Reg No.:	Name:

API ABDUL KAPAM TECHNOSOGICAL UNIVERSITY

Second Semester MCA (Two Years) Degree (R,S) Examination May 2024

Course Code: 20MCA162
Course Name: APPLIED STATISTICS

Max. Marks: 60 Duration: 3 Hours

PART A

Answer all questions, each carries 3 marks.

Marks

(3)

(3)

(3)

1 A random variable has the following pdf

X	-2	-1	0	1	2	3
f(x)	$\frac{1}{10}$	k	$\frac{1}{5}$	2 <i>k</i>	$\frac{3}{10}$	3 <i>k</i>

Compute k and mean.

- If X follows Poisson distribution with mean 6, find P(X = 1), Variance (X)
- 3 Derive the mean and variance of exponential distribution.

- (3)
- A random variable *X* has uniform distribution in (-4,4) find $P(|X| \le 2)$.
- relation (3)
- If the two regression lines are 4x 5y + 33 = 0 and 20x 9y = 10, find the correlation coefficient between x and y
- Show that correlation coefficient γ lies between $-1 \le \gamma \le 1$.

Explain the properties of a good estimator.

(3)

(3)

(3)

Define standard error.

7

8

- (3)
- A die was thrown 9000 times and of these 3220 times yielded a 3 or 4. Can the die be
- regarded as unbiased?

 Define Type I and Type II error.

(3)

PART B

Answer any one question from each module. Each question carries 6 marks.

Module I

A discrete random variable X has mean 6 and variance 2. If it is assumed that the (6) distribution is binomial find (i) $P[5 \le X \le 7]$ (ii) $P[X \le 2]$ (iii) P[X > 7].

OR

0520MCA162052302

Prove that Binomial distribution with parameter n and p can be approximated to Poisson (6) distribution when n is large and p is small.

Module II

In an examination, 30% of the students got marks below 40 and 10% got marks above 75. (6)
Assuming the marks are normally distributed find the mean and standard deviation of the distribution.

OR

The time in hours required to repair a machine is exponentially distributed with mean 120. (6) What is the probability that the repairing time is (i) at most 1 day (ii) at least 180 hours.

Module III

15 The pdf of a bivariate distribution given by

 $P(X = x, Y = y) = \frac{x^2 + y}{32}$, for x = 0,1,2,3 and y = 0, Find the marginal distribution of X and Y and conditional distribution of X given Y = 1

(6)

(6)

OR

Fit a parabola of the form $y = a + bx + cx^2$ by the principle of least squares for the (6) following data

х	1	2	3	4	5
у	2	6	7	8	10

Module IV

Suppose the following 6 values represent random observations from a normal population. (6) 63,65,58,69,71 and 72. Construct a 95% confidence interval for the mean of the population.

OR

Explain the different types of sampling.

Module V

A shopkeeper claims that almost 60% of customers entering the shop leaves without making (6) a purchase. Out of a random sample of 50 customers, 35 found to leave without making a purchase. Does the data support the claim of the shopkeeper at 1% level of significance

OR

0520MCA162052302

From the given data test at 5% level of significance whether there is any significance (6) difference between means of A and B

Sample	Sample size	Mean	SD
A	80	100	12
В	700	95	10
