1 Sottospazio prodotto

Lezione del 10 ottobre di Gandini

Definizione 1.1 (Prodotto cartesiano).

Sia $\{X_{\alpha}\}_{{\alpha}\in A}$ una famiglia di insiemi, il prodotto cartesiano della famiglia è

$$X = \prod_{\alpha \in A} X_{\alpha} = \left\{ f : A \to \bigcup_{\alpha \in A} X_{\alpha} \middle| f(\alpha) \in X_{\alpha} \, \forall \alpha \in A \right\}$$

Nel caso in cui $A = \{1, \dots, n\}$

$$X = \prod_{i=1}^{n} X_i = X_1 \times \dots \times X_n$$

$$x \in X \implies x = (x_1, \dots, x_n) \text{ ovvero } f(i) = x_i$$

Definizione 1.2 (Proiezioni). Lo spazio cartesiano X ammette delle proiezioni naturali $\forall \alpha \in A$

$$P_{\alpha}: X \to X_{\alpha} \quad f \to f(\alpha)$$

Definizione 1.3. La topologia prodotto su X è la topologia meno fine che rende tutte le proiezioni P_{α} continue.

Proposizione 1.1. Una base per la topologia prodotto è data da

$$\mathfrak{B} = \left\{ \prod_{\alpha \in A} U_{\alpha} \middle| U_{\alpha} \subseteq X_{\alpha} \text{ aperto } e \ U_{\alpha} \neq X_{\alpha} \text{ per un numero finito } di \ \alpha \right\}$$

Dimostrazione. Sia $U_{\alpha} \subseteq X_{\alpha}$ aperto allora

$$P_{\alpha}^{-1}(U_{\alpha}) = \prod_{\beta \in A} V_{\beta} \text{ dove } V_{\beta} = \begin{cases} U_{\alpha} \text{ se } \beta = \alpha \\ X_{\beta} \text{ se } \beta \neq \alpha \end{cases}$$

Dunque le P_{α} sono continue se e solo se tutte le controimmagini di tale forma sono aperte Siano $\alpha_1, \ldots, \alpha_n \in A$ e $U_{\alpha_i} \subseteq X_{\alpha_i}$ aperti $\forall i = 1, \ldots, n$ allora

$$A = \bigcap_{i=1}^{n} P_{\alpha_i}^{-1}(U_{\alpha_i}) \subseteq X$$
 aperto nella topologia prodotto

intersezione finita di aperti è un aperto; ora

$$A = \prod_{\alpha \in A} V_{\alpha} \text{ dove } V_{\alpha} = \begin{cases} U_{\alpha_i} \text{ se } \alpha = \alpha_i \\ X_{\alpha} \text{ se } \alpha \neq \alpha_i \end{cases}$$

Dunque osserviamo che $A \in \mathfrak{B}$ infatti solo un numero finito di aperti è diverso da tutto lo spazio X_i , ovvero ogni elemento di \mathfrak{B} è un aperto nella topologia prodotto.

Se \mathfrak{B} è una base di una topologia possiamo concludere in quanto, per definizione, cerchiamo la topologia meno fine che rende continue le proiezioni.

Mostriamo che $\mathfrak B$ è una base.

1. Se prendiamo $U_{\alpha} = X_{\alpha} \ \forall \alpha \in A \ \text{allora} \ \prod U_{\alpha} = X \ \text{ovvero} \ \mathfrak{B} \ \text{ricopre} \ X$

2.

$$\left(\prod_{\alpha \in A} U_{\alpha}\right) \cap \left(\prod_{\alpha \in A} V_{\alpha}\right) = \prod_{\alpha \in A} (U_{\alpha} \cap V_{\alpha})$$

Se U_{α}, V_{α} sono aperti in X_{α} allora $U_{\alpha} \cap V_{\alpha}$ è un aperto di X_{α} . Inoltre se il numero dei $U_{\alpha} \neq X_{\alpha}$ e dei $V_{\alpha} \neq X_{\alpha}$ è finito allora sarà finito anche il numero dei $U_{\alpha} \cap V_{\alpha} \neq X_{\alpha}$

Abbiamo provato che $\mathfrak B$ verifica il criterio per essere una base

Osservazione 1. Supponiamo B_{α} base per la topologia di X_{α} e assumiamo che $X_{\alpha} \in B_{\alpha}$ allora

$$\mathfrak{B}' = \left\{ \prod_{\alpha \in A} B_{\alpha} \middle| B_{\alpha} \in \mathfrak{B}_{\alpha} \in B_{\alpha} = X_{\alpha} \text{ tranne per finiti } \alpha \right\}$$

è una base della topologia prodotto su X

Segue direttamente dal fatto che $\mathfrak B$ definita nella proposizione precedente è una base

Corollario 1.2. Sia A numerabile e X_{α} secondo-numerabile $\forall \alpha \in A$ allora X è secondo-numerabile.

Dimostrazione. Sia \mathfrak{B}_{α} una base numerabile per X_{α} e supponiamo che $X_{\alpha} \in \mathfrak{B}_{\alpha}$ Sia

$$A_i = \left(\prod_{\alpha \in A} B_\alpha \,\middle|\, B_\alpha \in \mathfrak{B}_\alpha \in B_\alpha \neq X_\alpha \text{ per le prime } i \right)$$

Allora A_i è ovviamente numerabile inoltre

$$\mathfrak{B}' = \bigcup_{i \in A} A_i$$

quindi \mathfrak{B}' è numerabile essendo unione numerabile di insiemi numerabili

Corollario 1.3. Sia A numerabile e X_{α} primo-numerabile $\forall \alpha \in A$ allora X è primo-numerabile Osservazione 2. Se A non è numerabile, i corollari precedenti, in generale, sono falsi

1.1 Propietà della topologia prodotto

Proposizione 1.4. La proiezione P_{α} è un' applicazione aperta

Dimostrazione. Sia $\mathfrak B$ una base di X allora

$$P_{\alpha}$$
 aperta $\Leftrightarrow P_{\alpha}(B)$ aperta $\forall B \in \mathfrak{B}$

Per come abbiamo definito una base della topologia prodotto

$$B = \prod_{\beta \in A} U_\beta$$
dove $U_\beta \subseteq X_\beta$ aperto e $U_\beta \neq X_\beta$ per finiti β

quindi $P_{\alpha}(B) = U_{\alpha}$ che è aperto per definizione.

Osservazione 3. P_{α} , in generale, non è chiusa.

Prendiamo \mathbb{R}^2 e consideriamo P_1 .

Sia $Z = \{(x,y) | xy = 1\}$ ovvero un iperbole equilatera, Z è chiuso in quanto luogo di zeri di un polinomio $(Z = p^{-1}(\{0\}))$, un polinomio è una funzione continua e $\{0\}$ è chiuso.

$$P_1(Z) = \mathbb{R} \setminus \{0\}$$
 non è chiuso perchè in $\mathbb{R} \setminus \{0\}$ è aperto

Proposizione 1.5. Dato $\alpha \in A$, fissiamo $x_{\beta} \in X_{\beta}$ con $\beta \neq \alpha$, sia

$$X(\alpha) = \{ f \in X \mid f(\beta) = x_{\beta} \} \subseteq X$$

Allora la restrizione

$$P_{|\alpha}: X(\alpha) \to X_{\alpha} \ \dot{e} \ un \ omeomorfismo$$

dove $X(\alpha)$ eredita la topologia di sottospazio

Dimostrazione.

- La restrizione è continua infatti $P_{|\alpha} = P_{\alpha} \circ i$ con $i: X(\alpha) \hookrightarrow X$, ora i è continua per definizione di topologia di sottospazio
- La restrizione è biunivoca infatti l'inclusione è iniettiva
- Mostriamo che la funzione è aperta. Gli aperti di $X(\alpha)$ sono gli insiemi della forma

$$U = \left(\prod_{\gamma \in A} U_{\gamma}\right) \cap X(\alpha)$$

Se $U \neq \emptyset$ allora

$$U = \{ f \in X(\alpha) \mid f(\alpha) \in U_{\alpha} \}$$

D'altra parte $P_{|\alpha}(U) = P_{\alpha}(U) = U_{\alpha}$ che è aperto

Osservazione 4. $P_{|\alpha}$ non è canonica come la proiezione infatti dipende dalla scelta di x_{β}

1.2 Propietà universale

Proposizione 1.6.

La topologia prodotto verifica la seguente propietà: dato Z topologico e $f: Z \to X$ una funzione arbitraria

$$f$$
 continua \Leftrightarrow $P_{\alpha} \circ f$ continua

Dimostrazione. \Rightarrow Composizione di funzioni continue è una funzione continua. \Leftarrow Sia $U \subseteq X$ un aperto, dimostriamo che $f^{-1}(U)$ è aperto.

Basta vederlo per $U \in \mathfrak{B}$ (base della topologia prodotto) ovvero per un U della forma

$$U = \prod_{\alpha \in A} U_{\alpha}$$
 dove $U_{\alpha} \subseteq X_{\alpha}$ aperto

inoltre $\exists A_0 \subseteq A$ finito, tale che $\forall \alpha \notin A_0 \quad U_\alpha = X_\alpha$

D'altra parte $f^{-1}(U) = f^{-1}\left(\prod_{\alpha \in A} U_{\alpha}\right)$ e osservando che $U = \bigcap_{\alpha \in A_0} P_{\alpha}^{-1}(U_{\alpha})$ otteniamo

$$f^{-1}(U) = f^{-1}\left(\bigcap_{\alpha \in A_0} P_{\alpha}^{-1}(U_{\alpha})\right) = \bigcap_{\alpha \in A_0} (P_{\alpha} \circ f)^{-1}(U_{\alpha})$$

Ora intersezione finita di aperti è un aperto quindi

$$\forall U \in \mathfrak{B} \quad f^{-1}(U)$$
 è aperto $\Rightarrow f$ continua

Teorema 1.7. La topologia prodotto è univocamente determinata dalla propietà universale. Vale a dire:

$$\forall Z \ topologico \ f: Z \rightarrow X \ allora$$

$$f \ continua \quad \Leftrightarrow \quad P_{\alpha} \circ f \ continua \ \forall \alpha \in A$$

Allora τ_X è la topologia prodotto

Dimostrazione. Abbiamo dimostrato che la topologia prodotto soddisfa la propietà universale. Sia τ_X una topologia che soddisfa la propietà, τ_α la topologia su τ_X e τ_{prod} la topologia prodotto, abbiamo dunque il seguente diagramma

$$(Z, \tau_Z) \xrightarrow{P_{\alpha} \circ f} (X, \tau_X)$$

$$\downarrow^{P_{\alpha}}$$

$$(Z, \tau_Z) \xrightarrow{P_{\alpha} \circ f} (X_{\alpha}, \tau_{\alpha})$$

• Prendiamo $Z = (X, \tau_{prod})$ allora

$$(X, \tau_X) \xrightarrow{id_X} (X, \tau_X)$$

$$\downarrow^{P_\alpha}$$

$$(X, \tau_{prod}) \xrightarrow{P_\alpha} (X_\alpha, \tau_\alpha)$$

 $P_{\alpha}:\,(X,\tau_{prod})\to(X,\tau_{\alpha})$ è continua per definizione allora per definizione è continua anche

$$id_X:\, (X,\tau_{prod}) \to (X,\tau_X) \quad \Rightarrow \quad \tau_X < \tau_{prod}$$

• Proviamo che $P_\alpha:(X,\tau_X)\to (X_\alpha,\tau_\alpha)$ è continua e poi concludere per minimalità. Prendiamo $Z=(X,\tau_X)$ allora

$$(X, \tau_X) \xrightarrow{id_X} (X, \tau_X)$$

$$\downarrow^{P_\alpha}$$

$$(X, \tau_X) \xrightarrow{P_\alpha} (X_\alpha, \tau_\alpha)$$

e poichè $id_X:(X,\tau_X)\to (X,\tau_X)$ è continua allora per la propietà $P_\alpha:(X,\tau_X)\to (X_\alpha,\tau_\alpha)$ è continua