Sissejuhatus osakestefüüsikasse ja kosmoloogiasse Loeng 2: Kosmiline dünaamika, Universumi mudelid ja vaatluslikud parameetrid

Sven Pöder ¹

¹Keemilise ja Bioloogilise Füüsika Instituut (KBFI) ²Tallinna Tehnikaülikool (TalTech)

TalTech, April 2024

Eelmisest korrast

- Ülevaade kosmoloogilistest skaaladest
- Homogenne ja isotroopne paisumine
- Ruumikõveruse kirjeldamine, meetrikad
- FRW meetrika, punanihke ja paisumisteguri vaheline seos

Einsteini väljavõrrandid

Ruumi kõverust prooviti kujutada juba 19. sajandil, kuid alles läbi Einsteini üldrelatiivsusteooria (1915) oli võimalik seda seostada ümbritseva Universumiga.

• Einsteini väljavõrrandid

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu} \tag{1}$$

- Mängivad sama rolli üldrelatiivsusteoorias, mis Poissoni võrrand mängib Newtoni dünaamikas
- Väljavõrrandid seovad omavahel aegruumi kõveruse ning energiatiheduse (ε) , rõhu (P) jm. Universumit täitva aine omadused

Lihtsus on petlik

Üldjuhul on $T_{\mu\nu}$ leidmine keeruline. Olukord lihtsustub oluliselt, kui eeldame, et universumit täidab homogeenne ja isotroopne ideaalne gaas

Friedmanni võrrand

A. Friedmann kasutas Einsteini väljavõrrandeid, et tuletada võrrand, mis kirjeldab kuidas homogeense ja isotroopse universumi paisumine (või kokku tõmbumine) sõltub ajast.

• Friedmanni võrrand kirjeldab Universumi paisumist ning on kosmoloogias üks olulisemaid, sest ta seob omavahel: a(t), κ , R_0 , $\varepsilon(t)$

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3c^2}\varepsilon(t) - \frac{\kappa c^2}{R_0^2}\frac{1}{a(t)^2}$$
 (2)

 Reaalse universumi kirjeldamiseks, peab Friedmanni võrrandi siduma mõõdetavate omadustega, nt. Hubble'i konstandiga

Kriitiline tihedus

Kui seame $\kappa=0$ (lame Universum), siis Friedmanni võrrand lihtsustub kujule

$$H(t)^2 = \frac{8\pi G}{3c^2} \varepsilon(t) \tag{3}$$

- Iga Hubble'i parameetri väärtuse jaoks leidub kriitiline tihedus $\varepsilon_c(t)$, mille puhul kehtib tingimus $\kappa=0$. Kuna H sõltub ajast, siis on ka kriitiline tihedus $\varepsilon_c(t)$ ajast sõltuv.
- ullet Energiatihedust kirjeldatakse kosmoloogias tihti dimensioonitu tihedusparameeteriga Ω

$$\Omega(t) = \frac{\varepsilon(t)}{\varepsilon_c(t)} \tag{4}$$

Pidevuse võrrand

Friedmanni võrrannd üksinda ei ütle, kuidas skaalategur a(t) muutub ajas, lahendamise jaoks on vaja kasutusele võtta võrrandeid, mis sisaldaksid muutujaid a(t) ja $\varepsilon(t)$

Termodünaamika esimesest seadusest saame pidevuse võrrandi

$$\dot{\varepsilon} + 3\frac{\dot{a}}{a}(\varepsilon + P) = 0, \tag{5}$$

mis on Friedmanni kõrval teine oluline võrrand universumi paisumise kirjeldamiseks.

 Kombineerides Friedmanni võrrandi ja pidevuse võrrandi saame kiirenduse võrrandi, mis kirjeldab Universumi paisumise kiirendumist või aeglustumist

Kommentaare adiabaatilisest paisumisest

Mida saame universumi adiabaatilise paisumisest järeldada entroopia kohta?

Olekuvõrrand

- Friedmanni ja pidevuse võrrand annavad meile kahe iseseisva võrrandiga süsteemi, kus on 3 tundmatut: a(t), $\varepsilon(t)$ ja P(t)
- Süsteemi lahendamiseks on vaja veel olekuvõrrandit, mis seoks omavahel rõhu ja energiatiheduse. Kosmoloogias saame kasutada lihtsat lineaarse kujuga võrrandit

$$P = w\varepsilon, \tag{6}$$

kus w on dimensioonitu suurus.

- Miiterelativistliku aine juhul w = 0
- Kiirguse juhul w = 1/3

Tume energia

• Tume energia on universumi komponent, mis kiirendab paisumist, seega ($\ddot{a}>0$) ning kehtib

$$\varepsilon(1+3w)<0, \tag{7}$$

kusjuures tingimuse w<-1/3 korral on paisumisteguri kiirendus $\ddot{a}>0$

ullet Kosmoloogiline konstant on üks vorm tumeenergiast ning universumi komponent, mille w=-1

Kosmoloogiline konstant

- Einstein proovis kirjeldada universumi mudelit, mis oleks staatiline ehk $\ddot{a}=0$
- ullet Kiirenduse võrrandist selgub, et selline universum oleks tühi: ho=0
- Friedmanni võrrand kosmoloogilise konstandiga

$$(\frac{\dot{a}}{a})^2 = \frac{8\pi G}{3c^2} \varepsilon(t) - \frac{\kappa c^2}{R_0^2} \frac{1}{a(t)^2} + \frac{\Lambda}{3}$$
 (8)

Kiirenduse võrrand

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3c^2}(\varepsilon(t) + 3P) + \frac{\Lambda}{3} \tag{9}$$

Erinevate komponentide energiatihedus

Erinevate komponentide energiatihedused ja rõhud on liidetavad ehk

$$\varepsilon = \sum_{i} \varepsilon_{i} \tag{10}$$

$$P = \sum_{i} w_{i} \varepsilon_{i} \tag{11}$$

Pidevuse võrrandist näeme, et energiatihedus kahaneb erinevalt iga universumi komponendi jaoks

$$\varepsilon_i = \varepsilon_{i,0} a^{-3(1+w_i)} \tag{12}$$

Mida suurem on w väärtus, seda kiiremini kahaneb energiatihedus univserumi paisudes

Erinevate komponentide energiatihedus II

Energiatihedus konkreetsetel juhtudel

- $\varepsilon(a)$ mitterelativistliku aine puhul
- $\varepsilon(a)$ kiirguse ehk relativistliku aine puhul

Vaatluslik mudel tänapäeval (mudel, mis on kooskõlas vaatlustega):

- $\Omega_{r,0} = 9.0 \times 10^{-5}$
- $\Omega_{m,0} = 0.31$
- $\bullet \ \Omega_{\Lambda,0} = 1 \Omega_{r,0} \Omega_{m,0} \approx 0.69$

Kui universum koosneb erinvatest "komponentidest", millel on erinevad olekuparameetrid w, siis saame eristada universumi ajaloos erinevaid epohhe energiatihedust domineerivate komponentide järgi.

Ühekomponendilised mudelid

- Teades erinevate komponentide olekuvõrrandi parameetrit, saame lahendada Friedmanni võrrandi ja leida paisumisteguri ja aja vahelise sõltuvuse
- Kosmiline horisont meid ümbritsev sfäär, millest kaugemale pole võimalik näha, sest valgus kaugemalt pole jõudnud veel meieni
- Paisumisteguril on lihtsates mudelites (üks energiatiheduse komponent) astmeline sõltuvus
- ullet Tühjad või lamedad ($\kappa=1$) mudelid ühe komponendiga paisuvad igavesti (kui nad paisuvad juba ajahetkel $t=t_0$)

Kosmiline horisont

Skaalateguri sõltuvus ajast

Figure: Skaalateguri sõltuvus ajast erinevate mudelite korral. [B. Ryden, Introduction to Cosmology]

Mitmekomponendilised mudelid

Figure: Kasutades $\Omega_{m,0}$ ja $\Omega_{\Lambda,0}$, saame uurida hiljutist universumi paisumist erinevatel tiheduste väärtustel [A. Liddle]

Kommentaare mitmekomponendilistest mudelitest

Figure: Paisumistegur vaatlusliku kooskõlaga mudelis. [B. Ryden]

Kokkuvõttev tabel meie universumist

	List of Ingredients
photons:	$\Omega_{\gamma,0} = 5.0 \times 10^{-5}$
neutrinos:	$\Omega_{\nu,0} = 3.4 \times 10^{-5}$
total radiation:	$\Omega_{r,0} = 8.4 \times 10^{-5}$
baryonic matter:	$\Omega_{\rm bary,0} = 0.04$
nonbaryonic dark matter:	$\Omega_{\rm dm,0} = 0.26$
total matter:	$\Omega_{m,0} = 0.30$
cosmological constant:	$\Omega_{\Lambda,0} \approx 0.70$

	Important Epochs	
radiation-matter equality:	$a_{rm} = 2.8 \times 10^{-4}$	$t_{rm} = 4.7 \times 10^4 \mathrm{yr}$
matter-lambda equality:	$a_{m\Lambda} = 0.75$	$t_{m\Lambda} = 9.8 \mathrm{Gyr}$
Now:	$a_0 = 1$	$t_0 = 13.5 \mathrm{Gyr}$

Figure: Ülevaade tänapäevasest universumist, mida näitavad kaasaegsed vaatlused. [B. Ryden]

Omakaugus meie universumis

Teame, et tiheduse parameeter $\Omega_0 = \Omega_{r,0} + \Omega_{m,0} + \Omega_{\Lambda,0}$.

$$1 - \Omega_0 = -\kappa (\frac{c/H_0}{R_0})^2 \tag{13}$$

Kui Ω_0 väärtus on täpselt teada, siis saame ka kätte kõveruse raadiuse (ja vastupidi).

Erinevate tiheduste hindamiseks peame kasutama vaatlusi.

Kaugused ja Standardküünlad

- Teame et Hubble'i konstant on oluline vaatluslik parameeter, sest ta kirjeldab universumi paisumise kiirust. Selle leidmiseks saame kasutada Hubble'i seadust, mis seob omavahel astronoomiliste objektide (nt. galaktikad) kauguse ja kaugenemiskiiruse.
- Galaktikatel endil on ka pekuliaarkiirus, mida ei ole üldjuhul võimalik eristada paisumise kiirusest. Piisavalt kaugel oleva galaktika Hubble'i kiirus on dominantne komponent ning pekuliaarkiirust võib mitte arvestada.
- See tähendab aga, et kauguseid tuleb hinnata täpselt, mis ei ole triviaalne ülesanne. Kauguste hindamiseks kasutatakse nn. standardküünlaid: tsefeiidid, la supernoovad, jm.

Standardküünlad ja H_0 l

"Lähedal" olevate taevakehade kaugust saame hinnata läbi trigonomeetrilise parallaksi.

Kuidas saame hinnata kosmoologilisi kaugusi kasutades tähtede heledust?

- Fikseerid standardküünlad ja nende heleduse L
- Mõõdad punanihke ja voo
- Arvuta heleduskaugus d_L
- Saame cz ja d_L teljestikus sirge, mille tõus on H_0

Hubble kasutas heleduskaugust, et hinnata kaugust, kuid $d_L = d_p$ ainult siis kui meil on Eukleidiline ruum!

Standardküünlad ja H_0 II

Figure: LMC ja Linnutee tsefeiidide muutlikkuse perioodi ja heleduse vaheline sõltuvus. [NASA/JPL-Caltech/Carnegie]

Gaia FOV

Standardküünlad III

Figure: [NASA, ESA, A. Feild (STScI), and A. Riess (STScI/JHU)]

Ebakõlad H_0 väärtuses

- Hubble Space Telescope Key Project (1990)
 - Üks põhjustest Hubble'i kosmoseteleskoobi ehitamiseks oli H₀ hindamine läbi tsefeiidide
 - Ülesandes peitub keerukus, sest max $d_L \approx 30 Mpc$
 - Tsefeiidide mõõtmistest $H_0 = 75 \pm 8 km s^{-1} Mpc^{-1}$
- Plancki teleskoop (2009)
 - Euroopa Kosmoseagentuuri (ESA) teleskoop, mille eesmärk uurida CMB-d
 - CMB mõõtmistest $H_0=67.4\pm0.5$ kms $^{-1}$ Mpc $^{-1}$

Aeglustusparameeter q₀

Aeglustusparameeter q_0 on dimensioonitu suurus ning on antud kui

$$q_0 = -(\frac{\ddot{a}a}{\dot{a}^2})_{t=t_0} = -(\frac{\ddot{a}}{aH^2})_{t=t_0}$$
 (14)

- ullet Aeglustusparameeter q_0 kirjeldab Hubble'i parameetri muutumist ajas
- Selle saamiseks arendame paisumisteguri a(t) Taylori ritta praeguse aja $a(t_0)$ suhtes

Kasutades tihedusparameetreid, saame kirjutada

$$q_0 = \Omega_{r,0} + \frac{1}{2}\Omega_{m,0} - \Omega_{\Lambda,0}$$
 (15)

Vaatlusliku mudeli jaoks on näiteks $q_0 \approx -0.53$

Tihedusparameeter Ω_0 ja aeglustusparameeter q_0

Point on see, et kui me teame täpselt universumit täitva aine omadusi, siis aeglustusparameeter q_0 ei ole iseseisev tiheduse- ja kiirendusparameetrist. Kuna me oleme lihtsurelikud vaatlejad, siis mõõtes q_0 võime saada uut ja huvitavat informatsiooni universumi kohta.

Märkus kriitilise tiheduse kohta

Kriitiline tihedus ei ole universumi õige tihedus - universum ei pea olema lame ($\kappa=0$). Küll aga see seab universumi tiheduse kontekstis naturaalse skaala.

SNela ja Aeglustusparameeter q_0

- 1990-ndatel uuriti kaugeid la supernoovasid ning leiti et $q_0 < 0$, mis on üks olulisemaid vaatluslikke tulemusi tänapäevases kosmoloogias
 - Supernova Cosmology Project
 - High-z Supernova Search Team
- la tüüpi supernoovad on kasulikud, sest neid saab põhimõtteliselt kasutada standardküünlatena heledus on võrreldav galaktika heledusega ($\approx 100 \times 10^9 L_{\odot}$)
- Kuigi neil pole identne heledus, kehtib heleduse ja kestuse vahel korrelatsioon, mida on võimalik kalibreerida

SNela

Figure: Galaktika M101 (kaugus $\approx 6.4 \textit{Mpc})$ - enne ja pärast pildid. (2011)

SNela Valguskõverad

Figure: la supernoova valguskõverad. [Durham University Department of Physics]

SNela ja Aeglustusparameeter q_0 III

Figure: SNela vaatluste punanihke ja kauguse mooduli sõltuvus. [ApJ 746, 85 (2012)]

Kauguse moodul erinevates mudelites

Ω_{Λ} ja Ω_m graafik koos vaatlustega

