ESO 208A: Computational Methods in Engineering **Tutorial 8**

Least squares

1. Consider the equation $y = ae^{bx}$ and the measured data of x and y given in the table below. Determine the constants a and b by using the method of least squares.

x	2	4	6	8	10
У	4.077	11.084	30.128	81.897	222.62

Orthogonal basis functions

2. (a) Estimate a quadratic polynomial approximation of the following function by using Legendre polynomials as the basis functions.

$$f(x) = \frac{1}{1+x^2}; x \in (-1,1)$$

Legendre Polynomials

$$P_{0}(x) = 1, P_{1}(x) = x, P_{n+1}(x) = \frac{2n+1}{n+1}xP_{n}(x) - \frac{n}{n+1}P_{n-1}(x); \langle P_{n}, P_{j} \rangle = \begin{cases} 0 & \text{if } n \neq j \\ \frac{2}{2n+1} & \text{if } n = j \end{cases}$$

- (b) Perform the second order Taylor series approximation of f(x) at x = 0.
- (c) Estimate the true relative error in estimating f(x) by the above two approximations at x = -0.9, -0.5, 0, and 0.5.