

Relatório Trabalho Computacional

Disciplina: Métodos Numéricos Professor: João Paulo do Vale Madeiro

Alunos:

Lucas de Oliveira Sobral, 556944

• Mateus Andrade Maia, 552593

1. Introdução

Este relatório apresenta o desenvolvimento do Trabalho Computacional 1 da disciplina de Métodos Numéricos, focado na resolução de um problema de rede de tubulação. O objetivo principal consistiu em calcular os escoamentos (vazões) em todas as seções de uma rede de tubos, aplicando conceitos fundamentais de balanço de escoamento e queda de pressão, utilizando métodos numéricos para solucionar o sistema de equações não lineares resultante.

Link do Vídeo: https://www.youtube.com/watch?v=1vZVvYJtojI

2. Descrição do Problema

O problema aborda uma rede de tubos onde um fluido é bombeado em regime estacionário. Para este estado, as seguintes equações de balanço de escoamento devem ser satisfeitas:

- $Q_5 = Q_6 + Q_7$

Adicionalmente, as quedas de pressão (ΔP) em torno dos três laços internos da rede devem ser nulas. A queda de pressão em cada seção de tubo é calculada pela equação:

$$\Delta P = (\pi^2/16) \times (2f \times L \times \rho \times Q^2) / D^5$$

Onde:

- Q_i: Escoamento no tubo i (m³/s)
- ΔP: Queda de pressão (Pa)
- f: Fator de atrito (adimensional) = 0,005
- L: Comprimento do tubo (m)
- p: Densidade do fluido $(kg/m^3) = 1,23 \text{ kg/m}^3$
- D: Diâmetro do tubo (m) = 0.5 m

Dados Fornecidos

- $Q_1 = 1 \text{ m}^3/\text{s}$ (vazão de entrada)
- $\rho = 1,23 \text{ kg/m}^3$ (densidade do fluido)
- $\mathbf{D} = \mathbf{0.5} \mathbf{m}$ (diâmetro uniforme para todos os tubos)
- f = 0.005 (fator de atrito uniforme)

Comprimentos dos tubos:

- $L_3 = L_5 = L_8 = L_9 = 2 \text{ m}$
- $L_2 = L_4 = L_6 = 4 \text{ m}$
- $L_7 = 8 \text{ m}$

3. Metodologia

Para determinar as vazões desconhecidas (Q_2 a Q_9), foi formulado um sistema de 8 equações não lineares baseado em dois princípios fundamentais:

3.1 Lei de Kirchhoff dos Nós (Balanço de Massa)

Aplicada aos 5 nós da rede (A, B, C, D, E):

1. **Nó A:**
$$Q_1 - Q_2 - Q_3 = 0$$

- 2. **Nó B:** $Q_3 Q_4 Q_5 = 0$
- 3. Nó C: $Q_5 Q_6 Q_7 = 0$
- 4. Nó D: $Q_8 Q_6 Q_7 = 0$
- 5. **Nó E:** $Q_9 Q_4 Q_8 = 0$

3.2 Lei de Kirchhoff das Malhas (Balanço de Pressão)

Aplicada às 3 malhas internas da rede, onde a soma das variações de pressão ao longo de uma malha fechada é zero:

- 6. **Malha 1** (tubos 2, 3, 4, 9): $\Delta P_3 + \Delta P_4 + \Delta P_9 \Delta P_2 = 0$
- 7. **Malha 2** (tubos 4, 5, 6, 8): $\Delta P_5 + \Delta P_6 + \Delta P_8 \Delta P_4 = 0$
- 8. **Malha 3** (tubos 6, 7): $\Delta P_7 \Delta P_6 = 0$

3.3 Método de Solução

O sistema de 8 equações não lineares foi resolvido utilizando o **Método de Newton-Raphson para Sistemas**. Este método iterativo requer:

- Cálculo da matriz Jacobiana do sistema
- Resolução de um sistema linear em cada iteração usando Eliminação de Gauss com Pivotamento Parcial
- Verificação da convergência através da norma Euclidiana do vetor de correção

4. Implementação

O problema foi implementado em Python, utilizando as bibliotecas **numpy** e **matplotlib**. As principais funções desenvolvidas foram:

- calcular_delta_p(Q, L, D, f, rho): Calcula a queda de pressão em um tubo
- sistema equações (vars): Define o sistema de 8 equações não lineares
- jacobiano(vars): Calcula a matriz Jacobiana do sistema
- gauss elimination(A, b): Resolver sistema linear usando eliminação de Gauss
- norma_euclidiana(vetor): Calcula a norma Euclidiana de um vetor
- **newton_raphson(x0, tol, max_iter)**: Implementa o método de Newton-Raphson
- main(): Função principal que coordena a execução e apresenta os resultados

Chute Inicial

O chute inicial para as vazões (Q_2 a Q_9) foi: $\mathbf{x}_0 = [0.4, 0.6, 0.2, 0.4, 0.2, 0.2, 0.6, 0.4] \text{ m}^3/\text{s}$

5. Resultados e Discussão

O método de Newton-Raphson convergiu em 6 iterações com tolerância de 1×10⁻¹⁵.

5.1 Vazões Encontradas

Tubo	Vazão (m³/s)	Comprimento (m)
Q ₁	1.000000	-
Q_2	0.531610	4
Q_3	0.468390	2
Q ₄	0.251436	4
Q ₅	0.216953	2
Q_6	0.127088	4
Q_7	0.089865	8
Q ₈	0.216953	2
Q ₉	0.468390	2

5.2 Verificação dos Balanços de Massa

Os resíduos das equações de balanço de massa nos nós demonstraram alta precisão:

• Nó A (Q₁ - Q₂ - Q₃): 0.00×10^{0}

```
• Nó B (Q<sub>3</sub> - Q<sub>4</sub> - Q<sub>5</sub>): -5.55×10<sup>-17</sup>
```

- **Nó C** (Q_5 Q_6 Q_7): 1.39×10^{-17}
- **Nó D** (Q_8 Q_6 Q_7): 1.39×10^{-17}
- **Nó E** (Q₉ Q₈ Q₄): -5.55×10^{-17}

O **resíduo final do sistema** (norma Euclidiana do vetor F(x) com a solução encontrada) foi de 8.58×10^{-17} .

5.3 Análise dos Resultados

Os resultados obtidos demonstram que:

- 1. A vazão de entrada $Q_1 = 1 \text{ m}^3/\text{s}$ é adequadamente distribuída pela rede
- 2. As maiores vazões concentram-se nos tubos Q2 (0.532 m³/s) e Q3, Q9 (0.468 m³/s cada)
- 3. As menores vazões ocorrem nos tubos Q_6 (0.127 m³/s) e Q_7 (0.090 m³/s)
- 4. A simetria parcial observada em $Q_5 = Q_8 (0.217 \text{ m}^3/\text{s})$ reflete a topologia da rede

6. Conclusão

O Trabalho Computacional 1 foi concluído com sucesso, com o cálculo das vazões em todas as seções da rede de tubos. A aplicação da Lei de Kirchhoff dos Nós e das Malhas permitiu a formulação de um sistema de equações não lineares, que foi eficientemente resolvido pelo método de Newton-Raphson. A implementação manual dos métodos numéricos, incluindo a eliminação de Gauss, demonstrou a compreensão dos conceitos teóricos e sua aplicação prática na resolução de problemas de engenharia. Os resultados obtidos são consistentes e atendem às condições de balanço de massa e pressão da rede.

A convergência rápida (6 iterações) e a alta precisão dos resultados (resíduos da ordem de 10⁻¹⁷) confirmam a eficácia da abordagem numérica adotada para este tipo de problema de engenharia.