Antisymmetric relation, 577–578, 633	Autokey ciphers, 309	Bayes' theorem, 468-475
representing	Automated theorem proving, 114	generalized, 472
using digraphs, 595	Automaton	Bayes, Thomas, 470, 472
using matrices, 591–592	deterministic, 872, 873	Bayesian spam filters, 472-475
Appel, Kenneth, 728	deterministic finite-state, 899	Begging the question, 90, 110
Application(s)	finite-state, 866-872	Bell, E. T., 618
of backtracking, 791-793	nondeterministic, 873	Bellman, Richard, 508
of Bayes' theorem, 471-472	linear bounded, 886	Bell numbers, 618
of congruences, 287	nondeterministic, 873	Bernoulli's inequality, 330
of graphs colorings, 731–732	nondeterministic finite-state, 899	Bernoulli, James, 458, 459
of graph theory, 644-649, 658-663, 680-681, 687,	pushdown, 886	Bernoulli family tree, 745
698, 702, 731–732	quotient, 878	Bernoulli trial, 479, 494
of inclusion–exclusion, 558–564	set not recognized by, 885	and binomial distribution, 458–460 Bernstein, Felix, 175
of pigeonhole principle, 403–405	Average-case complexity of algorithms, 482–484	Bi-implication, 9
of propositional logic, 16–22 of satisfiability, 32–34	Average-case time complexity, 220, 232	Biconditional, 9–10, 110
of trees, 757–769	of linear search, 221	implicit use of, 10
Approximation algorithm, 235, 715	Avian influenza, 476	statement, 9
Arborescence, 807	AVL-trees, 808	truth tables for, 9
Archimedean property, A-5	Award	Biconnected graph, 684
Archimedes, A-4	Turing, 854	Bicycle racers, 475
Archimedes' screw, A-4	Axiom(s), 185, A-1–A-5 Completeness, A-2	Bidirectional bubble sort, 233
Argument, 69, 110	field, A-1	Bienaymé's formula, 489
Cantor diagonalization, 173, 186	for real numbers, A-1–A-2	Bienaymé, Irenée-Jules, 489
premises of, 69	for set of positive integers, A-5	big-O estimates
propositional logic, 70	in proving basic facts, A-3–A-5	for combinations of functions, 212
valid, 69, 110	of Mathematical Induction, A-5	for exponential functions, 212
Argument form, 70, 110	order, A-2	of important functions, 209
valid, 70, 110	Zermelo–Fraenkel, 176	of n!, 210 for polynomials, 209,212
Aristotle, 2, 3		for products of functions, 213
Arithmetic	B-tree of degree k , 805	for sums of functions, 212
fundamental theorem of, 306, 336–337	Bézout coefficients, 270, 306	of logarithms, 212
modular, 240–306	Bézout's identity, 270	Big-O notation, 205-232
modulo m, 243	Bézout's theorem, 269, 306	careless use of, 216
Arithmetic mean, 100, 332 Arithmeticorum Libri Duo (Maurolico), 313	Bézout, Étienne, 269	origin of, 206
Arithmetic progression, 186	Bachmann, Paul, 206	Big-O relationship
of primes, 262, 263	Bachmann, Paul Gustav Heinrich, 207	witnesses to, 205
Array linear, 662	Back edges, 788	big-Omega (Ω) notation, 214, 232
two-dimensional, 662	Back substitution	big-Theta (Θ) notation, 215, 232
Arrow, Peirce, 36	solving systems of linear congruences using, 279	Big-Theta estimates for polynomials, 216
Ars Conjectandi (Bemoulli), 459	Backtracking, 787–789, 804	Bigit, 11
Art Gallery	applications of, 791–793	Bijection, 144, 186 Bijective proofs, 412
problem, 735	in directed graphs, 793	Binary coded decimal expansion, 836
theorem, 735	Backus, John, 854	Binary digit, 11
Article, 848	Backus–Naur form, 899 Backus–Naur form (BNF), 854	Binary expansions, 246
Articulation points, 683	Backward differences, 513	Binary insertion sort, 196, 203
Artificial intelligence, 138, 380	Backward substitution	Binary relation, 573, 633
fuzzy logic in, 16	iteration using, 160	Binary representation, 306
Assertion	Bacon, Kevin, 680–681	Binary search
final, 372, 378	Bacon number, 680	worst-case complexity, 220
initial, 372, 378	Bacteria, 168, 501	Binary search algorithm, 194, 232, 528
Assignment, stable, 343 optimal, 343	Balanced rooted trees, 753, 804	recursive, 363
Assignment of jobs, 565	Balanced strings of parentheses, 382	Binary search trees, 757–759, 804
Assignments, frequency, 732	Balanced ternary expansions, 256	Binary trees, 352–353, 748, 749 definition of, 804
Assignment statements, A-11–A-12	Bandwidth of graph, 741	extended, 352
Associated homogenous recurrence relations, 520	Bar	full, 352–353
Associative laws, 27	chocolate, 342	height of, 355
for addition, A-1	Barber paradox, 16	number of vertices of, 355
for Boolean algebra, 815, 818	Base b	with prefix code, 762-763
for lattices, 637	expansions, 246, 306	Binit, 11
for multiplication, A-1	algorithm for constructing, 248	Binomial coefficients, 410, 415-421, 439
for propositions, 27	Miller's test for, 286	extended, 539
for sets, 129	pseudoprime to the, 282	Binomial distribution, 458–460
Associativity	strong pseudoprime to, 286	Binomial expression, 415
for integers modulo m, 243	Base-10 expansions, 246	Binomial theorem, 415–418, 439
Asymmetric relation, 582	Base conversion, 247 Bases of DNA molecules, 389	extended, 540
Asymptotic functions, 218 Asynchronous transfer mode (ATM), 149	BASIC, 391	Binomial trees, 805
AT&T network, 682	Basis, vertex, 691	Bipartite graphs, 656–658, 736 coloring of, 657
Autokey cipher	Basis step, 313, 333, 349, 377, 752, 767	Bird flu, 476
keystream, 309	Basketball, 434	Birthday problem, 461–463

I-4 Index

Bit, 11, 110	Bubble sort, 196, 232	Checkerboard, tiling of, 326, 333
origin of term, 11	bidirectional, 233	Cheese, in Reve's puzzle, 504
parity check, 290	worst-case complexity, 221	Chen, J. R., 264
Bit operation(s), 11,110	Bug, computer, 872 Building arguments using rules of inference, 73	Chess, game tree for, 769 Chessboard
Bits, 149 Bit string, 12, 110 subitem representing set with, 134	Buoyancy, principle of, A-4	n-queens problem on, 792–793
Bit strings	Busy beaver function, 896, 899	knight's tour on, 707
counting, 388	Butane, 750	squares controlled by queen on, 740
without consecutive 0s, 505	Byte, 149	Chi (Greek letter), 728
decoding, 762-763		Chickens, 741
generating next largest, 437	Cabbage, 692	Child of vertex, 747, 803
in interstellar communication, 476	Cactus, 806	Chinese meal, preparing, 635 Chinese postman problem, 698, 744
length of, 505	CAD programs, 834	Chinese remainder theorem, 277, 306
Bitwise operation, 110	Caesar, Julius, 294	Chocolate bar, 342
Bitwise operators, 12 Block	Caesar cipher, 294 decryption, 295	Chomp, 98, 342, 638
Sudoku, 32	encryption, 294	winning strategy for, 98
Block cipher, 297, 306	key, 295	Chomsky, Avram Noam, 847, 851, 853
Blocks of statements, A-14–A-15	Cake, division of, 331	Chomsky classification of grammars, 851–852
BNF (Backus-Naur form), 854	Calculus	Chromatic number, 728, 737 k-critical, 734
Boat, 692	predicate, 40	edge, 734
Bob, 302, 305	propositional, 3	of graph, 728
Bonferroni's inequality, 467	Call graphs, 646	Chung-Wu Ho, 340
Book number of graph, 744	connected components of, 682	Church, Alonzo, 897
Boole's inequality, 467	Canterbury Puzzles, The (Dudeney), 504 Cantor's theorem, 177	Church-Turing thesis, 893
Boole, George, 3, 5, 472, 811 Boolean algebra, 811–846	Cantor, Georg, 117, 118, 173, 176	Cipher
abstract definition of, 815	Cantor diagonalization argument, 173, 186	affine, 296, 306
definition of, 843	Cantor digits, 438	autokey, 309 block, 306
identities, 27	Cantor expansion, 256, 438	Caesar, 294
identities of, 814-816	Cardano, Girolamo, 445	character, 297, 306
Boolean expressions, 812-814, 843	Card hands, 411, 429	monoalphabetic, 297
dual of, 816, 843	Cardinality, 121, 170–175, 185, 186	shift, 295, 306
Boolean functions, 811–819, 843	of a countable set (\aleph_0) , 171, 186	transposition, 297
dual of, 816, 843	of union of sets, 128	Vigenère, 304
functionally complete set of operators for, 821	Cardinality of the set of real numbers, 186 Cardinal number, 121	Cipher block, 297 Circuits
implicant of, 832 minimization of, 828–840, 843	Carmichael, Robert Daniel, 283	combinational, 823
representing, 813–821	Carmichael number, 283, 306	depth of, 828
self-dual, 844	Carroll, Lewis (Charles Dodgson), 50	examples of, 823-825
threshold, 845	Carry, 250	minimization of, 828-840
Boolean power of a square zero-one matrix, 183	Cartesian product, 123	digital, 21
Boolean product, 811-812, 821, 843	Cartesian product of more than two sets, 123	Euler, 693–698, 736
of two zero-one matrices, 182	Cases, proof by, 92–110	Hamilton, 698–703, 736
Boolean product of zero–one matrices	Cash box, 424–425	in directed graph, 599, 633 in graph, 679
algorithm for, 223 Boolean searches, 18	Catalan, Eugène Charles, 507 Catalan numbers, 507	logic, 20, 110
Boolean sum, 811–812, 821, 843	Caterpillar, 807	multiple output, 826
Boolean variable, 11, 110, 814, 820, 843	Cathy, 305	simple, 679
Boruvka, Otakar, 800	Cayley, Arthur, 745, 750	Circular permutation, 415
Bots, 794	Ceiling function, 149, 186	Circular reasoning, 90, 110
Bottom-up parsing, 853	properties of, 150	Circular relation, 636
Bound	Celebrity problem, 332	Circular table, 394 Citation graphs, 646
greatest lower, 634	Cells, adjacent, 830	Civil War, 38
least upper, 634, A-2	Center, 757	C language identifier, 857
of poset, 625	Ceres, 241	Class
of lattice, 637	Chain, 637 Chain letter, 753	congruence, 241
of poset, 625–626, 634 of poset, 625–626, 634	Character cipher, 297, 306	equivalence, 610-611, 633
upper, A-2	Characteristic equation, 515	and partitions, 612–614
Bounded lattices, 637	Characteristic roots, 515	definition of, 610 representative of, 610
Bound occurrence of variable, 44	Chebyshev's inequality, 491, 495	of nondeterministic polynomial-time problems,
Bound variable, 44, 110	Chebyshev, Pafnuty Lvovich, 490, 491	900
Boxes, distributing objects into, 428-431	Checkerboard	NP, 227, 896
distinguishable, 428	tiles, 103	of NP-complete problems, 897, 900
indistinguishable, 428	Check digit, 289–292	of polynomial-time problems, 227, 896, 900
Breaking godes 206	for airline ticket identification numbers, 293	Class P, 227, 896, 900
Breaking codes, 296 Bridge, in graphs, 683	ISBN, 291 ISBN-13, 308	Class A addresses, 392
Bridge problem, Königsberg, 693–694, 696, 697	ISSN, 293	Class B addresses, 392 Class C addresses, 392
Brute-force algorithm, 224	RTN, 308	Class D addresses, 392
Brute-force algorithm for closest pair of points, 225	UPC, 290	Class E addresses, 392
Brute-force paradigm, 232	Checkerboard, 103	Clause, 74

Climbing rock, 163 Common errors equivalent, 8 logically equivalent, 25, 110 with exhaustive proofs, 95 Clique, 739 Clock, 240 with proofs by cases, 95 truth tables of, 10 Common ratio, 157 well-formed formula for, 354 Closed formula Computable Commutative group, 244 for terms of a sequence, 159 function, 175 Commutative laws, 27 Closed interval, 117 Computable function, 177, 186, 896, 900 for addition, A-1 Closed walk, 679 Computable numbers, 886 for Boolean algebra, 815, 818 Closest-pair problem, 532-535 Computation, models of, 847-897 for lattices, 637 Closure for multiplication, A-1 Computational complexity, 219 for integers modulo m, 243 Computational complexity of algorithms for sets, 129 Kleene, 899 of Dijkstra's algorithm, 714 Commutative ring, 244 closure Turing machine in making precise, 894 Commutativity Kleene(, 866 Computational geometry, 338-340, 532-535 for integers modulo m, 243 Closure, Kleene, 866 Computer-aided design (CAD) programs, 834 Comparable elements in poset, 619, 633 Closure laws Computer arithmetic with large integers, 279 Compatibility laws, A-2 for addition, A-1 Computer debugging, 872 Compatible total ordering, 628, 634 for multiplication, A-1 Computer file systems, 750 Compilers, 611, 872 Closures of relations, 597-606, 633 Computer network, 641 Complement, 811, 843 reflexive, 598, 633 interconnection networks, 661-663 double, law of, in Boolean algebra, 815, 818, 819 symmetric, 598, 634 of Boolean function, 811 local area networks, 661 transitive, 597, 600-603, 634 multicasting over, 786 Complementary event, 449 computing, 603-606 with diagnostic lines, 642 Complementary graph, 667 Coast Survey, U. S., 38 with multiple lines, 642 Complementary relation, 582 with multiple one-way lines, 642 COBOL, 854, 872 Complementation law, 129 Cocks, Clifford, 299 with one-way lines, 643 Complemented lattice, 637, 817 Computer programming, 854 Code Complement law, 129 breaking, 296 Computer representation of sets, 134 Complement of a fuzzy set, 138 Codes, Gray, 702-703 Computer science, 854 Complement of a set, 128, 129, 186 Computer time used by algorithms, 228 Codes, prefix, 762-764, 804 Complete m-ary tree, 756 Codeword enumeration, 506 Computer virus Complete m-partite graph, 738 invention of term, 300 Coding, Huffman, 763-764, 804 Complete bipartite graph, 658, 736 transmission, 441 Codomain Complete graphs, 655, 736 Concatenation, 350, 866, 899 of a function, 139, 186 Complete induction, 334 Conclusion, 70, 110 of partial function, 152 Complexity Conclusion of a condition statement, 6 Coefficient(s) computational, 219 Concurrent processing, 647 Bézout, 270, 306 constant, 225 Condition exponential, 225 binomial, 409, 415-421, 439 necessary, 6 factorial, 225 constant sufficient, 6 linear homogenous recurrent relations with, linear, 225 Conditional constructions, A-12-A-13 linearithmic, 225 515-520, 565 Conditional probability, 453, 456-457, 494 logarithmic, 225 linear nonhomogenous recurrent relations with. Conditional statement(s), 6-9 of algorithm for Boolean product of zero-one 520-524, 565 contrapositive, 110 matrices, 223 extended, 539 contrapositive of, 8 of matrix multiplication, 223 multinomial, 434 converse, 110 Collaboration graphs, 645 polynomial, 225 converse of, 8 paths in, 680 space, 219, 232 for program correctness, 373-375 time, 219, 232 Collatz problem, 107 inverse of, 8 Complexity of algorithms, 218-229 Collection of sets truth table for, 6 average-case, 482-484 intersection of, 133 Conditions computational don't care, 836-837 union of, 133 of Dijkstra's algorithm, 714 initial, 158, 565 Collision of breadth-first search algorithms, 791 Congruence, 240, 306 in hashing, 288 of depth-first search algorithms, 789 applications of, 287-292 in hashing functions, probability of, 462-463 of merge sort, 532 linear, 275, 306 Coloring Complexity of merge sort, 532 Congruence class, 241 chromatic number in. 728 Complex numbers Congruence modulo m, 609-610, 633 of bipartite graphs, 657 of graphs, 727–732, 736 set of, 116 Congruence quadratic, 285 Components of graphs, connected, 682-685 Congruent to, 240, 306 of maps, 727 strongly, 686, 736 Conjecture, 81, 110 Combinational circuits, 823 Composite, 257 3x + 1, 107depth of, 828 Composite integer, 306 Frame's, 513 examples of, 823-825 Composite key, 585, 633 Goldbach's, 264 minimization of, 828-840 Composite of relations, 580, 633 twin prime, 264 Combinations, 409-413 Composition of functions, 146, 186 Conjectures about primes, 263 generating, 437-438 Composition rule, 373 Conjunction, 4, 110, 843 of events, 449-450, 455-456 Compound interest, 160 distributive law of disjunction over, 27 with repetition, 424-427 Compound proposition, 25, 109 negating, 28 Combinatorial identities, 417-421 dual of, 35 truth table for, 4 Combinatorial proof, 412, 439 satisfiable, 30, 110 Conjunction (rule of inference), 71 Combinatorics, 385, 404, 431, 439 Compound propositions, 3 Conjunctive normal form, 820 Comments in pseudocode, A-12 consistent, 110 Connected components of graphs, 682-685 equivalences of, in Boolean algebra, 812 Common difference, 157 strongly, 686, 736

I-6 Index

G	0	D 1111 11 000
Connected graphs, 678–689	Countable set, 171, 186	Decidable problem, 895
directed, 685–687	cardinality of, 186 Counterexample(s), 88, 102, 110	Decimal expansions 246
planar simple, 719–723 strongly, 685	Counting, 385–444, 501–571	Decimal expansions, 246 Decision problems, 894, 900
undirected, 681–685	basic principles of, 385–390	Decision trees, 760–762, 804
weakly, 686	bit strings, 388	Deck, standard, 402
Connecting vertices, 651	without consecutive 0s, 505	Decreasing function, 143
Connectives	Boolean functions, 814	Decryption, 295, 306
logical, 4	by distributing objects into boxes, 428–431	affine cipher, 296
Connectivity	combinations, 409-413	Caesar cipher, 295
edge, 684	derangements, 562, 566	RSA, 300
vertex, 684	functions, 387	Decryption key
Connectivity relation, 600, 633	generating functions for, 541-546	RSA system, 301
Consequence of a condition statement, 6	Internet addresses, 392	Dedekind, Richard, 175
Consistent compound propositions, 110	one-to-one functions, 387	Deductive reasoning, 312
Consistent system specifications, 18	onto functions, 560-562, 566	Deep-Blue, 769
Constant coefficients	passwords, 391	Deferred acceptance algorithm, 204, 343
linear homogenous recurrent relations with,	paths between vertices, 688–689	Definiteness
515–520, 565	permutations, 407–409	of an algorithm, 193
linear nonhomogenous recurrent relations with,	pigeonhole principle and, 399–405	Definition
520-524, 565	reflexive relations, 578	recursive, 311, 344–357
Constant complexity, 225	relations, 578–579	Degree
Constructing logical equivalences, 29	subsets of finite set, 388	of n-ary relations, 584
Construction	telephone numbers, 387	of linear homogenous recurrence relations, 514
automaton that recognizes a regular set, 881	tree diagrams for, 394–395 variable names, 391	of region, 722 of vertex in undirected graph, 652
Construction of the real numbers, A-5	with repetition, 423	Degree-constrained spanning tree, 806
Constructions	Covariance, 494	Degree of membership in a fuzzy set, 138
conditional, A-12-A-13	Covering relation, 623, 631	de la Vallée-Poussin, Charles-Jean-Gustave-Nicholas,
loop, A-14-A-15	Covers, 631	262
Constructive existence proof, 96, 110	CPM (Critical Path Method), 639	Delay machine, 861–862
Contains, 116	C programming language, 398, 611	de Méré, Chevalier, 452
Context-free grammar(s), 851, 886	Crawlers, 794	De Morgan's laws, 26, 27
ambiguous, 901	Cricket, 97	for Boolean algebra, 815, 819
Context-free language, 851	Criterion	for propositions, 31, 28-31
Context-sensitive grammars, 851	Euler's, 286	for quantifiers, 47
Contingency 25, 110	Critical Path Method (CPM), 639	for sets, 129
Contingency, 25, 110 Continuum hypothesis, 175, 186	Crossing number, 726	proving by mathematical induction, 323-324
Contraction, edge, 664	Cryptanalysis, 296, 306	De Morgan, Augustus, 26, 29, 729
Contradiction, 25, 110	for shift cipher, 296	Dense
proof by, 110	Vigenère cipher, 305	graph, 670
Contradiction, proof by, 86	Cryptographic protocols, 302	poset, 632
Contraposition, 83	Cryptosystem, 297–306	Denying the hypothesis, fallacy of, 75
proof by, 110	definition of, 297	Dependency notation, 846
Contrapositive, 8, 110	private key, 298, 306	Depth-first search, 787–789, 804
of a conditional statement, 110	public key, 298	applications of, 794–795
Control unit	RSA, 299, 306 shift cipher, 298	in directed graphs, 794–795 Depth of combinatorial circuit, 828
Turing machine, 889	Cunningham numbers, 262	Derangements, 562–565
Converse, 8, 110	Cut	number of, 562, 566
of a conditional statement, 110	edge, 683, 684	Derivable, 899
of directed graph, 668	set, 806	directly, 899
Conversion	vertex, 683, 684	Derivable from, 849
between bases, 247	Cycle	Derivation, 849
between binary and hexadecimal, 249	in directed graph, 599, 633	Derivation tree, 899
between binary and octal, 249	with n vertices, 655	Derivation trees, 852-854
Convex polygon, 338	Cylinder, 831	Descartes René, 122
Cook, Stephen, 227	Czekanowski, Jan, 800	Descendants of vertex, 747, 804
Cook-Levin theorem, 227		Describing a set
Cookie, 426	Database	by listing its members, 116
Corollary, 110	composite key of, 585	by the roster method, 116
Correctness	intension of, 585	using set builder notation, 116
of an algorithm, 193	primary key of, 585	Designing finite-state automata, 869
of programs, 372–378 conditional statements for, 373–375	records in, 584	Detachment
loop invariants for, 375–376	relational model of, 584–586, 633	laws of, 71
partial, 372	Database query language, 588–589	Deterministic finite-state automata, 872, 899
program verification for, 372–373	Data compression, 763 Datagrams, 399	Deviation, standard, 487 Devil's pair, 678
rules of inference for, 373	Datalogy, 854	Diagnostic test results, 471–472
of recursive algorithms, 364–365	Datatype, 117	Diagonalization argument, Cantor, 173, 186
Correspondence	David Hilbert, 171	Diagonal of a polygon, 338
one-to-one, 144, 186	de Bruijn sequences, 744	Diagonal of a square matrix, 181
Countability of set of rational numbers, 172	Debugging, 872	Diagonal relation, 598
- · · · · · · · · · · · · · · · · · · ·		- · · · · · · · · · · · · · · · · · · ·

Diagrams	finite, 445-448	Domino(s), 103, 314
Hasse, 622-626, 634	Laplace's definition of, 445	Don't care conditions, 836–837
state, for finite-state machine, 860	of collision in hashing functions, 462–463	Double complement, law of, in Boolean algebra, 815,
tree, 394–395, 439	of combinations of events, 449–450, 455–456	819
Venn, 118, 185 Diameter of graph, 741	Disjoint sets, 128	Double counting proofs, 412
Dice, 446	Disjunction(s), 4, 109, 843 associative law of, 27	Double hashing, 292
Dictionary ordering, 435	distributive law of, over conjunction, 27	Double negation law, 27 Drug testing, 475
Die, 468, 488–489	negating, 28	Dual
dodecahedral, 496	truth table for, 4	of a compound proposition, 35
octahedral, 496	Disjunctive normal form, 35	of Boolean expression, 816
Difference, A-6	for Boolean variables, 820	of Boolean function, 816
backward, 513	Disjunctive syllogism, 71	of poset, 630
common, 157	Disquisitiones Arithmeticae (Gauss), 241	Dual graph, 727
forward, 568	Distance	Duality in lattice, 639
Difference equation, 513 Difference of multisets, 138	between distinct vertices, 741	Duality principle, for Boolean identities, 816
Difference of sets, 128, 186	between spanning trees, 797	Dudeney, Henry, 504
Diffie, Whitfield, 302	Distinguishable boxes, 428	Dynamic programming, 507
Diffie-Helman key agreement protocol, 302	objects, 428	F/-> 242
Digit	strings, 888	Ear(s), 343
binary, 11	Distributing objects into boxes, 428–431	nonoverlapping, 343 Earth, 476
Digital circuit(s), 20–21	Distribution	EBNF (extended Backus–Naur form), 858
Digitial signatures, 303, 306	binomial, 458-460	Eccentricity of vertex, 757
Digitial signatures in RSA system, 303	of random variable, 460, 494	Ecology, niche overlap graph in, 648
Digits Cantor, 438	geometric, 484-485, 494	Edge
Digraphs, 633, 643, 735	probability, 453	adding from a graph, 664
circuit (cycle) in, 599, 633	uniform, 454, 494	removing a vertices from, 664
connectedness in, 685-687	Distributive lattice, 637, 817 Distributive laws, 27	removing from a graph, 663
converse of, 668	for Boolean algebra, 815, 818	Edge chromatic number, 734
depth-first search in, 794-795	for propositions, 27	Edge coloring, 734
edges of, 643, 653–654	for sets, 129	Edge connectivity, 684
Euler circuit of, 694	Distributivity	Edge contraction, 664
loops in, 594, 633	for integers modulo m , 243	Edge(s)
paths in, 599–600, 633, 736	Divide-and-conquer	cut, 683, 684 directed, 644, 654, 735
representing relations using, 594–596 self–converse, 740	algorithms, 527, 565	endpoints of, 651
vertex of, 641, 654	recurrence relations, 527-535	incident, 651, 735
Dijkstra's algorithm, 709–714, 737	Dividend, 238, 239	multiple, 642, 643, 735
Dijkstra, Edsger Wybe, 710	Divides, 238, 306	of directed graph, 643, 653–654
Dimes, 199	Divine Benevolence (Bayes), 472	of directed multigraph, 643
Diophantus, 106	Divisibility facts, proving, by mathematical induction, 321	of multigraph, 642
Dirac's theorem, 701	Divisibility relation, 619	of pseudograph, 643
Dirac, G. A., 701	Division	of simple graph, 642, 667
Directed edges, 644, 653–654, 735	of integers, 238–240	of undirected graph, 644, 654
Directed graphs, 633, 643, 735 circuit (cycle) in, 599, 633	trial, 258	undirected, 644, 735
connectedness in, 685–687	Division algorithm, 239, 306	Edge vertex, 594
converse of, 668	Division of a cake, 331	Effectiveness
depth-first search in, 794-795	Division rule, 394	of an algorithm, 193 Egyptian (unit) fraction, 380
edges of, 643, 653-654	Division rule for counting, 394	Einstein, Albert, 24
Euler circuit of, 694	Divisor, 238, 239	Electronic mail, 472
loops in, 594, 633	greatest common, 265–267, 306 DNA (deoxyribonucleic acid), 388	Element
paths in, 599–600, 633, 736	DNA (deoxymbonaciec acid), 388 DNA sequencing, 698	image of, 186
representing relations using, 594–596	Dodecahedral die, 496	pre-image of, 186
self-converse, 740 vertex of, 641, 654	Dodgson, Charles Lutwidge (Lewis Carroll), 50	Elementary subdivision, 724, 736
Directed multigraph, 643, 735	Domain	Element of a set, 116, 185
paths in, 679	of n-ary relation, 584	Elements
Directly derivable, 849, 899	of a function, 139, 186	comparable, in partially ordered set, 619, 633
Direct proof, 82, 110	of a quantifier, 40	equivalent, 608
Dirichlet, G. Lejeune, 262, 400	of partial function, 152	fixed, 494
Dirichlet drawer principle, 400	of relation, 584	greatest, of partially ordered set, 625, 634
Discrete logarithm, 284, 306	restricted	incomparable, in partially ordered set, 619, 633
Discrete logarithm problem, 284	of quantifier, 44	least, of partially ordered set, 625, 634
Discrete mathematics	Domain of definition	maximal, of partially ordered set, 624, 634 minimal, of partially ordered set, 624, 625, 634
definition of, vii, viii, xviii	of partial function, 152 Domain of discourse, 40, 110	Elements of Mathematical Logic (Łukasiewicz), 782
problems studied in, xviii reasons to study, xviii	Dominating set, 739	Ellipses (), 116
Discrete probability, 445–500	Dominating set, 739 Domination laws, 27	Empty folder, 118
assigning, 453–455	for Boolean algebra, 815	Empty set, 118, 185
conditional, 453, 456–457, 494	for sets, 129	Empty string(s), 157, 186, 849
		* * · · · · · · · ·

I-8 Index

Encryption, 294, 306	Exercises	Fast multiplication
affine transformation, 296	difficult, xix	of integers, 528–529
public key, 306	extremely challenging, xix	of matrices, 529
RSA, 299	result used in book, xix	Female pessimal, 234
Encryption key, 306 Encrytion	routine, xix Exhaustive proof, 93, 110	Fermat's last theorem, 106, 349 Fermat's little theorem, 281, 306
Caesar cipher, 294	common errors with, 95	proof of, 285
Endpoints of edge, 651	Existence proof(s), 96	Fermat, Pierre de, 106, 281, 282
Engine	constructive, 96, 110	Fibonacci, 348
Analytic, 31	nonconstructive, 96, 110	Fibonacci numbers, 347
Entry of a matrix, 178	Existential generalization, 76	and Huffman coding, 771
Enumeration, 392, 439	Existential instantiation, 76	formula for, 517
codeword, 506	Existential quantification, 42, 110	iterative algorithm for, 366
Equal functions, 139	Existential quantifier, 42	rabbits and, 502–503
Equality	Expansion(s)	recursive algorithms for, 365
of sets, 117, 185	balanced ternary, 256	Fibonacci sequence, 158 Fibonacci trees, rooted, 757
Equal matrices, 178 Equation	base-b, 246 binary, 246	Field axioms, A-1
characteristic, 515	binary coded decimal, 836	Fields, 584
difference, 513	Cantor, 256	Fields Medal, 263
Equivalence	decimal, 246	Filter, spam, 472–475
proof of, 87	hexadecimal, 246	Final assertion, 372, 378
Equivalence(s)	octal, 246	Final exams, scheduling, 731, 732
logical, 27	Expected values, 477-480, 494	Final state
Equivalence classes, 610-611, 633	in hatcheck problem, 481	finite-state automaton, 867
and partitions, 612–614	linearity of, 477–484, 494	of a Turing machine, 891
definition of, 610	of inversions in permutation, 482–484	Turing machine, 891
representative of, 610	Experiment, 446	Final value, A-14
Equivalence relations, 607–614, 633	Exponential complexity, 225	Finding maximum element in a sequence
definition of, 608	Exponential functions, A-7	algorithm for, 192 Finite-state automata, 866–872
Equivalent compound propositions, 8	big-O estimates for, 212 Exponential generating function, 551	accepting state, 867
logically	Exponentiation Exponentiation	designing, 869
compound propositions, 25	modular, 253	deterministic, 872, 899
Equivalent Boolean expressions, 813	recursive, 363	equivalent, 868
Equivalent elements, 608	Expression(s)	final state, 867
Equivalent finite-state automata, 868, 871–872	binomial, 415	initial state, 867
Eratosthenes, 259, 560	Boolean, 812-814, 843	minimization, 872
sieve of, 259, 306, 565	infix form of, 780	nondeterministic, 873, 899
Erdős, Paul, 260, 263, 635, 636, 680	postfix form of, 781	set not recognized by, 885
Erdős number, 635, 680, 689	prefix form of, 780	Finite-state machine, 847, 858, 885, 899
Erdős number Project, 680	regular, 879, 899	for addition, 862
Error	Expressions	input string, 861 output string, 861
single, 291 transposition, 291	logically equivalent, 110 extended Backus–Naur form, 858	transition function extension, 867
Errors,	Extended binary trees, 352	transition function extension in, 867
in exhaustive proofs, 95	Extended binomial coefficients, 539	with output, 859, 865
in proofs by cases, 95	Extended binomial theorem, 540	with outputs, 859, 863
in proofs by mathematical induction 328-329	Extended Euclidean algorithm, 270, 273	Finite-state transducer, 859
Essential prime implicant, 832, 843	Extended transition function, 867	Finite graph, 641
Euclid, 267	Extension	Finiteness
Euclidean algorithm, 267, 347	of transition function, 867	of an algorithm, 193
Euler ϕ -function, 272	Exterior of simple polygon, 338	Finite probability, 445–448
Euler's criterion, 286	E 1 1 645	Finite set, 121, 185
Euler's formula, 720–723, 737	Facebook, 645 Factor, 238	Finite sets, 553, 565
Euler's formula"Eureka,", A-4 Euler, Leonhard, 693, 695	Factorial complexity, 225	number of subsets, 323 subsets of
Euler circuits, 693–698, 736	Factorial function, 151	counting, 388
Euler paths, 693–698, 736	Factorials, recursive procedure for, 361	number of, 323
Evaluation functions, 769	Factoring, 262	union of three, number of elements in, 554–556,
Even, 83	Factorization	566
Event(s), 446	prime, 259	union of two, number of elements in, 553, 565
combinations of, 449-450, 455-456	Failure, 458	First difference, 513
complementary, 449	Fairy, tooth, 112	First forward difference, 568
independent, 452, 457–458, 494	Fallacies, 69, 75, 110	Fixed elements, 494
mutually independent, 497	of affirming the conclusion, 75	Fixture controlled by three switches, circuit for, 825
Exams, scheduling, 731, 732	of denying the hypothesis, 75	Flavius Josephus, 512
Exchange	False	Fleury's algorithm, 697, 706
key, 302 Exclusion rule, 349	negative, 471, 472	Flip-flops, 846 Floor function, 149, 186
Exclusion rule, 349 Exclusive or, 5, 6, 110	positive, 471, 472 Family trees, 745	Floor function, 149, 186 properties of, 150
truth table for, 6	Farmer, 692	Floyd's algorithm, 717

Elide c. 22 Partick Cap pairs. 234 Cap particles Partick Cap pairs. 245 Cap particles Cap pairs. 245 Cap pairs.	Folder	equal, 139	NAND, 828
Ferbids pairs, 234			
Perest, 7-26 exponential, A-7 threshold, 845 dising errors (A. 22-32-32) depth of, 528 according 510 for conting, 541-546 for counting, 541-546 for proving identities, 548 for recurrence enduly, 541 for counting, 541-546 for proving identities, 548 for recurrence enduly, 541 for counting, 541-546 for proving identities, 548 for recurrence enduly, 541 for counting, 541-546 for proving identities, 548 for recurrence enduly, 541 for counting, 541-546 for proving identities, 548 for recurrence enduly, 541 for counting, 541-546 for proving identities, 548 for recurrence enduly, 542 for counting, 541-546 for proving identities, 548 for recurrence enduly, 542 for counting, 541-546 for proving identities, 548 for recurrence enduly, 542 for counting, 541-546 f			
definition of 803 minimum spanning, 202 panning, 796 print of 191, 186 print of 191, 1	-		
minimum spanning, 802 permiting, 537 - 548, 565 curposers, 548, 565 curposers, 579 permiting, 537 - 548, 565 curposers, 548, 567 curposers, 548, 565 curposers, 548, 567 curposers, 548, 5	definition of, 803	factorial, 151	
Form	minimum spanning, 802	floor, 149, 186	-
Backan-Name (54, 89) For conting, 541-546 For proving identifies, 548 For excurate relations, 546-548 Gree, Gordon, 198 Gene, 389 Gene,	spanning, 796	generating, 537-548, 565	examples of, 823–825
Backan-Name SAS, 899 for proving identities, 548 Greka, Gordon, 198 conjunctive normal, 820 grotability, 552 grotab	Form	exponential, 551	minimization of, 828-840
oonjunctive normal, \$20 disjunctive normal, \$20 disjunctive normal probability, \$52 disjunctive normal for Bookens variables, \$80 grades and special transport. \$19 probability, \$25 dispute \$1,49 profile, \$19 profile, \$10 probability, \$25 dispute \$1,49 profile, \$10	argument, 70	-	Gauss, Karl Friedrich, 241
Generality Gen	Backus-Naur, 854, 899		Gecko, Gordon, 198
For Bookens variables, \$20 estended Backen-Nuir form, \$28 graph of, 148 growth of, 209 postfix, 780 postfix, 780 postfix, 781 profes, 780 postfix, 780 p			Gene, 389
extended Backas-Naur form, 858 infix, 780 postifix, 781 postifix, 781 prefix, 780 prefix		* *	Generality
int., 780 postfix, 781 peffr, 780 postfix, 781 peffr, 780 Form agnoment, 110 Formal allunguage, 848 Formulaci) Formal planguage, 848 Formulaci) Formal planguage, 848 Formulaci) Formal power series, 538 Formulaci) Form			
postits, 781 perfix, 780 Form, argament, 110 Form all parague, 848 Formal power series, 538 Formal power series, 539 Formal power series, 538 Formal power series, 539 Form		-	
Form. apment, 110 Formal planguage, 848 Formalics) Formalics) Formalics) Formalics or services, 538 Formalics or services, 537 for compound propositions, 354 for Fibonacci numbers, 517 of operators and operands, 551 substitution for Fibonacci numbers, 517 of operators and operands, 551 substitution for Fibonacci numbers, 517 Formal services, 538 Formal or services		-	
Form. argument, 110 Formal language, 8.48 Formal power series, 538 Formal power series, 545 Form	•		
Formal planguage, 548 Formulatio) Formal power servise, 538 Formulatio) Formal power servise, 537 for compound propositions, 354 for Fibonacci numbers, 517 of operators and operands, 351 summation, 315 well-formed, 350 FORTRAN, 854 Formal cooks, 441 Forward differences, 568 Formal cooks, 441 Forward substitution tieration using, 100 For cooks, 441 Forward substitution tieration using, 100 Forward substitution tieration using, 100 Formal power service, 131 Formal power service, 132 Formal power service, 132 Formal power service, 132 Formal power service, 133 Formal power service, 134 Formal power ser	*	•	
Formulato power series, 538 increasing, 143 injective, 141 Generalized pigeocholed principle, 403 – 103, 439 Generalized pigeocholed principle, 40	-		
Euler's, 720-723, 737 for compound propositions, 354 for Fibinance immbers, \$177 for compound propositions, 354 for Fibinance immbers, \$177 for compound propositions, 354 for Fibinance immbers, \$177 for operators and operands, \$31 for counting, 357		increasing, 143	*
Euler's, 720-723, 737 for compound propositions, 354 for Fibonacci numbers, 517 of operators and operands, 351 siringing's, 151 summation, 315 well-formed, 350 FORTRAN, 854 Fortune cookie, 441 Forward difference, 568 Forward reasoning, 100 Forward responsibilition ileration using, 160 Forward (Egyptian), 380 Free variable, 44, 110 Fraction, unit (Egyptian), 380 Free variable, 44, 110 Freed, Sophan, 282 Free variable, 45, 110 Freed, Sophan, 287 Frieden, rocket-powered, 812 Fribabe, rocket-powered, 812 Fribabe, rocket-powered, 812 Fribabe, rocket-powered, 812 Fribab, rocket-pow		injective, 141	
for compound propositions, 354 for Fibonacci numbers, 517 of operators and operands, 351 strings, 151 summation, 315 well-formed, 350 FORTRAN, 854 Portune cookie, 441 Forward differences, 568 Fortune cookie, 441 Forward differences, 568 forward reasoning, 100 Forward substitution iteration using, 160 Four color theorem, 728–731, 737 Fraction, unit (Egyptian), 380 Frame's conjecture, 513 Fraction, unit (Egyptian), 380 Frame's conjecture, 513 Free variable, 44, 110 Freed, Sophia, 29 Friendship graph, 645 Frible, excite-powered, 812 Frible, excite-powered, 812 Full may tree, 748, 752, 804 complete, 756 Full addre, 826, 843 Full may tree, 748, 752, 804 complete, 756 Full dadre, 826, 843 Full may tree, 748, 752, 804 complete, 756 Full dadre, 826, 843 Full may tree, 748, 752, 804 complete, 756 Full dadre, 826, 843 Full may tree, 748, 752, 804 complete, 756 Full dadre, 826, 843 Full may tree, 748, 752, 804 complete, 756 Full dadre, 826, 843 Full may tree, 748, 752, 804 complete, 756 Full dadre, 826, 843 Full minuments, 329 saymptotic, 218 sar lations, 574 big-O estimates of, 209 big-civic, 144 Boolean, 811–819, 843 dual of, 816 functionally complete set of operators for 821 implicant of, 832 minimization of, 828–840, 843 representing, 813–821 self-dual, 844 threshold, 845 basy beaver, 896, 899 ceiling, 149, 186 composition of, 186, 896, 900 counting, 387 Gale, Shapley algorithm, 204 Gane-bigno, 214 Gane-bigno, 224 Generator, spect 29 Generator, 366 for proving identities, 548 for proving identities, 548 for proving identities, 548 for proving identities, 548 for countering, 381 forecasting, 340 fereasing, 340 fereasing, 340 fereasing, 341 fereaching, 447 feroward differences, 568 for proving identities, 548 forecasting, 340 fereasing, 340 fereasing, 341 fereated, 360 fereating, 341 fereated, 360 fereating, 341 fereated, 360 fereating, 341 fereated, 360 fereating, 341 fereated, 360		counting, 387	
for Fibonacci numbers, 147 of operators and operands, 351 Sirting's, 151 summation, 315 well-formed, 350 FORTRAN, 854 Fortune cookie, 441 FORTRAN, 854 Fortune cookie, 441 Forward difference, 568 Forward reasoning, 100 Forward substitution ileration using, 160 Formack (Espiriam), 380 Frince on, and (Espiriam), 380 Frince's conjecture, 733 Frince's conjecture, 513 Free variable, 44, 110 Freed, Sophia, 528 Frieden, and the service of the serv			
of operators and operands, 351			-
Siring s. 151 summation, 315 well-formed, 350 Formation, 355 well-formed, 350 Formation, 355 Formation records, 355 Formation sing, 160 Forward areasoning, 100 mod. 239, 305 Formation sing, 160 non-to-enc, 141, 186 nonic, 187 Fraction, unit (Egyptian), 380 Friesder, market process, 252 Friend, out (Egyptian), 380 Friend, sophia, 29 Friend, sophia, 20 Friend, sophia, 20 Friend, sophia, 20 Fr	of operators and operands, 351		
summation, 315 well-formed, 350 FORTRAN, 854 FORTRAN, 854 FORTRAN, 850 FORTRAN, 850 FORTRAN, 850 FORTRAN, 850 FORTRAN, 850 FORT exceedis, 411 Forward differences, 568 multiplication of finacions, 141 mode, 239, 306 mod, 239, 306 mod, 239, 306 Fore color theorem, 728–731, 737 mod, 239, 306 Fraction, unit (Egyptian), 380 Fraction, 29 Frequency, assignments, 732 Frieder, recket-powered, 812 Fill binary trees, 325–333 beight of, 535 murber of vertices of, 355 Full abbracer, 828 Function (S. 128) Function (Experiments, 821 big O- estimates of, 209 bijective, 144 Boolean, 811–819, 843 big O- estimates of, 209 bijective, 144 Boolean, 811–819, 843 big O- estimates of, 209 bijective, 144 Boolean, 811–819, 843 big O- estimates of, 209 bijective, 144 Boolean, 811–819, 843 dual of, 816 functionally complete set of operators for, 821 implicant of, 832 unimmization of, 832 unimmization of, 832 unimmization of, 832 supposition of, 832 supposition of, 834 union of, 138 complement of, 138 complement of, 138 complement of, 139 codomain of, 146, 186 computable, 175, 177, 178, 896, 900 committing, 837 decreasing, 143 AND, 21, 823, 843 AND, 21	Stirling's, 151		
well-formed, 350 FORTRAN, 854 FORTURE cookie, 441 FORTRAN, 854 FORTURE cookie, 441 FORWARD AND AND AND AND AND AND AND AND AND AN	summation, 315		
FORTURA. 854 Fortune cookie, 441 Forward differences, 568 multiplication of functions, 141 mod. 239, 360 fortune cookie, 441 Forward ashstitution iteration using, 160 for color theorem, 728–731, 737 murber of, 560–562, 566 furber of, 560–562, 560	well-formed, 350		_
Fortune cookie, 441 Forward differences, 568 Forward reasoning, 100 mod, 293, 306 Forward reasoning, 100 mod, 293, 306 Forward reasoning, 100 mod, 293, 306 moe-to-one, 141, 136 mod, 293, 306 moe-to-one, 141, 136 mod, 293, 306 mumber of, 500-502, 566 mumber of, 500-502, 566 Formard substitution iteration using, 160 mod, 293, 306 mumber of, 500-502, 566 Formard substitution iteration using, 160 mod, 293, 306 mumber of, 500-502, 566 Formard substitution iteration using, 160 mumber of, 500-502, 566 mumber, 500-502, 560 mumber of, 500-502, 566 mumber, 500-502, 560 mumber of, 500-502, 566 mumber, 500-502, 560 mumber of, 500-502, 560 mumber of, 500-502, 566 mumber, 500-502, 560 mumber of, 500-502, 50			1
Forward differences, 568 Forward and differences, 508 Forward rationing, 100 Forward substitution iteration using, 160 Four color theorem, 728–731, 737 Fraction, unit (Egyptian), 380 Fraction, unit (Egyptian), 380 Fraction, unit (Egyptian), 380 Free variable, 44, 110 Free variable, 44, 110 Free variable, 44, 110 Freend, Sophia, 29 Frequency assignments, 72 Friesber, rocket-powered, 812 Full and-are, 828 Full and-are, 828, 843 Full limrary tree, 352–253		•	
Forward reasoning. 100			
one-to-one, 141, 186 four color theorem, 728–731, 737 fraction, unit (Egyptian), 380 frame's conjecture, 513 freacton, unit (Egyptian), 380 frame's conjecture, 513 free variable, 44, 110 freed, Sophia, 29 frequency assignments, 732 friedship graph, 645 frequency assignments, 732 friendship graph, 645 friedsec, rocket-powered, 812 friendship graph, 645 friedship gra			Geometric progression, 157, 186
onto, 186 Four color theorem, 728-731, 737 Fraction, unit (Egyptian), 380 Fram's conjecture, 513 Free variable, 44, 110 Free As ophiba, 29 Frequency assignments, 732 Frische, rocket-powered, 812 Frische, rocket-powered, 812 Full mary tree, 748, 752, 804 complete, 756 Full adder, 826, 843 Height of, 355 mumber of vertices of, 355 Hull subtractor, 828 Function(s), 139, 186 Addition of, 141 Ackermann's, 359 asymptotic, 218 as relations, 574 big-O estimates of, 209 big-cive, 144 Boolean, 811-819, 843 dual of, 816 functionally complete set of operators for, 821 implicant of, 838 muminization of, 828-840, 843 methods, 845 bury beaver, 896, 899 ceiling, 149, 186 codomain of, 139 codomain of a, 186 compatable, 175, 177, 186, 896, 900 Godomain of, 139 codomain of, 136 competition, 146, 186 competition of, 146, 186 compostition of, 148, 189 codomain of, 139 codomain of, 136 compostition of, 146, 186 compostition of			sum of terms of, 164
Fraction, unit (Egyptian), 380	C.		Geometric progression(s)
Frame's conjecture, 513 partial, 152, 180, 889 Geometry, computational, 338–340, 532–535 Free variable, 44, 110 probing, 288 propositional, 110 Geometry, computational, 338–340, 532–535 Geometry, computational, 338–340, 334–340, 338–340, 332–340, 332–345 Geometry, computational, 338–340, 532–535 Geometry, computational, 338–340, 534–540, 545 Geometry, computational, 338–340, 534		number of, 560-562, 566	sums of, 318-319
Free wariable, 44, 110 Frend, Sophia, 29 Frend, Sophia, 29 Frequency assignments, 732 Friendship graph, 645 Frishee, rocket-powered, 812 Full mary tree, 748, 752, 804 complete, 756 Full adder, 826, 843 Full binary trees, 352–333 height of, 355 number of vertices o		partial, 152, 186, 889	Geometric series, 164
Frequency assignments, 732 Frequency assignments, 732 Friendship graph, 645 Frisbee, rocket-powered, 812 Friendship graph, 645 Frisbee, rocket-powered, 812 Frill m-ay tree, 748, 752, 804 complete, 756 Full adder, 826, 843 Full binary trees, 352–353 height of, 355 number of vertices of, 355 Full subtractor, 828 Function(s), 139, 186 Addition of, 141 Ackermann's, 359 asymptotic, 218 as relations, 574 Boolean, 811-819, 843 big-O estimates of, 209 bijective, 144 Boolean, 811-819, 843 dual of, 816 functionally complete set of operators for, 821 implicant of, 832 minimization of, 828–840, 843 representing, 813–821 self-dual, 844 threshold, 845 busy beaver, 896,899 ceiling, 149, 186 codomain of, 139 codomain of, 139 computable, 175, 177, 186, 896, 900 Golean function, 820 Giant strongly connected components (GSCC), 686 Gimms Sad-349, 378 in Sudoku, 32 Goat, 692 Godath, 692 Goldbach's conjecture, 264 Goldba		probing, 288	Geometry, computational, 338-340, 532-535
Frequency assignments, 732 range of , 186 Friendship graph, 645 Friendship graph, 645 Frishee, rocket-powered, 812 Full m-ary tree, 748, 752, 804 complete, 756 Full adder, 826, 843 Full binary trees, 352–353		propositional, 110	Giant strongly connected components (GSCC), 686
Friendship graph, 645 Frisbee, rocket-powered, 812 Frisbee, rocket-powered, 825 Goddhach, Christian, 264 Golomb's self-generating sequence, 382 Goodbach, Christian, 264 Golomb's self-generating, 820 Google, 18, 794 Google, 18, 794 Google, 18, 794 Gossip roblem, by mathematical induction, 332 Google, 18, 794 Gossip roblem, by mathematical induction, 332 Google, 18, 794 Gossip problem, by mathematical induction, 332 Government Communications Headquarters (GCHQ), U.K., 299 Government Communications Headquarters (GCHQ), U.K., 299 Graceful trees, 807 Graham, Ron, 636 Grammar(s), 848 Backus-Naur form of, 854 Context-free, 886 Co	•	-	GIMPS (Great Internet Mersenne Prime Search, 261
Frisbec, rocket-powered, 812 Full m-ary tree, 748, 752, 804 complete, 756 Full adder, 826, 843 Full binary trees, 352–353 height of, 355 number of vertices of, 355 Pull subtractor, 828 Function(s), 139, 186 Addition of, 141 Ackermann's, 359 asymptotic, 218 as relations, 574 Boolean, 811–819, 843 dual of, 816 functionally complete set of operators for, 821 implicant of, 832 minimization of, 828–840, 843 representing, 813–821 implicant of, 832 minimization of, 828–840, 843 representing, 813–821 self—dual, 844 threshold, 845 busy beaver, 896, 899 codomain of, 139 corrections, 877 corrections, 877 complete, 756 full adder, 877 complete, 756 strictly decreasing, 143 strictly increasing, 143 strictly increasing, 143 strictly increasing, 143 confects, 363 strictly increasing, 143 confects, 363 strictly decreasing, 143 cold decomposition, 845 composition of, 146 function (s), 139, 186 function ally complete set of operators for, 821 implicant of, 832 minimization of, 828—840, 843 representing, 813–821 self—dual, 844 threshold, 845 busy beaver, 896, 899 Gödel, Escher, Bach (Hofstader), 382 colombin, 50dmon, 105 Google, 18, 794 Goosip problem, by mathematical induction, 332 Goorenment Communications Headquarters (GCHQ), U.K., 299 Graceful trees, 807 Graham, Ron, 636 Grammar(s), 848 Backus-Naur form of, 854 context-free (type 2), 851 context-free (type 2), 851 context-free (type 2), 851 language generated by, 850 language of, 850 noncontracting, 852 noncontracting, 852 productions, 849 pr			
Full mary tree, 748, 752, 804 complete, 756 complete, 756 full adder, 826, 843 full binary trees, 352–353 height of, 355 number of vertices of, 355 full subtractor, 828 function(s), 139, 186 Addition of, 141 Ackermann's, 359 asymptotic, 218 as relations, 574 big-O estimates of, 209 bijective, 144 Boolean, 811–819, 843 dual of, 816 functionally complete set of operators for, 821 implicant of, 832 minimization of, 828 edgree of membership, 138 nitersection of, 138 complement of, 138 complement of, 138 complement of, 138 complement of, 138 compensition of, 146, 845 busy beaver, 896, 899 ceiling, 149, 186 composition of, 146, 186 composition			
complete, 7.56 Full adder, 826, 843 Full binary trees, 352–353 height of, 355 number of vertices of, 355 Full subtractor, 828 Function of, 141 Ackermann's, 359 asymptotic, 218 srelations, 574 big-O estimates of, 209 bije-crive, 144 Boolean, 811–819, 843 dual of, 816 functionally complete set of operators for, 821 minimization of, 828 minimization of, 828–840, 843 representing, 813–821 minimization of, 828–840, 843 representing, 813–821 subtractor, 839 complete, 175, 186, 896, 990 Gödenba, Solomon, 105 Goolobb, Solomon, 105 Google, 18, 794 Gossip problem, by mathematical induction, 332 Government Communications Headquarters (GCHQ), U.K., 299 Government Communication for (GCHQ), U.K., 299 Government Communication for (GCHQ), U.	*		
Full binary trees, \$25, \$43	complete, 756		
Full binary trees, 352–353 height of, 355 number of vertices of, 36, 899 ociling, 149, 186 outper of vertices of, 515 number of vertices of, 515 number of vertices of, 515 number of vertices of, 516 number of vertices of, 6899 ociling, 149, 186 outper of vertices of, 515 number of vertices of, 516 number of vertices of, 6899 number of vertices of, 516 number of vertices of, 6899 number of vertices of, 516 number of vertices of, 6899 number of vertices of, 516 number of vertices of, 6899 number of vertices of, 516 number of vertices of, 6899 number of vertices of, 5189 number of vertices of, 6899 num	Full adder, 826, 843	*	
height of, 355 number of vertices of, 355 Turing machines computing, 892–893 Turing machines computing, 892 Turing machines computing, 892–893 Turing machines computing, 892 Turing machines computing, 894 Turing machines computing, 895 Turing machines, 821 Turing machines, 821 Turing machines computing, 894 Turing machines computing, 896 Turing turing machines, 821 Turing machines, 826 Turing turing, 894 Turing machines, 821 Turing machines, 821 Turing machine	Full binary trees, 352–353		
number of vertices of, 355 Full subtractor, 828 Function(s), 139, 186 Addition of, 141 Ackermann's, 359 Addition of, 218 As representing, 813–821 implicant of, 832 minimization of, 828–840, 843 representing, 813–821 self-dual, 844 threshold, 845 busy beaver, 896, 899 ceiling, 149, 186 composition of, 136 computable, 175, 178, 186, 896, 900 Ceating of Andre of Andre of Andre of Computing, 485 computable, 175, 178, 186, 896, 900 Ceating, 337 decreasing, 143 Turing machines computing, 892–893 uncomputable, 175, 178, 186, 896, 900 Gossip problem, by mathematical induction, 332 Gossip problem, by mathematical induction, 332 Gossip problem, by mathematical induction, 332 Government Communications Headquarters (GCHQ), U.K., 299 Graceful trees, 807 Graham, Ron, 636 Goremment Communications Headquarters (GCHQ), U.K., 299 Graceful trees, 807 Graham, Ron, 636 Grammar(s), 848 Backus-Naur form of, 854 context-free, 886 Grammar(s), 848 Backus-Naur form of, 854 context-free (type 2), 851 context-free (type 2), 851 context-free (type 2), 851 context-sensitive, 851 language generated by, 850 language of, 850 monotonic, 852 monocontracting, 852 productions, 849 prical-extracture, 849–854, 899 regular, 846, 899 regular, 847, 899 regular, 848, 899 regular, 846, 899 regular, 847, 899 regular, 848, 899 regul	•		
Function(s), 139, 186			-
Addition of, 141 Ackermann's, 359 Addition of, 141 Ackermann's, 359 Asymptotic, 218 As relations, 574 Big-O estimates of, 209 Bijective, 144 Boolean, 811–819, 843 Gunctionally complete set of operators for Boolean functions, 821, 843 Boulean, 816 functionally complete set of operators for diagrams of for Boolean functions, 821, 843 Boolean, 811–819, 843 Grammar(s), 848 Boolean, 811–819, 843 Complement of, 138 Implicant of, 832 Imminization of, 828–840, 843 Representing, 813–821 Implicant of, 828–840, 843 Representing, 813–821 Intersection of, 138 Intersect		uncomputable, 175, 186, 896, 900	
Ackermann's, 359		Functional completeness, 821	
Ackermans, 3.99 asymptotic, 218 as relations, 574 big-O estimates of, 209 bijective, 144 Boolean, 811–819, 843 dual of, 816 functionally complete set of operators for Boolean functions, 821, 843 Graceful trees, 807 Graham, Ron, 636 Grammar(s), 848 Boolean, 811–819, 843 dual of, 816 functionally complete set of operators for, 821 implicant of, 832 minimization of, 828–840, 843 representing, 813–821 self-dual, 844 threshold, 845 busy beaver, 896,899 ceiling, 149, 186 codomain of, 139 codomain of, 139 codomain of, 139 codomain of, 146 composition of, 146, 186 composition of, 146, 186 composition of, 146, 186 composition of, 146, 186 computable, 175, 177, 186, 896, 900 dereasing, 143 AND, 21, 823, 843 Functionally complete set of operators for Boolean functions, 821, 843 Grambam, Ron, 636 Grammar(s), 848 Backus-Naur form of, 854 context-free (type 2), 851 context-free, 886 context-free (type 2), 851 context-free, 886 co		Functional decomposition, 846	
as relations, 574 big-O estimates of, 209 bijective, 144 Boolean, 811–819, 843 Backus–Naur form of, 854 Context-free, 886 Context-free (type 2), 851 Complement of, 138 Complement of, 138 Complement of, 138 Complement of, 138 Ianguage generated by, 850 Ianguage of, 8			•
For Boolean functions, 821, 843 Graham, Ron, 636			
bijective, 144 Boolean, 811–819, 843			
Boolean, 811–819, 843 proof of, 271 Backus–Naur form of, 854 context-free, 886 functionally complete set of operators for, 821 implicant of, 832 complement of, 138 context-sensitive, 851 implicant of, 828–840, 843 degree of membership, 138 language generated by, 850 self-dual, 844 union of, 138 union of, 138 monotonic, 852 threshold, 845 union of, 138 union of, 138 peciling, 149, 186 Gale–Shapley algorithm, 204 productions, 849 codomain of, 139 codomain of a, 186 composition of, 146, 186 obligato, 112 type 0, 851, 899 counting, 387 Gates, logic, 21, 110, 822–827 type 3, 851, 883, 899 decreasing, 143 AND, 21, 823, 843 type 3, 851, 883, 899			Grammar(s), 848
dual of, 816 functionally complete set of operators for, 821 implicant of, 832 minimization of, 828–840, 843 representing, 813–821 self-dual, 844 threshold, 845 busy beaver, 896,899 ceiling, 149, 186 codomain of, 139 codomain of, 139 codomain of, 136 composition of, 186 composition of, 186 composition of, 186 composition of, 186 composition of, 186, 896, 900 counting, 387 decreasing, 143 AND, 21, 823, 843 context-free, 886 context-free, (896 context-free, (886 context-free, (849 incext-free, (886 context-free, (849 is a language generated by, 850 incext-free, (886 context-free, (849 incext-free, (886 context-free, (849 incext-free, 886 context-free, (84 incext-free, (849 in	•		Backus-Naur form of, 854
functionally complete set of operators for, 821 implicant of, 832 context-free (type 2), 851 implicant of, 832 complement of, 138 context-sensitive, 851 implicant of, 828–840, 843 degree of membership, 138 language generated by, 850 intersection of, 138 language of, 850 intersection of, 138 language of, 850 intersection of, 138 monotonic, 852 intershold, 845 intershold, 845 intershold, 845 productions, 849 ceiling, 149, 186 Gale—Shapley algorithm, 204 phrase-structure, 849–854, 899 codomain of, 139 Gambling, 445 regular, 884, 899 codomain of a, 186 obligato, 112 regular (type 3), 851 composition of, 146, 186 obligato, 112 type 0, 851, 899 counting, 387 Gates, logic, 21, 110, 822–827 type 2, 851, 899 decreasing, 143 AND, 21, 823, 843 type 3, 851, 883, 899			context-free, 886
implicant of, 832 complement of, 138 context-sensitive, 851 minimization of, 828–840, 843 degree of membership, 138 language generated by, 850 representing, 813–821 intersection of, 138 language of, 850 self-dual, 844 union of, 138 monotonic, 852 threshold, 845 monocontracting, 852 busy beaver, 896,899 Gödel, Escher, Bach (Hofstader), 382 productions, 849 ceiling, 149, 186 Gale—Shapley algorithm, 204 phrase-structure, 849–854, 899 codomain of, 139 Gambling, 445 regular, 884, 899 codomain of a, 186 Game regular (type 3), 851 composition of, 146, 186 obligato, 112 type 0, 851, 899 computable, 175, 177, 186, 896, 900 Game trees, 764–769, 804 type 1, 851, 899 counting, 387 Gates, logic, 21, 110, 822–827 type 2, 851, 899 decreasing, 143 AND, 21, 823, 843 type 3, 851, 883, 899		* *	context-free (type 2), 851
minimization of, 828–840, 843 representing, 813–821 self-dual, 844 union of, 138 union of, 138 monotonic, 852 htreshold, 845 busy beaver, 896,899 ceiling, 149, 186 codomain of, 139 codomain of, 139 codomain of a, 186 composition of, 146, 186 computable, 175, 177, 186, 896, 900 counting, 387 decreasing, 143 degree of membership, 138 language generated by, 850 language of, 850 language of, 850 monotonic, 852 noncontracting, 852 productions, 849 productions, 849 productions, 849 phrase-structure, 849–854, 899 regular, 844, 899 regular (type 3), 851 type 0, 851, 899 type 0, 851, 899 type 1, 851, 899 type 2, 851, 899 decreasing, 143 AND, 21, 823, 843 type 3, 851, 883, 899			context-sensitive, 851
representing, 813–821 intersection of, 138 language of, 850 self-dual, 844 union of, 138 monotonic, 852 threshold, 845 Gödel, Escher, Bach (Hofstader), 382 productions, 849 ceiling, 149, 186 Gale—Shapley algorithm, 204 phrase-structure, 849–854, 899 codomain of, 139 Gambling, 445 regular, 884, 899 codomain of a, 186 Game regular (type 3), 851 composition of, 146, 186 obligato, 112 type 0, 851, 899 computable, 175, 177, 186, 896, 900 Game trees, 764–769, 804 type 1, 851, 899 counting, 387 Gates, logic, 21, 110, 822–827 type 2, 851, 899 decreasing, 143 AND, 21, 823, 843 type 3, 851, 883, 899	minimization of, 828-840, 843		language generated by, 850
threshold, 845 busy beaver, 896,899 ceiling, 149, 186 codomain of, 139 codomain of a, 186 composition of, 146, 186 computable, 175, 177, 186, 896, 900 counting, 387 decreasing, 143 do Gödel, Escher, Bach (Hofstader), 382 Gale–Shapley algorithm, 204 phrase-structure, 849–854, 899 regular, 884, 899 regular (type 3), 851 type 0, 851, 899 type 0, 851, 899 type 1, 851, 899 type 1, 851, 899 type 2, 851, 899 type 2, 851, 899 type 2, 851, 899 type 3, 851, 889, 899	representing, 813-821		
busy beaver, 896,899 Gödel, Escher, Bach (Hofstader), 382 productions, 849 ceiling, 149, 186 Gale—Shapley algorithm, 204 phrase-structure, 849—854, 899 codomain of, 139 Gambling, 445 regular, 884, 899 codomain of a, 186 Game regular (type 3), 851 composition of, 146, 186 obligato, 112 type 0, 851, 899 computable, 175, 177, 186, 896, 900 Game trees, 764–769, 804 type 1, 851, 899 counting, 387 Gates, logic, 21, 110, 822–827 type 2, 851, 899 decreasing, 143 AND, 21, 823, 843 type 3, 851, 883, 899	self-dual, 844	union of, 138	
ceiling, 149, 186 Gale—Shapley algorithm, 204 phrase-structure, 849–854, 899 codomain of, 139 Gambling, 445 regular, 884, 899 codomain of a, 186 Game regular (type 3), 851 type 0, 851, 899 composition of, 146, 186 obligato, 112 type 0, 851, 899 computable, 175, 177, 186, 896, 900 Game trees, 764–769, 804 type 1, 851, 899 counting, 387 Gates, logic, 21, 110, 822–827 type 2, 851, 899 decreasing, 143 AND, 21, 823, 843 type 3, 851, 883, 899	threshold, 845		
codomain of, 139 Gambling, 445 regular, 884, 899 codomain of a, 186 Game regular (type 3), 851 composition of, 146, 186 obligato, 112 type 0, 851, 899 computable, 175, 177, 186, 896, 900 Game trees, 764–769, 804 type 1, 851, 899 counting, 387 Gates, logic, 21, 110, 822–827 type 2, 851, 899 decreasing, 143 AND, 21, 823, 843 type 3, 851, 883, 899		Gödel, Escher, Bach (Hofstader), 382	
codomain of a, 186 Game regular (type 3), 851 composition of, 146, 186 obligato, 112 type 0, 851, 899 computable, 175, 177, 186, 896, 900 Game trees, 764–769, 804 type 1, 851, 899 counting, 387 Gates, logic, 21, 110, 822–827 type 2, 851, 899 decreasing, 143 AND, 21, 823, 843 type 3, 851, 883, 899	-		•
composition of, 146, 186 obligato, 112 type 0, 851, 899 computable, 175, 177, 186, 896, 900 Game trees, 764–769, 804 type 1, 851, 899 counting, 387 Gates, logic, 21, 110, 822–827 type 2, 851, 899 decreasing, 143 AND, 21, 823, 843 type 3, 851, 883, 899			
computable, 175, 177, 186, 896, 900 Game trees, 764–769, 804 type 1, 851, 899 counting, 387 Gates, logic, 21, 110, 822–827 type 2, 851, 899 decreasing, 143 AND, 21, 823, 843 type 3, 851, 883, 899			
counting, 387 Gates, logic, 21, 110, 822–827 type 2, 851, 899 decreasing, 143 AND, 21, 823, 843 type 3, 851, 883, 899	•		**
decreasing, 143 AND, 21, 823, 843 type 3, 851, 883, 899			• •
· ·			**
Similar Hours, 171	_		**
			,,,

I-10 Index

raph(s), 641–744	simple, 642, 654-655, 735	Hamilton paths, 698-703, 736
k-connected, 684	coloring of, 727	Handle, 806
n-regular, 667	connected planar, 719–723	Handshaking theorem, 653
academic collaboration, 645	crossing number of, 726	Hanoi, tower of, 503–504
acquaintanceship, 645	dense, 670	Hardware systems, 17
airline route, 647	edges of, 642, 663	Hardy, Godfrey Harold, 97
bandwidth of, 741	isomorphic, 671–675, 736	Hardy, Godrey Harold, 97
biconnected, 684	orientation of, 740	Hardy–Weinberg law, 97 Harmonic mean, 108
bipartite, 656–658, 736 book number of, 744	paths in, 785 random, 742	Harmonic number(s)
call, 646	self-complementary, 677	inequality of, 320–321
connected components of, 682	sparse, 670	Harmonic series, 321
chromatically k-critical, 734	thickness of, 726	Hashing
chromatic number of, 728	vertices of, 642, 663	collision in, 288
citation, 646	with spanning trees, 785–787	double, 292
collaboration, 645	simple directed, 643	function, 287
coloring, 727–732, 736	sparse, 670, 802	key, 287
complementary, 667	strongly directed connected, 685	Hashing functions
complete, 655, 736	subgraph of, 663, 736	collision in, probability of, 462-463
complete m-partite, 738	terminology of, 651–654	Hasse's algorithm, 107
complete bipartite, 658, 736	undirected, 644, 653, 736	Hasse, Helmut, 623
connected components of, 682-685, 736	connectedness in, 681-685	Hasse diagrams, 622-626, 634
connectedness in, 678-689	Euler circuit of, 694	Hatcheck problem, 481, 562
cut set of, 806	Euler path of, 698	Hazard-free switching circuits, 846
definition of, 643	orientation of, 740	Heaps, 809
diameter of, 741	paths in, 679, 736	Heawood, Percy, 728
directed, 633, 643, 735	underlying, 654, 736	Height, star, 901
circuit (cycle) in, 599, 633	union of, 664, 736	Height-balanced trees, 808
connectedness in, 685-687	very large scale integration, 744	Height of full binary tree, 355
converse of, 668	Web, 646-647	Height of rooted tree, 753, 804
dense, 670	strongly connected components of, 686	Hellman, Martin, 302
depth-first search in, 794-795	weighted, 736	Hexadecimal expansions, 246
edges of, 643, 653-654	shortest path between, 707-714	Hexadecimal representation, 306
Euler circuit of, 694	traveling salesman problem with, 714-716	Hexagon identity, 421
loops in, 594, 633	wheel, 655, 736	Hilbert's 23 problems, 171, 895
paths in, 599-600, 633, 736	Graph of a function, 148	Hilbert's Grand Hotel, 171
representing relations using, 594-596	Gray, Frank, 703	Hilbert's Tenth Problem, 895
self-converse, 740	Gray codes, 702–703	Hilbert, David, 171, 176, 895
simple, 643	"Greater than or equal" relation, 618–619	HIV, 476
vertex of, 641, 654	Greatest common divisor, 265–267, 306	Ho, Chung-Wu, 340
directed multigraph, 644, 735	as linear combination, 269	Hoare, C. Anthony R., 372, 374
dual, 727	Greatest element of poset, 625, 634	Hoare triple, 372
finite, 641	Greatest integer function, 149	Hofstader, Douglas, 382
friendship, 645	Greatest lower bound, 634	Hollywood graph, 645
Hollywood, 645	of poset, 625	paths in, 680–681
homeomorphic, 724–725, 736	Great Internet Mersenne Prime Search (GIMPS), 261	Homeomorphic graphs, 724–725, 736
independence number of, 741	Greedy algorithm(s), 198, 232, 235, 325, 764, 798,	Hopper, Grace Brewster Murray, 872
infinite, 641	804	Hops, 662
influence, 645	definition of, 198	Horner's method, 230
in roadmap modeling, 647	for making change, 199	Horse races, 31
intersection, 650	for minimizing maximum lateness of a job, 235	Host number (hostid), 392
isomorphic, 668, 671–675, 736	for scheduling talks, 200	HTML, 858
paths and, 687–688	Green, Ben, 263	Huffman, David A., 763
matching in, 659	Green–Tao theorem, 263	Huffman coding, 763–764, 804
mixed, 644	Group commutative, 244	variations of, 764
models, 644–649	Growth of functions, 209	Human genome, 389
module dependency, 647	GSCC (giant strongly connected components), 686	Husbands, jealous, 693
monotone decreasing property of, 742	Guarding set, 735	Hybrid topology for local area network, 661
monotone increasing property of, 742	Guare, John, 680	Hydrocarbons, trees modeling, 750
multigraphs, 642, 644, 735	Guidelines for mathematical induction, 328	Hypercube, 662
niche overlap, 648	Guthrie, Francis, 729	Hypothesis
nonplanar, 724–725	Hadamard I	continuum, 175, 186
nonseparable, 683	Hadamard, Jacques, 262	inductive, 313
orientable, 740	Haken, Wolfgang, 728	Hypothesis of a conditional statement, 6
paths in, 678–681	Half adder, 826, 843	Hypothetical syllogism, 71
planar, 718–725, 736	Half subtractor, 828	"Jacoin Come" 700
precedence, 647	Hall's marriage theorem, 659	"Icosian Game,", 700
protein interaction, 648 pseudograph, 643, 644, 735	Hall, Philip, 659, 660	Icosian Puzzle, 698
DSCHOOFFADD, 04 1, 044, 713	Halting problem, 201, 895, 900	Idempotent laws
	Hamilton's "Vosses Assessed the West 12 December 2000	
radius of, 741	Hamilton's "Voyage Around the World" Puzzle, 700	for Boolean algebra, 815, 819
radius of, 741 regular, 667, 736	Hamilton, Sir William Rowan, 698, 700	for lattices, 637
radius of, 741		

Identification number	Induction	perfect, 272
single error in, 291	complete, 334	prime, 257
Identification number(s)	generalized, 356–357	signed, 855
for airline tickets, 293	incomplete, 334	Integer(s)
Identification numbers	mathematical, 29, 311–329	linear combination of, 306
for money orders, 293	principle of, 377	Integer-valued function, 140 Integers
Identifier, 611	proofs by, 315–329	axioms for, A-5
ALGOL, 855	second principle of, 334 strong, 333–335, 378	division of, 238–240
C language, 857 Identifying a sequence from its initial terms, 161	structural, 353–356, 378	multiplication of
Identities	validity of, 326	fast, 528-529
Boolean algebra, 27	well-ordered, 620, 634	pairwise relatively prime, 306
set, 129	Inductive definitions, 345–357	partition of, 359
set(, 129	of functions, 345-349, 378	relatively prime, 306
set), 132	of sets, 349-356, 378	set of, 116
Identities, combinatorial, 417-421	of strings, 350	squarefree, 564 Integer sequences, 162
Identities for Boolean algebra, 129	of structures, 349–356	Integer sequences, 102 Integers modulo m, 243
Identity	Inductive hypothesis, 313	additive inverses, 243
Bézout's, 270	Inductive loading, 333, 343, 380	associativity, 243
combinatorial, proof of, 412, 439	Inductive reasoning, 312	closure, 243
hexagon, 421	Inductive step, 313, 377, 752, 768	commutativity, 243
proving, generating functions for, 548	Inequality Bernoulli's, 330	distributivity, 243
Vandermonde's, 420–421	Bonferroni's, 467	identity elements, 243
Identity element(s)	Boole's, 467	Intension, of database, 585
for integers modulo m, 243	Chebyshev's, 491, 495	Interconnection networks for parallel computation,
Identity elements axiom, A-1	Markov's, 493	661–663
identity function, 144	of harmonic numbers, 320-321	Interest, compound, 160 Interior of simple polygon, 338
Identity laws, 27 additive, A-1	proving by mathematical induction, 319-320	Interior vertices, 603
for Boolean algebra, 815, 816, 818	triangle, 108	Internal vertices, 748, 804
for sets, 129	Inference	International Mathematical Olympiad (IMO), 263,
multiplicative, A-1	for program correctness, 373	299
Identity matrix, 180, 186	rule of, 110	International Standard Book Number (ISBN), 291
If-then construction, 8	rules of, 69–71	International Standard Serial Number (ISSN), 293
If then statement, 6	Infinite graph, 641	Internet, search engines on, 794
If and only if, 9	Infinite ladder, 311	Internet addresses, counting, 392
Iff, 9	by strong induction, 334	Internet datagram, 399 Internet Movie Database, 645
Image of an element, 139, 186	Infinite series, 167 Infinite set, 121	Internet Protocol (IP) multicasting, 786
Image of a set, 141	Infinitude of primes, 260	Intersection
Implicant, 832	Infix form, 780	of fuzzy sets, 138
essential, 832	Infix notation, 779–782, 804	Intersection graph, 650
prime, 832	Influence graphs, 645	Intersection of a collection of sets, 133
Implication, 6, 110	Information flow, lattice model of, 627	Intersection of multisets, 138
Implicit use of biconditionals, 10	Initial assertion, 372, 378	Intersection of sets, 127, 185
In-degree of vertex, 654, 736	Initial conditions, 158, 565	Interval(s), 117
Incidence matrices, 671, 736	Initial position	closed, 117
Incident edge, 651 Inclusion–exclusion principle, 128, 392–394,	of a Turing machine, 889	open, 117, 332 Intractable
553–557, 566	Initial state, 859	problems, 226
alternative form of, 558–559	finite-state automaton, 867	Intractable problem, 232, 897
applications with, 558–564	of a Turing machine, 889	Invariant for graph isomorphism, 672, 736
Inclusion relation, 619	Initial terms identifying a sequence using, 161	Invariants, loop, 375-376, 378
Inclusive or, 5	Initial value, A-14	Inverse, 8
Incomparable elements in poset, 619, 633	Initial vertex, 594, 654	modular, 275, 306
Incomplete induction, 334	Injection, 141, 186	Inverse, multiplicative, 60
Incorrect proof by mathematical induction, 757	Injective (one-to-one) function	Inverse function, 145, 186
Increasing function, 143	counting, 387	Inverse law for addition, A-2
Increment	Injective function, 141	for multiplication, A-2
for linear congruential method, 288	Inorder traversal, 773, 775, 778, 804	Inverse of a square matrix, 184
Independence number, 741	Input	Inverse relation, 582
Independent events, 452, 453, 457–458, 494	to an algorithm, 193	Inversions, in permutation, expected number of,
Independent random variables, 485–487, 494	Input alphabet, 859	482-484
Independent set of vertices, 741 Index of summation, 163	Input string	Inverter, 21, 823, 843
Index registers, 732	finite-state machine, 861	invertible function, 145
Indicator random variable, 492	Insertion sort, 196, 197, 232	Invertible matrix, 184
Indirect proofs, 83	average-case complexity of, 483–484 worst-case complexity, 222	IP multicasting, 786
Indistinguishable	Instantiation	Irrationality of $\sqrt{2}$, 342, 381 Irrational number(s), 85, 116
boxes, 428–431	existential, 76	Irreflexive relation, 581
objects, 428–431	universal, 75	ISBN-10, 291
objects, permutations with, 428	Integer	ISBN-13, 291
strings, 888	composite, 257, 306	check digit, 308

I-12 Index

ISBN check digit, 291	Kruskal's algorithm, 799-801, 804	compatibility
Isobutane, 750	Kruskal, Joseph Bemard, 799, 800	additive, A-2
Isolated vertex, 652, 736	Kuratowski's theorem, 724–725, 737	multiplicative, A-2
Isomorphic graphs, 668, 671–675, 736	Kuratowski, Kazimierz, 724	completeness, A-2
paths and, 687–688 Iterated function, 360		De Morgan's for Boolean algebra, 815, 819
Iterated logarithm, 360	Löb's paradox, 112	for propositions, 28
Iteration, 160, 360	Labeled tree, 756	proving by mathematical induction, 323–324
using to solve recurrence relations, 159	Ladder, infinite, 311–334 Lady Byron, Annabella Millbanke, 31	distributive, A-2
Iteration using backward substitution, 160	Lagarias, Jeffrey, 107	for Boolean algebra, 815, 818
Iteration using forward substitution, 160	Lamé's theorem, 347	for propositions, 27
Iterative algorithm, for Fibonacci numbers, 366	Lamé, Gabriel, 349	domination
Iterative procedure, for factorials, 366	Landau, Edmund, 206, 207	for Boolean algebra, 815
Iwaniec, Henryk, 264	Landau symbol, 206	idempotent
Inches whellian 151	Language, 847-899	for Boolean algebra, 815, 819
Jacobean rebellion, 151 Jacquard loom, 31	context-free, 851	for lattices, 637 for propositions, 27
Jarník, Vojtěch, 798	context-sensitive, 886	identity
Java, 855	formal, 848	additive, A-1
Jealous husband problem, 693	generated by grammar, 850	for Boolean algebra, 815, 816, 818
Jersey crags, 163	natural, 847–848	multiplicative, A-1
Jewish-Roman wars, 512	of a grammar, 850	inverse
Jigsaw puzzle, 342	recognized	for addition, A-2
Job(s)	by nondeterministic finite-state automaton, 873	for multiplication, A-2
assignment of, 565, 658	recognized by an automaton, 899	of detachment, 71
lateness of, 235	recognized by finite-state automata, 868	of double complement, in Boolean algebra, 815,
slackness of, 235	regular, 851	818
Join, in lattice, 637	Language recognizer, 863	of large numbers, 459
Join of n-ary relations, 588	Laplace's definition of probability, 446	of mathematical induction, A-5
Join of zero-one matrices, 181	Laplace, Pierre Simon, 445, 447, 472	transitivity, A-2
Joint authorship, 645 Jordan curve theorem, 338	Large integers	trichotomy, A-2 used to prove basic facts, A-3-A-5
Josephus, Flavius, 512	computer arithmetic with, 279	Law of total expectation, 492
Josephus problem, 512	Large numbers, law of, 459	Laws
Jug, 109, 693	Lateness of a job, 235	De Morgan's, 26
	Lattice model of information flow, 627	Laws of propositional logic, 27
k-connected graph, 684	Lattice point, 380 Lattices, 626–627, 634	absorption, 27
k-tuple graph coloring, 734	absorption laws for, 637	associative, 27
K-maps, 830–836, 843	associative laws for, 637	commutative, 27
Königsberg, 171	bounded, 637	De Morgan's, 27
Königsberg bridge problem, 693–694, 696, 697	commutative laws for, 637	distributive, 27
Kakutani's problem, 107	complemented, 637	domination, 27
Kaliningrad, Russia, 693 Karnaugh, 830–836	distributive, 637	double negation, 27 identity, 27
Karnaugh, Maurice, 830	duality in, 639	Laws of Thought, The (Boole), 472, 811
Karnaugh maps, 830–836, 843	idempotent laws for, 637	Leaf, 746, 804
Kayal, Neeraj, 262	join in, 637	Least common multiple, 266, 306
Kempe, Alfred Bray, 728	meet in, 637	Least element of poset, 625, 634
Key, 295	modular, 639	Least upper bound, 634, A-2
composite, 585	Law	of poset, 625
encryption, 306	complement, 129	Left child of vertex, 749
for Caesar cipher, 295	complementation, 129	Left subtree, 749
hashing function, 287	Hardy-Weinberg, 97	Lemma, 81, 110
primary, 585–586 public, 299	Law(s)	pumping, 888 Length of bit string, 505
Key exchange, 302	absorption	Length of path
Key exchange protocol, 305, 306	for Boolean algebra, 815, 816	in directed graph, 599
Keystream	for lattices, 637	in weighted graph, 708
autokey cipher, 309	for propositions, 27 associative	Length of string
King Hermeas, 2	for addition, A-1	recursive definition of, 350
Kissing problem, 163	for Boolean algebra, 815, 818	"Less than or equals" relation, 619
Kleene's theorem, 880, 900	for lattices, 637	Letters of English
Kleene, Stephen Cole, 867, 878	for multiplication, A-1	relative frequency, 296
Kleene closure, 866, 899	for propositions, 27	Level of vertex, 753, 804
Knapsack problem, 235, 568	closure	Level order of vertex, 806
Kneiphof Island, 693	for addition, A-1	Levin, Leonid, 227
Knight's tour, 707 reentrant, 707	for multiplication, A-1	Lewis Carroll (C. L. Dodgson), 50 Lexicographic ordering, 356, 435, 620–622
Knights, knaves, and normals puzzles, 112	commutative	Liber Abaci (Fibonacci), 348
Knights, knaves, and spies puzzles, 112	for addition, A-1	Library sort, 196
Knights and knaves puzzles, 19	for Boolean algebra, 815, 818	Light fixture controlled by three switches, circuit for,
Knuth, Donald, 196, 206	for lattices, 637	825
Knuth, Donald E., 208	for multiplication, A-1	Limit, definition of, 61

Linear array, 662	OR, 21,823, 843	Matchings with forbidden pairs, 234
Linear bounded automata, 886	threshold, 845	Mathematical induction, 29, 311–329
Linear combination of integers, 269, 306	Logic programming, 51	Axiom of, A-5
Linear complexity, 225	Logic puzzles, 19–20	errors in, 328–329
Linear congruence, 275, 306	Long-distance telephone network, 646	generalized, 356–357
systems of, 277–279	Longest common subsequence problem, 568	guidelines for, 328
Linear congruence(s)	Loom, Jacquard, 31	incorrect proof by, 757 inductive loading with, 333
solving, 277	Loop constructions, A-14–A-15	principle of, 377
Linear congruential method, 288	Loop invariants, 375–376, 378	proofs by, 315–329
increment, 288	Loops	errors in, 328–329
modulus, 288	in directed graphs, 594, 633 nested, 58	of divisibility facts, 321
multiplier, 288 seed, 288		of inequalities, 319-320
Linear homogenous recurrence relations, 514–520,	within loops, A-15 Lord Byron, 31	of results about algorithms, 324
565	Lottery, 447	of results about sets, 323-324
Linearithmic complexity, 225	Mega Millions, 496	of summation formulae, 315
Linearity of expectations, 477–484, 494	Powerball, 496	second principle of, 334
Linearly ordered set, 619, 633	Lovelace, Countess of (Augusta Ada), 29, 31	strong, 333–335, 378
Linear nonhomogenous recurrence relations,	Lower bound	structural, 353-356, 378
520–524, 565	of lattice, 637	template for, 328
Linear ordering, 619, 633	of poset, 625, 634	template for proofs, 329
Linear probing function, 288	Lower limit of a summation, 163	validity of, 328
Linear search	Lucas, Edouard, 503	Matrix (matrices)
average-case time complexity, 221	Lucas, François Édouard, 162	addition, 178
Linear search algorithm, 194, 232	Lucas numbers, 379, 525	adjacency, 669–671, 736
average-case complexity of, 482–484	Lucas sequence, 162	counting paths between vertices by, 688–689
recursive, 363	Lucky numbers, 570	entry of, 178
time complexity of, 220	Łukasiewicz, Jan, 780, 782	equal, 178
LISP, 855	Lukusiewicz, Jan, 760, 762	identity, 180, 186
List of 23 problems	m-ary tree, 748, 804	incidence, 671, 736
David Hilbert, 176	complete, 756	invertible, multiplication
Lists, merging two, 368	full, 748, 752	algorithm for, 222
Literal, 820, 843	height of, 754–755	complexity of, 223
Little-o notation, 218	m-tuple, 586	noncommutativity of, 179
Littlewood, John E., 97	Ménages, probl'eme des, 571	fast, 529
Load balancing problem, 235	Machine	representing relations using, 591–594
Loading, inductive, 333, 343, 380	finite-state, 899	row of a, 178
Load of a processor, 235	Mealy, 863, 899	sparse, 670
Loan, 169	Moore, 863, 865	square, 178
Lobsters, 524	Turing, 899	symmetric, 181, 186
Local area networks, 661	machine	transpose of, 181, 186
Logarithm	unit-delay, 861	upper triangular, 231
discrete, 284	Machine(s)	zero-one, 181, 186
Logarithm, iterated, 360	delay, 861–862	of transitive closure, 602-603
Logarithm discrete, 306	finite-state, 847, 858–859	representing relations using, 591-594
Logarithmic complexity, 225	with no output, 865	Warshall's algorithm and, 604-606
Logarithmic function, A-7–A-9	with outputs, 859–863	Matrix-chain multiplication, 223
logarithms	Turing, 847, 886, 888, 889, 893	Matrix-chain multiplication problem, 513
big-O estimates of, 212	computing functions with, 892–893	Matrix product, 179
Logic, 1	definition of, 889	Maurolico, Francesco, 313
fuzzy, 16	nondeterministic, 893	Maximal element of poset, 624, 634
predicate, 37	sets recognized by, 891–892	Maximum, of sequence, 528
propositional, 3	types of, 893	Maximum element
Logical connectives, 4	Machine minimization, 872	algorithm for finding, 193
Logical equivalences, 27	vending, 858–859	in finite sequence, 192
constructing, 29	MAD Magazine, 208	Maximum matching, 659
Logical Expression(s)	Magic tricks, 20	Maximum satisfiability problems, 498
translating English sentences into, 62–63	Majority voting, circuit for, 825	Maximum spanning tree, 802
Logical expressions	Makespan, 235	Maxterm, 822
translating English sentences into, 16–17	Making change	McCarthy
translating mathematical statements into, 60, 61	greedy algorithm, 199	function, 380
Logically equivalent compound propositions, 25, 110	Male optimal, 234	McCarthy, John, 381
Logically equivalent expressions, 110	Mappings, 139	McCluskey, Edward J., 837
Logically equivalent expressions, 110	Maps	Mealy, G. H., 863
Logical operators, 109	coloring of, 727	Mealy machine, 863, 899
functionally complete, 35	Markov's inequality, 493	Mean, 203
precedence of, 11	markup languages, 858	arithmetic, 100, 332
Logic circuit, 20, 110	Massachusetts Institute of Technology (M.I.T.), 299	deviation from, 491
Logic circuit, 20, 110 Logic gates, 21, 110, 822–827	Master theorem, 532	geometric, 100, 332
		harmonic, 108
AND, 21, 823, 843 combination of 823	Matching, 659 maximum, 659	quadratic, 108
combination of, 823 NAND, 828	stable, 204	Median, 203
13/21/314-04/0	static, 204	Meet, in lattice, 637
NOR, 828	string, 231	Meet of zero-one matrices, 181

I-14 Index

Mega Millions, Lottery, 496	Modus tollens, 71	NAUTY, 674
Meigu, Guan, 698	universal, 77	Naval Ordnance Laboratory, 872
Member of a set, 185	Mohammed's scimitars, 697	Navy WAVES, 872
Membership table, 186 Members of a set, 116	Molecules, trees modeling, 750	Necessary and sufficient conditions, 9
memoization, 510	Money orders identification numbers for, 293	Necessary condition, 6
Merge sort, 196, 367-370, 378, 528	Monoalphabetic cipher, 297	expressing a conditional statement using, 6 Necessary for, 6
complexity of, 532	Monotone decreasing property of graph, 742	Negating conjunctions, 28
recursive, 368	Monotone increasing property of graph, 742	Negating disjunctions, 28
Merging two lists, 368	Monotonic grammars, 852	Negating Quantified Expressions, 46
Mersenne, Marin, 261	Monte Carlo algorithms, 463-465	Negation, 109
Mersenne primes, 261, 306	Montmort, Pierre Raymond de, 563, 571	of a proposition, 3
Mesh of trees 800	Monty Hall Three Door Puzzle, 450, 452, 476, 499	of nested quantifiers, 63–64
Mesh of trees, 809 metacharacters, 858	Monty Python, 472	truth table for, 4
Metafont, 208	Moore, E. F., 863	Negation operator, 4
Method	Moore machine, 863, 865	Negative
middle-square, 292	Moth, 872	false, 471
roster, 116	Motorized pogo stick, 812	true, 471
Method(s)	Mr. Fix-It, 263	Neighbors in graphs, 651
Critical Path, 639	Muddy children puzzle, 19	Neptune, 476
Horner's, 230	Multicasting, 786	Nested loops, 58
probabilistic, 465–466, 494	Multigraphs, 642, 644, 735	Nested quantifiers, 57–64
Quine-McCluskey, 830, 837–840	Euler circuit of, 697	negating, 63-64
Method(s) of proof, 82	Euler path of, 697	Network(s)
by cases, 92, 95 by contradiction, 86	undirected, 644 Multinomial coefficient, 434	computer, 641
by contradiction, 83	Multinomial theorem, 434	interconnection networks, 661-663
by exhaustion, 93	Multiple, 238	local area networks, 661
direct, 82	least common, 266, 306	multicasting over, 786
exhaustive, 93	Multiple edges, 642–644, 735	with diagnostic lines, 642
proofs of equivalence, 87	Multiple output circuit, 826	with multiple lines, 642
trivial, 84	Multiplexer, 828	with multiple one-way lines, 642
vacuous, 84	Multiplication	with one-way lines, 643
Method roster, 185	of function, 141	gating, 822-823
Middle-square method, 292	matrix-chain, 223	depth of, 828
Millennium Prize problems, 227	of integers	examples of, 823–825
Miller's test, 286	fast, 528-529	minimization of, 828–840
Miller's test for base b, 286	of matrices	social, 644
Minimal element of poset, 624, 634 Minimization	fast, 529	tree-connected, 751–752
of Boolean functions, 828–840, 843	Multiplication algorithm, 251	Network number (netid), 392
of combinational circuits, 828–840	Multiplicative Compatibility Law, A-2	Newton–Pepys problem, 500
Minimization of a finite-state machine, 872	Multiplicative inverse, 60	Niche overlap graph, 648
Minimizing maximum lateness	Multiplicities of elements in a multiset, 138	Nickels, 199
greedy algorithm for, 235	Multiplier	Nim, 766, 768
Minimum, of sequence, 528	for linear congruential method, 288	Nobel Prize, 119
Minimum dominating set, 739	Multiset, 138	Nodes, 594, 641 Noncommutativity of matrix multiplication, 179
Minimum spanning forest, 802	multiplicities of elements, 138	Nonconformists, 472
Minimum spanning trees, 797–802, 804	Multisets	Nonconstructive existence proof, 96, 110
Minmax strategy, 767, 804	difference of, 138	
Minterm, 820, 843	intersection of, 138	Noncontracting grammar, 851 Nondeterministic finite-state automaton, 873, 899
Mistakes in proofs, 89–90	Mutually independent events, 497	equivalent finite-state automaton, 874
Mixed graph, 644 mod function, 239, 306	Mutually independent trials, 458	language recognized by, 873
Mode, 203		Nondeterministic polynomial-time problems, 227
Modeling	n-ary relations, 583–589, 633	class of, 900
computation, 847–897	domain of, 584	item Nondeterministic Turing machine, 893, 899
with graphs, 644-649	operations on, 586–588	Nonoverlapping ears, 343
with recurrence relations, 502-507	n-cubes, 655	Nonplanar graphs, 724–725
with trees, 749-752	n-queens problem, 792–793 n-regular graph, 667	Nonregular set, 891
Modular arithmetic, 240–306	n-tuple	recognition by Turing machine, 891
Modular exponentiation, 253	ordered, 122	Nonresidue
algorithm for, 253	n-tuples, 584–585	quadratic, 286
recursive, 363	Naive set theory, 118	Nonseparable graph, 683
Modular inverse, 275, 306	Namagiri, 98	Nonterminals, 849
Modular proporties in Regleon algebra, 810	NAND, 821, 843	NOR, 821, 843
Modular properties, in Boolean algebra, 819	NAND gate, 828	NOR gate, 828
Module dependency graphs, 647 Modulus	Natural language, 847–848	Normal form
for linear congruential method, 288	Natural numbers	
	Natural numbers	disjunction, 55
Modus ponens, 71	set of, 116	disjunction, 35 prenex, 68
Modus ponens, 71 universal, 77		*

Notation	indistinguishable, 428	Output alphabet, 859
big-O, 205, 232	and indistinguishable boxes, 428–431	Outputs
big-Omega (Ω), 214, 232	unlabeled, 428	finite-state machines with, 859–863
big-Theta, 215	Obligato game, 112	finite-state machines without, 865
big-Theta (Θ), 232 dependency, 846	Octahedral die, 496 Octal expansions, 246, 306	Output string
for products	Octal expansions, 246, 306 Octal representation, 246, 306	finite-state machine, 861
well-formed formula in, 784	Odd, 83	P(n, r), 439
infix, 779–782, 804	Odd pie fights, 325	P, class of polynomial-time problems, 900
little-o, 218	Odlyzko, Andrew, 163	P=NP problem, 897
Polish, 780, 804	Odometer, 307	Pair, devil's, 678
postfix, 779-782, 804, 858	One's complement representations, 256	Pairs, forbidden, 234
prefix, 779-782, 804	One-to-one (injective) function	Pairwise relatively prime integers, 306
product, 186	counting, 387	Palindrome(s), 202, 397, 857
reverse Polish, 781, 804, 858	One-to-one correspondence, 144, 186	set of, 888
set builder, 116, 185	One-to-one function, 141, 143, 186	Paradigm
summation, 162, 186	On-Line Encyclopedia of Integer Sequences (OEIS),	Algorithmic, 224, 232
NOT gate, 21	162	Paradox, 118, 185
Noun, 848	Only if, expressing conditional statement using, 7	barber, 16
Noun phrase, 848	Onto (surjective) function, 143, 186	Löb's, 112
Nova, 107	number of, 560-562, 566	Russell's, 126
NP, class of nondeterministic polynomial-time	Open interval, 117, 332	St. Petersburg, 497
problems, 900	Open problems, 106, 263-264	Parallel algorithms, 661
NP-complete problems, 227, 715, 830, 900	Operands, well-formed formula of, 351	Parallel edges, 642
Null quantification, 56	Operation(s)	Parallel processing, 229, 661
Null set, 185	bit, 11, 110	tree-connected, 751–752
Null string, 849 Number(s)	bitwise, 110	Parentheses, balanced strings of, 382
Bacon, 680	set, 127	Parent of vertex, 747, 803
Bell, 618	Operations	Parent relation, 580
cardinal, 121	on n-ary relations, 586–588	Parity
Carmichael, 283, 306	Operator(s)	same, 83
Catalan, 507	bitwise, 12	Parity check bit, 290
chromatic, 728, 737	logical, 109	Parse tree, 852-854, 899
edge, 734	negation, 4	Parsing
crossing, 726	logical, 109	bottom-up, 853
computable, 886	selection, 586	top-down, 853
Cunningham, 262	well-formed formula of, 351	Partial correctness, 372
Erdős, 635, 680, 689	Opium, 475	Partial function, 152, 186, 889
Fibonacci, 347, 365-367, 771	Optimal algorithm, 230	codomain of, 152
formula for, 517	Optimal solution, 198	domain of, 152
iterative algorithm for, 366	Optimal solution, 198 Optimization problems, 198	domain of definition, 152
rabbits and, 502-503	OR, 18	undefined values, 152
recursive algorithms for, 365	Or Or	Partially ordered set, 618
harmonic	exclusive, 5, 6	antichain in, 637
inequality of, 320–321	inclusive, 5	chain in, 637
independence, 741	Oracle of Bacon, 680	comparable elements in, 622, 633
irrational, 85, 116	Order, 207	dense, 632
large, law of, 459	of quantifiers, 58	dual of, 630
Lucas, 379, 525 lucky, 570	Ordered n-tuple, 122	greatest element of, 625, 634
natural, 116	Ordered rooted tree, 749, 804, 806	Hasse diagram of, 622-624, 634
pseudorandom, 288	Ordering	incomparable elements in, 622, 633
Ramsey, 404	dictionary, 435	least element of, 625, 634
rational, 85, 116	lexicographic, 356, 435, 620-622	lower bound of, 625, 634
real, A-1-A-5	linear, 619	maximal element of, 624, 634
Stirling, of the first kind, 431	partial, 618-629, 633	minimal element of, 624, 625, 634
signless, 443	quasi-ordering, 637	upper bound of, 625, 634
Stirling, of the second kind, 430	total, 619, 633	well-founded, 632
Ten Most Wanted, 262	Ordered pair	Partial orderings, 618–629, 633
Ulam, 188	defined using sets, 126	compatible total ordering from, 634
Number-theoretic functions, 892	Ordinary generating function, 537	Partition, 552
Numbering plan, 387		
Number theory, 237	Ore's theorem, 701, 707	of positive integer, 359, 431
	Ore's theorem, 701, 707 Ore, O., 701	of set, 612-614, 633
definition of, 237	Ore's theorem, 701, 707 Ore, O., 701 Organizational tree, 750	of set, 612–614, 633 refinement of, 617
	Ore's theorem, 701, 707 Ore, O., 701 Organizational tree, 750 OR gate, 21, 823, 843	of set, 612–614, 633 refinement of, 617 Partner
Object, 118	Ore's theorem, 701, 707 Ore, O., 701 Organizational tree, 750 OR gate, 21, 823, 843 Orientable graphs, 740	of set, 612–614, 633 refinement of, 617 Partner valid, 234
Object, 118 Object(s)	Ore's theorem, 701, 707 Ore, O., 701 Organizational tree, 750 OR gate, 21, 823, 843 Orientable graphs, 740 Orientation of undirected graph, 740	of set, 612–614, 633 refinement of, 617 Partner valid, 234 Pascal's identity, 418–419, 439
Object, 118 Object(s) distinguishable, 428	Ore's theorem, 701, 707 Ore, O., 701 Organizational tree, 750 OR gate, 21, 823, 843 Orientable graphs, 740 Orientation of undirected graph, 740 Out-degree of vertex, 654, 736	of set, 612–614, 633 refinement of, 617 Partner valid, 234 Pascal's identity, 418–419, 439 Pascal's triangle, 419, 439
Object, 118 Object(s)	Ore's theorem, 701, 707 Ore, O., 701 Organizational tree, 750 OR gate, 21, 823, 843 Orientable graphs, 740 Orientation of undirected graph, 740	of set, 612–614, 633 refinement of, 617 Partner valid, 234 Pascal's identity, 418–419, 439

I-16 Index

Paths, 678–681	Polynomials, rook, 571	primitive root of a, 306
and graph isomorphism, 687–688	Polyominoes, 105, 326	probability positive integer less than n is, 262
counting between vertices, 688–689	Ponens	twin, 264
Euler, 693–698, 736	modus, 71	Prime factorization, 259
Hamilton, 698–703, 736	Population of the world, 168	Prime implicant, 832, 843 essential, 832
in acquantanceship graphs, 680	Poset, 618, 633	Prime number theorem, 262, 636
in collaboration graphs, 680	antichain in, 637	Primitive root of a prime, 284, 306
in directed graphs, 599–600, 633, 736	chain in, 637	Prince of Mathematics, 241
in directed multigraphs, 679	comparable elements in, 619, 633	Princess of Parallelograms, 31
in Holly wood graph, 680–681 in simple graphs, 679	dense, 632 dual of, 630	Principia Mathematica (Whitehead and Russell), 34
in undirected graphs, 679	greatest element of, 625, 634	Principia Mathematica, 119
length of, in weighted graph, 708	Hasse diagram of, 622–624, 634	Principle(s)
of length n, 680	incomparable elements in, 619, 633	duality, for Boolean identities, 816
shortest, 707–716, 736	least element of, 625, 634	of buoyancy, A-4
terminology of, 679	lower bound of, 625, 634	of counting, 385–390
Payoff, 765	maximal element of, 624, 634	of inclusion-exclusion, 392-394, 553-557, 566
Pearl Harbor, 872	minimal element of, 624, 625, 634	alternative form of, 559
Pecking order, 741	upper bound of, 625, 634	applications with, 558–564
Peirce, Charles Sanders, 38	well-founded, 632	of mathematical induction, 377
Peirce arrow, 36	Positive	of well-founded induction, 635
Pelc, A., 536	false, 471	of well-ordered induction, 620
Pendant vertex, 652, 736	true, 471	pigeonhole, 86, 399–405, 439 applications with, 403–405
Pennies, 199	Positive integers	generalized, 401–403, 439
Perfect integer, 272	axioms for, A-5	Principle of inclusion–exclusion, 128
Perfect power, 93	Postcondition, 372	Private key
Perfect square, 83	Postconditions, 39	cryptosystem, 298, 306
Peripatetics, 2	Postfix form, 781	RSA system, 301
Permutation, circular, 415	Postfix notation, 779–782, 804, 858	Prize, Nobel, 119
Permutations, 407-409, 439	Postorder traversal, 773, 776–778, 804	Probabilistic algorithms, 445, 463-465, 494
generating, 434–436	Postulates, 81	Probabilistic method, 465-466, 494
generating random, 499	Potrzebie System of Weights and Measures, 208	Probabilistic primality testing, 464–465
inversions in, expected number of, 482–484	Powerball, Lottery, 496	Probabilistic reasoning, 450
with indistinguishable objects, 427–428	Power generator, 292	Probability, discrete, 445–500
with repetition, 423	Powers	assigning, 453–455
PERT (Program Evaluation and Review Technique),	of relation, 580–581, 633	conditional, 453, 456–457, 494
639 D. L. B. C. Cl. i. i. 706	Power series, 538–541	finite, 445–448
Petersen, Julius Peter Christian, 706	formal, 538	in medical test results, 471–472
Phrase-structure grammar, 849, 899	Power set, 121, 185	Laplace's definition of, 446
Phrase-structure grammars, 849–854	Pre-image of an element, 139, 186	of collision in hashing functions, 462–463 of combinations of events, 449–450, 455–456
Pick's theorem, 342	Precedence	Probability distribution, 453
Pie fights, odd, 325	of logical operators, 11	Probability generating function, 552
Pigeonhole principle, 86, 399–405, 439 applications with, 403–405	of quantifiers, 44 Precedence graphs, 647	Probability positive integer less than n is prime, 262
generalized, 401–403, 439	Precondition(s), 39, 372	Probability theory, 445, 452–466
Planar graphs, 718–725, 736	Predicate, 110	Probing function, 288
Plato, 2	truth set of, 125	Problem(s)
Plato's Academy, 2, 259	Predicate calculus, 40	n-queens, 792-793
PNF (prenex normal form, 68	Predicate logic, 37	art gallery, 735
Pogo stick, motorized, 812	Prefix codes, 762–764, 804	birthday, 461–463
Pointer, position of, digital representation of,	Prefix form, 780	bridge, 693-694, 696, 697
702–703	Prefix notation, 779-782, 804	celebrity, 332
Poisonous snakes, 763	well-formed formula in, 784	Chinese postman, 698
Poker hands, 411	Premise of a condition statement, 6, 110	class of NP-complete, 897
Polish notation, 780, 804	Premises of an argument, 69, 70	class P, 896
Polygon, 338	Prenex normal form (PNF), 68	closest-pair, 532–535
convex, 338	Preorder traversal, 773-775, 778, 804	Collatz, 107
diagonal of, 338	Prim's algorithm, 798-799, 804	decidable, 895 decision, 894, 900
exterior of, 338	Prim, Robert Clay, 798, 800	discrete logarithm, 284
interior of, 338	Primality testing, 464–465	halting, 201, 895, 900
nonconvex, 338	Primary key, 585–586, 633	hatcheck, 481, 562
sides of, 338	Prime, 257, 306	Hilbert's 23, 895
simple, 338	Mersenne, 306	Hilbert's Tenth Problem, 895
vertices of, 338	primitive root of a, 306	intractable, 226, 232, 897
with nonoverlapping ears, 343	probability positive integer less than n is, 262	jealous husband, 693
Polynomial-time algorithm for primality, 262	Prime(s)	Josephus, 512
Polynomial-time problems	arithmetic progression of, 263	Kakutani's, 107
class of, 900	conjectures about, 263	kissing, 163
Polynomial complexity, 225	distribution of, 261	knapsack, 235, 568
Polynomials	in arithmetic progressions, 262	load balancing, 235
big-O estimates for, 212	infinitude of, 260	longest common subsequence, 568
big-O estimates of, 209	Mersenne, 261, 306	matrix-chain multiplication, 513
big-Theta estimates for, 216	of form $n^2 + 1,264$	maximum satisfiability, 498

Millennium Prize, 227	combinatorial, 412, 439	P versus NP problem, 227
Newton–Pepys, 500	constructive existence, 96	Pythagorean triples, 106
NP, 227, 896	direct, 82, 1180	Pāṇini, 854
NP-complete, 227, 715, 830, 900 P, 227	existence, 96 indirect, 83	Quadratic congruence, 285
P=NP, 897	mistakes in, 89	Quadratic congratine, 283 Quadratic mean, 108
P versus NP, 227	nonconstructive existence, 96	Quadratic nonresidue, 286
open, 106, 263-264	of equivalence, 87	Quadratic residue, 286
optimization, 198	of recursive algorithms, 364-367	Quad trees, 809
problem, two children, 498	trivial, 84, 110	Quality control, 463
satisfiability, 34, 227	uniqueness, 99, 110	Quantification, 40
Satisfiability	vacuous, 84, 110	as loops, 58 existential, 42, 110
solving, 34	Proof strategy, 85, 100–106	null, 56
scheduling greedy algorithm for final exams, 731, 732	Proper subset, 185 Properties	universal, 110
searching, 194	of algorithms, 193	Quantification, universal, 40
shortest-path, 707–716, 736	Property	Quantified Expressions
solvable, 226, 232, 895, 900	Archimedean, A-5	negating, 46
Syracuse, 107	Completeness, A-2	Quantified statement(s)
tiling, 895	Well-ordering, 340-341, 378, A-5	restricted domain, 124
tractable, 226, 232, 897	Proposition(s), 2, 81, 109	rules of inference for, 75 rules of inference for), 77
traveling salesman, 714–716, 736	compound, 3, 25, 27 109	Quantifier
traveling salesperson, 702, 709	negation of, 3, 109	existential, 42
two children, 498 Ulam's, 107	Propositional equivalences, 129	scope of, 45, 110
undecidable, 895	Propositional calculus, 3 Propositional function, 110	uniqueness, 44
unsolvable, 226, 232, 895, 900	Propositional logic, 3	universal, 40
utilities-and-houses, 718	applications of, 16	Quantifiers
yes-or-no, 894	argument, 70	De Morgan's law, 47
Probl'eme de rencontres, 563, 571	rules of inference for, 71	nested
Probl'eme des ménages, 571	Propositional variable(s), 2, 109	negating, 63–64 nested(, 57
Procedure statements, A-11	Protein interaction graph, 648	nested), 64
Processing	Protestant Noncomformists, 472	order of, 58
concurrent, 647	Protocol(s)	precedence of, 44
parallel, 229, 661	cryptographic, 302	use in system specifications, 50
tree-connected, 751–752 Product	Diffie-Helman key agreement, 302 key exchange, 305, 306	Quarters, 199
Boolean, 811–812, 821, 843	Pseudocode, 192, A-11–A-15	Quasi-ordering, 637
matrix, 179	Pseudograph, 643, 644, 735	Queen of mathematics, 241
Product-of-sums expansion, 820	Pseudoprime, 282, 306	Queen of the sciences, 241
Production, 899	strong, 286	Queens on chessboard, 740
Productions, 849	to the base b , 282	Question, begging the, 90, 110 Quick sort, 196, 371
of grammar, 849	Pseudorandom numbers, 288	Quine, Willard van Orman, 837, 839
Product notation, 186	generated by linear congruential method, 288	Quine-McCluskey method, 830, 837-840
Product rule, 386	middle-square generator, 292	Quotient, 238, 239, A-6
Program correctness, 372–378	power generator for, 292	Quotient automaton, 878
conditional statements for, 373–375 loop invariants for, 375–376	pure multiplicative generator of, 289 Public key	
partial, 372	cryptosystem, 298	r-combination, 410, 439
program verification for, 372–373	encryption, 306	r-permutation, 407, 439
rules of inference for, 373	RSA system, 299	Rabbits, 502–503 Races, horse, 31
Program Evaluation and Review Technique (PERT),	Pumping lemma, 888	Radius of graph, 741
639	Pure multiplicative generator, 289	Rado, Tibor, 899
Programming	Pushdown automaton, 886	Ramanujan, Srinivasa, 97, 98
logic, 51	Puzzle	Ramaré, O., 264
Programming, dynamic, 507	"Voyage Around the World,", 700	Ramsey, Frank Plumpton, 404
Programming languages, 398, 611 Program verification, 372–373	Birthday Problem, 461–463 Icosian, 698	Ramsey number, 404
Progression	jigsaw, 342	Ramsey theory, 404
arithmetic, 186	knights, knaves, and normals, 112	Random permutation, generating, 499 Random simple graph, 742
geometric, 157, 186	knights, knaves, and spies, 112	Random variables, 454, 460–461
sums of, 318-319	knights and knaves, 19	covariance of, 494
Projection of n-ary relations, 586, 633	the lady or the tiger, 24	definition of, 494
Prolog, 51, 74	logic(, 19	distribution of, 460, 494
Proof(s), 81, 110	logic), 20	geometric, 484-485
adapting, 101	Monty Hall Three Door, 450, 452, 476, 499	expected values of, 477-480, 491, 494
by cases, 92–110	muddy children, 19	independent, 485–487, 494
common errors with, 95	Reve's, 504	indicator, 492
by contradiction, 86, 110 by contraposition, 83, 110	river crossing, 692 Sudoku, 32	standard deviation of, 487 variance of, 477–480, 494
by exhaustion, 93	Sun-Tsu's, 277	Range of a function, 139, 186
by mathematical induction, 315–329	Tower of Hanoi, 503–504	Ratio
by structural induction, 353	zebra, 24	common, 157

I-18 Index

Rational number(s), 85, 116	Regular language, 851	Restricted domain
countability of, 172	Regular set(s), 878-879, 884, 899, 900	of quantified statement, 124
Reachable, 807	constructing automaton to recognize, 881	quantifier with, 44
Reachable state, 901	Relation, 124	return statement, A-15
Real-valued function, 140	recurrence, 158, 186	Reve's puzzle, 504
Real number	Relation(s), 573–639	Reverse-delete algorithm, 803 Reverse Polish notation, 781, 804
decimal expansion of a, 174 Real numbers	n-ary, 583–589, 633 domain of, 584	reverse Polish notation, 781, 304
constructing, A-5	operations on, 586–588	Right child of vertex, 749
least upper bound, A-2	"greater than or equal,", 618–619	Right subtree, 749
set of, 116	"less than or equals,", 619	Right triominoes, 326, 333
upper bound, A-2	antisymmetric, 577–578, 633	Ring commutative, 244
Reasoning	asymmetric, 582	Ring topology for local area network, 661
circular, 90, 110	binary, 573, 633	River crossing puzzle, 692
deductive, 312	circular, 635	Rivest
forward, 100	closures of, 597-606, 633	Ronald, 300
inductive, 312	reflexive, 598, 633	Rivest, Ronald, 299
probabilistic, 450	symmetric, 598, 634	RNA (ribonucleic acid), 388
Recognized language, 868	transitive, 597, 600–603, 634	RNA chain sequencing, 443 Roadmaps, 647
Recognized strings, 868	combining, 579–580	Rock climbing, 163
Recognizer	complementary, 582	Rocket-powered Frisbee, 812
language, 863	composite of, 580, 633	Rook polynomials, 571
Rencontres, 563, 571 Records, 584	connectivity, 600, 633 counting, 578–579	Root
Recurrence relation(s), 158, 186, 501–510	covering, 623, 631	primitive, 284
associated homogenous, 520	diagonal, 598	Rooted Fibonacci trees, 757
definition of, 158, 565	divide-and-conquer recurrence, 527	Rooted spanning tree, 797
divide-and-conquer, 527–535	divisibility, 619	Rooted trees, 351, 747-749
initial condition for, 158	domains of, 584	S_k -tree, 806
linear homogenous, 514-520, 565	equivalence, 607-614, 633	B-tree of degree k, 805
linear nonhomogenous, 520-524, 565	functions as, 574	balanced, 753, 804
modeling with, 502-507	inclusion, 619	binomial, 805
simultaneous, 526	inverse, 582, 633	decision trees, 760–762 definition of, 803
solution of, 158	irreflexive, 581	height of, 753, 804
solving, 514–524	on set, 575–576	level order of vertices of, 806
generating functions for, 546–548	parent, 580	ordered, 749, 804, 806
solving using iteration, 159	paths in, 599–600	Roots, characteristic, 515
Recursion, 344	powers of, 580–633	Roster method, 116, 185
Recursive algorithms, 360–370, 378 correctness of, 364	properties of, 576–579	Round-robin tournaments, 341, 649
for binary search, 363	reflexive, 576, 633 representing	Routing transit number (RTN), 308
for computing a^n , 361	using digraphs, 594–596	check digit, 308
for computing greatest common divisor, 362	using matrices, 591–594	Row of a matrix, 178
for factorials, 361	symmetric, 577–578, 634	Roy, Bernard, 603
for Fibonacci numbers, 365	transitive, 578-580, 633	Roy–Warshall algorithm, 603–606 RSA system, 299
for linear search, 363	Relational database model, 584-586, 633	cryptosystem, 299, 301, 306
for modular exponentiation, 363	Relation on a set, 124	decryption, 300
proving correct, 364–367	Relative frequency	decryption key, 301
trace of, 361, 362	letters of English, 296	digital signatures, 303
Recursive definitions, 311, 345–357	Relatively prime integers, 306	encryption 299
of extended binary trees, 352	Remainder, 239, 306	private key, 301
of factorials, 361	Removing and edge from a graph, 663	public key, 301
of functions, 345–349, 378 of a sequence, 158	Removing an edge from a vertices, 664 Repetition	Rule
of sets, 349–356, 378	combinations with, 424–427	division, 394
of strings, 349	permutations with, 423	product, 386
of structures, 349–356	Replacement	subtraction, 393 sum, 386, 389, 439
Recursive merge sort, 368	sampling with, 448	Rule(s) of inference, 69–71, 110
Recursive modular exponentiation, 363	sampling without, 448	addition, 71
Recursive sequential search algorithm, 363	Representation	building arguments using, 73
Recursive step, 349	base b, 306	conjunction, 71
Reentrant knight's tour, 707	binary, 306	disjunctive syllogism, 71
Refinement, of partition, 617	octal, 306	for program correctness, 373
Reflexive closure of relation, 598, 634	unary, 892	for propositional logic, 71
Reflexive relation, 576, 633	Representation hexadecimal, 306	for quantified statements, 75-77
representing	Representations	hypothetical syllogism, 71
using digraphs, 594–596	one's complement, 256	modus ponens, 71
using matrices, 591	two's complement, 256	modus tollens, 71
Regions of planar representation graphs, 719, 736 Regular expression, 899	Representative, of equivalence class, 610 Residue	resolution, 71, 74 simplification, 71
Regular expressions, 879	quadratic, 286	Run, 492
Regular grammar(s), 851, 884, 899, 900	Resolution, 74	Russell's paradox, 126
Regular graph, 667	Resolution (rule of inference), 71	Russell, Bertrand, 118, 119

S_k -tree, 806	integer, 162	relation on, 124
Same parity, 83	Lucas, 162	representing with a bit string, 134
Samos, Michael, 533	recursive definition of, 158	separating, 684
Sample space, 446	self-generating, 382	singleton, 118
Sampling	strictly decreasing, 403	successor of, 137
without replacement, 448	strictly increasing, 403	symmetric difference of, 186
with replacement, 448	unimodal, 568	totally ordered, 619, 633
Sandwich, 858	Sequencing Sequencing	uncountable, 186
Sanskrit, 854	RNA chains, 443	union of, 127, 185
Satisfiability, 30	Sequential search algorithm, 194	universal, 118, 185
Satisfiability problem, 227	Serial algorithms, 661 Series	well-ordered, 381, 620, 633
solving, 34	geometric, 164	Set builder notation, 116, 185
modeling Sudoku puzzle as, 32	harmonic, 321	Set description
Satisfiability problem, maximum, 498	infinite, 167	by listing its members, 116
Satisfiable compound proposition, 30, 110	power, 538–541	by the roster method, 116 using set builder notation, 116
Saturated hydrocarbons, trees modeling, 750	formal, 538	Set equality, 117, 185
Saxena, Nitin, 262	Set(s), 185	Set identities, 129–132
Scheduling problems	Cartesian product of, 123	absorption laws, 129
final exams, 731, 732	complement of, 128, 129, 186	associative laws for, 129
greedy algorithm for, 324-325	computer representation of, 134	Cartesian product of, 123
software projects, 633	countable, 171, 186	commutative laws for, 129
talks, 200	cut, 806	De Morgan's laws for, 129
tasks, 629	difference of, 128, 186	difference of, 128, 186
Schröder, Ernst, 175	disjoint, 128	distributive laws for, 129
Schröder-Bernstein theorem, 174	dominating, 739	domination laws for, 129
Scimitars, Mohammed's, 697	element of, 185	idempotent laws for, 129
Scope of a quantifier, 45, 110	elements of a, 116	identity laws for, 129
Screw, Archimedes, A-4	empty, 118, 185	intersection of, 127, 185
Search	finite, 121, 185, 553, 565	Set of real numbers
binary, 194	combinations of, 437–438	cardinality of, 186
linear, 194	counting of subsets, 388	uncountability of, 173
sequential, 194	number of subsets of, 323 union of three, number of elements in, 554–556,	Set operations, 127
Search engines, 794	566	Sex, 458
Searches	union of two, number of elements in, 553, 565	Shamir, Adi, 299, 300
Boolean, 18	fuzzy, 138	Shannon, Claude, 20
Searching algorithms, 194–196, 232	guarding, 735	Shannon, Claude Elwood, 811, 812
binary, 528	image of, 141	Sheffer, Henry Maurice, 34
breadth-first, 789-791, 804	infinite, 121	Sheffer stroke, 34, 36
depth-first, 787–789, 804	linearly ordered, 619, 633	Shift cipher, 295, 306
applications with, 794–795	member of, 185	cryptanalysis, 296
in directed graphs, 794–795	members of a, 116	Shift ciphers
linear	nonregular, 891	cryptosystem, 298 Shifting, 252
average-case complexity of, 482-484	not recognized by finite-set automata, 885	Shifting index of summation, 164
recursive, 363	null, 185	Shift register, 846
recursive binary, 363	of complex numbers, 116	Shortest-path algorithm, 709–714
recursive linear, 363	of irrational numbers, 116	Shortest-path problems, 707–716, 736
recursive sequential, 363	of natural numbers, 116	Showing two sets are equal, 121
Searching problems, 194	of palindromes, 888	Sibling of vertex, 747, 803
Search trees, binary, 757–759, 804	of rational numbers, 116 of real numbers, 116	Sides of a polygon, 338
Searcing	partially ordered, 618, 633	Sieve of Eratosthenes, 259, 306, 560, 565
web pages, 18	antichain in, 637	Signature
Second principle of mathematical induction, 334	chain in, 637	digital, 306
Secret key	comparable elements in, 619, 633	Signatures
exchange, 302	dense, 632	digital, 303
Seed Seed	dual of, 630	Signed integer, 855
for linear congruential method, 288	greatest element of, 625, 634	Simple circuit, 679
Sees, 735	Hasse diagram of, 622–624, 634	Simple directed graph, 643
Selection operator, 586, 633	incomparable elements in, 619, 622, 633	Simple graphs, 642, 654-658, 735
Selection operator, 360, 655 Selection sort, 196, 203	least element of, 625, 634	coloring of, 727
Self-complementary graph, 677	lower bound of, 625, 634	connected planar, 719-723
Self-converse directed graph, 740	maximal element of, 624, 634	crossing number of, 726
Self-dual, 844	minimal element of, 624, 625, 634	dense, 670
Self-generating sequences, 382	upper bound of, 625, 634	edges of, 642, 663
Semantics, 847	well-founded, 632	isomorphic, 671–675, 736
Sentence, 848, 849	partition of, 612–613, 633	orientation of, 740
Separating set, 684	power, 121, 185	paths in, 679
Sequence(s), 156, 186	proofs of facts about, by mathematical induction,	random, 742
de Bruijn, 744	321	self-complementary, 677
Ge Bruijn, 744 Fibonacci, 158	recognized by Turing machines, 891–892	sparse, 670
	recursively defined, 349–356, 378	thickness of, 726
finding maximum and minimum of, 528 generating functions for, 537	regular, 878, 879, 884, 899 relation on, 575–576	vertices of, 642, 663 with spanning trees, 785–787

I-20 Index

Simple polygon, 338	Sparse matrix, 670	Strictly increasing sequence, 403
triangulation of, 338	Specification	String, 186
Simplification (rule of inference), 71	of a Turing machine, 889	bit, 110
Single-elimination tournament, 649	Specifications	empty, 186, 849
Single error in an identification number, 291 Singleton set, 118	system, 17	null, 849 recognized
Sink, 901	Specifying algorithms, 192	by Turing machine, 891
Six Degrees of Separation (Guare), 680	Spiders, Web, 794	String(s)
Slackness of a job, 235	Spies, 112	bit, 12
Sloane	SQL, 588-589, 855	String matching, 231
Neil, 162	Square	Strings, 157
Sloane, Neil, 163	perfect, 83	concatenation, 866 concatenation of, 350
Smullyan, Raymond, 19, 20	Squarefree integer, 564	counting, 388
Snakes, poisonous, 763 Sneakers, 300	Square Matrix diagonal of, 181	without consecutive 0s, 505
Soccer players, 475	inverse of, 184	decoding, 762-763
Social networks, 644	Square zero-one matrix	distinguishable, 888
Socks, 405	Boolean power of, 183	generating next largest, 437
Software	St. Petersburg Paradox, 497	indistinguishable, 888
origin of term, 11	Stable assignment, 343	length of, 505
Software systems, 17	Stable matching, 204	recursive definition of, 350 lexicographic ordering of, 620
Sollin's algorithm, 803	Stable matching problem	of parentheses, balanced, 382
Solution	variations on, 234 Standard deck, 402	recognized (accepted), 868
optimal, 198 Solution of a recurrence relation, 158	Standard deviation, 487	recursively defined, 349
Solvable problem, 232, 895, 900	Star Height, 901	ternary, 511
Solvable problems, 226	Star topology for local area network, 661	Stroke
Solving linear congruences, 277	Start symbol, 849	Sheffer, 34
Solving satisfiability problems, 34	State	Stroke, Sheffer, 36 Strong induction, 333–335, 378
Solving Sudoku puzzles, 32	accepting	Strongly connected components of graphs, 686, 736
Solving systems of linear congruences, 277–279	finite-state automaton, 867	Strongly connected graphs, 685
by back substitution, 279	final finite-state automaton, 867	Strong pseudoprime, 286
Solving using generating functions counting problems, 541–546	initial, 859	Structural induction, 353-356, 378
recurrence relations, 546–548	finite-state automaton, 867	proof by, 353
Sort	reachable, 901	Structured query language, 588–589
binary insertion, 203	transient, 901	Structures, recursively defined, 349–356 Stuarts, 151
binary insertion sort, 196	State diagram	Subgraph, 663, 739
bubble, 196, 232	for finite-state machine, 860	Subsequence, 403
bidirectional, 233	Strategy	Subset, 119, 185
insertion, 196, 197, 232	proof, 102 Statement	proper, 185
average-case complexity of, 483–484 library, 196	conditional, XX	Subsets
Merge, 196	biconditional, 9	of finite set counting, 388
merge, 367-370, 378, 528	Statement(s), A-11	number of, 323 sums of, 793
complexity of, 532	if then, 6	Subtraction rule, 393
recursive, 368	procedure, A-11	Subtractors
quick, 196, 371	assignment, A-11–A-12	full, 828
selection, 196, 203	blocks of, A-14–A-15	half, 828
tournament, 196, 770 Sorting, 196–198, 232	conditional, 6–9 for program correctness, 373–375	Subtree, 746, 748, 803
Sorting algorithms, 196, 198	Statement, return, A-15	Success, 458
topological, 627–629, 634	Statements	Successor of integer, A-5
Space, sample, 446	logically equivalent, 45	Successor of a set, 137
Space Complexity, 232	Statement variables, 2	Sudoku
Space complexity, 219	States, 859	modeling as a satisfiability problem, 32
Space probe, 476	State table	Sudoku puzzle, 32
Spam, 472–475 Spam filters, Bayesian, 472–475	for finite-state machine, 860	Sufficient
Spanning forest, 796	Stephen Cook, 227 Steroids, 475	necessary and, 9 Sufficient condition, 6
minimum, 802	Stirling's formula, 151	expressing a conditional statement using, 6
Spanning trees, 785–795, 804	Stirling, James, 151	Sufficient for, 6
building	Stirling numbers of the first kind, 431	Suitees, 204
by breadth-first search, 789-791	signless, 443	Suitors, 204, 343
by depth-first search, 787–789	Stirling numbers of the second kind, 430	optimal for, 343
definition of, 785	Strategies	Sum(s)
degree-constrained, 806 distance between, 797	minmax, 767, 804 proof(, 100, 106	Boolean, 811–812, 821, 843
in IP multicasting, 786	Strategy	of first n positive integers, 315 of first n positive integers, 317
maximum, 802	proof, 85	of geometric progressions, 318–319
minimum, 797–802, 804	Strictly decreasing function, 143	of subsets, 793
rooted, 797	Strictly decreasing sequence, 403	Sum-of-products expansions, 820-821, 843
Sparse graphs, 670, 802	Strictly increasing function, 143	simplifying, 828–840

	Total	Total and vive 610 622
Summation index of, 163	Test Miller's, 286	Total ordering, 619, 633 compatible, 628, 634
lower limit, 163	primality, 464–465	Tournament, 741
notation, 162, 186	probabilistic primality, 464–465	round-robin, 468, 649
shifting index of, 164	Tetromino, 109	single-elimination, 649
upper limit, 163	TeX, 208	Tournament sort, 196, 770
Summation formulae	The Art of Computer Programming (Donald Knuth),	Tower of Hanoi, 503–504
proving by mathematical induction, 315-318	196	Trace of recursive algorithm, 361, 362
Sum of multisets, 138	THE BOOK, 260	Tractable problem(s), 226, 232, 897 Trail, 679
Sum of terms of a geometric progression, 164	The Elements, 260	Transducer(s)
Sum rule, 386, 389, 439	The Elements (Euclid), 267 The lady or the tiger puzzle, 24	finite-state, 859
Sun-Tsu, 277	Theorem(s), 81, 110	Transformation
Superman, 80 Surjection, 143, 186	alternate names for, 81	affine, 296
Surjective (onto) function	Archimedean property, A-5	Transformations, 139
number of, 560–562, 566	art gallery, 735	Transient state, 901
Surjective function, 143	Bayes', 468-475	Transition function, 859
Switching circuits, hazard-free, 846	Bézout's, 269, 306	extended, 867 extending, 867
Symbol(s), 849	binomial, 415-418, 439	extension, 867
start, 849	Cantor's, 177	Transition rule(s)
terminal, 849	Chinese remainder, 277, 306	Turing machine, 889
Symbol, Landau, 206	Cook-Levin, 227	Transitive closure of relation, 597, 600-603, 634
Symbolic Logic (Venn), 120	Dirac's, 701	computing, 603-606
Symmetric closure of relation, 598, 634	extended binomial, 540 Fermat's last, 106	Transitive relation, 578-580, 633
Symmetric difference	Fermat's little, 281, 306	representing, using digraphs, 596
of two sets, 186	four color, 728–731, 737	Transitivity law, A-2
Symmetric matrix, 181, 186	fundamental, theorem of arithmetic, 258, 336–337	Translating
Symmetric relation, 577–578, 633	Green-Tao, 263	English sentences to logical expressions, 16–17, 62–63
representing	Hall's marriage, 659	mathematical statements to logical expressions, 60,
using digraphs, 595	handshaking, 653	61
using matrices, 591–592 Syntax, 847	Jordan curve, 338	nested quantifiers into English, 61-62
System	Kleene's, 880, 900	logical statements into English, 61-62
RSA, 299	Kuratowski's, 724–725, 737	Transpose of a matrix, 181, 186
Systems	Lamé's, 347	Transposition cipher, 297
hardware, 17	master, 532	decryption, 297
software, 17	methods of proof, 82	encryption, 297
Systems of linear congruence, 277-279	multinomial, 434 Ore's, 701, 707	Transposition error, 291 "Traveler's Dodecahedron,", 698, 700
System specifications, 17, 50	Pick's, 342	Traveling salesperson problem, 702, 709, 714–716,
consistent, 18	prime number, 262	736
	proving, automated, 114	Traversal of tree, 772-782, 804
T-shirts, 395	Schröder–Bernstein, 174	inorder, 773, 775, 778, 804
Table 100	Wilson's, 285	level-order, 806
truth, 4, 109 Table(s)	Theory, naive set, 118	postorder, 773, 776–778, 804
state	Theory, Ramsey, 404	preorder, 773–775, 778, 804
for finite-state machine, 860	Thesis, Church–Turing, 893	Tree derivation, 899
Table, circular, 394	Thickness of a graph, 726	parse, 899
Table membership, 186	Threshold function, 845	Tree(s), 745–802
Tao, Terence, 263	Threshold gate, 845 Threshold value, 845	m-ary, 748, 804
Tape	Thue, Axel, 849	complete, 756
Turing machine, 889	Tic-tac-toe, 766	height of, 754–755
Tautology, 25, 110	Tiger, 24	applications of, 757–769
Tee-shirts, 395	Tiling(s), 103	as models, 749–752
Telephone call graph, 682	Tiling of checkerboard, 326	AVL, 808
Telephone calls, 646	Time complexity, 219, 232	binary, 352–353, 748, 749 extended, 352
Telephone lines	average-case time, 232	full, 352–353
computer network with diagnostic, 642	average case, 220	binary search, 757–759, 804
computer network with multiple, 642	of algorithm for finding maximum, 219	binomial, 805
computer network with multiple one-way, 642	of linear search algorithm, 220	caterpillar, 807
computer network with one-way, 643	worst case, 220, 232	decision, 760-762, 804
Telephone network, 646, 682 Telephone number, 646	Too down parsing 853	definition of, 746
Telephone numbering plan, 387	Top-down parsing, 853 Top-logical sorting, 627–629, 634	derivation, 852–854
Template for proofs by mathematical induction, 329	Topological sorting, 627–629, 634 Topology for local area network	extended binary, 352
"Ten Most Wanted" numbers, 262	hybrid, 661	family, 745
Terminals, 849	ring, 661	full m-ary, 748, 752, 804 full binary, 352
Terminal vertex, 594, 654	star, 661	game, 764–769
	· · · · · · · · · · · · · · · · · · ·	S
Terms of a sequence	Torus, 726	graceful, 807
Terms of a sequence closed formula for, 159	Torus, 726 Total expectation, law of, 492	graceful, 807 height-balanced, 808
•		

I-22 Index

Tree(s)—Cont.	specification, 889	Universe of discourse, 40, 110
parse, 852	string recognition by, 891	Unlabeled
properties of, 752–755	tape, 889	boxes, 428
quad, 809	transition rules, 889	objects, 428 Unless, 6
rooted, 351, 747–749	types of, 893	expressing conditional statement using, 7
S_k -tree, 806 B-tree of degree k , 805	Twin prime conjecture, 264	Unsatisfiable compound proposition, 30
balanced, 753, 804	Twin primes, 264 Two's complement representations, 256	Unsolvable problem, 232, 895, 900
binomial, 805	Two-dimensional array, 662–663	Unsolvable problems, 226
decision trees, 760–762	Two children problem, 498	UPC check digit, 290
definition of, 803	Type, 117	Upper bound, A-2
height of, 753, 804	Type 0 grammar, 851, 899	of lattice, 637
level order of vertices of, 806	Type 1 grammar, 851, 899	of poset, 625, 634
ordered, 749, 804, 806	Type 2 grammar, 851, 899	Upper limit of a summation, 163
rooted Fibonacci, 757	Type 3 grammar, 851, 883, 899	Upper triangular matrix, 231
spanning, 785–795, 804		Utilities-and-houses problem, 718
definition of, 785	U. S. Coast Survey, 38	Uzbekistan, 192
degree-constrained, 806	Ulam's problem, 536	V 6.04.110
distance between, 797	Ulam, Stanislaw, 536	Vacuous proof, 84, 110
in IP multicasting, 786	Ulam numbers, 188	Valid argument, 69, 110
maximum, 802	Unary representations, 892	Valid argument form, 70, 110
minimum, 797-802, 804	Uncomputable function, 175, 186, 896, 900	Valid partner, 234 Value
rooted, 797	Uncountability	truth, 3, 109
Tree-connected network, 751-752	set of real numbers, 173	Value(s)
Tree-connected parallel processors, 751-752	Uncountable set, 186	expected, 477–480, 491, 494
Tree diagrams, 394-395, 439	Undecidable problem, 895	in hatcheck problem, 495
Tree edges, 788	Undefined values	linearity of, 477–484, 494
Tree traversal, 772–782, 804	of partial function, 152	of inversions in permutation, 482-484
inorder, 773, 775, 778, 804	Underlying undirected graph, 654, 736	final, A-14
postorder, 773, 776-778, 804	Undirected edges, 644, 735	initial, A-14
preorder, 773-775, 778, 804	of simple graph, 643	of tree, 767
Trial division, 258	Undirected graphs, 644, 653, 735	of vertex in game tree, 767-769, 804
Triangle inequality, 108	connectedness in, 681–685	threshold, 845
Triangle, Pascal's, 419, 439	Euler circuit of, 694	Vandermonde's identity, 420-421
Triangulation, 338	Euler path of, 698	Vandermonde, Alexandre-Théophile, 420
Trichotomy Law, A-2	orientation of, 740	Variable(s)
Tricks, magic, 20	paths in, 679, 736	Boolean, 11, 110, 814, 820, 843
Triomino(es), 105, 326, 333	underlying, 654, 736	bound, 44, 110
Right, 105, 333	Unicasting, 786	free, 44, 110
straight, 105	Unicorns, 112	propositional, 2, 109
Trivial proof, 84, 110	Unicycle, 812	random, 454, 460–461 covariance of, 494
True negative, 471	Uniform distribution, 454, 494	definition of, 494
True positive, 471 Truth set	Unimodal sequence, 568 Union	distribution of, 460, 494
of a predicate, 125	of graphs, 664	expected values of geometric, 477–480
Truth table(s), 4, 109	of three finite sets, number of elements in,	geometric, 484–485
for biconditional statements, 9	554–556, 566	geometric expected values of, 491, 494
for conditional statement, 6	of two finite sets, number of elements in, 553, 565	independent, 485-487, 494
for conjuction, 4	Union of	indicator, 492
for disjunction, 4	fuzzy sets, 138	standard deviation of, 487
for exclusive or, 6	Union of a collection of sets, 133	variance of, 477-480, 494
for logical equivalences, 27	Union of multisets, 138	statement, 2
for negation, 4	Union of sets, 127, 185	Variance, 477, 487-490, 494
for XOR, 6	Uniqueness proof, 110	Veitch, E. W., 830
of compound propositions, 10	Uniqueness quantifier, 44	Vending machine, 858–859
Truth value, 3, 109	Uniquness	Venn, John, 118, 120
of implication, 6	proof, 99	Venn diagrams, 118, 185
Tukey, John Wilder, 11	Unit (Egyptian) fraction, 380	Verb, 848
coining words, 11	Unit-delay machine, 861–862	Verb phrase, 848
Turing, Alan Mathison, 226, 886	unit-delay machine, 861	Vertex (vertices), 594
Turing Award, 854	United States Coast Survey, 38	adjacent, 651, 654, 735 ancestor of, 747, 803
Turing machine, 847, 886, 888, 889, 893, 899	Unit property, in Boolean algebra, 815	basis, 691
computing functions with, 892-893	UNIVAC, 872	child of, 747, 749, 803
control unit, 889	Universal quantification, 110	connecting, 651
definition of, 889	Universal address system, 772-773	connectivity, 684
final state, 891	Universal generalization, 76	counting paths between, 688–689
halts, 891	Universal instantiation, 75	cut, 683, 684
in computational complexity, 894	Universal modus ponens, 77	degree of, 652
initial position, 889	Universal modus tollens, 77	degree of, in undirected graph, 652
initial state, 889	Universal product code (UPC), 290	descendant of, 747, 804
nondeterministic, 893, 899	Universal quantification, 40	distance between, 741
recognition of nonregular set, 891	Universal quantifier, 40	eccentricity of, 757
sets recognized by, 891, 892	Universal set, 118, 185	end, 654

WAVES, Navy, 872 Weakly connected graphs, 686 Witnesses to a big- ${\cal O}$ relationship, 232 WLOG (without loss of generality), 95 Vertex (vertices)—Cont. in-degree of, 654, 736 Word, 849 Word and Object (Quine), 839 independent set of, 741 Web crawlers, 646 Web graph, 646-647, 794 initial, 594, 654 World's record, for twin primes, 264 World Cup soccer tournament, 415 strongly connected components of, 686 interior, 603 internal, 748, 804 Web page(s), 646, 686, 794 World population, 168 World Wide Web graph, 646–647 isolated, 652, 736 searching, 18 level of, 753, 804 Web spiders, 794 Weighted graphs, 736 minimum spanning tree for, 798–802 shortest path between, 707–714 level order of, 806 number of, of full binary tree, 355 Worst-case complexity insertion sort, 222 of directed graph, 643, 654 of directed multigraph, 644 of binary search, 220 traveling salesperson problem with, 714-716 of bubble sort, 221 of multigraph, 642 Well-formed expressions, 354 Worst-case time complexity, 232 of polygon, 338 Well-formed formula, 350 Worst case of pseudograph, 643 for compound propositions, 354 time complexity, 220 of simple graph, 642, 668 in prefix notation, 784 of undirected graph, 644, 652, 654 out-degree of, 654, 736 of operators and operands, 351 structural induction and, 354 XML, 855, 858 XOR, 110 parent of, 747, 803 Well-founded induction, principle of, 635 pendant, 652, 736 Well-founded poset, 632 Yahoo, 794 sibling of, 747, 803 Well-ordered induction, 634 Yes-or-no problems, 894 terminal, 594, 654 principle of, 620 value of, in game tree, 767-769, 804 Well-ordered set, 381, 620, 633 Zebra puzzle, 24 Well-ordering property, 340-341, 378, A-5 Vertex set, 338 Zermelo-Fraenel axioms, 176 bipartition of, 656 WFF'N PROOF, The Game of Modern Logic (Allen), Very large scale integration (VLSI) graphs, 744 Vigenère cipher, 304 Zero-one matrices 80, 114 Boolean product of, 182 Wheels, 655, 736 join of, 181 Wiles, Andrew, 107 cryptanalysis, 305 Williamson, Malcolm, 302 meet of, 181 Vocabulary, 849, 899 of transitive closure, 602–603 representing relations using, 591–594 Zero–one matrix, 181 "Voyage Around the World" Puzzle, 700 Wilson's theorem, 285 Winning strategy Walk, 679 for chomp, 98 Without loss of Generality (WLOG), 95, 110 closed, 679 Wall Street, 198 Zero-one matrix, 186 Zero property, in Boolean algebra, 815 Ziegler's Giant Bar, 208 Witness(es) to big-O relationship, 205, 232 to an existence proof, 96 Warshall's algorithm, 603–606 Zodiac, signs of, 441 Warshall, Stephen, 603, 604