Teoretická informatika (TIN) - Úkol 2

Šimon Stupinský - xstupi00@stud.fit.vutbr.cz

Hodnotenie:

1. ÚLOHA

Zadanie: Uvažujte jazyk $L = \{w \in \{a,b\}^* \mid \#_a(w) = \#_b(w)\}$, kde $\#_x(w)$ značí počet výskytov symbolu x v reťazci w. Dokážte, že jazyk L je bezkontextový. Postupujte nasledovne:

- (a) Navrhnite gramatiku G, ktorá bude mať za cieľ generovať jazyk L.
- (b) Pomocou indukcie k dĺžke slova $w \in L$ dokážte, že L = L(G).

a) Navrhnite gramatiku G, ktorá bude mať za cieľ generovať jazyk L:

$$G = (N, \Sigma, P, S) = (\{S\}, \{a, b, \varepsilon\}, \{S \rightarrow \varepsilon, S \rightarrow SS, S \rightarrow aSb, S \rightarrow bSa\}, S)$$

b) Pomocou indukcie k dĺžke slova $w \in L$ dokážte, že L = L(G):

 $L(G) \subseteq L$

Najprv ukážeme, že každý reťazec vygenerovaný gramatikou G obsahuje rovnaký počet symbolov a a b, pričom použijeme dôkaz indukciou k dĺžke slova $w \in L(G)$: $\forall w \in L(G)$: $\#_a(w) = \#_b(w)$.

Bázový prípad: $\mathbf{n} = \mathbf{0}$. Jediný reťazec ktorý dokážeme vygenerovať v gramatike \mathbf{G} s dĺžkou $\mathbf{n} = \mathbf{0}$ je ε , pričom tento reťazec dokážeme v gramatike \mathbf{G} vygenerovať využitím jednej z dvoch nasledujúcich derivácií z počiatočného nonterminálu \mathbf{S} :

a)
$$n = 0$$
: $w = \varepsilon$, $S \underset{G}{\Rightarrow} \varepsilon$ b) $n = 0$: $w = \varepsilon$, $S \underset{G}{\Rightarrow} SS \underset{G}{\Rightarrow} \varepsilon$

Je zrejmé, že počet symbolov \mathbf{a} a \mathbf{b} je v slove $\mathbf{w} = \boldsymbol{\varepsilon}$ rovnaký ($\#_{\mathbf{a}}(\mathbf{w}) = \#_{\mathbf{b}}(\mathbf{w}) = \mathbf{0}$) a preto $\mathbf{w} \in \mathbf{L}$.

$$\mathbf{Induk\check{c}n\acute{y}}\;\mathbf{predpoklad:}\quad\forall\;w\in L(G)\;:\;(S\mathop{\Rightarrow}^*_G w\;\wedge\;|w|=n)\Rightarrow w\in L.$$

Indukčný krok: Ukážeme, že platí: $\forall w \in L(G) : (S \Rightarrow_G^* w \land |w| = n + 2) \Rightarrow w \in L$.

Gramatika G generuje len reťazce s párnou dĺžkou a preto v tomto indukčnom kroku uvažujeme reťazce s dĺžkou n+2. Pre všetky možné varianty generovania dlhších slov ukážeme, že toto trvdenie bude platné s využitím indukčného prepokladu:

(a)
$$S \underset{G}{\Rightarrow} aSb \underset{G}{\Rightarrow}^* aw'b = w$$
, $|w| = n + 2$, $|w'| = n$

- Podľa indukčného predpokladu $w' \in L$ a teda $\#_a(w') = \#_b(w')$.
- $\mathbf{w} = \mathbf{a}\mathbf{w}'\mathbf{b}$, je teda zrejmé že $\#_{\mathbf{a}}(\mathbf{w}) = \#_{\mathbf{a}}(\mathbf{w}') + 1 \land \#_{\mathbf{b}}(\mathbf{w}) = \#_{\mathbf{b}}(\mathbf{w}') + 1$.
- Z toho plynie, že $\#_a(w) = \#_b(w)$ a teda $w \in L$ čím sme dokázali, že indukčný krok platí.

(b)
$$S \Rightarrow_G bSa \Rightarrow_G^* bw'a = w$$
, $|w| = n + 2$, $|w'| = n$

- Podľa indukčného predpokladu $\mathbf{w}' \in \mathbf{L}$ a teda $\#_{\mathbf{a}}(\mathbf{w}') = \#_{\mathbf{b}}(\mathbf{w}')$.
- $\mathbf{w} = \mathbf{b}\mathbf{w}'\mathbf{a}$, je teda zrejmé že $\#_{\mathbf{a}}(\mathbf{w}) = \#_{\mathbf{a}}(\mathbf{w}') + 1 \wedge \#_{\mathbf{b}}(\mathbf{w}) = \#_{\mathbf{b}}(\mathbf{w}') + 1$.
- Z toho plynie, že $\#_a(w) = \#_b(w)$ a teda $w \in L$ čím sme dokázali, že indukčný krok platí.

(c)
$$S \Rightarrow_G SS \Rightarrow_G^* w_1 w_2 = w$$
, $w_1 \in \{aw_1'b, bw_1'a, \varepsilon\}$, $w_2 \in \{aw_2'b, bw_2'a, \varepsilon\}$, $|w_1'| = n_1$, $|w_2'| = n_2$

- Podľa indukčného predpokladu $w_1', w_2' \in L$ a teda $\#_a(w_1') = \#_b(w_1') \, \wedge \, \#_a(w_2') = \#_b(w_2').$
- $\forall i \in \{1,2\}$: $w_i \in \{aw_i'b, bw_i'a\}$, je teda zrejmé, že $\#_a(w_i) = \#_a(w_i') + 1 \land \#_b(w_i) = \#_b(w_i') + 1$.
- $\forall i \in \{1,2\}$: $\mathbf{w_i} = \varepsilon$, potom $\#_a(\mathbf{w_i}) = \#_a(\mathbf{w_i}') \land \#_b(\mathbf{w_i}) = \#_b(\mathbf{w_i}')$.
- Z toho plynie, že $\#_a(w_1) = \#_b(w_1) \land \#_a(w_2) = \#_b(w_2)$ a teda $w_1, w_2 \in L$.
- Keď že $w_1, w_2 \in L$, potom platí taktiež $w \in L$, pretože $\#_a(w_1) + \#_a(w_2) = \#_b(w_1) + \#_b(w_2)$.

II. $L \subseteq L(G)$

V tomto prípade ukážeme, že každé slovo \mathbf{w} z jazyka \mathbf{L} ($\mathbf{w} \in \mathbf{L}$) je možné vygenerovať v gramatike \mathbf{G} aplikovaním relevantných pravidiel. teda ukážeme že: $\forall \mathbf{w} \in \mathbf{L} : \mathbf{S} \Rightarrow^* \mathbf{w}$.

Bázový prípad: $\mathbf{n}=\mathbf{0}$. Najkratšie slovo \mathbf{w} , ktoré sa nachádza v jazyku \mathbf{L} a má dĺžku $\mathbf{n}=\mathbf{0}$ je slovo $\mathbf{w}=\boldsymbol{\varepsilon}$. Toto slovo dokážeme v gramatike \mathbf{G} vygenerovať použitím pravidla $\mathbf{S}\to\boldsymbol{\varepsilon}$, čím je zrejmé, že $\mathbf{w}\in\mathbf{L}(\mathbf{G})$. Ukázali sme, že pre všetky slová $\mathbf{w}\in\mathbf{L}$, ktoré majú dĺžku $\mathbf{n}=\mathbf{0}$, platí že $\mathbf{L}\subseteq\mathbf{L}(\mathbf{G})$.

Indukčný predpoklad: $\forall w \in L : |w| = n - 2 \Rightarrow w \in L(G)$.

Indukčný krok: Ukážeme, že platí: $\forall w \in L : |w| = n \Rightarrow w \in L(G)$.

Postupne budeme uvažovať štyri rôzne prípady, ktoré môžu nastať pri slove $w:w\in L \wedge |w|\geq 2$. V prípadoch c) a d) budeme používať symbol α_i , ktorého sémantika je nasledovná. Majme slovo $w=x_1x_2\dots x_n\in L$, potom $\alpha_i=\#_a(x_1\dots x_i)-\#_b(x_1\dots x_i)$. Možme si všimnúť, že v špecifických hraničných prípadoch je $\alpha_0=\alpha_n=0$, pretože slovo $w\in L$.

a)
$$w = aw'b$$
, $|w| = n$, $|w'| = n - 2$

- $\bullet \ \ \text{Podľa indukčného predpokladu} \ \mathbf{w}' \in \mathbf{L}(\mathbf{G}) \ \text{a teda v gramatike } \mathbf{G} \ \text{nutne existuje derivácia} \ \mathbf{S} \Rightarrow^*_{\mathbf{G}} \mathbf{w}'.$
- V gramatike G existuje nasledujúca derivácia k vygenerovaniu slova $w: S \underset{G}{\Rightarrow} aSb \underset{G}{\Rightarrow^*} aw'b = w$.
- Z toho zjavne plynie, že slovo $\mathbf{w} \in \mathbf{L}(\mathbf{G})$, čím sme dokázali, že indukčný krok pre tento prípad platí.

b)
$$w = bw'a$$
, $|w| = n$, $|w'| = n - 2$

- $\bullet \ \ \text{Podľa indukčného predpokladu} \ w' \in L(G) \ \text{a teda v gramatike } G \ \text{nutne existuje derivácia} \ S \Rightarrow^*_G w'.$
- V gramatike G existuje nasledujúca derivácia k vygenerovaniu slova $w: S \Rightarrow bSa \Rightarrow^*_G bw'a = w$.
- Z toho zjavne plynie, že slovo $\mathbf{w} \in \mathbf{L}(\mathbf{G})$, čím sme dokázali, že indukčný krok pre tento prípad platí.

c)
$$w = axa = w'w'', |w| = n, |w'| + |w''| = n$$

- Zo slova $\mathbf{w} = \mathbf{a} \mathbf{x} \mathbf{a} = \mathbf{x}_1 \mathbf{x}_2 \dots \mathbf{x}_n$ zjavne plynie, že $\alpha_1 = 1 \ \land \ \alpha_n = 0$, keď že $\mathbf{w} \in \mathbf{L}$.
- $(\alpha_n = 0 \land x_n = a) \Rightarrow (\alpha_{n-1} = -1).$
- $(w = axa) \Rightarrow (\exists 1 < i < n-1 : \alpha_i = 0) \Rightarrow (w = w'w'' \land w' = x_1 \dots x_i \land w'' = x_{i+1} \dots x_n \land w', w'' \in L).$
- Keď že $w', w'' \in L$, podľa indukčného prepokladu v gramatike G nutne existujú derivácie $S \Rightarrow_G^* w' \land S \Rightarrow_G^* w''$.
- V gramatike G potom existuje nasledujúca derivácia k vygenerovaniu slova $\mathbf{w}: \mathbf{S} \Rightarrow \mathbf{SS} \Rightarrow^*_{\mathbf{G}} \mathbf{w}'\mathbf{w}'' = \mathbf{w}.$
- Z toho už jasne plynie, že slovo $w \in L(G)$, čím sme dokázali, že indukčný krok pre tento prípad platí.

d)
$$w = bxb = w'w'', |w| = n, |w'| + |w''| = n$$

- Zo slova $w=bxb=x_1x_2\dots x_n$ zjavne plynie, že $\alpha_1=-1 \, \wedge \, \alpha_n=0$, keď že $w\in L$.
- $(\alpha_n = 0 \land x_n = b) \Rightarrow (\alpha_{n-1} = 1).$
- $(w = bxb) \Rightarrow (\exists 1 < i < n-1 : \alpha_i = 0) \Rightarrow (w = w'w'' \land w' = x_1 ... x_i \land w'' = x_{i+1} ... x_n \land w', w'' \in L).$
- Keď že $\mathbf{w}', \mathbf{w}'' \in \mathbf{L}$, podľa indukčného prepokladu v gramatike \mathbf{G} nutne existujú derivácie $\mathbf{S} \Rightarrow_{\mathbf{G}}^* \mathbf{w}' \wedge \mathbf{S} \Rightarrow_{\mathbf{G}}^* \mathbf{w}''$.
- V gramatike G potom existuje nasledujúca derivácia k vygenerovaniu slova $w: S \underset{G}{\Rightarrow} SS \underset{G}{\Rightarrow^*} w'w'' = w$.
- Z toho už jasne plynie, že slovo $\mathbf{w} \in \mathbf{L}(\mathbf{G})$, čím sme dokázali, že indukčný krok pre tento prípad platí.

Na základe preukazaných vzťahov teda platí: $(\mathbf{L} \subseteq \mathbf{L}(\mathbf{G}) \wedge \mathbf{L}(\mathbf{G}) \subseteq \mathbf{L}) \Rightarrow \mathbf{L} = \mathbf{L}(\mathbf{G})$.

2. ÚLOHA

Zadanie: Uvažujte doprava čítaný jazyk TS M, značený ako $L^P(M)$, ktorý je definovaný ako množina reďazcov, ktoré M príjme v behu, pri ktorom nikdy nepohne hlavou doľava a nikdy neprepíše žiadny symbol na páske za iný. Dokážte, či je probém prázdnosti doprava čítaného jazyka TS M, t.j. či $L^P(M) = \emptyset$, rozhodnuteľný.

- Ak áno, napíšte algoritmus v pseudokóde, ktorý bude daný problém rozhodovať.
- Ak nie, dokážte nerozhodnuteľnosť redukciou z jazyka HP.

Algoritmus

Odstránenie operácií posuvu doľava a operácií prepisu symbolu pod aktuálnou pozicíou hlavy na iný symbol.

Meno: RemoveRulesFromTS

Vstup: TS M = $(Q, \Sigma, \Gamma, \delta, q_0, q_f)$.

Výstup: TS M' = $(Q, \Sigma, \Gamma, \delta', q_0, q_f)$.

1. $\delta': (Q \setminus \{q_f\}) \times \Gamma \to Q \times (\Gamma \cup \{R\})$, definovaná tak, že: $\forall q_1, q_2 \in Q, \forall a \in \Gamma: ((q_2, R) \in \delta'(q_1, a) \Leftrightarrow (q_2, R) \in \delta(q_1, a)) \vee ((q_2, a) \in \delta'(q_1, a) \Leftrightarrow (q_2, a) \in \delta(q_1, a))$ 2. **return** $M' = (Q, \Sigma, \Gamma, \delta', q_0, q_f)$

Výpočet ∆-uzáveru

Zavedieme reláciu $\stackrel{\Delta}{\longrightarrow}$ v množine **Q** takto:

$$\forall q_1, q_2 \in Q: q_1 \xrightarrow{\Delta} q_2 \stackrel{\text{def}}{\Longrightarrow} (q_2, \Delta) \in \delta(q_1, \Delta)$$

Následne môžme definovať Δ-uzáver nasledovne:

$$\Delta$$
-uzáver $(q_1) = \{q_2 \in Q \mid q_1 \stackrel{\Delta}{\longrightarrow}^* q_2\}$

K výpočtu Δ -uzáveru môžme použiť *Warshalluv algoritmus*, doplníme diagonálu jednotkami a z príslušného riadku matice výslednej relácie vyčítame Δ -uzáver.

Výpočet Δ_R -uzáveru

Zavedieme reláciu $\xrightarrow{\Delta_R}$ v množine **Q** takto:

$$\forall q_1,q_2 \in Q: q_1 \overset{\Delta_{R}}{\Longrightarrow} q_2 \overset{\text{def}}{\Longleftrightarrow} ((q_2,\Delta) \in \delta(q_1,\Delta) \ \lor \ (q_2,R) \in \delta(q_1,\Delta))$$

Následne môžme definovať Δ_R -uzáver nasledovne:

$$\Delta_R$$
-uzáver $(q_1) = \{q_2 \in Q \mid q_1 \xrightarrow{\Delta_R}^* q_2\}$

K výpočtu Δ_R -uzáveru môžme použiť *Warshalluv algoritmus*, doplníme diagonálu jednotkami a z príslušného riadku matice výslednej relácie vyčítame Δ_R -uzáver.

Algoritmus

Transformácia **TS M**, obsahujúceho len operácie posuvu doprava a operácie prepisu symbolu pod aktuálnou pozíciou hlavy na páske na rovnaký symbol na ekvivaletný, **RKA K**.

Meno: TransformTStoRKA

Vstup: TS M = $(Q, \Sigma, \Gamma, \delta, q_0, q_f)$.

Výstup: RKA K = $(Q, \Sigma \cup \{\varepsilon\}, \delta_K, q_0, \{q_f\})$.

1.
$$\delta_K: Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q$$
, definovaná tak, že: $\forall q_1, q_2 \in Q, \forall a \in \Sigma:$ $q_2 \in \delta_K(q_1, a) \Leftrightarrow ((q_2, R) \in \delta(q_1, a))$ $q_2 \in \delta_K(q_1, \varepsilon) \Leftrightarrow (((q_2, a) \in \delta(q_1, a)) \wedge (\delta(q_2, a) \neq \emptyset \vee q_2 = q_f))$ $q_2 \in \delta_K(q_1, \varepsilon) \Leftrightarrow (((q_2, \Delta) \in \delta(q_1, \Delta)) \wedge (q_2 \in \Delta \text{-uzáver}(q_0)))$ $q_2 \in \delta_K(q_1, \varepsilon) \Leftrightarrow (((q_2, A) \in \delta(q_1, \Delta)) \wedge (q_1 \in \Delta \text{-uzáver}(q_0)))$ $q_2 \in \delta_K(q_1, \varepsilon) \Leftrightarrow (((q_2, R) \in \delta(q_1, \Delta)) \wedge (q_1 \in \Delta \text{-uzáver}(q_0)))$ $q_1 \in \delta_K(q_1, \varepsilon) \Leftrightarrow (((q_2, \Delta | R) \in \delta(q_1, \Delta)) \wedge (q_f \in \Delta_R \text{-uzáver}(q_1)))$ 2. **return** $K = (Q, \Sigma \cup \{\varepsilon\}, \delta_K, q_0, \{q_f\})$

Algoritmus

Overeniu faktu či v danom **TS M** je doprava čítaný jazyk týmto strojom, označovaný ako $L^{\mathbf{P}}(\mathbf{M})$, prázdny alebo nie, t.j. či $L^{\mathbf{P}}(\mathbf{M}) = \emptyset$.

```
Vstup: DTS M = (Q, \Sigma, \Gamma, \delta, q_0, q_f).
```

Výstup: True ak $L^P(M) = \emptyset$ alebo False ak $L^P(M) \neq \emptyset$.

Metóda:

```
1. M_1 = RemoveRulesFromTS(M)
```

2. $RKA = TransformTStoRKA(M_1)$

3. K = TransformRKAtoDKA(RKA)

4. return False if $\exists w \in \Sigma^* : (q_0, w) \vdash^* (q_f, \varepsilon)$ else True

Popis algoritmu. Algoritmus je rozdelený do niekoľkých čiastkových algoritmov, ktoré vykonávajú jednotlivé potrebné kroky k rozhodnutiu daného problému prázdnosti doprava čítaného jazyka TS M, teda či $L^P(M) = \emptyset$. Vstupom algoritmu je *deterministický* TS M, ktorý v prvom kroku putuje do funkcie RemoveRulesFromTS. Keď že daný problém overuje prázdnosť doprava čítaného jazyka, táto funkcia ponechá v TS len nasledujúce pravidlá z prechodovej funkcie δ TS M: operácie posuvu hlavy doprava a operácie prepisu rovnakého symbolu, ktorý sa nachádza pod aktuálnou pozíciou hlavy na páske. Transformovaný TS, označme TS M_1 , reprezentuje tzv. *right moving TS*, ktorý akceptuje regulárny jazyk ($L(M_1) \in L_3$). Vď aka tejto vlastnosti nutne existuje nejaký KA K, u ktorého bude platiť, že $L(K) = L(M_1)$. V nasledujúcom kroku preto prevedieme TS M_1 na rožšíreny KA RKA pomocou algoritmu TransformTStorkA. K overeniu neprázdnosti daného regulárneho jazyka, však potrebujeme zostrojiť ekvivaletný DKA a preto ziskaný RKA prevedieme na takýto DKA pomocou algoritmu TransformRKAtoDKA, ktorý je možné

nájsť v skriptách ako **Algoritmus 3.6.**, na strane 43. V získanom **DKA K** už je triviálne overiť problém neprázdnosti jazyka $\mathbf{L}(\mathbf{K})$: $L(K) \neq \emptyset \iff \exists q \in Q : (q \in F \land q \text{ je dostupný z } q_0)$. Problém prázdnosti doprava čítaného jazyka **TS M** môže byť rozhodnutý na základe nasledujúceho predikátu: $\exists w \in \Sigma^* : (q_0, w) \vdash^* (q_f, \varepsilon) \Leftrightarrow L^P(M) \neq \emptyset$.

3. ÚLOHA

Zadanie: Uvažujte jazyk $L_{42} = \{\langle M \rangle \mid \text{TS M zastaví na niektorom vstupe tak, že páska bude obsahovať práve 42 neblankových symbolov }. Dokážte pomocou redukcie, že <math>L_{42}$ je nerozhodnuteľný. Uveď te ideu dôkazu čiastočnej rozhoduteľnosti L_{42} .

Postup riešenia. Dôkaz nerozhodnuteľnosti jazyka L_{42} budeme realizovať redukciou z *problému zastavenia* (*Halting Problem*) TS. Tento problém sa zaoberá otázkou, či daný TSM pre danú vstupnú vetu w zastaví a zároveň platí, že tento problém je *nerozhodnuteľn*ý, avšak je čiastočne *rozhodnuteľn*ý. Budeme teda realizovať redukciu $HP \le L_{42}$, ktorou ukážeme, že daný problém L_{42} je aspoň "tak ťažký" ako problém zastavenia TS a teda, že problém L_{42} je nerozhodnuteľný.

Redukcia.

Jazyk charakterizujúci problém HP. $HP = \{\langle M \rangle \# \langle w \rangle \mid M \text{ zastaví pri } w \}$, kde $\langle M \rangle$ je kód TS M a $\langle w \rangle$ je kód w.

Jazyk charakterizujúci problém 42. $L_{42} = \{\langle M \rangle \mid \text{TS M zastaví na niektorom vstupe tak, že páska bude obsahovať práve 42 neblankových symbolov}\}.$

Návrh redukcie. $\sigma: HP \to L_{42} = (\langle M \rangle \# \langle w \rangle) \to \langle M_x \rangle = \{0, 1, \#\}^* \to \{0, 1\}^*.$ σ priradí každému refazcu $x \in \{0, 1, \#\}^*$ refazec $\langle M_x \rangle$, kde $M_x \in \{0, 1\}^*$ je TS, ktorý pracuje nasledovne:

- M_x zmaže svoj vstup w na vstupnej páske.
- M_x zapíše na svoju vstupnú pásku reť azec x, ktorý má uložený v konečnom stavovom riadení.
- $\mathbf{M}_{\mathbf{x}}$ overí, či \mathbf{x} má očakávanú štruktúru $\mathbf{x}_1 \# \mathbf{x}_2$, kde \mathbf{x}_1 je kód $\mathbf{TS} \ \mathbf{M}_{\mathbf{x}_1}$ a \mathbf{x}_2 je kód jeho vstupu $\mathbf{w}_{\mathbf{x}_2}$.
- M_x zmaže obsah vstupnej pásky a odmietne, ak x nemá patričnú štruktúru.
- ullet M_x odsimuluje beh TS M_{x_1} s kódom x_1 na reťazci w_{x_2} s kódom x_2 s využitím *univerzálneho* TS.
- M_x zmaže obsah vstupnej pásky, zapíše 42 neblankových symbolov na vstupnú pásku a príjme, ak univerzálny
 TS zastaví, inak M_x cyklí.

Realizácia redukcie. σ sa dá implementovať *úplným* **TS** \mathbf{M}_{σ} , ktorý pre vstup **x** na vstupnej páske vygeneruje kód **TS** $\mathbf{M}_{\mathbf{x}}$, ktorý bude pozostávať z nasledujúcich komponent:

- TS M_c , ktorý maže svoju vstupnú pásku a kód tohto TS M_c následne vypíše TS M_{σ} .
- TS M_w , ktorý zapíše reťazec na svoju vstupnú pásku a kód tohto TS M_w následne vypíše TS M_σ . Vstupný reťazec v tvare $\mathbf{x} = \mathbf{a_1 a_2 \dots a_n}$ možme zapísať sekvenciou v tvare: $\mathbf{R} \mid \mathbf{a_1} \mid \mathbf{R} \mid \mathbf{a_2} \mid \dots$, kde \mathbf{R} značí operáciu posuvu hlavy doprava a $\mathbf{a_n}$ značí zápis tohto symbolu na pásku pod aktuálnou pozíciou hlavy.
- TS M_v , ktorý overí, čí vstupný reťazec na jeho páske je platnou inštanciou jazyka HP a odmietne ak nie (test na členstvo v zafixovanom regulárnom jazyku). TS M_σ následne vypíše kód TS M_v .
- Univerzálny TS M_s , ktorý má na svojej vstupnej páske inštanciu HP problému, teda kód $\langle M \rangle \# \langle w \rangle$. Tento TS simuluje beh TS s kódom M na reťazci s kódom w. TS M_{σ} následne vypíše kód univerzálneho TS M_s .

Môžme pozorovať, že $TS M_s$, M_v a M_c sú konštantné, teda nezávisia na vstupe reť azca x z $TS M_\sigma$. Tieto TS s popísanou funkcionalitou, ktoré očividne vieme zostrojiť, možme vď aka tejto vlastnosti zkonštruovať vopred a ako bolo povedané vyššie, $TS M_\sigma$ následne vypíše kódy týchto TS na svoju pásku. V poslednom kroku sa vygeneruje kód pre $TS M_w$, ktorý zapíše na pásku daný reť azec x. $TS M_\sigma$ zaistí sekvenčné predávanie riadenia medzi uvedenými komponentami.

Jazyk TS M_x.

- (a) $L(M_x) = \emptyset \iff$ ((x nie je validná inštancia jazyka HP) \vee (x je validná inštancia jazyka HP, teda $x = x_1 \# x_2$, kde x_1 je kód TS a x_2 je kód vstupu, avšak TS s kódom x_1 nezastaví na vstupe s kódom x_2).
- (b) $L(M_x) = \Sigma^* \iff (x \text{ je validná inštancia jazyka HP, teda } x = x_1 \# x_2, \text{ kde } x_1 \text{ je kód TS a } x_2 \text{ je kód vstupu a TS s kódom } x_1 \text{ zastaví na vstupe s kódom } x_2).$

Korektnosť redukcie σ . Ukážeme, že σ zachovavá členstvo v jazyku:

```
\forall x \in \{0, 1, \#\}^* : \sigma(x) = \langle M_x \rangle \in L_{42} \Leftrightarrow L(M_x) = \Sigma^* \Leftrightarrow (x \text{ je validná inštancia jazyka HP, teda } x = x_1 \# x_2 \text{ kde } x_1 \text{ je kód TS a } x_2 \text{ je kód vstupu a TS s kódom } x_1 \text{ zastaví na vstupe s kódom } x_2) \Leftrightarrow x \in HP.
```

Dokázali sme teda, že existuje redukcia z problému **HP**, ktorý je nerozhodnuteľný, na problém L_{42} . Z toho teda jasne plynie, že daný problém L_{42} je taktiež nutne nerozhodnuteľný.

Idea čiastočnej nerozhodnuteľnosti

- Môžme zostrojiť TS M_{SIM}, ktorý na svojej vstupnej páske simuluje výpočet vstupného TS M₄₂, ktorý je inštanciou jazyka L₄₂, pre jednotlivé možné vstupné reť azce.
- TS M_{SIM} nemôže len systematicky vygenerovať jednotlivé vstupné reťazce, v napríklad lexikografickom usporiadaní, a na každom z nich spustiť neobmedzenú simuláciu TS M₄₂. V takomto prípade by mohlo dôjsť k zacykleniu TS M₄₂ a následne by sa celý výpočet zacyklil bez toho, aby bolo garantované nájdenie reťazca, na ktorom TS M₄₂ zastaví.
- Aby sme sa vyhli možnému vzniku tohto problému, tak TS M_{SIM} na svojej vstupnej páske postupne rozbieha
 viaceré simulácie TS M₄₂ pre jednotlivé možné vstupné reťazce.
- TS M_{SIM} si u každej rozbehnutej simulácie pamätá navyše ešte aj vnútorný stav riadenia TS M₄₂ pri spracovaní daného vstupu, napríklad uložením na páske za príslušným vstupom.
- Jednotlivé rozbehnuté simulácie má teda TS M_{SIM} uložené na vstupnej páske a sú oddelené vhodným oddeľovačom. V prípade nedostatku miesta im TS M_{SIM} môže zväčšiť potrebný priestor realizovaním relevantných akcií posunov.
- Samotná simulácia prebieha tak, že TS M_{SIM} vždy prevedie 1 krok na každej rozbehnutej simulácií. V prípade, že jedna z týchto rozbehnutých simulácií povedie k prijatiu vstupného reťazca, tak TS M_{SIM} taktiež príjme. Inak TS M_{SIM} rozbehne ď alšiu simuláciu pre nasledujúci vygenerovaný vstupný reťazec a tento proces znova opakuje.
- Je zrejmé, že TS M_{SIM} príjme, ak $L(M_{42}) \neq \emptyset$, v opačnom prípade nikdy neskončí.