STAT4008 Survival Modeling

Assignment 3 Solution

Q11

Test $H_0: h(t) = 0.2$.

We have
$$\chi^2 = \frac{(O-E)^2}{E} = \frac{\left[\sum_{i=1}^{12} d_i - \left(\sum_{i=1}^{12} T_i\right)(0.2)\right]^2}{(0.2)\left(\sum_{i=1}^{12} T_i\right)} = \frac{\left[8 - (230)(0.2)\right]^2}{(0.2)(230)} = 31.4 > 3.84 = \chi^2_{1,0.95}$$
 and so null is rej.

Note: denominator equals
$$E = \sum_{i=1}^{12} H_0(T_j) = \sum_{i=1}^{12} \int_0^{T_j} h_0(t) dt = \sum_{i=1}^{12} \int_0^{T_j} 0.2 dt = \sum_{i=1}^{12} T_i$$
 (0.2)

(If you follow the example in tutorial 5, you will obtain $\chi^2 = 0.05128$ and null is not rejected, but please don't follow that approach in subsequent tests and exams.)

$\mathbf{2}$ Q2

Test $H_0: h_1(t) = h_2(t)$. Consider the two tables below:

i	ti	ni	di	n1i	d1i	n2i	d2i	w1i	w2i	d1i-w1i	d2i-w2i
1	2.00	21.00	3.00	9.00	2.00	12.00	1.00	1.29	1.71	0.71	-0.71
2	3.00	18.00	3.00	7.00	1.00	11.00	2.00	1.17	1.83	-0.17	0.17
3	4.00	13.00	3.00	5.00	1.00	8.00	2.00	1.15	1.85	-0.15	0.15
4	5.00	8.00	3.00	3.00	2.00	5.00	1.00	1.12	1.88	0.88	-0.88
5	6.00	3.00	1.00	1.00	0.00	2.00	1.00	0.33	0.67	-0.33	0.33
6	7.00	1.00	1.00	0.00	0.00	1.00	1.00	0.00	1.00	0.00	0.00

i	[V11]i	[V12]i	[V22]i
1	0.66	-0.66	0.66
2	0.63	-0.63	0.63
3	0.59	-0.59	0.59
4	0.50	-0.50	0.50
5	0.22	-0.22	0.22
6	0.00	0.00	0.00

For Eog Pain test.
$$U_L = \sum_{i=1}^6 (d_{1i} - w_{1i}) = 0.9354 \text{ and } V_L = \sum_{i=1}^6 ([V11]_i) = 2.60648.$$
 So, $\chi^2_L = U^2_L/V_L = 0.335 < 3.84 = \chi^2_{1,0.95}$

(Alternative Method) For Wilcoxon test:
$$U_W = \sum_{i=1}^6 n_i (d_{1i} - w_{1i}) = 16 \text{ and } V_W = \sum_{i=1}^6 n_i^2 ([V11]_i) = 629.5664.$$
 So, $\chi^2_W = U_L^2/V_L = 0.4066 < 3.84 = \chi^2_{1,0.95}$

In both methods, H_0 is NOT rejected at % significance.

Alternatively, you can use the following R-code:

Survdiff(formula=Surv(time,status)~group) #chisq=0.3 and p=0.6

3 Q3

When two prognostic factors are joinly considered, there are 4 groups of data. If non-parametric method is used, R output:

```
survdiff(formula = Surv(data, c) \sim x1 + x2)
            N Observed Expected (O-E)^2/E (O-E)^2/V
x1=0, x2=0 4
                       ^{2}
                             4.92
                                        1.736
                                                   2.433
x1=0, x2=19
                      6
                             8.16
                                        0.571
                                                   0.961
x1=1, x2=0 9
                      7
                             5.11
                                        0.697
                                                   0.954
                             4.80
x1=1, x2=1 8
                                        2.126
                                                   2.965
 Chisq= 5.7 on 3 degrees of freedom, p= 0.128
\implies p - value > 0.05, H_0 is NOT rejected at % significance.
```

Alternatively, since the wordings are not clear in the questions, the followings are also accepted.

```
> survdiff(Surv(set3$time,set3$status)~set3$x1)
Call:
survdiff(formula = Surv(set3$time, set3$status)~ set3$x1)

N Observed Expected (0-E)^2/E (0-E)^2/V
set3$x1=0 13 8 13.08 1.97 5.03
set3$x1=1 17 15 9.92 2.61 5.03

Chisq= 5 on 1 degrees of freedom, p= 0.02

> survdiff(Surv(set3$time,set3$status)~set3$x2)
Call:
survdiff(formula = Surv(set3$time, set3$status)~ set3$x2)

N Observed Expected (0-E)^2/E (0-E)^2/V
set3$x2=0 13 9 10 0.1071 0.203
set3$x2=1 17 14 13 0.0829 0.203

Chisq= 0.2 on 1 degrees of freedom, p= 0.7
```

Q44 Q4a) Testing $H_0: h_1(t) = h_2(t) = h_3(t)$ for group 1, 2, 3. If use non-parametric method, R output: Call: $survdiff(formula = Surv(d\$Time, rep(1, nrow(d))) \sim Group, data = d)$ N Observed Expected (O-E)^2/E (O-E)^2/V Group=1 51 5140.402.7836.44826 Group=2 26 34.92 2.278 4.697 Group=3 7 8.68 0.3270.497 7 Chisq= 6.5 on 2 degrees of freedom, p= 0.0396 $\implies p - value < 0.05$, H_0 is rejected at % significance. (Alternative method) If cox model is used, R-output: Call: coxph(formula = Surv(d\$Time, rep(1, nrow(d))) ~ factor(Group), data = d) coef exp(coef) se(coef) factor(Group)2 -0.541 $0.24\overset{'}{3}$ -2.23 $0.02\overset{'}{6}$ 0.582factor (Group)3 -0.558 0.440 -1.27 0.2000.572Likelihood ratio test=5.88 on 2 df, p=0.0529 n= 84, number of events= 84 $\implies p-value > 0.05, H_0$ is marginally not rejected at % significance. Q4b) Testing $H_0: h_1(t) = h_2(t) = h_3(t)$ for treatment 1, 2, 3 If use non-parametric method, R output: Call: survdiff(formula = Surv(d\$Time, rep(1, nrow(d))) ~ Treatment, data = d) N Observed Expected (O-E)^2/E (O-E)^2/V Treatment=1 15 15 12.60.475620.71233 Treatment=2 33 33.6 0.00914 0.018

Treatment=3 36

Call:

36

(Alternative method) If cox model is used, R-output:

as.factor(Treatment)2 -0.187

as.factor(Treatment)3 -0.233

Chisq= 0.7 on 2 degrees of freedom, p= 0.692 $\Rightarrow p-value > 0.05$, H_0 is NOT rejected at % significance.

 $\implies p - value > 0.05$, H_0 is NOT rejected at % significance.

37.9

0.09428

coxph(formula = Surv(d\$Time, rep(1, nrow(d))) ~ as.factor(Treatment), data = d)

coef exp(coef) se(coef)

0.829

0.792

Likelihood ratio test=0.52 on 2 df, p=0.771 n= 84, number of events= 84

0.205

 \mathbf{z}

 $0.322 - 0.582 \ 0.56$

 $0.319 - 0.731 \ 0.47$

```
data = read.csv("ass3q5.csv", header = T)
set.seed(123457)
draw = sample(nrow(data),100)
subsample = data[draw, ]
survival data = Surv(subsample$Time, event = subsample$Status)
survdiff(formula = survival_data ~ subsample$Smoking.Status)
Output, you should be able to obtain this,
Call:
survdiff(formula = Surv(sub$Time, sub$Status) ~ sub$Smoking.Status)
                       N Observed Expected (O-E)^2/E (O-E)^2/V
                                              2.043
sub$Smoking.Status=0 32
                               26
                                      34.4
                                                            4.20
sub$Smoking.Status=1 32
                                26
                                       21.5
                                                 0.920
                                                             1.34
sub$Smoking.Status=2 36
                               33
                                       29.1
                                                 0.531
                                                           0.88
 Chisq= 4.3 on 2 degrees of freedom, p= 0.1
Or this
> survdiff(Surv(sub$Time,sub$Status)~sub$Smoking.Status)
Call:
survdiff(formula = Surv(sub$Time, sub$Status) ~ sub$Smoking.Status)
                     N Observed Expected (0-E)^2/E (0-E)^2/V
sub$Smoking.Status=0 37 29 33.5 0.5990 1.077
sub$Smoking.Status=1 28 24 21.0 0.4236 0.604
sub$Smoking.Status=2 35 31 29.5 0.0757 0.127
 Chisq= 1.2 on 2 degrees of freedom, p= 0.6
```