Mo Tu We Th Fr Sa Su	emo No
Session 1 205.1.6.	
vector: geometrically and a	Ilgebraically
Geometrically:	
define: a magnitude and a	direction
same veetsr:	
PO	3,4>
magnitude: A = 1A	length or mrm 5
Scaling a reotor (始放 又有	- 1125")
ATB B ABB	A A B
coordinate:	
[a,az)	j=(1,0) j=(0,1)
$\begin{array}{c} & & \\ & & \\ & & \\ & & \end{array}$	=179
i.	

斑 图 图								
	Мо	Tu	We	Th	Fr	Sa	Su	

Memo No.			
Date	1	1	

Notation and terminology

1. (a,, dx) point at the plane

2, ca,, a2> = a, i + a2]

3. A = a, i + a, i , a, /az called components

of A

5. P=5p is the vector from the origin to P

1A1 = Ja; +as

A+B=(a+b)i+(a+b)j

A-B= (a, b,) 7+ (a2-b2)3

ca, t bi) astbz>

ca, -b1, a2-b2>

13 (a, + b, , a, +b2)

A A-BU

for two point P.Q., PQ is the displacement from

Ptole

the three dimensions

R = (a,, a2, a)>

A Real, as as

中	Z	5	R			
Мо	Tu	We	Th	Fr	Sa	Su

Memo No.			
Date	1	/	

 $\begin{aligned}
j &= \langle 1,0,0\rangle, \quad j &= \langle 0,1,0\rangle, \quad k &= \langle 0,0,1\rangle \\
(\alpha_1,\alpha_2,\alpha_3) &= \alpha_1 i + \alpha_2 j + \alpha_3 k \\
|\langle \alpha_1,\alpha_2,\alpha_3\rangle| &= \sqrt{\alpha_1^2 + \alpha_2^2 + \alpha_3^2} \\
|\langle \alpha_1,\alpha_2,\alpha_3\rangle| &= \sqrt{\alpha_1^2 + \alpha_2^2 + \alpha_3^2}
\end{aligned}$

unit vector: 1

Ex: find a unit vector that is parallel Ex: find a unit vector that is parallel Ex: |(3,4)| = 5, x unit vector $= \frac{3}{5}(3,4) = (\frac{3}{5},\frac{4}{5})$ Examples:

DVector addition

1. Find B+B+2

 $\Delta \vec{A} + \vec{B} + \vec{C}, \quad A = (1,2), \quad B = < 1,0>, \quad C = 22,4>$ D = (1+1+2, 2+0-1) = < 4,1> $D = \vec{i} + 2\vec{i} + \vec{i} + 2\vec{i} - \vec{j} = 4\vec{i} + \vec{j}$

2 Vector Length

\$\vec{B}=21,-17, \vec{C}=\vec{1}\t2\t3\vec{F} \ |\vec{C}|=\vec{1}\t4\t9\vec{1}\vec{F}