stroductio

rooichair

Evaluation

Beyond the

Conclusion

Fundamentals in Information Retrieval

Jean-Cédric CHAPPELIER Emmanuel ECKARD

LIA

Context and

definitions

Information Retrieval

Definition

selection of documents relevant to a query in an unstructured collection of documents.

- unstructured: not produced with IR in mind, not a database.
- document: here, natural language text (but could also be video, audio or images)
- query: utterance in natural language (possibly augmented) with commands, see later)
- relevant:
 - 1. users-wise: answering the IR requirements
 - 2. mathematically: maximising a defined "proximity measure"

Context and definitions

Simple example Boolean model

Toolch

mark and

Beyond the vector mode

Conclu

Example of Information retrieval: issuing a query on an unstructured collection

- query ("Alan Turing")
- search among unstructured collection (Wikipedia articles)

Context and definitions

Simple example Boolean model

Toolcha

- ---

Beyond the vector mod

Conclus

Example of Information retrieval: results returned by the system

- list of results with a percentage match
- highest matches first

Ambiguity

definitions
Simple example

Toolch

Evaluati

Beyond the vector mod

Conclus

Sometimes uninteded results occur

Example

query: "Chicago school"

wanted?

- schools in Chicago (IL)?
- body of works in sociology?
- architectural style?
- where to learn how to play Chicago (game):
 - ▶ bridge?
 - or pocker??

Context and definitions

Simple example

Toolch

Evolueti

Beyond the vector mod

Conclu

Relevance? Content versus topic

"Relevant" documents:

What does "relevant" mean?

- useful?
- ► new?
- topically related?
- content related?
 - at word level?
 - at semantic/pragmatic level?

♦ Semantic representation

+ Semantic content

Topics

0 +Surface form (raw text)

Relevance? Content versus topic

definitions
Simple example
Boolean mode

Boolean m

Toolch

Evaluat

Beyond the vector mod

Conclus

Semantic content:

what the document talks about (topic) vs what it says (content).

Example

Document 1:

Note how misty the river banks are.

Document 2:

She got misty by the river of bank notes falling on the table.

Document 3:

Money had never interested her.

Doc. 1 & 2 have similar word content but are not topically related.

Doc. 2 & 3 have similar topics but opposite semantic content.

Context and

Simple exampl Boolean mode

Toolch

-

Beyond the vector mod

Conclus

How it IR done?

Tasks

- have the computer represent documens (at the adequate level): preprocessing, indexing, ...
- ▶ represent the query, not necessarily the same way as documents (short queries, operators, ...)
- define satisfying relevance measures between representations

Similarities with other NLP tasks

- Classification (no query)
- Data mining (formatted data)
- ► Information extraction (retrieve *shorts parts* of documents)

definitions Simple example

Doolouiiiii

TOOICH

Evaluation

vector mod

Conclus

IR Before computers

- Colophons on clay tablets of Mesopotamia (3500 BCE)
- ► Tags on scrolls of Edfu temple (from 237 BCE)
- Middle Age: indexes of key terms of the Bible
- ▶ Indexes for important texts: the Bible, Shakespeare's works,

. . .

468 TABLE ANALYTIQUE. trées dans l'organisation de ce pays, Howe, amiral. Commande la flotte 428. - Paix et conditions du traité. anglaise croisant sur les côtes de 430. - Sa situation, IX, 38. - Partis Bretagne, en 4794, VI, 77. - Livre qui la divisent, 373 .- Sa révolution, bataille à l'amiral Villaret-Joyeuse, 376 .- Mouvement contraire aux démocrates, X, 76 .- Les Anglais et les HUBERT. Commande la légion des Russes y font une expédition, 264 -Francs, 1X, 210. Ils y sont défaits et capitulent, 330. HUGURT, député. Son allocution à la HOMPESCH (Ferdinand de). Grand multitude entrée par violence dans maître de l'ordre de Malte, refuse à la salle de la Convention, VII, 440, Bonaparte de faire de l'eau dans - Décrété d'arrestation et envoyé à l'île, X, 6. - Livre Malte aux Fran-Ham. 447. cais, 7. HULLIN, garde française. Défend jus-HONDSCHOOTE. Récit de cette victoire qu'à la dernière extrémité la vie du et des opérations militaires qui l'ont gouverneur de la Bastille, I, 97. précédée, V, 24, HUMBERT, général. Contribue à la pa-Hoop, amiral anglais. Paraît dans la cification de la Bretagne, VII, 41.-Méditerranée avec trente-sept vais-Accompagne Cormatin entré en né seany IV 991 —Communic

Index of Thiers' Histoire de la Révolution française, 1854

Boolean model

- Documents are sets of terms (presence/absence)
- Queries are boolean expressions on terms

Steps

- V, a finite vocabulary of indexing terms
- R representation space
- $\triangleright \mathscr{R}_D: V^* \to R$ representation function
- matching between query and documents

Example

- ► feeling; ease; pain; feet; pain; ship
- ► {0;1}^{|V|}
- presence/absence
- Boolean operators

definitions

Simple example: Boolean model

Simple example: Boolean model

Simple example: Roolean model

Example: Boolean representation of documents

Example

Document 1:

Come on, now, I hear you're feeling down. Well I can ease your pain Get you on your feet again.

Document 2:

There is no pain you are receding A distant ship, smoke on the horizon.

- → Doc1: feeling; ease; pain; feet
- → Doc2: pain; ship; smoke; horizon

English at

Beyond the vector mod

Conclusi

Example: Boolean representation of queries; retrieval

Example

Query: pain AND feeling

Doc1: feeling; ease; pain; feet
Doc2: pain; ship; smoke; horizon

Results

- ▶ Doc1 matches
- ▶ Doc2 does not match

Limitations of the Boolean model

Toolcha

Evaluati

Beyond the vector mod

Conclus

```
Example
```

Query: pain AND feeling

```
Doc1: feeling; ease; pain; feet
Doc2: pain; ship; smoke; horizon
```

ightarrow Doc1 matches; Doc2 does not.

Limitations

- We might want to return Doc2 as a second best choice. The boolean model does not allow this.
- ► What happens with "pain OR feeling"? Is does not match common layman wisdom

Toolchain Indexing

Vector Space model

Evaluatio

Lvaluation

Beyond the vector mode

Conclus

Indexing and represention of documents

Definition

Representation: translating a document (words) into computable data (numbers).

Indexing: selecting relevant elements (features) to support the representation

Themes related to indexing:

- Tokenisation
- Stop words
- Zipf and Luhn
- ► Stemming and lemmatisation
- ► Bag of words model

Tokenisation

Indexing

Vector Space model

Evaluatio

Downend the

vector mod

Definition

Tokenisation: splitting the text into words (Pre-requisite to choosing indexing terms)

Example

easy: whitespaces

Now is the winter of our discontent Made glorious summer by this son of York

- less easy: space not always indicative of a term segmentation (compounds): Distributional Semantics Information Retrieval and Latent Semantics Indexing performance comparison
- agglutinative languages are a problem: Rinderkennzeichnungs- und Rindfleischetikettierungsüberwachungsaufgabenübertragungsgesetz
- Technical terms

Indexing Vector Space model

valuation

Evaluation

Beyond the vector mode

Conclus

Tokenisation of technical terms

e.g. in Chemistry

Methionyl-glutaminyl-arginyl-tyrosyl-glutamyl-seryl-leucyl-phenyl-alanylalanyl-glutaminyl-leucyl-lysyl-glutamyl-arginyl-lysy-glutamyl-gycyl-alanylphenyl-alanyl-valyl-prolyl-phenyl-alanyl-valyl-threonyl-leucyl-glycylaspartyl-prolyl-glycyl-isoleucyl-glutamyl-glutaminyl-seryl-leucyl-lysylisoleucyl-aspartyl-threonyl-leucyl-isoleucyl-glutamyl-alanyl-glycyl-alanylaspartyl-alanyl-leucyl-glutamyl-leucyl-glycyl-isoleucyl-prolyl-phenyl-alanylseryl-aspartyl-prolyl-leucyl-alanyl-aspartyl-glycyl-prolyl-threonyl-isoleucylglutaminyl-asparaginyl-alanyl-threonyl-leucyl-arginyl-alanyl-phenyl-alanylalanyl-alanyl-glycyl-valyl-threonyl-prolyl-alanyl-glutaminyl-cysteinylphenyl-alanyl-glutamyl-methionyl-leucyl-alanyl-leucyl-isoleucyl-arginylglutaminyl-lysyl-histidyl-prolyl-threonyl-isoleucyl-prolyl-isoleucyl-glycylleucyl-leucyl-methionyl-tyrosyl-alanyl-asparaginyl-leucyl-valyl-phenyl-...

roduction

Word Entities

Indexing

Vector Space model

Evaluatio

Beyond the

vector mode

Definition

Semantic entity: compound word (group of words) bearing a semantic meaning

Example

- "Information retrieval"
- "rendez-vous"
- "radio antenna"
- "Singing Lily" (a type of pastry)
- ► "Dolphin striker" (a spar [part of boat])

atroduction

Conclusion on Tokenisation

Indexing

Vector Space model

Queries

Evaluatio

Beyond the vector mode

Conclusion

Tokenisation is actually a NLP issue (use NLP techniques)

Choice of indexing terms

Indexing

Vector Space model

valuatio

Beyond the vector mode

Conclusio

Filtering

Automated choice of indexing terms using filters:

- on morpho-syntactic categories (e.g.: prepositions have no semantic content; nouns do)
- on stop-words
- on frequencies

roduction

Stop words

Indexing

Vector Space model

valuatio

Beyond the vector mode

Conclusion

Definition

Stop word: term explicitely to be excluded from indexing.

Example

```
stoplist: the; a; 's; in; but; I; we; my; your;
their; then
```

Young men's love then lies Not truly in their hearts, but in their eyes.

Document: Young men love lies truly hearts eyes

roduction

Stop words

Indexing

Vector Space model

Evaluation

Beyond the

Conclusi

- Benefits:
 - more informative indexes
 - cheap way to remove classes of words without semantic content
 - smaller indexes (tractability)
- Problems:

To be or not to be

— this sentence would be entirely stopped.

Choice of indexing terms: frequencies

Indexing

Vector Space model

ivaluatio

Beyond the

Conclusio

Zipf and Luhn

If r is the rank of a term and n is its number of occurrences (frequency) in the collection:

- ► Zipf (1949): $n \sim 1/r$
- ▶ Luhn (1958): mid-rank terms are the best indicators of topics

traduction

Choice of indexing terms: frequencies

Indexing

Vactor Space

Vector Space model Queries

valuation

Evaluation

Beyond the

Conclusion

roduction

Stemming and lemmatisation

Indexing

Vector Space model

valuation

Beyond the

Conclusi

Definition

Stem: morphological root of a word.

Stemming: Process of reducing words to their *stem*.

Example

- ▶ prepaid, paid → paid
- ▶ interesting, uninteresting → interest

roduction

Stemming and lemmatisation

Indexing

Vector Space model

valuation

Beyond the

Conclusio

Benefits

Reduces lexical variability ⇒ reduces index size increases information value of each indexing term.

Non-trivial process

 $\begin{array}{c} \text{factual} \longrightarrow \text{fact} \\ \text{equal} \longrightarrow \text{eq} \end{array}$

OK wrong ("eq" is too short)

Assumption

Positions of the terms are ignored. Term distribution is indicative enough of the meaning.

Model

$$d_1 = \{(t_1, n(d_1, t_1)); (t_2, n(d_1, t_2)); \ldots\}$$

$$d_2 = \{(t_1, n(d_2, t_1)); (t_2, n(d_2, t_2)); \ldots\}$$

A document is a multiset of terms

Example

Now so long, Marianne ; it's time that we began to laugh and cry and cry; and laugh about it all again.

```
\rightarrow ([begin, 1] [cry, 2] [laugh, 2] [long, 1]
[Marianne, 1] [time, 1])
```


roduction

Toolcha

Indexing
Vector Space model
Oueries

valuation

Beyond the

Conclusi

Phrases, neighbourhoods: beyond the words

Position could be kept to allow

- litteral search (quotations):
 - "more things in heaven and earth"
- search by proximity:

dreamt WITHIN 5 philosophy

Conclusions on indexing

Indexing

Vector Space model

valuation

Beyond the

Conclusion

- Bad indexing can ruin the performances of an otherwise sophisticated IR system
- Good indexing is anything but trivial

Toolcha

Vector Space model

Evaluation

Beyond the

. . . .

Vector Space model

Objective

Overcome the limitations of the Boolean model by representing documents with vector describing term distributions.

Principle

- ▶ *V*, a finite vocabulary of indexing terms
- ► R representation space
- $ightharpoonup \mathscr{R}_D: V^* \to R$ representation function
- ▶ similarity: $\mathcal{M}_{prox}: R \times R \rightarrow \mathbb{R}^+$

Note: choose similarity measure well behaved for the representation (depends on the representation) more in the "Textual Data Analysis" lecture

Toolcha

Vector Space model

Evaluatio

Beyond the

Conclusi

Vocabulary of indexing terms

Example

- Now so long, Marianne it's time that we began to laugh and cry and cry and laugh about it all again.
- V, a finite vocabulary: aardvark, begin, cry, information, laugh, long, Marianne, retrieval, time, ...
- → Now so long Marianne it's time that we began to laugh and cry and cry and laugh about it all again.

In practice

the vocabulary is several thousands of terms large

Characterisation

Vector Space model

Definition

characterisation: projection of the document into the representation space

Example

- Now so long, Marianne it's time that we began to laugh and cry and cry and laugh about it all again.
- ightharpoonup R representation space: $\mathbb{R}^{|V|}$

```
\rightarrow ([aardvark,?] [begin,?] [cry,?]
[information,?] [laugh,?] [long,?]
[Marianne,?] [retrieval,?] [time,?])
```


Indexin

Vector Space model Queries

Evaluatio

Evaluatio

Beyond the vector mode

Conclusi

Weightings

Term Frequency

 $tf(w_i, d_j) = nb$ of occurences of term w_i in document d_j Sometimes $1 + log(tf(w_i, d_i))$ is used in place of $tf(w_i, d_i)$

Term Frequency - Inverse Document Frequency

$$\mathsf{tf}\text{-}\mathsf{idf}(w_i,d_j) = \mathsf{tf}(w_i,d_j) \cdot \mathsf{idf}(w_i)$$

with

$$idf(w_i) = log\left(\frac{|D|}{nb(d_k \supset w_i)}\right)$$

|*D*|: number of documents $nb(d_k \supset w_i)$: number of documents which contain term w_i

Indexing

Vector Space model Queries

Evaluatio

Beyond the vector mode

Conclus

Weighting

Example

- Now so long, Marianne it's time that we began to laugh and cry and cry and laugh about it all again.
- ▶ $\mathcal{R}_D: V^* \to R$ representation function: here: Term Frequency

```
→ ([aardvark,0] [begin,1] [cry,2]
[information,0] [laugh,2] [long,1] [Marianne,1]
[retrieval,0] [time,1])
```

 \longrightarrow (0 1 2 0 2 1 1 0 1 ...)

In practice

the vector is very sparse

Toolcha

Vector Space model Queries

valuation

Beyond the vector mode

Conclusi

Vector space model

- ▶ indexing terms define axis
- documents are point in the vector space (representing directions)

Proximity measure between documents

Cosine similarity

$$\cos(\mathbf{d_1}, \mathbf{d_2}) = \frac{\mathbf{d_1}}{||\mathbf{d_1}||} \cdot \frac{\mathbf{d_2}}{||\mathbf{d_2}||} = \frac{\sum_{j=1}^{N} d_{1j} d_{2j}}{\sqrt{\left[\sum_{j} d_{1j}^2\right] \left[\sum_{j} d_{2j}^2\right]}}$$

- **bounded** $(0 < \cos(\mathbf{d_1}, \mathbf{d_2}) < 1, \forall \mathbf{d_1}, \mathbf{d_2})$
- it is a similarity: the greater, the more similar the documents (as opposed to a *metric*)
- independent on the length of the document

Proximity measure between documents

Toolch

Vector Space model

Evaluation

Beyond the

Conclusi

Document 1

- Now so long, Marianne, it's time that we began to laugh and cry and cry and laugh about it all again.
- Marianne,1]
 [begin,1] [laugh,2]
 [cry,2],...
- **d** $_1 = (...,1,1,1,1,2,2,...)$

Document 2

- I haven't seen Marianne laugthing for some time, is she crying all day long?
- ...,[long,1]
 [Marianne,1] [time,1]
 [begin,0] [laugh,1]
 [cry,1],...
- $\mathbf{d_2} = (...,1,1,1,0,1,1,...)$

Example

$$\cos(\mathbf{d_1}, \mathbf{d_2}) = 7/(\sqrt{12} \cdot \sqrt{5}) = 0.904$$

Toolch

Vector Space model

Evaluatio

Beyond the vector mode

Conclusi

Summary

Choices depending on the application

- Weighting: allows to translate semantic notions into computable models
- Proximity measure: fixes the topology of the representation space

Constants

- ► |V|-dimensional vector space
- very sparse vectors

Vector Space model

Queries

Queries: definition

Definition

Queries (or "topics") are "questions" asked to the system

Typically *keywords*, possibly augmented with operators

dreamt WITHIN 5 philosophy

Supposed unknown at indexing time (difference between IR and classification or clustering)

Visit http://www.google.com/trends for real-life examples

Indexing

Vector Space model

Queries

Evaluatio

Beyond the vector mode

Conclusi

Query representation

Example

easy: as for documents

more things in heaven and earth

less easy (verbatim sentence)

"more things in heaven and earth"

quite different from the document (positional information)

dreamt WITHIN 5 philosophy

Conclusion:

Query representation is not necessarly trivial (not always the same as representation of documents).

Indexing

Vector Space m

_ . . .

Beyond the

Conclus

Problem of short queries

Web queries

On the web,

- the average query length is under three words
- very few users use operators

Language being ambiguous, three-word queries are difficult to satisfy.

Solutions

- query expansion: use knowledge about the query terms to associate them with other terms and improve the query.
- query term reweighting: weight the terms of the query as to obtain maximum retrieval performance.
- relevance feedback: User provides the system an evaluation of the relevance of its answers.

_ ...

Evaluation

Beyond the

Conclus

Evaluation campaigns

Evaluation set

- Document collection
- Query set
- Referential

Definition

Referential: list of documents of a collection to be retrieved for one given query (handmade).

Examples of evaluation campains

- ► Smart (1970s)
- ► TREC (since the 1990s; large collections)
- AMARYLLIS (French)

Performances of IR systems

Evaluation

Beyond the vector mod

Reminder:

Given an IR system, a document collection, queries, referential and an answer by the system:

Definition

Precision is the proportion of the documents retrieved by the system that are relevant (according to the referential)

Definition

Recall is the proportion of the relevant documents which were retrieved by the system

- Precision can be cheated by returning no document
- ► Recall can be cheated by returning all documents

Evaluation

Beyond the

Conclus

Given an IR system, a document collection and a referential; for a query q, the results returned by the system is evaluated with:

- ▶ Precision: $Pr(q) = \frac{|R(q) \cap S(q)|}{|S(q)|}$
- ► Recall: $\operatorname{Rec}(q) = \frac{|R(q) \cap S(q)|}{|R(q)|}$

Performance measures: R-Precision

Evaluation

Definition

Precision at *n* document:

$$\mathsf{Pr}_n(q) = \frac{|R(q) \cap S_n(q)|}{|S_n(q)|}$$

with $S_n(q) = n$ first documents to be retrieved

R-Precision

precision obtained after retrieving as many documents as there are relevant documents, averaged over queries

R-Precision =
$$\frac{1}{N} \sum_{i=1}^{N} \Pr_{|R(q_i)|}(q_i)$$

Evaluation

Performance measures: Mean Average **Precision**

Average Precision

Average of the precisions whenever all relevant documents below rank rk(d, q) are retrieved:

$$\mathsf{AvgP}(q) = \frac{1}{|R(q)|} \sum_{d \in R(q)} \mathsf{Pr}_{\mathsf{rk}(d,q)}(q)$$

Mean Average Precision

Mean over the gueries of the Average Precisions

$$\frac{1}{N}\sum_{i} AvgP(q_i)$$

MAP measures the tendency of the system to retrieve relevant documents first.

Ioolchain

Evaluation

.....

Conclusion

Plotting average Precision and Recall

Aim of the game: push the curve towards the upper right corner

roduction

Toolchai

Evaluation

eyond the

Probabilistic models
Topic-based models

LSI

Conclusi

Probabilistic models

Idea

The best possible ranking returns documents sorted by probability to be relevent given a query.

for instance: Sparck-Jones' model

- Estimate the probability that a given document d_i is relevant $(d_i \in R(q))$ to given query $q: P(d_i \in R(q)|d_i,q)$
- ▶ Invert the probability (here R is a boolean variable, standing for $d_i \in R(q)$) : $P(d_i|R,q)$
- ▶ Write $P(d_i|R,q)$ as a function of the probabilities of occurence of the terms (assuming that terms are conditionally independent): $P(t_i \in d|R,q)$

Document d contains term t_i (of the query)

$$w(t_i, d) = \log \frac{\rho(t_i \in d | d \in R)}{\rho(t_i \in d | d \notin R)}$$

Document d does not contain term t_i (of the query)

$$w(t_i,d) = \log \frac{p(t_i \notin d | d \in R)}{p(t_i \notin d | d \notin R)} = \log \frac{1 - p(t_i \in d | d \in R)}{1 - p(t_i \in d | d \notin R)}$$

Combining the two

$$w(t_i, d) = \log \frac{p(t_i \in d|d \in R)}{p(t_i \in d|d \notin R)} - \log \frac{p(t_i \notin d|d \in R)}{p(t_i \notin d|d \notin R)}$$
$$= \log \frac{p(t_i \in d|d \in R)}{p(t_i \in d|d \notin R)} - \log \frac{p(t_i \notin d|d \notin R)}{p(t_i \in d|d \notin R)}$$

© EPFL 2008–2014 Jean-Cédric Chappelier & Emmanuel Eckard

Probabilistic models Topic-based models

Idea

Refine Sparck-Jones' model by including term frequencies

$$w = \log \frac{p(\mathsf{freq}(t, d) = \mathsf{tf}|d \in R)p(t \notin d|d \notin R)}{p(\mathsf{freq}(t, d) = \mathsf{tf}|d \notin R)p(t \notin d|d \in R)}$$

BM25 weight for term i

$$w_i^{\text{BM25}} = \frac{\text{tf}_i(k_1+1)}{k_1((1-b)+b\frac{dl}{avdl})+\text{tf}_i} \cdot \text{idf}_i$$

with dI = document length avfl = average document length

BM25 is a very good model and used as reference for comparison with new models

Toolobo

-

Lvaladilon

Probabilistic model

Probabilistic models

Topic-based models

LSI DSIR

Conclusio

Problem

Information retrieval has problems notably with

Introduction to topic-based models

- Polymesy
- Synonymy

Topic-based models

Example

Polymesy

Query includes term Bank

→ Bank of England? Bank of fishes? Grand bank? Airplane bank?

Consequences

Negative impact on precision

Toolcha

-

Evaluation

vector mode

Probabilistic models

Topic-based models

LSI

Conclusio

Example

Synonymy

Query includes term freedom

 \rightarrow liberty will not be seen as relevant

Consequences

Negative impact on recall

Toolcha

Royand tha

vector mode

Topic-based models

0---

COLICIA

Topic-based models

Idea

Apply a transformation to the representation space as to emphasise the most relevant features: index senses rather than mere words

Note

Stemming is already a step in this direction (less dependent on mere words)

Reminder

Occurence matrix: term \times document matrix containing the weights $\{w_{ij}\}$ associated to document d_i and term t_i

Toolcha

Evoluation

levond the

Probabilistic models
Topic-based models

LSI

Conclusio

Latent Semantic Indexing

Idea

Reduction of dimensionality of the original representation space Create a matrix close to the occurence matrix but of smaller rank

Toolchai

vector mod

Topic-based mode

LSI DSI

Conclusio

Latent Semantic Indexing

Reduction of dimensionality

- approximation of the occurence matrix
- filtering of the occurence matrix

Example

Singular Matrix Decomposition with *k* values (*k* between 100 to 300).

Toolcha

Evaluation

Evaluatio

vector mode

Probabilistic models
Topic-based models

Conclusio

Latent Semantic Indexing

© EPFL 2008–2014 Jean-Cédric Chappelier & Emmanuel Eckard traduction

Toolobair

_ . . .

Daniel de

vector mode

Probabilistic models
Topic-based models

LSI

Conclusion

Latent Semantic Indexing

Advantages

 More significant representation

Drawbacks

- Out-performed by other models
- Too expensive to compute on large bases (requires iterative methods)
- Meaning of axis ??
- Query projection is problematic

Toolcha

Evaluation

Beyond the vector mode

Probabilistic mode Topic-based mode LSI DSIB

Conclu

Distributional Semantics Information Retrieval

Idea

There is a high degree of correlation between the observable distributional caracteristics of a term and its meaning: "a word is characterized by the company it keeps"; Z. Harris (1954), J.R. Firth (1957)

Example

- ► Some *X*, for instance, naturally attack rats.
- The X on the roof was exposing its back to the shine of the sun.
- ► He heard the mewings of X in the forest.
- ► X is a: ...

Toolcha

X is a...

Evaluation

Beyond the vector model

Probabilistic models

Topic-based models LSI

DSIR

Conclusio

Bertil Videt, GFDL & CC-by-2.5

Toolchai

_ . . .

Beyond the vector model
Probabilistic model

Topic-based mo LSI DSIR

Conclusio

Co-occurence profile

Definition

Co-occurence profile: caracterisation of a word by its co-occurences with indexing terms

Example

Document 1

Now so long, Marianne, it's time that we began to laugh and cry and cry and laugh about it all again.

Document 2

it seems so long ago, Nancy was alone looking at the Late Late show through a semi-precious stone.

→ Co-occurence profile of long = ([cry,2] [begin,1] [Marianne,1] [Nancy,1] [time,1] [late,2] [laugh,2])

Toolcha

_ . . .

Beyond the vector model

Probabilistic models
Topic-based models
LSI
DSIB

Conclusion

Co-occurence matrix

Definition

 $\begin{cal} \textbf{Co-occurence matrix}: words \times terms \ matrix \ of the \ co-occurence \ profiles \ with \ terms \end{cal}$

 f_{ij} : number of times that the word w_i and the indexing term t_j occur together.

DSIR Document representation

$$F_D = F_{\text{occurence}} \cdot F_{\text{co-occurence}}$$

 \rightarrow ponderation of the words in documents by the co-occurences

Note

When indexing a collection C, the co-occurrence matrix would typically be evaluated on a control collection representative of the language/domain (could be C itself, but not necessarily)

Toolcha

Evaluatio

vector model
Probabilistic models

LSI DSIR

Conclusio

Computing co-occurencies

The actor was wearing a grimacing mask of ancient theatre

Question

How often is a theatre grimacing?

 \rightarrow focus on relevant co-ocurrencies (Mask-Grimacing, Theatre-Ancient, . . .)

Toolcha

_ . . .

Beyond the

Probabilistic models
Topic-based models

LSI DSIR

Conclusio

Co-occurencies and syntactic features

Use heads of phrases

(The <u>actor</u>) (was <u>wear</u>ing) (a grimacing <u>mask</u>) (of ancient <u>theatre</u>)

© EPFL 2008–2014 Jean-Cédric Chappelier & Emmanuel Eckard

Toolcha

Evoluatio

Beyond the vector model

Probabilistic models Topic-based models LSI

DSIR

Conclusio

Co-occurencies augmented with Part-of-Speech

Using syntactic rules and semantic roles

The actor was wearing a grimacing mask of ancient theatre

SUBJ (actor, wear) OBJ (wear, mask) ADJ (mask, grimacing) ADJ (theatre, ancient) CNOUN (mask, theatre) Actor Mask Wear Theatre Grimacing Ancient

© EPFL 2008–2014 Jean-Cédric Chappelier & Emmanuel Eckard

Beyond the

Probabilistic models Topic-based models

LSI

DSIR

© EPFL 2008-2014 Jean-Cédric Chappelier & Emmanuel Eckard

Toolcha

- ...

Beyond the

vector model
Probabilistic model
Topic-based model
LSI

DSIR Conclusio

Other more advanced Topic Models

LDA: Latent Dirichlet Allocation (Blei, Ng, Jordan 2003) (not to be confused with Linear discriminant analysis!!)

probabilistic model with hidden states ("topics")

Reference:

- ▶ D. Blei. Probabilistic topic models. Communications of the ACM, 55(4):77–84, 2012.
- J.-C. Chappelier, Topic-based Generative Models for Text Information Access, In Textual Information Access – Statistical Models, E. Gaussier and F. Yvon eds, ch. 5, pp. 129-178, Wiley-ISTE, April 2012.

T.

Beyond the

Conclusion

Summary / Keypoints

- Vector-space model;
- Indexing (and its important role);
- Weighting schemes, tf-idf;
- Evaluation: Precision and Recall.

References

1001011411

Evaluation

Beyond the

Conclusion

- [1] C. D. Manning, P. Raghavan and H. Schütze, "Introduction to Information Retrieval", Cambridge University Press. 2008.
- [2] R. Baeza-Yates and B. Ribeiro-Neto, "*Modern Information Retrieval*", Addison Wesley, 1999.
- [3] "Topics in Information Retrieval", chap. 15 in "Foundations of Statistical Natural Language Processing", C. D. Manning and H. Schütze, MIT Press, 1999.

