Базовые упражнения Языки, автоматы, грамматики

Вадим Пузаренко

Слова, языки

Автоматы

Регулярные выражения

Базовые упражнения Языки, автоматы, грамматики

Вадим Пузаренко

31 октября 2019 г.

Слова

Базовые упражнения Языки, автоматы, грамматики

Вадим Пузаренко

Слова, языки

Автомать

Регулярные выражения

Упражнение 1.1

Дать индуктивные определения конкатенации, инверсии и обращения слов.

Дать индуктивные определения конкатенации, инверсии и обращения слов.

Упражнение 1.2

Пусть $\Sigma \neq \varnothing$ — конечный алфавит и пусть $\alpha,\beta,\gamma \in \Sigma^*$, а ε — пустое слово. Тогда выполняются следующие условия:

③
$$a^R = a$$
 при $a ∈ Σ$;

$$\bullet$$
 $\alpha^R = \alpha$ для всех $\alpha \in \{0\}^*$;

$$\circ$$
 $\alpha \hat{\beta} = \beta \hat{\alpha}$ для всех $\alpha, \beta \in \{0\}^*$.

Автоматы

Pervagaulia

Упражнение 1.3

Пусть $\Sigma \neq \varnothing$ — конечный алфавит и пусть $\alpha, \beta, \gamma \in \Sigma^*$, а ε — пустое слово. Тогда выполняются следующие условия:

- ① $\overline{lpha \hat{\ }eta} = \overline{lpha} \hat{\ }\overline{eta}$ для всех $lpha, eta \in \{0,1\}^*$;
- ② $\overline{\alpha^R} = \overline{\alpha}^R$ для всех $\alpha \in \{0;1\}^*$;
- **③** $\alpha \hat{\beta} \neq \beta \hat{\alpha}$ для некоторых $\alpha, \beta \in \{0, 1\}^*$.

Пусть $\Sigma \neq \emptyset$ — конечный алфавит и пусть $\alpha, \beta, \gamma \in \Sigma^*$, а ε пустое слово. Тогда выполняются следующие условия:

- \bullet $\overline{\alpha} \widehat{\beta} = \overline{\alpha} \widehat{\beta}$ для всех $\alpha, \beta \in \{0, 1\}^*$;
- ② $\alpha^R = \overline{\alpha}^R$ для всех $\alpha \in \{0, 1\}^*$;
- \circ $\alpha \hat{\beta} \neq \beta \hat{\alpha}$ для некоторых $\alpha, \beta \in \{0, 1\}^*$.

Упражнение 1.4

Пусть $\Sigma = \{a_1, a_2, \dots, a_{26}\}$ — латинский алфавит. Дайте определение бинарного отношения < на Σ^* , для которого выполняется следующее: $\alpha < \beta$, если и только если α предшествует β в стандартном словаре.

Докажите, что выполняется следующее:

- ② для любых алфавита Σ и языка $L \subseteq \Sigma^*$ выполняется соотношение $(L^R)^R = L$;
- ullet для любых алфавита Σ и языка $L\subseteq \Sigma^*$ выполняется соотношение $(L^*)^*=L^*$;
- ullet если Σ произвольный алфавит, $L_1\subseteq L_2\subseteq \Sigma^*$, то $L_1^*\subseteq L_2^*$;
- ullet если Σ произвольный алфавит, $L_1\subseteq \Sigma^*$ и $L_2\subseteq \Sigma^*$, то $(L_1L_2)^R=L_2^RL_1^R;$
- ullet если Σ произвольный алфавит, $arepsilon \in L_1 \subseteq \Sigma^*$ и $arepsilon \in L_2 \subseteq \Sigma^*$, то $(L_1 \Sigma^* L_2)^* = \Sigma^*$;
- \odot для любых алфавита Σ и языка L выполняется соотношение $\varnothing L = L\varnothing = \varnothing$.

Языки

Базовые упражнения Языки, автоматы, грамматики

Вадим Пузаренко

Слова, языки

Автоматы

Регулярные выражения

Упражнение 1.6

При каких условиях $L^+ = L \setminus \{\varepsilon\}$?

Языки

Базовые упражнения Языки, автоматы, грамматики

Вадим Пузаренко

Слова, языки

∆ вто маты

Регулярные

Упражнение 1.6

При каких условиях $L^+ = L \setminus \{\varepsilon\}$?

Упражнение 1.7

Предложить конечное число операций, замыканием которых является операция звёздочка Клини (операция L^+).

Слова, языки

Двтоматы

Регулярные

Упражнение 1.6

При каких условиях $L^+ = L \setminus \{\varepsilon\}$?

Упражнение 1.7

Предложить конечное число операций, замыканием которых является операция звёздочка Клини (операция L^+).

Упражнение 1.8

Привести примеры слов, принадлежащих и не принадлежащих языкам алфавита $\Sigma = \{0;1\}$:

1
$$\{\alpha \mid \alpha = \beta \hat{\beta}^R \beta$$
 для некоторого $\beta \in \Sigma^2\}$;

Привести примеры слов, принадлежащих и не принадлежащих языкам алфавита $\Sigma = \{0;1\}$:

- **①** $\{\alpha \mid \beta \hat{\gamma} \alpha = \alpha \hat{\beta} \gamma \text{ для некоторых } \beta, \gamma \in \Sigma^* \};$
- ② $\{\alpha \mid \alpha \hat{\alpha} = \beta \beta \}$ для некоторого $\beta \in \Sigma^*\};$

Базовые упражнения Языки, автоматы, грамматики

Вадим Пузаренко

Слова, языки

Автоматы

Регулярные выражения

Упражнение 3.1

Какие языки представляются следующими регулярными выражениями $(\Sigma = \{a; b; c\})$:

- $((a+b)^* \circ a);$
- ② $(c^* \circ (a + (b \circ c^*)^*));$
- **3** $(((a^* \circ a) \circ b) + b)$?

Какие языки представляются следующими регулярными выражениями ($\Sigma = \{a; b; c\}$):

- $((a+b)^* \circ a);$
- $(c^* \circ (a + (b \circ c^*)^*));$
- **3** $(((a^* \circ a) \circ b) + b)$?

Упражнение 3.2

Упростить регулярные выражения, представляющие те же языки:

- $((a^* \circ b^*)^* \circ (b^* \circ a^*)^*);$
- **3** $((a^* \circ b)^* + (b^* \circ a)^*);$
- $((a+b)^* \circ a) \circ (a+b)^*).$

Базовые упражнения Языки, автоматы, грамматики

Вадим Пузаренко

Слова, языки

Регулярные выражения

Упражнение 3.3

Пусть $\Sigma = \{a; b\}$. Постройте регулярные выражения, представляющие следующие языки:

- lacktriangle все слова алфавита Σ^* , содержашие не более трёх букв a;
- **②** все слова алфавита Σ^* , количество содержашихся букв *а* в которых делится на 3;
- ullet все слова алфавита Σ^* , содержаших в точности одно подслово aaa.

Базовые упражнения Языки, автоматы, грамматики

Вадим Пузаренко

Слова, языки Автоматы

Регулярные выражения

Упражнение 3.3

Пусть $\Sigma = \{a; b\}$. Постройте регулярные выражения, представляющие следующие языки:

- lacktriangle все слова алфавита Σ^* , содержашие не более трёх букв a;
- **②** все слова алфавита Σ^* , количество содержашихся букв *а* в которых делится на 3;
- ullet все слова алфавита Σ^* , содержаших в точности одно подслово aaa.

Упражнение 3.4

Докажите, что если L — регулярный язык, то и $L'=\{\alpha\mid \beta\hat{\ }\alpha\in L$ для некоторого $\beta\}$ также является регулярным.

Базовые упражнения Языки, автоматы, грамматики

Вадим Пузаренко

Слова, языки Автоматы

Регулярные выражения

Упражнение 3.5

Регулярное выражение α находится в **дизъюнктивной нормальной форме** (сокращенно, д.н.ф.), если оно имеет вид $(\alpha_1 + (\alpha_2 + \ldots + \alpha_n)\ldots)$), где α_i не имеет вхождений буквы $+ (1 \leqslant i \leqslant n)$. Докажите, что каждый регулярный язык представляется некоторым регулярным выражением, находящимся в д.н.ф.

Базовые упражнения Языки, автоматы, грамматики

Вадим Пузаренко

Слова, языкі Автоматы

Регулярные выражения

Упражнение 3.5

Регулярное выражение α находится в **дизъюнктивной нормальной форме** (сокращенно, д.н.ф.), если оно имеет вид $(\alpha_1 + (\alpha_2 + \ldots + \alpha_n)\ldots)$), где α_i не имеет вхождений буквы $+ (1 \leqslant i \leqslant n)$. Докажите, что каждый регулярный язык представляется некоторым регулярным выражением, находящимся в д.н.ф.

Упражнение 3.6

Какие из следующих соотношений выполняются? Ответ пояснить.

- **1** baa $\in \mathcal{L}(((a^* \circ b^*) \circ (b^* \circ a^*))).$
- ② $\mathcal{L}((b^* \circ a^*)) \cap \mathcal{L}((a^* \circ b^*)) = \mathcal{L}((a^* + b^*)).$