

Introduction to Wireless Sensor **Networks** (WSN)

Mohsin Sohail Graduate Student

- "The most profound technologies are those that disappear. They weave themselves into the fabric of everyday life until they are indistinguishable from it. "[1]
- "Its essence was the creation of environments saturated with computing and communication yet gracefully integrated with human users "[2]

The Major Trends in Computing

Building Blocks

- How did Pervasive computing systems come into being?
- What is its relationship with other fields of computing?

The Ambient Intelligent World

- An Example of an Intelligent Work Place
 - Smart Space Knows when you enter and when you have left.
 - Invisibility Avoids distracting its occupant.
 - Localized Scalability- Reduce interactions with user if he is in conference room and not in office.
 - Masking Uneven Conditioning- Multiple modes of receiving the same information.

The role of WSN in Aml

- Xerox PARC, 1988-1994.
 - Tabs, Pads and Boards
 http://www.ubiq.com/parctab/csl9501/paper.html
 - User Friendly interfaces only
- WSN
 - Detailed Context
 - Self-* Properties

- Kris Pister an EECS professor at UC Berkeley coined the phrase "smart dust" to describe individual sensor nodes:
 - Small size with a small footprint (HW\SW).
 - Monitor Environment.
 - Wireless transmission.
 - Self-Configuring and Dynamic Routing.

MICAz Processor and Radio Platform (MPR2400)

Processor/Radio Board	MPR2400CA	Remarks
Processor Performance		
Program Flash Memory	128K bytes	
Measurement (Serial) Flash	512K bytes	> 100,000 Measurements
Configuration EEPROM	4K bytes	
Serial Communications	UART	0-3V transmission levels
Analog to Digital Converter	10 bit ADC	8 channel, 0-3V input
Other Interfaces	Digital I/O,I2C,SPI	
Current Draw	8 mA	Active mode
	< 15 μΑ	Sleep mode
RF Transceiver		
Frequency band ¹	2400 MHz to 2483.5 MHz	ISM band, programmable in 1 MHz steps
Transmit (TX) data rate	250 kbps	
RF power	-24 dBm to 0 dBm	
Receive Sensitivity	-90 dBm (min), -94 dBm (typ)	
Adjacent channel rejection	47 dB	+ 5 MHz channel spacing
	38 dB	- 5 MHz channel spacing
Outdoor Range	75 m to 100 m	1,2 wave dipole antenna, LOS
Indoor Range	20 m to 30 m	1. 2 wave dipole antenna
Current Draw	19.7 mA	Receive mode
	11 mA	TX, -10 dBm
	14 mA	TX, -5 dBm
	17.4 mA	TX, 0 dBm
	20 μΑ	Idle mode, voltage regular on
	1 μΑ	Sleep mode, voltage regulator off

MTS 310

- Light
- Temperature
- Sound Sensor
- Dual- Axis
 Accelerometer
- Dual Axis

Magnetometer

MTS 420

- Temperature & Humidity
- Humidity Accuracy < 3.5%
- Temperature
 Accuracy < 0.5 Deg.
 C
- Barometric Pressure
- Ambient Light Sensor
- 2-Axis Accelerometer

Crossbow Base Stations

Features

Description

Mote/Board Connectors

Programming Port

Data Port

MIB 600

Ethernet Port Programmer

- · MICA, MICA2, MICAz
- · MICA2DOT (with MPC100)

MIB 520

USB Programmer

- · MICA, MICA2, MICAz
- · MICA2DOT (with MPC100)

Ethernet

Ethernet

USB

USB

Background

RSettodVlooldle Seatsenverloodule

Crossbow

Basic Requirements for WSN

- Low Power Consumption
- Ease of Use
- Scalability
- Responsiveness
- Range
- Bi-Directional Communication
- Reliability
- Small Module Form Factor

Topologies

- Wireless Links Numerous paths to Connect to the same destination
- Topology
 - Star
 - Mesh
 - Hybrid

Star Topology

- Single Hop to Gateway
- Gateway serves to communicate between nodes
- Nodes cannot send data to each other directly

Star Topology (Contd...)

- Pros
 - Lowest Power consumption
 - Easily Scalable

- Cons
 - Not very reliable as one point of failure
 - No alternate communication paths

Mesh Topology

Figure 1-2. Diagram showing a Mesh Topology

- Multi-Hopping Systems
- Nodes can communicate with each other directly

Mesh Topology (Contd...)

- Pros
 - Reliable as no single point of failure
 - Many alternate communication paths
 - Easily Scalable
- Cons
 - Significantly higher power consumption
 - Increased Latency

Hybrid Topology

- Sensors are arranged in a star topology around the routers
- •The routers arrange themselves in a mesh form

Hybrid Topology (Contd...)

- Pros
 - Reliable as no single point of failure
 - Many alternate communication paths
 - Lower power consumption as compared to mesh topology
- Cons
 - Scalability becomes an issue when range is extended

Wireless Sensor Network

MoteWorks

Figure 1-1. Software framework for a wireless sensor network

Virtual Reality and Ubiquitous computing

Building Blocks

- How did Pervasive computing systems come into being?
- What is its relationship with other fields of computing?

Smart Spaces

- WSN and Smart Spaces
 - iDorm and iDrom2 Project
 http://iieg.essex.ac.uk/index.htm

Embedded devices

Devices, actuators, sensors

- WSN and Invisibility
 - MIT Oxygen project
 http://www.oxygen.lcs.mit.edu/Speech.html
 http://www.oxygen.lcs.mit.edu/Vision.html
 - University of California, Berkeley Project Endeavour
 http://endeavour.cs.berkeley.edu/related.html

Localized Scalability

- WSN and Localized Scalability
 - UR-Wireless Communications and Networking Group
 http://www.ece.rochester.edu/research/wcng/
 - University of Utah Emulab Project
 http://www.emulab.net/index.php3?stayhome=1

Masking uneven Conditioning

- WSN and Masking Uneven Conditioning
 - UMBC CoBrA

http://ebiquity.umbc.edu/project/html/id/1/Context -Broker-Architecture-CoBrA-

- Commercial Availability of Sensors
 - Crossbow
 - MeshNetics
 - MicroStrain
 - Dust Networks

Problem Sensor Radio Modula node Sensor Radio Radio node Module Module Radio Module Radio Module Sensor node Crossbow

Proposed Solution

