Sample Mean & Sample Variance

Let X_1, \ldots, X_n be a random sample from $N(\mu, \sigma^2)$ and let \bar{X} and S^2 be the sample mean and sample variance. Then

- \bar{X} and S^2 are independent random variables. [Hint: Show \bar{Z} and S_Z^2 are independent, each $Z_i = \frac{X_i \mu}{\sigma} \sim N(0, 1)$ and consider the transformation $Y_1 = \bar{Z}$, $Y_i = Z_i \bar{Z}$ where i = 2, ..., n.]
- $(n-1)S^2/\sigma^2$ has the chi-square distribution with n-1 degrees of freedom. [Hint: consider $(n-1)S^2 + n(\bar{X} - \mu)^2 = \sum_{i=1}^n (X_i - \mu)^2$ and use mgf.]

Gamma Distribution

- Suppose $U \sim U(0,1), \beta > 0$. Then $-\beta \ln(U) \sim Exp(\beta) = Gamma(1,\beta)$.
- Suppose all Z_i are independent standard normal random variables, then $\sum_{i=1}^n Z_i^2 \sim \chi^2(k) = Gamma(\frac{n}{2}, 2)$.
- If X_i has a $Gamma(\alpha_i, \beta)$ distribution for i = 1, ..., m and all X_i are independent, then $\sum_{i=1}^m X_i \sim Gamma(\sum_{i=1}^m \alpha_i, \beta)$.
- If $X \sim Gamma(\alpha, \beta)$, then for any c > 0, $cX \sim Gamma(\alpha, c\beta)$.
- If $X \sim Gamma(\alpha, \beta)$, then

$$E(X^k) = \frac{\Gamma(\alpha + k)}{\Gamma(\alpha)} \beta^k$$
, where $\alpha > -k$.

Exercise 7.30

Suppose that Z has a standard normal distribution and that Y is an independent χ^2 -distributed random variable with n df. Then, according to Definition 7.2,

$$T = \frac{Z}{\sqrt{Y/n}}$$

has a t distribution with n df.

- ${\bf a} \ {\rm Give} \ E(Z)$ and $E\left(Z^2\right).$ [Hint: $E\left(Z^2\right)=V(Z)+(E(Z))^2.]$
- **b** Show that E(T) = 0, if n > 1.
- **c** Show that V(T) = n/(n-2), if n > 2.

Exercise 6.34

Suppose that W_1 and W_2 are independent χ^2 -distributed random variables with v_1 and v_2 d.f., respectively. According to Definition 7.3,

$$F = \frac{W_1/v_1}{W_2/v_2}$$

has an F distribution with n and m numerator and denominator degrees of freedom, respectively. Use the preceding structure of F, the independence of W_1 and W_2 , and the result summarized in Exercise 7.30(b) to show

a
$$E(F) = v_2/(v_2 - 2)$$
, if $v_2 > 2$.

b
$$V(F) = [2v_2^2(v_1 + v_2 - 2)] / [v_1(v_2 - 2)^2(v_2 - 4)], \text{ if } v_2 > 4.$$

Exercise 7.39

Suppose that independent samples (of sizes n_i) are taken from each of k populations and that population i is normally distributed with mean μ_i and variance σ^2 , $i=1,2,\ldots,k$. That is, all populations are normally distributed with the same variance but with (possibly) different means. Let \bar{X}_i and S_i^2 , $i=1,2,\ldots,k$ be the respective sample means and variances. Let $\theta=c_1\mu_1+c_2\mu_2+\cdots+c_k\mu_k$, where c_1,c_2,\ldots,c_k are given constants.

- **a** Give the distribution of $\hat{\theta} = c_1 \bar{X}_1 + c_2 \bar{X}_2 + \cdots + c_k \bar{X}_k$.
- **b** Give the distribution of

$$\frac{\text{SSE}}{\sigma^2}$$
, where $\text{SSE} = \sum_{i=1}^k (n_i - 1) S_i^2$.

c Give the distribution of

$$\frac{\hat{\theta} - \theta}{\sqrt{\left(\frac{c_1^2}{n_1} + \frac{c_2^2}{n_2} + \dots + \frac{c_k^2}{n_k}\right) \text{ MSE}}}, \quad \text{where MSE} = \frac{\text{SSE}}{n_1 + n_2 + \dots + n_k - k}.$$

Exercise 6.30

- **a** $E(Z) = 0, E(Z^2) = V(Z) + [E(Z)]^2 = 1.$
- **b** From the expression of $E(X^k)$ where $X \sim Gamma(\alpha, \beta)$, we have $E(T) = E(Z)E(\frac{1}{\sqrt{Y/n}}) = 0$ if n > 1.
- **c** From the expression of $E(X^k)$ where $X \sim Gamma(\alpha, \beta)$, we have

$$V(T) = E(T^2) = nE(Z^2/Y) = nE(Z^2)E(Y^{-1}) = n/(n-2), n > 2.$$

Exercise 6.34

Similar to 6.30, we have:

a
$$E(F) = \frac{v_2}{v_1} E(W_1) E(W_2^{-1}) = \frac{v_2}{v_1} \times \left(\frac{v_1}{v_2 - 2}\right) = v_2 / (v_2 - 2), v_2 > 2.$$

b Again from From the expression of $E(X^k)$ where $X \sim Gamma(\alpha, \beta)$, we have

$$V(F) = E(F^{2}) - [E(F)]^{2} = \left(\frac{v_{2}}{v_{1}}\right)^{2} E(W_{1}^{2}) E(W_{2}^{-2}) - \left(\frac{v_{2}}{v_{2} - 2}\right)^{2}$$

$$= \left(\frac{v_{2}}{v_{1}}\right)^{2} v_{1} (v_{1} + 2) \frac{1}{(v_{2} - 2)(v_{2} - 4)} - \left(\frac{v_{2}}{v_{2} - 2}\right)^{2}$$

$$= \left[2v_{2}^{2} (v_{1} + v_{2} - 2)\right] / \left[v_{1} (v_{2} - 2)^{2} (v_{2} - 4)\right], v_{2} > 4.$$

Exercise 6.39

a Note that for i = 1, 2, ..., k, the \bar{X}_i have independent a normal distributions with mean μ_i and variance σ/n_i . Since $\hat{\theta}$, a linear combination of independent normal random variables, by Theorem 6.3, $\hat{\theta}$ has a normal distribution with mean given by

$$E(\hat{\theta}) = E\left(c_1\bar{X}_1 + \ldots + c_k\bar{X}_k\right) = \sum_{i=1}^k c_i\mu_i$$

and variance

$$V(\hat{\theta}) = V(c_1\bar{X}_1 + \ldots + c_k\bar{X}_k) = \sigma^2 \sum_{i=1}^k c_i^2/n_i^2.$$

b For $i = 1, 2, ..., k, (n_i - 1) S_i^2 / \sigma^2$ follows a chi-square distribution with $n_i - 1$ degrees of freedom. In addition, since the S_i^2 are independent,

$$\frac{\text{SSE}}{\sigma^2} = \sum_{i=1}^k (n_i - 1) S_i^2 / \sigma^2$$

is a sum of independent chi-square variables. Thus, the above quantity is also distributed as chi-square with degrees of freedom $\sum_{i=1}^{k} (n_i - 1) = \sum_{i=1}^{k} n_i - k$.

c From part a, we have that $\frac{\hat{\theta} - \theta}{\sigma \sqrt{\sum_{i=1}^{k} c_i^2/n_i^2}}$ has a standard normal distribution. Therefore, by Definition 7.2, a random variable constructed as

$$\frac{\hat{\theta} - \theta}{\sigma \sqrt{\sum_{i=1}^{k} c_i^2 / n_i^2}} / \sqrt{\frac{\sum_{i=1}^{k} (n_i - 1) S_i^2 / \sigma^2}{\sum_{i=1}^{k} n_i - k}} = \frac{\hat{\theta} - \theta}{\sqrt{\text{MSE } \sum_{i=1}^{k} c_i^2 / n_i^2}}$$

has the t-distribution with $\sum_{i=1}^{k} n_i - k$ degrees of freedom. Here, we are assuming that $\hat{\theta}$ and SSE are independent (similar to \bar{Y} and S^2 as in Theorem 7.3).