Announcements

Homework 2 was posted.

Today's Lecture

- Ridge regression (finish)
- Notation comment
- Bayesian inference

NOTE: A COUPLE LINES HAVE BEEN ADDED TO Pg. 8
FOR CLARIFICATION.

	UNSIMPLIFIED FORM)	
1	of terms of JR (m, d):	
	- 2 ln N(y; No+ WTz; 02)	
(4)	= - E (const. of w) + 2028 (y; - (wo+w-)x	5

Murphy Fig. 7.7 (a)-(b). N = 21 data points, fit using regression function that is polynomial of degree 14, and differing amounts of L2 regularization.

USING MORE DATA CAN HAVE A REGULARIZING-T
 EFFECT - MURPHY FIG. 7,10]

NOTATION COMMENT

X = GENERAL INPUT VARIABLE.

y = 1' OUTPUT " (VALUE OR CLASS)

WHICH ARE DIFFERENT THAN:

X: = THEY VALUES TE

Y = OUTPUT VALUE FOR INPUT X; OF D.

7= 7x

WALUE

X: = ith COMPONENT OF FEATURE VECTOR X.

BAYESIAN INFERENCE

INSTEAD OF FINDING A POINT ESTIMATE O,
LET'S ESTIMATE THEE DEWITM:

p(0 D).

WE HAVE A MODEZ:

(ii)
$$P(y|X, \theta)$$
 [REGRESSION]
(ii) $P(x|y, \theta)$ [CUMSSIFICATION].

EESSY: $p(\chi \mid S;) \in ASSUME$ MODE C.

(i) DISCRIMINATINE APPROACH

MODELS $p(y \mid \chi, \theta)$ DIRECTLY.

(ii) GENERATIVE APPROACH.

MODELS $p(y, \chi \mid \theta)$ NOTE: MODELING $p(\chi \mid y=c, \theta)$ IN

CLASSIFICATION, WE CAN: $p(y=c \mid \chi, \theta) = p(\chi \mid y=c, \theta)$ $p(\chi=c)$

ER .	
10	
RI .	
10	
No.	
10	
18	
and the second	
10	
III	
E .	
10	
MI.	
E .	
8	
iii.	
Elli	
III .	