Lógica Proposicional

Prof^a. Maely Moraes

Livro base: Souza, João Nunes, Lógica para Ciência da Computação, Editora Campus, 9ª tiragem.

Lógica Proposicional

A linguagem da Lógica Proposicional

Introdução

Alfabeto da Lógica Proposicional

- Definição 1.1 (alfabeto) O alfabeto da Lógica Proposicional é constituído por:
 - símbolos de pontuação: (;);
 - símbolos de verdade: true, false;
 - símbolos proposicionais:
 P; Q; R; S; P₁; Q₁; R₁; S₁; P₂; Q₂; ...;
 - conectivos proposicionais: \neg , \vec{V} , Λ , \rightarrow , \leftrightarrow .

Fórmulas da Lógica Proposicional

- Definição 1.2 (fórmula) As fórmulas da linguagem da Lógica Proposicional são construídas, de forma indutiva, a partir dos símbolos do alfabeto conforme as regras a seguir. O conjunto das fórmulas é o menor conjunto que satisfaz as regras:
 - todo símbolo de verdade é uma fórmula;
 - todo símbolo proposicional é uma fórmula;
 - se H é uma fórmula, então (¬H), a negação de H, é uma fórmula;

Fórmulas da Lógica Proposicional

- **Definição 1.2** (fórmula)
 - se H e G são fórmulas, então a disjunção de H e G; dada por: (H V G); é uma fórmula;
 - se H e G são fórmulas, então a conjunção de H e G; dada por: (H ∧ G); é uma fórmula;
 - se H e G são fórmulas, então a implicação de H em G; dada por: $(H \rightarrow G)$; é uma fórmula. Nesse caso, H é o antecedente e G o conseqüente da fórmula $(H \rightarrow G)$;
 - se H e G são fórmulas, então a bi-implicação de H e G; dada por: (H ↔ G); é uma fórmula.

Nesse caso, H é o lado esquerdo e G o lado direito da fórmula (H \leftrightarrow G).

Fórmulas da Lógica Proposicional

Notação:

No livro texto desta disciplina, os parênteses ou símbolos de pontuação das fórmulas são omitidos quando não há problemas sobre a sua interpretação. Além disso, as fórmulas podem ser escritas em várias linhas para uma melhor leitura.

Assim, a fórmula: $(((P \lor R) \rightarrow true) \leftrightarrow (Q \land S))$ pode ser escrita como

$$(P \ V \ R) \rightarrow true$$

$$\leftrightarrow$$

$$Q \ \Lambda \ S$$
ou ainda como
$$((P \ V \ R) \rightarrow true) \leftrightarrow (Q \ \Lambda \ S).$$

Ordem de Precedência

- Definição 1.3 (ordem de precedência) Na Lógica Proposicional, a ordem de precedência dos conectivos proposicionais é definida por:
 - maior precedência: ¬;
 - precedência intermediária: → , ↔;
 - menor precedência: V , ∧.

Linguagem-objeto e Metalinguagem

Variáveis

- Notação. Os símbolos proposicionais são representados por variáveis do tipo:
 - P[#], com possíveis subíndices.
- Neste caso, temos a letra P com um pequeno risco na parte de cima. Isso significa, por exemplo, que P[#]₁ pode representar qualquer um dos símbolos
 - P, Q, R, S, P₁, Q₁, R₁, S₁, P₂ ...
- As variáveis A, B, C, D, E, H e G com possíveis subíndices representam fórmulas.
 - A variável H_2 pode representar, por exemplo, a fórmula ($P \rightarrow Q$).

Linguagem-objeto e Metalinguagem

- Letras como P, A, B, C, D, E e H são elementos da metalinguagem que representam símbolos proposicionais e fórmulas em geral da Lógica Proposicional.
- Isso significa que, a rigor,

$$(P_1 \rightarrow P_2)$$

não é uma fórmula da Lógica Proposicional.

 Essa expressão é a representação de fórmulas do tipo (P → Q), (R → S), etc.

Linguagem-objeto e Metalinguagem

Do mesmo modo, (H ∨ G) não é uma fórmula, mas a representação de fórmulas do tipo
 ((P→Q) ∨ (R∧S)),
 onde H é substituída por (P → Q)

Geralmente, expressões do tipo
 (P₁ → P₂) e (H V G)
 são denominadas esquemas de fórmulas.

e G por $(R \land S)$.

Alguns Elementos Sintáticos das Fórmulas

- Definição 1.4 (comprimento de uma fórmula) Seja H uma fórmula da Lógica Proposicional. O comprimento de H, denotado por comp[H], é definido como se segue.
 - Se H = P ou é um símbolo de verdade, então comp[H] = 1;
 - Comp $[\neg H]$ = comp[H] + 1;
 - comp[H V G] = comp[H] + comp[G] + 1;
 - comp[H \wedge G] = comp[H] + comp [G] + 1;
 - comp[H → G] = comp[H] + comp[G] + 1;
 - $comp[H \leftrightarrow G] = comp[H] + comp[G] + 1$.

Alguns Elementos Sintáticos das Fórmulas

- Definição 1.5 (subfórmula) Seja H uma fórmula da Lógica Proposicional, então:
 - H é uma subfórmula de H;
 - se H é uma fórmula do tipo (¬G),
 então G é uma subfórmula de H;
 - se H é uma fórmula do tipo: (G \vee E), (G \wedge E), (G \rightarrow E) ou (G \leftrightarrow E),
 - então G e E são subfórmulas de H;
 - se G é subfórmula de H, então toda subfórmula de G é subfórmula de