

Architecture Influence Cycle (AIC) Siklus Pengaruh Arsitektur

ER234403 – Arsitektur Perangkat Lunak

ER234403 - Software Architecture

Outline

- Latar Belakang AIC
- Faktor yang Mempengaruhi Arsitektur
- Faktor yang Dipengaruhi Arsitektur
- Siklus Pengaruh (Cycle of Influences)
- Studi Kasus
- Ringkasan

Latar Belakang AIC

- Software architecture tidak berdiri sendiri.
- Arsitektur dipengaruhi oleh banyak faktor: stakeholder, tujuan bisnis, lingkungan teknis, pengalaman arsitek.
- Arsitektur juga mempengaruhi kembali faktor-faktor tersebut.

Apa itu Architecture Influence Cycle?

- Architecture Influence Cycle (AIC) = siklus sebab-akibat antara faktor yang membentuk arsitektur dan dampak arsitektur pada organisasi & sistem.
- Menunjukkan bahwa arsitektur adalah bagian dari **ekosistem yang dinamis**, bukan keputusan sekali jalan.

Mengapa Harus Dipahami?

- Membantu arsitek **memahami konteks** sebelum mengambil keputusan desain.
- Memahami adanya trade-off: keputusan teknis dipengaruhi strategi bisnis, dan sebaliknya.
- Menjadi dasar untuk evaluasi arsitektur dalam jangka panjang.

Faktor yang Mempengaruhi Arsitektur

Arsitektur perangkat lunak dibentuk oleh banyak faktor:

- Stakeholders
- 2. Business / Mission Goals
- 3. Technical Environment
- 4. Architect's Experience

FIGURE 3.4 Influences on the architect

All citations are from the course textbook, Software Architecture in Practice, Third Edition, unless otherwise noted.

Stakeholders

- Stakeholder/pemangku kepentingan adalah orang-orang yang memiliki kepentingan pada pengembangan sistem software.
- Termasuk:
 - pelanggan/customer,
 - pengguna akhir/end-user
 - manajer,
 - developer,
 - · maintainer,
 - marketer.
- Masing-masing membawa kebutuhan & prioritas berbeda yang ingin dioptimalkan.

Pelanggan (Customers)

- Pelanggan adalah orang/organisasi yang membayar pengembangan sistem
- Fokus utama:
 - Biaya, fungsionalitas, dan manfaat dari sistem.
 - Development time/time to market
 - Kualitas dan fleksibilitas
- Ingin arsitektur yang efisien dan memberikan nilai bisnis.
- Pelanggan tidak selalu sama dengan end-users/pengguna.
- Pertanyaan umum:
 - "Berapa biaya sistem ini?"
 - "Apakah arsitektur ini mendukung ROI yang baik?"

Pengguna (Users)

- Pengguna adalah orang yang berinteraksi langsung dengan sistem.
- Fokus utama:
 - Fungsi yang relevan dengan kebutuhan mereka.
 - Kemudahan penggunaan (usability).
 - Respons cepat & reliabilitas.
- Ingin arsitektur yang menghasilkan **sistem handal** dan **mudah digunakan**.
- Pengguna sering berbeda dengan pelanggan (tidak selalu orang yang membayar).
- Pertanyaan umum:
 - "Apakah sistem ini mudah dipelajari dan digunakan?"
 - "Apakah sistem cepat merespons permintaan saya?"

Manajemen (Management)

- Manajemen adalah pihak yang bertanggung jawab pada strategi bisnis dan pengambilan keputusan organisasi.
- Fokus utama:
 - Time-to-market (seberapa cepat sistem diluncurkan).
 - Profitabilitas & efisiensi biaya.
 - Mitigasi risiko teknis & bisnis.
- Ingin arsitektur yang memungkinkan kontrol biaya, risiko rendah, dan keuntungan kompetitif.
- Pertanyaan umum:
 - "Berapa lama produk ini bisa diluncurkan ke pasar?"
 - "Apa risiko terbesar dari desain ini?"

Stakeholder Lainnya

- Developer: menginginkan arsitektur yang konsisten, terdokumentasi, mudah dipahami.
- · Maintainer: menginginkan sistem yang mudah diperbaiki & dikembangkan.
- Tester: membutuhkan sistem yang dapat diuji dengan mudah.
- Fokus utama:
 - Produktivitas tim pengembang.
 - Kemudahan pemeliharaan jangka panjang.
 - Dukungan operasional yang lancar.
- Pertanyaan umum:
 - "Apakah arsitektur ini mudah dikembangkan & diuji?"
 - "Apakah sistem ini mudah dipelihara dan dioperasikan?"

Kepentingan Stakeholders

Business / Mission Goals

- Arsitektur dipengaruhi oleh strategi & tujuan bisnis organisasi.
- Faktor penting:
 - **Time-to-market** → kecepatan rilis produk.
 - **Cost constraints** → keterbatasan anggaran.
 - **Strategic goals** → keberlanjutan, diferensiasi, inovasi.
- Contoh: Startup memilih arsitektur sederhana agar software cepat diluncurkan ke pengguna.

Faktor-faktor Bisnis

- Time to market
- Rollout schedule
- Use of legacy systems
- Available expertise
- Support for existing products
- Targeted markets
- Political interests
- Existing architectures

- Plans for long-term infrastructure
- Organizational structure
- Projected lifetime of the system
- Workforce utilization
- Cost
- Investment in existing assets

Technical Environment

- Teknologi yang tersedia & digunakan dalam organisasi.
- Termasuk: bahasa pemrograman, framework, middleware, infrastruktur, tools.
- Contoh:
 - Organisasi berbasis cloud: cenderung memilih microservices.
 - Organisasi dengan legacy system: sering terbatas pilihan teknologinya.

Contoh Kasus Technical Environment

Arsitektur perangkat lunak dipengaruhi oleh kondisi teknis yang tersedia dalam organisasi, seperti:

Bahasa pemrograman & framework

Contoh: Java Spring Boot, .NET Core, Python Django

Middleware & platform

Contoh: Message broker (Kafka, RabbitMQ), container (Docker, Kubernetes)

Infrastruktur & deployment target

Contoh: Cloud provider (AWS, GCP, Azure) vs on-premises

Integrasi dengan sistem legacy

Contoh: Mainframe, ERP lama, database lama (Oracle, DB2)

Tools & praktik pengembangan

Contoh: CI/CD pipeline, DevOps, automated testing

Contoh kasus:

Organisasi yang sudah berinvestasi besar di Microsoft stack (Windows Server, SQL Server, .NET) biasanya akan memilih arsitektur berbasis .NET ecosystem daripada membangun sistem baru dengan Java.

Architect's Experience

- Pengalaman arsitek sangat berpengaruh pada desain:
 - Proyek sukses/gagal sebelumnya.
 - Pengetahuan teknologi terbaru.
 - Best practices yang pernah dipakai.
 - Latar belakang Pendidikan/pelatihan yang pernah dijalani.
- Contoh: Arsitek yang pernah gagal dengan monolith cenderung mendorong microservices.

Faktor yang Dipengaruhi Arsitektur

- Stakeholder requirements: arsitektur dapat mengubah ekspektasi kebutuhan
- **Development organization environment**: arsitektur menentukan struktur tim, aktivitas integrasi, alokasi sumber daya
- Architect's experience: proyek sukses/gagal memengaruhi desain di masa depan
- **Technical environment**: arsitektur & teknologi baru bisa membentuk fondasi lingkungan teknis (contoh: relational DB, WWW, microservices, container)

Stakeholder Requirements

Arsitektur perangkat lunak dipengaruhi oleh kebutuhan stakeholder, namun arsitektur juga dapat membentuk ulang ekspektasi stakeholder.

Studi Kasus:

- Stakeholder datang dengan kebutuhan awal (fitur, kualitas).
- Arsitektur bisa memperlihatkan kemungkinan & batasan teknis.
- Hasilnya, kebutuhan bisa berubah/beradaptasi.

Contoh:

- User awalnya minta **respon < 1 detik** untuk semua fitur.
- Arsitektur sistem berbasis microservices menunjukkan hal itu mahal & kompleks. Kebutuhan diubah menjadi **respon** cepat hanya untuk fitur utama.

Development Organization Environment

- Arsitektur memengaruhi cara organisasi pengembang bekerja.
- Struktur arsitektur memengaruhi struktur tim (Conway's Law).
- Arsitektur menentukan alur kerja, integrasi, dan pembagian tanggung jawab.
- Contoh:
 - Sistem berbasis microservices: tim dipecah menjadi tim kecil independen.
 - Sistem monolith: satu tim besar bekerja pada codebase tunggal.

Architect's Experience

- Pengalaman arsitek, baik sukses maupun gagal, sangat memengaruhi desain berikutnya.
- Arsitek menggunakan heuristik & pola dari pengalaman sebelumnya.
- Keputusan arsitektur sering kali dipengaruhi oleh preferensi pribadi & track record.

Contoh:

- Arsitek yang pernah gagal dengan **monolith** pada sistem skala besar akan lebih cenderung memilih microservices.
- Arsitek berpengalaman di event-driven systems akan lebih memilih menggunakan message bus.

Technical Environment

- Arsitektur dipengaruhi oleh teknologi yang tersedia & juga membentuk lingkungan teknis baru.
- Keputusan arsitektur memunculkan standar teknis baru.
- Teknologi yang tersedia dapat membatasi atau memperluas opsi desain.
- Contoh:
 - Kemunculan relational database mendorong arsitektur berbasis data.
 - **WWW** & **REST APIs** melahirkan arsitektur web modern.
 - Cloud-native & container orchestration mempercepat adopsi microservices.

Siklus Pengaruh (Cycle of Influences)

- Hubungan saling memengaruhi antara:
 - Business/mission goals
 - Stakeholder requirements
 - Architect's experience
 - Architectures
 - Fielded systems

- Adanya **feedback loop** yang bisa dimanfaatkan organisasi untuk:
 - Mendorong pertumbuhan
 - Memperluas area bisnis/enterprise
 - Mengoptimalkan investasi dari arsitektur sebelumnya

Architecture Influence Cycle (AIC)

FIGURE 3.5 Architecture Influence Cycle

ITS_campus its.ac.id

Studi Kasus: World Wide Web (WWW)

Latar Belakang

- Awalnya dikembangkan untuk berbagi dokumen riset secara mudah.
- Tujuan: komunikasi & kolaborasi antar peneliti.

Faktor yang Mempengaruhi Arsitektur:

- Stakeholders: peneliti ingin akses mudah & global.
- Business/Mission Goals: open access, interoperabilitas.
- **Technical Environment:** jaringan internet, protokol TCP/IP.
- Architect's Experience: Tim Berners-Lee berpengalaman dengan hypertext systems.

Dampak Arsitektur pada Faktor Lain

- Stakeholder requirements: ekspektasi pengguna berkembang dari sekadar berbagi teks: multimedia, interaktif.
- **Development organization:** melahirkan W3C untuk mengelola standar web.
- **Technical environment:** mendorong terciptanya HTML, HTTP, URL \rightarrow fondasi ekosistem internet modern.
- Architect's experience: pengalaman awal membentuk desain web selanjutnya (REST, linked data).

Initial AIC for the Web

Lessons Learned

- Arsitektur awal yang sederhana berkembang menjadi ekosistem global.
- Keputusan desain (misalnya HTTP yang stateless) memengaruhi arah perkembangan internet hingga sekarang.
- Architecture Influence Cycle menunjukkan bahwa keputusan arsitektur tidak hanya dipengaruhi oleh konteks saat itu, tapi juga membentuk masa depan teknologi.

Ringkasan

- Arsitektur perangkat lunak dipengaruhi oleh banyak faktor:
 - Stakeholders: kebutuhan & prioritas (customer, user, manajemen, developer, dsb.)
 - Business / Mission Goals: biaya, time-to-market, strategi jangka panjang
 - Technical Environment: teknologi, infrastruktur, tools yang tersedia
 - Architect's Experience: pengalaman sukses/gagal, preferensi, best practices
- Arsitektur juga mempengaruhi kembali faktor-faktor tersebut:
 - Mengubah ekspektasi stakeholder
 - Membentuk organisasi pengembang
 - Memengaruhi ekosistem teknis & teknologi baru
- Architecture Influence Cycle = hubungan timbal balik yang terus berulang.

