2022 International Symposium on

Configurable Deep Learning Accelerator with Bitwise-accurate Training and Verification (D8.1)

Shien-Chun Luo, Kuo-Chiang Chang, Po-Wei Chen, and Zhao-Hong Chen
Integrated Perception and Computation Systems Division,
Electronic and Optoelectronic System Research Laboratories (EOSL), ITRI

Outline of This Presentation

- Solution of custom deep learning accelerator (DLA)
- Bit-accurate verification flow from training to inference
- Reference implementations about FPGAs and chips

2

Optimize for the Applications that Edge Al Needs

Our Total Solution

- Can select a HW SPEC by given models
- Can fine-tune model by given HW SPECs
- Proposes a bit-precise verification flow

Configure an Accelerator

- Generate an DLA by finite SPEC params
- Scalable DLAs using standard ARM bus

Single DLA	SPEC Options
CONV PE Number	64 ~ 2048
CONV Buffer Size	32KB ~ 512KB
Scalar Engine Config	Cascading engines = 2, 3 Parallel number = 1, 2, 4, 8
Custom Function Config	Enable / Disable

SPEC Params

SPEC-driven IP Synthesis

RTL models DEV tool files

Share the Hardware of Convolutions

- MUL array provides 2 data reuse strategies - Data flow meets generic CNN flow

Example of Regular and DW CONV Flows

Assume

Common Input = $7 \times 7 \times 256$

- 1. Regular Kernel = 3 x 3 x 256 x 512
 - 2. DW Kernel = $3 \times 3 \times 256$

8 Regular CONV Output Points after

$$3 \times 3 \times \frac{256}{16}$$
 cycles

Complete Needs

 $\frac{512}{8}$ runs

16 DW CONV Output after

$$3 \times 3$$
 cycles

Complete Needs

$$\frac{256}{16}$$
 runs

Embed HW Control Knobs into Training

Data precision propagation in the hardware setup

Toolchain and Verification

Inference Flow Overview

Each neural network model will be wrapped into a device code or API.

FPGA Verifications - Standalone Device

FPGA Verifications - USB Accelerator

ZCU102 + Cypress FX3

CESYS EF03

VCU118 + Cypress FX3

12

FPGA Verifications - Reference Performance

Utilization depends on (1) CNN dimension (2) DLA & AXI data bandwidth (3) Operators

DLA Series	DLA256M	DLA2048M
MAC Number	256	2048
CONV SRAM	128KB	512KB
Norm. Engine	1X	8X
Pool Engine	1X	4X
AXI Data BW	1X	8X
ZCU102 FPGA Resource %	43% Logic, 3%DSP	78% Logic, 86% DSP
ZCU102 FPGA Frequency	200 MHz	125 MHz

Reference Model	200 MHz DLA256M	125 MHz DLA2048M
Tiny YOLO v1	14.4	28.7
Tiny YOLO v2	7.5	28.7
Tiny YOLO v3	12.3	32.3
Full YOLO v3	1.07	4.5
Full YOLO v4	1.04	4.4
Resnet50	6.4	17.6
Mobilenet v1	33	DW turn-off

Unit: inference per second

Data bandwidth and Performance Profiles

Utilization depends on (1) CNN dimension (2) DLA & AXI data bandwidth (3) Operators

ASIC Verifications

64MAC, 128KB @65nm, 3.2mm side, 50 GOPs / 60mW, 0.8TOPs/W

256MAC, 128KB @65nm, 3.6mm side, 200 GOPs / 80mW, 2.5 TOPs/W

Peak power consumption measured by continuous high-utilization convolution task

Evaluation Board and Environment

Brief Summaries

- 1. We developed a custom DLA SPEC to RTL solution.
- 2. The DLA toolchain provides bit-precise verifications from training to RTL simulation.
- Reference FPGA and chip implementations introduce the performance and power consumption for edge AI products.

19