Boolean Logic & Logic Gates II Lecture 5 Diploma in Game Development & Technology 2014 Semester 1

Lecture 5 Boolean Logic & Logic Gates BOOLEAN ALGEBRA Diploma in Game Development & Technology 2014 Semester 1

Boolean Algebra

- Logical Calculus of truth values
- Developed by George Boole in 1840s

- Algebra of only 2 values
 - -0 and 1
 - True and False

Boolean Algebra

Resembles algebra of real number

- Instead of multiplication, addition and negation, it is replaced by logical operations of
 - conjunction $x \wedge y$ (AND),
 - disjunction x V y (OR), and
 - negation ¬x (NOT)

Algebra of Real Numbers

- Commutative Law of Addition and Commutative Law of Multiplication:
 - -A+B=B+A
 - -AB = BA

You should already know this from secondary school algebra.

Associative Law of Addition:

$$- (A + B) + C = A + (B + C)$$

Distributive Law

$$-A(B+C)=AB+AC$$

$$- (A + B)(C + D) = AC + AD + BC + BD$$

Boolean Algebra

- Commutative Law of Addition and Commutative Law of Multiplication:
 - -AVB=BVA
 - $-A \wedge B = B \wedge A$
- Associative Law of Addition:
 - (A \vee B) \vee C = A \vee (B \vee C)
 - (A \wedge B) \wedge C = A \wedge (B \wedge C)
- Distributive Law
 - $A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C)$
 - $AV(B \wedge C) = (AVB) \wedge (AVC)$
 - $(A \lor B) \land (C \lor D) = (A \land C) \lor (A \land D) \lor (B \land C) \lor (B \land D)$
 - $(A \wedge B) \vee (C \wedge D) = (A \vee C) \wedge (A \vee D) \wedge (B \vee C) \wedge (B \vee D)$

Boolean algebra is similar to real number algebra. Compare with the slide on the previous page

Other Laws

Annulment Law

$$-A.0 = 0$$

$$-A + 1 = 1$$

Identity Law

$$-A+0=A$$

$$-A.1 = A$$

Other Laws

Indempotent Law

$$-A+A=A$$

$$-A \cdot A = A$$

Complement Law

$$-A.\overline{A}=0$$

$$-A + \overline{A} = 1$$

$$\frac{A}{A}$$
 \longrightarrow \times

$$\frac{A}{A}$$

Other Laws

Double Negation Law

$$-\overline{\overline{A}} = A$$

- You can also write negation as
 - ¬A
 - **~**A

$$\bullet \quad Q = (A + B)(A + C)$$

$$= AA + AC + AB + BC$$

$$= A + AC + AB + BC$$

$$= A(1 + C) + AB + BC$$

$$= A.1 + AB + BC$$

$$= A(1 + B) + BC$$

$$= A.1 + BC$$

$$Q = A + BC$$

Distributive law

Identity AND

law (A.A = A)

Distributive law

Identity OR

law (1 + C = 1)

Distributive law

Identity OR

law (1 + B = 1)

Identity AND law (A.1 = A)

• Q = A +
$$\neg$$
AB
= A + AB + \neg AB
= A + B(A + \neg A)
= A + B(1)
= A + B


```
= (A \lor B) \land (A \lor C)
         = (A \wedge A) \vee (A \wedge C) \vee (A \wedge B) \vee (B \wedge C)
                                                                             Distributive law
         = A \lor (A \land C) \lor (A \land B) \lor (B \land C)
                                                                             Identity AND
                                                                             law (A \land A = A)
         = (A \land (1 \lor C)) \lor (A \land B) \lor (B \land C)
                                                                             Distributive law
         = (A \wedge 1) \vee (A \wedge B) \vee (B \wedge C)
                                                                             Identity OR
                                                                             law (1 V C = 1)
                                                                             Distributive law
         = (A \land (1 \lor B)) \lor (B \land C)
         = (A \wedge 1) \vee (B \wedge C)
                                                                             Identity OR
                                                                             law (1 V B = 1)
Q
         = A V (B \wedge C)
                                                                             Identity AND
                                                                             law (A \land 1 = A)
```


Simplification of Logic Circuits

 Boolean Algebra is used to simplify logic circuits. Simplification is very important for reduction of circuit cost, physical size, and gate/circuit failures

Example: Warning buzzer

Example: Warning Buzzer

Equation:

$$X = B (A + C) + C$$

Example: Warning Buzzer

Let's Simplify

$$X = B(A + C) + C$$

$$X = BA + BC + C$$

$$X = BA + BC + C.1$$

$$X = BA + C(B + 1)$$

$$X = BA + C.1$$

$$X = BA + C$$

$$X = AB + C$$

Original Equation

Distributive Law

Identity Law

Distributive Law

Identity Law

Identity law

Commutative Law

Example: Warning Buzzer

Simplified

Original

Another Example

What is the boolean equation?

Another Example

•
$$X = ((A + B) \cdot (B \cdot C)) + A = (A + B)BC + A$$

- Or
 - $-X = ((A \lor B) \land (B \land C)) \lor A$
- In C++

$$-X = ((A | B) & (B & (C)) | A$$

Let's Simplify

$$X = (A + B)BC + A$$

$$X = ABC + BBC + A$$

$$X = ABC + BC + A$$

$$X = ABC + BC.C + A$$

$$X = BC(A+1) + A$$

$$X = BC.1 + A$$

$$X = BC + A$$

Original Equation

Distributive Law

Indempotent Law

Indempotent Law

Distributive Law

Identity Law

Identity Law

Simplified logic circuit

• In C++, the simplified Boolean Equation is:

$$- X = (B \&\& C) || A$$

 Simplifying Boolean Equations in the program code makes it <u>more efficient</u> since there are <u>less conditions</u> for the CPU to check through

Lecture 5 Boolean Logic & Logic Gates II DEMORGAN'S THEOREM

Diploma in Game Development & Technology

2014 Semester 1

DeMorgan's Theorem

- Expressed in English:
 - The <u>negation</u> of a <u>conjunction</u> is the <u>disjunction</u> of the negations
 - The <u>negation</u> of a <u>disjunction</u> is the <u>conjunction</u> of the negations

$$\neg(P \land Q) \iff (\neg P) \lor (\neg Q)$$

$$\neg(P \lor Q) \iff (\neg P) \land (\neg Q)$$

DeMorgan's Theorem

States that

$$\overline{A \bullet B} = \overline{A} + \overline{B}$$

and

$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

For 3 or more variables:

$$\overline{A \bullet B \bullet C} = \overline{A} + \overline{B} + \overline{C}$$

$$\overline{A \cdot B \cdot C} = \overline{A} + \overline{B} + \overline{C}$$
 and $\overline{A + B + C} = \overline{A \cdot B \cdot C}$

As proof for 2 variables:

A B
$$X = A \cdot B$$

O 0
0
1
1
1
0
1
1
0

DeMorgan's Theorem

Gives us equivalent circuits

Circuit Simplification using DeMorgan's Theorem

Write the equation of the following circuit

Boolean Equation at X is:

$$-X = \overline{AB} \cdot (\overline{B+C})$$

Apply DeMorgan's Theorem

$$-X = (\overline{A} + \overline{B}) \cdot (\overline{B} \cdot \overline{C})$$

Using Boolean Algebra

$$-X = (\overline{A} + \overline{B}).\overline{BC}$$

$$-X = \overline{ABC} + \overline{BBC}$$

$$-X = \overline{ABC} + \overline{BC}$$

$$-X = \overline{ABC} + \overline{BC.1}$$

$$-X = \overline{BCA} + \overline{BC}.1$$

$$-X = \overline{BC}(\overline{A} + 1)$$

$$-X = \overline{BC}$$

$$-X = -BC$$

$$-X = \neg (\overline{B} + \overline{C})$$

$$-X = \neg (B + C)$$

Original Equation

Distributive Law

Indempotent Law

Identity Law

Commutative Law

Distributive Law

Identity Law

Double Negation Law

DeMorgan's Theorem

Double Negation Law

• Original $(X = \overline{BC})$

• Becomes $X = \neg (B + C)$

$$C \longrightarrow X$$

Lecture 5 Boolean Logic & Logic Gates II CONSTRUCTING A TRUTH TABLE

Diploma in Game Development & Technology

2014 Semester 1

We have this equation

$$X = \overline{A \bullet B} + \overline{A \bullet (\overline{A} + C)}$$

The logic circuit

• Full Logic Circuit is:

Simply

$$X = \neg (A \neg B) + \neg (A (\neg A + C))$$

 $X = \neg A + \neg \neg B + \neg (A (\neg A + C))$
 $X = \neg A + B + \neg (A (\neg A + C))$
 $X = \neg A + B + (\neg A + \neg (\neg A + C))$
 $X = \neg A + B + (\neg A + (\neg \neg A \neg C))$
 $X = \neg A + B + (\neg A + A \neg C)$
 $X = \neg A + \neg A + A \neg C + B$
 $X = \neg A + A \neg C + B$

Continue next slide:

Original Equation
DeMorgan's Theorem
Double Negation Law
DeMorgan's Theorem
DeMorgan's Theorem
Double Negation Law
Commutative Law
Indempotent Law

Simply

$$X = \neg A + A \neg C + B$$

 $X = \neg (\neg \neg A \neg (A \neg C)) + B$
 $X = \neg (A \neg (A \neg C)) + B$
 $X = \neg (A (\neg A + \neg \neg C) + B$
 $X = \neg (A (\neg A + C) + B$
 $X = \neg (A \neg A + A \neg C) + B$
 $X = \neg (A \neg A + A \neg C) + B$
 $X = \neg (A \neg A + A \neg C) + B$
 $X = \neg (A \neg A + A \neg C) + B$

Continued:

DeMorgan's Theorem Double Negation Law DeMorgan's Theorem Double Negation Law Distributive Law Complement Law Identity Law DeMorgan's Theorem

Note:

$$A + \overline{A}B = A + B$$
 and $\overline{A} + AB = \overline{A} + B$

$$\overline{A} + AB = \overline{A} + B$$

• Truth Table is:

Α	В	С	$X = \overline{A} + \overline{C} + B$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	Ο	1
1	0	1	0
1	1	Ο	1
1	1	1	1

$$X = 1$$
 whenever $A = 0$ OR $C = 0$ OR $B = 1$

Drawing a Timing Diagram

•
$$X = AB + B\overline{C} + \overline{A}\overline{B}C$$

Truth table & Timing Diagram:

Α	В	С	<u>X</u>
0	0	0	0 A
0 0	0	1 0	1←ĀBC 1←BC B
0	1	1	
1	0	0	
1	0	1 0	
1	1	1	1←AB, BC 1←AB X

Bubble Pushing

- Another trick to form an equivalent logic circuit is called bubble pushing.
- Based on DeMorgan's Theorem:
 - Change the logic gate between AND and OR
 - AND to OR or
 - OR to AND
 - Add bubbles to the input and outputs where there were none, and remove the original bubbles.

Lecture 5
Boolean Logic & Logic Gates II
PRODUCT-OF-SUMS &

SUM-OF-PRODUCTS

Product-of-Sums & Sum-of-Products

- Most Boolean equations can be simplified into one of the following forms:
 - Product-of-Sums Expression (POS)
 - Sum-of-Products Expression (SOP)
- Example of POS expression

$$-X = (\overline{B} + \overline{C} + D)(BC + \overline{E})$$

Example of SOP expression

$$-X = ACD + CD + B$$

Product-of-Sums & Sum-of-Products

 The SOP expression is most often used because it's easy to figure out truth tables, timing diagrams and Karnaugh maps

 We always strive to simplify a Boolean equation and then put it into the SOP form

Filling out the truth table for

$$X = \neg (A \neg B + \neg CD)$$

= $\neg (A \neg B) \cdot \neg (\neg CD)$ DeMorgan's Theorem
= $(\neg A + \neg \neg B) \cdot (\neg \neg C + \neg D)$ DeMorgan's Theorem
= $(\neg A + B) \cdot (C + \neg D)$ Double Negation Law

The above is the **POS** expression

Can you fill up the truth table from this form?

What if convert it to SOP form

$$X = (\neg A + B) \cdot (C + \neg D)$$

Using distributive Law

$$X = \neg AC + \neg A \neg D + BC + B \neg D$$

$$= \overline{AC} + \overline{AD} + BC + B\overline{D} \longrightarrow SOP$$

```
So to fill out the truth table,

X = 1 whenever A = 0 AND C = 1;

OR A = 0 AND D = 0;

OR B = 1 AND C = 1;

OR B = 1 AND D = 0.
```


Lecture 6 Boolean Logic & Logic Gates III KARNAUGH MAPPING (TO BE CONTINUED)

