通訊網路實驗 Lab1 Report

110511254 徐煜絨

一、實驗內容

介紹低功耗藍芽 (BLE),並使用手機和樹梅派的藍芽功能,互相傳遞訊號。第一題用 advertise-url 指令,產生 Eddystone 的廣告訊息 (樹梅派作 beacon,手機是 receiver);第二題則改由手機作 beacon,樹梅派根據程式碼、RSSI、TX power 等算出距離。

二、程式碼

1. 加上距離計算的方法

```
Distance = (\frac{RSSI}{TX \, power})^{10}, \frac{RSSI}{TX \, power} < 1

Distance = \alpha \times (\frac{RSSI}{TX \, power})^{\beta} + \gamma, \frac{RSSI}{TX \, power} \ge 1

coef1, coef2, coef3 = 0.42093, 6.9476, 0.54992 # alpha, beta, gamma ratio = (float(beacon.rssi))/(float(beacon.unknown))

if ratio<1: # ratio < 1

    rssiDict = ratio**10

else: # ratio > 1

    rssiDict = coef1*(ratio**coef2)+coef3
```

2. 把 UUID 最後九碼改成自己的學號

```
if raw_uuid == "00000000000000000000000000110511254": # Change your uuid here
    print("-----")
    print("raw_uuid", raw_uuid)
    print("uuid:", beacon.uuid)
    print("major:", beacon.major, ", minor:", beacon.minor, ", txpower:", beacon.unknown)
    print("rssi", beacon.rssi)
```

三、實驗結果

Q1 樹梅派為 beacon

Q2 (手機為 beacon)

```
('raw_uuid', '0000000000000000000000000110511254')
('uuid:', '00000000-0000-0000-0000-000110511254')
('major:', '0', ', minor:', '0', ', txpower:', '-59')
('rssi', '-44')
('distance (m)', 0.05321164051615533)

RSSI: -44

TX power: -59

Distance (theoretical): 0.05321164052m
```

其他結果:

四、實驗問題

1. 請比對 Q1 和 Q2 所量測(接收)到距離的準確度(請附上兩題截圖對照), Q1 的方式較準確還是 Q2?或者是沒有差別呢?為什麼?

兩題的距離相差到 40 公分,可能和實際操作有關。在做 Q1 時我使用自己的手機,但 Q2 是和其他同學借用,因為當下找不到能讓手機發送廣告的按鍵。以下將用兩個面向討論兩題的準確度差異。

若用數學計算的角度來看,Q2的計算公式被我們寫在程式碼中,顯示的 distance 達到小數後 17 位,但 app 中卻只顯示到小數後 2 位,app 中不顯示太多位可能是因為多數使用者不需要太精確的距離資訊 (通常小數後 2 位已經足夠)。從位數的角度來看,Q2 應該會比 Q1 精確。

再來從 RSSI 討論, RSSI 代表接收信號的強度指示,理論上當 RSSI 增加, 訊號強度越高, 測量出的結果也更準確。從上面截圖可以發現 Q2的 RSSI 比 Q1的高,藉由以上兩點推斷 Q2比 Q1量出的距離更精確。

2. -59 dBm 是多少瓦特(W)?請列出計算過程。

dBm: decibel relative to one milliwatt

任意功率 P(mW)與 x(dBm)換算的公式為 $P = (1mW)10^{(x/10)}$ $10^{\frac{-59}{10}} \cong 1.259 \times 10^{-6} (mW) = 1.259 \times 10^{-9} (W)$

3. 試想 BLE 如 Eddystone 等可以應用在哪些領域? (愈詳細且創新分數越高)

在新出廠的車上安裝藍芽功能,若是已出廠的車,則使用駕駛人或乘客的手機藍芽功能。從一定點發射訊號,由該點蒐集車輛的分布狀況。之後再把資料傳到導航平台,導航平台會提供其他路徑選項讓駕駛選擇要行駛原先規劃路線,還是更改路線避開塞車路段。

另外是播送廣告,當手機用戶進入特定區域,廣告商發送詢問訊息,讓民眾決定是否要接收該類型或該公司的廣告,若同意則廣告商就能開始發送訊息,好處是用戶不需要額外下載相關應用程式,廣告商能夠以最快的速度讓民眾收到廣告,但廣告商會否藉機發送病毒,可能還需要訂立相關規範。再來就是民眾可以透過這種方式,存取在路上看到創新、新奇的影片,如 Ref. 5 的影片,或許「AU」這間公司能參考這個技術。

4. 請提出 Q1 和 Q2 實驗過程中,可降低周圍裝置干擾的可行方法 (愈詳細且創新分數越高)

在實驗時能有效降低干擾的方法是到人少一點的地方做,盡可能減 少當下的電磁波干擾。如果有較進階的設備,則有幾種方法可以選擇:

a. Frequency hopping:

普通的藍芽和 wifi 大概會在 2.4GHz 運作,很多無線科技也是使用 這個 頻 段。 BLE 會使用 FHSS (frequency hopping spread spectrum),也就是會在 2.4GHz 內快速轉換載波頻率,這項技術能減少相同頻率間的干擾。

b. Coexistence mechanisms:

除了 frequency hopping,還有其他技術支援 BLE 能夠和其他無線技術共同存在 2.4GHz。包括 time slots, channel hopping, coordination with other wireless devices.

5. 本次實驗心得,你學到了什麼東西?

這次實驗的內容雖然容易,但在實作和結報上卻是有點難度。

因為用的是 android 的手機,在選擇 app 時就發生問題。在 google play 中沒有看到簡報上介紹的 app,於是選擇了叫「location」的。在做第一題時雖然順利,但該款 app 在發送訊息時會有問題。最後請其他同學協助從他們的手機發送廣告,才順利通過第二題。

結報內容討論了可以應用 BLE 的領域和降低干擾的方法,促使我上網查詢更多資料,進而了解也驚嘆到這個領域的重要性。希望能從往後的課程中學習更多相關知識。

Reference:

- 1. https://reurl.cc/j3d481
- 2. https://peterpowerfullife.com/blog/tech-rssi/
- 3. https://help.tw.ui.com/articles/221321728/
- 4. https://www.mokoblue.com/zh-tw/all-about-eddystone-beacon/
- 5. https://youtu.be/gV0ZH4npL 0?si=dpMzyWmqh1mno4aE