

10. LINEAR PROGRAMMING

Serge Gaspers

Katie Clinch

serge.gaspers@unsw.edu.au

k.clinch@unsw.edu.au

Course admin: Song Fang cs3121@cse.unsw.edu.au

School of Computer Science and Engineering, UNSW Sydney

Term 3, 2023

1. Example Problems

- 2. Linear Programming
 - Standard Form
 - Example
 - Weak duality

3. Puzzle

What is linear programming?

It is a method of solving problems where you have a system of linear constraints.

What is a linear constraint?

- A linear constraint is an equality (=) or inequality (\geq or \leq) where each term has just one unknown value x_i .
- Each unknown value appears as x_i (not $\sqrt{x_i}$ or x_i^3 or $\frac{1}{x_i}$ etc.)
- **Each** unknown value x_i can be multiplied by any known values.

Example. Suppose you want to buy some paint. The paint cans come in three sizes small v_1 , medium v_2 and large v_3 . A can of size v_i has cost c_i . You want to decide how many cans n_i to buy of each size v_i .

- What are the unknown values? n_1, n_2, n_3 .
- What are the known values? $v_1, v_2, v_3, c_1, c_2, c_3$.

Example. Suppose you want to buy some paint. The paint cans come in three sizes small v_1 , medium v_2 and large v_3 . A can of size v_i has cost c_i . You want to decide how many cans n_i to buy of each size v_i .

Are the following constraints linear?

- $n_1 \ge 0$. Yes
- $3n_1 + 2n_2 + 10 = 7$. Yes. It would be simpler to write this as $3n_1 + 2n_2 = -3$.
- $c_1 n_1 c_2 n_2 + 2c_3 n_3 \le 100$. Yes
- $v_1 n_1^2 + v_2 n_2 n_3 \ge 50$. No, n_1^2 and $n_2 n_3$ are not linear.
- $\sum_{i=1}^{3} v_i n_i \ge 60$. Yes
- $\sum_{i=1}^{3} v_i n_i^2 \geq 50$. No, x_i^2 is not linear.
- **Hard.** $\sum_{i=1}^{3} c_i v_i n_i \le 10$. Yes! Each unknown n_i is multiplied by the known value $c_i v_i$.

Problem

Instance: a list of food sources F_1, \ldots, F_n ; and for each source F_i :

- its price per gram p_i ;
- the number of calories c_i per gram, and
- for each of 13 vitamins V_1, \ldots, V_{13} , the content $v_{i,j}$ in milligrams of vitamin V_i in one gram of food source f_i .

Task: find a combination of quantities of food sources such that:

- the total number of calories in all of the chosen food is equal to a recommended daily value of 2000 calories;
- for each $1 \le j \le 13$, the total intake of vitamin V_j is at least the recommended daily intake of w_j milligrams, and
- the price of all food per day is as low as possible.

Suppose we take x_i grams of each food source F_i for $1 \le i \le n$. Then the constraints are as follows.

■ The total number of calories must satisfy

$$\sum_{i=1}^n c_i x_i = 2000;$$

■ For each $1 \le j \le 13$, the total amount of vitamin V_j in all food must satisfy

$$\sum_{i=1}^n v_{i,j} x_i \geq w_j.$$

■ Implicitly, all the quantities must be non-negative numbers, i.e. $x_i \ge 0$ for all $1 \le i \le n$.

 Our goal is to minimise the objective function, which is the total cost

$$y=\sum_{i=1}^n p_i x_i.$$

Note that all constraints and the objective function are linear.

Problem

Instance: you are a politician and you want to ensure an election victory by making certain promises to the electorate. You can promise to build:

- bridges, each costing 3 billion;
- rural airports, each costing 2 billion, and
- Olympic swimming pools, each costing 1 billion.

Problem (continued)

You were told by your wise advisers that

- each bridge you promise brings you 5% of city votes, 7% of suburban votes and 9% of rural votes;
- each rural airport you promise brings you no city votes, 2% of suburban votes and 15% of rural votes;
- each Olympic swimming pool promised brings you 12% of city votes, 3% of suburban votes and no rural votes.

Problem (continued)

In order to win, you have to get at least 51% of each of the city, suburban and rural votes.

Task: decide how many bridges, airports and pools to promise in order to guarantee an election win at minimum cost to the budget.

- Let the number of bridges to be built be x_b , number of airports x_a and the number of swimming pools x_p .
- We now see that the problem amounts to minimising the objective $y = 3x_b + 2x_a + x_p$, while making sure that the following constraints are satisfied:

- However, there is a very significant difference with the first example:
 - you can eat 1.56 grams of chocolate, but
 - you cannot promise to build 1.56 bridges, 2.83 airports and 0.57 swimming pools!
- The second example is an example of an Integer Linear Programming problem, which requires all the solutions to be integers.
- Such problems are MUCH harder to solve than the "plain" Linear Programming problems whose solutions can be real numbers.

- We won't see algorithms which solve LP problems in this lecture; we will only study the structure of these problems further.
- There are polynomial time algorithms for Linear Programming, including the ellipsoid algorithm.
- In practice we typically use the SIMPLEX algorithm instead; its worst case time complexity is exponential, but it is very efficient in the 'average' case.
- There is no known polynomial time algorithm for <u>Integer</u> Linear Programming!

How do you solve a (continuous) linear programming problem?

In practice, the steps you will go through are:

- Convert the requirements of the problem into equalities and inequalities.
- 2 Check that these are indeed linear constraints, (and that the problem is continuous).
- If so, input the constraints into an existing LP solver, and get the solution!

So to solve a (continuous) LP problem, you do not need to design a new algorithm. You can just use an existing solver as a black box.

- 1. Example Problems
- 2. Linear Programming
 - Standard Form
 - Example
 - Weak duality
- 3 Puzzle

- 1. Example Problems
- 2. Linear Programming
 - Standard Form
 - Example
 - Weak duality
- 3 Puzzle

In the standard form the objective to be maximised is given by

$$\sum_{i=1}^n c_i \, x_i$$

and the constraints are of the form

$$\sum_{i=1}^{n} a_{ij} x_i \le b_j \qquad (1 \le j \le m);$$

$$x_i \ge 0 \qquad (1 \le i \le n).$$

- To get a more compact representation of linear programs, we use vectors and matrices.
- Let x represent a (column) vector,

$$\mathbf{x} = \langle x_1 \dots x_n \rangle^T$$
.

■ Define a partial ordering on the vectors in \mathbb{R}^n by $\mathbf{x} \leq \mathbf{y}$ if and only if the corresponding inequalities hold coordinate-wise, i.e., if and only if $x_i \leq y_i$ for all $1 \leq i \leq n$.

Write the coefficients in the objective function as

$$\mathbf{c} = \langle c_1 \dots c_n \rangle^T \in \mathbb{R}^n$$
,

the coefficients in the constraints as an $m \times n$ matrix

$$A = (a_{ij})$$

and the right-hand side values of the constraints as

$$\mathbf{b} = \langle b_1 \dots b_m \rangle^T \in \mathbb{R}^m.$$

Then the standard form can be formulated simply as:

- \blacksquare maximize $\mathbf{c}^T \mathbf{x}$
- subject to the following two (matrix-vector) constraints:

$$Ax \leq b$$

$$\mathbf{x} \geq \mathbf{0}$$
.

Thus, a Linear Programming optimisation problem can be specified as a triplet $(A, \mathbf{b}, \mathbf{c})$, which is the form accepted by most standard LP solvers.

- The Standard Form doesn't immediately appear to handle the full generality of LP problems.
- LP problems could have:
 - equality constraints
 - unconstrained variables (i.e. potentially negative values x_i)
 - absolute value constraints

How do we handle each of these issues?

We will see that there is a way to write each of these three requirements in Standard Form.

Equality constraints

■ An LP problem may include equality constraints of the form

$$\sum_{i=1}^n a_{ij} x_i = b_j.$$

■ Each of these can be replaced by two inequalities:

$$\sum_{i=1}^{n} a_{ij} x_i \ge b_j$$

$$\sum_{i=1}^{n} a_{ij} x_i \le b_j.$$

■ Thus, we can assume that all constraints are inequalities.

- In general, a "natural formulation" of a problem as a Linear Program does not necessarily require that all variables be non-negative.
- However, the Standard Form does impose this constraint.
- This poses no problem, because each occurrence of an unconstrained variable x_i can be replaced by the expression

$$x_i' - x_i^*$$

where x_i', x_i^* are new variables satisfying the inequality constraints

$$x_i' \ge 0, \ x_i^* \ge 0.$$

For a vector

$$\mathbf{x} = \langle x_1, \ldots, x_n \rangle^T$$

we can define

$$|\mathbf{x}| = \langle |x_1|, \ldots, |x_n| \rangle^T.$$

Some problems are naturally translated into constraints of the form

$$|A\mathbf{x}| \leq \mathbf{b}.$$

This also poses no problem because we can replace such constraints with two linear constraints:

$$A\mathbf{x} \leq \mathbf{b}$$
 and $-A\mathbf{x} \leq \mathbf{b}$,

because $|x| \le y$ if and only if $x \le y$ and $-x \le y$.

Standard Form

maximize

 $\mathbf{c}^T \mathbf{x}$

subject to

 $Ax \leq b$

and

 $x \ge 0$.

Any vector \mathbf{x} which satisfies the two constraints is called a feasible solution, regardless of what the corresponding objective value $\mathbf{c}^T \mathbf{x}$ might be.

A vector \mathbf{x} that satisfies all three constraints is called an <u>optimal</u> solution.

- 1. Example Problems
- 2. Linear Programming
 - Standard Form
 - Example
 - Weak duality
- 3 Puzzle

As an example, let us consider the following optimisation problem.

Problem maximise $z(x_1, x_2, x_3) = 3x_1 + x_2 + 2x_3$ (1)subject to $x_1 + x_2 + 3x_3 < 30$ (2)(3) $2x_1 + 2x_2 + 5x_3 < 24$ (4) $4x_1 + x_2 + 2x_3 < 36$ (5) $x_1, x_2, x_3 > 0$

Question

How large can the value of the objective

$$z(x_1, x_2, x_3) = 3x_1 + x_2 + 2x_3$$

be, without violating the constraints?

We can achieve a crude bound by adding inequalities (2) and (3), to obtain

$$3x_1 + 3x_2 + 8x_3 \le 54$$
.

Since all variables are constrained to be non-negative, we are assured that

$$3x_1 + x_2 + 2x_3 \le 3x_1 + 3x_2 + 8x_3 \le 54$$
,

i.e. the objective does not exceed 54. Can we do better?

We could try to look for coefficients $y_1, y_2, y_3 \ge 0$ to be used to form a linear combination of the constraints:

$$y_1(x_1 + x_2 + 3x_3) \le 30y_1 \tag{6}$$

$$y_2(2x_1 + 2x_2 + 5x_3) \le 24y_2 \tag{7}$$

$$y_3(4x_1+x_2+2x_3) \le 36y_3 \tag{8}$$

Then, summing up all these inequalities and factoring, we get

$$x_1(y_1 + 2y_2 + 4y_3) + x_2(y_1 + 2y_2 + y_3) + x_3(3y_1 + 5y_2 + 2y_3) \le 30y_1 + 24y_2 + 36y_3.$$

If we compare this with our objective (1) we see that if we choose y_1, y_2 and y_3 so that:

$$y_1 + 2y_2 + 4y_3 \ge 3$$
$$y_1 + 2y_2 + y_3 \ge 1$$
$$3y_1 + 5y_2 + 2y_3 \ge 2$$

then

$$3x_1 + x_2 + 2x_3 \le x_1(y_1 + 2y_2 + 4y_3)$$

$$+ x_2(y_1 + 2y_2 + y_3)$$

$$+ x_3(3y_1 + 5y_2 + 2y_3).$$

Combining this with (6) - (8) we get

$$30y_1 + 24y_2 + 36y_3 \ge 3x_1 + x_2 + 2x_3 = z(x_1, x_2, x_3).$$

Consequently, in order to find a tight upper bound for our objective $z(x_1, x_2, x_3)$ in the original problem P, we have to find y_1, y_2, y_3 which solve problem P^* :

minimise:
$$z^*(y_1, y_2, y_3) = 30y_1 + 24y_2 + 36y_3$$
 (9)

subject to:

$$y_1 + 2y_2 + 4y_3 \ge 3 \tag{10}$$

$$y_1 + 2y_2 + y_3 \ge 1 \tag{11}$$

$$3y_1 + 5y_2 + 2y_3 \ge 2 \tag{12}$$

$$y_1, y_2, y_3 \ge 0 \tag{13}$$

Then

$$z^*(y_1, y_2, y_3) = 30y_1 + 24y_2 + 36y_3$$

$$\geq 3x_1 + x_2 + 2x_3$$

$$= z(x_1, x_2, x_3)$$

will be a tight upper bound.

The new problem P^* is called the dual problem of P.

Let us now repeat the whole procedure in order to find the dual of P^* , which will be denoted $(P^*)^*$.

We are now looking for $z_1, z_2, z_3 \ge 0$ to multiply inequalities (10)–(12) and obtain

$$z_1(y_1 + 2y_2 + 4y_3) \ge 3z_1$$

 $z_2(y_1 + 2y_2 + y_3) \ge z_2$
 $z_3(3y_1 + 5y_2 + 2y_3) \ge 2z_3$

Summing these up and factoring produces

$$y_1(z_1 + z_2 + 3z_3) + y_2(2z_1 + 2z_2 + 5z_3) + y_3(4z_1 + z_2 + 2z_3) \ge 3z_1 + z_2 + 2z_3$$
 (14)

If we choose multipliers z_1, z_2, z_3 so that

$$z_1 + z_2 + 3z_3 \le 30$$
$$2z_1 + 2z_2 + 5z_3 \le 24$$
$$4z_1 + z_2 + 2z_3 \le 36$$

we will have:

$$y_1(z_1 + z_2 + 3z_3) + y_2(2z_1 + 2z_2 + 5z_3) + y_3(4z_1 + z_2 + 2z_3) \leq 30y_1 + 24y_2 + 36y_3$$

Combining this with (14) we get

$$3z_1 + z_2 + 2z_3 \le 30y_1 + 24y_2 + 36y_3$$
.

Consequently, finding the double dual program $(P^*)^*$ amounts to maximising the objective $3z_1 + z_2 + 2z_3$ subject to the constraints

$$z_1 + z_2 + 3z_3 \le 30$$

$$2z_1 + 2z_2 + 5z_3 \le 24$$

$$4z_1 + z_2 + 2z_3 \le 36$$

$$z_1, z_2, z_3 \ge 0$$

This is exactly our starting program P, with only the variable names changed! Thus, the double dual program $(P^*)^*$ is just P itself.

But why is this helpful?

- It appeared at first that looking for the multipliers y_1, y_2, y_3 did not help much, because it only reduced a maximisation problem to an equally hard minimisation problem.
- It is useful at this point to remember how we proved that the Ford-Fulkerson algorithm produces a maximal flow, by showing that it terminates only when we reach the capacity of a minimal cut.

Why is the dual helpful?

- Finding a feasible solution to P is "easy", but finding an optimal solution may be hard.
- Similarly finding a feasible solution to P^* is "easy".
- For any feasible solutions \mathbf{x} of P and \mathbf{y} of P^* we have

$$z(\mathbf{x}) \leq z^*(\mathbf{y})$$

- When these two values are close, then x is close to the optimal solution of P.
- By cleverly searching for feasible solutions of both the primal P and the dual P^* , we can get:
 - fast approximation algorithms for *P*,
 - more efficient exact algorithms for P.
- We'll explain these ideas more formally in the next section.

- 1. Example Problems
- 2. Linear Programming
 - Standard Form
 - Example
 - Weak duality
- 3. Puzzle

In general, the primal Linear Program P and its dual P^* are:

$$P:$$
 maximize $z(\mathbf{x})=\sum_{i=1}^n c_ix_i,$ subject to $\sum_{i=1}^n a_{ij}x_i \leq b_j$ $(1 \leq j \leq m)$ and $x_1,\ldots,x_n \geq 0;$

$$P^*$$
: minimize $z^*(\mathbf{y}) = \sum_{j=1}^m b_j y_j,$ subject to $\sum_{j=1}^m a_{ij} y_j \geq c_i$ $(1 \leq i \leq n)$ and $y_1, \dots, y_m \geq 0.$

We can equivalently write P and P^* in matrix form:

Primal

 $P: ext{ maximize} ext{ } z(\mathbf{x}) = \mathbf{c}^T \mathbf{x}, ext{ } subject to ext{ } A\mathbf{x} \leq \mathbf{b} ext{ } and ext{ } \mathbf{x} \geq 0;$

Dual

 P^* : minimize $z^*(\mathbf{y}) = \mathbf{b}^T \mathbf{y}$, subject to $A^T \mathbf{y} \ge \mathbf{c}$ and $\mathbf{y} \ge 0$.

Recall that any vector \mathbf{x} which satisfies the two constraints $A\mathbf{x} \leq \mathbf{b}$ and $\mathbf{x} \geq 0$ is called a <u>feasible solution</u>, regardless of what the corresponding objective value $\mathbf{c}^T \mathbf{x}$ might be.

Theorem

If $\mathbf{x} = \langle x_1 \dots x_n \rangle$ is any feasible solution for P and $\mathbf{y} = \langle y_1 \dots y_m \rangle$ is any feasible solution for P^* , then:

$$z(\mathbf{x}) = \sum_{i=1}^n c_i x_i \leq \sum_{i=1}^m b_i y_i = z^*(\mathbf{y})$$

Proof

Since \mathbf{x} and \mathbf{y} are feasible solutions for P and P^* respectively, we can use the constraint inequalities for P^* and P that were given on slide 39 to obtain

$$z(\mathbf{x}) = \sum_{i=1}^{n} c_i x_i \le \sum_{i=1}^{n} \left(\sum_{j=1}^{m} a_{ij} y_j \right) x_i$$
$$= \sum_{j=1}^{m} \left(\sum_{i=1}^{n} a_{ij} x_i \right) y_j \le \sum_{j=1}^{m} b_j y_j$$
$$= z^*(\mathbf{y}).$$

Thus, the value of (the objective of P^* for) any feasible solution of P^* is an upper bound for the set of all values of (the objective of P for) all feasible solutions of P.

Similarly, every feasible solution of P is a lower bound for the set of feasible solutions for P^* .

If we find a feasible solution for P which is equal to a feasible solution to P^* , this common value must be the maximal feasible value of the objective of P and the minimal feasible value of the objective of P^* .

- If we use a search procedure to find an optimal solution for P we know when to stop: when such a value is also a feasible solution for P^* .
- This is why the most commonly used LP solving method, the SIMPLEX method, produces an optimal solution for P: because it stops at a value of the primal objective which is also a value of the dual objective.
- See the supplemental notes for the details and an example of how the SIMPLEX algorithm runs.

- 1. Example Problems
- 2. Linear Programming
 - Standard Form
 - Example
 - Weak duality
- 3. Puzzle

Puzzle 47

There are five sisters in a house.

- Sharon is reading a book.
- Jennifer is playing chess.
- Catherine is cooking.
- Anna is doing laundry.

What is Helen, the fifth sister, doing?