Capítulo 1

2 CAPÍTULO 1.

Capítulo 2

4 CAPÍTULO 2.

Capítulo 3

Exemplo 3.1. asdasd

Exemplo 3.2. asdasd

Exemplo 3.3. asdasd

Exemplo 3.4. asdasd

Se, a cada solução de $x_1 + x_2 + x_3 = 20$ em inteiros positivos com $x_2 > 5$, subtrairmos 5 unidades de x_2 , teremos uma solução, em inteiros positivos, para $y_1 + y_2 + y_3 = 15$, onde

$$y_1 = x_1$$
, $y_2 = x_2 - 5$ e $y_3 = x_3$

Como a transformação acima é biunívoca e o número de soluções inteiras positivas de $y_1 + y_2 + y_3 = 15$ é C_{14}^2 , este é o número de soluções inteiras positivas de $x_1 + x_2 + x_3 = 20$, com $x_2 > 5$.

Exemplo 3.5. Encontrar o número de soluções em inteiros positivos para a inequação

$$0 < x_1 + x_2 + x_3 + x_4 \le 6$$

Devemos contar o número de soluções em inteiros positivos para as seguintes equações:

$$x_1 + x_2 + x_3 + x_4 = 1;$$

$$x_1 + x_2 + x_3 + x_4 = 2;$$

$$x_1 + x_2 + x_3 + x_4 = 3;$$

$$x_1 + x_2 + x_3 + x_4 = 4;$$

$$x_1 + x_2 + x_3 + x_4 = 5;$$

$$x_1 + x_2 + x_3 + x_4 = 6$$

Como $C_0^3=C_1^3=C_2^3=0$, o número de soluções em inteiros positivos para cada uma das três primeiras equações é zero. Para as três últimas temos, respectivamente, $C_3^3=1, C_4^3=4, C_5^3=10$. Logo, pelo princípio aditivo, o número procurado é 1+4+100=15.

Exemplo 3.6. Encontrar o número de soluções em inteiros não-negativos de $x_1 + x_2 + x_3 + x_4 + x_5 = 18$, nas quais exatamente 2 incógnitas são nulas.