KHOA CNTT & TRUYỀN THÔNG BM KHOA HỌC MÁY TÍNH

Phương pháp học cây quyết định Decision Tree

PGS. TS. Đỗ Thanh Nghị TS. Trần Nguyễn Minh Thư tnmthu@ctu.edu.vn

Nội dung

- >Học có giám sát
- Giới thiệu về cây quyết định
- Giải thuật học của cây quyết định
- Kết luận và hướng phát triển

Học có giám sát

Từ tập dữ liệu huấn luyện $\{(X^1, y^1), (X^2, y^2),...,(X^m, y^m)\}$

• Tìm hàm h (hypothesis) X=>Y sao cho h(x) dự báo được y từ x

- Y là giá trị liên tục: sử dụng pp hồi quy (regression)
- Y là giá trị rời rạc: sử dụng pp phân lớp (classification)

Phân loại học máy – học có giám sát

Từ tập dữ liệu huấn luyện { (x¹, y¹), (x²,y²),..,(x^m,y^m) }

Outlook	Temperature	Humidity	Windy	Play?
sunny	hot	high	false	No
sunny	hot	high	true	No
overcast	hot	high	false	Yes
rain	mild	high	false	Yes
rain	cool	normal	false	Yes

 Tìm hàm h (hypothesis) X=>Y sao cho h(x) dự báo được y tử x

Cây quyết định

Cây quyết định là giải thuật học:

- kết quả sinh ra dễ diễn dịch (if ... then ...)
- > khá đơn giản, nhanh, hiệu quả được sử dụng nhiều
- liên tục trong nhiều năm qua, cây quyết định được bình chọn là giải thuật được sử dụng nhiều nhất và thành công nhất
- piải quyết các vấn đề của phân loại, hồi quy
- > làm việc cho dữ liệu số và kiểu liệt kê
- dược ứng dụng thành công trong hầu hết các lãnh vực về phân tích dữ liệu, phân loại text, spam, phân loại gien, etc

Cây quyết định

Có rất nhiều giải thuật sẵn dùng

- > ID3 (Quinlan 79)
- CART Classification and Regression Trees (Brieman et al. 84)
- Assistant (Cestnik et al. 87)
- > C4.5 (Quinlan 93)
- > See5 (Quinlan 97)
- Orange (Demšar, Zupan 98-03)

Kỹ thuật DM thành công trong ứng dụng thực

Top 10 DM algorithms (2015)

Here are the algorithms:

- 1. C4.5
- · 2. k-means
- 3. Support vector machines
- 4. Apriori
- 5. EM
- 6. PageRank
- 7. AdaBoost
- 8. kNN
- 9. Naive Bayes
- 10. CART

Ví dụ cây quyết định

Cây quyết định

- Nút trong: được tích hợp với điều kiện để kiểm tra rẽ nhánh
- Nút lá: được gán nhãn tương ứng với lớp của dữ liệu
- 1 nhánh: trình bày cho dữ liệu thỏa mãn điều kiện kiểm tra, ví dụ: age < 25.</p>
- ở mỗi nút, 1 thuộc tính được chọn để phân hoạch dữ liệu học sao cho tách rời các lớp tốt nhất có thể
- Một luật quyết định có dạng IF-THEN được tạo ra từ việc thực hiện AND trên các điều kiện theo đường dẫn từ nút gốc đến nút lá.
- Dữ liệu mới đến được phân loại bằng cách duyệt từ nút gốc của cây cho đến khi đụng đến nút lá, từ đó rút ra lớp của đối tượng cần xét

Ví dụ cây quyết định

Một luật quyết định có dạng IF-THEN được tạo ra từ việc thực hiện AND trên các điều kiện theo đường dẫn từ nút gốc đến nút lá.

Cây quyết định cho tập dữ liệu weather, dựa trên các thuộc tính (Outlook, Temp, Humidity, Windy)

- Xây dựng cây Top-down
 - bắt đầu nút gốc, tất cả các dữ liệu học ở nút gốc
 - Nếu dữ liệu tại 1 nút có cùng lớp -> nút lá (nhãn của nút chính là nhãn của các phần tử thuộc nút lá); Nếu dữ liệu ở nút chứa các phần tử có lớp rất khác nhau (không thuần nhất) thì phân hoạch dữ liệu một cách đệ quy bằng việc chọn 1 thuộc tính để thực hiện phân hoạch tốt nhất có thể => kết quả thu được cây nhỏ nhất

Chọn thuộc tính phân hoạch

- > Tại mỗi nút, các thuộc tính được đánh giá dựa trên phân tách dữ liệu học tốt nhất có thể
- > Thuộc tính nào tốt?
 - cho ra kết quả là cây nhỏ nhất
 - □ Thường dựa trên giá trị heuristics để tìm được các thuộc tính sinh ra các nút "purest" (thuần khiết)

Chọn thuộc tính phân hoạch

- > Tại mỗi nút, các thuộc tính được đánh giá dựa trên phân tách dữ liệu học tốt nhất có thể
- > Việc đánh giá tốt hay không dựa trên các heuristics
 - □ độ lợi thông tin (chọn thuộc tính có chỉ số lớn)- information gain (ID3/C4.5 Quinlan)
 - □ Tỉ số độ lợi thông tin (information gain ratio)
 - chỉ số gini (chọn thuộc tính có chỉ số nhỏ)- gini index (CART
 - Breiman)

*Claude Shannon

Born: 30 April 1916

Died: 23 February 2001

"Father of information theory"

Entropy

Entropy là một đại lượng toán học dùng để đo lượng thông tin không chắc chắn (hay lượng ngẫu nhiên) của một sự kiện hay một phân phối ngẫu nhiên cho trước

Entropy – uncertainty measure

Entropy luôn >=0

- Entropy = 0?
- Entropy = 1?

 $Info(D) = entropy(p_1, p_2, ..., p_n) = -p_1 log p_1 - p_2 log p_2 - p_n log p_n$

p_i: xác suất mà phần tử trong dữ liệu D thuộc lớp C_i

Entropy

H(x)
1
0
0,5
1
p

- p: # phần tử có nhãn +
- n: # phần tử có nhãn -

$$I(\frac{p}{p+n}, \frac{n}{p+n}) = -\frac{p}{p+n} log_2(\frac{p}{p+n}) - \frac{n}{p+n} log_2(\frac{n}{p+n})$$

p = n = 6;
Entropy
$$(0.5,0.5) = -0.5 \log_2(0.5) -0.5 \log_2(0.5) = 1$$

Entroypy = 1 (cực đại khi xác suất xuất hiện của các thành phần bằng nhau 50/50

Độ lợi thông tin

- > Độ đo hỗn loạn trước khi phân hoạch trừ cho sau khi phân hoạch
- > thông tin được đo lường bằng bits
 - cho 1 phân phối xác suất, thông tin cần thiết để dự đoán 1 sự kiện là *entropy*
- công thức tính entropy độ hỗn loạn thông tin trước khi phân hoạch

Info(D) = entropy($p_1,p_2,...,p_n$) = $-p_1logp_1 - p_2logp_2 - p_nlogp_n$ p_i : xác suất mà phần tử trong dữ liệu D thuộc lớp C_i

18

Độ lợi thông tin

• Độ hỗn loạn thông tin **trước** khi phân hoạch

Info(D) = entropy(
$$p_1,p_2,...,p_n$$
) = - p_1 log $p_1 - p_2$ log $p_2 - p_n$ log p_n

 $\mathbf{p_i}$: xác suất mà phần tử trong dữ liệu \mathbf{D} thuộc lớp $\mathbf{C_i}$

• Độ hỗn loạn thông tin sau khi phân hoạch

$$Info_A(D) = D_1/D*Info(D_1) + D_2/D*Info(D_2) + ... + D_v/D*Info(D_v)$$

Thuộc tính A phân hoạch dữ liệu D thành v phần

 Độ lợi thông tin khi chọn thuộc tính A phân hoạch dữ liệu D thành v phần

$$Gain(A) = Info(D) - Info_A(D)$$

Outlook	Temperature	Humidity	Windy	Play?
sunny	hot	high	false	No
sunny	hot	high	true	No
overcast	hot	high	false	Yes
rain	mild	high	false	Yes
rain	cool	normal	false	Yes
rain	cool	normal	true	No
overcast	cool	normal	true	Yes
sunny	mild	high	false	No
sunny	cool	normal	false	Yes
rain	mild	normal	false	Yes
sunny	mild	normal	true	Yes
overcast	mild	high	true	Yes
overcast	hot	normal	false	Yes
rain	mild	high	true	No

Chọn thuộc tính phân hoạch? humidity high normal outlook yes yes rainy sunny overcast yes yes yes yes yes yes yes yes no yes yes yes yes no no yes yes no no yes no yes no no no no windy temperature false true mild hot cool yes no no yes yes yes no no no no no no no no

$$Info_A(D) = D_1 / D * Info(D_1) + D_2 / D * Info(D_2) \square + D_v / D * Info(D_v)$$

Ví dụ: thuộc tính outlook

- □ Độ hỗn loạn thông tin sau khi chọn thuộc tính A= Outlook phân hoạch dữ liệu D thành v=3 phần
- "Outlook" = "Sunny":

$$info([2,3]) = entropy(2/5,3/5) = -2/5log(2/5) - 3/5log(3/5) = 0.971 bits$$

□ "Outlook" = "Overcast":

info([4,0]) = entropy(1,0) = -1log(1) - 0log(0) = 0 bits

□ "Outlook" = "Rainy":

chú ý : log(0)
không xác định
nhưng 0*log(0)
là 0

info([3,2]) = entropy(3/5,2/5) = -3/5log(3/5) - 2/5log(2/5) = 0.971 bits

thông tin của thuộc tính outlook:

info([2,3],[4,0],[3,2]) =
$$(5/14) \times 0.971 + (4/14) \times 0 + (5/14) \times 0.971$$

= 0.693 bits

Ví dụ: thuộc tính outlook

Độ hỗn loạn thông tin trước khi phân hoạch

$$info([9,5]) = entropy(9/14,5/14) = -9/14log(9/14) - 5/14log(5/14) = 0.940 bits$$

□ độ lợi thông tin của outlook
(trước khi phân hoạch) – (sau khi phân hoạch)

gain("Outlook") = info([9,5]) - info([2,3],[4,0],[3,2]) = 0.940 - 0.693
=
$$0.247$$
 bits

Thuộc tính humidity

- "Humidity" = "High": info([3,4]) = entropy(3/7,4/7) = $-3/7\log(3/7) 4/7\log(4/7) = 0.985$ bits "Humidity" = "Normal": info([6,1]) = entropy(6/7,1/7) = $-6/7\log(6/7) 1/7\log(1/7) = 0.592$ bits = 0.788 bits thông tin của thuộc tính humidity info([3,4],[6,1]) = $(7/14) \times 0.985 + (7/14) \times 0.592$
 - □ độ lợi thông tin của thuộc tính humidity

$$info([9,5]) - info([3,4],[6,1]) = 0.940 - 0.788 = 0.152$$

Độ lợi thông tin

□ độ lợi thông tin của các thuộc tính
 (trước khi phân hoạch) – (sau khi phân hoạch)

gain("Temperature") = 0.029 bits gain("Windy") = 0.048 bits gain("Outlook") = 0.247 bitsgain("Humidity") = 0.152 bits

Tiếp tục phân hoạch dữ liệu

Tiếp tục phân hoạch dữ liệu

gain("Humidity") = 0.971 bits

gain("Temperature") =
$$0.571$$
 bits

$$gain("Windy") = 0.020 bits$$

Kết quả

- chú ý: có thể có nút lá không thuần khiết
 - ⇒ phân hoạch dừng khi dữ liệu không thể phân hoạch, nhãn được gán cho lớp lớn nhất chứa trong nút lá

Chỉ số gini (CART)

» nếu dữ liệu T có n lớp, chỉ số gini(T) được định nghĩa như sau :

$$gini(T) = 1 - \sum_{j=1}^{n} p_j^2$$

p_i là xác suất của lớp j trong T

> gini(T) là nhỏ nhất nếu những lớp trong T bị lệch

Chỉ số gini (CART)

nếu dữ liệu T có n lớp, chỉ số gini(T) được định nghĩa như sau :

$$gini(T) = 1 - \sum_{j=1}^{n} p_{j}^{2}$$

p_j là xác suất của lớp j trong T

gini(T) là nhỏ nhất nếu những lớp trong T bị lệch

$$gini_{split}(T) = \frac{N_1}{N}gini(T_1) + \frac{N_2}{N}gini(T_2)$$

- sau khi phân hoạch T thành 2 tập con T1 & T2 với kích thước N1 & N2, chỉ số gini
- thuộc tính có gini split (T) nhỏ nhất được chọn để phân hoạch

Chọn thuộc tính phân hoạch? humidity high normal outlook yes yes rainy sunny overcast yes yes yes yes yes yes yes no yes yes yes yes no yes no yes yes no yes no no yes no no no no windy temperature false true mild hot cool yes no no yes yes yes no no no no no no no no

Xây dựng cây với chỉ số gini

Outlook	Temperature	Humidity	Windy	Play?
sunny	hot	high	false	No
sunny	hot	high	true	No
overcast	hot	high	false	Yes
rain	mild	high	false	Yes
rain	cool	normal	false	Yes
rain	cool	normal	true	No
overcast	cool	normal	true	Yes
sunny	mild	high	false	No
sunny	cool	normal	false	Yes
rain	mild	normal	false	Yes
sunny	mild	normal	true	Yes
overcast	mild	high	true	Yes
overcast	hot	normal	false	Yes
rain	mild	high	true	No

Xây dựng cây với chỉ số gini

Tính Gini cho thuộc tính Outlook

Gini(Outlook=Sunny) = $1 - [(2/5)^2 + (3/5)^2] = 1 - 0.16 - 0.36 = 0.48$ Gini(Outlook=Overcast) = $1 - [(4/4)^2 + (0/4)^2] = 0$ Gini(Outlook=Rain) = $1 - (3/5)^2 - (2/5)^2 = 1 - 0.36 - 0.16 = 0.48$

Tính Gini cho thuộc tính Outlook

Gini(Outlook=Sunny) = $1 - [(2/5)^2 + (3/5)^2] = 1 - 0.16 - 0.36 = 0.48$ Gini(Outlook=Overcast) = $1 - [(4/4)^2 + (0/4)^2] = 0$ Gini(Outlook=Rain) = $1 - (3/5)^2 - (2/5)^2 = 1 - 0.36 - 0.16 = 0.48$

Gini(Outlook) =
$$(5/14) \times 0.48 + (4/14) \times 0 + (5/14) \times 0.48$$

= $0.171 + 0 + 0.171 = 0.342$

Tính Gini cho thuộc tính Temperature

Gini(Temp=Hot) =
$$1 - (2/4)^2 - (2/4)^2 = 0.5$$

Gini(Temp=Cool) = $1 - (3/4)^2 - (1/4)^2 = 1 - 0.5625 - 0.0625 = 0.375$
Gini(Temp=Mild) = $1 - (4/6)^2 - (2/6)^2 = 1 - 0.444 - 0.111 = 0.445$

Gini(Temp) =
$$(4/14) \times 0.5 + (4/14) \times 0.375 + (6/14) \times 0.445$$

= $0.142 + 0.107 + 0.190 = 0.439$

Tương tự tính Gini cho thuộc tính Humidity và Windy

Tại nhánh Sunny, tính Gini cho Temperature, Humidity, Wind

Day	Outlook	Temp.	Humidity	Wind	Golf Players
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes

Tại nhánh Sunny, tính Gini cho Temperature, Humidity, Wind • Gini của Temperature đối với Outlook = Sunny

Temperature	Yes	No	Number of instances
Hot	0	2	2
Cool	1	0	1
Mild	1	1	2

Gini(Outlook=Sunny, Temp.=Hot) =
$$1 - (0/2)^2 - (2/2)^2 = 0$$

Gini(Outlook=Sunny, Temp.=Cool) = $1 - (1/1)^2 - (0/1)^2 = 0$
Gini(Outlook=Sunny, Temp.=Mild) = $1 - (1/2)^2 - (1/2)^2$
= $1 - 0.25 - 0.25 = 0.5$

Gini(Outlook=Sunny, Temp.) = (2/5)x0 + (1/5)x0 + (2/5)x0.5 = 0.2

Tại nhánh Sunny, tính Gini cho Temperature, Humidity, Wind Gini của Humidity đối với Outlook = Sunny

Humidity	Yes	No	Number of instances
High	0	3	3
Normal	2	0	2

Gini(Outlook=Sunny, Humidity=High) = $1 - (0/3)^2 - (3/3)^2 = 0$ Gini(Outlook=Sunny, Humidity=Normal) = $1 - (2/2)^2 - (0/2)^2 = 0$ Gini(Outlook=Sunny, Humidity) = (3/5)x0 + (2/5)x0 = 0

Khi Outlook = Sunny, các giá trị Gini của các đặc trưng lần lượt:

Feature	Gini index
Temperature	0.2
Humidity	0
Wind	0.466

Giải thuật C4.5, dữ liệu kiểu số

- phân hoạch nhị phân
 - □ ví dụ: temp < 45
- không như dữ liệu liệt kê, dữ liệu kiểu số có nhiều nhánh phân hoạch
- phương pháp
 - tính độ lợi thông tin cho mọi giá trị phân nhánh của thuộc tính
 - chọn giá trị phân nhánh tốt nhất

Tập Weather, dữ liệu kiểu số

Outlook	Temperature	Humidity	Windy	Play
Sunny	85	85	False	No
Sunny	80	90	True	No
Overcast	83	86	False	Yes
Rainy	75	80	False	Yes
•••	•••	•••	•••	• • •

```
If outlook = sunny and humidity > 83 then play = no

If outlook = rainy and windy = true then play = no

If outlook = overcast then play = yes

If humidity < 85 then play = yes

If none of the above then play = yes
```

Tập Weather, dữ liệu kiểu số

phân hoạch trên thuộc tính temperature

- ví dụ temperature < 71.5: yes/4, no/2 temperature ≥ 71.5: yes/5, no/3
- Info([4,2],[5,3]) = 6/14 info([4,2]) + 8/14 info([5,3]) = 0.939 bits
- diễm phân hoạch: giữa
- có thể tính tất cả với 1 lần pass!
- cần sắp xếp dữ liệu

Cải tiến

chỉ cần tính entropy tại các điểm thay đổi lớp (Fayyad & Irani, 1992)

điểm giữa của cùng lớp không phải điểm tối ưu

Day	Outlook	Temp.	Humidity	Wind	Golf Players
1	Sunny	Hot	High	Weak	25
2	Sunny	Hot	High	Strong	30
3	Overcast	Hot	High	Weak	46
4	Rain	Mild	High	Weak	45
5	Rain	Cool	Normal	Weak	52
6	Rain	Cool	Normal	Strong	23
7	Overcast	Cool	Normal	Strong	43
8	Sunny	Mild	High	Weak	35
9	Sunny	Cool	Normal	Weak	38
10	Rain	Mild	Normal	Weak	46
11	Sunny	Mild	Normal	Strong	48
12	Overcast	Mild	High	Strong	52
13	Overcast	Hot	Normal	Weak	44
14	Rain	Mild	High	Strong	30

Golf Players
25
30
46
45
52
23
43
35
38
46
48
52
44
30

Học có giám sát

Từ tập dữ liệu huấn luyện $\{(X^1, y^1), (X^2, y^2),...,(X^m, y^m)\}$

• Tìm hàm h (hypothesis) X=>Y sao cho h(x) dự báo được y từ x

- Y là giá trị liên tục: sử dụng pp hồi quy (regression)
- Y là giá trị rời rạc: sử dụng pp phân lớp (classification)

Chọn thuộc tính phân hoạch?

- Bài toán phân lớp
 - □ độ lợi thông tin
 - □ Chỉ số Gini
- *Bài toán hồi quy
 - Phương sai Variance
 - Standard deviation (độ lệch chuẩn)

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

The residual sum of squares

$$RSS = \sum_{i=1}^n (y_i - f(x_i))^2$$

CART - Regression Trees (Brieman et al. 84)

- Tính độ lệch chuẩn cho cột nhãn (Gold Playes)
- Tính độ lệch chuẩn của từng thuộc tính

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

Chọn thuộc tính có độ lệch chuẩn nhỏ nhất: có sự giảm độ lệch chuẩn nhiều nhất so với khi không phân hoạch

Golf Players

Số lượng người chơi golf trung bình

$$\mu = (25 + 30 + 46 + 45 + 52 + 23 + 43 + 35 + 38 + 46 + 48 + 52 + 44 + 30)/14$$

= 39.78

Độ lệch chuẩn (Standard deviation) số lượng người chơi (Toàn bộ tập dữ liệu)

$$\sigma = \sqrt{[((25 - 39.78)^2 + (30 - 39.78)^2 + (46 - 39.78)^2 + ... + (30 - 39.78)^2)/141}$$

$$= 9.32$$

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

Học có giám sát

Từ tập dữ liệu huấn luyện $\{(X^1, y^1), (X^2, y^2),...,(X^m, y^m)\}$

• Tìm hàm h (hypothesis) X=>Y sao cho h(x) dự báo được y từ x

- Y là giá trị liên tục: sử dụng pp hồi quy (regression)
- Y là giá trị rời rạc: sử dụng pp phân lớp (classification)

Day	Outlook	Temp.	Humidity	Wind	Golf Players
1	Sunny	Hot	High	Weak	25
2	Sunny	Hot	High	Strong	30
8	Sunny	Mild	High	Weak	35
9	Sunny	Cool	Normal	Weak	38
11	Sunny	Mild	Normal	Strong	48

Số lượng người chơi golf trung bình với Outlook = sunny Độ lệch chuẩn (Standard deviation) số lượng người chơi

Day	Outlook	Temp.	Humidity	Wind	Golf Players
1	Sunny	Hot	High	Weak	25
2	Sunny	Hot	High	Strong	30
8	Sunny	Mild	High	Weak	35
9	Sunny	Cool	Normal	Weak	38
11	Sunny	Mild	Normal	Strong	48

Số lượng người chơi golf trung bình với Outlook = sunny

$$\mu = (25 + 30 + 35 + 38 + 48)/5 = 35.2$$

Độ lệch chuẩn (Standard deviation) số lượng người chơi

$$\sigma = \sqrt{(((25 - 35.2)^2 + (30 - 35.2)^2 + (35 - 35.2)^2 + (38 - 35.2)^2 + (48 - 35.2)^2)/5)}$$
= 7.78

Day	Outlook	Temp.	Humidity	Wind	Golf Players
3	Overcast	Hot	High	Weak	46
7	Overcast	Cool	Normal	Strong	43
12	Overcast	Mild	High	Strong	52
13	Overcast	Hot	Normal	Weak	44

Số lượng người chơi golf trung bình khi outlook = overcast

 μ_{outlook} = overcast

Độ lệch chuẩn (Standard deviation) số lượng người chơi

σ_{outlook} = overcast

Day	Outlook	Temp.	Humidity	Wind	Golf Players
3	Overcast	Hot	High	Weak	46
7	Overcast	Cool	Normal	Strong	43
12	Overcast	Mild	High	Strong	52
13	Overcast	Hot	Normal	Weak	44

Số lượng người chơi golf trung bình khi outlook = overcast $\mu_{\text{outlook = overcast}} = (46 + 43 + 52 + 44)/4 = 46.25$

Độ lệch chuẩn (Standard deviation) khi outlook = overcast

$$\sigma_{\text{outlook = overcast}} = \sqrt{(((46-46.25)^2+(43-46.25)^2+...)/4} = 3.49$$

Day	Outlook	Temp.	Humidity	Wind	Golf Players
4	Rain	Mild	High	Weak	45
5	Rain	Cool	Normal	Weak	52
6	Rain	Cool	Normal	Strong	23
10	Rain	Mild	Normal	Weak	46
14	Rain	Mild	High	Strong	30

Số lượng người chơi golf trung bình khi outlook = rain $\mu_{\text{outlook = rain}}$

Độ lệch chuẩn (Standard deviation) khi outlook = rain

$$\sigma_{\text{outlook}} = \text{rain}$$

Day	Outlook	Temp.	Humidity	Wind	Golf Players
4	Rain	Mild	High	Weak	45
5	Rain	Cool	Normal	Weak	52
6	Rain	Cool	Normal	Strong	23
10	Rain	Mild	Normal	Weak	46
14	Rain	Mild	High	Strong	30

Số lượng người chơi golf trung bình khi "outlook" =rain = (45+52+23+46+30)/5 = 39.2

Độ lệch chuẩn (Standard deviation) khi "outlook" =rain

=
$$\sqrt{(((45-39.2)^2+(52-39.2)^2+...)/5)}$$
=10.87

Outlook	Stdev of Golf Players	Instances
Overcast	3.49	4
Rain	10.87	5
Sunny	7.78	5

$$S(T,X) = \sum_{c \in X} P(c)S(c)$$

Độ lệch chuẩn của thuộc tính Outlook

$$= (4/14)x3.49 + (5/14)x10.87 + (5/14)x7.78 = 7.66$$

Độ chênh lệch giữa độ lệch chuẩn của toàn bộ dữ liệu và độ lệch chuẩn của thuộc tính outlook

Standard Deviation Reduction_{Outlook} = 9.32 - 7.66 = 1.66

	Standard Deviation Reduction
Outlook	1.66
Temperature	0.47
Humidity	0.27
Wind	0.29

Day	Outlook	Temp.	Humidity	Wind	Golf Players
1	Sunny	Hot	High	Weak	25
2	Sunny	Hot	High	Strong	30
8	Sunny	Mild	High	Weak	35
9	Sunny	Cool	Normal	Weak	38
11	Sunny	Mild	Normal	Strong	48

Số người chơi golf khi outlook= sunny = {25, 30, 35, 38, 48}

Độ lệch chuẩn khi Outlook=Sunny: 7.78

Sử dung độ lệch chuẩn này như là độ lệch chuẩn cho toàn bộ dữ liệu của bước trước đó.

Day	Outlook	Temp.	Humidity	Wind	Golf Players
1	Sunny	Hot	High	Weak	25
2	Sunny	Hot	High	Strong	30
8	Sunny	Mild	High	Weak	35
9	Sunny	Cool	Normal	Weak	38
11	Sunny	Mild	Normal	Strong	48

Độ lệ ch chuẩn khi Outlook = sunny và temp. = hot

Day	Outlook	Temp.	Humidity	Wind	Golf Players
1	Sunny	Hot	High	Weak	25
2	Sunny	Hot	High	Strong	30

Độ lệch chuẩn khi Outlook = sunny và temp. = hot Số lượng người chơi golf trung bình khi outlook = sunny và temp.=hot

 $\mu_{\text{outlook = sunny và temp.=hot}} = (25+30)/2 = 27.5$ Độ lệch chuẩn (Standard deviation) khi outlook = sunny $\sigma_{\text{outlook = sunny và temp.=hot}} = \sqrt{((25-27.5)^2+(30-27.5)^2)/2} = 2.5$

Day	Outlook	Temp.	Humidity	Wind	Golf Players
9	Sunny	Cool	Normal	Weak	38

Độ lệch chuẩn khi Outlook = sunny và temp. = cool Số lượng người chơi golf trung bình khi outlook = sunny và temp.=cool

 $\mu_{\text{outlook} = \text{sunny và temp.=hot}} = 38$

Độ lệch chuẩn (Standard deviation) khi outlook = sunny

$$\sigma_{\text{outlook = sunny và temp.=hot}} = \sqrt{((38-38)^2)} = 0$$

Day	Outlook	Temp.	Humidity	Wind	Golf Players
8	Sunny	Mild	High	Weak	35
11	Sunny	Mild	Normal	Strong	48

Độ lệch chuẩn khi Outlook = sunny và temp. = mild Số lượng người chơi golf trung bình khi outlook = sunny và temp.=mild

 $\mu_{\text{outlook = sunny và temp.=}mild}$ = (35+48)/2 = 41.5 Độ lệch chuẩn (Standard deviation) khi outlook = sunny $\sigma_{\text{outlook = sunny và temp.=}mild}$ = $\sqrt{((35-41.5)^2+(48-41.5)^2)/2}$ = 6.5

Day	Outlook	Temp.	Humidity	Wind	Golf Players
1	Sunny	Hot	High	Weak	25
2	Sunny	Hot	High	Strong	30
8	Sunny	Mild	High	Weak	35
9	Sunny	Cool	Normal	Weak	38
11	Sunny	Mild	Normal	Strong	48

Temperature	Stdev for Golf Players	Instances
Hot	2.5	2
Cool	0	1
Mild	6.5	2

Temperature	Stdev for Golf Players	Instances
Hot	2.5	2
Cool	0	1
Mild	6.5	2

Độ lệch chuẩn khi outlook=sunny và xét thuộc tính temp. = (2/5)x2.5 + (1/5)x0 + (2/5)x6.5 = 3.6Độ chênh lệch của độ lệch chuẩn khi outlook=sunny và outlook = sunny + thuộc tính temp. = 7.78 - 3.6 = 4.18

Outlook= sunny và humidity = high

Day	Outlook	Temp.	Humidity	Wind	Golf Players
1	Sunny	Hot	High	Weak	25
2	Sunny	Hot	High	Strong	30
8	Sunny	Mild	High	Weak	35

Độ lệch chuẩn khi outlook=sunny và humidity = high: 4.08

Outlook= sunny và humidity = normal

Day	Outlook	Temp.	Humidity	Wind	Golf Players
9	Sunny	Cool	Normal	Weak	38
11	Sunny	Mild	Normal	Strong	48

Độ lệch chuẩn khi outlook=sunny và thuộc tính humidity = normal: 5

Độ lệch chuẩn khi outlook=sunny và xét thuộc tính humidity

Humidity	Stdev for Golf Players	Instances
High	4.08	3
Normal	5.00	2

Độ lệch chuẩn khi outlook=sunny và xét thuộc tính humidity = (3/5)x4.08 + (2/5)x5 = 4.45 Độ chênh lệch của độ lệch chuẩn khi outlook=sunny và outlook

=sunny + thuộc tính humidity = 7.78 – 4.45 = 3.33

Outlook= sunny và windy = weak

Day	Outlook	Temp.	Humidity	Wind	Golf Players
1	Sunny	Hot	High	Weak	25
2	Sunny	Hot	High	Strong	30
8	Sunny	Mild	High	Weak	35
9	Sunny	Cool	Normal	Weak	38
11	Sunny	Mild	Normal	Strong	48

Độ lệch chuẩn khi outlook=sunny và thuộc tính windy = weak: 5.56

Outlook= sunny và windy = strong

Day	Outlook	Temp.	Humidity	Wind	Golf Players
1	Sunny	Hot	High	Weak	25
2	Sunny	Hot	High	Strong	30
8	Sunny	Mild	High	Weak	35
9	Sunny	Cool	Normal	Weak	38
11	Sunny	Mild	Normal	Strong	48

Độ lệch chuẩn khi outlook=sunny và thuộc tính windy = strong: 9

Cây quyết định cho bài toán hồi quy

Độ lệch chuẩn khi outlook=sunny và xét thuộc tính windy

Wind	Stdev for Golf Players	Instances
Strong	9	2
Weak	5.56	3

Độ lệch chuẩn khi outlook=sunny và xét thuộc tính windy = (2/5)*9 + (3/5)x5.56 = 6.93

Độ chênh lệch của độ lệch chuẩn khi outlook=sunny và outlook

=sunny + thuộc tính windy = 7.78 – 6.93 = 0.85

Cây quyết định cho bài toán hồi quy

Cây quyết định được xây dựng:

Feature	Standard Deviation Reduction
Temperature	4.18
Humidity	3.33
Wind	0.85

Cây quyết định cho bài toán hồi quy

Cắt nhánh

- mục tiêu: tránh học vẹt (overfitting), chịu đựng nhiễu, tăng độ chính xác khi phân loại tập test
- có 2 pha
 - postpruning cắt nhánh cây sao cho tăng khả năng phân loại của cây
 - xây dựng cây đầy đủ
 - cắt nhánh
 - •thay thế cây con
 - •đưa cây con lên trên
 - prepruning dùng sớm quá trình phân nhánh
- trong thực tế, postpruning được sử dụng nhiều hơn prepruning

Postpruning

- xây dựng cây đầy đủ
- cắt nhánh
 - thay thế cây con
 - đưa cây con lên trên
- có nhiều chiến lược
 - uớc lượng lỗi
 - significance test

Thay thế cây con

Thay thế cây con

Đưa cây con lên trên

Nội dung

Giới thiệu về cây quyết định Giải thuật học của cây quyết định Kết luận và hướng phát triển

Kết luận

- cây quyết định
 - xây dựng top-down
 - chọn thuộc tính để phân hoạch (độ lợi thông tin, entropy, chỉ số Gini, etc)
 - cắt nhánh bottom-up
 - dễ cài đặt, học nhanh, kết quả dễ hiểu
 - dược sử dụng nhiều và thành công nhất trong các ứng dụng thực

Hướng phát triển

- phát triển
 - ■tăng độ chính xác
 - xử lý dữ liệu không cân bằng
 - dữ liệu phức tạp có số chiều lớn
 - □cây oblique
 - tìm kiếm thông tin (ranking)
 - clustering

The **Population** Standard Deviation:

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

The **Sample** Standard Deviation:

$$s = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2}$$

Phân chia thuộc tính có giá trị liên tục

Dựa trên một giá trị nếu muốn phân chia nhị phân

Dựa trên vài giá trị nếu muốn có nhiều nhánh

Với mỗi giá trị tính các mẫu thuộc một lớp theo dạng A<v và A>v

Cách chọn giá trị ν đơn giản: với mỗi giá trị ν trong CSDL đều tính Gini của nó và lấy giá trị có Gini nhỏ nhất \rightarrow kém hiệu quả

	i	i		
TID	Refund	Marital	Tax	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Phân chia thuộc tính có giá trị liên tục

Cách chọn giá trị v hiệu quả:

- Sắp xếp các giá trị tăng dần
- Chọn giá trị trung bình của từng giá trị của thuộc tính để phân chia và tính chỉ số gini

Cheat		No			No		N	No Ye		s	s Yes		Yes		No		No		No		No			
•		Taxable Income																						
Sorted Values Split Positions		60			70		75		85		90		9.	5 10		00 1		20	12	125		220		
		55		6	65 72		2	80		87		9	92		97 1		10		22	172		230		
		<=	^	=	^	=	^	<=	^	<=	^	"	^	<=	^	<=	^	=	^	<=	>	=	>	
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0	
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0	
	Gini	0.420 0.4		100	0.375		0.343		0.417		0.400		0.300		0.343		0.375		0.400		0.420			

Differences from CT

Prediction is computed as the average of numerical target variable in the rectangle (in CT it is majority vote)

Impurity measured by sum of squared deviations from leaf mean

The residual sum of squares

Model Selection in Trees:

