ECP

Guidelines for Equivalence Class Partitioning

- An input condition specifies a range [a, b]
 - one equivalence class for a < X < b, and
 - two other classes for X < a and X > b to test the system with invalid inputs
- An input condition specifies a set of values
 - one equivalence class for each element of the set $\{M_1\}$, $\{M_2\}$,, $\{M_N\}$, and
 - one equivalence class for elements outside the set $\{M_1, M_2, ..., M_N\}$
- Input condition specifies for each individual value
 - If the system handles each valid input differently then create one equivalence class for each valid input

Guidelines for Equivalence Class Partitioning

- An input condition specifies the number of valid values (Say N)
 - Create one equivalence class for the correct number of inputs
 - two equivalence classes for invalid inputs one for zero values
 and one for more than N values
- An input condition specifies a "must be" value
 - Create one equivalence class for a "must be" value, and
 - one equivalence class for something that is not a "must be"
 value

Identification of Test Cases

Test cases for each equivalence class can be identified by:

- Assign a unique number to each EC
- For each EC with valid input that has not been covered by test cases yet, write a new test case covering as many uncovered EC as possible
- For each EC with invalid input that has not been covered by test cases, write a new test case that covers one and only one of the uncovered EC

Example-Adjusted Gross Income

Consider a software system that computes income tax based on adjusted gross income (AGI) according to the following rules:

- If AGI is between \$1 and \$29,500, the tax due is 22% of AGI.
- If AGI is between \$29,501 and \$58,500, the tax due is 27% of AGI.
- If AGI is between \$58,501 and \$100 billion, the tax due is 36% of AGI.

Example

Condition 1

 $$1 \le AGI \le $29,500$, to derive two ECs:

EC1: $$1 \le AGI \le $29,500$; valid input.

EC2: AGI < 1; invalid input.

Condition 2

\$29,501 ≤ AGI ≤ \$58,500, to derive one EC:

EC3: $$29,501 \le AGI \le $58,500$; valid input.

Condition 3

 $$58,501 \le AGI \le $100 \text{ billion, to derive two ECs:}$

EC4: \$58,501 ≤ AGI ≤ \$100 billion; valid input.

EC5: AGI > \$100 billion; invalid input.

Example

TABLE 9.10 Generated Test Cases to Cover Each Equivalence Class

Test Case Number	Test Value	Expected Result	Equivalence Class Being Tested
TC ₁	\$22,000	\$4,840	EC1
TC_2	\$46,000	\$12,420	EC3
TC_3	\$68,000	\$24,480	EC4
TC ₄	\$-20,000	Rejected with an error message	EC2
TC ₅	\$150 billion	Rejected with an error message	EC5

Functional Specification 1: -

A login process allows user ID & password to authorize users.

From customer requirements user ID takes numerics in lower case from 4 to 16 characters long.

The password object takes alphabets in lower case from 4 to 8 characters long.

Prepare test case titles or scenario

Test Case Title 1: Verify user ID

Boundary Value Analysis (Size)	Equivalence	Class partition(Type)
Min-1 3 CharactersFail	Valid	Invalid
Min 4 CharactersPass	a - z	A - Z
Min+1 5 CharactersPass	0 – 9	Special Chars.
Max-115 Characters Pass		Blank field.
Max Pass		
Max+1- 17 Characters Fail		

Test case Title 2: Verify password

Boundary Value Analysis (Size)

Min-1 ---- 3 Characters ---- Fail

Min ----- 4 Characters ---- Pass

Min+1 --- 5 Characters ---- Pass

Max-1---- 7 Characters ---- Pass

Max ---- 8 Characters ---- Pass

Max+1 – 9 Characters ---- Fail

Equivalence Class Partition (Type)

Valid Invalid

a-z A-Z

0 - 9

Special Chars

Blank Field

Test Case Title 3: Verify Login Information

User ID	Password	Criteria
Valid Value	Valid Value	Pass
Valid Value	Invalid Value	Fail
Invalid Value	Valid Value	Fail
Blank Value	Valid Value	Fail
Valid Value	Blank Value	Fail
Invalid Value	Blank Value	Fail
Blank Value	Invalid Value	Fail
Blank Value	Blank Value	Fail