9. 단순 선형 회귀분석

단순 선형 회귀분석

공분산과 상관계수가 설명하지 못하는 두 변수의 원인과 결과 (인과관계)를 설명하고자 하는 경우,

이를 수식으로 표현하여 두 변수의 관계를 설명하고자 하는 분석방법

단순 선형 회귀분석 용어

1. 설명변수 (Explanatory Variable)

: <mark>독립변수</mark>라고도 하며, 회귀분석에서 <mark>원인</mark>의 역할을 하는 변수로 통상적으로 X로 표현

2. 반응변수 (Response Variable)

: 종속변수라고도 하며, 원인에 따른 결과를 나타나는 변수로 통상적으로 Y로 표현

3. 선형모형 (Linear Model)

: 수학적 선형모형은 Y = a + bX 또는 $Y \neq a + bX$, 즉 선형관계가 성립할지 안할지 결정

단순 선형 회귀모형

n 개의 자료가 쌍으로 관측된 경우 위의 모형은 다음과 같이 표현 (ϵ_i 는 오차항)

$$Y_i = a + bX_i + \epsilon_i$$
, $i = 1, 2, ..., n$

단순 선형 회귀분석의 가정

1. 선형성

: 설명변수 X와 반응변수 Y의 관계는 선형식으로 표현되는 관계 (분석 모형이 선형식으로 표현)

2. 독립성

: 오차 ϵ_i 는 서로 독립 (쌍별로 관측되는 데이터는 상호작용을 하지 않음)

3. 정규성 및 등분산성

: 오차 ϵ_i 는 정규분포 $N(0,\sigma^2)$ 를 따름 (오차항은 0을 중심으로 동일한 분산을 가지는 확률변수)

9.2 단순 선형 회귀분석의 절차

모형식의 추정

절편과 기울기에 해당하는 α , β 를 추정해야 하는데 관측된 값과 예측하고자하는 값의 차이인 오차를 가장 최소화하는 절편과 기울기를 찾게 됨

1. 절편(α) 추정량

$$\hat{\alpha} = \frac{S_{xy}}{S_{xx}}, \quad S_{xy} = \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y}), \quad S_{xx} = \sum_{i=1}^{n} (X_i - \bar{X})^2$$

2. 기울기(β) 추정량

$$: \hat{\beta} = \bar{Y} - \hat{\alpha}\bar{X}$$

9.2 단순 선형 회귀분석의 절차

단순 선형 회귀분석의 검정 절차

가설의 설정	$H_0: \ eta = 0 \ vs \ H_1: eta eq 0 \ (X, Y는 관련이 없다 (귀무가설))$
모형의 분해	$(Y_i - \overline{Y}) = (\widehat{Y}_i - \overline{Y}) + (Y_i - \widehat{Y}_i)$
제곱합의 분해 (분산의 분해)	SST = SSR + SSE
자유도 계산	n - 1 = 1 + (n - 2)
제곱 평균의 계산	$MS_{Trt} = \frac{SSR}{1}$, $MSE = \frac{SSE}{n-2}$
검정 통계량의 계산과 의사결정	$F = \frac{MSR}{MSE} \sim F_{1,n-2}$

9.2 단순 선형 회귀분석의 절차

단순 선형 모형의 결과 확인

1. 설명력 확인 - 결정 계수 (Coefficient Determination, R^2)

: 결정 계수는 전체 변동 중에서 회귀 부분이 설명하는 변동의 비율

: 회귀식이 전체 변동 중에서 얼마만큼 설명하는지를 나타내는 설명력

$$R^2 = \frac{SSR}{SST}$$

2. 선형모형 가정의 확인

: 최초 회귀분석에서 가정한 3가지 조건인 선형성, 독립성, 정규성 및 등분산성이 만족하는지 여부를 확인하는 과정이 필요