- Multiply the matrices
- Two matrices A[[]] and B[[]] can only be multiplied if number of columns in A is equal to number of rows in B.
- Column in A == Row in B

int x [3][3]

1	2	3
4	5	6
7	8	9

int x [3][2]

1	2
4	5
7	8

- Multiply the matrices
- Two matrices A[[]] and B[[]] can only be multiplied if number of columns in A is equal to number of rows in B.
- Column in A == Row in B

int x [3][3]

1	2	3
4	5	6
7	8	9

int x [2][3]

1	2	3
4	5	6

int x [3][2]

int x [2][3]

4	8
0	2
1	6

- Column in A == Row in B
- Let's suppose,

$$A = n1 * m1$$

$$B = n2 * m2$$

$$m1 == n2$$

Result matrix = n1 * m2

int x [3][2]

int x [2	2][4]

4	8
0	2
1	6

4	8	4	8
0	2	0	2

Column in A == Row in B

Resultant Matrix [3][4]

Multidimensional Arrays int x [2][4] Column in A == Row in B Resultant Matrix [3][4]

Hello would

Ans1	Ans2

Ans1 Ans2
Ans2

