Double B-hadron Jet Tagging and Identification of Gluon to $b\bar{b}$ jets with the ATLAS Detector

Lic. María Laura González Silva

Tesis Doctoral en Ciencias Físicas Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Noviembre 2012

UNIVERSIDAD DE BUENOS AIRES

Facultad de Ciencias Exactas y Naturales

Departamento de Física

Double B-hadron Jet Tagging and Identification of Gluon to $b\bar{b}$ jets with the ATLAS Detector

Trabajo de Tesis para optar por el título de Doctor de la Universidad de Buenos Aires en el área Ciencias Físicas

por María Laura González Silva

Director de Tesis: Dr. Ricardo Piegaia

Consejero de estudios: Dr. Daniel Deflorian

Lugar de Trabajo: Departamento de Física (CONICET-UBA)

Buenos Aires, 2012

AGRADECIMIENTOS

A Ricardo, a mi familia...

Abstract

El detector ATLAS, uno de los cuatro experimentos del acelerador LHC actualmente en construcción en el CERN, tiene como propósito principal el descubrimiento del bosón de Higgs, la partícula involucrada en el mecanismo de ruptura de la simetría electrodébil y el origen de la masa, así como la búsqueda de nueva física más allá Modelo Estándar hasta la escala de 1 TeV. En el colisionador chocarán haces de protones con una energía de centro de masa de 14 TeV y una frecuencia de interacción de 10⁹ Hz.

This thesis describes a method that allows the identification of double B-hadron jets originating from gluon-splitting. The technique exploits the kinematic differences between the so called "merged" jets and single B-hadron jets using track-based jet shape and jet substructure variables combined in a multivariate likelihood analysis. The ability to reject b-jets from gluon splitting is important to reduce and to improve the estimation of the b-tag background in Standard Model analyses and in new physics searches involving b-jets in the final state. In the simulation, the algorithm rejects 95% (50%) of merged B-hadron jets while retaining 50% (90%) of the tagged b-jets, although the exact values depend on the jet p_T .

Contents

1	The	The ATLAS detector at the LHC					
	1.1	The L	arge Hadron Collider	2			
		1.1.1	Luminosity and pile-up	6			
	1.2	The ATLAS Detector					
		1.2.1	Detector overview	9			
		1.2.2	The Inner Detector	10			
		1.2.3	The Calorimeters	15			
		1.2.4	The Muon System	19			
		1.2.5	Trigger and Data Adquisition	22			
		1.2.6	El HLT	25			
		1.2.7	Data quality	29			
		1.2.8	Simulation of particle interactions in the ATLAS De-				
			tector	29			

Chapter 1

The ATLAS detector at the LHC

1.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [1] is a proton-proton (pp) synchrotron located in the previous Large Electron Positron (LEP) collider tunnel at CERN Laboratory, just outside the city of Geneva (Switzerland), approximately 100 m underground. It is designed to collide bunches of up to $\sim 10^{11}$ protons every 25 ns at a center-of-mass energy of 14 TeV (seven times the 2 TeV reached by the Tevatron accelerator at Fermilab Laboratory, in Chicago). During 2011 the LHC operated at a lower collision rate and lower energy.

The experiments analyzing the collisions produced by the LHC are distributed around the 27 km ring at the various interaction points. The ATLAS experiment is located at Point 1, which is closest to the main CERN site. Point 5 houses the other general purpose detector, CMS. ALICE and LHCb experiments are located at Point 2 and Point 8, respectively. The former is designed to investigate heavy ion collisions; the latter, to investigate rare

decays of b-mesons. The layout of these four experiments along the LHC ring is shown in Fig. 1.1.

Figure 1.1: The CERN accelerator complex, showing the injection system, along with each components date of construction, and the placement of the four main experiments.

Proton beams are formed, before insertion into the main LHC ring, using a succession of smaller machines with increasingly higher energies, as shown in Fig. 1.1. The chain begins as protons are injected into the PS Booster (PSB) at an energy of 50 MeV from Linac2. The booster accelerates them to 1.4 GeV. The beam is then fed to the Proton Synchroton (PS) where it is

accelerated to 25 GeV. At desin strength, the bunch structure, known as a bunch train, contains 72 bunches of protons upon entry to the Super Proton Synchrotron (SPS). The SPS accumulates up to four fills of 72 bunches from the PS and accelerates them to 450 GeV, with a bunch spacing of \sim 25 ns. They are finally transferred to the LHC (both in a clockwise and an anticlockwise direction) where they are accelerated for 20 minutes to their nominal energy of 7 TeV. Beams will circulate for many hours inside the LHC beam pipes under normal operating conditions.

The bunch structure is a direct consequence of a radio frequency (RF) acceleration scheme used to attain the desired high proton beam energy. In RF acceleration, particles travel through a series of time-varying electrical fields and they can only be accelerated when the RF field has the correct orientation when particles pass through an accelerating cavity, which happens at well specified moments during an RF cycle. The result of a sequence of RF accelerations is several bunches of protons. It is important to note that when we speak about "beams" we refer to many bunches of protons separated by some uniform distance. Increasing the number of bunches is one of the ways to increase luminosity in a machine (more about luminosity in subsection 1.1.1). At desinged beam intensitity, when the bunches cross, there will be a maximum of about 20 collisions.

A larged magnetic field is needed to guide and maintain the beam particles in their circular orbit. The needed field is achieved using superconducting electromagnets built from NbTi coils that operate in a superconducting state, efficiently conducting electricity without resistance or loss of energy. The currents through the coils produce magnetic fields perpendicular to the direction of motion of the protons that deflect the protons into their orbits. The whole magnetic system comprises 1232 dipole magnets of 15 m length

which are used to bend the beams, and 392 quadrupole magnets, each 57 m long, to focus the beams. At a peak beam energy of 7 TeV, the dipoles need to produce an 8.33 T magnetic field, requiring a current of \sim 12 kA. In order to deliver the current densities and magnetic field required for 7 TeV proton beams, the magnets are kept at 1.9 K by circulating superfluid helium.

The first pp collisions produced by the LHC occurred on November 23 2009, at the SPS extraction energy of 450 GeV per beam. Very quick after, on December 8, ATLAS and CMS detectors started recording data at energy of 2.36 TeV. By this time the LHC became the highest energy accelerator in the world. During this period, bunch intensities were limited by machine-protection considerations to 1.5×10^{10} protons.

In February 2010, the LHC was commissioned once more with 450 GeV beams, and a series of tests were performed to ensure that the magnet systems could operate safely at the currents necessary to control 3.5 TeV beams. This was followed by the very first collisions at 7 TeV center-of-mass energy on March 30. During the 2010 run the beam parameters were tuned (the beam widths squeezed and the number of protons per bunch and the number of bunches in each beam increased) in order to increase the beam intensity. In particular, as the intensity of the beams increased, the mean number of interactions per bunch crossing increased.

Finally, the data samples analysed in this thesis correspond to protonproton collisions at $\sqrt{s} = 7$ TeV delivered by the LHC and recorded by ATLAS between May and November 2011, with the LHC running with 50 ns bunch spacing. Table ?? summarizes the basic beam parameters expected for design energy and luminosity and the beam parameters as of May 2011. The LHC performance steadily improved during 2011. The average number of interactions per bunch crossing throughout the data-taking period considered rapidly increased approximately from ~ 3 to 8 until summer 2011, with a global average for this period of ≈ 6 . Starting in August 2011 and lasting through the end of the proton run, this number ranged from approximately 5 to 17, with an average of about 12. This evolution is illustrated in Fig. 1.2, which shows the maximum mean number of collisions per beam crossing versus day in 2011.

$\int\!$	single b -jet efficiency 50%		single b -jet efficiency 60%	
(GeV)	Rejection	stat.err.	Rejection	stat.err.
40 - 60	8	4%	5	3%
60 - 80	10	4%	7	4%
80 - 110	14	5%	9	4%
110 - 150	19	5%	12	4%
150 - 200	23	5%	14	5%
200 - 270	30	7%	16	6%
270 - 360	36	7%	19	6%
360 - 480	41	8%	18	8%

Table 1.1: Summary of beam conditions in the early 2011 7 TeV runs and those foreseen at design energy and luminosity.

1.1.1 Luminosity and pile-up

The rate of events produced by the colliding beams depends on the luminosity of the collisions, which is a measure of the number of events per second per unit cross section, typically measured in units cm²s⁻¹. The number of events of a particular process, then, is given by the product of the inte-

Figure 1.2: Maximum mean number of events per beam crossing versus day in 2011

grated luminosity, $\int dt L$, and the cross section of the process, σ_{event} . The integrated luminosities are typically quoted in units of inverse picobarns, pb⁻¹ = 10⁻³⁶cm². In order to measure processes with very little cross sections a very high luminosity is required.

The delivered luminosity can be written as [2]:

$$L = \frac{n_b f_r n_1 n_2}{2\pi \Sigma_x \Sigma_y} \tag{1.1}$$

where n_b is the number of colliding bunch pairs, n_1 and n_2 are the bunch populations (protons per bunch) in beam 1 and beam 2 respectively (together forming the bunch charged product), f_r is the machine revolution frequency, and Σ_x and Σ_y are the width and the height of the proton beams.

The number of protons per bunch, the number of bunches per beam, and the revolution frequency are all set by the beam operators. The widths of the proton beams are measured in a process known as a Van der Meer (vdM) scan [3]. In a vdM scan, the beams are separated by steps of a known distance. The collision rate is measured as a function of this separation, and the width of a gaussian fit to the distributions yields the width of the beams in the direction of the separation.

The total integrated luminosities provided by the LHC and recorded by ATLAS in 2011 are shown in Figure 1.3. These events form the dataset analyzed in this thesis. By means of the beam-separation or vdM scans, as well as other techniques to measure the bunch charged product, the ATLAS Collaboration has determined that the uncertainty on its luminosity measurement is $\delta L = \pm 3.7\%$. For a complete description of the methods used and the systematic error evaluated see reference [2].

Figure 1.3: Total luminosity delivered by the LHC and recorded by ATLAS during the $2011 \ sqrts = 7 \ TeV$ proton-proton run

As anticipated, due to the cross-section for interaction and the number of protons per bunch, the possibility to observe multiple pp interactions per bunch crossing increases proportionally. This phenomenon, referred to as

"pile-up", can really occur in two distinct forms. The first form is the presence of multiple pp collisions (different from the interaction of interest) in the same bunch crossing, referred to as "in-time" pile-up. The second form of pile-up takes place due to electronic integration times within the detector. Certain detector components are actually sensitive to multiple bunch crossings due to the long electronic signals generated in the response to energy depositions or charge collection. One or more pp collisions in a bunch-crossing different from that which produced the collision of interest can then affect the measurement. This form of pile-up is referred to as "out-of-time" pile-up and will become more and more important as the LHC bunch spacing gets closer to the nominal value, 25 ns.

The fraction of events with pile-up increased significatively since the data taking started. The experimental signature of this fact is obtain via the number of reconstructed primary vertices, or NPV. The effect of the event NPV is an important concern for the measurement of jet properties and will be discussed in the next chapters.

1.2 The ATLAS Detector

1.2.1 Detector overview

El dectector ATLAS, acronimo para A Toroidal LHC Apparatus, fue diseñado para estudiar la física de colisiones p-p en el LHC. Todo el detector está contenido en un cilindro de aproximadamente 44 metros de largo por 22 metros de diámetro y pesa unas 7000 toneladas[4]. Presenta una estructura tipo cebolla, pudiendo separarse en tres sistemas comenzando desde el punto de interacción: el detector interno, los calorímetros y el sistema de muones (figura 1.4) . Cada parte se divide a su vez en más capas. Las partículas

emergentes atraviesan primero el detector interno, donde se reconstruye la trayectoria de las partículas cargadas. En el calorímetro todas las partículas, con excepción de muones y neutrinos, depositan toda su energía y se detienen. Los muones interactúan electromagnéticamente al igual que los electrones, pero al ser mucho más masivos que éstos no emiten radiación de frenado y logran atravesar el calorímetro dando señal en el sistema de detección de muones. ATLAS cuenta además con un sistema de imanes que provee de un campo magnético que curva las trayectorias de las partículas cargadas que atraviesan el detector interno y el espectrómetro de muones, permitiendo medir su momento.

Todos los detectores de ATLAS, así como el sistema de imanes, se componen de un barril central y dos tapas laterales idénticas. La cobertura en pseudorapidez de cada una de estas partes dependerá del sistema considerado.

1.2.2 The Inner Detector

El detector interno de ATLAS (figura 1.5) está contenido en un cilindro de 7 m de longitud y 1,15 m de radio exterior. El mismo ha sido diseñado para la reconstrucción de trazas de partículas cargadas en un campo magnético solenoidal de 2 Tesla, con un rango de pseudorapidez que se extiende hasta $|\eta|=2.5$. Está compuesto por tres subdetectores: el detector de píxeles , el detector de microbandas de silicio (SCT, del inglés $Semiconductor\ Tracker$) y el de transición de radiación (TRT, $Transition\ Radiation\ Tracker$). La combinación de estas tecnologías permite el reconocimiento de trazas de manera robusta y una alta precisión en las coordenadas η y ϕ .

Desde el punto de vista mecánico el detector consiste en un barril extendido en la coordenada z sobre \pm 80 cm, y dos ruedas o tapas laterales

Figure 1.4: El detector de ATLAS

idénticas cubriendo el resto de la cavidad. En la región del barril todos los elementos de detección están ordenados en estructuras cilíndricas, mientras que en las tapas dichos elementos están montados en discos perpendiculares a la dirección del haz. Esto asegura que las partículas pasen todos los elementos de detección con ángulos de incidencia grandes.

Figure 1.5: Vista del detector interno de ATLAS. Se indican las posiciones del barril central y partes laterales del SCT, el detecor de píxeles y el TRT

El detector de píxeles

Este sistema consiste en tres barriles de ~ 4 , 10 y 13 centímetros de radio medio, respectivamente; y 5 discos a cada lado. Contiene 140 millones de elementos detectores de forma cuadradra, cada uno de 50 μ m en la dirección R ϕ y 300 μ m en z, midiendo así dos coordenadas por cada módulo detector. Todo el dispositivo está situado tan cerca como es posible del punto de interacción, entregando 3 mediciones de alta precisión y granularidad en la

región cercana al punto de interacción primario, contribuyendo a la medición del parámetro de impacto y la posición del vértice.

El detector de microbandas de silicio

El sistema de detección por microbandas de silicio consta de cuatro cilindros concéntricos; de 300, 373, 447 y 520 mm de radio, respectivamente, compuestos, cada uno de ellos, por módulos detectores montados en estructuras de fibra de carbón. Cada módulo posee dos capas de microbandas. En la primera, las bandas están dispuestas paralelas al eje del haz midiendo así la cordenada ϕ directamente. Éstas, junto con las microbandas en la capa siguiente, con un ángulo stereo de 40 mrad, reconstruyen la coordenada z. A los lados del barril central se tienen dos tapas con módulos montados en 9 ruedas. La resolución espacial en el sistema es de 16 μ m en R ϕ y 580 μ m en z.

Tendremos, t'ipicamente, 8 capas de bandas de silicio (más las tres de píxeles) atravesadas por cada traza proveniente del punto de interacción. Un impacto (o hit) en una de las capas se referirá a un canal de detección con una señal de salida sobre un determinado umbral de energía. En el caso del detector de silicio, tendremos un cluster pequeño de canales, creado por una partícula cargada o ruido. Dos impactos correspondientes a una misma traza, en las dos capas de un módulo detector contribuyen a un punto tridimensional en el espacio que llamaremos SP, del inglés *Space Point*.

El detector de radiación de transición

El detector de radiación de transición de ATLAS está basado en el uso de tubos detectores del diámetro de una pajita de gaseosa, para la identificación y reconstrucción de las trayectorias de partículas cargadas. En total hay

alrededor de 370000 tubos de 4 mm de diámetro y 144 de longitud en todo el detector, y, en virtud de su pequeño diámetro pueden operar a las altas frecuencias esperadas en el LHC.

Cada tubo contiene en su interior un hilo de tungsteno, cubierto de oro, de 30 μ m de diámetro y está relleno de una mezcla gaseosa (70 % xenón) que se ioniza cuando pasa una partícula. La medición del tiempo de arribo de los iones producidos al hilo central, permite determinar la posición del impacto dentro del radio del tubo. Los tubos detectores están orientados de manera radial (en ruedas) en las tapas y, a lo largo del eje del haz , en la región del barril. Estas orientaciones han sido elegidas para maximizar el número de tubos atravesados en todas las direcciones. La sección del barril consiste en módulos individuales de entre 329 y 793 tubos axiales, cubriendo el rango radial de 56 a 107 cm.

La detección de radiación de transición, provocada por la existencia de materiales de distinto índice de refracción entre los tubos, generará señales más intensas y permitirá una mejor identificación de electrones que atraviesan el detector (los muones también emiten radiación de transición pero al ser mucho más masivos que los electrones, lo hacen en una cantidad mucho menor).

Este sistema de detección por tubos provee un gran número de puntos por traza (típicamente 36 puntos), lo cual determina un seguimiento contínuo de la misma, con mucho menos material por punto y menor costo (mucho menor comparado con la tecnología de píxeles implementada en el subdetector más interno). La gran cantidad de puntos o impactos por traza es un instrumento poderoso en la búsqueda y reconstrucción de trazas en el detector interno.

1.2.3 The Calorimeters

El sistema de imanes superconductores de ATLAS consiste en un solenoide central que provee el campo magnético necesario al detector interno, rodeado por un arreglo de bobinas o bucles, con forma de pista de carrera, que generan un campo magnético toroidal para el espectrómetro de muones. Todo el sistema es enfriado de manera indirecta mediante el flujo de helio líquido a 4,5 K.

El solenoide es un electroimán superconductor de 5,3 m de largo, situado en el interior del calorímetro electromagnético. Comparte el crióstato con el calorímetro de argón líquido, evitando la presencia de dos paredes criostáticas y reduciendo así la cantidad de material introducido. La longitud del solenoide es considerablemente más pequeña que la del barril del detector de trazas. Este es el resultado de un compromiso: un bobinado corto reduce la cantidad de material introducido mientras que uno largo proporciona un campo magnético más uniforme en dicho detector. El campo magnético a lo largo del eje z es de 2 T en el punto de interacción.

El arreglo de bobinas está dividido en un barril central y dos regiones laterales, al igual que los detectores. El barril central está constituido por 8 bobinas de 5 m de ancho por 25 metros de largo aproximadamente, dispuestas simétricamente alrededor del haz de manera radial. Las bobinas del barril se encuentran en crióstatos separdos, mientras que las 8 bobinas en cada una de las tapas o toroides laterales están ubicadas en un crióstato común.

Con un campo magnético toroidal las partículas atravesarán todo el rango de pseudorapidez casi perpendicularmente al haz. El número pequeño de bobinas que generan el campo toroidal resulta en una intensidad de campo que varía fuertemente con la coordenada ϕ . En el barril el campo magnético es de 2 T, mientras que en las tapas es de 4 T en las zonas de mayor inten-

sidad.

El calorímetro

Una vez que la partícula atraviesa el detector interno, ingresa al calorímetro. Un detector calorimétrico está diseñado para absorber la energía de las partículas que lo atraviesan y se encuentra dividido normalmente en un calorímetro electromagnético y uno hadrónico dado el diferente comportamiento de fotones/electrones por un lado, y hadrones por el otro. Así el calorímetro de ATLAS consiste en un sector electromagnético que cubre una región de pseudorapidez $|\eta| < 3.2$ (barril y tapas), y uno hadrónico formado por tres partes: un gran barril cubriendo la zona de $|\eta| < 1.7$, dos tapas en los extremos cubriendo la región de $1.5 < |\eta| < 3.2$, y calorímetros de bajo ángulo cubriendo la región de pseudorapidez de $3.1 < |\eta| < 4.9$.

El calorímetro de argón líquido

El calorímetro electromagnético de ATLAS consiste en un gran barril interno y dos ruedas (end-caps), una a cada lado del mismo. Se trata de un calorímetro de muestreo que funciona con argón líquido (se denomina de muestreo porque mide sólo una fracción de la energía depositada por la partícula incidente). Está formado por placas de plomo/acero inoxidable intercaladas con electrodos de cobre; el espacio entre ambos se llena con argón líquido, permitiendo la deriva de los electrones de ionización bajo el alto voltaje aplicado.

Con el fin de asegurar una perfecta cobertura en todo el rango de pseudorapidez y proveer una completa simetría en la coordenada ϕ se ha elegido una geometría en forma de acordeón. En la región dedicada a física de precisión ($|\eta| < 2.5$) el calorímetro electromagnético está dividido en cuatro secciones de muestreo. La primera o Presampler consiste en una delgada capa de argón desprovista de material absorbente, cuyo propósito es la corrección por la pérdida de energía en el solenoide y las paredes del crióstato. La segunda sección posee una profundidad de $4.3X_0^{-1}$ y en ella la lectura se lleva a cabo mediante celdas en forma de tiras delgadas en η , dando una buena resolución en dicha coordenada, con $\Delta \eta = 0.0031$. La sección de 2nd Sampling ($16X_0$) es donde se deposita la mayoría de la energía, teniendo ambas coordenadas igual importancia. Allí el tamaño de celda es de $\Delta \phi \Delta \eta = 0.0245 \times 0.0245$. Sólo los electrones más energéticos llegarán a la cuarta sección de muestreo (3rd Sampling).

Las ruedas calorimétricas comienzan en $|\eta| = 1.5$ y continúan abajo hasta $|\eta| = 3.2$, pero con un tamaño de celda mayor por encima de $|\eta| = 2.5$.

En la región de bajo ángulo, el calorímetro hadrónico funciona también con argón líquido de manera de resistir los altos niveles de radiación. Su diseño es más sencillo que el del calorímetro electromagnético y como absorbentes posee placas paralelas de cobre, perpendiculares al haz. La región de esta parte del calorímetro hadrónico, que cubre hasta $|\eta|=4.9$, está hecha de cobre/tungsteno. La elección de este material es necesaria para limitar el ancho y la profundidad de las lluvias provenientes de jets de altas energías cercanas a la línea del haz.

 $^{^1}X_0$ es el símbolo utilizado para la Longitud de Radiación ($Radiation\ length$), definida como la distancia media sobre la cual un electón muy energético pierde 1/e de su energía por bremsstrahlung o bien, como 7/9 del camino libre medio en la producción de pares. Contituye una escala de longitud apropiada para describir cascadas electromagnéticas de alta energía.

El calorímetro hadrónico de tejas

El calorímetro hadrónico de tejas de ATLAS está compuesto por tres barriles, uno central de 5,6m y dos extensiones de 2,9m cada una. El radio interno es de 2,2m y el externo, de 4,2m.

Cada barril está dividido en 64 cuñas azimutales o módulos, con una estructura periódica en la dirección paralela al haz. Cada módulo es una estructura de tejas de hierro (material absorbente) alternadas con tejas de plástico centellador, dispuestas en un plano paralelo al eje del haz. Los materiales centelladores emiten luz en forma de pequeños pulsos cuando son atravesados por partículas o radiación; acoplando el centellador a un fotomultiplicador el pulso de luz se convierte en un pulso eléctrico que puede ser analizado. En el caso del calorímetro hadrónico de ATLAS, cuando una partícula atraviesa una teja centelladora emite luz en el rango del ultravioleta, de intensidad proporcional a la energía depositada por la partícula.

Se ha elegido una segmentación proyectiva en torres de $\Delta\phi\Delta\eta=0.1\times0.1$ y cada una de estas torres está dividida, en profundidad, en tres celdas, leídas individualmente por dos fotomultiplicadores para conseguir redundancia en la señal. La luz generada en las tejas es recogida mediante fibras ópticas que cambian la longitud de onda y transportada a los fotomultiplicadores (este subdetector posee unos 10.000 fotomultiplicadores).

El calorímetro hadrónico debe tener el espesor suficiente para contener la energía de los hadrones. Con este propósito y para obtener una buena resolución se han elegido 11 longitudes de absorción como camino previo a las cámaras de muones.

1.2.4 The Muon System

El sistema de muones sirve a un doble propósito: funciona como sistema de disparo (o trigger) para la selección de eventos con muones de alta energía, y como espectrómetro de muones de alta precisión. En este sentido, este detector llevará a cabo la identificación de los muones producidos en las colisiones p-p, determinando sus trayectorias y momentos. El sistema consiste en un conjunto de toroides (llamamos así, por su forma, a los tres conjuntos de bobinas que proveen el campo magnético toroidal) y cámaras de tubos de deriva que se encuentran rodeando al calorímetro. En la parte del barril del detector, las cámaras están situadas en el interior del toroide lo que permite la medición del momento de las partículas a partir de la desviación de sus trayectorias en el campo magnético. En las tapas, donde la presencia del crióstato impide posicionar las cámaras dentro del campo magnético, el momento es medido a partir de la diferencia entre los ángulos de entrada y salida del imán. En el plano trasversal, tanto en la región del barril como en las tapas laterales, el sistema de cámaras estará dividido en 16 sectores, siguiendo la simetría determinada por las 8 bobinas del barril central del sistema magnético. Las cámaras cubren el espacio entre las bobinas, y todo el rango acimutal en la región que las rodea. Los sectores se numeran comenzando a partir de $\phi = 0$, en el sentido contrario de las agujas del reloj, teniendo en la dirección vertical a los sectores 6 (en la parte superior del detector) y 13 (sector inferior).

Los cámaras de tubos de deriva (MDTs) son cámaras proporcionales hechas de tubos de aluminio de 30 mm de diámetro y longitudes variables de 70 a 630 cm, con un hilo central de 50μ m de diámetro, de W-Re. En la región del barril dichas cámaras están distribuidas en 3 capas cilíndricas concéntricas (estaciones) alrededor del haz, de 5; 7,5 y 10 metros de radio.

Los tubos están dispuestos de manera transversal al eje z de manera de medir la coordenada en el plano de desviación de la trayectoria de la partícula (plano Rz). Estas cámaras miden el tiempo de deriva de la ionización producida por el paso del muón, teniendo una resolución de 80 μ m.

Cada cámara MDT está cubierta por una o dos cámaras de placas resistivas (RPCs). Cada una de ellas encierra un volumen de gas entre planchas resistivas de baquelita, dotada una de ellas con tiras de electrodos. Dado que los tubos de deriva poseen un diámetro relativamente grande que resulta en un tiempo de deriva máximo de 480ns, mucho mayor que los 25 ns entre cruce de bunches, se requieren cámaras especiales de disparo para la selección de eventos. La función de trigger en el barril es provista por tres capas de RPCs, situadas, dos de ellas, a ambos lados de la segunda estación de MDTs y la restante, en la cara interior de la estación más externa. En las tapas, esta función es cumplida por tres estaciones de TGCs (Thing Gap Chambers). Estas cámaras son similares en diseño a cámaras prporcionales multihilo, con la diferencia de que poseen una distancia cátodo-cátodo menor que la pendiente del ánodo (hilo). Las cámaras de disparo proveen una estimación de las coordenadas ϕ y η del punto de impacto de la traza, mientras que las cámaras MDTs darán (con mayor precisión) la coordenada η .

En la región de bajo ángulo, donde la densidad de trazas es mayor, se utilizan cámaras de tiras de cátodos (CSCs) de granularidad más fina comparadas con las MDTs, para la detección de trayectorias. Estas cámaras son cámaras proporcionales, con un espacio entre hilo de 2,5 mm. Cada una de ellas proporciona medida de dos coordenadas y puede operar en condiciones de alto campo magnético.

En la figura 1.6 se puede ver un esquema del espectrómetro de muones, donde se indica la posici ón de las diferentes cámaras descriptas.

Figure 1.6: Vista tridimensional del espectrómetro de muones de ATLAS, indicando las áreas cubiertas por las diferentes cámaras que lo componen

1.2.5 Trigger and Data Adquisition

En este capítulo se analiza la estructura del trigger de ATLAS, y el sistema de adquisición y flujo de los datos. Se presenta, asimismo, una breve descripción de los algoritmos usados en la reconstrucción de trayectorias para la selección de eventos en el detector interno.

Arquitectura general

El sistema de Trigger y Adquisición de Datos[?] de ATLAS está basado en tres niveles de selección online: Nivel 1, Nivel 2 y Filtro de Eventos. Cada nivel es más lento pero más preciso que el anterior. Trabajando con una frecuencia de interacción de 10^9 Hz y luminosidades del orden de 10^{34} cm⁻² s^{-1} , este sistema será el encargado de reducir la frecuencia de eventos inicial de 40 MHz a 200Hz, que es la velocidad con la que pueden almacenarse.

En la figura 1.7 se muestra un vista simplificada de los principales componentes y funciones.

El mecanismo que lleva a cabo el movimiento de la información (Data Flow System), es el responsable de recibir los datos de los detectores, pasando parte de ellos al sistema de trigger y enviando luego, los eventos seleccionados al lugar de almacenamiento. Siguiendo el esquema de la figura, la comunicación entre los drivers de lectura de cada detector (RODs) y el sistema de adquisición de datos, está dada por los buffers de almacenamiento transitorio (ROBs). La información de los eventos aceptados por el Nivel 1 son transportados de los primeros al sistema de lectura (ROS), que consta de numerosos ROBs, guardando los datos a la espera de la decisión del trigger. La información requerida por el segundo nivel es provista por estos últimos. Los eventos aceptados son reconstruidos (a partir de fragmentos contenidos en diferentes ROBs) y pasados al siguiente nivel.

Figure 1.7: Principales componentes del sistema de trigger y adquisición de datos de ATLAS.

El Nivel 2 y el Filtro de Eventos componen el High-level Trigger (HLT) de ATLAS. El Nivel 2 trabaja a la frecuencia de aceptación del Nivel 1, utilizando una secuencia de rápidos algoritmos de selección que operan típicamente sobre una fracción de los datos del evento, contenida en regiones del detector previamente seleccionadas por ese nivel (ver el mecanismo de la región de interés en la siguiente sección). Si la decisión del Nivel 2 es rechazar el evento, los datos del mismo son eliminados de los buffers correspondientes. Si el evento es aceptado, se reconstruye en el EB (Event Builder) y es pasado al Filtro de Eventos. Este nivel ejecutará algoritmos de reconstrucción más sofisticados, adaptados de aquellos para el análisis offline, utilizando información detallada de los detectores para efectuar el proceso de selección final, que determinará cuáles son los eventos que serán guardados para posteriores estudios.

En las siguientes secciones se presenta una descripción más detallada de los niveles de trigger.

El Nivel 1

El primer nivel de trigger de ATLAS es implementado mediante hardware. Éste realiza una decisión inicial a partir de la información provista por los calorímetros y del detector de muones, basando su estrategia en la combinación de objetos en coincidencia.

En el sistema de muones, los candidatos de alto momento transverso son identificados en las cámaras especiales de trigger: RPCs en el barril y TGCs en las tapas. En el caso del calorímetro, se definen una serie de conjuntos de umbrales de p_T para cada objeto (electrones, fotones, jets, etc.), seleccionando aquellos que pasen los criterios de selección correspondientes al evento físico de interés.

Puesto que la decisión de aceptar un evento no puede ser realizada en los 25 ns que median entre dos cruces de bunches, los subdetectores almacenan localmente la información del mismo en pipelined buffers hasta que el Nivel 1 efectúa la selección. Luego, los datos son enviados a los RODs especificos de cada detector para luego dirigirse a los ROBs, donde son almacenados hasta que la decisión del Nivel 2 sea alcanzada. Cuando un evento es aceptado, el Nivel 1 comunica la decisión al mecanismo que se encargará de construir una Región de Interés (RoI). Este mecanismo es una importante pieza sobre la que descansa la estrategia del sistema de trigger; a través del mismo, el Nivel 2 hará uso de la información del evento en regiones localizadas del detector, de manera que los algoritmos de reconstrucción en ese nivel sólo transfieran los ROBs necesarios para arribar a una rápida decisión. La RoI contendrá la información de la posición (η y ϕ) y el momento de los objetos candidatos.

Este nivel está diseñado para llevar a cabo su decisión en un tiempo menor a 2.5 μ s, medidos desde la colisión p-p, hasta que la información del evento está disponible en la electrónica de salida de los detectores. En este proceso la frecuencia de eventos será reducida a 75KHz (límite fijado por la electrónica).

1.2.6 El HLT

El High-level Trigger de ATLAS abarca la segunda y tercera etapa de la selección de eventos. Comprende el Nivel 2 y el Filtro de Eventos, y contiene además, el Software de Selección (ESS). Este último comparte la estructura usada por el Offline para los códigos de selección, facilitando el análisis offline de los datos, y el desarrollo de algoritmos en el HLT.

El punto de entrada del trigger es el resultado del Nivel 1. Éste provee información acerca de la región de interés, fundamental para el rápido funcionamiento de los algoritmos del Nivel 2. Así, los datos del Nivel 1 guían la selección del Nivel 2; y ésta a su vez guiará la del Filtro de eventos, como se ilustra en la figura 1.8.

El Nivel 2

La tarea específica del Nivel 2 es reducir la frecuencia de eventos de $\sim 100 \, \mathrm{kHz}$ a alrededor de 2 kHz, combinando la información de todos los detectores para su decisión global. A diferencia del Nivel 1, esta segunda etapa de selección realiza operaciones no sincronizadas sobre los eventos, con un tiempo de decisión de 10 ms.

El Nivel 2 utiliza las regiones de interés provistas por el Nivel 1. Cada región es examinada en el subdetector de origen (calorímetro o sistema de muones) para su confirmación; para luego buscar información de otros sub-

Figure 1.8: Cadena de selección del *High-level Trigger* de ATLAS. Cada nivel es guiado por el resultado del paso anterior.

detectores. En el caso del trigger de muones, el poder de rechazo del Nivel 2 proviene de ajustar los umbrales de p_T , respecto de los utilizados en el primer nivel, a partir de la información de las cámaras de precisión del sistema de muones (MDTs) y la correspondiente al detector interno. Los procesadores del Nivel 2 son los encargados de ejecutar luego el software de selección de eventos, utilizando la información almacenada en los buffers. Usando las RoIs del Nivel 1, el Nivel 2 accederá de manera selectiva a los datos en los ROBs, moviendo sólo la información requerida para efectuar la decisión. Típicamente, sólo una pequeña fracción del detector, correspondiente a las regiones centradas en los objetos indicados por el Nivel 1, serán necesitados por el segundo nivel.

Hasta que un evento es aceptado o rechazado (en ~ 10 ms), los datos son retenidos en los ROBs. En caso de aceptación, los fragmentos del evento almacenados en distintos buffers serán requeridos por el sistema de control del Nivel 2 (L2SVs) para ser enviados al constructor de eventos (EB). El

evento ensamblado es guardado en una única dirección de memoria para ser utilizado por el Filtro de Eventos. El tamaño promedio de un evento será del orden de 1,5 MB.

El Filtro de Eventos

Luego del Nivel 2, la última etapa de selección *online* es realizada por el Filtro de Eventos (EF). El EF emplea algoritmos y métodos similares a los implementados en el análisis *offline*, adaptados para su corrida en el tiempo real del experimento; su poder de rechazo radica en el uso de algoritmos y criterios de selección más complejos, que por límites en el tiempo de procesamiento no pueden ser utilizados en el Nivel 2.

El EF utilizará información actualizada de la calibración y alineamiento del detector y un completo mapa del campo magnético; llevando a cabo con ello la selección final del evento físico que será guardado para su estudio en el Offline. La frecuencia de aceptación del nivel anterior será reducida en un orden de magnitud, almacenando a una tasa de $\sim 100 \text{ MB/s}$.

El software de selección

La tarea del software de selección (ESS) es la selección y clasificación de los eventos. Candidatos tales como electrones, jets, muones, etc., representados por objetos abstractos, son reconstruidos utilizando un particular conjunto de algoritmos. Un evento es seleccionado si el objeto reconstruido satisface al menos una de las signaturas establecidas en el menú del sistema de disparo. En el Nivel 2 y el Filtro de Eventos (EF), los eventos serán rechazados si no pasan los específicos criterios de selección, diseñados para la reducción de la frecuencia de eventos, al límite dado por la velocidad a la que éstos pueden ser almacenados.

El ESS se compone de una infraestructura y un conjunto de programas de selección para las dos etapas del HLT. Los algoritmos de reconstrucción para el trigger están basados en aquellos utilizados para la reconstrucción offline, pero correrán online en el entorno de software provisto por los procesadores del Nivel 2 y el EF.

De manera de facilitar el desarrollo de los algoritmos del HLT y simplificar los estudios del Offline; el ESS ha sido diseñado de manera de poder ser ejecutado directamente en el entorno provisto por la estructura de software de análisis offline del experimento, ATHENA[?]. La estructura dada por este paquete de software es lo suficientemente flexible como para abarcar una variedad de procesos, incluyendo no sólo algoritmos de trigger sino también tareas de calibración y monitoreo. Se ha destinado un apéndice (A) para su descripción.

En el Offline, la tarea del ESS es la de emular la cadena completa de selección online. Para su ejecución el sistema se sirve de cuatro sub-paquetes: el direccionamiento o Steering, los algoritmos del HLT, y los paquetes de software para la clasificación y movimiento de los datos, EDM (Event Data Model) y el DM (Data Manager). Los últimos toman los datos del evento en el formato que poseen a la salida de los sistemas de lectura (Raw data en formato byte stream), y los convierten en objetos que puedan ser usados por los algoritmos en la cadena de selección (Raw Data Objects).

La tarea de los algoritmos del HLT es la de analizar los datos del evento, reconstruyendo partes del mismo, luego de la selección del Nivel 1. El paquete se compone de dos subconjuntos principales:

 Programas de preparación de datos. Son los algoritmos ejecutados por los sistemas EDM y DM para la conversión del formato de los datos del evento. • Algoritmos FEX o de Feature Extraction. Comprende los programas de reconstrucción y los llamados algoritmos de "hipótesis". Estos últimos (a los primeros nos referiremos en la siguiente sección) son aquellos programas que se encargan de eliminar, una vez realizada la reconstrucción, aquellos candidatos que no cumplen con las características o atributos asignados al evento físico en consideración (hipótesis), aplicando específicos criterios de selección. La presencia de los algoritmos de hipótesis es fundamental en la secuencia del HLT ya que evita la ejecución innecesaria de algoritmos al descartar eventos en las primeras etapas de la cadena.

Por último, el subpaquete de *Steering* es aquel que organiza el procesamiento de los datos del evento en el Nivel 2 y el Filtro de eventos; controlando el orden en el que los algoritmos de reconstrucción e hipótesis son ejecutados. El Steering define la secuencia del HLT, y manipula los resultados en cada paso de selección de manera que la decisión del trigger sea alcanzada.

1.2.7 Data quality

1.2.8 Simulation of particle interactions in the ATLAS Detector

Bibliography

- [1] Amos Breskin and Rdiger Voss. *The CERN Large Hadron Collider: Accelerator and Experiments*. CERN, Geneva, 2009.
- [2] ATLAS Collaboration. Luminosity Determination in pp Collisions at sqrt(s) = 7 TeV using the ATLAS Detector in 2011. ATLAS-CONF-2011-116, Aug 2011.
- [3] S van der Meer. Calibration of the effective beam height in the isr. CERN-ISR-PO-68-31. ISR-PO-68-31, 1968.
- [4] ATLAS Collaboration. ATLAS detector and physics performance: Technical Design Report, 1. (CERN-LHCC-99-14, ATLAS-TDR-14), 1999.