

MLB Pitch Prediction

Elevator Pitch

- Create a model and eventually dashboard that will help the offensive team (the hitting team) in pitch anticipation during an at-bat.
- Help predict pitch type based on batter, pitcher, runners on base, count during the at-bat, pitch sequence, etc.
- This dashboard would help teams predict what will be thrown therefore hopefully increasing the chances the batter will be successful.

Data Summary

- Every pitch thrown during the Major League Baseball (MLB)
 2015-2018 seasons
- 8 total datasets, 1.06GB
- Merged 3 datasets together
 - o Pitch data
 - At-Bat data
 - Player data
- Merged dataset
 - ~2,150,000 rows
 - 54 columns
 - o Too big for GitHub revised down to 14 columns

Data Architecture

Data Cleaning

 Pitch count often not changing after a pitch is thrown - will be difficult to include this important feature in our model if it is unreliable

 Many other columns have questionable data but we will likely use filler values such as mean or mode

 Solution: Use parts of the dataset that don't contain this issue (2019)

Generalizing Pitch Type

- Fastballs
 - o Four seam fastball
 - Two Seam fastball
 - Sinker
 - Splitter
 - Cutter
- Breaking Balls
 - Curve ball
 - Slider
 - Screwball
 - Knuckle curve
 - Knuckle ball
- Changeups
 - Changeup
- Rare Pitches
 - o Eephus
 - Pitchout
 - Unidentified
 - o Intentional ball

Cleaner data

 Many of the features in the 2019 dataset did not pass sanity check. Larger 2015-2018 did make sense

Feature Engineering

- Total the number of pitches a batter has faced
 - Eliminate batters below the median threshold of pitches faced
- Create a generalized strike/ball count feature
 - Individual counts are too specific and don't generate enough data (bad data)

Feature Engineering

- Balance Runners on Base Situations
 - We classified them into two categories, which satisfy relatively balanced and has distinct characteristics

Building Basic Pitcher Tendencies

- Group by pitcher ID, situation, and pitch
- Group by pitcher ID and situation
- Using the cleaned pitch type feature
- Aggregating and finding frequency of balls thrown
- Pivot

Pitcher Tendencies

Building Basic Batter Knowledge

- Group by batter ID, situation, and pitch
- Group by batter ID and situation
- Aggregating and finding frequency of balls thrown to batter
- Pivot

Summary: Data Cleaning and Feature Engineering

- 54 columns → 14 input columns
- Summarized columns
 - Pitch type
 - Fastball, breaking ball, change-up, rare
 - Runners on base
 - Empty, 1st base, RISP
 - At-bat count
 - Even, behind, ahead
 - Pitcher Situational Tendencies
 - 4 pitch type columns
 - Likelihood pitches types will be thrown (unknown pitch)
 - Batter Situational Experiences
 - 4 pitch type columns
 - Situational history of pitches seen

Baseline Model Probabilities

Situation: 1st Pitch, Even Count, o Outs

- Fastball 71.13%
- Breaking Ball 22.31%
- Changeup 6.11%
- Rare .43%

Situation: Breaking Ball, Ahead, 1 Out

- Fastball 61.69%
- Breaking Ball 29.53%
- Changeup 8.57%
- Rare .19%

Modeling

- Baseline model
 - Summary probabilities
 - Guess majority class

- Choices of models
 - o SVM
 - Decision Trees
 - Gradient boosted classifier

Modeling

- Baseline model
 - Predict fastball
 - Most thrown pitch (61.9%)
 - Common strategy for hitters

- Choices of models
 - o SVM
 - Decision Trees
 - Random Forest
 - Gradient boosted classifier

Results

	Baseline	SVM	XGBoost (Player Tendencies)	XGBoost (Player ID)
Accuracy	61.9%	63.7%	65%	65%
Precision	NA	89.8%	62%	62%
Recall	NA	68.61%	65%	65%

Results

XGBoost (Player Tendencies)

Variable Importance

XGBoost (Player Tendencies)

Predicted

	breaking ball	changeup	fastball	other
breaking ball	28,782	1,039	84,740	47
changeup	3, 98 1	3,825	37, 897	18
fastball	18,943	2,491	244,801	11
other	188	21	1,227	1,929

Results

XGBoost (Player ID)

	precision	recall	f1-score	support
0 1 2	0.58 0.49 0.64	0.12 0.01 0.97	0.20 0.02 0.77	251833 96343 590459
3	0.85	0.56	0.68	7526
accuracy			0.64	946161
macro avg	0.64	0.41	0.42	946161
weighted avg	0.61	0.64	0.54	946161

Predicted

	breaking ball	change up	fastball	other
breaking ball	30226	176	221007	200
change up	3147	872	92729	70
fastball	18496	653	570704	462
other	193	4	3051	4171

Random Forest (Player ID)

	precision	recall	f1-score	support
0 1 2 3	0.27 0.12 0.63 0.01	0.06 0.00 0.94 0.00	0.09 0.00 0.75 0.01	250763 96426 591404 7568
accuracy macro avg weighted avg	0.25 0.47	0.25	0.60 0.21 0.49	946161 946161 946161

Variable Importance

XGBoost (Player ID)

Random Forest (Player ID)

Model Valuation

- A run is estimated around \$120,000
- 162 games a year
- Every two hits averages a single run
- 146 pitches a game

5 more pitches a game = 95-90

(Hits Yielded From Additional Information) X .5 X \$120,000 X 162

Hit Increase Per Game	.5	1	2	3	4	5
Yearly Monetary value	\$4,860,000	\$9,720,000	\$19,440,000	\$29,160,000	\$38,880,000	\$48,600,000

Dashboard Demo

Clayton Kershaw Pitcher (477132)

Buster Posey Catcher (457763)

Conclusions / Limitations

- Outperformed baseline by ~3%
- Generalized features
 - Pitch type
 - Runners on base
- Removed batters/pitchers with limited data

Next Steps

- Add features
 - Score
 - Inning
- Connect dashboard to database

Citations

https://community.fangraphs.com/what-is-a-run-worth/