TCC

Experimentos

Parâmetros

- → Epsilon, que é o parâmetro que indica a sensibilidade na diferença de confiança entre os classificadores, assume dois intervalos
 - De 0.15 à 0.25, aumentando em 0.05.
 - ➤ De 0.05 à 0.15, aumentando em 0.05.
- → O "Percent" é qual a cardinalidade do conjunto "pool", tendo como base a cardinalidade do conjunto de treino.
 - Varia entre 10% do conjunto de treino à 30% do conjunto de treino, aumentando em 10%.

SCARGC

- → Os resultados do SCARGC encontram-se a seguir:
 - Os parâmetros foram: 2 clusters, tamanho do pool de 150 amostras.

Dataset	Score	# Updts
1CDT	0.9992	8
1CHT	0.9957	15
1CSurr	0.8169	311
2CDT	0.9408	97
2CHT	0.8826	100

Handshake

- → Apesar da ideia de utilizar um tamanho mínimo para o *pool* a fim de evitar que o mesmo só comtesse amostras de mesma classe, em algumas execuções isso ainda não foi possível.
- → No slide a seguir, apresenta os resultados da implementação base do HS (então algumas configurações não puderam ser testadas).

Handshake

→ Parâmetros:

> Epsilon: [0.15, 0.20, 0.25]

> Percent: [10, 20, 30]

Dataset	Score	# Updts	Best Epsilon	Best Perc.
1CDT	0.9947	6	0.15	20
1CHT	0.901	14	0.25	10
1CSurr	0.6614	354	0.2	30
2CDT	0.5859	22	0.2	30
2CHT	0.5928	45	0.15	30

Handshake

- → Para a execução de todas as configurações, a ideia foi fazer um tipo de balanceamento dos dados que permanecerão no *pool*.
- → Esse balanceamento leva em consideração o número de amostras de cada classe presentes no pool.
 - Caso este número seja menor que a metade da cardinalidade requerida do pool, estas amostras serão adicionadas (ou garantidas) na atualização do pool.
 - > O pool será completado com amostras da outra classe.

→ Os parâmetros são os mesmos dos testes anteriores:

> Epsilon: [0.15, 0.2, 0.25]

Percent: [10, 20, 30]

Dataset	Score	# Updts	Best Epsilon	Best Perc.
1CDT	0.9964	35	0.25	30
1CHT	0.9901	19	0.2	10
1CSurr	0.671	175	0.2	10
2CDT	0.5753	6	0.15	10
2CHT	0.5801	49	0.2	10

→ A ideia aqui foi diminuir o intervalo do Epsilon com o objetivo de ter mais atualizações e consequentemente uma melhora no resultado.

→ Logo, neste experimento o Epsilon varia de 0.05 à 0.15, aumentando ao passo de 0.05.

→ Os parâmetros são os mesmos dos testes anteriores:

> Epsilon: [0.05, 0.10, 0,15]

Percent: [10, 20, 30]

Dataset	Score	# Updts	Best Epsilon	Best Perc.
1CDT	0.999	33	0.05	10
1CHT	0.9918	72	0.05	10
1CSurr	0.6532	560	0.05	20
2CDT	0.5663	26	0.15	30
2CHT	0.5903	66	0.10	10

- → Como pode ser visto, não houve uma mudança tão grande na porcentagem de acerto, porém o número de atualizações sofre grande influência do valor de Epsilon.
- → Apesar de sofrer grande influência de Epsilon, o crescimento do número de atualizações fica mais evidenciado quando se observa tendo como referência a cardinalidade do pool.
- → A seguir os resultado são apresentados em uma tabela.

Epsilon	Detecet	Percent		
	Dataset	10	20	30
	1CDT	22	33	76
	1CHT	72	158	245
0,05	1CSurr	320	560	705
	2CDT	14	78	62
	2CHT	79	100	130
	1CDT	12	40	76
	1CHT	35	72	216
0,01	1CSurr	247	434	542
	2CDT	13	12	40
	2CHT	66	79	83
	1CDT	13	27	49
	1CHT	35	252	120
0,15	1CSurr	210	297	456
	2CDT	9	13	26
	2CHT	23	63	72
	1CDT	8	25	52
	1CHT	19	86	125
0,2	1CSurr	175	268	365
	2CDT	9	6	13
	2CHT	49	43	56
	1CDT	11	18	35
	1CHT	20	22	96
0,25	1CSurr	140	228	286
	2CDT	7	13	17
	2CHT	8	18	20