1. Netiesinių lygčių sprendimas

Duotos dvi netiesinės lygtys: daugianaris f(x) = 0 ir transcendentinė funkcija g(x) = 0.

Daugianaris f(x)	Funkcija g(x)	
$-0.95x^4 + 10.19x^3 - 37.83x^2 + 55.58x - 24.49$	$\sin(x) (x^2 - 1)(x + 3) - 0.9;$ -10 \le x \le 10	
Sprendimo metodai: skenavimo, stygų, Niutono(liestinių)		

- 1.1. Lygties f(x) = 0 (f(x) daugianaris) sprendimas
- Daugianario šaknų intervalo įverčiai

pav. 1 Daugianario grubaus šaknų intervalo iverčiai. Grafiko dydis yra grubaus šaknų intervalo dydžio

pav. 2 Daugianario tikslesnio šaknų intervalo įverčiai. Grafiko dydis yra tikslesnio šaknų intervalo dydžio

• 1 lentelė. Šaknų intervalo įverčiai.

Grubus lygties $f(x) = 0$ šaknų intervalo įvertis	[-59,5; 59,5]
Tikslesnis lygties $f(x) = 0$ šaknų intervalo įvertis	[-3,25329; 59,505263]

• Šaknų atskyrimas skenavimo metodu

Skenavimas atliekamas intervale [-3,25329; 59,505263], skenavimo žingsnis lygus 1.

pav.3 Daugianario šaknų atskyrimo intervalai

2 lentelė. Šaknies atskyrimo intervalai.

Intervalo Nr.	Intervalas
1	[0.71; 0.81]
2	[2.51; 2.61]
3	[3.01; 3.11]
4	[4.31; 4.41]

• Šaknų tikslinimas skenavimo, stygų, Niutono (liestinių) metodais

Tariama, kad x_g yra šaknis (stabdomi skaičiavimai), jei $|f(x_g)| < 1e - 6$. Skaičiavimuose naudojamas šaknies tikslumo įvertis $|f(x_g)|$.

3 lentelė. Rezultatų lentelė.

S	Pradinis intervalas	Šaknis	Tikslumas	Iteracijų skaičius
da				
Skenavimo metodas	[0.71; 0.81]	0.7560098	-0.000008	32
vimo	[2.51; 2.61]	2.5804280	0.000004	25
Skenc	[3.01; 3.11]	3.0329570	-0.000007	29
J	[4.31; 4.41]	4.3569200	0.000005	24
70	Pradinis intervalas	Šaknis	Tikslumas	Iteracijų skaičius
Stygų metodas	[0.71; 0.81]	0.7560099	0.000004	4
т ше	[2.51; 2.61]	2.5804285	-0.0000003	5
Styg	[3.01; 3.11]	3.0329569	-0.0000009	4
	[4.31; 4.41]	4.3569200	0.000001	5
	Pradinis artinys	Šaknis	Tikslumas	Iteracijų skaičius
nių)				
no (liesti metodas				
Niutono (liestinių) metodas				
Niuı				

Nepavyko iki galo realizuoti niutono metodo ir surasti tinkamų artinių. Pagal turimus rezultatus galima teigti kad f(x) = 0 šaknis randa su mažiausiai iteracijų – stygų metodas. Metodų rezultatai ir tikslumas yra gan panašūs.

1.2. Lygties g(x)=0 (g(x) – transcendentine funkcija) sprendimas

4 lentelė. Šaknies atskyrimo intervalai.

Intervalo Nr.	Intervalas		
1	[1.1; 1.2]		
2	[3.1; 3.2]		

pav. 4 Funkcijos šaknų intervalų rėžiai, pavaizduoti grafiškai

5 lentelė. Rezultatų lentelė.

tas	Pradinis intervalas	Šaknis	Tikslumas	Iteracijų skaičius
Skenavimo metodas	[1.1; 1.2]	1.1151468	-0.0000007	30
Skenavi	[3.1; 3.2]	3.1248262	0.000009	33
	Pradinis intervalas	Šaknis	Tikslumas	Iteracijų skaičius
Stygų metodas	[1.1; 1.2]	1.1151468	-0.0000005	5
Stygu	[3.1; 3.2]	3.1248262	0.000001	5
	Pradinis artinys	Šaknis	Tikslumas	Iteracijų skaičius

Skaitiniai metodai ir algoritmai (P170B115). Nerijus Dulkė, IFF-6/11, Varianto nr. 15

inių)	1	1.1151469	0.000000	4
Niutono (liestinių) metodas				

Dėl nepilnai implementuoto Niutono algoritmo surasta tik viena šaknis. Iš gautų rezultų galima teigti, kad g(x) = 0 šaknų radimui mažiausiai iteracijų reikia naudojant Niutono metodą. Taip pat Niutono metodas yra tiksliausias iš duotų.

1.3. Sąlyginio uždavinio sprendimas

Sąlyga.

Vertikaliai į viršų iššauto objekto greitis užrašomas dėsniu $v(t) = v_0 e^{\frac{-ct}{m}} + \frac{mg}{c} (e^{\frac{-ct}{m}} - 1)$, čia g = 9,8 m/s², pradinis greitis v₀, objekto masė m. Koks pasipriešinimo koeficientas c veikia objektą, jei žinoma, kad po t₁ laiko nuo iššovimo jo greitis lygus v₁?

$$V_0 = 50$$
, $m = 2$, $t_1 = 3$, $v_1 = 14$

Sudaroma funkcija $v(t)=50e^{\frac{-c*3}{2}}+\frac{19.6}{c}\left(e^{\frac{-c*3}{2}}-1\right)-14=0$, ir ieškoma kur funkcija kerta X ašį.

Gauta šaknis: 1.0195358

2. Išvados

Laboratorinio darbo metu buvo analizuojama algebrinės lygties su vienu nežinomuoju sprendimo etapai – šaknų atskyrimo ir jų tikslinimo uždaviniai. Buvo įgyvendinti skenavimo, stygų, Niutono (nepilnas) metodai. Niutono metodo įgyvendinimas buvo sunkiausiais, tačiau šaknis suranda su dideliu tikslumu.

3. Programos tekstai

Skenavimo metodas:

```
PreparareForm(0, 10, -20, 20);
                    x = 0.01;
                    i = 1;
                    break;
            }
            richTextBox1.AppendText("Iteracija x
                                                               F(x) x1
                                                                                            x2
F(x1)
             F(x2)
           Fx = chart1.Series.Add("F(x)");
            Fx.ChartType = SeriesChartType.Line;
            for (; i < 50; i++)
            {
                Fx.Points.AddXY(x, F(x)); x = x + (2 * Math.PI) / 50;
            Fx.BorderWidth = 3;
           X1X2 = chart1.Series.Add("X1X2");
           X1X2.MarkerStyle = MarkerStyle.Circle;
           X1X2.MarkerSize = 8;
           X1X2.ChartType = SeriesChartType.Point;
           X1X2.ChartType = SeriesChartType.Line;
           XMid = chart1.Series.Add("XMid");
           XMid.MarkerStyle = MarkerStyle.Circle;
           X1X2.ChartType = SeriesChartType.Point;
           X1X2.ChartType = SeriesChartType.Line;
           XMid.MarkerSize = 8;
            var thing = intervals.Dequeue();
            x1 = thing.Item1;
           x2 = thing.Item2;
           timer5.Enabled = true;
            timer5.Interval = 50;
            timer5.Start();
        }
        private void timer5_Tick(object sender, EventArgs e)
           xtemp = x1 + stepSize;
            if (Math.Abs(F(xtemp)) > 1e-6 & iii <= N)</pre>
            {
                X1X2.Points.Clear();
                X1X2.Points.AddXY(x1, 0);
                X1X2.Points.AddXY(xtemp, 0);
               richTextBox1.AppendText($" {iii,6:d} {xtemp,12:f7} {F(xtemp),12:f7}
{x1,12:f7} {x2,12:f7} {F(x1),12:f7} {F(x2),12:f7}\n");
                if (Math.Sign(F(x1)) != Math.Sign(F(xtemp)))
                {
                    stepSize /= 10;
                else
```

```
{
                    x1 += stepSize;
                iii = iii + 1;
            }
           else
            {
                richTextBox1.AppendText($" {iii,6:d} {xtemp,12:f7} {F(xtemp),12:f7}
{x1,12:f7} {x2,12:f7} {F(x1),12:f7} {F(x2),12:f7}\n");
                richTextBox1.AppendText("Skaičiavimai baigti");
                if (intervals.Any())
                {
                    var thing = intervals.Dequeue();
                   x1 = thing.Item1;
                   x2 = thing.Item2;
                    stepSize = 0.1;
                }
                else
                {
                    timer5.Stop();
            }
        }
Stygų metodas:
        private void button6_Click(object sender, EventArgs e)
            ClearForm();
            double x = 0;
            int i = 0;
            switch (comboBox1.SelectedIndex)
            {
                case 0:
                    PreparareForm(0, 10, -5, 5);
                    break;
                case 1:
                    PreparareForm(0, 10, -20, 20);
                    break;
                case 2:
                    PreparareForm(0, 10, -20, 20);
                   x = 0.01;
                    i = 1;
                    break;
            }
            richTextBox1.AppendText("Iteracija
                                                X
                                                                   F(x) x1
                                                                                            x2
F(x1)
             F(x2)
                        \n");
            Fx = chart1.Series.Add("F(x)");
            Fx.ChartType = SeriesChartType.Line;
            for (; i < 50; i++)
            {
                Fx.Points.AddXY(x, F(x)); x = x + (2 * Math.PI) / 50;
            }
```

```
Fx.BorderWidth = 3;
            X1X2 = chart1.Series.Add("X1X2");
            X1X2.MarkerStyle = MarkerStyle.Circle;
            X1X2.MarkerSize = 8;
            X1X2.ChartType = SeriesChartType.Point;
            X1X2.ChartType = SeriesChartType.Line;
            XMid = chart1.Series.Add("XMid");
            XMid.MarkerStyle = MarkerStyle.Circle;
            X1X2.ChartType = SeriesChartType.Point;
            X1X2.ChartType = SeriesChartType.Line;
            XMid.MarkerSize = 8;
            var thing = intervals.Dequeue();
            x1 = thing.Item1;
            x2 = thing.Item2;
            timer4.Enabled = true;
            timer4.Interval = 500;
            timer4.Start();
        }
        private void timer4_Tick(object sender, EventArgs e)
            var cof = Math.Abs(F(x1) / F(x2));
            xtemp = (x1 + cof * x2) / (1 + cof);
            if (Math.Abs(F(xtemp)) > 1e-6 & iii <= N)</pre>
                X1X2.Points.Clear();
                XMid.Points.Clear();
                X1X2.Points.AddXY(x1, F(x1));
                X1X2.Points.AddXY(x2, F(x2));
                XMid.Points.AddXY(xtemp, 0);
                richTextBox1.AppendText($" {iii,6:d} {xtemp,12:f7} {F(xtemp),12:f7}
{x1,12:f7} {x2,12:f7} {F(x1),12:f7} {F(x2),12:f7}\n");
                if (Math.Sign(F(x1)) != Math.Sign(F(xtemp)))
                {
                    x2 = xtemp;
                }
                else
                {
                    x1 = xtemp;
                iii = iii + 1;
            }
            else
            {
                richTextBox1.AppendText($" {iii,6:d} {xtemp,12:f7} {F(xtemp),12:f7}
{x1,12:f7} {x2,12:f7} {F(x1),12:f7} {F(x2),12:f7}\n");
                richTextBox1.AppendText("Skaičiavimai baigti");
                if (intervals.Any())
```

```
{
                    var thing = intervals.Dequeue();
                    x1 = thing.Item1;
                    x2 = thing.Item2;
                }
                else
                {
                    timer4.Stop();
                }
            }
        }
Niutono (liestinių metodas):
       private void button8_Click(object sender, EventArgs e)
            ClearForm();
            double x = 0;
            int i = 0;
            switch (comboBox1.SelectedIndex)
                case 0:
                    PreparareForm(0, 10, -5, 5);
                    x1 = 1;
                    break;
                case 1:
                    PreparareForm(0, 10, -20, 20);
                    x1 = 1;
                    break;
                case 2:
                    PreparareForm(0, 10, -20, 20);
                    x1 = 1.5;
                    x = 0.01;
                    i = 1;
                    break;
            }
            richTextBox1.AppendText("Iteracija
                                               X
                                                                   F(x) x1
                                                                                            x2
F(x1)
                      \n");
             F(x2)
            Fx = chart1.Series.Add("F(x)");
            Fx.ChartType = SeriesChartType.Line;
            for (; i < 50; i++)
            {
                Fx.Points.AddXY(x, F(x)); x = x + (2 * Math.PI) / 50;
            }
            Fx.BorderWidth = 3;
           X1X2 = chart1.Series.Add("X1X2");
            X1X2.MarkerStyle = MarkerStyle.Circle;
           X1X2.MarkerSize = 8;
           X1X2.ChartType = SeriesChartType.Point;
           X1X2.ChartType = SeriesChartType.Line;
            XMid = chart1.Series.Add("XMid");
            XMid.MarkerStyle = MarkerStyle.Circle;
```

```
X1X2.ChartType = SeriesChartType.Point;
            X1X2.ChartType = SeriesChartType.Line;
            XMid.MarkerSize = 8;
            timer6.Enabled = true;
            timer6.Interval = 500;
            timer6.Start();
        }
        private void timer6_Tick(object sender, EventArgs e)
            xtemp = -F(x1) / dF(x1);
            x1 += xtemp;
            xtemp = x1;
            if (Math.Abs(F(x1)) > 1e-6 & iii <= N)</pre>
            {
                 X1X2.Points.Clear();
                XMid.Points.Clear();
                 XMid.Points.AddXY(x1, 0);
                 richTextBox1.AppendText($" {iii,6:d} {xtemp,12:f7} {F(xtemp),12:f7}
{x1,12:f7} {x2,12:f7} {F(x1),12:f7} {F(x2),12:f7}\n");
                 iii = iii + 1;
            }
            else
            {
richTextBox1.AppendText(" {iii,6:d} {xtemp,12:f7} {F(xtemp),12:f7} {x1,12:f7} {x2,12:f7} {F(x1),12:f7} {F(x2),12:f7}\n");
                 richTextBox1.AppendText("Skaičiavimai baigti");
                 timer6.Stop();
            }
        }
Papildomos funkcijos:
        private double F(double x)
            switch (comboBox1.SelectedIndex)
            {
                 case 0: return - 0.95 * Math.Pow(x, 4)
                                + 10.19 * Math.Pow(x, 3)
                                -37.83 * Math.Pow(x, 2)
                                + 55.58 * x
                                 - 24.49;
                 case 1: return Math.Sin(x) * (x * x - 1) * (x + 3) - 0.9;
                 case 2: return 50 * Math.Pow(Math.E, -x * 3 / 2)
                                + (19.6 / x * Math.Pow(Math.E, -x * 3 / 2) - 1)
                                - 14;
            }
            return 0;
        }
        private double dF(double x)
```

```
switch (comboBox1.SelectedIndex)
            {
                case 0:
                    return 3.8 * Math.Pow(x, 3)
                           -30.57 * Math.Pow(x, 2)
                           + 75.66 * x
                           - 55.58;
                case 1:
                    return Math.Sin(x) * (x * x - 1)
                           + Math.Cos(x) * (x * x - 1) * (x + 3)
                           + 2 * x * Math.Sin(x) * (x + 3);
                case 2:
                    return (Math.Pow(Math.E, -x * 3 / 2) * (98 * Math.Pow(Math.E, x * 3 / 2)) -
375 * x * x - 147 * x - 98) / 5 * x * x;
            }
            return 0;
        }
private Queue<Tuple<double, double>> int1 = new Queue<Tuple<double, double>>();
        private Queue<Tuple<double, double>> int2 = new Queue<Tuple<double, double>>();
        private Queue<Tuple<double, double>> int3 = new Queue<Tuple<double, double>>();
        private Queue<Tuple<double, double>> intervals
            get
            {
                switch (comboBox1.SelectedIndex)
                    case 0: return int1;
                    case 1: return int2;
                    case 2: return int3;
                    default: return null;
            }
        }
        private void FillIntervals()
            int1.Clear();
            int2.Clear();
            int3.Clear();
            comboBox1.SelectedIndex = 0;
            x1 = 0.01;
            x2 = 10;
            var xTemp = x1;
            for (x1 += stepSize; x1 < x2; x1 += stepSize)</pre>
                if (Math.Sign(F(x1)) != Math.Sign(F(xTemp)))
                {
                    int1.Enqueue(new Tuple<double, double>(xTemp, x1));
                }
                xTemp = x1;
            }
            comboBox1.SelectedIndex = 1;
```

```
x1 = 0;
    x2 = 5;
   xTemp = x1;
   for (x1 += stepSize; x1 < x2; x1 += stepSize)</pre>
        if (Math.Sign(F(x1)) != Math.Sign(F(xTemp)))
        {
            int2.Enqueue(new Tuple<double, double>(xTemp, x1));
        }
        xTemp = x1;
    }
    comboBox1.SelectedIndex = 2;
   x1 = 0.5;
   x2 = 10;
   xTemp = x1;
   for (x1 += stepSize; x1 < x2; x1 += stepSize)</pre>
        if (Math.Sign(F(x1)) != Math.Sign(F(xTemp)))
        {
            int3.Enqueue(new Tuple<double, double>(xTemp, x1));
        }
        xTemp = x1;
    }
}
```