Chapitre IX : Étude de deux fonctions de référence

I - Fonction carrée

Synthèse sur la fonction carrée

• La fonction carrée est le fonction définie sur \mathbb{R} par $f(x) = x^2$.

• Sa courbe représentative est une parabole.

• Pour tout réel $x, x^2 \ge 0$. La courbe représentative est alors située au-dessus de l'axe des abscisses.

• Pour tout réel x, $(-x)^2 = x^2$ donc la fonction carrée est **paire**. Sa courbe représentative admet ainsi l'axe des ordonnées pour axe de symétrie.

• La fonction carrée est strictement décroissante sur $]-\infty$; 0] et strictement croissante sur $[0; +\infty[$.

Conséquence des variations de la fonction carrée :

• La fonction carrée étant strictement décroissante sur $]-\infty$; 0], pour tous réels a et b négatifs, si a < b alors $a^2 > b^2$ (l'application de la fonction **change** l'ordre).

• La fonction carrée étant strictement croissante sur $[0; +\infty[$, pour tous réels a et b négatifs, si a < b alors $a^2 < b^2$ (l'application de la fonction **conserve** l'ordre).

• Si a et b sont de signe contraire, on ne peut pas comparer leurs carrés si ce n'est en les calculant.

Exemple: Comparer les nombres suivants sans calculatrice.

• $1,325^2$ et $1,874^2$

• $(-2,7)^2$ et (-2,978) • π^2 et $3,1^2$

• $\left(-\frac{2}{3}\right)$ et $(-0.6)^2$

Solution : On peut s'aider de la courbe : on positionne les nombres proposés correctement sur l'axe des abscisses et on compare alors facilement les images de ces nombres par la fonction carrée.

• 1,325 et 1,874 sont deux réels positifs avec 1,325 < 1,874, ainsi 1,325 2 < 1,874 2 car la fonction carrée est strictement croissante sur $[0; +\infty[$.

• -2.7 et -2.978 sont deux réels négatifs avec -2.7 > -2.978, ainsi $(-2.7)^2 < (-2.978)^2$ car la fonction carrée est strictement décroissante sur $]-\infty$; 0].

• π et 3,1 sont deux réels positifs avec $\pi > 3,1$, ainsi $\pi^2 > 1,874^2$ car la fonction carrée est strictement croissante sur $[0; +\infty[$.

• $-\frac{2}{3}$ et -0.6 sont deux réels négatifs avec $-\frac{2}{3} < -0.6$, ainsi $\left(-\frac{2}{3}\right) < (-0.6)^2$ car la fonction carrée est strictement décroissante sur $]-\infty$; 0].