מתמטיקה בדידה הרצאות 18+19

פרופסור מיכאל טרסי, ד"ר נועם סולומון, אוניברסיטת תל-אביב

קומבינטוריקה סופית

 זהו הענף של הקומבינטוריקה הכללית שעוסק במבנים סופיים, בדידים. הקבוצות יהיו סופיות, העוצמות יהיו סופיות, ובעצם נרצה לדעת כמה איברים בקבוצה סופית (או מבנה קומביטורי סופי).

?מה מייחד את העוצמות הסופיות

עבור עוצמות סופיות מתקיים •

$$a < b \land c \le d \Rightarrow a + c < b + d$$

(כלומר יש אי-שויון חזק!)

 $B \subseteq A$ -טופית ו-A פעולת החיסור מוגדרת: אם ullet

$$|A-B|=|A|-|B|$$

• גם פעולת החילוק מוגדרת:

אורר $c=a\cdot b,\quad b
eq 0$ אוריון מהצורה $c=a\cdot b,\quad b\neq 0$ אוריון $a=\frac{c}{b}$

- ולבסוף, אם קיימת פונקציה חחייע מקבוצה לעצמה, אזי היא בהכרח על. הוכחנו זאת.
 - בדומה, אם קיימת פונקציה על מקבוצה לעצמה, אזי היא בהכרח חחייע.

דוגמאות:

כמה מספרים טבעיים עם 4 ספרות (עשרוניות)קיימים?

ראשית נשים לב שהמספר 410 הוא מספר טבעי
עם 3 ספרות עשרוניות ואין כותבים אותו כך
0410. כלומר אנו מעוניינים ב:

$$|\{n \in N \mid 999 < n \le 9999\}| = 10,000 - 1000 = 9,000$$

- יש דרך אחרת לחשב זאת.
- כמה אפשרויות יש לבחור את ספרת האלפים!
 - .9
 - כמה אפשרויות יש לבחור את ספרת המאות!
 - .10
- כנייל יש 10 אפשרויות לבחור את ספרת העשרותו-10 אפשרויות לבחור את ספרת האחדות.
 - בסה"כ, לפי עיקרון הכפל מקבלים •

$$|\{n \in N \mid 999 < n \le 9999\}| = 9 \cdot 10^3 = 9,000$$

עקרון הכפל

- אם ניתן לבנות את איברי הקבוצה ב- r אם ניתן לבנות את איברי הקבוצה לבנות את i=1,...,r אפשרויות, עבור k_i שי i-טבשלב ה-
 - אזי מספר איברי הקבוצה הוא •

$$\prod_{i=1}' k_i$$

דוגמא

- בכמה מספרים טבעיים בני 4 ספרות עשרוניותאין שתי ספרות סמוכות זהות?
 - לבחור את ספרת האלפים יש 9 אפשרויות.
- לאחר שספרת האלפים נקבעה, לבחור את ספרת המאות יש 9 אפשרויות (כל הספרות פרט לספרת האלפים).
 - לאחר שספרת המאות נקבעה, יש 9 אפשרויותלקבוע את ספרת העשרות, ולבסוף,
 - לאחר שספרת העשרות נקבעה •

- יש 9 אפשרויות לקבוע את ספרת היחידות.
 - . בסה"כ נקבל: 9^4 מספרים כאלו.

- הנה דוגמא ל<u>פתרון שגוי</u> לשאלה
- לקבוע את ספרת היחידות יש 10 אפשרויות.
- לאחר מכן, לקבוע את ספרת העשרות יש 9
 אפשרויות. (כל הספרות פרט לספרה שנקבעה).
- לאחר מכן, לקבוע את ספרת המאות יש 9
 אפשרויות. (כל הספרות פרט לספרת העשרות)

- ואז, כדי לקבוע את ספרת האלפים כמהאפשרויות יש?
- אם ספרת המאות שנקבעה שונה מאפס, אז יש
 8 אפשרויות לקבוע את ספרת האלפים (כל
 הספרות פרט ל-0 וספרת המאות).
- אם ספרת המאות שנקבעה היא 0, יש 9
 אפשרויות. אבל זה לא מתאים לשימוש בעיקרון
 הכפל.

עוד שאלה דומה

בכמה טבעיים בני 4 ספרות, הספרה 0 מופיעהפעם אחת?

- שוב, צריך לב, שהספרה 0 אינה יכולה להיות ספרת האלפים. אז איך פותרים?
- בוחרים האם 0 תהיה ספרת היחידות, העשרות
 או המאות. לכך יש 3 אפשרויות.
- לאחר מכן, בוחרים את שתי הספרות האחרות.9 אפשרויות לכל ספרה.

- ולבסוף בוחרים את ספרת האלפים.
 - 3.9^3 בסהייכ מקבלים •

שאלה נוספת

בכמה מספרים בני 4 ספרות (אלא מה), הספרה5 מופיעה פעם אחת בדיוק.

- אחרי מעט מחשבה שמים לב שכדאי להפריד את קבוצת המספרים המבוקשת לשתי קבוצות (זרות!)
- תהי A קבוצת המספרים הטבעיים בני 4 ספרות,
 כך שהספרה 5 מופיעה בספרת האלפים, ואינה מופיעה בשום ספרה אחרת.

- תהי B קבוצת המספרים הטבעיים בני B הספרות כך שהספרה 5 מופיעה פעם אחת בדיוק
 אך לא (!) בספרת האלפים.
 - |A|+|B| :אנו מעוניינים בחישוב •
 - קל לראות (כמו קודם) שמתקיים:

$$\begin{vmatrix} A | = 9^3, \\ |B| = 3 \cdot 8 \cdot 9^2$$
 \Rightarrow $|A| + |B| = 9^3 + 3 \cdot 8 \cdot 9^2$

שאלה דומה (רעיון חדש)

בכמה טבעיים בני 4 ספרות מופיעה הספרה 5לפחות פעם אחת?

- אפשר לעשות בדומה לקודם. לבדוק בכמה מספרים כאלה הספרה 5 מופיעה בדיוק פעם אחת, בדיוק פעמיים, בדיוק 3 או בדיוק 4.
- בעצם אנו מפרקים את הקבוצה שלנו ל-4 תתי-קבוצות זרות.

'עקרון החיבור

אם ניתן לבנות את איברי הקבוצה, כך שאיבר בקבוצה שייך לאחת מבין r קבוצות אפשריות וזרות שיין לאחת מבין k_i ייש k_i איברים, אז מספר איברי הקבוצה הוא

$$\sum_{i=1}^{r} k_i$$

הנה פתרון פשוט יותר לבעיה, עם שימוש בלקיחת הקבוצה המשלימה.

- מתוך כל המספרים הטבעיים בני 4 ספרות (יש 9000 כאלה, חישבנו את זה בהתחלה), נחסיר את כל המספרים שבהם הספרה 5 לא מופיעה כלל! (זה יבטיח שניוותר אך ורק עם המספרים בהם הספרה 5 מופיעה לפחות פעם אחת).
 - 4 קבוצת המספרים הטבעיים בני5 קבוצת המספרים הטבעיים בניספרות.
- S קבוצת המספרים הטבעיים בני 4 ספרות בהן הספרה 5 לא מופיעה כלל.

|F-S| - מתקיים ב- $S \subset F$ מתקיים -

וזה קל לחישוב:

$$|F - S| = |F| - |S| = 9000 - 8.9^3$$

גדלים בסיסיים בקומבינטוריקה

- תהא A קבוצה בעוצמה n (כלומר, בעלת nאיברים).
- תמורה של A, היא סידור איברי A היא פידור איברי A תמורה של + $\{1,2,...,n\}$ באופן פורמלי פונקציית שקילות מ
 - .A-ל
 - הן $\{a,b,c\}$ הורות $\{a,b,c\}$ הן

$$\langle a,b,c \rangle, \langle a,c,b \rangle, \langle b,a,c \rangle, \langle b,c,a \rangle, \langle c,a,b \rangle, \langle c,b,a \rangle$$

?כמה כאלו יש

נסמן E(n) את מספר התמורות של איברי וסמן העלת איברים.

- לפי עיקרון הכפל,
- יש n אפשרויות לבחור מי יהיה בתחילת השורה.
- י לאחר מכן, יש n-1 אפשרויות לבחור מי יהיה סמוך אליו, וכך הלאה.

לפי עיקרון הכפל, נקבל ש: (הוכחה פורמלית: באינדוקציה)

$$E(n) = n(n-1)(n-2)\cdots 1 = n!$$

הערה: E(n) גם מייצג את מספר פונקציות • A- לעצמה.

דוגמא

• מה מספר התמורות של האותיות

?A,B,C,D,E

תשובה: !5

- D-I C בכמה מהתמורות הללו האותיותסמוכות?
- כאן צריך להתחכם. אפשר להתייחס ל-CD כאל אות אחת, ואז צריך לחשב תמורות של
 האותיות A,B,CD,E. לאחר מכן צריך להכפיל ב-D-I C על מנת לקבוע את הסידור בין D-I C.

. בסה"כ נקבל: 4!*2=48 תמורות.

סידור אנשים במעגל.

- בכמה דרכים ניתן להושיב n אנשים במעגל!
- שימו לב: בסידור במעגל אין משמעות להגיד מי נמצא ראשון. או מי שמאלי ביותר.

פתרון: כדי לפתור את הבעיה נסתכל על אחד מהאנשים. נקרא לו "משה". כעת נסדר ביחס אליו את שאר n-1 האנשים. ראשית נבחר מי יישב לימינו של משה. יש לכך n-1 אפשרויות.

 לאחר מכן, צריך לבחור מי ישב לימינו של מי שנבחר בשלב הקודם, וכך הלאה. בסך הכל נקבל!(n-1) אפשרויות.

דרך שניה לפתרון: נסדר את האנשים בשורה.
 יש n! אפשרויות כאלה. כעת נושיב את האנשים במעגל לפי הסדר בו הם עומדים בשורה. נשים לב שכל סידור במעגל מתאים ל-n סידורים בשורה (קוראים לזה SHIFT ציקלי).

אם נחלק! ח ב- n נקבל! (n-1)! אפשרויות (כמו קודם).

שאלה

 בכמה דרכים ניתן לסדר בשורה 5 כדורים אדומים, 3 צהובים ו-4 ירוקים (כאשר אנו מבחינים בין כדורים אך ורק לפי הצבע)!

- ראשית נסדר את כל 12 הכדורים בשורה. יש
 12! אפשרויות לכך. אולם נשים לב שבסידור
 הזה, אנו סופרים כל אפשרות הרבה פעמים.
- צריך לחלק בסידורים הפנימיים של 5 הכדורים
 האדומים, 3 הכדורים הצהובים ו-4

• הכדורים הירוקים, ובסה"כ נקבל

• אפשרויות לסידור.

 הרעיון שבו סופרים כל אפשרות אותו מספר פעמים ואז מחלקים במספר זה, עולה באופן תדיר בקומבינטוריקה וכדאי להתוודע אליו כבר עכשיו.

חליפות. רשימות סדורות של איברים

- נסמן ב- (P(n,k) את מספר החליפות (רשימות P(n,k))
 סדורות) של k איברים מתוך קבוצה בעלת n איברים.
 - .P(n,n)=E(n)=n! -• נשים לב ש •
- 3 איברים: באורך 2 מתוך קבוצה בעלת חליפות באורך $\{a,b,c\}$, הו

$$\langle a,b\rangle,\langle a,c\rangle,\langle b,a\rangle,\langle b,c\rangle,\langle c,a\rangle,\langle c,b\rangle$$

• לפי עיקרון הכפל נקבל (כמו עבור תמורות) ש

$$P(n,k) = \begin{cases} n(n-1)(n-2)...(n-k+1), & k \le n \\ 0, & k > n \end{cases}$$

- דוגמא: במשחה 8 שחיינים, בכמה אפשרויות יש לחלק ביניהם את המדליות?
 - .P(8,3)=8*7*6 : תשובה

שימו לב:

תליפה של k איברים מתוך קבוצה k איברים חליפה של k איברים חליפה של k איברים חליפה על איברים פונקציה חחייע מהקבוצה $\{1,2,...,k\}$ לקבוצה A לקבוצה A לקבוצה h

צירופים (קבוצות, כלומר אין חשיבות לסדר)

- k את מספר הצירופים של C(n,k) נסמן ב- מתוך קבוצה A בת ח איברים.
- k במילים אחרות, מספר תתי הקבוצות בגודלמתוך קבוצה A בת n איברים.
- למשל, הצירופים של 2 איברים מתוך הקבוצה
 - $\{a,b\},\{a,c\},\{b,c\}$: on $\{a,b,c\}$ •

קשר בין חליפות לצירופים

$$P(n,k) = C(n,k) \cdot k!$$
 : מתקיים

 הסבר: כל קבוצה בגודל k (בצד ימין של המשוואה) נספרת! k! פעמים (בצד שמאל של המשוואה).

$$C(n,k) = \frac{P(n,k)}{k!} = \begin{cases} \frac{n!}{k!(n-k)!}, & k \le n \\ 0, & k > n \end{cases}$$

סימון מקובל: המקדמים הבינומים

$$egin{pmatrix} n \ k \end{pmatrix} \coloneqq C(n,k)$$
 נוהגים לסמן •

• קוראים לביטוי זה גם מקדם בינומי

דוגמא:

- a (בדיוק) בכמה מחרוזות בינאריות יש \bullet
 - אפסים ו- b אחדים.

$$\begin{pmatrix} a+b \\ a \end{pmatrix} = C(a+b,a)$$
 התשובה ניתנת עייי

• מדוע? יש לבחור את המיקומים עבור האפסים.

לחילופין, ניתן לבחור את המיקומים של ה-1ים. ולקבל שמספר זה שווה ל-

$$\begin{pmatrix} a+b \\ b \end{pmatrix} = C(a+b,b)$$

תרגיל (קל)

$$C(n,k) = C(n,n-k)$$
 הוכיחו כי

עד כה בחרנו ללא חזרות

- מה קורה אם מותר לבחור איבר כמה פעמים!
 - אם הסדר חשוב מדובר בבעיה הבאה •
- בכמה דרכים ניתן לבחור k איברים מתוך
 קבוצה A בעלת n איברים, כאשר מותר לאיבר להיבחר שוב (ושוב).
- הדבר שקול למציאת מספר הפונקציות (לאו הדבר שקול למציאת מספר הפונקציות הדבר אווקא חחייע) מהקבוצה $\{1,2,...,k\}$

• כמה פונקציות כאלו יש!

$$|A^{\{1,2,\ldots,k\}}| = |A|^{|\{1,2,\ldots,k\}|} = n^k$$

נסכם את הידע עד כה בטבלה

בטבלה מס' ד.1 מופיעה פעולה נוספת, S, אותה טרם הגדרנו. אינטואיטיבית היא משלימה את המשבצת החסרה במיון הבעיות של בחירת k עצמים מתוך n, לפי הקריטריונים של עם/בלי חזרות ועם/בלי חשיבות לסדר:

עם חזרות	בלי חזרות	
n^k	P(n, k)	הסדר חשוב
S(n, k)	C(n, k)	הסדר לא חשוב

?S(n,k)

- ממה אפשרויות יש לבחירת k איברים מתוך ח כאשר לאיבר מותר להופיע שוב ושוב, אך סדר ההופעות של האיברים אינו משנה.
- למשל, אם הקבוצה היא $\{a,b,c\}$, אז בחירה של 5 איברים עם חזרה ללא חשיבות לסדר 5 איברים על ידי כך שנגיד כמה פעמים כל איבר ניתנת על ידי כך שנגיד כמה פעמים להיות חמש).
- $a,a,a,b,b\equiv b,b,a,a,a$ למשל: הבחירות זהות לחלוטין.

- בעצם ניתן להסתכל על זה כאילו אנו זורקים 5
 כדורים זהים לחלוטין לשלושה תאים.
- כל סידור כזה של 5 כדורים זהים בשלושה כל סידור כזה של 5 כדורים זהים בשלושה תאים, מתאים לבחירה של 5 איברים (עם חזרה) מתוך הקבוצה $\left\{a,b,c\right\}$

- k מתאים לחלוקה של S(n,k) ובאופן כללי, ח,kcדורים זהים ל-n תאים.
- חלוקה של k כדורים ל-n תאים נתאר על ידי
 מחרוזת בינארית באורך k+n-1.
- רצף של אפסים מתייחס לכדורים בתא מסויים.
 - ה-1-ים מייצגים מחיצות בין תאים.
 - . אפסים ו- n-1 אחדים t לכן, יש א
- שימו לב, שכל מחרוזת בינארית עם k שימו לב, שכל מחרוזת בינארית עם n-1
 חחדים מתאימה לסידור חוקי יחיד של n-1

לבר יודעים כמה n-כמה ב-n תאים. אנו כבר יודעים כמה מחרוזות כאלו יש. בדיוק

$$\binom{n+k-1}{n-1} = \binom{n+k-1}{k}$$

אפשרויות כאלו.

חלוקות של כדורים לתאים

- תאים! בכמה אופנים ניתן לחלק k כדורים ל-n תאים!
 - תלוי מה ההגבלות.
- ייתכן שאנו מעוניינים שהכדורים כולם שונים, ובכל תא לכל היותר כדור אחד.
 - ייתכן שאנו מעוניינים שהכדורים זהים, ובכל תא לכל היותר כדור אחד.
 - : כך נסכם את המידע בטבלה הבאה

חלוקת k כדורים ל-n תאים.

כדורים זהים	כדורים שונים	
$C(n,k) = \frac{n!}{k!(n-k)!}$	$P(n,k) = \frac{n!}{(n-k)!}$	בכל תא <u>לכל היותר</u> כדור יחיד
$S(n,k) = \binom{k+n-1}{k}$	n^k	ללא הגבלות

: כמה פתרונות טבעיים יש לאי-השוויון

$$x_1 + x_2 + x_3 + x_4 \le 100$$

פתרון : נוסיף משתנה חדש x_5 שישלים את הסכום ל-100. כלומר הבעיה שקולה למספר הפתרונות הטבעיים למשוואה

$$x_1 + x_2 + x_3 + x_4 + x_5 = 100$$

ולכן התשובה היא •

$$S(5,100) = {100+5-1 \choose 5-1} = {104 \choose 4}$$

$$\forall k, n \in N. \binom{n}{k} = \binom{n}{n-k}$$
 נוכיח כי

- $k \le n$ ראשית נשים לב שהערכים המעניינים הם ullet
 - . מדוע!
 - : נימוק אלגברי

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n!}{(n-k)!k!} = \binom{n}{n-k}$$

n קבוצה בעלת A קומבינטורי. תהי א קומבינטורי פימוק קומבינטורי איברים. נסמן איברים. נסמן איברים. נסמן איברים פו

• שימו לב שהפונקציה

$$\lambda S \in P_k(A).A-S$$

- $P_{n-k}\left(A\right)$ ל- ר $P_{k}\left(A\right)$ ל- פגדירה פונקציה שקילות מ-
 - (רמז: מהי הפונקציה ההפכית לה!)

$$\binom{n}{k} = |P_k(A)| = |P_{n-k}(A)| = \binom{n}{n-k}$$
 מכאן נסיק כי

משייל •

נוסחת הבינום של ניוטון:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

- הסבר אינטואיטיבי למשפט הבינום
- כאשר פותחים את הסוגריים, מקבלים ביטויים $a^k b^{n-k}, k \le n$: מהצורה
 - מה המקדם של כל אחד מהביטויים הללו!

- יש לבחור a^kb^{n-k} : עבור א ספציפי, כדי לקבל n-k ובשאר a ובשאר k את kהסוגריים ייבחר כמובן 6).
 - k מספר הדרכים לכך הוא בדיוק כמו בחירת
- איברים מתוך ח ללא חזרות וללא חשיבות לסדר, דהיינו $\binom{n}{k}$. הוא $\binom{n}{k}$ ואם נסכום כלומר המקדם של $\binom{n}{k}$ הוא $\binom{n}{k}$ ואם נסכום על פני כל הא-ים הרלוונטים נקבל את מה שהיה להוכיח.

$$2^n = \sum_{k=0}^n \binom{n}{k}$$
 טענה:

- : נימוק אלגברי
- נציב בנוסחת הבינום a=b=1, ונקבל את המבוקש להוכיח.

נימוק קומבינטורי

$$P(A) = \bigcup_{k=0}^{n} P_k(A)$$

• נשים לב ש-

- ושזה איחוד זר של קבוצות (כלומר שכל שתי קבוצות באיחוד זרות זו לזו).
 - לפי עיקרון החיבור נובע •

$$2^{n} = \left| P(A) \right| = \sum_{k=0}^{n} \left| P_{k}(A) \right| = \sum_{k=0}^{n} {n \choose k}$$

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$
 הות פסקל: :

• הוכחה אלגברית:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{(n-1)!}{k!(n-k)!} (n-k+k) = \frac{(n-1)!}{k!(n-k-1)!} + \frac{(n-1)!}{(k-1)!(n-k)!} = \frac{(n-1)!}{k!(n-k-1)!} + \frac{(n-1)!}{(k-1)!(n-k)!}$$

נימוק קומבינטורי

- תהי A קבוצה בת n איברים שאחד מהם הוא יימשהיי.
 - כמה תתי-קבוצות בנות k איברים קיימות!

מצד אחד,

$$|P_k(A)| = \binom{n}{k}$$

מאידך

- ניתן לחלק את כל תתי הקבוצות בגודל k לשניסוגים:
 - כל אלו שבהן "משה" לא מופיע. בעצם זה שקול למצוא את כל תתי-הקבוצות בגודל k
 מבין כל האיברים פרט ל"משה".

כאלו יש

$$\left|P_{k}\left(A-\left\{\text{"moshe"}\right\}\right)\right|=\binom{n-1}{k}$$

כל אלו שבהן "משה" מופיע. בעצם זה שקול למצוא את כל תתי-הקבוצות בגודלk-1 מבין כל האיברים פרט ל"משה". (כי "משה" כבר נבחר).

כאלו יש

$$\left|P_{k-1}\left(A-\left\{\text{"moshe"}\right\}\right)\right|=\binom{n-1}{k-1}$$

: מעיקרון החיבור נסיק ש

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

• וזה מה שהיה להוכיח.

משולש פסקל

המשולש נבנה (הספירה מתחילה מאפס) נותן את המשולש נבנה האיבר ה-k -המשולש נבנה האיבר ה

כך: ו-ים בקצוות (לפי
$$\binom{n}{0} = 1$$
, $\binom{n}{n} = 1$), וכל מספר אחר שווה לסכום השניים,

שנמצאים מעליו (זה לפי זהות מס' (2) למעלה). זהות מס' (1) היא ה"אחראית" לכך שב"משולש" יש סימטריה בין צד ימין לצד שמאל.

:שאלה

 $\left\{A,B,C,D,E\right\}$ בכמה מילים באורך n מתוך האייב • מופיעה מספר זוגי של פעמים n האות n מופיעה מספר זוגי של פעמים

- פתרון: יהי k מספר זוגי בין 0 ל-n (כולל).
- $\{A,B,C,D,E\}$ מספר המילים באורך n מתוך מספר המילים באורך \mathbf{k} בהן E בהן בהועה בדיוק

$$\binom{n}{k}4^{n-k}$$

הסבר: ה- $\binom{n}{k}$ הוא כדי לקבוע היכן תופיע האות האות $\binom{n}{k}$. E האות האות אחד מהמיקומים האחרים (יש ח-k מבין מהמיקומים האחרים מבין האותיות $\{A,B,C,D\}$ תופיע. ומכאן מגיע מבין האותיות $\{A,B,C,D\}$ ולפי עיקרון הכפל מקבלים את המבוקש).

סעת, צריך לסכום על כל ה-k-ים הזוגיים בין 0
 ל-n (לפי עיקרון החיבור), ומקבלים

$$\sum_{k=0:k\ even}^n \binom{n}{k} 4^{n-k}:$$
שהפתרון לתרגיל הוא

• נעדיף ביטויים שבהם לא מופיע אופרטור הסכימה. האם ניתן לפשט ביטוי זה לביטוי ללא אופרטור הסכימה?

! 75

$$\sum_{k=0:k \text{ even}}^{n} \binom{n}{k} 4^{n-k} = \frac{1}{2} \left(\sum_{k=0}^{n} \binom{n}{k} 4^{n-k} + \sum_{k=0}^{n} \binom{n}{k} 4^{n-k} \left(-1\right)^{k} \right) = \frac{1}{2} \left(\left(4+1\right)^{n} + \left(4-1\right)^{n} \right) = \frac{1}{2} \left(5^{n} + 3^{n}\right)$$