HFT session homework 2

1)

▶ Exercise 3.2. Let W(t), $t \ge 0$, be a Brownian motion, and let $\mathcal{F}(t)$, $t \ge 0$, be a filtration for this Brownian motion. Show that $W^2(t) - t$ is a martingale. (Hint: For $0 \le s \le t$, write $W^2(t)$ as $(W(t) - W(s))^2 + 2W(t)W(s) - W^2(s)$.)

by Marfingale Property
$$E[B(t)|2G)] = B(s), \quad So \quad E[W(t)-W(s)|2G)] = t(=s) - S = 0$$

so,
$$E[\{w(t)-w(s)\}^2|\mathcal{F}(s)] = E[\{w(t)-w(s)\}^2|\mathcal{F}(s)] - E[w(t)-w(s)|\mathcal{F}(s)]^2$$

= $V[w(t)-w(s)|\mathcal{F}(s)]$
= $t-s$ (?)

Thus,

$$E[w^{2}(t)-w^{2}(s)|F(s)] = t-s$$

and
$$E[w(t)-t|f(s)] = E[w^2(t)|f(s)] - t = E[w^2(s)|f(s)] - S = w^2(s) - S$$

i. $w^2(t)-t$ is martingale

Let z_t be a standard Brownian motion (or Wiener process). Then, simplify the following expression:

$$\int_0^T z_t dz_t = ?$$

(Hint) Suppose $x_t = z_t$ and $f(x,t) = \frac{x^2}{2}$. Then, apply Ito's lemma on f(x,t).

Following Ifo's Lemma

$$Jf(X_{\ell},t) = \partial_{X_{\ell}}f(X_{\ell},t)dX_{\ell} + \frac{1}{2}\partial_{X_{\ell}}^2f(X_{\ell},t)dX_{\ell}^2 + \partial_{\ell}f(X_{\ell},t)dt$$

Where
$$f(X_t,t) = \frac{1}{2}Z^2$$
, $\partial_z f = Z$, $\partial_z^2 f = 1$, $\partial_t f = 0$

So,
$$\delta(z^2 z_{\ell})^2 = Z_{\ell} dZ_{\ell} + z_{\ell} dZ_{\ell}^2$$

$$= Z_{\ell} dZ_{\ell} + z_{\ell} dZ_{\ell}^2$$

Integral both sides.

$$\frac{1}{2}Z_{1}^{2} = \int_{z,T} Z_{t} dz_{t} + \int_{z}^{1} dz_{t} = \int_{z}^{z} Z_{t} dz_{t} + \int_{z}^{T} \frac{1}{2} dz_{t}$$

$$= \int_{z}^{T} (-z_{t}) + \int_{z}^{T} (-z_{t})$$