YASH SARANG

DGAD /47

DLCOA

EXPERIMENT/ASSIGNMENT-2

Carlangrach

Teacher's Sign:

- Proplement any Boolean function without need to use any other gate type. The NAND Gote & NOR Gate are universal gates. This is advantageous, since NAND & NOR gates are economical & easier to fabricate & are the basic gates using the in all IC digital logic families.
 - 3) AND Boolean expression of AND gate Y=A.B.

 OR Boolean express B Y=A+B.

NAND -> Boolean expression is $Y = \overline{A.B}$ NOR -> Boolean expression is $Y = \overline{A+B}$.

De Morgan's theorem describes the equivalence between gates with inverted inputs & gates with inverted outputs. Semply put a NAND gate is equivalent to Negative-OR gate and NOR gate is equivalent to ag

Negative-AND gate.

NAND gate is considered as a universal gate, it can be designed of any digital circuitry.

The minimum number of NAND gates required to design a half addler is 5.

The first NAND gate takes the inputs which are the two 1-bit numbers. The resultant NAND operated inputs will be again given to as input to 3-NAND gates along with the original input.

Out of the 3 considered NAND gates, the third NAND gate will generate the carry bit.

The NAND operation a can be understood more clearly with the given diagram.

6 Demiltiplierer (DEMUX)

It is a combinational logic circuit designed to switch one common input line to one of several separate output line. The less distributor is commonly known as Demultiplexeen.

Multiplenese

· Multiplexer process the digital info from various source into a single source.

- · Known as data selector
- oft is a digital switch.
- · Has multiple data input
- o flas single data output
- · Accepts data as input
- o Only one input
- o Used for switching

Demultiplexer

It recieves objetal into from a single source and converts into several sources

Known as data distributor.

It is a digital circuit-

Has single data input.

Has multiple data output.

Accepts control signals as input

One or more signal input:

Used for decoding of encoded input terminal.

7) Define half subtractor & full subtractor. (1) flall subtractor, It is a combined circuit which is used to perform subtraction of two bits. It has two inputs, of (minhead) & Y (subtrahand) and two outputs D (difference) & B (borrow). Dragram / Symbol: Subtracto Truth table: (i) Full subtractor It is a combinational circuit that performs

subtraction encluding 3 bits namely minuend, subtracted. and borrowin. The logic symbol & both table are shown.

3) Full adder of is added which add 3 inputs & produces 2 outputs. The two inputs are X & B. and input carry as C-IN output carry and is designed as C-OUT & the normal output is designated as I which is SUM.

Logical Supression.

A'B'C-IN + A'BC-IN' + AB'C-IN' + ABC-IN

= C-IN (A'B' + AB) + GIN (A'B+AB')

= C-IN XOR (A XORB).

10 Algorithm: Register, M - Divisor Register, Q - Dividend. nitial Register, Al <-- 0 Values Register, C, = 0 (1-bit carry) Count en [size of register] Restoring: 1. Shift C, AC, Q, left by 1 bit. 2) AC - AC-M (subtraction & chicking the sign can be used for comparison] 3) If the sign of AC is negative (i.e C=1) set Qo & add M back to AC, otherwise set Qo to 1. Non Restoring: 1) Do the following n times. It the sign of Al' is positive (1=0) then shift C, AC & Q left one bit & subtract M from AC. Shift GAC & Q left one bit position & add M It the sign of AC is positive then set 90 to 1 else set 90 to 0 It the step of AC is positive, then add M to Ac.

Non Restoring Driesson Algorithm

7	M	A	Q	Adron
4	00011	00000	011_	Start Left shift AC A = A-M
3	00011	11110	0110_	Q(0)=0 Left Shift AQ A=A+M.
2	00011	11111	100_	Q(0)=0 Left shift AQ A = A+M
1	00011	00000	001_	Q [0] = 1 Left shift AQ A = A-M
0	00011	00010	0011	Q[0] = 1

From calculations we get, Quotient (Q) = 3Remainder (A) = 2. Examples: Performi Division Restoing Algerithm.

Dividend = 11, Divisor = 3.

Restoring		Divisi	Division Algorithun		
n	M	A	Q 1	Operation	
4	00011	00000	1011	initialize	
		00001		shift left AQ	
	00011	11110	011_	A = A - M	
	00011	00001	0110	Q(0) = 0 & ratore A	
3	00011	00010		shift left AQ	
	00011	luin	110-	A=A-M	
	00011	00010	11.00	Q[6] =0	
2	00011	00101	100_	Shift left AQ	
		00010	100_	A=A-M	
	00011	00010	1001	Q(0)=1.	
1.	00011	00101	001_	shift left AQ	
	00011	00010	001_	A = A-M	
	0001)	00010	0011	Q[0] = 1	

Register Q contains the quotient i.e 3. and register A contains remainder 2.