Data-driven Intelligent Systems

Lecture 16 Reinforcement Learning I

http://www.informatik.uni-hamburg.de/WTM/

Knowledge Discovery from Data

Outline

- Agents
- Markov Decision Process (MDP), Estimation of Return, Action Selection
- Tabular vs. Deep RL
- TD-learning, SARSA, Actor-Critic
- Example Applications

Intelligent Agents

- Agents
 - Perceive their environment via sensors
 - Act in their environment through effectors
- Rational agents
 - Do the "right" thing that lets them "succeed"
 - A performance measure quantifies success
- Autonomous agents
 - Express behaviour, which depends on their own experience

Types of Agents

- Reflexive agents
 - perceive information about the world state
 - use condition-action rules to choose actions
- Agents with internal state
 - store information about previous world states
 - store information about the effect of actions
- Goal-based agents
 - have information about goal states
 - infer actions from desired goals
- Agents with some use function
 - know a measure of desirability of certain states
 - can therefore choose between different goals

Types of Environments

- Accessible vs. inaccessible
 - Is the information, which is relevant to choose actions, accessible via sensors?
- Deterministic vs. non-deterministic
 - Is the next world state uniquely determined given the current state and the current action?
- Episodic vs. non-episodic
 - Does the quality of the actions depend on previous actions?
- Static vs. dynamic
 - Does the world state change independently of the agent's actions?
- Discrete vs. continuous
 - Is the number of possible states and actions limited?

Outline

- Agents
- Markov Decision Process (MDP), Estimation of Return, Action Selection
- Tabular vs. Deep RL
- TD-learning, SARSA, Actor-Critic
- Example Applications

Markov Decision Process

Agent-environment interaction:

- Loop:
 - agent percieves information about state s
 - agent performs action a
 - agent may receive reward r
 - state & action at next time step: s`, a`

Markov Decision Process (MDP):

Fixed transition probabilities

$$P(s) = P(s)s,a)$$

- not dependent on history (*Markov property*)
- Fixed reward probability

$$r = r(s), s, a)$$

might depend only on s`

An MDP is a tuple (S, A, P, R)

i.e. the sets of states, actions, transition probs., rewards

Markov Decision Process

The agent's actions will be oriented towards gaining maximum accumulated future reward, which is the Return.

How is the Return estimated?

This will be done recursively:

Return at current time t

- = Return at next time t+1
- + Reward obtained during transition

RL: The agent will store its best estimates of the return either

- as values V depending on states s or
- as values Q depending on transitions (s,a)

Bellman Equation – Dynamic Programming

How much reward will the agent accumulate in the future?

Return:

$$R(t) = r(t+1) + \gamma \cdot r(t+2) + \gamma^2 \cdot r(t+3) + \dots = \Sigma_{t} \gamma^{t} \cdot r(t+t')$$

= $r(t+1) + \gamma \cdot R(t+1)$

- Discount factor y <1: more distant rewards count less
- Formula is recursive → R can be re-estimated at any time
- Agent's estimate of the return (**expected return / Q-values**): $Q^{\pi}(s; a) = r(t+1) + \gamma \cdot Q^{\pi}(s'; a')$
 - The estimate depends on the policy π,
 i.e. which action strategy is the agent using.
- Alternative: estimate return by state values:

$$V^{\pi}(s) = r(t+1) + \gamma \cdot V^{\pi}(s)$$

(some algorithms use Q-values, others state values)

Markov Decision Process

From learning, the agent now has good estimates about the Return.

How does the agent use that knowledge to choose its actions?

- Follow an action selection strategy:
 - Prefer those actions that lead to the largest Return at the next time step.

The mapping of states to actions is called the agent's *policy*.

- A better policy will lead to larger Return.
- A better estimate of Return will allow better policies.

Over time, estimate of Return, and policy, will converge.

Maximising Return (Exploiting) while Exploring

Policy: the mapping from states to actions (here: discrete actions) Action selection strategies are, e.g.:

- greedy action selection: a = argmax Q(s; a) ← no exploration!
- ε-greedy action selection:

$$i^* := \operatorname{argmax}_{i^*} Q(s; a_{i^*}) \leftarrow \text{the "best" action}$$

$$P(a_{i^*}=1) = 1-\varepsilon \leftarrow \text{choose best action } a_{i^*} \text{ with probability}$$

$$(\text{else, any action, randomly})$$

Boltzmann (softmax) action selection:

$$P(a_i=1) = \exp(\beta \cdot Q(s; a_i)) / \Sigma_i \exp(\beta \cdot Q(s; a_i))$$

- > small ε or large β \rightarrow prefer large-Q actions (exploitation)
- Large ε or small β → choose more randomly (exploration)

Outline

- Agents
- Markov Decision Process (MDP), Estimation of Return, Action Selection
- Tabular vs. Deep RL
- TD-learning, SARSA, Actor-Critic
- Example Applications

An Example Scenario for Tabular RL

4 actions:
up right down left

↑ → ↓ ←

Objective: learn to move to rewarded state.

One-hot state encoding: s = (0, ..., 1, ..., 0)One-hot action encoding: a = (0, 1, 0, 0)

Learning: sample (s, a) and (r, s`, a`) over many trials, and learn values Q(s, a).

Initialize agent to random start the Q-table state every time after achieving goal.

Meanwhile, agent will use learnt knowledge: ε-greedy or Boltzmann action selection

After learning: go straight to goal by choosing max-Q action in each state.

prefers actions with large Q-values.

An Example Scenario – Learning Dynamics

Values Q(s,a) will be initialized with 0 for all s, a.

 First, non-zero Q-values will build up near the rewarded state (i.e. after accidentally hitting the reward).

- After convergence, Q-values will "ramp up" towards the goal state (slope depends on γ).
- For a given state s, that Q-value with the best action will be the largest

Deep RL Architecture

Function approximation with a (deep) neural network

- Network input: s
- Network output: Q(a)
 - One unit for each action
 - Action selection based on those Q

Alternative:

- Network input: (s, a)
- Network output: Q
 - one output unit
- → for action selection, need multiple computations of output

Outline

- Agents
- Markov Decision Process (MDP), Estimation of Return, Action Selection
- Tabular vs. Deep RL
- TD-learning, SARSA, Actor-Critic
 - Example Applications

Temporal Difference (TD) Learning

(Learning during one Step/Transition)

- Current estimated value at current state s and action a: Q(s; a)
- Estimated value at next state s' if then performing a': Q(s'; a')
- Reward obtained during transition (or on arrival at s'): r
- Bellman equation allows a better estimate of the current value:

$$Q(s; a) = r + \gamma \cdot Q(s'; a')$$

TD-learning advises to adapt the Q-value for the current (s,a):

$$Q(s; a) \leftarrow Q(s; a) + \eta \cdot (r + \gamma \cdot Q(s'; a') - Q(s; a))$$
learning rate TD error δ

The TD error (rather: the square of it; compare with the L2 norm) is usable like a cost function to update the parameters of a function that estimates Q given s and a as its inputs. function approximation e.g. with a neural model

The SARSA Algorithm (s,a,r,s',a')

- Init: read state s, select an action a, compute Q(s,a)
- Repeat until end of trial (e.g. when goal reached, out of bounds, etc.):
 - Execute action a
 - Read reward r and new state s'
 - Select next action a' (using ε-greedy or Boltzmann action selection)
 - Read new Q-value: Q(s',a') (from Q-table or approximating function)
 - Compute TD error: $\delta = r + \gamma \cdot Q(s^*; a^*) Q(s; a)$
 - Update Q-table entry: Q(s; a) ← Q(s; a) + η· δ (TD-learning)
 Or: update parameters of approximating function to minimize δ
 - Set variables for next iteration: s ← s', a ← a', Q ← Q'

Repeat many trials (e.g. from diverse initial states) until entire state space is well learnt.

TD-variations: Q-, SARSA-, Actor-critic Learning

- Q-learning: update based on next **best** possible estimates $Q(s, a) \leftarrow Q(s, a) + \eta (r + \gamma \max_{a'} Q(s', a') Q(s, a))$
 - "off-policy" algorithm, because Q-value is not computed based on the actually chosen action a
- SARSA: update estimates based on next *chosen* action $Q(s, a) \leftarrow Q(s, a) + \eta (r + \gamma Q(s', a') Q(s, a))$
 - "on-policy", because Q (or V) values are computed using the actually chosen action a' and next state s'
- Actor-Critic: update of **state value** $V(s) \leftarrow V(s) + \eta (r + \gamma V(s') V(s))$ (requires separate learning of the policy)

Actor-critic Learning – Quantitative Visualization

- update of **state value:** $V(s) \leftarrow V(s) + \eta \left(r + \gamma V(s') V(s)\right)$ 3x3 grid world
- reward r=1 provided if agent reaches state at position (3,3)
- Init: V(s) = 0 at all states

Actor-critic Learning – Quantitative Visualization

learning rate $\eta=0.5$ discount factor $\gamma=0.9$

update of **state value**: $V(s) \leftarrow V(s) + \eta (r + \gamma' V(s') - V(s))$

Rollout #1

1st step:
$$V(s) = V(s') = 0$$

- $\rightarrow \delta = 0$, hence nothing learnt
- → same for 2nd, 3rd & 4th step

5th step (into goal state s'):

$$V(s) = 0 + 0.5 \cdot (1 + 0.9 \cdot 0 - 0) = 0.5$$

Rollout #2 (new init state)

1st step:
$$V(s_1) = V(s_2) = 0 \rightarrow \delta = 0$$

 2^{nd} step (s_2 to s_3):

$$V(s_2) = 0 + 0.5 \cdot (0 + 0.9 \cdot 0.5 - 0) = 0.5 \cdot 0.45$$

 3^{rd} step (s_3 to goal state s_4):

$$V(s_3) = 0.5 + 0.5 \cdot (1 + 0.9 \cdot 0 - 0.5) = 0.75$$

TD Learning in Deep RL

- Network input: s
- Network output: Q(a/s)
 - One unit for each action
 - Action selection based on those Q
- Taking one step provides all info needed to compute the TD error:

$$\delta = r + \gamma \cdot Q(s^*; a^*) - Q(s; a)$$
targeted actual output output

- Adapt network parameters by error backpropagation of the TD error
 - (apply TD error only to the action unit a,
 i.e. the action that caused this experience)

Experience Replay

Performing many trials in the environment can be costly. Solution: learn multiple times from the experience:

- Store all experiences (s, a, r, s', a') in replay memory
 - They represent environmental behavior
 - Independent of learnt parameters
- Randomly sample experiences and learn from them
 - One experience is sufficient to compute one TD-update
 - Compute the needed Q (or V) values with current parameters

Advantage: Experience Replay supplies a *homogeneous* distribution of learning samples, independent of current exploratory behaviour, which may be biased

- In practice: Replay buffer is finite, drop old experiences
 - Earliest agent behaviour may be irrelevant anyway

Outline

- Agents
- Markov Decision Process (MDP), Estimation of Return, Action Selection
- Tabular vs. Deep RL
- TD-learning, SARSA, Actor-Critic
- Example Applications

gym.openai.com I/II

Reimplementation of classical problems, e.g.:

State: angle, angular speed, x-position

Actions: left or right force

Reward: =1 if near vertical

More difficult than cart pole.

Similar behaviour to pendulum upswing.

All actions are discrete; states also mostly discretized.

gym.openai.com II/II

Collection of many newer problems, e.g.:

All environments have compatible interface for easy test of RL algorithms in many environments.

RL Application: Price Optimization

Commerce application: set a product pricing policy

- Requires a model of customer behavior: buy more when price drops
- Define the environment:
 - Encode the state s_t at time step t as a vector of prices p for all previous time steps concatenated with one-hot encoding of the time step itself:
 - $s_t = (p_{t-1}, p_{t-2}, ..., p_0, 0, ...) \mid (0, ..., 1, ..., 0)$
 - The action a is an index in the array of valid price levels
 - The reward *r* is the profit of the seller
- Result: a complex pricing strategy with price surges and discounts
 → Hi-Lo pricing strategy used by many retailers

Deep RL Application: Atari Playing

- Multiple Atari Games (at some games still worse than humans)
 - Deep Reinforcement Learning (RL) (Mnih et al., 2015)

Deep RL – Q values in Seaquest

 Raised Q-values reflect the upcoming reward, given when the missile hits the enemy (after B)

Robot Arms Picking Objects with Deep RL

- Real-world RL difficult as requires much training experience
 - Early examples: pendulum balance & swing-up
- Real deep RL:
 - Robot arms learn to pick objects using top-mounted camera
 - Large-scale: 14 robots; two months; 800.000 pick attempts

- CNN processes images
- Simplified pick actions from top:
 - always from top, given height
 - only x-, y-pos & angle learnt to maximize grasp success

Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection (2016) https://arxiv.org/abs/1603.02199

RL for Language Generation

- Learn to conduct dialogues between two virtual agents:
 - Reward sequences that display three useful conversational properties: informativity, coherence, and ease of answering.
 - Using policy gradient methods

Deep RL for Dialogue Generation https://arxiv.org/abs/1606.01541

- Learn to play text games:
 - Reward depends on the finally achieved state.
 - Deep reinforcement relevance network (DRRN) represents action and state spaces with separate embedding vectors, which are combined with an interaction function to approximate the Q-function.

Deep RL with a Natural Language Action Space https://arxiv.org/abs/1511.04636

Summary

- RL: agents learn to find action strategies given temporally delayed rewards (which extends (un)supervised learning)
- MDP supplies the theoretical framework
 - Bellman equation for recursive estimation of state/Q value
 - Repetitive exploration of agent
- Tabular & Deep RL
- Many applications and promising research direction
- Further reading & links:
 - Sutton & Barto: Reinforcement Learning: An Introduction (<u>available</u> online as 2nd edition in progress)
 - Difference SARSA vs. Q-learning: https://studywolf.wordpress.com/2013/07/01/reinforcement-learning-sarsa-vs-q-learning/
 - Software: https://ray.readthedocs.io/en/latest/rllib.html