

MICROPROCESSOR BASED SYSTEM DESIGN (CS-301)

OPEN ENDED LAB REPORT

GROUP MEMBERS

MAHNOOR ZIA – CS22101 ANOOSHA KHALID – CS22104 LAIBA IQRAR – CS22112

SUBMITTED TO: MISS RAMISH FATIMA

MAY 22, 2025
NED UNIVERSITY OF ENGINEERING & TECHNOLOGY

CONTENT

Objective	
Hardware Components	2
Software/Technologies	2
Future Implementations	3
Hardware Circuit	4
Dataset	5
Model training	6

PROJECT: OBJECT RECOGNITION SYSTEM

OBJECTIVE

To develop a real-time object detection system using the ESP32-CAM and Edge Impulse platform, capable of recognizing and classifying Pakistani currency notes (2 classes: 50pkr and 20 pkr). The objective is to demonstrate edge AI capabilities on low-power embedded hardware by deploying a trained machine learning model on that performs image-based currency classification efficiently.

HARDWARE COMPONENTS

- **ESP32-CAM** for capturing real-time images and running the machine learning model.
- FTDI Programmer (USB to Serial Adapter) used to program the ESP32-CAM via USB.
- Jumper Wires to establish necessary electrical connections.
- **OLED Display** to visually display the classification result.
- Mini USB to TTL Serial Converter Cable for connecting FTDI adapter to laptop

SOFTWARE / TECHNOLOGIES

- Edge Impulse to collect data, train, and deploy the machine learning model.
- **Arduino IDE** for writing and uploading firmware to the ESP32-CAM.
- ESP32 Board Manager to integrate ESP32 support into the Arduino IDE.

FUTURE IMPLEMENTATION'S

- Expand dataset to include Rs. 10, 100, 500, 1000, and 5000 for full Pakistani currency recognition
- Integrate into a smart donation box to detect and log inserted amounts
- Assist visually impaired users by identifying notes with audio feedback.

HARDWARE CIRCUIT

CASE I: No objects found


```
Output Serial Monitor X

Message (Enter to send message to 'AI Thinker ESP32-CAM' on 'COM3')

14:25:53.447 -> s.):
14:25:53.447 -> No objects found
14:25:53.447 -> Predictions (DSP: 8 ms., Classification: 812 ms., Anomaly: 0 ms.):
14:25:53.447 -> Predictions (DSP: 8 ms., Classification: 812 ms., Anomaly: 0 ms.):
14:25:53.447 -> No objects found
14:25:53.447 -> No objects found
14:25:53.941 -> Predictions (DSP: 8 ms., Classification: 812 ms., Anomaly: 0 ms.):
14:25:53.941 -> No objects found
```

CASE I: 20 Pkr detection


```
14:31:01.675 -> Predictions (DSP: 8 ms., Classification: 812 ms., Anomaly: 0 ms.):
14:31:01.708 -> 20 (0.535156) [ x: 32, y: 64, width: 8, height: 8 ]
```

CASE II: 50 Pkr detection

14:30:00.640 -> Predictions (DSP: 8 ms., Classification: 812 ms., Anomaly: 0 ms.): 14:30:00.640 -> 50 (0.574219) [x: 16, y: 64, width: 8, height: 8]

DATASET

CLASS 0: 50 Pkr

CLASS 1: 20 Pkr detection

MODEL TRAINING

Platform: Edge Impulse

MODEL: FOMO (Faster Objects, More Objects) MobileNetV2 0.35

- o FOMO: A lightweight object detection model designed for edge devices.
- MobileNetV2 0.35: A highly efficient neural network architecture scaled down (0.35x) to run on low-power devices.

Training parameters

Train/Test splitting

Image size

Image: color depth

Evaluation Matrix

Metrics (validation set)		} ←
METRIC	VALUE	
Precision (non-background) ③	0.90	
Recall (non-background) ③	0.90	
F1 Score (non-background)	0.90	