

Taylor'sche Form	And the second second second
begeben: Polynom n-ten Grades	
g: Grad, in den die Funktion Entwickelt verden soll	
) Funktion y mal ableiten	
) Taylor'sche Foum bilden	-
$\frac{f(x_0)}{(n-n_0)!} (x-x_0) + \frac{f(x_0)}{(n-n)!} (x-x_0)$	
$= \sum_{k=1}^{9} \frac{f^{(n-10)}(x_0)}{(n-10)!} (x_0) (x_0)$	
Achtung: Taylor'sche Form nur bis zum gesuchten Grad bilden also blieder mit Ableitungen > g weglassen!	
3) Ergebnis der Taylor schen Form ist ein Polynom des gesuchten Grades	

Homogene Differentialgleichung Gegeben: Funktion ay" + by" + ... + dy n: Grad der Ableitung y'(x) = e & Werte bestimmter Stellen y(x) = f 1) y" => y durch) ersetzen, mit), wobe; n Grad d. Abl. 2) Nullstellen des so gewonnenen Polynoms bestimmen - Durch erraten - Durch Polynom div. + PQ - Formel Mitternachtsformel PQ: Py = - P + VP 4-9 Ergebnis; $(\lambda - \lambda_0)(\lambda - \lambda_1) ... (\lambda - \lambda_n) = 0$ Fur alle (1-1a) e

Fur alle (1-1a) e

Fur alle (1-1a) e + bx e + c.x e (tur alle () - 10 (komplex) Hat man für alle Klammern die entsprechenden e-Funktionen. V werden diese als Summanden in eine neue Funktion eingesetzt. * (Fur () - Au) : a.e hox + bx e hox (Fur (1-10): a.e 20x + bxe 2x + cxe Erychnis. Z. B. y(x) = aex + bxex + c.e2x

Hom	ogene Differentialgleichung (2)
Danit	kann man die angegebenen Weste der Punkte Ableitungsfanktionen nutzen.
y (x) =	
Ergebnis	en der Werte in die Funktionen. Éine Reihe von Funktionen die die Parameter a beinhalten.
durch	Gleichungen mit mehreren Unbekannten z.B. LGS Lojen Ermittlung der Parameter a
7) Paromete	ration des Ansatzes einsetzen

n-Dimensionale Funktionen
Gegeben: $Q(x,y) = x, y$ Restriktion: $y = ax + c$
1) Hohen linich einzeichnen Kreisfunktion: Gegeben: * Qo = X.Y ii) Auflosen mach y iii) Einzeichnen [Achtung: Zeichneu mit GTR] 2) Gradient einer Funktion in P[p,/pz) Gegeben: funktion Q(x, y) oder (x)
i) Ableiten der Funktion nach x und y Ziel: Vektor (da) = x-Rondinate (da) = y-Koordinate ii) py und py in Vektor einsetzen (py in x, py in y).
Achtuny: bei x = y umformen in h = x-y

