MAT02025 - Amostragem 1

AAS: estimativa de valores médios e totais das subpopulações

Rodrigo Citton P. dos Reis citton.padilha@ufrgs.br

Universidade Federal do Rio Grande do Sul Instituto de Matemática e Estatística Departamento de Estatística

Porto Alegre, 2022

Estimativa do valor médio das subpopulações

- Em muitoss levantamentos, as estimativas são feitas para cada uma das várias classes (setores ou domínios) nas quais a população está subdividida.
- ► Em um levantamento domiciliar, estimativas separadas podem ser necessárias para famílias de 0,1,2,... filhos, para proprietários e locatários, ou para famílias em diferentes grupos de ocupação.

Table 2

Prevalence of diabetes mellitus in adults overall and by sex according to sociodemographic and clinical characteristics. Brazilian National Health Survey, 2013 and 2019.

Characteristic	2013						2019						
	Total			Men		Women		Total		Men		Women	
	%	95%CI	%	95%CI	%	95%CI	%	95%CI	%	95%CI	%	95%CI	
Total	6.2	5.9-6.6	5.3	4.8-5.8	7.0	6.5-7.5	7.7	7.4-8.0	6.9	6.5-7.4	8.4	8.0-8.8	
Age (years)													
18-24	0.5	0.3-0.8	0.4	0.1-0.7	0.6	0.2-1.1	0.7	0.4-1.1	1.0	0.4-1.7	0.4	0.2-0.6	
25-34	0.8	0.6-1.0	0.7	0.4-1.1	0.9	0.6-1.2	0.9	0.7-1.2	0.7	0.3-1.0	1.1	0.8-1.5	
35-44	2.9	2.4-3.4	2.4	1.7-3.2	3.4	2.6-4.1	3.1	2.7-3.6	3.1	2.5-3.8	3.2	2.5-3.8	
45-54	6.6	5.8-7.4	5.8	4.6-6.9	7.3	6.2-8.4	7.7	6.9-8.5	6.9	5.8-8.0	8.4	7.2-9.6	
55-64	13.5	12.1-14.9	12.1	9.8-14.3	14.7	12.8-16.6	14.8	13.8-15.7	13.6	12.2-15.0	15.8	14.5-17.1	
≥ 65	19.8	18.2-21.3	17.7	15.1-20.3	21.4	19.3-23.5	21.6	20.5-22.7	20.2	18.6-21.9	22.7	21.2-24.1	
Race/Skin color													
White	6.7	6.1-7.2	6.0	5.2-6.8	7.3	6.5-8.0	8.0	7.6-8.5	7.9	7.1-8.6	8.2	7.5-8.9	
Black	7.3	6.0-8.6	5.5	3.4-7.5	8.9	7.2-10.5	7.8	7.0-8.7	6.9	5.7-8.0	8.7	7.5-9.9	
Mixed-race	5.5	5.0-5.9	4.5	3.8-5.1	6.4	5.7-7.0	7.3	6.9-7.7	5.9	5.3-6.4	8.5	7.9-9.1	
Asian	6.3	3.0-9.6	7.3	0.9-13.7	5.6	2.2-9.0	12.8	7.9-17.7	13.6	6.3-21.0	12.0	5.5-18.5	
Indigenous	6.9	2.7-11.1	5.4	1.8-18.7 *	8.0	2.8-13.2	7.5	4.4-10.6	5.2	1.4-8.9	10.2	5.3-15.1	
Education level													
Incomplete elementary	9.6	9.0-10.3	6.7	5.8-7.5	12.4	11.3-13.4	12.9	12.3-13.5	10.2	9.4-11.0	15.4	14.4-16.3	
Complete elementary	5.4	4.5-6.3	5.4	4.0-6.9	5.4	4.3-6.5	6.3	5.5-7.0	5.4	4.4-6.4	7.1	6.1-8.2	
Complete high school	3.4	2.9-3.8	3.5	2.8-4.2	3.3	2.7-3.8	4.6	4.2-5.0	4.6	4.0-5.2	4.6	4.1-5.1	
Complete higher education	4.1	3.3-5.0	5.5	3.9-7.2	3.1	2.3-4.0	4.7	4.1-5.2	6.0	5.0-7.1	3.6	3.1-4.2	

Fonte: http://dx.doi.org/10.1590/0102-311X00149321.

- Na situação mais simples, cada unidade da população cai em um dos setors.
- Assuma que o j-ésimo setor contém N_i unidades e seja n_i o número de unidades em uma amostra aleatória simples de tamanho n que por acaso caem neste setor.
- Se $Y_{ik}(k=1,2,\ldots,n_i)$ são as medidas nessas unidades, a média da população \overline{Y}_i para o *j*-ésimo setor é estimada por

$$\overline{y}_j = \frac{1}{n_j} \sum_{k=1}^{n_j} Y_{jk}.$$

- À primeira vista, y

 j parece ser uma estimativa de razão (como na última aula).
- Embora n seja fixo, nj variará de uma amostra de tamanho n para outra.
- A complicação de uma estimativa de razão pode ser evitada considerando a distribuição de y

 j

 são fixos.
 - Assumimos $n_i > 0$.

Na totalidade das amostras, com n e n_i determinados, a probabilidade de que qualquer conjunto específico de n_i unidades das N_i unidades no setor *j* sejam sorteadas é

$$\frac{N - N_j C_{n-n_j}}{N - N_j C_{n-n_j} \times N_j C_{n_j}} = \frac{1}{N_j C_{n_j}}.$$

 \triangleright Uma vez que cada conjunto específico de n_i unidades do setor j pode aparecer em todas as seleções de $(n - n_i)$ unidades, dentre as $(N - N_i)$ que não estão no setor j, o numerador acima é o número de amostras contendo um conjunto especificado de n_i e o denominador é o número total de amostras.

▶ Segue-se que os **teoremas das aulas 9, 10 e 11** se aplicam ao Y_{jk} se colocarmos n_i no lugar de n e N_i no lugar de N.

Do **Teorema 9.1**, \overline{y}_i é um estimador não enviesado para \overline{Y}_i .

Do **Teorema 10.1**, o erro padrão de \overline{y}_j é $\frac{S_j}{\sqrt{n_i}}\sqrt{1-(n_j/N_j)}$, em que

$$S_j^2 = \frac{1}{N_j - 1} \sum_{k=1}^{N_j} (Y_{jk} - \overline{Y}_j)^2.$$

De acordo com o **Teorema 11.1** e o **Corolário 11.1** , uma estimativa do erro padrão de \overline{y}_i é

$$\frac{s_j}{\sqrt{n_j}}\sqrt{1-\left(n_j/N_j\right)},$$

em que

$$s_j^2 = \frac{1}{n_j - 1} \sum_{k=1}^{n_j} (Y_{jk} - \overline{y}_j)^2.$$

- ▶ Se o valor de N_j **não for conhecido**, a quantidade n/N pode ser utilizada em lugar de n_i/N_i , no cálculo das **cpf**.
 - ▶ Na amostragem aleatória simples, n_j/N_j é uma estimativa não enviesada de n/N.

- Suponha que na relação de contas a receber de uma empresa, na qual algumas contas foram pagas e outras não, podemos desejar estimar, por meio de uma amostra, o valor total (em reais) das contas não pagas.
- Se N_j (o número de contas não pagas na população) é conhecido, não há problema.
 - A estimativa a partir da amostra é $N_j \overline{y}_j$ e seu erro padrão condicional é N_j vezes $\frac{S_j}{\sqrt{n_j}} \sqrt{1 (n_j/N_j)}$.

- Alternativamente, se o valor total a receber, de acordo com a relação das contas, for conhecido, uma estimativa de razão pode ser usada.
 - A amostra fornece uma estimativa da razão (montante total de faturas não pagas) / (montante total de todas as faturas).
 - Isso é multiplicado pelo valor total a receber conhecido na relação das contas.

- Se nem N_j , e nem o total a receber é conhecido, essas estimativas não podem ser feitas.
- ► Em vez disso, multiplicamos o valor amostral total das unidades Y contidas no j-ésimo setor pelo fator de expansão N/n.
- Isso dá a estimativa

$$\hat{Y}_{T_j} = \frac{N}{n} \sum_{k=1}^{n_j} Y_{jk}.$$

- Mostraremos que \hat{Y}_{T_j} é imparcial e obteremos seu erro padrão sobre amostras repetidas de tamanho n.
 - ightharpoonup O artifício de manter n_i constante, bem como n não ajuda neste caso.

- Ao fazermos a demonstração, voltamos à notação original, na qual Y_i é a medida da i-ésima unidade da população.
- \triangleright Defina para cada unidade na população uma nova variável Y_i' , em que

$$Y'_i = \begin{cases} Y_i, & \text{se a unidade pertencer ao setor } j, \\ 0, & \text{caso contrário.} \end{cases}$$

ightharpoonup O valor **total populacional** da variável Y'_i é

$$\sum_{i=1}^{N} Y_i' = \sum_{\text{setor } i} Y_i = Y_{T_i}.$$

- Em uma amostra aleatória simples de tamanho n, $Y'_i = Y_i$ para todas as n_j unidades que se encontram no j-ésimo setor; $Y'_i = 0$ para todas as restantes $n n_i$ unidades.
- ▶ Se \overline{y}' é a média amostral de Y'_i , então temos

$$N\overline{y}' = \frac{N}{n} \sum_{i=1}^{n} Y_i' = \frac{N}{n} \sum_{k=1}^{n_j} Y_{jk} = \hat{Y}_{T_j}$$

Este resultado mostra que a estimativa \hat{Y}_{T_j} é N vezes a média amostral de Y_i' .

- Em repetidas amostras de tamanho n, podemos aplicar os teoremas das aulas 9, 10 e 11 às variáveis Y'_i .
- Estes, por sua vez, mostram que \hat{Y}_{T_j} é uma estimativa imparcial de Y_{T_j} com erro padrão

$$\sigma(\hat{Y}_{T_j}) = \frac{NS'}{\sqrt{n}} \sqrt{1 - (n/N)},$$

em que S' é desvio padrão populacional de Y'_i .

 \triangleright Para calcular S', consideramos a população como consistindo de N_i valores Y_i que estão no *i*-ésimo setor e de $N-N_i$ valores zero. Assim

$$S^{\prime 2} = \frac{1}{N-1} \left(\sum_{\text{setor } j} Y_i^2 - \frac{Y_{T_j}^2}{N} \right).$$

Pelo teorema da aula 11, uma estimativa amostral do erro padrão de \hat{Y}_{T_i} será

$$s(\hat{Y}_{T_j}) = \frac{Ns'}{\sqrt{n}}\sqrt{1-(n/N)}.$$

No cálculo de s', qualquer unidade que não esteja no j-ésimo setor recebe um valor zero.

- Às vezes é possível, com algum esforço, identificar e contar as unidades que não contribuem com nada, de modo que em nossa notação $(N N_i)$, e portanto N_i , seja conhecido.
- Consequentemente, vale a pena examinar o quanto da $Var(\hat{Y}_{T_j})$ é reduzido quando N_j é conhecido.
- ► Se N_i não for conhecido, temos (pelo Corolário 10.2)

$$\operatorname{Var}(\hat{Y}_{T_j}) = \frac{N^2 S'^2}{n} \left(1 - \frac{n}{N} \right).$$

▶ Se \overline{Y}_j e S_j são a média e o desvio padrão no setor de interesse (ou seja, entre as unidades diferentes de zero), é possível verificar que

$$(N-1)S'^2 = (N_j-1)S_j^2 + N_j \overline{Y}_j^2 \left(1 - \frac{N_j}{N}\right).$$

Uma vez que os termos em $1/N_j$ e 1/N são quase sempre insignificantes, temos

$$S'^2 \stackrel{\cdot}{=} P_j S_j^2 + P_j Q_j \overline{Y}_j^2,$$
 em que $P_i = N_i/N$ e $Q_i = 1 - P_i.$

Desta forma,

$$\operatorname{Var}(\hat{Y}_{T_j}) \stackrel{\cdot}{=} \frac{N^2}{n} (P_j S_j^2 + P_j Q_j \overline{Y}_j^2) \left(1 - \frac{n}{N}\right). \tag{1}$$

Se as unidades diferentes de zero forem identificadas (ou seja, se N_j for conhecido), retiramos delas uma amostra de tamanho n_j . A estimativa do total do setor é $N_j \overline{y}_j$ com variância

$$Var(N_{j}\overline{y}_{j}) = \frac{N_{j}^{2}}{n_{j}}S_{j}^{2}\left(1 - \frac{n_{j}}{N_{j}}\right) = \frac{N^{2}}{n_{j}}P_{j}^{2}S_{j}^{2}\left(1 - \frac{n_{j}}{N_{j}}\right). \tag{2}$$

- As variâncias dadas pelas expressões (1) e (2) são comparáveis.
- ► Em (1), o número médio de unidades diferentes de zero na amostra de tamanho n é nP_i.
- Se tomarmos $n_j = nP_j$ em (2), de modo que o número de valores diferentes de zero a serem medidos seja aproximadamente o mesmo com ambos os métodos, (2) torna-se

$$\operatorname{Var}(N_{j}\overline{y}_{j}) = \frac{N^{2}}{n}P_{j}S_{j}^{2}\left(1 - \frac{n}{N}\right). \tag{3}$$

► A razão entre as variâncias (3) e (1) é

$$\frac{\mathsf{Var}\left(\textit{N}_{j} \; \mathsf{conhecido}\right)}{\mathsf{Var}\left(\textit{N}_{j} \; \mathsf{desconhecido}\right)} = \frac{\textit{S}_{j}^{2}}{\textit{S}_{i}^{2} + \textit{Q}_{j} \overrightarrow{\textit{Y}}_{i}^{2}} = \frac{\textit{C}_{j}^{2}}{\textit{C}_{j}^{2} + \textit{Q}_{j}} \leq 1,$$

em que $C_j = S_j/\overline{Y}_j$ é o **coeficiente de variação** entre as unidades de valores diferentes de zero.

Observação

Como era de se esperar, a redução da variância, decorrente do conhecimento de N_j, é maior quando a proporção de unidades de valor nulo é grande e quando Y_j varia relativamente pouco entre as unidades de valor diferente de zero. Para casa (PQP)

Para casa (PQP)

Para casa (PQP)

Considere o exemplo da aula 11 (assinaturas de uma petição). Depois de selecionada a amostra, o número de folhas completamente cheias (com 42 assinaturas cada) foi contado e verificou-se que eram 326. Use essa informação para fazer uma estimativa melhorada do número total de assinaturas e achar o erro padrão da sua estimativa.

Próxima aula

► Validade da aproximação normal.

Por hoje é só!

Bons estudos!

