^ZSY: System Status for GT.M/YottaDB

Sam Habiel, Pharm.D.

December 30, 2019

Abstract

This paper describes the updates and new functionality in the System Status tools for GT.M/YottaDB.

1 Introduction

The ZSY Routine of unknown provenance – was in unreleased VA patch XU*8.0*349 and thus perhaps in the public domain. Its original purpose was to provide an emulation of %SS in Intersystems Cache. It has been almost entirely re-written and much new functionality has been introduced. While developed with VistA/RPMS in mind, it can be used on any GT.M/YottaDB system with a \$ZINTERRUPT of "I \$\$JOBEXAM^ZSY(\$ZPOS)"

2 Invocation

Enter D ^ZSY on direct mode. This by default sorts by Process ID. You can use D QUERY^ZSY to query by cpu time.

3 Output

The output changes based on the size of the screen: \leq 80 columns; 80 columns–130 columns; and >130 columns.

GT.M System Status users on 24-APR-18 16:03:06 - (stats reflect accessing									
DEFAULT region ONLY except *)									
PID	PName	Device	Routine	Name	CPU Time				
4257	mumps	/dev/pts/1	INTRPTALL+8^ZSY		00:00:00				
7369	mumps	BG-0	NEWJOB+5~%ZTM	Taskman ROU 1	00:00:00				
7373	mumps	BG-0	GO+26^XMKPLQ	WVEHR, PATCH INSTAL	L 00:00:00				
7391	mumps	BG-0	GO+12^XMTDT	WVEHR, PATCH INSTAL	L 00:00:00				
7397	mumps	BG-0	GETTASK+3^%ZTMS1		00:00:00				
7403	mumps	BG-0	GETTASK+3^%ZTMS1	Sub 7403	00:00:00				
7409	mumps	BG-0	I6+2^%ZTM		00:00:00				
7411	mumps	BG-0	GETTASK+3^%ZTMS1	Sub 7411	00:00:00				

Listing 1: 80 column output

GT.M	System	Status users	on 24-APR-18 16:35:0	6 - (stats reflect a	ccessing DEFAULT	region ONLY exc	ept *)			
PID	PName	Device	Routine	Name	CPU Time OP/READ	NTR/NTW	NR0123	#L	%LSUCC	%CFAIL
4257	mumps	/dev/pts/1	INTRPTALL+8^ZSY		00:00:00 1.14	10/0	0/0/0/0	1	0/0	0/7
7369	mumps	BG-0	IDLE+3^%ZTM	Taskman ROU 1	00:00:00 493.05	10k/0k	1/0/0/0	0	99.95%	0/426
7373	mumps	BG-0	GO+26^XMKPLQ	WVEHR, PATCH INSTALL	00:00:00 90.14	1905/12	0/0/0/0	2	9/14	0/33
7391	mumps	BG-0	GO+12^XMTDT	WVEHR, PATCH INSTALL	00:00:00 59.73	669/12	0/0/0/0	2	9/9	0/23
7397	mumps	BG-0	GETTASK+3^%ZTMS1		00:00:00 784.04	19k/2k	1/0/0/0	1	99.96%	0/1977
7403	mumps	BG-0	GETTASK+3^%ZTMS1	Sub 7403	00:00:00 0.00	9766/968	3/0/0/0	1	99.35%	0/973
7411	mumps	BG-0	GETTASK+3^%ZTMS1	Sub 7411	00:00:00 0.00	9738/965	3/1/0/0	1	99.53%	0/970
7419	mumps	BG-0	GETTASK+3^%ZTMS1	Sub 7419	00:00:00 0.00	9717/963	7/3/0/0	1	99.02%	0/967
7422	mumps	BG-0	GETTASK+3^%ZTMS1	Sub 7422	00:00:00 0.00	9678/959	13/0/0/0	1	98.25%	0/970

Listing 2: 130 column output

GT.M	System	Status users o	on 24-APR-18 17:05:2	5 - (stats reflect a	ccessing	DEFAULT r	egion ONLY	except *)						
PID	PName	Device	Routine	Name	CPU Time	OP/READ	NTR/NTW	NR0123	#L	%LSUCC	%CFAIL	R MB*	W MB*	SP MB*
4257	mumps	/dev/pts/1	INTRPTALL+8~ZSY		00:00:00	1.14	10/0	0/0/0/0	1	0/0	0/7	5.66	12.98	0.10
7369	mumps	BG-0	IDLE+3^%ZTM	Taskman ROU 1	00:00:00	955.95	20k/1k	3/0/0/0	0	99.80%	0/721	2.77	0.68	0.10
7373	mumps	BG-0	GO+26^XMKPLQ	WVEHR, PATCH INSTALL	00:00:00	166.86	3516/12	0/0/0/0	2	9/14	0/33	3.21	0.03	0.10
7391	mumps	BG-0	GO+12^XMTDT	WVEHR, PATCH INSTALL	00:00:00	100.64	1119/12	0/0/0/0	2	9/9	0/23	0.23	0.00	0.10
7397	mumps	BG-0	GETTASK+3^%ZTMS1		00:00:01	1505.24	37k/4k	2/0/0/0	1	99.96%	81.36%	0.29	2.51	0.10
7403	mumps	BG-0	GETTASK+3^%ZTMS1	Sub 7403	00:00:00	0.00	18k/2k	8/0/0/0	1	99.47%	89.76%	0.00	0.77	0.10
7411	mumps	BG-0	GETTASK+3^%ZTMS1	Sub 7411	00:00:00	0.00	18k/2k	3/1/0/0	1	99.67%	89.79%	0.00	0.73	0.10
7419 و	mumps	BG-0	GETTASK+3^%ZTMS1	Sub 7419	00:00:00	0.00	18k/2k	19/4/0/0	1	99.09%	89.80%	0.00	0.79	0.10
7422	mumps	BG-0	GETTASK+3^%ZTMS1	Sub 7422	00:00:00	0.00	18k/2k	16/0/0/0	1	98.50%	89.78%	0.00	0.41	0.10

Listing 3: >130 column output

Here is by contrast the Cache system status:

```
Cache System Status: 4:00 pm 02 May 2018
                                                  CPU,Glob Pr User/Location
Process Device
                    Namespace
                                   Routine
    92 /dev/null
                                   XMKPLQ
                                                  8415,815
                                                            0 %System
                    PLA
                                   %ZISTCPS
    61 | TCP | 9430
                    PLA
                                                  2805,187
                                                            0 %System
                                                  9180,1078 0 %System
    66 /dev/null
                    PLA
                                   %ZTM
    68 | TCP | 8001
                    PLA
                                   XOBVTCPL
                                                  5355,416
                                                            0 %System
    93 /dev/null
                    PLA
                                   XMTDT
                                                  6885,380 0 %System
    94 /dev/null
                                                 18615,2779 0 %System
                    PLA
                                   %ZTMS1
6 user, 0 system, 256 mb global/23 mb routine cache
```

Listing 4: Cache System Status

4 Explanation of Columns

4.1 PID

This is the Process Number of each process. On GT.M/YottaDB, the process number is the same as job number. This unfortunately is not the same as the Taskman task number.

4.2 PName

Process Name. Most of the time it will be "mumps", but it can be "java", "node" or some other process that is opening the database.

4.3 Device

Consider this listing:

```
Device
BG-0
BG-0
BG-0
BG-0
BG-S14823
/dev/pts/22
BG-0
BG-/dev/null
/dev/null
```

Listing 5: Device

This shows the currently active device.

The most obvious thing is the "BG". This means that the job is a background job (not launched by a user, but launched originally by a Job command). However, even background jobs can interact with users: The last BG device in this is listing is actually a CPRS session. The process was created using the Job command.

User "Roll and Scroll" sessions will show as /de-v/pty/...

Devices with socket listeners will show as BG-Sport, where port is a numeric port number.

BG-0 devices are usually background jobs without devices in Taskman.

Broker jobs originating from xinetd will show a device of /dev/null unless a device is opened.

4.4 Routine

This shows the currently executing line.

4.5 Name

This is either the name of the user from File 200 if the process has a DUZ variable defined; or process name if defined in ^XUTL, or nothing otherwise.

4.6 CPU Time

Total CPU time (User + System) as reported by ps.

4.7 OP/READ

Operations/Read: Number of global operations per database block read obtained via the following formula:

$$\frac{DTA + GET + ORD + ZPR + QRY}{DRD}$$

DRD is the number of database reads; DTA, GET, ORD, ZPR and QRY are the number of operations on globals of \$DATA, \$GET, \$ORDER, reverse \$ORDER, and \$QUERY (forward and reverse) respectively. This statistic is only for the DEFAULT region of the database.

$4.8 \quad NTR/NTW$

This is the number of non-transaction reads and non-transactions writes into the DEFAULT region of the database. If NTR > 9999, the values will divided by 1024 and displayed in kilos. This statistic is only for the DEFAULT region of the database.

4.9 NR0123

This is the number of # of Non-TP transaction Restarts at try 0, 1, 2, and 3. A large number of retries at 2 or 3 is a bad sign. This statistic is only for the DEFAULT region of the database.

4.10 #L

Number of locks held by the process.

4.11 %LSUCC

Lock success percentage calculated by:

$$\frac{LKS}{LKS + LKF}$$

LKS is the number of successful locks; and LKF is the number of unsuccessful locks. If LKS + LKF is < 100, then it will be shown as a fraction; otherwise it will be shown as a percentage with 2 decimal points. This statistic is only for the DEFAULT region of the database.

4.12 %CFAIL

Critical section acquisition failure percentage calculated by:

$$\frac{CFT}{CFT+CAT}$$

CFT is the total of blocked critical section acquisitions; CAT is the total of critical section acquisitions successes. Like locks, if CFT + CAT < 100, then it will be shown as a fraction; otherwise, it will be shown as a percentage with 2 decimal points. This statistic is only for the DEFAULT region of the database.

This number is hard to use in isolation. It is only useful as a trend point. My system shows >80% failure rate for taskman processes in a tight loop.

4.13 R MB

Data read from disk in megabytes, as reported by the OS

4.14 W MB

Data written to disk in megabytes, as reported by the OS

4.15 SP MB

This is how large the string pool is. This is a good proxy for how much heap memory is being used by GT.M/YDB for the symbol table. This is obtained using \$view("spsize").

5 Job Examination Utility

A job examination utility is provided in order to assist with troubleshooting specific jobs. It can be invoked in two ways: either run D ZJOB^ZSY, and then select a job number from the list; or run D ZJOB^ZSY(job_number) to interrogate a specific job number. You can also use one of these alternate entry points:

- D EXAMJOB^ZSY[(job_number)]
- D VIEWJOB^ZSY[(job_number)]
- D JOBVIEW^ZSY[(job_number)]

Pressing enter on the screens that are displayed updates them. If you want to exit, type ^. Following is the screen obtained from D ZJOB^ZSY:

```
GT.M System Status users on 02-MAY-18 15:16:38
PID PName
              Device
                           Routine
                                                Name
                                                                     CPU Time
              BG-0
                                                Taskman ICARUS 1
                                                                     00:00:03
11422 mumps
                            IDLE+3^%ZTM
              BG-0
                            GO+26^XMKPLQ
                                                POSTMASTER
                                                                     00:00:00
11481 mumps
11483 mumps
              BG-0
                            GO+12^XMTDT
                                                POSTMASTER
                                                                     00:00:00
11489 mumps
              BG-S14823
                           LGTM+25<sup>%</sup>ZISTCPS
                                                POSTMASTER
                                                                     00:00:01
13063 mumps
              /dev/pts/21 INTRPTALL+8^ZSY
                                                USER, ONE
                                                                     00:03:01
15287 mumps
              BG-0
                            GETTASK+3^%ZTMS1
                                                                     00:00:00
Total 6 users.
Enter a job number to examine (^ to quit):
```

Listing 6: D ZJOB^{ZSY}

Selecting a job number, or invoking it directly using D ZJOB²ZSY(PID) will let you to the follow screen:

```
JOB INFORMATION FOR 11483 (2018-MAY-02 15:26:57)
AT: GO+12^XMTDT: . . H XMHANG
Stack:
1. SUBMGR+3^%ZTMS1
                                       D PROCESS^%ZTMS2 G:$D(ZTQUIT) QUIT^%ZTMS
2. PROCESS+9<sup>%</sup>ZTMS2
                                       D TASK^%ZTMS3 I ZTYPE="C"!$D(ZTNONEXT) Q
3. 4+10^%ZTMS3
                                       D RUN
4. RUN+4~%ZTMS3
                                       D @ZTRTN
5. GO+5^XMTDT
                                      F Q:$P($G(^XMB(1,1,0)),U,16) D
6. GO+11^XMTDT
                                       . F D Q: $$TSTAMP^XMXUTIL1-XMWAIT>60
7. GO+12^XMTDT:
                                       . . H XMHANG
Locks:
LOCK ^XMBPOST("POST_Tickler") LEVEL=1
LOCK ^%ZTSCH("TASK",3479) LEVEL=1
O OPEN RMS STREAM NOWRAP
O-out OPEN RMS STREAM NOWRAP
Breakpoints:
Global Stats for default region:
TRO: 0
String Pool (size, currently used, freed): 102056,5684,0
Enter to Refersh, V for variables, I for ISVs, K to kill
L to load variables into your ST and quit, ^ to go back:
D to debug (broken), Z to zshow all data for debugging.
```

Listing 7: Job Examination Screen

Pressing enter on this page refreshes the information. Pressing enter frequently will give you a good view of what's happening in an execution.

The sections should be self-explanatory.

Pressing V or I will show you variables and Intrinsic Special Variables(ISV). They are just printed in a vertical list so that they are easy to copy and paste.

```
% ZPOS = " GO + 12 ~ XMTDT "
%ZTIME=5596168159
%ZTPFLG("BalLimit")=100
%ZTPFLG("HOME")="ICARUS:foia.2018.02"
%ZTPFLG("LOCKTM")=3
%ZTPFLG("MIN")=1
%ZTPFLG("RT")=0
%ZTPFLG("USER")=18
%ZTPFLG("XUSCNT")=59
%ZTPFLG("ZTPN")=1
%ZTPFLG("ZTREQ")=1
%reference="^XMB(3.9,""AF"",0)"
DILOCKTM=3
DT=3180502
DTIME=1
DUZ = .5
DUZ(0)="@" (etc...)
```

Listing 8: Variable List

```
ISVs:
$DEVICE = " "
$ECODE = " "
$ESTACK=9
$ETRAP="D ERROR^%ZTMS HALT"
$HOROLOG="64770,56506"
$I0=0
$J0B=11483
$KEY=""
$PRINCIPAL=0
$QUIT=1
$REFERENCE="^XUTL(""XUSYS"",11483,""JE"",""I"",10)"
$STACK=9
$STORAGE=2147483647
$SYSTEM="47,foia.2018.02"
$TEST=1
$TLEVEL=0 (etc...)
```

Listing 9: ISV List

K will kill the process (actually, it sends it to HALT^ZU after cleaning it up). ^ will take you back; D (debug) is currently broken; and Z is there for the developer's use.

6 Interactive Kill Job (a.k.a RESJOB)

A Utility to interactively kill jobs is provided using the entry point D KILLJOB^ZSY. Select a job number from the list, and it will be sent to HALT^ZU after lock and globals cleanup. You can alternately use D RESJOB^ZSY. This entry point is used by ^%ZOSF("RESJOB").

```
GT.M System Status users on 30-DEC-19 14:45:28
                                                                    CPU Time
PID
     PName
              Device
                            Routine
                                               Name
2028
              BG-0
                            IDLE+3^%ZTM
                                               Taskman ROU 1
                                                                    00:00:00
     mumps
2093
     mumps
              BG-0
                            GETTASK+3^%ZTMS1
                                               Sub 2093
                                                                    00:00:00
2187
              /dev/pts/0
                           INTRPTALL+8^ZSY
                                                                    00:00:00
     mumps
Total 3 users.
Enter a job number to kill (^ to quit):
```

Listing 10: D KILLJOB^ZSY

7 Other Entry Points

[^]ZSY includes various other entry points that can be used by developers and system managers. Here they are.

7.1 D TMMGR^{ZSY} [Public]

List Taskman Manager processes only. Output:

```
GT.M System Status users on 02-MAY-18 16:01:02
PID PName Device Routine Name CPU Time
11422 mumps BG-0 IDLE+3^%ZTM Taskman ICARUS 1 00:00:04
```

Listing 11: TMMGR Entry Point

7.2 D TMSUB^ZSY [Public]

List Taskman Submanger processes, including those currently "otherwise" engaged.

GT.M System Status users on 02-MAY-18 16:03:46								
PID PName	Device	Routine	Name	CPU Time				
11481 mumps	BG-0	GO+26^XMKPLQ	POSTMASTER	00:00:00				
11483 mumps	BG-0	GO+12^XMTDT	POSTMASTER	00:00:00				
11489 mumps	BG-S14823	LGTM+25^%ZISTCPS	POSTMASTER	00:00:01				
15287 mumps	BG-0	GETTASK+3^%ZTMS1		00:00:02				

Listing 12: TMSUB Entry Point

7.3 \$\$UNIXLSOF^ZSY(.procs) [Kernel Use Only]

This gives you a listing of all the processes accessing the DEFAULT region of the database. The extrinsic output is the number of processes; while .procs contains an M array of the process numbers.

This API should be used by Kernel level applications only.

```
>W $$UNIXLSOF^ZSY(.zzz)
6
>zwrite zzz
zzz(1)=11422
zzz(2)=11481
zzz(3)=11483
zzz(4)=11489
zzz(5)=13063
zzz(6)=15287
```

Listing 13: UNIXLSOF Entry Point

7.4 D INTRPT^ZSY(PID) [Kernel Use Only]

Send a GT.M Interrupt to a process specified by its PID.

7.5 D INTRPTALL^ZSY[(.procs)] [Kernel Use Only]

Use the \$\$UNIXLSOF^ZSY(.procs) API to find all processes accessing the DEFAULT region and interrupt all of them. You can optionally pass in .procs to get a list of all the PIDs that got interrupted.

7.6 D HALTALL ZSY [Kernel Use Only]

"Softly" (^XUSCLEAN, HALT^ZU) kill all processes.

7.7 D HALTONE^ZSY(PID) [Kernel Use Only]

"Softly" kill a single process specified by PID