SLR - Penguins

April 3, 2024

```
[1]: import pandas as pd
     import seaborn as sns
[2]: data = sns.load_dataset("penguins")
[3]: data.head()
[3]:
       species
                   island bill_length_mm
                                            bill_depth_mm flipper_length_mm
     O Adelie Torgersen
                                      39.1
                                                     18.7
                                                                        181.0
     1 Adelie Torgersen
                                      39.5
                                                     17.4
                                                                        186.0
     2 Adelie Torgersen
                                      40.3
                                                     18.0
                                                                        195.0
     3 Adelie Torgersen
                                      {\tt NaN}
                                                      NaN
                                                                          {\tt NaN}
     4 Adelie Torgersen
                                      36.7
                                                                        193.0
                                                     19.3
        body_mass_g
                        sex
    0
             3750.0
                       Male
     1
             3800.0 Female
     2
             3250.0 Female
     3
                NaN
                        NaN
     4
             3450.0 Female
[4]: # Keep Adelie and Gentoo penguins, drop NAs,
     data_sub = data[data["species"] != "Chinstrap"]
     data_final = data_sub.dropna()
     data_final.reset_index(inplace = True, drop = True)
[5]: #Scatterplot Matrix
     sns.pairplot(data_final)
```

[5]: <seaborn.axisgrid.PairGrid at 0x15ec117f0>

Dep. Variable:	body_mass_g	R-squared:	0.769
Model:	OLS	Adj. R-squared:	0.768
Method:	Least Squares	F-statistic:	874.3
Date:	Sat, 16 Mar 2024	Prob (F-statistic):	1.33e-85
Time:	16:28:09	Log-Likelihood:	-1965.8
No. Observations:	265	AIC:	3936.
Df Residuals:	263	BIC:	3943.
Df Model:	1		
Covariance Type:	nonrobust		

	\mathbf{coef}	std err	· t	$\mathbf{P}> \mathbf{t} $	[0.025]	0.975]
Intercept	-1707.2919	205.640	-8.302	0.000	-2112.202	-1302.382
$bill_length_mm$	141.1904	4.775	29.569	0.000	131.788	150.592
Omnibus:		2.060	Durbin-V	Watson:	2.067	
Prob(Omnibus):		0.357	Jarque-Bera (JB):): 2.103	
Skew:		0.210	Prob(JB):		0.349	
Kurtosis:		2.882	Cond. N	о.	357.	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

y = intercept + slope * x

```
Body mass(g) = -1707.2919 + 141.1904 * bill length (mm)
```

```
[11]: # Subset x variable

x = ols_data["bill_length_mm"]

#Getting predictions from the model
fitted_values = model.predict(x)
```

```
[12]: #Calculate residuals
residuals = model.resid
```

```
[19]: import matplotlib.pyplot as plt
```

```
[23]: sns.regplot(x = "bill_length_mm", y = "body_mass_g", data = ols_data)

plt.show()
```



```
[25]: fig = sns.scatterplot(x = fitted_values, y = residuals)
    fig.axhline(0)
    fig.set_xlabel("Fittad values")
    fig.set_ylabel("Residuals")
    plt.show()
```



```
[27]: fig = sns.histplot(residuals)
  fig.set_xlabel("Residual Value")
  fig.set_title("Histogram of Residuals")
  plt.show()
```



```
[28]: import statsmodels.api as sm
fig = sm.qqplot(model.resid, line = 's')
plt.show()
```


[]: