클린업 1주차

3팀 선형대수학

황정현 고경현 김지민 반경림 전효림

선형대수 소개

선형대수

통계 분석의 시작점

선형성을 바탕으로 선형변환과 그때의 공간에 대해 연구하는 대수학의 한 분야

선형성

함수 f는 선형이다

가산성 임의의 수 x와 y에 대해 f(x + y) = f(x) + f(y)

동차성 임의의 수 x와 상수 a에 대해 f(ax) = a • f(x)

기본개념

벡터(vector)의 개념

' 어느 <mark>방향</mark>으로 <mark>얼마만큼</mark>의 힘 또는 속도를 갖는지 ' *≠ 스칼라(scalar)*

데이터분석의 기본 단위

다른 데이터를 구성하는 기본

데이터를 <mark>선형적 관점</mark>에서 이해할 수 있는 핵심 매개

선형대수학의 공간적 이해

- 원소(component): 벡터를 구성하는 값
- 벡터공간(vector space, ℝ): 벡터로 이뤄지는 공간
- n개의 원소로 이뤄진 벡터는 n차원 공간에 있음

기본개념

벡터의 연산

기하학적으로 계산하기

상수배

벡터에 상수 k를 곱한다

벡터의 길이를 k배 한다

덧셈

벡터 u에서 벡터 v만큼 이동하면서 생기는 평행사변형의 대각선이 u+v, 즉 벡터 w

뺄셈

벡터 v에 대해 -1배 한 뒤 벡터 u와 더하면 벡터 u-v

행렬(matrix)의 개념

• 실수를 직사각형 모양의 행과 열로 배열한 형태

행 m개와 열 n개로 이루어진m x n 크기의 행렬

역행렬

행렬 A는 오직 하나의 역행렬만 가질 수 있기 때문에

$$(A^{-1})^{-1} = A$$
 역행렬을 가진다
해가 유일하다 (unique) $\frac{1}{ad - bc}$ $\frac{d - b}{-c - a}$ $\frac{(A^{T})^{-1}}{ad - bc}$ 모두 같은 말!

선형방정식과 선형결합

선형방정식(Linear equation)

문자의 개수가 많거나 일반화된 해를 찾기 힘들 때 <mark>행렬과 벡터를 이용</mark>한 선형방정식의 꼴로 만들어 해결할 수 있다!

선형방정식과 선형결합

Ax = b 판별 및 해 구하기

Ax = b 판별 및 해 구하기

🧣 해의 판별

사전 작업

 Ax = b 를 <mark>행렬 [A | b] 로 만들고 G-J 소거법을</mark> 이용해

 RREF인 [H | c] 로 만든다

$$\begin{cases}
-2x - 5y + 2z = -3 & -2 -5 & 2 & -3 \\
x + 3y = 4 & 1 & 3 & 0 & 4 \\
y + 3z = 6 & 0 & 1 & 3 & 6
\end{cases}$$

선형결합(Linear combination)과 span

• 벡터들을 상수배와 벡터 덧셈을 통해 조합하여 새로운 벡터를 얻는 연산

$$\mathbf{A}\mathbf{x} = \left(\begin{array}{ccc} a_1 & a_2 & \cdots & a_n \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array}\right) = \begin{array}{c} a_1 x_1 + a_2 x_2 + \cdots + a_n x_n \\ span\{a_1 \ a_2 \ \cdots \ a_n\} \end{array}$$

m x n 행렬 A와 n개의 원소를 가진 벡터 x를 곱할 때,

선형방정식과 선형결합

span의 공간적 이해

2차원 벡터공간 내 모든 벡터는 기저벡터인 (0, 1)과 (1, 0)의 span(조합)을 통해 표현할 수 있음

선형방정식과 선형결합

span의 공간적 이해

다음주를 기다H하H주시H오!

(0,1)

 \mathbb{R}^2

Ax = b의 해가 존재한다 벡터는 기저벡터인 a의 조합으로 b를 표현할 수(있다 (1, 0)의 벡터 b가 span(a1, a2, ..., an)에 있다 있다

2차원 벡터공간 내

선형 '변환'의 의미

Linear Transformation

DUTPUT

Input이 선형<mark>변환</mark>을 거침으로써 Output으로 나오는, 일종의 함수

선형방정식 Ax = b를 '변환'의 관점에서 이해해보자!

$$\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$

x라는 input에 A라는 변환을 거쳐 b라는 새로운 output 반환

선형 '변환'의 의미

INPUT Ax = b의 해를 찾고자 하는 것은 곧OUTPUT
A를 곱했을 때 b로 변환되는 벡터 x를 찾는 것이다!

선형방정식 Ax = b를 '변환'의 관점에서 이해해보자!

$$\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$

x라는 input에 A라는 변환을 거쳐 b라는 새로운 output 반환

'선형' 변환의 의미 (2) 공간적 의미

$$T\begin{bmatrix} 1\\1 \end{bmatrix} = 1T\begin{bmatrix} 1\\0 \end{bmatrix} + 1T\begin{bmatrix} 0\\1 \end{bmatrix}$$

$$= 1\begin{bmatrix} 2 & -3\\1 & 1 \end{bmatrix}\begin{bmatrix} 1\\0 \end{bmatrix} + 1\begin{bmatrix} 2 & -3\\1 & 1 \end{bmatrix}\begin{bmatrix} 0\\1 \end{bmatrix}$$

$$= 1\begin{bmatrix} 2\\1 \end{bmatrix} + 1\begin{bmatrix} -3\\1 \end{bmatrix} = \begin{bmatrix} -1\\2 \end{bmatrix}$$

: 기존 기저

: 선형변환

: 새 기저

새로운 기저, 새로운 공간의 형성 '선형' 변환의 의미 (2) 공간적 의미

선형변환으로 역행렬 이해하기

선형변환으로 역행렬 이해하기

역행렬이 있는 경우

$$A = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 2/5 & -1/5 \\ 1/5 & 2/5 \end{bmatrix}$$

정방행렬 A의 <mark>역행렬이 존재</mark>한다

- Ax = b가 유일한 해를 갖는다(unique)
- 😑 특정 x를 선형변환한 Ax가 유일하다
- **x와 Ax가 서로 일대일 대응이다**

선형변환으로 역행렬 이해하기

🤈 역행렬이 없는 경우

1차원 벡터를 어떠한 특정 2차원 벡터로 되돌려야 하는지 알 수 없다

- Ax = b의 해가 유일하지 않다
- **역행렬이 존재하지 않는다**

Affine transformation

선대, 딥러닝을 만나다

Affine transformation

a
$$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 + b $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ + 1 $\begin{bmatrix} c \\ d \end{bmatrix}$ $\begin{bmatrix} 2 & 1 & c \\ 1 & 2 & d \end{bmatrix}$ $\begin{bmatrix} a \\ b \\ 1 \end{bmatrix}$ 선형결합 A*x* (3차원)

Affine과 딥러닝

선대, 딥러닝을 만나다

선대, 딥러닝을 만나다

Affine과 딥러닝

활성화 함수로 예측값 계산

손실함수로 예측과 실제의 오차 측정

손실함수를 바탕으로 가중치 업데이트

sigmoid, tanh, ···· 비선형 활성화 함수를 이용하는 이유

선형함수 f(x) = kx를 이용해 n번 층을 쌓음

 $k^n x$

즉, k^n 을 한 번 적용하는 것과 같아 여러 hidden layer을 쌓으며 가중치를 업데이트하는 이점이 없음