

Natural Language Processing Group 15: Relation Extraction Project Presentation

Vienna, 20.01.2023

Agenda

Agenda

Research Objective

Implementation and Results

Milestone 1

Milestone 2

Advancements and Improvements

Conclusion

The aim of this project was to apply the concept of relation extraction...

Topic 3:

Relation Extraction

which is a two-step-process:

- Identify the two relevant entities ("Tag 1", "Tag 2")
- Classify the relationship between those entities

The famous $\underbrace{\text{actress}}_{\text{Tag 1}}$ arrived at the $\underbrace{\text{airport}}_{\text{Tag 2}}$.

Relationship: Entity-Destination

Example

... to a data set: SemEval-2010 was chosen to provide domain-independent data

SemEval-2010 Task 8
(Hendrickx et al.)

- Size: 8.000 (train) + 2717 (test) sentences
- Target Variable: 9 classes
- **Domain:** Unspecific/Generic

The team aimed for a deeper understanding of relation extraction to figure out solutions that solve the problem efficiently

Our targets for this project included:

Understand Problem Space

Learn and start to understand the characteristics and concepts behind relation extraction

Identify what works, and what doesn't

Implementing and comparing baseline models should enable to figure out ways to solve the problem while identifying the ones that do not work

Improve Results

By identifying the weaknesses of baseline implementations, we aim for improving them

Agenda

Implementation and Results Milestone 1

For milestone 1 a standard classifier provided baseline results for the next steps

For milestone 1 a standard classifier provided baseline results for the next steps

Before classifying the text sentences they are being **loaded and preprocessed** using proven methods

First the raw text data gets loaded...

... before being **preprocessed** for the classification stage.

Data Loading

```
train, test = load_data()
test_keys = load_keys_data()
```

Data Preprocessing

```
# factorize relation classes
factorize_relations(train, test)

# tokenize text
CountVectorizer(ngram_range=(1,3)).fit_transform(train)

# count term frequencies including inverse document frequency
TfidfTransformer(use_idf=True).fit_transform(train)
```

For milestone 1 a standard classifier provided baseline results for the next steps

The result of milestone 1 with a Multinomial Naive Bayes classifier was an accuracy score of 60.51%

Applying **Multinomial Naive Bayes** as classifier ...

... led to the first baseline performance results:

Multinomial Naive Bayes

```
classifier = MultinomialNB(alpha=0.01).fit(train_X, train_y)
predictions = classifier.predict(test X)
```

While the model performed well, it was shown that it the data bias negatively impacted accuracy and that fewer target classes worsens it more

Decent results for a simple model with efficient implementation

Our learnings from milestone 1 include...

Data bias gets translated to a **model** bias, especially in target class "other"

Fewer target classes leads to worse performance of the model

Agenda

For milestone 2 a deep learning neural network provided baseline results

For milestone 2 a deep learning neural network provided baseline results

The model of choice was a **BoW classifier**, known for its simplicity

Deep learning classifier:

Bag-of-Words (BoW)

- **Simple classification model** for natural language processing (NLP) tasks
- Based on **frequency of words** in sentence
- Disregards grammar and word order

The BoW model was implemented with one embedding layer, two combined activation functions and avg, min and max as pooling layers

Deep learning classifier:

Bag-of-Words (BoW)

def forward()

```
embedded = self.embedding(text)
pooled = F.max_pool2d(embedded, (embedded.shape[1], 1)).squeeze(1)
return F.log_softmax(self.linear(pooled), dim=1)
```

Embedding

```
self.embedding = nn.Embedding(vocab_size, embedding_dim,
padding_idx=3000)
self.embedding.weight.requires_grad = True
```

Activation Functions

Softmax & LogSoftmax

Pooling Layers

Average, Min, Max

With 10 epochs, the model performed with an accuracy of 58.xx%

Applying **BoW** as classifier ...

... led to the **following results:**

BoW Classifier

classifier = BowClassifierWithEmbedding(OUTPUT_DIM, INPUT_DIM, EMBEDDING_DIM)
classifier.training_loop(train_iterator, valid_iterator)
predictions = classifier.predict(valid iterator)

Milestone 2 showed that the model **performed only mediocre** - partly due to overfitting, partly possible due to the data bias

During the training phase, the model started to **overfit strongly**

Our learnings from milestone 2 include...

Data bias gets translated to a **model** bias, especially in target class "other"

Nr. of embedding layer dimensions heavily impacts runtime

Agenda

The weaknesses of the model of milestone 2 formed part of the basis of our next steps

To build on the two milestones, we opened up 3 project streams...

The weaknesses of the model of milestone 2 formed part of the basis of our next steps

To build on the two milestones, we opened up 3 project streams...

The research about data bias delivered two theoretical approaches...

Researching the problem of data bias brought two possible approaches:

Multiple Models

Creating a corrected model by training and evaluating a series of models and ultimately control the bias along multiple dimensions

Bias to Node

Adding extra biases to the nodes of the model to counteract the bias of the data - however this approach lacks transparency

... that the team ultimately decided **not to implement** to focus on other areas

Researching the problem of data bias brought two possible approaches:

The weaknesses of the model of milestone 2 formed part of the basis of our next steps

To build on the two milestones, we opened up 3 project streams...

To tackle the problem of overfitting, three measures were implemented to counteract

Weight Regularization

self.optimizer = optim.Adam(self.model.parameters(), lr=lr,
weight_decay=1e-5)

In order to avoid overfitting, the following measures were taken:

Dropout

Dropout to overcome overfitting
self.dropout = nn.Dropout(0.25)

Early Stopping

Add early_stopping
self.early_stopping = EarlyStopping(tolerance=5, min_delta=10)

The performance did not improve significantly however

The weaknesses of the model of milestone 2 formed part of the basis of our next steps

To build on the two milestones, we opened up 3 project streams...

An LSTM was chosen for a second deep learning model as comparison

Deep learning classifier #2:

Long Short-Term Memory (LSTM)
Classifier

- Tackling vanishing gradient problem
- More control over the short/long term storage of information in neurons
- Require more training data than traditional RNNs

The **LSTM** model **performed worse** than the BoW model which might be due to the rather small data set

Deep learning classifier #2:

Long Short-Term Memory (LSTM)
Classifier

LSTM led to the **following results:**

Agenda

Conclusion

The experiment showed us the importance of simplicity, enough data as well as efficient testing cycles for achieving better results

Simplicity (sometimes) wins

While in certain areas such as NLP or computer vision more complex neural models perform best, depending on the setting simpler models can sometimes bring better performance

Complexity needs data

While data is crucial already in every machine learning task, its **importance just increases with the complexity of a model** - especially when working with neural networks

Quick feedback matters

When testing hypothesis and new implementations, being able to get results quick matters a lot - therefore efficient models and/or working with subsets of data helps a lot

Thank you for your attention - any questions?

