- c) er en nabomatise for figuren i a)
- a) er en urettet graf

Matisen i c) er symmertisk fordi G er urettet

- b) er en naboliste-representasjon for figuren i a)
- |v| = 6 og |E| = 6
- Graden til node 3 er 3

Question 2: Representasjon av grafer
Oppgaven ble godkjent!
Gitt at $ V = E ^2$, hvordan kan grafen G lagres mest plasseffektivt i denne situasjonen?
○ En lenket liste
 Nabolister
○ En nabomatrise
Nabolister og nabomatrise er like plasseffektivt
Nabolister, nabomatrise og lenket liste er like plasseffektivt
Question 3: Representasjon av grafer
Oppgaven ble godkjent!
Anta at du har to noder, $u, v \in V$. Hvor lang tid vil det ta å sjekke om det finnes en kant, $e \in E$, som går fra u til v gitt at grafen G er representert ved hjelp en nabomatrise? Anta at du ikke vet noe om hvor mange kanter eller hvor

mange noder det finnes i ${\it G}$.

O(1)

O(|E|)O(|V|)

 \bigcirc O(|E| + |V|)

Question 4: Representasjon av grafer

Hvor lang til vil tilsvarende oppslag ta hvis G er en naboliste-representasjon og det går minst én kant ut fra hver node? O(|V|)

- O(1)
- \bigcirc O(|E| + |V|)
- \bigcirc O(|E|)

Oppgaven ble godkje

 ${\sf BFS\ blir\ kjørt\ med\ påfølgende\ graf\ med\ } A\ som\ rotnode.\ I\ hvilken\ rekkefølge\ blir\ de\ fire\ første\ nodene\ farget\ svart?$

Anta at alle konflikter løses ved hjelp av leksikografisk ordning (ved eventuelle konflikter velges den noden med bokstav tidligst i alfabetet, altså A før B, B før C osv.)

- \bigcirc A, B, D, C \bigcirc A, B, C, D
- \bigcirc A, B, C, D \bigcirc A, B, F, G
- \bigcirc B, C, D, F
- $\bigcirc A, C, D, B$
- $\bigcirc A, C, B, D$
- \bigcirc B, C, D, E

Question 6: Bredde-først–søk	
Oppgaven ble godkjent!	×
Hvilke(n) påstand(er) stemmer om BFS?	
☑ Implementeres vanligvis med en kø	
☐ Ingen av påstandene stemmer	
☐ Implementeres vanligvis rekursivt	
☐ Implementeres vanligvis med en stakk	
☐ Implementeres vanligvis med en heap	
Question 7: Bredde-først-søk	
Oppgaven ble godkjent!	×
For hvilket av alternativene under er vi garantert at bredde-først-søk finner korteste vei i en vilkårlig sammenhengende graf?	
○ Ingen negative kanter	
Alle kantene har lik ikke-negativ vekt	
Alle kantene har lik vekt	

Question 8: Dybde-først-søk

Oppgaven ble godkjer

 ${\sf DFS\ blir\ kjørt\ med\ påfølgende\ graf\ med\ } A\ som\ rotnode.\ I\ hvilken\ rekkefølge\ blir\ de\ fire\ første\ nodene\ farget\ svart?$

Anta at alle konflikter løses ved hjelp av leksikografisk ordning (ved eventuelle konflikter velges den noden med bokstav tidligst i alfabetet, altså A før B, B før C osv.)

- \bigcirc A, C, D, B
- \bigcirc B, C, D, F
- \bigcirc A, B, C, D
- $\bigcirc A, C, B, D$
- $\bigcirc A, B, F, G$
- $\bigcirc G, H, B, F$
- \bigcirc G, F, B, H
- \bigcirc B, C, D, E

Question 9: Dybde-først-søk
Oppgaven ble godkjent!
Hvilke(n) påstand(er) stemmer om DFS?
☐ Det er svært unaturlig å implementere DFS med rekursjon
☑ Det er svært unaturlig å implementere DFS med kø
☐ Det er naturlig å implementere DFS med kø, stakk, rekursjon og heap
☑ Det er svært unaturlig å implementere DFS med heap
☐ Det er svært unaturlig å implementere DFS med stakk
Question 10: Dypde-først-søk
Oppgaven ble godkjent!
Et dypde-først-søk kan brukes til å klassifisere kantene i en graf. Hvilken av følgende kanttyper betegner en kant som går fra en forgjenger (ancestor) til en etterkommer (descendant)?
○ Cross edge
○ Back edge
☑ Tree edge

Question	11:	Dybde-1	først-sø	ðΚ

Oppgaven ble god

Hva slags type kant kan vi ha kommet til når vi kommer til en node som allerede er farget svart i et dypde-først-søk?

Cross edge

✓ Forward edge☐ Tree egde

☐ Back edge

Question 12: Topologisk sortering

Oppgaven ble godk

Hvilke(n) av følgende alternativ er en gyldig topologisk sortering?

Hint: En graf kan ha flere mulige topologiske sorteringer. I stedet for å lage en topologisk sortering av grafen, bør du heller sjekke hvilke av alternativene som overholder kravene til en topologisk sortering

- \Box E, A, I, D, C, H, B, F, G
- $\Box E, A, D, C, I, H, B, G, F$
- $\Box A, B, F, G, C, H, I, D, E$

Question 13: Topologisk sortering
Oppgaven ble godkjent!
Du ønsker å lage en topologisk sortering av en graf $G=(V,E)$. Hvilke av følgende kriterier må være sanne (for grafen G) for at det skal finnes en topologisk sortering?
 Den må være rettet og asyklisk (en DAG)
○ Alle kantvektene må være like
O Den må ha positive kantvekter
Alle de andre alternative over må være riktige
Question 14: Tidligere eksamensoppgave
Oppgaven ble godkjent!
Du prøver å implementere BFS for urettede grafer, men på grunn av en kodefeil, er rekkefølgen på nodene i køen din ikke lenger FIFO, men helt vilkårlig. Kan du nå være sikker på å besøke alle nodene?
Ja, dersom grafen er sammenhengende
○ Ja, for alle grafer

Question 15: Best-case-kjøretid for BFS og DFS

Hva er best-case-kjøretid for BFS og DFS gitt implementasjonen i læreboken?

- O(1) for BFS og O(|V| + |E|) for DFS
- O(1) for begge
- \bigcirc O(|V| + |E|) for begge
- \bigcirc O(|V| + |E|) for BFS og O(1) for DFS