Examenul de bacalaureat național 2020 Proba E. d) FIZICĂ

BAREM DE EVALUARE ŞI DE NOTARE

Test 5

- Se punctează oricare alte modalități de rezolvare corectă a cerințelor.
- Nu se acordă fracțiuni de punct.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului total acordat pentru lucrare la 10.

A. MECANICĂ (45 de puncte) Subiectul I

Nr.ltem	Soluţie, rezolvare	Puncta
I.1.	b	3p
2.	а	3p
3.	а	3p
4.	С	3p
5.	d	3p
TOTAL	Subject I	15p
Subiectu	I al II-lea	· · ·

	ui ai ii-lea		
II.a.	Pentru:		4p
	reprezentarea corectă a:	15	
	greutății, forței elastice, reacțiunii normale și a forței de frecare	4p	
b.	Pentru:		4p
	$F\cos\alpha = \mu N$	1p	-
	$N = G - F \sin \alpha$	1p	
	$F = \frac{\mu mg}{\cos \alpha + \mu \sin \alpha}$	1p	
	$\cos \alpha + \mu \sin \alpha$	ıρ	
	rezultat final $F = 60 \mathrm{N}$	1p	
C.	Pentru:		4p
	$F_{-E}\Delta\ell$	0	
	$\frac{F}{S} = E \frac{\Delta \ell}{\ell_0}$ $E = \frac{4F}{\pi d^2 \varepsilon}$	2p	
	_ 4F		
	$E = \frac{1}{\pi d^2 \varepsilon}$	1p	
	rezultat final $E = 6.10^9 \text{ N/m}^2$	1p	
d.	Pentru:		3p
	<i>N</i> = 0	1p	
	$F' = \frac{mg}{m}$	1p	
	$\sin \alpha$	٠,٢	
	rezultat final $F' = 540 \mathrm{N}$	1p	
TOTAL	pentru Subiectul al II-lea		15p

Subiectu	l al III	l-lea

Subjecti	ii ai iii-i c a		
III.a.	Pentru:		4p
	$E_{A} = Mgh$)	
	rezultat final $E_A = 37.6 \text{ kJ}$)	
b.	Pentru:		3р
	$E_{c_{\rm B}} = \frac{Mv^2}{2}$)	
	rezultat final $E_{c_B} = 36 \text{kJ}$)	
C.	Pentru:		4p
	$\Delta E_c = L$)	
	$L = L_G + L_{F_i} $)	
	$\Delta E_c = L$ $L = L_G + L_{F_f}$ $L_{F_f} = \frac{Mv^2}{2} - Mgh$ 15	0	
	rezultat final $L_{F_f} = -1,6 \text{ kJ}$)	

Ministerul Educației și Cercetării Centrul Național de Evaluare și Examinare

d.	Pentru:	4p
	$L_{F_f} = -F_f d$	
	$F_f = \mu Mg \cos \alpha$ 1p	
	$\cos \alpha = \frac{\ell}{d}$	
	rezultat final $\mu = 0.04$	
TOTAL	pentru Subiectul al III-lea	15p

B. ELEMENTE DE TERMODINAMICĂ

(45 de puncte)

Test 5

_	_			
С.	 : -	cti	-1	

Nr.Item	Soluţie, rezolvare	Punctaj
I . 1.	b.	3р
2.	d.	3р
3.	C.	3р
4.	a.	3p
5.	C.	3p
TOTAL	Subject I	15p

B. Subject I II-lea

II .a.	Pentru:	3р
	transformare izocoră 2p	
	justificare corectă 1p	
b.	Pentru:	4p
	μ 3p	
	$m_0 = \frac{\mu}{N_A}$	
	Rezultat final: $m_0 \cong 4,65 \cdot 10^{-26} \text{ kg}$	
C.	Pentru:	4p
	$p_1V = \frac{m}{\mu}RT_1$	
	μ	
	$\rho_1 = \frac{m}{V}$	
	$p_1 = \frac{1}{V}$	
	Rezultat final: $\rho_1 \cong 1,2 \text{ kg/m}^3$	
d.	Pentru:	4p
	$\frac{p_1}{T_1} = \frac{p_2}{T_2}$	
	Rezultat final: $p_2 = 5.10^5 \text{ Pa}$	
TOTAL	pentru Subiectul al II-lea	15p

B. Subiectul al III-lea

III.a.	Pentru:	4p		
	Reprezentare corectă 4p			
b.	Pentru:	4p		
	$L_{total} = \nu R(T_B - T_A) + \nu R(T_D - T_C) + \rho_A V_A \ln \frac{V_A}{V_D}$ 1p			
	$\frac{V_A}{V_B} = \frac{T_A}{T_B}$ $\frac{V_C}{V_D} = \frac{T_C}{T_A}$ 1p			
	$\frac{V_C}{V_D} = \frac{T_C}{T_A}$			
	Rezultat final: $L_{total} = 400 \text{ J}$			
C.	Pentru:	3р		
	$Q_{cedat} = vC_V(T_C - T_B) + vC_p(T_D - T_c) + p_A V_A \ln \frac{V_A}{V_D}$			
	$C_p = C_V + R 1p$			
	Rezultat final: $Q_{cedat} = -2,1 \text{ kJ}$			
d.	Pentru:	4p		
	$\eta = \frac{L}{Q_{primit}}$ 2p			
	$Q_{primit} = L_{total} + Q_{cedat} $ 1p			
	Rezultat final: $\eta = 16\%$			
TOTAL	TOTAL pentru Subiectul al III-lea			

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

(45 de puncte)

Subjectul I

Nr.ltem	Soluţie, rezolvare	Punctaj
I . 1.	a	3р
2.	a	3р
3.	c	3р
4.	c	3р
5.	b	3р
TOTAL	Subject I	15p

C. Subjectul al II-lea

o. Gubic	Clui ai ii-iea		
II.a.	Pentru:		4p
	Schema corectă a primului circuit	2p	-
	Schema corectă a celui de-al doilea circuit	2p	
b.	Pentru:	·	4p
	$R_A = \frac{U_1}{l_1}$	3р	
	Rezultat final: $R_A = 2\Omega$	1p	
c.	Pentru:		3р
	$E_1 = U_1 + I_1 r$	2p	
	Rezultat final: $r = 0.5 \Omega$	1p	
d.	Pentru:		4p
	$E = I_2 \left(R_A + \frac{R}{4} + r \right)$	2p	
	$R = \frac{4\rho\ell}{\pi d^2}$	1p	
	Rezultat final: $\ell = 2.8 \text{m}$	1p	
TOTAL	pentru Subiectul al II-lea		15p

C. Subiectul al III-lea

III.a.	Pentru:	4p
	$R_1 = \frac{U_n^2}{P_1}$ $R_2 = \frac{U_n^2}{P_2}$ 1p	
	$R_2 = \frac{U_n^2}{P_2}$	
	Rezultat final: $R_1 = 302,5\Omega$; $R_2 = 121\Omega$	
b.	Pentru:	3р
	Rezistorul se montează în paralel cu becul 1 2p	
	Justificare 1p	
C.	Pentru:	4p
	$I_{n1} = \frac{P_1}{U_n}$; $I_{n2} = \frac{P_2}{U_n}$	
	$R = \frac{U_n}{I_{n2} - I_{n1}}$	
	Rezultat final: $R \cong 201,7 \Omega$	
d.	Pentru:	4p
	$W = P_2 \cdot \Delta t $ 2p	
	W = 0.2 kWh	
	Rezultat final: $p = 0.08 \text{lei}$	
TOTAL	pentru Subiectul al III-lea	15p

Centrul Național de Evaluare și Examinare			
D. OPTICĂ Subiectul I (45 de punc			
	Soluţie, rezolvare		Punctaj
I.1.	d		3p
2.	С		3р
3.	a		3р
4.	b		3p
5.	<u>b</u>		3p
	Subject I		15p
Subjectu	Pentru:		4n
II.a.	C = 1/f	3р	4p
		-	
	rezultat final C ≅ 1,67 m ⁻¹	1p	4
b.	Pentru:		4p
	$\frac{1}{x_2} - \frac{1}{x_1} = \frac{1}{f}$	1p	
		٠,٣	
	$\beta = \mathbf{x}_2 / \mathbf{x}_1$	1p	
	$\beta = -3$	1p	
	rezultat final $-x_1 = 80 \text{cm}$	1p	
C.	Pentru:		4p
	$d = (-x_1) + x_2$	3р	- 1
	rezultat final $d=3.2$ m	1p	
d.	Pentru:	<u> </u>	3р
	a y ₂	_	
	$\beta = \frac{y_2}{y_1}$	2p	
	rezultat final $ y_2 = 6 \mathrm{cm}$	1p	
TOTAL	pentru Subiectul al II-lea	٠,٣	15p
Subiectul al III-lea			100
III.a.	Pentru:		3р
		_	•
	$i = \frac{\lambda_1 D}{2\ell}$	2р	
	rezultat final: <i>i</i> =1mm	1p	
b.	Pentru:		4p
	$d = x_{4 \min} - x_0$	1p	
		•	
	$x_{k \min} = \frac{(2k+1)\lambda_1 D}{4\ell}$	1р	
	k=4	1p	
	rezultat final: $d = 4.5 \text{mm}$		
C.	Pentru:	1p	4p
0.	$x'_0 = x_{6 \text{ max}}$	1n	ן די
		1p	
	$x_0' = x_0 + \frac{e(n-1)D}{2\ell}$	1р	
	$x_{6 \text{ max}} = \frac{6\lambda_1 D}{2\ell}$	1p	
	rezultat final: $n = 1,5$	1p	
d.	Pentru:	<u> </u>	4p
	$\frac{k_1\lambda_1D}{2\ell} = \frac{k_2\lambda_2D}{2\ell}$	1n	
	—· —·	1p	
	$\frac{k_1}{k_2} = \frac{6}{5}; \ k_1, k_2 \in Z$	1p	
		יף	
	$d_{\min} = \frac{6\lambda_1 D}{2\ell}$	1n	
		1p	
	rezultat final: $d_{\min} = 6 \text{ mm}$	1p	
TOTAL	pentru Subiectul al III-lea		15p