HOUSTON VS CHICAGO HOUSING PRICE

Grace Yu

8/18/2020

MOTIVATION

HIGHLIGHTS

- Compared Chicago and Houston, the third and fourth largest city in population, housing price variation over the last two decades;
- 2. Bridge and weld different data sources. Build a complete dataset which includes house price, GDP, employment opportunities, and population for quantitative analysis;
- Built multivariable and single variable linear regression model to predict house price;
- 4. Performed time series analysis to predict house price for the next 20 years.

CHICAGO - ALL FEATURES OVERVIEW

HOUSTON - ALL FEATURES OVERVIEW

CHICAGO - ALL FEATURES CROSS PLOT

HOUSTON - ALL FEATURES CROSS PLOT

CHICAGO - ALL FEATURES CORRELATION COEFFICIENT

	House Price	Real GDP (thousands of chained 2012 dollars)	Total Employment	Population
House Price	1.000000	0.100000	0.090000	-0.260000
Real GDP (thousands of chained 2012 dollars)	0.100000	1.000000	0.970000	-0.630000
Total Employment	0.090000	0.970000	1.000000	-0.560000
Population	-0.260000	-0.630000	-0.560000	1.000000

- ➤ House price has very low correlation with GDP, total employment and population.
- > GDP has very high correlation with total employment
- > GDP has negative relationship with population

HOUSTON - ALL FEATURES CORRELATION COEFFICIENT

	House Price	Real GDP (thousands of chained 2012 dollars)	Total Employment	Population
House Price	1.000000	0.840000	0.900000	0.900000
Real GDP (thousands of chained 2012 dollars)	0.840000	1.000000	0.980000	0.940000
Total Employment	0.900000	0.980000	1.000000	0.980000
Population	0.900000	0.940000	0.980000	1.000000

- Instead, House price has very high correlation with GDP, total employment and population.
- ➤ GDP, total employment and population has very high correlation with each other, so we can drop features like total employment and population, decrease the prediction model order to one.
- For Linear Regression model both multi-variable and single variable models are tested.

HOUSTON Model1 – Multi-variable Linear Regression

HOUSE PRICE = -38699.16*GDP+61567.69*TOTAL_EMPLOYMENT-1527.66*POPULATION

Data sources: 17 data points, Training: 75%, instances (12), Testing: 25%, instances (5)

HOUSTON Model2 – Single-variable Linear Regression

HOUSE PRICE = 0.00042*GDP-695.3363

Better Fit
The simpler the better

CHICAGO Model1 – Multi-variable Linear Regression

HOUSE PRICE = -11176.31*GDP+12039.75*TOTAL_EMPLOYMENT-9225.55*POPULATION

Time series analysis

- > No seasonality
- > There is a low frequency trend

DATA STATIONARY OR NON-STATIONARY

Rolling Statistics

Augmented Dickey-Fuller Test

ADF Statistic: -2.743111756487362

p-value: 0.0668705107489899

Critical Values: 1%: -3.4541800885158525

5%: -2.872031361137725 10%: -2.5723603999791473 ADF Statistic: -0.2864468062292527

p-value: 0.927402056623277

Critical Values: 1%: -3.4541800885158525

5%: -2.872031361137725 10%: -2.5723603999791473

Stationary?

Non-Stationary?

AUTOREGRESSIVE INTEGRATED MOVING AVERAGE MODEL

HOUSTON

ARIMA Model (1,1,1)

ARIMA MODEL PARAMETER SELECTION

AUTOREGRESSIVE INTEGRATED MOVING AVERAGE MODEL - CHICAGO

CONCLUSION

- Linear regression model was built for Chicago and Houston house price;
- > Houston house price is highly related to GDP;
- > Chicago house price is not linear to GDP, total employment, and population;
- > Time series analysis show very dynamic range for Chicago house price. It could go up or go down with big error range;
- > Time series analysis for Houston show an overall increase model.

FUTURE WORK

- Add more features and longer years of observations;
- > Try more complicated machine learning algorithm.

DATA SOURCES

House Price (single-family house)

https://www.kaggle.com/moezabid/zillow-all-homes-data

Population

https://www.census.gov/data/datasets/timeseries/demo/popest/2010s-total-cities-and-towns.html

GDP and Employment

https://www.bea.gov/data/economic-accounts/regional