

TEKNOFEST-2023 ROKET YARIŞMASI Orta İrtifa Kategorisi Ön Tasarım Raporu (ÖTR) Sunuşu **KONURALP**

Takım Yapısı

Yarışma Roketi Genel Bilgiler

Yarışma Roketi Hakkında Genel Bilgiler

	Ölçü
Boy (mm):	2890 mm
Çap (mm):	130 mm
Roketin Kuru Ağırlığı (g):	20966 g
Yakıt Kütlesi (g):	6500 g
Motorun Kuru Ağırlığı (g):	8500 g
Faydalı Yük Ağırlığı (g):	4030 g
Toplam Kalkış Ağırlığı (g):	31496 g

Tahmin Edilen Uçuş Verileri ve Analizleri

	Ölçü
Kalkış İtki/Ağırlık Oranı:	8.67
Rampa Çıkış Hızı (m/s):	30 m/s
Stabilite (0.3 Mach için):	2.15
En büyük ivme (g):	80.2 m/s^2
En Yüksek Hız (m/s):	312 m/s
En Yüksek Mach Sayısı:	0,94
Tepe Noktası İrtifası (m):	3916 m

Motor

H11

Genel Tasarım

Operasyon Konsepti (CONOPS)

Uçuş Profil Tablosu					
	Zaman (s)	İrtifa (m)	Hız (m/s)		
Fırlatma	0	0	0		
Rampa tepesi	0,3	6	0,6		
Yanma süresi	5,25	1000	300		
Tepe noktası	28,5	3963	0		
1. Ayrılma	28,9	3961	0		
Faydalı yük paraşüt açılması	28,9	3961	0		
Sürüklenme	75	2665	-25		
Faydalı yük	255	1800	-9		
2.Ayrılma	152	596	-24		
Roketin yere inmesi	218	0	-8,7		
Faydalı yükün yere inmesi	465	0	-8,2		

Uçuş Benzetim Raporu (UBR)

BILGILENDIRME

➤ Uçuş benzetimi simülasyonunu içeren "Konuralp Roket Takımı Uçuş Benzetim Raporu (UBR).pdf" isimli dosya, Ön Tasarım Raporuyla (ÖTR ile) birlikte; belirtilen talimatlar doğrultusunda sisteme yüklenmiştir.

Kütle Bütçesi

BILGILENDIRME

➤ Kütle Bütçesi konu başlığı bilgilerini içeren, belirtilen excel formatına göre hazırlanan "Konuralp Roket Takımı Kütle Bütçesi.xlsx" isimli dosya; Ön Tasarım Raporuyla (ÖTR ile) beraber sisteme yüklenmiştir.

Örnek Kütle Bütçesi

Roket Alt Sistem Detayları

Burun Konisi – Detay

Getir/Götür Analizi Tablosu							
Özellik		Seçenek 1		Seçenek 2			
Ozellik	Unsur	Avantaj	Dezavantaj	Unsur	Avantaj	Dezavantaj	Getir/Götür Analizi Açıklaması
Malzeme	Karbon Fiber	Yüksek mukavemetDüşük kütle	Üretim ZorluğuYüksek Maliyet	Alüminyum	Kolay üretimDüşük maliyet	Yüksek KütleDüşük mukavemet	Karbon fiberin mukavemet değerleri alüminyuma göre yüksek ve daha düşük kütlelidir. Üniversitemizin sahip olduğu ekipmanlar ve sahip olduğumuz kabiliyetler ile burun konisi karbon fiber malzemeden üretilecektir.
Üretim Yöntemi	Vakum Torbalama	Düşük kütleYüksek delaminasyon direnci	Üretim ZorluğuÜretim Süresi	Vakum İnfüzyon	Düşük kütleYüzey kalitesiYüksek deleminasyon	Yüksek MaliyetÜretim Süresi	Her iki üretimde yöntemi de düşük kütleli ve mukavemetli bir yapı oluşturmaktadır. Ancak maliyet açısından dolayı vakum torbalama yöntemi seçilmiştir.
Geometri	Ogive	Aerodinamik uyumluluk	Üretim parametresi	Konik	Kolay üretim	Hasar alabilir	Aerodinamiğe uygun olduğu için Ogive Geometrisi seçilmiştir.

Burun Konisi Eğrisinin Denklemi (Ogive)

$$P = \frac{R^2 + L^2}{2R} \qquad P = \frac{65^2 + 350^2}{2 \times 65}$$

$$P = mm$$

Burun Konisi Teknik Özellikleri						
Burun Malzemesi	Karbon Fiber	Geometri	Ogive			
Karbon Fiber Yoğunluk	1.8 g/cm ³	Şekil Katsayısı	1			
Karbon Fiber Çekme Dayanımı	2900 Mpa	Et Kalınlığı	2.5 mm			

Burun Konisi – Detay

Karbon Fiber Burun Konisi Üretim: CNC Router 'da ahşap malzemeden model işlenecektir. İşlenen yüzeyler ilk önce kalıp ayırıcı uygun şekilde uygulanacaktır. Kalıp jelkotu yüzeye sürülecektir. Kürlendikten sonra cam elyaf polyester reçine kullanılarak lamine edilecektir. Aynı işlem simetrik kalıp içinde uygulanacaktır. Burun konisi üretimi için her iki kalıba, kalıp ayırıcı uygulanacaktır. Burun konisi için gereken 2.5 mm et kalınlığı için gerekli karbon elyaf epoksi reçine ile kalıplara el yatırma yöntemine benzer şekil de uygulanır. Elyaf yatırma işlemi tamamlandık dan sonra kalıp kenarlarına sızdırmaz vakum bandı çekilecektir. Vakum torbası sızdırmaz bandına yapıştırılır ve vakumlanır. Kürlenme işlemi tamamlandıktan sonra iki ürün polyester macun ve karbon elyaf yardımıyla iç kenarlardan birbirlerine yapıştırılacaktır. Burun konisinin iç ucuna epoksi akıtılır, mapa yerleştirilir ve üretim tamamlanmış olur.

Resim 1.1: Burun Teknik Resim

Resim 1.2: Burun Render

Kanatçık – Detay

Getir/Götür Analizi Tablosu							
Özellik		Seçenek 1			Seçenek 2		
Ozenik	Unsur	Avantaj	Dezavantaj	Unsur	Avantaj	Dezavantaj	Getir/Götür Analizi Açıklaması
Malzeme	Karbon Fiber	Düşük kütleYüksek mukavemet	Yüksek maliyet	Alüminyum	Kolay üretilebilirDüşük maliyetli	Kütlesi AğırDüşük mukavemet	Karbon fiber seçmemizin amacı mukavemeti yüksek ve ağırlığının düşük olmasıdır.
Prepreg Karbon	Vakum Torbalama	Yüzey KalitesiHomojen Kalınlık	• Maliyet	Shrink Tape sıkı sarma	Düşük MaliyetKolay Üretim	Hetorojen kalınlıkDalgalı yüzey	Hem yüzey kalitesi hem de komojen kalınlık gibi faktörlerden dolayı vakum torbalama yöntemiyle üretilecektir.
Kanat Sayısı ^[3]	3 Kanat	Düşük sürtünme kuvveti	Düşük denge kuvveti	4 Kanat	Daha yüksek denge kuvveti	Yüksek maliyetFazladan parça üretimi	3 kanat seçme sebebimiz; gerekli olan teknik özellikleri karşılaması ve 4 kanada göre daha uygun maliyetli olmasıdr.

Prepreg Karbon Kanat Üretim: Üretim için cam yüzey kullanılacaktır. Öncelikle cama kalıp ayırıcı uygulanacaktır. Prepreg elyaflar gereken katman sayısınca üst üste lamine edilecektir. Cam kenarına sızdırmaz bant çekilip, vakum torbası hava sızdırmayacak şekilde yapıştırılacaktır. Vakum torbası vakumlandıktan sonra 240 C° fırında 2 saat kürlenmeye bırakılacaktır. Kürlenme tamamlandıktan sonra karbon plaka CNC Router'da kesilecektir.

Kanatçık – Detay

	Kanat Kök Uzunluğu		Cidar	Kanat Sayısı	Kanat Uç
150 mm	300 mm	90 mm	4 mm	3	120 mm

Resim 1.3: Kanat Teknik Resim

Kanat Teknik Detay	
Geometri	Trapezoidal
Malzeme	Karbon Fiber
Karbon Fiber Elastisite Modülü	22 Gpa
Karbon Fiber Yoğunluk	1.8 g/cm ³
Karbon Fiber Çekme Mukavemeti	2900 Mpa
Karbon Fiber Isıl Genleşme	2 μm/mk

Resim 1.4: Kanat

Gövde ve Entegrasyon Parçaları (YAPISAL) Mekanik Görünüm

Ana Gövde – Ana Entegrasyon Gövdesi Getir/Götür Analizi Tablosu							
Seçenek 1		Seçenek 2					
Özellik	Unsur	Avantaj	Dezavantaj	Unsur	Avantaj	Dezavantaj	Getir/Götür Analizi Açıklaması
Ana Gövde Malzeme	Fiberglas	Düşük maliyetli	Düşük mukavemet	Karbon Fiber	Yüksek mukavemetDüşük Kütle	Yüksek maliyetliFaraday Kafesi	Fiberglas seçilmesinin sebebi ucuz olması ve faraday kafesi oluşturmamasıdır.
Ana Entegrasyon Gövdesi Malzeme	Fiberglas	Düşük Kütle	• Üretim Zorluğu	Alüminyum	Kolay ÜretimDüşük Maliyet	Yüksek KütleFaraday Kafesi	Fiberglas seçilmiştir çünkü alüminyuma göre daha hafif kütleli ve faraday kafesi oluşturmamasıdır.
Üretim Yöntemi	Elle Yatırma	Düşük maliyetKolay üretim	Yüzey kalitesi düşük	Roll Wrapping	Daha hafifYüzey kalitesi yüksek	 Üretim maliyeti Üretim süresi	Çok fazla maliyet farkı olduğundan ve ürünler arası çok fark olmadığından dolayı elle yatırma yöntemi seçilmiştir.
1100,00							

Resim 1.5: Entegrasyon Montaj Gövdesi Teknik Resim

Resim 1.5: Entegrasyon Montaj Gövdesi CAD

Resim 1.6:Ana Gövde CAD

Resim 1.6: Ana Gövde Teknik Resim

835.00

465,00

KESIT A-A

Gövde ve Entegrasyon Parçaları (YAPISAL) Mekanik Görünüm

Entegrasyon Gövdesi – Halkalar Getir/Götür Analizi Tablosu							
Özellik		Seçenek 1		Seçenek 2			0 11 (0 11 11 11 11 11 11
Özellik Unsur	Unsur	Avantaj	Dezavantaj	Unsur	Avantaj	Dezavantaj	Getir/Götür Analizi Açıklaması
Entegrasyon Gövdesi Malzeme	Alüminyum	Düşük maliyetKolay üretim	Yüksek kütle	Fiberglas	Düşük kütle	Yüksek maliyetÜretimi zor	Fiberglas malzeme kullanabilmemiz için üretimde kalıp kullanılacaktır. Kalıp yapımı ve üretim hem zaman açısından hem de maliyet açısından olumsuz olacağı için alüminyum kullanılacaktır.
Halka Malzemeri ^[5]	Alüminyum	Düşük maliyetKolay üretimKütlesi hafif	Düşük mukavemet	Çelik	Yüksek mukavemet	Yüksek kütleYüksek maliyet	Alüminyum malzeme kullanılacaktır. İstenilen irtifaya çıkabilmemiz için ağırlığımızın düşük olması gerekiyor. Ayrıca malzeme ve üretim açısından maliyeti uygundur.

Fiberglass Gövde Üretim: Dış çapı 120 mm olan alüminyum boru üzerinden ürün alınacaktır. Öncelikle alüminyum borunun yüzeyine kalıp ayırıcı uygulanacaktır. İstenen et kalınlığı 5 mm'dir. Gereken kalınlık da olması için gereken uzunlukta ki cam elyaf polyester reçine kullanılarak el yatırma yöntemi ile lamine edilecektir. İşlem tamamlandıktan sonra dış yüzeyin düzgünlüğü için shrink tape sarılacaktır. Kürlenme tamamlandıktan sonra mavi renge boyanacaktır.

Alüminyum Halka İmalatı: Parça üniversitemizde bulunan tornaya bağlanacaktır. Dış çap kalemi ile istenilen çap boyutunda parçalar imal edilecektir. Tornada istenilen çap ölçülerine ulaştıktan sonra üniversitemizde bulunan frezeye parça bağlanıcaktır. Halka üzerinde bulunan montaj delikleri freze ile açılacaktır. Daha sonra parça divizöre bağlanıp gövde montaj delikleri açılacaktır.

Gövde ve Entegrasyon Parçaları (YAPISAL) Mekanik Görünüm

Resim 1.7: Entegrasyon Gövdesi Teknik Resim

Resim 1.8:Aviyonik Halkası Teknik Resim

Resim 1.7: Entegrasyon Gövdesi CAD

Resim 1.8: Aviyonik Halkası CAD

Resim 1.9: Kurtarma Halkası Teknik Resim

Resim 1.9: Kurtarma Halkası CAD

Motor Bölümü Mekanik Görünüm & Detay

BILGILENDIRME

> ÖTR aşamasından sonra komitenin yapacağı açıklamalara göre kademenin nasıl montaj edileceği KTR aşamasında yazılacaktır.

Kurtarma Sistemi – Paraşüt Açma Sistemi

Getir/Götür Analizi Tablosu							
Seçenek 1				Seçe	Catin/Cätür Analisi Aalılaması		
Özellik	Unsur	Avantaj	Dezavantaj	Unsur	Avantaj Dezavantaj		Getir/Götür Analizi Açıklaması
Tasarım/Çalışma Prensibi	Sıcak Gazlı (Karabarutlu) Sistem	✓ Gerekli itki kuvveti için az miktar yeterlidir. ✓ Maliyeti ucuz ✓ Hızlı tetiklenme ✓ Kolay montaj	 Patlama esnasında çıkan alevin çevresine zarar vermesi. Gerekli barut miktarının doğru tespit edilememesi. 	Mekanik Sistem	✓ Patlama gerçekleşmedi ği için roket iç yapısının zarar görme riski yoktur.	 Roket yüksek hızlara ulaştığında mekanik sisteme yük binmesi sonucunda, istenmeyen durumlarda çalışma riski bulunmaktadır. Kapladığı hacim ve ağırlık fazladır. 	Mekanik sistemin roket hareketi esnasında çıkarabileceği zorluklar (sıkışma, titreşim altında çalışmama, vs.) durumlarından ve ayrılmaya gerekli olan itki kuvveti yüksek ağırlıklarda sağlanabildiği için sıcak gazlı ayrılma ile kurtarmanın tetiklenmesi tercih edilmiştir.

Resim 2.1: Kurtarma Sistemi

Kurtarma Sistemi – Paraşüt Açma Sistemi

- irtifa1, irtifa2 ve pitch değişkenleri oluşturulur. İrtifa değişkenlerinin değerleri BMP180, pitch değişkeni değeri ise MPU6050 ile belirlenir. Öncelikle irtifa1 ile irtifa2 değişkenleri eşitlenir, ardından irtifa1 değişkeni okuma yapılarak güncellenir.
- > Tepe noktasını bulmak için hazırlanan fonksiyon irtifa1 ve irtifa2 verilerini işleme alarak sonucu «true ya da false" döndürür.
- Fonksiyondan dönen değer "true" ise ve pitch açısı belirlenen açısı 0 değerine küçük eşit ise birincil kurtarma gerçekleşir. İlk kurtarma gerçekleşmesini kontrol eden değişkene "true" değeri atanır. irtifa1 değişkenine okuma yapmaya devam edilir.
- > Birincil kurtarma gerçekleşmiş ise ve irtifa1 değeri 600 metreden küçük eşit ise ikincil kurtarma gerçekleşir.
- ➤ Birincil ve ikincil kurtarma şartları sağlandığı zaman, ana sistem ve yedek işlemcilerinden ilgili pinlere enerji çıkışı verilir. Bu pinler barut kapsülüne giden, fitil görevi gören tellere akım vererek barut patlaması için gerekli kıvılcımı/alevi oluşturur.
- > Tepe noktası fonksiyonu gelen iki farklı irtifa değerinin farkını alır. Eğer son gelen irtifa değeri 3900 metreden büyük ve fark değişkeni 20 değerine küçük eşit ise "true" değerini dönderir.
- > Tel fitillere kontrol dışı enerji verilmemesi adına kurtarma enerji tetiklenmesi mosfetler aracılığıyla yapılacaktır.
- Algoritmada yapılan fark işlemi irtifa düşmesi kontrol edilirken olası yanılgıları önlemek amacıyla konulmuştur. Bu vesileyle motorun oluşturduğu basınç etkisi geçtikten sonra, aniden düşen irtifa bilgisi kurtarmayı istem dışı bir şekilde tetikleyemeyecektir.

Kurtarma Sistemi – Paraşüt Açma Sistemi

Kurtarma Bulkheadı: Ana gövdeye M5 cıvatalar ile sabitlenir. Kurtarmanın gerçekleşeceği gövde ile diğer gövdeleri birbirinden ayırır.

<u>Barut:</u> Ayrılma için gerekli basıncı oluşturur.

Yanmaz Kumaş: Barutun patlama esnasında çıkaracağı kıvılcım veya ateşten roket elemanlarını korur.

Mosfet: Gerilim geldiğinde barutu tutuşturacak tel fitilleri enerjilendirerek tetikler.

Sıcak Gaz Üreteci Gereksinimleri

Ayrılma	Basınçlandırılacak hacim çapı (mm)	Basınçlandırılacak hacim (m^3)	Ulaşılmak istenen basınç (Bar)
1. Ayrılma	120 mm	0.0036191147 m^3	0.65 Bar
2. Ayrılma (Varsa)	120 mm	0.0044107961 m^3	0.98 Bar

Paraşüt Çeşidi	Renk	Ağırlık (g)	Çap (cm)	Kapalı Uzunluk (cm)	Kapalı çap (cm)
Ana paraşüt	Kırmızı	823	256	26	12,5
Faydalı Yük Paraşütü	Turuncu	430	138	11,5	15,5
Sürüklenme Paraşütü	Siyah	187	97	8	16

TASARIM ÖZETİ

Bahsi geçen paraşütlerin gökyüzünde daha net bir şekilde görülebilmesi için kırmızı, siyah, turuncu renkleri seçilmiştir. Her paraşütün taşıyacağı yüke göre sahip olması gereken çap miktarı teorik olarak hesaplanmış ve önceki tabloda belirtilmiştir. Paraşütlerin kubbe delik çapları ilgili paraşüt çapının 1/10 oranında alınmıştır.

Paraşüt Çeşidi	Açık Hali	Kapalı Hali	Malzeme
Ana paraşüt			Ribstop Örgülü Kumaş
Faydalı yük paraşütü			Ribstop Örgülü Kumaş
Sürüklenme Paraşütü			Ribstop Örgülü Kumaş

PARAŞÜT ÇAPLARINA ve HIZLARINA AİT HESAP DETAYI^[9]

Paraşüt Tipi	Yük Ağırlığı (kg)	Alanı (m²)	İstenen Hız (m/s)	Düşüş Hızı (m/s)
Ana	20,356	5,859	9	8,378
Faydalı Yük	4,239	1,429	8	8,040
Sürüklenme	20,356	0,734	25	25,125

Parametreler ve Sabitler

g: Yer çekimi ivmesi (m/s2) = Termodinamik tablolarından ilgili irtifaya uygun değer alınmıştır.

V: Hız (m/s)

m: Kütle (kg)

 C_d : Sürtünme katsayısı = 0,8

ho: Termodinamik tablolarından ilgili

irtifaya uygun değer alınmıştır.

Çap Hesabı Denklemi

$$\sqrt{\frac{8 \times m \times g}{\pi \times \rho \times V^2 \times C_d}}$$

Düşüş Hızı Denklemi^[10]

$$\sqrt{\frac{2 \times m \times g}{\rho \times A \times C_d}}$$

Paraşüt Alan Hesabı

$$\frac{\pi \times (D^2 - d^2)}{4}$$

	Kurtarılacak Unsurlar			
Eleman Adı	Görevi	Bulunduğu Sistemler		
BMP180	İrtifa ve basınç değerlerini algılar. Kurtarma durum kontrolü için veri toplar.	Ana		
LPS25H	Ana sistemde sıcaklık değerini ölçmek amacıyla kullanılacaktır.	Ana		
MPU6050	Üçer eksenli gyro ve açısal ivme ölçer barındıran 6 eksenli sensördür. Euler açılarını algılar. Kurtarma durum kontrolü için veri toplar.	Ana		
NEO7M	Enlem, boylam, hız ve irtifa verilerini ölçerek konumlayıcı amacıyla kullanılacaktır.	Ana, Faydalı Yük		
RF Modül	Yer istasyonuna verileri iletmek amacıyla kullanılacaktır.	Ana, Faydalı Yük		
DHT22	Nem ve sıcaklık değerlerini ölçmesi amacıyla kullanılacaktır.	Faydalı Yük		
MOSFET	Barutu tetikleyecek olan akımı arttırmak amacıyla kullanılacaktır.	Kurtarma Kartı		
BMP280	İrtifa ve basınç değerlerini algılar. Kurtarma durum kontrolü için veri toplar.	Faydalı Yük		
MS5607	İrtifa ve basınç değerlerini algılar. Kurtarma durum kontrolü için veri toplar.			

Paraşüt Sistemi	Paraşüt Alanı (m^2)	Paraşüt Sisteminin Taşayacağı Kütle (kg)	Paraşüt Sürükleme Katsayısı	Düşüş Hızı (m/s)
Birincil Paraşüt	0,734	20,356	0,8	25,125
İkincil Paraşüt	5,859	20,356	0,8	8,378
Görev Yükü Paraşütü	1,429	4,239	0,8	8,040

Ana paraşütün açılması esnasında sürüklenme paraşütü de açık olacağından; hesabında hız gerekli olan alan belirlenirken iki paraşütün alanı da göz önünde bulundurularak hesap yapılmıştır.

Resim 2.2: Ana Paraşüt ve Sürüklenme Paraşütlerinin Açık Hali

Görev Yükü

- Fasarım: Faydalı yük ana gövde, alt kapak ve üst kapak olmak üzere 3 parçadan oluşmaktadır. Yapılan bu tasarımda faydalı yük yüzeyinin silindirik olması planlanmaktadır. Ayrıca faydalı yük çapı 120 mm (dış çap) belirlenmiştir. Faydalı yükün alt kapağı ve üst kapağının; ana gövdeye m5x10 imbus cıvata ile sabitlenmesi planlanmaktadır. Faydalı yük üst kapağına m8 mapa atılarak, sürüklenme paraşütünün şok kordonuna m8 karabina ile bağlanması sağlanacaktır. Faydalı yük aviyoniği faydalı yük içine yerleştirileceğinden ötürü, faraday kafesi oluşmaması için üst kapağa 25 mm çapında 2 delik açılacaktır. Görev yükünün içine kartta kısa devre olmaması için ABS malzemesinden kart yuvası tasarlanmıştır.
- ❖ Malzeme Seçimi: 304 çeliği seçilmiştir. Bunun sebebi; belirlenen boyutlarda; istenilen kütleyi bu malzeme ile elde edebilmemizdir. Kart yuvası için ABS malzeme seçimi yapılmıştır. Bunun sebebi malzemenin yüksek sıcaklığa dayanmasıdır.

Komponent	Kütle (g)
Ana Gövde	3080
Alt Kapak	450
Üst Kapak	400
M5*10 cıvata	10
Faydalı Yük Bilgisayarı	90
TOPLAM KÜTLE	4030

Resim 2.4: Görev Yükü Teknik Resim

Görev Yükü

Faydalı Yük Ayrılma ve Kurtarma

Ayrılma

Aviyonik sensörlerinden gelen veri yardımıyla tepe noktasında kurtarma sisteminin aktifleşmesi sonucunda oluşan basınç yardımıyla burun omuzu ana gövdeden ayrılıp faydalı yük ve faydalı yük paraşütü tahliyesi gerçekleşecektir. Bu ayrılmadan sonra faydalı yük roketten bağımsız bir şekilde paraşütünü açıp yer yüzüne inecektir

Kurtarma ve Konum Bulma Yere inen faydalı yük, NEO 7M GPS sensörü yardımıyla algıladığı konum verilerini "Lora E22" RF modülü aracılığıyla yer istasyonuna iletir. Bu veriler yardımıyla Google Haritalar üzerinden faydalı yükün koordinatları belirlenerek kurtarma gerçekleştirilir.

Görev Yükünün İşlevi: Görev yükünün tepe noktasından itibaren atmosfere ait basınç verisini BMP180 sensörü yardımıyla; sıcaklık ve nem verilerini ise DHT22 sensörü yardımıyla 5 Hz frekansla yer istasyonuna Lora E22 modülü ile iletmesi amaçlanmıştır.

Resim 2.6: Görev Yükü Şematik

Resim 2.6: Görev Yükü 3D Görünüm

Aviyonik – Özet

Ana Sistem	Adı	Yedek Sistem	Adı	Görevi
Uçuş Kontrol İşlemcisi	Atmega2560	Uçuş Kontrol İşlemcisi	LPC11U24FET48/301	Algoritmik İşlem
RF Modül	LORA E22	RF Modül	Yok	Haberleşme
Konumlayıcı	NEO 7M	Konumlayıcı	Yok	Konumlama
Barometre	BMP280	Barometre	MS5607	İrtifa
6 DOF IMU Sensör	MPU6050	6 DOF IMU Sensör	Yok	Euler Açıları
Batarya	3S LiPo Pil	Batarya	3S LiPo Pil	Besleme
Regülatör	Yok	Regülatör	LD2980ABM33TR	Regülasyon
Sıcaklık	LPS25H	Sıcaklık	Yok	Sıcaklığı ölçer

Sistemler arası haberleşme olmadığı için bilgisayarlar arası geçiş söz konusu değildir. Ana uçuş kontrol kartı ve görev yükü kartı özgün tasarım; yedek uçuş kontrol kartı ise ticari sistem olacaktır. Ticari uçuş kontrol kartı olarak "09201" model numaralı EasyMini ALTIMETER kullanılmasına karar verilmiştir. Uçuş kontrol kartları, kurtarma sistemlerini birbirinden bağımsız olacak şekilde tetikleyecektir.

3S LiPo pi

Aviyonik – Özet

Sistemler Arası Farklar		
Özgün Uçuş Kontrol Kartı	Ticari Uçuş Kontrol Kartı	
İvmeölçer var.	İvmeölçer yok.	
GPS Konumlayıcı var.	GPS Konumlayıcı yok.	
Gyro eğim sensörü var.	Gyro eğim sensörü yok.	
Telemetri var.	Telemetri yok.	
Sıcaklık ölçer var.	Sıcaklık ölçer yok.	
Sesli uyarı yok.	Sesli uyarı var.	

Sistemler Arası Benzerlikler		
Özgün Uçuş Kontrol Kartı	Ticari Uçuş Kontrol Kartı	
Tek barometre sensörü bulunmaktadır.	Tek barometre sensörü bulunmaktadır.	
ARM tabanlı işlemci.	ARM tabanlı işlemci.	
Veri depolayıcı bulunmaktadır.	Veri depolayıcı bulunmaktadır.	
PWM çıkış pinleri bulunmaktadır.	PWM çıkış pinleri bulunmaktadır.	

Aviyonik – 1.Sistem Detay/1.1

Adı	Kodu	Avantaj	Dezavantaj	Açıklama
Barometre	BMP180	✓ Düşük güç tüketimi.✓ Tedarik.	Düşük çözünürlük.	Basınç verisini ölçer.
GPS Modül	NEO-7M	✓ Konum hassasiyeti.✓ Sıcak bağlantı.	50000 m yükseklik kısıtlaması.	Anlık konum verilerini ölçer.
İşlemci	MEGA 2560 PRO	✓ Geniş sıcaklıklarda çalışma imkanı✓ I/O pin çokluğu.✓ Geniş voltaj aralığı.	Yüksek maliyet.Fazla alan kaplaması.	Bağlantılı çevre bileşenleri ile haberleşmeyi ve bu verileri yönlendirmeyi sağlar.
RF Modül	LORA E22	✓ Veri paket boyutu yüksek.✓ Yüksek gönderim hızı.✓ Uçtan uca şifreleme.	Yüksek güç tüketimi.	Roketten toplanan verileri kablosuz olarak yer istasyonuna aktarmayı sağlar.
DOF IMU Sensör	MPU6050	✓ 6 eksenli ölçüm✓ Tedarik olanağı.	Titreşim nedeniyle eğimin sapması.	3 boyutlu uzayda roketin eğiminin belirlenmesini sağlar.

Aviyonik – 1.Sistem Detay/1.2

Adı	Kodu	Avantaj	Dezavantaj	Açıklama
Sıcaklık Sensörü	LPS25H	✓ Yüksek hassasiyet.✓ I2C haberleşme protokolü.	Fazla alan kaplaması.Maliyet.	Sıcaklık verisini ölçer.
SD Kart Modülü	11706	✓ Düşük güç tüketimi✓ Düşük Maliyet	Ek adaptör ihtiyacı.	SPI protokolü üzerinde haberleşme yapan micro SD kart modülü.
Mosfet	IRFZ44N	✓ Düşük tetiklenme gerilimi.✓ Hızlı tetiklenme.	Düşük verim.Tedarik.	Kurtarma sistemini tetikleyecek anahtarlama elemanı.
Lipo Pil	3S 2200 mah	✓ Kısa şarj süresi.✓ Yüksek güç.	 Şarj için özel cihaz ihtiyacı. Hücre kaybı yaşanabilir. Kullanım ve saklanma esnasında dikkat gerekliliği. 	11v1/2200mAh değeri ile sistemleri kesintisiz besler.

Aviyonik – 1.Sistem Detay/2.1

Aviyonik – 1.Sistem Detay/2.1

Aviyonik – 1.Sistem Detay/3.1

Parametre	Seçilme Nedeni	
İrtifa Verisi	Hız ve ivme parametreleriyle karşılaştırıldığında güvenilirliği fazladır. Yazılıma eklenen, takımımıza ait algoritma ile tepe noktası ve roketin düşüşe geçip geçmediği belirlenirken, diğer seçeneklere göre başarı oranı daha yüksektir.	
Gyro Verileri	Tepe noktası ve roket düşüşü belirlenirken olası hata durumlarına hazırlıklı olmak, karar durumunu güçlendirmek adına; roketin yatay konumunu doğrulayacak ikincil bir parametre olma özelliği taşımaktadır.	

Veri Filtreleme Yöntemleri

- Sensörlerden elde edilen veriler filtrelenirken Kalman Filtresi kullanılacaktır.
- ➤ İrtifa ve gyro verileri işlenmeden önce ilgili filtrenin yazılıma dökülen matematiksel işleminden geçirilecektir.

Kalman Filtreleme Formülü

$$\hat{X}_k = K_k \cdot Z_k + (1 - K_k) \cdot \hat{X}_{k-1}$$

Alt indis olan k harfi durumları gösterir. Zaman aralıkları olarak varsayılabilir. Şöyle ki; k = 2 ise 2 ms olarak kabul edilir. Buradaki amaç sinyalin tahmini olan \widehat{X}_k değerini bulmaktır. Her bir k değeri için bu değer bulunmaya çalışılır.

Aviyonik – 1.Sistem Detay/3.2

Kurtarma Algoritması

- ➤ "irtifa1, irtifa2, pitch, ilk_kurtarma, durum" değişkenleri tanımlanarak, "mpu6050, bmp180 ve apogee_bulucu" adındaki fonksiyonlar oluşturulur.
- Sistem başladığında okunan basınç bilgisi bmp180 fonksiyonuna gönderilerek ilk irtifa belirlenir. irtifa1'e atama yapılır.
- > Daha sonra irtifa1 değişkeninin değeri irtifa2 değişkenine atanır. Ardından irtifa1 değişkeni için tekrardan ölçüm yapılır.
- > mpu6050 fonksiyonu çağrılır ve döndürülen ilgili değer pitch değişkenine atanır.
- rtifa1, irtifa2 ve pitch değerleri için «Smoothing" kütüphanesi ile veri filtreleme yapılarak veriler kullanılabilir hale getirilir.
- > apogee_bulucu fonksiyonu çağrılır ve irtifa1 ile irtifa2 verileri fonksiyona gönderilir. Bu fonksiyon iki adet parametre almaktadır. Parametrelerin farkını alarak ve irtifa1'i kontrol ederek "bool" veri tipinde değer döndürür.
- Fonksiyondan dönen değer "durum" adlı değişkene eşitlenir. "durum" değişkeni "true" değerine eşit ve pitch değişkeninin değeri 0'a küçük eşit olduğunda birincil kurtarma tetiklenir. "ilk_kurtarma" değişkeninin değerine "true" atanır.
- > Birincil kurtarma gerçekleştikten sonra irtifa1 değişkeni için veri okunmaya devam edilir.
- irtifa1 değişkeni 600 metre değerine küçük eşit olduğunda ve ilk_kurtarma değişkeni true değerine eşit olduğunda ikincil kurtarma tetiklenir. İki aşamada gerçekleşen kurtarma sonrasında roket ve parçaları güvenle yeryüzüne indirilir.

Aviyonik – 2.Sistem Detay/1

Adı	Kodu	Avantaj	Dezavantaj	Açıklama
Ticari Uçuş Kontrol Kartı	EasyMini ALTIMETER	 ✓ I2C, SPI haberleşme. ✓ Digital I/O. ✓ Analog giriş. ✓ Veri kaydetme. ✓ Yüksek çözünürlüklü basınç sensörü. ✓ Uygun çalışma gerilimi. ✓ Geniş sıcaklık aralığında çalışabilme. ✓ Boyut avantajı. ✓ Hafiflik 	 Düşük programlama hafızası. GPS sensörü yok. İvme sensörü yok. Gyro sensörü yok. Kablosuz haberleşme yok. Sıcaklık ölçüm yok. 	İkincil aviyonik sistemin algoritmasını kontrol eder. Şartname doğrultusunda zorunlu olarak ikincil uçuş kontrol kartının ticari sistem olmasına karar verilmiştir. İkincil uçuş kontrol kartı sadece kurtarma sistemlerini tetiklemek için kullanılacaktır.

Aviyonik – 2.Sistem Detay/2

Aviyonik – 2.Sistem Detay/2

Top

Bot

2022 TEKNOFEST ROKET YARIŞMASI ÖN TASARIM RAPORU (ÖTR)

Aviyonik – 2.Sistem Detay/3

- ikincil uçuş kontrol kartı, kurtarma sistemlerini tetiklerken sadece irtifa verilerini dikkate alacaktır.
- > Ticari kartta, sadece tetiklemelerinin gerçekleştirilmesi gereken irtifa bilgilerinde değişiklik yapılacaktır.
- > Ticari karta herhangi bir ek yazılım veya veri filtreleme müdahalesi yapılmayacaktır.
- > Seçilen ticari kartın sahip olduğu basınç sensörünün, çözünürlük ve doğruluk değeri tarafımızca uygun ve yeterli görüldüğü için kurtarma parametresi için sadece irtifa verisinin kullanılmasına karar verilmiştir.

Aviyonik – İletişim

Lora E22 RF Modülü

- > +5km menzilli kablosuz iletişim modülüdür. Alıcı veya verici olarak kullanılabilir.
- Fabrika çıkışı 930 MHz frekansa ayarlı olan bu modül 850 930 MHz frekans aralığında da kullanılabilmektedir.
- > RF_Setting(E22-E90(SL)) programı aracılığı ile yapılan frekans ve adresleme yöntemiyle veriler başka RF cihazlar ile çakışmadan iletilebilmektedir.
- ➤ Veriler; SRD Band olarak bilinen Kısa Mesafe Cihazları(Short Rate Devices) aracılığıyla 900 MHz bandında her 0.2 saniyede (5Hz) iletilecektir.

Gönderilen Veriler (1. ve 2. sistemler için)					
❖ İrtifa	1.Kurtarma (0 veya 1)				
Basınç	2.Kurtarma (0 veya 1)				
❖ Gyro (gx,	❖ Enlem				
gy, gz)	❖ Boylam				
❖ İvme (ax, ay, az)					

Veriler soldaki tabloda görüldüğü şekilde paketler halinde iletilecektir.
 "0 veya 1" ifadesi; 0 durumunda algoritmik olarak kriter sağlanmadı,
 1 ise sağlandığı anlamlarına gelmektedir.

Resim 3.1: Lora E22 RF Modülü

Link Bütçe Hesapları ^[13]						
Güç Kayıpları	Değerleri (dbm)	Güç Kazançları		Değerleri (dbm)		
Serbest Uzay	76.7	Gön Mod	derici dül	20		
İletim	3.3	Veri Ante	•	3		
Atmosferik	1.55	Alıcı	Anten	12		
Polarizasyon	3	Anten		15		
Alıcı Hassasiyeti -34.5						

Bütçe

	Genel Bütçe								
Malzeme	Kullanılacağı Yer	Hammadde Fiyatı	İşçilik Fiyatı	Toplam	Sponsor				
Alüminyum	Halkalar – Entegrasyon Gövdesi	1000 TL	200 TL	1200 TL	İşçilik Sponsor				
Çelik	Faydalı Yük	1000 TL	500 TL	1500 TL	İşçilik Sponsor				
Karbon Fiber	Burun - Kanat	10.000 TL	8000 TL	18.000 TL	Sponsor				
Cam Elyaf	Ana Gövde	800 TL	500 TL	1300 TL	Sponsor				
Montaj Elemanları	Roket	2000 TL	-	2000 TL	Sponsor Yok				
Sensör - Kart	Uçuş Bilgisayarı	8000 TL	-	8000 TL	Sponsor				
Sensör - Kart	Faydalı Yük	1000 TL	-	1000 TL	Sponsor				
Paraşüt – Şok Kordonu	Kurtarma Sistemi	3500 TL	-	3500 TL	Sponsor Yok				

Güncel Dolar Kuru: 18.64 TL baz alınmıştır.

Toplam Maliyet: 36.500 TL

KARŞILAMA DURUMU					
Karşıladı	Belirsiz	Karşılamadı			

Sıra No	Gereksinim Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
1	3.1.5	Yarışmaya takım halinde katılmak zorunludur		Slayt 2	Takım halinde katılıyoruz.
2	3.1.6	Takımlar en az altı (6) en fazla on (10) kişiden oluşmalıdır. Alana en fazla altı (6) takım üyesi gelebilecektir.		Slayt 2	Takımımız 10 üyeden oluşmaktadır.
3	3.1.8	Yarışmaya Orta İrtifa Kategorisi'nde lise, ön lisans, lisans ve lisansüstü öğrencileri ile mezunlar katılabilir.		Slayt 2	Takımımızda lisans ve lisansüstü öğrenciler bulunmaktadır.
4	3.1.12	Bir takımın üyesi başka bir takımda üye olarak yer alamaz.		Slayt 2	Sadece KONURALP Roket Takımında üyeler.
5	3.1.13	Her takımın yarışmaya bir (1) danışmanla katılması zorunludur. Takım danışmanı ile ilgili özellikler ilgili maddede açıklanmıştır.		Slayt 2	Danışmanız Dr. Öğr. Üyesi Mert KILINÇEL dir.

Sıra No	Gereksinim Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
6	3.1.14	Bir takım sadece bir kategoriden başvuru yapabilir. İki farklı kategoriden başvuru yaptığı tespit edilen takımlar (ve üyeleri) değerlendirilmeye tabi olmadan yarışmadan elenecektir.		-	Sadece Orta İrtifa Kategorisinde başvuru yapılmıştır.
7	3.1.15	Her takım yarışmaya sadece bir (1) adet roket ile katılabilir		-	1 adet roket ile katılmaktayız.
8	3.1.16	Son başvuru tarihinden sonra yapılan başvurular değerlendirilmeyecektir		-	Yarışma takvimine uyulacaktır.
9	3.1.17	Yarışmacılar gerekli görülen hesaplamaları, raporları, sunumları ve ilgili diğer dokümantasyonları Yarışma Komitesinin belirlediği standartlara uygun olarak hazırlamakla sorumludurlar.		-	Uygun olarak hazırlanacaktır.

Sıra No	Gereksinim Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
10	3.1.18	Takımlar, başvuru bitiş tarihinden sonra sırasıyla Ön Tasarım Raporu (ÖTR), Kritik Tasarım Raporu (KTR) ve Atış Hazırlık Raporu (AHR) hazırlayacaklardır.			Raporlar özveri ile hazırlanacaktır.
11	3.1.23	Takımlar, uluslararası öğrenci ve katılımcıları ÖTR aşamasında belirtilmekle sorumludurlar		Slayt 2	Takım yapısında belirtilmiştir.
12	3.1.24	Takımlar, yarışmada görev alacak takım üyeleri ve takım danışmanını tüm raporlarında (ÖTR, KTR ve AHR) listelemekle sorumludurlar.		Slayt 2	Takım üyeleri listelenecektir.
13	3.1.25	Takımlar, Yarışma Komitesinin kendilerine sağlayacağı motoru kullanmakla sorumludurlar.		Slayt 4	Yarışma komitesinin vereceği motora göre tasarım yapılmıştır.

Sıra No	Gereksinim Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
14	3.2.1.1	Tüm rapor (ÖTR, KTR ve AHR) şablonlarında yer alacak isterler işbu şartnamenin parçası olarak ele alınacaktır.		-	-
15	3.2.2.1	Takımlar, fırlatma sonrası rokete ait tüm bileşenleri (alt bileşenler ve sistemler dahil) ve Görev Yükünü tekrar kullanılabilir şekilde kurtarmaktan sorumludurlar. Kurtarmayı sağlamak için paraşütlerin kullanılması zorunludur.		Slayt 21	Paraşüt kullanılmıştır.
16	3.2.2.2	Sistem üzerinde bulunan haberleşme bilgisayarları yer istasyonuyla anlık konum verisini kesintisiz paylaşacaktır.		Slayt 39	Lora modülü ile anlık veri gönderilecektir.

Sıra No	Gereksinim Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
17	3.2.1.2	Farklı kategoriler için operasyon konseptleri ayrı ayrı belirlenmiş olup roket bileşenleri OrtaYüksek İrtifa Kategorisinde iki paraşütle (Şekil 1'de gösterilen Sarı renkli "Birincil Paraşüt", yeşil renkli "İkincil Paraşüt"), Lise Kategorisinde ise tek paraşütle (Şekil 2'de gösterilen Yeşil renkli paraşüt) kurtarılırken Görev Yükünün tüm kategorilerde roket bileşenlerinden farklı bir paraşütle kurtarılması zorunludur.		Slayt 21	İsterler karşılanmıştır.
18	3.2.1.4	Roketler tepe noktasında (apogee noktasında) Görev Yükünü ayırmakla ve birincil paraşütünü (Şekil-1'deki sarı renkli sürüklenme paraşütü) açmakla yükümlüdürler.		Slayt 5	Görev yükü apogee de ayrılacaktır.

Sıra No	Gereksinim Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
19	3.2.1.5	İkincil (Ana paraşüt) paraşüt yere en erken 600 m ve en geç 400 m kala açılacaktır.		Slayt 5	596 m de açılacaktır.
20	3.2.1.6	Roket, tepe noktasına ulaşmadan önce herhangi bir ayrılma gerçekleştiremez (Görev Yükünün bırakılması, paraşütün açılması vb.).		Slayt 5	Apogee den önce ayrılma gerçekleşmeyecek.
21	3.2.1.10	Takımların yarışmanın finallerinde kullanacağı motorlar TEKNOFEST Roket Yarışması Komitesi tarafından temin ve tedarik edilecek olup takımlar ayrıca motor tedariki yapmayacaktır.		Slayt 3	Komitenin vereceği motora göre tasarım yapılmıştır.
22	3.2.1.11.2	Orta İrtifa Kategorisi için verilecek motor (hibrit motor barındıran kademe) TEKNOFEST Roket Yarışması Komitesi tarafından sağlanacak olup kademe ve motor detayları EK-10'da yer almaktadır		Slayt3	Verilecek olan motora göre tasarım yapılmıştır.

2022 TEKNOFEST ROKET YARIŞMASI ÖN TASARIM RAPORU (ÖTR)

Sıra No	Gereksinim Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
23	3.2.1.14	Roket motoru, roketin bütün montaj ve entegrasyon faaliyetleri tamamlandıktan sonra ve demonte edilebilir bir şekilde en son aşamada montajlanmalıdır.		Slayt 4	Demonte edilebilir bir tasarım yapılmıştır.
24	3.2.1.15	Takımların motorların performansını etkileyecek herhangi bir bileşen tasarımı ya da üretimi yapması kesinlikle yasaktır (Lise, Orta ve Yüksek İrtifa ile Zorlu Görev kategorilerinde motordan çıkacak olan ısı, gaz vb. gibi etkenler roket tasarımını etkileyen faktörler değildir).		-	Herhangi bir tasarım yapılmamıştır.
25	3.2.1.21	Görev yükü roketten bağımsız olarak kurtarılacak olup rokete ait tüm parçalar ise bütünsel olarak kurtarılacaktır.		Slayt 25	Görev yükü rokete montajlı değildir.

Sıra No	Gereksinim Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
26	3.2.1.22	Kurtarılması gereken Görev Yükü ve roket için konum belirleyici birer adet sistem (GPS, radyo vericisi vb.) bulunacaktır.		Slayt 26	GPS bulunmaktadır.
27	3.2.1.23	Takımların "Open Rocket Simulation" menüsüne (Şekil 3) uygun olarak yörünge benzetimlerini gerçekleştirmesi zorunludur. Open Rocket dosyasına Şekil 3'te belirtilen simülasyonu eklemeyen takımlar değerlendirmeye alınmayacaktır.		-	İsterler karşılanmıştır.

Sıra No	Gereksinim Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
28	3.2.1.26	Takımlar Görev Yüklerini "Unspecified Mass" ismiyle girmeyecektir. Görev Yükü "PAYLOAD" ismi ile adlandırılıp, kütlesi en az 4000 gram (4 kg) ve tek bir parça olarak girilecektir. Şekil 3 ile verilen "Fırlatma Simülasyonu- Launch Simulation" ekranında yer alan değerler simülasyona girilmelidir. Bu değerler ile benzetim yapmamış olan takımlar elenecektir.		Slayt 25	Payload kütlemiz 4030 gramdır.
29	3.2.2.1.	Kurtarma sistemi olarak paraşüt kullanılmalıdır.		Slayt 21	Paraşüt kullanılmıştır.
30	3.2.2.2	Roketin ve parçaların hasar görmemesi için ikincil paraşütle taşınan yüklerin hızı azami 9 m/s, asgari ise 5 m/s olmalıdır.		Slayt 5	8 m/s hızla düşecektir.

Sıra No	Gereksinim Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
31	3.2.2.3	Birincil paraşüt ile roketin takla atması önlenmelidir. Bu paraşüt ile roketin düşüş hızı azaltılmalıdır; ancak düşüş hızı 20 m/s'den daha yavaş olmamalıdır		Slayt 5	Sürüklenme hızı 25 m/s dir.
32	3.2.2.5	Tek paraşüt ile kurtarılacak roketin hasar görmemesi için paraşütle taşınan yüklerin hızı azami 9 m/s ve asgari 5 m/s olmalıdır.		Slayt 5	-
33	3.2.2.6	Görev Yükü, roketin parçalarına herhangi bir bağlantısı olmadan (hiçbir noktaya şok kordonu vb. herhangi bir ekipman ile bağlanmadan), tek başına ve kendi paraşütüyle "bağımsız" olarak indirilmelidir.		Slayt 25	Görev yükü roketten bağımsız bir şekilde indirilecektir.

Sıra No	Gereksinim Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
34	3.2.2.7	Kurtarma sisteminde (paraşüt) ayırma işlemi için kimyasal sıcak gaz üreteçleri, pnömatik, hidrolik mekanik ya da soğuk gaz içeren bir sistem kullanılabilir.		Slayt 17	Sıcak gaz kullanılacaktır.
35	3.2.2.8	Paraşüt ayırma işleminde güvenlik sebebiyle ticarî olmayan basınçlı kapların (basınçlı tank, tüp vb.) kullanılmasına kesinlikle müsaade edilmeyecektir.		Slayt 17	Sıcak gaz kullanılacaktır.
36	3.2.2.9	Takımların sıcak gaz üreteç sistemlerinde kendi piroteknik malzemelerini kullanmalarına izin verilmeyecek olup, sahaya piroteknik malzeme getiren takımlar elenecektir.		-	Sahaya piroteknik malzeme getirilmeyecektir.

Sıra No	Gereksinim Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
37	3.2.2.10	Sıcak gaz üreteci kullanacak takımlara TEKNOFEST Roket Yarışması Komitesi tarafından piroteknik kapsül atış alanında elden teslim edilecektir.		-	-
38	3.2.2.11	Takımlar, tüm etiketleri aldıktan sonra sıcak gaz üreteçlerini hakemlerden teslim alacaklar ve hakem kontrolünde roketlerine entegre edeceklerdir.		-	-
39	3.2.2.12	Yarışmada kullanılabilecek ticarî basınçlı kapların doldurulması işlemi montaj/entegrasyon alanında ve hakem heyetinin gözetiminde icra edilmelidir.		-	-

Sıra No	Gereksinim Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
40	3.2.2.13	Her paraşüt birbirinden farklı renkte ve çıplak gözle uzaktan rahat seçilebilir olacaktır (paraşütlerin kesinlikle beyaz ve mavi renklerde veya bu renklerin farklı tonlarında olmaması önemlidir).		Slayt 21	Beyaz ve mavi renklerde veya bu renklerin farklı tonlarında paraşüt kullanılmamıştır.
41	3.2.2.14	Takımlar, kurtarılması gereken Görev Yükü ve roket için konum bilgisini hakem heyetine yazılı olarak ve atışı müteakip 15 dakika içerisinde sunmalıdır (Söz konusu veriler hakem yer istasyonuna indirilen verilerle kontrol edilecektir).		-	-

Sıra No	Gereksinim Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
42	3.2.2.15	Alan gereksinimlerinde detayları açıklanan telemetri verisi paylaşma kuralları çerçevesinde atış sonrasında roket ve Görev Yükü için konum verisini sağlayamayan takımlar hem konum doğruluğu hem de roket ve Görev Yükünün kurtarılmasıyla ilgili puanlardan faydalanamayacaktır		-	
43	3.2.3.1	Orta İrtifa Kategorisi hariç olmak üzere tüm kategorilerde Görev Yükünün kütlesi asgari dört (4) kg olmalıdır.		Slayt 25	Görev yükü 4030 gramdır.
44	3.2.3.2	Orta İrtifa Kategorisi için Görev Yükü asgari iki (2) kg olmalıdır		Slayt 25	Görev yükü 4030 gramdır.

Sıra No	Gereksinim Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
45	3.2.4.1	Lise, Orta İrtifa ve Zorlu Görev kategorilerinde yarışacak roketlerin ses altı hızlarda (1 Mach'dan düşük hız) uçmaları gerekmektedir.		Slayt 4	0.94 mach ile uçuş gerçekleştirceğiz.
46	3.2.4.3	Roketin tüm parçalarının azamî dış çapları aynı değerde olmalıdır (Kademelerin farklı çaplara sahip olması ve kademeler arasında çap değişimine izin verilmemektedir. Rampa yerleşim kısıtları dahilinde Boat-Tail kullanımına izin verilmektedir.)		Slayt 4	Roketin bütün gövdelerinin dış çapı 130 mm dir.

Sıra No	Gereksinim Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
47	3.2.4.6.	Tüm kategorilerdeki roketlerin 0.3 Mach'taki stabilite değeri 1.5 ile 2.5 arasında olmalıdır.		Slayt 4	2.15 tir.
48	3.2.4.8.	Rampadan asgari çıkış hızları; Lise Kategorisi için 15 m/s, Orta İrtifa Kategorisi için 25 m/s, Yüksek İrtifa Kategorisi için 30 m/s ve Zorlu Görev Kategorisi için 20 m/s'dir.		Slayt 3	30 m/s dir.
49	3.2.5.1.	Roketin iç ve dış basıncı dengeli olmalıdır. Basınç dengesini sağlamak için burun ile gövde ön bölgesi arasında, aviyonik sistemlerin bulunduğu gövde parçasında ve gövde arkası ile motor arasındaki gövde üzerinde 3.0-4.5 mm arasında çapa sahip asgari üç (3) delik bulunmalıdır.		Slayt 13	Basınç delikleri tasarımda açılmıştır.

Sıra No	Gereksinim Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
50	3.2.5.4.	Aerodinamik yüzey (gövde, kanatçık, burun) malzemesi olarak PVC, sıkıştırılmış kağıt/kraft ve PLA kullanılamaz.		Slayt 10- 12	Karbonfiber ve fiberglas kullanılmıştır.
51	3.2.5.9.	Burun omuzluğunun diğer gövdeye girecek kısmının gövde dış çapının en az bir buçuk (1.5) katı olması gerekmektedir.		Slayt 10	İsterler sağlanmıştır.
52	3.2.5.10.	Entegrasyon gövdelerinin entegre edilecekleri gövdelerin her ikisine de gövde dış çapının en az (0.75) katı kadar girmesi gerektiğinden bu duruma uymamak diskalifiye sebebidir.		Slayt 15	İsterler sağlanmıştır.

Sıra No	Gereksinim Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
53	3.2.5.13.	Bir rokette asgari iki (2) adet kaydırma ayağı bulunmalıdır.		-	2 adet kullanılacaktır.
54	3.2.5.15.	Roketin ağırlık merkezi iki kaydırma ayağının arasında olmalıdır.		-	İster karşılanacaktır
55	3.2.5.19.	Uçuş bilgisayarı ve Görev Yüküyle ilgili tüm anahtarlar roketin nozülünden azami 2500 mm mesafede olmalıdır		Slayt 4	İster karşılanmıştır.

Sıra No	Gereksinim Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
56	3.2.5.20.	Roket rampa üzerinde atışa hazır konumdayken tüm anahtarlar aktifleştirlecektir		-	İster karşılanmıştır.
57	3.2.5.22.	Roket üzerinde bulunan kapakların mekanik olarak sabitlenmesi gerekmektedir. Yapıştırma veya bantlama gibi bir yöntem kabul edilmeyecektir.		-	İster karşılanmıştır.
58	3.2.6.1.	Rokette bulunan ayrılma ve kurtarma sistemleri uçuş kontrol bilgisayarı tarafından yönetilir.		-	İster karşılanmıştır.
59	3.2.6.2.	Roketlerin uçuş boyunca telemetri verilerinin yer istasyonuna aktarılmasını sağlayan haberleşme bilgisayarı bağımsız olabileceği gibi Uçuş Kontrol Bilgisayarına da entegre görev yapabilir.		-	İster karşılanmıştır.

Sıra No	Gereksinim Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
60	3.2.6.7.	Ticari uçuş kontrol bilgisayarında konum belirleme ve haberleşme sistemi bulunmuyorsa takımların ayrıca haberleşme bilgisayarı kullanması/geliştirmesi zorunludur.		Slayt 28	Ana sistem haberleşme için kullanılacaktır
61	3.2.6.8.	Orta ve Yüksek İrtifa ile Zorlu Görev Kategorilerinde en az iki (2) uçuş kontrol bilgisayarının kullanılması zorunludur.		Slayt 27	İki adet uçuş kontrol kartı kullanıldı.
62	3.2.6.9.	Orta ve Yüksek İrtifa ile Zorlu Görev Kategorilerinde uçuş kontrol bilgisayarlarından bir (1) tanesinin özgün olarak geliştirilmiş olması zorunludur.		Slayt 27	Ana sistem özgün olarak geliştirildi.

Sıra No	Gereksinim Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
63	3.2.6.10.	Orta ve Yüksek İrtifa ile Zorlu Görev Kategorilerinde ikinci uçuş kontrol bilgisayarlarının ticari uçuş kontrol bilgisayarı olması zorunludur.		Slayt 27	Yedek sistem ticari olarak kullanıldı.
64	3.2.6.11.	Orta ve Yüksek İrtifa ile Zorlu Görev Kategorilerinde kullanılan uçuş kontrol bilgisayarlarından en az bir (1) tanesi haberleşme bilgisayarı özellikleri taşıyabilir veya haberleşme ayrı bir sistemle sağlanabilir.		Slayt 29	Haberleşmeyi sadece ana sistem sağlayacaktır.
65	3.2.6.12.	Kurtarma sisteminin aktifleşmesi sadece dijital sinyaller ile mümkün olmayan (yani eyleyicili sistemleri kullanan takımlar) takımlar, sistemlerinde ticari uçuş bilgisayarlarını kullanabilmek için dijital ateşleme çıkışı ile eyleyici sürme kabiliyeti olan ara elektronik bileşenini beraber kullanabilir.		Slayt 31	Kurtarma dijital sinyallerle sağlanacaktır.

Sıra No	Gereksinim Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
66	3.2.6.14.	Sistemde kullanılan uçuş kontrol bilgisayarları arasında herhangi bir elektriksel veya kablosuz bağlantı olamaz.		Slayt 27	Sistemler arasında bağlantı yoktur.
67	3.2.6.15.	Özgün geliştirilmiş veya ticari uçuş kontrol bilgisayarları birbirinden tamamen bağımsız olmalıdır.		Slayt 27	Uçuş kontrolcüleri bağımsız çalışmaktadır.
68	3.2.6.16.	Özgün geliştirilmiş veya ticari uçuş kontrol bilgisayarlarının kendisine ait işlemcisi, sensörleri, güç kaynağı ve kablolaması olmalıdır.		Slayt 29	Her bileşen sisteme özgüdür.
69	3.2.6.17.	Farklı uçuş kontrol bilgisayarları, ayrılma sistemi eyleyicisine birbirinden bağımsız hatlar ile bağlanmalıdır.		-	İster karşılanmıştır.

Sıra No	Gereksinim Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
70	3.2.6.18.	Farklı uçuş kontrol bilgisayarları ve/veya bağlı oldukları sistemlerden biri kısmen veya tamamen bozulsa bile diğeri roketin kurtarma işlevlerini aksaksız ve durmaksızın yerine getirmelidir.		Slayt 27	Sistemler bağımsız çalışmaktadır.
71	3.2.6.19.	Uçuş kontrol bilgisayarlarına en az iki (2) farklı sensörün bağlantısı olmalıdır (Farklı uçuş kontrol bilgisayarlarında bağlanan sensörler aynı olabilir).		Slayt 29	Sistemlerde en az iki adet sesör vardır.
72	3.2.6.20.	Uçuş kontrol bilgisayarlarına bağlı sensörlerden en az birinin basınç sensörü olması zorunludur.		Slayt 29	Sistemlerde 1 adet basınç sensörü vardır.
73	3.2.6.21.	Uçuş kontrol bilgisayarında çalışan uçuş kontrol algoritmasında en az iki (2) adet farklı sensörden gelen veriler kullanılmalıdır.		Slayt 18 - 34	Kurtarma kriteri için 2 veri zorunludur.

Sıra No	Gereksinim Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
74	3.2.6.22.	Uçuş kontrol bilgisayarında iki (2) adet basınç sensörü kullanılması durumunda kullanılan sensörlerin birbirinden farklı olması gerekmektedir.		Slayt 18 – 34	Veriler farklı sensörlerden alınmaktadır.
75	3.2.6.23.	Uçuş kontrol algoritmasında ayrılma işlemi GPS'den gelen veriler ile tetiklenmemelidir		Slayt 18 - 34	Kriter irtifa ve gyro verilerine göredir.
76	3.2.6.27.	Kurtarma sistemleri istemsiz olarak aktive olmamalıdır.		Slayt 18 - 30	Algoritmik ve mekanik önlem alındı
77	3.2.6.28.	Bütün takımların, roketlerinden ve faydalı yüklerinden anlık ve sürekli veri alan bir yer istasyonuna sahip olması gerekmektedir.		-	Yer istasyonu geliştirildi.

Sıra No	Gereksinim Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
78	3.2.6.35.	Roket parçalarının yer istasyonundan uzak yerlere düşeceği göz önüne alınmalı ve alıcı-verici antenlerin menzili roketlerin uçuş yörüngesi dikkate alınacak şekilde seçilmelidir.		Slayt 39	Menzillere uygun seçim yapıldı.
79	3.2.6.36.	RF modülünün gücü değerlendirilerek link bant genişliği bütçesinin yapılması ve ilgili tasarım raporlarında sunulması gerekmektedir.		Slayt 39	Hesaplamalar yapıldı.
80	3.2.6.44.	Sisteme güç sağlayan her türlü güç kaynağı (akü, pil, süperkapasitör vb.) ile besledikleri ilk devreler arasında mekanik açma/kapama anahtarı (Ing. on/off switch) bulunacaktır.		-	Mekanik açma anahtarı bulunuyor.

Sıra No	Gereksinim Madde No	Gereksinim	Karşılama Durumu	ÖTR Slayt No	Açıklama
81	3.2.6.46.	Sistemde Li-Po vb. pil kullanacak takımların "Li-Po Safe Bag" kullanmaları gerekmektedir		-	İster karşılanmıştır.
82	3.2.6.49.	Uçuş algoritmalarında ayrılma sekanslarını tetikleyecek asgari iki kriter belirlenmelidir		Slayt 18 - 34	İrtifa ve gyro verileri kriter olarak alındı.
83	3.2.6.52.	Sensörlerden gelebilecek hatalı veriler için alınacak önlemler (filtreleme vs.) ilgili tasarım raporlarında detaylı anlatılmalıdır.		Slayt 33	Kalman filtrelemesi kullanılacak.

HTEA Hata Türleri ve Etkileri Analizi

BILGILENDIRME

Hata Türleri ve Etkileri Analizi (HTEA) konu başlığı bilgilerini içeren, belirtilen excel formatına göre hazırlanan "Konuralp Roket Takımı Hata Türleri ve Etkileri Analizi (HTEA).xlsx" isimli dosya; Ön Tasarım Raporuyla (ÖTR ile) beraber sisteme yüklenmiştir.

REFERANSLAR

- KONURALP Roket Takımı 2022 TEKNOFEST Orta İrtifa Roket Yarışması Ön Tasarım Raporu
- KONURALP Roket Takımı 2022 TEKNOFEST Orta İrtifa Roket Yarışması Kritik Tasarım Raporu
- KONURALP Roket Takımı 2022 TEKNOFEST Orta İrtifa Roket Yarışması Atışa Tasarım Raporu