VI Векторные пространства

- 1 В каких из следующих случаев указанные операции на множестве X задают структуру векторного пространства над полем \mathbb{F} ?
- а) $\mathbb{F} = \mathbb{R}$, X полуплоскость $\{(x,y)^T \in \mathbb{R}^2 \mid x \geqslant 0\}$, операции сложения и умножения на числа стандартные (покоординатные);
- б) $\mathbb{F}=\mathbb{R},$ X множество геометрических векторов в трёхмерном пространстве, выходящих из начала координат, концы которых лежат на заданной плоскости, операции стандартные;
- в) $\mathbb{F} = \mathbb{R}$, X множество векторов на плоскости \mathbb{R}^2 , все координаты которых по модулю не превосходят единицы; операции стандартные;
- г) $\mathbb{F}=\mathbb{R},\ X=(0,+\infty),$ операции сложения \oplus и умножения на числа \odot заданы формулами $\mathfrak{u}\oplus \nu=\mathfrak{u}\nu,\ \lambda\odot\mathfrak{u}=\mathfrak{u}^\lambda;$
 - д) $\mathbb{F} = \mathbb{C}$, X множество ненулевых комплексных чисел, операции стандартные;
 - e) $\mathbb{F} = \mathbb{Q}$, $X = \mathbb{Q}(\sqrt{3})$, операции стандартные;
- \ddot{e}^*) $\mathbb{F}=\mathbb{Q}$, X множество бесконечных последовательностей (a_n) действительных чисел, удовлетворяющих условию $a_n=a_{n-1}+a_{n-2}$, операции стандартные. Если да, то какова размерность этого пространства?
- ж) $\mathbb{F} = \mathbb{R}$, X множество многочленов f c действительными коэффициентами, удовлетворяющих условию f(0) = 0, операции стандартные;
- з) $\mathbb{F}=\mathbb{C},\ X$ множество квадратных матриц порядка \mathfrak{n} с нулевым следом, операции стандартные. Если да, то какова размерность этого пространства?
- и) $\mathbb{F}=\mathbb{R},$ X множество симметрических квадратных матриц порядка $\mathfrak{n}.$ Если да, то какова размерность этого пространства?
- 2 Каким условиям должен удовлетворять скаляр x, чтобы векторы $(0,x,-1)^T$, $(x,0,1)^T$, $(1,-1,x)^T\in\mathbb{R}^3$ были линейно зависимы? Каким будет ответ на этот же вопрос при замене \mathbb{R}^3 на \mathbb{Q}^3 ?
- $\fbox{3}$ Пусть a,b,c линейно независимая система векторов. Какими буду следующие системы векторов: a) a,a+b,a+b+c; b0 a+b,b+c0, a+b+c1, a+b+c2, a+b+c3.
 - [4] Исследовать на линейную зависимость следующие системы функций (n > 0):
 - a) 1, x, x^2 , ..., x^n ; 6^*) 1, e^x , e^{2x} , ..., e^{nx} ; $e^$
 - г) $1, \sin x, \cos x, \sin^2 x, \cos^2 x, \dots, \sin^n x, \cos^n x; \, \underline{\lambda}^*$) $1, \cos x, \cos 2x, \dots, \cos nx$.
- 5* Докажите линейную независимость всех геометрических прогрессий, начинающихся с единицы, в векторном пространстве бесконечных последовательностей.

- 6 Найдите ранг и какую-нибудь базу систем векторов:
- a) $v_1 = (1, 2, -1, 5)^T$, $v_2 = (2, 1, 1, 2)^T$, $v_3 = (0, 1, -1, 3)^T$, $v_4 = (1, 1, 0, 2)^T \in \mathbb{R}^4$;
- 6) $v_1 = (-3, 1, 0, 0)^T$, $v_2 = (4, 3, 2, 1)^T$, $v_3 = (-9, 3, 0, 0)^T \in \mathbb{R}^4$;
- b) $v_1 = (1, 2, 3)^\mathsf{T}$, $v_2 = (2, 3, 4)^\mathsf{T}$, $v_3 = (-3, -2, -3)^\mathsf{T}$, $v_4 = (4, 3, 4)^\mathsf{T}$, $v_5 = (2, 2, 2)^\mathsf{T} \in \mathbb{R}^3$;
- 7 Проверьте, что система векторов e_1, e_2, \dots, e_n образует базис пространства \mathbb{R}^n и найдите координаты вектора x в этом базисе:
 - a) $e_1 = (1,5,3)^T$, $e_2 = (2,7,3)^T$, $e_3 = (3,9,4)^T$, $x = (2,1,1)^T$;
 - 6) $e_1 = (1, 2, -1, 2)^T$, $e_2 = (2, 3, 0, -1)^T$, $e_3 = (1, 2, 1, 4)^T$, $e_4 = (1, 3, -1, 0)^T$,
 - $x = (7, 14, -1, 2)^{T};$
 - в) $e_1 = (1, 2, 1, 1)^\mathsf{T}$, $e_2 = (2, 3, 1, 0)^\mathsf{T}$, $e_3 = (3, 1, 1, -2)^\mathsf{T}$, $e_4 = (4, 2, -1, -6)^\mathsf{T}$,
 - $x = (0, 0, 2, 7)^{T};$
- $\boxed{8}$ Докажите, что многочлены 1, t-1, $(t-1)^2$, $(t-1)^3$, $(t-1)^4$, $(t-1)^5$ образуют базис в пространстве $\mathbb{R}[t]_{\leqslant 5}$. Найдите координаты многочлена $t^5-t^4+t^3-t^2+t-1$ в этом базисе.
- 9 Докажите, что $2x + x^3$, $x^3 x^5$, $x + x^3$ образуют базис в пространстве нечётных многочленов степени не выше 5. Найдите координаты многочлена $5x x^3 + 2x$ в этом базисе.
 - 10Докажите, что матрицы $\begin{pmatrix} 1 & 0 \\ 2 & -1 \end{pmatrix}, \begin{pmatrix} 8 & -2 \\ 3 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 4 \\ -1 & 2 \end{pmatrix}, \begin{pmatrix} 7 & 1 \\ 5 & 0 \end{pmatrix}$ образуют

базис в пространстве $M_2(\mathbb{R})$ и найдите координаты матрицы $\left(\begin{array}{cc} 1 & 5 \\ 0 & 2 \end{array} \right)$ в этом базисе

- 11* Докажите, что последовательности $v_1=(2,3,5,8,13,\ldots)$ и $v_2=(1,2,3,5,8,\ldots)$ образуют базис в пространстве образуют базис в пространстве последовательностей со свойством $\alpha_n=\alpha_{n-1}+\alpha_{n-2}$ и разложите последовательность $v=(1,1,2,3,5,8,\ldots)$ по этому базису.
- 12 В пространстве $\mathbb{Q}[x]_{\leqslant 2}$ перешли от базиса $x^2, x, 1$ к новому базису с помощью

матрицы перехода $\begin{pmatrix} 3 & 1 & 2 \\ 1 & 0 & -1 \\ 3 & -5 & 1 \end{pmatrix}$. Найдите новый базис.

- 13 В пространстве $\mathbb{Q}[x]_{\leqslant 2}$ от базиса $x^2, x, 1$ перешли к новому базису:
- а) $1, x + 1, \frac{(x+1)^2}{2}$; б) $1, x, x^2 + 2$; в) $1, x^2, x$. Найдите матрицы перехода от старого базиса к новому и наоборот.
- 14 Найдите матрицу перехода от базиса $e_1 = (2,3,-2)^\mathsf{T},\ e_2 = (5,0,-1)^\mathsf{T},\ e_3 = (2,1,-1)^\mathsf{T}$ к базису $e_1' = (1,1,-1)^\mathsf{T},\ e_2' = (1,-1,0)^\mathsf{T},\ e_3' = (1,1,1)^\mathsf{T}.$

- 15 В пространстве $\mathbb{R}[t]_{\leqslant 3}$ найдите матрицу перехода от базиса 1, 1+t, $1+t^2$, $1+t^3$ к базису $1+t^3$, $t+t^3$, t^2+t^3 , t^3 .
- 16^* V n-мерное векторное пространство над полем $\mathbb F$, состоящее из q элементов. Найдите:
 - а) число векторов в пространстве V;
 - б) число базисов пространства V;
 - в) число невырожденных матриц порядка n над полем \mathbb{F} ;
 - г) число вырожденных матриц порядка n над полем \mathbb{F} ;
 - д) число k-мерных подпространств пространства V;
- е) число решений уравнения Ax = 0, где A прямоугольная матрица ранга r, x столбец неизвестных длины n.
- 17* Докажите, что поле из q элементов существует тогда и только тогда, когда q является положительной степенью простого числа.
- 18* Является ли кольцо всех подмножеств $\mathcal{P}(M)$ множества M относительно операций взятия симметрической разности и пересечения (листок I, № 19) алгеброй над полем \mathbb{Z}_2 , если определить в нём умножение по правилам $0A = \varnothing$, 1A = A для любого $A \in \mathcal{P}(M)$?
- 19* Докажите, что в конечномерной алгебре без делителей нуля каждое из уравнений ax = b и xa = b, где $a \neq 0$ имеет и при том единственное решение.
- 20* Вещественная квадратная матрица такова, что в каждом её столбце есть ровно два ненулевых элемента: диагональный, больший 1, и некоторый недиагональный, равный 1. Может ли эта матрица быть вырожденной?