CNN 주요 모델을 활용한 COVID-19 X선 이미지 분류

212STG13 박지원 212STG18 예지혜 218STG01 김지민

목차

Part 1. 연구 배경

CNN 기본 개념 소개 및 데이터 소개

Part 2. CNN 주요 모델 소개

AlexNet, VGG, GoogLeNet, ResNet 소개 실제 데이터로의 적용

Part 3. 분석 결과

모델 비교 및 논의

CNN 주요 개념 소개

Part 1. 연구 배경

이미지 분류와 기계학습 (machine learning)

CNN이란?

convolutional neural network : 합성곱 신경망

CNN의 특징

✓ Locality (Local Connectivity)

√ Shard Weights

CNN이란?

ILSVRC (Imagenet Large Scale Visual Recognition Challenge)

데이터 소개 Part 1. 연구 배경

Covid19 Image Dataset

데이터 소개

코로나 19 확진자, 정상, 폐렴 환자의 흉부 X선 사진 데이터

데이터 크기

	코로나	정상	폐렴	합계
train	111	70	70	251
test	26	20	20	66

AlexNet

Part 2. CNN 주요 모델 소개

LeNet

Layer	Туре	Maps	Size	Kernel size	Stride	Activation
0ut	Fully Connected	-	10	-	-	RBF
F6	Fully Connected	-	84	-	-	tanh
C5	Convolution	120	1×1	5×5	1	tanh
S4	Avg Pooling	16	5×5	2×2	2	tanh
C3	Convolution	16	10×10	5×5	1	tanh
S2	Avg Pooling	6	14×14	2×2	2	tanh
C1	Convolution	6	28×28	5×5	1	tanh
ln	Input	1	32×32	-	_	_

AlexNet

Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton. 논문 Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems 25, p1106–1114, 2012. 주요 - 활성화 함수로 ReLu 사용 개념 - 두 개의 GPU를 사용하여 계산속도 향상

AlexNet

그래디언트 수렴 속도 빠름

AlexNet 구조

GPU 1

GPU 2

AlexNet - 과적합 방지

drop out

(a) Standard Neural Net

(b) After applying dropout.

data augmentation

AlexNet - 코드

```
# fc layer
class AlexNet(nn.Module):
                                                                                          self.classifier = nn.Sequential(
    def __init__(self, num classes=3):
                                                                                              nn.Dropout(p=0.5, inplace=False),
                                                                               drop out
        super(AlexNet,self).__init__()
                                                                                              nn.Linear(in features=(256 * 6 * 6), out features=4096),
        # input size : (b x 3 x 227 x 227)
                                                                                              nn.ReLU(inplace=True),
        # 논문에는 image 크기가 224 pixel이라고 나와 있지만, 오타입니다.
                                                                                              nn.Dropout(p=0.5, inplace=False),
        # 227x227을 사용합니다.
                                                                                              nn.Linear(in_features=4096, out_features=4096),
                                                                                              nn.ReLU(inplace=True),
                                                                                              nn.Linear(in_features=4096, out_features=num_classes),
        # Conv layer
        self.net = nn.Sequential(
             nn.Conv2d(3, 96, kernel size=11, stride=4, padding=0), # (b x
                                                                                  Layer
                                                                                         Type
                                                                                                       Maps
                                                                                                               Size
                                                                                                                         Kernel size Stride Padding Activation
  Relu
            nn.ReLU inplace=True).
             nn.LocalResponseNorm(size=5, alpha=0.0001, beta=0.75, k=2),
                                                                                         Fully Connected -
                                                                                                               1,000
                                                                                   Out
                                                                                                                                                    Softmax
             nn.MaxPool2d(kernel_size=3, stride=2), # (b x 96 x 27 x 27)
                                                                                   F9
                                                                                         Fully Connected -
                                                                                                               4,096
                                                                                                                                                   ReLU
             nn.Conv2d(96, 256, kernel\_size=5, stride=1, padding=2), # (b x)
                                                                                   F8
                                                                                         Fully Connected -
                                                                                                               4,096
                                                                                                                                                   ReLU
             nn.ReLU(inplace=True),
                                                                                         Convolution
                                                                                                               13 \times 13
                                                                                                                                           SAME
                                                                                                                                                   ReLU
                                                                                   (7
                                                                                                       256
                                                                                                                         3 \times 3
             nn.LocalResponseNorm(size=5, alpha=0.0001, beta=0.75, k=2),
             nn.MaxPool2d(kernel size=3, stride=2), # (b \times 256 \times 13 \times 13)
                                                                                   6
                                                                                         Convolution
                                                                                                       384
                                                                                                               13 \times 13
                                                                                                                         3 \times 3
                                                                                                                                           SAME
                                                                                                                                                   ReLU
                                                                                   (5
                                                                                         Convolution
                                                                                                       384
                                                                                                               13 \times 13
                                                                                                                         3 \times 3
                                                                                                                                           SAME
                                                                                                                                                   ReLU
             nn.Conv2d(256, 384, 3, 1, 1), # (b x 384 x 13 x 13)
             nn.ReLU(inplace=True).
                                                                                   54
                                                                                         Max Pooling
                                                                                                       256
                                                                                                               13 \times 13
                                                                                                                         3 \times 3
                                                                                                                                           VALID
                                                                                   C3
                                                                                         Convolution
                                                                                                       256
                                                                                                               27 \times 27
                                                                                                                         5 \times 5
                                                                                                                                    1
                                                                                                                                           SAME
                                                                                                                                                   ReLU
             nn.Conv2d(384, 384, 3, 1, 1), # (b x 384 x 13 x 13)
             nn.ReLU(inplace=True),
                                                                                                                                           VALID
                                                                                   52
                                                                                         Max Pooling
                                                                                                       96
                                                                                                               27 \times 27
                                                                                                                         3 \times 3
                                                                                                                                    2
                                                                                                                         11 × 11
                                                                                                                                           SAME
             nn.Conv2d(384, 256, 3, 1, 1), # (b x 256 x 13 x 13)
                                                                                   C1
                                                                                         Convolution
                                                                                                               55 \times 55
                                                                                                                                    4
                                                                                                                                                   ReLU
             nn.ReLU(inplace=True),
                                                                                                       3 (RGB) 224 × 224 -
                                                                                   In
                                                                                         Input
             nn.MaxPool2d(3, 2), # (b x 256 x 6 x 6)
```

Alexnet 분석 결과

VGG

Part 2. CNN 주요 모델 소개

VGG (Visual Geometry Group Net)

논문	K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In <i>ICLR</i> , 2015.
배경	기존의 alexnet의 네트워크를 더 깊게 만들자.
주요 개념	conv - pooling 반복에서 conv의 개수를 늘림 very small (3x3) convolution filters

VGG

two successive 3x3 convolutions

5x5 convolution

	3x3	5x5
파라미터	$2x(3^2C^2) = 18C^2$	$5^2C^2 = 25C^2$
층의 개수	2 layer	1 layer

- ✓ 층을 깊게하여

 비선형성 추가
- ✔ 파라미터 감소

VGG

VGG11		VGG13		VGG16	VGG19	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		.00.0	onfiguration	, 00.0	,00,0	
A	A-LRN	В	С	D	Е	
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight	
layers	layers	layers	layers	layers	layers	
	iı	nput (224×22	24 RGB image	e)		
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	
	LRN	conv3-64	conv3-64	conv3-64	conv3-64	
		max				
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	
		conv3-128	conv3-128	conv3-128	conv3-128	
		max				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
			conv1-256	conv3-256	conv3-256	
					conv3-256	
	maxpool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
					conv3-512	
			pool			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
					conv3-512	
			pool			
	FC-4096					
FC-4096						
FC-1000						
	soft-max					

Table 3: ConvNet performance at a single test scale.

1able 5. Convict perior mance at a single test scale.						
ConvNet config. (Table 1)	smallest image side		top-1 val. error (%)	top-5 val. error (%)		
	train(S)	test(Q)				
A	256	256	29.6	10.4		
A-LRN	256	256	29.7	10.5		
В	256	256	28.7 B	9.9		
	256	256	28.1	9.4		
C	384	384	28.1	9.3		
	[256;512]	384	27.3	8.8		
	256	256	27.0	8.8		
D	384	384	26.8	8.7		
	[256;512]	384	25.6	8.1		
	256	256	27.3	9.0		
E	384	384	26.9	8.7		
	[256;512]	384	25.5	8.0		

B → C : conv 1x1 추가 (28.7 → 28.1)

B → D : conv 3x3 추가 (28.7 → 27.0)

VGG 구조

	ConvNet Configuration						
A	A-LRN	В	C	D	Е		
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight		
layers	layers	layers	layers	layers	layers		
	i	nput (224×22	24 RGB image)			
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64		
	LRN	conv3-64	conv3-64	conv3-64	conv3-64		
		max	pool				
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128		
		conv3-128	conv3-128	conv3-128	conv3-128		
			pool				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
			conv1-256	conv3-256	conv3-256		
					conv3-256		
maxpool							
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
			pool				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
			pool				
			4096				
			4096				
			1000				
		soft-	-max				

		Softmax
		FC 1000
	Softmax	FC 4096
fc8	FC 1000	FC 4096
fc7	FC 4096	Pool
fc6	FC 4096	3×3 conv, 512
	Pool	3×3 conv, 512
conv5-3	3×3 conv, 512	3×3 conv, 512
conv5-2	3×3 conv, 512	3×3 conv, 512
conv5-1	3×3 conv, 512	Pool
	Pool	3×3 conv, 512
conv4-3	3×3 conv, 512	3×3 conv, 512
conv4-2	3×3 conv, 512	3×3 conv, 512
conv4-1	3×3 conv, 512	3×3 conv, 512
	Pool	Pool
conv3-2	3×3 conv, 256	3 × 3 conv, 256
conv3-1	3×3 conv, 256	3 × 3 conv, 256
	Pool	Pool
conv2-2	3×3 conv, 128	3×3 conv, 128
conv2-1	3×3 conv, 128	3×3 conv, 128
	Pool	Pool
conv1-2	$3 \times 3 \ conv, 64$	$3 \times 3 conv, 64$
conv1-1	3 × 3 conv, 64	3 × 3 conv, 64
	Input	Input

VGG16

VGG 코드

```
# VGG type dict
# int : output chnnels after conv laver
# 'M' : max pooling layer
VGG_types = {
    'VGG11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'VGG13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'].
                                                                                                                model, in_channels=3, num_classes=3, init_weights=True):
    'VGG16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 5<u>1</u>2, 512, 512, 'M', 512, 512, 512, 'M'],
    'VGG19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, ('M') 512, 512, 512, 'M', 512, 512, 512, 512, 'M'] |f).__init__()
                                                                                                                s = in_channels
               숫자는 conv 층
                                                    M은 pooling 충
                                                                                                                                       필요한 층을 계속 쌓음
                                                                                                  self.conv_layers = self.create_conv_laters(VGG_types[model])
def create_conv_laters(self, architecture):
                                                                                                  self.fcs = nn.Sequential(
    layers = []
                                                                                                     nn.Linear(512 * 7 * 7, 4096),
    in channels = self.in channels # 3
                                                                                                     nn.Bel II().
                                                                                                     nn.Dropout().
    for x in architecture:
                                                                                                     nn.Linear(4096, 4096),
                                                                                                     nn . Rel II() .
        if type(x) == int: # int means conv layer
                                                                                                                                       Fully Connected 층
                                                              숫자 → conv 3x3
                                                                                                     nn.Dropout().
             out channels = x
                                                                                                                                              (FC layer)
                                                                                                     nn.Linear(4096, num classes).
             layers += [nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
                                   kernel_size=(3,3), stride=(1,1), padding=(1,1))
                                                                                                  # weight initialization
                        nn.BatchNorm2d(\times).
                                                                                                  if init_weights:
                                                                                                     self. initialize weights()
                        nn.ReLU()]
             in\_channels = x
                                                                'M' → pooling
                                                                                              def forward(self. x):
        elif x == 'M':
                                                                                                  x = self.conv lavers(x)
             layers += [nn.MaxPool2d(kernel_size=(2,2), stride=(2,2)
                                                                                                  x = x.view(-1.512 * 7 * 7)
                                                                                                  x = self.fcs(x)
    return nn.Sequential(*lavers)
                                                                                                  return x
```

VGG 분석 결과

GoogLeNet

Part 2. CNN 주요 모델 소개

GoogLeNet

논문	C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions . In <i>CVPR</i> , 2014
배경	깊고(deep) 넓은(wide) 네트워크 → 성능 향상 but computationally expensive => Deeper networks, with computational efficiency
주요 개념	- Inception Module - Auxiliary classifier

- 여러 size의 conv layer를 병렬적으로 연결한 형태
- 시각적 정보를 다양한 규모 (1x1, 3x3, 5x5)로 처리 => 다양한 특징 추출

Problem? computational complexity

Solution: "bottleneck" layers => dimension reduction by 1x1 conv

1x1 convolutions:

- => preserves spatial dimensions, reduces depth!
- => Projects depth to lower dimension

Inception Module with dimension reduction

GoogLeNet - Full Architecture

inception module의 효과

- 1. network size↑ 계산 복잡도↓
- 2. 다양한 scale의 특징 추출

GoogLeNet - Auxiliary classifier

Inception Block

```
class Inception block(nn.Module):
    def init (self, in channels, out 1x1, red 3x3, out 3x3, red 5x5, out 5x5, out 1x1pool):
        super(Inception block, self). init ()
                                                        class conv block(nn.Module):
                                                             def init (self, in channels, out channels, **kwargs):
        self.branch1 = conv_block(in_channels, out_1x1,
                                                                  super(conv block, self). init ()
        self.branch2 = nn.Sequential(
           conv block(in channels, red 3x3, kernel size=
                                                                  self.conv layer = nn.Sequential(
           conv block(red 3x3, out 3x3, kernel size=3, p
                                                                       nn.Conv2d(in channels, out channels, **kwargs),
                                                                       nn.BatchNorm2d(out channels),
                                                                       nn.ReLU(),
        self.branch3 = nn.Sequential(
           conv block(in channels, red 5x5, kernel size=
           conv block(red 5x5, out 5x5, kernel size=5, p
                                                             def forward(self, x):
                                                                  return self.conv layer(x)
        self.branch4 = nn.Sequential(
           nn.MaxPool2d(kernel size=3, stride=1, padding=1),
           conv block(in channels, out 1x1pool, kernel size=1)
    def forward(self, x):
       x = \text{torch.cat}([\text{self.branch1}(x), \text{self.branch2}(x), \text{self.branch3}(x), \text{self.branch4}(x)], 1)
       return x
```

Inception Block

```
class Inception block(nn.Module):
    def init (self, in channels, out 1x1, red 3x3, out 3x3, red 5x5, out 5x5, out 1x1pool):
        super(Inception block, self). init ()
                        conv block(in channels, out 1x1, kernel size=1)
                                                                                                     Filter
        self.branch1
                                                                                                   concatenation
                                                                                                  forward
        self.branch2 = nn.Sequential(
            conv block(in channels, red 3x3, kernel size=1),
                                                                                                3x3 convolutions
                                                                                                              5x5 convolutions
                                                                                                                             1x1 convolutions
            conv block(red 3x3, out 3x3, kernel size=3, padding=1),
                                                                                1x1 convolutions
                                                                                                                             branch4
                                                                                                branch2
                                                                                                             branch3
                                                                                                                            3x3 max pooling
                                                                                                1x1 convolutions
                                                                                                              1x1 convolutions
        self.branch3 = nn.Sequential(
                                                                               branch1
            conv block(in channels, red 5x5, kernel size=1),
            conv block(red 5x5, out 5x5, kernel size=5, padding=2),
                                                                                                   Previous laver
        self.branch4 = nn.Sequential(
            nn.MaxPool2d(kernel size=3, stride=1, padding=1),
            conv block(in channels, out 1x1pool, kernel size=1)
    def forward(self. x):
        x = torch.cat(|self.branch1(x), self.branch2(x), self.branch3(x), self.branch4(x)], 1)
        return x
                  concatenate all branches
```

```
class GoogLeNet(nn.Module):
    def init (self,aux logits=True, num classes=3, init weights=True):
        super(GoogLeNet, self). init ()
        assert aux logits == True or aux logits == False
        self.aux logits = aux logits
        self.conv1 = conv block(3, 64, kernel size=7, stride=2, padding=3)
        self.maxpool1 = nn.MaxPool2d(3, 2, 1)
        self.conv2 = conv_block(64, 192, kernel_size=3, stride=1, padding=1)
        self.maxpool2 = nn.MaxPool2d(3, 2, 1)
       self.inception3a = Inception block(192, 64, 96, 128, 16, 32, 32)
        self.inception3b | Inception block(256, 128, 128, 192, 32, 96, 64)
        self.maxpool3 = nn.MaxPool2d(3, 2, 1)
       self.inception4a = Inception block(480, 192, 96, 208, 16, 48, 64)
       # auxiliary classifier
        self.inception4b = Inception block(512, 160, 112, 224, 24, 64, 64)
       self.inception4c = Inception block(512, 128, 128, 256, 24, 64, 64)
        self.inception4d |= Inception block(512, 112, 144, 288, 32, 64, 64)
       # auxiliary classifier
       self.inception4e = Inception block(528, 256, 160, 320, 32, 128, 128)
        self.maxpool4 = nn.MaxPool2d(3, 2, 1)
        self.inception5a = Inception block(832, 256, 160, 320, 32, 128, 128)
       self.inception5b | Inception block(832, 384, 192, 384, 48, 128, 128)
        self.avgpool = nn.AvgPool2d(7, 1)
        self.dropout = nn.Dropout(p=0.4)
        self.fc1 = nn.Linear(1024, num classes)
```



```
def forward(self, x):
    x = self.conv1(x)
    x = self.maxpool1(x)
    x = self.conv2(x)
    x = self.maxpool2(x)
    x = self.inception3a(x)
    x = self.inception3b(x)
    x = self.maxpool3(x)
    x = self.inception4a(x)
    if self.aux logits and self.training:
        aux1 = self.aux1(x)
    x = self.inception4b(x)
       self.inception4c(x)
    x = self.inception4d(x)
    if self.aux logits and self.training:
        aux2 = self.aux2(x)
    x = self.inception4e(x)
    x = self.maxpool4(x)
    x = self.inception5a(x)
    x = self.inception5b(x)
    x = self.avgpool(x)
    x = x.view(x.shape[0], -1)
    x = self.dropout(x)
    x = self.fcl(x)
```

```
class InceptionAux(nn.Module):
   def init (self, in channels, num classes):
       super(InceptionAux, self). init ()
       self.conv = nn.Sequential(
           nn.AvgPool2d(kernel size=5, stride=3),
           conv block(in channels, 128, kernel size=1),
       self.fc = nn.Sequential(
            nn.Linear(2048, 1024),
            nn.ReLU(),
           nn.Dropout(),
           nn.Linear(1024, num_classes),
   def forward(self,x):
       x = self.conv(x)
       x = x.view(x.shape[0], -1)
       x = self.fc(x)
       return x
```


GoogLeNet - 분석 결과

환경 : colab gpu, epoch 20

ResNet

Part 2. CNN 주요 모델 소개

Resnet (Residual Network)

Resnet - deep layer의 문제점

기울기 소실/폭주 문제

- 역전파 과정에서 기울기가 수렴하지 않는 것
- 층이 깊어질수록 더 쉽게 발 생한다.

해결

- normalized initialization
- intermediatenormalization layers

degradation 문제

- 층이 깊어질 때 오히려 성능이 떨어지는 문제
- train error와 test error 모두 높기 때문에 과적합에 의한 것이 아니다.
- 층이 깊어지면서 최적화하기 힘든 부분들이 발 생하는 것

Resnet - Residual learning

building block

Residual Learning

H(x): desired underlying mapping F(x) = H(x) - x: residual mapping

각 층의 타겟함수를 추정하는 대신 이전에 학습된 모델의 출력과 추가된 레이어의 출력 의 차이값인 residual만 학습한다. 연산이 간 단해지고, error값 크기의 측면에서 학습이 더 쉽다는 것

✓ identity mapping : 인풋을 그대로 가져오는 것

✓ shortcut connection : 하나 이상의 layer를 뛰어 넘는 것

Resnet - 구조

Resnet - 구조

Resnet - 구조 (residual block)

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer		
conv1	112×112	7×7, 64, stride 2						
	56×56	3×3 max pool, stride 2						
conv2_x		$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$ \begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3 $	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$		
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array} \right] \times 4 $	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$		
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$		
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$ \left[\begin{array}{c} 3\times3,512\\3\times3,512 \end{array}\right]\times3 $	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $		
	1×1	average pool, 1000-d fc, softmax						
FLOPs		1.8×10^9	3.6×10^9	3.8×10^9	7.6×10^9	11.3×10^9		

Resnet - 코드

return x

```
class BasicBlock(nn.Module):
   expansion = 1
   def __init__(self, in_channels, out_channels, stride=1):
                                                                                                                        weight layer
       super(), init ()
                                                                                                            \mathcal{F}(\mathbf{x})
                                                                                                                              relu
                                                                                                                                                \mathbf{X}
         BatchNorm에 bias가 포함되어 있으므로, conv2d는 bias=False로 설정합니다.
 F(x)
                                                                                                                        weight layer
                                                                                                                                             identity
        elf[residual_function |= nn.Sequential(
           nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False),
                                                                                                               \mathcal{F}(\mathbf{x}) + \mathbf{x}
           nn.BatchNorm2d(out_channels),
           nn.ReLU()
           nn.Conv2d(out_channels, out_channels * BasicBlock.expansion, kernel_size=3, stride=1, padding=1, bias=False),
           nn.BatchNorm2d(out_channels * BasicBlock.expansion),
       # identity mapping
        self[shortcut] = nn.Sequential()
       self.relu = nn.ReLH()
       # projection mapping using 1x1conv
                                                                             x와 F(x)의 차원이 같아야 더할 수 있으므로, 채널 개수의
       if stride != 1 or in_channels != BasicBlock.expansion * out_channels:
                                                                             변화로 차원이 다른 경우 1x1 conv 층으로 맞춰준다.
           self.shortcut = nn.Sequential(
               nn.Conv2d(in_channels, out_channels * BasicBlock.expansion, kernel_size=1, stride=stride, bias=False),
               nn.BatchNorm2d(out_channels * BasicBlock.expansion)
  F(x) + x
   def forward(self, x):
       x = self.residual_function(x) + self.shortcut(x)
       x = self.relu(x)
```

©Saebyeol Yu. Saebyeol's

Resnet - 코드

```
class BottleNeck(nn.Module):
   expansion = 4
                                                                                                                                256-d
   def __init__(self, in_channels, out_channels, stride=1):
       _super(),__init__()
                                                                                                                          1x1.64
F(x)
                                                                                                                               relu
       self.residual_function = nn.Sequential(
          nn.Conv2d(in_channels, out_channel(kernel_size=1,)tride=1, bias=False),
                                                                                                                          3x3, 64
          nn.BatchNorm2d(out_channels),
                                                                                                                               relu
           nn.ReLU(),
                                                                                                                          1x1, 256
           nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False),
           nn.BatchNorm2d(out_channels),
           nn.ReLU().
                                                                                                                               relu
           nn.Conv2d(out_channels, out_channels * BottleNeck.expansion(kernel_size=1, stride=1, bias=False),
           nn.BatchNorm2d(out_channels * BottleNeck.expansion),
       self.shortcut = nn.Sequential()
       self.relu = nn.ReLU()
                                                                           x와 F(x)의 차원이 같아야 더할 수 있으므로, 채널 개수의
       if stride != 1 or in_channels != out_channels * BottleNeck.expansion:
                                                                            변화로 차원이 다른 경우 1x1 conv 층으로 맞춰준다.
           self.shortcut = nn.Sequential(
               nn.Conv2d(in_channels, out_channels*BottleNeck.expansion, kernelLsize=1, stride=stride, bias=False)
              nn.BatchNorm2d(out_channels*BottleNeck.expansion)
  F(x) + x
   def forward(self. x):
       x = self.residual_function(x) + self.shortcut(x)
       x = self.relu(x)
       return x
```

Resnet - 코드

```
class ResNet(nn.Module):
             def __init__(self, block, num_block, num_classes=3, init_weights=Tr
                         super(),__init__()
                         self.in_channels=64
                         self.conv1 = nn.Sequential(
                                     nn.Conv2d(3, 64, kernel_size=7, stride=2,
                                                                                                                                                                                                , bias=False),
                                     nn.BatchNorm2d(64).
                                     nn.ReLU().
                                     nn.MaxPool2d(kernel_size=3)
                                                                                                                          erride=2
                         self.conv2_x = self._make_layer(block, 64, num_block[0], 1)
                         self.conv3_x self._make_layer(block, 128, num_block[1], 2)
                         self.conv4_x self._make_layer(block, 256, num_block[2], 2)
                         self.conv5_x <a href="make_layer(block">self.conv5_x</a> <a href="
                         self.avg_pool = nn.AdaptiveAvgPool2d((1,1))
                         self.fc = nn.Linear(512 * block.expansion. num classes)
                         # weights inittialization
residual block을 지정한 개수만큼 쌓는 함수
             def _make_laver(self, block, out_channels, num_blocks, stride):
                         strides = [stride] + [1] * (num_blocks - 1)
                         Tavers = []
                         for stride in strides:
                                      layers.append(block(self.in_channels, out_channels, stride))
                                     self.in_channels = out_channels * block.expansion
                         return nn.Sequential(*layers)
```

```
50-layer
                                                                                                                                           101-layer
                                                                                                                                                                             152-layer
layer name output size
                                             18-layer
                                                                           34-layer
                                                                                                       7 \times 7, 64, stride 2
                    112×112
                                                                                                   3×3 max pool, stride 2
                                                                                                       1 \times 1,64
                                                                                                                                         1 \times 1,64
                                                                                                                                                                            1 \times 1,64
                                                                       3\times3,64 \times3
                                         \begin{bmatrix} 3 \times 3, 64 \\ 3 \times 3, 64 \end{bmatrix}
 conv2_x
                     56 \times 56
                                                                                                                                                                           3 \times 3,64
                                                                                                       3 \times 3,64
                                                                                                                                         3 \times 3,64
                                                                                                                                                           \times 3
                                                                       3 \times 3,64
                                                                                                      1 \times 1,256
                                                                                                                                        1 \times 1,256
                                                                                                                                                                           1 \times 1,256
                                                                                                                                        1 \times 1, 128
                                                                                                      1 \times 1, 128
                                                                                                                                                                           1 \times 1, 128
                                        \begin{bmatrix} 3\times3, 128 \\ 3\times3, 128 \end{bmatrix} \times 2
                                                                      3 \times 3, 128
conv3_x
                     28 \times 28
                                                                                                      3 \times 3, 128
                                                                                                                                        3 \times 3, 128
                                                                                                                                                                          3 \times 3, 128
                                                                                                                                                                                            \times 8
                                                                     3 \times 3, 128
                                                                                                      1 \times 1,512
                                                                                                                                                                          1 \times 1,512
                                                                                                                                        1 \times 1,512
                                                                                                      1 \times 1,256
                                                                                                                                       1 \times 1,256
                                                                                                                                                                          1 \times 1,256
                                       3\times3,256 \times2
                                                                      3 \times 3,256
                      14 \times 14
                                                                                                      3 \times 3,256
                                                                                                                                      3 \times 3,256
                                                                                                                                                                         3 \times 3,256
 conv4_x
                                                                                                                                                           \times 23
                                                                                                                                                                                             \times 36
                                        3 \times 3,256
                                                                      3 \times 3,256
                                                                                                     1 \times 1, 1024
                                                                                                                                      1 \times 1, 1024
                                                                                                                                                                         1 \times 1, 1024
                                                                                                                                        1 \times 1,512
                                                                                                                                                                          1 \times 1,512
                                                                                                      1 \times 1,512
                                                                    \left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3
                                       \begin{bmatrix} 3\times3,512\\ 3\times3,512 \end{bmatrix} \times 2
conv5_x
                       7 \times 7
                                                                                                      3 \times 3,512
                                                                                                                                        3 \times 3,512
                                                                                                                                                         ×3
                                                                                                                                                                          3 \times 3,512
                                                                                                     1 \times 1,2048
                                                                                                                                       1 \times 1,2048
                                                                                                                                                                         1 \times 1,2048
                       1 \times 1
                                                                                            average pool, 1000-d fc, softmax
            FLOPs
                                            1.8 \times 10^{9}
                                                                          3.6 \times 10^{9}
                                                                                                         3.8 \times 10^{9}
                                                                                                                                           7.6 \times 10^9
                                                                                                                                                                             11.3 \times 10^9
     def resnet18():
```

각 laver에 넣을

© Saebyeol Yu. Saebyeol's

block의 개수

```
return ResNet (BasicBlock) [2, 2, 2, 2]
def resnet34():
    return ResNet(BasicBlock, [3, 4, 6, 3])
def resnet50():
    return ResNet[BottleNeck, [3, 4, 6, 3])
def resnet101():
    return ResNet[BottleNeck,
                              [3, 4, 23, 3])
def resnet152():
    return ResNet[BottleNeck,
                              [3, 8, 36, 3])
```

Resnet - 분석 결과

환경: colab gpu, epoch 20

모델 비교

Part 3. 분석 결과

모델 성능

모델	Alexnet	VGG-19	GoogLeNet	ResNet-18
깊이	8 layer	19 layer	22 layer	18 layer
학습 시간	4.71 min	5.61 min	4.61 min	4.79 min
테스트 정확도	80.3%	83.3%	89.4%	90.9%

한계점 및 제언

Part 3. 분석 결과

한계점 및 제언

- 1. 비교적 간단하고 적은 데이터
- 2. 부족한 gpu
- 3. 이미지 분류 프레임 워크에 대한 전반적인 이해도

참고문헌 및 출처

데이터 출처	https://www.kaggle.com/pranavraikokte/covid19-image-dataset		
Alexnet	https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436 e924a68c45b-Abstract.html		
VGG	https://arxiv.org/abs/1409.1556v6		
GoogLeNet	https://arxiv.org/abs/1409.4842v1		
ResNet	https://arxiv.org/abs/1512.03385v1		
코드 구현 참고	https://github.com/Seonghoon- Yu/Paper Review and Implementation in PyTorch		

감사합니다

