

2020. 11. 27.

이상석 김동현 박재현 이성근 노희민

Overview

우리나라 지역 면적 대비 측정소의 수는 매우 부족하기 때문에 현재 위치와 가장 가까운 측정소는 '좋음' 이라고 측정하지만 실제 대기는 '나쁨'인 경우를 많이 찾아볼 수 있습니다. 이를 해결하기 위해 IoT 기반 유해 정보 측정기를 제작해 측정기 주변의 미세먼지 농도를 검출하고 또한 소음, 대기질 등 일상 생활에서 접하는 유해 정보를 함께 측정해 사용자가 다양한 유해 정보를 확인 할 수 있는 통합 플랫폼 개발을 목표했습니다.

시·도별 미세먼지 측정소 1곳당 관할 면적

	도시 면적	측정소 수(곳)	1곳당 면적
서울	605,3	39	15,5
인천	575,4	18	32,0
경기	3357,5	80	42.0
부산	940,8	21	44.8
대전	495.5	10	49.6
울산	755,6	15	50.4
광주	480,1	9	53,3
전북	885,5	15	59,0
대구	798,0	13	61,4
충북	724,5	11	65,9
세종	141,0	2	70,5
경남	1896.3	20	94.8
전남	1729.0	16	108,1
충남	903,4	8	112.9
경북	1850,2	14	132,2
강원	1022,6	7	146.1
제주	453,2	3	151,1
전체	1만7613.7	301	58.5

*단위: km²

Problems to solve

- 측정장치가 설치형이 아닌 이동식으로 제작해야 넓은 지역을 커버할 수 있으며 이를 위해 무선통신을 사용하고 IoT 표준 지켜야 합니다. 또한 유지보수 비용을 줄이기 위해 스스로 전력을 공급할 수 있어야 합니다.
- ³ 측정장치에서 수집된 데이터를 무선으로 전송하고 실시간으로 편리하게 확인할 수 있도록 웹 인터페이스가 있어야 합니다.

- 전력소모가 낮으며 MTTF와 신뢰성이 높고 단가가 낮은 센서를 사용해야 유지보수 비용이 없거나 낮고 데이터에 대한 신뢰도가 높아야 합니다.
- 과거 측정된 값을 분석해 미래의 미세먼지 농도를 예보할 수 있어야 하며 데이터를 통해 사용자의 의사결정에 유용한 정보가 되어야 합니다.

오공을 소개합니다!

오공 - 오늘의 공기를 위해 제작된 측정장치는 외부 전원없이 미세먼지(PM1, PM2.5, PM10), 온도, 습도, 소음레벨을 정확히 측정하고 무선통신을 통해 보낼 수 있습니다!

Challenges

- Anomaly 현상 측정이 어려웠다.
- LoRa망 사용연동이 일반 대학생 단체 단위에서는 불가능했다.
- 흐린 날이 지속될 시 배터리 관리가 어렵다.
- 서버개발에서 ARM 아키텍쳐는 Stack 제한이 많다.
- 측정장치가 비, 바람과 같은 Harsh Environment를 견디기 어렵다.
- 동적으로 변하는 Tensor 결과 값에 따라 뷰를 동적으로 렌더링 시키는 것이 어려웠다.
- 플랫폼과 브라우저마다 해상도 차이가 있어 이를 위해 반응형 웹 설계가 어려웠다.
- TensorFlow Python와 달리 JS버전은 일부 기능의 부재로 학습이 어려웠다.
- 원격지에서 작업한 서로 코드를 이해하는 것이 어려웠다.

What we have learned?

다양한 기술 Stack의 접목

React, Node, TensorFlow, Kubernetes 등 실무에서 많이 사용되는 최신기술을 공부하고 이를 통해 서비스를 개발하는 경험을 했습니다.

업무분담을 통한 협업

다수의 인원이 서로 맡은 파트를 충실히 개발하고 Git 등을 통해 부품처럼 합쳐 하나의 서비스를 만드는 것을 경험했습니다.

플랫폼 전체 디자인 및 구축

측정장비에 들어가는 변압장치부터 웹개발에 이르기까지 폭넓은 분야에 대한 설계와 개발을 진행했습니다.

Responsibilities

이상석(21413502)	측정장치 제작, 웹서버 설계, 플랫폼 전반 설계
김동현(21511722)	React, TypeScript 모바일 웹 앱 설계 및 개발
박재현(21511746)	Node, TensorFlow 설계 및 개발
이성근(21511774)	React, Kakao Map 전반 설계 및 개발, mongoDB 서버 개발 및 구현
노희민(21712182)	측정장치 제작 및 관련 데이터 연구

Thank you.