

TABLE OF CONTENTS

01

Overview

- Problem Statement
- Method(ology)

04

Image Classification

- CNN
- VGG16
- ResNet50

02

Data Collection

- Kaggle Dataset
- Recorded Videos

05

Object Detection

- Darknet + YOLOv4
- PyTorch + YOLOv5

03

EDA & Visualization

HOG + SVM

06

Conclusion

- Areas for Improvement
- Business Recommendations

Overview

Background Information

Autonomous vehicles fueling up in Singapore

Problem Statement

Data scientist for CETRAN assigned with a two-fold task on pedestrian identification in an urban setting:

- (i) Develop an image classification model to determine whether there are pedestrian(s) in an image; and
- (ii) Develop an object detection model to spatially demarcate pedestrian(s) in an image or video, if any.

Model Framework

Predicted variable (y): 1 = Person | 0 = Not Person

IMAGE CLASSIFICATION

- Self-built CNN models
- Pre-built models (VGG16, ResNet50)

OBJECT DETECTION

Pre-built models
 (Darknet + YOLOv4,
 PyTorch + YOLOv5)

Accuracy

Basic indicator:
Ratio of correct
predictions to total
predictions

Loss (Binary Cross-entrpoy)

Negative average of the log of corrected predicted probabilities

Object Detection

Mean Average Precision (mAP)

Mean of average precisions for all classes at a given IoU

Sensitivity

Ratio of true positives over true positives and false negatives

Image

Classification

(Secondary

F1-Score

Confidence proxy of a model's predicted positive values

Data Collection

Kaggle Pedestrian Dataset

Images contain person and person-like objects:
-Person objects depict actual people
-Person-like objects include statues, mannequins,
scarecrows and robots etc.

Recorded Images/Videos

NTU

Ideal testbed for autonomous vehicles

Orchard Road (Day)

Highly urbanized environment with heightened footfall and volume of distractions

Orchard Road (Night)

Test under night time conditions to ascertain if model performance deviates significantly

EDA & Visualization

Verify Labels

□ □ □ Check Class Imbalance

Plot Image Dimensions

□ □ □ People Detection (HOG + SVM)

Histogram of Oriented Gradients (HOG) (Dalal & Triggs, 2005): A feature descriptor providing a simplified representation of an image to allow for easy identification by containing only the most critical details while removing "extra" elements in the image.

Gradient

- Calculate x-gradient and y-gradient for every pixel
- Consolidate into single gradient value using square root formula

Oriented

 Calculate gradient orientation for every pixel using tangent formula

Histogram

- Pass an n by n layer over the image to obtain a more compact gradient magnitude and orientation
- Construct a histogram of gradients using gradient orientation as bins and gradient magnitude as the frequency

SVM

- Normalize by running a larger m by m layer over the image and concatenate into a single large vector
- Implement SVM as an image classifier to predict whether image contains person(s)

Data Visualization (HOG on Kaggle Dataset)

Person Images

Non-Person Images

Data Visualization (HOG on Recorded Video)

Image Classification

Convolutional Neural Network (CNN)

Preprocessing via Keras' ImageDataGenerator

- Architecture: Additional Hidden Layers, Additional Convolutional Stacks
- Tuning: Neurons, Filters, Kernel Size, Learning Rate, Epochs etc.
- Regularization: L2, Dropout, Early Stopping

Transfer Learning: VGG16

Popular CNN model encompassing 16 layers total, including 3 convolutional/pooling stacks

 $224 \times 224 \times 3$ $224 \times 224 \times 64$

□ □ □ Model Evaluation (Image Classification)

	Test Accuracy Score	Loss (Binary Crossentropy)	Recall	F1-score
Base (CNN)	0.7191	0.7338	0.8526	0.8012
Base + Additional Hidden Layers	0.7404	0.7660	0.8590	0.8146
Base + Additional Hidden Layers + Additional Convolutional Stack	0.6681	1.2009	0.7628	0.7532
Base + Additional Hidden Layers + Regularization (L2)	0.7149	1.3948	0.9679	0.8184
Base + Additional Hidden Layers + Regularization (Dropout)	0.6979	1.0983	0.8269	0.7842
Base + Additional Hidden Layers + Regularization (Early Stopping)	0.7234	0.6150	0.8526	0.8036
VGG16	0.8170	0.4634	0.8590	0.8617
ResNet50	0.7191	0.6032	0.7115	0.7708

VGG16 adopted as production model

Image Classification Predictions (NTU)

Images with Pedestrians

NTU1
Prediction:
There are no
pedestrian(s)
in the image

NTU2
Prediction:
There are
pedestrian(s)
in the image

Images without Pedestrians

NTU3
Prediction:
There are no pedestrian(s) in the image

NTU4
Prediction:
There are
pedestrian(s)
in the image

Image Classification Predictions (Orchard Road - Day)

Images with **Pedestrians**

Orchard-Day1 Prediction: There are no pedestrian(s) in the image

Orchard-Day2 **Prediction:** There are pedestrian(s) in the image

Images without Pedestrians

Orchard-Day3 Prediction: There are pedestrian(s) in the image

Orchard-Day4 Prediction: There are no pedestrian(s) in the image

Image Classification Predictions (Orchard Road - Night)

Images with Pedestrians

Orchard-Night1
Prediction:
There are no pedestrian(s) in the image

Orchard-Night2
Prediction:
There are
pedestrian(s) in
the image

Images without Pedestrians

Orchard-Night3
Prediction:
There are no
pedestrian(s) in
the image

Orchard-Night4
Prediction:
There are
pedestrian(s)
in the image

Object Detection

You Only Look Once (YOLO)

PyTorch + YOLOv5

- Main difference vs YOLOv4 is the backbone component
- Trained on custom pedestrian dataset
- Bounding box and object annotation via Roboflow

^{*}Deployed via Google Colab

Model Evaluation (Object Detection)

Precision	Recall	mAP @ IoU = 0.5
0.924	0.815	0.879

- Although model did not meet the 90% criteria set, the mAP of 0.879 signals to a competent model
- Generally, this high average precision translates to a high level of accuracy in predicting actual positives (True Positives)

Conclusion

Areas for Improvement

01
DATASET

Use a larger dataset with more variation in person objects

02

MODELLING

More research on the 'black box' to understand how the model classifies/detects

Ш

03

ENSEMBLING

Augment performance of CNN models by applying ensembling techniques to form a 'committee of networks'

Business Recommendations Low Margin for Error Established benchmarks still not met **Enhance Model Modelling Basis** Incorporate more Utilize trained models to road(side) elements further tune and improve

