Algorytmy metaheurystyczne Sprawozdanie z etapu 1.

Piotr Piszczek

Piotr Żuk

Marzec 2022

1 Wstęp

Dokonano porównania następujących algorytmów dla problemu komiwojażera:

- k-random (losowy)
- algorytm najbliższego sąsiada (zachłanny)
- rozszerzony algorytm najbliższego sąsiada
- 2-opt

Testów dokonano na grafach symetrycznych i asymetrycznych. Grafy z wagami odpowiadającymi odległości punktów na przestrzeni euklidesowej są równoważne z grafami symetrycznymi, zatem testy wykonano tylko dla tych drugich. Wagi wygenerowanych grafów są losowe, nieprzekraczające 1000 jednostek. Jako początkowe rozwiązanie dla algorytmu 2-opt wybrano rozwiązanie rozszerzonego algorytmu zachłannego.

2 Wybór k w algorytmie k-random

Dokonane zostały testy zależności jakości rozwiązania i czasu wykonywania obliczeń w zależności od wielkości k w algorytmie k-random.

Jakość rozwiązania od k dla grafu o 100 wierzchołkach

Czas od k dla grafu o 100 wierzchołkach

Jakość rozwiązania od k dla grafu o 50 wierzchołkach

Czas od k dla grafu o 50 wierzchołkach

Jakość rozwiązania od k dla grafu o 300 wierzchołkach

Czas od k dla grafu o 300 wierzchołkach

Można zaobserwować, że nawet dla niewielkich rozmiarów grafów przyrost jakości rozwiązania w zależności od k jest znikomy. Obserwacja jest zgodna z intuicją - aby prawdobieństwo, by losowe rozwiązanie było bliskie optymalnemu przy k próbach dla n! możliwości, k musiałoby być naprawdę duże. Jednak zwiększanie tej wartości szybko przestaje się opłacać ze względu na rosnący czas wykonywania algorytmu. Dla dalszych testów przyjęto k=30.

3 Porównanie algorytmów

3.1 Jakość rozwiązań

Waga rozwiązania w grafach symetrycznych bez k-random

Waga rozwiązania w grafach asymetrycznych bez k-random

3.2 Czas działania

Czas wykonywania dla grafów symetrycznych

Czas wykonywania dla grafów asymetrycznych

Czas wykonywania algorytmu losowego i zachłannego dla symetrycznych

4 Wnioski

4.1 k-random

Na podstawie uzyskanych wyników jasno widać, że algorytm ten radzi sobie z problemem najsłabiej. Znajduje rozwiązania w stosunkowo krótkim czasie, jednak są one znacznie gorsze od pozostałych algorytmów, zaś zwiększanie k celem uzyskania lepszych rezultatów powoduje głównie jedynie zwiększenie czasu wykonywania.

4.2 Algorytm najbliższego sąsiada

Algorytm zwraca dużo lepsze rozwiązania niż algorytm losowy. Ponadto dla wybranego k, dla wszystkich testowanych rozmiarów grafów ma jednocześnie krótszy czas wykonywania.

4.3 Rozszerzony algorytm najbliższego sąsiada

Algorytm pozbywa się losowości przy wybieraniu węzła początkowego, sprawdzając po kolei każdy z nich. Dzięki temu znajduje lepsze rozwiązanie od podstawowego algorytmu najbliższego sąsiada, jednak kosztem znaczącego wzrostu czasu wykonywania.

4.4 2-opt

Algorytm ten znajduje najlepsze rozwiązania ze wszystkich testowanych, jednak również pracuje najdłużej. Jest jedynym algorytmem dla którego zaobserwowano istotne różnice w działaniu dla grafów symetrycznych, a asymetrycznych. W przypadku grafów symetrycznych zazwyczaj znajduje lepsze rozwiązanie niż rozszerzony algorytm zachłanny (od którego rozwiązania zaczyna), jednak w przypadku grafów asymetrycznych zdarza się to niezwykle rzadko. Tym samym algorytm dla grafów asymetrycznych szybciej kończy działanie.