

# Transforming Education Transforming India

### **REPORT**

On

### **Multiple Linear Regression And Factor Analysis**

Submitted by

**EKANSH BARI** 

Registration No 11615973

(MGN909) Section KOE11 - A22

**Programme Name: B.Tech Computer Science** 

School of Computer Science & Engineering Lovely Professional University, Phagwara

# Multiple Linear Regression & Factor Analysis

### **Multiple Regression**

### The dataset

| examscore | hoursspentrevi<br>sing | anxiety | Alevelentrypoints |
|-----------|------------------------|---------|-------------------|
| 62        |                        | 40      | 24                |
| 58        | 31                     | 65      | 20                |
| 52        | 35                     | 34      | 22                |
| 55        | 26                     | 91      | 22                |
| 75        | 51                     | 46      | 28                |
| 82        | 48                     | 52      | 28                |
| 38        | 25                     | 48      | 18                |
| 55        | 37                     | 61      | 20                |
| 48        | 30                     | 34      | 18                |
| 68        | 44                     | 74      | 26                |
| 62        | 32                     | 54      | 24                |
| 62        | 40                     | 61      | 24                |
| 72        | 61                     | 26      | 26                |
| 58        | 35                     | 13      | 24                |
| 65        | 45                     | 54      | 20                |
| 42        | 30                     | 58      | 20                |
| 68        | 39                     | 62      | 24                |
| 68        | 47                     | 39      | 26                |
| 58        | 41                     | 57      | 22                |
| 72        | 46                     | 17      | 28                |

Null Hypothesis (Ho): Exam is normally distributed.

Alternative Hypothesis (Ha): Exam is not normally distributed.

### **Tests of Normality**

|            | Kolmo     | gorov-Smiri | nov <sup>a</sup> | Shapiro-Wilk |    |      |  |
|------------|-----------|-------------|------------------|--------------|----|------|--|
|            | Statistic | df          | Sig.             | Statistic    | df | Sig. |  |
| exam score | .092      | 20          | .200*            | .982         | 20 | .957 |  |

- \*. This is a lower bound of the true significance.
- a. Lilliefors Significance Correction

By doing a normality test we found out that the p-value is 0.957; we are rejecting the alternative hypothesis in favour of the null hypothesis.

Since exam score is normally distributed we can do multiple linear regression on the dependent variable.

| С | 10 | re | lat | io | n | S |
|---|----|----|-----|----|---|---|
|   |    |    |     |    |   |   |

|                     |                      | exam score | hours spent<br>revising | anxiety | A-level entry<br>points |
|---------------------|----------------------|------------|-------------------------|---------|-------------------------|
| Pearson Correlation | exam score           | 1.000      | .821                    | 118     | .872                    |
|                     | hours spent revising | .821       | 1.000                   | 340     | .732                    |
|                     | anxiety              | 118        | 340                     | 1.000   | 244                     |
|                     | A-level entry points | .872       | .732                    | 244     | 1.000                   |
| Sig. (1-tailed)     | exam score           |            | .000                    | .310    | .000                    |
|                     | hours spent revising | .000       | 5%                      | .072    | .000                    |
|                     | anxiety              | .310       | .072                    |         | .150                    |
|                     | A-level entry points | .000       | .000                    | .150    |                         |
| N                   | exam score           | 20         | 20                      | 20      | 20                      |
|                     | hours spent revising | 20         | 20                      | 20      | 20                      |
|                     | anxiety              | 20         | 20                      | 20      | 20                      |
|                     | A-level entry points | 20         | 20                      | 20      | 20                      |

There is no multicollinearity between the independent variables.

The exam score is dependent on hours spent revising and A-level entry point.



### Predicted Value 42.72 76.74 61.00 10.169 20 -1.797 Std. Predicted Value 1.547 .000 1.000 20 Standard Error of 1.155 3.012 1.922 .559 20 Predicted Value Adjusted Predicted Value 42.56 79.70 60.98 10.522 20 Residual -8.493 6.654 .000 4.100 20 Std. Residual -1.901 1.489 .000 .918 20 Stud. Residual -2.017 .003 1.032 20 Deleted Residual -9.565 9.939 .021 5.244 20

1.979

7.684

.409

.404

Residuals Statistics<sup>a</sup>

Mean

.005

2.850

.074

.150

Std. Deviation

1.085

2.186

.112

.115

20

20

20

20

Minimum Maximum

-2.262

.320

.000

.017

a. Dependent Variable: exam score

Stud. Deleted Residual

Centered Leverage Value

Mahal. Distance

Cook's Distance



Exam score follows the line in P-P plot and in scatterplot non-of, the value is greater than 3 and less than -3 on both the axis. Cook's distance is less than 1.

|       |       |          |                      |                            |                    | Cha      | nge Statistic: | S   |                  |
|-------|-------|----------|----------------------|----------------------------|--------------------|----------|----------------|-----|------------------|
| Model | R     | R Square | Adjusted R<br>Square | Std. Error of the Estimate | R Square<br>Change | F Change | df1            | df2 | Sig. F<br>Change |
| 1     | .927ª | .860     | .834                 | 4.468                      | .860               | 32.811   | 3              | 16  | .000             |

Since R Square value is 0.860; our model explains 86% of the values.

|       |            | A                 | NOVA |             |        |                   |
|-------|------------|-------------------|------|-------------|--------|-------------------|
| Model | ĺ          | Sum of<br>Squares | df   | Mean Square | F      | Sig.              |
| 1     | Regression | 1964.654          | 3    | 654.885     | 32.811 | .000 <sup>b</sup> |
|       | Residual   | 319.346           | 16   | 19.959      |        |                   |
|       | Total      | 2284.000          | 19   |             |        |                   |

a. Dependent Variable: exam score

b. Predictors: (Constant), A-level entry points, anxiety, hours spent revising

The slope of the line is zero. So, we are rejecting the null hypothesis.

We are obtaining statistical significant value.

### Coefficientsa

|       |                      | Unstandardize | d Coefficients | Standardized<br>Coefficients |        |      | C          | orrelations |      |
|-------|----------------------|---------------|----------------|------------------------------|--------|------|------------|-------------|------|
| Model |                      | В             | Std. Error     | Beta                         | t      | Sig. | Zero-order | Partial     | Part |
| 1     | (Constant)           | -11.823       | 8.806          |                              | -1.343 | .198 |            |             |      |
|       | hours spent revising | .551          | .171           | .456                         | 3.226  | .005 | .821       | .628        | .302 |
|       | anxiety              | .104          | .058           | .179                         | 1.796  | .091 | 118        | .410        | .168 |
|       | A-level entry points | 1.989         | .469           | .581                         | 4.239  | .001 | .872       | .727        | .396 |

a. Dependent Variable: exam score

From standardized coefficients, we can see than A-level entry point and hours spent revising have the most contribution.

For A-level entry point and hours spent revising we have p-value 0.001 and 0.005 which is statistically significant. But, for anxiety p-value is 0.091; not statistically significant.

A-level entry point and hours spent revising contribute to most of the unique values in the dataset.

Examsore = 1.989\*Alevelentrypoints + 0.551\* hourspentrevising – 11.823 Computing the model or predicted value.

| examscore | multiple multiple |
|-----------|-------------------|
| 62        | 57.95             |
| 58        | 45.04             |
| 52        | 51.22             |
| 55        | 46.26             |
| 75        | 71.97             |
| 82        | 70.32             |
| 38        | 37.75             |
| 55        | 48.34             |
| 48        | 40.51             |
| 68        | 64.14             |
| 62        | 53.55             |
| 62        | 57.95             |
| 72        | 73.50             |
| 58        | 55.20             |
| 65        | 52.75             |
| 42        | 44.49             |
| 68        | 57.40             |
| 68        | 65.79             |
| 58        | 54.53             |
| 72        | 69.22             |

## **Factor Analysis**

### Correlation Matrix:

|               |        |        |        |        |        |        |        |        |        | Corre  | elation Ma | trixa  |        |        |        |        |        |        |        |        |        |        |       |
|---------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|
|               | PQ1    | PQ2    | PQ3    | PQ4    | PQ5    | PQ6    | PQ7    | PQ8    | PQ9    | PQ10   | PQ11       | PQ12   | PQ13   | PQ14   | PQ15   | PQ16   | PQ17   | PQ18   | PQ19   | PQ20   | PQ21   | PQ22   | PQ23  |
| orrelatio PQ1 | 1.000  | -0.059 | -0.360 | 0.476  | 0.419  | 0.187  | 0.291  | 0.281  | -0.070 | 0.207  | 0.294      | 0.359  | 0.303  | 0.280  | 0.199  | 0.483  | 0.319  | 0.368  | -0.160 | 0.207  | 0.347  | -0.069 | -0.0  |
| PQ2           | -0.059 | 1.000  | 0.263  | -0.063 | -0.094 | -0.167 | -0.211 | -0.087 | 0.319  | -0.072 | -0.152     | -0.201 | -0.185 | -0.187 | -0.151 | -0.119 | -0.064 | -0.166 | 0.246  | -0.180 | -0.195 | 0.235  | 0.0   |
| PQ3           | -0.360 | 0.263  | 1.000  | -0.379 | -0.335 | -0.322 | -0.437 | -0.289 | 0.329  | -0.265 | -0.354     | -0.374 | -0.363 | -0.379 | -0.362 | -0.435 | -0.305 | -0.412 | 0.380  | -0.306 | -0.415 | 0.256  | 0.1   |
| PQ4           | 0.476  | -0.063 | -0.379 | 1.000  | 0.433  | 0.316  | 0.438  | 0.383  | -0.186 | 0.250  | 0.432      | 0.430  | 0.359  | 0.358  | 0.401  | 0.437  | 0.429  | 0.437  | -0.278 | 0.289  | 0.443  | -0.109 | -0.0  |
| PQ5           | 0.419  | -0.094 | -0.335 | 0.433  | 1.000  | 0.242  | 0.347  | 0.292  | -0.085 | 0.275  | 0.300      | 0.383  | 0.289  | 0.264  | 0.250  | 0.442  | 0.324  | 0.328  | -0.243 | 0.195  | 0.385  | -0.137 | -0.0  |
| PQ6           | 0.187  | -0.167 | -0.322 | 0.316  | 0.242  | 1.000  | 0.559  | 0.200  | -0.127 | 0.439  | 0.369      | 0.336  | 0.450  | 0.369  | 0.397  | 0.205  | 0.276  | 0.547  | -0.210 | 0.100  | 0.275  | -0.240 | -0.0  |
| PQ7           | 0.291  | -0.211 | -0.437 | 0.438  | 0.347  | 0.559  | 1.000  | 0.299  | -0.141 | 0.331  | 0.423      | 0.473  | 0.476  | 0.435  | 0.418  | 0.376  | 0.362  | 0.586  | -0.351 | 0.251  | 0.484  | -0.200 | -0.0  |
| PQ8           | 0.281  | -0.087 | -0.289 | 0.383  | 0.292  | 0.200  | 0.299  | 1.000  | -0.039 | 0.236  | 0.696      | 0.223  | 0.322  | 0.246  | 0.273  | 0.312  | 0.568  | 0.287  | -0.189 | 0.206  | 0.329  | -0.105 | -0.0  |
| PQ9           | -0.070 | 0.319  | 0.329  | -0.186 | -0.085 | -0.127 | -0.141 | -0.039 | 1.000  | -0.161 | -0.143     | -0.196 | -0.188 | -0.112 | -0.248 | -0.169 | -0.066 | -0.122 | 0.249  | -0.187 | -0.175 | 0.297  | 0.10  |
| PQ10          | 0.207  | -0.072 | -0.265 | 0.250  | 0.275  | 0.439  | 0.331  | 0.236  | -0.161 | 1.000  | 0.318      | 0.247  | 0.310  | 0.305  | 0.298  | 0.334  | 0.261  | 0.391  | -0.158 | 0.048  | 0.195  | -0.219 | -0.1  |
| PQ11          | 0.294  | -0.152 | -0.354 | 0.432  | 0.300  | 0.369  | 0.423  | 0.696  | -0.143 | 0.318  | 1.000      | 0.295  | 0.444  | 0.316  | 0.365  | 0.376  | 0.614  | 0.385  | -0.280 | 0.297  | 0.387  | -0.148 | -0.03 |
| PQ12          | 0.359  | -0.201 | -0.374 | 0.430  | 0.383  | 0.336  | 0.473  | 0.223  | -0.196 | 0.247  | 0.295      | 1.000  | 0.477  | 0.389  | 0.392  | 0.441  | 0.291  | 0.534  | -0.309 | 0.309  | 0.497  | -0.216 | -0.0  |
| PQ13          | 0.303  | -0.185 | -0.363 | 0.359  | 0.289  | 0.450  | 0.476  | 0.322  | -0.188 | 0.310  | 0.444      | 0.477  | 1.000  | 0.438  | 0.362  | 0.357  | 0.409  | 0.560  | -0.314 | 0.201  | 0.358  | -0.275 | -0.1  |
| PQ14          | 0.280  | -0.187 | -0.379 | 0.358  | 0.264  | 0.369  | 0.435  | 0.246  | -0.112 | 0.305  | 0.316      | 0.389  | 0.438  | 1.000  | 0.393  | 0.391  | 0.290  | 0.482  | -0.315 | 0.192  | 0.357  | -0.259 | -0.1  |
| PQ15          | 0.199  | -0.151 | -0.362 | 0.401  | 0.250  | 0.397  | 0.418  | 0.273  | -0.248 | 0.298  | 0.365      | 0.392  | 0.362  | 0.393  | 1.000  | 0.474  | 0.284  | 0.408  | -0.277 | 0.215  | 0.323  | -0.232 | -0.08 |
| PQ16          | 0.483  | -0.119 | -0.435 | 0.437  | 0.442  | 0.205  | 0.376  | 0.312  | -0.169 | 0.334  | 0.376      | 0.441  | 0.357  | 0.391  | 0.474  | 1.000  | 0.376  | 0.427  | -0.263 | 0.200  | 0.399  | -0.152 | -0.1  |
| PQ17          | 0.319  | -0.064 | -0.305 | 0.429  | 0.324  | 0.276  | 0.362  | 0.568  | -0.066 | 0.261  | 0.614      | 0.291  | 0.409  | 0.290  | 0.284  | 0.376  | 1.000  | 0.351  | -0.164 | 0.186  | 0.360  | -0.171 | -0.19 |
| PQ18          | 0.368  | -0.166 | -0.412 | 0.437  | 0.328  | 0.547  | 0.586  | 0.287  | -0.122 | 0.391  | 0.385      | 0.534  | 0.560  | 0.482  | 0.408  | 0.427  | 0.351  | 1.000  | -0.325 | 0.226  | 0.431  | -0.168 | -0.1  |
| PQ19          | -0.160 | 0.246  | 0.380  | -0.278 | -0.243 | -0.210 | -0.351 | -0.189 | 0.249  | -0.158 | -0.280     | -0.309 | -0.314 | -0.315 | -0.277 | -0.263 | -0.164 | -0.325 | 1.000  | -0.264 | -0.319 | 0.188  | 0.0   |
| PQ20          | 0.207  | -0.180 | -0.306 | 0.289  | 0.195  | 0.100  | 0.251  | 0.206  | -0.187 | 0.048  | 0.297      | 0.309  | 0.201  | 0.192  | 0.215  | 0.200  | 0.186  | 0.226  | -0.264 | 1.000  | 0.516  | -0.069 | 0.0   |
| PQ21          | 0.347  | -0.195 | -0.415 | 0.443  | 0.385  | 0.275  | 0.484  | 0.329  | -0.175 | 0.195  | 0.387      | 0.497  | 0.358  | 0.357  | 0.323  | 0.399  | 0.360  | 0.431  | -0.319 | 0.516  | 1.000  | -0.167 | -0.06 |
| PQ22          | -0.069 | 0.235  | 0.256  | -0.109 | -0.137 | -0.240 | -0.200 | -0.105 | 0.297  | -0.219 | -0.148     | -0.216 | -0.275 | -0.259 | -0.232 | -0.152 | -0.171 | -0.168 | 0.188  | -0.069 | -0.167 | 1.000  | 0.25  |
| PQ23          | -0.045 | 0.044  | 0.155  | -0.040 | -0.078 | -0.064 | -0.068 | -0.014 | 0.103  | -0.121 | -0.029     | -0.067 | -0.105 | -0.124 | -0.069 | -0.120 | -0.155 | -0.143 | 0.085  | 0.018  | -0.065 | 0.250  | 1.0   |

All the values of the correlation matrix are less than 0.8. So, there is no multicollinearity.

Determinant value is 0.00001 than means items are weakly related.

KMO and Bartlett's Test

| Kaiser-Meyer-Olkin Me | asure of Sampling Adequacy. | .916     |
|-----------------------|-----------------------------|----------|
| Bartlett's Test of    | Approx. Chi-Square          | 4205.946 |
| Sphericity            | df                          | 253      |
|                       | Sig.                        | .000     |

Statistical significance is there.



### Total Variance Explained

|           |       | Initial Eigenvalu |              |       | n Sums of Squar | The Control of the Co | Rotation<br>Sums of<br>Squared<br>Loadings <sup>a</sup> |
|-----------|-------|-------------------|--------------|-------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Component | Total | % of Variance     | Cumulative % | Total | % of Variance   | Cumulative %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Total                                                   |
| 1         | 7.567 | 32.901            | 32.901       | 7.567 | 32.901          | 32.901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.542                                                   |
| 2         | 1.707 | 7.422             | 40.323       | 1.707 | 7.422           | 40.323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.262                                                   |
| 3         | 1.424 | 6.192             | 46.515       | 1.424 | 6.192           | 46.515                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.333                                                   |
| 4         | 1.258 | 5.471             | 51.985       | 1.258 | 5.471           | 51.985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.382                                                   |
| 5         | 1.155 | 5.022             | 57.008       | 1.155 | 5.022           | 57.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.822                                                   |
| 6         | .926  | 4.027             | 61.034       |       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |
| 7         | .798  | 3.468             | 64.502       |       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |
| 8         | .775  | 3.368             | 67.871       |       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |
| 9         | .744  | 3.234             | 71.104       |       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |
| 10        | .687  | 2.989             | 74.093       |       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |

We have 5 new components having eigenvalue greater than 1 Components

from 1 to 5 explains 57% of the variance.

### Communalities

|      | Initial   | Extraction |  |  |  |
|------|-----------|------------|--|--|--|
| PQ1  | 1.000     | .595       |  |  |  |
| PQ2  | 1.000     | .479       |  |  |  |
| PQ3  | 1.000     | .514       |  |  |  |
| PQ4  | 1.000     | .550       |  |  |  |
| PQ5  | 1.000     | .500       |  |  |  |
| PQ6  | 1.000     | .698       |  |  |  |
| PQ7  | PQ7 1.000 |            |  |  |  |
| PQ8  | 1.000     | .779       |  |  |  |
| PQ9  | 1.000     | .535       |  |  |  |
| PQ10 | 1.000     | .456       |  |  |  |
| PQ11 | 1.000     | .809       |  |  |  |
| PQ12 | 1.000     | .562       |  |  |  |
| PQ13 | 1.000     | .527       |  |  |  |
| PQ14 | 1.000     | .448       |  |  |  |
| PQ15 | 1.000     | .403       |  |  |  |
| PQ16 | 1.000     | .600       |  |  |  |
| PQ17 | 1.000     | .696       |  |  |  |
| PQ18 | 1.000     | .675       |  |  |  |
| PQ19 | 1.000     | .388       |  |  |  |
| PQ20 | 1.000     | .583       |  |  |  |
| PQ21 | 1.000     | .592       |  |  |  |
| PQ22 | 1.000     | .543       |  |  |  |
| PQ23 | 1.000     | .546       |  |  |  |

Extraction Method: Principal Component Analysis.

All the extraction is above 0.3

PQ11 factor has 80% eluded the variance

### Component Correlation Matrix

| Component | 1     | 2     | 3     | 4     | 5     |
|-----------|-------|-------|-------|-------|-------|
| 1         | 1.000 | 309   | .088  | 413   | 407   |
| 2         | 309   | 1.000 | 027   | .205  | .247  |
| 3         | .088  | 027   | 1.000 | 001   | .036  |
| 4         | 413   | .205  | 001   | 1.000 | .406  |
| 5         | 407   | .247  | .036  | .406  | 1.000 |

Extraction Method: Principal Component Analysis.

Rotation Method: Oblimin with Kaiser Normalization.

Our new factors are orthogonally related because all the values are less than 0.5. All the new components are weakly related. So, we should choose the method as varimax in rotation.

| Component |      |      |      |      |      |
|-----------|------|------|------|------|------|
|           | 1    | 2    | 3    | 4    | 5    |
| PQ6       | .822 |      |      |      |      |
| PQ18      | .724 |      |      |      |      |
| PQ7       | .686 |      |      |      |      |
| PQ13      | .609 |      |      |      |      |
| PQ14      | .557 |      |      |      |      |
| PQ10      | .556 |      |      |      |      |
| PQ15      | .491 |      |      |      |      |
| PQ1       |      | .747 |      |      |      |
| PQ16      |      | .679 |      |      |      |
| PQ5       |      | .658 |      |      |      |
| PQ4       |      | .598 |      |      |      |
| PQ21      |      | .521 |      | 412  |      |
| PQ12      | .465 | .511 |      |      |      |
| PQ8       |      |      | .849 |      |      |
| PQ11      |      |      | .809 |      |      |
| PQ17      |      |      | .741 |      |      |
| PQ2       |      |      |      | .667 |      |
| PQ9       |      |      |      | .662 |      |
| PQ20      |      |      |      | 554  |      |
| PQ19      |      |      |      | .519 |      |
| PQ3       |      | 421  |      | .450 |      |
| PQ23      |      |      |      |      | .723 |
| PQ22      |      |      |      |      | .577 |

Extraction Method: Principal Component Analysis

Questions fall under same components are related means questions are asking similar data from the user.

### **Checking Reliability of new factors:**

**Component 1:** (PQ6, PQ7, PQ10, PQ13, PQ14, PQ15, PQ18)

### Reliability Statistics

|                                                     | N of Items | Cronbach's<br>Alpha |
|-----------------------------------------------------|------------|---------------------|
| Since, it is 0.839 highly reliable. <b>Componer</b> | 7          | .839                |

**2:** (PQ1, PQ4, PQ5, PQ12, PQ16, PQ21)

### Reliability Statistics

| Cronbach's<br>Alpha | N of Items |                                      |
|---------------------|------------|--------------------------------------|
| .815                | 6          | Since, it is 0.815; highly reliable. |

**Component 3:** (PQ8, PQ11, PQ17)

### Reliability Statistics

| 190 | Cronbach's<br>Alpha | N of Items | 5                                    |
|-----|---------------------|------------|--------------------------------------|
| -   | .834                | 3          | Since, it is 0.834; highly reliable. |

**Component 4:** (PQ2, PQ3, PQ9, PQ19, PQ20)

### Reliability Statistics

| Cronbach's<br>Alpha | N of Items |
|---------------------|------------|
| .319                | 5          |

Reliability is low, that's a problem.

### **Item-Total Statistics**

|      | Scale Mean if<br>Item Deleted | Scale<br>Variance if<br>Item Deleted | Corrected<br>Item-Total<br>Correlation | Cronbach's<br>Alpha if Item<br>Deleted |
|------|-------------------------------|--------------------------------------|----------------------------------------|----------------------------------------|
| PQ2  | 11.50                         | 5.825                                | .319                                   | .151                                   |
| PQ3  | 10.48                         | 5.258                                | .325                                   | .112                                   |
| PQ9  | 10.24                         | 4.501                                | .335                                   | .061                                   |
| PQ19 | 10.89                         | 5.394                                | .288                                   | .147                                   |
| PQ20 | 9.64                          | 9.058                                | 339                                    | .623                                   |

If we delete question 20 then reliability increases to 0.623.

Question 20 doesn't have much effect on the survey.

Component 5: (PQ22, PQ23)

### **Reliability Statistics**

| Cronbach's<br>Alpha | N of Items |  |
|---------------------|------------|--|
| .400                | 2          |  |

Reliability is low; Question 22 and 23 doesn't have much effect on the survey.

It depends on who is conducting the survey whether to drop question which doesn't have much effect, and which combine questions having a similarity.

We cannot do regression analysis on factors since they are all independent and dependent variable is not provided.