Xinshi Wang 661975305 quiz05

1.

a.
$$Max = Min = 1$$

Suppose there are 2 vertices in the beginning. To make those vertices weakly connected we need at least 1 edge. Let us call the vertex with $deg^+(v) = 1$ by v_0 and the other vertex v_1 . Let us add a new vertex v_2 . To make v_2 weakly connected and $deg^+(v_1) = 1$, we need to add a new edge from v_1 otherwise since we need to make the v_0 , v_1 , and v_2 weakly connected and $deg^+(v_1) = 1$. Repeat this process until we have n vertices. The last vertex has $deg^+(v) = 0$. Then we need to create an edge with v_{n-1} with $v_i \in \{v_0, ..., v_{n-2}\}$. Therefore there must exists a cycle between v_{n-1} and v_i . Thus the Mimimum number of cycles $v_0 = 1$. Since every vertex $v_0 = 1$, we cannot create any more edges. Thus Maximum number of cycles $v_0 = 1$.

b.
$$Max = |n/2|$$

Since $deg^+(v) = 1, \forall v \in V(G)$. we could only form a an edge from v_i to v_j . The maximum number of cycles is attained when v_j also form an edge with v_i since this loop contains the least edges when the number of edges is fixed. Thus there are in total n/2 in the case when n is even. When n is odd, no more cycles are formed since it $d^-(v) = 0$. Thus $\text{Max} = \lfloor n/2 \rfloor$.

c. Max = n

Since $deg^+(v) = 1, \forall v \in V(G)$, we could only form a an edge from v_i to v_j . The maximum number of cycles is attained when v_i also form an edge with itself since this loop contains the least edges. Thus there are in total n vertices and thus n edges. Thus $\max = n$.

a.
$$k = 1, S = \{e\}$$

 $k'=2, F = \{ea, eh\}$

$$\begin{aligned} \mathbf{k} &= 2, \, \mathbf{S} = \{d, i\} \\ \mathbf{k'} &= 3, \, \mathbf{F} = \{db, di, il\} \end{aligned}$$