text{out}}}{V_{\text{in}}} = 1 + \frac{R_F}{R}$$

QUICK QUIZ (POLL)

A certain non-inverting amplifier has R_i of 1 k Ω and R_f of 100 k Ω . The closed-loop voltage gain is

- A) 10000
- B)101 K ohm
- C)101
- D) 10

If the feedback resistor in given question is open, the voltage gain

Unity Gain Buffer (Voltage Follower)

$$V_{out} = V_{in}$$

implies:

Gain,
$$A = \frac{V_{out}}{V_{in}} = 1$$

QUICK QUIZ (POLL)

Determine the output from the following circuit

- a) 180 in phase with input signal
- b) 180 out of phase with input signal
- c) Same as that of input signal
- d) Output signal cannot be determined

Applications of an Op Amp

- 1. Adder
- 2. Subtractor or Difference Amplifier
- 3. Integrator
- 4. Differentiator
- 5. Comparator
- 6. Filters

OP Amp as an Adder

also called as **Summing Amplifier**

$$V_o = -(V_1 + V_2 + V_3 + \dots + V_n)$$

Explanation Slide

QUICK QUIZ (POLL)

In an averaging amplifier, the input resistances are

- A) less than the feedback resistance
- B) equal to the feedback resistance
- C) greater than the feedback resistance
- D) unequal

OP Amp as Differential Amplifier

When resistors, R1 = R2 and R3 = R4 the above transfer function for the differential amplifier can be simplified to the following expression:

Differential Amplifier Equation

$$V_{\text{OUT}} = \frac{R_3}{R_1} \left(V_2 - V_1 \right)$$

Explanation Slide

Explanation Slide

OP Amp as Differential Amplifier

SPECIAL CASE: SUBTRACTOR

Finally, the circuit of op amp substractor becomes,

Op Amp as Differentiator

- Differentiator is an op amp based circuit, whose output signal is proportional to differentiation of input signal.
- An op amp differentiator is basically an inverting amplifier with a capacitor of suitable value at its input terminal.

$$C \frac{dv_i}{dt} = -\frac{v_0}{R}$$

 $\Rightarrow v_0 = -RC \frac{dv_i}{dt}$

Op Amp as an Integrator

- An **integrator** is an op amp circuit, whose output is proportional to the integral of input signal.
- An integrator is basically an inverting amplifier where we replace feedback resistor with a capacitor of suitable value.

$$rac{v_i}{R} = -C rac{\mathrm{d}v_0}{\mathrm{d}t}$$

$$\Rightarrow dv_0 = -rac{1}{RC}v_i dt$$

$$v_0 = -rac{1}{RC}\int v_i dt$$

QUICK QUIZ (POLL)

The slope of the frequency response of an integrator is

- A) Linear with negative slope
- B) Linear with positive slope
- C) Exponential Increase
- D) Exponential Decrease

Op Amp as Comparator

- The Op-amp comparator compares one analogue voltage level with another analogue voltage level, or some preset reference voltage, V_{REF} and produces an output signal based on this voltage comparison.
- In other words, the op-amp voltage comparator compares the magnitudes of two voltage inputs and determines which is the largest of the two.

Op Amp as Comparator

- With reference to the op-amp comparator circuit above, lets first assume that V_{IN} is less than the DC voltage level at V_{REF} ($V_{IN} < V_{REF}$). As the non-inverting (positive) input of the comparator is less than the inverting (negative) input, the output will be LOW and at the negative supply voltage, $-V_{CC}$ resulting in a negative saturation of the output.
- If we now increase the input voltage, V_{IN} so that its value is greater than the reference voltage V_{REF} on the inverting input, the output voltage rapidly switches HIGH towards the positive supply voltage, $+V_{CC}$ resulting in a positive saturation of the output.

Op Amp Comparator Circuit Application in Non Sinusoidal Waveform Generation

- In this non-inverting configuration, the reference voltage is connected to the inverting input of the operational amplifier with the input signal connected to the non-inverting input. To keep things simple, we have assumed that the two resistors forming the potential divider network are equal and: $R_1 = R_2 = R$. This will produce a fixed reference voltage which is one half that of the supply voltage, that is $V_{CC}/2$, while the input voltage is variable from zero to the supply voltage.
- When V_{IN} is greater than V_{REF} , the op-amp comparators output will saturate towards the positive supply rail, V_{CC} . When V_{IN} is less than V_{REF} the op-amp comparators output will change state and saturate at the negative supply rail, 0 V as shown.

Vi A

Explanation

Sinusoidal Input Signal

non-inverting zero crossing detector.

nonzero-level detector

application

QUICK QUIZ (POLL)

What type(s) of circuit(s) use comparators?

- A) summer
- B) nonzero-level detector
- C) averaging amplifier
- D) summer and nonzero-level detector