Examples of good past 221 projects

Project name	Link to project	Content highlight
Auto Mario	https://web.stanford.edu/ class/cs221/fall2017/rest ricted/posters/cqian23/p oster.pdf	The authors analyzed how to build AI agent for Auto Mario game. They implemented three methods : A*, reinforcement learning, and deep neural networks and compared the performance.
Anomaly Detection for Bridge in Service Using Bidirectional Recurrent Neural Network	https://web.stanford.edu/ class/cs221/fall2017/rest ricted/posters/swjeong3/ poster.pdf	This project used real world data to analyze and predict bridge vibration. He modeled the state and features of this specific application very well, and trained bidirectional recurrent neural network (which is a complicated network to train).
Multi-Modal Information Extraction for a Question-Answer Framework	https://web.stanford.edu/ class/cs221/fall2017/rest ricted/posters/larsjebe/p oster.pdf	Extract information from both text and images. Techniques: CNNs, LSTMs.
An Al for Game Tokkun'99	https://web.stanford.edu/ class/cs221/fall2017/rest ricted/posters/yilong/pos ter.pdf	Modeling games. Techniques: Q-learning, DQN
Automatically Planning Itineraries Using Business Review Data	https://web.stanford.edu/ class/cs221/fall2017/rest ricted/posters/rafearon/p oster.pdf	The students extensively experimented with various implementations of Markov Decision Processes and Constraint Satisfaction Problems on a dataset of Yelp reviews to plan schedules.
Grocery Sales Forecasting for Corporacion Favorita	https://web.stanford.edu/ class/cs221/fall2017/rest ricted/posters/jzhao4/po ster.pdf	The students far exceeded the performance of existing implementations for this Kaggle problem by implementing a novel graph structure.
A Survey of Motion Planning for Robotic Arms	https://web.stanford.edu/ class/cs221/fall2017/rest ricted/posters/zhihanj/po ster.pdf	A good example of working on something within AI that is not machine learning - the students implemented and compared 3 different motion planning algorithms, which is quite impressive.
Machine Learning for Increasing the	http://web.stanford.edu/c lass/cs221/fall2017/restri	A great creative ML project; he created his own dataset and applied Deep Learning to

Expressiveness of Auto-generated Music	cted/posters/cgaffney/po ster.pdf	making auto-generated music more human like by basically injecting flaws into it. This is the sort of thing you should shoot for if you are thinking of working on a primarily Machine Learning project.
--	--------------------------------------	--

(Link to all previous projects from last Autumn quarter: http://web.stanford.edu/class/cs221/fall2017/project-list.html)