Künstliche Intelligenz

Prof. Dr. Dirk Krechel
Hochschule RheinMain

*****Inhalte

- Einführung
- Symbolische Verfahren, Logik
 - Aussagenlogik, Prädikatenlogik
 - Horn Logik, Prolog
- Suchen und Bewerten
 - Problemlösen durch Suche
 - Uninformierte Suche
 - Heuristische Suche
 - Spielbäume
 - Information Retrieval
- Lernen
 - Entscheidungstheorie
 - Naive Bayes
 - Entscheidungsbäume
 - Neuronale Netze
 - unüberwachtes Lernen

Symbolische Verfahren – Logik

Logik

- Verwendung der mathematischen Deduktion
- um neues Wissen abzuleiten
- Prädikatenlogik
 - Mächtiges Repräsentationswerkzeug
 - Von vielen KI und anderen Programmen verwendet
- Aussagenlogik
 - Nur Repräsentation einfacher Sachverhalte, weniger mächtig als Prädikatenlogik
 - Von vielen KI und anderen Programmen verwendet

*Aussagenlogik

- Symbole stellen Propositionen (Aussagen) dar
 - p, "Es regnet"
- Eine Proposition ist entweder WAHR (true) oder FALSCH (false)
 - Belegen der Proposition mit einem Wahrheitswert
 - Es regnet wirklich, "Es regnet" ist WAHR
- Propositionen können mit Booleschen Verknüpfungen zu komplexen Formeln zusammengesetzt werden
 - $p \lor q$, "Es regnet" \Rightarrow "die Strasse ist nass"
- Formeln sind Sachverhalte die entweder WAHR oder FALSCH sind
 - Je nach dem Wahrheitswert der Propositionen

*Aussagenlogik – Syntax

- Propositionen:
 - Symbole
 - Zum Beispiel p, q, r, s, P, Q, R, S ...
- Konstanten
 - spezielle Propositionen
 - WAHR, FALSCH
- Logische Verknüpfungen
 - − ∧ UND, Konjunktion
 - − ∨ ODER, Disjunktion
 - \Rightarrow Implikation, Bedingung (If-then)
 - ⇔ Äquivalenz
 - − ¬ Negation (unär)
 - () Klammern (Gruppierung)

Definition: Aussagenlogische Formel

- Definition: Aussagenlogische Formel
 - 1. WAHR (true), FALSCH (false) und jedes Propositionssymbol p, q, r, P,Q,R, ... ist eine aussagenlogische Formel
 - 2. Wenn α und β aussagenlogische Formeln sind dann sind es auch
 - (α)
 - $(\alpha \wedge \beta)$
 - $(\alpha \vee \beta)$
 - $(\alpha \Rightarrow \beta)$
 - $(\alpha \Leftrightarrow \beta)$
 - $(\neg \alpha)$
- Formeln werden nur durch die Regeln 1. und 2. gebildet.
- Einführung von Bindungsregeln zur Vermeidung übermäßig vieler Klammern
 - Bindungsstärke (aufsteigend): \Leftrightarrow , \Rightarrow , \vee , \wedge , \neg
 - Gleicher Operator: Annahme Bindung von links nach rechts

*****Beispiele

- $(p \lor q) \Rightarrow r$
 - Wenn p oder q wahr ist, dann ist auch r wahr
- $p \Leftrightarrow (q \wedge r)$
 - Wenn p wahr ist, dann ist sowohl q als auch r wahr und wenn sowohl q als auch r wahr sind, dann ist auch p wahr
 - Alternativ: p ist wahr genau dann wenn (gdw) sowohl q als auch r wahr ist
- $\neg p \Rightarrow (q \Rightarrow r)$
 - Wenn p falsch ist, dann muss wenn q wahr ist auch r wahr sein

Definition: Interpretation

- Eine Interpretation weist jeder Proposition eine Bedeutung zu, hier ein Wahrheitswert 0 oder 1
- Für eine Menge von Propositionen, kann es viele verschiedene Interpretationen geben
- Eine Interpretation ist eine Funktion
 I: {p, q, r, P, Q, R, ... } → {0, 1},
 die jeder Proposition einen Wert 0 or 1 zuweist.
- Interpretationen können wie folgt auf Formeln erweitert werden:

$$I(\neg \alpha) = \begin{cases} 0 \text{ wenn } I(\alpha) = 1\\ 1 \text{ sonst} \end{cases}$$

$$I(WAHR) = 1$$
 $I(FALSCH) = 0$
 $I((\alpha)) = I(\alpha)$

$$I(\alpha \lor \beta) = \begin{cases} 1 \text{ wenn } I(\alpha) = 1 \text{ oder } I(\beta) = 1 \\ 0 \text{ sonst} \end{cases}$$

$$I(\alpha \land \beta) = \begin{cases} 1 \text{ wenn } I(\alpha) = 1 \text{ und } I(\beta) = 1 \\ 0 \text{ sonst} \end{cases}$$

$$I(\alpha \Leftrightarrow \beta) = \begin{cases} 1 \text{ wenn } I(\alpha) = I(\beta) \\ 0 \text{ sonst} \end{cases}$$

$$I(\alpha \Rightarrow \beta) = \begin{cases} 0 \text{ wenn } I(\alpha) = 1 \text{ und } I(\beta) = 0 \\ 1 \text{ sonst} \end{cases}$$

*Erweiterung Interpretation – Alternativ

$$I(false) = 0$$

• Klammern:
$$I((\alpha)) = I()$$

• Negation:
$$I(\neg \alpha) = 1 - I()$$

• Oder:
$$I(\alpha \vee \beta) = \max(I(\alpha), I(\beta))$$

• Und:
$$I(\alpha \wedge \beta) = \min(I(\alpha), I(\beta))$$

• Äquivalenz:
$$I(\alpha \Leftrightarrow \beta) = 1 - |I(\alpha) - I(\beta)|$$

• Implikation:
$$I(\alpha \Rightarrow \beta) = \max(I(\neg \alpha), I(\beta))$$

*****Beispiel

- Formel $\alpha = (p \lor q) \Rightarrow r$
- Interpretation I₁:

$$-I_1(p)=1$$

$$-I_1(q)=0$$

$$-I_1(r)=1$$

dann
$$I_1(\alpha) = 1$$

• Interpretation I₂:

$$-I_2(p) = 1$$

$$-I_2(q)=1$$

$$-I_2(r)=0$$

dann
$$12(\alpha) = 0$$

*-Wahrheitstabellen

Wahrheitstabellen

- Beschreibung aller möglichen Interpretationen von Propositionen und damit Formeln

р	q	¬ p	$p \wedge q$	$p \vee q$	$p \Rightarrow q$	$p \Leftrightarrow q$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

*Erfüllbar, Allgemeingültig, Widerspruchsvoll

- Eine aussagenlogische Formel α ist *erfüllbar* gdw es existiert eine Interpretation I mit $I(\alpha)=1$
- Eine aussagenlogische Formel α ist allgemeingültig (ist eine Tautologie) gdw α ist unter allen möglichen Interpretationen wahr, das heißt gdw für alle Interpretationen I gilt: $I(\alpha)=1$
- Eine aussagenlogische Formel α ist widerspruchsvoll (inkonsistent) gdw α ist unter allen möglichen Interpretationen falsch, das heißt gdw für alle Interpretationen I gilt: $I(\alpha)=0$
- Es gelten die folgenden Zusammenhänge:
 - $-\alpha$ ist widerspruchsvoll gdw ist nicht erfüllbar gdw
 - $\neg \alpha$ ist allgemeingültig

*****Beispiele

• p ist erfüllbar aber nicht allgemeingültig es gibt zwei Interpretationen: I_1 : $I_1(P)=1$ I_2 : $I_2(P)=0$

- $p \land \neg p$ ist widerspruchsvoll
- $p \vee \neg p$ ist allgemeingültig (und natürlich erfüllbar)
- p ∧ q ⇒ p
 ist allgemeingültig (um falsch zu werden müßte links von ⇒ 1 und rechts 0 stehen, dann wäre aber p rechts 0, aber dann wäre auch links eine 0, was nicht sein soll, also immer 1; alternativ alle Interpretationen prüfen)
- $p \Rightarrow q \Leftrightarrow \neg p \lor q$ ist allgemeingültig
- $p \land p \Leftrightarrow p$ ist allgemeingültig

Definition: Semantische Folgerung

- Eine Formel β folgt semantisch aus einer Formel α gdw für jede Interpretation I gilt, dass wenn $I(\alpha)=1$ dann $I(\beta)=1$. Wir schreiben: $\alpha \models \beta$
- Es gilt: $\alpha \models \beta$ gdw $\alpha \Rightarrow \beta$ ist allgemeingültig

- Eine Formel β folgt semantisch aus einer Menge von Formeln $\Sigma = \{ \alpha_1, ..., \alpha_n \}$ gdw für jede Interpretation I gilt, dass wenn $I(\alpha_1)=1$ und ... und $I(\alpha_n)=1$ dann ist auch $I(\beta)=1$. Wir schreiben: $\Sigma \models \beta$
- Es gilt: $\Sigma \models \beta$ gdw $\alpha_1 \land \alpha_2 \land ... \land \alpha_n \Rightarrow \beta$ ist allgemeingültig

*Erfüllbar, Allgemeingültig, Widerspruchsvoll

- Eine Menge von aussagenlogischen Formeln $\Sigma = \{\alpha_1,...,\alpha_n\}$ ist *erfüllbar* gdw es existiert eine Interpretation I unter der alle Formeln α_i wahr sind, das heißt $I(\alpha_i)=1$ für i=1...n
- Eine Menge von aussagenlogischen Formeln $\Sigma = \{\alpha_1,...,\alpha_n\}$ ist *allgemeingültig* (ist eine *Tautologie*) gdw jede Formel α_i allgemeingültig ist
- Wenn $\Sigma = \emptyset$, dann ist Σ allgemeingültig
- Eine Menge von aussagenlogischen Formeln $\Sigma = \{\alpha_1,...,\alpha_n\}$ ist widerspruchsvoll (inkonsistent) gdw es gibt keine Interpretation I mit $I(\alpha_i)=1$ für i=1...n.

*****Beispiele

- p | p
- p∧q | p
- {p,q} | p
- $p \land \neg p \models q$
- $p \land \neg p \models q \land \neg q$
- $\{p, q \vee r\} \models (p \wedge q) \vee (p \wedge r)$
- $\{p, \neg p \land \neg q\}$ ist widerspruchsvoll
- $\{p, \neg p \lor \neg q\}$ ist erfüllbar
- $\{p \lor \neg p\}$ ist allgemeingültig

Äquivalenz

• Definition: Zwei aussagenlogische Formeln α und β sind äquivalent gdw

$$\alpha \Leftrightarrow \beta$$
 ist allgemeingültig
Wir schreiben $\alpha \approx \beta$

Einige wichtige Äquivalenzen:

```
- Negation: p \approx \neg \neg p
```

- Idempotenz:
$$p \land p \approx p$$
 $p \lor p \approx p$

- Kommutativität:
$$p \land q \approx q \land p p \lor q \approx q \lor p$$

- Assoziativität:
$$(p \land q) \land r \approx q \land (p \land r)$$
 $(p \lor q) \lor r \approx q \lor (p \lor r)$

- Distributivität:
$$p\lor(q\land r)\approx (p\lor q)\land (p\lor r)$$

 $p\land (q\lor r)\approx (p\land q)\lor (p\land r)$

— De Morgan:
$$\neg(p \land q) \approx \neg p \lor \neg q$$
 $\neg(p \lor q) \approx \neg p \land \neg q$

Transformation von Implikation and Äquivalenz:

```
• p \Rightarrow q \approx (\neg p \lor q)
```

•
$$p \Leftrightarrow q \approx (p \land q) \lor (\neg p \land \neg q)$$

Beweis durch Betrachtung aller möglichen Interpretationen

*Normalformen

• Eine aussagenlogische Formel α ist in konjunktiver Normalform (CNF, KNF), wenn sie die folgende Form hat:

Die *konjunktive Normalform* ist eine

Konjunktion von

Disjunktionen

- $-\alpha_1 \wedge \alpha_2 \wedge ... \wedge \alpha_m$ und
- − jede Teilformel α_i (*Klausel*) hat die Form $\alpha_{i1} \vee \alpha_{i2} \vee ... \vee \alpha_{ik_i}$
- jedes α_{ij} (*Literal*) ist entweder von der Form p oder $\neg p$ für ein beliebiges Propositionssymbol p
- Eine aussagenlogische Formel α ist in disjunktiver Normalform (DNF), wenn sie die folgende Form hat:

Die *diskjunktive Normalform* ist eine

Disjunktion von

Konjunktionen

- $-\alpha_1 \vee \alpha_2 \vee ... \vee \alpha_m$ und
- jede Teilformel α_i hat die Form $\alpha_{i1} \wedge \alpha_{i2} \wedge ... \wedge \alpha_{ik_i}$ und
- jede α_{ij} (Literal) ist entweder von der Form p oder \neg p für ein beliebiges Propositionssymbol p

Transformation in Normalformen

 Jede Formel kann durch Anwendung der Äquivalenzen in eine äquivalente Formel in konjunktiver beziehungsweise disjunktiver Normalform überführt werden

Beispiele:

-
$$p \land q \Rightarrow r$$
 ≈ $(\neg (p \land q)) \lor r$
≈ $(\neg p \lor \neg q) \lor r$
≈ $\neg p \lor \neg q \lor r$
DNF und ebenfalls (!) CNF

$$-$$
 p \wedge (q \vee \neg r) \approx (p \wedge q) \vee (p \wedge \neg r) CNF

Systematische Transformation in CNF

• Entfernen von Implikationen und Äquivalenzen.

```
- aus x \Rightarrow y \text{ wird } \neg x \lor y
- aus x \Leftrightarrow y \text{ wird } (\neg x \lor y) \land (\neg y \lor x)
```

 Reduzierung des Gültigkeitsbereiches von Negationen auf ein einzelnes Symbol:

```
- aus \neg (\neg x) wird x

- aus \neg (x \lor y) wird (\neg y \land \neg x)

- aus \neg (x \land y) wird (\neg y \lor \neg x)
```

 Verwendung der Distributivgesetze zur Konvertierung in eine Konjunktion von Disjunktionen

```
- aus (p \land q) \lor r wird (p \lor r) \land (q \lor r)
```

*Aussagenlogik zur Wissensrepräsentation

Wissensrepräsentation

- Gegeben: Wissensbasis als Menge aussagenlogischer Formeln Σ
- Ziel: Anfrage an Wissensbasis als aussagenlogische Formel β formuliert. Ist die Anfrage wahr oder falsch unter Berücksichtigung des Wissens in der Wissensbasis Σ? Folgt β semantisch aus Σ? Gilt also $\Sigma \models \beta$?

Beispiel

- Wissensbasis:
 - WENN "Dirk hat den Mathe-Schein" DANN
 "Dirk hat die Mathe-Hauptklausur bestanden" ODER
 "Dirk hat die Mathe-Nachklausur bestanden"
 - "Dirk hat den Mathe-Schein"
 - "Dirk hat die Mathe-Hauptklausur nicht bestanden"
- Frage: Gilt "Dirk hat die Mathe-Nachklausur bestanden"?

Symbolische Wissensrepräsentation

Formalisieren: Wissen der realen Welt in Symbole tranformieren

Schlussfolgern: Kalkül zur korrekten Symbolverarbeitung, Herleiten von korrekten

Interpretation: Symbole zurück in Wissen der realen Welt

Aussagen

*Semantische Folgerung

- Satz: $\Sigma \models \beta \text{ gdw } \Sigma \cup \{\neg \beta\}$ ist widerspruchsvoll
- Beweis:
 - ⇒: Annahme $\Sigma = \{\alpha_1, ..., \alpha_n\} \models \beta$ gilt. Dann gilt für jede Interpretation I mit I(α_1)=1, ... und I(α_n)=1, dass I(β)=1 und daher I($\neg \beta$) = 0. Es gibt also keine Interpretation mit I(α_1)=1, ... und I(α_n)=1, und I($\neg \beta$) = 1. Folglich ist $\Sigma \cup \{\neg \beta\}$ widerspruchsvoll.
 - \Leftarrow : Annahme $\Sigma \cup \{\neg \beta\}$ ist widerspruchsvoll. Dann gibt es keine Interpretatation mit I(α_1)=1, ... und I(α_n)=1, und I($\neg \beta$) = 1. Falls also I(α_1)=1, ... und I(α_n)=1 gilt, dann muss I($\neg \beta$) = 0 gelten. Daher muss falls I(α_1)=1, ... und I(α_n)=1 gilt, auch I(β) = 1 gelten. Folglich gilt $\Sigma \models \beta$.

Entscheidung semantischer Folgerung

- Benötigt wird Kalkül oder Algorithmus, der $\Sigma \models \beta$ zeigt indem zum Beispiel gezeigt wird, dass $\Sigma \cup \{\neg \beta\}$ widerspruchsvoll ist.
- Idee vollständige Aufzählung, suche Modell
 - Konstruiere alle Interpretationen
 - Bei n verschiedenen Propositionssymbolen sind das 2ⁿ Interpretationen
 - Für jede Interpretation I prüfe of $I(\alpha) = 1$ für alle $\alpha \in \Sigma \cup \{\neg \beta\}$.
 - Falls eine gefunden wird, dann ist $\Sigma \cup \{\neg \beta\}$ nicht widersprüchlich und folglich gilt $\Sigma \models \beta$ nicht.
 - Falls keine gefunden wird, dann ist $\Sigma \cup \{\neg \beta\}$ widersprüchlich und folglich gilt $\Sigma \models \beta$.
- Problem
 - Vollständige Aufzählung
 - Theoretisch möglich in der Aussagenlogik, aber meist prohibitiv teuer
 - Auch praktisch nicht mehr möglich in der Prädikatenlogik

*Inferenzkalkül

- Ziel:
 - Aussagenlogische Formeln direkt syntaktisch manipulieren
 - Erzeugen von korrekten aussagenlogischen Formeln
- Inferenzkalkül
 - Vorschriften oder Inferenzregeln
 - Aus gegebenen aussagenlogischen Formeln neue aussagenlogische Formen generieren
- Definition: Eine Formel β folgt syntaktisch aus einer Formelmenge $\Sigma = \{\alpha_1, ..., \alpha_n\}$ und Inferenzregeln IR gdw
 - Es gibt eine Folge von $\Sigma = \Sigma_0$, Σ_1 , Σ_2 , ... mit β aus einem Σ_i
 - $\Sigma_{i+1} = \Sigma_i \cup \{\gamma_i\}$; und γ_i und entsteht aus Anwendung einer Regel in IR auf Σ_i
 - $\text{ Wir schreiben: } \Sigma_{i} \models \gamma_{i}, \Sigma \models^{*} \beta \text{ oder kurz } \Sigma \models \beta \text{ und } \Sigma_{i} \models \Sigma_{j} \text{ für } i \leq j; \\ \text{um explizit auf IR hinzuweisen schreibt man auch } \models_{\mathsf{IR}} \text{ statt } \models$

*Korrektheit und Vollständigkeit

Ziel

- Ein Kalkül soll vollständig sein:
 Alles was (semantisch) korrekt ist soll (syntaktisch) herleitbar sein.
- Ein Kalkül soll korrekt sein:
 Alles was (syntaktisch) hergleitet werden kann soll (semantisch) korrekt sein.
- Korrektheit und Vollständigkeit: | = |
 - Korrektheit: Für alle Σ, β gilt: Falls $\Sigma \models \beta$ gilt, dann gilt $\Sigma \models \beta$.
 - Vollständigkeit: Für alle Σ, β gilt: Falls $\Sigma \models \beta$ gilt, dann gilt $\Sigma \models \beta$.
- Satz: Es gibt einen korrekten und vollständigen Kalkül für die Aussagenlogik

*Inferenzkalkül

- Inferenzkalkül
 - Ein Inferenzkalkül besteht aus einer Menge von Inferenzregeln
 - Jede Inferenzregel soll eine neue Formel aus vorhandenen Formeln herleiten können
- Inferenzregel
 - Eine Inferenzregel besteht aus einer Prämisse und einer Konklusion
 - *Prämisse*: Ein Muster, auf das eine Teilmenge der vorhandenen Menge von Formeln $\Sigma_{\rm i}$ passt
 - Konklusion: Eine Formel γ_i , die abgeleitet werden kann
 - Hinweis: Vorhandene Formeln können nicht entfernt werden
 - Für Korrektheit und Vollständigkeit ist das vollkommen in Ordnung
 - In Praxis auch Vereinfachungsregeln, die Formeln entfernen
- Notation Inferenzregel

 Falls Variablen in der Prämisse durch aussagenlogische Literale ersetzt werden und die entsprechenden Formeln existieren, dann kann man die entsprechend ersetzte Konklusion der Formelmenge hinzufügen

*Beispiele von Inferenzregeln

Modus Ponens:

$$x \Rightarrow y, x$$

Falls $x \Rightarrow y$ gilt und x gilt, dann kann man y hinzufügen. x und y sind durch beliebige Literale zu ersetzen.

• Und-Elminination:

• Oder Einführung:

$$X_{1} \wedge X_{2} \dots X_{n-1} \wedge X_{n}$$

$$X_{i}$$

$$X_{1'} X_{2'} \dots X_{n-1}, X_{n}$$

$$X_{1} \wedge X_{2} \dots X_{n-1} \wedge X_{n}$$

$$X_{1} \vee X_{2} \dots X_{n-1} \vee X_{n}$$

$$X_{1} \vee X_{2} \dots X_{n-1} \vee X_{n}$$

Elminiation doppelter Negation:

Resolution:

$$X_{1} \vee X_{2} \dots X_{n} \vee Z, \quad \neg Z \vee Y_{1} \vee Y_{2} \dots Y_{m}$$

$$X_{1} \vee X_{2} \dots \vee X_{n} \vee Y_{1} \vee Y_{2} \dots Y_{m}$$

 $\neg \neg X$

*Resolutionskalkül

• Normalisierung, Σ

- Transformiere alle Formeln der Wissensbasis in CNF
- Für jede Formel nehme jedes Konjunktionsglied als separate Formel auf
- Die so entstehende neue Formelmenge Σ enthält jetzt nur noch Disjunktionen von Literalen (eventuell negierten Propositionssymbolen)
- Herleitung einer Anfrage β aus Σ
 - Idee: Zeige, dass β aus Σ folgt, da $\{\neg \beta\} \cup \Sigma$ widerspruchsvoll ist
 - Transformiere die Negation der Anfrage $\neg \beta$ (Beweisziel) in CNF
 - Füge Ergebnis dieser Transformation zu Σ hinzu
 - Verwende die Resolution als Inferenzregel um die leere Konklusion herzuleiten (ein Widerspruch)
 - Falls die leere Konklusion hergleitet werden kann, dann ist die erzeugte Formelmenge, $\{\neg\beta\} \cup \Sigma$ in CNF, widerspruchsvoll

Wissensbasis:

$$p, (p \land q) \Rightarrow r (s \lor t) \Rightarrow q,$$

t

Anfrage:

r

Wissensbasis in CNF

Negation der Anfrage in CNF ¬ r

$$\neg p \lor \neg q \lor r$$

$$\neg s \lor q$$

$$\neg t \lor q$$

t

$$\neg$$
 r

Anfrage folgt aus Wissenbasis wenn diese Klauselmenge widerspruchsvoll ist

$$(2) \neg p \lor \neg q \lor r$$

$$(7) \neg p \lor \neg q$$

$$(4) \neg t \lor q$$

$$(8) \neg q$$

$$(9) \neg t$$

$$(5) t$$

$$(10)$$
Leere Klausel hergeleitet, Anfrage folgt

Propositionen

- Joe ist klug:
- Joe mag Eishockey:
- Joe geht ins Stadion:
- Joe ist Kanadier:
- Joe fährt Schlittschuh:
- Wissensbasis
 - Joe ist klug:
 - Wenn Joe klug ist und wenn
 Joe Eishockey mag,
 dann geht Joe ins Stadion:
 - Wenn Joe Kanadier ist oder wenn Joe Schlittschuh fährt, dann mag Joe Eishockey:
 - Joe fährt Schlittschuh
- Anfrage
 - Geht Joe ins Stadion?

- p q
- S
- t
- р

$$p \land q \Rightarrow r$$

 $\neg p \lor \neg q \lor r$

 $\neg s \lor q$

S

 $\neg r$

- s x + -> a
- $s \lor t \Rightarrow q \qquad \neg t \lor q$
- S
- r

Wissensbasis in CNF plus negierte Anfrage

,

Grenzen der Aussagenlogik

Aussagenlogik

- Annahme: Alles kann mit einfachen Fakten (Propositionen) ausgedrückt werden
- Die Ausdrucksstärke ist beschränkt
- Ausblick Prädikatenlogik
 - Sachverhalte der Welt modellieren mit Relationen und Eigenschaften
 - Prädikatenlogik stellt diese Modellierungselemente bereit