

High Performance Computing

High Performance Computing

HPC refers to HW/SW infrastructures for particularly intensive workloads

High Performance Computing

HPC is (somewhat) distinct from cloud computing

- Cloud computing is mostly about running (and scaling services)
- ...HPC is all about performance

Typical applications: simulation, massive data analysis, training large ML models

HPC systems follow a batch computation paradigm

- Users send jobs to the systems (i.e. configuration for running a program)
- Jobs end in one of several queues
- A job scheduler draws from the queue
- ...And dispatches jobs to computational nodes for execution

High Performance Computing

HPC systems can be large and complex

E.g. Leonardo, the 4-th most powerful supercompuer (as of June 2023)

4 Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 1,824,768 238.70 304.47 7,404 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100 Infiniband, Atos EuroHPC/CINECA Italy

■ The system has 1,824,768 cores overall!

Configuring (and maintaining the configuration) of these systems

- ...Is of very important, as it has an impact on the performance
- ...And very challenging, due to their scale and the to node heterogeneity

Hence the interest in detecting anomalous conditions

The Dataset

As an example, we will consider the DAVIDE system

Small scale, energy-aware architecture:

- Top of the line components (at the time), liquid cooled
- An advanced monitoring and control infrastructure (ExaMon)
- ...Developed together with UniBo

The system went out of production in January 2020

The monitoring system enables anomaly detection

- Data is collected from a number of samples with high-frequency
- Long term storage only for averages over 5 minute intervals
- Anomalies correspond to unwanted configurations of the frequency governor
- ...Which can throttle performance to save power or prevent overheating

Our dataset refers to the non-idle periods of a single node

In [2]:	<pre>print(f'#examples: {hpc.shape[0]}, #columns: {hpc.shape[1]}') hpc.iloc[:3]</pre>													
	#e	#examples: 6667, #columns: 161												
Out[2]:		timestamp	ambient_temp	cmbw_p0_0	cmbw_p0_1	cmbw_p0_10	cmbw_p0_11	cmbw_p0_12	cmbw_p0_13	cmbw_p0_14	cmbw			
	0	2018-03- 05 22:45:00	0.165639	0.006408	0.012176	0.166835	0.238444	0.230092	0.145691	0.227682	0.000			
	1	2018-03- 05 22:50:00	0.139291	0.007772	0.057400	0.166863	0.238485	0.230092	0.145691	0.227682	0.176			
	2	2018-03- 05 22:55:00	0.141048	0.000097	0.000000	0.166863	0.238444	0.230092	0.145691	0.227682	0.252			
	3	rows × 16	1 columns											

■ This still a time series, but a multivariate one

How to display a multivariate series? Approach #1: showing individual columns

■ The series contains significant gaps (i.e. the idle periods)

Approach #2: obtaining statistics

t[4]:										
		ambient_temp	cmbw_p0_0	cmbw_p0_1	cmbw_p0_10	cmbw_p0_11	cmbw_p0_12	cmbw_p0_13	cmbw_p0_14	cmb
	count	6667.000000	6667.000000	6667.000000	6667.000000	6667.000000	6667.000000	6667.000000	6667.000000	6667.0
	mean	0.357036	0.138162	0.060203	0.119616	0.160606	0.184970	0.118305	0.151434	0.1430
	std	0.166171	0.128474	0.090796	0.098597	0.128127	0.163190	0.104490	0.120793	0.1250
	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0000
	25%	0.227119	0.000073	0.000020	0.000000	0.000000	0.000000	0.000000	0.000000	0.0002
	50%	0.323729	0.136095	0.000082	0.166835	0.238444	0.230092	0.145691	0.227682	0.1749
	75%	0.470254	0.261908	0.134976	0.166984	0.238566	0.230406	0.145908	0.227779	0.2519
	max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.0000

No missing value, normalized data

Approach #3: standardize, then use a heatmap

```
In [5]: hpcsv = hpc.copy()
         hpcsv[inputs] = (hpcsv[inputs] - hpcsv[inputs].mean()) / hpcsv[inputs].std()
         util.plot_df_heatmap(hpcsv[inputs], figsize=figsize)
          100
          120
          140
                          1000
                                        2000
                                                       3000
                                                                      4000
                                                                                                   6000
                                                                                    5000
```

■ White = mean, red = below mean, blue = above mean

Anomalies

There are three possible configurations of the frequency governor:

- Mode 0 or "normal": frequency proportional to the workload
- Mode 1 or "power saving": frequency always at the minimum value
- Mode 2 or "performance": frequency always at the maximum value

On this dataset, this information is known

- ...And it will serve as our ground truth
- We will focus on discriminating normal from non-normal behavior
- I.e. we will treat both "power saving" and "performance" configurations as anomalous

Detecting them will be challenging

Since the signals vary so much when the running job changes

Anomalies

We can plot the location of the anomalies:

```
In [6]: labels = pd.Series(index=hpcsv.index, data=(hpcsv['anomaly'] != 0), dtype=int)
util.plot_df_heatmap(hpcsv[inputs], labels, figsize=figsize)
```

On the top, blue = normal, orange = anomaly

Autoencoders

An autoencoder is a type of neural network

The network is designed to reconstruct its input vector

lacktriangle The input is some tensor $oldsymbol{x}$ and the output should be the same tensor $oldsymbol{x}$

Autoencoders can be broken down in two halves

• An encoding part, i.e. $encode(x, \theta_e)$, mapping x into a vector of latent variables z

• A decoding part, i.e. $decode(z, \theta_d)$, mapping z into reconstructed input tensor

Autoencoders are trained so as to satisfy:

$$decode(encode(\hat{x}_i, \theta_e), \theta_d) \simeq \hat{x}_i$$

- I.e. decode, when applied to the output of encode
- ...Should approximately return the input vector itself

A nice introduction and tutorial about autoencoders can be found <u>on the Keras</u>

Autoencoders

Formally, we typically employ an MSE loss

$$L(\theta_e, \theta_d) = \sum_{i=1}^{n} \|\hat{x}_i - decode(encode(\hat{x}_i, \theta_e), \theta_d)\|_2^2$$

- ullet This is trivial to satisfy if both encode and decode learn an identity relation
- ...So we need to prevent that

There are two main approaches to avoid learning a trivial mapping

- ullet Using an information bottleneck, i.e. making sure that $oldsymbol{z}$ has fewer dimensions that $oldsymbol{x}$
- Use a regularization to enforce sparse encodings, e.g.:

$$L(\theta_e, \theta_d) = \sum_{i=1}^{n} \|\hat{x}_i - decode(encode(\hat{x}_i, \theta_e), \theta_d)\|_2^2 + \alpha \|encode(x, \theta_e)\|_1$$

Autoencoders for Anomaly Detection

Autoencoders can be used for anomaly detection

...By using the reconstruction error as an anomaly signal, e.g.:

$$||x - decode(encode(x, \theta_e), \theta_d)||_2^2 > \theta$$

This approach has some PROs and CONs:

- Compared to KDE
 - Neural Networks have good support for high dimensional data
 - ...Plus limited overfitting and fast prediction/detection time
 - However, error reconstruction can be harder than density estimation
- Compared to autoregressors
 - Reconstructing an input is easier than predicting the future
 - ...So, we tend to get higher reliability

Let's build an autoencoder in practice (with tensorflow 2.0 and keras)

First, we build the model

```
In [7]: input_shape = (len(inputs), )
   ae_x = keras.Input(shape=input_shape, dtype='float32')
   ae_z = layers.Dense(64, activation='relu')(ae_x)
   ae_y = layers.Dense(len(inputs), activation='linear')(ae_z)
   ae = keras.Model(ae_x, ae_y)
```

In this case, we used the keras <u>functional API</u>

- Input builds the entry point for the input data
- Dense builds a fully connected layer
- "Calling" layer A with parameter B attaches B to A
- Model builds a model object with the specified input and output

Then we compile (prepare for training) the model

```
In [8]: ae.compile(optimizer='adam', loss='mse')
```

Finally we can start training:

- We are using a callback to stop training early
- ...If no improvement on the validation set is observed for 3 epochs

Let's have a look at the loss evolution over different epochs

Finally, we can obtain the predictions

In [11]: preds = pd.DataFrame(index=hpcs.index, columns=inputs, data=ae.predict(hpcs[inputs], verbose
 preds.head()

Out[11]:

	ambient_temp	cmbw_p0_0	cmbw_p0_1	cmbw_p0_10	cmbw_p0_11	cmbw_p0_12	cmbw_p0_13	cmbw_p0_14	cmbw_p0_2	cmbw_p(
0	-1.412239	-0.843257	-0.401748	2.171150	1.943048	2.349579	2.030199	2.199551	-1.968331	-1.05065
1	-0.705542	-0.502070	0.019735	2.149246	2.061388	2.109589	2.245787	2.245715	0.423151	-0.38171
2	-1.127019	-0.847340	-0.590582	2.316129	2.215113	2.269886	2.223497	2.241434	0.319195	0.551385
3	-0.903677	-0.804386	-0.386561	2.175131	2.176953	2.173117	2.233175	2.217358	0.690856	0.98705
4	-1.165355	-0.784210	-0.561632	2.258652	2.137391	2.184276	2.231875	2.277363	0.757158	1.012378

5 rows × 159 columns

Alarm Signal

We can finally obtain our alarm signal, i.e. the sum of squared errors

```
In [12]: sse = np.sum(np.square(preds - hpcs[inputs]), axis=1)
          signal_ae = pd.Series(index=hpcs.index, data=sse)
          util.plot_signal(signal_ae, labels, figsize=figsize)
           1.50
           1.25
           1.00
           0.75
           0.50
           0.25
           0.00
                                1000
                                             2000
                                                           3000
                                                                                       5000
                                                                                                     6000
                                                                         4000
```

It is actually quite similar to the KDE signal

Threshold Optimization

Then we can optimize the threshold as usual

But autoencoders do more than just anomaly detection!

- Instead of having a single signal we have many
- So we can look at the individual reconstruction errors

Reconstruction errors are often concentrated on a few signals

- These correspond to the properties of the input vector that were harder to reconstruct
- ...And often they are useful clues about the nature of the anomaly

Let's focus on the last mode 1 anomaly ("power saving" mode)

Here are the 8 largest errors in descending order

```
In [16]: last_mode_1 = hpcs.index[hpcs['anomaly']==1][-1]
         se.iloc[last_mode_1].sort_values(ascending=False)[:8]
Out[16]: ips_p0_14
                       525.874402
         ips p0 10
                       492.072065
         ips p0 12
                       419.044014
         ips p0 11
                       367.220421
         ips_p0_8
                      344.009226
         ips p0 9 258.454398
         util_p0_12
                     228.343085
         util p0 10
                       191,123226
         Name: 5006, dtype: float64
```

- They are mostly related to performance (e.g. "ips" Instructions Per Second)
- ...As it should be!

Now, let's move to the last mode 2 anomaly ("performance" mode)

Here are the 8 largest errors in descending order

```
In [17]: last_mode_2 = hpcs.index[hpcs['anomaly']==2][-1]
         se.iloc[last_mode_2].sort_values(ascending=False)[:8]
Out[17]: ips_p0_14
                       1022.077539
         ips_p0_10
                        958.192172
                       833.876066
         ips p0 12
         ips p0 11
                       734.644767
         ips_p0_8
                       673.767698
         ips_p0_9
                       537.029292
         ips_p0_13
                       233,014918
         util p0 12
                       224.594563
         Name: 6666, dtype: float64
```

Again, they are performance related

Here are the average errors for mode 1 anomalies

```
In [18]: mode_1 = hpcs.index[hpcs['anomaly']==1]
         tmp = se.iloc[mode_1].mean().sort_values(ascending=False)
         util.plot_bars(tmp, tick_gap=20, figsize=figsize)
          300
          200
          100
```

Errors are concentrated on a small number of features

These are the 20 largest average errors for mode 1 anomalies

■ The largest errors are on "ips", then on "util" (utilization)

Let's repeat the analysis for mode 2. Here are the average errors

■ The situation is similar to mode 1

The 20 largest average errors for mode 2

```
In [21]: mode_2 = hpcs.index[hpcs['anomaly']==2]
         tmp = se.iloc[mode_2].mean().sort_values(ascending=False)
         util.plot_bars(tmp.iloc[:20], figsize=figsize)
          800
          600
          400
          200
```

■ The largest errors are on "ips", then on power signals

Considerations

Autoenders can be used for anomaly detection

- The provide the usual benefits of Neural Networks
 - E.g. scalability, limited overfitting, limited need for preprocessing
- They tend to be more reliable than autoregressors
- They provide more fine grained information than density estimation
- ...And you can make them deep!

Analyzing individual efforts provides clues about the anomalies

In this case, we manage to focus on 10-20 features, rather than 160!

Density estimation is (usually) a bit better at pure anomaly detection

- ...But there is no reason not to use both approaches!
- E.g. density estimation for detection, autoencoders for the analysis