Quick Sort

- To sort a subarray A[p..r]
 - Choose an element from the subarray as a pivot
- Divide:
 - Partition the array A[p..r] into two (possibly empty) subarrays A[p.. q-1] and A[q+1..r] such that each element of A[p..q-1] \leq A[q] (pivot) and each element of A[q+1..r] > = A[q] (pivot)
- Conquer
 - Recursively sort the two subarrays A[p..q-1], A[q+1..r]
- Combine: no work needs to be done.

The algorithm

```
\begin{aligned} & \text{Quicksort}(A, p, r) \\ & \textbf{if } p < r \\ & \textbf{then } q \leftarrow \text{Partition}(A, p, r) \\ & \text{Quicksort}(A, p, q-1) \\ & \text{Quicksort}(A, q+1, r) \end{aligned}
```

Initial call is QUICKSORT(A, 1, n).

Partition

```
\begin{aligned} \text{PARTITION}(A, p, r) \\ x &\leftarrow A[r] \\ i &\leftarrow p-1 \\ \textbf{for } j &\leftarrow p \textbf{ to } r-1 \\ \textbf{ do if } A[j] &\leq x \\ \textbf{ then } i &\leftarrow i+1 \\ \text{ exchange } A[i] &\leftrightarrow A[j] \\ \textbf{exchange } A[i+1] &\leftrightarrow A[r] \\ \textbf{return } i+1 \end{aligned}
```

- always selects the last element A[r] as pivot the element around which to partition
- as procedure executes, array is partitioned into four regions

Example for Partition

Example for Partition

Example for Partition

Time for partitioning: $\Theta(n)$

Loop invariant

• All entries in A[p..i] are <= pivot

• All entries in A[i+1..j-1] > pivot

• A[r]=pivot

Worst case:

- the array is sorted
- − 0 elements in one subarray and n-1 elements in other

-
$$T(n)=T(n-1)+T(0)+\Theta(n)$$

= $T(n-1)+\Theta(n)$
= $\Theta(n^2)$

Same running time as insertion sort

- Best case
 - − Each subarray has <= n/2 elements</p>
 - $T(n) = 2T(n/2) + \Theta(n)$ $= \Theta(n \log n)$

- Balanced partitioning
 - Quicksort's average running time is much closer to best case than to worst case
 - Imagine that Partition always produces a 9-to-1 split
 - $T(n) \le T(9n/10) + T(n/10) + \Theta(n)$ = O(n log n)

- Intuition for average case
 - Splits in recursion tree will not always be constant
 - There wil lbe a mix of good and bad splits
 - This doesn't affect the asyptotic running tine of quicksort

- Extra level in left-hand-side only adds to constant in Θ
- Still the same number of subarrays to sort, only twice as much work to get there
- Both figures results in O(n log n) time, different constant

Randomized Quicksort

- it is not always true that all input permutation are equally likely
- add randomization to quicksort
- could randomly permute the input array
- instead, use random sampling: pick one element at random
- don't always use A[r] as pivot, randomly pick one
- on average, this cause the split of the input to be reasonably well balanced

```
\begin{aligned} & \text{Randomized-Partition}(A, p, r) \\ & i \leftarrow \text{Random}(p, r) \\ & \text{exchange } A[r] \leftrightarrow A[i] \\ & \text{return Partition}(A, p, r) \end{aligned} \quad \begin{aligned} & \text{Randomized-Quicksort}(A, p, r) \\ & \text{then } q \leftarrow \text{Randomized-Partition}(A, p, r) \\ & \text{Randomized-Quicksort}(A, p, q - 1) \\ & \text{Randomized-Quicksort}(A, q + 1, r) \end{aligned}
```