16-bit Arithmetic Operations

Date: 28/8/2020 Name: Gokhulnath T

Register Number: 185001051

Aim: To write assembly program to do following 16-bit arithmetic operations:

- a) 16-bit Addition
- b) 16-bit subtraction
- c) 16-bit multiplication
- d) 16-bit division

Procedure:

Exp No: 2

- 1. Install all the required file for executing MASM programs.(Masm, edit, link, debug etc..).
- 2. Write the assembly program in any editor before mounting the folder to the MASM.
- 3. Mount the folder that contains the assembly program with any name such as "d".
 - mount d e:\masm
- 4. Create the object file of the assembly program using masm.
 - masm 16BITADD.asm
- 5. Use the link to create the executable file of the object file created from the above step.
 - Link 16BITADD.obj
- 6. Run the executable file using debug.
 - debug 16BITADD.exe
- 7. By un-assembling the program you can check the code segment of the program
 - u 076b:0100
- 8. To check the data memory segment, you can use the memory option to view the data stored.
 - d 076a:0000
- 9. To enter your own values, you can use the enter option which will prompt for new values.
 - e 076a:0000
- 10. To execute the program, you can use go option
 - (
- 11. After successful execution and termination of the program, you can check the result by checking the data memory segment
 - d 076a:0000
- 12. The result can be viewed in the respective address mentioned in the program.

2 a) 16-bit addition

Algorithm:

- a) Assign 0000h to ax register
- b) Load contents of memory location opr1 in register ax
- c) Load contents of memory location opr2 in register bx
- d) Assign 0000h to cx register
- e) Add ax and bx content, store the result in ax
- f) If carry is generated continue else jump to step g
- g) Increment cx register
- h) Load content of ax register to memory location result
- i) Load content of cx register to memory location carry
- j) Load content 4ch termination code to ah register
- k) Stops execution of the program

Program	Comments
start: mov ax,data	Transferring the data from memory location data to ax
mov ds,ax	Transferring the data from memory location ax to da
mov ax,0000h	Load the data 0000h in to memory location of ax
mov ax,opr1	Transferring the data from memory location opr1 to ax
mov bx,opr2	Transferring the data from memory location opr2 to bx
mov cx,0000h	Transferring the data 0000h to cx
add ax,bx	ax = ax + bx
jnc here	Jump if no carry to here
inc cx	Increment cx
here: mov result,ax	Transferring the data from memory location ax to result
mov carry,cx	Transferring the data from memory location cx to carry
mov ah,4ch	Transferring the termination code 4ch to ah
int 21h	Termination
code ends	Code ends

```
D:N>debug 16BITADD.EXE
-u
076B:0100 B86A07
                         MOV
                                 AX,076A
076B:0103 8ED8
                         MOV
                                  DS,AX
076B:0105 B80000
                                 AX,0000
                         MOV
076B:0108 A10000
                                 AX,[0000]
                         MOV
076B:010B 8B1E0200
                         MOV
                                  BX,[0002]
076B:010F B90000
                                 CX,0000
                         MOV
076B:0112 03C3
                                 AX,BX
                         ADD
076B:0114 7301
                         JNB
                                 0117
076B:0116 41
                         INC
                                  CX
                                  [0004],AX
076B:0117 A30400
                         MOV
                                  [00061,CX
076B:011A 890E0600
                         MOV
                                 AH,4C
076B:011E B44C
                         MOV
```

Sample Input and output:

```
e 076a:0000
976A:0000 11.ab
       00.08
           99.78
              00.0Ъ
d 076a:0000
    AB 08 78 0B 00 00 00 00-00 00 00 00 00 00 00 00
076A:0000
076A:0010
    076A:0020
    076A:0030
    076A:0040
    076A:0050
    00 00
076A:0060
    076A:0070
    -g
Program terminated normally
-d 076a:0000
076A:0000
    AB 08 78 0B 23 14 00 00-00 00 00 00 00 00 00 00
                         ..×.#........
076A:0010
    076A:0020
    076A:0030
    076A:0040
    076A:0050
         00 00 00 00-00 00 00 00 00 00 00 00
    00 00 00 00
076A:0060
    076A:0070
```

Output explanation: 08AB + 0B78 = 1423 with carry 0

Result:

Thus, the assembly program for 16-bit adder is written and executed.

2 b) 16-bit Subtraction

Algorithm:

- a) Assign 0000h to ax register
- b) Load contents of memory location opr1 in register ax
- c) Load contents of memory location opr2 in register bx
- d) Assign 0000h to cx register
- e) sub ax and bx content, store the result in ax
- f) If carry is generated continue else jump to step g
- g) Increment cx register
- h) 2's complement(ax).
- i) Load content of ax register to memory location result
- j) Load content of cx register to memory location carry
- k) Load content 4ch termination code to ah register
- I) Stops execution of the program

Program	Comments
start: mov ax,data	Transferring the data from memory location data to ax
mov ds,ax	Transferring the data from memory location ax to da
mov ax,0000h	Load the data 0000h in to memory location of ax
mov ax,opr1	Transferring the data from memory location opr1 to ax
mov bx,opr2	Transferring the data from memory location opr2 to bx
mov cx,0000h	Transferring the data 0000hto cx
sub ax,bx	ax = ax - bx
jnc here	Jump if no carry to here
inc cx	Increment cx
neg ax	2's complement(ax).
here: mov result,ax	Transferring the data from memory location ax to result
mov carry,cx	Transferring the data from memory location cx to carry
mov ah,4ch	Transferring the termination code 4ch to ah
int 21h	Termination
code ends	Code ends

```
D:N>debug 16BITSUB.EXE
-u
                         MOV
076B:0100 B86A07
                                 AX,076A
076B:0103 8ED8
                         MOV
                                 DS,AX
076B:0105 B80000
                         MOV
                                 AX,0000
076B:0108 A10000
                         MOV
                                 AX,[0000]
076B:010B 8B1E0200
                         MOV
                                 BX,[0002]
076B:010F B90000
                         MOV
                                 CX,0000
076B:0112 2BC3
                         SUB
                                 AX,BX
076B:0114 7303
                         JNB
                                 0119
076B:0116 41
                         INC
                                 cx
076B:0117 F7D8
                         NEG
                                 ΑX
076B:0119 A30400
                         MOV
                                 [0004],AX
076B:011C 890E0600
                         MOV
                                 [00061,CX
```

Snapshot of sample input and output:

```
e 076a:0000
076A:0000 11.2d
     00.fe
       99.ad
          00.bc
-d 076a:0000
076A:0010
   076A:0020
   076A:0030
  076A:0040
  076A:0050
   076A:0060
   076A:0070
Program terminated normally
-d 076a:0000
076A:0000 ZD FE AD BC 80 41 00 00-00 00 00 00 00 00 00 00
                 -....A.......
076A:0020
   076A:0030
   076A:0040
076A:0050
   076A:0060
076A:0070
```

Output explanation: FE2D + BCAD = 4180 (00 carry indicates positive)

Snapshot of sample input and output:

```
e 076a:0000
076A:0000 11.ab
    00.08
      99.78
         00.0b
-d 076a:0000
076A:0000
  AB 08 78 0B 00 00 00 00-00 00 00 00 00 00 00 00
076A:0010
  076A:0070
Program terminated normally
-d 076a:0000
976A:0000 AB 08 78 0B CD 02 01 00-00 00 00 00 00 00 00 00
076A:0020
  076A:0030
076A:0040
```

Output explanation: 08AB + 0B78 = -2CD (01 carry indicates negative)

Result:

Thus, the assembly program for 16-bit subtractor is written and executed.

2 c) 16-bit Multiplication

Algorithm:

- a) Assign 0000h to ax register
- b) Load contents of memory location opr1 in register ax
- c) Load contents of memory location opr2 in register bx
- d) mul ax and bx content, store the result in dxax
- e) Load contents of memory location dx in result1
- f) Load contents of memory location ax in result2
- g) Load content 4ch termination code to ah register
- h) Stops execution of the program

Program	Comments
start: mov ax,data	Transferring the data from memory location
	data to ax
mov ds,ax	Transferring the data from memory location ax
	to da
mov ax,0000h	Load the data 0000h in to memory location of
	ax
mov ax,opr1	Transferring the data from memory location
	opr1 to ax
mov bx,opr2	Transferring the data from memory location
	opr2 to bx
mul bx	Multiplication DXAX = AX x BX,
Mov result1, dx	dx->result1; first 16bit of the result
Mov result2, ax	ax->result2; second 16bit of the result
mov ah,4ch	Transferring the termination code 4ch to ah
int 21h	Termination
code ends	Code ends

```
D:N>debug 16BITMUL.EXE
                                 AX,076A
076B:0100 B86A07
                         MOV
076B:0103 8ED8
                         MOV
                                 DS,AX
076B:0105 B80000
                         MOV
                                 AX,0000
                                 AX,[0000]
076B:0108 A10000
                         MOV
076B:010B 8B1E0200
                         MOV
                                 BX,[0002]
076B:010F F7E3
                         MUL
                                 BX
                                 [0004],DX
076B:0111 89160400
                         MOV
076B:0115 A30600
                                 [0006],AX
                         MOV
076B:0118 B44C
                         MOV
                                 AH,4C
076B:011A CD21
                         INT
                                 21
976B:011C FF7701
                         PUSH
                                 [BX+01]
076B:011F 40
                         INC
                                 ΑX
```

Snapshot of sample input and output:

Input and output:

```
-e 076a:0000
976A:0000 11.ab
     00.08
        99.78
          00.0b
-d 076a:0000
076A:0000 AB 08 78 0B 00 00 00 00-00 00 00 00 00 00 00 00
076A:0010
   076A:0050
   076A:0060
   076A:0070
   g
Program terminated normally
-d 076a:0000
076A:0000  AB 08 78 0B 63 00 28 69-00 00 00 00 00 00 00 00
                   ..x.c.(i......
076A:0030
   076A:0040
   076A:0050
   076A:0060
976A:0070
```

Output explanation: 08AB * 0B78 = 0063 6928

Result:

Thus, the assembly program for 16-bit multiplier is written and executed.

2 d) 16-bit Division

Algorithm:

- a) Assign 0000h to ax register
- b) Assign 0000h to dx register
- c) Load contents of memory location opr1 in register ax
- d) Load contents of memory location opr2 in register bx
- e) div dxax and bx content, store the result in bx
- f) Load contents of memory location ax in quotient
- g) Load contents of memory location dx in remainder
- h) Load content 4ch termination code to ah register
- i) Stops execution of the program

Program	Comments
start: mov ax,data	Transferring the data from memory location data to ax
mov ds,ax	Transferring the data from memory location ax to da
mov ax,0000h	Load the data 0000h in to memory location of ax
mov dx,0000h	Load the data 0000h in to memory location of dx
mov ax,opr1	Transferring the data from memory location opr1 to ax
mov bx,opr2	Transferring the data from memory location opr2 to bx
div bx	Division DXAX / BX
mov quotient,ax	Transferring the data from memory location ax to quotient
mov remainder,dx	Transferring the data from memory location dx to remainder
mov ah,4ch	Transferring the termination code 4ch to ah
int 21h	Termination
code ends	Code ends

```
D:\>debug 16BITDIV.EXE
-11
076B:0100 B86A07
                         MOV
                                 AX,076A
076B:0103 8ED8
                         MNU
                                 DS,AX
076B:0105 B80000
                                 AX,0000
                         MOV
076B:0108 BA0000
                         MOV
                                 DX,0000
                                 AX,[0000]
076B:010B A10000
                         MOV
076B:010E 8B1E0200
                         MOV
                                 BX,[0002]
076B:0112 F7F3
                         DIV
                                 BX
                                  [0004],AX
076B:0114 A30400
                         MOV
076B:0117 89160600
                         MOV
                                  [00061,DX
076B:011B B44C
                         MOV
                                 AH,4C
076B:011D CD21
                                 21
                         INT
076B:011F 40
                         INC
                                 ΑX
```

Snapshot of sample input and output:

Input and output:

```
-e 076a:0000
076A:0000 11.ab
      00.08
        99.78
           00.0Ъ
-d 076a:0000
076A:0000 AB 08 78 0B 00 00 00 00-00 00 00 00 00 00 00 00
076A:0010
   076A:0020
   076A:0030
   076A:0040
   90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
. . . . . . . . . . . . . . . .
Program terminated normally
-d 076a:0000
076A:0000 AB 08 78 0B 00 00 AB 08-00 00 00 00 00 00 00 00
```

Output explanation: 08AB / 0B78 = > Quotient = 0000, Remainder = 08AB

Result:

Thus, the assembly program for 16-bit divider is written and executed.