Trabalho Prático 2 - Turma 030 - 2023/1 Laboratório de Sistemas Operacionais - Prof. Miguel Xavier

Relatório com gráficos de desempenho - Escalonadores de Disco

Cassiano Luis Flores Michel - 20204012-7

Mateus de Carvalho de Freitas - 20204015-7

Pedro Menuzzi Mascaró - 20103702-5

Gustavo Geyer Arrussul Winkler dos Santos - 19102825-7

Ambiente

Foi solicitado a implementação de um módulo escalonador de disco para o buildroot implementado durante o decorrer das aulas de laboratório de sistemas operacionais. Este módulo deveria funcionar no Linux kernel versão 4.13.9 e deveria implementar a política SSTF (Shortest Seek Time First). Durante o decorrer deste relatório iremos demonstrar como foram implementadas tais tarefas requisitadas para o trabalho prático 2 da disciplina.

Primeiramente, para que possamos implementar um escalonador de disco, é necessário que façamos uma preparação do ambiente no buildroot, e para isso criamos a imagem de disco assim como descrito no tutorial "2.4: Noções sobre IO-Scheduler e acesso ao disco" disponível no moodle da disciplina.

Tendo o ambiente preparado, copiamos os arquivos base deixados pelo professor na especificação do trabalho, onde fornecem toda estrutura de implementação do módulo de escalonador de disco, nos deixando apenas com a tarefa de implementar a política de SSTF para o mesmo. Para compilar o módulo, foi adicionado um novo diretório no caminho "./buildroot/modules", representando o módulo SSTF a ser compilado e contendo a estrutura necessária para o escalonador.

A estrutura fornecida possui também um arquivo chamado "sector_read.c", no qual é responsável por gerar diversas requisições de acesso ao disco, simulando um ambiente multiprogramado. Por fim, executamos o qemu passando como parâmetro o disco que iremos utilizar (imagem gerada no tutorial 2.4) e registramos o módulo do escalonador para que possamos aplicar os testes necessários para verificação.

Para o correto funcionamento do escalonador SSTF, no qual procura atender sempre a requisição mais próxima da posição atual do leitor, foram adicionadas algumas linhas de código na estrutura original fornecida pelo professor, para que a política de funcionamento pudesse ser comparada com o escalonador NOOP, no qual não possui tratamento das requisições. Foram alterados apenas dois métodos da estrutura original: sstf_add_request() e sstf_dispatch().

Resultados

Podemos observar que o escalonador SSTF só foi efetivo quando de fato a fila de requisições ficou congestionada, visto que nas primeiras requisições ele ainda estava atendendo em ordem de chegada pois assim que chegavam já eram despachadas.

Considerações

Vale ressaltar que, assim como no trabalho anterior, todas implementações, testes e resultados foram obtidos no nosso ambiente remoto presente no codespace. Além deste relatório, está sendo entregue o arquivo .c com a implementação solicitada e esta também se encontra em nosso repositório do github, dentro da pasta *labsisop-buildroot-grp-05/programs/tp2* .

Este repositório pode ser acessado através do link abaixo:

https://github.com/cassiano-flores/labsisop-buildroot-grp-05