James Leflang

CS325: Analysis of Algorithms

Portfolio Project 7 December 2020

Short Discussion on Sudoku

The Sudoku puzzle was introduced in 1979, and has become a popular addition to many printed publications. It features a $n^2 \times n^2$ grid with $n \times n$ segments, and the rules are that any column, row, and segment can only contain one instance of some value from 1 to n^2 . Sudoku has been proven to be NP-Complete in Yato and Seta (2003).

Discussion on Verification Algorithms

Per Yato and Seta (2003), Sudoku can be reduced to the Latin Squares puzzle, to which solution verification algorithms are NP-Complete. Thus the proof for a NP-Complete solution verification algorithm for Sudoku is as such:

Given any solved puzzle of Sudoku, if a solution to Sudoku can be verified in polynomial time, then SUDOKU-VERIFY \in NP. An algorithm would examine each row, column, and $n \times n$ square to insure there are unique instances of $\{i \mid 1 \le i \le n^2\}$. Since the described algorithm can verify a solved Sudoku in polynomial time, then SUDOKU-VERIFY \in NP.

If SUDOKU-VERIFY \leq_p LATIN-SQUARES, then SUDOKU-VERIFY \in NP-Complete. Given that a Latin Squares puzzle is contrained by n^2 , then the resulting $n \times n$ puzzle would be a subset of a Sudoku puzzle. Extending a Latin Squares to Sudoku puzzle entails that a Sudoku puzzle is a $n^2 \times n^2$ Latin Square with $n \cdot n \times n$ sub-Latin Square puzzles. Thus, a SUDOKU-VERIFY can be reduced to LATIN-SQUARES since Sudoku is a special Latin Square puzzle. If a solution to a Latin Square is a valid solution to the Sudoku, then SUDOKU-VERIFY can be reduced to LATIN-SQUARES. If a solution to a Sudoku is not a Latin Square, otherwise invalid, then SUDOKU-VERIFY cannot be reduced to LATIN-SQUARES.

Therefore we can conclude that SUDOKU-VERIFY \in NP-Complete.

Determination of Runtime

The overall runtime of the verification algorithm is $O(n^2)$. This is due to the necessity of going through each of the n rows, columns, and subsquares, then linearly checking for the uniqueness of for all conditions of a cell.

¹Found in Graham Kendall, Andrew Parkes, and Kristian Spoerer. "A Survey of NP-Complete puzzles". In: *ICGA Journal* 31 (Mar. 2008), pp. 13–34. DOI: 10.3233/ICG-2008-31103.