Digital Logic Design:

Lecture 10

The Half Adder:

Basic rules for binary addition

6+0 = 0

0+1 = 1

0+1 =1

1+1 = 10

These operations are performed by a logic circuit called a half-adder.

fig: Logic symbol for a half-adder

Half-adder truth table:

A	В	Cout	٤
	0	0	0
0	1	0	1
0	0	0	1
	1	1	0

The sum bit can be expressed as $\Xi = A \oplus B$ The carry bit can be expressed as

The corry bit can be expressed as Cout = AB

Fig : Half-adder logie diagram

The Full-Adder:

Fig: Logie symbol for a full-adder

E.()	-	adder	truth	table	00
Iuil		odae"		Marie Street	-

A	13	cin	Cout	2
0	0	0	0	0
0	0	1	0	1
ø	t	0	0	1
0	ĺ	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Fig: Complete logic circuit for a full adder

Parallel Binary Adders:

01

Fig: 2-bit parallel adder

Fig: Block diagram of a basic 2-bit parallel adder.

A 4-bit parallel adder

Fig: Block diagram of a 4bit parallel adder

Fig: Logie symbol of a 4 bit binary adder

Adder Expansion:

Fig: Cascading of 4-bit adders to form an 8-bit adder

The Ripple carry adder:

A ripple carry adder is one in which, the carry out-put of each full-adder is connected to the carry imput of the next higher-order stage. The sum and the output earry of any stage cannot be produced until the input carry occurs, causing a time delay in addition process as illustrated in fig.

Subtractors:

Half-Subtractor: A half-subtractor is a combinational circuit that subtracts two bits and produces their difference. It also has an output to specify if a 1 has been borrowed.

x-y=? let x and y are two minuend and subtract,

7 6	y	13	D
0	0	0	0
0	1	1	1
l	0	0	1
ι	1	0	0

$$D = \overline{x}y + x\overline{y} = x \oplus y$$

$$B = \overline{x}y$$

Full Subtractor :

A full-subtractor is a combinational circuit that performs a subtraction between two bits, taking into account that a 1 may have been borrowed by a lower significant stage. Let the three inputs x,y and z denotes the minuend, subtrahenal and previous borrow.

			1		
×	y	Z	B	D .	
0	0	0	0	0	
0	0	ı	1	1	
0	1	0	1	1	
0	1	1	1	0	
	^	0	0	1	
1	0				
ı	0	1	0	0	
t	1	0	0	0	
1	1	1	ı	1	

 $D = \pi \oplus y \oplus z$ $B = \overline{\chi}y + \overline{\chi}z + \gamma z$