MATRICE

A matrix is a rectangular array of numbers, symbols or expressions arranged in rows and columns. (A matrix is a group o vectors).

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{12} & \cdots & a_{2n} \\ \vdots & a_{71} & \cdots & a_{n} \geq \cdots & a_{nn} \end{bmatrix} \Rightarrow \begin{cases} h_{n1} & a_{1j} & \text{where } i \text{ down} \\ \frac{1}{h_{n1}} & \text{where } i \text{ down} \end{cases}$$

Example of matrices in data sciences

1) Data representation

Dataset

Dataset					Δ.	6.	0	
	Math Score	Physic score	Biology score		ſ,'	j	٦,	
_ 1)	€ 55	65	75	->	r 55	65	75~	
→ 2)	<u></u> 65	60	55	*	65	60	55	
→3)	70	45	80	પુ (€70	45	lo	
					3x3)		_	

2) Images in computer vision

3 x 3 grayscale image

IMAGE =

3) Confusion Matrix: Accuracy of the model

True positive (50): Positive case the model predicted correctly False Positive (10): Model said "positive" but it was actually negative False Negatives (5): Model said "negative" but it was actually positive True negatives (35): Negative cases it predicted correctly Accuracy = 50 + 35 / (50 + 10 + 5 + 35)

4. Neural Network: Matrix operation [Linear regresion]

5 NLP