IS1211/IS2111 Computer Networks

Dr. Chamath Keppitiyagama

University of Colombo School of Computing

Walking Along a Circle - At t = 0

Walking Along a Circle - At t = 0.25

Walking Along a Circle - At t = 0.5

Walking Along a Circle - At t = 0.75

Walking Along a Circle - At t=1

Sine Wave - One Cycle

Sine Wave (sinusoid)

Sine Wave - Three Cycles

Sine Wave - One Cycle

Amplitude

Periodic Signal - Period

Frequency

Number of cycles per second.

$$Period = 1s$$

$$Frequency = 1Hz$$

Frequency

Number of cycles per second.

$$Period = 1ms$$

$$\textit{Frequency} = 1000\textit{Hz} = 1\textit{KHz}$$

Frequency

Number of cycles per second.

$$\textit{Frequency} = \frac{1}{\textit{Period}}$$

$$\textit{f} = \frac{1}{\textit{T}}$$

Frequency = fPeriod= T

Speed of Light

 $300,000 Kms^{-1}$

Wave Length - Frequency 1Hz

300,000 Km

Wave Length - Frequency 1000Hz

$$\frac{300,000 Km}{1000} = 300 Km$$

Wave Length - Frequency 1MHz

$$\frac{300,000Km}{1000000} = 0.3Km = 300m$$

Wave Length (λ) , Frequency (f), and Propagation Speed of the Signal (c)

$$\lambda = \frac{c}{f}$$

Walking Along a Circle

Angular Speed =
$$\frac{360^{\circ}}{T}$$

Walking Along a Circle

$$\omega = 360^{\circ} f$$

Walking Along a Circle

Walking Along a Circle - Angle at time t

 $Angle = \omega t$

Walking Along a Circle - Height time t

 $Height = Amplitude = sin(\omega t)$

 $y = A \sin(\omega t)$

 $y = A \sin(x)$

$y = sin(\omega t)$

$y = \sin(2\omega t)$

$y = \sin(3\omega t)$

$y = 2\sin(\omega t)$

$y = 0.5 sin(\omega t)$

Phase

Phase

Attenuation

Amplification

Delay

Noise

$\frac{2}{\pi}sin(x)$

$\frac{2}{\pi}sin(x)$ and $\frac{2}{3\pi}sin(3x)$

$$\frac{2}{\pi}\sin(x) + \frac{2}{3\pi}\sin(3x)$$

$\frac{2}{\pi}sin(x)$ and $\frac{2}{3\pi}sin(3x)$ and $\frac{2}{5\pi}sin(5x)$

$$\frac{2}{\pi}\sin(x) + \frac{2}{3\pi}\sin(3x) + \frac{2}{5\pi}\sin(5x)$$

$$\frac{2}{\pi}sin(x) + \frac{2}{3\pi}sin(3x) + \frac{2}{5\pi}sin(5x) + \frac{2}{7\pi}sin(7x)$$

 $\frac{2}{\pi}sin(x) + \frac{2}{3\pi}sin(3x) + \frac{2}{5\pi}sin(5x) + \frac{2}{7\pi}sin(7x) + \frac{2}{9\pi}sin(9x)$

 $\frac{2}{\pi}sin(x)$ and $\frac{2}{3\pi}sin(3x)$ and $\frac{2}{5\pi}sin(5x)$ and $\frac{2}{7\pi}sin(7x)$ and $\frac{2}{9\pi}sin(9x)$

$$\frac{2}{\pi} \sin(x) + \frac{2}{3\pi} \sin(3x) + \frac{2}{5\pi} \sin(5x) + \frac{2}{7\pi} \sin(7x) + \frac{2}{9\pi} \sin(9x) + \frac{2}{11\pi} \sin(11x) + \frac{2}{13\pi} \sin(13x) \dots \to \infty$$

Fourier Transform

"In mathematics, a Fourier transform (FT) is a mathematical transform that decomposes a function (often a function of time, or a signal) into its constituent frequencies ... "

Wikipedia

Analog Signal

Digital Signal

