F18/38 Atmospheric Spectroscopy

Carsten Liith

Michael Dorkenwald

December 5, 2018

1 Abstract

Lorem Ipsum.

- 2 Introduction
- 3 Background
- 3.1 Ozone and Nitrogendioxid
- 3.2 The DOAS Measurement System

4 Active Measurement of a Nitrogendioxid gas-cell

In this part of the experiment we measured the absorption of a NO_2 gas-cell in the spectrum of an Hg-lamp. Due to the nature of this measurement we could simplify the problem by using the fact that we have access to I_0 by taking a spectrum without the gas cell in the light path and then take a measurement with the gas-cell in the light path to measure I. After dark current and offset were corrected for both measurements we used the simplified

lambert-beer law to get to equation.

$$\tau = \log(\frac{I_0(\lambda)}{I_0(\lambda)}) = \sigma_{NO_2} \cdot \rho \cdot L \tag{1}$$

The reference convolution for NO_2 was then used to compute the SCD= $\rho \cdot L$. This was then used to compute the density $\rho = (2.81 \pm 0.07) \cdot 10^{-7} \frac{\text{mol}}{\text{cm}^3}$ and the mixture ratio $(6.29 \pm 0.39) \cdot 10^3 \text{ppm}$.

5 Sunlight Measurement of a recorded daycycle

6 Sunlight Measurement