Count data

Count data

- Typically collected annually or seasonally
- Data collection methods
 - Camera surveys
 - Aerial surveys
 - Point counts
 - Transects

Problems with count data

- Sampling and observation errors
 - Target population not fully sampled
 - Individuals present but not detected
 - Double counting
 - Misidentified individuals

Problems with count data

- Sampling and observation errors
 - Target population not fully sampled
 - Individuals present but not detected
 - Double counting
 - Misidentified individuals

Correcting count data

- We can correct count data for detection if data was specifically collected to estimate detection
 - Study design was set to capture information on detection and counts
 - A separate study was designed to estimate detection probability
- Detection data can be collected by
 - Distance sampling
 - Double observer study
 - Repeated counts at several sites within a close period
 - o Etc.

What if we can't correct for detection?

- We can move forward but we need to understand the limitations of our data
 - O What can we estimate?
 - Apparent abundance or an abundance index
 - Trend in apparent abundance
 - Relationships with ecological covariates
 - Assumptions
 - Detection is constant over time
 - O How can we do it?
 - Generalized linear models (GLM)
 - State-space models (SSM)

Generalized linear models

- GLM's are based on an assumed relationship called a link function between a linear predictor of the explanatory variables (ecological covariates) and the response variable (count)
- GLM's are an extension of the general linear model
 - Used when error is non-normally distributed
 - Most ecological data is non-normal!

Generalized linear models

- Counts typically modeled using a Poisson distribution
 - If data is over dispersed or there are a lot of 0's
 - Negative Binomial
 - Zero-inflated Poisson
- Count data must reasonably follow the chosen distribution
- Model selection
 - May test a number of ecological covariates
 - Use AIC to compare candidate models

Generalized linear models

Poisson Generalized Linear Model

Count

- Discrete, positive integers (0, 1, 2, ..)
- One parameter guides mean and variance

Environmental/habitat covariates

State-space models

- Time series models
 - Model the true state of the system (abundance) as an unobserved process
 - Observed data (counts) are modeled conditional on the true state (abundance) and the observation error
- Partitions variance in counts
 - Process error Biological or process variation (e.g. demographic stochasticity)
 - Observation error sampling variation

Count-based Models

State-space models

- Provides estimates of population growth rate
- Accounts for sampling variation (observation error) and process error (variation in abundance)
- Drawbacks
 - Cannot correct for bias in counts relative to true abundance
 - Can be relatively complex
 - Simple models suffer from estimation problems
 - Model fit and selection are difficult

What if we can correct for detection?

• If we have an estimate(s) of detection probability we can correct the counts and estimate **abundance**

$$\circ \widehat{N} = C/\hat{p}$$

- \widehat{N} is estimated abundance
- C is the count
- \hat{p} is detection probability
- If we have repeated counts at several sites in a closed period
 - O We can use N-Mixture Models!

N-mixture models

- Use repeated counts at several sites to estimate detection probability directly
- Can include covariates associated with either abundance or detection
 - Explicitly model spatial and temporal variation
- Called "mixture" because it combines two GLMs
 - Poisson GLM abundance
 - Binomial GLM (Logistic regression) detection

N-mixture models

- Model detection as a function of covariates
 - Survey timing, observer
 - Habitat or weather
- Model abundance as a function of covariates
 - Habitat type
 - Presence/absence of predators
- Include these covariates as predictors of species abundance

N-mixture models

Assumptions

- Sites closed to immigration/emigration between surveys
- Detection process is independent at each site but can vary among sites
- No double counting
- Equal detection probability for all individuals within a sample

Model selection

- Typically use AIC for both detection and abundance models
- Assess relative fit of model sets to the data

Review

 What types of questions should you ask before you choose an analysis for your count data?

• What types of models are available for count data that are not corrected for detection?

• Can you estimate abundance or only relative abundance with repeated counts at several sites within a closed period?

Questions?

