

FIRST-ORDER LOGIC ARTIFICIAL INTELLIGENCE | COMP 131

- Disaster zone
- Propositional Logic is a weak language
- First-order Logic
- Questions?

- A building of size WIDTH × LENGTH
- RR1 starts in square (1, 1)
- BR2 starts in square (2, 1)
- There is a victim somewhere
- Robots of type SRR have sensors that can detect heat and drop-offs
 - They reliably sense drop-offs and victims from exactly one (nondiagonal) block away
 - They are not good enough to say in what direction the victim or hole was

- Propositional Logic is declarative
- Propositional Logic is **compositional**: the meaning of $p \land q$ is derived from meaning of p and of q
- Propositional Logic is context-independent (unlike natural language)
- Propositional Logic assumes that the world contains only facts

Unfortunately, Propositional Logic has very **limited** expressive power (unlike natural language):

- Hard to identify individuals:
 Every pit causes breeze in adjacent squares
- Can't directly talk about **properties** and relations between individuals:
 RR1 is red
- Generalizations, patterns, regularities can't easily be represented:
 All SRR robots have a left arm

First-order Logic

First-order Logic is a powerful evolution of Propositional Logic. It models the world in terms of:

- Objects: things with individual identities
- Properties: properties of objects that distinguish them from other objects
- Relations: relationships that hold among sets of objects
- Functions: a subset of relations where there is only one value for any given input

Examples:

- Objects: Victim, Robot, RR1, RB2, Sq11, Sq12,...
- Properties: blue(Robot), red(Robot)
- Relations: color(x, Red), same_type(RR1, RB2)
- Functions: location(Robot, Step 0) = Sq11

- Term: Objects, functions, or variables
- Proposition: Relations, or property
- Connectives:

• Quantifiers:

■ Operator precedence: $\neg = \land \lor \rightarrow \leftrightarrow$

FIRST-ORDER LOGIC GRAMMAR

Constant
$$\rightarrow$$
 $A \mid X_1 \mid RR1 \dots$

Variable
$$\rightarrow$$
 a | x | s ...

Connective
$$\rightarrow$$
 \land , \lor , \rightarrow , \leftrightarrow

Quantifier
$$\rightarrow$$
 \exists , \forall

- Sentences are true with respect to a model and an interpretation
- Model contains objects (domain elements) and relations among them
- Interpretation specifies referents for:

```
constant symbols → objects
```

predicate symbols → relations

function symbols → functional relations

• A sentence $predicate(term_1, ..., term_n)$ is **true** iff the **objects** referred to by $term_1, ..., term_n$ are in the **relation** referred to by **predicate**

Existential quantification:

■ $\exists x$: P(x) means that P holds for some value of x in the domain associated with that variable:

 $\exists x$: square(x) \land unsafe(x) means **There is an unsafe square**

- It permits one to make a statement about some object without naming it
- The existential quantifier is equivalent to the **disjunction** of **instantiations** of P(x) for all the objects defined in the domain:

```
square(x_1) \land unsafe(x_1) \lor square(x_2) \land unsafe(x_2) \lor square(x_3) \land unsafe(x_4) \lor
```


Existential quantifiers are normally used with **and** (\land) to specify a list of properties about that object:

 $\exists x$: square(x) \land free(x) means There is an object that is square and free

A common mistake is to use it with an implication (\rightarrow) :

 $\exists x : square(x) \rightarrow free(x)$ means There is an object for which square implies free

Universal quantification:

• $\forall x$: P(x) means that P holds for all values of x in the domain associated with that variable:

```
\forall x: adjacent(x, Sq12) \land unsafe(x, Sq12) \rightarrow dropoff-detected(x)
```

• The existential quantifier is equivalent to the **conjunction** of instantiations of P(x) for all the objects defined in the domain:

```
adjacent(x_1, \text{Sq12}) \land \text{unsafe}(x_1, \text{Sq12}) \rightarrow \text{dropoff-detected}(x_1) \land \text{adjacent}(x_2, \text{Sq12}) \land \text{unsafe}(x_2, \text{Sq12}) \rightarrow \text{dropoff-detected}(x_2) \land \text{adjacent}(x_3, \text{Sq12}) \land \text{unsafe}(x_3, \text{Sq12}) \rightarrow \text{dropoff-detected}(x_3) \land \vdots
```


Universal quantifiers are often used with " \rightarrow " to form **rules**.

Universal quantification is rarely used to make blanket statements about every individual in the world:

 $\forall x$: unsafe(x) means Every object [in the world] is unsafe

 $\forall x$: square(x) \land unsafe(x) means Every object [in the world] is square and unsafe

Switching the order of universal quantifiers does not change the meaning:

$$\forall x \ \forall y \colon P(x,y) \leftrightarrow \forall y \forall x \ P(x,y)$$

Switching the order of existential quantifiers does not change the meaning:

$$\exists x \exists y : P(x,y) \leftrightarrow \exists y \exists x P(x,y)$$

Switching the order of existential and universal quantifiers does change the meaning:

```
\forall x \exists y : \mathbf{loves}(x, y) or \forall x (\exists y : \mathbf{loves}(x, y)) means ...?
```

$$\exists y \ \forall x : \mathbf{loves}(x, y)$$
 or $\exists y \ (\forall x : \mathbf{loves}(x, y))$ means ...?

■ We can relate sentences involving ∀ and ∃ using De Morgan's laws:

SENTENCE	EQUIVALENT
$\forall x: \neg P(x)$	$\nexists x \colon P(x)$
$\neg \forall x : P(x)$	$\exists x : \neg P(x)$
$\forall x \colon P(x)$	$\nexists x : \neg P(x)$
$\exists x \colon P(x)$	$\neg \forall x : \neg P(x)$

FOL introduces the concept of equality:

- At timestep 0, the robot was at Square (1, 1).
 location(Robot, T0) = Sq11
- The robot was located at different places in timestep 0 and timestep 1.

```
x = \text{location}(\text{Robot}, \text{T0}) \land y = \text{location}(\text{Robot}, \text{T1}) \land \neg (x = y)
```

$$x = \text{location}(\text{Robot}, \text{T0}) \land y = \text{location}(\text{Robot}, \text{T1}) \land (x \neq y)$$

The robot is different from the victim.

```
\neg(Robot = Victim)
Robot \neq Victim
```

■ Every gardener likes the sun. $\forall x$: gardener(x) \rightarrow likes(x, Sun)

- You can fool some of the people all the time. $\exists x \ \forall t \colon (\mathbf{person}(x) \land \mathbf{time}(t)) \rightarrow \mathbf{can-fool}(x,t)$
- You can fool all the people some of the time. $\forall x \exists t : (\mathbf{person}(x) \land \mathbf{time}(t)) \rightarrow \mathbf{can-fool}(x, t)$
- All purple mushrooms are poisonous. $\forall x : (\mathbf{mushroom}(x) \land \mathbf{purple}(x)) \rightarrow \mathbf{poisonous}(x)$

No purple mushroom is poisonous.

 $\nexists x$: purple(x) \land mushroom(x) \land poisonous(x)

 $\forall x :$ mushroom $(x) \land$ purple $(x)) \rightarrow \neg$ poisonous(x)

There are exactly two purple mushrooms.

 $\exists x \exists y : \mathsf{mushroom}(x) \land \mathsf{purple}(x) \land \mathsf{mushroom}(y) \land \mathsf{purple}(y) \land \neg (x = y) \land \forall z : (\mathsf{mushroom}(z) \land \mathsf{purple}(z)) \rightarrow ((x = z) \lor (y = z))$

John is not tall.

¬tall(John)

Exercises from the textbook (chapter 8): 8.6, 8.10, 8.11, 8.23, 8.24

QUESTIONS?

ARTIFICIAL INTELLIGENCE COMP 131

FABRIZIO SANTINI