Correction de l'exercice du jour 1 : intégration, calcul d'aire

Partie A

1. Calculons les limites en 0 et en $+\infty$:

$$\begin{vmatrix}
\lim_{x \to 0} \ln(x) = -\infty \\
x > 0 \\
\lim_{x \to 0} -2 + x = -2 \\
x > 0
\end{vmatrix}$$

$$\Rightarrow \lim_{x \to 0} f(x) = -\infty.$$

$$\lim_{x \to 0} \ln(x) = +\infty$$

$$\lim_{x \to +\infty} \ln(x) = +\infty$$

$$\lim_{x \to +\infty} -2 + x = +\infty$$

$$\Rightarrow \lim_{x \to +\infty} f(x) = +\infty.$$

2. Pour tout réel x > 0, $f'(x) = 1 + \frac{1}{x}$. Comme x > 0 on en déduit que f'(x) > 0 ce qui prouve que f est strictement croissante sur $]0; +\infty[$.

x	0	+∞
Signe de $f'(x)$	+	
Variations de		+∞

3. La fonction f est continue sur]0; $+\infty[$, strictement croissante sur]0; $+\infty[$. $0 \in]-\infty$; $+\infty[$ intervalle image de l'intervalle]0; $+\infty[$ par la fonction f, donc d'après le corollaire du théorème des valeurs intermédiaires dans le cas des fonctions strictement croissantes, l'équation f(x) = 0 admet une solution unique α dans]0; $+\infty[$. La calculatrice donne $1,55 < \alpha < 1,56$.

Partie B

1. On résout l'équation $\ln(x) = 2 - x$. Or $\ln(x) = 2 - x \iff \ln(x) - 2 + x = 0 \iff f(x) = 0$. D'après la partie A, l'équation f(x) = 0 a une solution unique α dans]0; $+\infty[$. Le point E a donc pour coordonnées $(\alpha; 2 - \alpha)$.

2. a. Sur l'intervalle $[1 \ \alpha]$ on a $\ln(x) \geqslant 0$ donc I désigne l'aire sous la courbe de ln entre les droites d'équation x = 1 et $x = \alpha$.

b. Pour tour réel x > 0 on a $F'(x) = \ln(x) - 1 + x \times \frac{1}{x}$ soit $F'(x) = \ln(x)$ ce qui montre que F est une primitive de f sur $]0; +\infty[$.

c. $I = \int_{1}^{\alpha} \ln x \, dx = [x(\ln(x) - 1)]_{1}^{\alpha} \, donc \, I = \alpha(\ln(\alpha) - 1) - (-1) \, donc \, I = \alpha(2 - \alpha - 1) + 1 \, vu \, que \\ \ln(\alpha) = 2 - \alpha. \, On \, en \, déduit \, que \, I = -\alpha^2 + \alpha + 1.$

3. \mathscr{A} désigne l'aire sous la courbe de ln entre 1 et α ajoutée à celle sous la droite \mathscr{D} entre α et 2. $\mathscr{A} = \int_{1}^{\alpha} \ln x \, dx + \int_{\alpha}^{2} 2 - x \, dx$. Or $\int_{1}^{\alpha} \ln x \, dx = -\alpha^{2} + \alpha + 1$.

De plus $\int_{\alpha}^{2} 2 - x \, dx = \left[2x - \frac{1}{2}x^{2} \right]_{2}^{\alpha} = 2 + \frac{1}{2}\alpha^{2} - 2\alpha$ soit $\int_{\alpha}^{2} 2 - x \, dx = \frac{1}{2}\alpha^{2} - 2\alpha + 2$.

On en déduit que $\mathscr{A} = -\alpha^2 + \alpha + 1 + \frac{1}{2}\alpha^2 - 2\alpha + 2$ soit $\mathscr{A} = -\frac{1}{2}\alpha^2 - \alpha + 3$.