Конспект по матанализу за 4-й семестр.

Автор: Эмиль

31 марта 2019 г.

Это конспект по матанализу за 4-й семестр. Любые предложения и сообщения об ошибках приветствуются, писать автору: t.me/buraindo

1 Поверхность

1.1 Поверхность

 $\overrightarrow{r}=\overrightarrow{r}(t)$ - кривая - отображение промежутка $<\alpha,\beta>\to R^3$ (или R^2). $\overrightarrow{r}=\overrightarrow{r}(u,v)$ - поверхность - отображение области $\Omega\subset R^2\to R^3(x,y,z)$. Записывается $\overrightarrow{r}=(x(u,v),y(u,v),z(u,v))$.

Для всех рассуждений будем предполагать, что x,y,z имеют непрерывные производные, а так же $rank\begin{bmatrix} x_u & y_u & z_u \\ x_v & y_v & z_v \end{bmatrix} = 2.$

Если ранг равен 2, то поверхность назовем "хорошей", иначе, если ранг равен 1, то "плохой".

И тогда будем говорить, что $\overrightarrow{r}(t)$ - гладкая.

 $\Omega \to \overrightarrow{r}(\Omega)$ - образ.

Если Ω отображается на свой образ $\overrightarrow{r}(\Omega)$ взаимно-однозначно, то $\overrightarrow{r}(\Omega)$ - **простая** поверхность.

ПРИМЕР:

 $\overline{z = x^2 + y^2}$ - параболоид, тогда $\overrightarrow{r} = (x, y, x^2 + y^2)$.

В общем виде это задание будет выглядеть так:

$$\overrightarrow{r} = (x, y, f(x, y))$$

1.2 Край поверхности

Пусть Ω - ограниченная область, $\overrightarrow{\Omega}$ - замыкание = $\Omega \cup \partial \Omega$ (область плюс её граница).

Рассмотрим теперь $\partial\Omega$ - границу Ω :

 $\partial\Omega:(u(t),v(t))$ - какая-то линия.

 $\overrightarrow{r}(u,v)=\overrightarrow{r}(u(t),v(t))$ - кривая, **край** поверхности, являющийся образом $\partial\Omega$.

Будем обозначать за Σ саму поверхность $\overrightarrow{r}(u,v)$, а за $\partial \Sigma$ её край - $\overrightarrow{r}(u(t),v(t))$.

1.3 Почти простая поверхность

Определение: будем называть поверхность $\Omega \to \overrightarrow{r}(u,v)$ почти простой, если найдется такая исчерпывающая последовательность Ω_n , для которой каждая $\Omega_n \to \overrightarrow{r}(u,v)$ - простая поверхность.

Например, сфера и конус - не простые поверхности, но их можно немного изменить, чтобы они стали почти простыми:

Сфера:

Вырежем из северного и южного полюсов сферы кружочки, а затем разрежем её от одного кружочка до другого. Этим действием мы немного изменили промежутки принимаемых углами φ и θ значений в сферических координатах, к которым мы и перейдем. Таким образом, теперь промежутки допустимых значений:

$$\frac{1}{n} \le \varphi \le 2\pi - \frac{1}{n}$$

$$\frac{1}{n} \le \theta \le \pi - \frac{1}{n}$$

И теперь новая поверхность является простой. Конус:

Вырежем вершину конуса и разрежем его по вертикали. Этим действием мы немного изменили промежутки допустимых значений для радиуса rи угла φ в цилиндрических координатах, к которым мы и перейдем. Таким образом, теперь промежутки допустимых значений:

$$\frac{1}{n} \le r \le n$$

$$\frac{1}{n} \le \theta \le 2\pi - \frac{1}{n}$$

И теперь новая поверхность является простой.

1.4 Функции, задающие одну и ту же поверхность

Пусть даны Ω и Ω' , а так же соответствия u=u(u',v'),v=v(u',v'). Кроме того, пусть якобиан $\begin{bmatrix} u_{u'} & u_{v'} \\ v_{u'} & v_{v'} \end{bmatrix}$ не равен 0 (то есть, существует обратная функция).

Это значит, что Ω отображается на Ω' взаимно-однозначно.

В таком случае будем считать, что

$$\overrightarrow{r}(u,v) = \overrightarrow{r}(u(u^{'},v^{'}),v(u^{'},v^{'})) = \overrightarrow{\varrho}(u^{'},v^{'}) - \Sigma$$

(задают одну и ту же поверхность).

1.5 Координатные кривые

Зафиксируем одну из координат, например, $u = u_0$, и будем менять v от $\alpha(u_0)$ до $\beta(u_0)$. Получим кривую $\overrightarrow{r}(u_0,v)$.

Аналогично, если зафиксировать $v = v_0$, то зададим кривую $\overrightarrow{r}(u, v_0)$.

Эти две кривые называются координатными кривыми.

1.6 Нормаль

Теперь рассмотрим \overrightarrow{r}_u , \overrightarrow{r}_v - касательные к кривой. Пусть $A=\begin{bmatrix}x_u&y_u&z_u\\x_v&y_v&z_v\end{bmatrix}$, тогда если rankA=2, то векторное произведение $\overrightarrow{r}_u\times\overrightarrow{r}_v\neq 0$.

Результат этого векторного произведения $\overrightarrow{r}_u \times \overrightarrow{r}_v = \overrightarrow{n}$ является вектором **нормали** к поверхности Σ .

Убедимся, что нормаль не зависит от параметризации кривой:

Дано взаимно-однозначное отображение $\Omega \iff \Omega'$ и $\overrightarrow{r}(u,v) = \overrightarrow{\rho}(u',v')$.

Посчитаем $\overrightarrow{\varrho}_{u'} \times \overrightarrow{\varrho}_{v'}$: Вспомним, что $\overrightarrow{\varrho}(u',v') = \overrightarrow{r}(u(u',v'),v(u',v'))$, это значит, что

$$\overrightarrow{\varrho}_{u'} = \overrightarrow{r}_u \frac{\partial u}{\partial u'} + \overrightarrow{r}_v \frac{\partial v}{\partial u'},$$

$$\overrightarrow{\varrho}_{v'} = \overrightarrow{r}_u \frac{\partial u}{\partial v'} + \overrightarrow{r}_v \frac{\partial v}{\partial v'}$$

Перемножим, учитывая, что векторное произведение коллинеарных векторов равно нулю:

$$\overrightarrow{\varrho}_{u'} \times \overrightarrow{\varrho}_{v'} = (\overrightarrow{r}_u \times \overrightarrow{r}_v) \frac{\partial u}{\partial u'} \frac{\partial v}{\partial v'} + (\overrightarrow{r}_v \times \overrightarrow{r}_u) \frac{\partial v}{\partial u'} \frac{\partial u}{\partial v'} =$$

$$= (\overrightarrow{r}_u \times \overrightarrow{r}_v) (\frac{\partial u}{\partial u'} \frac{\partial v}{\partial v'} - \frac{\partial v}{\partial u'} \frac{\partial u}{\partial v'}) (\text{поменяли знак}) = (\overrightarrow{r}_u \times \overrightarrow{r}_v) \begin{bmatrix} u_{u'} & u_{v'} \\ v_{v'} & v_{v'} \end{bmatrix}$$

Но этот якобиан не равен нулю!

Это значит, что получили тот же вектор нормали, у которого могла измениться лишь длина или направление, что и требовалось доказать.

1.7 Площадь поверхности

Даны $\Omega, \overrightarrow{r} = \overrightarrow{r}(u, v)$.

Найдем дифференциал этого вектора:

$$\begin{split} d\overrightarrow{r} &= \overrightarrow{r}_u du + \overrightarrow{r}_v dv \\ d\overrightarrow{r}^2 &= |d\overrightarrow{r}|^2 = \overrightarrow{r}_u^2 du^2 + 2\overrightarrow{r}_u \overrightarrow{r}_v du dv + \overrightarrow{r}_v^2 dv^2 \end{split}$$

Обозначим $E = \overrightarrow{r}_u^2, F = \overrightarrow{r}_u \overrightarrow{r}_v, G = \overrightarrow{r}_v^2.$

 $d\overrightarrow{r}^2$ называется первой квадратичной формой поверхности и для неё справедливо свойство:

 $d\overrightarrow{r}^2 > 0$ (положительно определена)ю

Для того, чтобы это выполнялось (для нашей формы $ax^2 + 2bxy + cy^2$), нужно:

$$\begin{cases} a > 0 \\ c > 0 \\ ac - b^2 > 0 \end{cases}$$

В нашем случае второго дифференциала вектора \overrightarrow{r} это значит, что требуется выполнение следующих условий:

$$\begin{cases} E > 0 \\ G > 0 \\ EG - F^2 > 0 \end{cases}$$

Первые два условия очевидны, проверим третье:

$$|\overrightarrow{r}_{u} \times \overrightarrow{r}_{v}| = |\overrightarrow{r}_{u}||\overrightarrow{r}_{v}|\sin\varphi \ (\varphi \neq 0)$$

$$\overrightarrow{r}_{u} \cdot \overrightarrow{r}_{v} = |\overrightarrow{r}_{u}||\overrightarrow{r}_{v}|\cos\varphi$$

$$|\overrightarrow{r}_{u} \times \overrightarrow{r}_{v}|^{2} + (\overrightarrow{r}_{u} \cdot \overrightarrow{r}_{v})^{2} = |\overrightarrow{r}_{u}|^{2}|\overrightarrow{r}_{v}|^{2}$$

Заметим, что правая часть это EG, а второе слагаемое в левой части это

Тогда $|\overrightarrow{r}_u \times \overrightarrow{r}_v|^2 = EG - F^2 > 0$, так как $\overrightarrow{r}_u \times \overrightarrow{r}_v \neq 0$, что и требовалось доказать.

Площадь поверхности

 $S(\Sigma) = \iint_{\Omega} |\overrightarrow{r}_u \times \overrightarrow{r}_v| \ du dv$ - площадь поверхности.

Свойства площади:

1) Не зависит от параметризации.

Пусть дали две параметризации:

$$\overrightarrow{r}(u,v) = \overrightarrow{\varrho}(u',v')$$

$$S(\Sigma) = \iint_{\Omega'} |\overrightarrow{\varrho}_{u'} \times \overrightarrow{\varrho}_{v'}| \ du'dv'$$

Вспомним, что $|\overrightarrow{\varrho}_{u'} \times \overrightarrow{\varrho}_{v'}| = |(\overrightarrow{r}_u \times \overrightarrow{r}_v)| |I(\frac{u,v}{u'v'})|.$ Подставим это в интеграл:

$$S(\Sigma) = \iint_{\Omega'} |\overrightarrow{r}_{u} \times \overrightarrow{r}_{v}| |I| du' dv' = \iint_{\Omega} |\overrightarrow{r}_{u} \times \overrightarrow{r}_{v}| du dv$$

Получили то же самое.

2) Рассмотрим случай, когда сама поверхность - плоскость. Сможем ли по той же формуле посчитать площадь? Проверим это, площадь это $\iint_{\Omega} \ du dv.$

Теперь посчитаем $S(\Omega)$:

 Σ задается при помощи $\overrightarrow{r} = (x, y, 0)$.

Тогда
$$\overrightarrow{r}_x = (1, 0, 0)$$
 $\overrightarrow{r}_y = (0, 1, 0).$

$$\begin{array}{ccc} T_y = (0, 1, 0). \\ & \downarrow & \downarrow \\ & \downarrow & \downarrow \end{array}$$

 $A \overrightarrow{r}_x \times \overrightarrow{r}_y = \begin{bmatrix} i & j & k \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \overrightarrow{k}, \Rightarrow |\overrightarrow{r}_x \times \overrightarrow{r}_y| = 1.$

Тогда $S(\Sigma) = \int \int_{\Omega} |\overrightarrow{r}_x \times \overrightarrow{r}_y| \ du dv = \iint_{\Omega} du dv$, что и требовалось доказать.

3) Площадь аддитивна по отношению к поверхности. (Площадь поверхности, составленной из гладких кусков, равно сумме площадей).

4)
$$z = f(x, y)$$
.
 $\overrightarrow{r} = (x, y, f(x, y))$.
 $\overrightarrow{r}_x = (1, 0, f_x)$.
 $\overrightarrow{r}_y = (0, 1, f_y)$.

$$\overrightarrow{r}_x \times \overrightarrow{r}_y = \begin{bmatrix} i & j & k \\ 1 & 0 & f_x \\ 0 & 1 & f_y \end{bmatrix} = i(-f_x) - jf_y + \overrightarrow{k}$$
.

$$|\overrightarrow{r}_x \times \overrightarrow{r}_y| = \sqrt{EG - F} = \sqrt{f_x^2 + f_y^2 + 1}$$

примеры:

1) Посчитать площадь:

$$x^2 + y^2 + z^2 - R^2,$$

где $z \geq 0$.

Это половина сферы, которую вырезает цилиндр:

$$x^{2} + y^{2} = Rx, \Rightarrow x^{2} - Rx + \frac{x^{2}}{4} + y^{2} = (\frac{R}{2})^{2}, \Rightarrow (x - \frac{R}{2})^{2} + y^{2} = (\frac{R}{2})^{2}$$

Это выглядит так:

Перейдем в сферические координаты:

$$\begin{cases} x = R\cos\varphi\sin\theta \\ y = R\sin\varphi\sin\theta \\ z = R\cos\theta \end{cases}$$

Зададим поверхность:

$$\overrightarrow{r} = (R\cos\varphi\sin\theta, R\sin\varphi\sin\theta, R\cos\theta)$$

Посчитаем частные производные по φ и θ :

$$\overrightarrow{r}_{\omega} = (-R\sin\varphi\sin\theta, R\cos\varphi\sin\theta, 0)$$

 $\overrightarrow{r}_{\varphi} = (-R\sin\varphi\sin\theta, R\cos\varphi\sin\theta, 0)$ $\overrightarrow{r}_{\theta} = (R\cos\varphi\cos\theta, R\sin\varphi\cos\theta, -R\sin\theta)$

Теперь посчитаем E, F, G:

$$E = \overrightarrow{r}_{c}^2 = R^2 \sin^2 \varphi \sin^2 \theta + R^2 \cos^2 \varphi \sin^2 \theta = R^2 \sin^2 \theta.$$

$$E = \overrightarrow{r}_{\varphi}^{2} = R^{2} \sin^{2} \varphi \sin^{2} \theta + R^{2} \cos^{2} \varphi \sin^{2} \theta = R^{2} \sin^{2} \theta.$$

$$F = \overrightarrow{r}_{\theta}^{2} = R^{2} \cos^{2} \varphi \cos^{2} \theta + R^{2} \sin^{2} \varphi \cos^{2} \theta + R^{2} \sin^{2} \theta = R^{2}.$$

F = 0 (если раскрыть скобки, то и правда получится 0).

$$\sqrt{EG - F^2} = R^2 \sin \theta.$$

Тогда
$$S(\Sigma) = \iint_{\Omega} R^2 \sin \theta \ d\varphi d\theta = 2R^2 \int_0^{\frac{\pi}{2}} d\varphi \int_0^{?} \sin \theta \ d\theta$$
.

Осталось вычислить верхний предел интегрирования для θ , для этого нужно подставить сферические координаты в уравнение цилиндра:

$$R^2 \cos^2 \varphi \sin^2 \theta + R^2 \sin^2 \varphi \sin^2 \theta = R^2 \cos \varphi \sin \theta.$$

Отсюда либо $\sin \theta = 0$, либо $\sin \theta = \cos \varphi$.

Первое нас не интересует, а вот второе можно решить и получить ответ: $\theta = \frac{\pi}{2} - \varphi$.

Тогда
$$S(\Sigma) = \iint_{\Omega} R^2 \sin \theta \ d\varphi d\theta = 2R^2 \int_0^{\frac{\pi}{2}} d\varphi \int_0^{\frac{\pi}{2} - \varphi} \sin \theta \ d\theta = R^2(\pi - 2).$$

2) Посчитать площадь поверхности:

 $z = x^2 + y^2$. Этот параболоид бесконечен, поэтому чтобы было, что считать, вырежем из него кусок $x^2 + y^2 = R^2$ и найдем площадь.

Вот как это выглядит:

Для этого перейдем к цилиндрическим координатам:

$$\begin{cases} x = \varrho \cos \varphi \\ y = \varrho \sin \varphi \\ z = \varrho^2 \end{cases}$$

Зададим поверхность:

$$\overrightarrow{r} = (\varrho \cos \varphi, \varrho \sin \varphi, \varrho^2).$$

Посчитаем частные производные по ρ и φ .

$$\overrightarrow{r}_{\varrho} = (\cos \varphi, \sin \varphi, 2\varrho).$$

$$\overrightarrow{r}_{\varphi} = (-\varrho \sin \varphi, \varrho \cos \varphi, 0).$$
 Теперь посчитаем E, F, G :
$$E = \overrightarrow{r}_{\varrho}^2 = 1 + 4\varrho^2.$$

$$F = \overrightarrow{r}_{\varphi}^2 = \varrho^2.$$

F=0 (если раскрыть скобки, то и правда получится 0). $\sqrt{EG-F^2}=\varrho\sqrt{1+4\varrho^2}.$

$$S(\Sigma) = \iint_{\Omega} \varrho \sqrt{1 + 4\varrho^2} \ d\varrho d\varphi = \int_{0}^{2\pi} d\varphi \int_{0}^{R} \varrho \sqrt{1 + 4\varrho^2} \ d\varrho$$

Важная информация про почти простые поверхности:

<u>Утверждение:</u> если Σ - почти простая, а Ω_n - искомая исчерпывающая последовательность, то:

$$S(\Sigma) = \iint_{\Omega} |\overrightarrow{r'}_u \times \overrightarrow{r'}_v| \ du dv = \lim_{n \to \infty} \iint_{\Omega_n} |\overrightarrow{r'}_u \times \overrightarrow{r'}_v| \ du dv$$

2 Поверхностные интегралы

2.1 Поверхностный интеграл первого рода

Пусть Σ - простая и гладкая поверхность. Дана F(x,y,z) - непрерывная функция, определенная на Σ .

Поверхностным интегралом I рода от функции F по поверхности Σ называется:

$$\iint_{\Omega} F(x(u,v),y(u,v),z(u,v)) |\overrightarrow{r}_{u} \times \overrightarrow{r}_{v}| \ dudv = \iint_{\Sigma} F(x,y,z) ds(d\sigma)$$

Свойства поверхностного интеграла I рода:

- 1) Не зависит от параметризации поверхности (доказывается так же, как независимость площади поверхности от параметризации).
- 2) Аддитивность и линейность.
- 3) Можно дать физическую интерпретацию:

Если $F(x,y,z) \ge 0$, и это плотность слоя, "намазанного" на поверхность, то $\iint F d\sigma$ - масса слоя.

Вместо $d\sigma$ можно написать $\sqrt{EG-F^2}\ dudv$.

2.2Поверхностный интеграл второго рода

Пусть Σ - двусторонняя (бывают односторонние поверхности, например, лист Мёбиуса и бутылка Клейна (Кляйна)). Выберем сторону (это означает, выберем, куда "смотрит" нормаль).

У нас есть поверхностный интеграл $\iint_{\Sigma} (\overrightarrow{F}, \overrightarrow{n}_0) d\sigma$, где $\overrightarrow{F} = (P(x, y, z), Q(x, y, z), R(x, y, z))$. Если поменять сторону, то поменяется знак за счёт смены направления вектора нормали на противоположное.

Отсюда вытекает свойство:

$$\iint_{\Sigma} (\overrightarrow{F}, \overrightarrow{n}_0) \ d\sigma = -\iint_{\Sigma} (\overrightarrow{F}, \overrightarrow{n}_0^-) \ d\sigma$$

2.3 Как считать поверхностный интеграл второго ро-

Рассмотрим $(\overrightarrow{F}, \overrightarrow{n}_0) = \overrightarrow{F} \frac{\overrightarrow{r}_u \times \overrightarrow{r}_v}{|\overrightarrow{r}_u \times \overrightarrow{r}_v|} |\overrightarrow{r}_u \times \overrightarrow{r}_v| \ dudv = (\overrightarrow{F} \cdot \overrightarrow{r}_u \cdot \overrightarrow{r}_v) \ dudv$ (смешанное произведение)

Посчитаем его:

$$\begin{bmatrix} R & Q & R \\ x_u & y_u & z_u \\ x_v & y_v & z_v \end{bmatrix} \ dudv = (P \frac{\partial(y,z)}{\partial(u,v)} + Q \frac{\partial(z,x)}{\partial(u,v)} (\text{поменяли знак}) + R \frac{\partial(x,y)}{\partial(u,v)}) \ dudv$$

Рассмотрим $PI(\frac{y,z}{u,v})$ dudv:

Если угол между вектором нормали и осью x острый, то I > 0, иначе I < 0.

Тогда для острого угла $\iint PI \ dudv = \iint_{D_{yz}} P(x(y,z),y,z) \ dydz$. А для тупого угла $\iint PI \ dudv = -\iint_{D_{yz}} P(x(y,z),y,z) \ dydz$.

Аналогично и другие слагаемые, тогда запишем сумму: $P\frac{\partial(y,z)}{\partial(u,v)}\ dudv + Q\frac{\partial(z,x)}{\partial(u,v)}\ dudv + R\frac{\partial(x,y)}{\partial(u,v)}\ dudv = P\ dydz + Q\ dzdx + R\ dxdy.$ Тогда

$$\iint_{\Sigma} (\overrightarrow{F}, \overrightarrow{n}_0) \ d\sigma = \iint_{\Sigma} P \ dydz + Q \ dzdx + R \ dxdy$$

ПРИМЕР:

Дан $\iint_{\Sigma} x \, dy dz$, и вырезан прямоугольник z+y-z=1, верхняя сторона.

Посчитаем:

 $\iint_{\Sigma} x \ dy dz = -\iint_{\Sigma} (z + y - 1) \ dy dz$ (так как угол между нормалью и отсутствующей осью (в данном случае ось x) тупой).

$$-\iint (z+y-1) \ dydz = -\int_0^1 dy \int_0^{1-y} (z+(y-1)) \ dz = \frac{1}{6}$$

3 Теория поля

 $\Omega \subset \mathbb{R}^3$.

І. Скалярное поле.

Если $\forall M \in \Omega \ \exists f(M)$ - число, тогда у нас на области Ω задано скалярное поле f(M) = f(x,y,z).

Дифференцируемость.

Определение: будем называть f(M) дифференцируемым в точке M_0 , если существует такой вектор \overrightarrow{c} , что

$$\triangle f(M_0) = \triangle \overrightarrow{r} \cdot \overrightarrow{c} + o(||\overrightarrow{MM_0}||)$$

$$\overrightarrow{c} = gradf(M_0) = (\frac{\partial f(M_0)}{\partial x}, \frac{\partial f(M_0)}{\partial y}, \frac{\partial f(M_0)}{\partial z})$$

Гуманитарии могут делать так:

 $\sin x + \cos x = (\sin + \cos)x.$

Мы сделаем так для градиента, но осознанно и опираясь на законы:

$$(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y},\frac{\partial f}{\partial z})=(\frac{\partial}{\partial x},\frac{\partial}{\partial y},\frac{\partial}{\partial z})f$$

Обозначим теперь $(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z})$ за ∇ (произносится "набла").

Это символический вектор, его координаты это вроде числа, но на самом

деле, эта набла - целиком оператор и применяется к чему-то. Тогда $(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}) = \nabla f$. $\overrightarrow{c} = \nabla f$, тогда

$$\triangle f = \triangle \overrightarrow{r} \cdot \nabla f = (\triangle \overrightarrow{r} \cdot \nabla) f + o(||\overrightarrow{MM_0}||)$$

Производная по направлению.

$$\frac{\partial f(M_0)}{\partial l} = \lim_{t \to 0} \frac{f(M_0 + t \overrightarrow{l_0}) - f(M_0)}{\partial t}$$

Здесь t>0, а $\overrightarrow{l_0}$ - орт направления.

Заметим, что числитель - приращение, так что можно переписать в виде:

$$\frac{\partial f(M_0)}{\partial l} = \lim_{t \to 0} \frac{(t \overrightarrow{l_0} \cdot \nabla + o(t))}{\partial t} = (\overrightarrow{l_0} \cdot \nabla)f$$

II. Векторное поле.

Если $\forall M \in \Omega \ \exists \overrightarrow{a}(M) = (P(x,y,z),Q(x,y,z),R(x,y,z)),$ тогда на области Ω задано векторное поле $\overrightarrow{a}(M) = (P(x,y,z), Q(x,y,z), R(x,y,z)).$ Дифференцируемость.

Определение: будем называть $\overrightarrow{a}(M)$ дифференцируемым в точке M_0 , если его приращение можно представить в виде:

$$\triangle \overrightarrow{a}(M) = \overrightarrow{a}(M) - \overrightarrow{a}(M_0) = L(\overrightarrow{r}) + o(||\overrightarrow{r}||)$$

Тогда

$$\triangle \overrightarrow{a}(M) = (\triangle \overrightarrow{r} \cdot \nabla) \overrightarrow{a} + o(||\overrightarrow{r}||)$$

$$\frac{\partial \overrightarrow{a}}{\partial l} = (\overrightarrow{l_0} \cdot \nabla) \overrightarrow{a}$$

$$\overrightarrow{d} = y \overrightarrow{i} + (xy + yz) \overrightarrow{j} + xyz \overrightarrow{k}$$

$$\overrightarrow{l} = (1, 1, 1), \overrightarrow{l_0} = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$$

$$\frac{\partial \overrightarrow{a}}{\partial l} = (\overrightarrow{l_0} \cdot \nabla) \overrightarrow{a}$$

$$1) (\overrightarrow{l_0} \cdot \nabla) \overrightarrow{a} = \frac{1}{\sqrt{3}} \frac{\partial}{\partial x} + \frac{1}{\sqrt{3}} \frac{\partial}{\partial y} + \frac{1}{\sqrt{3}} \frac{\partial}{\partial z}, \text{ и все это нужно применить к вектору}$$

$$\overrightarrow{a}.$$

$$2) (\overrightarrow{l_0} \cdot \nabla) \overrightarrow{a} - \text{рассмотрим результат покоординатно:}$$

$$(\overrightarrow{l_0} \cdot \nabla) a_x = (\frac{1}{\sqrt{3}} \frac{\partial}{\partial x}, \frac{1}{\sqrt{3}} \frac{\partial}{\partial y}, \frac{1}{\sqrt{3}} \frac{\partial}{\partial z}) y = \frac{1}{\sqrt{3}}$$

$$(\overrightarrow{l_0} \cdot \nabla) a_y = (\frac{1}{\sqrt{3}} \frac{\partial}{\partial x}, \frac{1}{\sqrt{3}} \frac{\partial}{\partial y}, \frac{1}{\sqrt{3}} \frac{\partial}{\partial z}) (xy + yz) = \frac{2y + x + z}{\sqrt{3}}$$

$$(\overrightarrow{l_0} \cdot \nabla) a_z = (\frac{1}{\sqrt{3}} \frac{\partial}{\partial x}, \frac{1}{\sqrt{3}} \frac{\partial}{\partial y}, \frac{1}{\sqrt{3}} \frac{\partial}{\partial z}) (xy) = \frac{yz + xz + xy}{\sqrt{3}}$$
Тогда
$$(\overrightarrow{l_0} \cdot \nabla) \overrightarrow{a} = \frac{1}{\sqrt{3}} \overrightarrow{i} + \frac{2y + x + z}{\sqrt{3}} \overrightarrow{j} + \frac{yz + xz + xy}{\sqrt{3}} \overrightarrow{k}.$$
Введем понятия:

Пусть дано поле $\overrightarrow{a} = \overrightarrow{a}(M) = (P, Q, R)$.

Определение: дивергенция поля:

$$\operatorname{div} \overrightarrow{a} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

Определение: **ротор** векторного поля:

$$rot \overrightarrow{a} = det \begin{bmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{bmatrix} = \overrightarrow{i} (\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}) + \overrightarrow{j} (\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}) + \overrightarrow{k} (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y})$$

Упростим формулы для div и rot:

 $div \overrightarrow{a} = (\nabla \cdot \overrightarrow{a})$ (скалярное произведение). $rot \overrightarrow{a} = (\nabla \times \overrightarrow{a})$ (векторное произведение).

Действия с ∇:

1)

$$\nabla(c_1 f_1 + c_2 f_2) = c_1 \nabla f_1 + c_2 \nabla f_2$$

2) Посчитаем $\nabla(f_1f_2)$:

$$\frac{\partial}{\partial x}(f_1 f_2) = \frac{\partial f_1}{\partial x} f_2 + \frac{\partial f_2}{\partial x} f_1$$

$$\frac{\partial}{\partial y}(f_1 f_2) = \frac{\partial f_1}{\partial y} f_2 + \frac{\partial f_2}{\partial y} f_1$$

$$\frac{\partial}{\partial z}(f_1 f_2) = \frac{\partial f_1}{\partial z} f_2 + \frac{\partial f_2}{\partial z} f_1$$

Будем иметь ввиду, что ∇ действует на поле, когда пишем следующим образом:

$$\nabla(\overset{\downarrow}{f_1}f_2)$$

Здесь ∇ действует на поле f_1 .

Тогда
$$\nabla(f_1f_2) = \nabla(\overset{\downarrow}{f_1}f_2) + \nabla(f_1\overset{\downarrow}{f_2}) = f_1\nabla f_2 + f_2\nabla f_1.$$

3) Посчитаем $\nabla(\overrightarrow{a_1}\times \overrightarrow{a_2})$:

Формально это смешанное произведение, тогда

$$\nabla(\overrightarrow{a_1}\times\overrightarrow{a_2}) = \nabla(\overrightarrow{a_1}\times\overrightarrow{a_2}) + \nabla(\overrightarrow{a_1}\times\overrightarrow{a_2}) + \nabla(\overrightarrow{a_1}\times\overrightarrow{a_2}) = \overrightarrow{a_2}(\nabla\times\overrightarrow{a_1}) - \overrightarrow{a_1}(\nabla\times\overrightarrow{a_2})$$

- 4) $qrad f = \nabla f$
- 5) $grad(f_1f_2) = f_1grad f_2 + f_2grad f_1$ 6) $div \overrightarrow{d} = \nabla \cdot \overrightarrow{d}$
- 7) $rot \overrightarrow{a} = \nabla \times \overrightarrow{a}$

8)
$$div(f \cdot \overrightarrow{a}) = \nabla(f \cdot \overrightarrow{a}) = \nabla(f \cdot \overrightarrow{a}) + \nabla(f \cdot \overrightarrow{a}) = \overrightarrow{a}\nabla f + f\nabla \overrightarrow{a} = \overrightarrow{a}grad f + fdiv \overrightarrow{a}$$

$$a \operatorname{grad} j + j \operatorname{aiv} a$$

$$9) \operatorname{div}(\overrightarrow{a_1} \times \overrightarrow{a_2}) = \nabla(\overrightarrow{a_1} \times \overrightarrow{a_2}) = \nabla(\overrightarrow{a_1} \times \overrightarrow{a_2}) + \nabla(\overrightarrow{a_1} \times \overrightarrow{a_2}) = \overrightarrow{a_2}(\nabla \times \overrightarrow{a_1}) - \overrightarrow{a_1}(\nabla \times \overrightarrow{a_2}) = \overrightarrow{a_2}\operatorname{rot}\overrightarrow{a_1} - \overrightarrow{a_1}\operatorname{rot}\overrightarrow{a_2}$$

$$10) \ rot(f\overrightarrow{a}) = \nabla \times (f\overrightarrow{a}) = \nabla \times (f\overrightarrow{a}) = \nabla \times (f\overrightarrow{a}) + \nabla \times (f\overrightarrow{a}) = (\nabla f) \times \overrightarrow{a} + f(\nabla \times \overrightarrow{a}) = grad \ f \times \overrightarrow{a} + f \ rot \ \overrightarrow{a}$$

$$11) \ rot(\overrightarrow{a_1} \times \overrightarrow{a_2}) = \nabla(\overrightarrow{a_1} \times \overrightarrow{a_2}) = \nabla \overrightarrow{a_1} \times \overrightarrow{a_2} + \nabla \overrightarrow{a_1} \times \overrightarrow{a_2} = (\overrightarrow{a_2} \nabla) \overrightarrow{a_1} - \overrightarrow{a_2} (\nabla \overrightarrow{a_1}) + \overrightarrow{a_1} (\nabla \overrightarrow{a_2}) - (\overrightarrow{a_1} \nabla) \overrightarrow{a_2} = (\overrightarrow{a_2} \nabla) \overrightarrow{a_1} - \overrightarrow{a_2} div \overrightarrow{a_1} + \overrightarrow{a_1} div \overrightarrow{a_2} - (\overrightarrow{a_1} \nabla) \overrightarrow{a_2}$$

12)
$$\operatorname{div}(\operatorname{grad} f) = \nabla \cdot (\nabla f) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = (\frac{\partial}{\partial x^2} + \frac{\partial}{\partial y^2} + \frac{\partial}{\partial z^2})f = \nabla^2 f = \Delta f.$$

 \triangle - оператор Лапласа, $\triangle = \nabla^2$.

- 13) $div(rot \overrightarrow{a}) = \nabla \cdot (\nabla \times \overrightarrow{a}) = 0.$
- 14) $rot(qrad\ f) = \nabla \times (\nabla \cdot f) = 0.$

Экскурс в физику - физический смысл ротора

Пусть дали твердое тело, оно вращается вокруг какой то оси, пусть по часовой стрелке:

 $|\overrightarrow{v}| = PM(\text{радиус}) \cdot \omega.$

Вектор $\overrightarrow{\omega} \times \overrightarrow{r}$ параллелен \overrightarrow{v} (1)

 $|\overrightarrow{v}| = \omega \cdot |\overrightarrow{r}| \sin \varphi = |\overrightarrow{\omega}| |\overrightarrow{r}| \sin(\pi - \varphi)$ (2)

Из (1) и (2) следует, что $\overrightarrow{v} = \overrightarrow{\omega} \times \overrightarrow{r}$

Посчитаем $rot(\overrightarrow{v})$:

 $rot(\overrightarrow{v}) = rot(\overrightarrow{\omega} \times \overrightarrow{r}) = \overrightarrow{\omega} div \overrightarrow{r} - \overrightarrow{r} div \overrightarrow{\omega} + (\overrightarrow{r} \nabla) \overrightarrow{\omega} - (\overrightarrow{\omega} \nabla) \overrightarrow{r}.$

 $\overrightarrow{\omega}$ зависит только от времени, следовательно, везде, где дифференцируем $\overrightarrow{\omega}$, будут нули:

 $div \overrightarrow{\omega} = 0, (\overrightarrow{r} \nabla) \overrightarrow{\omega} = 0.$

Тогда $rot \overrightarrow{v} = \overrightarrow{\omega} div \overrightarrow{r} - (\overrightarrow{\omega} \nabla) \overrightarrow{r} = 3\overrightarrow{\omega} - \overrightarrow{\omega} = 2\overrightarrow{\omega}$.

Таким образом, физический смысл ротора: удвоенная мгновенная угловая скорость, отсюда и его названия (ротор, вихрь).

4 Интегральные характеристики векторного поля

Дано векторное поле $\overrightarrow{a}=\overrightarrow{a}(M)$ в $\Omega,$ а так же l - простой кусочногладкий замкнутый контур из $\Omega.$

4.1 Циркуляция

<u>Определение:</u> **циркуляцией** векторного поля по замкнутому контуру l называется следующий интеграл второго рода:

$$\coprod = \int_{l} \overrightarrow{a} d\overrightarrow{r} = \int_{l} Pdx + Qdy + Rdz$$

4.2 Поток

Дана поверхность Σ .

<u>Определение:</u> **потоком** векторного поля по поверхности Σ называется следующий интеграл второго рода:

$$\prod = \iint_{\Sigma} \overrightarrow{a} \, \overrightarrow{n_0} ds$$

Приведем к привычному виду:

$$\prod = \iint_{\Sigma} \overrightarrow{d} \overrightarrow{n_0} ds = \iint_{\Sigma} P dy dz + Q dz dx + R dx dy$$

Физический смысл потока

Пусть есть $\overrightarrow{d} = \overrightarrow{v}$ - поле скоростей. Жидкость движется по какому-то пути, а затем мы ставим на этом пути решетку:

И сколько жидкости проходит через решетку за единицу времени? Возьмем в нашей решетке маленький кусок, из-за пренебрежимо малой величины можем считать его плоским. Тогда за единицу времени жидкость займет объем цилиндра с площадью основания, равной площади куска, и высотой, равной проекции \overrightarrow{v} на ось вращения.

$$V_{\mathrm{II}} = S \cdot |\overrightarrow{v}_{\mathrm{np}.\overrightarrow{n_0}}| = ds \overrightarrow{a} \overrightarrow{n_0} = d \prod$$

И поток будет равен приближенной сумме объемов по всем кусочкам, то есть интегралу.

5 Теорема Гаусса-Остроградского (Остроградского-Taycca)

Пусть есть ограниченная область $\Omega \subset \mathbb{R}^3$

Граница этой области - $\partial\Omega$ - кусочно-гладкая.

 \overrightarrow{n} - внешняя нормаль.

 $\overrightarrow{a} = \overrightarrow{a}(M), M \in \overrightarrow{\Omega}, \overrightarrow{a}$ непрерывно дифференцируемо в каждой точке. Утверждение (теорема Остроградского-Гаусса): выполняется равенство:

$$\iint_{\partial\Omega} \overrightarrow{d} \overrightarrow{n_0} ds = \iiint_{\Omega} div \overrightarrow{d} dx dy dz$$

Доказательство:

Предположим, что Ω односвязна и элементарна по всем координатам.

Посчитаем одно из слагаемых, например, интеграл по $\frac{\partial P}{\partial x}$:

$$\iiint_{\Omega} \frac{\partial P}{\partial x} dx dy dz = \iint_{D_{yz}} dy dz \int_{\psi_1(y,z)}^{\psi_2(y,z)} \frac{\partial P}{\partial x} =$$

$$=\iint_{D_{uz}} P(\psi_2(y,z), y, z) dy dz - \iint_{D_{uz}} P(\psi_1(y,z), y, z) dy dz = \int_{D_{uz}} P(\psi_2(y,z), y, z) dy dz$$

 $\iiint_{\Omega} \frac{\partial P}{\partial x} dx dy dz = \iint_{D_{yz}} dy dz \int_{\psi_1(y,z)}^{\psi_2(y,z)} \frac{\partial P}{\partial x} =$ $= \iint_{D_{yz}} P(\psi_2(y,z), y, z) dy dz - \iint_{D_{yz}} P(\psi_1(y,z), y, z) dy dz =$ $= \iint_{\Sigma_1} P(x,y,z) dy dz + \iint_{\Sigma_2} P(x,y,z) dy dz + 0 \text{ (интеграл по боковой по$ верхности равен нулю).

Здесь Σ_1 образована функцией $x=\psi_1(y,z),\; \Sigma_2$ образована функцией $x = \psi_2(y, z)$.

Тогда эта сумма - интеграл по всей границе (три слагаемых это интеграл по верхней части, нижней части и боковой поверхности), а значит, она равна

$$\iint_{\partial\Omega} P(x,y,z) dy dz$$

Аналогично доказывается для Q и для R.

5.1 Следствие из теоремы Остроградского-Гаусса

Возьмем непрерывно дифференцируемое векторное поле $\overrightarrow{d}=(P,Q,R)$ в открытой области $\Omega.$

Возьмем из этой области точку M_0 и окружим ее сферой $S(M_0)$. Обозначим за $V(M_0)$ шар, ограниченный сферой $S, V \subset \Omega$.

Запишем для сферы и шара формулу Остроградского-Гаусса:

$$\iint_{S(M_0)} \overrightarrow{a} \, \overrightarrow{n_0} ds = \iiint_{V(M_0)} div \, \overrightarrow{a} \, dV = I$$

Утверждение: для какой-то точки $\stackrel{\sim}{M} \in V(M_0)$ выполняется равенство:

$$I = div \overrightarrow{a}(\tilde{M}) \cdot \mathbf{V}$$

V - объем шара. Отсюда выразим дивергенцию:

$$div \overrightarrow{a}(\widetilde{M}) = \frac{\iint_{S(M_0)} \overrightarrow{a} \overrightarrow{n_0} ds}{\mathbf{V}}$$

Полученную формулу принято называть средней плотностью источников (или стоков).

Какой в этом смысл:

Представим, что где-то через шар протекает жидкость. В нормальной ситуации вытекает жидкости ровно столько, сколько втекает, дивергенция равна нулю. Но если внутри шара есть источник/сток, тогда втекать будет меньше/больше, чем вытекать. Именно это и регулирует числитель в формуле дивергенции, полученной выше.

6 Теорема Стокса

Дано:

Простая и гладкая $(\overrightarrow{r}_u \times \overrightarrow{r}_v \neq \overrightarrow{0})$ поверхность $\overrightarrow{r} = \overrightarrow{r}(u,v) = \Sigma$. Плоскость $\Omega \subset R^2 \to R^3, (u,v) \in \Omega, \Omega$ - ограничена.

 $\partial \Omega = \{u(t), v(t)\}, \alpha \leq t \leq \beta.$ $\overrightarrow{r}(t) = \overrightarrow{r}(u(t), v(t))$ - граница поверхности, $\partial \Sigma$.

Теорема (Стокса):

Утверждение: имеет место формула:

$$\int_{\partial \Sigma} \overrightarrow{a} \, d\overrightarrow{r} = \iint_{\Sigma} rot \overrightarrow{a} \cdot \overrightarrow{n_0} ds$$

Доказательство:

1) Сведем $\int_{\partial \Sigma} \overrightarrow{d} d\overrightarrow{r}$ к интегралу по контуру $\partial \Omega$:

$$\int_{\partial\Sigma} \overrightarrow{d} d\overrightarrow{r} = \int_{\alpha}^{\beta} \overrightarrow{d} (\overrightarrow{r}(u(t), v(t))) \cdot (\overrightarrow{r}_{u}u_{t}dt + \overrightarrow{r}_{v}v_{t}dt) = \int_{\partial\Omega} \overrightarrow{d} (\overrightarrow{r}(u, v)) (\overrightarrow{r}_{u}du + \overrightarrow{r}_{v}dv) = I_{1}$$

2) Сведем $\iint_{\Sigma} rot \overrightarrow{d} \cdot \overrightarrow{n_0} ds$ к интегралу по области Ω :

$$\iint_{\Sigma} rot \overrightarrow{a} \cdot \overrightarrow{n_0} ds = \iint_{\Omega} rot \overrightarrow{a} \cdot (\frac{(\overrightarrow{r'}_u \times \overrightarrow{r'}_v)}{|\overrightarrow{r'}_u \times \overrightarrow{r'}_v|} |\overrightarrow{r'}_u \times \overrightarrow{r'}_v|) du dv = \iint_{\Omega} rot \overrightarrow{a} \cdot (\overrightarrow{r'}_u \times \overrightarrow{r'}_v) du dv = I_2$$

Рассмотрим подынтегральное выражение, оно представляет собой смешанное произведение, попробуем представить его в виде $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial u}$, чтобы применить формулу Грина в обратную сторону:

$$\begin{aligned} & rot \, \overrightarrow{a} \cdot (\overrightarrow{r}_u \times \overrightarrow{r}_v) = rot \, \overrightarrow{a} \cdot \overrightarrow{r}_u \cdot \overrightarrow{r}_v = \overrightarrow{r}_u \cdot \overrightarrow{r}_v \times (\nabla \times \overrightarrow{a}) = \\ &= \overrightarrow{r}_u \cdot \nabla (\overrightarrow{r}_v \cdot \overrightarrow{d}) - \overrightarrow{r}_u (\overrightarrow{r}_v \cdot \nabla) \, \overrightarrow{a} = (\overrightarrow{r}_u \cdot \nabla) (\overrightarrow{r}_v \cdot \overrightarrow{d}) - \overrightarrow{r}_u (\overrightarrow{r}_v \cdot \nabla) \, \overrightarrow{a} = \\ &= \overrightarrow{r}_v (\overrightarrow{r}_u \cdot \nabla) \, \overrightarrow{a} - \overrightarrow{r}_u (\overrightarrow{r}_v \cdot \nabla) \, \overrightarrow{a} = \overrightarrow{r}_v (x_u \frac{\partial \overrightarrow{a}}{\partial x} + y_u \frac{\partial \overrightarrow{a}}{\partial y} + z_u \frac{\partial \overrightarrow{a}}{\partial z}) - \overrightarrow{r}_u (x_v \frac{\partial \overrightarrow{a}}{\partial x} + y_v \frac{\partial \overrightarrow{a}}{\partial y} + z_v \frac{\partial \overrightarrow{a}}{\partial z}) = \\ &= \overrightarrow{r}_v \, \overrightarrow{a}_u - \overrightarrow{r}_u \, \overrightarrow{a}_v = \overrightarrow{r}_v \, \overrightarrow{a}_u - \overrightarrow{r}_u \, \overrightarrow{a}_v + \overrightarrow{r}_{uv} \, \overrightarrow{a}_{uv} - \overrightarrow{r}_{uv} \, \overrightarrow{a}_{uv} = \frac{\partial}{\partial u} (\overrightarrow{a} \cdot \overrightarrow{r}_v) - \frac{\partial}{\partial v} (\overrightarrow{a} \cdot \overrightarrow{r}_u) \end{aligned}$$

Получили как раз, что хотели, осталось подставить в I_2 :

$$I_2 = \iint_{\Omega} (\frac{\partial}{\partial u} (\overrightarrow{a} \cdot \overrightarrow{r}_v) - \frac{\partial}{\partial v} (\overrightarrow{a} \cdot \overrightarrow{r}_u)) du dv$$

Тогда по формуле Грина для этого интеграла:

$$I_2 = \int_{\partial \Omega} \overrightarrow{d} \overrightarrow{r}_u du + \overrightarrow{d} \overrightarrow{r}_v dv = I_1$$

Таким образом, получили тот же интеграл, следовательно, формула верна и теорема доказана.

6.1Следствие из теоремы Стокса

Дан интеграл $I = \int_{AB} P dx + Q dy + R dz$.

Утверждение: чтобы этот интеграл не зависел от пути интегрирования, необходимо и достаточно, чтобы выполнялось условие $rot \overrightarrow{d} = 0$.

Доказательство:

1) Пусть l_1 и l_2 - какие-то два пути из A в B, и пусть эти кривые не

Тогда $I = \int_{l_1} - \int_{l_2} = \int_l \cdot l$ - контур, получаемый, если пойти из A в B по кривой l_1 , а затем обратно из B в A по l_2 .

Тогда $I=\int_{l}\overrightarrow{a}\overrightarrow{d}\overrightarrow{r}=\iint_{\Sigma}rot\overrightarrow{a}\cdot\overrightarrow{n}_{0}ds$ - по теореме Стокса. Следовательно, если $rot\overrightarrow{a}=0$, то $I=0=\int_{l_{1}}-\int_{l_{2}}\Rightarrow\int_{l_{1}}=\int_{l_{2}}$, что и требовалось доказать.

2) Пусть теперь $\int_{l_1}=\int_{l_2}$, тогда $\int_l=0=\int\!\!\int_\Sigma (rot\,\overrightarrow{a}\cdot\overrightarrow{n}_0)ds$, следовательно, скалярное произведение равно нулю, но нормаль не может быть равна нулю, поэтому равен нулю ротор, что и требовалось доказать.

ПРИМЕРЫ:

 $\overline{1)}$ $\overrightarrow{a} = -y$ $\overrightarrow{i} + x$ $\overrightarrow{j} + z$ \overrightarrow{k} . Найти щиркуляцию вдоль поля, если $L: \overrightarrow{r}(t) = a \cos t \overrightarrow{i} + a \sin t \overrightarrow{j} + bt \overrightarrow{k}, A(a,0,0), B(a,0,2\pi b).$

Это выглядит примерно так, закрашены две области, которые нас интересуют:

Тогда $\int_L \overrightarrow{a} d\overrightarrow{r} = \iint_{\Sigma} rot \overrightarrow{d} \cdot \overrightarrow{n}_0 ds$.

Посчитаем ротор, он равен $2\overline{k}$.

Как видно на картинке выше, нас интересуют две области, на которые и делится Σ . $\Sigma = \Sigma_1 \cup \Sigma_2$.

Рассмотрим по очереди каждую из этих областей:

$$\Sigma_1: x^2 + y^2 = a^2, \overrightarrow{n} = (x, y, 0), rot \overrightarrow{a} \cdot \overrightarrow{n}_0 = 0.$$

$$\Sigma_2: z = 2\pi b, x^2 + y^2 \le a^2, \overrightarrow{n} = \overrightarrow{k} = \overrightarrow{n}_0, rot \overrightarrow{a} \cdot \overrightarrow{n}_0 = 2$$

Тогда
$$\int_{L} \overrightarrow{d} d\overrightarrow{r} = \iint_{\Sigma} rot \overrightarrow{d} \overrightarrow{n}_{0} ds = \iint_{\Sigma_{2}} 2ds = 2\pi a^{2}$$
.

 $\Sigma_1: x^2 + y^2 = a^2, \overrightarrow{n} = (x, y, 0), rot \overrightarrow{a} \cdot \overrightarrow{n}_0 = 0.$ $\Sigma_2: z = 2\pi b, x^2 + y^2 \le a^2, \overrightarrow{n} = \overrightarrow{k} = \overrightarrow{n}_0, rot \overrightarrow{a} \cdot \overrightarrow{n}_0 = 2.$ Тогда $\int_L \overrightarrow{a} d\overrightarrow{r} = \iint_\Sigma rot \overrightarrow{a} \overrightarrow{n}_0 ds = \iint_{\Sigma_2} 2ds = 2\pi a^2.$ 2) $\overrightarrow{a} = y \overrightarrow{i} + z \overrightarrow{j} + x \overrightarrow{k}$. Дан куб, ребро имеет длину = 1. Найти циркуляцию вдоль ломаной $C_1CDABB_1A_1D_1$.

Замкнем ломаную, добавив отрезок D_1C_1 . $L = L_1 \cup D_1C_1$.

За поверхность возьмем грани $\overrightarrow{ABB_1A_1}(\Sigma_1), A_1D_1DA(\Sigma_2)$ и $C_1CDD_1(\Sigma_3)$. Посчитаем ротор, он равен $-\overrightarrow{i}-\overrightarrow{j}-\overrightarrow{k}$.

Тогда $\int_{L} = \iint_{\Sigma_{1}} + \iint_{\Sigma_{2}} + \iint_{\Sigma_{3}}$. Рассмотрим каждую их областей: $\Sigma_{1}: \overrightarrow{n} = -\overrightarrow{i}, rot \overrightarrow{a} \cdot \overrightarrow{n}_{0} = 1, \iint_{\Sigma_{1}} = \iint ds = 1$.

$$\Sigma_{2}: \overrightarrow{n} = \overrightarrow{j}, rot \overrightarrow{a} \cdot \overrightarrow{n}_{0} = -1, \iint_{\Sigma_{2}} = \iint ds = -1.$$

$$\Sigma_{3}: \overrightarrow{n} = \overrightarrow{i}, rot \overrightarrow{a} \cdot \overrightarrow{n}_{0} = -1, \iint_{\Sigma} = \iint ds = -1.$$

 $\Sigma_3:\overrightarrow{n}=\overrightarrow{i},rot\overrightarrow{d}\cdot\overrightarrow{n}_0=-1, \iint_{\Sigma_3}=\iint ds=-1.$ Сложим, получим, что $\int_L=-1.$ Осталось посчитать $\int_{D_1C_1}ydx+zdy+xdz=I.$

$$D_1C_1: x=1, z=1,$$
 тогда $dx=0, dz=0.$ Отсюда $I=\int_0^1 z dy=1.$ Тогда $\int_{L_1}=\int_L-\int_{D_1C_1}=-2.$

6.2 Примечание к следствию из теоремы Стокса

<u>Определение:</u> область называется линейно-односвязной, если на любой простой замкнутый контур, лежащий в этой области, можно натянуть поверхность, целиком лежащую в этой области.

<u>Утверждение:</u> следствие выполняется только если область, в которой работаем - линейно-односвязна. Пример, подтверждающий это:

Дана кривая AB и поле $\overrightarrow{a} = (-\frac{y}{x^2+y^2}, \frac{x}{x^2+y^2}, z)$. При этом $rot \overrightarrow{a} = 0$. Искомое задание кривой:

$$l: \begin{cases} x^2 + y^2 = a^2 \\ z = a \end{cases}$$

Посчитаем интеграл $\int_{AB} \overrightarrow{a} d\overrightarrow{r}$:

$$\int_{AB} \overrightarrow{d} d\overrightarrow{r} = \int_{l} -\frac{y}{x^{2} + y^{2}} dx + \frac{x}{x^{2} + y^{2}} dy + z dz = I$$

Параметризуем кривую:

$$\begin{cases} z = a \\ x = a \cos t \\ y = a \sin t \end{cases}$$

Тогда $I=\int_0^{2\pi}(\frac{a^2\sin^2t}{a^2}+\frac{a^2\cos^2t}{a^2})dt+0$ (так как dz=0, ведь z - константа).

$$I = \int_0^{2\pi} (\sin^2 t + \cos^2 t) dt = \int_0^{2\pi} dt = 2\pi \neq 0$$

Что и требовалось доказать, ведь при x = 0, y = 0 у нас поле не определено, тогда область не является линейно-односвязной.

6.3 Линейно-односвязная и поверхностно-односвязная области

<u>Определение:</u> область называется линейно-односвязной, если на любой простой замкнутый контур, лежащий в этой области, можно натянуть поверхность, целиком лежащую в этой области.

Определение: область G называется поверхностно-односвязной, если для любой простой замкнутой поверхности, ограничивающей некую область Ω , все точки Ω принадлежат G.

- шар является примером поверхностно-

односвязной области.

- шар, у которого внутри вы-

резан шар поменьше является примером поверхностно-неодносвязной области, ведь если взять шар радиусом больше, чем радиус вырезанного шара, но меньше, чем радиус искомого шара, то в нем будут точки из вырезанного шара, которые не принадлежат искомому шару.

7 Потенциальное поле

Дано векторное поле $\overrightarrow{d} = \overrightarrow{d}(M)$.

Определение: будем называть \overrightarrow{d} потенциальным, если $\exists U = U(x,y,z)$ такая, что $qradU = \overrightarrow{d}$.

Bажно: $\overrightarrow{a} = \overrightarrow{\nabla} U$.

Определение: U - скалярный потенциал векторного поля.

Теорема: для того, чтобы \overrightarrow{d} было потенциальным, необходимо и (в случае линейной неодносвязности области, в которой задано поле) достаточно, чтобы $rot \overrightarrow{a} = \overrightarrow{0}$.

Доказательство:

1) Необходимость. Если $\exists U$, то $rot \overrightarrow{a} = rot \ grad \ U = \overrightarrow{\nabla} \times \overrightarrow{\nabla} U = \overrightarrow{0}$. То есть, если поле потенциально (есть скалярный потенциал), то ротор равен нулю.

2) Достаточность.

 $\overrightarrow{rot} \overrightarrow{a} = 0$, область (пусть будет g) - линейно-односвязна. Тогда по теореме Стокса $\int_{AB} \overrightarrow{a} \, d\overrightarrow{r}$ не зависит от пути интегрирования. Теперь просто попробуем найти скалярный потенциал.

Возьмем некую функцию $\tilde{U}(\tilde{x},\tilde{y},\tilde{z})$ и точку $\tilde{M}=(\tilde{x},\tilde{y},\tilde{z}).$

Выберем их такими, что $\tilde{U}=\int_{M_0}^{\tilde{M}}\overrightarrow{a}\,d\overrightarrow{r}.$

Теперь докажем, что \tilde{U} - скалярный потенциал поля \overrightarrow{a} : Пусть точка $M_1 = (\tilde{x} + \Delta x, \tilde{y}, \tilde{z}).$

Найдем производную \tilde{U} :

$$\triangle \widetilde{U} = \widetilde{U}(\widetilde{x} + \triangle x, \widetilde{y}, \widetilde{z}) - \widetilde{U}(\widetilde{x}, \widetilde{y}, \widetilde{z}) = \int_{M_0}^{M_1} - \int_{M_0}^{\widetilde{M}} = I$$

Оба интеграла из разности не зависят от пути интегрирования, тогда:

Выберем путь $M_0 M$ свободно, пусть будет каким угодно.

Путь $M_0M_1 = M_0\tilde{M} \cup \tilde{M}M_1$.

 MM_1 - отрезок, параллельный оси x.

Это выглядит так:

Тогда $I=\int_{\widetilde{M}}^{M_1}Pdx+Qdy+Rdz$. Но dy=0, dz=0, так как меняется только x. Тогда $I=\int_{\widetilde{M}}^{M_1}Pdx=\int_{\widetilde{x}}^{\widetilde{x}+\triangle x}P(x,\widetilde{y},\widetilde{z})=P(\widetilde{x}+\theta\bigtriangleup x,\widetilde{y},\widetilde{z})\bigtriangleup x$ (по теореме о среднем), где $0<\theta<1$.

Тогда
$$\frac{\partial \widetilde{U}}{\partial x} = \lim_{\Delta x \to 0} \frac{\Delta \widetilde{U}}{\Delta x} = \lim_{\Delta x \to 0} P(\widetilde{x} + \theta \Delta x, \widetilde{y}, \widetilde{z}) = P(\widetilde{x}, \widetilde{y}, \widetilde{z}).$$

Аналогично получится и для y и z. Тогда $grad\tilde{U}=\overrightarrow{d}$, значит, \tilde{U} - скалярный потенциал, то есть мы нашли искомую функцию, что и требовалось доказать.

Важно: если U - скалярный потенциал, то U+c, где c=const - тоже скалярный потенциал.

ПРИМЕР:

 $\overrightarrow{d} = (y+z)\overrightarrow{i} + (x+z)\overrightarrow{j} + (x+y)\overrightarrow{k}$. Задача: убедиться, что данное поле является потенциальным и найти его потенциал.

Решение:

- 1) $rot \overrightarrow{a} = \overrightarrow{0}$ (здесь нужно вычислить определитель матрицы), следовательно, поле потенциальное.
- 2) $U = \int_{(0,0,0)}^{(x_0,y_0,z_0)} (y+z) dx + (x+z) dy + (x+y) dz = \int_{l_1} + \int_{l_2} + \int_{l_3}$. Выберем путь, по которому будем двигаться из точки (0,0,0) в точку (x_0,y_0,z_0) : самый хороший путь это двигаться вдоль координатных осей:

Тогда посчитаем каждый из трех интегралов:

а) $x=0,y=0,\Rightarrow dx=0, dy=0.\ 0\leq z\leq z_0.$ Тогда $\int_{l_1}=0dz=0.$ b) $z=z_0,y=0,\Rightarrow dz=0, dy=0.\ 0\leq x\leq x_0.$ Тогда $\int_{l_2}=\int_0^{x_0}z_0x=z_0x_0.$ c) $x=x_0,z=z_0,\Rightarrow dz=0, dx=0.\ 0\leq y\leq y_0.$ Тогда $\int_{l_3}=\int_0^{y_0}(x_0+z_0)=0.$ $x_0y_0 + z_0y_0$.

Сложим три интеграла, получим, что U = xy + xz + yz, что и будет ответом.

8 Соленоидальное поле

Дано \overrightarrow{d} - векторное поле, заданное на g - поверхностно-односвязной области.

Определение: векторное поле будем называть соленоидальным, если его поток через любую простую, кусочно-гладкую, замкнутую поверхность равен нулю:

$$\iint_{S} \overrightarrow{a} \, \overrightarrow{n_0} ds = 0$$

Теорема 1: для того, чтобы поле было соленоидальным, необходимо и достаточно, чтобы выполнялось условие:

$$div \overrightarrow{a} = 0$$

Доказательство:

1)

$$\iint_{S} \overrightarrow{d} \overrightarrow{n_0} ds = \iiint_{V} div \overrightarrow{d} dV = 0, \Rightarrow div \overrightarrow{d} = 0$$

2)
$$div \overrightarrow{a} = 0, \Rightarrow \iint_S \overrightarrow{a} \overrightarrow{n_0} ds = 0, \Rightarrow \overrightarrow{a} - \text{соленоидальное}$$

 $\underbrace{\text{Определение:}}_{rot\overrightarrow{H}}\overrightarrow{d}$ будем называть векторным потенциалом поля \overrightarrow{d} , если

Важно: если \overrightarrow{H} - векторный потенциал, то $\overrightarrow{H_1} = \overrightarrow{H} + gradU$ (где U - какая-то скалярная функция) - тоже векторный потенциал. Доказательство:

$$rot\overrightarrow{H_1} = rot(\overrightarrow{H} + gradU) = rot\overrightarrow{H} + rot \ gradU (= 0) = rot\overrightarrow{H} = \overrightarrow{a}$$

<u>Теорема 2:</u> для того, чтобы поле было соленоидальным, необходимо и достаточно, чтобы существовал векторный потенциал.

Доказательство:

1)

$$\overrightarrow{div} \overrightarrow{d} = \overrightarrow{div} \ rot \overrightarrow{H} = \overrightarrow{\nabla} \cdot \overrightarrow{\nabla} \times \overrightarrow{H} = 0$$

А по теореме 1, если дивергенция равна нулю, то поле соленоидальное.

2) \overrightarrow{a} - соленоидальное.

Будем искать \overrightarrow{H} в виде $\overrightarrow{H} = (H_x, H_y, 0)$.

$$rot\overrightarrow{H} = -\overrightarrow{i}\frac{\partial H_y}{\partial x} + \overrightarrow{j}\frac{\partial H_x}{\partial z} + \overrightarrow{k}(\frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y}) = P\overrightarrow{i} + Q\overrightarrow{j} + R\overrightarrow{k}$$

Отсюла

Откода
$$\frac{\partial H_y}{\partial z} = -P, \Rightarrow H_y = -\int P dz + \varphi(x,y) \; (\varphi(x,y) \; \text{- произвольная функция}).$$

$$\frac{\partial H_x}{\partial z} = Q, \Rightarrow H_x = \int Q dz + \psi(x,y) \; (\psi(x,y) \; \text{- произвольная функция}).$$

$$\frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial x} = R, \Rightarrow -\int P_x dz + \varphi_x(x, y) - \int Q_y dz + \psi_y(x, y)$$

Таким образом, мы нашли \overrightarrow{H} .

пример

$$\frac{\overrightarrow{d}}{\overrightarrow{d}} = 2z\overrightarrow{i} + 3y^2\overrightarrow{k} = (2z, 0, 3y^2).$$

Найти векторный потенциал. Решение:

$$H_x = \int 0 + \psi(x, y).$$

$$H_y = -\int 2zdz + \varphi(x,y) = -z^2 + \varphi(x,y).$$

 $H_z = 0.$

$$-0 + \varphi_x - 0 - \psi_y = 3y^2$$

$$\varphi_x - \psi_y = 3y^2$$

Обе функции произвольные, поэтому, пусть $\varphi \equiv 0, \psi = -y^3.$ Тогда, ответ: $\overrightarrow{H} = (-y^3, -z^2, 0).$

9 Интегралы с параметрами

Дальше (похоже, до конца семестра) мы будем заниматься интегралами с параметрами.

10 Равномерная сходимость семейства функций

10.1 Определение равномерной сходимости

Дана функция f(x,y) - на первый взгляд, функция двух переменных, однако, $x \in X$ - аргумент, а $y \in Y$ - число, параметр.

Например, если Y = N (натуральные числа), то $f(x, n) = f_n(x)$ - функциональная последовательность.

Возьмем некую точку y_0 - точку сгущения Y (по сути, точка сгущения \sim предельная точка множества).

Тогда функцию $\varphi(x)$, такую, что:

$$\forall x \in X \ f(x,y)_{y \to y_0} \to \varphi(x)$$

будем называть **поточечным** пределом функции f.

Определение: f(x,y) сходится равномерно на X при $y \to y_0$, если:

- $\overline{1)} f(x,y)_{y\to y_0} \to \varphi(x) \forall x$ (сходится поточечно).
- 2)

$$\forall \varepsilon > 0 \ \exists \delta > 0 : 0 < |y - y_0| < \delta \Rightarrow |f(x, y) - \varphi(x)| < \varepsilon \ \forall x$$

ПРИМЕР:

 $\overline{f(x,y)} = \frac{3x+y}{x+y}; Y = (0;1), y_0 = 0.$ Выяснить, сходится ли равномерно функция на множестве X, если X:

1)
$$X = (1, 2)$$
.

Найдем поточечный предел f:

$$\lim_{y \to y_0} f = \frac{3x}{x} = 3 = \varphi(x)$$

Подставим поточечный предел в определение:

$$|f(x,y) - \varphi(x)| = \left|\frac{3x+y}{x+y} - 3\right| = \frac{2y}{x+y} < \varepsilon \quad \forall x \in (1,2)$$
$$\frac{2y}{x+y} < \frac{2y}{1+y} < \frac{2y}{1} < \varepsilon$$

Тогда возьмем $\delta = \frac{\varepsilon}{2}$, значит, мы нашли δ , удовлетворяющую условию, значит, f равномерно сходится на X.

2) X = (0,1).

Докажем, что нет равномерной сходимости на этом множестве. Для этого докажем отрицание определения равномерной сходимости:

$$\exists \varepsilon_0 > 0 \ \forall \delta > 0; \exists y_\delta \in U_\delta(y_0); \exists x_\delta \Rightarrow |f(x_\delta, y_\delta) - \varphi(x_\delta)| \geq \varepsilon_0$$

Пусть $\delta_n = \frac{1}{n}, y_n = \frac{1}{n+1}, x_n = \frac{1}{n+1}$. Тогда $\frac{2y}{x+y} = 1 = \varepsilon_0$. То есть мы нашли ε_0 , а значит, доказали отрицание, а значит, f не сходится равномерно на данном X.

10.2Признаки равномерной сходимости

1) Запишем очевидное неравенство:

Пусть $|f(x,y)-\varphi(x)|<\varepsilon \ \forall x\in X$. Тогда

$$|f(x,y) - \varphi(x)| \le \sup_{x \in X} |f(x,y) - \varphi(x)| = g(y)$$

Утверждение: семейство функций сходится равномерно к $\varphi(x)$ на множестве X тогда и только тогда, когда:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ y \in \overset{\circ}{U_{\delta}}(y_0) \Rightarrow |g(y)| < \varepsilon$$

Например, $sup_{x\in(1;2)}\frac{2y}{x+y}=\frac{2y}{1+y}<\varepsilon$. Но $sup_{x\in(0;1)}\frac{2y}{x+y}=2$ - не стремится к нулю.

2) Теорема (признак Коши):

Для того, чтобы семейство функций равномерно сходилось на X при

 $y \to y_0$, необходимо и достаточно, чтобы выполнялось условие:

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall y', y'' \in U_{\delta}(y_0) \Rightarrow |f(x, y') - f(x, y'')| < \varepsilon \ \forall x \in X$$

Доказательство:

 $I. \Rightarrow$

Если семейство функций сходится равномерно, то

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \overset{\circ}{U_{\delta}}(y_0) : |f(x,y) - \varphi(x)| < \frac{\varepsilon}{2}$$

Возьмем две точки из $\overset{o}{U_{\delta}}(y_0)$ - $y^{'}$ и $y^{''}$.

Тогда $|f(x,y') - \varphi(x)| < \frac{\varepsilon}{2}$,

$$|f(x,y'') - \varphi(x)| < \frac{\varepsilon}{2},$$

$$|f(x,y^{'}) - f(x,y^{''})| \leq |f(x,y^{'}) - \varphi(x)| + |f(x,y^{''}) - \varphi(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} < \varepsilon$$

Доказано.

 $II. \Leftarrow$

Теперь дано условие Коши.

Возьмем $x \in X$ и зафиксируем его. Тогда для фиксированного x выполняется:

$$|f(x, y') - f(x, y'')| < \varepsilon \Rightarrow |g(y') - g(y'')| < \varepsilon$$

Отсюда следует, что у функции g есть предел при $y \to y_0$.

Получается, что для каждого такого фиксированного $x \in X \exists \lim_{y \to y_0} f(x, y) = \varphi(x)$.

Осталось доказать вторую часть определения равномерной сходимости:

Для этого в выражении $|f(x,y')-f(x,y'')|<\frac{\varepsilon}{2}$ перейдем к пределу:

Пусть $y \to y_0$, тогда $|f(x,y') - \varphi(x)| \le \frac{\varepsilon}{2} < \varepsilon$, что и требовалось доказать. Теорема доказана.

3) Обозначим за \mapsto равномерную сходимость.

<u>Утверждение</u>: для того, чтобы f(x,y) сходилась равномерно к $\varphi(x)$ на множестве X и при $y \to y_0$, необходимо и достаточно, чтобы выполнялось условие:

$$\forall y_n \to y_0 \ f(x, y_n) = f_n(x)_{n \to \infty} \mapsto \varphi(x) \ \forall x \in X$$

Здесь y_n - последовательность из Y.

Доказательство:

 $I. \Rightarrow$

Если f равномерно сходится, то это значит, что:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \overset{\circ}{U_{\delta}}(y_0) \ |f(x,y) - \varphi(x)| < \varepsilon$$

Возьмем последовательность $y_n \to y_0$ и по δ , которую мы нашли, найдем n_0 , такой, что:

$$\forall n \ge n_0 \ y_n \in \overset{\circ}{U_{\delta}}(y_0)$$

А это означает, что $\forall x \ |f(x,y_n)-\varphi(x)|<\varepsilon$, что и требовалось доказать. $II. \Leftarrow$

Теперь дано: $\forall y_n \to y_0 \ f(x, y_n) = f_n(x)_{n \to \infty} \mapsto \varphi(x)$.

Докажем от противного, что $f(x,y) \mapsto \varphi(x)$.

Пусть f сходится, но не равномерно, тогда снова попытаемся доказать отрицание:

$$\exists \varepsilon_0 > 0 \ \forall \delta > 0; \exists y_\delta \in U_\delta(y_0); \exists x_\delta \Rightarrow |f(x_\delta, y_\delta) - \varphi(x_\delta)| \geq \varepsilon_0$$

Поскольку мы наложили условия на x_{δ} и y_{δ} , то можем взять какие-то последовательности x_n,y_n , а δ_n взять равное $\frac{1}{n}$. Тогда:

$$|f(x_n, y_n) - \varphi(x_n)| \ge \varepsilon_0$$

Но это противоречит условию, ведь по условию f_n равномерно сходится к φ . Теорема доказана.

Следствие:

Пусть f(x,y) непрерывна по x на множестве X, а так же эти $f(x,y) \mapsto \varphi(x)$ при $y \to y_0$ на X.

Тогда $\varphi(x)$ непрерывна на X.

4) <u>Утверждение</u>: если рассматривать f(x,y) на прямоугольнике $[a;b] \times [c;d]$ как функцию двух переменных и предположить, что она на нем непрерывна, то

$$f(x,y)_{y\to y_0}\mapsto \varphi_{y_0}(x)$$

Здесь $y_0 \in [c; d]$.

Доказательство:

Данный прямоугольник - компактное множество. А если функция непрерывна на компакте равномерно непрерывна:

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x^{'}, x^{''} : |x^{'} - x^{''}| < \delta; \forall y^{'}, y^{''} : |y^{'} - y^{''}| < \delta \Rightarrow |f(x^{'}, y^{'}) - f(x^{''}, y^{''})| < \varepsilon$$
 Возьмем $x^{'} = x^{''} = x, y^{''} = y_0, y^{'} = y$. Тогда $|f(x,y) - f(x,y_0)| < \varepsilon$, но $f(x,y_0) = \varphi_{y_0}(x)$, тогда:

$$|f(x,y) - \varphi_{y_0}(x)| < \varepsilon \ \forall x \in [a;b]$$

Но это и означает равномерную сходимость (по определению), что и требовалось доказать.

11 Интеграл с переменным верхним пределом

Дана f(x,y) - интегрируемая по $x \in [a;b] \ \forall y \in Y$.

Тогда рассмотрим интеграл:

 $I(y) = \int_a^b f(x,y) dx$ - собственный интеграл с параметром y. Свойства:

1) Теорема 1: если $f(x,y)\mapsto \varphi(x)$ при $y\to y_0$, то

$$\lim_{y \to y_0} I(y) = \int_a^b \varphi(x) dx$$

Эта теорема дает нам возможность менять местами знаки предела и интеграла в случае, когда f равномерно сходится:

$$\lim_{y \to y_0} \int_a^b f(x,y) dx = \int_a^b \lim_{y \to y_0} f(x,y) dx$$

Доказательство:

Оценим $|I(y) - \int_a^b \varphi(x) dx|$:

$$\begin{split} |I(y)-\int_a^b\varphi(x)dx|\,|\int_a^bf(x,y)dx-\int_a^b\varphi(x)dx|&=|\int_a^b(f(x,y)-\varphi(x))dx|\leq \int_a^b|(f(x,y)-\varphi(x))|dx\\ \text{ Ho }f(x,y)\mapsto\varphi(x)\Rightarrow|f(x,y)-\varphi(x)|<\varepsilon.\\ \Pi\text{усть }\varepsilon=\frac{\varepsilon}{b-a}\text{:} \end{split}$$

$$\int_{a}^{b} |(f(x,y) - \varphi(x))| dx < \int_{a}^{b} \frac{\varepsilon}{b - a} dx = \varepsilon$$

Значит, $\lim_{y\to y_0}I(y)=\int_a^b\varphi(x)dx$, что и требовалось доказать. Следствия:

- а) Если f непрерывна на прямоугольнике $[a;b] \times [c;d]$, то можно переставить знаки интегрирования и предела местами.
- b) Если в точке y_0 f(x,y) непрерывна, то из того, что $f(x,y) \mapsto \varphi(x)$ следует, что:

$$\lim_{y \to y_0} I(y) = \int_a^b f(x, y_0) dx = I(y_0)$$

Отсюда следует, что I непрерывен в точке y_0 (по определению непрерывности в точке).

2) Теорема 2: если f(x, y) непрерывна относительно x и y на прямоугольнике $[a;b] \times [c;d]$, то $I(y) = \int_a^b f(x,y) dx$ можно интегрировать по y:

$$\exists \int_{c}^{d} dy \int_{a}^{b} f(x,y) dx = \int_{a}^{b} dx \int_{c}^{d} f(x,y) dy$$

Это повторные интегралы для двойного интеграла $\iint_{[a;b]\times[c;d]} f(x,y)dxdy$. Другими словами,

$$\iint_{[a;b]\times[c;d]} f(x,y) dx dy = \int_c^d dy \int_a^b f(x,y) = \int_a^b dx \int_c^d f(x,y) dy dx$$

3) Теорема 3:

Пусть f(x,y) непрерывна по x на [a;b] для любых y из [c;d], а $f_y'(x,y)$ непрерывна по x и y на прямоугольнике $[a;b] \times [c;d]$.

Тогда существует $I_y'(y) \ \forall y \in [c;d]$:

$$I_{y}^{'}(y) = \int_{a}^{b} f_{y}^{'}(x,y)dx$$

То есть, другими словами, можно поменять дифференцирование и интегрирование местами:

 $(\hat{f}\hat{f})' = ff'$ - это называется правило Лейбница.

Доказательство:

$$I'_{y}(y_{0}) = \lim_{\Delta y \to 0} \frac{\Delta I(y_{0})}{\Delta y} = \lim_{\Delta y \to 0} \frac{I(y_{0} + \Delta y) - I(y_{0})}{\Delta y} = ?$$

Распишем $\frac{\triangle I(y_0)}{\triangle y}$:

$$\frac{\triangle I(y_0)}{\triangle y} = \frac{\int_a^b f(x, y_0 + \triangle y) dx - \int_a^b f(x, y_0) dx}{\triangle y} = \int_a^b \frac{f(x, y_0 + \triangle y) - f(x, y_0)}{\triangle y} dx =$$

$$= \int_a^b \frac{f_y'(x, y_0 + \theta \triangle y) \triangle y dx}{\triangle y} = \int_a^b f_y'(x, y_0 + \theta \triangle y) dx, \ 0 < \theta < 1 \text{(по теореме о среднем)}$$

Тогда $I_y'(y_0) = \lim_{\triangle y \to 0} \int_a^b f_y'(x, y_0 + \theta \triangle y) dx = \int_a^b \lim_{\triangle y \to 0} f_y'(x, y_0 + \theta \triangle y) dx = \int_a^b \lim_{\triangle y \to 0} f_y'(x, y_0 + \theta \triangle y) dx$

 $=\int_{a}^{b}f_{y}^{\prime}(x,y_{0})dx$, что и требовалось доказать.

Замечание:

Если пределы интегрирования зависят от y, вот таким образом:

$$I(y) = \int_{u(y)}^{v(y)} f(x, y) dx = F(y, u, v)$$

Тогда $\frac{dF}{dy} = \frac{\partial F}{\partial y} + \frac{\partial F}{\partial u} \frac{du}{dy} + \frac{\partial F}{\partial v} \frac{dv}{dy} = \int_u^v f'(x,y) dx + f(v,y) v_y' - f(u,y) u_y'.$ Это следует из теоремы Барроу (по словам некоторых, самой великой теоремы матанализа, а значит надо учить):

Теорема Барроу:

$$\left(\int_{a}^{x} f(t)dt\right)'_{x} = f(x)$$

$$\left(\int_{x}^{b} f(t)dt\right)'_{x} = f(-x)$$

ПРИМЕРЫ (здесь их много, 5 штук):

1)
$$I(y) = \int_0^1 \ln(x^2 + y^2) dx$$
; $y \in (0, 1]$.

Посчитаем этот интеграл:

$$\int_0^1 \ln(x^2 + y^2) dx = x \ln(x^2 + y^2)|_0^1 - 2 \int \frac{x dx}{x^2 + y^2} = \ln(1 + y^2) - 2 + y \arctan \frac{1}{y}$$

Хотим узнать, как эта функция ведет себя в нуле, устремим y к нулю, тогда $I(y) \to 0$, то есть, 0 - точка устранимого разрыва.

Тогда
$$I(y) = \begin{cases} \ln(1+y^2) - 2 + y \arctan \frac{1}{y}, y \neq 0 \\ -2, y = 0 \end{cases}$$

Значит, I(y) непрерывна на [0;1].

Теперь проверим дифференцируемость:

 $y \neq 0, y \in [\delta; 1]$. Тогда на прямоугольнике $[0; 1] \times [\delta; 1]$ функция $\ln(x^2 + y^2)$ непрерывна по y, а функция $\frac{2y}{x^2 + y^2}$ непрерывна по x и по y.

Тогда $I_y'(y) = \int_0^1 \frac{2y}{x^2 + y^2}$, рассмотрим её поведение в нуле: $y_0 = 0$.

$$I'_y(y) = \frac{2y}{x^2 + y^2} + \operatorname{arctg} \frac{1}{y} - \frac{y}{1 + y^2} = \frac{y}{1 + y^2} + \operatorname{arctg} \frac{1}{y}$$

Очевидно, эта функция не непрерывна в нуле, устремим y к нулю, тогда $I'_{u}(0) \rightarrow \frac{\pi}{2}$.

С другой стороны, $I_y'(0)=\int_0^1\frac{2y}{x^2+y^2}dx=0.$ Получили разные ответы. Это потому, что на самом деле мы не могли здесь пользоваться теоремой, ведь нарушается условие непрерывности

$$f_y'$$
 по x и по y .
2) $\int_0^1 \frac{x^b - x^a}{\ln x} dx$, $b > a > 0$.

$$\frac{x^b - x^a}{\ln x} = \int_a^b x^y dy$$

Тогда $\int_0^1 \frac{x^b - x^a}{\ln x} = \int_0^1 dx \int_a^b x^y dy = \int_0^1 dy \int_a^b x^y dx = \int_a^b \frac{x^{y+1}}{y+1} |_0^1 dy = \int_a^b \frac{1}{y+1} dy = \int_a^b \frac{1}{y+1} dy$

С другой стороны,

$$I(a,b) = \int_{0}^{1} \frac{x^{b} - x^{a}}{\ln x} dx \Rightarrow I_{b}'(a,b) = \int_{0}^{1} x^{b} dx = \frac{x^{b+1}}{b+1} \Big|_{0}^{1} = \frac{1}{b+1}$$

Тогда $\int I_b'(a,b) = \int \frac{db}{b+1} = \ln(b+1) + C$. Найдем C:

$$I(a, a) = \ln(a+1) + C = 0 \Rightarrow C = -\ln(a+1)$$

Отсюда $I(a,b) = \ln(b+1) - \ln(a+1) = \ln\frac{b+1}{a+1}$, получили то же самое.

 $3) \int_0^1 \frac{\arctan x}{x\sqrt{1-x^2}} dx.$ Рассмотрим $\frac{\arctan x}{x}$:

$$\frac{\arctan x}{x} = \int_0^1 \frac{dy}{1 + x^2 y^2}, \text{тогда} \int_0^1 \frac{\arctan x}{x \sqrt{1 - x^2}} dx = \int_0^1 dx \int_0^1 \frac{dy}{(1 + x^2 y^2) \sqrt{1 - x^2}} = \frac{1}{x} \int_0^1 \frac{dy}{1 + x^2 y^2} dx$$

$$=\int_0^1 dx \int_0^1 f(x,y)g(x)dy = \int_0^1 dy \int_0^1 f(x,y)g(x)dx = \int_0^1 dy \int_0^1 \frac{dx}{(1+x^2y^2)\sqrt{1-x^2}} = 0$$

$$=-\int_0^1 dy \int_0^{-\infty} \frac{dt}{t^2(y^2+1)+1} (\text{подстановка Абеля}) = \int_0^1 dy \int_0^{\infty} \frac{dt}{t^2(y^2+1)+1} = 0$$

$$=\int_0^1 \frac{\arctan(t\sqrt{y^2+1})}{\sqrt{y^2+1}} \Big|_0^{\infty} dy = \int_0^1 \frac{\pi}{2\sqrt{y^2+1}} dy = \frac{\pi}{2} \int_0^1 \frac{dy}{\sqrt{y^2+1}} = \frac{\pi}{2} \ln(1+\sqrt{2})$$

Второй способ:

Найдем I'_{u} :

$$I_y' = \int_0^1 \frac{1}{1 + x^2 y^2} \frac{1}{\sqrt{1 - x^2}} dx = \frac{\pi}{2} \frac{1}{\sqrt{y^2 + 1}}$$

Получили производную, осталось найти саму функцию:

$$I(y) = \int I_y' = \frac{\pi}{2} \ln(y + \sqrt{y^2 + 1}) + C$$

Найдем C:

 $I(0) = 0, \Rightarrow C = 0$, а наша цель - I(1).

$$I(1) = \frac{\pi}{2}\ln(1+\sqrt{2})$$

4) $I(a) = \int_0^{\frac{\pi}{2}} \ln(a^2 - \sin^2 t) dt, a > 0.$

$$I'_{y}(a) = \int_{0}^{\frac{\pi}{2}} \frac{2a}{a^{2} - \sin^{2} t} dt = 2a \int_{0}^{\frac{\pi}{2}} \frac{dt}{a^{2} - \sin^{2} t} = \frac{\pi}{\sqrt{a^{2} - 1}}$$
$$I(a) = \int I'_{y} = \pi \ln(a + \sqrt{a^{2} - 1}) + C$$

С другой стороны, $I(a)=\int_0^{\frac{\pi}{2}}\ln(a^2-\sin^2t)dt=\int_0^{\frac{\pi}{2}}\ln(a^2(1-\frac{1}{a^2}\sin^2t))dt=\pi\ln a+\int_0^{\frac{\pi}{2}}\ln(1-\frac{1}{a^2}\sin^2t)dt$

Устремим $a + \infty$, тогда $\ln(1 - \frac{1}{a^2} \sin^2 t) \to 0$. Выясним, равномерно ли сходится семейство функций:

$$|\ln(1 - \frac{1}{a^2}\sin^2 t)| \le |\ln(1 - \frac{1}{a^2})| < \varepsilon$$

Следовательно, сходимость равномерная.

Тогда
$$C = I(a) - \pi \ln(a + \sqrt{a^2 - 1}) = \pi \ln a - \pi \ln(a + \sqrt{a^2 - 1}) + \int_0^{\frac{\pi}{2}} \ln(1 - a) \ln(a + \sqrt{a^2 - 1}) = \pi \ln a - \pi \ln(a + \sqrt{a^2 - 1}) + \int_0^{\frac{\pi}{2}} \ln(a + \sqrt{a^2 - 1}) = \pi \ln a - \pi \ln(a + \sqrt{a^2 - 1}) + \int_0^{\frac{\pi}{2}} \ln(a + \sqrt{a^2 - 1}) = \pi \ln a - \pi \ln(a + \sqrt{a^2 - 1}) + \int_0^{\frac{\pi}{2}} \ln(a + \sqrt{a^2 - 1}) = \pi \ln a - \pi \ln(a + \sqrt{a^2 - 1}) + \int_0^{\frac{\pi}{2}} \ln(a + \sqrt{a^2 - 1}) = \pi \ln(a + \sqrt{a^2 - 1}) + \int_0^{\frac{\pi}{2}} \ln(a + \sqrt{a^2 - 1}) = \pi \ln(a + \sqrt{a^2 - 1}) + \int_0^{\frac{\pi}{2}} \ln(a + \sqrt{a^2 - 1}) +$$

 $\frac{1}{a^2}\sin^2t)dt=\pi\ln\frac{a}{a+\sqrt{a^2-1}}+\int_0^{\frac{\pi}{2}}\ln(1-\frac{1}{a^2}\sin^2t)dt.$ При $a o\infty$ первое слагаемое стремится к $\ln\frac{1}{2}$, а второе к нулю, тогда $C = \ln \frac{1}{2}$, a $I(a) = \pi \ln \frac{a + \sqrt{a^2 - 1}}{2}$.

Несобственный интеграл 12

12.1Определение несобственного интеграла

Возьмем интеграл $\int_a^b f(x)dx$, у которого либо $b=+\infty$, либо $f(x)\to\infty$

При этом f(x) интегрируема на [a; c], где a < c < b.

Определение:

 $\overline{\prod_{\mathrm{peden lim}_{c \to b-0}} \int_{a}^{c} f(x) dx}$ будем называть несобственным интегралом. Если этот предел существует, то будем говорить, что интеграл сходится, иначе расходится.

Теперь рассмотрим функцию двух переменных $f(x,y), x \in [a;b]$, $-\infty < b \le +\infty$.

Тогда существует $I(y) = \int_a^b f(x,y)dx = \lim_{c \to b-0} \int_a^c f(x,y)dx$.

ПРИМЕР:

$$I(y) = \int_0^\infty y e^{-xy} dx = \int_0^\infty e^{-xy} d(xy) = e^{-xy}|_0^\infty = 1$$

То есть,
$$\int_0^\infty = \begin{cases} 0, y = 0 \\ 1, y \neq 0 \end{cases}$$

Определение: будем говорить, что несобственный интеграл сходится равномерно на Y, если:

- 1) Он сходится.
- 2) $\forall \varepsilon > 0 \ \exists \delta > 0, b \delta > a, \forall c \ 0 < b \delta < c < b : | \int_c^b f(x, y) dx | < \varepsilon \ \forall y \in Y.$

 $\frac{\Pi \mathbf{P} \mathbf{M} \mathbf{E} \mathbf{P} \mathbf{H}}{1) \int_{1}^{\infty} \frac{y^2 - x^2}{(x^2 + y^2)^2} dx}.$ Оценим этот интеграл:

$$\left| \int_{1}^{\infty} \frac{y^{2} - x^{2}}{(x^{2} + y^{2})^{2}} dx \right| \leq \int_{1}^{\infty} \frac{|y^{2} - x^{2}|}{(x^{2} + y^{2})^{2}} dx \leq \int_{1}^{\infty} \frac{dx}{(x^{2} + y^{2})^{2}} \leq \int_{1}^{\infty} \frac{dx}{x^{2}} < \varepsilon$$

Тогда этот интеграл равномерно сходится.

2) $\int_0^\infty ye^{-xy}dx$.

Докажем, что этот интеграл не сходится равномерно, для этого докажем отрицание определения:

$$\exists \varepsilon_0 \ \forall \delta \ \exists C_\delta; \exists y_\delta : |\int_{c_\delta}^\infty y_\delta e^{-xy_\delta} dx| \ge \varepsilon_0$$

Пусть $xy_{\delta} = t$:

$$I = \int_{c_{\delta}y_{\delta}}^{\infty} e^{-t} dt = e^{-c_{\delta}y_{\delta}}$$

Отсюда очевидно, что можно найти C_{δ} и y_{δ} такие, что $e^{-c_{\delta}y_{\delta}} \geq \varepsilon_{0}$, тогда интеграл не сходится равномерно.

12.2 Признаки равномерной сходимости несобственных интегралов

1) Признак Коши.

<u>Утверждение</u>: для того, чтобы несобственный интеграл $\int_a^b f(x,y)dx$ равномерно сходился на Y, необходимо и достаточно, чтобы:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall c_1, c_2 \ a < b - \delta < c_1, c_2 < b : \left| \int_{c_1}^{c_2} f(x, y) dx \right| < \varepsilon \ \forall y \in Y$$

Доказательство:

 $I. \Rightarrow$

Пусть $\int_a^b f(x,y) dx$ сходится равномерно на Y. Тогда по определению:

$$\forall \varepsilon > 0 \; \exists \delta \; \forall c \; a < b - \delta < c < b : |\int_a^b f(x, y) dx| < \frac{\varepsilon}{2}$$

Возьмем два разных c: c_1 и c_2 такие, что $a < b - \delta < c_1, c_2 < b$, тогда:

$$\left| \int_{c_1}^{c_2} \le \left| \int_{c_1}^{b} \left| + \left| \int_{b}^{c_2} \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \right| \right|$$

Что и требовалось доказать.

 $II. \Leftarrow$

Теперь нам дано, что $\left| \int_{c_1}^{c_2} f(x,y) dx \right| < \frac{\varepsilon}{2}$.

Пусть $c_2 \rightarrow b - 0$, тогда

$$\left| \int_{c_1}^{\infty} f(x, y) dx \right| \le \frac{\varepsilon}{2} < \varepsilon \ \forall y \in Y$$

Что и требовалось доказать.

2) Признак Вейерштрасса:

Утверждение: если существует функция $\varphi(x)$, которая не имеет особых точек кроме b, а так же $\int_a^b \varphi(x)$ сходится, то и интеграл $\int_a^b f(x,y) dx$ сходится равномерно.

Доказательство:

Используем признак Коши, оценим интеграл:

$$\left| \int_{c_1}^{c_2} f(x, y) dx \right| \le \int_{c_1}^{c_2} |f(x, y)| dx \le \int_{c_1}^{c_2} \varphi(x) dx < \varepsilon$$

Тогда по признаку Коши этот интеграл сходится равномерно. В следующих двух признаках дан интеграл $I=\int_a^b f(x,y)g(x,y)dx$, а так же некоторые условия.

В доказательстве обоих понадобится следующая выкладка:

Распишем $\int_{c_1}^{c_2} f(x,y)g(x,y)dx$:

$$\int_{c_1}^{c_2} f(x,y)g(x,y)dx = g(c_1,y) \int_{c_1}^{\xi} f(x,y)dx + g(c_2,y) \int_{\xi}^{c_2} f(x,y)dx$$
$$|\int_{c_1}^{c_2} f(x,y)g(x,y)dx| \le |g(c_1,y)| \cdot |\int_{c_1}^{\xi} f(x,y)dx| + |g(c_2,y)| \cdot |\int_{\xi}^{c_2} f(x,y)dx|$$

- 3) Признак Абеля.
- а) g(x,y) монотонна по x. |g(x,y)| < C
- б) $\int_{a}^{b} f(x,y)dx$ сходится равномерно на Y. Утверждение: I сходится равномерно.

Доказательство:

f(x,y)dx сходится равномерно, а $|g(c_1,y)| < C$; $|g(c_2,y)| < C$. Тогда по признаку Коши:

$$\left| \int_{c_1}^{\xi} f(x, y) dx \right| < \frac{\varepsilon}{2C}; \left| \int_{c_2}^{\xi} f(x, y) dx \right| < \frac{\varepsilon}{2C}$$

Отсюда $|\int_{c_1}^{c_2} f(x,y)g(x,y)dx| < \frac{C\varepsilon}{2C} + \frac{C\varepsilon}{2C} = \varepsilon$, что и требовалось доказать. 4) Признак Дирихле.

- а) g(x,y) монотонна по x.

$$g(x,y)_{x\to b-0}\mapsto 0.$$

 $g(x,y)_{x\to b-0}\mapsto 0.$ б) $|\int_a^c f(x,y)dx|\leq M.$ Утверждение: I сходится равномерно.

Доказательство:

По условию, $|\int_a^c f(x,y)dx| \leq M$.

Так как g равномерно сходится, то $\begin{cases} |g(c_1,y)| < \frac{\varepsilon}{2M} \\ |g(c_2,y)| < \frac{\varepsilon}{2M} \end{cases}$ Отсюда $|\int_{c_1}^{c_2} f(x,y)g(x,y)dx| < \frac{M\varepsilon}{2M} + \frac{M\varepsilon}{2M} = \varepsilon$, что и требовалось доказать.