TM-Wettbewerb: Maschinen mit <u>n Zuständen</u> konkurrieren, wer läuft am längesten (Maschinen die nicht halten sind disqualifiziert)

→ "fleißige Bieber"

TM-Wettbewerb: Maschinen mit n Zuständen konkurrieren, wer läuft am längesten (Maschinen die nicht halten sind disqualifiziert)

→ "fleißige Bieber"

Definition (Fleißige Bieber, [Radó '62])

Für jedes Codewort w einer Turing-Maschine M. sei

s(w) = Anzahl Schritte die M (bei leerer Eingabe) macht (0 falls M nicht hält) und

 $e(w) = Anzahl (nicht-\Box)$ Symbole auf dem Band wenn M (bei leerer Eingabe) hält (sonst 0).

TM-Wettbewerb: Maschinen mit n Zuständen konkurrieren, wer läuft am längesten (Maschinen die nicht halten sind disqualifiziert)

→ "fleißige Bieber"

Definition (Fleißige Bieber, [Radó '62])

Für jedes Codewort w einer Turing-Maschine M, sei s(w) = Anzahl Schritte die M (bei leerer Eingabe) macht (0 falls M nicht hält) und $e(w) = \text{Anzahl (nicht-}\square)$ Symbole auf dem Band wenn M (bei leerer Eingabe) hält (sonst 0). Für jedes $n \in \mathbb{N}$ sei \mathcal{M} (n) die Menge aller Turing-Maschinen $M = (Z, \Sigma, \Gamma, \delta, \Box, z_0, E)$ mit

$$|Z| = n$$
 $\Sigma = \{0, 1\}$ $\Gamma = \Sigma \cup \{\Box\}.$

TM-Wettbewerb: Maschinen mit n Zuständen konkurrieren, wer läuft am längesten (Maschinen die nicht halten sind disqualifiziert)

→ "fleißige Bieber"

Definition (Fleißige Bieber, [Radó '62])

Für jedes Codewort w einer Turing-Maschine M, sei

$$s(w) = \text{Anzahl Schritte die } M$$
 (bei leerer Eingabe) macht (0 falls M nicht hält) und

$$e(w) = \text{Anzahl (nicht-})$$
 Symbole auf dem Band wenn M (bei leerer Eingabe) hält (sonst 0).

Für jedes
$$n \in \mathbb{N}$$
 sei \mathcal{M} (n) die Menge aller Turing-Maschinen $M = (Z, \Sigma, \Gamma, \delta, \Box, z_0, E)$ mit

$$|Z| = \underline{n}$$
 $\Sigma = \{0, 1\}$ $\Gamma = \Sigma \cup \{\Box\}.$

Wir definieren die Funktionen

$$\underline{S(n)} := \max_{M \in \mathcal{M}(n)} \underline{s(\langle M \rangle)} \qquad \underline{E(n)} := \max_{M \in \mathcal{M}(n)} \underline{e(\langle M \rangle)}$$

Eine Maschine $M \in \mathcal{M}$ (n) heißt **fleißiger Bieber** (busy beaver) falls M auf leerer Eingabe E (n) nicht- \square Symbole auf das Band schreibt und dann hält.

TM-Wettbewerb: Maschinen mit n Zuständen konkurrieren, wer läuft am längesten (Maschinen die nicht halten sind disqualifiziert)

→ "fleißige Bieber"

Definition (Fleißige Bieber, [Radó '62])

Für jedes Codewort w einer Turing-Maschine M, sei

$$s(w) = \text{Anzahl Schritte die } M$$
 (bei leerer Eingabe) macht (0 falls M nicht hält) und

$$e(w) = \text{Anzahl (nicht-}\square)$$
 Symbole auf dem Band wenn M (bei leerer Eingabe) hält (sonst 0).

Für jedes $n \in \mathbb{N}$ sei $\mathcal{M}_1(n)$ die Menge aller Turing-Maschinen $M = (Z, \Sigma, \Gamma, \delta, \Box, z_0, E)$ mit

$$|Z| = n$$
 $\Gamma = \Sigma \cup \{\Box\}.$

Wir definieren die Funktionen

$$\underline{S_1(n)} := \max_{M \in \mathcal{M}_1(n)} s(\langle M \rangle) \qquad \underline{E_1(n)} := \max_{M \in \mathcal{M}_1(n)} e(\langle M \rangle)$$

Eine Maschine $M \in \mathcal{M}_1(n)$ heißt unärer fleißiger Bieber (busy beaver) falls M auf leerer Eingabe $E_1(n)$ nicht- \square Symbole auf das Band schreibt und dann hält.

Theorem

Die Funktion *S* ist nicht Turing-berechenbar.

Theorem

Die Funktion *S* ist nicht Turing-berechenbar.

Beweis

Annahme: S ist Turing-berechenbar

 \sim *S* wird von einer Turing-Maschine berechnet.

 \leadsto es gibt $\underline{n} \in \mathbb{N}$ sodass S von einer Turing-Maschine $\underline{M_{BB} \in \mathcal{M}(n)}$ berechnet wird.

Theorem

Die Funktion *S* ist nicht Turing-berechenbar.

Beweis

Annahme: *S* ist Turing-berechenbar

- → S wird von einer Turing-Maschine berechnet.
- \sim es gibt $n \in \mathbb{N}$ sodass S von einer Turing-Maschine $M_{BB} \in \mathcal{M}(n)$ berechnet wird.

Sei M' die Maschine, die wie folgt agiert:

- 1. verdopple die Zahl auf dem Band
- simuliere M_{BB}
 wandle das binäre Ausgabewort in unär

Sei n' die Anzahl Zustände von M'.

Theorem

Die Funktion *S* ist nicht Turing-berechenbar.

Beweis

Annahme: S ist Turing-berechenbar

 \sim *S* wird von einer Turing-Maschine berechnet.

 \longrightarrow es gibt $n \in \mathbb{N}$ sodass \underline{S} von einer Turing-Maschine $\underline{M_{BB}} \in \underline{\mathcal{M}(n)}$ berechnet wird.

Sei M' die Maschine, die wie folgt agiert:

1. verdopple die Zahl auf dem Band

2. simuliere M_{BB}

3. wandle das binäre Ausgabewort in unär

Sei $\underline{n'}$ die Anzahl Zustände von M'.

Sei <u>M"</u> die Maschine, die wie folgt agiert:

binar ->unar

BIN(2h') M

1. erzeuge die Zahl <u>n'</u> auf dem Band

erzense h

n'zust_2. simuliere M/ ->n' zustande

sodass $\underline{M''}$ genau $\underline{2n'}$ Zustände hat.

Theorem

Die Funktion *S* ist nicht Turing-berechenbar.

Beweis

Annahme: *S* ist Turing-berechenbar

 \sim *S* wird von einer Turing-Maschine berechnet.

 \sim es gibt $n \in \mathbb{N}$ sodass S von einer Turing-Maschine $M_{BB} \in \mathcal{M}(n)$ berechnet wird.

Sei M' die Maschine, die wie folgt agiert:

1. verdopple die Zahl auf dem Band

2. simuliere M_{RR}

3. wandle das binäre Ausgabewort in unär

Sei n' die Anzahl Zustände von M'.

Sei M'' die Maschine, die wie folgt agiert:

1. erzeuge die Zahl n' auf dem Band

2. simuliere M'

sodass M'' genau 2n' Zustände hat.

 $\sim M''$ hat 2n' Zustände aber M'' macht bei leerer Eingabe echt mehr als $\underline{S(2n')}$ Schritte \checkmark

Theorem

Die Funktion *S* ist nicht Turing-berechenbar.

Beweis

Annahme: S ist Turing-berechenbar

→ *S* wird von einer Turing-Maschine berechnet.

 \leadsto es gibt $n \in \mathbb{N}$ sodass S von einer Turing-Maschine $M_{BB} \in \mathcal{M}(n)$ berechnet wird.

Sei M' die Maschine, die wie folgt agiert: Sei M'' die Maschine, die wie folgt agiert:

1. verdopple die Zahl auf dem Band 1. erzeuge die Z 2. simuliere M_{BB} 2. simuliere M'

3. wandle das binäre Ausgabewort in unär sodass M'' genau 2n' Zustände hat.

 $\rightarrow M''$ hat 2n' Zustände aber M'' macht bei leerer Eingabe echt mehr als S(2n') Schritte $\frac{1}{2}$

Sei n' die Anzahl Zustände von M'.

Frage: Überlegen Sie sich den analogen Beweis dafür, dass *E* nicht Turing-berechenbar ist.

Mathias Weller (TU Berlin)

Berechenbarkeit und Komplexität (Un-)Entscheidbarkeit. Halteproblem

1. erzeuge die Zahl n' auf dem Band

Theorem

Die Funktion S wächst (asymptotisch) schneller als jede berechenbare Funktion!

Theorem

Beweis (Skizze)

Annahme: es gibt berechenbare Funktion \underline{f} und $\underline{n_0} \in \mathbb{N}$, sodass $\underline{f}(n) > \underline{S}(n)$ für alle $\underline{n} > \underline{n_0}$.

Theorem

Die Funktion S wächst (asymptotisch) schneller als jede berechenbare Funktion!

Beweis (Skizze)

Annahme: es gibt berechenbare Funktion \underline{f} und $\underline{n_0} \in \mathbb{N}$, sodass $\underline{f(n)} > \underline{S(n)}$ für alle $n > \underline{n_0}$.

- \sim bauen Turing-Maschine M, die entscheidet ob $w \in H_0$ für gegebene Codierung w einer TM mit $\Sigma = \{0,1\}$ und $\Gamma = \{0,1\}$ und n := |Z|
- mit $\Sigma = \{0,1\}$ und $\Gamma = \{0,1,\square\}$ und $\underline{n} := |Z|$.
- 11. $\underline{n} \leq \underline{n_0}$, dann gib fest verdrahtete Antwort aus (endlich viele) \longrightarrow $n > n_0$
- 2. berechne f(n)
- 13. simuliere M_w auf leerem Band höchstens f(n) Schritte
- ■4. gib aus, ob M_{w} nach höchstens f(n) Schritten hielt

Theorem

Die Funktion S wächst (asymptotisch) schneller als jede berechenbare Funktion!

Beweis (Skizze)

Annahme: es gibt berechenbare Funktion f und $n_0 \in \mathbb{N}$, sodass f(n) > S(n) für alle $n > n_0$.

- \rightarrow bauen Turing-Maschine M, die entscheidet ob $w \in H_0$ für gegebene Codierung w einer TM mit $\Sigma = \{0,1\}$ und $\Gamma = \{0,1,\square\}$ und n := |Z|.
 - 1. $n \le n_0$, dann gib fest verdrahtete Antwort aus (endlich viele)
 - 2. berechne f(n)
 - 3. simuliere M_w auf leerem Band höchstens f(n) Schritte
- *4. gib aus, ob M_w nach höchstens f(n) Schritten hielt \longrightarrow Ausquade $\mathcal{O}/1$
- \rightarrow die von M berechnete Funktion ist total und es gilt:

$$w \in H_0 \Leftrightarrow M_w$$
 hält auf leerem Band $\Leftrightarrow M_w$ hält auf leerem Band nach höchstens $f(n)$ Schritten $\Leftrightarrow M$ gibt 1 aus

Theorem

Die Funktion S wächst (asymptotisch) schneller als jede berechenbare Funktion!

Beweis (Skizze)

Annahme: es gibt berechenbare Funktion f und $n_0 \in \mathbb{N}$, sodass f(n) > S(n) für alle $n > n_0$.

 \leadsto bauen Turing-Maschine M, die entscheidet ob $w \in H_0$ für gegebene Codierung w einer TM mit $\Sigma = \{0,1\}$ und $\Gamma = \{0,1,\square\}$ und n := |Z|.

- 1. $n \le n_0$, dann gib fest verdrahtete Antwort aus (endlich viele)
- 2. berechne f(n)
- 3. simuliere M_w auf leerem Band höchstens f(n) Schritte universelle TK 4. gib aus, ob M_w nach höchstens f(n) Schritten hielt
- \rightarrow die von M berechnete Funktion ist total und es gilt:

$$w \in H_0 \Leftrightarrow M_w$$
 hält auf leerem Band

 $\Leftrightarrow M_W$ hält auf leerem Band nach höchstens f(n) Schritten $\Leftrightarrow M$ gibt 1 aus