Interpolation and approximation

Given a set of points $\{(x_j,y_j), j=1,\cdots,n\}$, and given a functional form $f(x;\vec{\beta})$, find "best" $\vec{\beta}$ so that $f(x;\vec{\beta})$ "models" the data.

Interpolation

$$f(x_j; \vec{\beta}) = y_j$$

Approximation

$$f(x_j; ec eta) + arepsilon_j = y_j$$
 $arepsilon_j$ is "noise", $\mathbb{E}(arepsilon_j) = 0$

Given a set of points $\{(x_j,y_j), j=1,\cdots,n\}$, and given a functional form $f(x;\vec{\beta})$, find "best" $\vec{\beta}$ so that $f(x;\vec{\beta})$ interpolates the data.

$$f(x_j; \vec{\beta}) = y_j$$

A system of n nonlinear equations for m unknowns β_1,\ldots,β_m

Let the model, $f(x; \vec{\beta})$, is a *linear* function of $\vec{\beta}$, a linear combination of m basis functions, $\varphi_k(x)$

$$f(x; \vec{\beta}) = \sum_{j=1}^{m} \beta_k \varphi_k(x)$$

Let the model, $f(x; \vec{\beta})$, is a *linear* function of $\vec{\beta}$, a linear combination of m basis functions, $\varphi_k(x)$

$$f(x; \vec{\beta}) = \sum_{j=1}^{m} \beta_k \varphi_k(x)$$

The interpolation conditions reduce to the system of *linear* equations

$$\mathbf{A}\vec{\beta} = \mathbf{y}$$

where $\mathbf{y} = (y_1, y_2, \dots, y_n)^T$.

Interpolation conditions:

$$\mathbf{A}\vec{\beta} = \mathbf{y}$$

where **A** is an $n \times m$ matrix

$$\mathbf{A} = egin{bmatrix} arphi_1(x_1) & arphi_2(x_1) & \cdots & arphi_m(x_1) \ arphi_1(x_2) & arphi_2(x_2) & \cdots & arphi_m(x_2) \ & & \cdots & \ arphi_1(x_n) & arphi_2(x_n) & \cdots & arphi_m(x_n) \end{bmatrix}$$

The dimensions of A is # of observations \times # of parameters

Interpolation conditions:

$$\mathbf{A}\vec{\beta} = \mathbf{y}$$

where **A** is an $n \times m$ matrix

$$\mathbf{A} = egin{bmatrix} arphi_1(x_1) & arphi_2(x_1) & \cdots & arphi_m(x_1) \ arphi_1(x_2) & arphi_2(x_2) & \cdots & arphi_m(x_2) \ & & \cdots & \ arphi_1(x_n) & arphi_2(x_n) & \cdots & arphi_m(x_n) \end{bmatrix}$$

The dimensions of **A** is # of observations \times # of parameters

When does this system have a unique solution $\vec{\beta}$?

Linear independence

Call $\vec{\varphi}_k$ the k-th column of **A**:

$$\mathbf{A} = [\vec{\varphi}_1 \ \vec{\varphi}_2 \ \cdots \vec{\varphi}_m]$$

A system of functions $\varphi_1(x),\ldots,\varphi_m(x)$ is *linearly dependent* on the set of points x_1,\ldots,x_n if at least one vector $\vec{\varphi}_k$ can be expressed as a linear combination of other $\vec{\varphi}$ -s:

$$\vec{\varphi}_k = \sum_{s \neq k} \xi_s \vec{\varphi}_s$$

Linear independence: the Gram matrix

A set of vectors $\{\vec{\varphi}_k\}$ is linearly independent iff its *Grammian* determinant is non-zero, $\det \Gamma \neq 0$.

The Gram matrix,

$$\mathbf{\Gamma} = \mathbf{A}^T \mathbf{A}$$

Take
$$m=n$$
 and $\varphi_k(x)=x^{k-1}$ for $k=1,\ldots,m$.

A becomes a Vandermonde matrix

$$\mathbf{A} = \begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{m-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{m-1} \\ & & \cdots & & \\ 1 & x_m & x_m^2 & \cdots & x_m^{m-1} \end{bmatrix}$$

The Vandermonde determinant

$$\det \mathbf{A} = \prod_{1 \le p < q \le m} (x_p - x_q) \neq 0$$

if all $\{x_k\}$ are distinct.

Given n points x_k and y_k for $k=1,\ldots,n$, construct a unique polynomial

$$P(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_{n-1} x^{n-1}$$

which interpolates y_k , i.e. $P(x_k) = y_k$.

The coefficients of P(x) satisfy

$$\mathbf{V}\vec{c} = \mathbf{y}$$

and V is the Vandermonde matrix.

- Vandermonde matrices are poorly conditioned
- Evaluations of polynomials in terms of coefficients is poorly conditioned

Look for an alternative form of writing the interpolating polynomial.

Lagrange interpolating polinomial

Consider $\ell_k(x)$, a polynomial of degree m,

$$\ell_k(x_j) = \begin{cases} 1, & k = j, \\ 0, & k \neq j \end{cases}$$

for
$$k = 0, \cdots, m$$

Lagrange interpolating polinomial

Consider $\ell_k(x)$, a polynomial of degree m,

$$\ell_k(x_j) = \begin{cases} 1, & k = j, \\ 0, & k \neq j \end{cases}$$

for
$$k = 0, \cdots, m$$

Then

$$P(x) = \sum_{k=0}^{m} y_k \,\ell_k(x),$$

satisfies the interpolation conditions $P(x_j) = y_j$.

Lagrange interpolating polinomial

Explicit form of $\ell_k(x)$:

$$\ell_k(x) = \frac{x - x_0}{x_k - x_0} \cdots \frac{x - x_{k-1}}{x_k - x_{k-1}} \frac{x - x_{k+1}}{x_k - x_{k+1}} \cdots \frac{x - x_m}{x_k - x_m}$$

$$\equiv \prod_{j=0, j \neq k}^m \frac{x - x_j}{x_k - x_j}$$

For example, a linear Lagrange interpolator is

$$L_1(\mathbf{x}) = y_0 \frac{\mathbf{x} - x_1}{x_0 - x_1} + y_1 \frac{\mathbf{x} - x_0}{x_1 - x_0}$$

Given a smooth function y=f(x), tabulate it on $x\in [a,b]\Longrightarrow$ have $\{x_j,y_j\}$, $j=0,\cdots,m\Longrightarrow$ Construct the interpolator P(x), $P(x_j)=y_j$

Interpolation error:

$$\Delta_m \equiv \max_{x \in [a,b]} |f(x) - P(x)| = ?$$

Let f(x) is continuously differentiable m+1 times on [a,b].

Let
$$a \leqslant x_0 < x_1 < \dots < x_m \leqslant b$$

Then

$$f(x) - P(x) = \frac{f^{(m+1)}(\xi)}{(m+1)!} \omega_{m+1}(x)$$

where $\xi \in (a,b)$, and

$$\omega_{m+1}(x) = (x - x_0)(x - x_1) \cdots (x - x_m)$$

Let f(x) is continuously differentiable m+1 times on [a,b].

Let $a \leqslant x_0 < x_1 < \cdots < x_m \leqslant b$

Then

$$f(x) - P(x) = \frac{f^{(m+1)}(\xi)}{(m+1)!} \omega_{m+1}(x)$$

where $\xi \in (a, b)$, and

$$\omega_{m+1}(x) = (x - x_0)(x - x_1) \cdots (x - x_m)$$

$$\Delta_m \leqslant \frac{M_{m+1}}{(m+1)!} \max_{x} |\omega_{m+1}(x)|,$$

$$M_{m+1} = \max_{x} \left| f^{(m+1)}(x) \right|$$

Interpolation: a < x < b

Let $h \equiv \max_k |x_{k+1} - x_k|$. Then,

$$\Delta_m \leqslant \text{const} \times h^{m+1}$$

Interpolation: a < x < b

Let $h \equiv \max_k |x_{k+1} - x_k|$. Then,

$$\Delta_m \leqslant \text{const} \times h^{m+1}$$

Extrapolation: $x \notin [a, b]$

$$\omega_{m+1}(x\to\infty)\to\infty$$

Runge phenomenon

$$f(x) - P(x) \propto w_{m+1}(x)$$

$$\omega_{m+1}(x) = (x - x_0)(x - x_1) \cdots (x - x_m)$$

Runge phenomenon

$$f(x) - P(x) \propto w_{m+1}(x)$$

$$\omega_{m+1}(x) = (x - x_0)(x - x_1) \cdots (x - x_m)$$

Goal: Select $\{x_k\}$ s.t. $\max_{x \in [a,b]} |\omega_{m+1}(x)| \Rightarrow \min$

Chebyshev polynomials

Consider a family of polynomials $T_n(x)$, with the domain [-1,1]:

$$T_0(x) = 1,$$

 $T_1(x) = x,$
 $T_n(x) = 2x T_{n-1}(x) - T_{n-2}(x), \qquad n \geqslant 2.$

Chebyshev polynomials

Consider a family of polynomials $T_n(x)$, with the domain [-1,1]:

$$T_0(x) = 1,$$

 $T_1(x) = x,$
 $T_n(x) = 2x T_{n-1}(x) - T_{n-2}(x), \qquad n \geqslant 2.$

Properties of Chebyshev polynomials

- 1. $T_n(x) = 2^{n-1}x^n + \cdots$, $n \ge 1$
- 2. $T_n(x) = \cos(n\arccos(x)), \quad x \in [-1, 1]$
- 3. $\max_{x \in [-1,1]} |T_n(x)| = 1, \quad n \geqslant 0$
- **4.** $T_n(x)$ has exactly n distinct real roots on [-1,1]

Chebyshev nodes

5. The roots x_k of $T_n(x)$ are given by

$$x_k = \cos\frac{2k+1}{2n}\pi, \qquad k = 0, \dots, n-1$$

NB: Chebyshev nodes are not equidistant.

Chebyshev polynomials: deviation from zero

6. Any polynomial of degree n with the leading coefficient equal to unity,

$$\xi(x) = x^n + a_{n-1}x^{n-1} + \cdots,$$

has larger deviation from zero than the (scaled) Chebyshev polynomial of the same degree

$$\max_{x \in [-1,1]} |T_n(x)| \leqslant \max_{x \in [-1,1]} |2^{n-1}\xi(x)|$$

- Do not use uniform grids
- Use Chebyshev nodes

- Do not use uniform grids
- Use Chebyshev nodes
- ▶ If the interpolation interval is $[a, b] \neq [-1, 1]$, scale

$$x = \frac{a+b}{2} + \frac{b-a}{2}t$$

where $t \in [-1, 1]$, and use Chebyshev nodes.

- Do not use uniform grids
- Use Chebyshev nodes
- ▶ If the interpolation interval is $[a, b] \neq [-1, 1]$, scale

$$x = \frac{a+b}{2} + \frac{b-a}{2}t$$

where $t \in [-1, 1]$, and use Chebyshev nodes.

Faber's theorem:

 \forall set of nodes $\{x_k\}$, \exists a continuous function f(x), such that

$$\max_{x} |f(x) - P(x)| \to \infty \quad \text{as} \quad m \to \infty$$