Оглавление

Предисловие	7
Глава 1. Введение	9
\S 1. Множества и области из \mathbf{R}^n	9
§ 2. Классы функций $C^p(\Omega), C^p(\bar{\Omega}), L_p(\Omega)$	11
§ 3. Понятие о дифференциальном уравнении с частными	
производными, о краевых и начальных условиях. Типич-	
ные примеры задач математической физики	14
§ 4. Понятие об обратных задачах	19
§ 5. Примеры обратных задач и задач управления	22
§ 6. Задачи оптимального управления как форма обобщен-	
ных постановок задач	28
§ 7. Основные этапы исследования задач	33
Глава 2. Вспомогательные сведения из теории	
линейных операторов, экстремальных задач и	
линейных операторных уравнений	36
§ 1. Сведения из теории линейных пространств	36
1.1. Нормированные пространства (36). 1.2. Гильбертовы	
пространства (38). 1.3. Линейные операторы и функцио-	
налы (39). 1.4. Сопряженные, симметричные и самосоп-	
ряженные операторы (46). 1.5. Положительные операто-	
ры и энергетическое пространство (48). 1.6. Ортого-	
нальные дополнения (50).	
	52
2.1. Линейные уравнения (52). 2.2. Теория разрешимости	
линейных операторных уравнений (54). 2.3. Линейные	
преобразования уравнений (58). 2.4. Уравнение $A^*Au =$	
$=A^*f$ (59). 2.5. Уравнение $\alpha u + A^*Au = A^*f$ (62).	

2.6. Об итерационных методах решения линейных операторных уравнений (65).	-
§ 3. Экстремальные задачи и методы их решения	
3.1. Определения и сведения из нелинейного анализа (68). 3.2. Экстремальные задачи и критические точки	ì
функционалов (72). 3.3. Методы минимизации функционалов (79).	
§ 4. Некорректные задачи и методы их решения	ie
ных задач (93).	
§ 5. Некоторые понятия теории оптимального управления . 5.1. Понятие о задаче оптимального управления (98).	98
5.2. Условия оптимальности (102). 5.3. О подходах к	
решению задач оптимального управления (105). Глава 3. Исследование одного класса обратных	
задач и методов их решения	108
§ 1. Описание класса задач и этапы их исследований	108
1.1. Описание класса задач (108). 1.2. Этапы исследования и решения задач (110). 1.3. Формы записи вариа-	
ционных уравнений (114). 1.4. Обсуждение понятия "решение задачи" (116).	
§ 2. Некоторые условия разрешимости задач и единствен-	
ности решений	
разрешимости задач (120).	
§ 3. Условие плотной ("аппроксимативной") разрешимости задач	128
3.1. Условие плотной разрешимости (128). 3.2. Решение системы вариационных уравнений в задаче о плотной	120
разрешимости (132).	
§ 4. Условие корректной разрешимости задачи	135
4.1. Корректная разрешимость (135). 4.2. Сходимость	
регуляризированных решений (136). 4.3. О приближён-	
ном решении залач (137).	

§	5.	Задачи на собственные значения в обратных задачах и	
		оптимальном управлении	140
		5.1. Задачи на собственные значения (140). 5.2. Некото-	
		рые приложения фундаментальных и собственных функ-	
		ций (144).	
§	6.	Итерационные методы решения обратных задач и задач	
		управления	146
		6.1. Методы теории экстремальных задач (149). 6.2. Ме-	
		тоды теории некорректных задач (150). 6.3. Методы	
		общей теории итерационных процессов (152).	
Γ	Л	а в а 4. Приложения в задачах математической	
		-	159
-	1.	Некоторые уравнения и задачи математической физики	159
		1.1. Некоторые основные уравнения математической	
		физики (159). 1.2. Постановка основных задач математи-	
		ческой физики (163). 1.3. Обобщенные постановки и ре-	
		шения задач математической физики (168). 1.4. Сведение	
		краевой задачи к операторному уравнению (187).	
§	2.	Эллиптическая задача о внутренних источниках	195
		2.1. Постановка задачи (195). 2.2. Задача оптимального	
		управления (196). 2.3. Итерационный алгоритм (198).	
§	3.	Задача о локальном граничном управлении	199
		3.1. Постановка задачи (199). 3.2. Задача оптимального	
		управления (200). З.З. Итерационные алгоритмы (202).	
§	4.	Задача точного управления для параболического	
		уравнения	203
		4.1. Формулировка задачи (203). 4.2. Задачи оптималь-	
		ного управления и вариационные уравнения (205).	
		4.3. Итерационный алгоритм (207).	
§	5.	Параболическая задача о граничном управлении	208
5	.1.	Формулировка задачи (208). 5.2. Задачи оптимального	
		управления и вариационные уравнения (210). 5.3. Итера-	
		ционный алгоритм (212).	
§	6.	Задача усвоения данных наблюдений	213
		6.1. Постановка задачи (213). 6.2. Вспомогательные	
		утверждения и задача оптимального управления (215).	
		6.3. Итерационный алгоритм (219).	

§ 7. Обратная задача для возмущенной системы Стокса	219
7.1. Постановка задачи (219). 7.2. Условия разрешимости	
задачи и единственности решения (222). 7.3. Итерацион-	
ный алгоритм (224).	
§ 8. О решении других линейных обратных задач	225
8.1. Задача о "финальном наблюдении"для эволюцион-	
ного уравнения второго порядка (225). 8.2. Задача о	
граничных функциях в гидродинамике (227). 8.3. Задачи	
теории переноса частиц (228).	
Глава 5. О приложениях в нелинейных задачах и	
в вычислительных процессах	
§ 1. Подходы к решению нелинейных задач	
§ 2. Решение задачи о восстановлении функции источника	
в уравнении коагуляции-дробления	236
2.1. Постановка задачи и приближенная модель процесса	
коагуляции-дробления (236). 2.2. Вариационные уравне-	
ния (239). 2.3. Итерационный алгоритм (240).	
§ 3. Методы оптимального управления и сопряженных	
уравнений в вычислительных процессах	242
3.1. Подход к построению вычислительных алгоритмов	
(242). 3.2. Вычислительный процесс решения возмущен-	
ной системы Стокса (245).	
Глава 6. Приложения к решению задач вариацион	ной
ассимиляции данных наблюдений в моделях динами	
	250
-	251
	254
§ 3. Метод расщепления и основные особенности численной	M O-
дели	262
§ 4. Задача ассимиляции данных о температуре поверхности с	оке-
ана	270
§ 5. Результаты численного решения задачи вариационной а	
ииляции	
Список литературы	292