Algorithms and Data Structures 2 19 - Advanced design techniques

Dr Michele Sevegnani

School of Computing Science University of Glasgow

michele.sevegnani@glasgow.ac.uk

Outline

- *Recap on algorithm design techniques
- **'0-1** knapsack problem
- **Dynamic programming**
- Memoisation
- Fractional knapsack problem
- •Greedy algorithms

Recap

*We have already studied three algorithm design techniques

1.Incremental approach

INSERTION-SORT, SELECTION-SORT, HEAPSORT

2.Divide an conquer

MERGE-SORT, QUICKSORT

3. Randomisation

Randomised QUICKSORT, universal hashing

Knapsack problem

- Given weights and values of n items, we need to put these items in a knapsack of capacity W to get the maximum total value in the knapsack
 - Classical problem in combinatorial optimisation
- There are two versions of this problem

1. 0-1 knapsack problem

Items are indivisible; you either take an item or not

2. Fractional knapsack problem

Items are divisible: you can take any fraction of an item

0-1 knapsack problem

- Given two n-tuples of positive integers v[1,..,n] and w[1,..,n] and W > 0
 determine subset S ⊆ {1,..,n} that maximises subject to
 - v_i is the value of i-th item
 - w_i is the weight of i-th item

Example

Knapsack with capacity W = 16

	Items	value	weight
1		5	12
2		3	5
3		4	3
4		2	1

0-1 knapsack problem (cont.)

- Given two n-tuples of positive integers v[1,..,n] and w[1,..,n] and W > 0
 determine subset S ⊆ {1,..,n} that maximises subject to
 - v_i is the value of i-th item
 - w_i is the weight of i-th item

Example

Knapsack with capacity W = 16

	Items	value	weight
1		5	12
2		3	5
3		4	3
4		2	1

0-1 knapsack problem (cont.)

- Given two n-tuples of positive integers v[1,..,n] and w[1,..,n] and W > 0
 determine subset S ⊆ {1,..,n} that maximises subject to
 - v_i is the value of i-th item
 - w_i is the weight of i-th item

Knapsack with capacity W = 16

0-1 knapsack problem (cont.)

- This is an optimisation problem
- Since there are n items, there are 2ⁿ possible combinations of items
- Brute force algorithm
 - Go through all combinations and find the one with maximum value and with total weight less or equal to W
 - Running time is O(2ⁿ)

Can we do better?

Divide and conquer algorithm

- Consider all subsets of items and calculate the total weight and value of each subset
 - Consider only subsets whose total weight is smaller than W
- From all such subsets, select the subset with maximum total value
 - For each item, select the maximum of two cases

- 1. An item is included in the optimal subset
 - Value of n-th item plus maximum value obtained by n-1 items and W minus weight of n-th item
- 2. An item is not included in the optimal set

Pseudocode

```
KNAPSACK-REC(W,w,v,n)
  if n < 1 or W = 0
    return 0
 // weight of n-th item is more than W
  if w[n] > W
    return KNAPSACK-REC(W,w,v,n-1)
 else
   // n-th item included
    a := v[n] + KNAPSACK-REC(W-w[n],w,v,n-1)
    // n-th item not included
    b := KNAPSACK-REC(W, w, v, n-1)
    return MAX(a,b)
```

Recursion tree

- W = 2, n = 3, v = [5, 8, 7], w = [1, 1, 1]
- K(W,n) = KNAPSACK-REC(W,w,v,n)


```
KNAPSACK-REC(W,w,v,n)
  if n < 1 or W = 0
    return 0

// weight of n-th item is more than W
  if w[n] > W
    return KNAPSACK-REC(W,w,v,n-1)
  else
    // n-th item included
    a := v[n] + KNAPSACK-REC(W-w[n],w,v,n-1)
    // n-th item not included
    b := KNAPSACK-REC(W,w,v,n-1)
    return MAX(a,b)
```

Recursion tree

- W = 2, n = 3, v = [5, 8, 7], w = [1, 1, 1]
- K(W,n) = KNAPSACK-REC(W,w,v,n)

Subproblems are not independent

```
KNAPSACK-REC(W,w,v,n)
  if n < 1 or W = 0
    return 0

// weight of n-th item is more than W
  if w[n] > W
    return KNAPSACK-REC(W,w,v,n-1)
  else
    // n-th item included
    a := v[n] + KNAPSACK-REC(W-w[n],w,v,n-1)
    // n-th item not included
    b := KNAPSACK-REC(W,w,v,n-1)
    return MAX(a,b)
```

Overlapping subproblems

- When subproblems overlap, then a divide and conquer algorithm repeatedly solves the common sub-subproblems
 - More work than necessary!

• Time complexity of this naive recursive solution is exponential $(O(2^n))$

We will study how to speed this up later in this lecture

Dynamic programming

- R. Bellman began the systematic study of dynamic programming in 1955
 - The word "programming" refers to using a tabular solution method
- Applies to optimisation problems in which we make a set of choices in order to arrive at an optimal solution
- Effective when a given subproblem may arise from more than one partial set of choices (overlapping subproblems)
 - Store the solution to each subproblem in a table so they can be reused repeatedly later
 - We trade space for time

Dynamic programming (cont.)

 A dynamic programming (DP) algorithm consists of a sequence of four steps

1. Structure

Characterise the structure of an optimal solution

2. Principle of optimality

Recursively define the value of an optimal solution

3. Bottom-up computation

Compute the value of an optimal solution using a table

4. Construction of an optimal solution

Use computed information to construct an optimal solution

Dynamic programming (cont.)

 A dynamic programming (DP) algorithm consists of a sequence of four steps

1. Structure

Characterise the structure of an optimal solution

2. Principle of optimality

Recursively define the value of an optimal solution

3. Bottom-up computation

Compute the value of an optimal solution using a table

4. Construction of an optimal solution

Use computed information to construct an optimal solution

Steps 1-3 form the basis of a dynamic programming solution to a problem

Step 4 can be omitted if only the value of an optimal solution is required

DP algorithm for 0-1 knapsack

1. Structure

Construct a table V[0,...,n][0,...,W]

- For $1 \le i \le n$ and $0 \le j \le W$, entry V[i][j] stores the maximum total value of any subset of items {1,...,i} of combined weight at most j

 Entry V[n][W] contains the maximum weight of the items that can fit into a knapsack of capacity W

DP algorithm for 0-1 knapsack

2. Principle of optimality

Similar to recursive definition of the problem used in the divide and conquer algorithm

```
- Base: V[0][j] = 0 with 0 \le j \le W (set with no items)

V[i][j] = -\infty with j < 0 (illegal)
```

- Recursive step: V[i][j] = max(V[i-1][j], v[i] + V[i-1][j-w[i]]) where $1 \le i \le n$ and $0 \le j \le W$

DP algorithm for 0-1 knapsack

3. Bottom-up computation

Use iteration instead of recursion to compute table V row by row

Use the characterisation defined in step 2

• Find a combination of items that maximise the value of a knapsack with maximum capacity $\mathbf{W} = \mathbf{7}$

$$- v = [5,2,1,4]$$
 and $w = [2,3,4,1]$

	0	1	2	3	4	5	6	7
0								
1								
2								
3								
4								

weigh t

items

• Find a combination of items that maximise the value of a knapsack with maximum capacity $\mathbf{W} = \mathbf{7}$

$$- v = [5,2,1,4]$$
 and $w = [2,3,4,1]$

	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1								
2								
3								
4								

$$i = 0$$

Base:
$$V[0][j] = 0$$
 for $0 \le j \le 7$

• Find a combination of items that maximise the value of a knapsack with maximum capacity $\mathbf{W} = \mathbf{7}$

$$- v = [5,2,1,4]$$
 and $w = [2,3,4,1]$

	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	5	5	5	5	5	5
2								
3								
4								

$$i = 1$$
 $v[1] = 5$ $w[1] = 2$

Recursive step:

$$V[i][j] = max(V[i-1][j], v[i] + V[i-1][j-w[i]])$$

```
V[1][2] = \max(V[0][2], v[1] + V[0][2-w[1]])
= \max(0, 5 + V[0][2-2])
= \max(0, 5 + V[0][0])
= \max(0, 5 + 0) = 5
```

• Find a combination of items that maximise the value of a knapsack with maximum capacity $\mathbf{W} = \mathbf{7}$

$$- v = [5,2,1,4]$$
 and $w = [2,3,4,1]$

	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	5	5	5	5	5	5
2	0	0	5	5	5	7	7	7
3								
4								

$$i = 2$$
 $v[2] = 2$ $w[2] = 3$

Recursive step:

$$V[i][j] = max(V[i-1][j], v[i] + V[i-1][j-w[i]])$$

$$V[2][5] = max(V[1][5], v[2] + V[1][5-w[2]])$$

= max(5, 2 + V[1][5-3])

$$= \max(5, 2 + V[1][2])$$

$$= \max(5, 2 + 5) = 7$$

• Find a combination of items that maximise the value of a knapsack with maximum capacity $\mathbf{W} = \mathbf{7}$

$$- v = [5,2,1,4]$$
 and $w = [2,3,4,1]$

	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	5	5	5	5	5	5
2	0	0	5	5	5	7	7	7
3	0	0	5	5	5	7	7	7
4								

$$i = 3$$
 $v[3] = 1$ $w[3] = 4$

Recursive step:

$$V[i][j] = max(V[i-1][j], v[i] + V[i-1][j-w[i]])$$

• Find a combination of items that maximise the value of a knapsack with maximum capacity $\mathbf{W} = \mathbf{7}$

$$- v = [5,2,1,4]$$
 and $w = [2,3,4,1]$

	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	5	5	5	5	5	5
2	0	0	5	5	5	7	7	7
3	0	0	5	5	5	7	7	7
4	0	4						

$$i = 4$$
 $v[4] = 4$ $w[4] = 1$

Recursive step:

$$V[i][j] = max(V[i-1][j], v[i] + V[i-1][j-w[i]])$$

```
V[4][1] = \max(V[3][1], v[4] + V[3][1-w[4]])
= \max(0, 4 + V[3][1-1])
= \max(0, 4 + V[3][0])
= \max(0, 4 + 0) = 4
```

• Find a combination of items that maximise the value of a knapsack with maximum capacity $\mathbf{W} = \mathbf{7}$

$$- v = [5,2,1,4]$$
 and $w = [2,3,4,1]$

	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	5	5	5	5	5	5
2	0	0	5	5	5	7	7	7
3	0	0	5	5	5	7	7	7
4	0	4	5					

$$i = 4$$
 $v[4] = 4$ $w[4] = 1$

Recursive step:

$$V[i][j] = max(V[i-1][j], v[i] + V[i-1][j-w[i]])$$

$$V[4][2] = \max(V[3][2], v[4] + V[3][2-w[4]])$$

$$= \max(5, 4 + V[3][2-1])$$

$$= \max(5, 4 + V[3][1])$$

$$= \max(5, 4 + 0) = 5$$

• Find a combination of items that maximise the value of a knapsack with maximum capacity $\mathbf{W} = \mathbf{7}$

$$- v = [5,2,1,4]$$
 and $w = [2,3,4,1]$

	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	5	5	5	5	5	5
2	0	0	5	5	5	7	7	7
3	0	0	5	5	5	7	7	7
4	0	4	5	9				

$$i = 4$$
 $v[4] = 4$ $w[4] = 1$

Recursive step:

$$V[i][j] = max(V[i-1][j], v[i] + V[i-1][j-w[i]])$$

$$V[4][3] = \max(V[3][3], v[4] + V[3][3-w[4]])$$

$$= \max(5, 4 + V[3][3-1])$$

$$= \max(5, 4 + V[3][2])$$

$$= \max(5, 4 + 5) = 9$$

• Find a combination of items that maximise the value of a knapsack with maximum capacity W=7

$$- v = [5,2,1,4]$$
 and $w = [2,3,4,1]$

	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	5	5	5	5	5	5
2	0	0	5	5	5	7	7	7
3	0	0	5	5	5	7	7	7
4	0	4	5	9	9	9	11	

$$i = 4$$
 $v[4] = 4$ $w[4] = 1$

Recursive step:

$$V[i][j] = max(V[i-1][j], v[i] + V[i-1][j-w[i]])$$

$$V[4][6] = \max(V[3][6], v[4] + V[3][6-w[4]])$$

$$= \max(7, 4 + V[3][6-1])$$

$$= \max(7, 4 + V[3][5])$$

$$= \max(7, 4 + 7) = 11$$

• Find a combination of items that maximise the value of a knapsack with maximum capacity W=7

$$- v = [5,2,1,4]$$
 and $w = [2,3,4,1]$

	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	5	5	5	5	5	5
2	0	0	5	5	5	7	7	7
3	0	0	5	5	5	7	7	7
4	0	4	5	9	9	9	11	11

$$i = 4$$
 $v[4] = 4$ $w[4] = 1$

Recursive step:

$$V[i][j] = max(V[i-1][j], v[i] + V[i-1][j-w[i]])$$

$$V[4][7] = \max(V[3][7], v[4] + V[3][7-w[4]])$$

$$= \max(7, 4 + V[3][7-1])$$

$$= \max(7, 4 + V[3][6])$$

$$= \max(7, 4 + 7) = 11$$

• Find a combination of items that maximise the value of a knapsack with maximum capacity $\mathbf{W} = \mathbf{7}$

$$- v = [5,2,1,4]$$
 and $w = [2,3,4,1]$

	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	5	5	5	5	5	5
2	0	0	5	5	5	7	7	7
3	0	0	5	5	5	7	7	7
4	0	4	5	9	9	9	11	11

A knapsack with capacity W = 7 and four items as in v and w can contain a combination of items with total value at most V[4][7] = 11

Which items are in the optimal solution?

KNAPSACK algorithm

- DP algorithm for 0-1 knapsack
- Running time is O(nW)

```
KNAPSACK(W,w,v,n)
  for j = 0 to W
    V[0][j] := 0
  for i = 1 to n
    for j = 0 to W
        if w[i] ≤ j
            V[i][j] := MAX(V[i-1][j], v[i] + V[i-1][j-w[i]])
        else
            V[i][j] := V[i-1][j]
    return V[n][W]
```

DP algorithm for 0-1Knapsack

4. Construction of an optimal solution

Use table V to construct an optimal solution

```
i := n
k := W
while i > 0 and k > 0
if V[i][k] != V[i-1][k]
    mark i as in the knapsack
    i := i - 1
    k := k - w[i]
else
    i := i - 1
```

• Find a combination of items that maximise the value of a knapsack with maximum capacity W=7

$$- v = [5,2,1,4]$$
 and $w = [2,3,4,1]$

	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	5	5	5	5	5	5
2	0	0	5	5	5	7	7	7
3	0	0	5	5	5	7	7	7
4	0	4	5	9	9	9	11	11

```
i := n
k := W
while i > 0 and k > 0
if V[i][k] != V[i-1][k]
    mark i as in the knapsack
i := i - 1
k := k - w[i]
else
i := i - 1
```

V[4][7] != V[3][7]

Mark 4

• Find a combination of items that maximise the value of a knapsack with maximum capacity W=7

$$- v = [5,2,1,4]$$
 and $w = [2,3,4,1]$

	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	5	5	5	5	5	5
2	0	0	5	5	5	7	7	7
3	0	0	5	5	5	7	7_	7
4	0	4	5	9	9	9	11	11

```
i := n
k := W
while i > 0 and k > 0
if V[i][k] != V[i-1][k]
    mark i as in the knapsack
    i := i - 1
    k := k - w[i]
else
    i := i - 1
```

Repeat the loop

• Find a combination of items that maximise the value of a knapsack with maximum capacity W=7

$$- v = [5,2,1,4]$$
 and $w = [2,3,4,1]$

	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	5	5	5	5	5	5
2	0	0	5	5	5	7	7	7
3	0	0	5	5	5	7	7_	7
4	0	4	5	9	9	9	11	11

```
i := n
k := W
while i > 0 and k > 0
if V[i][k] != V[i-1][k]
    mark i as in the knapsack
    i := i - 1
    k := k - w[i]
else
    i := i - 1
```

V[3][6] = V[2][6]

• Find a combination of items that maximise the value of a knapsack with maximum capacity W=7

$$- v = [5,2,1,4]$$
 and $w = [2,3,4,1]$

	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	5	5	5	5	5	5
2	0	0	5	5	5	7	 7	7
3	0	0	5	5	5	7	7_	7
4	0	4	5	9	9	9	11	11

```
i := n
k := W
while i > 0 and k > 0
if V[i][k] != V[i-1][k]
    mark i as in the knapsack
i := i - 1
k := k - w[i]
else
i := i - 1
```

Repeat the loop

• Find a combination of items that maximise the value of a knapsack with maximum capacity W=7

$$- v = [5,2,1,4]$$
 and $w = [2,3,4,1]$

	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	5	5	5	5	5	5
2	0	0	5	5	5	7	↑ 7	7
3	0	0	5	5	5	7	7_	7
4	0	4	5	9	9	9	11	11

```
i := n
k := W
while i > 0 and k > 0
if V[i][k] != V[i-1][k]
    mark i as in the knapsack
i := i - 1
k := k - w[i]
else
i := i - 1
```

V[2][6] != V[1][6]

Mark 2

• Find a combination of items that maximise the value of a knapsack with maximum capacity W=7

$$- v = [5,2,1,4]$$
 and $w = [2,3,4,1]$

	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	5	5 ←	5	5	5	5
		0						
3	0	0	5	5	5	7	7_	7
4	0	4	5	9	9	9	11	11

```
i := n
k := W
while i > 0 and k > 0
if V[i][k] != V[i-1][k]
    mark i as in the knapsack
    i := i - 1
    k := k - w[i]
    else
    i := i - 1
```

Repeat the loop

• Find a combination of items that maximise the value of a knapsack with maximum capacity W=7

$$- v = [5,2,1,4]$$
 and $w = [2,3,4,1]$

	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	5	5 ←	5	5	5	5
2	0	0	5	5	5	7	↑ 7	7
3	0	0	5	5	5	7	7_	7
4	0	4	5	9	9	9	11	11

```
i := n
k := W
while i > 0 and k > 0
if V[i][k] != V[i-1][k]
    mark i as in the knapsack
    i := i - 1
    k := k - w[i]
else
    i := i - 1
```

V[1][3] != V[0][3]

Mark 1

• Find a combination of items that maximise the value of a knapsack with maximum capacity W=7

$$- v = [5,2,1,4]$$
 and $w = [2,3,4,1]$

	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	5	5 ←	5	5	5	5
2	0	0	5	5	5	7	→ 7	7
3	0	0	5	5	5	7	7_	7
4	0	4	5	9	9	9	11	11

```
i := n
k := W
while i > 0 and k > 0
if V[i][k] != V[i-1][k]
    mark i as in the knapsack
    i := i - 1
    k := k - w[i]
else
    i := i - 1
```

Termination

Optimal combination is {1,2,4}

Top-down with memoisation

- Alternative way to implement a dynamic programming approach
- Recursive algorithms with overlapping subproblems are made more efficient by saving the result of each subproblem (usually in an array or hash table)
 - The algorithm first checks whether it has previously solved this subproblem
 - If so, it returns the saved value, saving further computation at this level
 - If not, the procedure computes the value in the usual manner
- We say that the recursive procedure has been memoised
 - From "memo"
- The algorithm remembers what results it has already computed ADS 2, 2021

T[0,...,W][0,...n] is initialised to -1

```
KNAPSACK-MEMO(W,w,v,n,T)
  if n < 1 or W = 0
    return 0
  if T[W][n] != -1
    return T[W][n]
  if w[n] > W
   T[W][n] := KNAPSACK-MEMO(W,w,v,n-1)
 else
    a := v[n] + KNAPSACK-MEMO(W-w[n], w, v, n-1)
    b := KNAPSACK-MEMO(W, w, v, n-1)
    T[W][n] := MAX(a,b)
    return T[W][n]
```

Fractional knapsack

- Same as 0-1 knapsack but fractional amounts of each object can be included in the knapsack
- Formally, maximise subject to where $0 \le f_i \le 1$
- How to find a solution
 - Sort items in non decreasing order of their value/weight ratio
 - When an object is considered choose a maximal amount such that the knapsack capacity is not violated

Greedy approach

Greedy algorithms

- Applies to optimisation problems in which we make a set of choices in order to arrive at an optimal solution
 - Each choice in made in a locally optimal manner
- A greedy approach provides an optimal solution for many problems much more quickly than a dynamic programming approach
- We cannot always easily tell whether a greedy approach will be effective
 - Only when the greedy choice property holds: an optimal solution can be obtained by making the greedy choice at each step

- Find a combination of items that maximise the value of a fractional knapsack with maximum capacity W = 7
 - v = [5,2,1,4] and w = [2,3,4,1]
 - Compute the value/weight ratios r = [5/2, 2/3, 1/4, 4/1] = [2.5, 0.67, 0.25, 4]
 - Sort v and w according to r: v = [4, 5, 2, 1] and w = [1, 2, 3, 4]

- Find a combination of items that maximise the value of a fractional knapsack with maximum capacity W=7
 - v = [5,2,1,4] and w = [2,3,4,1]
 - Compute the value/weight ratios r = [5/2, 2/3, 1/4, 4/1] = [2.5, 0.67, 0.25, 4]
 - Sort v and w according to r: v = [4, 5, 2, 1] and w = [1, 2, 3, 4]
 - Add maximal amount of 4 to knapsack (available space 7 1 = 6)

- Find a combination of items that maximise the value of a fractional knapsack with maximum capacity W = 7
 - v = [5,2,1,4] and w = [2,3,4,1]
 - Compute the value/weight ratios r = [5/2, 2/3, 1/4, 4/1] = [2.5, 0.67, 0.25, 4]
 - Sort v and w according to r: v = [4, 5, 2, 1] and w = [1, 2, 3, 4]
 - Add maximal amount of 4 to knapsack (available space 7 1 = 6)
 - Add maximal amount of 5 to knapsack (available space 6 2 = 4)

- Find a combination of items that maximise the value of a fractional knapsack with maximum capacity W = 7
 - v = [5,2,1,4] and w = [2,3,4,1]
 - Compute the value/weight ratios r = [5/2, 2/3, 1/4, 4/1] = [2.5, 0.67, 0.25, 4]
 - Sort v and w according to r: v = [4, 5, 2, 1] and w = [1, 2, 3, 4]
 - Add maximal amount of 4 to knapsack (available space 7 1 = 6)
 - Add maximal amount of 5 to knapsack (available space 6 2 = 4)
 - Add maximal amount of 2 to knapsack (available space 4 3 = 1)

```
- Solution = 4 * 1 + 5 * 1 + 2 * 1
ADS 2, 2021
```

- Find a combination of items that maximise the value of a fractional knapsack with maximum capacity W = 7
 - v = [5,2,1,4] and w = [2,3,4,1]
 - Compute the value/weight ratios r = [5/2, 2/3, 1/4, 4/1] = [2.5, 0.67, 0.25, 4]
 - Sort v and w according to r: v = [4, 5, 2, 1] and w = [1, 2, 3, 4]
 - Add maximal amount of 4 to knapsack (available space 7 1 = 6)
 - Add maximal amount of 5 to knapsack (available space 6 2 = 4)
 - Add maximal amount of 2 to knapsack (available space 4 3 = 1)
 - Add maximal amount of 1 to knapsack (available space 1 $(4 * \frac{1}{4}) = 0$)
 - Solution = $4 * 1 + 5 * 1 + 2 * 1 + 1 * \frac{1}{4}$

ADS 2, 2021

- Find a combination of items that maximise the value of a fractional knapsack with maximum capacity W=7
 - v = [5,2,1,4] and w = [2,3,4,1]
 - Compute the value/weight ratios r = [5/2, 2/3, 1/4, 4/1] = [2.5, 0.67, 0.25, 4]
 - Sort v and w according to r: v = [4, 5, 2, 1] and w = [1, 2, 3, 4]
 - Add maximal amount of 4 to knapsack (available space 7 1 = 6)
 - Add maximal amount of 5 to knapsack (available space 6 2 = 4)
 - Add maximal amount of 2 to knapsack (available space 4 3 = 1)
 - Add maximal amount of 1 to knapsack (available space 1 $(4 * \frac{1}{4}) = 0$)
 - Solution = $4 * 1 + 5 * 1 + 2 * 1 + 1 * \frac{1}{4} = 11.25$

Another example

 Find the path from the root to a leaf with the maximum sum in the tree on the right

Pick the maximum at each step

Another example

 Find the path from the root to a leaf with the maximum sum in the tree on the right

Pick the maximum at each step

$$-7+14+15=36$$

Another example

 Find the path from the root to a leaf with the maximum sum in the tree on the right

Pick the maximum at each step

$$-7+14+15=36$$

The correct solution is

$$-7+4+6+99=116$$

• The greedy choice property does not ADS 20201 this case

Summary

- *Recap on algorithm design techniques
- **'0-1** knapsack problem
- **Dynamic programming**
- Memoisation
- Fractional knapsack problem
- Greedy algorithms