

Who Are We?

Will Pearce moo_hax

Nick Landers monoxgas

Work at **Silent Break Security**Research, Dev, Training, Ops, etc.

What is Machine Learning?

Lots of magic that:

gets investors, goes public, makes \$

- Rebranded if/else statements
- Data Sheet Keywords:

"Analyzes millions of X and adapts"

"High degree of confidence"

"Next Generation"

"Scientists"

"Central Cortex"

"Neural Network"

What **really** is ML?

Set of techniques that aim to:

model a problem mathematically

- Stats + Maths + Computers
- Very old discipline 1950's (IBM)
- Predictions without explicit programming
- Growing fast: computing power, data aggregation, etc.

... Still magic ... But mostly math

Why Do We Care?

- It's coming to a field near you
 - No longer a math problem, it's an engineering problem
 - Our future will be fought with ML
- It can be really **really** awesome
 - Building relationships in non-congruent data
 - Bring out operator 6th senses
 - Crush huge amounts of data faster than humans
 - Can be as complex or as simple as you want to make it
 - Optimizing a traditionally "manual" line of work

What is "Offensive" ML?

"The application of ML to offensive security problems"

- Abusing control relationships * [Neo4j/Kegra]
- Obfuscating C2 as English [Markov Obfuscate]
- Detecting sandbox environments * [Deep Drop]
- Improving social media phishing [SNAP_R]
- Faster password guessing [PassGan]
- Metasploit exploit selection [Deep Exploit]
- Stealing models for evasion * [Adversarial ML]
- Automating timing attacks [ParzelSec]

Starting with ML

Google

"ML [literally anything] tutorial"

"Detecting Cats in Images with OpenCV" "Auto-Generating Clickbait with RNNs"

https://github.com/ujjwalkarn/Machine-Learning-Tutorials/ (320+ links)

https://sgfin.github.io/learning-resources/ (200+ links)

https://github.com/josephmisiti/awesome-machine-learning (200+ links)

https://github.com/awesomedata/awesome-public-datasets (410+ links)

Starting with ML

- 1. Data is everywhere, what can should we collect?
- 2. What data is used by a human to solve/perform X?
- 3. Process the data and extract useful features.
- Download Python + [ML stuff]. (Might need some GPUs)
 NumPy / Pandas Data processing and matrices
 SciKit-Learn Data analytics + Basic ML
 TensorFlow Full blown ML framework from Google
 Keras High-level wrapper for TensorFlow (also CNTK, Theano)
- 5. Write a 10 line script and ML your heart out.

Sandbox Detection – Case Study

- Sandboxes are a dangerous place
 - Popularity is rising
 - Preventing analysis is a priority
- Lots of current detection strategies
 - Enumerating host information
 - Automated behavior indicators
 - Network anomalies server and client

• • •

Need detection using minimal information

Data – The raw information we gather

PID	User	Process
1	NT AUTHORITY\SYSTEM	smss.exe
236	NT AUTHORITY\SYSTEM	csrss.exe
120	NT AUTHORITY\SYSTEM	winlogon.exe
492	Admin-PC\Admin	explorer.exe
940	Admin-PC\Admin	procmon.exe
680	Admin-PC\Admin	dllhost.exe
772	Admin-PC\Admin	winword.exe

Features – How we represent data to an algorithm

PID	User	Process		
1	NT AUTHORITY\SYSTEM	smss.exe	Factoria	Malus
236	NT AUTHORITY\SYSTEM	csrss.exe	Feature	
120	NT AUTHORITY\SYSTEM	winlogon.exe	bad_user:	1
492	Admin-PC\Admin	explorer.exe	sysinternals:	1
940	Admin-PC\Admin	procmon.exe	domain_member:	false
680	Admin-PC\Admin	dllhost.exe		
772	Admin-PC\Admin	winword.exe		

Features – How we represent data to an algorithm

PID	User	Process		
1	NT AUTHORITY\SYSTEM	smss.exe		Value
36	NT AUTHORITY\SYSTEM	csrss.exe	Feature	
312	NT AUTHORITY\SYSTEM	winlogon.exe	proc_count:	/
444	ACME\arthur.dent	explorer.exe	average_pid -	906
452	ACME\arthur.dent	winword.exe	compression:	85%
1972	` ACME\arthur.dent	chrome.exe	proc_per_user:	3.5
2928	ACME\arthur.dent	chrome.exe		

Inputs – Our features for each sample

```
data = np.array([
        [33, 4, 8.25],
        [157, 1, 157],
        [195, 1, 195],
        [30, 4, 7.5],
        [34, 4, 8.5],
        [84, 1, 84]
])
```


Label – The thing we are predicting *

```
data = np.array([
        [33, 4, 8.25, 1],
        [157, 1, 157, 0],
        [195, 1, 195, 0],
        [30, 4, 7.5, 1],
        [34, 4, 8.5, 1],
        [84, 1, 84, 0]
])
```

```
0 = safe1 = sandbox
```


Classification – The strategy for assessing outputs

Binary: Grouping into 2 fixed categories

Multi-Label: Grouping into N categories

Regression: Targeting a continuous variable value

(1-999)

Node – Smallest unit to carry an activation

Layer(s) – A parallel group of nodes

input

hidden

input

Network – A few layers strapped together *

hidden

* - A "Neural Network" isn't the only type of network

Feed Forward – calculate the error of the network

Weighted sum is passed into the activation function

Activations become inputs for the next layer

Output – Final result of cascading activations

input

Loss - The gap between the target label and output *

^{* -} Loss can be calculated many different ways

Backpropagation – Updating weights to improve * ("learn")

different ways

Model – Network with learned weights

Code – Neural Network

```
dataset = np.loadtext(features.txt)
features = dataset[:,0:3]
labels = dataset[:,3]
model = models.Sequential()
model.add(layers.Dense(3, activation "relu" input_dim=3))
model.add(layers.Dense(3, activation="relu"))
model.add(layers.Dense(1, activation="relu"))
model.compile(loss="binary crossentropy", optimizer="adam")
model.fit(features, labels, epochs=10, batch_size=10)
```

The Results

Total Samples: 130

Known Sandboxes: 18

Accuracy: 95%+

- Lots of options for feature combinations
- Ultimately a great problem for ML
- Doc2Vec / Decision Trees performed well too

Deep Drop - ML-enabled dropper server

https://github.com/MoooKitty/SchemingWithMachines/

- Initially released at BSides LV 19
- Holds a trained model for parsing outputs
- Written in Python + Flask + Keras
- Makes stage delivery decisions based on ML

2. make prediction with data

Issue: Offenders traditionally don't keep data

- Nobody is talking about this issue
- Should this remain an expectation?
- How can/should we anonymize data?
- Why are vendors allowed to keep data? (then sell it back)
- Would sharing datasets further our field?

Potential Solutions:

- Keep only model weights
- Hash features for storage
- Use models that don't require previous data

- Defenders already work with parsed data
 - SIEM collection and alerting
 - E-Mail report buttons
 - AMSI integrations
 - Known environments
- Offenders are still in a textual world
 - Command line interfaces
 - Screen/Session logs
 - ASCII art for every tool
 - Reports and narratives

Feature Engineering

- Target important meta-properties domain knowledge
- Store as much as possible & build features later
- Use data analysis to assist
 - "What does the distribution of commands look like?"
 - Do new features line up with existing labels?
 - Reduce correlated features "noise"
 - Once trained, find features which don't affect outputs

Essentially ... Lots of **basic statistics**

- Need systems for managing our data long / short term
- This processing requires engineering
 - Start early to learn later
 - Implementations will vary by team TTPs
 - Solution will likely tie us down agnosticism
 - Ideally passive not interfering with ops
- Focus on high impact data
- Previous works on the subject:
 - https://github.com/ztgrace/red_team_telemetry
 - https://github.com/outflanknl/RedELK
 - https://github.com/SecurityRiskAdvisors/RedTeamSIEM

Data Pipelines

Op-period processes

- Development is a requirement
 - Helpful if you also have/modify tool source
 - 2019 is the "year of C2" shouldn't be a problem
- Identify isolated jobs to begin delegating
 - Basic classification that a human already does
 - Suggestions that can augment decisions
- Basic statistics for ops
 - Average number of actions per operation
 - Count/distribution of commands and arguments
- Consider trust in the final solution

State of Attack Paths

- Path finding with information is solved
 Neo4j + Bloodhound
- However, information will degrade
 - Changes to Active Directory / Windows
 - Growing use of *nix in business
 - Network segmentation improvements
- Networks are unknown, but discrete
 - We don't know the user names, permissions, etc.
 - We **know** it's not infinite

Data Inference

Networks **require** data organization therefore

Networks imply data organization

- Networks (AD) generally use text-labeling
 - We're all human, we expect it to be relational
- Can we infer these relationships?
 - Textual similarities
 - Mapped drives, local users, host information
 - LinkedIn, GitHub, public exposure ...

Mental Models

As operators, we build mental network maps

- We assume relationships based on:
 - Standardized textual labels
 - Experiences in the network itself
 - Pattern recognition how has it been configured, how will it
- We act on these assumptions with queries
 - Validate access to a host
 - Verify the group membership of a user
 - Collect new attack surface via enumeration

Information creates confidence

Simulating Mental Models

Data + Heuristic Search + Simulation

- Data Information from the current context
- Heuristic Relationships between data points
 - Operator driven flexible
 - We can "assume" relationships, or even new data points
 - Use algorithms to bring up the most relevant data
- Simulation Select actions based on heuristics
 - Could include the "impact" of potential actions
 - Can assist an operator, or **become one** active / passive

Data Layer

- Host/User/Group name information
- Active network connections
- Outbound RDP history
- Network queries
 - Active Directory with limited filters
 - Direct host service access
- Host-based Events
 - Event logs
 - ETW tracing
 - Custom tracking over time

Heuristics Layer

- How can we relate textual data?
- What strategies are used already?
- What would an operator care about?

We need some number to support our simulation

Heuristic: Simple 'if' Statement

- Operator driven insights
- Doesn't require complexity

```
if <output> in command_output:
    return new_state, reward
else:
    continue
```

Heuristic: Cosine Similarity

```
match (g:Group)
with collect(g) as groups
match (u:User)
with u, algo.ml.oneHotEncoding(groups, [(u)-[:MemberOf]->(memberof) | memberof]) as embedding
with {item:id(u), weights: embedding} as userData
with collect(userData) as data
call algo.similarity.cosine(data, {similarityCutoff: 0.7071, write: true, topK:
100})
yield nodes, p50, p75, p90, p99, p999, p100
match (u:User {name: "<USER>"})-[similar:SIMILAR]->(other)
return other.name as user, similar.score as score
```

Heuristic: Cosine Similarity

Heuristic: Levenshtein Distance

match (c:Computer)

match (g:Group)

with g,c, apoc.text.levenshteinSimilarity(g.name, c.name) as data

return g.name as group, c.name as host, data as score

order by score desc

limit 100

Heuristic: Levenshtein Distance

Group	Hostname	Score
SQL Developers	SQLDEV01	55
Domain Admins	DOM-PRINS	55
SQL Admins	SQLDEV01	44
VPN Users	DEVPN-B	38

Simulation: Shortest Path

Dijkstra's Algorithm

- Shortest distance from A->B
- See their awesome talks the past 5 years
- Useful for map/path finding problems
- Currently what Bloodhound uses not the only one we could use ...

https://github.com/andyrobbins/PowerPath

Simulation: Shortest Path

A-Star Algorithm

- Shortest distance from A->B + **Heuristic**
 - Helps us avoid particular paths
 - Ignore paths which might be unavailable segmentation
 - Punish "noisy" paths

CALL **algo.shortestPath**.astar.stream((startNode:Node, endNode:Node, weightProperty:String, propertyKeyLat:String, propertyKeyLon:String,

{nodeQuery:'labelName', relationshipQuery:'relationshipName', direction:'BOTH', defaultValue:1.0})

YIELD nodeld, cost

Q-Learning for Automation

For a given action in a given state, the environment returns a new state, and a reward

- Basic reinforcement learning
- Allows an agent to learn optimal actions
- Strength is through the heuristic you use
- Requires some initial state all weights are 0

New State: ?

Reward: ?

New State: Admin on SQLDEV01

Reward: +55

New State: Shell on SQLDEV01

Reward: +500

Back on the radar

Goal > Data > Prior > Query > Posterior

- We are all just data processors
- Attack graph theory is the future
 - Bloodhound/resiliency is like white-box code review
 - Heuristic-based cyclic queries are black-box
- With limited knowledge, we work in probabilities
- Given a sufficient process, Q-learning could op

Adversarial ML

"Attacking existing models"

Effective | Efficient vs. Secure | Robust

- Proven mainly in the lab
 - Not theoretical, just hard to build
 - Many demonstrations lack practical use
- Two basic approaches:
 - White: Access to the original model, architecture, etc.
 - Black: Access only to the outputs for a given input

Previous Works

 DeepWordBug - Black-box generation of adversarial text https://github.com/QData/deepWordBug

• **Cylance, I kill you!** - Client-side model reversing https://skylightcyber.com/2019/07/18/cylance-i-kill-you/

Good word attacks on statistical mail filters
 https://ix.cs.uoregon.edu/~lowd/ceas05lowd.pdf

• Robustness Toolbox – Attacks, defenses, etc.

https://github.com/IBM/adversarial-robustness-toolbox

proofpoint. - Case Study

- E-Mail security company
 - Spam detection
 - Malware sandboxing
 - URL analysis
 - End user training
- Openly promote their use of ML (MLX, CLX)
- Supporting 230k+ domains Rapid7 Sonar DNS data
 - 590 gov domains
 - 2300 edu domains

proofpoint. - Vulnerability

To: <reciever@domain.com>

From: <sender@domain.com>

Subject: Our Meeting

• • •

X-Proofpoint-Spam-Details: rule=nodigest_notspam policy=nodigest score=0 malwarescore=0 mlxlogscore=999 mlxscore=0 suspectscore=14 spamscore=0 impostorscore=0 adultscore=0 clxscore=593 priorityscore=0 phishscore=0 bulkscore=97 lowpriorityscore=97 classifier=spam adjust=0 reason=mlx scancount=1 engine=9.1.0-12345000 definitions=main-12345

Leaky inputs... tsk tsk

proofpoint_® - Attack (a)

- 1. Collect a dataset Send X emails to steal scores
- 2. Copy the model Use their outputs to duplicate
- 3a. Extract information from the model
 - Take N highest/lowest emails, unique the words
 - Toggle inputs to discover the most impactful tokens
 - Invert the model mathematically *
 - Randomly alter/add content and re-score

(char swaps, homoglyphs, tense)

proofpoint_® - Attack (a)

proofpoint_® - Attack (b)

- 1. Collect a dataset Send X emails to steal scores
- 2. Copy the model Use their outputs to duplicate
- **3b.** Make a generator Use our copy-cat to train
 - Let it learn useful insights
 - Target maximum score custom loss function

4. Automate improvements

- "Fix" pre-written candidates
- Generate "good" content from scratch

proofpoint_® - Attack (b)

proofpoint. - Challenges

Initial email content

- Finding a sufficient dataset
- Links/attachments have large effects on the score

Bulk email delivery

- Easy if we have a Proofpoint inbox harder if we don't
- Total emails required for a sufficient dataset
- Extraction process altering the scores

Final Outcomes

- Generators will likely create gibberish human intervention
- Bypassing a model is only one part of the "defenses"

1. Collect a dataset

- Needed to gather inputs for scoring (a lot)
 - Enron dataset for text-based candidates
 - ISCX-URL-2016 for link-based candidates
- Use bounce-backs to collect the scores
 - Delivered using Mailgun
 - Received using AWS SES + S3 bucket

We ran multiple collection runs:

- 1. 5k pre-processed/scored samples from Enron
- 2. 13k Links inside a generic template
- 3. 15k raw subject + bodies from Enron inboxes

1. Collect a dataset

score	bulk	malware	priority	spam	phish	impostor	mlx	mlxlog	low-p	suspect	adult	clx
16	0	0	90	16	0	0	16	73	0	3	0	403
0	0	0	118	0	0	0	0	505	0	8	0	324
0	0	0	118	0	0	0	0	479	0	19	0	303
0	0	0	118	0	0	0	0	489	0	3	0	315
0	0	0	118	0	0	0	0	538	0	3	0	321
0	0	0	90	0	0	0	0	605	0	3	0	437
0	0	0	118	0	0	0	0	455	0	3	0	293
0	0	0	90	0	0	0	0	728	0	3	0	466
0	0	0	118	0	0	0	0	477	0	3	0	299
0	0	0	118	0	0	0	0	483	0	3	0	288
0	0	0	118	0	0	0	0	484	0	3	0	344
0	0	0	90	0	0	0	0	595	0	74	0	432
0	0	0	118	0	0	0	0	329	0	3	0	304

	score	bulk	priority	spam	phish	mlx	mlxlog	low-p	suspect	adult
bulk	-									
priority	-	-								
spam	1	-	-							
phish	-	-	-	-						
mlx	1	-	-	1	-					
mlxlog	2	-	-	2	1	1				
low-p	-	1	-	-	-	-	-			
suspect	-	-	-	-	-	-	-	-		
adult	-	-	-	-	-	-	-	-	-	
clx	-	-	1	-	-	-	-	-	-	-

^{* -} values < .1 have been omitted

15k **text**-based samples **mlxlogscore**

13k link-targeted samples mlxlogscore

10k link-targeted samples mlxlogscore

Activation function baby!

2. Copy the Model

- Select a label for training: mlxlogscore
 - Good distribution at least for links
 - Previously scaled / activated
 - Generally between 1 and 999
 - Larger = "safer"
- Select some likely model emulators
 - Neural Network + Bag of Words (BOW) *
 - **LSTM** + Sequenced Text

2. Copy the Model - Results

	Neural Network + BOW	LSTM + Sequences
Text targeted samples	69	91
Link targeted samples	42	96

(we didn't plan this, we swear)

^{*} showing scaled mean absolute error (mean **point** error)

3. Extract Information

- Make text alterations and rescore
 - Take a phishing email: "Click here for cats"

```
Clike here for cats (Swap)
```

Click hare fur cats (Substitute)

Click her for cats (Delete)

Click here for carts (Insert)

- Final outputs need to make sense
- Toggle input tokens and rescore

```
[1,1,1,1] - Click here for cats - 500
```

[0,1,1,1] - here for cats - 490

[1,0,1,1] - Click for cats - 300

Score every possible combination of tokens - fuzzing

3. Extract Information

```
for sample in test_set:
      base = make_prediction(sample)
      for token in sample:
            altered = sample.toggle(token)
            test = make prediction(altered)
            # Record a rolling score movement
            insights[word] += (base - test)
```

3. Extract Information - **Texts**

good

calculation

asset

appreciated

finalized

tyson

difficult

dial

default

lawyers

bids

meh

lisa

digest

piano

stems

architectual

living

smells

storms

alcoholic

broccoli

bac

software

99

unsub

bridgeline

absolutely

quantities

hydro

proposal

deposit

holden

3. Extract Information - Links

good

movies

category

ecnavi

xml

payment

docs

shop

dest

kitchen

webapps

meh

cpanel1

certificate

area2

delores

verify2

struggles

chinas

second

webserver

uniq

bad

cool

citi

hc

wp

license

includes

styles

logon

plugins

spreadsheet

Confirming our insights - Texts

Top 10 **highest** scoring words:

999

Random 10 words from the middle:

640

Top 10 **lowest** scoring words:

• • •

mx0a-000a1001.pphosted.com gave this error: This message looks too much like SPAM to accept.

Confirming our insights - Links

https://neverexistdomain.com/wp-includes/file Predict: 378 | Real: 300

https://neverexistdomain.com/up-uncludes/file Predict: 600 | Real: 559

https://.../ecnavi/category.xml?movies=payment

Predict: 999 | Real: 999

Disclosure | Remediation

Models are interesting beasts

- Represent learned vectors not always apparent
- Difficult to retrain / rebuild
- Black box with "magic" inside

What warrants responsible disclosure?

- What % is considered a viable bypass?
- How does remediation occur?
 - Can't just add a signature
 - General models might work even without leaky outputs

Real World Talk

Application Whitelisting

- Was cool until people realized there were bypasses
- Will be a vendor pitch while it gets sales

EndGame ML Competition

- Simple bypasses for static analysis (sRDI, emojis)
- Data scientists solving defensive problems
- Static analysis is only a small part of the battle

"If you don't understand X before ML, you won't understand it after" - Will

Not All Bad ...

- The next generation of malware
 - Intelligent agents
 - Genetic programming client-side (JIT, variants on the fly)
 - Distributed API calls and hooks
 - Rootkits layered defenses (clothing)
- Securing and hardening models
 - Helping vendors improve their products
 - Ensuring ML isn't the next big security gap

Fun Projects

- What other defenses leak outputs?
 - Windows defender AMSI sampling
 - URL categorization
- Can we evade other mechanisms?
 - E-Mail attachments in transit
 - HTML content during site inspection
- What other offensive tasks can be offloaded?
 - File & directory enumeration
 - External reconnaissance
 - Chat/E-mail bot for phishing
- Add data extraction to Seatbelt for Neo4j

Final Thoughts

- Lots of fun work to be done, come play!
- Machine learning is here to stay, don't sleep on it
 - It's all a joke until you get caught
 - "Model bypasses" will become a part of offensive kits
 - ML understanding could quickly become a job requirement

"Might be nothing – could be everything.

Likely somewhere in the middle.

Time will tell." - Will

Greetz

- @culteredphish Colleague & all around good guy
- @tyler_robinson Ex-Colleague & long time friend
- @rharang Answered some helpful questions
- @silentbreaksec Company supporting this research

- Nancy Fulda of BYU
- Will's Mother-in-law for babysitting

All of you for attending the talk

Find Us After

Will Pearce

@moo_hax
MooKitty

Nick Landers

@monoxgas

Soon: http://github.com/MooKitty/FourtyTwo

Resources

- "Make your own Neural Network" Tariq Rashid
- "3 Blue 1 Brown" YouTube channel
- "Jabrils" YouTube channel

https://www.kaggle.com/

https://silentbreaksecurity.com/machine-learning-for-red-teams-part-1/

https://github.com/MoooKitty/RedML

So long and thanks for all the phish!

