1	TO WHOM IT MAY CONCERN:
2	
3	BE IT KNOWN THAT I, DAVID W. WARREN, a
4	citizen of the United States of America, residing in
5	Glendale, in the County of Los Angeles, State of
6	California, have invented a new and useful improvement
7	in
8	
9	
10	COMPACT ENDOTHERMIC CATALYTIC
11	REACTION APPARATUS
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

1	BACKGROUND OF THE INVENTION
2	
3	This application is a continuation-in-part of
4	Serial No. 09/687,098 filed October 16, 2000.
5	This invention relates to the use of
6	endothermic catalytic reaction apparatus operable to
7	produce hydrogen-containing gases from hydrocarbon
8	feedstock.
9	Endothermic catalytic reaction apparatus,
10	for converting hydrocarbon feedstock to hydrogen-rich
11	gases, is well known in the art. Commercial
12	production of hydrogen is commonly achieved by a
13	process known as steam reforming, that involves the
14	endothermic reaction between a mixture of hydrocarbon
15	feedstock and steam passed through a catalyst filled
16	reactor tubing that is heated.
17	In commercial steam reformers for large-
18	scale production of hydrogen from hydrocarbon feeds,
19	endothermic heat is commonly supplied by the
20	combustion of carbonaceous fuel and oxidant in a
21	diffusion or turbulent flame burner that radiates to
22	the refractory walls of a combustion chamber, thereby
23	heating them to incandescence, and providing a radiant

- 1 source for heat transfer to a tubular reaction
- 2 chamber. Uniform radiation to the surfaces of the
- 3 tubular reaction chamber is essential since excessive
- 4 local overheating of the tube surface can result in
- 5 mechanical failure. In large-scale commercial steam
- 6 reformers, mal-distribution of heat within the furnace
- 7 chamber is minimized by providing large spacing
- 8 between the individual reactor tubes, the furnace
- 9 walls, and the burner flames. However, for small-
- 10 scale catalytic reaction apparatus that is uniquely
- 11 compact, such as for the production of hydrogen for
- 12 small fuel cell applications, special design features
- 13 are needed to prevent tube overheating.
- U.S. Patent 4,692,306 to Minet and Warren
- 15 describes a compact reformer comprising an annular
- 16 reaction chamber concentrically disposed around an
- 17 internal burner chamber containing a vertically
- 18 disposed cylindrical radiant burner that uniformly
- 19 radiates in the radial direction. A uniform radiation
- 20 pattern to a concentrically disposed annular reaction
- 21 chamber that surrounds the radiant burner, is
- 22 provided, thereby avoiding the problems with flame
- 23 impingement and local overheating of tube surfaces