

Kecerdasan Buatan (Artificial Intelligence)

Regression

Chandra Prasetyo Utomo

Learning Objectives

Lecture Outline

1 Supervised Learning

- 2 Model Representation
- **3** Model Learning

Section 1

Supervised Learning

House Price Prediction in East Bekasi

Size (m²)	Bed	Bath	 Price (IDR million)
82	3	2	 700
51	2	2	 600
41	3	2	 755

Size (m²)	Bed	Bath	 Price (IDR million)
98	4	3	 ???
45	3	1	 ???
36	2	1	 ???

Source: rumah.com

House Price Prediction: Simplified

Training Data

Testing Data

 $\boldsymbol{\chi}$

 χ

y

Size (m²)	Price (IDR million)
82	700
51	600
41	755

	,
Size (m²)	Price (IDR million)
98	???
45	???
36	???

$$x = size$$
; $y = price$
 $h(x) = y$

Because y is a **continuos variable**, then this will be a **REGRESSION** problem.

if y was a **discrete variable** (class), then this would be a **CLASSIFICATION** problem.

Breast Cancer Diagnostic

Benign (B): not harmful Malignant (M): deadly

Clump Thickness	Cell Size	Cell Shape	 Diagnostic
5	4	4	 В
8	10	10	 M
4	1	1	 В

Clump Thickness	Cell Size	Cell Shape	 Diagnostic
6	8	8	 ?
3	2	1	 ?
7	4	6	 ?

Breast Cancer Diagnostic: Simplified

Training Data

 χ

Cell Size	Diagnostic
4	В
10	M
1	В

y

Testing Data

		7

Cell Size	Diagnostic
8	?
2	?
4	?

$$x = cell \ size$$

 $y = diagnostic$

$$h(x) = y$$

Because y is a **discrete variable** (class), then this is a **CLASSIFICATION** problem.

Supervised Learning Procedure

Training Data

Size (m²)	Price (IDR million)
82	700
51	600
41	755

Training Data

Machine Learning Algorithm

Size (m²)	Price (IDR million)
98	???
45	???
36	???

Trained Model

Prediction

 χ

$$h(x) = y$$

 \mathcal{V}

Section 2

Model Representation

Notation

Training Data of Housing Prices (East Bekasi)

x y

	size in m ²	Price (IDR) in million
1	82	700
2	51	600
3	41	755
	•••	
m	67	1200

x = features / input variable y = target / output variable m = number of training examples (x, y) = a single training example $(x^{(i)}, y^{(i)}) = i^{\text{th}}$ training example

$$x^{(1)} = 82$$

 $x^{(2)} = 51$
 $y^{(2)} = 600$
 $(x^{(3)}, y^{(3)}) = (41, 755)$

Linear Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

h: a linear model, maps from x to y

 θ_0 , θ_1 : parameters

x: input

Hypothesis

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$\theta_0 = 0$$
$$\theta_1 = 0.5$$

Mean Squared Error (MSE)

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Error = predicted – actual
=
$$h_{\theta}(x) - y$$

Squared Error = Error²
=
$$(h_{\theta}(x) - y)^2$$

$$\begin{aligned} \mathsf{MSE} &= \frac{1}{m} \left\{ \, \big(h_\theta \big(x^{(1)} \big) - y^{(1)} \big)^2 + \big(h_\theta \big(x^{(2)} \big) - y^{(2)} \big)^2 + \ldots + \, + \, \big(h_\theta \big(x^{(m)} \big) - y^{(m)} \big)^2 \, \right\} \\ &= \frac{1}{m} \, \sum_{i=1}^m \big(h_\theta \big(x^{(i)} \big) - y^{(i)} \big)^2 \end{aligned}$$

Cost Function $J(\theta_0, \theta_1)$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Objective: Find θ_0 , θ_1 such that $h_{\theta}(x)$ is close to y for training example (x, y)

$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

Training Data

X	у
1	1
2	2
3	3

Simplified Model: $h_{\theta}(x) = \theta_1 x$

Parameter: θ_1

Cost Function:
$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Objective: $\min_{\theta_1} J(\theta_1)$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$x^{(i)}$	$y^{(i)}$	$h_{\theta}(x^{(i)})$	$h_{\theta}(x^{(i)}) - y^{(i)}$	$(h_{\theta}(x^{(i)}) - y^{(i)})^2$
1	1	0	0 - 1 = -1	$(-1)^2 = 1$
2	2	0	0 - 2 = -2	$(-2)^2 = 4$
3	3	0	0 - 3 = -3	$(-3)^2 = 9$
$\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$			1 + 4 + 9 = 14	
$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$			14 / 6 = 2.33	

$$J(0.0) = 2.33$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$x^{(i)}$	$y^{(i)}$	$h_{\theta}(x^{(i)})$	$h_{\theta}(x^{(i)}) - y^{(i)}$	$(h_{\theta}(x^{(i)})-y^{(i)})^2$
1	1	0.5	0.5 - 1 = -0.5	$(-0.5)^2 = 0.25$
2	2	1.0	1.0 - 2 = -1.0	$(-1.0)^2 = 1.00$
3	3	1.5	1.5 - 3 = -1.5	$(-1.5)^2 = 2.25$
$\sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$				0.25 + 1.00 + 2.25 = 3.50
$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$				3.50 / 6 = 0.58

$$J(0.5) = 0.58$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$x^{(i)}$	$y^{(i)}$	$h_{\theta}(x^{(i)})$	$h_{\theta}(x^{(i)}) - y^{(i)}$	$(h_{\theta}(x^{(i)})-y^{(i)})^2$
1	1	1	0	0
2	2	2	0	0
3	3	3	0	0
	$\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$			0
	$\frac{1}{2m}$	$\sum_{i=1}^{m} (h_{\theta}(x^{(i)}))$	0	

$$J(1.0) = 0$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$x^{(i)}$	$y^{(i)}$	$h_{\theta}(x^{(i)})$	$h_{\theta}(x^{(i)}) - y^{(i)}$	$(h_{\theta}(x^{(i)}) - y^{(i)})^2$
1	1	1.5	0.5	0.25
2	2	3.0	1.0	1.00
3	3	4.5	1.5	2.25
	$\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$			3.50
	$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$			3.50 / 6 = 0.58

$$J(1.5) = 0.58$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$x^{(i)}$	$y^{(i)}$	$h_{\theta}(x^{(i)})$	$h_{\theta}(x^{(i)}) - y^{(i)}$	$(h_{\theta}(x^{(i)})-y^{(i)})^2$
1	1	2	1	1
2	2	4	2	4
3	3	6	3	9
	$\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$			14
	$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$			14 / 6 = 2.33

$$J(2) = 2.33$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$ heta_1$	$J(\theta_1)$
0.0	2.33
0.5	0.58
1.0	0.00
1.5	0.58
2.0	2.33

The closer θ_1 to the optimal value, the smaller its cost function $J(\theta_1)$

Section 3

Model Learning

Idea

Define a cost function $J(\theta_0, \theta_1)$

Try minimize
$$J(\theta_0, \theta_1)$$

Plan:

- Initialize θ_0 , θ_1 .
- Iteratively update θ_0 , θ_1 to minimize $J(\theta_0, \theta_1)$ until reach minimum point.

Intuition: what we need to "go down"?

Need two things:

- 1. Direction
- 2. Movement

Gradient Descent Algorithm

Repeat until convergence {

$$\theta_0 \coloneqq \theta_0 - \alpha \frac{\delta}{\delta \theta_0} J(\theta_0, \theta_1)$$

$$\theta_1 \coloneqq \theta_1 - \alpha \frac{\delta}{\delta \theta_1} J(\theta_0, \theta_1)$$

 $\frac{\delta}{\delta\theta_j}J(\theta_0,\theta_1)$ = "direction" (partial derivative)

 α = "learning rate" (set manually)

Choose Learning Rate α (Manually)

$$\theta_1 \coloneqq \theta_1 - \alpha \frac{\delta}{\delta \theta_1} J(\theta_0, \theta_1)$$

If α is too small, gradient descent can be slow.

If α is too big, gradient descent can overshoot the minimum (fail to converge).

Compute Partial Derivative

$$\frac{\delta}{\delta\theta_j} J(\theta_0, \theta_1) = \frac{\delta}{\delta\theta_j} \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$
$$= \frac{\delta}{\delta\theta_j} \frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 x^{(i)} - y^{(i)})^2$$

$$\frac{\delta}{\delta\theta_0}J(\theta_0,\theta_1) = \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)}\right)$$

$$\frac{\delta}{\delta\theta_1}J(\theta_0,\theta_1) = \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)}\right) x^{(i)}$$

Gradient Descent for Linear Regression

Repeat until convergence {

$$\theta_0 \coloneqq \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\theta_1 \coloneqq \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x^{(i)}$$

update θ_0 and θ_1 simultaneously

Thank you!

Acknowledgment

Slide Template:

https://www.free-powerpoint-templates-design.com/

Slide Creator:

Chandra Prasetyo Utomo

Reference:

Machine Learning course (Coursera) from Andrew Ng

