Machine Learning

Lecture 9: Logistic Regression

Logistic Regression

Important analytic tool in natural and social sciences

 Baseline supervised machine learning tool for classification

Is also the foundation of neural networks

Generative and Discriminative Classifiers

Naive Bayes is a generative classifier

•by contrast:

 Logistic regression is a discriminative classifier

Generative and Discriminative Classifiers

Suppose we're distinguishing cat from dog images

imagenet

Generative Classifier:

- Build a model of what's in a cat image
 - Knows about whiskers, ears, eyes
 - Assigns a probability to any image:
 - how cat-y is this image?

Also build a model for dog images

Now given a new image:

Run both models and see which one fits better

Discriminative Classifier:

Just try to distinguish dogs from cats

Oh look, dogs have collars! Let's ignore everything else

Finding the correct class **c** given input **d** in Generative vs Discriminative Classifiers

• Naive Bayes

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} \quad \overbrace{P(d|c)}^{\text{likelihood prior}} \quad \overbrace{P(c)}^{\text{prior}}$$

• Logistic Regression

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} \quad \underset{c \in C}{\operatorname{posterior}}$$

Classification using Logistic Regression

LOGISTIC REGRESSION MODELLING

Components of a probabilistic machine learning classifier

Given *m* input/output pairs $(x^{(i)}, y^{(i)})$:

- 1. A **feature representation** of the input. For each input observation $x^{(i)}$, a vector of features $[x_1, x_2, ..., x_n]$. Feature j for input $x^{(i)}$ is x_j , more completely $x_j^{(i)}$, or sometimes $f_j(x)$.
- 2. A **classification function** that computes \hat{y} , the estimated class, via p(y|x), like the **sigmoid** or **softmax** functions.
- 3. An objective function for learning, like cross-entropy loss.
- An algorithm for optimizing the objective function: stochastic gradient descent.

The two phases of logistic regression

- **Training**: we learn weights *w* and *b* using **stochastic gradient descent** and **cross-entropy loss**.
- **Test**: Given a test example x we compute p(y|x) using learned weights w and b, and return whichever label (y = 1 or y = 0) is higher probability

Binary Classification in Logistic Regression

- •Given a series of input/output pairs:
 - $\bullet (x^{(i)}, y^{(i)})$
- For each observation $x^{(i)}$
 - We represent $x^{(i)}$ by a **feature vector** $[x_1, x_2, ..., x_n]$
 - We compute an output: a predicted class $\hat{y}^{(i)} \in \{0,1\}$

Logistic Regression for one observation x

- •Input observation: vector $x = [x_1, x_2, ..., x_n]$
- Weights: one per feature: $W = [w_1, w_2, ..., w_n]$
 - Sometimes we call the weights $\theta = [\theta_1, \theta_2, ..., \theta_n]$
- •Output: a predicted class $\hat{y} \in \{0,1\}$

How to do classification

- For each feature x_i, weight w_i tells us importance of x_i
 (Plus we'll have a bias b the intercept)
- We'll sum up all the weighted features and the bias

$$z = \sum_{i=1}^{n} w_i x_i + b$$

• If this sum is high, we say y=1; if low, then y=0

$$z = w \cdot x + b$$

But we want a probabilistic classifier!

- •We need to formalize "sum is high".
- We'd like a principled classifier that gives us a probability, just like Naive Bayes did
- We want a model that can tell us:

```
p(y=1|x; \theta)
p(y=0|x; \theta)
```

The problem: z isn't a probability, it's just a number!

$$z = w \cdot x + b$$

• Solution: use a function of z that goes from 0 to 1

$$y = \sigma(z) = \frac{1}{1 + e^{-z}} = \frac{1}{1 + \exp(-z)}$$

The very useful *sigmoid* or *logistic* function

Idea of logistic regression

- •We'll compute w·x+b
- And then we'll pass it through the sigmoid function:

$$\sigma(\mathbf{w}\cdot\mathbf{x}+\mathbf{b})$$

And we'll just treat it as a probability

Making probabilities with sigmoids

$$P(y=1) = \sigma(w \cdot x + b)$$

$$= \frac{1}{1 + \exp(-(w \cdot x + b))}$$

 $P(y=0) = 1 - \sigma(w \cdot x + b)$

 $= 1 - \frac{1}{1 + \exp(-(w \cdot x + b))}$

 $= \frac{\exp(-(w \cdot x + b))}{1 + \exp(-(w \cdot x + b))}$

Turning a probability into a classifier

$$\hat{y} = \begin{cases} 1 & \text{if } P(y=1|x) > 0.5 \\ 0 & \text{otherwise} \end{cases}$$

0.5 here is called the **decision boundary**

The probabilistic classifier

$$P(y=1) = \sigma(w \cdot x + b)$$

$$= \frac{1}{1 + e^{-(w \cdot x + b)}}$$

$$0.6$$

$$0.4$$

$$0.2$$

$$0.0_8$$

$$0.6$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.5$$

$$0.6$$

$$0.4$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.7$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0$$

Turning a probability into a classifier

 $\hat{y} = \begin{cases} 1 & \text{if } P(y=1|x) > 0.5 & \text{if } w \cdot x + b > 0 \\ 0 & \text{otherwise} & \text{if } w \cdot x + b < 0 \end{cases}$

if $w \cdot x + b \le 0$

Wait, where did the W's come from?

- Supervised classification:
 - We know the correct label y (either 0 or 1) for each x.
 - But what the system produces is an estimate, \hat{y}
- •We want to set w and b to minimize the **distance** between our estimate $\hat{y}^{(i)}$ and the true $y^{(i)}$.
 - We need a distance estimator: a loss function or a cost function
 - We need an optimization algorithm to update w and b to minimize the loss.

Learning components

- A loss function:
 - cross-entropy loss

- An optimization algorithm:
 - stochastic gradient descent

The distance between \hat{y} and y

We want to know how far is the classifier output:

$$\hat{y} = \sigma(w \cdot x + b)$$

•from the true output:

We'll call this difference:

 $L(\hat{y}, y)$ = how much \hat{y} differs from the true y

Intuition of negative log likelihood loss = cross-entropy loss

A case of conditional maximum likelihood estimation

 We choose the parameters w,b that maximize the log probability of the true y labels in the training data given the observations x

Deriving cross-entropy loss for a single observation **x**

- **Goal**: maximize probability of the correct label p(y|x)
- Since there are only 2 discrete outcomes (0 or 1) we can express the probability p(y|x) from our classifier (the thing we want to maximize) as

• noting:

if y=1, this simplifies to
$$\hat{y}$$
 if y=0, this simplifies to $1-\hat{y}$

Deriving cross-entropy loss for a single observation **x**

Goal: maximize probability of the correct label p(y|x)

Maximize:
$$p(y|x) = \hat{y}^y (1 - \hat{y})^{1-y}$$

• Now take the log of both sides (mathematically handy)

Maximize:
$$\log p(y|x) = \log [\hat{y}^y (1-\hat{y})^{1-y}]$$

= $y \log \hat{y} + (1-y) \log (1-\hat{y})$

• Whatever values maximize $\log p(y|x)$ will also maximize p(y|x)

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)

Maximize:
$$\log p(y|x) = \log \left[\hat{y}^y (1 - \hat{y})^{1-y} \right]$$

= $y \log \hat{y} + (1 - y) \log (1 - \hat{y})$

- Now flip sign to turn this into a loss: something to minimize
- Cross-entropy loss (because is formula for cross-entropy(y, \hat{y}))
- Or, plugging in definition of \hat{y} :

Minimize:

$$L_{CE}(\hat{y}, y) = -\log p(y|x) = -[y\log \hat{y} + (1-y)\log(1-\hat{y})]$$

$$L_{CE}(\hat{y}, y) = -[y\log \sigma(w \cdot x + b) + (1-y)\log(1-\sigma(w \cdot x + b))]$$

Our goal: minimize the loss

- Let's make explicit that the loss function is parameterized by weights $\theta = (w,b)$
- And we'll represent \hat{y} as $f(x; \theta)$ to make the dependence on θ more obvious
- We want the weights that minimize the loss, averaged over all examples:

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} L_{CE}(f(x^{(i)}; \theta), y^{(i)})$$

Gradient Descent

Our goal: minimize the loss

- For logistic regression, loss function is convex
 - A convex function has just one minimum
 - Gradient descent starting from any point is guaranteed to find the minimum
 - (Loss for neural networks is non-convex)

Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

Let's first visualize for a single scalar **w**

Q: Given current w, should we make it bigger or smaller? A: Move w in the reverse direction from the slope of the function

Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller? A: Move w in the reverse direction from the slope of the function

Gradients

- The gradient of a function of many variables is a vector pointing in the direction of the greatest increase in a function.
- **Gradient Descent**: Find the gradient of the loss function at the current point and move in the **opposite** direction.

How much do we move in that direction?

- The value of the gradient (slope in our example) $\frac{d}{dw}L(f(x;w),y)$ weighted by a **learning rate** η
- Higher learning rate means move w faster

$$w^{t+1} = w^t - \eta \frac{d}{dw} L(f(x; w), y)$$

Now let's consider N dimensions

•We want to know where in the N-dimensional space (of the N parameters that make up θ) we should move.

•The gradient is just such a vector; it expresses the directional components of the sharpest slope along each of the N dimensions.

Imagine 2 dimensions, w and b

- Visualizing the gradient vector at the red point
- It has two dimensions shown in the x-y plane

Real gradients

- Are much longer; lots and lots of weights
- For each dimension w_i the gradient component i tells us the slope with respect to that variable.
 - "How much would a small change in w_i influence the total loss function I?"
 - We express the slope as a partial derivative ∂ of the loss ∂w_i
- The gradient is then defined as a vector of these partials.

The Gradient

We'll represent \hat{y} as $f(x; \theta)$ to make the dependence on θ more obvious

$$\nabla L(f(x;\theta),y) = \begin{bmatrix} \frac{\partial}{\partial w_1} L(f(x;\theta),y) \\ \frac{\partial}{\partial w_2} L(f(x;\theta),y) \\ \vdots \\ \frac{\partial}{\partial w_n} L(f(x;\theta),y) \\ \frac{\partial}{\partial b} L(f(x;\theta),y) \end{bmatrix}$$

The final equation for updating heta based on the gradient is thus

$$\theta_{t+1} = \theta_t - \eta \nabla L(f(x;\theta), y)$$

What are these partial derivatives for logistic regression?

The loss function

$$L_{\text{CE}}(\hat{y}, y) = -[y \log \sigma(w \cdot x + b) + (1 - y) \log (1 - \sigma(w \cdot x + b))]$$

The elegant derivative of this function

$$\frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial w_i} = [\sigma(w \cdot x + b) - y]x_j$$

SGD Algorithm

```
function Stochastic Gradient Descent(L(), f(), x, y) returns \theta
     # where: L is the loss function
             f is a function parameterized by \theta
             x is the set of training inputs x^{(1)}, x^{(2)}, ..., x^{(m)}
             y is the set of training outputs (labels) y^{(1)}, y^{(2)}, ..., y^{(m)}
\theta \leftarrow 0
repeat til done
   For each training tuple (x^{(i)}, y^{(i)}) (in random order)
       1. Optional (for reporting):
                                                 # How are we doing on this tuple?
         Compute \hat{y}^{(i)} = f(x^{(i)}; \theta)
                                                 # What is our estimated output \hat{y}?
         Compute the loss L(\hat{\mathbf{y}}^{(i)}, \mathbf{y}^{(i)})
                                                 # How far off is \hat{\mathbf{y}}^{(i)}) from the true output \mathbf{y}^{(i)}?
      2. g \leftarrow \nabla_{\theta} L(f(x^{(i)}; \theta), y^{(i)})
                                                 # How should we move \theta to maximize loss?
      3. \theta \leftarrow \theta - \eta g
                                                 # Go the other way instead
return \theta
```

The algorithm can terminate when it converges (or when the gradient norm $\langle \epsilon \rangle$, or when progress halts

Hyperparameters

- •The learning rate η is a hyperparameter
 - too high: the learner will take big steps and overshoot
 - too low: the learner will take too long
- Hyperparameters:
- Briefly, a special kind of parameter for an ML model
- Instead of being learned by algorithm from supervision (like regular parameters), they are chosen by algorithm designer.

Working through an example

- One step of gradient descent
- •An example, where the true y=1 (positive)
- •Two features:

$$x_1 = 3$$
 $x_2 = 2$

Assume 3 parameters (2 weights and 1 bias) in θ^0 are zero:

$$w_1 = w_2 = b = 0$$

n = 0.1

$$w_1 = w_2 = b = 0;$$

 $x_1 = 3; x_2 = 2$

• Update step for update θ is:

$$m{ heta}^{t+1} = m{ heta}^t - m{\eta}
abla_{m{ heta}} L(f(x^{(i)}; m{ heta}), y^{(i)})$$
 where $rac{\partial L_{ ext{CE}}(\hat{y}, y)}{\partial w_i} = [m{\sigma}(w \cdot x + b) - y] x_j$

Gradient vector has 3 dimensions:

$$\nabla_{w,b} = \begin{bmatrix} \frac{\partial L_{\text{CE}}(\hat{\mathbf{y}}, \mathbf{y})}{\partial w_1} \\ \frac{\partial L_{\text{CE}}(\hat{\mathbf{y}}, \mathbf{y})}{\partial w_2} \\ \frac{\partial L_{\text{CE}}(\hat{\mathbf{y}}, \mathbf{y})}{\partial b} \end{bmatrix}$$

$$w_1 = w_2 = b = 0;$$

 $x_1 = 3; x_2 = 2$

• Update step for update θ is:

$$m{ heta}^{t+1} = m{ heta}^t - m{\eta}
abla_{m{ heta}} L(f(x^{(i)}; m{ heta}), y^{(i)})$$
 where
$$\frac{\partial L_{ ext{CE}}(\hat{y}, y)}{\partial w_i} = [\sigma(w \cdot x + b) - y] x_j$$

• Gradient vector has 3 dimensions:

$$\nabla_{w,b} = \begin{bmatrix} \frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial w_1} \\ \frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial w_2} \\ \frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial \hat{y}} \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$$

$$w_1 = w_2 = b = 0;$$

 $x_1 = 3; x_2 = 2$

• Update step for update θ is:

$$m{ heta}^{t+1} = m{ heta}^t - m{\eta}
abla_{m{ heta}} L(f(x^{(i)}; m{ heta}), y^{(i)})$$
 where $rac{\partial L_{ ext{CE}}(\hat{y}, y)}{\partial w_i} = [m{\sigma}(w \cdot x + b) - y] x_j$

• Gradient vector has 3 dimensions:

$$\nabla_{w,b} = \begin{bmatrix} \frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial w_1} \\ \frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial w_2} \\ \frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial b} \end{bmatrix} = \begin{bmatrix} (\sigma(w \cdot x + b) - y)x_1 \\ (\sigma(w \cdot x + b) - y)x_2 \\ \sigma(w \cdot x + b) - y \end{bmatrix}$$

$$w_1 = w_2 = b = 0;$$

 $x_1 = 3; x_2 = 2$

• Update step for update θ is:

$$m{ heta}^{t+1} = m{ heta}^t - m{\eta}
abla_{m{ heta}} L(f(x^{(i)}; m{ heta}), y^{(i)})$$
 where $rac{\partial L_{ ext{CE}}(\hat{y}, y)}{\partial w_i} = [m{\sigma}(w \cdot x + b) - y] x_j$

• Gradient vector has 3 dimensions:

$$\nabla_{w,b} = \begin{bmatrix} \frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial w_1} \\ \frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial w_2} \\ \frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial b} \end{bmatrix} = \begin{bmatrix} (\sigma(w \cdot x + b) - y)x_1 \\ (\sigma(w \cdot x + b) - y)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_1 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_1 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_1 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_1 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_1 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_1 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_1 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_1 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_1 \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_1 \end{bmatrix} = \begin{bmatrix} (\sigma(0) -$$

$$w_1 = w_2 = b = 0;$$

 $x_1 = 3; x_2 = 2$

• Update step for update θ is:

$$m{ heta}^{t+1} = m{ heta}^t - m{\eta}
abla_{m{ heta}} L(f(x^{(i)}; m{ heta}), y^{(i)})$$
 where $rac{\partial L_{ ext{CE}}(\hat{y}, y)}{\partial w_i} = [m{\sigma}(w \cdot x + b) - y] x_j$

Gradient vector has 3 dimensions:

$$\nabla_{w,b} = \begin{bmatrix} \frac{\partial L_{\text{CE}}(\hat{y},y)}{\partial w_1} \\ \frac{\partial L_{\text{CE}}(\hat{y},y)}{\partial w_2} \\ \frac{\partial L_{\text{CE}}(\hat{y},y)}{\partial w_2} \end{bmatrix} = \begin{bmatrix} (\sigma(w \cdot x + b) - y)x_1 \\ (\sigma(w \cdot x + b) - y)x_2 \\ \sigma(w \cdot x + b) - y \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \\ \sigma(0) - 1 \end{bmatrix} = \begin{bmatrix} -0.5x_1 \\ -0.5x_2 \\ -0.5 \end{bmatrix} = \begin{bmatrix} -1.5 \\ -1.0 \\ -0.5 \end{bmatrix}$$

$$\nabla_{w,b} = \begin{bmatrix} \frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial w_1} \\ \frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial w_2} \\ \frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial w_2} \end{bmatrix} = \begin{bmatrix} (\sigma(w \cdot x + b) - y)x_1 \\ (\sigma(w \cdot x + b) - y)x_2 \\ \sigma(w \cdot x + b) - y \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \\ \sigma(0) - 1 \end{bmatrix} = \begin{bmatrix} -0.5x_1 \\ -0.5x_2 \\ -0.5 \end{bmatrix}$$

Now that we have a gradient, we compute the new parameter vector θ^1 by moving θ^0 in the opposite direction from the gradient:

$$m{ heta}^{t+1} = m{ heta}^t - m{\eta}
abla_{m{ heta}} L(f(x^{(i)}; m{ heta}), y^{(i)})$$
 η = 0.1;

$$\theta^1 =$$

$$\nabla_{w,b} = \begin{bmatrix} \frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial w_1} \\ \frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial w_2} \\ \frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial w_2} \end{bmatrix} = \begin{bmatrix} (\sigma(w \cdot x + b) - y)x_1 \\ (\sigma(w \cdot x + b) - y)x_2 \\ \sigma(w \cdot x + b) - y \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \\ \sigma(0) - 1 \end{bmatrix} = \begin{bmatrix} -0.5x_1 \\ -0.5x_2 \\ -0.5 \end{bmatrix}$$

Now that we have a gradient, we compute the new parameter vector θ^I by moving θ^0 in the opposite direction from the gradient:

$$\boldsymbol{\theta}^{t+1} = \boldsymbol{\theta}^{t} - \boldsymbol{\eta} \nabla_{\boldsymbol{\theta}} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)}) \qquad \boldsymbol{\eta} = \textbf{0.1};$$

$$\boldsymbol{\theta}^{1} = \begin{bmatrix} w_{1} \\ w_{2} \\ b \end{bmatrix} - \boldsymbol{\eta} \begin{bmatrix} -1.5 \\ -1.0 \\ -0.5 \end{bmatrix}$$

$$\nabla_{w,b} = \begin{bmatrix} \frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial w_1} \\ \frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial w_2} \\ \frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial w_3} \end{bmatrix} = \begin{bmatrix} (\sigma(w \cdot x + b) - y)x_1 \\ (\sigma(w \cdot x + b) - y)x_2 \\ \sigma(w \cdot x + b) - y \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \\ \sigma(0) - 1 \end{bmatrix} = \begin{bmatrix} -0.5x_1 \\ -0.5x_2 \\ -0.5 \end{bmatrix}$$

Now that we have a gradient, we compute the new parameter vector θ^1 by moving θ^0 in the opposite direction from the gradient:

$$\boldsymbol{\theta}^{t+1} = \boldsymbol{\theta}^{t} - \boldsymbol{\eta} \nabla_{\boldsymbol{\theta}} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)}) \qquad \boldsymbol{\eta} = \textbf{0.1};$$

$$\boldsymbol{\theta}^{1} = \begin{bmatrix} w_{1} \\ w_{2} \\ b \end{bmatrix} - \boldsymbol{\eta} \begin{bmatrix} -1.5 \\ -1.0 \\ -0.5 \end{bmatrix} = \begin{bmatrix} .15 \\ .1 \\ .05 \end{bmatrix}$$

Mini-batch training

- Stochastic gradient descent chooses a single random example at a time.
- That can result in choppy movements
- More common to compute gradient over batches of training instances.
- Batch training: entire dataset
- Mini-batch training: m examples (512, or 1024)