

K Nearest Neighbors (KNN)

Presenta:

Juan Manuel Aviña Muñoz

Asesor:

Dr. Marco Aceves Fernández

20 de Octubre del 2023

Índice

	Objetivo	3
	Justificación	4
•	Fundamentación	5
•	Métodos	8
•	Resultados	10
•	Conclusiones	26

Objetivo

Crear e implementar un clasificador usando KNN

KNN (DataCamp, 2023)

Justificación

Usar la base de datos del Titanic para implementar un modelo de KNN y generar predicciones de la probabilidad de supervivencia basado en algunas características.

RMS Titanic (Public domain, 1912).

Fundamentación

KNN es un algoritmo de ML muy utilizado debido a su simpleza para tareas de regresión y clasificación.

Sin embargo, tiene algunas límitaciones.

Fundamentación

Pasos:

- 1. Inicialización
- 2. Selección de "K"
- 3. Calcular distancias
- 4. Seleccionar vecinos

- 5. Votación
- 6. Regresión
- 7. Predicción
- 8. Repetir 3-7

Justificación

Ventajas:

- Fácil de entender e implementar.
- La fase de entrenamiento es rápida.
- Regresión y Clasificación.
- No toma en cuenta la distribución de los datos.

Desventajas:

- El algoritmo puede ser lento.
- Sensible a escala de características.
- Puede ser complicado seleccionar una K apropiada.

Métodos

Total instances: 1309 Total features: 12												
	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.00	1	0	A/5 21171	7.25	S	NaN
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.00	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.00	0	0	STON/O2. 3101282	7.925	S	NaN
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.00	1	0	113803	53.1	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.00	0	0	373450	8.05	S	NaN
1304	1305	0	3	Spector, Mr. Woolf	male	0.00	0	A.5. 3236	8.05	S	NaN	NaN
1305	1306	1	1	Oliva y Ocana, Dona. Fermina	female	39.00	0	0	PC 17758	108.9	C105	С
1306	1307	0	3	Saether, Mr. Simon Sivertsen	male	38.50	0	0	SOTON/O.Q. 3101262	7.25	s	NaN
1307	1308	0	3	Ware, Mr. Frederick	male	0.00	0	359309	8.05	S	NaN	NaN
1308	1309 ws × 12 column	0	3	Peter, Master. Michael J	male	1.00	1	2668	22.3583	С	NaN	NaN
150510	743 × 12 CORGIIII											

Dataset data display (Creación propia, 2023)

Métodos


```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import ConfusionMatrixDisplay, confusion matrix, accuracy score, recall score
from sklearn.metrics import precision score, fl score
from sklearn.model selection import train test split
from sklearn.feature selection import SelectKBest
from sklearn.feature selection import chi2
from utils import dimensionality reduction
pd.options.display.float format = '{:.2f}'.format
pie colors = ['#F08080', '#CCCCFF', '#9FE2BF']
countplot colors = ['#a6b1f7', '#ffcc99', '#DAF7A6']
violinplot colors = ['#FF5733', '#dbff33', '#ffbd33', '#33dbff']
```

Librerías (Creación propia, 2023)

Inspección de la base de datos.

PassengerId	Θ
Survived	Θ
Pclass	Θ
Name	Θ
Sex	Θ
Age	Θ
SibSp	Θ
Parch	Θ
Ticket	Θ
Fare	Θ
Cabin	241
Embarked	1039
dtype: int64	

Datos faltantes (Creación propia, 2023).

Data	columns (tota	al 12 columns):						
#	Column	Non-Null Count	Dtype					
0	PassengerId	1309 non-null	int64					
1	Survived	1309 non-null	int64					
2	Pclass	1309 non-null	int64					
3	Name	1309 non-null	object					
4	Sex	1309 non-null	object					
5	Age	1309 non-null	float64					
6	SibSp	1309 non-null	int64					
7	Parch	1309 non-null	object					
8	Ticket	1309 non-null	object					
9	Fare	1309 non-null	object					
10	Cabin	1068 non-null	object					
11	Embarked	270 non-null	object					
dtypes: float64(1), int64(4), object(7)								
memory usage: 122.8+ KB								

Datos faltantes (Creación propia, 2023).

Se realiza una limpieza y normalización de nuestros datos.

Data	columns (tot	al 12 columns):						
#	Column	Non-Null Count	Dtype					
0	PassengerId	1309 non-null	int64					
1	Survived	1309 non-null	int64					
2	Pclass	1309 non-null	int64					
3	Name	1309 non-null	object					
4	Sex	1309 non-null	object					
5	Age	1309 non-null	float64					
6	SibSp	1309 non-null	int64					
7	Parch	1309 non-null	float64					
8	Ticket	1309 non-null	object					
9	Fare	1309 non-null	float64					
10	Cabin	1068 non-null	object					
11	Embarked	270 non-null	object					
<pre>dtypes: float64(3), int64(4), object(5)</pre>								
memory usage: 122.8+ KB								

Tipos de datos (Creación propia, 2023).

Antecedentes

Porcentaje de supervivencia (Creación propia, 2023).

Passenger Class Distribution

Distribución de clases en los pasajeros (Creación propia, 2023)

Supervivencia por clase (Creación propia, 2023)

Supervivencia por embarcado (Creación propia, 2023)

Distribución por costo de boleto (Creación propia, 2023)

Distribución por grupo de edad (Creación propia, 2023)

Distribución por edad y costo de boleto en relación con la supervivencia (Creación propia, 2023)

Distribución por titulo en relación con la edad (Creación propia, 2023)

Distribución por titulo en relación con la supervivencia (Creación propia, 2023)

21

PassengerId	1	-0.02	-0.038	0.027	0.013	0.019	-0.016	0.0071	0.039	-0.053	0.032
Survived	-0.02	1	-0.26	-0.19	-0.69	0.023	0.03	-0.067	0.23	0.031	-0.0046
Pclass	-0.038	-0.26	1	0.0056	0.12	-0.41	0.035	0.15	-0.55	-0.038	-0.39
Name	- 0.027	-0.19	0.0056	1	0.23	0.18	-0.16	0.024	-0.079	0.0028	0.2
Sex	- 0.013	-0.69	0.12	0.23	1	-0.0018	-0.12	0.053	-0.17	-0.0095	0.026
Age	0.019	0.023	-0.41	0.18	-0.0018	1	-0.076	-0.3	0.22	0.019	0.93
SibSp	-0.016	0.03	0.035	-0.16	-0.12	-0.076	1	-0.1	0.14	0.025	-0.11
Parch	- 0.0071	-0.067	0.15	0.024	0.053	-0.3	-0.1	1	-0.07	-0.016	-0.22
Fare	0.039	0.23	-0.55	-0.079	-0.17	0.22	0.14	-0.07	1	-0.1	0.2
Embarked	-0.053	0.031	-0.038	0.0028	-0.0095	0.019	0.025	-0.016	-0.1	1	0.022
Age_Group	0.032	-0.0046	-0.39	0.2	0.026	0.93	-0.11	-0.22	0.2	0.022	1
	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Fare	Embarked	Age_Group

Pearson Correlation heatmap (Creación propia, 2023)

	Survived	Pclass	Sex	Age	Fare
0	0	3	1	22.00	7.25
1	1	1	0	38.00	71.28
2	1	3	0	26.00	7.92
3	1	1	0	35.00	53.10
4	0	3	1	35.00	8.05

Datos después de limpieza (Creación propia, 2023)

Chi-squared (Creación propia, 2023)


```
class KNNClassifier:
   def init (self, k=3, distance metric="euclidean"):
       self.k = k
       self.distance metric = distance metric
       self.X_train = None
       self.Y train = None
   def fit(self, X train, Y train):
       self.X train = X train
       self.Y train = Y train
   def predict(self, X test):
       predictions = []
       for x test in X test:
           if self.distance metric == "euclidean":
               distances = np.linalg.norm(self.X_train - x_test, axis=1)
           elif self.distance metric == "manhattan":
               distances = np.sum(np.abs(self.X_train - x_test), axis=1)
           sorted indexes = distances.argsort()[:self.k]
           sorted labels = self.Y train[sorted indexes]
           predicted label = np.bincount(sorted labels).argmax()
           predictions.append(predicted_label)
       return np.array(predictions)
```

Código de KNN (Creación propia, 2023)

Predicción de por selección de Pearson (Creación propia, 2023)

Predicción de por pruebas de Chi-squared (Creación propia, 2023)

Conclusiones

KNN puede servir como modelo de referencia para la comparación con algoritmos de aprendizaje automático más avanzados, ya que proporciona un punto de partida para el modelado y ayuda a establecer un punto de referencia para la evaluación del rendimiento.

