Multicopter communication protocol

This document describes communication protocol used to control UAV with Multicopter board hardware over any intreface, including IP network.

Bartosz Nawrot

Protocol description

Binary structure of generic protocol message and used messages.

General message structure

Preamble

Payload

CRC

- Premable structre
 - 3 the same bytes and zero, example {\$, \$, \$, 0}
- Preamble types:
 - Control, key value {\$}
 - Signal, key value {%}
 - Autopilot, key value {^}
- Payload size varays in case of premble type
- CRC size is 16 bits and is computed only from payload data

Control message $-\{\$,\$,\$,0\}$

- Payload size is 32 bytes
- Main controling and telemetry message
- Is beeing send and receive by UAV frequentyl
- Payload contains serialized control object
- Data is direction dependent
 - When sending TO UAV ControlData
 - When sending FROM UAV DebugData

ControlData – user control

- Axis rotation over roll, pitch and yaw axis
- Throttle
- Mode for axis rotation interpretation (angular velocity, angle, etc.)
- Controller mode:
 - MANUAL
 - HOLD: ALTITUDE
 - HOLD: POSITION
 - VIA_RUTE
 - BACK_TO_BASE
 - AUTOLANDING
 - AUTOLANDING_AP

ControlData – example

```
ControlData controlData;
controlData.setEuler(Vect3Df(0.4f, -0.8f, 0.1f));
controlData.setThrottle(0.43f);
controlData.setControllerCommand(ControlData::AUTOLANDING_AP);
controlData.setSolverMode(ControlData::ANGLE);
```

```
36,36,36,0

205,204,204,62,

205,204,76,191,

205,204,204,61,

246,40,220,62,

176,4,2,204,

0,0,0,0,

0,0,0,0,

0,0,0,0
```

DebugData - telemetry

- Euler angles (roll, pitch and yaw rotation)
- Geographic coordinates (latitude and longintude)
- Altitude relative to base
- Velocity relative to ground
- Controller state
- Battery charge voltage
- Flags (gps fix, autopilot, autolanding, error handling, etc.)

DebugData – example

```
DebugData debugData;
debugData.setEuler(Vect3Df(0.4f, -0.8f, 0.1f));
debugData.setPosition(Vect2Df(50.0123f, 19.8231f));
debugData.setAltitude(23.12f);
debugData.setVelocity(2.23f);
debugData.setControllerState(DebugData::VIA_ROUTE);
debugData.setBatteryVoltage(13.43f);
debugData.setGpsFlags(StateVector::FIX_3D);
debugData.setSolverMode(ControlData::HEADLESS);
```

```
36,36,36,0
```

```
205,204,204,62,
205,204,76,191,
205,204,204,61,
152,12,72,66,
181,149,158,65,
195,245,184,65,
82,184,14,64,
64,6,195,94
```

23,161

Signal message – {%, %, %, 0}

Command Parameter/Value

Data type All Actual Data packet

- Command signal message
 - 4 bytes command
 - 4 bytes parameter (parameter can be any value, for _VALUE command)
- Data signal message
 - 4 bytes command
 - 2 bytes for max data packets, 2 bytes for actual data packet number
 - Data packet payload, max 50 bytes (max whole message size: 64 bytes)

Data sent over signal data message

Calibration settings

- Contains sensors and input peripherials calibration parameters also containis hardware version
- Sent every board startup after ad hoc calibration

Control settings

- Defines control parameters for drone (PID tuning, error handling options, etc.)
- Is stored in internal board memory and can by uploaded/download by propper app. loop action

Route container

- Contains route and route parameters for VIA_ROUTE control mode
- Size of route container is variable in case of number of waypoints

Calibration settings detiled description

- gyroOffset 3 x float vector
 - unit: dps
- accelCalib 3x3 float matrix
- magnetSoft 3x3 float matrix
- mangetHard 3 x float vector
- altimSetting float scalar
 - unit: hPa
- **tempSetting** float scalar
 - unit: K
- radioLevels 16 x shot vector
- pwmInputMap 8 x char vector

- **boardType** enum:
 - TYPE_ULTIMATE_V4
 - TYPE ULTIMATE V5
 - TYPE_BASIC_V1
 - TYPE_BASIC_V2
 - TYPE_BASIC_V3
- flags 32 x 1 bit (true/false)
 - 0: IS_GPS_CONNECTED
 - 1: IS_EXTERNAL_MAGNETOMETER_USED

Calibration settings example

```
37,37,37,0,185,134,1,0,4,0,0,0,74,76,244,194,123,163,165,66,115,168,232,66,47,196,126,63,232,221,244,55,18,33,164,188,232,221,244,55,40,209,126,63,70,16,62,59,18,33,164,60,70,16,62,187,235,195,126,63,141,72,201,27
```

- 37,37,37,0,185,134,1,0,4,0,1,0,139,57,137,61,76,184,179,61,127,56,137,61,76,184,221,38,139,57,195,35,188,55,179,61,127,56, 195,35,188,55,36,59,176,57,225,174,1,197,80,173,3,195,164,72,132,197,219,25,121,68,89,249
- **37**,**37**,**37**,**0**,**185**,**134**,**1**,**0**,**4**,**0**,**2**,**0**,**236**,**225**,**151**,**67**,**0**,**0**,**44**,**67**,**0**,**64**,**226**,**68**,**0**,**0**,**48**,**67**,**0**,**128**,**226**,**68**,**0**,**0**,**44**,**67**,**0**,**128**,**226**,**68**,**0**,**160**,**226**,**68**,**0**,**0**,**199**,**70**
- **37**,**37**,**37**,**0**,**185**,**134**,**1**,**0**,**4**,**0**,**3**,**0**,**44**,**67**,**0**,**0**,**45**,**67**,**0**,**128**,**226**,**68**,**0**,**0**,**44**,**67**,**0**,**128**,**226**,**68**,**3**,**3**,**1**,**0**,**2**,**6**,**4**,**5**,**5**,**0**,**0**,**0**,**1**,**0**,**0**,**141**,**64**,**102**,**17** 5,**204**,**204**,**204**,**204**,**204**,**204**,**204**,**226**,**68**,**0**,**0**,**208**,**205**

Control settings detiled description

- uavType enum:
 - TRICOPTER REAR
 - TRICOPTER_FRONT
 - QUADROCOPTER X
 - QUADROCOPTER PLUS
 - HEXACOPTER X
 - HEXACOPTER_PLUS
 - OCTOCOPTER X
 - OCTOCOPTER PLUS
- initialSolverMode enum:
 - ControlData::SolverMode
- manualThrottleMode enum:
 - STATIC
 - DYNAMIC

- autoLandingDescendRate float scalar:
 - range: (0, -)
 - Unit: meters per second
- maxAutoLandingTime float scalar:
 - Range: (0, -)
 - Unit: seconds
- maxRollPitchControlValue float scalar:
 - Range: (0, 0.8727) (max 50 deg. of tilt)
 - Unit: radians
- maxYawControlValue float scalar:
 - Range: (0, 3.4907) (max 200 deg per seconds of rotation)
 - Unit: radians
- pidRollRate, pidPitchRate, pidYawRate 3 x float vector
 - Range: (0, -)
- rollProp, pitchProp, yawProp float scalar
 - Range: (0, -)

Control settings detiled description

- maxAutoAngle float scalar:
 - Range: (0, 0.5236) (max 30 deg. of tilt)
 - Unit: Radians
- maxAutoVelocity float scalar:
 - Range: (0, 10)
 - Unit: metres per second
- altPositionProp, altVelocityProp float scalar
 - Range: (0, -)
- autoPositionProp, autoVelocityProp float scalar
 - Range: (0, -)
- pidThrottleAccel, pidAutoAccel 3 x float vector
 - Range: (0, -)
- **stickPositionRateProp** float scalar:
 - Range: (0, 10)
 - Units: metres per second

- **stickMovementType** enum:
 - COPTER
 - GEOGRAPHIC
 - BASE_POINT
- **batteryType** enum:
 - DISABLED
 - BATTERY 2S
 - BATTERY 3S
 - BATTERY 4S
 - BATTERY 5S
 - BATTERY 6S
- **errorHandlingAction** enum:
 - AUTOLANDING
 - AUTOLANDING_AP
 - BACK_TO_BASE

Control settings detiled description

- **escPwmFreq** enum:
 - SLOW
 - MEDIUM
 - FAST
 - VERY_FAST
 - ONESHOT_125
- **gpsSensorPosition** 3 x float vector:
 - Unit: metres
- flags:
 - ENABLE_FLIGHT_LOGGER
 - ALLOW_DYNAMIC_AUTOPILOT
 - GPS_SENSORS_POSITION_DEFINED

Control settings example

```
<?xml version="1.0" encoding="UTF-8"?>
<ControlSettings name="Quadrocopter">
   <Setting name="uavType">Quadrocopter "X"</Setting>
   <Setting name="initialSolverMode">Angle</Setting>
                                                           <del>37,37,37,0,186,134,1,0,4,0,0,0,208,7,0,0,2,0,0,0,0,0,0,0,0,0,0,128,63,0,0,</del>
   <Setting name="manualThrottleMode">Dynamic</Setting>
   <Setting name="autoLandingDescedRate">1</Setting>
                                                           112,65,150,10,6,63,166,184,178,63,143,194,117,62,143,194,245,61,10,2
   <Setting name="maxAutoLandingTime">15</Setting>
                                                           15,163,59,143,194,117,62,143,194,245,61,10,215,242,138
   <Setting name="maxRollPitchControlValue">0.523599/Setting>
   <Setting name="maxYawControlValue">1.39626</Setting>
   <Setting name="pidRollRate">0.24,0.12,0.005,</Setting>
   <Setting name="pidPitchRate">0.24,0.12,0.005,</Setting>
                                                           37, 37, 37, 0, 186, 134, 1, 0, 4, 0, 1, 0, 163, 59, 0, 0, 128, 63, 0, 0, 0, 63, 10, 215, 163, 59
   <Setting name="pidYawRate">1,0.5,0.005,</Setting>
                                                           ,0,0,144,64,0,0,144,64,0,0,160,64,0,0,0,63,0,0,0,64,188,116,19,60,188,1
   <Setting name="rollProp">4.5</Setting>
  <Setting name="pitchProp">4.5</Setting>
                                                           16,147,60,23,183,81,57,0,0,128,63,233,240
   <Setting name="yawProp">5</Setting>
   <Setting name="altPositionProp">0.5</Setting>
   <Setting name="altVelocityProp">2</Setting>
                                                           37,37,37,0,186,134,1,0,4,0,2,0,150,10,6,63,0,0,192,64,51,51,51,63,0,0,0,
   <Setting name="pidThrottleAccel">0.009,0.018,0.0002,</Setting>
   <Setting name="throttleAltRateProp">1</Setting>
                                                           64,0,0,64,64,0,0,0,63,0,0,0,0,0,0,192,64,0,0,0,0,0,0,0,0,76,4,0,0,1,0,0,0,0
   <Setting name="maxAutoAngle">0.523599</Setting>
   <Setting name="maxAutoVelocity">6</Setting>
                                                          ,0,198,220
   <Setting name="autoPositionProp">0.7</Setting>
   <Setting name="autoVelocityProp">2</Setting>
   <Setting name="pidAutoAccel">3,0.5,0,</Setting>
                                                           <Setting name="stickPositionRateProp">6</Setting>
   <Setting name="stickMovementMode">Copter</Setting>
                                                           <Setting name="batteryType">Disabled</Setting>
                                                          0,1,0,0,0,0,0,97,32
   <Setting name="errorHandlingAction">Autolanding</Setting>
   <Setting name="escPwmFreq">Medium</Setting>
   <Setting name="gpsSensorPosition">0,0,0,</Setting>
   <Setting name="flags">0,</Setting>
</ControlSettings>
```

Route container detiled description

- routeSize unsigned scalar:
 - Number of waypoints
 - Range: (0, 16)
- waypointTime float scalar:
 - Time for staying at wypoint
 - Range: (0, -)
 - Units: seconds
- baseTime float scalar:
 - Time for staying above base before landing
 - Range: (0, -)
 - Units: seconds

Distance between Waypoints can not be grater than 1 km.

- Waypoint:
 - **position** 2x float vector
 - Latitude and longitude of Waypoint
 - Range:
 - Latitute: (-90, 90)
 - Longintude: (-180, 180)
 - Units: degrees
 - absoluteAltitude float scalar
 - Absolute altitude for Waypoint
 - Range: (0, 2000)
 - Units: metres
 - relativeAltitude flaot scalar
 - Waypoint altitude in relations to base
 - Range: (-, 1000)
 - Units: metres
 - velocity float scalar
 - Velocity for reaching THIS Waypoint
 - Range: (0, 20)
 - Units: metres per second

Route container example

```
<?xml version="1.0" encoding="UTF-8"?>
<RouteContainer name="Fast test route">
   <Setting name="routeSize">5</Setting>
   <Setting name="waypointTime">12.3</Setting>
   <Setting name="baseTime">18.85</Setting>

    <Waypoint>

      <Setting name="position">50.001379,20.001657,</Setting>
       <Setting name="absoluteAltitude">5</Setting>
       <Setting name="relativeAltitude">-20</Setting>
       <Setting name="velocity">5</Setting>
   </Waypoint>
 - <Waypoint>
      <Setting name="position">49.998545,20.000032,</Setting>
       <Setting name="absoluteAltitude">15</Setting>
       <Setting name="relativeAltitude">-20</Setting>
       <Setting name="velocity">9</Setting>
   </Waypoint>
 - <Waypoint>
       <Setting name="position">50.000587,19.999393,</Setting>
       <Setting name="absoluteAltitude">-5</Setting>
       <Setting name="relativeAltitude">-20</Setting>
       <Setting name="velocity">3</Setting>
   </Waypoint>
 - <Waypoint>
       <Setting name="position">50.000501,19.998894,</Setting>
       <Setting name="absoluteAltitude">-5</Setting>
       <Setting name="relativeAltitude">-20</Setting>
       <Setting name="velocity">4</Setting>
   </Waypoint>
 - <Waypoint>
       <Setting name="position">50.000811,20.0006,</Setting>
       <Setting name="absoluteAltitude">-10</Setting>
       <Setting name="relativeAltitude">-20</Setting>
       <Setting name="velocity">5</Setting>
   </Waypoint>
</RouteContainer>
```

```
37, 37, 37, 0, 187, 134, 1, 0, 5, 0, 0, 0, 105, 207, 207, 196, 5, 0, 0, 0, 205, 204, 68, 65, 2 05, 204, 150, 65, 12, 2, 27, 0, 205, 205, 205, 205, 228, 253, 30, 49, 45, 0, 73, 64, 4, 25 0, 124, 145, 108, 0, 52, 64, 0, 0, 160, 193, 0, 0, 160, 64, 0, 0, 238, 161
```

37,**37**,**37**,**0**,**187**,**134**,**1**,**0**,**5**,**0**,**1**,**0**,**160**,**64**,**205**,**205**,**205**,**205**,**12**,**2**,**27**,**0**,**205**,**20** 5,**205**,**205**,**135**,**21**,**95**,**79**,**208**,**255**,**72**,**64**,**51**,**7**,**39**,**27**,**2**,**0**,**52**,**64**,**0**,**0**,**160**,**193**, **0**,**0**,**112**,**65**,**0**,**0**,**16**,**65**,**205**,**205**,**205**,**205**,**205**,**12**,**2**,**27**,**0**,**20**,**104**

37,**37**,**37**,**0**,**187**,**134**,**1**,**0**,**5**,**0**,**2**,**0**,**205**,**205**,**205**,**205**,**205**,**130**,**190**,**93**,**57**,**19**,**0**,**73**,**6** 4,142,143,196,62,216,255,51,64,0,0,160,193,0,0,160,192,0,0,64,64,205, 205,205,205,12,2,27,0,205,205,205,33,107,21,103,16,0,155,45

37,37,37,0,187,134,1,0,5,0,3,0,73,64,205,230,231,136,183,255,51,64,0,0,160,193,0,0,160,192,0,0,128,64,205,205,205,205,12,2,27,0,205,205,205,205,51,247,44,148,26,0,73,64,30,231,38,81,39,0,52,64,110,66

37,**37**,**37**,**0**,**187**,**134**,**1**,**0**,**5**,**0**,**4**,**0**,**0**,**0**,**160**,**193**,**0**,**0**,**32**,**193**,**0**,**0**,**160**,**64**,**205**,**20** 5,**205**,**205**,**160**,**192**,**0**,**0**,**128**,**64**,**205**,**205**,**205**,**205**,**12**,**2**,**27**,**0**,**205**,**205**,**205**,**2** 05,**51**,**247**,**44**,**148**,**26**,**0**,**73**,**64**,**30**,**231**,**38**,**81**,**39**,**0**,**52**,**64**,**122**,**227**

Autopilot message $-\{^{, ^{, ^{, ^{, 0}}}}$

- Payload size is 26 bytes
- Used to control UAV in HOLD:POSITION command
- Allowes to move drone to position by defining it in absolute global coordinates
- Is send on change target event (or retransmitted in specific period of time)
- Autopilot transaction is always initiated by user and as acknowladge message is sent back from UAV
- Contains serialized AutopilotData

AutopilotData – autonomus control

- Target geographic location
- Target relative altititude
- Autopilot mode flags:
 - To be defined after real life tests with issues like:
 - Stick control vs dynamic target
 - Altitude throttle control
 - Yaw control
 - "Autoland when at target"

AutopilotData – example

```
AutopilotData autopilotData;
autopilotData.setTargetPosition(Vect2Dd(50.00236, 20.00089));
autopilotData.setTargetAltitude(14.232f);
```

```
94,94,94,0

199,104,29,85,

77,0,73,64,

184,228,184,83,

58,0,52,64,

70,182,99,65,

0,0,0,0,
```


Use cases flow

Usage of described protocol for common actions with UAV usage.

Startup calibration and Application loop

Action: Flight loop

Action: *Calibrate* accelerometer

Action: *Calibrate magnetometer*

Action: *Upload* and *download* control settings

Action: Sensors logger

Signal data sending/receiving procedure

DFU mode by start command

The end

Questions ©

