- 1. São dados três átomos genéricos A, B, e C. O átomo A tem número atómico 70 e número de massa 160. O átomo C tem 94 neutrões, sendo isótopo de A. O átomo B é isóbaro de C e isótono de A. O número de electrões do átomo B é:
 - A. 160.
 - B. 70.
 - C. 74.
 - D. 164.
- 2. Considerem-se dois compostos E e F, sendo o primeiro molecular, e o segundo ionico. Pode-se afirmar que:
 - A. os dois quando fundidos, sempre conduzem corrente eléctrica.
 - B. os dois quando em solução aquosa, sempre conduzem a corrente eléctrica.
 - C. somente E pode conduzir electricidade, quando ambos estão em solução aquosa.
 - D. no composto F, podem ocorrer ligações covalentes entre seus átomos.
- 3. Sejam dados os elementos $_{35} X^{80}$; $_a Y^b$; $_c Z^d$. Se considerar-se que o átomo Z tem 47 neutrões, é isótopo de X e isóbaro de Y e que o átomo Y é isótono de X; então o átomo Y deve ter:
 - A. 37 protões.
 - B. 82 protões.
 - C. 35 protões.
 - D. 47 protões.
- 4. Que volume de hidrogénio é necessário para a redução completa de 20 gramas do óxido de cobre (II)?
 - A. 5.6 litros
 - B. 11.2 litros
 - C. 4.48 litros
 - D. 2.24 litros
- 5. A estrutura da camada electrónica de valência do ião E³⁺ do átomo dum elemento E, com carga nuclear 26 é:
 - A. $4s^24p^3$
 - B. $3d^34s^2$
 - C. 3d⁵
 - D. $3d^{7}$.
- 6. Os elementos que possuem na última camada: 1) 4s²; 2) 3d²3p⁵; 3) 5s²5p⁶; 4) 2s¹ classificam-se dentro dos grupos da tabela periódica como:
 - A. alcalino, alcalino-terroso, gás nobre e halogénio
 - B. alcalino, halogénio, alcalino-terroso e gás nobre
 - C. alcalino-terroso, halogénio, gás nobre e alcalino
 - D. alcalino-terroso, gás nobre, halogénio e alcalino.
- 7. A ligação química entre o elemento de átomo de número atómico 17 e o de número atómico 19 é do tipo:
 - A. de Van der Waals
 - B. covalente
 - C. ionica
 - D. metálica.
- 8. Dissolvem-se 2 gramas de NaOH em água suficiente para um litro de solução. A solução resultante, a 25° C, apresenta:
 - A. PH = 1,3.
 - B. PH = 12,7.
 - C. POH = 2.7.
 - D. POH = 12,7.
- 9. Uma determinada solução tem a densidade igual à 1,5 g/ml e 30% em massa de soluto. A concentração dessa solução, em g/l será:
 - A. 0,45.
 - B. 45.
 - C. 450.
 - D. 2000.

- 10. Adicionam-se 300 ml de água à 200 ml de uma solução de 0,5 N de H₂SO₄. Qual será a sua normalidade?
 - A. 0,2 N.
 - B. 0,4 N.
 - C. 0,04 N.
 - D. 0,02 N.
- 11. Misturando-se um volume de uma solução 1 N com o dobro de volume de outra solução do mesmo soluto, mas com metade da normalidade, resulta uma solução:
 - A. 2,0 N.
 - B. 1,5 N.
 - C. 0,66 N.
 - D. 0,5 N.
- 12. Qual o valor do pH da solução de H₂SO₄ à 0,012 M?
 - A. 1,62
 - B. 2,62
 - C. 3,4
 - D. 2,7
- 13. Quais das seguintes substâncias dissolvem-se em água com aumento de pH:
 - A. NaCO₃
 - B. NaBr
 - C. CuSO₄
 - D. NaCN
- 14. Quando um elemento emite uma partícula "α" e em seguida duas partículas "β", os elementos primitivo e final:
 - Têm o mesmo número de massa
 - B. São isótopos radioactivos
 - C. Possuem números atómicos diferentes
 - D. Têm a mesma massa atómica.
- 15. Em quantas vezes se altera a velocidade da reacção FeO (s) + CO (g) = Fe (s) + CO₂ (g) se a pressão do sistema aumentar em 2 vezes?
 - A. diminuirá em 2 vezes
 - B. aumentará em 4 vezes
 - C. aumentará em 2 vezes
 - D. ficará a mesma
- 16. Para qual das reacções a alteração da pressão não influi no equilíbrio?
 - A. $2CO + O_2 = 2CO_2$
 - B. $C + H_2O = CO + H_2$
 - C. $H_2 + Cl_2 = 2HCl$
 - D. $H_2S + O_2 = H_2O + S$
- 17. Para neutralizar-se 20 ml de uma solução de ácido clorídrico HCl a 0,1N (0,1M) foram necessários 8 ml de uma solução de NaOH. Quantos gramas de NaOH existem num litro desta solução sendo a massa molecular de NaOH de 40 u.m.a?
 - A. 4 g
 - B. 6 g
 - C. 8 g
 - D. 10 g
- 18. Quantos iões de hidrogénio se encontram em 10 ml de uma solução cujo pH = 13?
 - A. 10¹³
 - B. 10¹¹
 - C. 6,02x10¹⁰
 - D. 6,02x108

D. NaCrO₂

19. Qual é a fracção em massa (% mass.) de glucose, numa solução com 280 g de água e 40 g de glucose? A. 12,5 B. 13,0 C. 13,5 D. 14,0. 20. A partir de 400 g de uma solução de H₂SO₄ a 50% mass. libertam-se por evaporação 100 g de água. Qual é a fracção em massa de H2SO4 na solução resultante? A. 58,5 B. 62,6 C. 66,7 D. 70,8. 21. Qual dos seguintes reagentes, quando adicionado a uma solução de FeCl3 acentua a hidrólise deste sal? A. HCl B. ZnCl₂ C. NH₄Cl D. H_2O . 22. São dados: $Cr \rightarrow Cr^{3+} + 3e^{-}$; $E^{\circ} = +0.71 \text{ V}$ e $Cu \rightarrow Cu^{2+} + 2e^{-}$; $E^{\circ} = -0.35 \text{ V}$. A força electromotriz da pilha Cr°/Cr³+//Cu°/Cu²+ é: A. +0,36 V. B. +0,37 V. C. +1,06 V. D. +2,47 V. 23. A energia de certa pilha provém de uma reacção através da qual, o Níquel metálico (Niº) transforma-se em iões Ni²⁺, os iões Ag⁺ depositam-se como prata metálica (Ag^o). Esses dados revelam que nessa pilha ocorre oxidação de: A. Ni° e Ag°. B. Ni° e Ag+. C. somente Ni°. D. somente Ni²⁺. 24. Para aumentar o pH de uma solução aquosa, é necessário nela borbulhar o gás: A. clorídrico (HCl). B. amoníaco (NH₃). C. carbónico (CO₂). D. hidrogénio (H₂). 25. Que volumes das soluções de HCl 2M e HCl 6M se devem juntar para obter 500ml de solução HCl 3M? A. 0,125; 0,375 B. 0,375; 0,125 C. 0,152; 0,345 D. 0,275; 0,225 26. Os valores da molalidade e da fracção molar de uma dada substância dissolvida em solução de sacarose $C_{12}H_{22}O_{11}$ a 67% são: A. 5,96 e 0,097 B. 9,56 e 9,07 C. 2,96 e 0,07 D. 4,18 e 0,19 27. Na reacção redox: NaCrO₂ + H₂O₂; NaOH → Na₂CrO₄ + H₂O o agente oxidante é : A. Na₂CrO₄ B. H_2O_2 C. NaOH

- 28. Quais das transformações indicadas pertencem ao processo de oxidação?
 - A. V²⁺→VO₃⁻
 - B. S→S²-
 - C. $2H^+ \rightarrow H_2$
 - D. MnO_4 $\rightarrow MnO_4$ ²
- 29. Uma placa de ferro é mergulhada numa solução de CuSO₄. Depois de decorrida a reacção, a massa da placa aumentou em dois gramas. Qual é a massa de cobre que se libertou da solução?
 - A. 16,5 g
 - B. 17,0 g
 - C. 18,0 g
 - D. 18,5 g?

 $M_{Fe} = 55,84 \text{ u.m.a.}$ $M_{Cu} = 63,54 \text{ u.m.a.}$

- 30. Durante a electrólise de uma solução aquosa de KOH no ânodo libertam-se 5,6 litros de oxigénio (em condições consideradas normais) em consequência do processo 4OH→O₂ + 2H₂O + 4ē. Que quantidade de hidrogénio se liberta no cátodo:
 - A. 2,8 litros
 - B. 5,6 litros
 - C. 11,2 litros
 - D. 22,4 litros
- 31. Durante a electrólise de uma solução aquosa de cloreto de cobre (III) (M_{CuCl2} = 65,5 u.m.a.) a massa do cátodo aumentou em 3,2 g. O que é que aconteceu entretanto no ânodo de cobre?
 - A. libertam-se 0,112 litro de Cl₂;
 - B. libertam-se 0,56 litro de O2;
 - C. passaram para a solução 0,1 mol de Cu²⁺;
 - D. passaram para a solução 0,05 mol de Cu²⁺
- 32. Sabendo que a constante de equilíbrio para a reacção: $CO_{2(g)} + H_{2(g)} \longrightarrow CO_{(g)} + H_2O_{(g)}$ é 0,9, a quantidade de CO em equilíbrio com 0,5 mol de CO_2 , 1,6 g de H_2 e 1,0 mol de H_2O , num vaso de volume V, será:
 - A. 0,72.
 - B. 0,36.
 - C. 0,37.
 - D. 0,70.
- 33. Para a reacção: A + B C + 2D foram obtidas as seguintes concentrações molares no equilíbrio: A = 4.0; B = 3.0; C = 1.5; D = 2.0. Quando B = 8.0 C = 4.0; a concentração molar de A será:
 - A. 16,0.
 - B. 9,0.
 - C. 0,8.
 - D. 1,5.
- 34. Que método pode ser usado para deslocar o equilíbrio da seguinte reacção para a direita?

$$2CH_4(g) = C_2H_{2(g)} + 3H_{2(g)}; \Delta H > O$$

- A. aumento da pressão
- B. aumento da concentração de H₂
- C. diminuição da concentração de C₂H₂
- D. diminuição da temperatura
- 35. Para qual das reacções dadas, a elevação da temperatura e a diminuição da pressão simultaneamente conduzirão ao deslocamento do equilíbrio para esquerda?
 - A. $2CO(g) + O_2(g) = 2CO_2(g); \Delta H < O$
 - B. $PCl_3(g)$ + $Cl_2(g)$ = $PCl_5(s)$; $\Delta H < \mathbf{O}$
 - C. $N_2(g)$ + $O_2(g)$ = 2NO(g); $\Delta H > O$
 - D. $Ca(OH)_2(s) = CaO(s) + H_2O(g); \Delta H < O$

- 36. A combustão do propano obedece `a equação: $C_3H_{8(g)}+5O_{2(g)}\rightarrow 3CO_{2(g)}+4H_2O_{(g)}$. Havendo consumo de 0,5 mol moléculas do propano em 15 minutos, a velocidade da reacção, em moles de CO_2 por minuto, será:
 - A. 0,033.
 - B. 0,300.
 - C. 0,100.
 - D. 0,200.
- 37. Dada a reacção: $A + B \longrightarrow C + D$ que se processa com velocidade X, se as concentrações de A e de B forem reduzidas à metade, a nova velocidade de reacção será:
 - A. X.
 - B. 1/2X.
 - C. 1/4X.
 - D. 1/8X.
- 38. Durante a combinação de 2,1 g de ferro com enxofre libertaram-se 3,77kJ. Qual é o calor de formação do sulfureto de ferro ΔH°?
 - A. $-90,2 \, kJ/mol$
 - B. -100,3 kJ/mol
 - C. $-110,4 \, kJ/mol$
 - D. -120,5 kJ/mol.
- 39. Em qual dos seguintes casos não é possível levar-se a cabo a reacção a qualquer temperatura?
 - A. $\Delta H^{\circ} > 0$, $\Delta S^{\circ} > 0$
 - **B**. $\Delta H^{\circ} > 0$, $\Delta S^{\circ} < 0$
 - C. $\Delta H^{\circ} < 0, \Delta S^{\circ} > 0$
 - D. $\Delta H^{\circ} < 0$, $\Delta S^{\circ} < 0$.
- 40. A 20 °C a constante de velocidade de uma certa reacção é igual a 10-4 min-1, enquanto que a 50 °C, é igual a 8x10-4 min-1. Qual é o coeficiente térmico da velocidade da reacção?
 - A. 2
 - B. 3
 - C. 4
 - D. 5.
- 41. Pertence à classe das aminas primárias, o composto que se obtém pela substituição:
 - A. de um dos átomos de hidrogénio do NH₃, por um radical alquila.
 - B. de um dos átomos de hidrogénio do NH₃, por um radical acila.
 - C. de dois átomos de hidrogénio do NH₃, por dois radicais arila.
 - D. de dois átomos de hidrogénio do NH₃, por um radical alquilidena.
- 42. A reacção de substituição nucleofilica monomolecular (SN₁) é favorecida pela presença de:
 - A. Nucleófilo fraco, substrato terciário, base fraca.
 - B. Nucleófilo forte, substrato secundário, meio ácido.
 - C. Nucleófilo fraco, substrato primário, meio básico.
 - D. Nucleófilo forte, substrato terciário, catalisador.
- 43. Na molécula de 1-buteno-3-ino encontram-se:
 - A. Dois carbonos sp² e dois carbonos sp³
 - B. Um carbono sp³ e três carbonos sp²
 - C. Dois carbonos sp² e dois carbonos sp
 - D. Um carbono sp³, um carbono sp² e dois carbonos sp
- 44. Num composto orgânico a razão entre massas de H, O e C é 1,0:3,2:7,2 respectivamente. A massa molecular do composto é 114. A estrutura do composto pode ser:
 - A. CH₃(CH₂)₅CHO
 - B. CH₃(CH₂)₄COOH
 - C. CH₃CH₂CH₂CH=CH-COOH
 - D. CH₃CH=CH-CH=CH-CH₂-CHO

45. Disponha em ordem decrescente de ponto de ebulição os compostos seguintes:

a. n-heptano; b. 3,3-dimetilpentano; c. Octano; d 2-metil-hexano. e 2-metilpentano.

- A. a, d, c, e, b
- B. e, c, b, d, a.
- C. c, a, d, b, e
- D. d, c, a, b, e
- 46. Nesta série o grupo que só apresenta orientadores orto-para é:
 - A. -NO₂; -OH; -CHO; -CONH₂; -N(CH₃)₃.
 - B. -NH₂; -NHCH₃; -Br; -C₂H₅; -OCH₃.
 - C. -NHCOCH₃; -C₂H₅; -COOC₂H₅; -NO₂; -CH₃.
 - D. -OH; -SO₃H; -COOH; -CN; -SH.
- 47. Na combustão completa de 20 moles de um alceno são produzidos 60 moles de dióxido de carbono. O alceno queimado pode ser:
 - A. 2-metil-2-buteno
 - B. eteno
 - C. propeno
 - D. buteno-2
- 48. Um dos componentes da gasolina é octano, C₈H₁₈, cuja combustão incompleta produz CO. Admitindo-se que a combustão incompleta do octano é representada pela equação:

 C_8H_{18}

- $+ 11O_2 = 5CO_2 +$
- 3CO +
- 9H₂O

a partir de 100 moles de octano, qual é o número de moléculas de CO obtido?

- A. 30,0
- B. 18,0 ·10²⁵
- C. 300
- D. 3000
- 49. O HBr reage com 3,4-dimetil-2-penteno, formando:
 - A. 2-bromo-3,4-dimetil-pentano
 - B. 3-bromo-2,3-dimetil-pentano
 - C. 3-bromo-3-etil-pentano
 - D. 4-bromo-2,3-dimetil-pentano
- 50. A respeito dos hidrocarbonetos a seguir, indique qual das afirmações é falsa:

- A. são todos aromáticos
- B. pertencem todos à mesma série homóloga
- C. possuem a mesma fórmula mínima (CH)_n
- D. são chamados respectivamente: benzeno; metilbenzeno; 1,2-dimetilbenzeno; 1,3,5-trimetilbenzeno
- 51. A única das aminas abaixo que pode produzir álcool ao reagir com HNO2 é:
 - A. C₆H₅NH₂
 - B. (CH₃)₂NH
 - C. CH₃-NH₂
 - D. (CH₃)₃N
- 52. Os plásticos constituem uma classe de materiais que confere conforto ao homem. Do ponto de vista da química, os plásticos e suas unidades constituintes são, respectivamente:
 - A. hidrocarbonetos; peptidos
 - B. polímeros; monómeros
 - C. polímeros; proteínas
 - D. proteínas; aminoácidos

- 53. Substituindo-se os hidrogénios da água por radicais metil efenil obtém-se:
 - A. aldeido
 - B. éter
 - C. ester
 - D. amina
- 54. Um alcano monoclorado (0,925 g) reage com excesso de solução alcoólica de nitrato de prata, formando 1,435 g de cloreto de prata. A fórmula bruta do composto será:
 - A. C₂H₅Cl
 - B. C₃H₇Cl
 - C. CH₃Cl
 - D. C₄H₉Cl
- 55. A solubilidade de fosfato de cálcio, Ca₃(PO₄)₂ em água pura é 7,14.10⁻⁷mol.dm⁻³. O produto de solubilidade deste sal será igual `a:
 - A. 2,0.10⁻²⁹
 - B. 9,65.10⁻³⁵
 - C. 4,15.10⁻²⁴
 - D. 1,33.10⁻²⁹.
- 56. A 25 °C adicionaram-se 75 cm³ de solução aquosa de 0,050 M de $Mg(NO_3)_2$ `a 25 cm³ de solução aquosa de NaOH também 0,050 M. $K_s = 1,8x10^{-11}$. Prevê-se que:
 - A. haverá formação de precipitado de Mg(OH)2.
 - B. haverá formação de precipitado de NaNO₃.
 - C. haverá formação de precipitado de Mg(NO₃)₂.
 - D. não haverá formação de precipitado.
- 57. Tem-se uma solução saturada de CaF₂ a 25° C. Qual é a concentração de C_a^{2*} e F^- quando não há presença de outra substância? Kps = 3,95.10-11.
 - A. $C_a^{2*} = 2,15.10^{-4} \text{mol.dm}^{-3} \text{ e } F^- = 4,3.10^{-4} \text{mol.dm}^{-3}$.
 - B. $C_a^{2*} = 4,3.10^{-4} \text{mol.dm}^{-3} \text{ e } F^- = 2,15.10^{-4} \text{mol.dm}^{-3}$.
 - C. $C_a^{2*} = 2,15.10^{-3} \text{mol.dm}^{-3} \text{ e } F^- = 4,3.10^{-3} \text{mol.dm}^{-3}$.
 - D. $C_a^{2*} = 4,3.10^{-3}$ mol.dm⁻³ e $F^- = 2,15.10^{-3}$ mol.dm⁻³.
- 58. Na tabela a seguir estão as solubilidades em n-hexano e água de cinco compostos diferentes.

•	Ta tabela a began como ao bolabilidades em ninenano e agua			
	Composto	Solubilidade (g/100)	Solubilidade (g/100)	
		em n-hexano	em água	
	1	29,6	0,0	
	2	0,0	30,1	
	3	3,4	4,2	
	4	14,1	0,0	
	5	0,0	46,2	

Destes dados conclui-se que a ordem decrescente de polaridade é:

- A. 5; 2; 3; 1; 4.
- B. 1; 4; 3; 2; 5.
- C. 5; 2; 3; 4; 1.
 - O. 1; 4; 3; 5; 2.
- 59. Se o líquido Q for um solvente polar e o líquido R um não polar. Deve-se esperar que:
 - A. Ambos sejam imiscíveis com um outro liquido T
 - B. Ambos sejam miscíveis entre si
 - C. Nenhum deles seja miscível com CCl₄
 - D. O líquido Q seja miscível com água
- 60. O coeficiente de solubilidade do sulfato de cobre a 30°C é igual a 25g em 100 g de água. Qual é a fracção em massa (% mass.) deste sal na sua solução saturada à mesma temperatura?
 - A. 10
 - B. 15
 - C. 20
 - D. 25