Algoritmi Avanzati, A.A. 2016-2017

Prima prova parziale

Mercoledì 2 novembre 2016

- Riportare il proprio nome, cognome e numero di matricola in cima a questo foglio e a tutti i fogli, di bella e di brutta copia.
- Al termine dello svolgimento della prova, è necessario riconsegnare *tutti* i fogli, comprese le brutte copie e il presente testo. In caso di riconsegna parziale la prova non verrà valutata.
- Il presente foglio non deve riportare alcuna scritta ad eccezione dei dati di identificazione.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 8 domande dell'esercizio 3 valgono 1.2 punti ciascuna (+1.2 se la risposta è corretta, -1.2 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 12 campioni $i=1,\ldots,12$, composti da una sola feature scalare $x_i\in[0,10]$ come variabile indipendente e una classe a due valori $y_i\in\{\text{Freddo},\text{Caldo}\}$ come valore da prevedere:

i	x_i	y_i		
1	0.7	Caldo		
2	8.7	Freddo		
3	3.5	Freddo		
4	1.5	Caldo		

i	x_i	y_i	
5	4.4	Freddo	
6	6.1	Caldo	
7	6.8	Caldo	
8	7.2	Caldo	

x_i	y_i	
2.9	Freddo	
1.9	Freddo	
3.0	Caldo	
6.0	Freddo	
	2.9 1.9 3.0	

- 1.1) Tramite la metodologia leave-one-out, valutare la prestazione dell'algoritmo K-nearest-neighbors con K=1 e K=3 sulla base degli indici di accuratezza, precisione, sensibilità e dell' F_1 -score.
- **1.2)** Quale scelta si rivela essere la migliore per il parametro K? Lo è in maniera univoca, oppure dipende dal criterio considerato?

Suggerimento — Riportare i valori x_i su un asse in modo da semplificare la ricerca dei vicini. In caso di parità di distanze, scegliere l'elemento di indice minore.

Esercizio 2

È dato il seguente dataset con variabili indipendenti scalari $x_i \in [0, 100]$ e variabile dipendente continua $y_i \in \mathbb{R}$:

i	1	2	3	4	5	6
x_i	27	12	69	70	55	31
y_i	57	36	95	90	77	51

Si desidera modellare il dataset tramite una regressione affine nella forma

$$y \sim \beta_0 + \beta_1 x$$
.

Determinare graficamente (tracciando i punti e le rette su un piano cartesiano) quale tra le seguenti coppie di coefficienti genera l'errore quadratico minore:

2.1)
$$\beta_0 = 0, \beta_1 = 2$$

2.2)
$$\beta_0 = 25, \beta_1 = 1$$

2.3)
$$\beta_0 = 50, \beta_1 = 1$$

Esercizio 3

Per ciascuna delle seguenti domande, riportare nel foglio protocollo il numero della risposta ritenuta corretta. Si prega di non segnare in alcun modo le domande e le risposte sul foglio.

In caso di incertezza è consentito motivare una risposta con una riga di testo.

- 1. Quando si dice che un sistema di machine learning è "overfitting"?
 - (a) Quando genera previsioni sistematicamente troppo alte.
 - (b) Quando è troppo specializzato sui dati di training e non è in grado di generare previsioni adeguate su dati nuovi.
 - (c) Quando è stato addestrato su un insieme di training troppo ampio e restano pochi dati per validarlo.
- 2. Quanti coefficienti vanno determinati un una regressione polinomiale di secondo grado in una variabile?
 - (a) Quattro.
 - (b) Tre.
 - (c) Cinque.
- 3. Quale misura indica il numero di previsioni corrette per un modello di classificazione?
 - (a) Accuratezza.
 - (b) Precisione.
 - (c) Sensibilità.
- 4. Come possiamo classificare il formato CSV?
 - (a) Non strutturato.
 - (b) Semi-strutturato.
 - (c) Strutturato.
- 5. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 6. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Decide la classe di uscita.
- 7. Come può essere definita una funzione sigmoide?
 - (a) In entrambi i modi.
 - (b) $\frac{1}{1+e^{-t}}$.
 - (c) $\frac{e^t}{e^t+1}$.
- 8. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A rimuovere eventuali valori negativi.