PRÁCTICA 2 (ÁLVARO MORALES SÁNCHEZ – 18240)

CONSTRUCCIÓN DEL DIAGRAMA DE FASES DE UNA ALEACIÓN SN-BI

Para comenzar, se van a representar las curvas de enfriamiento T-t. En mi caso, experimentalmente tomé datos de la aleación de 65% Sn. El resto se realizan a partir de los datos compartidos por el departamento, tablas pdf medidas con anterioridad. El orden general de la práctica va a ser según %Sn creciente.

1. Curva de enfriamiento T-t 100% Bi

Pasando los datos de la tabla pdf compartida por el departamento a Excel se puede observar la siguiente curva de enfriamiento T-t.

Comienza con una temperatura para la cual el estado es líquido, en este caso de 370 °C. Si avanzamos según el tiempo podemos observar cerca de los 100 segundos un cambio brusco de valores, seguido por una tendencia a mantenerse constante cerca de los 260 - 270 °C. (Punto de la línea de liquidus del diagrama) En ese momento se producirá un cambio de estado. Tras ese cambio de estado la pendiente se mantiene constante, menos en un par de datos, pero después vuelve a la pendiente anterior por lo que no se considera como cambio. La gráfica acaba con algo de tendencia ya que se acerca a la reacción eutéctica, entre 135-130 °C.

El primer cambio de estado, donde deja de ser líquido se verá representado posteriormente en el diagrama. (260 – 270 °C)

La meseta de tiempo de la reacción eutéctica, 135-130 °C, es breve en el tiempo. Posteriormente, al calcular los puntos de máxima solubilidad de la reacción se verá que ese breve tiempo corresponde a 0 segundos para 100% de Bi. Siendo uno de los puntos

de máxima solubilidad de la reacción eutéctica. Todo esto se explicará con más detalle tras el triángulo de Tamman.

Punto de fusión de 100% Bi será de 265-270ºC.

2. Curva de enfriamiento T-t 15% Sn

Usando el pdf del departamento y mediante Excel obtenemos de forma semejante la gráfica siguiente.

Como en el anterior y el resto de los casos, se empieza con una temperatura en la cual la aleación está en estado líquido, en este caso 300 °C. Desplazándonos hacia la derecha, observamos cerca de los 250 segundos un cambio en la pendiente. Momento en el que se produce un cambio de estado, a una temperatura próxima a los 200 °C, algo mayor (Punto línea liquidus). Continuamos analizando la gráfica, y de nuevo, vemos un nuevo cambio de pendiente, en este caso pasando a una meseta (valores constantes) cerca de los 750 segundos. La temperatura de la meseta corresponde a la de la reacción eutéctica, 135-130 °C. Tras finalizar la reacción continua con una nueva pendiente.

El primer cambio de estado comentado se representará en el diagrama al final, cerca de los 200 °C. Momento donde deja de estar en estado líquido.

La meseta mencionada se utilizará para realizar el triángulo de Tamman y así conocer la composición eutéctica. Viendo el comienzo y el final de ésta podemos aproximar a 210 segundos su duración, dato que se utilizará.

3. Curva de enfriamiento T-t 25% Sn

De forma similar al caso anterior.

Comenzando con una temperatura lo suficientemente alta para que la aleación se encuentre en estado líquido, en este caso 260 °C. Avanzando según el eje de abscisas observamos un decrecimiento lineal hasta los 177 °C aproximadamente (punto línea liquidus). En este punto se produce un cambio de estado para el cuál deja de ser líquido, por ello, en la gráfica se ve una variación de la pendiente. La nueva pendiente continua hasta un valor cercano a los 135 °C. A esta temperatura, durante unos 150 segundos, la gráfica se mantiene constante, por tanto, sabemos que será la meseta correspondiente a la reacción eutéctica. Una vez pasados los 150 segundos la gráfica continua con una nueva pendiente, tras finalizar la reacción anterior.

Continuando la línea de los puntos anteriores, el primer cambio a los 177 ºC será representado en el diagrama resultante. Correspondiendo al final del estado líquido, para la aleación de 25% de Sn.

El tiempo, de aproximadamente 150 segundos, donde la gráfica se mantiene en un valor cercano a los 135 ºC se utilizará para la elaboración del triángulo de Tamman.

4. Curva de enfriamiento T-t 55% Sn

Se logra la representación de la siguiente gráfica, a través de los datos del departamento.

Siguiendo el procedimiento de análisis del resto de apartados, podemos observar el final del estado líquido para una temperatura cercana a los 155 ºC. Punto que ayudará para la representación del diagrama Bi-Sn.

La meseta correspondiente a la reacción eutéctica, sobre los 135-130 °C, tiene un tiempo de duración de unos 250-300 segundos. Datos utilizados en la construcción del triángulo de Tamman.

5. Curva de enfriamiento T-t 65% Sn

Para este caso en concreto, 65% Sn, se van a realizar dos curvas T-t. La primera de ellas, correspondiente a este apartado, está realizada con los datos proporcionados por el departamento. En el siguiente se realizará con los datos tomados por el alumno.

Siguiendo los pasos de los apartados anteriores, el primer cambio de estado se observa cercano a los 173 ºC. Dejando de estar la aleación en estado líquido.

La meseta, cercana a los 133 ºC, tiene un intervalo de duración de poco más de 150 segundos. Para la representación del triángulo de Tamman se utilizará este dato, y el de la curva de los datos tomados por el alumno. Resultando dos triángulos para comparar y ver el tamaño de una posible desviación.

6. Curva de enfriamiento T-t 65% Sn (Alumno)

La tabla de datos siguiente tiene una diferencia respecto a las de la escuela. Los datos anteriores se tomaron siguiendo un intervalo de 10 segundos, en cambio estos fueron cada 15 segundos.

0 260 15 256 30 249 45 243 60 237 75 232 90 228 105 224 120 220 135 216 150 213 165 209 180 207	
30 249 45 243 60 237 75 232 90 228 105 224 120 220 135 216 150 213 165 209 180 207	
45 243 60 237 75 232 90 228 105 224 120 220 135 216 150 213 165 209 180 207	
60 237 75 232 90 228 105 224 120 220 135 216 150 213 165 209 180 207	
75 232 90 228 105 224 120 220 135 216 150 213 165 209 180 207	
90 228 105 224 120 220 135 216 150 213 165 209 180 207	
105 224 120 220 135 216 150 213 165 209 180 207	
120 220 135 216 150 213 165 209 180 207	
135 216 150 213 165 209 180 207	
150 213 165 209 180 207	
165 209 180 207	
180 207	
10=	
195 203	
210 201	
225 198	
240 196	
255 193	
270 191	
285 188	
300 186	
315 184	
330 182	
345 179	
360 178	
375 176	
390 177	
405 176	
420 175	
435 174	
450 173	
465 172	
480 170	

	T
495	169
510	168
525	167
540	166
555	164
570	163
585	162
600	160
615	159
630	158
645	156
660	155
675	153
690	152
705	151
720	149
735	148
750	147
765	145
780	144
795	143
810	141
825	140
840	139
855	138
870	137
885	135
900	134
915	133
930	131
945	131
960	131
975	131
990	132
1005	132
1020	132
1020	131
1050	131
1065	130
1080	130
1095	129
1110	128
1125	126
1140	125
1155	123
1170	122

1185 121 1200 119 1215 117 1230 116 1245 115 1260 113 1275 112 1290 111 1305 110 1320 108 1335 107 1350 106 1365 105 1380 104 1395 103 1410 101 1425 100 1440 99		
1215 117 1230 116 1245 115 1260 113 1275 112 1290 111 1305 110 1320 108 1335 107 1350 106 1365 105 1380 104 1395 103 1410 101 1425 100	1185	121
1230 116 1245 115 1260 113 1275 112 1290 111 1305 110 1320 108 1335 107 1350 106 1365 105 1380 104 1395 103 1410 101 1425 100	1200	119
1245 115 1260 113 1275 112 1290 111 1305 110 1320 108 1335 107 1350 106 1365 105 1380 104 1395 103 1410 101 1425 100	1215	117
1260 113 1275 112 1290 111 1305 110 1320 108 1335 107 1350 106 1365 105 1380 104 1395 103 1410 101 1425 100	1230	116
1275 112 1290 111 1305 110 1320 108 1335 107 1350 106 1365 105 1380 104 1395 103 1410 101 1425 100	1245	115
1290 111 1305 110 1320 108 1335 107 1350 106 1365 105 1380 104 1395 103 1410 101 1425 100	1260	113
1305 110 1320 108 1335 107 1350 106 1365 105 1380 104 1395 103 1410 101 1425 100	1275	112
1320 108 1335 107 1350 106 1365 105 1380 104 1395 103 1410 101 1425 100	1290	111
1335 107 1350 106 1365 105 1380 104 1395 103 1410 101 1425 100	1305	110
1350 106 1365 105 1380 104 1395 103 1410 101 1425 100	1320	108
1365 105 1380 104 1395 103 1410 101 1425 100	1335	107
1380 104 1395 103 1410 101 1425 100	1350	106
1395 103 1410 101 1425 100	1365	105
1410 101 1425 100	1380	104
1425 100	1395	103
	1410	101
1440 99	1425	100
	1440	99

Siguiendo el mismo procedimiento, pero en este caso, la tabla en vez de estar proporcionada por el departamento corresponde a la toma de datos del alumno. Resultando una curva similar a la anterior.

Podemos observar que hay ciertas diferencias entre ambas curvas, pero por lo general los valores obtenidos son muy próximos. En el anterior el cambio de estado líquido era cercano y algo superior a los 173 °C. En este caso es próximo a los 179 °C, algo inferior.

Observando la gráfica, aproximadamente el tiempo de duración de la meseta eutéctica en este caso es cercano a los 150 segundos, coincidiendo debido a la toma del dato gráficamente. Si analizamos los tiempos según las tablas de datos, tomando como meseta los valores entre 135-130 °C, en el caso de los datos de la escuela tendrá una duración de 230 segundos y en el del alumno de 225 segundos, siendo muy próximos. Posteriormente se verán reflejados en la obtención del triángulo de Tamman.

7. Curva de enfriamiento T-t 100% Sn

Por último, se representa la gráfica correspondiente al 100% Sn con los datos del departamento.

La temperatura de cambio de estado líquido es aproximadamente de 230 °C. Representando este punto, punto de fusión, posteriormente en el diagrama. Si continuamos analizando, y tras realizar el triángulo de Tamman se llega a la conclusión que esta aleación no sufre la reacción eutéctica, a diferencia del resto. Esto se sabe al obtener el punto de máxima solubilidad de la reacción, siendo cercano al 80%. Al continuar marcando las diferencias, comparando la curva con la de 100% de Bi, se observa una meseta en el primer cambio de estado mayor. Debido a que en el caso de 100% de Bi, y en el resto, este primer cambio es parcial, una parte del líquido reaccionaría en la eutéctica. En este caso al no sufrir la reacción eutéctica necesita de un intervalo de tiempo mayor, pasando tras este cambio a una solución sólida de Sn.

Triángulo de Tamman

Anteriormente, a la vez que se representaban las curvas T-t para los distintos porcentajes se han ido enumerando los datos a utilizar en este apartado. Pero para obtener con mayor precisión se utilizarán datos sacados de las tablas, no de la curva. Se realizarán dos triángulos, uno a partir de las tablas del departamento y otro con estas mismas tablas, pero cambiando la de 65% Sn por los datos del alumno. Ambos se representarán en Excel.

Teniendo en cuenta que las aleaciones de 15 y 25% Sn son hipoeutécticas, y las de 55 y 65% Sn hipereutécticas. Primero se obtiene el intervalo de duración de la meseta eutéctica para cada aleación, para ello se toman los datos de tiempo para los cuales las aleaciones están a 135-130 º C (isoterma de la reacción eutéctica). Resultando:

- Para 15% Sn: duración de 210 segundos.
- Para 25% Sn: duración de 350 segundos.
- Para 55% Sn: duración de 360 segundos.
- Para 65% Sn: duración de 230 segundos.
- Para 65% Sn (datos alumno): duración de 225 segundos, diferencia que en este caso los intervalos son cada 15 segundos.

Con estos datos, correspondientes a puntos de las rectas pertenecientes al triángulo de Tamman, podemos hallar la función de las rectas para las aleaciones hipoeutécticas e hipereutécticas. En el caso hipereutéctico se hallan dos rectas, el caso con variables prima corresponde al análisis con los datos recopilados por el alumno.

	Hipoeutético	ot(s) = a * %Sn + b		Hipereutéctico	t(s) = c * %Sn + d
T(ºC)	t(s)	%Sn	T(ºC)	t(s)	%Sn
137-128	210	15	135-130	360	55
138-128	350	25	135-129	230	65
			135-128	225	65 (Alumno)
(Meseta curva T-t)			(Meseta Curva	T-t)	
	а	14		С	-13
	b	0		d	1075
		t(s) = a * %Sn + b			t(s) = c * %Sn + d
				c'	-13,5
				d'	1102,5
					t(s) = c' * %Sn + d'

Representando dos triángulos, el primero con datos del departamento y el segundo del alumno.

En general no se observa mucha diferencia entre ambos triángulos, confirmando la buena recopilación de datos por el alumno.

A continuación, se van a calcular la composición eutéctica y los puntos de máxima solubilidad. Antes se observa en los triángulos que estos puntos corresponderán: para la composición eutéctica, en ambos, un valor próximo a un 40% Sn. También para ambos triángulos los puntos de máxima solubilidad son cercanos a 0 y 80% Sn. Hallando los porcentajes a través de las rectas:

 Composición eutéctica: igualando las funciones halladas anteriormente para las rectas hipoeutéctica e hipereutécticas. Se obtienen dos pocentajes: 39,814% Sn (a los 557,4 segundos; para los datos del departamento) y 40,09% Sn (a los 561,3

- segundos; para el caso con datos recopilados por el alumno). No alejándose apenas del método gráfico.
- Punto de máxima solubilidad (lado hipoeutéctico): Para un valor t=0 segundos, en la recta hipoeutéctica, se obtiene que el punto de corte con el eje corresponde a un 0% Sn = 100% Bi.
- <u>Punto de máxima solubilidad (lado hipereutéctico)</u>: Para un valor t=0 segundos, en las dos rectas hipereutécticas, se obtienen como puntos de corte con el eje los valores 82,69% Sn (datos departamento) y 81,66% Sn (datos alumno).

Una vez hallados matemáticamente se observa que no hay mucha desviación del estudio del gráfico. Estos datos se verán representados, como los mencionados en las curvas T-t, en el posterior diagrama.

Diagrama de Fases

Realizando uno a partir de las tablas del departamento y otra con estas y los obtenidos por el alumno.

En ambas aparece una leyenda diferenciando las líneas del diagrama.

Para dibujar las líneas de liquidus nos apoyamos en los datos mencionados en las curvas T-t, donde cada aleación sufría su primer cambio de pendiente, con el cambio de estado líquido. Empezando éstas por los puntos de fusión de las aleaciones 100% Bi y 100% Sn, en 265-270°C y 230°C respectivamente. Ambas líneas convergerán en el punto de la reacción eutéctica de 39,814% Sn (a partir de los datos del departamento) y 40,09% Sn (datos alumno). Punto E. Las líneas respectivamente pasaran por 200°C para 15% Sn, 177°C para 25%, 155°C para 55% y 173°C para 65%.

Dentro de la reacción eutéctica, isoterma a temperatura Te= 130-135°C, se observan en ambos diagramas sus puntos de máxima solubilidad, hallados anteriormente.

En cada diagrama se ven reflejadas las distintas fases y microconstituyentes.

Diagrama correspondiente a las tablas proporcionadas por el departamento.

Diagrama mixto entre tablas del departamento y valores tomados por el alumno en la aleación de 65% Sn.

Cuestiones

a) ¿Se puede saber la composición de una aleación que tiene un cambio de fase a T = 240°C y Teutéctica ≈ 134°C? ¿Y si los puntos fueran 150 y 134°C respectivamente?

Sí, la recta vertical correspondiente a la aleación a estudiar estaría en una zona del diagrama entre 0 y 15% Sn (hipoeutéctico), y cortaría a la línea de liquidus a 240ºC. Bajando el corte al eje de abscisas se obtendría el porcentaje concreto, próximo a 5-10%. (Depende de la precisión con la que se haya realizado el diagrama)

El segundo caso también es posible. Pero, en este caso la aleación estaría muy próxima al 55% Sn, ya que para este porcentaje el cambio de fase se da a 155ºC y para el caso pedido son 150ºC. Valor un poco desviado a la izquierda por la forma de la línea de liquidus para hipereutécticos.

b) ¿Qué meseta eutéctica será más larga, la de una aleación de composición 62% o 25% de Bismuto?

Un 62% y 25% de Bi corresponden respectivamente a 38 y 75 % Sn. Observando esos valores en los triángulos de Tamman, podemos llegar a la conclusión de que 38% de Sn tendrá una mayor meseta, por estar más cerca de la composición eutéctica. Por lo que tendrá mayor meseta la composición de 62% de Bi.

c) Comparando el diagrama obtenido experimentalmente con el teórico que se puede encontrar en la bibliografía, ¿existe alguna transformación que no aparece en el diagrama experimental?

Se puede observar una diferencia. El punto de máxima solubilidad del lado de las aleaciones hipoeutécticas no correspondería con el 0% Sn, apareciendo en el lado izquierdo del diagrama una nueva solución sólida. Por lo que habrá aleaciones con un porcentaje bajo de Sn que no sufrirán la reacción eutéctica y pasarán de líquido a la solución sólida mencionada.

d) ¿Cómo sería la curva de enfriamiento de una aleación que tenga exactamente la composición eutéctica?

Como el resto de las curvas T-t, comenzaría descendiendo la temperatura de forma uniforme hasta llegar a la temperatura eutéctica, entre 130-135°C, donde aparecería una meseta. Meseta de valor constante igual a esa temperatura, isoterma. Dicha meseta será la mayor posible por ser la de la composición eutéctica. A partir de los valores, rectas y triángulos anteriores sabremos que tendrá una duración cercana a 560 segundos, confirmando ser mayor que la del resto de curvas T-t. Tras pasar esos segundos seguirá descendiendo de forma uniforme, sin sufrir ningún otro tipo de cambio.