IN THE CLAIMS:

The following is a complete listing of claims in this application.

Claims 1-18 (canceled).

19. (previously presented) An opalescent glass ceramic which is devoid of $\rm ZrO_2$ and $\rm TiO_2$, and which comprises an Me(II)O component in an amount of less than 4% by weight, and an Me(IV)O₂ component in an amount of 0.5 to 3% by weight, the glass ceramic consisting essentially of:

Component	% by weight
SiO ₂	55 - 62
Al_2O_3	13 - 17
B_2O_3	0 - 2
P_2O_5	1.5 - 3
Li ₂ O	0 - 2
Na ₂ O	7 - 12
K ₂ O	8 - 12
MgO	0 - 2
Ca0	1 - <4
Ba0	0 - 2
Tb ₂ O ₃	0 - 3
Me(IV)O ₂	0.5 - 3

wherein said Me(IV)O $_2$ consists essentially of 0-1% by weight CeO $_2$ and 0-2.5% by weight SnO $_2$, and

wherein the glass ceramic has a thermal expansion coefficient (TEC) in the range of $9.0 - 13.5 \times 10^{-6}/K$.

- 20. (previously presented) The opalescent glass ceramic according to claim 19, wherein Me(II)O is present in an amount of 2-3.5% by weight.
- 21. (previously presented) The opalescent glass ceramic according to claim 19, having a composition of:

Component	% by weight
SiO ₂	58 - 60
Al ₂ O ₃	14 - 15

P_2O_5	2.3 - 2.6
Na ₂ O	9.5-10.5
K ₂ O	9 - 10
CaO	2.8 - 3
Tb ₂ O ₃	0 - 2
CeO ₂	0.3-0.4
SnO ₂	1.3 - 1.6

- 22. (previously presented) The opalescent glass ceramic according to claim 19, which is a dental material or an additive for a dental material.
- 23. (previously presented) The opalescent glass ceramic according to claim 19, wherein the thermal expansion coefficient (TEC) is in the range of $10.5 12.0 \times 10^{-6}$ /K.
- 24. (previously presented) A method for producing an opalescent glass ceramic which is devoid of $\rm ZrO_2$ and $\rm TiO_2$, which has a thermal expansion coefficient (TEC) in the range of 9.0 13.5 x
- $10^{-6}/K$, and which comprises an Me(II)O component in an amount of less than 4% by weight and an Me(IV)O₂ component in an amount of 0.5 to 3% by weight, comprising the steps of: mixing together the components:

Component	% by weight
SiO ₂	55 - 62
Al ₂ O ₃	13 - 17
B_2O_3	0 - 2
P_2O_5	1.5 - 3
Li ₂ O	0 - 2
Na ₂ O	7 - 12
K ₂ O	8 - 12
Mg0	0 - 2
CaO	1 - 4
Ba0	0 - 2
Tb ₂ O ₃	0 - 3
Me (IV)O ₂	0.5 - 3

wherein said $Me(IV)O_2$ consists essentially of 0-1% by weight CeO_2 and 0-2.5% by weight SnO_2 ,

- melting the mixture in a furnace;
- quenching the molten mass from the furnace in a water bath and drying to form a frit;
 - grinding the frit in a mill;
 - tempering the ground frit; and
 - sifting the ground frit through a sieve.
- 25. (previously presented) The method according to claim 24, wherein the tempering of the frit comprises the steps of:
- stacking the ground frit on quartz-coated fire-clay plates,
- placing the fire-proof plates in a furnace heated to a temperature T with $850^{\circ}C \le T \le 1000^{\circ}C$, thereby fusing the ground frit,
- removing the plates from the furnace after a time t with 30 min \leq t \leq 60 min, and
 - quenching the fused frit in a water bath.
- 26. (previously presented) The method according to claim 24, wherein the components are mixed in a gyro mixer.
- 27. (previously presented) The method according to claim 24, wherein the mixture is melted in a gas-heated drip-feed crucible furnace.
- 28. (previously presented) The method according to claim 24, wherein the grinding step comprises filling the frit into a ball mill and grinding at about 10,000 revolutions per minute.
- 29. (previously presented) The method according to claim 24, wherein the ground frit is sifted through a sieve having a mesh size M in the range of 80 μ m \leq M \leq 120 μ m.

- 30. (new) The method according to claim 25, wherein the ground frit is fused at a temperature of 870 to 970° C.
- 31. (new) The method according to claim 24, wherein the thermal expansion coefficient is set to 10.5 -12.0 x $10^{-6}/K$ by adjusting the K_2O content.
- 32. (new) The method according to claim 24, wherein the melting temperature of the opalescent glass ceramic is controlled to 870° C to 970° C by adjusting the amounts of B_2O_3 , Li_2O and Na_2O .