Gauss Plane and Complex Function

Graphics primitives

Show Lattice.

ln[8]:= r = Exp[I Pi * .25] (*I=Sqrt[-1]*)

Out[8]= 0.707107 + 0.707107 i

In[9]:= plt[.75, r * a]

(*Rotate of Angle=Pi/4 around zero.r acts to each element of a*)

Mapping Lattice

Function acts to each element of List.

Out[24]=

Out[23]=

-10

-20

-30

-40

-50

ln[24]:= Show[g1, PlotRange $\rightarrow \{\{0, 0.35\}, \{-0.35, 0\}\}]$

-0.05 -0.10 -0.15 -0.20 -0.25 -0.30 -0.35 -0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.38

ln[27]:= Show[g2, PlotRange $\rightarrow \{\{0.5, 1.5\}, \{-0.2, 0.2\}\}]$

In[15]:= ? BesselJ

Out[15]=

in[28]:= g3 = plt[.75, BesselJ[1, a]]

Out[28]=

ln[29]:= Show[g3, PlotRange $\rightarrow \{\{-200, 200\}, \{-0150, 150\}\}]$

Out[29]= 150 100 50 0 -50 -100 -150 -200 -100 200

In[16]:= plt[.75, Sqrt[a]] (*Square Root of each element of a*)

In[17]:= plt[.5, a^(.5 + I)] (*Power by "1/2 + Sqrt[-1]"*)

In[18]:= ? AiryAi

Out[18]=

In[19]:= plt[.5, AiryAi[Evaluate[a/5]]]

Out[19]= -0.2 -0.4 -0.6 -0.8 -0.1 0.0 0.1 -0.2 0.2 0.3

In[20]:= **a1 = 4 + 4 I**

Out[20]=

4 + 4 i

In[21]:= a2 = 6 + 7 I

Out[21]=

6 + 7 i

$$In[30]:= g4 = plt[.25, (a - a1) / (a - a2)]$$

Out[30]= 6 4 2 0 -2 -4 -6 10 20

Biblography Programming in Mathematica Second Edition, R. Maeder, Addison - Wesley, 1991