Dataset: Iris Flower dataset

Note: Only two species of flower are displayed

In favor of null: $log_e(BF_{01}) = -10.86$, sampling = joint multinomial, a = 1.00

 $\chi^2(9) = 138.29, p = < 0.001, V_{Cramer} = 0.28, Cl_{95\%} [0.23, 0.31], n = 592$

Fuel efficiency by type of car transmission

t(18.33) = -3.77, p = 0.001, g = -1.38, $Cl_{95\%}$ [-2.17, -0.51], n = 32

Transmission (0 = automatic, 1 = manual)

In favor of null: $log_e(BF_{01}) = -4.46$, $r_{Cauchy} = 0.71$

 $F(4,47.04) = 3.01, \, p = 0.027, \, \omega_{\rm p}^2 = 0.12, \, {\rm Cl_{99\%}} \, [-0.03, \, 0.31], \, n = 100$

In favor of null: $log_e(BF_{01}) = -2.19$, $r_{Cauchy} = 0.71$

Pairwise comparisons: **Games–Howell test**; Adjustment (p–value): **Benjamini & Hochberg**

AIC = 166, BIC = 173, log-likelihood = -78

Summary effect: β = 0.62, Cl_{95%} [0.41, 0.83], z = 5.74, se = 0.11, p = < 0.001

Heterogeneity: Q(4) = 109, p = < 0.001, $\tau_{REML}^2 = 0.06$, $I^2 = 96.81\%$

 \mathbf{X} = correlation non–significant at p < 0.05 Adjustment (p–value): None

 $\mathbf{X} = \text{correlation non-significant at } p < 0.05$ Adjustment (p-value): None

X = correlation non-significant at <math>p < 0.01Adjustment (p-value): None

Fuel economy data

t(14) = 1.47, p = 0.163, g = 0.36, $Cl_{99\%}$ [-0.33, 1.10], n = 15

Source: EPA dataset on http://fueleconomy.gov In favor of null: $log_e(BF_{01}) = 0.44$, $r_{Cauchy} = 0.71$

t(59) = 19.05, p = < 0.001, g = 2.43, Cl_{95%} [1.96, 2.99], n = 60

Note: Iris dataset by Fisher.

In favor of null: $log_e(BF_{01}) = -186.14$, $r_{Cauchy} = 0.80$

$$\chi^2(3)=19.26,\, p=<0.001,\, n=76$$

$$\chi^2(2) = 21.34, p = < 0.001, V_{Cramer} = 0.82, Cl_{95\%} [0.41, 0.68], n = 32$$

Engine 0 = V-shaped 1 = straight

In favor of null: $log_e(BF_{01}) = -10.31$, sampling = independent multinomial, a = 1.00

 $\log_{e}(S) = 9.24, \ p = <0.001 \\ \chi(3) \text{Special Pine } = -0.89, \ Cl_{95\%} = 592, \ -0.78], \ n = 32$

In favor of null: $log_e(BF_{01}) = -4.34$, $r_{Cauchy} = 0.71$

F(1.65,27.97) = 4.06, p = 0.035, n = 22

Pairwise comparisons: Yuen's trimmed means test; Adjustment (p-value): Holm

Quality: Very Good

$$\chi^2(18) = 17.95$$
, $p = 0.459$, $V_{\text{Cramer}} = 0.11$, $\text{Cl}_{95\%}$ [0.02, 0.11], $n = 477$

In favor of null: $log_e(BF_{01}) = 4.95$, sampling = poisson, a = 1.00

color

Н

G

F

Ε

D

Quality: Ideal

$$\chi^2(18) = 17.85, p = 0.466, V_{Cramer} = 0.09, Cl_{95\%} [0.02, 0.08], n = 785$$

In favor of null: $log_e(BF_{01}) = 9.05$, sampling = poisson, a = 1.00

sample size:

Adjustment (p-value): None

X = correlation non-significant at <math>p < 0.05Adjustment (p-value): None

Adjustment (p-value): Holm

X = correlation non-significant at p < 0.05

Adjustment (p-value): Holm

Adjustment (p-value): Holm

= correlation non–significant at p < 0.05

Adjustment (p-value): Holm

cylinder count: 4

cylinder count: 6 t(8) = 7.82, p = < 0.001, g = 2.32, Cl_{95%} [1.25, 4.2<math>t(10) = 1.99, p = 0.075, g = 0.55, Cl_{95%} [-0.06, 1.29]

0) = -5.01, p = 0.001, g = -1.38, $Cl_{95\%}$ [-2.49, -0.64], n = 11

cylinder count: 8

am: 0 $\chi^2(2) = 7.68, p = 0.021, n = 19$

am: 1 $\chi^2(2) = 4.77, p = 0.092, n = 13$

$$\chi^2(3) = 106.05, p = < 0.001, n = 279$$

Sex: Female

$$\chi^2(3) = 84.23, p = < 0.001, n = 313$$

Quality: Fair

$$\chi^{2}(42) = 55.71, p = 0.076, V_{Cramer} = 0.23, CI_{95\%} [0.11, 0.21], n = 172$$

vor of null: $log_e(BF_{01}) = -7.86$, sampling = poisson, a = 1.00

or of null: $log_e(BF_{01}) = 14.79$, sampling = poisson, a = 1.00

Quality: Very Good

$$\chi^2(42) = 64.05$$
, $p = 0.016$, $V_{\text{Cramer}} = 0.10$, $\text{CI}_{95\%}$ [0.04, 0.08], $n = 1187$

•

Quality: Ideal

$$\chi^2(42) = 153.32, p = < 0.001, V_{Cramer} = 0.11, Cl_{95\%} [0.07, 0.10], n = 2165$$

or of null: $log_e(BF_{01}) = -25.04$, sampling = poisson, a = 1.00

In favor of null: $log_e(BF_{01}) = 0.39$, $r_{Cauchy} = 0.71$

Genre: Drama

In favor of null: $log_e(BF_{01}) = -1.45$, $r_{Cauchy} = 0.71$

All movies have IMDB rating equal to 7.

