10 45 36 8 75 PCT/US2003/037905 JC20 Rec'd PCT/PTO 2 7 MAY 2005

SEQUENCE LISTING

<110> BRIGGS, Kristen

	GLANHEIN HIATKANNANDEI PAREI PETOI TAYLO The I Dow I Epicy	, Mil OUP, RSON, DDY, LINO, N-WII OR, I rts, Oow (tch indrevalues Anto, W.I. Days, Joseph Jean Jean Chemiscier	B. w C. on S H. Ke akar seph , El: n L. ical nces,	err izabe Comp	oany	Inc.									
<120>	Plar	ıt pr	coduc	ction	of	immu	ınog]	Lobu]	lins	with	ı red	duce	1 fu	cosyl	ation	
<130>	3813	36-50)01-F	10												
<150> <151>		50/42 2-11-	-	35												
<160>	85															
<170>	Pate	entIn	ver	sion	3.1											
<210><211><211><212><213>	1 1494 DNA Herp		impl	.ex v	irus				•							
<220><221><222><222><223>		. (14	94)													
<220> <221> <223>	misc HSV				sequ	ence										
<400> atg gg Met Gl	l a tgg y Trp	agc Ser	tgg Trp	atc Ile	ttt Phe	ctc Leu	ttc Phe	ctc Leu	ctg Leu	tca Ser	gga Gly	gct Ala	gca Ala	ggt Gly		48
1			5					10					15			
gtc ca Val Hi	t tgc s Cys	cag Gln 20	gtt Val	cag Gln	ctc Leu	gtg Val	cag Gln 25	tca Ser	ggt Gly	gct Ala	gag Glu	gtg Val 30	aag Lys	aag Lys		96
cct gg Pro Gl	c tcc y Ser 35	tcg Ser	gtg Val	aag Lys	gtc Val	tcc Ser 40	tgc Cys	aag Lys	gct Ala	tct Ser	gga Gly 45	ggt Gly	tcc Ser	ttc Phe	Ξ	144
agc tc Ser Se 50	c tat r Tyr	gct Ala	atc Ile	aac Asn	tgg Trp 55	gtg Val	agg Arg	caa Gln	gct Ala	cct Pro 60	gga Gly	caa Gln	Gly aaa	ctt Leu	1	L92
gag tg Glu Tr	g atg Met	gga Gly	gly ggg	ctc Leu	atg Met	cct Pro	atc Ile	ttt Phe	Gly 333	aca Thr	aca Thr	aac Asn	tac Tyr	gcg Ala	2	40

65	70	75	80
cag aag ttc cag gac Gln Lys Phe Gln Asp 85	agg ctc acg att acc Arg Leu Thr Ile Thr 90	gcg gac gta tcc acg Ala Asp Val Ser Thr 95	agt 288 Ser
aca gcc tac atg caa Thr Ala Tyr Met Gln 100	ctg agc ggc ctg aca Leu Ser Gly Leu Thr 105	a tat gaa gac acg gcc Tyr Glu Asp Thr Ala 110	atg 336 Met
tat tac tgt gcg aga Tyr Tyr Cys Ala Arg 115	gtt gcc tac atg ctt Val Ala Tyr Met Leu 120	gaa cct acc gtc act Glu Pro Thr Val Thr 125	gca 384 Ala
ggt ggt ttg gac gtc Gly Gly Leu Asp Val 130	tgg ggc caa ggg acc Trp Gly Gln Gly Thr 135	e ttg gtc acc gtc tcc Leu Val Thr Val Ser 140	tcc 432 Ser
gca tcc ccg acc agc Ala Ser Pro Thr Ser 145	ccg aag gtc ttc ccg Pro Lys Val Phe Pro 150	g ctg agc ctc tgt agc b Leu Ser Leu Cys Ser 155	acc 480 Thr 160
cag cca gat ggg aac Gln Pro Asp Gly Asn 165	Val Val Ile Ala Cys	c ctg gtc cag ggc ttc s Leu Val Gln Gly Phe) 175	Phe
cct cag gag cca ctc Pro Gln Glu Pro Leu 180	agt gtg acc tgg ago Ser Val Thr Trp Ser 185	e gaa age gga cag gge e Glu Ser Gly Gln Gly 190	gtg 576 Val
acc gcc agg aac ttc Thr Ala Arg Asn Phe 195	cca ccc agc cag gat Pro Pro Ser Gln Asp 200	gec tee gga gae etg Ala Ser Gly Asp Leu 205	tac 624 Tyr
acc acg tcc agc cag Thr Thr Ser Ser Gln 210	ctg acc ctt ccg gcd Leu Thr Leu Pro Ala 215	c aca cag tgc cta gcg a Thr Gln Cys Leu Ala 220	ggc 672 Gly
aag too gtg aca tgo Lys Ser Val Thr Cys 225	cac gtg aag cac tac His Val Lys His Tyr 230	e acg aat ccc agc cag r Thr Asn Pro Ser Glr 235	gat 720 Asp 240
gtg act gtg ccc tgc Val Thr Val Pro Cys 245	Pro Val Pro Ser Thr	c cca cct acc cca tct r Pro Pro Thr Pro Ser) 255	Pro
tcg act cca cct acc Ser Thr Pro Pro Thr 260	cca tct ccc tca tgo Pro Ser Pro Ser Cys 265	c tgc cac ccc agg ctg s Cys His Pro Arg Leu 270	tca 816 Ser
ctg cac agg cct gcc Leu His Arg Pro Ala 275	ctc gag gac ctg ctc Leu Glu Asp Leu Leu 280	e tta ggt tcg gaa gcg 1 Leu Gly Ser Glu Ala 285	aac 864 Asn
ctc acg tgc aca ctc Leu Thr Cys Thr Leu 290	acc ggc ctg aga gat Thr Gly Leu Arg Asp 295	geg tea ggt gte acc Ala Ser Gly Val Thr 300	ttc 912 Phe
acc tgg acg ccc tca Thr Trp Thr Pro Ser 305	agt ggt aag agc gct Ser Gly Lys Ser Ala 310	gtt caa ggc cca cct a Val Gln Gly Pro Pro 315	gag 960 Glu 320

PCT/US2003/037905

WO 2004/050838

cgt Arg	gac	cto Leu	tgt ı Cys	gg (Gl)	Cys	c tac s Tyn	c ago	gto Val	g tco l Sen 330	r Se	t gto r Val	c ct	t ccg	g gg 5 Gl ₁ 33	c tgt y Cys	1008
gcc Ala	gag Glu	cct Pro	tgg Trp 340	Asr	cat His	ggg Gly	g aag ⁄ Lys	Thi 345	: Phe	c act	t tgo r Cys	act	gct Ala 350	a Ala	tac Tyr	1056
ccc Pro	gag Glu	ago Ser 355	гуу	acc Thr	ccg Pro	g cta Leu	acc Thr 360	Ala	acc Thr	cto Lei	tcg Ser	aaa Lys 365	Ser	gg Gl	aac Asn	1104
aca Thr	ttc Phe 370	cgg Arg	ccc Pro	gag Glu	gtc Val	cac His 375	ctg Leu	ctg Leu	rceg Pro	ccg Pro	g ccg Pro 380	tc: Ser	gag Glu	gag Glu	ctg Leu	1152
gcc Ala 385	ctg Leu	aac Asn	gag Glu	ctg Leu	gtg Val 390	acg Thr	ctg Leu	acg Thr	tgc Cys	ctg Leu 395	Ala	cgc Arg	ggc	ttc Phe	agc Ser 400	1200
ccc Pro	aag Lys	gac Asp	gtg Val	ctg Leu 405	gtt Val	cgc Arg	tgg Trp	ctg Leu	cag Gln 410	ggc	tca Ser	cag Gln	gag Glu	ctg Leu 415	cct Pro	1248
agg Arg	gag Glu	aag Lys	tac Tyr 420	ctg Leu	act Thr	tgg Trp	gca Ala	tcc Ser 425	cgg Arg	cag Gln	gag Glu	ccc Pro	agc Ser 430	caa Gln	ggc Gly	1296
acc Thr	acc Thr	acc Thr 435	ttc Phe	gct Ala	gtg Val	acc Thr	tcg Ser 440	ata Ile	ctg Leu	cgc Arg	gtg Val	gca Ala 445	gcc Ala	gag Glu	gac Asp	1344
ıτp	aag Lys 450	aag Lys	ggt Gly	gac Asp	acc Thr	ttc Phe 455	tcc Ser	tgc Cys	atg Met	gtg Val	ggc Gly 460	cac His	gag Glu	gcc Ala	ctt Leu	1392
ccg Pro: 465	ctg Leu	gcc Ala	ttc Phe	Thr	cag Gln 470	aag Lys	acc Thr	atc Ile	gac Asp	cgc Arg 475	ttg Leu	gcg Ala	ggt Gly	aaa Lys	ccc Pro 480	1440
acc o	cat o	gtc Val	ASN	gtg Val 485	tct Ser	gtt Val	gtc . Val	Met	gcg Ala 490	gag Glu	gtg Val	gac Asp	Gly	acc Thr 495	tgc Cys	1488
tac t Tyr	ga											·				1494
<210><211><211>	49															
<213>			sin	nplex	< vi	cus										
<400> Met G 1		rp S	Ger T	rp I	le E	he I	eu P		Leu I	Leu S	Ser G	Sly A		Ma (₹ly	

Val His Cys Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys

25

20

Pro	Gly	Ser 35	Ser	Val	Lys	Val	Ser 40	Cys	Lys	Ala	Ser	Gly 45	Gly	Ser	Phe
Ser	Ser 50	Tyr	Ala	Ile	Asn	Trp 55	Val	Arg	Gln	Ala	Pro 60	Gly	Gln	Gly	Leu
Glu 65	Trp	Met	Gly	Gly	Leu 70	Met	Pro	Ile	Phe	Gly 75	Thr	Thr	Asn	Tyr	Ala 80
Gln	Lys	Phe	Gln	Asp 85	Arg	Leu	Thr	Ile	Thr 90	Ala	Asp	Val	Ser	Thr 95	Ser
Thr	Ala	Tyr	Met 100	Gln	Leu	Ser	Gly	Leu 105	Thr	Tyr	Glu	Asp	Thr 110	Ala	Met
Tyr	Tyr	Cys 115	Ala	Arg	Val	Ala	Tyr 120	Met	Leu	Glu	Pro	Thr 125	Val	Thr	Ala
Gly	Gly 130	Leu	Asp	Val	Trp	Gly 135	Gln	Gly	Thr	Leu	Val 140	Thr	Val	Ser	Ser
Ala 145	Ser	Pro	Thr	Ser	Pro 150	Lys	Val	Phe	Pro	Leu 155	Ser	Leu	Cys	Ser	Thr 160
Gln	Pro	Asp	Gly	Asn 165	Val	Val	Ile	Ala	Cys 170	Leu	Val	Gln	Gly	Phe 175	Phe
Pro	Gln	Glu	Pro 180	Leu	Ser	Val	Thr	Trp 185	Ser	Glu	Ser	Gly	Gln 190	Gly	Val
Thr	Ala	Arg 195	Asn	Phe	Pro	Pro	Ser 200	Gln	Asp	Ala	Ser	Gly 205	Asp	Leu	Tyr
Thr	Thr 210	Ser	Ser	Gln	Leu	Thr 215	Leu	Pro	Ala	Thr	Gln 220	Cys	Leu	Ala	Gly
Lys 225	Ser	Val	Thr	Cys	His 230	Val	Lys	His	Tyr	Thr 235	Asn	Pro	Ser	Gln	Asp 240
Val	Thr	Val	Pro	Cys 245	Pro	Val	Pro	Ser	Thr 250	Pro	Pro	Thr	Pro	Ser 255	Pro
Ser	Thr	Pro	Pro 260	Thr	Pro	Ser	Pro	Ser 265	Cys	Cys	His	Pro	Arg 270	Leu	Ser
Leu	His	Arg 275	Pro	Ala	Leu	Glu	Asp 280	Leu	Leu	Leu	Gly	Ser 285	Glu	Ala	Asn
Leu	Thr 290	Cys	Thr	Leu	Thr	Gly 295	Leu	Arg	Asp	Ala	Ser 300	Gly	Val	Thr	Phe
Thr 305	Trp	Thr	Pro	Ser	Ser 310	Gly	Lys	Ser	Ala	Val 315	Gln	Gly	Pro	Pro	Glu 320
Arg	Asp	Leu	Cys	Gly 325	Cys	Tyr	Ser	Val	Ser 330	Ser	Val	Leu	Pro	Gly 335	Cys
Ala	Glu	Pro	Trp 340	Asn	His	Gly	Lys	Thr 345	Phe	Thr	Суз	Thr	Ala 350	Ala	Tyr
Pro	Glu	Ser	Lys	Thr	Pro	Leu	Thr	Ala	Thr	Leu	Ser	Lys	Ser	Gly	Asn

355 360 365 Thr Phe Arg Pro Glu Val His Leu Leu Pro Pro Pro Ser Glu Glu Leu 380 Ala Leu Asn Glu Leu Val Thr Leu Thr Cys Leu Ala Arg Gly Phe Ser 395 Pro Lys Asp Val Leu Val Arg Trp Leu Gln Gly Ser Gln Glu Leu Pro Arg Glu Lys Tyr Leu Thr Trp Ala Ser Arg Gln Glu Pro Ser Gln Gly Thr Thr Thr Phe Ala Val Thr Ser Ile Leu Arg Val Ala Ala Glu Asp 435 Trp Lys Lys Gly Asp Thr Phe Ser Cys Met Val Gly His Glu Ala Leu Pro Leu Ala Phe Thr Gln Lys Thr Ile Asp Arg Leu Ala Gly Lys Pro 470 Thr His Val Asn Val Ser Val Val Met Ala Glu Val Asp Gly Thr Cys 485 Tyr <210> 3 <211> 57 <212> DNA <213> Artificial sequence <220> <223> Heavy chain signal peptide <220> <221> CDS <222> (1)..(57) <223> <400> 3 atg gga tgg agc tgg atc ttt ctc ttc ctc ctg tca gga gct gca ggt 48 Met Gly Trp Ser Trp Ile Phe Leu Phe Leu Leu Ser Gly Ala Ala Gly gtc cat tgc 57 Val His Cys

<211> 19
<212> PRT
<213> Artificial sequence
<220>
<223> Heavy Chain signal portido

WO 2004/050838

<223> Heavy chain signal peptide

<400> 4

<210> 4

Met Gly Trp Ser Trp Ile Phe Leu Phe Leu Leu Ser Gly Ala Ala Gly
1 5 10 15

Val His Cys

<210 <211 <212 <213	> 1 > [.368 NA Artif	icia	ıl se	equen	ıce										
<220 <223		latur	e he	avy	chai	n se	quer	ice								
<220 <221 <222 <223	> (DS (1)	(136	58)												
<400 cag Gln 1	att	caq	ctc Leu	gtg Val 5	cag Gln	tca Ser	ggt Gly	gct Ala	gag Glu 10	gtg Val	aag Lys	aag Lys	cct Pro	ggc Gly 15	tcc Ser	48
tcg Ser	gtg Val	aag Lys	gtc Val 20	tcc Ser	tgc Cys	aag Lys	gct Ala	tct Ser 25	gga Gly	ggt Gly	tcc Ser	ttc Phe	agc Ser 30	tcc Ser	tat Tyr	96
gct Ala	atc Ile	aac Asn 35	tgg Trp	gtg Val	agg Arg	caa Gln	gct Ala 40	cct Pro	gga Gly	caa Gln	Gly 999	ctt Leu 45	gag Glu	tgg Trp	atg Met	144
gga Gly	999 Gly 50	ctc Leu	atg Met	cct Pro	atc Ile	ttt Phe 55	gly aaa	aca Thr	aca Thr	aac Asn	tac Tyr 60	gcg Ala	cag Gln	aag Lys	ttc Phe	192
cag Gln 65	gac Asp	agg Arg	ctc Leu	acg Thr	att Ile 70	acc Thr	gcg Ala	gac Asp	gta Val	tcc Ser 75	acg Thr	agt Ser	aca Thr	gcc Ala	tac Tyr 80	240
atg Met	caa Gln	ctg Leu	agc Ser	ggc Gly 85	ctg Leu	aca Thr	tat Tyr	gaa Glu	gac Asp 90	acg Thr	gcc Ala	atg Met	tat Tyr	tac Tyr 95	tgt Cys	288
gcg Ala	aga Arg	gtt Val	gcc Ala 100	tac Tyr	atg Met	ctt Leu	gaa Glu	cct Pro 105	acc Thr	gtc Val	act Thr	gca Ala	ggt Gly 110	ggt Gly	ttg Leu	336
gac Asp	gtc Val	tgg Trp 115	ggc Gly	caa Gln	gly ggg	acc Thr	ttg Leu 120	gtc Val	acc Thr	gtc Val	tcc Ser	tcc Ser 125	gca Ala	tcc Ser	ccg Pro	384
acc Thr	agc Ser 130	ccg Pro	aag Lys	gtc Val	ttc Phe	ccg Pro 135	ctg Leu	agc Ser	ctc Leu	tgt Cys	agc Ser 140	acc Thr	cag Gln	cca Pro	gat Asp	432
999 Gly 145	aac Asn	gtg Val	gtc Val	atc Ile	gcc Ala 150	tgc Cys	ctg Leu	gtc Val	cag Gln	ggc Gly 155	ttc Phe	ttc Phe	cct Pro	cag Gln	gag Glu 160	480
cca	ctc	agt	gtg	acc	tgg	agc	gaa	agc	gga	cag	ggc	gtg	acc	gcc	agg	528

Pro Leu S	er Val Th 16	nr Trp Ser 55	Glu Ser	Gly Gln (Gly Val Thr	Ala Arg 175	
aac ttc co Asn Phe Pi	ca ccc ag ro Pro Se 180	gc cag gat er Gln Asp	gcc tcc Ala Ser 185	Gly Asp 1	ctg tac acc Leu Tyr Thr 190	acg tcc Thr Ser	576
agc cag ct Ser Gln Le	a int re	t ccg gcc u Pro Ala	aca cag Thr Gln 200	tgc cta c Cys Leu A	gcg ggc aag Ala Gly Lys 205	tcc gtg Ser Val	624
aca tgc ca Thr Cys Hi 210	ıc gtg aa .s Val Ly	g cac tac s His Tyr 215	acg aat Thr Asn	Pro Ser G	cag gat gtg Gln Asp Val	act gtg Thr Val	672
ccc tgc cc Pro Cys Pr 225	a gtt cco o Val Pro	c tca act Ser Thr 230	cca cct Pro Pro	acc cca t Thr Pro S 235	ct ccc tcg er Pro Ser	act cca Thr Pro 240	720
cct acc cc Pro Thr Pr	a tot coo o Ser Pro 245	ser Cys	tgc cac Cys His	ccc agg c Pro Arg L 250	tg tca ctg eu Ser Leu :	cac agg His Arg 255	768
cct gcc cto Pro Ala Leo	c gag gac u Glu Asp 260	ctg ctc Leu Leu	tta ggt Leu Gly 265	tcg gaa go Ser Glu Al	cg aac ctc a la Asn Leu 1 270	acg tgc Thr Cys	816
aca ctc acc Thr Leu Thi 279	cory Leu	aga gat Arg Asp	gcg tca Ala Ser 280	ggt gtc ac Gly Val Th	cc ttc acc t nr Phe Thr 1 285	gg acg Trp Thr	864
ccc tca agt Pro Ser Ser 290	ggt aag Gly Lys	agc gct Ser Ala 295	gtt caa q Val Gln (ggc cca co Gly Pro Pr 30	ct gag cgt g co Glu Arg A	ac ctc sp Leu	912
tgt ggc tgc Cys Gly Cys 305	tac agc Tyr Ser	gtg tcc a Val Ser s 310	agt gtc o Ser Val I	ett ccg gg Geu Pro Gl 315	jc tgt gcc g y Cys Ala G	ag cct lu Pro 320	960
tgg aat cat Trp Asn His	ggg aag Gly Lys 325	acc ttc a	Thr Cys T	act gct gc Thr Ala Al 30	c tac ccc g a Tyr Pro G 3	ag agc lu Ser 35	1008
aag acc ccg Lys Thr Pro	cta acc Leu Thr 340	gcc acc o	tc tcg a eu Ser L . 345	aa too ggo ys Ser Gly	c aac aca to y Asn Thr pl 350	tc cgg ne Arg	1056
ccc gag gtc Pro Glu Val 355	cac ctg His Leu	Leu Pro P	cg ccg t ro Pro S 60	cg gag gag er Glu Glu	g ctg gcc ct u Leu Ala Le 365	g aac eu Asn	1104
gag ctg gtg Glu Leu Val 370	acg ctg Thr Leu	acg tgc c Thr Cys L 375	tg gcg c eu Ala A	gc ggc ttc rg Gly Phe 380	e Ser Pro Ly	g gac s Asp	1152
gtg ctg gtt Val Leu Val 385	ra irb	ctg cag g Leu Gln G 390	gc tca ca ly Ser Gl	ag gag ctg In Glu Leu 395	cct agg ga Pro Arg Gl	g aag u Lys 400	1200
tac ctg act Tyr Leu Thr	tgg gca t Trp Ala s	tcc cgg ca Ser Arg Gl	ag gag co In Glu Pr	c agc caa o Ser Gln	ggc acc ac	c acc r Thr	1248

PCT/US2003/037905

4	05	410	415
ttc gct gtg acc to Phe Ala Val Thr So 420	cg ata ctg cgc gt er Ile Leu Arg Va 42	ng gca gcc gag gac tgg al Ala Ala Glu Asp Trp 25 430	aag aag 1296 Lys Lys
ggt gac acc ttc to Gly Asp Thr Phe S 435	cc tgc atg gtg gg er Cys Met Val Gl 440	gc cac gag gcc ctt ccg ly His Glu Ala Leu Pro 445	ctg gcc 1344 Leu Ala
ttc aca cag aag a Phe Thr Gln Lys T 450			1368
<210> 6 <211> 456 <212> PRT <213> Artificial	sequence		
<220> <223> Mature hea	vy chain sequence	e	
<400> 6 Gln Val Gln Leu V 1 5	al Gln Ser Gly Al	la Glu Val Lys Lys Pro 10	Gly Ser 15
Ser Val Lys Val S 20	er Cys Lys Ala Se 25	er Gly Gly Ser Phe Ser 5 30	Ser Tyr
Ala Ile Asn Trp V 35	al Arg Gln Ala Pı 40	ro Gly Gln Gly Leu Glu 45	Trp Met
Gly Gly Leu Met P	ro Ile Phe Gly Th 55	hr Thr Asn Tyr Ala Gln 60	Lys Phe
Gln Asp Arg Leu T 65	hr Ile Thr Ala As 70	sp Val Ser Thr Ser Thr 75	Ala Tyr 80
Met Gln Leu Ser G 8		lu Asp Thr Ala Met Tyr 90	Tyr Cys 95
Ala Arg Val Ala T		ro Thr Val Thr Ala Gly 05 110	Gly Leu
Asp Val Trp Gly G	ln Gly Thr Leu Va 120	al Thr Val Ser Ser Ala 125	Ser Pro
Thr Ser Pro Lys V	al Phe Pro Leu Se 135	er Leu Cys Ser Thr Gln 140	Pro Asp
Gly Asn Val Val I 145	le Ala Cys Leu Va 150	al Gln Gly Phe Phe Pro 155	Gln Glu 160
	hr Trp Ser Glu Se 65	er Gly Gln Gly Val Thr 170	Ala Arg 175
Asn Phe Pro Pro S		er Gly Asp Leu Tyr Thr 85 190	Thr Ser
Ser Gln Leu Thr L	eu Pro Ala Thr G	ln Cys Leu Ala Gly Lys	Ser Val

195 200 2

Thr Cys His Val Lys His Tyr Thr Asn Pro Ser Gln Asp Val Thr Val 210 215 220

Pro Cys Pro Val Pro Ser Thr Pro Pro Thr Pro Ser Pro Ser Thr Pro 225 230 235 240

Pro Thr Pro Ser Pro Ser Cys Cys His Pro Arg Leu Ser Leu His Arg 245 250 255

Pro Ala Leu Glu Asp Leu Leu Gly Ser Glu Ala Asn Leu Thr Cys 260 . 265 . 270

Thr Leu Thr Gly Leu Arg Asp Ala Ser Gly Val Thr Phe Thr Trp Thr 275 280 285

Pro Ser Ser Gly Lys Ser Ala Val Gln Gly Pro Pro Glu Arg Asp Leu 290 295 300

Cys Gly Cys Tyr Ser Val Ser Ser Val Leu Pro Gly Cys Ala Glu Pro 305 310 315 320

Trp Asn His Gly Lys Thr Phe Thr Cys Thr Ala Ala Tyr Pro Glu Ser 325 330 335

Lys Thr Pro Leu Thr Ala Thr Leu Ser Lys Ser Gly Asn Thr Phe Arg 340 345 350

Pro Glu Val His Leu Leu Pro Pro Pro Ser Glu Glu Leu Ala Leu Asn 355 360 365

Glu Leu Val Thr Leu Thr Cys Leu Ala Arg Gly Phe Ser Pro Lys Asp 370 375 380

Val Leu Val Arg Trp Leu Gln Gly Ser Gln Glu Leu Pro Arg Glu Lys 385 390 395 400

Tyr Leu Thr Trp Ala Ser Arg Gln Glu Pro Ser Gln Gly Thr Thr 405 410 415

Phe Ala Val Thr Ser Ile Leu Arg Val Ala Ala Glu Asp Trp Lys Lys 420 425 430

Gly Asp Thr Phe Ser Cys Met Val Gly His Glu Ala Leu Pro Leu Ala 435 440 445

Phe Thr Gln Lys Thr Ile Asp Arg 450 455

<210> 7

<211> 69

<212> DNA

<213> Artificial sequence

<220>

<223> heavy chain tailpiece

<220>

<221> CDS


```
<222> (1)..(69)
<223>
<400> 7
                                                                      48
ttg gcg ggt aaa ccc acc cat gtc aat gtg tct gtt gtc atg gcg gag
Leu Ala Gly Lys Pro Thr His Val Asn Val Ser Val Val Met Ala Glu
                                   10
                                                                       69
gtg gac ggc acc tgc tac tga
Val Asp Gly Thr Cys Tyr
            20
<210> 8
<211> 22
<212> PRT
<213> Artificial sequence
<220>
<223> heavy chain tailpiece
<400> 8
Leu Ala Gly Lys Pro Thr His Val Asn Val Ser Val Val Met Ala Glu
Val Asp Gly Thr Cys Tyr
            20
<210> 9
<211> 702
<212> DNA
<213> Herpes simplex virus
<220>
<221> CDS
<222> (1)..(702)
<223>
<220>
<221> misc_feature
<223> HSV light chain sequence
atg gga tgg tcc tgg atc ttt ctc ttc ctt ctg tca gga gct gca ggt
                                                                      48
Met Gly Trp Ser Trp Ile Phe Leu Phe Leu Leu Ser Gly Ala Ala Gly
                                                                      96
gtc cac tgc gag atc gtg ctc acg cag tct cca ggc acc ctg tct ttg
Val His Cys Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu
                                25
tcg cca ggg gaa cgt gcc acc ctc tcc tgc cgg gcc agt cag tcc gtt
                                                                     144
Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val
                                                                     192
tcc agc gcg tac ctt gcc tgg tac cag cag aag cct ggc caa gct ccc
Ser Ser Ala Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro
agg ctc ctc atc tat ggt gcg tcc agc agg gct act ggc att cca gac
                                                                     240
```


Arg Leu 65	Leu	Ile	Tyr	Gly 70	Ala	Ser	Ser	Arg	Ala 75	Thr	Gly	Ile	Pro	Asp 80	
cgc ttc Arg Phe															288
agg ctg Arg Leu															336
cgc tca Arg Ser		_			_			_							384
gtg gct Val Ala 130	Ala														432
aag tct Lys Ser 145			_		_		_	_	_					_	480
aga gag Arg Glu															528
aac tcc Asn Ser				_			_	_		_	_	_			576
agc ctc Ser Leu															624
aag gtc Lys Val 210															672
aca aag Thr Lys 225	-						_	tga							702
<211> <212>	10 233 PRT Herpe	es si	.mple	ex vi	rus										
<400> Met Gly	10 Trp	Ser	Trp 5	Ile	Phe	Leu	Phe	Leu 10	Leu	Ser	Gly	Ala	Ala 15	Gly	
Val His	Cys	Glu 20	Ile	Val	Leu	Thr	Gln 25	Ser	Pro	Gly	Thr	Leu 30	Ser	Leu	
Ser Pro	Gly 35	Glu	Arg	Ala	Thr	Leu 40	Ser	Cys	Arg	Ala	Ser 45	Gln	Ser	Val	
Ser Ser 50	Ala	Tyr	Leu	Ala	Trp 55	Tyr	Gln	Gln	Lys	Pro 60	Gly	Gln	Ala	Pro	

Arg 65	Leu	Leu	Ile	Tyr	Gly 70	Ala	Ser	Ser	Arg	Ala 75	Thr	Gly	Ile	Pro	Asp 80	
Arg	Phe	Ser	Gly	Ser 85	Gly	Ser	Gly	Thr	Asp 90	Phe	Thr	Leu	Thr	Ile 95	Ser	
Arg	Leu	Glu	Pro 100	Glu	Asp	Phe	Ala	Val 105	Tyr	Tyr	Cys	Gln	Gln 110	Tyr	Gly	
Arg	Ser	Pro 115	Thr	Phe	Gly	Gln	Gly 120	Thr	Lys	Val	Glu	Ile 125	Lys	Arg	Thr	
Val	Ala 130	Ala	Pro	Ser	Val	Phe 135	Ile	Phe	Pro	Pro	Ser 140	Asp	Glu	Gln	Leu	
Lys 145	Ser	Gly	Thr	Ala	Ser 150	Val	Val	Cys	Leu	Leu 155	Asn	Asn	Phe	Tyr	Pro 160	
Arg	Glu	Ala	Lys	Val 165	Gln	Trp	Lys	Val	Asp 170	Asn	Ala	Leu	Gln	Ser 175	Gly	
Asn	Ser	Gln	Glu 180	Ser	Val	Thr	Glu	Gln 185	Asp	Ser	Lys	Asp	Ser 190	Thr	Tyr	
Ser	Leu	Ser 195	Asn	Thr	Leu	Thr	Leu 200	Ser	Lys	Ala	Asp	Туг 205	Glu	Lys	His	
Lys	Val 210	Tyr	Ala	Cys	Glu	Val 215	Thr	His	Gln	Gly	Leu 220	Arg	Ser	Pro	Val	
Thr 225	Lys	Ser	Phe	Asn	Arg 230	Gly	Glu	Cys		•			•			
<210 <210 <210 <210	1> : 2> :	11 57 DNA Arti:	fici	al s	eque	nce										
<22 <22		Ligh	t ch	ain :	sign	al p	epti:	de								
<22 <22 <22 <22	1> 2>	CDS (1).	. (57)												
<40 atg Met 1	gga	11 tgg Trp	tcc Ser	tgg Trp 5	atc Ile	ttt Phe	ctc Leu	ttc Phe	ctt Leu 10	ctg Leu	tca Ser	gga Gly	gct Ala	gca Ala 15	ggt Gly	48
_	cac His	-														57
<21 <21 <21 <21	1> 2>	12 19 PRT Arti	fici	al s	eque:	nce										

WO 2004/050838 PCT/US2003/037905

<220> <223> Light chain signal peptide	
<pre><400> 12 Met Gly Trp Ser Trp Ile Phe Leu Phe Leu Leu Ser Gly Ala Ala Gly 1</pre>	
<210> 13 <211> 642 <212> DNA <213> Artificial sequence	
<220> <223> Mature light chain sequence	
<220> <221> CDS <222> (1)(642) <223>	
<pre><400> 13 gag atc gtg ctc acg cag tct cca ggc acc ctg tct ttg tcg cca ggg Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly 1 5 10 15</pre>	48
gaa cgt gcc acc ctc tcc tgc cgg gcc agt cag tcc gtt tcc agc gcg Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Ala 20 25 30	96
tac ctt gcc tgg tac cag cag aag cct ggc caa gct ccc agg ctc ctc Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45	144
atc tat ggt gcg tcc agc agg gct act ggc att cca gac cgc ttc tca Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60	192
ggc agt ggg tct ggg aca gac ttc acg ctc acc att agc agg ctg gaa Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu 65 70 75 . 80	240
cct gag gat ttt gca gtg tac tac tgt cag cag tat ggt cgc tca ccc Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly Arg Ser Pro 85 90 95	288
acg ttc ggc cag ggg acc aag gtg gag atc aag cgc act gtg gct gca Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala 100 105 110	336
ccg tcg gtc ttc ata ttc ccg cca tcc gat gag cag ctg aag tct ggc Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125	384
act gcc tct gtt gtg tgc ctg ctg aat aac ttc tat ccg aga gag gcg Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140	432

	Val					Asp					Ser				caa Gln 160	480
gag Glu	tcc Ser	gtt Val	aca Thr	gag Glu 165	cag Gln	gac Asp	agc Ser	aag Lys	gac Asp 170	Ser	acc	tac Tyr	ago Ser	cto Leu 175	agc Ser	528
				Leu					Tyr					Val	tac Tyr	576
			Val					Leu					Thr		agc Ser	624
				gag Glu												642
<21 <21 <21 <21	1> 2>	14 214 PRT Arti	fici	al se	equei	nce										
<22 <22		Matu	re 1:	ight	chai	in se	eque	nce								
<40 Glu 1		14 Val	Leu	Thr 5	Gln	Ser	Pro	Gly	Thr 10	Leu	Ser	Leu	Ser	Pro 15	Gly	
Glu	Arg	Ala	Thr 20	Leu	Ser	Cys	Arg	Ala 25	Ser	Gln	Ser	Val	Ser 30	Ser	Ala	
Tyr	Leu	Ala 35	Trp	Tyr	Gln	Gln	Lys 40	Pro	Gly	Gln	Ala	Pro 45	Arg	Leu	Leu	
Ile	Туг 50	Gly	Ala	Ser	Ser	Arg 55	Ala	Thr	Gly	Ile	Pro 60	Asp	Arg	Phe	Ser	
Gly 65	Ser	Gly	Ser	Gly	Thr 70	Asp	Phe	Thr	Leu	Thr 75	Ile	Ser	Arg	Leu	Glu 80	
Pro	Glu	Asp	Phe	Ala 85	Val	тут	Tyr	Cys	Gln 90	Gln	Tyr	Ġly	Arg	Ser 95	Pro	
Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys	Arg	Thr	Val 110	Ala	Ala	
Pro	Ser	Val 115	Phe	Ile	Phe	Pro	Pro 120	Ser	Asp	Glu	Gln	Leu 125	Lys	Ser	Gly	
Thr	Ala 130	Ser	Val	Val	Cys	Leu 135	Leu	Asn	Asn	Phe	Tyr 140	Pro	Arg	Glu	Ala	
Lys 145	Val	Gln	Trp	Lys	Val 150	Asp	Asn !	Ala	Leu	Gln 155	Ser	Gly	Asn	Ser	Gln 160	
Glu	Ser	Val	Thr	Glu	Gln	Asp	Ser	Lys	Asp	Ser	Thr	Tyr	Ser	Leu	Ser	

170

PCT/US2003/037905

175

Asn Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr

Ala Cys Glu Val Thr His Gln Gly Leu Arg Ser Pro Val Thr Lys Ser

Phe Asn Arg Gly Glu Cys

165

<210> 15

<211> 9144

<212> DNA

<213> Artificial sequence

<220>

<223> pDAB635 (ubiH) sequence

<400> 15

tcgcgcgttt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca 60 cagettgtet gtaageggat geegggagea gacaageeeg teagegggeg teagegggtg 120 ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180 accatatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcaggcgcc 240 attegecatt caggetgege aactgttggg aagggegate ggtgegggee tettegetat 300 tacgccagct ggcgaaaggg ggatgtgctg caaggcgatt aagttgggta acgccagggt 360 tttcccagtc acgacgttgt aaaacgacgg ccagtgaatt acaccggtgt gatcatgggc 420 cgcgattaaa aatcccaatt atatttggtc taatttagtt tggtattgag taaaacaaat 480 tcgaaccaaa ccaaaatata aatatatagt ttttatatat atgcctttaa gactttttat 540 agaattttct ttaaaaaata tctagaaata tttgcgactc ttctggcatg taatatttcg 600 ttaaatatga agtgctccat ttttattaac tttaaataat tggttgtacg atcactttct 660 tatcaagtgt tactaaaatg cgtcaatctc tttgttcttc catattcata tgtcaaaatc 720 tatcaaaatt cttatatatc tttttcgaat ttgaagtgaa atttcgataa tttaaaatta 780 aatagaacat atcattattt aggtatcata ttgattttta tacttaatta ctaaatttgg 840 ttaactttga aagtgtacat caacgaaaaa ttagtcaaac gactaaaata aataaatatc 900 atgtgttatt aagaaaattc tcctataaga atattttaat agatcatatg tttgtaaaaa 960 aaattaattt ttactaacac atatatttac ttatcaaaaa tttgacaaag taagattaaa 1020 ataatattca tctaacaaaa aaaaaaccag aaaatgctga aaacccggca aaaccgaacc 1080 aatccaaacc gatatagttg gtttggtttg attttgatat aaaccgaacc aactcggtcc 1140 atttgcaccc ctaatcataa tagctttaat atttcaagat attattaagt taacgttgtc 1200

aatatcctgg	aaattttgca	aaatgaatca	agcctatatg	gctgtaatat	gaatttaaaa	1260
gcagctcgat	gtggtggtaa	tatgtaattt	acttgattct	aaaaaaatat	cccaagtatt	1320
aataatttct	gctaggaaga	aggttagcta	cgatttacag	caaagccaga	atacaaagaa	1380
ccataaagtg	attgaagctc	gaaatatacg	aaggaacaaa	tatttttaaa	aaaatacgca	1440
atgacttgga	acaaaagaaa	gtgatatatt	ttttgttctt	aaacaagcat	cccctctaaa	1500
gaatggcagt	tttcctttgc	atgtaactat	tatgctccct	tcgttacaaa	aattttggac	1560
tactattggg	aacttcttct	gaaaatagtg	gccaccgctt	aattaacacc	ggtggcccgg	1620
gcaagcggcc	gcattcccgg	gaagctaggc	caccgtggcc	cgcctgcagg	ggaagcttgc	1680
atgcctgcag	atccccgggg	atcctctaga	gtcgacctgc	agtgcagcgt	gacccggtcg	1740
tgcccctctc	tagagataat	gagcattgca	tgtctaagtt	ataaaaaatt	accacatatt	1800
ttttttgtca	cacttgtttg	aagtgcagtt	tatctatctt	tatacatata	tttaaacttt	1860
aatctacgaa	taatataatc	tatagtacta	caataatatc	agtgttttag	agaatcatat	1920
aaatgaacag	ttagacatgg	tctaaaggac	aattgagtat	tttgacaaca	ggactctaca	1980
gttttatctt	tttagtgtgc	atgtgttctc	ctttttttt	gcaaatagct	tcacctatat	2040
aatacttcat	ccattttatt	agtacatcca	tttagggttt	agggttaatg	gtttttatag	2100
actaatttt	ttagtacatc	tattttattc	tattttagcc	tctaaattaa	gaaaactaaa	2160
actctatttt	agtttttta	tttaataatt	tagatataaa	atagaataaa	ataaagtgac	2220
taaaaattaa	açaaataccc	tttaagaaat	taaaaaaact	aaggaaacat	ttttcttgtt	2280
tcgagtagat	aatgccagcc	tgttaaacgc	cgtcgacgag	tctaacggac	accaaccagc	2340
gaaccagcag	cgtcgcgtcg	ggccaagcga	agcagacggc	acggcatctc	tgtcgctgcc	2400
tctggacccc	tctcgagagt	tccgctccac	cgttggactt	gctccgctgt	cggcatccag	2460
aaattgcgtg	gcggagcggc	agacgtgagc	cggcacggca	ggcggcctcc	tcctcctctc	2520
acggcacggc	agctacgggg	gattcctttc	ccaccgctcc	ttcgctttcc	cttcctcgcc	2580
cgccgtaata	aatagacacc	ccctccacac	cctctttccc	caacctcgtg	ttgttcggag	2640
cgcacacaca	cacaaccaga	tctccccaa	atccacccgt	cggcacctcc	gcttcaaggt	2700
acgccgctcg	tcctccccc	cccccctct	ctaccttctc	tagatcggcg	ttccggtcca	2760
tgcatggtta	gggcccggta	gttctacttc	tgttcatgtt	tgtgttagat	ccgtgtttgt	2820
gttagatccg	tgctgctagc	gttcgtacac	ggatgcgacc	tgtacgtcag	acacgttctg	2880
attgctaact	tgccagtgtt	tctctttggg	gaatcctggg	atggctctag	ccgttccgca	2940
gacgggatcg	atttcatgat	tttttttgtt	tcgttgcata	gggtttggtt	tgcccttttc	3000
ctttatttca	atatatgccg	tgcacttgtt	tgtcgggtca	tcttttcatg	ctttttttg	3060

PCT/US2003/037905

tettggttgt gatgatgtgg tetggttggg eggtegttet agateggagt agaattetgt	3120
ttcaaactac ctggtggatt tattaatttt ggatctgtat gtgtgtgcca tacatattca	3180
tagttacgaa ttgaagatga tggatggaaa tatcgatcta ggataggtat acatgttgat	3240
gcgggtttta ctgatgcata tacagagatg ctttttgttc gcttggttgt gatgatgtgg	3300
tgtggttggg cggtcgttca ttcgttctag atcggagtag aatactgttt caaactacct	3360
ggtgtattta ttaattttgg aactgtatgt gtgtgtcata catcttcata gttacgagtt	3420
taagatggat ggaaatatcg atctaggata ggtatacatg ttgatgtggg ttttactgat	3480
gcatatacat gatggcatat gcagcatcta ttcatatgct ctaaccttga gtacctatct	3540
attataataa acaagtatgt tttataatta ttttgatctt gatatacttg gatgatggca	3600
tatgcagcag ctatatgtgg atttttttag ccctgccttc atacgctatt tatttgcttg	3660
gtactgtttc ttttgtcgat gctcaccctg ttgtttggtg ttacttctgc agggtacccc	3720
cggggtcgac catggccaac aagcacctga gcctctccct cttcctcgtg ctcctcggcc	3780
tctccgcctc cctcgccagc ggccaggttc agctcgtgca gtcaggggct gaggtgaaga	3840
agcetgggte eteggtgaag gteteetgea aggettetgg aggtteette agcagetatg	3900
ctatcaactg ggtgcgacag gcccctggac aagggcttga gtggatggga gggctcatgc	3960
ctatctttgg gacaacaaac tacgcacaga agttccagga cagactcacg attaccgcgg	4020
acgtatccac gagtacagcc tacatgcagc tgagcggcct gacatatgaa gacacggcca	4080
tgtattactg tgcgagagtt gcctatatgt tggaacctac cgtcactgca gggggtttgg	4140
acgtctgggg caaagggacc acggtcaccg tctccccagc atccccgacc agccccaagg	4200
tetteceget gageetetge ageacceage cagatgggaa egtggteate geetgeetgg	4260
tecagggett etteececag gagecaetea gtgtgaeetg gagegaaage ggaeagggeg	4320
tgaccgccag aaacttccca cccagccagg atgcctccgg ggacctgtac accacgagca	4380
gccagctgac cctgccggcc acacagtgcc tagccggcaa gtccgtgaca tgccacgtga	4440
agcactacac gaatcccagc caggatgtga ctgtgccctg cccagttccc tcaactccac	4500
ctaccccatc teceteaact ecaectacee catetecete atgetgecae eccegaetgt	4560
cactgcaccg accggccctc gaggacctgc tettaggttc agaagcgaac etcacgtgca	4620
cactgaccgg cctgagagat gcctcaggtg tcaccttcac ctggacgccc tcaagtggga	4680
agagegetgt teaaggacea cetgagegtg acetetgtgg etgetacage gtgtecagtg	4740
tectgeeggg etgtgeegag cettggaate atgggaagae etteaettge aetgetgeet	4800
acceegagte caagaceegg ctaacegeca ceeteteaaa ateeggaaac acatteegge	4860
JJ Louisedge	-000

ccgaggtcca	cetactacca	ccgccgtcgg	aggagetgge	cctgaacgag	ctggtgacgc	4920
						4980
		ttcagcccca				
		aagtacctga				5040
gcaccaccac	cttcgctgtg	accagcatac	tgcgcgtggc	agccgaggac	tggaagaagg	5100
gggacacctt	ctcctgcatg	gtgggccacg	aggccctgcc	gctggccttc	acacagaaga	5160
ccatcgaccg	cttggcgggt	aaacccaccc	atgtcaatgt	gtctgttgtc	atggcggagg	5220
tggacggcac	ctgctactga	gttaaactga	gggcactgaa	gtcgcttgat	gtgctgaatt	5280
gtttgtgatg	ttggtggcgt	attttgttta	aataagtaag	catggctgtg	attttatcat	5340
atgatcgatc	tttggggttt	tatttaacac	attgtaaaat	gtgtatctat	taataactca	5400
atgtataaga	tgtgttcatt	cttcggttgc	catagatctg	cttatttgac	ctgtgatgtt	5460
ttgactccaa	aaaccaaaat	cacaactcaa	taaactcatg	gaatatgtcc	acctgtttct	5520
tgaagagttc	atctaccatt	ccagttggca	tttatcagtg	ttgcagcggc	gctgtgcttt	5580
gtaacataac	aattgttacg	gcatatatcc	aacggccggc	ctaggccacg	gtggccagat	5640
ccactagttc	tagagcggcc	gcttaattaa	atttaaatgt	ttaaactagg	cctcctgcag	5700
ggtttaaact	tgccgtggcc	tattttcaga	agaagttccc	aatagtagtc	caaaattttt	5760
gtaacgaagg	gagcataata	gttacatgca	aaggaaaact	gccattcttt	agaggggatg	5820
cttgtttaag	aacaaaaaat	atatcacttt	cttttgttcc	aagtcattgc	gtatttttt	5880
aaaaatattt	gttccttcgt	atatttcgag	cttcaatcac	tttatggttc	tttgtattct	5940
ggctttgctg	taaatcgtag	ctaaccttct	tcctagcaga	aattattaat	acttgggata	6000
tttttttaga	atcaagtaaa	ttacatatta	ccaccacatc	gagctgcttt	taaattcata	6060
ttacagccat	ataggcttga	ttcattttgc	aaaatttcca	ggatattgac	aacgttaact	6120
taataatatc	ttgaaatatt	aaagctatta	tgattagggg	tgcaaatgga	ccgagttggt	6180
tcggtttata	tcaaaatcaa	accaaaccaa	ctatatcggt	ttggattggt	tcggttttgc	6240
cgggttttca	ģcattttctg	gtttttttt	tgttagatga	atattattt	aatcttactt	6300
tgtcaaattt	ttgataagta	aatatatgtg	ttagtaaaaa	ttaattttt	ttacaaacat	6360
atgatctatt	aaaatattct	tataggagaa	ttttcttaat	aacacatgat	atttatttat	6420
tttagtcgtt	tgactaattt	ttcgttgatg	tacactttca	aagttaacca	aatttagtaa	6480
ttaagtataa	aaatcaatat	gatacctaaa	taatgatatg	ttctatttaa	ttttaaatta	6540
tcgaaatttc	acttcaaatt	cgaaaaagat	atataagaat	tttgatagat	tttgacatat	6600
gaatatggaa	gaacaaagag	attgacgcat	tttagtaaca	cttgataaga	aagtgatcgt	6660
acaaccaatt	atttaaagtt	aataaaaatg	gagcacttca	tatttaacga	aatattacat	6720

gccagaagaq	g tcgcaaatat	tictagatat	tttttaaaga	aaattctata	aaaagtctta	6780
aaggcatata	a tataaaaact	atatatttat	attttggttt	ggttcgaatt	tgttttactc	6840
aataccaaa	taaattagad	caaatataat	tgggatttt	aatcgcggcc	cactagtcac	6900
cggtgtgctt	ggcgtaatca	ı tggtcatago	tgtttcctgt	gtgaaattgt	tatccgctca	6960
caattccaca	caacatacga	gccggaagca	taaagtgtaa	agcctggggt	gcctaatgag	7020
tgagctaact	cacattaatt	gegttgéget	cactgcccgc	tttccagtcg	ggaaacctgt	7080
cgtgccagct	gcattaatga	atcggccaac	gcgcggggag	aggcggtttg	cgtattgggc	7140
gctcttccgc	ttectegete	actgactcgo	: tgcgctcggt	cgttcggctg	cggcgagcgg	7200
tatcagctca	ctcaaaggcg	gtaatacggt	tatccacaga	atcaggggat	aacgcaggaa	7260
agaacatgtg	agcaaaaggc	cagcaaaagg	ccaggaaccg	taaaaaggcc	gcgttgctgg	7320
cgtttttcca	taggeteege	cccctgacg	agcatcacaa	aaatcgacgc	tcaagtcaga	7380
ggtggcgaaa	cccgacagga	ctataaagat	accaggcgtt	tececetgga	agctccctcg	7440
tgcgctctcc	tgttccgacc	ctgccgctta	ccggatacct	gtccgccttt	ctcccttcgg	7500
gaagegtgge	gctttctcat	agctcacgct	gtaggtatct	cagttcggtg	taggtcgttc	7560
gctccaagct	gggctgtgtg	cacgaacccc	ccgttcagcc	cgaccgctgc	gccttatccg	7620
gtaactatcg	tcttgagtcc	aacccggtaa	gacacgactt	atcgccactg	gcagcagcca	7680
ctggtaacag	gattagcaga	gcgaggtatg	taggcggtgc	tacagagttc	ttgaagtggt	7740
ggcctaacta	cggctacact	agaaggacag	tatttggtat	ctgcgctctg	ctgaagccag	7800
ttaccttcgg	aaaaagagtt	ggtagctctt	gatccggcaa	acaaaccacc	gctggtagcg	7860
gtggttttt	tgtttgcaag	cagcagatta	cgcgcagaaa	aaaaggatct	caagaagatc	7920
ctttgatctt	ttctacgggg	tctgacgctc	agtggaacga	aaactcacgt	taagggattt	7980
tggtcatgag	attatcaaaa	aggatcttca	cctagatcct	tttaaattaa	aaatgaagtt	8040
ttaaatcaat	ctaaagtata	tatgagtaaa	cttggtctga	cagttaccaa	tgcttaatca	8100
gtgaggcacc	tatctcagcg	atctgtctat	ttcgttcatc	catagttgcc	tgactccccg	8160
tcgtgtagat	aactacgata	cgggagggct	taccatctgg	ccccagtgct	gcaatgatac	8220
cgcgagaccc	acgctcaccg	gctccagatt	tatcagcaat	aaaccagcca	gccggaaggg	8280
ccgagcgcag	aagtggtcct	gcaactttat	ccgcctccat	ccagtctatt	aattgttgcc	8340
gggaagctag	agtaagtagt	togocagtta	atagtttgcg	caacgttgtt	gccattgcta	8400
caggcatcgt	ggtgtcacgc	tcgtcgtttg	gtatggcttc	attcagctcc	ggttcccaac	8460
gatcaaggcg	agttacatga	tcccccatgt	tgtgcaaaaa	agcggttagc	teetteggte	8520

ctccgatcgt	tgtcagaagt	aagttggccg	cagtgttatc	actcatggtt	atggcagcac	8580
tgcataattc	tcttactgtc	atgccatccg	taagatgctt	ttctgtgact	ggtgagtact	8640
caaccaagtc	attctgagaa	tagtgtatgc	ggcgaccgag	ttgctcttgc	ccggcgtcaa	8700
tacgggataa	taccgcgcca	catagcagaa	ctttaaaagt	gctcatcatt	ggaaaacgtt	8760
cttcggggcg	aaaactctca	aggatcttac	cgctgttgag	atccagttcg	atgtaaccca	8820
ctcgtgcacc	caactgatct	tcagcatctt	ttactttcac	cagcgtttct	gggtgagcaa	8880
aaacaggaag	gcaaaatgcc	gcaaaaaagg	gaataagggc	gacacggaaa	tgttgaatac	8940
tcatactctt	cctttttcaa	tattattgaa	gcatttatca	gggttattgt	ctcatgagcg	9000
gatacatatt	tgaatgtatt	tagaaaaata	aacaaatagg	ggttccgcgc	acatttcccc	9060
gaaaagtgcc	acctgacgtc	taagaaacca	ttattatcat	gacattaacc	tataaaaata	9120
ggcgtatcac	gaggcccttt	cgtc				9144
·						

<210> 16

<211> 8352

<212> DNA

<213> Artificial sequence

<220>

<223> pDAB636 (ubiL) sequence

<400> 16 tegegegttt eggtgatgae ggtgaaaace tetgacaeat geageteeeg gagaeggtea 60 cagettgtet gtaageggat geegggagea gacaageeeg teagggegeg teagegggtg 120 ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180 accatatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcaggcgcc 240 attogocatt caggotgogo aactgttggg aagggogato ggtgogggoo tottogotat 300 tacgccagct ggcgaaaggg ggatgtgctg caaggcgatt aagttgggta acgccagggt 360 tttcccagtc acgacgttgt aaaacgacgg ccagtgaatt acaccggtgt gatcatgggc 420 480 cgcgattaaa aatcccaatt atatttggtc taatttagtt tggtattgag taaaacaaat tegaaccaaa ecaaaatata aatatatagt ttttatatat atgeetttaa gaetttttat 540 600 agaattttct ttaaaaaata tctagaaata tttgcgactc ttctggcatg taatatttcg ttaaatatga agtgctccat ttttattaac tttaaataat tggttgtacg atcactttct 660 tatcaagtgt tactaaaatg cgtcaatctc tttgttcttc catattcata tgtcaaaatc 720 tatcaaaatt cttatatatc tttttcgaat ttgaagtgaa atttcgataa tttaaaatta 780 aatagaacat atcattattt aggtatcata ttgattttta tacttaatta ctaaatttgg 840 900 ttaactttga aagtgtacat caacgaaaaa ttagtcaaac gactaaaata aataaatatc

atgtgttatt aagaaaattc tcctataaga atattttaat agatcatatg tttgtaaaaa	960
aaattaattt ttactaacac atatatttac ttatcaaaaa tttgacaaag taagattaaa	1020
ataatattca totaacaaaa aaaaaaccag aaaatgotga aaaccoggca aaaccgaacc	1080
aatccaaacc gatatagttg gtttggtttg attttgatat aaaccgaacc aactcggtcc	1140
atttgcaccc ctaatcataa tagctttaat atttcaagat attattaagt taacgttgtc	1200
aatateetgg aaattttgea aaatgaatea ageetatatg getgtaatat gaatttaaaa	1260
gcagctcgat gtggtggtaa tatgtaattt acttgattct aaaaaaatat cccaagtatt	1320
aataatttot gotaggaaga aggttagota ogatttacag caaagocaga atacaaagaa	1380
ccataaagtg attgaagctc gaaatatacg aaggaacaaa tatttttaaa aaaatacgca	1440
atgacttgga acaaaagaaa gtgatatatt ttttgttctt aaacaagcat cccctctaaa	1500
gaatggcagt tttcctttgc atgtaactat tatgctccct tcgttacaaa aattttggac	1560
tactattggg aacttettet gaaaatagtg gecaeegett aattaacaee ggtggeeegg	1620
gcaagcggcc gcattcccgg gaagctaggc caccgtggcc cgcctgcagg ggaagcttgc	1680
atgeetgeag ateccegggg atectetaga gtegaeetge agtgeagegt gaeeeggteg	1740
tgcccctctc tagagataat gagcattgca tgtctaagtt ataaaaaatt accacatatt	1800
ttttttgtca cacttgtttg aagtgcagtt tatctatctt tatacatata tttaaacttt	1860
aatctacgaa taatataatc tatagtacta caataatatc agtgttttag agaatcatat 1	1920
aaatgaacag ttagacatgg tctaaaggac aattgagtat tttgacaaca ggactctaca 1	1980
gttttatett tttagtgtge atgtgttete etttttttt geaaataget teacetatat 2	2040
aatacttcat ccattttatt agtacatcca tttagggttt agggttaatg gtttttatag 2	2100
actaattttt ttagtacatc tattttattc tattttagcc tctaaattaa gaaaactaaa 2	2160
actctatttt agttttttta tttaataatt tagatataaa atagaataaa ataaagtgac 2	220
taaaaattaa acaaataccc tttaagaaat taaaaaaact aaggaaacat ttttcttgtt 2	280
togagtagat aatgocagoo tgttaaaogo ogtogaogag totaaoggao accaaocago 2	340
gaaccagcag cgtcgcgtcg ggccaagcga agcagacggc acggcatctc tgtcgctgcc 24	400
tetggaceee tetegagagt teegeteeae egttggaett geteegetgt eggeateeag 24	460
aaattgcgtg gcggagcggc agacgtgagc cggcacggca	520
acggcacggc agctacgggg gattcctttc ccaccgctcc ttcgctttcc cttcctcgcc 25	580
cgccgtaata aatagacacc ccctccacac cctctttccc caacctcgtg ttgttcggag 26	540
cgcacacaca cacaaccaga tctcccccaa atccacccgt cggcacctcc gcttcaaggt 27	700

acgccgctcg	tcctccccc	cccccctct	ctaccttctc	tagatcggcg	ttccggtcca	2760
tgcatggtta	gggcccggta	gttctacttc	tgttcatgtt	tgtgttagat	ccgtgtttgt	2820
gttagatccg	tgctgctagc	gttcgtacac	ggatgcgacc	tgtacgtcag	acacgttctg	2880
attgctaact	tgccagtgtt	tctctttggg	gaatcctggg	atggctctag	ccgttccgca	2940
gacgggatcg	atttcatgat	tttttttgtt	tcgttgcata	gggtttggtt	tgcccttttc	3000
ctttatttca	atatatgccg	tgcacttgtt	tgtcgggtca	tcttttcatg	cttttttttg	3060
tcttggttgt	gatgatgtgg	tctggttggg	cggtcgttct	agatcggagt	agaattctgt	3120
ttcaaactac	ctggtggatt	tattaatttt	ggatctgtat	gtgtgtgcca	tacatattca	3180
tagttacgaa	ttgaagatga	tggatggaaa	tatcgatcta	ggataggtat	acatgttgat	3240
gcgggtttta	ctgatgcata	tacagagatg	ctttttgttc	gcttggttgt	gatgatgtgg	3300
tgtggttggg	cggtcgttca	ttcgttctag	atcggagtag	aatactgttt	caaactacct	3360
ggtgtattta	ttaattttgg	aactgtatgt	gtgtgtcata	catcttcata	gttacgagtt	3420
taagatggat	ggaaatatcg	atctaggata	ggtatacatg	ttgatgtggg	ttttactgat	3480
gcatatacat	gatggcatat	gcagcatcta	ttcatatgct	ctaaccttga	gtacctatct	3540
attataataa	acaagtatgt	tttataatta	ttttgatctt	gatatacttg	gatgatggca	3600
tatgcagcag	ctatatgtgg	attttttag	ccctgccttc	atacgctatt	tatttgcttg	3660
gtactgtttc	ttttgtcgat	gctcaccctg	ttgtttggtg	ttacttctgc	agggtacccc	3720
cggggtcgac	catggccaac	aagcacctga	gcctctccct	cttcctcgtg	ctcctcggcc	3780
teteegeete	cctcgccagc	ggcgaaattg	tgctcacgca	gtctccaggc	accctgtctt	3840
tgtctccagg	ggaaaaagcc	accetetect	gcagggccag	tcagagtgtt	agtagcgcct	3900
acttagcctg	gtaccagcag	aaacctggcc	aggctcccag	gctcctcatc	tatggtgcat	3960
ccagcagggc	cactggcatc	ccagacaggt	tcagtggcag	tgggtctggg	acagacttca	4020
ctctcaccat	cagcagactg	gaacctgaag	attttgcagt	gtattactgt	cagcagtatg	4080
gtaggtcacc	cactttcggc	ggagggacca	aggtggagat	caaacgaact	gtggctgcac	4140
catctgtctt	catcttcccg	ccatctgatg	agcagttgaa	atctggaact	gcctctgttg	4200
tgtgcctgct	gaataacttc	tatcccagag	aggccaaagt	acagtggaag	gtggataacg	4260
ccctccaatc	gggtaactcc	caggagagtg	tcacagagca	ggacagcaag	gacagcacct	4320
acagecteag	caacaccctg	acgctgagca	aagcagacta	cgagaaacac	aaagtctacg	4380
cctgcgaagt	cacccatcag	ggcctgagat	cgcccgtcac	aaagagcttc	aacaggggag	4440
agtgttgagt	taaactgagg	gcactgaagt	cgcttgatgt	gctgaattgt	ttgtgatgtt	4500
ggtggcgtat	tttgtttaaa	taagtaagca	tggctgtgat	tttatcatat	gatcgatctt	4560

tggggtttta tttaacacat tgtaaaatgt gtatctatta ataactcaat gtataagatg 4620 tgttcattct tcggttgcca tagatctgct tatttgacct gtgatgtttt gactccaaaa 4680 accaaaatca caactcaata aactcatgga atatgtccac ctgtttcttg aagagttcat 4740 ctaccattcc agttggcatt tatcagtgtt gcagcggcgc tgtgctttgt aacataacaa 4800 ttgttacggc atatatccaa cggccggcct aggccacggt ggccaqatcc actaqttcta 4860 gageggeege ttaattaaat ttaaatgttt aaactaggee teetgeaggg tttaaaettg 4920 ccgtggccta ttttcagaag aagttcccaa tagtagtcca aaatttttgt aacgaaggga 4980 gcataatagt tacatgcaaa ggaaaactgc cattctttag aggggatgct tgtttaagaa 5040 caaaaaatat atcactttct tttgttccaa gtcattgcgt atttttttaa aaatatttgt 5100 teettegtat atttegaget teaateaett tatggttett tgtattetgg etttgetgta 5160 aatcgtagct aaccttcttc ctagcagaaa ttattaatac ttgggatatt tttttagaat 5220 caagtaaatt acatattacc accacatcga gctgctttta aattcatatt acagccatat 5280 aggettgatt cattttgeaa aattteeagg atattgaeaa egttaaetta ataatatett 5340 gaaatattaa agctattatg attaggggtg caaatggacc gagttggttc ggtttatatc 5400 aaaatcaaac caaaccaact atatcggttt ggattggttc ggttttgccg ggttttcagc 5460 attttctggt tttttttttg ttagatgaat attattttaa tcttactttg tcaaattttt 5520 5580 aatattotta taggagaatt ttottaataa cacatgatat ttatttattt tagtogtttg 5640 actaattttt cgttgatgta cactttcaaa gttaaccaaa tttagtaatt aagtataaaa 5700 atcaatatga tacctaaata atgatatgtt ctatttaatt ttaaattatc gaaatttcac 5760 ttcaaattcg aaaaagatat ataagaattt tgatagattt tgacatatga atatggaaga 5820 acaaagagat tgacgcattt tagtaacact tgataagaaa gtgatcgtac aaccaattat 5880 ttaaagttaa taaaaatgga gcacttcata tttaacgaaa tattacatgc cagaaqagtc 5940 gcaaatattt ctagatattt tttaaagaaa attctataaa aagtcttaaa ggcatatata 6000 taaaaactat atatttatat tttggtttgg ttcgaatttg ttttactcaa taccaaacta 6060 aattagacca aatataattg ggatttttaa tcgcggccca ctagtcaccg gtgtgcttgg 6120 cgtaatcatg gtcatagctg tttcctgtgt gaaattgtta tccgctcaca attccacaca 6180 acatacgagc cggaagcata aagtgtaaag cctggggtgc ctaatgagtg agctaactca 6240 cattaattgc gttgcgctca ctgcccgctt tccagtcggg aaacctgtcg tgccagctgc 6300 attaatgaat cggccaacgc gcggggagag gcggtttgcg tattgggcgc tcttccgctt 6360

cetegeteae tgaetegete	cgctcggtcg	tteggetgeg	gcgagcggta	tcagctcact	6420
caaaggcggt aatacggtta	tccacagaat	caggggataa	cgcaggaaag	aacatgtgag	6480
caaaaggcca gcaaaaggcc	aggaaccgta	aaaaggccgc	gttgctggcg	tttttccata	6540
ggctccgccc ccctgacgag	catcacaaaa	atcgacgctc	aagtcagagg	tggcgaaacc	6600
cgacaggact ataaagatac	caggcgtttc	cccctggaag	ctccctcgtg	cgctctcctg	6660
ttccgaccct gccgcttacc	ggatacctgt	ccgcctttct	cccttcggga	agcgtggcgc	6720
tttctcatag ctcacgctgt	aggtatctca	gttcggtgta	ggtcgttcgc	tccaagctgg ·	6780
gctgtgtgca cgaaccccc	gttcagcccg	accgctgcgc	cttatccggt	aactatcgtc	6840
ttgagtccaa cccggtaaga	cacgacttat	cgccactggc	agcagccact	ggtaacagga	6900
ttagcagagc gaggtatgta	ggcggtgcta	cagagttctt	gaagtggtgg	cctaactacg	6960
gctacactag aaggacagta	tttggtatct	gegetetget	gaagccagtt	accttcggaa	7020
aaagagttgg tagctcttga	tccggcaaac	aaaccaccgc	tggtagcggt	ggtttttttg	7080
tttgcaagca gcagattacg	cgcagaaaaa	aaggatctca	agaagatcct	ttgatctttt	7140
ctacggggtc tgacgctcag	tggaacgaaa	actcacgtta	agggattttg	gtcatgagat	7200
tatcaaaaag gatcttcacc	tagatccttt	taaattaaaa	atgaagtttt	aaatcaatct	7260
aaagtatata tgagtaaact	tggtctgaca	gttaccaatg	cttaatcagt	gaggcaccta	7320
tctcagcgat ctgtctattt	cgttcatcca	tagttgcctg	actccccgtc	gtgtagataa	7380
ctacgatacg ggagggctta	ccatctggcc	ccagtgctgc	aatgataccg	cgagacccac	7440
gctcaccggc tccagattta	tcagcaataa	accagccagc	cggaagggcc	gagcgcagaa	7500
gtggtcctgc aactttatcc	gcctccatcc	agtctattaa	ttgttgccgg	gaagctagag	7560
taagtagttc gccagttaat	agtttgcgca	acgttgttgc	cattgctaca	ggcatcgtgg	7620
tgtcacgete gtcgtttggt	atggcttcat	tcagctccgg	ttcccaacga	tcaaggcgag	7680
ttacatgatc ccccatgttg	tgcaaaaaag	cggttagctc	cttcggtcct	ccgatcgttg	7740
tcagaagtaa gttggccgca	gtgttatcac	tcatggttat	ggcagcactg	cataattctc	7800
ttactgtcat gccatccgta	agatgctttt	ctgtgactgg	tgagtactca	accaagtcat	7860
tctgagaata gtgtatgcgg	cgaccgagtt	gctcttgccc	ggcgtcaata	cgggataata	7920
ccgcgccaca tagcagaact	ttaaaagtgc	tcatcattgg	aaaacgttct	tcggggcgaa	7980
aactctcaag gatcttaccg	ctgttgagat	ccagttcgat	gtaacccact	cgtgcaccca	8040
actgatcttc agcatctttt	actttcacca	gcgtttctgg	gtgagcaaaa	acaggaaggc	8100
aaaatgccgc aaaaaaggga	ataagggcga	cacggaaatg	ttgaatactc	atactcttcc	8160
tttttcaata ttattgaagc	atttatcagg	gttattgtct	catgagcgga	tacatatttg	8220

WO 2004/050838 PCT/US2003/037905

aatgtattta gaaaaataaa caaatagggg ttccgcgcac atttccccga aaagtgccac	8280
ctgacgtcta agaaaccatt attatcatga cattaaccta taaaaatagg cgtatcacga	8340
ggccctttcg tc	8352
<210> 17 <211> 12380 <212> DNA <213> Artificial sequence	
<220> <223> pDAB637 (ubi H+L) sequence	
<400> 17 tegegegttt eggtgatgae ggtgaaaace tetgacacat geageteeeg gagaeggtea	60
cagettgtet gtaageggat geegggagea gaeaageeeg teagggegeg teagegggtg	120
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc	180
accatatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcaggcgcc	240
attegecatt caggetgege aactgttggg aagggegate ggtgegggee tettegetat	300
tacgccagct ggcgaaaggg ggatgtgctg caaggcgatt aagttgggta acgccagggt	360
tttcccagtc acgacgttgt aaaacgacgg ccagtgaatt acaccggtgt gatcatgggc	420
cgcgattaaa aatcccaatt atatttggtc taatttagtt tggtattgag taaaacaaat	480
togaaccaaa ccaaaatata aatatatagt ttttatatat atgootttaa gaotttttat	540
agaattttct ttaaaaaata tctagaaata tttgcgactc ttctggcatg taatatttcg	600
ttaaatatga agtgctccat ttttattaac tttaaataat tggttgtacg atcactttct	660
tatcaagtgt tactaaaatg cgtcaatctc tttgttcttc catattcata tgtcaaaatc	720
tatcaaaatt cttatatatc tttttcgaat ttgaagtgaa atttcgataa tttaaaatta	780
aatagaacat atcattattt aggtatcata ttgattttta tacttaatta ctaaatttgg	840
ttaactttga aagtgtacat caacgaaaaa ttagtcaaac gactaaaata aataaatatc	900
atgtgttatt aagaaaattc tcctataaga atattttaat agatcatatg tttgtaaaaa	960
aaattaattt ttactaacac atatatttac ttatcaaaaa tttgacaaag taagattaaa	1020
ataatattca tctaacaaaa aaaaaaccag aaaatgctga aaacccggca aaaccgaacc	1080
aatccaaacc gatatagttg gtttggtttg attttgatat aaaccgaacc aactcggtcc	1140
atttgcaccc ctaatcataa tagctttaat atttcaagat attattaagt taacgttgtc	1200
aatatcctgg aaattttgca aaatgaatca agcctatatg gctgtaatat gaatttaaaa	1260
gcagctcgat gtggtggtaa tatgtaattt acttgattct aaaaaaatat cccaagtatt	1320

aataatttct	gctaggaaga	aggttagcta	cgatttacag	caaagccaga	atacaaagaa	1380
ccataaagtg	attgaagctc	gaaatatacg	aaggaacaaa	tatttttaaa	aaaatacgca	1440
atgacttgga	acaaaagaaa	gtgatatatt	ttttgttctt	aaacaagcat	cccctctaaa	1500
gaatggcagt	tttcctttgc	atgtaactat	tatgctccct	tcgttacaaa	aattttggac	1560
tactattggg	aacttcttct	gaaaatagtg	gccaccgctt	aattaacacc	ggtggcccgg	1620
ccgcattccc	gggaagctag	gccaccgtgg	cccgcctgca	ggggaagctt	gcatgcctgc	1680
agateceegg	ggatcctcta	gagtcgacct	gcagtgcagc	gtgacccggt	cgtgcccctc	1740
tctagagata	atgagcattg	catgtctaag	ttataaaaaa	ttaccacata	tttttttgt	1800
cacacttgtt	tgaagtgcag	tttatctatc	tttatacata	tatttaaact	ttaatctacg	1860
aataatataa	tctatagtac	tacaataata	tcagtgtttt	agagaatcat	ataaatgaac	1920
agttagacat	ggtctaaagg	acaattgagt	attttgacaa	caggactcta	cagttttatc	1980
tttttagtgt	gcatgtgttc	tcctttttt	ttgcaaatag	cttcacctat	ataatacttc	2040
atccatttta	ttagtacatc	catttagggt	ttagggttaa	tggtttttat	agactaattt	2100
ttttagtaca	tctattttat	tctattttag	cctctaaatt	aagaaaacta	aaactctatt	2160
ttagttttt	tatttaataa	tttagatata	aaatagaata	aaataaagtg	actaaaaatt	2220
aaacaaatac	cctttaagaa	attaaaaaaa	ctaaggaaac	atttttcttg	tttcgagtag	2280
ataatgccag	cctgttaaac	gccgtcgacg	agtctaacgg	acaccaacca	gcgaaccagc	2340
agcgtcgcgt	cgggccaagc	gaagcagacg	gcacggcatc	tctgtcgctg	cctctggacc	2400
cctctcgaga	gttccgctcc	accgttggac	ttgctccgct	gtcggcatcc	agaaattgcg	2460
tggcggagcg	gcagacgtga	gccggcacgg	caggcggcct	cctcctcctc	tcacggcacg	2520
gcagctacgg	gggattcctt	tcccaccgct	ccttcgcttt	cccttcctcg	cccgccgtaa	2580
taaatagaca	cccctccac	accctctttc	cccaacctcg	tgttgttcgg	agcgcacaca	2640
cacacaacca	gatctccccc	aaatccaccc	gtcggcacct	ccgcttcaag	gtacgccgct	2700
cgtcctcccc	cccccccct	ctctaccttc	tctagatcgg	cgttccggtc	catgcatggt	2760
tagggcccgg	tagttctact	tetgtteatg	tttgtgttag	atccgtgttt	gtgttagatc	2820
cgtgctgcta	gcgttcgtac	acggatgcga	cctgtacgtc	agacacgttc	tgattgctaa	2880
cttgccagtg	tttctctttg	gggaatcctg	ggatggctct	agccgttccg	cagacgggat	2940
cgatttcatg	atttttttg	tttcgttgca	tagggtttgg	tttgcccttt	tcctttattt	3000
caatatatgc	cgtgcacttg	tttgtcgggt	catcttttca	tgctttttt	tgtcttggtt	3060
gtgatgatgt	ggtctggttg	ggcggtcgtt	ctagatcgga	gtagaattct	gtttcaaact	3120
acctggtgga	tttattaatt	ttggatctgt	atgtgtgtgc	catacatatt	catagttacg	3180

aattgaagat gatggatgga aatatcgatc taggataggt atacatgttg atgcgggttt	3240
tactgatgca tatacagaga tgctttttgt tcgcttggtt gtgatgatgt ggtgtggttg	3300
ggcggtcgtt cattcgttct agatcggagt agaatactgt ttcaaactac ctggtgtatt	3360
tattaatttt ggaactgtat gtgtgtgtca tacatcttca tagttacgag tttaagatgg	3420
atggaaatat cgatctagga taggtataca tgttgatgtg ggttttactg atgcatatac	3480
atgatggcat atgcagcatc tattcatatg ctctaacctt gagtacctat ctattataat	3540
aaacaagtat gttttataat tattttgatc ttgatatact tggatgatgg catatgcagc	3600
agctatatgt ggattttttt agccctgcct tcatacgcta tttatttgct tggtactgtt	3660
tettttgteg atgeteacee tgttgtttgg tgttaettet geagggtaee eeeggggteg	3720
accatggcca acaagcacct gagcctctcc ctcttcctcg tgctcctcgg cctctccgcc	3780
tecetegeca geggecaggt teagetegtg cagteagggg etgaggtgaa gaageetggg	3840
teeteggtga aggteteetg caaggettet ggaggtteet teageageta tgetateaae	3900
tgggtgcgac aggcccctgg acaagggctt gagtggatgg gagggctcat gcctatcttt	3960
gggacaacaa actacgcaca gaagttccag gacagactca cgattaccgc ggacgtatcc	4020
acgagtacag cctacatgca gctgagcggc ctgacatatg aagacacggc catgtattac	4080
tgtgcgagag ttgcctatat gttggaacct accgtcactg cagggggttt ggacgtctgg	4140
ggcaaaggga ccacggtcac cgtctcccca gcatccccga ccagccccaa ggtcttcccg	4200
ctgagcctct gcagcaccca gccagatggg aacgtggtca tcgcctgcct ggtccagggc	4260
ttetteecee aggageeact cagtgtgace tggagegaaa geggacaggg egtgacegee	4320
agaaacttcc cacccagcca ggatgcctcc ggggacctgt acaccacgag cagccagctg	4380
accetgeegg ceacacagtg ectageegge aagteegtga catgeeacgt gaageactae	4440
acgaatecca gecaggatgt gaetgtgeee tgeccagtte eeteaaetee acetaeeeca	4500
teteceteaa etecaeetae eccatetece teatgetgee acceegaet gteaetgeae	4560
cgaccggccc tcgaggacct gctcttaggt tcagaagcga acctcacgtg cacactgacc	4620
ggcctgagag atgcctcagg tgtcaccttc acctggacgc cctcaagtgg gaagagcgct	4680
gttcaaggac cacctgagcg tgacctctgt ggctgctaca gcgtgtccag tgtcctgccg	4740
ggctgtgccg agccttggaa tcatgggaag accttcactt gcactgctgc ctaccccgag	4800
tocaagacco ogotaacogo caccototoa aaatooggaa acacattoog gooogaggto	4860
Cacchaptas agassasts	4920
Ctaggegata acttoggaga recent	4980

ctgcccgcg	agaagtacct	gacttgggca	teceggeagg	agcccagcca	gggcaccacc	5040
accttcgctg	,tgaccagcat	actgcgcgtg	gcagccgagg	actggaagaa	gggggacacc	5100
ttctcctgca	tggtgggcca	cgaggccctg	ccgctggcct	tcacacagaa	gaccatcgac	5160
cgcttggcgg	gtaaacccac	ccatgtcaat	gtgtctgttg	tcatggcgga	ggtggacggc	5220
acctgctact	gagttaaact	gagggcactg	aagtcgcttg	atgtgctgaa	ttgtttgtga	5280
tgttggtggc	gtattttgtt	taaataagta	agcatggctg	tgattttatc	atatgatcga	5340
tctttggggt	tttatttaac	acattgtaaa	atgtgtatct	attaataact	caatgtataa	5400
gatgtgttca	ttcttcggtt	gccatagatc	tgcttatttg	acctgtgatg	ttttgactcc	5460
aaaaaccaaa	atcacaactc	aataaactca	tggaatatgt	ccacctgttt	cttgaagagt	5520
tcatctacca	ttccagttgg	catttatcag	tgttgcagcg	gcgctgtgct	ttgtaacata	5580
acaattgtta	cggcatatat	ccaacggccg	gcctaggcca	cggtggccag	atccactagt	5640
tctagagcgg	ccgcgggcaa	attcccggga	agctaggcca	ccgtggcccg	cctgcagggg	5700
aagcttgcat	gcctgcagat	ccccggggat	cctctagagt	cgacctgcag	tgcagcgtga	5760
cccggtcgtg	cccctctcta	gagataatga	gcattgcatg	tctaagttat	aaaaaattac	5820
cacatatttt	ttttgtcaca	cttgtttgaa	gtgcagttta	tctatcttta	tacatatatt	5880
taaactttaa	tctacgaata	atataatcta	tagtactaca	ataatatcag	tgttttagag	5940
aatcatataa	atgaacagtt	agacatggtc	taaaggacaa	ttgagtattt	tgacaacagg	6000
actctacagt	tttatctttt	tagtgtgcat	gtgttctcct	tttttttgc	aaatagcttc	6060
acctatataa	tacttcatcc	attttattag	tacatccatt	tagggtttag	ggttaatggt	6120
ttttatagac	taatttttt	agtacatcta	ttttattcta	ttttagcctc	taaattaaga	6180
aaactaaaac	tctattttag	tttttttatt	taataattta	gatataaaat	agaataaaat	6240
aaagtgacta	aaaattaaac	aaataccctt	taagaaatta	aaaaaactaa	ggaaacattt	6300
ttcttgtttc	gagtagataa	tgccagcctg	ttaaacgccg	tcgacgagtc	taacggacac	6360
caaccagcga	accagcagcg	tcgcgtcggg	ccaagcgaag	cagacggcac	ggcatctctg	6420
tegetgeete	tggacccctc	tcgagagttc	cgctccaccg	ttggacttgc	teegetgteg	6480
gcatccagaa	attgcgtggc	ggagcggcag	acgtgagccg	gcacggcagg	cggcctcctc	6540
ctcctctcac	ggcacggcag	ctacggggga	ttcctttccc	accgctcctt	cgctttccct	6600
tcctcgcccg	ccgtaataaa	tagacacccc	ctccacaccc	tctttcccca	acctcgtgtt	6660
gttcggagcg	cacacacaca	caaccagatc	tccccaaat	ccacccgtcg	gcacctccgc	6720
ttcaaggtac	gccgctcgtc	ctccccccc	cccctctct	accttctcta	gatcggcgtt	6780
ccggtccatg	catggttagg	gcccggtagt	tctacttctg	ttcatgtttg	tgttagatcc	6840

gtgtttgtgt tagatccgtg ctgctagcgt tcgtacacgg atgcgacctg tacgtcagac	6900
acgttctgat tgctaacttg ccagtgtttc tctttgggga atcctgggat ggctctagcc	6960
gttccgcaga cgggatcgat ttcatgattt tttttgtttc gttgcatagg gtttggtttg	7020
cccttttcct ttatttcaat atatgccgtg cacttgtttg tcgggtcatc ttttcatgct	7080
tttttttgtc ttggttgtga tgatgtggtc tggttgggcg gtcgttctag atcggagtag	7140
aattotgttt caaactacot ggtggattta ttaattttgg atotgtatgt gtgtgccata	7200
catattcata gttacgaatt gaagatgatg gatggaaata tcgatctagg ataggtatac	7260
atgttgatge gggttttact gatgcatata cagagatget ttttgttege ttggttgtga	7320
tgatgtggtg tggttgggcg gtcgttcatt cgttctagat cggagtagaa tactgtttca	7380
aactacctgg tgtatttatt aattttggaa ctgtatgtgt gtgtcataca tcttcatagt	7440
tacgagttta agatggatgg aaatatcgat ctaggatagg tatacatgtt gatgtgggtt	7500
ttactgatgc atatacatga tggcatatgc agcatctatt catatgctct aaccttgagt	7560
acctatctat tataataaac aagtatgttt tataattatt ttgatcttga tatacttgga	7620
tgatggcata tgcagcagct atatgtggat ttttttagcc ctgccttcat acgctattta	7680
tttgcttggt actgtttctt ttgtcgatgc tcaccctgtt gtttggtgtt acttctgcag	7740
ggtacccccg gggtcgacca tggccaacaa gcacctgagc ctctccctct tcctcgtgct	7800
cctcggcctc tccgcctccc tcgccagcgg cgaaattgtg ctcacgcagt ctccaggcac	7860
cctgtctttg tctccagggg aaaaagccac cctctcctgc agggccagtc agagtgttag	7920
tagegeetae ttageetggt accageagaa acetggeeag geteeeagge teeteateta	7980
tggtgcatcc agcagggcca ctggcatccc agacaggttc agtggcagtg ggtctgggac	8040
agacttcact ctcaccatca gcagactgga acctgaagat tttgcagtgt attactgtca	8100
gcagtatggt aggtcaccca ctttcggcgg agggaccaag gtggagatca aacgaactgt	8160
ggctgcacca tetgtettea tettecegee atetgatgag cagttgaaat etggaactge	8220
ctctgttgtg tgcctgctga ataacttcta tcccagagag gccaaagtac agtggaaggt	8280
ggataacgcc ctccaatcgg gtaactccca ggagagtgtc acagagcagg acagcaagga	8340
cagcacctac agcetcagca acaccetgac getgagcaaa gcagactacg agaaacacaa	8400
agtotacgee tgegaagtea eccateaggg cetgagateg eccgteacaa agagetteaa	8460
caggggagag tgttgagtta aactgagggc actgaagtcg cttgatgtgc tgaattgttt	8520
gtgatgttgg tggcgtattt tgtttaaata agtaagcatg gctgtgattt tatcatatga	3580
tcgatctttg gggttttatt taacacattg taaaatgtgt atctattaat aactcaatgt	3640

ataagatgtg ttcattcttc	ggttgccata	gatctgctta	tttgacctgt	gatgttttga	8700
ctccaaaaac caaaatcaca	actcaataaa	ctcatggaat	atgtccacct	gtttcttgaa	8760
gagttcatct accattccag	ttggcattta	tcagtgttgc	agcggcgctg	tgctttgtaa	8820
cataacaatt gttacggcat	atatccaacg	gccggcctag	gccacggtgg	ccagatccac	8880
tagttctaga gcggccgctt	aattaaattt	aaatgtttaa	actaggcctc	ctgcagggtt	8940
taaacttgcc gtggcctatt	ttcagaagaa	gttcccaata	gtagtccaaa	atttttgtaa	9000
cgaagggagc ataatagtta	catgcaaagg	aaaactgcca	ttctttagag	gggatgcttg	9060
tttaagaaca aaaaatatat	cactttcttt	tgttccaagt	cattgcgtat	ttttttaaaa	9120
atatttgttc cttcgtatat	ttcgagcttc	aatcacttta	tggttctttg	tattctggct	9180
ttgctgtaaa tcgtagctaa	ccttcttcct	agcagaaatt	attaatactt	gggatatttt	9240
tttagaatca agtaaattac	atattaccac	cacatcgagc	tgcttttaaa	ttcatattac	9300
agccatatag gcttgattca	ttttgcaaaa	tttccaggat	attgacaacg	ttaacttaat	9360
aatatettga aatattaaag	ctattatgat	taggggtgca	aatggaccga	gttggttcgg	9420
tttatatcaa aatcaaacca	aaccaactat	atcggtttgg	attggttcgg	ttttgccggg	9480
ttttcagcat tttctggttt	tttttttgtt	agatgaatat	tattttaatc	ttactttgtc	9540
aaatttttga taagtaaata	tatgtgttag	taaaaattaa	tttttttac	aaacatatga	9600
tctattaaaa tattcttata	ggagaatttt	cttaataaca	catgatattt	atttatttta	9660
gtcgtttgac taatttttcg	ttgatgtaca	ctttcaaagt	taaccaaatt	tagtaattaa	9720
gtataaaaat caatatgata	cctaaataat	gatatgttct	atttaatttt	aaattatcga	9780
aatttcactt caaattcgaa	aaagatatat	aagaattttg	atagattttg	acatatgaat	9840
atggaagaac aaagagattg	acgcatttta	gtaacacttg	ataagaaagt	gatcgtacaa	9900
ccaattattt aaagttaata	aaaatggagc	acttcatatt	taacgaaata	ttacatgcca	9960
gaagagtcgc aaatatttct	agatattttt	taaagaaaat	tctataaaaa	gtcttaaagg	10020
catatatata aaaactatat	atttatattt	tggtttggtt	cgaatttgtt	ttactcaata	10080
ccaaactaaa ttagaccaaa	tataattggg	atttttaatc	gcggcccact	agtcaccggt	10140
gtgettggeg taateatggt	catagctgtt	tcctgtgtga	aattgttatc	cgctcacaat	10200
tccacacaac atacgagccg	gaagcataaa	gtgtaaagcc	tggggtgcct	aatgagtgag	10260
ctaactcaca ttaattgcgt	tgcgctcact	gcccgctttc	cagtcgggaa	acctgtcgtg	10320
ccagctgcat taatgaatcg	gccaacgcgc	ggggagaggc	ggtttgcgta	ttgggcgctc	10380
ttccgcttcc tcgctcactg	actcgctgcg	ctcggtcgtt	cggctgcggc	gagcggtatc	10440
agctcactca aaggcggtaa	tacggttatc	cacagaatca	ggggataacg	caggaaagaa	10500

agtgccacct gacgtctaag aaaccattat tatcatgaca ttaacctata aaaataggcg 12360 tatcacgagg ccctttcgtc 12380

<210> 18

<211> 16

<212> PRT

<213> Artificial sequence

<220>

<223> CDR3 region of heavy chain FabHSV 8-CDR3

<400> 18

Val Ala Tyr Met Leu Glu Pro Thr Val Thr Ala Gly Gly Leu Asp Val 1 5 10 15

<210> 19

<211> 122

<212> PRT

<213> Artificial sequence

<220>

<223> Heavy chain V region FabSHV 8

<400> 19

Leu Glu Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser Ser Val Lys

1 10 15

Val Ser Cys Lys Ala Ser Gly Gly Ser Phe Ser Ser Tyr Ala Ile Asn 20 25 30

Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met Gly Gly Leu 35 40 45

Met Pro Ile Phe Gly Thr Thr Asn Tyr Ala Gln Lys Phe Gln Asp Arg 50 55 60

Leu Thr Ile Thr Ala Asp Val Ser Thr Ser Thr Ala Tyr Met Gln Leu 65 70 75 80

Ser Gly Leu Thr Tyr Glu Asp Thr Ala Met Tyr Tyr Cys Ala Arg Val 85 90 95

Ala Tyr Met Leu Glu Pro Thr Val Thr Ala Gly Gly Leu Asp Val Trp
100 105 110

Gly Gln Gly Thr Thr Val Thr Val Ala Ser

<210> 20

<211> 18

<212> PRT

<213> Artificial sequence

<220>

<223> tryptic+ Asp-N peptide of N269

<400> 20

WO 2004/050838 PCT/US2003/037905

```
Asp Leu Leu Gly Ser Glu Ala Asn Leu Thr Cys Thr Leu Thr Gly
 Leu Arg
 <210> 21
 <211> 18
 <212> PRT
 <213> Artificial sequence
 <220>
 <223> peptide tryptic fragment L-T1
 <400> 21
 Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly
 Glu Arg
 <210> 22
 <211>
 <212> PRT
<213> Artificial sequence
 <220>
 <223> peptide tryptic fragment L-T2
 <400> 22
Ala Thr Leu Ser Cys Arg
     . 5
<210> 23
<211> 22
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment L-T3
<400> 23
Ala Ser Gln Ser Val Ser Ser Ala Tyr Leu Ala Trp Tyr Gln Gln Lys
                                   10
Pro Gly Gln Ala Pro Arg
           20
<210> 24
<211> 9
<212> PRT
<213> Artificial sequence
<223> peptide tryptic fragment L-T4
<400> 24
Leu Leu Ile Tyr Gly Ala Ser Ser Arg
```

```
<210> 25
<211>
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment L-T5
<400> 25
Ala Thr Gly Ile Pro Asp Arg
<210> 26
<211> 16
<212> PRT
<213> Artificial sequence
<223> peptide tryptic fragment L-T6
<400> 26
Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg
                                   10
<210> 27
<211> 16
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment L-T7
Leu Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly Arg
                                    10
<210> 28
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment L-T8
<400> 28
Ser Pro Thr Phe Gly Gln Gly Thr Lys
<210> 29
<211> 18
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment L-T11
```

WO 2004/050838 PCT/US2003/037905

```
<400> 29
 Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln
                                     10
 Leu Lys
 <210>
       30
 <211>
        16
 <212> PRT
 <213> Artificial sequence
 <220>
 <223> peptide tryptic fragment L-T12
 Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg
                                     10
 <210> 31
 <211> 4
 <212> PRT
 <213> Artificial sequence
 <220>
 <223> peptide tryptic fragment L-T14
 <400> 31
 Val Gln Trp Lys
 1
<210> 32
<211> 20
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment L-T15
Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu
Gln Asp Ser Lys
            20
<210> 33
<211> 14
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment L-T16
<400> 33
Asp Ser Thr Tyr Ser Leu Ser Asn Thr Leu Thr Leu Ser Lys
               5
                                   10
```

```
<210> 34
<211> 5
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment L-T17
<400> 34
Ala Asp Tyr Glu Lys
<210> 35
<211> 12
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment L-T19
<400> 35
Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Arg
<210> 36
<211> 5
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment L-T20
<400> 36
Ser Pro Val Thr Lys
               5
<210> 37
<211> 4
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment L-T21
<400> 37
Ser Phe Asn Arg
1
<210> 38
<211> 23
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment L-T5-6
```

```
<400> 38
  Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp
                                    10
  Phe Thr Leu Thr Ile Ser Arg
              20
  <210> 39
  <211> 32
  <212> PRT
  <213> Artificial sequence
  <220>
  <223> peptide tryptic fragment L-T6-7
 <400> 39
 Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg
                                    10
 Leu Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly Arg
 <210> 40
 <211> 13
 <212> PRT
 <213> Artificial sequence
 <223> peptide tryptic fragment L-T8-9
 Ser Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
<210> 41
 <211> 19
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment L-T10-11
<400> 41
Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu
                                   10
Gln Leu Lys
<210> 42
<211> 19
<212>
      PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment L-T12-13
```

124.00

```
Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg
Glu Ala Lys
 <210> 43
 <211> 7
 <212> PRT
 <213> Artificial sequence
<223> peptide tryptic fragment L-T13-14
<400> 43
Glu Ala Lys Val Gln Trp Lys
<210> 44
<211> 24
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment L-T14-15
<400> 44
Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu
Ser Val Thr Glu Gln Asp Ser Lys
            20
<210> 45
<211> 7
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment L-T17-18
<400> 45
Ala Asp Tyr Glu Lys His Lys
<210> 46
<211> 14
<212> PRT
<213> Artificial sequence
<223> peptide tryptic fragment L-T18-19
<400> 46
His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Arg
               5
```

```
<210> 47
  <211> 9
  <212> PRT
  <213> Artificial sequence
  <220>
  <223> peptide tryptic fragment L-T20-21
 <400> 47
 Ser Pro Val Thr Lys Ser Phe Asn Arg
         5
 <210> 48
 <211>
        7
 <212> PRT
 <213> Artificial sequence
 <220>
 <223> peptide tryptic fragment L-T21-22
 <400> 48
 Ser Phe Asn Arg Gly Glu Cys
                 5
 <210> 49
 <211> 12
 <212> PRT
 <213> Artificial sequence
 <220>
 <223> peptide tryptic fragment H-T1
<400> 49
Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys
                5
<210> 50
<211> 7
<212> PRT
<213> Artificial sequence
<223> peptide tryptic fragment H-T2
<400> 50
Lys Pro Gly Ser Ser Val Lys
<210> 51
<211> 15
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment H-T4
```

```
<400> 51
Ala Ser Gly Gly Ser Phe Ser Ser Tyr Ala Ile Asn Trp Val Arg
<210> 52
<211> 25
<211> 23
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment H-T5
<400> 52
Gln Ala Pro Gly Gln Gly Leu Glu Trp Met Gly Gly Leu Met Pro Ile
                                    10
Phe Gly Thr Thr Asn Tyr Ala Gln Lys
<210> 53
<211> 4
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment H-T6
<400> 53
Phe Gln Asp Arg
<210> 54
<211> 31
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment H-T7
Leu Thr Ile Thr Ala Asp Val Ser Thr Ser Thr Ala Tyr Met Gln Leu
Ser Gly Leu Thr Tyr Glu Asp Thr Ala Met Tyr Tyr Cys Ala Arg
<210> 55
<211> 34
<212> PRT
<213> Artificial sequence
<223> peptide tryptic fragment H-T8
Val Ala Tyr Met Leu Glu Pro Thr Val Thr Ala Gly Gly Leu Asp Val
```

```
Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Pro Thr Ser
  Pro Lys
  <210> 56
  <211> 44
  <212> PRT
  <213> Artificial sequence
  <220>
  <223> peptide tryptic fragment H-T9
  <400> 56
 Val Phe Pro Leu Ser Leu Cys Ser Thr Gln Pro Asp Gly Asn Val Val
                                     10
 Ile Ala Cys Leu Val Gln Gly Phe Phe Pro Gln Glu Pro Leu Ser Val
 Thr Trp Ser Glu Ser Gly Gln Gly Val Thr Ala Arg
 <210> 57
 <211> 30
 <212> PRT
 <213> Artificial sequence
 <223> peptide tryptic fragment H-T10
 Asn Phe Pro Pro Ser Gln Asp Ala Ser Gly Asp Leu Tyr Thr Thr Ser
Ser Gln Leu Thr Leu Pro Ala Thr Gln Cys Leu Ala Gly Lys
<210> 58
<211> 7
<212> PRT
<213> Artificial sequence
<223> peptide tryptic fragment H-T11
<400> 58
Ser Val Thr Cys His Val Lys
<210> 59
<211>
<212>
      PRT
<213> Artificial sequence
```

41/58

<220>

```
<223> peptide tryptic fragment H-T12
His Tyr Thr Asn Pro Ser Gln Asp Val Thr Val Pro Cys Pro Val Pro
                                   10
Ser Thr Pro Pro Thr Pro Ser Pro Ser Thr Pro Pro Thr Pro Ser Pro
Ser Cys Cys His Pro Arg
       35
<210> 60
<211> 27
<212> PRT
<213> Artificial sequence
<223> peptide tryptic fragment H-T13
<400> 60
Leu Ser Leu His Arg Pro Ala Leu Glu Asp Leu Leu Leu Gly Ser Glu
Ala Asn Leu Thr Cys Thr Leu Thr Gly Leu Arg
<210> 61
<211> 15
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment H-T14
<400> 61
Asp Ala Ser Gly Val Thr Phe Thr Trp Thr Pro Ser Ser Gly Lys
               5
                                   10
<210> 62
<211> 9
<212> PRT
<213> Artificial sequence
<223> peptide tryptic fragment H-T15
Ser Ala Val Gln Gly Pro Pro Glu Arg
<210> 63
<211> 23
<212> PRT
<213> Artificial sequence
<220>
```

```
<223> peptide tryptic fragment H-T16
 Asp Leu Cys Gly Cys Tyr Ser Val Ser Ser Val Leu Pro Gly Cys Ala
 Glu Pro Trp Asn His Gly Lys
             20
 <210> 64
 <211> 12
 <212> PRT
 <213> Artificial sequence
 <220>
 <223> peptide tryptic fragment H-T17
 Thr Phe Thr Cys Thr Ala Ala Tyr Pro Glu Ser Lys
 <210> 65
 <211> 9
 <212> PRT
 <213> Artificial sequence
 <223> peptide tryptic fragment H-T18
 <400> 65
Thr Pro Leu Thr Ala Thr Leu Ser Lys
                5
<210> 66
<211> 32
<212> PRT
<213> Artificial sequence
<223> peptide tryptic fragment H-T19
<400> 66
Ser Gly Asn Thr Phe Arg Pro Glu Val His Leu Leu Pro Pro Pro Ser
Glu Glu Leu Ala Leu Asn Glu Leu Val Thr Leu Thr Cys Leu Ala Arg
<210> 67
<211> 5
<212> PRT
<213> Artificial sequence
<223> peptide tryptic fragment H-T20
<400> 67
```

```
Gly Phe Ser Pro Lys
<210> 68
<211>
       5
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment H-T21
<400> 68
Asp Val Leu Val Arg
<210> 69
<211> 10
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment H-T22
<400> 69
Trp Leu Gln Gly Ser Gln Glu Leu Pro Arg
                5
<210> 70
<211> 7
<212> PRT
<213> Artificial sequence
<223> peptide tryptic fragment H-T24
<400> 70
Tyr Leu Thr Trp Ala Ser Arg
                5
<210> 71
<211> 17
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment H-T25
<400> 71
Gln Glu Pro Ser Gln Gly Thr Thr Thr Phe Ala Val Thr Ser Ile Leu
                5
                                    10
Arg
<210> 72
<211> 7
<212> PRT
```

```
<213> Artificial sequence
  <223> peptide tryptic fragment H-T26
 <400> 72
 Val Ala Ala Glu Asp Trp Lys
 <210> 73
 <211> 20
 <212> PRT
 <213> Artificial sequence
 <220>
 <223> peptide tryptic fragment H-T28
 Gly Asp Thr Phe Ser Cys Met Val Gly His Glu Ala Leu Pro Leu Ala
 Phe Thr Gln Lys
 <210> 74
 <211> 4
 <212> PRT ·
 <213> Artificial sequence
<223> peptide tryptic fragment H-T29
<400> 74
Thr Ile Asp Arg
<210> 75
<211> 22
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment H-T30
<400> 75
Leu Ala Gly Lys Pro Thr His Val Asn Val Ser Val Val Met Ala Glu
                5
Val Asp Gly Thr Cys Tyr
           20
<210> 76
<211>
      19
<212> PRT
<213> Artificial sequence
<220>
```

```
<223> peptide tryptic fragment H-T1-2
Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
Ser Val Lys
<210> 77
<211> 11
<212> PRT
<213> Artificial sequence
<223> peptide tryptic fragment H-T2-3
<400> 77
Lys Pro Gly Ser Ser Val Lys Val Ser Cys Lys
    5
<210> 78
<211>
      19
<212> PRT
<213> Artificial sequence
<223> peptide tryptic fragment H-T3-4
Val Ser Cys Lys Ala Ser Gly Gly Ser Phe Ser Ser Tyr Ala Ile Asn
Trp Val Arg
<210> 79
<211> 21
<212> PRT
<213> Artificial sequence
<223> peptide tryptic fragment H-T17-18
Thr Phe Thr Cys Thr Ala Ala Tyr Pro Glu Ser Lys Thr Pro Leu Thr
                                   10
Ala Thr Leu Ser Lys
           20
<210> 80
<211> 10
<212> PRT
<213> Artificial sequence
<220>
<223> peptide tryptic fragment H-T20-21
```

```
<400> 80
  Gly Phe Ser Pro Lys Asp Val Leu Val Arg
                5
  <210>
       81
  <211>
        15
  <212>
       PRT
  <213> Artificial sequence
  <220>
 <223> peptide tryptic fragment H-T21-22
 Asp Val Leu Val Arg Trp Leu Gln Gly Ser Gln Glu Leu Pro Arg
 <210>
       82
 <211>
       12
 <212> PRT
 <213> Artificial sequence
 <223> peptide tryptic fragment H-T22-23
 <400> 82
 Trp Leu Gln Gly Ser Gln Glu Leu Pro Arg Glu Lys
 <210> 83
 <211> 21
 <212> PRT
 <213> Artificial sequence
<223>
      peptide tryptic fragment H-T27-28
<400> 83
Lys Gly Asp Thr Phe Ser Cys Met Val Gly His Glu Ala Leu Pro Leu
Ala Phe Thr Gln Lys
           20
<210> 84
<211> 5118
<212> DNA
<213> Artificial sequence
<220>
<223> pDAB3014 sequence
<400> 84
ttagctcact cattaggcac cccaggcttt acactttatg cttccggctc gtatgttgtg
```


180 tggaattgtg agcggataac aatttcacac aggaaacagc tatgaccatg attacgccaa gcttcccggg aatgcggccg ctagctagcg gccgcattcc cgggaagcta gcggccgcat 240 tecegggaag etageggeeg etteceggga agettggget geaggteaat eceattgett 300 ttgaagcagc tcaacattga tctctttctc gaggtcattc atatgcttga gaagagagtc 360 gggatagtcc aaaataaaac aaaggtaaga ttacctggtc aaaagtgaaa acatcagtta 420 aaaggtggta taaagtaaaa tatcggtaat aaaaggtggc ccaaagtgaa atttactctt 480 ttctactatt ataaaaattg aggatgtttt tgtcggtact ttgatacgtc atttttgtat 540 600 gaattggttt ttaagtttat tcgcttttgg aaatgcatat ctgtatttga gtcgggtttt aagttcgttt gcttttgtaa atacagaggg atttgtataa gaaatatctt taaaaaaacc 660 catatgctaa tttgacataa tttttgagaa aaatatatat tcaggcgaat tctcacaatg 720 780 aacaataata agattaaaat agctttcccc cgttgcagcg catgggtatt ttttctagta 840 aaaataaaag ataaacttag actcaaaaca tttacaaaaa caacccctaa agttcctaaa 900 ccccagtcca gccaactgga caatagtctc cacacccccc cactatcacc gtgagttgtc 960 1020 cgcacgcacc gcacgtctcg cagccaaaaa aaaaaaaaga aagaaaaaaa agaaaaagaa 1080 aaaacagcag gtgggtccgg gtcgtggggg ccggaaacgc gaggaggatc gcgagccagc 1140 gacgaggccg gccctccctc cgcttccaaa gaaacgcccc ccatcgccac tatatacata ccccccctc tecteccate eccccaaccc taccaccacc accaccacca ectecaccte 1200 1260 ctccccctc gctgccggac gacgcctccc ccctccccct ccgccgccgc cgcgccggta accaccccgc ccctctcctc tttctttctc cgttttttt ttccgtctcg gtctcgatct 1320 1380 ttggccttgg tagtttgggt gggcgagagg cggcttcgtg cgcgcccaga tcggtgcgcg 1440 ggagggggg gatctcgcgg ctggggctct cgccggcgtg gatccggccc ggatctcgcg 1500 gggaatgggg ctctcggatg tagatctgcg atccgccgtt gttgggggag atgatggggg gtttaaaatt tccgccatgc taaacaagat caggaagagg ggaaaagggc actatggttt 1560 atatttttat atatttctgc tgcttcgtca ggcttagatg tgctagatct ttctttcttc 1620 1680 tttttgtggg tagaatttga atccctcagc attgttcatc ggtagttttt cttttcatga 1740 tttgtgacaa atgcagcctc gtgcggagct tttttgtagg tagaccatgg cttctccgga gaggagacca gttgagatta ggccagctac agcagctgat atggccgcgg tttgtgatat 1800 1860 cgttaaccat tacattgaga cgtctacagt gaactttagg acagagccac aaacaccaca agagtggatt gatgatctag agaggttgca agatagatac ccttggttgg ttgctgaggt 1920 1980 tgagggtgtt gtggctggta ttgcttacgc tgggccctgg aaggctagga acgcttacga

ttggacagtt gagagtactg tttacgtgtc acataggcat caaaggttgg gcctaggatc	2040
cacattgtac acacatttgc ttaagtctat ggaggcgcaa ggttttaagt ctgtggttgc	2100
tgttataggc cttccaaacg atccatctgt taggttgcat gaggctttgg gatacacagc	2160
ccggggtaca ttgcgcgcag ctggatacaa gcatggtgga tggcatgatg ttggtttttg	2220
gcaaagggat tttgagttgc cagctcctcc aaggccagtt aggccagtta cccagatctg	2280
aggtaccctg agctcggtcg cagcgtgtgc gtgtccgtcg tacgttctgg ccggccgggc	2340
cttgggcgcg cgatcagaag cgttgcgttg gcgtgtgtgt gcttctggtt tgctttaatt	2400
ttaccaagtt tgtttcaagg tggatcgcgt ggtcaaggcc cgtgtgcttt aaagacccac	2460
cggcactggc agtgagtgtt gctgcttgtg taggctttgg tacgtatggg ctttatttgc	2520
ttctggatgt tgtgtactac ttgggtttgt tgaattatta tgagcagttg cgtattgtaa	2580
ttcagctggg ctacctggac attgttatgt attaataaat gctttgcttt	2640
tctttaagtg ctgaattcac tggccgtcgt tttacaacgt cgtgactggg aaaaccctgg	2700
cgttacccaa cttaatcgcc ttgcagcaca tccccctttc gccagctggc gtaatagcga	2760
agaggeeege acegategee etteceaaea gttgegeage etgaatggeg aatggegeet	2820
gatgeggtat ttteteetta egeatetgtg eggtatttea eacegeatat ggtgeaetet	2880
cagtacaate tgetetgatg cegeatagtt aagecageee egaeaeeege caacaeeege	2940
tgacgcgccc tgacgggctt gtctgctccc ggcatccgct tacagacaag ctgtgaccgt	3000
ctccgggagc tgcatgtgtc agaggttttc accgtcatca ccgaaacgcg cgagacgaaa	3060
gggcctcgtg atacgcctat ttttataggt taatgtcatg ataataatgg tttcttagac	3120
gtcaggtggc acttttcggg gaaatgtgcg cggaacccct atttgtttat ttttctaaat	3180
acattcaaat atgtatccgc tcatgagaca ataaccctga taaatgcttc aataatattg	3240
aaaaaggaag agtatgagta ttcaacattt ccgtgtcgcc cttattccct tttttgcggc	3300
attttgcctt cctgtttttg ctcacccaga aacgctggtg aaagtaaaag atgctgaaga	3360
tcagttgggt gcacgagtgg gttacatcga actggatctc aacagcggta agatccttga	3420
gagttttcgc cccgaagaac gttttccaat gatgagcact tttaaagttc tgctatgtgg	3480
cgcggtatta teccgtattg acgccgggca agagcaacte ggtcgccgca tacactatte	3540
tcagaatgac ttggttgagt actcaccagt cacagaaaag catcttacgg atggcatgac	3600
agtaagagaa ttatggagtg ctgggataag gatgagtgat	3660
totgacaacg atoggaggag connectity	3720
tgtaactcgc cttgatcgtt gggaaggga sabaaa	3780

tgacaccacg atgcctgtag caatggcaac aacgttgcgc aaactattaa ctggcgaact 3840 3900 acttacteta getteeegge aacaattaat agaetggatg gaggeggata aagttgeagg accaettetg egeteggeee tteeggetgg etggtttatt getgataaat etggageegg 3960 tqaqcqtqqq tctcgcggta tcattgcagc actggggcca gatggtaagc cctcccgtat 4020 cgtagttatc tacacgacgg ggagtcaggc aactatggat gaacgaaata gacagatcgc 4080 tgagataggt gcctcactga ttaagcattg gtaactgtca gaccaagttt actcatatat 4140 actttagatt gatttaaaac ttcattttta atttaaaagg atctaggtga agatcctttt 4200 tgataatctc atgaccaaaa tcccttaacg tgagttttcg ttccactgag cgtcagaccc 4260 cqtaqaaaag atcaaaggat cttcttgaga tccttttttt ctgcgcgtaa tctgctgctt 4320 qcaaacaaaa aaaccaccgc taccagcggt ggtttgtttg ccggatcaag agctaccaac 4380 tctttttccg aaggtaactg gcttcagcag agcgcagata ccaaatactg ttcttctagt 4440 4500 gtagccgtag ttaggccacc acttcaagaa ctctgtagca ccgcctacat acctcgctct gctaatcctg ttaccagtgg ctgctgccag tggcgataag tcgtgtctta ccgggttgga 4560 4620 ctcaagacga tagttaccgg ataaggcgca gcggtcgggc tgaacggggg gttcgtgcac acageceage ttggagegaa egacetacae egaactgaga tacetacage gtgagetatg 4680 agaaagegee aegetteeeg aagggagaaa ggeggacagg tateeggtaa geggeagggt 4740 cqqaacaqqa qaqcqcacqa qgqaqcttcc agggggaaac gcctggtatc tttatagtcc 4800 tgtegggttt egecacetet gaettgageg tegatttttg tgatgetegt eaggggggeg 4860 4920 gagectatgg aaaaacgeca geaacgegge etttttacgg tteetggeet tttgetggee ttttgctcac atgttctttc ctgcgttatc ccctgattct gtggataacc gtattaccgc 4980 5040 ctttgagtga gctgataccg ctcgccgcag ccgaacgacc gagcgcagcg agtcagtgag cgaggaagcg tgcgcagcgg aagagcgccc aatacgcaaa ccgcctctcc ccgcgcgttg 5100 5118 gccgattcat taatgcag

```
<210> 85
```

<211> 13680

<212> DNA

<213> Artificial sequence

<220>

<223> pDAB8505 sequence

<220>

<221> misc feature

<222> (1)..(13680)

<223> n = a or c or g or t

<400> 85

tegegegttt eggtgatgae ggtgaaaace tetgacaeat geageteeeg gagaeggtea 60 cagettgtet gtaageggat geegggagea gacaageeeg teageggege teagegggtg 120 ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180 accatatgeg gtgtgaaata eegeacagat gegtaaggag aaaataeege ateaggegee 240 attegecatt caggetgege aactgttggg aagggegate ggtgegggee tettegetat 300 tacgccaget ggcgaaaggg ggatgtgetg caaggcgatt aagttgggta acgccagggt 360 tttcccagtc acgacgttgt aaaacgacgg ccagtgaatt acaccggtgt gatcatgggc 420 cgcgattaaa aatcccaatt atatttggtc taatttagtt tggtattgag taaaacaaat 480 tcgaaccaaa ccaaaatata aatatatagt ttttatatat atgcctttaa gactttttat 540 agaattttct ttaaaaaata tctagaaata tttgcgactc ttctggcatg taatatttcg 600 ttaaatatga agtgctccat ttttattaac tttaaaataat tggttgtacg atcactttct 660 tatcaagtgt tactaaaatg cgtcaatctc tttgttcttc catattcata tgtcaaaatc 720 tatcaaaatt cttatatatc tttttcgaat ttgaagtgaa atttcgataa tttaaaatta 780 aatagaacat atcattattt aggtatcata ttgattttta tacttaatta ctaaatttgg 840 ttaactttga aagtgtacat caacgaaaaa ttagtcaaac gactaaaata aataaatatc 900 atgtgttatt aagaaaattc tcctataaga atattttaat agatcatatg tttgtaaaaa 960 aaattaattt ttactaacac atatatttac ttatcaaaaa tttgacaaag taagattaaa 1020 ataatattoa totaacaaaa aaaaaaccag aaaatgotga aaaccoggoa aaaccgaacc 1080 aatccaaacc gatatagttg gtttggtttg attttgatat aaaccgaacc aactcggtcc 1140 atttgcaccc ctaatcataa tagctttaat atttcaagat attattaagt taacgttgtc 1200 aatateetgg aaattttgea aaatgaatea ageetatatg getgtaatat gaatttaaaa 1260 gcagctcgat gtggtggtaa tatgtaattt acttgattct aaaaaaatat cccaagtatt 1320 aataatttct gctaggaaga aggttagcta cgatttacag caaagccaga atacaaagaa 1380 ccataaagtg attgaagctc gaaatatacg aaggaacaaa tatttttaaa aaaatacgca 1440 atgacttgga acaaaagaaa gtgatatatt ttttgttctt aaacaagcat cccctctaaa 1500 gaatggcagt tttcctttgc atgtaactat tatgctccct tcgttacaaa aattttggac 1560 tactattggg aacttettet gaaaatagtg gecaeegett aattaaggeg egecatgeee 1620 ggccgcattc ccgggaaget aggccaccgt ggcccgcctg caggggaage ttagctgaaa 1680 caacccggcc ctaaagcact atcgtatcac ctatctgaaa taagtcacgg gtttcgaacg 1740 tecaettgeg tegeaeggaa ttgeatgttt ettgttggaa geatatteae geaateteea 1800 cacataaagg tttatgtata aacttacatt tagctcagtt taattacagt cttatttgga 1860

tgcatatgta	tggttctcaa	tccatataag	ttagagtaaa	aaataagttt	aaattttatc	1920
ttaattcact	ccaacatata	tggattgagt	acaatactca	tgtgcatcca	aacaaactac	1980
ttatattgag	gtgaatttgg	atagaaatta	aactaactta	cacactaagc	caatctttac	2040
			ccgcgtcaat			2100
tttctttata	atcaacccgc	actcttataa	tctcttctct	actactataa	taagagagtt	2160
			agtgttctgg			2220
attcacacaa	cctaatcaat	agaaaacata	tgttttatta	aaacaaaatt	tatcatatat	2280
catatatata	tatatacata	tatatatata	tatatataaa	ccgtagcaat	gcacgggcat	2340
ataactagtg	caacttaata	catgtgtgta	ttaagatgaa	taagagggta	tccaaataaa	2400
			gggttggaaa			2460
			cccaatcccc			2520
			aaacaaccat			2580
			gaacatcaac			2640
			tctgtgtgca			2700
ccgagatcat	actcatctga	tatacatgct	tacagctcac	aagacattac	aaacaactca	2760
	•		ataaaatagg			2820
			aaagccatat			2880
			aacaaaactg			2940
			taaagagagt			3000
			tcggtggcat			3060
			tgcctgtgca			3120
			agagcgcaga			3180
			tcaggagctg			3240
			aagcctggct			3300
			gctatcaact			3360
			cctatctttg			3420
			gacgtatcca			3480
			atgtattact			3540
			gacgtctggg			3600
				•	tagcacccag	3660

ccagatggg	a acgtggtca	t cgcctgcct	g gtccagggc	t tettecete	a ggagccactc	3720
agtgtgacc	t ggagcgaaa	g cggacaggg	c gtgaccgcc	a ggaacttcc	c acccagecag	3780
gatgcctcc	g gagacctgt	a caccacgto	c agccagctg	a ccettcegg	c cacacagtgc	3840
ctagcgggc	a agtccgtga	c atgccacgt	g aagcactac	a cgaatccca	g ccaggatgtg	3900
actgtgccc	t gcccagttc	c ctcaactcc	a cctacccca	t ctccctcga	c tecacetace	3960
ccatctccc	t catgctgcc	a ccccaggct	g tcactgcac	a ggcctgccc	t cgaggacctg	4020
ctcttaggt	t cggaagcga	a cctcacgtg	c acactcacc	g gcctgagag	a tgcgtcaggt	4080
gtcaccttc	a cctggacgc	c ctcaagtgg	t aagagcgct	g ttcaaggcc	c acctgagcgt	4140
gacctctgt	g gctgctaca	g cgtgtccag	t gtccttccg	g gctgtgccg	a gccttggaat	4200
catgggaaga	a ccttcactto	g cactgctgc	c taccccgaga	a gcaagaccc	c ġctaaccgcc	4260
accctctcga	a aatccggcaa	a cacattccg	g cccgaggtc	c acctgctgc	c gccgccgtcg	4320
gaggagctgg	g ccctgaacga	a gctggtgac	g ctgacgtgc	tggcgcgcg	g cttcagcccc	4380
aaggacgtgo	tggttcgcto	g gctgcagggd	tcacaggago	tgcctaggga	a gaagtacctg	4440
acttgggcat	cccggcagga	gcccagccaa	a ggcaccacca	ccttcgctgt	gacctcgata	4500
ctgcgcgtgg	g cagccgagga	ctggaagaag	ggtgacacct	tctcctgcat	ggtgggccac	4560
gaggcccttc	: cgctggcctt	cacacagaag	, accatcgacc	gcttggcggg	g taaacccacc	4620
catgtcaatg	tgtctgttgt	catggcggag	gtggacggca	cctgctactg	agageteget	4680
gagggcactg	aagtcgcttg	atgtgctgaa	ttgtttgtga	tgttggtggd	gtattttgtt	4740
taaataagta	agcatggctg	tgattttatc	atatgatcga	tetttggggt	tttatttaac	4800
acattgtaaa	atgtgtatct	attaataact	caatgtataa	gatgtgttca	ttcttcggtt	4860
gccatagatc	tgcttatttg	acctgtgatg	ttttgactcc	aaaaaccaaa	atcacaactc	4920
aataaactca	tggaatatgt	ccacctgttt	cttgaagagt	tcatctacca	ttccagttgg	4980
catttatcag	tgttgcagcg	gcgctgtgct	ttgtaacata	acaattgtta	cggcatatat	5040
ccaacggccg	gcctagctag	gccacggtgg	ccagatccac	tagttctaga	geggeeggge	5100
aagcggccgc	attcccggga	agctaggcca	ccgtggcccg	cctgcagggg	aagcttagct	5160
gaaacaaccc	ggccctaaag	cactatcgta	tcacctatct	gaaataagtc	acgggtttcg	5220
aacgtccact	tgcgtcgcac	ggaattgcat	gtttcttgtt	ggaagcatat	tcacgcaatc	5280
tccacacata	aaggtttatg	tataaactta	catttagctc	agtttaatta	cagtcttatt	5340
tggatgcata	tgtatggttc	tcaatccata	taagttagag	taaaaaataa	gtttaaattt	5400
tatcttaatt	cactccaaca	tatatggatt	gagtacaata	ctcatgtgca	tccaaacaaa	5460
ctacttatat	tgaggtgaat	ttggatagaa	attaaactaa	cttacacact	aagccaatct	5520

						5500
			cgtcccgcgt			5580
tacatttctt	tataatcaac	ccgcactctt	ataatctctt	ctctactact	ataataagag	5640
agtttatgta	caaaataagg	tgaaattatg	tataagtgtt	ctggatattg	gttgttggct	5700
ccatattcac	acaacctaat	caatagaaaa	catatgtttt	attaaaacaa	aatttatcat	5760
atatcatata	tatatatata	catatatata	tatatatata	taaaccgtag	caatgcacgg	5820
gcatataact	agtgcaactt	aatacatgtg	tgtattaaga	tgaataagag	ggtatccaaa	5880
taaaaaactt	gttcgcttac	gtctggatcg	aaaggggttg	gaaacgatta	aatctcttcc	5940
tagtcaaaat	tgaatagaag	gagatttaat	ctctcccaat	ccccttcgat	catccaggtg	6000
caaccgtata	agtcctaaag	tggtgaggaa	cacgaaacaa	ccatgcattg	gcatgtaaag	6060
ctccaagaat	ttgttgtatc	cttaacaact	cacagaacat	caaccaaaat	tgcacgtcaa	6120
gggtattggg	taagaaacaa	tcaaacaaat	cctctctgtg	tgcaaagaaa	cacggtgagt	6180
catgccgaga	tcatactcat	ctgatataca	tgcttacagc	tcacaagaca	ttacaaacaa	6240
ctcatattgc	attacaaaga	tcgtttcatg	aaaaataaaa	taggccggac	aggacaaaaa	6300
tccttgacgt	gtaaagtaaa	tttacaacaa	aaaaaaagcc	atatgtcaag	ctaaatctaa	6360
ttcgttttac	gtagatcaac	aacctgtaga	aggcaacaaa	actgagccac	gcagaagtac	6420
agaatgattc	cagatgaacc	atcgacgtgc	tacgtaaaga	gagtgacgag	tcatatacat	6480
ttggcaagaa	accatgaagc	tgcctacagc	cgtctcggtg	gcatagaaca	caagaaattg	6540
tgttaattaa	tcaaagctat	aaataacgct	cgcatgcctg	tgcacttctc	catcaccacc	6600
actgggtctt	cagaccatta	gctttatcta	ctccagagcg	cagaagaacc	cgatcgacac	6660
catgggatgg	tectggatet	ttctcttcct	tctgtcagga	gctgcaggtg	tccactgcga	6720
gatcgtgctc	acgcagtctc	caggcaccct	gtctttgtcg	ccaggggaac	gtgccaccct	6780
ctcctgccgg	gccagtcagt	ccgtttccag	cgcgtacctt	gcctggtacc	agcagaagcc	6840
tggccaagct	cccaggctcc	tcatctatgg	tgcgtccagc	agggctactg	gcattccaga	6900
ccgcttctca	ggcagtgggt	ctgggacaga	cttcacgctc	accattagca	ggctggaacc	6960
tgaggatttt	gcagtgtact	actgtcagca	gtatggtcgc	tcacccacgt	teggeeaggg	7020
gaccaaggtg	gagatcaago	gcactgtggc	tgcaccgtcg	gtcttcatat	tecegecate	7080
cgatgagcag	g ctgaagtctg	gcactgcctc	tgttgtgtgc	ctgctgaata	acttctatcc	7140
gagagaggcg	g aaggtacagt	ggaaggtgga	taacgccctc	caatcgggta	actcccaaga	7200
gtccgttaca	ı gagcaggaca	gcaaggacag	cacctacago	ctcagcaaca	ccttgacgct	7260
					atcaaggcct	7320

gegetegeee gteacaaaga getteaaceg gggagagtgt tgagageteg etgagggeae	7380
tgaagtcgct tgatgtgctg aattgtttgt gatgttggtg gcgtattttg tttaaataag	7440
taagcatggc tgtgatttta tcatatgatc gatctttggg gttttattta acacattgta	7500
aaatgtgtat ctattaataa ctcaatgtat aagatgtgtt cattcttcgg ttgccataga	7560 '
tetgettatt tgaeetgtga tgttttgaet ecaaaaaeca aaateacaae teaataaaet	7620
catggaatat gtccacctgt ttcttgaaga gttcatctac cattccagtt ggcatttatc	7680
agtgttgcag cggcgctgtg ctttgtaaca taacaattgt tacggcatat atccaacggc	7740
cggcctagct aggccacggt ggccagatcc actagttcta gagcggccgc ttaattaaat	7800
ttaaatgttt aaactaggaa atccaagctt gggctgcagg tcaatcccat tgcttttgaa	7860
gcagetcaae attgatetet ttetegaggt catteatatg ettgagaaga gagtegggat	7920
agtccaaaat aaaacaaagg taagattacc tggtcaaaag tgaaaacatc agttaaaagg	7980
tggtataagt aaaatatcgg taataaaagg tggcccaaag tgaaatttac tcttttctac	8040
tattataaaa attgaggatg ttttgtcggt actttgatac gtcatttttg tatgaattgg	8100
tttttaagtt tattcgcgat tttggaaatg catatctgta tttgagtcgg gttttaagtt	8160
cgtttgcttt tgtaaataca gagggatttg tataagaaat atctttaaaa aaaccatatg	8220
ctaatttgac ataatttttg agaaaaatat atattcaggc gaattctcac aatgaacaat	8280
aataagatta aaatagettg eeecegttge agegatgggt attttteta gtaaaataaa	8340
agataaactt agactcaaaa catttacaaa aacaacccct aaagtcctaa agcccaaagt	8400
gctatgcacg atccatagca agcccagccc aacccaaccc	8460
agccaactgg caaatagtet ccacaccccg gcactatcae cgtgagttgt ccgcaccacc	8520
gcacgtctcg cagccaaaaa aaaaaaaaga aagaaaaaaa agaaaaagaa aaaacagcag	8580
gtgggtccgg gtcgtggggg ccggaaaagc gaggaggatc gcgagcagcg acgaggccgg	8640
ccctcctcc gcttccaaag aaacgccccc catcgccact atatacatac cccccctct	8700
ceteccatee ecceaaceet accaccacca ceaecaccae etectecee etegetgeeg	8760
gacgacgeet eccecetece ecteegeege egeeggtaac cacecegeee eteteetett	8820
tettteteeg ttttttttt egteteggte tegatetttg geettggtag tttgggtggg	8880
cgagagcggc ttcgtcgccc agatcggtgc gcgggagggg cgggatctcg cggctggcgt	8940
ctccgggcgt gagtcggccc ggatcctcgc ggggaatggg gctctcggat gtagatctgc	9000
gatccgccgt tgttggggga gatgatgggg ggtttaaaat ttccgccatg ctaaacaaga	9060
tcaggaagag gggaaaaggg cactatggtt tatattttta tatatttctg ctgcttcgtc	9120
aggettagat gtgetagate ttetttettt ettettttg tgggtagaat ttgaateeet	9180

		• •				0240
cagcattgtt (9240
agcttttttg						9300
ctacagcagc	tgatatggcc	gcggtttgtg	atatcgttaa	ccattacatt	gagacgtcta	9360
cagtgaactt	taggacagag .	ccacaaacac	cacaagagtg	gattgatgat	ctagagaggt	9420
tgcaagatag	atacccttgg	ttggttgctg	aggttgaggg	tgttgtggct	ggtattgctt	9480
acgctgggcc	ctggaaggct	aggaacgctt	acgattggac	agttgagagt	actgtttacg	9540
tgtcacatag	gcatcaaagg	ttgggcctag	gatccacatt	gtacacacat	ttgcttaagt	9600
ctatggaggc	gcaaggtttt	aagtctgtgg	ttgctgttat	aggccttcca	aacgatccat	9660
ctgttaggtt	gcatgaggct	ttgggataca	cagcccgggg	tacattgcgc	gcagctggat	9720
acaagcatgg	tggatggcat	gatgttggtt	tttggcaaag	ggattttgag	ttgccagctc	9780
	agttaggcca					9840
	cgtcgtacgt					9900
	tgtgtgcttc					9960
	aggcccgtgt					10020
				*	actacttggg	10080
	tattatganc					10140
					ttcatatttc	10200
					atagtagtcc	10260
					ccattcttta	10320
					agtcattgcg	10380
					: ttatggttct	10440
					attattaata	10500
					g agctgctttt	10560
					g gatattgaca	10620
					gcaaatggac	10680
					tggattggtt	10740
					a tattattta	10800
					t taatttttt	10860
					a acacatgata	10920
						10980
tttatttatt	ttagtcgttt	gactaattt	. Luguryary	L acacteca	a agttaaccaa	

atttagtaat taagtataaa aatcaatatg atacctaaat aatgatatgt tctatttaat 11040 tttaaattat cgaaatttca cttcaaattc gaaaaagata tataagaatt ttgatagatt ttgacatatg aatatggaag aacaaagaga ttgacgcatt ttagtaacac ttgataagaa 11160 11220 agtgatcgta caaccaatta tttaaagtta ataaaaatgg agcacttcat atttaacgaa atattacatg ccagaagagt cgcaaatatt tctagatatt ttttaaagaa aattctataa 11280 aaagtottaa aggoatatat ataaaaacta tatatttata ttttggtttg gttcgaattt 11340 gttttactca ataccaaact aaattagacc aaatataatt gggattttta atcgcggccc 11400 actagtcacc ggtgtgcttg gcgtaatcat ggtcatagct gtttcctgtg tgaaattgtt 11460 11520 atcogotoac aattocacac aacatacgag coggaagcat aaagtgtaaa gootggggtg cctaatgagt gagctaactc acattaattg cgttgcgctc actgcccgct ttccagtcgg 11580 11640 gaaacctgtc gtgccagctg cattaatgaa tcggccaacg cgcggggaga ggcggtttgc gtattgggcg ctcttccgct gcgcacgctg cgcacgctgc gcacgcttcc tcgctcactg 11700 11760 actegetgeg eteggtegtt eggetgegge gageggtate ageteaetea aaggeggtaa 11820 tacggttatc cacagaatca ggggataacg caggaaagaa catgtgagca aaaggccagc 11880 aaaaggccag gaaccgtaaa aaggccgcgt tgctggcgtt tttccatagg ctccgccccc 11940 ctgacgagca tcacaaaaat cgacgctcaa gtcagaggtg gcgaaacccg acaggactat 12000 aaagatacca ggcgtttccc cctggaagct ccctcgtgcg ctctcctgtt ccgaccctgc 12060 cgcttaccgg atacetgtec gcctttctcc cttcgggaag cgtggcgctt tctcatagct cacgetgtag gtateteagt teggtgtagg tegttegete caagetggge tgtgtgcaeg 12120 12180 aacccccgt tcagcccgac cgctgcgcct tatccggtaa ctatcgtctt gagtccaacc cggtaagaca cgacttatcg ccactggcag cagccactgg taacaggatt agcagagcga 12240 12300 ggtatgtagg cggtgctaca gagttcttga agtggtggcc taactacggc tacactagaa ggacagtatt tggtatctgc gctctgctga agccagttac cttcggaaaa agagttggta 12360 getettgate eggeaaacaa accaeegetg gtageggtgg tttttttgtt tgcaageage 12420 12480 agattacgcg cagaaaaaaa ggatctcaag aagatccttt gatcttttct acggggtctg 12540 acgctcagtg gaacgaaaac tcacgttaag ggattttggt catgagatta tcaaaaagga 12600 tetteaceta gateetttta aattaaaaat gaagttttaa ateaatetaa agtatatatg agtaaacttg gtctgacagt taccaatgct taatcagtga ggcacctatc tcagcgatct 12660 gtctatttcg ttcatccata gttgcctgac tccccgtcgt gtagataact acgatacggg 12720 12780 agggettace atetggeece agtgetgeaa tgatacegeg agacecaege teaceggete cagatttatc agcaataaac cagccagccg gaagggccga gcgcagaagt ggtcctgcaa 12840

ctttatccgc	ctccatccag	tctattaatt	gttgccggga	agctagagta	agtagttege	12900
cagttaatag	tttgcgcaac	gttgttgcca	ttgctacagg	catcgtggtg	tcacgctcgt	12960
cgtttggtat	ggcttcattc	agctccggtt	cccaacgatc	aaggcgagtt	acatgatccc	13020
ccatgttgtg	caaaaaagcg	gttagctcct	teggteetee	gatcgttgtc	agaagtaagt	13080
tggccgcagt	gttatcactc	atggttatgg	cagcactgca	taattctctt	actgtcatgc	13140
catccgtaag	atgcttttct	gtgactggtg	agtactcaac	caagtcattc	tgagaatagt	13200
gtatgcggcg	accgagttgc	tettgeeegg	cgtcaatacg	ggataatacc	gegecacata	13260
gcagaacttt	aaaagtgctc	atcattggaa	aacgttcttc	ggggcgaaaa	ctctcaagga	13320
tcttaccgct	gttgagatcc	agttcgatgt	aacccactcg	tgcacccaac	tgatcttcag	13380
catcttttac	tttcaccagc	gtttctgggt	gagcaaaaac	aggaaggcaa	aatgccgcaa	13440
aaaagggaat	aagggcgaca	cggaaatgtt	gaatactcat	actcttcctt	tttcaatatt	13500
attgaagcat	ttatcagggt	tattgtctca	tgagcggata	catatttgaa	tgtatttaga	13560
aaaataaaca	aataggggtt	ccgcgcacat	ttccccgaaa	agtgccacct	gacgtctaag	13620
aaaccattat	tatcatgaca	ttaacctata	aaaataggcg	tatcacgagg	ccctttcgtc	13680