Data Valorization: Recommender System

Lionel Fillatre

fillatre@unice.fr

Outline

- Introduction
- Collaborative Filtering
- Memory-Based: Baseline Algorithm
- Matrix Factorization
- Practical Issues
- Conclusion

1 Introduction

Example: Similar Pages

Example: on-line shopping

User Ratings

- Many systems ask users to *rate* items e.g. on a scale of 1 to 10. These ratings then enable the system to give more precise/accurate recommendations, and use a variety of sophisticated learning/prediction algorithms.
- Example: Here are user ratings for some items ("?" means unrated).

	A	В	C	D	E	F	G	Η
You:	7	2	1	8	9	9	?	?
User1	1	8	8	2	?	2	8	7
User2	6	3	3	7	6	5	3	1
User3	7	2	1	7	7	?	3	1

• How might a system predict your rating for items G and H?

Example: Netflix Prize

- Task
 - Given customer ratings on some movies
 - Predict customer ratings on other movies
- If John rates
 - "Mission Impossible" a 5
 - "Over the Hedge" a 3, and
 - "Back to the Future" a 4,
 - How would he rate "Harry Porter", ... ?
- Performance
 - Error rate (accuracy)
- Grand Prize (2009)
 - \$1M
 - 10% improvement

Types of Recommender Systems

User Profile & contextual parameters

Community data

Product features

- 1. Personalized recommendations
- Collaborative: « Tell me what's popular among my peers »
- Content-based: « Show me more of the same what I've liked »
- Knowledge-based: « Tell me what fits based on my needs »
- Hybrid: combinations of various inputs and/or composition of different mechanisms

User-based versus Item-based

User Profiles

- For user-based recommendation, sites need to have some kind of user profile.
- Similarity with other users is based on distance measurements based on the profile.
- What do you think could be in a user profile?

Potential contents of user profiles

- Demographic data: age, gender, salary, profession, country of residence, country of origin, religion ...
- Site behaviour: purchase history at the site; viewing history, perhaps including time spent on certain pages/items; clickstream sequence

Specifities

- Complexity grows linearly with the number of customers and items
- The sparsity of recommendations on the data set
 - Even active customers may have purchased well under 1% of the products

2 Collaborative Filtering

Basic Strategies

- Predict and Recommend
- Predict the opinion: how likely that the user will have on this item
- Recommend the "best" items based on
 - the user's previous likings, and
 - the opinions of like-minded users whose ratings are similar
- Assumption: users with similar taste in past will have similar taste in future

Why "collaborative"?

- Basically, someone else (in fact many someones) have gone to the effort of viewing/filtering things, and chosen the best few. You get a recommendation of the best few, without having to spend the effort.
- Main CF Techniques
 - Clustering based
 - Memory based
 - Nearest neighbors (user, item)
 - Model based
 - Matrix factorization/Latent factors

Clustering Techniques

- Work by identifying groups of consumers who appear to have similar preferences
- Performance can be good with smaller size of group
- May hurt accuracy while dividing the population into clusters

Example: clustering

	Book1	Book2	Book3	Book4	Book5	Book6
Customer A	X			X		
Customer B		X	X		X	
Customer C		X	X			
Customer D		X				X
Customer E	Χ				X	

- B, C & D form the first cluster vs. A & E form another cluster.
- « Typical » preferences for first cluster are:
 - Book 2, very high
 - Book 3, high
 - Books 5 & 6, may be recommended
 - Books 1 & 4, not recommended

3 Memory-Based: Baseline Algorithm

K-Nearest Neighbour based Recommendation

(Think in terms of many dimensions, not just these two)

K-Nearest Neighbour based Recommendation

Your neighbours: recommend things that they have viewed/purchased

Item-to-Item Collaborative Filtering

- No more matching the user to similar customers
- Build a similar-items table by finding that customers tend to purchase together
- Amazon.com used this method
- Scales independently of the catalog size or the total number of customers
- Acceptable performance by creating the expensive similar-item table offline

Memory-Based Algorithms

- $v_{b,j}$ = vote of user b on item j
- I_b = set of items for which user b has voted
- Mean vote for user b is $\bar{v}_b = \frac{1}{|I_b|} \sum_{j \in I_b} v_{b,j}$
- Predicted vote for "active user" *a* is weighted sum

$$p_{a,j} = \bar{v}_a + \gamma \sum_{b=1}^{n} w(a,b) (v_{b,j} - \bar{v}_b)$$

normalizer

$$\gamma = 1/\sum_{b=1}^{n} |w(a,b)|$$

weights of n similar users who have voted for item j

 $v_{b,i}$

User b

User1

User2 User3 User4

Memory-Based Algorithms

K-nearest neighbor:

$$w(a,b) = \begin{cases} 1 & \text{if } b \in \text{neighbors}(a) \\ 0 & \text{else} \end{cases}$$

Pearson correlation coefficient:

$$w(a,b) = \frac{\sum_{j \in I_a \cap I_b} (v_{a,j} - \bar{v}_a) (v_{b,j} - \bar{v}_b)}{\sqrt{\sum_{j \in I_a \cap I_b} (v_{a,j} - \bar{v}_a)^2 \sum_{j \in I_a \cap I_b} (v_{b,j} - \bar{v}_b)^2}}$$

Cosine distance (unobserved item receive a zero vote):

$$w(a,b) = \sum_{j \in I_a \cup I_b} \frac{v_{a,j}}{\sqrt{\sum_{k \in I_a} v_{a,k}^2}} \frac{v_{b,j}}{\sqrt{\sum_{k \in I_b} v_{b,k}^2}}$$

Matrix Factorization

Matrix of Ratings

d products

n customers

 \boldsymbol{A}

 A_{ij} = rating of *j*-th product by the *i*-th customer

Find subsets of products that capture the behavior or the customers

Singular Value Decomposition

$$A = U \sum V^{T} = \begin{bmatrix} u_{1}, u_{2}, \cdots, u_{r} \end{bmatrix} \begin{bmatrix} \sigma_{1} & & 0 \\ & \sigma_{2} & \\ 0 & & \ddots & \\ & & & \sigma_{r} \end{bmatrix} \begin{bmatrix} v_{1}^{T} \\ v_{2}^{T} \\ \vdots \\ v_{r}^{T} \end{bmatrix}$$

$$r: \text{ rank of matrix A}$$

- $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r$: singular values of matrix A (also, the square roots of eigenvalues of AA^T and A^TA)
- $u_1, u_2, ..., u_r$: left singular vectors of A (also eigenvectors of AA^T)
- $v_1, v_2, ..., v_r$: right singular vectors of A (also, eigenvectors of $A^T A$)

$$A = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T + \dots + \sigma_r u_r v_r^T$$

SVD and Rank-k approximation

Application: Recommender systems

- Data: Users rating movies
 - Sparse and often noisy
- Assumption: there are r basic user profiles, and each user is a linear combination of these profiles
 - E.g., action, comedy, drama, romance
 - Each user is a weighted combination of these profiles
 - The "true" matrix has rank r
- What we observe is a noisy, and incomplete version \tilde{A} of this matrix A
 - The rank-k approximation \tilde{A}_k is provably close to A
- Algorithm: compute \tilde{A}_k and predict for user u and movie m, the value $\tilde{A}_k[m,u]$.

Example: Matrix of Ratings (2 factors)

A_{ij}	M1	M2	M3	M4	M5
Alice	-4	-1	0	1	4
Bob	3	1	0	-1	-3
Mary	-3	-4	0	3	4
Sue	4	-8	3	3	-2

	Dim1	Dim2
Alice	0.09	-1,85
Bob	-0.16	1.42
Mary	1.19	-1.89
Sue	3.00	0.88

2	WARS	100 (20 A) (20 A	SKYFALL	Muncs	And the second
Dim1	0.73	-2.77	0.86	1.23	-0.04
Dim2	2.13	0.39	0.27	-0.64	-2.14

Prediction: $\hat{r}_{ij} = 0.09 \times 1.23 + (-1.85) \times (-0.64) = 1.2947 \approx 1$

Lower Dimensional Feature Space

Practical Issues

Practical Issues: Ratings

- Rating Scales
 - Scalar ratings
 - Numerical scales
 - 1-5, 1-7, etc.
 - Binary ratings
 - Agree/Disagree, Good/Bad, etc.
 - Unary ratings
 - Good, Purchase, etc.
 - Absence of rating indicates no information

Practical Issues: Cold Start

- New user
 - Rate some initial items
 - Non-personalized recommendations
 - Describe tastes
 - Demographic info
- New item
 - Non-CF: content analysis, metadata
 - Randomly selecting items "close" to the new item

Evaluation Metrics

- Accuracy
 - Predict accuracy
 - The ability of a CF system to predict a user's rating for an item
 - Mean absolute error (MAE)

$$MAE = \frac{\sum_{(a,j)\in W} \left| v_{a,j}^p - v_{a,j} \right|}{|W|}$$

- $v_{a,j}^p$ is the predicted value of $v_{a,j}$
- W is the set of all predicted couples (user,item)
- The MAE used the same scale as the data being measured.
- Rank accuracy
 - Percentage of items in a recommendation list that the user would rate as useful

Evaluation Metrics

Novelty

 The ability of a CF system to recommend items that the user was not already aware of.

Coverage

 The percentage of the items known to the CF system for which the CF system can generate predictions.

Serendipity

 Users are given recommendations for items that they would not have seen given their existing channels of discovery.

Serendipity

- Unsought finding
- Unexpected, but useful result
- Do not recommend items the user already knows or would find anyway, try something more interesting
- Example
 - I like movies by Steven Spielberg, Peter Jackson, and James Cameron
 - Recommending another movie by Steven Spielberg not very useful
 - Recommending Quentin Tarantino = serendipity

Evaluation Metrics

- Learning Rate
 - How quickly the CF system becomes an effective predictor of taste as data begins to arrive.
- Confidence
 - Ability to evaluate the likely quality of its predictions.
- User Satisfaction
 - By surveying the users or measuring retention and use statistics

Additional Issues: Privacy & Trust

- User profiles
 - Personalized information

- Distributed architecture
 - Security of distributed systems
- Recommender system may break trust when malicious users give ratings that are not representative of their true preferences.

6 Conclusion

Conclusion

- Recommender systems have had broadly visible impact:
 - Google, TIVO, Amazon, personal radio stations, ...
- Critical tool for finding "consensus information" present in a large community (or large corpus of web pages, or large database of purchase records,)
- Relatively-well established, especially in certain narrow directions, on a few datasets
- Set of applications still being expanded