

Tecnologías Aplicadas a la Mecatrónica 4.0

Introducción a Big Data y Machine Learning

Sesión 2 – Introducción a Python

Alejandro Hernandez: <u>alejandro.hernandez.matheus@upc.edu</u>
Antonio Saldaña: <u>antonio.Emmanuel.saldana@upc.edu</u>

Información Personal

- Nombre: Alejandro Hernández Matheus
 - https://www.linkedin.com/in/alejandro-hernandez-matheus/
- Centro: CITCEA-UPC (ETSEIB)
- Email: <u>alejandro.hernandez.matheus@upc.edu</u>
- Oficina 23.08 Edificio G, ETSEIB Departamento de Ingeniería Eléctrica.
- Campos de investigación: Congestiones en los sistemas de potencia, comunidades energéticas locales, optimización de demanda y flexibilidad.
 Aplicaciones de machine learning en redes eléctricas.

Información Personal

- Nombre: Antonio Emmanuel Saldaña González
 - https://www.linkedin.com/in/antonio-salda%C3%B1a-070b79197/
- Centro: CITCEA-UPC (ETSEIB)
- Email: antonio.emmanuel.saldana@upc.edu
- Oficina 23.27 Edificio G, ETSEIB Departamento de Ingeniería Eléctrica.
- Campos de investigación: Planificación de redes activas de distribución,
 Gestión de la flexibilidad energética, Inteligencia artificial aplicada a los sistemas energéticos y calidad de energía.

Calendario

	Lunes	Martes	Miércoles	Jueves						
NOV	28	29 S1 – Introducción a Big Data y Machine Learning	30	S2 – Introducción a Python						
	5	6	7	8						
DICIEMBRE	12	13 S3 – Estadística descriptiva	14	15 S4 – Modelos de aprendizaje supervisado (I): Clasificación						
DIG	19	20 S5 – Modelos de aprendizaje supervisado (II): Regresión	21	S6 – Introducción a Image Recognition						
	VACACIONES									
	9	10 S7 – Modelos de aprendizaje no supervisado y repaso	11	12 S8 – Exámen						

Objetivos de la sesión

- Introducción a la programación en Python
- Familiarizarse con los conceptos básicos de Machine Learning
- Enfoque generalista y práctico al Machine Learning
- No entrar al detalle en la explicación o teoría detrás de los modelos
- Proporcionar conocimientos para crear un modelo de Machine Learning, desde la obtención de los datos hasta escoger el modelo y los mecanismos de validación según el tipo de problema
- Suministrar herramientas y información adicional para profundizar en la temática sin necesidad de empezar de cero

Contenidos de la sesión

- Introducción
- Configuración entorno, IDEs...
 - Módulos, packages y librerías
- Variables y tipos de variables
 - Floats, Ints, Strings, Bools, Complejos
 - Listas, diccionarios y tuplas
 - Operadores
 - Slicing
- Listas y loops
 - Crear y modificar listas
 - Loops "for" (enumerate)
 - Loops while
 - List comprehensions
- Estructuras condicionales
 - if, elif

Contenidos de la sesión

- Funciones avanzadas
 - Lambda functions
 - Map, filter, reduce
- Diccionarios y tablas de frecuencia
 - Crear un diccionario
 - Actualizar un diccionario
 - Crear tablas de frecuencia
- Funciones
 - Funciones con más de un parámetro de entrada/salida
 - Argumentos por defecto
- Lenguaje orientado a objetos
 - Classes
 - Objetos
 - Métodos

Contenidos de la sesión

- Introducción a NumPy
 - Boolean indexing
- Introducción a Pandas
 - Abrir archivos y crear DataFrames
 - Combinar y transformar datos en pandas
 - Lectura/escritura de archivos de texto (e.g. csv)
- Creación de gráficos
 - Matplotlib
 - Line charts, Bar charts, histograms, Scatter Plots, Box Plots, etc.

Digitalización en la Industria

Big Data y Machine Learning

¿Por qué Python?

- Intuitivo y simple
- Portable a cualquier plataforma
- Open source
- Gran cantidad de bibliotecas disponibles

"...Python's popularity is driven in no small part by the vast number of specialized libraries available for it, particularly in the domain of artificial intelligence..."

Ranking anual de IEEE Spectrum 2021

			•			
Rank	Language	Type				Score
1	Pythonv	(4)		Ç	0	100.0
2	Javav	(4)		Ç		95.4
3	C~			Ģ	0	94.7
4	C++~			Ç	0	92.4
5	JavaScript _~	#				88.1
6	C#~	#		Ç	0	82.4
7	R-v			Ç		81.7
8	Gov	#		Ç		77.7
9	HTML~	#				75.4
10	Swift~			Ç		70.4
11	Arduinov				0	68.4
12	Matlaby			Ç		68.3
13	PHP~	#				68.0
14	Darty	#				67.7
15	SQL _~			Ç		65.0

.

Digitalización en la Industria

Big Data y Machine Learning

¿Por qué Python?

Características principales

- Variables sin declarar y sin definir tipo
- Uso tabulaciones
- Comentarios con #

```
🐉 fffff.py ×
        import numpy as np
 1
        p = 0.4
 3
        n = 10
        x = 0
 5
 6
       for i in range(0, n):
            U = np.random.random()
            if U < p:
                 x = x + 1
10
11
        # Print result
12
        print(x)
13
14
```


Digitalización en la Industria

Big Data y Machine Learning

Python IDEs

• Herramienta para crear, testear y debugar un código en Python

PyCharm

Visual Studio Code

Sublime Text

GNU Emacs

IDLE

Python's Integrated Development and Learning Environment

Atom

Spyder

JuPyter

Eclipse

Eric Python

Wing

PyScripter

Pyzo

Thonny

Environments

Versión autónoma de Python con sus propios paquetes instalados

Instalar Python

Fn Windows:

www.python.org/downloads

Digitalización en la Industria

Big Data y Machine Learning

Para saber más...

- http://python.org
- www.kaggle.com/learn/python
- www.learnpython.org