

CompSci 401: Cloud Computing

Spark

Prof. Ítalo Cunha

Programming Paradigms for Big Data

- Different solutions for different types of Big Data analysis
 - Batch Processing
 - Large datasets, extract-transform-load (ETL) tooling, DataFrames
 - Interactive Queries (SQL and others)
 - IPython, Jupyter, DataFrames
 - Stream Processing
 - Network security monitoring, tweet processing, log mining
 - Graph Analysis
 - Machine Learning (many different sub-paradigms)
 - Spam detection, image processing, genome sequencing, model construction

One specialized engine per task

- Pro: Specialized engines with high-performance
- Con: Hard to integrate across engines
 - Some applications cannot be expressed in a single engine

Batch

Query

Stream

Graphs

ML

Spark: Integrate Multiple Paradigms

- Pro: Single engine with support for multiple paradigms
- Con: Possibly lower performance due to non-specialized engine

Spark: Integrate Multiple Paradigms

- Pro: Single engine with support for multiple paradigms
- Con: Possibly lower performance due to non-specialized engine
 - Spark achieves high performance
 - Uses similar implementation to specialized engines

Spark: Integrate Multiple Paradigms

- Pro: Single engine with support for multiple paradigms
 - Resilient Distributed Datasets (RDDs) as building block
 - Much easier to integrate different Big Data solutions
 - For example, no saving intermediate results to disk
- Con: Possibly lower performance due to non-specialized
 - Spark achieves high performance
 - Uses similar implementation to specialized engines

A vantagem de combinar soluções

A vantagem de combinar soluções

Resilient Distributed Datasets

- High-performance
- General computation
- Lazy evaluation
- Ephemeral
- Lineage-based reconstruction
- Data sharing across different solutions
 - In-memory

Resilient Distributed Datasets

- High-performance
- General computation
- Lazy evaluation
- Ephemeral
- Lineage-based reconstruction
- Data sharing across different solutions

Spark Performance

- Spark beats Hadoop
 - Loads data only once instead of on each iteration

Spark Performance

Spark is competitive with specialized systems

Resilient Distributed Datasets

- High-performance
- General computation
- Lazy evaluation
- Ephemeral
- Lineage-based reconstruction
- Data sharing across different solutions

MapReduce can express any computation

MapReduce can express any computation

- MapReduce can express any computation
- But not very efficient

- MapReduce can express any computation
- But not very efficient
 - High latency between rounds
 - Well-defined round boundaries limit optimizations across rounds
 - On-disk replication of data across each step
 - No in-memory sharing
 - Fixed communication pattern

Hadoop hardware cluster model

• Hadoop assumes servers with compute, memory, and disks

Hardware Bottlenecks

• Hadoop assumes servers with compute, memory, and disks

- 50GB/s RAM
- 1-2 GB/s disk
- 1.2 GB/s intra-rack bandwidth
- 0.2 GB/s average bandwidth inter-rack

Hardware Bottlenecks

Hadoop assumes servers with compute, memory, and disks

- 50GB/s RAM
- 1-2 GB/s disk
- 1.2 GB/s intra-rack bandwidth
- 0.2 GB/s average bandwidth inter-rack

Optimizing anything other than the bottleneck incurs minor benefits

RDDs provide flexibility

Hadoop assumes servers with compute, memory, and disks

- 50GB/s RAM
- 1-2 GB/s disk
- 1.2 GB/s intra-rack bandwidth
- 0.2 GB/s average bandwidth inter-rack

Optimizing anything other than the bottleneck incurs minor benefits, RDDs are general enough to allow optimization at hardware boundaries

Resilient Distributed Datasets

- High-performance
- General computation
- Lazy evaluation
- Ephemeral
- Lineage-based reconstruction
- Data sharing across different solutions

Creating RDDs

- From a file
- By "parallelizing" a data structure (array or dictionary)
 - Each slice is sent to a different node
- Transforming one RDD into another
- Persisting an RDD (cache and save)

Parallel Operations

- Functional operators
 - Map, filter, groupBy, partition
 - Collect, reduce
 - Foreach
 - Closures

Parallel Operations

- Functional operators
 - Map, filter, groupBy, partition
 - Collect, reduce
 - Foreach
 - Closures
- Shared variables
 - Broadcast variables (read-only)
 - Accumulators (append-only)

Parallel Operations

- Functional operators
 - Map, filter, groupBy, partition
 - Collect, reduce
 - Foreach
 - Closures
- Shared variables
 - Broadcast variables (read-only) → Stored on disk
 - Accumulators (append-only) → Sync only when task ends without failure

Lazy evaluation and ephemeral

```
lines = spark.textFile("hdfs://...")
errors = lines.filter(
   s => s.startsWith("ERROR"))
println("Total errors: "+errors.count())
```

Resilient Distributed Datasets

- High-performance
- General computation
- Lazy evaluation
- Ephemeral
- Lineage-based reconstruction
- Data sharing across different solutions

Lineage-based Reconstruction

```
lines = spark.textFile("hdfs://...")
errors = lines.filter(
   s => s.startsWith("ERROR"))
println("Total errors: "+errors.count())
```

Lineage-based Reconstruction

```
lines = spark.textFile("hdfs://...")
errors = lines.filter(
   s => s.startsWith("ERROR"))
println("Total errors: "+errors.count())
```


Lineage-based Reconstruction

```
lines = spark.textFile("hdfs://...")
errors = lines.filter(
   s => s.startsWith("ERROR"))
println("Total errors: "+errors.count())
```

- Faster reconstruction (memory > disk)
- No persistence on disk

Narrow and Wide Dependencies

Implementation Details

Process Scheduling

- Stage 1 does not need to run
 - Results already in RAM
- Stage 2 pipelines narrow-dependencies
- Stage 3 runs afterwards because of wide dependency

Memory Management

- Aggressive caching of RDDs in memory
- LRU substitution
 - But prevent cycling of partitions of the same RDD
- Three ways of caching RDDs
 - In-memory, uncompressed
 - In-memory, serialized
 - Incurs deserialization overhead, amortized for complex computations
 - On disk