

SERVICE-DOCUMENTATIE

ontvangtoestel

KY 485

voor wisselstroom

SERVICE-DOCUMENTATIE

ontvangtoestel

KY 485

voor wisselstroom

I. ALGEMENE GEGEVENS

a. Golfbereiken: korte golf: 15. middengolf: 185

lange golf:

730—2050 m

b. Lampen: ECH 21 — menglamp-oscillator

ECH 21 - m.f. versterker - l.f. versterker

EBL 21 — eindlamp

AZ 1 — plaatstroomlamp

c. Kringen: Afgestemde h.f. kringen: 1

Afgestemde m.f. kringen: 2 + 2

- d. Middenfrequentie: 452 kp/sec nominaal.
- e. Gevoeligheid: Beter dan 35 4V.
- f. Uitgangsenergie: 2,8 W bij 10 % vervorming, gemeten bij 400 p/sec.
- g. MF Selectiviteit. Deze wordt uitgedrukt door twee grootheden, nl. B 1.6, zijnde de bandbreedte voor 1,6-voudig signaal en S9, zijnde de factor van gevoeligheidsvermindering bij een verstemming van 9 kp/sec. B 1.6 = 5 pk/sec; S9 = 60.
- h. Netspanningen: Het toestel kan worden omgeschakeld voor gebruik bij de volgende netspanningen: 110, 125 en 220 V.
- i. Bedieningsorganen: Linker zijkant: toonschakelaar; links voorkant: volumeregelaar-netschakelaar; rechts voorkant: afstemming; rechter zijkant: golfbereikschakelaar.
- j. Afmetingen: Breedte 410 mm.

Hoogte 250 mm.

Diepte 178 mm.

De afmetingen van de normale verpakking bedragen:

ca. $520 \times 325 \times 250$ mm.

k. Gewicht: Het netto-gewicht bedraagt ca. 6,5 kg;

het bruto-gewicht is 9,0 kg.

II. BESCHRIJVING VAN DE SCHAKELING

Schakeling en opbouw van de KY 485 zijn aangegeven in de fig. 1, 2, 3 en 4, waarvan fig. 1 het principeschema voorstelt, fig. 2 de opstelling van de onderdelen en fig. 3 en 4 het bedradingsschema.

1. Meng- en oscillatorgedeelte.

De ingangskring van de mengtrap bevat een afgestemde roosterkring, die inductief met de antennekring is gekoppeld. De antenne wordt over de condensator C_{27} met de resp. koppelspoelen verbonden. Teneinde de via de antenne eventueel binnendringende trillingen van de middenfrequentie onschadelijk te maken, is een filter, bestaande uit de serieschakeling van de spoel S_{10} en de condensator C_1 , aangebracht, dat in elke stand van de golfbereikschakelaar parallel aan de in gebruik zijnde koppelspoel staat.

Voor k.g. ontvangst wordt de afgestemde roosterkring gevormd door de spoel S_{11} en de condensatoren C_6 en C_{13} , waarvan C_6 de afstemcondensator is en C_{13} de trimmer. De antenne is dan door middel van de spoel S_{13} met de roosterkring gekoppeld.

In de volgende stand van de schakelaar (die dan 90° verder is gedraaid, zodat in fig. 1 ook alle contacten over een rechte hoek opgeschoven moeten worden gedacht) is de op m.g. afgestemde roosterkring ingeschakeld. Deze bestaat uit de spoel S₁₂ en de condensatoren C₄ en C₆, waarvan C₄ een trimmer is. In dit geval is de spoel S₁₄ als koppelspoel ingeschakeld.

Voor l.g. ontvangst, waarbij de schakelaar nogmaals 90° verder is gedraaid, wordt de afgestemde roosterkring gevormd door de spoel S₂₂ en de condensatoren C₅ en C₆, waarvan C₅ een trimmer is. In deze stand is de koppelspoel S₂₄ ingeschakeld.

De afgestemde roosterkringen zijn telkenmale over de condensator C_7 met het eerste stuurrooster van het hexode-gedeelte van de menglamp L_1 verbonden. De vaste, zowel als de variabele negatieve roosterspanning voor de AVC, wordt over de weerstand R_1 aan het rooster toegevoerd.

De oscillatorspanning wordt opgewekt door middel van het triodegedeelte van de menglamp L_1 . De anodespanning van deze triode wordt toegevoerd over de weerstand R_3 ; de anode is met de resp. oscillatorafstemkringen gekoppeld over de condensator C_{10} . De terugkoppelspoelen bevinden zich in de roosterkring van de triode en zijn met het rooster gekoppeld over de condensator C_9 . De negatieve roosterspanning van de oscillatortriode wordt over de lekweerstand R_2 ontwikkeld.

Voor k.g. ontvangst wordt de oscillatorafstemkring gevormd door de spoel S_{23} , de trimmer C_3 en de afstemcondensator C_{11} . Het terugkoppelstelsel bevat de spoelen S_{21} en S_{25} en de condensator C_{12} . De terugkoppelspoelen werken elkaar tegen, maar de mate van tegenwerking is door de aanwezigheid van de condensator C_{12} afhankelijk van de frequentie. Een en ander is zodanig afgeregeld, dat het genereren van voldoend sterke trillingen over het gehele

k.g. bereik gewaarborgd is. Bovendien vervult de condensator C₁₂ nog de functie van instelcondensator voor de gelijkloop.

Voor m.g. ontvangst bestaat de oscillatorafstemkring uit de spoel S_{31} , de afstemcondensator C_{11} , de trimmer C_{14} en de padder C_{15} . (Denk er aan, dat ook hier de schakelaar in stappen van 90° draait!). De terugkoppeling vindt plaats door middel van de spoel S_{33} .

Voor l.g. ontvangst bestaat de oscillatorafstemkring uit de spoel S_{32} , de afstemcondensator C_{11} , de trimmer C_{17} met C_{18} parallel, waarvan C_{17} instelbaar en de padder C_{16} is. De terugkoppeling wordt bewerkstelligd door de spoel S_{34} .

2. Het middenfrequentgedeelte.

De anodekring van het hexode-gedeelte van de menglamp L_1 is door middel van de m.f. transformator, gevormd door de spoelen S_{41} , S_{42} en S_{43} en de condensatoren C_{19} en C_{20} , gekoppeld met het rooster van het hexodegedeelte van de lamp L_2 , welk gedeelte gebruikt wordt als m.f. versterker.

De vaste, zowel als de variabele negatieve roosterspanning voor de AVC, wordt over de weerstand R₄ aan de roosterkring toegevoerd.

De anodekring van de m.f. versterkerlamp (d.i. het hexode-gedeelte van de lamp L_2) is door middel van een bandfilter, bestaande uit de spoelen S_{51} , S_{52} , S_{53} en S_{54} en de condensatoren C_{21} en C_{23} , gekoppeld met de detectordiode en de AVC-diode, die zich beide in de eindversterkerlamp L_3 bevinden.

3. Het detector- en AVC-gedeelte.

De signaaldiode, die afgetakt is van het verbindingspunt van de spoelen $S_{5:i}$ en $S_{5:4}$ is belast met de weerstanden $R_{2:0}$ en R_{5} (volumeregelaar); de condensator $C_{i:0}$ dient voor het afleiden van de m.f. trillingen. De volumeregelaar is via de tegenkoppelingswikkeling $S_{6:1}$ van de uitgangstransformator geaard.

Parallel aan de volumeregelaar staan de weerstand R_6 in serie met de condensator C_{25} en de weerstand R_7 in serie met de condensator C_{26} . De eerste combinatie (R_6 - C_{25}) dient er voor om bij het regelen van het volume op de gewenste sterkte automatisch de frequentie-karakteristiek op de eigenschappen van het gehoor aan te passen (physiologische volumeregeling). De tweede combinatie (R_7 - C_{26}) dient er voor om de tegenkoppeling het gewenste frequentie-verloop te geven.

De AVC-diode is over de condensator C_{22} afgetakt van het verbindingspunt van de spoelen S_{51} en S_{52} . De regelspanning wordt over de weerstand R_{13} ontwikkeld en via de weerstand R_4 , ontkoppeld door de condensator C_8 toegevoerd aan de menglamp en de m.f. versterkerlamp. De vertragingsspanning wordt afgetakt van de potentiometer R_{14} - R_{16} , waarop ook de negatieve roosterspanning van de l.f. versterkerlamp wordt afgenomen, en is ontkoppeld door de condensator C_{33} . Genoemde potentiometer staat parallel aan de combinatie R_{15} - C_{32} voor het opwekken van de negatieve roosterspanning voor de eindlamp.

4. Het laagfrequentgedeelte.

Het laagfrequentgedeelte bevat het triodegedeelte van de lamp L_2 en de eindversterkerlamp L_3 . De l.f. spanning wordt uit de kring van de signaaldiode afgenomen over de variabele aftakking op de weerstand R_5 (volumeregelaar) en wordt over de condensator C_{24} en de weerstand R_{10} toegevoerd aan het rooster van het triode-gedeelte van de lamp L_2 . Dit gedeelte krijgt negatieve roosterspanning toegevoerd over de weerstand R_8 .

Over de weerstand R_{10} wordt in de stand van de kwaliteitschakelaar, waarin de hoge tonen verzwakt worden doorgelaten, via de condensator C_{28} een extra tegenkoppelingsspanning toegevoerd. Onder invloed van de condensator C_{28} is deze tegenkoppelingsspanning groter voor hoge dan voor lage tonen.

De anodevoeding van het triodegedeelte van L₂ vindt plaats over de weerstand R₉. De condensator C₈₉ dient voor de afleiding van eventueel in de l.f. versterker doordringende m.f. trillingen.

De versterkte l.f. spanning wordt over de condensator C_{20} naar het rooster van de eindlamp L_3 gevoerd. Deze lamp krijgt de negatieve roosterspanning toegevoerd over de weerstand R_{11} .

In de anodekring van de eindlamp ligt de primaire wikkeling van de uitgangstransformator, bestaande uit de spoelen S_{6:3} en S_{6:4}. Aan de laatste spoel wordt uit het voedingsgedeelte een kleine wisselspanning toegevoerd, die de nog resterende bromspanning uit het toestel tegenwerkt en op die manier onwerkzaam maakt. De condensator C_{6:1} verhindert, dat de hoge tonen relatief te sterk worden weergegeven.

De secundaire wikkeling van de uitgangstransformator, bestaande uit de spoelen S_{61} en S_{62} is belast met de luidsprekerspoel S_{80} . Van de spoel S_{62} wordt de tegenkoppelspanning afgenomen (zie boven, paragraaf 3).

Bij inschakeling van de gramofoonopnemer wordt in de kring van de signaaldiode de verbinding tussen de weerstanden R_5 en R_{20} verbroken. Daardoor komt de opnemer parallel aan de volumeregelaar en de daarmede verbonden tegenkoppelingsschakeling. Volumeregelaar en tooncorrectie blijven dus bij gramofoonweergave volledig ingeschakeld.

5. Het voedingsgedeelte.

De voedingstransformator bestaat uit de primaire wikkelingen S₇₅, S₇₆ en S₇₇, die aansluiting op verschillende netspanningen mogelijk maken.

De gelijkrichtlamp L_4 wordt gevoed door de gloeistroomwikkeling S_{73} en de anodespanningswikkelingen S_{71} en S_{72} . De gelijkgerichte spanning wordt afgevlakt door middel van de condensatoren (C_{36} t/m C_{38} en de weerstand R_{19} . Diverse verschillende spanningen worden over serieweerstanden (R_{17} , R_{18}), ontkoppeld door condensatoren (C_{34} , C_{35}), afgenomen. Over de weerstand R_{15} , ontkoppeld door de condensator C_{32} , wordt de negatieve roosterspanning voor de eindlamp ontwikkeld. Door middel van de potentio-

meter R₁₄-R₁₆ worden de negatieve roosterspanningen voor de andere lampen hiervan afgetakt.

III. HET AFREGELEN VAN HET TOESTEL

Voor het afregelen van de ontvanger is het nodig het chassis uit de kast te nemen. Na het verwijderen van de achterwand en het uittrekken van de knoppen is dit mogelijk door het losdraaien en verwijderen van de vier bodemschroeven. Behalve de luidspreker welke via een snoer met het chassis verbonden blijft zijn alle overige onderdelen op het chassis bevestigd.

De te gebruiken instrumenten en gereedschappen zijn: Meetzender (gemoduleerd met toon 400 p/sec.); outputmeter; trimmal; kunstantenne; blokcondensator 39000 pF; blokcondensator 80 pF en eventueel een gelijkstroommicro-ampèremeter van 500 of 1000 µA volle uitslag.

Het afregelen moet plaats vinden nadat het toestel op temperatuur is gekomen, dus ca. 10 minuten na inschakelen.

A. AFREGELEN VAN DE M.F. KRINGEN

Het tweede m.f. filter (S₅₁, S₅₂, S₅₃, S₅₄) is door de fabriek vast ingesteld; het eerste m.f. filter moet daarom worden afgeregeld op de frequentie van het tweede.

- 1. Apparaat aarden en op middengolf schakelen.
- Volumeregelaar op maximum instellen; toonschakelaar op normaal (dit betekent: toon zo hoog mogelijk; afstemcondensator op maximum draaien.
- 3. Outputmeter met extra luidsprekerklemmen verbinden.
- 4. Gemoduleerd signaal van 452 kp/sec via condensator van 39000 pF op het stuurrooster van de m.f. versterkerlamp zetten (rooster g₁ van het hexode-gedeelte van de lamp L₂).
- Meetzender bijstemmen tot maximale output wordt verkregen. De frequentie waarop de meetzender dan staat ingesteld is de juiste middenfrequentie van het 2de m.f. bandfilter. Hierop moet het eerste m.f. filter worden afgeregeld.
- Meetzender via condensator van 39000 pF met het stuurrooster van de menglamp verbinden (rooster g₁ van het hexode-gedeelte van de lamp L₁).
- 7. Een condensator van 80 pF parallel aan C10 schakelen.
- 8. Kern van het spoelstel S_{42} verdraaien tot maximum output wordt verkregen.
- Condensator van 80 pF over C₁₉ wegnemen en parallel aan C₂₀ schakelen.
- 10. Kern van de spoel S41 verdraaien tot maximum output wordt verkregen.
- 11. De condensator van 80 pF verwijderen.

B. AFREGELEN VAN DE H.F.- EN OSCILLATORKRINGEN.

Bij het afregelen van de h.f.- en oscillatorkringen wordt de meetzender via de kunstantenne op de antenneklem van het toestel aangesloten. De volumeregelaar wordt op maximum ingesteld. De toonschakelaar in stand normaal geschakeld, dit betekent dat het timbre zo hoog mogelijk wordt gemaakt. De outputmeter wordt met de extra luidsprekerklemmen van het toestel verbonden.

- a. Middengolf-bereik.
- 1. Golfbereikschakelaar op middengolf.
- 2. Trimmal op variable condensator.
- 3. Condensator uitdraaien tot aanslag tegen mal.
- 4. Meetzender instellen op 1550 kp/sec.
- 5. Achtereenvolgens C₁₄ en C₄ bijregelen tot maximum output.
- 6. Meetzender op 550 kp/sec instellen.
- 7. Variable condensator indraaien tot grootste output, daarna C₁₅ veranderen en tegelijkertijd variable condensator bijregelen tot maximum output wordt verkregen.
- 8. Meetzender op 1550 kp/sec instellen.
- 9. Condensator uitdraaien tot aanslag tegen mal.
- 10. C14 bijregelen tot max. output.
- 11. Herhaling van de punten 6 t/m 10.
- 12. Controleren of de schaalwijzer juist staat, eventueel met behulp van meetzender of door luisteren naar bekend station.
- b. Langegolf-bereik.
- 1. Golfbereikschakelaar op lange golf.
- 2. Trimmal op variable condensator.
- 3. Condensator uitdraaien tot aanslag tegen mal.
- 4. Meetzender instellen op 390 kp/sec.
- 5. Achtereenvolgens C₁₇ en C₅ bijregelen tot maximum output.
- 6. Meetzender op 160 kp/sec instellen.
- Variable condensator indraaien tot grootste output, daarna C₁₆ veranderen en tegelijkertijd variable condensator bijregelen tot maximum output wordt verkregen.
- 8. Meetzender op 390 kp/sec instellen.
- 9. Condensator uitdraaien tot aanslag tegen mal.
- 10. C₁₇ bijregelen tot maximum output.
- 11. Herhaling van de punten 6 t/m 10.
- c. Kortegolf-bereik.
- 1. Golfbereikschakelaar op korte golf.
- Micro-ampère-meter aan aardzijde in serie met R₂, dus tussen R₂ en chassis aansluiten.

- C₁₂ zo instellen dat de roosterstroom zo goed mogelijk constant is (ca. 180 μA) bij draaien van de variabele condensator over het gehele bereik, daarna meter verwijderen en R₂ weer met het chassis verbinden.
- 4. Trimmal op variable condensator.
- 5. Condensator uitdraaien tot aanslag tegen mal.
- 6. Meetzender op 18500 kp/sec instellen.
- 7. Achtereenvolgens C₃ en C₁₃ bijregelen tot maximum output. (C₃ op hoogste frequentie afstemmen, dus kleinste waarde van C₃ is de juiste).
- N.B. De punten 2 en 3 kunnen meestal achterwege blijven, daar het onwaarschijnlijk is, dat de door de fabriek ingestelde waarde van C₁₂ naderhand correctie behoeft.

C. AFREGELEN VAN HET M.F. FILTER $(S_{10}-C_1)$.

- 1. Golfbereikschakelaar op lange golf.
- 2. Variable condensator geheel uitdraaien, derhalve geen mal gebruiken.
- 3. Meetzender instellen op de gevonden waarde van de 2e m.f. transformator en via kunstantenne met antenneklem verbinden.
- 4. C1 verdraaien tot minimum output wordt verkregen.

Spanningen en stromen.

	L_1	L_2	L_3	
Va	240	240	260	V
Va (triode)	140	50		V
Vg_2	90	90	240	V
Ia	2,5	6	26	mA
Ia (triode)	4,5	1,5		mA
Ig2	6	4	3,6	mA

De negatieve roosterspanning van de eindlamp bedraagt 6,1 V en wordt over R_{15} gemeten.

De spanning op de electrolytische condensatoren bedraagt: $C_{38} = 280 \text{ V}$, $C_{37} = 240 \text{ V}$.

De spanningen zijn ten opzichte van het chassis gemeten en voorzover het de werkspanningen van de lampen betreft, op de lampvoeten. Spanningen boven 50 Volt zijn gemeten met een voltmeter voor 500 V, spanningen beneden 50 V met een voltmeter voor 50 V, beide meters met een weerstand van 1000 ohm/V.

Netspanning 220 V 125 V Netstroom 0,2 A 0,34 A

Opgenomen netvermogen bij 220 V netspanning ca. 42 W. Stromen en spanningen kunnen ± 10 % afwijken.

IV. REPARATIE EN UITWISSELING. VAN ONDER DELEN

Voor reparatie of verwisselen van onderdelen moet men het toestel uit de kast nemen.

- A. Uit de kast nemen van het toestel.
- 1. Verbindingen van de luidspreker lossolderen.
- 2. Knoppen verwijderen (dit zijn schuifknoppen: zij kunnen zonder meer van de as afgetrokken worden.
- 3. Bodemschroeven losnemen, zie fig. 6.
- Chassis uit de kast nemen op de in fig. 8 aangegeven wijze.
 Voor het in de kast zetten wordt de volgorde andersom genomen.
- B. Aandrijfsnaar.

De lengte van de aandrijfsnaar bedraagt 540 mm.

C. Schakelaars.

In fig. 9 is de samenstelling van de golfbereikschakelaar en de kwaliteitschakelaar in voor- en achteraanzicht getekend. Mocht het nodig zijn een der schakelaars voor een eventuele reparatie te demonteren, dan moet men er voor zorgen, dat na de reparatie de montage geschiedt op de in fig. 9 aangegeven wijze.

S	Aantal, windingen	Omschrijving	Codenummer
10	400	m.f. filter	A3 110 60
11	16	antennespoel	GK 563 84
I 2	124	KG — MG	011)09 04
13	30		
14	615		
2 I	16	antennespoel-LG	GK 563 85
22	541	osc. spoel KG	
23	10 3/8		
24	1072		
25	24 7/8		
31	87 2/8	oscillatorspoel	GK 563 86
32	220	MG + LG	
33	26 ⁶ / ₈ 43 ⁷ / ₈		
34	43 78		
4 I	300	MF I spoel	A3 120 44
42,	210		
42'	90		
5 I	69	MF II spoel	GK 563 83
52	265		
53	142		
54	214		
61	13	Uitgangstrafo	GK 512 72
62	67		
63	3000		
64	75		
71	1330	Voedingstranf.	GK 512 71
72	1330		
73	20	•	
74 75	31		
75 76	49 <i>5</i> 77		
77	418		
80	65	Luidspreker 5 Ω 1000Hz	49 239 03 KY 48
			OV 2
		antennezeefkring	GK 89 809

С	Capaciteit	Omschrijving	Volt	Codenummer
I	30 pF	bijstelcond.		28 212 36
2	, ,	,	•	Je
3	7 pF	draadtrimmer		49 005 26
4	32 pF	draadtrimmer		28 212 06
5	32 pF	draadtrimmer		28 212 06
6	12-492 pF	sam. 2-voud.		
	_	var. cond.		49 001 23
7 8	220 pF	keram. cond. 20 %		48 406 20/220]
	47000 pF	persbl. cond. 20 %	125	48 750 20/47K
9	56 pF	keram. cond. 10 %		48 406 10/56E
10	470 pF	keram. cond. 20 º/o		48 406 20/470I
II	12-492 pF	sam. 2-voud.		
		var. cond.		49 001 23
12	200 pF	draadtrimmer		28 212 08
13	30 pF	bijstelcond.		28 212 36
14	30 pF	bijstelcond.		28 212 36
15	350-575 pF	draadtrimmer		49 005 46
16	200 pF	draadtrimmer biistelcond.		28 212 08
17 18	30 pF			28 212 36
	39 pF 102 pF	keram. cond. 10 % keram. cond.		48 406 10/39E
19 20	102 pF	keram. cond.		49 057 51
21	102 pF	keram. cond.		49 057 51
22	10 pF	keram. cond. 10 %		49 057 51
23	102 pF	keram. cond.		48 406 10/10E
24	10000 pF	persblokcond. 20 %	125	49 057 51 48 750 20/10K
25	10000 pF	persblokcond. 20 %	125	48 750 20/10K
26	27000 pF	persblokcond. 10%	125	48 750 10/27K
27	220 pF	keram. cond. 20 %	,	48 406 20/220I
28	39 pF	keram. cond. 10 %		48 406 10/39E
29	10000 pF	persblokcond. 20 %	400	48 751 20/10K
30	82 pF	keram. cond. 10%		48 406 10/82E
31	4700 pF	spec. luidspr. cond.		48 758 20/4K7
32	100 HF	droge elco	12,5	28 185 68
33	0,1 pF	persblokcond. 20 %	125	48 750 20/100H
34	0,1 μF	persblokcond. 20 %	400	48 751 20/100H
35	47000 pF	persblokcond. 20 %	400	48 751 20/47K
36	3300 pF	persblokcond. 20 %	400	48 751 20/3K3
37	50 FF	univers. elco	355	48 317 09/50+
38			2))	
39	220 pF	ker. cond. 20 %		48 406 20/220I

c. We	erstanden		-	•
R	Weerstand	Omschrijving	Watt	Codenummer
I	0,82 MΩ	koolweerstand	0,25	48 425 10/820K
2	47000 Ω	koolweerstand	0,25	48 425 10/47K
3	22000 Ω	koolweerstand	I	48 427 10/22K
4	1,5 MΩ	koolweerstand	0,5	48 426 10/1M5
5 6	0,65 \pm 0,2 M Ω	koolpotmtr. m. sch.		49 500 19
6	39000 Ω	koolweerstand	0,25	48 425 10/39K
<i>7</i> 8	4700 Ω	koolweerstand	0,25	48 425 10/4K7
	1,2 ΜΩ	koolweerstand	0,5	48 426 10/1M2
9	ο,1 ΜΩ	koolweerstand	0,5	48 426 10/100K
10	0,22 MΩ	koolweerstand	0,5	48 426 10/220K
11	0,56 MΩ	koolweerstand	0,25	48 425 10/560K
12	1			
13	1,5 ΜΩ	koolweerstand	0,5	48 426 10/1M5
14	0,15 MΩ	koolweerstand	0,25	48 425 10/150K
13	120 Ω	koolweerstand	I	48 427 10/120E
16	ο,33 MΩ	koolweerstand	0,25	48 425 10/330K
17	ο,1 Ω	koolweerstand	0,5	48 426 10/100K
18	15000 Ω	draadweerstand	3	48 468 10/15K
19	1200 Ω	draadweerstand	1,5	48 467 10/1K2
20	0,1 MΩ	koolweerstand	0,25	48 425 10/100K

1.42,43.		51,	52,53,54.		61,	62, 63, 64,	8 O.	S
), 18, 35, 2O <u>.</u>	39.	21.	26,25,23,22,24,28,34,29,3	O.33.	31,	32.		С
	4.		6.7.20,5,17,10,8,9, 11.	13, 15,		14	. 16.	R

GOLFLENGTESCHAKELAAR MG LG GETEKEND IN STAND KG II
KWALITEITSCHAKELAAR NORMAAL GETEKEND IN STAND DOF

S	10. 11.12,13	.14. 22,24,71,72,73.74.75.76	.77. 21, 23, 2	25,31,	32,33,34.	41.
С	27. 1.	13.4. 5, 6.7,8,	9,38,10,1137,36,12	3.	16,15.14.17.	19.
R		l,	2.3,19.		Į.	<u>8.</u>

c. We	erstanden		-	•
R	Weerstand	Omschrijving	Watt	Codenummer
I	0,82 MΩ	koolweerstand	0,25	48 425 10/820K
2	47000 Ω	koolweerstand	0,25	48 425 10/47K
3	22000 Ω	koolweerstand	I	48 427 10/22K
4	1,5 MΩ	koolweerstand	0,5	48 426 10/1M5
5 6	0,65 \pm 0,2 M Ω	koolpotmtr. m. sch.		49 500 19
6	39000 Ω	koolweerstand	0,25	48 425 10/39K
<i>7</i> 8	4700 Ω	koolweerstand	0,25	48 425 10/4K7
	1,2 ΜΩ	koolweerstand	0,5	48 426 10/1M2
9	ο,1 ΜΩ	koolweerstand	0,5	48 426 10/100K
10	0,22 MΩ	koolweerstand	0,5	48 426 10/220K
11	0,56 MΩ	koolweerstand	0,25	48 425 10/560K
12	1			
13	1,5 ΜΩ	koolweerstand	0,5	48 426 10/1M5
14	0,15 MΩ	koolweerstand	0,25	48 425 10/150K
13	120 Ω	koolweerstand	I	48 427 10/120E
16	ο,33 MΩ	koolweerstand	0,25	48 425 10/330K
17	ο,1 Ω	koolweerstand	0,5	48 426 10/100K
18	15000 Ω	draadweerstand	3	48 468 10/15K
19	1200 Ω	draadweerstand	1,5	48 467 10/1K2
20	0,1 MΩ	koolweerstand	0,25	48 425 10/100K

FIG. 2

	51. 52. 5	3.54.							S
8.	24, 39,22.23.3	0.34,33,	8, 26	٠,	25,	29, 31,	32.	38, 37,	С
19,	17, 20,8,9,14,	15.	4.	7. 13, 6, 16.	11.		5.		R

s	10.	11.121314	. 21.22.23.24.25. 31.	32.33.34.	41, 42,43.		
С	13.	27, 5,4,15, 11	8, 12,16,14,17,3,7,	9, 10,	35,	36,	28
R			2.	3,	18,1,		10. 1

FIG. 3 ERRES KY 485 GEMETEN TEGEN CHASSIS VIO **1**V5 **V**2 240 260 280 240 51, 52,53,54, 24,39, 22,23,30,34,33, 8,26. 29.31. 25. 32. 38. 37. 17. 20.8,9. 14. 7.13.6,16. 11.

SPANNINGEN TOT 50 VOLT, \pm 10 %, MET VOLTMETER 50 VOLT BIJ 1000 Ω/V SPANNINGEN VAN 50-500V, \pm 10%, MET VOLTMETER 500 VOLT BIJ 1000 Ω/V

	/	/V3 /V6	<i>†</i> *	V8 .	/V 7	149			•
	/								
VOLT	240	90	140)	90	50			-
S	10. 11.12	2,13,14,21,22,23,2	4.25, 31,32,	33,34.	41, 42	43.			-
С		4,5,6,15, 18,16,12,14		11, 9, 10,	35.		36.	28.	24
R			2.	3	. 18, 1.		10.		17

FIG.4

					VO	LT
61, 62,63,64,	80,			Ю,		Ī
		U.	6,		l,	┪
						7

V	OLT		
S		71, 72,73,74,75,76,77.	
C		37. 38.	
R			

UITKUIPEN VAN HET CHASSIS

Voor het inkuipen devolgorde andersom nemen.

FIG. 8

(KWALITEITSCHAKELAAR

Auteursrecht volgens de wet voorbehouden

EBL 21

ECH2I -- AZ 1

ECH2

8V. 0,35 A 8045-D

DE TWEE SEGMENTEN DER GOLFBEREIKSCHAKELAAR, VANAF DE KNOP GEZIEN

DE TWEE SEGMENTEN DER GOLFBEREIKSCHAKELAAR, NAAR DE KNOP TOEGEZIEN

KWALITEITSSCHAKEL AAR GK 882 03

FIG. 9

4: achterschot herplaatsen.

Wanneer met een toestel KY 485, hetwelk betrekkelijk dicht bij onze nationale zenders in gebruik is, hinder ondervonden wordt van fluittonen, verdient het aanbeveling een gecombineerde zeefkring voor 301 en 415 meter golflengte in de antenne toe te passen.

ZEEFKRING GK 898 O9.