线性代数期中试卷 答案 (2019.4.27)

一. 简合与计算(本题共5小题,每小题8分,共40分)

1. 计算
$$A = \begin{pmatrix} 2 & 3 & 4 & 5 \\ -1 & 0 & 0 & 0 \\ 2 & -2 & 0 & 0 \\ 0 & 3 & -3 & 0 \end{pmatrix}$$
 的第一行所有元素的代数余子式之和。
$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -1 & 0 & 0 \end{vmatrix}$$

解:
$$A_{11} + A_{12} + A_{13} + A_{14} = \begin{vmatrix} 1 & 1 & 1 & 1 \\ -1 & 0 & 0 & 0 \\ 2 & -2 & 0 & 0 \\ 0 & 3 & -3 & 0 \end{vmatrix} = - \begin{vmatrix} -1 & 0 & 0 \\ 2 & -2 & 0 \\ 0 & 3 & -3 \end{vmatrix} = 6$$

解:
$$A_{11} + A_{12} + A_{13} + A_{14} = \begin{vmatrix} 1 & 1 & 1 & 1 \\ -1 & 0 & 0 & 0 \\ 2 & -2 & 0 & 0 \\ 0 & 3 & -3 & 0 \end{vmatrix} = - \begin{vmatrix} -1 & 0 & 0 \\ 2 & -2 & 0 \\ 0 & 3 & -3 \end{vmatrix} = 6.$$
解法二: $A_{11} = \begin{vmatrix} 0 & 0 & 0 \\ -2 & 0 & 0 \\ 3 & -3 & 0 \end{vmatrix} = 0$, $A_{12} = - \begin{vmatrix} -1 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & -3 & 0 \end{vmatrix} = 0$, $A_{13} = \begin{vmatrix} -1 & 0 & 0 \\ 2 & -2 & 0 \\ 0 & 3 & 0 \end{vmatrix} = 0$, $A_{14} = - \begin{vmatrix} -1 & 0 & 0 \\ 2 & -2 & 0 \\ 0 & 3 & -3 \end{vmatrix} = 6$, 故 $A_{11} + A_{12} + A_{13} + A_{14} = 6$.

2. 计算
$$X = (X_{ij})_{3\times 3}$$
 使之满足矩阵方程
$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} X \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 2 & 2 \end{pmatrix}.$$

$$\begin{aligned}
&\text{解: } X = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 2 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1} \\
&= \begin{pmatrix} 1/2 & 1/2 & 1/2 \\ 1/2 & -1/2 & 1/2 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 2 & 2 \end{pmatrix} \begin{pmatrix} 1/2 & 1/2 & -1/2 \\ 1/2 & -1/2 & -1/2 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ -1 & 1 & -1 \end{pmatrix} \\
&\text{解法::} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 1 & -1 & 0 \\ 0 & 0 & -1 & 0 & 2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 1 & 3 & 2 \\ 0 & -2 & 0 & 0 & -4 & -2 \\ 0 & 0 & 1 & 0 & -2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 2 & 1 \\ 0 & 2 & 1 & 0 & -2 & -2 \end{pmatrix},
\end{aligned}$$

解法二:
$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 1 & -1 & 0 \\ 0 & 0 & -1 & 0 & 2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 1 & 3 & 2 \\ 0 & -2 & 0 & 0 & -4 & -2 \\ 0 & 0 & 1 & 0 & -2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 2 & 1 \\ 0 & 2 & 1 & 0 & -2 & -2 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & -1 & 0 & 2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 0 & 1 & 0 & -2 & -2 \end{pmatrix} \begin{pmatrix} 0 & 2 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 1 \\ \hline 1 & 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & -2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \\ \hline 2 & 0 & 0 \\ 2 & 1 & 0 \\ -2 & -1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \hline 1 & 0 & 0 \\ 1 & -1 & 0 \\ -1 & 1 & -1 \end{pmatrix}, \text{ id } X = \begin{pmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ -1 & 1 & -1 \end{pmatrix}.$$

3. 已知4阶方阵
$$A$$
 的伴随矩阵 $A^* = \begin{pmatrix} 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 3 \\ 2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \end{pmatrix}$,求 A 。

解: $|A^*| = 27$,且 $|A^*| = |A|^3$,故有 |A| = 3,从而有 $A^*A = |A|E = 3E$,可得 A 可逆且有 $A = 3(A^*)^{-1}$. 设 $A^* = \begin{pmatrix} O & A_1 \\ A_2 & O \end{pmatrix}$,则易知 $(A^*)^{-1} = \begin{pmatrix} O & A_2^{-1} \\ A_1^{-1} & O \end{pmatrix}$.

因为
$$A_1^{-1} = \frac{1}{9} \begin{pmatrix} 3 & -2 \\ 0 & 3 \end{pmatrix}, A_2^{-1} = \frac{1}{3} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$
,故 $A = 3(A^*)^{-1} = \begin{pmatrix} 0 & 0 & 2 & -1 \\ 0 & 0 & -1 & 2 \\ 1 & -2/3 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$.

解法二:
$$|A^*| = 27$$
, 又有 $|A^*| = |A|^3$, 故有 $|A| = 3$, 从而有 $A^*A = |A|E = 3E$,
$$(A^*, 3E) = \begin{pmatrix} 0 & 0 & 3 & 2 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 3 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0 & 0 & 3 & 0 \\ 1 & 2 & 0 & 0 & 0 & 0 & 0 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 0 & 3 & 0 & 3 & -2 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & -1 & 2 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & -2/3 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \end{pmatrix}.$$

故
$$A = \begin{pmatrix} 0 & 0 & 2 & -1 \\ 0 & 0 & -1 & 2 \\ 1 & -2/3 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$
.

4. 给定向量组 $A = \{ \alpha_1, \alpha_2, \cdots, \alpha_{100} \}$ 与 $B = \{ \beta_1, \beta_2, \cdots, \beta_{20} \}$,已知 r(A) = 7,某同学计算出 $r(A \cup B) = 31$,请问对吗?说明理由。

解:不对.

由 r(A) = 7 可知,A 的极大无关组含 7 个向量,不妨设其中的一个极大无关组为 $\alpha_1, \alpha_2, \cdots, \alpha_7$,令向量组 $C = \{\alpha_1, \alpha_2, \cdots, \alpha_7\} \cup B = \{\alpha_1, \alpha_2, \cdots, \alpha_7, \beta_1, \beta_2, \cdots, \beta_{20}\}$,则含 27 个向量的向量组 C 可表示出向量组 $A \cup B$ 中的所有向量,反之亦然,故两个向量组 C 和 $A \cup B$ 等价,于是有 $r(A \cup B) = r(C) \le 27 < 31$.

- 解法二:不对. 假设 $r(A \cup B) = 31$ 成立,则 $A \cup B$ 的极大无关组含 31 个向量,假设其中一个极大无关组为: $\alpha_{i_1},\alpha_{i_2},\cdots,\alpha_{i_m},\beta_{j_1},\beta_{j_2},\cdots,\beta_{j_n}$,则有 $m+n=31,m\leq 100,n\leq 20$,由 r(A)=7 可知,还需满足 $m\leq 7$,故有 $m+n\leq 7+20=27<31=m+n$,矛盾.
- 5. 已知线性方程组 Ax = b 的三个特解为 $\alpha_1 = (1, -2, 3)^T$, $\alpha_2 = (0, -1, -2)^T$, $\alpha_3 = (-4, 2, 1)^T$, r(A) = 1, 试写出 Ax = b 的通解。
- 解:由 r(A) = 1 可知,齐次方程组 Ax = 0 的基础解系含 2 个解向量. 令 $\beta_1 = \alpha_1 - \alpha_2 = (1, -1, 5)^T$, $\beta_2 = \alpha_1 - \alpha_3 = (5, -4, 2)^T$,则 β_1, β_2 线性无关,又 $A\beta_1 = A\alpha_1 - A\alpha_2 = b - b = 0$, $A\beta_2 = A\alpha_1 - A\alpha_3 = 0$,故 β_1, β_2 是 Ax = 0 的基础解系,于是 Ax = b 的通解为: $k_1\beta_1 + k_2\beta_2 + \alpha_1, k_1, k_2 \in R$.
- 二.(10分) 假定矩阵 $A = (\alpha_1, \alpha_2, \alpha_3)$ 为3阶可逆矩阵: $A^{-1} = \begin{pmatrix} \beta_1^T \\ \beta_2^T \\ \beta_3^T \end{pmatrix}$, 令 $P = \alpha_2 \beta_2^T + \alpha_3 \beta_3^T$.
 - (1) 证明 $P^2 = P$ (即 P 是投影矩阵);
 - (2) P 的秩是多少?
 - (3) 给定3维向量 x,Px 可否由 α_2 与 α_3 线性表出?如果可以,写出一个表出方式。
- 解: (1) $E = AA^{-1} = \alpha_1 \beta_1^T + \alpha_2 \beta_2^T + \alpha_3 \beta_3^T = \alpha_1 \beta_1^T + P$, 故 $P = E \alpha_1 \beta_1^T$. 又有 $E = A^{-1}A = (\beta_i^T \alpha_j)$, 故有 $\beta_i^T \alpha_j = 0, i \neq j$, $\beta_i^T \alpha_i = 1$. 于是 $P^2 = (E \alpha_1 \beta_1^T)(E \alpha_1 \beta_1^T) = E 2\alpha_1 \beta_1^T + \alpha_1 (\beta_1^T \alpha_1)\beta_1^T = E \alpha_1 \beta_1^T = P$. 证法二: $E = A^{-1}A = (\beta_i^T \alpha_j)$, 故有 $\beta_i^T \alpha_j = 0, i \neq j$, $\beta_i^T \alpha_i = 1$. $P = (\alpha_2, \alpha_3) \begin{pmatrix} \beta_2^T \\ \beta_3^T \end{pmatrix}, \ P^2 = (\alpha_2, \alpha_3) \begin{pmatrix} \beta_2^T \\ \beta_3^T \end{pmatrix} (\alpha_2, \alpha_3) \begin{pmatrix} \beta_2^T \\ \beta_3^T \end{pmatrix} = (\alpha_2, \alpha_3) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \beta_2^T \\ \beta_3^T \end{pmatrix} = P.$

(2) $P\alpha_1 = \alpha_2 \beta_2^T \alpha_1 + \alpha_3 \beta_3^T \alpha_1 = 0, P\alpha_2 = \alpha_2, P\alpha_3 = \alpha_3,$ 故 $PA = (P\alpha_1, P\alpha_2, P\alpha_3) = (0, \alpha_3, \alpha_3),$ 因为 A 和 A^{-1} 可逆,

故
$$r(P) = r(A^{-1}PA) = r(A^{-1}(0, \alpha_2, \alpha_3)) = r \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = 2.$$

解法二: $P\alpha_1 = \alpha_2 \beta_2^T \alpha_1 + \alpha_3 \beta_3^T \alpha_1 = 0, P\alpha_2 = \alpha_2, P\alpha_3 = \alpha_3$, 故 $PA = P(\alpha_1, \alpha_2, \alpha_3) = (0, \alpha_3, \alpha_3)$, 因为 A 可逆,故 r(PA) = r(P),且 α_2, α_3 线性无关,于是 $r(P) = r(PA) = r(0, \alpha_2, \alpha_3) = 2$.

(3) 因为 $Px = \alpha_2 \beta_2^T x + \alpha_3 \beta_3^T x = (\beta_2^T x) \alpha_2 + (\beta_3^T x) \alpha_3 = k_2 \alpha_2 + k_3 \alpha_3$, 其中 $k_2 = \beta_2^T x, k_3 = \beta_3^T x$, 故 Px 可由 α_2, α_3 线性表出.

三.(10分) 计算
$$(A^*)^*$$
,此处 A^* 表示矩阵 A 的伴随矩阵, $A=\begin{pmatrix} a_1b_1 & a_1b_2 & a_1b_3 \\ a_2b_1 & a_2b_2 & a_2b_3 \\ a_3b_1 & a_3b_2 & a_3b_3 \end{pmatrix}$ 。

解: 因为
$$A = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
 (b_1, b_2, b_3) ,故 $r(A) \le r(b_1, b_2, b_3) \le 1$,故 A 的所有 2 阶子式均为 0 ,于是 $A^* = \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix} = O$,故 $(A^*)^* = O^* = O$.

四. (10分) 计算 $f(\pi)$ 与 $f'(\pi)$,此处:

$$f(x) = \begin{vmatrix} a_1 & b_1 & a_1x^2 + b_1x + c_1 \\ a_2 & b_2 & a_2x^2 + b_2x + c_2 \\ a_3 & b_3 & a_3x^2 + b_3x + c_3 \end{vmatrix}.$$

解:
$$f(x) = \begin{vmatrix} a_1 & b_1 & a_1x^2 + b_1x + c_1 \\ a_2 & b_2 & a_2x^2 + b_2x + c_2 \\ a_3 & b_3 & a_3x^2 + b_3x + c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 常数, 令 \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = w, 则有$$

五.(12分) 给定矩阵
$$A = \begin{pmatrix} 1 & -1 & -3 & -2 & -3 \\ 1 & 3 & 8 & -3 & 9 \\ 3 & 1 & 2 & -7 & 3 \end{pmatrix}$$
,

- (1) 计算 r(A);
- (2) 计算线性方程组 Ax = 0 的基本解组;
- (3) 假定 $\eta = (1, -1, 0, 0, 2)^T$ 是 Ax = b 的解,确定 b 并计算 Ax = b 的通解。

解: (1)
$$A = \begin{pmatrix} 1 & -1 & -3 & -2 & -3 \\ 1 & 3 & 8 & -3 & 9 \\ 3 & 1 & 2 & -7 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & -3 & -2 & -3 \\ 0 & 4 & 11 & -1 & 12 \\ 0 & 4 & 11 & -1 & 12 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1/4 & -9/4 & 0 \\ 0 & 1 & 11/4 & -1/4 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
, $\forall t \ r(A) = 2$

(2) 由上述过程可知基本解组为: $\alpha_1 = (1/4, -11/4, 1, 0, 0)^T$, $\alpha_2 = (9/4, 1/4, 0, 1, 0)^T$, $\alpha_3 = (0, -3, 0, 0, 1)^T$.

$$(3) b = A\eta = \begin{pmatrix} 1 & -1 & -3 & -2 & -3 \\ 1 & 3 & 8 & -3 & 9 \\ 3 & 1 & 2 & -7 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} -4 \\ 16 \\ 8 \end{pmatrix}, \quad \text{if } \text{if } \text{if } k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 + \eta, k_1, k_2, k_3 \in R.$$

六.(10分) 写出向量组 $\alpha_1=(1+a,1,1,1)^T, \alpha_2=(1,1+a,1,1)^T, \alpha_3=(1,1,1+a,1)^T$ 的极大线性 无关组; $\beta=(1,1,1,b)^T$ 能否由 $\alpha_1,\alpha_2,\alpha_3$ 线性表出?如果可以,表出方式唯一吗?

解: (1)
$$B = (\alpha_1, \alpha_2, \alpha_3, \beta) = \begin{pmatrix} 1+a & 1 & 1 & 1 \\ 1 & 1+a & 1 & 1 \\ 1 & 1 & 1+a & 1 \\ 1 & 1 & 1 & b \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & b \\ a & 0 & 0 & 1-b \\ 0 & a & 0 & 1-b \\ 0 & 0 & a & 1-b \end{pmatrix}.$$

当
$$a=0$$
 时,向量组 $\alpha_1,\alpha_2,\alpha_3$ 的一个极大无关组为: $\alpha_1=(1,1,1,1)^T$.
当 $a\neq 0$ 时, $B\to \begin{pmatrix} 1 & 0 & 0 & (1-b)/a \\ 0 & 1 & 0 & (1-b)/a \\ 0 & 0 & 1 & (1-b)/a \\ 0 & 0 & 0 & ((a+3)b-3)/a \end{pmatrix}$,故 $\alpha_1,\alpha_2,\alpha_3$ 的极大无关组就是 $\alpha_1,\alpha_2,\alpha_3$.

- (2) 由 (1) 的过程可知, 当 $a=0,b\neq 1$ 时, 不能表示 β .
 - 当 a=0,b=1 时,能表示 β ,由 r(B)=1<3 可知表达式不唯一.
 - 当 $a \neq 0, b \neq 3/(a+3)$ 时,不能表示 β .
 - 当 $a \neq 0, b = 3/(a+3)$ 时,能表示 β ,由 r(B) = 3 可知表达式唯一.
- 七.(8分) $A = (a_{ij})_{m \times n}$ 为实矩阵,b 为 m 维实向量,证明 $A^TAx = A^Tb$ 有解。 (提示: 先证明 $r(A^T A) = r(A)$)
- 证: 对方程组 $A^TAx = A^Tb$,有 $r(A^TA) \le r(A^TA, A^Tb) = r(A^T(A, b)) \le r(A^T) = r(A)$. 若 $r(A^TA) = r(A)$, 则有 $r(A^TA) = r(A^TA, A^Tb)$, 于是 $A^TAx = A^Tb$ 有解. 故只要证明 $r(A^TA) = r(A)$.

因为 $Ax = 0 \Rightarrow A^T Ax = 0$,且 $A^T Ax = 0 \Rightarrow x^T A^T Ax = (Ax)^T (Ax) = 0 \Rightarrow Ax = 0$,

故方程组 Ax = 0 与 $A^T Ax = 0$ 同解. 若 x 为 n 维, 解空间维数为 k, 可得 $r(A) = n - k = r(A^T A)$.