Name:			(please print)
	family name	given name	
SFU ID:			@sfu.ca
	student number	SFU-email	,

[1] 1. (a) Let f(x) be a continuous function on an interval [a,b] with $f(a)\cdot f(b)<0$ and suppose that the bisection method is applied to f(x). If $a_1=5$ and $b_1=10$, define the first iterate

$$p_1 = \frac{5+10}{2} = 7.5$$

[2] (b) Have you computed p_1 robustly? If not, provide and alternate computation for p_1 which is robust.

Not robust
$$P_1 = \frac{a+b}{2}$$

Robust $P_1 = a + \frac{b-a}{2}$ $\Rightarrow P_1 = 5 + \frac{10-5}{2} = 7.5$

: n> 19

[3] (c) How many iterations of the bisection method are needed to find the root to a tolerance of 10^{-5} ?

$$|P_n - P| \le \frac{b-a}{2^n}$$
 $2^n > 5 \cdot 10^5$
 $n > log_2(5 \cdot 10^5)$
 $\frac{10^{-5}}{2^n} \le 10^{-5}$
 $n > 18.93$

[1] (d) With what order, α , and with what constant, λ , does the bisection method converge?

$$\alpha = 1$$
 $\lambda = \frac{1}{2}$

- 2. Answer **briefly** but include a **justification** for your answer.
- (a) A "Megaflop" stands for 10⁶ floating point operations. I am computing the LU factorization of a 3000 by 3000 matrix on my laptop. It takes about 13 seconds. Therefore my laptop is capable of performing roughly how many Megaflops per second?

LU factorization takes $\frac{2}{3}(3000)^3$ flops = 1.8 ×10 hps I can do 18,000 Megaflops = 1384 Megaflops/second. = 18,000 Megaflops.

(b) If it takes 13 seconds to find the LU factorization of a 3000 by 3000 matrix, approximately how long will it take to find the LU factorization of a 1500 by 1500 matrix?

 $O(n^3)$: $(\frac{1}{2})^3$ time = $\frac{1}{8}$ $(3.\frac{1}{8})^2 = 1.625$ seconds

[2] (c) The irrational number, $\pi=3.14159265358979...$ cannot be represented exactly in a decimal (base, $\beta=10$) floating point system. Is there an integer base floating point system in which π can be represented exactly? If yes, write down this representation. If no, explain why not.

No, because it is irrational : cannot be represented as a terminating decimal in any base.

[2] (d) If the floating point standard for a computer system had a base of 2 and a precision of 45, what is the maximum distance between two numbers which cannot be told apart?

Assuming rounding aruthmetic.

This is machine epsilon for a 45 digit precision system $\xi = \frac{1}{2} \beta^{1-k} = \frac{1}{2} \cdot 2^{1-45} = 2$ = 2.8 × 10⁻¹⁴

[2] (e) We solve the system Ax=b with $\kappa(A)=100$ on a computer with a machine epsilon of 10^-8 . The exact solution is $x=[4,3,2,1]^T$ and our computed solution is $x_c=[4.04,3.97,1.98,1.01]^T$. Is the algorithm used satisfactory or not?

Note the relative error in the calculation. $4.04-4 = 0.04 = 0.01 = 10^{-2}$

We expect degradation to $2K(A) = (10^{-8})(100) = 10^{-6}$ We got much worse => Algorithm is NOT satisfactory [7] 3. (a) The following are equivalent formulas for finding one of the two the roots of a quadratic:

$$s_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 and $s_2 = \frac{-2c}{b + \sqrt{b^2 - 4ac}}$.

Calculate s_1 and s_2 for $x^2 + (53.21)x - 1 = 0$ using 4-digit chopping arithmetic. Compare their relative errors from the "exact" positive solution s = 0.01878682682086.

S₁ =
$$-53.21 + \sqrt{(53.21)^2 - (4)(1)(-1)}$$

S₂ = $-2(-1)$
 $(2)(1)$

S₂ = $-2(-1)$
 $(2)(1)$

S_{3.21} + $\sqrt{(53.21)^2 - (4)(1)(1)}$

S₁ = $-53.21 + \sqrt{2831} + 4.000$

S₂ = 2.000

S_{3.21} + $\sqrt{2831} + 4$

S₂ = 2.000

S_{3.21} + $\sqrt{2831} + 4$

S_{3.21} + $\sqrt{2831} + 4$

S₄ = $-53.21 + \sqrt{2835}$

S₅ = $-53.21 + \sqrt{2835}$

S₇ = $-53.21 + 53.24$

S₈ = $-53.21 + 53.24$

S₉ = $-53.21 + 53.24$

S₁ = $-53.21 + 53.24$

S₂ = $-53.21 + 53.24$

S₂ = $-53.21 + 53.24$

S_{3.21} + -53.24

S₄ = $-53.21 + 53.24$

S₅ = $-53.21 + 53.24$

S₇ = $-53.21 + 53.24$

S₈ = $-53.21 + 53.24$

S₉ = $-53.21 + 53.24$

S₁ = $-53.21 + 53.24$

S₂ = $-53.21 + 53.24$

S₂ = $-53.21 + 53.24$

S_{3.21} + -53.24

S₄ = $-53.21 + 53.24$

S₅ = $-53.21 + 53.24$

S₇ = $-53.21 + 53.24$

S₈ = $-53.21 + 53.24$

S₉ = $-53.21 + 53.24$

S₁ = $-53.21 + 53.24$

S₂ = $-53.21 + 53.24$

S₁ = $-53.21 + 53.24$

S₂ = $-53.21 + 53.24$

S₂ = $-53.21 + 53.24$

S₃ = $-53.21 + 53.24$

S₄ = $-53.21 + 53.24$

S₅ = $-53.21 + 53.24$

S₇ = $-53.21 + 53.24$

S₈ = $-53.21 + 53.24$

S₉ = $-53.21 + 53.24$

S₁ = $-53.21 + 53.24$

S₂ = $-53.21 + 53.24$

S₁ = $-53.21 + 53.24$

S₂ = $-53.21 + 53.24$

S₃ = $-53.21 + 53.24$

S₄ = $-53.21 + 53.24$

S₇ = $-53.21 + 53.24$

S₈ = $-53.21 + 53.24$

S₈ = $-53.21 + 53.24$

S₉ = $-53.21 + 53.24$

S₁ = $-53.21 + 53.24$

S₁ = $-53.21 + 53.24$

S₂ = $-53.21 + 53.24$

S₃ = $-53.21 + 53.24$

S₄ = $-53.21 + 53.24$

S₅ = $-53.21 + 53.24$

S₇ = $-53.21 + 53.24$

S₈ = $-53.21 + 53.24$

S₉ = $-53.21 + 53.24$

S₁ = $-53.21 + 53.24$

S₁ = $-53.21 + 53.24$

S₂ = $-53.21 + 53.24$

S₁ = $-53.21 + 53.24$

S₂ = $-53.21 + 53.24$

S₃ = $-53.21 + 53.24$

S₄ = $-53.21 + 53.24$

S₅ = $-53.21 + 53.24$

S₇ = $-53.21 + 53.24$

S₈ = $-53.21 + 53.24$

S₈ = $-53.21 + 53.24$

S₉ = $-53.21 + 53.24$

S₉ = $-53.21 + 53.24$

S₁ = $-53.21 + 53.24$

S₁ = $-53.21 + 53.24$

[2] (b) Provide an explanation for why one method was better than the other.

= 0.201

Muthod Sz is better because method S, has cancellation evol.

- [2] 4. (a) Identify all fixed points for the iteration $x_n = g(x_{n-1})$ with $g(x) = \frac{2}{3}x + \frac{1}{x}$. $X = \frac{2}{3}x + \frac{1}{x}$ $X = \frac{2}{3}x + \frac{1}{x}$
- [4] (b) Calculate three iterations of the fixed-point method starting from $x_0=2$. Which fixed point is the method converging to?

$$g(2) = (\frac{2}{3})(2) + \frac{1}{2} = \frac{4}{3} + \frac{1}{2} = \frac{4}{6}$$

 $g(1/6) = \frac{2}{3}(1/6) + \frac{1}{2} = 1.76$
 $g(1.76) = 1.744165464$
It is converging to $\sqrt{3}$

[3] (c) For fixed point interation starting with any $x_0 > 1$, explain whether or not the fixed point iteration will converge.

 $g(x) = \frac{2}{3}x + \frac{1}{2}$ For $x_0 \neq 1$ $y(x) = \frac{2}{3} - \frac{1}{2}$ $y(x) = \frac{2}{3} - \frac{1}{2}$ Therefore $\max |g'(x)| \leq 1$ for $x_0 \neq 1$

.: For any Xo71, the fixed point iteration will converge.

[4] (d) State the Newton method iteration for calculating this same fixed point. Calculate three iterations of the Newton method, again starting from $x_0 = 2$.

The two fixed points are ± 13 . Therefore an equivalent root finding problem is $f(x) = x^2 - 3 \implies f'(x) = 2x \implies P_{n+1} = P_n - \frac{P_n^2 - 3}{2P_n}$

 $P_{n+1} = P_n - \frac{1}{2}P_n + \frac{3}{2P_n} = \frac{1}{2}P_n + \frac{3}{2P_n}$ $P_0 = 2$

 $P_1 = \frac{1}{2} \cdot 2 + \frac{3}{2 \cdot 2} = 1.75$ $P_2 = \frac{1.75}{2} + \frac{3}{(2)(1.75)} = 1.732142$ $P_3 = 1.73205080...$

[1] (e) At what rate does the Newton method iteration converge for this function?

Quadratically, since 13 is a simple zero.

[5] 5. (a) Use Gaussian Elimination with partial pivoting to solve the linear system:

[2] (b) Consider factoring the coefficient matrix, A, for the above linear system into LU $X_{i} = 109$ such that PA = LU. Find P and U.

25 8 24

6. (a) Consider the function $f(x) = e^{2x}$. Find $P_3(x)$, the third degree Taylor polynomial [3] which approximates the function f(x) expanded about $x_0 = 0$.

 $e^{x} = 1 + x + \frac{x^2}{21} + \frac{x^4}{41} + \cdots = e^{2x} = 1 + 2x + (2x)^2 + (2x)^2 + \cdots$

.: $P_3(x) = 1 + 2x + 2x^2 + \frac{4}{3}x^3$

[1] (b) Use $P_3(x)$, the third degree Taylor polynomial, to approximate f(0.43) of the func-

 $f(0.43) \approx P_3(0.43) = 1 + 2(0.43) + 2(0.43)^2 + \frac{4}{3}(0.43)^3 = 2.3358093$

[3] (c) What is the maximum error incurred in using $P_3(x)$ to approximate f(x) on the interval [0,5]?

f 4(x) = 24e2x 4 an increasing function, maximum Taylor remainder freezem.

Error $\leq \max_{0 \leq x \leq 5} |f^{4}(x)| (x)^{4}$ $\leq x \leq 5 \frac{4!}{4!} \leq \frac{24e^{10}}{4!} \leq \frac{4!}{4!} \leq \frac{4!}{$

X4 makinum @ X=5 on [0.57

This conversable $L_2 = (x)(x-0.25)(x-0.75)$ $L_1 = x (x-0.75)(x-0.75)$ (0.25, 1.64872), (0.5, 2.718) $(0.25)(x-0.75) \qquad L_1 = x (x-0.5)(x-0.75)$ $(0.25)(x-0.75) \qquad (0.25)(x-0.75)$ [3] (d) Find $P_L(x)$, the third degree Lagrange polynomial which approximates the function f(x) given the sampling points (0,1), (0.25, 1.64872), (0.5, 2.71828),

$$L_3 = \frac{(x)(x-0.25)(-0.5)}{(0.15)(0.5)(0.5)}$$

(0.25)(0.5)(0.75) $(0.25)^{2}(0.5)$ =0.03125

 $L_{2} = \frac{(x)(x-0.25)(x-0.75)}{(0.5)(0.25)(-0.25)}$

PL(x) = Lo(x) + 1.64872 L2(x) + 2.71828 L2(x) + 4.48169 L3(x)

(e) Use $P_L(x)$, the third degree Lagrange polynomial, to approximate f(0.43) of the function f(x).

Lo(0.43) = (0.43-0.25)(0.43-0.5)(0.43-0.75)

L= (0.43)(0.43-0.5)(0.43-0.75) L2=(0.43)(0.43-0.25)(0.43-0.75)

(f) One the interval [0,5], which polynomial approximation $(P_3(x) \text{ or } P_L(x))$ of -0.03125[2] $f(x) = e^{2x}$ is likely to give better accuracy. Why? L3= (0.43)(0.43-0.25)(0.43-0.5)

f) Pila because the 0.09375

Tought series is about $L_0(0.43) = -0.043008$ Point. Of note that $L_1(0.43) = 0.308224$ Point. Pulm should only $L_2(0.43) = 0.057792$ be used 0.75 $L_3(0.43) = -0.057792$ a point.

.. PL(x)=