* Sequences:
$$\{Q_n\}^{\infty}$$
 or $\{Q_n\}$ or $\{Q_n$

>> Common Lequences (: define an as the nth term or general term of the Legeura) s. Arithmetic sequence: (common difference d) $\Rightarrow Q_n = a_n + d(n-1)$

2. Geometric Sequence: (Common ratio r) $\Rightarrow a_n = a_n r^{n-1}$

3. SignAlternator: $Q_n = \left\{ \frac{(-1)^n}{(-1)^{n+1}} > \frac{1^{5k} \text{ term is -ve}}{2} \right\}$

4 Binary Sequence: $Q_n = 2^{m-1} \Rightarrow 1, 2, 4, 8, ..., 2^{n-1}, ...$

5. power Sequences: $a_n = n^2 \Rightarrow 1, 4, 9, 16, \dots, n^2, \dots$ $a_n = n^2 \Rightarrow 1, 8, 27, 64, \dots, n^1, \dots$

6. Factorial Sequence: an= N! → 1, 2, 6, 24, 120, ..., N!, ...

7. Froduct Sequence: $Q_n = 2^n n! \Rightarrow \lambda_1 2.4, \lambda_2 4.6, \dots, \lambda_2 4.6... 2 n_0, \dots$ $Q_{n} = \frac{(2n)!}{2^n n!} \Rightarrow 1, 1 \cdot 3, 1 \cdot 3 \cdot 5, \dots, n \cdot 5 \cdot ... 2 n \cdot 0, \dots$ $\mathcal{Q}_{\mathcal{H}} = \underbrace{\langle 2n-1 \rangle!}_{\mathcal{H}^{-1}(n-1)} \Longrightarrow 1, 1\cdot 3, 1\cdot 3\cdot S, \dots, 1\cdot 3\cdot S, \dots \cdot (2n-1), \dots$

>> Hurarchy of sequences as n > 00 KN1, a>1, 622 constants « ln(lnn) « lnn « n'x « n « a « n! « (bn)! « n « ... the above statement is useful when evaluating limits of the form, $\lim_{n \to -D(n)} N(n) = \begin{cases} 0 & \text{if } N(n) \text{ is to the lift of } D(n) \\ 0 & \text{in the list} \end{cases}$

>> Some important limit Laws:

1 If
$$\lim_{n\to\infty} a_n = L \implies \lim_{n\to\infty} f(a_n) = f(L)$$

2. If
$$a_n \leq b_n \leq C_n$$
 and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$

>> The seven forms of inderminates are \$,50,000,000,000,000,0000

. - The first & forms are ready for LH

*- The rest 2 need algebraic Manypulation (rational vier for 00-00) reciprocation for 0.00 * the ∞ - ∞ will not require LH

. The last 3 have to be converted by taking the lm-function

Some Special limits of Sequences

 $\lim_{N\to\infty} (-1)^n b_N = \begin{cases} \text{Converges to zero } \text{if } \lim_{N\to\infty} b_N = 0 \\ \text{Diverges otherwise} \end{cases}$

$$\lim_{n\to\infty} \left(1+\frac{n}{n}\right)^n = e^{\frac{n}{n}}, \lim_{n\to\infty} \frac{\left|kx\right|^n}{n!} = 0 \quad \text{for any x and contact}$$