3. előadás

Asszociatív adatszerkezetek

Asszociatív adatszerkezetek, a tömb, háromszögmátrixok és ritka mátrixok

Adatszerkezetek és algoritmusok előadás 2018. február 20. Asszociatív latszerkezetek

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrixok

Dinamikus tömb

Kósa Márk, Pánovics János és Szathmáry László Debreceni Egyetem Informatikai Kar

Asszociatív adatszerkezetek

Az asszociatív adatszerkezetek olyan adatszerkezetek, amelyekből bizonyos adott feltételeknek eleget tevő részhalmazokat választhatunk ki. A legfontosabb művelet tehát a részhalmaz kiválasztásának, a részhalmazképzésnek a művelete.

A részhalmazok – ahogy az ábrán is látható – átfedhetik egymást. Egyes esetekben a részhalmazok egyeleműek, máskor akárhány eleműek lehetnek.

Asszociatív

Kósa Márk Pánovics János Szathmáry László

adatszerkezete

A tömb

Háromszögmátrixok

Ritka mátrixok

A tömb adatszerkezet

Asszociatív datszerkezetek

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A töm

Háromszögmátrixok

Ritka mátrixok

Dinamikus tömb

Statikus, homogén és asszociatív adatszerkezet. A felépítése definiálja: benne az adatelemek egymáshoz viszonyított helyzete a lényeges.

A tömb bármelyik eleme egész számok sorozatán keresztül érhető el. Minden adatelemhez különböző egészszám-sorozat tartozik, így az asszociativitást biztosító részhalmazok egyeleműek és diszjunktak. A számsorozat számait indexeknek nevezzük, segítségükkel tudjuk az adatelemet kiválasztani. Az indexek darabszámát a tömb dimenziójának hívjuk.

Ha mást nem mondunk, a tömb elemeinek az indexelése mindegyik dimenzióban 1-től indul.

A tömb adatszerkezet

A legegyszerűbb eset: egydimenziós tömb (vektor¹).

Kétdimenziós tömb (mátrix).

Léteznek magasabb dimenziójú tömbök is. A dimenziók száma tetszőlegesen nagy lehet, de mindig véges.

Asszociatív

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A ton

Háromszögmátrixok

Ritka mátrixok

¹A vektor szó minden egyéb jelző nélküli használatakor statikus, egydimenziós tömbre gondolunk.

Tömbökkel végezhető műveletek

- Létrehozás: rögzítjük a dimenziók számát és az indextartományokat. Ezzel egyben meghatározzuk a tömb elemszámát is. A szerkezet kialakításával párhuzamosan elemeket is elhelyezhetünk a tömbben.
- Bővítés: nincs, ugyanis a tömb statikus.
- Csere:
 - bármely (létező) elem értékét felülírhatjuk egy új értékkel
 - elhelyezhetünk elemet oda, ahová a létrehozáskor nem tettünk
- Törlés: csak logikai.
- Elérés: az adatelemek elérése közvetlen, az indexek segítségével.
- Rendezés: egydimenziós tömbök esetén értelmezhető, ott bármelyik rendezési algoritmus alkalmazható.
- Keresés: reprezentációfüggő művelet, egydimenziós tömbök esetén nagy a jelentősége, ott bármelyik keresési algoritmus alkalmazható.
- Bejárás: többdimenziós tömbök esetén reprezentációfüggő művelet (lásd később).
- A feldolgozás alapja a közvetlen elérés.

Asszociatív

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A töm

Háromszögmátrixok

Ritka mátrixok

Az A[s..t] egydimenziós tömb leképezése:

Asszociatív adatszerkezetek

Kósa Márk Pánovics János Szathmáry László

adatszerkezetek

Asszociatív

A töm

Háromszögmátrixok

Ritka mátrixok

Az A[s..t] egydimenziós tömb leképezése:

A tároláshoz szükséges tárterület mérete: $\ell \cdot (t-s+1)$ bájt, ahol ℓ az egy adatelem tárolásához szükséges tárhely mérete.

Asszociatív

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrixok

Az A[s..t] egydimenziós tömb leképezése:

A tároláshoz szükséges tárterület mérete: $\ell \cdot (t-s+1)$ bájt, ahol ℓ az egy adatelem tárolásához szükséges tárhely mérete. Ha ismerjük a tárterület kezdőcímét (K), akkor a következő címfüggvény segítségével bármely elem tárbeli címe meghatározható:

az i indexű elem címe = $K + \ell \cdot (i - s)$

Asszociatív

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrixok

Az A[s..n, t..m] kétdimenziós tömb leképezése történhet sorfolytonosan (lásd az ábrán) vagy oszlopfolytonosan.

Asszociatív adatszerkezetek

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A ton

Háromszögmátrixok

Ritka mátrixok

Az A[s..n, t..m] kétdimenziós tömb leképezése történhet sorfolytonosan (lásd az ábrán) vagy oszlopfolytonosan.

Asszociatív

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A tor

Háromszögmátrixok

Ritka mátrixok

Az A[s..n, t..m] kétdimenziós tömb leképezése történhet sorfolytonosan (lásd az ábrán) vagy oszlopfolytonosan.

Asszociatív adatszerkezetek

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A tor

Háromszögmátrixok

Ritka mátrixok

Az A[s..n, t..m] kétdimenziós tömb leképezése történhet sorfolytonosan (lásd az ábrán) vagy oszlopfolytonosan.

Asszociatív adatszerkezetek

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A tor

Háromszögmátrixok

Ritka mátrixok

Az A[s..n, t..m] kétdimenziós tömb leképezése történhet sorfolytonosan (lásd az ábrán) vagy oszlopfolytonosan.

Sorfolytonos tárolás esetén ha ismerjük a tárterület kezdőcímét (K), akkor a következő címfüggvény segítségével bármely elem tárbeli címe meghatározható:

az (i,j) indexű elem címe = $K + \ell \cdot (i-s) \cdot (m-t+1) + \ell \cdot (j-t)$

Asszociatív

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A tör

Háromszögmátrixok

Ritka mátrixok

Az $A[s_1..n_1, s_2..n_2, ..., s_d..n_d]$ d dimenziós tömb sorfolytonos leképezése esetén a címfüggvény a következő (K továbbra is a tárterület kezdőcímét, ℓ pedig az egy adatelem tárolásához szükséges tárhely méretét jelöli):

az
$$(x_1, x_2, \dots, x_d)$$
 indexű elem címe =

$$=K+\ell\cdot\sum_{i=1}^d\left((x_i-s_i)\cdot\prod_{j=i+1}^d(n_j-s_j+1)\right)$$

Asszociatív

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A tön

Háromszögmátrixok

Ritka mátrixok

Háromszögmátrixok

A háromszögmátrixok négyzetes (kvadratikus) mátrixok.

Kétfajta háromszögmátrixot szoktunk megkülönböztetni:

- a felsőháromszög-mátrixot és
- az alsóháromszög-mátrixot.

Asszociatív

Kósa Márk Pánovics János Szathmáry László

adatszerkezetek A tömb

Háromszögmátrixok

Ritka mátrixok

Asszociatív

Háromszögmátrixok

A háromszögmátrixok négyzetes (kvadratikus) mátrixok.

Az olyan négyzetes mátrixot, amelynek főátlója alatt csupa 0 elem található, felsőháromszög-mátrixnak nevezzük.

Asszociatív

Kósa Márk Pánovics János Szathmáry László

adatszerkezetek A tömb

Háromszögmátrixok

Ritka mátrixok

Asszociatív

Háromszögmátrixok

A háromszögmátrixok négyzetes (kvadratikus) mátrixok.

Ha a négyzetes mátrix főátlója fölött lévő elemek mindegyikének értéke 0, akkor alsóháromszög-mátrixról beszélünk.

Asszociatív adatszerkezetek

Kósa Márk Pánovics János Szathmáry László

adatszerkezetek A tömb

Ritka mátrixok

Asszociatív

Asszociatív datszerkezetek

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrixok

Dinamikus tömb

A négyzetes mátrixokkal szemben, ahol az értékes elemek száma n^2 , a háromszögmátrixoknál az értékes elemek száma csupán

 $\frac{n\cdot (n+1)}{2}.$

Az értékes elemeket emiatt – sor- vagy oszlopfolytonosan – egy $\frac{n\cdot(n+1)}{2}$ elemű V vektorra szoktuk leképezni.

A felsőháromszög-mátrix értékes elemeit (a főátló elemeit és a fölötte elhelyezkedő elemeket) oszlopfolytonosan célszerű leképezni egy $\frac{n\cdot(n+1)}{2}$ elemű V vektorra:

Asszociatív adatszerkezetek

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrixok

A felsőháromszög-mátrix értékes elemeit (a főátló elemeit és a fölötte elhelyezkedő elemeket) oszlopfolytonosan célszerű leképezni egy $\frac{n\cdot(n+1)}{2}$ elemű V vektorra:

Asszociatív adatszerkezetek

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrixok

A felsőháromszög-mátrix értékes elemeit (a főátló elemeit és a fölötte elhelyezkedő elemeket) oszlopfolytonosan célszerű leképezni egy $\frac{n\cdot(n+1)}{2}$ elemű V vektorra:

Asszociatív adatszerkezetek

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrixok

A felsőháromszög-mátrix értékes elemeit (a főátló elemeit és a fölötte elhelyezkedő elemeket) oszlopfolytonosan célszerű leképezni egy $\frac{n\cdot(n+1)}{2}$ elemű V vektorra:

Asszociatív adatszerkezetek

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrixok

A felsőháromszög-mátrix értékes elemeit (a főátló elemeit és a fölötte elhelyezkedő elemeket) oszlopfolytonosan célszerű leképezni egy $\frac{n\cdot(n+1)}{2}$ elemű V vektorra:

Asszociatív adatszerkezetek

Kósa Márk Pánovics János Szathmáry László

adatszerkezetek

A tömb

Asszociatív

Háromszögmátrixok

Ritka mátrixok

A felsőháromszög-mátrix értékes elemeit (a főátló elemeit és a fölötte elhelyezkedő elemeket) oszlopfolytonosan célszerű leképezni egy $\frac{n\cdot(n+1)}{2}$ elemű V vektorra:

 $(a_{1,1})(a_{1,2})(a_{2,2})(a_{1,3})(a_{2,3})(a_{3,3}) \cdots \cdots (a_{1,n})(a_{2,n})(a_{3,n}) \cdots (a_{n,n})(a$

Asszociatív adatszerkezetek

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrixok

A felsőháromszög-mátrix értékes elemeit (a főátló elemeit és a fölötte elhelyezkedő elemeket) oszlopfolytonosan célszerű leképezni egy $\frac{n\cdot(n+1)}{2}$ elemű V vektorra:

Asszociatív adatszerkezetek

Kósa Márk Pánovics János Szathmáry László

adatszerkezetek

A tömb

Asszociatív

Háromszögmátrixok

Ritka mátrixok

A felsőháromszög-mátrix értékes elemeit (a főátló elemeit és a fölötte elhelyezkedő elemeket) oszlopfolytonosan célszerű leképezni egy $\frac{n\cdot(n+1)}{2}$ elemű V vektorra:

	1.	2.	3.	4.	5.	6.		<u>(n</u>	$\frac{-1)\cdot n}{2}$	- 1		<u>(n</u>	$\frac{-1) \cdot n}{2} +$	-n
V:	$a_{1,1}$	$a_{1,2}$	$a_{2,2}$	$a_{1,3}$	$a_{2,3}$	$a_{3,3}$	 		$a_{1,n}$	$a_{2,n}$	$a_{3,n}$		$a_{n,n}$	

Asszociatív adatszerkezetek

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrixok

A V vektorból a következő képlet segítségével kaphatjuk vissza az eredeti mátrix (i, j) indexű elemének az értékét:

$$a_{i,j} = \begin{cases} 0, & \text{ha } i > j \\ V_t, & \text{egyébként, ahol } t = \frac{j \cdot (j-1)}{2} + i \end{cases}$$

Asszociatív adatszerkezetek

Kósa Márk Pánovics János Szathmáry László

adatszerkezetek A tömb

Asszociatív

Ritka mátrixok

Ritka mátrixok

A ritka mátrixok olyan (általában nagyméretű) mátrixok, amelyekben a legtöbb elem értéke ugyanaz (általában 0). Az ettől eltérő értékkel rendelkező elemeket ritka elemeknek nevezzük.

Asszociatív

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrixok

Helytakarékossági okból a ritka mátrixnak csak az értékes elemeit (a ritka elemeket), valamint azok sor- és oszlopindexeit célszerű tárolni három vektorban, mégpedig a sorindexek, azon belül pedig az oszlopindexek szerint növekvő sorrendben. Ezt a módszert 3 soros reprezentációnak nevezzük:

	1	2	3	4	5	6
1	1	2	0	0	0	6
2	0	4	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	(0)	\bigcirc	(0)	(0)	(2

$$\begin{array}{cccc} & 1 & 2 & 3 & 4 & 5 \\ SOR = & (1, \, 1, \, 1, \, 2, \, 5) \\ OSZLOP = & (1, \, 2, \, 6, \, 2, \, 6) \\ \acute{E}RT\acute{E}K = & (1, \, 2, \, 6, \, 4, \, 2) \end{array}$$

Asszociatív

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrixok

A 3 soros reprezentáció létrehozása

Az algoritmus bemenete az A $m \times n$ -es mátrix, kimenete: k, SOR, OSZLOP, $\acute{E}RT\acute{E}K$.

```
1: procedure LÉTREHOZÁS(A)
 2: k \leftarrow 0
    for i \leftarrow 1 to m do
 3:
             for i \leftarrow 1 to n do
 4:
                 if A[i,j] \neq 0 then
 5:
                     k \leftarrow k + 1
 6:
                      SOR[k] \leftarrow i
 7:
                     OSZLOP[k] \leftarrow j
 8:
                      ERTEK[k] \leftarrow A[i, i]
 9:
                 end if
10:
             end for
11.
        end for
12:
13: end procedure
```

Asszociatív

Kósa Márk Pánovics János Szathmáry László

adatszerkezetek A tömb

....

Asszociatív

Háromszögmátrixok

Ritka mátrixok

Elérés a 3 soros reprezentációban

end if

end for

return 0 16: end function

13: 14.

15:

```
Az algoritmus bemenete: k, SOR, OSZLOP, ÉRTÉK, i, j,
kimenete a mátrix (i, j) indexű elemének az értéke.
 1: function ELÉRÉS(k, SOR, OSZLOP, ÉRTÉK, i, j)
       for \ell \leftarrow 1 to k do
 2:
           if SOR[\ell] = i then
 3:
               if OSZLOP[\ell] = j then
 4:
                  return ERTEK[ℓ]
 5:
               end if
 6:
               if OSZLOP[\ell] > j then
 7:
                  return 0
 8:
 9:
              end if
           end if
10:
           if SOR[\ell] > i then
11:
               return 0
12:
```

Asszociatív

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

A 3 soros reprezentáció nem segíti a ritka mátrix oszlopfolytonos feldolgozását, ezért bevezethetünk egy negyedik vektort, amelynek az elemei az aktuális ritka elem oszlopában található következő ritka elem reprezentációbeli indexét adják meg. Ezt a módszert 4 soros reprezentációnak nevezzük:

	1	2	3	4	5	6
1	1	2	0	0	0	6
2	0	4	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	(0)	(0)	(0)	(0)	(0)	(2)

```
\begin{array}{c} \text{SOR} = \begin{array}{c} 1 & 2 & 3 & 4 & 5 \\ \text{SOR} = & (1, 1, 1, 2, 5) \\ \text{OSZLOP} = & (1, 2, 6, 2, 6) \\ \text{\'ERT\'EK} = & (1, 2, 6, 4, 2) \\ \text{K\"OVINDEX} = & (0 \end{array}
```

Asszociatív

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrixok

A 3 soros reprezentáció nem segíti a ritka mátrix oszlopfolytonos feldolgozását, ezért bevezethetünk egy negyedik vektort, amelynek az elemei az aktuális ritka elem oszlopában található következő ritka elem reprezentációbeli indexét adják meg. Ezt a módszert 4 soros reprezentációnak nevezzük:

```
1 2 3 4 5 6
1 1 2 0 0 0 6
2 0 4 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
```

```
\begin{array}{cccc} & 1 & 2 & 3 & 4 & 5 \\ & & & & \\ SOR = & (1, \, 1, \, 1, \, 2, \, 5) \\ OSZLOP = & (1, \, 2, \, 6, \, 2, \, 6) \\ ERTEK = & (1, \, 2, \, 6, \, 4, \, 2) \\ KÖVINDEX = & (0, \, 4 & & & & \\ \end{array}
```

Asszociatív

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrixok

A 3 soros reprezentáció nem segíti a ritka mátrix oszlopfolytonos feldolgozását, ezért bevezethetünk egy negyedik vektort, amelynek az elemei az aktuális ritka elem oszlopában található következő ritka elem reprezentációbeli indexét adják meg. Ezt a módszert 4 soros reprezentációnak nevezzük:

```
1 2 3 4 5 6
1 1 2 0 0 0 6
2 0 4 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
```

```
\begin{array}{cccc} & 1 & 2 & 3 & 4 & 5 \\ & SOR = & (1, 1, 1, 2, 5) \\ OSZLOP = & (1, 2, 6, 2, 6) \\ ERTEK = & (1, 2, 6, 4, 2) \\ KÖVINDEX = & (0, 4, 5) \end{array}
```

Asszociatív

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrixok

A 3 soros reprezentáció nem segíti a ritka mátrix oszlopfolytonos feldolgozását, ezért bevezethetünk egy negyedik vektort, amelynek az elemei az aktuális ritka elem oszlopában található következő ritka elem reprezentációbeli indexét adják meg. Ezt a módszert 4 soros reprezentációnak nevezzük:

	1	2	3	4	5	6
1	1	2	0	0	0	6
	0	\sim	\sim	\sim	\sim	\sim
3	0	0	0	0	0	\bigcirc
4	0	0	0	0	0	\bigcirc
5	\bigcirc	(0)	\bigcirc	(0)	(0)	(2)

```
\begin{array}{cccc} & 1 & 2 & 3 & 4 & 5 \\ & & & & \\ SOR = & (1,\,1,\,1,\,2,\,5) \\ OSZLOP = & (1,\,2,\,6,\,2,\,6) \\ ERTEK = & (1,\,2,\,6,\,4,\,2) \\ KÖVINDEX = & (0,\,4,\,5,\,\textcolor{red}{0}) \end{array}
```

Asszociatív

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrixok

A 3 soros reprezentáció nem segíti a ritka mátrix oszlopfolytonos feldolgozását, ezért bevezethetünk egy negyedik vektort, amelynek az elemei az aktuális ritka elem oszlopában található következő ritka elem reprezentációbeli indexét adják meg. Ezt a módszert 4 soros reprezentációnak nevezzük:

	1	2	3	4	5	6
1	1	2	0	0	0	6
2	0	4	0	0	0	0
3	0	0	0	0	0	\bigcirc
4	0	0	0	0	0	0
5	\bigcirc	(0)	(0)	(0)	\bigcirc	(2)

```
\begin{array}{c} \text{SOR} = \begin{array}{c} 1 & 2 & 3 & 4 & 5 \\ \text{SOR} = & (1, 1, 1, 2, 5) \\ \text{OSZLOP} = & (1, 2, 6, 2, 6) \\ \text{ÉRTÉK} = & (1, 2, 6, 4, 2) \\ \text{KÖVINDEX} = & (0, 4, 5, 0, 0) \end{array}
```

Asszociatív

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrixok

Ahhoz, hogy ne kelljen keresnünk az egyes sorok és oszlopok első ritka elemét, a 4 soros reprezentációt kiegészíthetjük még két vektorral, amelyeknek az elemei a megfelelő sor, illetve oszlop első ritka elemének a reprezentációbeli indexét adják meg. Ezt a módszert 4+2 soros reprezentációnak nevezzük:

```
SOR = (1, 1, 1, 2, 5)
   OSZLOP = (1, 2, 6, 2, 6)
    ÉRTÉK = (1, 2, 6, 4, 2)
K\ddot{O}VINDEX = (0, 4, 5, 0, 0)
```

S = (1)

Asszociatív

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrixok

Ahhoz, hogy ne kelljen keresnünk az egyes sorok és oszlopok első ritka elemét, a 4 soros reprezentációt kiegészíthetjük még két vektorral, amelyeknek az elemei a megfelelő sor, illetve oszlop első ritka elemének a reprezentációbeli indexét adják meg. Ezt a módszert 4+2 soros reprezentációnak nevezzük:

 $K \ddot{O} V INDEX = (0, 4, 5, 0, 0)$ S = (1, 4) Asszociatív

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrixok

Ahhoz, hogy ne kelljen keresnünk az egyes sorok és oszlopok első ritka elemét, a 4 soros reprezentációt kiegészíthetjük még két vektorral, amelyeknek az elemei a megfelelő sor, illetve oszlop első ritka elemének a reprezentációbeli indexét adják meg. Ezt a módszert 4+2 soros reprezentációnak nevezzük:

 $K\ddot{O}VINDEX = (0, 4, 5, 0, 0)$

S = (1, 4, 0, 0)

Asszociatív

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrixok

Ahhoz, hogy ne kelljen keresnünk az egyes sorok és oszlopok első ritka elemét, a 4 soros reprezentációt kiegészíthetjük még két vektorral, amelyeknek az elemei a megfelelő sor, illetve oszlop első ritka elemének a reprezentációbeli indexét adják meg. Ezt a módszert 4+2 soros reprezentációnak nevezzük:

S = (1, 4, 0, 0, 5)

Asszociatív

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrixok

Ahhoz, hogy ne kelljen keresnünk az egyes sorok és oszlopok első ritka elemét, a 4 soros reprezentációt kiegészíthetjük még két vektorral, amelyeknek az elemei a megfelelő sor, illetve oszlop első ritka elemének a reprezentációbeli indexét adják meg. Ezt a módszert 4+2 soros reprezentációnak nevezzük:

```
1 2 3 4 5 6

1 1 2 0 0 0 6

2 0 4 0 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 2

1 2 3 4
```

```
\begin{array}{c} \text{SOR} = (1, 1, 1, 2, 5) \\ \text{OSZLOP} = (1, 2, 6, 2, 6) \\ \text{ÉRTÉK} = (1, 2, 6, 4, 2) \\ \text{KÖVINDEX} = (0, 4, 5, 0, 0) \\ \text{S} = (1, 4, 0, 0, 5) \\ \text{O} = (1 \\ \end{array}
```

Asszociatív

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrixok

Ahhoz, hogy ne kelljen keresnünk az egyes sorok és oszlopok első ritka elemét, a 4 soros reprezentációt kiegészíthetjük még két vektorral, amelyeknek az elemei a megfelelő sor, illetve oszlop első ritka elemének a reprezentációbeli indexét adják meg. Ezt a módszert 4+2 soros reprezentációnak nevezzük:

```
SOR = (1, 1, 1, 2, 5)
   OSZLOP = (1, 2, 6, 2, 6)
    ÉRTÉK = (1, 2, 6, 4, 2)
K\ddot{O}VINDEX = (0, 4, 5, 0, 0)
```

S = (1, 4, 0, 0, 5)

O = (1, 2)

Asszociatív

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrixok

Ahhoz, hogy ne kelljen keresnünk az egyes sorok és oszlopok első ritka elemét, a 4 soros reprezentációt kiegészíthetjük még két vektorral, amelyeknek az elemei a megfelelő sor, illetve oszlop első ritka elemének a reprezentációbeli indexét adják meg. Ezt a módszert 4+2 soros reprezentációnak nevezzük:

```
SOR = (1, 1, 1, 2, 5)
   OSZLOP = (1, 2, 6, 2, 6)
    ERTEK = (1, 2, 6, 4, 2)
K\ddot{O}VINDEX = (0, 4, 5, 0, 0)
```

S = (1, 4, 0, 0, 5)O = (1, 2, 0, 0, 0) Asszociatív

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrixok

Ahhoz, hogy ne kelljen keresnünk az egyes sorok és oszlopok első ritka elemét, a 4 soros reprezentációt kiegészíthetjük még két vektorral, amelyeknek az elemei a megfelelő sor, illetve oszlop első ritka elemének a reprezentációbeli indexét adják meg. Ezt a módszert 4+2 soros reprezentációnak nevezzük:

```
1 2 3 4 5 6
1 1 2 0 0 0 0 6
2 0 4 0 0 0 0 0
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 2
```

```
\begin{array}{c} \text{SOR} = (1, 1, 1, 2, 5) \\ \text{OSZLOP} = (1, 2, 6, 2, 6) \\ \text{ÉRTÉK} = (1, 2, 6, 4, 2) \\ \text{KÖVINDEX} = (0, 4, 5, 0, 0) \\ \text{S} = (1, 4, 0, 0, 5) \\ \text{O} = (1, 2, 0, 0, 0, 3) \end{array}
```

Asszociatív

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrixok

A folytonos reprezentáció hátránya, hogy nem tudjuk előre, hány ritka elem van a mátrixban, így azt sem tudjuk, mekkora vektorokra lesz szükségünk. Megoldás: tároljuk a ritka elemeket és azok indexeit egy egyirányban láncolt listában sorindex, azon belül oszlopindex szerinti növekvő sorrendben!

Asszociatív

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

ilka maliixuk

A sor- és oszlopfolytonos feldolgozást egyaránt elősegíti, ha a ritka elemeket multilistában helyezzük el:

- 1 2 3 4 5 6
- 1 120006
- $2 \ 0 \ 4 \ 0 \ 0 \ 0 \ 0$
- 3 (0)(0)(0)(0)(0)
- 4 (0)(0)(0)(0)(0)
- $5 \ (0) \ (0) \ (0) \ (0) \ (0) \ (2)$

2 2 4

5 6 2

Asszociatív adatszerkezetek

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrixok

A sor- és oszlopfolytonos feldolgozást egyaránt elősegíti, ha a ritka elemeket multilistában helyezzük el:

Asszociatív adatszerkezetek

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrixok

A sor- és oszlopfolytonos feldolgozást egyaránt elősegíti, ha a ritka elemeket multilistában helyezzük el:

Asszociatív adatszerkezetek

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrixok

A sor- és oszlopfolytonos feldolgozást egyaránt elősegíti, ha a ritka elemeket multilistában helyezzük el:

Asszociatív adatszerkezetek

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok

Ritka mátrixok

Dinamikus tömb

Általában egydimenziós tömböt értünk alatta, ekkor más szavakkal (dinamikus) vektornak is nevezzük.

- A dinamikus tömb mérete szűkebb értelemben a feldolgozás során tetszőlegesen (dinamikusan) változik.
 Ebben az esetben gyakorlatilag egy szekvenciális lista adatszerkezetet kapunk (lásd később).
- Tágabb értelemben fizikailag továbbra is statikus tömbről beszélünk, a logikai adatszerkezet létrehozáskor megadott elemszámát viszont később bizonyos határok között – a lefoglalt tárterület méretétől függően – módosíthatjuk. Ilyenkor a tömb végén lehetnek fel nem használt adatelemek.
- Bővítés a dinamikus tömb tetszőleges helyén végrehajtható.
- Fizikai törlés bármely elem esetén értelmezhető.
- A dinamikus tömb egyéb műveletei megegyeznek a (statikus) tömb műveleteivel.

Asszociatív

Kósa Márk Pánovics János Szathmáry László

Asszociatív adatszerkezetek

A tömb

Háromszögmátrixok Ritka mátrixok