LEAN 4 CHEATSHEET

If a tactic is not recognized, write import Mathlib.Tactic at the top of your file.

Logical symbol	Appears in goal	Appears in hypothesis
\forall (for all)	intro x	apply h or specialize h x
\rightarrow (implies)	intro h	apply h or specialize h1 h2
$\neg \text{ (not)}$	intro h	apply h or contradiction
\leftrightarrow (if and only if)	constructor	rw [h] or rw [← h] or apply h.mp or apply h.mpr
\land (and)	constructor	rcases h with <h1, h2=""></h1,>
\exists (there exists)	use x	rcases h with $\langle x, hx \rangle$
∨ (or)	left or right	rcases h with h h
a = b (equality)	rfl (if b is a)	rw [h] or rw [\leftarrow h] or subst h (if b is a variable)

Tactic	Effect
exact expr	prove the current goal exactly by expr.
apply expr	prove the current goal by applying $expr$ to some arguments.
refine expr	like exact, but $expr$ can contain sub-expressions?_ that will be turne into new goals.
convert expr	prove the goal by showing that it is equal to the type of $expr$.
have h : $proposition := expr$	add a new hypothesis h of type proposition.
have h : proposition	also creates <i>proposition</i> as a new goal.
by_cases h : proposition	create two goals, one where h is the hypothesis that <i>proposition</i> is true an one where h is the hypothesis where it is false.
exfalso	replace the current goal by False.
by_contra h	start a proof by contradiction, where h is the hypothesis that the current goal is false.
<pre>push_neg push_neg at h</pre>	push negations into quantifiers and connectives in the goal (or in h) e.g. change $\neg \forall x$, $P x$ to $\exists x$, $\neg P x$.
symm	swap a symmetric relation.
trans expr	split a transitive relation into two parts with $expr$ in the middle.
congr	prove an equality using congruence rules.
gcongr	prove an inequality using congruence rules.
rw [expr]	in the goal, replace (all occurrences of) the left-hand side of $expr$ by it right-hand side. $expr$ must be an equality or if and only if statement.
rw [$\leftarrow expr$]	\dots rewrites using $expr$ from right-to-left.
rw [expr] at h	rewrite in hypothesis h.
simp	simplify the goal using all lemmas tagged <code>@[simp]</code> and basic reductions.
simp at h	simplify in hypothesis h.
simp [*, expr]	\dots also simplify with all hypotheses and $expr$.
simp only [expr]	\dots do not simplify with all standard lemmas, only with $expr$.
simp?	\dots generate a simp only [] tactic that applies the same simplifications.
$simp_rw [expr1, expr2]$	like rw, but uses simp only at each step.
exact?	search for a single lemma that closes the goal using the current hypotheses
apply?	gives a list of lemmas that can apply to the current goal.
rw?	gives a list of lemmas that can be used to rewrite the current goal.
linarith	prove linear (in)equalities from the hypotheses.
ring / noncomm_ring abel / group	prove the goal by using the axioms of a commutative ring $/$ ring $/$ abelia group $/$ group.
aesop	simplify the goal, and use various techniques to prove the goal.
tauto	prove certain goals using first-order logic.