Ćwiczenia rachunkowe z fizyki

Lista 1

Kilka zagadnień wstępnych, omawianych na pierwszych zajęciach. Przykłady mogą być wsparciem dla wprowadzenia (przypomnienia) rachunku wektorów oraz elementarnych pochodnych i całek.

Wektory

- 1. Podaj kilka przykładów wielkości skalarnych, wektorowych oraz przykład tensora (drugiego rzędu). Jaka jest zasadnicza różnica pomiędzy wektorami a skalarami w danym układzie współrzędnych?
- 2. Pokaż, że iloczyn skalarny wektorów wyraża się wzorem $\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$.
- 3. Przeanalizuj definicję iloczynu wektorowego $\vec{A} \times \vec{B}$
- 4. Podaj kilka przykładów zastosowania iloczynu wektorowego i skalarnego wektorów w fizyce.
- 5. Dane są dwa wektory: $\vec{A} = 3\hat{i} + 4\hat{j} 5\hat{k}$ oraz $\vec{B} = \hat{i} 2\hat{j} + 7\hat{k}$. Znajdź: iloczyn skalarny $\vec{A} \cdot \vec{B}$, iloczyn wektorowy $\vec{A} \times \vec{B}$, kąt pomiędzy wektorami $(\vec{A} \vec{B})$ oraz $(\vec{A} + \vec{B})$.
- 6. Jeśli $|\vec{A} \times \vec{B}| = \vec{A} \cdot \vec{B}$, to jaki kąt tworzą wektory \vec{A} i \vec{B} ?
- 7. Jak szybko sprawdzić, czy istnieje taki wektor \vec{A} , dla którego $(2\hat{i} 3\hat{j} + 4\hat{k}) \times \vec{A} = (4\hat{i} + 3\hat{j} \hat{k})$?
- 8. Pokazać, że $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$ stosując wzór na iloczyn wektorowy w układzie kartezjańskim.
- 9. Sprawdzić, że pole równoległoboku, którego boki tworzą wektory \vec{a} oraz \vec{b} , wynosi $|\vec{a} \times \vec{b}|$.
- 10. Dany jest wektor $\vec{a} = 7\hat{i} + 11\hat{j}$. Znajdź wektor jednostkowy prostopadły do wektora \vec{a} .
- 11. Dane są dwa wektory: $\vec{a} = 3\hat{i} + 4\hat{j}$ oraz $\vec{b} = 6\hat{i} + 16\hat{j}$. Rozłożyć wektor \vec{b} na składową równoległą do wektora \vec{a} oraz składową do niego prostopadłą.

Elementarne pochodne i całki

12. Obliczyć pochodne po zmiennej x następujących funkcji: $x^3 \sin(x)$, $\sqrt{3x}$, e^{x^2+3} , $\cos^4(x)$, $tg(x) \equiv \sin(x)/\cos(x)$, $\ln(x^2)$, $f^2(x)$, $\sin(\omega x)$.

Wyznacz pierwsze i drugie pochodne następujących funkcji:

a)
$$y = Bt^2 + Ct$$

b)
$$x = Ae^{-\alpha t}$$

c)
$$x = A\cos(\omega t + \delta)$$

d)
$$x = A \cos[\varphi(t)]$$

13. * Wyznacz całki nieoznaczone:

a)
$$F(t) = \int dt$$

b)
$$F(t) = \int t dt$$

c)
$$F(t) = \int (At + B)dt$$

d)
$$F(t) = \int \frac{1}{a+bt} dt$$

e)
$$F(t) = \int \exp(-\alpha t) dt$$

f)
$$F(t) = \int \cos[\omega t] dt$$

Ćwiczenia rachunkowe z fizyki

Oszacowania rzędu wielkości

(należy je przeprowadzać bardzo zgrubnie, przyjmując odważnie dane początkowe!)

- 13. Miliarder oferuje Ci jeden miliard złotych w monetach *1zl*, pod warunkiem, że przeliczysz tę kwotę moneta po monecie (jedna na sekundę).Czy warto zaakceptować taką ofertę?
- 14. Oszacuj wagę i objętość złota wartego 1 miliard dolarów.
- 15. Ile ziarenek surowego ryżu mieści się w litrowym garnku?
- 16. Oszacuj ile kropli wody znajduje się w oceanach na Ziemi.
- 17. Nie tak dawno temu w komputerach klasy PC powszechnie używane były dyskietki 3,5 calowe o pojemności 1,44 MB (o grubości około 3 mm). Oszacuj ile takich dyskietek można by ułożyć jedna na drugiej na odległości Ziemia-Księżyc. Czy sumaryczna pojemność takiego stosu byłaby duża? Co w tym przypadku oznacza duża albo mała?
- 18. Na pierwszym polu szachownicy kładziemy jedno ziarno ryżu, na drugim dwa, na trzecim 4 i tak dalej, na następnym zawsze dwa razy więcej niż na poprzednim. Oszacuj objętość ryżu z ostatniego pola szachownicy.
- 19. Oszacuj całkowitą objętość powietrza jaką wydycha człowiek w czasie swojego życia (załóż, że każdy oddech to 500 cm³). Ile razy serce człowieka uderza w czasie średniego życia? Ile litrów krwi przetoczy? Załóż, że w każdym uderzeniu serce pompuje około 50cm³ krwi.
- 20. Człowiek mruga do 20 razy na minutę. Każde mrugnięcie zajmuje mniej niż pół sekundy. Oszacuj przez jak długi czas w ciągu dnia mamy zamknięte oczy.
- 21. Oszacuj maksymalną odległość *d* (do horyzontu), jaką widzisz stojąc na plaży (Rys.). Załóż, że Twoje oczy znajdują się na wysokości *h*=1.7m, promień Ziemi wynosi *R*=6400km, a powietrze jest idealnie przejrzyste.

22. ** Oszacuj liczbę stroicieli pianin w dużym mieście (zadanie oryginalnie sformułowane przez Enrico Fermiego (1901-1954), wybitnego włoskiego fizyka; noblisty). Liczbę mieszkańców przyjmij jako 1 mln.

Jednostki

- 23. Wahadło matematyczne to punkt materialny zawieszony na nieważkiej nici o długości L. Zakładając, że okres drgań T wahadła jest potęgową funkcją L oraz przyspieszenia ziemskiego g: $T \propto L^{\alpha} g^{\beta}$ znaleźć wartości α oraz β porównując jednostki obu stron powyższego równania.
- 24. Wprowadzamy fundamentalne stałe: grawitacji $G=6.67\times 10^{-11}\ Nm^2/kg^2$, Plancka $h=6.63\times 10^{-34}\ Js$ oraz prędkość światła $c=3\times 10^8\ m/s$, przy czym $J=N\cdot m$ oraz $N=kg\cdot m/s^2$. Obliczyć wartości oraz ustalić jednostki następujących wielkości: $l_P=\sqrt{\frac{\hbar G}{c^3}}$ oraz $t_P=\frac{l_P}{c}$.
- 25. Przyspieszenie dośrodkowe a_d ciała w ruchu po okręgu o promieniu R zależy od prędkości tego ciała v i promienia R jak $a_d = v^a R^{\beta}$. Wyznaczyć, za pomocą analizy wymiarowej wartości wykładników α i β . Wskazówka: wymiar przyspieszenia: długość/(czas)², wymiar prędkości: długość/czas.
- 26. Definiujemy nową jednostkę czasu jako 1 mrugnięcie = 30µs. Jaka jest prędkość światła w metrach na mrugnięcie? Jaką drogę przebywa światło w czasie jednego mrugnięcia?
- 27. A i B to wielkości fizyczne mające określone wymiary. Które z podanych działań mają sens fizyczny: A-B, A+B, A/B, A·B, jeśli wymiary A i B są: a) identyczne, b) różne?
- 28. Położenie cząstki zależy od czasu jak: x(t)=Asin(ωt). Jaki wymiar mają w układzie jednostek miar SI wielkości A i ω?