Contents

Ι	Profiles NF2008	1
1	Normalized poloidal magnetic flux ψ_N	2
2	Density n_e and temperature $T_{e,i}$	2
3	Plasma pressure and pressure gradients	3
4	Radial electric field $E_{0r}(a_N)$	4
5	Plasma conductivity $\sigma(a_N)$	4
6	Equation	4
7	$K_m(a_N), A(a_N)$	5
8	$Q_m(a_N)$	5
9	$Q_{1m}(a_N)$	6
10	Pressure perturbation P_m	7
II	Profiles NF2013	8
11	Density n_e and temperature $T_{e,i}$	8
12	Plasma pressure and pressure gradients	8
13	Radial electric field $E_{0r}(a_N)$	9
14	$K_m(a_N),\ A(a_N)$	9
15	$Q_m(a_N),\ Q_{1m}(a_N)$	10
16	Plasma pressure perturbation P_m	10
II	I Bootstrap current	11
17	Comparing	11

Part I

Profiles NF2008

1 Normalized poloidal magnetic flux ψ_N

Normalized polidal magnetic flux ψ_N (1, Fig.1):

$$\psi_N(a_N) = \frac{\int_0^{a_N} \mu(a')a'da'}{\int_0^1 \mu(a')a'da'}$$
(1)

where $\mu = 1/q$, $q(a_N) = 1 + 3.6a_N^{5.6}$ is safety factor.

Figure 1: ψ_N - normalized poloidal magnetic flux (NF2008)

2 Density n_e and temperature $T_{e,i}$

Profiles of electron density $n_e(\psi_N)$ and electron and ion temperature $T_{e,i}(\psi_N)$ (2,3):

$$n_{e}(\psi_{N}) = n_{sep} + a_{n0} \left[tanh \left(2 \frac{1 - \psi_{mod}}{\Delta} \right) - tanh \left(2 \frac{\psi_{N} - \psi_{mod}}{\Delta} \right) \right] +$$

$$+ a_{n1} H \left(1 - \frac{\psi_{N}}{\psi_{ped}} \right) \left[1 - \left(\frac{\psi_{N}}{\psi_{ped}} \right)^{\alpha_{n1}} \right]^{\alpha_{n2}},$$

$$(2)$$

$$T_{e,i}(\psi_N) = T_{sep} + a_{T0} \left[\tanh \left(2 \frac{1 - \psi_{mod}}{\Delta} \right) - \tanh \left(2 \frac{\psi_N - \psi_{mod}}{\Delta} \right) \right]$$

$$+ a_{T1} H \left(1 - \frac{\psi_N}{\psi_{ped}} \right) \left[1 - \left(\frac{\psi_N}{\psi_{ped}} \right)^{\alpha_{T1}} \right]^{\alpha_{T2}},$$
(3)

where Δ is pedestal width, $\psi_{ped} = 1 - \Delta$, $\psi_{mid} = 1 - \Delta/2$, parameters a_{n0} , a_{t0} and Δ affect the pedestal profiles, parameters a_{n1} , a_{T1} , α_{n1} , α_{n2} , α_{T1} and α_{T2} affect the core plasma profiles, H(x) - Heaviside function. These profiles are shown as function of normalized radius at Fig.2 and Fig.3.

7000 6000 5000 2000 1000 8.0 0.2 0.4 a_N 0.6 0.8 1.0

Figure 2: Electron density, $10^{19}m^{-3}$ (NF2008)

Figure 3: Electron and ion temperature, eV (NF2008)

3 Plasma pressure and pressure gradients

Electron, ion and total plasma pressure (Fig.4) are estimated as (4):

$$P_{e,i}[Pa] = 1.6 \times n_e[10^{19} m^{-3}] \times T_{e,i}[eV]$$
(4)

Pressure gradients are shown at Fig.24.

Figure 4: Electron, ion and total pressure, kPa (NF2008)

Figure 5: Pressure gradients, kPa (NF2008)

4 Radial electric field $E_{0r}(a_N)$

Radial electric field $E_{0r}(a_N)$ (Fig.6) is approximated as (5):

$$E_{0r}(a_N) = d_1 + r_1 a_N \exp\left(b_1 + c_1 a_N^{\exp(-a_1 x^2)}\right) \left[\frac{V}{m}\right].$$
 (5)

Figure 6: Radial electric field, kV (NF2008)

Figure 7: Plasma conductivity, sec^{-1} (NF2008)

5 Plasma conductivity $\sigma(a_N)$

Plasma conductivity $\sigma(a_N)$ (7, Fig.7):

$$\sigma(a_N)[sec^{-1}] = 1.2 \times 10^{17} \left(\frac{T_e[keV]}{500}\right)^{3/2}$$
 (6)

6 Equation

Our equation (7):

$$\frac{1}{a_N} \frac{d}{da_N} \left(a_N \frac{d}{da_N} (a_N B_m^a) \right) - \frac{m^2}{a_N^2} (a_N B_m^a) - \frac{m}{a_N^2} Q_m(a_N) (a_N B_m^a) - \frac{4\pi m^2}{c B_{0C}} \frac{R}{a} \frac{dj_b}{da_N} Q_{1m}(a_N) (a_N B_m^a) = 0$$
(7)

$7 \quad K_m(a_N), A(a_N)$

Quantities $K_m(a_N)$ (Eq.8, Fig.8) and $A(a_N)$ (Eq.8, Fig.9):

$$K_m(a_N) = F_m(a_N) \frac{a}{R} \frac{V_{0||}}{mc} + \frac{1}{B_0} \left(\frac{1}{p_{0i}} \frac{dp_{0i}}{da_N} \frac{T_i(a_N)}{ea_{pl}} - E_{0a}(a_N) \right)$$
(8)

$$A(a_N) = \frac{8\pi}{B_{0\zeta}^2} a_N \frac{dp_0}{da_N} m^2 (\mu^2 - 1 - \frac{R}{a} S\xi'), \quad \boxed{-1 - \frac{R}{a} S\xi' \approx -9}$$
(9)

Figure 8: $K_m(a_N)$ (NF2008)

Figure 9: $A(a_N)$ (NF2008)

8 $Q_m(a_N)$

Real (11) and imaginary (12) part of $Q_m(a_N)$ (Fig.10):

$$Q_{m}(a_{N}) = \frac{K_{m}(a_{N})A_{m}(a_{N})\left(mK_{m}(a_{N})F_{m}^{2}(a_{N}) + iA_{m}(a_{N})\frac{c}{4\pi\sigma(a_{N})a_{N}a}\right)}{\left(mK_{m}(a_{N})F_{m}^{2}(a_{N})\right)^{2} + \left(A_{m}(a_{N})\frac{c}{4\pi\sigma(a_{N})a_{N}a}\right)^{2}}$$
(10)

$$\operatorname{Re}Q_{m} = \frac{mK_{m}^{2}(a_{N})F_{m}^{2}(a_{N})A(a_{N})}{\left(mK_{m}(a_{N})F_{m}^{2}(a_{N})\right)^{2} + \left(A_{m}(a_{N})\frac{c}{4\pi\sigma(a_{N})a_{N}a}\right)^{2}}$$
(11)

$$Im Q_m = \frac{K_m(a_N)A^2(a_N)\frac{c}{4\pi\sigma(a_N)a_Na}}{\left(mK_m(a_N)F_m^2(a_N)\right)^2 + \left(A_m(a_N)\frac{c}{4\pi\sigma(a_N)a_Na}\right)^2}$$
(12)

2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 ReQ_{1m} -- imQ_{1m} -2.5930 0.935 0.940 0.945 0.950 0.955 0.960 0.965

Figure 10: $Q(a_N)$: $m = -11, V_0 = 0 \frac{km}{sec}$ (NF2008)

Figure 11: Q_{1m} : $m = -11, V_0 = 0 km/sec$ (NF2008)

9 $Q_{1m}(a_N)$

Real (14) and imaginary (15) part of Q_{1m} (Fig.11):

$$Q_{1m}(a_N) = \frac{K_m(a_N)F_m(a_N)\left(mK_m(a_N)F_m^2(a_N) + iA_m(a_N)\frac{c}{4\pi\sigma(a_N)a_Na}\right)}{\left(mK_m(a_N)F_m^2(a_N)\right)^2 + \left(A_m(a_N)\frac{c}{4\pi\sigma(a_N)a_Na}\right)^2}$$
(13)
$$ReQ_{1m} = \frac{mK_m^2(a_N)F_m^3(a_N)}{\left(mK_m(a_N)F_m^2(a_N)\right)^2 + \left(A_m(a_N)\frac{c}{4\pi\sigma(a_N)a_Na}\right)^2}$$
(14)
$$ImQ_{1m} = \frac{K_m(a_N)F_m(a_N)A(a_N)\frac{c}{4\pi\sigma(a_N)a_Na}}{\left(mK_m(a_N)F_m^2(a_N)\right)^2 + \left(A_m(a_N)\frac{c}{4\pi\sigma(a_N)a_Na}\right)^2}$$
(15)

10 Pressure perturbation P_m

Real and imaginary part of pressure perturbations (16,17):

$$\operatorname{Re}P_{m} = -a_{N} \frac{dp_{0}}{da_{N}} \frac{R}{a} \frac{mK_{m}(a_{N})F_{m}(a_{N})A(a_{N}) \frac{c}{4\pi\sigma(a_{N})a}}{\left(mK_{m}(a_{N})F_{m}^{2}(a_{N})\right)^{2} + \left(A(a_{N}) \frac{c}{4\pi\sigma(a_{N})a}\right)^{2}} \frac{B_{m}^{a}}{B_{0}}$$

$$\operatorname{Im}P_{m} = a_{N} \frac{dp_{0}}{da_{N}} \frac{R}{a} \frac{m^{2}K_{m}^{2}(a_{N})F_{m}^{3}(a_{N})\frac{B_{0\varsigma}}{B_{0}}}{\left(mK_{m}(a_{N})F_{m}^{2}(a_{N})\right)^{2} + \left(A(a_{N}) \frac{c}{4\pi\sigma(a_{N})a}\right)^{2}} \frac{B_{m}^{a}}{B_{0}}$$

$$(17)$$

Figure 12: Plasma pressure perturbation (NF2008)

Part II

Profiles NF2013

11 Density n_e and temperature $T_{e,i}$

All subsequent profiles correspond 60^{o} phase.

7000 6000 4000 2000 1000 0 -1008.0 0.2 0.4 a_N 0.6 0.8 1.0

Figure 13: Electron density, $10^{19}m^{-3}$ (NF2013)

Figure 14: Electron and ion temperature, eV (NF2013)

12 Plasma pressure and pressure gradients

Figure 15: Electron, ion and total pressure, kPa (NF2013)

Figure 16: Pressure gradients, kPa (NF2013)

13 Radial electric field $E_{0r}(a_N)$

Figure 17: Radial electric field, kV (NF2013)

14 $K_m(a_N), A(a_N)$

Figure 18: $K_m(a_N)$ (NF2013)

Figure 19: $A(a_N)$ (NF2013)

15 $Q_m(a_N), Q_{1m}(a_N)$

15
10
5
-5
-10
-ReQ_{1m}
-1.5930 0.935 0.940 0.945 0.950 0.955 0.960 0.965

Figure 20: $Q(a_N)$: $m = -11, V_0 = 0 km/sec$ (NF2013)

Figure 21: Q_{1m} : $m = -11, V_0 = 0 km/sec$ (NF2013)

16 Plasma pressure perturbation P_m

Figure 22: Plasma pressure perturbation (NF2013)

Part III

Bootstrap current

17 Comparing

Bootstrap current [Wesson (4.9.2)]:

$$j_b(a_N) = \left(\frac{a}{R}\right)^{-0.5} \frac{cn_0(a_N)q(a_N)}{B_{0\zeta}} \left[2.44 \left(T_{0e}(a_N) + T_{0i}(a_N) \right) \frac{1}{n_0(a_N)} \frac{dn_0}{da_N} + 0.69 \frac{dT_{0e}}{da_N} - 0.42 \frac{dT_{0i}}{da_N} \right]$$
(18)

We need to compare two quantities: $Q_m(a_N)$ (10) and $Q_m^*(a_N)$ (19):

$$Q_{m}^{*}(a_{N}) = \left(\frac{R}{a}\right)^{1.5} \frac{4\pi m a_{N}^{2}}{B_{0\zeta}^{2}} Q_{1m}(a_{N}) \frac{d}{da_{N}} \left\{ n_{0}(a_{N})q(a_{N}) \times \left[2.44 \left(T_{0e}(a_{N}) + T_{0i}(a_{N}) \right) \frac{1}{n_{0}(a_{N})} \frac{dn_{0}}{da_{N}} + 0.69 \frac{dT_{0e}}{da_{N}} - 0.42 \frac{dT_{0i}}{da_{N}} \right] \right\}$$

$$\frac{Q_{m}(a_{N})}{Q_{1m}(a_{N})} = \frac{A_{m}(a_{N})}{F_{m}(a_{N})}$$
(20)

Figure 23: $A_m(a_N)$ (NF2008)

Figure 24: $F_m(a_N)$ (NF2008)

Compare two quantities qu1 and qu2 (Fig. 25):

$$qu1 = 2m \frac{dp_0}{da_N} (\mu^2 - 9) \longleftrightarrow qu2 = \left(\frac{R}{a}\right)^{1.5} a_N F_m(a_N) \frac{d}{da_N} \left\{ n_0(a_N) q(a_N) \times \left[2.44 \left(T_{0e}(a_N) + T_{0i}(a_N) \right) \frac{1}{n_0(a_N)} \frac{dn_0}{da_N} + 0.69 \frac{dT_{0e}}{da_N} - 0.42 \frac{dT_{0i}}{da_N} \right] \right\}$$
(21)

Figure 25: Compare(NF2008)

Real and imiginary part of $Q^*(a_N)$:

Figure 26: Q^* (NF2008)