

Dual 1-of-4 Decoder/ Demultiplexer

ELECTRICALLY TESTED PER: MIL-M-38510/32601

The 54LS155 is a high-speed Dual 1-of-4 Decode/Demultiplexer. The device has two decoders with common 2-bit Address inputs and separate gated Enable inputs. Decoder "a" has an Enable gate with one active HIGH and one active LOW input. Decoder "b" has two active LOW Enable inputs. If the Enable functions are satisfied, one output of each decoder will be LOW as selected by the address inputs.

The 'LS155 is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all Motorola TTL families.

- Schottky Process For High-Speed
- Multifunction Capability
- Common Address Inputs
- True or Complement Data Demultiplexing
- · Input Clamp Diode Limits High-Speed Termination Effects

LOGIC DIAGRAM

Figure a

Military 54LS155

AVAILABLE AS:

1) JAN: JM38510/32601BXA 2) SMD: N/A 3) 883: 54LS155/BXAJC

X = CASE OUTLINE AS FOLLOWS: PACKAGE: CERDIP: E CERFLAT: F

LCC: 2

THE LETTER "M" APPEARS BEFORE THE / ON LCC.

	PIN A	SSIGN	MENTS	-
FUNCT.	DIL 620-09	FLATS 650-05	LCC 756A-02	BURN-IN (COND. A)
Ea	1	1	2	GND
Ēa	2	2	3	Vcc
A ₁	3	3	4	VCC
0 _{3a}	4	4	5	VCC
O _{2a}	5	5	7	VCC
0 _{1a}	6	6	8	VCC
O _{0a}	7	7	9	VCC
GND	8	8	10	GND
O_{0b}	9	9	12	Vcc
0 _{1b}	10	10	13	VCC
O _{2b}	11	11	14	VCC
O _{3b}	12	12	15	VCC
A ₀	13	13	17	VCC
Ēb	14	14	18	VCC
Ēb	15	15	19	GND
VCC	16	16	20	VCC
BURN-	IN COND	TIONS:		
VCC =	5.0 V MIN	1/6.0 V M	AX	

F	in Names	Loading (Note a)				
		HIGH	LOW			
A ₀ , A ₁	Address Inputs	0.5 U.L.	0.25 U.L.			
E _a , E _b	Enable (Active LOW) Input	0.5 U.L.	0.25 U.L.			
Ea	Enable (Active HIGH) Input	0.5 U.L.	0.25 U.L.			
$\overline{O}_0, \overline{O}_3$	Active Low Outputs (Note b)	10 U.L.	5(2.5) U.L.			

NOTES:

- a. One TTL Unit Load (U.L.) = 40 µA HIGH/1.6 mA LOW.
- b. The Output LOW drive factor is 2.5 U.L. for Military (54) Temperature Ranges.

MOTOROLA MILITARY FAST/LS/TTL DATA 5-163

5

FUNCTIONAL DESCRIPTION

The 'LS155 is a Dual 1-of-4 Decoder/Demultiplexer with common Address inputs and separate gated Enable inputs. When enabled, each decoder section accepts the binary weighted Address inputs (A₀, A₁) and provides four mutually exclusive active LOW outputs $(\overline{O}_0 \cdot \overline{O}_3)$. If the Enable requirements of each decoder are not met, all outputs of that decoder are HIGH.

Each decoder section has a 2-input enable gate. The enable gate for Decoder "a" requires one active HIGH input and one active LOW input ($E_a \bullet \overline{E}_a$). In demultiplexing

applications, Decoder "a" can accept either true or complemented data by using the \overline{E}_a or E_a inputs respectively. The enable gate for Decoder "b" requires two active LOW inputs $(\overline{E}_b \bullet \overline{E}_b)$. The 'LS155 can be used as a 1-of-8 Decoder/Demultiplexer by tying \overline{E}_a to E_b and relabeling the common connection as (A2). The other \overline{E}_b and \overline{E}_a are connected together to form the common enable.

The LS155 can be used to generate all four minterms of two variables. These four minterms are useful in some applications replacing multiple gate functions as shown in Figure a.

	TRUTH TABLE												
Add	ress	Enab	le "a"	' Output "a"				Enable "b"		Output "b"			
A ₀	Α1	Ea	Ēa	\overline{o}_0	Ō ₁	Ō ₂	Ō ₃	Ēb	Ēb	ō₀	Ō ₁	ō₂	Ō₃
Х	×	L	Х	Н	Н	н	Н	Н	Χ	Н	Н	Н	- н
х	Х	x	н	н	Н	н	Н	×	Н	Н	Н	Н	Н
L	L	н	L	L	Н	Н	Н	L	L	L	Н	H	Н
Н	L	Н	L	Н	L	Н	Н	L	L	H	L	Н	Н
L	н	н	L	н	Н	L	Н	L	L	H	Н	L	Н
Н	Н	Н	L	Н	Н	Н	L	L	L	Н	Н	н	L

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

E DECODER a A0 A1 A0 A1 A0 A1 BE DECODER b A1 A1 A1 A1 BE DECODER b A1 A1 A1 A2 A3 A4 A4 A5 A5 A5 A6 A1 A1 A1 A2 BE DECODER b A1 A1 A2 BE DECODER b A1 A1 A2 BE DECODER b A1 BE DECODER b A1

LOAD FOR OUTPUT UNDER TEST

MOTOROLA MILITARY FAST/LS/TTL DATA

5-164

54LS155

WAVEFORMS

Symbol	Parameter		Limits						Test Condition (Unless Otherwise Specified)
		+ 25°C Subgroup 1		+ 125°C Subgroup 2		– 55°C Subgroup 3			
	Static Parameters:								
		Min	Max	Min	Max	Min	Max		
Vон	Logical "1" Output Voltage	2.5		2.5		2.5		٧	V_{CC} = 4.5 V, I_{OH} = -400 μ A, V_{IH} = 2.0 V, other inputs are open.
VOL	Logical "0" Output Voltage		0.4		0.4		0.4	٧	$V_{CC} = 4.5 \text{ V}, I_{OL} = 4.0 \text{ mA}, V_{IN}(\overline{E}_b) = 0.7 \text{ V}, E_a = 2.0 \text{ V}, \overline{E}_a = 0.7 \text{ V}.$
VIC	Input Clamping Voltage		-1.5					٧	$V_{CC} = 4.5 \text{ V}, I_{IN} = -18 \text{ mA},$ other inputs are open.
lн	Logical "1" Input Current		20		20		20	μА	V _{CC} = 5.5 V, V _{IH} = 2.7 V, other inputs are open.
чнн	Logical "1" Input Current		100		100		100	μА	VCC = 5.5 V, VIHH = 5.5 V, other inputs are open.
I _I L	Logical "0" Input Current	-0.12	-0.36	-0.12	-0.36	-0.12	-0.36	mA	V _{CC} = 5.5 V, V _{IN} = 0.4 V, other inputs are open.
los	Output Short Circuit Current	-15	-100	-15	-100	-15	-100	mA	$V_{CC} = 5.5 \text{ V}, V_{IN}(\overline{E}_a) = 5.5 \text{ V},$ all other inputs are open, $V_{OUT} = \text{GND}.$
lcc	Power Supply Current		10		10		10	mA	$V_{CC} = 5.5 \text{ V}, V_{IN}(A_0, A_1, E_a) = 4.5 \text{ V},$ other inputs = GND.
VIH	Logical "1" Input Voltage	2.0		2.0		2.0		٧	V _{CC} = 4.5 V.
VIL	Logical "0" Input Voltage		0.7		0.7		0.7	٧	V _{CC} = 4.5 V.
		Subg	Subgroup 7		Subgroup 8A		Subgroup 8B		
	Functional Tests								per Truth Table with V_{CC} = 5.0 V, V_{INL} = 0.4 V, and V_{INH} = 2.5 V.

NOTES:

- 1. The pulse generator has the following characteristics: PRR \leq 1.0 MHz, t_r = 15 ns, $t_f \leq$ 6.0 ns.
- 2. $C_L = 50 \text{ pF} \pm 10\%$ including scope probe, wiring and stray capacitance without package in test fixture.
- 3. $R_L = 2.0 \text{ k}\Omega \pm 5.0\%$.
- 4. All diodes are 1N3064 or equivalent.
- 5. The limits specified for $C_L = 15$ pF are guaranteed but not tested.

MOTOROLA MILITARY FAST/LS/TTL DATA 5-165

54LS155

Symbol	Parameter	Limits							Test Condition (Unless Otherwise Specified)
	Switching Parameters:	+ 25°C		+ 125°C		– 55°C			
		Subgroup 9		Subgroup 10		Subgroup 11			
		Min	Max	Min	Max	Min	Max		
^t PHL1 ^t PHL1	Propagation Delay /Data-Output A ₀ to Output	2.0 —	35 30	2.0 —	46 41	2.0	46 41	ns	$V_{CC} = 5.0 \text{ V}, C_L = 50 \text{ pF}, R_L = 2.0 \text{ k}\Omega.$ $V_{CC} = 5.0 \text{ V}, C_L = 15 \text{ pF}.$
tPLH1 tPLH1	Propagation Delay /Data-Output A ₀ to Output	2.0 —	20 15	2.0 —	26 21	2.0	26 21	ns	$V_{CC} = 5.0 \text{ V}, C_L = 50 \text{ pF}, R_L = 2.0 \text{ k}\Omega.$ $V_{CC} = 5.0 \text{ V}, C_L = 15 \text{ pF}.$
^t PHL2 ^t PHL2	Propagation Delay /Data-Output A ₁ to Output	2.0	35 30	2.0 	46 41	2.0 —	46 41	ns	$V_{CC} = 5.0 \text{ V}, C_L = 50 \text{ pF}, R_L = 2.0 \text{ k}\Omega.$ $V_{CC} = 5.0 \text{ V}, C_L = 15 \text{ pF}.$
tPLH2 tPLH2	Propagation Delay /Data-Output A ₁ to Output	2.0	20 15	2.0 —	26 21	2.0 —	26 21	ns	V_{CC} = 5.0 V, C_L = 50 pF, R_L = 2.0 k Ω . V_{CC} = 5.0 V, C_L = 15 pF.
tPHL3 tPHL3	Propagation Delay /Data-Output E _a to Output	2.0 —	35 30	2.0	46 41	2.0 —	46 41	ns	V_{CC} = 5.0 V, C_L = 50 pF, R_L = 2.0 k Ω . V_{CC} = 5.0 V, C_L = 15 pF.
^t PLH3 ^t PLH3	Propagation Delay /Data-Output E _a to Output	2.0 —	20 15	2.0	26 21	2.0 —	26 21	ns	V_{CC} = 5.0 V, C_L = 50 pF, R_L = 2.0 k Ω . V_{CC} = 5.0 V, C_L = 15 pF.
^t PHL4	Propagation Delay /Data-Output E _b to Output	2.0	35	2.0	46	2.0	46	ns	$V_{CC} = 5.0 \text{ V}, C_L = 50 \text{ pF}, R_L = 2.0 \text{ k}\Omega.$
^t PLH4	Propagation Delay /Data-Output E _b to Output	2.0	20	2.0	26	2.0	26	ns	$V_{CC} = 5.0 \text{ V}, C_L = 50 \text{ pF}, R_L = 2.0 \text{ k}\Omega.$
^t PHL5	Propagation Delay /Data-Output E _b to Output	2.0	35	2.0	46	2.0	46	ns	$V_{CC} = 5.0 \text{ V, } C_L = 50 \text{ pF, } R_L = 2.0 \text{ k}\Omega.$
^t PLH5	Propagation Delay /Data-Output E _b to Output	2.0	20	2.0	26	2.0	26	ns	V_{CC} = 5.0 V, C_L = 50 pF, R_L = 2.0 k Ω .
^t PHL6	Propagation Delay /Data-Output A ₁ to Output	2.0	35	2.0	46	2.0	46	ns	$V_{CC} = 5.0 \text{ V}, C_L = 50 \text{ pF}, R_L = 2.0 \text{ k}\Omega.$
^t PLH6	Propagation Delay /Data-Output A ₁ to Output	2.0	31	2.0	40	2.0	40	ns	$V_{CC} = 5.0 \text{ V}, C_L = 50 \text{ pF}, R_L = 2.0 \text{ k}\Omega.$
^t PHL7	Propagation Delay /Data-Output A ₀ to Output	2.0	35	2.0	46	2.0	46	ns	$V_{CC} = 5.0 \text{ V}, C_L = 50 \text{ pF}, R_L = 2.0 \text{ k}\Omega.$
^t PLH7	Propagation Delay /Data-Output A ₀ to Output	2.0	31	2.0	40	2.0	40	ns	$V_{CC} = 5.0 \text{ V}, C_L = 50 \text{ pF}, R_L = 2.0 \text{ k}\Omega.$
^t PHL8	Propagation Delay /Data-Output E _a to Output	2.0	33	2.0	43	2.0	43	ns	$V_{CC} = 5.0 \text{ V}, C_L = 50 \text{ pF}, R_L = 2.0 \text{ k}\Omega.$
[†] PLH8	Propagation Delay /Data-Output E _a to Output	2.0	32	2.0	42	2.0	42	ns	$V_{CC} = 5.0 \text{ V}, C_L = 50 \text{ pF}, R_L = 2.0 \text{ k}\Omega.$

MOTOROLA MILITARY FAST/LS/TTL DATA 5-166