Refinement of Direction of Arrival Estimators by Majorization-Minimization Optimization on the Array Manifold

Robin Scheibler and Masahito Togami

Direction of Arrival Estimators

Abstract —The key idea of this work is to refine DOA estimates by **local optimization** using **majorization-minimization**. We derive **two surrogate functions**, quadratic and linear, and validate via experiments on synthetic and recorded signals. We demonstrate up to $17 \times$ **speed-up**.

Propagation Model

The measurement vector $\mathbf{x}_{kn} \in \mathbb{C}^{M}$ is

$$\mathbf{x}_{kn} = \mathbf{a}_k(\mathbf{q})y_{kn} + \text{noise}$$

with direction vector $\mathbf{q} \in \mathbb{R}^3$, $\|\mathbf{q}\|=1$, and with the steering vectors

Generalized DOA Formulation

Goal Find local minima/maxima of

$$\mathcal{J}(\mathbf{q}) = \sum_{k=1}^K \mathbf{a}_k(\mathbf{q})^H \mathbf{V}_k \mathbf{a}_k(\mathbf{q}), \quad \text{s.t.} \quad \left\{ egin{array}{l} \|\mathbf{q}\| = 1 \\ \mathbf{V}_k \succeq 0 \text{ (PSD)} \end{array}
ight.$$

Method	Opt	\mathbf{V}_k
SRP	Max	$\mathbb{E}[\mathbf{x}_{fn}\mathbf{x}_{fn}^H]$
MUSIC	Min	$\mathbb{E}[\mathbf{n}_{fn}\mathbf{n}_{fn}^H]$ (cov. mat. noise)
MVDR	Min	$\mathbb{E}[\mathbf{x}_{fn}\mathbf{x}_{fn}^H]^{-1}$

Objective is a Sum of Cosine

$$\mathcal{J}(\mathbf{q}) = 2\sum_{n \geq m} u_{mn} \cos(\psi_{mn} - \omega_k \Delta_{mn}^{\top} \mathbf{q}) + \text{const.}$$

with
$$\Delta_{mn} = \mathbf{d}_m - \mathbf{d}_n$$
, $u_{mn} = |(\mathbf{V}_k)_{mn}|$, $\psi_{mn} = \arg((\mathbf{V}_k)_{mn})$.

Conventional Optimization: Grid Search

1. Sample search space at locations $\hat{\mathbf{q}}_1, \dots, \hat{\mathbf{q}}_L$

2. Choose
$$\mathbf{q}^{\star} = \operatorname*{arg\,min}_{\ell \in \{1,...,L\}} \mathcal{J}(\hat{\mathbf{q}}_{\ell})$$

Problems

- Precision depends on L
- Curse of dimensionality ($L > 10^4$ for ~ 2 error in 3D)

Refinement by MM Optimization

- 1. Find initial DOA estimate with rough grid
- 2. Refine with MM iterations

$$\mathbf{q}_t \leftarrow \mathop{\mathsf{arg\,min}}_{\mathbf{q},\,\|\mathbf{q}\|=1} Q(\mathbf{q},\,\mathbf{q}_{t-1})$$

where $Q(\mathbf{q}, \hat{\mathbf{q}})$ is a surrogate of $\mathcal{J}(\mathbf{q})$.

Key Ingredient: Quadratic Surrogate of Cosine [1]

Let θ , $\theta_0 \in \mathbb{R}$, $z_0 = \arg\min_{z \in \mathbb{Z}} |\theta_0 + 2\pi z|$, and $\phi_0 = \theta_0 + 2\pi z_0$. Then,

Quadratic Surrogate

The previous inequality is directly applicable to the objective

$$\mathcal{J}(\mathbf{q}) = \sum_{m>n} u_{mn} \cos(\psi_{mn} - \Delta_{mn}^{\top} \mathbf{q}) \leq \sum_{mn} \hat{u}_{mn} (\hat{\psi}_{mn} - \Delta_{mn}^{\top} \mathbf{q})^2 + \dots$$

where \hat{u}_{mn} and $\hat{\psi}_{mn}$ depend on \mathbf{q}_{t-1} . This gives the update

$$\mathbf{q}_t \leftarrow \operatorname*{arg\,min} \mathbf{q}^{\top} \mathbf{D}(\mathbf{q}_{t-1}) \mathbf{q} - 2\mathbf{v}(\mathbf{q}_{t-1})^{\top} \mathbf{q}$$
 subject to $\|\mathbf{q}\|^2 = 1$ (1)

with $\mathbf{D}(\mathbf{q}_{t-1}) = \sum_{mn} \hat{u}_{mn} \Delta_{mn} \Delta_{mn}^{\top}$, and $\mathbf{v}(\mathbf{q}_{t-1}) = \sum_{mn} \hat{u}_{mn} \hat{\psi}_{mn} \Delta_{mn}$. Efficient algorithm to solve (1) is available [2]

Linear Surrogate

A quadratic on bounded domain admits a linear surrogate:

$$\mathbf{q}_t \leftarrow \underset{\mathbf{q} \in \mathbb{R}^3, \|\mathbf{q}\|^2 = 1}{\mathsf{arg} \, \mathsf{min}} - (\mathbf{v}(\mathbf{q}_{t-1}) - \mathbf{D}(\mathbf{q}_{t-1})\mathbf{q}_{t-1} + C(\mathbf{q}_{t-1})\mathbf{q}_{t-1})^{\mathsf{T}}\mathbf{q}$$

which has a closed-form solution.

Experimental Validation

- Baseline: grid-search with 10000 points
- Proposed: grid-search with 100 points + 30 iterations MM

Synthetic Reverberant Speech

Median Error, 12 channels, reverb. time ≈ 500 ms, 100 rep.

Table 1: Median runtimes in seconds with the quadratic surrogate.

			SRP-PHAT		MUSIC	
Description	Grid	MM Iter.	1src	2 src	1src	2 src
fine grid-search	10000	0	4.55	4.58	4.57	4.48
proposed method	100	30	0.35	0.42	0.27	0.37
speed-up			13×	$11 \times$	17×	$12 \times$

Recorded Anechoic Speech

Pyramic 48-channel array, anechoic, 540 positions [3]

References

[1] K. Yamaoka et al., Proc. WASPAA, Oct. 2019, pp. 130–134.

[2] J. J. More[Optim. Method Softw., vol. 2, no. 3–4, pp. 189–209, Jan. 1993.

[3] R. Scheibler et al., Proc. IWAENC, Sep. 2018, pp. 226–230.

[4] https://github.com/LCAV/pyroomacoustics

[5] https://github.com/fakufaku/doamm