Shimura varieties and their special cycles - in the case of O(0,2), O(1,2), and O(2,2)

Speaker: dao_kevin

Outline:

- 1. Generalities on Shimura v arieties
- 2. Orthogonal Shimura varieties
- 3. Special cycles
- 4. More examples

1 Shimura varieties

Definition (vague)

Let (G, \mathbb{D}) be a reductive algebraic group and a complx symmetric space. If this pair satisfies some conditions and G acts on \mathbb{D} in some way, then this is a Shimura datum.

From a Shimura datum and given an open compact $K \subseteq G(\mathbb{A}_f)$, one can construct a double coset

$$X_K = G(\mathbb{Q}) ackslash \mathbb{D} imes G(\mathbb{A}_f) / K$$

The X_K 's are very nice to study. Also the action is as follows:

$$g[x,h] = [gx,gh] \ [x,h]k = [x,hk]$$

Properties

(Important)

 X_K decomposes as a disjoint union

$$\coprod_j \Gamma_j ackslash \mathbb{D}^+$$

of connected; here, $\Gamma_j=G(\mathbb{Q})_+\cap g_jKg_j^{-1}$ and the g_j 's are double coset representatives of $G(\mathbb{Q})_+\setminus G(\mathbb{A}_f)/K$

Theorem

(Reflex)

the X_K 's are defined over a number field called the **reflex field**. Moreover, the reflex field does not depend on K.

≡ Example

Let $G=\mathrm{GL}_2,\,K=\ker(\mathrm{GL}_2(\hat{\mathbb{Z}}) o\mathrm{GL}_2(\mathbb{Z}/N\mathbb{Z})).$ Let

$$\mathbb{D}=\{G(\mathbb{R}) ext{-conjugacy classes of a map }h_0:\mathbb{S} o \mathrm{GL}_{2,\mathbb{R}},\quad a+bi\mapsto egin{pmatrix} a & b\ -b & a \end{pmatrix}\}$$

We get a decomposition

$$X_K = \coprod_{\mathbb{Z}/N\mathbb{Z}^{ imes}} Y(\Gamma(N))$$

where $Y(\Gamma(N))$ is constructed as $\mathbb{H}/\Gamma(N)$

Computation

How do we know that the components correspond to elements of $\mathbb{Z}/N\mathbb{Z}^{\times}$? We need to see what the double coset representatives of $\mathrm{GL}_2(\mathbb{Q})_+ \backslash \mathrm{GL}_2(\mathbb{A}_f)/K$ are:

$$egin{aligned} \operatorname{GL}_2(\mathbb{Q})_+ ackslash \operatorname{GL}_2(\mathbb{A}_f)/K &= \operatorname{GL}_2(\mathbb{Q})_+ ackslash \operatorname{GL}_2(\mathbb{Q}) \operatorname{GL}_2(\hat{\mathbb{Z}})/K \ &= (\mathbb{Z}/N\mathbb{Z})^{ imes} \end{aligned}$$

2. Orthogonal Shimura varieties

Here is the setup:

- 1. Let (V,Q) be an quadratic space of signature $(n,2)^{[1]}$.
- 2. $C(V)=T(V)/(V^2-Q(v))$ is the Clifford algebra. It decomposes as $C(V)=C^{\mathrm{even}}\oplus C^{\mathrm{odd}}(V)$, and we have an embedding $V\hookrightarrow C^{\mathrm{odd}}(V)$.

Write
$$G = \mathrm{GSpin}(V) = \{g \in C^{\mathrm{even}}(V)^{ imes} : gVg^{-1} = V\}$$

Table of accidental isomorphisms

$\dim V = n+2$	$C^{ m even}(V)$	$\operatorname{GSpin}(V)$
$\dim V=2$	Imaginary quadratic field K	$\mathrm{Res}_{K/\mathbb{Q}}\mathbb{G}_{K,m}\simeq K^{ imes}$
$\dim V=3$	Quaternion algebras over Q	GL_2 or $B^ imes$ (indeterminate quaternion algebra B)
$\dim V = 4$	Quaternion algebras over the center $Z((C^{\mathrm{even}}(V)))$	$\mathrm{GL}_2 imes_{\mathbb{G}_m}\mathrm{GL}_2$ or $\mathrm{GL}_{2,F}^{\det\in\mathbb{Q}^ imes}$, $B^ imes imes_{\mathbb{G}_m}B^ imes$

An example of why these happen for n=0

Let (V,Q) is a quadratic space and say that V has an orthogonal basis $\{e_1,e_2\}$: $V=\mathbb{Q}e_1\oplus\mathbb{Q}e_2$. The Clifford algebra decomposes as

$$C(V) \cong \mathbb{Q} \oplus \mathbb{Q} e_1 \oplus \mathbb{Q} e_2 \oplus \mathbb{Q} (e_1 \otimes e_2)$$

and

$$C^{\mathrm{even}}(V) \cong \mathbb{Q}[X]/(X^2 + q_1q_2)$$

where $q_i = Q(e_i)$. This isomorphism then tells you that

$$C^{\mathrm{even}}(V)^{ imes}\cong \mathbb{Q}(\sqrt{-q_1q_2})^{ imes}$$

Remark

Relationship between SO and GSpin: there is a short exact sequence

$$1 \to \mathbb{G}_m \to \mathrm{GSpin}(V) \to \mathrm{SO}(V) \to 1;$$

Here, $g \in \mathrm{GSpin}(V)$ is sent to the element of $\mathrm{SO}(V)$ which acts on V via gVg^{-1} . Moreover, in this case, $\mathrm{SO}(V)$ is the group of norm 1 elements of K^{\times} .

Example Orthogonal Sr associated to O(0,2)

Let $k=\mathbb{Q}(\sqrt{d})$ with d<0. Let $G=k^{\times}$. Let \mathbb{D} be the Grassmannian of regular definite oriented 2 planes in $V(\mathbb{R})$. There are 2 orientations of $V_{\mathbb{R}}$, denoted by z_0^{\pm} . Let $K=\hat{\mathcal{O}_k}^{\times}\subseteq \mathbb{A}_{f,k}^{\times}$. Let We have $X_K=k^{\times}\backslash\{z_0^{\pm}\}\times \mathbb{A}_{f,k}^{\times}/\hat{\mathcal{O}}_k^{\times}=\{z_0^{\pm}\}\times \mathrm{Cl}(k)$.

Why is this?

We need to count the number of connected components.

We have $k^ imes ackslash \mathbb{A}_{f,k}^ imes/\hat{\mathcal{O}}_k^ imes = \mathrm{Cl}(k)$, and then we can decompose X_K as

$$X_K = \coprod_{\operatorname{Cl}(k)} \Gamma_{y_j} ackslash \mathbb{D}^+ = \coprod_{\operatorname{Cl}(K)} \{z_0^+\}.$$

3. Special Cycles (Kudla 1997)

How do we construct special cycles?

Definition

Let (V,Q) be a quadratic space with signature (n,2). Pick $x\in V(\mathbb{Q})$ such that Q(x)>0. Write $V_x=x^\perp$. It is a quadratic space of signature (n-1,2). Then $\mathbb{D}_x\subseteq\mathbb{D}$ is the

corresponding negative definite plane; it has a point z with $z \perp x$.

We have a map, where G_i is the subset of G of stabilizers of x.

$$G_x(\mathbb{Q})\backslash \mathbb{D}_x imes G_x(\mathbb{A}_f)/G(\mathbb{A}_f)\cap K o X_K=G(\mathbb{Q})\backslash \mathbb{D} imes G(\mathbb{A}_f)/K$$

The image of this map is Z(x; K)

Shifted cycles

Z(x, g, K) is defined as the image of the map

$$G_x(\mathbb{Q})ackslash \mathbb{D}_x imes G_x(\mathbb{A}_f)/K\cap G_x(\mathbb{A}_f) o X_K$$

sending $[x,h] \mapsto [x,hg]$ where $g \in G(\mathbb{A}_f)$; this is the same kind of map as before, except you shift the connected component that you land one.

Special cycles

What are special cycles?

Definition

Let $\varphi \in \mathcal{S}(V(\mathbb{A}_f))^K$ be a K-invariant Schwarz function, let $m \in \mathbb{Q}$, and let $x \in V(\mathbb{Q})$. Then

$$Z(m,arphi,K) = \sum_{j} arphi(g_{j}^{-1}x) \cdot Z(x,g_{j};K);$$

this is a finite sum over the representatives g_1, \ldots, g_r of $K \setminus \operatorname{Supp} \varphi \cap \Omega_m(\mathbb{A}_f)$. Here, $\Omega_m(\mathbb{A}_f) = \{x \in V(\mathbb{A}_f) : Q(x) = m\}$.

Lemma 4.1 / kudla proposition 5.4

If
$$G(\mathbb{A}_f)=G(\mathbb{Q})_+K$$
, then $Z(m,\varphi;K)=\sum_{x\in\Gamma_K\setminus\Omega_m(\mathbb{Q})}\varphi(X)\operatorname{pr}(\mathbb{D}_x,1)$ where $\Gamma_K=G(\mathbb{Q})_+\cap K$ and $\operatorname{pr}:\mathbb{D}_x\times G(\mathbb{A}_f)\to X_K$

This is useful for computations.

Examples

There is a general procedure by which you can construct special cycles.

Typically, you are going to take

- 1. A (even integral) lattice $L \subseteq V(\mathbb{Q})$
- 2. $arphi = \sum_{\mu \in ext{Orbits in } L^ee/L} ext{char}(\mu + \hat{L}) \in \mathcal{S}(V(\mathbb{A}_f))^K$
- 3. Get "nice" special cycles $Z(m, \varphi; K)$

Examples

Heegner points on $X_0(N)$

Let $V=M_2(\mathbb{Q})^{\mathrm{Tr}=0}$, let $Q(x)=N\cdot\det(x)$. Then $\mathrm{GSpin}(V)\cong\mathrm{GL}_2$, and $\mathrm{GL}_2(\mathbb{Q})$ acts on V via $g\cdot x=gxg^{-1}$. Moreover, $\mathrm{SO}(V)=\mathrm{PGL}_2$.

Now consider the biholomorphic map

$$\mathbb{H}^{\pm} o \mathbb{D}, \quad x+iy=z \mapsto egin{pmatrix} z & z^2 \ 1 & -z \end{pmatrix}.$$

We have

$$K = \prod K_p \subseteq G(\mathbb{A}_f)$$

where
$$K_p = \{ egin{pmatrix} a & b \ c & d \end{pmatrix} \in \mathrm{GL}_2(\mathbb{Z}_p) : c \in N \cdot \mathbb{Z}_p \}.$$

Pact

$$G(\mathbb{A}_f) = G(\mathbb{Q})K$$

We also have

$$X_K = K \cap G(\mathbb{Q})_+ ackslash \mathbb{D}^+ = \Gamma_0(N) ackslash \mathbb{H} = Y_0(N)$$

Classical Heegner divisors

Take $P_{D,r} + P_{D,-r}$ on $X_0(N)$; here,

$$P_{D,r} = \{z \in X_0(N) : az^2 + bz + c = 0, a > 0, a \equiv 0 \pmod{N}, b \equiv 0 \pmod{-r} \pmod{2N}, b^2 - 4a\}$$

(This is Gross-Kohren-Zagier)

OClaim

$$Z(\cdot,arphi;K)=P_{D,r}+P_{D,-r}$$

Step 1: Make a Schwarz function

Let $L=\{egin{pmatrix} b & -q/N \\ c & -b \end{pmatrix}: a,b,c\in\mathbb{Z}\}.$ It turns out that $L^{\vee}/L\cong\mathbb{Z}/2N\mathbb{Z}$ where $r\in\mathbb{Z}/2N\mathbb{Z}$ corresponds to $\begin{pmatrix} \frac{r}{2N} & 0 \\ 0 & -\frac{r}{2N} \end{pmatrix} r.$

Step 2:

Claim: K acts on L^{\vee}/L trivially.

Step 3:

So
$$arphi = ext{char}(egin{pmatrix} rac{r}{2N} & 0 \ 0 & -rac{r}{2N} \end{pmatrix} + \hat{L})$$

There is a lemma from Bruinier-Yang that says that

$$Z(m,arphi,K) = \sum_{x \in \Gamma_K \setminus \Omega_m(\mathbb{Q})} arphi(x) \operatorname{pr}(\mathbb{D}_x,1)$$

 \mathbb{D}_x consists of

$$0=(x,\omega(z))=-N\operatorname{Tr}egin{pmatrix}rac{r}{2N}&rac{1}{N}\ rac{D-r^2}{4N}&-rac{r}{2N}\end{pmatrix}egin{pmatrix}z&-z^2\ 1&-z\end{pmatrix}=\cdots=rac{D-r^2}{4}z^2-rz-1$$

Here, $D=-4Nm\in\mathbb{Z}$

Last thing to check/compute

$$\Gamma_K ackslash \Omega_m(\mathbb{Q}) \cap \operatorname{Supp}(arphi)
i x$$

See Also

Meta

References

Citations and Footnotes

- 1. It turns out that only signature (n,2) quadratic spaces give Shimura varieties \leftarrow
- 2. Here, we are regarding z as representing a point in $\mathbb{H} \subseteq \mathbb{C}$.