Indicadores de Control

Guia Práctica

Autor: Juan Pablo Pussacq Laborde

Mod: Alejandro Sasin

Agenda

- Introducción
- ¿Avance?
- ¿Cuándo?
- Resumen
- Material Adicional

Introducción

May 2009

La incertidumbre del líder de proyecto

¿Cuál es el AVANCE?

¿CUANDO terminaremos?

¿CUANTO gastaremos?

¿Tengo información confiable para tomar la decisión correcta?

Primer paso para una solución

- Enfrentar la realidad
 - La realidad es una prueba del producto que estamos construyendo
 - La realidad es un usuario evaluando al producto por primera vez

- Eliminar el pensamiento mágico
 - Buscar evidencias físicas de avance

Una solución

En un proyecto en donde existe un equipo de desarrollo y un equipo de prueba que trabajan en paralelo, podemos registrar avance periódicamente basado en evidencia física.

¿Cuál es la evidencia?

Agenda

- Introducción
- ¿Avance?
- ¿Cuándo?
- Resumen
- Material Adicional

Errores clásicos al medir el avance

- Avance por calendario:
 - Se registra avance sólo por paso del tiempo
- Avance por código completo:
 - □ Se registra avance sólo por desarrollo terminado
 - □ Pero ... ¿Tiene defectos?
- Consecuencia: Síndrome del 90%

La Funcionalidad Completa

- Dividir al producto en partes
- Medirlas en forma binaria
 - □ Están completas
 - No están completas
- ¿Cuándo está completa una parte?
 - □ Cuando ha sido desarrollada
 - □ Cuando ha sido probada
 - □ Cuando no posee defectos críticos

Paso 1) Encontrar las Funcionalidades

Paso 2) Pesar las Funcionalidades

- No todas las funcionalidades poseen la misma complejidad
- Por eso se las pesa
- ¿Cuál es la medida de peso?
 - Cuánto más detallado, más exacto
 - □ ... Pero más difícil de obtenerlo y de administrarlo
- Ejemplos
 - □ Simple, Mediano, Complejo
 - □ 5 Estados
 - □ Esfuerzo estimado (sólo si disponemos de esa información)

Funcionalidad	Peso
Parte A	2
Parte B	3
Parte C	1

Paso 3) Fechas

- 1. Estimar la fecha en que la funcionalidad estará completa
- 2. A medida que avanza el proyecto registrar las fechas reales de funcionalidad completa

Funcionalidad	Peso	Fecha estimada	Fecha Real
Parte A	2	12/10/2004	
Parte B	3	15/10/2004	
Parte C	1	17/10/2004	18/10/2004

Otras curvas

- Código completo:
 - Sólo informativa
 - Oculta el síndrome del 90%

- Aprobación de Usuario
 - Es el avance más seguro
 - Sólo para entregas al usuario
 - Escalonada

- Productividad
 - 15 PFC en 5 Sem
 - Productividad = 3 PFC x Sem
 - □ Proyección = 13 Sem para 40 PFC faltantes

Consideraciones

- Validez
 - No es válido en etapa final de estabilización
- Proceso
 - Requiere foco en cerrar partes periódicamente
- Síndrome del 0%
 - □ Funcionalidad completa = sin defectos críticos
 - Pero puede tener defectos
- Funcionalidad = Código
 - Podría utilizarse para especificaciones en proyectos con marcada etapa de Análisis

El indicador de Nivel de Calidad

- Es un complemento a FC
- Brinda información adicional a la binaria

Funcionalidad	Peso	Fecha estimada	Fecha Real	Estado
Parte A	2	12/10/2004		Con defectos críticos
Parte B	3	15/10/2004		En elaboración
Parte C	1	17/10/2004	18/10/2004	Aprobado por Usuario

Análisis de Avance

 Utilizando campos que corten la información puedo ver el avance en forma más detallada

- □ Por Tarea
- □ Por Producto
- Por sub nivel de Producto
- □ Por Equipo
- □ Por WBS
- □ Por Ciclo de Negocio

Análisis de Avance

Las dimensiones - Producto

Las dimensiones - Subproducto

Agenda

- Introducción
- ¿Avance?
- ¿Cuándo?
- Resumen
- Material Adicional

¿En que fecha terminaremos?

- Con FC se puede predecir la fecha de fin
- Pero no sabremos cuánto cuesta en tiempo y recursos la estabilización
- ¿ Cuántos defectos más aparecerán?

El Indicador de Evolución de la Prueba

- 1. Registrar los defectos nuevos a medida que aparecen
- 2. Registrar los **cambios de estado** de los mismos hasta que se **cierren** definitivamente

¿Cómo estimar la fecha de fin?

- Se conocen los tiempos de corrección y por lo tanto se obtienen estadísticas de velocidad de corrección
 - Cantidad de defectos nuevos por día
 - Cantidad de defectos cerrados por día
- Esto permite proyectar cuando tenemos una muestra representativa

Bug Convergence

- Momento en que la cantidad de defectos nuevos converge con la cantidad de cerrados
- Tenemos un problema si no se logra esta convergencia

Zero Bug Bounce

- El primer momento en el proyecto en que no hay defectos activos
- Se vuelve crítica la priorización

Consideraciones

- Validez
 - Válido durante la estabilización
 - □ Valido durante todo el proyecto si hay prueba en paralelo

Proceso

- Ayuda a detectar el síndrome del 90% y se complementa bien con FC
- Permite validar la aplicación correcta del proceso de desarrollo y prueba en paralelo
- □ Ayuda al proceso de priorización

El Indicador de Cobertura de la Prueba

- Actúa como complemento de EP para obtener información más exacta
- Mide Casos de Prueba
- ¿Cuánto hay que probar?
- ¿Cuánto se probó?
- ¿Cuánto funciona bien?

¿Cómo construirlo?

- Casos Planificados:
 - □ Cantidad de Casos a Ejecutar
- Casos Disponibles:
 - □ Lo entregado por Desarrollo al equipo de Prueba
- Casos Ejecutados:
 - □ Lo que el equipo de prueba probó
- Casos Ejecutados OK:
 - Lo que funciona

¿Cómo usarlo?

- Como otra forma de medir avance
 - □ Ejecutados OK
- Para predecir futuro

Agenda

- Introducción
- ¿Avance?
- ¿Cuándo?
- Resumen
- Material Adicional

Resumen

- Avance
 - ☐ Síndrome 90%
 - FuncionalidadCompleta
 - □ Binario
 - □ Pesos
 - Avance cuando no posee defectos críticos
 - Dimensiones

- Liberación
 - Estadística de corrección
 - □ Proyecciones
- Otros
 - Cobertura de la Prueba
 - Evolución de la Prueba

Agenda

- Introducción
- ¿Avance?
- ¿Cuándo?
- Resumen
- Material Adicional

Material adicional

- MSF
 - □ www.microsoft.com/msf
 - The MSF Process Model v3.1
 - □ Páginas 36 a 37
- ¿QC = PC?
 - □ http://www.rmya.com.ar/Download/QC%20y%20PC%20-%20Indicadores%20de%20Control.pdf
 - Páginas 1 a 6
- Teórica
 - □ Control de Proyectos

Administración y Control de Proyectos I – Proyectos Informáticos

