A Small Video-Language Model for Sparse Action Spotting

Evan Zimmerman, Naveen Unnikrishnan, Nicholas Mellon, Pranav Mallela, Vishal Chandra

EECS 545 | Machine Learning | Poster 7

Motivation

- Sparse action spotting methods in sports have traditionally been CNN or feature-extractor based
- We introduce a purely token-based pipeline that, when given a video of a sports game, can extract desirable highlights.
- A user should be able to query our system: "Give me all the highlights of free-kicks.", and receive a response: "A free-kick occurs at (36:09, 36:24)".

Data

- The SoccerNet v2 Action Spotting Dataset:
- 500 videos from past soccer games.
- Annotations for 17 common soccer actions such as Penalty, Goal, Substitution, and Offside.
- Each action annotated with in-game timestamps.
- SoccerNet Echoes commentary transcript dataset.
- Split into 1-minute video chunks with attached commentary and ground-truth actions:

Train Split	23151 action-clip pairs
Test Split	5788 action-clip pairs

Methods

Approach 1: VLM Fine-Tuning

- 1. Load Qwen2-VL-2B-Instruct-AWQ
- 2. Fine-tune (train) using ~8000 training videos
- Format a prompt with video and timestamps
- 3. For each example in the test set, we:
- Format a prompt with video & no timestamps
 - The VLM generates the timestamps for us after learning from the examples in the fine-tuning

Approach 2: LLM Out-of-the-box

- 1. Load Mistral-7B-v0.3
- 2. For each example in the test set, we:
 - Set a system role (ie. Assistant)
- Set a user prompt
 - Zero-shot or few-shot examples
 - Instructions for extracting timestamps
- Commentary for the selected game segment

Approach 3: LLM Fine-tuning

- 1. Load Mistral-7B-v0.3
- 2. Fine-tune (train) using ~8000 training examples
- Format a prompt commentary and timestamps
- 3. For each example in the test set, we:
 - Format a prompt commentary & no timestamps
 - The LLM generates the timestamps for us after learning from the examples in the fine-tuning

Approach 4: Open Al Reasoning API

- 1. Use the o4-mini reasoning API
- 2. For each example in the test set, we:
- Format a prompt with commentary & no timestamps
- The reasoning model generates timestamps

Results

Model	Precision	Recall	F1 Score
Qwen2-VL-2B	0.0662	0.4045	0.1138
Mistral-7B	0.0551	0.3364	0.0947
o4-mini	0.0345	0.1887	0.0583

Model	Action 1 (F1)	Action 2 (F1)	Action (F1)
Qwen2-VL-2B	shots on target (0.1792)	foul (0.1572)	free-kick (0.1201)
Mistral-7B	goal (0.1778)	clearance (0.1425)	corner (0.1085)
o4-mini	goal (0.3333)	substitution (0.2667)	corner (0.1714)

Metric: Intersection over Union (IoU)

• The best IoU between ground truth time intervals and predicted time intervals is taken.

Future Work

- Integrate context-aware losses used in previous SOTA CNN-based methods
- Investigate the role of ResNet features in current transformer-based SOTA method.
- Understand token-based versus CLIP-based approaches to sparse action spotting (LG AI)