上 海 交 通 大 学 试 卷(<u>A</u>卷)

(2011 至 2012 学年 第___学期)

	班级号		学号		姓名		
	课程名称			十 成绩			
							_
	题 号	_	\equiv	13~16	17~20	总	分
	得分						
	评 阅 人						
- .	单项选择题 (每题	3分,共18分	分)				
1.	. 设总体 $X \sim B(1,p)$, (X_1,X_2,\cdots,X_n) 为来自总体 X 的样本, \overline{X} 为样本的均值。						
	则 $P(\bar{X} = \frac{k}{n})$ 等于					()
	(A) p;			(B) $p^k (1-p)^{n-k}$;			
	$(C) C_n^k p^k (1-p)^{n-k}$;		(D) $C_n^k(1-$	$p)^k p^{n-k}$.		
2.	设 X , Y 为随机变量	t,则 <i>D</i> (X-	Y) = D(X -	+ <i>Y</i>)是 <i>X</i> 与 <i>Y</i>	的	()
	(A) 不相关的充分条	件,但不是必	必要条件;	要条件; (B) 不相关的必要条件, 但不是充分条件;			
	(C) 独立的必要条件	,但不是充分	分条件;	(D) 独立的?	充分必要条件。		
3.	设存在常数 a , b (<i>a</i> ≠0),使得	尋概率 P(Y =	=aX+b)=1,	则必有	()
	(A) $\rho_{XY} = \frac{a}{ a };$			(B) $\rho_{XY} = -$	1;		
	(C) $\rho_{XY} = 1$;			$(D) -1 < \rho_{XX}$	_γ <1 .		
4.	设随机变量 X 的概率密度函数为 $f(x)$,且 $f(x) = f(-x)$,又设 $F(x)$ 为 X 的分布函数。						
	则对任意实数 a ,有					()
((A) $F(-a) = 1 - \int_0^a$	f(x)dx;		(B) $F(-a)$	$=1-\int_{-\infty}^{a}f(x)a$	dx;	
((C) $F(-a) = F(a)$;		(D) $F(-a)$	=2F(a)-1.		

5. 设 X 为随机变量,已	知 $E(X) = 1$, $D(X) =$	0.1。由切比雪夫不等式,	可得()						
(A) $P(-1 < X < 1)$	≥ 0.9;	(B) $P(0 < X < 2) \ge 0.9$;						
(C) $P(X+1 \ge 1) \ge$	0.9;	(D) $P(X \ge 1) \ge 0.1$.							
6. 设 (X_1, X_2, \dots, X_n) 为	取自总体 X 的样本, $ar{X}$	为样本的均值。							
则 $E(X^2)$ 的距估计量	为		()						
(A) $S_1^2 = \frac{1}{n-1} \sum_{i=1}^n (2^{n-1})^{i-1}$	$(X_i - \overline{X})^2$;	(B) $S_2^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^{-1}$	$)^2$;						
(C) $S_1^2 + \overline{X^2}$;		(D) $S_2^2 + \overline{X^2}$.							
二. 填空题 (每题 3 分, 共 18 分)									
7. 袋中有40个球,其中10个是红球,30个是白球,今有两人依次随机地从袋中各取一球,取后不放回,									
则第二个人取得红球的概率是。									
8. 设随机变量 X 的概率密度函数为 $f_X(x) = \begin{cases} 2x, \ 0 < x < 1, \\ 0, \ x \le 0. \end{cases}$ 以随机变量 Y 表示对 X 的三次独立重									
复观察中,事件 $(X \le \frac{1}{2})$ 出现的次数。 则 $P(Y = 2) = $ 。									
9. 设总体 $X \sim N(0,\sigma^2)$, (X_1,X_2,\cdots,X_9) 是取自总体 X 的样本,已知 $Y = k(\sum_{i=1}^9 X_i)^2$ 服从 χ^2 分布									
则常数 k =	•								
10. 设二维随机变量 (X,Y) 在区域 $D = \{(x,y) 0 < x < 1, y < 1\}$ 内服从均匀分布。									
则随机变量 $Z=2X$	+1的方差 <i>D</i> (Z)=	0							
11. 设 (X_1,X_2,\cdots,X_n) 为来自总体 $X\sim N(\mu,\sigma^2)$ 的样本,其中 μ,σ^2 均未知,设 \overline{X} 为样本均值,									
S^2 为样本方差,则,	ι 的置信度为 $1-\alpha$ ($0<$	lpha < 1) 的单侧置信区间的上	限是 $\hat{\mu}_{\!\scriptscriptstyle U}$ =。						
12. 设总体 $X\sim N(\mu,\sigma^2)$, 待检的原假设 $H_0:\sigma^2={\sigma_0}^2$, 对于给定的显著性水平 α $(0<\alpha<1)$,									
如果拒绝域为 $W = [0, \chi^2_{1-\alpha}(n-1)]$,则相应的备择假设 H_1 是。									

三. 解答题 (每题8分,共64分)

- 13. 有甲,乙,丙三个箱子,其中甲箱中有4个白球,3个黑球;乙箱中有2个白球,3个黑球;丙箱中没有球。现从甲,乙箱中分别任取出2球和1球放入丙箱中。
 - (1) 求丙箱中有2个白球的概率:
 - (2) 若从丙箱中任取出1球,发现是白球,求丙箱中有2个白球的概率。
- **14**. 对一批镉的熔点(单位: ${}^{o}C$)做5次测定,结果为

1269, 1267, 1271, 1263, 1265

若镉的熔点服从正态分布 $N(\mu,\sigma^2)$,其中 μ 和 σ^2 为未知常数。对给定的检验水平 $\alpha=0.05$,做如下假设检验: (1)总体均值 μ 与标准均值 $\mu_0=1266$ 是否有显著差异; (2)总体方差 σ^2 是否比标准方差 $\sigma_0^2=4$ 偏大。

15. 设二维随机变量 (X,Y) 的联合密度函数为 $f(x,y) = \begin{cases} 1, & |y| < x, 0 < x < 1 \\ 0, &$ 其他

试求: (1) 边缘密度函数 $f_X(x)$; (2) 条件密度函数 $f_{Y|X}(y|x)$ 。

- 16. 设二维随机变量(X,Y)在单位园 $D = \{(x,y) | x^2 + y^2 \le 1\}$ 上服从均匀分布,
 - (1) 求相关系数 ρ_{XY} ; (2) 问X与Y是否独立?
- 17. 设某车间有同型号的机床 200 部,每台机床的开工的概率为 p=0.7。假设各机床是否开工是相互独立的,每台机床开工时每小时耗电 15 度。

问:要保证车间以95.99%的概率正常生产,需要变电站每小时供应该车间多少度电?

- 18. 设总体 $X \sim U(0,\theta)$, 其中 $\theta > 0$ 未知。 (X_1, X_2, \dots, X_n) 为来自总体 X 的一个样本,
 - (1) 求未知参数 θ 的矩估计量 $\hat{\theta}_1$ 和最大似然估计量 $\hat{\theta}_2$; (2) 分别评价 $\hat{\theta}_1$ 与 $\hat{\theta}_2$ 的无偏性。
- 19. 设随机变量 $X \sim N(0,1)$, 试求: (1) $Y = X^2$ 的密度 $f_Y(y)$; (2) 数学期望 $E(2X^4)$ 。
- 20. 设 μ_n 是n重伯努利试验中成功的次数,p为每次成功的概率,(1)求出 μ_n 的分布律;

(2) 证明: 当
$$n$$
充分大时, 有 $P\left(\left|\frac{\mu_n}{n} - p\right| < \varepsilon\right) \approx 2\Phi(\varepsilon\sqrt{\frac{n}{pq}}) - 1$,

其中, p+q=1, $\Phi(x)$ 是标准正态分布的分布函数。

附:数表

$$\Phi(1.645)$$
 (, $\Phi(1.96) = 0.975$, $\Phi(1.75) = 0.9599$

$$t_{0..0}(4) = 2.1318$$
, $t_{0.025}(5) = 2.5706$, $t_{0.05}(5) = 2.0150$

$$\chi_{0.05}^2(5) = 11.1$$
, $\chi_{0.05}^2(4) = 9.488$, $\chi_{0.025}^2(5) = 12.832$, $\chi_{0.05}^2(5) = 11.070$

概率統計参考答案

- 一 单项选择题 1. (C); 2. (A); 3. (C); 4. (B); 5. (B); 6 (D)。
- 二 填空题

7. 1/4; 8. 9/64; 9.
$$\frac{1}{9\sigma^2}t(9)$$
; 10. 1/3; 11. $\hat{\mu}_U = \overline{X} + t_\alpha(n-1)\frac{S}{\sqrt{n}}$; 12. $\sigma^2 < \sigma_0^2$

三 解答题

13. (1) 设 $A_i = \{$ 丙箱中有i 个白球 $\}$,i = 0,1,2,3 .

$$P(A_0) = \frac{C_3^2}{C_7^2} \times \frac{3}{5} = \frac{3}{35}, \qquad P(A_1) = \frac{C_4^1 C_3^1}{C_7^2} \frac{3}{5} + \frac{C_4^2}{C_7^2} \frac{2}{5} = \frac{14}{35},$$

$$P(A_2) = \frac{C_4^2}{C_7^2} \frac{3}{5} + \frac{C_4^1 C_3^1}{C_7^2} \frac{2}{5} = \frac{42}{105} = \frac{14}{35}, \quad P(A_3) = \frac{C_4^2}{C_7^2} \frac{2}{5} = \frac{4}{35}. \tag{2.5}$$

(2) 设B={从丙箱中取出一球为白球},则

$$P(B) = \sum_{i=0}^{3} P(A_i) P(B \mid A_i)$$

$$= \frac{3}{35} \times 0 + \frac{14}{35} \times \frac{1}{3} + \frac{14}{35} \times \frac{2}{3} + \frac{4}{35} \times 1 = \frac{18}{35}$$
(4 \(\frac{1}{17}\))

$$P(A_2 \mid B) = \frac{P(A_2)P(B \mid A_2)}{P(B)} = \frac{\frac{14}{35} \times \frac{2}{3}}{\frac{18}{35}} = \frac{14}{27}$$
 (2 $\%$)

14. 由已知条件算得,
$$\bar{x} = \frac{1}{5} \sum_{i=1}^{5} x_i = 1267$$
, $s^2 = \frac{1}{4} \sum_{i=1}^{5} (x_i - \bar{x})^2 = 10$, $s = \sqrt{10}$.

(1) 提出假设
$$H_0: \mu = 1266$$
, $H_1: \mu \neq 1266$; (2分)

当
$$H_0$$
为真时,检验统计量
$$T = \frac{\overline{X} - \mu_0}{S / \sqrt{n}} \square t(n-1)$$

拒绝域
$$W = (-\infty, -2.7764] \cup [2.7764, +\infty)$$
 计算 $T_0 = \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \approx 0.7071 \notin W$.

故接受
$$H_0$$
: $\mu = 1266$ (2分)

(2). 提出
$$H_0: \sigma^2 = 4$$
, $H_0: \sigma^2 > 4$. (2分)

当
$$H_0$$
为真时,检验统计量 $\chi^2 = \frac{(n-1)S^2}{\sigma_0^2} \square \chi^2 (n-1)$

拒绝域 $W = [9.488, +\infty)$,计算 $\chi_0^2 = \frac{(n-1)s^2}{\sigma_0^2} = 10 \in W$.

故拒绝
$$H_0: \sigma^2 = 4$$
 (2分)

15. (1)
$$f_X(x) = \begin{cases} 2x, & 0 \le x < 1 \\ 0, & \text{ 其他} \end{cases}$$
 (4 分)

(2)
$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \begin{cases} \frac{1}{2x}, & |y| < x, \\ 0, & 其他 \end{cases}$$
 (4分)

16. (1)
$$(X,Y)$$
 的联合分布密度函数为:
$$f(x,y) = \begin{cases} \frac{1}{\pi}, & x^2 + y^2 \le 1, \\ 0, & \text{其他.} \end{cases}$$

其边缘密度函数分别为:

E(X) = E(Y) = 0 错误!未找到引用源。,且

$$E(XY) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xy f(x, y) dx dy = \iint_{x^2 + y^2 \le 1} xy \frac{1}{\pi} dx dy = 0.$$

从而 $\operatorname{cov}(X,Y) = E(XY) - E(X)E(Y) = 0$

故相关系数
$$\rho_{XY} = 0$$
。 (4分)

- (2) 显然, $f(x,y) \neq f_X(x)(f_Y)y$ 错误!未找到引用源。, 故 X 与 Y 不独立。 (2分)
- 17. 设X为同时开工的机床数,则 $X \sim B(200,0.7)$,E(X) = 140 错误!未找到引用源。错误!未找到 概率统计 _A_卷 共_6页第_5_页

引用源。, D(X) = 42 错误!未找到引用源。。 (4 分)

X 台机床同时开工每小时消耗电能15X 度。设发电站每小时供应车间a 度电,

要求该车间正常生产的概率 $P(0 \le 15X \le a)$, 而

$$0.9599 \le P(0 \le X \le a/15) \approx \Phi(\frac{(a/15) - 140}{\sqrt{42}})$$

查表,可得 $\Phi(1.75) = 0.9599$ 错误!未找到引用源。,故 $\frac{(a/5)-10}{\sqrt{4}} \ge 1.7$ 错误!未找到引用源。,

从而 $a \ge 2271$ 错误!未找到引用源。 (4分)

18. (1)
$$\mu = E(X) = \frac{\theta}{2}$$
, $\theta = 2\mu$, 未知参数 θ 的矩估计量 $\hat{\theta}_1 = 2\bar{X}$ 。 (2分)

似然函数为:
$$L(\theta) = \begin{cases} \frac{1}{\theta^n}, & 0 \le x_i \le \theta, \\ 0, & 其他. \end{cases}$$
 $i = 1, 2, \dots, n.$

未知参数 θ 的最大似然估计量 $\hat{\theta}_2 = X_{(n)}$ 。 (2分)

(2) 由于
$$E(\hat{\theta}_1) = E(2\bar{X}) = \frac{2}{n} \sum_{i=1}^n E(X_i) = \frac{2}{n} \sum_{i=1}^n \frac{\theta}{2} = \theta$$
,

所以 $\hat{\theta}_1$ 是 θ 的无偏估计。 (2分)

因为
$$\hat{\theta}_2 = X_{(n)}$$
 的密度函数为:
$$f(z) = \begin{cases} \frac{nz^{n-1}}{\theta^n}, & z \in [0, \theta], \\ 0, & z \notin [0, \theta]. \end{cases}$$

所以
$$E(\hat{\theta}_2) = \int_{-\infty}^{+\infty} z f(z) dz = \int_{0}^{\theta} \frac{z n z^{n-1}}{\theta^n} dz = \frac{n}{n+1} \theta \neq \theta$$

即 $\hat{\theta}_2$ 不是. θ 的无偏估计。 (2分)

19. (1) 由 $y = x^2$, $-\infty < x < +\infty$ 得 $y \ge 0$ 。 当 $y \ge 0$ 时,有

$$P(Y \le y) = P(X^{2} \le y) = P(-\sqrt{y} \le X \le \sqrt{y}) = \int_{-\sqrt{y}}^{\sqrt{y}} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} dx, \qquad (2 \%)$$

所以,
$$Y$$
的密度函数为: $f_Y(y) = \begin{cases} \frac{1}{\sqrt{2\pi}\sqrt{y}}e^{-\frac{y}{2}}, & y \ge 0, \\ 0, & y < 0. \end{cases}$ (4分)

(2)
$$X^2 = \chi^2 \sim \chi^2(1)$$
,

$$E(2X^4) = 2E(\chi^2)^2 = 2(D(\chi^2) + E^2(\chi^2)) = 2(2+1) = 6.$$
 (2 \(\frac{1}{2}\))

20. (1)
$$\mu_n \sim B(n, p)$$
: (4分)

(2) 提示: 用德莫佛-拉普拉斯定理

$$\lim_{n\to\infty} P\left(\frac{\sum_{k=1}^{n} x_k - np}{\sqrt{npq}} < x\right) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt = \Phi(x). \tag{4 \(\frac{1}{17}\)}$$