Китайская теорема об остатках

1 Постановка задачи

В общем случае дана система сравнений:

$$\begin{cases} x \equiv a_1 \\ x \equiv a_2 \\ \vdots \\ x \equiv a_n \end{cases}$$

Все a_i даны, нужно подобрать x, подходящий сразу под все сравнения. Например, если дана система

$$\begin{cases} x \equiv 6 \\ x \equiv 2 \\ x \equiv 9 \end{cases}$$

можно подумать, поподбирать и обнаружить, что в нее подходит число 42. Проверьте это.

Китайская теорема об остатках говорит, что, если все m_i попарно взаимно просты, т.е. НОД любых двух разных m_i и m_j равен 1, тогда система всегда имеет решение, причем все решения будут сравнимы по модулю $m_1 \cdot m_2 \cdots m_n$.

В нашем примере (9,10)=1, (9,11)=1, (10,11)=1, значит, система подходит под условие теоремы. Следовательно у нее есть решение, что мы и так знаем, потому что уже нашли 42, и следовательно все решения сравнимы по модулю $9\cdot 10\cdot 11=990$. Действительно, числа 42, 42+990, 42+990+990. 42-990 и т.п. будут все подходить в систему. Убедитесь, что добавление или вычитание числа 990 не может испортить решение: дело в том, что $990 \equiv 0$, $990 \equiv 0$, $990 \equiv 0$.

2 Решение задачи

Решение задачи состоит из нескольких шагов.

2.1 Предварительные вычисления

Сначала вычислим $M=m_1\cdot m_2\cdots m_n$. В нашем примере M=990. Потом вычислим $M_i=\frac{M}{m_i}$. Или, что тоже самое, произведение всех m кроме m_i . В нашем примере:

$$M_1 = \frac{990}{9} = 10 \cdot 11 = 110$$

$$M_2 = \frac{990}{10} = 9 \cdot 11 = 99$$

$$M_3 = \frac{990}{11} = 9 \cdot 10 = 90.$$

2.2 Решение сравнений

Необходимо решить n сравнений $M_i x_i \equiv a_i$. В нашем случае это:

$$110x_1 \equiv 6$$

$$99x_2 \equiv 2$$

$$90x_3 \equiv 9$$

Обратите внимание, что все сравнения надо решить независимо, и для каждого найти своё решение x_i . Давайте сделаем это. В общем случае вам может потребоваться свести сравнение к диофантовому уравнению, но здесь числа такие маленькие, что сравнения можно решить вручную. Смотрите:

Решим сравнение $110x_1 \equiv 6$

Заменим 110 по модулю 9: 110 $\equiv 2$:

$$2x_1 \equiv 6$$

Сократим на 2:

$$x_1 \equiv 3$$
.

Решим сравнение $99x_1 \equiv 2$

Заменим 99 по модулю 10: $99 \equiv -1$:

$$-x_2 \equiv 2$$

Домножим на -1:

$$x_2 \equiv -2.$$

Решим сравнение $90x_1 \equiv 9$

Заменим 90 по модулю 11: $90 \equiv 2$:

$$2x_3 \equiv 9 \equiv -2$$

Сократим на 2:

$$x_3 \equiv -1.$$

2.3 Выписываем ответ

Ответ вычисляется по формуле

$$x \equiv M_1 x_1 + M_2 x_2 + \dots + M_n x_n$$

в нашем примере это

$$x \equiv 110 \cdot 3 + 99 \cdot (-2) + 90 \cdot (-1) = 42$$