РЯДЫ

- 1. Общие понятия. Числовые ряды
- 2. Достаточные признаки сходимости рядов с положительными членами
- 3. Числовые ряды с членами произвольного знака
- 4. Степенные ряды
- 5. Ряды Тейлора и Маклорена
- 6. Приложения степенных рядов

1. Общие понятия. Числовые ряды

Выражение вида

$$a_1 + a_2 + \ldots + a_n + \ldots = \sum_{n=1}^{+\infty} a_n$$

называется *рядом*, где $a_1, a_2, ..., a_n, ...$ – члены ряда, a_n – *общий* член ряда.

Ряд считается заданным, если определена формула общего члена (зависимость a_n от номера n).

Если члены ряда — числа, то ряд называется *числовым*, если функции, то *функциональным*, причем если функции степенные, то ряд называется *степенным*.

Например,

1)
$$\sum_{n=1}^{\infty} \frac{2}{3n+1} = \frac{2}{4} + \frac{2}{7} + \frac{2}{10} + \dots -$$
 числовой ряд;

2)
$$\sum_{n=1}^{\infty} \cos(nx) = \cos x + \cos 2x + \dots - \phi$$
 ункциональный ряд;

3)
$$\sum_{n=1}^{\infty} nx^n = x + 2x^2 + 3x^3 \dots$$
 - степенной ряд.

Сумма n первых членов ряда $S_n = a_1 + a_2 + \ldots + a_n = \sum_{k=1}^n a_k$ называется n-ой **частичной суммой** ряда, а выражение $R_n = a_{n+1} + a_{n+2} \ldots = \sum_{k=n+1}^{+\infty} a_k - n$ -ым **остатком** ряда.

Остановимся подробнее на числовых рядах (с действительными членами).

Числовой ряд $\sum_{n=1}^{+\infty} a_n$ называется *сходящимся*, если его n-я частичная сумма $S_n = a_1 + a_2 + \ldots + a_n$ имеет конечный предел при $n \to +\infty$. Число

$$S = \lim_{n \to +\infty} S_n$$

 $S = \lim_{n \to +\infty} S_n$ называется при этом *суммой* ряда. Если $\lim_{n \to +\infty} S_n$ не существует или не является конечным, то ряд называют расходящимся.

Пример 1. Ряд (геометрическая прогрессия)

$$\sum_{n=1}^{+\infty} bq^{n-1} = b + bq + bq^2 + bq^3 + \dots \quad (a \neq 0)$$

сходится тогда и только тогда, когда |q| < 1 и его сумма определяется формулой S = b/(1-q).

Решение. Действительно, сумма первых п членов прогрессии находится по формуле $S_n = \frac{b(1-q^n)}{1-q}$, $q \ne 1$. Найдем предел этой суммы:

$$\lim_{n\to+\infty} S_n = \lim_{n\to+\infty} \frac{b(1-q^n)}{1-q} = \frac{b}{1-q} - b \lim_{n\to+\infty} \frac{q^n}{1-q}.$$

Возможны следующие случаи в зависимости от величины q:

- 1. Если |q| < 1, то $q^n \to 0$ при $n \to +\infty$. Поэтому $\lim_{n \to +\infty} S_n = \frac{b}{1-a}$, ряд геометрической прогрессии сходится и его сумма равна S = b / (1 - q).
- 2. Если |q|>1, то $q^n\to\infty$ при $n\to+\infty$. Поэтому $\lim_{n\to+\infty}S_n=\infty$ и ряд геометрической прогрессии расходится.
- 3. Если |q|=1, то при q=1 рассматриваемый ряд $b+b+b+\cdots+b+\cdots$ расходится, так как n-я частичная сумма $S_n = b \cdot n \to +\infty$ при $n \to +\infty$; а при q = -1 ряд $b - b + b - b + b - b + \cdots$ расходится, так как последовательность частичных сумм $S_1 = b$, $S_2=0$, $S_3=b$, $S_4=0$, ... не имеет предела при $n \to +\infty$.

Свойства числовых рядов:

- 1) Если к ряду $\sum_{n=1}^{+\infty} a_n$ прибавить (или отбросить) конечное число членов, то полученный ряд и ряд $\sum_{n=1}^{+\infty} a_n$ сходятся или расходятся одновременно.
- 2) Если ряд $\sum_{n=1}^{+\infty} a_n$ сходится и его сумма равна S, то ряд $\sum_{n=1}^{+\infty} c \cdot a_n$, где c – произвольное число, также сходится и его сумма равна cS. Если же ряд $\sum_{n=1}^{+\infty} a_n$ расходится и $c \neq 0$, то и ряд $\sum_{n=1}^{+\infty} c \cdot a_n$ расходится.
- 3) Если ряды $\sum_{n=1}^{+\infty} a_n$ и $\sum_{n=1}^{+\infty} b_n$ сходятся, а их суммы равны S_1 и S_2 соответственно, то сходятся и ряды $\sum_{n=1}^{+\infty} (a_n \pm b_n)$, причем $\sum_{n=1}^{+\infty} (a_n \pm b_n) = S_1 \pm S_2.$
- 4) Члены сходящегося ряда можно группировать произвольным образом, не переставляя их местами.

Необходимый признак сходимости ряда. Если числовой ряд $\sum_{n=0}^{\infty} a_n$ сходится, то его общий член стремится к нулю, т. е.

$$\sum_{n=1}^{+\infty} a_n$$
 сходится $\Rightarrow \overline{\lim_{n \to +\infty} a_n} = 0$.

Доказательство.

$$a_n = S_n - S_{n-1} \Rightarrow \lim_{n \to \infty} a_n = \lim_{n \to \infty} S_n - \lim_{n \to \infty} S_{n-1} = |$$
ряд сходится $| = S - S = 0$.

Следствие (достаточное условие расходимости). Если предел общего члена ряда при $n \to \infty$ не существует или не равен нулю, то ряд расходится:

$$\lim_{n\to +\infty} a_n \neq 0 \Rightarrow \sum_{n=1}^{+\infty} a_n -$$
расходится

 $\lim_{n\to +\infty} a_n \neq 0 \Rightarrow \sum_{n=1}^{+\infty} a_n - \text{расходится}$ Если $\lim_{n\to +\infty} a_n = 0$, то ряд может сходиться (в одних случаях) или расходиться (в других).

Пример 2. Выяснить, сходится или расходится ряд:

a)
$$\sum_{n=1}^{+\infty} \frac{2n-1}{n+4} = \frac{1}{5} + \frac{3}{6} + \frac{5}{7} + \frac{7}{8} + \frac{9}{9} + \frac{11}{10} + \cdots;$$

б)
$$\sum_{n=1}^{+\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots$$
 (гармонический ряд);

B)
$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)} = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n+1)} + \dots$$

Решение. а) Поскольку $\lim_{n\to +\infty} a_n = \lim_{n\to +\infty} \frac{2n-1}{n+4} = 2 \neq 0$, то выполняется достаточное условие расходимости ряда и рассматриваемый ряд расходится.

б) Поскольку $\lim_{n\to +\infty} a_n = \lim_{n\to +\infty} \frac{1}{n} = 0$, то необходимый признак сходимости выполняется.

Однако можно заметить, что

$$S_{2n} - S_n = \frac{1}{n+1} + \dots + \frac{1}{n+n} \ge \frac{n}{n+n} = \frac{1}{2},$$

что противоречит сходимости этого ряда, т. к. в случае его сходимости $\lim_{n\to +\infty}(S_{2n}-S_n)=S-S=0$.

Следовательно, гармонический ряд расходится.

Рассмотренный пример показывает, что <u>необходимый признак</u> сходимости достаточным в общем случае не является.

в) Необходимый признак сходимости выполняется, поскольку $\lim_{n\to +\infty} a_n = \lim_{n\to +\infty} \frac{1}{n(n+1)} = 0.$ Проверим по определению, является ли этот ряд сходящимся. Имеем:

$$S_n = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \dots + \frac{1}{n} - \frac{1}{n+1} = 1 - \frac{1}{n+1} \longrightarrow 1 = S$$
 при $n \longrightarrow +\infty$.

Таким образом, ряд сходится и его сумма равна 1.

2. Достаточные признаки сходимости рядов с положительными членами

Рассмотрим ряд, члены которого знакопостоянны (неположительны или неотрицательны). Не ограничивая общности, считаем, что члены ряда положительны.

Ясно, что для таких рядов остается в силе необходимый признак сходимости. Приведем некоторые достаточные признаки сходимости.

Интегральный признак Коши. Рассмотрим ряд $\sum_{n=1}^{+\infty} a_n$, $a_n \ge 0$.

Если члены ряда могут быть представлены как значения некоторой неотрицательной, непрерывной, убывающей на промежутке $[1,+\infty)$ функции f(x): $a_1 = f(1)$, $a_2 = f(2)$, ..., $a_n = f(n)$, ..., тогда если несобственный интеграл $\int\limits_{1}^{+\infty} f(x) dx$ сходится, то и ряд сходится, если интеграл расходится, то и ряд расходится.

Пример 3. Показать, что обобщенный гармонический ряд $\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$ сходится при $\alpha > 1$ и расходится при $\alpha \le 1$.

Решение. Если $\alpha \le 0$, то общий член ряда не стремится к нулю, поэтому ряд расходится (достаточное условие расходимости).

В случае $\alpha > 0$ применим интегральный признак Коши. Функция $f(x) = \frac{1}{x^{\alpha}}$ непрерывна, положительна и убывает при $x \ge 1$. При $\alpha \ne 1$ имеем:

$$\int_{1}^{+\infty} \frac{dx}{x^{\alpha}} = \lim_{A \to +\infty} \int_{1}^{A} x^{-\alpha} = \lim_{A \to +\infty} \frac{x^{1-\alpha}}{1-\alpha} \bigg|_{1}^{A} =$$

$$\lim_{A \to +\infty} \left(\frac{A^{1-\alpha}}{1-\alpha} - \frac{1}{1-\alpha} \right) = \begin{cases} \frac{1}{\alpha - 1}, & \text{если } \alpha > 1, \\ +\infty, & \text{если } \alpha < 1. \end{cases}$$

Если
$$\alpha = 1$$
, то $\int_{1}^{+\infty} \frac{dx}{x} = \lim_{A \to +\infty} \ln x \Big|_{1}^{A} = \lim_{A \to +\infty} \left(\ln A - \ln 1 \right) = +\infty$.

Значит, интеграл, а соответственно, и данный ряд, сходятся при $\alpha > 1$ и расходятся при $\alpha \le 1$.

Непредельный признак сравнения. Пусть имеется два ряда $\sum_{n=1}^{+\infty} a_n$ и $\sum_{n=1}^{+\infty} b_n, a_n \geq 0, b_n \geq 0$. Если неравенство $a_n \leq b_n$. выполняется для всех n, начиная с некоторого номера, то из сходимости ряда $\sum_{n=1}^{+\infty} b_n$ следует

сходимость ряда $\sum\limits_{n=1}^{+\infty}a_n$, а из расходимости ряда $\sum\limits_{n=1}^{+\infty}a_n$ — расходимость ряда $\sum\limits_{n=1}^{+\infty}b_n$.

Предельный признак сравнения. Пусть имеется два ряда $\sum_{n=1}^{+\infty} a_n$ и $\sum_{n=1}^{+\infty} b_n, a_n \geq 0, b_n \geq 0$. Если существует конечный и отличный от нуля предел $\lim_{n \to +\infty} \frac{a_n}{b_n} = c \neq 0; \neq \infty$, то ряды $\sum_{n=1}^{+\infty} a_n$ и $\sum_{n=1}^{+\infty} b_n$ сходятся (или расходятся) одновременно.

Сходимость многих рядов можно исследовать сравнением с

- рядом геометрической прогрессии $\sum_{n=1}^{+\infty} aq^{n-1}$, который сходится при |q| < 1;
 - гармоническим рядом $\sum_{n=1}^{+\infty} \frac{1}{n}$, который расходится;
- обобщенным гармоническим рядом $\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$, $\alpha \in \mathbb{R}$, который сходится при $\alpha > 1$ и расходится при $\alpha \le 1$.

Вопрос о сходимости ряда $\sum_{n=1}^{+\infty} \frac{P_k(n)}{Q_l(n)}$, где $P_k(n)$ и $Q_l(n)$ – многочлены от n степени k и l соответственно, решается сравнением с обобщенным гармоническим рядом при $\alpha=l-k$.

Признак Даламбера. Пусть дан ряд $\sum_{n=1}^{+\infty} a_n$, $a_n \ge 0$. Если

$$\lim_{n\to+\infty}\frac{a_{n+1}}{a_n}=l, \text{ To:}$$

- при *l* < 1 ряд сходится,
- при l > 1 ряд расходится,
- при l=1 вопрос о сходимости ряда остается открытым.

Признак Даламбера доказывается сравнением с геометрической прогрессией.

Замечания. 1. Признак Даламбера целесообразно применять, когда общий член ряда содержит выражения вида n! или a^n .

2. Признак Даламбера не требует проверки необходимого признака сходимости.

3. Числовые ряды с членами произвольного знака

Числовой ряд

$$\boxed{a_1-a_2+a_3-\ldots+\left(-1\right)^{n+1}a_n+\ldots=\sum_{n=1}^{+\infty}\left(-1\right)^{n+1}a_n},$$
 где $a_n>0$ для всех $n\in\mathbb{N}$, называется **знакочередующимся**.

Признак Лейбница (достаточный признак сходимости знакочередующегося ряда). Если ДЛЯ знакочередующегося $\sum_{n=1}^{+\infty} (-1)^{n+1} a_n$ выполнены условия:

- 1) модули членов ряда монотонно убывают: $a_1 \ge a_2 \ge \dots a_n \ge \dots$, 2) предел общего члена ряда равен нулю: $\lim_{n \to +\infty} a_n = 0$,

то ряд cxodumcs и его сумма не превосходит первого члена: $S \leq a_1$, а остаток ряда $R_n = S - S_n$ удовлетворяет неравенству $|R_n| \le a_{n+1}$.

Ряды, для которых выполняется признак Лейбница, называются рядами Лейбница (лейбницевского типа).

Числовой ряд, содержащий бесконечно много отрицательных и положительных членов, называется знакопеременным. Знакочередующийся ряд является частным случаем знакопеременного ряда.

Достаточный признак сходимости знакопеременного ряда.

Если сходится ряд $\sum_{n=1}^{+\infty} |u_n|$, составленный из модулей членов знакопе-

ременного ряда $\sum_{n=1}^{+\infty} u_n$, то сходится и знакопеременный ряд $\sum_{n=1}^{+\infty} u_n$.

Для знакопеременных рядов рассматриваются два вида сходимости: абсолютная и условная.

Знакопеременный ряд $\sum_{n=1}^{+\infty} u_n$ называется абсолютно сходящимся,

если сходится ряд, составленный из модулей его членов: $\sum_{n=0}^{+\infty} |u_n| - cx$.

Знакопеременный ряд $\sum_{n=1}^{+\infty} u_n$ называется *условно сходящимся*, если сам ряд сходится, а ряд, составленный из модулей его членов, расходится: $\sum_{n=1}^{+\infty} u_n - cx$. $\sum_{n=1}^{+\infty} |u_n| - pacx$.

Абсолютно сходящиеся ряды обладают не только всеми *свойствами сходящихся* рядов, но и *дополнительно* свойствами сумм конечного числа слагаемых. Такие ряды можно 1) *перемножать*, 2) *переставлять* местами члены ряда, 3) *подставлять* «ряд в ряд». Условно сходящиеся ряды такими свойствами не обладают. Более того, путем перестановки членов условно сходящегося ряда можно получить сходящийся ряд с заранее заданной суммой или даже расходящийся ряд (*теорема Римана*).

Для установления абсолютной сходимости используют все признаки сходимости рядов с положительными членами, заменяя всюду общий член ряда его модулем.

4. Степенные ряды

Ряд $\sum_{n=1}^{+\infty} u_n(x)$, членами которого являются функции, называется функциональным. Придавая x определенное значение x_0 , получим числовой ряд $\sum_{n=1}^{+\infty} u(x_0)$. Если полученный числовой ряд сходится, то x_0 - точка сходимости ряда $\sum_{n=1}^{+\infty} u_n(x)$, если расходится - точка расходимости. Областью сходимости функционального ряда называется множество всех точек сходимости.

В области сходимости функционального ряда его *сумма* является некоторой *функцией* S(x) переменной x. Определяется она в области сходимости равенством $S(x) = \lim_{n \to +\infty} S_n(x)$, где $S_n(x) = \sum_{k=1}^n u_k(x) - n$ —ая частичная сумма ряда.

Частным случаем функциональных рядов являются *степенные ряды*, т.е. ряды, вида

$$c_0 + c_1(x-a) + c_2(x-a)^2 + \dots + c_n(x-a)^n + \dots = \sum_{n=0}^{+\infty} c_n(x-a)^n$$
$$c_0 + c_1x + c_2x^2 + \dots + c_nx^n + \dots = \sum_{n=0}^{+\infty} c_nx^n$$

где c_0 , c_1 ,..., – действительные числа - коэффициенты ряда, a – некоторое число.

От первого ряда можно перейти ко второму, заменив x-a на x . Поэтому дальше будем рассматривать ряд $\sum_{n=0}^{+\infty} c_n x^n$.

Область сходимости степенного ряда $\sum_{n=0}^{+\infty} c_n x^n$ всегда содержит, по крайней мере, одну точку: x=0.

Теорема Абеля. Если степенной ряд $\sum_{n=0}^{+\infty} c_n x^n$ сходится при $x = x_0 \neq 0$, то он абсолютно сходится при всех значениях x, удовлетворяющих неравенству $|x| < |x_0|$; если же ряд расходится при $x = x^*$ то он расходится при всех значениях x, удовлетворяющих неравенству $|x| > |x^*|$.

Радиусом сходимости степенного ряда $\sum_{n=0}^{+\infty} c_n x^n$ называют число R>0 такое, что при |x|< R ряд абсолютно сходится, а при |x|> R расходится, интервал (-R;R) называют **интервалом** (промежутком) **сходимости** степенного ряда.

Чтобы получить *область сходимости* степенного ряда $\sum_{n=0}^{+\infty} c_n x^n$, нужно найти интервал сходимости этого ряда и исследовать вопрос о сходимости соответствующих числовых рядов на концах интервала сходимости (т.е. при x=-R и при x=R).

Замечание.

- 1. Если степенной ряд сходится лишь в одной точке, то считают, что R=0, если на всей числовой оси, то $R=+\infty$.
- 2. Для ряда $\sum_{n=0}^{+\infty} c_n (x-x_0)^n$ интервал сходимости имеет вид $(x_0-R;x_0+R)$, дополнительное исследование проводится на концах при $x=x_0-R$ и при $x=x_0+R$.

Таким образом, областью сходимости степенного ряда является интервал сходимости с возможным присоединением одного или двух его концов (тех, где соответствующий числовой ряд сходится).

Для ряда
$$\sum_{n=0}^{+\infty} c_n x^n$$
 радиус сходимости можно найти по формуле:
$$R = \lim_{n \to +\infty} \left| \frac{c_n}{c_{n+1}} \right|.$$
 Однако интервал сходимости рядов удобно определять

с помощью признака Даламбера, непосредственно применяя его к ряду, составленному из модулей членов исходного ряда. Так поступают, если степенной ряд содержит не все степени x или записан по степеням $(x-x_0)$, где x_0 – некоторое число, т.е. если ряд имеет вид $\sum_{n=0}^{+\infty} c_n x^{2n}$, $\sum_{n=0}^{+\infty} c_n (x-x_0)^n$ и в других случаях.

Свойства степенных рядов: степенные ряды внутри интервалов сходимости обладают всеми свойствами абсолютно сходящихся рядов и дополнительно их можно 1) дифференцировать и 2) интегрировать, при этом радиус сходимости и промежуток сходимости не изменятся, область сходимости может измениться, в частности, дифференцирование не улучшает, а интегрирование не ухудшает сходимости степенного ряда; отметим также, что сумма степенного ряда является непрерывной функцией в интервале сходимости.

Пример. Можно показать, что областью сходимости степенного ряда $\sum_{n=0}^{+\infty} x^n$ является интервал (-1,1), а областью сходимости степен-

ного ряда
$$\sum_{n=0}^{+\infty} \frac{x^{n+1}}{n+1}$$
 - промежуток $[-1,1)$.

Нетрудно видеть, что ряд $\sum_{n=0}^{+\infty} \frac{x^{n+1}}{n+1}$ получается почленным интегрированием ряда $\sum_{n=0}^{+\infty} x^n$. При этом радиус сходимости и промежуток

сходимости не изменились, а область сходимости изменилась, в частности, добавилась точка x = -1. Таким образом, интегрирование не ухудшило сходимость степенного ряда.

Если проинтегрировать еще раз, получим ряд $\sum_{n=0}^{+\infty} \frac{x^{n+2}}{(n+1)(n+2)}$ с областью сходимости [-1,1].

5. Ряды Тейлора и Маклорена

Пусть функция f(x) определена и дифференцируема в окрестности точки a любое число раз. **Рядом Тейлора** для функции y = f(x) в окрестности точки x = a называется ряд вида

$$f(x) = f(a) + \frac{f'(a)}{1!} (x - a) + \frac{f''(a)}{2!} (x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x - a)^n + \dots$$

В частности, при a = 0 получаем **ряд Маклорена**:

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}x^n$$

Отметим, что ряд Тейлора можно формально построить для любой бесконечно дифференцируемой функции f(x) в окрестности точки x = a. Но отсюда еще не следует, что он будет сходиться к данной функции f(x); он может оказаться расходящимся или сходиться, но не к функции f(x). В общем случае соответствие между функцией и ее рядом Тейлора обозначается знаком \sim .

Теорема. Если модули всех производных функции f(x) ограничены в окрестности точки a одним и тем же числом M>0, то для любых x из этой окрестности ряд Тейлора функции f(x) сходится к самой функции f(x), т.е. имеет место разложение

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$
, причем оно единственно.

Основные табличные разложения в ряд Маклорена

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} \dots + \frac{x^{n}}{n!} + \dots, \qquad x \in (-\infty; +\infty),$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} + \dots, \qquad x \in (-\infty; +\infty),$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + \dots, \qquad x \in (-\infty; +\infty),$$

$$\frac{1}{1 - x} = 1 + x + x^{2} + x^{3} + \dots + x^{n} + \dots, \qquad x \in (-1; 1),$$

$$(1 + x)^{\alpha} = 1 + \frac{\alpha}{1!} x + \frac{\alpha(\alpha - 1)}{2!} x^{2} + \frac{\alpha(\alpha - 1)(\alpha - 2)}{3!} x^{3} + \dots + x \in (-1; 1),$$

$$+ \frac{\alpha(\alpha - 1)(\alpha - 2) \cdot \dots \cdot (\alpha - n + 1)}{n!} x^{n} + \dots,$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^n \frac{x^{n+1}}{n+1} + \dots, \qquad x \in (-1;1],$$

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + \dots, \qquad x \in [-1;1]$$

6. Приложения степенных рядов

1. Приближенное вычисление значения функции в точке x_0 .

Раскладываем функцию y=f(x) в степенной ряд и находим сумму этого ряда при $x=x_0$ с заданной точностью $\varepsilon>0$, для чего берем столько членов ряда, чтобы остаток ряда r_n не превосходил по модулю заданную точность ε .

Если получается знакочередующийся ряд, удовлетворяющий условиям признака Лейбница, то его остаток по абсолютной величине не превосходит модуля первого отбрасываемого члена, поэтому первый из отбрасываемых членов должен быть по модулю меньше ε .

В остальных случаях подбирают ряд с большими по модулю членами, сумму которого легко найти (обычно ряд геометрической прогрессии), и оценивают остаток суммой этого ряда.

2. Приближенное вычисление определенных интегралов.

Степенные ряды применяются для приближенного вычисления определенных интегралов $\int_a^b f(x)dx$ в случаях, если первообразная не выражается в конечном виде через элементарные функции или нахождение первообразной сложно. Если подынтегральная функция f(x) разложима в степенной ряд по степеням x и интервал сходимости (-R,R) включает в себя отрезок интегрирования [a,b], то для вычисления заданного интеграла можно воспользоваться свойством почленного интегрирования этого ряда.

3. Приближенное решение дифференциальных уравнений.

В случае, когда точное решение задачи Коши для дифференциального уравнения (ДУ) в элементарных функциях не представляется возможным или оказывается очень сложным, это решение (если оно представимо) удобно искать в виде степенного ряда.

При решении задачи Коши $y' = f(x, y), \ y(x_0) = y_0$ используем ряд Тейлора

$$y(x) = y(x_0) + \frac{y'(x_0)}{1!}(x - x_0) + \frac{y''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{y^{(n)}(x_0)}{n!}(x - x_0)^n + \dots,$$

где $y(x_0) = y_0$, $y'(x_0) = f(x_0, y_0)$, а остальные производные $y^{(n)}(x_0)$ (n = 2,3,...) находят путем последовательного дифференцирования уравнения и подстановки начальных данных в выражения для этих производных.