MATH 414 Analysis I, Homework 2

Mobina Amrollahi

Deadline: 09/13/2024, 11:59 PM

1 Section 1.2: Problem 5

Prove by if $a_i \geq 0$, $i \geq 1$, then

$$(1+a_1)(1+a_2)\cdots(1+a_n) \ge 1+a_1+a_2+\cdots+a_n.$$

1.1 Answer: Prove by Induction

Suppose the left-hand side (LHS) and right-hand side (RHS) are the following parts of the inequality in our proof:

$$\underbrace{(1+a_1)(1+a_2)\cdots(1+a_n)}_{\text{(LHS)}} \geq \underbrace{1+a_1+a_2+\cdots+a_n}_{\text{(RHS)}}, \quad a_i \geq 0 \quad \forall i \in \{1,2,\cdots,n\}.$$

Thus, in the basis and the induction step, we will calculate each side individually, showing by considering the induction assumption they inequality holds.

1. **Basis**, n = 1:

LHS:
$$1 + a_1$$

RHS: $1 + a_1$
 \Rightarrow LHS = RHS

2. Induction Assumption:

Suppose for $n \ge 1$ we know that:

$$(1+a_1)(1+a_2)\cdots(1+a_n) \ge 1+a_1+a_2+\cdots+a_n$$

3. Induction Step:

We would like to prove for n+1:

$$(1+a_1)(1+a_2)\cdots(1+a_n)$$
 $(1+a_{n+1})$ $\geq 1+a_1+a_2+\cdots+a_n+a_{n+1}$.

To begin, we would multiply $(1+a_1)(1+a_2)\cdots(1+a_n)$ by each element in $(1+a_{n+1})$ (which are 1 and a_{n+1})

$$\Rightarrow LHS = \underbrace{(1+a_1)(1+a_2)\cdots(1+a_n)\times 1}_{\text{(a)}} + \underbrace{(1+a_1)(1+a_2)\cdots(1+a_n)\times a_{n+1}}_{\text{(b)}}$$

(a):
$$\underbrace{(1+a_1)(1+a_2)\cdots(1+a_n)}_{\text{(Based on the induction assumption)}} 1+a_1+a_2+\cdots+a_n$$

(b):
$$\underbrace{(1+a_1)(1+a_2)\cdots(1+a_n)\times a_{n+1}}_{\text{(Based on the induction assumption)}} (1+a_1+a_2+\cdots+a_n)\times a_{n+1}$$

$$\underbrace{(1+a_1+a_2+\cdots+a_n)\times a_{n+1} \ge (1)\times a_{n+1}}_{\text{(Since } a_i > 0)}$$

$$\Rightarrow$$
 $(1+a_1)(1+a_2)\cdots(1+a_n)\times a_{n+1}\geq a_{n+1}$

(a) + (b):
$$(1+a_1)(1+a_2)\cdots(1+a_n) \times a_{n+1} \ge a_{n+1}$$

 $\ge 1+a_1+a_2+\cdots+a_n+a_{n+1}$
 $\Rightarrow (1+a_1)(1+a_2)\cdots(1+a_n)(1+a_{n+1}) \ge \underbrace{1+a_1+a_2+\cdots+a_n+a_{n+1}}_{\text{(RHS)}}$

This completes the proof.

2 Section 1.2: Problem 7

Suppose that $s_0 > 0$ and $s_n = 1 - e^{-s_{n-1}}$, $n \ge 1$. Show that $0 < s_n < 1$, $n \ge 1$.

Answer: Prove by Induction

- (*) The proof is based on the fact that if $x \in \mathbb{R}$ and 0 < x < 1, the $\forall \epsilon > 0$: $0 < x^{\epsilon} < 1^{-1}$.
 - 1. **Basis**, n=1: Then $s_1=1-e^{-s_0} \to s_1=1-\frac{1}{e^{s_0}}$. Since $0<\frac{1}{e}<1$, and $S_0>0$, then $0<\frac{1}{e^{s_0}}<1$. Thus, for $n=1,\,0< S_1<1$
 - 2. Induction Assumption:

Suppose for $n \le 1 : 0 < s_n < 1$, where $s_n = 1 - e^{-s_{n-1}}$.

3. Induction Step:

We would like to prove for n + 1:

if
$$s_{n+1} = 1 - e^{-s_{n+1}} \Rightarrow 0 < s_{n+1} < 1$$

We know:

$$s_{n+1} = 1 - e^{-s_{n+1}} \Rightarrow s_{n+1} = 1 - (\frac{1}{e})^{s_n}$$

Since $0 < s_n < 1$ (Based on the induction assumption) and $0 < \frac{1}{e} < 1$, then based on (*) $0 < (\frac{1}{e})^{s_n} < 1.$

Thus:

$$0 > -(\frac{1}{e})^{s_n} > -1 \Rightarrow 0 + 1 > -(\frac{1}{e})^{s_n} + 1 > -1 + 1 \Rightarrow 1 > 1 - (\frac{1}{e})^{s_n} > 0$$

¹During a discussion with both the TA and Dr. Gelaki, I'd be using this fact without being required to prove it.

$$\Rightarrow 0 < s_{n+1} < 1$$

Which completes the proof.

3 Section 1.2: Problem 17

The Fibonacci numbers $\{F_n\}_{n=1}^{\infty}$ are defined by $F_1 = F_2 = 1$ and

$$F_{n+1} = F_n + F_{n-1}, \quad n \ge 2$$

Prove by induction that

$$F_n = \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n\sqrt{5}}, \quad n \ge 1.$$

3.1 Answer: Prove by Induction

Suppose the left-hand side (LHS) and right-hand side (RHS) are the following parts of the equality in our proof:

$$\underbrace{F_n}_{\text{(LHS)}} = \underbrace{\frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n \sqrt{5}}}_{\text{(RHS)}}, \quad n \ge 1.$$

Thus, in the basis and the induction step, we will calculate each side individually, showing by considering the induction assumption they will be equal.

For n = 1 and n = 2 we would first show:

$$F_n = \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n\sqrt{5}}$$

By directly calculating the right hand side, and then we prove the basis of the induction for n = 3. This is because, we would like to use the $F_{n+1} = F_n + F_{n-1}$, $n \ge 2$ property of Fibonacci numbers in our proof by induction, by assuming the relationship holds for n and n-1

n=1

LHS:
$$F_1 = 1$$

RHS: $\frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n\sqrt{5}} = \frac{(1+\sqrt{5})^1 - (1-\sqrt{5})^1}{2^1\sqrt{5}} = \frac{1+\sqrt{5}-1+\sqrt{5}}{2\sqrt{5}} = \frac{2\sqrt{5}}{2\sqrt{5}} = 1$
 $\Rightarrow \text{ LHS} = \text{RHS}$

n=2

LHS:
$$F_2 = 1$$

RHS: $\frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n\sqrt{5}} = \frac{(1+\sqrt{5})^2 - (1-\sqrt{5})^2}{2^2\sqrt{5}} = \frac{(1+2\sqrt{5}+5) - (1-2\sqrt{5}+5)}{4\sqrt{5}} = \frac{4\sqrt{5}}{4\sqrt{5}} = 1$
 $\Rightarrow \text{ LHS} = \text{RHS}$

1. **Basis**, n = 3:

LHS:
$$F_3 = F_2 + F_1 \Rightarrow F_3 = 1 + 1 = 2$$

RHS:
$$\frac{(1+\sqrt{5})^3 - (1-\sqrt{5})^3}{2^3\sqrt{5}}$$
LHS: $F_3 = \frac{(1+\sqrt{5})^2 - (1-\sqrt{5})^2}{2^2\sqrt{5}} + \frac{(1+\sqrt{5})^1 - (1-\sqrt{5})^1}{2^1\sqrt{5}}$

$$= \frac{(1+\sqrt{5})^2 - (1-\sqrt{5})^2}{2^2\sqrt{5}} + \frac{2(1+\sqrt{5})^1 - 2(1-\sqrt{5})^1}{2^2\sqrt{5}}$$

$$= \frac{2(1+\sqrt{5})^1 - 2(1-\sqrt{5})^1 + (1+\sqrt{5})^2 - (1-\sqrt{5})^2}{2^2\sqrt{5}}$$

$$= \frac{(1+\sqrt{5})^2 + 2(1+\sqrt{5})^1 - (1-\sqrt{5})^2 - 2(1-\sqrt{5})^1}{2^2\sqrt{5}}$$

We will multiplying F_3 which is so far $\frac{(1+\sqrt{5})^2+2(1+\sqrt{5})-(1-\sqrt{5})^2-2(1-\sqrt{5})}{2^2\sqrt{5}}$ by $\frac{2}{2}$ which wouldn't change the fraction.

$$\Rightarrow F_3 \times \frac{2}{2} = \frac{(1+\sqrt{5})^2 + 2(1+\sqrt{5})^1 - (1-\sqrt{5})^2 - 2(1-\sqrt{5})^1}{2^2\sqrt{5}} \times \frac{2}{2}$$

$$\Rightarrow F_3 = \frac{2(1+\sqrt{5})^2 + 4(1+\sqrt{5})^1 - 2(1-\sqrt{5})^2 - 4(1-\sqrt{5})^1}{2^3\sqrt{5}}$$

$$= \frac{(1+\sqrt{5})(2+2\sqrt{5}+4) - (1-\sqrt{5})(2-2\sqrt{5}+4)}{2^3\sqrt{5}}$$

$$= \frac{(1+\sqrt{5})(5+2\sqrt{5}+1) - (1-\sqrt{5})(5-2\sqrt{5}+1)}{2^3\sqrt{5}}$$

 $(5+2\sqrt{5}+1) \text{ and } (5-2\sqrt{5}+1) \text{ can be written as } (1+\sqrt{5})^2 \text{ and } (1-\sqrt{5})^2. \text{ Thus,}$ $F_3 = \frac{(1+\sqrt{5})(1+\sqrt{5})^2 - (1-\sqrt{5})(1-\sqrt{5})^2}{2^3\sqrt{5}}$ $= \frac{(1+\sqrt{5})^3 - (1-\sqrt{5})^3}{2^3\sqrt{5}}$

2. Induction Assumption:

Suppose $\forall i = 2 \cdots n$ we know that:

$$F_i = F_{i-1} + F_{i-2}$$

and

$$F_i = \frac{(1+\sqrt{5})^i - (1-\sqrt{5})^i}{2^i \sqrt{5}}$$

3. Induction Step:

We would like to prove for F_{n+1} :

$$F_{n+1} = \frac{(1+\sqrt{5})^{n+1} - (1-\sqrt{5})^{n+1}}{2^{n+1}\sqrt{5}}$$

LHS:
$$F_{n+1} = F_n + F_{n-1}$$

RHS: $\frac{(1+\sqrt{5})^{n+1} - (1-\sqrt{5})^{n+1}}{2^{n+1}\sqrt{5}}$

We would like to show LHS and RHS are equal. By using the induction hypothesis:

LHS:
$$F_{n+1} = \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n\sqrt{5}} + \frac{(1+\sqrt{5})^{n-1} - (1-\sqrt{5})^{n-1}}{2^{n-1}\sqrt{5}}$$

$$= \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n\sqrt{5}} + \frac{2(1+\sqrt{5})^{n-1} - 2(1-\sqrt{5})^{n-1}}{2^n\sqrt{5}}$$

$$= \frac{(1+\sqrt{5})^n + 2(1+\sqrt{5})^{n-1} - (1-\sqrt{5})^n - 2(1-\sqrt{5})^{n-1}}{2^n\sqrt{5}}$$

$$= \frac{(1+\sqrt{5})^n + 2(1+\sqrt{5})^{n-1} - (1-\sqrt{5})^n - 2(1-\sqrt{5})^{n-1}}{2^n\sqrt{5}} \times \frac{2}{2}$$

$$= \frac{2(1+\sqrt{5})^n + 4(1+\sqrt{5})^{n-1} - 2(1-\sqrt{5})^n - 4(1-\sqrt{5})^{n-1}}{2^{n+1}\sqrt{5}}$$

$$= \frac{(1+\sqrt{5})^{n-1}(2(1+\sqrt{5})+4) - (1-\sqrt{5})^{n-1}(2(1-\sqrt{5})+4)}{2^{n+1}\sqrt{5}}$$

$$= \frac{(1+\sqrt{5})^{n-1}(2+2\sqrt{5}+4) - (1-\sqrt{5})^{n-1}(2-2\sqrt{5}+4)}{2^{n+1}\sqrt{5}}$$

$$= \frac{(1+\sqrt{5})^{n-1}(5+2\sqrt{5}+1) - (1-\sqrt{5})^{n-1}(5-2\sqrt{5}+1)}{2^{n+1}\sqrt{5}}$$

$$= \frac{(1+\sqrt{5})^{n-1}(1+\sqrt{5})^2 - (1-\sqrt{5})^{n-1}(1-\sqrt{5})^2}{2^{n+1}\sqrt{5}}$$

$$= \frac{(1+\sqrt{5})^{n+1} - (1-\sqrt{5})^{n+1}}{2^{n+1}\sqrt{5}}$$

$$= RHS$$

Which completes the proof.

4 Section 1.3: Problem 2

Let
$$S_k = (1 - \frac{1}{k}, 2 + \frac{1}{k}], k \ge 1$$
. Find
(a) $\bigcup_{k=1}^{\infty} S_k$

- (b) $\bigcap_{k=1}^{\infty} S_k$
- (c) $\bigcup_{k=1}^{\infty} S_k^c$
- (d) $\bigcap_{k=1}^{\infty} S_k^c$

Answer

(a)
$$\bigcup_{k=1}^{\infty} S_k = S_1 \bigcup S_2 \bigcup S_3 \bigcup S_4 \cdots = (0,3] \bigcup (\frac{1}{2},\frac{5}{2}] \bigcup (\frac{2}{3},\frac{7}{3}] \bigcup (\frac{3}{4},\frac{9}{4}] \cdots = (0,3]$$

(b)
$$\bigcap_{k=1}^{\infty} S_k = S_1 \cap S_2 \cap S_3 \cap S_4 \cdots = (0,3] \cap (\frac{1}{2},\frac{5}{2}] \cap (\frac{2}{3},\frac{7}{3}] \cap (\frac{3}{4},\frac{9}{4}] \cdots = [1,2]$$

(c)
$$\bigcup_{k=1}^{\infty} S_k^c = (\bigcap_{k=1}^{\infty} S_k)^c = \mathbb{R} - \bigcap_{k=1}^{\infty} S_k = \mathbb{R} - [1, 2] = (-\infty, 1) \bigcup (2, \infty)$$

(d)
$$\bigcap_{k=1}^{\infty} S_k^c = (\bigcup_{k=1}^{\infty} S_k)^c = \mathbb{R} - \bigcup_{k=1}^{\infty} S_k = \mathbb{R} - (0,3] = (-\infty,0] \bigcup (3,\infty)$$

5 Section 1.3: Problem 4

Find the largest ϵ such that S contains an ϵ -neighborhood of x_0 .

(a)
$$x_0 = \frac{3}{4}$$
, $S = [\frac{1}{2}, 1)$

(b)
$$x_0 = \frac{2}{3}, S = \left[\frac{1}{2}, \frac{3}{2}\right]$$

(c)
$$x_0 = 5, S = (-1, \infty)$$

(d)
$$x_0 = 1, S = (0, 2)$$

Answer

The general idea to pick the largest ϵ for x_0 considering S=(a,b) is to first make sure $x_0 \in S$, then pick the $\epsilon = \min\{x_0 - a, b - x_0\}$. This will assure that $(x_0 - \epsilon, x_0 + \epsilon) \in S$, and ϵ is the largest possible without $(x_0 - \epsilon, x_0 + \epsilon)$ falling out of the S.

(a)
$$x_0 = \frac{3}{4}$$
, $S = [\frac{1}{2}, 1)$

1.
$$x_0 \in S \sqrt{}$$

2.
$$\min\{x_0 - a, b - x_0\} = \min\{\frac{3}{4} - \frac{1}{2}, 1 - \frac{3}{4}\} = \min\{\frac{1}{4}, \frac{1}{4}\} = \frac{1}{4} \to \epsilon = \frac{1}{4}$$

$$\Rightarrow (x_0 - \epsilon, x_0 + \epsilon) = (\frac{3}{4} - \frac{1}{4}, \frac{3}{4} + \frac{1}{4}) = (\frac{1}{2}, 1)$$

(b)
$$x_0 = \frac{2}{3}, S = \left[\frac{1}{2}, \frac{3}{2}\right]$$

1.
$$x_0 \in S \sqrt{}$$

2.
$$\min\{x_0 - a, b - x_0\} = \min\{\frac{2}{3} - \frac{1}{2}, \frac{3}{2} - \frac{2}{3}\} = \min\{\frac{1}{6}, \frac{5}{6}\} = \frac{1}{6} \to \epsilon = \frac{1}{6}$$

$$\Rightarrow (x_0 - \epsilon, x_0 + \epsilon) = (\frac{2}{3} - \frac{1}{6}, \frac{2}{3} + \frac{1}{6}) = (\frac{1}{2}, \frac{5}{6})$$

(c)
$$x_0 = 5, S = (-1, \infty)$$

1.
$$x_0 \in S \sqrt{}$$

2.
$$\min\{x_0 - a, b - x_0\} = \min\{5 - (-1), \infty - 5\} = \min\{6, \infty\} = 6 \to \epsilon = 6$$

$$\Rightarrow$$
 $(x_0 - \epsilon, x_0 + \epsilon) = (5 - 6, 5 + 6) = (-1, 11)$

(d)
$$x_0 = 1, S = (0, 2)$$

1.
$$x_0 \in S \sqrt{}$$

2.
$$\min\{x_0 - a, b - x_0\} = \min\{1 - 0, 2 - 1\} = \min\{1, 1\} = 1 \to \epsilon = 1$$

$$\Rightarrow (x_0 - \epsilon, x_0 + \epsilon) = (1 - 1, 1 + 1) = (0, 2)$$

6 Section 1.3: Problem 5

Describe the following sets as open, closed, or neither, and find S^0 , $(S^c)^0$, and $(S^0)^c$.

(a)
$$S = (-1, 2) \cup [3, \infty)$$

(b)
$$S = (-\infty, -1) \cup (2, \infty)$$

(c)
$$S = [-3, -2] \cup [7, 8]$$

(d)
$$S = \{x \mid x = \text{integer}\}$$

Answer

To find $(S^c)^0$ we have to find S^c , and the find the set of its interior points. Thus, in number 4 for each set, we will find S^c .

(a)
$$S = (-1, 2) \cup [3, \infty)$$

1. Description: S is neither closed or open. It's not open, because $3 \in S$ doesn't belong to S^0 . It's not closed because then it means S^c is open, which is not true since $2 \in S^c$ doesn't belong to $(S^c)^0$.

2.
$$S^0 = (-1, 2) \cup (3, \infty)$$

3.
$$(S^0)^c = \mathbb{R} - S^0 = (-\infty, -1] \cup [2, 3)$$

4.
$$S^c = \mathbb{R} - S = (-\infty, -1] \cup [2, 3)$$

5.
$$(S^c)^0 = (-\infty, -1) \cup (2, 3)$$

(b)
$$S = (-\infty, 1) \cup (2, \infty)$$

1. Description: S is the union of open sets, thus it's open.

2.
$$S^0 = (-\infty, 1) \cup (2, \infty)$$

3.
$$(S^0)^c = \mathbb{R} - S^0 = [1, 2]$$

4.
$$S^c = \mathbb{R} - S = [1, 2]$$

5.
$$(S^c)^0 = (1,2)$$

(c)
$$S = [-3, -2] \cup [7, 8]$$

- 1. Description: S is the union of closed sets, thus it's closed.
- 2. $S^0 = (-3, -2) \cup (7, 8)$

3.
$$(S^0)^c = \mathbb{R} - S^0 = (-\infty, -3] \cup [-2, 7] \cup [8, \infty)$$

4.
$$S^c = \mathbb{R} - S = (-\infty, -3) \cup (-2, 7) \cup (8, \infty)$$

5.
$$(S^c)^0 = (-\infty, -3) \cup (-2, 7) \cup (8, \infty)$$

(d)
$$S = \{x \mid x = integer\}$$

1. Description: S is closed, and to show that, we will show $S^c = \mathbb{R} - \mathbb{Z}$, is open by showing $\forall x \in S^c$ there's an ϵ -neighborhood of x in S^c , meaning that x is an interior point in S. Consider n_M as the smallest integer that is greater than x. In addition, consider n_m as the greatest integer that's smaller than x. Suppose $\epsilon = \min\{x - n_m, n_M - x\}$. Then, this ϵ -neighborhood of x in completely in S^c . Thus, S^c is open, and $(S^c)^c$ which is S is closed.

2.
$$S^0 = \emptyset$$

3.
$$(S^0)^c = \mathbb{R} - S^0 = \mathbb{R}$$

4.
$$S^c = \mathbb{R} - S = \{x \mid x = \text{not integer}\}\$$

5.
$$(S^c)^0 = S^c$$

7 Section 1.3: Problem 8

- (a) Show that the intersection of finitely many open sets is open.
- (b) Give an example showing that the intersection of infinitely many open sets may fail to be open.

Answer

(a) Suppose $S = \bigcap_{i=1}^n S_i$. We will show $\forall x \in S$, there's an ϵ -neighborhood of x, N such that $N \subseteq S$. Let $x_0 \in S$. Then:

$$x_0 \in \bigcap_{i=1}^n S_i \to x_0 \in S_i \quad \forall i$$

Since S_i s are open, Then $S_i = (S_i)^0$, meaning that $\forall x \in S_i$ there's an ϵ_i -neighborhood of x, N_i such that $N_i \subseteq S_i$. Thus, $\exists \epsilon_1, \epsilon_2, \dots, \epsilon_n > 0$ such that:

$$(x-\epsilon_1,x+\epsilon_1) \subseteq S_1, (x-\epsilon_2,x+\epsilon_2) \subseteq S_2,\cdots, (x-\epsilon_n,x+\epsilon_n) \subseteq S_n$$

Suppose $\epsilon := \min\{\epsilon_1, \epsilon_2, \cdots, \epsilon_n\}$, then, if we consider $N = (x - \epsilon, x + \epsilon)$:

$$N \subseteq N_1, N \subseteq N_2, \cdots, N \subseteq N_n \Rightarrow N \subseteq S_1, N \subseteq S_2, \cdots, N \subseteq S_n \Rightarrow N \subseteq \bigcap_{i=1}^n S_i \Rightarrow N \subseteq S_i$$

Which completes the proof.

Please note that the finite assumption is used when considering $\epsilon := \min\{\epsilon_1, \epsilon_2, \cdots, \epsilon_n\}$. We can't assume such when we have infinitely many open sets!

(b) Suppose $S_n = (\frac{1}{2} - \frac{1}{n}, \frac{1}{2} + \frac{1}{n}) \ \forall n \in \mathbb{Z}^+, \text{ and } S = \bigcap_{i=1}^{\infty} S_i$. Then:

$$S = \bigcap_{i=1}^{\infty} S_i \Rightarrow S = \{\frac{1}{2}\}$$

Consider $S^c = \mathbb{R} - \{\frac{1}{2}\}$. Since, for any element in S^c there's a neighborhood of it that it's completely in S^c , this set is open. Therefore, $\{\frac{1}{2}\}$ is closed.

8 Section 1.3: Problem 9

- (a) Show that the union of finitely many closed sets is close.
- (b) Give an example showing that the union of infinitely many closed sets may fail to be close.

Answer

- (a) Suppose $S = \bigcup_{i=1}^n S_i$. Then $S^c = (\bigcup_{i=1}^n S_i)^c = \bigcap_{i=1}^n S_i^c$. Since S_i are closed, S_i^c are open. Based on the previous problem's part (a) the intersection of finite open sets is open. Thus $\bigcap_{i=1}^n S_i^c$ is open. Therefore its complete is closed. Hence S^c is open, and $(S^c)^c$ is closed, which means S is closed.
- (b) Suppose $S_n = [\frac{1}{n}, 1] \ \forall n \in \mathbb{Z}^+$, and $S = \bigcup_{i=1}^{\infty} S_i$. Then we will show:

$$S = \bigcup_{i=1}^{\infty} S_i \Rightarrow S = (0,1]$$

 $\forall 0 < \epsilon \le 1$ and by using the Archimedean property of real numbers [1], we can consider n begin the first positive integer number greater than $\frac{1}{\epsilon}$ (consider $\epsilon = 1, \rho = \frac{1}{\epsilon}$ in the Archimedean theorem) then:

$$\frac{1}{\epsilon} \le n \to \frac{1}{n} \le \epsilon \text{ and } \epsilon \le 1 \to \epsilon \in S_n \Rightarrow \epsilon \in S$$

Thus.

$$S = (0, 1]$$

As you can see S is neither open or closed.

9 Section 1.3: Problem 11

Find the set of limit points of S, ∂S , \bar{S} , the set of isolated points of S, and the exterior of S.

- (a) $S = (-\infty, -2) \cup (2, 3) \cup \{4\} \cup (7, \infty)$
- (b) $S = \{\text{all integers}\}$
- (c) $S = \bigcup \{(n, n+1) \mid n = \text{ integer} \}$
- (d) $S = \{x \mid x = \frac{1}{n}, n = 1, 2, 3, \dots \}$

Answer

- (a) $S = (-\infty, -2) \cup (2, 3) \cup \{4\} \cup (7, \infty)$
 - 1. Set of limit points of $S = (-\infty, -2] \cup [2, 3] \cup [7, \infty)$
 - 2. $\delta S = \{-2, 2, 3, 4, 7\}$
 - 3. $\bar{S} = S \cup \delta S = (-\infty, -2] \cup [2, 3] \cup \{4\} \cup [7, \infty)$
 - 4. Set of isolated points of $S = \{4\}$
 - 5. Exterior of $S = (S^c)^0$:

$$S^c = \mathbb{R} - S = [-2, 2] \cup [3, 4) \cup (4, 7]$$

 $\Rightarrow S = (S^c)^0 = (-2, 2) \cup (3, 4) \cup (4, 7)$

- (b) $S = \{\text{all integers}\}\$
 - 1. Set of limit points of $S = \emptyset$
 - 2. $\delta S = S$: For every ϵ -neighborhood of element $x \in S$, the element itself is in S, and the deleted neighborhood is in S^c . For $x \notin S$, we can find an ϵ -neighborhood that doesn't contain any point in S.
 - 3. $\bar{S} = S \cup \delta S = S$
 - 4. Set of isolated points of S = S
 - 5. Exterior of $S = (S^c)^0$:

$$S^{c} = \mathbb{R} - \mathbb{Z} = \cdots (-2, -1) \cup (-1, 0) \cup (0, 1) \cup (1, 2) \cup \cdots$$

$$\Rightarrow S = (S^{c})^{0} = \cdots (-2, -1) \cup (-1, 0) \cup (0, 1) \cup (1, 2) \cup \cdots$$

- (c) $S = \bigcup \{(n, n+1) \mid n = \text{ integer} \}$
 - 1. Set of limit points of $S = \bigcup \{ [n, n+1] \mid n = \text{ integer} \} = \mathbb{R}$
 - 2. $\delta S = \{n \mid n = \text{ integer}\}\$
 - 3. $\bar{S} = S \cup \delta S = \bigcup \{ [n, n+1] \mid n = \text{ integer} \} = \mathbb{R}$
 - 4. Set of isolated points of $S = \emptyset$
 - 5. Exterior of $S = (S^c)^0$:

$$S^c = \mathbb{R} - S = \{n \mid n = \text{ integer}\}\$$

 $\Rightarrow S = (S^c)^0 = \emptyset$

- (d) $S = \{x \mid x = \frac{1}{n}, n = 1, 2, 3, \dots \}$
 - 1. Set of limit points of $S = \emptyset$. Suppose $x \in S$. Any ϵ -neighborhood of x contains some irrational numbers that can't be in S based on its definition.
 - 2. $\delta S = S$
 - 3. $\bar{S} = S \cup \delta S = S$
 - 4. Set of isolated points of S = S
 - 5. Exterior of $S = (S^c)^0$:

$$S^{c} = \mathbb{R} - S = (-\infty, 0] \cup [1, \infty) \cup (1, \frac{1}{2}) \cup (\frac{1}{2}, \frac{1}{3}) \cup (\frac{1}{3}, \frac{1}{4}) \cup (1, 2) \cup \cdots$$
$$\Rightarrow S = (S^{c})^{0} = (-\infty, 0) \cup (1, \infty) \cup (1, \frac{1}{2}) \cup (\frac{1}{2}, \frac{1}{3}) \cup (\frac{1}{3}, \frac{1}{4}) \cup (1, 2) \cup \cdots$$

10 Section 1.3: Problem 12

Prove: A limit point of a set S is either an interior point or a boundary point of S.

Answer

Let $x_0 \in \mathbb{R}$ be a limit point of S. In addition, consider $\forall \epsilon > 0$, ϵ -neighborhood of x_0 is called N_{ϵ} . Since x_0 is a limit point of S, then:

$$N_{\epsilon} \backslash \{x_0\} \cap S \neq \emptyset$$

Consider two following scenarios:

- 1. $x_0 \in S$: then $x_0 \in N_{\epsilon} \cap S, \forall \epsilon > 0$. There are two possible situations that might occur:
 - (a) $\forall \epsilon > 0$:

$$N_{\epsilon} \cap S^c \neq \emptyset$$

Then, every ϵ -neighborhood of x_0 contains at least one point in S^c , and at least one point in S (which is x_0). Thus, x_0 is a **boundary point**.

(b) $\exists \epsilon_0 > 0$ such that:

$$N_{\epsilon_0} \cap S^c = \emptyset$$

Which means S contains ϵ_0 —neighborhood of x_0 . Therefore x_0 is an **interior point** of S.

2. $x_0 \notin S$: then $x_0 \in S^c$, and since $N_{\epsilon} \setminus \{x_0\} \cap S \neq \emptyset \ \forall \epsilon > 0$, every ϵ -neighborhood of x_0 contains at least one point in S, and at least one point in S^c (which is x_0). Thus, x_0 is a **boundary point**.

11 Section 1.3: Problem 13

Prove: An isolated point of S is a boundary point of S^c .

Answer

Suppose $\forall \epsilon > 0$, ϵ -neighborhood of x_0 is called N_{ϵ} . To prove x_0 is a boundary point of S^c , we need to prove:

$$N_{\epsilon} \cap S^c \neq \emptyset$$
 and $N_{\epsilon} \cap S \neq \emptyset$, $\forall \epsilon > 0$

Since, x_0 is an isolated point of S, $x_0 \in S$. Therefore $x_0 \in N_{\epsilon} \cap S$, $\forall \epsilon > 0$. Thus, $N_{\epsilon} \cap S \neq 0$. Additionally, since x_0 is an isolated point of S, there exists an ϵ -neighborhood of x_0 that contains no other point in S. Meaning, $\exists \epsilon_0 > 0$ such that:

$$N_{\epsilon_0} - \{x_0\} \subseteq S^c$$

Let $\epsilon_0 \neq \epsilon_1 > 0$ be another ϵ -neighborhood of x_0 . There will be two possible outcomes:

1. $\epsilon_1 > \epsilon_0$, then:

$$N_{\epsilon_0} \subseteq N_{\epsilon_1}$$

Therefore, every member in N_{ϵ_0} is in N_{ϵ_1} , including x_0 , and many others. Hence, if we consider $N_{\epsilon_0}\setminus\{x_0\}$:

$$N_{\epsilon_0} \setminus \{x_0\} \cap N_{\epsilon_1} \neq \emptyset$$

By considering $N_{\epsilon_0} \setminus \{x_0\} \cap N_{\epsilon_1}$, since every element of this set is in $N_{\epsilon_0} \setminus \{x_0\}$, and S^c contains $N_{\epsilon_0} \setminus \{x_0\}$, therefore every element of this set is also in S^c , which leads to

$$N_{\epsilon_1} \cap S^c \neq \emptyset$$
.

2. $\epsilon_1 < \epsilon_0$, then:

$$N_{\epsilon_1} \subseteq N_{\epsilon_n}$$

This means every member in N_{ϵ_1} is in N_{ϵ_0} , including x_0 , and many others. Hence, if we consider $N_{\epsilon_1} - \{x_0\}$:

$$N_{\epsilon_1} \cap N_{\epsilon_0} \setminus \{x_0\} \neq \emptyset$$

By considering $N_{\epsilon_1} \cap N_{\epsilon_0} \setminus \{x_0\}$, since every element of this set is in $N_{\epsilon_0} \setminus \{x_0\}$, and S^c contains $N_{\epsilon_0} \setminus \{x_0\}$, therefore every element of this set is also in S^c , which leads to

$$N_{\epsilon_1} \cap S^c \neq \emptyset$$
.

This will show:

$$N_{\epsilon} \cap S^c \neq 0, \quad \forall \epsilon > 0$$

Which completes the proof.

12 Section 1.3: Problem 14

Prove:

- (a) A boundary point of a set S is either a limit point or an isolated point of S.
- (b) A set S is closed if and only if $S = \bar{S}$.

Answer

(a) Suppose $\forall \epsilon > 0$, ϵ -neighborhood of x_0 is called N_{ϵ} . Let x_0 be a boundary point of S, then

$$N_{\epsilon} \cap S^c \neq \emptyset$$
 and $N_{\epsilon} \cap S \neq \emptyset$, $\forall \epsilon > 0$

Consider two following scenarios:

- 1. $x_0 \in S$: then $x_0 \in N_{\epsilon} \cap S$, $\forall \epsilon > 0$. In addition, since $N_{\epsilon} \cap S^c \neq \emptyset$ and the fact that $x_0 \notin S^c$, leads to $N_{\epsilon_0} \setminus \{x_0\} \cap S^c \neq \emptyset$. This will lead to two possible situations that might occur:
 - 1.1. $\exists \epsilon_0 > 0$ such that:

$$N_{\epsilon_0} \setminus \{x_0\} \cap S^c = N_{\epsilon_0} \setminus \{x_0\}$$

Then, we found a ϵ_0 -neighborhood of x_0 that contains no other point than x_0 in S. Therefore, x_0 is an **isolated point**.

1.2. $\forall \epsilon > 0$:

$$N_{\epsilon} \setminus \{x_0\} \cap S^c \subset N_{\epsilon} \setminus \{x_0\}$$

Which means every deleted ϵ -neighborhood of x_0 contains at least one point in S. Thus, x_0 is a **limit point**.

2. $x_0 \notin S$: then $x_0 \in S^c$, and since $N_{\epsilon} \cap S \neq \emptyset \ \forall \epsilon > 0$, in addition to the fact that $x_0 \notin S$ leads to:

$$N_{\epsilon} \setminus \{x_0\} \cap S \neq \emptyset \quad \forall \epsilon > 0$$

Therefore x_0 is a **limit point** of S.

- (b) We want to show S is closed $\Leftrightarrow S = \bar{S}$.
 - \Rightarrow S is closed: To show $S = \bar{S}$, we have to show two things:

$$S \subseteq \bar{S}$$
 and $\bar{S} \subseteq S$

Since $\bar{S} = S \cup \delta S$, therefore $S \subseteq \bar{S}$.

We will prove $\bar{S} \subseteq S$ by contradiction.

Suppose $\bar{S} \nsubseteq S$. Then, $\exists x_0 \in \bar{S}$ such that $x_0 \notin S$. Thus, $x_0 \in \delta S$. Meaning that every ϵ -neighborhood of x_0 contains at least one point in S, and at least one point in S^c . Consider $\forall \epsilon > 0$, ϵ -neighborhood of x_0 is called N_{ϵ} .

$$N_{\epsilon} \cap S \neq \emptyset$$
 and $x_0 \notin S \Rightarrow N_{\epsilon} \backslash x_0 \cap S \neq \emptyset$, $\forall \epsilon > 0$

Then, any deleted neighborhood of x_0 contains a point in S. Thus, x_0 is a limit point. Since S is closed, it contains all of its limit point. Which is a contradiction. Therefor $\bar{S} \subseteq S$.

 $\Leftarrow S = \bar{S}$: To show S is closed, we have to show it contains all of its limit points. **Prove by Contradiction:** Suppose the opposite is true. Meaning that the $\exists x_0 \notin S$ which is a limit point of S. Then in that case, $x_0 \in S^c$. In addition, since x_0 is a limit point, it means any deleted neighborhood of x_0 contains a point in S. Then x_0 is a boundary point, since for all ϵ -neighborhood of x_0 contains a point in S, and contains x_0 in S^c . We know $S = \bar{S}$. Also, we know $\bar{S} = S \bigcup \delta S$, where δS is the set of boundary points in S including x_0 . Thus:

$$x_0 \in \delta S \in \Rightarrow x \in \bar{S} \Rightarrow x_0 \in S$$

Which is a contradiction. Therefore S contains all of its limit point, hence it's closed.

References

[1] William F Trench. Introduction to real analysis. 2013.