

Rensselaer Theoretical and Algorithmic Foundations of In-Context Learning and reasoning Using Properly Trained Transformer Models

Hongkang Li¹, Meng Wang¹, Songtao Lu¹, Xiaodong Cui¹, Pin-Yu Chen¹. 1: Rensselaer Polytechnic Institute. 2: IBM Research

Motivation

Transformer-based foundation models, e.g., GPT-4, Sora, have achieved great empirical success in many areas.

- Large foundation models are able to implement in-context learning (ICL) and reasoning.
- Theoretical understanding of how a Transformer can be trained to perform ICL and generalize in and out of domain successfully and efficiently is less investigated.

Current Progress

We provide a theoretical characterization of how to train nonlinear Transformers to enhance their ICL capability on classification tasks.

Theorem 1 (informal): Given enough neurons and a large batch, and prompt lengths inverse in the fraction of relevant tokens α , then after training with $\Theta(\alpha^{-1})$ steps,

- the returned one-layer Transformer model achieves an in-domain generalization error no larger than ϵ .
- If the testing relevant patterns are linear combinations of the trained ones with coefficient summation no larger than 1, the out-of-domain generalization error is no larger than ϵ .
- We expand the theoretical understanding of the mechanism of the ICL capability of Transformers.
- We theoretically justify the Magnitude-based Pruning in preserving ICL.

<u>5</u> 10^{−1}

Pruning rate

 $\alpha' = 1.0$, id

 $\alpha' = 0.9$, id

 $\alpha' = 0.8$, id

 \leftarrow $\alpha' = 1.0$, ood

 $\alpha' = 0.8$, ood

8 12 16 20

Context length

 $\alpha' = 0.9$, ood

Problems to solve

- How can a Transformer be trained to learn different hidden causal structure?
- Why does adding intermediate steps help the reasoning in theory?
- What is the mechanism of a Transformer implementing reasoning in context?

Theoretical contributions

- Hidden Markov chain modeling.
- Next token prediction beyond classification and regression.

Experiments

Evaluate the results on the arithmetic reasoning dataset GSM8K and the commonsense reasoning dataset CSQA.

Future of Computing Research Collaboration at Rensselaer

Math Word Problems (free response)

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Education Assistant

StrategyQA

Q: Yes or no: Would a pear sink in water?

A: The density of a pear is about 0.6 g/cm³, which is less than water. Thus, a pear would float. So the answer is no.

Smart Navigation

