Spurious Regression

Zahid Asghar

Spurious Regression

$$y_t = a_0 + a_1 z_t + e_t$$

where y_t is the dependent variable, z_t is the independent variable, a_0 and a_1 are the parameters, and e_t is the error term. Assumptions of the classical model:

- both the $\{y_t\}$ and $\{z_t\}$ sequences be stationary
- the errors have a zero mean and a finite variance.

In the presence of nonstationary variables, there might be what Granger and Newbold (1974) call a spurious regression.

A spurious regression has a high \mathbb{R}^2 and t-statistics that appear to be significant, but the results are without any economic meaning. The regression output "looks good" because the least-squares estimates are not consistent and the customary tests of statistical inference do not hold.

CASE 1: Both {yt} and {zt} are stationary. The classical regression model is appropriate.

CASE 2: The {yt} and {zt} sequences are integrated of different orders. Regression equations using such variables are meaningless.

CASE 3: The nonstationary {yt} and {zt} sequences are integrated of the same order and the residual sequence contains a stochastic trend. This is the case in which the regression is spurious. In this case, it is often recommended that the regression equation be estimated in first differences.

CASE 4: The nonstationary {yt} and {zt} sequences are integrated of the same order and the residual sequence is stationary. In this circumstance, {yt} and {zt} are cointegrated.

Load libraries and generate data

library(tidyverse) # An umbrella package that installs the tidyverse packages
library(readxl) # To read excel files

```
library(broom) # To tidy up the regression output
library(moderndive) # To get regression points
library(ggfortify) # To plot regression diagnostics
library(ggResidpanel) # To plot regression diagnostics
```

```
T <- 1000
set.seed(1357)
y \leftarrow ts(rep(0,T))
vy <- ts(rnorm(T))</pre>
for (t in 2:T){
  y[t] \leftarrow y[t-1]+vy[t]
}
set.seed(4365)
x \leftarrow ts(rep(0,T))
vx <- ts(rnorm(T))</pre>
for (t in 2:T){
  x[t] <- x[t-1]+vx[t]
}
y \leftarrow ts(y[300:1000])
x \leftarrow ts(x[300:1000])
ts.plot(y,x, ylab="y and x")
```



```
# barplot of residuals
resid <- residuals(lm(y~x))
barplot(resid, ylab="Residuals", xlab="Observation", main="Residuals of y~x")</pre>
```

Residuals of y~x

Residuals panel

resid_panel(lm(y~x))

