Complex Analysis Homework

Simon Xiang

Homework for M361 Fall 2020 at UT Austin w/Dr. Radin. Source code: https://git.simonxiang.xyz/math_notes/file/freshman_year/complex_analysis/master_notes.tex.html.

Contents

1	August 27, 2020: Homework 1			
	1.1	Question 1	2	
	1.2	Question 2	2	
	1.3	Question 4	3	
	1.4	Question 10	3	
2	Aug	st 28, 2020: Homework 2	4	
	2.1	Question 2	4	
	2.2	Question 4	4	
	2.3	Question 7	5	

§1 August 27, 2020: Homework 1

Section 2: Problems 1, 4, 10. Let P represent the ordered set of problems under the < relation (note that < is a strict total ordering), e.g. $\{1,4,10\}$ for Homework 1. We accept the Axiom of Choice: then problem numbers in this LATEX document are represented by the inverse image $f^{-1}(p)$ of some $p \in P$, where $f: \mathbb{N} \to P$ is the natural order surjection (f is not injective unless we restrict its domain to the subset $A_n \subset \mathbb{N}$, where $A_n = \{1, 2, ..., n\}, n = |P|$). We have $1 \mapsto p_1$, where p_1 is the least element of P (which exists by the Well-Ordering Theorem, if you view P as a non-empty subset of the set of all problems \mathscr{P}). Similarly, $2 \mapsto p_2$, where p_2 is the next element such that $p_2 > p_1$ but for every $p \in P$ not equal to p_1 or p_2 , $p > p_2$. Continuing on, we map elements of \mathbb{N} onto P in this way. For example, even though I may be working on the question $1 \in P$, in reality it is denoted in the LATEX document by question $1 \in P$, since $1 \in P$, in reposition $1 \in P$, since $1 \in P$, in the second problem in the list).

§1.1 Question 1

Problem. Verify that

(a)
$$(\sqrt{2} - i) - i(1 - \sqrt{2}i) = -2i;$$

(b)
$$(2,-3)(-2,1) = (-1,8);$$

(c)
$$(3,1)(3,-1)(\frac{1}{5},\frac{1}{10})=(2,1)$$

Solution. The solutions follow from some computations.

(a)
$$(\sqrt{2}-i)-i(1-\sqrt{2}i)=(\sqrt{2}-i-i+i^2\sqrt{2})=\sqrt{2}-2i-\sqrt{2}=-2i.$$

(b)
$$(2,-3)(-2,1) = ((2 \cdot -2) - (1 \cdot -3), (-3 \cdot -2) + (2 \cdot 1)) = (-4+3,6+2) = (-1,8).$$

(c)
$$(3,1)(3,-1)(\frac{1}{5},\frac{1}{10}) = (9+1,3-3)(\frac{1}{5},\frac{1}{10}) = (10,0)(\frac{1}{5},\frac{1}{10}) = (2-0,0+1) = (2,1).$$

§1.2 Question 2

Problem. Show that

- (a) $\operatorname{Re}(iz) = -\operatorname{Im} z$;
- (b) $\operatorname{Im}(iz) = \operatorname{Re} z$.

Solution. The solutions follow from some algebraic manipulation.

- (a) Let $z \in \mathbb{C}$, then z = a + bi for $a, b \in \mathbb{R}$. Note that $\operatorname{Re} z = a$ and $\operatorname{Im} z = b$. Then $\operatorname{Re}(iz) = \operatorname{Re}(i(a+bi)) = \operatorname{Re}(ia+i^2b) = \operatorname{Re}(-b+ia) = -b = \operatorname{Im} z$.
- (b) Let $z \in \mathbb{C}$, then $\operatorname{Im}(iz) = \operatorname{Im}(i(a+bi)) = \operatorname{Im}(ia+i^2b) = \operatorname{Im}(-b+ia) = a = \operatorname{Re} z$.

§1.3 Question 4

Problem. Verify that $z = 1 \pm i$ satisfies the equation $z^2 - 2z + 2 = 0$.

Solution. Let z = 1+i. Then $z^2 - 2z + 2 = (1+i)^2 - 2(1+i) + 2 = (1+2i-1) - 2 - 2i + 2 = 2i - 2i = 0$.

Now let z = 1 - i. Then $z^2 - 2z + 2 = (1 - i)^2 - 2(1 - i) + 2 = (1 - 2i - 1) - 2 + 2i + 2 = -2i + 2i = 0$.

Note that this is just an example of that fact that conjugate elements are defined as both being solutions to the minimal polynomial of an algebraic element over a field.

§1.4 Question 10

Problem. Use i = (0,1) and y = (y,0) to verify that -(iy) = (-i)y. Then show that the additive inverse of $z = x + iy \in \mathbb{C}$ can be written as -z = -x - iy without ambiguity.

Solution. We have $-(iy) = -((0,1) \cdot (y,0)) = -(0-0,y+0) = -(0,y) = (0,-y)$. We also have $(-i)y = (0,-1) \cdot (y,0) = (0-0,-y+0) = (0,-y)$. We conclude that -(iy) = (-i)y.

To show that we can write the additive inverse of $z = x + iy \in \mathbb{C}$ (denoted by -z) as -z = -x - iy without ambiguity: Our first possibility is that -x - iy refers to -x + (-(iy)) (denoted -x - (iy) from now on). Then -z + z = (-x - (iy)) + (x + (iy)) = (-x + x) + (-(iy) + (iy)). Clearly -x and -(iy) are the additive inverses of x and (iy) respectively, so this sum is equal to zero plus zero which is just zero. The second possibility is that -x - iy refers to -x + ((-i)y), in which case we have previously shown that (-i)y = -(iy), so this sum is equal to -x - (iy), and we are done.

§2 August 28, 2020: Homework 2

Section 3: Problems 2,4,7.

§2.1 Question 2

Problem. Show that

$$\frac{1}{1/z} = z,$$

where $z \neq 0$.

Solution. We know that $z^{-1} = 1/z$ exists and is equal to

$$\left(\frac{x}{x^2+y^2}, \frac{-y}{x^2+y^2}\right)$$

since z is non-zero. Continuing on, we have $(1/z)^{-1} = \frac{1}{1/z}$ exists $(z \neq 0)$, and with a simple application of the previous formula is equal to

$$\left(\left(\frac{\left(\frac{x}{x^2+y^2}\right)}{\left(\frac{x}{x^2+y^2}\right)^2+\left(\frac{-y}{x^2+y^2}\right)^2}\right), \left(\frac{-\left(\frac{-y}{x^2+y^2}\right)}{\left(\frac{x}{x^2+y^2}\right)^2+\left(\frac{-y}{x^2+y^2}\right)^2}\right)\right).$$

This may look intimidating, but we can easily reduce this to

$$\left(\frac{\frac{x}{x^2+y^2}}{\left(\frac{x^2+(-y)^2}{(x^2+y^2)^2}\right)}, \frac{\frac{-(-y)}{x^2+y^2}}{\left(\frac{x^2+(-y)^2}{(x^2+y^2)^2}\right)}\right),$$

which once again simplifies to

$$\left(\frac{\frac{x}{x^2+y^2}}{\frac{x^2+y^2}{(x^2+y^2)^2}}, \frac{\frac{y}{x^2+y^2}}{\frac{x^2+y^2}{(x^2+y^2)^2}}\right) = \left(\frac{\frac{x}{x^2+y^2}}{\frac{1}{x^2+y^2}}, \frac{\frac{y}{x^2+y^2}}{\frac{1}{x^2+y^2}}\right) = (x,y) = z.$$

§2.2 Question 4

Problem. Prove that if $z_1z_2z_3=0$, then at least one of the three factors is equal to zero.

Proof. Let $z_1z_2z_3=(z_1z_2)z_3=0$. Then either (z_1z_2) or z_3 is zero (proof from the book): WLOG, assume that $(z_1z_2)z_3=0$ and $(z_1z_2)\neq 0$. Since the complex numbers form a

field, we have $(z_1z_2) \in \mathbb{C}$ so $(z_1z_2)^{-1} \in \mathbb{C}$, and $z \cdot 0 = 0$ for all $z \in \mathbb{C}$. So

$$z_{3} = z_{3} \cdot 1$$

$$= z_{3} ((z_{1}z_{2})(z_{1}z_{2})^{-1})$$

$$= ((z_{1}z_{2})^{-1}(z_{1}z_{2})z_{3})$$

$$= (z_{1}z_{2})^{-1} ((z_{1}z_{2})z_{3})$$

$$= (z_{1}z_{2})^{-1} \cdot 0$$

$$= 0$$

If z_3 is zero, then we are done. If (z_1z_2) is zero, then we apply the same logic again to conclude that either z_1 or z_2 is zero. So either way, one of the factors z_1, z_2 , or z_3 must be zero, and we are done (note that you can prove that this holds for any number of factors by induction).

§2.3 Question 7

Problem. Use the associative law for addition and the distributive law to show that

$$z(z_1 + z_2 + z_3) = zz_1 + zz_2 + zz_3.$$

Proof. We have

$$z(z_1+z_2+z_3)=z((z_1+z_2)+z_3)$$
 by Associativity of Addition
= $z(z_1+z_2)+zz_3$ by the Distributive Law
= $(zz_1+zz_2)+zz_3$ by the Distributive Law
= $zz_1+zz_2+zz_3$ by Associativity of Addition,

completing the proof.