

ihsan Doğramacı Bilkent University Computer Science Computer Organization

CS 224

Lab 6

Section 1

Ömer Oktay Gültekin

21901413

25/04/2022

1) 2 GB => Memory Address 31 bit (All below should sum up to 31)

No.	Cache Size KB	N way cache	Word Size (no. of bits)	Block size (no. of words)	No. of Sets	Tag Size in bits	Index Size (Set No.) in bits	Block Offset Size in bits ¹	Byte Offset Size in bits ²	Block Replacement Policy Needed (Yes/No)
1	64	1	32	4	4096	15	12	2	2	No
2	64	2	32	4	2048	16	11	2	2	Yes
3	64	4	32	8	512	17	9	3	2	Yes
4	64	Full	32	8	1	26	0	3	2	Yes
9	128	1	16	4	16384	14	14	2	1	No
10	128	2	16	4	8192	15	13	2	1	Yes
11	128	4	<mark>16</mark>	16	1024	16	10	4	1	Yes
12	128	Full	<mark>16</mark>	16	1	26	0	4	1	Yes

¹ Block Offset Size in bits: Log₂(No. of words in a block)

2. Consider the following MIPS code segment. (Remember MIPS memory size is 4 GB.) Cache capacity is 16 words, Block size: 4 words, N= 2.

done:

a.

Instruction	Iteration No.						
instruction	1	2	3	4	5		
lw \$t1, 0x24(\$0)	Compulsory	Conflict	Conflict	Conflict	Conflict		
lw \$t2, 0x <mark>AC</mark> (\$0)	Compulsory	Conflict	Conflict	Conflict	Conflict		
lw \$t3, 0x <mark>C8</mark> (\$0)	Compulsory	Conflict	Conflict	Conflict	Conflict		

b. What is the total cache memory size in number of bits? Include the V bit your calculations. Show the details of your calculation.

² Byte Offset Size in bits: Log₂(No. of bytes in a word)

Tag = 32(MIPS Mem Addr.) - 1(S bit) - 2(Block Offset) - 2(Byte Offset) = 27 Bit

Total Cache Memory Size = S (# of sets) * N (Associavity degree) * (V bit + Tag + Block Size * Word Size) = <math>2 * 2 * (1 + 27 + 4 * 32) = 624 bits

c. State the number of AND and OR gates, EQUALITY COMPARATORs and MULTIPLEXERs needed to implement the cache memory. No drawing is needed.

Number of And Gates: 2 Number of Or Gates: 1

Number of EQUALITY COMPARATOR: 2

Number of MULTIPLEXER: 3 (2 4:1 MUX for choosing correct word from blocks

+ 1 2:1 MUX for choosing correct word from the outputs of 4:1 MUX)

3. Consider the above MIPS code segment. Block size is 1 word. There is only 1 set. Cache memory size is 2 blocks. The block replacement policy is LRU.

a.

Instruction	Iteration No.						
instruction	1	2	3	4	5		
lw \$t1, 0x24(\$0)	Compulsory	Capacity	Capacity	Capacity	Capacity		
lw \$t2, 0xAC(\$0)	Compulsory	Capacity	Capacity	Capacity	Capacity		
lw \$t3, 0xC8(\$0)	Compulsory	Capacity	Capacity	Capacity	Capacity		

b. How many bits are needed for the implementation of LRU policy? What is the total cache memory size in number of bits? Include the V bit and the bit(s) used for LRU in your calculations.

1 bit is needed to implement the LRU policy since there is 2 different way and 1 bit is enough for representing 2 different way.

Tag = 32(MIPS Mem Addr.) - 2(Byte Offset) = 30 Bit

Total Cache Memory Size = U (Overhead) + S (# of sets) * N (Associavity degree) * (V bit + Tag + Block Size * Word Size) = 1 + 1 * 2 * 1 * (1 + 30 + 1 * 32) =**127 bits**

c. State the number of AND and OR gates, EQUALITY COMPARATORs and MULTIPLEXERs needed to implement the cache memory. No drawing is needed.

Number of And Gates: 2 Number of Or Gates: 1

Number of EQUALITY COMPARATOR: 2

Number of MULTIPLEXER: 1 (1 2:1 MUX for choosing correct word coming from ways)

4. a)Consider a three level memory: L1 and L2 are for cache memory and the third level is for the main memory. Access time for L1 is 2 clock cycle, the access time for L2 is 4 clock cycles and main memory access time is 20 clock cycles. The miss rate for L1 is 10% and the miss rate for L2 is 5%. What is the effective clock cycle for memory access (AMAT in number of clock cycles)?

General formula AMAT = Time for a hit + Miss Rate (MR) * Miss Penalty We have 2 caches, therefore, need to calculate above formula for each of them MR_{L1} = Miss Rate for L1 = 10%, MR_{L2} = 5%, t_{L1} = 2 Clock Cycle, t_{L2} = 4 Clock Cycle, t_{MM} = 20 Clock Cycle

AMAT = t_{L1} + MR_{L1} * (t_{L2} + MR_{L2} * (t_{MM})) = 2 + 0.1 * (4 + 0.05 * 20) = 2.5 = Effective Clock Cycle for Memory Access

b) With 2 GHz clock rate how much time is needed for a program with 10¹⁰ instructions to execute?

$$T_{\text{exec}} = (\text{No. of Inst.}) * (\text{CPI}) * T_{\text{c}}$$

$$T_c = \text{Clock Period} = 1 / \text{clock rate} = 1 / (2 * 10^9) = 5 * 10^{-10} \text{ sec}$$

CPI = Cycles Per Instruction = 2.5 (% of Load/Store Instructions not given. I assume all instructions are Load/Store)

$$T_{\text{exec}} = 10^{10} * 2.5 * 5 * 10^{-10} = 12.5 \text{ sec}$$