

תזכורת מהלומדה בלוגיקה

קבוצות בסיסיות של מספרים שעלינו להכיר:

- $(0,1,2,3,\dots$ קבוצת המספרים הטבעיים $\mathbb N$
 - \mathbb{Z} קבוצת המספרים השלמים (..., -2, -1, 0, 1, 2, ...)
- קבוצת המספרים הרציונליים \mathbb{Q} (כל המספרים שניתנים $-\frac{2}{3}$ להצגה כמנה של שני שלמים, למשל $-\frac{2}{3}$
 - קבוצת המספרים הממשיים $\mathbb R$ ("כל המספרים על ציר המספרים", בין היתר (π)
- . קבוצת המספרים המרוכבים $\mathbb C$ לא נעסוק בזה בקורס.

 $\frac{1}{2} \in \mathbb{Q}$, $8 \in \mathbb{N}$:משתמשים בסימן כדי לסמן שייכות לקבוצה. למשל

תזכורת מהלומדה בלוגיקה

הצרנה של טענות מתמטיות

- קשרים לוגיים: ¬ (שלילה), ∧ (וגם), ∨ (או), ↔ (גרירה), ↔ (גרירה דו כיוונית).
 - כמתים: E (קיים), ∀ (לכל).

שימו לב שהקשרים הלוגיים מקשרים בין **פסוקים** בלבד.

<u>למשל:</u> אם נרצה להצרין את הטענה "המספר 5 גדול מהמספר 1 וגם מהמספר 3",

(צרין זאת כך: $\mathbf{5} > \mathbf{1} \wedge \mathbf{5} > \mathbf{5}$, ולא כך: $\mathbf{5} > \mathbf{1} \wedge \mathbf{5} > \mathbf{5}$, כי המספר 3 אינו פסוק.

תזכורת מהלומדה בלוגיקה

הצרנה של טענות מתמטיות - דוגמאות

."5 קיים מספר טבעי גדול מ"=p •

"לכל מספר טבעי יש מספר טבעי שגדול ממנו" = q

עיקרון האינדוקציה

 $\forall n \in \mathbb{N}. P(n)$ אינדוקציה מתמטית היא שיטה (שימושית מאוד) להוכחת טענות מהצורה ("P(n) מתקיים "לכל מספר טבעי n מתקיים ("P(n)").

:למשל

- $0 + 1 + \dots + n = \frac{n(n+1)}{2}$ לכל n טבעי מתקיים
 - .6 אבעי מתקיים: n^3-n מתחלק ב n^3

עיקרון האינדוקציה

טכניקת ההוכחה באינדוקציה כוללת שני שלבים:

- P(0) את מוכיחים את בסיס האינדוקציה:
- P(n) אז P(n-1) אם אם פעד האינדוקציה: מוכיחים שלכל $n\geq 1$ טבעי מתקיים: אם $n\geq 1$

P(n-1) במילים אחרות, כדי להוכיח את P(n) (עבור $n\geq 1$) מותר לנו להניח את

ההנחה P(n-1) נקראת הנחת האינדוקציה.

 $n \geq 0$ עבור, P(n+1) אז אז אינדוקציה אפשר להוכיח באופן שקול שאם אז אינדוקציה אפשר להוכיח באופן א

תרגיל

 $n + 1 + \dots + n = \frac{n(n+1)}{2}$ הוכיחו שלכל n טבעי מתקיים

.($\sum_{i=0}^n i: 0+1+\cdots+n$ מקובל לכתוב בצורה מקוצרת בעזרת סימן סכימה: את הסכום

n נוכיח באינדוקציה על

 $n = \frac{0(0+1)}{2}$ בסיס האינדוקציה: עבור n = 0, אכן מתקיים

n-1 צעד האינדוקציה: נניח כי הטענה נכונה עבור n-1, ונוכיח עבור

 $(n - n) + (n - 1) + n = \frac{(n - 1)n}{2} + n = \frac{n^2 - n + 2n}{2} = \frac{n^2 + n}{2} = \frac{n(n + 1)}{2}$

10.01

תרגיל

"NIC MON"

. (6 | n^3-n טבעי מתקיים שהמספר n^3-n מתחלק ב 6. (סימון: n טבעי מתקיים שהמספר

n נוכיח באינדוקציה על

.6 בסיס האינדוקציה: עבור n=0, מקבלים את המספר n=0 והוא מתחלק ב

n+1 צעד האינדוקציה: נניח כי הטענה נכונה עבור n, ונוכיח עבור

$$(n+1)^3 - (n+1) = n^3 + 3n^2 + 3n + 1 - (n+1)$$

$$= n^3 + 3n^2 + 2n - n + n$$

$$= n^3 - n + 3n^2 + 3n$$

.6-ם מתחלק ב n^2+3n מתחלק ב-6. נטען שגם n^3-n מתחלק ב- n^3-n מתחלק ב- $n^2+3n=3n^2+3n=3n(n+1)$

.6-מתחלק ב $3n^2+3n$ אם n זוגי אז n+1 זוגי אז n+1 זוגי אז n+1 אם n זוגי אז n+1 אם n מתחלק ב-6. מתחלקים ב-6. כרצוי. $(n+1)^3-(n+1)$

טענה מהצורה: $n \geq k \to n$ מתקיים (" $n \in \mathbb{N}$. $n \geq k \to P(n)$ טענה מהצורה: $n \geq k \to P(n)$ "לכל מספר טבעיn גם היא ניתנת להוכחה באינדוקציה.

- P(k) את מוכיחים את בסיס האינדוקציה:
- P(n) אז P(n-1) אם (טבעי מתקיים: אם $n \geq k+1$ אז $n \geq k+1$

 $n^2 > n^2$ טבעי מתקיים $n \geq 5$ מבעי שלכל

n נוכיח באינדוקציה על n

$$\sqrt{2^5} = 32 > 25 = 5^2$$
 מתקיים, $n = 5$ בסיס: עבור $n = 5$

$$2^{n+1} > (n+1)^2$$
 : \(\(\frac{1}{3} \) $.n+1$ ונוכיח עבור n ונוכיח עבור n ונוכיח עבור n בעד האינדוקציה: נניח כי הטענה נכונה עבור n ונוכיח עבור n ונוכיח עבור n בעד האינדוקציה: n בעד האינדון בעד האינד

יה אינדוקציה המאוחרת: בהינתן טענה φ ו- $a\in\mathbb{N}$, אם יודעים שמתקיים ($\varphi(a)$, ובנוסף עיקרון האינדוקציה המאוחרת: בהינתן טענה $n\geq a$ ווען אז אפשר להסיק שלכל $n\in\mathbb{N}$ כך ש $n\geq a$ מתקיים $n\in\mathbb{N}$ אז אפשר להסיק שלכל $n\in\mathbb{N}$ בין שרע מתקיים $n\in\mathbb{N}$ אז אפשר להסיק שלכל $n\in\mathbb{N}$ בין שרע מתקיים $n\in\mathbb{N}$ מתקיים $n\in\mathbb{N}$

בפועל, גם לאינדוקציה כזו אנחנו נקרא "אינדוקציה", למרות שזה לא הניסוח המקורי של עיקרון האינדוקציה.

אז למה זה נכון? - ניעזר בעיקרון האינדוקציה הרגיל כדי להוכיח את נכונות האינדוקציה המאוחרת.

נניח שמתקיים $\varphi(a)$, ובנוסף שלכל $m \in \mathbb{N}$, אם $a \geq n$ ו- $\varphi(a)$ אז $\varphi(a)$, ובנוסף שלכל $\psi(a)$ שלכל $\psi(a)$ און $\psi(a)$ א

 \checkmark . $\psi(0)$ מתקיים גם $\varphi(a)$ מתקיים שמתקיים (מאחר ש $\varphi(a) = \varphi(a+0) = \psi(0)$ מתקיים גם

 $\psi(n+\lambda)$: געד האינדוקציה: יהי $n\in\mathbb{N}$ ונניח שמתקיים $\psi(n)$, כלומר מתקיים $n\in\mathbb{N}$ זוניח שמתקיים אינדוקציה: יהי

 $\psi(n+1)$ ולכן לפי ההנחה מתקיימת הטענה (m+a+ 1), שהיא למעשה $n+a \geq a$ נשים לב ש $\psi(n+1)$ ולכן לפי ההנחה מתקיימת הטענה (m+a+ m+a) אולכן לפי ההנחה מתקיימת הטענה (m+a+ m+a) אולכן לפי ההנחה מתקיימת הטענה (m+a+ m+a) אולכן לפי ההנחה מתקיימת הטענה (m+a+ m+a)

המשך הוכחת עיקרון האינדוקציה המאוחרת

 $. \varphi(n+a)$ סך הכל, לפי עיקרון האינדוקציה הרגיל, לכל $n \in \mathbb{N}$ מתקיים $\psi(n)$, כלומר

מה שרצינו להוכיח זה שלכל $n\in\mathbb{N}$ כך שa-u מתקיים $\varphi(n)$. אך זה נובע בקלות: מה שרצינו להוכיח זה שלכל $n-\alpha$

יהי $n\in \mathbb{N}$, ונניח $n\in \mathbb{N}$. לכן $n-a\in \mathbb{N}$, ולכן לפי הטענה הרגע הוכחנו מתקיים $n\in \mathbb{N}$, כלומר p(n-a), כלומר p(n-a+a), כלומר מתקיים (p(n-a+a), כלומר

אינדוקציה שלמה

. $\forall n \in \mathbb{N}. P(n)$ טכניקת אינדוקציה נוספת להוכחת טענות מהצורה

- P(0) את מוכיחים את בסיס האינדוקציה:
- עבעד האינדוקציה: מוכיחים שלכל $n \ge 1$ טבעי מתקיים: אם P(0), P(1), ..., P(n-1) נכונים אז גם $n \ge 1$ נכונים אז גם P(n) נכון.

 $0 \leq k < n$ לכל P(k) מניחים את (עבור $n \geq 1$ עבור את P(n) לכל

תרגיל

הוכיחו שכל $n \geq 2$ טבעי ניתן לכתיבה בתור מכפלה של מספרים ראשוניים.

הוכחה: נוכיח את הטענה באינדוקציה שלמה.

p=2 הוא מכפלה של הראשוני n=2

n+1 צעד האינד': נניח כי הטענה נכונה לכל k המקיים $k \leq n$ ונוכיח עבור

n+1 הוא ראשוני, סיימנו (הוא מכפלה של הראשוני n+1

a,b טבעיים a,b וכך שמתקיים a,b וכך שמתקיים a,b אחרת, הוא לא ראשוני. אז קיימים a,b

, $a=p_1\cdot ...\cdot p_k$, $b=q_1\cdot ...\cdot q_m$ כך ש- $p_1, ..., p_k$, $q_1, ..., q_m$ מהנחת האינדוקציה, קיימים ראשוניים האינדוקציה, קיימים ראשוניים וולכן

$$n+1=ab=p_1\cdot\ldots\cdot p_k\cdot q_1\cdot\ldots\cdot q_m$$

כרצוי.

תרגיל: אי שוויון ברנולי

. אבעי $n \ge 1$ לכל $(1+x)^n > 1+nx$ מתקיים x > -1 לכל $n \ge 1$ לכל

 $(1+x)^n > 1+nx$ ממשי. נוכיח באינדוקציה שלכל $n \ge 1$ מתקיים x > -1 ממשי. נוכיח באינדוקציה

 $(1+x)^1 = 1+x = 1+1\cdot x$ בסיס: עבור n=1

n+1 צעד: נניח שהטענה נכונה עבור n ונוכיח שהיא נכונה עבור

$$(1+x)^{n+1} = (1+x)^n (1+x) \ge (1+x)(1+nx) = 1+nx+x+nx^2 = 1+(n+1)x+nx^2 \ge 1+(n+1)x$$

.סה"כ קיבלנו שאי השוויון מתקיים גם עבור n+1 וסיימנו