UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA DE COMPUTAÇÃO E AUTOMAÇÃO

Perfilagem do algoritmo de Decomposição LU

Discentes: Flávio Henrique Lopes Barbosa, Jaysa Keylla Siqueira Barbosa, José Augusto Agripino de Oliveira.

1. Introdução

Um dos motivos para introduzir o algoritmo de decomposição LU é que ele fornece uma maneira eficiente de calcular a matriz inversa, a qual tem muitas aplicações na engenharia; ele também fornece um meio de avaliar o condicionamento do sistema.

Em álgebra linear, a decomposição LU (onde LU vem do inglês lower upper) é uma forma de fatoração de uma matriz não singular como o produto de uma matriz triangular inferior (por isso o lower) e uma matriz triangular superior (que é o upper). Às vezes se deve multiplicar a matriz a ser decomposta por uma matriz de permutação. Esta decomposição se usa em análise numérica para resolver sistemas de equações (mais eficientemente) ou encontrar as matrizes inversas.

Foi analisado o desempenho do algoritmo de decomposição LU, na forma sequencial. Na implementação do código, são usados vetores alocados dinamicamente e que são tratados como matrizes, sendo as "n" primeiras posições a primeira linha, onde "n" é o número de colunas, de "n + 1" a "n + 1" a "n + 1" e a segunda linha, e assim sucessivamente.

Foi feita a perfilagem do código, que é a ação de traçar um perfil. No nosso caso é descobrir quanto tempo o código como um todo leva para executar e o tempo gasto em cada método ou função, além disso, examinar o que está causando isso.

2. Metodologia

Para fazer o perfilamento utilizamos a ferramenta GProf (GNU profiling), que está inserida no GCC(GNU Compiler Collection). O GProf, serve para medir o tempo gasto pelas funções de um algoritmo, como também mostra quantas vezes uma função foi chamada.

Perfilagem, ou profiling, ajuda a investigação de onde o programa está gastando mais tempo de processamento. Assim permitindo que o seu desempenho seja melhorado, reescrevendo as funções que estão sendo mais custosas. Podemos também verificar as funções que estão sendo mais requisitadas .

Para executar o Gprof, primeiro é preciso compilar e linkar o programa que se quer analisar, com a opção profiling habilitada. Depois, é só executar o programa e em seguida o GProf. Segue um exemplo abaixo:

- 1. \$gcc-pg-o decomposicaoLU.out decomposicaoLU.c
- 2. \$./decomposicaoLU.out
- ${\it 3. \quad \$ gprof./decomposicaoLU.out\ gmon.out} > decomposicaoLU.txt$

A saída gerada pelo GProf é dividida em *Flat Profile* e *Call Graph*. O *Flat Profile* nos mostra quanto tempo o programa gastou em cada função, como também quantas vezes a função foi chamada. Já o *Call Graph* enumera para cada função quais funções a chamaram, como quais outras funções ela chamou e quantas vezes.

Para que pudéssemos analisar de maneira variada, para sabermos o comportamento do algoritmo de decomposição LU com diferentes tamanhos de matrizes de entrada, utilizamos diferentes matrizes com ordens variadas de 1000, 2000, 3500, 5500 e 7000. Sendo os valores dessas matrizes gerados automaticamente ao utilizar a função rand() presente em C.

3. Resultados

3.1 Saída do programa para matriz quadrada de ordem 1000

Flat profile:

Each sa	ample counts	s as 0.01				
% с	umulative	self		self	total	
time	seconds	seconds	calls	s/call	s/call	name
100.00	1.84	1.84	1	1.84	1.84	gauss
0.00	1.84	0.00	2	0.00	0.00	preencheMatriz

Call graph:

day	% time	501f	children	called	0.200
lidex	% Ctile				name
		1.84	0.00	1/1	main [2]
1]	100.0	1.84	0.00	1	gauss [1]
		0.00	0.00	1/2	preencheMatriz [3]
					<spontaneous></spontaneous>
[2]	100.0	0.00	1.84		main [2]
		1.84	0.00	1/1	gauss [1]
		0.00	0.00	1/2	preencheMatriz [3]
				-, -	F
		0.00	0.00	1/2	gauss [1]
				,	2 2 3
			0.00	1/2	main [2]
[3]	0.0	0.00	0.00	2	preencheMatriz [3]

3.2 Saída do programa para matriz quadrada de ordem 2000

Flat profile:

```
Each sample counts as 0.01 seconds.

% cumulative self self total
time seconds seconds calls s/call name
99.79 14.35 14.35 1 14.35 14.37 gauss
0.21 14.38 0.03 2 0.01 0.01 preencheMatriz
```

Call graph:

3.3 Saída do programa para matriz quadrada de ordem 3500

Flat profile:

Each sa	ample count	s as 0.01	seconds.			
% (cumulative	self		self	total	
time	seconds	seconds	calls	s/call	s/call	name
99.88	69.37	69.37	1	69.37	69.41	gauss
0.12	69.45	0.08	2	0.04	0.04	preencheMatriz

Call graph:

granularity:	each sampl	e hit cove	rs 4 byte(s	s) for 0.01% of 69.45 seconds
index % time	self o	:hildren	called	name <spontaneous></spontaneous>
[1] 100.0	0.00 69.37 0.04	69.45 0.04 0.00	1/1 1/2	main [1] gauss [2] preencheMatriz [3]
[2] 99.9	69.37 69.37 0.04	0.04 0.04 0.00	1/1 1 1/2	main [1] gauss [2] preencheMatriz [3]
[3] 0.1	0.04 0.04 0.08	0.00 0.00 0.00	1/2 1/2 2	gauss [2] main [1] preencheMatriz [3]

3.4 Saída do programa para matriz quadrada de ordem 5500

Flat profile:

```
Each sample counts as 0.01 seconds.

% cumulative self self total
time seconds seconds calls s/call s/call name
99.96 294.44 294.44 1 294.44 294.50 gauss
0.04 294.56 0.12 2 0.06 0.06 preencheMatriz
0.00 294.57 0.01 ___init
```

Call graph:

granularity: each sample hit covers 4 byte(s) for 0.00% of 294.57 seconds

% time	self	children	called	name
				<spontaneous></spontaneous>
100.0	0.00	294.56		main [1]
	294.44	0.06	1/1	gauss [2]
	0.06	0.00	1/2	preencheMatriz [3]
	294.44	0.06	1/1	main [1]
100.0	294.44	0.06	1	gauss [2]
	0.06	0.00	1/2	preencheMatriz [3]
	0.06	0.00	1/2	
			,	gauss [2]
			•	main [1]
0.0	0.12	0.00	2	preencheMatriz [3]
				<spontaneous></spontaneous>
0 0	0 01	0 00		init [4]
0.0	0.01	0.00		_(1100 [4]
	100.0	100.0 0.00 294.44 0.06 294.44 100.0 294.44 0.06 0.06 0.06 0.06 0.06	100.0 0.00 294.56 294.44 0.06 0.06 0.00 294.44 0.06 100.0 294.44 0.06 0.06 0.00 0.06 0.00 0.06 0.00 0.06 0.00 0.06 0.00	294.44 0.06 1/1 0.06 0.00 1/2 294.44 0.06 1 100.0 294.44 0.06 1 0.06 0.00 1/2 0.06 0.00 1/2 0.06 0.00 1/2 0.06 0.00 2

3.5 Saída do programa para matriz quadrada de ordem 7000

Flat profile:

Each sample co	ounts as 0.01 ve self		self	total	
time second	ls seconds	calls	s/call	s/call	name
99.95 569.	65 569.65	1	569.65	569.77	gauss
0.04 569.	89 0.24	2	0.12	0.12	preencheMatriz
0.00 569.	91 0.02				_init

Call graph:

granu	larity:	each sam	ple hit cov	ers 4 byte	(s) for 0.00% of 569.91 seconds
index	% time	self	children	called	name <spontaneous></spontaneous>
[1]	100.0	0.00	569.89		main [1]
		569.65	0.12	1/1	gauss [2]
		0.12	0.00	1/2	preencheMatriz [3]
					main [1]
[2]	100.0	569.65			gauss [2]
		0.12	0.00	1/2	preencheMatriz [3]
		0.12	0.00	1/2	gauss [2]
			0.00	1/2	
[3]	0.0	0.24		2	preencheMatriz [3]
					<spontaneous></spontaneous>
[4]	0.0	0.02	0.00		init [4]

Ao compararmos os tempos de execução do código para as diferentes entradas, é possível notar que o tempo de execução cresce de maneira muito acentuada. Isso ocorre pelo crescimento ter ordem quadrática, justamente por ser uma matriz de duas dimensões.

Além disso, é evidente o tempo extremamente longo gasto na função "gauss" - próximo de 100% do tempo em todos os testes -, por ser onde são criadas as matrizes LU, ou seja, ocorre iterações sucessivas e o cálculo de cada componente das matrizes resultante.

Ademais, com base nos resultados, é possível notar que a entrada da matriz quadrada de ordem 7000 faz com que o algoritmo leve aproximadamente 9 minutos e 30 segundos para que seja finalizada a execução, que é o tempo ideal para que o algoritmo seja analisado e paralelizado.

4. Conclusões

A partir do teste de perfilagem, pudemos observar e comprovar empiricamente através das simulações com várias amostras, que o maior gargalo do algoritmo de Decomposição LU é o método "gauss". Tal análise baseou-se na variável tempo de execução de cada método específico da aplicação.