

Introduction

Method

- 1. Patch Partition
- 2. Patch Merging
- 3. Shifted Window based Self-Attention

Experiments

Q&A

Introduction

- ViT의 약점
 - Scale
 - NLP: 크기와 Scale이 일정
 - Image: 크기와 Scale이 다양
 - High Resolution
 - 이미지의 해상도가 높아질수록 연산량 급증
 - 해상도 증가량의 제곱의 비율로 증가

- Expectation
 - Visual Domain에서의 General-Purpose Backbone 모델

- 간단한 Patch Partition

3

 $(8 \times 8) \times 3$

 8×8

Patch count

Patch size

- Patch Partition의 일반화

3

 $H \times W$

 $(H \times W) \times 3$

 $\left(\frac{H}{4} \times \frac{W}{4}\right) \times (4 \times 4) \times 3$

- Patch Merging

- Patch Merging

- Shifted Window based Self-Attention

- Shifted Window based Self-Attention
 - W-MSA: Window-based Multihead Self-attention
 - SW-MSA: Shifted Window-based Multihead Self-attention
 - MLP: (Linear + GeLU) * 2
 - Residual Connection

- Shifted Window based Self-Attention

$$\Omega(MSA) = 4hwC^2 + 2(hw)^2C, \tag{1}$$

- 기존의 MSA의 연산량
 - ➤ 이미지의 해상도(h*w)의 제곱의 비율로 증가

$$\Omega(W-MSA) = 4hwC^2 + 2M^2hwC, \qquad (2)$$

- W-MSA의 연산량
 - ➤ 정해진 상수인 Patch 개수의 제곱에 따라 증가
 - ➤ 이미지의 해상도(h*w)에 대해서는 선형적인 관계를 보임
- → 연산량에 대한 이미지 해상도의 영향이 크지 않음

- Shifted Window based Self-Attention
 - = Cyclic-shifting

- 이미지의 Window를 이동시켜 패치 간의 연결성 확보
 - ▶ 논문에서는 (2, 2)만큼 이동. 최소 패치의 크기가 4*4인 것이 원인인 듯
 - ▶ 이동하고 남은 부분(그림에서 A, B, C)부분을 패딩으로 채우게 되면 Window의 개수가 증가
 - ➤ 이동시키고 Window 밖으로 나간 부분을 반대쪽에 연결
- → 패치 간의 연결성 확보와 동시에 연산량 보존 가능

- Shifted Window based Self-Attention
 - = Relative position bias

Attention
$$(Q, K, V) = \text{SoftMax}(QK^T/\sqrt{d} + B)V$$
, (4)

- Swin Transformer에는 Positional Encoding이 없음. ViT와 큰 차이점 중 하나
 - > 대신 Self-attention을 계산할 때 Relative position bias를 추가함

→ Absolute position encoding보다 성능 향상

- Architecture Variants

Model Name	C (Embedding Dimension)	Layer Numbers
Swin-T	96	2, 2, 6, 2
Swin-S	96	2, 2, 18, 2
Swin-B	128	2, 2, 18, 2
Swin-L	192	2, 2, 18, 2

- ImageNet-1K, 22K: Image Classification

() D 1 T N (
(a) Regular ImageNet-1K trained models										
mathad	image	#param.	EL ODa	throughput	ImageNet					
method	size	#param.	FLOPS	(image / s)	top-1 acc.					
RegNetY-4G [48]	224^{2}	21M	4.0G	1156.7	80.0					
RegNetY-8G [48]	224^{2}	39M	8.0G	591.6	81.7					
RegNetY-16G [48]	224^{2}	84M	16.0G	334.7	82.9					
EffNet-B3 [58]	300^{2}	12M	1.8G	732.1	81.6					
EffNet-B4 [58]	380^{2}	19M	4.2G	349.4	82.9					
EffNet-B5 [58]	456 ²	30M	9.9G	169.1	83.6					
EffNet-B6 [58]	528^{2}	43M	19.0G	96.9	84.0					
EffNet-B7 [58]	600^{2}	66M	37.0G	55.1	84.3					
ViT-B/16 [20]	384^{2}	86M	55.4G	85.9	77.9					
ViT-L/16 [20]	384^{2}	307M	190.7G	27.3	76.5					
DeiT-S [63]	224^{2}	22M	4.6G	940.4	79.8					
DeiT-B [63]	224^{2}	86M	17.5G	292.3	81.8					
DeiT-B [63]	384^{2}	86M	55.4G	85.9	83.1					
Swin-T	224^{2}	29M	4.5G	755.2	81.3					
Swin-S	224^{2}	50M	8.7G	436.9	83.0					
Swin-B	224^{2}	88M	15.4G	278.1	83.5					
Swin-B	384 ²	88M	47.0G	84.7	84.5					

(b) ImageNet-22K pre-trained models										
method	image #param.		EL ODe	throughput	ImageNet					
method	size	#param.	FLOFS	(image / s)	top-1 acc.					
R-101x3 [38]	384^{2}	388M	204.6G	-	84.4					
R-152x4 [38]	480^{2}	937M	840.5G	-	85.4					
ViT-B/16 [20]	384^{2}	86M	55.4G	85.9	84.0					
ViT-L/16 [20]	384^{2}	307M	190.7G	27.3	85.2					
Swin-B	224 ²	88M	15.4G	278.1	85.2					
Swin-B	384^{2}	88M	47.0G	84.7	86.4					
Swin-L	384 ²	197M	103.9G	42.1	87.3					

Table 1. Comparison of different backbones on ImageNet-1K classification. Throughput is measured using the GitHub repository of [68] and a V100 GPU, following [63].

- COCO: Object Detection

(a) Various frameworks										
Method	Backbone	AP ^{box}	AP_{50}^{box}	AP ₇₅	#param.	FLOPs	FPS			
Cascade	R-50	46.3	64.3	50.5	82M	739G	18.0			
Mask R-CNN	Swin-T	50.5	69.3	54.9	86M	745G	15.3			
ATSS	R-50	43.5	61.9	47.0	32M	205G	28.3			
Alss	Swin-T	47.2	66.5	51.3	36M	215G	22.3			
Pan Painta V/2	R-50	46.5	64.6	50.3	42M	274G	13.6			
RepPointsV2	Swin-T	50.0	68.5	54.2	45M	283G	12.0			
Sparse	R-50	44.5	63.4	48.2	106M	166G	21.0			
R-CNN	Swin-T	47.9	67.3	52.3	110M	172G	18.4			

(b) Various backbones w. Cascade Mask R-CNN										
					AP ₅₀					
DeiT-S [†]	48.0	67.2	51.7	41.4	64.2	44.3	80M	889G	10.4	
R50	46.3	64.3	50.5	40.1	61.7	43.4	82M	739G	18.0	
Swin-T										
X101-32	48.1	66.5	52.4	41.6	63.9	45.2	101M	819G	12.8	
Swin-S				1			ľ			
X101-64	48.3	66.4	52.3	41.7	64.0	45.1	140M	972G	10.4	
Swin-B	51.9	70.9	56.5	45.0	68.4	48.7	145M	982G	11.6	

(c) System-level Comparison										
Method		ni-val AP ^{mask}	test AP ^{box}	t-dev AP ^{mask}	#param.	FLOPs				
RepPointsV2* [12]	-	-	52.1	-	-	-				
GCNet* [7]	51.8	44.7	52.3	45.4	-	1041G				
RelationNet++* [13]	-	-	52.7	-	-	-				
SpineNet-190 [21]	52.6	-	52.8	-	164M	1885G				
ResNeSt-200* [78]	52.5	-	53.3	47.1	-	-				
EfficientDet-D7 [59]	54.4	-	55.1	_	77M	410G				
DetectoRS* [46]	-	_	55.7	48.5	-	-				
YOLOv4 P7* [4]	-	-	55.8	-	-	-				
Copy-paste [26]	55.9	47.2	56.0	47.4	185M	1440G				
X101-64 (HTC++)	52.3	46.0	-	-	155M	1033G				
Swin-B (HTC++)	56.4	49.1	-	-	160M	1043G				
Swin-L (HTC++)	57.1	49.5	57.7	50.2	284M	1470G				
Swin-L (HTC++)*	58.0	50.4	58.7	51.1	284M	-				

Table 2. Results on COCO object detection and instance segmentation. †denotes that additional decovolution layers are used to produce hierarchical feature maps. * indicates multi-scale testing.

- ADE20K : Semantic Segmentation

ADE20K		val	test	#param.	EI ODe	EDC
Method	Backbone	mIoU	score	πparaii.	FLOIS	FFS
DANet [23]	ResNet-101	45.2	-	69M	1119G	15.2
DLab.v3+ [11]	ResNet-101	44.1	-	63M	1021G	16.0
ACNet [24]	ResNet-101	45.9	38.5	-		
DNL [71]	ResNet-101	46.0	56.2	69M	1249G	14.8
OCRNet [73]	ResNet-101	45.3	56.0	56M	923G	19.3
UperNet [69]	ResNet-101	44.9	-	86M	1029G	20.1
OCRNet [73]	HRNet-w48	45.7	-	71M	664G	12.5
DLab.v3+[11]	ResNeSt-101	46.9	55.1	66M	1051G	11.9
DLab.v3+ [11]	ResNeSt-200	48.4	-	88M	1381G	8.1
SETR [81]	T-Large [‡]	50.3	61.7	308M	-	-
UperNet	DeiT-S [†]	44.0	-	52M	1099G	16.2
UperNet	Swin-T	46.1	-	60M	945G	18.5
UperNet	Swin-S	49.3	-	81M	1038G	15.2
UperNet	Swin-B [‡]	51.6	-	121M	1841G	8.7
UperNet	Swin-L [‡]	53.5	62.8	234M	3230G	6.2
			62.8			

Table 3. Results of semantic segmentation on the ADE20K val and test set. † indicates additional deconvolution layers are used to produce hierarchical feature maps. ‡ indicates that the model is pre-trained on ImageNet-22K.

- Ablation Study

	ImageNet		1)CO	ADE20k
	top-1	top-5	APbox	AP ^{mask}	mIoU
w/o shifting	80.2	95.1	47.7	41.5	43.3
shifted windows	81.3	95.6	50.5	43.7	46.1
no pos.	80.1	94.9	49.2	42.6	43.8
abs. pos.	80.5	95.2	49.0	42.4	43.2
abs.+rel. pos.	81.3	95.6	50.2	43.4	44.0
rel. pos. w/o app.	79.3	94.7	48.2	41.9	44.1
rel. pos.	81.3	95.6	50.5	43.7	46.1

Table 4. Ablation study on the *shifted windows* approach and different position embedding methods on three benchmarks, using the Swin-T architecture. w/o shifting: all self-attention modules adopt regular window partitioning, without *shifting*; abs. pos.: absolute position embedding term of ViT; rel. pos.: the default settings with an additional relative position bias term (see Eq. (4)); app.: the first scaled dot-product term in Eq. (4).

- Ablation Study

matha d	MSA	MSA in a stage (ms)					Arch. (FPS)		
method	S1	S2	S 3	S 4	T	S	В		
sliding window (naive)	122.5	38.3	12.1	7.6	183	109	77		
sliding window (kernel)	7.6	4.7	2.7	1.8	488	283	187		
Performer [14]	4.8	2.8	1.8	1.5	638	370	241		
window (w/o shifting)	2.8	1.7	1.2	0.9	770	444	280		
shifted window (padding)	3.3	2.3	1.9	2.2	670	371	236		
shifted window (cyclic)	3.0	1.9	1.3	1.0	755	437	278		

Table 5. Real speed of different self-attention computation methods and implementations on a V100 GPU.

- Ablation Study

		Imag	ImageNet			ADE20k
	Backbone	top-1	top-5	APbox	AP ^{mask}	mIoU
sliding window	Swin-T	81.4	95.6	50.2	43.5	45.8
Performer [14]	Swin-T	79.0	94.2	-	-	-
shifted window	Swin-T	81.3	95.6	50.5	43.7	46.1

Table 6. Accuracy of Swin Transformer using different methods for self-attention computation on three benchmarks.

Q&A

[Github] https://github.com/microsoft/Swin-Transformer