## **Train Control Assignment 01**

เริ่มสั่งงาน : 24 กันยายน 2562 กำหนดส่ง : ก่อนวันที่ 2 ตุลาคม 2562

Git-repo: <a href="https://github.com/zeabusTeam/train\_control">https://github.com/zeabusTeam/train\_control</a>

เนื้อหา

1. การใช้งาน git พื้นฐานสำหรับการ รับ ส่ง การบ้าน

- 2. ภาพรวมของ Control <Flow chart> 1 dimension
- 3. งาน Control ครั้งที่ 1 มี 2 ข้อย่อย
- 1. การใช้งาน git พื้นฐานสำหรับการ รับ ส่ง การบ้าน

git คือ version control แบบ distributed ที่เป็นระบบที่ใช้จัดเก็บ ควบคุมที่เกิดขึ้นกับไฟล์ชนิดใดก็ได้ โดยจะเน้นไปที่ความต่อเนื่องของไฟล์นั้น ๆ ว่ามีการแก้ไขจากไฟล์ดั้งเดิมล่าสุดหรือไหม ที่อยู่ในระบบ git

การทำงานครั้งนี้ได้ทำการสร้าง repository ใน cloud ไว้เรียบร้อยแล้ว จึงไม่จำเป็นต้องยุ่งเกี่ยวการ จัดการ ในส่วนของ cloud มุ่งเน้นไปที่การใช้งานเพียงฐานพอ โดยมีขั้นตอนดังนี้

1. ให้ย้ายไปอยู่ Directory ที่ package ต่าง ๆ ในระบบ workspace ของผู้ใช้ทำงานอยู่ แล้วใช้ คำสั่ง

## \$git clone <a href="https://github.com/zeabusTeam/train\_control.git">https://github.com/zeabusTeam/train\_control.git</a>

2. การโคลนข้อหนึ่งนั้น จะทำให้ไฟล์ที่โคลนมาอยู่ใน branch master ขอให้ทำการย้ายไป branch อื่นเสียก่อน โดยคำสั่งต่อไปนี้

## \$git checkout -b user\_name

โดยให้เปลี่ยน user\_name เป็นชื่อของตนเอง โดยคำสั่งดังกล่าวจะสร้าง branch ชื่อ user\_name แล้วทำการย้ายตนเองไปอยู่ branch นั้น

3. จากการทำ 2 ข้อดังกล่าว คุณก็พร้อมที่จะนำงานขึ้น repository บน cloud แล้ว โดยใช้การ add commit และ push ขึ้น โดยลิงค์ที่จะ push ขึ้นทุกเก็บอยู่ใน origin

ref: https://medium.com/@pakin/git-คืออะไร-git-is-your-friend-c609c5f8efea

#### 2. ภาพรวมของ Control <Flow chart> 1 dimension



หลังจาก clone เสร็จสิ้น ให้ทำการ catkin\_make หนึ่งครั้ง โดย package ที่ให้มีการเขียนไฟล์ CMakeList.txt เรียบร้อยแล้ว เมื่อทำการ compile เสร็จให้รัน roscore ก่อนจะเริ่มทำงาน

ในการทำงานครั้งนี้จะมี node 1 node ที่ทำหน้าที่เป็นทั้ง SIMPLE PLANT กับ SENSOR FEEDBACK โดยรันคำสั่งดังต่อไปนี้

1. rosrun train\_control first\_model เมื่อรันคำสั่งดังกล่าว จะมี topic 2 topic โผล่ขึ้นมาในระบบ ROS ได้แก่ /state ที่จะบอกถึง ตำแหน่ง ความเร่ง และความเร่ง กับ /force ที่เป็น input ของส่วน model ที่จะรับมาเป็นแรงขับเคลื่อนวัตถุ ตรง ๆ โดยการทำงานอยู่ที่ 10HZ

2. Control Box เป็นโจทย์ในการทำงานต่อไปนี้ โดยเลือกได้ 2 ภาษาได้แก่ C++ or Python Command for C++ : rosrun train\_control first\_control Command for python : rosrun train\_control first\_control.py

เมื่อรัน 2 คำสั่งนี้จะมี topic 2 topic โผล่ขึ้นมา ได้แก่ /force ในส่วนของ publish ที่จะส่งค่า เข้าไปใน model กับ /target ที่จะรับ std\_msgs/Float64 รับเป้าหมายมาตั้งเป็น target นั้นเอง

สมการ Model ดังกล่าว เป็นในรูปแบบของการเคลื่อนที่ตามกฏนิวตัน โดยมีแรงเสียดทานได้แก่ แรงเสียด ทานจลน์และสถิตย์นั้นเอง โดยการคำนวณเป็นรูปแบบ Digital <u>เชิงเส้น</u> ไม่ใช่การใช้ Continuous ในการ คำนวณ เปรียบได้กับแรงที่คุณสั่งไปนั้นจะมีการทำงานอยู่ 0.1 วินาที จนกระทั่งค่าที่ส่งมาใหม่ ถ้าไม่มีการส่งมา ใหม่แรงจะถือว่าเป็น 0 ในคาบเวลาต่อไป

### 3. งาน Control ครั้งที่ 1

#### 3.1. Control Function

source code ที่จะให้ทำการแก้ไขอยู่ในส่วนของ HW01 เลือกภาษาที่ต้องการ โดยค่าที่จะถูกส่งเป็น force นั้นจะ return ออกมาจากค่า function force ทั้งนี้สามารถแก้ไขได้ทุกส่วนของโค้ด แต่โดยหลักของ โค้ดนี้นั้น ต้องการให้เห็นการ Control ขึ้นพื้นฐานเท่านั้น ยังไม่ต้องการให้แต่ ROS มาก จึงทำในรูปแบบ function ให้แก้ไขได้ง่ายนั้นเอง

การทำงานของระบบนั้น จำเป็นที่จะต้องส่ง target เข้าไป โดยเนื่องจากเป็นระบบ publish – subscribe ณ จุดที่ publish นั้นอยากให้กดส่งไปตลอด ทั้งนี้ตัว function ได้ปริ้นค่าทุกอย่างให้ดูเรียบร้อย แล้ว

argument ที่จะเข้าฟังก์ชั่นมีทั้งหมด 5 ค่าดังนี้

current\_point ตำแหน่ง ณ ขณะนั้น
current\_velocity ความเร็ว ณ ขณะนั้น
current\_acceleration ความเร่ง ณ ขณะนั้น
target\_point ตำแหน่งเป้าหมาย

- diff\_time คาบของการคำนวณ (หน่วยวินาที)

การส่งให้ อัพขึ้น git repository เดิม แต่เป็น branch ของตนเอง โดยไม่แนะนำให้แก้ไฟล์ CMakeLists.txt โดยไม่บอกกล่าว เนื่องจากอาจเกิดปัญหาต่อไปได้ ถ้ามีความจำเป็นต้องแก้ไฟล์ CMakeLists.txt ขอให้บอกจะให้แนวทางแก้ไขต่อไป

3.2.งานชิ้นนี้เป็นการพาเข้าสู่ระบบ ROS จะมีการเขียนโค้ด python ที่แทบจะเป็นวิธีหลักที่ผู้ดูแลใช้จริงใน ระบบการทำงานส่วนที่ผู้ดูแลรับผิดชอบ ส่วน C++ ไม่ใช่วิธีที่ใช้จริง 100% แต่พื้นฐานการทำงานยังครบถ้วน ตามการทำงานของระบบ ROS ขอให้ทำความเข้าใจ เพราะหลังจากงานนี้เป็นต้นไป จะเริ่มให้เขียน node เอง ในไฟล์ที่กำหนด หรือก็คือ ทำการเชื่อมต่อระหว่าง Node ด้วยตนเอง

งานชิ้นที่ 2 ขอให้ส่งไฟล์ PDF เขียนถึง 3 หัวข้อดังนี้

- บอกถึงแนวคิดที่ใช้ออกแบบใน Control <การบ้านหลักของข้อนี้>
- ลิสต์หัวข้อที่ตนรู้ที่เกี่ยวข้องกับ ROS <ไม่จำเป็น แต่จะทำให้พี่รู้ว่าเรารู้อะไรบ้าง>
- บรรยายถึงสิ่งที่ได้จากการทำงานครั้งนี้ อะไรก็ได้ <ไม่จำเป็น>

# ประวัติการปรับงานครั้งที่ 1

| Version | Detail                                                    | Date         | Name      |
|---------|-----------------------------------------------------------|--------------|-----------|
| 1.0     | การให้งานครั้งแรก เริ่มต้นรูปแบบการฝึก เรียนรู้งานแบบใหม่ | 2019 Aug, 24 | K.Supasan |