Théorie des Langages - Feuille nº 4

AUTOMATES FINIS : OPÉRATIONS

CORRECTION

Exercice 1 - Soit $\Sigma = \{a, b\}$. Construire le complémentaire des automates suivants :

— Automate M_1

 M_1 est déjà déterministe et complet donc on peut simplement inverser les états finaux et non-finaux.

— Automate M_2

 M_2 est déterministe mais n'est pas complet. On ajoute donc un état poubelle pour le compléter avec les transitions manquantes puis on inverse les états finaux et non-finaux.

— Automate M_3

 M_3 n'est pas détermiste (plusieurs états initiaux). Commençons par determiniser M_3

Système d'équations de l'automate :

$$\begin{array}{rcl} L_0 & = & aL_2 \\ L_1 & = & bL_2 \\ L_2 & = & aL_3 \\ L_3 & = & \varepsilon \end{array}$$

Processus pour rendre l'automate déterministe :

$$\mathcal{L}(M_3) = L_0 + L_1$$

$$L_0 + L_1 = aL_2 + bL_2$$

$$L_2 = aL_3$$

$$L_3 = \varepsilon$$

On complète l'automate avec un état poubelle pour ajouter les transitions manquantes.

Et on fait le complémentaire.

Exercice 2 - Soit $\Sigma = \{a, b\}$. Soient $L_{M_1} = \{w \in \Sigma^* | |w|_a = 2n, n \in \mathbb{N}\}$ et $L_{M_2} = \{w \in \Sigma^* | |w|_b = 2n + 1, n \in \mathbb{N}\}$

1. Caractérisez en français les langages L_{M_1} et L_{M_2}

 L_{M_1} : mots qui contiennent un nombre pair de a L_{M_2} : mots qui contiennent un nombre impair de b

2. Construire les automates qui reconnaissent respectivement L_{M_1} et L_{M_2}

3. Construire l'automate qui reconnaît $L_{M_1} + L_{M_2}$

$$L_{M_1} \begin{cases} L_0 = aL_1 + bL_0 + \varepsilon \\ L_1 = aL_0 + bL_1 \end{cases} \qquad L_{M_2} \begin{cases} L_2 = aL_2 + bL_3 \\ L_3 = aL_3 + bL_2 + \varepsilon \end{cases}$$

$$L_{M_1} + L_{M_2} = L_0 + L_2$$

$$L_0 + L_2 = a(L_1 + L_2) + b(L_0 + L_3) + \varepsilon$$

$$L_1 + L_2 = a(L_0 + L_2) + b(L_1 + L_3)$$

$$L_0 + L_3 = a(L_1 + L_3) + b(L_0 + L_2) + \varepsilon$$

$$L_1 + L_3 = a(L_0 + L_3) + b(L_1 + L_2) + \varepsilon$$

$$L_1 + L_3 = a(L_0 + L_3) + b(L_1 + L_2) + \varepsilon$$

4. Construire l'automate qui reconnaît $L_{M_1} \cap L_{M_2}$

 M_1 et M_2 sont déjà complets et déterministes, on peut les complétementer (inverser états finaux) :

$$\frac{1}{L_{M_1}} \begin{cases}
L_0 = aL_1 + bL_0 \\
L_1 = aL_0 + bL_1 + \varepsilon
\end{cases}
\qquad
\frac{1}{L_{M_2}} \begin{cases}
L_2 = aL_2 + bL_3 + \varepsilon \\
L_3 = aL_3 + bL_2
\end{cases}$$

$$\overline{L_{M_2}} \left\{ \begin{array}{lcl} L_2 & = & aL_2 + bL_3 + \epsilon \\ L_3 & = & aL_3 + bL_2 \end{array} \right.$$

On fait maintenant l'union de $\overline{M_1}$ et $\overline{M_2}$

$$\overline{L_{M_1}} + \overline{L_{M_2}} = L_0 + L_2
L_0 + L_2 = a(L_1 + L_2) + b(L_0 + L_3) + \varepsilon
L_1 + L_2 = a(L_0 + L_2) + b(L_1 + L_3) + \varepsilon
L_0 + L_3 = a(L_1 + L_3) + b(L_0 + L_2)
L_1 + L_3 = a(L_0 + L_3) + b(L_1 + L_2) + \varepsilon$$

On complémente cet automate :

Exercice 3 - Soient les deux automates M_1 et M_2 . Construire le l'automate qui reconnaît le langage $\mathcal{L}(M_1)$. $\mathcal{L}(M_2)$.

— Automate M_1

— Automate M_2

$$L_{M_1} \begin{cases} L_0 = aL_1 \\ L_1 = bL_0 + \varepsilon \end{cases}$$

$$L_{M_2} \begin{cases} L_2 = bL_3 \\ L_3 = aL_2 + \varepsilon \end{cases}$$

$$L_{M_1}.L_{M_2} = L_0.L_2$$

$$L_0.L_2 = aL_1.L_2$$

$$L_1.L_2 = bL_0.L_2 + L_2$$

$$= b(L_0.L_2 + L_3)$$

$$L_0.L_2 + L_3 = aL_1.L_2 + aL_2 + \varepsilon$$

$$= a(L_1.L_2 + L_2) + \varepsilon$$

$$L_1.L_2 + L_2 = b(L_0.L_2 + L_3) + bL_3 = L_1.L_2$$

$$02 \qquad a \qquad 12 \qquad b \qquad 02 + 3$$

Exercice 4 - Soit $\Sigma = \{a, b\}$. Soient les deux automates M_1 et M_2 suivant

— Automate M_1

— Automate M_2

1. Construire l'automate **déterministe** qui reconnaît le langage $\mathcal{L}(M_1) + \mathcal{L}(M_2)$

2. Construire l'automate **déterministe** qui reconnaît le langage $\mathcal{L}(M_1).\mathcal{L}(M_2)$

Exercice 5 - Minimiser les automates suivants en utilisant l'algorithme de Moore.

L'état 3 est inaccessible : on le supprime.

	0	1	2	4	5	6	7
ε	I	I	II	I	I	I	I
a	I	I	I	I	II	I	I
b	I	II	II	I	I	I	II
Bilan	I	II	III	I	IV	I	II
a	II	I	I	II	III	I	I
b	IV	III	III	IV	I	I	III
Bilan	I	II	III	I	IV	V	II
a	II	V	I	II	III	V	V
b	IV	III	III	IV	V	I	III
Bilan	I	II	III	I	IV	V	II

Etat initial : I (diamond)

	0	1	2	3	5	6
ε	I	I	I	I	II	II
a	I	I	I	I	I	I
b	I	I	II	II	II	II
Bilan	I	I	II	II	III	III
a	I	I	I	I	I	I
b	II	II	III	III	III	III
Bilan	I	I	II	II	III	III

