

Punkt-Warping: Inversionsmethode mit Hashing

Interaktive Echtzeitsysteme

Lukas Knirsch | 12. Januar 2022

Betreuer: Daniel Frisch

www.kit.edu

Inhaltsverzeichnis

- 1. Einstieg
- 2. Funktionsweise
- 3. Vergleich
- 4. Implementierung
- 5. Zusammenfassung

Punkte nach Dichtefunktion im Raum verteilen

Funktionsweise 0000000

Vergleich

Implementierung

- Punkte nach Dichtefunktion im Raum verteilen.
- Mehrere existierende Verfahren
 - Halton (Wong, Luk und Heng 1997)
 - Blue Noise (Yan u. a. 2015)

- Punkte nach Dichtefunktion im Raum verteilen
- Mehrere existierende Verfahren
 - Halton (Wong, Luk und Heng 1997)
 - Blue Noise (Yan u. a. 2015)
- Erweiterung: gleichmäßige Verteilung
 - Golden Ratio Sequences + Halton/Blue Noise (Schretter, Kobbelt und Dehaye 2012)
 - Fibonacci Grids (Frisch und Hanebeck 2021)

- Punkte nach Dichtefunktion im Raum verteilen
- Mehrere existierende Verfahren
 - Halton (Wong, Luk und Heng 1997)
 - Blue Noise (Yan u. a. 2015)
- Erweiterung: gleichmäßige Verteilung
 - Golden Ratio Sequences + Halton/Blue Noise (Schretter, Kobbelt und Dehaye 2012)
 - Fibonacci Grids (Frisch und Hanebeck 2021)
- Ziel 1: effizientes Vorgehen

- Punkte nach Dichtefunktion im Raum verteilen
- Mehrere existierende Verfahren
 - Halton (Wong, Luk und Heng 1997)
 - Blue Noise (Yan u. a. 2015)
- Erweiterung: gleichmäßige Verteilung
 - Golden Ratio Sequences + Halton/Blue Noise (Schretter, Kobbelt und Dehaye 2012)
 - Fibonacci Grids (Frisch und Hanebeck 2021)
- Ziel 1: effizientes Vorgehen
- Ziel 2: mehrdimensional anwendbar

- Punkte nach Dichtefunktion im Raum verteilen
- Mehrere existierende Verfahren
 - Halton (Wong, Luk und Heng 1997)
 - Blue Noise (Yan u. a. 2015)
- Erweiterung: gleichmäßige Verteilung
 - Golden Ratio Sequences + Halton/Blue Noise (Schretter, Kobbelt und Dehaye 2012)
 - Fibonacci Grids (Frisch und Hanebeck 2021)
- Ziel 1: effizientes Vorgehen
- Ziel 2: mehrdimensional anwendbar
- Ziel 3: unabhängig von bestimmten Eigenschaften der Funktion einsetzbar

Ziel

Abbildung: Schretter, Kobbelt und Dehaye 2012

Inversionsmethode

3 2 0 -1 -2 -3 -4 + 0.0 0.2 0.4 0.6 0.8 1.0

(a) F mit Werten von −4 bis 4

(b) F^{-1} mit Werten von 0 bis 1

Einstieg 00

Funktionsweise •000000

Vergleich

Implementierung

Inversionsmethode

- Inverse einer Dichtefunktion benötigt
- Entweder bekannt oder numerisch integrierbar/annäherbar

Name	Funktion F	Zufällige Variable F^{-1}
Exponentiell	$1 - e^{-x}$	$\log(1/U)$
Logistisch	$1/(1+e^{-x})$	$-\log(\frac{1-U}{U})$
Cauchy	$1/2 + (1/\pi) \operatorname{arctan}(x)$	$ ag{tan}(\pi U)$

Tabelle: Devroye 1986

Einstieg 00

Funktionsweise 000000

Vergleich

Implementierung

Inversionsmethode

- Inverse einer Dichtefunktion benötigt
- Entweder bekannt oder numerisch integrierbar/annäherbar

Name	Funktion F	Zufällige Variable F^{-1}
Exponentiell	$1 - e^{-x}$	$\log(1/U)$
Logistisch	$1/(1+e^{-x})$	$-\log(\frac{1-U}{U})$
Cauchy	$1/2 + (1/\pi) \operatorname{arctan}(x)$	$ ag{tan}(\pi U)$

Tabelle: Devroye 1986

→ **Problem:** einfache Inversionsmethode ineffizient

Eins	stiea
00	3

Initialisierung.

Funktion C_F und Wahrscheinlichkeiten v_j , $j \in [1, n]$

Einstieg 00

Funktionsweise 0000000

Vergleich

Implementierung

Initialisierung.

Funktion C_F und Wahrscheinlichkeiten v_i , $j \in [1, n]$

• $C_F(v_{i-1}) < U \le C_F(v_i)$ (1) benötigt naiv O(n)

Einstieg 00

Funktionsweise 0000000

Vergleich

Implementierung

Initialisierung.

Funktion C_F und Wahrscheinlichkeiten v_i , $j \in [1, n]$

- $C_F(v_{i-1}) < U \le C_F(v_i)$ (1) benötigt naiv O(n)
- Berechne $I_i = |C_F(v_i) * d| + 1$ (2)

Einstieg 00

Funktionsweise 0000000

Vergleich

Implementierung

Initialisierung.

Funktion C_F und Wahrscheinlichkeiten v_i , $j \in [1, n]$

- $C_F(v_{i-1}) < U \le C_F(v_i)$ (1) benötigt naiv O(n)
- Berechne $I_i = |C_F(v_i) * d| + 1$ (2)
- für Tabelleneintrag $T(I_i) = k$, sodass I(k) = I(j).

Generierung.

Hashtabelle mit Einträgen T(i) und Zufallszahl U.

Einstieg 00

Funktionsweise 0000000

Vergleich

Implementierung

Generierung.

Hashtabelle mit Einträgen T(i) und Zufallszahl U.

■ Berechne *I_U* mit (2)

Einstieg 00

Funktionsweise 0000000

Vergleich

Implementierung

Generierung.

Hashtabelle mit Einträgen T(i) und Zufallszahl U.

- Berechne *I_U* mit (2)
- für Index $i = T(I_U)$.

Generierung.

Hashtabelle mit Einträgen T(i) und Zufallszahl U.

- Berechne *I_U* mit (2)
- für Index $i = T(I_U)$.
- Überprüfe Menge der Teilmengen $\{C_F(v_i), \ldots, C_F(v_{r-1})\}$ mit (1), sodass $I(i) \neq I(r)$ und r > i.

Generierung.

Hashtabelle mit Einträgen T(i) und Zufallszahl U.

- Berechne I_U mit (2)
- für Index $i = T(I_U)$.
- Überprüfe Menge der Teilmengen $\{C_F(v_i), \ldots, C_F(v_{r-1})\}$ mit (1), sodass $I(i) \neq I(r)$ und r > i.
- Sobald Ungleichung (1) erfüllt, ist $X = v_i$

Einstieg

Funktionsweise

Vergleich

Implementierung

Abbildung: Verteilungsfunktion F (orange) und ihre kumulative Dichte C_F Funktionsweise Vergleich Implementierung 0000000

Einstieg 00

X_j	$C_{\mathrm{F}}(X_{j})$		X_j	$C_{\mathrm{F}}(X_{j})$
<i>V</i> ₁	0.021	-	<i>V</i> ₇	0.592
<i>V</i> ₂	0.060		<i>V</i> ₈	0.634
<i>V</i> ₃	0.134		V 9	0.698
<i>V</i> ₄	0.237		<i>V</i> ₁₀	0.895
<i>V</i> ₅	0.385		<i>V</i> ₁₁	0.907
<i>V</i> ₆	0.501		<i>V</i> ₁₂	1.000

Tabelle: Chen und Asau 1974

Einstieg 00

Funktionsweise 0000000

Vergleich

Implementierung

X_j	$C_{\mathrm{F}}(X_{j})$	I_j	X_j	$C_{\mathrm{F}}(X_{j})$
<i>V</i> ₁	0.021	1	V ₇	0.592
<i>V</i> ₂	0.060	1	<i>V</i> ₈	0.634
<i>V</i> ₃	0.134	2	V 9	0.698
V_4	0.237	3	<i>V</i> ₁₀	0.895
<i>V</i> ₅	0.385	4	<i>V</i> ₁₁	0.907
<i>V</i> ₆	0.501	6	<i>V</i> ₁₂	1.000

Tabelle: Chen und Asau 1974

Einstieg oo Funktionsweise

Vergleich

Implementierung

X_j	$C_F(X_j)$	<i>I</i> j	X_j	$C_F(X_j)$	l _j
<i>V</i> ₁	0.021	1	V ₇	0.592	6
<i>V</i> ₂	0.060	1	<i>V</i> ₈	0.634	7
<i>V</i> ₃	0.134	2	V 9	0.698	7
V_4	0.237	3	<i>V</i> ₁₀	0.895	9
V 5	0.385	4	<i>V</i> ₁₁	0.907	10
<i>v</i> ₆	0.501	6	<i>V</i> ₁₂	1.000	11

Tabelle: Chen und Asau 1974

Einstieg 00

Funktionsweise 0000000

Vergleich

Implementierung

X_j	$C_F(X_j)$	I_j	 X_j	$C_{\mathrm{F}}(X_{j})$	l _j
	0.021	1	 V 7	0.592	6
<i>V</i> ₂	0.060	1	<i>V</i> ₈	0.634	7
<i>V</i> ₃	0.134	2	V 9	0.698	7
V_4	0.237	3	<i>V</i> ₁₀	0.895	9
<i>V</i> ₅	0.385	4	<i>V</i> ₁₁	0.907	10
<i>v</i> ₆	0.501	6	<i>V</i> ₁₂	1.000	11

Tabelle: Chen und Asau 1974

Einstieg oo Funktionsweise

Vergleich

Implementierung

X_j	$C_F(X_j)$	I_j	$T(I_j)$	X_j	$C_F(X_j)$	<i>I</i> _j
<i>V</i> ₁	0.021	1	1	V 7	0.592	6
<i>V</i> ₂	0.060	1	1	<i>V</i> ₈	0.634	7
<i>V</i> ₃	0.134	2	3	V 9	0.698	7
<i>V</i> ₄	0.237	3	4	<i>V</i> ₁₀	0.895	9
<i>V</i> ₅	0.385	4	5	<i>V</i> ₁₁	0.907	10
<i>V</i> ₆	0.501	6	6	<i>V</i> ₁₂	1.000	11

Tabelle: Chen und Asau 1974

Einstieg oo Funktionsweise

Vergleich

Implementierung

X_j	$C_{\mathrm{F}}(X_{j})$	I_j	$T(\mathit{I}_{j})$	X_j	$C_{\mathrm{F}}(X_j)$	I_j	
	0.021	1	1	V ₇	0.592	6	
<i>V</i> ₂	0.060	1	1	<i>V</i> ₈	0.634	7	
<i>V</i> ₃	0.134	2	3	V 9	0.698	7	
<i>V</i> ₄	0.237	3	4	<i>V</i> ₁₀	0.895	9	
<i>V</i> ₅	0.385	4	5	V ₁₁	0.907	10	
<i>v</i> ₆	0.501	6	6	<i>V</i> ₁₂	1.000	11	

Tabelle: Chen und Asau 1974

Einstieg oo Funktionsweise

Vergleich

Implementierung

X_j	$C_{\mathrm{F}}(X_{j})$	I_j	$T(I_j)$	X_j	$C_{\mathrm{F}}(X_{j})$	I_j	$T(I_j)$
<i>V</i> ₁	0.021	1	1	V ₇	0.592	6	6
V_2	0.060	1	1	<i>V</i> ₈	0.634	7	8
<i>V</i> ₃	0.134	2	3	V 9	0.698	7	8
V_4	0.237	3	4	<i>V</i> ₁₀	0.895	9	10
<i>V</i> ₅	0.385	4	5	V ₁₁	0.907	10	11
<i>v</i> ₆	0.501	6	6	<i>V</i> ₁₂	1.000	11	12

Tabelle: Chen und Asau 1974

Einstieg 00

Funktionsweise 0000000

Vergleich

Implementierung

u = 0.642

X_{j}	$C_F(X_j)$	I_j	$T(I_j)$
V ₇	0.592	6	6
<i>V</i> ₈	0.634	7	8
V 9	0.698	7	8
<i>V</i> ₁₀	0.895	9	10
<i>V</i> ₁₁	0.907	10	11
V ₁₂	1.000	11	12

Chen und Asau 1974

Einstieg 00

Funktionsweise 000000

Vergleich

Implementierung

u = 0.642

$$I_u = |u * 10| + 1 = 7$$

X_{j}	$C_{\mathrm{F}}(X_{j})$	I_j	$T(\mathit{I}_{j})$
V ₇	0.592	6	6
<i>V</i> ₈	0.634	7	8
V 9	0.698	7	8
<i>V</i> ₁₀	0.895	9	10
V ₁₁	0.907	10	11
V ₁₂	1.000	11	12

Chen und Asau 1974

Einstieg oo Funktionsweise ○○○○○● Vergleich

Implementierung

u = 0.642

- $I_u = |u * 10| + 1 = 7$
- $i = T(I_u) = T(7) = 8$

X_{j}	$C_{\mathrm{F}}(X_{j})$	I_j	$T(\mathit{I}_{j})$
V ₇	0.592	6	6
<i>V</i> ₈	0.634	7	8
V 9	0.698	7	8
<i>V</i> ₁₀	0.895	9	10
<i>V</i> ₁₁	0.907	10	11
V ₁₂	1.000	11	12

Chen und Asau 1974

Einstieg 00

Funktionsweise 000000

Vergleich

Implementierung

u = 0.642

$$I_u = |u * 10| + 1 = 7$$

•
$$i = T(I_u) = T(7) = 8$$

■ r ist nächstgrößerer Index, sodass $T(v_r) \neq T(v_i)$, also r = 10

X	i	$C_F(X_j)$	l _j	$T(I_j)$
V_7		0.592	6	6
<i>V</i> 8	}	0.634	7	8
V g)	0.698	7	8
<i>V</i> ₁	0	0.895	9	10
<i>V</i> ₁	1	0.907	10	11
<i>V</i> ₁	2	1.000	11	12

Chen und Asau 1974

Einstieg

Funktionsweise

Vergleich

Implementierung

u = 0.642

$$I_u = |u * 10| + 1 = 7$$

$$i = T(I_u) = T(7) = 8$$

- ightharpoonup r ist nächstgrößerer Index, sodass $T(v_r) \neq r$ $T(v_i)$, also r=10
- $F(v_{i-1}) < u \le F(v_r)$

X_j	$C_F(X_j)$	l _j	$T(I_j)$
V ₇	0.592	6	6
<i>V</i> ₈	0.634	7	8
V 9	0.698	7	8
<i>V</i> ₁₀	0.895	9	10
<i>V</i> ₁₁	0.907	10	11
V ₁₂	1.000	11	12

Chen und Asau 1974

Einstiea

Funktionsweise 000000

Veraleich

Implementierung

u = 0.642

$$I_u = |u * 10| + 1 = 7$$

$$i = T(I_u) = T(7) = 8$$

ightharpoonup r ist nächstgrößerer Index, sodass $T(v_r) \neq r$ $T(v_i)$, also r=10

$$F(v_{i-1}) < u \le F(v_r)$$

X_{j}	$C_F(X_j)$	l _j	$T(I_j)$
	0.592	6	6
<i>v</i> ₈	0.634	7	8
V 9	0.698	7	8
<i>V</i> ₁₀	0.895	9	10
V ₁₁	0.907	10	11
V ₁₂	1.000	11	12

Chen und Asau 1974

Einstiea

Funktionsweise 000000

Veraleich

Implementierung

u = 0.642

$$I_u = |u * 10| + 1 = 7$$

•
$$i = T(I_{\mu}) = T(7) = 8$$

• r ist nächstgrößerer Index, sodass $T(v_r) \neq$ $T(v_i)$, also r=10

$$F(v_{i-1}) < u \le F(v_r)$$

$$u < F(v_9) \rightarrow X = v_9$$

X_j	$C_F(X_j)$	l _j	$T(I_j)$
V ₇	0.592	6	6
<i>V</i> ₈	0.634	7	8
V 9	0.698	7	8
<i>V</i> ₁₀	0.895	9	10
<i>V</i> ₁₁	0.907	10	11
<i>V</i> ₁₂	1.000	11	12

Chen und Asau 1974

Einstiea

Funktionsweise 000000

Veraleich

Implementierung

Vergleich der Invertierungsmethoden

Größe	Methode	Anzahl an generierten Zufallsvariablen						
		200	300	500	1000	3000	7000	
5	Standard	0.0623	0.0914	0.1511	0.3062	0.9498	2.1846	
	Binäre Suche	0.08493	0.1245	0.2152	0.4230	1.2352	3.01873	
	Hash-basiert	0.0826	0.1233	0.2117	0.4296	1.1698	2.48563	
50	Standard	0.1834	0.2959	0.5357	0.9973	3.1 698	7.1161	
	Binäre Suche	0.1549	0.2245	0.3745	0.7491	2.3863	5.3035	
	Hash-basiert	0.0865	0.1288	0.2161	0.4401	1.4096	2.970	
100	Standard	0.3465	0.5 196	0.8968	1.8139	5.4206	11.2695	
	Binäre Suche	0.17373	0.261 2	0.4399	0.8641	2.4420	6.23313	
	Hash-basiert	0.09593	0.1 469	0.2488	0.5282	1.5539	3.51973	

Tabelle: Chen und Asau 1974

Einstieg 00

Funktionsweise 0000000

Vergleich

Implementierung

Vergleich der Invertierungsmethoden

Größe	Methode	Anzahl an generierten Zufallsvariablen						
		200	300	500	1000	3000	7000	
5	Standard	0.0623	0.0914	0.1511	0.3062	0.9498	2.1846	
	Binäre Suche	0.08493	0.1245	0.2152	0.4230	1.2352	3.01873	
	Hash-basiert	0.0826	0.1233	0.2117	0.4296	1.1698	2.48563	
50	Standard	0.1834	0.2959	0.5357	0.9973	3.1 698	7.1161	
	Binäre Suche	0.1549	0.2245	0.3745	0.7491	2.3863	5.3035	
	Hash-basiert	0.0865	0.1288	0.2161	0.4401	1.4096	2.970	
100	Standard	0.3465	0.5 196	0.8968	1.8139	5.4206	11.2695	
	Binäre Suche	0.17373	0.261 2	0.4399	0.8641	2.4420	6.23313	
	Hash-basiert	0.09593	0.1 469	0.2488	0.5282	1.5539	3.51973	

Tabelle: Chen und Asau 1974

Einstieg 00

Funktionsweise 0000000

Vergleich

Implementierung

Vergleich der Invertierungsmethoden

Größe	Methode	Anzahl an generierten Zufallsvariablen						
		200	300	500	1000	3000	7000	
5	Standard	0.0623	0.0914	0.1511	0.3062	0.9498	2.1846	
	Binäre Suche	0.08493	0.1245	0.2152	0.4230	1.2352	3.01873	
	Hash-basiert	0.0826	0.1233	0.2117	0.4296	1.1698	2.48563	
50	Standard	0.1834	0.2959	0.5357	0.9973	3.1 698	7.1161	
	Binäre Suche	0.1549	0.2245	0.3745	0.7491	2.3863	5.3035	
	Hash-basiert	0.0865	0.1288	0.2161	0.4401	1.4096	2.970	
100	Standard	0.3465	0.5 196	0.8968	1.8139	5.4206	11.2695	
	Binäre Suche	0.17373	0.261 2	0.4399	0.8641	2.4420	6.23313	
	Hash-basiert	0.09593	0.1 469	0.2488	0.5282	1.5539	3.51973	

Tabelle: Chen und Asau 1974

Einstieg oo Funktionsweise

Vergleich

Implementierung

Beispielcode

```
\label{eq:continuity} \begin{split} & \textbf{function} \  \, \text{SEARCH\_SINGLE}(\textit{self}, \, \textbf{U}) \\ & Z \leftarrow \textit{self}.\textit{hash}(\textbf{U}) \\ & \text{while} \  \, \textit{self}.T[Z] \leq \textbf{U} \  \, \textbf{do} \  \, \textbf{Z} \leftarrow \textbf{Z} + \textbf{1} \\ & \text{end while} \\ & \text{return} \  \, \textit{self}.PS[Z] \\ & \text{end function} \end{split}
```

Knirsch 2021

Einstieg oo Funktionsweise

Vergleich

Implementierung

Kurz & Knapp

Schnelle Generierung von großen Datenmengen

Einstieg oo Funktionsweise

Vergleich

Implementierung o

Kurz & Knapp

- Schnelle Generierung von großen Datenmengen
- Beibehaltung aller Eigenschaften der ursprünglichen Funktion

Einstieg oo Funktionsweise

Vergleich

Implementierung

Kurz & Knapp

- Schnelle Generierung von großen Datenmengen
- Beibehaltung aller Eigenschaften der ursprünglichen Funktion
- einfaches Prinzip

Einstieg 00

Funktionsweise

Vergleich

Implementierung

■ Problem: Funktion mit sehr hoher Dichte an wenigen Stellen, sonst nur geringe Dichte.

Einstieg oo Funktionsweise

Vergleich

Implementierung

- Problem: Funktion mit sehr hoher Dichte an wenigen Stellen, sonst nur geringe Dichte.
 - → Dort fallen alle Punkte zusammen.

Einstieg oo Funktionsweise

Vergleich

Implementierung

- Problem: Funktion mit sehr hoher Dichte an wenigen Stellen, sonst nur geringe Dichte.
 - → Dort fallen alle Punkte zusammen.
 - → Hohe Ungenauigkeit an wichtigen Stellen.

Einstieg

Funktionsweise

Vergleich

Implementierung

- Problem: Funktion mit sehr hoher Dichte an wenigen Stellen, sonst nur geringe Dichte.
 - → Dort fallen alle Punkte zusammen.
 - → Hohe Ungenauigkeit an wichtigen Stellen.
- **Lösung:** Hashtabelle nicht gleichmäßig populieren, sondern für diese Stellen höhere Genauigkeit durch mehr Einträge ermöglichen.

Einstieg

Funktionsweise

Vergleich

Implementierung

- Problem: Funktion mit sehr hoher Dichte an wenigen Stellen, sonst nur geringe Dichte.
 - → Dort fallen alle Punkte zusammen.
 - → Hohe Ungenauigkeit an wichtigen Stellen.
- **Lösung:** Hashtabelle nicht gleichmäßig populieren, sondern für diese Stellen höhere Genauigkeit durch mehr Einträge ermöglichen.
- Allerdings: stark erhöhter Initialisierungsaufwand

Einstieg

Funktionsweise

Vergleich

Implementierung

Literatur I

- [1] Hui-Chuan Chen und Yoshinori Asau. "On Generating Random Variates from an Empirical Distribution". In: *A I I E Transactions* 6.2 (1974), S. 163–166. DOI: 10.1080/05695557408974949. eprint: https://doi.org/10.1080/05695557408974949. URL: https://doi.org/10.1080/05695557408974949.
- [2] Luc Devroye. Non-Uniform Random Variate Generation. Springer New York, 1986.
- [3] Daniel Frisch und Uwe D. Hanebeck. "Deterministic Gaussian Sampling With Generalized Fibonacci Grids". In: *Proceedings of the 24th International Conference on Information Fusion (Fusion 2021)*. South Africa, Nov. 2021.
- [4] Lukas Knirsch. *Punkt-Warping: Inversionsmethode mit Hash-Tabelle*. GitHub-Repository. 2021. URL: https:github.com/knirschl/Proseminar-Anthropomatik.
- [5] Colas Schretter, Leif Kobbelt und Paul-Olivier Dehaye. "Golden Ratio Sequences for Low-Discrepancy Sampling". In: *Journal of Graphics Tools* 16 (Juni 2012), S. 9. DOI: 10.1080/2165347X.2012.679555.

Anhang

Literatur o

12.01.2022

Literatur II

- Tien-Tsin Wong, Wai-Shing Luk und Pheng-Ann Heng. "Sampling with Hammersley and Halton Points". In: Journal of Graphics Tools 2.2 (1997), S. 9-24. DOI: 10.1080/10867651.1997.10487471. eprint: https://doi.org/10.1080/10867651.1997.10487471.URL: https://doi.org/10.1080/10867651.1997.10487471.
- [7] Dong-Ming Yan u. a. "A survey of blue-noise sampling and its applications". In: Journal of Computer Science and Technology 30.3 (2015), S. 439–452.

Anhana

Literatur

Vielen Dank für Ihre Aufmerksamkeit!