Formule e Teoremi utili

Probabilità

Distribuzione della trasformata

Sia $f_X(x)$ e y = g(x).

- Se g crescente: $F_Y(y) = F_X(g^{-1}(y))$
- Se g decrescente: $F_Y(y) = 1 F_X(g^{-1}(y))$
- Se g^{-1} derivabile: $f_Y(y) = f_X(g^{-1}(y))|\dot{g}^{-1}(y)|$

Varianza

$$Var[X] = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

Marginali, Congiunte e Condizionate

$$f_{x,y} = f_{x|y} f_y$$
$$f_x = \int f_{x,y} dy$$

Media e Varianza Condizionati

$$\begin{split} \mathbb{E}[X] &= \mathbb{E}[\mathbb{E}[X|Y]] \\ Var[X] &= \mathbb{E}[Var[X|Y]] + Var[\mathbb{E}[X|Y]] \end{split}$$

Legge Forte Grandi Numeri

Sia
$$X_1, \ldots, X_n$$
 iid con μ, σ^2 , allora: $\bar{X}_n \stackrel{q.c.}{\to} \mu$

Teorema centrale del limite

Sia
$$X_1, \ldots, X_n$$
 iid con μ, σ^2 , allora: $\sqrt{n}(\bar{X}_n - \mu) \stackrel{L}{\longrightarrow} N(0, \sigma^2)$

Metodo delta

Sia X_1, \ldots, X_n iid con μ, σ^2 , tali che: $\sqrt{n}(\bar{X}_n - \mu) \stackrel{L}{\to} N(0, \sigma^2)$ Prendiamo una funzione g(x) e un certo θ :

- Se $g'(\theta) \neq 0$: $\sqrt{n}(g(\bar{X}_n) - g(\mu)) \xrightarrow{L} N(0, \sigma^2 g'(\mu)^2)$
- Se Se $g'(\theta) = 0$: $\sqrt{n}(g(\bar{X}_n) - g(\mu)) \xrightarrow{L} \frac{\sigma^2}{2} g''(\mu) \chi^2(1)$

Statistiche sufficienti

Definizione

Una statistica T è sufficiente per θ se: $f(\vec{x}|T=t) \perp \!\!\! \perp \!\!\! \mid \theta \quad \forall t$

Teorema di Fattorizzazione

Data la congiunta $f(\vec{x}, \theta), T(x)$ è suff se: $f(\vec{x}, \theta) = h(\vec{x})g(T(x), \theta)$ Questo vale anche per trasformazioni **biunivoche** di T

Famiglia Esponenziale

Se ho una distribuzione della FE: $f(\vec{x}, \theta) = h(\vec{x})c(\theta) \exp\left\{\sum_{i=1}^k w_i(\theta)t_i(x)\right\}$ Allora $T = (\sum_j t_1(X_j), \dots, \sum_j t_k(X_j))$ è sufficiente

Statistiche sufficienti e minimali

Definizione

Una statistica sufficiente T viene detta minimale se tutte le altre statistiche sufficienti sono funzioni di essa.

Lehmann-Scheffè sulla minimalità

Sia $f(\vec{x}, \theta)$ e T stat suff. T è minimale se: $\frac{f(\vec{x}, \theta)}{f(\vec{y}, \theta)} = K \text{ con } K \text{ costante in } \theta \iff T(x) = T(y)$

Statistiche complete

Definizione

Sia T(x) una statistica e $f(t,\theta)$ la sua legge. Diciamo T(x) completa se:

$$\mathbb{E}_{\theta}[g(T)] = 0 \,\forall \theta \implies \mathbb{P}(g(T) = 0) = 1$$

Di solito usiamo la derivata rispetto a θ :

$$\frac{d}{d\theta} \mathbb{E}_{\theta}[g(T)] = 0$$

$$= h'(\theta) \mathbb{E}_{\theta}[g(T)] + h(\theta)g(t)f_{T}(t,\theta) \Big|_{\theta}^{b}$$

Teorema di Bahadur

Se T è una statistica sufficiente e completa \implies minima

Famiglia Esponenziale

Sia

Allora
$$T = (\sum_{j} t_1(X_j), \dots, \sum_{j} t_k(X_j))$$
 è sufficiente ed è completa se il codominio di $w_1, \dots, w_k : \Theta \to \mathbb{R}^k$ contiene un aperto di \mathbb{R}^k

Stimatori Puntuali

Metodo dei Momenti

$$\begin{cases} m_1 = \frac{1}{n} \sum_{i=0}^n X_i = \mathbb{E}[X] \\ \vdots \\ m_k = \mathbb{E}[X^k] \end{cases}$$

I momenti saranno funzione di θ , risolvo il sistema lineare e trovo $\hat{\theta}_{Mom}$

Il risultato potrebbe non appartenere a Θ

Metodo della Verosomiglianza

Massimizzo la congiunta:

$$\hat{\theta}_{MLE} = \operatorname*{arg\,sup}_{\theta \in \Theta} L(\theta, \vec{x})$$

Con $L(\theta, \vec{x}) = f(\vec{x}, \theta)$, dà sempre valori ammissibili. Di solito usiamo: $\frac{\partial L(\theta, \vec{x})}{\partial \theta} = 0$

Proprietà

Invarianza

L'MLE per $\tau(\theta)$ è $\tau(\hat{\theta}_{MLE})$ per qualsiasi funzione τ

Scarto quadratico media

Definizione

$$MSE[T] = \mathbb{E}_{\theta}[(T - \theta)^2]$$

Bias

$$Bias[T] = \mathbb{E}_{\theta}[T] - \theta$$

Scomposizione

$$MSE[t] = Var_{\theta}[T] + Bias[T]^2$$

Stimatore non distorto

Uno stimatore T è non distorto se:

UMVUE

Definizione

Uno stimatore T è UMVUE se:

- è non distorto: $\mathbb{E}[T] = \theta$
- $Var[T] \le Var[T^*] \quad \forall T^* \text{ non distorto}$

Inoltre l'UMVUE è unico.

Disuguaglianza di Cramer-Rao

Siano $f(\vec{x}, \theta)$ legge congiunta e T stimatore che soddisfi:

- $\frac{d}{d\theta} \mathbb{E}_{\theta}[T(X)] = \int \frac{\partial}{\partial \theta} [T(x) f_X(x, \theta)] dx$
- $Var_{\theta}[T] < \infty$

Allora:

$$Var_{\theta}(T) \ge \frac{\left(\frac{d}{d\theta} \mathbb{E}_{\theta}[T(X)]\right)^{2}}{\mathbb{E}\left[\left(\frac{\partial}{\partial \theta} \ln f_{X}(x, \theta)\right)^{2}\right]} = \frac{\left(\frac{d}{d\theta} \mathbb{E}_{\theta}[T(X)]\right)^{2}}{I_{n}(\theta)}$$

Se alle ipotesi iniziali aggiungiamo: $\frac{d}{d\theta}\mathbb{E}[\frac{\partial}{\partial\theta}f_X(x,\theta)] = \int \frac{\partial^2}{\partial\theta^2}f_X(x,\theta)dx \text{ allora}$ $I_n = -\mathbb{E}[\frac{\partial^2}{\partial\theta^2}\ln f_X(x,\theta)]$

Informazione di Fisher

 $I_n(\theta) = \left[\left(\frac{\partial}{\partial \theta} \ln f_X(x, \theta) \right)^2 \right]$ Inoltre se iid: $I_n = nI_1(\theta)$ Inoltre se viene rispettato

Lehmann-Scheffè per UMVUE

Siano T non distorto e W sufficiente e completa (e minima). Allora: $M = \mathbb{E}_{\theta}[T|W]$ è UMVUE. E analogamente per una funzione di θ

UMVUE per $\phi(\theta)$

Sia T sufficiente e completa e $\phi(T)$, allora $\phi(T)$ è UMVUE per $\mathbb{E}_{\theta}[\phi(T)]$

UMVUE per Famiglia Esponenziale

Se $X_1, \ldots, X_n \in EF$ e: $f(\vec{x}, \theta) = h(\vec{x})c(\theta) \exp \{w_1(\theta)t_1(x)\}$ Tale che $\exists \frac{d}{d\theta}w(\theta) \neq 0$ e continua $\forall \theta$. Allora: $T(X) = \frac{1}{n} \sum_{i=1}^n T_1(X_j)$ è UMVUE per $\mathbb{E}_{\theta}[T_1(X)]$

E raggiunge il limite di C-R che vale: $Var(T) = \frac{Var(T_1)}{n}$

Test d'Ipotesi

Regione Critica

 $R = \{\vec{x} \in \mathbb{R}^k | \text{ rifiuto } H_0\}$ Di solito si basa su una statistica.

Rapporto di Verosimiglianza

 $R = \{\vec{x} | \lambda(x) \le c\} \text{ con } c \in [0, 1]$

$$\lambda(x) = \frac{\sup_{\Theta_0} L(\theta, x)}{\sup_{\Theta} L(\theta, x)}$$

Funzione potenza

$$\beta(\theta) = \mathbb{P}_{\theta}(x \in R)$$

Dimensione

 $\alpha = \sup_{\Theta_0} \beta(\theta)$

Livello

 $\alpha \geq sup_{\Theta_0}\beta(\theta)$

UMP

Un test di una classe C è UMP se: $\beta(\theta) \ge \beta'(\theta) \quad \forall \theta \in \Theta_0^c \quad \forall \beta' \in C$

Lemma di Neymann-Perason

Sia $H_0: \theta = \theta_0$ $H_1: \theta = \theta_1$ Allora se uso:

1.
$$R = \{x | f(x, \theta_1) > k f(x, \theta_0)\}, k > 0$$

$$2. \ \alpha = \mathbb{P}_{\theta_0}(x \in R)$$

Allora:

- a Qualsiasi test che soddisfi queste due è UMP di livello α .
- b Se esiste un test UMP del punto a con $k \geq 0$ allora: Ogni UMP di livello α è anche di dimensione α e soddisfa la 1 tranne che per un insieme di misura nulla.

Nota: questo si applica anche per le distribuzioni, basta usare:

$$R = \{x | f_1(x, \theta) > k f_0(x, \theta)\}$$

Monotone Likelihood Ratio

Sia una famiglia di leggi $g(x,\theta)$ $\theta \in \Theta$, la diciamo LRT se per $\theta_2 > \theta_1$ $\frac{g(t,\theta_2)}{g(t,\theta_1)}$ è monotona in t (non-crescente o non-decrescente)

Teorema di Karlin-Rubin

Sia $H_0: \theta \leq \theta_0$ $H_1: \theta > \theta_1$, T statistica sufficiente con MLR non-decrescente. Allora:

 $\forall t_0$ il test con $R = \{T > t_0\}$ è UMP di livello $\alpha = \mathbb{P}_{\theta_0}(T > t_0)$

Estensione di Karlin-Rubin

- $H_0: \theta \leq \theta_0$ $H_1: \theta > \theta_1$
 - Non-decrescente: $R = \{T > t_0\}$
 - Non-crescente: $R = \{-T > t_0\}$
- $H_0: \theta \geq \theta_0$ $H_1: \theta < \theta_1$
 - Non-decrescente: $R = \{T < t_0\}$
 - **Non-crescente:** $R = \{-T < t_0\}$

Stime intervallari

Definzione

E' una coppia di statistiche L(x), U(X) con $L(X) \leq U(X)$

Probabilità di copertura

 $\mathbb{P}_{\theta}(\theta \in [L; U])$

Livello di Confidenza

 $\alpha = \inf_{\Theta} \mathbb{P}_{\theta}(\theta \in [L; U])$

Metodi di Costruzione

Inversione di test d'ipotesi

Sia $\forall \theta_0 \in \Theta$ sia $A(\theta_0) = R^C$ la regione d'accettazione di un test semplice di livello α . Definiamo: $IC(X) = \{\theta | x \in A(\theta)\}$

Metodo della quantità pivotale

Definiamo una v.a. una quantità pivot $Q(x,\theta)$ se la sua distribuzione non dipende da θ . Cerchiamo a e b tali che:

$$\mathbb{P}(a \le Q \le b) = 1 - \alpha \in C = \{\theta | a \le Q \le b\}$$

Unimodalità

Una v.a. $X, f_X(x)$ è unimodale se $\exists x*$ tale che:

 $f_X(x)$ è crescente se $x \le x*$ e decrescente se $x \ge x*$ cioè è fatta come una gaussiana.

Teorema lunghezza minima

Sia f_X unimodale, se lintervallo [a, b] soddisfa:

- $\mathbb{P}(a \le x \le b) = \int_a^b f_X(x) dx = 1 \alpha$
- $f_X(a) = f_X(b) \ge 0$
- $a \le x * \le b \text{ con } x * \text{ moda}$

Allora [a,b] è l'intervallo minimo tra quelli che soddisfano la 1.

Quindi:

- Se IC dipende direttamente da (b-a) applico.
- In caso negativo minimizzo come segue:
 - 1. Penso a b come funzione di a, b = b(a)

- 2. Derivo il vincolo: f(b(a))b'(a) f(a) = 0 e trovo b'(a)
- 3. Derivo la lunghezza rispetto ad a e sostituisco b'
- 4. Trovo se minimizzare o massimizzare a, scelgo b di conseguenza e sostituisco nel vincolo per ottenere a, fai attenzione al codominio di Q.

Statistica Asintotica

Consistenza

Diremo una succesione di stimatori W_n consistente per θ se:

 $\forall \epsilon > 0 \quad \lim_{n \to \infty} \mathbb{P}[|W_n - \theta| > \epsilon] = 1$ Nota:

Se $W_n \xrightarrow{L} \theta$ e θ costante $\implies W_n \xrightarrow{P} \theta$

Consistenza in MSE

Se $MSE[W_n] \to 0$, cioè: $\lim_{n\to\infty} \mathbb{E}[W_n] = \theta$ $\lim_{n\to\infty} Var[W_n] = 0$

Efficienza asintotica MLE

Sia $\hat{\theta}_{MLE}$ e f_X soddisfa Cramer-Rao: $\sqrt{n}[\tau(\hat{\theta}_{MLE}) - \tau(\theta)] \xrightarrow{L} N(0, v(\theta))$ con $v(\theta) = \frac{[\tau'(\theta)]^2}{I_1(\theta)}$

Efficienza Relativa Asintotica

Due successioni di stimatori: $\sqrt{n}[W_n - \tau(\theta)] \xrightarrow{L} N(0, \sigma_W^2)$ $\sqrt{n}[V_n - \tau(\theta)] \xrightarrow{L} N(0, \sigma_V^2)$ Allora definiamo l'ARE come: $ARE(V_n, W_n) = \frac{\sigma_W^2}{\sigma_V^2}, \text{ cerchiamo il più piccolo.}$