Portfolio Optimization in a Big Data Context

Thierry Bazier-Matte

Summer 2015

Notation. In the following, A (capital boldface) are assumed to represent a real subset of any dimension, A (capital case) represent random variables (or distribution) and a (lower case) represent deterministic variables or realization. \mathcal{R} represents the real set.

Let M = (X, R) the market be an unknown distribution with support $\mathbf{M} = \mathbf{X} \times \mathbf{R} \subseteq \mathbb{R}^{p+1}$, ie. numerically qualifiable, with $(x, r) = m \sim M$ a market observation, consisting in one part state $x \in \mathbb{R}^p$ and another part outcome $r \in \mathbb{R}$. Typically x is a vector of observations from various variable of interests, such as financial or economical news, etc. Scalar r in this article shall represent the return from a financial asset of interest. Finally, let $M_n = \{M, \ldots, M\}$ be a random set of n (unrealized) observations (with support \mathbf{M}^n). Therefore $\mu_n \sim M_n$ represents an iid sample of n market observations.

This article shall study linear investment decisions $q^T x$, with $q \in \mathbf{Q} \subseteq \mathcal{R}^p$.

Definition. Let $\ell: M \to \mathscr{R}$ be a loss function defined by

$$\ell(m,q) = \ell(x,r,q) = -u(r q^T x + (1 - R_f)q^T x),$$

where $u(r) = \min(r, \beta r)$ and R_f the risk free rate.

Definition. The empirical risk $\hat{R}: M \times Q \to \mathcal{R}$ associated with decision q and market sample μ_n is given by

$$\hat{R}_{\mu_n}(q) = n^{-1} \sum_{i=1}^n \ell(m_i, q).$$

Definition. The empirical decision algorithm $\hat{A}_n: \mathbf{M}^n \to \mathbf{Q}$ associated with market sample μ_n is the optimal value of the problem

minimize
$$\hat{R}_{\mu_n}(q) + \lambda ||q||_2^2$$
.

From now on, $\hat{q}_n := \hat{A}_n(\mu_n)$ the empirical decision associated with market sample μ_n and $\hat{Q}_n := A_n(S_n)$ the random empirical decision, ie. $\hat{q}_n \sim \hat{Q}_n$.

Definition. The true risk $R_{\text{true}}: \mathbf{Q} \to \mathcal{R}$ associated with decision q is given by

$$R_{\text{true}}(q) = E_M[\ell(m,q)].$$

Definition. The optimal decision q^* is the optimal value of the problem

minimize
$$R_{\text{true}}(q) + \lambda ||q||_2^2$$
.