Consider the regression model

$$y = g(x^*, t) + v,$$

with a measurement of unobserved x^* given by $\tilde{z} = x^* + \tilde{u}$, with $x^* \perp \tilde{u}$ conditionally on t. Assume that $E(\tilde{u}|t) = 0$ and that $E(v|x^*,t) = 0$. Then redefining all the densities and conditional expectations to be conditional on t we get the same system of convolution equations as in Table 2 for model 5 with the unknown functions now being conditional densities and the regression function, g.

Conditioning requires assumptions that provide for existence of conditional distribution functions in S^* .

3 Solutions for the models.

3.1 Existence of solutions

To state results for nonparametric models it is important first to clearly indicate the classes of functions where the solution is sought. Assumption 1 requires that all the (generalized) functions considered are elements in the space of generalized functions S^* . This implies that in the equations the operation of convolution applied to the two functions from S^* provides an element in the space S^* . This subsection gives high level assumptions on the nonparametric classes of the unknown functions where the solutions can