CAMADA DE ENLACE

Susana Gouveia Fusca

O QUE É? PARA QUE SERVE?

A camada de enlace é onde a camada física é transformada em um link, que realiza a comunicação de dados nó a nó.

ELEMENTOS:

FRAMES: conjunto de bits;

ENDEREÇAMENTO: coloca nos frames o emissor e o receptor;

CONTROLE DE FLUXO: é feito para garantir um equilíbrio entre as velocidades do transmissor e receptor;

CONTROLE DE ERROS: consegue detectar quando um frame está corrompido, duplicado ou perdido;

CONTROLE DE ACESSO: se dois dispositivos forem conectados em um link, o protocolo definirá quem terá o controle desse link.

CONTROLE DE ENLACE DE DADOS

Para realizar, é essencial uma coordenação entre transmissor e receptor.

O controle de enlace de dados nada mais é do o controle de erros e o controle de fluxo.

CONTROLE DE FLUXO: procedimentos para controlar quantos dados o emissor pode enviar antes de receber a confirmação do receptor;

CONTROLE DE ERROS: solicita uma repetição automática que faz uma retransmissão dos dados.

PROTOCOLOS

São regras que definem como os processos de uma aplicação trocam mensagens entre si.

PROTOCOLOS CANAIS SEM RUÍDOS

São protocolos para canais sem ruídos, existe o simplest e o stop-and-wait.

TIPOS DE PROTOCOLOS

SIMPLEST: não tem o controle de fluxo ou erros, os pacotes são enviados simplesmente;

STOP-AND-WAIT: o emissor envia um frame, espera a confirmação e após isso ele manda outro frame, consegue controlar o envio devido a confirmação.

PROTOCOLOS CANAIS COM RUÍDOS

São protocolos para canais com ruídos, existe o stop-and-wait ARQ, Go-Back-N ARQ e Selective Repeat ARQ.

TIPOS DE PROTOCOLOS

STOP-AND-WAIT ARQ: os frames são numerados para realizar o controle de erro, é enviado um frame por vez, se não for feita a confirmação, o frame é reenviado;

GO-BACK-N ARQ: envia um conjunto de frames e pede a confirmação somente do último frame, pode enviar frames em seguida sem precisar esperar, tentativa de otimização do tempo;

SELECTIVE REPEAT ARQ: é utilizada uma janela de recepção e uma de transmissão com o mesmo tamanho, o frame que tiver o timer acabado é transmitido novamente.

CONTROLE E DETECÇÃO DE ERROS

Para ser realizado o tratamento de erros os quadros possuem informações redundantes. Para isso, existe duas técnicas: Código de correção de erros e Código de detecção de erros.

CÓDIGO DE CORREÇÃO DE ERROS: há uma maior redundância para que o receptor possa corrigir o erro no quadro, indicado para meios com alta taxa de erro, como os sem fio;

CÓDIGO DE DETECÇÃO DE ERROS: não há tanta redundância, somente o suficiente para que o receptor identifique o erro e peça para transmitir novamente, indicado para meios mais seguros, como o cabeamento.

- CÓDIGO DE ERRO: bits de dados e bits redundantes devem possuir uma relação;
- CÓDIGO DE BLOCOS: os quadros possuem um valor K de bits de dados, um valor R de bits de verificação e o N representa a palavra de código.

CONTROLE E DETECÇÃO DE ERROS DISTÂNCIA DE HAMMING

- É denominada distância de Hamming, a diferença entre duas palavras de código;
- Com palavras de código de tamanho N, são possíveis 2^Ncombinações;
- Entretanto algumas palavras são consideradas inválida, por causa do modo de cálculo.

EXEMPLO:

Como podemos ver, nesse exemplo a distância entre as palavras de código é 3