Національний університет «Львівська політехніка» Кафедра програмного забезпечення

Організація комп'ютерних мереж

к.т.н., ст. викл. Тушницький Р.Б. ruslan4yk@lp.edu.ua

House

Практичне заняття 2: Методи кодування

- 1. Вибір способу кодування
- 2. Методи кодування
- 3. Скремблювання
- 4. Виявлення і корекція помилок

При виборі способу кодування потрібно одночасно досягнути такі цілі:

- 1. min ширину спектра сигналу, отриманого в результаті кодування
- 2. забезпечити синхронізацію між передавачем і приймачем
- 3. забезпечити стійкість до шумів
- 4. виявити і по можливості виправити бітові помилки
- 5. min потужність передавача.

Спектр сигнала — результат розкладу сигналу на більш прості в базисі ортогональних функцій. В якості розкладу зазвичай використовують перетворення Фур'є, розклад по функціям Уолша, вейвлет-перетворення тощо. В якості базисних функцій використовують sin-їдальні функції.

Спектр сигналу залежить як від способу кодування так і від тактової частоти передавача.

Більш вузький спектр сигналу дає змогу на одній і тій же лінії досягнути більшої швидкості передачі даних.

Рис. 8.3. Представление периодического сигнала суммой синусоид

Синхронізація передавача і приймача потрібна для того, щоб приймач точно знав в який момент зчитувати порцію інформації з лінії зв'язку.

При передачі дискретної інформації час розбивається на такти однакової тривалості, і приймач зчитує новий сигнал в середині кожного такту.

на великій відстані нерівномірна швидкість розповсюдження сигналів # економія провідників

Рис. 9.6. Синхронизация приемника и передатчика на небольших расстояниях

В мережах для вирішення проблеми синхронізації застосовують так звані самосинхронізовані коди, сигнали яких несуть для приймача вказівки про те, в який момент часу почати розпізнавати наступний біт.

Любий різкий перепад сигналу — **фронт** — може служити вказівкою на необхідність синхронізації приймача з передавачем.

Розпізнавання і корекція спотворених даних важко реалізувати засобами фізичного рівня, тому найчастіше цю роботу на себе беруть протоколи верхніх рівнів: канальний, мережевий, транспортний або прикладний.

Розпізнавання помилок на фізичному рівні економить час, оскільки приймач не чекає повного поміщення кадру в буфер, а відбраковує його одразу після розпізнавання помилкових бітів усередині кадру.

Методи кодування

Потенціальне

Для представлення логічних 1 і 0 використовується лише значення потенціала а його перепади, які формують закінчені імпульси, не беруться до уваги.

- відсутність самосинхронізації
- низька частота основної гармоніки

Імпульсне

Дають змогу представити двійкові дані або імпульсами визначеної полярності або частиною імпульса — перепадом потенціала визначеного напрямку.

- самосинхронізація
- висока частота основної гармоніки

Логічне

- покращення потенціальних кодів
- може зменшувати корисну пропускну здатність

Потенціальний код NRZ = Non Return to Zero

Після передачі послідовності 1 сигнал не повертається до нуля протягом такта.

Переваги:

- простота реалізації
- хороше розпізнавання помилок (2 різко відмінних потенціали)
- основна гармоніка $f_0 = N/2$ Hz (N 6ітова швидкість передачі даних) має достатньо низьку частоту -> вузький спектр.

- відсутня **самосинхронізація** (послідовності 000, 111 -> різні тактові частоти -> зчитування некоректного біта)
- наявність **низькочастотної складової**, яка наближається до постійного сигналу при передачі довгих послідовностей 0 або 1.

Біполярний імпульсний код RZ = Return to Zero

3 рівневий код.

Відбувається перехід до «нульового» рівня в середині кожного біта

0 => додатній імпульс в першій половині бітового інтервалу

1 => від'ємний імпульс в першій половині бітового інтервалу

Переваги:

- самосинхронізація
- використовується в мережах на основі електричного кабеля і оптоволокна.

Недоліки:

- вимагається удвічі більша смуга пропускання чим в NRZ

Біполярний код AMI = Alternate Mark Inversion

3 рівня потенціалів: від'ємний, нульовий, додатній.

0 => нульовий потенціал,

1 => додатній або від'ємний потенціал, причому потенціал кожної нової 1 протилежний потенціалу попередньої.

Переваги:

- при передачі довгих послідовностей 1 частково вирішує проблему наявності постійної складової і відсутності самосинхронізації
- для різних комбінацій бітів на лінії приводить до більш вузького спектру сигналу. Основна гармоніка *f*₀= *N*/4 Hz
- можливості розпізнавання помилкових сигналів

- довгі послідовності 0 небезпечні сигнал вироджується в постійний потенціал нульової амплітуди
- додатковий рівень сигналу вимагає збільшення потужності передавача

Потенціальний код NRZI = Non Return to Zero with ones Inverted

- 2 рівня потенціалів (# оптоволокно = світло і темнота).
- 0 => потенціал, який був на попередньому такті
- 1 => потенціал інвертується на протилежний.

<u>Переваги:</u>

- вимагає менше змін сигналу під час передачі довільної двійкової інформації => спектр вузький

Недоліки:

- погана самосинхронізація (000)

Біполярний імпульсний код

Дані представлені повним імпульсом або його частиною – фронтом.

1 => імпульс одної полярності

0 => імпульс іншої полярності

Кожний імпульс триває половину такту.

Переваги:

- самосинхронізація

- ширший спектр аніж у потенціальних кодів ($f_0 = N$ Hz при передачі всіх 000/111)
- використовується рідко через широкий спектр

Манчестерський код

Ethernet, Token Ring

Використовується перепад потенціалу, тобто фронт імпульсу.

1 => перепад від низького до високого рівня сигналу

0 => перепад від високого до низького рівня сигналу

На початку кожного такту може проходити службовий перепад сигналу, якщо потрібно передати декілька 000 / 111 підряд.

Переваги:

- самосинхронізація
- смуга пропускання вужча чим у біполярного
- немає постійної складової
- основна гармоніка в гіршому випадку (000/111) $f_0 = N$ Hz, в кращому випадку $f_0 = N/2$ Hz (як у AMI, NRZ)
- 2 рівня сигналу

Потенціальний код 2B1Q

4 рівня сигналу

Кожні 2 біти (**2B**) передаються за 1 такт (**1**) сигналом, що має 4 стани (**Q = Quadra**)

```
Парі 00 => потенціал -2,5В,
парі 01 => потенціал -0,833В,
парі 11 => потенціал +0,833В,
парі 10 => потенціал +2,5В.
```


Переваги:

- при випадковому наборі бітів спектр сигналу в 2 рази вужчий за NRZ => в 2 рази більша швидкість чим AMI / NRZI.

- потрібно додаткових мір для боротьби з 000/111, оскільки сигнал перетворюється у постійну складову
- потужність передавача має бути більшою, щоб 4 рівня розпізнавалися

Покращення потенціальних кодів

Метод 1.

Добавлення в початковий код надлишкових бітів, які містять 1.

Переваги:

- зникають великі послідовності 000 / 111 => самосинхронізація
- зникає постійна складова => звужується спектр сигналу Недоліки
- надлишкова інформація

Метод 2.

Попереднє перемішування вхідної інформації таким чином, щоб min ймовірність появи 000 / 111.

Прилади що роблять таку операцію скремблери/дескремблери.

Скремблювання полягає в побітовому обчисленні результуючого коду на основі бітів вхідного коду і отриманих в попередніх тактах бітів результуючого коду.

Надлишковий код 4В/5В

B = елементарний сигнал має два стани # FDDI, Fast Ethernet Розбиття вхідної послідовності бітів на порції = **символи**. Далі заміна символів довжиною 4 бітів на символи довжиною 5 бітів.

Переваги:

- немає постійної складової
- самосинхронізація
- можливість розпізнати спотворені біти (заборонені коди)
- таблиця перекодування проста операція для мережевих адаптерів
- спектр сигналу вужчий манчестерського

Недоліки:

спектр сигналу розширюється,
 треба підвищену тактову частоту
 # для передачі 100Mbps =>125 MHz

Исходный код	Результи рующий код	Исходный код	Результи рующий код
0000	11110	1000	10010
0001	01001	1001	10011
0010	10100	1010	10110
0011	10101	1011	10111
0100	01010	1100	11010
0101	01011	1101	11011
0110	01110	1110	11100
0111	01111	1111	11101

Надлишкові коди

Надлишковий код 8В/6Т

Fast Ethernet Код з 3 станами сигналу: для кодування **8 біт** вхідної інформації використовується код із **6 сигналів**, кожний з яких має **3 стани**.

Надлишковість коду **8В/6Т > 4В/5В**

Надлишковий код 5В/6В # 100VG-AnyLAN

100 V O-AllyLAIN

Надлишковий код 8В/10В

Gigabit Ethernet

Методи виявлення помилок

Ідея = передача в складі блоку даних надлишкової інформації

Надлишкову інформацію прийнято називати контрольною сумою або контрольною послідовністю кадру = Frame Check Sequence = FCS

Методи виявлення:

1. Контроль по паритету.

Сумування по модулю 2 всіх бітів інформації.

Виявлення тільки одиночної помилки в даних.

2. Вертикальний і горизонтальний контроль по паритету

Дані розглядаються у вигляді матриці, рядки якої складають байти даних. Контрольний розряд підраховується окремо для кожного рядка і стовпчика матриці.

Дає змогу виявити більшу частину подвійних помилок, але має ще більшу надлишковість.

Методи виявлення помилок

3. Циклічний надлишковий контроль = Cyclic Redundancy Check = CRC

Представлення даних у вигляді одного багаторозрядного двійкового числа. Контрольною інформацією є залишок від ділення цього числа на відомий дільник *R*.

Зазвичай в якості дільника вибирають 17- або 33-розрядне число, щоб залишок від ділення мав довжину 16 розрядів (2 байт) або 32 розряди (4 байт). При отриманні кадру — обчислюється залишок від ділення + додається контрольна сума.

Переваги:

- виявлення одиночних, подвійних помилок і помилок у непарній кількості бітів
- невисока ступінь надлишковості # для кадру Ethernet 1024 байт CRC довжиною 4 байт складає 0.4%

Недоліки

- велика обчислювальна складність

Методи корекції помилок

Техніка кодування, яка дає змогу приймачу не тільки зрозуміти, що надіслані дані містять помилки, але й виправити їх називається **прямою корекцією помилок = Forward Error Correction = FEC**

Коди, які забезпечують FEC вимагають введення більшої надлишковості.

Щоб оцінити кількість додаткових бітів, які потрібно для виправлення помилок потрібно визначити відстань Хемінга між відомими комбінаціями коду.

Відстань Хемінга — мінімальне число бітових розрядів, в яких відрізняється люба пара відомих кодів.

Використовують:

Коди Хемінга Згортаючі коди (решіткові) # безпровідні канали, модеми