SAYISAL ANALIZ

Doç.Dr. Cüneyt BAYILMIŞ

SAYISAL ANALIZ

DENKLEM ÇÖZÜMLERİ

(Açık Yöntemler)

İÇİNDEKİLER

- 1. Denklem Çözümleri
 - A. Doğrusal Olmayan Denklem Çözümleri
 - ☐ Açık Yöntemler
 - Basit Sabit Noktalı İterasyon
 - Newton-Raphson Yöntemi
 - Kiriş (Secant) Yöntemi

Denklem Çözümünde Açık Yöntemler

- Bu yöntem, x'in yalnızca başlangıç değeri kullanılan ya da kökü kapsayan bir aralık kullanılması gerekmez.
- Açık yöntemler hızlı sonuç vermesine karşın, başlangıç değeri uygun seçilmediğinde ıraksayabilir.
- Kökü iki başlangıç değeri arasında kıskaca alma (f(x_a).f(x_ü) <0) sorgulaması yoktur.</p>
- ☐ Tüm açık yöntemler, kökün bulunması için matematiksel bir formül kullanır.

Serhat Yılmaz'ın Sunusundan Alınmıştır.

- f(x) fonksiyonu f(x)=0 denkliği x=g(x) formuna getirilir.

 - □ Bu eşitliğin anlamı y=x doğrusu ile y=g(x) fonksiyonunun kesişim noktasını bulmaktır.
- Bir x₀ başlangıç değeri seçilir,
- \mathbf{S} $\mathbf{x}_{n+1} = \mathbf{g}(\mathbf{x}_n)$ formu ile iterasyon gerçekleştirilir.
 - \Box $x_1=g(x_0)$
 - \Box $x_2=g(x_1)$
 - ...
 - \Box $x_n=g(x_{n-1})$
- 4 Durdurma şartı
 - \square $| \mathbf{x}_{n+1} \mathbf{x}_n | < \varepsilon_s$ sağlanıncaya kadar
 - ☐ Ya da belirli iterasyonda durdurulabilir

- \Box Örnek: f(x)= 3e^{-0.5x} x fonksiyonunun kökünü mutlak hata ε_a = 0.07 sınırlamasına göre x₀ = 8 değerinden başlayarak hesaplayınız.
 - ☐ Her adım (iterasyon) için yeni x, g(x) ve hatayı hesaplayınız.
- f(x)=0 denkliği x=g(x) formuna getirilir.
 - $x = 3e^{-0.5x}$
- g(x) = $3e^{-0.5x}$ fonksiyonu x_0 = 8 başlangıç değeri ve ε_a = 0.07 hata sınırlamasına göre iterasyona tabi tutuluyor.
- 13. iterasyondan sonra ε_a = 0.07 hata ile kök değeri x=1.4 elde edilir. (Yakınsak iterasyon)

iterasyon sayısı	х	g(x)	h= x _n -x _{n-1}
1	8	0,054946917	7,945053083
2	0,054946917	2,918701514	2,863754597
3	2,918701514	0,697161304	2,221540209
4	0,697161304	2,117066992	1,419905688
5	2,117066992	1,040892786	1,076174206
6	1,040892786	1,782765652	0,741872867
7	1,782765652	1,230264839	0,552500813
8	1,230264839	1,621707926	0,391443087
9	1,621707926	1,333435008	0,288272918
10	1,333435008	1,540173057	0,206738049
11	1,540173057	1,388919019	0,151254038
12	1,388919019	1,498032798	0,109113779
13	1,498032798	1,418494205	0,079538593
14	1,418494205	1,476043484	

- \Box Örnek: $f(x)=2-x-e^x$ denklemi için 0 < x < 1 aralığı için
 - a) Denklemin kökünü grafik ve iki eğriliği grafik yöntemi ile kabaca bulunuz.
 - b) Basit sabit noktalı köküne $x_0 = 0$ değerinden başlayarak 2 iterasyon yaklaşınız. Her iterasyon da yaklaşık mutlak hatayı hesaplayınız.
- Çözüm: (a)
 - Denklemin kökü grafik yöntemi ile bulunur.

```
x=0:02:1;
y=2-x-exp(x);
subplot(2,1,1); plot(x,y);
grid on;
```

f(x) denklemi iki kısma ayrılır. $2 - x = e^x$ f1=2-x; f2=exp(x); subplot(2,1,2); plot(x,f1,x,f2, '-- r');

- \Box Örnek (devam): $f(x)=2-x-e^x$ denklemi için
- b) Basit sabit noktalı iterasyon yöntemini kullanarak köke $x_0 = 0$ değerinden başlayarak 2 iterasyon yaklaşınız. Her iterasyon da yaklaşık mutlak hatayı hesaplayınız.
- f(x)=0 denkliği x=g(x) formuna getirilir.

•
$$x = 2 - e^x$$

- - 1. iterasyon $x_0 = 0$

$$x_1 = g(x_0) = 2 - e^x \Rightarrow x_1 = 2 - e^0 = 2 - 1 = 1$$

 $\varepsilon = I x_{n+1} - x_n I = I 1 - 0 I = 1$

• 2. iterasyon $x_1 = 1$

$$x_2 = g(x_1) = 2 - e^x \Rightarrow x_2 = 2 - e^1 = 2 - 2.7182 = -0.7182$$

 $\varepsilon = I x_{n+1} - x_n I = I - 0.7182 - 1 I = 1.7182$

Örnek: $f(x) = xe^x - 1$ denkleminin kökünü Basit Sabit Noktalı İterasyon yöntemini kullanarak yaklaşık mutlak hata $\varepsilon_s = 0.005$ sınırlamasının altına ininceye kadar $x_0 = 0.7$ değerinden başlayarak hesaplayınız. Başlangıç değeri için yakınsama şartını kontrol ediniz.

Basit Sabit Noktalı İterasyon Yöntemi Algoritması ve Matlab Kodu


```
% f(x)=(e^{-x})-x
% g(x)=(e^{-x})
x0=1; es=0.01; n=0; Nmax=100;
gtx=-1*exp(-x0);
if abs(gtx)<1
xkeski=x0;
while (n<Nmax)
 xkyeni=exp(-xkeski); %g(xkeski)
  if xkyeni~=0
   ea=abs((xkyeni-xkeski)/xkyeni)*100
   if ea<es
     disp('Kök='); disp(xkyeni);
     disp('Tekrar Sayisi='); disp(n);
     disp('Yüzde bagil Hata=');
     disp(ea);
     n=Nmax;
   end
  else
    disp('Sifira bolme hatasi');
  end
  xkeski=xkyeni;
  n=n+1;
end
else
  disp('yakınsama olmaz!!')
end
```


- En çok kullanılan yöntemlerden biridir.
- Köke, teğetler ile yaklaşılır.
 - □ Başlangıç değerinin fonksiyonu kestiği noktadan, çizilen teğetin yatay ekseni kestiği yeni nokta başlangıç değeri ile değiştirilerek köke yaklaşmaya çalışmaktır.
 - ☐ Bir noktadaki türev, o noktadan geçen teğetin eğimine eşittir.

Yakınsaklık Koşulu

Başlangıç noktasındaki türev ile köke yaklaşma

$$\operatorname{Tan}(\alpha_1) = \frac{f(x_0)}{(x_0 - x_1)} = f'(x_0)$$

 \mathbf{z}_{i} yalnız bırakılırsa, ifade basit iterasyondaki gibi $\mathbf{x}_{n+1} = \mathbf{g}(\mathbf{x}_{n})$ formuna dönüştürülür

3 Yakınsaklık koşulu,

$$|g'(x_0)| \langle 1$$

g'(
$$x_0$$
) = $(x_0 - \frac{f(x_0)}{f'(x_0)})' = \left| \frac{f''(x_0).f(x_0)}{(f'(x_0))^2} \right| \langle 1$

❖ Örnek: f(x) = x² - 10 denklemini Newton-Raphson yöntemini kullanarak x₀ = 3 değerinden başlayarak, iki iterasyon için çözünüz?

•
$$f(x) = x^2 - 10$$
 $\Rightarrow f'(x) = 2x$

$$x_0 = 3$$
 'ten başlayarak köke doğru yaklaşalım

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 3 - \frac{(-1)}{6} = \frac{19}{6} = 3,166$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 3,166 - \frac{(0,023556)}{6,332} = 3,162$$

Durdurma Kriteri (Hata Sınırlaması)

$$| x_{i+1} - x_i | < \epsilon_s$$
 yada iterasyon

$$|x_1 - x_0| = |3,166 - 3| = 0.166$$

$$|x_2 - x_1| = |3,162 - 3,166| = 0.04$$

Serhat Yılmaz'ın Sunusundan Alınmıştır.

• Ornek: $f(x) = e^{-2x} - x + 2$ denkleminin kökünü Newton-Raphson yöntemini kullanarak x_0 = 1 değerinden başlayarak, 3 iterasyon için çözünüz?

Not: Her iterasyonda yaklaşık bağıl hata yüzdesini de hesaplayınız. Tüm değerler virgülden sonra 4 basamak alınacak.

•
$$f(x) = e^{-2x} - x + 2$$
 $\Rightarrow f'(x) = -2e^{-2x} - 1$

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$
 % $\varepsilon_r = \frac{|x_{i+1} - x_i|}{x_{i+1}} *100$

$$\% \ \varepsilon_r = \frac{\left| x_{i+1} - x_i \right|}{x_{i+1}} * 100$$

 $x_0 = 1$ 'den başlayarak köke doğru yaklaşalım

1. iterasyon

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 1 - \frac{(0.1353 - 1 + 2)}{-0.2706 - 1} = 1 - \frac{1.1353}{-1.2706} = 1 - (-0.8935) = 1.8935 \quad \%_{\mathcal{E}_r} = \frac{|1.8935 - 1|}{1.8935} *_{100} = \%_{100} *_{100} = \%_{$$

2. iterasyon

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 1.8935 - \frac{(0.0226 - 1.8935 + 2)}{-0.0452 - 1} = 2.017$$

$$\% \ \varepsilon_r = \frac{|2.017 - 1.8935|}{2.017} * 100 = \% \ 6.12$$

3. iterasyon

$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 2.017 - \frac{(0.0177 - 2.017 + 2)}{-0.0354 - 1} = 2.0176$$

$$\% \varepsilon_r = \frac{|2.0176 - 2.017|}{2.0176} *100 = \% 0.06$$

%
$$\varepsilon_r = \frac{|2.0176 - 2.017|}{2.0176} * 100 = \% \ 0.06$$

❖ Örnek: f(x) = x - e^{-x} denkleminin kökünü Newton-Raphson yöntemini kullanarak x₀= 2 değerinden başlayarak, <u>yaklaşık yüzde bağıl hata değeri</u>, en az 1 anlamlı basamak veren hata sınırlaması altına ininceye kadar hesaplayınız?

Not: Tüm değerler virgülden sonra 4 basamak alınacak.

Newton-Raphson Yöntemi Algoritması

 $A(x_0, y_0)$

 $B(x_1,y_1)$

Kiriş (Secant) Yöntemi

- Newton-Raphson yönteminin en büyük problemlerinden biri, bazı fonksiyonların/denklemlerin türevini almanın oldukça zor olabileceğidir. Bu işlemler uzun zaman alabilir.
- ☐ Türev almadan çözüm için Kiriş (secant) yönteminden yararlanılır.
- $lue{}$ Şekildeki A-B noktaları arasında, $lue{}$ ve $lue{}$ başlangıç değerleri kullanılarak türev

alınmadan gerçek köke daha yakın bir kök bulunabilir.

$$x_{i+1} = x_i - \frac{(x_i - x_{i-1})}{(y_i - y_{i-1})} y_i$$

- ☐ Kirişin x eksenini kestiği nokta köke yakın noktadır.
- Her yeni iterasyonda yeni bir kiriş noktaları bulunarak kirişlerin x eksenini kestiği yeni noktalar ile köke yaklaşılır.
- Bu işlem diğer yöntemlerdeki gibi belirli bir hata sınırlamasına kadar tekrar edilir.

Kiriş (Secant) Yöntemi

Secant Yöntemi ile Newton-Raphson Yönteminin İlişkisi

Sayısal Analiz

xa(yeni)=xr

Kiriş (Secant) Yöntemi

Secant Yönteminin Regula-Falsi Yöntemi İle Karşılaştırılması

İkisinde de iki ilk tahmin değeri var

Regula Falsi

Güncellenecek sınır • $f(x_a).f(x_r) < 0$ $x_{a ile} x_r$ farklı bölgelerde xü(yeni)≓xr

Kök, x_a, x_r arasında

Kök,
$$x_r$$
, $x_{\ddot{u}}$ arasında

$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$

Kiriş (Secant) Yöntemi

Örnek: f(x) = e^{-x} - x denkleminin köklerini x₀ = 0 ve x₁ = 1 ilk tahminlerinden başlayarak Secant Yöntemi ile çözünüz?

$$f(0)=1.0$$
 $f(1)=-0.632\,120\,559$ \Rightarrow $f(0)f(1)<0$ olduğundan aralıkta kök vardır. $x_0=0,$ $y_0=f(x_0)=1$ $x_1=1$ $y_1=f(x_1)=-0.632\,120\,559$

•
$$x_2 = x_1 - \frac{x_1 - x_0}{y_1 - y_0} y_1 = 1 - \frac{1 - 0}{-0.632120559 - 1} (-0.632120559) = 0.612699$$
,

$$f(0.612699) = y_2 = -0.0708127$$

•
$$x_3 = x_2 - \frac{x_2 - x_1}{y_2 - y_1} y_2 = 0.612699 - \frac{(0.612699 - 1)}{(-0.0708127 + 0.632120)} (-0.0708127) = 0.563838$$

$$|x_3 - x_2| = |0.563838 - 0.612699| = 0.048861$$

$$f(0.563838) = y_3 = 0.00518297,$$

•
$$x_4 = 0.567170$$
 $|x_4 - x_3| = |0.567170 - 0.563838| = 0.003332$

•
$$x_5 = 0.567143$$
 $|x_5 - x_4| = |0.567143 - 0.567170| = 2.7 \times 10^{-5}$

•
$$x_6 = 0.567143$$
 $|x_6 - x_5| = |0.567143 - 0.567143| = 0$

O halde verilen denklemin yaklaşık kökü x = 0.567143 dir.

Kiriş (Secant) Yöntemi

❖ Örnek: $f(x) = x^3 - 3x^2 - x + 9$ denkleminin köklerini $x_0 = -2$ ve $x_1 = -1$ ilk tahminlerinden başlayarak Secant Yöntemi ile çözünüz?

$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$

$$x_0 = -2 \implies f(x_0) = (-2)^3 - 3*(-2)^2 - (-2) + 9 = -9$$

 $x_1 = -1 \implies f(x_1) = (-1)^3 - 3*(-1)^2 - (-1) + 9 = 6$

1. iterasyon

$$x_2 = x_1 - \frac{f(x_1)(x_0 - x_1)}{f(x_0) - f(x_1)} = -1 - \frac{6*(-2 - (-1))}{-9 - 6} = -1 - 0.4 = -1.4$$

2. iterasyon

$$x_2 = -1.4 \implies f(x_2) = (-1.4)^3 - 3*(-1.4)^2 - (-1.4) + 9 = 1.776$$

$$x_3 = x_2 - \frac{f(x_2)(x_1 - x_2)}{f(x_1) - f(x_2)} = -1.4 - \frac{1.776 * (-1 - (-1.4))}{6 - 1.776} = -1.4 - 0.1681 = -1.5681$$

 $f(x) = \sin(x) - x.e^x + 3$ denkleminin köküne Newton Raphson yöntemini kullanarak $x_0 = 1$ değerinden başlayarak yaklaşık yüzde bağıl hata $\varepsilon_s = \%3$ 'ün altına ininceye kadar yaklaşınız.

Ödev Hakkında Bilgilendirme:

- □ Ödev çıktı olarak teslim edilecektir.
- Ödev hem program dosyasını (MATLAB) hem de el ile çözümünü içerecektir.

KAYNAKLAR

- Serhat YILMAZ, "Bilgisayar İle Sayısal Çözümleme", Kocaeli Üniv. Yayınları, No:168, Kocaeli, 2005.
- Steven C. Chapra, Raymond P. Canale (Çev. H. Heperkan ve U. Kesgin), "Yazılım ve Programlama Uygulamalarıyla Mühendisler İçin Sayısal Yöntemler", Literatür Yayıncılık.
- İlyas ÇANKAYA, Devrim AKGÜN, Sezgin KAÇAR "Mühendislik Uygulamaları İçin MATLAB", Seçkin Yayıncılık
- Prof.Dr. Asaf Varol, Sayısal Analiz Ders Notları, Fırat Üniversitesi
- Fahri VATANSEVER, "İleri Programlama Uygulamaları", Seçkin Yayıncılık
- Yüksel YURTAY, Sayısal Analiz Ders Notları, Sakarya Üniversitesi

