Nr Ćwiczenia 303	Data wykonania 21.01.2025	Wydział WIiT	Semestr 3	Grupa LAB L1
Prowadzący: mgr inż. Taras Zhezhera		Stanisław Fiedle	er	Ocena:

Sprawozdanie Laboratorium Fizyka dla informatyków Wyznaczanie stałej siatki dyfrakcyjnej.

Stanisław Fiedler 160250

LAB 6, 21 stycznia 2025

Spis treści

Wstęp teoretyczny 1 Wyniki pomiarów $\mathbf{2}$ 3 Opracowanie wyników 3 3.1.13 3 3.1.2 B.......... C............ 3 3.1.3 3.1.4 D........... 4 3.1.54 4 4 4 Wnioski 4

1 Wstęp teoretyczny

Wszystkie fale, w tym świetlne, ulegają zjawisku interferencji i dyfrakcji, zjawiska te opisuje zasada Huyghensa. Interferencja polega na nakładniu się fal. W określonych punktach przestrzeni, w zależności od różnicy amplitud fal, następuje wzmocnienie albo osłabienie amplitudy.

Dyfrakcję światła obserwujemy gdy przechodzi ono przez mały otwór w nieprzeźroczystej przeszkodzie. Jeżeli szerokość szczeliny jest mniejsza od długości fali fala za przeszkodą jest wyraźnie kulista.

Obraz przejścia światła przez więcej szczelin jest efektem nałożenia się dyfrakcji i interferencji. W obrazie występują wtedy prążki(maksima interferencyjne), których położenie opisuje zależność:

$$d\sin v = m\lambda, \ m = 1, 2, 3, \dots \tag{1}$$

Układ wielu równoległych szczelin, leżących w równych odległościach nazywa się siatką dyfrakcyjną. Odległość między środkami kolejnych szczelin nazywamy stałą siatki dyfrakcyjnej. Stosując wzór (1) można otrzymać:

$$d = \frac{m\lambda}{\sin v} \tag{2}$$

Gdzie: d - stała siatki dyfrakcyjnej, λ - długość fali, v - kąt od położenia zerowego.

2 Wyniki pomiarów

G	MYZNACZA	JIE S	TAKE) SI	ATKI DY	FRAUSIVET
) × = 17	190461	D8= 9		2 = 589,6	
187° 1 187° 1 2 187° 2	193° 121	193° 15'	2000 91	181°55	186° 40
4 190°20 5 193°4 6 195°49 7 198°34 8 201°34	7				
1 9 204° 19' 1 R 174° 16' 2 1771° 36' 3 168° 52' 4 166° 9'	1730531	65° 189 59' 151° 9'	158°59'	166° 55'	158° X9' 149'
5 (64° 23° 6 (160° 38° 2 157° 45° 8 157° 50° 9 157° 51°					

3 Opracowanie wyników

3.1 Obliczenia

$$\upsilon_0 = 170,66^{\circ} \qquad \lambda = 589,6nm$$

Dla prążka 10 siatki A obliczenia wyglądją następująco

$$d_A = \frac{m\lambda}{\sin(v)}$$

$$v = v_0 - v_{A10} = |170, 66^{\circ} - 151, 85^{\circ}| = 27, 81^{\circ}$$

$$d_A = \frac{10 \cdot 598, 6}{\sin(27, 81^{\circ})} = 12634nm$$

3.1.1 A

\overline{m}	$v_{Am} [^{\circ}]$	$v_{Am}\left['\right]$	$v_{Am} [^{\circ}]$	υ [°]	$\sin(v)$	d[nm]
10	151	51	151.85	27.81	0.46664	12634
9	154	50	154.83	24.83	0.41998	12634
8	157	45	157.75	21.91	0.37325	12636
7	160	38	160.63	19.03	0.32611	12655
6	164	23	164.38	15.28	0.26359	13420
5	166	9	166.15	13.51	0.23372	12612
4	168	52	168.86	10.8	0.18738	12586
3	171	36	171.6	8.06	0.14032	12605
2	174	16	174.26	5.39	0.09410	12530
1						
1	182	16	182.26	2.60	0.04536	12997
2	185		185	5.33	0.09294	12686
3	187	38	187.63	7.96	0.13859	12762
4	190	20	190.33	10.66	0.18509	12741
5	193	4	193.06	13.4	0.23174	12720
6	195	49	195.81	16.15	0.27815	12718
7	198	34	198.56	18.9	0.32391	12741
8	201	54	201.9	22.23	0.37837	12465
9	204	19	204.31	24.65	0.41707	12722

3.1.2 B

m	$v_{Bm} [^{\circ}]$	$v_{Bm}\left['\right]$	$v_{Bm} [^{\circ}]$	v [°]	$\sin(v)$	d[nm]
3	158	48	158.8	20.86	0.35619	4965.8
2	166	1	166.0	13.65	0.23599	4996.8
1	173	53	173.8	5.78	0.10076	5851.1
1	185	55	185.9	6.25	0.10886	5415.7
2	193	12	193.2	13.53	0.23401	5039.0
3	200	13	200.2	20.55	0.35102	5038.9

3.1.3 C

$\lceil m \rceil$	$v_{Cm} [^{\circ}]$	$v_{Cm}\left['\right]$	$v_{Cm} [^{\circ}]$	υ [°]	$\sin(v)$	d[nm]
2	151	9	151.15	28.516	0.47741	2469.97
1	165	59	165.98	13.683	0.23655	2492.43
1	193	15	193.25	13.583	0.23485	2510.43
2	207	35	207.58	27.916	0.46818	2518.65

3.1.4 D

m	$v_{Dm} [^{\circ}]$	$v_{Dm}\left['\right]$	$v_{Dm} [^{\circ}]$	υ [°]	$\sin(v)$	d[nm]
2	134	31	134.51	45.15	0.70895	1663.29
1	158	59	158.98	20.683	0.35320	1669.29
1	200	9	200.15	20.483	0.34993	1684.88
2	223	8	223.13	43.466	0.68793	1714.12

3.1.5 E

\overline{m}	$v_{Em} [^{\circ}]$	$v_{Em} [']$	$v_{Em} [^{\circ}]$	υ [°]	$\sin(v)$	d[nm]
2	155	39	155.65	24.016	0.40700	2897.28
1	166	55	166.91	12.75	0.22069	2671.53
1	189	55	189.91	10.25	0.17794	3313.41
2	202	32	202.53	22.866	0.38858	3034.57

3.1.6 G

\overline{m}	$v_{Gm} [^{\circ}]$	$v_{Gm}\left['\right]$	$v_{Gm} [^{\circ}]$	υ [°]	$\sin(v)$	d[nm]
3	158	49	158.81	20.85	0.35592	4969.61
2	166	1	166.01	13.65	0.23599	4996.81
1	172	52	172.86	6.799	0.11840	4979.56
1	186	40	186.66	7	0.12186	4837.96
2	193	15	193.25	13.583	0.23485	5020.87
3	200	15	200.25	20.583	0.35156	5031.15

3.2 Wyniki

$$D_A = 12700 \pm 200 \ nm$$

 $D_B = 5210 \pm 350 \ nm$
 $D_C = 2500 \pm 20 \ nm$
 $D_D = 1680 \pm 20 \ nm$
 $D_E = 2980 \pm 26 \ nm$
 $D_G = 4970 \pm 70 \ nm$

4 Wnioski

Różnice pomiędzy wartościami prawdziwymi, a wyliczonymi mogą wynikać z niedokładności przeprowadzonego pomiaru.