Lecture 13 - Unification

Vaishnavi Sundararajan

COL703/COL7203 - Logic for Computer Science

Recap: Substitutions

- A **substitution** θ is a partial map from \mathcal{V} to $T(\Sigma)$, with a finite domain
- Read $\theta = \{t/x\}$ as "x is replaced by t under θ "
- **Substitution Lemma**: Given an interpretation $\mathcal{F} = ((M, \iota), \sigma)$ for some Σ , a term $t \in T(\Sigma)$, an expression $\varphi \in FO_{\Sigma}$, and a substitution $\{u/x\}$ such that $u^{\mathcal{F}} = m \in M$, the following hold:
 - $(t\{u/x\})^{\mathcal{F}} = t^{\mathcal{F}[x \mapsto m]}$
 - $\mathcal{F} \models \varphi\{u/x\} \text{ iff } \mathcal{F}[x \mapsto m] \models \varphi.$
- Only consider "admissible" substitutions θ for terms/expressions; range of θ does not contain any variables that appear in the term/expression

Recap: Normal forms

- Prenex Normal Form (PNF): FO expression where all quantifiers "appear at the front"
- $Q_1x_1 ... Q_nx_n$. $[\varphi]$ is in PNF if φ is **quantifier-free (qf)**.
- For any FO expression φ , there exists a logically equivalent ψ in PNF.
- Choice of witness for ∃ might depend on value chosen for ∀ if ∃
 appears "deeper" than ∀
- Move to Skolem Normal Form
- PNF expression $Q_1x_1 \dots Q_nx_n$. $[\varphi]$ is in SNF if $Q_i = \forall$ for every $1 \le i \le n$.
- Intuition: Replace every ∃*y* by a "Skolem function" which computes *y* using all the (other) variables *y* depends on.
- For any FO sentence φ , there exists an equisatisfiable ψ in SNF.

Recap: Herbrand models

- Universe is $T^g(\Sigma)$, the set of all ground terms over the signature Σ
- Map each symbol in the syntax to itself
- Assignments map variables to ground terms
- A sentence φ ∈ FO_Σ is satisfiable iff its SNF form φ_{snf} is satisfiable iff Γ^g, the set of all ground instances of the qf subexpression in φ_{snf}, is satisfied by a Herbrand model.
- A sentence is unsatisfiable iff some finite set of ground instances of its qf subexpressions is unsatisfiable.

Unification

- Consider a signature $\Sigma = (\{m, n\}, \{f/2\}, \emptyset)$
- Now consider two terms $t_1 = f(m, y)$ and $t_2 = f(x, n)$
- What if I applied the substitution $\theta = \{m/x, n/y\}$ to t_1 and t_2 ?

Unification

- Consider a signature $\Sigma = (\{m, n\}, \{f/2\}, \emptyset)$
- Now consider two terms $t_1 = f(m, y)$ and $t_2 = f(x, n)$
- What if I applied the substitution $\theta = \{m/x, n/y\}$ to t_1 and t_2 ?
- t_1 and t_2 unify to the same term f(m, n) under θ
- Unification is the problem of finding a substitution θ so as to make some terms identical.
- One basically solves an equation of the form $t_1\theta = t_2\theta$ to see if there is some θ which assigns the right meanings to the variables in t_1 and t_2 and renders them the same.

Unifiability

- A finite set of terms $T = \{t_i \mid 1 \le i \le n\}$ is said to be **unifiable** if there exists a θ such that $t_i\theta = t_j\theta$ for all $1 \le i,j \le n$.
- θ is called a **unifier** of T
- So for our earlier example, consider $T = \{t_1, t_2\} = \{f(m, y), f(x, n)\}$
- T is unifiable, and $\theta = \{m/x, n/y\}$ is a unifier for T
- What about $T' = \{f(x, y), f(y, x)\}$?

Unifiability

- A finite set of terms $T = \{t_i \mid 1 \le i \le n\}$ is said to be **unifiable** if there exists a θ such that $t_i\theta = t_i\theta$ for all $1 \le i,j \le n$.
- θ is called a **unifier** of T
- So for our earlier example, consider $T = \{t_1, t_2\} = \{f(m, y), f(x, n)\}$
- T is unifiable, and $\theta = \{m/x, n/y\}$ is a unifier for T
- What about $T' = \{f(x, y), f(y, x)\}$?
- T' is unifiable, and $\theta' = \{x/y\}$ is a unifier for T'
- What about $\theta'' = \{x/y, y/x\}$? Does θ'' cause T' to unify?

Unifiability

- A finite set of terms $T = \{t_i \mid 1 \le i \le n\}$ is said to be **unifiable** if there exists a θ such that $t_i\theta = t_i\theta$ for all $1 \le i,j \le n$.
- θ is called a **unifier** of T
- So for our earlier example, consider $T = \{t_1, t_2\} = \{f(m, y), f(x, n)\}$
- T is unifiable, and $\theta = \{m/x, n/y\}$ is a unifier for T
- What about $T' = \{f(x, y), f(y, x)\}$?
- T' is unifiable, and $\theta' = \{x/y\}$ is a unifier for T'
- What about $\theta'' = \{x/y, y/x\}$? Does θ'' cause T' to unify?
- No! $f(x,y)\theta'' = f(y,x)$ and $f(y,x)\theta'' = f(x,y)$.

- Consider a signature Σ with two distinct unary functions f and g
- Is $T = \{f(x), g(y)\}$ unifiable?

- Consider a signature Σ with two distinct unary functions f and g
- Is $T = \{f(x), g(y)\}$ unifiable? No! This is called a **clash**.
- The arity of *f* and *g* is immaterial; holds for any two distinct symbols
- If two terms are unifiable, then
 - Either they are headed by the same function symbol¹, or
 - They are both variables, or
 - One is headed by some function symbol and the other is a variable.
- Consider $T = \{x, y\}$ and $\theta = \{f(z)/x, f(z)/y\}$
- Is θ a unifier of T?

¹The symbol that marks the root nodes of their ASTs

- Consider a signature Σ with two distinct unary functions f and g
- Is $T = \{f(x), g(y)\}$ unifiable? No! This is called a **clash**.
- The arity of *f* and *g* is immaterial; holds for any two distinct symbols
- If two terms are unifiable, then
 - Either they are headed by the same function symbol¹, or
 - They are both variables, or
 - One is headed by some function symbol and the other is a variable.
- Consider $T = \{x, y\}$ and $\theta = \{f(z)/x, f(z)/y\}$
- Is θ a unifier of T?

¹The symbol that marks the root nodes of their ASTs

- Consider a signature Σ with two distinct unary functions f and g
- Is $T = \{f(x), g(y)\}$ unifiable? No! This is called a **clash**.
- The arity of *f* and *g* is immaterial; holds for any two distinct symbols
- If two terms are unifiable, then
 - Either they are headed by the same function symbol¹, or
 - They are both variables, or
 - One is headed by some function symbol and the other is a variable.
- Consider $T = \{x, y\}$ and $\theta = \{f(z)/x, f(z)/y\}$
- Is θ a unifier of T? Yes
- Is $\theta' = \{x/y\}$ a unifier of T?

¹The symbol that marks the root nodes of their ASTs

- Consider a signature Σ with two distinct unary functions f and g
- Is $T = \{f(x), g(y)\}$ unifiable? No! This is called a **clash**.
- The arity of *f* and *q* is immaterial; holds for any two distinct symbols
- If two terms are unifiable, then
 - Either they are headed by the same function symbol¹, or
 - They are both variables, or
 - One is headed by some function symbol and the other is a variable.
- Consider $T = \{x, y\}$ and $\theta = \{f(z)/x, f(z)/y\}$
- Is θ a unifier of T? Yes
- Is $\theta' = \{x/y\}$ a unifier of T? Also yes!
- Can we compare θ and θ' using some ordering relation?

¹The symbol that marks the root nodes of their ASTs

Generality of unifiers

- θ assigns a specific term to x and to y; θ' just replaces y by x
- θ' "less constrained" than θ
- Can apply $\tau = \{f(z)/x\}$ to the result of θ' to obtain the result of θ
- A substitution θ' is **at least as general as** another substitution θ (denoted $\theta' \ge \theta$) if there exists a substitution τ such that $\theta = \tau \circ \theta'$ (where \circ denotes function composition)
- $\theta' \sim \theta$ if $\theta' \geq \theta$ and $\theta \geq \theta'$.
- θ' is **strictly more general than** θ (denoted $\theta' > \theta$) if $\theta' \ge \theta$ and $\theta \ge \theta'$.
- **Exercises**: Show that, on the set of all substitutions from \mathcal{V} to $T(\Sigma)$,
 - > is a reflexive transitive relation
 - > is an irreflexive transitive relation
 - ~ is an equivalence relation
 - If $\theta \sim \theta'$ and $\tau \circ \theta = \theta'$, then $rng(\tau) \subseteq \mathcal{V}$.

Most general unifiers

- Let *T* be a unifiable set of terms
- θ' is called **a most general unifier (mgu)** of **T** if for each unifier θ of **T**, there is a τ such that $\theta = \tau \circ \theta'$.
- If a set of terms is unifiable, then it has an mgu
- Can a set have multiple mgus?

Most general unifiers

- Let *T* be a unifiable set of terms
- θ' is called **a most general unifier (mgu)** of **T** if for each unifier θ of **T**, there is a τ such that $\theta = \tau \circ \theta'$.
- If a set of terms is unifiable, then it has an mgu
- Can a set have multiple mgus? Yes!
- $T = \{x, y\}$ and $\theta = \{x/y\}$ and $\theta' = \{y/x\}$; both are mgus of T
- **Exercise**: If θ and θ' are both mgus of T, then $\theta \sim \theta'$.

More about unifiability: Example

Suppose $T = \{f(g(a, x), x), f(x, h(b, y))\}$ where $x, y \in \mathcal{V}$ and $a, b \in \mathcal{C}$. Is T unifiable?

More about unifiability: Example

Suppose $T = \{f(g(a, x), x), f(x, h(b, y))\}$ where $x, y \in \mathcal{V}$ and $a, b \in \mathcal{C}$. Is T unifiable?

- Need to make x, g(a, x), and h(b, y) identical
- Two problems with this
 - $g \neq h$, so we have a **clash**, and g(a, x) and h(b, y) do not unify
 - x and g(a, x) can never unify (this is called an **occurs check**)
- Obstacles of the above two sorts are the **only** roadblocks to unifiability
- If they do not feature, the set is unifiable!

A unification algorithm

• Start with a system of equations

$$l_1 = r_1$$

$$l_2 = r_2$$

$$\vdots$$

$$l_n = r_n$$

- Perform a series of transformations till you cannot anymore.
- What sort of terms can occur in l_i and r_i ? How do we handle them?
- What combinations already rule out unification?

A unification algorithm: Transformations

- $l_i = t \notin \mathcal{V}$ and $r_i = x$: Replace $l_i = r_i$ by x = t
- $l_i = x$ and $r_i = x$: Remove the equation
- $l_i = f(...)$ and $r_i = g(...)$: The following cases arise.
 - $f \neq g$: Clash; no unification possible. Terminate.
 - f = g: Then $l_i = f(t_1, ..., t_k)$ and $r_i = f(u_1, ..., u_k)$. Replace $l_i = r_i$ by k new equations, each of the form $t_j = u_j$, for $1 \le j \le k$.
- $l_i = x$ and $r_i = t \notin \mathcal{V}$ such that $x \in \text{vars}(t)$: Occurs check; no unification possible. Terminate.
- $l_i = x$ and $r_i = t$ and $x \notin \text{vars}(t)$: Replace every occurrence of x in $\{l_j \cup r_j \mid 1 \le j \le n, j \ne i\}$ by t.

$$g(Y) = X$$

$$f(X, h(X), Y) = f(g(Z), W, Z)$$

①
$$g(Y) = X$$

$$f(X, h(X), Y) = f(g(Z), W, Z)$$

$$(2)$$

$$X = g(Y)$$

$$f(X, h(X), Y) = f(g(Z), W, Z)$$

$$g(Y) = X$$

$$f(X, h(X), Y) = f(g(Z), W, Z)$$

$$Z = g(Y)$$

$$f(X, h(X), Y) = f(g(Z), W, Z)$$

$$X = g(Y)$$

$$X = g(Z)$$

$$h(X) = W$$

$$Y = Z$$

1 q(Y) = Xf(X, h(X), Y) = f(g(Z), W, Z)

(2)

$$X = g(Y)$$

$$f(X, h(X), Y) = f(g(Z), W, Z)$$

(3)

$$X = g(Y)$$

$$X = g(Z)$$

$$h(X) = W$$

$$Y = Z$$

$$X = g(Y)$$

$$g(Y) = g(Z)$$

$$h(g(Y)) = W$$

$$Y = Z$$

$$Y = Z$$

g(Y) = X f(X, h(X), Y) = f(g(Z), W, Z)

X = g(Y)f(X, h(X), Y) = f(g(Z), W, Z)

3

$$X = g(Y)$$

$$X = g(Z)$$

$$h(X) = W$$

$$Y = Z$$

(5)

$$X = g(Y)$$

$$Y = Z$$

$$h(g(Y)) = W$$

$$Y = Z$$

4

$$X = g(Y)$$
$$g(Y) = g(Z)$$
$$h(g(Y)) = W$$
$$Y = Z$$

g(Y) = X f(X, h(X), Y) = f(g(Z), W, Z)

f(X, h(X), Y) = f(g(Z), W, Z)

X = g(Y)

X = g(Y) X = g(Z) h(X) = W Y = Z

X = g(Y) Y = Z h(g(Y)) = W

Y = Z

4

X = g(Y) g(Y) = g(Z) h(g(Y)) = W Y = Z

(6)

X = g(Z) Y = Z h(g(Z)) = W Z = Z

1 q(Y) = Xf(X, h(X), Y) = f(g(Z), W, Z)

(2) X = g(Y)f(X, h(X), Y) = f(g(Z), W, Z) (3)

$$X = g(Y)$$

$$X = g(Z)$$

$$h(X) = W$$

$$Y = Z$$

(5)

$$X = g(Y)$$

$$Y = Z$$

$$h(g(Y)) = W$$

$$Y = Z$$

(7)

$$X = g(Z)$$
$$Y = Z$$
$$h(g(Z)) = W$$

(4)

$$X = g(Y)$$

$$g(Y) = g(Z)$$

$$h(g(Y)) = W$$

$$Y = Z$$

(6)

$$Y = Z$$

$$h(g(Z)) = W$$

$$Z = Z$$

g(Y) = X f(X, h(X), Y) = f(q(Z), W, Z)

X = g(Y) f(X, h(X), Y) = f(q(Z), W, Z)

(3)

$$X = g(Y)$$

$$X = g(Z)$$

$$h(X) = W$$

$$Y = Z$$

5

$$X = g(Y)$$

$$Y = Z$$

$$h(g(Y)) = W$$

$$Y = Z$$

(7)

$$X = g(Z)$$
$$Y = Z$$
$$h(g(Z)) = W$$

4

$$X = g(Y)$$

$$g(Y) = g(Z)$$

$$h(g(Y)) = W$$

$$Y = Z$$

(6)

$$Y = Z$$

$$h(g(Z)) = W$$

$$Z = Z$$

X = q(Z)

8

$$X = g(Z)$$

$$Y = Z$$

$$W = h(g(Z))$$