Deep Learning KU (DAT.C302UF), WS24 Assignment 1

Maximum Likelihood Estimation, Decision Theory

Thomas Wedenig thomas.wedenig@tugraz.at

Teaching Assistants: Patrick Ebnicher, Hade Mohamed

Points to achieve: 10 pts

Deadline: 30.10.2024 23:59

Hand-in procedure: This is a **solo assignment**. No teams allowed.

Submit your report (PDF) to the TeachCenter.

You do not have to add the cover letter since there are no teams allowed.

Plagiarism: If detected, 0 points for all parties involved.

If this happens twice, we will grade the group with

"Ungültig aufgrund von Täuschung"

Supervised Learning – The Setup

Assume we are given a dataset $\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$, where $\mathbf{x}_i \in \mathbb{R}^d$, and $y_i \in \{0, 1\}, \forall i \in \{1, \dots, n\}$. We can think of \mathbf{x}_i as a feature vector and of y_i as the corresponding class (i.e., this is a binary classification problem). Each (\mathbf{x}_i, y_i) tuple is assumed to be an i.i.d. sample from some true, unknown joint distribution $p^*(\mathbf{x}, y)$.

We wish to learn a *discriminative* model that predicts the probability for the binary event y, given a particular feature vector \mathbf{x} , i.e., $p_{\theta}(y \mid \mathbf{x})$.

Task 1 – Maximum Likelihood Estimation [5 Points]

- 1. Let $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n)^T$ and $\mathbf{y} = (y_1, \dots, y_n)^T$. Write down the likelihood of the entire dataset under our model $p_{\theta}(\mathbf{y} \mid \mathbf{X})$. Express this in terms of the single-sample likelihoods $p_{\theta}(y_i \mid \mathbf{x}_i)$ and use the i.i.d. assumption. Write down the negative log-likelihood $\mathrm{NLL}(\theta) = -\log(p_{\theta}(\mathbf{y} \mid \mathbf{X}))$ as well, again in terms of single-sample likelihoods.
- 2. Consider the *empirical* distribution induced by \mathcal{D} , given by $p_{\mathcal{D}}(\mathbf{x}, y) = p_{\mathcal{D}}(\mathbf{x})p_{\mathcal{D}}(y \mid \mathbf{x})$ with

$$p_{\mathcal{D}}(y \mid \mathbf{x}_i) = \begin{cases} 1 & \text{if } y = y_i \\ 0 & \text{else} \end{cases} \qquad p_{\mathcal{D}}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \delta(\mathbf{x} - \mathbf{x}_i)$$

where $\delta(\cdot)$ is the Dirac delta function centered around 0.

Show that the Maximum-Likelihood estimator minimizes the *expected KL-Divergence* between the empirical distribution and the model distribution:

$$\underset{\theta}{\operatorname{argmin}} \ \operatorname{NLL}(\theta) = \underset{\theta}{\operatorname{argmin}} \ \mathbb{E}_{\mathbf{x} \sim p_{\mathcal{D}}(\mathbf{x})} \left[D_{\mathbb{KL}}(p_{\mathcal{D}}(\cdot \,|\, \mathbf{x}), \, p_{\theta}(\cdot \,|\, \mathbf{x})) \right]$$

where

$$D_{\mathbb{KL}}(p_{\mathcal{D}}(\cdot \mid \mathbf{x}), p_{\theta}(\cdot \mid \mathbf{x})) = \mathbb{E}_{y \sim p_{\mathcal{D}}(\cdot \mid \mathbf{x})} \left[\log \left(\frac{p_{\mathcal{D}}(y \mid \mathbf{x})}{p_{\theta}(y \mid \mathbf{x})} \right) \right]$$

3. Show that the Maximum-Likelihood estimator also minimizes the expected cross-entropy between the empirical distribution $p_{\mathcal{D}}(y | \mathbf{x})$ and the model distribution $p_{\theta}(y | \mathbf{x})$, i.e.,

$$\underset{\theta}{\operatorname{argmin}} \ \operatorname{NLL}(\theta) = \underset{\theta}{\operatorname{argmin}} \ \mathbb{E}_{\mathbf{x} \sim p_{\mathcal{D}}(\mathbf{x})} \left[\mathbb{H}_{\operatorname{ce}}(p_{\mathcal{D}}(\cdot \,|\, \mathbf{x}), p_{\theta}(\cdot \,|\, \mathbf{x})) \right]$$

where $\mathbb{H}_{ce}(p_{\mathcal{D}}(\cdot | \mathbf{x}), p_{\theta}(\cdot | \mathbf{x}))$ denotes the *cross-entropy* between the input distributions, defined by

$$\mathbb{H}_{\mathrm{ce}}(p_{\mathcal{D}}(\cdot \mid \mathbf{x}), p_{\theta}(\cdot \mid \mathbf{x})) = \mathbb{E}_{y \sim p_{\mathcal{D}}(\cdot \mid \mathbf{x})} \left[-\log(p_{\theta}(y \mid \mathbf{x})) \right]$$

4. In general, given distributions $p(\mathbf{z})$ and $q(\mathbf{z})$, show the relationship between $D_{\mathbb{KL}}(p,q)$, $\mathbb{H}_{ce}(p,q)$ and $\mathbb{H}(p)$, where $\mathbb{H}(p) = \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})}[-\log(p(\mathbf{z}))]$ is the *entropy* of p. Hint: Start by writing down the definition of $D_{\mathbb{KL}}(p,q)$. Also recall that the expectation operator is *linear*, i.e., $\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$.

Task 2 – Decision Theory [5 Points]

For all following tasks, assume we have access to the *true* posterior $p^*(y \mid \mathbf{x})$, for each $\mathbf{x} \in \mathbb{R}^d$.

1. We define a loss function

$$\mathcal{L}(y, \hat{y}) = \begin{cases} 1 & \text{if } y \neq \hat{y} \\ 0 & \text{else} \end{cases}$$

where y is the true, observed label, and \hat{y} is the model's prediction. This function is the so-called zero-one loss. Write down the decision function $f: \mathbb{R}^d \to \{0,1\}$ that minimizes

$$\mathbb{E}_{(\mathbf{x},y)\sim p^*(\mathbf{x},y)}\left[\mathcal{L}(y,f(\mathbf{x}))\right]$$

i.e., the expected loss over the data generating distribution.

- 2. Does there exist a different¹ decision function f' that in expectation over $p^*(\mathbf{x}, y)$ makes fewer misclassifications? Explain why/why not.
- 3. If f had access to the marginal $p^*(\mathbf{x})$, could we construct a decision function that achieves a lower expected loss? Explain why/why not.
- 4. We define a new loss function $\mathcal{L}(y,\hat{y}) = L_{y,\hat{y}}$ with

$$L = \begin{bmatrix} 0 & 1 \\ 10 & 0 \end{bmatrix}$$

where matrix indexing is 0-based. For example, $L_{0,1} = 1$ and $L_{1,0} = 10$. Using this new loss function, again write down the definition of the decision function $g : \mathbb{R}^d \to \{0,1\}$ that minimizes the expected loss

$$\mathbb{E}_{(\mathbf{x},y) \sim p^*(\mathbf{x},y)} \left[\mathcal{L}(y,g(\mathbf{x})) \right].$$

- 5. For a particular \mathbf{x} , assume the true posterior is $p^*(y=0 | \mathbf{x}) = 0.9$ and $p^*(y=1 | \mathbf{x}) = 0.1$. What is the output of $f(\mathbf{x})$ and $g(\mathbf{x})$? Explain any differences in their decision.
- 6. Assume that y encodes if a patient (with feature vector \mathbf{x}) has a disease (y = 1), or is healthy (y = 0). In words, briefly describe what the matrix L encodes in this case.

¹i.e., $\exists \mathbf{x} \in \mathbb{R}^d : f'(\mathbf{x}) \neq f(\mathbf{x})$