Instituto Tecnológico de Costa Rica - TEC

Inteligencia Artificial

Docente: Kenneth Obando Rodríguez

Trabajo Corto 3: Árboles de Decisión

Estudiantes:

- Estudiante 1
- Estudiante 2
- Estudiante 3

Link del Cuaderno (recuerde configurar el acceso a público):

<u>Link de su respuesta</u>

Nota: Este trabajo tiene como objetivo promover la comprensión de la materia y su importancia en la elección de algoritmos. Los alumnos deben evitar copiar y pegar directamente información de fuentes externas, y en su lugar, demostrar su propio análisis y comprensión.

Entrega

Debe entregar un archivo comprimido por el TecDigital, incluyendo un documento pdf con los resultados de los experimentos y pruebas. La fecha de entrega es el domingo 17 de setiembre, antes de las 10:00pm.

Instrucciones:

Las alternativas se rifarán en clase utilizando números aleatorios. Deberá realizar la asignación propuesta. Si realiza ambos ejercicios, recibirá 20 puntos en **la nota porcentual de la actividad**, para aplicar a la totalidad de los puntos extra es necesario que ambas actividades se completen al 100%

Actividad - Taller

- Cree una clase nodo con atributos necesarios para un árbol de decisión: feature, umbral, gini, cantidad_muestras, valor, izquierda, derecha
- 2. Crea una clase que implementa un árbol de decisión, utilice las funciones presentadas en clase, además incluya los siguientes hyperparámetros:

- o max_depth: Cantidad máxima de variables que se pueden explorar
- min_split_samples: Cantidad mínima de muestras que deberá tener un nodo para poder ser dividido
- o criterio: función que se utilizará para calcular la impuridad.
- 3. Divida los datos en los conjuntos tradicionales de entrenamiento y prueba, de forma manual, sin utilizar las utilidades de sklearn (puede utilizar índices de Numpy o Pandas)
- 4. Implemente una función que se llame $validacion_cruzada$ que entrene k modelos y reporte las métricas obtenidasd: a. Divida el conjunto de entrenamiento en k subconjuntos excluyentes b. Para cada uno de los k modelos, utilice un subconjunto como validación c. Reporte la media y la desviación estándar para cada una de las métricas, todo debe realizarse solo usando Numpy:
 - Accuracy
 - Precision
 - Recall
 - F1
- 5. Entrene 10 combinaciones distintas de parámetros para su implementación de Arbol de Decisión y utilizando su implementación de validacion_cruzada.
- 6. Utilizando los resultados obtenidos analice cuál y porqué es el mejor modelo para ser usado en producción.
- 7. Compruebe las métricas usando el conjunto de prueba y analice el resultado

Rúbrica para la Implementación de un Árbol de Decisión

Nota: Esta rúbrica se basa en la calidad de la implementación y los resultados obtenidos, no en la cantidad de código.

1. Creación de la Clase Nodo (10 puntos	1.	. Creación de	e la Clase	Nodo ((10	puntos
---	----	---------------	------------	--------	-----	--------

- Se crea una clase Nodo con los atributos mencionados en las especificaciones (feature, umbral, gini, cantidad_muestras, valor, izquierda, derecha).
- Los atributos se definen correctamente y se asignan de manera apropiada.

2. Creación de la Clase Árbol de Decisión (20 puntos)

- Se crea una clase que implementa un árbol de decisión.
- La clase utiliza las funciones presentadas en el cuaderno.
- Se implementan los hyperparámetros solicitados (max_depth, min_split_samples, criterio).

24, 14:2 <i>i</i>	1C03 - ArbolesDecision .ipynb - Colab
•	☐ La clase es capaz de entrenar un árbol de decisión con los hyperparámetros especificados.
3. Div	visión de Datos (10 puntos)
•	 Los datos se dividen en conjuntos de entrenamiento y prueba de forma manual. Se utiliza Numpy o Pandas para realizar esta división. Se garantiza que los conjuntos sean excluyentes.
4. lm	plementación de Validación Cruzada (20 puntos)
•	 Se implementa la función validacion_cruzada correctamente. Los datos de entrenamiento se dividen en k subconjuntos excluyentes. Se entrena y evalúa un modelo para cada subconjunto de validación. Se calculan y reportan las métricas de accuracy, precision, recall y F1. Se calcula la media y la desviación estándar de estas métricas.
5. En	trenamiento de Modelos (20 puntos)
•	 Se entrenan 10 combinaciones distintas de parámetros para el árbol de decisión. Cada combinación se entrena utilizando la función validacion_cruzada. Los resultados de las métricas se registran adecuadamente.
6. An	álisis de Modelos (10 puntos)
•	 Se analizan los resultados obtenidos y se selecciona el mejor modelo para ser utilizado en producción. Se proporciona una justificación clara y fundamentada sobre por qué se eligió ese modelo.
7. Pr	ueba en el Conjunto de Prueba (10 puntos)
•	 Se comprueban las métricas del modelo seleccionado utilizando el conjunto de prueba. Se analizan los resultados y se comentan las conclusiones.
Gene	ral (10 puntos)
•	☐ El código se documenta de manera adecuada, incluyendo comentarios que expliquen las secciones clave.

• El código se ejecuta sin errores y sigue buenas prácticas de programación.

ullet Se cumple con todos los requisitos y las especificaciones proporcionadas.

La presentación de los resultados es clara y fácil de entender.

Puntuación Total: 100 puntos