Intruduzione

Il CoronaVirus-19, abbreviato CoViD-19, è un virus trovato per la prima volta a Wuhan, in Cina. Esso è conosciuto anche come Malattia respiratoria acuta, abbreviato in SARS-CoV-2, dato che è un virus che come principale metodo di trasmissione utilizza le vie aeree ha avuto vita facile nel diffondersi velocemente, in effetti tutti respiriamo. In breve tempo si è passati dall'isolamento della Cina al doverlo definire pandemia e quindi passare ad un isolamento globale. Per la sua facilità di diffusione e per la sua pericolosità per alcuni soggetti più deboli è stato necessario modificare lo stile di vita a cui si era abituati, iniziando con i lockdown, dovendo passare alla didattica a distanza perdendo la socialità dei luoghi di studio, abbiamo visto l'economia rallentare, nei casi peggiori crollare e la socialità in presenza scomparire per via della chiusura temporanea di aziende e luoghi definiti "non di prima necessità". Questa situazione ha dato una motivazione per effettuare studi e ricerche in questo ambito, sia per ridurre i sintomi del virus, in buona parte già sta avvenendo con i vari vaccini, sia per permettere alle persone di incontrarsi e lavorare come prima della pandemia trovando metodi per ridurre i contagi come le mascherine. In Italia stiamo allentando la presa sulle restrizioni grazie anche all'avvento del GreenPass il quale permette di certificare che si è vaccinati o che si hanno gli anticorpi dovuti ad un'infezione da CoViD-19. Questo però non ferma il contagio dato che il vaccino permette agli individui di avere sintomi più lievi ma è comunque possibile essere contagiati e diffondere il virus. Uno degli aspetti che coinvolge un po' tutte le persone, sia per divertimento che per lavoro è il trasporto pubblico. Non tutti hanno un mezzo di trasporto proprio o per molti addirittura non conviene, basti pensare alle grandi città con lunghe code per il traffico a tal punto da fare prima a far il tragitto a piedi. Quindi molti optano per i trasporti pubblici ma qui è dove avvengono i principali contagi dovuti ai luoghi chiusi, stretti e poco arieggiati che impediscono di seguire perfettamente le

normative dettate dal governo e dall'Organizzazione Mondiale della Sanità (OMS); questo è uno dei principali motivi del lavoro di tesi.

L'obbiettivo del progetto di tesi è quello di creare una simulazione ad agenti estendibile a diversi tipi di percorsi e abitudini cittadine diverse, da cui recuperare dati sulle persone e sui contagi che avvengono su un mezzo di trasporto pubblico (nel nostro caso si tratta di un autobus). La simulazione è stata realizzata interamente in Unity3D,un motore grafico di che consente lo sviluppo di contenuti interattivi digitali, sia 2D che 3D, come ad esempio videogiochi e simulazioni. Sono stati anche utilizzati tool ed algoritmi per risolvere vari problemi , come ad esempio abbiamo utilizzato A^* Pathfinding Project a cura di Aron Granberg per il calcolo del percorso degli agenti. Gli agenti vengono distinti in:

- Sano, indicato in verde
- Contagioso, indicato in rosso
- Infetto, indicato in giallo

Per la raccolta dei dati è stato scelto di raccogliere il numero di agenti presenti nella simulazione I dati sul numero di pendolari della tratta sono stati presi da un articolo riguardante uno studio pre-pandemia sui viaggiatori della cittadina giapponese di Obuse, della quale è stato preso il percorso della tratta del bus. La simulazione permette di selezionare la percentuale di contagiati iniziale e la percentuale di infezione del virus in modo tale da effettuare facilmente diversi test. Il numero di persone alle fermate è selezionabile per ogni singola fermata in modo tale da poter essere utilizzate in diversi percorsi o più semplicemente applicarlo alle stime dei pendolari attuali. La tesi sarà suddivisa nelle seguenti sezioni:

- Stato dell'arte: verrà mostrato lo stato delle ricerche sulla diffusione del CoViD-19 in ambito di trasporti pubblici, citando elaborati e mostrandone i punti di forza e le limitatezze.
- Presentazione delle tecnologie: in questa sezione verrà mostrato in dettaglio le tecnologie utilizzate per la creazione della simulazione.
- Simulazione nel dettaglio: verrà mostrato il lavoro svolto per la realizzazione della simulazione mostrando in dettaglio i vari oggetti, come sono stati utilizzati i tool e il lavoro svolto senza tool.

- Risultati ottenuti: verrà mostrato i risultati ottenuti da vari test della simulazione.
- Conclusione e sviluppi futuri: si analizzeranno le limitazioni del lavoro allo stato attuale e si metteranno in risalto idee per sviluppi futuri

Capitolo 1

Stato dell'arte

Dalla scoperta del salto di specie effettuato dal CoViD-19 sull'essere umano ad oggi ci sono stati innumerevoli studi, ricerche su vari aspetti della malattia, sul suo impatto sulla società in ambito politico, sociale ed economico. Ci sono anche varie simulazioni sulla sua diffusione in varie situazioni come trasporti pubblici, uffici, ospedali, locali pubblici.

Come primo articolo parlerò di "Simulaion-based Estimation of the Spread of COVID-19 in Iran" pubblicato il 27 Marzo 2020 su medRxiv. Come primo luogo l'articolo mette in luce i problemi dovuti ai dati provenienti dai vari paesi colpiti dal virus, definendoli altamente inaffidabili perché non tengono conto che i sintomi lievi del CoViD-19 sono assimilabili al raffreddore stagionale o alla comune influenza, in più molti testi vengono effettuati tramite screening limitati, un metodo per effettuare esami a tappeto allo scopo di individuare una malattia. Tutti questi dati non vengono combinati con le statistiche ufficiali sulla diffusione del virus e si va quindi a sottovalutare la quantità di infetti. Lo studio è stato effettuato sulla diffusione del virus in Iran nei primi mesi del 2020.

È stato sviluppato un modello dinamico per fornire un quadro affidabile dello stato della malattia basandosi sui dati esistenti. Il modello si basa sul framework **SEIR**(Suscettibile, Esposto, Infetto, Ricoverato); i modelli matematici, in epidemiologia, sono modelli simbolici costituiti da una o più equazioni che considerano diversi parametri per prevedere l'andamento di una malattia in diverse condizioni ambientali o per calcolare il rischio di morte o l'aspettativa di vita nel corso di una pandemia di specifiche entità. SEIR è uno di questi modelli matematici, esso considera il periodo di incubazione durante il quale un individuo è infetto ma non contagioso, in questo caso si

trova nello stato di "Esposto", questo è il principale motivo per cui è stato scelto questo modello, tenendo conto il periodo di incubazione del CoVid-19 che ha un massimo di 14 giorni.

Come primo parametro è stato registrata la frequenza di contatti medi tra persone man mano che venivano segnalati i decessi, poi sono stati differenziati i casi segnalati dai casi effettivi e di come questa differenza cambia con l'andare dell'epidemia(all'epoca ancora definibile epidemia). Nel modello sono stati utilizzati sia dati ufficiali che dati stimati dalla comunità medica in modo tale da ricostruire un quadro più completo della situazione epidemica. Questi dati vengono raccolti per poi passare ad un simulazione con metodo *Monte Carlo*; è una classe di metodi computazionali basati sul campionamento casuale per ottenere risultati numerici, questo metodo è utilizzato per trarre stime attraverso simulazioni. Da quest'analisi sono state trovate sei possibili situazioni della diffusione della malattia in relazione ad effetti stagionali e misure di distanziamento sociale.

I risultati dello studio mostra che il vero numero di casi probabilmente è molto più grande di quello effettivamente registrato, quasi il doppio degli infetti. Lo studio avverte sul fatto che i dati potrebbero dichiarare molti meno casi di quelli che sono nella realtà portando la popolazione e i governi a sottovalutare la situazione.

Il prossimo documento di cui si parlerà è "How simulation modelling can help reduce the impact of COVID-19" a cura della professoressa Christine Currie pubblicato dal CORMSIS, centro di ricerca operativa e statistica dell'Università del Southamoton, il 15 Aprile 2020 su Taylor&Francis Online