Constrained coding + Synchronization

block length: N (symbol) $N\nu$ (bit)

[inner code] $\mathcal{C} \subset \mathbb{B}^{\nu} \ (|\mathcal{C}| = M)$ code length: $\nu \ (\leq \ell)$ (even) $w(\overline{\mathbf{c}}) = \nu/2 \ (\forall \mathbf{c} \in \mathcal{C})$ balanced: run-length: $\leq \rho$ (right-most) $\leq \rho - 1$ $c \in \mathcal{C} \to \overline{c} \in \mathcal{C} \ (\forall c \in \mathcal{C})$ invertible: reset symbol: $(01)^{\frac{\nu}{2}}, (10)^{\frac{\nu}{2}} \in \mathcal{C}$ [encoding] $\phi = \phi_0 \circ \phi_1$ (lossy) $\begin{array}{ccc} \phi_0: \mathbb{Z}_M \to \mathcal{C} & \text{(encoding)} \\ \boldsymbol{v}_i = \phi_0(\boldsymbol{u}_i) \in \mathcal{C} & (\boldsymbol{u}_i \!\in\! \mathbb{Z}_M) \end{array}$ $\phi_1: \mathcal{C}^{l_0} \times \mathcal{C} \to \mathcal{C}$ (constraint) $\boldsymbol{x}_i = \phi_1(\boldsymbol{x}_{i-l_0}^{i-1}, \boldsymbol{v}_i)$ (priority) H $\begin{cases} \boldsymbol{v}_i & (\mathbb{1}_{\rho,\ell,\delta}[\boldsymbol{x}_{i-l_0}^{i-1},\boldsymbol{v}_i] = 1) \\ \overline{\boldsymbol{v}}_i & (\mathbb{1}_{\rho,\ell,\delta}[\boldsymbol{x}_{i-l_0}^{i-1},\overline{\boldsymbol{v}}_i] = 1) \\ (\overline{\boldsymbol{v}}\boldsymbol{v})^{\frac{\nu}{2}} & (\mathbb{1}_{\rho,\ell,\delta}[\boldsymbol{x}_{i-l_0}^{i-1},(\overline{\boldsymbol{v}}\boldsymbol{v})^{\frac{\nu}{2}}] = 1) \\ (\boldsymbol{v}\overline{\boldsymbol{v}})^{\frac{\nu}{2}} & (\mathbb{1}_{\rho,\ell,\delta}[\boldsymbol{x}_{i-l_0}^{i-1},(\boldsymbol{v}\overline{\boldsymbol{v}})^{\frac{\nu}{2}}] = 1) \end{cases}$ $l_0 = \left\lceil \frac{\ell-1}{n} \right\rceil$ v: first bit of v_i

SL-FBA

$$p(\boldsymbol{y},\boldsymbol{x},\boldsymbol{u},\boldsymbol{d}) \qquad \qquad \left(\phi_0(u_i') = \boldsymbol{x}_{i\nu}^{(i+1)\nu-1}\right) \\ = p(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{u},\boldsymbol{d})p(\boldsymbol{x},\boldsymbol{u})p(\boldsymbol{d}) = p(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{d})p(\boldsymbol{x}|\boldsymbol{u})p(\boldsymbol{u})p(\boldsymbol{d}) = p(\boldsymbol{y}|\phi_0(\boldsymbol{u}'),\boldsymbol{d})p(\boldsymbol{u}'|\boldsymbol{u})p(\boldsymbol{u})p(\boldsymbol{d}) \\ = p(d_0)\prod_{i=0}^{N-1}p\left(\boldsymbol{y}_{i\nu+d_{i\nu}}^{(i+1)\nu+d_{(i+1)\nu}-1}\middle|\boldsymbol{x}_{i\nu}^{(i+1)\nu-1},d_{i\nu},d_{(i+1)\nu}\right)p\left(\boldsymbol{x}_{i\nu}^{(i+1)\nu-1}\middle|\boldsymbol{u}_0^i\right)p(u_i)p(d_{(i+1)\nu}|d_{i\nu}) \\ \simeq p(d_0)\prod_{i=0}^{N-1}p\left(\boldsymbol{y}_{i\nu+d_{i\nu}}^{(i+1)\nu+d_{(i+1)\nu}-1}\middle|\phi_0(u_i'),d_{i\nu},d_{(i+1)\nu}\right)p\left(u_i'|u_i\right)p(u_i)p(d_{(i+1)\nu}|d_{i\nu}) \\ = \frac{GX[\text{Nu2}][y][x]}{GX[\text{Nu2}][y][x]} \qquad \qquad \text{ECM}[\text{uin}][\text{uout}] \qquad \text{GD}[\text{d0}][\text{d1}] \\ = \frac{d_{i\nu}}{d_{i\nu}} \qquad d_{(i+1)\nu} \qquad \text{Nu2: 0...Nu*2} \qquad \text{uin: 0...M-1} \qquad \text{d0: Dmin...Dmax} \\ = \frac{d_{i\nu}}{d_{i\nu}} \qquad p_0 \qquad \text{(approximation)} \\ = \frac{d_{i\nu}}{d_{i\nu}} \qquad p_0 \qquad \text{(approximation)} \\ = \frac{d_{i\nu}}{d_{i\nu}} \qquad q_{i\nu} \qquad p_0 \qquad \text{(approximation)} \\ = \frac{d_{i\nu}}{d_{i\nu}} \qquad q_{i\nu} \qquad q_{i\nu}$$

Constraint

 $\begin{array}{ll} \text{run-length:} & \rho \\ \text{local-balance:} & (\ell,\delta) \\ & \ell: \text{even} \\ & \left| w(\boldsymbol{x}_i^{i+\ell-1}) - \frac{\ell}{2} \right| \leq \delta \end{array}$

IDS channel

 $\begin{array}{l} p_{\rm i}, p_{\rm d}, p_{\rm s}: \text{ins/del/sub probability} \\ d_{\rm min} < 0: \text{ drift min} \\ d_{\rm max} > 0: \text{ drift max} \\ \mathcal{D} \!=\! \{d \!\in\! \mathbb{Z} | d_{\rm min} \!\leq\! d \!\leq\! d_{\rm max} \} \end{array}$

Performance measure

Baseline


```
000111
            0
                  0
001011
                  1
001101
            2
                  2
3
4
010011
            4
010101
010110
                  5
011001
            6
011010
011100
            8
100011
100101
100110
           10
                 10
           11
101001
           12
                 11
101010
                       10
101100
110001
110010
           15
                 14
                       12
           16
110100
           17
                 15
111000
```

insertion $p_{\rm i}$:

 $\begin{array}{ll} p_{\mathrm{d}}: & \text{deletion} \\ p_{\mathrm{d}}: & \text{deletion} \\ p_{\mathrm{s}}(y|x): & \text{asymmetric error} \\ d_{\mathrm{min}} < 0: & \text{drift min} \\ d_{\mathrm{max}} > 0: & \text{drift max} \\ \mathcal{D} \!=\! \big\{ d \!\in\! \mathbb{Z} \big| d_{\mathrm{min}} \!\leq\! d \!\leq\! d_{\mathrm{max}} \big\} \end{array}$

Constrained coding + Synchronization

$$\mathcal{C} \subset \mathbb{B}^{\nu} \ (|\mathcal{C}| \leq 2^b) \longleftarrow \text{Inner code (not bijective)} \\ \phi: \mathbb{B}^b \to \mathcal{C} & \text{length: } \nu \ (\text{even}) \\ \boldsymbol{d}_i \in \mathbb{B}^b & \text{balanced: } w(\boldsymbol{u}) = \nu/2 \\ \boldsymbol{u}_i = \phi(\boldsymbol{d}_i) \in \mathcal{C} & \text{invertible: } \boldsymbol{u} \in \mathcal{C} \to \overline{\boldsymbol{u}} \in \mathcal{C} \\ l_0 = \left\lceil \frac{\ell-1}{\nu} \right\rceil & (\forall \boldsymbol{u} \in \mathcal{C}) \\ f_i^0 = \begin{cases} 1 & ((\boldsymbol{x}_{i-l_0}^{i-1}, \boldsymbol{u}_i) \text{ satisfy the constraints}) \\ 0 & (\text{otherwise}) \end{cases} \\ f_i^1 = \begin{cases} 1 & ((\boldsymbol{x}_{i-l_0}^{i-1}, \overline{\boldsymbol{u}}_i) \text{ satisfy the constraints}) \\ 0 & (\text{otherwise}) \end{cases}$$

Constraint

$$\begin{split} & \text{run-length:} \quad \rho \\ & \text{local-balance:} \ (\ell, \delta) \\ & \ell : \text{even} \\ & \left| w(\boldsymbol{x}_i^{i+\ell-1}) - \frac{\ell}{2} \right| \leq \delta \end{split}$$

Rate

RunR[cw] WtL[cw][idx] WtR[cw][idx]

baseline: constraint only

IDS only

decoding: SL-FBA outer code: NB-LDPC (?) performance: code rate

AIR

Constrained non-binary IDS channel

* channel input/output alphabet:

$$\Sigma = \{0, 1, 2, 3\}$$

 \star block length: n

* input:
$$x=(x_0,\ldots,x_{n-1})\in \Sigma^n$$

* output: $y=(y_0,\ldots,y_{n'-1})\in \Sigma^{n'}$

* input constraint:

- run-length: $f_{\rm R}(\boldsymbol{x}) \leq \rho$

- local-balance: (ℓ,ϵ)

$$\max_{i} \left| \frac{1}{2} - f_{\mathrm{B}}(\phi_w(\boldsymbol{x}_i^{i+\ell-1})) \right| \le \varepsilon$$

* error model

insertion $p_{\rm i}$: deletion $p_{\rm d}$:

 $p_{\mathrm{s}}(y|x)$: asymmetric error

 $d_{\min} < 0$: drift min $d_{\rm max} \! > \! 0$: drift max

$$\mathcal{D} = \{ d \in \mathbb{Z} | d_{\min} \leq d \leq d_{\max} \}$$

* performance measure:

* code rate

* mutual info (AIR)

* mappings

$\phi_x: \mathbb{B} \times \mathbb{B} \to \Sigma$	\overline{w}	d	$\phi_x(w,d)$
$\phi_w:\Sigma\to\mathbb{B}$	0	0	0
$\phi_d:\Sigma\to\mathbb{B}$	0	1	1
	1	0	2
$\phi_x(\phi_w(x),\phi_d(x)) = x$	1	1	3

* functions

max run-length: $f_{\mathrm{R}}({m v})$

local-balance (binary):

$$f_{\mathrm{B}}(\boldsymbol{u}_{i}^{i+\ell-1}) = w(\boldsymbol{u}_{i}^{i+\ell-1})/\ell$$
:

Constrained non-binary WM

WM: synchronization:?

run-length: $f_{\mathrm{R}}(m{w}) \leq
ho$ local-balance: $\max_i \left| \frac{1}{2} - f_{\mathrm{B}}(m{w}_i^{i+\ell-1}) \right| \leq arepsilon$

[decoding (detection)] SPA on factor graph

WM design

[generalize]

$$\phi_x: \mathcal{M} \times \Sigma^{\nu} \to \Sigma^{\nu} \ (1 \le |\mathcal{M}| < 2^{2\nu})$$

rate: $R = \frac{\log_2 |\mathcal{M}|}{2\nu}$

$$I(\boldsymbol{X}; \boldsymbol{W}) + I(\boldsymbol{X}; \boldsymbol{D}) \le 2$$

maximize I(X; W)?

k + k + k

index ↔ W: mutual info