# Lecture 25: Reinforcement Learning

Instructor: Sergei V. Kalinin

#### Reinforcement Learning

- No knowledge of environment
  - Can only act in the world and observe states and reward
- Many factors make RL difficult:
  - Actions have non-deterministic effects
    - Which are initially unknown
  - Rewards / punishments are infrequent
    - Often at the end of long sequences of actions
    - How do we determine what action(s) were really responsible for reward or punishment? (credit assignment)
  - World is large and complex
- Nevertheless, learner must decide what actions to take
  - We will assume the world behaves as an MDP

#### But what if we do not know model?

- Given an MDP model we know how to find optimal policies
  - Value Iteration or Policy Iteration
- But what if we don't have any form of model
  - In a Maze
  - All we can do is wander around the world observing what happens, getting rewarded and punished
- Enters reinforcement learning

#### Micromouse



# Policy roll-out



- To compute  $PR[\pi,h,w](s)$  for each action we need to compute w trajectories of length h
- Total of |A|hw calls to the simulator

#### Delayed Reward makes it hard to learn

- Delayed Reward Make it hard to learn
- The choice in State S was important but, it seems the action in S' lead to the big reward in S"
- How you deal with this problem?



• How about the performance comparison of VI and PI in this example?

### Building RL problem

- How we update the value function or policy?
  - How do we form training data
  - Sequence of (s,a,r)....

- How we explore?
  - Exploit or Exploration

# Categories of RL

- Model-based RL
  - Constructs domain transition model, MDP
- Model-free RL
  - Only concerns policy Q-Learning
- Active Learning (Off-Policy Learning)
  - Q-Learning
- Passive Learning (On-Policy learning)
  - SARSA

# **Policy Evaluation**

Remember the formula?

$$V_{\pi}(s) = R(s) + \beta \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}(s')$$

- Can we do that with RL?
  - What is missing?
  - What needs to be done?
- What do we do after policy evaluation?
  - Policy Update

# Example of passive RL

- Suppose given policy
- Want to determine how good it is



From Sungwook Yoon, Based in part on slides by Alan Fern and Daniel Weld

# Objective: Value Function



#### Passive RL

- Given policy  $\pi$ ,
  - estimate  $V^{\pi}(s)$
- Not given
  - transition matrix, nor
  - reward function!
- Simply follow the policy for many epochs
- Epochs: training sequences



$$(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (3,4) +1$$
  
 $(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (3,2) \rightarrow (3,3) \rightarrow (3,4) +1$   
 $(1,1) \rightarrow (2,1) \rightarrow (3,1) \rightarrow (3,2) \rightarrow (4,2) -1$ 

#### Approach 1: Direct Estimation

- Direct estimation (model free)
  - Estimate  $V^{\pi}(s)$  as average total reward of epochs containing s (calculating from s to end of epoch)
- **Reward to go** of a state *s*the sum of the (discounted) rewards from that state until a terminal state is reached
- Key: use observed *reward to go* of the state as the direct evidence of the actual expected utility of that state
- Averaging the reward to go samples will converge to true value at state

#### Passive RL

- Given policy  $\pi$ ,
  - estimate  $V^{\pi}(s)$
- Not given
  - transition matrix, nor
  - reward function!
- Simply follow the policy for many epochs
- Epochs: training sequences



$$(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (3,4) +1 
0.57 0.64 0.72 0.81 0.9 
(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (3,2) \rightarrow (3,3) \rightarrow (3,4) +1 
(1,1) \rightarrow (2,1) \rightarrow (3,1) \rightarrow (3,2) \rightarrow (4,2) -1$$

#### **Direct Estimation**

- Converge very slowly to correct utilities values (requires a lot of sequences)
- Doesn't exploit Bellman constraints on policy values

$$V^{\pi}(s) = R(s) + \beta \sum_{s'} T(s, a, s') V^{\pi}(s')$$

How can we incorporate constraints?

# Approach 2: Adaptive Dynamic Programming

- ADP is a model-based approach
  - Follow the policy for awhile
  - Estimate transition model based on observations
  - Learn reward function
  - Use estimated model to compute utility of policy



- How can we estimate transition model T(s,a,s')?
  - Simply the fraction of times we see s' after taking a in state s.
  - NOTE: Can bound error with Chernoff bounds if we want (will see Chernoff bound later in course)

# Approach 3: Temporal Difference (TD) Learning

- Can we avoid the computational expense of full DP policy evaluation?
- Temporal Difference Learning
  - Do local updates of utility/value function on a per-action basis
  - Don't try to estimate entire transition function!
  - For each transition from s to s', we perform the following update:

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(R(s) + \beta V^{\pi}(s') - V^{\pi}(s))$$
 learning rate discount factor

Intuitively moves us closer to satisfying Bellman constraint

$$V^{\pi}(s) = R(s) + \beta \sum_{s'} T(s, a, s') V^{\pi}(s')$$

#### Online Mean Estimation

- Suppose that we want to incrementally compute the mean of a sequence of numbers
  - E.g. to estimate the expected value of a random variable from a sequence of samples.

$$\hat{X}_{n+1} = \frac{1}{n+1} \sum_{i=1}^{n+1} x_i = \frac{1}{n} \sum_{i=1}^{n} x_i + \frac{1}{n+1} \left( x_{n+1} - \frac{1}{n} \sum_{i=1}^{n} x_i \right)$$

$$= \hat{X}_n + \frac{1}{n+1} \left( x_{n+1} - \hat{X}_n \right)$$
average of n+1 samples
$$\text{learning rate}$$

• Given a new sample x(n+1), the new mean is the old estimate (for n samples) plus the weighted difference between the new sample and old estimate

### Temporal Difference Learning

• TD update for transition from s to s':

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(R(s) + \beta V^{\pi}(s') - V^{\pi}(s))$$
learning rate (noisy) sample of utility based on next state

- So the update is maintaining a "mean" of the (noisy) utility samples
- If the learning rate decreases with the number of samples (e.g. 1/n) then the utility estimates will converge to true values!

$$V^{\pi}(s) = R(s) + \beta \sum_{s'} T(s, a, s') V^{\pi}(s')$$

# Temporal Difference Learning

• TD update for transition from s to s':

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(R(s) + \beta V^{\pi}(s') - V^{\pi}(s))$$
learning rate
(noisy) sample of utility
based on next state

When V satisfies Bellman constraints then <u>expected</u> update is o.

$$V^{\pi}(s) = R(s) + \beta \sum_{s'} T(s, a, s') V^{\pi}(s')$$

#### Comparisons

- Direct Estimation (model free)
  - Simple to implement
  - Each update is fast
  - Does not exploit Bellman constraints
  - Converges slowly
- Adaptive Dynamic Programming (model based)
  - Harder to implement
  - Each update is a full policy evaluation (expensive)
  - Fully exploits Bellman constraints
  - Fast convergence (in terms of updates)
- Temporal Difference Learning (model free)
  - Update speed and implementation similar to direct estimation
  - Partially exploits Bellman constraints---adjusts state to 'agree' with observed successor
    - Not *all* possible successors
  - Convergence in between direct estimation and ADP

# Active Reinforcement Learning

- So far, we've assumed agent *has* policy
  - We just try to learn how good it is
- Now, suppose agent must learn a good policy (ideally optimal)
  - While acting in uncertain world

#### Naïve Approach

- 1. Act Randomly for a (long) time
  - Or systematically explore all possible actions
- 2. Learn
  - Transition function
  - Reward function
- 3. Use value iteration, policy iteration, ...
- 4. Follow resulting policy thereafter.

Will this work? Yes (if we do step 1 long enough)

Any problems? We will act randomly for a long time before exploiting what we know.

#### Can we do better?

- 1. Start with initial utility/value function and initial model
- 2. Take greedy action according to value function (this requires using our estimated model to do "lookahead")
- 3. Update estimated model
- 4. Perform step of ADP; update value function
- 5. Goto 2

This is just ADP but we follow the greedy policy suggested by current value estimate

Will this work?

No. Gets stuck in local minima.

What can be done?

# Exploration vs. Exploitation

- Two reasons to take an action in RL
  - Exploitation: To try to get reward. We exploit our current knowledge to get a payoff.
  - Exploration: Get more information about the world. How do we know if there is not a pot of gold around the corner.
- To explore we typically need to take actions that do not seem best according to our current model.
- Managing the exploration and exploitation trade-off is a critical issue in RL
- Basic intuition behind most approaches:
  - Explore more when knowledge is weak
  - Exploit more as we gain knowledge

#### ADP Based RL

- 1. Start with initial utility/value function
- 2. Take action according to an explore/exploit policy (explores more early on and gradually becomes greedy)
- 3. Update estimated model
- 4. Perform step of ADP
- 5. Goto 2

This is just ADP but we follow the explore/exploit policy

Will this work? Depends on the explore/exploit policy.

Any ideas?

### **Exploration-Exploitation**

Greedy action is action maximizing estimated Q-value

$$Q(s,a) = R(s) + \beta \sum_{s'} T(s,a,s')V(s')$$

- where V is current value function estimate, and R, T are current estimates of model
- Q(s,a) is the expected value of taking action a in state s and then getting the estimated value V(s') of the next state s'
- Want an exploration policy that is greedy in the limit of infinite exploration (GLIE); Guarantees convergence
- Solution 1
  - On time step t select random action with probability p(t) and greedy action with probability 1-p(t)
  - p(t) = 1/t will lead to convergence, but is slow

#### **Exploration-Exploitation**

Greedy action is action maximizing estimated Q-value

$$Q(s,a) = R(s) + \beta \sum_{s'} T(s,a,s') V(s')$$

- where V is current value function estimate, and R, T are current estimates of model
- Solution 2: Boltzmann Exploration
  - Select action a with probability,

$$\Pr(a|s) = \frac{\exp(Q(s,a)/T)}{\sum_{a' \in A} \exp(Q(s,a')/T)}$$

- T is the temperature. Large T means that each action has about the same probability. Small T leads to more greedy behavior.
- Typically start with large T and decrease with time

#### Alternative: Exploration Functions

- 1. Start with initial utility/value function
- 2. Take greedy action
- 3. Update estimated model
- Perform step of optimistic ADP
   (uses exploration function in value iteration)
   (inflates value of actions leading to unexplored regions)
- 5. Goto 2

What do we mean by exploration function in VI?

### **Exploration Functions**

Recall that VI iteratively performs the following update at all states:

$$V(s) \leftarrow R(s) + \beta \max_{a} \sum_{s'} T(s, a, s') V(s')$$

- We want to make actions that lead to unexplored regions look good
- Implemented by *exploration function f(u,n)*:
  - assigning a higher utility estimate to relatively unexplored action state pairs
  - change the updating rule of value function to

$$V^{+}(s) \leftarrow R(s) + \beta \max f\left(\sum_{s'} T(s, a, s') V^{+}(s'), N(a, s)\right)$$

- − *V*+ denote the **optimistic estimate** of the utility
- -N(s,a) = number of times that action a was taken from state s

#### What properties should f(u,n) have?

#### **Exploration Functions**

$$V^{+}(s) \leftarrow R(s) + \beta \max f\left(\sum_{s'} T(s, a, s') V^{+}(s'), N(a, s)\right)$$

- Properties of f(u,n)?
  - If  $n > N_e$  u i.e. normal utility
  - Else, R<sup>+</sup> i.e. max possible value of a state
- The agent will behave initially as if there were wonderful rewards scattered all over around— optimistic.
- But after actions are tried enough times we will perform standard "nonoptimistic" value iteration
- Note that all of these exploration approaches assume that exploration will not lead to unrecoverable disasters (falling off a cliff).

#### TD-based active RL

- 1. Start with initial utility/value function
- 2. Take action according to an explore/exploit policy (should converge to greedy policy, i.e. GLIE)
- 3. Update estimated model
- 4. Perform TD update

$$V(s) \leftarrow V(s) + \alpha(R(s) + \beta V(s') - V(s))$$

V(s) is new estimate of optimal value function at state s.

5. Goto 2

Just like TD for passive RL, but we follow explore/exploit policy

Given the usual assumptions about learning rate and GLIE, TD will converge to an optimal value function!

#### TD-Based Active RL

- 1. Start with initial utility/value function
- 2. Take action according to an explore/exploit policy (should converge to greedy policy, i.e. GLIE)
- 3. Update estimated model
- 4. Perform TD update

$$V(s) \leftarrow V(s) + \alpha(R(s) + \beta V(s') - V(s))$$

V(s) is new estimate of optimal value function at state s.

Goto 2

Requires an estimated model to compute Q(s,a) for greedy policy execution Can we construct a model-free variant?

# Q-Learning: Model Free RL

- Instead of learning the optimal value function V, directly learn the optimal Q function.
  - Recall Q(s,a) is expected value of taking action a in state s and then following the optimal policy thereafter
- The optimal Q-function satisfies  $V(s) = \max_{a'} Q(s, a')$  which gives:

$$Q(s,a) = R(s) + \beta \sum_{s'} T(s,a,s') V(s') = R(s) + \beta \sum_{s'} T(s,a,s') \max_{a'} Q(s,a')$$

• Given the Q function we can act optimally by select action greedily according to Q(s,a)

#### How can we learn the Q-function directly?

### Q-Learning: Model Free RL

Bellman constraints on optimal Q-function:

$$Q(s,a) = R(s) + \beta \sum_{s'} T(s,a,s') \max_{a'} Q(s,a')$$

- We can perform updates after each action just like in TD.
  - After taking action a in state s and reaching state s' do:
     (note that we directly observe reward R(s))

$$Q(s,a) \leftarrow Q(s,a) + \alpha(R(s) + \beta \max_{a'} Q(s',a') - Q(s,a))$$

(noisy) sample of Q-value based on next state

### Q-Learning: Model Free RL

- 1. Start with initial Q-function (e.g. all zeros)
- 2. Take action according to an explore/exploit policy (should converge to greedy policy, i.e. GLIE)
- 3. Perform TD update

$$Q(s,a) \leftarrow Q(s,a) + \alpha(R(s) + \beta \max_{a'} Q(s',a') - Q(s,a))$$

Q(s,a) is current estimate of optimal Q-function.

- 4. Goto 2
- Does not require model since we learn Q directly!
- Uses explicit |S|x|A| table to represent Q
- Explore/exploit policy directly uses Q-values
  - ▲ E.g. use Boltzmann exploration.

### Direct Policy RL

- Why?
- Again, ironically, policy gradient based approaches were successful in many real applications
- Actually we do this.
  - From 10 Commandments
  - "You Shall Not Murder"
  - "Do not have any other gods before me"
- How we design an policy with parameters?
  - Multinomial distribution of actions in a state
  - Binary classification for each action in a state

# Policy Gradient Methods

- $J(\mathbf{w}) = E_{\mathbf{w}}[\sum_{t=0...1} \gamma^t c_t]$  (failure prob., makespan, ...)
- minimise J by

- computing gradient 
$$\nabla J(\mathbf{w}) = \left[\frac{\partial J}{\partial \mathbf{w}_1}, \frac{\partial J}{\partial \mathbf{w}_2}, \dots, \frac{\partial J}{\partial \mathbf{w}_k}\right]$$

- stepping the parameters away  $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \mathbf{r} \mathbf{J}(\mathbf{w})$
- until convergence
- Gradient Estimate Monte Carlo estimate from trace  $s_1$ ,  $a_1$ ,  $c_1$ , ...,  $s_T$ ,  $a_T$ ,  $c_T$

$$-\mathbf{e}_{t+1} = \mathbf{e}_t + \mathbf{r}_{\mathbf{w}} \log \Pr(\mathbf{a}_{t+1}|\mathbf{s}_t, \mathbf{w}_t)$$

$$-\mathbf{w}_{t+1} = \mathbf{w}_{t} - \alpha \gamma^{t} \mathbf{c}_{t} \mathbf{e}_{t+1}$$

Successfully used in many applications!