7.1/7.2

Part A

Part D

$$s_{1} = \frac{1}{4}$$

$$s_{2} = \frac{1}{7}$$

$$s_{3} = \frac{1}{10}$$

$$s_{4} = \frac{1}{13}$$

$$s_{5} = \frac{1}{16}$$

$$s_1 = \frac{\sqrt{2}}{2}$$

$$s_2 = 1$$

$$s_3 = \frac{\sqrt{2}}{2}$$

$$s_4 = 0$$

$$s_5 = -\frac{\sqrt{2}}{2}$$

The sequence converges to 0.

The sequence does not converge as it cycles.

7.3

A	В	C	D	E	F	G	Н	Ι	J	K	L	M	N	O	P	Q	R	\mathbf{S}	Т
1	1	0	1	DNC	1	∞	DNC	0	$\frac{7}{2}$	∞	DNC	DNC	DNC	0	2	0	1	$\frac{4}{3}$	0

7.4

Part A

$$s_n = \frac{\sqrt{2}}{n} \in \mathbb{I}, \lim_{n \to \infty} s_n = 0 \in \mathbb{Q}$$

Part B

Let F_n denote the *n*'th fibonacci number with $F_1 = F_2 = 1$.

$$s_n = \frac{F_{n+1}}{F_n} \in \mathbb{Q}, \lim_{n \to \infty} s_n = \phi = \frac{1 + \sqrt{5}}{2} \in \mathbb{I}$$

7.5

Part B

Note that $\sqrt{n^2+n}-n=\frac{n}{\sqrt{n^2+n}+n}\sim \frac{n}{2n}.$ Therefore

$$\lim_{n\to\infty}=\sqrt{n^2+n}-n=\frac{1}{2}$$

8.1

Part C

Proof. Take $\epsilon > 0$. Let $N \in \mathbb{N} > \frac{3}{5\epsilon}$. Note that

For
$$n > N$$
, $\frac{3}{5n} \le \frac{3}{5N} < \epsilon$. Therefore
$$\left| \frac{2n-1}{3n+2} - \frac{2}{3} \right| = \left| \frac{7}{3} \cdot \frac{1}{3n+2} \right| = \frac{7}{3} \cdot \frac{1}{3n+2} \le \frac{3}{5n}.$$
 For $n > N$, $\frac{3}{5n} \le \frac{3}{5N} < \epsilon$. Therefore
$$\left| \frac{2n-1}{3n+2} - \frac{2}{3} \right| < \epsilon, \forall n > N$$
 hence $\lim_{n \to \infty} \frac{2n-1}{3n+2} = \frac{2}{3}$.

$$\left|\frac{2n-1}{3n+2} - \frac{2}{3}\right| < \epsilon, \forall n > N$$

Part D

Proof. Take $\epsilon > 0$. Let $N \in \mathbb{N} > \max\{6, 6 + \frac{1}{\epsilon}\}$. Note that N > 6, meaning for all

$$\left| \frac{n+6}{n^2-6} \right| = \frac{n+6}{n^2-6}.$$

$$\frac{n+6}{n^2-6} \le \frac{n+6}{n^2-36} = \frac{1}{n-6} < \frac{1}{N-6} < \epsilon, \forall n > N.$$

|n-r| Since $0 < n^2 - 36 < n^2 - 6$ for all n > N, $\frac{n+6}{n^2-6} \le \frac{n+6}{n^2-36} = \frac{1}{n-6} < \frac{1}{N-6} < \epsilon, \forall n > N.$

8.2

Part B

$$\lim_{n\to\infty}\frac{7n-19}{3n+7}=\frac{7}{3}$$

Proof. Take $\epsilon > 0$. Let $N \in \mathbb{N} > \frac{5}{9\epsilon}$. Note that

$$\left| \frac{7n - 19}{3n + 7} - \frac{7}{3} \right| = \left| \frac{-5}{9n + 21} \right| = \frac{5}{9n + 21}.$$

$$\frac{5}{9n+21} \le \frac{5}{9n} < \frac{5}{9N} < \epsilon, \forall n > N.$$

$$\left|\frac{7n-19}{3n+7}-\frac{7}{3}\right|<\epsilon, \forall n>N$$

hence $\lim_{n\to\infty} \frac{7n-19}{3n+7} = \frac{7}{3}$.

Part E

$$\lim_{n\to\infty}\frac{1}{n}\sin(n)=0$$

Proof. Take $\epsilon > 0$. Take $N \in \mathbb{N} > \epsilon$. Note that since $-1 \le \sin(x) \le 1$ for all $x \in \mathbb{R}$, $|\sin(n)| \le 1$ for all $x \in \mathbb{R}$. Therefore for $n \in \mathbb{N}$,

$$\left|\frac{1}{n}\sin(n)\right| = \frac{1}{n}|\sin(n)| \le \frac{1}{n}.$$

For $n>N,\, \frac{1}{n}<\frac{1}{N}<\epsilon.$ Therefore

$$\left| \frac{1}{n} \sin(n) \right| < \epsilon, \forall n < N$$

hence $\lim_{n\to\infty} \frac{1}{n} \sin(n) = 0$.

8.4

Proof. Let t_n be a bounded sequence and s_n be a sequence that converges to 0. Since t_n is bounded, $|t_n| \leq M \in \mathbb{R}$ for all $n \in \mathbb{N}$. Since s_n converges to 0,

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } |s_n| < \frac{\epsilon}{M}, \forall n > N$$

Note that $|s_n \cdot t_n| = |s_n||t_n| \le |s_n|M < \epsilon$ for all n > N. Therefore $\lim_{n \to \infty} t_n s_n = 0$.

8.5

Part A

Proof. Let a_n, b_n, s_n be sequences such that $a_n \leq s_n \leq b_n$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = s \in \mathbb{R}$. Since a_n and b_n converge, for any $\epsilon > 0$,

$$\exists N_1 \in \mathbb{N} \text{ s.t. } |a_n - s| < \epsilon, \forall n > N_1 \implies a_n > s - \epsilon, \forall n > N_1 \\ \exists N_2 \in \mathbb{N} \text{ s.t. } |b_n - s| < \epsilon, \forall n > N_2 \implies b_n < s + \epsilon, \forall n > N_2$$

By taking $N = \max\{N_1, N_2\}$, it follows that that $a_n > s - \epsilon$ and $b_n < s + \epsilon$ for all n > N. Note then that

$$s - \epsilon < a_n \le s_n \le b_n < s + \epsilon \implies |s_n - s| < \epsilon, \forall n > N.$$

Therefore $\lim_{n\to\infty} s_n = s$.

8.9

Part A

Proof. Let s_n be a convergent sequence such that $s_n \geq a \in \mathbb{R}$ for all but finitely many n. Let $s = \lim_{n \to \infty} s_n$ and let $S = \{n \in \mathbb{N} : s_n < a\}$. Since S is finite, choose $N = \max S$. Note that then for all n > N, $s_n \geq a$. Assume towards contradiction that s < a. Then a - s > 0. Choose $\epsilon > 0$ such that $0 < \epsilon < a - s$. Since s_n converges, $\exists N_0 \in \mathbb{N}$ such that $s_n < s + \epsilon < a$ for all $n > N_0$. This also holds for all $n > \max N$, N_0 . However, this means that there is an n > N such that $s_n < a$, which contradicts the fact that N is the maximal index such that $s_N < a$. Therefore $s \geq a$.