

Elméleti mechanika A: Gyakorlat jegyzet

Írta: Kovács Szabolcs

1. óra

Az előadáson eljutottunk két fontos elvhez:

$$S_0 = \int |\vec{p}| ds \qquad T = \int n(s) ds \qquad (1.1)$$

amikról kicsit mellébeszélősen beláttuk, hogy azonosak. A Fermat elvet már ismeritek, és levezettétek belőle a Snellius-Descartes törvényt, miszerint fénytörés esetén a beesési szögek és a törésmutatók közti összefüggés:

$$n_1 \sin \varphi_1 = n_2 \sin \varphi_2 \tag{1.2}$$

A Maupertuis elv még új, szóval első példáinkban barátkozzunk vele egy kicsit.

1.1. példa: Úttörés részecskére

Van egy tömegpontunk (monjduk egy elektron) ami kezdetben szabadon mozog egyenes vonalban, egyenletes sebességgel. Az x tengelyt elérve viszont azt tapasztalja, hogy lecsökken a potenciális energiája: a negatív tartományban a fentihez képest egy konstans -U potenciál tölti ki a teret.

1.1.1. Mi történik a részecske pályájával?

1. ábra. Vázlatos ábra a részecske útjáról, ami ismerős lehet valahonnan.

Ezt a feladatot kicsit macerás megoldani a Newton törvényekkel, szóval azt későbbre hagyjuk. Használjuk helyette a Maupertuis elvet, illetve az energiamegmaradást, felírva a tengelyen áthaladás előtti és utáni pillanatokra:

$$K_1 = K_2 - U (1.3)$$

$$\frac{1}{2}mv_1^2 = \frac{1}{2}mv_2^2 - U\tag{1.4}$$

$$\frac{p_1^2}{2m} = \frac{p_2^2}{2m} - U$$

$$p_1^2 = p_2^2 - 2mU$$
(1.5)

$$p_1^2 = p_2^2 - 2mU (1.6)$$

$$|\vec{p}_2| = \sqrt{p_1^2 + 2mU} \tag{1.7}$$

A hatás felírásához szükség lesz még a megtett utakra, amiket valahogy paraméterezni kell egy koordinátarendszerben. Legyen az Origó a kiindulási P_1 pont x tengelyre vetett képe, a tengelyen áthaladás pontját pedig vegyük fel valamilyen x pontban, amire végső soron kívánsiak vagyunk. Kis trigonometriával ekkor

$$\sin \theta_1 = \frac{x}{\sqrt{x^2 + y_1^2}} \qquad \qquad \sin \theta_2 = \frac{x_2 - x}{\sqrt{(x + x_2)^2 + y_2^2}} \tag{1.8}$$

ami mindjárt hasznos lesz.

A hatásunk tehát nem lesz más, mint

$$S_0 = \int_{P_1}^{P_2} |\vec{p}(s)| ds = \int_{P_1}^{Q} |\vec{p}_1| ds + \int_{Q}^{P_2} |\vec{p}_2| ds$$
 (1.9)

Mivel az impulzusok már konstanssok, így ami marad az az út kiintegrálása. Elvégezve pedig:

$$S_0 = p_1 \sqrt{x^2 + y_1^2} + p_2 \sqrt{(x_2 - x)^2 + y_2^2}$$
(1.10)

A Maupertuis elv szerint ez minimális kell, hogy legyen. Nekünk x az egyetlen dolog ami változhat, tehát

$$\frac{\partial S_0}{\partial x} = 0 \tag{1.11}$$

$$p_1 \sin \theta_1 = p_2 \sin \theta_2 \tag{1.12}$$

$$\left| p_1 \sin \theta_1 = p_2 \sin \theta_2 \right| \tag{1.12}$$

Ezzel meg is oldottuk a feladatot: a potenciális energia ugrása pont olyan hatással van a részecskére, mint a törésmutató ugrása a fényre. Ha magukat a sebességeket nem ismerjük, csak a potenciált és a kimenő sebességet (ami gyakori, ha például egy laborban mi magunk rakjuk oda a potenciális energiát, és detektáljuk a kijövő részecskét), akkor átírva:

$$\frac{\sin \theta_1}{\sin \theta_2} = \sqrt{1 + \frac{2m}{p_1^2} U} \tag{1.13}$$

1.1.2. Hová lett a lendületmegmaradás?

Már az energiamegmaradás első felírt sorában láthattuk, hogy a lendület itt gyanúsan nem marad meg. Hogy ezt kicsit jobban kivesézzük, bontsuk fel a lendületeket komponensekre $\vec{p}=(p_x,p_y)$ módon, és nézzük meg az x irányúakat:

$$p_{1,x} = |\vec{p_1}| \sin \theta_1$$
 $p_{2,x} = |\vec{p_2}| \sin \theta_2$ (1.14)

Rögtön láthatjuk:

$$p_{1.x} = p_{2.x} \tag{1.15}$$

tehát a határfelülettel párhuzamos irányú lendület nem változik, megmarad. Ennek mélyebb oka a szimmetriákban rejlik: a rendszerünk szimmetrikus alra, hogy eltoljuk a P_1 és P_2 pontokat a tengellyel párhuzamosan, attól nem változik semmi. Ha arra merőlegesen tolnánk el, akkor viszont beleütközhetünk a falba, amin túl már nem ugyanarról a fizikai problémáról beszélünk.

1.1.3. Newtonos megoldás

A feladat régimódibb megoldásához kis trükközésre van szükség. Végső célunk megoldani a Newton-egyenletet, ami az energiamegmaradásnak hála

$$-\nabla U = \dot{\vec{p}} \tag{1.16}$$

Ami itt bajos lehet, az a ∇U . Nekünk ez a lépcsőszerű ugrás a potenciálban a Heaviside lépcsőfüggvénnyel írható le

$$U(x,y) = -U\Theta(-y) \tag{1.17}$$

Ami nem folytonos, ezért deriválni sem lehet szépen disztribúcióelmélet nélkül. Ha éppen nem jut eszünkbe, hogy az alapján ennek pont egy Dirac-delta a deriváltja, akkor a következő trükköket lehet bevetni.¹

A lépcsőfüggvény sokféleképpen közelíthető. Egyik mód például a

$$\Theta(y) \approx \frac{1}{2} + \frac{1}{2} \tanh(ky) \tag{1.18}$$

ami visszaadja a lépcsőt, ha $k \to \infty$. Ezt már vígan lehet deriválni:

$$\partial_y \Theta(y) \approx \frac{1}{2} \frac{k}{\cosh^2(ky)}$$
 (1.19)

Ennek a függvénynek pedig van egy hasznos tulajdonsága:

$$\int_{-\infty}^{\infty} \frac{1}{2} \frac{1}{\cosh^2 u} du = 1 \tag{1.20}$$

Beírva, a Newton törvény alakja:

$$U\left(\frac{0}{\frac{1}{2}\frac{k}{\cosh^2(ky)}}\right) = \frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} p_x \\ p_y \end{pmatrix} \tag{1.21}$$

Amiből rögtön látszik, hogy p_x állandó. A másik komponensre vonatkozó egyenlet pedig

$$U\frac{1}{2}\frac{k}{\cosh^2(ky)} = \frac{\mathrm{d}p_y}{\mathrm{d}t} \tag{1.22}$$

Ha ennek a kezdeti és végállapotbeli megváltozására vagyunk kíváncsiak, akkor egy kis

$$\frac{\mathrm{d}p_y}{\mathrm{d}t}\mathrm{d}y = \frac{\mathrm{d}y}{\mathrm{d}t}\mathrm{d}p_y = \dot{y}\mathrm{d}p_y = \frac{1}{m}p_y\mathrm{d}p_y \tag{1.23}$$

átírás után kiintegrálhatjuk az egyenlet mindkét oldalát y szerint:

$$U \int \frac{1}{2} \frac{k}{\cosh^2(ky)} dy = \frac{1}{m} \int p_y dp_y$$
 (1.24)

$$U = \frac{1}{2m} \Delta p_y^2 \tag{1.25}$$

Tehát y irányban kapott a kis részecskénk egy impulzuslöketet.

¹Ez akkor is hasznos lehet, ha numerikusan próbáljuk megoldani a feladatot.

1.2. példa: Törés gömbfelületen

Változtassunk egy picit az előző feladaton: most ne egy sík mentén ugorjon a potenciál, hanem egy kör vonalát átlépve. Most azt szeretnénk megtudni, hogy milyen úton jutunk el egy belső P_1 pontból egy külső P_2 -be. Az egyszerűség kedvéért tegyük fel, hogy a két pont és a körvonal origója egy egyenesre esnek, és $\overline{P_1P_2} > \overline{OP_2}$.

2. ábra. Körvonalon való törés szemléltetése.

Így vagy úgy, de a bejárt utunk keresztezni fogja a körvonalat valamilyen Q pontban. Vegyük fel a koordinátarendszerünket úgy, hogy a kör kozéppontja az Origó; a Q pont helyét pedig paraméterezzük egy P_1 pontból felvett φ szöggel. Némi geometria után a szakaszok hossza:

$$A^{2} = \overline{P_{1}Q}^{2} = R^{2} + r_{1}^{2} - 2Rr_{1}\cos\left[\pi - (\varphi + \theta_{1})\right]$$
(1.26)

$$A^{2} = R^{2} + r_{1}^{2} + 2Rr_{1}\cos(\varphi + \theta_{1})$$
(1.27)

illetve

$$B^{2} = \overline{QP_{2}}^{2} = R^{2} + r_{2}^{2} - 2Rr_{2}\cos(\varphi + \theta_{1})$$
(1.28)

Tehát a hatás:

$$S_0 = p_1 A + p_2 B \tag{1.29}$$

aminek a minimuma lesz a valós út. Deriválás után azt kapjuk, hogy

$$0 = -p_1 \frac{1}{2A} 2Rr_1 \sin(\varphi + \theta_1) + p_2 \frac{1}{2B} 2Rr_2 \sin(\varphi + \theta_1)$$
(1.30)

$$p_1 \frac{1}{2A} 2Rr_1 \sin(\varphi + \theta_1) = p_2 \frac{1}{2B} 2Rr_2 \sin(\varphi + \theta_1)$$
 (1.31)

$$p_1 \frac{r_1}{A} = p_2 \frac{r_2}{R} \tag{1.32}$$

ahol leosztottunk sin $(\varphi + \theta_1)$ -val: az is egy megoldás lenne, az egyenes út. Az így kapott egyenletre egy szinusztételt alkalmazva ismerős alakot kapunk:

$$p_1 \frac{\sin \theta_1}{\sin \left[\pi - (\varphi + \theta_1)\right]} = p_2 \frac{\sin \left[\pi - \theta_2\right]}{\sin \left(\varphi + \theta_1\right)}$$
(1.33)

$$p_1 \sin \theta_1 = p_2 \sin \theta_2 \tag{1.34}$$

Ez lehet az előző feladat alapján kikövetkeztethető volt, de azért jobb biztosra menni.

3. ábra. Pár szög ami kell a számoláshoz.

Hasonlóan a fentihez, most is megnézhetjük, hogy megmarad-e a lendület, illetve ha igen, akkor milyen irányban. Nézzük most az impulzusnak a sugárirányú, és arra merőleges komponenseit. Ezek rendre:

$$p_{1,r} = p_1 \sin\left[\frac{\pi}{2} - \theta_1\right]$$
 $p_{2,r} = p_2 \sin\left[\frac{\pi}{2} - \theta_2\right]$ (1.35)

$$p_{1,\varphi} = p_1 \cos\left[\frac{\pi}{2} - \theta_1\right] \qquad p_{2,\varphi} = p_2 \cos\left[\frac{\pi}{2} - \theta_2\right]$$
 (1.36)

Amiből azt látjuk, hogy

$$p_{1,\varphi} = p_1 \sin \theta_1 = p_2 \sin \theta_2 = p_{2,\varphi} \tag{1.37}$$

Tehát itt a sugárirányban kap egy impulzuslöketet a részecske, az arra merőleges komponens pedig megmarad. Felidézve, hogy az előbb az eltolásokhoz kötöttem valamilyen impulzusnak a megmaradását, ez most azt sugallja, hogy a rendszerünk a körkörös eltolásokra lesz szimmetrikus. Ezeknek szebb neve a forgatás, amihez szintén tartozik egy megmaradó mennyiség.

Számoljuk ki a részecskék perdületét, az Origóhoz viszonyítva, a kezdeti és végpontokban. Ez 2D esetén úgy értelmezendő, mint

$$L = p_{\perp}r \tag{1.38}$$

ahol r az Origótól vett távolság, p_{\perp} pedig a pontot és az origót összekötő egyenesre merőleges vetülete a lendületnek. Vegyük észre, hogy ez egy kicsit eltér a fenti felbontástól. Először csak a párhuzamos komponensekre fókuszálva, azok

$$p_{1\perp} = p_1 \sin \varphi \qquad \qquad p_{1\perp} = p_2 \sin \left(\theta_2 - \theta_1 - \varphi\right) \tag{1.39}$$

Ők lesznek még beszorzva az origótól való távolságával a kezdeti és a végpontoknak. Azokat kicsit átírva szinusztételekkel:

$$r_1 = \frac{\sin \theta_1}{\sin \varphi} R \qquad \qquad r_2 = \frac{\sin (\pi - \theta_2)}{\sin (\theta_2 - \theta_1 - \varphi)} R \qquad (1.40)$$

Amikből a perdületre az következik,

$$L_1 = Rp_1 \sin \theta_1 = Rp_2 \sin \theta_2 = L_2 \tag{1.41}$$

hogy megmarad. Ennek a vizuálisan is jól látható oka az, hogy az origó körül megforgatva a teljes rendszert, nem változik semmi.

1.3. példa: Legnagyobb (?) hatás elve

Térjünk vissza még picit a fényhez. A Fermat elv szerint a fény a legrövidebb időbe kerülő úton közlekedik, tehát az a pálya valósul meg, amelynek mentén a megtett idő minimális. Most bebizonyítjuk, hogy ez így nem igaz, egy görbe tükör segítségével.

Vegyük az kezdeti A és a végződő B pontokat egy félgömb alakú tükör két végében. Természetesen a legrövidebb út köztük az egyenes, de optikából tudjuk, hogy a fény tud másmerre is menni: tükröződve. Vegyük fel valahol a köztes P pontunkat a köríven, és paraméterezzük a 4. ábrán látható szöggel.

4. ábra. Görbe tükrön visszaverődés.

Kis geometria után a megtett útszakaszok:

$$\overline{AP} = a = 2R\sin\left(\frac{\pi/2 - \theta}{2}\right)$$
 $\overline{PB} = b = 2R\sin\left(\frac{\pi/2 + \theta}{2}\right)$ (1.42)

A Fermat-elvhez fordulva a legrövidebb időre türekszünk. De itt most a törésmutató éppen konstans, tehát ez ekvivalens lesz a legrövidebb úttal, azaz

$$\mathcal{T} \cdot \frac{c}{n} = \mathcal{S} = 2R \left[\sin \left(\frac{\pi/2 - \theta}{2} \right) + \sin \left(\frac{\pi/2 + \theta}{2} \right) \right]$$
 (1.43)

Ezt kell most deriválnunk θ szerint, majd nullává tennünk.

$$\partial_{\theta} S = -R \cos\left(\frac{\pi/2 - \theta}{2}\right) + R \cos\left(\frac{\pi/2 + \theta}{2}\right) = 0$$
 (1.44)

$$\cos\left(\frac{\pi/2 - \theta}{2}\right) = \cos\left(\frac{\pi/2 + \theta}{2}\right) \tag{1.45}$$

Aminek megoldásai:

$$\theta = 2n\pi \,, \qquad n \in \mathbb{Z} \tag{1.46}$$

Nekünk ezek közül $\theta = 0$ lesz az érdekes, ezt ismerjük optikából, és ez is lesz a megoldás.

Érdekes dolgot figyelhetünk meg viszont, ha megnézzük az időtartam $m\'{a}sodik$ deriváltját is a minimumban.

$$\partial_{\theta}^{2} \mathcal{T}|_{\theta=0} \propto -2R \left[\sin \frac{\pi}{4} - \sin \frac{\pi}{4} \right]$$
 (1.47)

$$\propto -R\sin\frac{\pi}{4} \tag{1.48}$$

Ami negatív. Visszaidézve a matek érettségit, ez azt jelenti, hogy a megvalósuló pályánk nem is egy minimumhoz köthető. Pont ellenkezőleg, egy lokális maximumhoz tartozó pályát követ ezesetben a fény.

Éppen ezért, most is és a jövőben is, bármikor, ha a *legkisebb* hatás elvét emlegeti valaki, akkor az általában csak egy megszokott elnevezés. Valójában inkább a *szélsőértékes* hatás elvére gondolunk, de az sokkal csúnyábban hangzik mind magyarul, mind angolul.

2. óra

2.0. Elméleti frissítő

Az óra célja röviden az, hogy megismerkedjetek a variációs módszerekkel. Ez gyakorlatilag egy új nyelv, amire az eddig megszokotthoz (rajzoli egy diagrammot az erőkkel, aztán $\vec{F}=m\vec{a}$) hasonlóan le lehet fordítani azt, hogy mi történik a világban. Az előnye az, hogy általában sokkal könnyebb felírni így a mozgást leíró egyenleteket, mégha megoldani nem is mindig lehet azokat. Mellékesen pedig ezen a nyelven lesz olvasható a későbbiekben két egész fontos ága a tudományunknak: a kvantumfizika és az általános relativitáselmélet.

Mechanikáról léve szó, azt szeretnénk megtudni, hogy hogyan jutunk el valamilyen A pontból a B-be. Ezt persze a legkönnyebb az ismerős tér és időben elhelyezve elképzelni, de absztraktabb terekben is igaz. Ezt sokféle úton lehetne megtenni, sok féle Γ görbén; amik mentén változhat a "fizika" valamilyen $\mathcal L$ függvények által kódolva. A függvények és a görbék relatíve bonyolult dolgok, ezért keressünk valami egyszerűbbet, mondjuk egy számot amit hívjunk $\mathcal S$ -nek. Hogy ez is kódolja az összes eddigi információt, legyen absztraktul

$$S = \int_{A}^{B} \mathcal{L} \, \mathrm{d}\Gamma \tag{2.49}$$

Ami nevesítve azt mondja, hogy az S hatás az L Lagrange-függvény integrálja. Ezt a fajta dolgot egyébként funkcionálnak hívják: ahogyan egy f függvény (function) egy számhoz hozzárendel egy másikat, az S funkcionál egy függvényhez rendel hozzá egy számot.

A fizika ott kezdődik, hogy eközül a sok út közül csak egy lehet reális: az alma nem keringőzik a levegőben, hanem leesik. Kitüntetett szerepe annak az útnak lesz, ahol ez az $\mathcal S$ hatás alig változik: extrémuma van. A legkisebb hatás elve szerint tehát az lesz a fizikailag megvalósuló pálya, amelynek mentén

$$\delta \mathcal{S} = 0 \tag{2.50}$$

Ezt megkövetelve, ha alkalmazzuk a funkcionál deriválás szabályait, kapunk egy szép egyenletet az $\mathcal{L}(x(t), \dot{x}(t))$ alakú Lagrange-függvényünkre:

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial \mathcal{L}}{\partial \dot{x}} = \frac{\partial \mathcal{L}}{\partial x} \tag{2.51}$$

az úgy nevezett **Euler-Lagrange**-egyenletet. Ez egyelőre még lehet, hogy csúnyábbnak tűnik mint az $\vec{F} = m\vec{a}$, de pont arra van a gyakorlat, hogy megbarátkozzunk vele. Úgy általánosságban két féle példával fogunk találkozni: lesznek a tipikus feladatok, ahol ezt kell használni ahogy van; és lesznek gondolkodósak, ahol ezt az egyenletet még alakítani kell kicsit. Nézzünk először pár példát az utóbbira.

5. ábra. Egy y(x) függvényként paraméterezett görbe A és B közt.

2.1. példa: Euklidész

Az első kérdés amit segít megválaszolni a variációszámítás a következő:

Mi a legrövidebb út két pont között?

Próbáljunk meg elvonatkoztatni attól, hogy tudjuk a választ (egyenes). Ha ez megvolt, akkor rajzoljunk le valami általános görbét A és B pontok közt, ahogy azt a 5. ábrán láthatjuk. Végső soron arra leszünk kíváncsiak, hogy ennek a görbének a hossza mikor lesz minimális: tehát számunkra ő most az S hatás. Hogy őt megkapjuk egy integrállal, a görbe mentén kell felösszegeznünk a kis ds ívelemeket, tehát

$$S = \int_{A}^{B} ds \tag{2.52}$$

Amivel meg is van a feladat filozofálósabb része. Ami marad az az, hogy hogyan kell ezt az integrálást elvégezni: mik is a határok, és hogy függ tűlük az ívelem. Descartes-i koordinátákban dolgozva általánosan is igaz, hogy két pont közt a távolság $s^2 = x^2 + y^2$. Ez alapján az infinitezimális elmozdulásokra is valid lesz:

$$ds = \sqrt{dx^2 + dy^2} \tag{2.53}$$

Ami már majdnem jó, de nekünk csak x a változó, amitől függ maga az y, ezért azt a dy-t el lehet tűntetni. Szorozzuk be eggyel:

$$dy = dy \frac{dx}{dx} = \frac{dy}{dx} dx = y'(x) dx$$
 (2.54)

Ezzel a hatásintegrálunkat már fel tudjuk írni mint egy szokásos, x szerinti integrálás:

$$S = \int_{x_A}^{x_B} \sqrt{\mathrm{d}x^2 + y'^2(x)\mathrm{d}x^2} = \int_{x_A}^{x_B} \sqrt{1 + y'^2(x)}\mathrm{d}x$$
 (2.55)

Megtaláltuuk tehát, hogy mi az a Lagrange-függvény ami ezt a problémát írja le:

$$\mathcal{L}(y(x), y'(x)) = \sqrt{1 + y'^{2}(x)}$$
(2.56)

Ennek véve a deriváltjait:

$$\frac{\partial \mathcal{L}}{\partial y} = 0 \qquad \qquad \frac{\partial \mathcal{L}}{\partial y'} = \frac{1}{2} \frac{2y'}{\sqrt{1 + y'^2}} \tag{2.57}$$

Aztán felírhatnánk persze az Euler-Lagrange egyenletet, amihez kell még ez utóbbinak a teljes deriváltja. Ehelyett, vegyük észre hogy az egyenlet jobb oldala nulla:

$$\frac{\mathrm{d}}{\mathrm{d}x}\frac{\partial \mathcal{L}}{\partial y'} = \frac{\partial \mathcal{L}}{\partial y} = 0 \tag{2.58}$$

tehát

$$\frac{\partial \mathcal{L}}{\partial y'} = \frac{1}{2} \frac{2y'}{\sqrt{1 + y'^2}} = \text{konst.}$$
 (2.59)

Még nevet nem adva a konstansnak, ez kicsit átírható:

$$\frac{y'}{\sqrt{1+y'^2}} = \text{konst.} \tag{2.60}$$

$$\frac{y'^2}{1 + y'^2} = \text{konst.} \tag{2.61}$$

$$y'^2 = \text{konst.} \tag{2.62}$$

$$y' = \text{konst.} \tag{2.63}$$

amit nevezzünk el végre:

$$y'(x) = m (2.64)$$

Ezt integrálva x szerint megkapjuk a gyönyörű megoldást, miszerint:

$$y = mx + b \tag{2.65}$$

tehát két pont között a legrövidebb út az egyenes.

2.2. példa: Brachisztokron

Egy egészen hasonló, de történelmi jelentősségű pééldát kapunk, ha kicsit módosítunk az előző feladaton. Az alapkérdésünk most az, hogy (homogén) gravitációs térben milyen görbe az, amin legurulva a legkevesebb időbe telik az út A és B között. A legkevesebb időre törekszünk, tehát ami minimalizálandó az

$$S = \int_{A}^{B} dt \tag{2.66}$$

Felhasználva, hogy v = s/t, illetve az energiamegmaradásból kapott

$$\frac{1}{2}mv^2 = mgy \tag{2.67}$$

$$v = \frac{1}{\sqrt{2gy}} \tag{2.68}$$

összefüggést, ez átírható egy útra vett integrállá:

$$S = \frac{1}{\sqrt{2g}} \int_{A}^{B} \frac{1}{\sqrt{y}} ds \tag{2.69}$$

Már csak az a kérdés, hogy mi legyen ds. Az előző feladdal ellentétben most vehetjük 2 a változónak y-t, aminek függvénye az x, amivel

$$ds^{2} = [1 + x'^{2}(y)]dy^{2}$$
(2.70)

²Nem muszáj, de könnyebb így.

Így a hatásintegrálunk

$$S = \frac{1}{\sqrt{2g}} \int_{y_A}^{y_B} \frac{\sqrt{1 + x'^2(y)}}{\sqrt{y}} dy$$
 (2.71)

Erre kell most alkalmaznunk az Euler-Lagrange formulát, ügyelve arra hogy most x és y kicserélődtek. Az integrál előtti szorzófaktorokat elhagyva a deriváltak:

$$\frac{\partial \mathcal{L}}{\partial x} = 0 \qquad \qquad \frac{\partial \mathcal{L}}{\partial x'} = \frac{1}{\sqrt{y}} \frac{x'}{\sqrt{1 + x'^2}}$$
 (2.72)

Az előzőhöz hasonlóan, most se számítjuk ki $\frac{d}{dy} \frac{\partial \mathcal{L}}{\partial x'}$ -et, mert a másik nulla: tudjuk tehát, hogy

$$\frac{1}{\sqrt{y}} \frac{x'}{\sqrt{1 + x'^2}} = \text{konst.} \tag{2.73}$$

$$\frac{1}{y} \frac{x'^2}{1 + x'^2} = \text{konst.} = \frac{1}{2a}$$
 (2.74)

ahol a konstans azért így van bevezetve, hogy később szép legyen a megoldás. Ez egy diffegyenlet, amit meg kell oldanunk. Kis rendezéssel

$$x^{2} = \frac{y}{2a} + \frac{y}{2a}x^{2} \tag{2.75}$$

$$x^{2} = \frac{\frac{y}{2a}}{1 - \frac{y}{2a}} \tag{2.76}$$

$$x^{2} = \frac{y^{2a}}{2a - y} \tag{2.77}$$

Ami felintegrálható, mint

$$x = \int \sqrt{\frac{y}{2a - y}} \, \mathrm{d}y \tag{2.78}$$

Hogy ezt megoldjuk, megsejtjük a jó $y\to\varphi$ változócserét a tankönyv segítségével, mint

$$y = a(1 - \cos \varphi) \tag{2.79}$$

Amivel

$$\frac{\mathrm{d}y}{\mathrm{d}\varphi} = a\sin\varphi \qquad \longrightarrow \qquad \qquad \mathrm{d}y = a\sin\varphi\,\mathrm{d}\varphi \qquad (2.80)$$

és

$$\frac{y}{2a-y} = \frac{a(1-\cos\varphi)}{2a-a+a\cos\varphi} = \frac{1-\cos\varphi}{1+\cos\varphi}$$
 (2.81)

Beírva mindkettőt, az integrandus

$$a\sqrt{\frac{1-\cos\varphi}{\cos\varphi}}\sin\varphi = a\sqrt{\frac{1-\cos\varphi}{1+\cos\varphi}\sin^2\varphi}$$
 (2.82)

$$= a\sqrt{\frac{\sin^2\varphi - \sin^2\varphi\cos\varphi}{1 + \cos\varphi}} \tag{2.83}$$

$$= a\sqrt{\frac{1 - \cos^2 \varphi - \sin^2 \varphi \cos \varphi}{1 + \cos \varphi}} \tag{2.84}$$

$$= a\sqrt{\frac{1 - \cos^2 \varphi - \cos \varphi + \cos^3 \varphi}{1 + \cos \varphi}}$$
 (2.85)

$$= a\sqrt{\frac{(1 + \cos\varphi(1 - \cos\varphi)^2)}{1 + \cos\varphi}}$$
 (2.86)

$$= a(1 - \cos \varphi) \tag{2.87}$$

Amit már könnyebb kiintegrálni, mint

$$x = a \int (1 - \cos \varphi) d\varphi = a (\varphi - \sin \varphi) + \text{konst.}$$
 (2.88)

Innentől a pontos megoldás már csak kezdeti értékek kérdése. Legyennek ők $x_A = y_A = 0$, amikből $\varphi = 0$ következik, illetve a konstansunk is nulla lesz. A megoldásunk tehát a görbére:

$$x = a\left(\varphi - \sin\varphi\right) \tag{2.89}$$

$$y = a(1 - \cos \varphi) \tag{2.90}$$

ahol φ parametrizálja a görbét. Ha eleget nézzük ezt a megoldást, szét tudjuk szedni pár darabra:

- a két változó rendre szinuszosan és koszinuszosa változik, ami valami körszerűre utal;
- x-hez viszont folyamatosan adódik egy extra φ tag, ami eltolja.

Ezek tudatában nem meglepő, hogy ez a görbe egy cikloid: az a görbe, amit akkor kapunk, ha elgurítva egy kereket követünk egy pontot annak a peremén.

2.3. példa: Forgástest felülete

Szeretnénk két, nem feltétlen azonos sugarú gyűrűt összekötni egy felülettel, forgásszimmetrikusan. Mi lesz az a görbe, amit megforgatva ezt a legkisebb felülettel tudjuk elérni?

ábra. Forgástest szemléltetése.

Az eddigiekhez hasonlóan itt is egy integrált kell majd elvégeznünk, valami szerint. A területet szeretnénk minimalizálni, ami körcikkekre osztva

$$\Delta A = 2\pi y \tag{2.91}$$

csak az a kérdés, hogy mi szerint integráljunk. Két lehetőség van:

$$S_1 = \int 2\pi y(x)\sqrt{1 + y'^2(x)}dx$$
 $S_2 = \int 2\pi y\sqrt{1 + x'^2(y)}dy$ (2.92)

amik fizikailag ugyanazt a görbét kell hogy adják. Elvégezve a deriválásokat a két esetre:

$$\frac{\partial \mathcal{L}_1}{\partial y} = \sqrt{1 + y'^2(x)} \qquad \qquad \frac{\partial \mathcal{L}_1}{\partial x} = 0 \tag{2.93}$$

$$\frac{\partial \mathcal{L}_1}{\partial y'} = \frac{yy'}{\sqrt{1 + y'^2(x)}} \qquad \qquad \frac{\partial \mathcal{L}_1}{\partial x'} = \frac{yx'}{\sqrt{1 + x'^2(y)}}$$
(2.94)

Látszólag a jobb oldali az egyszerűbb. Ekkor

$$\frac{yx'}{\sqrt{1+x'^2(y)}} = \text{konst.} = \frac{1}{b} \tag{2.95}$$

ahol b konstans. Ez egy diffegyenlet, amit szeparálhatunk:

$$y^2 x'^2 = \frac{1 + x'^2}{b^2} \tag{2.96}$$

$$x^{2}\left(y^{2} - \frac{1}{b^{2}}\right) = \frac{1}{b^{2}}\tag{2.97}$$

$$x^{2} = \frac{\frac{1}{b^{2}}}{y^{2} - \frac{1}{b^{2}}} = \frac{1}{(yb)^{2} - 1}$$
 (2.98)

$$x'(y) = \sqrt{\frac{1}{(yb)^2 - 1}} \tag{2.99}$$

$$\int \mathrm{d}x = \int \sqrt{\frac{1}{(yb)^2 - 1}} \mathrm{d}y \tag{2.100}$$

Ami egy elemi integráltáblázatban kinézve:

$$\int \sqrt{\frac{1}{z^2 - 1}} dy = \cosh^{-1} z \tag{2.101}$$

Elvégezve az integrálásokat, és beírva a konstansokat, az eredmény:

$$y(x) = \frac{1}{b}\cosh[b(x+c)]$$
 (2.102)

7. ábra. Csúszó ék ábrája.

2.4. példa: Csúszó ék

Térjünk át a tipikus mechanikai feladatokra. Ekkor a hatásunk alakja általában

$$S = \int \mathcal{L}(\vec{r}(t), \dot{\vec{r}}(t)) dt = \int \left(K(\dot{\vec{r}}) - V(\vec{r}) \right) dt$$
 (2.103)

mert akkor az Euler-Lagrange egy ismerős egyenletre vezet:

$$\frac{\mathrm{d}}{\mathrm{d}t}\vec{p} = \frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial \mathcal{L}}{\partial \dot{r}} = \frac{\partial \mathcal{L}}{\partial \vec{r}} = -\nabla V(\vec{r}) \tag{2.104}$$

Első példaként vegyünk egy asztalt. Rakjunk rá egy háromszög alakú, M tömegű éket, ami súrlódás mentesen tud rajta mozogni. Erre az ékre pedig rakjunk rá egy m tömegű téglatestet, ami szintén súrlódás nélkül le tud csúszni rajta. Ha engedjük lecsúszni a kis téglatestet, mekkora lesz az ék gyorsulása?

Az el.mecha. példák megoldása könnyen megy szisztematikusan. Kezdjük az első lépésses:

2.4.1. Mi a hatás?

Kell nekünk a \mathcal{L} Lagrange-függvényünk két része: a kinetikus és a potenciális energia. Az utóbbi itt könnyebb: ahogy csúszik lefele a téglatest, csökken a gravitációs potenciálja. Tehát:

$$\Delta V = mg\Delta h \tag{2.105}$$

amit paraméterezni kell valahogy szépen majd. Addig is emlékezzünk, hogy bárhol megválaszthatjuk a nullpontját, de lefelé menve csökkenni fog.

A kinetikus energiánk már picit több tagból áll: az m test tud mozogni x_2 és y_2 irányba, az M pedig csak x_1 irányba. Lefelé nem, mert ott az asztal. Tehát:

$$K = \frac{1}{2}M\dot{x_1}^2 + \frac{1}{2}m\dot{x_2}^2 + \frac{1}{2}m\dot{y_2}^2$$
 (2.106)

Ami általánosan szép és jó, viszont elviekben még semmi nem zárja ki, hogy a kis téglatestünk egyenesen átessen a háromszögön. Ehhez egy **kényszert** kell kiróni: az m test **kényszeresen** az ék felületén közlekedik lefelé.³

 $^{^3}$ Sidenote: ez ugyanolyan kényszer, mint az, hogy a háromszög nem esik át az asztalon. Az egyszerűbb: $\dot{y_1}=0$.

8. ábra. Pár szög és szakasz ami segít a kényszer felírásában.

Ahhoz, hogy ez a kényszer teljesüljön, matekká kell fogalmazni amit szeretnénk kiróni. A kis téglatestünk úgy közlekedik lefelé, hogy végig a háromszög élén marad. Ehhez segítségül hívjuk a 8. ábrát.

Azt látjuk, hogy össze tudjuk kötni a kis téglatest y irányú, y_2 mértékű lecsúszását azzal, hogy mennyit mozogtak x irányba a testek. Kis matekkal:

$$y_2 = (x_1 + x_2)\tan\varphi (2.107)$$

Ez kétrétről is hasznos lesz: egyrészt a potenciális energiába pont ezt a magasságmegváltozást kerestük:

$$\Delta V = -mgy_2 \tag{2.108}$$

másrészt pedig be tudjuk helyettesíteni a kinetikus energiába is, mivel

$$\dot{y}_2 = (\dot{x}_1 + \dot{x}_2) \tan \varphi \tag{2.109}$$

Felírva tehát, a teljes Lagrange-függvény:

$$\mathcal{L} = \frac{1}{2}M\dot{x_1}^2 + \frac{1}{2}m\dot{x_2}^2 + \frac{1}{2}m(\dot{x_1} + \dot{x_2})^2 \tan^2\varphi + mg(x_1 + x_2)\tan\varphi$$
 (2.110)

2.4.2. Mik a mozgásegyenletek?

Két testünk mozog ebben a rendszerben, amiknek az $(x_1, \dot{x_1})$ és $(x_2, \dot{x_2})$ koordinátáival felírtuk a hatást. Hogy megkapjuk a mozgásegyenleteket, egyszerűen az Euler-Lagrange egyenleteket kell felírnunk a két testre. Kezdve az elsővel:

$$\frac{\partial \mathcal{L}}{\partial x_1} = mg \tan \varphi \qquad \qquad \frac{\partial \mathcal{L}}{\partial \dot{x_1}} = M\dot{x_1} + m \tan^2 \varphi (\dot{x_1} + \dot{x_2}) \qquad (2.111)$$

tehát az ék mozgásegyenlete:

$$mg \tan \varphi = M\ddot{x}_1 + m \tan^2 \varphi (\ddot{x}_1 + \ddot{x}_2)$$
 (2.112)

A kis téglatestünkre is fel lehet írni ugyanezeket: vegyük észre, hogy szinte teljesen szimmetrikus a Lagrange-ünk, annyi a különbség a két változó közt, hogy a kitneikus tagban más tömeg szerepel. A kis m tömegű test egyenlete tehát:

$$mg\tan\varphi = m\ddot{x}_2 + m\tan^2\varphi(\ddot{x}_1 + \ddot{x}_2) \tag{2.113}$$

2.4.3. Mi a pálya?

Hogy megkapjuk a trajektóriákat, meg kell oldanunk a mozgásegyenleteket. Na, ez az a lépés ami általánosságban nem lehetséges algebrailag. Szerencsére viszont léteznek feladatgyűjtemények olyan példákkal amikre igen: ez például pont megoldható. Vegyük a két mozgásegyenlet különbségét:

$$0 = M\ddot{x_1} - m\ddot{x_2} \tag{2.114}$$

$$0 = \frac{\mathrm{d}}{\mathrm{d}t} \left(p_{1,x} - p_{2,x} \right) \tag{2.115}$$

ami igazából ismerős lehet:

$$p_{1,x} - p_{2,x} = \text{konst.}$$
 (2.116)

ez nem más, mint az x irányú lendület megmaradása (a fordított előjelet az okozza, hogy az ék elmozdulását ellenkező irányúnak vettük fel a téglatestéhez képest). Visszaidézve az első órát, itt is láthatjuk, hogy eltolásinvariáns a rendszerünk erre az irányra, amivel ez az eredmény konzisztens.

Minden esetre, megvan a két egyenlet amit meg kell oldani. Ezeket kicsit átrendezve:

$$mg \tan \varphi - m \tan^2 \varphi \ddot{x}_2 = (M + m \tan^2 \varphi) \ddot{x}_1 \tag{2.117}$$

$$mg\tan\varphi - m\tan^2\varphi\ddot{x_1} = m(1 + \tan^2\varphi)\ddot{x_2} \tag{2.118}$$

be tudjuk helyettesítni az elsőbe $\ddot{x_2}$ -t, amivel

$$(M + m \tan^2 \varphi)\ddot{x_1} = mg \tan \varphi - m \tan^2 \varphi \frac{g \tan \varphi - \tan^2 \varphi \ddot{x_1}}{(1 + \tan^2 \varphi)}$$
(2.119)

$$\left(M + m \tan^2 \varphi - m \frac{\tan^4 \varphi}{1 + \tan^2 \varphi}\right) \ddot{x_1} = mg \tan \varphi - m \tan^2 \varphi \frac{g \tan \varphi}{1 + \tan^2 \varphi}$$
(2.120)

Vegyük észre hogy $1 + \tan^2 = 1/\cos^2$, így pár szögfüggvényes egyszerűsítés után

$$\left(M + m \tan^2 \varphi - m \frac{\sin^4 \varphi}{\cos^2 \varphi}\right) \ddot{x}_1 = mg \tan \varphi - m \sin^2 \varphi g \tan \varphi \tag{2.121}$$

$$\left(M + m\sin^2\varphi \frac{1 - \sin^2\varphi}{\cos^2\varphi}\right)\ddot{x}_1 = mg\tan\varphi(1 - \sin^2\varphi)$$
(2.122)

$$(M + m\sin^2\varphi)\,\ddot{x_1} = mg\tan\varphi\cos^2\varphi \tag{2.123}$$

$$(M + m\sin^2\varphi)\ddot{x}_1 = mg\cos\varphi\sin\varphi \qquad (2.124)$$

$$\ddot{x_1} = \frac{mg\cos\varphi\sin\varphi}{M + m\sin^2\varphi} \tag{2.125}$$

amivel meg is válaszoltuk a kérdést: ezzel a konstans gyorsulással fog mozogni az ékünk.

2.5. példa: A háromtest-probléma

Nézzünk meg most egy híresen nem megoldható példát: a háromtest-problémát. Vegyünk három különböző tömegű, különböző kezdeti helyzetű és sebességű tömegpontot. Hasson köztük egy körszimmetrikus konzervatív erő: a potenciál tehát centrális lesz, csak az ő helyzetük abszolútértékétől függ.

Hasonlóan az előző feladathoz, itt is fel tudjuk írni a hatást a kinetikus és potenciális energiákból. Kezdjük a potenciállal, ami két test közt ugyebár

$$V_{1,2} = -G \frac{m_1 m_2}{|\vec{r_1} - \vec{r_2}|} \tag{2.126}$$

Ebből lesz nekünk három, a lehetséges párkölcsönhatásokra. Mindenek előtt nézzük meg, hogy hogyan fog kinézni ennek a deriváltja, mert nem feltétlenül triviális.

$$\frac{\partial V_{1,2}}{\partial \vec{r_1}} = ? \tag{2.127}$$

Kiindulásul a sokkal egyszerűbb abszolútérték-függvény deriváltja:

$$\partial_x |x - a| = \frac{x - a}{|x - a|} \tag{2.128}$$

Ezt a 9. ábra alapján megérthetjük: vagy +1 vagy -1 kell, hogy a derivált értéke legyen, attól függően, hogy az a előtt vagy után vagyunk. Innen kezdve a többi már csak belső függvény deriválása:

$$\partial_x \frac{1}{|x-a|} = -\frac{1}{|x-a|^2} \frac{x-a}{|x-a|} \tag{2.129}$$

Vektorokra ez teljesen analóg módon működik:

$$\frac{\partial V_{1,2}}{\partial \vec{r_1}} = -\frac{1}{|\vec{r_1} - \vec{r_2}|^2} \frac{\vec{r_1} - \vec{r_2}}{|\vec{r_1} - \vec{r_2}|}$$
(2.130)

9. ábra. Kis segítség az abszolútérték deriváltjához.

Most a tömörség kedvéért vezessük be a \vec{R}_{12} relatív koordinátát, és annak R_{12} abszolútértékét (és ugyanezt a többi pontpárra is). Ezzel a Lagrange-függvényünk:

$$\mathcal{L} = \frac{1}{2}m_1\dot{\vec{r_1}}^2 + \frac{1}{2}m_2\dot{\vec{r_2}}^2 + \frac{1}{2}m_3\dot{\vec{r_3}}^2 + G\frac{m_1m_2}{R_{12}(\vec{r_1},\vec{r_2})} + G\frac{m_1m_3}{R_{13}(\vec{r_1},\vec{r_3})} + G\frac{m_2m_3}{R_{23}(\vec{r_2},\vec{r_3})}$$
(2.131)

amit deriválgatva megkaphatnánk az általános háromtest-probléma egyenleteit. Most csak az egyik pontra felírva:

$$\frac{\partial \mathcal{L}}{\partial \vec{r_1}} = Gm_1 \left[-\frac{m_2}{R_{12}^2} \frac{\partial R_{12}}{\partial \vec{r_1}} - \frac{m_3}{R_{13}^2} \frac{\partial R_{13}}{\partial \vec{r_1}} \right] = -Gm_1 \left[\frac{m_2}{R_{12}^2} \frac{\vec{R_{12}}}{R_{12}} + \frac{m_3}{R_{13}^2} \frac{\vec{R_{13}}}{R_{13}} \right]$$
(2.132)

$$\frac{\partial \mathcal{L}}{\partial \dot{\vec{r_1}}} = m_1 \dot{\vec{r_1}} \tag{2.133}$$

És az általános esetet most ennyiben is hagyjuk.

Megnézhetünk viszont egy speciális esetet: mikor lesz az egész rendszer egyensúlyban? Egyensúlyról nagjyából akkor beszélünk, ha a sebességek nem változnak, legalábbis a mértékük. Ezt beírva a fenti egyenletbe:

$$-Gm_1 \left[\frac{m_2}{R_{12}^2} \frac{\vec{R}_{12}}{R_{12}} + \frac{m_3}{R_{13}^2} \frac{\vec{R}_{13}}{R_{13}} \right] = \frac{\mathrm{d}}{\mathrm{d}t} p_1 = 0$$
 (2.134)

Ami csak akkor teljesülhet, ha

$$\frac{m_2}{R_{12}^2} \frac{\vec{R}_{12}}{R_{12}} + \frac{m_3}{R_{13}^2} \frac{\vec{R}_{13}}{R_{13}} = 0 {(2.135)}$$

Két vektor összege nulla: ha ők nem nullvektorok, akkor ez csak akkor lehet, ha ellentétes irányba mutatnak. A hosszukra pedig

$$m_2 \frac{1}{R_{12}^2} = m_3 \frac{1}{R_{13}^2} \tag{2.136}$$

tehát:

$$\frac{R_{12}}{R_{13}} = \sqrt{\frac{m_2}{m_3}} \tag{2.137}$$

Hasonlót kapunk a többi relatív távolságra is.

3. óra

Múlt héten elkezdtünk megbarátkozni a Lagrange-i mechanika alapjaival. Eddig a Descartes-i koordinátákban mozogtunk, de ennek különös fizikai szerepe nincsen: bármely más koordinátarendszerben is szeretnénk, hogy a fizika érvényes legyen. A variációs módszereknek itt jön be mégegy előnye a Newtoni mechanikával szemben: a mozgást leíró egyenletünk pont ugyanúgy néz ki (szinte) minden koordinátarendszerben. Általános q koordinátákkal:

$$S = \int \mathcal{L}(q(t), \vec{q}(t)) dt$$

lesz a hatásunk, amire az Euler-Lagrange egyszerűen

$$\frac{\partial \mathcal{L}}{\partial q} = \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{q}}$$

Nézzünk is egy pár példát, ahol látjuk ennek a jelentősségét.

3.1. példa: Félkörről lecsúszás

Vegyünk egy asztalt, és szögezzünk rá egy félkört. Ezután rakjunk rá egy kis tömegpontot, ami súrlódásmentesen lecsúszhat: mi lesz a mozgásegyenlet?

10. ábra. Félkör alakú ékről való lecsúszás.

3.1.1. Descartes

Először írjuk fel a feladatot Descartes-i koordinátarendszerben. Kényszerek nélkül, a kinetikus tagban lehetne bármi:

$$K = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}m\dot{y}^2\tag{3.1}$$

a potenciális energiánkat pedig felvehetjük, mint

$$V = -mg(R - y) \tag{3.2}$$

Persze tudjuk, hogy a mozgás itt csak a félkör felületén történhet: ez matekul annyit tesz, hogy

$$x^2 + y^2 = R^2 (3.3)$$

Ezzel pedig ki tudjuk fejezni valamelyik változónkat a másik függvényében. Legyen most ez x(y), mert a potenciális energiában már amúgy is y van.

$$x = \sqrt{R^2 - y^2} \tag{3.4}$$

Ezzel a deriváltja:

$$\dot{x} = \frac{y\dot{y}}{\sqrt{R^2 - y^2}}\tag{3.5}$$

Így a Lagrange-unk:

$$\mathcal{L} = \frac{1}{2}m\dot{y}^2 \left(1 + \frac{y^2}{R^2 - y^2}\right) + mg(R - y)$$
(3.6)

Felírhatjuk ez után az Euler-Lagrange egyenletet:

$$\frac{\partial \mathcal{L}}{\partial y} = \frac{1}{2} m \dot{y}^2 \frac{2y(R^2 - y^2) + 2y^2 \cdot y}{(R^2 - y^2)^2} - mg \qquad \qquad \frac{\partial \mathcal{L}}{\partial \dot{y}} = m \dot{y} \left(1 + \frac{y^2}{R^2 - y^2} \right)$$
(3.7)

amihez még deriválni kell egyet:

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{y}} = m \left[\ddot{y} \left(1 + \frac{y^2}{R^2 - y^2} \right) + \dot{y}^2 \frac{2y(R^2 - y^2) + 2y^3}{(R^2 - y^2)^2} \right]$$
(3.8)

Egyenlővé téve amit kell, és kicsit átalakítva:

$$\frac{1}{2}m\dot{y}^2\frac{2y(R^2-y^2)+2y^2\cdot y}{(R^2-y^2)^2}-mg=m\left[\ddot{y}\left(1+\frac{y^2}{R^2-y^2}\right)+\dot{y}^2\frac{2y(R^2-y^2)+2y^3}{(R^2-y^2)^2}\right] \tag{3.9}$$

$$\dot{y}^2 \frac{y(R^2 - y^2) + y^3}{(R^2 - y^2)^2} - g = \ddot{y} \left(1 + \frac{y^2}{R^2 - y^2} \right) + 2\dot{y}^2 \frac{y(R^2 - y^2) + y^3}{(R^2 - y^2)^2}$$
(3.10)

$$-\dot{y}^2 \frac{y(R^2 - y^2) + y^3}{(R^2 - y^2)^2} - g = \ddot{y} \left(1 + \frac{y^2}{R^2 - y^2} \right)$$
(3.11)

Ami még mindig csúnya, ezért vezessük be a tömegpont helyzetét leíró szöget, amivel

$$y = R\cos\varphi \tag{3.12}$$

Ennek hála

$$R^{2} - y^{2} = R^{2}(1 - \cos^{2}\varphi) = R^{2}\sin^{2}\varphi$$
(3.13)

Beírva a mozgásegyenletbe, leegyszerűsödik pár dolog:

$$-\dot{y}^{2}y\frac{R^{2}\sin^{2}\varphi + y^{2}}{(R^{2}\sin^{2}\varphi)^{2}} - g = \ddot{y}\left(1 + \frac{R^{2}\cos^{2}\varphi}{R^{2}\sin^{2}\varphi}\right)$$
(3.14)

$$-\dot{y}^{2}y\frac{R^{2}\sin^{2}\varphi + R^{2}\cos^{2}\varphi}{(R^{2}\sin^{2}\varphi)^{2}} - g = \ddot{y}\left(\frac{R^{2}\sin^{2}\varphi + R^{2}\cos^{2}\varphi}{R^{2}\sin^{2}\varphi}\right)$$
(3.15)

$$-\dot{y}^2 y \frac{1}{R^2 \sin^4 \varphi} - g = \ddot{y} \left(\frac{1}{\sin^2 \varphi} \right) \tag{3.16}$$

Beírva végül, hogy

$$\dot{y} = -R\sin\varphi\dot{\varphi} \qquad \qquad \ddot{y} = -R(\dot{\varphi}^2\cos\varphi + \sin\varphi\ddot{\varphi}) \qquad (3.17)$$

$$-R^{3}\dot{\varphi}^{2}\sin^{2}\varphi\cos\varphi\frac{1}{R^{2}\sin^{4}\varphi}-g=\ddot{y}\left(\frac{1}{\sin^{2}\varphi}\right)$$
(3.18)

$$-\dot{\varphi}^2 R \frac{\cos \varphi}{\sin^2 \varphi} - g = \ddot{y} \left(\frac{1}{\sin^2 \varphi} \right) \tag{3.19}$$

így

$$-\dot{\varphi}^2 R \cos \varphi - g \sin^2 \varphi = -R(\dot{\varphi}^2 \cos \varphi + \sin \varphi \ddot{\varphi}) \tag{3.20}$$

$$g\sin\varphi = \ddot{\varphi}R\tag{3.21}$$

3.1.2. Polár

Jól látható ennél a feladatnál, hogy sokat egyszerűsít, ha áttérünk a konfigurációnkhoz jobban illeszkedő változóra: a szögre. Ezt az előbb már a mozgásegyenlet levezetése után tettük meg. A Lagrange-i mechanikában viszont rögtön az első lépésben, a hatás felírásánál is tudunk élni ezzel az egyszerűsítéssel. A változónak most a szöget véve, a kinetikus energiánk:

$$K = \frac{1}{2}m\dot{y}^2 \left(1 + \frac{y^2}{R^2 - y^2}\right) \tag{3.22}$$

$$= \frac{1}{2}mR^2\sin^2\varphi\dot{\varphi}^2\left(1 + \frac{R^2\cos^2\varphi}{R^2\sin^2\varphi}\right) \tag{3.23}$$

$$= \frac{1}{2}m\dot{\varphi}^2 R^2 \sin^2\varphi \left(\frac{R^2}{R^2 \sin^2\varphi}\right) \tag{3.24}$$

$$=\frac{1}{2}m\dot{\varphi}^2R^2\tag{3.25}$$

Amit most behelyettesítve számoltunk ki, de egyébként abból is kiindulhattunk volna, hogy mi az érintőirányú sebesség egy kör mentén (sugár · szögsebesség). A potenciális energia szintén egyszerű:

$$V = -mqy (3.26)$$

$$= -mgR(1 - \cos\varphi) \tag{3.27}$$

$$= -mgR + mgR\cos\varphi \tag{3.28}$$

használjuk ki, hogy ez tetszőlegesen eltolható egy konstanssal, és legyen:

$$V = mgR\cos\varphi \tag{3.29}$$

Így a Lagrange-unk szép tömör alakot ölt:

$$\mathcal{L} = \frac{1}{2}m\dot{\varphi}^2 R^2 - mgR\cos\varphi \tag{3.30}$$

És az Euler-lagrange is egyszerűbb:

$$\frac{\partial \mathcal{L}}{\partial \varphi} = mgR \sin \varphi \qquad \qquad \frac{\partial \mathcal{L}}{\partial \dot{\varphi}} = mR^2 \dot{\varphi} \qquad (3.31)$$

$$mR^2\ddot{\varphi} = mgR\sin\varphi \tag{3.32}$$

Tehát a mozgásegyenlet:

$$R\ddot{\varphi} = q\sin\varphi \tag{3.33}$$

Ami jóval kevesebb lépsbe került mint derékszögű koordinátákkal. Ez az egyenlet nem oldható meg szépen, de nézzünk meg egy speciális esetet: mi van a félgömt tetejéhez közel, ahol $\varphi \ll 1$?

$$\sin \varphi \approx \varphi \tag{3.34}$$

Tehát

$$\ddot{\varphi} \approx \frac{g}{R}\varphi \tag{3.35}$$

Ez egy nevezetes diffegyenlet: valamilyen függvény második deriváltja arányos önmagával. Megoldása:

$$\varphi(t) \approx c_1 e^{\sqrt{\frac{g}{R}}t} + c_2 e^{-\sqrt{\frac{g}{R}}t} \tag{3.36}$$

3.2. példa: Rugós inga

Vegyünk egy sima matematikai ingát, ami alapjáraton l hosszúságú, és egy m tömegű testet tart. Cseréljük ki a madzagot egy k rugóállandójú rugóra: mi lesz ekkor a mozgásegyenlet?

11. ábra. Rugós inga rajza. Itt x helyett R-el fogom jelölni a megnyúlását, az eredeti hosszát pedig l_0 -al.

3.2.1. Descartes

Bemelegítésként először írjuk fel a sima inga problémáját Lagrange-osan, Descartes-i koordinátákkal. A kényszermentes Lagrange-függvény két tagja, ha origónak a felfüggesztési pontot vesszük:

$$K = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}m\dot{y}^2 \tag{3.37}$$

$$V = -mg(l - y) \tag{3.38}$$

Ezt még ki kell egészítenünk azzal a feltétellel, hogy a test csak az l hosszúságú drót által rajzolt körön mozog. Most direkt távolmaradva a szögektől, ez egy kis Pitagorasz tétel után:

$$l^2 = x^2 + y^2 (3.39)$$

$$y = \sqrt{x^2 - l^2} \tag{3.40}$$

tehát

$$\dot{y} = \frac{\mathrm{d}}{\mathrm{d}t}(\sqrt{x^2 - l^2}) = \frac{x\dot{x}}{\sqrt{x^2 - l^2}}$$
 (3.41)

amivel

$$\dot{y}^2 = \frac{x^2 \dot{x}^2}{x^2 - l^2} \tag{3.42}$$

Beírva mindent a Lagrange-ba:

$$\mathcal{L}_{\text{inga}} = \frac{1}{2}m\dot{x}^2 \left(1 + \frac{x^2}{x^2 - l^2}\right) + mg(l - \sqrt{x^2 - l^2})$$
(3.43)

És ez még csak maga az inga. Ha belevesszük a rugót is:

$$V_{\text{rug\'o}} = \frac{1}{2}k\Delta l^2 \tag{3.44}$$

ahol Δl fejezi ki, hogy mennyire nyúlt meg a rugó az eredeti l_0 -hoz képest. Descartes-i koordinátákkal:

$$x^{2} + y^{2} = l^{2} = (l_{0} + \Delta l)^{2}$$
(3.45)

$$\Delta l = \sqrt{x^2 + y^2} - l_0 \tag{3.46}$$

amivel

$$V_{\text{rug\'o}} = \frac{1}{2}k\left(\sqrt{x^2 + y^2} - l_0\right)^2 \tag{3.47}$$

És itt meg is állnék, mielőtt elkezdünk tovább helyettesítgetni. Szerintem sikerült demonstrálni, hogy mennyire el tudnak bonyolodni a tagok, ha a feladathoz rosszul illeszkedő koordinátarendszert választunk. Nézzük meg, hogy hogyan kell ezt szépen megoldani.

3.2.2. Polár

Hogy kiválasszuk a jó koordinátákat, gondolkodjunk kicsit a feladaton. Két dolgunk van: ingánk és rugónk. Az inga nagyon illeszkedik a poláros koordinátázáshoz. A rugóban pedig az jelenik meg, hogy mennyit nyúl meg sugárirányban. Legyen a két változónk φ , az inga kitérési szöge, és R, az inga megnyúlása az eredeti l_0 hosszához képest. A régi változók nyelvén tehát:

$$x^{2} + y^{2} = l^{2} = (l_{0} + R)^{2}$$
(3.48)

$$x = l\sin\varphi = (l_0 + R)\sin\varphi \tag{3.49}$$

$$y = l\cos\varphi = (l_0 + R)\cos\varphi \tag{3.50}$$

Milyen sebességek jelennek meg a kinetikus tagban? Lesz egyrészt a sugárirányú sebesség, ami azt mondja meg, hogy mennyire változik éppen R:

$$K_r = \frac{1}{2}m\dot{R}^2\tag{3.51}$$

és lesz egy erre merőleges komponens, ami az érintő irányú sebesség lesz. Ez pedig a $\dot{\varphi}$ szögsebesség szorozva a (l_0+R) sugárral, tehát

$$K_{\varphi} = \frac{1}{2}m(l_0 + R)^2 \dot{\varphi}^2 \tag{3.52}$$

A rugó potenciális energiája így már nagyon egyszerű:

$$V_{\text{rug\'o}} = \frac{1}{2}kR^2 \tag{3.53}$$

Cserébe a gravitációs potenciális enregiánk lesz picit csúnyább:

$$V_{\text{grav.}} = -mg(l_0 + R)\cos\varphi \tag{3.54}$$

ahol az y helyére behelyettesítettük az új koordinátákat. Igazából a többi tagnál is ez történt, csak megspóroltunk pár algebrai lépést logikával. Szisztematikusan azt is csinálhattuk volna, hogy a felírt Descartes-i tagokba mindenhova behelettesítünk, ezt ajánlom amikor bizonytalanok vagyunk, hogy mit is hogyan kell felírni.

Egy szó mint száz, kész is a Lagrange-unk:

$$\mathcal{L} = \frac{1}{2}m\dot{R}^2 + \frac{1}{2}m(l_0 + R)^2\dot{\varphi}^2 + mg(l_0 + R)\cos\varphi - \frac{1}{2}kR^2$$
(3.55)

és jöhetnek is az Euler-Lagrange egyenletek. Két változónk van, tehát kettő lesz:

$$\frac{\partial \mathcal{L}}{\partial R} = m(l_0 + R)\dot{\varphi}^2 + mg\cos\varphi - kR \qquad \qquad \frac{\partial \mathcal{L}}{\partial \dot{R}} = m\dot{R} \qquad (3.56)$$

$$\frac{\partial \mathcal{L}}{\partial \varphi} = -mg(l_0 + R)\sin\varphi \qquad \qquad \frac{\partial \mathcal{L}}{\partial \dot{\varphi}} = m(l_0 + R)^2\dot{\varphi} \qquad (3.57)$$

$$\frac{\partial \mathcal{L}}{\partial \varphi} = -mg(l_0 + R)\sin\varphi \qquad \qquad \frac{\partial \mathcal{L}}{\partial \dot{\varphi}} = m(l_0 + R)^2 \dot{\varphi} \qquad (3.57)$$

Amikkel elvégezve a deriválásokat:

$$(l_0 + R)\dot{\varphi}^2 + g\cos\varphi - \frac{k}{m}R = \ddot{R} \tag{3.58}$$

$$-g(l_0 + R)\sin\varphi = 2(l_0 + R)\dot{R}\dot{\varphi} + (l_0 + R)^2\ddot{\varphi}$$
(3.59)

Kicsit még szépítve:

$$\ddot{R} = (l_0 + R)\dot{\varphi}^2 + g\cos\varphi - \frac{k}{m}R\tag{3.60}$$

$$(l_0 + R)\ddot{\varphi} = -2\dot{R}\dot{\varphi} - g\sin\varphi \tag{3.61}$$

Ezt már be lehet küldeni a kedvenc numerikus megoldónknak, és meg is lesznek a pályák.

3.3. példa: Mozgás hengeren

Bár kétségtelenül ők a leggyakoribbak, nem csak gömbi koordináták léteznek. Nézzünk most egy példát, ahol hengeres (ρ, φ, z) koordinátázás lesz célravezető.

12. ábra. Henger felületére korlátolt pont koordinátázása.

Vegyünk egy R sugarú, végtelenül magas hengert. Erre rögzítünk egy tömegpontot úgy, hogy csak a henger felületén mozoghat; majd bekapcsolunk egy erőt, ami az origó felé vonzza a tömegpontot, méghozzá

$$\vec{F} = -k\vec{r} \tag{3.62}$$

alakban. Mi lesz a pálya, ha elindítjuk a tömegpontot?

Először is: kellenek az energiák. A potenciál helyett itt most az erő van megadva, de ha még emlékszünk, hogy

$$\vec{F} = -\vec{\nabla}U\tag{3.63}$$

akkor visszakövetkeztethetünk rá, mint

$$U = \frac{1}{2}kr^2\tag{3.64}$$

Itt r a távolság az origótól: ő még nem hengeres. Kis pythagorasz tétellel viszont

$$r^2 = z^2 + \rho^2 \tag{3.65}$$

tehát a potenciális tag hengerkoordinátákban:

$$U = \frac{1}{2}k(z^2 + \rho^2) \tag{3.66}$$

Ahova még beírhatjuk a $\rho = R$ kényszerünket:

$$U = \frac{1}{2}k(z^2 + R^2) \tag{3.67}$$

Kérdés még a kinetikus tag: milyen irányokban lehet sebessége a részecskének? A három hengeres irány közül csak ρ nem játszhat, mert a felületre vagyunk korlátozva, így marad z és φ . Hogy az utóbbiból sebességet csináljunk, meg kell javítani a dimenzióját egy hossz mértékegységű sugár szorzóval, ami itt $\rho = R$.

$$K = \frac{1}{2}m\dot{z}^2 + \frac{1}{2}mR^2\dot{\varphi}^2 \tag{3.68}$$

A teljes Lagrange tehát:

$$\mathcal{L} = \frac{1}{2}m\dot{z}^2 + \frac{1}{2}mR^2\dot{\varphi}^2 - \frac{1}{2}k(z^2 + R^2)$$
(3.69)

Ami két változótól függ: z és φ . Mostmár felfegyverkezve viszont a ciklikus koordináták ismeretével, rögtön láthatjuk, hogy nincs explicit φ függés benne, tehát

$$\frac{\partial \mathcal{L}}{\partial \varphi} = 0 \tag{3.70}$$

amiből következik, hogy

$$\frac{\partial \mathcal{L}}{\partial \dot{\varphi}} = mR^2 \dot{\varphi} = \text{konst.} \tag{3.71}$$

Ami egy megmaradó mennyiség, mint az első órán az impulzusok voltak. Meglepő módon, ahogy itt most φ egy általános koordináta, a hozzá tartozó $mR^2\dot{\varphi}$ mennyiség egy általános impulzus. Mivel ez a koordináta ciklikus (nincs explicit a Lagrange-ban), a hozzá tartozó általános impulzus megmarad. Kis átalakítással egyébként

$$\tilde{p}_{\varphi} = R \cdot mR\dot{\varphi} = R \cdot mv_{\perp} = R \cdot p_{\perp} = L \tag{3.72}$$

ez nem más mint a perdület.

Minden esetre, már az Euler-Lagrange felírása nélkül tudunk valamit a pályáról: a körkörös komponense a mozgásnak csupán egy állandó sebességű keringés lesz. Marad még a z komponens, amire már kell az Euler-Lagrange:

$$\frac{\partial \mathcal{L}}{\partial z} = -kz \qquad \qquad \frac{\partial \mathcal{L}}{\partial \dot{z}} = m\dot{z} \qquad (3.73)$$

$$m\ddot{z} = -kz \tag{3.74}$$

$$\ddot{z} = -\frac{k}{m}z\tag{3.75}$$

Ami szintén egy ismerős diffegyenlet lehet: a harmonikus oszcillátoré. Megoldása:

$$z(t) = A\cos\left(\sqrt{\frac{k}{m}}t + c\right) \tag{3.76}$$

Összesítva a találtakat: a részecskénk körkörösen egyenletes sebességgel fog keringeni, míg a z irányban fel-le oszcillál.

3.4. példa: Egyenes vezető mágneses tere

Nézzünk most valamit ami nem csak mechanika: egy egyenes vezető drótot, amiben áram folyik. Ez indukálni fog maga körül egy mágneses teret, amibe belerakhatunk egy elektront: merre fog ő mozogni?

13. ábra. Vezető körüli mágneses tér.

Ha fejből nem tudjuk a drót mágneses terét, kezdjük az Ampere-törvénnyel:

$$\oint \vec{B} d = \mu_0 I \tag{3.77}$$

ami egy körszeletre

$$B \cdot 2\pi r = \mu_0 I \tag{3.78}$$

$$B = \frac{\mu_0 I}{2\pi} \frac{1}{r} \tag{3.79}$$

Következő logikus pont lehetne, hogy mi a potenciális energia. Itt egy kis well, actually mondatra megállunk: ez az elektromágnesség esetében nem feltétlenül jó elnevezés, mert a mágneses tér nem végez munkát, nincs potenciális energiája. Az, hogy milye van, az a feladat végére lehet sejthető lesz, mégha teljesen érthető nem is.

Minden esetre, a mágneses térben mozgó rézecske Lagrange-függvénye:

$$\mathcal{L} = \frac{1}{2}m\dot{\vec{r}}^2 + e\dot{\vec{r}}\vec{A} \tag{3.80}$$

ahol \vec{A} az úgy nevezett vektorpotenciál. Róla tudjuk, hogy

$$\vec{B} = \vec{\nabla} \times \vec{A} \tag{3.81}$$

amit valahogy invertálnunk kellene. Ez általános esetre nem triviális, de sejtsük meg a megoldást:

- B körszimmetrikus, és a jobbkézszabály irányába mutat,
- B fordítottan arányos a sugárral.

Az elsőből következik, hogy \vec{A} pont a dróton folyó áram irányába mutat, a másodikból pedig $A \propto \ln(r)$. Összerakva:

$$\vec{A} = \frac{\mu_0 I}{2\pi} \ln\left(r\right) \hat{z} \tag{3.82}$$

ahol \hat{z} a z irányú egységvektor.

Ez a feladat is jól illeszkedik a hengeres koordinátákhoz, szóval használjuk megint azokat:

$$\mathcal{L} = \frac{1}{2}m(\dot{z}^2 + \dot{\rho}^2 + \rho^2\dot{\varphi}^2) + \frac{\mu_0 Ie}{2\pi}\dot{z}\ln(\rho)$$
(3.83)

Rögtön látunk valamit: z és φ ciklikusak, de ρ nem. Nézzük meg, mik az általános impulzusok:

$$\frac{\partial \mathcal{L}}{\partial \dot{\varphi}} = m\rho^2 \varphi = L \tag{3.84}$$

ami a jól ismert perdület. A másik kissé bonyolultabb:

$$\frac{\partial \mathcal{L}}{\partial \dot{z}} = m\dot{z} + \frac{\mu_0 Ie}{2\pi} \ln\left(\rho\right) \tag{3.85}$$

Tehát kicsit hunyorítva:

$$\tilde{p}_z = p_z + eA \tag{3.86}$$

Úgy néz ki, mintha az általános lendület a sima lendület lenne, plusz egy eltolás a vektorpotenciállal. Ez pár év múlva vissza fog térni, próbáljuk meg hosszú távú memóriában eltárolni. Addig is tudjuk, hogy megmarad:

$$m\dot{z} + \frac{\mu_0 Ie}{2\pi} \ln\left(\rho\right) = c' \tag{3.87}$$

$$m\dot{z} = c' - \frac{\mu_0 I e}{2\pi} \ln\left(\rho\right) \tag{3.88}$$

$$\dot{z} = c'' - \frac{\mu_0 Ie}{2\pi m} \ln\left(\rho\right) \tag{3.89}$$

$$\dot{z} = \frac{\mu_0 Ie}{2\pi m} \ln \frac{c}{\rho} \tag{3.90}$$

Tovább az általános megoldáshoz, mi történik a sugárirányú impulzussal?

$$\frac{\partial \mathcal{L}}{\partial \rho} = \frac{\mu_0 I e \, \dot{z}}{2\pi \, \dot{\rho}} \qquad \qquad \frac{\partial \mathcal{L}}{\partial \dot{\rho}} = m \dot{\rho} \qquad (3.91)$$

$$m\ddot{\rho} = \frac{\mu_0 Ie}{2\pi} \frac{\dot{z}}{\rho} \tag{3.92}$$

amibe behelyettesítve a megmaradó általános lendületet:

$$\ddot{\rho} = \left(\frac{\mu_0 Ie}{2\pi m}\right)^2 \frac{1}{\rho} \ln \frac{c}{\rho} \tag{3.93}$$

3.5. Körszimmetrikus törésmutató

Kis szünetként a Lagrange-i mechanikából, nézzünk meg egy általánosabb variációs problémát, ahol szintén célszerű polárkoordinátákra áttérni. Vegyünk egy közeget, amin belül a törésmutató:

$$n(r) = \frac{R}{r} \tag{3.94}$$

A Fermat-elv alapján milyen úton halad a fény?

Ha még nem felejtettük el, a Fermat elv szerint

$$S = \int n(r) ds \tag{3.95}$$

Hogy paraméterezzük a problémát, térjünk át polárkoordinátákra, ahol

$$ds^2 = dr^2 + r^2 d\varphi^2 \tag{3.96}$$

majd "emeljünk ki" okosan:

$$ds^{2} = (r'^{2} + r^{2})d\varphi^{2}$$
(3.97)

a vesszős deriválás alatt a φ szerintit értve. Ezzel a hatás:

$$S = R \int \frac{\sqrt{r'^2 + r^2}}{r} d\varphi = R \int \sqrt{1 + \frac{r'^2}{r^2}} d\varphi$$
 (3.98)

Bár itt ciklikus koordináta nincsen, az integrandusban felfedezhetünk egy változót amitől az nem függ expliciten: az "idő" koordinátát, ami jelen esetben a φ . A mechanikában ez az energia megmaradásával járt, szóval itt is lesz valami *általános* energia ami megmarad. A mechanikában ugyebár

$$E = K + V = 2K - \mathcal{L} = pq' - \mathcal{L} = \text{konst.}$$
(3.99)

amit átírhatunk a mi példánkra is: eszerint

$$\frac{\partial \mathcal{L}}{\partial r'}r' - \mathcal{L} = \text{konst.} \tag{3.100}$$

tehát

$$\frac{1}{2\sqrt{1 + \frac{r'^2}{r^2}}} \cdot \frac{2r'}{r^2} \cdot r' - \sqrt{1 + \frac{r'^2}{r^2}} = E \tag{3.101}$$

$$\frac{1}{\sqrt{1 + \frac{r'^2}{r^2}}} \cdot \frac{r'^2}{r^2} - \sqrt{1 + \frac{r'^2}{r^2}} = E \tag{3.102}$$

$$\frac{\frac{r'^2}{r^2} - 1 - \frac{r'^2}{r^2}}{\sqrt{1 + \frac{r'^2}{r^2}}} = E \tag{3.103}$$

$$E = -\frac{1}{\sqrt{1 + \frac{r'^2}{r^2}}}\tag{3.104}$$

Kis rendezéssel:

$$\left(1 + \frac{r^2}{r^2}\right)E^2 = 1$$
(3.105)

$$\frac{r'^2}{r^2} = \frac{1}{E^2} - 1\tag{3.106}$$

$$r' = \sqrt{\frac{1}{E^2} - 1} \, r \tag{3.107}$$

Ami egy nevezetes diffegyenlet: valaminek a deriváltja arányos önmagával. Megoldása:

$$r(\varphi) = A \exp\left(\sqrt{\frac{1}{E^2} - 1}\,\varphi\right) \tag{3.108}$$

3.6. Éken csúszó inga

Múlt héten említettem, hogy a Lagrange-i mechanika feladatok olyanok mint a LEGO: csak össze kell rakni az őket felépítő blokkokat, aztán szisztematikusan megy a megoldás. Most nézzük meg ezt egy régi példa változatán. Vegyünk egy háromszög alakú éket, amire rakjunk egy M tömegű téglatestet, ami rajta szabadon, súrlódásmentesen mozoghat. Rakjunk erre a téglatestre egy l hosszúságú ingát, egy m tömegű testtel a végén. Mi lesz az inga mozgásegyenlete?

14. ábra. Éken csúszó testhez rögzített inga.

Keressük meg a jó változókat! Ezek tipikusan olyanok, amik automatikusan teljesítik a kényszereket a Lagrange-ban: például azt, hogy a téglatest az éllel párhuzamosan mozog. Legyen ennek a koordinátája z. Az inga pedig adja magát egy φ szöghöz, amit a felfüggesztésétől nézünk. A kintetikus energia ekkor:

$$K = \frac{1}{2}M\dot{z}^2 + \frac{1}{2}ml^2\dot{\varphi}^2 + K_{m,k}$$
(3.109)

Ahol $K_{m,k}$ az ingán lógó test kinetikus tagja a lecsúszásból adódóan. Mielőtt őt kiszámítjuk, nézzük meg a potenciális energiát. Az sajnos már nem illeszkedik olyan szépen a koordinátákhoz: a két test magassága kell hozzá. Ez a téglatestre

$$\frac{y}{z} = \sin \beta \tag{3.110}$$

$$y = z\sin\beta \tag{3.111}$$

Az ingán lógó test pedig még ez alatt fog lógni, hozzá képest egy extra $l\cos\varphi$ távolságot. Ezzel a potenciális energia

$$V = -Mgz\sin\beta - mg(z\sin\beta + l\cos\varphi) \tag{3.112}$$

A hiányzó kinetikus tagunkhoz fel tudjuk használni az itt kifejezett y_m távolságot, és a hasonló x irányú eltérülését is az ingának:

$$x_m = z\cos\beta + l\sin\varphi \tag{3.113}$$

Ennek megváltozása:

$$\dot{x_m} = \dot{z}\cos\beta + l\dot{\varphi}\cos\varphi \tag{3.114}$$

Hasonlóképpen az y_m tagra:

$$\dot{y_m} = -\dot{z}\sin\beta + l\dot{\varphi}\sin\varphi \tag{3.115}$$

A kettő négyzetösszege pedig:

$$\dot{x_m}^2 + \dot{y_m}^2 = \dot{z}^2 + l^2 \dot{\varphi}^2 + 2l \dot{\varphi} \dot{z} (\cos \beta \cos \varphi - \sin \beta \sin \varphi) \tag{3.116}$$

Ahol megtaláljuk a már betippelt tagokat, illetve azt ami hiányzott:

$$K_{m,k} = 2l\dot{\varphi}\dot{z}(\cos\beta\cos\varphi - \sin\beta\sin\varphi) = 2l\dot{\varphi}\dot{z}\cos(\varphi + \beta)$$
(3.117)

Ezzel együtt tehát a teljes Lagrange:

$$\mathcal{L} = \frac{1}{2}M\dot{z}^2 + \frac{1}{2}ml^2\dot{\varphi}^2 + ml\dot{\varphi}\dot{z}\cos(\varphi + \beta) + Mgz\sin\beta + mg(z\sin\beta + l\cos\varphi)$$
(3.118)

A mozgásegyenletek pedig, a téglatesttel kezdve:

$$\frac{\partial \mathcal{L}}{\partial z} = (M+m)g\sin\beta \qquad \qquad \frac{\partial \mathcal{L}}{\partial \dot{z}} = M\dot{z} + \dot{\varphi}\cos(\varphi + \beta) \qquad (3.119)$$

$$(M+m)g\sin\beta = M\ddot{z} + \ddot{\varphi}\cos(\varphi+\beta) - \dot{\varphi}^2\sin(\varphi+\beta)$$
(3.120)

Az ingára pedig:

$$\frac{\partial \mathcal{L}}{\partial \varphi} = -ml\dot{\varphi}\dot{z}\sin(\varphi + \beta) - mgl\sin\varphi \qquad \qquad \frac{\partial \mathcal{L}}{\partial \dot{\varphi}} = ml^2\dot{\varphi} + ml\dot{z}\cos(\varphi + \beta) \qquad (3.121)$$

$$-ml\dot{\varphi}\dot{z}\sin(\varphi+\beta) - mgl\sin\varphi = ml^2\ddot{\varphi} + ml\ddot{z}\cos(\varphi+\beta) - ml\dot{z}\dot{\varphi}\sin(\varphi+\beta)$$
(3.122)

$$-mgl\sin\varphi = ml^2\ddot{\varphi} + ml\ddot{z}\cos(\varphi + \beta) \tag{3.123}$$

$$l\ddot{\varphi} = -g\sin\varphi - \ddot{z}\cos(\varphi + \beta) \tag{3.124}$$

4. óra

Az órán egész gyakran merültek fel eddig is megmaradó mennyiségek, például a ciklikus koordinátákhoz tartozó általános impulzusok. Ezeket gyakran tudtuk összekötni egy vizuális megfigyeléssel a problémánkról: a forgásszimmetrikus feladatokban például mindig megmaradt a lendület. Ezt a megfigyelést formalizálja a Noether-tétel:

A Lagrange-függvény minden szimmetriájához tartozik egy megmaradó mennyiség.

Matematikailag ez azt jelenti, hogy a q változóinkat eltranszformáljuk valahogy (pl. elforgatjuk)

$$\vec{q} \longrightarrow T(\vec{q}) \approx \vec{q} + \epsilon \, \vec{\varphi}$$
 (4.1)

ami sorbafejthető az identitás transzformáció (ie.: nem csinálunk semmit) körül. Ha erre a transzformációra változatlan a lagrange függvényünk, akkor

$$P = \frac{\partial \mathcal{L}}{\partial \dot{\vec{q}}} \vec{\varphi} = \sum_{i} \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \varphi_{i}$$

$$\tag{4.2}$$

állandó. Nézzünk erre pár példát!

4.1. példa: 2D rugó

4.1.1. Descartes

Vegyünk egy egyszerű rugós testet egy síkban, és írjuk fel a Lagrange-át sima Descartes-i koordinátákban.

$$\mathcal{L} = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) - \frac{1}{2}k(x^2 + y^2) \tag{4.3}$$

Nézzük meg a

$$x \to x + \epsilon y$$
 $y \to y - \epsilon x$ (4.4)

transzformációt, tehát ha $\vec{\varphi}=(y,\,-x)!$ Ez mellesleg úgy is írható, mint

$$\begin{pmatrix} x \\ y \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & \epsilon \\ -\epsilon & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \tag{4.5}$$

Ezt nézegetve kicsit, ha felismerjük hogy $\sin\epsilon\approx\epsilon$ és $\cos\epsilon\approx1$, nem más mint egy forgásmátrix közelítése.

Nézzük meg, hogy invariáns-e erre a transzformációra a Lagrange. Véve a deriváltakat:

$$\frac{\mathrm{d}}{\mathrm{d}t}(x+\epsilon y) = \dot{x} + \epsilon \dot{y} \qquad \qquad \frac{\mathrm{d}}{\mathrm{d}t}(y-\epsilon x) = \dot{y} - \epsilon \dot{x} \qquad (4.6)$$

amik négyzetei:

$$\dot{x}^2 \to \dot{x}^2 + 2\epsilon \dot{x}\dot{y} + \underbrace{\epsilon^2 \dot{y}^2}_{\approx 0} \qquad \qquad \dot{y}^2 \to \dot{y}^2 - 2\epsilon \dot{x}\dot{y} + \underbrace{\epsilon^2 \dot{x}^2}_{\approx 0} \tag{4.7}$$

Tehát a kinetikus tag:

$$K \to \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \underbrace{2\epsilon\dot{x}\dot{y} - 2\epsilon\dot{x}\dot{y}}_{-0}) = K \tag{4.8}$$

változatlan. Ugyanezt eljátszva a potenciális taggal:

$$V \to \frac{1}{2}k(x^2 + y^2 + \underbrace{2\epsilon xy - 2\epsilon xy}_{=0}) = V \tag{4.9}$$

az is ugyanúgy néz ki, tehát ez egy szimmetria.

Ha már tujduk, hogy szimmetriáról beszélünk, nézzük meg mi marad meg a Noether-tétel szerint. Deriválva a Lagrange-ot a sebességek szerint megkapjuk az általános lendületeket:

$$\frac{\partial \mathcal{L}}{\partial \dot{x}} = m\dot{x} \qquad \qquad \frac{\partial \mathcal{L}}{\partial \dot{y}} = m\dot{y} \qquad (4.10)$$

amiket be kell szorozni még az infinitezimális φ tagokkal:

$$P = \frac{\partial \mathcal{L}}{\partial \dot{x}} \varphi_x + \frac{\partial \mathcal{L}}{\partial \dot{y}} \varphi_y \tag{4.11}$$

$$= m\dot{x} \cdot y - m\dot{y}x \tag{4.12}$$

$$= p_x y - p_y x \tag{4.13}$$

Ami nem más, mint a rendszer perdülete.

4.1.2. Polár

Irjuk most fel ugyanezt, csak polárkoordinátákban, a rugó végéből a testhez mutató ϑ szöggel és a rugó relatív megnyúlását leíró R távolsággal. Ekkor a Lagrange

$$\mathcal{L} = \frac{1}{2}m(\dot{R}^2 + R^2\dot{\vartheta}^2) - \frac{1}{2}kR^2 \tag{4.14}$$

Láthatjuk, hogy ϑ ciklikus, tehát az általános \tilde{p}_{ϑ} lendület megmarad, amiről már beláttuk korábban, hogy a perdület. Ez konzisztenss az előző feladatrésszel, de gyakorlásképp nézzük meg mi lesz most az eltolás amire invariáns a Lagrange. A valóságban úgyis ez a nehezebb része a feladatoknak.

A változók transzformálása nem függ azok deriváltjaitól, ezért általában először a potenciális energiát érdemes nézegetni. Itt most ez teljesen független ϑ -tól, tehát ott tetszőleges

$$\vec{\varphi} = \begin{pmatrix} 0 \\ \Delta \vartheta \end{pmatrix} \tag{4.15}$$

transzofrmációk működnek. A kinetikus tagunkban viszont szerepel $\dot{\vartheta}$: hogy az változatlan maradjon, igaznak kell lennie

$$\dot{R}^2 + R^2 \dot{\vartheta}^2 = \dot{R}^2 + \dot{R}^2 (\dot{\vartheta} + \epsilon \Delta \dot{\vartheta})^2 \tag{4.16}$$

összefüggésnek. Ezt kicsit kibontva:

$$\dot{R}^2 + R^2 \dot{\vartheta}^2 = \dot{R}^2 + \dot{R}^2 (\dot{\vartheta}^2 + 2\epsilon \dot{\vartheta} \Delta \dot{\vartheta}) \tag{4.17}$$

$$\dot{\vartheta}\dot{\Delta}\dot{\vartheta} = 0 \tag{4.18}$$

$$\dot{\Delta \vartheta} = 0 \tag{4.19}$$

azt látjuk, hogy a szög transzformációja nem más, mint egy konstans eltolás. A hozzá tartozó megmaradó mennyiség pedig:

$$P = mR^2 \dot{\vartheta} \cdot \Delta \vartheta \tag{4.20}$$

ismét a perdület, egy konstans $\Delta \theta$ szorzó erejéig.

4.2. példa: Hengerben henger

Vegyünk egy M tömegű, R sugarú üres hengert. Rakjunk bele egy másik, m tömegű r sugarú hengert. A nagyot kezdjük el megforgatni valamilyen $\dot{\beta}$ sebességgel, a kicsit pedig hagyjuk csúszni: mi lesz ekkor a Lagrange, mik a szimmetriái és a megmaradó mennyiségei?

15. ábra. Forgó hengerbben guruló henger.

Nézzük meg először a feladat nehezét: a paraméterezést. Hol van a kis henger középpontja tetszőleges időpontban? Ehhez két dolgot kell tudnunk: a csúszásmentes mozgás feltételét, és egy kis geometriát. Utóbbihoz segít a 16. ábra.

16. ábra. Paraméterezést segítő ábra a hengerekről.

Ha csúszás nélkül történne a mozgás, akkor az érintkzési pontokban megegyeznének a kerületi sebességek, tehát

$$r\dot{\alpha_0} = R\dot{\beta_0} \tag{4.21}$$

És mivel nem lenne csúszás, a kis henger középpontja ott is maradna, ahol volt. Ha ez a feltétel viszont **nem** teljesül, akkor el fog mozdulni a kör körül, valamilyen $r\dot{\alpha} - R\dot{\beta}$ sebességgel. Ez alatt megtesz a kis henger középpontja valamennyi Δl utat a nagy középpontja körül, méghozzá

$$\Delta l = r\alpha - R\beta \tag{4.22}$$

Tehát kis geometriával tetszőleges (α, β) változóknál a kis henger középpontjához kellő szög:

$$\vartheta = \frac{r\alpha - R\beta}{R - r} \tag{4.23}$$

Ezzel a kis kör középpontjának (x_m, y_m) koordinátái:

$$x_m = (R - r)\sin\frac{r\alpha - R\beta}{R - r} \qquad y_m = (R - r)\cos\frac{r\alpha - R\beta}{R - r}$$
(4.24)

Az utóbbival gyorsan fel is tudjuk írni a potenciális energiát, mint

$$V = -mg(R - r)\cos\frac{r\alpha - R\beta}{R - r} \tag{4.25}$$

A kis henger kinetikus energiájához nem elég tudni a középpontját: a kerületén lévő pontok szép gyorsan keringhetnek, szóval nekik is lesz kinetikus energiájuk. Egy tetszőleges pontja a kis körnek:

$$x = x_m + r\sin\alpha \qquad \qquad y = y_m - r\cos\alpha \tag{4.26}$$

$$x = (R - r)\sin\frac{r\alpha - R\beta}{R - r} + r\sin\alpha \qquad \qquad y = (R - r)\cos\frac{r\alpha - R\beta}{R - r} - r\cos\alpha \qquad (4.27)$$

Ezeket deriválva:

$$\dot{x} = \cos\frac{r\alpha - R\beta}{R - r}(r\dot{\alpha} - R\dot{\beta}) + r\dot{\alpha}\cos\alpha \qquad \dot{y} = -\sin\frac{r\alpha - R\beta}{R - r}(r\dot{\alpha} - R\dot{\beta}) + r\dot{\alpha}\sin\alpha \qquad (4.28)$$

Amiből a kinetikus tagba szükséges négyzetösszegük:

$$\dot{x}^2 + \dot{y}^2 = r^2 \dot{\alpha}^2 + (r\dot{\alpha} - R\dot{\beta})^2 \tag{4.29}$$

$$\dot{x}^2 + \dot{y}^2 = 2r^2\dot{\alpha}^2 + R^2\dot{\beta}^2 - 2rR\dot{\alpha}\dot{\beta}$$
 (4.30)

Tehát a kis henger kinetikus tagja:

$$K_m = mr^2 \dot{\alpha}^2 - mrR\dot{\alpha}\dot{\beta} + \frac{1}{2}mR^2\dot{\beta}^2$$
(4.31)

A nagy henger már egyszerűbb: az csak forog a tengelye körül, így

$$K_M = \frac{1}{2}MR^2\dot{\beta}^2 (4.32)$$

Tehát a teljes Lagrange:

$$\mathcal{L} = \frac{1}{2}MR^2\dot{\beta}^2 + mr^2\dot{\alpha}^2 - mrR\dot{\alpha}\dot{\beta} + \frac{1}{2}mR^2 + mg(R - r)\cos\frac{r\alpha - R\beta}{R - r}$$
(4.33)

Keressünk ebben valamilyen szimmetriát! Induljunk mi megint a potenciális energiából, azon belül is a cos tagból. Kis alakítással:

$$\cos\frac{r\alpha - R\beta}{R - r} = \cos\left(r\frac{\alpha - \frac{R}{r}\beta}{R - r}\right) \tag{4.34}$$

Ez alapján tippeljük be a:

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} \longrightarrow \begin{pmatrix} \alpha \\ \beta \end{pmatrix} + \epsilon \begin{pmatrix} \gamma \\ \frac{r}{R}\gamma \end{pmatrix} \tag{4.35}$$

alakú konstans transzformációt. Ezt nézegetve láthatjuk, hogy az α szöget, tehát a belső hengert elforgatjuk valamilyen γ szöggel; míg a külsőt a $\frac{r}{R}\gamma$ -val. Visszaidézve a csúszásmentes forgás feltételét, azt ez pont teljesíti.

Nézzük meg mi lesz a hozzá tartozó megmaradó mennyiség is. Véve az általános lendületeket:

$$\tilde{p}_{\alpha} = \frac{\partial \mathcal{L}}{\partial \dot{\alpha}} = r^2 m \dot{\alpha} - m R \dot{\beta} \tag{4.36}$$

$$\tilde{p}_{\beta} = \frac{\partial \mathcal{L}}{\partial \dot{\beta}} = R^2 M \dot{\beta} - mr R \dot{\alpha} \tag{4.37}$$

Majd megszorozva az infinitezimális trafókkal:

$$P = (r^2 m \dot{\alpha} - m r R \dot{\beta}) \gamma + (R^2 M \dot{\beta} - m r R \dot{\alpha}) \frac{r}{R} \gamma$$
(4.38)

$$= \gamma (r^2 m \dot{\alpha} - m r R \dot{\beta} + R r M \dot{\beta} - m r^2 \dot{\alpha}) \tag{4.39}$$

$$P = \gamma (M - m) r R \dot{\beta} \tag{4.40}$$

lesz a megmaradó mennyiségünk. Ez most épp nem túl hasznos, mert csak olyan dolgok vannak benne, amiket mi mondunk meg: minden esetre ellenőrzésnek jó látni, hogy tényleg konstans.

5. óra

Kisrezgések

Bár a mozgásegyenleteket könnyen fel tudjuk írni a Lagrange-i mechanika módszereivel, láthattuk, hogy azokat megoldani már általánosan nem lehet. Van viszont egy nevezetes rendszer amit jól ismerünk és szeretünk: a harmonikus oszcillátor. Ha egy adott rendszert valamilyen közelítésben (pl. kis szögek) át tudunk alakítani valami oszcillátor-szerűvé (rezgések) akkor vissza tudjuk vezetni a problémát valami jól megoldhatóra. Most erre nézzünk pár példát.

5.1. példa: Csúszkáló inga

Vegyünk egy M tömegű testet, és rögzítsük egy sínre a gravitációval merőlegesen. Erre akasszunk egy l hosszúsűgú ingát, rajta egy m tömeggel. Milyen mozgást végez a rendszer kis kitérések esetén?

17. ábra. Sínen csúszkáló testhez rögzített inga.

Az efféle feladatok megoldása is egy könnyen elmondható szisztémát követ:

- \bullet Keressük meg az egyensúlyt, és vegyük fel az attól való eltéréseket q_i általános koordinátákként.
- Ha a rendszer magától nem harmonikus (nem rugókból áll), közelítsünk addig, amíg az nem lesz.
- \bullet Találjuk meg a rezgésekhez tartozó η_i normálmódusokat és ω_i frekvenciákat.

Hogy ez kézzelfoghatóbb legyen, nézzük meg erre a példára, két féle megoldáson keresztül. Minden esetre a kiindulási pont a Lagrange-lesz, amit írjunk fel az egynsúlyi helyzettől vett eltérésekkel. Ez a példa egyszerű: ránézésre akkor van egyensúlyban a rendszer, ha x=0 és $\vartheta=0$: ezek már magukban jó általános koordináták. Velük a Lagrange:

$$\mathcal{L} = \frac{1}{2}M\dot{x}^2 + \underbrace{\frac{1}{2}M\dot{x}^2}_{=0} + \frac{1}{2}m\left(\dot{x_m}^2 + \dot{y_m}^2\right) + mgly_m \tag{5.1}$$

$$\mathcal{L} = \frac{1}{2}M\dot{x}^2 + \frac{1}{2}m\left(\dot{x}^2 + l^2\dot{\vartheta}^2 + 2l\dot{x}\dot{\vartheta}\cos\vartheta\right) + mgl\cos\vartheta$$
 (5.2)

5.1.1. Az egyszerű út

Vegyük észre, hogy x ciklikus: tehát p_x megmarad. Ezért

$$p_x = \frac{\partial \mathcal{L}}{\partial \dot{x}} = M\dot{x} + m\dot{x} + ml\dot{\vartheta}\cos\vartheta = \text{konst.}$$
 (5.3)

Hogyha csak a kis szögekre vagyunk kíváncsiak, akkor első rendben

$$\dot{x}(m+M) + ml\dot{\theta} = A' \tag{5.4}$$

$$\dot{x} = -\frac{ml}{m+M}\dot{\vartheta} + A \tag{5.5}$$

$$\int \dot{x} dt = -\int \frac{ml}{m+M} \dot{\vartheta} dt + \int A dt$$
(5.6)

$$x(t) = -\frac{ml}{m+M}\vartheta + At + B \tag{5.7}$$

Ami marad még, az a másik változó Euler-Lagrange egyenlete:

$$\frac{\partial \mathcal{L}}{\partial \vartheta} = -ml\dot{x}\dot{\vartheta}\sin\vartheta - mgl\sin\vartheta \qquad \qquad \frac{\partial \mathcal{L}}{\partial \dot{\vartheta}} = ml^2\dot{\vartheta} + ml\dot{x}\cos\vartheta \qquad (5.8)$$

$$ml^{2}\ddot{\vartheta} + ml\ddot{x}\cos\vartheta - ml\dot{x}\dot{\vartheta}\sin\vartheta = -ml\dot{x}\dot{\vartheta}\sin\vartheta - mgl\sin\vartheta \tag{5.9}$$

Amire alkalmazzuk a is szöges közelítést, és egyszerűsítsünk. A közelítésben most első rendig megyünk el, mert a nem-szögfüggvényeket tartalmazó $ml^2\ddot{\vartheta}$ tag elsőrendű a szögben: a többit is célszerű eddig közelíteni.

$$\ddot{\vartheta} + \frac{1}{l}\ddot{x} = -\frac{g}{l}\vartheta \tag{5.10}$$

Ebbe be tudjuk írni x(t)-t a lendületmegmaradásból kiszámított időfüggéssel:

$$\ddot{\vartheta} - \frac{m}{m+M}\ddot{\vartheta} = -\frac{g}{l}\vartheta \tag{5.11}$$

$$\ddot{\vartheta}\left(1 - \frac{m}{m+M}\right) = -\frac{g}{l}\vartheta\tag{5.12}$$

$$\ddot{\vartheta} = -\frac{g}{l} \frac{m+M}{M} \vartheta \tag{5.13}$$

Ez egy ismerős differenciálegyenlet: a szögfüggvények második deriváltja pont egy negatív előjellel arányos saját magukkal. Keressük tehát a megoldást

$$\vartheta(t) = C\cos\left(\omega t + \delta\right) \tag{5.14}$$

alakban. Ezt visszaírva

$$-C\omega^2\cos(\omega t + \delta) = -\frac{g}{l}\frac{m+M}{M}\vartheta$$
(5.15)

tehát megoldja a tippelt függvényünk a mozgásegyenletet, ha

$$\omega^2 = \frac{g}{l} \frac{m+M}{M} \tag{5.16}$$

Összegezve, a megoldásunk a két vátozóra:

$$\vartheta(t) = C\cos\left(\omega t + \delta\right) \tag{5.17}$$

$$x(t) = -C\frac{ml}{m+M}\cos(\omega t + \delta) + At + B$$
(5.18)

Ami azt mutatja, hogy az inga oszcillál, az őt tartó test mozgása pedig egy azonos frekvenciájó oszcillációból és egy x irányú egyenletes mozgásból áll.

5.1.2. Általános megoldás

A fenti megoldás működött, de kihasználta a lendület megmaradását: sajnos ezt nem mindig tudjuk megtenni. Hogy a bonyolultabb feladatok megoldásához szükséges mátricos írásmódot gyakoroljuk, alkalmazzuk azt is erre a feladatra.

Először is, fel kell írnunk a Lagrange-ot mátrixosan az általános koordinátákkal,

$$\mathcal{L} = \frac{1}{2}\dot{\mathbf{q}}\underline{M}\dot{\mathbf{q}} - \frac{1}{2}\mathbf{q}\underline{D}\mathbf{q}$$
 (5.19)

alakban. Na ez így még nem fog menni a mi Lagrangunkra, szóval közelítsünk most rögtön a Lagrange-ban. Menjünk el a szögben másodfokig: így a deriválások után elsőfokú tagok lesznek a mozgásegyenletben. Ebben a közelítésben $\cos \vartheta \approx 1 - \frac{\vartheta^2}{2}$, tehát

$$\mathcal{L} = \frac{1}{2}M\dot{x}^2 + \frac{1}{2}m\left(\dot{x}^2 + l^2\dot{\vartheta}^2 + 2l\dot{x}\dot{\vartheta} - \underline{l}\dot{x}\dot{\vartheta}\vartheta^2\right) + \underline{mgl} - \frac{1}{2}mgl\vartheta^2$$
(5.20)

Itt két tagot is elhagyhatunk: az első aláhúzott már harmadfokú, a második pedig egy konstans. Ez már felírható szépen, mint

$$\mathcal{L} = \frac{1}{2} \begin{pmatrix} \dot{x} \\ \dot{\vartheta} \end{pmatrix} \begin{pmatrix} M+m & ml \\ ml & ml^2 \end{pmatrix} \begin{pmatrix} \dot{x} \\ \dot{\vartheta} \end{pmatrix} - \frac{1}{2} \begin{pmatrix} x \\ \vartheta \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & mgl \end{pmatrix} \begin{pmatrix} x \\ \vartheta \end{pmatrix}$$
(5.21)

Elvégezve a mátrixos alakra a deriválgatást, az Euler-Lagrange

$$\underline{M}\ddot{\mathbf{q}} = -\underline{D}\mathbf{q} \tag{5.22}$$

$$\ddot{\mathbf{q}} = -\underline{\underline{M}}^{-1}\underline{\underline{D}}\mathbf{q} \tag{5.23}$$

Ebből a második alak már szemléletes: pont úgy néz ki, mint egy oszcillátor egyenlete, csak vektorokkal. Mivel több dimenzióban vagyunk, keressük a \mathbf{q} megoldását valamilyen tippelt próbafüggvények lineáris kombinációjaként:

$$\mathbf{q} = \sum_{i} c_{i} \boldsymbol{\eta}_{i} \cos(\omega_{i} t + \delta_{i}) \tag{5.24}$$

Hogy megtaláljuk ezeket az η vektorokat és ω frekvenciákat, meg kell oldanunk az $\underline{\underline{A}} = \underline{\underline{M}}^{-1}\underline{\underline{D}}$ mátrix sajátproblémáját. Először kell a tömegmátrix inverze, ami két dimenzióban

$$\underline{\underline{M}}^{-1} = \frac{1}{\det \underline{M}} \operatorname{adj} \underline{\underline{M}}$$
 (5.25)

tehát nekünk

$$\underline{\underline{M}}^{-1} = \frac{1}{m(m+M)l^2 - m^2 l^2} \begin{pmatrix} ml^2 & -ml \\ -ml & M+m \end{pmatrix}$$
 (5.26)

$$\underline{\underline{M}}^{-1} = \frac{1}{Mml^2} \begin{pmatrix} ml^2 & -ml \\ -ml & M+m \end{pmatrix}$$
 (5.27)

Marad a mátrixszorzás, ami most relatíve gyorsan megvan:

$$\underline{\underline{A}} = \frac{1}{Mml^2} \begin{pmatrix} 0 & -m^2 l^2 g \\ 0 & (M+m)mgl \end{pmatrix} = \begin{pmatrix} 0 & -\frac{m}{M}g \\ 0 & \frac{M+m}{M}\frac{g}{l} \end{pmatrix}$$
 (5.28)

Ennek a sajátértékeit jelöljük ω^2 -el, a rájuk vonatkozó egyenlet pedig a determinánsos képletből

$$-\omega^2 \left(\frac{M+m}{M} \frac{g}{l} - \omega^2 \right) = 0 \tag{5.29}$$

Ennek két megoldása van: egyrészt lehet $\omega_0=0$. Másrészt lehet

$$\omega^2 = \frac{M+m}{M} \frac{g}{l} \tag{5.30}$$

Nézzük meg a hozzájuk tartozó sajátvektorokat! Az első esetben

$$\begin{pmatrix} 0 - 0 & -\frac{m}{M}g \\ 0 & \frac{M + m}{M}\frac{g}{l} - 0 \end{pmatrix} \boldsymbol{\eta}_0 = \mathbf{0}$$
 (5.31)

Ennek normált megoldása:

$$\eta_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{5.32}$$

Van tehát egy komponensünk, ami az x irányban $\omega_0 = 0$ frekvenciával oszcillál. Ez az, ami egy egyenletes eltolásént jelenik meg a megoldásban, és ez a módszer nem alkalmas a tárgyalására.

A másik sajátértékre

$$\begin{pmatrix} -\frac{M+m}{M}\frac{g}{l} & -\frac{m}{M}g\\ 0 & 0 \end{pmatrix} \boldsymbol{\eta} = \mathbf{0}$$
 (5.33)

amit megold

$$\eta = \begin{pmatrix} -\frac{ml}{m+M} \\ 1 \end{pmatrix} \tag{5.34}$$

Ez a szög irányában egy ω frekvenciás oszcilláció, ami az x irányra egy $-\frac{ml}{m+M}$ faktorral terjed át. A mozgásegyenletek megoldása tehát ebben a formalizmusban:

$$\begin{pmatrix} x \\ \vartheta \end{pmatrix} = C \begin{pmatrix} -\frac{ml}{m+M} \\ 1 \end{pmatrix} \cos(\omega_t + \delta) + B \begin{pmatrix} 1 \\ 0 \end{pmatrix} \cos(0t + \delta_0)$$
 (5.35)

Ez szépen visszaadja a "rendes" megoldásunk oszcilláló részét: láthatjuk viszont, hogy az egyenes mozgás kiesett. Ez azt jelenti, hogy a tippelt függvényalakunk nem illeszkedett teljesen jól a várt megoldáshoz, van azon kívül is komponens.

5.2. példa: Kettős inga

Vegyünk egy általános kettős ingát, először eltérő hosszakkal és tömegekkel. *Mik lesznek ennek a normálmódusai?* Vagy legalábbis pár speciális esetre mik lesznek, mert ahogy látni fogjuk, általánosan kicsit bonyolult a rendszer.

18. ábra. Kettős inga.

5.2.1. Mátrixok a Lagrange-ból

A tömegpontok koordinátái:

$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} l_1 \sin \varphi_1 \\ -l_1 \cos \varphi_1 \end{pmatrix} \qquad \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} l_1 \sin \varphi_1 + l_2 \sin \varphi_2 \\ -l_1 \cos \varphi_1 - l_2 \cos \varphi_2 \end{pmatrix}$$
(5.36)

Deriválva:

$$\begin{pmatrix} \dot{x_1} \\ \dot{y_1} \end{pmatrix} = \begin{pmatrix} l_1 \dot{\varphi_1} \cos \varphi_1 \\ l_1 \dot{\varphi_1} \sin \varphi_1 \end{pmatrix} \qquad \qquad \begin{pmatrix} \dot{x_2} \\ \dot{y_2} \end{pmatrix} = \begin{pmatrix} l_1 \dot{\varphi_1} \cos \varphi_1 + l_2 \dot{\varphi_2} \cos \varphi_2 \\ l_1 \dot{\varphi_1} \sin \varphi_1 + l_2 \dot{\varphi_2} \sin \varphi_2 \end{pmatrix} \tag{5.37}$$

Majd négyzetre emelve:

$$\dot{x_1}^2 + \dot{y_1}^2 = l_1^2 \dot{\varphi_1}^2 \tag{5.38}$$

$$\dot{x_2}^2 + \dot{y_2}^2 = l_1^2 \dot{\varphi_1}^2 + l_2^2 \dot{\varphi_2}^2 + 2l_1 l_2 \dot{\varphi_1} \dot{\varphi_2} \cos(\varphi_1 - \varphi_2)$$
(5.39)

Amiből jön majd a kinetikus tag. A potenciális:

$$V = -m_1 g l_1 \cos \varphi_1 - m_2 g (l_1 \cos \varphi_1 + l_2 \cos \varphi_2)$$
(5.40)

Alkalmazzuk a kisszöges közelítést: a kinteikus tagban legyen $\cos{(\varphi_1 - \varphi_2)} \approx 1$ mert azt a két szög deriváltjával megszorozva másodrendű lesz, a potenciálisban pedig $\cos{\epsilon} = 1 - \frac{\epsilon^2}{2}$. Ekkor mátrixosan:

$$\mathcal{L} = \frac{1}{2}\dot{\mathbf{q}} \begin{pmatrix} l_1^2(m_1 + m_2) & l_1 l_2 m_2 \\ l_1 l_2 m_2 & l_2^2 m_2 \end{pmatrix} \dot{\mathbf{q}} - \frac{1}{2}\mathbf{q} \begin{pmatrix} (m_1 + m_2)l_1 g & 0 \\ 0 & m_2 l_2 g \end{pmatrix} \mathbf{q}$$
 (5.41)

Ismét kell a tömegmátrix inverze:

$$\underline{\underline{M}}^{-1} = \frac{1}{l_1^2 l_2^2 m_2 (m_1 + m_2) - l_1^2 l_2^2 m_2^2} \begin{pmatrix} l_2^2 m_2 & -l_1 l_2 m_2 \\ -l_1 l_2 m_2 & l_1^2 (m_1 + m_2) \end{pmatrix}$$
(5.42)

$$\underline{\underline{M}}^{-1} = \frac{1}{l_1^2 l_2^2 m_1 m_2} \begin{pmatrix} l_2^2 m_2 & -l_1 l_2 m_2 \\ -l_1 l_2 m_2 & l_1^2 (m_1 + m_2) \end{pmatrix}$$
 (5.43)

Ezzel az \underline{A} mátrix:

$$\underline{\underline{A}} = \frac{1}{l_1^2 l_2^2 m_1 m_2} \begin{pmatrix} l_2^2 m_2 & -l_1 l_2 m_2 \\ -l_1 l_2 m_2 & l_1^2 (m_1 + m_2) \end{pmatrix} \begin{pmatrix} (m_1 + m_2) l_1 g & 0 \\ 0 & m_2 l_2 g \end{pmatrix}$$
(5.44)

$$= \frac{g}{l_1 l_2 m_1} \begin{pmatrix} l_2 (m_1 + m_2) & -l_2 m_2 \\ -l_1 (m_1 + m_2) & l_1 (m_1 + m_2) \end{pmatrix}$$

$$= \frac{g (m_1 + m_2)}{l_1 l_2 m_1} \begin{pmatrix} l_2 & -l_2 \frac{m_2}{m_1 + m_2} \\ -l_1 & l_1 \end{pmatrix}$$
(5.45)

$$= \frac{g(m_1 + m_2)}{l_1 l_2 m_1} \begin{pmatrix} l_2 & -l_2 \frac{m_2}{m_1 + m_2} \\ -l_1 & l_1 \end{pmatrix}$$
 (5.46)

5.2.2. Normálmódusok a sajátrendszerből

Ennek az A mátrixnak kell megoldani a sajátproblémáját. A sajátértékekre:

$$\left(\frac{g(m_1+m_2)}{l_1m_1} - \omega^2\right) \left(\frac{g(m_1+m_2)}{l_2m_1} - \omega^2\right) - \frac{g(m_1+m_2)}{l_1l_2m_1} \frac{g(m_1+m_2)}{l_1l_2m_1} l_2 \frac{m_2}{m_1+m_2} l_1 = 0$$
(5.47)

$$\left(\frac{g(m_1+m_2)}{l_1m_1} - \omega^2\right) \left(\frac{g(m_1+m_2)}{l_2m_1} - \omega^2\right) - \frac{g^2m_2(m_1+m_2)}{l_1l_2m_1^2} = 0$$
(5.48)

$$w^{4} + \frac{g(m_{1} + m_{2})}{l_{1}m_{1}} \frac{g(m_{1} + m_{2})}{l_{2}m_{1}} - \omega^{2} \left(\frac{g(m_{1} + m_{2})}{l_{1}m_{1}} + \frac{g(m_{1} + m_{2})}{l_{2}m_{1}} \right) - \frac{g^{2}m_{2}(m_{1} + m_{2})}{l_{1}l_{2}m_{1}^{2}} = 0 \quad (5.49)$$

$$w^{4} - \omega^{2} \frac{g(m_{1} + m_{2})(l_{1} + l_{2})}{l_{1}l_{2}m_{1}} + \frac{g^{2}(m_{1} + m_{2})^{2}}{l_{1}l_{2}m_{1}^{2}} - \frac{g^{2}m_{2}(m_{1} + m_{2})}{l_{1}l_{2}m_{1}^{2}} = 0$$
 (5.50)

$$w^{4} - \omega^{2} \frac{g(m_{1} + m_{2})(l_{1} + l_{2})}{l_{1}l_{2}m_{1}} + g^{2} \frac{(m_{1} + m_{2})^{2} - m_{2}(m_{1} + m_{2})}{l_{1}l_{2}m_{1}^{2}} = 0$$
 (5.51)

Ebből fel lehetne írni a másodfokú egyenletet, megkapva a sajátértékeket tetszőleges esetben. Ehelyett most nézzünk egy speciális esetet: legyen $l_1 = l_2 = l$. Ekkor az egyenlet:

$$\omega^4 - \omega^2 \frac{2g(m_1 + m_2)}{lm_1} + g^2 \frac{(m_1 + m_2)^2 - m_2(m_1 + m_2)}{l^2 m_1^2} = 0$$
 (5.52)

$$\omega^4 - 2\omega^2 \frac{g}{l} \frac{m_1 + m_2}{m_1} + \frac{g^2}{l^2} \frac{m_1 + m_2}{m_1} = 0$$
 (5.53)

Erre ráküldve egy másodfokú megoldót:

$$\omega_{\pm}^{2} = \frac{1}{2} \left[2 \frac{g}{l} \frac{m_{1} + m_{2}}{m_{1}} \pm \sqrt{4 \frac{g^{2}}{l^{2}} \frac{(m_{1} + m_{2})^{2}}{m_{1}^{2}} - 4 \frac{g^{2}}{l^{2}} \frac{m_{1} + m_{2}}{m_{1}}} \right]$$
 (5.54)

$$\omega_{\pm}^{2} = \frac{g}{l} \frac{m_{1} + m_{2}}{m_{1}} \left[1 \pm \sqrt{1 - \frac{m_{1} + m_{2}}{m_{1}} \frac{m_{1}^{2}}{(m_{1} + m_{2})^{2}}} \right]$$
 (5.55)

$$\omega_{\pm}^{2} = \frac{g}{l} \frac{m_{1} + m_{2}}{m_{1}} \left[1 \pm \sqrt{\frac{m_{2}}{m_{1} + m_{2}}} \right]$$
 (5.56)

Amire meg is nézhetjük a sajátvektorokat. Az egyenlete

$$\frac{g(m_1 + m_2)}{lm_1} \begin{pmatrix} 1 - 1 \mp \sqrt{\frac{m_2}{m_1 + m_2}} & -\frac{m_2}{m_1 + m_2} \\ -1 & 1 - 1 \mp \sqrt{\frac{m_2}{m_1 + m_2}} \end{pmatrix} \eta_{\pm} = 0$$
 (5.57)

Tehát

$$\frac{g(m_1 + m_2)}{lm_1} \begin{pmatrix} \mp \sqrt{\frac{m_2}{m_1 + m_2}} & -\frac{m_2}{m_1 + m_2} \\ -1 & \mp \sqrt{\frac{m_2}{m_1 + m_2}} \end{pmatrix} \eta_{\pm} = 0$$
 (5.58)

Ez gyakorlatilag

$$\begin{pmatrix} \mp \alpha & -\alpha^2 \\ -1 & \mp \alpha \end{pmatrix} \eta_{\pm} = 0 \tag{5.59}$$

aminek megoldása $\eta_{\varphi_1}=\mp\alpha\eta_{\varphi_2},$ tehát például

$$\eta_{\pm} = \begin{pmatrix} \mp \sqrt{m_2} \\ \sqrt{m_1 + m_2} \end{pmatrix} \tag{5.60}$$

5.2.3. Értelmezés speciális esetekkel

Ez volt a félig általános megoldás, azonos hosszúságokra. Még nem túl szemléletes, szóval nézzük pár mégspecifikusabb esetet. Először:

• Legyen $m = m_1 = m_2$.

Ekkor a frekvenciák:

$$\omega_{\pm}^2 = 2\frac{g}{l} \left[1 \pm \sqrt{\frac{1}{2}} \right] \tag{5.61}$$

a sajátvektorok pedig:

$$\eta_{\pm} = \sqrt{m} \begin{pmatrix} \mp 1\\ \sqrt{2} \end{pmatrix} \tag{5.62}$$

Tehát a módusok:

$$\mathbf{q} \propto \begin{pmatrix} \mp 1 \\ \sqrt{2} \end{pmatrix} \cos \left(\omega_{\pm} t + \delta_{\pm} \right) \tag{5.63}$$

Ezt már tudjuk értelmezni is kicsit. A lenti inga kitérésének amplitúdója nagyobb, egy $\sqrt{2}$ faktorral, de a frekvenciájuk egyezik. Az irányuk eltérhet viszont a két módusban.

• Legyen $m_1 \gg m_2$.

Szóval $\frac{m_2}{m_1} = \epsilon \ll 1$. Ekkor a módusok:

$$\mathbf{q} \propto \begin{pmatrix} \mp \sqrt{\epsilon} \\ 1 \end{pmatrix} \cos \left(\omega_{\pm} t + \delta_{\pm} \right) \tag{5.64}$$

Ez azt mondja, ki, hogy a fenti test kilengései nagyon kicsit, szinte egy helyben áll, míg a lenti inog körülötte. Ha elég nagy a fenti tömegünk, akkor olyan, mintha a plafonhoz rögzítve lenne egy darab sima ingánk.

• Legyen $m_2 \gg m_1$.

Hasonlóképp, ekkor $\frac{m_1}{m_2} = \epsilon \ll 1.$ A módusok:

$$\mathbf{q} \propto \begin{pmatrix} \mp 1 \\ 1 \end{pmatrix} \cos\left(\omega_{\pm} t + \delta_{\pm}\right) \tag{5.65}$$

Azonos mértékú amplitúdókat mutatnak, csak potenciálisan ellentétes irányba. Az azonos előjelő módusnál azonos mind az irány, mind a kilengés: ez az az eset, amikor a két inga igazából egy darab 2l hosszúságú ingaként mozog.

Gerjesztések

A harmonikus mozgásokkal már jól megbarátkoztunk. Ezeknek eggyel bonyolultabb esete, ha vesszük az eddigi rezgő rendszerünket, és rákapcsolunk valami külső erőt. Arra vagyunk kíváncsiak, hogy mi lesz ekkor a mozgás, feltéve, hogy a külső erő nélküli rendszert már ismerjük. Egy matekos ismétlésként nézzük a következő differenciálegyenletet:

$$(\partial_t^2 + \omega_0^2)x(t) = f(t) \tag{5.66}$$

és gyorsan nézzük meg a lépéseket a megoldásához.

Először is: ez bonyolult. Oldjuk meg először x helyett valami G függvényre abban az eseten, ha a jobb oldalt szereplő erő csak egy Dirac-delta.

$$(\partial_t^2 + \omega_0^2)G(t) = \delta(t) \tag{5.67}$$

 \tilde{O} azért jó nekünk, mert az ismeretében tetszőleges f(t) erőre meg tudjuk mondani a megoldást:

$$x(t) = \int_{-\infty}^{\infty} G(t - t') f(t') dt'$$

$$(5.68)$$

Ezt ha behelyettesítjük az eredeti egyenletbe, akkor láthatjuk, hogy megoldja azt. Minden esetre még csak alrébbtoltuk a problémát: most x helyett a G Green-függvényt kell megtalálnunk. Ez kinézhető táblázatokból, például a harmonikus oszcillátor rendszerére:

$$G(t) = \Theta(t) \frac{\sin(\omega_0 t)}{\omega_0} \tag{5.69}$$

amivel tetszőleges gerjesztőerőre fel tudjuk írni a megoldást, a fenti integrállal.

Persze minket most a mátrixos jelölés érdekel. Ekkor a mozgásegyenletünk igazából

$$\underline{\underline{M}}\ddot{\mathbf{q}} + \underline{\underline{D}}\mathbf{q} = \mathbf{F} \tag{5.70}$$

Ezt kicsit alakítva

$$\ddot{\mathbf{q}} + \underline{\underline{M}}^{-1}\underline{\underline{D}}\mathbf{q} = \underline{\underline{M}}^{-1}\mathbf{F}$$
 (5.71)

Hasonlóan a fentihez, ennek általános megoldása helyett először nézzük a

$$(\partial_t^2 + \underline{\underline{M}}^{-1}\underline{\underline{D}})G(t) = \delta(t)$$
 (5.72)

egyenletet. A sima oszcillátor megoldásából idézzük vissza, hogy megtaláltuk $\underline{\underline{M}}^{-1}\underline{\underline{D}}$ sajátrendszerét: ezek voltak a normálmódusok, amikre

$$(\underline{M}^{-1}\underline{D})\eta_{i} = \omega_{i}^{2}\eta_{i} \tag{5.73}$$

A sajátvektorok diadikus szorzatát felhasználva pedig felírhatunk két fontos mátrixot velük:

$$\underline{\underline{I}} = \sum_{i} \eta_{i} \tilde{\eta}_{i} \qquad \underline{\underline{M}}^{-1} \underline{\underline{D}} = \sum_{i} \omega_{i}^{2} \eta_{i} \tilde{\eta}_{i} \qquad (5.74)$$

Ahol megjelenik $\tilde{\eta}_i$, a sajátvektorhoz tartozó duális, amire $\tilde{\eta}_i \eta_j = \delta_{ij}$. Ha a sajátrendszer teljes és ortogonális, őt vehetjük egyszerűen a vektor transzponáltjának. Minden esetre ezzel a lépéssel rögzítettük a bázisunkat a sajátrendszerhez, amit tartsunk fejben. Ezekkel a mátrixos részt elhanyagolva:

$$"G(t) = -\sum_{i} \frac{\sin(\omega_i t)}{\omega_i}"$$
(5.75)

ami pont úgy néz ki mint a sima oszcillátor Green-függvénye. A mátrixos részhez emlékezzünk vissza, hogy a Green függvény

$$\int G(t - t')\underline{\underline{M}}^{-1}\mathbf{F} \tag{5.76}$$

alakban szerepel nekünk a megoldásban: hatni fog valamilyen vektorra. Ha mi eddig a sajátbázisban dolgoztunk, akkor ezt az $M^{-1}F$ vektort is át kell rá transzformálni. Így a helyes mátrixos alakba bekerül még az $M^{-1}F$ vektor átírása is erre a bázisra (meg persze egy Θ lépcsőfüggvény):

$$\underline{\underline{\underline{G}}}(t) = \Theta(t) \sum_{i} \frac{\sin(\omega_{i}t)}{\omega_{i}} \eta_{i} \tilde{\eta}_{i}$$
(5.77)

Kicsit nézegetve ez két dolgot csinál. Először is, hattatva a gerejsztő erőre, azt levetíti valamelyik sajátmódus irányába. Ebben az irányban pontosan úgy hat, mint a sima oszcillátorra a gerjesztés. Ezeket összegezve az összes módusra, megkapjuk a teljes hatását a forrástagnak. Mindez persze szép bonyolultan hangzik, szóval nézzünk is rá pár példát!

5.3. példa: Szinuszos gerjesztés harmonikus oszcillátorra

Bemelegítésként nézzünk meg egy sima harmonikus oszcillátort, amire rákapcsolunk egy szinuszos gerjesztést a t=0 pillanattól kezdve:

$$(\partial_t^2 + \omega_0^2)x = f(t) \tag{5.78}$$

$$f(t) = f_0 \sin(\Omega t)\Theta(t) \tag{5.79}$$

Itt a gerjesztőerőben a $\Theta(t)$ lépcsőfüggvény a "t=0 pillanattól kezdve" szófordulat átfogalmazása matekra. Tudjuk, hogy a Green függvény ismeretében a megoldás

$$x(t) = \int_{-\infty}^{\infty} G(t - t') f(t') dt'$$

$$(5.80)$$

és hogy a sima oszcillátorra

$$G(t) = \Theta(t) \frac{\sin \omega t}{\omega} \tag{5.81}$$

Mivel a forrásmentes rendszer egy sima harmonikus oszcillátor, amit ismerünk, nincs más dolgunk, mint beírni ezeket az integrálba, ügyelve, hogy minek mi az argumentuma:

$$x(t) = \int_{-\infty}^{\infty} \Theta(t - t') \frac{\sin \omega(t - t')}{\omega} f_0 \sin (\Omega t') \Theta(t') dt'$$
(5.82)

Nézzük meg mit csinálnak ezek a lépcsőfüggvények. A $\Theta(t')$ annyit tud, hogy t'=0 alatt nulla, felette pedig egy. Ezzel be van szorozva az intergrandus: tehát annyit tesz, mintha $-\infty$ helyett 0-tól integrálnánk. A másik, $\Theta(t-t')$ akkor lesz nulla, ha t-t'<0, tehát ha t'>t. Ez egy felső korlátot ad az integrálunknak t-nél. Ezeket beírva, illetve kiemelve mindent ami konstans:

$$x(t) = \frac{f_0}{\omega} \int_0^t \sin\left[\omega(t - t')\right] \sin\left(\Omega t'\right) dt'$$
(5.83)

Nézzük meg hogyan kell elvégezni egy ilyen integrált kézzel, papíron. Először is, trigonometriából tudjuk, hogy

$$\cos(x+y) = \cos x \cos y - \sin x \sin y \tag{5.84}$$

$$\cos(x - y) = \cos x \cos y + \sin x \sin y \tag{5.85}$$

Az alsóból kivonva a fölsőt:

$$\cos(x-y) - \cos(x+y) = 2\sin x \sin y \tag{5.86}$$

Tehát nekünk:

$$\sin\left[\omega(t-t')\right]\sin\left(\Omega t'\right) = \frac{\cos\left[\omega(t-t') - \Omega t'\right] - \cos\left[\omega(t-t') + \Omega t'\right]}{2}$$
(5.87)

Amivel az integrálunk két rész összegéből fog állni:

$$\frac{1}{2} \int_0^t \cos\left[\omega(t - t') - \Omega t'\right] dt' - \frac{1}{2} \int_0^t \cos\left[\omega(t - t') + \Omega t'\right] dt'$$
(5.88)

Nézzük most csak az elsőt, és vezessünk be egy u változócserét:

$$u = \omega(t - t') - \Omega t' \tag{5.89}$$

$$\frac{\mathrm{d}u}{\mathrm{d}t'} = -\omega - \Omega \tag{5.90}$$

Tehát az integrál:

$$\int_{0}^{t} \cos\left[\omega(t - t') - \Omega t'\right] dt' = -\frac{1}{\Omega + \omega} \int \cos u du$$
 (5.91)

Amire kell még figyelnünk, azok a határok. Ezek rendre:

$$u(t'=0) = \omega t \qquad \qquad u(t'=t) = -\Omega t \tag{5.92}$$

ahol feltűnhet, hogy a fenti határ igazából lentebb van, mint a lenti. Ezeket felcserélhetjük, ami hoz egy negatív zorzót az integrál elé, így:

$$-\frac{1}{\Omega+\omega}\int\cos u du = \frac{1}{\Omega+\omega}\int_{-\Omega t}^{\omega t}\cos u du \qquad (5.93)$$

Ezt már egyszerű kiintegrálni:

$$\frac{1}{\Omega + \omega} \int_{-\Omega t}^{\omega t} \cos u du = \frac{1}{\Omega + \omega} \left[\sin \omega t - \sin \left(-\Omega t \right) \right]$$
 (5.94)

$$= \frac{1}{\Omega + \omega} \left[\sin \omega t + \sin \Omega t \right] \tag{5.95}$$

A másik integrálunk is hasonló lesz, annyi különbséggel, hogy ott

$$w = \omega(t - t') + \Omega t' \tag{5.96}$$

$$\frac{\mathrm{d}w}{\mathrm{d}t'} = -\omega + \Omega \tag{5.97}$$

illetve

$$w(t'=0) = \omega t \qquad \qquad w(t'=t) = \Omega t \tag{5.98}$$

Tehát ez az integrál:

$$\int_0^t \cos\left[\omega(t - t') + \Omega t'\right] dt' = \frac{1}{\Omega - \omega} \int_{\omega t}^{\Omega t} \cos w dw$$
 (5.99)

$$= \frac{1}{\Omega - \omega} \left[\sin \Omega t - \sin \omega t \right] \tag{5.100}$$

Véve a kettő különbségét, közös nevezőre tudunk hozni:

$$\frac{1}{\Omega + \omega} \left[\sin \omega t + \sin \Omega t \right] - \frac{1}{\Omega - \omega} \left[\sin \Omega t - \sin \omega t \right] = \tag{5.101}$$

$$= \frac{(\Omega - \omega)\sin\omega t + (\Omega - \omega)\sin\Omega t - (\Omega + \omega)\sin\Omega t + (\Omega + \omega)\sin\omega t}{(\Omega + \omega)(\Omega - \omega)}$$

$$= \frac{2\Omega\sin\omega t - 2\omega\sin\Omega t}{\Omega^2 - \omega^2}$$
(5.102)

$$=\frac{2\Omega\sin\omega t - 2\omega\sin\Omega t}{\Omega^2 - \omega^2} \tag{5.103}$$

Visszaírva minden elhagyott szorzó faktort, ezzel a megoldásunk:

$$x(t) = \frac{f_0}{\omega} \frac{\Omega \sin \omega t - \omega \sin \Omega t}{\Omega^2 - \omega^2}$$
 (5.104)

Így megkaptuk egzakt formában a kitérés-idő függvényt. Vele már tudunk számolni bármit, ami érdekelhet a mozgásról. Most például nézzük meg, hogy hol lesz a kitérés nulla, tehát

$$x(t_0) = 0 (5.105)$$

Ehhez

$$\frac{f_0}{\omega} \frac{\Omega \sin \omega t_0 - \omega \sin \Omega t_0}{\Omega^2 - \omega^2} = 0 \tag{5.106}$$

$$\Omega \sin \omega t_0 - \omega \sin \Omega t_0 = 0 \tag{5.107}$$

$$\Omega \sin \omega t_0 = \omega \sin \Omega t_0 \tag{5.108}$$

$$\frac{\sin \omega t_0}{\sin \Omega t_0} = \frac{\omega}{\Omega} \tag{5.109}$$

Vegyük azt a speciális esetet, ahol $\Omega = 2\omega$. Ekkor

$$\frac{\sin \omega t_0}{\sin \left(2\omega t_0\right)} = \frac{1}{2} \tag{5.110}$$

Egy addíciós tétel után

$$\sin 2x = 2\sin x \cos x \tag{5.111}$$

tehát

$$\frac{\sin \omega t_0}{2\sin \omega t_0 \cos \omega t_0} = \frac{1}{2} \tag{5.112}$$

$$\frac{1}{\cos \omega t_0} = 1\tag{5.113}$$

Ami teljesül, ha

$$\omega t_0 = 2k\pi \qquad \qquad k \in \mathbb{Z} \tag{5.114}$$

5.4. példa: Gerjesztett csillapított oszcillátor

Barátkozzunk még kicsit a gerjesztésekkel egy dimenzióban. Vegyünk egy csillapított oszcillátort, és kapcsoljunk rá egy gerjesztő erőt, ami

$$f(t) = \frac{f_0}{\tau} \Theta(t)\Theta(\tau - t)$$
 (5.115)

Tehát egy konstans erő a $t \in [0,\tau]$ időintervallumban, azon kívül pedig nulla. Tudjuk, hogy a megoldásunk

$$x(t) = \int G(t - t')f(t')dt'$$

$$(5.116)$$

alakú lesz, amihez ki kell számolnunk a gerjesztés nélküli rendszer Green függvényét. Ez a rendszer

$$\ddot{x} + \omega_0^2 x + 2\gamma \dot{x} = 0 \tag{5.117}$$

tehát a Green függvény egyenlete:

$$\left(\partial_t^2 + 2\gamma \partial_t + \omega_0^2\right) G(t, t') = \delta(t - t') \tag{5.118}$$

A Green-függvény kiszámolását most kihagyjuk, eredménye:

$$G(t) = \Theta(t) \frac{\sin(\tilde{\omega}t)}{\tilde{\omega}} e^{-\gamma t}$$
 (5.119)

ahol

$$\tilde{\omega}^2 = \omega_0^2 - \gamma^2 \tag{5.120}$$

Ezt felhasználva, a mi adott erőnkre:

$$x(t) = \frac{f_0}{\tau} \int_{-\infty}^{\infty} \Theta(t') \Theta(\tau - t') \Theta(t - t') \frac{\sin(\tilde{\omega}(t - t'))}{\tilde{\omega}} e^{-\gamma t'} dt'$$
 (5.121)

Az első lépcsőfüggvény miatt az integrál alsó határa nulla lesz. A felsőt a másik két lépcső adja, attól függően, hogy t vagy τ a nagyobb:

• Ha $t < \tau$:

$$x(t) = \frac{f_0}{\tau} \int_0^t \sin\left(\tilde{\omega}(t - t')\right) e^{-\gamma t'} dt'$$
(5.122)

$$= \frac{f_0}{\tau \tilde{\omega}} \frac{1}{\tilde{\omega}^2 + \gamma^2} \left[\tilde{\omega} e^{-\gamma t} + \gamma \sin(\tilde{\omega}t) - \tilde{\omega} \cos(\tilde{\omega}t) \right]$$
 (5.123)

• Ha $t > \tau$:

$$x(t) = \frac{f_0}{\tau} \int_0^{\tau} \sin\left(\tilde{\omega}(t - t')\right) e^{-\gamma t'} dt'$$
(5.124)

$$= \frac{f_0}{\tau \tilde{\omega}} \frac{1}{\tilde{\omega}^2 + \gamma^2} \left[e^{-\gamma t} \left(\tilde{\omega} \cos \left(\tilde{\omega} (t - \tau) \right) - \gamma \sin \left(\tilde{\omega} (t - \tau) \right) \right) + \gamma \sin \left(\tilde{\omega} t \right) - \tilde{\omega} \cos \left(\tilde{\omega} t \right) \right]$$
 (5.125)

Amiket már géppel érdemes kiszámolttatni, mert túl sok parciális integrálás kell hozzá, hogy ne hibázzunk közben. Ezutóbbin belül nézzük meg, mi történik ha $t \to \infty$, és $\gamma \ll \tilde{\omega}$. Ekkor

$$x(t) \to \frac{f_0}{\tau} \frac{1}{\tilde{\omega}^2 + \gamma^2} \left[\frac{\gamma}{\tilde{\omega}} \sin(\tilde{\omega}t) - \cos(\tilde{\omega}t) \right] \approx -\frac{f_0}{\tau \tilde{\omega}^2} \cos(\tilde{\omega}t)$$
 (5.126)

Amiből a rezgések amplitúdója

$$A \to \frac{f_0^2}{\tau^2 \tilde{\omega}^4} \tag{5.127}$$

5.5. példa: Háromrugós rendszer gerjesztése

A múlt alkalommal szerepelt a két tömegből, két falból, és három rugóból álló rendszer. Hattassuk erre is az előző f_0/τ erőt, majd diskutáljuk, hogy mi történik annak függvényében, hogy melyik testre hatunk vele.

19. ábra. Falas-rugós rendszer.

5.5.1. Sajátmódusok

Legyen most is szimmetrikus a rendszer, tehát $m_1 = m_2$ és $k_1 = k_2 \neq K$. Emlékeztetőül, ekkor a mátrixaink:

$$\underline{\underline{M}} = \begin{pmatrix} m & 0 \\ 0 & m \end{pmatrix} \qquad D = \begin{pmatrix} k+K & -K \\ -K & k+K \end{pmatrix} \tag{5.128}$$

amivel egyszerűen

$$\underline{\underline{A}} = \frac{1}{m}\underline{\underline{D}} \tag{5.129}$$

A sajátértékekre ekkor:

$$\left(\frac{k+K}{m} - \omega^2\right)^2 - \frac{K^2}{m^2} = 0 \tag{5.130}$$

Legyen az egyszerűség kedvéért $\omega_0^2=k/m$ és $\Omega_0^2=K/m,$ így

$$\left(\Omega_0^2 + \omega_0^2 - \omega^2\right)^2 - \Omega_0^4 = 0 \tag{5.131}$$

$$\omega^4 - 2(\Omega_0^2 + \omega_0^2)\omega^2 + (\Omega_0^2 + \omega_0^2)^2 - \Omega_0^4 = 0$$
(5.132)

$$\omega^2 = \Omega_0^2 + \omega_0^2 \pm \sqrt{(\Omega_0^2 + \omega_0^2)^2 - (\Omega_0^2 + \omega_0^2)^2 + \Omega_0^4}$$
 (5.133)

$$\omega_1^2 = \omega_0^2 \qquad \qquad \omega_2^2 = \omega_0^2 + 2\Omega_0^2 \qquad (5.134)$$

Az ezekhez tartozó sajátmódusok pedig, mivel

$$A = \begin{pmatrix} \omega_0^2 + \Omega_0^2 & -\Omega_0^2 \\ -\Omega_0^2 & \omega_0^2 + \Omega_0^2 \end{pmatrix}$$
 (5.135)

teát kis matekkal

$$\eta_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix} \qquad \qquad \eta_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix} \qquad (5.136)$$

Ezek ugyebár két harmonikus mozgást írnak le: az elsőnél a két test azonos irányba mozdul ki, a másiknál pedig ellentétesbe. Ezekhez a módusokhoz kell illesztenünk a gerjesztésünket. Tehát a Green függvényünk komponensei a sajátmódusok rendszerén, kihasználva, hogy most teljes orthonormált:

$$G(t) = \sum_{i} \frac{\sin(\omega_{i}t)}{\omega_{i}} \eta \tilde{\eta} = \frac{\sin(\omega_{1}t)}{\omega_{1}} \eta_{1} \eta_{1}^{T} + \frac{\sin(\omega_{2}t)}{\omega_{2}} \eta_{2} \eta_{2}^{T}$$

$$(5.137)$$

Ha ezt hattatjuk a gerjesztő erőnke, akkor az $\eta\eta^T$ tagok gyakorlatilag egy projektorfelbontást fognak rajta végezni: fel kell írnunk a forrástagunkat ezekkel a vektorokkal.

5.5.2. Azonos lökés

Ha mindkét testet azonos erővel lökdössük, akkor ezen a bázison az erő:

$$\underline{\underline{M}}^{-1}\mathbf{F} = \frac{F(t)}{m} \cdot \begin{pmatrix} 1\\1 \end{pmatrix} + 0 \cdot \begin{pmatrix} 1\\-1 \end{pmatrix} \qquad F(t) = \frac{f_0}{\tau}\Theta(t)\Theta(\tau - t) \qquad (5.138)$$

Tehát a koordináták időfejlődése:

$$\mathbf{q} = \int_{-\infty}^{\infty} \Theta(t')\Theta(\tau - t')\Theta(t - t') \frac{f_0}{m\tau} \frac{\sin(\omega_1(t - t'))}{\omega_1} \cdot \begin{pmatrix} 1\\1 \end{pmatrix} dt'$$
 (5.139)

Ismét vegyük azt az esetet, ahol $t > \tau$:

$$\mathbf{q} = \int_0^\tau \frac{f_0}{m\tau} \frac{\sin\left(\omega_1(t - t')\right)}{\omega_1} \cdot \begin{pmatrix} 1\\1 \end{pmatrix} dt' \tag{5.140}$$

Az integrálás után:

$$\mathbf{q} = \frac{f_0}{m\tau\omega_0^2} \left[\cos\left(\omega_0(t-\tau)\right) - \cos\left(\omega_0 t\right)\right] \cdot \begin{pmatrix} 1\\1 \end{pmatrix}$$
 (5.141)

Nézzük meg mi történik, ha $\tau \to 0$. Ez annak felel meg, hogy a rendszer egy pillanatnyi lökést kap, aztán szabadon fejlődik az időben. Egy kis átírással:

$$\mathbf{q} = \frac{f_0}{m\omega_0^2} \frac{\cos(\omega_0(t-\tau)) - \cos(\omega_0 t)}{\tau} \cdot \begin{pmatrix} 1\\1 \end{pmatrix}$$
 (5.142)

ami ebben a határesetben nem más lesz, mint egy derivált régimódi képlete. Tehát:

$$\mathbf{q} \to \frac{f_0}{m\omega_0} \sin \omega_0 t \cdot \begin{pmatrix} 1\\1 \end{pmatrix} \tag{5.143}$$

a kis löket után a rugók az első módusban rezgenek, azonos irányban. Ennek a frekvenciája ω_0 , az amplitúdója pedig $f_0^2/m^2\omega_0^2$.

5.5.3. Baloldali lökés

Mi történik, ha csak az első rugóra hat külső gerejsztés? Ekkor az erő felbontása

$$\mathbf{F} = \frac{F}{2} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \frac{F}{2} \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix} \tag{5.144}$$

tehát most az integrálunkban két tag is lesz:

$$\mathbf{q} = \frac{f_0}{2m\tau} \int_0^{\tau} \frac{\sin(\omega_1(t - t'))}{\omega_1} \cdot \begin{pmatrix} 1\\1 \end{pmatrix} + \frac{\sin(\omega_2(t - t'))}{\omega_2} \cdot \begin{pmatrix} 1\\-1 \end{pmatrix} dt'$$
 (5.145)

Ezt kiszámítva

$$\mathbf{q} = \frac{f_0}{2m\tau\omega_1^2} \left[\cos\left(\omega_1(t-\tau)\right) - \cos\left(\omega_1 t\right)\right] \cdot \begin{pmatrix} 1\\1 \end{pmatrix} + \frac{f_0}{2m\tau\omega_2^2} \left[\cos\left(\omega_2(t-\tau)\right) - \cos\left(\omega_2 t\right)\right] \cdot \begin{pmatrix} 1\\-1 \end{pmatrix} (5.146)$$

Itt szintén alkalmazzuk a $\tau \to 0$ határesetet:

$$\mathbf{q} \to \frac{f_0}{2m\omega_1} \sin \omega_1 t \cdot \begin{pmatrix} 1\\1 \end{pmatrix} + \frac{f_0}{2m\omega_2} \sin \omega_2 t \cdot \begin{pmatrix} 1\\-1 \end{pmatrix}$$
 (5.147)

Ez a mozgás tehát két részből áll: azonos irányban feleakkora amplitúdójú rezgést végeznek a rugók mint az első esetben; viszont megjelenik egy ellentétes irányú módus is, a hozzá tartozó ω_2 frekvenciával. Vegyük még ellenőrzésül radikális esetnek azt, amikor a középső rugón K=0, mert ekkor

$$\omega_0^2 = \omega_0^2 + 2\Omega_0^2 \tag{5.148}$$

$$\omega_1 = \omega_2 \tag{5.149}$$

Beírva:

$$\mathbf{q} \to \frac{f_0}{2m\omega_0} \sin \omega_0 t \cdot \begin{pmatrix} 1\\1 \end{pmatrix} + \frac{f_0}{2m\omega_0} \sin \omega_0 t \cdot \begin{pmatrix} 1\\-1 \end{pmatrix} \tag{5.150}$$

ami kis rendezés után

$$\mathbf{q} \to \frac{f_0}{m\omega_0} \sin \omega_0 t \cdot \begin{pmatrix} 1\\0 \end{pmatrix} \tag{5.151}$$

Aminek örülünk: az első test pontosan úgy mozog, mint a fenti gerjesztő erő esetén; a második pedig nyugalomban marad. Ez logikus, mert K=0 mellett nincs rugó ami összekötné a megmozgatott testtel.

5.5.4. Ellentétes szinuszos gerjesztés

Nézzünk meg erre a rendszerre is egy szinuszos gerjesztést t=0 kezdettel, ami ellentétesen hat a két testre. Tehát a gerjesztő erőnk:

$$\mathbf{F}(t) = \Theta(t) f_0 \sin{(\Omega t)} \boldsymbol{\eta_2} \tag{5.152}$$

Erre hattatva a tömegmátrix inverzét:

$$\underline{\underline{M}}^{-1} = \Theta(t) \frac{f_0}{m} \sin(\Omega t) \eta_2 \tag{5.153}$$

majd pegid a Green-függvényt, ami most ismét csak az egyik móduson hat:

$$\mathbf{q} = \int_{-\infty}^{\infty} \Theta(t - t') \frac{\sin(\omega_2(t - t'))}{\omega_2} \Theta(t') \frac{f_0}{m} \sin(\Omega t') \boldsymbol{\eta_2} dt'$$
 (5.154)

A határok ismét a lépcsőfüggvényekből adódnak: az első miatt a fenti határ t, a második miatt a lenti pedig 0. Tehát:

$$\mathbf{q} = \frac{f_0}{m\omega_2} \int_0^t \sin\left(\omega_2(t - t')\right) \sin\left(\Omega t'\right) \begin{pmatrix} 1\\ -1 \end{pmatrix} dt'$$
 (5.155)

Ez az integrál ugyanaz, mint a sima oszcillátornál, szóval a kiszámítását most kihagyjuk. Eredménye:

$$\mathbf{q} = \frac{f_0}{m\omega_2} \frac{\Omega \sin \omega_2 t - \omega_2 \sin \Omega t}{\Omega^2 - \omega_2^2} \begin{pmatrix} 1\\ -1 \end{pmatrix}$$
 (5.156)

5.6. példa: Egyszerű molekula

Modellezzünk úgy egy kis molekulát, mint 3 test összekötve 2 rugóval. Legyenek a rugók és a kinti tömegek azonosak. Mik lesznek ekkor a sajátmódusok, és hogyan hatnak a rendszerre a külső gerjesztések?

20. ábra. Egy egyszerű mulekula vázlatos rajza.

5.6.1. Normálmódusok

Felírva a Lagrange-ot, kis munkával kiderül, hogy itt a mátrixaink:

$$\underline{\underline{M}} = \begin{pmatrix} m & 0 & 0 \\ 0 & M & 0 \\ 0 & 0 & m \end{pmatrix} \qquad \underline{\underline{D}} = \begin{pmatrix} k & -k & 0 \\ -k & 2k & -k \\ 0 & -k & k \end{pmatrix} \tag{5.157}$$

Mivel M diagonális, könnyű invertálni: egyszerűen a tömegek reciprokai kellenek egy diagonális mátrixba. A szorzást elvégezve:

$$\underline{\underline{A}} = \omega_0^2 \begin{pmatrix} 1 & -1 & 0 \\ -\frac{m}{M} & 2\frac{m}{M} & -\frac{m}{M} \\ 0 & -1 & 1 \end{pmatrix}$$
 (5.158)

ahol bevezettem megint $\frac{k}{m}=\omega_0^2$ -et. Ebből a sajátértékre vonatkozó egyenlet:

$$(\omega_0^2 - \omega^2)^2 \left(2\omega_0^2 \frac{m}{M} - \omega^2 \right) - 2\omega_0^4 \frac{m}{M} (\omega_0^2 - \omega^2) = 0$$
 (5.159)

Ránézésre két megoldást is be tudunk tippelni. Legyen az első, meglepő módon $\omega = \omega_0$, ami általában egy jó tipp. Az ehhez tartozó sajátvektor

$$\begin{pmatrix} 1-1 & -1 & 0 \\ -\frac{m}{M} & 2\frac{m}{M} - 1 & -\frac{m}{M} \\ 0 & -1 & 1 - 1 \end{pmatrix} \boldsymbol{\eta_0} = 0$$
 (5.160)

alapján olyan lesz, hogy a második komponense nulla; az első és utolsó pedig egymás ellentettjei. Szépen normálva:

$$\eta_0 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\-1 \end{pmatrix} \tag{5.161}$$

Amivel meg is van az első módus: ebben a középső atom mozdulatlan, a másik kettő pedig ki-be rezeg körülötte.

A második sajátérték is könnyen tippelhető: legyen $\omega_1 = 0$. Ez is teljesíti az egyenletet, és a hozzá tartozó sajátvektor lehet például:

$$\begin{pmatrix} 1 & -1 & 0 \\ -\frac{m}{M} & 2\frac{m}{M} & -\frac{m}{M} \\ 0 & -1 & 1 \end{pmatrix} \boldsymbol{\eta}_{1} = 0 \tag{5.162}$$

$$\eta_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \tag{5.163}$$

Ez egy nulla frekvenciás rezgés, ami minden koordinátára azonosan hat. Hasonlóan a csúszkáló ingánál látotthoz, ez sem egy rezgés igazából: ez egy eltolás az x tengelyen, ami mindhárom atomra ugyanúgy hat.

A harmadik sajátérték nehezebb: ehhez már egy picit számolni is kell. Tudjuk, hogy ez egyik sajátérték ω_0^2 , szóval emeljünk ki a sajátérték egyenletéből $(\omega_0^2 - \omega^2)$ -et:

$$(\omega_0^2 - \omega^2)^2 \left(2\omega_0^2 \frac{m}{M} - \omega^2 \right) - 2\omega_0^4 \frac{m}{M} (\omega_0^2 - \omega^2) = 0$$
 (5.164)

$$(\omega_0^2 - \omega^2) \left[(\omega_0^2 - \omega^2) \left(2\omega_0^2 \frac{m}{M} - \omega^2 \right) - 2\omega_0^4 \frac{m}{M} \right] = 0$$
 (5.165)

$$\omega^4 - \omega^2 \omega_0^2 \left(1 + 2\frac{m}{M} \right) + 2\omega_0^4 \frac{m}{M} - 2\omega_0^4 \frac{m}{M} = 0$$
 (5.166)

$$\omega^4 - \omega^2 \omega_0^2 \left(1 + 2 \frac{m}{M} \right) = 0 \tag{5.167}$$

$$\omega^2 \left[\omega^2 - \omega_0^2 \left(1 + 2 \frac{m}{M} \right) \right] = 0 \tag{5.168}$$

Tehát a harmadik megoldás $\omega_2^2 = \omega_0^2 \left(1 + 2\frac{m}{M}\right)$. Az ehhez tartozó sajátvektor számolását most kihagyom, eredménye:

$$\eta_2 = \frac{1}{\sqrt{2+4\alpha^2}} \begin{pmatrix} 1\\ -2\alpha\\ 1 \end{pmatrix} \tag{5.169}$$

Ahol $\alpha = \frac{m}{M}$. Ez egy olyan módus, ahol a két szélső azonos irányba mozdul el, a középső viszont ellentétesen. A bejövő tömeges sorzófaktor azért olyan, amilyen, mert a tömegközéppont nem mozdulhat el.

5.6.2. Bal oldali összenyomás

Hattasunk a rendszerre most egy lökés szerű gerjesztőerőt, aminek az alakja:

$$\mathbf{F} = F(t) \begin{pmatrix} 2 \\ -2 \\ 0 \end{pmatrix} \qquad \qquad F(t) = \frac{f_0}{\tau} \Theta(t) \Theta(\tau - t) \tag{5.170}$$

Tehát a bal oldali és a középső atomokat ellentétes irányba löki, a harmadikat pedig békén hagyja. Erre hattatva a tömegmátrix inverzét:

$$\mathbf{f} = \underline{\underline{M}}^{-1}\mathbf{F} = F\begin{pmatrix} 2/m \\ -2/M \\ 0 \end{pmatrix} = \frac{2F}{m} \begin{pmatrix} 1 \\ -\alpha \\ 0 \end{pmatrix}$$
 (5.171)

Most nézzük meg tippelés nélkül, hogy hogyan kell ezt felbontani a sajátbázisra. Először is, hálistennek a η_0 és η_2 sajátértékek ortogonálisak, szóval nekik lehetnek a duálisok egyszerűen csak a transzponáltak. Velük:

$$\eta_0 \tilde{\eta_0} = \frac{1}{2} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{pmatrix} \qquad \eta_1 \tilde{\eta_1} = \frac{1}{2 + 4\alpha^2} \begin{pmatrix} 1 & -2\alpha & 1 \\ -2\alpha & 4\alpha^2 & -2\alpha \\ 1 & -2\alpha & 1 \end{pmatrix}$$
(5.172)

Ezekkel megszorozva a ható erőt:

$$\eta_0 \tilde{\eta_0} \mathbf{f} = \frac{F}{m} \begin{pmatrix} 1\\0\\-1 \end{pmatrix} = \frac{F}{m} \sqrt{2} \eta_0$$
(5.173)

$$\eta_2 \tilde{\eta}_2 \mathbf{f} = \frac{F}{m} \frac{1}{1 + 2\alpha^2} \begin{pmatrix} 1 + 2\alpha^2 \\ -2\alpha + 4\alpha^2 \\ 1 + 2\alpha^2 \end{pmatrix} = \frac{F}{m} \sqrt{2 + 4\alpha^2} \eta_1$$
(5.174)

(5.175)

Ellenőrzésképp láthatjuk, hogy ezeknek az összege tényleg visszaadja **f**-et. A harmadik irányra most nincs szükség. Beírva végre a Green-függvényes alakot a rendszer időfejlődésére, az előző példát követve:

$$\mathbf{q} = \frac{f_0}{m\tau} \int_0^t \frac{\sin(\omega_0(t - t'))}{\omega_0} \cdot \begin{pmatrix} 1\\0\\-1 \end{pmatrix} + \frac{\sin(\omega_2(t - t'))}{\omega_2} \cdot \begin{pmatrix} 1\\-2\alpha\\1 \end{pmatrix} dt'$$
 (5.176)

Ezt ismét ki tudjuk integrálni, majd megnézni az érdekes $\tau \to 0$ határesetet:

$$\mathbf{q} \to \frac{f_0}{m} \frac{\sin(\omega_0 t)}{\omega_0} \cdot \begin{pmatrix} 1\\0\\-1 \end{pmatrix} + \frac{f_0}{m} \frac{\sin(\omega_2 t)}{\omega_2} \cdot \begin{pmatrix} 1\\-2\alpha\\1 \end{pmatrix} dt'$$
 (5.177)

Mivel $\omega_2 = \omega_0 \sqrt{1+2\alpha}$, meg tudjuk nézni mi történik $\alpha = 0$ határesetben: ez azt mondja ki, hogy a középső atom sokkal nehezebb, mint a szélsők. Ekkor a középső test módusai eltűnnek, az mozdulatlan marad. A másik kettőre pedig ebben a határesetben azonos frekvenciájú rezgések hatnak: a jobb oldali testre kioltják egymást, a bal oldalira pedig kétszeres amplitúdójú rezgéseket okoznak.

5.6.3. Eltolás Green-függvénnyel

Azért nézzük még meg az eltoláshoz kapcsolódó módust is, és lássuk be, hogy *tényleg* az eltolásokhoz kapcsolódik. Legyen a gerjesztőerő

$$\mathbf{F} = F \begin{pmatrix} 1 \\ \frac{M}{m} \\ 1 \end{pmatrix} \tag{5.178}$$

amivel

$$\mathbf{f} = \frac{f}{m} \begin{pmatrix} 1\\1\\1 \end{pmatrix} \tag{5.179}$$

tehát ő η_1 módushoz tartozik. Ezzel a gerjesztéssel

$$\mathbf{q} = \frac{f_0}{m\tau} \int_0^t \frac{\sin\left(\omega_1(t - t')\right)}{\omega_1} \cdot \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$
 (5.180)

⁴Mert az nem merőleges erre a kettőre, ezért direkt olyan erőt választottam, hogy ne kelljen vele számolni. Általános esetben mindhárom irány szerepelhetne. Ekkor a harmadik vektorunkat és a duálisát úgy kell megválasztani, hogy teljesüljön $\tilde{\eta}_i \eta_j = \delta_{ij}$.

Ne ijedjünk meg, hogy $\omega_1 = 0$ -val osztunk le, helyette számoljunk tovább. Kiintegrálva, majd a szokásos közelítést téve:

$$\mathbf{q} \to \frac{f_0}{m} \frac{\sin(\omega_1 t)}{\omega_1} \cdot \begin{pmatrix} 1\\1\\1 \end{pmatrix} \tag{5.181}$$

Ezt szorozzuk be eggyel, ami t/t:

$$\mathbf{q} \to \frac{f_0}{m} \frac{\sin(\omega_1 t)}{\omega_1 t} t \cdot \begin{pmatrix} 1\\1\\1 \end{pmatrix} \tag{5.182}$$

Majd használjuk ki, hogy $\frac{\sin\epsilon}{\epsilon}\approx 1$, ha ϵ kicsi. Nekünk most pontosan nulla, szóval elég jó lesz ez a közelítés:

$$\mathbf{q} \to \frac{f_0}{m} t \cdot \begin{pmatrix} 1\\1\\1 \end{pmatrix} \tag{5.183}$$

Tehát azt kapjuk, hogy mindhárom testet meglökve, azok egy konstans $v = \frac{f_0}{m}$ sebességgel fognak reagálni. Ez egész intuitív, szóval jó látni, hogy végső soron ki tud jönni a rezgések nyelvén is.

5.6.4. Teljes duális rendszer

A teljesség jegyében nézzük még meg, hogy hogyan lehetne egy általános irányú gerejsztést is kiszámolni. A bázisunk:

$$\eta_0 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\-1 \end{pmatrix} \qquad \tilde{\eta}_0 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\-1 \end{pmatrix} \qquad (5.184)$$

$$\eta_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \qquad \qquad \tilde{\eta}_1 = ??? \tag{5.185}$$

$$\eta_2 = \frac{1}{\sqrt{2+4\alpha^2}} \begin{pmatrix} 1\\ -2\alpha\\ 1 \end{pmatrix} \qquad \tilde{\eta}_2 = \frac{1}{\sqrt{2+4\alpha^2}} \begin{pmatrix} 1 & -2\alpha & 1 \end{pmatrix}$$
 (5.186)

Azok a duálisok amik már megvannak jók: rájuk könnyen láthatjuk, hogy teljesül $\tilde{\eta}_i \eta_j = \delta_{ij}$. Ez η^T transzponálttal nem működne, szóval keressük meg, hogy mivel igen. Legyen

$$\tilde{\eta}_1 = \begin{pmatrix} x & y & z \end{pmatrix} \tag{5.187}$$

majd nézzük meg mindhárom sajátvektorral a skalárszorzatát, és követeljük meg a δ teljesülését. Ezek rendre három egyenletet adnak:

$$x + y + z = 1 (5.188)$$

$$x - z = 0 \tag{5.189}$$

$$x - 2\alpha y + z = 0 \tag{5.190}$$

Ezt kicsit átrendezve megoldja:

$$z = x \tag{5.191}$$

$$x = \alpha y \tag{5.192}$$

$$(2\alpha + 1)y = 1 (5.193)$$

Tehát

$$x = \frac{\alpha}{2\alpha + 1} \tag{5.194}$$

$$y = \frac{1}{2\alpha + 1}$$

$$z = \frac{\alpha}{2\alpha + 1}$$

$$(5.195)$$

$$z = \frac{\alpha}{2\alpha + 1} \tag{5.196}$$

(5.197)

Vagy tömörebben

$$\tilde{\eta}_1 = \frac{1}{2\alpha + 1} \begin{pmatrix} \alpha & 1 & \alpha \end{pmatrix} \tag{5.198}$$

Ezzel a projektorunk

$$\eta_1 \tilde{\eta_1} = \frac{1}{2\alpha + 1} \begin{pmatrix} \alpha & 1 & \alpha \\ \alpha & 1 & \alpha \\ \alpha & 1 & \alpha \end{pmatrix}$$
 (5.199)

Ellenőrzésképp, hogyha ezt hattatjuk a korábbi

$$\mathbf{f} = \frac{f}{m} \begin{pmatrix} 1\\1\\1 \end{pmatrix} \tag{5.200}$$

erőre, akkor eredményül:

$$\eta_{1}\tilde{\eta}_{1}\mathbf{f} = \frac{f}{m}\frac{1}{2\alpha + 1} \begin{pmatrix} \alpha & 1 & \alpha \\ \alpha & 1 & \alpha \\ \alpha & 1 & \alpha \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 (5.201)

$$= \frac{f}{m} \frac{1}{2\alpha + 1} \begin{pmatrix} 2\alpha + 1\\ 2\alpha + 1\\ 2\alpha + 1 \end{pmatrix} = \mathbf{f}$$
 (5.202)

tehát jól dolgoztunk: tényleg ebbe az irányba projektál ez a diadikus szorzat.

7. óra

Ha merev testekről beszélünk, az azt jelenti, hogy minden pont közti távolság fix. Ezzel a nagy korlátozással két féle mozgást végezhet a test: vagy minden pontja ugyanarra megy, ez lesz a tömegközépponti mozgás, vagy valahogy forog egy tengely körül. Ezekkel a kinetikus tag:

$$K = \frac{1}{2}Mv_0^2 + \frac{1}{2}\omega \underline{\underline{\Theta}}\omega \tag{7.1}$$

Emlékeztetőül, a forgási tagban megjelenik a tehetetlenségi nyomaték tenzor:

$$\Theta_{ij} = \int d^3r \rho(\mathbf{r}) \left(\delta_{ij} r^2 - r_i r_j \right) \tag{7.2}$$

ami olyan mint a tömeg, csak a gyorsulásra való tehetetlenség helyett a forgatásra vonatkozik. Ezen felül megjelenik még a forgatás vektoros ábrázolása ω -n keresztül: ő mondja meg, hogy milyen tengelyek körül milyen gyorsan forgunk.

Nézzünk először pár példát arra, hogy hogyan kell kiszámolni ezt a csúnya tömegszerű mátrixos izét.

7.1. példa: 2+2 tömegpont

21. ábra. 2+2 tömegpont rajza.

Határozzuk meg ennek a 4-pont-rendszernek a tehetetlenségi tenzorát! Először is: inkább legyünk okosak, és forgassuk el az egészet 45 fokkal, mert úgy egyszerűbb. Nézve a képletet:

$$\Theta_{ij} = \int d^3r \rho(\mathbf{r}) \left(\delta_{ij} r^2 - r_i r_j \right) \tag{7.3}$$

nekünk itt igazából 4 diszkrét pontunk van: csak szummáznunk kell az egyes pontokra. Ez olyan mintha ρ egy pár delta lenne.

$$\Theta_{ij} = \sum_{k} m_k \left(\delta_{ij} r^{k^2} - r_i^k r_j^k \right) \tag{7.4}$$

Ezt kiírva például az xx komponensre:

$$\Theta_{xx} = \sum_{k} m_k \left(\delta_{xx} r^{k^2} - r_x^k r_x^k \right) = \sum_{k} m_k \left(r^{k^2} - r_x^k r_x^k \right)$$
 (7.5)

$$= \sum_{k} m_k (x_k^2 + y_k^2 + z_k^2 - x_k^2) = \sum_{k} m_k (y_k^2 + z_k^2)$$
 (7.6)

A z koordináta mindegyikre nulla. Az y pedig csak a kettő nagy M tömegűre nem: ekkor ha mondjuk 2a az oldalhosszúságunk, akkor $y_k = \sqrt{2}a$

$$\Theta_{xx} = M \cdot 2a^2 + M \cdot 2a^2 = 4Ma^2 \tag{7.7}$$

Teljesen hasonlóan:

$$\Theta_{yy} = 4ma^2 \tag{7.8}$$

Ami más, az a harmadk irány:

$$\Theta_{zz} = \sum_{k} m_k \left(\delta_{zz} r^{k^2} - r_z^k r_z^k \right) = \sum_{k} m_k \left(x_k^2 + y_k^2 \right) \tag{7.9}$$

mert ebbe már mind a négy járulékot ad. Beírva:

$$\Theta_{zz} = 2 \cdot M \cdot (2a^2) + 2 \cdot m \cdot (2a^2) = 4(M+m)a^2 \tag{7.10}$$

A vegyes tagok még hátra vannak, mind a három. Ezekből például

$$\Theta_{xy} = \sum_{k} m_k \left(\delta_{xy} r^{k^2} - x_k y_k \right) = 0 \tag{7.11}$$

mert a δ nulla, illetve nincs olyan tömegpont, amire $x_k \cdot y_k$ ne lenne nulla. A tenzor tehát ebben a forgatott rendszerben:

$$\underline{\underline{\Theta}} = 4a^2 \begin{pmatrix} M & 0 & 0 \\ 0 & m & 0 \\ 0 & 0 & M+m \end{pmatrix}$$
 (7.12)

Jó, de minket nem ez érdekelt, hanem ennek a 45 fokkal elforgatott esete. Van már viszont egy mátrixunk: ezt lazán el tudjuk forgatni egy 3D-s forgásmátrixxal, mivel

$$\underline{\Theta}' = \underline{O}^T \underline{\Theta} \ \underline{O} \tag{7.13}$$

Ez a mátrix most, beírva a szögfüggvényekbe a 45 fokot:

$$\underline{\underline{Q}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix} \tag{7.14}$$

A végeredmény egy kis szorozgatás után:

$$\underline{\underline{\Theta}}' = 2a^2 \begin{pmatrix} m+M & m-M & 0\\ m-M & m+M & 0\\ 0 & 0 & 2(m+M) \end{pmatrix}$$
 (7.15)

Ugyanezt kaptuk volna, ha rögtön ebben a koordinátarendszerben számolunk: csak látszik, hogy +1 nem nulla tagot kellett volna még figyelembe vennünk.

7.2. Henger

Nézzünk meg egy folytonos tömegeloszlású esetet is. Mi lesz egy homogén henger tehetetlenségi nyomatéka a tömegközéppontra vonatkoztatva? Mivel homogén, így

$$\rho(r) = \rho = \text{konst.} \tag{7.16}$$

Felírva az integrált:

$$\Theta_{ij} = \rho \int d^3r \left(\delta_{ij}r^2 - r_i r_j\right) \tag{7.17}$$

de nekünk csak a henger határaiig kell elmennünk, azokon kívül nincs tömeg. Ehhez térjünk át hengerkoordinátákba, ahol az integrál

$$\Theta_{ij} = \rho \int_{-L/2}^{L/2} dz \int_{0}^{2\pi} r d\varphi \int_{0}^{R} dr \left(\delta_{ij} q^2 - q_i q_j\right)$$

$$(7.18)$$

Itt átírtam az eddig r-el jelölt koordinátákat q-ra, h
go ne keverjük össze a hengerkoordinátákból a sugárral. Nézzük meg most a záró
jeles kifejezést az egyes komponensekre, és hogy azt hogyan kell kifejez
ni a koordinátáinkkal.

$$ij = zz \qquad \longrightarrow \qquad (\delta_{zz}q^2 - q_zq_z) = x^2 + y^2 = r^2 \tag{7.19}$$

ami felülnézetből felrajzolva a problémát szépen kijön. Tehát erre a komponensre:

$$\Theta_{zz} = \rho \int_{-L/2}^{L/2} dz \int_0^{2\pi} d\varphi \int_0^R dr \ r^3$$
 (7.20)

$$\Theta_{zz} = \rho L \int_0^{2\pi} d\varphi \int_0^R dr \ r^3$$
 (7.21)

$$\Theta_{zz} = 2\pi\rho L \int_0^R \mathrm{d}r \ r^3 \tag{7.22}$$

$$\Theta_{zz} = 2\pi\rho L \int_0^R \mathrm{d}r \ r^3 \tag{7.23}$$

$$\Theta_{zz} = 2\pi\rho L \frac{R^4}{4} = R^2 \pi L \frac{R^2}{2} = \frac{M}{2} R^2$$
 (7.24)

A másik kettőre:

$$ij = yy$$

$$\longrightarrow \qquad (\delta_{yy}q^2 - q_yq_y) = x^2 + z^2 = r^2\sin^2\varphi + z^2 \qquad (7.25)$$

Na ez már bonyolultabb:

$$\Theta_{yy} = \rho \int_{-L/2}^{L/2} dz \int_{0}^{2\pi} d\varphi \int_{0}^{R} dr \ r(r^{2} \sin^{2} \varphi + z^{2})$$
 (7.26)

$$= \rho \int_{-L/2}^{L/2} dz \int_{0}^{2\pi} d\varphi \, \left(\frac{R^4}{4} \sin^2 \varphi + \frac{R^2}{2} z^2\right)$$
 (7.27)

$$= \rho \int_0^{2\pi} d\varphi \, \left(L \frac{R^4}{4} \sin^2 \varphi + \frac{L^3}{3 \cdot 4} \frac{R^2}{2} \right) \tag{7.28}$$

$$= \rho(L\frac{R^4}{4}\pi + \frac{L^3}{3\cdot 4}\frac{R^2}{2}2\pi) = \frac{M}{12}(L^2 + 3R^2)$$
 (7.29)

De szerencsére ugyanez lesz xx-re is. Minden más tagban pedig olyanok jelennek meg, hogy

$$\int_0^{2\pi} \sin\varphi \cos\varphi \propto \int_0^{2\pi} \sin 2\varphi, \qquad \qquad \int_0^{2\pi} \sin\varphi, \qquad \qquad \int_0^{2\pi} \cos\varphi \qquad (7.30)$$

Amik mint teljes periódusra integrálnak sima szöggfüggvényeket: ezeket felrajzolva beláthatjuk, hogy nullát adnak. Tehát a tehetetlenségi tenzorunk:

$$\underline{\underline{\Theta}} = \frac{M}{12} \begin{pmatrix} L^2 + 3R^2 & 0 & 0\\ 0 & L^2 + 3R^2 & 0\\ 0 & 0 & 6R^2 \end{pmatrix}$$
 (7.31)

Egy fontos részt leolvashatunk ennek jobb alsó sarkából: ha körbe forog egy hengerünk, a tehetetlenség nem függ a z irányú hosszától, nagysága pedig $\frac{1}{2}MR^2$.

7.3. Tömeges atwood gép

Vegyünk egy egyszerű Atwood gépet, m és M tömegekkel. DE most vegyük figyelembe, hogy a csiga is forog: az μ tömegű, és R sugarú. Mik lesznek ekkor a mozgásegyenletek?

A teljesen általános Lagrangeunk ezúttal:

$$\mathcal{L} = \frac{1}{2}m\dot{y}_1^2 + \frac{1}{2}M\dot{y}_2^2 + mgy_1 + Mgy_2 + \frac{1}{2}\Theta\omega^2$$
 (7.32)

Kiróhatunk viszont pár kényszert: mivel a kötél hossza fix, így

$$y_2 = -y_1 (7.33)$$

Vagy másképp kifejezve, a kötél minden pontja azonos sebességgel mozog, mert különben szétcsúszna:

$$|\dot{y}_1| = |\dot{y}_2| = |\dot{y}| \tag{7.34}$$

A kötél pedig nem csúszhat el a csigán: tehát

$$\dot{y} = R\omega \tag{7.35}$$

Beírva még az előző feladatból a nyomatékot, a Lagrange-unk végső alakja:

$$\mathcal{L} = \frac{1}{2}\dot{y}^2(m+M) + g(m-M)y + \frac{1}{4}\mu\dot{y}^2$$
 (7.36)

Ebből az Euler Lagrange eredménye:

$$\ddot{y}\left[(m+M) + \frac{1}{2}\mu\right] = g(m-M)$$
 (7.37)

Legyen most $M=2m, \mu=m$, tehát

$$\ddot{y}\left[3m + \frac{1}{2}m\right] = -gm\tag{7.38}$$

$$\ddot{y} = \frac{2}{7}g\tag{7.39}$$

7.4. Forgatott rúd

Vegyünk egy m tömegű, l hosszúságú rudat, rögzítsük az egyik végét a plafonhoz úgy, hogy forogni tudjon, de elmozdulni ne. Kezdjük el forgatni valamilyen állandó ω szögsebességgel a felfüggesztési pontjától lehúzott vertikálos tengely körül. Mi lesz a rúd vízszintessel bezárt szöge?

Kis emlékeztetőként, egy rúd végére vonatkoztatva

$$\Theta = \frac{1}{3}ml^2 \tag{7.40}$$

a tehetetlenség, a rúdra merőleges forgatásokra. Itt a forgatás lefelé mutat: annak a rúdra merőleges komponense

$$\omega_{\perp} = \omega \sin \varphi \tag{7.41}$$

A potenciális tagunkban vehetjük a teljes tömeget a rúd közepébe, így

$$V = -mg\frac{l}{2}\cos\varphi\tag{7.42}$$

Tehát a Lagrange most:

$$\mathcal{L} = \frac{1}{2}\Theta\omega_{\perp}^2 + \frac{1}{2}mgl\cos\varphi \tag{7.43}$$

$$=\frac{1}{2}\frac{1}{3}ml^2\omega^2\sin^2\varphi + \frac{1}{2}mgl\cos\varphi \tag{7.44}$$

Erre ráküldve egy Euler-Lagrange-ot:

$$0 = -\frac{1}{2}mgl\sin\varphi + \frac{2}{6}ml^2\omega^2\sin\varphi\cos\varphi \tag{7.45}$$

Ennek egy lehetséges megoldása

$$\sin \varphi = 0 \qquad \qquad \varphi = 0 \tag{7.46}$$

Ami teljesen valid: azt írja le, hogy a rúd egyenesen lefelé lóg. Ezt letudva leoszthatunk vele, így

$$g = \frac{2}{6}l\omega^2\cos\varphi\tag{7.47}$$

$$\cos \varphi = \frac{3}{2} \frac{g}{l} \frac{1}{\omega^2} \tag{7.48}$$

Nevezzük el megszokásból a dolgokat:

$$\cos \varphi = \frac{3}{2} \frac{\omega_0^2}{\omega^2} \tag{7.49}$$

Na de ez korlátos, $-1 \le \cos \le 1$: csak akkor lesz ez a megoldás valid, ha

$$\frac{3}{2}\frac{\omega_0^2}{\omega^2} \le 1 \tag{7.50}$$

$$\frac{3}{2}\omega_0^2 \le \omega^2 \tag{7.51}$$

$$\frac{3}{2}\omega_0^2 \le \omega^2 \tag{7.51}$$

Minden más esetben csak a 0 kitérés lesz opció. A megoldás tehát úgy néz ki, hogy a forgatás sebességét növelve egyszer csak elkezd a rúd kilengeni. Végtelen gyors forgatás esetén pedig derékszöget tapasztalunk.

8. óra

A Lagrange-i mechanikával már nagyon jól megbarátkoztunk. Ennek lényege tömören hogy egy $\mathcal{L}(q,\dot{q},t)$ Lagrange-függvényből az E-L egyenletek segítségével megkapjuk a mozgásegyenletet valamilyen $\ddot{q}(t) = f(q(t))$ alakban. Ez egy szép, relatíve könnyen követhető lépésekből álló folyamat eredménye, ami miatt hasznos és szemléletes.

Viszont a másodrendű diffegyenleteket nem szeretjük annyira, mint az elsőrendűeket. Sokkal kezelhetőbb, ha ehelyett átírjuk a mozgásegyenletet kétszer annyi elsőrendű diffegyenletté. Ez a Hamiltoni mechanika egyik előnye. A másik az, hogy a kvantummechanika is ezen a nyelven íródott, szóval nem árt megbarátkozni vele klasszikusan is.

Hogy áttérjünk a Lagrange-i formalizmusból a Hamiltoniba, néhány egyszerű lépést kell csak tennünk. Lagrange-függvény helyett most Hamilton-unk lesz:

$$\mathcal{H}(q,p) = p \ \dot{q}(p) - \mathcal{L}(q,\dot{q}(p)) \tag{8.1}$$

aminek a változói a (z általános) koordináta és az (általános) impulzus.

Az Euler-Lagrange egyenlet helyett most két darab Hamilton egyenletünk lesz, amikből megkapjuk a két elsőrendű diffegyenletet:

$$\dot{q} = \frac{\partial \mathcal{H}}{\partial p}$$
 $-\dot{p} = \frac{\partial \mathcal{H}}{\partial q}$ (8.2)

A negatív előjel itt fontos, ne felejtsük el.

8.1. Egyszerű rugó

Nézzünk meg először egy egyszerű példát: egy sima, egy dimenziós rugót. Ennek a Lagrange-függvénye ugyebár

$$\mathcal{L} = K - V = \frac{1}{2}m\dot{x}^2 - \frac{1}{2}kx^2 \tag{8.3}$$

Hogy áttérjünk a Hamiltoni formalizmusra, először is kell valami jó p impulzusváltozó. Ez lehet a már korábbról ismert általános impulzus:

$$p = \frac{\partial \mathcal{L}}{\partial \dot{x}} = m\dot{x} \tag{8.4}$$

Tehát az egyenleteinkben $\dot{x}=\frac{p}{m}$ lesz, így a Lagrange az általános koordinátával (q=x) és impulzussal kifejezve:

$$\mathcal{L}(q,p) = \frac{1}{2}m\left(\frac{p}{m}\right)^2 - \frac{1}{2}kq^2 = \frac{1}{2m}p^2 - \frac{1}{2}kq^2$$
(8.5)

Beírva ezt, és $p\dot{q}$ -t a Hamiltoni definíciójába:

$$\mathcal{H} = p\frac{p}{m} - \frac{1}{2m}p^2 + \frac{1}{2}kq^2 \tag{8.6}$$

$$\mathcal{H} = \frac{1}{2m}p^2 + \frac{1}{2}kq^2 \tag{8.7}$$

Ha szemfülesek vaguynk, akkor feltűnhet, hogy ez pont a rendszer teljes E=K+V energiája. Ez gyakran így van, de nem mindig. Részletes tárgyalást a Goldsteinbel találunk, de nagyjából: ha konzervatív a potenciál illetve nem függ a sebességektől, és az általános koordináták kényszerei időfüggetlenek, akkor $\mathcal{H}=E$. Nekünk ez a legtöbb feladatban teljesül, de később még visszatérünk rá egy kis általánosítással.

Mik leznek ekkor a mozgásegyenletek? Egy-egy deriválás után:

$$\dot{q} = \frac{\partial \mathcal{H}}{\partial p} = \frac{p}{m}$$
 $-\dot{p} = \frac{\partial \mathcal{H}}{\partial q} = kq$ (8.8)

Tehát

$$\dot{q} = \frac{1}{m}p \qquad \qquad \dot{p} = -kq \tag{8.9}$$

Amit fel is írhatunk mátrixosan, kis gyakorlásként:

$$\begin{pmatrix} \dot{q} \\ p \end{pmatrix} = \begin{pmatrix} 0 & 1/m \\ -\omega^2 & 0 \end{pmatrix} \begin{pmatrix} q \\ p \end{pmatrix} \tag{8.10}$$

Ahol $\omega^2 = \frac{k}{m}$. Kis megjegyzésként egyébként ezzel is szokás felírni a Lagrange-ot: a potenciális tag így

$$V = \frac{1}{2}kq^2 = \frac{1}{2}m\omega^2 q^2 \tag{8.11}$$

Ennek a feladatnak a megoldását persze már ismerjük: deriváljuk le még egyszer az egyik Hamilton egyenletet.

$$\ddot{q} = \frac{1}{m}\dot{p} = -\omega^2 q \tag{8.12}$$

Tehát

$$q(t) = A\cos(\omega t + \varphi) \tag{8.13}$$

$$\dot{q}(t) = -\omega A \sin(\omega t + \varphi) \tag{8.14}$$

amit visszaírva megvan az impulzus is:

$$p(t) = -m\omega A \sin(\omega t + \varphi) \tag{8.15}$$

Ezt is fel lehet írni vektorosan:

$$\begin{pmatrix} q \\ p \end{pmatrix} (t) = A \begin{pmatrix} \cos(\omega t + \varphi) \\ -m\omega\sin(\omega t + \varphi) \end{pmatrix}$$
 (8.16)

Kicsit nézegetve ezt szét tudjuk kapni pár részre:

$$\begin{pmatrix} q \\ p \end{pmatrix} (t) = A \begin{pmatrix} 1 & 0 \\ 0 & -m\omega \end{pmatrix} \begin{pmatrix} \cos(\omega t + \varphi) \\ \sin(\omega t + \varphi) \end{pmatrix}$$
(8.17)

Rajzoljuk le ennek a mozgásnak a fázisterét! Ehhez képzeljünk el egy olyna koordinátarendszert, aminek egyik tengelye q, a másik pedig p. Rakjuk le a tollunkat valamilyen kezdeti pontban, ami megfelel a t=0 pillanatnak, aztán ahogy telik az idő, kövessük le egy görbével azt, hogy melyik pontokba halad tovább a rendszer. Ez a trajektória, amit a rendszerünk a mozgás során bejár.

A fenti példánkra ez relatíve egyszerű: van jobb oldalt egy körünk. Ez meg van szorozva egy nyújtást végző mátrixxal, meg valami irreleváns konstanssal. Tehát a fázistér nem lesz más, mint egy ellipszis.

8.2. Csillapított oszcillátor

Nézzük meg ehhez képest, hogy mi lesz a csillapított oszcillátor mozgásegyenlete. Az ő Lagrange-a:

$$\mathcal{L} = \left(\frac{1}{2}m\dot{x}^2 - \frac{1}{2}m\omega^2 x^2\right)e^{\gamma t} \tag{8.18}$$

szép explicit időfüggést tertalmaz. De nem baj, attól még tudunk számolni, például egy kanonikus impulzust:

$$p = m\dot{x}e^{\gamma t} \qquad \qquad \dot{x} = \frac{1}{m}e^{-\gamma t}p \tag{8.19}$$

Szóval

$$\dot{q}p = \frac{1}{m}e^{-\gamma t}p^2 \tag{8.20}$$

$$\mathcal{L} = \frac{1}{2m}p^2e^{-\gamma t} - \frac{1}{2}m\omega^2 x^2 e^{\gamma t}$$
(8.21)

Összerakva:

$$\mathcal{H} = \frac{1}{2m}p^2 e^{-\gamma t} + \frac{1}{2}m\omega^2 x^2 e^{\gamma t}$$
 (8.22)

Amiből a mozgásegyenletek:

$$\dot{x} = \frac{1}{m} p e^{-\gamma t} \qquad \qquad \dot{p} = -m\omega^2 x e^{\gamma t} \tag{8.23}$$

Mit tudunk mondani ezeknek a megoldásáról? Nézzük meg először, hogy van-e fixpontja az egyenleteknek:

$$0 = \frac{1}{m} p e^{-\gamma t} \to p = 0 \tag{8.24}$$

$$0 = -m\omega^2 x e^{\gamma t} \to x = 0 \tag{8.25}$$

Van, méghozzá az origó. Kis mellébeszéléssel 5 nézzük meg, stabil-e. Térítsük ki az egyensúlyi pontból a rendszert egy kis Δx és Δp távolsággal. Ekkor:

$$\dot{x} = \frac{1}{m} e^{-\gamma t} \Delta p \qquad \qquad \dot{p} = -m\omega^2 e^{\gamma t} \Delta x \tag{8.26}$$

Ha kellően sok idő eltelt, akkor $e^{-\gamma t} \approx 0$, tehát az elsőt elhanyagolhatjuk. A második előjele pont ellentétes a kitérítés irányával: ez a pont egy stabil vonzópont lesz. A fázistéren ezt fel tudjuk rajzolni a sima oszcillátor alapján, csak egy különbéggel: a trajektóriák az origóba tartanak. Attól föggően, hogy túlcsillapított-e az oszcillátorunk; vagy keringenek körülötte párat, vagy rögtön belezuhannak.

 $^{^5}$ Az érdeklődőknek: igazából ez egy jó nagy mellébeszélés, aminek szinte semmi igazságalapja nincs. Valójában a stabilitásvizsgálatot itt célszerűbb $q-\dot{q}$ térben elvégezni, mert ott kiderül, hogy ez egy vonzó fixpont, mert a fixpontban kiértékelt Jacobi sajátértékeinek valós része mindig negatív. A képzetes részük pedig megadják a mozgás oszcilláló mivoltját: ha eltűnnek, túlcsillapítást tapasztalunk.

8.3. Hamilton rugós ingára

22. ábra. Rugós inga.

Véve egy l nyugalmi hosszúságú rugót, és azt felfüggesztve egy plafonra, a Lagrange-unk:

$$\mathcal{L} = \frac{1}{2}m\dot{r}^2 + \frac{1}{2}m(l+r)^2\dot{\varphi}^2 + mg(l+r)\cos\varphi - \frac{1}{2}m\omega^2r^2$$
 (8.27)

Hogy áttérjünk a Hamiltoni frmalizmusra, kellenek először is a kanonikus impulzusok:

$$p_r = \frac{\partial \mathcal{L}}{\partial \dot{r}} = m\dot{r}$$
 $p_{\varphi} = \frac{\partial \mathcal{L}}{\partial \dot{\varphi}} = m(l+r)^2 \dot{\varphi}$ (8.28)

Illetve ezeknek az invertálása, hogy ki tudjuk fejeznei a sebességeket az impulzusokkal:

$$\dot{r} = \frac{1}{m} p_r \qquad \qquad \dot{\varphi} = \frac{1}{m(l+r)^2} p_{\varphi} \tag{8.29}$$

Tehát a Hamiltonhoz kellő tagok:

$$\dot{\mathbf{q}}\mathbf{p} = \frac{1}{m}p_r^2 + \frac{1}{m(l+r)^2}p_\varphi^2 \tag{8.30}$$

$$\mathcal{L} = \frac{1}{2m}p_r^2 + \frac{1}{2m(l+r)^2}p_{\varphi}^2 + mg(l+r)\cos\varphi - \frac{1}{2}m\omega^2r^2$$
(8.31)

Összekombinálva, a Hamilton:

$$\mathcal{H} = \frac{1}{m}p_r^2 + \frac{1}{m(l+r)^2}p_\varphi^2 - \frac{1}{2m}p_r^2 - \frac{1}{2m(l+r)^2}p_\varphi^2 - mg(l+r)\cos\varphi + \frac{1}{2}m\omega^2r^2$$
 (8.32)

$$= \frac{1}{2m}p_r^2 + \frac{1}{2m(l+r)^2}p_\varphi^2 - mg(l+r)\cos\varphi + \frac{1}{2}m\omega^2r^2$$
(8.33)

Ebből a mozgásegyenleteket egy-egy deriválással kapjuk:

$$\dot{r} = \frac{\partial \mathcal{H}}{\partial p_r} = \frac{1}{m} p_r$$
 $\dot{\varphi} = \frac{\partial \mathcal{H}}{\partial p_{\varphi}} = \frac{1}{m} \frac{1}{(l+r)^2} p_{\varphi}$ (8.34)

$$\dot{r} = \frac{\partial \mathcal{H}}{\partial p_r} = \frac{1}{m} p_r \qquad \qquad \dot{\varphi} = \frac{\partial \mathcal{H}}{\partial p_{\varphi}} = \frac{1}{m} \frac{1}{(l+r)^2} p_{\varphi} \qquad (8.34)$$

$$-\dot{p}_r = \frac{\partial \mathcal{H}}{\partial r} = -\frac{1}{m} \frac{1}{(l+r)^3} p_{\varphi}^2 - mg \cos \varphi + m\omega^2 r \qquad -\dot{p}_{\varphi} = \frac{\partial \mathcal{H}}{\partial \varphi} = mg(l+r) \sin \varphi \qquad (8.35)$$

Megkaptuk a négy differenciálegyenletet, ami leírja a mozgást. Hogy valamit ránézésre is tudjunk róla mondani, nézzük meg, hogy van-e egyensúlyi pontja ezeknek, illetve ha igen, akkor hol. Egyensúly akkor van, ha a fenti egyenletek mindegyike nulla, tehát:

$$0 = \frac{1}{m}p_r \qquad 0 = \frac{1}{m}\frac{1}{(l+r)^2}p_\varphi \qquad (8.36)$$

$$\varphi + m\omega^2 r \qquad 0 = mg(l+r)\sin\varphi \qquad (8.37)$$

$$0 = -\frac{1}{m} \frac{1}{(l+r)^3} p_{\varphi}^2 - mg \cos \varphi + m\omega^2 r \qquad 0 = mg(l+r) \sin \varphi \qquad (8.37)$$

Ezek szerint

$$0 = p_r 0 = p_{\varphi} (8.38)$$

$$0 = -\frac{1}{m} \frac{1}{(l+r)^3} p_{\varphi}^2 - mg \cos \varphi + m\omega^2 r \qquad 0 = \varphi$$
 (8.39)

Innen a legutolsó előtti a legbonyolultabb. Bele írva a többit, azt látjuk, hogy

$$0 = -mg + m\omega^2 r \tag{8.40}$$

$$g = \omega^2 r \tag{8.41}$$

$$\frac{g}{r} = \omega^2 \tag{8.42}$$

Tehát ha az inga frekvenciája megegyezik a rugóéval. Ez megérzésre is speciális pont, jó látni, hogy a matekból is kijön.

23. ábra. Rugós inga mozgása, Wikipédiáról.

8.4. Mátrixos feladatok

Erre egy adott példát nem nézünk meg, viszont: itt is lehet kisrezgéseket vizsgálni mátrixosan. A Lagrange általános esetben:

$$\mathcal{L} = \frac{1}{2}\dot{\mathbf{q}}^{T}\underline{\underline{M}}\dot{\mathbf{q}} - \frac{1}{2}\mathbf{q}^{T}\underline{\underline{D}}\mathbf{q}$$
(8.43)

Amiből kellenek nekünk a kanonikus impulzusok. Egy szimbolikus deriválással

$$\mathbf{p} = \underline{M}\dot{\mathbf{q}} \qquad \qquad \mathbf{p}^T = \dot{\mathbf{q}}^T \underline{M} \qquad (8.44)$$

Amit invertálnunk kell, hogy megkapjuk a sebességeket az impulzusokkal kifejezve:

$$\underline{M}^{-1}\mathbf{p} = \dot{\mathbf{q}} \qquad \qquad \mathbf{p}^{T}\underline{M}^{-1} = \dot{\mathbf{q}}^{T} \qquad (8.45)$$

Beírva a Lagrange-ba:

$$\mathcal{L}(q,p) = \frac{1}{2}\mathbf{p}^{T}\underline{\underline{M}}^{-1}\underline{\underline{M}}\underline{\underline{M}}^{-1}\mathbf{p} - \frac{1}{2}\mathbf{q}^{T}\underline{\underline{D}}\mathbf{q}$$
(8.46)

$$\mathcal{L}(q,p) = \frac{1}{2}\mathbf{p}^{T}\underline{\underline{M}}^{-1}\mathbf{p} - \frac{1}{2}\mathbf{q}^{T}\underline{\underline{D}}\mathbf{q}$$
(8.47)

Ehhez jön még hozzá

$$\dot{\mathbf{q}}^T \mathbf{p} = \mathbf{p}^T \underline{M}^{-1} \mathbf{p} \tag{8.48}$$

Amiket beírva:

$$\mathcal{H} = \frac{1}{2} \mathbf{p}^{T} \underline{\underline{M}}^{-1} \mathbf{p} + \frac{1}{2} \mathbf{q}^{T} \underline{\underline{D}} \mathbf{q}$$
 (8.49)

Ebből a Hamilton egyenletek egyszerűen deriválással kijönnek:

$$\dot{\mathbf{q}} = \underline{M}^{-1}\mathbf{p} \qquad \qquad \dot{\mathbf{p}} = -\underline{D}\mathbf{q} \tag{8.50}$$

Deriválva mégegyszer az elsőt, és behelyettesítve a másodikat:

$$\ddot{\mathbf{q}} = \underline{M}^{-1}\dot{\mathbf{p}} \tag{8.51}$$

$$= -\underline{\underline{M}}^{-1}\underline{\underline{D}}\mathbf{q} \tag{8.52}$$

egy ismerős egyenletet kapunk: innentől megint jöhetnek a normálmódusok, pont ahogy eddig.

8.5. Poisson zárójelek - perdület

Barátkozzunk kicsit a Poisson-zárójelekkel! Definíció szerint:

$$\{f,g\} = \partial_q f \partial_p g - \partial_p f \partial_q g \tag{8.53}$$

ami jó, mert velük le lehet írni egy tetszőleges bárminek az időfejlődését:

$$\frac{\mathrm{d}}{\mathrm{d}t}f = \{f, \mathcal{H}\} + \partial_t f \tag{8.54}$$

Különös szerepük van még a Hamiltoni mechanikában a kanonikus változók Poisson-zárójeleinek is. Definíció szerint, q és p akkor kanonikusak, ha:

$$\{q_i, q_j\} = \frac{\partial q_i}{\partial q_l} \frac{\partial q_j}{\partial p_l} - \frac{\partial q_i}{\partial p_l} \frac{\partial q_j}{\partial q_l}$$
(8.55)

$$=0 (8.56)$$

(hasonlóan a p-kre), illetve

$$\{q_i, p_j\} = \frac{\partial q_i}{\partial q_l} \frac{\partial p_j}{\partial p_l} - \frac{\partial q_i}{\partial p_l} \frac{\partial p_j}{\partial q_l}$$
(8.57)

$$=\delta_{il}\delta_{jl}-0\tag{8.58}$$

$$=\delta_{ij} \tag{8.59}$$

Számoljunk ki valami bonyolultabbat is, például a perdületek Poisson-zárójelét:

$$\{L_i, L_j\} = ?$$
 (8.60)

ahol

$$L_i = \epsilon_{ijk} x_j p_k \tag{8.61}$$

Beírva:

$$\{L_i, L_j\} = \frac{\partial L_i}{\partial q_l} \frac{\partial L_j}{\partial p_l} - \frac{\partial L_i}{\partial p_l} \frac{\partial L_j}{\partial q_l}$$
(8.62)

Például az első:

$$\frac{\partial L_i}{\partial q_l} = \frac{\partial \epsilon_{ijk} q_j p_k}{\partial q_l} = \epsilon_{ijk} p_k \frac{\partial q_j}{\partial q_l} = \epsilon_{ijk} p_k \delta_{jl} = \epsilon_{ilk} p_k \tag{8.63}$$

Teljesen hasonlóan a többi is:

$$\frac{\partial L_j}{\partial p_l} = \frac{\partial \epsilon_{jmn} q_m p_n}{\partial p_l} = \epsilon_{jmn} q_m \frac{\partial p_n}{\partial p_l} = \epsilon_{jml} q_m \tag{8.64}$$

Szóval összegezve:

$$\{L_i, L_j\} = (\epsilon_{ilk}p_k)(\epsilon_{jml}q_m) - (\epsilon_{ipl}q_p)(\epsilon_{jln}p_n)$$
(8.65)

$$= \epsilon_{ilk} \epsilon_{jml} p_k q_m - \epsilon_{ipl} \epsilon_{jln} q_p p_n \tag{8.66}$$

Használjuk ki, hogy

$$\epsilon_{oab}\epsilon_{oxy} = \delta_{ax}\delta_{by} - \delta_{ay}\delta_{bx} \tag{8.67}$$

Meg permutáljunk párat ciklikusan, amivel

$$\epsilon_{ilk}\epsilon_{jml}p_kq_m = \epsilon_{lik}\epsilon_{ljm}p_kq_m \tag{8.68}$$

$$= \delta_{ij}\delta_{km}p_kq_m - \delta_{im}\delta_{jk}p_kq_m \tag{8.69}$$

$$= \delta_{ij} p_k q_k - p_j q_i \tag{8.70}$$

Illetve a másikra:

$$\epsilon_{ipl}\epsilon_{jln}q_pp_n = \epsilon_{lip}\epsilon_{ljn}q_pp_n \tag{8.71}$$

$$= \delta_{ij}\delta_{pn}q_pp_n - \delta_{in}\delta_{pj}q_pp_n \tag{8.72}$$

$$= \delta_{ij}q_p p_p - q_i p_i \tag{8.73}$$

Ebben van egy összegelt index: az nyugodan átírható, mondjuk k-ra. Ezzel a teljes:

$$\{L_i, L_j\} = \delta_{ij} p_k q_k - p_j q_i - \delta_{ij} p_k q_k + q_j p_i \tag{8.74}$$

$$=q_i p_i - p_i q_i \tag{8.75}$$

$$= (\delta_{in}\delta_{im} - \delta_{im}\delta_{in})q_n p_m \tag{8.76}$$

$$= \epsilon_{oji} \epsilon_{onm} q_n p_m \tag{8.77}$$

$$= \epsilon_{oji}(\epsilon_{onm}q_n p_m) \tag{8.78}$$

$$= \epsilon_{oji} L_o \tag{8.79}$$

Tehát:

$$\{L_i, L_j\} = \epsilon_{kji} L_k \tag{8.80}$$

8.6. Kanonikus transzformációk - oszcillátor

Vizsgáljuk még egy picit az egy dimenziós rugónkat:

$$\mathcal{H} = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 q^2 \tag{8.81}$$

Ezt már ismerjük, de láttuk, hogy ránézésre nem olyan könnyű megoldani a Hamilton egyenleteket. Szóval: térjünk át új változókra:

$$q = \sqrt{\frac{2P}{m\omega}} \sin Q \tag{8.82}$$

$$p = \sqrt{2Pm\omega}\cos Q \tag{8.83}$$

De ez lehet hogy baj: honnan tudjuk, hogy rájuk is igaz a Hamiltoni mechanika? Ez akkor garantált, ha a transzformáció kanonikus. Ennek belátására sok mód van: például ha belátjuk, hogy

$${Q, P}_{q,p} = {q, p}_{Q,P} = 1$$
 (8.84)

illetve a másik kettő definiáló zárójelet. Ezt kifejtve:

$$\{q, p\} = \frac{\partial q}{\partial Q} \frac{\partial p}{\partial P} - \frac{\partial q}{\partial P} \frac{\partial p}{\partial Q}$$
 (8.85)

$$= \sqrt{\frac{2P}{m\omega}} \cos Q \frac{2m\omega \cos Q}{2\sqrt{2Pm\omega}} + \frac{\frac{2}{m\omega} \sin Q}{2\sqrt{\frac{2P}{m\omega}}} \sqrt{2Pm\omega} \sin Q$$
 (8.86)

$$=\cos^2 Q + \sin^2 Q = 1 \tag{8.87}$$

A többi itt triviálisan teljesül. Beláttuk, hogy ez egy kanonikus transzformáció, az új változóink is kanonikusak, tehát teljesülnek velük a Hamilton egyenletek.

Használjuk is fel ezeket a változókat! Velük átírhatjuk a Hamiltont:

$$q^2 = \frac{2P}{m\omega}\sin^2 Q\tag{8.88}$$

$$p^2 = 2Pm\omega\cos^2 Q \tag{8.89}$$

tehát

$$\mathcal{H} = \frac{2Pm\omega\cos^2Q}{2m} + \frac{1}{2}m\omega^2 \frac{2P}{m\omega}\sin^2Q \tag{8.90}$$

$$= P\omega\cos^2 Q + \omega P\sin^2 Q \tag{8.91}$$

$$\mathcal{H} = P\omega \tag{8.92}$$

Ez jóval egyszerűbb: vele a Hamilton egyenletek

$$\dot{P} = 0 \tag{8.93}$$

$$\dot{Q} = \omega \tag{8.94}$$

Ezt meg is tudjuk oldani:

$$P = \text{konst.} = \frac{E}{\omega} \tag{8.95}$$

$$Q = \omega(t - t_0) \tag{8.96}$$

Ezt könnyebb felrajzolni a fázistérre is, illetve a mozgás periódusidejét is könnyen megkapjuk, mivel:

$$p \propto \cos Q \tag{8.97}$$

$$q \propto \sin Q \tag{8.98}$$

Ezért a mozgás $Q+2\pi$ -re változatlan. Ezt kifejtve tehát egy periódus alatt

$$Q(t) + 2\pi = Q(t+\tau) \tag{8.99}$$

$$\omega(t - t_0) + 2\pi = \omega(t + \tau - t_0) \tag{8.100}$$

$$\tau = \frac{2\pi}{\omega} \tag{8.101}$$

9. óra

A múlt órán elkezdtünk megbarátkozni a Hamiltoni mechanika módszereivel. Nézzünk most egy részletes példát, amiben összefoglalunk nagyjából mindent ami kellhet egy tipikus feladat megoldásához.

9.1. Teljes rendszervizgálat

9.1.1. Kanonikus transzformációk

Vegyünk egy képzelt rendszert, amely Hamilton függvénye:

$$\mathcal{H} = \frac{P^2}{2m\sin^2 Q} e^{-\gamma t} + a(\sin\cos Q)^2 e^{\gamma t} \tag{9.1}$$

szeretnénk ezt megoldani, de ránézésre nem tűnik túl egyszerűnek vagy szépnek. Ilyenkor mindig megpróbálkozhatunk (sokféleképpen) egy kanonikus transzformáció segítségével szebb alakra hozni a Hamiltont. Azt, hogy hogyan tudjuk szebbé transzformálni ízlés kérdés: itt a fizikai intuícióra $^{\text{TM}}$ kell hivatkoznunk.

Például ennél a rendszernél: én szeretném, hogy a kinetikus tagunkban csak a kanonikus impulzus jelenjen meg. Szóval hasraütésre legyen

$$p = \frac{P}{\sin Q} \tag{9.2}$$

Ami majd kiderül, hogy nem teljesen jó, de azt is jó megtanulni, hogy hogyan lehet korrigálni. Ezen felül a sin $\cos Q$ se túl szép: legyen

$$\cos Q = q \longrightarrow Q = \arccos q$$
 (9.3)

amivel

$$P = p \sin \arccos q = p\sqrt{1 - q^2} \tag{9.4}$$

Vajon ez kanonikus transzformáció-e? Nézzük meg a Poisson-zárójelek segítségével:

$$\{Q, P\}_{q,p} = \frac{\partial Q}{\partial q} \frac{\partial P}{\partial p} - \frac{\partial Q}{\partial p} \frac{\partial P}{\partial a}$$

$$\tag{9.5}$$

$$= -\frac{1}{\sqrt{1-q^2}}\sqrt{1-q^2} - 0 \tag{9.6}$$

$$= -1 \tag{9.7}$$

Ez pont egy előjellel tér el attól amit szeretnénk. Módosítsuk a változóinkat úgy, hogy ez magjavuljon: legyen például

$$p = -\frac{P}{\sin Q} \tag{9.8}$$

amivel már jók vagyunk. Ezen felül meg kell még nézni a másik két zárójelet is:

$$\{Q,Q\}_{q,p} = \frac{\partial Q}{\partial q} \frac{\partial Q}{\partial p} - \frac{\partial Q}{\partial p} \frac{\partial Q}{\partial q}$$

$$\tag{9.9}$$

$$= 0 - 0 = 0 \tag{9.10}$$

illetve az egy fokkal bonyolultabb:

$$\{P, P\}_{q,p} = \frac{\partial P}{\partial q} \frac{\partial P}{\partial p} - \frac{\partial P}{\partial p} \frac{\partial P}{\partial q}$$
 (9.11)

$$= -\frac{pq}{\sqrt{1-q^2}}\sqrt{1-q^2} + \sqrt{1-q^2}\frac{pq}{\sqrt{1-q^2}} = 0 \tag{9.12}$$

Ez most még triviális volt, de nem baj, ha gyakorlunk arra az esetre, amikor nem lesz az (több dmenziós esetben). Minden esetre beláttuk, hogy ezzel a változócserével is kanonikusak maradunk: érvényesek rájuk is a Hamilton egyenletek.

9.1.2. Hamilton egyenletek

Kihasználva a fentieket, a trafó után a Hamiltonunk:

$$\mathcal{H} = \frac{p^2}{2m}e^{-\gamma t} + a\sin^2 q \ e^{\gamma t} \tag{9.13}$$

A feladat kedvéért most csalok egy kicsit: az előző koordináták alapján q csak ± 1 közé eshetne. Most demonstrációs célokkal legyen $q \in [-\pi, \pi]$. Ezzel a megkötéssel tudjuk ábrázolni a potenciális energia exponenciális lecsengés nélküli részét:

24. ábra. Lecsengés nélküli potenciális energia.

Mit tudunk mondani a mozgásról? Ehhez először is érdemes felírnunk a mozgásegyenleteket:

$$\dot{q} = \frac{\partial \mathcal{H}}{\partial p} \qquad \qquad \dot{p} = -\frac{\partial \mathcal{H}}{\partial p} \tag{9.14}$$

$$m\dot{q} = p \ e^{-\gamma t} \qquad \qquad \dot{p} = -2\sin q \cos q \ e^{\gamma t} \tag{9.15}$$

Megoldani őket természetesen már más tészta: numerikusan biztos lehetséges. Analitikusan és vizuálisan viszont mégis tudunk mondani valamit, a fázisterek és a fixpontvizsgálat módszereinek használatával.

9.1.3. Fázistér

A fázistér felrajzolásához kelleni fog most, hogy milyen kezdeti energiával indult a rendszer. Legyen ez most

$$\mathcal{H}(t=0) = \frac{p^2}{2m} + a\sin^2 q = a \tag{9.16}$$

Mivel egy disszipatív rendszerünk van, az energia ennél csak kisebb lesz ⁶: a fázisterünk határai

$$\frac{p^2}{2m} + a\sin^2 q \le a \tag{9.17}$$

$$\frac{p^2}{2m} \le a - a\sin^2 q = a\cos^2 q \tag{9.18}$$

$$p^2 \le 2ma\cos^2 q \tag{9.19}$$

$$p^2 \le 2ma\cos^2 q \tag{9.19}$$

$$|p| \le \sqrt{2ma} |\cos q| \tag{9.20}$$

25. ábra. A fázisterünk határai egy adott kezdeti energiával.

9.1.4. Fixpontvizsgálat

Van nekünk egy egyenletrendszerünk, mégpedig

$$\dot{q} = \frac{p}{m} e^{-\gamma t}$$

$$\dot{p} = -2\sin q \cos q e^{\gamma t}$$

$$(9.21)$$

$$\dot{p} = -2\sin q\cos q \ e^{\gamma t} \tag{9.22}$$

Az első relatívve könnyű kérdés amit fel tudunk tenni: van-e ezeknek egy olyan pontja, amibe ha a rendszer belekerül (akár mert odarakjuk, akár magától) akkor ott is marad? Ezek a (q_0, p_0) fixpontok, amiket úgy kapunk, hogy a fenti egyenleteket nullává tesszük:

$$0 = \frac{p_0}{m} e^{-\gamma t} \tag{9.23}$$

$$0 = -2\sin q_0 \cos q_0 \ e^{\gamma t} \tag{9.24}$$

Ennek megoldásai:

$$p_0 = 0 (9.25)$$

$$q_0 \in \{0, \pm \frac{\pi}{2}, \pm \pi\} \tag{9.26}$$

⁶Ezt mindjárt be is látjuk.

Fixpontból három fajta lehet:

- Vonzó, ami bevonza a trajektóriákat. Ide tarthat a rendszer végtelen idő után.
- Taszító, ami taszítja a trajektóriákat. Itt nagyon nem akar lenni a rendszer.
- Nyeregpont, ami egyes irányokban vonz, másik irányokban pedig taszít.

Hogyan döntsük el egy pontról, hogy ő melyik? Sokféleképpen. Mi most a Lineáris Stabilitásvizsgálat módszerét fogjuk megnézni. Eszerint, ha van egy egyenletrendszerünk, akkor annak tudjuk venni a Jacobi mátrixát:

$$\underline{\underline{J}} = \begin{pmatrix} \partial_q \dot{q} & \partial_p \dot{q} \\ \partial_q \dot{p} & \partial_p \dot{p} \end{pmatrix} \tag{9.27}$$

Amit ki tudunk értékelni egy-egy fixpontban.

Ezután ki kell számítani a fixpontban vett mátrix λ sajátértékeit:

- Ha $\forall \mathcal{R}e(\lambda) > 0$, akkor taszító.
- Ha $\forall \mathcal{R}e(\lambda) < 0$, akkor vonzó.
- Ha is-is, akkor nyeregpont.
- +1 Illetve ha $\mathcal{I}m(\lambda) \neq 0$, akkor oszcilláló mozgást fogunk tapasztalni.

Csináljuk ezt meg most a mi egyenleteinkkel! Először is, a Jacobi:

$$\underline{\underline{J}} = \begin{pmatrix} 0 & \frac{e^{-\gamma t}}{m} \\ -2e^{\gamma t}(\cos^2 q - \sin^2 q) & 0 \end{pmatrix}$$
(9.28)

Vegyük ezt most a $p=0, q=\pi/2$ pontban! Ott $\sin^2\frac{\pi}{2}=1, \cos^2\frac{\pi}{2}=0$, tehát a Jacobi:

$$\underline{\underline{J}}|_{\pi/2} = \begin{pmatrix} 0 & \frac{e^{-\gamma t}}{m} \\ 2e^{\gamma t} & 0 \end{pmatrix} \tag{9.29}$$

Ennek a sajátértékei:

$$\lambda^2 = 2e^{\gamma t} \frac{e^{-\gamma t}}{m} = \frac{2}{m} \tag{9.30}$$

Az egyik pozitív, a másik negatív: ez tehát egy nyeregpont lesz.

Nézzük meg ugyanezt a $0, \pm \pi$ pontokban. Ott

$$\underline{\underline{J}}|_{\pi/2} = \begin{pmatrix} 0 & \frac{e^{-\gamma t}}{m} \\ -2e^{\gamma t} & 0 \end{pmatrix} \tag{9.31}$$

aminek a sajátértékei

$$\lambda^2 = -\frac{2}{m} \tag{9.32}$$

tisztán képzetesek. Na erről nem mondott semmit a lineáris stabilitásvizsgálat: nem is fog. ⁷ Itt kivételesen tudunk viszont trükközni egyet: a Hamiltoni mechanikánkból térjünk vissza a jó öreg Lagrange-ira:

$$m\ddot{q} = \dot{p}e^{-\gamma t} - \gamma p e^{-\gamma t} \tag{9.33}$$

$$m\ddot{q} = -2\sin q\cos q - \gamma p e^{-\gamma t} \tag{9.34}$$

⁷Itt az érdeklődőknek ajánlom vagy a Center Manifold Theory módszertanát, ha egy biztosabb módszerre kíváncsiak; vagy a Lyapunov stabilitást, ha kreatívan tudnak megoldásokat kihúzni egy kalapból.

És visszadézve a csillapított oszcillátort:

$$p = \frac{\partial \mathcal{L}}{\partial \dot{q}} = m\dot{q}e^{\gamma t} \tag{9.35}$$

tehát

$$m\ddot{q} = -2\sin q\cos q - \gamma m\dot{q} \tag{9.36}$$

Nevezzük el \dot{q} -t mondjuk z-nek! Ekkor

$$\dot{j} = z \tag{9.37}$$

$$m\dot{z} = -2\sin q\cos q - \gamma mz \tag{9.38}$$

Erre ugyanúgy rá tudjuk küldeni a fixpontvizsgálatot. A Jacobi itt:

$$\underline{\underline{J}} = \begin{pmatrix} 0 & 1\\ -\frac{2}{m}(\cos^2 q - \sin^2 q) & -\gamma \end{pmatrix} \tag{9.39}$$

Amit már nullában (illetve $\pm \pi$ -ben) kiértékelve kicsit mást kapunk:

$$-\lambda(-\gamma - \lambda) + \frac{2}{m} = 0 \tag{9.40}$$

$$\lambda^2 + \gamma\lambda + \frac{2}{m} = 0 \tag{9.41}$$

$$\lambda_{\pm} = -\frac{\gamma}{2} \pm \frac{1}{2} \sqrt{\gamma^2 - \frac{8}{m}} \tag{9.42}$$

Bárhogy nézzük, $\sqrt{\gamma^2-\frac{8}{m}}$ kissebb lesz gammánál: még a plusszos megoldás esetében sem tudja pozitívvá tenni a sajátértéket. Tehát mindkettő negatív: ezek a pontok vonzópontok lesznek. Mindezeknek a tudatában fel tudjuk rajzolni a fázisteret, és ránézésre megmondani, hogy egy tetszőleges kezdeti feltételekből indított ponttal nagyjából mi fog történni.

26. ábra. A rendszerünk fázistere, feltüntetve benne a fixpontokat és a trajektóriákat.

9.1.5. Időfüggő mennyiségek

Kíváncsiak lehetünk rá, hogy ebben a rendszerben hogyan változnak a koordinátákon kívül egyéb dolgok is. Nézzük meg például, hogy hogyan változik a kinetikus energia az időben:

$$\dot{K} = \{K, \mathcal{H}\} + \partial_t K \tag{9.43}$$

ahol

$$K = \frac{p^2}{2m}e^{-\gamma t} \tag{9.44}$$

Számoljuk ki a parciális deriváltját:

$$\partial_t K = -\gamma \frac{p^2}{2m} e^{-\gamma t} = -\gamma K \tag{9.45}$$

illetve a Poisson zárójelét:

$$\{K, \mathcal{H}\} = \frac{\partial K}{\partial q} \frac{\partial \mathcal{H}}{\partial p} - \frac{\partial K}{\partial p} \frac{\partial \mathcal{H}}{\partial q} =$$
 (9.46)

$$0\frac{\partial \mathcal{K}}{\partial p} - \frac{\partial K}{\partial p}\frac{\partial V}{\partial q} = \tag{9.47}$$

$$= -\frac{p}{m}e^{-\gamma t} \cdot 2a\sin q\cos qe^{\gamma t} \tag{9.48}$$

$$= -\frac{2a}{m}p\sin q\cos q \tag{9.49}$$

Hasonlóképp, a potenciális energiára:

$$\partial_t V = \gamma V \tag{9.50}$$

$$\{V, \mathcal{H}\} = \frac{\partial V}{\partial q} \frac{\partial \mathcal{H}}{\partial p} - \frac{\partial V}{\partial p} \frac{\partial \mathcal{H}}{\partial q}$$
(9.51)

$$= \frac{\partial V}{\partial q} \frac{\partial K}{\partial p} - 0 \tag{9.52}$$

$$=\frac{2a}{m}p\sin q\cos q\tag{9.53}$$

Kicsit átírva a dolgokat

$$K = \frac{p^2}{2m}e^{-\gamma t} \qquad \longrightarrow \qquad p = \sqrt{2mK}e^{\gamma t/2} \tag{9.54}$$

$$V = a\sin^2 q e^{\gamma t} \qquad \longrightarrow \qquad \sin q = \sqrt{\frac{V}{a}} e^{-\gamma t/2} \qquad (9.55)$$

utóbbiból jön még

$$\sin q = \sqrt{\frac{V}{a}}e^{-\gamma t/2} \tag{9.56}$$

$$\sin^2 q = \frac{V}{a} e^{-\gamma t} \tag{9.57}$$

$$\cos^2 q = 1 - \frac{V}{a}e^{-\gamma t} \tag{9.58}$$

$$\cos q = \sqrt{1 - \frac{V}{a}}e^{-\gamma t/2} \tag{9.59}$$

Ezeket beírva:

$$\dot{K} = -\frac{2a}{m}\sqrt{2mK}e^{\gamma t/2}\sqrt{\frac{V}{a}}e^{-\gamma t/2}\sqrt{1 - \frac{V}{a}}e^{-\gamma t/2} - \gamma K$$
(9.60)

$$\dot{K} = -2\sqrt{2\frac{a}{m}KV\left(1 - \frac{V}{a}\right)}e^{-\gamma t/2} - \gamma K \tag{9.61}$$

$$\dot{V} = 2\sqrt{2\frac{a}{m}KV\left(1 - \frac{V}{a}\right)}e^{-\gamma t/2} + \gamma V \tag{9.62}$$

Ami szintén egy teljesen valid diffegyenlet-rendszer. Érdekes lehet még

$$(K + V) = -\gamma(K - V) \tag{9.63}$$

$$(K - V) = -4\sqrt{2\frac{a}{m}KV\left(1 - \frac{V}{a}\right)}e^{-\gamma t/2} - \gamma(K + V)$$

$$(9.64)$$

Kellően sok idő után ez közelítőleg

$$\dot{E} = -\gamma \Delta \tag{9.65}$$

$$\dot{\Delta} = -\gamma E \tag{9.66}$$

tehát

$$\ddot{E} = \gamma^2 E \qquad \qquad \ddot{\Delta} = \gamma^2 \Delta \tag{9.67}$$

mind az összenergia, mind a kinetikus és potenciális energiák különbsége exponenciálisan lecseng.

9.1.6. Periódusidő

Legyen most $\gamma = 0!$ Tehát

$$\mathcal{H} = \frac{p^2}{2m} + a\sin^2 q \tag{9.68}$$

Ilyenkor csak keringés van: mennyi a frekvenciája? Ehhez nézzünk egy új koodrináta trafót:

$$J = \oint_{E=E_0} p \mathrm{d}q \tag{9.69}$$

amit egy olyan körintegrálla nézünk, ahol konstans az energia. Legyen a t=0 pillanatban ez valami E szám. Ekkor, ha megmarad:

$$E = \frac{p^2}{2m} + a\sin^2 q (9.70)$$

ami jó, mert a fenti integrálba ki kell fejeznünk

$$E = \frac{p^2}{2m} + a\sin^2 q (9.71)$$

$$E - a\sin^2 q = \frac{p^2}{2m} (9.72)$$

$$p = \pm \sqrt{2m(E - a\sin^2 q)} \tag{9.73}$$

most az élet egyszerűsítése végett legyen

$$a = E (9.74)$$

amivel

$$p_{\pm} = \pm \sqrt{2mE\cos^2 q} \tag{9.75}$$

$$p_{\pm} = \pm \sqrt{2mE} \mid \cos q \mid \tag{9.76}$$

Az integrálhoz rajzoljuk fel, hogy hogyan néz ki egy periódus: először legurulunk a lejtőn, aztán fel a másik oldalt, aztán pedig vissza ugyanúgy. Tehát a q koordinátánkban elindulunk $-\pi$ -től, elmegyünk π -ig, aztán vissza. Mindez alatt milyen az impulzus iránya? Amíg meg nem fordulunk a második dombtetőn addig pozitív, utána viszont negatív. Tehát az integrálunk határai:

$$J = \oint_{E=E_0} p \mathrm{d}q \tag{9.77}$$

$$= \int_{-\pi}^{\pi} p_{+} dq + \int_{\pi}^{-\pi} p_{-} dq$$
 (9.78)

$$= \int_{-\pi}^{\pi} p_{+} dq - \int_{-\pi}^{\pi} p_{-} dq$$
 (9.79)

$$= \int_{-\pi}^{\pi} p_{+} dq + \int_{-\pi}^{\pi} p_{+} dq$$
 (9.80)

$$=2\int_{-\pi}^{\pi} p_{+} \mathrm{d}q \tag{9.81}$$

Ezt már csak el kell végezni. Amit kapunk:

$$J = 2\sqrt{2mE} \underbrace{\int_{-\pi}^{\pi} |\cos q| \mathrm{d}q}_{-4} = 8\sqrt{2mE}$$

$$\tag{9.82}$$

egy konstans, ami egy jó impulzus változó: a kérdés az, hogy mi lesz a hozzá tartozó ω ciklikus koordináta. Tegyük fel, hogy kanonikusak. Ekkor

$$\dot{\omega} = \frac{\partial \mathcal{H}}{\partial J} \tag{9.83}$$

Mi nekünk J?

$$J = 8\sqrt{2mE} \tag{9.84}$$

$$J^2 = 32mE (9.85)$$

$$E = \frac{J^2}{32m} \tag{9.86}$$

tehát

$$\dot{\omega} = \frac{\partial E}{\partial J} = \frac{J}{16m} = \sqrt{\frac{E}{2m}} \tag{9.87}$$

Ez nem lesz más, mint a körmozgás ν frekvenciája (a 2π mentes változatban). Vele a periódusidő egyszerűen

$$T = \frac{1}{\nu} = \sqrt{\frac{2m}{E}} \tag{9.88}$$

Vegyük észre, hogy ehhez nem kellett nagyon bonyolult lépéseket elvégeznünk! Egy diffegyenletet sem kellett hozzá megoldani, csak egyet integrálni.

9.2. Hatás-szög változók

9.2.1. Inga

Nézzünk meg még egy példát erre a módszerre. Legyen ez a sima inga:

$$\mathcal{H} = \frac{p^2}{2m} - mgl\cos q \tag{9.89}$$

ebből

$$E = \frac{p^2}{2m} - mgl\cos q \tag{9.90}$$

$$\frac{p^2}{2m} = E + mgl\cos q \tag{9.91}$$

$$p^2 = 2mE + m^2 gl\cos q \tag{9.92}$$

$$p = \pm \sqrt{2mE + m^2 g l \cos q} \tag{9.93}$$

$$p = \pm \sqrt{2mE} \sqrt{1 + \frac{mgl}{2E} \cos q} \tag{9.94}$$

Mik lesznek az ő határai? Itt kell figyelembe venünk, hogy az energia fix. Legkönnyebb azt nézni, amikor az inga sebessége nulla a csúcsokban: ekkor

$$E = 0 - mgl\cos q_0 \tag{9.95}$$

$$\cos q_0 = -\frac{E}{mql} = x_0 \tag{9.96}$$

szóval lehet az első határunk nulla, a felső pedig ez. Az integrálhoz legyen a változócserénk:

$$x = \cos q \tag{9.97}$$

$$\frac{\mathrm{d}x}{\mathrm{d}q} = -\sin q \tag{9.98}$$

$$dq = -\frac{1}{\sin q} dx = -\frac{1}{\sqrt{1 - x^2}} dx \tag{9.99}$$

Tehát:

$$J = \oint_{E} p dq = 4 \cdot \int_{0}^{x_0} \sqrt{2mE} \sqrt{1 + \frac{mgl}{2E} \cos q} dq \qquad (9.100)$$

$$=4\sqrt{2mE}\int_{0}^{x_{0}}\sqrt{1-\frac{x}{2x_{0}}}\frac{1}{\sqrt{1-x^{2}}}\mathrm{d}x\tag{9.101}$$

$$=4\sqrt{2mE}\int_{0}^{x_{0}}\sqrt{\frac{1-\frac{x}{2x_{0}}}{1-x^{2}}}\mathrm{d}x\tag{9.102}$$

Ami egy szép ronda integrál lesz. Furcsamód pont egy ilyen egyszerű problémával gyűlik meg a bajunk, erre nem könnyű alkalmazni a hatásszög-formalizmust. Szóval helyette csináljunk egy kisszöges közelítést:

$$\mathcal{H} \approx \frac{p^2}{2m} + mgl\frac{q^2}{2} \tag{9.103}$$

Ez majdnem egy harmonikus oszcillátor. Ott a kitérés méter dimenziójú, tehát legyen itt is

$$qm = q' (9.104)$$

amivel

$$\mathcal{H} \approx \frac{p^2}{2m} + \frac{1}{2}m\frac{g}{l}q^{\prime 2} \tag{9.105}$$

ahol felismerhetjük $\omega = \frac{g}{l}$ -t. A harmonikus oszcillátort pedig már megoldottuk: tényleg ez az omega lesz a frekvenciánk kis szögekre.

9.2.2. Hiperbolikus potenciál

Vizsgáljuk meg a

$$V(q) = -k\frac{1}{|q|} (9.106)$$

potenciált! Felrajzolva azt látjuk, hogy ez is periodikus mozgásokat okoz, ha az energia negatív. Mi lesz ezeknek a frekvenciája?

Szisztematikusan kiindulva, írjuk fel a Hamiltont:

$$\mathcal{H} = \frac{p^2}{2m} - \frac{k}{|q|} \tag{9.107}$$

Majd fejezzük ki a lendületet konstans (negatív) energia mellett:

$$\frac{p^2}{2m} = \frac{k}{|q|} - E {(9.108)}$$

$$p^2 = 2m\frac{k}{|q|} - 2mE \tag{9.109}$$

$$p^2 = -2mE\left(1 - \frac{k}{E}\frac{1}{|q|}\right) \tag{9.110}$$

$$p_{\pm} = \pm \sqrt{-2mE} \sqrt{1 - \frac{k}{E} \frac{1}{|q|}} \tag{9.111}$$

$$p_{\pm} = \pm \sqrt{2m|E|}\sqrt{1 + \frac{k}{|E|} \frac{1}{|q|}}$$
 (9.112)

Ezt szeretnénk majd kiintegrálni egy konstans energia által megadott zárt görbére. Mi lesz ez a körintegrál? Először is kiindulhat a rendszer valamilyen (pozitív) q_0 pontból, ahol nincs sebessége, tehát $p_0 = 0$. Ezt követően legurul a q = 0 pontba, majd fel a völgy másik oldalán $-q_0$ -ig, mert szimmetrikus a potenciálunk. Innen visszagurul, amíg el nem éri a kiindulási pontot. Ez szép szimmetrikus: felbonthatjuk tehát a körintegrált 4 részre:

$$\oint_{E=E_0} = 4 \cdot \int_{q_0}^0 p_- dq = 4 \cdot \int_0^{q_0} p_+ dq$$
 (9.113)

Amire szükségünk van, hogy mi lesz ez a q_0 pont. Kifejezve az energiával, ebben a pontban nem lesz kinetikus energiánk, tehát

$$E = -\frac{k}{|q_0|} \tag{9.114}$$

$$|E| = \frac{k}{q_0} \tag{9.115}$$

$$q_0 = \frac{k}{|E|} \tag{9.116}$$

Így az elvégzendő integrál a hatás kiszámításához:

$$J = 4 \cdot \int_0^{k/|E|} \sqrt{2m|E|} \sqrt{1 + \frac{k}{|E|} \frac{1}{q}} dq$$
 (9.117)

Végezzünk el egy változócserét, amit két dolog motivál: egyrészt az integrál felső határa, másrészt pedig az integrandusban megjelenő faktorok a q mellett:

$$u = \frac{|E|}{k}q$$
 \longrightarrow $du = \frac{|E|}{k}dq$ (9.118)

$$dq = \frac{k}{|E|} du \tag{9.119}$$

Ezzel az integrál nem lesz más, mint

$$J = 4\sqrt{2m|E|} \frac{k}{|E|} \cdot \underbrace{\int_{0}^{1} \sqrt{1 + \frac{1}{u}} du}_{-I}$$
 (9.120)

Ahol az integrál eredménye valamilyen szám. Ne is számoljuk ki, csak folytassuk az átalakítást:

$$J = 4\sqrt{2m}k \frac{1}{\sqrt{|E|}}I\tag{9.121}$$

Megfeleltetve az energiát a Haimltonnak, ezt át tudjuk rendezni:

$$\sqrt{|E|} = 4\sqrt{2m}kI\frac{1}{J} \tag{9.122}$$

$$|E| = 32mk^2I^2\frac{1}{T^2} (9.123)$$

$$\mathcal{H} = -32mk^2I^2\frac{1}{J^2} \tag{9.124}$$

Ebben az alakban nem szerepel általános ω koordináta: J megmarad, így

$$\dot{\omega} = \text{konst.} = \nu = \frac{\partial \mathcal{H}}{\partial J}$$
 (9.125)

Számítsuk is ezt ki:

$$\nu = 2 \cdot 32mk^2I^2J^{-3} \tag{9.126}$$

$$\nu = 2 \frac{32mk^2I^2}{\left(4\sqrt{2m}kI\right)^3} |E|^{3/2} \tag{9.127}$$

$$\nu = \frac{1}{\sqrt{8m} \ kI} |E|^{3/2} \tag{9.128}$$

A teljesség jegyében még az integrált kiszámíthatjuk:

$$\int_{0}^{1} \sqrt{1 + \frac{1}{u}} du = \sqrt{2} + \operatorname{arcsinh}(1)$$
 (9.129)

Így a végleges eredményünk a periódusidőre:

$$T = \frac{1}{\nu} = \sqrt{8m} \ k \left(\sqrt{2} + \operatorname{arcsinh}(1)\right) |E|^{-3/2}$$
 (9.130)

9.3. +1 Kanonikus trafó

Nézzünk meg mégegy kanonikus transzformációt. Legyen a kalapból kihúzott⁸ Hamiltonunk:

$$\mathcal{H} = \frac{1}{2a} \ln P^{Q^2} \ln P^{P^2} - \frac{1}{2} a\omega^2 \left((QP)^i + (QP)^{-i} \right)$$
 (9.131)

Ezt még alakítsuk kicsit. Tudjuk a logaritmikus azonosságokból, hogy

$$\ln P^{Q^2} = Q^2 \ln P \tag{9.132}$$

Illetve

$$\cos x = \frac{e^{ix} + e^{-ix}}{2} \tag{9.133}$$

$$\cos \ln x = \frac{e^{i \ln x} + e^{-i \ln x}}{2} = \frac{x^i + x^{-i}}{2} \tag{9.134}$$

Amivel

$$\cos \ln QP = \frac{(QP)^i + (QP)^{-i}}{2} \tag{9.135}$$

Tehát a Haimlton

$$\mathcal{H} = \frac{1}{2a}Q^2 P^2 \ln^2 P - a\omega^2 \cos \ln (QP)$$
 (9.136)

Egy másik kalapból kihúzva, szép lenne a Hamilton, ha

$$p = QP \ln P \qquad q = \ln (QP) = \ln Q + \ln P \qquad (9.137)$$

Kanonikus-e ez a transzformáció? Nézzük meg:

$$\{q, p\}_{Q,P} = \frac{1}{Q} \cdot Q \left(\ln P + \frac{P}{P} \right) - \frac{1}{P} \cdot P \ln P$$
 (9.138)

$$= \ln P + 1 - \ln P = 1 \tag{9.139}$$

Ez teljesül. A másik kető triviális, de azért kiírva:

$$\{q,q\}_{Q,P} = \frac{1}{Q}\frac{1}{P} - \frac{1}{Q}\frac{1}{P} = 0$$
 (9.140)

$$\{p, p\}_{Q,P} = P \ln P \cdot Q(\ln P + 1) - P \ln P \cdot Q(\ln P + 1) = 0$$
(9.141)

Tehát a Hamilton az úgy rendszerben, szintén kanonikus változókkal:

$$\mathcal{H} = \frac{p^2}{2a} - a\omega^2 \cos q \tag{9.142}$$

$$=\frac{p^2}{2mR^2} - mgR\cos Q \tag{9.143}$$

ami egy ismerős rendszert ír le: az egyszerű ingát.

⁸Érdeklődőknek: végtelen sok ilyen feladatot lehet gyártani (akár gyakorlási céllal, akár egy ZH-ba) a generátorfüggvények segítségével. Tetszőleges $\Phi(q,P)$ függvényre megkaphatjuk az áttranszformált kanonikus változókat, két deriválással: $|Q| = |\partial_P \Phi(q,P)|$, $|p| = |\partial_q \Phi(q,P)|$ (hasonlóképp például egy $\Phi(q,Q)$ -ra, stb.). Az előjelek attól függnek, hogy a generátor hasában melyik koordináták vannak a régi illetve az új alakban.

10. óra

10.1. Adiabatikus invariáns

Múltkor volt hatás-szög változók: ezek jók, mert periodikus mozgásra egyszerűek, ciklikusra vezetnek. Mi van, ha valami lassan változik?

10.1.1. Oszcillátor

Legyen

$$\mathcal{H} = \frac{1}{2m} \left(p^2 + m^2 \omega^2 q^2 \right) \tag{10.1}$$

ahol lassan változik a frekvencia! Mi történik ekkor. Kell az ad. invariáns, ami a hatás:

$$J = \oint p \mathrm{d}q \tag{10.2}$$

valami zárt pályára. Ennek tetején

$$q_0 = \frac{2E}{m\omega^2} \tag{10.3}$$

meg ugyebár

$$p = \sqrt{2mE}\sqrt{1 - \frac{m\omega^2}{2E}q^2} \tag{10.4}$$

szóval

$$J = 4\sqrt{2mE} \int_0^{q_0} \sqrt{1 - \frac{m\omega^2}{2E} q^2} dq$$
 (10.5)

legyen

$$\sqrt{\frac{m\omega^2}{2E}}q = u \qquad \longrightarrow \qquad dq = \sqrt{\frac{2E}{m\omega^2}}u \qquad (10.6)$$

tehát

$$J = 4\sqrt{2mE}\sqrt{\frac{2E}{m\omega^2}} \int_0^1 \sqrt{1 - u^2} du$$
 (10.7)

Most nézzük meg az integrált, gyakoroljunk

$$u = \sin w \tag{10.8}$$

$$w = \arcsin u \tag{10.9}$$

$$\frac{\mathrm{d}w}{\mathrm{d}u} = \frac{1}{\sqrt{1-u^2}} = \frac{1}{\cos w} \tag{10.10}$$

$$du = \cos w dw \tag{10.11}$$

illetve a határokon

$$0 = \sin w_0 \qquad \longrightarrow \qquad \qquad w_0 = 0 \tag{10.12}$$

$$1 = \sin w_1 \qquad \qquad \longrightarrow \qquad \qquad w_1 = \frac{\pi}{2} \tag{10.13}$$

$$\int_0^1 \sqrt{1 - u^2} du = \int_0^{\pi/2} \cos^2 w dw$$
 (10.14)

Mi lesz ez, egy fél periodusra kiátlagolva? Hát,

$$\sin^2 + \cos^2 = 1\tag{10.15}$$

ami egy fél periódusra

$$\int_0^{\pi/2} 1 = \frac{\pi}{2} \tag{10.16}$$

Na de ezek megfelezik: az integrál tehát

$$\int_0^{\pi/2} \cos^2 w \, \mathrm{d}w = \frac{\pi}{4} \tag{10.17}$$

Visszírva mindent:

$$J = 4\sqrt{2mE}\sqrt{\frac{2E}{m\omega^2}}\int_0^1 \sqrt{1 - u^2} du \qquad (10.18)$$

$$=4\sqrt{2mE}\sqrt{\frac{2E}{m\omega^2}}\frac{\pi}{4}\tag{10.19}$$

$$=2\pi \frac{E}{\omega} \tag{10.20}$$

ami invariáns! Tehát az egyik változását kompenzálnia kell a másiknak, így

$$E \propto \omega$$
 (10.21)

10.1.2. Pattogó labda

Legyen egy pattogó labdánk, de a gravitáció változik az időben:

$$\mathcal{H} = \frac{p^2}{2m} + mg(t)q\tag{10.22}$$

viszont lassan: egy periódus alatt alig. Ekkor

$$J = \text{konst.} \tag{10.23}$$

invariáns marad. Számítsuk is ki! Először az energia

$$p = \sqrt{2mE}\sqrt{1 - \frac{g}{2E}q} \tag{10.24}$$

$$E_0 = mgh (10.25)$$

amiből

$$J = \oint p dq = 2\sqrt{2mE} \int_0^{h=E/(mg)} \sqrt{1 - \frac{g}{2E}} q dq$$
 (10.26)

legyen

$$\frac{g}{2E}q = u \qquad \qquad \to \qquad \qquad \mathrm{d}q = \frac{2E}{g}\mathrm{d}u \qquad (10.27)$$

$$u_0 = \frac{g}{2E}h \qquad \qquad \to \qquad \qquad u_0 = \frac{1}{2m} \tag{10.28}$$

$$J = \oint p dq = 2\sqrt{2mE} \frac{2E}{g} \int_0^{1/(2m)} \sqrt{1 - u} du$$
 (10.29)

$$=2\sqrt{2mE}\frac{2E}{g}\cdot\frac{2}{3}\left(1-\left[1-\frac{1}{2m}\right]^{3/2}\right)$$
 (10.30)

$$= \frac{8}{3}\sqrt{2m}\frac{E^{3/2}}{g} \cdot \left(1 - \left[1 - \frac{1}{2m}\right]^{3/2}\right) \tag{10.31}$$

az integrál eredménye megint nem különösebben érdekes: ami számít, az

$$J \propto \frac{E^{3/2}}{g} = \text{konst.} \tag{10.32}$$

ergo

$$E \propto g^{2/3} \tag{10.33}$$

és mivel $h \propto E/g$

$$h \propto g^{-1/3} \tag{10.34}$$

10.2. Szimmetriák

10.2.1. Forgatások

Kezdjük valami egyszerűvel: nézzünk egy centrális potenciált 2D-ben

$$\mathcal{H} = \frac{1}{2m} \left(p_x^2 + p_y^2 \right) + V(\sqrt{x^2 + y^2}) \tag{10.35}$$

Lássuk be, hogy erre a forgatás egy szimmetria, és a hozzá tartozó megmaradó mennyiség a perdület. Először is:

$$L = xp_y - yp_x \tag{10.36}$$

tehát ami kell:

$$\{L, \mathcal{H}\} = \{(xp_y - yp_x), \mathcal{H}\}\$$
 (10.37)

$$= \{xp_y, \mathcal{H}\} - \{yp_x, \mathcal{H}\} \tag{10.38}$$

$$= x\{p_y, \mathcal{H}\} + \{x, \mathcal{H}\}p_y - y\{p_x, \mathcal{H}\} - \{y, \mathcal{H}\}p_x$$
 (10.39)

Mik ezek a zárójelek? Először is, írjuk ki az elsőt

$$\{p_y, \mathcal{H}\} = \frac{\partial p_y}{\partial x} \frac{\partial \mathcal{H}}{\partial p_x} - \frac{\partial p_y}{\partial p_x} \frac{\partial \mathcal{H}}{\partial x} + \frac{\partial p_y}{\partial y} \frac{\partial \mathcal{H}}{\partial p_y} - \frac{\partial p_y}{\partial p_y} \frac{\partial \mathcal{H}}{\partial y}$$
(10.40)

ránézésre egyetlen egy lesz ami nem biztos, hogy nulla:

$$\{p_y, \mathcal{H}\} = -\frac{\partial p_y}{\partial p_y} \frac{\partial \mathcal{H}}{\partial y}$$
 (10.41)

$$= -1 \cdot \frac{\partial V(\sqrt{x^2 + y^2})}{\partial y} \tag{10.42}$$

Menjünk tovább! Mi lesz hasonlóképp

$$\{x, \mathcal{H}\} = 1 \cdot \frac{\partial \mathcal{H}}{\partial p_x}$$
 (10.43)

$$=\frac{p_x}{m}\tag{10.44}$$

Amiből az első két tag:

$$\{L, \mathcal{H}\} = -x\partial_y V + \frac{p_x p_y}{m} - y\{p_x, \mathcal{H}\} - \{y, \mathcal{H}\}p_x$$
 (10.45)

Kis szimmetriával, a másik kettő:

$$\{L, \mathcal{H}\} = -x\partial_y V + \frac{p_x p_y}{m} + y\partial_x V - \frac{p_x p_y}{m}$$
(10.46)

$$= -x\partial_y V + y\partial_x V \tag{10.47}$$

Na de

$$\partial_x V(\sqrt{x^2 + y^2}) \propto \frac{x}{\sqrt{x^2 + y^2}} \tag{10.48}$$

$$\partial_y V(\sqrt{x^2 + y^2}) \propto \frac{y}{\sqrt{x^2 + y^2}} \tag{10.49}$$

Tehát összegezve:

$$\{L, \mathcal{H}\} = c \cdot \left(\frac{xy}{\sqrt{x^2 + y^2}} - \frac{xy}{\sqrt{x^2 + y^2}}\right) = 0$$
 (10.50)

Tehát ez egy megamradó mennyiség. Mit fog generálni? Ehhez nézzük meg, mi lesz

$$\frac{\partial L}{\partial p_r} = -y \tag{10.51}$$

$$\frac{\partial L}{\partial p_y} = x \tag{10.52}$$

$$\frac{\partial L}{\partial x} = p_y \tag{10.53}$$

$$\frac{\partial L}{\partial y} = -p_x \tag{10.54}$$

mintha ő lenne a Hamilton. Ezekhez valami s idpszerő paraméterre:

$$x' = -y y' = x (10.55)$$

$$p_x' = -p_y p_y' = p_x (10.56)$$

ami egy szép diffegyenlet rendszer. Kicsit szórakozva vele:

$$x'' = -y' = -x p_x'' = -p_y' = -p_x (10.57)$$

$$x = R\cos\omega s \qquad p_x = P\cos\omega s \qquad (10.58)$$

$$y = R\sin\omega s \qquad p_x = P\sin\omega s \qquad (10.59)$$

Látjuk, hogy az s paraméter egy forgatást okoz. Ezt le lehet rajzolni szépen a fázistérben.

10.2.2. 2D-s oszcillátor

Legyen

$$\mathcal{H} = \frac{1}{2m}(p_x^2 + p_y^2) + m\omega^2(x^2 + y^2)$$
 (10.60)

Vegyük észre hogy

$$\mathcal{H} = E_1 + E_2 \tag{10.61}$$

szóval hatás-szöggel

$$\mathcal{H} = \omega(P_1 + P_2) \tag{10.62}$$

szép egyszerű, de van más mód is. Legyen

$$A_{ij} = \frac{1}{2} \left(\frac{p_i p_j}{m} + m\omega^2 r_i r_j \right) \tag{10.63}$$

vegyük észre hogy

$$A_{11} = E_1 A_{22} = E_2 (10.64)$$

na de mi lesz az offidag:

$$A_{12} = A_{21} = \frac{1}{2m} \left(p_x p_y + m^2 \omega^2 xy \right) \tag{10.65}$$

ez vajon megmarad-e, mint az energiák?

$$\{A_{12}, \mathcal{H}\} = \frac{\partial A_{12}}{\partial x} \frac{\partial H}{\partial p_x} - \frac{\partial A_{12}}{\partial p_x} \frac{\partial H}{\partial x} + \frac{\partial A_{12}}{\partial y} \frac{\partial H}{\partial p_y} - \frac{\partial A_{12}}{\partial p_y} \frac{\partial H}{\partial y}$$
(10.66)

$$= \frac{\omega^2 m}{2} y \cdot \frac{p_x}{m} - \frac{\omega^2 m}{2} x \cdot \frac{p_y}{m} - \omega^2 y p_x + \omega^2 y p_y \tag{10.67}$$

$$=0 (10.68)$$

Megmarad! Na de mi a jelentése?

$$A_{12}^2 = \frac{1}{4m^2} \left(p_x p_y + m^2 \omega^2 xy \right)^2 \tag{10.69}$$

$$= \frac{1}{4m^2} \left(p_x^2 p_y^2 + m^4 \omega^4 x^2 y^2 + 2m^2 \omega^2 x y p_x p_y \right)$$
 (10.70)

$$= \frac{p_x^2 p_y^2}{4m^2} + \frac{m^2 \omega^4}{4} x^2 y^2 + \frac{\omega^2}{2} x y p_x p_y$$
 (10.71)

$$= \left(\frac{p_x^2}{2m} + m\omega^2 x^2\right) \left(\frac{p_y^2}{2m} + m\omega^2 y^2\right) - \frac{\omega^2}{4} (x^2 p_y^2 + y^2 p_x^2) + 2\frac{\omega^2}{4} xy p_x p_y$$
 (10.72)

$$= E_1 E_2 - \frac{\omega^2}{4} (x p_y - y p_x)^2$$
 (10.73)

$$=E_1 E_2 - \frac{\omega^2}{4} L^2 \tag{10.74}$$

Tehát az energiákból és a lendületből tevődik össze.

Legyen

$$S_1 = \frac{1}{\omega} \frac{A_{12} + A_{21}}{2} = \frac{A_{12}}{\omega} = \frac{p_x p_y}{2m\omega} + m\omega \frac{xy}{2}$$
 (10.75)

$$S_2 = \frac{1}{\omega} \frac{A_{22} - A_{11}}{2} = \frac{1}{4m\omega} (p_y^2 - p_x^2) + \frac{y^2 - x^2}{4} m\omega$$
 (10.76)

Ők egy rakas mozgásállandóból tevődnek össze: ők is azok. Miért szebbek? Nézzük

$$S_1^2 = \frac{A_{12}^2}{\omega^2} \tag{10.77}$$

$$S_2^2 = \frac{E_1^2 + E_2^2 - 2E_1 E_2}{4\omega^2} \tag{10.78}$$

Az előzőek alapján, mi lesz z összeük?

$$S_1^2 + S_2^2 = \frac{E_1 E_2}{\omega^2} - \frac{1}{4} L^2 + \frac{E_1^2 + E_2^2 - 2E_1 E_2}{4\omega^2}$$
 (10.79)

$$= \frac{1}{4}L^2 + \frac{E_1^2 + E_2^2 + 2E_1E_2}{4\omega^2} - \frac{1}{4}L^2$$
 (10.80)

$$=\frac{1}{4}L^2 + \frac{(E_1 + E_2)^2}{4\omega^2} \tag{10.81}$$

szóval vezessük be még

$$S_3 = \frac{L}{2} = \frac{xp_y - yp_x}{2} \tag{10.82}$$

amivel már

$$S_1^2 + S_2^2 + S_3^2 = \frac{H^2}{4\omega^2} \tag{10.83}$$

Mit mond ez? Egy adott energiára:

$$E = 2\omega\sqrt{S_1^2 + S_2^2 + S_3^2} \tag{10.84}$$

tudunk tekinteni egy 3D-s gömbfelületként az S-ek terében. Na de ezek megmaradó mennyiségek: miylen szimmetria tartozik hozzájuk? A gömb már segít. Nézzük meg ehhez most

$$\{S_3, S_1\} = \frac{1}{2} \{ (xp_y - yp_x), \left(\frac{p_x p_y}{2m\omega} + m\omega \frac{xy}{2} \right) \}$$
 (10.85)

$$=\frac{1}{2}\left[\left\{xp_y,\left(\frac{p_xp_y}{2m\omega}+m\omega\frac{xy}{2}\right)\right\}-\left\{yp_x,\left(\frac{p_xp_y}{2m\omega}+m\omega\frac{xy}{2}\right)\right\}\right]$$
(10.86)

Innen

$$\left\{xp_y, \left(\frac{p_x p_y}{2m\omega} + m\omega \frac{xy}{2}\right)\right\} = ? \tag{10.87}$$

$$=x\{p_y,\left(\frac{p_xp_y}{2m\omega}+m\omega\frac{xy}{2}\right)\}+\{x,\left(\frac{p_xp_y}{2m\omega}+m\omega\frac{xy}{2}\right)\}p_y$$
 (10.88)

Egy tagban lesz a derivált nem nulla:

$$= -x\frac{\partial p_y}{\partial p_y}\frac{\partial}{\partial y}\left(\frac{p_x p_y}{2m\omega} + m\omega\frac{xy}{2}\right) + \frac{\partial x}{\partial x}\frac{\partial}{\partial p_x}\left(\frac{p_x p_y}{2m\omega} + m\omega\frac{xy}{2}\right)p_y \tag{10.89}$$

$$= -x\left(m\omega\frac{x}{2}\right) + \left(\frac{p_y}{2m\omega}\right)p_y \tag{10.90}$$

$$= -m\omega \frac{x^2}{2} + \frac{p_y^2}{2m\omega} = \frac{1}{2m\omega} \left(-m^2\omega^2 x^2 + p_y^2 \right)$$
 (10.91)

A másik hasonlóan

$$\{yp_x, \left(\frac{p_x p_y}{2m\omega} + m\omega \frac{xy}{2}\right)\} = \frac{1}{2m\omega} \left(-m^2\omega^2 y^2 + p_x^2\right)$$
(10.92)

Tehát összevonva:

$$\{S_3, S_1\} = \frac{1}{4m\omega} \left[-m^2 \omega^2 x^2 + p_y^2 + m^2 \omega^2 y^2 - p_x^2 \right]$$
 (10.93)

$$= \frac{1}{4m\omega} \left[p_y^2 - p_x^2 + m^2\omega^2 y^2 - m^2\omega^2 x^2 \right]$$
 (10.94)

$$=\frac{p_y^2 - p_x^2}{4m\omega} + \frac{y^2 - x^2}{4}m\omega \tag{10.95}$$

$$=S_2\tag{10.96}$$

Teljesen hasonló módon be lehet látni a másik kettőre is, így

$$\{S_i, S_j\} = \epsilon_{ijk} S_k \tag{10.97}$$

Ami pont olyan, mint a forgatásokat generáló perdületek: ezek a megmaradó mennyiségek a fent említett gömbön való forgatásokat generálják, mint szimmetriákat.

10.3. Hamilton-Jacobi

10.3.1. Grav tér

A Hamilton-Jacobi eg ymásik formuláció, mely szerint

$$\partial_t S + \mathcal{H} = 0 \tag{10.98}$$

Ez egy diffegyenletet ad S-re, mivel

$$\partial_t S = -\mathcal{H}(t, \mathbf{q}, \mathbf{p}) = -\mathcal{H}(t, \mathbf{q}, \nabla S) \tag{10.99}$$

ez szép absztrakt, meg amúgy nem is feltétlenül hasznos, de attól még barátkozzunk vele! Legyünk 2D-ben, egy homogén grav potenciállal! Ekkor

$$\mathcal{H} = \frac{1}{2m} \left(p_x^2 + p_z^2 \right) + mgz \tag{10.100}$$

Ezt átírva, nekünk a Hamilton-Jacobi egyenletünk:

$$\frac{1}{2m} \left[(\partial_x S)^2 + (\partial_z S)^2 \right] + mgz + \partial_t S = 0$$
(10.101)

Ami egy szép diffegyenlet S-re. Keressük e megoldását szeparált alakban:

$$S(t, x, z) = T(t) + X(x) + Z(z)$$
(10.102)

Tegyük fel, hogy az energia megamradT Ekkor H nem függ t-től, tehát

$$\partial_t S = \partial_t T(t) = \text{konst.}$$
 (10.103)

Ezt megoldja:

$$T(t) = -Et (10.104)$$

meg melelsleg ekkor H = E. A többit beírva:

$$\frac{1}{2m}\left[\left(\partial_x X\right)^2 + \left(\partial_z Z\right)^2\right] + mgz = E \tag{10.105}$$

Van egy egyenletünk, ami valami konstanssal egynlő, és két olyan függvény van benne ami egymástól független: ők i konstansok lesznek! Máshogy nme teljesülhet

$$\frac{1}{2m} \left(\partial_x X \right)^2 = J_x \tag{10.106}$$

$$\frac{1}{2m} \left(\partial_z Z\right)^2 + mgz = J_z \tag{10.107}$$

$$J_x + J_z = E \tag{10.108}$$

Ez most két, egymástól szeparált diffegyenlet:

$$\frac{1}{2m} \left(\partial_x X \right)^2 = J_x \tag{10.109}$$

$$\partial_x X = \sqrt{2mJ_x} \tag{10.110}$$

$$X(x) = x\sqrt{2mJ_x} \tag{10.111}$$

ami egyszerű. A másik egy fokkal bonyibb:

$$(\partial_z Z)^2 = 2mJ_z - 2m^2gz \tag{10.112}$$

$$\partial_z Z = \sqrt{2m}\sqrt{J_z - mgz} \tag{10.113}$$

$$Z(z) = \sqrt{2m} \int \sqrt{J_z - mgz} dz$$
 (10.114)

$$J_z - mgz = u \tag{10.115}$$

$$\frac{\mathrm{d}u}{\mathrm{d}z} = -mg\tag{10.116}$$

$$Z(z) = -\sqrt{2m} \frac{1}{mg} \int \sqrt{u} du \qquad (10.117)$$

$$Z(z) = -\frac{2}{3}\sqrt{\frac{2}{mq^2}}u^{3/2} \tag{10.118}$$

$$Z(z) = -\sqrt{\frac{8}{9mq^2}}(J_z - mgz)^{3/2}$$
(10.119)

Tehát meg is oldottuk a diffegyenletet S-re:

$$S(t,x,z) = x\sqrt{2mJ_x} - \sqrt{\frac{8}{9mq^2}}(J_z - mgz)^{3/2} - (J_x + J_z)t$$
 (10.120)

 $\tilde{\mathbf{O}}$ írja le a mozgást. Nem túl szemléletes, de ki tudjuk használni, hogy a bevezetett J-k konstans impulzusok: tehát

$$\dot{\omega_x} = \nu_x = \frac{\partial S}{\partial J_x}$$

$$\dot{\omega_y} = \nu_y = \frac{\partial S}{\partial J_y}$$
(10.121)

Amiből

$$\nu_x = x\sqrt{\frac{m}{2J_x}} - t$$
 $\nu_y = -\sqrt{\frac{2(J_z - mgz)}{mg^2}} - t$
(10.122)

amik szintén konstansok. Invertálva ezeket a kifejezéseket a koordinátákra:

$$x = \sqrt{\frac{2J_x}{m}}(\nu_1 + t) \qquad z = \frac{J_z}{2m} - \frac{g}{2}(\nu_z + t)^2 \qquad (10.123)$$

$$x = \sqrt{\frac{2J_x}{m}}\nu_1 + \sqrt{\frac{2J_x}{m}}t \qquad z = \frac{J_z}{2m} - \frac{g}{2}(\nu_z + t)^2 \qquad (10.124)$$

felismerehtünk pár dolgot:

$$\sqrt{\frac{2J_x}{m}} = v^x \qquad \frac{J_z}{2m} - \frac{g}{2}\nu_z^2 = z_0 \qquad (10.125)$$

$$v_x \nu_1 = x_0 -g\nu_z = v_0^z (10.126)$$

megkaptuk a ferde hajítást, csak kicsit furcsán paraméterezve.

10.3.2. Oszcillátor

Legyen most

$$\mathcal{H} = \frac{1}{2m} \left(p^2 + m^2 \omega^2 q^2 \right) = \partial_t S \tag{10.127}$$

megitns szeparáljuk S-t:

$$S = W - Et \tag{10.128}$$

Amivel

$$\frac{1}{2m} \left[(\partial_q W)^2 + m^2 \omega^2 q^2 \right] = E \tag{10.129}$$

ami egy darab diffegyenlet:

$$\frac{\partial W}{\partial q} = \sqrt{2m}\sqrt{E - \frac{m\omega^2}{2}q^2} \tag{10.130}$$

őt vígan fel tudjuk integrálni:

$$W(q) = \sqrt{2m} \int \sqrt{E - \frac{m\omega^2}{2}q^2} \, \mathrm{d}q \qquad (10.131)$$

most őt hagyjuk is így egy picit. Vele a hatás:

$$S(q,t) = W(q) - Et \tag{10.132}$$

Deriváljuk le ezt parciálisan E szerint:

$$\frac{\partial S}{\partial E} = \sqrt{m} \frac{\sqrt{2}}{2} \int \frac{1}{\sqrt{E - \frac{m\omega^2}{2}q^2}} dq - t$$
 (10.133)

majd legyen

$$\sqrt{\frac{m}{2E}}\omega q = u$$

$$\longrightarrow \qquad dq = \frac{1}{\omega}\sqrt{\frac{2E}{m}}dq \qquad (10.134)$$

tehát

$$\sqrt{m}\frac{\sqrt{2}}{2}\int \frac{1}{\sqrt{E - \frac{m\omega^2}{2}q^2}} dq = \frac{1}{\omega}\sqrt{\frac{2}{m}}\sqrt{\frac{m}{2}}\int \frac{1}{\sqrt{1 - u^2}} du$$
(10.135)

$$= \frac{1}{\omega} \arcsin u \tag{10.136}$$

$$= \frac{1}{\omega}\arcsin\left(\sqrt{\frac{m\omega^2}{2E}}\ q\right) \tag{10.137}$$

Ami marad még, az

$$\partial_E S + t = t - t_0 \tag{10.138}$$

Így összegezve:

$$t - t_0 = \frac{1}{\omega} \arcsin\left(\sqrt{\frac{m\omega^2}{2E}} \ q\right) \tag{10.139}$$

$$\sin\left(\omega(t-t_0)\right) = \sqrt{\frac{m\omega^2}{2E}} \ q \tag{10.140}$$

$$q = \sqrt{\frac{2E}{m\omega^2}}\sin\left(\omega(t - t_0)\right) \tag{10.141}$$

egy szép ismert megoldás.