회귀분석의 결정계수 (Rsquared) 를 가장 쉽게 설명 해 보자

위와 같은 x,y 데이터가 있습니다. 독립변수 x 에 따라 종속변수 y 가 변하는 이 데이터의 회귀모형, $y=\beta 0+\beta 1x$ 을 구하고자 합니다. 그냥 통계 프로그램에 데이터를 넣으면 바로 값이 나오지만 원리를 아는 의미에서 수기로 먼저 계산해보도록 하겠습니다.

1) 상관계수 (correlation coefficient) 구하기

$$r = \frac{1}{n-1} \sum \left(\frac{x - \overline{x}}{S_x} \right) \left(\frac{y - \overline{y}}{S_y} \right)$$

x 의 평균: 40.0

x의 표준편차: 21.6

v 의 평균: 72.9

y 의 표준편차: 33.5

r = ((10-40.0) / 21.6 * (30-72.9) / 33.5 + (20-40.0) / 21.6 * (40-72.9) / 33.5 + (30-40.0) / 21.6 * (50-72.9) / 33.5 + (40-40.0) / 21.6 * (80-72.9) / 33.5 + (50-40.0) / 21.6 * (90-72.9) / 33.5 + (60-40.0) / 21.6 * (100-72.9) / 33.5 + (70-40.0) / 21.6 * (120-72.9) / 33.5) / (7-1) = 0.99

2) 회귀방정식 기울기 (β1) 구하기

$$\beta 1 = r*Sy/Sx$$

 $\beta 1 = 0.99 * (33.5/21.6) = 1.535$

3) 회귀방정식 절편 (β0) 구하기

회귀모형, y= B0 + B1x에서 해당 회계방생은 육관 (코, 호)를 작는

 $72.9 = \beta 0 + 1.535 * 40.0$

∴ β 0 = 11.5

자 그럼 수기로 계산된 회귀모형은 y = 11.5 + 1.535x 입니다.

이제 통계 프로그램으로 이 결과값이 맞는지 확인해 보겠습니다. 저는 JMP 를 사용합니다.

자!! 결과값이 y=11.428571+1.5357143x 가 나왔습니다. 미세한 차이는 표준편차와 평균을 구할때 소수점 반올림에서 발생한 것입니다. 즉, 같은 결과값이라고 볼 수 있습니다.

자!! 여기 통계 프로그램에서 결정계수 (R-squared) 를 이미 제공했습니다. 0.979343 이라고 합니다. 이렇게 결과를 얻었다고 여기서 멈추면 결정계수 (R-squared) 의 원 리를 절대 이해 할수 없습니다. 이제 결정계수 (R-squared) 도 수기로 계산해 봅시다.

역기서 우리는 ANOVA 를 생각해야 합니다. 기본적으로 회귀분석을 하면 회귀방정식에 대한 통계적 유의성을 제공해 줍니다. 즉, 기울기가 0 이냐 아니냐를 기준으로 기울기가 0 이 아닐경우 그 회귀모형은 유의하다고 해석합니다.

하지만 ANOVA 는 각 데이터의 분산에 대한 해석입니다. ANOVA for Regression 의 개념을 지금부터 설명합니다.

SST = SSR + SSE

SST = Sum of Squares Total

SSR = Sum of Squares due to regression

SSE = Sum of Squared Error
$$(y_i - \overline{y}) = (\hat{y}_i - \overline{y}) + (y_i - \hat{y}_i)$$

어려워 보이는 개념 같지만 개념만 알면 초등학교 산수 문제 입니다. 우리의 x, y 값 옆에 회귀방정식에 의해서 예측된 값을 입력해 봅시다. JMP 결과값과 비교하기 위해서 JMP 에서 계산된 y=11.428571+1.5357143 x 를 사용합니다.

y=11.428571 + 1.5357143 x

X	yi	ŷi
10	30	26.8
20	40	42.1
30	50	57.5
40	80	72.9
50	90	88.2
60	100	103.6
70	120	118.9
	ÿ 72.86	

이제 이 값에서 여러가지 계산을 해 보겠습니다. 단순하게 Data = Fit + Error 라는 개념을 생각해 봅시다. 즉, 실제 개별 y 값에서 그 y 값 전체의 평균을 뺀값 $(yi - \bar{y})$ 을 개별 Data 라고 한다면, 그 값은 예측된 개별 y 값에서 실제 y 값 전체의 평균을 뺀 값 $(\hat{y}i - \bar{y})$ + 실제 개별 y 값에서 예측된 개별 y 값을 뺀 값 $(yi-\hat{y}i)$ 과 같을 것입니다.

		y=11.428571 + 1	.5357143 x	$(y_i - \overline{y})$	$=(\hat{y}_i - \overline{y}_i)$	$(y_i - \hat{y}_i)$
X	yi	ŷi		Data =	Fit +	Error
10	30	26.8		-42.86	-46.07	3.21
20	40	42.1		-32.86	-30.71	-2.14
30	50	57.5		-22.86	-15.36	-7.50
40	80	72.9		7.14	0.00	7.14
50	90	88.2		17.14	15.36	1.79
60	100	103.6		27.14	30.71	-3.57
70	120	118.9		47.14	46.07	1.07
	ÿ 72.86					

<u>이렇게 계산된 값을 제곱해서 다 더해봅시다</u>. 그러면 우리는 3개의 제곱합을 얻을수 있습니다. SST (6742.86) = SSR (6603.57) + SSE (139.29) 라는 값을 얻을수 있습니다.

		y=11.428571 + 1.5	5357143 x	$(y_i - \overline{y})$	$=(\hat{y}_i - \overline{y})$	$(\hat{y}_i - \hat{y}_i)$			
X	yi	ŷi		Data =	Fit +	Error	SST	SSR	SSE
10	30	26.8		-42.86	-46.07	3.21	1836.73	2122.58	10.33
20	40	42.1		-32.86	-30.71	-2.14	1079.59	943.37	4.59
30	50	57.5		-22.86	-15.36	-7.50	522.45	235.84	56.25
40	80	72.9		7.14	0.00	7.14	51.02	0.00	51.02
50	90	88.2		17.14	15.36	1.79	293.88	235.84	3.19
60	100	103.6		27.14	30.71	-3.57	736.73	943.37	12.76
70	120	118.9		47.14	46.07	1.07	2222.45	2122.58	1.15
	ÿ 72.86						6742.86	6603.57	139.29

이 계산식을 회귀 방정식 위에 표시하면 아래와 같습니다.

이제 이 Sum of square 를 분산분석표로 옮겨 보겠습니다. 분산분석표에 들어갈 항목은 아래와 같습니다. 우리의 값을 심플하게 대입해 보겠습니다.

Source of variance

Source	DF	Sum of squared	Mean squared	F ratio
Model	1	SSR	SSR / 1	(SSR / 1) / (SSE / n - 2)
Error	n - 2	SSE	SSE / n - 2	
Total	n - 1	SST		
			└→ MSE	

그러면 아래와 같은 분산분석표를 작성했습니다.

Source of variance

Source	DF	Sum of squared	Mean squared	F ratio
Model	1	6603.57	6603.57	237.051
Error	5	139.29	27.86	
Total	6	6742.86		

이제 우리가 수기로 작성한 분산분석표를 통계 프로그램의 결과와 비교해 보겠습니다.

같은 결과값 임을 알수 있습니다.

여기 까지 잘 따라 오셨다면 이제 결정계수 (R-squared) 를 계산하는 것은 식은죽 먹기 입니다.

$$R^{2} = \frac{SSR}{SST} = \frac{\sum (\hat{y}_{i} - \bar{y})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

그냥 SSR 에서 SST 를 나눠주면 됩니다.

만일 y=x 의 모형일 경우 R-squared 는 어떻게 될까요? x 와 y 의 값이 같다면, 즉 y=x 라면 우리의 예측 y 값도 x 값과 같을 것입니다. 이 경우 Error 가 존재하지 않을 것입니다. 그리고 SST 와 SSR 은 같은 값일 것입니다. 그러면 R-squared 는 언제나 1 입니다. 즉, 회귀 방정식이 y=x 일 경우 R-squared 는 언제나 1 입니다.

x	yi	ŷi
10	10	10
20	20	20
30	30	30
40	40	40
50	50	50
60	60	60
70	70	70
	ÿ 40)

$(y_i - \overline{y}) = (\hat{y}_i - \overline{y}) + (y_i - \hat{y}_i)$						
Data =	Fit +	Error				
-30.00	-30.00	0.00				
-20.00	-20.00	0.00				
-10.00	-10.00	0.00				
0.00	0.00	0.00				
10.00	10.00	0.00				
20.00	20.00	0.00				
30.00	30.00	0.00				
80 .						

SST	SSR	SSE
900.00	900.00	0.00
400.00	400.00	0.00
100.00	100.00	0.00
0.00	0.00	0.00
100.00	100.00	0.00
400.00	400.00	0.00
900.00	900.00	0.00
2800.00	2800.00	0.00

반면 Y 값이 거의 같은 값일 경우는 어떨까요? x 에 반응하는 y 값이 거의 constant 한 경우, R-squared 는 극도로 낮아집니다. 만일 y 값이 완전 다 똑같다면 R-squared 는 계산되지 않습니다.

X	yi	ŷi
10	1.000	1.00693
20	1.001	1.00686
30	1.001	1.00679
40	1.000	1.00672
50	1.001	1.00665
60	1.000	1.00658
70	1.000	1.00651
	ÿ 1.000	

$(y_i - \overline{y}) = (\hat{y}_i - \overline{y}) + (y_i - \hat{y}_i)$						
Data =	Fit +	Error				
0.00	0.01	-0.01				
0.00	0.01	-0.01				
0.00	0.01	-0.01				
0.00	0.01	-0.01				
0.00	0.01	-0.01				
0.00	0.01	-0.01				
0.00	0.01	-0.01				
1 200						

SST	SSR	SSE
0.0000002	0.0000423	0.0000480
0.0000003	0.0000414	0.0000343
0.0000003	0.0000405	0.0000335
0.0000002	0.0000396	0.0000452
0.0000003	0.0000387	0.0000319
0.0000002	0.0000378	0.0000433
0.0000002	0.0000370	0.0000424
0.0000017	0.0002772	0.0002786

R² 란 무엇일까?

L '헤강 회기식이 공속변부를 얼마만을 얼어받아??" 이 대한 값

- 그러므로, 통계적 분석이란
 - 이론/논리를 통해서 종속변수를 설명할 수 있는 모델을 만들어
 - 이 모델에 들어가는 독립변수를 설정한 후
 - 종속변수의 분산을 모델(즉, 독립변수)로 설명하는데
 - 여기서 우리의 모델(즉, 독립변수)가 큰 문제가 없다면
 - 우리의 모델로 설명하고 남은 오차는 random한 오차임

그렇다면

- · R²가 의미하는 것은 무엇이고 어떻게 해석해야 하나?
 - R²는 모델의 분산 설명력이라고 볼 수 있음
 - 이는 우리가 만든 모델(즉, 독립변수)가 얼마나 데이터를 잘 설명했는 지를 의미함
- R²가 높으면 무조건 좋은 것인가?
 - 절대 그렇지 않음
 - 나름의 의미는 있으나, 높은 R2가 모든 것을 완벽하게 하지는 못함
 - R² 를 확인하기 전에 잔차도(residual plot)이 랜덤하게 분포함을 확인해야 함
 - 의미 없는 독립변수의 추가 조차도 R²를 약간이라도 증가시킴
 - 그러나 독립변수의 추가는 자유도를 1 증가시켜 비용이 발생하는 것임
 - 높은 R²는 과적합(overfitting)문제로 부터 자유롭지 않음