Ames House Price Prediction

Kaggle Data Science Project - Advanced Regression

Problem statement

What Problem?

How much are the residential homes in Ames, Iowa given all aspects/attributes of the properties?

- Why is it important?
 - Useful house price prediction for setting data-driven budget for buyers
 - Insightful tool for setting more reasonable prices when selling properties
- How to solve the problem?
 Build regression models to leverage attributes of properties to predict price

Dataset Description

Ames House Dataset with 79 Attributes and Sale Prices of 1,460 Properties

Feature Examples:

Features

Exterior

- Exterior material quality
- Type of foundation
- Masonry veneer type

- Heat condition
- Central air conditioning
- Kitchen quality

- Zoning classification
 - Slope of property
 - Physical location within city limits

Exploratory Data Analysis

Price of Properties in Ames, IOWA

- Average house sale price is around \$ 180,000 in Ames.
- There are a few properties over \$500,000. But majority of houses are priced under \$214,000.

Attributes Most Correlated with Sale Price

- Top Significant Categorical Attributes Discovered via ANOVA Test:
 - Overall Quality: The higher the quality score, the higher the sale price.
 - Exterior Material: Properties with excellent or good quality tend to be more expensive.
 - Other significant attributes: kitchen quality, Height of the basement, Interior finish of the garage, Masonry veneer type, Type of foundation, etc.

Attributes Most Correlated with Sale Price

- Top Correlated Attributes Discovered via Correlation Analysis (R Squared & Scatter Plot) :
 - Above ground living Area in Square Feet
 - Size of Garage in Car Capacity & Square Feet
 - Total Square Feet of Basement Area
 - First Floor Area in Square Feet

How Timing Impact Property Price

- In general, the more recent the property was built or remodeled, the more expensive it would be.
- The properties sold during second half of the years were more expensive on average than properties sold in the beginning of the years.

In-Depth Analysis & Modeling

Build Base Regression Models

Feature Engineering:

- Log Transformation on Skewed Features
- Standard Scaling on all Features

Machine Learning Algorithms Used:

- Ridge (L2-Norm)
- Lasso (L1-Norm)
- Elastic Net (Combination of L1 & L2 Norm)
- Gradient Boosting Regressor
- XG Boosting Regressor
- Light GBM Regressor

Model Optimization:

- Randomized Search & Grid Search for Hyperparameter Tuning
- Optimization Metric: RMSE

Model Validation:

Validation Metric: RMSE, MAPE & R Squared

Based on the randomized search 156 is the best alpha to use for the Ridget regression.

```
X_train, X_test, y_train, y_test = func_output_training_testing_datasets(cleaned_transformed_data, test_size=0.25)
random_grid={'alpha': np.linspace(start=1, stop=500, num=30)}
estimator=Ridge()
estimator_name='Ridge'
coefficient_df, intercept, rmse_test, mape_test, R_Squared_test=model_sklearn_model_randomizd_search_fitting_output(random_grid, X_train, y_train, X_test, y_test, estimator, estimator_name)
```

Fitting 3 folds for each of 10 candidates, totalling 30 fits

```
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 4 concurrent workers.

[Parallel(n_jobs=-1)]: Done 30 out of 30 | elapsed: 5.5s finished
```

Here's the best parameter from the randomized search: {'alpha': 155.86206896551724} RMSE on the training set: 0.39393841330416673 RSquared on the training set: 0.8435023666199838

RMSE on the testing set: 0.37291726075507337 RSquared on the testing set: 0.8616394722601429 Mape on the testing set: 0.11415888013607178

Randomized Search for Ridge Regression

Example Base Model Result Light GBM Regressor

Note: RMSE here is calculated based on predicated price and actual price after transformation & scaling.

Model Accuracy Improvement

- Pick the most accurate base model:
 Light GBM here has the lowest RMSE.
- Stack all the base models by taking the average of the predictions from the base models:
 - Stacked model predictions are more accurate than any single base model.

	model name	RMSE	Actual RMSE	Mape
0	Ridge	0.372920	30706.133666	0.431474
1	Lasso	0.375859	30490.569355	0.434702
2	Elastic Net	0.375070	30627.151324	0.433006
3	Gradient Boosting	0.374879	35395.717683	0.432431
4	Xg Boost	0.376148	39531.299038	0.415521
5	Light gbm	0.361896	34834.651064	0.434717

Mape before transformation and scalling: 0.42875826657812477
MSE before transformation and scalling: 31285.720650390864

Performance of the stacked model

Note: RMSE here is calculated based on predicted price and actual price after transformation & scaling. Actual RMSE is calculated based on predicted price and actual price before transformation & scaling.

Prediction Application

Prediction Tool Demo:

Use important features as input to output the estimate for sale price.

House Price Prediction Application Demo created via IPyWidget

Input value for features such as first floor area in square feet

basement	1750.00
firstfloor_s	2334.00
abovegrou	2744.00
size_garag	2.00
size_garag	937.00

House price prediction: 162852.82770019144

Output prediction for house price

