

物理实验报告

课程名称:	大	学物理实验		
.				
实验名称:	——————————————————————————————————————	态法测金属杨	<u> </u>	
学院:	先进制造学院	专业班级:	智造 221 班	
学生姓名:_	朱紫华	学号:	5908122030	
实验地点:	基础实验大楼	分泌性间	2023年月日	
实验地点:_	垄 個		_ 4043 牛 月 日	

一、实验目的:

- 1.掌握不同长度测量器具的选择和使用,掌握光杠杆测微原理和调节方法;
- 2.掌握用拉伸法测定金属丝的杨氏模量;
- 3.学习误差分析,掌握误差均分原理,学习数据处理及测量最终结果的表述,掌握用作图法、逐差法处理数据。

二、实验原理:

在外力作用下,固体材料所发生的形状变化称之为形变。形变分为弹性形变和范性形变。 如果加在物体上的外力停止作用后,物体能完全恢复原状的形变称之为弹性形变;如果加在 物体上的外力停止作用后,物体不能完全恢复原状的形变称之为范性形变。

在许多种不同的形变中,伸长(或缩短)形变是最简单、最普遍的形变之一。本实验是针对连续、均匀、各向同性的材料做成的丝,进行拉伸试验。设细丝的原长为L,横截面积为S,两端受拉力(或压力)F后,物体伸长(或缩短) ΔL 。单位长度的伸长量 $\Delta L/L$ 称为应变,单位横截面积所承受的力 F/S 称为应力。根据胡克定律,在弹性限度内,应力与应变成正比关系,即

$$\frac{F}{S} = E \frac{\Delta L}{L} \tag{3-1}$$

式中比例系数 E 称为杨氏弹性模量,简称杨氏模量。实验证明,杨氏模量与外力 F、物体的长度 L 和截面积 S 的大小无关,而只决定于物体的材料。杨氏模量是表征固体材料性质的一个重要物理量,是选定机械构件材料的依据之一。

由 3-1 式得

$$E = \frac{FL}{S \cdot \Delta L} \tag{3-2}$$

在国际单位制(SI)中,E 的单位为 $N \cdot m^{-2}$ (或 Pa)。实验中只要测出 $F \cdot L \cdot S$ 和 ΔL ,则就能算出细丝的杨氏模量。通常 ΔL 量值很小,直接测量很难得出准确数值,故实验中,要用光杠杆将 ΔL 予以放大,以便于测量。几种常用材料的杨氏弹性模量 E 值见表 2-1。

材料名称	$E (\times 10^{11} Pa)$
钢	2.0
铸铁	1.15-1.60
铜及其合金	1.0
铝及硬铝	0.7

应当指出,3-1 只适用于材料弹性形变的情况,如果超出弹性限度,应变与应力的关系将是非线性的,图 3-1 表示合金钢和硬铝等材料的应力-应变曲线。

图 3-2 杨氏模量仪和光杠杆

1—横梁夹子 2—夹子

3—光杠杆 4—平台

5—砝码托

6-水平调节螺旋

7—望远境

8—标尺

杨氏模量仪如图 3-2 右边所示。在一较重的三脚底座上固定有两根立柱,在两立柱上装有可沿立柱上、下移动的横梁和平台,被测金属丝的上端夹紧在横梁夹子 1 中,下端夹紧在夹子 2 中,夹子 2 能在平台 4 的圆孔内上下自由运动。其下面有砝码托 5,用以放置拉伸金属丝的砝码,当砝码托上增加或减少砝码时,金属丝将伸长或缩短 ΔL ,夹子 2 也跟着下降或上升 ΔL ,光杠杆 3 放在平台 4 上。

光杠杆是利用放大法测量微小长度变化的常用仪器,有很高的灵敏度。结构如图 3-2 (右上)所示,平面镜垂直装置在 "T"形架上,"T"形架由构成等腰三角形的三个足尖 A、B、C 支撑,A 足到 B、C 两足之间的垂直距离 K 可以调节,如图 3-2(右下)所示。测量时光杠杆的放置如图 3-3 所示,将两前足 B、C 放在固定平台 4 前沿槽内,后足尖 A 搁在夹子 2 上,用图 3-2 左边的望远镜 7 及标尺 8 测量平面镜的角偏移就能求出金属丝的伸长量。其原理如图 3-5 所示,金属丝没有伸长时,平面镜垂直于平台,其法线为水平直线,望远镜水平地对准平面镜,从标尺 r_0 处发出的光线经平面镜反射进入望远镜中,并与望远镜中的叉丝横线对准。当砝码托上加码后,金属丝受力而伸长 ΔL ,夹子 2 跟着向下移动 ΔL ,光杠杆足尖 A 也跟着向下移动 ΔL 。这样,平面镜将以 BC 为轴,K 为半径转过一个角度 α ,镜面的法线也由水平位置转过 α 角。由光的反射定律可知,这时从标尺 α ,设发出的光线(与水平线夹角为 α)经平面镜反射进入望远镜中,并与叉丝横线对准,望远镜中两次读数之差 α α ,由图可得:

图 3-3 光杠杆的放置

$$tg \alpha = \frac{\Delta L}{K} \qquad tg 2\alpha = \frac{l}{D}$$

D 为标尺与平面镜之间的距离。实际测量过程中, α 很小,所以

$$\alpha = \frac{\Delta L}{K} \qquad 2\alpha = \frac{l}{D}$$

消去α,得

$$\Delta L = \frac{Kl}{2D} \tag{3-3}$$

这样,通过平面镜的旋转和反射光线的变化就把微小位移 ΔL 转化为容易观测的大位移 l ,这与机械杠杆类似,

所以把这种装置称为光杠杆。

将 3-3 式代入 3-2 式, 并利用 $S=\pi \rho^2/4$ 得

$$E = \frac{2DFL}{SKl} = \frac{8DFL}{\pi \rho^2 Kl} \tag{3-4}$$

本实验就是根据 3-4 式求出钢丝的杨氏模量 E。 3-4 式即为利用光杠杆原理测定杨氏模量的关系式。

读数望远镜及标尺装置如图 3-4 所示。望远镜的构造如图 3-5 所示,主要由物镜、内调焦透镜、目镜和叉丝组成。物镜将物体发出的光线会聚成像,叉丝用作读数的标准,目镜用来观察像和叉丝,并对像和叉丝起放大作用。调节螺旋 A,改变目镜与叉丝之间距离,可使叉丝成像清晰。调节安装在望远镜筒侧面的螺旋 B,改变内调焦透镜与物镜之间的距离,可使标尺成像清晰。

图 3-4 目镜观察像和光杠杆测量微小伸长的原理

图 3-5

- 1—标尺支架锁紧旋钮
- 2—仰角微调螺钉
- 3—目镜旋钮
- 4—内调焦手轮
- 5—望远镜
- 6—望远镜锁紧手柄
- 7—毫米钢直尺
- 8—毫米尺支架
- 9—底座
- 10—光杠杆反射镜

三、实验仪器:

杨氏模量仪,光杠杆,读数望远镜,螺旋测微计,卷尺,标尺,钢丝,大砝码一套(每个砝码质量为1.0kg)。

四、实验步骤和内容:

- (1)把光杠杆放在纸上,使刀片 BC 和足尖 A 在纸上压出印痕,用细铅笔作 A 到 BC 的垂线,用卷尺量出 A 到 BC 的距离 K;
- (2)观察杨氏模量仪平台上所附的水准仪,仔细调节杨氏模量仪底座上的水平调节螺旋6,使平台处于水平状态(即令水准仪上的气泡处于正中央),以免夹子2在下降(或上升)时与外框发生摩擦,保证砝码的重力完全用来拉伸钢丝。然后在砝码托上加1.0kg 砝码,将钢丝拉直(此重量不计在外力F内,认为F=0),用卷尺测出横梁夹子1上的紧固螺钉的下边缘与夹子2的上表面之间的钢丝长度,这就是钢丝的原长度L; 再用螺旋测微计在钢丝的不同部位、不同方向测量5次直径d求其平均值和截面积S。
 - (3)把光杠杆放在平台上,转动平面镜,用目测初调节,使镜面与平台垂直。
 - (4)移动望远镜, 使标尺与光杠杆平面镜之间的距离约为 110cm。
- (5)调节望远镜,使其光轴成水平状态,并使镜筒与平面镜等高。然后仔细调节望远镜和平面镜的方向,使得标尺经过平面镜反射后的像刚好处于望远镜的视场中。这一点初学者不易做到,下面介绍一种简便易行的调节方法:可令眼在望远镜目镜附近,不经过望远镜而直接观察平面镜,如在平面镜内看不到标尺的像,可稍微转动一下平面镜,使镜面法线严格成水平状态,倘仍观察不到,可将望远镜镜架左右稍微移动一下,总之应先用肉眼看到标尺的像,然后通过望远镜观察,一般均能看到标尺的像。此时像可能不太清晰,无法读数,可调节望远镜筒上的螺旋B,待标尺上的刻度和数字均很清晰后再螺旋A,使叉丝的像也很清晰,这时标尺的像可能又较模糊,应反复仔细地调节螺旋A、B,使标尺和叉丝的像同时清晰。
- (6)为了保证标尺的像被平面镜水平地反射到望远镜中,应调整望远镜下面的螺旋以调节望远镜筒的倾角,使镜筒处于水平状态。必要时还应稍微转动一下小平面镜,使落在横叉丝上的标尺像的刻度 r_0 ,大体等于望远镜镜筒处的标尺刻度。
- (7)为了消除弹性形变的滞后效应给测量带来的影响,故取相同荷重下增重和减重时两标尺读数,并取它们的平均值。为了拉直钢丝,先在砝码盘上放 1~2kg 砝码,然后逐渐增加砝码托上的砝码(加减砝码时应轻放轻取),每次增加 1kg,共加 8 次,记下望远镜中横叉丝处标尺像的刻度数 r_0 、 $r_1...r_7$,共是 8 个读数;然后每次减去 1kg 砝码,记下对应的刻度数 r_7 、 r_6 、... r_0 ,求出两组对应读数的平均值 r_0 、 r_1 ... r_7 ,共得 8 个数据。
- (8)为了充分利用实验数据,减小偶然误差,在函数间成线性关系的情况下,作等间隔测量,得一测量次数为偶数的测量列,为使每个测量值都起作用,将它们前后分成两组,----- 为一组, \mathbf{r}_0 、 \mathbf{r}_1 、 \mathbf{r}_2 、 \mathbf{r}_3 为一组, \mathbf{r}_4 、 \mathbf{r}_5 、 \mathbf{r}_6 、 \mathbf{r}_7 为一组,求出 $\mathbf{l}_0 = \mathbf{r}_4$ \mathbf{r}_0 , $\mathbf{l}_1 = \mathbf{r}_5$ \mathbf{r}_1 , $\mathbf{l}_2 = \mathbf{r}_6$ \mathbf{r}_2 , $\mathbf{l}_3 = \mathbf{r}_7$ \mathbf{r}_3 ,它们是拉力变化 F=4'1=4kg 时相应的标尺读数之差,求出它们的平均值。这种分组相减的方法叫做逐差法,在数据处理中被广泛应用。
 - (9)用卷尺测出平面镜与标尺之间的距离 D,测量时应注意使卷尺保持伸直水平状态。

五、实验数据与处理:

1.计算钢丝弹性模量

钢丝长度 L= ,平面镜到标尺镜面距离 D= ,光杠杆臂长 b=

钢丝直径 d 测量结果

测量次数	1	2	3	4	5	平均值
直径 d/mm						

增加/减少砝码标尺读数(cm)

所加砝码数	0	1	2	3	4	5	6	7
增加后								
减少后								
平均值								

用逐差法求标尺读数改变量 $\Delta L(cm)$

i	1	2	3	4
$\Delta L_{i} = \frac{n_{i+4} - n_{i}}{4} \text{ (cm)}$				

六、附上原始数据:

七、误差分析:

八、实验总结: