(11)Publication number:

2002-214410

(43) Date of publication of application: 31.07.2002

(51)Int.CI.

G02B 5/02 C08F220/30 C08L 33/14 C08L101/00 G02B 5/30 G02F 1/1335 G02F 1/13363

(21)Application number: 2001-007844

(22)Date of filing:

16.01.2001

(71)Applicant : NITTO DENKO CORP

(72)Inventor: NAKANISHI SADAHIRO

MIYATAKE MINORU NAKANO SHUSAKU MOCHIZUKI SHU

(54) LIGHT DIFFUSING PLATE, OPTICAL ELEMENT AND LIQUID CRYSTAL DISPLAY DEVICE (57)Abstract:

PROBLEM TO BE SOLVED: To provide a light diffusing plate being excellent in terms of usefulness resulting from easiness of manufacture and excellent thermal and chemical stability, being capable of improving brightness by supplying linearly polarized light which reduces absorption loss caused by a polarizing plate and also hardly inducing any coloring problem, also being applicable to a reflective liquid crystal display device or the like and further being excellent in polarization characteristics.

SOLUTION: In the light diffusing plate having microregions contained and dispersed in a birefringent film and
having birefringent characteristics different from those
of the birefringent film, the micro-regions is composed
of a side chain type liquid crystal polymer containing a
monomer unit (a) including a fragment side chain with
positive liquid crystallinity and a monomer unit (b)
including a fragment side chain with negative birefringent
liquid crystallinity. At the same time, the light diffusing

plate is characterized by having ≥ 0.03 difference in refractive indexes ($\Delta n1$) between the birefringent film and the micro-regions in a direction perpendicularly intersecting the axial direction exhibiting maximum transmittance of the linearly polarized light and further by having difference in refractive indexes ($\Delta n2$) in the axial direction with maximum transmittance $\leq 80\%$ of $\Delta n1$.

LEGAL STATUS

[Date of request for examination]
[Date of sending the examiner's decision of rejection]

[Kind of final disposal of epilication other than the examiner's decision of rejection or application converted registration]
[Date of final disposal for application]
[Patent number]
[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(J P)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-214410 (P2002-214410A)

(43)公開日 平成14年7月31日(2002.7.31)

(01) (UESTA) E	######################################	(71) 共魔人 000003964	
	審査請求	表請求 請求項の数6 OL	(全 11 頁) 最終頁に続く
G02B 5/30		G 0 2 B 5/30	4 J 1 0 0
101/00		101/00	4 J 0 0 2
C08L 33/14		C08L 33/14	2H091
C08F 220/30		C 0 8 F 220/30	2H049
G02B 5/02		G 0 2 B 5/02	B 2H042
(51) Int.Cl.7	識別記号	FΙ	f-73-h*(参考)

(21)出願番号

特願2001-7844(P2001-7844)

(22)出願日

平成13年1月16日(2001.1.16)

日東電工株式会社

大阪府茨木市下穂積1丁目1番2号

(72)発明者 中西 貞裕

大阪府茨木市下穂積1丁目1番2号 日東

電工株式会社内

(72) 発明者 宮武 稔

大阪府茨木市下穂積1丁目1番2号 日東

電工株式会社内

(74)代理人 100092266

弁理士 鈴木 崇生 (外4名)

最終頁に続く

(54) [発明の名称] 光拡散板、光学素子及び液晶表示装置

(57)【要約】

【課題】 製造が容易で熱的、化学的安定性に優れて実 用性に侵れ、偏光板による吸収ロスを低減できる直線偏 光を供給できて輝度の向上をはかりうると共に着色問題 を誘発しにくく、反射型の液晶表示装置等にも適用で き、しかも偏光特性に優れた光拡散板を提供すること。 【解決手段】 複屈折性フィルム中に当該複屈折性フィ ルムとは複屈折特性が相違する微小領域を分散含有して なる光拡散板において、その微小領域が、正の液晶性を 有するフラグメント側鎖を含有するモノマーユニット (a) と負の複屈折液晶性を有するフラグメント側鎖を 含有するモノマーユニット(b)を含有する側鎖型液晶 ポリマーからなると共に、前記複屈折性フィルムと微小 領域との、直線偏光の最大透過率を示す軸方向に直交す る方向における屈折率差 (△n1)が0.03以上であ り、かつ最大透過率の軸方向における屈折率差(△n2) が前記△n1 の80%以下であることを特徴とする 光拡散板。

【特許請求の範囲】

【請求項1】 複屈折性フィルム中に当該複屈折性フィルムとは複屈折特性が相違する微小領域を分散含有してなる光拡散板において、その微小領域が、正の液晶性を有するフラグメント側鎖を含有するモノマーユニット(a)と負の複屈折液晶性を有するフラグメント側鎖を含有するモノマーユニット(b)を含有する側鎖型液晶ポリマーからなると共に、

前記複屈折性フィルムと微小領域との、直線偏光の最大 透過率を示す軸方向に直交する方向における屈折率差 (△n1)が0.03以上であり、

かつ最大透過率の軸方向における屈折率差(\triangle n 2)が 前記 \triangle n 1 の 8 0 %以下であることを特徴とする光拡散 板。

【請求項2】 微小領域が相分離により分散分布しており、微小領域の△n1 方向(前記軸方向に直交する方向)の長さが0.05~500μmであることを特徴とする請求項1記載の光拡散板。

【請求項3】 請求項1または2記載の光拡散板を、△ n1 方向が上下の層で平行関係となるように2層以上重 畳してなる光拡散板。

【請求項4】 偏光板又は位相差板の少なくとも1種と、請求項1~3のいずれかに記載の光拡散板との積層体からなることを特徴とする光学素子。

【請求項5】 偏光板の透過軸と光拡散板の△n2 方向 (前記軸方向)が平行関係にあることを特徴とする光学 素子。

【請求項6】 請求項1~3に記載の光拡散板または請求項4もしくは5に記載の光学素子を、液晶セルの片側又は両側に有することを特徴とする液晶表示装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、直線偏光の散乱異 方性を示してその散乱方向の拡散性に優れ、液晶表示装 置等の視認性や輝度等の向上に好適な光拡散板に関す る。また、本発明は、当該光拡散板を用いた光学素子に 関する。

[0002]

【従来の技術】従来より、母材中に屈折率異方性の領域を分散含有させることにより直線偏光に対し散乱異方性を示すように設計された光拡散板が知られている。当該光拡散板としては、熱可塑性樹脂と低分子液晶との組合せからなるもの、低分子液晶と光架橋性低分子液晶との組合せからなるものが知られている(USP2123902号明細書、WO87/01822号公報、EP050617号、特開平9-274108号公報)。【0003】前記の光拡散板は、例えば直線偏光を偏光板に吸収されにくい状態で供給して吸収口スを低減し、液晶表示装置の輝度を向上させることなどが期待されて

いるものである。これによれば、それまでのコレステリック液晶層と1/4波長板を用いた吸収ロスの低減システムにおける、コレステリック液晶の大きい波長依存性による問題、特に斜め透過光の着色問題や反射型の液晶表示装置等に適用できない問題を解消しうる望みをもちうる。しかしながら、前記した従来の光拡散板では、その製造が困難なこと、液晶表示装置等に適用した場合に、その取扱が難しくて機能の安定性にも乏しいことなどから実用的でない問題点があった。

【0004】前記問題を解決した光拡散板として、複屈 折特性が相違する微小領域を分散含有してなる複屈折性 フィルムを用いたものが提案されている(特開2000 -187105号公報)。かかる光拡散板によれば前記 問題を解決し、しかも優れた偏光特性を示すものの、偏 光特性についてはさらなる向上が望まれている。

[0005]

【発明が解決しようとする課題】本発明は、製造が容易で熱的、化学的安定性に優れて実用性に優れ、偏光板による吸収ロスを低減できる直線偏光を供給できて輝度の向上をはかりうると共に着色問題を誘発しにくく、反射型の液晶表示装置等にも適用でき、しかも偏光特性に優れた光拡散板を提供すること、また、それを用いた光学素子、さらには液晶表示装置を提供することを目的とする。

[0006]

【課題を解決するための手段】本発明者らは前記課題を解決すべく鋭意検討を重ねた結果、以下に示す側鎖型液晶コポリマーを、複屈折性フィルム中に分散含有させる微小領域として用いた光拡散板により、前記目的を達成できることを見出し、本発明を完成するに至った。

【0007】すなわち、本発明は、複屈折性フィルム中に当該複屈折性フィルムとは複屈折特性が相違する微小領域を分散含有してなる光拡散板において、その微小領域が、正の液晶性を有するフラグメント側鎖を含有するモノマーユニット(a)と負の複屈折液晶性を有するフラグメント側鎖を含有するモノマーユニット(b)を含有する側鎖型液晶ポリマーからなると共に、前記複屈折性フィルムと微小領域との、直線偏光の最大透過率を示す軸方向に直交する方向における屈折率差(\triangle n1)が0.03以上であり、かつ最大透過率の軸方向における屈折率差(\triangle n2)が前記 \triangle n1 の80%以下であることを特徴とする光拡散板、に関する。

【0008】本発明の光拡散板によれば、微小領域やそれを分散含有する複屈折性フィルムがポリマー素材よりなるので形成材の取扱性に優れて製造が容易であり、その形成材の熱的、化学的安定性に基づいて光学機能の安定性に優れ実用性に優れている。また直線偏光の最大透過率を示す軸方向(\triangle n2 方向)では直線偏光がその偏光状態を良好に維持して透過し、前記 \triangle n2 方向と直交する方向(\triangle n1 方向)では複屈折性フィルムと微小領

域との屈折率差△n1 に基づいて直線偏光が散乱されその偏光状態が緩和ないし解消する。

【0009】しかも、側鎖型液晶コポリマーが、モノマーユニット(b)を含有しているため、モノマーユニット(a)の単独からなる側鎖型液晶ポリマーよりも複屈折特性を小さくすることで側鎖型液晶コポリマーの複屈折特性を所望の複屈折値に制御することができ、これにより偏光特性に優れた光拡散板が可能となる。

【0010】前記光拡散板において、微小領域が相分離により分散分布しており、微小領域の△n1方向(前記軸方向に直交する方向)の長さが0.05~500μmであることが好ましい。

【 O O 1 1】前記光拡散板は、1層で用いることができるが、偏光特性をあげるために、△ n 1 方向が上下の層で平行関係となるように2層以上重畳して用いることもできる。

【0012】また、本発明は、偏光板又は位相差板の少なくとも1種と、前記記載の光拡散板との積層体からなることを特徴とする光学素子、に関する。

【0013】前記光学素子において、偏光板の透過軸と 光拡散板の△n2方向(前記軸方向)が平行関係にある ことが好ましい。

【0014】光拡散板に対して偏光板をその透過軸が上記△n2方向と平行関係となるように配置することにより、△n2方向透過性の直線偏光は偏光板を効率よく透過し、かつ上記△n1方向透過性の直線偏光は散乱されて偏光方向が変換され△n2方向透過性の直線偏光成分を含むこととなってその成分が偏光板を透過することとなる。

【0015】さらには、本発明は、前記記載の光拡散板または前記記載の光学素子を、液晶セルの片側又は両側に有することを特徴とする液晶表示装置、に関する。

【0016】上記偏光板を用いた場合、透過する直線偏光が増量し、吸収ロスの低減効果と同等に作用して透過型液晶表示装置等の輝度を向上させることができる。またコレステリック液晶の如き大きい波長依存性に基づく着色問題も誘発しにくい。さらに反射型の液晶表示装置等にも容易に適用でき、輝度や視認性に優れる液晶表示装置を安定して得ることができる。

[0017]

【発明の実施の形態】本発明の光拡散板は、複屈折性フィルム中に当該複屈折性フィルムとは複屈折特性が相違する微小領域を分散含有してなるものであって、その微小領域が、正の液晶性を有するフラグメント側鎖を含有するモノマーユニット(a)と負の複屈折液晶性を有するフラグメント側鎖を含有するモノマーユニット(b)を含有する側鎖型液晶ポリマーからなると共に、前記複屈折性フィルムと微小領域との、直線偏光の最大透過率を示す軸方向に直交する方向における屈折率差(△n1)が0.03以上であり、かつ最大透過率の軸方向に

おける屈折率差 (\triangle n 2) が前記 \triangle n 1 の 8 0 %以下であるものからなる。

【0018】本発明による光拡散板の例を図1、図2に示した。1が光拡散板で、10が光拡散板1を重畳した重畳光拡散板であり、光拡散板はいずれも複屈折特性が相違する微小領域eを分散含有する複屈折性フィルムである。なお、2bは重畳光拡散板間の接着層、2aは被着体に接着するための粘着層からなる接着層、21は粘着層を仮着カバーするセパレータである。

【0019】光拡散板の形成は、例えば複屈折性フィルムの母材となる母材ポリマーの1種又は2種以上と、微小領域となる前記側鎖型液晶コポリマーの1種又は2種以上の混合物からフィルムを形成し、さらに延伸処理等の適宜な配向処理を施すことにより複屈折性フィルム中に、複屈折性フィルムとは複屈折特性が相違する微小領域を前記側鎖型液晶コポリマーにより形成する方式などの適宜な方式にて行うことができる。

【0020】前記の母材ポリマーとしては、透明性の適宜なものを用いることができ、特に限定はない。ちなみにその例としては、ポリエチレンテレフタレートやポリエチレンナフタレートの如きポリエステル系ポリマー、ポリスチレンやアクリロニトリル・スチレン共重合体

(A S樹脂)の如きスチレン系ポリマー、ポリエチレンやポリプロピレン、シクロ系ないしノルボルネン構造を有するポリオレフィンやエチレン・プロピレン共重合体の如きオレフィン系ポリマー、カーボネート系ポリマー、ポリメチルメタクリレートの如きアクリル系ポリマー、塩化ビニル系ポリマー、二酢酸セルロースや三酢酸セルロースの如きセルロース系ポリマー、ナイロンや芳香族ポリアミドの如きアミド系ポリマー、イミド系ポリマー、スルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、ビニルアルコール系ポリマー、塩化ビニリデン系ポリマー、ビニルアルコール系ポリマー、塩化ビニリデン系ポリマー、ボリオキシメチレン系ポリマー、あるいはそれらのブレンド物などがあげられる。

【0021】一方、側鎖型液晶コポリマーとしては、正の液晶性を有するフラグメント側鎖を含有するモノマーユニット(a)と負の複屈折液晶性を有するフラグメント側鎖を含有するモノマーユニット(b)を含有する。【0022】前記モノマーユニット(a)におけるフラグメント側鎖は、たとえば、一般式(I):-Y-Z-A(ただしYは、主鎖から分岐したポリメチレン鎖又はポリオキシメチレン鎖、Zはパラ置換環状化合物である。)で表される側鎖部分を有するものがあげられる。【0023】前記の一般式(I)においてYは、屈曲性を示すスペーサ基であり、ポリメチレン鎖-(CH2)。-又はポリオキシメチレン鎖-(CH2)。-からなる。その繰返し数p、qは、それに結合するメ

ソゲン基Zの化学構造等により適宜に決定でき、一般にはpについては $0\sim20$ 、特に $2\sim12$ 、qについては $0\sim10$ 、特に $1\sim4$ の整数である。

【0024】屈折率制御等の複屈折フィルムの形成性などの点より好ましいスペーサ基Yは、例えばエチレンやプロピレン、ブチレンやペンチレン、ヘキシレンやオクチレン、デシレンやウンデシレン、ドデシレンやオクタデシレン、エトキシエチレンやメトキシブチレンなどである。

【0025】また、Zは液晶配向性を付与するメソゲン 基となるパラ置換環状化合物であり、その例としては、 アゾメチン型やアゾ型、アゾキシ型やエステル型、トラ ン型やフェニル型、ビフェニル型やフェニルシクロへキシル型、ビシクロへキシル型の如きパラ置換芳香族単位やパラ置換シクロへキシル環単位などを有するものなどがあげられる。

【0026】屈折率制御等の複屈折フィルムの形成性などの点より好ましいパラ置換環状化合物Zとしては、下記化1の化学式で表されるものなどがあげられる。

【0027】合物Zとしては、下記化1の化学式で表されるものなどがあげられる。

【0028】 【化1】

(式中、mは1または2である)。前記において、スペーサ基Yとメソゲン基Zはエーテル結合、すなわち-○-を介して結合していてもよい。またパラ置換環状化合物を形成するフェニル基は、その1個又は2個の水素がハロゲンで置換されていてもよく、その場合、ハロゲンとしては塩素又はフッ素が好ましい。

【0029】またパラ置換環状化合物乙におけるパラ位における末端置換基Aは、例えばシアノ基やアルキル基、アルケニル基やアルコキシ基、オキサアルキル基やハロゲン基、水素の1個以上がフッ素又は塩素にて置換されたハロアルキル基やハロアルコキシ基やハロアルケニル基などの適宜なものであってよい。

【0030】したがって、前記側鎖型液晶コポリマーは、熱可塑性を示して、室温又は高温でネマチック相やスメクチック相等の適宜な配向性を示すものであってよい

【0031】前記モノマーユニット(a)におけるフラ

グメント側鎖は、アルコキシ基、シアノ基、フルオロ基 およびアルキル基から選ばれるいずれか少なくとも一つ の置換基を、当該フラグメント側鎖の分子長軸に対して 平行な方向に(対称に)含むことが好ましい。

【0032】前記モノマーユニット(a)としては、たとえば、一般式(a):

【化2】

$$+CH_2-CO_2-(CH_2)_a-O-(CO_2)_bX^1-(CO_2-CO_2)_cR^2$$

(ただし、 R^1 は水素原子またはメチル基を、aは $1\sim$ 6の正の整数を、 X^1 は $-CO_2$ -基または-OCO-基を、 R^2 はシアノ基、炭素数は $1\sim$ 6のアルコキシ基、フルオロ基または炭素数は $1\sim$ 6のアルキル基を、

bおよびcはそれぞれ1または2の整数を示す。)で表 されるモノマーユニットが好ましい例としてあげられ

【0033】また前記モノマーユニット(b)における フラグメント側鎖は、アルコキシ基、シアノ基、フルオ ロ基、アルキル基およびピリダジン基から選ばれるいず れか少なくとも一つの置換基を、当該フラグメント側鎖 の分子長軸に対して非対称 (反平行な方向) に有するこ とが好ましい。

【0034】前記モノマーユニット(b)としては、た とえば、一般式(b):

(式中、R5 、R6 およびR7 はそれぞれ独立して水素 原子、シアノ基、フルオロ基、炭素数は1~6のアルコ キシ基または炭素数は1~6のアルキル基を示す。R 5 、R6 の少なくとも1つはシアノ基、フルオロ基、炭 素数は1~6のアルコキシ基または炭素数は1~6のア ルキル基である。)で表される置換基を示す。)で表さ れるモノマーユニットが屈折率の制御などの点で好まし い例としてあげられる。なお、R4 またはR4 中のR5 もしくはR6 が、フラグメントとしては分子長軸に対し て非対称(反平行な方向)にある。

【0035】モノマーユニット(a)とモノマーユニッ ト(b)の割合は、特に制限されるものではなく、モノ マーユニットの種類にもよって異なるが、モノマーユニ ット (b) の割合が多くなると側鎖型液晶コポリマーが 複屈折特性を示さなくなるため、(b)/{(a)+ (b) } = 0.01~0.8 (モル比) とするのが好ま しい。また、側鎖型液晶ポリマーの重量平均分子量が、 2千~10万であるのが好ましい。なお、モノマーユニ ット (a)、モノマーユニット (b) として、前記化 2、化3で表されるモノマーユニットを有する側鎖型液 晶コポリマーは、前記例示のモノマーユニットに対応す るアクリル系モノマーまたはメタクリル系モノマーを共 重合することにより調製できる。

【0036】前記例示の側鎖型液晶コポリマーは主鎖を 形成する骨格としてポリアクリレートやポリメタクリレ ートの場合を例示したが、本発明の主鎖は線状や分岐状 や環状等の適宜な連結鎖にて形成されていてよい。ちな みにその例としては、ポリーαーハロアクリレート類や ポリーα -シアノアクリレート類、ポリアクリルアミド 類やポリアクリロニトリル類、ポリメタクリロニトリル 類やポリアミド類、ポリエステル類やポリウレタン類、 ポリエーテル類やポリイミド類、ポリシロキサン類など があげられる。

【化3】

(ただし、R3 は水素原子またはメチル基を、dは1~ 6の正の整数を、X² は-CO₂ -基または-OCO-基を、eは1または2の正の整数を、Rg は一般式 (c):

【化4】

【0037】上記において母材ポリマーと側鎖型液晶コ ポリマーは、得られる光拡散板において形成される微小 領域の分散分布性などの点より、相分離する組合せで用 いることが好ましく、その組合せによる相溶性により分 散分布性を制御することができる。相分離は、例えば非 相溶性の材料を溶媒にて溶液化する方式や、加熱溶融下 に混合する方式などの適宜な方式にて行うことができ

【0038】なお、上記した延伸配向処理方式で前記微 小領域を分散含有する複屈折性フィルムを形成する場 合、任意な延伸温度、延伸倍率にて目的の複屈折性フィ ルムを形成することができる。また上記の母材ポリマー には、延伸方向の屈折率変化の特性に基づいて正負に分 類される異方性ポリマーがあるが、本発明においては正 負いずれの異方性ポリマーも用いることができる。

【0039】配向処理対象のフィルムは、例えばキャス ティング法や押出成形法、射出成形法やロール成形法、 流延成形法などの適宜な方式にて得ることができ、モノ マー状態で展開しそれを加熱処理や紫外線等の放射線処 理などにより重合してフィルム状に製膜する方式などに ても得ることができる。

【0040】複屈折性フィルム中に分散含有している微 小領域が均等分布性に優れることなどから、溶媒を介し た母材ポリマーと側鎖型液晶コポリマーの混合液をキャ スティング法や流延成形法等にて製膜する方式が好まし い。その場合、溶媒の種類や混合液の粘度、混合液展開 層の乾燥速度などにより微小領域の大きさや分布性など を制御することができる。ちなみに微小領域の小面積化 には混合液の低粘度化や混合液展開層の乾燥速度の急速 化などが有利である。

【0041】配向処理対象のフィルムの厚さは、適宜に 決定しうるが、一般には配向処理性などの点より 1 μm ~3mm、さらには5µm~1mm、特に10~500 μmとされる。なお、当該フィルムの形成に際しては、 例えば分散剤や界面活性剤、紫外線吸収剤や色調調節 剤、難燃剤や離型剤、酸化防止剤などの適宜な添加剤を 配合することができる。

【0042】配向処理は、例えば一軸や二軸、逐次二軸やZ軸等による延伸処理方式や圧延方式、ガラス転移点又は液晶転移点以上の温度で電場又は磁場を印加して急冷し配向を固定化する方式や製膜時に流動配向させる方式、等方性ポリマーの僅かな配向に基づいて側鎖型液晶コポリマーを自己配向させる方式などの、配向により屈折率を制御しうる適宜な方式の1種又は2種以上を用いて行うことができる。従って得られた微小領域を分散含有している複屈折性フィルムは、延伸フィルムであってもよいし、非延伸フィルムであってもよい。なお延伸フィルムとする場合には、母材ポリマーとして脆性ポリマーも用いうるが、延び性に優れるポリマーが特に好ましく用いうる。

【0043】本発明の光拡散板は前記微小領域を分散含有している複屈折性フィルムからなり、当該光拡散板の母材ポリマーを構成要素とする複屈折性フィルム部分と側鎖型液晶コポリマーを構成要素とする微小領域との直線偏光の最大透過率を示す軸方向に直交する方向における屈折率差(Δ n1)が0.03以上であり、かつ最大透過率の軸方向における屈折率差(Δ n2)が前記 Δ n1の80%以下に制御したものである。かかる屈折率差とすることにより、 Δ n1方向(前記軸方向に直交する方向)での散乱性に優れ、 Δ n2方向(前記軸方向)での偏光状態の維持性に優れるものとすることができる。

【0044】散乱性やそれによる偏光状態の変換性ないし解消性などの点より \triangle n1 方向における屈折率差(\triangle n1)は、適度に大きいことが好ましく、0.04~1、特に0.045~0.50の屈折率差(\triangle n1)であることが好ましい。一方、偏光状態の維持性などの点より \triangle n2 方向における屈折率差(\triangle n2)は、小さいほど好ましく、0.03以下、さらには0.02以下、特に0.01以下の屈折率差(\triangle n2)であることが好ましい。

【0045】従って上記の配向処理は、前記複屈折性フィルム部分と微小領域との屈折率差を、△n1 方向において大きくする操作、又は△n2 方向において小さくする操作、あるいはそれらの両方を達成する操作として位置付けることもできる。

【0046】前記光拡散板における微小領域は、前記散乱効果等の均質性などの点より可及的に複屈折性フィルム中に均等に分散分布していることが好ましい。微小領域の大きさ、特に散乱方向である△n1方向の長さは、後方散乱(反射)や波長依存性に関係し、後方散乱の抑制の点よりは△n1方向における微小領域の長さが数μmオーダ等の可及的に小さいことが好ましい。

【〇〇47】一方、後方散乱を誘発させて大きくする点

よりは \triangle n1 方向における微小領域の径をレイリー散乱が生じる大きさとすることが好ましく、そのレイリー散乱の点より微小領域の径が光の波長に対して充分に小さいことが好ましい。他方、散乱光の波長依存性を抑制する点よりは、 \triangle n1 方向における微小領域の大きさが可及的に大きいことが好ましく、従って前記した後方散乱の抑制と拮抗する。

【0048】前記の後方散乱や波長依存性などを踏まえた、従って光利用効率の向上や波長依存性による着色防止、微小領域の視覚による鮮明な表示の阻害防止、さらには製膜性やフィルム強度などの点より微小領域の好ましい大きさ、特に Δ n1方向の好ましい長さは、O05~500 μ m、さらにはO1~250 μ m、特に1~100 μ mである。なお微小領域は、通例ドメインの状態で複屈折性フィルム中に存在するが、その Δ n2方向の長さについては特に限定はない。

【0049】上記の如く本発明の光拡散板は、 \triangle n1方向と \triangle n2方向として複屈折特性に異方性をもたせて、直線偏光をその振動面の相違によりコントロールできるようにしたものである。その光拡散板に占める微小領域の割合は、 \triangle n1方向の散乱性などの点より適宜に決定しうるが、一般にはフィルム強度なども踏まえて0.1~70重量%、さらには0.5~50重量%、特に1~30重量%とされる。

【0050】本発明の光拡散板は、図1に例示の如く複屈折特性が相違する微小領域を分散含有する複屈折性フィルムの単層物1からなっていてもよいし、図2に例示の如く当該光拡散板1の重畳体からなっていてもよい。かかる重畳化により、厚さ増加以上の相乗的な散乱効果が発揮され、偏光板と組合せた場合に重畳化による反射 損以上の偏光板透過光が得られて特に有利である。

【0051】重畳体は、 $\triangle n1$ 方向又は $\triangle n2$ 方向の任意な配置角度で光拡散板を積層したものであってよいが、散乱効果の拡大などの点よりは $\triangle n1$ 方向が上下の層で平行関係となるように重畳したものが好ましい。光拡散板の重畳数は、2 層以上の適宜な数とすることができる。

【0052】また重畳する各光拡散板は、 \triangle n1 又は \triangle n2 が同じものであってもよいし、異なるものであってもよい。なお \triangle n1 方向等における上下の層での平行関係は、可及的に平行であることが好ましいが、作業誤差によるズレなどは許容される。また \triangle n1 方向等にバラッキがある場合には、その平均方向に基づく。

【0053】重畳体における各光拡散板は、単に重ね置いた状態にあってもよいが、△n1方向等のズレ防止や各界面への異物等の侵入防止などの点よりは接着層等を介して接着されていることが好ましい。その接着には、例えばホットメルト系や粘着系などの適宜な接着剤を用いうる。反射損を抑制する点よりは、光拡散板との屈折率差が可及的に小さい接着層が好ましく、母材ポリマー

や微小領域を形成する側鎖型液晶コポリマーにて接着することもできる。

【0054】本発明の光拡散板は、その直線偏光の透過性と散乱性を示す特性に基づいて例えば偏光増幅板やカラー調節板、偏光分離板や表示特性制御板、液晶表示スクリーンや偏光補助板などの各種の目的に用いることができる。

【0055】ちなみに前記の偏光増幅板は、偏光板の光入射側に後方散乱が少なく光散乱性の強い光拡散板を配置してその散乱性(△n1 方向)により偏光方向を変換して△n2 方向透過性の直線偏光を増量し偏光度ないし光利用効率の向上を目的とするものである。またカラー調節板は、高い波長依存性を示す光拡散板を青透過率の低い反射型液晶表示装置等の表面に配置してブルー域の偏光を増幅し、表示の黄色化の防止等のカラーバランスの調整などを目的とするものである。

【0056】偏光分離板は、レイリー散乱に近い散乱を示す光拡散板を導光板と偏光板の間に配置して後方散乱光を偏光解消後、導光板底面の反射層等を介して偏光板に再入射させることにより△n2方向透過性の直線偏光を増量し、偏光度ないし光利用効率の向上を目的とするものである。

【0057】表示特性制御板は、後方散乱が少なくへイズ異方性の高い光拡散板を液晶セルと視認側偏光板の間に配置して白表示を散乱させ、黒表示を透過させてコントラストの向上や画像の鮮明化を目的とするものである。液晶表示スクリーンは、光拡散板を入射光のうち一定の直線偏光を選択的に透過するスクリーンに用いてコントラストの向上化を目的とするものである。偏光補助板は、ヘイズ異方性の高い光拡散板を表示装置における偏光板と光源の間に配置して偏光板吸収性の光の入射を抑制して偏光板の温度上昇を防止することを目的とするものである。

【0058】従って本発明による光拡散板の実用に際しては、例えば偏光板又は/及び位相差板等の適宜な光学部品の片面又は両面に光拡散板を配置した積層体からなる光学素子として用いることもできる。その例を図3に示した。3が光学部品である。かかる積層体は、単に重ね置いたものであってもよいし、接着層等を介して接着したものであってもよい。その接着層としては、上記した各光拡散板の重畳の場合に準じうる。

【0059】前記積層対象の光学部品については特に限定はなく、例えば偏光板や位相差板、導光板等のバックライトや反射板、多層膜等からなる偏光分離板や液晶セルなどの適宜なものであってよい。また偏光板や位相差板等の光学部品は、各種のタイプのものであってよい。【0060】すなわち偏光板では吸収型タイプや反射型タイプや散乱型タイプ、位相差板では1/4波長板や1/2波長板、一軸や二軸等による延伸フィルムタイプやさらに厚さ方向にも分子配向させた傾斜配向フィルムタ

イプ、液晶ポリマータイプ、視野角や複屈折による位相 差を補償するタイプ、それらを積層したタイプのものな どの各種のものがあるが、本発明においてはそのいずれ のタイプも用いうる。

【0061】ちなみに前記した偏光板の具体例としては、ポリビニルアルコール系フィルムや部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルムの如き親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて延伸した吸収型偏光板、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物の如きポリエン配向フィルムなどがあげられる。

【0062】また前記偏光フィルムの片面又は両面に耐水性等の保護目的で、プラスチックの塗布層やフィルムのラミネート層等からなる透明保護層を設けた偏光板などもあげられる。さらにその透明保護層に、例えば平均粒径が0.5~20μmのシリカやアルミナ、チタニアやジルコニア、酸化錫や酸化インジウム、酸化カドミウムや酸化アンチモン等の導電性のこともある無機系微粒子、架橋又は未架橋ポリマー等の有機系微粒子等の透明微粒子を含有させて表面に微細凹凸構造を付与したものなどもあげられる。

【0063】一方、位相差板の具体例としては、上記の 複屈折性フィルムで例示した母材ポリマーからなる延伸 フィルムや液晶ポリマー、就中、捩じれ配向の液晶ポリ マーなどからなるものがあげられる。さらに導光板の具 体例としては、透明な樹脂板の側面に(冷,熱)陰極管 等の線状光源や発光ダイオード、EL等の光源を配置 し、その樹脂板に板内を伝送される光を拡散や反射、回 折や干渉等により板の片面側に出射するようにしたもの などがあげられる。

【0064】導光板を含む光学素子の形成に際しては、 光の出射方向を制御するためのプリズムシート等からな るプリズムアレイ層、均一な発光を得るための拡散板、 線状光源からの出射光を導光板の側面に導くための光源 ホルダなどの補助手段を導光板の上下面や側面などの所 定位置に必要に応じ1層又は2層以上を配置して適宜な 組合せ体とすることができる。

【 O O 6 5 】本発明による光学素子を形成する積層体は、1種の光学部品を用いたものであってもよいし、2種以上の光学部品を用いたものであってもよい。また例えば位相差板等の同種の光学部品を2層以上積層したものであってもよく、その場合、光学部品の位相差板等の特性は同じであってもよいし、相違していてもよい。光学素子における光拡散板は、積層体の片外面や両外面、積層体を形成する光学部品の片面や両面などの積層体の外部や内部の適宜な位置に1層又は2層以上が配置されていてよい。

【0066】光学素子が偏光板を含むものである場合、 光拡散板の透過・散乱特性を有効に活用する点などより 光拡散板は、その△n2 方向が偏光板の透過軸と平行関係となるように配置されていることが好ましい。その平行関係は、上記した複屈折性フィルムを重畳する場合に準じうる。かかる配置の光学素子は、偏光板吸収性の直線偏光が光拡散板の△n1 方向を介して散乱されることとなる。従って上記した偏光増幅板や偏光分離板、液晶表示スクリーンや偏光補助板などに好ましく用いうる。

【0067】なお光学素子を形成するための偏光板としては、輝度やコントラストの向上を図る点などより、上記した二色性物質含有の吸収型偏光板などの如く偏光度の高いもの就中、光透過率が40%以上で、偏光度が95.0%以上、特に99%以上のものが好ましく用いられる。

【0068】本発明による光拡散板や光学素子は、上記した特長を有することより液晶表示装置の形成に好ましく用いうる。液晶表示装置の例を図4、図5に示した。4が偏光板、5が液晶セル、6が拡散反射板、7が導光板、71は反射層、72は光源、8は視認光拡散用の光拡散板である。

【0069】前記の図4は、反射型の液晶表示装置としたものを例示しており、光拡散板1は、視認側の偏光板4の外側に偏光板の透過軸に対し△n2 方向が平行関係となるように配置されている。一方、図5は、透過型の液晶表示装置としたものを例示しており、光拡散板1は、バックライトを形成する導光板7と視認背面側の偏光板4の間に偏光板の透過軸に対し△n2 方向が平行関係となるように配置されている。

【0070】液晶表示装置は一般に、偏光板、液晶セル、反射板又はバックライト、及び必要に応じての光学部品等の構成部品を適宜に組立てて駆動回路を組込むことなどにより形成される。本発明においては、上記した光拡散板ないし光学素子を用いる点を除いて特に限定はなく、従来に準じて形成することができる。従って液晶表示装置の形成に際しては、例えば視認側の偏光板の上に設ける光拡散板やアンチグレア層、反射防止膜や保護層や保護板、あるいは液晶セルと視認側等の偏光板の間に設ける補償用位相差板などの適宜な光学部品を適宜に配置することができる。

【0071】前記の補償用位相差板は、上記したように 複屈折の波長依存性などを補償して視認性を向上させる ことなどを目的とするものであり、視認側又は/及びバ ックライト側の偏光板と液晶セルの間等に配置される。 なお補償用位相差板としては、波長域などに応じて上記 した位相差板などの適宜なものを用いうる。また補償用 位相差板は、2層以上の位相差層からなっていてもよい。

【0072】前記において、光拡散板ないし光学素子は、それを単位として液晶セルの片側又は両側の適宜な位置に1層又は2層以上を配置することができる。ちなみに光拡散板の△n2 方向と偏光板の透過軸が平行関係となるように配置する液晶表示装置にあって光拡散板は、例えば反射型液晶表示装置においては偏光板、特に視認側のそれの光入射側、透過型液晶表示装置においては視認背面側の偏光板とバックライトの間の適宜な位置などの、偏光板吸収性の直線偏光を散乱を介して偏光変換することが望まれる適宜な位置に1層又は2層以上を配置することができる。

【0073】なお前記の光拡散板の配置に際してその光拡散板は、上記したように隣接の光学部品などと積層一体化した光学素子として用いることができる。また液晶表示装置についてもそれを形成する各部品は、上記した本発明による光拡散板等に準じて接着層を介し接着一体化されていることが好ましい。

[0074]

【実施例】以下に実施例をあげて本発明を説明するが、 本発明はこれら実施例に限定されるものではない。な お、各例中、部は重量部である。

【0075】実施例1

複屈折性フィルムの母材ポリマーとしてのポリカーボネート樹脂(帝人社製,商品名パンライト)100部を含有する20重量%ジクロロメタン溶液と下式化5(式中のn=50であり、モノマーユニットのモル%を示し、便宜的にブロック体で表示している、重量平均分子量:9700)

【化5】

で表される側鎖型液晶ポリマー6部を混合し、キャスト 法にて厚さ100μmのフィルムを得たのち、それを1 75℃で2倍に延伸処理して、前記側鎖型液晶ポリマー の微小領域を分散含有する複屈折性フィルムからなる光

拡散板を得た。

【0076】前記の複屈折性フィルムは、ボリカーボネート樹脂をフィルムベースとしてその中に延伸方向に長軸な形状で側鎖型液晶ボリマーがドメイン状に分散して微小領域を形成したものであり、そのドメインの平均径を偏光顕微鏡観察にて、ドメインの液晶ボリマーによる微小な配向乱れに起因する位相差の違いによる着色に基づいて測定した結果、△n1方向の長さが約6μmであった。

【0077】得られた光拡散板の屈折率差(△n1)は 0.035で、屈折率差(△n2)は0.010であった。

【0078】なお、前記ボリカーボネート樹脂を2倍に延伸処理て得られたフィルムの△n1 方向の屈折率は1.585、△n2方向の屈折率は1.580であった。また、側鎖型液晶ボリマーの△n1 方向の屈折率(異常光屈折率)は1.620、△n2方向の屈折率(常光屈折率)は1.570であった。

【0079】屈折率の測定は、それぞれ単体フィルムをAtago製のアッベ屈折計1T型で測定することにより行った。ポリカーボネートフィルムはそのまま測定した。側鎖型液晶ポリマーは、そのシクロヘキサノン溶液(濃度26重量%)を、鉛入りガラス基板上にポリイミド(Nーメチルピロリドン20%溶液)を2000rp

m、10秒の条件でスピンコートし、300℃で1時間 加熱した後、ラビングした配向膜上に、スピンコート し、160℃で加熱して側鎖型液晶ポリマーを配向させ たものを測定した。

【0080】実施例2

実施例1に準じて製造した複屈折性フィルムの2枚を、 その△n2 方向が一致するように厚さ20μmのアクリ ル系粘着層を介し重畳接着して光拡散板を製造した。

【0081】実施例3

実施例1で得た光拡散板と市販の全光線透過率が41%で透過光の偏光度が99%の偏光板を△n2方向と透過軸が一致するようにアクリル系粘着層を介し接着して光学素子を製造した。

【0082】実施例4

拡散反射板の上に、偏光板、TN液晶セル、実施例3で 得た光学素子を偏光板がセル側となるようにアクリル系 粘着層を介し順次接着して図4に準じた反射型の液晶表 示装置を得た。なお偏光板は、その透過軸方向が液晶セ ルと対面するそれぞれのラビング方向と一致するように 配置した。

【0083】比較例1

実施例1において、下式化6(重量平均分子量:8900)

【化6】

で表される側鎖型液晶ポリマーを用いた以外は実施例1と同様にして、屈折率差(\triangle n1)が0.260で、屈折率差(\triangle n2)が0.035の複屈折性フィルムからなる光拡散板を得た。なお、前記側鎖型液晶ポリマーの \triangle n1方向の屈折率(異常光屈折率)は1.845、 \triangle n2方向の屈折率(常光屈折率)は1.545であった。前記の複屈折性フィルムは、ポリカーボネート樹脂をフィルムベースとしてその中に延伸方向に長軸な形状で側鎖型液晶ポリマーがドメイン状に分散して微小領域を形成したものであり、そのドメインの平均径は、 \triangle n1方向の長さが約6 μ mであった。

【0084】比較例2

実施例3において、光拡散板として、比較例1で得た光

拡散板を用いた以外は実施例3と同様にして光学素子を 製造した。

【0085】評価試験1

実施例および比較例で得た光拡散板、光学素子について全光線透過率、拡散透過率およびヘイズをASTMD1003-61に準拠してボイック積分球式ヘイズメータにて測定した。また透過全光線の偏光度も調べ、その結果を表1に示した。なお光学素子では偏光板側と光拡散板側から光を入射させ、その光拡散板側からの場合の値を()内に示した。

[0086]

【表1】

	全光線透過率 (%)	偏光度 (%)	拡散 透 過率 (%)	ヘイズ (%)
実施例1	9 3	40	2 4	2 5
実施例2	9 0	48	3 6	4 0
実施例3	41 (53)	9 9	2 (8)	6 (15)
比較例1	9 1	5 0	5 5	6 0
比較例2	41 (51)	9 9	4 (14)	10 (27)

表1より偏光機能を有する光拡散板の得られていることがわかり(実施例1,2)、複屈折性フィルムの重畳化で反射損による全光線透過率の低下があるにも係らず(実施例1,2)、偏光板と組合せた場合にはその反射損以上の全光線透過率の増量が得られて、偏光板吸収性の直線偏光の散乱で偏光板透過性の直線偏光が飛躍的に向上していることがわかる(実施例3)。また実施例3における光入射方向を相違させた場合の対比より、光拡散板側から入射させることで偏光板単板(41%)よりも全光線透過率が飛躍的に向上することがわかる。

【0087】さらに、その全光線透過率の上昇は、単一モノマーユニットからなる側鎖型液晶ポリマーを用いた場合(比較例1)よりも、側鎖型液晶コポリマーを用いた場合(実施例1)の方が効果が大きい。このことから、偏光機能を有する光拡散板を構成する液晶ポリマーとして、本発明の側鎖型液晶コポリマーを用いることにより、その偏光特性が向上することが認められる。

【0088】評価試験2実施例4で得た液晶表示装置に ついて表示状態での輝度を輝度計にて調べた結果、偏光 板のみを用いた場合に比べて輝度の大きな向上が確認された。

【図面の簡単な説明】

【図1】光拡散板例の断面図

【図2】重畳光拡散板例の断面図

【図3】光学素子例の断面図

【図4】液晶表示装置例の断面図

【図5】他の液晶表示装置例の断面図

【符号の説明】

1:光拡散板

e: 微小領域

2:接着層

3:光学部品

4: 偏光板

5:液晶セル

6:拡散反射板

7: 導光板

10:重畳光拡散板

【図1】

【図.2】

【図3】

【図4】

(11) 102-214410 (P2002-2158

【図5】

フロントページの続き

(51) Int. Cl. 7

識別記号

G02F 1/1335

510

1/13363

(72)発明者 中野 秀作

大阪府茨木市下穂積1丁目1番2号 日東

電工株式会社内

(72)発明者 望月 周

大阪府茨木市下穂積1丁目1番2号 日東

電工株式会社内

FΙ

G02F 1/1335

510

1/13363

Fターム(参考) 2HO42 BA02 BA12 BA15 BA20

2H049 BA01 BA02 BA06 BA25 BA42

BB03 BB44 BB63 BC03 BC14

テーマコード(参考)

BC22

2H091 FA02Y FA08X FA08Z FA11X

FA11Z FA16Z FA23Z FA41Z

HA11 LA18 LA30

4J002 AB011 BB031 BB111 BB151

BCO21 BCO31 BCO61 BDO31

BD101 BE021 BE061 BG051

BG072 BG082 CA001 CE001

CF061 CF081 CG001 CH021

CHO91 CLO01 CMO41 CN011

CN031 GP00

4J100 AL08P AL08Q BA02P BA02Q

BAO7P BA10P BA10Q BA15P

BA15Q BA40P BC04Q BC43P

BC43Q BC73Q CA04 DA66

JA32 JA39

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.