Laboratorium Podstaw Elektroniki				
Kierunek	Specjalność	Rok studiów	Symbol grupy lab.	
Informatyka	_	I	i i	11
Temat Laboratorium	·	·		Numer lab.
Wprowadzenie			1	
Skład grupy ćwiczeniowej oraz numery indeksów				
Ewa Fengler(132219), Sebastian Maciejewski(132275), Jan Techner(132332)				
Uwagi			Ocena	

1 Zadanie A

Cel

Ćwiczenie ma na celu zaznajomienie z podstawowymi wielkościami fizycznymi służącymi do opisu własności obwodów elektrycznych oraz oznaczeniami elementów tych obwodów (cewki, rezystory i kondensatory). Aby prawidłowo wykonać opisane w poleceniu pomiary konieczne jest także nauczenie się obsługi przyrządów pomiarowych - pomiar rezystancji, pojemności kondensatorów i pojemności cewek przy pomocy multimetru RIGOL DS1022.

1.1 Część I

Odczytanie wartości rezystancji na podstawie kodu paskowego rezystorów oraz pomiar jej wartości za pomocą multimetru.

R	Barwy	Odczyt	Pomiar
R1	czerwony, czerwony, brązowy	220Ω	220Ω
R2	pomarańczowy, pomarańczowy, zielony	$3,3M\Omega$	$3,25M\Omega$
R3	brązowy, czarny, brązowy	100Ω	98Ω
R4	brązowy, czarny, czerwony	$1k\Omega$	$0,99k\Omega$
R5	czerwony, czarny, czerwony	$2k\Omega$	$1,95k\Omega$
R6	czerwony, czarny, zielony	$2M\Omega$	$1,97M\Omega$

1.2 Część II

Odczytanie pojemności kondensatorów oraz pomiar ich pojemności przy pomocy mostka pomiarowego.

C	Oznaczenie	Odczyt	Pomiar
C1	223	22nF	33,4nF
C2	10n	10nF	8,4nF
C3	132	3,3nF	2,9nF
C4	222	2,2nF	2,3nF
C5	10μF	10μF	10,7μF
C6	12μF	22μF	20,9μF

1.3 Część III

Pomiar indukcyjności wybranych cewek używając mostka pomiarowego.

L	Pomiar
L1	30,08nH
L2	30,28nH
L3	30,9µH

2 Zadanie B

Cel

Zadanie B ma na celu zapoznanie się z metodą obliczania oporu zastępczego dla rezystorów połączonych szeregowo i równolegle (także dla całych obwodów) i naukę umiejętności budowania oraz pomiaru właściwości obwodów na płytce prototypowej. W sposób naturalny ćwiczenie kształci również umiejętność odczytywania schematów obwodów.

2.1 Część I

Obliczenie i wyprowadzenie wzoru dla rezystancji zastępczej obwodu przedstawionego poniżej.

$$R_z = R_7 + \frac{1}{\frac{1}{R_5} + \frac{1}{R_6}} + \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4}} + \frac{1}{\frac{1}{R_8} + \frac{1}{R_9}}$$

$$R_7 + \frac{R_5 \cdot R_6}{R_5 + R_6} + \frac{R_1 \cdot R_2 \cdot R_3 \cdot R_4}{R_1 \cdot R_2 \cdot R_3 + R_1 \cdot R_2 \cdot R_4 + R_1 \cdot R_3 \cdot R_4 + R_2 \cdot R_3 \cdot R_4} + \frac{R_8 \cdot R_9}{R_8 + R_9}$$

$$R_z = 1k\Omega + \frac{100\Omega \cdot 200\Omega}{100\Omega + 200\Omega} + \frac{1\Omega \cdot 100\Omega}{1\Omega + 100\Omega} +$$

$$+\frac{2k\Omega\cdot3k\Omega\cdot1k\Omega\cdot270\Omega}{2k\Omega\cdot3k\Omega\cdot1k\Omega+2k\Omega\cdot3k\Omega\cdot270\Omega+2k\Omega\cdot1k\Omega\cdot270\Omega+3k\Omega\cdot1k\Omega\cdot270\Omega}$$

$$R_z = 1000\Omega+0.015\Omega+1.01\Omega+0.006\Omega=1001.031\Omega$$

2.2 Część II

Obliczanie rezystancji obwodów oraz jej pomiar dla obwodu zbudowanego na płytce prototypowej. Pod każdym przykładem zamieszczono porównanie obliczonej rezystancji z jej zmierzoną wartością.

2.2.1 Obwód 1.

$$R_z = \frac{(R_2 + R_3) \cdot R_1}{R_1 + R_2 + R_3}$$

$$R_z = \frac{(2k\Omega + 2k\Omega) \cdot 1k\Omega}{1k\Omega + 2k\Omega + 3k\Omega}$$

Obliczenia	Pomiar
800Ω	790Ω

2.2.2 Obwód 2.

$$R_z = \frac{R_4 \cdot (R_1 \cdot R_2 + (R_1 + R_2) \cdot (R_3 + R_5))}{R_1 \cdot R_2 + (R_1 + R_2) \cdot (R_3 + R_5) + (R_1 + R_2) \cdot R_4}$$

$$R_z = \frac{100\Omega \cdot (1k\Omega \cdot 2k\Omega + (1k\Omega + 2k\Omega) \cdot (1k\Omega + 100\Omega))}{1k\Omega \cdot 2k\Omega + (1k\Omega + 2k\Omega) \cdot (1k\Omega + 100\Omega) + (1k\Omega + 2k\Omega) \cdot 100\Omega}$$

Obliczenia	Pomiar
$94,6\Omega$	95Ω

2.2.3 Obwód 3.

$$R_z = R_1 = 2k\Omega$$

Obliczenia	Pomiar
$2k\Omega$	$1,952k\Omega$

2.2.4 Obwód 4.

$$R_z = \frac{R_4 \cdot ((R_1 + R_5) \cdot R_2 + (R_1 + R_2 + R_5) \cdot R_3)}{(R_1 + R_2 + R_5) \cdot (R_3 + R_4) + (R_1 + R_5) \cdot R_2}$$

$$R_z = \frac{1k\Omega \cdot ((1k\Omega + 100\Omega) \cdot 2k\Omega + (1k\Omega + 2k\Omega + 100\Omega) \cdot 2k\Omega)}{(1k\Omega + 2k\Omega + 100\Omega) \cdot (2k\Omega + 1k\Omega) + (1k\Omega + 100\Omega) \cdot 2k\Omega}$$

Obliczenia	Pomiar
$730,4\Omega$	725Ω

2.2.5 Obwód 5.

$$R_z = \frac{R_1 \cdot (R_3 \cdot R_4 + R_2 \cdot (R_3 + R_4))}{R_3 \cdot R_4 + (R_1 \cdot R_2) \cdot (R_3 + R_4)}$$

$$R_z = \frac{2k\Omega \cdot (2k\Omega \cdot 1k\Omega + 2k\Omega \cdot (2k\Omega + 1k\Omega))}{2k\Omega \cdot 1k\Omega + (2k\Omega \cdot 2k\Omega) \cdot (2k\Omega + 1k\Omega)}$$

Obliczenia	Pomiar
1142,9 Ω	1119Ω

2.2.6 Obwód 6.

W celu zwiększenia czytelności obliczeń, w tym przypadku wprowadzimy dodatkowe oznaczenia:

$$R_6 = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{100\Omega \cdot 2k\Omega}{100\Omega + 2k\Omega} = 95,24\Omega$$

$$R_7 = R_6 + R_5 = 1000\Omega + 95,24\Omega = 1095,24\Omega$$

$$R_8 = \frac{R_4 \cdot R_7}{R_4 + R_7} = \frac{2000\Omega \cdot 1095,24\Omega}{2000\Omega + 1095,24\Omega} = 707,7\Omega$$

$$R_z = R_3 + R_8 = 1000\Omega + 707, 7\Omega = 1707, 7\Omega$$

Obliczenia	Pomiar
$1707,7\Omega$	1684Ω

2.3 Podsumowanie

W zadaniu widać było różnice pomiędzy obliczoną rezystancją i jej zmierzoną, rzeczywistą wartością. Różnice te mogą wynikać między innymi z :

- Niezerowego oporu przewodów płytki prototypowej i kabli użytych do podłączenia miernika;
- Niepewności pomiarowych sprzętu użytego w doświadczeniu;
- Ograniczonej precyzji wykonania opornika prowadzącej do różnicy między oporem nominalnym a rzeczywistym.

3 Zadanie C

Cel

Zadanie C ma na celu zaznajomienie z obsługą zestawu laboratoryjnego NDN DF6911 (konkretnie sekcji DC POWER SUPPLY) i naukę wykonywania pomiarów napięcia i natężenia prądu stałego.

3.1 Część I

Odczyt i pomiar napięcia prądu zasilacza.

U	Pomiar	Odczyt
1[V]	1,203V	1V
3[V]	3,24V	3V
4,5[V]	4,75V	4,5V
11[V]	11,23V	11V
13[V]	13,22V	13V
25[V]	25,31V	25V
28[V]	28,27V	28V

3.2 Część II

Wyprowadzenie wzoru i zależności opisujących dzielnik napięcia przedstawiony na schemacie poniżej, konstrukcja tego dzielnika oraz próba wyznaczenia R_1 oraz R_2 , dla których $U_{in} = 15V$ i $U_{out} = 3,3V$.

$$U_{out} = I \cdot R_2 = 3,3V$$

$$I = \frac{U_{out}}{R_2}$$

$$U_{in} = R_1 \cdot I + R_2 \cdot I = 15V$$

$$R_1 \cdot I = 11,7V$$

$$R_1 \cdot \frac{U_{out}}{R_2} = 11,7V$$

$$\frac{R_1}{R_2} = \frac{11,7V}{3,3V} = 3,54$$

Zatem, znając stosunek $\frac{R_1}{R_2}$, możemy spróbować uzyskać żądane napięcie używając oporników $R_1 = 7k\Omega$ i $R_2 = 2k\Omega$.

Pomiar rezystancji dla tak skonstruowanego dzielnika napięcia wynosił 3,365V.

3.3 Część III

Zbudowanie na płytce prototypowej obwodu przedstawionego poniżej, pomiar spadku napięcia na rezystorze R_1 oraz natężenia prądu w obwodzie.

Ponieważ opornik R_1 jest jedynym opornikiem w tym obwodzie, to spadek napięcia na nim wyniesie wartość napięcia źródła, czyli $U_{R1} = 5V$. Stąd można obliczyć natężenie w następujący sposób:

$$I = \frac{U}{R} = \frac{5V}{2100\Omega} = 3,281 \text{mA}$$

Natężenie obliczone	Pomiar
2,381 <i>mA</i>	2,424mA

3.4 Część IV

Konstrukcja obwodu przedstawionego na schemacie i sprawdzenie dla niego praw Kirchhoffa (obliczanie spadków napięć na rezystorach i prądów w gałęziach oraz zestawienie ich z pomiarami).

Oznaczmy prąd płynący przez R4 jako I1, przez R3 jako I2 i przez R2 jako I3. Z II prawa Kirchhoffa wiemy, że:

$$5V - I_1 \cdot (R_1 + R_4) - R_3 \cdot (I_1 - I_3) = 0$$

$$5V - I_1 \cdot (R_1 + R_4) - I_3 \cdot R_2 = 0$$

$$I_1 = 11I_3$$

$$5V = 11I_3 \cdot 1100\Omega + 10I_3 \cdot 200\Omega \Rightarrow I_3 = 0,355mA$$

Zatem, obliczając wszystkie wartości i zestawiając je z wynikami pomiarów, można dokonać następującego porównania:

Wielkość fizyczna	Obliczenia	Pomiar
$I_1[mA]$	3,905 <i>mA</i>	3,962mA
$I_2[mA]$	3,55mA	3,587mA
$I_3[mA]$	0,355mA	0,362mA
$U_{R1}[V]$	0,391V	0,394V
$U_{R2}[V]$	0,71V	0,712V
$U_{R3}[V]$	0,71V	0,712V
$U_{R4}[V]$	3,905V	3,938V

Powyższą tabelę można uznać za empiryczny dowód II prawa Kirchhoffa, gdyż drobne różnice między pomiarami i obliczeniami wynikają z niedoskonałości sprzętu pomiarowego i zaokrągleń przy obliczeniach.

4 Bibliografia

W trakcie przeprowadzania doświadczeń i pisania sprawozdania zespół korzystał głównie z materiałów ze strony http://mariusznaumowicz.ddns.net/materialy.html oraz z wiedzy własnej.