- 教材讨论
 - TC第31章第1、2、3、4、5、6节

问题1: GCD和(Extended-)Euclid

Define lcm(a₁, a₂,..., a_n) to be the *least common multiple* of the n integers a₁, a₂,..., a_n, that is, the smallest nonnegative integer that is a multiple of each a_i. Show how to compute lcm(a₁, a₂,..., a_n) efficiently using the (two-argument) gcd operation as a subroutine.

问题1: GCD和(Extended-)Euclid (续)

- 什么是(Z,,+,)和(Z,,,,)? 它们为什么是交换群?
- How to compute multiplicative inverses in (Z*****)? (我们上次课讨论过)

问题1: GCD和(Extended-)Euclid (续)

- 什么是(Z,,+,)和(Z,,,,)? 它们为什么是交换群?
- How to compute multiplicative inverses in (Z**, **)? (我们上次课讨论过)
 - 1 = ax+ny 利用Extended-Euclid求gcd(a,n)=1,得到的x即a⁻¹

- 什么是<a>? (注意TC与TJ在定义上的区别)
- 什么时候<a>=Z_n? 如果<a>≠Z_n,那么a、<a>分别有什么特征?

• 你理解Euler's phi function了吗?

$$\phi(n) = n \prod_{p : p \text{ is prime and } p \mid n} \left(1 - \frac{1}{p}\right)$$

它和(ℤ;…)有什么关系? 当n是质数时,你能算出φ(n)吗?

• 当m和n互质时, φ(mn)=φ(m)φ(n), 你能证明吗?

Theorem 31.27 (Chinese remainder theorem)

Let $n = n_1 n_2 \cdots n_k$, where the n_i are pairwise relatively prime. Consider the correspondence

$$a \leftrightarrow (a_1, a_2, \dots, a_k)$$
, (31.27)

where $a \in \mathbb{Z}_n$, $a_i \in \mathbb{Z}_{n_i}$, and

 $a_i = a \mod n_i$

for $i=1,2,\ldots,k$. Then, mapping (31.27) is a one-to-one correspondence (bijection) between \mathbb{Z}_n and the Cartesian product $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_k}$. Operations performed on the elements of \mathbb{Z}_n can be equivalently performed on the corresponding k-tuples by performing the operations independently in each coordinate position in the appropriate system. That is, if

$$a \leftrightarrow (a_1, a_2, \dots, a_k),$$

 $b \leftrightarrow (b_1, b_2, \dots, b_k),$

then

$$(a+b) \bmod n \iff ((a_1+b_1) \bmod n_1, \dots, (a_k+b_k) \bmod n_k),$$
 (31.28)

$$(a-b) \bmod n \quad \leftrightarrow \quad ((a_1-b_1) \bmod n_1, \dots, (a_k-b_k) \bmod n_k) \,, \tag{31.29}$$

$$(ab) \bmod n \leftrightarrow (a_1b_1 \bmod n_1, \dots, a_kb_k \bmod n_k)$$
. (31.30)

Proof: Let $\mathbb{Z}_m \times \mathbb{Z}_n$ denote the set of all pairs (X, Y) such that $X \in \mathbb{Z}_m$ and $Y \in \mathbb{Z}_n$. We define a function $f: \mathbb{Z}_{mn} \to \mathbb{Z}_m \times \mathbb{Z}_n$ by the formula $f([a]_{mn}) = ([a]_n, [a]_m)$. Since m and n divide mn, this function is well defined (does not depend on the choice of the representative a). Since $\gcd(m,n)=1$, the Chinese remainder theorem implies that this function establishes a one-to-one correspondence between the sets \mathbb{Z}_{mn} and $\mathbb{Z}_m \times \mathbb{Z}_n$.

Furthermore, an integer a is coprime with mn if and only if it is coprime with m and with n. Therefore the function f also establishes a one-to-one correspondence between G_{mn} and $G_m \times G_n$, the latter being the set of pairs (X, Y) such that $X \in G_m$ and $Y \in G_n$. It follows that the sets G_{mn} and $G_m \times G_n$ consist of the same number of elements. Thus $\phi(mn) = \phi(m)\phi(n)$. $\mathring{\Sigma} = 0$

Draw the group operation tables for the groups (Z₄, +₄) and (Z₅*, ·₅). Show that these groups are isomorphic by exhibiting a one-to-one correspondence α between their elements such that a + b ≡ c (mod 4) if and only if α(a) · α(b) ≡ α(c) (mod 5).

- Draw the group operation tables for the groups (Z₄, +₄) and (Z₅*, ·₅). Show that these groups are isomorphic by exhibiting a one-to-one correspondence α between their elements such that a + b ≡ c (mod 4) if and only if α(a) · α(b) ≡ α(c) (mod 5).
- 任意Z_i,是不是一定能找到Z_j*与之同构? 任意Z_j*,是不是一定能找到Z_i与之同构? 如果能,请说明原因;如果不能,请给出反例。

- Draw the group operation tables for the groups (Z₄, +₄) and (Z₅*, ·₅). Show that these groups are isomorphic by exhibiting a one-to-one correspondence α between their elements such that a + b ≡ c (mod 4) if and only if α(a) · α(b) ≡ α(c) (mod 5).
- 任意Z_i,是不是一定能找到Z_i*与之同构? 任意Z_i*,是不是一定能找到Z_i与之同构? 如果能,请说明原因;如果不能,请给出反例。

 $\varphi(n)$ is the number of numbers k, with $1 \le k \le n$, such that $\gcd(n,k)=1$. Clearly, if $\gcd(k,n)=1$, then $\gcd(n-k,n)=1$ as well, so (for n>2) all the numbers relatively prime to n can be matched up into pairs $\{k,n-k\}$. So $\varphi(n)$ is even. (In particular, k=n-k means that n=2k and $\gcd(n,k)=\gcd(2k,k)=k>1$.)

问题3: powers of an element

• 在这个算法中, c的作用是什么? 你能简要解释这个算法的正确性证明吗?

Just prior to each iteration of the for loop of lines 4-9,

- 1. The value of c is the same as the prefix $(b_k, b_{k-1}, \dots, b_{i+1})$ of the binary representation of b, and
- 2. $d = a^c \mod n$.
- 你会分析这个算法的运行时间吗?

```
MODULAR-EXPONENTIATION (a, b, n)

1 c = 0

2 d = 1

3 let \langle b_k, b_{k-1}, \dots, b_0 \rangle be the binary representation of b

4 for i = k downto 0

5 c = 2c

6 d = (d \cdot d) \mod n

7 if b_i == 1

8 c = c + 1

9 d = (d \cdot a) \mod n

10 return d
```