

Note that a real hypersurface may have points other than real points, or no real points at all. For example,

$$x^2 + y^2 - z^2 = 0$$

contains real and complex points such as (1, i, 0) and (1, -i, 0), and

$$x^2 + y^2 + z^2 = 0$$

contains only complex points. When m = 2 (where m is the total degree of P), a hypersurface is called a *quadric*, and when m = 2 and n = 2, a *conic*. When m = 1, a hypersurface is just a hyperplane.

Given any homogeneous polynomial  $P(x_1, \ldots, x_{n+1})$  over  $\mathbb{R}$  of total degree m, since  $\mathbb{R} \subseteq \mathbb{C}$ , P viewed as a homogeneous polynomial over  $\mathbb{C}$  defines a hypersurface  $V(P)_{\mathbb{C}}$  in  $\widetilde{E}_{\mathbb{C}}$ , and also a hypersurface V(P) in  $\mathbf{P}(E)$ . It is clear that V(P) is naturally embedded in  $V(P)_{\mathbb{C}}$ , and  $V(P)_{\mathbb{C}}$  is called the *complexification of* V(P).

We now show how certain real quadrics without real points can be used to define orthogonality and angles.

## 26.15 Similarity Structures on a Projective Space

We begin with a real Euclidean plane  $(E, \overrightarrow{E})$ . We will show that the angle of two lines  $D_1$  and  $D_2$  can be expressed as a certain cross-ratio involving the lines  $D_1$ ,  $D_2$  and also two lines  $D_I$  and  $D_J$  joining the intersection point  $D_1 \cap D_2$  of  $D_1$  and  $D_2$  to two complex points at infinity I and J called the *circular points*. However, there is a slight problem, which is that we haven't yet defined the angle of two lines! Recall that we define the (oriented) angle  $\widehat{u_1u_2}$  of two unit vectors  $u_1$ ,  $u_2$  as the equivalence class of pairs of unit vectors under the equivalence relation defined such that

$$\langle u_1, u_2 \rangle \equiv \langle u_3, u_4 \rangle$$

iff there is some rotation r such that  $r(u_1) = u_3$  and  $r(u_2) = u_4$ . The set of (oriented) angles of vectors is a group isomorphic to the group  $\mathbf{SO}(2)$  of plane rotations. If the Euclidean plane is oriented, the measure of the angle of two vectors is defined up to  $2k\pi$  ( $k \in \mathbb{Z}$ ). The angle of two vectors has a measure that is either  $\theta$  or  $2\pi - \theta$ , where  $\theta \in [0, 2\pi[$ , depending on the orientation of the plane. The problem with lines is that they are not oriented: A line is defined by a point a and a vector u, but also by a and -u. Given any two lines  $D_1$  and  $D_2$ , if r is a rotation of angle  $\theta$  such that  $r(D_1) = D_2$ , note that the rotation -r of angle  $\theta + \pi$  also maps  $D_1$  onto  $D_2$ . Thus, in order to define the (oriented) angle  $\widehat{D_1D_2}$  of two lines  $D_1$ ,  $D_2$ , we define an equivalence relation on pairs of lines as follows:

$$\langle D_1, D_2 \rangle \equiv \langle D_3, D_4 \rangle$$