EKSAMENDATABLAD VIR TEGNIESE WETENSKAPPE

TABEL 1 FISIESE KONSTANTES

NAAM	SIMBOOL	WAARDE
Standaarddruk	p^{θ}	1,01 × 10 ⁵ Pa
Standaardtemperatuur	T ⁰	273 K
Spoed van lig in 'n vakuum	С	$3.0 \times 10^8 \mathrm{m \cdot s^{-1}}$
Planck se konstante	h	$6,63 \times 10^{-34} \text{ J} \cdot \text{s}$

TABEL 2 GOLWE, KLANK EN LIG

$v = f\lambda$	$T = \frac{1}{f}$
$E = hf \text{ of } E = h\frac{c}{\lambda}$	

TABEL 3 FORMULES

$$\begin{split} E_{\text{sel}}^{\theta} &= E_{\text{katode}}^{\theta} - E_{\text{anode}}^{\theta} \\ E_{\text{sel}}^{\theta} &= E_{\text{reduksie}}^{\theta} - E_{\text{oksidasie}}^{\theta} \\ E_{\text{sel}}^{\theta} &= E_{\text{oksideermiddel}}^{\theta} - E_{\text{reduseermiddel}}^{\theta} \end{split}$$

IEB Copyright © 2019 BLAAI ASSEBLIEF OM

TABEL 4 PERIODIEKE TABEL VAN ELEMENTE

	1	2	3	4 KF)	5 //SLE	6 UTFI	7	8	9	10	11	12	13	14	15	16	17	18
1	1 2,1 H	Ato	omic n	umber			1	2,1			ativity/l	Elektro	onegat	iwiteit				2 He
2	1 3 1,0 Li	4 1,5 Be			Annr	ovima	1	tive at		ol/Sim	ibool		5 2,0 B	6 2,5 C	7 3,0 N	8 3,5 O	9 4,0 F	10 Ne
3	7 11 0,9 Na	Approximate relative atomic mass/ Benaderde relatiewe atoommassa 10,8 12 14 16 19 2 14 16 2 17 3,0 1 18 18 18 18 18 18 18											20 18 Ar					
	23 19 0,8	24,3	,	· ·	,	· ·	· ·		_			30 1,6	27 31 1,6	28 32 1,8	31 33 2,0	32 34 2,4	35,5 35 2,8	40 36
4	39 37 0,8	,	Sc 45 39 1,2			Cr 52 42 1,8	Mn 55 43 1,9	Fe 56 44 2,2			Cu 63,5 47 1,9		Ga 70 49 1,7	,			80 53 2,5	
5	Rb 85,5 55 0,7	Sr 88 56 0,9	Y 89	Zr 91 72 1,6	Nb 93	Mo 96 74	Tc 99 75	Ru 101 76	Rh 103	Pd 106 78	Ag 108	Cd 112 80	In 115 81 1,8	Sn 119	Sb 121 83 1,9	Te 128 84 2,0	127 85 2,5	Xe 131
6	Cs 133	Ba 137,3	La	Hf 178,5	Ta	W 184	Re	Os 190	Ir 192	Pt 195	Au 197	Hg 200,6	Te 204,4	Pb 207	Bi 209	Po	At	Rn
7	87 0,7 Fr	88 0,9 Ra	89 Ac															
				1	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
					90 Th 232	91 Pa	92 U 238	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	167 100 Fm	169 101 Md	173 102 No	175 103 Lr

TABEL 5A STANDAARDREDUKSIEPOTENSIALE

		lfreaks	ies	Ε ^θ (V)
	F ₂ (g) + 2e ⁻	=	2F ⁻	+ 2,87
(Co ³⁺ + e ⁻	\rightleftharpoons	Co ²⁺	+ 1,81
	$H_2O_2 + 2H^+ + 2e^-$	\rightleftharpoons	$2H_2O$	+ 1,77
	MnO + 8H ⁻ + 5e ⁻	\rightleftharpoons	$Mn^{2+} + 4H_2O$	+ 1,51
($C\ell_2(g) + 2e^-$	\rightleftharpoons	2Cℓ ⁻	+ 1,36
(Cr ₂ O + 14H ⁺ + 6e ⁻	\rightleftharpoons	2Cr ³⁺ + 7H ₂ O	+ 1,33
($O_2(g) + 4H^+ + 4e^-$	\rightleftharpoons	2H ₂ O	+ 1,23
	$MnO_2 + 4H^+ + 2e^-$	\rightleftharpoons	$Mn^{2+} + 2H_2O$	+ 1,23
	Pt ²⁺ + 2e ⁻	\rightleftharpoons	Pt	+ 1,20
	$Br_2(\ell) + 2e^-$	\rightleftharpoons	2Br ⁻	+ 1,07
	NO + 4H ⁺ + 3e ⁻	⇌	$NO(g) + 2H_2O$	+ 0,96
	Hg ²⁺ + 2e ⁻	\rightleftharpoons	$Hg(\ell)$	+ 0,85
	Ag ⁺ + e ⁻	→	Ag	+ 0,80
	NO + 2H ⁺ + e ⁻	÷	$NO_2(g) + H_2O$	+ 0,80
	Fe ³⁺ + e ⁻	` ⇌	Fe ²⁺	+ 0,77
	O ₂ (g) + 2H ⁺ + 2e ⁻	, ≓	H_2O_2	+ 0,68
	$I_2 + 2e^-$	+	2I ⁻	+ 0,54
	Cu ⁺ + e ⁻	/	Cu	+ 0,52
	SO ₂ + 4H ⁺ + 4e ⁻	-	S + 2H ₂ O	+ 0,45
_	2H ₂ O + O ₂ + 4e ⁻	-	40H ⁻	+ 0,43
	Cu ²⁺ + 2e ⁻	-	Cu	+ 0,40
<u>e</u>	SO + 4H ⁺ + 2e ⁻	-		
asi	Cu ²⁺ + e ⁻		SO ₂ (g) + 2H ₂ O Cu ⁺	+ 0,17
	Cu + e Sn⁴+ + 2e [−]	_	Sn ²⁺	+ 0,16
X X	S + 2H ⁺ + 2e ⁻	,		+ 0,15
<u>e</u>	3 + ∠⊓ + ∠e 2H⁺ + 2e⁻	=	$H_2S(g)$	+ 0,14
Pu ˈ	zn + ze Fe ³⁺ + 3e ⁻	,	H ₂ (g)	0,00
ue 📙	re + 3e Pb ²⁺ + 2e ⁻	,	Fe	- 0,06
		=	Pb	- 0,13
	Sn ²⁺ + 2e ⁻	=	Sn Ni	- 0,14
	Ni ²⁺ + 2e ⁻	=	Ni	- 0,27
	Co ²⁺ + 2e ⁻	\rightleftharpoons	Co	- 0,28
	Cd ²⁺ + 2e ⁻	=	Cd	- 0,40
	Cr ³⁺ + e ⁻	\rightleftharpoons	Cr ²⁺	- 0,41
	Fe ²⁺ + 2e ⁻	\rightleftharpoons	Fe	- 0,44
	Cr ³⁺ + 3e ⁻	\rightleftharpoons	Cr	- 0,74
	Zn ²⁺ + 2e ⁻	\rightleftharpoons	Zn	- 0,76
	2H ₂ O + 2e ⁻	\rightleftharpoons	H2(g) + 2OH ⁻	- 0,83
	Cr ²⁺ + 2e ⁻	\rightleftharpoons	Cr	- 0,91
	Mn ²⁺ + 2e ⁻	\rightleftharpoons	Mn	- 1,81
	$A\ell^{3+}$ + $3e^{-}$	\rightleftharpoons	Αl	- 1,66
	Mg ²⁺ + 2e ⁻	\rightleftharpoons	Mg	- 2,36
	Na + e -	\rightleftharpoons	Na	- 2,71
	Ca ²⁺ + 2e ⁻	\rightleftharpoons	Ca	- 2,87
	Sr ²⁺ + 2e ⁻	\rightleftharpoons	Sr	- 2,89
	Ba ²⁺ + 2e ⁻	\rightleftharpoons	Ва	- 2,90
	Cs⁺ + e⁻	\rightleftharpoons	Cs	- 2,92
	K ⁺ + e ⁻	\rightleftharpoons	K	- 2,93
Ι.				1

Toenemende reduksievermoë

IEB Copyright © 2019

Li

-3,05

TABEL 5B STANDAARDREDUKSIEPOTENSIALE

	На	Ε ^θ (V)		
	Li ⁺ + e ⁻	=	Li	-3,05
	K ⁺ + e ⁻	\rightleftharpoons	K	-2,93
	Cs ⁺ + e ⁻	≠	Cs	-2,92
	Ba ²⁺ + 2e ⁻	`	Ва	-2,90
	Sr ²⁺ + 2e ⁻	;	Sr	-2,89
	Ca ²⁺ + 2e ⁻	<u>`</u>	Ca	-2,87
	Na ⁺ + e ⁻	+	Na	-2,71
	Mg ²⁺ + 2e ⁻	/	Mg	-2,71 -2,36
	$A\ell^{3-} + 3e^{-}$	=	Al	
	Mn ²⁺ + 2e ⁻	-	Mn	-1,66
	Cr ²⁺ + 2e ⁻	=		-1,18 0.01
		≠	Cr	-0,91
	2H ₂ O + 2e ⁻	=	H ₂ (g) + 2OH ⁻	-0,83
	Zn ²⁺ + 2e ⁻	=	Zn	-0,76
	Cr ³⁺ + 3e ⁻	\rightleftharpoons	Cr	-0,74
	$Fe^{2+} + 2e^{-}$	\rightleftharpoons	Fe	-0,44
	Cr ³⁺ + e ⁻	\rightleftharpoons	Cr ²⁺	-0,41
	Cd ²⁺ + 2e ⁻	\rightleftharpoons	Cd	-0,40
.4	Co ²⁺ + 2e ⁻	\rightleftharpoons	Co	-0,28
loë	Ni ²⁺ + 2e ⁻	\rightleftharpoons	Ni	-0,27
enemende oksidasievermoë	Sn ²⁺ + 2e ⁻	\rightleftharpoons	Sn	-0,14
ve	Pb ²⁺ + 2e ⁻	\rightleftharpoons	Pb	-0,13
sie	$Fe^{3+} + 3e^{-}$	\rightleftharpoons	Fe	-0,06
da	2H ⁺ + 2e [−]	=	$H_2(g)$	0,00
(Si	S + 2H ⁺ + 2e ⁻	\rightleftharpoons	$H_2S(g)$	+0,14
0	Sn ⁴⁺ + 2e ⁻	\rightleftharpoons	Sn ²⁺	+0,15
de	Cu ²⁺ + e ⁻	=	Cu⁺	+0,16
en	SO + 4H ⁺ + 2e ⁻	\rightleftharpoons	$SO_2(g) + 2H_2O$	+0,17
me	Cu ²⁺ + 2e ⁻	≓	Cu	+0,34
en($2H_2O + O_2 + 4e^-$	\rightleftharpoons	40H ⁻	+0,40
To	$SO_2 + 4H^+ + 4e^-$	\rightleftharpoons	S + 2H ₂ O	+0,45
•	Cu ⁺ + e [−]	\rightleftharpoons	Cu	+ 0,52
	$I_2 + 2e^-$	\rightleftharpoons	2l ⁻	+0,54
	$O_2(g) + 2H^+ + 2e^-$	\rightleftharpoons	H_2O_2	+0,68
	Fe ³⁺ + e ⁻	\rightleftharpoons	Fe ²⁺	+0,77
	NO + 2H ⁺ + e ⁻	≠	$NO_2(g) + H_2O$	+0,80
	Ag ⁺ + e ⁻	· ⇌	Ag	+0,80
	Hg ²⁺ + 2e ⁻	, ⇌	Hg(ℓ)	+0,85
	NO + 4H ⁺ + 3e ⁻	<u>`</u>	NO(g) + 2H ₂ O	+0,96
	$Br_2(\ell) + 2e^-$	<u>`</u>	2Br ⁻	+1,07
	Pt ²⁺ + e ⁻	<u>`</u>	Pt	+1,20
	$MnO_2 + 4H^+ + 2e^-$	=	Mn ²⁺ + 2H ₂ O	+1,23
	$O_2(g) + 4H^+ + 4e^-$	=	2H ₂ O	+1,23
	$Cr_2O + 14H^+ + 6e^-$	 	2Cr ³⁺ + 7H ₂ O	+1,23
	$Cl_2O + 1411 + 06$ $Cl_2(g) + 2e^-$		2Cl + 711 ₂ O	+1,36
	MnO + 8H ⁺ + 5e ⁻	=	201 Mn ²⁺ + 4H ₂ O	
	$H_2O_2 + 2H^+ + 2e^-$	=	2H ₂ O	+1,51
	$C_{0}^{3+} + e^{-}$	=	2H ₂ U Co ²⁺	+1,77
		=		+1,81
	$F_2(g) + 2e^-$	=	2F ⁻	+2,87

Toenemende reduksievermoë