

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-278586

(43)公開日 平成6年(1994)10月4日

(51)IntCL[®]
B 60 T 8/24

識別記号 庁内整理番号
8610-3H

F I

技術表示箇所

(21)出願番号 特願平5-66382

(22)出願日 平成5年(1993)3月25日

(71)出願人 000000268

三菱自動車工業株式会社
東京都港区芝五丁目33番8号

(72)発明者 磯田 桂司

東京都港区芝五丁目33番8号 三菱自動車
工業株式会社内

(74)代理人 井理士 長門 伸二

(54)【発明の名称】 車両のブレーキ装置

(57)【要約】

【目的】 この発明は、自動ブレーキ制御により、左右輪に差を付けてブレーキ力を配分することができ、しかも、左右輪に均等なブレーキ力を発生および増強を可能としたり、均等なブレーキ力の低減を可能とする車両のブレーキ装置を提供することを目的とする。

【構成】 この発明のブレーキ装置1は、各マスタシリング12とブレーキ力配分割御装置5等より構成されている。ブレーキ力配分割御回路5は、電磁切換弁80と連通切換弁40等と備え、連通切換弁40は、各マスタシリング12へ作動力を伝える各制御用シリンド14、15において、第1制御圧力室24と第4制御圧力室27とを連通し、第2制御圧力室25と第3制御圧力室26とを連通する第1切换位置41と、第1制御圧力室24と第3制御圧力室26とを連通し、第2制御圧力室25と第4制御圧力室27とを連通する第2切换位置42とを有している。

【特許請求の範囲】

【請求項1】 左側輪用および右側輪用ブレーキ压をそれぞれ発生させる各マスタシリングと、ブレーキベダル側に接続された操作ロッドと各マスタシリングとの間に設けられ、圧力源から圧液の供給を受けて、各マスタシリングへの作動力に差を付けてこれらマスタシリングに作動力を配分して与えるようにしたブレーキカ力配分制御手段とを備え、

ブレーキカ力配分制御手段は、ハウジングに設けられた一対のシリング孔と、これらシリング孔にそれぞれ嵌合され、各マスタシリングへ作動力を伝達する制御用ピストンと、各シリング孔内において、制御用ピストンの一端面により区画され、圧力源からの圧液が供給されたとき、加圧されて制御用ピストンを往復させマスタシリングの作動力を増加させる往復圧力室と、各シリング孔内において、制御用ピストンの他端面により区画され、圧力源からの圧液が供給されたとき、加圧されて制御用ピストンを復動させマスタシリングへの作動力を減少させる復動圧力室と、一方の制御用ピストン側の復動圧力室と他方の制御用ピストン側の復動圧力室とを連通し、一方の制御用ピストン側の復動圧力室と他方の制御用ピストン側の復動圧力室とを連通する一対の第1遮断管路と、一方の制御用ピストン側において、圧力源からの圧液を往復圧力室および復動圧力室に切換えて供給する切換制御弁とを有した車両のブレーキ装置において、一方および他方の制御用ピストン側の往復圧力室同士を連通し、一方および他方の制御用ピストン側の復動圧力室の復動圧力室同士を連通する一対の第2遮断管路と、前記第1遮断管路と第2遮断管路とを切換える連通切換手段とを備えたことを特徴とする車両のブレーキ装置。

【発明の詳細な説明】

【0001】

【産業上の利用分野】 この発明は、左右輪のブレーキ力を自在に変化させることのできる車両のブレーキ装置に関する。

【0002】

【従来の技術】 車両の旋回走行時等において、左右輪の各ブレーキ力を操作して車両に発生するヨーモーメントを積極的に制御すれば、車両の旋回性能の向上に繋がることができる。従来、左右輪のブレーキ制御を実施することができるブレーキ装置としては、運転者がブレーキペダルを操作することで発生したブレーキオイルの圧力を左側輪用および右側輪用ブレーキ压として適当な割合で配分し、これにより、左右の車輪間でブレーキ力を変化させてヨーモーメントを積極的に発生させるものや、運転者がブレーキペダルを操作していない場合においても、自動ブレーキ制御により、左側および右側車輪のうち、どちらか一方の車輪についてブレーキ压を発生させ、これにより、ヨーモーメントを積極的に発生させるものが知られている。

【0003】

【発明が解決しようとする課題】 しかしながら、上記従来の車両のブレーキ装置においては、左右輪のブレーキカ力配分制御の実施に制限があった。つまり、上述のタイプのブレーキ装置は、ブレーキペダル操作とは関係のない自駆ブレーキ制御において、左右輪に差を付けてブレーキ力を配分することはできるが、左右輪に均等なブレーキ力を発生させたり、左右輪のブレーキ力を均等に低減したりすることができないとの問題があった。

【0004】 この発明は、上述の問題点を解決するためになされたもので、ブレーキペダル操作とは関係のない自駆ブレーキ制御において、左右輪に差を付けてブレーキ力を配分することができ、しかも、左右輪に均等なブレーキ力を発生させたり、左右輪のブレーキ力を均等に低減できる車両のブレーキ装置を提供すること目的とする。

【0005】

【課題を解決するための手段】 この発明の車両のブレーキ装置によれば、上記目的を達成するために、左側輪用および右側輪用ブレーキ压をそれぞれ発生させる各マスタシリングと、これらマスタシリングとの間に接続された操作ロッドとマスタシリングとの間に設けられ、圧力源から圧液の供給を受けて、各マスタシリングへの作動力に差を付けてこれらマスタシリングに作動力を配分して与えるようとしたブレーキカ力配分制御手段とを備え、ブレーキカ力配分制御手段は、ハウジングに設けられた一対のシリング孔と、これらシリング孔にそれぞれ嵌合され、各マスタシリングへ作動力を伝達する制御用ピストンと、各シリング孔内において、制御用ピストンの一端面により区画され、圧力源からの圧液が供給されたとき、加圧されて制御用ピストンを往復させマスタシリングへの作動力を増加させる往復圧力室と、各シリング孔内において、制御用ピストンの他端面により区画され、圧力源からの圧液が供給されたとき、加圧されて制御用ピストンを復動させマスタシリングへの作動力を減少させる復動圧力室と、一方の制御用ピストン側の往復圧力室と他方の制御用ピストン側の往復圧力室とを連通し、一方の制御用ピストン側の復動圧力室と他方の制御用ピストン側の往復圧力室とを連通する一対の第1遮断管路と、一方の制御用ピストン側において、圧力源からの圧液を往復圧力室および復動圧力室に切替えて供給する切換制御弁とを有した車両のブレーキ装置において、一方および他方の制御用ピストン側の往復圧力室同士を連通し、一方および他方の制御用ピストン側の復動圧力室の復動圧力室同士を連通する一対の第2遮断管路と、前記第1遮断管路と第2遮断管路とを切換える連通切換手段とを備えて構成されている。

【0006】

【作用】 この発明の車両のブレーキ装置によれば、ブレーキペダル操作力に関係なく、ブレーキカ力配分制御手段

は、連通切換手段を第1速通管路に切换え、切換制弁を制御して、各制御ピストンを互いに逆方向に移動させ、その作動力を各マスタシリングに差を付けて分配し、どちらか一方のマスタシリング油シリンダにブレーキ缶を発生させる。また、ブレーキ力配分割制手段は、連通切換手段を第2速通管路に切换え、切換制弁を制御して、各制御ピストンを同方向に往復および復動させ、その作動力を各マスタシリングに均等に配分し、各マスタシリングに左右輪均等のブレーキ缶を発生させること。

【0007】

【実施例】以下、この発明の一実施例を図1ないし図7に基づいて詳しく説明する。図1は、この発明を適用したブレーキ装置の一実施例を示し、ブレーキ装置1は、マスタシリングユニット3、ブレーキ缶回路4、ブレーキ力配分割制回路5、コントローラ7等により構成されている。

【0008】マスタシリングユニット3は、一对のマスタシリング1、2、一对の制御シリング14、15およびバランス機構17等により構成されている。そして、これら各シリング1、2、13、14は、ハウジング(図示せず)内に形成され、バランス機構17等は、ハウジング内に収容されている。一对の制御シリング14、15は、一对のマスタシリング1、2と連続シリング1の間に配置されている。各制御シリング14、15内には、それぞれ制御用ピストン20、21が回動自在に嵌合されている。各制御用ピストン20、21は、その両端面から延びるピストンロッド22、23を有しており、基端側に延びるピストンロッド22、23はバランス機構17が、前端側に延びるピストンロッド22、23には各マスタシリング1、2が、それぞれ機械的に接続されている。

【0009】ここで、制御シリング14、15のうち、右側用マスタシリング1を介して右側車輪のブレーキ力を制御するものを第1制御シリング14とし、左側用マスタシリング1を介して左側車輪のブレーキ力を制御するものを第2制御シリング15とする。また、各制御用ピストン20、21のうち、第1制御シリング14の嵌合されているものを第1制御用ピストン20とし、第2制御シリング15に嵌合されているものを第2制御用ピストン21とする。さらに、ピストンロッド22、23のうち、第1制御ピストン20か延びているものを第1ピストンロッド22とし、第2制御ピストン21か延びているものを第2ピストンロッド23とする。

【0010】第1制御シリング14は、第1制御用ピストン20より基端側の空間が第1制御圧力室24とされ、第1制御用ピストン20より先端側の空間が第2制御圧力室25とされている。また、第2制御シリング15は、第2制御用ピストン21より基端側の空間が第3制御圧力室26とされ、第1制御用ピストン20より先

端側の空間が第4制御圧力室27とされている。

【0011】第1および第3制御圧力室は、各制御用ピストン20、21に関する、往動圧力室とされている。つまり、この往動圧力室に油圧が供給されると、各制御用ピストン20、21は、各制御シリング14、15内を往動する。第2および第4制御圧力室は、各制御用ピストン20、21に関する、復動圧力室とされている。つまり、この復動圧力室に油圧が供給されると、各制御用ピストン20、21は、各制御シリング14、15内を復動する。

【0012】第1制御シリング14には、第1制御圧力室24の基端側に第1制御ポート30および第1接続ポート32が、第2制御圧力室25の先端側に第2制御ポート31および第2接続ポート33がそれぞれ設けられている。また、第2制御シリング15には、第3制御圧力室26の基端側に第3接続ポート34が、第4制御圧力室27の先端側に第4接続ポート35がそれぞれ設けられている。そして、第1および第2接続ポート32、33は、連通切換弁40(連通切換手段)を介して、第3および第4接続ポート34、35が接続されている。

【0013】連通切換弁40は、電磁式の2位置切換弁である。この連通切換弁40は、図1に示す第1切換手段41において、第1接続ポート32と第4接続ポート35とを、第2接続ポート33と第3接続ポート34とをそれぞれ接続する。すなわち、第1制御圧力室24と第4制御圧力室27とが、第2制御圧力室25と第3制御圧力室26とがそれぞれ連通される。この状態から、連通切換弁40のソレノイド43が励磁されると、連通切換弁40が第2切換位置42で切り替わられる。第2切換位置42では、第1接続ポート32と第3接続ポート34とを、第2接続ポート33と第4接続ポート35とをそれぞれ接続する。すなわち、第1制御圧力室24と第3制御圧力室26とが、第2制御圧力室25と第4制御圧力室27とがそれぞれ連通される。

【0014】バランス機構17は、支持ロッド50、バランスバー51および一对の作用ロッド52等により構成されており、図示しないが、これに構成部品はハウジング内に収容されている。支持ロッド50の基端には、離間可能にしてプッシュロッド53の先端が押入され当接されている。このプッシュロッド53は、ブレーキペースト、すなわち、いわゆるマスタバッック(図示せず)から延出しておあり、ブレーキペダル54が踏み込み操作された場合、支持ロッド50を移動させる。したがって、支持ロッド50は、プッシュロッド53に押されて軸線方向へ移動することができる。

【0015】バランスバー51は、その中央位置において支持ロッド50に回動自在に連結されており、ブレーキ装置1が作動していない状態において、支持ロッド50に直交するように延びている。したがって、バランスバー51の両端は、支持ロッド50から等距離位置に配

置されている。バランスバー 5 の両端には、各作用ロッド 5 2 の基礎が回転自在に連結されており、これら作用ロッド 5 2 の先端は、各第 1 オおよび第 2 駆動用ビストン 2 0, 2 1 の各ビストンロッド 2 2, 2 3 の基礎に離間可能にして接続されている。したがって、各ビストンロッド 2 2, 2 3 に各作用ロッド 5 2 に押されて軸線方向に移動することができる。

【0016】マスタシリング 1 2 は、いわゆるクンデムタイプのもので、プライマリビストン 6 0 およびセカンダリビストン 6 1 等から構成されている。一方のマスタシリング 1 2 は、右側前後車輪へのブレーキ力を発生し、他方のマスタシリング 1 2 は、左側前後車輪へのブレーキ力を発生する。また、両車は共に同じ構造を有している。したがって、右輪側のマスタシリング 1 2 についてのみを説明し、左輪側のマスタシリング 1 2 についての説明は省略する。

【0017】プライマリビストン 6 0 (以下、P ビストン 6 0 と記す) は、マスタシリング 1 2 の基礎側に収容されている。セカンダリビストン 6 1 (以下、S ビストン 6 1 と記す) は、マスタシリング 1 2 のP ビストン 6 0 より基準側の空間に収容され、その空間の略中位位置に配置されている。P ビストン 6 0 と S ビストン 6 1 の間の空間則は、第 1 ブレーキ圧力室 6 2 となっており、また、S ビストン 6 1 の先端側の空間は、第 2 ブレーキ圧力室 6 3 となっている。各ブレーキ圧力室 6 2, 6 3 には、リターンスプリング 4, 6 5 が収容されている。各リターンスプリング 4, 6 5 は、スプリングシート (図示しない) に保持され、スプリングシートは、各ビストン 6 0, 6 1 から延びるビン (図示しない) にガイドされている。したがって、各ビストン 6 0, 6 1 が往復運動して各ブレーキ圧力室 6 2, 6 3 の容積が変化した場合、各リターンスプリングは内滑に伸縮することができる。

【0018】各ビストン 6 0, 6 1 が移動していない状態 (図 1 に示す状態)において、マスタシリング 1 2 には、第 1 オおよび第 2 ポート 6 6, 6 7 が第 1 ブレーキ圧力室 6 2 に面し、また、第 3 オおよび第 4 ポート 6 8, 6 9 が第 2 ブレーキ圧力室 6 3 に面んでそれぞれ設けられている。この第 1 ブレーキ圧力室 6 2 には、後輪側のブレーキ圧が発生し、また、第 2 ブレーキ圧力室 6 3 には、前輪側のブレーキ圧が発生する。

【0019】ブレーキ圧回路 4 は、図 1 に示すように、ブレーキオイルを貯留できるリザーバタンクと、各車輪 F.R. (右側前輪), R.R. (右側後輪), L.F. (左側前輪), L.R. (左側後輪) に配設されたディスクブレーキ機構 7 0 と、各ブレーキ圧力室 6 2, 6 3 から各ディスクブレーキ機構 7 0 にブレーキ油を供給できる各ブレーキホース 7 1 と、各ブレーキ圧力室 6 2, 6 3 内と、ハウジングに取り付けられたリザーバタンク内とを連通する油路 7 2 等により構成されている。なお、図 1 において

は、このリザーバタンクの図示を省略すると共に、後述するオイルポンプ 7 5 に係るリザーバタンク 7 3 に油路 7 2 を延ばしている。

【0020】各ブレーキホース 7 1 は、第 1 オおよび第 3 ポート 6 6, 6 8 に接続されている。また、油路 7 2 は、第 2 オおよび第 4 ポート 6 7, 6 9 に接続されている。なお、後輪側のブレーキホース 7 1 の途中には、ブロボーチュニングバルブ 7 4 が介挿されている。ブレーキ力分配制御路 5 (ブレーキ力分配制御手段) は、上述した過渡切換弁 4 0 に加え、リザーブクランク 7 3、オイルポンプ 7 5、電磁比例減圧弁 7 6 および電磁切換弁 8 0 (油制御弁) 等より構成されている。

【0021】オイルポンプ 7 5 は、電動モータ 8 8 により回転駆動され、リザーブタンク 7 3 から吸い込んだブレーキオイルを、油路 8 4 を介して電磁比例減圧弁 7 6 に送る。なお、この油路 8 4 の途中には、アクチュエータ 8 9 が接続されている。電磁比例減圧弁 7 6 は、ソリレイド 7 8、スプール 7 7 およびリターンスプリング 7 9 等により構成されている。スプール 7 7 には、油孔が設けられている。ソリレイド 7 8 が励磁されると、スプール 7 7 は軸線方向に移動し、その移動距離に応じて、オイルポンプ 7 5 から送達されたブレーキオイルを電磁切換弁 8 0 に供給する。

【0022】つまり、スプール 7 7 が移動していない状態において、スプール 7 7 の油孔の位置関係から、油路 8 4 が開放されるポートは閉塞されている。そして、スプール 7 7 が移動すると、油路 8 4 から油路 8 5, 8 6 にブレーキオイルが流入し始める。この場合、スプール 7 7 の移動距離の増加に比例して、前記油路の位置関係から、油路 8 4 から油路 8 5 内に流入するブレーキオイルの量は減少し、油路 8 6 内に流入するブレーキオイルの量は増加する。なお、スプール 7 7 の移動距離は、ソリレイド 7 8 への通電量に比例して増加する。

【0023】電磁切換弁 8 0 は、2 位置切換である。この電磁切換弁 8 0 は、図 1 に示す第 1 切換位置 8 1 において、電磁比例減圧弁 7 6 から延びる油路 8 6 と油路 9 0 を、油路 9 1 とリザーブタンク 7 3 に接する油路 8 7 をそれぞれ接続する。この状態から、電磁切換弁 8 0 のソリレイド 8 3 が励磁されると、電磁切換弁 8 0 が第 2 切換位置 8 2 に切り換えられる。第 2 切換位置 8 2 は、油路 8 6 と油路 9 1 を、油路 9 0 と油路 8 7 をそれぞれ接続する。

【0024】なお、油路 9 1 は、第 1 制御ポート 3 0 を介して第 1 制御圧力室 2 4 にブレーキオイルを供給でき、油路 9 0 は、第 2 制御ポート 3 1 を介して第 2 制御圧力室 2 5 にブレーキオイルを供給できる。コントローラ 7 は、図示しない ROM, RAM 等の記憶装置、中央演算装置 (C.P.U.)、入出力装置等を内蔵している。そして、入出力装置の入力側には、種々のセンサ類 1 0 例えは、ハンドル (図示せず) の操作角を検出する

ハンドル操作角センサ、車速を検出する車速センサ、車幅方向の加速度を検出する横Gセンサ、ブレーキペダル54の踏込操作を検出するブレーキスイッチ等が電気的に接続されている。

【0025】また、コントローラ7の入出力装置の出力側には、オイルポンプ75の電動モータ88、電磁比例減圧弁76および電磁切換弁80の各ソレノイド78、83、遮断切換弁40のソレノイド43等が電気的に接続されている。したがって、コントローラ7は、電動モータ88を操作してオイルポンプ75からのブレーキオイルの供給量を制御することができる。また、電磁比例減圧弁76のソレノイド78を励磁して、電磁切換弁80へのブレーキオイルの供給量を制御することができる。さらに、電磁切換弁80の第1および第2切換位置81、82に切換えると制御することができる。そして、遮断切換弁40の第1および第2切換位置41、42の切換えると制御することができる。

【0026】次に、ブレーキ装置1の作動について説明する。このブレーキ装置1では、通常ブレーキ制御、自動ブレーキ制御およびブレーキ分配制御を実施することができる。まず、通常ブレーキ制御について、図2に基づいて説明する。なお、図2において、各マスククリンダ12とSビストン61、第2ブレーキ圧力室63についての図示を省略してある。また、図3ないし図6についても同様である。

【0027】運転者がブレーキペダル54の踏込操作を行うと、マスククリンダ12のSビストン61が支持ロッド50およびバランスバー51を移動させる。バランスバー51の両端には作用ロッド52が回転自在に連結されており、またこれら作用ロッド52は、支持ロッド50より等距離位置で配置されているので、バランスバー51は支持ロッド52に対して移動することなく移動する。したがって、各作用ロッド52は互いに同位置まで移動し、各ビストンロッド22、23を同距離だけ押し出す。これにより、各Pビストン60等は互いに同位置まで往復し、左輪側と右輪側で同一のブレーキ圧P_b、P_rを発生させる。

【0028】バランスバー51の移動距離は、ブレーキペダル54の踏込量に応じて変化する。このため、各ブレーキ圧力室62、63内に発生するブレーキ圧P_b、P_rの大きさは、ブレーキペダル54の踏込量に比例する。したがって、図7中、特性Aで示すように、左右のブレーキ圧P_b、P_rは等しく上昇する。次に、自動ブレーキ制御について、図3に基づいて説明する。コントローラ7は、例えば、車両の巡回走行時において、ブレーキペダル54が操作されていない場合にこの自動ブレーキ制御を実施する。

【0029】コントローラ7は、例えば、右輪側のディスクブレーキ機構70のみを作動させる場合、電磁切換弁80を第2切換位置82に切り換えると共に、電磁比

例減圧弁76のスプール77を、必要なブレーキ力に応じた距離だけ移動させる。したがって、このスプール77の移動距離に応じた量のオイルが油路91に供給され、第1制御ポート30を介して第1制御圧力室24内に流入する(図1参照)。

【0030】そして、第1制御圧力室24内に流入したオイルは、第1制御用ピストン20および第1ピストンロッド22を往復せると共に、第1接続ポート32、遮断切換弁40および第4接続ポート35を介して第4制御圧力室27内に流入し、第2および第3制御圧力室25、26の内のオイルを油路90に排出せながら、第2制御用ピストン21および第2ピストンロッド23を復動させる。

【0031】この場合、第1ピストンロッド22の往動距離と、第2ピストンロッド23の復動距離とは等しいので、バランスバー51は、図中矢印BCC方向に振動し、したがって、支持ロッド50は移動することができない。第1ピストンロッド22が往動すると、Pピストン60が押しだされ、右輪側のブレーキ圧P_bが発生する。一方、第2ピストンロッド23が復動すると、リターンスプリング64、65等によりPピストン60等が押し戻される。そして、Pピストン60等の所定位置にまで押し戻された後は、第2ピストンロッド23はPピストン60から離間しながら往復し、したがって、左輪側のブレーキ圧P_rには影響を与えない。

【0032】コントローラ7は、電磁比例減圧弁76のソレノイド78の通電量を調整し、各ビストンロッド22、23の移動量を操作して、発生するブレーキ圧P_bの大さきを変化させることができる。したがって、図6中、特性Bで示すように、のブレーキ圧P_bのみが増加する。なお、左輪側のディスクブレーキ機構70のみを作動させる場合には、電磁切換弁80を第1切換位置81に切り換え、油路90を介して第3制御圧力室26内にオイルを供給すれば良い。

【0033】次に、ブレーキ力分配制御について説明する。ブレーキ力分配制御は、通常ブレーキ実施中に自動ブレーキを実施する場合と、自動ブレーキ実施中に通常ブレーキを実施する場合がある。まず、運転者がブレーキペダル54を操作している状態(図2中央状態)により、コントローラ7が、例えば、の自動ブレーキを実施した場合について説明する。

【0034】この場合、第1ピストンロッド22は、ブレーキペダル54の踏込量に応じた位置(図2の実線位置)からさりに往復し、一方、第2ピストンロッド23は、ブレーキペダル54の踏込量に応じた位置から復動する。したがって、図4中実線で示すように、Pピストン60等の移動距離が増加してのブレーキ圧P_bは上昇し、Pピストン60等の往動距離が減少してのブレーキ圧P_rは下降する。各ビストンロッド22、23は、バランスバー62で連結されているので、ブレーキ圧P_b

の変化量と、ブレーキ圧 P_1 の変化量は等しい。

【0035】したがって、この場合のブレーキ圧特性は、図7中、特性Aで示すように、まず、ブレーキペダル54が操作されることで左の各ブレーキ圧 P_1 、 P_2 が等しく上昇する。そして、この特性は、右輪側の自動ブレーキ制御が実施された時点から変化し、ブレーキ圧 P_1 は引き続き上昇する一方、ブレーキ圧 P_2 は下降し始める。なお、この場合、左右のブレーキ圧 P_1 、 P_2 の和は、特性Aで示す場合の左右のブレーキ圧 P_1 、 P_2 の和と同じである。

【0036】次に、コントローラ7が右輪側の自動ブレーキ制御を実施している状態(図3中実線状態)より、運転者がブレーキペダル54を操作した場合について説明する。この場合、支持ロッド50およびバランスバー51は、ブッシュロッド53に押され移動する。バランスバー51は、その中央位置で支持ロッド50に連結されており、また、各作用ロッド52は支持ロッド50に対して互いに等距離位置に配置されているので、このバランスバー51は、支持ロッド50に対する擺動角度を維持した状態で移動し、各作用ロッド52を互いに等距離だけ移動させる。したがって、各ビストンロッド22、23は自動ブレーキ制御されていた位置(図3の実線位置)から往動し、この往動距離に応じた大きさだけ左右のブレーキ圧 P_1 、 P_2 が上昇する。

【0037】したがって、この場合のブレーキ圧特性は、図7中、特性Bで示すように、まず、自動ブレーキ制御されることでブレーキ圧 P_1 のみが上昇する。そして、この特性は、ブレーキペダル54が踏み込まれた時点から変化し、左の各ブレーキ圧 P_1 、 P_2 が互いに等しい割合で上昇する。また、自動ブレーキ制御では、上述したように左右輪どちらか一方のブレーキ圧を増圧する制御を実施するが、左右輪の両方のブレーキ圧を増圧したりあるいは減圧したりする制御も実施する。

【0038】まず、運転者がブレーキペダル54を操作している状態(図2中実線状態)より、コントローラ7が、例えば、左右輪の両方のブレーキ圧を減圧する自動ブレーキ制御の実施した場合について説明する。コントローラ7は、連通切換弁40を第1切換位置41から第2切換位置42に切り換えると共に、電磁比例減圧弁76のスプール77を、必要なブレーキ力に応じた距離だけ移動させる。したがって、このスプール77の移動距離に応じた量のオイルが左側用油路90に供給され、第2制御ポート31を介して第2制御圧力室25内に流入する。

【0039】連通切換弁40が第2切換位置42に切り換えるると、第1制御シリンドラ14の第1制御圧力室24と第2制御シリンドラ15の第3制御圧力室26が、第1制御シリンドラ14の第2制御圧力室25と第2制御シリンドラ15の第4制御圧力室27がそれぞれ連通される。したがって、第2制御圧力室25内に流入したオイ

ルは、第1制御用ビストン20および第1ビストンロッド22を復位させると共に、第2接続ポート33、連通切換弁40および第4接続ポート35を介して第4制御圧力室27内に流入し、第1および第3制御圧力室24、26内のオイルを油路91に排出せながら、第2制御用ビストン21および第2ビストンロッド23を復動させる。

【0040】この場合、第1および第2ビストンロッド22、23の復動距離とは等しいので、バランスバー51および支持ロッド50も復位される。第1および第2ビストンロッド22、23が復位すると、リターンスプリング64、65等によりビストン60等が復位に戻され、左輪側のブレーキ圧 P_1 、 P_2 が均等に減圧される。

【0041】このように、自動ブレーキ制御により左右輪のブレーキ圧 P_1 、 P_2 が減圧される状況とは、たとえば、ブレーキペダルが操作された場合において、コントローラ7が車輪ロックの発生を判断した場合である。したがって、コントローラ7は、このような場合には、自動制御によりブレーキ操作力に抗する作動力を第1制御用ビストン20、21に発生させ、左輪側のブレーキ圧 P_1 、 P_2 を均等に低減し、車輪ロックを防止すると共に、車両の直進および安定性を図る。

【0042】次に、運転者がブレーキペダル54を操作していない状態(図1の状態)より、コントローラ7が、例えば、左右輪両方のブレーキ圧 P_1 、 P_2 を増圧する自動ブレーキ制御の実施した場合について説明する。コントローラ7は、連通切換弁40を第1切換位置41から第2切換位置42に切り換えると共に、電磁比例減圧弁80を第2切換位置82に切り換える。そして、電磁比例減圧弁76のスプール77を、必要なブレーキ力に応じた距離だけ移動させる。したがって、このスプール77の移動距離に応じた量のオイルが右側用油路91に供給され、第1制御ポート30を介して第1制御圧力室24内に流入する。

【0043】連通切換弁40が第2切換位置42に切り換えると、上述したように第1制御シリンドラ14の第1制御圧力室24と第2制御シリンドラ15の第3制御圧力室26が、第1制御シリンドラ14の第2制御圧力室25、第2制御シリンドラ15の第4制御圧力室27がそれぞれ連通される。したがって、第1制御圧力室24内に流入したオイルは、第1制御用ビストン20および第1ビストンロッド22を往動させると共に、第1接続ポート32、連通切換弁40および第3接続ポート34を介して第3制御圧力室26内に流入し、第2および第4制御圧力室25、27内のオイルを油路90に排出せながら、第2制御用ビストン21および第2ビストンロッド23を往動させる。

【0044】この場合、第1および第2ビストンロッド22、23の往動距離とは等しいので、バランスバー5

1および支持ロッド50も往動される。第1および第2ビストンロッド22, 23が往動すると、各ビストンロッド22, 23に各Pビストン60等が押し出され、左右輪のブレーキ圧P₁, P₂が増加される。

【0045】このように、自動ブレーキ制御により左右輪のブレーキ圧P₁, P₂が増加される状況とは、たとえば、ブレーキペダル54が操作されていない場合において、コントローラ7が車速を検出し、この車速が車両の安定走行に敵していないと判断したときや、ブレーキペダル54が操作されている場合においても、コントローラ7がさらにブレーキ力の付与を必要と判断したときなどが考えられる。

【0046】したがって、コントローラ7は、このような場合には、適当なブレーキを自動的に第1制御用ビストン20, 21に発生させあるいは増加させ、車両の直進および旋回安定性を図る。この発明は、上述した一実施例に制約されるものではなく、種々の変形が可能である。

【0047】たとえば、一実施例にあっては、ブレーキペダル54側から各制御用ビストンへの操作力の伝達は、支持ロッド50、バランスロッド51および作用ロッド52等により機械的に行われていたが、これに限らず、この機械的伝達方法に代えて、ビストン、油路等で構成する油圧回路により、前記操作力を伝達するようしてもよい。そうすれば、ブレーキペダル54側と各制御用ビストン20, 21側とを独立して配分することができる。つまり、ブレーキ装置の各構成部材のレイアウト自由度がより大きくなる。

【0048】また、各制御用ビストン20, 21の各ビストンロッド22, 23からマスターシリング12への作動力の伝達も、機械的に行われていたが、これに限らず、この機械的伝達方法に代えて、ビストン、油路等で構成する油圧回路により、前記操作力を伝達するようにもよい。そうすれば、各制御用ビストン側と各マスターシリング側とを独立して配分することができる。つまり、ブレーキ装置の各構成部材のレイアウトの自由度がより大きくなる。

【0049】【発明の効果】以上説明したように、この発明の車両のブレーキ装置は、ブレーキ力分配制御手段に、一方の制御用ビストン側の往動圧力室と他方の制御用ビストン側の復動圧力室とを連通し、一方の制御用ビストン側の往動圧力室と他方の制御用ビストン側の往動圧力室とを連通する一方の第1連通管路と一方および他方の制御用ビストン側の往動圧力室と同士を連通する一方の第2連通管路とを備え、連通切換手段により第1連通管路と第2連通管路とを切換えるようにしたから、前記操作ロッドがブレーキペダルから操作力を受ける受けないに

かかわらず、連通切換手段が第1連通管路に切換えられたとき、各マスターシリングは、左右輪異なるブレーキ力を発生することができ、連通切換手段が第2連通管路に切換えられたとき、各マスターシリングは、左右輪に均等なブレーキ力の発生および増加を可能とし、また、均等なブレーキ力の低減を可能とする。したがって、左右輪のブレーキ力配分制御による車両の直進および旋回安定性の確保を維持するとともに、自動ブレーキ制御により各マスターシリングにブレーキ力を発生させて車速を低減でき、また、ブレーキ力を低減して車輪ロックの防止ができるなど、より車両の直進安定性および旋回安定性の向上を図ることができる等の効果を有する。

【図面の簡単な説明】

【図1】本発明を適用したブレーキ装置1の一実施例を示す概略構成図である。

【図2】通常ブレーキ制御を実施した場合のマスターシングユニット3の作動状態を示す概略構成図である。

【図3】自動ブレーキ制御を実施した場合のマスターシングユニット3の作動状態を示す概略構成図である。

【図4】通常ブレーキ制御と自動ブレーキ制御を同時に実施した場合のマスターシングユニット3の作動状態を示す概略構成図である。

【図5】通常ブレーキ制御と自動ブレーキ制御を同時に実施した場合のマスターシングユニット3の作動状態を示す概略構成図である。

【図6】自動ブレーキ制御を実施した場合のマスターシングユニット3の作動状態を示す概略構成図である。

【図7】左右のブレーキ圧P₁, P₂の特性を示す図である。

【符号の説明】

- 1 ブレーキ装置
- 2 マスターシングユニット
- 3 ブレーキ力配分制御回路（ブレーキ力配分制御手段）

30 7 コントローラ

12 マスターシング

14, 15 制御シリング

20, 21 制御用ビストン

22, 23 ビストンロッド

40 24~27 第1~4制御圧力室

40 連通切換弁

41 第1切換位置

42 第2切換位置

50 支持ロッド

51 バランスバー

54 ブレーキペダル

60 ブライマリビストン

61 セカンダリビストン

80 電磁切換弁

(圖 1)

[图2]

[圖 5]

[圖 6]

[圖 7]

