МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМ. Н.Э.БАУМАНА

Факультет "Энергомашиностроение" Кафедра "Э3"

Жигалкин Александр Сергеевич

Курсовоей проект

Проектирование свободной турбины ТВлД

Руководитель курсового проекта _____ В. Н. Шадрин «____» ____ 2016 г.

1 Задание

Спроектировать двуступенчатую свободную турбину турбовального двигателя с температурой после камеры сгорания $T_{\scriptscriptstyle \Gamma}^*=1463~{
m K}$ и мощностью на валу свободной турбины $N_e=2.07~{
m MBr}.$

Рис. 1: Схема ГТД

Содержание

1	Задание	1
2	Расчет параметров цикла ГТД 2.1 Исходные данные	
	2.2 Вариантные расчеты	3
3	Поступенчатый расчет турбины	9
	3.1 Расчет первой ступени	9
	3.2 Расчет второй ступени	13
	3.3 Вычисление интегральных параметров турбины	17
4	Профилирование первой ступени турбины компрессора	18
5	Расчет на прочность диска первой ступени	21
	5.1 Исходные данные для расчета	21
	5.2 Алгоритм расчета	
	5.3 Результаты расчета	22

2 Расчет параметров цикла ГТД

2.1 Исходные данные

Величина	Обозначение	Размерность	Значение
Политропический КПД компрессора	$\eta_{{ ext{ iny K}}p}^*$	-	<etacomppol></etacomppol>
Полнота сгорания топлива	$\eta_{\scriptscriptstyle \Gamma}$	-	<etaburn></etaburn>
Политропический КПД турбины компрес-	$\eta_{{\scriptscriptstyle \mathrm{TK}}p}^*$	-	<EtaCompTurbPol $>$
copa	_		
Политропический КПД свободной турбины	$\eta_{{}^{ ext{ iny T}p}}^*$	-	<EtaFreeTurbPol $>$
Относительная скорость на выходе из ГТД	$\lambda_{\scriptscriptstyle m BMX}$	-	<LambdaOut $>$
Мощность на валу свободной турбины	N_e	кВт	<cyclepower></cyclepower>
Температура перед турбиной компрессора	$T_{\scriptscriptstyle \Gamma}^*$	K	<Gas $Temp>$
Коэффициент сохранения полного давле-	$\sigma_{ ext{bx}}$	-	<InletPipeSigma $>$
ния во входном устройстве компрессора			
Коэффициент сохранения полного давле-	$\sigma_{\scriptscriptstyle \Gamma}$	-	<burnsigma></burnsigma>
ния в камере сгорания			
Коэффициент сохранения полного давле-	$\sigma_{ ext{\tiny BMX}}$	-	<OutletPipeSigma $>$
ния в выходном патрубке			
Механический КПД турбины компрессора	$\eta_{ ext{ iny M}}$	-	<EtaMech $>$
КПД редуктора	$\eta_{ m p}$	-	<EtaR $>$
Относительный расход утечек	$g_{ m yr}$	-	<LossMassRateRel $>$
Относительный расход на охлаждение	$g_{ m ox}$	-	<coolmassraterel></coolmassraterel>
Относительный расход возвращаемого воз-	$g_{ m возвр}$	-	<ReturnMassRateRel $>$
духа			

2.2 Вариантные расчеты

Для определения оптимальной степени повышения давления в компрессоре был произведен расчет цикла ГТД для различных значений π_{κ}^* в интервале 6 до 27. В результате были построены графики зависимостей КПД, удельной расхода топлива и расхода через компрессор от степени повышения давления в компрессоре.

Ниже представлены графики зависимостей КПД, расхода топлива и расхода воздуха ГТД от π_{κ}^* . Также представлен их сводный график, на котором для наглядности значения КПД, расхода топлива и расхода воздуха отнесены к максимальным на представленном промежутке значений степени повышения давления.

В качестве оптимального принимаем $\pi_{\kappa} = \langle PiComp \rangle$. Ниже представлен расчет цикла ГТД при $\pi_{\kappa} = \langle PiComp \rangle$

2.3 Расчет цикла при $\pi_{\kappa} = \langle PiComp \rangle$

Расчет некоторых узлов ГТД (а именно обоих турбин и компрессора) носит итерационный характер, так как удельная теплоемкость и коэффициент адиабаты зависят от температуры на выходе из узла. Поэтому ниже представлены расчеты для последних итераций.

1. Определим давление за входным устройством:

$$p_{\text{\tiny BX}}^* = \sigma_{\text{\tiny BX}} p_{\text{\tiny a}} = < InletPipeSigma > \cdot < AtmP > = < InletTubePOut > \text{ M}\Pi\text{a}$$

2. Определим давление за компрессором:

$$p_{\scriptscriptstyle \rm K}^* = \pi_{\scriptscriptstyle \rm K} p_{\scriptscriptstyle \rm BX}^* = < PiComp > \cdot < InletTubePOut > = < CompPOut > \ {\rm M}\Pi {\rm a}$$

3. Определим адиабатический КПД компрессора, принимая показатель адиабаты воздуха $k_{\scriptscriptstyle B} = < Cycle KAirShort >$

$$\eta_{\mathbf{K}}^* = \frac{\pi_{\mathbf{K}}^{\frac{k_{\mathbf{B}}-1}{k_{\mathbf{B}}}-1}}{\pi_{\mathbf{K}}^{\frac{k_{\mathbf{B}}-1}{k_{\mathbf{B}}}-1}} = \frac{< PiComp > \frac{< Cycle KAirShort > -1}{< Cycle KAirShort > -1} - 1}{< PiComp > \frac{< Cycle KAirShort > -1}{< Cycle KAirShort > \cdot < EtaComp Pol > -1}} = < EtaComp > \frac{< Cycle KAirShort > -1}{< Cycle KAirShort > \cdot < EtaComp Pol > -1}}$$

Рис. 2: Сводный график зависимостей КПД, расхода воздуха и расхода топлива от степени повышения давления в компрессоре

4. Определим температуру газа за компрессором:

$$T_{\mathbf{K}}^* = T_a \left[1 + \frac{\pi_{\mathbf{K}}^{\frac{k_{\mathbf{B}}-1}{k_{\mathbf{B}}}} - 1}{\eta_{\mathbf{K}}^*} \right] = < AtmT > \left[1 + \frac{< PiComp > \frac{< CycleKAirShort > - 1}{< CycleKAirShort >} - 1}{< EtaComp >} \right] = < CompTOut > \mathbf{K}$$

- 5. Определим уточненное значение показателя адиабаты:
 - 5.1. Средняя теплоемкость воздуха при температуре T_a :

$$c_{p\text{вср}}(T_a) = \left(1.2 \cdot 10^{-5} \left(T_a - 70\right) + 0.236\right) \cdot 4.187 \cdot 10^3 =$$

$$= \left(1.2 \cdot 10^{-5} \left(< AtmT > -70 \right) + 0.236 \right) \cdot 4.187 \cdot 10^3 = < CompTInSpecificHeat > \ \ \text{Дж/(кг · K)}$$

5.2. Средняя теплоемкость воздуха при температуре T_{κ}^{*} :

$$c_{pвсp}(T_{\kappa}^{*}) = \left(1.2 \cdot 10^{-5} \left(T_{a} - 70\right) + 0.236\right) \cdot 4.187 \cdot 10^{3} =$$

$$= \left(1.2 \cdot 10^{-5} \left(< CompTOut > -70\right) + 0.236\right) \cdot 4.187 \cdot 10^{3} = < CompTOutSpecificHeat > Дж/(кг·К)$$

5.3. Средняя теплоемкость воздуха в интервале температур от T_a до T_{κ}^* :

$$c_{p_{\rm B}} = \frac{c_{p_{\rm BCD}}(T_{\rm K}^*)(T_{\rm K}^* - T_0) - c_{p_{\rm BCD}}(T_a)(T_a - T_0)}{T_{\rm K}^* - T_a} =$$

$$=\frac{< CompTOutSpecificHeat> \cdot (< CompTOut> - < SpHeatT0>) - < CompTInSpecificHeat> \cdot (< AtmTout> - < AtmT>)}{< CompTOut> - < AtmT>}$$

5.4. Новое значение показателя адиабаты:

$$k_{\text{\tiny B}}' = \frac{c_{\text{\tiny PB}}'}{c_{\text{\tiny PB}}' - R_{\text{\tiny B}}} = \frac{< CycleAirSpecificHeat >}{< CycleAirSpecificHeat > - < CycleAirGasConstant >} = < CycleKAirLong > - < CycleAirSpecificHeat > - < CycleAirGasConstant > - < < CycleA$$

6. Определим погрешность определения показателя адиабаты

$$\delta = \frac{|k_{\text{\tiny B}}' - k_{\text{\tiny B}}|}{k_{\text{\tiny B}}} \cdot 100\% = \frac{| - < CycleKAirShort>|}{< CycleKAirShort>} \cdot 100\% = < CycleKAirDelta> \% < 5\%$$

Точность определения показателя адиабаты воздуха находится в пределах допуска.

7. Используя найденный показатель адиабаты воздуха, определим теплоемкость воздуха в процессе сжатия воздуха в компрессоре:

8. Определим работу компрессора:

$$L_{\rm K} = c_{\rm pB} \left(T_{\rm K}^* - T_a \right) = < CycleAirSpecificHeat > \cdot \left(< CompTOut > - < AtmT > \right) = < CompSpecificLabour > \cdot 10^6 \, \rm graph control contro$$

9. Температура газа за камерой сгорания:

$$T_r^* = < BurnerTOut > K$$

- 10. Определим относительный расход топлива. Теплоемкость продуктов сгорания керосина рассчитывается через коэффициент избытка воздуха температуру. При расчета приняты следующие значения:
 - 1) температура определения теплофизических параметров веществ:

$$T_0 = < Parameter Determ T > K;$$

2) средняя теплоемкость воздуха перед камерой сгорания:

$$c_{pB}(T_{\kappa}^*) = < BurnerInletAirSpecificHeat > Дж/(кг \cdot K);$$

3) средняя теплоемкость чистых продуктов сгорания керосина после камеры сгорания:

$$\begin{split} c_{pr}\left(T_{r}^{*},\ 1\right) &= \left[\frac{1.25+2.2}{10^{5}}(T_{r}^{*}+450)+0.218\right]\cdot4.187\cdot10^{3} = \\ &= \left[\frac{1.25+2.2}{10^{5}}(+450)+0.218\right]\cdot4.187\cdot10^{3} = < BurnerOutletGasSpecificHeat>\ Дж/(кг·К); \end{split}$$

4) средняя теплоемкость чистых продуктов сгорания керосина при температуре T₀:

$$c_{pr}\left(T_{0},\ 1\right) = \left[\frac{2.25+1.2}{10^{5}}\left(T_{0}-70\right)+0.236\right]\cdot4.187\cdot10^{3} = \\ \left[\frac{2.25+1.2}{10^{5}}\left(< Parameter Determ T>-70\right)+0.236\right]\cdot4.187\cdot10^{3} = < Parameter Determ Gas Specific Heat> Дж., 100 (100)$$

5) низшая теплота сгорания топлива:

$$Q_{\rm H}^{\rm p} = < LowerQ > \cdot 10^3 \, \text{Дж/(кг · K)};$$

6) полнота сгорания:

$$\eta_{\Gamma} = \langle EtaBurn \rangle;$$

7) масса воздуха, необходимая для сжигания 1 кг топлива:

$$l_0 = \langle TheoryAirMass \rangle$$
 кг;

10.1. Определим относительный расход топлива:

$$\begin{split} g_m &= \frac{G_m}{G_{\text{\tiny B}}^r} = \frac{c_{p\text{\tiny F}}\left(T_{\text{\tiny F}}^*\right)T_{\text{\tiny F}}^* - c_{p\text{\tiny B}}\left(T_{\text{\tiny K}}^*\right)T_{\text{\tiny K}}^*}{Q_{\text{\tiny H}}^{\text{\tiny P}}\eta_{\text{\tiny F}} - \left[c_{p\text{\tiny F}}\left(T_{\text{\tiny F}}^*\right)T_{\text{\tiny F}}^* - c_{p\text{\tiny F}}\left(T_0\right)T_0\right]} = \\ &= \frac{< BurnerOutletGasSpecificHeat > \cdot < BurnerTOut > - < BurnerInletAirSpecificHeat > \cdot < BurnerTOut > - < Parameter < Comparison of the property of the prop$$

10.2. Определим коэффициент избытка воздуха:

$$\alpha = \frac{1}{g_m l_0} = \frac{1}{< Fuel Mass Rate Rel > \cdot < Theory Air Mass >} = < Cycle Burn Alpha Long > \cdot < Theory Air Mass > \cdot < Theor$$

11. Определим относительный расход газа:

$$g_{\Gamma} = (1 + g_m)(1 - g_{V\Gamma} - g_{OXJ}) + g_{BO3BD} = (1 + \langle FuelMassRateRel \rangle)(1 - \langle LossMassRateRel \rangle - \langle CoolMassRateRel \rangle)$$

Расчет турбины компрессора состоит из двух частей. Первая часть - это определения температуры на выходе из турбины. Этот расчет является итерационным и ведется до сходимости по $k_{\rm r}$. Вторая часть - расчет давления торможения на выходе из турбины. Этот расчет также является итерационным и ведется до сходимости по $\pi_{\rm tk}^*$. Ниже приведены последнии итерации обоих расчетов.

12. Определим удельную работу турбины компрессора:

$$L_{\text{\tiny TK}} = \frac{L_{\text{\tiny K}}}{g_{\text{\tiny F}} \eta_{\text{\tiny M}}} = \frac{< CompSpecificLabour > \cdot 10^6}{< CompTurbineMassRateRel > \cdot < EtaMech >} = < CompTurbineSpecificLabour > \cdot 10^6 \,\text{Дж/kpc}} = < CompTurbineSpecificLabour > \cdot 10^6 \,\text{Qm/kpc}} = < CompTurbineSpecificLabou$$

13. Определим давление газа перед турбиной компрессора:

$$p_{r}^{*} = p_{\kappa}^{*} \sigma_{r} = < CompPOut > \cdot < BurnSigma > = < CompTurbinePIn > M\Pia$$

14. Определим среднюю теплоемкость газа в процессе расширения газа в турбине, принимая показатель адиабаты газа $k_r = \langle CycleCompTurbineKGasShort \rangle$:

15. Определим температуру за турбиной компрессора:

$$T_{\scriptscriptstyle \mathrm{TK}}^* = T_{\scriptscriptstyle \Gamma}^* - \frac{L_{\scriptscriptstyle \mathrm{TK}}}{c_{p_{\scriptscriptstyle \Gamma}}} = < BurnerTOut > - \frac{< CompTurbineSpecificLabour > \cdot 10^6}{< CompTurbineSpecificHeat >} = < CompTurbineTOut > \cdot 10^6$$

- 16. Определим уточненное значение показателя адиабаты газа
 - 16.1. Определим значение средней теплоемкости газа при температуре T_{rk}^* :

$$c_{pr\ cp}(T_{\text{TK}}^*) = \left[\frac{1.25 + 2.2\alpha}{\alpha \cdot 10^5} (T_{\text{TK}}^* + 450) + 0.218\right] \cdot 4.187 \cdot 10^3 =$$

$$= \left[\frac{1.25 + 2.2 \cdot \langle CycleBurnAlphaLong \rangle}{\langle CycleBurnAlphaLong \rangle \cdot 10^5} (\langle CompTurbineTOut \rangle + 450) + 0.218\right] \cdot 4.187 \cdot 10^3 = \langle CompTurbineTOut \rangle + 450) + 0.218$$

16.2. Определим значение средней теплоемкости при температуре T_r^* :

$$c_{p_{\Gamma} \text{ cp}}(T_{\Gamma}^*) = \left[\frac{1.25 + 2.2\alpha}{\alpha \cdot 10^5} (T_{TK}^* + 450) + 0.218\right] \cdot 4.187 \cdot 10^3 =$$

$$\left[\frac{1.25 + 2.2 \cdot < CycleBurnAlphaLong >}{< CycleBurnAlphaLong > \cdot 10^5} (< CompTurbineTOut > +450) + 0.218\right] \cdot 4.187 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 10^3 = < CompTurbineTOut > +450$$

16.3. Новое значение средней теплоемкости в интервале температур от $T_{\text{тк}}^*$ до $T_{\text{г}}^*$:

$$c'_{pr} = \frac{c_{pr \text{ cp}}(T_r^*)(T_r^* - T_0) - c_{pr \text{ cp}}(T_{rK}^*)(T_{rK}^* - T_0)}{T_r^* - T_{rK}^*} =$$

$$=\frac{< CompTurbineTInSpecificHeat> \cdot (< BurnerTOut> - < SpHeatT0>) - < CompTurbineTOutSpecificHeat> \cdot (< BurnerTOut> - < CompTurbineTOut> + < CompTurbineTOu$$

16.4. Новое значение показателя адиабаты:

$$k_{\text{\tiny B}}' = \frac{c_{p\text{\tiny \Gamma}}'}{c_{p\text{\tiny \Gamma}}' - R_{\text{\tiny \Gamma}}} = \frac{< CompTurbineSpecificHeatLong>}{< CompTurbineSpecificHeatLong> - < CycleCompTurbineGasConstant>} = < CycleCompTurbineSpecificHeatLong> - < < CycleCompTurbineSpecificHeatLong>$$

17. Определим погрешность определения показателя адиабаты:

$$\delta = \frac{|k_{\scriptscriptstyle \Gamma}' - k_{\scriptscriptstyle \Gamma}|}{k_{\scriptscriptstyle \Gamma}} \cdot 100\% = \frac{|< CycleCompTurbineKGasLong> - < CycleCompTurbineKGasShort>|}{< CycleCompTurbineKGasShort>} \cdot 100\% = < CompTurbineKGasShort> = < CycleCompTurbineKGasShort> = < CycleCo$$

Погрешность определения показателя адиабаты в пределах допуска.

18. Определим значение адиабатического КПД турбины компрессора, приняв степень понижения давления $\pi_{\text{тк}} = < CycleCompTurbinePiShort >:$

$$\eta_{\text{TK}}^* = \frac{1 - \pi_{\text{TK}}^{\frac{(1 - k_{\Gamma})\eta_{\text{TKP}}^*}{k_{\Gamma}}}}{1 - \pi_{\text{TK}}^{\frac{1 - k_{\Gamma}}{k_{\Gamma}}}} = \frac{1 - \langle CycleCompTurbinePiShort \rangle \frac{(1 - \langle CycleCompTurbineKGasShort \rangle) \cdot \langle EtaCompTurbine}{\langle CycleCompTurbineKGasShort \rangle}}{1 - \langle CycleCompTurbinePiShort \rangle \frac{1 - \langle CycleCompTurbineKGasShort \rangle}{\langle CycleCompTurbineKGasShort \rangle}} = \langle EtaCompTurbinePiShort \rangle \frac{1 - \langle CycleCompTurbineKGasShort \rangle}{\langle CycleCompTurbineKGasShort \rangle}$$

19. Определим давление воздуха за турбиной компрессора:

$$p_{\scriptscriptstyle \mathrm{TK}}^* = p_{\scriptscriptstyle \mathrm{T}}^* \left[1 - \frac{L_{\scriptscriptstyle \mathrm{TK}}}{c_{p_{\scriptscriptstyle \mathrm{F}}} T_{\scriptscriptstyle \mathrm{F}}^* \eta_{\scriptscriptstyle \mathrm{TK}}^*} \right]^{\frac{k_{\scriptscriptstyle \mathrm{F}}}{k_{\scriptscriptstyle \mathrm{F}}-1}} = < CompTurbinePIn > \left[1 - \frac{< CompTurbineSpecificLabour > \cdot 10^6}{< CompTurbineSpecificHeat > \cdot < BurnerTOut > \cdot < \cdot 10^6} \right]$$

20. Определим новую степень понижения давления:

$$\pi_{^{*\prime}}^{*\prime} = \frac{p_{^{r}}^{*}}{p_{^{TK}}^{*}} = \frac{< CompTurbinePIn >}{< CompTurbinePOut >} = < CycleCompTurbinePiLong >$$

21. Определим погрешность определения степени понижения давления:

$$\delta = \frac{|\pi_{\text{\tiny TK}}^{*\prime} - \pi_{\text{\tiny TK}}^{*}|}{\pi_{\text{\tiny TK}}^{*}} \cdot 100\% = \frac{|\langle \textit{CycleCompTurbinePiLong} > - \langle \textit{CycleCompTurbinePiShort} >|}{\langle \textit{CycleCompTurbinePiShort} >} \cdot 100\% = \langle \textit{CompTurbinePiShort} > |$$

Погрешность определения степени понижения давления в пределах допуска

22. Зададим значение приведенной скорости на выходе из выходного устройства:

$$\lambda_{\text{\tiny BbIX}} = < LambdaOut >$$

23. Определим давление торможения на выходе из выходного устройства, задавая показатель адиабаты газа $k_{\scriptscriptstyle \Gamma} = < CycleFreeTurbineKGasShort>$:

24. Определим давление торможения за силовой турбиной:

$$p_{\scriptscriptstyle \rm T}^* = \frac{p_{\scriptscriptstyle \rm BMX}^*}{\sigma_{\scriptscriptstyle \rm BMX}} = \frac{}{} = \ \ {\rm M}\Pi {\rm a}$$

25. Определим степень понижения давления в силовой турбине:

$$\pi_{\text{\tiny T}} = \frac{p_{\text{\tiny TK}}^*}{p_{\text{\tiny T}}^*} = \frac{< CompTurbinePOut>}{< FreeTurbinePOut>} = < FreeTurbinePi>$$

26. Определим адиабатический КПД силовой турбины:

$$\eta_{\scriptscriptstyle \rm T}^* = \frac{1 - \pi_{\scriptscriptstyle \rm T}^{\frac{(1-k_{\scriptscriptstyle \rm F})}{k_{\scriptscriptstyle \rm F}}}}{1 - \pi_{\scriptscriptstyle \rm T}^{\frac{1-k_{\scriptscriptstyle \rm F}}{k_{\scriptscriptstyle \rm F}}}} = \frac{1 - < Free Turbine Pi > \frac{(1 - < Cycle Free Turbine K Gas Short >) < Eta Free Turb Pol >}{< Cycle Free Turbine K Gas Short >}}}{1 - < Free Turbine Pi > \frac{(1 - < Cycle Free Turbine K Gas Short >)}{< Cycle Free Turbine K Gas Short >}} = < Eta Free Turbine Pi > \frac{(1 - < Cycle Free Turbine K Gas Short >)}{< Cycle Free Turbine K Gas Short >}}$$

27. Определим температуру торможения на выходе из силовой турбины:

$$T_{\scriptscriptstyle \rm T}^* = T_{\scriptscriptstyle \rm TK}^* \left\{ 1 - \left[1 - \left(\frac{p_{\scriptscriptstyle \rm TK}^*}{p_{\scriptscriptstyle \rm T}^*} \right)^{\frac{k_{\scriptscriptstyle \rm T}}{k_{\scriptscriptstyle \rm T}-1}} \right] \eta_{\scriptscriptstyle \rm T}^* \right\} = < CompTurbineTOut > \left\{ 1 - \left[1 - \left(\frac{< CompTurbinePOut >}{< FreeTurbinePOut >} \right)^{\frac{< CycleFreeTurbinePOut >}{< CycleFreeTurbinePOut >}} \right)^{\frac{< CycleFreeTurbinePOut >}{< CycleFreeTurbinePOut >}} \right\}$$

- Определим уточненное значение показателя адиабаты газа в процессе расширения в силовой турбине:
 - 28.1. Определим значение средней теплоемкости газа при температуре $T_{r\kappa}^*$:

$$\begin{split} c_{prcp}(T_{\text{\tiny TK}}^*) &= \left[\frac{1.25 + 2.2\alpha}{\alpha \cdot 10^5} (T_{\text{\tiny TK}}^* + 450) + 0.218\right] \cdot 4.187 \cdot 10^3 = \\ &= \left[\frac{1.25 + 2.2 \cdot < CycleBurnAlphaLong >}{< CycleBurnAlphaLong > \cdot 10^5} (< CompTurbineTOut > +450) + 0.218\right] \cdot 4.187 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 4.187 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 4.187 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 4.187 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 4.187 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 4.187 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 4.187 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 4.187 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 4.187 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 4.187 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 4.187 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 4.187 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 4.187 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 4.187 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 4.187 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 4.187 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 4.187 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 4.187 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 4.187 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 4.187 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 4.187 \cdot 10^3 = < CompTurbineTOut > +450) + 0.218 \cdot 4.187 \cdot 10^3 = < CompTurbineTOut > +450 \cdot 10^3 = < CompTurbineTOut > +45$$

28.2. Определим значение средней теплоемкости при температуре T_x^* :

$$c_{prep}(T_{_{\rm T}}^*) = \left[\frac{1.25 + 2.2\alpha}{\alpha \cdot 10^5}(T_{_{\rm TK}}^* + 450) + 0.218\right] \cdot 4.187 \cdot 10^3 = \\ \left[\frac{1.25 + 2.2 \cdot < CycleBurnAlphaLong >}{< CycleBurnAlphaLong > \cdot 10^5}(< CompTurbineTOut > +450) + 0.218\right] \cdot 4.187 \cdot 10^3 = < FreeTurbineTOut > +450) + 0.218$$

28.3. Значение средней теплоемкости в интервале температур от $T_{\text{\tiny T}}^*$ до $T_{\text{\tiny TK}}^*$:

$$c_{pr} = \frac{c_{prcp}(T_{\text{\tiny TK}}^*)(T_{\text{\tiny TK}}^* - T_0) - c_{prcp}(T_{\text{\tiny T}}^*)(T_{\text{\tiny T}}^* - T_0)}{T_{\text{\tiny TC}}^* - T_{\text{\tiny T}}^*} =$$

 $\frac{< CompTurbineTOutSpecificHeat > \cdot (< CompTurbineTOut > - < SpHeatT0 >) - < FreeTurbineTOutSpecificHeat > \cdot (< CompTurbineTOut > - < FreeTurbineTOut >) - < FreeTurbineTOut > - < FreeTurbineTOut >$

28.4. Новое значение показателя адиабаты:

$$k_{\text{\tiny B}}' = \frac{c_{p\text{\tiny \Gamma}}}{c_{p\text{\tiny \Gamma}} - R_{\text{\tiny \Gamma}}} = \frac{< CompTurbineSpecificHeatLong >}{< CompTurbineSpecificHeatLong > - < CycleCompTurbineGasConstant >} = < CycleFree CycleCompTurbineGasConstant > < CycleCompTurb$$

29. Определим погрешность определения показателя адиабаты газа в процессе расширения в силовой турбине:

$$\delta = \frac{|k_{\scriptscriptstyle \Gamma}' - k_{\scriptscriptstyle \Gamma}|}{k_{\scriptscriptstyle \Gamma}} \cdot 100\% = \frac{| - < CycleFreeTurbineKGasShort>|}{} \cdot 100\% = < FreeTurbineKGasShort> = < CycleFreeTurbineKGasShort> = < CycleFree$$

Погрешность определения показателя адиабаты в пределах допуска

30. Определим значение теплоемкости газа в свободной турбине:

$$c_{pr} = \frac{k_{r}}{k_{r}-1} R_{r} = \frac{}{-1} \cdot =$$

31. Определим удельную работу силовой турбины:

$$L_{\text{\tiny T}} = c_{pr} \cdot (T_{\text{\tiny TK}}^* - T_{\text{\tiny T}}^*) = < Free Turbine Specific Heat > (< CompTurbine TOut > - < Free Turbine TOut >) = < Free Turbine Tout > - < Free Turbine Tout >) = < Free Turbine Tout > - < Free Turbine Tout >) = < Free Turbine Tout > - < Free Turbine Tout >) = < Free Turbine Tout > - < Free Tur$$

32. Определим удельную мощность ГТД:

$$N_{\rm eyg} = L_{\rm T} g_{\rm r} \eta_{\rm M} \eta_{\rm p} = \cdot 10^6 \cdot = \cdot 10^6 \cdot = \cdot 10^6 \cdot = \cdot 10^6 \cdot = \cdot 10^6 \cdot = \cdot 10^6 \cdot = \cdot 10^6 \cdot = \cdot 10^6 \cdot = \cdot 10^6 \cdot = \cdot 10^6 \cdot$$

33. Определим экономичность ГТД:

$$C_e = \frac{3600}{N_{\rm eyg}} g_{\rm t} \left(1 - g_{\rm oxs} - g_{\rm yt}\right) = \frac{3600}{< Engine Specific Power > \cdot 10^6} \cdot < Fuel Mass Rate Rel > \cdot \left(1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rate Rel > \cdot (1 - < Cool Mass Rat$$

34. Определим КПД ГТД:

$$\eta_e = \frac{3600}{C_e Q_{\scriptscriptstyle \rm H}^{\rm p}} = \frac{3600}{< EngineFuelMassRateSpecific > \cdot 10^{-3} \cdot < LowerQ > \cdot 10^6} = < EngineEta > \cdot 10^{-3} \cdot < LowerQ > \cdot 10^{-3} \cdot$$

35. Определим расход воздуха:

$$G_{\text{\tiny B}} = \frac{N_e}{N_{\text{\tiny evm}}} = \frac{< CyclePower > \cdot 10^3}{< EngineSpecificPower > \cdot 10^6} = < EngineMassRate > \text{kg/c}$$

3 Поступенчатый расчет турбины

3.1 Расчет первой ступени

Исходные данные для расчета перовй ступени:

Величина	Обозначение	Размерность	Значение
Реактивность ступени	ρ	-	< Reactivity >
Радиальный зазор	δ_r	-	< DeltaR >
Относительная длина лопатки статора	$\left(\frac{l}{D}\right)_1$	-	< StatorLRel >
Удлинение лопатки статора	$\left(\frac{l}{b_a}\right)_{CA}$	-	$< Stator Elongation >$
Удлинение лопатки ротора	$\left(\frac{l}{b_a}\right)_{PK}$	-	< Rotor Elongation >
Относительная ширина зазора между лопатками ротора и лопатками статора	$\left(\frac{\delta}{b_a}\right)_{\mathrm{CA}}$	-	< Stator Delta Rel >
Угол раскрытия на втулке	$\gamma_{ ext{\tiny BT}}$	0	< GammaIn >
Угол раскрытия на периферии	$\gamma_{ m nep}$	0	< GammaOut >
Теплоперепад по статическим параметрам	$H_{\scriptscriptstyle m T}$	Дж/кг	< Ht >

1. Определим теплоперепад на сопловом аппарате:

$$H_{\rm c} = (1 - \rho) H_{\rm f} = (1 - \langle Reactivity \rangle) \cdot \langle Ht \rangle \cdot 10^6 = \langle Hc \rangle \cdot 10^6$$
Дж/кг

- 2. Примем коэффициент адиабаты равным: $k_{\rm r} = < St1KGasShort >$
- 3. Теплоемкость газа при данном значении коэффициента адиабаты:

$$c_{p_{\Gamma}} = \frac{k_{\Gamma}R_{\Gamma}}{k_{\Gamma}-1} = \frac{\cdot}{-1} = \ \ \ \ \bot \times /(\kappa \Gamma \cdot K)$$

4. Определим действительную скорость истечения из СА:

$$c_1 = \phi \sqrt{2H_c} = < Phi > \cdot \sqrt{2 < Hc > \cdot 10^6} = < C1 > \text{ m/c}$$

5. Определим температуру на выходе из СА:

$$T_1 = T_0^* - \frac{c_1^2}{2c_{\rm pr}} = < St1GasTemp > - \frac{< C1>^2}{2\cdot < St1SpecificHeat>} = < T1> \ {\rm K}$$

6. Определим температуру конца адиабатного расширения:

$$T_1' = T_0^* - \frac{H_c}{c_{p\Gamma}} = -\frac{ \cdot 10^6}{} = \text{ K}$$

7. Определим давление на выходе из СА:

$$p_1 = p_0^* \left(\frac{T_1'}{T_0^*}\right)^{\frac{k_\Gamma}{k_\Gamma - 1}} = \langle St1PIn \rangle \cdot \left(\frac{\langle T1Prime \rangle}{\langle St1GasTemp \rangle}\right)^{\frac{\langle St1KGasShort \rangle}{\langle St1KGasShort \rangle - 1}} = \langle P1 \rangle \text{ M}\Pi \text{a}$$

8. Определим плотность газа на выходе из СА:

$$\rho_1 = \frac{p_1}{R_{\rm r} T_1} = \frac{< P1 > \cdot 10^6}{< St1 Gas Constant > \cdot < T1 >} = < Rho1 > \ {\rm kg/m}^3$$

9. Зададим угол на выходе из СА:

$$\alpha_1 = \langle Alpha1 \rangle^{\circ}$$

10. Определим осевую скорость на выходе из СА:

$$c_{1a} = c_1 \cdot \sin \alpha_1 = \langle C1 \rangle \cdot \sin \langle Alpha1 \rangle^{\circ} = \langle C1a \rangle \text{ m/c}$$

11. Определим площадь на выходе из СА:

$$A_1 = \frac{G}{c_{1a}\rho_1} = \frac{< G>}{< C1a>\cdot < Rho1>} = < A1> \text{ m}^2$$

12. Определим средний диаметр турбины на выходе из СА:

$$D_1 = \sqrt{\frac{A_1}{\pi \left(\frac{l}{D}\right)_1}} = \sqrt{\frac{< A1>}{\pi \cdot < StatorLRel>}} = < StatorDOut> \text{ M}$$

13. Определим окружную скорость на среднем диаметре на входе в РК:

$$u_1 = \frac{\pi D_1 n}{60} = \frac{\pi \cdot \langle RotorDIn \rangle \cdot \langle RotationSpeed \rangle}{60} = \langle U1 \rangle \text{ m/c}$$

14. Определим относительную скорость на входе в РК:

$$w_1 = \sqrt{c_1^2 + u_1^2 - 2c_1u_1\cos\alpha_1} = \sqrt{< C1>^2 + < U1>^2 - 2\cdot < C1> \cdot < U1> \cdot \cos < Alpha1>^\circ} = < W1> \text{ m/c}$$

15. Определим теплоперепад на РК:

$$H_{\text{\tiny J}} = H_{\text{\tiny T}} \rho \frac{T_1}{T_1'} = < Ht > \cdot 10^6 \cdot < Reactivity > \cdot \frac{< T1>}{< T1Prime>} = < Hl > \cdot 10^6 \ \text{Дж/кг}$$

16. Определим осевую ширину рабочего колеса:

$$b_{\text{a pK}} = \left(\frac{l}{b_a}\right)_{\text{PK}} \frac{1}{1 - \frac{\tan \gamma_{\text{H}} + \tan \gamma_{\text{B}}}{\left(\frac{l}{b_a}\right)_{\text{PK}}}} D_1 \left(\frac{l}{D}\right)_1 = \frac{1}{1 - \frac{\tan < GammaOut > + \tan < GammaIn >}{< RotorElongation >}} < StatorDC > \frac{1}{1 - \frac{\tan < GammaOut > + \tan < GammaIn >}{< RotorElongation >}} < StatorDC > \frac{1}{1 - \frac{\tan < GammaOut > + \tan < GammaIn >}{< RotorElongation >}} < StatorDC > \frac{1}{1 - \frac{\tan < GammaOut > + \tan < GammaIn >}{< RotorElongation >}} < StatorDC > \frac{1}{1 - \frac{\tan < GammaOut > + \tan < GammaIn >}{< RotorElongation >}} < StatorDC > \frac{1}{1 - \frac{\tan < GammaOut > + \tan < GammaOut > + \tan < GammaOut >}{< RotorElongation >}} < StatorDC > \frac{1}{1 - \frac{\tan < GammaOut > + \tan < GammaOut >}{< RotorElongation >}} < StatorDC > \frac{1}{1 - \frac{\tan < GammaOut >}{< RotorElongation >}} < StatorDC > \frac{1}{1 - \frac{\tan < GammaOut >}{< RotorElongation >}} < StatorDC > \frac{1}{1 - \frac{\tan < GammaOut >}{< RotorElongation >}} < StatorDC > \frac{1}{1 - \frac{\tan < GammaOut >}{< RotorElongation >}} < StatorDC > \frac{1}{1 - \frac{\tan < GammaOut >}{< RotorElongation >}} < StatorDC > \frac{1}{1 - \frac{\tan < GammaOut >}{< RotorElongation >}} < StatorDC > \frac{1}{1 - \frac{\tan < GammaOut >}{< RotorElongation >}} < StatorDC > \frac{1}{1 - \frac{\tan < GammaOut >}{< RotorElongation >}} < StatorDC > \frac{1}{1 - \frac{\tan < GammaOut >}{< RotorElongation >}} < StatorDC > \frac{1}{1 - \frac{\tan < GammaOut >}{< RotorElongation >}} < StatorDC > \frac{1}{1 - \frac{\tan < GammaOut >}{< RotorElongation >}} < StatorDC > \frac{1}{1 - \frac{\tan < GammaOut >}{< RotorElongation >}} < StatorDC > \frac{1}{1 - \frac{\tan < GammaOut >}{< RotorElongation >}} < StatorDC > \frac{1}{1 - \frac{\tan < GammaOut >}{< RotorElongation >}} < StatorDC > \frac{1}{1 - \frac{\tan < GammaOut >}{< RotorElongation >}} < StatorDC > \frac{1}{1 - \frac{\tan < GammaOut >}{< RotorElongation >}} < StatorDC > \frac{1}{1 - \frac{\tan < GammaOut >}{< RotorElongation >}} < StatorDC > \frac{1}{1 - \frac{\tan < GammaOut >}{< RotorElongation >}} < StatorDC > \frac{1}{1 - \frac{\tan < GammaOut >}{< RotorElongation >}} < StatorDC > \frac{1}{1 - \frac{\tan < GammaOut >}{< RotorElongation >}} < StatorDC > \frac{1}{1 - \frac{\tan < GammaOut >}{< RotorElongation >}} < StatorDC > \frac{1}{1 - \frac{\tan < GammaOut >}{< RotorElongati$$

17. Определим средний диаметра на выходе из РК:

$$D_2 = D_1 + \frac{\tan \gamma_{\scriptscriptstyle \rm B} - \tan \gamma_{\scriptscriptstyle \rm II}}{2} b_{\rm a~pk} = < StatorDOut > + \frac{\tan < GammaIn >^{\circ} - \tan < GammaOut >^{\circ}}{2} \cdot < BaRK > = < Robert StatorDOut > + Contract Stator$$

18. Определим длину лопатки на выходе из РК:

$$l_2 = D_1 \left(\frac{l}{D}\right)_1 + \frac{\tan\gamma_{\text{\tiny B}} + \tan\gamma_{\text{\tiny B}}}{2} b_{\text{\tiny a pK}} = \cdot + \frac{\tan< GammaIn>^\circ + \tan< GammaOnder}{2} b_{\text{\tiny B pK}} = \cdot + \frac{\tan< GammaIn>^\circ + \tan< GammaOnder}{2} b_{\text{\tiny B pK}} = \cdot + \frac{\tan\alpha_{\text{\tiny B pK}} + \tan\alpha_{\text{\tiny B pK}} + \tan\alpha_{\text{$$

19. Определим относительную длину лопаток на выходе из РК:

$$\left(\frac{l}{D}\right)_2 = \frac{l_2}{D_2} = \frac{\langle L2 \rangle}{\langle Rotor DOut \rangle} = \langle Rotor LRel \rangle$$

20. Определим площадь на выходе из РК:

$$A_2 = \pi D_2 l_2 = \pi \cdot \langle RotorDOut \rangle \cdot \langle L2 \rangle = \langle A2 \rangle \text{ m}^2$$

21. Определим окружную скорость на среднем диаметре на выходе из РК:

$$u_2 = \frac{\pi D_2 n}{60} = \frac{\pi \cdot < Rotor DOut > \cdot < Rotation Speed >}{60} = < U2 > \text{ m/c}$$

22. Определим относительную скорость истечения газа из РК:

$$w_2 = \psi \sqrt{w_1^2 + 2H_{\mathrm{M}} + (u_2^2 - u_1^2)} = < Psi > \cdot \sqrt{< W1 >^2 + 2 \cdot < Hl > \cdot 10^6 + \left(< U2 >^2 - < U1 >^2\right)} = < W2 > \mathrm{M/c}$$

23. Определим статическую температуру на выходе из РК:

$$T_2 = T_1 + \frac{\left(w_1^2 - w_2^2\right) + \left(u_2^2 - u_1^2\right)}{2c_{v\Gamma}} = < T1 > + \frac{\left(< W1>^2 - < W2>^2\right) + \left(< U2>^2 - < U1>^2\right)}{2\cdot < St1SpecificHeat>} = < T2 > \text{ K}$$

24. Определим статическую температуру при адиабатическом процессе в РК:

$$T_2' = T_1 - \frac{H_{^{_{\scriptstyle\Pi}}}}{c_{^{_{\scriptstyle\Pi}\Gamma}}} = < T1 > - \frac{< Hl > \cdot 10^6}{\cdot < St1SpecificHeat >} = < T2Prime > \text{ K}$$

25. Определим давление на выходе из РК:

$$p_2 = p_1 \left(\frac{T_2'}{T_1}\right)^{\frac{k_\Gamma}{k_\Gamma - 1}} = < P1 > \left(\frac{< T2Prime >}{< T1>}\right)^{\frac{< S11KGasShort>}{< St1KGasShort> - 1}} = < P2 > \text{M}\Pi\text{a}$$

26. Определим плотность газа на выходе из РК:

$$\rho_2 = \frac{p_2}{RT_2} = \frac{\langle P2 \rangle \cdot 10^6}{\langle St1GasConstant \rangle \cdot \langle T2 \rangle} = \langle Rho2 \rangle$$

27. Определим осевую составляющую абсолютной скорости на выходе из РК:

$$c_{2a} = \frac{G}{A_2 \rho_2} = \frac{\langle G \rangle}{\langle A2 \rangle \cdot \langle Rho2 \rangle} = \langle C2a \rangle$$

28. Определим угол в относительном движении на выходе из РК:

$$\beta_2 = \arcsin \frac{c_{2a}}{w_2} = \arcsin \frac{\langle C2a \rangle}{\langle W2 \rangle} = \langle Beta2 \rangle^{\circ}$$

29. Определим угол выхода из РК в абсолютном движении

$$\alpha_2 = \arctan \frac{w_2 \cos \beta_2 - u_2}{c_{2a}} = \arctan \frac{\langle W2 \rangle \cdot \cos \langle Beta2 \rangle^{\circ} - \langle U2 \rangle}{\langle C2a \rangle} = \langle Alpha2 \rangle^{\circ}$$

30. Определим окружную составляющую скорости на выходе из РК:

$$c_{2u} = w_2 \cos \beta_2 - u_2 = \langle W2 \rangle \cdot \cos \langle Beta2 \rangle^{\circ} - \langle U2 \rangle = \langle C2u \rangle \text{ m/c}$$

31. Определим скорость потока на выходе из РК:

$$c_2 = \sqrt{c_{2u}^2 + c_{2a}^2} = \sqrt{\langle C2u \rangle^2 + \langle C2a \rangle^2} = \langle C2 \rangle \text{ M/c}$$

32. Определим работу на окружности колеса:

$$L_u = c_{1u}u_1 + c_{2u}u_2 = \langle C1u \rangle \cdot \langle U1 \rangle + \langle C2u \rangle \cdot \langle U2 \rangle = \langle Lu \rangle \cdot 10^6$$
 Дж/кг

33. Определим КПД на окружности колеса:

$$\eta_u = \frac{L_u}{H_t} = \frac{\langle Lu \rangle}{\langle Ht \rangle} = \langle EtaU \rangle$$

34. Определим удельные потери на статоре:

$$h_c = \left(\frac{1}{\phi^2} - 1\right) \frac{c_1^2}{2} = \left(\frac{1}{\langle Phi \rangle^2} - 1\right) \frac{\langle C1 \rangle^2}{2} = \langle hs \rangle \cdot 10^3 \text{ Дж/кг}$$

35. Определим удельные потери на роторе:

$$h_{\rm p} = \left(\frac{1}{\psi^2} - 1\right) \frac{w_2^2}{2} = \left(\frac{1}{\langle Psi \rangle^2} - 1\right) \frac{\langle W2 \rangle^2}{2} = \langle hr \rangle \cdot 10^3 \; \text{Дж/кг}$$

36. Определим удельные потери с выходной скоростью:

$$h_{ ext{вых}} = rac{c_2^2}{2} = rac{< C2>^2}{2} = < hOut > \cdot 10^3 \; Дж/кг$$

37. Определим удельные потери в радиальном зазоре:

$$h_3 = 1.37 \cdot (1 + 1.6\rho) \left[1 + \left(\frac{l}{D} \right)_1 \right] \frac{\delta_r}{l_2} L_u =$$

$$=1.37\cdot \left(1+1.6\cdot < Reactivity>\right)\left[1+ < RotorLRel>\right] \frac{< DeltaR>}{< L2>} \cdot < Lu> = < hRadial> \cdot 10^3~Дж/кг$$

38. Определим удельные потери на вентиляцию:

$$h_{\text{вент}} = \frac{1.07 D_2^2 \left(\frac{u_2}{100}\right)^3 \rho}{G} = \frac{1.07 \cdot < Rotor DOut >^2 \left(\frac{< U2>}{100}\right)^3 \cdot < Reactivity >}{< G >} = < hVent > \cdot 10^3 \; \text{Дж/кг}$$

39. Определим температуру торможения за РК:

$$T_2^* = T_2 + \frac{h_3 + h_{\text{BeHT}} + h_{\text{BbIX}}}{c_{p_{\Gamma}}} = < T2 > + \frac{< hRadial > \cdot 10^3 + < hVent > \cdot 10^3 + < hOut > \cdot 10^3}{< St1SpecificHeat >} = < T2Stag > \text{ K}$$

40. Определим давление торможения за РК:

$$p_2^* = p_2 \left(\frac{T_2^*}{T_2}\right)^{\frac{k_r}{k_r-1}} = < P2 > \cdot \left(\frac{< T2Stag>}{< T2>}\right)^{\frac{< St1KGasShort>}{< St1KGasShort>-1}} = < P2Stag> \text{ M}\Pi\text{a}$$

41. Определим мощностной КПД ступени:

$$\eta_{\text{т мощ}} = \eta_u - \frac{h_{\text{3}} + h_{\text{вент}}}{H_{\text{т}}} = < EtaU > - \frac{< hRadial > \cdot 10^3 + < hVent > \cdot 10^3}{< Ht > \cdot 10^6} = < EtaPower >$$

42. Определим работу ступени:

$$L_{\rm t} = H_{\rm t} \eta_{\rm t} = < Ht > \cdot 10^6 \cdot < EtaPower > = < Lt > \cdot 10^6$$
 Дж/кг

43. Определим теплоперепад по параметрам торможения:

$$H_{\scriptscriptstyle \rm T}^* = c_{p{\scriptscriptstyle \Gamma}} T_0^* \left[1 - \left(\frac{p_2^*}{p_0^*} \right)^{\frac{k_{\scriptscriptstyle \Gamma} - 1}{k_{\scriptscriptstyle \Gamma}}} \right] = < St1SpecificHeat > \cdot < St1GasTemp > \left[1 - \left(\frac{< P2Stag >}{< St1KGasShort >} \right)^{\frac{< St1KGasShort > - 1}{< St1KGasShort >}} \right] = < St1SpecificHeat > \cdot < St1GasTemp > \left[1 - \left(\frac{< P2Stag >}{< St1RGasShort >} \right)^{\frac{< St1KGasShort > - 1}{< St1KGasShort >}} \right] = < St1SpecificHeat > \cdot < St1GasTemp > \left[1 - \left(\frac{< P2Stag >}{< St1RGasShort >} \right)^{\frac{< St1KGasShort > - 1}{< St1RGasShort >}} \right] = < St1SpecificHeat > \cdot < St1GasTemp > \left[1 - \left(\frac{< P2Stag >}{< St1RGasShort >} \right)^{\frac{< St1KGasShort > - 1}{< St1RGasShort >}} \right] = < St1SpecificHeat > \cdot < St1GasTemp > \left[1 - \left(\frac{< P2Stag >}{< St1RGasShort >} \right)^{\frac{< St1KGasShort > - 1}{< St1RGasShort >}} \right] = < St1SpecificHeat > \cdot < St1GasTemp > \left[1 - \left(\frac{< P2Stag >}{< St1RGasShort >} \right)^{\frac{< St1KGasShort > - 1}{< St1RGasShort >}} \right]$$

44. Определим КПД ступени по параметрам торможения:

$$\eta_{\rm T}^* = \frac{L_{\rm T}}{H_{\rm T}^*} = \frac{< Lt > \cdot 10^6}{< HtStag > \cdot 10^6} = < EtaT >$$

- 45. Определим уточненное значение показателя адиабаты газа в процессе расширения в ступени:
 - 45.1. Определим значение средней теплоемкости газа при температуре T_0^* :

$$\begin{split} c_{pr\ cp}(T_0^*) &= \left[\frac{1.25 + 2.2\alpha}{\alpha \cdot 10^5} (T_0^* + 450) + 0.218\right] \cdot 4.187 \cdot 10^3 = \\ &= \left[\frac{1.25 + 2.2 \cdot < CycleBurnAlphaLong >}{< CycleBurnAlphaLong > \cdot 10^5} (< St1GasTemp > +450) + 0.218\right] \cdot 4.187 \cdot 10^3 = < St1TInSpecificHeart = 1.25 + 2.2 \cdot < CycleBurnAlphaLong > \cdot 10^5 + 2.2 \cdot < Cy$$

45.2. Определим значение средней теплоемкости при температуре T_2

$$\begin{split} c_{pr\ cp}(T_2) &= \left[\frac{1.25 + 2.2\alpha}{\alpha \cdot 10^5}(T_2 + 450) + 0.218\right] \cdot 4.187 \cdot 10^3 = \\ &\left[\frac{1.25 + 2.2 \cdot < CycleBurnAlphaLong>}{< CycleBurnAlphaLong> \cdot 10^5} (< T2> + 450) + 0.218\right] \cdot 4.187 \cdot 10^3 = < St1TOutSpecificHeat> Дж/(к...) + 0.218 +$$

45.3. Новое значение средней теплоемкости в интервале температур от T_2 до T_0^* :

$$c'_{pr} = \frac{c_{pr \ cp}(T_2)(T_2 - T_0) - c_{pr \ cp}(T_0^*)(T_0^* - T_0)}{T_2 - T_0^*} = \frac{\langle St1TOutSpecificHeat \rangle \cdot (\langle T2 \rangle - \langle SpHeatT0 \rangle) - \langle St1TInSpecificHeat \rangle \cdot (\langle St1GasTemp \rangle - \langle St1GasTemp \rangle)}{\langle St1GasTemp \rangle} = \frac{\langle St1TOutSpecificHeat \rangle \cdot (\langle St1GasTemp \rangle) - \langle St1GasTemp \rangle}{\langle St1GasTemp \rangle} = \frac{\langle St1TOutSpecificHeat \rangle \cdot (\langle St1GasTemp \rangle) - \langle St1GasTemp \rangle}{\langle St1GasTemp \rangle} = \frac{\langle St1TOutSpecificHeat \rangle \cdot (\langle St1GasTemp \rangle) - \langle St1GasTemp \rangle}{\langle St1GasTemp \rangle} = \frac{\langle St1TOutSpecificHeat \rangle \cdot (\langle St1GasTemp \rangle) - \langle St1GasTemp \rangle}{\langle St1GasTemp \rangle} = \frac{\langle St1TOutSpecificHeat \rangle \cdot (\langle St1GasTemp \rangle) - \langle St1GasTemp \rangle}{\langle St1GasTemp \rangle} = \frac{\langle St1TOutSpecificHeat \rangle \cdot (\langle St1GasTemp \rangle) - \langle St1GasTemp \rangle}{\langle St1GasTemp \rangle} = \frac{\langle St1TOutSpecificHeat \rangle \cdot (\langle St1GasTemp \rangle) - \langle St1GasTemp \rangle}{\langle St1GasTemp \rangle} = \frac{\langle St1TOutSpecificHeat \rangle \cdot (\langle St1GasTemp \rangle) - \langle St1GasTemp \rangle}{\langle St1GasTemp \rangle} = \frac{\langle St1GasTemp \rangle}{\langle St$$

45.4. Новое значение показателя адиабаты:

$$k_{\text{\tiny B}}' = \frac{c_{p\Gamma}'}{c_{n\Gamma}' - R_{\Gamma}} = \frac{}{ - } =$$

46. Определим погрешность определения показателя адиабаты газа в процессе расширения в ступени:

$$\delta = \frac{|k_{\scriptscriptstyle \Gamma}' - k_{\scriptscriptstyle \Gamma}|}{k_{\scriptscriptstyle \Gamma}} \cdot 100\% = \frac{|< St1KGasLong> - < St1KGasShort>|}{< St1KGasShort>} \cdot 100\% = < St1KCalcError> \% < 5\% + 100\% = < St1KCalcError> \% < 100\% = < St1KCalcError> % < 100\%$$

Погрешность определения показателя адиабаты в пределах допуска.

3.2 Расчет второй ступени

Исходные данные для расчета перовй ступени:

Величина	Обозначение	Размерность	Значение
Реактивность ступени	ρ	-	< St2Reactivity >
Радиальный зазор	δ_r	-	< St2DeltaR >
Средний диеметр на входе в РК	D_1	M	< St2RotorDIn >
Средний диаметр на выходе из РК	D_2	M	< St2RotorDOut >
Длина лопатки на входе в РК	l_1	M	< St2L1 >
Длина лопатки на выходе из РК	l_2	M	< St2L2 >
Статическое давление на выходе из ступени	p_2	МПа	< St2P2 >

1. Примем значение показателя адиабаты:

$$k_{\scriptscriptstyle \Gamma} = < St2KGasShort >$$

2. Теплоемкость газа при данном значении коэффициента адиабаты:

$$c_{p_{\Gamma}} = \frac{k_{\Gamma}R_{\Gamma}}{k_{\Gamma}-1} = \frac{< St2KGasShort > \cdot < St2GasConstant >}{< St2KGasShort > -1} = < St2SpecificHeat > \ \ \bot \times /(\kappa \Gamma \cdot K)$$

3. Определим давление торможения на входе вступень по значению статического давления на выходе из предыдущей ступени:

$$p_0^* = p_0 \left(1 + \frac{c_0^2}{2c_p T_0} \right)^{\frac{k_r}{k_r - 1}} = < P2 > \left(1 + \frac{< C2 >^2}{2 \cdot < St2SpecificHeat > \cdot < T2 >} \right)^{\frac{< St2KGasShort>}{< St2KGasShort> - 1}} = < St2PIn >$$

4. Определим теплоперепад на ступени:

$$H_t = c_{pr} T_0^* \left[1 - \left(\frac{p_2}{p_0^*} \right)^{\frac{k_r - 1}{k_r}} \right] = \langle St2SpecificHeat \rangle \langle St2GasTemp \rangle \left[1 - \left(\frac{\langle St2P2 \rangle}{\langle St2PIn \rangle} \right)^{\frac{\langle St2KGasShort \rangle - 1}{\langle St2RGasShort \rangle}} \right] = \langle St2SpecificHeat \rangle \langle St2GasTemp \rangle \left[1 - \left(\frac{\langle St2P2 \rangle}{\langle St2PIn \rangle} \right)^{\frac{\langle St2KGasShort \rangle - 1}{\langle St2RGasShort \rangle}} \right] = \langle St2SpecificHeat \rangle \langle St2GasTemp \rangle \left[1 - \left(\frac{\langle St2P2 \rangle}{\langle St2RGasShort \rangle} \right)^{\frac{\langle St2KGasShort \rangle - 1}{\langle St2RGasShort \rangle}} \right] = \langle St2GasTemp \rangle \left[1 - \left(\frac{\langle St2P2 \rangle}{\langle St2RGasShort \rangle} \right)^{\frac{\langle St2KGasShort \rangle - 1}{\langle St2RGasShort \rangle}} \right] = \langle St2GasTemp \rangle \left[1 - \left(\frac{\langle St2P2 \rangle}{\langle St2RGasShort \rangle} \right)^{\frac{\langle St2KGasShort \rangle - 1}{\langle St2RGasShort \rangle}} \right] = \langle St2GasTemp \rangle \left[1 - \left(\frac{\langle St2P2 \rangle}{\langle St2RGasShort \rangle} \right)^{\frac{\langle St2KGasShort \rangle - 1}{\langle St2RGasShort \rangle}} \right] = \langle St2GasTemp \rangle \left[1 - \left(\frac{\langle St2P2 \rangle}{\langle St2RGasShort \rangle} \right)^{\frac{\langle St2KGasShort \rangle - 1}{\langle St2RGasShort \rangle}} \right]$$

5. Определим теплоперепад на сопловом аппарате:

$$H_{\rm c} = (1-\rho)\,H_{\rm T} = (1- < St2Reactivity>) \cdot < St2Ht > \cdot 10^6 = < St2Hc > \cdot 10^6$$
 Дж/кг

6. Определим скорость действительного истечения из СА:

$$c_1 = \phi \sqrt{2H_c} = < St2Phi > \cdot \sqrt{2 < St2Hc} > \cdot 10^6 = < St2C1 > \text{ m/c}$$

7. Определим температуру на выходе из СА:

$$T_1 = T_0^* - \frac{c_1^2}{2c_{pr}} = < St2GasTemp > -\frac{< St2C1 >^2}{2\cdot < St2SpecificHeat >} = < St2T1 > \text{ K}$$

8. Определим температуру конца адиабатного расширения:

$$T_1' = T_0^* - \frac{H_c}{c_{pr}} = -\frac{ \cdot 10^6}{} = \text{ K}$$

9. Определим давление на выходе из СА:

$$p_1 = p_0^* \left(\frac{T_1'}{T_0^*}\right)^{\frac{k_r}{k_r-1}} = \langle St2PIn \rangle \cdot \left(\frac{\langle St2T1Prime \rangle}{\langle St2GasTemp \rangle}\right)^{\frac{\langle St2KGasShort \rangle}{\langle St2KGasShort \rangle-1}} = \langle St2P1 \rangle \text{ M}\Pi \text{a}$$

10. Определим плотность газа на выходе из СА:

$$\rho_1 = \frac{p_1}{R_{\rm \Gamma} T_1} = \frac{< St2P1 > \cdot 10^6}{< St2GasConstant > \cdot < St2T1 >} = < St2Rho1 > \ {\rm kg/m}^3$$

11. Определим площадь входа в РК:

$$A_1 = \pi D_1 l_1 = \pi \cdot \langle St2RotorDIn \rangle \cdot \langle St2L1 \rangle = \langle St2A1 \rangle \text{ m}^2$$

12. Определим осевую составляющую абсолютной скорости на входе в РК:

$$c_{1a} = \frac{G}{\rho_1 A_1} = \frac{\langle St2G \rangle}{\langle St2Rho1 \rangle \cdot \langle St2A1 \rangle} = \langle St2C1a \rangle$$

13. Определим угол на выходе из СА:

$$\alpha 1 = \arcsin \frac{c1_a}{c1} = \arcsin \frac{\langle St2C1a \rangle}{\langle St2C1 \rangle} = \langle St2Alpha1 \rangle^{\circ}$$

14. Определим окружную скорость на среднем диаметре на входе в РК:

$$u_1 = \frac{\pi D_1 n}{60} = \frac{\pi \cdot < St2RotorDIn > \cdot < RotationSpeed >}{60} = < St2U1 > \text{ m/c}$$

15. Определим относительную скорость на входе в РК:

$$w_1 = \sqrt{c_1^2 + u_1^2 - 2c_1u_1\cos\alpha_1} = \sqrt{\langle St2C1 \rangle^2 + \langle St2U1 \rangle^2 - 2\cdot \langle St2C1 \rangle \cdot \langle St2U1 \rangle \cdot \cos\langle St2Alpha1 \rangle^\circ} = \langle St2U1 \rangle \cdot \langle St2U1$$

16. Определим теплоперепад на РК:

$$H_{\scriptscriptstyle \rm II} = H_{\scriptscriptstyle \rm I} \rho \frac{T_1}{T_1'} = < St2Ht > \cdot 10^6 \cdot < St2Reactivity > \cdot \frac{< St2T1 >}{< St2T1Prime >} = < St2Hl > \cdot 10^6~\rm Дж/кг$$

17. Определим площадь на выходе из РК:

$$A_2 = \pi D_2 l_2 = \pi \cdot \langle St2RotorDOut \rangle \cdot \langle St2L2 \rangle = \langle St2A2 \rangle \text{ M}^2$$

18. Определим окружную скорость на среднем диаметре на выходе из РК:

$$u_2 = \frac{\pi D_2 n}{60} = \frac{\pi \cdot \langle St2RotorDOut \rangle \cdot \langle RotationSpeed \rangle}{60} = \langle St2U2 \rangle$$
 m/c

19. Определим относительную скорость истечения газа из РК:

$$w_2 = \psi \sqrt{w_1^2 + 2H_{\pi} + (u_2^2 - u_1^2)} = \langle St2Psi \rangle \cdot \sqrt{\langle St2W1 \rangle^2 + 2 \cdot \langle St2Hl \rangle \cdot 10^6 + (\langle St2U2 \rangle^2 - \langle St2U1 \rangle^2)} = \langle St2Psi \rangle \cdot \sqrt{\langle St2W1 \rangle^2 + 2 \cdot \langle St2Hl \rangle \cdot 10^6 + (\langle St2U2 \rangle^2 - \langle St2U1 \rangle^2)} = \langle St2Psi \rangle \cdot \sqrt{\langle St2W1 \rangle^2 + 2 \cdot \langle St2Hl \rangle \cdot 10^6 + (\langle St2U2 \rangle^2 - \langle St2U1 \rangle^2)} = \langle St2Psi \rangle \cdot \sqrt{\langle St2W1 \rangle^2 + 2 \cdot \langle St2Hl \rangle \cdot 10^6 + (\langle St2U2 \rangle^2 - \langle St2U1 \rangle^2)} = \langle St2Psi \rangle \cdot \sqrt{\langle St2W1 \rangle^2 + 2 \cdot \langle St2Hl \rangle \cdot 10^6 + (\langle St2U2 \rangle^2 - \langle St2U1 \rangle^2)} = \langle St2Psi \rangle \cdot \sqrt{\langle St2W1 \rangle^2 + 2 \cdot \langle St2Hl \rangle \cdot 10^6 + (\langle St2U2 \rangle^2 - \langle St2U1 \rangle^2)} = \langle St2Psi \rangle \cdot \sqrt{\langle St2W1 \rangle^2 + 2 \cdot \langle St2Hl \rangle \cdot 10^6 + (\langle St2U2 \rangle^2 - \langle St2U1 \rangle^2)} = \langle St2Psi \rangle \cdot \sqrt{\langle St2W1 \rangle^2 + 2 \cdot \langle St2Hl \rangle \cdot 10^6 + (\langle St2U2 \rangle^2 - \langle St2U1 \rangle^2)} = \langle St2Psi \rangle \cdot \sqrt{\langle St2W1 \rangle^2 + 2 \cdot \langle St2Hl \rangle \cdot 10^6 + (\langle St2U2 \rangle^2 - \langle St2U1 \rangle^2)} = \langle St2Psi \rangle \cdot \sqrt{\langle St2W1 \rangle^2 + 2 \cdot \langle St2Hl \rangle \cdot 10^6 + (\langle St2U2 \rangle^2 - \langle St2U1 \rangle^2)} = \langle St2Psi \rangle \cdot \sqrt{\langle St2W1 \rangle^2 + 2 \cdot \langle St2Hl \rangle \cdot 10^6 + (\langle St2U2 \rangle^2 - \langle St2W1 \rangle^2)} = \langle St2Psi \rangle \cdot \sqrt{\langle St2W1 \rangle^2 + 2 \cdot \langle St2W1$$

20. Определим статическую температуру на выходе из РК:

$$T_2 = T_1 + \frac{\left(w_1^2 - w_2^2\right) + \left(u_2^2 - u_1^2\right)}{2c_{pr}} = + \frac{\left(^2 - ^2\right) + \left(^2 - ^2\right)}{2\cdot } = + \frac{\left(^2 - ^2\right) + \left(^2 - ^2\right)}{2\cdot } = + \frac{\left(^2 - ^2\right) + \left(^2\right) + \left(^2 - ^2\right)}{2\cdot } = + \frac{\left(^2 - ^2\right) + \left(^2\right) + \left(<$$

21. Определим статическую температуру при адиабатическом процессе в РК:

$$T_2' = T_1 - \frac{H_{^{_{\rm I\! I}}}}{c_{p_\Gamma}} = < St2T1 > -\frac{< St2Hl > \cdot 10^6}{\cdot < St2SpecificHeat >} = < St2T2Prime > \text{ K}$$

22. Определим давление на выходе из РК:

$$p_2 = p_1 \left(\frac{T_2'}{T_1}\right)^{\frac{k_\Gamma}{k_\Gamma - 1}} = \langle St2P1 \rangle \left(\frac{\langle St2T2Prime \rangle}{\langle St2T1 \rangle}\right)^{\frac{\langle St2KGasShort \rangle}{\langle St2KGasShort \rangle - 1}} = \langle St2P2 \rangle \text{ M}\Pi \text{a}$$

23. Определим плотность газа на выходе из РК:

$$\rho_2 = \frac{p_2}{RT_2} = \frac{< St2P2 > \cdot 10^6}{< St2GasConstant > \cdot < St2T2 >} = < St2Rho2 >$$

24. Определим осевую составляющую абсолютной скорости на выходе из РК:

$$c_{2a} = \frac{G}{A_2 \rho_2} = \frac{\langle St2G \rangle}{\langle St2A2 \rangle \cdot \langle St2Rho2 \rangle} = \langle St2C2a \rangle$$

25. Определим угол в относительном движении на выходе из РК:

$$\beta_2 = \arcsin \frac{c_{2a}}{w_2} = \arcsin \frac{< St2C2a>}{< St2W2>} = < St2Beta2>^\circ$$

26. Определим угол выхода из РК в абсолютном движении:

$$\alpha_2 = \arctan \frac{w_2 \cos \beta_2 - u_2}{c_{2a}} = \arctan \frac{< St2W2 > \cdot \cos < St2Beta2 >^{\circ} - < St2U2 >}{< St2C2a >} = < St2Alpha2 >^{\circ}$$

27. Определим окружную составляющую скорости на выходе из РК

$$c_{2u} = w_2 \cos \beta_2 - u_2 = < St2W2 > \cdot \cos < St2Beta2 >^{\circ} - < St2U2 > = < St2C2u > \text{ м/с}$$

28. Определим скорость потока на выходе из РК:

$$c_2 = \sqrt{c_{2u}^2 + c_{2a}^2} = \sqrt{\langle St2C2u \rangle^2 + \langle St2C2a \rangle^2} = \langle St2C2 \rangle$$
 m/c

29. Определим работу на окружности колеса:

$$L_u = c_{1u}u_1 + c_{2u}u_2 = < St2C1u > \cdot < St2U1 > + < St2C2u > \cdot < St2U2 > = < St2Lu > \cdot 10^6$$
 Дж/кг

30. Определим КПД на окружности колеса:

$$\eta_u = \frac{L_u}{H_t} = \frac{\langle St2Lu \rangle}{\langle St2Ht \rangle} = \langle St2EtaU \rangle$$

31. Определим удельные потери на статоре:

$$h_c = \left(\frac{1}{\phi^2} - 1\right) \frac{c_1^2}{2} = \left(\frac{1}{\langle St2Phi \rangle^2} - 1\right) \frac{\langle St2C1 \rangle^2}{2} = \langle St2hs \rangle \cdot 10^3 \text{ Дж/кг}$$

32. Определим удельные потери на роторе:

$$h_{\mathrm{p}} = \left(\frac{1}{\psi^2} - 1\right) \frac{w_2^2}{2} = \left(\frac{1}{\langle St2Psi \rangle^2} - 1\right) \frac{\langle St2W2 \rangle^2}{2} = \langle St2hr \rangle \cdot 10^3 \text{ Дж/кг}$$

33. Определим удельные потери с выходной скоростью:

$$h_{\mathrm{BMX}} = \frac{c_2^2}{2} = \frac{< St2C2>^2}{2} = < St2hOut > \cdot 10^3 \; Дж/кг$$

34. Определим удельные потери в радиальном зазоре:

$$h_3 = 1.37 \cdot (1 + 1.6\rho) \left[1 + \left(\frac{l}{D} \right)_1 \right] \frac{\delta_r}{l_2} L_u =$$

$$=1.37\cdot (1+1.6\cdot < St2Reactivity>) \left[1+ < St2RotorLRel>\right] \frac{< St2DeltaR>}{< L2>} \cdot < St2Lu> = < St2hRadial> \cdot 10^3~\text{Дж/color}$$

35. Определим удельные потери на вентиляцию:

$$h_{\text{вент}} = \frac{1.07 D_2^2 \left(\frac{u_2}{100}\right)^3 \rho}{G} = \frac{1.07 \cdot < St2RotorDOut >^2 \left(\frac{< St2U2>}{100}\right)^3 \cdot < St2Reactivity >}{< St2G >} = < St2hVent > \cdot 10^3 \, \text{Дж/кг}$$

36. Определим температуру торможения за РК:

$$T_{2}^{*} = T_{2} + \frac{h_{3} + h_{\text{BeHT}} + h_{\text{BbIX}}}{c_{nr}} = + \frac{ \cdot 10^{3} + \cdot 10^{3} + \cdot 10^{3}}{} = + \frac{ \cdot 10^{3} + \cdot 10^{3} + \cdot 10^{3}}{} = + \frac{ \cdot 10^{3} + \cdot 10^{3} + \cdot 10^{3}}{} = + \frac{ \cdot 10^{3} + \cdot 10^{3} + \cdot 10^{3}}{} = + \frac{ \cdot 10^{3} + \cdot 10^{3} + \cdot 10^{3}}{} = + \frac{ \cdot 10^{3} + \cdot 10^{3} + \cdot 10^{3}}{} = + \frac{ \cdot 10^{3} + \cdot 10^{3}}{} = \cdot 10^{3} + \cdot 10^{3} +$$

37. Определим давление торможения за РК:

$$p_2^* = p_2 \left(\frac{T_2^*}{T_2}\right)^{\frac{k_\Gamma}{k_\Gamma-1}} = < St2P2 > \cdot \left(\frac{< St2T2Stag >}{< St2T2 >}\right)^{\frac{< St2KGasShort>}{< St2KGasShort>-1}} = < St2P2Stag > \text{ M}\Pi\text{a}$$

38. Определим мощностной КПД ступени:

$$\eta_{^{\text{T}} \text{ мощн}} = \eta_{u} - \frac{h_{^{3}} + h_{^{\text{ВеНТ}}}}{H_{^{\text{T}}}} = < St2EtaU > - \frac{< St2hRadial > \cdot 10^{3} + < St2hVent > \cdot 10^{3}}{< St2Ht > \cdot 10^{6}} = < St2EtaPower > 10^{3} + < St2Ht > \cdot 10^{6}$$

39. Определим работу ступени:

$$L_{\mathrm{T}} = H_{\mathrm{T}} \eta_{\mathrm{T}} = \langle St2Ht \rangle \cdot 10^6 \cdot \langle St2EtaPower \rangle = \langle St2Lt \rangle \cdot 10^6 \; \mathrm{Дж/кг}$$

40. Определим теплоперепад по параметрам торможения:

$$H_{\scriptscriptstyle \rm T}^* = c_{p{\scriptscriptstyle \rm T}} T_0^* \left[1 - \left(\frac{p_2^*}{p_0^*} \right)^{\frac{k_{\scriptscriptstyle \rm T}-1}{k_{\scriptscriptstyle \rm T}}} \right] = < St2SpecificHeat > \cdot < St2GasTemp > \left[1 - \left(\frac{< St2P2Stag >}{< St2FGasShort >} \right)^{\frac{< St2KGasShort > -1}{< St2PIn >}} \right)^{\frac{< St2KGasShort > -1}{< St2PIn >}} \right]$$

41. Определим КПД ступени по параметрам торможения:

$$\eta_{_{\rm T}}^* = \frac{L_{_{\rm T}}}{H_{_{\rm T}}^*} = \frac{< St2Lt > \cdot 10^6}{< St2HtStag > \cdot 10^6} = < St2EtaT >$$

- 42. Определим уточненное значение показателя адиабаты газа в процессе расширения в ступени:
 - 42.1. Определим значение средней теплоемкости газа при температуре T_0^* :

$$c_{pr\ cp}(T_0^*) = \left[\frac{1.25 + 2.2\alpha}{\alpha \cdot 10^5}(T_0^* + 450) + 0.218\right] \cdot 4.187 \cdot 10^3 =$$

$$= \left[\frac{1.25 + 2.2 \cdot \langle CycleBurnAlphaLong \rangle}{\langle CycleBurnAlphaLong \rangle \cdot 10^5}(\langle St2GasTemp \rangle + 450) + 0.218\right] \cdot 4.187 \cdot 10^3 = \langle St2TInSpecificHealphaLong \rangle \cdot 10^5$$

42.2. Определим значение средней теплоемкости при температуре T_2 :

$$c_{pr\ cp}(T_2) = \left[\frac{1.25 + 2.2\alpha}{\alpha \cdot 10^5}(T_2 + 450) + 0.218\right] \cdot 4.187 \cdot 10^3 =$$

$$\left[\frac{1.25 + 2.2 \cdot < CycleBurnAlphaLong >}{< CycleBurnAlphaLong > \cdot 10^5}(< St2T2 > +450) + 0.218\right] \cdot 4.187 \cdot 10^3 = < St2TOutSpecificHeat > Дж$$

42.3. Новое значение средней теплоемкости в интервале температур от T_2 до T_0^* :

$$c'_{pr} = \frac{c_{pr \text{ cp}}(T_2)(T_2 - T_0) - c_{pr \text{ cp}}(T_0^*)(T_0^* - T_0)}{T_2 - T_0^*} =$$

$$\frac{< St2TOutSpecificHeat > \cdot (< St2T2 > - < SpHeatT0 >) - < St2TInSpecificHeat > \cdot (< St2GasTemp > - < St2T1 > - < St2GasTemp > - < St2T2 > - < St2GasTemp > - < St2T2 > - < St2GasTemp > - < St2T2 > - < St2GasTemp > - < < St2GasTemp > - < St2GasTemp > - < < St2GasTemp > < < St2GasTemp > - < < S$$

42.4. Новое значение показателя адиабаты:

$$k_{\text{\tiny B}}' = \frac{c_{p\text{\tiny \Gamma}}'}{c_{p\text{\tiny \Gamma}}' - R_{\text{\tiny \Gamma}}} = \frac{< St2SpecificHeatLong>}{< St2SpecificHeatLong> - < St2GasConstant>} = < St2KGasLong>$$

43. Определим погрешность определения показателя адиабаты газа в процессе расширения в ступени:

$$\delta = \frac{|k_{\scriptscriptstyle \Gamma}' - k_{\scriptscriptstyle \Gamma}|}{k_{\scriptscriptstyle \Gamma}} \cdot 100\% = \frac{|< St2KGasLong> - < St2KGasShort>|}{< St2KGasShort>} \cdot 100\% = < St2KCalcError> \% < 5\% + 100\% = < St2KCalcError> \% < 100\% = < St2KCalcError> % < 1000\% = < St2KCalcError$$
 % < St2KCalcError> % < St2KCalcError> % < St2KCalcError> % < St

Погрешность определения показателя адиабаты в пределах допуска.

3.3 Вычисление интегральных параметров турбины

- 1. Определим среднее значение коэффициента адиабаты и теплоемкости в интервале температур от $T_{\scriptscriptstyle \mathrm{TK}}^*$ до $T_{\scriptscriptstyle \mathrm{T}}$:
 - 1.1. Значение средней теплоемкости в интервале температур от $T_{\text{тк}}^*$ до $T_{\text{т}}$:

$$c_{p\scriptscriptstyle\Gamma} = \frac{c_{p\scriptscriptstyle\Gamma} \; c_{\rm p}(T_{\scriptscriptstyle\rm T})(T_{\scriptscriptstyle\rm T} - T_0) - c_{p\scriptscriptstyle\Gamma} \; c_{\rm p}(T_{\scriptscriptstyle\rm TK}^*)(T_{\scriptscriptstyle\rm TK}^* - T_0)}{T_{\scriptscriptstyle\rm T} - T_{\scriptscriptstyle\rm TK}^*} = \\ = \frac{< St2TOutSpecificHeat > \cdot (< St2T2 > - < SpHeatT0 >) - < St1TInSpecificHeat > \cdot (< St1GasTemp > - < St2T2 > - < St1GasTemp > - < < < St1GasTemp > - < <$$

1.2. Значение показателя адиабаты:

$$k_{\text{\tiny B}} = \frac{c_{p\text{\tiny \Gamma}}}{c_{p\text{\tiny \Gamma}} - R_{\text{\tiny \Gamma}}} = \frac{< TurbineSpecificHeat>}{< TurbineSpecificHeat> - < St2GasConstant>} = < TurbineKGas>$$

2. Работа турбины:

$$L_{\rm T} = L_{\rm T1} + L_{\rm T2} = < Lt > \cdot 10^6 + < St2Lt > \cdot 10^6 = < TurbineLt > \cdot 10^6$$
 Дж/кг

3. Теплоперепад в турбине:

$$H_t = c_p T_{\text{\tiny TK}}^* \left[1 - \left(\frac{p_{\text{\tiny T}}^*}{p_{\text{\tiny T}}} \right)^{\frac{1-k_{\text{\tiny T}}}{k_{\text{\tiny T}}}} \right] = < TurbineSpecificHeat > \cdot < St1GasTemp > \left[1 - \left(\frac{< St1PIn >}{< St2P2 >} \right)^{\frac{1-}{< TurbineKGas>}} \right]$$

4. КПД турбины по статическим параметрам:

$$\eta_{\scriptscriptstyle
m T} = rac{L_{\scriptscriptstyle
m T}}{H_{\scriptscriptstyle
m T}} = rac{< TurbineLt>}{< TurbineHt>} = < TurbineEtaT>$$

5. Лопаточный КПД турбины

$$\eta_{\scriptscriptstyle \Pi} = \frac{L_{\scriptscriptstyle \rm T} + \frac{c_{\scriptscriptstyle T}^2}{2}}{H_{\scriptscriptstyle \rm T}} = \frac{< TurbineLt > \cdot 10^6 + \frac{< St2C2>^2}{2}}{< TurbineHt > \cdot 10^6} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle T}^2}{2} = < TurbineEtaL > \cdot 10^6 + \frac{c_{\scriptscriptstyle$$

- 6. Определим среднее значение коэффициента адиабаты и теплоемкости в интервале температур от T_{rk}^* до T_{r}^* :
 - 6.1. Значение средней теплоемкости при температуре T_x^* :

$$c_{pr\ cp}(T_{_{\rm T}}^*) = \left[\frac{1.25 + 2.2\alpha}{\alpha \cdot 10^5}(T_{_{\rm T}}^* + 450) + 0.218\right] \cdot 4.187 \cdot 10^3 = \\ = \left[\frac{1.25 + 2.2 \cdot < CycleBurnAlphaLong >}{< CycleBurnAlphaLong > \cdot 10^5}(< St2T2Stag > +450) + 0.218\right] \cdot 4.187 \cdot 10^3 = < TurbineTOutStagSpectrum (TurbineTOutStagSpectrum (TurbineTOutStagSpe$$

6.2. Значение средней теплоемкости в интервале температур от $T_{\scriptscriptstyle {
m TK}}^*$ до $T_{\scriptscriptstyle {
m T}}^*$:

$$c_{pr} = \frac{c_{pr \text{ cp}}(T_{\text{\tiny T}}^*)(T_{\text{\tiny T}}^* - T_0) - c_{pr \text{ cp}}(T_{\text{\tiny TK}}^*)(T_{\text{\tiny TK}}^* - T_0)}{T_{\text{\tiny T}}^* - T_{\text{\tiny TK}}^*} = \frac{< TurbineTOutStagSpecificHeat > \cdot (< St2T2Stag > - < SpHeatT0 >) - < St1TInSpecificHeat > \cdot (< St2T2Stag > - < St1GasTemp >)}{< St2T2Stag > - < St1GasTemp >}$$

6.3. Значение показателя адиабаты:

$$k_{\text{\tiny B}} = \frac{c_{p\text{\tiny \Gamma}}}{c_{p\text{\tiny \Gamma}} - R_{\text{\tiny \Gamma}}} = \frac{< TurbineSpecificHeatStag>}{< TurbineSpecificHeatStag> - < St2GasConstant>} = < TurbineKGasStag> - < St2GasConstant>$$

7. Теплоперепад по параметрам торможения:

$$H_t^* = c_p T_{_\Gamma}^* \left[1 - \left(\frac{p_{_\Gamma}^*}{p_{_\Gamma}^*} \right)^{\frac{1-k_{_\Gamma}}{k_{_\Gamma}}} \right] = < TurbineSpecificHeatStag > \cdot < St1GasTemp > \left[1 - \left(\frac{< St1PIn >}{< St2P2Stag >} \right)^{\frac{1-< Turbine}{< Turbine}} \right] = < TurbineSpecificHeatStag > \cdot < St1GasTemp > \left[1 - \left(\frac{< St1PIn >}{< St2P2Stag >} \right)^{\frac{1-< Turbine}{< Turbine}} \right]$$

8. КПД турбины по параметрам торможения:

$$\eta_{^{*}}^{*} = \frac{L_{^{\mathrm{T}}}}{H_{t}^{*}} = \frac{< TurbineLt>}{< TurbineHtStag>} = < TurbineEtaTStag>$$

9. Мощность турбины:

$$N = L_{\rm T}G\eta_{\rm M} = < TurbineLt > \cdot < G > \cdot 0.99 = < TurbinePower > \cdot 10^6 \text{ Bt}$$

4 Профилирование первой ступени турбины компрессора

Исходными данными для данного этапа проектирования турбины являются результы расчета по средней линии тока.

Ступень была спрофилирована по закону $\alpha_1 = const.$

Определим треугольники скоростей на произвольно радиусе лопатки.

1. В этом случае значения абсолютной скорости на входе на рабочие лопатки на произвольном радиусе определялись по следующим формулам (в приведенных ниже формулах значения со штрихом относятся к среднему радиусу):

$$c_{1u} = c'_{1u} \left(\frac{r'}{r}\right)^{\cos^2 \alpha_1}; \ c_{1a} = c'_{1a} \left(\frac{r'}{r}\right)^{\cos^2 \alpha_1}; \ c_{1} = c'_{1} \left(\frac{r'}{r}\right)^{\cos^2 \alpha_1}$$

2. Окружная скорость рабочей лопатки на произвольном радиусе была определена по закон вращения твердого тела:

$$u = u' \frac{r}{r'}$$

3. Относительная скорость на произвольном радиусе на входе в рабочие лопатки была определена по следующим формулам:

$$w_{1u} = c_{1u} - u; \ w_{1a} = c_{1a}; w_1 = \sqrt{w_{1u}^2 + w_{1a}^2}$$

4. Абсолютная скорость на выходе из рабочих лопаток была определена по условию постоянства работы, отводимой от газа на различных радиусах лопатки.

По формуле Эйлера для правила отсчета углов, принятого в теории турбин удельная работа на окружности колеса L_u определяется слеюущей формулой:

$$L_u = c_{1u} + c_{2u}$$

Таким образом, зная работу на окружности колеса на среднем радиусе лопатки L'_u , мы можем определить значение окружной скорости на выходе из рабочих лопаток:

$$c_{2u} = \frac{L'_u}{u} - c_{1u} = \frac{L'_u}{u'} \frac{r'}{r} - c'_{1u} \left(\frac{r'}{r}\right)^{\cos^2 \alpha_1}$$

5. Используя значения окружной и осевой скорости на среднем радиусе лопатки, определим значение осевой скорости на выходе из рабочих лопаток, проинтегрировав уравнение Бернулли для цилиндрического течения, записанное в дифференциальной форме, и полагая температуры торможения постоянными по радиусу:

$$c_{2a}^2 = c_{2a}^{\prime 2} + c_{2u}^{\prime 2} - c_{2u}^2 - 2 \int_{r'}^r \frac{c_{2u}^2}{r} dr$$

Введем обозначения $a = \frac{L'_u}{u}; \ b = c'_{1u}.$

Тогда после интегрирования получим:

$$c_{2a} = c_{2a}'^{2} + c_{2u}'^{2} - c_{2u}^{2} + \left[-a^{2} \left(\frac{r'}{r} \right)^{2} + \frac{4ab}{1 + \cos^{2} \alpha_{1}} \left(\frac{r'}{r} \right)^{1 + \cos^{2} \alpha_{1}} - \frac{b^{2}}{\cos^{2} \alpha_{1}} \left(\frac{r'}{r} \right)^{2\cos^{2} \alpha_{1}} \right]_{r'}^{r}$$

6. Значения проекций относительной скорости на выходе из лопаток находим так же, как и значения на входе в рабочие лопатки.

Определим профили давления и реактивности на произвольном радиусе лопатки:

1. Запишем выражение для числа Маха на произвольном радиусе лопатки с учетом постоянства температуры торможения:

$$M_{1,2} = \frac{c_{1,2}}{\sqrt{kR\left(T_{1,2}' + \frac{c_{1,2}^2 - c_{1,2}'^2}{c_p}\right)}}$$

2. Запишем выражение для давления на произвольном радиусе лопатки, используя ГДФ давления:

$$p_{1,2} = p'_{1,2} \frac{\pi(M_{1,2}, k)}{\pi(M'_{1,2}, k)}$$

3. Запишем выражение для статической температуры на произвольном радиусе лопатки, используя $\Gamma Д \Phi$ температуры:

$$T_{1,2} = T'_{1,2} \frac{\tau(M_{1,2}, k)}{\tau(M'_{1,2}, k)}$$

4. Таким образом, зная степень понижения давления на среднем и произвольном радусе лопатки, мы можем определить степень реактивности на произвольном радиусе:

$$r = \frac{\pi^{\frac{k-1}{k}} - 1}{\pi'^{\frac{k-1}{k}} - 1} r'$$

Построим графики изменения углов потока и степени реактивности, а также треугольники скоростей на различных радиусах по высоте лопатки.

Рис. 3: Изменение углов α_1 и β_2 по радиусу

Рис. 4: Измене
ие углов α_2 и β_1 по радиусу

Рис. 5: Изменение степени реактивности по радиусу

Рис. 6: Треугольники скоростей

5 Расчет на прочность диска первой ступени

5.1 Исходные данные для расчета

- 1. Частота вращения: n = <AngVelocity> об/мин
- 2. Зависимость толщины диска от радиуса: h(r)
- 3. Сила инерции, действующая на лопатку: $P_{\text{лоп}} = < BladeForce >$ Н
- 4. Ширина хвостовика: $h_{m-1} = \langle TailWidth \rangle$ м
- 5. Радиусы хвостовика: $r1 = \langle TailR1 \rangle$ м и $r2 = \langle TailR2 \rangle$ м
- 6. Температура на внутреннем радиусе: $T_1 = 200 \text{ K}$
- 7. Температура на внешенм радиусе: $T_m = < OutTemp > K$
- 8. Закон изменения температуры диска по радиусу: Примем, что температура диска изменяется по радиусу по закону квадратной параболы:

$$T\left(r\right) = T_1 + \left(T_m - T_1\right) \frac{r}{r_m}^2$$

- 9. Число лопаток: $z_{\pi} = \langle BladeNumber \rangle$
- 10. Параметры материала:
 - 10.1. Материал сплав ЭИ698.
 - 10.2. Плотность: $\rho = < Density > \kappa \Gamma/M^3$
 - 10.3. Коэффициент Пуассона: $\mu = 0.3$
 - 10.4. Зависимость модуля Юнга от температуры:

Т, К	20	400	500	600	700	800
Е, МПа	$2 \cdot 10^{5}$	$1.82 \cdot 10^{5}$	$1.75 \cdot 10^{5}$	$1.65 \cdot 10^{5}$	$1.55 \cdot 10^{5}$	$1.4 \cdot 10^5$

10.5. Зависимость коэффициента линейного раширения от температруы

T, K	100	200	300	400	500	600	700	800	900
$\alpha, 10^{-6}1/K$	11	11.4	11.7	12.1	12.4	12.7	13.4	13.9	14.7

10.6. Зависимость предела временной прочности от температуры

T, K	20	400	500	600	700
$\sigma_{\scriptscriptstyle \rm B}, { m M}\Pi{ m a}$	1220	1180	1160	1120	1040

5.2 Алгоритм расчета

1. Определяем силу нагрузку на периферии:

$$p_m = \frac{P_{\scriptscriptstyle{\Pi}\text{O}\Pi} z_{\scriptscriptstyle{\Pi}}}{2\pi r_2 h_{m-1}} + \rho \left(\frac{\pi n}{30}\right)^2 \frac{r_2^3 - r_1^3}{3r_1} = \frac{< BladeForce > \cdot < BladeNumber >}{2\pi \cdot < TailR2 > \cdot < TailWidth >} + < Density > \cdot \left(\frac{\pi \cdot < AngVelocity >}{30}\right)^2 \frac{r_2^3 - r_1^3}{3r_1} = \frac{\langle BladeForce > \cdot < BladeNumber >}{2\pi \cdot < TailWidth >} + < Density > \cdot \left(\frac{\pi \cdot < AngVelocity >}{30}\right)^2 \frac{r_2^3 - r_1^3}{3r_1} = \frac{\langle BladeForce > \cdot < BladeNumber >}{2\pi \cdot < TailWidth >} + < Density > \cdot \left(\frac{\pi \cdot < AngVelocity >}{30}\right)^2 \frac{r_2^3 - r_1^3}{3r_1} = \frac{\langle BladeForce > \cdot < BladeNumber >}{2\pi \cdot < TailWidth >} + < Density > \cdot \left(\frac{\pi \cdot < AngVelocity >}{30}\right)^2 \frac{r_2^3 - r_1^3}{3r_1} = \frac{\langle BladeForce > \cdot < BladeNumber >}{2\pi \cdot < TailWidth >} + < Density > \cdot \left(\frac{\pi \cdot < AngVelocity >}{30}\right)^2 \frac{r_2^3 - r_1^3}{3r_1} = \frac{\langle BladeForce > \cdot < BladeNumber >}{2\pi \cdot < TailWidth >} + < Density > \cdot \left(\frac{\pi \cdot < AngVelocity >}{30}\right)^2 \frac{r_2^3 - r_1^3}{3r_1} = \frac{\langle BladeForce > \cdot < BladeNumber >}{2\pi \cdot < TailWidth >} + < Density > \cdot \left(\frac{\pi \cdot < AngVelocity >}{30}\right)^2 \frac{r_1^3 - r_1^3}{3r_1} = \frac{\langle BladeForce > \cdot < BladeNumber >}{2\pi \cdot < TailWidth >} + < Density > \cdot \left(\frac{\pi \cdot < AngVelocity >}{30}\right)^2 \frac{r_1^3 - r_1^3}{3r_1} = \frac{\langle BladeForce > \cdot < BladeNumber >}{2\pi \cdot < TailWidth >} + < Density > \cdot \left(\frac{\pi \cdot < AngVelocity >}{30}\right)^2 \frac{r_1^3 - r_1^3}{3r_1} = \frac{\langle BladeForce > \cdot < BladeNumber >}{2\pi \cdot < TailWidth >} + < Density > \cdot \left(\frac{\pi \cdot < AngVelocity >}{30}\right)^2 \frac{r_1^3 - r_1^3}{3r_1} = \frac{\langle BladeForce > \cdot < BladeNumber >}{2\pi \cdot < TailWidth >} + < Density > \cdot \left(\frac{\pi \cdot < AngVelocity >}{30}\right)^2 \frac{r_1^3 - r_1^3}{3r_1} = \frac{\langle BladeForce > \cdot < BladeNumber >}{2\pi \cdot < TailWidth >} + < Density > \cdot \left(\frac{\pi \cdot < AngVelocity >}{30}\right)^2 \frac{r_1^3 - r_1^3}{3r_1} = \frac{\langle BladeForce > \cdot < BladeNumber >}{2\pi \cdot < TailWidth >} + < Density > \cdot \left(\frac{\pi \cdot < AngVelocity >}{30}\right)^2 \frac{r_1^3 - r_1^3}{3r_1} = \frac{\langle BladeForce > \cdot < BladeNumber >}{2\pi \cdot < TailWidth >} + < Density > \cdot \left(\frac{\pi \cdot < AngVelocity >}{30}\right)^2 \frac{r_1^3 - r_1^3}{3r_1} = \frac{\langle BladeForce > \cdot < BladeNumber >}{2\pi \cdot < TailWidth >} + < Density > \cdot \left(\frac{\pi \cdot < AngVelocity >}{30}\right)^2 \frac{r_1^3 - r_$$

- 2. Разобьем диск на m-1 участков постоянной толщины.
- 3. Зададим значение $\sigma_r^{1,1} = \sigma_t^{1,1} = 100..200 \text{ МПа}$
- 4. Длякаждого из участков решим следующую систему уравнений:

$$\begin{cases} S_{i,i} = \sigma_r^{i,i} + \sigma_t^{i,i}, \\ D_{i,i} = \sigma_r^{i,i} - \sigma_t^{i,i}, \\ S_{i,i+1} = S_{i,i} - \frac{1+\mu}{2} \rho_i \omega^2 \left(r_{i+1}^2 - r_i^2 \right) - E_i \left(\theta_{i+1} - \theta_i \right), \\ S_{i,i+1} = D_{i,i} \frac{r_i^2}{r_{i+1}^2} + \frac{1-\mu}{4} \rho \omega^2 \left(r_{i+1}^2 - \frac{r_i^4}{r_{i+1}^2} \right) + 2 \frac{E_i}{r_{i+1}^2} \int\limits_{r_i}^{r_{i+1}} \theta r dr - E_i \left(\theta_{i+1} - \theta_i \frac{r_i^2}{r_{i+1}^2} \right), \\ \sigma_t^{i,i+1} = \frac{S_{i,i+1} + D_{i,i+1}}{2}, \\ \sigma_r^{i,i+1} = \frac{S_{i,i+1} - D_{i,i+1}}{2}, \\ \sigma_r^{i+1,i+1} = \sigma_r^{i,i+1} \frac{h_i}{h_{i+1}}, \\ \sigma_t^{i+1,i+1} = \mu \sigma_t^{i,i+1} \frac{h_i}{h_{i+1}} + \frac{E_{i+1}}{E_i} \left(\sigma_t^{i,i+1} - \mu \sigma_r^{i,i+1} \right), \end{cases}$$

где $\theta\left(r_{i}\right)=\alpha\left(r_{i}\right)\left(T\left(r_{i}\right)-T_{0}\right)$ - температурные деформации, а $T_{0}=20^{\circ}C$

- 5. Повторяем пукты 3 и 4 при $\theta=0$ и $\omega=0$
- 6. Находим коэффициент k:

$$k = \frac{p_m - (\sigma_r^{m-1,m})_I}{(\sigma_r^{m-1,m})_{II}}$$

7. Находим значения напряжений на каждом из участков:

$$\sigma_r^{i,j} = (\sigma_r^{i,j})_I + k(\sigma_r^{m-1,m})_{II}$$

$$\sigma_t^{i,j} = (\sigma_t^{i,j})_I + k(\sigma_t^{m-1,m})_{II}$$

5.3 Результаты расчета

1. Результаты первого расчета.

i	r_i , mm	$\sigma_r^{i,j}$, M Π a	$\sigma_t^{i,j}, \text{ M}\Pi a$
<firstcalculationrows></firstcalculationrows>			

2. Результаты второго расчета

i	r_i , MM	$\sigma_r^{i,j}, \text{ M}\Pi a$	$\sigma_t^{i,j}, \text{ M}\Pi a$
<secondcalculationrows></secondcalculationrows>			

3. Значение коэффициента k:

$$k = \frac{p_m - (\sigma_r^{m-1,m})_I}{(\sigma_r^{m-1,m})_{II}} = \frac{ - }{} =$$

4. Значения напряжений на участках после пересчета.

5. Средние арифметические значения напряжений на радиусах

i	r_i , mm	σ_r^i , M Π a	σ_t^i , M Π a	$\sigma^i_{\scriptscriptstyle{9\mathrm{KB}}}$
<AverageStressRows $>$				

6. Максимальная величина эквивалентных напряжений:

$$\begin{split} \sigma_{\scriptscriptstyle \rm 9KB}^i &= \sqrt{(\sigma_1^i)^2 + (\sigma_3^i)^2 - \sigma_1^i \sigma_3^i} \\ \sigma_{\scriptscriptstyle \rm 9KB~MAX} &= < MaxEqSigma > \, {\rm M}\Pi{\rm a} \end{split}$$

7. Минимальный коэффициент запаса по временной прочности:

$$n_{{\scriptscriptstyle \mathrm B}min} = < MinSafetyFactor >$$

8. Коэффициенты концентраций напряжений у отверстий:

$$\begin{split} k_1 &= 3 - \frac{d_1}{b_1} - \frac{\sigma_{r1}}{\sigma_{t1}} = 3 - \frac{< DHole1 >}{< BHole1 >} - \frac{< SigmaRHole1 >}{< SigmaTHole1 >} = < KHole1 > \\ k_2 &= 3 - \frac{d_2}{b_2} - \frac{\sigma_{r2}}{\sigma_{t2}} = 3 - \frac{< DHole2 >}{< BHole2 >} - \frac{< SigmaRHole2 >}{< SigmaTHole2 >} = < KHole2 > \\ \end{split}$$

9. Напряжения в зонах концентрации:

$$\sigma_{t \kappa 1} = k_1 \sigma_{t1} = \langle KHole1 \rangle \cdot \langle SigmaTHole1 \rangle = \langle SigmaTKHole1 \rangle$$

$$\sigma_{t \kappa 2} = k_2 \sigma_{t2} = \langle KHole2 \rangle \cdot \langle SigmaTHole2 \rangle = \langle SigmaTKHole2 \rangle$$

10. Зависимоть от радиуса радиальных, окружных и эквивалентных напряжений, а также коэффициента запаса по временной прочности.

Рис. 7: Зависимость напряжений от радиуса

Рис. 8: Зависимость коэффициента запаса от радиуса