Title of the Paper

Author Name

March 24, 2025

Abstract

This is the abstract of the paper. It provides a brief summary of the content.

- 1 Introduction
- 2 Definition
- 3 Main Results

Theorem 3.1. Let $w \in Q_n$ then the parking of w is also in Q_n .

Proof. Consider $i \in [n]$. We can write w as $w = w(1)w(2) \dots i \dots j \dots j \dots i \dots w(2n)$. Notice that the first i must park in ahead of the first j. If this was not the case then j must be lucky while i was not lucky; however, since i appears before j, the jth spot would be open for i to park in which is a contradiction. Thus, the first i must park before the first j. The second pair will always be unlucky; hence, would maintain their relative order in the parking. This shows that w is in \mathbb{Q}_n .

It turns out that the set of image of Q_n under the parking map is a subset of the set of stirling permutations that is easily characterized.

Lemma 3.2. The image of Q_n under the parking map is the set of stirling permutations such that w(j) = i implies $i \leq j$.

Proof. Since a car with prefence i can only park in position i or later and a parked stirling permutation is a stirling permutation, we must have w(j) = i parking at or after spot i. \square

In fact, we have $|p(Q_n)| = n!$ because

3.1 Theorem and Proof

Theorem 3.3. Statement of the theorem.

Proof. Proof of the theorem.

4 Conclusion

The conclusion section goes here.

References

 $[1]\ \ {\rm Author},\ {\it Title\ of\ the\ Book},\ {\rm Publisher},\ {\rm Year}.$