

MODE CAPTURA

MODO CAPTURA

Capturas los 16 bits de los Timer 1 o Timer 3 cada ves que se produzca un flaco ascendente o decente en los pines CCP1 O CCP2. Cuenta con un prescaler para el numero de flanco que activan la captura.

MODO COMPARACIÓN

MODO COMPARACIÓN

Los 16 bits del modulo comparador (CCPRx) son comparados constatemente con los 16 bits de los registros de los Timer 1 y Timer 3. Cuando son iguales se genera una bandera que puede ser usada para cambiar el estado de los pines CCPx.

PWM

Note 1: The 8-bit TMR2 value is concatenated with the 2-bit internal Q clock, or 2 bits of the prescaler, to create the 10-bit time base.

PWM - TIMER 2

PWM

PWM Resolution (max) =
$$\frac{\log(\frac{FOSC}{FPWM})}{\log(2)}$$
 bits

Tosc = Periodo de la frecuencia de reloj.

Fosc = Frecuencia de reloj.

 F_{PWM} = Frecuencia de PWM.

PWM - EJEMPLO

Calculamos la resolución del PWM.

 $F_{OSC} = 8 \text{ MHz}$, $F_{pwm} = 3 \text{ Khz}$, TMR2 PRESCALER= 4, DUTY=50.

PWM RESOLUCION =
$$\frac{\log(\frac{8*10^6}{3*10^3})}{\log(2)}$$
 = 11.38 bits → 10 bits.

Calculamos el valor de PR2.

PWM PERIODO=1/3KHz=333.33x10-6s

 $TOSC=1/8 MHz = 125 \times 10^{-9} s$

PWM-EJEMPLO.

$$333.333 \times 10^{-6} = (PR2+1) \times 4 \times 125 \times 10^{-9} \times 4 = 165.666 \Rightarrow 166 = PR2$$

• Calculamos el valor de CCPRxL y CCPxCON <5-4>.

$$166.665 \times 10^{-6} = (CCPRxL:CCPxXON) \times 125 \times 10^{-9} \times 4 = 333.33 \rightarrow 334$$