AUTHOR et al.: TITLE

APPENDIX I **PROOFS AND PARAMETER SETTINGS**

A. Proof of Theorem 2

Proof: According to (4) and (7), we have $X_t =$ $\sqrt{\alpha_t}\mathbf{X}_{t-1} + \sqrt{\beta_t}\mathbf{\Omega} = \sqrt{\alpha_t}\mathbf{X}_{t-1} + \sqrt{\eta(1-\alpha_t)}\mathbf{\Omega}$. Let $\psi \sim$ $\mathcal{N}(0, \eta \mathbf{I})$, it observed that $\mathbf{X}_t = \sqrt{\alpha_t} \mathbf{X}_{t-1} + \sqrt{1 - \alpha_t} \psi$. Then, recursively applying from $\{X_T, X_{T-1}, \dots, X_1\}$, we can derive the expression for X_T as

$$\begin{cases} \mathbf{X}_{T} = \sqrt{\alpha_{T}} \mathbf{X}_{T-1} + \sqrt{(1 - \alpha_{T})} \psi \\ \mathbf{X}_{T-1} = \sqrt{\alpha_{T-1}} \mathbf{X}_{T-2} + \sqrt{(1 - \alpha_{T-1})} \psi \\ \vdots \\ \mathbf{X}_{1} = \sqrt{\alpha_{1}} \mathbf{X}_{0} + \sqrt{(1 - \alpha_{1})} \psi \\ \Rightarrow \mathbf{X}_{T} = \sqrt{\overline{\alpha_{T}}} \mathbf{X}_{0} + \sqrt{(1 - \overline{\alpha_{T}})} \psi. \end{cases}$$

Let $\sigma = \sqrt{\eta (1 - \overline{\alpha}_T)}$, we have $\sqrt{1 - \overline{\alpha}_T} \psi \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$. For given (ϵ, δ) , according to line 12 in Algorithm 1, we can always find an appropriate $\omega \ll 1$, such that the value of $1-\overline{\alpha}_T$ is not small, while $\eta \gg 1$ satisfies $\sigma \geq \frac{\sqrt{2\log(1.25/\delta)}\Delta f}{2}$ Finally, based on the Definition 3, we conclude that the output \mathbf{X}_T of Algorithm 1 satisfies (ϵ, δ) -DP.

B. Proof of Theorem 3

Proof: For a given input p in range (0,1), the query function is $f(\mathbf{R}) = \sqrt{\overline{\alpha}_T} count(\mathbf{R}) = \sqrt{\overline{\alpha}_T} \mathbf{X}_0$, we have $\Delta f = \sqrt{\overline{\alpha}_T} = p < 1$. Let

$$\sqrt{\eta(1-\overline{\alpha}_T)} = \sigma = \frac{\sqrt{2\log(1.25/\delta)}}{\epsilon},$$

it holds $\sigma > \frac{\sqrt{2\log(1.25/\delta)}\Delta f}{\epsilon}$. Thus, $\mathbf{X}_T = \sqrt{\overline{\alpha}_T}\mathbf{X}_0 + \sqrt{\eta(1-\overline{\alpha}_T)}\mathbf{\Omega}$ is satisfies (ϵ,δ) -DP. Then, we deduce $\eta = \frac{\sigma^2}{1-\overline{\alpha}_{Tm}} = \frac{\sigma^2}{1-p^2}$, and $\omega = \frac{1}{\eta}$ as per (7). Thus, line 4 in Algorithm 2 is proven.

Next, we assume that Tm exists and has an upper bound Tup. Given β_0 and β_T such that $0 < \beta_0 < \beta_T < 1$, and the growth ratio k is ensured to be greater than 0. We have

$$\overline{\alpha}_T = \prod_{i=1}^{Tm} \left[1 - \omega \left(ki + \beta_0 \right) \right] < \prod_{i=1}^{Tm} \left(1 - \omega \beta_0 \right) \le \left(1 - \omega \beta_0 \right)^{Tup}.$$

Moreover, $(1 - \omega \beta_0)^{Tup} \leq p^2 = \overline{\alpha}_{Tm}$ always has a solution. Finally, by searching for Tm within a specific range $\{1,2,\ldots,Tup\}$, it can be found that the smallest Tm ensures that lines 5 to 8 of Algorithm 2 hold true.

From the above, Theorem 3 is proven.

C. Proof of Theorem 4

Proof: Based on the Bayes rule, we define the probability of \mathbf{X}_{t-1} given \mathbf{X}_t as

$$p\left(\mathbf{X}_{t-1}\left|\mathbf{X}_{t}\right.\right) = \frac{p\left(\mathbf{X}_{t}\left|\mathbf{X}_{t-1}\right.\right) \cdot p\left(\mathbf{X}_{t-1}\right.\right)}{p\left(\mathbf{X}_{t}\right)}.$$

While giving X_0 as a known condition, the probability does not change, i.e.,

$$p\left(\mathbf{X}_{t-1} | \mathbf{X}_{t}, \mathbf{X}_{0}\right) = \frac{p\left(\mathbf{X}_{t} | \mathbf{X}_{t-1}, \mathbf{X}_{0}\right) \cdot p\left(\mathbf{X}_{t-1} | \mathbf{X}_{0}\right)}{p\left(\mathbf{X}_{t} | \mathbf{X}_{0}\right)},$$

where,
$$\begin{cases} p\left(\mathbf{X}_{t} \mid \mathbf{X}_{t-1}, \mathbf{X}_{0}\right) = \sqrt{\alpha_{t}} \mathbf{X}_{t-1} + \sqrt{(1-\alpha_{t})} \psi \\ p\left(\mathbf{X}_{t-1} \mid \mathbf{X}_{0}\right) = \sqrt{\overline{\alpha}_{t-1}} \mathbf{X}_{0} + \sqrt{(1-\overline{\alpha}_{t-1})} \psi \\ p\left(\mathbf{X}_{t} \mid \mathbf{X}_{0}\right) = \sqrt{\overline{\alpha}_{t}} \mathbf{X}_{0} + \sqrt{(1-\overline{\alpha}_{t})} \psi \end{cases}, \quad \text{it} \\ \text{further follows as} \end{cases}$$

$$\begin{cases} p\left(\mathbf{X}_{t} | \mathbf{X}_{t-1}, \mathbf{X}_{0}\right) \sim \mathcal{N}\left(\sqrt{\alpha_{t}} \mathbf{X}_{t-1}, (1 - \alpha_{t}) \eta \mathbf{I}\right) \\ p\left(\mathbf{X}_{t-1} | \mathbf{X}_{0}\right) \sim \mathcal{N}\left(\sqrt{\overline{\alpha}_{t-1}} \mathbf{X}_{0}, (1 - \overline{\alpha}_{t-1}) \eta \mathbf{I}\right) \\ p\left(\mathbf{X}_{t} | \mathbf{X}_{0}\right) \sim \mathcal{N}\left(\sqrt{\overline{\alpha}_{t}} \mathbf{X}_{0}, (1 - \overline{\alpha}_{t}) \eta \mathbf{I}\right) \end{cases}$$

Meanwhile, the PDF of the Gaussian distribution is defined

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{-|x-\mu|^2}{2\sigma^2}\right).$$

According to the properties of the reparameterization, we get PDF of $p(\mathbf{X}_{t-1}|\mathbf{X}_t,\mathbf{X}_0)$ by taking $p(\mathbf{X}_t|\mathbf{X}_{t-1},\mathbf{X}_0)$, $p(\mathbf{X}_{t-1}|\mathbf{X}_0)$, and $p(\mathbf{X}_t|\mathbf{X}_0)$ into $f(\cdot)$. The result is calculated as

$$f\left(\mathbf{X}_{t-1}\right) = \theta \exp\left(\chi\right),\,$$

 $\begin{array}{lll} \text{where} & \theta & = & \frac{\sqrt{1-\overline{\alpha}_t}}{\sqrt{2\pi}\sqrt{\eta(1-\alpha_t)(1-\overline{\alpha}_{t-1})}} & = & \frac{1}{\sqrt{2\pi}\sigma} \text{ and } \chi & = \\ & -\frac{1}{2\eta} \left[\frac{(\mathbf{X}_t - \sqrt{\alpha_t}\mathbf{X}_{t-1})^2}{1-\alpha_t} + \frac{\left(\mathbf{X}_{t-1} - \sqrt{\overline{\alpha}_{t-1}}\mathbf{X}_0\right)^2}{1-\overline{\alpha}_{t-1}} - \frac{\left(\mathbf{X}_t - \sqrt{\overline{\alpha}_t}\mathbf{X}_0\right)^2}{1-\overline{\alpha}_t} \right]. \\ \text{By further merging } \chi \text{ with similar items, we have } \\ \chi & = -\frac{1}{2\eta} \left[\theta_1 \mathbf{X}_{t-1}^2 - \theta_2 \mathbf{X}_{t-1} + \mathbf{c} \right], \text{ where } \theta_1 = \frac{\alpha_t}{1-\alpha_t} + \frac{1}{1-\overline{\alpha}_t}, \end{array}$ $\theta_2 = \frac{2\sqrt{\overline{\alpha}_t}}{1-\alpha_t}\mathbf{X}_t + \frac{2\sqrt{\overline{\alpha}_{t-1}}}{1-\overline{\alpha}_{t-1}}\mathbf{X}_0$, and \mathbf{c} is a constant term that excludes \mathbf{X}_{t-1} . Thus, we conduct the parameters of $f(\mathbf{X}_{t-1})$, which are the mean μ and the deviation σ^2 , as follows:

$$\begin{cases} \frac{1}{\sigma^2} = \frac{1}{\eta} \frac{1 - \overline{\alpha}_t}{(1 - \alpha_t)(1 - \overline{\alpha}_{t-1})} \\ \frac{2\mu}{\sigma^2} = \frac{1}{\eta} \left(\frac{2\sqrt{\overline{\alpha}_t}}{1 - \alpha_t} \mathbf{X}_t + \frac{2\sqrt{\overline{\alpha}_{t-1}}}{1 - \overline{\alpha}_{t-1}} \mathbf{X}_0 \right) \end{cases}$$

$$\Rightarrow \begin{cases} \mu = \frac{\sqrt{\alpha_t}(1 - \overline{\alpha}_{t-1})}{1 - \overline{\alpha}_t} \mathbf{X}_t + \frac{\sqrt{\overline{\alpha}_{t-1}}(1 - \alpha_t)}{1 - \overline{\alpha}_t} \mathbf{X}_0 \\ \sigma^2 = \frac{\eta(1 - \alpha_t)(1 - \overline{\alpha}_{t-1})}{\alpha_t(1 - \overline{\alpha}_{t-1}) + (1 - \alpha_t)} = \frac{\beta_t(1 - \overline{\alpha}_{t-1})}{1 - \overline{\alpha}_t} \end{cases}$$

It can be observed that both μ and σ^2 are independent of the parameter η . Thus, the reverse process is not affected by the reconstruction relationship between α_t and β_t , as shown in (7). Finally, we solve \mathbf{X}_0 in reverse based on \mathbf{X}_t , i.e., $\mathbf{X}_0 = \frac{1}{\sqrt{\overline{\alpha}_t}} (\mathbf{X}_t - \sqrt{1 - \overline{\alpha}_t} \psi)$. Finally, we get $\mu =$ $\frac{1}{\sqrt{\alpha_t}}\left(\mathbf{X}_t - \frac{\beta_t}{\sqrt{1-\overline{\alpha_t}}}\mathbf{\Omega}\right)$. Then the parameters for $f\left(\mathbf{X}_{t-1}\right)$ are

$$\begin{cases} \mu = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{X}_t - \frac{\beta_t}{\sqrt{1 - \overline{\alpha_t}}} \mathbf{\Omega} \right) \\ \sigma^2 = \frac{\beta_t (1 - \overline{\alpha_{t-1}})}{1 - \overline{\alpha_t}} \end{cases},$$

which are the same as the backward process of approach [24]. Thus, the Theorem 4 is proven.

D. Proof of Theorem 5

Proof: According to (15), let $\alpha = \frac{tc(i)}{tc(i)+tc(j)}$ and $\beta = 1$ $\alpha = \frac{tc(j)}{tc(i)+tc(j)}$, then, plugging them into (13) to get

$$\begin{cases} D_{\alpha}\left(P_{i} \| P_{j}\right) = \frac{1}{\alpha - 1} \log\left(\sum_{r \in Scale} p_{ir}^{\alpha} \cdot p_{jr}^{1 - \alpha}\right) \\ \frac{\alpha}{1 - \alpha} D_{\beta}\left(P_{j} \| P_{i}\right) = -\frac{\alpha}{\beta} \cdot \frac{1}{\alpha} \log\left(\sum_{r \in Scale} p_{jr}^{\beta} \cdot p_{ir}^{1 - \beta}\right) \\ = \frac{1}{\alpha - 1} \log\left(\sum_{r \in Scale} p_{jr}^{1 - \alpha} \cdot p_{ir}^{\alpha}\right) \end{cases}$$

After the rearrangement, the equation $D_{\alpha}(P_i || P_i) =$ $\frac{\alpha}{1-\alpha}D_{1-\alpha}\left(P_{j}\|P_{i}\right)$ is proven.

TABLE I: Parameters of Tm, ω , and η

p	Params.	ϵ =0.1	ϵ =0.2	<i>ϵ</i> =0.3	<i>ϵ</i> =0.4	<i>ϵ</i> =0.5
0.9	$\omega (10^{-4})$	1.10	4.10	9.10	16.20	25.20
	$\eta (10^3)$	9.091	2.439	1.099	0.617	0.367
	$Tm (10^3)$	3.831	1.027	0.463	0.260	0.167
0.8	$\omega (10^{-4})$	2.00	7.70	17.20	30.60	47.70
	$\eta (10^3)$	5.000	1.299	0.581	0.329	0.210
	$Tm (10^3)$	4.462	1.159	0.518	0.291	0.187

E. Parameter settings

To achieve a target compression rate for matrix \mathbf{C} , we can configure the parameters of (7) and determine the minimum Tm to ensure sufficient noise injection while conserving computational resources. The parameter values calculated by Algorithm 2 are detailed in Table I above.