

ĐỊNH NGHĨA

Cho Ω đóng và bị chận trong R_3 . Hàm f(x,y,z) xác định trong Ω .

Phân hoạch Ω thành những miền con Ω_k với thể tích $V(\Omega_k)$, d là đường kính phân hoạch. Trên mỗi miền con, lấy điểm M_k tùy ý, gọi tổng tích phân là

$$S_n = \sum_{k=1}^{\infty} f(M_k) V(\Omega_k)$$

$$\iiint_{\Omega} f(x, y, z) dx dy dz = \lim_{d \to 0} S_n$$

gọi là tp bội ba của f trên Ω .

Tính chất hàm khả tích

Cho Ω là miền đóng và bị chận

$$1/V(\Omega) = \iiint_{\Omega} 1 dx dy dz \quad \text{(thể tích } \Omega\text{)}$$

$$2/\iiint_{\Omega} c.f = c.\iiint_{\Omega} f, \quad \text{(f + g)} = \iiint_{\Omega} f + \iiint_{\Omega} g$$

$$BOI HEMUT-ENEP$$

$$3/\Omega=\Omega_1\cup\Omega_2,\Omega_1\&\Omega_2$$
 Không dẫm vào nhau
$$\iiint_{\Omega_1\cup\Omega_2}f=\iiint_{\Omega_1}f+\iiint_{\Omega_2}f$$

Cách tính tích phân bội ba

•Hình chiếu của Ω lễn Oxy là D.

$$\iiint_{\Omega} f(x, y, z) dx dy dz = \iiint_{\text{BADHOL}} \left(\int_{\text{NCZ}_{1} 0(x, y)}^{z_{2}(x, y)} f(x, y, z) dz \right) dx dy$$

Lưu ý về cách xác định biến tính trước và miền D

- 1. Biến tính trước được chọn tương ứng với biến chỉ xuất hiện 2 lần trong định nghĩa Ω .
- 2. Hình chiếu D xác định như khi tính thể tích.

 TAI LIỆU SƯU TẬP

BỞI HCMUT-CNCP

3. Tùy thuộc vào D, cận tích phân ở tầng ngoài sẽ được viết thành tích phân 2 lớp.

VÍ DŲ

1/ Tính:
$$I = \iiint_{\Omega} y dx dy dz$$

Ω Là miền ghạn bởi: $y = x^2, z + y = 1, z = 0$

2/ Tính:
$$I = \iiint_{\Omega} (x+y) dx dy dz$$
, Ω gh bởi:

$$x + y + z = 3$$
, $3x + y = 3$, $3x + 2y = 6$, $y = 0$, $z = 0$

$$x + y + z = 3$$
, $3x + y = 3$, $3x + 2y = 6$, $y = 0$, $z = 0$

$$x + y + z = 3$$
, $3x + y = 3$, $3x + 2y = 6$, $y = 0$, $z = 0$

$$x + y + z = 3$$
, $3x + y = 3$, $3x + 2y = 6$, $y = 0$, $z = 0$

$$x + y + z = 3$$
, $3x + y = 3$, $3x + 2y = 6$, $y = 0$, $z = 0$

$$x + y + z = 3$$
, $3x + y = 3$, $3x + 2y = 6$, $y = 0$, $z = 0$

$$x + y + z = 3$$
, $3x + y = 3$, $3x + 2y = 6$, $y = 0$, $z = 0$

3/Tính:
$$I = \iiint z dx dy dz$$
, Ω gh bởi: $x^2 + y^2 \le 2z$, $x^2 + y^2 + z^2 \le 3$

VÍ DỤ 4

Tính
$$\iiint_{\Omega} x dx dy dz$$
, $\Omega: y = 1 + x^2$, $z = 3x$, $y = 5$, $z = 0$

Ví dụ 5

Vẽ miền lấy tp và tính tích phân sau $I = \int_{-1}^{1} dy \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} dx \int_{x^2+y^2}^{\sqrt{4-x^2-y^2}} zdz$

VÍ DỤ 6

Tính thể tích của vật thể cho bởi: $z \ge \sqrt{x^2 + y^2}$, $x^2 + y^2 + z^2 \le 2z$, $y \ge 0$

Ví dụ 7

Vẽ miền lấy tp cho tp sau:
$$I = \int_{0}^{2} dx \int_{0}^{x/2} dy \int_{0}^{4} z dz$$

$$I = \int dy \int dz \int z dx$$

Áp dụng vào việc xét tính đối xứng của Ω

Nếu Ω gồm 2 phần Ω_1 và Ω_2 đối xứng nhau qua mp z = 0

1. f chắn theo z :
$$\prod_{\Omega \in \mathcal{A}} f(x,y,z) dx dy dz$$
 TÀI LI $\equiv 2 \prod_{\Omega \in \mathcal{A}} f(x,y,z) dx dy dz$

2. f le theo z:

$$\iiint_{\Omega} f(x, y, z) dx dy dz = 0$$

BỞI HCMUT-CNCP

ĐỔI BIẾN TRONG TÍCH PHÂN BỘI BA

$$f(x,y,z)$$
 xác định trong Ω , đặt
$$\begin{cases} x = x(u,v,w) \\ y = y(u,v,w) \end{cases}$$

$$J = \frac{D(x,y,z)}{D(u,v,w)} = \begin{bmatrix} x' & x' & x' \\ y' & x' & x' \\ y'' & x' & y' \\ z'_u & z'_v & z'_w \end{bmatrix}$$

$$\iiint\limits_{\Omega} f(x,y,z) dx dy dz = \iiint\limits_{\text{BACHKHOA}} \mathbf{f}(u,v,w) \, | \, J \, | \, du dv dw$$

Tọa Độ Trụ

đổi sang tọa độ trụ ⇔ hình chiếu D đổi sang tọa độ cực.

BACHKHOACNCP.COM

Tọa Độ Trụ

$$x = r \cos \varphi, y = r \sin \varphi, z = z$$

$$J = r$$

$$\iiint_{\Omega} f(x, y, z) dx dy dz = \iiint_{\Omega} f(r \cos \varphi, r \sin \varphi, z) r dr d\varphi dz$$

TÀI LIỆU SƯU TẬP

Điều kiện giới hạn:

$$1.r \ge 0$$

$$2. \varphi \in [0, 2\pi]$$
 hay $\varphi \in [-\pi, \pi]$

BACHKHOACNCP.COM

VÍ DỤ

1/ Vẽ miền lấy tp <u>và đổi</u> tp sau sang tọa độ trụ

$$I = \int_{0}^{4} dx \int_{0}^{\sqrt{4x-x^2}} dy \int_{0}^{\sqrt{x}} xz dz$$

TÀI LIỆU SƯU TẬP

BỞI HCMUT-CNCP

VÍ DỤ

1/ Vẽ miền lấy tp và đổi tp sau sang tọa độ trụ

$$I = \int_{0}^{4} dx \int_{0}^{\sqrt{4x-x^2}} dy \int_{0}^{\sqrt{x}} xz dz$$

TAILDILSHOOTING
$$\begin{cases} 0 \le x \le 4 \\ 0 \le y \le \sqrt{4x - x^2} \end{cases}$$

 $x = r \cos \varphi$, $y = r \sin \varphi$, z = z

$$\Omega: 0 \le r \le 4\cos\varphi, 0 \le \varphi \le \frac{\pi}{2}, 0 \le z \le 2$$

2/ Vẽ miền lấy tp và đổi tp sau sang tọa độ trụ:

$$I = \int_{0}^{2} dy \int_{0}^{\sqrt{4-y^2}} dx^{ACN} \int_{0}^{\sqrt{4-x^2-y^2}} xz dz$$

TÀI LIỆU SƯU TẬP

BổI HCMUT-CNCP

3/ Vẽ miền lấy tp

$$I = \int_{0}^{1} dy \int_{0}^{\sqrt{1-y^2}} dx \int_{x^2+y^2}^{\sqrt{2-x^2-y^2}} zdz$$

$$I = \frac{7\pi}{48}$$

Sử dụng tọa độ trụ để tính tích phân sau:

1.
$$I_1 = \iiint_{\Omega} (x + y + z) dx dy dz$$
,

$$\Omega$$
 được giới hạn bởi các mặt: Z

2.
$$I_2 = \iiint_{\Omega} (x^2 + z^2) dx dy dz$$

$$\Omega$$
 được giới hạn bởi các mặt:
$$\begin{cases} z = \sqrt{x^2 + y^2} \\ z = x^2 + y^2 \end{cases}$$
2. $I_2 = \iiint_{\Omega} (x^2 + z^2) dx dy dz$

$$\Omega$$
 được giới hạn bởi các mặt:
$$\begin{cases} x^2 + z^2 = 1 \\ px^2 + z^2 = 4 \end{cases}$$

$$y = 1, y = -1$$

TOA ĐỘ CẦU

$$x = \rho \sin\theta \cos\varphi$$
,

$$y = \rho \sin\theta \sin\varphi$$
,

$$z = \rho \cos \theta$$

$$J = \rho^2 \sin \theta$$

Điều kiện giới hạn:

$$1.\rho \ge 0$$

$$2. \varphi \in [0, 2\pi] \ hay \ \varphi \in [-\pi, \pi]$$

$$3.~ heta \in [0, \mu \pi]$$
P.COM

Lưu ý:

$$\rho = \sqrt{x^2 + y^2 + z^2}$$

$$\sqrt{x^2 + y^2} = \rho \sin \theta$$

Tọa độ cầu thường dùng cho miền giới hạn bởi mặt cầu hoặc mặt nón và mặt cầu.

```
\iiint_{\Omega} f(x,y,z) dx dy dz
= \iiint_{\Omega} f(\rho \sin \theta \cos \varphi, \rho \sin \theta \sin \varphi, \rho \cos \theta) \rho^{2} \sin \theta d\rho d\theta d\varphi
```

Một số mặt cong thường gặp trong tđ cầu

$$x^2 + y^2 + z^2 = R^2$$
 $\Leftrightarrow \rho = R$

$$x^{2} + y^{2} + z^{2} \le R^{2}$$

$$TAILIÊUSU 0 \le \rho \le R$$

$$0 \le \rho \le R$$

$$0 \le \rho \le \pi$$

$$x^{2} + y^{2} + z^{2} \le 2Rz \Leftrightarrow \begin{cases} 0 \le \rho \le 2R\cos\theta \\ 0 \le \theta \le \frac{\pi}{2} \end{cases}$$

$$\sqrt{x^2 + y^2} = \frac{z}{a} \Leftrightarrow \tan \theta = \frac{1}{a}$$
Nón.
$$x^2 + y^2 = R^2 \Leftrightarrow \rho = \frac{R}{\sin \theta}$$
Trụ tròn.

1/ Vẽ miền lấy tp và đổi tp sau sang tọa độ cầu:

$$I = \int_{0}^{2} dy \int_{0}^{\sqrt{4-y^2}} dx \int_{-\sqrt{4-x^2-y^2}}^{0} xzdz$$

$$I = \int_{0}^{2} dy \int_{0}^{\sqrt{4-y^2}} dx \int_{-\sqrt{4-x^2-y^2}}^{0} xzdz$$

$$x = \rho \sin\theta \cos\varphi$$
,

$$y = \rho \sin\theta \sin\phi$$
,

$$z = \rho \cos \theta$$
.

$$J = \rho^2 \sin\theta$$

$$I = \int_{0}^{\pi/2} d\varphi \int_{\pi/2}^{\pi} d\theta \int_{0}^{\pi} \rho \sin\theta \cos\varphi \cdot \rho \cos\theta \cdot \rho^{2} \sin\theta d\rho$$
BACHKHOACNCP.COM

2/ Tính tp sau sử dụng tọa độ trụ và tọa độ cầu:

$$I = \iiint_{\Omega} z dx dy dz$$

$$\Omega: z \ge \sqrt{x^2 + y^2}, \quad x^2 + y^2 + z^2 \le 2$$

$$x^2 + y^2 + z^2 \le 2$$
, $z \ge \sqrt{x^2 + y^2}$

$$z = \sqrt{x^2 + y^2}, \quad x^2 + y^2 + z^2 = 2$$
 $x = \rho \sin\theta \cos\phi,$ $y = \rho \sin\theta \sin\phi,$

$$x = \rho \sin\theta \cos\phi$$

$$y = \rho \sin\theta \sin\phi$$

$$z = \rho \cos \theta$$
.

$$J = \rho^2 \sin \theta$$

Giao tuyến:
$$\begin{cases} z = 1 \\ x^2 + y^2 = 1 \end{cases}$$

$$I = \int_{0}^{2\pi} d\varphi \int_{0}^{\pi/4} d\theta \int_{0}^{\sqrt{2}} \rho \cos\theta \rho^{2} \sin\theta d\rho$$

3/ Tính tp sau sử dụng tọa độ cầu: $I = \iiint z dx dy dz$ Ω : $z \le \sqrt{x^2 + y^2}$, $x^2 + y^2 + z^2 \le 2z$

$$z \le \sqrt{x^2 + y^2}, \ x^2 + y^2 + z^2 \le 2z$$

Giao tuyến của mặt cầu và nón

Tính tích phân sau sử dụng tọa độ cầu:

$$I = \iiint_{\Omega} \sqrt{x^2 + y^2} dx dy dz, \quad \text{v\'oi } \Omega \colon \begin{cases} \sqrt{3}z \ge \sqrt{x^2 + y^2} \\ x^2 + y^2 + z^2 \le 4z \end{cases}$$

Tính tp sau sử dụng tọa độ cầu: $I = \iiint\limits_{\Omega} z dx dy dz$

$$\Omega$$
: $z \le \sqrt{x^2 + y^2}$, $x^2 + y^2 + z^2 \le 2z$, $y \ge x$, $y \ge -\sqrt{3}x$

5/ Đổi tp sau sang tọa độ cầu:

$$I = \int_{-1}^{1} dy \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} dx \int_{-\sqrt{1-y^2}}^{\sqrt{4-x^2-y^2}} \sqrt{x^2 + y^2 + z^2} dz$$

$$\Omega: \begin{cases} 0 \le z \le \lambda \sqrt{4 \text{ for } x^2 \text{ to } y^2 \text{ point once}} \\ x^2 + y^2 \le 1 \end{cases}$$

TÀI LIỆU SƯU TẬP

BổI HCMUT-CNCP

Giao tuyến:
$$\begin{cases} z = \sqrt{4 - x^2 - y^2} \\ x^2 + y^2 = 1 \end{cases} \Leftrightarrow \begin{cases} z = \sqrt{3} \\ x^2 + y^2 = 1 \end{cases}$$

TÀI LIỆU SƯU TẬP

BỞI HCMUT-CNCP

$$\Omega_1: egin{cases} 0 \leq oldsymbol{
ho} \leq 2 \ 0 \leq oldsymbol{ heta} \leq oldsymbol{\pi}/6 \ 0 \leq oldsymbol{arphi} \leq 2oldsymbol{\pi} \end{cases}$$

$$\Omega_{2}:\begin{cases} 0 \leq \rho \leq \frac{1}{\sin \theta} \\ \pi/6 \leq \theta \leq \pi/2 \\ 0 \leq \varphi \leq 2\pi \end{cases}$$

BACHKH≈1070M12

BT: Tính các tích phân sau bằng cách đối sang tọa độ cầu thường: $x = \rho \sin\theta \cos\varphi$, $y = \rho \sin\theta \sin\varphi$, $z = \rho \cos\theta$

$$1. I_1 = \iiint_{\Omega} (x^2 + z^2) dx dy dz$$

 Ω giới hạn bởi các mặt congc $\begin{cases} x^2+y^2+z^2 \leq 1 \\ x \leq 0, z \geq 0 \end{cases}$ 2. $I_2 = \iiint_{\Omega} (x^2+y^2+z^2) dx dy dz$

2.
$$I_2 = \iiint_{\Omega} (x^2 + y^2 + z^2) dx dy dz$$

Ω giới hạn bởi các mặt cong: $\begin{cases} x^2 + y^2 + z^2 \le 4 \\ z \le 0, y \ge x, y \ge -x\sqrt{3} \end{cases}$

3.
$$I_3 = \iiint_{\Omega} \left(\sqrt{x^2 + y^2} + 2z\right) dx dy dz$$

$$\Omega$$
 giới hạn bởi các mặt cong:
$$\begin{cases} x^2 + y^2 + z^2 \leq 2z \\ z \geq \sqrt{x^2 + y^2} \\ y \leq x \end{cases}$$

6/ Tính thể tích vật thế giới hạn bởi các mặt sau:

$$x^{2} + y^{2} = 2y, z + y = 2, y = 2z + 2$$

Dùng tọa độ trụ

$$=\int\limits_{\text{BACHKHOACN Q.COM}} 2\sin\varphi^{2-r}\sin\varphi \\ -\int\limits_{0}^{\pi}d\varphi\int\limits_{0}^{\pi}dr\int\limits_{0}^{r}rdz = \frac{3}{2}\pi$$

Đổi biến cho hình cầu tổng quát, ellipsoid

$$\Omega: (x-a)^2 + (y-b)^2 + (z-c)^2 \le R^2$$

$$x = a + \rho sin\theta cos \phi,$$

$$y = b + \rho sin\theta sin \phi,$$

$$z = c + \rho cos \theta$$

$$TAI LIÊU SUU TÂP$$

$$J = \rho^2 sin\theta^{cp}$$

$$\Omega : \begin{cases} 0 \le \rho \le R \\ 0 \le \theta \le \pi \\ 0 \le \varphi \le 2\pi \end{cases}$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1$$

Đổi biến:

$$x = a \rho \sin\theta \cos\phi,$$
 $y = b \rho \sin\theta \sin\phi,$
 $z = c \rho \cos\theta$
 $J = abc\rho^2 \sin\theta$

BổI HCMUT-CNCP

$$\Omega: \begin{cases} 0 \le \rho \le 1 \\ 0 \le \theta \le \pi \\ 0 \le \varphi \le 2\pi \end{cases}$$

VÍ DỤ

Tính thể tích vật thể giới hạn bên trong mặt nón và mặt ellipsoid:

$$z \ge \sqrt{\frac{x^2}{3} + y^2} + y^2 + z^2 \le 1$$

BổI HCMUT-CNCP

5/ Tính tp sau sử dụng tọa độ cầu:

$$I = \iiint x dx dy dz$$

$$\Omega: \quad 2 \le x^2 + y^2 + z^2 \le 4, x \ge \sqrt{y^2 + z^2}$$

$$x = \rho \cos \theta$$
, $y = \rho \sin \theta \cos \phi$, $z = \rho \sin \theta \sin \phi$
 $J = \rho^2 \sin \theta$

 $2 \le x^2 + y^2 + z^2 \le 4, x \ge \sqrt{y^2 + z^2}$ TÀI LIỆU SƯ $\frac{1.4}{7}$ $I = \iiint x dx dy dz = \int d\varphi \int d\theta \int \rho \cos \theta \rho^2 \sin \theta d\rho$

$$2 \le x^2 + y^2 + z^2 \le 4, x \ge \sqrt{y^2 + z^2}$$

$$\Omega: \begin{cases} \rho \cos \theta \ge \rho \sin \theta (0 \le \theta \le \pi) \\ 2 \le \rho^2 \le 4 \end{cases}$$

$$\Leftrightarrow \begin{cases} \tan \theta \le 1 \end{cases}$$

$$\Rightarrow \begin{cases} \tan \theta \le 1 \end{cases}$$

$$\Rightarrow \begin{cases} \sqrt{2} \le \rho \le 2 \end{cases}$$

$$\Leftrightarrow \begin{cases} 0 \le \boldsymbol{\theta} \le \boldsymbol{\pi}/4 \\ \sqrt{2} \le \boldsymbol{\rho} \le 2 \end{cases} \qquad 0 \le \boldsymbol{\phi} \le 2\boldsymbol{\pi}$$

BACHKHOACNCP.COM

3/ Vẽ miền lấy tp cho tp sau:

$$I = \int_{0}^{2} dx \int_{0}^{x/2} dy \int_{0}^{4} z dz$$

sau đó viết lại I theo thứ tự: $I = \int dy \int dz \int z dx$

$$I = \int dy \int dz \int z dx$$

Mặt trên: z = 4, mặt dưới: z = 0 (các hàm xác định trên R₂ và 2 mặt không có giao tuyến)

Hình chiếu lên Oxy của miền $:0 \le x \le 2, \ 0 \le y \le x/2$

Hình chiếu lên Oxy của miền $:0 \le x \le 2, \ 0 \le y \le x/2$

$$z = 0, z = 4, x = 2y, x = 2, y = 0$$

$$z = 0, z = 4, x = 2y, x = 2, y = 0$$

$$z = 0, z = 4, x = 2y, x = 2, y = 0$$

BACHKHOACNCP.COM

$$z = 0, z = 4, x = 2y, x = 2, y = 0$$

$$z = 0, z = 4, x = 2y, x = 2, y = 0$$

$$z = 0, z = 4, x = 2y, x = 2, y = 0$$

$$z = 0, z = 4, x = 2y, x = 2, y = 0$$

$$z = 0, z = 4, x = 2y, x = 2, y = 0$$

$$z = 0, z = 4, x = 2y, x = 2, y = 0$$

$$z = 0$$
, $z = 4$, $x = 2y$, $x = 2$, $y = 0$

$$I = \int dy \int dz \int z dx$$

$$D = \underset{Oyz}{hc} \Omega:$$

B ở I H C M U T - C N C P

4/ Tính:
$$I = \iiint_{\Omega} x dx dy dz,$$
$$\Omega: y = 1 + x^2, z = 3x, y = 5, z = 0$$

$$\Omega$$
: $y = 1 + x^2$, $z = 3x$, $y = 5$, $z = 0$

1.
$$I_1 = \iiint_{\Omega} (2xz + y) dx dy dz$$
, $\Omega : \{ y = z^2 - 1, y = 1, y = 1 - x, x = 2 \}$

2.
$$I_2 = \iiint_{\Omega} (x+1) dx dy dz$$
, $\Omega : \{x+y+z=2, y=x^2, x \le 0, z=0\}$

$$I_{2} = \iiint_{\Omega} (x+1) dx dy dz, \ \Omega : \{x+y+z=2, y=x, x \le 0, z=0\}$$

$$I_{2} = \iiint_{\Omega} (x+1) dx dy dz, \ \Omega : \{-2 < z < 2 - x^{2} - y^{2}, x < y < x, \sqrt{3}\}$$

3.
$$I_3 = \iiint_{\Omega} (x+1) dx dy dz$$
, $\Omega : \left\{ -2 \le z \le 2 - x^2 - y^2, x \le y \le x \sqrt{3} \right\}$
4. $I_4 = \iiint_{\Omega} dx dy dz$, $\Omega : \left\{ x^2 + y^2 + z^2 = 1, z = x, z = x \sqrt{3}, x \ge 0 \right\}$

5.
$$I_5 = \iiint_{\Omega} \sqrt{x^2 + y^2 + z^2} dx dy dz$$
, $\Omega : \left\{ x^2 + y^2 + z^2 \le 2z, z \le \sqrt{x^2 + y^2} \right\}$

6.
$$I_{6} = \iiint_{\Omega} (x + y + 2z) dx dy dz$$
, $\Omega : \left\{ x^{2} + y^{2} + z^{2} \le 1, z \le -\sqrt{x^{2} + y^{2}} \right\}$
7. $I_{7} = \iiint_{\Omega} \frac{1}{\sqrt{x^{2} + y^{2}}} dx dy dz$, $\Omega : \left\{ x^{2} + y^{2} + z^{2} \le 2z, z \ge \sqrt{x^{2} + y^{2}}, x \right\}$

$$7. \ I_{7} = \iiint_{\Omega} \frac{1}{\sqrt{x^{2} + y^{2} + z^{2}}} dx dy dz, \ \Omega : \left\{ x^{2} + y^{2} + z^{2} \leq 2z, z \geq \sqrt{x^{2} + y^{2}}, x, y \geq 0 \right\}$$

$$8. \ I_{8} = \iiint_{\Omega} \left(x + 2z \right) dx dy dz, \ \Omega : \left\{ x^{2} + y^{2} + z^{2} \leq 1, z \geq -1 + \sqrt{x^{2} + y^{2}}, y \geq 0 \right\}$$

9.
$$I_9 = \iiint_{\Omega} \sqrt{x^2 + y^2} dx dy dz$$
, $\Omega : \left\{ x^2 + y^2 + z^2 \le 1, z \ge -\sqrt{3(x^2 + y^2)}, y \le x \le -\sqrt{3(x^2 + y^2)}, y \le$

Bài 2: Tính thể tích vật thể được giới hạn bởi các mặt sau:

1.
$$z = x^2 + y^2$$
, $z = x^2 + y^2 + 1$, $x^2 + y^2 = 1$

2.
$$x^2 + y^2 + z^2 \le 1$$
, $z \ge -\sqrt{3(x^2 + y^2)}$, $y \le x \le -y$

3.
$$z = 0$$
, $x + y + z = 3$, $y = 0$, $\frac{x}{2} + \frac{y}{3} = 1$, $\frac{x}{4} + \frac{y}{3} = 1$

4.
$$y = \sqrt{x}, y = 2\sqrt{x}, z = 0, z = 6 - x^{\text{NCP}}$$

5.
$$z = 0$$
, $z = 4 - x^2$, $y = 0$, $2y + z = 4$

6.
$$x^2 + y^2 = 2x$$
, $x + z = 3$, $x - z = 3$

7.
$$x^2 + y^2 + z^2 \le 2z$$
, $x^2 + y^2 + z^2 \le 1$

8.
$$1 \le x^2 + y^2 + z^2 \le 4$$
, $\sqrt{x^2 + y^2} \le z$