Лабораторная работа №1.1.4 Измерение интенсивности радиационного фона

Гёлецян А.Г.

22 июля 2022 г.

1 Введение

Цель работы:

• Применить методы обработки экспериментальных данных для изучения статистических закономерностей при измерении интенсивности радиационного фона

В работе используются:

- счетчик Гейгера-Мюллера
- блок питания
- компьютер с интерфейсом связи со счетчиком

2 Ход работы

Проведем измерение используя интерфейс компьютера. Приведем данные в таблицу и начнем обработку. Разбивая данные для 20с по парам и просуммировав пары получим данные для 40с.

Проверим связь $\sigma_{\text{отд}} \approx \sqrt{\bar{n}}$. Индекс 1 для 10с, 2 для 40с

$$n_{\text{общ}} = \sum n_i = 5671$$

$$\bar{n}_1 = \frac{n_{\text{общ}}}{N_1} = 14.1775$$

$$\bar{n}_2 = \frac{n_{\text{общ}}}{N_2} = 56.71$$

$$\sigma_1 = \sqrt{\frac{1}{N_1} \sum_{i=1}^{N_1} (n_i - \bar{n}_i)^2} \approx 3.83$$

$$\sigma_2 = \sqrt{\frac{1}{N_2} \sum_{i=1}^{N_2} (n_i - \bar{n}_i)^2} \approx 7.73$$

$$\sqrt{\bar{n}_1} = 3.76 \approx 3.83 = \sigma_1$$

 $\sqrt{\bar{n}_2} = 7.53 \approx 7.73 = \sigma_2$

Как видим связь между среднеквадратическим отклонением и среднем значении есть ($\sigma \approx \sqrt{\bar{n}}$). Теперь определим долю случаев в пределах $\pm \sigma$ и $\pm 2\sigma$.

t = 10c										
Предел	Число случаев	Доля случаев	Теоретическая оценка							
$\pm \sigma_1 = \pm 3.8$	281	70%	68%							
$\pm 2\sigma_1 = \pm 7.7$	385	96%	95%							

t = 10c										
Предел	Число случаев	Доля случаев	Теоретическая оценка							
$\pm \sigma_2 = \pm 7.7$	68	68%	68%							
$\pm 2\sigma_2 = \pm 15.5$	93	93%	95%							

Таблица 1: Количество измерении за пределами $\pm \sigma$ и $\pm 2\sigma$

Как видим наши данные с довольно хорошей точностью соответствуют теории. Как видно из графика относительный разброс данных за 40с меньше чем за 10с. Подсчитаем какая разница между этими 2мя случаями.

$$\frac{\sigma_1}{\bar{n}_1} \approx 27\%, \frac{\sigma_2}{\bar{n}_2} \approx 14\%$$

Как видим разница почти в 2 раза, что и следует от того факта что $\sigma \approx \sqrt{\bar{n}}.$

Для финалбного ответа подсчитаем ошибки средних величин. По теории

$$\begin{split} \sigma_{\bar{n}_1} &= \frac{\sigma_1}{N_1} \approx 0.19, \sigma_{\bar{n}_2} \approx 0.77 \\ \varepsilon_{\bar{n}_1} &= \frac{\sigma_{\bar{n}_1}}{\bar{n}_1} \approx 1.3\%, \varepsilon_{\bar{n}_2} \approx 1.3\% \end{split}$$

Получаем финальный результат

$$n_{t=10c} = 14.17 \pm 0.19$$

$$n_{t=40c} = 56.71 \pm 0.77$$

№ опыта	1	2	3	4	5	6	7	8	9	10
0	38	24	45	26	33	21	30	21	26	18
10	27	33	32	36	31	26	36	16	25	23
20	29	32	27	28	29	$\frac{27}{27}$	29	30	$\frac{27}{27}$	28
30	19	29	26	26	20	21	34	31	30	30
40	31	28	24	29	21	21	28	29	25	29
50	29	33	20	31	31	26	40	22	28	24
60	18	48	19	33	35	31	21	34	26	32
70	23	27	33	40	28	36	32	40	31	24
80	24	30	26	22	31	42	27	40	34	26
90	29	25	25	32	25	29	23	33	23	28
100	30	27	37	36	31	28	28	35	28	33
110	22	35	28	32	39	32	28	15	24	22
120	34	21	21	26	28	32	22	25	31	26
130	20	39	30	21	16	25	28	22	28	26
140	17	22	28	27	25	34	34	28	27	39
150	25	28	28	28	28	35	32	28	27	28
160	27	19	26	35	29	23	31	28	23	33
170	30	26	34	31	40	35	22	28	22	26
180	23	30	29	32	38	31	24	25	32	26
190	34	32	33	32	24	20	28	29	22	27

Таблица 2: Число срабатывании счетчика за 20с

Число импульсов	3	4	5	6	7	8	9	10
Число случаев	1	2	1	2	5	8	17	34
Доля случаев	0.0025	0.005	0.0025	0.005	0.0125	0.02	0.0425	0.085
Число импульсов	11	12	13	14	15	16	17	18
Число случаев	32	40	38	43	33	31	36	28
Доля случаев	0.08	0.1	0.095	0.1075	0.0825	0.0775	0.09	0.07
Число импульсов	19	20	21	22	23	25	27	28
Число случаев	12	18	10	4	1	1	2	1
Доля случаев	0.03	0.045	0.025	0.01	0.0025	0.0025	0.005	0.0025

Таблица 3: Данные для построения гистограммы для 10с

№ опыта	1	2	3	4	5	6	7	8	9	10
0	62	71	54	51	44	60	68	57	52	48
10	61	55	56	59	55	48	52	41	65	60
20	59	53	42	57	54	62	51	57	62	52
30	66	52	66	55	58	50	73	64	72	55
40	54	48	73	67	60	54	57	54	56	51
50	57	73	59	63	61	57	60	71	43	46
60	55	47	60	47	57	59	51	41	50	54
70	39	55	59	62	66	53	56	63	60	55
80	46	61	52	59	56	56	65	75	50	48
90	53	61	69	49	58	66	65	44	57	49

Таблица 4: Число срабатывании счетчика за 40с

Число импульсов	39	41	42	43	44	46	47	48	49	50	51
Число случаев	1	2	1	1	2	2	2	4	2	3	4
Доля случаев	0.01	0.02	0.01	0.01	0.02	0.02	0.02	0.04	0.02	0.03	0.04
Число импульсов	52	53	54	55	56	57	58	59	60	61	62
Число случаев	5	3	6	7	5	8	2	6	6	4	4
Доля случаев	0.05	0.03	0.06	0.07	0.05	0.08	0.02	0.06	0.06	0.04	0.04
Число импульсов	63	64	65	66	67	68	69	71	72	73	75
Число случаев	2	1	3	4	1	1	1	2	1	3	1
Доля случаев	0.02	0.01	0.03	0.04	0.01	0.01	0.01	0.02	0.01	0.03	0.01

Таблица 5: Данные для построения гистограммы для 40с

Рис. 1: Гистограммы для $t=10\mathrm{c}$ и $t=40\mathrm{c}$