

[60pts]

Departamento de Matemática, Universidade de Aveiro

Cálculo I-C — 2° Teste (V1)

16 de janeiro de 2025

0	de juneiro de 2023	
	Duração: 2h00	

N.º Mec.:			_ No	me:								
(Declaro q	ue desis	sto:)		N. folk	nas suple	mentares:
Questão [Cotação]	1 [60pts]	2a [15pts]	2b [15pts]	3 [17pts]	4 [18pts]	5 [15pts]	6a [15pts]	6b [16pts]	6c [04pts]	7a [12pts]	7b [13pts]	Classificação (valores)
	-						-		-			efetuados – cada resposta é a
(ii) r	esposta esposta	correta: errada: a de res	: -3 pon	tos;	sta nula	ı: 0 pon	itos.					
(b)		f(z) $f(z)$	$(x) dx \in (x) dx = (x) dx dx$	converge $\int_{1}^{+\infty} g$ diverge $\int_{1}^{+\infty} g$ applace g	gente e $g(x) dx$ nte e $\int_{\mathbb{R}^2} g(x) dx$ $\mathcal{L}\{e^{5t}(t)\}$	$\int_{1}^{+\infty} g$ são cor $f + \infty$ $g(s)$ são div $^{3} + \cos$	colha a a $x(x) dx$ nvergent $x(x) dx ext{ \'e}$ ergente $x(x) dx ext{ \'e}$	é diverg tes. converg s.	gente. gente. l a:		S	– 5
		$\frac{3}{(s-5)^4}$ $(s+5)^4$								$(s+5)^{4}$	$\frac{1}{4} + \frac{1}{(s+1)^2}$	$\frac{-5}{5)^2 - 4}, \ s > 7.$ $\frac{s + 5}{-5)^2 - 4}, \ s > 5.$
	ten ten	m valor m valor	$\frac{1}{4}$.			, podem	nos cono	eluir qu	te	gral \int_0^{∞} em valor iverge.	4	$\operatorname{sen}(2t) dt$
	2e	$\frac{2s}{(s+3)}$ $e^{-3t}\cos t$	$t + 6e^{-3}$ $+ 6e^{-3}$	$^{-3t} \operatorname{sen} t$	$t, t \ge 0$ $t \ge 0.$							$e^{3t} \operatorname{sen} t, \ t \ge 0.$ $\operatorname{en} t, \ t \ge 0.$
(e)	μ	$ \begin{aligned} (x) &= 3 \\ (x) &= \frac{x}{3} \end{aligned} $	$\ln x$	inções é	um fat	or integ	grante d	a EDO	linear y	$y' + \frac{3}{x}y$ $f(x) = 0$ $f(x) = 0$	$x = \sin x$ x^3 x^2	$x, \operatorname{com} x > 0?$

		(f)	O integral geral da equação diferencial $\frac{1}{x}y'+\frac{1}{y}=0$, com $x,y\in\mathbb{R}\setminus\{0\}$, é dado por:	
[15pts]	2.	(a)	Mostre que o integral impróprio $\int_1^{+\infty} \frac{1}{x^2} \mathrm{e}^{\frac{1}{x}} dx$ é convergente e indique o seu valor.	
			Continua na folha suplementar N°	_
[15pts]		(b)	Sem usar a definição, estude a natureza do integral impróprio $\int_1^{+\infty} \frac{1+\cos x}{x^2} \mathrm{e}^{\frac{1}{x}} dx$.	

Continua na folha suplementar Nº

Continua na folha suplementar N	1	N° Mec: Nome:
Continua na folha suplementar N	7pts]	3. Resolva a seguinte equação diferencial homogénea: $y' = \frac{x}{2} + \frac{y}{2}$.
	, , _	$y \cdot x$
4. Resolva a seguinte equação diferencial de Bernoulli: $y' - y = e^{-x}y^2$.		
	pts]	4. Resolva a seguinte equação diferencial de Bernoulli: $y' - y = e^{-x}y^2$.

Continua na folha suplementar No

[15pts]	são funções contínuas num dado	$y^{(n-1)}+\ldots+a_{n-1}(x)y'+a_n(x)y=b(x)$, onde a_0,a_1,\ldots,a_n,b_n intervalo I e a_0 não é a função nula. Mostre que se y_h é a éna associada e y_p uma solução da equação completa, então mpleta.
L		Continua na folha suplementar N°
		
	6. Considere a equação diferencial:	
[15pts]	6. Considere a equação diferencial:(a) Resolva a equação diferencia	$y'' + 4y = \operatorname{sen}(x).$
[15pts]		$y'' + 4y = \operatorname{sen}(x).$
[15pts]		$y'' + 4y = \operatorname{sen}(x).$
[15pts]		$y'' + 4y = \operatorname{sen}(x).$
[15pts]		$y'' + 4y = \operatorname{sen}(x).$
[15pts]		$y'' + 4y = \operatorname{sen}(x).$
[15pts]		$y'' + 4y = \operatorname{sen}(x).$
[15pts]		$y'' + 4y = \operatorname{sen}(x).$
[15pts]		$y'' + 4y = \operatorname{sen}(x).$
[15pts]		$y'' + 4y = \operatorname{sen}(x).$
[15pts]		$y'' + 4y = \operatorname{sen}(x).$

[16pts]	(b)	Usando o Método dos Coeficientes Indeterminados, determine uma solução particular da equação diferencial completa.
ı		Continua na folha suplementar N°
[04pts]	(c)	Indique a solução geral da equação diferencial completa.

7. Considere o seguinte problema de valores iniciais

$$\begin{cases} y'' - 2y' - 8y = 0\\ y(0) = 3\\ y'(0) = 6. \end{cases}$$

[12pts]

(a)	Mostro que $C(a_i(t))(c)$	3s	c \ 1
(a)	Mostre que $\mathcal{L}\{y(t)\}(s) =$	$\overline{(s+2)(s-4)}$,	5 > 4.

13pts]	(b)	Usando a Transformada de Laplace inversa, resolva o problema de valores iniciais.

Função	Primitiva	Função	Primitiva	Função	Primitiva
$ \begin{array}{ c c } u^r u' \\ (r \neq -1) \end{array} $	$\frac{u^{r+1}}{r+1}$	$\frac{u'}{u}$	$\ln u $	$u'e^u$	e^u
$u'a^u$	$\frac{a^u}{\ln a}$	$u'\cos u$	$\operatorname{sen} u$	$u' \operatorname{sen} u$	$-\cos u$
$u'\sec^2 u$	$\operatorname{tg} u$	$u'\csc^2 u$	$-\cot g u$	$u' \sec u$	
$u' \operatorname{cosec} u$	$-\ln \csc u + \cot g u $	$\frac{u'}{\sqrt{1-u^2}}$	$-\arccos u$ ou $\arcsin u$	$\frac{u'}{1+u^2}$	rctg u ou $-rccotg u$
$u' \sec u \operatorname{tg} u$	$\sec u$	$u' \operatorname{cosec} u \operatorname{cotg} u$	$-\csc u$		

$$\sec x = \frac{1}{\cos x}$$

$$\cos(x \pm y) = \sin x \cos y \pm \cos x \sin y$$

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$

$$\cos^2 x = \frac{1 + \cos(2x)}{2}$$

$$1 + tg^2 x = \sec^2 x$$

$$\cos(2x) = 2 \sin x \cos x$$

$$\cos(2x) = \cos^2 x - \sin^2 x$$

$$\sin^2 x = \frac{1 - \cos(2x)}{2}$$

$$1 + \cot^2 x = \csc^2 x$$

Função	Transformada	Função	Transformada	Função	Transformada
t^n $(n \in \mathbb{N}_0)$	$\frac{n!}{s^{n+1}}$ $(s>0)$	e^{at} $(a \in \mathbb{R})$	$\frac{1}{s-a}$ $(s>a)$	$ \begin{array}{c c} \operatorname{sen}(at) \\ (a \in \mathbb{R}) \end{array} $	$\frac{a}{s^2 + a^2}$ $(s > 0)$
$ \begin{array}{c} \cos(at) \\ (a \in \mathbb{R}) \end{array} $	$\frac{s}{s^2 + a^2}$ $(s > 0)$	$ senh(at) (a \in \mathbb{R}) $	$\frac{a}{s^2 - a^2}$ $(s > a)$	$ \begin{array}{c} \cosh(at) \\ (a \in \mathbb{R}) \end{array} $	$\frac{s}{s^2 - a^2}$ $s > a $

Propriedades da Transfe $F(s) = \mathcal{L}\{f(t)\}(s), \operatorname{com} s > s_f$ e	<u>*</u>			
$\mathcal{L}\lbrace f(t) + g(t)\rbrace(s) = F(s) + G(s), \ s > \max\lbrace s_f, s_g \rbrace$				
$\mathcal{L}\{\mathrm{e}^{\lambda t}f(t)\}(s) = F(s-\lambda),\; s>s_f+\lambda\;\mathrm{e}\;\lambda\in\mathbb{R}$	$\mathcal{L}\{t^n f(t)\}(s) = (-1)^n F^{(n)}(s) , \ s > s_f \ \mathbf{e} \ n \in \mathbb{N}$			
$\mathcal{L}\{H_a(t) \cdot f(t-a)\}(s) = e^{-as}F(s), \ s > s_f \ e \ a > 0$	$\mathcal{L}{f(at)}(s) = \frac{1}{a} F\left(\frac{s}{a}\right), \ s > a s_f e \ a > 0$			
$\mathcal{L}\lbrace f^{(n)}(t)\rbrace(s) = s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - s f^{(n-2)}(0) - f^{(n-1)}(0)$				

$$\mathcal{L}\{(f*g)(t)\}(s) = F(s)\cdot G(s), \quad \text{onde} \quad (f*g)(t) = \int_0^t f(\tau)g(t-\tau)\,d\tau, \ t\geq 0$$

 $\operatorname{com} s > \max\{s_f, s_{f'}, s_{f''} \dots, s_{f^{(n-1)}}\}, n \in \mathbb{N}$