

Contexte

Conception de systèmes embarqués de vision par ordinateur pour les véhicules autonomes.

Objectifs

Concevoir un premier modèle de segmentation d'images qui devra s'intégrer facilement dans la chaîne complète du système embarqué.

Objectif

Dataset

Cityscape

Training set: 2975 images et masques Validation set: 500 images et masques

Test set: 1200 images

30 classes

Group	Classes
flat	road · sidewalk · parking ⁺ · rail track ⁺
human	person* · rider*
vehicle	$car^* \cdot truck^* \cdot bus^* \cdot on \ rails^* \cdot motorcycle^* \cdot bicycle^* \cdot caravan^{*+} \cdot trailer^{*+}$
construction	building · wall · fence · guard rail* · bridge* · tunnel*
object	pole · pole group ⁺ · traffic sign · traffic light
nature	vegetation · terrain
sky	sky
void	ground* · dynamic* · static*

Groupement des classes

Répartition des classe

Métriques

Objectif:

- Prendre en compte le déséquilibre des classes aux niveau intra classe

Générateur de données

Objectifs:

- Pouvoir manipuler un gros volume de donnée ne pouvant être chargé en mémoire vive.
- Effectuer des calculs à la volée

Augmentation des données

Fully Convolutional Networks

Feature Extractor

FCN-8

UNet

FCN-8 + transfert learning

Weights from https://github.com/fchollet/deep-learning-models/

Méthodologie

Implémentation et tests

Générateurs Métriques Loss function Architectures Toy training

CLOUD

Entrainements préliminaires Validation et selection

Augmentations Architectures Loss function GPU

Entrainement Final

GPUs

Deploiement

Model ACI

Image: 128x256px 10% of training dataset

50 epochs

model_type	aug_type	loss_fcn	train_dice	val_dice	train_IoU	val_IoU	train_accuracy	val_accuracy	training_time (s)
fcn8	Blur & flip	categorical crossentropy	0,815	0,798	0,688	0,665	0,873	0,852	4345
fcn8	none	categorical crossentropy	0,803	0,774	0,671	0,632	0,866	0,834	2216
unet	Blur & flip	categorical crossentropy	0,741	0,729	0,590	0,575	0,822	0,818	4098
unet	none	categorical crossentropy	0,742	0,699	0,590	0,538	0,824	0,770	1992
unet	none	dice loss	0,636	0,595	0,467	0,424	0,636	0,594	1995
fcn8	none	dice loss	0,388	0,381	0,241	0,236	0,388	0,381	2229

Choix du FNC8 sans augmentation

Résultats préliminaires

input

Masque réel

Entrainement final

Enregistrement des datasets

Callbacks:

- Early stopping
- Model Checkpoints

~4h Standard NC12

Modèle Final

Val mean IoU: 0.69

Training set entier

Segmentation final

Val mean IoU: 0.69

loU

Void : 0.45 Flat : 0.5

Construction: 0.5

Object: 0 Nature: 0.038 Sky: 0.34 Vehicle: 0.032

Principe

image

Démo

Pour aller plus loin

Prise en compte des déséquilibres inter classe et non seulement intraclasse

Travailler avec des images haute résolution

Différentes architecture optimisée pour les petits datasets

Optimisation de hyperparamètres (learning rate, optimizer type)

Problématique temps réelle