Plasma Etch for IC Fabrication

Content

- Wet Etch
- Dry Etch
 - > Plasma Etch
 - > RIE
 - > High Density Plasmas
- Etch Model
- Etch Issues
 - > Polymer formation
 - > Selectivity
 - > Uniformity
- Applications

UV LIGHT EXPOSURE MASK/RETICLE Resist Poly Resist **DEVELOP Poly** Resist Poly **ETCH**

WET ETCHING

DISADVANTAGES

- Because the etch is purely chemical wet etches are isotropic i.e. vertical and lateral etch rates equal
- The main limitation is size of detail which can be etched consistently
- In some cases it is difficult for etchant to reach bottom of detail and for by-products to be removed
- Can be difficult to control temp,pH etc.

Dry Etch Processes

- Plasma etch (Barrel Etch System)
- Plasma etch parallel plate
- Reactive Ion Etch (RIE)
- High Density Plasma (HDP)
 - > Inductively Coupled Plasma (ICP)
 - Magnetic Zero Resonant Induction (M0RI)
 - > Electron Cyclotron Resonance (ECR)
- Ion Milling

Dry Etch Processes

- Introduction
- Plasma/RIE (Dry) Etching
- Polymer Formation
- Applications
 - > Nitride Etch
 - Polysilicon Etch
 - > Contact Etch
 - > Aluminium Etch

DRY ETCHING

- Dry etching has become widely used for process geometries below ~ 3μm
- Dry etching combines physical and chemical removal of material
- Controlling the etch process conditions allows the isotropy of the etch to be controlled

Plasma Etch –Barrel Etchers

DRY ETCHING

- Dry etching is performed by exposing the wafer to a plasma or glow discharge
- Plasmas are usually created by applying an R.F. bias between two electrodes.

R.F. electrical supply

- R.F. is short for radio frequency
- R.F. is a form of alternating current i.e. current follows a sinusoidal waveform with respect to time
 - >A.C. mains supply (50 Hz)
 - >R.F. supply (13.5 MHz)

Plasma Potential

Etching

Equal Sized Electrodes

Plasma Potential Plot

Smaller Electrode

Configuration of Plasma Etching Systems

- Wafer is placed on grounded electrode
- This results in a relatively low bias at wafer

Plasma etching uses chemically reactive

Typical Values
DC Voltage drops 10 - 100V

Pressure 100mT - 1Torr

1Torr = 133.322Pa

1*Torr* = 1.333*mBar*

Configuration of Reactive Ion Etching (RIE) Systems

Typical Values DC Voltage drops 100-700V

Pressure 10 - 100mT

1Torr = 133.322Pa 1Torr = 1.333mBar

- Wafer is placed on powered electrode
- This results in higher biases at the wafer surface
- RIE etching uses chemically reactive gases
- Ion milling uses the same configuration as RIE etching but uses inert gases

Dry Etch Chemistry

Plasma etching and RIE etching use the same chemistries

- ➤ Fluorine containing gases are commonly used for etching silicon oxide and silicon nitride e.g. silicon tetrafluoride(SiCl₄), sulphur hexafluoride(SF₆)
- Chlorine containing gases are commonly used for etching metal and polysilicon e.g. chlorine, boron trichloride

Dry Etch Chemistry

- Trifluoromethane (CHF₃) is commonly used for the etching of silicon dioxide based materials
- Radicals: CHF₃ ---> e.g. CF₃ , CF₂ , CF, F, H
- Ions: CHF₃ ---> e.g. CF₃+ , CF₂ +, CF+, F+, H+

Dry Etch Chemistry

- As stated previously dry etching achieves anisotropy by introducing physical component
- Physical component of etch is supplied by attraction of positive ions to the negatively biased substrate
- Chemical component from both ion and radical interaction

High Density Plasmas (HDP)

- Relatively new systems generating higher density plasmas
 - > ICP (Inductively Coupled Plasmas)
 - > ECR (Electron Cyclotron Resonance)
 - > M0RI (Magnetic Zero Resonant Induction)
- Plasma density {10¹¹ 10¹² ions/cm³}
- Allow higher etch rates at lower pressures without plasma damage
- Pressure range 1 10mT range

Inductively Coupled Plasma (ICP)

Induction Coil 13.56MHz

- Plasma is generated in the induction coil
- The wafer is held on the chuck electrostatically

Magnetic Zero Resonant Induction M0RI

chamber.

- The plasma in generated by the RF antenna
- A helicon wave is propagated by the **Electromagnets**
- The wafer is held on an electrostatic chuck
 - > Helicon wave whistler wave!

Ion induced reactions

- Under certain etch conditions etch rate of silicon is negligible
- Adding Ar to gas flow increases etch rate
- Ar ion bombardment of surface damages it making chemical reaction with Cl easier

Ion enhanced reactions

- Some etching without inert gas
- Etch rate increases with inert gas
- No etching without reactive gas

Uniformity

- Uniformity is a measure of the variation in etch rate across a wafer
- For most etch processes should be < 5%

Selectivity

Selectivity

- Selectivity is the ratio of etch rates
- e.g. Poly-Oxide selectivity is:

Etch rate poly

Etch rate oxide

$$S=r_1/r_2$$

- Selectivity is an important consideration when trying to predict the amount of material removed underneath the etched pattern
- Example shown above where thin gate oxide under poly gate must be left intact

Etch System Summary Trends

Process Summary

Linear Etch Model

- Simplest model assumes that the Chemical and Ionic etch rates are linear and independent
- The net etch rate at any point is a combination of the purely chemical and ion-driven etching with each term linearly dependant on the appropriate flux

Linear Etch Model Equation

Etch Rate = \mathbf{R}

$$R = \frac{\left(S_c K_f F_c + K_i F_i\right)}{N}$$

 S_c = Sticking coefficient usually between 0 and 1.0

 $K_{\rm f}$ and $K_{\rm i}$ are the relative rate constants for the two processes

 \mathbf{F}_{c} and \mathbf{F}_{i} are the chemical and ion fluxes

N is the density (atoms/cm³)

Etch Model Example

Chemical and Physical / Ionic etching

Teflon

Polymerisation

- Polymers are formed by chain linking monomers
- Above reaction is typical of a polymerisation process
- The number of monomer units in the polymer can be 10,000s

Polymer formation in a plasma

Example:

- CHF₃ is commonly used for oxide etching
- CF₂ is produced by the reaction
 CHF₃ ---> CF₂ + H + F
- CF₂ can then polymerise to form a teflon like polymer

Polymer inhibiting reaction

- This reaction is used when etching oxides to improve selectivity to underlying material
- The polymer deposits more quickly on silicon than on silicon dioxide thus slowing the etch when the oxide has been removed

Polymer enhancing anisotropy

- Metal anisotropy is maintained by the deposition of polymer on sidewall of metal
- The polymer consists of etch by-products and resist erosion products
- The polymer is also deposited on horizontal surfaces but ion bombardment causes desorption

Etching

Contact etching

Contact Etching

- For contacts 1.5μm and below metal step coverage can be a problem i.e. too thin in contact hole
- This can be improved by taper or champagne etch
- Alternatively selective tungsten plug metallisation is used which completely fills anisotropically etched contact

Contact etching

- Due to uneven topography it is sometimes necessary to etch through different oxide thicknesses
- Also different oxides can have different etch rates e.g. thermal/deposited, doped/undoped

Tyndall Contact Etch Recipe

• Step 1 C2F6 0 sccm Power 250 W

CHF3 65 sccm Pressure 1000 mT

» O2 35 sccm Time 15 sec.

» The oxygen erodes the resist CHF3 etches oxide

Step 2 C2F6 23 sccm Power 275 W

» CHF3 143 sccm Pressure 155 mT

» O2 0 sccm Time Endpoint

» This is the bulk etch and etches most of the BPSG

» Endpoint is indicated by changes in plasma colour

» 40% overetch to clear all contacts

• Step 3 C2F6 120 sccm Power 70 W

CHF3 0 sccm Pressure 180 mT

» O2 14 sccm Time 15 sec.

» Low power step to remove damaged silicon and polymer.

Poly etching

- As device dimensions shrink gate oxides become thinner
- Acceptable gate oxide loss =/< 50Å
- High selectivity between poly and gate oxide required

Poly Etch Recipe

Step no. Name	Bth	Polyblk	Gas.st	Ov_etch
He Back pressure – Torr	15 ± 5	15 ± 5	15 ± 5	15 ± 5
Pressure – mTorr	6 ± 10	6 ± 10	10 ± 10	10 ± 10
Cl ₂ – seem	20 ± 10	25 ± 10		
O_2 – sccm			3 ± 10	3 ± 20
HBr – sccm		25 ± 10	40 ± 10	40 ± 20
RF Power – Watts	40 ± 10	25 ± 10		20 ± 10
MORI Power – Watts	1500 ± 10	1500 ± 10		2000 ± 20
MORI Inner – Amps	60 ± 10	60 ± 10	20 ± 20	20 ± 20
MORI Outer – Amps	60 ± 10	60 ± 10	60 ± 20	60 ± 20
Step time (4500 Å Poly)	00:10	00:50	00:10	00:30
Poly Etch rate (Á/min)	2100	4250		2650
SiO ₂ Etch Rate (Å/min)	800	350		20
S Poly: SiO2		12:1		120 : 1
S Poly: Photoresist		1.7:1		2.1:1

Double Poly Etch I

Double Poly Etch II

- Because poly is thicker at step poly 2 needs to be overetched
- Overetching can cause problems with polyoxide loss or undercut on poly 2

 Etching

NITRIDE ETCHING

Process sequence
Nitride photo
Nitride etch
Resist strip
Field implant
Field oxide

Boron depleted silicon

- If the pad ox is excessively thin, dopant implanted in field can be lost during field oxide growth
- Therefore pad oxide loss should be kept to a minimum during nitride etch

Etching

Metal etching

Metal Etching

- Atomic chlorine produced in plasma will readily etch aluminium
- To prevent lateral etching of the metal the sidewalls of the metal are passivated by etch residues
- A high resist erosion rate is required for this passivation
- This passivation contains chlorine and can react with moisture when exposed to air causing corrosion problems
- Therefore resist must be ashed soon after etch

Tyndall Metal Etch Recipe

Step no. Name	BRKTHRU	stab1	BULK	stab2	OE
He BP - Torr	9.5 ± 10 %	9.5 ± 10 %	9.5 ± 10 %	9.5 ± 10 %	9.5 ± 10 %
Pressure – mTorr	5 ± 20 %	5 ± 99 %	5 ± 20 %	5 ± 99 %	5 ± 20 %
Cl ₂ – sccm	40 ± 10 %	25 ± 99 %	25 ± 10 %	15 ± 99 %	15 ± 10 %
Ar – sccm	20 ± 10 %				
BCl ₃ – sccm		6 ± 99 %	6 ± 15 %		
N ₂ – sccm				5 ± 99 %	5 ± 99 %
Bias RF Power – Watts	50 ± 30 %	30 ± 99 %	30 ± 30 %	0 ± 99 %	25 ± 30 %
ICP Power – Watts	500 ± 20 %	900 ± 99 %	900 ± 15 %	0 ± 99 %	900 ± 15 %
Step time	00:20	00:10	Endpoint Max 1:30	00:10	50 % of bulk time
Endpoint	Disabled	Disabled	Falling Delay: 0:30 25% drop	Disabled	Disabled

