# Medium Access Control

EE450: Introduction to Computer Networks

Professor A. Zahid

### Medium Access Control

- Single shared broadcast channel
- Two or more simultaneous transmissions by nodes: interference
  - collision if node receives two or more signals at the same time

#### Multiple Access Protocol

- Distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit
- Communication about channel sharing must use channel itself!

# Multiple Access Links









shared RF (satellite)

humans at a cocktail party (shared air, acoustical)

- Old-fashioned Ethernet
- Upstream HFC (In Cable Access Networks)
- · Wi-Fi: 802.11 wireless LAN

# Taxonomy of MAC Protocols



## Classifications of MAC Protocols

#### Three broad classes:

- Channel Partitioning
  - Divide channel into smaller "pieces" (time slots, frequency, code) for example TDMA, FDMA or CDMA
  - Allocate a piece to each node for exclusive use
- Random Access
  - Channel not divided, allow collisions. Examples: ALOHA, CSMA/CD, CSMA/CA
  - "Recover" from collisions for example via delayed retransmissions
- "Taking turns"
  - Nodes take turns, but nodes with more to send can take longer turns. Examples: Polling, Token Passing

# Channel Partitioning: FDMA/TDMA



## IEEE802 Standards for LANs

LLC: Logical link control MAC: Media access control

| Upper layers       |                     | Upper layers                             |                              |                             |     |
|--------------------|---------------------|------------------------------------------|------------------------------|-----------------------------|-----|
|                    |                     | LLC                                      |                              |                             |     |
| Data link layer    |                     | Ethernet<br>MAC                          | Token Ring<br>MAC            | Token Bus<br>MAC            | ••• |
| Physical layer     |                     | Ethernet<br>physical layers<br>(several) | Token Ring<br>physical layer | Token Bus<br>physical layer | ••• |
| ransmission medium | Transmission medium |                                          |                              |                             |     |

OSI or Internet model

**IEEE Standard** 

## Random Access Protocols: ALOHA



## Slotted ALOHA



# IEEE802.3 (Based on Ethernet) "Carrier Sense Multiple Access"

# Carrier Sense Multiple Access

- CSMA/CD: Carrier sense, multiple access with collision detection
  - collisions detected within short time
  - colliding transmissions aborted, reducing waste
  - Persistent, non-persistent and P-persistent retransmission
- Collision Detection:
  - On baseband bus, collision produces much higher signal voltage than transmitted signal
  - For twisted pair (Hub-topology) activity on more than one port is collision

# Behavior of Three Persistent Scenarios



a. 1-persistent



b. Nonpersistent



c. p-persistent

## Collisions in CSMA/CD

- Collisions can still occur: propagation delay means two nodes may not hear each other's transmission
- When collision occur, entire frame is wasted
- Collision is detected by comparing transmitted and received signal strengths (Hard to do in WLANs, TBD)



## Vulnerable Time in CSMA



## Collision Detection



## Flow Chart of CSMA/CD



## Receive Process in IEEE802.3



## IEEE802.3 MAC Frame

Preamble: 56 bits of alternating 1s and 0s.

SFD: Start frame delimiter, flag (10101011)





MAC address is burned in NIC ROM (sometimes software settable)

Type: Indicate Network Layer Protocol (mostly IP)

# IEEE802.3 Frame Length Limits



If errors are detected, Frame is dropped

#### MAC Addresses

Source and destination MAC addresses.
 These are the hardware addresses. They are 48-bits long each

```
Ethernet MAC Address

XX XX XX XX XX bytes

Vendor Part Vendor Assigned
24 bits 24 bits
```

IEEE Organizationally Unique Identifier (OUI)

- allows vendor to build hardware with unique addresses

http://standards.ieee.org/regauth/oui/ http://www.cavebear.com/CaveBear/Ethernet/

# Types of MAC Addresses

- Unicast: one interface to one interface
- Broadcast: all 1's destination address
  means that every attached interface to a
  LAN should read the frame.
  - MAC Address: FF:FF:FF:FF:FF
- Multicast: an interface can be configured to read frames sent to one or more multicast addresses.



# 10Base? Implementations



# Shared Ethernet Implementations



a. A LAN with a bus topology using a coaxial cable



b. A LAN with a star topology using a hub

# Switched Ethernet



# IEEE802.5 (Based on IBM) "Token-Passing Rings"

# IEEE802.5 Token-Passing Rings

- Frames flow in one direction
- Special bit pattern (token) rotates around ring. The token is 24-bit long
- Node having a frame to transmit must capture token first
- Node must release token after done transmitting
- Node remove frame when it comes back around
- Stations get round-robin service

# Token Ring

- Supports 4Mbps (UTP), 16 Mbps (STP) and 100 Mbps (Fiber)
- Token Holding Timer
   ~ 10 msec which
   limits the frame
   length ~ 4500 Bytes
   for the 4Mbps Rings
   and ~ 18,000 Bytes
   for the faster Rings



#### Cable Access Network



- multiple 40Mbps downstream (broadcast) channels
  - single CMTS transmits into channels
- multiple 30 Mbps upstream channels
  - multiple access: all users contend for certain upstream channel time slots (others assigned)

# IEEE 802.11 Wireless LANs (Wi-Fi)

## Ad-hoc vs. Infrastructure WLANs

**BSS**: Basic service set

AP: Access point



Ad hoc network (BSS without an AP)



Infrastructure (BSS with an AP)

## Extended Service Sets



# Unregulated Band (ISM)



ISM: Industrial, Scientific and Medical band

## Wireless Link Characteristics

- Differences from wired link ....
  - Decreased Signal Strength: Radio signal attenuates as it propagates through matter (path loss)
  - Interference from other sources: standardized wireless network frequencies (e.g., 2.4 GHz) shared by other devices (e.g., phone); devices (motors) interfere as well
  - Multipath propagation: Radio signal reflects off objects ground, arriving ad destination at slightly different times

## Hidden Terminal Problem

- Hidden terminal problem
  - B, A hear each other
  - C, A hear each other
  - B, C can not hear each other
  - Means B, C unaware of their interference at A



B and C are hidden from each other with respect to A.

# Signal Fading

## Signal fading:

- A, B can hear each other
- A, C can hear each other
- B, C can not hear each other interfering at A
- Signal losses its strength as distance increases



## 802.11 Infrastructure Network



- Station (STA)
  - terminal with access mechanisms to the wireless medium and radio contact to the access point
- Basic Service Set (BSS)
  - group of stations using the same radio frequency
- Access Point
  - station integrated into the wireless LAN and the distribution system
- •Portal (Bridge/Router)
  - to other (wired) networks
- Distribution System
  - interconnection network to form one logical network (EES: Extended Service Set) based on several BSS

## 802.11 in the TCP/IP Stack



## IEEE 802.11 Wireless LAN

### 802.11b

- 2.4-5 GHz unlicensed spectrum
- up to 11 Mbps
- direct sequence spread spectrum (DSSS) in physical layer
  - all hosts use same chipping code

### 802.11a

- 5-6 GHz range
- up to 54 Mbps

### 802.11g

- 2.4-5 GHz range
- up to 54 Mbps

### 802.11n: multiple

#### antennae

- 2.4-5 GHz range
- up to 200 Mbps
- all use CSMA/CA for multiple access
- \* all have base-station and ad-hoc network versions

## Channel Association

- 802.11b: 2.4GHz-2.485GHz spectrum divided into
   11 channels at different frequencies
  - AP admin chooses frequency for AP
  - Interference possible: channel can be same as that chosen by neighboring AP!
- Host: must associate with an AP
  - Scans channels, listening for Beacon frames containing AP's name (SSID) and MAC address
  - Selects AP to associate with
  - May perform authentication
  - Run DHCP to get IP address in AP's subnet

## 802.11: Passive/Active scanning





### passive scanning:

- (1) beacon frames sent from APs
- (2)association Request frame sent: H1 to selected AP
- (3)association Response frame sent from selected AP to H1

#### active scanning:

- (1) Probe Request frame broadcast from H1
- (2) Probe Response frames sent from APs
- (3) Association Request frame sent: H1 to selected AP
- (4) Association Response frame sent from selected AP to H1

### IEEE802.11 MAC Protocol

- Avoid collisions: 2+ nodes transmitting at same time
- 802.11: CSMA sense before transmitting
  - Don't collide with other transmissions
- 802.11: No collision detection!
  - Difficult to receive (sense collisions) when transmitting due to weak received signals (fading)
  - Can't sense all collisions in any case: hidden terminal, fading
  - Goal: avoid collisions: CSMA/C(ollision)A(voidance)

## 802.11 MAC Procedures

- Traffic services
  - Asynchronous Data Service (mandatory) DCF
  - Time-Bounded Service (optional) PCF
- Access methods
  - DCF CSMA/CA (mandatory)
    - collision avoidance via randomized back-off mechanism
    - ACKs for data frames (not for broadcasts)
  - DCF w/ RTS/CTS (optional)
    - avoids hidden terminal problem
  - PCF (optional)
    - access point polls terminals according to a list

#### Distributed Coordination Function

## DCF: CSMA/CA



- station ready to send starts sensing the medium (Carrier Sense based on CCA, Clear Channel Assessment)
- if the medium is free for the duration of an Inter-Frame Space (IFS), the station can start sending (IFS depends on service type)
- if the medium is busy, the station has to wait for a free IFS, then the station must additionally wait a random back-off time (collision avoidance, multiple of slot-time)
- if another station occupies the medium during the back-off time of the station, the back-off timer stops (fairness)

## Avoiding Collisions

- Idea: allow sender to "reserve" channel rather than random access of data frames: avoid collisions of long data frames
- Sender first transmits small request-to-send (RTS) frames to BS using CSMA
  - RTSs may still collide with each other (but they're short)
- BS broadcasts clear-to-send CTS in response to RTS
- CTS heard by all nodes
  - Sender transmits data frame
  - Other stations defer transmissions

avoid data frame collisions completely using small reservation packets!

## DCF w/RTS & CTS



- Station send RTS with reservation parameter (amount of time the data frame needs the medium) after waiting for DIFS
- Acknowledgement via CTS after SIFS by receiver (if ready to receive)
- Sender can now send data at once, acknowledgement via ACK
- Other stations store medium reservations distributed via RTS and CTS

# Collision Avoidance using RTS/CTS



Figure 6.12 ◆ Collision avoidance using the RTS and CTS frames

# Exposed Terminal Problem



## 802.11 PCF (Point Coordination Function)



### IEEE802.11 Frame Structure



Address 2: MAC address of wireless host or AP transmitting this frame

## Addressing Mechanisms



a. Case 1



c. Case 3



b. Case 2



d. Case 4

## IEEE802.11 Frame Addressing

