VJEROJATNOST I STATISTIKA

ZADACI ZA VJEŽBU

8. Funkcije slučajnih vektora

FER, Zagreb

SADRŽAJ:

Zadaci za vježbu iz udžbenika Nevena Elezovića: Slučajne varijable Cjelina 8 – Funkcije slučajnih vektora

*** Prije rješavanja zadataka treba proći teoretsko gradivo ove cjeline ***

1. Formule	3
2. Zadaci	4
3. Rješeni zadaci	9
4. Službena rješenja	17
5 Literatura	10

NAPOMENA

Zadaci KOJE TREBA rješavati su od 1.-23.zadatka.

Zadaci koji nedostaju: 8,9,13

Posebna zahvala LORD OF THE LIGHT na rješenjima većeg broja zadataka!

FORMULE:

8. FUNKCIJE SLUČAJNIH VEKTORA

Gustoća funkcije slučajnog vektora:

$$Z = \psi(X, Y)$$

$$g_{Z}(z) = \int_{-\infty}^{\infty} f(x, y) \left| \frac{\partial y}{\partial z} \right| dz$$

Gustoća zbroja nezavisnih varijabli:

$$g_Z(z) = f_{x1} * f_{x2} * ... f_{Xn}$$

Očekivanje: $E(\mathbf{Z}) = \int_{-\infty}^{\infty} \mathbf{z} \ g(\mathbf{z}) d\mathbf{z}$

ostatak se svodi na formule iz 7.cjeline

ZADACI:

§ 8. Zadatci za vježbu

- 1. Slučajne varijable X i Y su nezavisne, s jednolikom razdiobom na intervalu [0, a]. Odredi gustoće sljedećih slučajnih varijabli a) X + Y, b) X Y, c) XY, d) X/Y.
- 2. Neka su X i Y nezavisne, jednoliko distribuirane na intervalu [0,1]. Odredi gustoću varijable X

$$Z=\frac{X}{X+Y}.$$

3. Nezavisne slučajne varijable X i Y imaju funkcije gustoće vjerojatnosti

$$f(x) = 1$$
 za $0 \le x \le 1$,
 $g(y) = \frac{2y}{9}$ za $0 \le y \le 3$.

Odredi funkciju gustoće vjerojatnosti slučajne varijable $Z = \sqrt{X^2 + Y^2}$.

* * *

- **4.** Duljine stranica pravokutnika su nezavisne slučajne varijable, s jednolikom razdiobom na intervalu [0, a]. Odredi gustoću razdiobe površine tog pravokutnika.
- 5. Slučajni vektor (X,Y) ima jednoliku razdiobu na trokutu s vrhovima O(0,0), A(1,0), B(1,1). Odredi funkciju razdiobe varijable Z=X-Y.
- 6. Slučajni vektor (X, Y) ima jednoliku razdiobu na području

$$D = \{(x, y) : \mathbf{0} \leqslant y \leqslant x \leqslant 1\}.$$

Odredi funkciju razdiobe varijable Z=X-Y. Izračunaj $P\{Z<\frac{1}{2}\}$.

- 7. Slučajni vektor (X,Y) ima jednoliku razdiobu na kvadratu $\{|x|\leqslant 1\,,\,0\leqslant y\leqslant 2\}$. Odredi i skiciraj funkciju gustoće vjerojatnosti slučajne varijable Z=XY.
- **8.** Slučajni vektor (X, Y) ima jednoliku razdiobu vjerojatnosti unutar kruga polumjera 1. Odredi i skiciraj funkciju gustoće vjerojatnosti slučajne varijable Z = X/Y.
- **9.** Slučajni vektor (X,Y) ima jednoliku razdiobu vjerojatnosti na području $D = \{(x,y) \ 0 \le x \le a, 0 \le y \le b\}$. Nađi i skiciraj funkciju gustoće vjerojatnosti slučajne varijable

$$Z = \frac{X - a}{Y - b}.$$

10. Slučajni vektor (X, Y) jednoliko je distribuiran na području

$$S = \{(x, y) : y > 2, \ x < 3, \ y - x < 1\}.$$

Nađi i skiciraj gustoću slučajne varijable Z = X + 2Y.

11. Slučajni vektor (X, Y) ima jednoliku razdiobu vjerojatnosti na području

$$G = \{(x, y) : x > 0, y > 0, 1 - x - y > 0\}.$$

Odredi funkciju razdiobe F_Z slučajne varijable $Z=\frac{Y}{1+X}$. Kolika je vjerojatnost da Z poprimi neku vrijednost iz intervala $\left(\frac{1}{4},\frac{3}{4}\right)$?

- 12. Dvodimenzionalni slučajni vektor (X,Y) ima jednoliku razdiobu na području $D=\{(x,y):x\geqslant 0,\ y\geqslant 0,\ x+y\leqslant 2\}$. Nađi i skiciraj funkciju gustoće slučajne varijable $Z=\frac{Y+1}{X}$.
- 13. Slučajni vektor (X, Y) ima jednoliku razdiobu na kvadratu

$$G=\{(x,y): \mathbf{0}\leqslant x\leqslant \mathbf{2}\,,\, \mathbf{0}\leqslant y\leqslant \mathbf{2}\}.$$

Nađi i skiciraj funkciju gustoće f_Z slučajne varijable $Z = \max\{X, Y+1\}$.

* * *

14. Slučajne varijable X i Y su nezavisne s gustoćama razdioba:

$$f_X(x) = 12x^2(1-x), 0 < x < 1,$$

 $f_Y(y) = 2y,$ 0 < y < 1.

Odredi razdiobu slučajne varijable Z = XY.

15. Slučajni vektor (X, Y) zadan je funkcijom gustoće

$$f(x,y) = 8xy(1-x^2), \ 0 < x < 1, \ 0 < y < 1.$$

Odredi funkciju gustoće varijable Z = XY.

16. Odredi i skiciraj funkciju razdiobe vjerojatnosti slučajne varijable Z = X - Y, ako su X i Y nezavisne slučajne varijable s gustoćama razdioba:

$$f_X(x) = \frac{1}{2}, -1 < x < 1,$$

 $f_Y(y) = e^{-y}, y > 0.$

17. Slučajni vektor (X, Y) ima gustoću razdiobe

$$f(x,y) = ax + y, 0 < x < 1, 0 < y < 1.$$

Izračunaj konstantu a. Odredi gustoću razdiobe slučajne varijable Z = X + Y.

- 18. Odredi i skiciraj funkciju razdiobe vjerojatnosti slučajne varijable Z=X-Y, ako su X i Y nezavisne slučajne varijable s gustoćama $f(x)=\frac{1}{2}$, $-1\leqslant x\leqslant 1$ i $g(y)=e^{-y}$, $y\geqslant 0$.
- **19.** Nezavisne slučajne varijable *X* i *Y* imaju gustoće vjerojatnosti

$$f(x) = \frac{1}{\pi(1+x^2)}, \qquad x \in \mathbf{R},$$
 $g(y) = \text{konst.}, \qquad 1 \leqslant y \leqslant 3.$

Odredi gustoću slučajne varijable Z = X/Y.

20. Slučajni vektor (X, Y) zadan je gustoćom

$$f(x, y) = C(x - y), \quad \mathbf{0} \leqslant y \leqslant x \leqslant 1.$$

Izračunaj marginalnu gustoću $f_X(x)$ i gustoću slučajne varijable Z = XY.

21. Slučajni vektor (X, Y) zadan je gustoćom

$$f(x, y) = 9e^{-3x-3y}, \quad x > 0, y > 0.$$

Odredi i skiciraj funkciju razdiobe slučajne varijable Z = Y - X.

22. Slučajni vektor (X, Y) ima gustoću razdiobe

$$f(x,y) = C(x+y)$$
, $\mathbf{0} \leqslant y \leqslant x \leqslant 1$.

Odredi marginalnu gustoću varijable X, te gustoću i očekivanje slučajne varijable Z = XY.

23. Slučajni vektor (X, Y) ima gustoću razdiobe

$$f(x,y) = C(x+y)$$
, $\mathbf{0} \leqslant x \leqslant y \leqslant 1$

Odredi marginalnu gustoću varijable X, te gustoću i očekivanje slučajne varijable Z = XY.

24. Neka su X, Y nezavisne s normalnim zakonom $\mathcal{N}(a, \sigma^2)$, te $Z = \max\{X, Y\}$. Pokaži da vrijedi $\boldsymbol{E}(Z)=a+\frac{\sigma}{\sqrt{\pi}}.$

25. Neka su X i Y nezavisne, s normalnim zakonom $\mathcal{N}(0, \sigma^2)$. Dokaži da slučajna varijabla $Z = \sqrt{X^2 + Y^2}$ ima **Rayleighovu** razdiobu, s gustoćom

$$f_Z(z) = rac{z}{\sigma^2} \exp\left\{-rac{z^2}{2\sigma^2}\right\}, \quad z > 0.$$

26. Nezavisne slučajne varijable X i Y imaju gustoće razdioba

$$f_X(x) = rac{1}{\pi\sqrt{1-x^2}}, \quad -1 < x < 1,$$
 $f_Y(y) = ye^{-rac{1}{2}y^2}, \quad y > 0.$

Dokaži da slučajna varijabla varijabla Z = XY ima normalnu razdiobu.

27. X_1 i X_2 su nezavisne slučajne varijable, $X_1 \sim$ $\mathcal{N}(0,\sigma_1^2)$, $X_2 \sim \mathcal{N}(0,\sigma_2^2)$. Dokaži da slučajna varijabla $Y = \frac{X_1 X_2}{\sqrt{X_1^2 + X_2^2}}$ ima normalnu razdiobu $N\left(0, \frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}\right)$.

$$N\left(0, \frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}\right)$$
.

28. Neka su X, Y, ϑ nezavisne slučajne varijable, pri čemu X, Y imaju normalnu razdiobu $\mathcal{N}(0,1)$, a varijabla ϑ jednoliku razdiobu na intervalu $[0, 2\pi]$. Odredi zakon razdiobe slučajne varijable $X \cos \vartheta + Y \sin \vartheta$.

29. Slučajni vektor (X, Y) zadan je gustoćom razdiobe:

$$f(x,y) = xe^{-x(1+y)}, \quad x > 0, y > 0.$$

Pokaži da slučajna varijabla Z = XY ima eksponencijalnu razdiobu E(1).

- 30. Slučajne varijable X i Y su nezavisne, s eksponencijalnim zakonom $E(\lambda)$. Odredi gustoće sljedećih funkcija a) X + Y, b) X - Y, c) |X - Y|, **d**) X/Y.
- 31. Neka su X i Y nezavisne slučajne varijable s eksponencijalnim zakonom $\mathscr{E}(\lambda)$. Odredi zakon razdiobe slučajne varijable $Z = \frac{X + Y}{Y}$.

32. Nezavisne slučajne varijable X i Y imaju eksponencijalnu razdiobu s parametrom λ . Dokaži da slučajne varijable

$$Z = \max\{X, Y\}, \qquad W = X + \frac{1}{2}Y$$

imaju jednaku razdiobu. Izračunaj tu razdiobu.

- 33. Slučajne varijable X_1 i X_2 su nezavisne s eksponencijalnom razdiobom s parametrima λ_1 i λ_2 . Odredi funkciju razdiobe slučajne varijable
- **34.** Slučajne varijable X_1, \ldots, X_n su nezavisne s eksponencijalnim zakonom $\mathcal{E}(\lambda)$. Odredi gustoću varijable

$$X=\frac{X_1}{X_1+\ldots+X_n}.$$

35. Sistem koji se sastoji od n jedinica prestaje s radom čim bilo koji dio prestane s radom. Vremena ispravnog rada pojedinih dijelova su nezavisne slučajne varijable distribuirane po eksponencijalnom zakonu s parametrima $\lambda_1, \ldots, \lambda_n$. Izračunaj očekivano vrijeme ispravnog rada sustava.

36. Neka su X_1, \ldots, X_n nezavisne, identično distribuirane slučajne varijable sa funkcijom razdiobe F. Odredi razdiobe slučajnih varijabli

$$Y = \min\{X_1, \ldots, X_n\},$$

 $Z = \max\{X_1, \ldots, X_n\}.$

- 37. Slučajne varijable X i Y su nezavisne, X poprima vrijednosti 0, 1 s vjerojatnostima $\frac{1}{2}$, Y ima jednoliku razdiobu na intervalu [0, 1]. Odredi razdiobu varijable X + Y.
- **38.** Slučajne varijable X_1, \ldots, X_n su nezavisne, jednoliko distribuirane na intervalu [0,1]. Neka je $S_n = X_1 + \ldots + X_n$, te φ_n gustoća od S_n . Dokaži da je

$$\varphi_{n+1}(x) = \int_{x-1}^{x} \varphi_n(z) dz.$$

39. Neka su X_1, \ldots, X_n , Y nezavisne slučajne varijable, pri čemu je

$$X_i \sim \left(egin{array}{cc} 0 & 1 \ rac{1}{2} & rac{1}{2} \end{array}
ight), \ i=1,\ldots,n,$$

a Y ima jednoliku razdiobu na [0, 1]. Dokaži da slučajna varijabla

$$\frac{Y}{2^n} + \sum_{k=1}^n \frac{X_k}{2^k}$$

ima jednoliku razdiobu na [0, 1].

40. Slučajne varijable X i Y su nezavisne, poprimaju vrijednosti unutar intervala $[-\pi, \pi]$, a njihove gustoće su zadane Fourierovim redom

$$f_X(x) = rac{1}{2\pi} igg(1 + \sum_{n=1}^\infty a_n \cos(x - lpha_n) n igg),$$
 $f_Y(y) = rac{1}{2\pi} igg(1 + \sum_{n=1}^\infty b_n \cos(x - eta_n) n igg).$

Odredi gustoću zbroja Z = X + Y.

41. Uređeni uzorci. Neka su X_1, X_2, \ldots, X_n nezavisne identično distribuirane slučajne varijable. Njihovu funkciju razdiobe označimo sa F, a gustoću sa f. Te varijable možemo shvatiti kao rezultate neke slučajne varijable X pri n-terostrukom ponavljanju pokusa. Za svaki $\omega \in \Omega$ dobivamo realizacije, niz brojeva $X_1(\omega), X_2(\omega), \ldots, X_n(\omega)$ kojeg ćemo poredati u rastućem poretku.. Neka $X_{(1)}(\omega)$ označava najmanji, $X_{(2)}(\omega)$ sljedeći po redu, itd. Tako dobivamo uređenu rastuću n-torku slučajnih varijabli

$$X_{(1)} \leqslant X_{(2)} \leqslant \ldots \leqslant X_{(n)}$$

koju nazivamo uređeni uzorak. Specijalno, vrijedi

$$X_{(1)} = \min\{X_1, \dots, X_n\},$$

 $X_{(n)} = \max\{X_1, \dots, X_n\}.$

Odredi

- a) funkciju razdiobe varijable $X_{(1)}$;
- **b**) funkciju razdiobe varijable $X_{(n)}$;
- c) razdiobu vektora $(X_{(1)}, X_{(n)})$;
- d) gustoću varijable $X_{(k)}$, $1 \leqslant k \leqslant n$;
- e) gustoću vektora $(X_{(k)}, X_{(m)})$, $1 \le k \le m \le n$;
- f) gustoću uređenog uzorka $(X_{(1)}, \ldots, X_{(n)})$.

* * *

- **42.** Neka su X, Y, Z nezavisne slučajne varijable s normalnim zakonom $\mathcal{N}(\mathbf{0}, \sigma^2)$. Odredi gustoću vektora (R, Θ, Φ) , polarnih koordinata točke (X, Y, Z).
- **43.** Neka vektor (X, Y, Z) ima funkciju gustoće f koja je izotropna (ovisi samo o udaljenosti $r = \sqrt{x^2 + y^2 + z^2}$ točke do ishodišta), oblika

$$f(x, y, z) = h(r).$$

Neka su (R,Θ,Φ) polarne koordinate točke (X,Y,Z). Odredi gustoću vektora (R,Θ,Φ) te marginalne razdiobe komponenti. Da li su one nezavisne?

44. Neka je
$$f(x,y) = \frac{1}{2\pi\sqrt{(1+x^2+y^2)^3}}$$
.

a) Pokaži da je f gustoća razdiobe nekog vektora (X,Y).

- **b**) Odredi marginalne gustoće varijabli X i Y.
- c) Odredi gustoću vektora (R, Φ) , polarnih koordinata od (X, Y).
- 45. Neka je

$$f(x, y, z) = \frac{1}{\pi^2(1 + x^2 + y^2 + z^2)^2}.$$

- a) Pokaži da je f gustoća razdiobe nekog vektora (X,Y,Z).
- b) Odredi marginalne gustoće varijabli X, Y i
- c) Odredi gustoću sfernih koordinata (R, Θ, Φ) točke (X, Y, Z) .
- **46.** Zadan je slučajan vektor (X, Y) s gustoćom $(x, y) \mapsto f(x, y)$. Odredi gustoću vektora (U, V), ako je
- **a**) U = X + Y, V = X Y;
- **b**) $U = X \cos \alpha + Y \sin \alpha$, $V = -X \sin \alpha + X \cos \alpha$.
- **47.** Neka su X i Y nezavisne, sa zakonom $\mathcal{N}(0, \sigma^2)$. Odredi gustoću vektora (U, V), gdje je

$$U = X^2 + Y^2, \qquad V = \frac{X}{Y}.$$

Da li su U i V nezavisne?

48. X_1 i X_2 su nezavisne varijable, jednoliko distribuirane na intervalu [0, 1]. Definirajmo

$$Y_1 = \min \{ X_1, X_2 \},$$

$$Y_2 = \max \{ X_1, X_2 \}$$

Odredi funkciju razdiobe i gustoće slučajnog vektora (Y_1, Y_2) te potom marginalne razdiobe za Y_1 i Y_2 .

* * *

- **49.** Slučajna varijabla X ima gama razdiobu $G(\alpha,\lambda)$. Izračunaj $E(X^k)$.
- **50.** X ima χ_n^2 -razdiobu. Izračunaj $E(X^k)$.
- **51.** X ima χ_n razdiobu. Izračunaj $E(X^k)$.
- **52.** Neka su X_1,\ldots,X_n nezavisne slučajne varijable distribuirane po normalnom zakonu $\mathcal{N}(a,\sigma^2)$. Označimo $\overline{X}=\frac{1}{n}\sum_{k=1}^n X_k$. Dokaži da:

a)
$$S_n^* = \frac{1}{\sigma^2} \sum_{k=1}^n (X_k - a)^2$$
 ima χ_n^2 -razdiobu.

b)
$$S_n = \frac{1}{\sigma^2} \sum_{k=1}^n (X_k - \overline{X})^2$$
 ima χ_{n-1}^2 -razdiobu.

53. Neka su X_1, \ldots, X_n nezavisne slučajne varijable, jednoliko distribuirane na [0, 1]. Pokaži da varijabla $X = 2 \ln(X_1 \cdots X_n)$ ima χ^2_{2n} -razdiobu.

54. Slučajna varijabla X ima beta razdiobu s parametrima (α,β) , $(\alpha,\beta>0)$, ako je njezina gustoća razdiobe

$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1},$$

(0 < x < 1). Izračunaj njezino očekivanje i disperziju.

55. Neka su X_1, \ldots, X_m , Y_1, \ldots, Y_n nezavisne jedinične normalne slučajne varijable. Pokaži da je gustoća razdiobe varijable

$$X = rac{X_1^2 + \ldots + X_m^2}{Y_1^2 + \ldots + Y_n^2}$$

iednaka

$$\frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{n}{2}\right)\Gamma\left(\frac{m}{2}\right)}x^{\frac{m}{2}-1}(1+x)^{-\frac{m+n}{2}}, \quad (x>0).$$

56. Neka su X_{11} , X_{12} , X_{21} , X_{22} nezavisne slučajne varijable sa zakonom $\mathcal{N}(0,1)$. Odredi razdiobu varijable

$$\Delta = egin{bmatrix} X_{11} & X_{12} \ X_{21} & X_{22} \end{bmatrix}.$$

57. Slučajne varijable X_1 i X_2 su nezavisne s eksponencijalnom razdiobom s parametrima λ_1 i λ_2 . Odredi funkciju razdiobe slučajne varijable $Y = \frac{X_1}{X_1 + X_2}$.