Работа 2.4.1

Определение теплоты испарения жидкости

Валеев Рауф Раушанович группа 825

10 апреля 2019 г.

Цель работы

- 1. Измерение давления насыщенного пара жидкости при разной температуре
- 2. Вычисление по полученным данным теплоты испарения с помощью уравнения Клапейрона-Клаузиуса.

Теоретическая справка

Уравнение Клапейрона-Клаузиуса

Запишем уравнение для свободной энергии Гиббса и дифференциал из 1 и 2 начал термодинамики

$$G = U + PV - TS$$

$$dG = -SdT + VdP$$

Отсюда следует, что если в термодинамической системе не изменяется давление и температура, то потенциал Гиббса так же остается неизменным.

Пусть система состоит из фаз 1 и 2, массы которых равны m_1 и m_2 соответственно. Удельные термодинамические потенциалы обозначим $\gamma_1(P,T)$ и $\gamma_2(P,T)$. Тогда

$$G = \gamma_1(P, T)m_1 + \gamma_2(P, T)m_2$$

При фазовом переходе давление и температура не меняются, поэтому не меняется и G, и $\gamma_1(P,T)$, и $\gamma_2(P,T)$ из условия равновесия. Меняются лишь массы. При этом общая масса всей системы не меняется. Из всего вышеперечсисленного следует, что

$$dm_1 + dm_2 = 0$$

$$dG = 0 = \gamma_1 dm_1 + \gamma_2 dm_2$$

$$\gamma_1(P,T) = \gamma_1(P,T)$$

Отсюда получается, что условие равновесия фаз эквивалентно условию равновесия их удельных потенциалов Гиббса. Отсюда получаем

$$d\gamma_1(P,T) = -s_1 dT + v_1 dP = d\gamma_2(P,T) = -s_2 dT + v_1 dP$$

$$d\gamma_1 = d\gamma_2 \Rightarrow$$

$$\frac{dP}{dT} = \frac{s_2 - s_1}{v_2 - v_1}$$

при T=const имеем, что

$$s_2 - s_1 = \frac{q}{T}$$

$$\frac{dP}{dT} = \frac{q}{T(v_2 - v_1)}$$

Поскольку в данной работе температура далека от критической, то газ можно считать идеальным и можно пренебреч v_1 по сравнению с v_2 , то есть

$$v_2 = \frac{RT}{P}$$
$$q = \frac{RT^2}{P} \frac{dP}{dT} = -R \frac{d(\ln P)}{d(1/T)}$$

Экспериментальная установка

Рис. 1: Схема установки

Здесь блок A - нагревательный элемент, блок B - исследуемый сосуд и C - измерительный микроскоп.

Ход работы

1. Измеряем высоту столба ртути в монометрах при повышении температуры, затем находим разность и по ним считаем разность давлений.

2. Проводим те же измерения при понижении температуры. Все данные записываем в таблицу.

T, K	σ_T, K	h_1, cm	h_2, cm	$\Delta h, cm$	σ_h, cm	р, Па	$\sigma_p, \Pi a$
294,0	0,1	4,4	8,4	4,0	0,1	5300	100
295,0	0,1	4,3	8,5	4,2	0,1	5600	100
296,4	0,1	4,2	8,6	4,4	0,1	5800	100
297,0	0,1	4,1	8,7	4,6	0,1	6100	100
298,0	0,1	4,0	8,8	4,8	0,1	6300	100
299,0	0,1	3,8	9,0	5,2	0,1	6900	100
300,0	0,1	3,6	9,2	5,6	0,1	7400	100
301,0	0,1	3,5	9,3	5,8	0,1	7700	100
302,0	0,1	3,3	9,5	6,2	0,1	8200	100
303,0	0,1	3,1	9,7	6,6	0,1	8700	100
304,0	0,1	2,9	9,9	7,0	0,1	9300	100
305,0	0,1	2,7	10,1	7,4	0,1	9800	100
306,0	0,1	2,4	10,4	8,0	0,1	10600	100
307,0	0,1	2,2	10,6	8,4	0,1	11100	100
308,0	0,1	2,0	10,8	8,8	0,1	11600	100
309,0	0,1	1,7	11,1	9,4	0,1	12500	100
310,0	0,1	1,4	11,4	10,0	0,1	13200	100

Таблица 1: P от T при нагреве

T, K	σ_T, K	h_1, cm	h_2, cm	$\Delta h, cm$	σ_h, cm	р, Па	$\sigma_p, \Pi a$
308,4	0,1	1,9	10,9	9,0	0,1	11900	100
307,0	0,1	2,2	10,6	8,4	0,1	11100	100
305,4	0,1	2,6	10,2	7,6	0,1	10100	100
304,4	0,1	2,8	10,0	7,2	0,1	9500	100
302,4	0,1	3,2	9,6	6,4	0,1	8500	100
300,8	0,1	3,5	9,3	5,8	0,1	7700	100
299,4	0,1	3,7	9,1	5,4	0,1	7100	100
297,0	0,1	4,1	8,7	4,6	0,1	6100	100

Таблица 2: P от T при охлаждении

3. Строим график в координатах 1/T и $\ln P$.

Рис. 2: График зависимости $\ln P$ от 1/T

4. Вычисляем L по первому графику.

$\frac{d(\ln P)}{d(1/T)}, K$	$\sigma_{d(\ln P)/d(1/T)}, K$	L, Дж/моль	$\sigma_L,$ Дж/моль	L, Дж/г	$\sigma_L,$ Дж/г
-5300	100	44000	1000	960	20

Таблица 3: Результаты полученные из первого графика

5. Строим график в координатах T и P.

Рис. 3: График зависимости P от T

6. Вычислим L по второму графику, например вблизи точки T=302K. Для этого построим касательную в данной точке, найдем v_2 по формуле $v_2=\frac{RT}{\mu P}$ и далее из формулы

$$\frac{dP}{dT} = \frac{L}{T(v_2 - v_1)}$$

Принебрегая v_1 по сравнению с v_2 мы получим

$$L \approx \frac{dP}{dT} \cdot T \cdot v_2$$

$\boxed{dfracdPdT, \Pi a/K}$	$\sigma_{dP/dT}, \Pi a/K$	$v_2, m^3/$ моль	L, Дж/г	$\sigma_L,$ Дж/г
480	30	2000	960	60

Таблица 4: Результаты для второго графика

7. Сравнивая полученные результаты можно сделать вывод, что нахождение по первому графику более точное, нежели по второму. Исходя из таблицы мы видим, что наши результаты довольно точно совпадают с табличными, то есть с $L=920\mbox{Дж/r}$ при T=302K