Curso: Licenciatura em Física

1. Considere o tensor \hat{T} descrito pela matriz abaixo, escrita no sistema de eixos $Ox_1x_2x_3$:

$$\hat{T} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

- a) Determinar a sua parte simétrica e a sua parte anti-simétrica
- b) Determinar o traço do tensor, $T_{1m}T_{m2}$ e o resultado de $\nabla_i x_j$
- 2. Um fio de cobre ($\rho = 8.9 \text{ g/cm}^3$) encontra-se sujeito à força gravítica, cuja densidade de força mássica é $\bar{f}_m = -g \ \hat{e}_3 \ (g = 9.81 \text{ m/s}^2)$, e simultaneamente encontra-se sujeito um campo de tensões,

expresso pelo respectivo tensor (
$$\alpha = 87.3 \text{ kPa/m}$$
): $\hat{\sigma} = \alpha \cdot \begin{pmatrix} y & -z & 0 \\ -z & 0 & -y \\ 0 & -y & S_{33} \end{pmatrix}$, onde S_{33} é uma

função de x, y e z, que se anula na origem das coordenadas. a) Mostre que se o fio está em equilíbrio, então $S_{33} = z$

- b) Nessa situação, determine a componente tangencial da tensão que atua no ponto (1,1,0) do plano cuja normal é $\hat{n} = (4\hat{e}_2 + 3\hat{e}_3)/5$.
- 3. Uma placa isotrópica de cobre (E_{cobre} =110GPa, α = 0.30) com as dimensões $10\times0.5\times0.1$ cm³ sofre uma deformação originada por uma força de tração aplicada ao longo do comprimento da placa. A tensão originada por essa força é σ = 100 MPa. Determine:
 - a) O valor da força aplicada na placa e o seu comprimento final
 - b) A variação percentual da largura da placa.
- 4. Um conjunto de tensões é aplicado num cubo com lado L = 2 m, como se mostra na figura, originando um vetor deslocamento com as componentes:

$$u_x = \beta y z$$
 $u_y = \beta z^2$ $u_z = \beta x^2$

onde $\beta = 5 \times 10^{-3}$. Determinar:

- a) O tensor das deformações e das rotações puras.
- b) As direções e as deformações principais, no ponto (110)
- c) Qual o ângulo entre os lados ED e EF após a deformação?

