Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики УЧЕБНЫЙ ПЕНТР ОБШЕЙ ФИЗИКИ ФТФ

Farance M22101	V
Группа: М32101	К работе допущен: .
Студент: Косовец Роман	Работа выполнена:
Преподаватель:	Отчет принят:

Рабочий протокол и отчет по лабораторной работе № 3.07. «Изучение свойств ферромагнетика»

1. Цель работы:

Изучение свойств ферромагнетика.

2. Задачи, решаемые при выполнении работы:

- 1) Изучение зависимости магнитной индукции в ферромагнетике от напряженности магнитного поля B = B(H)
- 2) Определение по предельной петле гистерезиса индукции насыщения и остаточной индукциии коэрцитивной силы
- 3) Получение зависимости магнитной проницаемости от напряженности магнитного поля $\mu = \mu(H)$ и оценка максимального значения величины магнитной проницаемости
- 4)Расчет мощности потерь энергии в ферромагнетике в процессе его перемагничивания

3. Объект исследования:

Ферромагнетик

4. Метод экспериментального исследования:

Изменение напряженности магнитного поля

5. Рабочие формулы и исходные данные:

- 1) Коэффициент α : $\alpha = \frac{N_1}{l R_1}$
- 2) Коэффициент β : $\beta = \frac{R_2 \cdot C_1}{N_2 \cdot S}$ 3) Магнитная проницаемость μ : $\mu = \frac{B_m}{\mu_0 \cdot H_m}$ 4) Коэффициент χ : $\chi = K_x \cdot K_y \cdot \frac{N_1 R_2 C_1}{N_2 R_1} \cdot f$
- 5) Остаточная индукция B: $B = \beta * K_y * Y$
- 6) Коэрцитивная сила $H: H = \alpha * K_x * X$
- 7) Средняя мощность P, расходуемая на перемагничивание образца $P: P = \chi *$

6. Измерительные приборы:

Рис. 4. Общий вид лабораторной установки

В лабораторной работе в качестве образца для изучения магнитных свойств трансформатора, ферромагнитного материала выбран сердечник лабораторном Объект измерений размещенного стенде. имеет на прямоугольную форму с прямоугольным же поперечным сечением.

Сердечник трансформатора

Параметры	установки	Параметры трансформатора		
R_1	68 Ом	S	0,64 см ²	
R_2	470 кОм	L	7,8 см	
C_1	0,47 мкФ	N_1	1665 вит	
		N_2	970 вит	

7. Результаты прямых измерений и их обработка:

В первой таблице мы измерили координаты Xc и Yr пересечения петли гистерезиса с осями координат. Также коэффициенты α и β . Определили коэрцитивную силу Hc и остаточную индукцию Br.

Таблица 1

X_c , дел.	Y_r , дел.	H_c , A/M	B_r , Тл
1,00	1,00 0,70		0,12

Во второй таблице мы измерили координаты Xm и Ym вершины петли гистерезиса. Нашли соответствующие Hm и Bm и определили значение магнитной проницаемости μ .

Таблица 2

X _m , дел.	Y _m , дел.	H_m , A/M	Вт, Тл	μ_{m}
2,80	3,60	87,89	0,64	6072

Таблица 3

U,	Χ,	K_{x} ,	<i>H</i> , А/м	Υ,	K_y , B /дел	В ,Тл	μ
В	дел	В/дел		дел			
20	2,80	0,10	87,89	3,60	0,05	0,64	5798,80
19	2,60	0,10	81,61	3,20	0,05	0,57	5550,99
18	2,50	0,10	78,47	3,00	0,05	0,53	5412,21
17	2,40	0,10	75,33	2,80	0,05	0,50	5261,87
16	2,20	0,10	69,06	2,50	0,05	0,44	5125,20
15	2,10	0,10	65,92	2,30	0,05	0,41	4939,72
14	2,00	0,10	62,78	2,00	0,05	0,36	4510,18
13	1,90	0,10	59,64	1,90	0,05	0,34	4510,18
12	1,70	0,10	53,36	1,60	0,05	0,28	4244,87
11	1,50	0,10	47,08	3,00	0,02	0,21	3608,14
10	2,80	0,05	43,94	2,90	0,02	0,21	3737,00
9	2,60	0,05	40,80	2,50	0,02	0,18	3469,37
8	2,50	0,05	39,23	2,20	0,02	0,16	3175,16
7	2,40	0,05	37,66	2,00	0,02	0,14	3006,78
6	2,30	0,05	36,10	1,80	0,02	0,13	2823,76
5	2,10	0,05	32,96	1,50	0,02	0,11	2577,24

8. Расчет результатов косвенных измерений:

1) Расчет коэффициента α :

$$\alpha = \frac{N_1}{l*R_1} = \frac{1665}{0.078*68} = 313.91 \frac{1}{M*0M}$$

2) Расчет коэффициента β :

$$\beta = \frac{R_2 * C_1}{N_2 * S} = \frac{470000 * 0,47 * 10^{-6}}{970 * 0,64 * 10^{-4}} = 3,558 \frac{\text{Om} * \Phi}{\text{M}^2}$$

3) Расчет коэрцитивной силы H_c :

$$H_c = \alpha * K_x * X_c = 313,91 * 0,10 * 1,00 = 31,39 \text{ A/m}$$

4) Расчет остаточной индукции B_r :

$$B_r = \beta * K_y * Y_r = 3,558 * 0,05 * 0,70 = 0,12 Тл$$

5) Расчет коэрцитивной силы H_m :

$$H_m = \alpha * K_x * X_m = 313,91 * 0,10 * 2,80 = 87,89 \text{ A/M}$$

6) Расчет остаточной индукции B_m :

$$B_m = \beta * K_y * Y_m = 3,558 * 0,05 * 3,60 = 0,64 T_{\pi}$$

7) Расчёт магнитной проницаемости μ :

$$\mu = \frac{B_m}{\mu_0 * H_m} = \frac{0.64}{4\pi * 10^{-7} * 87.89} = 6072.48 = 6072$$

8) Расчет площади петли гистерезиса $S_{\rm mr}$:

$$S_{\pi r} = 5,5$$
 дел²

9) Расчет коэффициента χ:

$$\chi = K_x K_y * \frac{N_1 * R_2 C_1}{N_2 R_1} * f = 0.10 * 0.05 * \frac{1665 \cdot 470000 \cdot 0.47 * 10^{-6}}{970 * 68} * \frac{1}{2} = 1.394 * 10^{-6} Дж/с$$

10) Расчёт средней мощности P, расходуемой на перемагничивание образца:

$$P = \chi \cdot S_{\text{nr}} = 1,394 * 10^{-6} \cdot 5,5 = 7,667 * 10^{-6} \text{ BT}$$

9. Графики

10.Окончательные результаты:

1) Коэрцитивная сила: $H_m = 87,89 \, \text{A/}_{\text{M}}$

Остаточная индукция: $B_m = 0.64 \, T$ л

Магнитная проницаемость: $\mu = 6072$

- **2**) Мощность потерь на перемагничивание: $P = 7,667 * 10^{-6}$ Вт
- 3) Построены графики зависимостей $B_m = B_m(H_m)$ и $\mu = \mu(H_m)$

- **4**) Максимальное значение магнитной проницаемости: $\mu_{max} = 5798$
- **5**) Напряженность: H = 87,89 А/м

11.Вывод:

В ходе выполнения данной лабораторной работы были рассчитаны коэрцитивная сила, остаточная индукция и магнитная проницаемость, а также построены графики следующих зависимостей: $B_m = B_m(H_m)$ и $\mu = \mu(H_m)$. Кроме того, были рассчитаны мощность потерь на перемагничивание ферромагнетика и максимальное значение проницаемости.