This is a collection of old complex analysis qualifier exam solutions, as well as some notes on useful results and proofs.

Useful Results and Proofs

Analytic Functions

Definition: Let $U \subseteq \mathbb{C}$ be an open set. A function $f: U \to \mathbb{C}$ is called *analytic* if, for any $z_0 \in U$, there is r > 0 and $(a_k)_k \subseteq \mathbb{C}$ such that

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$$

for all $z \in U(z_0, r)$.

Analytic functions form a C-algebra.

Theorem (Identity Theorem): Let $f, g: U \to \mathbb{C}$ be analytic functions defined a connected open set (also known as a region). If

$$A = \{ z \in \mathbb{C} \mid f(z) = g(z) \}$$

admits an accumulation point in U, then f = g on U.

Proof. To begin, we show that if $f: U \to \mathbb{C}$ is an analytic function that is not uniformly zero, then for any $z_0 \in U$, there is $\rho > 0$ such that f is nonzero on $\dot{U}(z_0, \rho) \subseteq U$. Towards this end, we may write

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k,$$

for all $z \in U(z_0, r)$, some r > 0, and since f is not uniformly zero, there is some minimal ℓ such that $a_{\ell} \neq 0$. This yields

$$f(z) = (z - z_0)^{\ell} \sum_{k=0}^{\infty} a_{k+\ell} (z - z_0)^k;$$

the function h: $U(z_0, r) \to \mathbb{C}$ given by

$$h(z) = \sum_{k=0}^{\infty} a_{k+\ell} (z - z_0)^k$$

then has the same radius of convergence as f and is not zero at z_0 , so that g is not zero on some $U(z_0, \rho)$ as g is continuous.

Now, we let V_1 be the set of accumulation points of A in U, and let $V_2 = U \setminus V_1$.

If $z \in V_2$, then there is some $r_1 > 0$ such that $\dot{U}(z_0, r_1) \cap A = \emptyset$, or that $\dot{U}(z_0, r_1) \subseteq A^c$. Meanwhile, since U is open, there is some $r_2 > 0$ such that $U(z_0, r_2) \subseteq U$, meaning that if $r = \min\{r_1, r_2\}$, then $U(z_0, r) \subseteq U \setminus A$. Thus, V_2 is open.

Meanwhile, if $z \in V_1$, then since $V_1 \subseteq U$, it follows that there is r > 0 such that U(z, r) and $(a_k)_k$ such that

$$f(w) - g(w) = \sum_{k=0}^{\infty} a_k (w - z)^k$$

for all $w \in U(z, r)$. We claim that f(w) - g(w) is uniformly zero on U(z, r). Else, if there were $w_0 \in U(z, r)$ such that $f(w_0) \neq g(w_0)$, then it would follow that there is $0 < s \le r$ such that $f(w) \neq g(w)$ for all $w \in \dot{U}(w_0, s)$. Yet, this would contradict the assumption that z is an accumulation point, meaning that V_1 is open.

Since V_1 and V_2 are disjoint open sets whose union is equal to U, it follows that either $V_1 = U$ or $V_2 = U$. If $A \neq \emptyset$, then the identity theorem follows.

Differentiability

Definition: If $U \subseteq \mathbb{C}$ is an open set, then we say f is differentiable at $z_0 \in U$ if

$$\lim_{w \to z_0} \frac{f(w) - f(z_0)}{w - z_0}$$

exists. We call this value the *derivative* of f at z_0 , and usually write $f'(z_0)$.

If f is differentiable at every $z_0 \in U$, we say f is differentiable on U.

If f is continuous and admits a continuous derivative, then we say f is holomorphic.

Note that the limit must be independent of direction. That is, for all $\epsilon > 0$, there is $\delta > 0$ such that

$$\left|\frac{f(w)-f(z_0)}{z-z_0}-f'(z_0)\right|<\varepsilon$$

whenever $0 < |z - z_0| < \delta$.

Now, given $U \subseteq \mathbb{C}$, write z = x + iy and

$$f(z) = f(x + iy)$$

= $u(x, y) + iv(x, y)$,

where u = Re(f) and v = Im(f). Observe then that if f is differentiable at $x_0 + iy_0 \in U$, then since the limit is independent of path, by taking the limit over real numbers, we have

$$f'(z_0) = \lim_{h \to 0} \frac{(u(x+h,y) + iv(x+h,y)) - (u(x,y) + iv(x,y))}{h}$$
$$= \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x'}$$

and by taking over the imaginary numbers,

$$\begin{split} f'(z_0) &= \lim_{h \to 0} \frac{\left(u(x,y+h) + iv(x,y+h)\right) - \left(u(x,y) + iv(x,y)\right)}{ih} \\ &= -i\frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}. \end{split}$$

Thus, we obtain the following.

Definition: The system of partial differential equations

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

is known as the Cauchy-Riemann Equations.

Observe that if f is differentiable, then the u and v in the definition of f satisfy the Cauchy–Riemann equations. Yet, we desire to understand a bit more about when exactly f is differentiable or holomorphic.

Proposition: If f = u + iv is a holomorphic function such that u, v are in $C^2(U)$, then u and v are harmonic. That is, u and v satisfy Laplace's equation:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$$

We call u and v harmonic conjugates for each other. That is, if $u: U \to \mathbb{R}$ is a harmonic function, then $v \in C^1(U)$ is called a harmonic conjugate if the Cauchy–Riemann equations hold for u and v.

Theorem: Let $U \subseteq \mathbb{R}^2$ be a ball or all of \mathbb{R}^2 . Then, every harmonic function on U has a harmonic conjugate. If $u \in C^3(U)$, then this conjugate is itself harmonic.

Lemma: Let $g: U((x_0, y_0), R) \to \mathbb{R}$ be such that g and $\frac{\partial g}{\partial x}$ are continuous. Then, $G: U((x_0, y_0), R) \to \mathbb{R}$, given by

$$G(x,y) = \int_{y_0}^{y} g(x,t) dt$$

satisfies

$$\frac{\partial G}{\partial x} = \int_{10}^{9} \frac{\partial g}{\partial x}(x, t) dt.$$

Proof of Lemma. Write

$$\frac{G(x+h,y)-G(x,y)}{h}-\int_{u_0}^{y}\frac{\partial g}{\partial x}(x,t)\ dt=\int_{u_0}^{y}\left(\frac{g(x+h,t)-g(x,t)}{h}-\frac{\partial g}{\partial x}(x,t)\right)dt.$$

By mean value theorem, the first term is equal to $\frac{\partial g}{\partial x}(x_1,t)$ for some x_1 between x and x+h. As $h\to 0$, $x_1\to x$, as $\frac{\partial g}{\partial x}$ is uniformly continuous on a compact subset that contains x and x+h. We may exchange limit and integral to obtain the desired result.

Proof of Theorem. We prove for the case of $U = U((x_0, y_0), R)$. Define

$$v(x,y) = \int_{y_0}^{y} \frac{\partial u}{\partial x}(x,t) dt + \phi(x),$$

with $\phi(x)$ to be determined later. By the fundamental theorem of calculus, we have

$$\frac{\partial v}{\partial y} = \frac{\partial u}{\partial x},$$

while by differentiating under the integral sign, and using the fact that u is harmonic, we have

$$\begin{aligned} \frac{\partial v}{\partial x} &= \int_{y_0}^{y} \frac{\partial^2 u}{\partial x^2}(x, t) dt + \frac{d\phi}{dx} \\ &= -\int_{y_0}^{y} \frac{\partial^2 u}{\partial y^2}(x, t) dt + \frac{d\phi}{dx} \\ &= -\frac{\partial u}{\partial y}(x, y) + \frac{\partial u}{\partial y}(x, y_0) + \frac{d\phi}{dx}. \end{aligned}$$

Defining $\phi \colon \mathbb{R} \to \mathbb{R}$ by

$$\phi(x) = -\int_{x_0}^{x} \frac{\partial u}{\partial y}(s, y_0) ds,$$

we see that v thus satisfies all the necessary requirements to be a harmonic conjugate.

Now, if u is C^3 , then we defined v via the derivative of u, so that v is C^2 , and thus v is harmonic.

Cauchy's Integral Formula

Proposition: Fix $z_0 \in \mathbb{C}$, R > 0, and $f: U(z_0, R) \to \mathbb{C}$ holomorphic. For all $z \in U(z_0, R)$, we have

$$f(z) = \frac{1}{2\pi i} \int_{S(z_0,R)} \frac{f(\zeta)}{\zeta - z} d\zeta.$$

Proof. It suffices to show that

$$\frac{1}{2\pi i} \int_{S(z_0,R)} \frac{f(\zeta) - f(z)}{\zeta - z} d\zeta = 0.$$

By using the chain rule and fundamental theorem of calculus, we find

$$\begin{split} \frac{1}{2\pi i} \int_{S(z_0,R)} \frac{f(\zeta) - f(z)}{\zeta - z} \; d\zeta &= \frac{1}{2\pi i} \int_{S(z_0,R)} \frac{\int_0^1 f'((1-t)z + t\zeta)(\zeta - z) \; dt}{\zeta - z} \; d\zeta \\ &= \frac{1}{2\pi i} \int_{S(z_0,R)} \int_0^1 f'((1-t)z + t\zeta) \; dt \; d\zeta \\ &= \frac{1}{2\pi i} \int_{S(z_0,R)} \frac{d}{d\zeta} \bigg(\frac{1}{t} f((1-t)z + t\zeta) \bigg) \; d\zeta \\ &= 0. \end{split}$$

Proposition: Let $f: U \to \mathbb{C}$ be a holomorphic function. The following all hold:

- (i) f is analytic;
- (ii) f is smooth with $f^{(n)}$ holomorphic;
- (iii) for all $z_0 \in U$, if we let $R = \sup\{r > 0 \mid U(z_0, r) \subseteq U\}$, then there is $(a_n)_n \subseteq \mathbb{C}$ such that

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n,$$

where the power series has radius of convergence R.

Proof.

(i) There exists r < s with $U(z_0, s) \subseteq U$ and $r < r_1 < s$ such that $S(z_0, r_1) \subseteq U$. By Cauchy's Integral Formula, and a power series expansion of $\frac{1}{\xi - z}$ about z_0 , this gives

$$f(z) = \frac{1}{2\pi i} \oint_{S(z_0, r_1)} \frac{f(\xi)}{\xi - z} d\xi$$

$$= \sum_{n=0}^{\infty} (z - z_0)^n \underbrace{\left(\frac{1}{2\pi i} \oint_{S(z_0, r_1)} \frac{f(\xi)}{(\xi - z_0)^{n+1}} d\xi\right)}_{=:a_n}$$

$$= \sum_{n=0}^{\infty} a_n (z - z_0)^n.$$

(ii) Analytic functions are automatically smooth, hence complex-differentiable with continuous

derivative.

(iii) If $r < r_1 < R$, then

$$f(z) = \sum_{n=0}^{\infty} (z - z_0)^n \left(\frac{1}{2\pi i} \int_{S(z_0, r_1)} \frac{f(\xi)}{(\xi - z)^{n+1}} d\xi \right),$$

and since the series converges uniformly, we have

$$\frac{f^{(n)}(z)}{n!} = \frac{1}{2\pi i} \oint_{S(z_0, r_1)} \frac{f(\xi)}{(\xi - z)^{n+1}} d\xi.$$

Since r was arbitrary, this holds for any $0 < r_1 < R$, whence

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

holds for all $z \in U(z_0, R)$.

Corollary: Let $U \subseteq \mathbb{C}$ be open, let $z_0 \in U$, and r > 0 with $B(z_0, r) \subseteq U$. The following hold:

(i) for all $z \in U(z_0, r)$,

$$\frac{f^{(n)}(z)}{n!} = \frac{1}{2\pi i} \int_{S(z_0,r)} \frac{f(\xi)}{(\xi-z)^{n+1}} d\xi;$$

(ii) for all n > 0,

$$\left|f^{(n)}(z_0)\right| \leqslant \frac{n!}{r^n} \sup_{\zeta \in S(z_0,r)} |f(\zeta)|.$$

This particular result is known as Cauchy's Estimate.

Theorem (Liouville's Theorem): If $f: \mathbb{C} \to \mathbb{C}$ is holomorphic and bounded in modulus, then f is constant

Liouville's Theorem follows from applying Cauchy's estimate to f and using the fact that f is bounded to find that all higher derivatives of f vanish.

Theorem (Fundamental Theorem of Algebra): If $p(z) = a_n z^n + \cdots + a_1 z + a_0$ has $n \ge 1$ and $a_n \ne 0$, then there is at least one z_0 such that $p(z_0) = 0$.

Proof. Suppose p(z) were never zero. It would follow then that $\frac{1}{p(z)}$ is also an entire function.

Since $\lim_{|z|\to\infty} |p(z)| = \infty$, it follows that $\lim_{|z|\to\infty} \frac{1}{|p(z)|} = 0$, whence $\left|\frac{1}{p(z)}\right|$ is an entire function that is bounded (as all functions that vanish at infinity are bounded). This means that $\frac{1}{p(z)}$ is constant, so p(z) is constant.

Corollary: Let $f: \mathbb{C} \to \mathbb{C}$ be a nonconstant entire function. Then, $f(\mathbb{C})$ is dense in \mathbb{C} .

Proof. Suppose there were $w \in \mathbb{C}$ and r > 0 such that $U(w, r) \cap f(\mathbb{C}) = \emptyset$. Then, $|f(z) - w| \ge r$ for all $z \in \mathbb{C}$, meaning that

$$g(z) = \frac{1}{f(z) - w}$$

is bounded and entire (the entirety following from the fact that f(z) - w is nonvanishing).

Cycles, Winding Numbers, and Homology

Now, we may generalize some of these results related to Cauchy's Integral Formula.

Proposition: Let γ : $[a,b] \to \mathbb{C}$ be a piecewise C^1 loop. For all $z \in \mathbb{C} \setminus \operatorname{im}(\gamma)$, we have

$$\frac{1}{2\pi i} \oint_{\gamma} \frac{1}{\xi - z} d\xi \in \mathbb{Z}.$$

Proof. Let ϕ : $[a,b] \rightarrow \mathbb{C}$ be defined by

$$\phi(t) = \int_a^t \frac{\gamma'(s)}{\gamma(s) - z} ds.$$

Then, we observe

$$\phi(b) = \oint_{\gamma} \frac{1}{\xi - z} d\xi.$$

Then, define $\psi \colon [a, b] \to \mathbb{C}$ by

$$\psi(t) = \frac{e^{\phi(t)}}{\gamma(t) - z}.$$

By the fundamental theorem of calculus, we have

$$\phi'(t) = \frac{\gamma'(t)}{\gamma(t) - z}$$

$$\psi'(t) = \frac{\phi'(t)e^{\phi(t)}}{\gamma(t) - z} - \frac{e^{\phi'(t)}\gamma'(t)}{(\gamma(t) - z)^2}$$

$$= 0,$$

whence $\psi(t)$ is constant, and $\psi(t) = \psi(a)$, so

$$\psi(\alpha) = \frac{1}{\gamma(\alpha) - z}.$$

In particular, $\psi(b) = \psi(a)$, so

$$e^{\phi(b)} = \psi(b)(\gamma(b) - z)$$
$$= \psi(a)(\gamma(a) - z)$$
$$= 1,$$

so $\phi(b) = 2\pi i k$ for some $k \in \mathbb{Z}$.

Definition: Let γ : $[a, b] \to \mathbb{C}$ be a piecewise C^1 loop. For all $z \in \mathbb{C} \setminus \operatorname{im}(\gamma)$, define

$$n(\gamma; z) = \frac{1}{2\pi i} \oint_{\gamma} \frac{1}{\xi - z} d\xi$$

to be the *winding number* of γ about z.

Definition: A piecewise C^1 *cycle* is a formal sum

$$\Gamma = \gamma_1 + \cdots + \gamma_n$$

where the γ_j : $\left[\alpha_j, b_j\right] \to \mathbb{C}$ are piecewise C^1 loops. The *length* of Γ is the sum of the lengths of the respective γ_j .

Given a piecewise C^1 cycle Γ , define

$$\oint_{\Gamma} f(z) dz = \sum_{j=1}^{n} \oint_{\gamma_{j}} f(z) dz,$$

and

$$n(\Gamma;z) = \sum_{j=1}^{n} n(\gamma_j;z).$$

Proposition: The following hold for the winding number $n(\gamma; z)$:

- (i) the function $n(\Gamma; \cdot) \colon \mathbb{C} \setminus im(\gamma) \to \mathbb{Z}$ is continuous;
- (ii) $n(\Gamma; z)$ is constant on each connected component of $\mathbb{C} \setminus \text{im}(\Gamma)$;
- (iii) there exists a unique unbounded connected component with $n(\Gamma; z) = 0$ for all z in this unbounded connected component.

Proof.

(i) Since $\operatorname{im}(\Gamma)$ is compact, any $z \notin \operatorname{im}(\Gamma)$ admits a strictly positive

$$\operatorname{dist}_{\operatorname{im}(\Gamma)}(z) = \inf_{w \in \operatorname{im}(\Gamma)} |w - z|.$$

Let $w \in \mathbb{C}$ be such that

$$|w-z|<\frac{1}{2}\operatorname{dist}_{\operatorname{im}(\Gamma)}(z),$$

so that $w \in \mathbb{C} \setminus \text{im}(\Gamma)$. Observe then that

$$|n(\Gamma;z) - n(\Gamma;w)| = \left| \frac{1}{2\pi i} \oint_{\Gamma} \frac{1}{\xi - z} - \frac{1}{\xi - w} d\xi \right|$$

$$\leq \frac{1}{2\pi} \sum_{j=1}^{n} \oint_{\gamma_{j}} \left| \frac{1}{\xi - z} - \frac{1}{\xi - w} \right| |d\xi|$$

$$= \frac{1}{2\pi} \sum_{j=1}^{n} \oint_{\gamma_{j}} \left| \frac{z - w}{(\xi - z)(\xi - w)} \right| |d\xi|$$

$$\leq \frac{1}{2\pi} \left(\frac{2}{\operatorname{dist}_{\operatorname{im}(\Gamma)}(z)} \right)^{2} \ell(\Gamma)|z - w|,$$

whence $|n(\Gamma; z) - n(\Gamma; w)|$ is sufficiently small whenever |z - w| is sufficiently small.

- (ii) If C is a connected component of $\mathbb{C} \setminus \operatorname{im}(\Gamma)$, and $\operatorname{n}(\Gamma; \cdot) \colon C \to \mathbb{Z}$ is continuous, then since \mathbb{Z} is discrete, $\operatorname{n}(\Gamma; \cdot)$ is constant on C.
- (iii) For uniqueness, if there are unbounded connected components C_1 and C_2 of $\mathbb{C} \setminus \operatorname{im}(\Gamma)$, then there exists $M > \sup_{z \in \operatorname{im}(\Gamma)} |z|$ and $w_1 \in C_1, w_2 \in C_2$ such that $|w_1| > 2M$ and $|w_2| > 2M$. Since $\mathbb{C} \setminus U(0, 2M)$ is path connected, there exists $\gamma \colon [0, 1] \to \mathbb{C}$ with $|\gamma(t)| \ge 2M$ and $\gamma(0) = w_1$, $\gamma(1) = w_2$. Therefore, w_1 and w_2 are in the same connected component.

Existence then follows from $im(\Gamma)$ being compact.

Finally, let $(z_n)_n \subseteq C$, where C is the unbounded connected component, be such that $\lim_{n\to\infty} |z_n| = \infty$. For $M > \sup_{z\in \operatorname{im}(\gamma)} |z|$, there exists $m \in \mathbb{N}$ such that $|z_m| > M$. Then, we have

$$|n(\Gamma; z_{m})| = \left| \frac{1}{2\pi i} \oint_{\Gamma} \frac{1}{\xi - z} d\xi \right|$$

$$\leq \frac{1}{2\pi} \sum_{j=1}^{k} \oint_{\gamma_{j}} \frac{1}{|\xi - z|} |d\xi|$$

$$\leq \frac{1}{2\pi} \sum_{j=1}^{k} \oint_{\gamma_{j}} \frac{1}{|z_{m}| - M} |d\xi|$$

$$= \frac{\ell(\Gamma)}{2\pi (|z_{m}| - M)'}$$

whence $\lim_{m\to\infty} \mathfrak{n}(\Gamma; z_m) = 0$, meaning that there exists N such that $|\mathfrak{n}(\Gamma; z_m)| < 1$ for all $m \ge N$, meaning $\mathfrak{n}(\Gamma; z_m) = 0$ for all sufficiently large m. Since C is connected, it thus follows that $\mathfrak{n}(\Gamma; z) = 0$ for all $z \in C$.

Definition: Let $U \subseteq \mathbb{C}$ be open. A cycle Γ is *homologous to zero in* U if $im(\Gamma) \subseteq U$ and for all $z \in \mathbb{C} \setminus U$, $n(\Gamma; z) = 0$.

Theorem (Cauchy's Integral Formula, General Case): Let $\Gamma = \gamma_1 + \cdots + \gamma_k$ be a piecewise C^1 cycle homologous to zero in U, and $f: U \to \mathbb{C}$ holomorphic. Then, for all $z \in U \setminus \text{im}(\Gamma)$,

$$n(\Gamma; z)f(z) = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(\xi)}{\xi - z} d\xi$$

Theorem (Cauchy's Integral Theorem): Let $U \subseteq \mathbb{C}$ be open, $f: U \to \mathbb{C}$ holomorphic, and Γ homologous to zero in U. Then,

$$\oint_{\Gamma} f(z) dz = 0.$$

Definition: A region $U \subseteq \mathbb{C}$ is called *simply connected* if its complement in the extended complex plane is connected.

Theorem: If $U \subseteq \mathbb{C}$ is simply connected, then every loop in U is homologous to zero.

Proof. Extend the function $n(\gamma; \cdot)$ to the extended complex plane by defining $n(\gamma; \infty) = 0$. This extended function is continuous on $\hat{\mathbb{C}} \setminus \mathbb{U}$, as $n(\gamma; \cdot)$ is zero on the unique unbounded connected component of $\mathbb{C} \setminus \operatorname{im}(\gamma)$. It follows that $n(\gamma; z)$ is equal to zero on $\hat{\mathbb{C}} \setminus \mathbb{U}$, whence γ is homologous to zero in \mathbb{U} .

Proposition: Let $U \subseteq \mathbb{C}$ be a region, $f: U \to \mathbb{C}$ holomorphic. The following are equivalent:

- (i) there exists a holomorphic function $F: U \to \mathbb{C}$ such that F'(z) = f(z);
- (ii) for every piecewise C^1 loop γ with im(γ) \subseteq U, we have

$$\oint_{\mathcal{V}} f(z) dz = 0.$$

Proof. The direction (i) \Rightarrow (ii) follows immediately from the fundamental theorem of calculus. In the reverse direction, we define $F: U \to \mathbb{C}$ by

$$f(z) = \int_{\sigma(z_0, z)} f(\xi) d\xi,$$

where $\sigma(z_0, z)$: $[0, 1] \to U$ is a piecewise C^1 curve with $\sigma(0) = z_0$ and $\sigma(1) = z$. Such a curve always

exists as U is open and connected (hence path-connected). The integral is well-defined, since if γ_1 and γ_2 are any two such paths, then $\Gamma = \gamma_1 \setminus \gamma_2$ is a piecewise C^1 loop. Additionally, F is continuous.

Now, we evaluate the derivative of F. Let $z \in U$, r > 0 such that $U(z, r) \subseteq U$, and $h \in \mathbb{C}$ be such that $z + h \in U(z, r)$. Then,

$$\begin{split} \frac{F(z+h)-F(z)}{h} &= \frac{1}{h} \int_{\sigma(z_0,z_0+h)} f(\xi) \ d\xi - \frac{1}{h} \int_{\sigma(z_0,z)} f(\xi) \ d\xi \\ &= \frac{1}{h} \int_{\sigma(z,z+h)} f(\xi) \ d\xi. \end{split}$$

We may assume that $\sigma(z, z + h)$ is a straight line, so that

$$\int_{\sigma(z,z+h)} f(\xi) d\xi = hf(z),$$

meaning that

$$\left| \frac{\mathsf{F}(z+\mathsf{h}) - \mathsf{F}(z)}{\mathsf{h}} - \mathsf{f}(z) \right| = \frac{1}{|\mathsf{h}|} \left| \int_{\sigma(z,z+\mathsf{h})} \mathsf{f}(\xi) \; \mathrm{d}\xi - \mathsf{f}(z) \right|$$
$$\leq \sup_{w \in \mathrm{im}(\sigma(z,z+\mathsf{h}))} |\mathsf{f}(w) - \mathsf{f}(z)|.$$

Since f is continuous, it follows that the right hand side goes to zero as |h| becomes small. Thus, F' is continuous, so f is holomorphic.

Observe that $\mathbb{C} \setminus \{0\}$ is not simply connected, meaning that, for instance, the function

$$f(z) = \frac{1}{z}$$

does not have a holomorphic antiderivative defined on the entirety $\mathbb{C} \setminus \{0\}$, as

$$\int_{S^1} f(z) dz = 2\pi i.$$

Yet, if we restrict f(z) to a simply connected subset of \mathbb{C} , there *is* a holomorphic antiderivative. Choosing such a simply connected subset of \mathbb{C} is known as choosing a *branch* of the logarithm. In fact, there is more that we can say.

Corollary: Let $U \subseteq \mathbb{C}$ be simply connected, and let $f: U \to \mathbb{C} \setminus \{0\}$ be a nonvanishing holomorphic function. For each fixed pair $z_0 \in U$ and $w_0 \in \mathbb{C}$ for which $e^{w_0} = f(z_0)$, there exists a unique holomorphic function $g: U \to \mathbb{C}$ for which $g(z_0) = w_0$ and $e^{g(z)} = f(z)$.

We call g the logarithm of f, written $g(z) = \log(f(z))$.

Proof. Since f is nonvanishing and U is simply connected, it follows that $\frac{f'}{f}$ is holomorphic on U, meaning there is $\widetilde{g} \colon U \to \mathbb{C}$ such that $\widetilde{g}'(z) = \frac{f'(z)}{f(z)}$. Thus, there is some constant K such that

$$f(z) = Ke^{\widetilde{g}(z)}.$$

Define

$$q(z) = \log(K) + \widetilde{q}(z)$$
.

Theorem (Morera's Theorem): Let $U \subseteq \mathbb{C}$ be open, $f: U \to \mathbb{C}$ continuous. Suppose

$$\oint_{\mathsf{T}} \mathsf{f}(z) \; \mathrm{d}z = 0$$

for all triangles $T \subseteq U$ homologous to zero. Then, f is holomorphic.

Proof. Since U is open, if $z_0 \in U$, there is r such that $U(z_0, r) \subseteq U$. Define F: $U(z_0, r) \to \mathbb{C}$ by

$$F(z) = \int_{\sigma(z_0, z)} f(\xi) d\xi,$$

where σ is the straight line from z_0 to z. For $0 < |h| < r - |z - z_0|$, we construct the straight lines $\sigma(z, z + h)$ and $\sigma(z_0, z + h)$, such that

$$T = \sigma(z_0, z) + \sigma(z, z + h) - \sigma(z_0, z + h)$$

and

$$\oint_{T} f(z) dz = 0$$

$$= \int_{\sigma(z_{0},z)} f(\xi) d\xi + \int_{\sigma(z,z+h)} f(\xi) d\xi - \int_{\sigma(z_{0},z+h)} f(\xi) d\xi$$

$$= F(z) - F(z+h) + \int_{\sigma(z,z+h)} f(\xi) d\xi,$$

meaning

$$F(z+h) - F(z) = \int_{\sigma(z,z+h)} f(\xi) d\xi$$

$$\frac{F(z+h) - F(z)}{h} = \frac{1}{h} \int_{\sigma(z,z+h)} f(\xi) d\xi$$

$$\left| \frac{F(z+h) - F(z)}{h} - f(z) \right| = \left| \frac{1}{h} \int_{\sigma(z,z+h)} (f(\xi) - f(z)) d\xi \right|$$

$$\leq \frac{1}{|h|} |h| \sup_{w \in \text{im}(\sigma(z,z+h))} |f(w) - f(z)|$$

$$= \sup_{w \in \text{im}(\sigma(z,z+h))} |f(w) - f(z)|.$$

Since f is continuous, it follows that for sufficiently small |h|, the right-hand-side goes to zero, whence F'(z) = f(z), meaning F is holomorphic, so F is analytic, meaning f is analytic, so f is holomorphic.

Definition: Let $U \subseteq \mathbb{C}$ be open, γ_1, γ_2 piecewise C^1 loops in U. We say γ_1 and γ_2 are homotopic in U if there is a continuous function

$$H: [a,b] \times [0,1] \rightarrow U$$

such that

$$H(s,0) = \gamma_1(s)$$

 $H(s,1) = \gamma_2(s)$
 $H(a,t) = H(b,t)$.

For each t, $H(\cdot, t)$ is a continuous loop. We call H a homotopy between γ_0 and γ_1 .

П

Theorem: If γ_0 and γ_1 are homotopic in U, then $\Gamma = \gamma_1 - \gamma_0$ is homologous to zero in U.

Theorem: If $K \subseteq U$ is compact and U is connected, then there is some cycle Γ homologous to zero in U such that $n(\Gamma; z) = 1$ for all $z \in K$.

Corollary: Let U be a region. The following are equivalent:

- (i) U is simply connected;
- (ii) for every nonvanishing holomorphic function $f: U \to \mathbb{C} \setminus \{0\}$, there is a holomorphic function $g: U \to \mathbb{C}$ such that $f(z) = e^{g(z)}$;
- (iii) for all cycles Γ with $\operatorname{im}(\Gamma) \subseteq U$, Γ is homologous to zero in U.

Proof. We have already shown the direction (i) \Rightarrow (ii). To see (ii) \Rightarrow (iii), we start by fixing $w \in \mathbb{C} \setminus \mathbb{U}$. Let $g: \mathbb{U} \to \mathbb{C}$ be a holomorphic function with $e^{g(z)} = z - w$. Taking derivatives, we have $g'(z) = \frac{1}{z - w}$, so for any cycle with $\operatorname{im}(\Gamma) \subseteq \mathbb{U}$, we have

$$n(\Gamma; w) = \frac{1}{2\pi i} \int_{\Gamma} \frac{1}{z - w} dz$$
$$= \frac{1}{2\pi i} \int_{\Gamma} g'(z) dz$$
$$= 0$$

To see (iii) \Rightarrow (i), we show the contrapositive. Toward this end, suppose U is not simply connected. Then, $\hat{\mathbb{C}} \setminus \mathbb{U}$ is connected, so there are closed nonempty disjoint sets V_1 and V_2 such that $\hat{\mathbb{C}} \setminus \mathbb{U} = V_1 \cup V_2$. One of these V_i contains ∞ , so without loss of generality, suppose V_1 contains ∞ , meaning V_2 is bounded (hence compact).

Let $\widetilde{U} = U \cup V_2$. $U \cup V_2$ is open in \mathbb{C} as its complement in \mathbb{C} is $V_1 \setminus \{\infty\}$, which is closed in \mathbb{C} .

Maximum Modulus Principle

Theorem (Mean Value Property): Let $U \subseteq \mathbb{C}$ be open, $f: U \to \mathbb{C}$ holomorphic, with $z_0 \in U$ and r > 0 such that $B(z_0, r) \subseteq U$. Then,

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta.$$

Proof. By the Cauchy Integral Formula, we have

$$f(z_0) = \frac{1}{2\pi i} \int_{S(z_0, r)} \frac{f(\xi)}{\xi - z} d\xi.$$

Parametrizing $\gamma(\theta) = z_0 + re^{i\theta}$, we get

$$f(z_0) = \frac{1}{2\pi i} \int_0^{2\pi} \frac{f(z_0 + re^{i\theta})}{re^{i\theta}} ire^{i\theta} d\theta$$
$$= \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta.$$

Corollary: If $u: \mathbb{R}^2 \supseteq U \to \mathbb{R}$ is harmonic, $(x_0, y_0) \in U$, and r > 0 is such that $B((x_0, y_0), r) \subseteq U$, then

$$u(x_0, y_0) = \frac{1}{2\pi} \int_0^{2\pi} u(x_0 + r\cos(\theta), y_0 + r\sin(\theta)) d\theta.$$

Proof. Take real parts of the mean value property for holomorphic f = u + iv.

Observe then that the triangle inequality implies that

$$|u(x_0, y_0)| \le \frac{1}{2\pi} \int_0^{2\pi} |u(x_0 + r\cos(\theta), y_0 + r\sin(\theta))| d\theta.$$

Functions that satisfy this weaker criterion are known as *subharmonic*. It is subharmonic functions for which the most general case of the *maximum modulus principle* hold.

Theorem (Maximum Modulus Principle): Let $U \subseteq \mathbb{R}^2$ be open and connected, and let $u: U \to \mathbb{R}$ be subharmonic. Suppose there exists $(x_0, y_0) \in U$ such that $u(x_0, y_0) \geqslant u(x, y)$ for all $x, y \in U$. Then, u is constant

Proof. Let $\lambda = u(x_0, y_0)$, and let $E = \{(x, y) \mid u(x, y) = \lambda\} = u^{-1}(\{\lambda\})$. We see immediately that E is closed; we claim that E is also open.

Fix $(x_1, y_1) \in E$. Then, $u(x_1, y_1) = \lambda$. Take r > 0 such that $U((x_1, y_1), r) \subseteq U$. Then, for all 0 < s < r, we have $S((x_1, y_1), s) \subseteq U$, meaning that

$$\lambda = u(x_1, y_1)$$

$$\leq \frac{1}{2\pi} \int_0^{2\pi} u(x_1 + s\cos(\theta), y_1 + s\sin(\theta)) d\theta$$

$$\leq \lambda,$$

with the latter inequality following from the fact that λ is a local maximum. Therefore, $u(x_1 + s\cos(\theta), y_1 + s\sin(\theta)) = \lambda$ for all 0 < s < r, whence $U((x_1, y_1), r) \subseteq E$. Thus, E is open, so since U is connected, it follows that E is all of U, meaning u is constant.

Corollary: If $U \subseteq \mathbb{R}^2$ is bounded and $u : \overline{U} \to \mathbb{R}$ is continuous with $u|_U$ subharmonic, then there exists $(x_0, y_0) \in \partial U$ such that $u(x_0, y_0) = \sup_{(x, u) \in U} u(x, y)$.

Corollary: If $U \subseteq \mathbb{C}$ is open and connected, with $f: U \to \mathbb{C}$ holomorphic, then if $|f|: U \to \mathbb{R}$ has a local maximum at $z_0 \in U$, then f is constant.

Proof. Let r > 0 be such that $U(z_0, r) \subseteq U$. Then, restricting |f| to $U(z_0, r)$, we see that |f| restricted to $U(z_0, r)$ is subharmonic viewed as a function on $U(z_0, r)$, hence |f| is constant on $U(z_0, r)$.

Now, by the mean value property and triangle inequality, it follows that for all 0 < s < r, we have

$$|f(z_0)| \leqslant \frac{1}{2\pi} \int_0^{2\pi} |f(z_0 + se^{i\theta})| d\theta$$

= |f(z_0)|,

meaning that these are equalities. In particular, there exists some θ_s such that $e^{i\theta_s} f(z_0 + se^{i\theta}) \ge 0$, meaning that for this value of s, we have

$$|f(z_0)| = e^{i\theta_s} \int_0^{2\pi} f(z_0 + se^{i\theta}) d\theta$$
$$= e^{i\theta_s} f(z_0),$$

with the latter equality following from the mean value property. Since this holds for any s, it follows that θ_s is independent of s, meaning that $f(z)e^{i\theta_s} \ge 0$ for all $z \in U(z_0, r)$, meaning that $Im(e^{i\theta_s}f(z)) = 0$ on $U(z_0, r)$, whence $f(z)e^{i\theta_s}$ is constant, meaning f is constant on $U(z_0, r)$.

Finally, by the identity theorem, it follows that f is constant on U.

Definition: Let $U \subseteq \mathbb{R}^2$ be an open set. We say a sequence $U \supseteq ((x_n, y_n))_n \to \partial U$ if, for every compact $K \subseteq U$, the set $\{n \in \mathbb{N} \mid (x_n, y_n) \in K\}$ is finite.

Definition: Let $U \subseteq \mathbb{R}^2$ be an open set. Given a function $u: U \to \mathbb{R}$, define

$$\limsup_{(x,y)\to\partial U} \mathfrak{u}(x,y)\coloneqq \inf_{\substack{K\subseteq U\\ K \text{ compact } (x,y)\in U\setminus K}} \mathfrak{u}(x,y).$$

These definitions allow us to extend the maximum modulus principle for subharmonic functions even further.

Theorem: Let $U \subseteq \mathbb{C}$ be a region, $u: U \to \mathbb{R}$ a nonconstant subharmonic function. If $((x_n, y_n))_n \subseteq U$ is such that $\mathfrak{u}(x_n, y_n) \to \sup_{x,y \in U} \mathfrak{u}(x,y)$, then $((x_n, y_n))_n \to \partial U$. Moreover, $\limsup_{(x,y) \to \partial U} \mathfrak{u}(x,y) = \sup_{(x,y) \in U} \mathfrak{u}(x,y)$.

Proof. Suppose toward contradiction that $((x_n, y_n))_n \to \partial U$, so there exists a compact subset $K \subseteq U$ and a subset $((x_{n_k}, y_{n_k}))_k$ wholly contained in K. Since K is compact, there is a subsequence of $((x_{n_k}, y_{n_k}))_k$ converging to $(x_0, y_0) \in U$. Therefore, $u(x_0, y_0) = \sup_{(x,y) \in U} u(x,y)$, so u is constant by the maximum modulus principle, which is a contradiction.

Finally, $\limsup_{(x,y)\to\partial U}u(x,y)\leqslant \sup_{(x,y)\in U}u(x,y)$, while if $((x_n,y_n))_n\to \partial U$ is such that $u(x_n,y_n)$ converges to $\sup_{(x,y)\in U}u(x,y)$, then $\sup_{(x,y)\in U}u(x,y)=\lim_{n\to\infty}u(x_n,y_n)\leqslant \lim\sup_{(x,y)\to\partial U}u(x,y)$.

Theorem (Open Mapping Principle): Let $U \subseteq \mathbb{C}$ be a region, and let $f: U \to \mathbb{C}$ be a nonconstant holomorphic function. Then, $f(V) \subseteq \mathbb{C}$ is open.

Proof. Let $z_0 \in U$ and r > 0 be such that $B(z_0, r) \subseteq U$. We will show that there exists R such that $U(f(z_0), R) \subseteq f(U(z_0, r)) \subseteq U$, whence f(U) is open.

Since U is a region and f is nonconstant, the zeros of $g(z) := f(z) - f(z_0)$ are isolated, so there exists some 0 < s < r such that

$$\delta = \inf_{|z - z_0| = s} |f(z) - f(z_0)|$$

is strictly greater than zero. We claim that $U(f(z_0), \delta/2) \subseteq f(U(z_0, r))$. Suppose this were not the case, meaning there would be some $\xi \in U(f(z_0), \delta/2) \setminus f(U(z_0, r))$, and define $h: B(z_0, s) \to \mathbb{C}$ by

$$h(z) = \frac{1}{f(z) - \xi}.$$

Since $\xi \notin f(U(z_0, r))$, this is holomorphic, while $\xi \in U(f(z_0), \delta/2)$ implies

$$\sup_{|z-z_0|=s} |h(z)| = \sup_{|z-z_0|=s} \frac{1}{|f(z)-\xi|}$$

$$\leq \sup_{|z-z_0|=s} \frac{1}{|f(z)-f(z_0)|-|f(z_0)-\xi|}$$

$$\leq \frac{1}{\delta-\delta/2}$$

$$= \frac{2}{\delta}.$$

Yet,

$$|h(z_0)| = \frac{1}{|f(z_0) - \xi|}$$
$$> \frac{2}{\delta},$$

contradicting the maximum modulus principle. Thus, $U(f(z_0), \delta/2) \subseteq f(U(z_0, r))$.

The Phragmén-Lindelöf Method

The maximum modulus principle is primarily useful in the case where f is continuous on the closure of a bounded open set U and holomorphic on the interior. Yet, this fails to be true if U is unbounded.

For instance, if

$$U = \left\{ z \in \mathbb{C} \mid -\frac{\pi}{2} < \operatorname{Im}(z) < \frac{\pi}{2} \right\},\,$$

and $f(z) = e^{e^z}$, then

$$f\left(x\pm\frac{\pi}{2}i\right)=e^{\pm i\,e^x},$$

whence |f(z)| = 1 for $z \in \partial U$. Yet, $f(z) \to \infty$ very rapidly along the positive real axis, which is contained in U.

Yet, all hope is not lost in the case that U is unbounded. If U is unbounded and there is $g: U \to \mathbb{C}$ such that |f| < |g|, and $g \to \infty$ "slowly" (so to speak) as $z \to \infty$, then it turns out that f is actually bounded in U, and we can use the maximum modulus principle to obtain other conclusions about f.

Finding such a g is part of the *Phragmén–Lindelöf* method, which we expand upon here.

Example: From the Cauchy estimates, we know that if f is entire and

$$|f(z)| \leqslant C\Big(1+|z|^{1/2}\Big),$$

then f is constant.

Theorem (Hadamard Three-Lines Theorem): Let $a,b \in \mathbb{R}$ be fixed with a < b. Let $U = \{z \mid a < \text{Re}(z) < b\}$. Suppose |f(z)| < B for all $z \in U$ and some fixed $B < \infty$. Define

$$M(x) = \sup\{|f(z)| \mid z \in \overline{U}\}.$$

Then,

$$M(x)^{b-a} \leqslant M(a)^{b-x}M(b)^{x-a}.$$

Proof. Suppose M(a) = M(b) = 1. Our task now is to show that $|f(z)| \le 1$ for all $z \in U$. Toward this end, define

$$h_{\varepsilon}(z) = \frac{1}{1 + \varepsilon(z - \alpha)}$$

for $z \in \overline{U}$. We have $|h_{\varepsilon}| \le 1$ in \overline{U} , so that

$$|f(z)h_{\varepsilon}(z)| \leq 1$$

for all $z \in \partial U$. Furthermore, since $|1 + \varepsilon(z - \alpha)| \ge \varepsilon |\operatorname{Im}(z)|$, we have

$$|f(z)h_{\varepsilon}(z)| \le \frac{B}{\varepsilon|\operatorname{Im}(z)|}$$

for all $z \in \overline{\mathbb{U}}$. Cut out a (closed) rectangle R from $\overline{\mathbb{U}}$ via the lines $\mathrm{Im}(z) = \pm \frac{\mathbb{B}}{\varepsilon}$. Thus, along ∂R , we have $|f(z)h_{\varepsilon}(z)| \leq 1$, so that $|f(z)h_{\varepsilon}(z)| \leq 1$ on R by the maximum modulus principle.

Yet, since $|f(z)h_{\varepsilon}(z)| \le \frac{B}{\varepsilon|\operatorname{Im}(z)|}$ on the entirety of \overline{U} , and $\frac{B}{\varepsilon|\operatorname{Im}(z)|} < 1$ outside R, it follows that $|fh_{\varepsilon}| \le 1$ on \overline{U} , so $|f(z)h_{\varepsilon}(z)| \le 1$ for all $z \in U$ and all $\varepsilon > 0$. Taking the limit as $\varepsilon \to 0$, we obtain the desired result,

П

that $|f(z)| \leq 1$.

In the general case, we define

$$g(z) = M(a)^{(b-z)/(b-a)}M(b)^{(z-a)/(b-a)},$$

where for all M > 0 and complex w, we have $M^w = e^{w \ln(M)}$. Then, g is entire, g is always nonzero, $\frac{1}{g}$ is bounded on \overline{U} , and has

$$|g(a + iy)| = M(a)$$
$$|g(b + iy)| = M(b),$$

meaning that $\frac{f}{g}$ satisfies the previous assumptions, so that $|f/g| \le 1$ in U.

In the Phragmén–Lindelöf method, we seek to find a particular ε -dependent function $h_{\varepsilon} \colon U \to \mathbb{C}$ such that the following hold:

- $|\mathsf{fh}_{\varepsilon}(z)| \leq \mathsf{M}$ for all $z \in \partial \mathsf{U}$;
- $\lim_{\varepsilon \to 0} h_{\varepsilon}(z) = 1$;
- there exists a bounded $V \subseteq U$ such that $|fh_{\varepsilon}| \leq M$ on ∂V and on $U \setminus \overline{V}$.

In the proof of the Hadamard Three-Lines Theorem, we used the function $h_{\varepsilon}(z) = \frac{1}{1+\varepsilon(z-\alpha)}$ for this purpose.

Classification of Singularities

The classification of singularities seeks to answer two fundamental questions: if $U \subseteq \mathbb{C}$ is open, $z_0 \in U$, and $f: U \setminus \{z_0\} \to \mathbb{C}$ is holomorphic,

- does f have a holomorphic extension to U including z_0 ;
- and what else can we say about the behavior of f at z_0 ?

Definition: Let $U \subseteq \mathbb{C}$ be open, $z_0 \in U$, $f: U \setminus \{z_0\} \to \mathbb{C}$ holomorphic.

- If there exists a holomorphic $g: U \to \mathbb{C}$ with g = f on $U \setminus \{z_0\}$, then we say z_0 is a *removable singularity*.
- If $\lim_{z\to z_0} |f(z)| = \infty$, then we say f has a *pole* at z_0 .
- Else, we say f has an essential singularity at z_0 .

Theorem (Riemann's Theorem on Removable Singularities): Let $U \subseteq \mathbb{C}$ be open, $z_0 \in U$, and $f: U \setminus \{z_0\} \to \mathbb{C}$ holomorphic. Then, z_0 is a removable singularity if and only if $\lim_{z \to z_0} f(z) = 0$.

Proof. If z_0 is removable, then g(z) is a holomorphic function with g(z) = f(z) on $U \setminus \{z_0\}$, and since g is continuous, it follows that $\lim_{z\to z_0} g(z) = g(z_0)$, whence $\lim_{z\to z_0} (z-z_0)g(z) = \lim_{z\to z_0} (z-z_0)f(z) = 0$.

Now, if $\lim_{z\to z_0}(z-z_0)f(z)=0$, then there is r such that $B(z_0,r)\subseteq U$, and since f is locally bounded around z_0 , it follows that

$$f(z) = \frac{1}{2\pi i} \int_{S(z_0, r)} \frac{f(\zeta)}{\zeta - z} d\zeta$$

holds for all $z \in U(z_0, r)$. Yet, the formula extends to z_0 as it is bounded, whence we may define the holomorphic extension for f by

$$g(z) = \begin{cases} f(z) & z \neq z_0 \\ \frac{1}{2\pi i} \int_{S(z_0,r)} \frac{g(\zeta)}{\zeta - z} d\zeta & z = z_0 \end{cases}.$$

Proposition (Existence of Laurent Series): Suppose $f: A(z_0, r, R) \to \mathbb{C}$ is holomorphic, with $0 \le r < R$. Then, there exist holomorphic functions

$$g_1: U(z_0, R) \to \mathbb{C}$$

 $g_2: \mathbb{C} \setminus B(z_0, r) \to \mathbb{C}$

such that $f = g_1 + g_2$ on $A(z_0, r, R)$. Moreover, there exists $(a_n)_{n \in \mathbb{Z}} \subseteq \mathbb{C}$ such that

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n$$

for all z, and the series converges uniformly on $A(z_0, \rho, s)$ with $r < \rho < s < R$.

Proof. Fix $z \in A(z_0, r, R)$. Then, for $r < \rho_1, \rho_2 < |z - z_0|$, the cycle

$$\Gamma_1 = S(z_0, \rho_1) - S(z_0, \rho_2)$$

is homologous to zero in $A(z_0, r, |z - z_0|)$. By Cauchy's Integral Theorem, it then follows that

$$\oint_{S(z_0,\varrho_1)} \frac{f(\xi)}{\xi - z} d\xi = \oint_{S(z_0,\varrho_2)} \frac{f(\xi)}{\xi - z} d\xi.$$

Similarly, for $|z - z_0| < s_1, s_2 < R$, we have

$$\oint_{S(z_0,s_1)} \frac{f(\xi)}{\xi - z} d\xi = \oint_{S(z_0,s_2)} \frac{f(\xi)}{\xi - z} d\xi.$$

Define $g_1: U(z_0, R) \to \mathbb{C}$ by

$$g_1(z) = \frac{1}{2\pi i} \oint_{S(z_0,s)} \frac{f(\xi)}{\xi - z} d\xi,$$

where $|z - z_0| < s < R$. This function is holomorphic by Morera's Theorem. Similarly, we may define $g: \mathbb{C} \setminus B(z_0, r) \to \mathbb{C}$ by

$$g_2(z) = -\frac{1}{2\pi i} \oint_{S(z_0,0)} \frac{f(\xi)}{\xi - z} d\xi,$$

where $r < \rho < |z - z_0|$. We claim that $f = g_1 + g_2$ on $A(z_0, r, R)$.

For $z \in A(z_0, r, R)$, we may find, for any $r < \rho < |z - z_0| < s < R$, we let

$$\Gamma = S(z_0, s) - S(z_0, \rho),$$

homologous to zero in $A(z_0, r, R)$, whence

$$f(z) = \frac{1}{2\pi i} \left(\oint_{S(z_0,s)} \frac{f(\xi)}{\xi - z} d\xi - \int_{S(z_0,\rho)} \frac{f(\xi)}{\xi - z} d\xi \right)$$

= $g_1(z) + g_2(z)$.

Old Exams

Notation

- $U(z_0, r) = \{z \in \mathbb{C} \mid |z z_0| < r\}$
- $B(z_0, r) = \{z \in \mathbb{C} \mid |z z_0| \le r\}$
- $S(z_0, \mathbf{r}) = \{ z \in \mathbb{C} \mid |z z_0| = \mathbf{r} \}$
- $\dot{\mathsf{U}}(z_0, \mathsf{r}) = \{ z \in \mathbb{C} \mid 0 < |z z_0| < \mathsf{r} \}$
- $A(z_0, r_1, r_2) = \{z \in \mathbb{C} \mid r_1 < |z z_0| < r_2\}$