6262 HOMEWORK 2

Problem 1. Assume we have a parameter θ taking only two values, $\{1,2\}$ and for each of these we have distributions given by

Now we observe the sample $x_1 = -1$, $x_2 = 1$, $x_3 = 1$, $x_4 = 2$, $x_5 = 0$.

- (1) For the case of square loss $L(\hat{\theta}, \theta) = (\hat{\theta} \theta)^2$, find the risk function associated to any estimator $\hat{\theta}$.
- (2) Find the minimax estimator.

Problem 2. Assume we take a sample X_1, X_2, \ldots, X_n from $N(\theta, 1)$. Assume that a prior distribution on θ is $N(a, b^2)$.

- (1) Find the posterior distribution of θ .
- (2) Compute the expectation of this posterior distribution and denote it $\hat{\theta}$.
- (3) Find the risk function associated to this estimator with respect to the square loss function $L(\hat{\theta}, \theta) = (\hat{\theta} \theta)^2$.
- (4) Find the maximum of this risk over all θ . For which values of a, b is this finite?
- (5) Try the same thing, this time with respect to the loss function $L(\hat{\theta}, \theta) = (\hat{\theta} \theta)^4$.

Problem 3. Assume that $X \sim N(\theta, 1)$ and take the estimator $\hat{\theta} = cX$ for some constant. Given a loss function L, we say that the estimator $\hat{\theta}$ is better than $\bar{\theta}$ if $R(\hat{\theta}, \theta) \leq R(\bar{\theta}, \theta)$ for all choices of $\theta \in \mathbb{R}$.

- (1) Find the risk associated to $\hat{\theta}$ for the square loss function. Show that θ_1 is better than θ_c for any c > 1.
- (2) Is $\hat{\theta}_{1/2}$ better than θ_1 ? Comment?

Problem 4. (1) Assume X_1, X_2, \ldots, X_n is a sample from a Bernoulli random variable with parameter p. Under the assumption that the prior of p is a $Beta(\alpha, \beta)$, find the posteriori distribution of p. Show that this estimator is a Bayes estimator for the square loss function.

- (2) Under the same assumptions, assume that the loss function is $L(\hat{p}, p) = \frac{(\hat{p}-p)^2}{p(1-p)}$. Find a Bayes rule for this loss function.
- (3) Can you do the same for the loss function $L(\hat{\theta}, \theta) = \frac{(\hat{p}-p)^2}{p^{\alpha}(1-p)^{\beta}}$?

Problem 5. Let X be a Bernoulli with parameter p and assume the prior is uniform on [0,1].

- (1) Find the posterior distribution of p and then the Bayes estimator for the square loss function.
- (2) If in addition, we know that $p \notin (1/3, 2/3)$ and use the prior to be the uniform on the $(0, 1/3) \cup (2/3, 1)$, find the Bayes estimator now, again with respect to the square loss function.

Problem 6. This problem is about the Γ and Beta distributions. For $\alpha, \beta > 0$, we set

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx$$

while

$$B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}.$$

(1)
$$\Gamma(\alpha+1) = \alpha\Gamma(\alpha)$$
 and $\Gamma(1) = 1$, $\Gamma(n) = (n-1)!$.

(2) Show that

$$f_{\alpha,\beta}(x) = \begin{cases} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} dx, \text{ for } x > 0\\ 0, \text{ for } x < 0 \end{cases}$$

is a density. It is the density of a Gamma distribution with parameters $\alpha, \beta > 0$, in short $\Gamma(\alpha, \beta)$.

- (3) Compute the mean and the variance of $\Gamma(\alpha, \beta)$.
- (4) Show that the following

$$f_{\alpha,\beta}(x) = \begin{cases} \frac{x^{\alpha}(1-x)^{\beta}}{B(\alpha,\beta)}, 0 < x < 1\\ 0, otherwise \end{cases}$$

is a density. This is called the $Beta(\alpha, \beta)$. Compute the mean and the variance of $Beta(\alpha, \beta)$.