Note on discrete logistic distribution

Alexis Akira Toda

April 9, 2020

Consider modeling the age distribution of counties that are infected. The total mass of counties is normalized to 1. At t=0, a certain fraction ϕ of counties are infected. Infected counties interact with uninfected counties and infect them at some rate $\rho > 0$. Letting P(t) be the fraction of counties that are infected at time t, assume the differential equation

$$P' = \rho P(1 - P).$$

The solution is

$$P(t) = \frac{\phi}{\phi + (1 - \phi)e^{-\rho t}}.$$

Now think of t=0 as the present. Then the fraction of counties that have age at least $t\geq 0$ is

$$P(-t) = \frac{\phi}{\phi + (1 - \phi)e^{\rho t}}.$$

Therefore the cumulative distribution function of age is

$$F(t) = 1 - P(-t) = \frac{(1 - \phi)e^{\rho t}}{\phi + (1 - \phi)e^{\rho t}} = \frac{1 - \phi}{1 - \phi + \phi e^{-\rho t}},$$

which is a truncated logistic distribution. Setting $1 - p = e^{-\rho}$, we obtain

$$F(t) = \frac{1 - \phi}{1 - \phi + \phi(1 - p)^t}.$$

Therefore a plausible model for the age distribution in discrete-time is the probability mass function

$$\Pr(T=t) = F(t) - F(t-1) = \frac{1-\phi}{1-\phi+\phi(1-p)^t} - \frac{1-\phi}{1-\phi+\phi(1-p)^{t-1}}$$

for $t=1,2,\ldots$ and $\Pr(T=0)=1-\phi$. This distribution is the truncated version of the discrete logistic distribution introduced by [1].

Let us show that when the age distribution is discrete logistic with parameter (ϕ, p) , the Pareto exponent formula is still

$$(1-p)M(\zeta) = 1.$$

To show this, let $\kappa = \frac{\phi}{1-\phi}$ and q = 1 - p. Then for $t \ge 1$, we have

$$\begin{split} p_t &:= \Pr(T = t \mid T > 0) = \frac{1}{\phi} \left(\frac{1}{1 + \kappa q^t} - \frac{1}{1 + \kappa q^{t-1}} \right) \\ &= \frac{\kappa (1 - q) q^{t-1}}{\phi (1 + \kappa q^t) (1 + \kappa q^{t-1})}. \end{split}$$

Noting that $\kappa, q > 0$, we obtain

$$0 < \frac{\kappa}{\phi} (1 - q) q^{t-1} - p_t = \frac{\kappa (1 - q) q^{t-1} (\kappa q^{t-1} + \kappa q^t + \kappa^2 q^{2t-1})}{\phi (1 + \kappa q^t) (1 + \kappa q^{t-1})}$$
$$= \frac{\kappa^2 (1 - q) q^{2(t-1)} (1 + q + \kappa q^t)}{\phi (1 + \kappa q^t) (1 + \kappa q^{t-1})} \le C q^{2(t-1)},$$

where

$$C = \frac{\kappa^2}{\phi} (1 - q)(1 + q + \kappa q).$$

If $M = M_X(z) = E[e^{zX}]$ is the MGF of log growth rate within a period and $Y = \sum_{t=1}^{T} X_t$ is the observed log growth rate in the entire sample period, then the MGF is

$$M_Y(z) = \sum_{t=1}^{\infty} p_t M^t.$$

The principal part is

$$\tilde{M}_Y(z) = \sum_{t=1}^{\infty} \frac{\kappa}{\phi} (1-q) q^{t-1} M^t = \frac{\kappa (1-q) M}{\phi (1-q M)}.$$

Taking the difference, we obtain

$$\left| M_Y(z) - \tilde{M}_Y(z) \right| \le \sum_{t=1}^{\infty} \left| p_t - \frac{\kappa}{\phi} (1 - q) q^{t-1} \right| M^t$$

 $\le \sum_{t=1}^{\infty} C q^{2(t-1)} M^t = \frac{CM}{1 - q^2 M}.$

Let $\zeta > 0$ be the unique number such that $qM(\zeta) = 1$. Then $q^2M(\zeta) = q < 1$, so $1 - q^2M > 0$ for $0 \le z \le \zeta$. Therefore

$$M_Y(z) = \tilde{M}_Y(z) + \epsilon(z) = \frac{\kappa(1-q)M_X(z)}{\phi(1-qM_X(z))} + \epsilon(z),$$

where $\epsilon(z)$ is analytic on the strip $0 \leq \Re z \leq \zeta$. Since $z = \zeta$ is a simple pole of \tilde{M}_Y , it is also a simple pole of M_Y .

References

[1] Subrata Chakraborty and Dhrubajyoti Chakravarty. A new discrete probability distribution with integer support on $(-\infty, \infty)$. Communications in Statistics—Theory and Methods, 45(2):492–505, 2016.