Outline

- Directed graphs
- Shortest path algorithms
 - –Dijkstra
 - -Bellman-ford

Weighted Graphs

- Each edge has an associated numerical value, called weight
- Edge weight may represent distances, costs, etc.
- Example:
 - Distance in miles between airports in a flight route graph

Shortest Paths

- A path of minimum total weight between two verticies
 - Length of a path is the sum of the weights of its edges
- Example:
 - -Shortest path between PVD and HNL

Shortest Path Problems

- Single-source shortest path problems
 - -Find shortest paths from a source vertex s (which is given) to all other vertices in a graph
 - —Solution: a shortest-path tree rooted at s
 - which is also a spanning tree of G.
 - –Algorithms: Dijkstra's algorithm and Bellman-Ford algorithm
 - If we just need to find a shortest path to one particular vertex, you can stop the algorithm earlier

Dijkstra Shortest Path Algorithm

- For graphs with non-negative weights
- Algorithm
 - -D[v]: length of a *currently best known path* from s to v
 - Initially, D[s] = 0 and $D[v] = \infty$ for all other vertices
 - –Let S be a set of visited vertices
 - Initially, S is empty
 - Repeat the following until all vertices are added to S
 - Among vertices not in S, choose vertex v with the smallest D[v] and add v to S
 - For every vertex v' adjacent to v and v' is not in S, update D[v']:
 D[v'] = min (D[v'], D[v] + weight(v, v'))

Optimality

- Once v is added to S, it is the shortest path from s to v
- There is no v' ∉ S such that the path s → v' → v is shorter than the path s → v using vertices in S only
 - -Proof by contradiction: If such v' exists, D[v] > D[v'], which violates the fact that $D[v] \le D[v']$ when v is added to S

Source: A

Source: 0 5 = min(inf, D[A]+5)5 $10 = \min(\inf, D[A] + 10)_{6}$ 0 inf 10 inf

 $7 = \min(\inf, D[A]+7)$

Algorithm: Linear Search

```
temp = \{\}, S = \{\}
for all vertices v
    d(v) = inf
d(source) = 0
Put all vertices to temp
while temp is not empty : n
    v \leftarrow d(v) is min in temp : n
    add v to S
    for all neighbor u of v : # neighbor
         if d(u) > d(v) + length(v, u)
             d(u) = d(v) + length(v, u)
          O(m + n^2) = O(n^2) for linear search
```


Algorithm: Min Heap

```
temp = \{\}, S = \{\}
for all vertices v
    d(v) = inf
d(source) = 0
Put all vertices to temp
while temp is not empty : n
    v \leftarrow d(v) is min in temp : log n
    add v to S
    for all neighbor u of v : # neighbor
         if d(u) > d(v) + length(v, u)
             d(u) = d(v) + length(v, u) : log n
          O(n \log(n) + m \log(n)) for min heap
```


Questions?

