Writing Classes

- Objectives when we have completed this set of notes, you should be familiar with:
 - Anatomy of a class: state and behaviors
 - Constructors
 - UML class diagrams
 - Encapsulation
 - Anatomy of a method: Parameters, Local data
 - Constant fields (public and private)
 - Invoking methods in the same class
 - Building a class incrementally
 - Testing a class in Interactions
 - Writing a driver program

Writing Classes - 1

Writing Classes

- Thus far you have written programs that use classes defined in the Java standard class library
- The driver program, which has the main method, should not contain all of your code
- Object-oriented programming:
 - Classes define sets of objects that will hold data and have specified behavior
 - Each class should be contained a separate file
 - Separate files facilitate testing

COGE

Classes and Objects

- An object, created from a class, has a state and behaviors
 - You have used the Scanner class (from the Java API) to create a Scanner object

```
Scanner input = new Scanner(System.in);
```

- Its state includes the "target" for the Scanner object (e.g., System.in) and the input data being "scanned"
- Its behaviors include reading the next int, reading the next line, etc.

```
input.nextInt(); input.nextLine();
```


Writing Classes - 3

Classes and Objects

- Consider a six-sided die (singular of dice)
- Its state might include a face value (in the range 1 to 6 inclusive currently showing)
- Its behaviors might include:
 - roll (roll the die to a random value 1 6)
 - setFaceValue (set the die to a specified value 1 6)
 - getFaceValue (get the face value)
- Example of how the Die class could be used:

```
Die dieObj = new Die();
dieObj.roll();
int rollResult = dieObj.getFaceValue();
```


Classes

- You can now create multiple dice in one program
- A program will not necessarily use all aspects of a given class
- Let's take a look at the source code; it is critical that you understand all aspects of this example: <u>RollingDice.java</u> and <u>Die.java</u> (from Lewis and Loftus textbook)

COG

The Die Class

- The Die class contains two fields (or data declarations)
 - a constant MAX that represents the maximum face value
 - an integer faceValue that represents the current face value, which is an instance variable
- The roll method uses the random method of the Math class to determine a new face value
- There are also methods to explicitly set and retrieve the current face value at any time

Writing Classes - 7

The toString Method

- All classes that represent objects should declare a toString method
- The toString method returns a String that represents the object in some way
 - Called automatically anytime the object is referenced where a String is needed (e.g., when concatenated to a string or when it is passed to the println method)
 - In the jGRASP Interactions pane, toString is called automatically when an object reference is evaluated as an expression (e.g., if die1 is a reference for a Die object, then entering die1 in interactions evaluates to the result of its toString method)

Constructors

- A constructor is called by the new operator to create an object and set its initial state. It looks similar to a method but has the <u>same</u> name as the class and has no return type
- A constructor may or may not have parameters. A class may have multiple constructors if the parameters differ by number, type, and/or order
- The Die constructor has no parameters but sets the initial face value of each new die object to one

Writing Classes - 9

Scope of Variables

- The scope of a variable defines where it can be referenced; determined where the variable is declared (its enclosing block)
- Instance variables (fields declared in the class block) can be referenced by all methods in that class; i.e., the scope of an instance variable is the entire class
- Local variables (declared inside of a method) can only be referenced within that method
 - Example: In the Die class, the variable result is declared inside the toString method; thus, result is local to that method and cannot be referenced outside the method

Instance Data

- The faceValue variable in the Die class is called instance data because each instance (object) that is created has its own version of it
- The declaration of an instance variable specifies the type of the data, but it does not reserve any memory space for it
- Each time a Die object is created using the new operator and constructor, a new faceValue variable is created within the object
- All objects of a class will use the same methods in the class, but each object has its own data space for instance variables

COSE

Writing Classes - 11

Instance Data

• We can depict the two Die objects from the RollingDice program as follows:

Each object maintains its own faceValue variable, and thus its own state

• jGRASP – Die objects on canvas in Basic viewer:

UML Class Diagrams

UML (Unified Modeling Language)

- UML class diagrams show relationships among classes in the program
- A UML class diagram includes of one or more classes; a simple diagram has only the class name whereas a detailed diagram also has sections for the attributes (data/fields) and operations (methods)
- Lines between classes represent associations;
 A dashed line arrow shows that one class uses the other (e.g., calls its methods)

Writing Classes - 13

UML Class Diagrams

• A UML class diagram for the RollingDice program:

COGE

UML Class Diagrams in jGRASP

- Generate UML Class Diagram
- Select the Die class
- Right-click, select "Show Class Info"
- Info tab shows fields, constructors, and methods

Writing Classes - 15

UML Class Diagrams in jGRASP

Dependencies between two classes

- Select a red dashed arrow
- Info tab shows items RollingDice uses from the Die class.

(Navigate to use in RollingDice by double-clicking item)

COSE

Encapsulation

 A client (program) can access and modify object's state through its public methods. Example:

dieObj.setFaceValue(6);

 We should make it difficult, if not impossible, for a client to access an object's variables directly

dieObj.faceValue = 6;

 The line above should cause a compile-time error; otherwise, the class violates encapsulation

Writing Classes - 17

Encapsulation

- An encapsulated object can be thought of as a black box -- its inner workings are hidden from the client
- The client invokes the interface methods of the object, which manages the instance data

COSE

Access (Visibility) Modifiers

- How do we make sure not to violate encapsulation?
- Access modifiers define where an instance variable or a method can be accessed
- Java has three access modifiers: public, protected, and private
- The protected modifier involves inheritance, which we will discuss later
- The fields and methods of a classes (collectively called *members* of the class), as well as constructors, can each have an access modifier

Writing Classes - 19

Access (Visibility) Modifiers

- Members of a class that are declared with public access can be referenced anywhere
 - public instance variables violate encapsulation
- Members of a class that are declared with private access can be referenced only within that class
 - For now, all instance variables should be private
- Members declared with no access modifier have default access - can be referenced within the class and by classes in the same package (or by classes in the same folder if classes are not in a declared package)

Access (Visibility) Modifiers

- Service methods are public methods that offer useful behaviors to the client
- Support methods are declared as private and can only be used by other methods in the class
 - Sometimes methods get too large or multiple methods need to use the same code
 - Solution: create a private method for use by other methods in the class (e.g., calculations needed by several methods could placed in a separate method)
- The Java API shows only public fields, constructors, and methods for classes

Writing Classes - 21

Access (Visibility) Modifiers

public private

Instance Variables

Provide services to clients

Violate

encapsulation

Enforce encapsulation

Methods

Support other methods in the class

Q2

Accessors and Mutators

- Because instance data is private, a class may have methods to access and modify the data
- An accessor method returns the current value of a variable (sometimes called a "getter")
 - Example: getFaceValue in Die
- A mutator method changes the value of a variable (sometimes called a "setter")
 - Example: setFaceValue in Die
- The names of accessor and mutator methods usually take the form getx and setx, respectively, where x is the name of the field

<u>Q3</u>

Writing Classes - 23

Mutator Restrictions

- Choose carefully which variables have getter and setter methods
 - While many classes that you write will have at least some getter and setter methods, others may not have any
 - Sometimes you don't want the user to be able to get or set fields, so no accessor or mutator methods are provided (e.g., the String and Scanner classes have no getters or setters)
- Use if-else statements (CN 2, 5) to provide <u>mutator restrictions</u> on fields (e.g., a field can only take on values in specified range)

Method Declarations

- A method declaration specifies the code that will be executed when the method is invoked (called)
- When a method is invoked, the flow of control jumps to the method and executes its code
- When complete, the flow returns to where the method was invoked and continues
- The invocation may or may not return a value, depending on how the method is defined

Writing Classes - 25

Method Control Flow

• If the called method is in the same class, only the method name is needed

In the debugger, "Step-In" to the called method

Method Header

• The first part of the method declaration is commonly called the *method header*

Method Body

The method header is followed by the method body

```
public char calc (int num1, int num2, String message)
{
   int sum = num1 + num2;
   char result = message.charAt(sum);

   return result;
}

sum and result
   are local data

The return expression
   must be compatible with
   the return type

The return type

The return expression
   must be compatible with
   the return type

The return expression
   must be compatible with
   the return type

The return expression
   must be compatible with
   the return type

The return expression
   must be compatible with
   the return type

The return expression
   must be compatible with
   the return type

The return expression
   must be compatible with
   the return type

The return expression
   must be compatible with
   the return type

The return expression
   must be compatible with
   the return type

The return expression
   must be compatible with
   the return type

The return expression
   must be compatible with
   the return type

The return expression
   must be compatible with
   the return type

The return expression
   must be compatible with
   the return type

The return expression
   must be compatible with
   the return type

The return expression
   must be compatible with
   the return type

The return expression
   must be compatible with
   the return type

The return expression
   must be compatible with
   the return type

The return expression
   must be compatible with
   the return type

The return expression
   must be compatible with
   the return type

The return expression
  must be compatible with
   the return type

The return expression
   must be compatible with
   the return type

The return expression
   must be compatible with
   the return type

The return expression
   must be compatible with
   the return type

The return expression
   must be compatible with
   the return type

The return expression
   must be compatible with
   the return type

The return expression
   must be compatible with
   must be compatible with
   must be compatible with
   must be compatible
```

005

The return Statement

- The return type of a method indicates the type of value that the method sends back to the calling location
- A return statement specifies the value that will be returned

return expression;

 A method with a void return type returns no value; however, a return statement without an expression can be used to return from the method prior to reaching the end of method Q4

Writing Classes - 29

Parameters

When a method is called, <u>values</u> the of <u>actual</u> <u>parameters</u> [arguments] in the invocation are copied into the <u>formal parameters</u> of the method (i.e., parameters are passed by value)

```
ch = obj.calc (4, count, "War Eagle!");

public char calc (int num1, int num2, String message)
{
  int sum = num1 + num2;
  char result = message.charAt (sum);
  return result;
}
MethodExample.java
```

COSE

Local Data

- As we've seen, local variables can be declared inside a method
- The formal parameters of a method create automatic local variables when the method is invoked (see Arguments in the Debug tab)
- When the method finishes, all local variables are destroyed, including the formal parameters
- Keep in mind that instance variables in the class exist as long as an object of the class exists (i.e., a variable references the object)

Writing Classes - 31

Constructors Revisited

- Note that a constructor has no return type, not even void
- A common error is to put a return type on a constructor, which makes it a method (rather than a constructor) that happens to have the same name as the class
- If the programmer does not define a constructor, then the class has a *default* constructor that accepts no parameters

Constant Fields

 Recall that a class constant can be declared using the static and final reserved words; the name is in all caps with "words" separated by an underscore

For example:

```
private static final int MAX_AMOUNT = 5;
```

• In general, you do not want "magic numbers" (literal numeric values) in your code

COCE

Writing Classes - 33

Constant Fields

- Unlike variables, constants can be public without violating encapsulation.
- For example, the constant PI in the Math class

```
double circumference = Math.PI * diameter;
```

- Referenced by using the name of the class, the dot operator, and the name of the constant
 - When you define a constant inside your own class, you can reference it inside the class without using the class name

```
if (number > MAX AMOUNT). . .
```

COGE

Constant Fields

 Suppose the Student class had two types of students: undergrad and graduate

```
public static final int GRADUATE = 0, UNDERGRAD = 1;
```

 Now client programs can set student type using constants (studentObj is an instance of Student):

Replace this code:

```
studentObj.setStudentType(0);
```

With this code:

studentObj.setStudentType(Student.GRADUATE);

Writing Classes - 35

Building a Class

- Suppose you wanted to create a class called Loan representing a loan account with a balance, interest, and maximum loan amount
 - The balance starts at 0
 - The interest is 0.05 unless set otherwise
 - There are two loan acct types: employees, customers
 - Employees can borrow up to \$100,000
 - Customers can borrow up to \$10,000
- Create the empty class (then <u>save and compile</u>)

```
public class Loan {
```


Building a Class: Variables

- Add instance variables to the class. Take another look at the class description:
 - Suppose you wanted to create a class called Loan representing a loan with a balance, interest, and maximum loan amount
 - The balance starts at 0
 - The interest is 0.05 unless set otherwise
 - There are two loan acct types: employees, customers
 - Employees can borrow up to \$100,000
 - Customers can borrow up to \$10,000

```
// Fields - instance variables
private double balance = 0;
private double interestRate;
private double maxLoanAmount;
```


Writing Classes - 37

Building a Class: Constants

- Look for values that could be represented as constants:
 - The interest rate is 0.05 unless set to another nonnegative value
 - There are two loan acct types: employees and customers
 - Employees can borrow up to \$100,000
 - Customers can borrow up to \$10,000

The default interest rate and maximum loan amounts will be important for the class, but won't be needed by client programs. Therefore, the constants are private.

```
// Fields - Constants
private static final double DEFAULT_INTEREST = 0.05;
private static final double CUSTOMER_MAX = 100000;
private static final double EMPLOYEE MAX = 100000;
```


Building a Class: Constants

- Look for values that could be represented as constants:
 - The interest is 0.05 unless set otherwise
 - There are two loan types: employees and customers
 - Employees can borrow up to \$100,000
 - Customers can borrow up to \$10,000

The loan acct type (customer or employee) will be set in the constructor using an int value. It would therefore be useful to provide constants for the client program:

```
public static final int EMPLOYEE_ACCOUNT = 0;
public static final int CUSTOMER ACCOUNT = 1;
```


Writing Classes - 39

Building a Class: Constructor

- The constructor for the Loan class should take an int parameter representing the type of loan (employee or customer)
- Create an empty constructor; you will fill in the code later:

```
public class Loan {
   /* ... Fields go here ... */
   public Loan(int accountType) {
     }
}
```

COGE

Building a Class: Methods

- Create a skeleton (stub) method for each of the following methods, or if simple, just complete the method:
 - A 'getter' method for the balance returns a double:

```
public double getBalance() {
   return balance;
}
```

 A 'setter' method for the interest rate (a double) that returns true and sets the interest only if the interest is non-negative:

```
public boolean setInterestRate(double interestRateIn) {
   return false;
}
```


Writing Classes - 41

Building a Class: Methods

- Create a skeleton (or stub) method for each of the following additional methods:
 - borrow: if amount to be added to loan will be less than the max loan, adds an additional amount to the loan and returns true; otherwise does not add the amount and returns false.

```
public boolean borrow(double amount) {
   return false;
}
```

 totalBalance: returns a double representing the loan amount with the interest added.

```
public double totalBalance() {
   return 0.0;
}
```


Building a Class

- You can now compile your program with empty methods. See the <u>Loan class in</u> <u>examples/method stubs</u> for an example.
- This is the point where you could submit your project to a Skeleton Code assignment in Web-CAT, if there is one.
 - A Skeleton Code assignment is intended to check class and method names as well method return types and parameters; correctness is <u>not</u> checked.

Writing Classes - 43

Building a Class: Constructor

• The constructor should set the interest rate to the default interest and then set the maximum loan amount based on the parameter.

```
public Loan(int accountType) {
    interestRate = DEFAULT_INTEREST;
    if (accountType == EMPLOYEE_ACCOUNT) {
        maxLoanAmount = EMPLOYEE_MAX;
    }
    else {
        maxLoanAmount = CUSTOMER_MAX;
        - }
}
```

COGE

Building a Class: Constructor

 To test your constructor, instantiate objects in the interactions pane and check the values of the instance variables in the workbench.

Loan customer = new Loan(Loan.CUSTOMER ACCOUNT); Loan empl = new Loan(Loan.EMPLOYEE ACCOUNT); **₽** customer Loan balance 0.0 balance 0.0 interestRate 0.05 interestRate 0.05 10000.0 maxLoanAmount maxLoanAmount 100000.0

Writing Classes - 45

Building a Class: Methods

- You can now consider the getBalance method and setInterest method.
 - In general, get methods will not change the state of the object, but will only return a value. [recall, we already completed it]
 - Set methods will often have a boolean return type to indicate if the inputs are valid and the method actually "set" the field.
 - Test each one of your methods as you create them. You can view each method's effect on instance variables using interactions and the workbench.

Building a Class: Testing

 Example: Test both the function and the return of the setInterest method (workbench and interactions).

```
Loan loanObj = new Loan(Loan.CUSTOMER_ACCOUNT);
loanObj.setInterestRate(-1)
false
loanObj.setInterestRate(2)
true
loanObj.setInterestRate(0.5)
true
```

See the completed Loan class in Loan.java

Writing Classes - 47

Repeated Code

- In general, you do not want to repeat code for calculations in your program
 - The toString method should return a string that includes the total balance.
 - Make a call to the method that performs the calculation (rather than repeat the code for the calculation)

COGE

Driver Program

- The Loan class is not intended to be run as an application (i.e., no main method), but rather it is intended to be used by another program.
- In this case, we might want to create a driver program that allows the user to set up a loan, borrow an amount, and then displays the loan information.
- See <u>LoanCalculator.java</u> for an example of a driver program for the Loan class.

Writing Classes - 49

Summary

- Objectives you should now be familiar with:
 - Anatomy of a class: state and behaviors
 - Constructors
 - UML class diagrams
 - Encapsulation
 - Anatomy of a method: Parameters, Local data
 - Constant fields (public and private)
 - Invoking methods in the same class
 - Building a class incrementally
 - Testing a class in Interactions
 - Writing a driver program

These important OOP concepts allow programs to consist of multiple classes: a driver class with a main method and one or more classes that define objects that will be used in the program.

