Concourse 18.02 Problem Set 2 – Fall 2016

due Monday, September 26

- (1) Read the Matrices and Linear Algebra Notes, the Supplement on Solving Systems of Linear Equations via Row Reduction;
- (2) Read sections 10.4 (Parametric Curves), 12.5 (Curves and Motions in Space), 12.6 (Curvature and Acceleration), and the Supplementary Notes (1F, 1G, 1H, 1J).

Part I problems (to be turned in)

1. [SN-1F/8b] If
$$\mathbf{A} \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ 4 \end{bmatrix}$$
, $\mathbf{A} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ 3 \end{bmatrix}$, and $\mathbf{A} \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 7 \\ 1 \\ 1 \end{bmatrix}$, what is the 3×3 matrix **A**?

- 2. [SN-1G/2] (a) Solve the equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ by finding \mathbf{A}^{-1} : $\mathbf{A} = \begin{bmatrix} 4 & 3 \\ 3 & 2 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.
 - (b) Solve the equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ by finding \mathbf{A}^{-1} : $\mathbf{A} = \begin{bmatrix} 4 & 3 \\ 3 & 2 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.
- 3. [10.4/9] Given the parametric equations $\{x = 5\cos t, y = 3\sin t\}$, eliminate the parameter and then sketch the curve.
- 4. [12.5/33] Given the acceleration vector $\mathbf{a}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j}$, the initial position vector $\mathbf{r}_0 = \mathbf{r}(0) = \mathbf{j}$, and the initial velocity vector $\mathbf{v}_0 = \mathbf{v}(0) = -\mathbf{i} + 5\mathbf{k}$ of a particle moving in *xyz*-space, find its position vector $\mathbf{r}(t)$ at time t.
- 5.[12.5/58] Suppose that a point moved on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with position vector $\mathbf{r}(t) = (a\cos\omega t)\mathbf{i} + (b\sin\omega t)\mathbf{j}$ (ω is constant). Prove that the acceleration vector $\mathbf{a}(t)$ satisfies the equation $\mathbf{a}(t) = c\mathbf{r}(t)$, where c is a negative constant. To what sort of external force $\mathbf{F}(t)$ does this motion correspond?
- 6. [12.6/3] Find the length of the curve given parametrically by $\{x = 6e^t \cos t, y = 6e^t \sin t, z = 17e^t\}$ from t = 0 to t = 1.
- 7. [SN 11/3c] Describe the motion given by the position vector $\mathbf{r} = (t^2 + 1)\mathbf{i} + (t^3)\mathbf{j}$ as t goes from $-\infty$ to ∞ . Give the xy-equation of the curve along which P travels, and tell what part of the curve is actually traced out by P.
- 8. [SN 11/5] A string is wound clockwise around the circle of radius a centered at the origin O; the initial position of the end P of the string is (a,0). Unwind the string, always pulling it taut (so it stays tangent to the circle). Write parametric equations for the motion of P. (Use vectors; express the position vector \overrightarrow{OP} as a vector function of one variable.)
- 9. [SN-1J/2] Let $\overrightarrow{OP} = \frac{1}{1+t^2}\mathbf{i} + \frac{t}{1+t^2}\mathbf{j}$ be the position vector for a motion.
 - a) Calculate v, the speed |ds/dt|, and the unit tangent vector T.
 - b) At what point in the speed greatest? smallest?
 - c) Find the xy-equation of the curve along which the point P is moving, and describe it geometrically.
- 10. [SN-1J/5a] Suppose a point moves with constant speed. Show that its velocity vector and acceleration vector are perpendicular.

1

- 11. [SN-1J/6] For the helical motion $\mathbf{r}(t) = (a\cos t)\mathbf{i} + (a\sin t)\mathbf{j} + bt\mathbf{k}$,
 - a) calculate \mathbf{v} , \mathbf{a} , \mathbf{T} , |ds/dt|
 - b) show that v and a are perpendicular; explain using 1J-5.
- 12. [text 12.5/42] The angular momentum $\mathbf{L}(t)$ and torque $\boldsymbol{\tau}(t)$ of a moving particle of mass m with position vector $\mathbf{r}(t)$, velocity vector $\mathbf{v}(t) = \mathbf{r}'(t)$, momentum vector $\mathbf{p}(t) = m\mathbf{v}(t)$, and applied force $\mathbf{F}(t) = \mathbf{p}'(t) = m\mathbf{a}(t)$ are defined to be:

$$\mathbf{L}(t) = \mathbf{r}(t) \times \mathbf{p}(t) = \mathbf{r}(t) \times m\mathbf{v}(t), \quad \mathbf{\tau}(t) = \mathbf{r}(t) \times \mathbf{F}(t) = \mathbf{r}(t) \times m\mathbf{a}(t)$$

Prove that $\mathbf{L}'(t) = \mathbf{\tau}(t)$. It follows that $\mathbf{L}(t)$ must be a constant vector if $\mathbf{\tau} \equiv \mathbf{0}$; this is the law of conservation of angular momentum.

Part II problems (to be turned in)

Problem 1: a) If
$$\mathbf{A} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$$
, $\mathbf{A} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$, what is the 3×2 matrix **A**?

- b) Using the matrix **A** from part (a), is there a vector $\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$ such that $\mathbf{A}\mathbf{x} = \begin{bmatrix} 8 \\ 16 \\ 12 \end{bmatrix}$? Explain.
- c) Using the matrix **A** from part (a), is there a vector $\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$ such that $\mathbf{A}\mathbf{x} = \begin{bmatrix} 9 \\ 16 \\ 12 \end{bmatrix}$? Explain.
- **Problem 2.** "A rooster is worth five coins, a hen three coins, and 3 chicks one coin. With 100 coins we buy 100 of them. How many roosters, hens, and chicks can we buy?"

 (From the *Mathematical Manual* by Zhang Qiujian, Chapter 3, Problem 38; 5th century A.D. This famous *Hundred Fowl Problem* has reappeared in countless variations in Indian, Arabic, and European texts.)
- **Problem 3**. Express the set of all points satisfying the following system of equations <u>parametrically in terms of one or more independent parameters</u>.

(a)
$$\{(x, y, z): x-2y+3z=4\}$$
 (b)
$$\begin{cases} x+4y+z=4\\ 4x+13y+7z=1\\ 7x+22y+13z=-2 \end{cases}$$
 (c)
$$\begin{cases} x+y-z+3w=3\\ y-3z-w=1\\ 3x-y+9z+13w=5\\ 3x+y+3z+11w=7 \end{cases}$$

- **Problem 4**: Suppose we know that when the three planes P_1 , P_2 and P_3 in \mathbb{R}^3 intersect in pairs, we get three lines L_1 , L_2 , and L_3 which are *distinct* and *parallel*.
 - a) Sketch a picture of this situation.
 - b) Show that the three normals to P₁, P₂ and P₃ all lie in one plane, using a geometric argument.
 - c) Show that the three normals to P₁, P₂ and P₃ all lie in one plane, using an algebraic argument. (Note that the three planes clearly do *not* all intersect at one point.)
- **Problem 5**: A circular disk of radius 2 has a dot marked at a point half-way between the center and the circumference. Denote this point by *P*. Suppose that the disk is tangent to the *x*-axis with the center initially at (0, 2) and *P* initially at (0, 1), and that it starts to roll to the right on the *x*-axis at unit speed. Let C be the curve traced out by the point *P*.

2

- a) Make a sketch of what you think the curve C will look like.
- b) Use vectors to find the parametric equations for \overrightarrow{OP} as a function of time t.