第8章 详细布线 (Detailed Routing)

- 8.5.0 详细布线问题
- 8.5.1 通道布线问题
- 8.5.2 通道布线的定义和约束方法
- 8.5.3 常用的几种通道布线算法
- 8.5.4 其他布线问题

Placement and Routing Flow Review

标准单元布图示例

规模挑战:

➤ Chip: 360000×360000 tracks

➤ Global Cell: 600×600 regions

➤ Routing Region: 600×600 tracks

8.0 详细布线问题

- ❖ 布图问题的最后步骤;
- ❖ 主要任务是确定线网各个线段在布线区域中的具体位置,从而 完成线网在布线区域的最后定位。

详细布线问题分类:

- ❖ 单层布线问题:
 - > River Routing
- ❖ 双层布线问题:
 - ▶ 通道布线问题 (Channel Routing);
 - ▶ 开关盒布线问题(Switchbox Routing)。
- ❖ 多层布线问题
 - ▶ 区域布线问题:管脚可能发生在布线区的任何地方。

详细布线示例

Detialed Routing

Switch Box Routing

有网格布线问题和无网格布线问题

有网格布线问题

- ❖ 按照工艺要求,用统一的规则,将整个布图区域的各个布线层划分成供走线使用的轨道,线网在走线轨道上建立电等价连接;
- ❖ 有利于设计自动化;
- ❖ 降低了性能设计的灵活性。

无网格布线问题

- ◆ 在不违反设计规则的情况下,连线的宽度可以任意变化;
- ❖ 设计自动化复杂度提高;
- ❖ 增加了性能设计的灵活性。

Grid-based Routing

Gridless Routing

单层布线问题:

- ❖ For clock, power, ground routing still may need to solve single-layer routing;
- * Two possible paths per net along boundary;
- ❖ Path is alternating sequence of horizontal and vertical segment connecting two terminals of a net.

- ▶ 用圆弧连接布图边界上线网的两个端点;
- ▶ 用紧贴布图区域边界的横竖相间的线段实现圆弧的连接;
- > 必要时进行调整改善线网走线形状。

> Single-layer routability problem is NP-Complete!

布线区域划分

双层布线工艺下,布线区域分成两种:

❖ 两边通道(Channel Routing Region)

- 两边通道布线问题中,线网引脚分布在通道的上下两边界;
- ▶ 线网可以从通道的左右两侧进出,但位置不固定(可以将两侧进出位置映射到上下两边界);
- ▶ 布线问题称为两边通道布线 (Channel Routing)。

❖ 开关盒(Switchbox Routing Region)

- ▶ 开关盒也称为四边通道,在四边通道布线问题中,线 网引脚分布在布线区域的四周;
- ▶ 布线问题称为开关盒布线(Switchbox Routing)。

通道布线与开关盒布线示例

❖ 通道布线 (Channel Routing)

- ▶ 线网1-4端点分布上下边界;
- ▶ 线网1-2有左连接、线网4有右连接;
- ▶ 线网2左连接映射到上边界;
- ▶ 线网4的右连接映射到下边界

❖ 开关盒布线 (Switchbox Routing)

▶ 线网1-3端点分布四周边界

8.1 通道布线问题

输入:

▶ 布线通道上下两边的线网管脚位置。

输出:

> 布线通道中线网对布线轨道资源的占用。

约束条件:

- > 布线网格;
- 两层布线,严格分层。一层用于水平方向走线,一层 用于垂直方向走线;
- > 通过通孔连接水平走线层线段与垂直走线层线段。

优化目标: 最小化

- > 水平通道的高度,即需要的水平布线轨道数;
- > 总的连线长度;
- > 所需的通孔数。

♣ 通道布线中的一些概念

local density 1 3 5 5 4 3 3 3 4 3 2 channel density: max local density

通道布线问题说明

❖ 水平线段分配:

> 分配线网的水平走线段到某一走线道上。

❖ 垂直线段分配:

- > 实现相同线网,在不同走线道上水平线段的连接;
- > 实现上下通道边界管脚与水平线段的连接。

❖ 水平和垂直约束:

- > 同一轨道上,不同线网的水平走线段不能出现重叠;
- ▶ 同一列上,不同线网的垂直走线段不能发生重叠。

❖ 优化目标:

▶ 通道的高度最小化,即面积最小化。

♣ 预留层模型(Reserved Layer Model):

规定某些走线需求必须在某些指定的布线层上完成, 例如:

- ▶ 两层布线:
 - ✓ HV模型: 严格规定第一层布水平走线,第二层布垂直走线;
 - ✓ VH模型: 严格规定第一层布垂直走线,第二层布水平走线。
- ▶ 三层布线:
 - ✓ VHV(Vertical Horizontal Vertical)模型;
 - ✓ HVH(Horizontal Vertical Horizontal)模型;
 - ✓ 通常采用HVH模型,通道需求比较少。

♣ 非预留层模型(Unreserved Layer Model):

没有分层限制,也称非严格分层。

多层布线模型示例

Basic Left-edge Example

```
input: U=\{I_1, I_2, ...., I_6\};
```

$$I_1$$
=[1,3] I_2 =[2,6] I_3 =[4,8] I_4 =[5,10] I_5 =[7,11] I_6 =[9,12]

t=1

- \triangleright Route I_1 : watermark = 3;
- \triangleright Route I_3 : watermark = 8;
- \triangleright Route I_6 : watermark = 12;

t=2

- \triangleright Route I_2 : watermark = 6;
- \triangleright Route I_5 : watermark = 11;

t=3

 \triangleright Route I_4 .

Vertical Constraint Consideration

- ➤ Left-edge algorithm ignores vertical constraints.
- ➤ Where there is only 1 vertical layer, Left-edge algorithm will produce overlapping of vertical wire segments.

❖ Drawback of Left-Edge (1):

- -Cannot handle the cases with vertical constraint cycles.
- ➤ Doglegs are used to resolve constraint cycle.

❖ Drawback of Left-Edge (2):

- The entire net is on a single track.
- Doglegs are used to place parts of a net on different tracks to minimize channel height.
- ➤ Might incur penalty for additional vias.

Hierachical Approach: Example

> Solving a 2xn routing problem hierachically.

Switchbox Routing

- **♦** Fixed dimensions and pin connections on all four sides
- **♦** Defined by four vectors *TOP*, *BOT*, *LEFT*, *RIGHT*
- ♦ Switchbox routing algorithms are usually derived from (greedy) channel routing algorithms

Switchbox Routing

$$R = \{0, 1, 2, ..., 8\} \times \{0, 1, 2, ..., 7\}$$

Column

TOP BOT LEFT RIGHT = (1, 2, ..., 7) = [0, D, F, H, E, C, C] = (1, 2, ..., 7) = [0, 0, G, H, B, B, H] = (1, 2, ..., 6) = [A, 0, D, F, G, 0] = (1, 2, ..., 6) = [B, H, A, C, E, C]

Switchbox Routing – Example

TOP =
$$(1, 2, ..., 7) = [0, D, F, H, E, C, C]$$

BOT = $(1, 2, ..., 7) = [0, 0, G, H, B, B, H]$
LEFT = $(1, 2, ..., 6) = [A, 0, D, F, G, 0]$
RIGHT = $(1, 2, ..., 6) = [B, H, A, C, E, C]$

Column

Switchbox Routing – Example

TOP =
$$(1, 2, ..., 7) = [0, D, F, H, E, C, C]$$

BOT = $(1, 2, ..., 7) = [0, 0, G, H, B, B, H]$
LEFT = $(1, 2, ..., 6) = [A, 0, D, F, G, 0]$
RIGHT = $(1, 2, ..., 6) = [B, H, A, C, E, C]$

