## Matching

#### Pablo Torres

Departamento de Matemática Escuela de Ciencias Exactas y Naturales Facultad de Ciencias Exactas, Ingeniería y Agrimensura Universidad Nacional de Rosario

Curso de Complementos de Matemática I - Matemática Discreta

#### Matching

Definición: Un matching en un grafo G en un conjunto de aristas (no bucles) que no tienen extremos en común.

Un vértice extremo de alguna arista de un matching M se dice saturado por M (M-saturado).

Un matching es perfecto en un grafo  ${\it G}$  si satura todos los vértices de  ${\it G}$ .

## **Ejemplos:**



# Matching Maximal - Máximo

Definición: Un matching maximal en un grafo G es un matching tal que no existe otro matching de mayor cardinal en G que lo contenga. Un matching máximo en G es un matching de cardinal máximo en G.

# Ejemplos:

- $oldsymbol{0}$  Si M es matching maximal, ¿es máximo?
- f 2 Si M es matching máximo entonces es maximal.



## Caminos alternantes - aumentantes

Definición: Dado un matching M en G, un camino M-alternante es un camino en G que alterna aristas en M y en E(G)-M (no en M). Un camino M-aumentante es un camino M-alternante cuyos extremos son distintos y no están M-saturados.

# **Ejemplos:**



#### OBSERVACIÓN

Si P es un camino M-aumentante en G, entonces al sacar las aristas de  $M \cap P$  y colocar las aristas de P - M tenemos un nuevo matching M' que

# Teorema de Berge (1957) - Matching

#### LEMA

Toda componente conexa de la diferencia simétrica de dos matchings es un camino o un ciclo par.

#### Prueba:

Sean M y M' matchings de G y  $F=M\triangle M'$ . Consideremos el grafo  $G_F=(V(G),F)$ . Luego, todo vértice de  $G_F$  tiene grado a lo sumo 2, ya que en cada vértice puede incidir a lo sumo una arista de cada matching. En consecuencia  $\Delta(G_F) \leq 2$  y por lo tanto toda componente conexa de G es un camino o un ciclo (probar). Si una componente conexa es un ciclo, debe alternar entre aristas de M y de M' y por lo tanto su longitud es par.  $\square$ 

# Teorema de Berge (1957) - Matching

## TEOREMA (BERGE, 1957)

Un matching M de un grafo G es máximo ssi G no tiene camino M-aumentante.

#### Prueba:

 $(\Longrightarrow)\checkmark$  Observación previa.

 $(\Leftarrow)$  Supongamos que M' es un matching de G con |M'| > |M|. Probaremos que existe un camino M-aumentante en G. Sea  $F = M' \triangle M$ .

Cada componente de  $G_F$  es un camino o un ciclo par (Lema anterior).

Como |M'| > |M|, debe existir un camino P en  $G_F$  que tiene más aristas de M' que de M. Como el camino alterna aristas de ambos matchings, los extremos están saturados por M'. En consecuencia, P es un camino M-aumentante en G.

Sea G[X,Y] un grafo bipartito y M un matching en G[X,Y] que satura todos los vértices de X. Es claro que si conjunto  $S\subseteq X$  entonces en  $N(S)=\cup_{v\in S}N(v)$  existen al menos |S| vértices, i.e.  $|N(S)|\ge |S|$ . Veamos que la condición de Hall: "para todo  $S\subseteq X,\ |N(S)|\ge |S|$ " es suficiente y necesaria para la existencia de un matching que satura X.

## TEOREMA (HALL, 1935)

Un grafo bipartito G[X, Y] tiene un matching que satura X ssi para todo  $S \subseteq X, \ |N(S)| \ge |S|.$ 

#### Prueba:

 $(\Longrightarrow)\checkmark$  Para  $S\subseteq X$ , existen |S| vértices saturados en Y por aristas con un extremo en S, luego  $|N(S)|\geq |S|$ .

## TEOREMA (HALL, 1935)

Un grafo bipartito G[X, Y] tiene un matching que satura X ssi para todo  $S\subseteq X,\ |N(S)|\geq |S|.$ 

 $(\Longleftarrow) \text{ Supongamos que existe un matching máximo } M \text{ en } G \text{ que no satura } X \text{ y encontremos } S \subseteq X \text{ tal que } |N(S)| < |S|.$ 

Sea  $u \in X$  un vértice no saturado por M. Si u tiene un vecino no saturado, entonces M no es máximo. Consideremos todos los caminos M alternantes desde u. Sea  $T \subseteq Y$  los vértices en alguno de estos caminos en Y y  $S \subseteq X$  los vértices en alguno de estos caminos en X (obs.  $u \in S$ ).

Es claro que  $T \subseteq N(S)$ .

Veamos que T = N(S).

Sea  $y \in N(S) - T$ . En consecuencia, y no está M-saturado (en caso contrario  $y \in T$ ). Hemos visto que  $N(u) \subseteq T$ . Luego, y es vecino de algún vértice  $s \in S - \{u\}$ . Luego, sy es una arista de G y además  $sy \notin M$ . Considerando un camino M-alternante de u hasta s (existe por def. de s) y la arista sy, tenemos un camino sy-aumentante, contradiciendo que sy es máximo.

Ergo, T = N(S).

Además, notemos que todos los vértices en  $S-\{u\}$  tienen un único vecino (por M) en T y viceversa, luego  $|T|=|S-\{u\}|$ .

Por lo tanto,  $|N(S)| = |T| = |S - \{u\}| = |S| - 1 < |S|$ .

# **Ejemplos**



#### Corolario

Todo grafo bipartito k-regular ( $k \ge 1$ ) tiene un matching perfecto.

#### Prueba:

Sea G[X, Y] bipartito k-regular. la cantidad de aristas de G es k|X| ya que toda arista tiene exactamente un extremo en X y hay exactamente karistas con un extremo en un vértice fijo. Análogamente para Y, la cantidad de aristas es k|Y|. En consecuencia, k|X| = k|Y|, i.e. |X| = |Y|. Ergo, un matching que satura X (o Y), es un matching perfecto. Verifiquemos la condición de Hall para X. Sea  $S \subseteq X$  y E(S) las aristas con un extremo en S (y el otro en N(S)). Como G es k-regular, |E(S)| = k|S|. Por otro lado, la cantidad de aristas con un extremo en N(S) es k|N(S)|, entonces |E(S)| < k|N(S)|. Finalmente, k|S| < k|N(S)|, i.e. |S| < |N(S)|.

## MATCHING Y CUBRIMIENTOS

Sea  $F\subseteq V(G)$  tal que toda arista de G tiene al menos uno de sus extremos en F. Es evidente que si M es un matching entonces a aristas distintas de M le corresponden (son extremos) distintos elementos de F. Ergo,  $|M|\leq |F|$ .

## Ejemplo:



# MATCHING Y CUBRIMIENTOS DE ARISTAS POR VÉRTICES

Definición: Un cubrimiento de aristas por vértices de un grafo G es un conjunto de vértices  $F\subseteq V(G)$  tal que toda arista de G tiene al menos un extremo en F. Notamos  $\beta(G)$  al tamaño mínimo de un cubrimiento de aristas por vértices.

## Ejemplo:



# MATCHING Y CUBRIMIENTOS DE ARISTAS POR VÉRTICES

Definición: Un cubrimiento de aristas por vértices de un grafo G es un conjunto de vértices  $F\subseteq V(G)$  tal que toda arista de G tiene al menos un extremo en F. Notamos  $\beta(G)$  al tamaño mínimo de un cubrimiento de aristas por vértices.

- $\bullet \ \beta(K_n) = n 1.$

- $\bullet \ \beta(P_n) = \lfloor \frac{n}{2} \rfloor.$
- $\bullet \ \beta(W_n) = \ \textcircled{a}.$
- $\bullet \ \beta(Q_n) = \ \mathfrak{D}.$

## MATCHING Y CUB. DE ARISTAS POR VÉRTICES

Notemos  $\alpha'(G)$  al tamaño de un matching máximo de G. De las observaciones anteriores, resulta que para todo grafo G,

$$\min\{|F|: F \text{ es un cub. de } G\} = \beta(G) \geq \\ \geq \alpha'(G) = \max\{|M|: M \text{ es un matching de } G\}.$$



# MATCHING Y CUBRIMIENTOS DE ARISTAS POR VÉRTICES

# TEOREMA (KÖNIG-EGERVÁRY, 1931)

Si G es un grafo bipartito entonces  $\beta(G) = \alpha'(G)$ .

#### Prueba:

Sea F un cubrimiento por vértices mínimo de G[X,Y] (grafo bipartito), i.e.  $|F|=\beta(G)$ . Construiremos un matching M tal que |M|=|F|, lo que implica la tesis.

Sean  $R = F \cap X$  y  $T = F \cap Y$ . Consideremos H el subgrafo inducido por  $R \cup (Y - T)$  y H' el subgrafo inducido por  $T \cup (X - R)$ .

Como  $F=R\cup T$  es un cub. por vértices de G, entonces no hay aristas entre Y-T y X-R. Sea  $S\subseteq R$ , si  $|N_H(S)|<|S|$ , entonces  $T\cup N_H(S)$  es un cubrimiento de G, ya que todas las aristas que cubre S también las cubre  $T\cup N_H(S)$ . Pero  $|T\cup N_H(S)|<\beta(G)$ , lo que no puede ocurrir. En consecuencia,  $|N_H(S)|\ge |S|$ . Ergo, se verifica la cond. de Hall para R en H.

# MATCHING Y CUBRIMIENTOS DE ARISTAS POR VÉRTICES

# TEOREMA (KÖNIG-EGERVÁRY, 1931)

Si G es un grafo bipartito entonces  $\beta(G) = \alpha'(G)$ .

#### Prueba:

Luego, existe un matching  $M_H$  en H que satura R. Por lo tanto  $|M_H|=|R|$ .

Análogamente, se puede obtener un matching  $M_{H'}$  en H' que satura T y  $|M_{H'}| = |T|$ .

Como  $V(H) \cap V(H') = \emptyset$ ,  $M = M_H \cup M_{H'}$  es un matching de G con  $|M| = |X \cup T| = |F|$  como estábamos buscando.

# ESTABLES Y CUBRIMIENTOS DE ARISTAS POR VÉRTICES



Si S es un cub. de aristas por vértices, entonces  $\overline{S}$  es un estable , y viceversa.

# Estables y cubrimientos de aristas por

## **VÉRTICES**

#### Proposición

Sean G un grafo,  $S\subseteq V(G)$  y n=|V(G)|. Luego, S es un estable de G ssi  $\overline{S}$  es un cubrimiento de aristas por vértices de G. Además,  $\alpha(G)+\beta(G)=n$ .

• 
$$\beta(K_n) = n - 1$$
,  $\alpha(K_n) = 1$ .

• 
$$\beta(K_{n,m}) = \min\{n, m\}, \ \alpha(K_{n,m}) = \max\{n, m\}.$$

• 
$$\beta(C_n) = \lceil \frac{n}{2} \rceil$$
,  $\alpha(C_n) = \lfloor \frac{n}{2} \rfloor$ .

• 
$$\beta(P_n) = \lfloor \frac{n}{2} \rfloor$$
,  $\alpha(P_n) = \lceil \frac{n}{2} \rceil$ .

• 
$$\beta(W_n) = \lceil \frac{n}{2} \rceil + 1$$
,  $\alpha(W_n) = \lfloor \frac{n}{2} \rfloor$ .

$$\beta(Q_n) = 2^{n-1} = \alpha(Q_n).$$

• 
$$\beta(K(n,k)) = \binom{n}{k} - \binom{n-1}{k-1} = \binom{n-1}{k}$$
,  $\alpha(K(n,k)) = \binom{n-1}{k-1}$ .