

BREAST CANCER DIAGNOSIS USING DECISION TREE & LOGISTIC REGRESSION

BY RANIAH MARITZA

DATASET DESCRIPTION

Dataset Breast Cancer Wisconsin (Diagnostic) merupakan dataset yang diambil dari Scikit-Learn untuk membedakan antara tumor payudara ganas (malignant) dan jinak (benign).

Dataset ini berisi 569 sampel dengan 30 fitur numerik.

- Target (Y):
 - 0 -> Malignant (Ganas)
 - 1 -> Benign (Jinak)
- Fitur (X):

Fitur ini dikelompokkan menjadi 3 kategori utama, yaitu

- 1.Mean (Rata-rata)
- 2. Standard error
- 3. Worst (Nilai terburuk atau terbesar)

Terdapat 10 karakteristik pada masing-masing 3 kategori utama ini (radius, texture, dll) sehingga total terdapat 30 fitur numerik

SOURCE:

TOOLS USED

IMPORT LIBRARY

LOAD DATASET

EXPLORATORY DATA ANALYSIS

STANDARDIZATION & SPLIT DATA

TRAINING CLASSIFICATION MODELS

EVALUATION

¹ IMPORT LIBRARY

Beberapa library yang digunakan dalam model klasifikasi ini

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
from sklearn import tree
from sklearn.metrics import accuracy_score
```


² LOAD DATASET

³ EXPLORATORY DATA ANALYSIS


```
[ ] df.info()
→ <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 569 entries, 0 to 568
    Data columns (total 31 columns):
                                 Non-Null Count Dtype
                                 569 non-null
         mean radius
                                                 float64
                                 569 non-null
         mean texture
                                                float64
     2 mean perimeter
                                 569 non-null
                                                float64
                                 569 non-null
                                                float64
     3 mean area
     4 mean smoothness
                                 569 non-null
                                                 float64
                                 569 non-null
     5 mean compactness
                                                 float64
        mean concavity
                                 569 non-null
                                                 float64
     7 mean concave points
                                 569 non-null
                                                 float64
                                 569 non-null
                                                 float64
         mean symmetry
        mean fractal dimension 569 non-null
                                                 float64
                                 569 non-null
     10 radius error
                                                 float64
                                 569 non-null
                                                 float64
     11 texture error
                                 569 non-null
                                                 float64
     12 perimeter error
     13 area error
                                 569 non-null
                                                 float64
     14 smoothness error
                                 569 non-null
                                                 float64
     15 compactness error
                                 569 non-null
                                                 float64
                                 569 non-null
     16 concavity error
                                                 float64
                                 569 non-null
                                                 float64
     17 concave points error
                                 569 non-null
                                                 float64
     18 symmetry error
     19 fractal dimension error 569 non-null
                                                 float64
     20 worst radius
                                 569 non-null
                                                 float64
     21 worst texture
                                 569 non-null
                                                float64
     22 worst perimeter
                                 569 non-null
                                                 float64
     23 worst area
                                 569 non-null
                                                 float64
                                 569 non-null
     24 worst smoothness
                                                 float64
     25 worst compactness
                                 569 non-null
                                                 float64
     26 worst concavity
                                 569 non-null
                                                 float64
     27 worst concave points
                                 569 non-null
                                                 float64
                                 569 non-null
     28 worst symmetry
                                                 float64
     29 worst fractal dimension 569 non-null
                                                 float64
                                 569 non-null
                                                int64
    dtypes: float64(30), int64(1)
    memory usage: 137.9 KB
```

```
[] df['target'].unique()

array([0, 1])
```

<pre>df.describe()</pre>																					
Ð		mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension		worst texture	worst perimeter	worst area	worst smoothness	worst compactness	worst concavity	worst concave points	worst symmetry	worst fractal dimension
	count	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000		569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000
	mean	14.127292	19.289649	91.969033	654.889104	0.096360	0.104341	0.088799	0.048919	0.181162	0.062798		25.677223	107.261213	880.583128	0.132369	0.254265	0.272188	0.114606	0.290076	0.083946
	std	3.524049	4.301036	24.298981	351.914129	0.014064	0.052813	0.079720	0.038803	0.027414	0.007060		6.146258	33.602542	569.356993	0.022832	0.157336	0.208624	0.065732	0.061867	0.018061
	min	6.981000	9.710000	43.790000	143.500000	0.052630	0.019380	0.000000	0.000000	0.106000	0.049960		12.020000	50.410000	185.200000	0.071170	0.027290	0.000000	0.000000	0.156500	0.055040
	25%	11.700000	16.170000	75.170000	420.300000	0.086370	0.064920	0.029560	0.020310	0.161900	0.057700		21.080000	84.110000	515.300000	0.116600	0.147200	0.114500	0.064930	0.250400	0.071460
	50%	13.370000	18.840000	86.240000	551.100000	0.095870	0.092630	0.061540	0.033500	0.179200	0.061540		25.410000	97.660000	686.500000	0.131300	0.211900	0.226700	0.099930	0.282200	0.080040
	75%	15.780000	21.800000	104.100000	782.700000	0.105300	0.130400	0.130700	0.074000	0.195700	0.066120		29.720000	125.400000	1084.000000	0.146000	0.339100	0.382900	0.161400	0.317900	0.092080
	max	28.110000	39.280000	188.500000	2501.000000	0.163400	0.345400	0.426800	0.201200	0.304000	0.097440		49.540000	251.200000	4254.000000	0.222600	1.058000	1.252000	0.291000	0.663800	0.207500
	0	31 columns																			

*STANDARDIZATION & SPLIT DATA

```
# Standarisasi dengan StancadardScaler
scaler = StandardScaler()
x_scaled = scaler.fit_transform(df_x)

# Membagi data menjadi data train dan test
x_train, x_test, y_train, y_test = train_test_split(x_scaled, df_y, test_size=0.2, random_state=50)
```


⁵ TRAINING CLASSIFICATION MODELS

```
# Membuat dan melatih model Decision Tree
 tree_model = DecisionTreeClassifier(random_state=50)
 tree_model.fit(x_train, y_train)
        DecisionTreeClassifier
  DecisionTreeClassifier(random_state=50)
                                                # Membuat dan melatih model Logistic Regression
                                                log_reg = LogisticRegression(solver='liblinear')
DECISION TREE MODEL
                                                log_reg.fit(x_train, y_train)
                                                         LogisticRegression
                                                LogisticRegression(solver='liblinear')
                                      LOGISTIC REGRESSION MODEL
```

⁶. EVALUATION

```
Hasil dari evaluasi kedua model klasifikasi untuk data kanker payudara:
```

- **Decision Tree** mencapai akurasi 91,23%
- **Logistic Regression** mencapai akurasi 100,00%

Pada Logistic Regression memiliki performa lebih tinggi dibandingkan dengan Decision Tree. Hal ini menunjukkan bahwa pada model Logistic Regression mampu memisahkan kelas dengan sangat baik dalam dataset ini.

```
# Prediksi dengan Decision Tree
y_pred_tree = tree_model.predict(x_test)
acc_tree = accuracy_score(y_test, y_pred_tree)
# Prediksi dengan Logistic Regression
y_pred_log = log_reg.predict(x_test)
acc log = accuracy_score(y_test, y_pred_log)
print("LAPORAN KLASIFIKASI")
print(f"Akurasi Decision Tree: {acc_tree*100:.2f}%")
print(f"Akurasi Logistic Regression: {acc_log * 100:.2f}%")
LAPORAN KLASIFIKASI
Akurasi Decision Tree: 91.23%
Akurasi Logistic Regression: 100.00%
```



```
# Visualisasi Decision Tree
```

plt.figure(figsize=(12, 6))

tree.plot_tree(tree_model, filled=True, feature_names=breastCancer.feature_names, class_names=breastCancer.target_names)
plt.show()

VISUALIZATION
ogistic Regression

```
Visualisasi Koefisien Logistic Regression
 Filih dua fitur untuk visualisasi
feature1 = 0 # mean radius
feature2 = 1 # mean texture
plt.figure(figsize=(8, 6))
plt.scatter(x_train[:, feature1], x_train[:, feature2], c=y_train, cmap=plt.cm.RdYlBu, marker='o', label='Training data')
plt.scatter(x_test[:, feature1], x_test[:, feature2], c=y_test, cmap=plt.cm.RdYlBu, marker='x', label='Test data')
 Membuat meshgrid untuk plot decision boundary
xx, yy = np.meshgrid(np.linspace(x_train[:, feature1].min(), x_train[:, feature1].max(), 100),
                     np.linspace(x_train[:, feature2].min(), x_train[:, feature2].max(), 100))
 Membuat prediksi untuk setiap titik pada grid
Z = np.c_[xx.ravel(), yy.ravel()]
Z = np.hstack([Z, np.tile(x_train[:, 2:].mean(axis=0), (Z.shape[0], 1))])
 Memastikan data memiliki jumlah fitur yang benar
Z = log_reg.predict(Z)
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, alpha=0.3, cmap=plt.cm.RdYlBu)
# Menambahkan label dan judul
plt.title('Visualisasi Logistic Regression dengan Decision Boundary')
plt.xlabel(breastCancer.feature_names[feature1])
plt.ylabel(breastCancer.feature_names[feature2])
plt.legend(loc='best')
plt.show()
```


RANIAH MARITZA

Mahasiswa semester 4 jurusan Teknik Informatika Universitas Negeri Surabaya yang memiliki ketertarikan dalam Data Science & Front-End Development. Memiliki keterampilan manajemen waktu, kerja sama tim, dan tanggung jawab yang baik, didukung oleh pengalaman aktif dalam organisasi.

https://www.linkedin.com/in/raniah-maritza/

https://github.com/Raniah1403

@raaniahrm