In this post, we first discuss two methods of how we can get new holomorphic functions out of old ones. The first method is via a parameter integral:

Proposition 1. Suppose that we have a piecewise C^1 curve $\gamma:[a,b]\to\mathbb{C}$ and a continuous function $F:im(\gamma)\times U\to\mathbb{C}$ with $U\subset\mathbb{C}$ open. Suppose further that for every $w_0\in im(\gamma)$ the function $z\mapsto F(w_0,z)$ on U is complex differentiable and that the function $(w,z)\mapsto \partial_z F(w,z)$ is continuous. Then the function

$$G: U \to \mathbb{C}, z \mapsto \int_{\gamma} F(w, z) dw$$

is also complex differentiable with $G'(z) = \int_{\gamma} \partial_z F(w, z) dw$.

Proof. Let z be in U. Since F is continuous, we have that for every disc D = D(0,r) with center zero for which $D+z \subset U$ is relatively compact, the function

$$\psi(w,h) := \begin{cases} F(w,z+h) - F(w,z)/h & \text{for } h \neq 0 \\ \partial_z F(w,z) & \text{for } h = 0 \end{cases}$$

is uniformly continuous on $\operatorname{im}(\gamma) \times D$. So integrating $\psi(w,h)$ along γ and letting $h \to 0$, we get the assertion of our proposition.

As a second method we now show that we may get holomorphic functions out of locally uniformly convergent series of holomorphic functions:

Proposition 2. Suppose we have a sequence $(f_n)_{n\geq 0}$ of holomorphic functions $U\subset \mathbb{C}\to \mathbb{C}$. Then, if the infinite series $\sum_{n=0}^{\infty}f_n$ converges locally uniformly on U to the function $f:U\to \mathbb{C}$, then f itself is holomorphic and we have that $f^{(n)}$ is given by the infinite series $\sum_{k=0}^{\infty}f_k^{(n)}$, which is also locally uniformly convergent.

Proof. First note that since $f = \sum f_k$ is locally uniformly convergent and the f_k are in particular continuous, f must be continuous (proof is left to the reader). Let $D \subset U$ be a relatively compact disc of radius > 0 with positively oriented boundary ∂D , then (f_k) converges on D uniformly. By definition this means that given $\epsilon > 0$, there is an integer N such that

$$|f(z) - \sum_{k \le m} f_k(z)| < \epsilon$$

for all $m \geq N$ and $z \in D$. Choosing $n \geq 0$ and letting

$$F_n(z) := \frac{n!}{2\pi i} \int_{\partial D} \frac{f(w)}{(w-z)^{n+1}} dw,$$

which is of course holomorphic on D by Proposition 1, then for every compact subset K of D and every z in K

$$\left| F_n(z) - \sum_{k \le m} f^{(n)}(z) \right| \le \frac{n!}{2\pi} \int_{\partial D} \left| \frac{f(w) - \sum_{k \le m} f_k(w)}{(w - z)^{n+1}} \right| dw \le C_n \cdot \epsilon,$$

where $C_n = n! \operatorname{length}(\partial D) / 2\pi \operatorname{dist}(K, \partial D)^{n+1} > 0$ with

$$dist(K, \partial D) := \inf\{|z_1 - z_2| : z_1 \in K, z_2 \in \partial D\} > 0$$

and where we have used Cauchy's integral formula for the n-th derivative of a holomorphic function. Now, since D, ϵ and K were chosen arbitrary, we see for all n that $F_n = \sum f_k^{(n)}$ locally uniformly, but since $F_0 = f$ by assumption, we have that f is holomorphic and that $F_n = f^{(n)}$ for all $n \geq 0$.

We will now look at complex power series. Given a point z_0 in the complex plane, then a *complex power series in z around* z_0 is an infinite series

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n,$$

where the numbers a_n are in \mathbb{C} . Recall that for a sequence $(b_n)_{n\geq 0}$ of real numbers one defines the *limes superior*, written $\overline{\lim}_{n\geq 0}b_n$, to be

$$\lim_{n\to\infty} \sup_k \{b_k : k \ge n\}$$

which, being the limes of a monotonically decreasing sequence, is a unique element in $[-\infty,\infty]$. To f above we may associate a unique element R out of $[0,\infty]$ given by R=1/L, where $L=\overline{\lim}_{n\geq 0}\sqrt[n]{|a_n|}$. R is called the *convergence radius* of f. Furthermore, the open disc $D=D(z_0,R)$ around z_0 of radius R will be called the *(open) disc of convergence* of f. The names we gave R and D are justified by the following well known result on power series:

Theorem 3. Let $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ be a complex power series with convergence radius R. Let further $D = D(z_0, R)$ be the disc of convergence of f. Then f converges absolutely and locally uniformly on D. It may converge at points on the boundary ∂D of D and it diverges outside the closure \overline{D} of D.

$$Proof.$$
 (omitted)

Let us give two more facts about complex power series which we will use below:

Proposition 4. Let $f(z) = \sum a_n(z-z_0)^n$ be a complex power series. Then the following hold:

- 1. f restricted to its disc of convergence gives a holomorphic function.
- 2. Let $g(z) = \sum b_n (z z_0)^n$ be a second complex power series, and assume that both f and g have a positive radius of convergence. Suppose further that for a sequence $(w_k)_{k\geq 0}$ of points in $\mathbb{C} \{z_0\}$ which converges to z_0 we have $f(w_k) = g(w_k)$ for almost all $k \geq 0$, then $a_n = b_n$ for all $n \geq 0$.

Proof. Assertion 1. follows directly from Proposition 2 where we let $f_n(z) = a_n(z-z_0)^n$. For assertion 2., note first that $\lim f(w_k) = f(z_0) = g(z_0) = \lim g(w_k)$, i.e. we have $a_0 = b_0$. Assuming now that $a_k = b_k$ for k = 0, 1, 2, ..., n for some $n \geq 0$, then the function

$$F(z) := \frac{f(z) - g(z)}{(z - z_0)^{n+1}}$$

is locally continuous around z_0 and we have $F(w_k) = 0$ for almost all k. So we have $\lim F(w_k) = 0$, i.e. $a_{n+1} = b_{n+1}$. By induction 2. follows.

Having introduced complex power series, we may now formulate another characterization of a function being holomorphic.

Theorem 5. A function $f: U \subset \mathbb{C} \to \mathbb{C}$ is holomorphic iff at every point z_0 in U and for every R > 0 such that the closure of $D(z_0, R)$ lies in U, we have that f restricted to $D(z_0, R)$ is a complex power series around z_0 with a convergence radius larger than R.

Proof. " \Rightarrow ": Suppose f is holomorphic, then by Corollary 3 of our last post, f is infinitely many times complex differentiable. So given z_0 in U, we may consider the (formal) power series

$$F(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n.$$

Using the integral representation of $f^{(n)}(z_0)/n!$ from Corollary 3, then for every $D = D(z_0, R)$ whose closure lies in U, we have

$$\left| \frac{f^{(n)}(z_0)}{n!} \right| = \left| \frac{1}{2\pi i} \int_{\partial D} \frac{f(z)}{(z - z_0)^{n+1}} dz \right| \le \frac{1}{2\pi} \cdot 2\pi R \cdot C \cdot R^{-(n+1)} = C/R^n.$$

where $C = \sup_{z \in D} |f(z)|$. From this we get $\overline{\lim}_{n \geq 0} \sqrt[n]{\left|\frac{f^{(n)}(z_0)}{n!}\right|} \leq 1/R$, using that for a positive constant c we have $\sqrt[n]{c} \to 1$ as $n \to \infty$. Since we may make

D a little larger by slightly increasing R and have that the closure still stays in U, we see that f restricted to D is a complex power series around z_0 with convergence radius greater than R.

" \Leftarrow ": Since at every point z_0 the function f a complex power series with positive convergence radius, it is holomorphic there. So f itself is holomorphic.

Let us now end this post with a remarkable fact about holomorphic functions. We say that an open subset G of \mathbb{C} is a region ("Gebiet" in german) iff it cannot be written as a union of two non-empty and disjoint open sets. Then the following holds:

Theorem 6. (Analytic continuation) Given two holomorphic functions $f, g : G \subset \mathbb{C} \to \mathbb{C}$, where G is a region in \mathbb{C} . Suppose that f(z) = g(z) on a sequence of distinct points with limit point in G. Then f(z) = g(z) throughout G.

Proof. Combining Theorem 5 and Proposition 4. (2.), we see that f and g agree on a small open disc $D \subset G$ of positive radius.

We let $U_1:=D$ and for $n\geq 1$ build the set U_{n+1} out of U_n as the union of all relatively compact open discs in G whose centers are in U_n . Then obviously for all $n\geq 1$ we have $U_n\subset U_{n+1}\subset G$, U_n is open and we have f(z)=g(z) on U_n by using Theorem 5 and Proposition 4. (2.). We let V be the open subset $\cup_{n\geq 1}U_n$ of G and let V':=G-V. Suppose now there was a z_0 in V' which was a boundary point of V. Then we would have that very close to z_0 there was a point w_0 in one of the sets U_n for which a relatively compact disc in G with center w_0 existed which contained z_0 , i.e. then $z_0\in U_{n+1}\subset V$, a contradiction. So V' contains no boundary point of V and must therefore be open since G is open. But since $G=V\cup V'$ is a region and $V\neq\emptyset$, we must have $V'=\emptyset$, which concludes our proof.