Lista 8

Uwaga. Rozwiązując zadanie na liście możesz korzystać z twierdzeń będących poprzednimi zadaniami, nawet jeśli nie potrafisz ich udowodnić.

Uwaga. Na tej liście większość (wszystkie?) zadania można udowodnić dla macierzy stochastycznych traktowanych jako macierze liczb zespolonych (w szczególności: przekształcających wektory liczb zespolonych). Wystarczy, że pokażesz zadania dla liczb rzeczywistych. Jeśli jednak w dalszym zadaniu potrzebujesz stwierdzenia dla liczb zespolonych, możesz z niego skorzystać.

Zadanie 1. Niech A będzie macierzą stochastyczną. Pokaż, że dla wektora \vec{V}

$$||A\vec{V}||_1 \le ||\vec{V}||_1$$
.

Zadanie 2. Niech A będzie macierzą stochastyczną dodatnią a V_1 będzie przestrzenią wektorów własnych dla wartości własnej 1. Pokaż, że $\mathbb{V}_1 \cap \mathbb{V}_{=0} = \{\vec{0}\}$ oraz $\mathbb{V}_1 + \mathbb{V}_{=0} = \mathbb{V}$.

(Dla przypomnienia: $\mathbb{V}_{=0}$ to podprzestrzeń wektorów o sumie współrzędnych równej 0.)

Zadanie 3. Niech A będzie macierzą stochastyczną. Pokaż, że zachowuje ona sumę współrzędnych, tzn. dla wektora $(v_1, \ldots, v_n)^T$ niech $(w_1, \ldots, w_n)^T = A(v_1, \ldots, v_n)^T$ pokaż, że

$$\sum_{i=1}^{n} v_i = \sum_{i=1}^{n} w_i \ .$$

Wywnioskuj z tego, że $\mathbb{V}_{=0}$ jest przestrzenią niezmienniczą A.

Zadanie 4 (* nie liczy się do podstawy). Niech A będzie dodatnią macierzą stochastyczną. Pokaż, że wartość własna 1 ma krotność algebraiczną 1 dla A.

wygląda $J_1^{\kappa} E_2$? Skorzystaj z Zadania 1.

ność algebraiczną większą niz 1, to macierz ta ma klatkę Jordana J_1 dla 1 wymiaru większego niz 1. Jak Wskazowka: Skorzystaj z reprezentacji macierzy jako podobnej do macierzy Jordana. Gdyby 1 miała krot-

Zadanie 5. Niech A będzie macierzą kolumnowo stochastyczną. Pokaż, że A nie ma wartości własnej o module większym niż 1.

Wskazówka: Można oszacować bezpośrednio, możne też popatrzeć na Ar dla dowolnie dużego k i skorzystać

 Zadanie 6. Niech A będzie dodatnią macierzą kolumnowo stochastyczną. Pokaż, że A nie ma wartości własnej -1.

dzeń udowodnionych na wykładzie.

Wskazówka: Rozpatrz A². Jaka jest krotność geometryczna wartości własnej 1? Możesz korzystać z Twier-

Zadanie 7. Niech A będzie dodatnią macierzą kolumnowo stochastyczną, potraktujmy ją jako macierz liczb zespolonych. Pokaż analogicznie do dowodu na wykładzie, że jeśli A ma (zespoloną) wartość własną o module 1, to wektor własny tej wartości własnej jest postaci $\alpha \vec{V}$, gdzie $\alpha \in \mathbb{C}$ oraz $\vec{V} > 0$. Wywnioskuj z tego, że A ma jedynie rzeczywiste wartości własne o module 1.

Zadanie 8. Rozpatrzmy klatkę Jordana J dla $|\lambda| < 1$ (nad liczbami zespolonymi). Pokaż, że $\lim_{n\to\infty} J^n$ to macierz zerowa. Granicę rozumiemy tutaj punktowo, tj. macierz $J^{\infty} = \lim_{n \to \infty} J^n$, jeśli dla każdego i, jgranica $\lim_{n\to\infty}(J^n)_{i,j}$ istnieje oraz $(J^\infty)_{i,j}=\lim_{n\to\infty}(J^n)_{i,j}$. op číspějsky veľ sumiemez des pl zero "f od žíspějsky veľ sumiemez des pl zero "f

Wskazówka: Przedstaw macierz J jako $J = \lambda \operatorname{Id} + J'$. Rozwiń $(\lambda \operatorname{Id} + J')^n$ ze wzoru dwumianowego — można,

Zadanie 9. Wywnioskuj z Zadań 4–8, że dla dodatniej macierzy stochastycznej A oraz dowolnego wektora \vec{V} spełniającego $\sum_i v_i = 1$ granica $\lim_{k \to \infty} A^k \vec{V}$ to wektor własny dla wartości własnej 1.

Możesz skorzystać bez dowodu z ciągłości mnożenia macierzy, tzn. dla macierzy $M, B_{nn\in\mathbb{N}}, C$ odpowiednich rozmiarów jeśli $\lim_{n\to\infty} B_n$ istnieje, to

$$\lim_{n \to \infty} MB_n C = M \left(\lim_{n \to \infty} B_n \right) C.$$

jaką krotnością algebraiczną:

Wskazówka: Przedstaw A jako macierz podobną do macierzy Jordana. Jakie ma ona wartości własne i z

Zadanie 10. Rozważmy graf o wierzchołkach $\{1,2,3,4\}$ i krawędziach skierowanych $1 \to 2$, $1 \to 3$, $1 \to 4$, $2 \to 3$, $2 \to 4$, $3 \to 1$, $4 \to 1$, $4 \to 3$. Jak wygląda znormalizowana macierz sąsiedztwa tego grafu? Oblicz PageRank tego grafu dla m=0,25.

Zadanie 11. To zadanie pokazuje, że iteracyjna metoda obliczania PageRanku zbiega wykładniczo szybko. Niech A będzie macierz stochastyczną (niekoniecznie dodatnią!) rozmiaru $n \times n$ a P macierzą stochastyczną $n \times n$ postaci

$$P = \begin{bmatrix} \frac{1}{n} & \frac{1}{n} & \cdots & \frac{1}{n} \\ \frac{1}{n} & \frac{1}{n} & \cdots & \frac{1}{n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{n} & \frac{1}{n} & \cdots & \frac{1}{n} \end{bmatrix}.$$

Dla liczby rzeczywistej $0 \le m \le 1$ niech M_m oznacza macierz

$$M_m = (1 - m)A + mP .$$

Pokaż, że dla wektora $\vec{V} \in \mathbb{V}_{=0}$ zachodzi

$$||M_m \vec{V}||_1 \le (1-m)||\vec{V}||_1$$
.

Wskazówka: Pokaż najpierw dla m=0 oraz m=1, dla m=0 skorzystaj z Zadania 1.