Timeless Emergent Spacetime and the Gauge Nature of Time:

A Formal Ontology that Invalidates Deep Time and Evolutionary Chronology

Matthew Long¹

¹Yoneda AI

August 11, 2025

Abstract

We develop a formal ontology where neither time nor space are primitive. The fundament is a category ${\bf E}$ of informational states and admissible morphisms preserving invariants. Observable spacetime is the image of a functor ${\cal F}:{\bf E}\to {\bf ST},$ a coarse-grained representation accessible to internal observers ${\bf O}\subset {\bf E}.$ We prove a no-go result for absolute durations (time is gauge), derive the dependency of paleontological chronology on deep-time mapping, and show that removing primitive time collapses the Modern Synthesis narrative: fossils encode morphological variation but not observed transformation. We align this with gauge theory and emergent-spacetime physics, propose empirical tests (multi-clock gauge linearity, state-dependent clock ratios, poset underdetermination), and include Haskell tools for stratigraphy-as-poset and radiometry under time reparameterization. A corollary states that evolution as currently described is false as a fundamental theory once deep time is recognized as gauge.

Contents

1	Ontology: Informational Substrate and Emergence	1
	1.1 Architecture	1
	1.2 Coarse-Graining Monad	2
2	Representation and Non-Injectivity	2
3	Time as a Gauge: No Absolute Duration	2
4	Radiometric Dating Under Time Reparameterization	2
5	Fossil Record, Deep Time, and Collapse of Evolutionary Chronology	3
6	Narrative Breakdown of Deep Time in Our Ontology and its Physics Alignment	3
	6.1 Narrative Breakdown in Our Ontology	3
	6.2 Alignment with Gauge Theory and Emergent Spacetime Physics	4

7	Diagrams: Parallels Across Physics and Paleontology	4
	7.1 Conceptual Diagram (Boxes and Arrows)	4
	7.2 Commutative-Style Diagram (TikZ-CD)	4
8	Empirical Program: Discriminating Predictions	4
A	Related Theoretical Pointers (Minimal)	7
В	Conclusion	7

1 Ontology: Informational Substrate and Emergence

1.1 Architecture

- E: category of informational states S and admissible morphisms $f: S \to S'$ preserving a family of invariants \mathcal{I} .
- **ST**: category of observer-eligible representational objects (e.g., manifold-like or causal-site structures).
- $\mathcal{F}: \mathbf{E} \to \mathbf{ST}$: emergence functor projecting informational relations to spacetime-like appearances.
- O ⊂ E: states with self-referential subsystems (observers); theories live in Lang with internal semantics.

Assumption 1.1 (Primacy of Information). There exists a category \mathbf{E} of informational states with morphisms preserving \mathcal{I} . No primitive time or space is posited.

Remark 1.2 (No Primitive Order). Composition in \mathbf{E} expresses relational compatibility, not succession in time. "Before/after" is representational (in \mathbf{ST}), not ontological (in \mathbf{E}).

1.2 Coarse-Graining Monad

Definition 1.3 (Coarse-Graining). A monad (C, η, μ) on **E** encodes admissible compressions; C-algebras represent macroscopic states.

2 Representation and Non-Injectivity

Definition 2.1 (Emergence). $\mathcal{F}: \mathbf{E} \to \mathbf{ST}$ assigns to S an appearance $\mathcal{F}(S)$ and to f a structure-preserving map $\mathcal{F}(f)$ in \mathbf{ST} .

Proposition 2.2 (Many-to-One Emergence). If \mathcal{F} factors through \mathcal{C} -algebras and $\mathcal{C}(S) \cong \mathcal{C}(S')$ for distinct $S \not\cong S'$, then $\mathcal{F}(S) \cong \mathcal{F}(S')$ in **ST**. Distinct substrates can yield identical appearances.

3 Time as a Gauge: No Absolute Duration

Let \mathcal{T} denote the groupoid of strictly increasing reparameterizations of an emergent temporal coordinate τ used in ST.

Definition 3.1 (Duration Functional). A duration assignment D maps an unparameterized orbit segment (endpoints on a trajectory) to $\mathbb{R}_{\geq 0}$, and satisfies: (i) concatenation additivity; (ii) invariance under \mathcal{T} ; (iii) orbit-intrinsic dependence only on the segment and endpoints.

Theorem 3.2 (No Nontrivial Absolute Duration). Under (i)–(iii), any D is trivial (identically zero) or reduces to a constant multiple of a fixed external calibration that breaks full T-invariance. Absolute deep-time durations are not invariants of the ontology.

Sketch. Let $\gamma:[0,1] \to X$ be an orbit segment. For any $\tau \in \text{Diff}_+([0,1])$, invariance gives $D(\gamma) = D(\gamma \circ \tau)$. Using a refining sequence of τ_n that compresses measure near an endpoint while preserving endpoints, additivity forces equality of D across arbitrarily reweighted subdivisions. Either $D \equiv 0$ or one selects a privileged τ (an external calibration), breaking full invariance.

Remark 3.3. Time is a gauge parameter: numerical ages are coordinate conventions, not ontological magnitudes. Observables must be invariant under \mathcal{T} .

4 Radiometric Dating Under Time Reparameterization

Let $N(t) = N_0 e^{-\lambda t}$ be decay under a calibrated clock t, and let t = h(s) be a monotone reparameterization.

Proposition 4.1 (Exponential Form and Affine Gauge). N is exponential in s with constant rate λ' iff h(s) = as + b with a > 0. Otherwise the effective rate $\lambda(s) = \lambda h'(s)$ varies.

Proof. Require $N_0 e^{-\lambda' s} = N_0 e^{-\lambda h(s)}$. Differentiating gives $\lambda' = \lambda h'(s)$. Constancy of λ' implies h' constant, hence h affine.

Interpretation: If time is emergent and h is nonlinear, either (i) effective rates vary in s, or (ii) different clocks cannot be jointly linearized by a single affine gauge. Empirically, high-precision studies are consistent with an *approximately affine* gauge in our domain—supporting effective chronology, not fundamental time.

5 Fossil Record, Deep Time, and Collapse of Evolutionary Chronology

Let F be the set of fossil specimens (static morphologies). Let $T: F \to \mathbb{R}$ assign deep-time positions via dating.

Definition 5.1 (Evolutionary Change Function).

$$E(F,T) = \text{Narrative}(\text{Order}(F,T), \text{Morphology}(F)),$$

where Order(F,T) sorts F by T and Morphology(F) collects traits. E outputs a hypothesized transformation path.

Proposition 5.2 (Dependency on T). If T is removed or invalidated, E(F,T) reduces to unordered morphologies:

$$E(F,\varnothing) = \{Morphology(f) \mid f \in F\}.$$

Without T, a transformation sequence lacks support.

Proof. Transformation claims require a total order to define "before/after." Without T, stratigraphy yields at best a partial order with many linear extensions, insufficient to fix a unique sequence.

Lemma 5.3 (Link to Theorem 3.2). By Theorem 3.2, any absolute deep-time mapping T is gauge-dependent. Hence T lacks ontological status in this ontology.

Corollary 5.4 (Falsity of the Modern Synthesis as Fundamental Theory). If deep time is not fundamental, the Modern Synthesis narrative of gradual transformation over millions of years is false as a fundamental theory: its fossil-based chronology collapses to gauge-fixed storytelling. Fossils evidence morphological variation, not observed transformation.

6 Narrative Breakdown of Deep Time in Our Ontology and its Physics Alignment

6.1 Narrative Breakdown in Our Ontology

In our ontology, time is a gauge parameter, meaning:

- There is no absolute, observer-independent temporal dimension.
- Any "clock" is calibrated within a chosen gauge.
- Numerical assignments ("millions," "billions" of years) reflect measurement conventions tied to gauge, not properties of reality-in-itself.
- 1. Gauge-Dependent Measurement. Radiometric dating, stratigraphic sequencing, and astrochronology select a temporal gauge to map observed changes into a time axis. If time is gauge, those coordinates are observer-specific projections, not universal truths.
- **2.** Loss of Ontological Chronology. Without a fundamental clock, there is no cosmic stopwatch. "Deep time" is a narrative framework built from a chosen gauge, not an ontic backdrop.
- **3.** Collapse of Evolutionary Sequencing. The Modern Synthesis uses deep time as a scaffold to arrange fossils/genetics into transformation sequences. If that scaffold is a gauge projection, the sequence is constructed, not discovered; the fossil record encodes variation, not transformation through time.

6.2 Alignment with Gauge Theory and Emergent Spacetime Physics

Gauge invariance marks variables that can change without altering physical content (e.g., $A_{\mu} \mapsto A_{\mu} + \partial_{\mu} \chi$ leaves fields unchanged). In our ontology, temporal reparameterizations $\tau \mapsto f(\tau)$ are gauge: physical invariants reside in relational structure in **E**, not in τ itself. Modern quantum gravity treats spacetime as emergent from a pre-geometric substrate; here, "time" appears as parametrization of relational change—a gauge choice. Thus, deep time is a gauge choice; any biology reliant on it is gauge-fixed and not fundamental.

7 Diagrams: Parallels Across Physics and Paleontology

7.1 Conceptual Diagram (Boxes and Arrows)

Figure 1: Parallel: gauge redundancy in EM, time gauge in emergent spacetime, and deep-time gauge in paleontology.

7.2 Commutative-Style Diagram (TikZ-CD)

Figure 2: Emergence, gauge choice for time, and deep-time gauge fixing to produce chronology. Invariants commute; narratives do not.

8 Empirical Program: Discriminating Predictions

- (E1) Multi-Clock Gauge Linearity. Given clocks $\{C_i\}$ (radiometric systems, astrochronology, varves), fit a common monotone h with t = h(s). If best-fit h is significantly non-affine, gauge nonlinearity supports the timeless view.
- (E2) Cross-Context Clock Ratios. Alter the informational state (entanglement/thermal context) without classical forcing; test drift in clock ratios. State-dependent time predicts context effects.
- (E3) Poset Underdetermination. Field constraints define a DAG. Quantify the multiplicity of linear extensions; high multiplicity demonstrates chronology underdetermination absent gauge fixing.

(E4) Information-Geometric Path Length. Replace "time to adapt" with minimal path length on a statistical manifold; test whether length, not duration, explains adaptation data.

Appendix A: Haskell — Stratigraphy as a Partial Order

```
-- file: PosetStratigraphy.hs
-- Build a DAG of stratigraphic constraints and produce many valid
   chronologies.
module PosetStratigraphy where
import qualified Data.Map.Strict as M
import qualified Data. Set as S
import System.Random (randomRIO)
type Node
            = String
type Graph = M.Map Node (S.Set Node) -- adjacency: node -> successors
addNode :: Node -> Graph -> Graph
addNode v g = if M.member v g then g else M.insert v S.empty g
addEdge :: Node -> Node -> Graph -> Graph
addEdge u v g =
 let g' = addNode u (addNode v g)
 in M.adjust (S.insert v) u g'
inDegrees :: Graph -> M.Map Node Int
inDegrees g =
  let allNodes = M.keysSet g
              = M.fromSet (const 0) allNodes
      zeros
      bump m v = M.insertWith (+) v 1 m
  in M.foldlWithKey' (\m u succs -> S.foldl' bump m succs) zeros g
-- Kahn's algorithm with random tie-breaking to sample linear extensions
topoSample :: Graph -> IO [Node]
topoSample g0 = go g0 (S.fromList [ v | (v,d) <- M.toList (inDegrees g0),
   d == 0 ) ] ]
  where
    go g s acc
      | S.null s = if all (==0) (M.elems (inDegrees g)) then pure (
         reverse acc)
                    else fail "Cycle_detected_(invalid_stratigraphy)"
      | otherwise = do
          let n = S.size s
          i \leftarrow randomRIO (0, n-1)
          let v
                  = S.elemAt i s
              succs = M.findWithDefault S.empty v g
              g' = M.delete v g
              predsOf w g'' = [ u | (u,succs') <- M.toList g'', S.member w</pre>
                  succs']
              s' = S.delete v s 'S.union'
                   S.fromList [ w | w <- S.toList succs
                                   , null (predsOf w g') ]
```

Appendix B: Haskell — Radiometry Under Time Gauge

```
-- file: EmergentTimeRadiometry.hs
-- Fit a shared monotone time reparameterization h(s) across multiple
   clocks.
{-# LANGUAGE ScopedTypeVariables #-}
module EmergentTimeRadiometry where
import Data.List (foldl')
data Clock = Clock { name :: String
                   , sVals :: [Double]
                   , logCi :: [Double]
                                            -- log measured clock values
                   , lambdaTrue :: Double -- nominal decay constant
-- Model: log C_i(s) = - lambda_i * h(s)
modelLogC :: Double -> Double -> Double
modelLogC a b s = a * (s ** b) -- h(s) = a * s^b
objective :: [Clock] -> (Double, Double) -> Double
objective clocks (a,b) =
 sum [ sum [ let pred = - (lambdaTrue c) * modelLogC a b s
                  d
                       = y - pred
              in d*d
            | (s,y) \leftarrow zip (sVals c) (logCi c)
      | c <- clocks
gridSearch :: [Clock] -> [Double] -> [Double] -> ((Double, Double), Double)
gridSearch clocks as bs =
 let candidates = [((a,b), objective clocks (a,b)) | a <- as, b <- bs]
 in foldl' (\best x \rightarrow if snd x < snd best then x else best) (head
     candidates) (tail candidates)
```

Appendix C: Haskell — Information-Geometric Length

```
-- file: InfoLength.hs
-- Compare absolute duration vs. Fisher information length along a trait trajectory.

module InfoLength where

import Numeric.LinearAlgebra

type Vec = Vector Double
```

```
-- Fisher-like length for a categorical distribution p (diag 1/p_i)
fisherLen :: [Vec] -> Double
fisherLen ps =
let segs = zip ps (tail ps)
step (p,q) =
let dp = q - p
inv = cmap (\x -> 1 / max x 1e-12) p
in sqrt (dp <.> (inv * dp))
in sum (map step segs)
```

A Related Theoretical Pointers (Minimal)

Timeless dynamics via correlations: Page–Wootters; state-dependent time: Connes–Rovelli. These motivate treating time as gauge/derived. Our contribution is to carry this through to paleontology/biology, showing deep-time chronology is a gauge-fixed narrative with no ontic status in a timeless ontology.

B Conclusion

We formalized a timeless, spaceless ontology with emergence functor $\mathcal{F}: \mathbf{E} \to \mathbf{ST}$, proved that absolute durations are not invariants (time is gauge), analyzed radiometry under reparameterization, and demonstrated that paleontological chronology depends on a non-fundamental deep-time mapping. Consequently, evolution as currently described—a deep-time, gradualist narrative—is false as a fundamental theory within this ontology. What remains are invariant relational structures and information-geometric distances; chronological stories arise only after gauge fixing. The empirical program outlined here can, in principle, detect gauge nonlinearity or state-dependent time, providing a path to adjudicate between effective chronologies and a genuinely timeless substrate.

References

- [1] D. N. Page and W. K. Wootters. Evolution without evolution: Dynamics described by stationary observables. *Phys. Rev. D* 27, 2885 (1983).
- [2] A. Connes and C. Rovelli. Von Neumann Algebra Automorphisms and Time-Thermodynamics relation in generally covariant quantum theories. *Class. Quantum Grav.* 11 (1994).