>>> Feature Extraction >>> GRSS Summer School

Name: Mathieu Fauvel (UMR Dynafor)

Date: [2017-04-26 Wed 10:30]-[2017-04-26 Wed 12:00]

1. Motivations

2. Physical Indices

Introduction
Vegetation Indices

Case study

Question

3. Statistical Feature Extraction

Unsupervised Supervised

4. Spatial feature extaction

Linear filters

1. Motivations

2. Physical Indice

Introduction
Vegetation Indices
Case study
Question

3. Statistical Feature Extraction

Unsupervised Supervised

4. Spatial feature extaction

Linear filters

* Curse of dimensionality: it is not possible to get enough data to cover all the observation space.

High dimensional saces are mostly empty!

[1. Motivations]\$ _ [4/25]

★ Curse of dimensionality: it is not possible to get enough data to cover all the observation space.

High dimensional saces are mostly empty !

⋆ Multivariate data live in a lower dimensional space

>>> Application

- ★ Feature extraction is important in remote sensing because:
 - * It reduces the size of the data,
 - ⋆ It limits the spatial and spectral redundancy,
 - ⋆ It permits visualization of the data,
 - * It mitigates the *curse of dimensionality*.
- * Extraction techniques:
 - ⋆ Spectral
 - * Physically based method,
 - * Statistical methods.
 - ⋆ Spatial:
 - * Linear filters,
 - ⋆ Non linear techniques (Mathematical Morphology)

2. Physical Indices

Introduction Vegetation Indices Case study Question

3. Statistical Feature Extraction

Unsupervised Supervised

4. Spatial feature extaction

Linear filters
Mathematical morphology

,,, outilite

1. Motivations

2. Physical Indices

Introduction

Vegetation Indices

Case study

Question

3. Statistical Feature Extraction

Unsupervised Supervised

4. Spatial feature extaction

Linear filters

- * Spectral indices are a linear/non-linear combination of two (or more) spectral bands.
- ★ They provides information as a *single number* about:
 - * Plant structure,
 - * Biochemistry,
 - ⋆ Humidity,
- ★ Four main types [TLH11]:

Name	Formulae
Difference vegetation index	$\begin{array}{c} R_{\lambda_1} - R_{\lambda_2} \\ R_{\lambda_1} \end{array}$
Ratio vegetation index	$\frac{R_{\lambda_1}}{R_{\lambda_2}}$
Normalized difference vegetation index	$\frac{\overline{R_{\lambda_2}}}{R_{\lambda_1} - R_{\lambda_2}}$ $\frac{R_{\lambda_1} - R_{\lambda_2}}{R_{\lambda_1} + R_{\lambda_2}}$ $(1+L) \times \frac{R_{\lambda_1} - R_{\lambda_2}}{R_{\lambda_1} - R_{\lambda_2} + L}$
Soil-adjusted vegetation index	$(1+L) \times \frac{R_{\lambda_1} - R_{\lambda_2}}{R_{\lambda_1} - R_{\lambda_2} + L}$

* The three last indexes are invariant to a multiplicative factor

Index database : http://www.indexdatabase.de/

Name	Formulae (λ nm)
Normalized Difference Vnegetation index	$\frac{R_{\lambda_{800}} - R_{\lambda_{670}}}{R_{\lambda_{800}} + R_{\lambda_{670}}}$
Modified Soil-Adjusted Vegetation Index	$\frac{1}{2} \left[2R_{\lambda_{800}} + 1 - \sqrt{(2R_{\lambda_{800}} + 1)^2 - 8(R_{\lambda_{800}} - R_{\lambda_{670}})} \right]$
Modified Chlorophyll Absorption Ratio Index	$ \frac{1}{2} \left[2R_{\lambda_{800}} + 1 - \sqrt{(2R_{\lambda_{800}} + 1)^2 - 8(R_{\lambda_{800}} - R_{\lambda_{670}})} \right] \\ [(R_{\lambda_{700}} - R_{\lambda_{670}}) - 0.2(R_{\lambda_{700}} - R_{\lambda_{550}})] \times \frac{R_{\lambda_{700}}}{R_{\lambda_{670}}} $
Normalized Difference Water Index	$\frac{R_{\lambda_{858}} - R_{\lambda_{1240}}}{R_{\lambda_{858}} + R_{\lambda_{1240}}}$
Datt Reflectance Index	$\frac{R_{\lambda_{816}}^{N_{636}} - R_{\lambda_{2218}}^{N_{1240}}}{R_{\lambda_{816}} + R_{\lambda_{2218}}}$
Normalized Difference Redness Index	$\frac{R_{\lambda_{540}} - R_{\lambda_{700}}}{R_{\lambda_{540}} + R_{\lambda_{700}}}$
Soil Brightness Index	$0.406R_{\lambda 550} + 0.600R_{\lambda 650} + 0.645R_{\lambda 750} + 0.243R_{\lambda 950}$

1. Motivations

2. Physical Indices

Vegetation Indices

3. Statistical Feature Extraction

4. Spatial feature extaction

>>> Normalized difference vegetation index

$$\text{NDVI} = \frac{R_{\lambda_{800}} - R_{\lambda_{670}}}{R_{\lambda_{800}} + R_{\lambda_{670}}}$$

- \star −1 ≤ NVDI ≤ 1
- ★ NDVI < 0: surfaces other thatn plant cover
- ★ NDVI ≈ 0 : bare soil
- * NDVI ≥ 0.1 : vegetation cover (higher values correspond to more dense covers)

outilité

1. Motivations

2. Physical Indices

Introduction

Vegetation Indices

Case study

Question

3. Statistical Feature Extraction

Unsupervised Supervised

4. Spatial feature extaction

Linear filters

- * Peri-urban area
- ★ Rosis-3 sensor
- ★ 103 Spectral bands (400nm-900nm)
- \star 1.5 meter per pixel spatial resolution
- \star 610 \times 340 pixels

```
>>> Orfeo-Toolbox
```

- ⋆ OTB is a C++ library for remote sensing images processing.
- * It is free, open-source and available for most OS (window, apple, linux)
- ⋆ OTB-Applications are set of tools appropriated for big/large images
- ⋆ They are avalaible from QGIS, Python and Bash
- ★ To compute the NDVI

```
# Computation of the NDVI
otbcli_BandMath -il ../Data/university.tif -out ../Data/university_ndvi.tif \
-exp "(im1b83-im1b56)/(im1b83+im1b56)"

# Computation of the SBI
otbcli_BandMath -il ../Data/university.tif -out ../Data/university_sbi.tif \
-exp "0.406*im1b31 + 0.6*im1b52 + 0.645*im1b73"
```

[2. Physical Indices]\$ _ [15/25]

 $\cdot 10^{-3}$

Histogram of the NDVI

```
# Segmentation of the NDVI in three classes
otbcli_BandMath -il ../Data/university_ndvi.tif -out ../Data/university_ndvi_segmented.tif \
-exp "(im1b1<0.19?1:(im1b1<0.62?2:3))"</pre>
```

[2. Physical Indices]\$ _ [17/25]

 $\cdot 10^{-3}$

Histogram of the NDVI

Segmentation of the NDVI in three classes
otbcli_BandMath -il ../Data/university_ndvi.tif -out ../Data/university_ndvi_segmented.tif \
-exp "(im1b1<0.19?1:(im1b1<0.62?2:3))"</pre>

[2. Physical Indices]\$ _ [17/25]

1. Motivations

2. Physical Indices

Vegetation Indices
Case study

Question

3. Statistical Feature Extraction

Unsupervised Supervised

4. Spatial feature extaction

Linear filters

Mathematical morpholog

From the histogram, which one does correspond to the NDVI of the image?

1. Motivation

2. Physical Indice

Introduction
Vegetation Indices
Case study
Question

3. Statistical Feature Extraction

Unsupervised Supervised

4. Spatial feature extaction

Linear filters
Mathematical morphology

1. Motivations

2. Physical Indices

Vegetation Indices
Case study
Question

3. Statistical Feature Extraction

Unsupervised Supervised

4. Spatial feature extaction

Linear filters
Mathematical morphology

1. Motivations

2. Physical Indices

3. Statistical Feature Extraction

Supervised

4. Spatial feature extaction

Motivation:

2. Physical Indice

Introduction
Vegetation Indices
Case study
Ouestion

3. Statistical Feature Extraction

Unsupervised Supervised

4. Spatial feature extaction

Linear filters
Mathematical morphology

1. Motivations

2. Physical Indices

Introduction
Vegetation Indices
Case study
Question

3. Statistical Feature Extraction

Unsupervised Supervised

4. Spatial feature extaction

Linear filters

1. Motivations

2. Physical Indices

Vegetation Indices
Case study
Question

3. Statistical Feature Extraction

Unsupervise Supervised

4. Spatial feature extaction

Linear filters