

WEBENCH® Design Report

VinMin = 4.5V VinMax = 5.5V Vout = 27.0V lout = 1.0A Device = TPS43061RTER
Topology = Boost
Created = 2019-06-20 10:34:29.186
BOM Cost = \$14.58
BOM Count = 25
Total Pd = 1.68W

Design: 9 TPS43061RTER TPS43061RTER 4.5V-5.5V to 27.00V @ 1A

1. The pulse skip mode in the device has not been modeled. Efficiency and operational parameters of the model in pulse skip mode is not valid.

Design Alerts

Component Selection Information

Embedded simulation models do not currently support the Sync frequency behavior. The simulation feature has been turned off for this designTo enable simulation please uncheck 'User Sync Frequency' option and 'Update' this design from 'Advanced Options'

Electrical BOM

Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
C12	Kemet	C0805C101J5GACTU Series= C0G/NP0	Cap= 100.0 pF ESR= 74.0 mOhm VDC= 50.0 V IRMS= 524.0 mA	1	\$0.01	0805 7 mm ²
Cboot	Taiyo Yuden	TMK212BJ474KD-T Series= X5R	Cap= 470.0 nF ESR= 1.0 mOhm VDC= 20.0 V IRMS= 0.0 A	1	\$0.02	0805 7 mm ²
Ccomp	Kemet	C0805C473J3GACAUTO Series= C0G/NP0	Cap= 47.0 nF VDC= 5.0 V IRMS= 0.0 A	1	\$0.25	0805 7 mm ²
Ccomp2	TDK	CGA4C2C0G1H272J060AA Series= C0G/NP0	Cap= 2.7 nF VDC= 50.0 V IRMS= 0.0 A	1	\$0.04	0805 7 mm ²
Cin	MuRata	KCM55WR7YA336MH01K Series= X7R	Cap= 33.0 uF VDC= 35.0 V IRMS= 0.0 A	3	\$3.21	KCM55W 59 mm ²
Cout	Samsung Electro- Mechanics	CL32B106KBJNNWE Series= X7R	Cap= 10.0 uF ESR= 5.0 mOhm VDC= 50.0 V IRMS= 0.0 A	2	\$0.18	1210_270 15 mm ²
Css	Samsung Electro- Mechanics	CL21C472JAFNNNE Series= C0G/NP0	Cap= 4.7 nF VDC= 25.0 V IRMS= 0.0 A	1	\$0.07	0805 7 mm ²

Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
Cvcc	Taiyo Yuden	EMK212BJ106KG-T Series= X5R	Cap= 10.0 uF ESR= 1.0 mOhm VDC= 16.0 V IRMS= 0.0 A	1	\$0.04	0805 7 mm ²
Cvin	Yageo	CC0805KRX7R8BB104 Series= X7R	Cap= 100.0 nF ESR= 1.0 mOhm VDC= 25.0 V IRMS= 0.0 A	1	\$0.02	0805 7 mm ²
L1	Coilcraft	SER2915L-682KL	L= 6.8 µH 1.5 mOhm	1	\$1.88	SER2915L 652 mm ²
M1	Texas Instruments	CSD18514Q5A	VdsMax= 40.0 V ldsMax= 50.0 Amps	1	\$0.27	TRANS_NexFET_Q5A 55
M2	Texas Instruments	CSD18514Q5A	VdsMax= 40.0 V ldsMax= 50.0 Amps	1	\$0.27	TRANS_NexFET_Q5A 55
R13	Vishay-Dale	CRCW080510R0FKEA Series= CRCWe3	Res= 10.0 Ohm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
R14	Vishay-Dale	CRCW080510R0FKEA Series= CRCWe3	Res= 10.0 Ohm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
Rcomp	Panasonic	ERJ-6ENF2491V Series= ERJ-6E	Res= 2.49 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
Rfbb	Panasonic	ERJ-6ENF1102V Series= ERJ-6E	Res= 11.0 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
Rfbt	Panasonic	ERJ-6ENF2323V Series= ERJ-6E	Res= 232.0 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
Rpg	Vishay-Dale	CRCW0805100KFKEA Series= CRCWe3	Res= 100.0 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
Rsns1	Susumu Co Ltd	PRL1632-R005-F-T1 Series= PRL1632	Res= 5.0 mOhm Power= 1.0 W Tolerance= 1.0%	1	\$0.20	0612 11 mm ²
Rsns2	Susumu Co Ltd	PRL1632-R005-F-T1 Series= PRL1632	Res= 5.0 mOhm Power= 1.0 W Tolerance= 1.0%	1	\$0.20	0612 11 mm ²
Rt	Panasonic	ERJ-6ENF1913V Series= ERJ-6E	Res= 191.0 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
U1	Texas Instruments	TPS43061RTER	Switcher	1	\$1.25	
						S-PVQFN-N16 17 mm ²

Operating Values

#	Name	Value	Category	Description
1.		533.545 mA	Capacitor	Input capacitor RMS ripple current
2.	Cin Pd	0.0 W	Capacitor	Input capacitor power dissipation
3.	Cout Pd	13.035 mW	Capacitor	Output capacitor power dissipation
4.	IC Pd	98.4 mW	IC	IC power dissipation
5.	IC Tj	36.465 degC	IC	IC junction temperature
6.	ICThetaJA	65.7 degC/W	IC	IC junction-to-ambient thermal resistance
7.	lin Avg	6.373 A	IC	Average input current
8.	L lpp	1.848 A	Inductor	Peak-to-peak inductor ripple current
9.	L Pd	71.869 mW	Inductor	Inductor power dissipation
10.	L1 lpk	7.297 A	Inductor	Inductor peak current
11.	L1 Irms	6.191 A	Inductor	Inductor ripple current
12.	M1 Irms	5.667 A	Mosfet	MOSFET RMS ripple current
13.	M1 Pd	1.031 W	Mosfet	MOSFET power dissipation
14.	M1 PdCond	389.85 mW	Mosfet	M1 MOSFET conduction losses
15.	M1 PdCoss	17.94 mW	Mosfet	M1 MOSFET Coss Losses
16.	M1 PdQrr	45.9 mW	Mosfet	M1 MOSFET switching losses
17.		577.3 mW	Mosfet	M1 MOSFET switching losses
18.	M1 Rdson	10.116 mOhm	Mosfet	Drain-Source On-resistance
19.	M1 ThetaJA	50.0 degC/W	Mosfet	MOSFET junction-to-ambient thermal resistance
20.	M1 TjOP	81.549 degC	Mosfet	M1 MOSFET junction temperature
21.		2.493 A	Mosfet	MOSFET RMS ripple current
22.	M2 Pd	363.4 mW	Mosfet	MOSFET power dissipation
23.	M2 PdCond	71.155 mW	Mosfet	M2 MOSFET conduction losses
	M2 PdCoss	17.454 mW	Mosfet	M2 MOSFET Coss Losses
25.	M2 PdSw	34.237 mW	Mosfet	M2 MOSFET switching losses
	M2 Pdbody	240.56 mW	Mosfet	Power dissipation through lower FET
27.	M2 Rdson	8.808 mOhm	Mosfet	Drain-Source On-resistance
28.	M2 ThetaJA	50.0 degC/W	Mosfet	MOSFET junction-to-ambient thermal resistance
	M2 TjOP	48.17 degC	Mosfet	MOSFET junction temperature
30.	•	0.0 W	Power	Input capacitor power dissipation
	Cout Pd	13.035 mW	Power	Output capacitor power dissipation
	IC Pd	98.4 mW	Power	IC power dissipation
	L Pd	71.869 mW	Power	Inductor power dissipation
34.	M1 Pd	1.031 W	Power	MOSFET power dissipation
35.	M1 PdCond	389.85 mW	Power	M1 MOSFET conduction losses
36.	M1 PdCoss	17.94 mW	Power	M1 MOSFET Coss Losses
37.	M1 PdQrr	45.9 mW	Power	M1 MOSFET switching losses
38.	M1 PdSw	577.3 mW	Power	M1 MOSFET switching losses
39.	M2 Pd	363.4 mW	Power	MOSFET power dissipation
40.	M2 PdCond	71.155 mW	Power	M2 MOSFET conduction losses
40. 41.		17.454 mW	Power	M2 MOSFET Conduction losses M2 MOSFET Coss Losses
42.	M2 PdQrr	0.0 W	Power	Synchronous Boost High Side Reverse Recovery
42. 43.		34.237 mW	Power	M2 MOSFET switching losses
43. 44.	M2 Pdbody	240.56 mW	Power	Power dissipation through lower FET
	Rsns1 Pd	47.913 mW	Power	Rsns1 Power Dissipation
45. 46.	Rsns2 Pd	47.913 mW	Power	•
46. 47.	Total Pd	47.913 mw 1.676 W	_	Rsns2 Power Dissipation
	Rsns1 Pd	47.913 mW	Power	Total Power Dissipation
			Resistor	Rsns1 Power Dissipation
49.	Rsns2 Pd	47.913 mW	Resistor	Rsns2 Power Dissipation
50.	BOM Count	25	System Information	Total Design BOM count

#	Name	Value	Category	Description
51.	Cross Freq	5.131 kHz	System Information	Bode plot crossover frequency
52.	Duty Cycle	83.788 %	System Information	Duty cycle
53.	Efficiency	94.154 %	System Information	Steady state efficiency
54.	FootPrint	1.102 k mm²	System Information	Total Foot Print Area of BOM components
55.	Frequency	300.0 kHz	System Information	Switching frequency
56.	Gain Marg	-10.741 dB	System Information	Bode Plot Gain Margin
57.	lout	1.0 A	System Information	lout operating point
58.	Low Freq Gain	78.546 dB	System Information	Gain at 1Hz
59.	Mode	ССМ	System Information	Conduction Mode
60.	Phase Marg	54.612 deg	System Information	Bode Plot Phase Margin
61.	Pout	27.0 W	System Information	Total output power
62.	Total BOM	\$14.58	System Information	Total BOM Cost
63.	Vin	4.5 V	System Information	Vin operating point
64.	Vout	27.0 V	System Information	Operational Output Voltage
65.	Vout Actual	26.951 V	System Information	Vout Actual calculated based on selected voltage divider resistors
66.	Vout Tolerance	4.018 %	System Information	Vout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable
67.	Vout p-p	168.848 mV	System Information	Peak-to-peak output ripple voltage

Design Inputs

Name	Value	Description	
lout	1.0	Maximum Output Current	
VinMax	5.5	Maximum input voltage	
VinMin	4.5	Minimum input voltage	
VinTyp	5.0	Typical input voltage	
Vout	27.0	Output Voltage	
base_pn	TPS43061	Base Product Number	
source	DC	Input Source Type	
Та	30.0	Ambient temperature	

WEBENCH® Assembly

Component Testing

Some published data on components in datasheets such as Capacitor ESR and Inductor DC resistance is based on conservative values that will guarantee that the components always exceed the specification. For design purposes it is usually better to work with typical values. Since this data is not always available it is a good practice to measure the Capacitance and ESR values of Cin and Cout, and the inductance and DC resistance of L1 before assembly of the board. Any large discrepancies in values should be electrically simulated in WEBENCH to check for instabilities and thermally simulated in WebTHERM to make sure critical temperatures are not exceeded.

Soldering Component to Board

If board assembly is done in house it is best to tack down one terminal of a component on the board then solder the other terminal. For surface mount parts with large tabs, such as the DPAK, the tab on the back of the package should be pre-tinned with solder, then tacked into place by one of the pins. To solder the tab town to the board place the iron down on the board while resting against the tab, heating both surfaces simultaneously. Apply light pressure to the top of the plastic case until the solder flows around the part and the part is flush with the PCB. If the solder is not flowing around the board you may need a higher wattage iron (generally 25W to 30W is enough).

Initial Startup of Circuit

It is best to initially power up the board by setting the input supply voltage to the lowest operating input voltage 4.5V and set the input supply's current limit to zero. With the input supply off connect up the input supply to Vin and GND. Connect a digital volt meter and a load if needed to set the minimum lout of the design from Vout and GND. Turn on the input supply and slowly turn up the current limit on the input supply. If the voltage starts to rise on the input supply continue increasing the input supply current limit while watching the output voltage. If the current increases on the input supply, but the voltage remains near zero, then there may be a short or a component misplaced on the board. Power down the board and visually inspect for solder bridges and recheck the diode and capacitor polarities. Once the power supply circuit is operational then more extensive testing may include full load testing, transient load and line tests to compare with simulation results.

Load Testing

The setup is the same as the initial startup, except that an additional digital voltmeter is connected between Vin and GND, a load is connected between Vout and GND and a current meter is connected in series between Vout and the load. The load must be able to handle at least rated output power + 50% (7.5 watts for this design). Ideally the load is supplied in the form of a variable load test unit. It can also be done in the form of suitably large power resistors. When using an oscilloscope to measure waveforms on the prototype board, the ground leads of the oscilloscope probes should be as short as possible and the area of the loop formed by the ground lead should be kept to a minimum. This will help reduce ground lead inductance and eliminate EMI noise that is not actually present in the circuit.

Design Assistance

- 1. Feature Highlights: Low Quiescent Current Boost Controller, Wide Vin Range 4.5V to 38V Vin, 58V Vout, 5.5V Gate Drive optimized for Low Qg NexFETs Thermal Shutdown
- 2. Master key: E56AD4253327D321[v1]
- 3. TPS43061 Product Folder: http://www.ti.com/product/TPS43061: contains the data sheet and other resources.

Important Notice and Disclaimer

TI provides technical and reliability data (including datasheets), design resources (including reference designs), application or other design advice, web tools, safety information, and other resources AS IS and with all faults, and disclaims all warranties. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Providing these resources does not expand or otherwise alter TI's applicable Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with TI products.