Мини(?)-задача #21 (2 балла)

Реализовать биномиальную кучу со всеми рассмотренными операциями.

Подготовить набор тестов, демонстрирующих корректность решения.

Алгоритмы и структуры данных

Сложность алгоритма Дейкстры, Биномиальная пирамида

Абстрактный тип данных: очередь с приоритетами

Множество значений: пары <pri>ority: int, value: T>

Операции:

- 1. insert(priority, value) добавить в очередь задание с указанным приоритетом
- 2. peek_max() -> T взять элемент с максимальным* приоритетом (без изменения очереди)
- 3. extract_max() -> T

- взять элемент с максимальным* приоритетом (удалив его из очереди)

Абстрактный тип данных: очередь с приоритетами

```
Множество значений: S = \{ < priority: int, value: T > \}
Операции:
   1. insert(priority, value)
   2. peek max() \rightarrow T
   3. extract max() -> T
   4. increase priority(s, new priority),
       где s \in S - элемент из очереди,
       new priority ≥ s.priority
```

Абстрактный тип данных: очередь с приоритетами

Множество значений: $S = \{ < priority: int, value: T > \}$

Операции:

- 1. insert(priority, value)
- 2. $peek_max() \rightarrow T$
- 3. extract max() -> T

Именно сам <u>элемент</u>, поиск по значению не подразумевается

4. (increase_priority(s, new_priority),

где $s \in S$ - элемент из очереди, new_priority \geqslant s.priority

Множество значений: пары <pri>ority: int, value: T>

Будем хранить массив из пар <pri>сртiority, value> (но относимся к этому массиву, как к пирамиде из ключей)

Операции:

- 1. insert(priority, value)
- 2. $peek_max() \rightarrow T$
- 3. extract_max() -> T

Множество значений: пары <pri>ority: int, value: T>

Будем хранить массив из пар <pri>сртіотіty, value> (но относимся к этому массиву, как к пирамиде из ключей)

Операции:

- 1. insert(priority, value)
- 2. $peek_max() \rightarrow T$
- 3. extract_max() -> T
- 4. increase_priority(s, new_priority)

Множество значений: пары <pri>ority: int, value: T>

Будем хранить массив из пар <pri>riority, value>
(но относимся к этому массиву, как к пирамиде из ключей)

Операции:

- 1. insert(priority, value)
- 2. peek_max() -> T
- 3. extract_max() -> T

В этом случае, в качестве s используется текущий индекс элемента в массиве

4. increase_priority(s, new_priority)

Множество значений: пары <pri>ority: int, value: T>

Будем хранить массив из пар <pri>riority, value>
(но относимся к этому массиву, как к пирамиде из ключей)

Операции:

- 1. insert(priority, value)
- 2. $peek_max() \rightarrow T$
- 3. extract_max() -> T

используется текущий индекс элемента в массиве

В этом случае, в качестве \$

4. increase_priority(s, new_priority)

Как реализовать?

$$A[i] \geq A[2i+1] \ orall i: 2i+1 < N,$$

$$A[i] \geq A[2i+2] \ orall i: 2i+2 < N.$$

15	9	13	5	7	11	10	1	
----	---	----	---	---	----	----	---	--

$$A[i] \geq A[2i+1] \ orall i: 2i+1 < N,$$

$$A[i] \geq A[2i+2] \ orall i: 2i+2 < N.$$

Запрос: increase_priority(s, 16)

$$A[i] \geq A[2i+1] \ orall i: 2i+1 < N,$$

$$A[i] \geq A[2i+2] \ orall i: 2i+2 < N.$$

Запрос: increase_priority(s, 16)

$$A[i] \geq A[2i+1] \ orall i: 2i+1 < N,$$

$$A[i] \geq A[2i+2] \ orall i: 2i+2 < N.$$

Запрос: increase_priority(s, 16)

Решение: просеивание в верх!

$$A[i] \geq A[2i+1] \ orall i: 2i+1 < N,$$

$$A[i] \geq A[2i+2] \ orall i: 2i+2 < N.$$

Запрос: increase_priority(s, 16)

Решение: просеивание в верх!

$$A[i] \geq A[2i+1] \ orall i: 2i+1 < N,$$

$$A[i] \geq A[2i+2] \ orall i: 2i+2 < N.$$

Запрос: increase_priority(s, 16)

Решение: просеивание в верх!

$$A[i] \geq A[2i+1] \ orall i: 2i+1 < N,$$

$$A[i] \geq A[2i+2] \ orall i: 2i+2 < N.$$

Запрос: increase_priority(s, 16)

Решение: просеивание в верх!

Сложность: O(logN)

Задача: пусть дан взвешенный граф $G = \langle V, E \rangle$ без рёбер отрицательного веса. Найти длины кратчайших путей от заданной вершины до всех остальных.

Задача: пусть дан взвешенный граф $G = \langle V, E \rangle$ без рёбер отрицательного веса. Найти кратчайшие пути от заданной вершины до всех остальных.

Задача: пусть дан взвешенный граф $G = \langle V, E \rangle$ без рёбер отрицательного веса. Найти кратчайшие пути от заданной вершины до всех остальных.

Идея алгоритма:

1. Поддерживаем множество "пометок" - текущее вычисленное расстояние до каждой вершины

Задача: пусть дан взвешенный граф $G = \langle V, E \rangle$ без рёбер отрицательного веса. Найти кратчайшие пути от заданной вершины до всех остальных.

Идея алгоритма:

- 1. Поддерживаем множество "пометок" текущее вычисленное расстояние до каждой вершины
- 2. На каждой итерации выбираем необработанную еще вершину с минимальной пометкой в качестве текущей, обновляем пометки ее соседей

dists =
$$\infty$$
 ∞ ∞ ∞ ∞ 0 ∞ ∞

Ищем расстояние от пятой вершины до всех остальных.

Изначально все остальные пометки - бесконечность

Ищем расстояние от пятой вершины до всех остальных.

Изначально все остальные пометки - бесконечность

1. Улучшаем текущее расстояние до соседних с текущей (еще не обработанных) вершинах

Ищем расстояние от пятой вершины до всех остальных.

Изначально все остальные пометки - бесконечность

1. Улучшаем текущее расстояние до соседних с текущей (еще не обработанных) вершинах

Ищем расстояние от пятой вершины до всех остальных.

- 1. Улучшаем текущее расстояние до соседних с текущей (еще не обработанных) вершинах
- 2. Пометить текущую, как обработанную

Ищем расстояние от пятой вершины до всех остальных.

- 1. Улучшаем текущее расстояние до соседних с текущей (еще не обработанных) вершинах
- 2. Пометить текущую, как обработанную
- В качестве следующей вершины берем ту, в которой еще не были, и у которой минимальный dist

Ищем расстояние от пятой вершины до всех остальных.

- 1. Улучшаем текущее расстояние до соседних с текущей (еще не обработанных) вершинах
- 2. Пометить текущую, как обработанную
- 3. В качестве следующей вершины берем ту, в которой еще не были, и у которой минимальный dist

Ищем расстояние от пятой вершины до всех остальных.

- 1. Улучшаем текущее расстояние до соседних с текущей (еще не обработанных) вершинах
- 2. Пометить текущую, как обработанную
- 3. В качестве следующей вершины берем ту, в которой еще не были, и у которой минимальный dist

Ищем расстояние от пятой вершины до всех остальных.

- 1. Улучшаем текущее расстояние до соседних с текущей (еще не обработанных) вершинах
- 2. Пометить текущую, как обработанную
- В качестве следующей вершины берем ту, в которой еще не были, и у которой минимальный dist

Ищем расстояние от пятой вершины до всех остальных.

- 1. Улучшаем текущее расстояние до соседних с текущей (еще не обработанных) вершинах
- 2. Пометить текущую, как обработанную
- 3. В качестве следующей вершины берем ту, в которой еще не были, и у которой минимальный dist

Ищем расстояние от пятой вершины до всех остальных.

- 1. Улучшаем текущее расстояние до соседних с текущей (еще не обработанных) вершинах
- 2. Пометить текущую, как обработанную
- 3. В качестве следующей вершины берем ту, в которой еще не были, и у которой минимальный dist

Ищем расстояние от пятой вершины до всех остальных.

- 1. Улучшаем текущее расстояние до соседних с текущей (еще не обработанных) вершинах
- 2. Пометить текущую, как обработанную
- 3. В качестве следующей вершины берем ту, в которой еще не были, и у которой минимальный dist

Ищем расстояние от пятой вершины до всех остальных.

- 1. Улучшаем текущее расстояние до соседних с текущей (еще не обработанных) вершинах
- 2. Пометить текущую, как обработанную
- 3. В качестве следующей вершины берем ту, в которой еще не были, и у которой минимальный dist

Ищем расстояние от пятой вершины до всех остальных.

- 1. Улучшаем текущее расстояние до соседних с текущей (еще не обработанных) вершинах
- 2. Пометить текущую, как обработанную
- 3. В качестве следующей вершины берем ту, в которой еще не были, и у которой минимальный dist

Ищем расстояние от пятой вершины до всех остальных.

- 1. Улучшаем текущее расстояние до соседних с текущей (еще не обработанных) вершинах
- 2. Пометить текущую, как обработанную
- 3. В качестве следующей вершины берем ту, в которой еще не были, и у которой минимальный dist

Ищем расстояние от пятой вершины до всех остальных.

- 1. Улучшаем текущее расстояние до соседних с текущей (еще не обработанных) вершинах
- 2. Пометить текущую, как обработанную
- 3. В качестве следующей вершины берем ту, в которой еще не были, и у которой минимальный dist

Идея алгоритма:

- 1. Поддерживаем множество "пометок" текущее вычисленное расстояние до каждой вершины
- 2. На каждой итерации выбираем необработанную еще вершину с минимальной пометкой в качестве текущей, обновляем пометки ее соседей

Сложность?

Оценка сложности:

- 1. Обрабатываем каждую вершину 1 раз
- 2. Для каждой вершины перебираем ребра
- 3. На каждом шаге алгоритма ищем минимум из пометок

Оценка сложности:

- 1. Обрабатываем каждую вершину 1 раз
- 2. Для каждой вершины перебираем ребра
- 3. На каждом шаге алгоритма ищем минимум из пометок

$$O(|V| * T + |E|)$$

T- сложность поиска минимальной из пометок

Оценка сложности:

- 1. Обрабатываем каждую вершину 1 раз
- 2. Для каждой вершины перебираем ребра
- 3. На каждом шаге алгоритма ищем минимум из пометок

$$O(|V| * T + |E|) = O(|V|^2 + |E|)$$

T- сложность поиска минимальной из пометок Для случая линейного поиска - T=O(|V|)

Оценка сложности:

- 1. Обрабатываем каждую вершину 1 раз
- 2. Для каждой вершины перебираем ребра
- 3. На каждом шаге алгоритма ищем минимум из пометок

$$O(|V|*T+|E|) = O(|V|^2+|E|) = O(|V|^2) \ |E| \leq |V|*(|V|-1)$$

T- сложность поиска минимальной из пометок Для случая линейного поиска - T=O(|V|)

Оценка сложности:

- 1. Обрабатываем каждую вершину 1 раз
- 2. Для каждой вершины перебираем ребра
- 3. На каждом шаге алгоритма ищем минимум

$$O(|V|*T+|E|) = O(|V|^2+|E|) = O(|V|^2) \ |E| \leq |V|*(|V|-1)$$

T- сложность поиска минимальной из пометок Для случая линейного поиска - T=O(|V|)

Можем ли мы лучше?

Оценка сложности:

- 1. Обрабатываем каждую вершину 1 раз
- 2. Для каждой вершины перебираем ребра
- 3. На каждом шаге алгоритма ищем минимум

$$O(|V|*T+|E|) = O(|V|^2+|E|) = O(|V|^2) \ |E| \le |V|*(|V|-1)$$

T- сложность поиска минимальной из пометок Для случая линейного поиска - T=O(|V|)

Можем ли мы лучше?

Оценка сложности:

- 1. Обрабатываем каждую вершину 1 раз
- 2. Для каждой вершины перебираем ребра
- 3. На каждом шаге алгоритма ищем минимум

$$O(|V|*T+|E|) = O(|V|^2+|E|) = O(|V|^2) \ |E| \le |V|*(|V|-1)$$

T- сложность поиска минимальной из пометок Для случая линейного поиска - T=O(|V|)

Можем ли мы лучше?

Структура данных: невозрастающая пирамида

$$A[i] \geq A[2i+1] \ orall i: 2i+1 < N,$$

$$A[i] \geq A[2i+2] \ orall i: 2i+2 < N.$$

Структура данных: неубывающая пирамида

$$A[i] \leq A[2i+1] \ orall i: 2i+1 < N,$$

$$A[i] \leq A[2i+2] \ orall i: 2i+2 < N.$$

Структура данных: неубывающая пирамида

$$A[i] \leq A[2i+1] \ orall i: 2i+1 < N,$$

$$A[i] \leq A[2i+2] \ orall i: 2i+2 < N.$$

1	7	11	10	9	15	13	16
---	---	----	----	---	----	----	----

Теперь у такого массива минимальный элемент стоит первым

Очередь с приоритетами через пирамиду

Множество значений: пары <pri>ority: int, value: T>

Будем хранить массив из пар <pri>тiority, value> (но относимся к этому массиву, как к пирамиде из ключей)

Операции:

- 1. insert(priority, value)
- 2. $peek_max() \rightarrow T$
- 3. extract_max() -> T

Неубывающие очереди с приоритетами

Множество значений: пары <pri>ority: int, value: T>

Будем хранить массив из пар <pri>сртіотіty, value> (но относимся к этому массиву, как к пирамиде из ключей)

Операции:

- 1. insert(priority, value)
- 2. peek_min() -> T
- 3. extract_min() -> T
- 4. decrease_priority(s, new_priority), где $s \in S$ элемент из очереди, new priority \leq s.priority

Реализация абсолютно зеркальна предыдущей

Идея алгоритма:

- 1. Поддерживаем множество "пометок" текущее вычисленное расстояние до каждой вершины
- 2. На каждой итерации выбираем необработанную еще вершину с минимальной пометкой в качестве текущей, обновляем пометки ее соседей

Идея алгоритма:

- 1. Поддерживаем множество "пометок" текущее вычисленное расстояние до каждой вершины
- 2. На каждой итерации выбираем необработанную еще вершину с минимальной пометкой в качестве текущей, обновляем пометки ее соседей

Реализация: будем хранить пометки в неубывающей пирамиде

Идея алгоритма:

- 1. Поддерживаем множество "пометок" текущее вычисленное расстояние до каждой вершины
- 2. На каждой итерации выбираем необработанную еще вершину с минимальной пометкой в качестве текущей, обновляем пометки ее соседей

Реализация: будем хранить пометки в неубывающей пирамиде При этом каждая пометка связана с вершиной и наоборот.

Идея алгоритма:

- 1. Поддерживаем множество "пометок" текущее вычисленное расстояние до каждой вершины
- 2. На каждой итерации выбираем необработанную еще вершину с минимальной пометкой в качестве текущей, обновляем пометки ее соседей

Реализация: будем хранить пометки в неубывающей пирамиде При этом каждая пометка связана с вершиной и наоборот.

Можно сделать указателями, можно параллельными массивами.

Идея алгоритма:

- 1. Поддерживаем множество "пометок" текущее вычисленное расстояние до каждой вершины
- 2. На каждой итерации выбираем необработанную еще вершину с минимальной пометкой в качестве текущей, обновляем пометки ее соседей

Реализация: будем хранить пометки в неубывающей пирамиде

Сложность?

Оценка сложности:

- 1. Обрабатываем каждую вершину 1 раз
- 2. Для каждой вершины перебираем ребра
- 3. На каждом шаге алгоритма ищем минимум

$$O(|V|*T+|E|) = O(|V|^2+|E|) = O(|V|^2)$$

Для случая линейного поиска - T = O(|V|)

Оценка сложности:

- 1. Обрабатываем каждую вершину 1 раз
- 2. Для каждой вершины перебираем ребра
- 3. На каждом шаге алгоритма ищем минимум

$$O(|V|*T+|E|) = O(|V|^2+|E|) = O(|V|^2)$$

Для случая пирамиды - T = O(log(|V|))

Оценка сложности:

- 1. Обрабатываем каждую вершину 1 раз
- 2. Для каждой вершины перебираем ребра
- 3. На каждом шаге алгоритма ищем минимум

$$O(|V|*T+|E|) = O(|V|^2+|E|) = O(|V|^2)$$

Для случая пирамиды - T = O(log(|V|))

Оценка сложности:

- 1. Обрабатываем каждую вершину 1 раз
- 2. Для каждой вершины перебираем ребра
- 3. На каждом шаге алгоритма ищем минимум

$$O(|V|*log(|V|) + |E|*log(|V|))$$

Для случая пирамиды - T = O(log(|V|))

Оценка сложности:

- 1. Обрабатываем каждую вершину 1 раз
- 2. Для каждой вершины перебираем ребра Перебор не может быть за O(V), иначе получите квадрат
- 3. На каждом шаге алгоритма ищем минимум

$$O(|V| * log(|V|) + |E| * log(|V|))$$

Для случая пирамиды - T = O(log(|V|))

Оценка сложности:

Попрощайтесь с матрицей смежности (2)

- 1. Обрабатываем каждую вершину 1 раз
- 2. Для каждой вершины перебираем ребра Перебор не может быть за O(V), иначе получите квадрат
- 3. На каждом шаге алгоритма ищем минимум

$$O(|V| * log(|V|) + |E| * log(|V|))$$

Для случая пирамиды - T = O(log(|V|))

Оценка сложности аккуратной реализации ч/р бинарные пирамиды:

$$O(|V|*log(|V|)+|E|*log(|V|))$$

Оценка сложности аккуратной реализации ч/р бинарные пирамиды:

$$O(|V|*log(|V|) + |E|*log(|V|))$$

Оценка сложности аккуратной реализации ч/р бинарные пирамиды:

$$O(|V|*log(|V|) + |E|*log(|V|))$$

Но можем ли мы еще лучше?

Оценка сложности аккуратной реализации ч/р бинарные пирамиды:

$$O(|V|*log(|V|) + |E|*log(|V|))$$

Но можем ли мы еще лучше?

Да! Но начнем чуть издалека.


```
Множество значений: пары <pri>priority: int, value: T>
```

- 1. insert(value)
- 2. peek_min()
- 3. extract_min()
- 4. decrease_key(s, k)

Множество значений: пары <priority: int, value: T>

Операции:

- 1. insert(value)
- 2. peek_min()
- 3. extract_min()
- 4. decrease_key(s, k)
- 5. merge(H1, H2) взять две сливаемые пирамиды и превратить в одну, объединить

Множество значений: пары <priority: int, value: T>

Операции:

- 1. insert(value)
- 2. peek_min()
- 3. extract_min()
- 4. decrease_key(s, k)
- 5. merge(H1, H2)
- 6. delete(s) удалить данный элемент

Множество значений: пары <priority: int, value: T>

Операции:

- 1. insert(value)
- 2. peek_min()
- 3. extract_min()
- 4. decrease_key(s, k)
- 5. merge(H1, H2)
- 6. delete(s)

Как реализовать?

Множество значений: пары <priority: int, value: T>

Операции:

- insert(value)
- peek min()
- 3. extract_min()
- 4. decrease_key(s, k)
- 5. merge(H1, H2)
- 6. delete(s)

Как реализовать? Бинарная куча!

Множество значений: пары <priority: int, value: T>

Операции:

- insert(value) -> 0(logN)
- -> 0(1) **4** peek min()
- 3. extract min() \rightarrow 0(logN)
- 4. $decrease_key(s, k) \rightarrow O(logN)$
- 5. merge(H1, H2)
- 6. delete(s)

Как реализовать? Бинарная куча!

Множество значений: пары <pri>ority: int, value: T>

Операции:

- insert(value) -> 0(logN)
- peek min()
- 3. extract_min() $\rightarrow 0(logN)$
- 4. $decrease_key(s, k) \rightarrow O(logN)$
- -> O(???) 5. merge(H1, H2)
- 6. delete(s)

Как реализовать? Бинарная куча!

Множество значений: пары <pri>ority: int, value: T>

Операции:

- 1. insert(value) -> 0(logN)
- 2. peek_min() -> 0(1) €
- 3. extract_min() -> O(logN)
- 4. decrease_key(s, k) \rightarrow 0(logN)
- 5. merge(H1, H2) -> O(N)
- 6. delete(s)

Просто строим новую пирамиду из элементов из обеих старых пирамид

Как реализовать? Бинарная куча!

Множество значений: пары <pri>ority: int, value: T>

Операции:

- insert(value) -> 0(logN)
- peek min()
- 3. extract_min() $\rightarrow 0(logN)$
- 4. $decrease_key(s, k) \rightarrow O(logN)$
- -> 0(N)5. merge(H1, H2)
- 6. delete(s) -> 0(logN)

Как реализовать? Бинарная куча!

Множество значений: пары <pri>ority: int, value: T>

Операции:

- 1. insert(value) -> 0(logN)
- 2. peek_min() -> 0(1) €
- 3. extract_min() -> 0(logN)
- 4. $decrease_key(s, k) \rightarrow O(logN)$
- 5. merge(H1, H2) $\rightarrow O(N)$
- 6. delete(s) -> O(logN)

Меняем с последним, сокращаем массив, просеиваем Как реализовать? Бинарная куча!

Множество значений: пары <pri>ority: int, value: T>

Операции:

```
1. insert(value) -> O(logN)
```

- 2. peek min() -> $0(1) \leq$
- 3. extract_min() -> O(logN)
- 4. $decrease_key(s, k) \rightarrow O(logN)$
- 5. merge(H1, H2) $\rightarrow O(N)$
- 6. delete(s) -> O(logN)

Как реализовать? Бинарная куча!

O(N) – неприятно, хочется оптимизировать merge

 B_i — введем i-ое биномиальное дерево рекурсивно:

 B_i — введем i-ое биномиальное дерево рекурсивно:

 $B_{
m 0}$ — дерево, состоящее из одного узла

 B_i — введем i-ое биномиальное дерево рекурсивно:

 $B_{
m 0}$ — дерево, состоящее из одного узла

 B_{k+1} — дерево, строится из двух деревьев B_k следующим образом: корень одного из деревьев становится левым сыном корня второго из деревьев.

 B_i — введем i-ое биномиальное дерево рекурсивно:

 $B_{
m 0}$ — дерево, состоящее из одного узла

 B_{k+1} — дерево, строится из двух деревьев B_k следующим образом: корень одного из деревьев становится левым сыном корня второго из деревьев.

 B_i — введем i-ое биномиальное дерево рекурсивно:

 $B_{
m 0}$ — дерево, состоящее из одного узла

 B_{k+1} — дерево, строится из двух деревьев B_k следующим образом: корень одного из деревьев становится левым сыном корня второго из деревьев.

 B_0

1. Сколько вершин в B_k ?

1. Сколько вершин в B_k ? 2^k

1. Сколько вершин в B_k ? 2^k

Доказательство: по индукции.

Для k = 0 - верно.

 B_0

1. Сколько вершин в B_k ? 2^k

Доказательство: по индукции.

Для k = 0 - верно.

Если верно для B_k , то

$$|B_{k+1}| = |B_k| + |B_K| = 2^k + 2^k = 2^{k+1}$$

- 1. Сколько вершин в B_k ? 2^k
- 2. Высота у дерева B_k ?

- 1. Сколько вершин в B_k ? 2^k
- 2. Высота у дерева B_k ? k

- 1. Сколько вершин в B_k ? 2^k
- 2. Высота у дерева B_k ? k
- 3. Сколько вершин на глубине $i=0,1,\dots,k$?

- 1. Сколько вершин в B_k ? 2^k
- 2. Высота у дерева B_k ? k
- 3. Сколько вершин на глубине $i=0,1,\ldots,k$? C_k^i

Именно поэтому они биномиальные!

- 1. Сколько вершин в B_k ? 2^k
- 2. Высота у дерева B_k ? k
- 3. Сколько вершин на глубине $i=0,1,\dots,k$? C_k^i

Док-во: индукция по k. Для нуля верно (там только корень).

- 1. Сколько вершин в B_k ? 2^k
- 2. Высота у дерева B_k ? k
- 3. Сколько вершин на глубине $i=0,1,\ldots,k$? \mathbf{C}_k^i

Док-во: индукция по k. Для нуля верно (там только корень).

 $\mathsf{D}(\mathsf{k},\,\,\mathbf{i})$ - количество вершин на \mathbf{i} -ом уровне B_k

- 1. Сколько вершин в B_k ? 2^k
- 2. Высота у дерева B_k ? k
- 3. Сколько вершин на глубине $i=0,1,\ldots,k$? \mathbf{C}_k^i

Док-во: индукция по k. Для нуля верно (там только корень).

 $\mathsf{D}(\mathsf{k}, \mathsf{i})$ - количество вершин на i -ом уровне B_k . Заметим, что по построению дерева i -ый уровень состоит из i -ого уровня B_{k-1}

- 1. Сколько вершин в B_k ? 2^k
- 2. Высота у дерева B_k ? k
- 3. Сколько вершин на глубине $i=0,1,\ldots,k$? \mathbf{C}_k^i

Док-во: индукция по k. Для нуля верно (там только корень).

 $\mathsf{D}(\mathsf{k},\;\mathsf{i})$ - количество вершин на i-ом уровне B_k . Заметим, что по построению дерева i-ый уровень состоит из i-ого уровня B_{k-1} и (i-1)-ого уровня B_{k-1} .

- 1. Сколько вершин в B_k ? 2^k
- 2. Высота у дерева B_k ? k
- 3. Сколько вершин на глубине $i=0,1,\ldots,k$? \mathbf{C}_k^i

Док-во: индукция по k. Для нуля верно (там только корень). $0 \longrightarrow 1 \longrightarrow 2 \longrightarrow 0$ $2 \longrightarrow 0$ $3 \longrightarrow B_3$

D(k, i) - количество вершин на i-ом уровне B_k . Тогда: D(k, i) = D(k-1, i) + D(k-1, i-1) =

- 1. Сколько вершин в B_k ? 2^k
- 2. Высота у дерева B_k ? k
- 3. Сколько вершин на глубине $i=0,1,\ldots,k$? \mathbf{C}_k^i

Док-во: индукция по k. Для нуля верно (там только корень).

$$\mathsf{D}(\mathsf{k},\,\mathsf{i})$$
 - количество вершин на i-ом уровне B_k . Тогда: $\mathsf{D}(\mathsf{k},\,\mathsf{i})$ = $\mathsf{D}(\mathsf{k}\text{-}1,\,\mathsf{i})$ + $\mathsf{D}(\mathsf{k}\text{-}1,\,\mathsf{i}\text{-}1)$ = $C_{k-1}^i+C_{k-1}^{i-1}$

- 1. Сколько вершин в B_k ? 2^k
- 2. Высота у дерева B_k ? k
- 3. Сколько вершин на глубине $i=0,1,\dots,k$? \mathbf{C}_k^i

Док-во: индукция по k. Для нуля верно (там только корень).

$$\mathsf{D}(\mathsf{k},\ \mathsf{i})$$
 - количество вершин на i-ом уровне B_k . Тогда: $\mathsf{D}(\mathsf{k},\ \mathsf{i})$ = $\mathsf{D}(\mathsf{k}\text{-}1,\ \mathsf{i})$ + $\mathsf{D}(\mathsf{k}\text{-}1,\ \mathsf{i}\text{-}1)$ = $C_{k-1}^i+C_{k-1}^{i-1}={k-1\choose i}+{k-1\choose i-1}={k\choose i}$

Биномиальная пирамида

1) Каждое биномиальное дерево подчиняется свойству неубывающей пирамиды: ключ узла не меньше ключа его родителя.

106

1) Каждое биномиальное дерево подчиняется свойству неубывающей пирамиды: ключ узла не меньше ключа его родителя.

107

- 1) Каждое биномиальное дерево подчиняется свойству неубывающей пирамиды: ключ узла не меньше ключа его родителя.
- 2) Порядки всех биномиальных деревьев B_k , из которых состоит пирамида, попарно различны.

108

- 1) Каждое биномиальное дерево подчиняется свойству неубывающей пирамиды: ключ узла не меньше ключа его родителя.
- Порядки всех биномиальных деревьев B_k , из которых состоит пирамида, попарно различны.

Сколько всего может быть деревьев в пирамиде из N узлов?

- 1) Каждое биномиальное дерево подчиняется свойству неубывающей пирамиды: ключ узла не меньше ключа его родителя.
- 2) Порядки всех биномиальных деревьев B_k , из которых состоит пирамида, попарно различны.

Сколько всего может быть деревьев в пирамиде из N узлов?

- 1) Каждое биномиальное дерево подчиняется свойству неубывающей пирамиды: ключ узла не меньше ключа его родителя.
- 2) Порядки всех биномиальных деревьев B_k , из которых состоит пирамида, попарно различны.

- 1) Каждое биномиальное дерево подчиняется свойству неубывающей пирамиды: ключ узла не меньше ключа его родителя.
- 2) Порядки всех биномиальных деревьев B_k , из которых состоит пирамида, попарно различны.

- 1) Каждое биномиальное дерево подчиняется свойству неубывающей пирамиды: ключ узла не меньше ключа его родителя.
- 2) Порядки всех биномиальных деревьев B_k , из которых состоит пирамида, попарно различны.

 $N = 1 * 2^0 + 0 * 2^1 + 1 * 2^2 + 1 * 2^3 = 13$

деревьев в пирамиде из N узлов?
Общее число узлов
раскладывается по степеням
двойки на размеры биномиальных
деревьев. $|B_0| = 2^0 = 1$ $|B_0| = 2^0$

Сколько всего может быть

- 1) Каждое биномиальное дерево подчиняется свойству неубывающей пирамиды: ключ узла не меньше ключа его родителя.
- 2) Порядки всех биномиальных деревьев B_k , из которых состоит пирамида, попарно различны.

Сколько всего может быть деревьев в пирамиде из N узлов? Общее число узлов раскладывается по степеням двойки на размеры биномиальных деревьев. Тогда их общее количество $\leq \lfloor log N \rfloor + 1$ $N = 1 * 2^0 + 0 * 2^1 + 1 * 2^2 + 1 * 2^3 = 13$

- 1) Каждое биномиальное дерево подчиняется свойству неубывающей пирамиды: ключ узла не меньше ключа его родителя.
- 2) Порядки всех биномиальных деревьев B_k , из которых состоит пирамида, попарно различны.

Сколько всего может быть деревьев в пирамиде из N узлов? Общее число узлов раскладывается по степеням двойки на размеры биномиальных деревьев. Тогда их общее количество $\leq \lfloor log N \rfloor + 1$ (как и $N = 1*2^0 + 0*2^1 + 1*2^2 + 1*2^3 = 13$

битов в представлении числа N)

Сливаемые пирамиды

Множество значений: пары <pri>ority: int, value: T>

Операции:

- insert(value) -> 0(logN)
- -> 0(1) *\left(* peek min()
- 3. extract_min() $\rightarrow 0(logN)$
- 4. $decrease_key(s, k) \rightarrow O(logN)$
- -> 0(N)5. merge(H1, H2)
- 6. delete(s) $\rightarrow 0(logN)$

Как реализовать? Бинарная куча!

O(N) – неприятно, хочется оптимизировать merge

Биномиальная пирамида

Множество значений: пары <priority: int, value: T>

Операции:

- insert(value) -> O(???)
- -> O(???) peek min()
- 3. extract min() -> O(???)
- -> O(???) 4. decrease_key(s, k)
- 5. merge(H1, H2) -> O(???)
- 6. delete(s) -> O(???)

Как реализовать? Бинарная куча! Биномиальная!

Где минимум? В одном из корней!

Где минимум? В одном из <mark>корней!</mark> Ищем линейным поиском.

Где минимум? В одном из корней! Ищем линейным поиском. Сложность?

Биномиальная пирамида

Множество значений: пары <priority: int, value: T>

Операции:

- 1. insert(value) -> 0(???)
- 2. peek_min() -> O(logN)
- 3. extract_min() -> 0(???)
- 4. $decrease_key(s, k) \rightarrow 0(???)$
- 5. merge(H1, H2) -> 0(???)
- 6. delete(s) -> 0(???)

Как реализовать? Бинарная куча! Биномиальная!

Как уменьшить ключ заданного элемента?

Как уменьшить ключ заданного элемента? Если просто заменить, пирамида сломается.

Как уменьшить ключ заданного элемента? Если просто заменить, пирамида сломается. Чиним просеиванием вверх. Сложность? Высота B_k – k

Как уменьшить ключ заданного элемента? Если просто заменить, пирамида сломается. Чиним просеиванием вверх. Сложность? Высота B_k – k; а самое большое k – logN (вспоминаем про разложение на степени двойки).

Как уменьшить ключ заданного элемента? Если просто заменить, пирамида сломается. Чиним просеиванием вверх. Сложность? Высота B_k – k; а самое большое k – logN (вспоминаем про разложение на степени двойки) => сложность – O(logN)

Биномиальная пирамида

Множество значений: пары <pri>ority: int, value: T>

Операции:

- 1. insert(value) -> 0(???)
- 2. peek_min() -> O(logN)
- 3. extract_min() -> 0(???)
- 4. $decrease_key(s, k) \rightarrow O(logN)$
- 5. merge(H1, H2) -> 0(???)
- 6. delete(s) -> 0(???)

Как реализовать? Бинарная куча! Биномиальная!

Наблюдения:

1. Проблема merge в том, что пирамидах могут быть биномиальные деревья одинакового порядка.

Наблюдения:

1. Проблема merge в том, что пирамидах могут быть биномиальные деревья одинакового порядка.

Наблюдения:

1. Проблема merge в том, что пирамидах могут быть биномиальные деревья одинакового порядка.

Как слить два дерева порядка k?

Наблюдения:

1. Проблема merge в том, что пирамидах могут быть биномиальные деревья одинакового порядка.

Делаем дерево с большим ключом корня левым сыном корня с меньшим ключом. Как слить два дерева порядка k?

Наблюдения:

1. Проблема merge в том, что пирамидах могут быть биномиальные деревья одинакового порядка.

Делаем дерево с большим ключом корня левым сыном корня с меньшим ключом.

Как слить два дерева порядка k?

Назовем это merge_tree(t1, t2), работает за O(1), возвращает дерево порядка k+1

Наблюдения:

- 1. Проблема merge в том, что пирамидах могут быть биномиальные деревья одинакового порядка.
- 2. Слияние двух пирамид очень похоже на сложение двух чисел в двоичной записи (в столбик).

Слияние ... похоже на сложение чисел в двоичной записи (в столбик)

Слияние ... похоже на сложение чисел в двоичной записи (в столбик)

Слияние ... похоже на сложение чисел в двоичной записи (в столбик)

 B_0

 B_0

Вспоминаем, что у нас один в уме, добавляем его в ответ

Последнюю единичку добавляем в ответ

Биномиальная пирамида: merge

Наблюдения:

- 1. Проблема merge в том, что пирамидах могут быть биномиальные деревья одинакового порядка.
- 2. Слияние двух пирамид очень похоже на сложение двух чисел в двоичной записи (в столбик).
- 3. Осталось написать алгоритм!

$$H_1 = t_1[0], t_1[1], \ldots, t_1[logN]$$

$$H_2 = t_2[0], t_2[1], \dots, t_2[logN]$$

$$egin{align} H_1 &= t_1[0], t_1[1], \ldots, t_1[logN] \ H_2 &= t_2[0], t_2[1], \ldots, t_2[logN] \ \end{gathered}$$

$$egin{align} H_1 &= t_1[0], t_1[1], \ldots, t_1[logN] \ H_2 &= t_2[0], t_2[1], \ldots, t_2[logN] \ \end{gathered}$$

И пусть:

carry = корень дерева, которое держим в уме или None, если его нет.

$$egin{align} H_1 &= t_1[0], t_1[1], \ldots, t_1[logN] \ H_2 &= t_2[0], t_2[1], \ldots, t_2[logN] \ \end{array}$$

И пусть:

carry = корень дерева, которое держим в уме или None, если его нет.

r[j] - корень биномиального дерева порядка ј в получившейся пирамиде или None, если его нет.

$$H_1 = t_1[0], t_1[1], \ldots, t_1[logN]$$

 $H_2 = t_2[0], t_2[1], \dots, t_2[logN]$

Пусть t_i[j] - корень биномиального дерева порядка ј из пирамиды i, или None, если дерева такого порядка не было

И пусть:

carry = корень дерева, которое держим в уме или None, если его нет.

r[j] - корень биномиального дерева порядка ј в получившейся пирамиде или None, если его нет.

carry = None

for i in [0, logN + 1]:

$$H_1 = t_1[0], t_1[1], \ldots, t_1[logN]$$

 $H_2 = t_2[0], t_2[1], \dots, t_2[logN]$

Пусть t_i[j] - корень биномиального дерева порядка ј из пирамиды i, или None, если дерева такого порядка не было

И пусть:

carry = корень дерева, которое держим в уме или None, если его нет.

r[j] - корень биномиального дерева порядка ј в получившейся пирамиде или None, если его нет.

carry = None

for i in [0, logN + 1]:
 if t1[i] and t2[i] and carry:

$$H_1 = t_1[0], t_1[1], \ldots, t_1[logN] \ H_2 = t_2[0], t_2[1], \ldots, t_2[logN]$$

И пусть:

carry = корень дерева, которое держим в уме или None, если его нет.

r[j] - корень биномиального дерева порядка ј в получившейся пирамиде или None, если его нет.

```
carry = None

for i in [0, logN + 1]:
   if t1[i] and t2[i] and carry:
     r[i] = carry
   carry = merge_tree(t1[i], t2[i])
```

$$egin{align} H_1 &= t_1[0], t_1[1], \dots, t_1[logN] \ H_2 &= t_2[0], t_2[1], \dots, t_2[logN] \ \end{array}$$

И пусть:

carry = корень дерева, которое держим в уме или None, если его нет.

r[j] - корень биномиального дерева порядка ј в получившейся пирамиде или None, если его нет.

```
carry = None

for i in [0, logN + 1]:
   if t1[i] and t2[i] and carry:
     r[i] = carry
     carry = merge_tree(t1[i], t2[i])
   elif t1[i] and t2[i]:
     carry = merge_tree(t1[i], t2[i])
   r[i] = None
```

$$H_1 = t_1[0], t_1[1], \ldots, t_1[logN] \ H_2 = t_2[0], t_2[1], \ldots, t_2[logN]$$

И пусть:

carry = корень дерева, которое держим в уме или None, если его нет.

r[j] - корень биномиального дерева порядка ј в получившейся пирамиде или None, если его нет.

```
for i in \lceil 0, \log N + 1 \rceil:
  if t1[i] and t2[i] and carry:
    r[i] = carry
    carry = merge_tree(t1[i], t2[i])
  elif t1[i] and t2[i]:
    carry = merge tree(t1[i], t2[i])
    r[i] = None
  elif t1[i] and carry:
    carry = merge_tree(t1[i], carry)
    r[i] = None
  elif carry and t2[i]:
    carry = merge tree(carry, t2[i])
    r[i] = None
```

carry = None

$$egin{align} H_1 &= t_1[0], t_1[1], \ldots, t_1[logN] \ H_2 &= t_2[0], t_2[1], \ldots, t_2[logN] \ \end{array}$$

И пусть:

carry = корень дерева, которое держим в уме или None, если его нет.

r[j] - корень биномиального дерева порядка ј в получившейся пирамиде или None, если его нет.

```
carry = None
for i in \lceil 0, \log N + 1 \rceil:
  if t1[i] and t2[i] and carry:
    r[i] = carry
    carry = merge tree(t1[i], t2[i])
  elif t1[i] and t2[i]:
    carry = merge tree(t1[i], t2[i])
    r[i] = None
  elif t1[i]:
    r[i] = t1[i]
```

```
H_1 = t_1[0], t_1[1], \ldots, t_1[logN]
H_2 = t_2[0], t_2[1], \dots, t_2[logN]
Пусть t i[j] - корень
биномиального дерева порядка
ј из пирамиды і, или <mark>None</mark>,
если дерева такого порядка
не было
И пусть:
carry = корень дерева,
которое держим в уме или
None, если его нет.
r[j] - корень биномиального
дерева порядка ј в
получившейся пирамиде или
None, если его нет.
```

```
carry = None
for i in \lceil 0, \log N + 1 \rceil:
  if t1[i] and t2[i] and carry:
    r[i] = carry
    carry = merge_tree(t1[i], t2[i])
  elif t1[i] and t2[i]:
    carry = merge tree(t1[i], t2[i])
    r[i] = None
  elif t1[i]:
    r[i] = t1[i]
  elif t2[i]:
    r[i] = t2[i]
  else:
    r[i] = carry
    carry = None
```

```
H_1 = t_1[0], t_1[1], \ldots, t_1[logN]
H_2 = t_2[0], t_2[1], \dots, t_2[logN]
Пусть t_i[j] - корень
биномиального дерева порядка
ј из пирамиды і, или <mark>None</mark>,
если дерева такого порядка
не было
И пусть:
carry = корень дерева,
которое держим в уме или
None, если его нет.
r[j] - корень биномиального
дерева порядка ј в
получившейся пирамиде или
None, если его нет.
```

```
carry = None
                            последним разрядом
for i in \lceil 0, \log N + 1 \rceil:
  if t1[i] and t2[i] and carry:
    r[i] = carry
    carry = merge_tree(t1[i], t2[i])
  elif t1[i] and t2[i]:
    carry = merge tree(t1[i], t2[i])
    r[i] = None
  elif t1[i]:
    r[i] = t1[i]
  elif t2[i]:
    r[i] = t2[i]
  else:
    r[i] = carry
    carry = None
                                         170
```

Аккуратнее с

```
H_1 = t_1[0], t_1[1], \dots, t_1[logN]
H_2 = t_2[0], t_2[1], \ldots, t_2[logN]
Пусть t i[j] - корень
биномиального дерева порядка
ј из пирамиды і, или <mark>None</mark>,
если дерева такого порядка
не было
И пусть:
carry = корень дерева,
которое держим в уме или
None, если его нет.
r[j] - корень биномиального
дерева порядка ј в
получившейся пирамиде или
None, если его нет.
```

```
carry = None
                            последним разрядом
for i in \lceil 0, \log N + 1 \rceil:
  if t1[i] and t2[i] and carry:
    r[i] = carry
    carry = merge_tree(t1[i], t2[i])
  elif t1[i] and t2[i]:
    carry = merge tree(t1[i], t2[i])
    r[i] = None
  elif t1[i]:
                               Сложность?
    r[i] = t1[i]
  elif t2[i]:
    r[i] = t2[i]
  else:
    r[i] = carry
    carry = None
```

Аккуратнее с

171

```
H_1 = t_1[0], t_1[1], \ldots, t_1[logN]
H_2 = t_2[0], t_2[1], \ldots, t_2[logN]
Пусть t_i[j] - корень
биномиального дерева порядка
ј из пирамиды і, или <mark>None</mark>,
если дерева такого порядка
не было
И пусть:
carry = корень дерева,
которое держим в уме или
None, если его нет.
```

r[j] - корень биномиального дерева порядка ј в получившейся пирамиде или None, если его нет.

```
Аккуратнее с
carry = None
                           последним разрядом
for i in [0, logN + 1]:
  if t1[i] and t2[i] and carry:
    r[i] = carry
    carry = merge_tree(t1[i], t2[i])
  elif t1[i] and t2[i]:
    carry = merge_tree(t1[i], t2[i])
    r[i] = None
  elif t1[i]:
                              Сложность?
    r[i] = t1[i]
                                O(logN)
  elif t2[i]:
    r[i] = t2[i]
  else:
```

r[i] = carry

carry = None

Биномиальная пирамида

Множество значений: пары <pri>ority: int, value: T>

Операции:

- 1. insert(value) -> 0(???)
- 2. peek_min() -> O(logN)
- 3. extract_min() -> 0(???)
- 4. $decrease_key(s, k) \rightarrow O(logN)$
- 5. merge(H1, H2) -> O(logN)
- 6. delete(s) -> 0(???)

Как реализовать? Бинарная куча! Биномиальная!

Как вставить новый элемент?

Как вставить новый элемент? Так это же просто merge с пирамидой из одного элемента!

Как вставить новый элемент? Так это же просто merge с пирамидой из одного элемента!

Как вставить новый элемент? Так это же просто merge с пирамидой из одного элемента!

Как вставить новый элемент? Так это же просто merge с пирамидой из одного элемента! Сложность?

Как вставить новый элемент? Так это же просто merge с пирамидой из одного элемента! Сложность? O(logN)

Биномиальная пирамида

Множество значений: пары <pri>ority: int, value: T>

Операции:

- insert(value) -> 0(logN)
- -> 0(logN) peek min()
- 3. extract min() -> O(???)
- -> 0(logN) 4. decrease_key(s, k)
- 5. merge(H1, H2) -> 0(logN)
- -> O(???) 6. delete(s)

Как реализовать? Бинарная куча! Биномиальная!

Как достать минимум, т.е. в нашем случае 3?

- 1. Сколько вершин в B_k ? 2^k
- 2. Высота у дерева B_k ? k
- 3. Сколько вершин на глубине $i=0,1,\ldots,k$? C_k^i

- 1. Сколько вершин в B_k ? 2^k
- 2. Высота у дерева B_k ? k
- 3. Сколько вершин на глубине $i=0,1,\dots,k$? C_k^i

- 1. Сколько вершин в B_k ? 2^k
- 2. Высота у дерева B_k ? k
- 3. Сколько вершин на глубине $i=0,1,\dots,k$? C_k^i

- 1. Сколько вершин в B_k ? 2^k
- 2. Высота у дерева B_k ? $m{k}$
- 3. Сколько вершин на глубине $i=0,1,\ldots,k$? C_k^i

- 1. Сколько вершин в B_k ? 2^k
- 2. Высота у дерева B_k ? k
- 3. Сколько вершин на глубине $i=0,1,\ldots,k$? C_k^i

- 1. Сколько вершин в B_k ? 2^k
- 2. Высота у дерева B_k ? k
- 3. Сколько вершин на глубине $i=0,1,\ldots,k$? C_k^i

- 1. Сколько вершин в B_k ? 2^k
- 2. Высота у дерева B_k ? k
- 3. Сколько вершин на глубине $i=0,1,\dots,k$? C_k^i
- 4. Наследники корня дерева B_k сами являются корнями деревьев $B_0, B_1, \dots B_{k-1}$

- 1. Сколько вершин в B_k ? 2^k
- 2. Высота у дерева B_k ? k
- 3. Сколько вершин на глубине $i=0,1,\dots,k$? \mathbf{C}_k^i
- 4. Наследники корня дерева B_k сами являются корнями деревьев $B_0, B_1, \dots B_{k-1}$

Док-во: по индукции. Для базы верно, если верно для k, то k+1 первый строим как раз добавлением слева сына k-ого порядка.

189

Как достать минимум, т.е. в нашем случае 3?

Как достать минимум, т.е. в нашем случае 3? Убираем минимум (возвращаем овтет),

Как достать минимум, т.е. в нашем случае 3? Убираем минимум (возвращаем овтет), все его дети образуют корректную биномиальную пирамиду!

Как достать минимум, т.е. в нашем случае 3? Убираем минимум (возвращаем овтет), все его дети образуют корректную биномиальную пирамиду! Вызываем для нее merge с остальной пирамидой.

Как достать минимум, т.е. в нашем случае 3? Убираем минимум (возвращаем овтет), все его дети образуют корректную биномиальную пирамиду! Вызываем для нее merge с остальной пирамидой. Сложность?

Как достать минимум, т.е. в нашем случае 3? Убираем минимум (возвращаем овтет), все его дети образуют корректную биномиальную пирамиду! Вызываем для нее merge с остальной пирамидой. Сложность? O(logN)

Множество значений: пары <priority: int, value: T>

Операции:

- 1. insert(value) -> 0(logN)
- 2. peek_min() -> O(logN)
- 3. extract min() -> O(logN)
- 4. $decrease_key(s, k) \rightarrow O(logN)$
- 5. merge(H1, H2) -> O(logN)
- 6. delete(s) -> 0(???)

Как реализовать? Бинарная куча! Биномиальная!

Как удалить данный элемент, например, тот, где ключ 33?

Как удалить данный элемент, например, тот, где ключ 33?

1. decrease_key(s, $-\infty$)

Как удалить данный элемент, например, тот, где ключ 33?

1. decrease_key(s, $-\infty$)

Как удалить данный элемент, например, тот, где ключ 33?

- 1. decrease_key(s, $-\infty$)
- 2. extract_min()

Множество значений: пары <pri>ority: int, value: T>

Операции:

- insert(value) -> 0(logN)
- -> 0(logN) peek min()
- 3. extract min() -> 0(logN)
- -> 0(logN) decrease key(s, k)
- 5. merge(H1, H2) -> 0(logN)
- 6. delete(s) -> 0(logN)

Как реализовать? Бинарная куча! Биномиальная!

Сливаемые пирамиды

Множество значений: пары <pri>ority: int, value: T>

Операции:

- insert(value) -> 0(logN)
- peek min()
- 3. extract_min() $\rightarrow 0(logN)$
- 4. $decrease_key(s, k) \rightarrow O(logN)$
- -> 0(N)5. merge(H1, H2)
- 6. delete(s) $\rightarrow 0(logN)$

Как реализовать? Бинарная куча!

O(N) – неприятно, хочется оптимизировать merge

Множество значений: пары <pri>ority: int, value: T>

Операции:

- insert(value) -> 0(logN)
- -> 0(logN) @ peek min()
- 3. extract min() $\rightarrow 0(logN)$
- 4. decrease key(s, k) \rightarrow 0(logN)
- 5. merge(H1, H2) -> 0(logN) &
- 6. delete(s) -> 0(logN)

Как реализовать? Бинарная куча! Биномиальная!

Пара слов про реализацию:

1. Корни обычно провязывают в связный список

- 1. Корни обычно провязывают в связный список
- 2. Каждому узлу стоит знать своего предка

- 1. Корни обычно провязывают в связный список
- 2. Каждому узлу стоит знать своего предка и соседа (справа).

- 1. Корни обычно провязывают в связный список
- 2. Каждому узлу стоит знать своего предка и соседа (справа). Всех своих детей при этом знать не нужно.

- 1. Корни обычно провязывают в связный список
- 2. Каждому узлу стоит знать своего предка и соседа (справа). Всех своих детей при этом знать не нужно.
- 3. Еще полезно (для merge) в каждом узле хранить его степень.

Мини(?)-задача #21 (2 балла)

Реализовать биномиальную кучу со всеми рассмотренными операциями.

Подготовить набор тестов, демонстрирующих корректность решения.

Алгоритм Дейкстры поиска кратчайших путей

Оценка сложности аккуратной реализации ч/р бинарные пирамиды:

$$O(|V|*log(|V|) + |E|*log(|V|))$$

Но можем ли мы еще лучше?

Да! Но начнем чуть издалека.

Фибоначчиева пирамида

Takeaways

• Алгоритм Дейкстры можно и нужно оптимизировать через пирамиды.

Takeaways

- Алгоритм Дейкстры можно и нужно оптимизировать через пирамиды.
- о Кроме бинарных существуют и другие пирамиды, например, Фибоначчиева и Биномиальная.

Takeaways

- Алгоритм Дейкстры можно и нужно оптимизировать через пирамиды.
- о Кроме бинарных существуют и другие пирамиды, например, Фибоначчиева и Биномиальная.
- Пока познакомились с биномиальной, она хороша своей предсказуемостью и хорошей сложностью merge.