Numerical experiments regarding acceleration in RACCAM spiral FFAG

I simulate the acceleration in FFAG ring shown in Fig. 1, parameters in the Table below, betatron functions in Fig. 2. Fig.3 shows the location of that particular optics in the stability domain.

Note: this experiment is not so realistic from the point of view of RF timing: RF frequency does not follow revolution time, synchronous RF phase drifts slowly from $\phi_s = 20$ deg to close to 90 degrees.

Parameters, including sample K/ξ values

Nb cells	10	
K	5.150E+00	
ξ	5.350E+01	(deg.)
pf	0.340	
gap	8.300E-02	(m)
$r_1/r_2/\Delta r$	2.84 / 3.46 / 0.62	(m)
E_1 / E_2 , proton	17.0 / 180.	(MeV)
$p_1 / p_2 / ratio$	179. / 608. / 3.39	(MeV/c)
$B\rho_1 / B\rho_2$	0.598 / 2.03	(T.m)
B_1 / B_2	0.6115 / 1.700	(T)
$Trev_1 / Trev_2$	321.22 / 135.24	(ns)
$Frev_1 / Frev_2$	3.208513 / 7.620395	(MHz)
Dip. sector angle	12.2	(deg.)
Dip. bend angle	36.0	(deg.)
Drift L, inj.	$1.18 - 2 \times 0.15$	(m)
Drift L, xtr.	$1.43 - 2 \times 015$	(m)

Fig. 5 shows p_x versus turn number, for (a) 0 deg. tilt angle, (b) 40 deg. tilt angle. The particle considered islaunched on 17 MeV closed orbit with synchrotron RF phase $\phi_s=20$ deg. Fig. 6 shows (r,r') motion of 100 particles evenly distributed on a 100π ellipse, in case of cavity orthogonal to 180 MeV closed orbit.

Fig. 6 shows transport of particles on a 100π ellipse during acceleration from 17 to 180 MeV, in case of cavity inclined by either 0 or 40 degrees.

Spiral ring

Figure 1: Spiral ring.

Figure 2: Optical functions, with K = 5.150 , ξ = 53.50 deg. nb. cells, K, xi, Qx, Qy, Max. BetX, BetY, Dx : 10, 5.15, 53.5, 2.885360, 1.551076, 3.03684, 4.55498 0.69755

Figure 3: Stability domain, including sample working point. Left: K, ξ , right: ν_x , ν_z

Figure 4: Positionning of the accelerating cavity in Zgoubi simulations. Tilting the cavity $(A_{rf}$ angle) is performed using "CHANGREF".

Figure 5: Evolution of the p_x component for cavity tilt of 0 and 40 degrees.

 p_x is the momentum component normal to the cavity gap, the tilt angle is with respect to the ring radius. In the 0 deg case, $|\vec{p}|$ and p_x practically superimpose.

Figure 7: Acceleration of a 100π ellipse from 17 to 180 MeV. 40 deg and 0 deg cavity angle cases are plotted, every 1000 other turn, they superimpose thoroughly.

Figure 6: Acceleration of a 100π ellipse from 17 to 180 MeV. For comparions, maximum stable amplitude portraits at 17,, 180 MeV are shown. zgoubi data file in App. A.

Appendix

A zgoubi data file, acceleration

```
Data generated by searchCO
   598.493433774 ->17.00 MeV
                                                        2029.47926 ->180MeV
8
100 1 1
2.871800 2.772000E-1 0. 0.0E+00 0.0E+00 1 '5'
-0.637334 0.818805 100e-6
-1.993011 4.296249 0.
0. 1. 0.
'FAISCEAU'
'FAISCEAU'
'PARTICUL'
938.27231 1.60217733D-19 0. 0. 0.
'SCALING' #START
1 1
CAVITE
2 17MeV 180
1. 2.35 3.391=la loi the
1 16500
'PICKIDE'
                                                                                                                              4
                   180
2.35 3.391=la loi theoriq
16500
   'PICKUPS'
   1
#S
    'FAISTORE'
   b_zgoubi.fai #S
      'MARKER' #S
     1
1 999.0000 16.6000 314.8442 0.
      'FAISCEAU'
'POLARMES'
     0 0
1. 1. 1.
Dipole SPIRAL
1000 300
     FIELDMAP
0 0.0.0.
     0.415
       0. -0.180840735 0. -0.119159265
  ...
'POLARMES'
    data are repeated 9 times
   ····
'FAISCEAU'
'CHANGREF'
0. 3.368900E+02 -40.
'CHANGREF'
0. -3.368900E+02 0.
'CAVITE'
                                                                                                            85
**CAVITE' 6.1
3208513.18654 17.
28884. 0.349066
'CHANGREF'
                                  f0 (Hz), starting synch Ekin W_s0 (MeV) Vp (V), phis (rad)
0. 3.368900E+02 40.
'CHANGREF'
0. -3.368900E+02 0.
'FAISCEAU' #END
'REBELOTE'
 16500 0.2 99
'END'
```