High Energy Analysis at KamLAND and Application to Dark Matter Search

Michinari Sakai

University of Hawaii, Manoa
michinar@hawaii.edu

July 18, 2015

Overview

Introduction

Neutrino directionality

Issues

Idea

Validation

Track reconstruction and particle discrimination

Algorithm

Validation

KamLAND: ν detector in Japan

KamLAND: ν detector in Japan

KamLAND: features

- Commissioned: 2001
- Medium: liquid scintillator
 - ▶ Decay constants: $\tau_1 = 4.0 \, \mathrm{ns}$, $\tau_2 = 8.6 \, \mathrm{ns}$
- ▶ Size: 1 kt
- Photomultiplier tubes (Hamamatsu):
 - ▶ 1325 17-inch, 7 ns rise-time, 3.5 ns TTS
 - 779 20-inch, 10 ns rise-time, 5.5 ns TTS
 - ▶ 34 % photo-coverage
- Analysis: \sim MeV $\overline{\nu}_{\rm e}$ (inverse-beta decay)
- Energy resolution: $7.0 \pm 0.1 \%$
- Vertex resolution: $13.8 \pm 2.3 \, \text{cm} / \sqrt{\text{E}(\text{MeV})}$

KamLAND: features

- Commissioned: 2001
- Medium: liquid scintillator
 - Decay constants: $au_1 = 4.0 \, \mathrm{ns}$, $au_2 = 8.6 \, \mathrm{ns}$
- ▶ Size: 1 kt
- Photomultiplier tubes (Hamamatsu):
 - ▶ 1325 17-inch, 7 ns rise-time, 3.5 ns TTS
 - 779 20-inch, 10 ns rise-time, 5.5 ns TTS
 - ▶ 34 % photo-coverage
- Analysis: \sim MeV $\overline{\nu}_{\rm e}$ (inverse-beta decay)
- Energy resolution: $7.0 \pm 0.1 \%$
- ▶ Vertex resolution: $13.8 \pm 2.3 \, \text{cm} / \sqrt{\text{E}(\text{MeV})}$
- Directional sensitivity: NONE

KamLAND: features

- Commissioned: 2001
- Medium: liquid scintillator
 - ▶ Decay constants: $\tau_1 = 4.0 \, \text{ns}$, $\tau_2 = 8.6 \, \text{ns}$
- ► Size: 1 kt
- Photomultiplier tubes (Hamamatsu):
 - ▶ 1325 17-inch, 7 ns rise-time, 3.5 ns TTS
 - 779 20-inch, 10 ns rise-time, 5.5 ns TTS
 - ▶ 34 % photo-coverage
- Analysis: \sim MeV $\overline{
 u}_{\rm e}$ (inverse-beta decay)
- Energy resolution: $7.0 \pm 0.1 \%$
- ▶ Vertex resolution: $13.8 \pm 2.3 \, \text{cm} / \sqrt{\text{E}(\text{MeV})}$
- Directional sensitivity: NONE
- No analysis at higher energies

Directionality in water

Super-Kamiokande

Cherenkov ring

Directionality in water

Super-Kamiokande

- Cherenkov ring
- shows charged particle direction

Directionality in water

Super-Kamiokande

- Cherenkov ring
- shows charged particle direction
- Can we do something similar in scintillator?

Cherenkov is emitted

- Cherenkov is emitted
- Along with isotropic scintillation

- Cherenkov is emitted
- Along with isotropic scintillation
- ⇒ Cannot simply use Cherenkov for directionality

Furthermore...

Inverse-beta decay

Furthermore...

Inverse-beta decay

 KamLAND is used to seeing simple kinematics at low energies (MeV)

Furthermore...

Inverse-beta decay

- KamLAND is used to seeing simple kinematics at low energies (MeV)
- Single final-state lepton

But at higher energies, the kinematics is not so simple

Hit time vs angle

Hit time vs angle

Hit time vs angle

Hit time vs angle

Or we can just use **LAPPD**s!

Light is emitted isotropically

- Light is emitted isotropically
- At high energies:

- Light is emitted isotropically
- At high energies:
 - complicated kinematics
 - multiple final-state particles

- Light is emitted isotropically
- At high energies:
 - complicated kinematics
 - multiple final-state particles
- Many photons => pre-pulsing

Let's change perspective and think more simple

Let's change perspective and think more simple

There are two pieces of information arriving at PMTs

Let's change perspective and think more simple

- There are two pieces of information arriving at PMTs
 - Charge
 - ► Time

 Use center of charge to fit middle of track

- Use center of charge to fit middle of track
- Use center of time to fit near end of track

- Use center of charge to fit middle of track
- Use center of time to fit near end of track
- And just connect dots to find direction!

Question:

Question:

▶ But, what do we use for the <u>weights</u> in the **weighted mean**:

$$\frac{\sum_{i} w_{i} x_{i}}{\sum_{i} w_{i}}$$

when calculating center of charge and time?

Let's review some basic physics...

To find center of gravity: $\label{eq:center} \mbox{net torque} = -(m_1g)l_1 + (m_2g)l_2 = 0$

To find center of gravity: net torque $= -(m_1g)l_1 + (m_2g)l_2 = 0$ $\implies -(m_1)l_1 + (m_2)l_2 = 0$

To find center of gravity: net torque $= -(m_1g)l_1 + (m_2g)l_2 = 0$ $\implies -(m_1)l_1 + (m_2)l_2 = 0$ \therefore weight is **mass**: $w_i = m_i$

$$\begin{array}{l} \text{Let } \Delta t_i \equiv t_i - t_0 \\ \Longrightarrow \ \Delta t_1 = \frac{l_1}{c}, \quad \Delta t_2 = \frac{l_2}{c} \\ \Longrightarrow \ -(\frac{1}{\Delta t_1})\frac{l_1}{c} + (\frac{1}{\Delta t_2})\frac{l_2}{c} = 0 \end{array}$$

$$\begin{array}{l} \text{Let } \Delta t_i \equiv t_i - t_0 \\ \Longrightarrow \ \Delta t_1 = \frac{l_1}{c}, \quad \Delta t_2 = \frac{l_2}{c} \\ \Longrightarrow \ -(\frac{1}{\Delta t_1})\frac{l_1}{c} + (\frac{1}{\Delta t_2})\frac{l_2}{c} = 0 \\ \Longrightarrow \ -(\frac{1}{\Delta t_1})l_1 + (\frac{1}{\Delta t_2})l_2 = 0 \end{array}$$

$$\begin{array}{l} \text{Let } \Delta t_i \equiv t_i - t_0 \\ \Longrightarrow \ \Delta t_1 = \frac{l_1}{c}, \quad \Delta t_2 = \frac{l_2}{c} \\ \Longrightarrow \ -(\frac{1}{\Delta t_1})\frac{l_1}{c} + (\frac{1}{\Delta t_2})\frac{l_2}{c} = 0 \\ \Longrightarrow \ -(\frac{1}{\Delta t_1})l_1 + (\frac{1}{\Delta t_2})l_2 = 0 \end{array}$$

 \therefore weight is **inverse of time**: $w_i = \frac{1}{\Delta t_i}$

Conclusion

▶ Use **mass** as weight for *center of gravity*.

Conclusion

- Use mass as weight for center of gravity.
- Use $\sqrt{\text{charge}}$ as weight for *center of charge*.

Conclusion

- Use mass as weight for center of gravity.
- Use $\sqrt{\text{charge}}$ as weight for *center of charge*.
- Use $\left(\frac{1}{\text{time}}\right)$ as weight for *center of time*.

Test algorithm against μ (Data)

Cosmic ray μ

Agreement with μ -fitter which uses entry/exit points

Test algorithm against
$$\nu_{e} + \nu_{e} + \nu_{e}$$

- ▶ Black line: 1σ of reconstructed angle from ν direction
- \blacktriangleright Red line: 1σ of lepton angle from ν direction

Test algorithm against T2K events (Data)

(Selected with spill-time so no backgrounds)

Map

Agreement with J-PARC direction

Test algorithm against T2K events (Data)

(Selected with spill-time so no backgrounds)

Мар

Agreement with MC

Cos(angle from J -PARC)

Track Reconstruction and Particle ID

Hellgartner's algorithm

(former LENA grad student)

$$h(\vec{x},t) = \sum_{i=1}^{N_{\text{PMT}}} \Theta(q_i - q_{\text{threshold}}) \sum_{j=1}^{N_{\gamma}} f(t_{ij} - t_i^{\text{TOF}}, t)$$

where N_{PMT} : number of PMTs

 N_{γ} : number of photon hits to count per PMT

 q_i : charge on i-th PMT, $q_{\mathsf{threshold}}$: minimum charge for analysis

 t_{ij} : j-th hit time on i-th PMT

 t_i^{TOF} : expected time-of-flight between i-th PMT and \vec{x}

$$f(\Delta t, t) \propto (t - \Delta t) \exp \left[-\frac{(\Delta t - t)^2}{2\sigma_{\mathsf{tts}}} \right]$$

Figure of merit for each test point in space $=\int_{-\infty}^{\infty} |h(\vec{x},t)|^2 dt$

Test Hellgartner on double 1 GeV muons (MC)

Dominikus Hellgartner

Test Hellgartner on 2 GeV $\nu_{\rm e}$ (MC)

Test Hellgartner on T2K events (Data)

Lepton discrimination algorithm

Explanation is here.

Test lepton discrimination (MC)

Reconstructed Ellipticity

