Introdução

Experimento fatorial é um experimento com dois ou mais fatores, sendo os tratamentos as combinações dos níveis dos fatores no experimento.

Nos experimentos fatoriais, após uma análise de variância preliminar, de acordo com o delineamento adotado, procedemos ao desdobramento dos graus de liberdade de tratamentos, isolando os efeitos principais dos fatores. vejamos o que representa cada um desses efeitos:

- ► Efeito Principal: é o efeito de cada fator, independente do efeito dos outros fatores;
- Efeito de Interação: é o efeito simultâneo dos fatores sobre a variável em estudo. Dizemos que ocorre interação entre os fatores quando os efeitos dos níveis de um fator são modificados pelos níveis do outro fator.

1- Não Há interação

2 - Há interação

Para um experimento fatorial instalado segundo o DBC, com K blocos, o modelo estatístico seria:

$$Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \omega_j + \varepsilon_{ijk}$$

em que, ω_k é o efeito do k-ésimo bloco na observação Y_{ijk} .

Análise de Variância

O quadro a seguir apresenta como seria a análise de um experimento fatorial, com 2 fatores A e B, com I e J níveis, respectivamente, e K repetições, instalado segundo o DIC.

FV	GL	SQ	QM	F_c
A	(I-1)	SQA	-	-
В	(J-1)	SQB	-	-
$A{ imes}B$	(I-1)(J-1)	$SQA{ imes}B$	$\frac{SQA \times B}{(I-1)(J-1)}$	$rac{QMA imes B}{QMRes}$
(Trat)	(IJ - 1)	SQTrat	-	-
Resíduo	(IJ)(K - 1)	SQRes	$\frac{SQRes}{(IJ)(K-1)}$	_
Total	IJK -1	SQTotal	_	-

FV	GL	SQ	QM	F_c
A	(I-1)	SQA	-	-
В	(J-1)	SQB	-	-
$A{ imes}B$	(I-1)(J-1)	$SQA{ imes}B$	$\frac{SQA \times B}{(I-1)(J-1)}$	$rac{QMA{ imes}B}{QMRes}$
(Trat)	(IJ - 1)	SQTrat	-	-
Blocos	(K - 1)	SQBlocos	-	-
Resíduo	(IJ)(K - 1)	SQRes	$rac{\mathit{SQRes}}{(\mathit{IJ})(\mathit{K}{-}1)}$	_
Total	IJK -1	SQTotal	-	_

Análise e interpretação de um experimento fatorial, com 2 fatores

Vamos considerar os dados de um experimento inteiramente casualizado, no esquema fatorial 3×2 , para testar os efeitos de 3 recepientes para produção de mudas e 2 espécies de eucaliptos, quanto ao desenvolvimento das mudas.

Os recipientes e as espécies testadas foram:

 $R_1 = saco plástico pequeno$

 $R_2 = saco plástico grande$

 $R_3 = laminado$

 $E_1 = Eucalyptus citriodora$

 $E_2 = Eucalyptus grandis$

As alturas médias das mudas, em cm, aos 80 dias de idade, são apresentadas no quadro a seguir.

	REPETIÇÕES					
TRATAMENTOS	1	2	3	4	TOTAIS	
1 - R ₁ E ₁	26,2	26,0	25,0	25,4	102,6	
$2 - R_1E_2$	24,8	24,6	26,7	25,2	101,3	
$3 - R_2E_1$	25,7	26,3	25,1	26,4	103,5	
$4 - R_2 E_2$	19,6	21,1	19,0	18,6	78,3	
$5 - R_3E_1$	22,8	19,4	18,8	19,2	80,2	
$6 - R_3E_2$	19,8	21,4	22,8	21,3	85,3	
TOTAIS	138,9	138,8	137,4	136,1	551,2	

$$C = \frac{\left(\sum_{i=1,j=1}^{I,J} Y_{ij}\right)^{2}}{IJ}$$

$$= \frac{551, 2^{2}}{6 \times 4}$$

$$= 12.659, 23$$

$$SQTotal = \sum_{i=1,j=1}^{I,J} Y_{ij}^2 - C$$

$$= 26, 2^2 + 26, 0^2 + ... + 21, 3^2 - C$$

$$= 198, 79$$

$$SQTrat = \frac{\sum_{i=1}^{I} T_i^2}{J} - C$$

$$= \frac{1}{4} (102, 6^2 + 101, 3^2 + ... + 85, 3^2) - C$$

$$= 175, 70$$

Tabela: Análise de variância do experimento.

FV	GL	SQ	QM	F_c
Tratamentos	5	175,70	35,14	27,45**
Resíduo	18	23,09	1,28	_
Total	23	198,79	-	_

F da tabela
$$5 \times 18$$
 g./. $\begin{cases} 5\% = 2,77 \\ 1\% = 4,25 \end{cases}$

Verificamos que o teste é significativo a 1% de probabilidade, indicando que os tratamentos apresentam efeitos diferentes sobre as alturas das mudas.

Devemos proceder ao desdobramento dos 5 g. l de Tratamentos, para estudar os efeitos: de Recipiente (R), de Espécies (E), e da Interação R \times E, da seguinte forma:

Tratamentos 5
$$g.l.$$
 $\left\{ egin{array}{ll} \mbox{Recipientes (R)} &= 2g.l. \\ \mbox{Espécies (E)} &= 1g.l. \\ \mbox{Interação (R X E)} &= 2g.l. \end{array} \right.$

Para o cálculo das somas de quadrados correspondentes aos efeitos principais dos fatores e à interação entre eles, devemos organizar um quadro auxiliar, relacionando os níveis dos 2 fatores:

(4)	R_1	R_2	R ₃	TOTAIS
E ₁	102,6	103,5	80,2	286,3
E_2	101,3	78,3	85,3	264,9
TOTAIS	203,9	181,8	165,5	551,2

Desta forma, os totais de Espécies e Recipientes são totais de 12 e 8 parcelas respectivamente. Logo:

S.Q.Recipientes =
$$\frac{1}{8}(203, 9^2 + 181, 8^2 + 165, 5^2) - C$$

= 92,86

S.Q.Espécies =
$$\frac{1}{12}$$
(286, 3² + 264, 9²) - C
= 19, 08

Para o cálculo da soma de quadrados de interação $R \times E$, devemos inicialmente calcular a soma de quadrados do efeito conjunto do Recipientes e Espécies, denotada por S.Q.R,E e calculada com valores internos do quadro auxiliar, provenientes de 4 parcelas. Logo:

S.Q.R,E =
$$\frac{1}{4}$$
(102, 6² + 103, 5² + ... + 85, 3²) - C
= 175, 70

e a soma de quadrados da interação é obtida por diferença:

$$S.Q.R \times E = S.Q.R,E - S.Q.Rec - S.Q.Esp$$

= $175,70 - 92,86 - 19,08$
= $63,76$

Observação: nos experimentos fatoriais com 2 fatores, a soma de quadrados do efeito conjunto é sempre igual à soma de quadrados de tratamentos.

$$S.Q.R,E = S.Q.Tratamentos$$

Então:

S.Q.Interação R \times E = S.Q.Trat - S.Q. Rec - S. Q. Esp

A análise de variância, com desdobramento dos graus de liberdade de tratamento, de acordo com o esquema fatorial 3×2 , é apresentada no quadro a seguir.

Tabela: Análise de variância de acordo com o esquema fatorial 3×2 .

FV	GL	SQ	QM	F_c
Recipientes (R)	2	92,86	46,43	36,27**
Espécies (E)	1	19,08	19,08	14,91**
Interação R $ imes$ E	2	63,76	31,88	24,91**
Tratamentos	5	175,70	_	_
Resíduo	18	23,09	1,28	-
Total	23	198,79	_	_

Verificamos que o teste F para a Interação R \times E foi significativo (P < 0,01), indicando existir uma dependência entre os efeitos dos fatores: Recipientes e Espécies.

Então, as conclusões que poderíamos tirar da Tabela 2, para Recipientes e para Espécies, ficam prejudicadas, pois:

- os efeitos dos recipientes dependem da espécie utilizada; ou
- os efeitos das espécies dependem do recipiente utilizado.

Então, devemos proceder ao desdobramento da Interação R \times E, o que pode ser feito de duas maneiras:

- a) para estudar o comportamento das espécies dentro de cada recipiente;
- b) para estudar o comportamento dos recipientes dentro de cada espécies.

a) Desdobramento da Interação R × E para estudar o comportamento das espécies dentro de cada recipiente: Temos:

S.Q.Esp d.
$$\mathbf{R}_1 = \frac{1}{4}(102, 6^2 + 101, 3^2) - \frac{203, 9^2}{8} = 0, 21$$

S.Q.Esp d.
$$\mathbf{R}_2 = \frac{1}{4}(103, 5^2 + 78, 3^2) - \frac{181, 8^2}{8} = 79, 38$$

S.Q.Esp d.
$$\mathbf{R}_3 = \frac{1}{4}(80, 2^2 + 85, 3^2) - \frac{165, 5^2}{8} = 3, 25$$

FV	GL	SQ	QM	F_c
Espécies d. R ₁	1	0,21	0,21	0,16 ^{<i>NS</i>}
Espécies d. R ₂	1	79,38	79,38	62,02**
Espécies d. R ₃	1	3,25	3,25	2,54 ^{<i>NS</i>}
Resíduo	18	23,09	1,28	_

Conclusões:

- a) Quando se utiliza o recipiente: saco plástico pequeno (R_1) , não há diferença significativa (P>0.01) para o desenvolvimento das mudas das 2 espécies;
- b) Quando se utiliza o recipiente: saco plástico grande (R_2), há diferença significativa (P < 0.01) no desenvolvimento das mudas das 2 espécies, sendo melhor para *Eucalyptus citriodora* (E_1).
- c) Quando se utiliza o recipiente: laminado (R_3) não há diferença significativa (P > 0.05) para o desenvolvimento das mudas das 2 espécies.

b) Desdobramento da Interação R × E para estudar o comportamento dos recipientes dentro de cada espécie:

S.Q.Rec d.
$$\mathbf{E}_1 = \frac{1}{4}(102, 6^2 + 103, 5^2 + 80, 2^2) - \frac{286, 3^2}{12} = 87, 12$$

S.Q.Rec d.
$$\mathbf{E}_1 = \frac{1}{4}(102, 6^2 + 103, 5^2 + 80, 2^2) - \frac{286, 3^2}{12} = 87, 12$$

S.Q.Rec d.
$$\mathbf{E}_2 = \frac{1}{4}(101, 3^2 + 78, 3^2 + 85, 3^2) - \frac{264, 9^2}{12} = 69, 50$$

FV	GL	SQ	QM	F_c
Recipientes d. E ₁	2	87,12	43,56	34,03**
Recipientes d. E ₂	2	69,50	34,75	27,15**
Resíduo	18	23,09	1,28	_

Conclusões:

- a) Os 3 recipientes têm efeitos diferentes (P < 0.01) sobre o desenvolvimento de mudas de *Eucalyptus citriodora* (E_1).
- b) Os 3 recipientes têm efeitos diferentes (P < 0.01) sobre o desenvolvimento de mudas de *Eucalyptus grandis* E_2 .

Devemos, então, comparar as médias, e compará-las pelo teste de Tukey:

a) Recipiente d. E₁

$$\overline{R_1 E_1} = 102,6/4 = 25,65$$
 cm **a** $\overline{R_2 E_1} = 103,5/4 = 25,88$ cm **a** $\overline{R_3 E_1} = 80,2/4 = 20,05$ cm **b**

$$s(\hat{m}) = \frac{s}{\sqrt{r}} = \frac{\sqrt{1,28}}{4} = 0,57cm$$

$$\Delta = q.s(\hat{m})$$
 $\Delta = 3,61.0,57$
 $\Delta = 2,06$

q 3níveis e 18 g.l.Res.
$$\{5\% = 3,61\}$$

Conclusão: para o *Eucalyptus citriodora* (E_1) , os melhores recipientes foram: o saco plástico pequeno (R_1) e o saco plástico grande (R_2) , que determinaram desenvolvimento de mudas significativamente maior que o laminado (R_3) , sem diferirem $(R_1 \ e \ R_2)$ entre si.

b) Recipiente d. E₂

$$\overline{R_1E_2} = 25,33 \text{ cm } \mathbf{a}$$

$$\overline{R_2E_2} = 19,58 \text{ cm } \mathbf{b}$$

$$\overline{R_3 E_2} = 21,33 \text{ cm } \mathbf{b}$$

$$s(\hat{m}) = \frac{s}{\sqrt{r}} = \frac{\sqrt{1,28}}{4} = 0,57cm$$

$$\Delta = q.s(\hat{m})$$
 $\Delta = 3,61.0,57$
 $\Delta = 2,06$

q 3níveis e 18 g.l.Res.
$$\{5\%=3,61$$

Conclusão: para o *Eucalyptus grandis* (E_2), o melhor recipiente foi o saco plástico pequeno (R_1), que determinou desenvolvimento de mudas significativamente maior que o saco plástico grande (R_2) e que o laminado (R_3).

Os resultados do experimento podem ser resumidos no quadro seguinte:

	R_1	R_2	R ₃
$\overline{E_1}$	25,65 a A	25,88 a A	20,05 b B
E_2	25,33 a A	19,58 b B	21,33 b A

- 1) Para cada espécie, letras minúsculas iguais indicam que as médias não diferem ente si, pelo teste de Tukey (P > 0.05).
- 2) Para cada recipiente, letras maiúsculas iguais indicam que o teste F é não significativo (P>0,05).