

11 March 2021 painting • EN

Problem 4 - Painting (painting)

Having Reply's offices empty in recent months has been an excellent opportunity to renovate them.

To mark the occasion, R-Boy wants to repaint, in a geometric way, the main wall of the Solar Office that, for the purpose of this problem, is an infinite two-dimensional space where the origin is in the centre of the wall itself.

You are given a set of N lines, represented by the values m and q (to indicate the line $y = m \times x + q$). For each line, consider the half-plane in the direction of the origin. R-Boy wants to paint the area where all the half-planes intersect.

Write a program to help R-Boy find the total area to cover, so he can buy the correct amount of paint.

Input data

The first line of the input file contains an integer T, the number of test cases to solve, followed by T testcases, numbered from 1 to T.

In each test case, the first line contains the integer N: the number of lines in the grid.

The next N lines contains 2 space-separated real numbers each: the values $\mathbf{m}[\mathbf{i}]$ and $\mathbf{q}[\mathbf{i}]$ of the i^{th} line.

Output data

The output file must contain t lines. For each test case in the input file, the output file must contain a line with the words:

Case #t: a

where t is the test case number (from 1 to T) and a is the real value of the surface required to be painted (with a maximum relative error of 10^{-6} with respect to the official solution) or the string inf if the total surface is infinite.

Constraints

- $1 \le T \le 15$.
- $1 \le N \le 100000$.
- $\mathbf{q}[\mathbf{i}] \neq 0$, for $i = 0 \dots N 1$.
- All the pairs (m[i], q[i]) are distinct.
- The total area, if finite, can fit a in a 32-bit floating point number.

Scoring

- input 1: T = 5, there are, at maximum, 2 distinct values of m[i].
- input 2: T = 5, $N \le 20$.
- input 3: T = 10 and $N \le 250$.
- input 4: T = 15 and $N \le 5000$.
- input 5: T = 15 and $N \le 100000$.

Page 1 of 2 painting

Examples

input	output
2 5 1.0 1.0 -0.3 2.4 -2.9 6.2 0.3 -1.0 -0.9 -1.0 3 -0.3 -0.2 1.0 0.8 0.2 0.6	Case #1: 5.62186234 Case #2: inf

Explanation

In the first example the surface is limited by the pentagon in the figure.

In the second example the covered area is infinite.

painting Page 2 of 2