School of Mathematics and Statistics MAST10007 Linear Algebra, Semester 1 2023 Written Assignment 6

Submit a single pdf file of your assignment solutions via the MAST10007 website before 12 noon on Monday 15th May.

- This assignment is worth 2.22% of your final MAST10007 mark.
- Assignments must be neatly handwritten, but this includes digitally handwritten documents using an ipad or a tablet and stylus, which have then been saved as a pdf.
- Full working must be shown in your solutions.
- Direct questions by email to Nora, who will post answers to frequently asked questions on the Ed Board.
- Part of your overall mark is for quality of exposition.

Note: You can find fully worked solutions from a previous year on Canvas.

Question 1: Matrix Multiplication Revisited

	column space o			
ubset proof	format: Prove	the implication	on $v \in Col(AB)$	$\implies \vec{v} \in Col(A).$

Proof for	mat for equal	ity of sets: p	$\text{prove } \vec{x} \in Nul$	$l(AB) \Longleftrightarrow \vec{x}$	$f \in Null(B)$.

(b) Assume that k=m and that A is invertible. Prove that the null space of AB is equal to

the null space of B.

(c)	In the situation of question part (b), prove that the rank of AB is equal to the rank of B .
- Page 3 of 8	
\circ	
20	
Pa	
∞	
age	
J.	
offe 1	
8	
extra pages after page 8 —	
6	
Xtr	
an	
7	
 ∞	
JO	
Ω	
Page 3 of 8 — add any	

	quals the column rai	

(d) Revisit Tutorial 4, and use your above findings to give a proper proof for Challenge

Question 2: Given

(a) Find a basis for the column space of A.

)	Write A as a product of a 5×3 matrix with a 3×6 matrix.

Question 3: Least Squares Line of Best Fit

(a) Find the line of best fit for the data points

x	1	2	4	5
y	6	3	2	3

				$\mid y \mid$	6	3	2	3
TT 41	41 1	. 1	1					
Use th	e method	taught 11	n class.					

(b) Produce a high-quality drawing of the data points and your fitted line on the grid paper below.

