

Welcome to JSC

Liftoff Summer Institute July 2017 Presentation V2

Where Do We Go From Here?

Tim Hall

NASA Johnson Space Center

June 2017

First, What's Going On Now At NASA Today?

Human Spaceflight...

Expedition 52

Expedition 53

Planetary Missions, Mars is busy!...

MER
Mars Exploration
Rover
“Opportunity”

Many, many other cool missions...

Just a few to mention...

Cyclone Global Navigation Satellite System (CYGNSS)
is a space-based multi satellite system developed to improve hurricane forecasting

James Webb Telescope
Launch in 2019

Juno

Arrived at Jupiter July 2016

Hubble
Still researching origins of the universe

Eyes on the Solar System
<http://eyes.nasa.gov/>

Kepler

Planet Count

Confirmed Planets: 977

Planet Candidates: 4,234

Voyager 1

Has left the building...

Traveling interstellar space

Jupiter – JUNO

- Juno is a NASA space probe orbiting the planet Jupiter.
 - It is operated by NASA's Jet Propulsion Laboratory. The spacecraft was launched from Cape Canaveral Air Force Station on August 5, 2011,
 - Juno entered a polar orbit of Jupiter on July 5, 2016 to begin a scientific investigation of the planet.
 - After completing its mission, Juno will be intentionally deorbited into Jupiter's atmosphere.[8]
- Juno's mission is to measure Jupiter's composition, gravity field, magnetic field, and polar magnetosphere.
 - It will also search for clues about how the planet formed, including whether it has a rocky core, the amount of water present within the deep atmosphere, mass distribution, and its deep winds, which can reach speeds of 618 kilometers per hour (384 mph)

"It's snowing on Jupiter, and we're seeing how it works," Juno principal investigator Scott Bolton, of the Southwest Research Institute in San Antonio

Zoomed-in view of a photo taken by NASA's Juno probe on May 19, 2017, showing clouds of water ice and/or ammonia ice high up in Jupiter's atmosphere in the south tropical zone.

Jupiter – Juno

- This enhanced-color image of Jupiter's bands of light and dark clouds was created by citizen scientists Gerald Eichstädt and Seán Doran using data from the JunoCam imager on NASA's Juno spacecraft.
- Three of the white oval storms known as the "String of Pearls" are visible near the top of the image. Each of the alternating light and dark atmospheric bands in this image is wider than Earth, and each rages around Jupiter at hundreds of miles (kilometers) per hour. The lighter areas are regions where gas is rising, and the darker bands are regions where gas is sinking.
- Juno acquired the image on May 19, 2017, at 11:30 a.m. PST (2:30 p.m. EST) from an altitude of about 20,800 miles (33,400 kilometers) above Jupiter's cloud tops.

Exoplanets

NASA Finds 219 Possible Planets, Including 10 'Earths'

NASA's Kepler space telescope team has released a mission catalog of planet candidates that introduces 219 new candidates, 10 of which are near-Earth size and orbiting in their star's habitable zone, which is the range of distance from a star where liquid water could pool on the surface of a rocky planet.?

Astronomers have managed to capture an amazingly clear image of CVSO 30c - a potential exoplanet orbiting a distant star named CVSO 30, that lies some 1,200 light-years away.

New Horizons @ Pluto!

- New from NASA's New Horizons:
 - The Spacecraft just passed half way to its next target MU69 in January of 2019

NASA's New
Horizons
spacecraft passed
Pluto in July 2015

Human Space Flight Vehicles and
Plans for Exploration

Human Space Flight “Vehicles” for ISS

Russian Soyuz

US Space Shuttle

Future US
Commercial Crew
Capsules

Boeing CST-100
Starliner

SpaceX Dragon
Capsule

- NOTE: ISS Also has Cargo Vehicles for ISS (no human rating)

Commercial Resupply Vehicles

SpaceX
Dragon
Cargo

Orbital Sciences
ATK Cygnus

Sierra Nevada
Dream Chaser
Cargo
(2019)

International Partner Vehicles

JAXA Space
Agency
HTV

Human Space Flight “Vehicles” for Exploration

- Exploration

Orion & Service Module

Possible Deep Space
Gateway
(Habitat and Propulsion
Module and Airlock)

SLS – Space Launch System
Heavy Lift Vehicle

NASA Plans to use ISS as Test Bed for Exploration

- Utilize ISS to test out exploration technologies
- These include:
 - Closed Loop Environmental Systems
 - Power Systems
 - Materials for use in deep space environments
 - Human long duration mission mitigations
 - Exploration Space Suit technologies

Orion & SLS Plans

Orion Program mission schedule

Mission	Acronym	Launch date
Exploration Flight Test 1	EFT-1	December 5, 2014
Exploration Mission 1	EM-1	November 2019
Pad Abort 2	PA-2	December 2018
Exploration Mission 2	EM-2	August 2021

NASAs Exploration Strategy

As of March 2017

Exploration

Our Goal

The nation's goal for space exploration is to lead an effort that expands human presence deeper into the solar system through a sustainable human and robotic spaceflight program.

Exploration Plans

Exploring Space In Partnership

Deep Space Gateway Functionality

PHASE 1

Deep Space Gateway Cise Lunar Missions

- Lunar orbiting outpost
 - Possible use of L2 (Lagrange point)
 - Science collection from deep space
 - Exploration System Technology Demonstration
- Lunar Base????
 - Science collection
 - Exploration Systems Technology Demonstration
 - Surface Habitat, Lander and Walking suit test bed for Mars

SLS Capability and Potential Manifest

Phase 1 Plan

Establishing deep-space leadership and preparing for Deep Space Transport development

		Deep Space Gateway Buildup					2026
EM-1	Europa Clipper	EM-2	EM-3	EM-4	EM-5		
2018 - 2025							
SLS Block 1 Crew: 0	SLS Block 1B Cargo Europa Clipper (subject to approval)	SLS Block 1B Crew: 4 CMP Capability: 8-9T	SLS Block 1B Crew: 4 CMP Capability: 10mT	SLS Block 1B Crew: 4 CMP Capability: 10mT	SLS Block 1B Crew: 4 CPL Capability: 10mT		
		 40kW Power/Prop Bus	 Habitation	 Logistics	 Airlock		
Distant Retrograde Orbit (DRO) 26-40 days 	Jupiter Direct 	Multi-TLI Lunar Free Return 8-21 days 	Near Rectilinear Halo Orbit (NRHO) 16-26 days 	NRHO, w/ ability to translate to/from other cislunar orbits 26-42 days 	NRHO, w/ ability to translate to/from other cislunar orbits 26-42 days 		
Gateway (blue) Configuration (Orion in grey)			 Cislunar Support Flight	 Cislunar Support Flight			

These essential Gateway elements can support multiple U.S. and international partner objectives in Phase 1 and beyond

Known Parameters:

- Gateway to architecture supports Phase 2 and beyond activities
- International and U.S. commercial development of elements and systems
- Gateway will translate uncrewed between cislunar orbits
- Ability to support science objectives in cislunar space

Open Opportunities:

- Order of logistics flights and logistics providers
- Use of logistics modules for available volume
- Ability to support lunar surface missions

Exploration Next Pahse

Human Mars Mission

- Extend Mission Durations
- Test out Deep Space Propulsion and cargo systems
- Continue to shrink technology gap for exploration outside Earth/Moon region
- Last Phase would be a Mars transit from Deep Space Gateway

Images Credit: The Martian/20th Century Fox

(PLANNING REFERENCE) Phase 2 and Phase 3

Looking ahead to the shakedown cruise and the first crewed missions to Mars

Transport Delivery		Transport Shakedown		Mars Transit	
EM-6	EM-7	EM-8	EM-9	EM-10	EM-11
2027		2028 / 2029		2030+	
SLS Block 1B Cargo P/L Capability: 41t TLI Deep Space Transport	SLS Block 1B Crew: 4 CMP Capability: 10t Logistics	SLS Block 1B Cargo P/L Capability: 41t TLI DST Logistics & Refueling	SLS Block 2 Crew: 4 CMP Capability: 13+t Logistics	SLS Block 2 Cargo P/L Capability: 45t TLI DST Logistics & Refueling	SLS Block 2 Crew: 4 CMP Capability: 13+t Logistics
 Cislunar Support Flight	DST checkout in NRHO 191-221 days 	 Cislunar Support Flight	DSG: continued operations in cislunar space 	 Cislunar Support Flight	DSG: continued operations in cislunar space DST: Mars transit and return to DSG in NRHO

Reusable Deep Space Transport supports repeated crewed missions to the Mars vicinity

Known Parameters:

- DST launch on one SLS cargo flight
- DST shakedown cruise by 2029
- DST supported by a mix of logistics flights for both shakedown and transit
- Ability to support science objectives in cislunar space

Open Opportunities:

- Order of logistics flights and logistics providers
- Shakedown cruise vehicle configuration and destination/s
- Ability to support lunar surface missions

12

So what does it take to explore Deep Space?

Space Exploration Challenges...

- Who would you need on a deep space mission?

Standard for LEO today

- Pilot
- Scientist
- Engineer

Required Systems Experts for Exploration Missions

- Propulsion
- Navigation
- Communication
- Environmental (Plumber, AC, Heat)
- Power
- Stowage/Inventory

- Other crew, required?
 - Doctor
 - Dentist
 - Psychologist
 - Geologist
 - IT/Computer
 - Machinist
 - Handyman
 - Sheriff
 - Judge/Lawyer

20+
People???

Space Exploration Challenges...

- Up mass
 - Exploration Vehicle – est. 100 tons of material and supplies (ISS 420 tons)
- Propulsion
 - Chemical, Ion, Solar Electric
- Environmental Systems
 - Closed loop, Reliability, Redundancy
- Automation
 - Self maintaining systems
- Radiation Shielding
 - Crew and systems health
- Communication
 - Comm delays increase
- Long Range Human Health Affects
 - Bone health, eye damage, long term radiation exposure
- Stowage/Logistics

Other Current Topics of Interest for Students

Stratolaunch - Microsoft co-founder built the world's largest plane to launch rockets into space

It's called the Stratolaunch aircraft, and it's massive. The plane has a 385-foot wingspan, which makes it the largest in the world by that metric. It weighs about 500,000 pounds dry, but that can swell to a maximum takeoff weight of 1.3 million pounds. Stratolaunch moves all that weight across the ground on 28 wheels, and eventually will carry its cargo through the air thanks to six 747 aircraft engines.

<https://www.theverge.com/2017/5/31/15721480/stratolaunch-paul-allen-rockets-space-satellites>

First Private Moon Landing Gears Up for Launch by Year's End

Moon Express and Rocket Lab are poised to make history.

Moon Express (or MoonEx), a space exploration company powered by industry engineers and Silicon Valley money, is making the final adjustments to its lunar lander in its facilities at Cape Canaveral. Its goal is to achieve something that has only been accomplished by the three largest superpowers in the world: a soft landing on the moon.

"It will be the space equivalent of the four-minute mile. I think we're going to redefine the possible," MoonEx co-founder and CEO Bob Richards tells *Popular Mechanics*. "We've seen this throughout history—everybody thinks something is impossible until they see it done."

<http://www.popularmechanics.com/space/moon-mars/a26702/moon-express-lunar-landing-launch-years-end/>

Blue Origin Rides into Space

Blue Origin released new images today (March 29) of the interior of its New Shepard passenger capsule, which the company says will be used to send paying customers on brief trips into space.

<https://www.space.com/36267-blue-origin-space-capsule-interior-sneak-peek.html>

Interesting Look at Blue Origin vs SpaceX

Questions?

Thank You!

My favorites...

My favorite sites and links...

- Heavens Above
 - <http://heavens-above.com/>
- NASA Spinoffs
 - <http://spinoff.nasa.gov/>
- Eyes on the Solar System
 - <http://eyes.nasa.gov/>
 - Youtube NASA Television
 - <http://www.youtube.com/user/NASAtlevision>
 - Youtube Earth Video
 - <http://www.youtube.com/watch?v=lp2ZGND1I9Q>
 - ISS Tour by CDR/Suni Williams
 - <http://www.youtube.com/watch?v=doN4t5NKW-k>
 - Why Mars is Hard Stan Love
 - <http://www.youtube.com/watch?v=fturU0u5KJo>
- Perspectives
 - <http://htwins.net/scale2/?bordercolor=white>
- ISSLive
 - <http://spacestationlive.jsc.nasa.gov/>
- Distance Learning Network
 - NASA DLN Website: <http://www.nasa.gov/offices/education/programs/national/dln/index.html>
 - Toolkit with Material and Templates:
<http://communications.nasa.gov/OCP/Communications%20Tool%20Kit/Presentation%20Templates/Web%20Sites/CTK.html>

JPL – Eyes on the Solar System

Eyes on the Solar System
<http://eyes.nasa.gov/>

<http://htwins.net/scale2/?bordercolor=white>

♪ Q

Giant Earthworm

Human

Rafflesia

Beach ball

Dodo Bird

10^{0.0}

Copyright © 2012 Cary and Michael Huang (<http://htwins.net>)

Other languages

Back

ISSLive

ISSLive

<http://isslive.com/>

The image shows the ISSLive website. At the top, there is a large banner with a space-themed background featuring stars and a satellite. The NASA logo is in the top right corner. The main content area has a dark background with several video feeds and text labels. In the top left, there are three small video thumbnails. In the center, a large video feed shows an astronaut inside the International Space Station. To the right, there are three more video feeds: one labeled 'About International Space Station Live!', one labeled 'Live Data' showing a close-up of a satellite, and one labeled 'Interact' showing an astronaut working on a experiment. Below these, there are three green-tinted video feeds labeled 'Operations', 'Educators', and 'Resources'. At the bottom, there are download links for the 'App Store' and 'Google play', and logos for NASA, ESA, Roscosmos, JAXA, and CSA ASC. A small icon of a satellite with a signal is in the bottom right corner.

Operations

Educators

Resources

Available on the iPhone
App Store

ANDROID APP ON
Google play

NASA

esa

ROSCOMMOS

JAXA

CSA ASC

Connected

Youtube – REELNASA

ReelNASA

http://www.youtube.com/results?search_query=reelnasa&sa=X&spell=1&search=Search&oi=spell

YouTube search results for "reelnasa" showing 990 results. The results include:

- Reel NASA**
Get off my planet. Give me my space. Get real with Reel NASA. Space trav...
ISS Update: Dr. Steve Squyres, NEEMO 16 Aquanaut and Cornell Professor
CHANNEL by ReelNASA | 928 videos | 31,508 subscribers
- Science off the Sphere: Knitting Needle Experiment**
challenge and view future experiments here: www.physicscentral.com ... Reel NASA ... "Science off the Sphere" "American Physical Society" "Don Pettit" ...
5:24 CC by ReelNASA | 4 months ago | 546,686 views
- We Are the Explorers**
is helping us lay the foundation for our greatest journeys ahead. ... Reel NASA ... NASA exploration "Peter Cullen" space flew shuttle station Orion ...
2:36 HD CC by ReelNASA | 3 months ago | 176,004 views
- Chase Plane Video Of Historic SpaceX Splashdown**
berth with the International Space Station, paving the way for future commercial cargo delivery flights. ... Reel NASA ... 120801 SpaceX ...
4:57 HD by ReelNASA | 3 weeks ago | 70,754 views
- Science off the Sphere: Goo!**
challenge and view future experiments here: www.physicscentral.com ... Reel NASA ... "international space station" "expedition 31" "don pettit" "...
4:11 CC by ReelNASA | 1 month ago | 8,412 views

NASA Spinoffs

<http://spinoff.nasa.gov/>

Office of the Chief Technologist
Value for NASA, Benefits for the Nation

NASA Spinoff

Home About Spinoff Request a Spinoff Be In Spinoff Spinoff Database Spinoff FAQ Contact Us

Connect with NASA Spinoff

[Twitter](#) [Facebook](#) [YouTube](#) [Google+](#)

Partnership with NASA

[NASA Online Partnering Tool](#)

[View Feature](#)

What is NASA's Investment in America's Future?

Jeopardy! host Alex Trebek shares how NASA spinoffs provide tangible benefits for the Nation.

NASA @ Home and City

[View Feature](#)

Spinoff Tweets

[NASA Spinoff](#) **NASASpinoff**

Heavens Above

<http://heavens-above.com/>

Heavens-Above Home Page - Windows Internet Explorer

File Edit View Favorites Tools Help

★ Favorites | HomeDO4 Flight Planning Br... | wWU engineering - Bing | HomeDO4 Flight Planning Br...

Heavens-Above Home Page | ISSLive! Bringing the Interna...

Find: biconic | Previous | Next | Options |

Aerospace
Earn an Aerospace degree online at American Public University System.
www.APUS.edu/Aerospace

AdChoices ▾

Configuration
Current observing site: **Clear Lake, 33.0781°N, 96.4950°W**
select from map or [from database](#) or [edit manually](#)
Registered user login | Why register?
[Create new user account](#)

Satellites
10 day predictions for: [ISS](#) | [Tiangong 1](#)
[Genesis-1](#) | [2](#) | [Envisat](#) | [HST](#)
Select another satellite from the database
Daily predictions for all satellites brighter than magnitude:
(brightest) [3.5](#) | [4.0](#) | [4.5](#) (dimmest)
All passes of [ISS](#) - including daylight and invisible passes.
Iridium Flares
[next 24 hrs](#) | [next 7 days](#) | [previous 48 hrs](#)
Daytime flares for 7 days - see satellites in broad daylight!
Spacecraft escaping the Solar System - where are they now?
Radio amateur satellites - 24 hour predictions (all passes)
Height of the ISS | Phobos Grunt - how does it vary with time

Astronomy
Comets currently brighter than mag. 12
[189P NEAT](#) | [96P Machholz](#) | [C/2009 P1 Garradd](#)
Minor planets currently brighter than mag. 10
[4 Vesta](#) | [1 Ceres](#) | [18 Melpomene](#)
Whole sky chart
Sun and Moon data for today
Planet summary data
Planet details (under construction)
[Mercury](#) | [Venus](#) | [Earth](#) | [Mars](#) | [Jupiter](#) | [Saturn](#) | [Uranus](#) | [Neptune](#) | [Pluto](#)
Solar system chart

Current position of ISS

© Heavens-Above.com

[G +1](#) 523

GPS Fleet Tracking
GPS Tracking Lowers Costs Free, Live
Demonstration
[www.Sage-Quest.com](#)

start | [E](#) | [F](#) | [G](#) | [H](#) | [I](#) | [J](#) Microsoft... | [2](#) Windows... | [3](#) Microsoft... | [4](#) Internet... | Intel® PROS... | [2](#) Microsoft... | Desktop | [12:24 PM](#)

NASA Distance Learning

NASA DLN Website: <http://www.nasa.gov/offices/education/programs/national/dln/index.html>

The screenshot shows the homepage of the NASA Digital Learning Network (DLN). The top navigation bar includes links for HOME, NEWS, MISSIONS, MULTIMEDIA, CONNECT, and ABOUT NASA. A search bar is also present. The main content area features a banner for the DLN with the text "NASA Digital Learning Network™" and "DLN sites: Ames, Dryden, Glenn, Goddard, JPL, Johnson, Kennedy, Langley, Marshall, Stennis" and "A Universe of Possibilities". Below the banner, a section titled "Welcome to NASA's DLN" provides information about the network's purpose and encourages users to register for events or watch webcasts. It includes social media links for Facebook and Twitter. A video thumbnail on the right shows a classroom setting. The left sidebar contains a list of links for DLN Home, About DLN, Event Catalog, PD & Special Events, Event Guidelines, DLInfo Channel, Technical FAQ, 5E Teaching Model, Tools & Plugins, Contact Us, Feedback Forms, and Search Event. The bottom sidebar includes a "DLN User" section with links for Sign In, New User Registration, New School/Org Registration, and Forgot Password, as well as a "DLN Announcements" section.

NASA DLN Website: <http://www.nasa.gov/offices/education/programs/national/dln/index.html>

DLN NASA Digital Learning Network™
DLN sites: Ames, Dryden, Glenn, Goddard, JPL, Johnson, Kennedy, Langley, Marshall, Stennis
A Universe of Possibilities

Welcome to NASA's DLN

NASA's Digital Learning Network™ provides science, technology, engineering, and mathematics or STEM content featuring NASA missions and research. Register for free, interactive events listed in our catalog or watch our webcasts listed below.

[Like us on Facebook!](#)
[Follow us on Twitter!](#)

To assist both new and existing users, we **STRONGLY** encourage you to view our [DLN Overview Video](#) and the [DLINtro presentation](#) located in [About DLN](#). DLINtro will guide you through our website, show how to register for modules, and explain other services.

DLN User

- > Sign In
- > New User Registration
- > New School/Org Registration
- > Forgot Password

DLN Announcements

USDLA Awards NASA's Digital Learning

See the Space Station fly over YOUR home!

Use "Skywatch" program or go to "sightings by city"

- spaceflight.nasa.gov/reldata/sightings

SATELLITE	LOCAL DATE/TIME	DURATION (MIN)	MAX ELEV (DEG)	APPROACH (DEG-DIR)	DEPARTURE (DEG-DIR)
ISS	Tue Nov 14/06:22 AM	4	66	10 above WSW	31 above NE

