Examen de Álxebra (Julio 2016)

1. Se consideran los siguientes subespacios de \mathbb{R}^4 : $U = \langle (1, -1, 1, 0), (1, -1, 1, 2) \rangle$ y $W_a = \{(x, y, z, t) \in \mathbb{R}^4 | x - at = 0, y + 2t = 0\}.$

- a) Calcular el valor de a para el cual la $dim(U \cap W_a) = 1$.
- b) Calcular una base de $U + W_2$.
- c) Definir, si existe, una aplicación lineal $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ que $Ker \ f = U$ e $Im \ f = W_0$.
- 2.- Sea $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ la aplicación lineal dada por:

$$f(x, y, z) = (x + y, y + z, x - z)$$

- a) Probar que f no tiene inversa.
- b) Sea $U = \{(x, y, z) \in \mathbb{R}^3 / x 2y z = 0\}$, calcular una base de $f^{-1}(U)$.
- d) Sea $\mathcal{B} = \{(0,1,-1), (1,-1,1), (0,0,1)\}$ una base de \mathbb{R}^3 , calcular la matriz asociada a f respecto de la base canónica en el dominio y la base \mathcal{B} en el rango, es decir $(f)_{\mathcal{C},\mathcal{B}}$.
- 3. Sea la aplicación lineal $f:\mathbb{R}^3\longrightarrow\mathbb{R}^3$ cuya matriz asociada en la base canónica es:

$$A = \left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right)$$

- a) Calcular los valores propios y los subespacios propios de f.
- b) Encontrar una matriz diagonal D y una no singular P tales que DP = PA.
 - c) Demostrar que para cualquier base \mathcal{B}_1 de \mathbb{R}^3 se tiene que $|(f)_{\mathcal{B}_1,\mathcal{B}_1}| = |A|$.
- **4.** a) Si $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ y r(A) = n 1, justificar que no existe $B \in \mathcal{M}_{n \times n}(\mathbb{R})$ tal que $|AB| \neq 0$.
 - b) Si $A \in \mathcal{M}_{3\times 3}(\mathbb{R})$ y |A| = 3, calcular $|2(E_{3F_1} \cdot E_{F_2 \leftrightarrow F_1} \cdot A^{-1} \cdot E_{F_2 + 2F_1})|$.
- c) Sea $\mathcal{B} = \{u_1, u_2, u_3\}$ una base de \mathbb{R}^3 . Si las coordenadas de un vector $v \in \mathbb{R}^3$ en la base \mathcal{B} son (1, -1, 0), calcular las coordenadas de v en la base $\{v_1 = u_1 + u_2, v_2 = u_2 + u_3, v_3 = u_1 + u_2 + u_3\}$.
- 5. (Teoría)
- a) Sean A y $B \in M_n(K)$ matrices no singulares. Demostrar que $|A| \neq 0$ y que $(AB)^{-1} = B^{-1}A^{-1}$.
- b) Sea V un espacio vectorial y $\{e_1,...,e_s\}\subset V$ linealmente independiente. Probar que si $v\in V,\ v\notin \langle e_1,...,e_s\rangle$ si, y sólo si, $\{v,e_1,...,e_s\}\subset V$ es linealmente independiente.

Calificación: (1,5+1,5+1,5+1,5+1)