# **Practice 3: Calculus**

## 1. Find if exists the limit of the sequence as $n \to \infty$

- 1.  $\frac{1}{n^2}$ 2.  $\frac{n^2}{2-n^3}$ 3.  $(0.99)^n$
- 4.  $(1.01)^n$
- 5.  $\sin(\pi n)$

Romantic interpretation of 3 and 4

#### 2. Derivatives

Calculate f'(x)

- 1.  $x^2 + 4$ 2.  $3x^4 \frac{1}{x}$ 3.  $5\sin^2(x)$
- 4.  $xe^x$

#### 3. TanH derivative

Calculate the derivative of tangent hyperbolic function  $f(x) = \tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ .

Here is the plot:



-2

### 4. Minima, Maxima

Let  $f: [-1,2] \to \mathbb{R}, \ x \mapsto \exp(x^3 - 2x^2)$ 

**-**4

- (a) Compute f'
- (b) Plot f and f' with R
- (c) Find all possible candidates  $x^*$  for maxima and minima. *Hint:* exp is a strictly monotone function.

0

Χ

2

4

- (d) Compute f''
- (e) Determine if the candidates are local maxima, minima, or neither.
- (f) Find the global maximum and global minimum of f.

## 5. Taylor Series

Find the Taylor polynomial of the function  $f(x) = \sin(x)$  around x = 0.

## 6. Signed area

What is the signed area between the curve  $f(x) = x^2$  and the x-axis on the interval [-1, 1]?

- 1. 2-4x
- 2.  $x^2 + 2$
- 3.  $e^{-x}$
- 4.  $\sin(x)$

## 7. Convexity

Consider two convex functions  $f,g:\mathbb{R}\to\mathbb{R}.$ 

- (a) Show that  $f+g:\mathbb{R}\to\mathbb{R},\,x\mapsto f(x)+g(x)$  is convex.
- (b) Now, assume that g is additionally non-decreasing, i.e.  $g(y) \ge g(x)$  for all  $x \in \mathbb{R}$  and all  $y \in \mathbb{R}$  with y > x. Show that  $g \circ f$  is convex.