The basics of phylogenomic trees

Roman Biek (Roman.Biek@glasgow.ac.uk)

Institute of Biodiversity, Animal Health & Comparative Medicine

A quick primer on phylogenetics

- Building trees from genetic sequence data: Reconstructing the ancestral relationships among taxa
- Taxa can be species, individuals or particular genes
- Tree is only an estimate => "truth" usually unknown

A simple four taxa example

Who is our closest relative?

A simple four taxa example

Which virus is closest related to Zaire Ebolavirus?

Reston Ebolavirus

Tai Forest Ebolavirus Sudan Ebolavirus

The overall aim

Measure variation at the molecular level

Develop models that fit the observed patterns

Infer process from patterns

- ATTTCTCTG

Gaining epidemiological insights from phylogenomic trees

Tree based on 1,036 complete influenza A virus genomes (H1N1)

Holmes E C et al. 2011 J. Virol.

The parts of a tree

Trees are like mobiles

Tree not always strictly bifurcating

Different ways to depict a tree

Monophyly vs Non-Monophyly

All descendents derived from one ancestor AND all descendants included

Does not include all descendants

Rooted vs unrooted trees

Multiple options for placing the root

Two ways of rooting a tree

1. Using an outgroup:

One or more taxa that fall outside the group of interest

2. Using a molecular clock:

Orientates the tree along a time axis

Number of possible trees rises quickly!

Taxa	Unrooted trees	Rooted trees
3	1	3
4	3	15
5	15	105
6	105	945
7	954	10,395
8	10,395	135,135
9	135,135	2,027,025
10	2,027,025	34,459,425
20	2.22E+20	8.20E+21
30	8.69E+36	4.95E+38

The basic steps of phylogenetic analysis

- 1) Collect homologous sequences
- 2) Conduct multiple alignment
- 3) Fit an appropriate substitution model
- 4) Estimate tree(s) under that model
- 5) Test the reliability of the estimated tree(s)
- 6) Interpret and apply the phylogenetic tree
- 7) Potentially repeat steps 4-6 using different tree building methods and/or additional data

The basic steps of phylogenetic analysis

- 1) Collect homologous sequences
- 2) Conduct multiple alignment
- 3) Fit an appropriate substitution model
- 4) Estimate tree(s) under that model
- 5) Test the reliability of the estimated tree(s)
- 6) Interpret and apply the phylogenetic tree
- 7) Potentially repeat steps 4-6 using different tree building methods and/or additional data

Models of substitution

How to measure distance between two sequences?
Easiest measure would be number (or proportion) of different sites
=> Problem of multiple 'hits' at the same site

mtDNA data from bovine mammals

Jukes - Cantor model

All nucleotides undergo changes at the same rate

Nucleotide frequencies are the same

$$q_A = q_C = q_G = q_T = \frac{1}{4}$$

	A	${f T}$	С	G
A	_	α	α	α
Т	α	_	α	α
T C G	α α α	α	_	α
G	α	α	α	_

Kimura 2-parameter model

Transitions (α) (purine to purine or pyrimidine to pyrimidine substitutions) are more common than transversions (β)

Substitution models

- Kimura: different probabilities for transitions and transversions
- **HKY**: different probabilities for transitions and transversions, also takes into account that frequencies of nucleotide bases might differ
- GTR (general time reversible model): the most general substitution model because each type of substitution is allowed to have its own rate
- Codon models: assign different substitution rates and parameters to the three codon position (only for coding sequences)

Variation among sites

Some sites undergo changes more frequently than others - can be expressed using a gamma distribution

Finding a substitution model

Choosing the right model

jModeltest

Available from: http://darwin.uvigo.es/software/jmodeltest.html

Fits up to 88 candidate models fit to your sequence data

Table 1. Substitution models available in jModelTest. Any of these models can include invariable sites (+I), rate variation among sites (+G), or both (+I+G).

Model	Reference	Free parameters	Base frequencies	Substitution rates	Substitution code
15.	(Jukes and Cantor	7.0	59. (C)	70 100 - 101 - 10 - 10 - 10 - 10	5.
JC	1969)	0	equal	AC=AG=AT=CG=CT=GT	000000
F81	(Felsenstein 1981)	3	unequal	AC=AG=AT=CG=CT=GT	000000
K80	(Kimura 1980)	1	equal	AC=AT=CG=GT; AG=CT	010010
HKY	(Hasegawa, Kishino, and Yano 1985)	4	unequal	AC=AT=CG=GT; AG=CT	010010
TNef	(Tamura and Nei 1993)	2	equal	AC=AT=CG=GT; AG; CT	010020
TN	(Tamura and Nei 1993)	5	unequal	AC=AT=CG=GT; AG; CT	010020

Estimating phylogenies

General approaches for building trees

Distance based methods

Maximum parsimony

Maximum likelihood

Bayesian methods

Estimating phylogenies

Involves two processes:

Finding the topology

Estimation of the branch lengths

Optimality criterion

How well do the data fit a particular tree topology?

Is used to compare and rank different trees

Allows to search for the best tree (under given criterion)

Distance-based methods

Distance-based methods

Basic procedure

- Calculate pairwise distances among all sequences (according to some substitution model)
- Use distances to build tree (according to some rule e.g. "neighbour joining" method)

- Very quick way to generate tree, even for large data sets
- No attempt to evaluate alternative trees
- Information about character state change is lost

Maximum parsimony

ATGCAGGTA
ATGCTGCTA
ATGCAGCTC
TAGCAGGAC

- 3 characters are constant
- 4 variable characters are parsimony-uninformative
- 2 parsimony-informative characters

Maximum parsimony

A minimum of seven changes required to explain the data

3 characters are constant

4 variable characters are parsimony-uninformative

2 parsimony-informative characters

Maximum parsimony

Basic procedure

- Optimality criterion: parsimony score
- The minimum number of steps (events) necessary to explain the data

- Score easy to compute => fast method
- All substitutions considered equally likely (weighting schemes possible)
- Implicit assumption that rate of change is low (no multiple hits)
- => Potential problem of "long-branch attraction"

Maximum likelihood

Basic procedure

- Optimality criterion: likelihood score
- Maximize the probability of the sequences, given a tree and its branch lengths and an evolutionary model and its parameters

- Allows full use of evolutionary models
- Relies heavily on model chosen => can be misleading if there is much variation in the substitution process among lineages
- Computationally much more demanding

Bayesian phylogenetics

Basic procedure

- Objective: determine the posterior distribution of trees given the sequence data
- Based on this distribution, 'best' tree can be identified

- Allows full use of evolutionary models
- Need to include priors
- Posterior probabilities are approximated through Markov Chain Monte Carlo (MCMC) methods that sample from the posterior
- Clade probabilities provide measure of uncertainty

How well supported is a grouping?

Non-parametric bootstrap

Sample from the original data to create 'new' data sets

Count how often a particular clade appears in the resampled data

Bootstrapping

"new" datasets of same size are generated from original data by sampling columns with replacement

Trees build from these new data sets

The frequency with which a node appears across replicate trees is taken as a measure of confidence for that node

How well supported is a grouping?

Posterior probabilities

Count the frequency of a clade within the posterior distribution of trees

Less conservative: tend to be much higher than bootstrap values

Strong support:

Bootstrap >0.7

Posterior probabilities >0.95

Further resources

