Unveiling the Kondo cloud: unitary RG study of the Kondo model

ANIRBAN MUKHERJEE ¹, ABHIRUP MUKHERJEE ¹, N. S. VIDHYADHIRAJA ², A. TARAPHDER ³, SIDDHARTHA LAL ¹

¹DEPARTMENT OF PHYSICAL SCIENCES, IISER KOLKATA

²THEORETICAL SCIENCES UNIT, JNCASR

³DEPARTMENT OF PHYSICS, IIT KHARAGPUR

JANUARY 29, 2022

$$\mathcal{H} = \sum_{k\sigma} \epsilon_k \hat{\mathbf{n}}_{k\sigma} + J \vec{S}_d \cdot \vec{s}, \quad \vec{s} \equiv \sum_{kk',\alpha,\beta} \vec{\sigma}_{\alpha\beta} c_{k\alpha}^{\dagger} c_{k'\beta}$$

■ Kondo coupling J renormalises to infinity

- Kondo coupling J renormalises to infinity
- low energy phase of metal is local Fermi liquid

- Kondo coupling J renormalises to infinity
- low energy phase of metal is local Fermi liquid
- \blacksquare χ constant at low temperatures, C_{V} linear

- Kondo coupling J renormalises to infinity
- low energy phase of metal is local Fermi liquid
- \blacksquare χ constant at low temperatures, C_{v} linear
- thermal quantities functions of single scale T/T_K

■ Finite J effective Hamiltonian at fixed point

■ Finite J effective Hamiltonian at fixed point

■ Hamiltonian for the itinerant electrons forming the **macroscopic singlet**

- Finite J effective Hamiltonian at fixed point
- Hamiltonian for the itinerant electrons forming the macroscopic singlet
- Nature of correlations inside the Kondo cloud: Fermi liquid vs off-diagonal

- Finite J effective Hamiltonian at fixed point
- Hamiltonian for the itinerant electrons forming the macroscopic singlet
- Nature of correlations inside the Kondo cloud: Fermi liquid vs off-diagonal
- Behaviour of many-particle entanglement and many-body correlation under RG flow

METHOD

The General Idea

■ Apply unitary many-body transformations to the Hamiltonian

The General Idea

- Apply unitary many-body transformations to the Hamiltonian
- Successively decouple high energy states

The General Idea

- Apply unitary many-body transformations to the Hamiltonian
- Successively decouple high energy states
- Obtain sequence of Hamiltonians and hence scaling equations

Select a UV-IR Scheme

UV shell

 \vec{k}_N (zeroth RG step)

:

 \vec{k}_j $(j^{\text{th}} \text{ RG step})$

:

 \vec{k}_1 (Fermi surface)

IR shell

Write Hamiltonian in the basis of \vec{k}_j

$$H_{(j)} = H_1 \hat{n}_j + H_0 \left(1 - \hat{n}_j\right) + c_j^{\dagger} T + T^{\dagger} c_j$$

 2^{j-1} -dim. $\longrightarrow \begin{cases} H_1, H_0 \longrightarrow \text{diagonal parts} \\ V \longrightarrow \text{off-diagonal part} \end{cases}$

Rotate Hamiltonian and kill off-diagonal blocks

$$H_{(j-1)} = U_{(j)}H_{(j)}U_{(j)}^{\dagger}$$

$$U_{(j)} = \frac{1}{\sqrt{2}}\left(1 - \eta_{(j)} + \eta_{(j)}^{\dagger}\right)$$

$$\eta_{(j)}^{\dagger} = \frac{1}{\widehat{\omega}_{(i)} - H_D}c_j^{\dagger}T\right\} \rightarrow \begin{array}{l} \text{many-particle} \\ \text{rotation} \end{array}$$

Repeat with renormalised Hamiltonian

$$\begin{split} H_{(j-1)} &= \widetilde{H}_{1} \hat{n}_{j} + \widetilde{H}_{0} \left(1 - \hat{n}_{j} \right) \\ \widetilde{H}_{1} &= H_{1} \hat{n}_{j-1} + H_{0} \left(1 - \hat{n}_{j-1} \right) + c_{j-1}^{\dagger} T + T^{\dagger} c_{j-1} \end{split}$$

RG Equations and Denominator Fixed Point

$$\Delta H_{(j)} = \left(\hat{n}_j - \frac{1}{2}\right) \left\{c_j^{\dagger} T, \eta_{(j)}\right\}$$
$$\eta_{(j)}^{\dagger} = \frac{1}{\hat{\omega}_{(j)} - H_D} c_j^{\dagger} T$$

Fixed point: $\hat{\omega}_{(i^*)} - (H_D)^* = 0$

Novel Features of the Method

■ Quantum fluctuation scale $\hat{\omega}$ that tracks all orders of renormalisation

$$H_{(j-1)} = U_{(j)}H_{(j)}U_{(j)}^{\dagger}$$

$$U_{(j)} = \frac{1}{\sqrt{2}}\left(1 - \eta_{(j)} + \eta_{(j)}^{\dagger}\right)$$

$$\eta_{(j)}^{\dagger} = \frac{1}{\widehat{\omega}_{(j)} - H_D}c_j^{\dagger}T$$

$$\Delta H_{(j)} = \left(\widehat{n}_j - \frac{1}{2}\right)\left\{c_j^{\dagger}T, \eta_{(j)}\right\}$$

Novel Features of the Method

- Quantum fluctuation scale $\hat{\omega}$ that tracks all orders of renormalisation
- Finite-valued fixed points for finite systems leads to emergent degrees of freedom

$$H_{(j-1)} = U_{(j)}H_{(j)}U_{(j)}^{\dagger}$$

$$U_{(j)} = \frac{1}{\sqrt{2}} \left(1 - \eta_{(j)} + \eta_{(j)}^{\dagger} \right)$$

$$\eta_{(j)}^{\dagger} = \frac{1}{\hat{\omega}_{(j)} - H_D} c_j^{\dagger} T$$

$$\Delta H_{(j)} = \left(\hat{n}_j - \frac{1}{2}\right) \left\{c_j^{\dagger} T, \eta_{(j)}\right\}$$

Novel Features of the Method

- Quantum fluctuation scale $\hat{\omega}$ that tracks all orders of renormalisation
- Finite-valued fixed points for finite systems leads to **emergent degrees of freedom**
- Spectrum-preserving unitary transformations partition function does not change

$$H_{(j-1)} = U_{(j)}H_{(j)}U_{(j)}^{\dagger}$$

$$U_{(j)} = \frac{1}{\sqrt{2}} \left(1 - \eta_{(j)} + \eta_{(j)}^{\dagger} \right)$$

$$\eta^{\dagger}_{(j)} = \tfrac{1}{\hat{\omega}_{(j)} - H_D} c_j^{\dagger} T$$

$$\Delta H_{(j)} = \left(\hat{n}_j - \tfrac{1}{2}\right) \left\{c_j^\dagger T, \eta_{(j)}\right\}$$

Novel Features of the Method

- Quantum fluctuation scale $\hat{\omega}$ that tracks all orders of renormalisation
- Finite-valued fixed points for finite systems leads to **emergent degrees of freedom**
- **Spectrum-preserving** unitary transformations partition function does not change
- Tractable low-energy effective Hamiltonians allows renormalised perturbation theory around them

$$H_{(j-1)} = U_{(j)}H_{(j)}U_{(j)}^{\dagger}$$

$$U_{(j)} = \frac{1}{\sqrt{2}} \left(1 - \eta_{(j)} + \eta_{(j)}^{\dagger} \right)$$

$$\eta^{\dagger}_{(j)} = \tfrac{1}{\hat{\omega}_{(j)} - H_D} c_j^{\dagger} T$$

$$\Delta H_{(j)} = \left(\hat{n}_j - \frac{1}{2}\right) \left\{c_j^{\dagger} T, \eta_{(j)}\right\}$$

RG Equation

Assumption: isotropic energy surfaces: $\epsilon_{ec{k}_i} \equiv extstyle extstyle D_j$

$$\Delta J_{(j)} = \frac{n_j J_{(j)}^2 \left(\omega_{(j)} - \frac{D_j}{2}\right)}{\left(\omega_{(j)} - \frac{D_j}{2}\right)^2 - \frac{1}{16}J_{(j)}^2}$$

$$J^* = 4\left(\omega^* - \frac{1}{2}D^*\right)$$

 $D^* \longrightarrow \text{ emergent window}$

For $J_{(j)} \ll D_j$, we recover weak-coupling form: $\frac{\Delta J_{(j)}}{\Delta \ln D_j} \sim n_j J_{(j)}^2$

Anderson 1970.

RG flows and fixed points

$$\Delta J_{(j)} = \frac{n_j J_{(j)}^2 \left(\omega_{(j)} - \frac{D_j}{2}\right)}{\left(\omega_{(j)} - \frac{D_j}{2}\right)^2 - \frac{1}{16}J_{(j)}^2}$$

$$J^* = 4\left(\omega^* - \frac{1}{2}D^*\right)$$

$$D^* \longrightarrow \text{ emergent window}$$

$$\omega_{(j)} > \frac{D_j}{2}$$

$$K_{(j)} = J_{(j)} \left(\omega^* - \frac{1}{2}D^*\right)^{-1}, \quad K^* = 4$$

Phase diagram

$$\Delta J_{(j)} = \frac{n_j J_{(j)}^2 \left(\omega_{(j)} - \frac{D_j}{2}\right)}{\left(\omega_{(j)} - \frac{D_j}{2}\right)^2 - \frac{1}{16}J_{(j)}^2}$$

$$J^* = 4\left(\omega^* - \frac{1}{2}D^*\right)$$

$$D^* \longrightarrow \text{ emergent window}$$

$$\omega_{(j)} > \frac{D_j}{2}$$

- Decay towards FM fixed point for J < o
- Attractive flow towards AFM fixed point for J > 0

Fixed point Hamiltonian

$$\Delta J_{(j)} = \frac{n_j J_{(j)}^2 \left(\omega_{(j)} - \frac{D_j}{2}\right)}{\left(\omega_{(j)} - \frac{D_j}{2}\right)^2 - \frac{1}{16}J_{(j)}^2}$$

$$J^* = 4\left(\omega^* - \frac{1}{2}D^*\right)$$

$$D^* \longrightarrow \text{ emergent window}$$

$$\omega_{(j)} > \frac{D_j}{2}$$

$$H^* = \underbrace{\sum_{k < k^*, \sigma} \epsilon_k \hat{n}_{k\sigma} + J^* \vec{S}_d \cdot \vec{s}_{<}}_{\text{emergent window}} + \underbrace{\sum_{j=j^*}^{N} J^j S_d^z \sum_{|q|=q_j} S_{q_j}^z}_{\text{integrals of motion}}$$

$$\vec{s}_{<} = \frac{1}{2} \sum_{k,k' < k^*} c_{k\alpha}^{\dagger} \vec{\sigma}_{\alpha\beta} c_{k',\beta}, \quad \mathbf{s}_{q}^{\mathsf{z}} = \frac{1}{2} \left(\hat{\mathbf{n}}_{q\uparrow} - \hat{\mathbf{n}}_{q\downarrow} \right)$$

$$T_K = \frac{\hbar v_F \Lambda^*}{k_B} = \frac{\hbar v_F \Lambda_O}{k_B} \exp\left(\frac{1}{2n(O)} - \frac{1}{n(O)K_O} - \frac{K_O}{n(O)16}\right)$$

Approach towards the continuum

$$\Delta J_{(j)} = \frac{n_j J_{(j)}^2 \left(\omega_{(j)} - \frac{D_j}{2}\right)}{\left(\omega_{(j)} - \frac{D_j}{2}\right)^2 - \frac{1}{16}J_{(j)}^2}$$

$$J^* = 4\left(\omega^* - \frac{1}{2}D^*\right)$$

$$D^* \longrightarrow \text{ emergent window}$$

$$\omega_{(j)} > \frac{D_j}{2}$$

 $J^* \to \infty$ in thermodynamic limit

Wilson 1975.

ZERO-BANDWIDTH LIMIT OF FIXED POINT

HAMILTONIAN

Route to the zero-bandwidth model

At strong-coupling fixed point,

- kinetic energy acts as a perturbation
- compress the bandwidth to just the Fermi surface

$$H_{\text{zero bw}}^* = J\vec{S}_d \cdot \vec{s}_< + (\epsilon_F - \mu) \hat{n}_{k_F}$$
 (center of motion)

■ Setting μ = ϵ_F gives a **two-spin Heisenberg model**

$$H_{\rm zero}^* = J^* \vec{S}_d \cdot \vec{s}_<$$

Effective two-site problem

Singlet ground state:
$$|\Psi\rangle_{gs} = \frac{1}{\sqrt{2}} (|\uparrow,\downarrow\rangle - |\downarrow,\uparrow\rangle) \otimes_{j=j^*}^{N} |n_j\rangle$$

Impurity magnetic susceptibility

$$H^*_{\mathsf{zero}}(B) = J^* \vec{\mathsf{S}}_d \cdot \vec{\mathsf{s}}_< + \mathsf{BS}_d^z$$

$$\chi = \lim_{B \to 0} \frac{d}{dB} \left(\frac{k_B T}{Z(B)} \frac{dZ(B)}{dB} \right)$$

$$\chi = \frac{\frac{\beta}{4} + \frac{1}{2J^*} e^{\beta \frac{J^*}{2}} \sinh(\frac{\beta}{2}J^*)}{1 + e^{\beta \frac{J^*}{2}} \cosh(\frac{\beta}{2}J^*)}$$

Wilson 1975; Andrei, Furuya, and Lowenstein 1983b; Wiegmann 1981.

Impurity magnetic susceptibility

$$H_{\text{zero}}^*(B) = J^* \vec{S}_d \cdot \vec{S}_< + BS_d^z$$

$$\chi = \lim_{B \to 0} \frac{d}{dB} \left(\frac{k_B T}{Z(B)} \frac{dZ(B)}{dB} \right)$$

$$\chi = \frac{\frac{\beta}{4} + \frac{1}{2J^*} e^{\beta \frac{J^*}{2}} \sinh(\frac{\beta}{2}J^*)}{1 + e^{\beta \frac{J^*}{2}} \cosh(\frac{\beta}{2}J^*)}$$

$$\chi(T \to 0) = \frac{1}{2I^*}, \ 4T_K \chi(T \to 0) = W \sim 0.413$$

Wilson 1975; Andrei, Furuya, and Lowenstein 1983b; Wiegmann 1981.

ZERO-BANDWIDTH LIMIT OF FIXED POINT HAMILTONIAN

Impurity magnetic susceptibility

$$H^*_{\sf zero}(B) = J^* \vec{\mathsf{S}}_d \cdot \vec{\mathsf{s}}_< + B S^z_d$$

$$\chi = \lim_{B \to 0} \frac{d}{dB} \left(\frac{k_B T}{Z(B)} \frac{dZ(B)}{dB} \right)$$

$$\chi = \frac{\frac{\beta}{4} + \frac{1}{2J^*} e^{\beta \frac{J^*}{2}} \sinh(\frac{\beta}{2}J^*)}{1 + e^{\beta \frac{J^*}{2}} \cosh(\frac{\beta}{2}J^*)}$$

Maximum in χ at T_K

Contribution from polarised states vanish

Wilson 1975; Andrei, Furuya, and Lowenstein 1983b; Wiegmann 1981.

■ Restore the kinetic energy part:

$$H^* = \sum_{k < k^*, \sigma} \epsilon_k \hat{n}_{k\sigma} + J^* \vec{S}_d \cdot \vec{s}_{<} = \underbrace{\sum_{k < k^*, \sigma} \epsilon_k \hat{n}_{k\sigma} + J^* S_d^z s_{<}^z}_{H_D} + \underbrace{S_d^* s_{<}^- + \text{h.c.}}_{V + V^{\dagger}}$$

■ Restore the kinetic energy part:

$$H^* = \sum_{k < k^*, \sigma} \epsilon_k \hat{n}_{k\sigma} + J^* \vec{S}_d \cdot \vec{s}_{<} = \underbrace{\sum_{k < k^*, \sigma} \epsilon_k \hat{n}_{k\sigma} + J^* S_d^z s_{<}^z}_{H_D} + \underbrace{S_d^+ s_{<}^- + \text{h.c.}}_{V + V^{\dagger}}$$

■ Freeze impurity dynamics by integrating out *V*:

$$H_{\text{eff}} = H_D + V \frac{1}{E_{gs} - H_D} V^{\dagger} + V^{\dagger} \frac{1}{E_{gs} - H_D} V$$

Hewson 1993.

■ Restore the kinetic energy part:

$$H^* = \sum_{k < k^*, \sigma} \epsilon_k \hat{n}_{k\sigma} + J^* \vec{S}_d \cdot \vec{s}_{<} = \underbrace{\sum_{k < k^*, \sigma} \epsilon_k \hat{n}_{k\sigma} + J^* S_d^z s_{<}^z}_{H_D} + \underbrace{S_d^+ s_{<}^- + \text{h.c.}}_{V + V^{\dagger}}$$

■ Freeze impurity dynamics by integrating out *V*:

$$H_{\text{eff}} = H_D + V \frac{1}{E_{gs} - H_D} V^{\dagger} + V^{\dagger} \frac{1}{E_{gs} - H_D} V$$

■ Resolve k-space part by expanding denominator in $\epsilon_k/E_{\rm gs}$:

$$V\frac{1}{E_{gs}-H_D}V^{\dagger}=V\left(\frac{1}{E_{gs}}+\frac{H_D}{E_{gs}^2}+\ldots\right)$$

Hewson 1993.

Form of Kondo cloud Hamiltonian

$$H_{\mathrm{eff}} = 2H_{0}^{*} + \frac{2}{J_{*}}H_{0}^{*2} + \sum_{1234}V_{1234}c_{R_{4}\uparrow}^{\dagger}c_{R_{3}\downarrow}^{\dagger}c_{R_{2}\downarrow}c_{R_{1}\uparrow}$$

$$V_{1234} = \left(\epsilon_{k_1} - \epsilon_{k_3}\right) \left[1 - \frac{2}{J^*} \left(\epsilon_{k_3} - \epsilon_{k_1} + \epsilon_{k_2} + \epsilon_{k_4}\right)\right]$$

- Mixture of Fermi liquid and two-particle interaction part
- Fermi liquid part: result of Ising scattering
- Non-Fermi liquid part: result of spin-flip scattering
- NFL part leads to screening and formation of singlet

Impurity specific heat

■ Fermi-liquid part renormalises one-particle **self-energy**

$$\bar{\epsilon}_{k} = \epsilon_{k} + \Sigma_{k}$$

$$\Sigma_{k} = \sum_{k'\sigma'} \frac{\epsilon_{k'}\epsilon_{k}}{J^{*}} \delta n_{k',\sigma'}$$

Impurity specific heat

■ Fermi-liquid part renormalises one-particle **self-energy**

$$\bar{\epsilon}_{k} = \epsilon_{k} + \Sigma_{k}$$

$$\Sigma_{k} = \sum_{k'\sigma'} \frac{\epsilon_{k'}\epsilon_{k}}{J^{*}} \delta n_{k',\sigma'}$$

■ Compute renormalisation in C_V :

$$C_{\text{imp}} = \sum_{k,\sigma} \frac{1}{T^2} \left[\frac{(\bar{\epsilon}_k)^2 e^{\beta \bar{\epsilon}_k}}{(e^{\beta \bar{\epsilon}_k} + 1)^2} - \frac{(\epsilon_k)^2 e^{\beta \epsilon_k}}{(e^{\beta \epsilon_k} + 1)^2} \right]$$

Wilson 1975; Andrei, Furuya, and Lowenstein 1983b; Wiegmann 1981.

Wilson ratio

$$R = \frac{\chi}{\gamma}$$

$$\chi(T \rightarrow 0) = \frac{1}{2l^*}$$

$$\gamma(T \rightarrow 0) = \frac{1}{4I^*}$$

R saturates to 2 as $T \rightarrow 0$

Wilson 1975; Andrei, Furuya, and Lowenstein 1983b; Wiegmann 1981.

MANY-PARTICLE ENTANGLEMENT &

MANY-BODY CORRELATION

MANY-PARTICLE ENTANGLEMENT & MANY-BODY CORRELATION

Reverse RG: What does it mean?

■ retrace RG flow by applying inverse unitary transformations on ground state

Patra and Lal 2021; Anirban Mukherjee and Lal 2021.

MANY-PARTICLE ENTANGLEMENT & MANY-BODY CORRELATION

Reverse RG: Algorithm

■ Start with minimal IR ground state:

$$|\Psi\rangle_{o}$$
 = $|singlet\rangle\otimes|IOMs\rangle$

Patra and Lal 2021; Anirban Mukherjee and Lal 2021.

MANY-PARTICLE ENTANGLEMENT & MANY-BODY CORRELATION

Reverse RG: Algorithm

■ Start with **minimal IR ground state**:

$$|\Psi\rangle_{o} = |singlet\rangle \otimes |IOMs\rangle$$

Re-entangle $|\Psi\rangle_{O}$ with IOMs:

$$\begin{split} \left|\Psi\right\rangle_{1} &= U_{0}^{\dagger} \left|\Psi\right\rangle_{0} \\ U_{q\sigma}^{-1} &= \frac{1}{\sqrt{2}} \left[1 - \frac{J^{2}}{2} \frac{1}{2\omega \tau_{q\sigma} - \epsilon_{q} \tau_{q\sigma} - JS^{z} s_{q}^{z}} \left(\hat{O} + \hat{O}^{\dagger}\right)\right] \\ \hat{O} &= \sum_{k < \Lambda^{*}} \sum_{\alpha = \uparrow, \downarrow, \downarrow} \sum_{a = x, y, z} S^{a} \sigma_{\alpha\sigma}^{a} c_{k\alpha}^{\dagger} c_{q\sigma} \end{split}$$

Patra and Lal 2021; Anirban Mukherjee and Lal 2021.

Entanglement and Correlation along RG Flow

Mutual Information

$$\begin{split} I(i:j) &= S_i + S_j - S_{ij} \\ S_i &= \operatorname{Tr} \left(\rho_i \ln \rho_i \right), S_{ij} &= \operatorname{Tr} \left(\rho_{ij} \ln \rho_{ij} \right) \end{split}$$

- MI between imp. and a *k*-state
- MI between k-states

Both increase towards IR

Entanglement and Correlation along RG Flow

Correlations

- lacktriangle Diagonal correlation $\langle \hat{n}_{1\uparrow}\hat{n}_{2\uparrow} \rangle$
- 2-particle off-diagonal correlation $\left\langle c_{1\uparrow}^{\dagger}c_{2\downarrow}^{\dagger}c_{3\downarrow}c_{1\uparrow}\right\rangle$

Both increase towards IR

■ Zero-bandwidth model explains the singlet state and magnetic susceptibility - acts as a zeroth-level Hamiltonian for studying excitations

- Zero-bandwidth model explains the singlet state and magnetic susceptibility acts as a zeroth-level Hamiltonian for studying excitations
- Both diagonal and off-diagonal components in Kondo cloud off-diagonal component is **responsible for screening**

- Zero-bandwidth model explains the singlet state and magnetic susceptibility acts as a zeroth-level Hamiltonian for studying excitations
- Both diagonal and off-diagonal components in Kondo cloud off-diagonal component is **responsible for screening**
- Consistent with growth of entanglement and off-diagonal correlation near strong-coupling

- Zero-bandwidth model explains the singlet state and magnetic susceptibility acts as a zeroth-level Hamiltonian for studying excitations
- Both diagonal and off-diagonal components in Kondo cloud off-diagonal component is **responsible for screening**
- Consistent with **growth of entanglement and off-diagonal correlation** near strong-coupling
- Possible extensions include a similar analysis for Kondo lattice models: should yield far richer phase diagram

THAT'S ALL. THANK YOU!