Quantum Heuristic Solver using QAOA for the Maximum Independent Set Problem

Seunghyeok Oh

Department of Physics
Chung-Ang University, Seoul, Korea
seunghyeok2019@gmail.com

Jaeho Choi

School of Computer Science and Engineering Chung-Ang University, Seoul, Korea jaehochoi2019@gmail.com

Joongheon Kim*

School of Electrical Engineering Korea University, Seoul, Korea joongheon@korea.ac.kr

Quantum Approximate Optimization Algorithm (QAOA)

Introduction

Quantum Approximate Optimization Algorithm

- → An optimization algorithm can be used efficiently in small quantum computing environment
- → Useful in graph-based NP-hard problems

Quantum Alternating Operator Ansatz

- → More intuitive way to solve graph problem with constraints
- → Starts with one trial solution
- → Explores other solutions at the same time without accessing prohibited solutions

Quantum Alternating Operator Ansatz Model

Phase Operator:

- Gives the probability shift
- Has opportunity to find optimized solution with high probability

Mixing Operator:

- Explores other solutions
- Includes the constraints of the problem

Maximum Independent Set Problem via QAOA

QAOA Mapping

Initial state $(|s\rangle)$

 $|0\rangle$: a possible solution for the problem in all case

Phase Operator

Different objective, different phase
Objective = The number of selected nodes

$$\rightarrow U_p = \prod_i^{nodes} RZ_i$$

Mixing Operator

If no adjacent node has flipped, apply the RX gate
 Applies to all target nodes sequentially

$$\rightarrow U_M = \prod_i^{nodes} MCRX_i$$

Gate Mapping to Quantum Circuit

Local Environmental Simulation and Concluding Remark

Experimental Results on Local Simulation

Depth p=1 |V|=9, |E|=12 Optimal Solution = 5

- Noiseless Quantum Simulation
 - → Converge to the optimal solution
- Noise Quantum Simulation
 - → Optimal solution observed with high probability.

Concluding Remark and Future Work

Concluding Remark

- → We have discussed QAOA and how to solve the maximum independent set problem with the corresponding algorithm.
- → QAOA is useful for the maximum independent set problem

Future Work

- → The fault-tolerance of QAOA must be considerable for the real quantum device environment.
- → Many of other NP-hard problems can be also solved with QAOA

References

E. Farhi and A. W. Harrow, "Quantum supremacy through the quantum approximate optimization algorithm," arXiv preprint arXiv:1602.07674, 2016.

S. Hadfield, Z. Wang, B. O'Gorman, E. G. Rieffel, D. Venturelli, and R. Biswas, "From the quantum approximate optimization algorithm to a quantum alternating operator ansatz," Algorithms, vol. 12, no. 2, p. 34, 2019.