4. Релации. Релации на еквивалентност

Нека A_1, \ldots, A_n са произволни множества. Всяко подмножество R на $A_1 \times \cdots \times A_n$ се нарича n-местна релация над $A_1 \times \cdots \times A_n$. Ако $A_1 = \cdots = A_n = A$ и $R \subseteq A^n$, то R се нарича n-местна релация над(B) A.

В тази лекция ще се занимаваме основно с n-местна релация в A, когато n=2. Такива релации ще наричаме двуместни или бинарни или просто релации.

Нека A_1,\dots,A_n са произволни множества. Всяко подмножество R на $A_1\times\dots\times A_n$ се нарича n-местна релация над $A_1\times\dots\times A_n$. Ако $A_1=\dots=A_n=A$ и $R\subseteq A^n$, то R се нарича n-местна релация над(B) A.

В тази лекция ще се занимаваме основно с n-местна релация в A, когато n = 2. Такива релации ще наричаме двуместни или бинарни или просто релации.

Нека A_1,\dots,A_n са произволни множества. Всяко подмножество R на $A_1\times\dots\times A_n$ се нарича n-местна релация над $A_1\times\dots\times A_n$. Ако $A_1=\dots=A_n=A$ и $R\subseteq A^n$, то R се нарича n-местна релация над(B) A.

В тази лекция ще се занимаваме основно с n-местна релация в A, когато n = 2. Такива релации ще наричаме двуместни или бинарни или просто релации.

Нека A_1,\dots,A_n са произволни множества. Всяко подмножество R на $A_1\times\dots\times A_n$ се нарича n-местна релация над $A_1\times\dots\times A_n$. Ако $A_1=\dots=A_n=A$ и $R\subseteq A^n$, то R се нарича n-местна релация над(B) A.

В тази лекция ще се занимаваме основно с n-местна релация в A, когато n=2. Такива релации ще наричаме двуместни или бинарни или просто релации.

Нека A_1,\dots,A_n са произволни множества. Всяко подмножество R на $A_1\times\dots\times A_n$ се нарича n-местна релация над $A_1\times\dots\times A_n$. Ако $A_1=\dots=A_n=A$ и $R\subseteq A^n$, то R се нарича n-местна релация над(B) A.

В тази лекция ще се занимаваме основно с n-местна релация в A, когато n=2. Такива релации ще наричаме двуместни или бинарни или просто релации.

Дефиниция

Нека R е бинарна релация в A. Казваме, че R е рефлексивна релация в A точно тогава, когато за всяко $x \in A$ е изпълнено $(x,x) \in R$ (или иначе записано, xRx).

Дефиниция

Нека R е бинарна релация в A. Казваме, че R е симетрична релация в A точно тогава, когато за всички $x, y \in A$, ако $(x, y) \in R$, то е изпълнено и $(y, x) \in R$ (или, $xRy \Rightarrow yRx$).

Дефиниция

Дефиниция

Нека R е бинарна релация в A. Казваме, че R е рефлексивна релация в A точно тогава, когато за всяко $x \in A$ е изпълнено $(x,x) \in R$ (или иначе записано, xRx).

Дефиниция

Нека R е бинарна релация в A. Казваме, че R е симетрична релация в A точно тогава, когато за всички $x, y \in A$, ако $(x, y) \in R$, то е изпълнено и $(y, x) \in R$ (или, $xRy \Rightarrow yRx$).

Дефиниция

Дефиниция

Нека R е бинарна релация в A. Казваме, че R е рефлексивна релация в A точно тогава, когато за всяко $x \in A$ е изпълнено $(x,x) \in R$ (или иначе записано, xRx).

Дефиниция

Нека R е бинарна релация в A. Казваме, че R е симетрична релация в A точно тогава, когато за всички $x, y \in A$, ако $(x, y) \in R$, то е изпълнено и $(y, x) \in R$ (или, $xRy \Rightarrow yRx$).

Дефиниция

Дефиниция

Нека R е бинарна релация в A. Казваме, че R е рефлексивна релация в A точно тогава, когато за всяко $x \in A$ е изпълнено $(x,x) \in R$ (или иначе записано, xRx).

Дефиниция

Нека R е бинарна релация в A. Казваме, че R е симетрична релация в A точно тогава, когато за всички $x, y \in A$, ако $(x, y) \in R$, то е изпълнено и $(y, x) \in R$ (или, $xRy \Rightarrow yRx$).

Дефиниция

Дефиниция

Нека R е бинарна релация в A. Казваме, че R е рефлексивна релация в A точно тогава, когато за всяко $x \in A$ е изпълнено $(x,x) \in R$ (или иначе записано, xRx).

Дефиниция

Нека R е бинарна релация в A. Казваме, че R е симетрична релация в A точно тогава, когато за всички $x, y \in A$, ако $(x, y) \in R$, то е изпълнено и $(y, x) \in R$ (или, $xRy \Rightarrow yRx$).

Дефиниция

Дефиниция

Нека R е бинарна релация в A. Казваме, че R е рефлексивна релация в A точно тогава, когато за всяко $x \in A$ е изпълнено $(x,x) \in R$ (или иначе записано, xRx).

Дефиниция

Нека R е бинарна релация в A. Казваме, че R е симетрична релация в A точно тогава, когато за всички $x, y \in A$, ако $(x, y) \in R$, то е изпълнено и $(y, x) \in R$ (или, $xRy \Rightarrow yRx$).

Дефиниция

Дефиниция

Нека R е бинарна релация в A. Казваме, че R е рефлексивна релация в A точно тогава, когато за всяко $x \in A$ е изпълнено $(x,x) \in R$ (или иначе записано, xRx).

Дефиниция

Нека R е бинарна релация в A. Казваме, че R е симетрична релация в A точно тогава, когато за всички $x, y \in A$, ако $(x, y) \in R$, то е изпълнено и $(y, x) \in R$ (или, $xRy \Rightarrow yRx$).

Дефиниция

Нека R е бинарна релация в A. Казваме, че R е релация на еквивалентност в A точно тогава, когато R е едновременно рефлексивна, симетрична и транзитивна.

Дефиниция

Нека R е релация на еквивалентност B A. Клас на еквивалентност на релацията B породен от елемента B се нарича множеството B0 B1 B2 и се означава B3 B4.

Нека R е бинарна релация в A. Казваме, че R е релация на еквивалентност в A точно тогава, когато R е едновременно рефлексивна, симетрична и транзитивна.

Дефиниция

Нека R е релация на еквивалентност B A. Клас на еквивалентност на релацията B породен от елемента B се нарича множеството B0 B1 и се означава B2 B3 и се означава B3.

Нека R е релация на еквивалентност в A. Тогава за всеки два елемента $a,b\in A$, са изпълнени следните две свойства:

- a) ako aRb, to $[a]_R = [b]_R;$
- b) ако а \mathbb{R} b, то $[a]_R \cap [b]_R = \emptyset$.

Нека R е релация на еквивалентност в A. Тогава за всеки два елемента $a,b\in A$, са изпълнени следните две свойства:

- а) ако aRb, то $[a]_R = [b]_R$;
- b) ако а \mathbb{R} b, то $[a]_R \cap [b]_R = \emptyset$.

Нека R е релация на еквивалентност в A. Тогава за всеки два елемента $a,b\in A,$ са изпълнени следните две свойства:

- а) ако aRb, то $[a]_R = [b]_R;$
- b) ако а \mathbb{R} b, то $[a]_R \cap [b]_R = \emptyset$.

- а) Нека aRb. Нека $c \in [a]_R$, т.е. cRa. Тогава съгласно транзитивността cRb, т.е. $c \in [b]_R$. С това показахме, че $[a]_R \subseteq [b]_R$. Аналогично се показва и че $[b]_R \subseteq [a]_R$, откъдето $[a]_R = [b]_R$.
- б) Нека а Rb. Да допуснем, че $[a]_R \cap [b]_R \neq \emptyset$, т.е. съществува $c \in [a]_R \cap [b]_R$. Тогава $c \in [a]_R$ и $c \in [b]_R$, откъдето cRa и cRb. От симетричността на R имаме още aRc, а оттук и aRb. Това води до противоречие, което доказва б).

- а) Нека aRb. Нека $c \in [a]_R$, т.е. cRa. Тогава съгласно транзитивността cRb, т.е. $c \in [b]_R$. С това показахме, че $[a]_R \subseteq [b]_R$. Аналогично се показва и че $[b]_R \subseteq [a]_R$, откъдето $[a]_R = [b]_R$.
- б) Нека а \mathbb{R} b. Да допуснем, че $[a]_R \cap [b]_R \neq \emptyset$, т.е. съществува $c \in [a]_R \cap [b]_R$. Тогава $c \in [a]_R$ и $c \in [b]_R$, откъдето cRa и cRb. От симетричността на R имаме още aRc, а оттук и aRb. Това води до противоречие, което доказва б).

- а) Нека aRb. Нека $c \in [a]_R$, т.е. cRa. Тогава съгласно транзитивността cRb, т.е. $c \in [b]_R$. С това показахме, че $[a]_R \subseteq [b]_R$. Аналогично се показва и че $[b]_R \subseteq [a]_R$, откъдето $[a]_R = [b]_R$.
- б) Нека а \mathbb{R} b. Да допуснем, че $[a]_R \cap [b]_R \neq \emptyset$, т.е. съществува $c \in [a]_R \cap [b]_R$. Тогава $c \in [a]_R$ и $c \in [b]_R$, откъдето cRa и cRb. От симетричността на R имаме още aRc, а оттук и aRb. Това води до противоречие, което доказва б).

- а) Нека aRb. Нека $c \in [a]_R$, т.е. cRa. Тогава съгласно транзитивността cRb, т.е. $c \in [b]_R$. С това показахме, че $[a]_R \subseteq [b]_R$. Аналогично се показва и че $[b]_R \subseteq [a]_R$, откъдето $[a]_R = [b]_R$.
- б) Нека а Rb. Да допуснем, че $[a]_R \cap [b]_R \neq \emptyset$, т.е. съществува $c \in [a]_R \cap [b]_R$. Тогава $c \in [a]_R$ и $c \in [b]_R$, откъдето cRa и cRb. От симетричността на R имаме още aRc, а оттук и aRb. Това води до противоречие, което доказва б).

- а) Нека aRb. Нека $c \in [a]_R$, т.е. cRa. Тогава съгласно транзитивността cRb, т.е. $c \in [b]_R$. С това показахме, че $[a]_R \subseteq [b]_R$. Аналогично се показва и че $[b]_R \subseteq [a]_R$, откъдето $[a]_R = [b]_R$.
- б) Нека а Rb. Да допуснем, че $[a]_R \cap [b]_R \neq \emptyset$, т.е. съществува $c \in [a]_R \cap [b]_R$. Тогава $c \in [a]_R$ и $c \in [b]_R$, откъдето cRa и cRb. От симетричността на R имаме още aRc, а оттук и aRb. Това води до противоречие, което доказва б).

- а) Нека aRb. Нека $c \in [a]_R$, т.е. cRa. Тогава съгласно транзитивността cRb, т.е. $c \in [b]_R$. С това показахме, че $[a]_R \subseteq [b]_R$. Аналогично се показва и че $[b]_R \subseteq [a]_R$, откъдето $[a]_R = [b]_R$.
- б) Нека а \mathbb{R} b. Да допуснем, че $[a]_R \cap [b]_R \neq \emptyset$, т.е. съществува $c \in [a]_R \cap [b]_R$. Тогава $c \in [a]_R$ и $c \in [b]_R$, откъдето сRа и сRb. От симетричността на R имаме още аRc, а оттук и аRb. Това води до противоречие, което доказва б).

- а) Нека aRb. Нека $c \in [a]_R$, т.е. cRa. Тогава съгласно транзитивността cRb, т.е. $c \in [b]_R$. С това показахме, че $[a]_R \subseteq [b]_R$. Аналогично се показва и че $[b]_R \subseteq [a]_R$, откъдето $[a]_R = [b]_R$.
- б) Нека а Rb. Да допуснем, че $[a]_R \cap [b]_R \neq \emptyset$, т.е. съществува $c \in [a]_R \cap [b]_R$. Тогава $c \in [a]_R$ и $c \in [b]_R$, откъдето сRа и сRb. От симетричността на R имаме още аRc, а оттук и аRb. Това води до противоречие, което доказва б).

- а) Нека aRb. Нека $c \in [a]_R$, т.е. cRa. Тогава съгласно транзитивността cRb, т.е. $c \in [b]_R$. С това показахме, че $[a]_R \subseteq [b]_R$. Аналогично се показва и че $[b]_R \subseteq [a]_R$, откъдето $[a]_R = [b]_R$.
- б) Нека а Rb. Да допуснем, че $[a]_R \cap [b]_R \neq \emptyset$, т.е. съществува $c \in [a]_R \cap [b]_R$. Тогава $c \in [a]_R$ и $c \in [b]_R$, откъдето cRa и cRb. От симетричността на R имаме още aRc, а оттук и aRb. Това води до противоречие, което доказва б).

- а) Нека aRb. Нека $c \in [a]_R$, т.е. cRa. Тогава съгласно транзитивността cRb, т.е. $c \in [b]_R$. С това показахме, че $[a]_R \subseteq [b]_R$. Аналогично се показва и че $[b]_R \subseteq [a]_R$, откъдето $[a]_R = [b]_R$.
- б) Нека а Rb. Да допуснем, че $[a]_R \cap [b]_R \neq \emptyset$, т.е. съществува $c \in [a]_R \cap [b]_R$. Тогава $c \in [a]_R$ и $c \in [b]_R$, откъдето cRa и cRb. От симетричността на R имаме още aRc, а оттук и aRb. Това води до противоречие, което доказва б).

- а) Нека aRb. Нека $c \in [a]_R$, т.е. cRa. Тогава съгласно транзитивността cRb, т.е. $c \in [b]_R$. С това показахме, че $[a]_R \subseteq [b]_R$. Аналогично се показва и че $[b]_R \subseteq [a]_R$, откъдето $[a]_R = [b]_R$.
- б) Нека а \mathbb{R} b. Да допуснем, че $[a]_R \cap [b]_R \neq \emptyset$, т.е. съществува $c \in [a]_R \cap [b]_R$. Тогава $c \in [a]_R$ и $c \in [b]_R$, откъдето cRa и cRb. От симетричността на R имаме още aRc, а оттук и aRb. Това води до противоречие, което доказва б).

- а) Нека $\{A_i|i\in I\}$ е разбиване на непразното множество A. Тогава съществува релация на еквивалентност R, фамилията от всички класове на еквивалентност на която съвпада с фамилията $\{A_i|i\in I\}$;
- б) Нека R е релация на еквивалентност в A. Тогава фамилията от различните класове на еквивалентност е разбиване на A.

- а) Нека $\{A_i|i\in I\}$ е разбиване на непразното множество A. Тогава съществува релация на еквивалентност R, фамилията от всички класове на еквивалентност на която съвпада с фамилията $\{A_i|i\in I\}$;
- б) Нека R е релация на еквивалентност в A. Тогава фамилията от различните класове на еквивалентност е разбиване на A.

- а) Нека $\{A_i|i\in I\}$ е разбиване на непразното множество A. Тогава съществува релация на еквивалентност R, фамилията от всички класове на еквивалентност на която съвпада с фамилията $\{A_i|i\in I\}$;
- б) Нека R е релация на еквивалентност в A. Тогава фамилията от различните класове на еквивалентност е разбиване на A.

- а) Нека $\{A_i|i\in I\}$ е разбиване на непразното множество A. Тогава съществува релация на еквивалентност R, фамилията от всички класове на еквивалентност на която съвпада с фамилията $\{A_i|i\in I\}$;
- б) Нека R е релация на еквивалентност в A. Тогава фамилията от различните класове на еквивалентност е разбиване на A.

- а) Дефинираме следната релация $R: xRy \iff$ съществува $i \in I$, такова че $x \in A_i$ и $y \in A_i$. Ще проверим, че R е релация на еквивалентност. Рефлексивността и симетричността са очевидни. Да проверим транзитивността. Нека xRy и yRz. Тогава съществува $i \in I$, такова че $x \in A_i$ и $y \in A_i$ и съществува $j \in I$, такова че $y \in A_j$ и $z \in A_j$. Тогава i = j и твърдението е доказано.
- б) Следва непосредствено от горното твърдение.

- а) Дефинираме следната релация $R: xRy \iff$ съществува $i \in I$, такова че $x \in A_i$ и $y \in A_i$. Ще проверим, че R е релация на еквивалентност. Рефлексивността и симетричността са очевидни. Да проверим транзитивността. Нека xRy и yRz. Тогава съществува $i \in I$, такова че $x \in A_i$ и $y \in A_i$ и съществува $j \in I$, такова че $y \in A_j$ и $z \in A_j$. Тогава i = j и твърдението е доказано.
- б) Следва непосредствено от горното твърдение.

- а) Дефинираме следната релация R: $xRy \iff$ съществува $i \in I$, такова че $x \in A_i$ и $y \in A_i$. Ще проверим, че R е релация на еквивалентност. Рефлексивността и симетричността са очевидни. Да проверим транзитивността. Нека xRy и yRz. Тогава съществува $i \in I$, такова че $x \in A_i$ и $y \in A_i$ и съществува $i \in I$, такова че $x \in A_i$ и $x \in A_i$. Тогава $x \in A_i$ и $x \in A_i$ и x
- б) Следва непосредствено от горното твърдение.

- а) Дефинираме следната релация $R: xRy \iff$ съществува $i \in I$, такова че $x \in A_i$ и $y \in A_i$. Ще проверим, че R е релация на еквивалентност. Рефлексивността и симетричността са очевидни. Да проверим транзитивността. Нека xRy и yRz. Тогава съществува $i \in I$, такова че $x \in A_i$ и $y \in A_i$ и съществува $j \in I$, такова че $y \in A_j$ и $z \in A_j$. Тогава i = j и твърдението е доказано.
- б) Следва непосредствено от горното твърдение.

- а) Дефинираме следната релация $R: xRy \iff$ съществува $i \in I$, такова че $x \in A_i$ и $y \in A_i$. Ще проверим, че R е релация на еквивалентност. Рефлексивността и симетричността са очевидни. Да проверим транзитивността. Нека xRy и yRz. Тогава съществува $i \in I$, такова че $x \in A_i$ и $y \in A_i$ и съществува $j \in I$, такова че $y \in A_j$ и $z \in A_j$. Тогава i = j и твърдението е доказано.
- б) Следва непосредствено от горното твърдение.

- а) Дефинираме следната релация $R: xRy \iff$ съществува $i \in I$, такова че $x \in A_i$ и $y \in A_i$. Ще проверим, че R е релация на еквивалентност. Рефлексивността и симетричността са очевидни. Да проверим транзитивността. Нека xRy и yRz. Тогава съществува $i \in I$, такова че $x \in A_i$ и $x \in A_i$ и съществува $x \in A_i$ и $x \in$
- б) Следва непосредствено от горното твърдение.

- а) Дефинираме следната релация $R: xRy \iff$ съществува $i \in I$, такова че $x \in A_i$ и $y \in A_i$. Ще проверим, че R е релация на еквивалентност. Рефлексивността и симетричността са очевидни. Да проверим транзитивността. Нека xRy и yRz. Тогава съществува $i \in I$, такова че $x \in A_i$ и $y \in A_i$ и съществува $j \in I$, такова че $y \in A_j$ и $z \in A_j$. Тогава i = j и твърдението е доказано.
- б) Следва непосредствено от горното твърдение.

Нека R е бинарна релация в A. Рефлексивно и транзитивно затваряне R* на релацията е R се определя индуктивно както следва:

- a) Ako $x \in A$, to $(x, x) \in R^*$;
- б) Ако $(x, y) \in R$, то $(x, y) \in R^*$;
- в) Ако $(x, y) \in R$ и $(y, z) \in R^*$, то и $(x, z) \in R^*$.

Твърдение

Нека R е бинарна релация в A. Рефлексивно и транзитивно затваряне R* на релацията е R се определя индуктивно както следва:

- а) Ако $x \in A$, то $(x, x) \in R^*$;
- б) Ако $(x, y) \in R$, то $(x, y) \in R^*$;
- в) Ако $(x, y) \in R$ и $(y, z) \in R^*$, то и $(x, z) \in R^*$.

Твърдение

Нека R е бинарна релация в A. Рефлексивно и транзитивно затваряне R* на релацията е R се определя индуктивно както следва:

- a) Ako $x \in A$, to $(x, x) \in R^*$;
- б) Ако $(x, y) \in R$, то $(x, y) \in R^*$;
- в) Ако $(x,y) \in R$ и $(y,z) \in R^*$, то и $(x,z) \in R^*$.

Твърдение

Нека R е бинарна релация в A. Рефлексивно и транзитивно затваряне R* на релацията е R се определя индуктивно както следва:

- а) Ако $x \in A$, то $(x, x) \in R^*$;
- б) Ако $(x, y) \in R$, то $(x, y) \in R^*$;
- в) Ако $(x, y) \in R$ и $(y, z) \in R^*$, то и $(x, z) \in R^*$.

Твърдение

Нека R е бинарна релация в A. Рефлексивно и транзитивно затваряне R* на релацията е R се определя индуктивно както следва:

- a) Ako $x \in A$, to $(x, x) \in R^*$;
- б) Ако $(x, y) \in R$, то $(x, y) \in R^*$;
- в) Ако $(x, y) \in R$ и $(y, z) \in R^*$, то и $(x, z) \in R^*$.

Твърдение

Нека R е бинарна релация в A. Рефлексивно и транзитивно затваряне R* на релацията е R се определя индуктивно както следва:

- a) Ako $x \in A$, to $(x, x) \in R^*$;
- б) Ако $(x, y) \in R$, то $(x, y) \in R^*$;
- в) Ако $(x, y) \in R$ и $(y, z) \in R^*$, то и $(x, z) \in R^*$.

Твърдение