Lifecycle Water Consumption and Withdrawal Requirements of Ethanol from Corn Grain and Residues

Supporting Information – II:

Literature review, summary of key inputs, and detailed results

By
Gouri Shankar Mishra (gouri.mishra@gmail.com)
Sonia Yeh (slyeh@ucdavis.edu)

1	IN.	TRODUCTION	3
	1.1	Literature review	3
2	SY	STEM BOUNDARY AND WATER REQUIREMENTS	4
3	MF	ETHODOLOGY	6
4	RE	SULTS	12
	4.1	WATER REQUIREMENTS OF CORN HARVESTED	12
	4.2	WATER INTENSITY OF ETHANOL	12
	4.3	IMPACT ON STATE-WIDE WATER DEMAND	14
	4.4	"AVERAGE" VERSUS "MARGINAL" ANALYSIS	15
	4.5	COMPARISON WITH FOSSIL FUELS	15
5	RE	FERENCES	17

1 Introduction

1.1 Literature review

Table SII 1.1: Estimates of water consumption intensity of corn ethanol (Liters / VKT)(1)

	Wu, Mintz et al. (2009) (2)	Chiu, Walseth et al. (2009)	Gerbens-Leenes, Hoekstra et al. (2009) & Gerbens- Leenes, Hoekstra et al. (2008)	i wiiinako az i ani	Fingerman, Torn et al. (2010)	Weighte from ra	study - d average ainfed & ed corn
	BW	BW	BW+GW	BW+GW	BW+GW	BW intensity	GW intensity
Iowa	1.84	1.09	334.93	271.94		0.56	81.10
Nebraska	59.00	91.32		213.98		32.68	74.47
California		389.68			280.07	146.29	1.15

Table SII 1.2: Estimates of water consumption intensity of corn ethanol (Liters / Liters of ethanol)(3)

	Wu, Mintz et al. (2009) (2)	Chiu, Walseth et al. (2009)	Gerbens-Leenes, Hoekstra et al. (2009) & Gerbens- Leenes, Hoekstra et al. (2008)		Fingerman, Torn et al. (2010)	Weighte from ra	study - d average ainfed & ed corn
	BW	BW	BW+GW	BW+GW	BW+GW	BW intensity	GW intensity
Iowa	10.1	6.0	1837.5	1,492.0		3.1	444.9
Nebraska	323.7	501.0		1,174.0		182.0	420.3
California		2,138.0			1,536.6	802.6	6.3

Notes:

- (1) Assumes a vehicle efficiency of 3877.59 kJ/VKT (5,914.75 BTU / VMT). See SI-I Chapter 2.
- (2) Wu, Mintz et al. and Wu, Mintz et al. provide estimates for USDA region 5 (Iowa, Missouri, Illinois, Indiana, and Ohio); and USDA Region 7 (North Dakota, South Dakota, Nebraska, and Kansas). State-wide averages not provided.
- (3) This study resports water intensity in form of liters of water / liter of un-denatured ethanol. It is not clear whether the other studies are based on denatured or un-denatured ethanol, and the volume of denaturant in case of denatured ethanol.

2 System boundary and water requirements

The following table summarizes the differences in system boundary and adopted methodology to estimate water requirements of ethanol from corn grain.

Table SII 2.1: Comparison of system boundary

1 4010	311 2.1. Comparison	or system sou				
	Wu, Mintz et al. (2009)	Chiu, Walseth et al. (2009)	Gerbens-Leenes, Hoekstra et al. (2009) & Gerbens- Leenes, Hoekstra et al. (2008)	Mubako & Lant (2008)	Fingerman, Torn et al. (2010)	This study - Weighted average from rainfed & irrigated corn
GW consumptive use (P _s +P _{os})	Not considered	Not considered	Included. Results from CROPWAT model. Meteorological data is for Des Moines, IA	Included. Results from CROPWAT	Included. Results from CUP model. Average of multiple stations	Reported separately. Results from CROPWAT. Weighted average of multiple stations.
ET _a (1) - ET _a calculated, ideal conditions	Yes. Based on 2003		Results from CROPWAT model		Results from CUP model	
- ET _a actual, empirical	FRIS and approximated for USDA Regions 5 (IA) and 7 (NE). Adjusted for nonconsumptive application losses	Yes. Based on 1997 & 2003 FRIS. Entire water applied is assumed consumptive.		Yes. Based on 1992, 1997 & 2003 FRIS. Adjusted for application losses.		Yes. Based on 2003 FRIS Adjusted for application losses
$\mathbf{L}_{\mathbf{a}}$	Non-consumptive application losses are assumed at 29% of applied water	See above	Not included	Non- consumptive application losses are 40% and 15% for surface and sprinkler systems respectively	Not included	Application losses divided into consumptive and non-consumptive
L_{c}	Not included	Not included	Not included	Not included	Not included	Included. Divided into consumptive and non-consumptive losses
BR	Included	Included	Included	Included	Included	Included
E _e	Not included	Not included	Not included	Not included	Not included	Included
Storage losses	Not accounted for	Not accounted for	Not accounted for	Not accounted for	Not accounted for	Accounted for.

(1) Estimates of ET_a are either calculated and applicable under ideal conditions, or are based on survey estimates.

Estimates by Gerbens-Leenes, Hoekstra et al. (2009) and Fingerman, Torn et al. (2010) are based on "ideal" ET_a requirements which assumes standard conditions i.e. disease-free, well-fertilized crops, grown in large fields, under optimum soil water conditions, and achieving full production under the given climatic conditions (FAO 1998). In actual practice, presence of pests and diseases, soil salinity, low soil fertility, and water shortage or water-logging may reduce crop yields and the evapotranspiration rate below ETc. To account for this, and the fact the crop yields are based on actual observation, the first two studies use ET_a based on prevalent practice as estimated by USDA's Farm and Ranch Irrigation Survey (FRIS) conducted every 5 years, the last one being in 2008.

3 Methodology

In the section below, we summarize the assumptions and values of the key parameters for the 17 meteorological stations analyzed in this paper (Table S3.1). The spatial (e.g. state vs. county data) and temporal (e.g monthly vs. annual averages) coverage of key input parameters are briefly discussed in the main text and summarized in SI-I Table A1.1.

Table SII 3.1: Summary of location-specific input parameters

	State	California	Illinois	Illinois	Illinois	Illinois	
	Station	Fresno	Peoria	Moline	Chicago	Springfield	
	Agricultural	SJ Valley	Central	North	North	West	
Cham	District	·	Doinfod	West	East	Southwest	
Step 1	Crop type	Irrigated	Rainfed	Rainfed	Rainfed	Rainfed	
1.1	ET _a (FRIS) (cm)	60.96	0.00	0.00	0.00	0.00	
1.1	P_s (cm)	1.96	32.26	39.01	32.13	30.15	
1.3	P_{os} (cm)	10.19	4.78	8.41	7.14	9.78	
1.4	Ground water share	33%	8%	8%	8%	8%	
1.5	SL (cm)	0	0	0	0	0	
2							
2.1	Irrigation Method	SURFACE - Furrow irrigation	SPRIN	IKLER - Cen	ıtral pivot & I	Linear move	
3							
3.1	Conveyance losses	3.23%					
3.2	Consumptive portion	2.36%					
4		_					
4.1	Partition method	S	ys Expansio	on /Displacen	nent		
4.2	Corn Yield (bu/acre)	178.5	178	167.8	172.2	164.8	
4.3	Storage loss grain	1%	1%	1%	1%	1%	
4.4	Storage loss cob	1%	1%	1%	1%	1%	
5A							
5.1	Co-product crediting		Displace	ment method			
5.2	Conversion Technology		Dr	y Mill			
5.3a	SB ET _a (FRIS) (cm)	18.3	0.0	0.0	0.0	0.0	
5.3b	SB P _s (cm)	19.0	24.0	28.4	23.1	22.8	
5.3c	SB P _{os} (cm)	11.5	8.7	4.4	10.8	12.0	
5.3d	SB SL (cm)	0.0	0.0	0.0	0.0	0.0	
5.3e	SB yield (bu/acre)	56.4	51.4	46.8	49	45.6	
5B							
5b.1	Co-product crediting	Displacement (of electricity)					
5b.2	Conversion Technology		Biochemic	cal Conversio	n		

Table SII3.1 – continued

	State	Indiana	Indiana	Indiana	Indiana
	Station	Evansville	Indianapolis	Fort Wayne	Jeffersonville
	Agricultural District	Southwest	Central	North East	South East
Step	Crop type	Rainfed	Rainfed	Rainfed	Rainfed
1					
1.1	ET _a (FRIS) (cm)	0.00	0.00	0.00	0.00
1.2	P_s (cm)	30.63	31.85	29.54	34.04
1.3	P _{os} (cm)	7.87	2.44	7.98	10.39
1.4	Ground water share	8%	8%	8%	8%
1.5	SL (cm)	0	0	0	0
2					
2.1	Irrigation Method	SPRI	NKLER - Cent	ral pivot & Lin	ear move
3					
3.1	Conveyance losses				
3.2	Consumptive portion				
4					
4.1	Partition method		• 1	n /Displaceme	
4.2	Corn Yield (bu/acre)	162.5	158.7	149.9	141.34
4.3	Storage loss grain	1%	1%	1%	1%
4.4	Storage loss cob	1%	1%	1%	1%
5A					
5.1	Co-product crediting			ment method	
5.2	Conversion Technology			y Mill	
5.3a	SB ET _a (FRIS) (cm)	0.0	0.0	0.0	0.0
5.3b	$SB P_s (cm)$	21.4	23.3	20.32	23.50
5.3c	$SB P_{os} (cm)$	11.8	7.3	2.39	7.29
5.3d	SB SL (cm)	0.0	0.0	0.0	0.0
5.3e	SB yield (bu/acre)	50.9	45.3	45.3	41.3
5B					
5b.1	Co-product crediting			t (of electricity	7)
5b.2	Conversion Technology		Biochemic	al Conversion	

Table SII3.1 – continued

	State	Iowa	Iowa	Iowa	Iowa
	Station	Davenport	Des Moines	Des Moines	Sioux City
	Agricultural District	East Central	South Central	Central	West Central
Step	Crop type	Rainfed	Rainfed	Rainfed	Rainfed
1					
1.1	ET_a (FRIS) (cm)	0.00	0.00	0.00	0.00
1.2	P_s (cm)	39.01	36.40	36.40	29.21
1.3	P _{os} (cm)	8.41	3.33	3.33	0.56
1.4	Ground water share	20%	20%	20%	20%
1.5	SL (cm)	0	0	0	0
2					
2.1	Irrigation Method	SPRIN	NKLER - Central	pivot & Linea	r move
3					
3.1	Conveyance losses				
3.2	Consumptive portion				
4					
4.1	Partition method		Sys Expansion	/Displacement	
4.2	Corn Yield (bu/acre)	171.04	151	178.5	171.5
4.3	Storage loss grain	1%	1%	1%	1%
4.4	Storage loss cob	1%	1%	1%	1%
5A					
5.1	Co-product crediting		Displaceme	ent method	
5.2	Conversion Technology		Dry 1	Mill	
5.3a	SB ET _a (FRIS) (cm)	0.0	0.0	0.0	0.0
5.3b	SB P _s (cm)	28.45	24.13	24.1	21.0
5.3c	$SB P_{os} (cm)$	4.39	10.1	10.1	3.8
5.3d	SB SL (cm)	0.0	0.0	0.0	0.0
5.3e	SB yield (bu/acre)	50.5	45.5	52.8	49.9
5B					
5b.1	Co-product crediting		Displacement (of electricity)	
5b.2	Conversion Technology		Biochemical	Conversion	

Table SII3.1 – continued

	State Kansas Kansas			Kansas	Kansas	Kansas	Kansas
	Station	Concordia Blosser	Concordia Blosser	Dodge City	Kansas City	Topeka	Topeka
Step 1	Agricultural District Crop type	North Central Irrigated	North Central Rainfed	Southwest Irrigated	Northeast Rainfed	East Central Irrigated	East Central Rainfed
1.1 1.2 1.3	ET _a (FRIS) (cm) P _s (cm) P _{os} (cm) Ground water	39.62 31.75 4.88	0.00 31.75 4.88	39.62 25.28 3.21	0.00 37.43 6.29	39.62 34.45 6.54	0.00 34.45 6.54
1.4	share	77.80%	77.80%	77.80%	77.80% 0	77.80%	77.80%
2	SL (cm)	U	U	U	U	U	U
2.1	Irrigation Method		SPRINKLE	R - Central pi	vot & Linear	move	
3							
3.1	Conveyance losses	4.23%	4.23%	4.23%	4.23%	4.23%	4.23%
3.2	Consumptive portion	1%	1%	1%	1%	1%	1%
4							
4.1	Partition method		Sys E	Expansion / Di	isplacement		
4.2	Corn Yield (bu/acre)	178.4	101	196.4	130.3	169	103.5
4.3	Storage loss grain	1%	1%	1%	1%	1%	1%
4.4	Storage loss cob	1%	1%	1%	1%	1%	1%
5A							
5.1	Co-product crediting		Ι	Displacement	method		
5.2	Conversion Technology			Dry Mil	1		
5.3a	SB ET _a (FRIS) (cm)	30.5	0.0	30.5	0.0	30.5	0.0
5.3b	$SB P_s (cm)$	24.8	24.8	20.0	28.6	26.5	26.5
5.3c	SB P _{os} (cm)	10.3	10.3	13.9	7.8	8.0	8.0
5.3d	SB SL (cm)	0.0	0.0	0.0	0.0	0.0	0.0
5.3e	SB yield (bu/acre)	55.6	38.8	54.3	43.0	50.0	31.3
5B							
5b.1	Co-product crediting		Disp	placement (of	electricity)		
5b.2	Conversion Technology		Bi	ochemical Co	onversion		

Table SII 3.1 – continued

	State	Nebraska	Nebraska	Nebraska	Nebraska	Nebraska	Nebraska
	Station	Lincoln	Lincoln	Valentine	Valentine	North Platte	North Platte
	Agricultural District	East	East	North	North	Southwest	Southwest
Step	Crop type	Irrigated	Rainfed	Irrigated	Rainfed	Irrigated	Rainfed
1							
1.10	ET _a (FRIS) (cm)	24.38	0.00	24.38	0.00	24.38	0.00
1.2	P_{s} (cm)	29.59	29.59	25.70	25.70	23.37	23.37
1.3	P _{os} (cm)	5.79	5.79	0.56	0.56	6.53	6.53
1.4	Ground water share	61%	61%	61%	61%	61%	61%
1.5	SL (cm)	0	0	0	0	0	0
2							
2.1	Irrigation Method		SPRINK	LER - Centra	al pivot and I	Linear move	
3							
3.1	Conveyance losses	12%	12%	12%	12%	12%	12%
3.2	Consumptive portion	1%	1%	1%	1%	1%	1%
4							
4.1	Partition method		;	Sys Expansion	n / Displacen	nent	
4.2	Corn Yield (bu/acre)	186.9	134.9	181.4	78.8	184.3	76.4
4.3	Storage loss grain	1%	1%	1%	1%	1%	1%
4.4	Storage loss cob	1%	1%	1%	1%	1%	1%
5A							
5.1	Co-product crediting		Dis	placement me	ethod		
5.2	Conversion			Dry Mill			
3.2	Technology			•			
5.3a	SB ET _a (FRIS) (cm)	18.3	0.0	18.3	0.0	18.3	0.0
5.3b	$SB P_s (cm)$	20.6	20.6	18.1	18.1	18.3	18.3
5.3c	SB P _{os} (cm)	9.3	9.3	11.2	11.2	13.9	13.9
5.3d	SB SL (cm)	0.0	0.0	0.0	0.0	0.0	0.0
5.3e	SB yield (bu/acre)	58.8	46	53	32.1	57.3	27.4
5B							
5b.1	Co-product crediting			Displacemen	t (of electrici	ity)	
5b.2	Conversion Technology			Biochemic	al Conversion	n	

Table SII 3.1 – continued

	State	Nebraska	Nebraska
	Station	South Sioux City	South Sioux City
	Agricultural District	East Central	East Central
Step	Crop type	Irrigated	Rainfed
1			
1.10	ET_a (FRIS) (cm)	24.38	0.00
1.2	P _s (cm)	29.21	29.21
1.3	P _{os} (cm)	0.56	0.56
1.4	Ground water share	61%	61%
1.5	SL (cm)	0	0
2			
2.1	Irrigation Method	SPRINKLER - Cen	tral pivot & Linear
3			
3.1	Conveyance losses	12%	12%
3.2	Consumptive portion	1%	1%
4			
4.1	Partition method	Sys Expansion	/ Displacement
4.2	Corn Yield (bu/acre)	191.30	137.34
4.3	Storage loss grain	1%	1%
4.4	Storage loss cob	1%	1%
5A			
5.1	Co-product crediting	Displaceme	ent method
5.2	Conversion Technology	Dry	Mill
5.3a	SB ET _a (FRIS) (cm)	18.3	0.0
5.3b	$SB P_s (cm)$	21.0	21.0
5.3c	$SB P_{os} (cm)$	3.8	3.8
5.3d	SB SL (cm)	0.0	0.0
5.3e	SB yield (bu/acre)	55.26	44.74
5B			
5b.1	Co-product crediting	Displacement	(of electricity)
5b.2	Conversion technology	Biochemical	Conversion

The agricultural districts in which these stations are located represent 45-65% of the corresponding state's corn production in 2009. Each district's share of corn production in 2009 is detailed in SI-I, Appendix A2.

4 Results

4.1 Water requirements of corn harvested

The following table details the data for Figure 2 in the article

Table SII 4.1: Average water requirements of corn cultivation in various states (liters / bushel harvested)

	GW consumed	Blue Water	r consumed	Blue water released		
		Ground	Surface	Ground	Surface	
Rainfed cultivation						
IL	9,911					
IN	9,575					
IA	9,243					
KS (rainfed)	14,838					
NE (rainfed)	10,319					
Irrigated cultivation						
CA	2,780	3,966	8,229	721	1,495	
KS (irrigated)	6,818	6,367	1,817	546	156	
NE (irrigated)	7,230	3,127	1,984	522	330	

Source: Our analysis

4.2 Water intensity of ethanol

The following table details the data for Figure 3 in the article.

Table SII 4.2: Average water intensity of ethanol (L/VKT) for ethanol from corn grain, corn grain & cob, and co-products.

State	IL	IN	IA	KS	NE	CA	KS	NE
Crop type	Rainfed	Rainfed	Rainfed	Rainfed	Rainfed	Irrigated	Irrigated	Irrigated
Ethanol from corn grain								
GW	87.0	86.6	81.1	136.9	95.8	1.2	49.3	63.6
BW Ground	0.0	0.0	0.1	0.4	0.3	47.6	58.1	29.9
BW Surface	0.5	0.5	0.5	0.2	0.3	98.7	16.6	19.1
Ethanol from grain & cob								
GW	75.4	75.2	70.4	118.8	83.1	1.0	42.8	55.2
BW Ground	0.0	0.0	0.1	0.4	0.4	41.3	50.5	26.1
BW Surface	0.6	0.6	0.5	0.2	0.2	85.7	14.4	16.6
Co-products (DGS &								
Electricity)								
GW	73.7	73.4	68.7	103.0	76.8	40.6	61.6	60.0
BW Ground	0.0	0.0	0.0	0.0	0.0	18.3	45.4	20.8
BW Surface	0.0	0.0	0.0	0.0	0.0	37.9	13.0	13.2

Source: Our analysis

The following figure divides the water intensity of ethanol from irrigated corn based on various components of the system boundary (water requirements). It also highlights the impact on withdrawal and consumption intensity as a result of extension of system boundary.

Figure SII 4.3: Detailed breakdown of water requirements of ethanol from irrigated corn

The detailed breakdown of water requirements for ethanol (in L/VKT) from irrigated corn are given below:

Table SII 4.4: Detailed breakdown of water requirements of ethanol from irrigated corn

		CA	KS (irrigated)	NE (irrigated)
Consumed				
	Green Water	1.2	49.29	63.60
	Blue Water	146.3	74.69	49.00
	- ET _a	125.1	65.63	43.06
	- SL	-	-	-
	- La	16.7	7.72	5.12
	- L _c	3.9	0.77	0.51
	- BR	0.5	0.50	0.50
	- E _e	0.1	0.07	0.07
Withdrawn				
	Blue Water	172.8	81.04	57.08
	- ET _a	125.1	65.63	43.06
	- SL	-	-	=
	- La	41.7	11.58	7.69
	- L _c	5.4	3.27	6.15
	- BR	0.5	0.50	0.50
	- E _e	0.1	0.07	0.07

Source: Our analysis

4.3 Impact on state-wide water demand

Table SII 4.5: Calculation of the total water requirement at each state

		IL	IN	IA	KS	NE	All US
Ethanol production in 2009							
Operating Capacity (1)	(million L)	5,110	2,673	12,049	1,652	5,504	44,961
Production (2)	(million L)						
- Dry Mill		4,013	2,099	9,463	1,298	4,323	35,310
- Wet Mill		547	286	1,290	177	589	4,815
Corn required (3)	(million bu)						
- Irrigated					70	299	626
- Rainfed		418	219	987	65	152	3,056
Total corn produced in 2009		2,053	934	2,439	598	1,575	13,110
Percentage corn used for EtOH		20%	23%	40%	23%	29%	28%
		IL	IN	IA	KS	NE	All US
Water Consumption (without co-product water credit)							
Corn cultivation	(billion L)						
- Green water (4)		4,147	2,095	9,120	1,446	3,728	
- Blue water (4)					574	1,527	
- % of State total irrigation water (5)					14.8%	14%	
Ethanol conversion	(billion L)						
- Blue water (6)		13	7	31	4	14	
- % of State total industrial + public supply water (7)		0.5%	0.0%	0.1%	0.8%	1.6%	
BW used for ethanol as % of total state-wide BW use (8)		0.06%	0.05%	0.66%	10.84%	11.14%	
Water Consumption (with co-product water credit)							
Corn cultivation	(billion L)						
- Green water (9)		2,097	1,060	4,613	714	1,849	
- Blue water (9)					301	855	
- % of State total irrigation water (5)					8.0%	7.3%	
Ethanol conversion	(billion L)						
- Blue water		13.2	6.9	31.0	3.2	10.0	
- % of State total industrial + public supply water (7)		0.46%	0.03%	0.15%	0.64%	1.15%	
BW used for ethanol as % of total state-wide BW use (8)		0.06%	0.05%	0.66%	5.72%	6.19%	

Notes

- (1) Based on (RFA 2010) which gives operating capacity as of January 2010
- (2) Based on share of Dry Mills in total ethanol production in 2009 (88%) from RFA website
- (3) Corn required is based on assumed ethanol yield for dry mill and wet mill plants (See SI-I). Share of irrigated and rainfed corn is based on (USDA 2010)
- (4) GW and BW requirements for corn cultivation are based on results of our model
- (5) Total irrigation water are from 2008 FRIS ((USDA 2010)

- (6) BW requirements for ethanol conversion are based on our model and assumptions of process and cooling water use in dry and wet mills (See SI-I)
- (7) Data for 2005 (latest available) from (USGS 2009).
- (8) Total BW water use in state is based on irrigation water use in 2008 from (USDA 2010) and all other water use (industrial, mining, domestic, livestock, thermoelectric) in 2005 from (USGS 2009)
- (9) Co-product credits are based on our model. Co-products for ethanol from corn grain using both dry mill and wet mill conversions.

4.4 "Average" versus "marginal" analysis

Table SII 4.5: Changes in corn and soybean production between

	All crops		Corn grain					Soybean	
	_	Change in acreage between 2003 & 2007		Change in corn acreage between 2003 & 2007			rain yield (bu/acre)	Change in acreage bet & 20	ween 2003
	Total harvested cropland	Total irrigated cropland	Total acres harvested	Irrigated corn acres	Irrigated acreage as % of total (2007)	Irrigated yield:	Non- irrigated yield	Total acres harvested	Irrigated SB acres
IL	0%	21%	22%	57%	2%	172.9	171.8	-21%	-39%
IN	1%	27%	24%	49%	3%	146	150.1	-17%	-3%
IA	-1%	33%	18%	46%	1%	114	166	-17%	7%
KS	5%	3%	48%	12%	14%	192	103.1	2%	-16%
NE	5%	12%	25%	30%	47%	174.1	119.3	-16%	-18%

Source: 2002 and 2007 Census of Agriculture (USDA 2009)

4.5 Comparison with fossil fuels

Table SII 4.6: Summary of water intensity of gasoline from various sources of crude oil

Source of gasoline	L of water / L of gasoline	L of water / VKT
US conventional crude oil	3.4 - 6.5	0.41 - 0.78
Canadian Oil Sands (surface)	5.2	0.62
Canadian Oil Sands (in-situ)	2.4	0.29
US Oil Shale (surface)	3.3 - 5.2	0.4 - 0.62
US Oil Shale (in-situ)	2.4 - 8.4	0.29 - 1.01

Notes: Assumes vehicle efficiency of 3.88 MJ/VKT (5,914.75 BTU/VMT; Section 2.4 SI-I). Source: (Wu, Mintz et al. 2009)

Table SII 4.6: Water intensity of crude oil and gasoline: detailed information

Source	Water Intensity	Source	Notes
Crude oil production	L water / L of crude oil produced		
US conventional crude oil	2.1 - 5.4	Wu and Wang 2009	Estimates for on-shore production which accounts for 67% of US crude production in 2005. Accounts for reinjection of produced water. Weighted average of various recovery technologies - conventional (4.5%), secondary (50%), and tertiary or enhanced recovery (12.5%)

Canadian Oil Sands (surface)	4.0	Wu and Wang 2009	59% of Canadian oil-sands-based crude oil production in 2005. Accounts for recycling of water from tailing ponds
Canadian Oil Sands (in-situ)	1.0	Wu and Wang 2009	Assumes recycling of 80% of the steam used for oil extraction and processing
US Oil Shale (surface)	2 - 4	GAO 2010	Data is based on limited experience from demonstration projects. No commercial production yet
US Oil Shale (in-situ)	1 - 12	GAO 2010	As above. Average water intensity of 5 L/L
Refining	L/L of crude oil refined		
Conventional crude	1.53	Wu and Wang 2009	1 L of crude oil generates 1.062 L of gasoline
Synthetic crude from oil sands	As above	Wu and Wang 2009	

Source: (Wu, Mintz et al. 2009)

5 References

- Chiu, Y.-W., B. Walseth, et al. (2009). "Water embodied in bioethanol in the United States." Environmental Science & Technology **43**(8): 2688-2692.
- FAO (1998). Crop evapotranspiration Guidelines for computing crop water requirements. FAO Irrigation and drainage paper #56. Rome, Italy, Food and Agricultural Organisation of the United Nations.
- Fingerman, K., M. Torn, et al. (2010). "Accounting for the water impacts of ethanol production." <u>Environmental Research Letters</u> **5**(1): 014020.
- Gerbens-Leenes, P. W., A. Y. Hoekstra, et al. (2008). Water footprint of bio-energy and other primary energy carriers. <u>Value of Water Research Report</u>. **Delft, the Netherlands**, UNESCO-IHE Institute of Water Education.
- Gerbens-Leenes, W., A. Y. Hoekstra, et al. (2009). "The water footprint of bioenergy."

 <u>Proceedings of the National Academy of Sciences of the United States of America</u> **106**(25): 10219-10223.
- Mubako, S. and C. Lant (2008). "Water resource requirements of corn-based ethanol." Water Resources Research 44(7): W00A02.
- RFA (2010). 2010 Ethanol Industry Outlook: Climate of Opportunity. Washington, DC, Renewable Fuels Association: 33.
- USDA (2009). 2007 Census of Agriculture Summary and State Data. Washington, DC, US Department of Agriculture. 1.
- USDA (2010). Farm and Ranch Irrigation Survey (2008). <u>2007 Census of Agriculture</u>. Washington, DC, US Department of Agriculture. **3**.
- USDA (2010). National Agriculture Statistics Service, US Department of Agriculture.
- USGS (2009). Estimated use of water in the United States in 2005. Reston, Virginia, U.S. Geological Survey.
- Wu, M., M. Mintz, et al. (2009). "Water consumption in the production of ethanol and petroleum gasoline." <u>Environmental Management</u> **44**(5): 981-997.