Formulaire de trigonométrie

§1 Les angles remarquables:

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0
$\tan \alpha$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	$+\infty$	0

§ 2 Angles associés

$$\cos(-x) = \cos(x) \; ; \quad \sin(-x) = -\sin(x) \; ; \quad \tan(-x) = -\tan(x)$$

$$\cos(\pi - x) = -\cos(x) \; ; \quad \sin(\pi - x) = \sin(x) \; ; \quad \tan(\pi - x) = -\tan(x)$$

$$\cos(\pi + x) = -\cos(x) \; ; \quad \sin(\pi + x) = -\sin(x) \; ; \quad \tan(\pi + x) = \tan(x)$$

$$\cos(\frac{\pi}{2} - x) = \sin(x) \; ; \quad \sin(\frac{\pi}{2} - x) = \cos(x)$$

§ 3 Formule fondamentale

$$\cos^2 a + \sin^2 a = 1$$

dont on déduit : $1 + \tan^2 a = \frac{1}{\cos^2 a}$

§ 4 Formules d'addition

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$
$$\cos(a-b) = \cos a \cos b + \sin a \sin b$$
$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$
$$\sin(a-b) = \sin a \cos b - \cos a \sin b$$

§ 5 Formules de duplication

$$\cos(2a) = \cos^2 a - \sin^2 a = 2\cos^2 a - 1 = 1 - 2\sin^2 a$$

$$\sin(2a) = 2\sin a \sin b$$

$$\tan(2a) = \frac{2\tan a}{1 - \tan^2 a}$$

On en déduit les formules de Carnot : $2\cos^2 a = 1 + \cos(2a)$ et $2\sin^2 a = 1 - \cos(2a)$

§6 Formules de Simpson

$$\cos a \cos b = \frac{1}{2} \left[\cos(a+b) + \cos(a-b) \right]$$
$$\sin a \sin b = \frac{1}{2} \left[\cos(a-b) - \cos(a+b) \right]$$
$$\sin a \cos b = \frac{1}{2} \left[\sin(a+b) + \sin(a-b) \right]$$