Fast and Scalable Learning of Sparse Changes in High-Dimensional Gaussian Graphical Model Structure

Beilun Wang^1 Arshdeep Sekhon^1 Yanjun Qi^1

¹University of Virginia http://jointggm.org/

Published @ AISTAT18; 2018

Outline

- Introduction
 - Motivation
 - Related Studies
- 2 Method
 - Proposed Model: DIFFEE
- 3 Theoretical and Experimental Results
 - Theoretical Results
 - Experimental Results

Motivation: Structure Difference Learning from two Datasets

- Two Datasets X_c , X_d \rightarrow Differential Network Δ .
 - Case vs. Control;
 - Autism vs. Normal;

Motivation: Estimating Graph from Dataset via sparse Gaussian Graphical Model:

• A pipeline to infer Graph from one homogeneous dataset X_d .

Motivation: Estimating Graph from Dataset via sparse Gaussian Graphical Model:

• A pipeline to infer Graph from one homogeneous dataset X_d .

- $X_c \rightarrow G_c$ is the same.
- We are more interested in the structure changes between two different but related datatsets.

Motivation: Estimating the Difference by separately Learning Two Graphs from two datasets has Limitations

- Sparsity Assumption:
 - If estimating two graphs separately, we need to enforce sparsity assumption on both graphs
 - However, in some real-world applications, G_c , G_d are not sparse.

Motivation: Estimating the Difference by separately Learning Two Graphs from two datasets has Limitations

- Sparsity Assumption:
 - If estimating two graphs separately, we need to enforce sparsity assumption on both graphs
 - However, in some real-world applications, G_c , G_d are not sparse.

Difficulty in the computation: Current methods can not scale-up. In applications like neuroscience, the number of regions (nodes) p for connectivity analysis in the human brain ranges from 160 to 800,000

Our Aim: To Learn Differential Network from two Datasets in a large-scale

• Our focus: How to directly estimate / learn Differential Network (Δ) from Two datasets (\mathbf{X}_c , \mathbf{X}_d) about the same set of features in a large scale.

Notations

- X_c, X_d Data matrix.
 - $\Sigma_{c,d}$ Covariance matrix.
- Ω_c, Ω_d Inverse of covariance matrix (precision matrix).
 - p The total number of feature variables.
 - n_c , n_d The number of samples.
 - △ The Differential Network.

Outline

- Introduction
 - Motivation
 - Related Studies
- 2 Method
 - Proposed Model: DIFFEE
- 3 Theoretical and Experimental Results
 - Theoretical Results
 - Experimental Results

Background: Elementary Estimator for Exponential Family

ullet The canonical parameter heta of an exponential family distribution can be learned by the following equation.

Elementary Estimator $\underset{\theta}{\operatorname{argmin}} ||\theta||_{1}$ Subject to: $||\theta - \mathcal{B}^{*}(\widehat{\phi})||_{\infty} \leq \lambda_{n}$ (1.1)

Background: Elementary Estimator for Exponential Family

ullet The canonical parameter heta of an exponential family distribution can be learned by the following equation.

Elementary Estimator $\underset{\theta}{\operatorname{argmin}} ||\theta||_1$ Subject to: $||\theta - \mathcal{B}^*(\widehat{\phi})||_{\infty} \leq \lambda_n$ (1.1)

 For high-dimensional case, Vanilla MLE solutions are mostly not available. Therefore, we choose Proxy backward mapping.

Background: Elementary Estimator for sGGM

- ullet heta is the canonical parameter of the exponential distribution.
- $\mathcal{B}^*(\widehat{\phi})$ is the backward mapping of θ . Normally, it is the solution of Vanilla MLE.
- For example, for sGGM:

EE	θ	\mathcal{B}^*	$\widehat{\phi}$
EE-sGGM	Ω	$[\mathcal{T}_{ u}(\widehat{\Sigma})]^{-1}$	$\widehat{\Sigma}$

Elementary Estimator for sGGM

$$\mathop{\mathrm{argmin}}_{\Omega}||\Omega||_1$$

Subject to: $||\Omega - [T_v(\widehat{\Sigma})]^{-1}||_{\infty} \leq \lambda_n$

(1.2)

Background: Elementary Estimator – visualization

• Elementary Estimator:

Background: Elementary Estimator – Advantages

Closed-form solution (non-iterative algorithm)

Background: Elementary Estimator – Advantages

- Closed-form solution (non-iterative algorithm)
- Fast computation

Background: Elementary Estimator – Advantages

- Closed-form solution (non-iterative algorithm)
- Fast computation
- Easy to prove the theoretical error bound

Background: Exponential Family Distribution

- Learn an exponential family distribution \iff To learn the canonical parameter θ
 - \bullet e.g., Ω is the canonical parameter of the sparse Gaussian Graphical Model

Background: Exponential Family Distribution

- Learn an exponential family distribution \iff To learn the canonical parameter θ
 - \bullet e.g., Ω is the canonical parameter of the sparse Gaussian Graphical Model
- The density ratio of two Gaussian distributions is naturally an exponential family distribution.
 - We prove Δ is the canonical parameter of the density ratio distribution.
 - Therefore we can apply Elementary Estimator to estimate Δ .

Outline

- Introduction
 - Motivation
 - Related Studies
- 2 Method
 - Proposed Model: DIFFEE
- 3 Theoretical and Experimental Results
 - Theoretical Results
 - Experimental Results

Goals

Our model aims to have the following properties:

closed-form solution.

Goals

Our model aims to have the following properties:

- closed-form solution.
- Fast and scalable algorithm.

Goals

Our model aims to have the following properties:

- closed-form solution.
- Fast and scalable algorithm.
- It provides a strong theoretical guarantee.

Proposed Method: estimating DIFFerential networks via an Elementary Estimator (DIFFEE) when high-dimensional

We model the differential network Δ as:

$$\Delta = \Omega_d - \Omega_c \tag{2.1}$$

We apply the elementary estimator to the differential network.

DIFFEE

$$\underset{\Delta}{\operatorname{argmin}} ||\Delta||_{1}$$
 Subject to: $||\Delta - \mathcal{B}^{*}(\widehat{\Sigma}_{d}, \widehat{\Sigma}_{c})||_{\infty} \leq \lambda_{n}$ (2.2)

Proposed method: DIFFEE – Solution

EE	θ	\mathcal{B}^*	$\widehat{\phi}$
EE-sGGM	Ω	$[T_{\nu}(\widehat{\Sigma})]^{-1}$	$\widehat{\Sigma}$
DIFFEE	Δ	$[T_{v}(\widehat{\Sigma}_d)]^{-1} - [T_{v}(\widehat{\Sigma}_c)]^{-1}$	$\widehat{\Sigma}_d, \widehat{\Sigma}_c$

• We choose $[T_{\nu}(\widehat{\Sigma}_d)]^{-1} - [T_{\nu}(\widehat{\Sigma}_c)]^{-1}$ as the proxy backward mapping for Δ .

Proposed method: DIFFEE - Solution

EE	θ	\mathcal{B}^*	$\widehat{\phi}$
EE-sGGM	Ω	$[T_{\nu}(\widehat{\Sigma})]^{-1}$	$\widehat{\Sigma}$
DIFFEE	Δ	$[T_{v}(\widehat{\Sigma}_{d})]^{-1} - [T_{v}(\widehat{\Sigma}_{c})]^{-1}$	$\widehat{\Sigma}_d, \widehat{\Sigma}_c$

- We choose $[T_v(\widehat{\Sigma}_d)]^{-1} [T_v(\widehat{\Sigma}_c)]^{-1}$ as the proxy backward mapping for Δ .
- It is theoretical guaranteed (will talk later).

Proposed method: DIFFEE - Solution

EE	θ	\mathcal{B}^*	$\widehat{\phi}$
EE-sGGM	Ω	$[T_{\nu}(\widehat{\Sigma})]^{-1}$	$\widehat{\Sigma}$
DIFFEE	Δ	$[T_{v}(\widehat{\Sigma}_{d})]^{-1} - [T_{v}(\widehat{\Sigma}_{c})]^{-1}$	$\widehat{\Sigma}_d, \widehat{\Sigma}_c$

- We choose $[T_{\nu}(\widehat{\Sigma}_d)]^{-1} [T_{\nu}(\widehat{\Sigma}_c)]^{-1}$ as the proxy backward mapping for Δ .
- It is theoretical guaranteed (will talk later).
- Closed-form solution:

$$\widehat{\Delta} = S_{\lambda_n}([T_v(\widehat{\Sigma}_d)]^{-1} - [T_v(\widehat{\Sigma}_c)]^{-1})$$
(2.3)

Here $[S_{\lambda}(A)]_{ij} = \operatorname{sign}(A_{ij}) \max(|A_{ij}| - \lambda, 0).$

• It has closed-form solution.

- It has closed-form solution.
- It is faster than the previous studies:

DIFFEE	FusedGLasso	Density Ratio	Diff-CLIME
$O(p^3)$	$O(T*p^3)$	$O((n_c + p^2)^3)$	$O(p^8)$

- It has closed-form solution.
- It is faster than the previous studies:

DIFFEE	FusedGLasso	Density Ratio	Diff-CLIME
$O(p^3)$	$O(T*p^3)$	$O((n_c + p^2)^3)$	$O(p^8)$

• $O(p^2)$ to tune different λ_n

- It has closed-form solution.
- It is faster than the previous studies:

DIFFEE	FusedGLasso	Density Ratio	Diff-CLIME
$O(p^3)$	$O(T*p^3)$	$O((n_c + p^2)^3)$	$O(p^8)$

- $O(p^2)$ to tune different λ_n
- Theoretical guaranteed

Previous Methods: FusedGLasso for estimating differential network

• Traditionally, we estimate differential network from penalized likelihood formulation.

FusedGLasso [Danaher et al.(2013)Danaher, Wang, and Witten]

$$\underset{\Omega_{c},\Omega_{d}\succ0,\Delta}{\operatorname{argmin}} n_{c}(-\log\det(\Omega_{c})+<\Omega_{c},\widehat{\Sigma}_{c}>) \\
+n_{d}(-\log\det(\Omega_{d})+<\Omega_{d},\widehat{\Sigma}_{d}>) \\
+\lambda_{2}(||\Omega_{c}||_{1}+||\Omega_{d}||_{1})+\lambda_{n}||\Delta||_{1}$$
(2.4)

Previous Methods: FusedGLasso for estimating differential network

- Traditionally, we estimate differential network from penalized likelihood formulation.
- FusedGLasso adds a second penalty function fused norm $||\Delta||_1$ into the penalized likelihood formulation.

FusedGLasso [Danaher et al.(2013)Danaher, Wang, and Witten]

$$\underset{\Omega_{c},\Omega_{d}\succ0,\Delta}{\operatorname{argmin}} n_{c}(-\log\det(\Omega_{c})+<\Omega_{c},\widehat{\Sigma}_{c}>) \\
+n_{d}(-\log\det(\Omega_{d})+<\Omega_{d},\widehat{\Sigma}_{d}>) \\
+\lambda_{2}(||\Omega_{c}||_{1}+||\Omega_{d}||_{1})+\lambda_{n}||\Delta||_{1}$$
(2.4)

Previous Methods: FusedGLasso for estimating differential network

- Traditionally, we estimate differential network from penalized likelihood formulation.
- FusedGLasso adds a second penalty function fused norm $||\Delta||_1$ into the penalized likelihood formulation.
- ullet $||\Delta||_1$ enforces a sparse difference structure between two graphs.

FusedGLasso [Danaher et al.(2013)Danaher, Wang, and Witten]

$$\underset{\Omega_{c},\Omega_{d}\succ0,\Delta}{\operatorname{argmin}} n_{c}(-\log\det(\Omega_{c})+<\Omega_{c},\widehat{\Sigma}_{c}>) \\
+n_{d}(-\log\det(\Omega_{d})+<\Omega_{d},\widehat{\Sigma}_{d}>) \\
+\lambda_{2}(||\Omega_{c}||_{1}+||\Omega_{d}||_{1})+\lambda_{n}||\Delta||_{1}$$
(2.4)

Previous Methods: Diff-CLIME

ullet Another study to learn the Δ is through a constrained optimization formulation.

Diff-CLIME [Zhao et al.(2014)Zhao, Cai, and Li]

Previous Methods: Diff-CLIME

- ullet Another study to learn the Δ is through a constrained optimization formulation.
- It reduces the estimation to solve multiple linear programming problems.

Diff-CLIME [Zhao et al.(2014)Zhao, Cai, and Li]

$$\underset{\Delta}{\operatorname{argmin}} ||\Delta||_{1}$$
 Subject to:
$$||\widehat{\Sigma}_{c}\Delta\widehat{\Sigma}_{d} - (\widehat{\Sigma}_{c} - \widehat{\Sigma}_{d})||_{\infty} \leq \lambda_{n}$$
 (2.5)

Previous Methods: Density Ratio

• Directly model the sparse differential network with density ratio function $r(x; \Delta)$

Density Ratio [Liu et al.(2013)Liu, Yamada, Collier, and Sugiyama]

$$\underset{\Delta}{\operatorname{argmax}} \mathcal{L}_{\mathsf{KLIEP}}(\Delta) - \lambda_n \parallel \Delta \parallel_1 - \lambda_2 \parallel \Delta \parallel_2 \tag{2.6}$$

Previous Methods: Density Ratio

- Directly model the sparse differential network with density ratio function $r(x; \Delta)$
- Minimizes the KL divergence between $p_d(x)$ and $\widehat{p}_d(x) = r(x; \Delta)p_c(x)$.

Density Ratio [Liu et al.(2013)Liu, Yamada, Collier, and Sugiyama]

$$\underset{\Delta}{\operatorname{argmax}} \mathcal{L}_{\mathsf{KLIEP}}(\Delta) - \lambda_n \parallel \Delta \parallel_1 - \lambda_2 \parallel \Delta \parallel_2 \tag{2.6}$$

Previous Studies: Drawbacks

• The time comparison table:

FusedGLasso	Density Ratio	Diff-CLIME
$O(T*p^3)$	$O((n_c+p^2)^3)$	$O(p^8)$

Previous Studies: Drawbacks

• The time comparison table:

FusedGLasso	Density Ratio	Diff-CLIME
$O(T*p^3)$	$O((n_c+p^2)^3)$	$O(p^8)$

Drawbacks:

- I: all of them are slow when p is large.
- II: Need terative algorithm solution.
- III: No theoretical analysis in the previous FusedGLasso studies.

Background: DIFFEE versus Previous studies

Previous studies:

Background: DIFFEE versus Previous studies

Previous studies:

• DIFFEE:

Outline

- Introduction
 - Motivation
 - Related Studies
- 2 Method
 - Proposed Model: DIFFEE
- Theoretical and Experimental Results
 - Theoretical Results
 - Experimental Results

Theoretical Results

- ullet error bound: $||\Delta^* \widehat{\Delta}||$
- DIFFEE achieves similar error bound as the previous studies.

DIFFEE	FusedGLasso	Density Ratio	Diff-CLIME
$\frac{\log p}{\min(n_c, n_d)}$	N/A	$\frac{\log p}{\min(n_c, n_d)}$	$\frac{\log p}{\min(n_c, n_d)}$

Theoretical Analysis

• Sharp convergence rate as the state-of-art

$$||\widehat{\Delta} - \Delta^*||_{\infty} \le \frac{16\kappa_1 a}{\kappa_2} \sqrt{\frac{\log p}{\min(n_c, n_d)}}$$

$$||\widehat{\Delta} - \Delta^*||_F \le \frac{32\kappa_1 a}{\kappa_2} \sqrt{\frac{k \log p}{\min(n_c, n_d)}}$$

$$||\widehat{\Delta} - \Delta^*||_1 \le \frac{64\kappa_1 a}{\kappa_2} k \sqrt{\frac{\log p}{\min(n_c, n_d)}}$$

(3.1)

Outline

- Introduction
 - Motivation
 - Related Studies
- 2 Method
 - Proposed Model: DIFFEE
- Theoretical and Experimental Results
 - Theoretical Results
 - Experimental Results

Results on Synthetic Datasets: Vs. FusedGlasso

• Comparison with the best baseline – FusedGLasso:

Results on Synthetic Datasets: Accuracy and Computational time When Varying p

Compare the estimation accuracy and scalabilty of different methods

Results on Synthetic Data Results: More Hyper-parameter Variations

Results on fMRI Datasets: the Classification Accuracy

- (1) ABIDE dataset
- (2) Train the differential network and use it as the parameter of a LDA classifier

Method	DIFFEE	FusedGLasso	Diff-CLIME
Accuracy (%)	57.58%	56.90%	53.79%

R Package is Available !!!

- The project website: http://jointggm.org/
- R package "diffee":
 - install.packages("diffee")
 - demo(diffeeDemo) !
 - https:

```
//cran.r-project.org/web/packages/diffee/index.html
```

References

P. Danaher, P. Wang, and D. M. Witten.

The joint graphical lasso for inverse covariance estimation across multiple classes.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2013.

S. Liu, M. Yamada, N. Collier, and M. Sugiyama.

Change-point detection in time-series data by relative density-ratio estimation.

Neural Networks, 43:72-83, 2013.

S. D. Zhao, T. T. Cai, and H. Li.

Direct estimation of differential networks.

Biometrika, 101(2):253-268, 2014.