Group #4 Extra Credit

Jake Banner – Triple Spherical

- 1. Find the spherical limits for the integral that calculates the volume of the solid between the sphere $p = \cos \Phi$ & the hemisphere p = 9, $z \ge 0$. Then evaluate the integral.
- 2. Evaluate the spherical coordinate integral: $\iiint p^2 \sin \Phi \, dp d\Phi d\theta$. $2\pi \ge p \ge 0$, $\pi \ge \Phi \ge 0$, $4\sin \Phi \ge 0 \ge 0$.

Nathan Howell - Triple Cylindrical

- 1. Evaluate the Cylindrical coordinate integral: $\iiint z \ dz r dr d\theta$. $3*sqrt(9-r^2) \ge z \ge -sqrt(9-r^2)$, $\theta / \pi \ge r \ge 0$, $\pi \ge \theta \ge 0$.
- 2. Find the volume of the region bounded by $z = 10e ex^2 ey^2$ above and $z = ex^2 + ey^2$ below.

Dylan Myers - Double Polar & Conversion

- 1. Change the cartesian integral into an equivalent polar integral. Then evaluate the polar integral. $\iint e^{\operatorname{sqrt}(x^2+y^2)}$. $\operatorname{sqrt}(\ln 3)^2 y^2 \ge x \ge 0$, $\ln 3 \ge y \ge 0$.
- 2. Sketch the region of integration and convert the polar integral to a cartesian integral. Evaluate $\iint r^5 \cos^2 \theta \ dr d\theta$. 4sec $\theta \ge r \ge 0$, $\pi/4 \ge \theta \ge 0$.
- 3. Find the area of the region cut from the first quadrant by the curve $r = 2(2-\sin 2\theta)^2$
- 4. Evaluate the Integral

$$\int_{0}^{\tan^{-1}\frac{4}{3}} \int_{0}^{3 \sec \theta} r^{7} dr d\theta + \int_{\tan^{-1}\frac{4}{3}}^{\pi/2} \int_{0}^{4 \csc \theta} r^{7} dr d\theta$$

Mark McMurtury - Double Type I and II.

- 1. Find the area of the region enclosed by 2x+2 and x^2+x .
- 2. Find the area of the region bound by the points (-1,0), (1,0), and (0,3).

Zachary Owens - Triple I, II & III

- 1. Describe the tetrahedron with vertices at (0,0,0), (1,0,0), (0,2,0) & (0,0,3) as a **TYPE III** solid.
- 2. Write an integral that represents the volume of the tetrahedron cut from the first octant by the plane 2x + 3y + z = 6. Use **Type II** to help solve.
- 3. Evaluate $\iiint_R 6xy \, dz \, dy \, dx$ where R lies under z = 1+x+y but above the region bounded by y = sqrt(x), y = 0 and x = 1. Use **Type I** to solve.

Robert Hansen - Spherical Conversion

- 1. Set up triple integrals for the volume of a sphere p = 10 in
 - a. Spherical Coordinates
 - b. Cylindrical Coordinates
 - c. Rectangular Coordinates
- 2. Set up the triple Integral for the cylinder $5 \ge z \ge 0$, $7 \ge r \ge 0$, $\pi/2 \ge \theta \ge 0$ in
 - a. Cylindrical Coordinates
 - b. Spherical Coordinates
 - c. Rectangular Coordinates

Jeffrey Eberspeaker – Cylindrical Conversion

- 1. Find the volume of the region enclosed by the cylinder $x^2+y^2=36$ and the planes z=0 & y+z=12
- 2. Find the volume of the region cut from the solid cylinder $x^2+y^2 \le 9$ by the sphere $x^2+y^2+z^2=16$

Ralph DeFilio – Change of Variables in Multiple Integrals

- 1. Evaluate $\iint sqrt(x+y)^*(y-2x)^2 dydx$. $1-x \ge y \ge 0$, $1 \ge x \ge 0$
- 2. Evaluate $\iint_R (2x^2-xy-y^2) dxdy$. For the Region R in the first quadrant bounded by the lines y = -2x+4, y = -2x+7, y = x-2 and y = x+1.