CSC 611: Analysis of Algorithms

Lecture 1

Introduction

General Information

- Instructor: Haidar Harmanani
 - E-mail: haidar@lau.edu.lb
 - Office hours: Tuesday 3 pm-5 pm,
 - or by request
 - Office: Block A 810
- Class webpage:
 - http://Harmanani.github.io/csc611.html

Class Policy

- Grading
 - 5-10 homeworks (30%)
 - Extra-credit
 - Programming component
 - Mid-term exam (30%)
 - Closed books, closed notes
 - Final exam (40%)
 - Closed books, closed notes

Introduction to Algorithms,

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein

CSC 611 - Lecture 1

Why Study Algorithms?

- Necessary in any computer programming problem
 - Improve algorithm efficiency: run faster, process more data, do something that would otherwise be impossible
 - Solve problems of significantly large size
 - Technology only improves things by a constant factor
- Compare algorithms
- Algorithms as a field of study
 - Learn about a standard set of algorithms
 - New discoveries arise
 - Numerous application areas
- Learn techniques of algorithm design and analysis

Applications

- Multimedia
 - CD player, DVD, MP3, JPG, DivX, HDTV
- Internet
 - Packet routing, data retrieval (Google)
- Communication
 - Cell-phones, e-commerce
- Computers
 - Circuit layout, file systems
- Science
 - Human genome
- Transportation
 - Airline crew scheduling, UPS deliveries

CSC 611 - Lecture 1

Roadmap

- Different problems
 - Sorting
 - Searching
 - String processing
 - Graph problems
 - Geometric problems
 Greedy algorithms
 - Numerical problems

- Different design paradigms
 - Divide-and-conquer
 - Incremental
 - Dynamic programming

 - Randomized/probabilistic

Analyzing Algorithms

- Predict the amount of resources required:
 - memory: how much space is needed?
 - computational time: how fast the algorithm runs?
- FACT: running time grows with the size of the input
- Input size (number of elements in the input)
 - Size of an array, polynomial degree, # of elements in a matrix, # of bits in the binary representation of the input, vertices and edges in a graph

Def: Running time = the number of primitive operations (steps) executed before termination

 Arithmetic operations (+, -, *), data movement, control, decision making (if, while), comparison

CSC 611 - Lecture 1

Algorithm Efficiency vs. Speed

E.g.: sorting n numbers

Sort 106 numbers!

Friend's computer = 10^9 instructions/second Friend's algorithm = $2n^2$ instructions

Your computer = 10^7 instructions/second Your algorithm = 50**nlgn** instructions

Your friend =
$$\frac{2*(10^6)^2 \text{ instructions}}{10^9 \text{ instructions / second}} = 2000 \text{ seconds}$$
You =
$$\frac{50*(10^6) \text{lg} 10^6 \text{ instructions}}{10^7 \text{ instructions / second}} \approx 100 \text{ seconds}$$

20 times better!!

Algorithm Analysis: Example

• Alg.: MIN (a[1], ..., a[n])

```
m \leftarrow a[1];
for i \leftarrow 2 to n
if a[i] < m
then m \leftarrow a[i];
```

• Running time:

 the number of primitive operations (steps) executed before termination

```
T(n) = 1 [first step] + (n) [for loop] + (n-1) [if condition] + (n-1) [the assignment in then] = 3n-1
```

- Order (rate) of growth:
 - The leading term of the formula
 - Expresses the asymptotic behavior of the algorithm

CSC 611 - Lecture 1

Typical Running Time Functions

- 1 (constant running time):
 - Instructions are executed once or a few times
- logN (logarithmic)
 - A big problem is solved by cutting the original problem in smaller sizes, by a constant fraction at each step
- · N (linear)
 - A small amount of processing is done on each input element
- · N logN
 - A problem is solved by dividing it into smaller problems,
 solving them independently and combining the solution

Typical Running Time Functions

- N² (quadratic)
 - Typical for algorithms that process all pairs of data items (double nested loops)
- N³ (cubic)
 - Processing of triples of data (triple nested loops)
- N^K (polynomial)
- 2^N (exponential)
 - Few exponential algorithms are appropriate for practical use

CSC 611 - Lecture 1

Why Faster Algorithms?

Asymptotic Notations

- A way to describe behavior of functions in the limit
 - Abstracts away low-order terms and constant factors
 - How we indicate running times of algorithms
 - Describe the running time of an algorithm as n grows to ∞
- O notation: asymptotic "less than and equal": f(n) "≤" g(n)
- Ω notation: asymptotic "greater than and equal": f(n) "≥" g(n)
- Θ notation: asymptotic "equality": f(n) "=" g(n)

CSC 611 - Lecture 1

Asymptotic Notations - Examples

• ⊖ notation

$$- n^2/2 - n/2 = \Theta(n^2)$$

$$- (6n^3 + 1) \lg n/(n + 1) = \Theta(n^2 \lg n)$$

- n vs.
$$n^2$$
 n $\neq \Theta(n^2)$

• Ω notation

O notation

$$- n^3 vs. n^2 n^3 = \Omega(n^2)$$

-
$$n^3$$
 vs. n^2 $n^3 = \Omega(n^2)$ - $2n^2$ vs. n^3 $2n^2 = O(n^3)$

- n vs. logn
$$n = \Omega(\log n)$$
 - n^2 vs. n^2 $n^2 = O(n^2)$

$$- n^2 vs. n^2 n^2 = O(n^2)$$

- n vs.
$$n^2$$
 n $\neq \Omega(n^2)$ - n^3 vs. nlogn $n^3 \neq O(nlgn)$

Mathematical Induction

- Used to prove a sequence of statements (S(1), S(2), ... S(n)) indexed by positive integers. S(n): $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$
- Proof:
 - Basis step: prove that the statement is true for n = 1
 - Inductive step: assume that S(n) is true and prove that S(n+1) is true for all $n \ge 1$
- The key to proving mathematical induction is to find case n "within" case n+1

CSC 611 - Lecture 1

Recursive Algorithms

Binary search: for an ordered array A, finds if x is in the array A[lo...hi]

Recurrences

Def.: Recurrence = an equation or inequality that describes a function in terms of its value on smaller inputs, and one or more base cases

- E.g.: T(n) = T(n-1) + n
- Useful for analyzing recurrent algorithms
- Methods for solving recurrences
 - Iteration method
 - Substitution method
 - Recursion tree method
 - Master method

CSC 611 - Lecture 1

Sorting – Analysis of Running Time

Iterative methods:

- Insertion sort
- Bubble sort
- Selection sort

2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A

Divide and conquer Non-comparison methods

- Merge sort
- Quicksort

- Counting sort
- Radix sort
- Bucket sort

CSC 611 - Lecture 1

Types of Analysis

- Worst case (e.g. cards reversely ordered)
 - Provides an upper bound on running time
 - An absolute guarantee that the algorithm would not run longer, no matter what the inputs are
- Best case (e.g., cards already ordered)
 - Input is the one for which the algorithm runs the fastest
- Average case (general case)
 - Provides a prediction about the running time
 - Assumes that the input is random

CSC 611 - Lecture 1

Specialized Data Structure

Problem:

- Keeping track of customer account information at a bank or flight reservations
- This applications requires fast search, insert/delete, sort

Solution: binary search trees

- If y is in left subtree of x,
 then key [y] ≤ key [x]
- If y is in right subtree of x,
 then key [y] ≥ key [x]
- Red-black trees, interval trees, OS-trees

CSC 611 - Lecture 1

Dynamic Programming

- An algorithm design technique (like divide and conquer)
 - Richard Bellman, optimizing decision processes
 - Applicable to problems with overlapping subproblems

E.g.: Fibonacci numbers:

- Recurrence: F(n) = F(n-1) + F(n-2)
- Boundary conditions: F(1) = 0, F(2) = 1
- Compute: F(5) = 3, F(3) = 1, F(4) = 2
- Solution: store the solutions to subproblems in a table
- Applications:
 - Assembly line scheduling, matrix chain multiplication, longest common sequence of two strings, 0-1 Knapsack problem
 CSC 611 - Lecture 1

Greedy Algorithms

Problem

 Schedule the largest possible set of non-overlapping activities for SEM 234

	Start	End	Activity	
1	8:00am	9:15am	Numerical methods class	~
2	8:30am	10:30am	Movie presentation (refreshments served)	
3	9:20am	11:00am	Data structures class	✓
4	10:00am	noon	Programming club mtg. (Pizza provided)	
5	11:30am	1:00pm	Computer graphics class	√
6	1:05pm	2:15pm	Analysis of algorithms class	✓
7	2:30pm	3:00pm	Computer security class	✓
8	noon	4:00pm	Computer games contest (refreshments served)	
9	4:00pm	5:30pm	Operating systems class	✓

Greedy Algorithms

- Similar to dynamic programming, but simpler approach
 - Also used for optimization problems
- Idea: When we have a choice to make, make the one that looks best right now
 - Make a locally optimal choice in hope of getting a globally optimal solution
- Greedy algorithms don't always yield an optimal solution
- Applications:
 - Activity selection, fractional knapsack, Huffman codes

CSC 611 - Lecture 1

Graphs

 Applications that involve not only a set of items, but also the connections between them

Maps

Schedules

Computer networks

Hypertext

Circuits

CSC 611 - Lecture 1

Searching in Graphs

- Graph searching = systematically follow the edges of the graph so as to visit the vertices of the graph
- Two basic graph methods:
 - Breadth-first search
 - Depth-first search
 - The difference between them is in the order in which they explore the unvisited edges of the graph
- Graph algorithms are typically elaborations of the basic graph-searching algorithms

Strongly Connected Components

 Read in a 2D image and find regions of pixels that have the same color

Original

Labeled

Minimum Spanning Trees

- A connected, undirected graph:
 - Vertices = houses, Edges = roads
- A weight w(u, v) on each edge $(u, v) \in E$

Find $T \subseteq E$ such that:

- 1. T connects all vertices
- 2. $w(T) = \sum_{(U,V) \in T} w(U, V)$ is minimized

Algorithms: Kruskal and Prim

CSC 611 - Lecture 1

Shortest Path Problems

- Input:
 - Directed graph G = (V, E)
 - Weight function $w : E \rightarrow R$
- Weight of path $p = \langle v_0, v_1, \dots, v_k \rangle$

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

• Shortest-path weight from u to v:

 $\delta(\mathbf{u}, \mathbf{v}) = \min \left\{ \mathbf{w}(\mathbf{p}) : \mathbf{u} \overset{\mathbf{p}}{\leadsto} \mathbf{v} \text{ if there exists a path from } \mathbf{u} \text{ to } \mathbf{v} \right\}$

Variants of Shortest Paths

- **Single-source shortest path** (Bellman-Ford, DAG shortest paths, Disjkstra)
 - $G = (V, E) \Rightarrow$ find a shortest path from a given source vertex s to each vertex $v \in V$
- Single-destination shortest path
 - Find a shortest path to a given destination vertex t from each vertex v
 - Reverse the direction of each edge ⇒ single-source
- Single-pair shortest path
 - Find a shortest path from $\bf u$ to $\bf v$ for given vertices $\bf u$ and $\bf v$
 - Solve the single-source problem
- All-pairs shortest-paths (Matrix multiplication, Floyd-Warshall)
 - Find a shortest path from ${\bf u}$ to ${\bf v}$ for every pair of vertices ${\bf u}$ and ${\bf v}$

CSC 611 - Lecture 1

Number Theoretic Algorithms

- Secured communication: RSA public-key cryptosystem
 - Easy to find large primes
 - Hard to factor the product of large primes

NP-Completeness

- Not all problems can be solved in polynomial time
 - Some problems cannot be solved by any computer no matter how much time is provided (Turing's Halting problem) – such problems are called undecidable
 - Some problems can be solved but not in $O(n^k)$
- Can we tell if a problem can be solved?
 - NP, NP-complete, NP-hard
- Approximation algorithms

CSC 611 - Lecture 1

Readings

- Chapter 1
- Appendix A