Criterio del confronto

Alessio Serraino

March 6, 2016

<u>Teorema:</u> (del confronto) Siano $\{a_n\}$, $\{b_n\}$ due successioni a termini definitivamente positivi, e tali che valga definitivamente:

$$a_n \leq b_n$$

Allora se $\sum a_n$ diverge anche $\sum b_n$ diverge, se $\sum b_n$ converge allora anche $\sum a_n$ converge

Dimostrazione:

Consideriamo la successione delle somme parziali s_n , somma di a, s_n^* , somma parziale di b

$$s_0 = a_0
 s_1 = a_0 + a_1
 s_2 = a_0 + a_1 + a_2$$

Sommiamo le disugualianze $a_n \leq b_n$ membro a membro ed otteniamo che $s_n \leq s_n^*$.

La successione è a termini positivi, quindi la successione delle somme parziali è monotona crescente. Supponiamo che $\sum b_n$ converge. Allora $s_n^* \in \mathbb{R}$ per ipotesi. Quindi la successione $\{s_n\}$ è limitata. Per il teorema di monotonia $\{s_n\}$ converge, dimostrando il primo punto.

Dimostriamo il secondo: $\{a_n\}$ diverge per ipotesi, quindi $s_n \to +\infty$. s_n^* , per confronto tende a $+\infty$, ovvero $\{b_n\}$ diverge, dimostrando anche il secondo punto.