• 第一章小测

- - 2. 设 $E \subset \mathbb{R}^n$, $x_0 \in \mathbb{R}^n$.
 - (1) 分别给出 x_0 是E的孤立点和极限点的定义.
 - (2) 证明: 如果E的孤立点集不空,则为至多可数集.
 - (3) 证明: 如果E的导集E'是至多可数集,则E是可数集.
 - 3. 证明:任何 G_{δ} 集可以表示成递减开集列的极限集.

• 第二章小测

- 1. 分别叙述集合 $E \subset \mathbb{R}^n$ 是若当可测和勒贝格可测的定义.
- 2. 设 $E \subset \mathbb{R}^n$, $m^*(E) > 0$. 证明: $\exists x_0 \in E, \forall \delta > 0, m^*(E \cap B_{\delta}(x_0)) > 0$.
- 3. 设可测集 $E \subset \mathbb{R}, m(E) > 0$. 证明: $\exists x_1, x_2 \in E, x_1 x_2 \in \mathbb{Q} \setminus \{0\}$.
- 4. 设 $E \subset \mathbb{R}^n$, $m^*(E) < +\infty$, 且存在可测集 $H \supset E$. 证明: $m(H) = m^*(E)$, 当且仅当 $H \setminus E$ 的任意可测子集是零测度集.

• 第三章小测

- 1. 设f是E ⊂ \mathbb{R}^n 上的实值函数.
 - (1) 写出f是E上可测函数的定义.
 - (2) 证明f是E上可测函数,当且仅当 $\forall G \subset \mathbb{R}$ 开集, $f^{-1}(G)$ 是可测集.
- 2. 设f, f_k , $k = 1, 2, \cdots$ 是E上几乎处处有限的可测函数. 叙述{ f_k }在E上几乎处处收敛于f, 近一致收敛于f(见书第114页注)和依测度收敛于f的定义,以及3种收敛之间的关系.
- 3. 设 $E \subset \mathbb{R}^n$, $m(E) < +\infty$, f是E上几乎处处有限的可测函数. 证明 $\forall \epsilon > 0$, $\exists A \subset E$, $m(E \setminus A) < \epsilon$, f在A上有界.