Cost Effective MLaaS Federation: A Combinatorial Reinforcement Learning Approach

Shuzhao Xie, Yuan Xue, Yifei Zhu, Zhi Wang

Overview

Federating different MLaaSes can achieve better analytics performance.

MLaaS federation problem formulation and combinatorial RL solution

Evaluation and the conclusion

Machine Learning as a Service (MLaaS)

Major Providers

Niche Providers

Usage

- Security
- Agriculture
- Online shopping

Strengths

- Well-defined interfaces
- Free maintenance burden
- Accessed from any where, at any time

MLaaS is a black box

Confidential Untouchable

Which MLaaS is the best?

Pervious measurements on MLaaS

Type 1. White box

MLCommons

User-known models

- Accuracy
- Latency
- Quality

Type 2. Training Platform

AWS SageMaker

Al experts needed

- User control
- Complexity
- Accuracy

Type 3. Out-of-date MLaaS

Azure Machine Learning

Machine learning models

- SVM
- Neural networks
- Decision tree

Black box

Inference service

Deep learning models

Pervious measurements on MLaaS

Type 1. White box

MLCommons

User-known models

- Accuracy
- Latency
- Quality

Type 2. Training Platform

AWS SageMaker

Al experts needed

- User control
- Complexity
- Accuracy

Type 3. Out-of-date MLaaS

Azure Machine Learning

Machine learning models

- SVM
- Neural networks
- Decision tree

MLaaS in our work:

1. Black box, 2. Inference service, 3. Deep learning models

Which MLaaS is the best?

Provider	mAP	AP@50	AP@75
AWS	18.81	28.88	20.84
Azure	15.10	24.38	16.14
GCP	16.23	23.03	18.12

AWS is the best on average

Observation 1: For input with different features, the most appropriate MLaaS provider differs.

Which MLaaS is the best?

Observation 1: For input with different features, the most appropriate MLaaS provider differs.

Cloud federation

Previous cloud federation

System level metrics

- Latency
- Cost
- Scalability
- Stability

MLaaS federation

System level metrics

- Latency
- Cost
- ...

Model level metric

Accuracy

How about the performance of MLaaS federation?

The more MLaaSes, the higher accuracy?

(c) Azure, $AP_{50}:0.56$

Observation 2: Federate MLaaSes can achieve higher accuracy.

The more MLaaSes, the higher accuracy?

Observation 3: More MLaaSes (costs) do not imply higher accuracy.

Latency

Latency = Transmission latency + Inference latency

Observation 4: Requesting multiple cloud services does not cause a significant increase in latency with efficient bandwidth.

Cost-effective MLaaS federation

For each input, how to adaptively select k MLaaSes from n available MLaaSes to achieve the highest accuracy while minimize the cost?

Formulation

N-power ($N \ge 2$) object binary knapsack problem

MLaaS federation problem is NP-Hard.

Supervised Learning (x)

Complexity to generate the training set is exponential to the number of available providers. $(n \sim O(2^n))$

Reinforcement Learning (V)

If a set has "n" elements, then the number of proper subsets of the given subset is given by 2ⁿ-1.

How to handle $2^n - 1$ discrete actions?

How to handle combinatorial action space?

Representing discrete actions with continuous actions

Find the nearest neighborhood of the continuous action (O(n))

Store the nearest discrete action into the replay buffer

Combinatorial RL-based provider selection

Group synonym labels into same category

Ensemble predictions

We choose "Affirmative" and "WBF" strategies.

Generate reward

Performance metrics

- AP@50:
 - Average precision of predictions with a 50% IoU threshold.

- Cost:
 - Average cost in a test episode, in unit of 10^{-3} USD.

Comparison with other baselines

Methods	mAP	$\mathrm{AP_{50}}$	Cost	AWS	Azure	Google
Random-1	15.75	24.49	1.000	1690	1605	1657
Random-N	18.66	28.89	1.722	2858	2863	2809
Ensemble-N	21.75	34.69	3.000	4952	4952	4952
Armol-w/ gt	21.75	34.71	1.003	2863	950	1156
Armol-w/o gt	20.81	32.68	1.016	3426	683	924
Armol-PPO	14.99	25.05	1.087	1300	2541	1543
Armol-TD3	18.90	29.20	1.006	4843	114	26
Upper Bound	23.83	37.70	1.202	3881	1126	944

Compared to "Ensemble-N", our approach reduces the cost by 66%.

Scalability

We simulated 10 MLaaS providers.

Our framework converges at about 150,000 steps even with 10 available providers (1023 actions)

Conclusion

Our contribution:

- Measurement studies on major cloud providers reveal the varying differences among existing MLaaS offerings and the great potential in MLaaS federation to improve analytic performance.
- We formulate the MLaaS federation problem as a combinatorial provider selection problem and propose a combinatorial reinforcement learning-based approach to maximize accuracy.
- Efficient ensemble and grouping strategies are proposed to unify the vocabulary of different providers and aggregate the eventual results.

More resources: https://github.com/ShuzhaoXie/Armol

Thank you!

Offline vs. Online

Without ground truth, our method still achieves higher accuracy with less cost.

Comparison with other training algorithms

