

数据库技术与应用

北京邮电大学计算机学院 肖达 xiaoda99@gmail.com

上节课回顾

- 1.0 引言
 - > 1.0.1 数据库技术的发展历史及趋势
 - > 1.0.2 当前流行的数据库产品
- 1.1 数据库系统概述
 - > 1.1.1 四个基本概念
 - Data、DB、DBMS、DBS
 - > 1.1.2 数据管理技术的产生和发展
 - 人工管理 → 文件系统 → 数据库系统
 - > 1.1.3 数据库系统的特点
 - ■数据结构化、共享性高、独立性高、由DBMS统一管理

1.2 数据模型

- 1.2.1 两大类数据模型
- 1.2.2 数据模型的组成要素
- 1.2.3 概念模型
- 1.2.4 最常用的数据模型
- 1.2.5 层次模型
- 1.2.6 网状模型
- 1.2.7 关系模型

数据模型

- 在数据库中用数据模型这个工具来<u>抽象、表示</u> 和处理现实世界中的事物。
- 通俗地讲数据模型就是现实世界的抽象和模拟。
- 数据模型应满足三方面要求
 - 》能比较真实地模拟现实世界
 - > 容易为人所理解
 - > 便于在计算机上实现

1.2.1 两大类数据模型

- 数据模型分为两类(分属两个不同的层次)
 - (1) 概念模型 也称信息模型,它是按用户的观点来对数据和信息建模,用于数据库设计。
 - (2) 逻辑模型和物理模型 按计算机系统的观点对数据建模, 用于DBMS的实现。
 - **逻辑模型**主要包括网状模型、层次模型、关系模型、面向对象模型等,按计算机系统的观点对数据建模,用于**DBMS**实现。
 - 物理模型是对数据最底层的抽象,描述数据在系统内部的表示 方式和存取方法,在磁盘或磁带上的存储方式和存取方法。

两大类数据模型(续)

现实世界中客观对象的抽象过程

两大类数据模型(续)

1.2 数据模型

- 1.2.1 两大类数据模型
- 1.2.2 概念模型
- 1.2.3 数据模型的组成要素
- 1.2.4 最常用的数据模型
- 1.2.5 层次模型
- 1.2.6 网状模型
- 1.2.7 关系模型

概念模型

- 概念模型的用途
 - > 概念模型用于信息世界的建模
 - > 是现实世界到机器世界的一个中间层次
 - > 是数据库设计的有力工具
 - > 数据库设计人员和用户之间进行交流的语言
- 对概念模型的基本要求
 - > 较强的语义表达能力
 - 能够方便、直接地表达应用中的各种语义知识
 - ▶ 简单、清晰、易于用户理解

、信息世界中的基本概念

- (1) 实体(Entity)
 - 客观存在并可相互区别的事物称为实体。可以是具体的人、事、物或抽象的概念。
- (2) 属性(Attribute) 实体所具有的某一特性称为属性。一个实体可以由若干个属性来刻画。
- (3) 码(Key) 唯一标识实体的属性集称为码。
- (4) 域(Domain) 属性的取值范围称为该属性的域。
- (5) 实体型(Entity Type) 用实体名及其属性名集合来抽象和刻画同类实体称为实体型 例子: 学生(学号、姓名、性别、出生年月)

信息世界中的基本概念(续)

(6) 实体集(Entity Set)

同一类型实体的集合称为实体集

学号	姓名	性别	出生日期	
20021001	张三	男	1978-5-6	
20021003	李四	女	1980-1-24	
20021004	王五	男	1979-11-12	

(7) 联系(Relationship)

- 现实世界:事物内部以及事物之间的联系
- ▶ → 信息世界:实体内部的联系和实体之间的联系

二、两个实体型之间的联系

- 一对一联系 (1:1)
 - > 实例
 - 一个班级只有一个正班长
 - 一个班长只在一个班中任职
 - > 定义:

如果对于实体集A中的每一个实体,实体集B 中至多有一个(也可以没有)实体与之联系, 反之亦然,则称实体集A与实体集B具有一对

一联系,记为1:1

1:1联系

两个实体型之间的联系(续)

- 一对多联系(1: n)
 - > 实例
 - 一个班级中有若干名学生, 每个学生只在一个班级中学习
 - > 定义:

如果对于实体集A中的每一个实体,实体集B中有n个实体(n≥0)与之联系,反之,对于实体集B中的每一个实体,实体集A中至多只有一个实体与之联系,则称实体集A与实体集B有一对多联系,记为1:n

1:n联系

两个实体型之间的联系(续)

- 多对多联系(m:n)
 - 实例

课程与学生之间的联系:

- 一门课程同时有若干个学生选修
- 一个学生可以同时选修多门课程

> 定义:

如果对于实体集A中的每一个实体,实体集B中有n个实体(n≥0)与之联系,反之,对于实体集B中的每一个实体,实体集A中也有m个实体(m≥0)与之联系,则称实体集A与实体B具有多对多联系,记为m:n

m:n联系

两个实体型之间的联系

用图形来表示两个实体型之间的三类联系

15

1:n联系

三、两个以上实体型之间的联系

- 两个以上实体型之间一对多联系
 - 》若实体型 E_1 , E_2 ,…, E_n 存在联系,对于实体型 E_j (j=1,2,…,i-1,i+1,…,n)中的给定实体,最多只和 E_i 中的一个实体相联系,则我们说 E_i 与 E_1 , E_2 ,…, E_{i-1} , E_{i+1} ,…, E_n 之间的联系是一对多的

• 实例

课程、教师与参考书三个实体型 每一个教师可以讲授若干门课程,每 门课程可以使用若干本参考书

两个以上实体型间1:n联系

两个以上实体型之间的联系(续)

- 两个以上实体型间的一对一联系
- 两个以上实体型间的多对多联系
 - > 实例

供应商、项目、零件三个实体型

一个供应商可以供给多个项目多种零件 每个项目可以使用多个供应商供应的零件 每种零件可由不同供应商供给

两个以上实体型间m:n联系

四、单个实体型内的联系

- 同一实体集内的各实体之间的关系
- 一对多联系
 - 实例

职工实体型内部具有领导与被领导的联系 某一职工(干部)"领导"若干名职工 一个职工仅被另外一个职工直接领导 这是一对多的联系

单个实体型内部1:n联系

一对一联系和多对多联系 请举例

练习

- 下列实体型之间有何种联系?
 - ▶ 电影和演员
 - ▶ 电影和导演
 - > 淘宝网的卖家和物品
 - ▶ 淘宝网的卖家、买家和物品
 - > QQ的用户

五、概念模型的一种表示方法

- 实体一联系方法(E-R方法)
 - > Peter Chen于1976年提出
 - >用E-R图来描述现实世界的概念模型
 - ▶ E-R方法也称为E-R模型

E-R图

■ 实体型

用矩形表示,矩形框内写明实体名。

■ 属性 **学生 教师** 用椭圆形表示,并用无向边将其与相应的实体连接起来

■ 联系

> 联系本身:

用菱形表示,菱形框内写明联系名,并用无向边分别与有关实体连接起来,同时在无向边旁标上联系的类型(1:1、1:n或m:n)

联系的表示方法

联系的表示方法示例

联系的属性

❖联系的属性:

联系本身也是一种实体型,也可以有属性。如果一个联系具有属性,则这些属性也要用无向边与该联系连接起来

六、一个实例

用E-R图表示某个工厂物资管理的概念模型

- 实体
 - **仓库:** 仓库号、面积、电话号码
 - **零件**:零件号、名称、规格、单价、描述
 - **) 供应商:** 供应商号、姓名、地址、电话号码、帐号
 - **▶ 项目:** 项目号、预算、开工日期
 - **职工:** 职工号、姓名、年龄、职称
- 实体之间的联系如下:
 - 一个仓库可以存放多种零件,一种零件可以存放在多个仓库中。用库存量来表示某种零件在某个仓库中的数量
 - > 一个仓库有多个职工当仓库保管员,一个职工只能在一个仓库工作
 - > 职工之间具有领导-被领导关系。即仓库主任领导若干保管员

一个实例

(c) 完整的实体-联系图

练习: 画ER图

- 练习1: 某工厂生产若干种产品,每种产品由不同零件组成,有的零件可用在不同的产品上。这些零件由不同的原料制成,不同零件所用的原料可以相同。这些零件按所属的不同产品分别放在不同的仓库中,原料按照类别放在不同的仓库中。
- 练习2: 学校有若干个系,每个系有若干个教研室,每个教研室有若干教师。同时每个系有若干学生。

1.2 数据模型

- 1.2.1 两大类数据模型
- 1.2.2 概念模型
- 1.2.3 数据模型的组成要素
- 1.2.4 最常用的数据模型
- 1.2.5 层次模型
- 1.2.6 网状模型
- 1.2.7 关系模型

1.2.2 数据模型的组成要素

- ■数据结构
- ■数据操作
- 完整性约束条件

一、数据结构

- 什么是数据结构
 - ▶ 描述数据库的组成对象,以及对象之间的联系
- ■描述的内容
 - > 与数据类型、内容、性质有关的对象
 - > 与数据之间联系有关的对象
- 数据结构是对系统静态特性的描述

二、数据操作

- 数据操作
 - > 对数据库中各种对象(型)的实例(值)允许执行的操作及有关的操作 规则
- 数据操作的类型
 - ▶ 查询
 - ▶ 更新(包括插入、删除、修改)
- 数据模型对操作的定义
 - > 操作的确切含义
 - > 操作符号
 - > 操作规则(如优先级)
 - > 实现操作的语言
- 数据操作是对系统动态特性的描述

三、数据的完整性约束条件

- 数据的完整性约束条件
 - > 一组完整性规则的集合。
 - » 完整性规则: 给定的数据模型中数据及其联系所具有的制约和储存规则,用以限定符合数据模型的数据库状态以及状态的变化,以保证数据的正确、有效、相容。
- 数据模型对完整性约束条件的定义
 - > 必须遵守的基本的通用的完整性约束条件。
 - 例如,关系模型中,任何关系必须满足实体完整性和参照完整性两个条件。
 - > 反映具体应用所涉及的特定的约束条件。
 - 例子: 学校数据库中规定博士学生的年龄必须小于45岁
 - 例子: 银行的系统中规定帐号的余额不能小于1元

1.2 数据模型

- 1.2.1 两大类数据模型
- 1.2.2 概念模型
- 1.2.3 数据模型的组成要素
- 1.2.4 最常用的数据模型
- 1.2.5 层次模型
- 1.2.6 网状模型
- 1.2.7 关系模型

两大类数据模型(续)

现实世界中客观对象的抽象过程

1.2.4 最常用的数据模型

- 格式化模型
 - ➢ 层次模型(Hierarchical Model)
 - ➤ 网状模型(Network Model)
- 关系模型(Relational Model)
- 面向对象模型(Object Oriented Model)
- 对象关系模型(Object Relational Model)

1.2.5 层次模型

- 层次模型是数据库系统中最早出现的数据模型
- 层次数据库系统的典型代表是IBM公司的IMS(Information Management System)数据库管理系统
- 层次模型用树形结构来表示各类实体以及实体间的联系

层次数据模型的数据结构

■ 层次模型

满足下面两个条件的基本层次联 系的集合为层次模型

- 1. 有且只有一个结点没有双亲结点, 这个结点称为根结点
- 2. 根以外的其它结点有且只有一个 双亲结点
- 层次模型中的几个术语
 - 根结点,双亲结点,兄弟结点, 叶结点

层次数据模型的数据结构(续)

表示方法

- **文体型:**用记录类型描述,每个结点表示一个记录类型(实体)
- ▶ **属性:** 用字段描述,每个记录类型可包含若干个字段

▶ 联系: 用结点之间的连线表示记录类型(实体)之间的一对多的父子 联系 根结点 系 办公地点 系编号 系名 记录型系的子女结点 记录型教员的双亲结 学生 教研室 学号 教研室编号 教研室名 姓名 成绩 教 员 职工号 姓名 研究方向 叶结点

Database Technology and Its Application

层次数据模型的数据结构(续)

教员学生层次数据库的一个值

层次数据模型的数据结构(续)

- 层次模型的特点:
 - > 结点的双亲是唯一的
 - > 只能直接处理一对多的实体联系
 - 任何记录值只有按其路径查看时,才能显出它的全部意义
 - > 没有一个子女记录值能够脱离双亲记录值而独立存在

多对多联系在层次模型中的表示

- 多对多联系在层次模型中的表示
 - > 用层次模型间接表示多对多联系
 - ▶ 方法 将多对多联系分解成一对多联系
 - > 分解方法
 - 冗余结点法
 - ■虚拟结点法
 - > 例子: 学生选课数据库

多对多联系在层次模型中的表示

■ 例子: 学生选课数据库

层次模型的数据操纵与完整性约束

■ 层次模型的数据操纵

- ▶查询
- > 插入
- ▶删除
- > 更新

■ 层次模型的完整性约束条件

- > 无相应的双亲结点值就不能插入子女结点值
- » 如果删除双亲结点值,则相应的子女结点值也 被同时删除

四、层次数据模型的存储结构

■ 邻接法

> 按照层次树前序遍历的顺序把所有记录值依次邻接存放,即通过物理空间的位置相邻来实现层次顺序

A1 B1 C3 C5 C7 C14 B4 C2 C9 B6 C4 C6 C8 A2	2	
--	---	--

层次数据模型的存储结构(续)

- 链接法
 - > 用指引来反映数据之间的层次联系
 - > 子女一兄弟链接法
 - > 层次序列链接法

层次数据模型的存储结构(续)

•子女•兄弟链接法

每个记录设两类指针,分别指向最左边的子女(每个记录型对应一个)和最近的兄弟

层次数据模型的存储结构(续)

> 层次序列链接法

按树的前序穿越顺序链接各记录值

五、层次模型的优缺点

- 优点
 - > 层次模型的数据结构比较简单清晰
 - ▶ 查询效率高,性能优于关系模型,不低于网状模型
 - > 层次数据模型提供了良好的完整性支持
- 缺点
 - > 多对多联系表示不自然
 - 对插入和删除操作的限制多,应用程序的编写比较复杂
 - 查询子女结点必须通过双亲结点

1.2 数据模型

- 1.2.1 两大类数据模型
- 1.2.2 数据模型的组成要素
- 1.2.3 概念模型
- 1.2.4 最常用的数据模型
- 1.2.5 层次模型
- 1.2.6 网状模型
- 1.2.7 关系模型

1.2.6 网状模型

- 网状数据库系统采用网状模型作为数据的组织方式
- 典型代表是DBTG系统:
 - ▶ 亦称CODASYL系统
 - > 70年代由DBTG提出的一个系统方案
 - > 奠定了数据库系统的基本概念、方法和技术

■ 实际系统

- ▶ 通用电气公司的IDS
- ➤ Cullinet Software Inc.公司的 IDMS
- ➤ Univac公司的 DMS1100
- ➤ Honeywell公司的IDS/2
- ▶ HP公司的IMAGE

1. 网状数据模型的数据结构

■ 网状模型

满足下面两个条件的基本层次联系的集合:

- 1. 允许一个以上的结点无双亲;
- 2. 一个结点可以有多于一个的双亲。
- 表示方法(与层次数据模型相同)

实体型: 用记录类型描述

每个结点表示一个记录类型(实体)

属性: 用字段描述

每个记录类型可包含若干个字段

联系: 用结点之间的连线表示记录类型(实体)之间的一对多

的父子联系

网状数据模型的数据结构 (续)

- 网状模型与层次模型的区别
 - > 网状模型允许多个结点没有双亲结点
 - > 网状模型允许结点有多个双亲结点
 - 网状模型允许两个结点之间有多种联系(复合联系)
 - > 网状模型可以更直接地去描述现实世界
 - > 层次模型实际上是网状模型的一个特例

网状数据模型的数据结构(续入

❖网状模型中子女结点与双亲结点的联系可以不唯一 要为每个联系命名,并指出与该联系有关的双亲记录和子女记录

网状数据模型的数据结构(续)

网状模型的例子

网状数据模型的数据结构(续义

- 多对多联系在网状模型中的表示
 - > 用网状模型间接表示多对多联系
 - > 方法: 将多对多联系直接分解成一对多联系

》例如:一个学生可以选修若干门课程,某一课程可以被多个学生选修,学生与课程之间是多对多联系引进一个学生选课的联结记录,由3个数据项组成学号、课程号、成绩

表示某个学生选修某一门课程及其成绩

网状数据模型的数据结构(续)

图1.24 学生/选课/课程的网状数据模型

网状数据模型的操纵与完整性约束(

- 网状数据库系统(如DBTG)对数据操纵加
 - 了一些限制,提供了一定的完整性约束
 - > 码: 唯一标识记录的数据项的集合
 - > 支持双亲记录和子女记录之间某些约束条件
 - 有些子女记录要求双亲记录存在才能插入,双亲记录删除时也连同删除。例如学生选课记录。

三、网状数据模型的存储结构

- 关键
 - > 实现记录之间的联系
- ■常用方法
 - > 单向链接
 - > 双向链接
 - > 环状链接
 - > 向首链接

网状数据模型的存储结构(续)

图1.25 学生/选课/课程的网状数据库实例

四、网状数据模型的优缺点

优点

- > 能更为直接地描述现实世界,如一个结点可以有多个双亲
- > 具有良好的性能, 存取效率较高

■ 缺点

- > 结构比较复杂,而且随着应用环境的扩大,数据库的结构 就变得越来越复杂,不利于最终用户掌握
- ▶ DDL、DML语言复杂,用户不容易使用
- ▶ 记录类型联系变动后涉及链接指针的调整,扩充和维护都 比较复杂

格式化模型的共同缺点

记录之间的联系是通过存取路径实现的,应 用程序在访问数据时必须选择适当的存取路 径,用户必须了解系统结构的细节,加重了 编写应用程序的负担。

不支持集合处理,即未提供一次处理多个记录的功能。

格式化模型的共同缺点

通过存储路径访问数据

1.2 数据模型

- 1.2.1 两大类数据模型
- 1.2.2 数据模型的组成要素
- 1.2.3 概念模型
- 1.2.4 最常用的数据模型
- 1.2.5 层次模型
- 1.2.6 网状模型
- 1.2.7 关系模型

1.2.7 关系模型

- 关系数据库系统采用关系模型作为数据的组织方式
- 1970年美国IBM公司San Jose研究室的研究员 E.F.Codd首次提出了数据库系统的关系模型
- 计算机厂商新推出的数据库管理系统几乎都支持关系模型

小插曲: Edgar F. Codd 生平

- 1923年生于英国多塞郡波特兰岛,曾就读于牛津大学, 主修数学和化学。
- 二战中,作为一名机长在英国皇家空军服役。
- 战争结束后的1948年,来到纽约成为IBM公司的一名程序员。
- 50年代末,为IBM STRETCH计算机发明了"多道程序设计"技术。
- 60年代初重返校园,在密歇根大学深造,1963年获得硕士学位,1965年取得计算机科学博士学位。
- 毕业后调到IBM公司San Jose研究中心工作,开始从 事关系型数据管理模型的研究。
- 1970年发表关系数据模型的开创性论文。

一、关系数据模型的数据结构

在用户观点下,关系模型中数据的逻辑结构是一张 二维表,它由行和列组成。

当	学生登记表	属性					元组
	学号	姓名	年龄	性别	系名	年级	
	2005004	王小明	19	女	社会学	2005	
	2005006	黄大鹏	20	男	商品学	2005	
	2005008	张文斌	18	女	法律	2005	
	• • •	• • •	• • •	• • •	•••	• • •	

- 关系(Relation)
 - 一个关系对应通常说的一张表
- ➤ 元组(Tuple) 表中的一行即为一个元组
- 属性(Attribute)

表中的一列即为一个属性,给每一个属性起一个名称即属性名

	学生登	记表					_
	学号	姓名	年龄	性别	系名	年级	
	95004	王小明	19	女	社会学	95	 元组
٦	95006	黄大鹏	20	男	商品学	95	
	95008 (张文斌	18	女	法律学	95	
):					
•	人 主码 _{Da}	tabase Te	〜 分量 echnology	and Its A	y 属性 tion	1	

▶ 主码(Key)

表中的某个属性组,它可以唯一确定一个元组。

26年28年末

- > 域 (Domain) 属性的取值范围。
- ▶ 分量 元组中的一个属性值。

> 关系模式

对关系的描述

关系名(属性1,属性2,...,属性n)

学生(学号,姓名,年龄,性别,系,年级)

	_ 学生登	14表					_
	学号	姓名	年龄	性别	系名	年级	
	95004	王小明	19	女	社会学	95	——元组
١	95006	黄大鹏	20	男	商品学	95	
	95008 (张文斌	18	女	法律学	95	
,							
•	/ 主码	,	\ 分量	,	/ 属性	•	

■ 关系必须是规范化的,满足一定的规范条件

最基本的规范条件:关系的每一个分量必须是一个不可分的 数据项,不允许表中还有表

图1.27中工资是可分的数据项,不符合关系模型要求

	班号	· 组名 (凝	扣除	实发
		-11 0 (基本	补助		
1	004	甲组	3200	20	100	3120
,l,	5	乙组	1500		50	1450
	008	甲组	2200	150	100	2250

图1.27 一个工资表(表中有表)实例

1:N

学生(学号,姓名,性别,班号)

选课(学号,课程号,成绩)

课程(课程号,课程名,学分)

M:N

■ 例子: 教员学生数据库

关系数据模型的操纵与完整性约束

- 数据操作是集合操作,操作对象和结果都是关系
 - > 查询
 - > 插入
 - ▶删除
 - > 更新

- 关系的完整性约束条件
 - > 实体完整性
 - > 参照完整性
 - > 用户定义的完整性

三、关系数据模型的存储结构

- 实体及实体间的联系都用表来表示
- 表以文件形式存储
 - > 有的DBMS一个表对应一个操作系统文件
 - > 有的DBMS自己设计文件结构

关系数据模型的优缺点

A2 · · · 系(系编号,系名,办公地点) 教研室(教研室编号,教研室名,系编号) 数员(职工号,姓名,研究方向,教研室编号)

学生(学号,姓名,性别,班号) 选课(学号,课程号,成绩) 课程(课程号,课程名,学分)

四、关系数据模型的优缺点

优点

- > 建立在严格的数学概念的基础上
- > 可以描述一对一、一对多和多对多的联系
- > 概念单一
 - 实体和各类联系都用关系来表示
 - 对数据的检索结果也是关系
- > 存取路径对用户透明
 - 用户只要指出"干什么",不必详细说明"怎么干"
 - 具有更高的数据独立性,更好的安全保密性
 - 简化了程序员的工作和数据库开发建立的工作

■ 缺点

- > 存取路径对用户透明导致查询效率往往不如非关系数据模型
- > 为提高性能,必须对用户的查询请求进行优化增加了开发DBMS的难度

小结

- 数据库设计的一般过程
- 数据模型的组成要素
 - > 数据结构、数据操作、数据的完整性约束条件
- ■概念模型
 - > 实体、属性、联系
 - ► E-R图
- ■层次模型
- ■网状模型
- 关系模型

课堂练习:画E-R图

- 某航班管理系统中有如下基本信息:
 - **▶ 乘机人:**身份证号、姓名、住址、电话;
 - » **航班:** 航班号、起飞日期、起飞时间、飞机型号
- 顾客可以预定某天的某个航班生成订单,订单中包含座位号信息。

作业: 画E-R图

■学校有若干系,每个系有若干班级,每个班级有若干本科生或研究生;每个系有若干教研室,每个教研室有若干教授、副教授和讲师,教授和副教授可以指导研究生。学生可以选修课程。