

Logic in AI - Proof theory of Modal Logical Systems

Università di Verona Imbriani Paolo -VR500437 Professor Margherita Zorzi

March 9, 2025

Contents

L	$\mathbf{W}\mathbf{h}$	at is a modal logic?
	1.1	Semantic Models with Kripke
	1.2	Logics of Knowledge
	1.3	Proof Theory, Deductive Systems in Modal Logic
		1.3.1 General Picture
	1.4	Position and modalities
		1.4.1 Position
	1.5	What adds S4.2?
	1.6	Beyond S4: the Logic S5
	1.7	Curry Howard Correspondence and the Intuitionistic

1 What is a modal logic?

In Modal logic are added modalities: \Box , \diamond . If A is a formula then $\Box A$ and $\diamond A$ are formulas There are many type of modalities and meaning we can give to this operator such as:

- Temporal
- Epistemic
- Doxastic

1.1 Semantic Models with Kripke

Structure: $\mathcal{M} = \langle \mathcal{W}, \mathcal{R}, \rho \rangle$

- W set of possible
- $\rho: \mathcal{W} \to 2^{AT}$
- $\mathcal{R} \subset \mathcal{W}x\mathcal{W}$: accessability relation

There are different axioms in Normal Modal Logic such as:

- Axiom K: $\Box(A \to B) \to (\Box A \to \Box B)$ which is the kernel of the normal mode logic.
- Axiom D: $\Box A \rightarrow \diamond B$
- Axiom T: $\Box A \to A$
- Axiom 4: $\Box A \rightarrow \Box \Box A$
- Axiom 5: $A \to \Box \diamond A$

And what we can say about this axioms?

- Axiom T, forces the relaiton R in the Kripke model to be reflexive.
- Axiom 4, forces the relation R in the Kripke Model to be transitive.
- Axiom D, forces the relation R in the Kripke model to be serial.
- Axiom 5, forces the relation R in the Kripke model to be symmetric.

1.2 Logics of Knowledge

Epistemic Modal Logic where

- $\bullet \ \square$ is a Knowledge
- \$\dis \text{a Belief}

this logic is useful when we want to reason inconsistencies.

- If we know something, that is true
- If we know something, we know that we know something

1.3 Proof Theory, Deductive Systems in Modal Logic

There are different deductive styles: sequent calculus, analytic tableaux, natural deduction. And there are several approaches, including: labelled deductive systems and geometric/multidimensional deductive systems. The desiderata is cut elimination/normalization and modularity.

Another approach is "Multidimensional" systems, formulaes are enriches with a spatial coordinate (index/position) that provies information within the proof. In this way we can treat modalities in analogy as quantifiers are treated in first-orders systems. Only modal operators can "change" the spatial position of the formulae.

 $\forall \leftrightarrow \Box$ $\exists \leftrightarrow \diamond$

1.3.1 General Picture

According to the assumption we make on the spatial coordinate S of formulas A^S we can "tune" the system to a specific (normal) modal logic:

- S is a sequence: by seetting some constraints on the rule $\diamond E$ and $\diamond I$ one obtains all the logic from K to S4
- S is a set, one captures the system S4.2.
- S is a singleton set: one captures S5.

1.4 Position and modalities

Lemma 1.1. A formula A interacts with a formula B with respect to variable x if x occurs in free in both A and B.

We have the possibility to add or remove the \square operator through modal interaction, "playing" with the spatial coordinate and costraint.

1.4.1 Position

Definition 1.2. A position is a sequence of uninterpreted tokens.

We have associative concatenations and a Successor.

1.5 What adds S4.2?

• $S4.2 = S4 + \Diamond \Box A \rightarrow \Box \Diamond A(.2)$

This is still an enexplored country but this Logic describes Knowledge and Belief.

1.6 Beyond S4: the Logic S5

• S5 = S4 +
$$\phi \rightarrow \Box \diamond \phi$$
 or $K + T + D + \diamond A \rightarrow \Box \diamond A$.

We obtain soundness and completeness w.r.t Hilbert-style.

1.7 Curry Howard Correspondence and the Intuitionistic

Through BHK we can interpret proof as we can compute the proofs.