TP N° 3: Arbres

Pour ce travail vous devez déposer un <u>unique</u> fichier au format nom_prenom.ipynb sur le site moodle du cours.

Vous devez charger votre fichier sur Moodle, avant le vendredi 09/10/2020, 23h59.

La note totale est sur 20 points répartis comme suit :

- qualité des réponses aux questions : 15 pts,
- qualité de rédaction, de présentation et d'orthographe : 2 pts,
- indentation, style PEP8, commentaires adaptés, etc.: 2 pts,
- absence de bug : 1 pt.

Les personnes qui n'auront pas rendu leur devoir avant la limite obtiendront zéro.

Rappel: aucun travail par mail ne sera accepté!

Cadre décisionnel et notations

On se place dans le cadre de la classification multi-classe, avec les notations habituelles (pour le détails des notations, on pourra consulter l'énoncé du TP sur les k-plus proches voisins) : on suppose que les données peuvent être reparties dans K classes. L'ensemble d'apprentissage est de taille $n: \mathcal{D}_n = \{(\mathbf{x}_i, y_i), i = 1, \dots n\}$ contenant les n observations (les \mathbf{x}_i) et leurs étiquettes (les y_i). Pour mémoire $\mathbf{x}_i = (x_1, \dots, x_p)^{\top} \in \mathcal{X} \subset \mathbb{R}^p$ est une observation, et dans le cas bidimensionnel p = 2.

Découverte du module tree de scikit-learn

Consulter les pages suivantes si besoin pour trouver quelques rappels ou précisions :

- *** http://scikit-learn.org/stable/modules/tree.html
- *** http://scikit-learn.org/stable/modules/generated/sklearn.tree.
 DecisionTreeClassifier.html
- Plus de détails sur les arbres (notamment pour le langage R) :
 http://www.stat.cmu.edu/~cshalizi/350/lectures/22/lecture-22.pdf

Génération artificielle de données

On utilisera de nouveau les fonctions qui génèrent les données des TP précédents.

Arbres de décision - Algorithme CART

On pourra consulter [2, Chapitre 9.2] pour plus de détails sur les arbres. La source la plus détaillée sur le sujet étant le livre fondateur [1].

Rappelons ici le fonctionnement d'un arbre décision (voir aussi les figures en dernière page). Notons qu'on ne considère que des arbres binaires par simplicité : un nœud ne peut avoir que deux enfants, sauf si c'est une feuille, auquel cas il n'en a aucun.

On associe à toute partition des données une représentation par arbre. Au départ l'arbre est restreint à un seul nœud, sa racine, qui représente l'espace \mathcal{X} tout entier. Récursivement, à chaque étape on choisit :

- une variable $j \in \{1, \dots, p\}$ (parmi les p possibles),
- un seuil $\tau \in \mathbb{R}$,

et l'on partitionne l'espace des variables explicatives \mathcal{X} en deux sous-ensembles qui sont représentés par deux nœuds dans l'arbre $G(j,\tau)=\{x=(x_1,\ldots,x_p)^{\top}\in\mathbb{R}^p:x_j<\tau\}$ et $D(j,\tau)=\{x=(x_1,\ldots,x_p)^{\top}\in\mathbb{R}^p:x_j\geq\tau\}$. On incrémente donc à chaque étape le nombre de composantes de la partition, et de manière équivalente le nombre de feuilles de l'arbre. On répète le processus jusqu'à atteindre un critère d'arrêt, qui peut être :

- le fait que la profondeur de l'arbre dépasse un seuil prescrit,
- le fait que l'effectif d'un nœud (i.e., le nombre d'observations qui tombent dans la partition correspondante) est inférieur à un seuil prescrit,
- le fait que le nombre de feuilles de l'arbre dépasse un seuil prescrit.
- etc

Un exemple visuel d'une telle construction est donné à la Figure 1.

Il faut maintenant définir une règle pour décider où l'on doit faire la nouvelle découpe (splitting). Ce choix est crucial et n'est pas unique. Pour cela on utilise une fonction qui mesure "l'impureté", que l'on note H associée à une partition. On cherche alors la découpe (variable/seuil) qui produit une partition la plus pure possible selon le critère H.

Mathématiquement il s'agit de résoudre:

$$\underset{j \in [\![1,p]\!], \tau \in \mathbb{R}}{\arg \min} \widehat{q}_{j,\tau} H(G(j,\tau)) + (1 - \widehat{q}_{j,\tau}) H(D(j,\tau)), \tag{1}$$

où l'on a noté

$$\widehat{q}_{j,\tau} = \frac{|\{i \in [\![1,n]\!] : x_i \in G(j,\tau)\}|}{|\{i' \in [\![1,n]\!] : x_{i'} \in G(j,\tau) \cup D(j,\tau)\}|},\tag{2}$$

la proportion des observations qui tombent dans $G(j,\tau)$. Noter qu'ici $|\cdot|$ représente le cardinal d'un ensemble.

Pour tout ensemble $R \subset \mathbb{R}^p$ et toute étiquette k on note $\widehat{p}_k(R)$ la proportion d'observations qui ont k comme étiquette (numérotées de 1 à K), i.e.,

$$\widehat{p}_k(R) = \frac{|\{i \in [1, n] : x_i \in R \text{ et } y_i = k\}|}{|\{i \in [1, n] : x_i \in R\}|}$$
(3)

On considérera dans CART les mesures d'impureté H suivantes :

- l'indice de Gini : $\sum_{k=1}^{K} \widehat{p}_k(R) (1 \widehat{p}_k(R))$
- l'entropie : $-\sum_{k=1}^{K} \widehat{p}_k(R) \log(\widehat{p}_k(R))$
- 1) Dans le cadre de la régression (*i.e.*, quand on cherche à prédire une valeur numérique pour Y et non une classe), proposez une autre mesure d'homogénéité. Justifier votre choix.

Avec scikit-learn on peut construire des arbres de décision grâce au package tree. On obtient un classifieur avec tree.DecisionTreeClassifier.

from sklearn import tree

- 2) Simulez avec rand_checkers (cf. les TP précédents) un échantillon de taille (proche de) n=450, en vérifiant que les classes sont bien équilibrées. Créez deux courbe qui donnent le pourcentage d'erreurs commises en fonction de la profondeur maximale de l'arbre (une courbe pour Gini, une courbe pour l'entropie). On fera une découpe en apprentissage (train) / test (test) de taille 80% 20% pour mesurer cette performance (et on supposera une telle découpe dans les autres questions quand cela est nécessaire). On laissera les autres paramètres à leur valeurs par défaut.
- 3) Visualiser les frontières de décision obtenues en utilisant la profondeur qui minimise le pourcentage d'erreurs obtenues sur l'ensemble de test (en choisissant l'entropie). Utilisez si besoin les fonctions des TP précédents.
- 4) Exporter un graphique de l'arbre obtenu à la question précédente en format pdf. On pourra par exemple utiliser la fonction export_graphviz du module tree.
- 5) Créez un jeu de donnés avec 4 classes, et n = 160 = 40 + 40 + 40 + 40 nouvelles données avec rand_checkers. Pour les arbres de décision entrainés précédemment, calculer la proportion d'erreurs faites sur cet échantillon de test. Commenter.

6) Reprendre les questions précédentes pour le dataset DIGIT. Ce jeu de données est disponible dans le module sklearn.datasets. On peut l'importer avec la fonction load_digits du dit module (ou voir pour plus de détails http://scikit-learn.org/stable/auto_examples/classification/plot_digits_classification.html):

digits = datasets.load_digits()

Méthodes de choix de paramètres - Sélection de modèle

Il est rare de disposer en pratique d'un ensemble de test (on préfère inclure le plus grand nombre de données dans l'ensemble d'apprentissage), c'est au praticien de garder une partie de ces données à cet effet. Pour sélectionner un modèle ou un paramètre tout en considérant le plus grand nombre d'exemples possibles pour l'apprentissage, on utilise généralement une sélection par validation croisée. Pour chaque paramètre utilisé, une estimation de l'erreur empirique du classifieur est obtenue selon la procédure suivante. On fixe d'abord un entier N, souvent N=5 ou N=10, qui représente le nombre de blocs (en anglais : fold) et un jeu de paramètre du modèle :

- l'ensemble d'apprentissage est partitionné en N blocs de taille n/N
- pour chaque sous-ensemble possible, on mesure l'erreur obtenue par le classifieur (pour un jeu de paramètres fixé) appris sur les N-1 blocs restants.
- l'erreur estimée est la moyenne de l'erreur des classifieurs appris.

On peut répéter cette procédure sur toute la grille des paramètres. Cela permet d'obtenir une mesure d'erreur pour chaque paramètre, et finalement on choisit le paramètre minimisant cette quantité.

Pour plus de détails sur les variantes de ce principe implémentées dans scikit-learn, consultez la page http://scikit-learn.org/stable/modules/cross_validation.html.

- 7) Utiliser la fonction sklearn.cross_validation.cross_val_score et tester la sur le jeu de données DIGIT en faisant varier la profondeur de l'arbre de décision. On pourra se servir de cette fonction pour choisir la profondeur de l'arbre.
- 8) En s'inspirant de http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html afficher la courbe d'apprentissage (en : learning curve) pour les arbres de décisions sur le même jeu de données 1.

Références

- [1] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. *Classification and regression trees*. Wadsworth Statistics/Probability Series. Wadsworth Advanced Books and Software, Belmont, CA, 1984. 1
- [2] T. J. Hastie, R. Tibshirani, and J. Friedman. *The Elements of Statistical Learning*. Springer Series in Statistics. Springer, New York, second edition, 2009. 1

^{1.} pour une version de sklearn > version 0.18, voir http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.learning_curve.html

 ${\it Figure} \ 1-{\it Exemple} \ {\it de fonctionnement} \ {\it de la méthode} \ {\it de la création} \ {\it d'un arbre} \ {\it de décision}$