$12n_{0305} (K12n_{0305})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -3u^{19} - 6u^{18} + \dots + 2b - 3, -u^{19} - 12u^{18} + \dots + 4a + 11, u^{20} + 4u^{19} + \dots + 2u + 1 \rangle$$

$$I_2^u = \langle b, a^3 - a^2u + a^2 - 2au + 4a - 2u + 3, u^2 - u - 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 26 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -3u^{19} - 6u^{18} + \dots + 2b - 3, -u^{19} - 12u^{18} + \dots + 4a + 11, u^{20} + 4u^{19} + \dots + 2u + 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \left(\frac{1}{4}u^{19} + 3u^{18} + \dots - 15u - \frac{11}{4} \\ \frac{3}{2}u^{19} + 3u^{18} + \dots + 2u + \frac{3}{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{7}{4}u^{19} + 6u^{18} + \dots - 13u - \frac{5}{4} \\ \frac{3}{2}u^{19} + 3u^{18} + \dots + 2u + \frac{3}{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{7}{4}u^{19} + 6u^{18} + \dots - 13u - \frac{5}{4} \\ \frac{3}{2}u^{19} + 3u^{18} + \dots + 2u + \frac{3}{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{7}{4}u^{19} + 6u^{18} + \dots - 13u - \frac{5}{4} \\ -\frac{5}{4}u^{19} - \frac{11}{4}u^{18} + \dots + \frac{7}{4}u + \frac{1}{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{1}{4}u^{18} - \frac{3}{4}u^{17} + \dots - \frac{21}{4}u - \frac{3}{4} \\ u^{6} - 4u^{4} + 3u^{2} + 2u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{4}u^{18} + \frac{3}{4}u^{17} + \dots + \frac{17}{4}u + \frac{7}{4} \\ \frac{1}{4}u^{19} + \frac{1}{2}u^{18} + \dots - \frac{1}{2}u + \frac{1}{4} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} - 2u \\ u^{5} - 3u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$= -2u^{19} - 8u^{18} + 16u^{17} + \frac{191}{2}u^{16} - 22u^{15} - \frac{943}{2}u^{14} - 192u^{13} + \frac{2425}{2}u^{12} + \frac{1981}{2}u^{11} - 1627u^{10} - 2079u^9 + \frac{1641}{2}u^8 + 2156u^7 + 431u^6 - 908u^5 - 571u^4 - \frac{53}{2}u^3 + 72u^2 + 29u - \frac{21}{2}u^{12} + \frac{1981}{2}u^{13} + \frac{1981}{2}u^{14} - \frac{1981}{2}u^{15} - \frac{1981$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{20} + 9u^{19} + \dots + 21u + 1$
c_2,c_5	$u^{20} + 3u^{19} + \dots - 7u - 1$
<i>c</i> 3	$u^{20} - 3u^{19} + \dots - 17u - 1$
c_4, c_9	$u^{20} - u^{19} + \dots - 224u - 64$
c_7, c_8, c_{10} c_{11}	$u^{20} + 4u^{19} + \dots + 2u + 1$
c_{12}	$u^{20} - 20u^{19} + \dots - 3324u - 239$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{20} + 7y^{19} + \dots - 221y + 1$
c_2, c_5	$y^{20} - 9y^{19} + \dots - 21y + 1$
<i>c</i> ₃	$y^{20} - 53y^{19} + \dots - 69y + 1$
c_4, c_9	$y^{20} - 35y^{19} + \dots - 5120y + 4096$
c_7, c_8, c_{10} c_{11}	$y^{20} - 32y^{19} + \dots - 26y + 1$
c_{12}	$y^{20} - 116y^{19} + \dots - 2215058y + 57121$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.995757 + 0.162502I		
a = 0.409533 + 0.992912I	-1.72654 - 2.01165I	-16.2599 + 2.9665I
b = -0.250501 - 1.034700I		
u = -0.995757 - 0.162502I		
a = 0.409533 - 0.992912I	-1.72654 + 2.01165I	-16.2599 - 2.9665I
b = -0.250501 + 1.034700I		
u = -0.618715 + 0.543682I		
a = 1.42405 - 0.18504I	-1.91039 + 3.31491I	-16.4023 - 5.7778I
b = -1.183060 - 0.429676I		
u = -0.618715 - 0.543682I		
a = 1.42405 + 0.18504I	-1.91039 - 3.31491I	-16.4023 + 5.7778I
b = -1.183060 + 0.429676I		
u = 1.332060 + 0.199912I		
a = 0.389569 + 0.439368I	-6.30937 - 1.46809I	-15.3912 + 0.5997I
b = -1.42120 + 0.01301I		
u = 1.332060 - 0.199912I		
a = 0.389569 - 0.439368I	-6.30937 + 1.46809I	-15.3912 - 0.5997I
b = -1.42120 - 0.01301I		
u = 1.37734 + 0.35940I		
a = -0.841843 - 0.739118I	-8.39761 - 6.66344I	-17.7359 + 5.0430I
b = 1.77867 + 0.01269I		
u = 1.37734 - 0.35940I		
a = -0.841843 + 0.739118I	-8.39761 + 6.66344I	-17.7359 - 5.0430I
b = 1.77867 - 0.01269I		
u = -0.221606 + 0.329450I		
a = -0.272738 + 1.295930I	-0.674628 - 0.165298I	-12.57313 - 0.79676I
b = 0.671635 - 0.209494I		
u = -0.221606 - 0.329450I		
a = -0.272738 - 1.295930I	-0.674628 + 0.165298I	-12.57313 + 0.79676I
b = 0.671635 + 0.209494I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape	
u = -0.370071			
a = 0.180421	-0.654279	-14.9070	
b = 0.474305			
u = 1.63979 + 0.13284	I		
a = -0.602671 + 0.35658	88I -10.89840 + 0.58168I	-20.0520 - 2.9617I	
b = 0.982271 - 0.84723	391		
u = 1.63979 - 0.13284	I		
a = -0.602671 - 0.35658	88I -10.89840 - 0.58168I	-20.0520 + 2.9617I	
b = 0.982271 + 0.84723	391		
u = 0.328694 + 0.05234	43I		
a = -0.15243 + 3.84880	I = 2.50647 + 2.74594I	-1.72205 - 1.87916I	
b = 0.004947 - 0.4828	70I		
u = 0.328694 - 0.05234	43I		
a = -0.15243 - 3.84880	I = 2.50647 - 2.74594I	-1.72205 + 1.87916I	
b = 0.004947 + 0.4828	70I		
u = -1.84665 + 0.06383	I		
a = -0.420429 + 0.52400	03I - 18.2504 + 2.8693I	-15.5779 - 0.3444I	
b = 2.10366 - 0.42974			
u = -1.84665 - 0.06383	I		
a = -0.420429 - 0.52400	03I - 18.2504 - 2.8693I	-15.5779 + 0.3444I	
b = 2.10366 + 0.42974	I		
u = -1.85353 + 0.10925	I		
a = 0.515285 - 0.86458	81I $19.1451 + 9.0847I$	-17.3799 - 4.2904I	
b = -2.14536 + 0.73132			
u = -1.85353 - 0.10925	I		
a = 0.515285 + 0.86458	81I $19.1451 - 9.0847I$	-17.3799 + 4.2904I	
b = -2.14536 - 0.73132.	I		
u = -1.91314			
a = 0.922913	14.2074	-19.9050	
b = -2.55644			

II.
$$I_2^u = \langle b, \ a^3 - a^2u + a^2 - 2au + 4a - 2u + 3, \ u^2 - u - 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -u-1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} a \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} a \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} a \\ -au-a \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} a^{2}u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} a^{2}u \\ -2a^{2}u-a^{2}-u \end{pmatrix}$$

$$a_{0} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $2a^2u + a^2 + 2au a + 3u 19$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3	$(u^3 - u^2 + 2u - 1)^2$
c_2	$(u^3 + u^2 - 1)^2$
c_4, c_9	u^6
<i>C</i> ₅	$(u^3 - u^2 + 1)^2$
<i>C</i> ₆	$(u^3 + u^2 + 2u + 1)^2$
c_{7}, c_{8}	$(u^2 + u - 1)^3$
c_{10}, c_{11}, c_{12}	$(u^2 - u - 1)^3$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_6	$(y^3 + 3y^2 + 2y - 1)^2$
c_2, c_5	$(y^3 - y^2 + 2y - 1)^2$
c_4, c_9	y^6
$c_7, c_8, c_{10} \\ c_{11}, c_{12}$	$(y^2 - 3y + 1)^3$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.618034		
a = -0.922021	-2.10041	-18.9930
b = 0		
u = -0.618034		
a = -0.34801 + 2.11500I	2.03717 + 2.82812I	-19.0485 - 4.3818I
b = 0		
u = -0.618034		
a = -0.34801 - 2.11500I	2.03717 - 2.82812I	-19.0485 + 4.3818I
b = 0		
u = 1.61803		
a = 0.132927 + 0.807858I	-5.85852 - 2.82812I	-16.5384 + 2.7162I
b = 0		
u = 1.61803		
a = 0.132927 - 0.807858I	-5.85852 + 2.82812I	-16.5384 - 2.7162I
b = 0		
u = 1.61803		
a = 0.352181	-9.99610	-12.8330
b = 0		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^3 - u^2 + 2u - 1)^2)(u^{20} + 9u^{19} + \dots + 21u + 1)$
c_2	$((u^3 + u^2 - 1)^2)(u^{20} + 3u^{19} + \dots - 7u - 1)$
c_3	$((u^3 - u^2 + 2u - 1)^2)(u^{20} - 3u^{19} + \dots - 17u - 1)$
c_4, c_9	$u^6(u^{20} - u^{19} + \dots - 224u - 64)$
<i>C</i> ₅	$((u^3 - u^2 + 1)^2)(u^{20} + 3u^{19} + \dots - 7u - 1)$
c_6	$((u^3 + u^2 + 2u + 1)^2)(u^{20} + 9u^{19} + \dots + 21u + 1)$
c_7, c_8	$((u^2 + u - 1)^3)(u^{20} + 4u^{19} + \dots + 2u + 1)$
c_{10}, c_{11}	$((u^2 - u - 1)^3)(u^{20} + 4u^{19} + \dots + 2u + 1)$
c_{12}	$((u^2 - u - 1)^3)(u^{20} - 20u^{19} + \dots - 3324u - 239)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_6	$((y^3 + 3y^2 + 2y - 1)^2)(y^{20} + 7y^{19} + \dots - 221y + 1)$
c_2, c_5	$((y^3 - y^2 + 2y - 1)^2)(y^{20} - 9y^{19} + \dots - 21y + 1)$
c_3	$((y^3 + 3y^2 + 2y - 1)^2)(y^{20} - 53y^{19} + \dots - 69y + 1)$
c_4, c_9	$y^6(y^{20} - 35y^{19} + \dots - 5120y + 4096)$
c_7, c_8, c_{10} c_{11}	$((y^2 - 3y + 1)^3)(y^{20} - 32y^{19} + \dots - 26y + 1)$
c_{12}	$((y^2 - 3y + 1)^3)(y^{20} - 116y^{19} + \dots - 2215058y + 57121)$