Distribuído: 22/02/16

CC-297

Projeto No. 1

João L. F. Azevedo Entrega: 28/03/16

 1° Semestre/2016

Escreva um programa para resolver a equação de Laplace em duas dimensões, coordenadas cartesianas,

$$\phi_{xx} + \phi_{yy} = 0 .$$

Fisicamente isto representaria um escoamento potencial, incompressível, em estado estacionário. O programa deve ser construído de forma a resolver o escoamento sobre um aerofólio biconvexo sem sustentação, ou seja, $\alpha = 0$, definido por

$$y = 2tx(1-x),$$

onde t é a espessura máxima do perfil, e x, y e t são adimensionalizados pela corda do aerofólio. Não há nenhuma preferência maior quanto à linguagem de programação a ser usada, desde que seja uma linguagem científica atual, como Fortran, C ou C^{++} . Não é adequado, ou aceitável, o uso de rotinas (ou M-files) MATLAB, por exemplo, porque isto pode esconder do aluno muito do que se quer que ele efetivamente tenha a responsabilidade de programar.

Uma forma bastante utilizada para se resolver uma equação diferencial parcial (ou sistema de equações diferenciais parciais) que descreve(m) uma condição de estado estacionário, ou seja, variáveis não são função do tempo, consiste em se utilizar técnicas conhecidas como métodos de relaxação. Sob um aspecto conceitual, relaxação significa o processo de se determinar a solução iterativa de uma equação ou de um sistema acoplado de equações algébricas. Como o processo é iterativo e a solução exata em geral não é conhecida, caso contrário não haveria sentido em se estar resolvendo o problema, há necessidade de se definir algum teste de convergência desta solução. Em linhas gerais se diz que a solução convergiu quando ela se torna invariante com a continuação das iterações, e a grandeza sobre a qual tipicamente se efetua os testes de convergência é conhecida como resíduo. O resíduo é definido como a avaliação da equação diferencial discretizada (ou sistema de equações diferenciais discretizadas) e, desta forma, ele representa uma avaliação de quão bem a forma discreta da equação diferencial está sendo satisfeita pela solução corrente, ou seja, a solução no presente nível de iteração.

Existem muitas formas de se criar processos de relaxação, porém uma forma que é particularmente conveniente no presente caso consiste em se escrever o problema discreto na chamada forma padrão de correção, ou forma delta. Para o caso da equação de Laplace, esta pode ser expressa como

$$N \, C_{i,j}^n \, + \, L \, \phi_{i,j}^n \, = \, 0 \ ,$$

onde $L \phi_{i,j}^n$ é a discretização da equação diferencial, também chamado de operador de resíduo, $C_{i,j}^n$ é a correção a ser efetuada no potencial de velocidade no nível de iteração n, e N representa o método de iteração escolhido. Os detalhes necessários para uma melhor compreensão do problema proposto, assim como aqueles necessários para implementação do programa para os diversos métodos desejados, serão apresentados a seguir. Vale mencionar ainda que todos estes conceitos, que estão sendo apresentados aqui, serão também discutidos brevemente em aula no momento oportuno. Com o objetivo de se começar a "colocar a mão na massa", entretanto, deseja-se que o problema aqui proposto vá, desde agora, sendo resolvido pela classe. As informações aqui contidas são, na realidade, suficientes para que se realizar o trabalho proposto. Além disto, recomenda-se ainda ler o Capítulo 9 do livro do Prof. Lomax, que aborda especificamente o tema de métodos de relaxação.

Condições de Contorno e Condições Iniciais

Considere que a condição de escoamento não perturbado seja dada por

$$\phi_{\infty} = \mathcal{U}_{\infty} x$$
.

Portanto, utilize ϕ_{∞} como condição inicial. Neste caso, \mathcal{U}_{∞} é uma constante especificada como "dado de entrada". Note, ainda, que a condição de escoamento não perturbado pode ser também utilizada nas fronteiras de entrada, de saída, e na fronteira "superior" do domínio de cálculo, para todos os níveis de iteração, ou seja, em qualquer "instante". Em outras palavras, esta não é apenas uma condição inicial, mas também uma condição de contorno nas fronteiras acima especificadas. A condição de contorno de escoamento tangente na superfície do aerofólio deve ser implementada utilizando a hipótese de pequenas perturbações, ou seja,

$$\phi_y(x,0) = \mathcal{U}_{\infty} \frac{dy}{dx}$$
 , $0 \le x \le 1$.

Observamos que esta certamente não é a abordagem ideal para implementação da condição de escoamento tangente em uma formulação de potencial completo. Entretanto, é suficiente para os nossos propósitos aqui, e simplifica sobremaneira a geração de uma malha de diferenças finitas para o problema. Ao longo do restante da fronteira y=0, ou seja, "antes" e "após" o perfil, ϕ_y deve ser definido como zero. Isto é simplesmente a condição de simetria do escoamento para $\alpha=0$. Estas condições de contorno estão resumidas na Fig. 1.

Malha Computacional

O programa deve utilizar uma malha de diferenças finitas cartesiana que possua um certo estiramento de malha, ou "stretching", em ambas as direções x e y. Uma malha apropriada é definida por

$$\begin{array}{lll} \Delta x & = & \frac{1.0}{ITE-ILE} \\ x_i & = & (i-ILE) \; \Delta x & , ILE \leq i \leq ITE \\ x_i & = & x_{i-1} + (x_{i-1} - x_{i-2}) * XSF & , ITE < i \leq IMAX \\ x_i & = & x_{i+1} + (x_{i+1} - x_{i+2}) * XSF & , 1 \leq i < ILE \\ y_1 & = & -\frac{\Delta x}{2} & y_2 = \frac{\Delta x}{2} \\ y_j & = & y_{j-1} + (y_{j-1} - y_{j-2}) * YSF & , 3 \leq j \leq JMAX \end{array}$$

onde:

ILE =índice i correspondente ao bordo de ataque do perfil

ITE =índice i correspondente ao bordo de fuga do perfil

IMAX =número de pontos na direção x

JMAX = número de pontos na direção y

XSF =fator de estiramento ("stretching") da malha para a direção x

YSF = fator de estiramento ("stretching") da malha para a direção y

Esquema de Diferenças Espaciais

O esquema de diferenças espaciais que deve ser utilizado é dado por

$$L\phi_{i,j} = \frac{2}{x_{i+1} - x_{i-1}} \left(\frac{\phi_{i+1,j} - \phi_{i,j}}{x_{i+1} - x_i} - \frac{\phi_{i,j} - \phi_{i-1,j}}{x_i - x_{i-1}} \right) + \frac{2}{y_{j+1} - y_{j-1}} \left(\frac{\phi_{i,j+1} - \phi_{i,j}}{y_{j+1} - y_j} - \frac{\phi_{i,j} - \phi_{i,j-1}}{y_j - y_{j-1}} \right).$$

A condição de contorno em ϕ_y na posição y=0 pode ser implementada de várias formas no esquema de diferenças espaciais. Para o caso deste trabalho, recomenda-se que o procedimento descrito a seguir seja utilizado. Antes de mais nada, note que, devido à formulação sendo utilizada para a condição de contorno, o perfil está sendo representado por sua corda, com um valor $dy/dx \neq 0$. Assim, a corda do aerofólio está localizada a "meio-caminho" entre duas linhas y= const na malha, i.e., j=1 e j=2, pela própria construção da malha. Veja a Fig. 2 para maiores detalhes. A linha j=1 representa uma linha de pontos atualizados unicamente por condição de contorno. Portanto, no início de cada iteração, o valor de ϕ para j=1 deve ser atualizado como

$$\phi_{i,1} = \phi_{i,2} - (y_2 - y_1) \ \phi_{y_{i,\frac{3}{3}}} \qquad , \ 1 \leq i \leq IMAX \ .$$

Observe que o cálculo do resíduo, ou seja, $L\phi_{i,j}$, não é nunca efetuado em quaisquer dos pontos das fronteiras computacionais.

Esquemas de Iteração

O problema deve ser resolvido utilizando 5 esquemas de iteração diferentes. A finalidade de se usar vários esquemas de iteração é poder comparar a razão de convergência destes esquemas. Os esquemas que devem ser utilizados são:

- 1. Jacobi (ou point-Jacobi);
- 2. Gauss-Seidel (ou point-Gauss-Seidel);
- 3. SOR (Successive Overrelaxation);
- 4. Line-Gauss-Seidel;
- 5. SLOR (Successive Line Overrelaxation).

No caso dos dois últimos esquemas, line-Gauss-Seidel e SLOR, a idéia é de que a iteração, ou relaxação, deve ser feita utilizando-se linhas verticais, ou seja, o processo iterativo opera na direção x. A solução, nestes casos, dentro de cada linha vertical deve ser efetuada simultaneamente resolvendo-se tridiagonais em y. Para esta solução de tridiagonais, sugere-se utilizar o algoritmo de Thomas que é descrito, entre outras referências, no livro do Prof. Fletcher (Fletcher, Vol. 1, Cap. 6, pp. 183-184). Na Série No. 2, haverá também um exercício muito útil para lhe auxiliar a programar esta rotina de "inversão" de matrizes tridiagonais.

Todos estes esquemas propostos para a solução do projeto podem ser escritos em forma padrão de correção, ou forma delta, como:

$$N \, C_{i,j}^n \, + \, L \, \phi_{i,j}^n \, = \, 0 \, \, ,$$

onde:

- $L \phi_{i,j}^n$ representa o esquema de discretização espacial adotado, que já foi fornecido anteriormente;
- $C^n_{i,j} = \Delta \phi^n_{i,j} = \phi^{n+1}_{i,j} \phi^n_{i,j}$, é a correção a ser efetuada no potencial de velocidade no nível de iteração n;
- \bullet e o operador N é discutido abaixo em cada caso.

1. Jacobi:

$$N_{PJ} = -\frac{2}{\Delta x^2} - \frac{2}{\Delta y^2}$$

2. Gauss-Seidel:

$$N_{PGS} = \frac{E_x^{-1} - 2}{\Delta x^2} + \frac{E_y^{-1} - 2}{\Delta y^2}$$

3. SOR:

$$N_{SOR} = \frac{1}{\Delta x^2} \left(E_x^{-1} - \frac{2}{r} \right) + \frac{1}{\Delta y^2} \left(E_y^{-1} - \frac{2}{r} \right)$$

4. Line-Gauss-Seidel:

$$N_{LGS} = \frac{1}{\Delta x^2} \left(E_x^{-1} - 2 \right) + \tilde{\delta}_{yy}$$

5. SLOR:

$$N_{SLOR} = \frac{1}{\Delta x^2} \left(E_x^{-1} - \frac{2}{r} \right) + \frac{1}{r} \tilde{\delta}_{yy}$$

Nas expressões anteriores temos que

 \bullet E_x e E_y são operadores deslocamento nas direções xe y,respectivamente. Por exemplo,

$$E_x^{-1}()_{i,j} = ()_{i-1,j}$$

- \bullet r é o parâmetro de relaxação de SOR ou SLOR.
- \bullet O operador $\tilde{\delta}_{yy}$ é definido por

$$\tilde{\delta}_{yy}(\)_{i,j} = \frac{2}{y_{j+1} - y_{j-1}} \left[\frac{(\)_{i,j+1} - (\)_{i,j}}{y_{j+1} - y_{j}} - \frac{(\)_{i,j} - (\)_{i,j-1}}{y_{j} - y_{j-1}} \right]$$

• E podemos definir os espaçamentos:

$$\Delta x = (\Delta x)_i = \frac{x_{i+1} - x_{i-1}}{2}$$

$$\Delta y = (\Delta y)_j = \frac{y_{j+1} - y_{j-1}}{2}$$

Como mencionado, recomenda-se ver mais detalhes sobre estes esquemas de iteração no livro do Prof. Lomax. De qualquer forma, quaisquer dúvidas sobre o projeto são sempre bem vindas.

Casos a Serem Estudados

(a) <u>Caso 1</u>:

$$\begin{cases} t = 0.05 \\ \mathcal{U}_{\infty} = 1.0 \end{cases}$$

(b) <u>Caso 2</u>:

$$\begin{cases} t = 0.10 \\ \mathcal{U}_{\infty} = 1.0 \end{cases}$$

Em ambos os casos, utilize a seguinte malha:

$$ILE = 11$$

$$ITE = 31$$

$$IMAX = 41$$

$$JMAX = 12$$

$$XSF = 1.25$$

$$YSF = 1.25$$

O caso 1 deve ser resolvido utilizando todos os esquemas de iteração anteriormente mencionados. A solução do caso 2 pode ser efetuada utilizando-se apenas os esquemas 4 e 5.

Documentação e Apresentação de Resultados

Basicamente, três tipos de resultados gráficos são desejados. Estes são:

- (a) Curvas de coeficiente de pressão versus x adimensionalizado, ou seja, curvas do tipo Cp vs x/c (ou -Cp vs x/c).
- (b) Curvas indicando a "história" de convergência, ou seja, curvas do tipo $\log_{10} \left| L \phi_{i,j}^n \right|_{max}$ vs n, onde n indica o número da iteração.
- (c) Contornos de "iso-propriedades", ou seja, curvas de nível indicando contornos de pressão ou velocidade constantes no campo todo, permitindo uma visualização de como todo o campo de escoamento está se comportando. Existem diversos programas de visualização de malhas computacionais e de resultados de cálculo disponíveis na internet (a custo zero) ou comercialmente. A sugestão é de que vocês utilizem qualquer um destes programas de visualização que lhes parecer mais conveniente. Observe que a visualização dos escoamentos sendo simulados não tem a função apenas de produzir "figuras bonitas" para incluir em seu relatório de projeto, mas é uma etapa essencial para compreender os resultados obtidos e para se ter certeza de que os mesmos estão corretos.

Obviamente, deseja-se que os resultados obtidos com os diferentes esquemas de iteração sejam comparados entre si. Isto tem por objetivo, por um lado, comparar a eficiência computacional de cada um desses esquemas. Por outro lado, é importante verificar que a solução final, em termos do coeficiente de pressão, por exemplo, é a mesma independentemente do esquema iterativo utilizado. Observe que a solução de estado estacionário depende apenas do lado direito e, portanto, deve ser completamente independente do esquema iterativo.

O coeficiente de pressão (Cp) é definido como

$$Cp = \frac{p - p_{\infty}}{\frac{1}{2}\rho_{\infty}\mathcal{U}_{\infty}^2} .$$

Para escoamento incompressível, isto pode ser simplificado para

$$Cp = 1 - \frac{\mathcal{U}^2}{\mathcal{U}_{\infty}^2} \ .$$

Aqui, \mathcal{U} é a magnitude do vetor velocidade local. A solução utilizada para o resultado final de Cp deve estar efetivamente "convergida". Ou seja, o resíduo máximo no campo deve ser reduzido tanto quanto as características da máquina que você estiver utilizando permitirem. Mostre que, de fato, você chegou neste limite.

Os resultados devem ser acompanhados de um relatório que descreva os métodos utilizados e discuta os resultados obtidos. Seus resultados computacionais devem ser comparados com algum resultado independente, e as discrepâncias devem ser discutidas (incluindo suas causas prováveis). Seria interessante anexar uma listagem do programa fonte em um apêndice no final de seu relatório. O programa deve ser o mais modular que for possível, e deve estar razoavelmente bem comentado.

FULL-POTENTIAL SOLUTION OF THE FLOW OVER A BICONVEX AIRFOIL

Airfoil thickness ratio: th = .050

Free stream velocity: uinf = 1.00

Iteration parameters: alfa = 2.000 omega = 1.920

Convergence criterion: eps = 0.100E-04

Final Results

Total number of iterations = 69
Total reduction on residue = 0.695E-05

-Ср			A	65
-0.11456	***		-1	1.17
0.00111				F
	1 27			
	2 2 2 2		VI 1877/ 1987	
				355.0
			$\Lambda \Lambda$	
	= 1 1		141	00 = 0
	K 197 B 2 V9		0.16	
	***	3		6 17361
1100				
		1± W	,,	
-0.11454				
	-0. 11456 0. 00111 0. 04022 0. 06819 0. 08909 0. 10500 0. 11706 0. 12593 0. 13203 0. 13561 0. 13561 0. 13561 0. 13204 0. 12594 0. 11706 0. 10501 0. 08910 0. 06819 0. 04023 0. 00111	-0. 11456 0. 00111 0. 04022 0. 06817 0. 08707 0. 10500 0. 11706 0. 12593 0. 13203 0. 13561 0. 13678 0. 13561 0. 13561 0. 13561 0. 13594 0. 11706 0. 10501 0. 08710 0. 06817 0. 04023 0. 00111	-0. 11456 0. 00111 0. 04022 0. 06819 0. 08909 0. 10500 0. 11706 0. 12593 0. 13203 0. 13561 0. 13678 0. 13561 0. 13561 0. 13561 0. 13594 0. 11706 0. 10501 0. 08910 0. 06819 0. 04023 0. 00111	-0. 11456 0. 00111 0. 04022 0. 06819 0. 08909 0. 10500 0. 11706 0. 12593 0. 13203 0. 13561 0. 13678 0. 13561 0. 13561 0. 13594 0. 11706 0. 10501 0. 08910 0. 06819 0. 04023 0. 00111

7/0	**
CP	
RUIO	SOLUTION AFTER
I	39
7	LIERATIONS.
2/2	NG.
AVC	HMAX
CP	=0.2226E-10,
BITO	
3	NSP #
-	0,
2/2	CL(CIR)
4/0	= 0.9999
a C	***
BHC	

t=5%, Mas = 0	
104000000000000000000000000000000000000	3
951-0 951-0 9623-0 873-0 6760-0 6760-0 6760-0 6760-0 677-	X/C
00010 0000 00010 0	Y/C
0.123 0.123 0.123 0.124 0.001 0.	CP
000000000000000000000000000000000000000	RHO
0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000	00
533 543 553 553 553 553 553 553 553 553	7 57 11
0.12133 0.12133 0.12133 0.01236 0.0588 0.0588 0.	X/C
0.011 0.011 0.011 0.003 0.005 0.	.01 Y
-0.044 -0.022 -0.022 -0.03 -0.06	
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000	RHO
0.0001 0.0001	.000
1108 1109 1109 1109 11111 11111 1109 11111 11111 11111 11111 11111 11111 1111	DO H
0.2533 0.2633 0.2923 0.3178 0.3186 0.3787 0.3787 0.5747 0.5729 0.5729 0.5729 0.6014 0.6293 0.6293 0.77545 0.77545 0.77545 0.77545 0.77545 0.77545 0.77545 0.77545 0.77545 0.7963 0.91143	X/G
0.0196 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0228 0.0228 0.0228 0.0128 0.0118 0.018	7.00 Y
20010000000000000000000000000000000000	
1.00000 1.00000	REO
0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001	0

*** LIFT, WAVE DRAG, AND QUARTER-CHORD HOHENT COEFFICIENTS.....CL = 0.0000,

CD =0.0000, CM =0.0000 |***

Ħ

0

CL(CIR)

0.0000

DRAG, AND QUARTER-CHORD MONENT COEFFICIENT'S ...CL 0.0000, CD =0.0000, 2 =0.0000 ***

HAVE