Exercice 1.2

David Wiedemann

24 septembre 2021

Ι

Pour montrer que BG est une catégorie, il nous suffit de montrer que la composition est associative et que BG admet une application identité.

Identité

On a que $e \in G$ satisfait $\forall a \in G : a \cdot e = e \cdot a = a$ et ainsi e satisfait les conditions pour être une identité en tant qu'élément de Mor BG.

Associativité

Soit $a, b, c \in G$, l'associativité dans G donne que $(a \cdot b) \cdot c = a \cdot (b \cdot c)$. Ainsi, l'associativité tient également quand on considère $a, b, c \in \text{Mor } BG$ et on en déduit que BG est bien une catégorie.

II

On explicite une bijection entre les 2 classes d'objets. Soit

$$\phi: \operatorname{Gr}(G, H) \to \operatorname{Cat}(BG, BH)$$
$$f \to (\phi(f)_{\operatorname{Ob}}, \phi(f)_{\operatorname{Mor}})$$

défini par $\phi(f)_{Ob}(\star_G) = \star_H$ et $\phi(f)_{Ob}(a) = f(a) \forall a \in G$. Montrons la bijectivité.

Pour l'injectivité, soit $\phi(f)$, $\phi(g) \in \text{Cat}(BG, BH)$ tel que $\phi(f) = \phi(g)$, ainsi $\forall a \in G, \phi(f)(a) = \phi(f)(a) \Rightarrow f(a) = g(a) \Rightarrow f = g$. De plus, pour la surjectivité, soit $F \in \text{Cat}(BG, BH)$, alors $\forall a, b \in \text{Mor } BG = G : F(a \cdot b) = F(a) \cdot F(b)$ et $F(e_G) = e_H$, ainsi, en considérant F comme une application ensembliste entre groupes (en considérant seulement F_{Mor}), on obtient un morphisme de groupe et $\phi(F_{\text{Mor}}) = F$.

III

On considère $\Phi = (\Phi_{\mathrm{Ob}}, \Phi_{\mathrm{Mor}}) : \mathrm{Gr} \to \mathrm{Cat},$ on définit

$$\Phi_{\mathrm{Ob}}(G) = BG \text{ et } \Phi_{\mathrm{Mor}}(f) = \phi(f)$$

ou ϕ est défini comme dans la section II.

Il nous suffit donc de vérifier que Φ définit bien un foncteur.

On a

$$\phi(f)_{\text{Mor}}(e_G) = f(e_G) = e_H$$

de plus

$$\forall a,b \in G = \operatorname{Mor} BG \quad \phi(f)_{\operatorname{Mor}}(a \cdot b) = f(a \cdot b) = f(a) \cdot f(b) = \phi(f)_{\operatorname{Mor}}(a) \cdot \phi(f)_{\operatorname{Mor}}(b)$$