

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:
Arjun G. Yodh et al. Confirmation No.: **7568**
Application No.: **10/526,941** Group Art Unit: **1793**
Filing Date: **September 8, 2005** Examiner: **Brittany M. Martinez**
For: **Carbon Nanotubes: High Solids Dispersions and Nematic Gels Thereof**
Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

DECLARATION PURSUANT TO 37 C.F.R. § 1.131

I, Mohammad F. Islam, hereby declare that:

1. I am an inventor of the invention described and claimed in U.S. Patent Application Number 10/526,941 (hereinafter referred to as "the 941 application"), filed September 8, 2005, in the United States Patent and Trademark Office.

2. I am aware that the pending claims of the 941 application have been rejected as being unpatentable over U.S. Patent Application Pub. No. 2003/0133865 ("Smalley"). It has been explained to me that Smalley was filed on July 2, 2002, but that it claims priority from four U.S. provisional applications (collectively referred to as "the Smalley provisionals"):

Serial No. 60/303,469, filed July 6, 2001;
Serial No. 60/303,470, filed July 6, 2001;
Serial No. 60/337,561, filed November 8, 2001; and
Serial No. 60/337,951, filed December 7, 2001.

3. It has been explained to me that none of the Smalley provisionals disclose the use of at least one surfactant comprising an aromatic group.

4. In accordance with CFR § 1.131, as an inventor of the subject matter of the pending claims, and without conceding the propriety of the rejections of the pending claims, I hereby declare that I invented the subject matter with the inclusion of at least one surfactant comprising an aromatic group prior to July 2, 2002. I further hereby declare that I worked diligently from a date prior to July 2, 2002, to the date of constructive reduction to practice, September 10, 2002, the priority date of the 941 application, in order to prepare the 941 application and patent the invention.

5. In support of the instant declaration, a copy of relevant pages of a laboratory notebook prepared during the development of the claimed invention is attached hereto (Attachment B), which was created prior to July 2, 2002. The date range is from May 22, 2002 through July 20, 2002, which provides evidence of conception of the invention prior to the effective date of the Smalley reference and evidence of due diligence from prior to said date to the filing date of the provisional application, September 10, 2002.

6. I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information or belief are believed to be true; and further, that these statements were made with the knowledge that willful false statements and the like are punishable by fine or by imprisonment, or both, under § 1001 of Title 18 of the United States Code, and that such willful statements may jeopardize the validity of the application, any patent issuing thereupon, or any patent to which this verified statement is directed.

Date: 01/20/2010

Signature:

M.F. Islam

Mohammad F. Islam

Exhibit A
Mohammad F. Islam

Chemical Engineering and Material Science and Engineering 412.268.0593
Carnegie Mellon University FAX: 412.268.7596
500 Forbes Avenue mohammad@andrew.cmu.edu
Pittsburgh, PA 15213-3890

EDUCATION

2000 Ph.D. Physics, Lehigh University, Bethlehem, PA 18015
1996 M.S. Physics, Lehigh University, Bethlehem, PA 18015
1994 B.S. Physics,

WORK EXPERIENCE

2005-Present Associate Professor, Chemical Engineering and Materials Science and Engineering
Carnegie Mellon University, Pittsburgh, PA 15213

2002-2005 Postdoctoral Fellow, Department of Physics and Astronomy
University of Pennsylvania, Philadelphia, PA

HONORS AND AWARDS

2007 Alfred P. Sloan Research Fellow
2007 National Science Foundation Career Award
2006 American Chemical Society PRF Award
1999 Sigma Xi
1997 Hoechst Celanese Award for Excellence in Polymer Science

CURRENT RESEARCH INTERESTS

Novel Self-Assembly and Phase Transformations in Single- and Multi-Component Systems: Formation of diverse structures as well as phase transformations in multi-component systems using temperature sensitive colloidal particles.

Utilizing Nanomaterials to Investigate Cellular Functions: Developing novel nanomaterial based vectors and investigating changes in cellular functions due to internalization of these vectors.

Carbon Nanotube Based Porous Materials for Energy Applications: Created ultra-light, highly porous materials with carbon nanotubes; Investigating use as electrodes and support for catalyst particles.

Dependence of Cell Functions on Substrate Properties: Developed polymeric hydrogels with tunable local stiffness and organization; Using materials to probe dependence of cellular functions on substrate stiffness and spatial organization.

Exhibit B

05/22/02

Make 2 samples of 1% Hipco + 10X NaDDBS in water.
Each sample weighs 3g

add Hipco 0.0321g 0.0321g 0.0324g

Make

<u>add</u>	<u>NaDDBS</u>	2.002 g	}	19.96 %
	<u>stock</u>			
	Total	10.03		

<u>Add</u>	Hipco	0.0321g	0.0324g
	NaDDBS	1.5221g	1.5103g
	water	1.4653g	1.4762g

Sample #3

Hipco 0.0314g

NaDDBS 1.501g

water 1.480g

Dioxy Cholate

NT Project:

1. Scheme to separate & stabilize CNT without damaging it.

Tip sonication (low f, high power) Booth Bath sonication (high f)

- Advantage over pyrene functionalized CNT
(damages CNT & destroys electronic property)

comment on Surfactant type for longer & better stability & separation

* Benzene & charge surfactant best (NaDDBS)

(Literature is mostly on SDS)
one paper ODA

2. Fractionate CNT using either HPLC, SEC or GPC

↑
Can use
this

we use this

One paper on using GPC but do not elaborate or show careful results. (Duesberg's group)

- Can use this technique for other Rod shaped particles

3. Characterization:

Use mainly LS & large statistics

Cross check on a few portions w/
AFM

4. Impact: Stable, single CNT dispersions

05/19/02

Bill Degrado

the more surfactants to try:

Phenyl alanine
(F)
Phe

or Trimer of F (F_3)

Tyrosine

Tryptophan(W)
[Trp]

Also try Chaps & PEG

chiral proteins

Bill Degrado JMB 2001

Butyl group, OH, benzene → amine group

Can we make chiral molecules for wiggly road?

Use Hydrogen bonding.

06/18/02

Current Status of NT dispersion & characterization:

1% NT in NaDDBS

Bath sonic
dispersion

tipsonic
dispersion

electro-
phoresis
through
0.5%
Agarose
gel

Run through
Sephadex 2B

AFM of
sample as is

electrophoresis
through 0.5%
Agarose
gel

AFM of
sample as is

cut gel
into
small
segments

sample
comes through
the gel.

sample does
not stick
to surface

most did not
go through;
seems tipsonic
a good technique
to disperse Hips

unsuccesful;
sample does
not stick
to surface

ultra
centrifuged
gel at
through 95%
filter
(long elution
time)

trapped into
the gel

saline
Similar
as poly-L-L

polylysine
successful;

most
Hips
centrifuged
short
time

presumably
amorphous

check

Hips sticks to
surface after
dipping into soln
of HEPCo

in
filter
every

carbon, surface quality

check

find
bullyball
etc

& see if NT

sticks to the

surface

with
good
technique

collect

sample in

next step

multiple
vials.

surface

sample in

check the surface

Try this
approach
more

next step

work it a few

quality & see

applies to see
how good is the
separation

applies to see

how good is the
separation

how NT looks like

07/01/2002

50 μ l sample
of sample
placed
on chip
~~then followed by~~
~~shaker off~~
MI 10-4.000 Silane treated 10^{-4} H₂O 5μ m Scan in NaDB
(Too much surf)

MI 10-6.001

" " 10^{-6} " "
(Too much surf)stant)

MI 10-6.002

diff area, same chip

→ 10-4.003 10^{-4} chip rinsed in H₂O ~2 min

10-4.004

diff area, same chip

10-4.005

10^{-4} prepared by dunking in soln &
then rinsing with water, dried
with canned air

07/08/2002

Prepare 4g of 0.01% NT in NaDDBS from 1% NT in NaDDBS.

$$17 \text{ NT soln} \quad \left. \begin{array}{c} \cancel{0.049} \quad 0.04479 \\ \hline \end{array} \right\} 0.017$$

water $4,443.49$ }

07/08/02

AFM on NADBS stabilized 16PCO

ddbs10-4.000

zoom on the surface, leave it on
for 10 min, spin it at 3000 rpm
then add 2 ml of water over the
sample is spinning.

→ no feature

ddbs10-4.001

Dame Sample - diff location

ddbs10-4.002

dipped in soln, then for
5 min, then gently rinse
it in a water bath

- lots of NT

ddbs10-4.003

ZOOMED in some where
in the previous ~~the~~ picture

.004

different Place on sample (SP)

.005

Zoom in of .004 (SP)

.006

new location (0m (SP))

dd.b.s.10-4.007

12th cut of gel
phoresis sample

cone $\approx 10^{-4}$ M in WODGE

I dipped the chip
in soln & then dried
& then rinsed in
water.

07/11/02

What I need to do:

Conc

SDS

T_{X100}

NaDDBS

Prepare 1% → dilute to 0.01%

~~Do not sonicate~~ don't sonicate;
just dilution

Prepare 0.01% sample ✓ ✓ ✓

↑
Sonicate

I want to make 10% HiPCO soln,

~~9.96%~~

Add Rest 20g NaDDBS to get 2.009g

Final wt 2.0461g

07/12/02

Make 20 wt% TX-100 stock soln (50 grams)

TX-100 add 10 g

10.00061 g

Rest add water till 50 g

Total 50.000614 g

~~Make 49.1% TX-100 NT soln w/ TX-100 (10%)~~

$$NT = 0.03979 \quad \left. \right\}$$

$$\begin{array}{l} TX-100 = 2.00759 \\ (20\text{-wt\%}) \end{array} \quad \left. \right\} \sim 1\% \quad (0.984)$$

$$\text{water} = 1.9913 \quad \left. \right\}$$

~~Also make 10^{-4} soln from 10^{-2} soln for AFM~~

SDS NT

$$\begin{array}{l} 1\text{-soln} = 0.04589 \\ \text{add water till} = 4.60469 \end{array} \quad \left. \right\} \sim 1 \times 10^{-4} \quad (4.99 \times 10^{-5})$$

NaDDBS NT

$$\begin{array}{l} 1\text{-soln} = 0.04059 \\ \text{add water till} = 4.01145 \end{array} \quad \left. \right\} \sim 1 \times 10^{-4} \quad —$$

07/18/02

NT samples I have been looking at:

A

No DDBS coated

NT

10^4 dipped, rinsed

Baked

DDBS dep. 0.00 < 5 μm

{ DDBS 10-4.040
- .051 }

5 μm scan

A1

Same

not A

but not baked

2 μm scan

naddbsa, 026 }

- .037 }

DDBS 10-4.021

.026

discard
double tip

E

E1

1/ NADDBS NT

SPUN at 6000 rpm
while I pipetted

on NT soln

{ before
rigorous
rinsing }
Naddbsel, 000

- .004

{ After
rinsing }
naddbsel, 008

- .015

same baked

naddbsel, 040

bad

B2 NADDBSNT

1/ 4000 rpm

Naddbs soln dropped

on chip w/o
spinning

naddbsb2, 000 } before
- .002 } cleaning

naddbsb2, 003 & after cleaning

E

NADDBS 1/

(Sample 0/ month old)

Spins deposited

naddbsel, 000 & before clean

.001 } & after clean

NADDBS NT

1/

6000 rpm

spindepositd

2M

{ Naddbsb, 000 }
- .001

image confusion

Baked

naddbsb2, 040 } same way
- .042 } prepared
sample

overlapping conc. NT

Baked

naddbsel, 040 } some, NT
- .042 } =

Baked

230% 70/307

158/307 ~ 60% }
212/307 ~ 73% }

C
 10^{-4} from 10^{-2} digest

Naddbs 2.00.0 before
baking

naddbs c.040 after
.048) baking

F
 10^{-4} from 10^{-2} Sample(1)
slipper

After baking
naddbs f.040 } no tube
.041 }

no tube

Cut 12 new

12-2

ddbs 12 n. 000 } Long
. 008 } tubes ddbs 12 - 2. 000 } notches

12th cut New-2

4th cut New 1

20th cut

27th cut

ddBS 4N 1,000

↓
. 009

Found single
tubes

c2

dirty notube

10^{-4} from 10^{-2}

dipped, rinsed

& baked

c3

10^{-4} from 10^{-2} dipped, rinsed
baked

a lot of tubes

f2

10^{-4} from 10^{-2}
(sample ①)

dipped, rinsed

baked

Nddbs F2,000

↓
. 009

g7

10^{-3} from 10^{-2}

dip & rinse

& baked

c4

10^{-4} from 10^{-2} dipped,
burnt, baked

a lot of tubes but
chip is dirty

H1 H2

Bare surface ^{same}
as silane

treated, rinsed but
baked not
rinsed
& baked

07/20/02

Prepare high conc. of Laser Tuber

Take 20 mg of 5×10^{-3} by wt tubes \rightarrow in a glass bottle
& slowly evaporate water to increase conc.

Empty bottle w/o cap = 13.9254 g

w/tube w/o cap

28.9278 g

\therefore tube wt = 15.002 g at 0.5% wt

slowly evaporate at 44°C for several days

After some w/tube w/o cap = 17.4744
so vent evaporation

\therefore tube soln wt = 3.549

New conc -

New conc = 2.113×10^{-2} by wt \equiv 2.113% by wt

Prepare 0.1% NaDBS-NT soln to sonicate

07/24/02

$$1\% \text{ NaDBS-NT} = 0.40389 \quad \left. \right\} \approx 0.1\%$$

$$\text{Add water till} = 4.01279$$

Prepare 0.1% SDS-NT soln

$$1\% \text{ SDS-NT} = 0.40099 \quad \left. \right\}$$

$$\text{Add water till} = 4.01939$$