tan "

arcsin(2)

0=1[a0]

SOLUÇÕES DE EQUAÇÕES NÃO-LINEARES DE UMA ÚNICA VARIÁVEL

MAT 271 – CÁLCULO NUMÉRICO –PER3/2021 Professor Amarísio Araújo – DMA/UFV

UMA MOTIVAÇÃO

Uma peça deve ser construída com o formato de um arco de circunferência de comprimento externo igual a 8 metros. Esta peça será fixada em uma barra de comprimento igual a 6 metros, conforme figura abaixo:

Determinar a altura h máxima da peça.

MODELANDO MATEMATICAMENTE O PROBLEMA

Como a peça tem o formato de um arco de circunferência, podemos representá-la na figura abaixo:

Na figura:

- ➤ h é a altura da peça;
- $\triangleright \theta$ é um ângulo do triângulo retângulo;
- $r \in r$ é o raio da circunferência, sendo r = h + x.

Do triângulo retângulo e do arco subentendido pelo ângulo θ , temos:

$$sen\theta = 3/r$$
 $\implies rsen\theta = 3$ (A)

$$cos\theta = x/r$$
 $\implies rcos\theta = x$ (B)

$$4 = r\theta$$
 $\Rightarrow r = 4/\theta$ (C)

De (A) e (C), obtemos a equação:

 $4sen\theta - 3\theta = 0$

SOLUÇÃO DA EQUAÇÃO

A equação $4sen\theta-3\theta=0$ tem uma solução aproximada $\bar{\theta}=1.2757$, como veremos nos métodos numéricos que serão apresentados. De modo que:

$$r = 4/\bar{\theta} = 4/1.2757 = 3.1355$$

 $x = r\cos\bar{\theta} = 3.1355\cos(1.2757) = 0.9119$
 $h = r - x = 3.1355 - 0.9119 = 2.2236$

Portanto a altura máxima da peça deve ser de aproximadamente 2.22 metros

PROBLEMA

Trataremos, aqui, portanto, da resolução de equações da forma f(x) = 0,

onde f é uma função real não-linear de uma única variável x.

Uma solução da equação acima é um número real \bar{x} que satisfaz a equação, isto é, tal que $f(\bar{x}) = 0$ se torna uma identidade.

Obs: \bar{x} pode ser chamada também de raiz (ou zero) da equação.

GRAFICAMENTE

Graficamente, uma solução \bar{x} da equação f(x) = 0 é um ponto no eixo x de interseção do gráfico de f com este eixo.

Ou seja, uma solução \bar{x} da equação f(x) = 0 corresponde à abscissa de um ponto de interseção do gráfico de f com o eixo x.

QUESTÃO INICIAL: EXISTÊNCIA DE SOLUÇÃO

Um resultado importante que apresenta condições suficientes para garantir a existência de solução de uma equação f(x) = 0 é o seguinte:

TEOREMA DO VALOR INTERMEDIÁRIO (TVI): Seja $f: \mathbb{R} \to \mathbb{R}$ uma função contínua em um intervalo [a,b] e tal que f(a).f(b) < 0. Então existe um $\bar{x} \in [a,b]$ tal que $f(\bar{x}) = 0$.

Portanto, dada a equação f(x)=0, se determinarmos um intervalo [a,b] no qual a função f seja contínua e tal que f(a) e f(b) tenham sinais contrários, isto é: f(a)>0 e f(b)<0 ou f(a)<0 e f(b)>0, podemos garantir que a equação tem pelo menos uma solução \bar{x} neste intervalo.

O TVI GARANTE A EXISTÊNCIA DE SOLUÇÃO NO INTERVALO, MAS NÃO SUA UNICIDADE

ILUSTRANDO GRAFICAMENTE

BUSCA DE SOLUÇÕES APROXIMADAS

O nosso objetivo será o de encontrar, de forma aproximada, uma solução \bar{x} de uma dada a equação f(x)=0 em algum intervalo onde ela seja única.

Portanto, é importante, inicialmente, determinar um intervalo (intervalo de busca), no qual tal solução \bar{x} exista, e, de preferência, que \bar{x} seja única.

Assim, encontrando dois números reais a e b, com a < b, tais que f satisfaz as condições do TVI em [a,b], já teremos o intervalo de busca [a,b]. E, para garantir que a solução \bar{x} seja única neste intervalo:

 \square Se f(a) < 0 e f(b) > 0, basta que f seja crescente em [a, b].

 \square Se f(a) > 0 e f(b) < 0, basta que f seja decrescente em [a, b].

EXEMPLO: Seja a equação: $x^3 + cos x = 0$

Neste caso, $f(x) = x^3 + cosx$, sendo f uma função contínua em todo \mathbb{R} (pois é a soma de duas funções contínuas em todo \mathbb{R}).

Para a = -1 e b = 0, por exemplo, temos: f(a) = f(-1) = -0.4596 < 0 e f(b) = f(0) = 1 > 0.

Portanto, as condições do TVI são verificadas no intervalo [a,b]=[-1,0], e podemos garantir a existência de pelo menos uma solução \bar{x} neste intervalo.

Se analisarmos o crescimento ou decrescimento de f em [-1,0], podemos dizer se a solução é única ou não. Como f é derivável no intervalo, esta verificação pode ser feita usando a derivada.

Observe que: $f'(x) = 3x^2 - senx$. Como $3x^2 \ge 0$ e $-senx \ge 0$ para todo $x \in [-1,0]$, temos f'(x) > 0 para todo $x \in [-1,0]$ (f' só se anula em 0), e, portanto, f é crescente em [-1,0].

Assim: f(-1) < 0 e f(0) > 0, e f é crescente em [-1,0]. Isto nos garante que a solução da equação $x^3 + cos x = 0$ é única neste intervalo.

Esboço gráfico para determinar um intervalo de busca para a equação:

$$x^3 + cos x = 0$$

$$y = f(x) = x^3 + \cos x$$

 \bar{x} solução da equação

O gráfico indica que, assim como o intervalo [-1,0], poderíamos ter escolhido outros intervalos de busca da solução. Por exemplo: [-1,0.5], [-2,0.5], [-2,0],... (uma infinidade de intervalos).

A escolha do intervalo de busca, como veremos mais adiante, pode garantir maior rapidez e sucesso na obtenção de um valor aproximado da solução.

Determinação do intervalo de busca para a equação: $x^3 + cos x = 0$ a partir da interseção do gráfico de duas funções.

Observe que $x^3 + cos x = 0 \Leftrightarrow cos x = -x^3$

Logo, \bar{x} que satisfaz $x^3 + \cos x = 0$ também satisfaz $\cos x = -x^3$

Portanto \bar{x} é a abscissa do ponto de interseção entre os gráficos de $g(x) = \cos x$ e $h(x) = -x^3$

SOLUÇÕES APROXIMADAS DE EQUAÇÕES

- Aprenderemos, aqui, métodos numéricos para a obtenção, de forma aproximada, de uma solução \bar{x} de uma equação f(x) = 0 em algum intervalo [a,b], onde a função f é contínua.
- As funções f serão, em geral, combinação de todas as funções não-lineares vistas em um curso de Cálculo I: exponenciais, logarítmicas, trigonométricas, polinomiais etc.
- A solução \bar{x} será obtida iterativamente a partir da construção de uma sequência de aproximações (x_n) que, espera-se, convirja para \bar{x} .