Real Analysis, E.M.Stein-R.Shakarchi

Chapter 3 Differentiation and Integration*

Yung-Hsiang Huang[†]

Exercises

1. Proof.	
2. Proof.	
3. Proof.	
4. Proof.	
5. Proof.	
6. Proof.	
7. Proof.	
8. Proof.	
9. Proof.	
10. Proof.	

11. If a, b > 0, let

$$f(x) = \begin{cases} x^a \sin(x^{-b}) & \text{for } 0 < x \le 1, \\ 0 & \text{if } x = 0. \end{cases}$$
 (1)

Prove that f is of bounded variation in [0,1] if and only if a>b. Then, by taking a=b, construct (for each $0<\alpha<1$) a function that satisfies the Lipschitz condition of exponent α but which is not of bounded variation.

^{*}Last Modified: 2018/08/15

[†]Department of Math., National Taiwan University. Email: d04221001@ntu.edu.tw

Proof. If $a \ge b$, then $\operatorname{Var}(f) \ge \sum_{k=1}^N (\frac{2}{2k-1})^{b/a} \to \infty$ as $N \to \infty$. Conversely, one can show f is of bounded variation from $|f'(x)| \le ax^{a-1} + bx^{a-b-1}$. When a = b, one note that if 1 > b > 0, then by MVT,

$$|(x+h)^a \sin(x+h)^{-a} - x^a \sin x^{-a}| \le \min\{2a\frac{h}{x}, 2(x+h)^a\}.$$

If $x^{a+1} \ge h$, then $|(x+h)^a \sin(x+h)^{-a} - x^a \sin x^{-a}| \le 2ah^{1-\frac{1}{a+1}} =: 2ah^{\alpha}$.

If
$$x^{a+1} < h < 1$$
, then $|(x+h)^a \sin(x+h)^{-a} - x^a \sin x^{-a}| \le 2(h^{\frac{1}{a+1}} + h)^a \le 2^{1+a}h^{\alpha}$.

$$\square$$
 20. Proof.

Remark 1. See also [4, Exercise 7.7], [1, Example 8.30] and [3, Theorem 1.37] for an advanced result of (a).

$$\square$$
 23. Proof.

$$28. \ Proof.$$

29.	Proof.		
30.	Proof.		
31.	Proof.		
32.	Proof.		
P	roblems		
1.	Proof.		
2.	Proof.		
3.	Proof.		
4.	Proof.		
5.	Proof.		
6.	Proof.		
7.	In problem 5.8 of Book I, it's shown that the following Lacunary Fourier series is	α-	
Hölder continuous and nowhere differentiable (and hence not of bounded variation)			
$f_1(x) := \sum_{n=0}^{\infty} 2^{-n} e^{2\pi i 2^n x}$			
Another simplified proof can be found in Jones [2, Section 16.H].			
8.	Proof.		
R	eferences		
[1]	Bernard R Gelbaum and John MH Olmsted. <i>Counterexamples in analysis</i> . Dover Publication corrected reprint of the second (1965) edition edition, 2003.	ıs,	
[2]	Frank Jones. Lebesgue Integration on Euclidean Space. Jones & Bartlett Learning, revise edition, 2001.	ed	

[4] Walter Rudin. Real and Complex Analysis. Tata McGraw-Hill Education, third edition, 1987.

[3] Giovanni Leoni. A first course in Sobolev spaces, volume 181. American Mathematical Society

Providence, RI, 2nd edition, 2017.