

Dipartimento di Elettronica e Informazione

POLITECNICO DI MILANO

Automazione industriale dispense del corso (a.a. 2008/2009)

9. Reti di Petri: analisi dinamica e metodi di riduzione

Luigi Piroddi piroddi@elet.polimi.it

Metodi di analisi di Reti di Petri

Ci sono 2 modi per analizzare una rete di Petri:

◆ Analisi dinamica → insieme e grafo di raggiungibilità
Si studiano tutte le marcature raggiungibili con sequenze di scatto ammissibili a partire da una determinata condizione iniziale (metodo esaustivo).

Il grafo di raggiungibilità è l'automa corrispondente alla rete di Petri marcata (ogni marcatura è associata ad uno stato dell'automa e ogni transizione della rete ad una transizione dell'automa).

Limiti:

- ▼ dipende dalla marcatura iniziale
- ▼ il numero di stati può essere elevato e addirittura infinito (anche per reti di Petri molto semplici)
- ▼ piccole variazioni rete di Petri ⇒ occorre ricalcolare l'insieme di raggiungibilità (v. automi)
- 2 Analisi strutturale → *strutture algebriche* (invarianti, sifoni, trappole) Dipende solo dalla matrice di incidenza, cioè dalla topologia della rete.

Grafo di raggiungibilità

Si definisce grafo di raggiungibilità di una rete N con marcatura iniziale M_0 il grafo in cui:

- ightharpoonup i nodi sono associati agli elementi di $R(N,M_0)$
- ▶ gli archi sono associati alle transizioni che portano da una marcatura ad un'altra di $R(N,M_0)$.

Caratteristiche del grafo di raggiungibilità:

- ► Il grafo di raggiungibilità è un automa.
- ► Tale automa non ha in generale un numero finito di stati, poiché qualche posto della rete può contenere un numero illimitato di gettoni.
- Ci possono essere nodi con più archi uscenti (non determinismo)

Le seguenti proprietà di una rete di Petri possono essere facilmente verificate per ispezione del grafo di raggiungibilità:

- ► numero di stati finito → limitatezza (boundedness)
- ▶ non esistono stati associati a marcature con più di un gettone per posto → rete binaria/sicura (*safeness*)
- a partire da ciascun nodo del grafo esiste un cammino contenente un arco associato ad ogni transizione → vivezza (*liveness*)
- ▶ se esiste un nodo senza archi uscenti, esso corrisponde ad una marcatura morta (deadlock)
- a partire da ciascun nodo del grafo esiste un cammino che lo congiunge con il nodo iniziale → reversibilità (reversibility)

In generale è possibile verificare:

- la raggiungibilità di una marcatura
- l'ammissibilità di una sequenza di scatti

Costruzione del grafo di raggiungibilità

- **1** Disegno un nodo contrassegnato M_0 associato alla marcatura iniziale. Tale nodo è il nodo corrente.
- Sia M_k la marcatura associata al nodo corrente. Se non ci sono più transizioni attivabili a partire da M_k e non considerate in precedenza con riferimento al medesimo nodo, allora se k > 0 (il nodo corrente non è associato a M_0), si definisce nodo corrente il nodo associato a M_{k-1} , altrimenti l'algoritmo termina.
- Sia M_k la marcatura associata al nodo corrente. Si segue la prima transizione (non considerata in precedenza con riferimento al nodo corrente) che può scattare a partire da M_k , e si calcola la marcatura raggiunta con il suo scatto. Se tale marcatura non appartiene all'insieme $\{M_i, i=0, 1, ..., k\}$, la si chiama M_{k+1} e si crea un nodo associato ad essa, che diventa il nuovo nodo corrente. Si disegna un arco che va dal nodo associato a M_k al nodo corrispondente alla marcatura raggiunta con lo scatto della transizione e si contrassegna l'arco con l'etichetta della transizione.
- **4** Si ripete a partire dall'operazione (2).

Esempi:

NB. In questi casi i due grafi sono di dimensioni comparabili: in generale ciò non accade (basti pensare a cosa succede se si aumenta la marcatura iniziale.).

Grafo di copertura

Si può costruire un grafo di raggiungibilità con un numero finito di nodi per una rete non limitata?

- \blacktriangleright si introduce il simbolo ω per indicare un numero intero non limitato di gettoni in un posto
- ▶ si ottiene un grafo particolare che va sotto il nome di grafo di copertura

Significato del simbolo ω:

Si consideri una sequenza ammissibile di scatti che porti da M a M (M (S > M), e sia M $\geq M$, M $\neq M$ (ovvero $\exists k$ tale che m_k $\gg m_k$).

Poiché $M'' \ge M'$, la medesima sequenza S è ancora abilitata in M''.

Quindi, esiste una marcatura M''' tale che M''[S>M''' con $M''' \ge M''$.

Iterando l'applicazione della sequenza S i posti che "guadagnano" gettoni, ne possono guadagnare un numero grande a piacere, ovvero sono non limitati.

Nel grafo di copertura, la loro marcatura viene denotata con ω .

Costruzione del grafo di copertura

- A partire dal nodo iniziale M_0 , si rappresentano tutte le transizioni abilitate e le corrispondenti marcature successive; se qualcuna di queste marcature è tale che $M_i \ge M_0$, $M_i \ne M_0$, si indicano con il simbolo ω le sue componenti strettamente maggiori delle corrispondenti di M_0 .
- **2** Per ogni nuova marcatura M_i si svolge il passo (a) o il (b):
 - a) Se c'è già una marcatura uguale a M_i nel cammino tra M_0 e M_i allora M_i non ha nodi successori.
 - b) Se non c'è una marcatura uguale a M_i nel cammino tra M_0 e M_i allora l'albero è esteso aggiungendo tutti i nodi M_k successori di M_i ; le componenti pari a ω di M_i sono riportate in ogni M_k ; inoltre, se c'è una marcatura $M_j \leq M_k$ e con almeno una componente strettamente minore della corrispondente componente di M_k nel cammino tra M_0 e M_k , si indicano con ω le componenti di M_k strettamente maggiori di quelle di M_i .
- 3 Quello ottenuto fino al passo (2) è l'albero di copertura. Il grafo di copertura si ottiene fondendo i nodi dell'albero di copertura associati a marcature uguali.

Esempio:

NB. Per una rete non limitata, il problema della raggiungibilità di una marcatura e quello della vivezza non possono essere risolti con l'ausilio del solo grafo di copertura.

Metodi di riduzione

Nella costruzione di modelli di sistemi produttivi con reti di Petri è importante, di solito, accertare alcune proprietà fondamentali:

- limitatezza tutte le risorse del sistema (buffer, macchine, prodotti, ecc.) sono limitate
- vivezza si vuole evitare che il processo produttivo si interrompa (assenza di deadlock), e si vuole far sì che tutte le attività rappresentate nel modello possano essere eseguite (vivezza delle transizioni)
- 3 reversibilità occorre assicurare la ripetibilità del processo produttivo

E' relativamente agevole accertare queste proprietà su reti di piccole dimensioni, ma come si può fare l'analisi di reti complesse o di grosse dimensioni?

Si possono usare delle *regole di riduzione* della rete:

- semplificano la struttura
- non alterano le proprietà fondamentali (limitatezza, vivezza e reversibilità)

Così si può ricondurre una rete complessa ad una più semplice ed accertare la limitatezza, la vivezza e la reversibilità della prima analizzando la seconda.

Regole di riduzione più usate:

- ► fusione di posti connessi in serie
- fusione di transizioni connesse in serie
- ► fusione di posti connessi in parallelo
- fusione di transizioni connesse in parallelo
- eliminazione di autoanelli di posti
- eliminazione di autoanelli di transizioni

Fusione di posti connessi in serie:

Non cambiano le proprietà complessive di evoluzione della rete, perchè tutte le volte che si marca p_1 è abilitato lo scatto della transizione e prima o poi si marcherà anche p_2 abilitando le transizioni in p_2 •. A maggior ragione, l'andamento è equivalente se p_2 si marca per effetto dello scatto di altri transizioni. Per ogni marcatura della rete originaria ce n'è una nella rete nuova con $m_{12} = m_1 + m_2$. Per ogni sequenza di scatti contenente t della rete originaria, ce n'è una uguale nella rete nuova (in cui t è filtrata).

Fusione di transizioni connesse in serie:

Anche in questo caso, lo scatto di t_1 abilita t_2 e l'effetto complessivo dello scatto di t_1 e t_2 è equivalente allo scatto di t_{12} nella rete ridotta.

Fusione di posti connessi in parallelo:

Fusione di transizioni connesse in parallelo:

Eliminazione di autoanelli di posti:

Se $n \ge k$, il posto abilita sempre la transizione (la cui effettiva abilitazione dipende dagli altri posti nel suo preset) e ogni volta che essa scatta mantiene lo stesso numero di gettoni. Pertanto è ininfluente sull'evoluzione della rete e può essere eliminato. Attenzione però che se n < k, la transizione è morta!

Eliminazione di autoanelli di transizioni:

Se esiste almeno una marcatura raggiungibile in cui il posto ha almeno k gettoni, la transizione non è morta. Peraltro, se la transizione scatta la marcatura della rete rimane invariata. In tal caso, quindi, la transizione è ininfluente e può essere eliminata.

Esempio

Poiché la rete ridotta è limitata, viva e reversibile, lo è anche la rete di partenza.