```
In[]:
  import seaborn as sns
```

15 min: Perform a univariate analysis on all the categorical data of the penguins dataset. Commit the notebook to your portfolio when you're finished. Optional: Start working on portfolio assignment 4

```
In[]:
  penguins = sns.load_dataset("penguins")
In[]:
  penguins.head()
```

Out[]	-
Ծաղ յ	٠

]:		species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	sex
	0	Adelie	Torgersen	39.1	18.7	181.0	3750.0	Male
	1	Adelie	Torgersen	39.5	17.4	186.0	3800.0	Female
	2	Adelie	Torgersen	40.3	18.0	195.0	3250.0	Female
	3	Adelie	Torgersen	NaN	NaN	NaN	NaN	NaN
	4	Adelie	Torgersen	36.7	19.3	193.0	3450.0	Female

15 min: Look online for a datset that you personally find interesting to explore. It can be about any topic that you find interesting: sports, games, software development, etc. Commit the dataset to your portfolio. You will be analysing the dataset in future portfolio assignments.

Required characteristics of the dataset:

- Must be in a tabular format: Contains rows and columns
- Contains at least 100 rows
- Contains at least 2 columns with categorical data and at least 2 columns with numerical data
- Is less than 200 MB

Dataset:

https://github.com/nytimes/covid-19-data/tree/master/colleges

```
In[]:
  import pandas as pd
In[]:
  pokemon = pd.read_csv("../pokemon.csv", sep=",")
  pokemon
```

Out[]:

]:[abilities	against_bug	against_dark	against_dragon	against_electric	against_fairy	against_fight	aş
0	['Overgrow', 'Chlorophyll']	1.00	1.0	1.0	0.5	0.5	0.5	2.
1	['Overgrow', 'Chlorophyll']	1.00	1.0	1.0	0.5	0.5	0.5	2.
2	['Overgrow', 'Chlorophyll']	1.00	1.0	1.0	0.5	0.5	0.5	2.
3	['Blaze', 'Solar Power']	0.50	1.0	1.0	1.0	0.5	1.0	0.
4	[['Rlaze'		1.0	1.0	1.0	0.5	1.0	0.
•••								
79	6 ['Beast Boost']	0.25	1.0	0.5	2.0	0.5	1.0	2.
79	7 ['Beast Boost']	1.00	1.0	0.5	0.5	0.5	2.0	4.
79	8 ['Beast Boost']	2.00	0.5	2.0	0.5	4.0	2.0	0.
79	9 ['Prism Armor']	2.00	2.0	1.0	1.0	1.0	0.5	1.
80	['Soul-Heart']	0.25	0.5	0.0	1.0	0.5	1.0	2.

```
In [ ]:
  import pandas as pd
```

20 min:

- Download lifeExpectancyAtBirth.csv from Brightspace (original source).
- Move the file to the same folder as the Notebook that you will be working in.
- Load the dataset in your Notebook with the following code: lifeExpectancy = pd.read csv('lifeExpectancyAtBirth.csv', sep=',')
- Look at the dataset with the .head() function.
- Filter the dataframe: We only want the life expectancy data about 2019 and 'Both sexes'
- Use this dataframe to perform a univariate analysis on the life expectancy in 2019.
- Which five countries have the highest life expectancy? Which five the lowest?

Commit the notebook and dataset to your portfolio when you're finished.

```
In [ ]:
```

```
# Load dataframe
lifeExpectancy = pd.read_csv('lifeExpectancyAtBirth.csv', sep=',')
# Quick look at dataframe
lifeExpectancy.head()
```

Out[]

:[Location	Period	Indicator	Dim1	First Tooltip
	0	Afghanistan	2019	Life expectancy at birth (years)	Both sexes	63.21
	1	Afghanistan	2019	Life expectancy at birth (years)	Male	63.29
	2	Afghanistan	2019	Life expectancy at birth (years)	Female	63.16
	3	Afghanistan	2015	Life expectancy at birth (years)	Both sexes	61.65
	4	Afghanistan	2015	Life expectancy at birth (years)	Male	61.04

In []:

```
# Filter dataframe
filtered = lifeExpectancy[(lifeExpectancy["Period"] == 2019) & (lifeExpectancy["Dim1"] == "E
# Ouick look at filtered dataframe
```

Out[]:

filtered.head()

	Location	Period	Indicator	Dim1	First Tooltip
0	Afghanistan	2019	Life expectancy at birth (years)	Both sexes	63.21
12	Albania	2019	Life expectancy at birth (years)	Both sexes	78.00
24	Algeria	2019	Life expectancy at birth (years)	Both sexes	77.13
36	Angola	2019	Life expectancy at birth (years)	Both sexes	63.06
48	Antigua and Barbuda	2019	Life expectancy at birth (years)	Both sexes	76.45

In []:

```
# Univariate analysis
filtered.describe()
```

```
Out[ ]:
             Period First Tooltip
      |count||183.0
                    183.000000
       |mean||2019.0||72.540492
        std ||0.0
                     7.129956
       min ||2019.0||50.750000
       25% ||2019.0||66.550000
       50% ||2019.0||73.740000
       75% ||2019.0||77.730000
       max ||2019.0||84.260000
```

In []:

Highest life expectancy

filtered.sort_values(by=['First Tooltip']).tail(5)

Out[]:

		Location	Period	Indicator	Dim1	First Tooltip
18	37	Spain	2019	Life expectancy at birth (years)	Both sexes	83.22
17	53	Singapore	2019	Life expectancy at birth (years)	Both sexes	83.22
15	73	Republic of Korea	2019	Life expectancy at birth (years)	Both sexes	83.30
18	97	Switzerland	2019	Life expectancy at birth (years)	Both sexes	83.45
99	97	Japan	2019	Life expectancy at birth (years)	Both sexes	84.26

In []:

Lowest life expectancy

filtered.sort values(by=['First Tooltip']).head(5)

Out[]

]:[Location	Period	Indicator	Dim1	First Tooltip
	1117	Lesotho	2019	Life expectancy at birth (years)	Both sexes	50.75
	373	Central African Republic	2019	Life expectancy at birth (years)	Both sexes	53.10
	1801	Somalia	2019	Life expectancy at birth (years)	Both sexes	56.47
	661	Eswatini	2019	Life expectancy at birth (years)	Both sexes	57.73
	1333	Mozambique	2019	Life expectancy at birth (years)	Both sexes	58.14

In []:

```
# Analysis only on Lesotho because I went there ;)
lesothoOnly = lifeExpectancy[(lifeExpectancy["Location"] == "Lesotho") & (lifeExpectancy["Dir
```

lesothoOnly.plot(x='Period', y='First Tooltip', kind='line')

60 min: Perform a univariate analysis on at least 2 columns with categorical data and on at least 2 columns with numerical data in the dataset that you chose in portfolio assignment 4. Commit the Notebook to your portfolio when you're finished.

```
In []:
  import pandas as pd
  import seaborn as sns
In []:
  pokemon = pd.read_csv("../pokemon.csv", sep=",")
  pokemon.head()
```

Out	1:
	Л,

]:[[abilities	against_bug	against_dark	against_dragon	against_electric	against_fairy	against_fight	agai		
	0 ['O _' 'Ch	vergrow', lorophyll']	1.0	1.0	1.0	0.5	0.5	0.5	2.0		
	1 ['O _' 'Ch	vergrow', lorophyll']	1.0	1.0	1.0	0.5	0.5	0.5	2.0		
	2 ['O _' 'Ch	vergrow', lorophyll']	1.0	1.0	1.0	0.5	0.5	0.5	2.0		
	3 ['Bl 'Sol	aze', ar Power']	0.5	1.0	1.0	1.0	0.5	1.0	0.5		
	וסיז			1.0	1.0	1.0	0.5	1.0	0.5		

Het type water komt het meeste voor.

Het type flying komt naast de niet ingevulde waarde het meeste voor.

Rond de 60 a 65 sp_attack komt het meeste voor.

Rond de 60 sp_defense komt het meeste voor.

15 min: Look at the histogram of at least 2 columns with numerical data in the dataset that you chose in portfolio assignment 4. Do you recognise the distribution? Does it look like a uniform or normal distribution or something else? If it doesn't look like a uniform or normal distribution, take a quick look here to see if you can find the distribution shape: https://www.itl.nist.gov/div898/handbook/eda/section3/eda366.htm

```
In []:
  import pandas as pd
  import seaborn as sns
In []:
  pokemon = pd.read_csv("../pokemon.csv", sep=",")
  pokemon.head()
Out[]:
    abilities against bug against dark against d
```

.r. 1 🗁								
t[]: [abilities	against_bug	against_dark	against_dragon	against_electric	against_fairy	against_fight	agai
0	['Overgrow', 'Chlorophyll']	1.0	1.0	1.0	0.5	0.5	0.5	2.0
1	['Overgrow', 'Chlorophyll']	1.0	1.0	1.0	0.5	0.5	0.5	2.0
2	['Overgrow', 'Chlorophyll']	1.0	1.0	1.0	0.5	0.5	0.5	2.0
3	['Blaze', 'Solar Power']	0.5	1.0	1.0	1.0	0.5	1.0	0.5
4	['Blaze', 'Solar Power']	0.5	1.0	1.0	1.0	0.5	1.0	0.5

 $5 \text{ rows} \times 41 \text{ columns}$

Lognormal Distribution

15 min:

- Calculate the 90%, 95%, 99% and 99.99% confidence interval for at least 2 columns with numerical data in the dataset that you chose in portfolio assignment 4. Do you see the impact the confidence has on the interval?
- Now calculate the 95% confidence interval again but use only the first 10% of your rows. Compare this interval to the previous 95% confidence interval you calculated. Do you see the impact of having less data?

```
In []:
  import pandas as pd
  import seaborn as sns
In []:
  pokemon = pd.read_csv("../pokemon.csv", sep=",")
  pokemon.head()
```

Out[]

In []:

]:[abilities	against_bug	against_dark	against_dragon	against_electric	against_fairy	against_fight	agai
	['Overgrow', 'Chlorophyll']	1.0	1.0	1.0	0.5	0.5	0.5	2.0
	['Overgrow', 'Chlorophyll']	1.0	1.0	1.0	0.5	0.5	0.5	2.0
2	['Overgrow', 'Chlorophyll']	1.0	1.0	1.0	0.5	0.5	0.5	2.0
	['Blaze', 'Solar Power']		1.0	1.0	1.0	0.5	1.0	0.5
	['Blaze', 'Solar Power']		1.0	1.0	1.0	0.5	1.0	0.5

```
import scipy.stats as st
speed = pokemon["speed"]
confidence = 0.90
st.t.interval(confidence, len(speed)-1, loc=speed.mean(), scale=st.sem(speed))
 # Confidence speed 90%
Out[]: (64.65257722723477, 68.01658631833325)
In [ ]:
confidence = 0.95
st.t.interval(confidence, len(speed)-1, loc=speed.mean(), scale=st.sem(speed))
# Confidence speed 95%
Out[]: (64.32963730629338, 68.33952623927466)
In [ ]:
confidence = 0.99
st.t.interval(confidence, len(speed)-1, loc=speed.mean(), scale=st.sem(speed))
 # Confidence speed 99%
Out[]: (63.697333205871644, 68.9718303396964)
```

```
In[]:
    confidence = 0.9999
    st.t.interval(confidence, len(speed)-1, loc=speed.mean(), scale=st.sem(speed))
# Confidence speed 99.99%
Out[]:
    (62.3405940846074, 70.32856946096064)
```

Calculate confidence interval over top 10% of rows

```
In[]:
    rows = len(pokemon)

pokemon10speed = pokemon.head(round(rows / 100 * 10))["speed"]

confidence = 0.95
    print("95% ALL ROWS")
    print(st.t.interval(confidence, len(speed)-1, loc=speed.mean(), scale=st.sem(speed)))

print("95% 10 percent ROWS")
    print(st.t.interval(confidence, len(pokemon10speed)-1, loc=pokemon10speed.mean(), scale=st.sem(speed))

95% ALL ROWS
(64.32963730629338, 68.33952623927466)
95% 10 percent ROWS
(61.42797858144729, 74.1470214185527)
```

```
In []:
  import pandas as pandas
  import seaborn as sns
  import numpy as np
```

25 min: Perform a bivariate analysis on the columns with numerical data in the penguins dataset.

- Use corr() on the DataFrame to calculate all the correlations. Use the code example above to show the correlation table with colors.
- Look at the corrrelations. Do they match your expectations?
- Show a scatter plot for
 - The strongest positive correlation
 - The strongest negative correlation
 - The weakest correlation

```
In[]:
   penguins = sns.load_dataset("penguins")
In[]:
   penguins.head()
```

Out[]:

:[species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	sex
0	Adelie	Torgersen	39.1	18.7	181.0	3750.0	Male
1	Adelie	Torgersen	39.5	17.4	186.0	3800.0	Female
2	Adelie	Torgersen	40.3	18.0	195.0	3250.0	Female
3	Adelie	Torgersen	NaN	NaN	NaN	NaN	NaN
4	Adelie	Torgersen	36.7	19.3	193.0	3450.0	Female

```
In[]:
   penguinsCorrelation = penguins.corr()
```

```
penguinsCorrelation.style.background_gradient(cmap='coolwarm', axis=None).set_precision(2)
```

C:\Users\Jens\AppData\Local\Temp\ipykernel_33040\464541182.py:2: FutureWarning: this method is penguinsCorrelation.style.background_gradient(cmap='coolwarm', axis=None).set_precision(2)

Out[]: bill_length_mm bill_depth_mm flipper_length_mm body_mass_g bill_length_mm bill_depth mm -0.24 1.00 -0.58 -0.47

```
      bill_depth_mm
      -0.24
      1.00
      -0.58
      -0.47

      flipper_length_mm
      0.66
      -0.58
      1.00
      0.87

      body mass g
      0.60
      -0.47
      0.87
      1.00
```

```
In [ ]:
```

```
penguins.plot(kind="scatter", x="flipper_length_mm", y="body_mass_g")
```

C:\Users\Jens\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalC
scatter = ax.scatter(

15 min: Perform a bivariate analysis (Pearson correlation and scatter plot) on at least 1 combination of 2 columns with numeric data in the dataset that you chose in portfolio assignment 4. Does the correlation and scatter plot match your expectations? Add your answer to your notebook. Commit the Notebook to your portfolio when you're finished.

```
In []:
  import pandas as pd
In []:
  pokemon = pd.read_csv("../pokemon.csv", sep=",")
  pokemon.head()
```

Out[]:

_									
]:[abilities	against_bug	against_dark	against_dragon	against_electric	against_fairy	against_fight	agai
	0	['Overgrow', 'Chlorophyll']	1.0	1.0	1.0	0.5	0.5	0.5	2.0
	1	Chlorophyll'	1.0	1.0	1.0	0.5	0.5	0.5	2.0
	2	['Overgrow', 'Chlorophyll']	1.0	1.0	1.0	0.5	0.5	0.5	2.0
	3	['Blaze', 'Solar Power']	0.5	1.0	1.0	1.0	0.5	1.0	0.5
		['Blaze', 'Solar Power']		1.0	1.0	1.0	0.5	1.0	0.5

```
In[]:
  pokemon.corr()
```

Out[]:		against_bug	against_dark	against_dragon	against_electric	against_fairy	against_fight
	against_bug	1.000000	0.230107	0.165430	-0.246943	0.239566	0.137902
	against_dark	0.230107	1.000000	0.140830	-0.015830	-0.301354	-0.357981
	against_dragon	0.165430	0.140830	1.000000	-0.108928	0.439705	0.035237
	against_electric	-0.246943	-0.015830	-0.108928	1.000000	-0.089864	-0.102798
	against_fairy	0.239566	-0.301354	0.439705	-0.089864	1.000000	0.157712
	against_fight	0.137902	-0.357981	0.035237	-0.102798	0.157712	1.000000
	against_fire	0.202778	0.010527	-0.261570	-0.279029	-0.169489	-0.076480
	against_flying	0.183343	-0.179697	0.064850	-0.111461	0.199862	-0.318941
	against_ghost	0.129174	0.672337	-0.049941	-0.073031	-0.120806	-0.546982
	against_grass	0.079197	-0.006533	-0.037135	0.056209	0.052899	0.269157
	against_ground	-0.186841	-0.007660	-0.120042	-0.269444	-0.256504	0.358793
	against_ice	0.148176	-0.010763	0.350048	-0.328531	0.273650	-0.220239
	against_normal	0.215589	-0.413632	0.142035	0.076699	0.149488	-0.006997
	against_poison	0.354255	-0.236919	-0.210199	-0.015769	0.146464	-0.189798
	against_psychic	-0.463272	-0.230415	0.100153	-0.017592	-0.145238	-0.264938
	against_rock	-0.210522	0.011963	0.090184	0.417261	-0.205444	-0.240964
	against_steel	0.055504	-0.119758	-0.227697	-0.187543	0.130323	0.165066
	against_water	-0.254732	-0.001976	-0.096549	-0.297600	-0.218937	0.205249
	attack	-0.054175	-0.098849	0.138217	-0.104276	0.207526	0.149123
	base_egg_steps	0.062133	0.187220	0.164773	-0.061970	0.120594	-0.006359
	base_happiness	0.009994	0.024155	-0.151915	0.030411	-0.209323	-0.088722
	base_total	-0.012398	0.065446	0.069766	-0.017137	0.098948	0.048629
	defense	-0.036474	0.048039	-0.023794	-0.072433	0.001655	0.150424
	experience_growth	0.035717	-0.008391	0.172547	-0.041584	0.146370	0.010407
	height_m	-0.060858	0.019219	0.164464	0.003068	0.115360	0.059184
	hp	0.034897	0.010589	0.089721	-0.035354	0.129284	0.109425
	percentage_male	-0.048373	-0.097547	0.061785	0.051265	0.010527	0.048101
	pokedex_number	0.004618	0.009066	0.000872	-0.068552	0.176651	0.018296
	sp_attack	0.055352	0.170849	0.039739	0.022305	-0.010296	-0.118481
	sp_defense	-0.002342	0.132507	-0.047416	0.019193	0.002754	-0.044460
	speed	-0.043802	-0.000326	0.078123	0.111422	0.065401	-0.050495
	weight_kg	-0.031909	0.038871	0.126003	-0.102926	0.098523	0.161564

 $34 \text{ rows} \times 34 \text{ columns}$

generation

is_legendary

```
In[]:
   pokemon.plot(kind="scatter", x="pokedex_number", y="generation")
```

-0.016013

0.136315

-0.001549

0.027864

C:\Users\Jens\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2kfra8p0\LocalC
scatter = ax.scatter(

-0.025201

0.014844

-0.063180

-0.023151

0.150801

0.050165

0.000681

-0.059132

Het pokedex nummer wordt groter naarmaate we generaties hoger gaan. Mijn verwachtingen waren juist. Dit komt ook overeen met de correlation overview.

Dit ging tegen mijn verwachtingen in. Als niet-pokemon kenner had ik verwacht dat de HP hoger zou zijn bij legendarische pokemons. Maar dat is niet per definitie het geval blijkt uit bovenstaande scatter plot. De scatter plot komt ook overeen met de correlation overview. De correlation is namelijk erg laag en ligt dicht bij de 0.