

확률 및 통계학

확 률

송 수 민

soominsong@ewha.ac.kr

확률의 정의

- 확률 = 전체 모집단 중 어떤 특정한 사건이 나타날 비율 = 특정사건의 수 / 전체 모집단의 수 (교재 31페이지 그림 2.1 참고)
 - <u>확률은 항상 0과 1사이의 값을 가지며, 모든 구간의 확률을 합하면 1</u>

진	전세계 인구수 : 69억명 (2010년도 기준 추정)							
	국기명	인구(명)	기준년도	대륙	수도			
1	중국 중국	1,338,612,968	2010	101710	베이징			
2	◎ 인도	1,156,897,766	2010	01/4/01	뉴델리			
3	미국	307,212,123	2010	북아메리카	워싱턴			
4	인도네시아	240,271,522	2010	101710	자카르타			
5	● 브라질	198,739,269	2010	남아메리카	브라짐리아			
6	○ 파키스탄	174,578,558	2010	아시아	이슬라마바드			
7	방글라데시	156,050,883	2010	401740	다카			
8		149,229,090	2010	아프리카	아부자			
9	러시아	140,041,247	2010	유럽	모스크바			
10	● 일본	127.078.679	2010	101740	도교			
25	(*) 대한민국	48,508,972	2010	아시아	서울			
50	♥ 북한	22,665,345	2010	아시아	평양			

전세계 사람 중 무작위로 1명을 뽑았을 때 그 사람이 브라질 사람일 확률 = 198,739,269 / 69억 = 0.029

배반사건, 합집합의 확률

1000명의 성인 남자를 랜덤하게 뽑아 체형과 소득수준을 조사하였다.

표2.2 성인 남자의 체형과 소득수준

체형	소득수준					
세성	음	보	이미 게뷰	합계		
마른형	100	150	50	300		
보통형	50	350	70	470		
비만형	120	60	50	280		
합계	270	560	170	1000		

- (1) 임의로 뽑은 성인남자가 보통체형이고 소득수준이 높음일 확률
- (2) 임의로 뽑은 성인남자가 보통체형이거나 소득수준이 높음일 확률
- (3) 임의로 뽑은 성인남자가 마른체형이거나 비만형일 확률

조건부 확률(1)

(교과서 38페이지 예 2.4)

성인남자의 체형과 소득수준 데이터

- (1) 보통체형의 성인남자 중 한 명을 임의로 뽑았을 때 소득수준이 높음일 확률
- (2) 소득수준이 높음인 성인남자 중 한 명을 임의로 뽑았을 때 체형이 보통체형일 확률

조건부 확률(2)

- 조건부 확률의 활용 연관성 분석(Association Rules)
 - 장바구니 분석이라고도 하며, 하나의 사건에 포함되어 있는 둘 이상의 변수들의 상호 관련성을 발견하는 분석법
 - 연관성 분석의 평가기준

지지도	■전체 거래 건수(또는 고객) 중 A와 B를 함께 구매한 거래 건수 비율(또는 고객 수 비율)
(발생비율)	■Support = (A∩B) ÷ 전체
(Support)	■Support가 5%라는 것은 전체 거래건수 중에서5% 거래가 A와 B를 함께 구매한 것을 의미
신뢰도	■A를 구매한 거래 건수 중 B를 함께 구매한 거래 건수 비율로 상품 A와 B의 연관성 평가함
(연관성)	•Confidence = (A∩B) ÷ A
(Confiden ce)	■Confidence가 7%라는 것은 A를 산 영수증 건수에서 7% 가 B를 동시에 샀다는 것을 의미
향상도	■전체 거래 중 B가 포함되어 있는 거래 비율 대비 A를 구매한 거래 중 B를 동시에 구매한 거래의 비율로 연관규칙의 유용성을 평가함
(유용성)	■Lift = ((A∩B) ÷ A) / (B ÷ 전체)
(Lift)	■ Lift가 1보다 크면 클수록 양의 상관관계가 많으므로 유용한 연관규칙임을 의미

사건의 독립성

성인남자의 체형과 소득수준 데이터

- (1) 성인남자 중 두 명을 임의로 뽑았을 때, (1) 첫 번째는 짝수가 나오고, 두 번째에는 소득수준이 한 명은 낮음이고, 한 명은 높을 일 확률
- (2) 성인 남자 중 두 명을 임의로 뽑았을 때, (2) 두 번 모두 홀수가 나올 확률 두 명 모두 체형이 마른형일 확률

주사위를 두 번 던졌다.

1이나 5가 나올 확률

2.4 베이즈 공식

베이즈 공식(1)

(교과서 38페이지 예 2.5, 예 2.6)

베이즈 공식(2)

어느 마을에 공장이 생겼다. 공장으로 인해 대기오염이 발생할 확률은 0.6이다. 대기오염이 있을 때 마을주민의 호흡기 질환 발생율은 0.8, 대기 오염이 없을 때는 0.1이다.

 마을 주민 중 한 명이 호흡기 질환에 걸렸을 때 원인이 대기오염일 확률 보험회사는 사고 위험률을 기준으로 낮음, 보통, 높음으로 나눈다. 각 부류의 사람은 각각 20%, 50%, 30%이며, 1년간 사고를 낼 확률은 0.05, 0.15, 0.30이다.

• 1년간 사고를 내지 않은 사람이 사고 위험률이 높음일 확률

베르누이 시행(이항실험)

- 베르누이 시행(이항실험)
 - 각 시행에서 가능한 결과는 성공과 실패 두 가지
 - 각 시행은 독립적
 - 각 시행에서 성공 확률이 일정
- 성공 확률이 p인 베르누이 시행을 n번 반복했을 때 성공횟수 X에 대한 확률

-
$$P(X = k \mid n, p) = \binom{n}{k} p^k (1-p)^{n-k}$$

- 교과서 46페이지 예 2.7

A공장 생산품의 불량률이 5%라 한다.

- 이 공장에서 생산되는 제품 중 열개를 랜덤추출 하였다.
- (1) 불량품이 8개일 확률
- (2) 불량품이 8개 이상일 확률