

Effect of Muon Alignment on TeV tracks

Jim Pivarski, Alexei Safonov

Texas A&M University

29 October, 2007

Context

- ▶ We have been developing a muon alignment procedure in the CSC DPG and the Alignment & Calibration groups
- Baseline procedure has stabilized, ready to be applied to physics

Outline for this talk

- Overview of the procedure
- New set of scenarios, comparable to Muon10InversePb and Muon100InversePb
- Consequences for physics

Baseline procedure

- ▶ Based on HIP algorithm in the CommonAlignment framework
- Applies equally to barrel and endcap
- Breaks circular dependence between track-fitting and alignment by using tracker as an external reference
- ▶ Reaches 100 μ m accuracy with 5 pb⁻¹ of high-momentum muons from Z, W decays (apart from systematics)
- ▶ Studying systematic effects one by one

Dependence on miscalibration	negligible
on tracker misalignment	$\mathcal{O}(200~\mu\mathrm{m})$ (next slide)
on momentum of tracks	radial outliers (backup)
inclusive sample, backgrounds	to do
mismeasured $ec{B}(ec{x})$	to do
incorrect material budget/distribution	to do

Jim Pivarski

Dependence on number of muons (local x is global $r\phi$)

Dependence on tracker misalignment (1 = short-term scenario)

New set of scenarios

Alignment simulation output:

- 1. Misalign detector
- 2. Run alignment procedure under controlled conditions
- 3. Save output geometry for re-reconstruction

Standard scenarios

- Conservative estimate
 - ▶ 2–5 mm wheels/disks, $500 \mu \text{m}$ chambers for 10 pb^{-1}
 - ▶ 1 mm wheels/disks, 200 μ m chambers for 100 pb⁻¹
- isotropic misalignments

- approximate correlations through superstructure hierarchy
- ► Gaussian misalignments

Alignment simulation output

- Realistic simulation (as realistic as MC)
 - 0.8 mm wheels/disks, 100–200 μ m chambers for 5 pb $^{-1}$ of Z&W
- elliptical misalignments
 (e.g. CSC x is measured
 20 times better than y)
- correlations from tracks
- not necessarily Gaussian (especially for systematic effects)

Consequences for physics

Application of new scenarios to TeV Drell-Yan and Z'

"low-p" means 20-60 GeV $Z
ightarrow \mu \mu$ official 10 pb^{-1} scenario is pessimistic

(private $1_{-}5_{-}4$ Z' samples)

Application of new scenarios to 2 TeV Drell-Yan and Z'

"low-p" means 20-60 GeV $Z \rightarrow \mu\mu$ official 10 pb⁻¹ scenario is pessimistic

(private $1_{-}5_{-}4$ Z' samples)

Comparison of tracker and muon misalignments (1 TeV)

How realistic is the tracker 10 pb⁻¹ scenario? CSA07 (scaled by \sqrt{N}) is $0.1\text{--}15\times$ better, depending on parameter

Comparison of tracker and muon misalignments (2 TeV)

How realistic is the tracker 10 pb⁻¹ scenario? CSA07 (scaled by \sqrt{N}) is $0.1\text{--}15\times$ better, depending on parameter

Effect of muon misalignment on single-track momenta

everything but alignment

effect of alignment only

$$\left(\frac{\sigma_{p_T}}{p_T}\right) = \left(\frac{\sigma_{\kappa}}{\kappa}\right)$$
= sum in quadrature of both uncertainties

Effect of tracker misalignment on single-track momenta

everything but alignment

effect of alignment only

$$\left(\frac{\sigma_{p_T}}{p_T}\right) = \left(\frac{\sigma_{\kappa}}{\kappa}\right)$$

= sum in quadrature of both uncertainties

Conclusions

- Stable baseline muon alignment procedure, ready to apply to physics
- Realistic simulations yield significantly higher-quality alignments than the standard scenario
- Drell-Yan backgrounds are not strongly affected

Ongoing work

- Use tracker CSA07 output as a starting point for muon alignment
- ▶ Apply to Dmitry Bourilkov's 1_6 Z'/Drell-Yan samples
- ► Fully reconstruct with new geometry, rather than refitting existing tracks
- Contribute to TeV muon analysis note by validating toy MC alignment

Backup slides

Backup slides

Dependence on muon momentum

Backup slides

Radial (local y) residual misalignments

- ▶ Divide $Z \rightarrow \mu\mu$ sample along 60 GeV median
- ► Effect on barrel: < 5% in each parameter
- Effect on endcap: low-momentum sample has 1.5-3 times worse alignment

Note asymmetric tail!

