Projeto e Análise de Algoritmos I Teorema Mestre

Antonio Luiz Basile

Faculdade de Computação e Informática Universidade Presbiteriana Mackenzie

March 13, 2018

Método Mestre (CLR)

O método mestre provê uma receita para resolver recorrências da forma

$$T(n) = aT(n/b) + f(n)$$
 (1)

onde $a \ge 1$ e b > 1 são constantes e f(n) é uma função assintoticamente positiva.

O método mestre depende do teorema a seguir.

Teorema Mestre

Theorem

Seja $a \ge 1$ e b > 1 constantes, seja f(n) uma função, e seja T(n) definida sobre inteiros não negativos pela recorrência

$$T(n) = aT(n/b) + f(n),$$

onde interpretamos n/b significando $\lfloor n/b \rfloor$ ou $\lceil n/b \rceil$. Então T(n) tem os seguintes limites assintóticos:

- Se $f(n) = O(n^{\log_b a \epsilon})$ para alguma constante $\epsilon > 0$, então $T(n) = \Theta(n^{\log_b a})$.
- **③** Se $f(n) = \Omega(n^{\log_b a + \epsilon})$ para alguma constante $\epsilon > 0$, e se af $(n/b) \le cf(n)$ para alguma constante c < 1 e n suficientemente grande, então $T(n) = \Theta(f(n))$.

Teorema Mestre: entendendo

Observe que em cada um dos três casos, comparamos a função f(n) com a função $n^{\log_b a}$. Intuitivamente, a maior entre as duas funções determina a solução da recorrência.

- Se, como no caso 1, a função n^{log_ba} é a maior, então a solução é $T(n) = \Theta(n^{log_ba})$.
- Se, como no caso 3, a função f(n) é a maior, então a solução é $T(n) = \Theta(f(n))$.
- Se, como no caso 2, as duas funções tem o mesmo tamanho, multiplicamos por um fator logaritmico, e a solução é $T(n) = \Theta(n^{\log_b a} \lg n) = \Theta(f(n) \lg n)$.

Teorema Mestre: observações

- No caso 1 do teorema mestre f(n) não precisa ser apenas menor que n^{log_ba} , precisa ser polinomialmente menor. Isto significa que f(n) precisa ser assintoticamente menor que n^{log_ba} por um fator n^{ϵ} para alguma constante $\epsilon>0$.
- No caso 3, não apenas f(n) precisa ser maior que $n^{\log_b a}$, mas precisa ser polinomialmente maior, além de satisfazer a condição de regularidade de $af(n/b) \le cf(n)$.

Teorema Mestre: Exemplos (CLR)

•
$$T(n) = 9T(n/3) + n$$

•
$$T(n) = T(2n/3) + 1$$

•
$$T(n) = 3T(n/4) + n \lg n$$

•
$$T(n) = 2T(n/2) + n \lg n$$

Exemplo 1:
$$T(n) = 9T(n/3) + n$$

Aqui a = 9, b = 3 e f(n) = n, portanto temos

$$n^{\log_b a} = n^{\log_3 9} = \Theta(n^2)$$

. Como $f(n)=O(n^{\log_3 9-\epsilon})$, onde $\epsilon=1$, pelo caso 1 do teorema mestre concluímos que a solução é $T(n)=\Theta(n^2)$

Exemplo 2:
$$T(n) = T(2n/3) + 1$$

Aqui a = 1, b = 3/2 e f(n) = 1, portanto temos

$$n^{\log_b a} = n^{\log_{3/2} 1} = n^0 = 1$$

. O caso 2 do teorema mestre se aplica, já que $f(n) = \Theta(n^{\log_b a}) = \Theta(1)$, portanto concluímos que a solução para a recorrência é $T(n) = \Theta(\lg n)$.

Exemplo 3:
$$T(n) = 3T(n/4) + n \lg n$$

Temos a = 3, b = 4 e $f(n) = n \lg n$, e

$$n^{\log_b a} = n^{\log_4 3} = \Theta(n^{0.793})$$

Como $f(n) = \Omega(n^{\log_4 3 + \epsilon})$, onde $\epsilon \sim 0.2$, o caso 3 se aplica, caso seja possível mostrar que vale a condição de regularidade para f(n). Para n suficientemente grande, temos que

$$af(n/b) = 3(n/4) \lg(n/4) \le (3/4) n \lg n = cf(n),$$

para c = 3/4.

Logo, pelo caso 3 do teorema mestre a solução é $T(n) = \Theta(n \lg n)$

Exemplo 4:
$$T(n) = 2T(n/2) + n \lg n$$

Neste exemplo temos: a=2, b=2, $f(n)=n\lg n$ e $n^{\log_b a}=n$. Como $f(n)=n\lg n$ é assintoticamente maior que $n^{\log_b a}=n$, pode-se achar que o caso 3 do teorema mestre se aplica. O problema é que não é polinomialmente maior. A razão $f(n)/n^{\log_b a}=(n\lg n)/n=\lg n$ é assintoticamente menor que n^ϵ para qualquer constante positiva ϵ .