数字逻辑

教学计

- 1. 总计划学时数为 48, 其中课堂讲授 32 学时, 实验 16 学时。
- 2. 教学方式:课堂讲授
- 3. 最后成绩评定办法: 平时成绩占 10%, 实验成绩占 20%, 期末考试占 70%。
- 4. 教材:《数字逻辑(第3版)》詹瑾瑜、江维、李晓瑜编著,机械工业出版社

课程地位

- 数字逻辑是一门计算机专业基础课;
- 数字逻辑是计算机组成原理、微机与接口技术、现代数字系统设计等课程的先导课程。

课程目的

- 准确完整地理解数字逻辑的定义和规则;
- 掌握常见数字电路类型及结构;
- 运用组合逻辑和时序逻辑的设计思想, 掌握设计方法, 正确地设计电路。

课程内

容

- 第一章
 現一章
- 第二章 逻辑代数基础
- 第三章 集成门电路
- 第四章 组合逻辑电路
- 第五章 触发器
- 第六章 同步时序逻辑电路
- 第七章 异步时序逻辑电路
- 第八章 可编程逻辑电路

二、数字系统与模拟系统的比较

1、从信号来看

模拟信号是连续信号,任一时间段都包含了信号的信息分量,如正弦信号。

数字信号是离散的,只有"0"和"1"两种值,即是一种脉冲信号,广义地讲,凡是非正弦信号都称为脉冲信号。

数字电路

•使用数字信号,并能对数字量进行算术运算和逻辑运算的电路

数字信号: 指用二进制表示的信号, 即信息用 0 , 1 来表示

•逻辑运算功能:对不同的输入条件,电路能作出相应的逻辑推理和判断,从而得到正确的

教学目标

- 1 掌握基本理论
- 2 掌握这一领域的基本分析方法和基本设计方法
 - 3 能熟练地运用集成电路手册
- 4 会调试、测试数字电路

第一章 数制与码制

计数进位 1.1 制 数制转 1.2 换 带符号数的代码表 1.3 示 数码和字符的代码表 1.4 示

1.4 数码和字符的代码表示

1.4.1 十进制数的二进制编码

由于人们习惯使用十进制数,而电路单元最适宜于二进制操作,于是出现了一种用二进制码编写的十进制码,即二一十进制码,或称BCD码。

常见的编码形式如下:

进制数	8421码	余3码	2421 码
0	0000	0011	0000
1	0001	0100	0001
2	0010	0101	0010
3	0011	0110	0011
4	0100	0111	0100
5	0101	1000	1011
6	0110	1001	1100
7	0111	1010	1101
8	1000	1011	1110
9	1001	1100	1111
	•	(1	

一、8421码

特点:

- (1) 从左到右,权位分别为8-4-2-1 ,其按自然二进制数的规律排列,不允许出现 1010~1111 这6种代码。
- (2) 具有奇偶特性, 当十进制数为奇数时, 对应的代码的最低位为1, 为偶数时最低位0
- (3) 8421 码的编码值与字符 0 ~ 9 的 ASCII 码低四位相同。有利于简化输入输出过程中从字符到 BCD 码或从 BCD 码到字符的转换操作。

例 1: 把十进制数变成 8421BCD 码数串。

 $0017 \longrightarrow 0010 \quad 0000 \quad 0001 \quad 0111$

例 2: 把 8421BCD 码数串变成十进制数。

 $0110 \quad 1000 \quad 0101 \quad 0011 \longrightarrow \quad 6853$

例 3: 把 8421BCD 码数串变成二进制数。

 $9110\ 1000\ \longrightarrow 68\ \longrightarrow\ (0100\ 0100)_{2}$

二、余三码

在 8421BCD 码的基础上,把每个代码都加 0011 而形成的。它的主要优点是执行十进制相加时,能正确的产生进位信号。

进制数	8421码	余 3 码	2421 码
0	0000	0011	0000
1	0001	0100	0001
2	0010	0101	0010
3	0011	0110	0011
4	0100	0111	0100
5	0101	1000	1011
6	0110	1001	1100
7	0111	1010	1101
8	1000	1011	1110
9	1001	1100	1111
	1	I ,	

四、2421码

(1) 从左到右,权位分别为2-4-2-1。

(2) 将任意一个十进制数 D 对应的代码各位取反, 正好是与 9 互补的那个十进制数 (9-D) 的代码, 因此 2421 码也被称为自补码。

例如: 3 的代码 0011 (2421 码) 取反为 1100, 正好是 9-3=6 的 2421 码。

进制数	8421码	余3码	2421 码
0	0000	0011	0000
1	0001	0100	0001
2	0010	0101	0010
3	0011	0110	0011
4	0100	0111	0100
5	0101	1000	1011
6	0110	1001	1100
7	0111	1010	1101
8	1000	1011	1110
9	1001	1100	1111

1.4.2 可靠性编码

一、格雷码

特点:任意相邻两个代码之间只有一位状态不同,其他位则相同。

格雷码可以用在计数器中,当从某一编码变到下一个相邻的编码时,只有一位的状态发生变化,这有利于提高系统 的工作速度和可靠性。

将二进制转换到格雷码的方法为:保持最高位不变,其他位与前面一位异或。

假设二进制数为
$$B_{n-1}B_{n-2}...B_0$$
,格雷码为 $G_{n-1}G_{n-2}...G_0$

$$G_{n-1} = B_{n-1}$$

$$G_i = B_{i+1} \oplus B_i$$
 $i = n - 2, ..., 0$

$$i = n - 2, ..., 0$$

列: 二进制数为 1 0 1 1 0 1 0

$$\oplus$$
 \oplus \oplus \oplus \oplus \oplus

则格雷码为 1 1 1 0 1 1 0

十进制数	格雷码	十进制数	格雷码
0	0000	8	1100
1	0001	9	1101
2	0011	10	1111
3	0010	11	1110
4	0110	12	1010
5	0111	13	1011
6	0101	14	1001
7	0100	15	1000

二、奇偶效验码

奇偶校验码是为检查 数据传输是否出错 而设置的

在数据中加入校验位,校验位的加入如果使整个代码中的"1"的个数为奇数,称奇校验。

若使整个代码中的"**1**"的个数为偶数, 称偶校验。

奇校验

十进制数	信息位	校验位	十进制	信息位	校验位
0	0000	1	5	0101	1
1	0001	0	6	0110	1
2	0010	0	7	0111	0
3	0011	1	8	1000	0
4	0100	0	9	1001	1

偶校验

+	进制数	信息位	校验	位	十进制数	信息位	校验	位
	0	000	0	0		5		
1	01010	0010	1		6	011	O	(
2	0	010	1		7	011	<u> </u>	
3	0	011	0		8	100	0	•
4	0	100	1		9	100	1	(

4.5 子何气 码

国际上常采用的有 ASCII 码(美国标准信息交换码)其用7位二进制数表示,可表示96个图形字符以及32个控制字符。

我国还广泛使用信息交换国家标准码(GB1988 - 80)。其编码除少数图形字符外,基本同 ASCII 码相同。