Vidyavardhini's College of Engineering and Technology Department of Artificial Intelligence & Data Science

Name:	Shreeya Sunil Hudekar				
Roll No:	13				
Class/Sem:	TE/V				
Experiment No.:	7				
Title:	Implementation of Decision Tree using languages like JAVA/				
	Python.				
Date of	06/09/24				
Performance:					
Date of	18/09/24				
Submission:					
Marks:					
Sign of Faculty:					

Vidyavardhini's College of Engineering and Technology Department of Artificial Intelligence & Data Science

Aim: To implement Naïve Bayesian classification

Objective

Develop a program to implement a Decision Tree classifier.

Theory

Decision Tree is a popular supervised learning algorithm used for both classification and regression tasks. It operates by recursively partitioning the data into subsets based on the most significant attribute, creating a tree structure where leaf nodes represent the class labels.

Steps in Decision Tree Classification:

- 1. **Tree Construction**: The algorithm selects the best attribute of the dataset at each node as the root of the tree. Instances are then split into subsets based on the attribute values.
- 2. **Attribute Selection**: Common metrics include Information Gain, Gini Index, or Gain Ratio, which measure the effectiveness of an attribute in classifying the data.
- 3. **Stopping Criteria**: The tree-building process stops when one of the stopping criteria is met, such as all instances in a node belonging to the same class, or when further splitting does not add significant value.
- 4. **Classification Decision**: New instances are classified by traversing the tree from the root to a leaf node, where the majority class determines the prediction.

Example

Given a dataset with attributes and corresponding class labels:

- Construct a decision tree by recursively selecting the best attributes for splitting.
- Use the tree to classify new instances by traversing from the root to the appropriate leaf node.

Code:

#Decision Tree
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix

#Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

#Initialize DecisionTreeClassifier clf = DecisionTreeClassifier(random_state=42)

#Train the classifier

Vidyavardhini's College of Engineering and Technology

Department of Artificial Intelligence & Data Science

```
clf.fit(X_train, y_train)
```

```
#Make predictions
y_pred = clf.predict(X_test)
# Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
precision = precision score(y test, y pred)
recall = recall_score(y_test, y_pred)
roc_auc = roc_auc_score(y_test, knn_model.predict_proba(X_test)[:, 1])
classification_rep = classification_report(y_test, y_pred)
print(f'Accuracy: {accuracy}')
print(f'Precision: {precision}')
print(f'Recall: {recall}')
print(f'ROC
                 AUC
                            Score:
                                        {roc auc}')
print(f'Classification Report:\n{classification_rep}')
```

Output:

Predict the class label for new instances based on the constructed decision tree.

Accuracy: 0.9	406392694063	926		
Precision: 0.	210526315789	47367		
Recall: 0.266	66666666666	666		
ROC AUC Score	: 0.63672182	82111899		
Classificatio	n Report:			
	precision	recall	f1-score	support
0	0.97	0.96	0.97	846
1	0.21	0.27	0.24	30
accuracy			0.94	876
macro avg	0.59	0.62	0.60	876
weighted ave	0.95	0.94	0.94	876

Conclusion

Describe techniques or modifications to decision tree algorithms that can address issues caused by class imbalance in datasets.

To handle class imbalance in decision trees, you can:

- 1. Class Weight Adjustment: Assign higher weights to minority classes using the `class_weight='balanced'` parameter.
- 2. Resampling: Use oversampling (e.g., SMOTE) or undersampling to balance the dataset.
- 3. Ensemble Methods: Implement techniques like Balanced Random Forest or EasyEnsemble for better handling of imbalanced data.
- 4. Cost-sensitive Learning: Apply higher costs to misclassifying minority classes.
- 5. Pruning: Limit tree depth and size to prevent overfitting to the majority class.
- 6. Optimize Metrics: Focus on precision, recall, and F1-score rather than overall accuracy.