NETWORK SCIENCE FINAL PROJECT

Catastrophic cascade of failures in interdependent networks

CONTRIBUTORS

	STUDENT ID	TASK
PIETRO BONAZZI	17-200-635	Organization and Cascade of Failures
SONGYI HAN	18-796-847	Measurement and Analysis
HYEONGKYUN KIM	21-732-797	Create Dataset and Analysis
ELEONORA PURA	17-732-678	Report and Presentation

TABLE OF CONTENTS

01

INTRODUCTION AND MODEL

Interdependent Networks and Cascade of Failures

02

METHODS

Resources and Procedure

RESULTS AND DISCUSSION

The paper

Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E., & Havlin, S. (2010). Catastrophic cascade of failures in interdependent networks. Nature, 464(7291), 1025-1028.

INTRODUCTION AND MODEL

Cascade of failure

01

NETWORKS INTERDEPENDENCE (1/3)

Past studies focused on the study of individual networks

Modern networks are more and more interdependent

- □ Interdependent networks are more prone to failures → Cascade of Failures
- **Robustness**: How complex networks reacts to node failures

NETWORKS INTERDEPENDENCE (2/3)

Example of interdependent networks:

NETWORKS INTERDEPENDENCE (3/3)

- □ Ordinary interruptions → many infrastructure interdependencies and interactions can be safely ignored
- EMP attack scenario → expected to affect the different infrastructures simultaneously through multiple electronic component disruptions and failures over a wide geographical area
- Understanding cross-cutting interdependencies and interactions is critical to assess the **recoverability** of the full system

CASCADE OF FAILURES MODEL (1/5)

CASCADE OF FAILURES MODEL (2/5)

☐ Initial condition: Union network (A+B). One node in A is attacked.

CASCADE OF FAILURES MODEL (3/5)

☐ Stage 1: A failure in A leads to failures in B.

CASCADE OF FAILURES MODEL (4/5)

☐ Stage 2: Some edges in B are removed because they do not depend on the same nodes on A anymore.

CASCADE OF FAILURES MODEL (5/5)

Stage 3: Repeat stage 2 for edges in A.

PROJECT GOAL

- \square Replicate Buldyrev et al. (2010) study: find networks robustness
 - ☐ Erdős-Rényi Networks
 - Scale-free Networks
 - ☐ Real world Dataset: Paris Multilayer Transportation Network

METHODS

Resources and Procedure

02

RESOURCES (1/2)

RANDOM NETWORKS 1

Erdos - Renyi Model (ER)

- N = 500 / 1000 / 2000
- Average Degree <k> = 4
- Using the method of 'Networkx' Erdos-Renyi Random Graph
- Union and Connect every node in two ER network(A,B) set as followed;
 - Network A : One node

Network B: One randomly selected node

RANDOM NETWORKS 2

Scale-Free Model (SF)

- N = 1000
- $-\lambda = 2.8 / 2.9 / 3.0$
- Average Degree <k> = 4
- Using the library of 'power law' to create power law distribution
- Using the method of 'Networkx'
 configuration model to create Network
- Union and Connect every node in two ER network(A,B) set as followed;
 - Network A : One node

Network B : One randomly selected node

Sample N = $50 / \lambda = 3 / < k > = 4$

REAL WORLD NETWORKS

- Paris Multilayer Transport Network (Metro and Train Networks)
 - ☐ Github LINK
 - Nodes: transportation stops
 - Edges: connections between the stops

	NODES	EDGES
METRO	303	356
TRAIN	241	244
Crosslayer	M: 56 / T: 28	64

REAL WORLD NETWORKS

Interdependent Network Geographic (Metro - Train)

REAL WORLD NETWORKS

Interdependent Network Crosslayer Edges (Metro - Train)

Procedure of Experiment

RESULTS AND DISCUSSION

ER-Networks

Scale-free Networks

Scale-free Networks

Paris Transportation Networks

Paris Transportation Networks

Reflection & future work

- Understanding iterative process of a cascade of failure in paper What we tried
 - first approach :
 - all foreign neighbours in both nodes needed to exist on the same cluster component.
 - second approach:
 - require at least one foreign neighbours of both sets needed to be on the same cluster component of the other network
- Using real world dataset with larger number of nodes and interconnection which also follows power-law distribution
 - What we used:
 - Transportation network small number of nodes and interconnection, $\langle k \rangle = 2$

BIBLIOGRAPHY

- Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E., & Havlin, S. (2010). Catastrophic cascade of failures in interdependent networks. Nature, 464(7291), 1025-1028.
- Havlin, S., Araujo, N. A. M., Buldyrev, S. V., Dias, C. S., Parshani, R., Paul, G., & Stanley, H. E. (2010). Catastrophic cascade of failures in interdependent networks. arXiv preprint arXiv:1012.0206.
- Foster Jr, J. S., Gjelde, M. E., Graham, W. R., Hermann, R. J., Kluepfel, M. H. H. M., Soper, G. K., & Wood Jr, L. L. (2004). Report of the commission to assess the threat to the United States from electromagnetic pulse (EMP) attack. Critical National Infrastructures Report, 1.
- Barabási, A.-L., Pósfai, M. (2016). Network science. Cambridge: Cambridge University Press. ISBN: 9781107076266 1107076269

IMAGES SOURCES

- [1]:https://en.wikipedia.org/wiki/Cascading_failure#/media/File:Interdependent_relationship_am ong_different_infrastructures.tif
- [2]:https://www.nature.com/articles/nature08932/figures/2
- [3]: https://www.pngall.com/python-programming-language-png
- [4]: https://de.wikipedia.org/wiki/Project_Jupyter
- [5]: https://github.com/networkx
- [6]:https://geopandas.org/en/stable/about/logo.html
- [7]:https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.title.html