Some Simple Ensembles

Voting or Averaging of predictions of multiple pre-trained models

 "Stacking": Use predictions of multiple models as "features" to train a new model and use the new model to make predictions on test data

Ensembles: Another Approach

- Instead of training different models on same data, train same model multiple times on different data sets, and "combine" these "different" models
- We can use some simple/weak model as the base model
- How do we get multiple training data sets (in practice, we only have one data set at training time)? One option is to use the ideas illustrated below:

(note: green points are the selected ones)

Bagging

- Bagging stands for Bootstrap Aggregation
- Takes original data set D with N training examples
- Creates M copies $\{\tilde{D}_m\}_{m=1}^M$
 - Each \tilde{D}_m is generated from D by sampling with replacement
 - Each data set \tilde{D}_m has the same number of examples as in data set D (though not all are unique)
 - These data sets are reasonably different from each other (since only about 63% of the original/unique examples appear in any of these data sets)
- ullet Train models h_1,\ldots,h_M using $ilde{D}_1,\ldots, ilde{D}_M$, respectively
- ullet Use an averaged model $h=rac{1}{M}\sum_{m=1}^{M}h_{m}$ as the final model
- Useful for models with high variance and noisy data

Bagging: Illustration

Top: Original data, Middle: 3 models (from some model class) learned using three data sets chosen via bootstrapping, Bottom: averaged model

Random Forests

- An ensemble of decision tree (DT) classifiers
- Uses bagging on features (each DT will use a random set of features)
 - Given a total of D features, each DT uses \sqrt{D} randomly chosen features
 - Randomly chosen features make the different trees uncorrelated
- All DTs usually have the same depth
- Each DT will split the training data differently at the leaves
- Prediction for a test example votes on/averages predictions from all the DTs

Boosting

- The basic idea
 - Take a weak learning algorithm
 - Only requirement: Should be slightly better than random
 - Turn it into an awesome one by making it focus on difficult cases
- Most boosting algoithms follow these steps:
 - Train a weak model on some training data
 - Compute the error of the model on each training example
 - Give higher importance to examples on which the model made mistakes
 - Re-train the model using "importance weighted" training examples
 - Go back to step 2
- Note: Most models naturally allow learning from importance-weighted examples (or can be easily modified to do that)

The AdaBoost Algorithm

- Given: Training data $(x_1, y_1), \dots, (x_N, y_N)$ with $y_n \in \{-1, +1\}$, $\forall n$
- Initialize weight of each example (x_n, y_n) : $D_1(n) = 1/N$, $\forall n$
- For round t = 1 : T
 - ullet Learn a weak $h_t(x) o \{-1, +1\}$ using training data weighted as per D_t
 - ullet Compute the weighted fraction of errors of h_t on this training data

$$\epsilon_t = \sum_{n=1}^N D_t(n) \mathbb{1}[h_t(\mathbf{x}_n) \neq y_n]$$

- Set "importance" of h_t : $\alpha_t = \frac{1}{2} \log(\frac{1-\epsilon_t}{\epsilon_t})$ (gets larger as ϵ_t gets smaller)
- Update the weight of each example

$$D_{t+1}(n)$$
 \propto $\begin{cases} D_t(n) \times \exp(-\alpha_t) & \text{if } h_t(\mathbf{x}_n) = y_n \text{ (correct prediction: decrease weight)} \\ D_t(n) \times \exp(\alpha_t) & \text{if } h_t(\mathbf{x}_n) \neq y_n \text{ (incorrect prediction: increase weight)} \end{cases}$
 $= D_t(n) \exp(-\alpha_t y_n h_t(\mathbf{x}_n))$

- Normalize D_{t+1} so that it sums to 1: $D_{t+1}(n) = \frac{D_{t+1}(n)}{\sum_{m=1}^{N} D_{t+1}(m)}$
- Output the "boosted" final hypothesis $H(x) = \operatorname{sign}(\sum_{t=1}^{T} \alpha_t h_t(x))$

AdaBoost: Example

Consider binary classification with 10 training examples

Initial weight distribution D_1 is uniform (each point has equal weight =1/10)

Each of our weak classifers will be an axis-parallel linear classifier

After Round 1

- Error rate of h_1 : $\epsilon_1 = 0.3$; weight of h_1 : $\alpha_1 = \frac{1}{2} \ln((1 \epsilon_1)/\epsilon_1) = 0.42$
- ullet Each misclassified point upweighted (weight multiplied by $\exp(\alpha_2)$)
- Each correctly classified point downweighted (weight multiplied by $\exp(-\alpha_2)$)

After Round 2

- Error rate of h_2 : $\epsilon_2 = 0.21$; weight of h_2 : $\alpha_2 = \frac{1}{2} \ln((1 \epsilon_2)/\epsilon_2) = 0.65$
- Each misclassified point upweighted (weight multiplied by $exp(\alpha_2)$)
- ullet Each correctly classified point downweighted (weight multiplied by $\exp(-lpha_2)$)

After Round 3

- Error rate of h_3 : $\epsilon_3 = 0.14$; weight of h_3 : $\alpha_3 = \frac{1}{2} \ln((1 \epsilon_3)/\epsilon_3) = 0.92$
- Suppose we decide to stop after round 3
- Our ensemble now consists of 3 classifiers: h_1, h_2, h_3

Final Classifier

- Final classifier is a weighted linear combination of all the classifiers
- Classifier h_i gets a weight α_i

Multiple weak, linear classifiers combined to give a strong, nonlinear classifier

Another Example

- Given: A nonlinearly separable dataset
- We want to use Perceptron (linear classifier) on this data

- After round 1, our ensemble has 1 linear classifier (Perceptron)
- Bottom figure: X axis is number of rounds, Y axis is training error

- After round 2, our ensemble has 2 linear classifiers (Perceptrons)
- Bottom figure: X axis is number of rounds, Y axis is training error

- After round 5, our ensemble has 5 linear classifiers (Perceptrons)
- Bottom figure: X axis is number of rounds, Y axis is training error

- After round 7, our ensemble has 7 linear classifiers (Perceptrons)
- Bottom figure: X axis is number of rounds, Y axis is training error

- After round 40, our ensemble has 40 linear classifiers (Perceptrons)
- Bottom figure: X axis is number of rounds, Y axis is training error

Boosted Decision Stumps = Linear Classifier

- A decision stump (DS) is a tree with a single node (testing the value of a single feature, say the d-th feature)
- Suppose each example \mathbf{x} has D binary features $\{x_d\}_{d=1}^D$, with $x_d \in \{0,1\}$ and the label y is also binary, i.e., $y \in \{-1,+1\}$
- The DS (assuming it tests the *d*-th feature) will predict the label as as

$$h(x) = s_d(2x_d - 1)$$
 where $s_d \in \{-1, +1\}$

- Suppose we have T such decision stumps h_1, \ldots, h_T , testing feature number i_1, \ldots, i_T , respectively, i.e., $h_t(\mathbf{x}) = s_{i_t}(2x_{i_t} 1)$
- The boosted hypothesis $H(\mathbf{x}) = \operatorname{sgn}(\sum_{t=1}^{T} \alpha_t h_t(\mathbf{x}))$ can be written as $H(\mathbf{x}) = \operatorname{sgn}(\sum_{t=1}^{T} \alpha_{i_t} s_{i_t} (2x_{i_t} 1)) = \operatorname{sgn}(\sum_{t=1}^{T} 2\alpha_{i_t} s_{i_t} x_{i_t} \sum_{t=1}^{T} \alpha_{i_t} s_{i_t}) = \operatorname{sign}(\mathbf{w}^{\top} \mathbf{x} + b)$

where
$$w_d = \sum_{t:i_t=d} 2\alpha_t s_t$$
 and $b = -\sum_t \alpha_t s_t$

Boosting: Some Comments

• For AdaBoost, for each model's error $\epsilon_t = 1/2 - \gamma_t$, the training error consistently gets better with rounds

$$\mathsf{train\text{-}error}(\textit{H}_{\textit{final}}) \leq \mathsf{exp}(-2\sum_{t=1}^{T} \gamma_t^2)$$

- Boosting algorithms can be shown to be minimizing a loss function
 - E.g., AdaBoost has been shown to be minimizing an exponential loss

$$\mathcal{L} = \sum_{n=1}^{N} \exp\{-y_n H(\mathbf{x}_n)\}\$$

where $H(\mathbf{x}) = \operatorname{sign}(\sum_{t=1}^{T} \alpha_t h_t(\mathbf{x}))$, given weak base classifiers h_1, \dots, h_T . The minimizer α_t 's turn out to be what we saw in AdaBoost description!

Boosting in general can perform badly if some examples are outliers

Bagging vs Boosting

- No clear winner; usually depends on the data
- Bagging is computationally more efficient than boosting (note that bagging can train the M models in parallel, boosting can't)
- Both reduce variance (and overfitting) by combining different models
 - The resulting model has higher stability as compared to the individual ones
- Bagging usually can't reduce the bias, boosting can (note that in boosting, the training error steadily decreases)
- Bagging usually performs better than boosting if we don't have a high bias and only want to reduce variance (i.e., if we are overfitting)

Some Other Ensemble Methods

- Mixture of Experts: Another very powerful ensemble learning approach
 - Consist of a set of "experts" (each expert is a prediction model)
 - Each of these experts may be good in specific regions of the input space

- Given an example x, a "gating network" $g(x) = [g_1(x) \ g_2(x) \ \dots \ g_K(x)]$ gives the weight of each of the experts for making the prediction for x
- Mixture of experts models can be formulated as a probabilistic model and parameters (experts, gating network params, etc.) can be learned using EM

Summary

- Complex learning problems can often be solved by effectively combining multiple weak model via ensemble learning methods
- Looked at some representative ensemble learning methods

Simple ones: Voting/averaging or stacking

• Bagging: Random Forests

Boosting: Adaboost

Mixture of Experts

 These models help reduce bias, variance, or both, leading to better test accuracies (and can often also be significantly faster than complex models)