VStar Retrieval of Gaia Variable Star Light Curve Data

This plugin allows you to read light curve data for any of the Gaia DR2/DR3 stars that were identified by Gaia processing as variable and therefore have photometry available. Data are accessed directly from the Gaia web service. The passbands can either be the Gaia red (RP), green (G) and blue (BP) or they can be transformed to V, Rc, Ic.

Gaia Mission

Gaia is a spacecraft launched by the European Space Agency (ESA) to measure the positions and distances to stars. The Gaia coverage includes the entire sky from magnitude 5 to 20. In 2022 the project has made its third data release, known as Gaia Data Release 3 (DR3).

Gaia captures photometry in three passbands, shown graphically here, and described in detail in the paper Gaia Data Release 2 Photometric content and validation. As part of the processing pipeline, Gaia identifies sources that appear to be variable using a set of machine learning algorithms. Currently (on Apr 2th 2023) the "Gaia Data Release 3 (Gaia DR3) Part 4 Variability" catalog contains 11754237 sources (records).

Obtaining Gaia source id

Each Gaia star is identified by a unique key, the **source_id**. The Gaia archive is available for interactive and programmatic access with a well-documented set of interfaces. The Help link provides access to a number of tutorials. Only the simple query interface will be discussed here.

Consider the classical Cepheid, XX Mon. From the Gaia archive page, click Search to go to the basic query screen and enter XX Mon in the name field.

Then open the Display columns section and select the **phot_variable_flag** column. This will allow you to determine if Gaia has identified this star as variable and therefore has light curve data available.

solution_id	designation	✓ source_id	☐ random_index	ref_epoch
✓ ra	☐ ra_error	✓ dec	dec_error	✓ parallax
parallax_error	parallax_over_error	□ pm	✓ pmra	pmra_error
✓ pmdec	pmdec_error	ra_dec_corr	ra_parallax_corr	ra_pmra_corr
ra_pmdec_corr	dec_parallax_corr	dec_pmra_corr	dec_pmdec_corr	parallax_pmra_corr
parallax_pmdec_corr	pmra_pmdec_corr	astrometric_n_obs_al	astrometric_n_obs_ac	astrometric_n_good_obs_al
astrometric_n_bad_obs_al	astrometric_gof_al	astrometric_chi2_al	astrometric_excess_noise	astrometric_excess_noise_s
astrometric_params_solved	astrometric_primary_flag	nu_eff_used_in_astrometry	pseudocolour	pseudocolour_error
ra_pseudocolour_corr	dec_pseudocolour_corr	parallax_pseudocolour_corr	pmra_pseudocolour_corr	pmdec_pseudocolour_corr
astrometric_matched_transits	visibility_periods_used	astrometric_sigma5d_max	matched_transits	new_matched_transits
matched_transits_removed	ipd_gof_harmonic_amplitude	ipd_gof_harmonic_phase	ipd_frac_multi_peak	ipd_frac_odd_win
✓ ruwe	scan_direction_strength_k1	scan_direction_strength_k2	scan_direction_strength_k3	scan_direction_strength_k4
scan_direction_mean_k1	scan_direction_mean_k2	scan_direction_mean_k3	scan_direction_mean_k4	duplicated_source
phot_g_n_obs	phot_g_mean_flux	phot_g_mean_flux_error	phot_g_mean_flux_over_error	✓ phot_g_mean_mag
phot_bp_n_obs	phot_bp_mean_flux	phot_bp_mean_flux_error	phot_bp_mean_flux_over_error	phot_bp_mean_mag
phot_rp_n_obs	phot_rp_mean_flux	phot_rp_mean_flux_error	phot_rp_mean_flux_over_error	phot_rp_mean_mag
phot_bp_rp_excess_factor	phot_bp_n_contaminated_transits	phot_bp_n_blended_transits	phot_rp_n_contaminated_transits	phot_rp_n_blended_transits
phot_proc_mode	✓ bp_rp	□ bp_g	☐ g_rp	✓ radial_velocity
radial_velocity_error	rv_method_used	nv_nb_transits	rv_nb_deblended_transits	rv_visibility_periods_used
rv_expected_sig_to_noise	rv_renormalised_gof	rv_chisq_pvalue	rv_time_duration	rv_amplitude_robust
☐ rv_template_teff	rv_template_logg	rv_template_fe_h	rv_atm_param_origin	vbroad
vbroad_error	vbroad_nb_transits	grvs_mag	grvs_mag_error	grvs_mag_nb_transits
rvs_spec_sig_to_noise	✓ phot_variable_flag		□b	ecl_lon
ecl_lat	in_qso_candidates	in_galaxy_candidates	✓ non_single_star	✓ has_xp_continuous
✓ has_xp_sampled	✓ has_rvs	✓ has_epoch_photometry	✓ has_epoch_rv	✓ has_mcmc_gspphot

Submit the query and you will see the row of data from the main Gaia table. Make sure the phot_variable_flag says "VARIABLE".

Make note the **source** id or copy it to the clipboard.

A more advanced approach might do a proximity search using equatorial coordinates and specifying the variable flag equal to "VARIABLE" in the Extra Conditions section.

Using the Gaia Plugin

The Gaia plugin is installed like any other as described here.

Select "New star from Gaia DR2/DR3 Photometry" on the VStar file menu to open the dialog box.

Enter the **source_id** you obtained from the Gaia Archive. By default, the Gaia passbands will be represented in VStar as Blue, Green and Red for Gaia's BP, G and RP, respectively. If you would rather have the passbands transformed to V, Rc, Ic, and B¹ check the Passband Transformation box.

For the Gaia DR2 data, the transformation equations from https://arxiv.org/pdf/1804.09368 (Appendix A) are used. For Gaia DR3, the relations from

https://gea.esac.esa.int/archive/documentation/GDR3/Data_processing/chap_cu5pho_sec_photSystem/cu5pho_ssec_photRelations.html are applied.

You can also choose to add the light curve data to the existing VStar observations by checking the Additive Load box.

In order to transform the Gaia passbands, three observations in the Gaia passbands closely spaced in time must exist. Therefore, if transformation is selected, Gaia observations that do not occur in triples will be considered invalid and appear at the bottom of the VStar Observations tab. The Gaia variability processing may have marked some observations in the light curve as rejected for processing with the variability machine algorithms. These will be marked as Discrepant in VStar and appear with a gray

¹ Transformation to the B band is only possible for Gaia DR3.

color. If transformation is selected and any one of the three observations involved in the transformation are discrepant, then all three of the resulting V, R and I observations will be marked discrepant.

The observation time from Gaia is Barycentric Julian Date (BJD).

The phase diagram with Gaia DR3 data for the XX Mon is shown below:

Phase Plot for GaiaDR3 3105860283909081728

period: 5.456473, epoch: 2440689.6

· Discrepant · Gaia BP · Gaia G · Gaia RP

Advanced Gaia Queries

You will likely want to perform more advanced queries against the Gaia DR3. The Advanced (ADQL) tab of the Gaia Archive provides access not only to the main Gaia table, but the tables created by the variability processing as well.

You can expand these tables to see the columns and data descriptions are easily accessed from here as well.

C 2025-06-17 Updated according to the last plugin's release (PMAK) B 2023-04-02 Updated according to the last plugin's release (PMAK) A 2020-11-01 Initial release (Cliff Kotnik)	Rev	Date	Description
	С	2025-06-17	Updated according to the last plugin's release (PMAK)
A 2020-11-01 Initial release (Cliff Kotnik)	В	2023-04-02	Updated according to the last plugin's release (PMAK)
,	А	2020-11-01	Initial release (Cliff Kotnik)