

IoT Engineering (iot)

08. Januar 2024

thomas. amberg@fhnw.ch

Assessment

Vorname:	Punkte:	_ / 90,	Note:
Name:	Frei lassen	für Korre	ktur.
Klasse: 5ibb1			
Hilfsmittel:			
- Ein A4 Blatt handgeschriebene Notizen.			
- Lösen Sie die Aufgaben direkt auf den Prüfun	gsblättern.		
- Zusatzblätter, falls nötig, mit Ihrem Namen u	nd Fragen-Nr. auf jed	em Blatt.	
Nicht erlaubt:			
- Unterlagen (Slides, Bücher,).			
- Computer (Laptop, Smartphone,).			
- Kommunikation (mit Personen, KI,).			
Bewertung:			
- Multiple Response: \Box <i>Ja</i> oder \Box <i>Nein</i> ankre	uzen, +1/-1 Punkt pro	richtige/fa	alsche Antwort,
beide nicht ankreuzen ergibt +0 Punkte; Tota	al pro Frage gibt es nie	weniger a	ls 0 Punkte.
- Offene Fragen: Bewertet wird Korrektheit, Vo	ollständigkeit und Kür	ze der Ant	wort.
Antworten Sie in ganzen Sätzen, das ist oft kl	arer als nur einzelne S	Stichworte	
Fragen zur Prüfung:			

- Während der Prüfung werden vom Dozent keine Fragen zur Prüfung beantwortet.

- Ist etwas unklar, machen Sie eine Annahme und notieren Sie diese auf der Prüfung.

Internet of Things

1) Nennen Sie drei wesentliche Technologie-Trends, durch die IoT möglich wurde. P.kte: $_/$ 6		
Antwort hier eintragen, pr	o Technologie-Trend einen kurzen Satz formulieren:	
2) Welche der Anwendung	en unten sind <i>klare</i> IoT Use Cases, d.h. sie sind <i>nur</i> mit Sensoren	
bzw. Aktuatoren <i>und</i> einer	Verbindung ins Internet sinnvoll umsetzbar? Punkte: _ / 4	
Zutreffendes ankreuzen:		
□ Ja □ Nein Bike S	Sharing (fixe Standorte, Karte welche Bike-Verfügbarkeit anzeigt)	
\square Ja \square Nein Earpod Kopfhörer (für Smartphones, ohne Kabel, zum Telefonieren)		
□ Ja □ Nein Kaffe	emaschine (für Privathaushalte, mit Bohnenfach, Mahlwerk)	
□ Ja □ Nein Seifer	spender (für Grossfirmen, mit Lieferanten-Notifikation)	
	gar nicht, lokal oder via Internet) Daten übertragen? Punkte: _ / 4	
Antwort hier eintragen, je	veils einen kurzen Satz formulieren:	
Anwendung (wie oben)	Datenübertragung	
Bike Sharing		
Earpod Kopfhörer		
Kaffeemaschine		
Seifenspender		

Mikrocontroller

	n Sie drei wesentliche Eigenschaften von Mikrocontrollern (MCUs).	Punkte: _ / 6
Antwort	hier eintragen, pro Eigenschaft einen kurzen Satz formulieren:	
5) Gegebe	en den folgenden Code: Korrigieren Sie die drei wesentlichen Fehler.	Punkte: _ / 6
02 int 03 04 voic 05 pi 06 pi 07 di 08 } 09 10 voic 11 ir 12 Se	<pre>buttonPin = 9; ledPin = 5; setup() { nMode(buttonPin, INPUT); nMode(ledPin, INPUT); gitalWrite(ledPin, LOW); loop() { t state = analogRead(buttonPin); rial.println(state); gitalWrite(ledPin, state);</pre>	
	lay(100);	
Antwort	hier eintragen. Symptome: Kein Output, LED geht nicht an, wenn Bu	tton gedrückt.
Zeile	Korrigierter Programmtext	

Zeile	Korrigierter Programmtext	

6) Gegeben den folgenden Code: Wie sieht die State-Machine des Geräts aus? Punkte: _ / 10

```
01 ... // ignore includes, define statements
02
03 int state = READY;
04 long t0; // s
05 DHT dht(DHT_TEMP_PIN, DHT11);
06
07 void setup() { ... } // ignore details
98
09 void loop() {
10
     int btn_start = digitalRead(BTN_START_PIN); // active high
     int btn_stop = digitalRead(BTN_STOP_PIN); // active high
11
12
     int dt_strength = map(analogRead(ROT_GRAIN_PIN), 0, 1024,
13
       DT_STRENGTH_WEAK, DT_STRENGTH_STRONG); // s
     int dt_size = map(analogRead(ROT_SIZE_PIN), 0, 1024,
14
15
       DT_SIZE_ESPRESSO, DT_SIZE_LUNGO); // s
16
     float temp = dht.readTemperature(); // °C
     long t = millis() / 1000; // s
17
     if (state == READY && btn_start) { // assume HIGH != 0, LOW == 0
18
19
       t0 = t; digitalWrite(REL_GRINDER_PIN, HIGH); // grinder on
20
       state = GRINDING;
21
     } else if (state == GRINDING && (t - t0 > dt_strength)) {
       digitalWrite(REL_GRINDER_PIN, LOW); // grinder off
22
23
       digitalWrite(REL_HEATER_PIN, HIGH); // heater on
       state = HEATING;
24
     } else if (state == HEATING && temp > 90.0) {
25
26
       digitalWrite(REL_HEATER_PIN, LOW); // heater off
       t0 = t; digitalWrite(REL_PUMP_PIN, HIGH); // pump on
27
       state = PUMPING;
28
29
     } else if (state == PUMPING && (btn_stop || (t - t0 > dt_size))) {
       digitalWrite(REL_PUMP_PIN, LOW); // pump off
30
       state = READY;
31
32
     }
33 }
```

Zeichnen Sie die State-Machine, mit Übergängen der Form [S1]—condition|action—>[S2].

IoT Plattformen

7) Welche dieser A	issagen zu IoT Plattformen und API Endpunkten sind korrekt? P.kte: _	/ 4
Zutreffendes ankre	uzen:	
□ Ja □ Nein	Eine IoT Plattform hat mindestens einen MQTT API Endpunkt.	
□ Ja □ Nein	Zeitstempel im Backend zu erfassen, erlaubt einfachere Devices.	
□ Ja □ Nein	HTTP API Endpunkte erlauben oft GET, um Messwerte zu lesen.	
□ Ja □ Nein	Der Pfad eines POST Web-Requests enthält immer die Device ID.	
8) Beschreiben Sie	drei Sicherheitsstufen für Zugriff auf Web-Server mit TLS. Punkte: _	_/6
Antwort hier eintr	gen, pro Sicherheitsstufe einen kurzen Satz formulieren:	
Sicherheitsstuf	e Beschreibung	
Internet Pro	okolle	
9) Welche dieser A	ussagen zu Internet Protokollen sind korrekt? Punkte: _	/ 4
Zutreffendes ankre	uzen:	
□ Ja □ Nein	Basic Authentication ist sicher, weil mit Base64 verschlüsselt wird.	
□ Ja □ Nein	Die HTTP Header eines Web Requests enthalten den Status Code.	
□ Ja □ Nein	UDP basiert auf dem IP Protokoll und nutzt es für Adressierung.	
□ Ja □ Nein	CoAP ist ein binäres Transportprotokoll, welches UDP ersetzt.	

Bluetooth Low Energy (BLE)

10) Gegeben diese GATT Services für ein Blutzucker-Messgerät und eine Insulinpumpe, sowie ein Drittgerät, welches die beiden verbindet: Ergänzen Sie die Geräte-Namen, ihre BLE Rolle, Operationen und relevant UUIDs im Sequenzdiagramm unten.

Punkte: _ / 10

```
0x181F Continuous Glucose Monitoring (CGM) Service
  0x2AA7 CGM Measurement [N] // <- 0x00000 - 0xfffff, mg/dL

0x0D44 Insulin Pump (Patch) Service
  0x11DD Set Bolus (...) [W] // -> 0x000 - 0xff, units
```

Ergänzen Sie Namen, Rollen (Central, Peripheral), Operationen (Write, Notify), und UUIDs:

Lokale IoT Gateways

11) Welche Infos braucht das Web API eines Gateways, das BLE Devices steuert? Punkte: _ / 6
Antwort hier eintragen, pro BLE-spezifische Information einen kurzen Satz formulieren:

$\overline{}$	
$\overline{}$	
1	
1	
1	
1	
_	

Messaging Protokolle

12) Welche dieser Aussagen zu MQTT Topics, Clients und Brokern sind korrekt? Punkte: $_/$ 4			
Zutreffendes ankre	uzen:		
□ Ja □ Nein	Ein Broker kann mit einer Subscription mehrere Topics abonnieren.		
□ Ja □ Nein	Die Topic Wildcard $a/+/c$ matched auf die Topics $a/b/c$ und $c/b/c$.		
□ Ja □ Nein	Ein Client kann eine Message Payload im Binärformat versenden.		
□ Ja □ Nein	Ein Client kann vom Broker eine "Quality of Service" verlangen.		
Long Range (Connectivity		
13) Welche dieser I	ntegrationen erlauben es einer App, LoRa-Devices zu steuern? P.kte: _ / 4		
Zutreffendes ankre	uzen, Semantik des Pfeils ist A —Request \rightarrow B (nicht immer = Datenfluss):		
□ Ja □ Nein	[TTN LoRa Backend] ←PUB− [Glue Code] ←POST− [App Backend]		
\square Ja \square Nein	[TTN LoRa Backend] \leftarrow SUB $-$ [Glue Code] $-$ POST \rightarrow [App Backend]		
□ Ja □ Nein	[TTN LoRa Backend] $-POST \rightarrow$ [Glue Code] $-SUB \rightarrow$ [App Backend]		
\square Ja \square Nein	[TTN LoRa Backend] \leftarrow POST $-$ [Glue Code] $-$ GET \rightarrow [App Backend]		
Dashboards ı	and Apps		
14) Vergleichen Sie	selbst-gehostete Dashboards mit 3rd-party Cloud Angeboten. Punkte: $_/4$		
Ergänzen Sie die Sc	itze mit einer kurzen Begründung:		
Selbst-gehostet	e Dashboards sind		
3rd-party Cloud	Angebote sind		

Regelbasierte Integration

15) Erklären Sie das Prinzip regelbasierter Integration, was wird integriert, wie? Punkte: $_/4$		
Ergänzen Sie die S	lätze mit einer kurzen Erklärung:	
Integriert wir	d	
Und zwar so, .		
Sprachsteue	rung	
16) Welche dieser	Aussagen zu Sprachassistenten wie Amazon Alexa sind korrekt? P. k te: $_$ / 4	
Zutreffendes ankr	euzen:	
□ Ja □ Nein	Die Spracherkennung erfolgt mit Machine-Learning direkt im Gerät.	
□ Ja □ Nein	Aus einer Äusserung (Utterance) wird eine Absicht (Intent) erkannt.	
□ Ja □ Nein	Eine Sprach-App (Skill) wird über einen spezifischen Namen aktiviert.	
□ Ja □ Nein	\square Ja \square Nein Ein Slot ist ein Platzhalter für ein Weckwort (Wake-Word), z.B. Alexa.	
Edge Compu	ıting	
17) Erklären Sie, w	ieso es sinnvoll ist, ein IoT-System zur Anzeige von Fahrgastinformationen	
auf Displays in ein	em Eisenbahnwagen mit Edge-Computing umzusetzen. Punkte: _ / 4	
Ergänzen Sie die S	lätze mit je einem kurzen Beispiel:	
Edge-Computing	ist lokal verfügbar,	
Edge-Computing	kann schnell reagieren,	

Zusatzblatt zu Aufgabe Nr	von (Name)	