Segundo Trimestre: Domínio e Imagem de Funções

Professor: Jefferson

Nome: Turma:

Conjuntos Numéricos Fundamen- Relação entre Conjuntos Numéricos tais

1.1 Números Naturais (N)

- Contagem natural: $\{1, 2, 3, \dots\}$
- Alguns incluem o zero: $\{0, 1, 2, \dots\}$
- Representação:

1.2 Números Inteiros (Z)

- Inclui negativos: $\{\ldots, -2, -1, 0, 1, 2, \ldots\}$
- Representação:

1.3 Números Racionais (Q)

- Frações $\frac{a}{b}$ onde $b \neq 0$
- Exemplos: $\frac{1}{2}$, $-\frac{3}{4}$, 0, 333...
- Podem ser representados como decimais finitos ou periódicos
- Representação:

1.4 Números Reais (R)

- Inclui todos os racionais e irracionais
- Exemplos de irracionais: $\sqrt{2}$, π , e
- Reta real contínua:

- Números Naturais (N)
- \circ Números Inteiros (Z)
- \bigcirc Números Racionais (Q)
- \bigcirc Números Irracionais (I)
- \bigcirc Todos os Reais (R)

2. Domínio de uma Função

2.1 Conceito

O domínio (D) é o conjunto de todos os valores de entrada (x) para os quais a função está definida.

Exemplos Detalhados

1. f(x) = 2x + 3

Domínio: R (qualquer x real é válido)

2. $g(x) = \frac{1}{x-4}$ $Restrição: x-4 \neq 0 \Rightarrow x \neq 4$

Domínio: $R - \{4\}$

3. $h(x) = \sqrt{x+5}$

Restrição: $x + 5 \ge 0 \Rightarrow x \ge -5$

 $Domínio: [-5, +\infty)$

2. Imagem de uma Função

A imagem (Im) é o conjunto de todos os valores de saída (y) que a função pode produzir.

Como determinar?

- Funções do $1^{\mathbf{0}}$ grau: Im = R
- Funções quadráticas: Analisar vértice
- Funções raiz: $y \ge 0$ (para índice par)
- Funções exponenciais: y > 0

Imagem = Todos os y_i produzidos

Exemplos Detalhados

- 1. $f(x) = x^2$ Imagem: $[0, +\infty)$ (quadrados são sempre nãonegativos)
- 2. g(x) = -3x + 2Imagem: R (funções lineares cobrem todos os reais)
- 3. $h(x) = 2^x$ $Imagem: (0, +\infty)$ (exponencial sempre positiva)

3. Diagrama de Máquina

Uma analogia útil para entender domínio e imagem:

Entrada (Domínio) Função
$$f$$
 Saída (Imagem) $\xrightarrow{} f(x)$

Ex: $f(3) = 5 \Rightarrow 3$ pertence ao domínio, 5 pertence à imagem

4. Exercícios Básicos

- 1. Determine o domínio das funções:
 - a) f(x) = 5x 2
 - b) $g(x) = \frac{x+1}{x-3}$
 - c) $h(x) = \sqrt{2x 6}$
- 2. Determine a imagem das funções:
 - a) $f(x) = x^2 + 4$
 - b) q(x) = -2x + 5
 - c) $h(x) = \sqrt{9-x^2}$
- 3. Classifique como verdadeiro (V) ou falso (F):

- a) () O domínio de $f(x) = \frac{1}{x}$ é R
- b) () A imagem de f(x) = |x| é $[0, +\infty)$
- c) () $\sqrt{x^2} = x$ para todo $x \in R$
- 4. Associe cada função ao seu domínio:

a)
$$f(x) = \frac{1}{\sqrt{x}}$$
 () $x > 0$

b)
$$g(x) = \log(x+2)$$
 () $x \neq 0$

c)
$$h(x) = \frac{x}{x^2 - 4}$$
 () $x > -2$

- 5. Resolva:
 - a) Para $f(x) = \sqrt{4-x}$, calcule f(0), f(4) e f(5)
 - b) Qual o maior domínio possível para $f(x) = \frac{1}{\sqrt{x-1}}$?

5. Exercícios Intermediários

- 6. Esboce o gráfico e determine D e Im:
 - a) $f(x) = x^2 4$
 - b) $g(x) = \frac{1}{x+2}$
- 7. Determine o domínio máximo de:

a)
$$f(x) = \frac{\sqrt{x}}{x^2 - 9}$$

b)
$$g(x) = \log(x^2 - 4)$$

- 8. Problemas aplicados:
 - a) A área de um círculo é $A(r) = \pi r^2$. Determine D e Im considerando r como raio.
 - b) O volume de uma caixa cúbica é $V(a) = a^3$. Determine D e Im considerando a como aresta.
- 9. Funções definidas por partes:

a)
$$f(x) = \begin{cases} x+2, & x<1\\ 5, & x \ge 1 \end{cases}$$
. Determine D e Im.

10. Desafio:

2

- a) Determine o domínio de $f(x) = \sqrt{\frac{x-2}{x+3}}$
- b) Determine a imagem de $f(x) = \frac{x}{x^2 + 1}$