I21: Introduction à l'algorithmique

Cours 3: Bases de l'algorithmique

Nicolas Méloni Licence 1: 2ème semestre (2017/2018)

Parcours de tableau

- De nombreux algorithmes repose sur le fait de parcourir des données dans un certain ordre.
- Écrire des algorithme de parcours de tableau est à l'algorihmique ce que les faire des gammes est à la musique.

- Utiliser une variable supplémentaire pour gérer le décalage
- Faire attention à la fin du tableau

```
ALGORITHME Parcours Decale 1 (T, d). ALGORITHME Parcours Decale 2 (T, d)
   DONNEES: T tableau de taille n2 DONNEES: T tableau de taille n
              d un entier
                                       3
   DEBUT
    i ← 1
     i \leftarrow d
     TQ i < n FAIRE
        SI j = n ALORS
         i ← 1
     FSI
10
    AFFICHER(T[j])
11
                                       11
       i \leftarrow i+1
12
    \mathsf{i} \leftarrow \mathsf{i} + 1
13
  FTQ
14
   FIN
15
```

```
d un entier
   DEBUT
  i ← 1
    TQ i \leq n FAIRE
     j \leftarrow ((i+d-1) \mod n)+1
    AFFICHER(T[i])
    i ← i+1
10 FTQ
   FIN
```

Problème : Addition entière

Entrée : Deux entiers donnés sous la forme de tableau de nombres

entre 0 et 9 de taille n.

Sortie: Un tableau correspondant à la somme des deux nombres.

L'algorithme est connu depuis l'école primaire.

i		4	3	2	1
$\overline{N_1}$	=	8	1	6	5
N_2	=	4	6	3	7
r	=			1	
$N_1 + N_2$	=				2

i		4	3	2	1
$\overline{N_1}$	=	8	1	6	5
N_2	=	4	6	3	7
r	=		1	1	
$N_1 + N_2$	=			0	2

i		4	3	2	1
N_1	=	8	1	6	5
N_2	=	4	6	3	7
r	=	0	1	1	
$N_1 + N_2$	=		8	0	2

i		4	3	2	1
N_1	=	8	1	6	5
N_2	=	4	6	3	7
r	=	0	1	1	
$N_1 + N_2$	=	2	8	0	2

i			4	3	2	1
N_1	=		8	1	6	5
N_2	=		4	6	3	7
r	=		0	1	1	
$N_1 + N_2$	=	1	2	8	0	2

i			4	3	2	1
$\overline{N_1}$	=		8	1	6	5
N_2	=		4	6	3	7
r	=		0	1	1	
$N_1 + N_2$	=	1	2	8	0	2

- ightharpoonup deux variables entieres i et r
- ightharpoonup un tableau N_3 initialisé à 0 de taille :

i			4	3	2	1
$\overline{N_1}$	=		8	1	6	5
N_2	=		4	6	3	7
r	=		0	1	1	
$N_1 + N_2$	=	1	2	8	0	2

- ightharpoonup deux variables entieres i et r
- un tableau N_3 initialisé à 0 de taille : n+1

```
ALGORITHME Addition (N1, N2)
   DONNEES: N1, N2 tableaux d'entiers
               de taille n
   VARIABLES: i,r,s entiers
                 N3 tableau de taille
5
                 n+1 initialise a 0
6
   DEBUT
      i ← 1
    r \leftarrow 0
    TQ i < n FAIRE
10
     s \leftarrow N1[i]+N2[i]+r
11
        N3[i] \leftarrow (s \mod 10)
12
         r \leftarrow |s/10|
13
        i \leftarrow i+1
14
    FTQ
15
      N3[i] \leftarrow r
16
      RENVOYER N3
17
    FIN
18
```

```
Complexité : \Theta(n)
   ALGORITHME Addition (N1, N2)
   DONNEES: N1, N2 tableaux d'entiers
               de taille n
   VARIABLES: i,r,s entiers
                 N3 tableau de taille
                 n+1 initialise a 0
6
   DEBUT
      i ← 1
    r \leftarrow 0
    TQ i < n FAIRE
10
      s \leftarrow N1[i]+N2[i]+r
11
        N3[i] \leftarrow (s \mod 10)
12
         r \leftarrow |s/10|
13
        i \leftarrow i+1
14
     FTQ
15
      N3[i] \leftarrow r
16
      RENVOYER N3
17
    FIN
18
```

Parcours de matrice zig-zag

	1	2	3	4	5	6	7	8	
	10	11	12	13	14	15	16	17	
	19	20	21	22	23	24	25	26	
	28	29	30	31	32	33	34	35	
	37	38	39	40	41	42	43	44	
	46	47	48	49	50	51	52	53	
	55	56	57	58	59	60	61	62	
	64	65	66	67	68	69	70	71	
_									_

Parcours de matrice zig-zag

•							_
1	2	3	4	5	6	7	8
10	11	12	13	14	15	16	17
19	20	21	22	23	24	25	26
28	29	30	31	32	33	34	35↓
37	38	39	40	41	42	43	44
46	47	48	49	50	51	52	53
55	56	57	58	59	60	61	62
64	65	66	67	68	69	70	71
_							_

Parcours de matrice zig-zag

-								-
	1	2	3	4	5	6	7	8
	10	11	12	13	14	15	16	17
	19	20	21	22	23	24	25	26
	28	29	30	31	32	33	34	35
	37	38	39	40	41	42	43	44
	46	47	48	49	50	51	52	53
	55	56	57	58	59	60	61	62
	64	65	66	67	68	69	70	71

- Deux variables pour parcourir les lignes et les colonnes
- Une variable pour gérer le sens de parcours des lignes

Parcours de matrice en zig-zag

```
ALGORITHME ParcoursZigZag (M)
   DONNEES: M matrice de taille n×m
   DEBUT
   i ← 1
  i ← 1
  \mathsf{dir} \leftarrow 1
     TQ i \leq n FAIRE
        TQ (j \leq m) ET (i \geq 1) FAIRE
         AFFICHER(M[i][j])
          i ← i+dir
10
     FTQ
11
    \mathsf{dir} \leftarrow -\mathsf{dir}
12
    j ← j+dir
13
    i \leftarrow i+1
14
   FTQ
15
   FIN
16
```

Problème : Multiplication entière

Entrée : Deux entiers donnés sous la forme de tableau de nombres

entre 0 et 9.

Sortie: Un tableau correspondant au produit des deux nombres.

L'algorithme est connu depuis l'école primaire.

$$N_1 \times N_2 =$$

i						4	3	2	1
j						4	3	2	1
$\overline{N_1}$	=					2	1	0	3
N_2	=					0	6	4	7
r	=					1			
					1	4	7	2	1
		+		0	8	4	1	2	
		+	1	2	6	1	8		
$N_1 \times N_2$	=		1	3	6	0	6	4	1

i						4	3	2	1
j						4	3	2	1
$\overline{N_1}$	=					2	1	0	3
N_2	=					0	6	4	7
r	=					1			
					1	4	7	2	1
		+		0	8	4	1	2	
		+	1	2	6	1	8		
$N_1 \times N_2$	=		1	3	6	0	6	4	1

- ightharpoonup trois variables entieres i, j et r
- ightharpoonup un tableau N_3 initialisé à 0 de taille : 2n

```
Complexité : \Theta(n^2)
   ALGORITHME Multiplication (N1, N2)
   DONNEES: N1, N2 tableaux d'entiers
               de taille n
3
   VARIABLES: i,j,r,p entiers
                 N3 tableau de taille
5
                 n+1 initialise a 0
6
   DEBUT
     i ← 1
     TQ j < n FAIRE
       i,r \leftarrow 1.0
10
        TQ i < n FAIRE
11
           p \leftarrow N3[i+j-1] + N1[i]*N2[j]+r
12
           N3[i+j-1] \leftarrow (p \mod 10)
13
14
           r \leftarrow |p/10|
           i \leftarrow i+1
15
        FTQ
16
        N3[i+j-1] \leftarrow r
17
        i \leftarrow i+1
18
      FTQ
19
      N3[i+j-1] \leftarrow r
20
      RENVOYER N3
```