NCERT: Class XII

Pavan Kumar P - FWC22088

- 13.4.4 Find the probability distribution of
 - (i) number of heads in two tosses of a coin.
 - (ii) number of tails in the simultaneous tosses of three coins.
 - (iii) number of heads in four tosses of a coin.

Solution:

(a) number of heads in two tosses of a coin.

Given, number of trails = n = 2 probability of getting head for one coin $= p = \frac{1}{2}$ probability of not getting a head = q = 1- $p = \frac{1}{2}$ let X represent the number of heads in two tosses of a coin \therefore the values of $X = \{0, 1, 2\}$ by using binomial distribution

$$P(X) = {}^{n}C_{X}p^{X}q^{n-X} (13.4.1.1)$$

X	0	1	2
D(17)	1	1	1
P(X)	$\frac{1}{4}$	$\overline{2}$	$\frac{\overline{4}}{4}$

Table 13.4.1.1: Probability Distribution of X

(b) number of tails in the simultaneous tosses of three coins.

Given, number of trails= n = 3 probability of getting tail for one coin = p = $\frac{1}{2}$ probability of not getting tail = q = 1-p = $\frac{1}{2}$ let X represents the number of tails in simultaneous tosses of three coins : the values of X = $\{0,1,2,3\}$ by using binomial distribution

$$P(X) = {}^{n}C_{X}p^{X}q^{n-X} (13.4.2.2)$$

X	0	1	2	3
P(X)	1	3	3	1
	$\frac{-}{8}$	$\frac{-}{8}$	$\frac{-}{8}$	$\frac{-}{8}$

Table 13.4.2.2: Probability Distribution of X

(c) number of heads in four tosses of a coin.

given, number of trails n=4 probability of getting a head for one coin = $p=\frac{1}{2}$ probability of not getting a head = $q=1\text{-}p=\frac{1}{2}$ let X represents the number of tails in simultaneous tosses of three coins

 \therefore the values of $X = \{0,1,2,3,4\}$ by using binomial distribution

$$P(X) = {}^{n}C_{X}p^{X}q^{n-X}$$
 (13.4.3.3)

	X	0	1	2	3	4
ĺ	D(X)	1	4	6	4	1
	P(X)	$\overline{16}$	$\overline{16}$	$\overline{16}$	$\overline{16}$	$\overline{16}$

Table 13.4.3.3: Probability Distribution of X