List of potentially useful facts and definitions (you may remove this page)

Propositional logic

Basic logical operations: Negation: $\neg P$ ("not P")

Conjunction: $P \wedge Q$ ("P and Q") Disjunction: $P \vee Q$ ("P or Q") Conditional: $P \rightarrow Q$ ("if P then Q")

Basic logical equivalences:

$$\begin{split} P &\rightarrow Q \equiv \neg P \lor Q \\ \neg (P \lor Q) \equiv \neg P \land \neg Q \\ \neg (P \land Q) \equiv \neg P \lor \neg Q \\ P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R) \\ P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R) \\ P \lor \neg P \equiv T, \ P \land \neg P \equiv F \\ P \lor T \equiv T, \ P \land T \equiv P, \ P \lor F \equiv P, \ P \land F \equiv F \\ P \rightarrow Q \equiv \neg Q \rightarrow \neg P \end{split}$$

Quantifiers:

Universal ("for all"): $\forall x \in U, P(x)$ Existential ("there exists"): $\exists x \in U : P(x)$ Negtation: $\neg(\forall x \in U, P(x)) \equiv \exists x \in U : \neg P(x)$ $\neg(\exists x \in U : P(x)) \equiv \forall x \in U, \neg P(x)$

Sets and set operations

Membership: $x \in A$ (x belongs to A) Subset: $A \subseteq B$, if $\forall x \in U, x \in A \to x \in B$. Equality: A = B if $A \subseteq B$ and $B \subseteq A$ Empty set: the set \emptyset containing no elements. Power set: $\mathcal{P}(A) = \{B \subseteq U : B \subseteq A\}$ Union: $A \cup B = \{x \in U : x \in A \lor x \in B\}$ Intersection: $A \cap B = \{x \in U : x \notin A \land x \in B\}$ Complement: $A^c = \{x \in U : x \notin A\}$ Set difference: $A \setminus B = \{x \in A : x \notin B\}$ Product: $A \times B = \{(a,b) : a \in A \land b \in B\}$.

$$\bigcup_{\alpha \in I} A_{\alpha} = \{ x \in U \mid \exists \alpha \in I : x \in A_{\alpha} \}$$
$$\bigcap_{\alpha \in I} A_{\alpha} = \{ x \in U \mid \forall \alpha \in I, x \in A_{\alpha} \}$$

Basic set equalities: $(A \cup B)^c = A^c \cap B^c$ $(A \cap B)^c = A^c \cup B^c$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup A^c = U, A \cap A^c = \emptyset$ $A \subseteq B$ if and only if $B^c \subseteq A^c$ $A \times (B \cup C) = (A \times B) \cup (A \times C)$ $A \times (B \cap C) = (A \times B) \cap (A \times C)$

Divisibility and congruence

Divides: m|n iff $\exists k \in \mathbb{Z}$ such that n=mk. Congruence: $a \equiv b \pmod n$ iff n|(a-b). Division algorithm: $m=nq+r, r \in \{0,1,\ldots,n-1\}$

Functions

 $f:A\to B - \forall a\in A \text{ get } unique\ b=f(a)\in B.$ Domain: A Codomain: B Range: $\operatorname{ran}(f)=\{f(a)\,|\,a\in A\}\subseteq B$ Composition: given $f:A\to B$ and $g:B\to C$ get $g\circ f:A\to C,\ (g\circ f)(a)=g(f(a)).$ One-to-one: for all $a,b\in A,\ f(a)=f(b)\to a=b.$ Onto: $\operatorname{ran}(f)=B.$ Bijection: f is both one-to-one and onto. Inverse: if $f:A\to B$ is a bijection, define $f^{-1}:B\to A$ by $f^{-1}(b)=a$ if and only if f(a)=b. Cancellation laws: $\forall a\in A,f^{-1}(f(a))=a,$ and $\forall b\in B,f(f^{-1}(b))=b.$ Image: $f(C)=\{f(c)\,|\,c\in C\}.$ Preimage: $f^{-1}(D)=\{a\in A\,|\,f(a)\in D\}.$

Cardinality

Equivalence: $A \approx B$, if \exists a bijection $f: A \to B$ Finite sets: $A \approx \{1, 2, \dots, k\}$ for some $k \in \mathbb{N}$. Infinite sets: any set that is not finite. Cardinality: |A| = k iff $A \approx \{1, 2, \dots, k\}$. $A \approx B$ iff |A| = |B|. Pigeonhole principle: if |A| > |B|, any $f: A \to B$ is not one-to-one.

If A and B are finite and $A \cap B = \emptyset$, then $|A \cup B| = |A| + |B|$.

If A and B are finite then $|A \times B| = |A| \cdot |B|$.

A set A is **countable** if there exists a one-to-one function $f:A\to\mathbb{N}$. (Bijection if A infinite.)

The sets \mathbb{N}, \mathbb{Z} , and \mathbb{Q} are all countable.

The set \mathbb{R} of real numbers is **uncountable**.

Mathematical induction

Proof by induction: to prove a statement of the form $\forall n \in \mathbb{N}, P(n)$, show that P(1) is true and that for $k \geq 1$, $P(k) \rightarrow P(k+1)$.

Strong induction: Instead of only assuming P(k) is true, assume that $P(1), P(2), \ldots, P(k-1), P(k)$ are all true for some k, and use this to show P(k+1) is true. Note that you may need more than one base case.

Equivalence relations

Relation from A to B: a subset $R \subseteq A \times B$. If $(a,b) \in R$ we write a R b.

Domain: $\{a \in A : a R b \text{ for some } b \in B\}$ Range: $\{b \in A : a R b \text{ for some } a \in A\}$

Reflexive: a R a for all $a \in A$

Symmetric: $a R b \rightarrow b R a$ for all $a, b \in A$

Transitive: $a R b \wedge b R c \rightarrow a R c$ for all $a, b, c \in A$. Equivalence relation: reflexive, symmetric, and transitive.

Equivalence class: $[a] = \{b \in A \mid b R a\}.$

An example of an equivalence relation on $\mathbb Z$ is congruence modulo n.

Given $n \in \mathbb{N}$, we define $\mathbb{Z}_n = \{[0], [1], \dots, [n-1]\}$ to be the set of equivalence classes with respect to congruence modulo n: $[a] = \{b \in \mathbb{Z} \mid a \equiv b \pmod{n}\}$. For any $[a], [b] \in \mathbb{Z}_n$, we define $[a] \oplus [b] = [a+b]$ and $[a] \odot [b] = [a \cdot b]$. These are the operations of **modular arithmetic**.