Encodificador

Tabla 1: Encodificación de 4bits a 2bits de salida

	Entr	Salida				
A	В	C	D	Y 1	Y2	
1	0	0	0	0	0	
1	1	0	0	0	1	
1	1	1	0	1	0	
1	1	1	1	1	1	

Por ende, la siguiente tabla representa el número de la columna del dedo según la salida:

Tabla 2: Encodificación del número de dedos a 2bits de salida

Número de la Columna del	Salida						
Dedo	Y1	Y2					
1	0	0					
2	0	1					
3	1	0					
4	1	1					

Continuando con el desarrollo se desarrollarán las dos respuestas en términos de suma de productos:

$$f_{Y1}(A,B,C,D) = (A \cdot B \cdot C \cdot \neg D) + (A \cdot B \cdot C \cdot D)$$

$$f_{Y2}(A,B,C,D) = (A \cdot B \cdot \neg C \cdot \neg D) + (A \cdot B \cdot C \cdot D)$$

Estas operaciones se intentarán simplificar utilizando algebra booleana. Empezando con la primera función:

$$f_{Y1}(A, B, C, D) = (A \cdot B \cdot C \cdot \neg D) + (A \cdot B \cdot C \cdot D)$$
$$= (A \cdot B \cdot C) \cdot [\neg D + D]$$

$$f_{Y1}(A,B,C,D) = A \cdot B \cdot C$$

Y ahora esto se verificará en una tabla:

A	В	С	D	A·B·C	Y1
1	0	0	0	0	0
1	1	0	1	0	0
1	1	1	0	1	1
1	1	1	1	1	1

CORRECTO

Ahora con la siguiente función tenemos:

$$f_{Y2}(A, B, C, D) = (A \cdot B \cdot \neg C \cdot \neg D) + (A \cdot B \cdot C \cdot D)$$
$$= (A \cdot B) \cdot [\neg C \cdot \neg D + C \cdot D]$$
$$f_{Y2}(A, B, C, D) = (A \cdot B) \cdot [C \odot D]$$

Y ahora esto se verificará en una tabla:

A	В	С	D	$\neg C$	$\neg D$	$(A \cdot B) \cdot [(\neg C \cdot \neg D) + (C \cdot D)]$	Y2
1	0	0	0	1	1	0	0
1	1	0	0	1	1	1	1
1	1	1	0	0	1	0	0
1	1	1	1	0	0	1	1

CORRECTO

Esto implica que el circuito final sería:

B AND AND Y2

D XNOR

Figura 1: Circuito final del Encodificador

Componentes necesarios:

- Una compuerta AND (74LS08)
- Una compuerta XNOR (74LS266)

Decodificador

Tabla 3: Decodificación de 5bits a 3bits de salida

		Е	ntrada			Salida		Valor	Valor	Resultado		Salida					
1D 2	D.	3D	Y1	Y2	R1	R2	R3	Numerico Y	Numerico D	Resultado	R1	R2	R3				
0	0	0	0	0	X	X	X	1	0	1	0	0	1				
0	0	0	0	1	X	X	X	2	0	2	0	1	0				
0	0	0	1	0	X	X	X	3	0	3	0	1	1				
0	0	0	1	1	X	X	X	4	0	4	1	0	0				
0	0	1	0	0	X	X	X	1	1	2	0	1	0				
0	0	1	0	1	X	X	X	2	1	3	0	1	1	Enti	ada	Valor	
0	0	1	1	0	X	X	X	3	1	4	1	0	0	Y1	Y2	Numerico Y	
0	0	1	1	1	X	X	X	4	1	5	1	0	1	0	0	1	
0	1	0	0	0	X	X	X	1	2	3	0	1	1	0	1	2	
0	1	0	0	1	X	X	X	2	2	4	1	0	0	1	0	3	
0	1	0	1	0	X	X	X	3	2	5	1	0	1	1	1	4	
0	1	0	1	1	X	X	X	4	2	6	1	1	0				
0	1	1	0	0	X	X	X	1	3	4	1	0	0				
0	1	1	0	1	X	X	X	2	3	5	1	0	1				
0	1	1	1	0	X	X	X	3	3	6	1	1	0				
0	1	1	1	1	X	X	X	4	3	7	1	1	1				
1	0	0	0	0	X	X	X	1	4	5	1	0	1				
1	0	0	0	1	X	X	X	2	4	6	1	1	0				
1	0	0	1	0	X	X	X	3	4	7	1	1	1		Entrada		Valor
1	0	0	1	1	X	X	X	4	4	0	0	0	0	1D	2D	3D	Numerico D
1	0	1	0	0	X	X	X	1	5	6	1	1	0	0	0	0	0
1	0	1	0	1	X	X	X	2	5	7	1	1	1	0	0	1	1
1	0	1	1	0	X	X	X	3	5	0	0	0	0	0	1	0	2
1	0	1	1	1	X	X	X	4	5	1	0	0	1	0	1	1	3
1	1	0	0	0	X	X	X	1	6	7	1	1	1	1	0	0	4
1	1	0	0	1	X	X	X	2	6	0	0	0	0	1	0	1	5
1	1	0	1	0	X	X	X	3	6	1	0	0	1	1	1	0	6
1	1	0	1	1	X	X	X	4	6	2	0	1	0	1	1	1	7
1	1	1	0	0	X	X	X	1	7	0	0	0	0				
1	1	1	0	1	X	X	X	2	7	1	0	0	1				
1	1	1	1	0	X	X	X	3	7	2	0	1	0				
1	1	1	1	1	X	X	X	4	7	3	0	1	1				

Continuando con el desarrollo se desarrollarán las tres respuestas en términos de suma de productos:

Función#1:

```
\begin{split} f_{R1}(1D,2D,3D,Y1,Y2) &= (\overline{1D} \cdot \overline{2D} \cdot \overline{3D} \cdot Y1 \cdot Y2) + (\overline{1D} \cdot \overline{2D} \cdot 3D \cdot Y1 \cdot \overline{Y2}) + (\overline{1D} \cdot \overline{2D} \cdot 3D \cdot Y1 \cdot Y2) \\ &+ (\overline{1D} \cdot 2D \cdot \overline{3D} \cdot \overline{Y1} \cdot Y2) + (\overline{1D} \cdot 2D \cdot \overline{3D} \cdot Y1 \cdot \overline{Y2}) + (\overline{1D} \cdot 2D \cdot \overline{3D} \cdot Y1 \cdot Y2) \\ &+ (\overline{1D} \cdot 2D \cdot 3D \cdot \overline{Y1} \cdot \overline{Y2}) + (\overline{1D} \cdot 2D \cdot 3D \cdot \overline{Y1} \cdot Y2) + (\overline{1D} \cdot 2D \cdot 3D \cdot Y1 \cdot \overline{Y2}) \\ &+ (\overline{1D} \cdot 2D \cdot 3D \cdot Y1 \cdot Y2) + (1D \cdot \overline{2D} \cdot \overline{3D} \cdot \overline{Y1} \cdot \overline{Y2}) + (1D \cdot \overline{2D} \cdot \overline{3D} \cdot \overline{Y1} \cdot Y2) \\ &+ (1D \cdot \overline{2D} \cdot \overline{3D} \cdot Y1 \cdot \overline{Y2}) + (1D \cdot \overline{2D} \cdot 3D \cdot \overline{Y1} \cdot \overline{Y2}) + (1D \cdot \overline{2D} \cdot 3D \cdot \overline{Y1} \cdot Y2) \\ &+ (1D \cdot 2D \cdot \overline{3D} \cdot \overline{Y1} \cdot \overline{Y2}) \end{split}
```

Esto simplificado da lo siguiente:

```
f_R1 (1D,2D,3D,Y1,Y2) =
(¬1D · ¬2D · ¬3D · Y1 · Y2) +
(¬1D · ¬2D · 3D · Y1) +
(¬1D · 2D · ¬3D · ¬Y1 · Y2) +
(¬1D · 2D · ¬3D · Y1) +
(¬1D · 2D · ¬3D · Y1) +
(1D · ¬2D · ¬3D · ¬Y1) +
```

```
\begin{split} f_{R1}(1D,2D,3D,Y1,Y2) &= \left[ (\neg 1D \cdot \neg 2D) \cdot \left( (\neg 3D \cdot Y1 \cdot Y2) + (3D \cdot Y1) \right) \right] \\ &+ \left[ (\neg 1D \cdot 2D \cdot \neg 3D) \cdot \left( (\neg Y1 \cdot Y2) + Y1 \right) \right] + (\neg 1D \cdot 2D \cdot 3D) \\ &+ \left[ (1D \cdot \neg 2D \cdot \neg 3D) \cdot \left( \neg Y1 + (Y1 \cdot \neg Y2) \right) \right] \\ &+ \left[ 1D \cdot \left( (\neg 2D \cdot 3D \cdot \neg Y1) + (2D \cdot \neg 3D \cdot \neg Y1 \cdot \neg Y2) \right) \right] \\ f_{R1}(1D,2D,3D,Y1,Y2) &= \left[ (\neg 1D \cdot \neg 2D) \cdot Y1 \cdot (\neg 3D \cdot Y2 + 3D) \right] + \left[ (\neg 1D \cdot 2D) \cdot (\neg 3D \cdot (Y1 + Y2) + 3D) \right] + \left[ (1D \cdot \neg 2D) \cdot (\neg 3D \cdot (\neg Y1 + (Y1 \cdot \neg Y2)) + (3D \cdot \neg Y1) \right) \right] + (1D \cdot 2D \cdot \neg 3D \cdot \neg Y1 \cdot \neg Y2) \end{split}
```

Función#2

La siguiente función será:

```
f_{R2}(1D, 2D, 3D, Y1, Y2)
= (\neg 1D \cdot \neg 2D \cdot \neg 3D \cdot \neg Y1 \cdot Y2) + (\neg 1D \cdot \neg 2D \cdot \neg 3D \cdot Y1 \cdot \neg Y2)
+ (\neg 1D \cdot \neg 2D \cdot 3D \cdot \neg Y1 \cdot \neg Y2) + (\neg 1D \cdot \neg 2D \cdot 3D \cdot \neg Y1 \cdot Y2)
+ (\neg 1D \cdot 2D \cdot \neg 3D \cdot \neg Y1 \cdot \neg Y2) + (\neg 1D \cdot 2D \cdot \neg 3D \cdot Y1 \cdot Y2)
+ (\neg 1D \cdot 2D \cdot 3D \cdot Y1 \cdot \neg Y2) + (\neg 1D \cdot 2D \cdot 3D \cdot Y1 \cdot Y2)
+ (1D \cdot \neg 2D \cdot \neg 3D \cdot \neg Y1 \cdot Y2) + (1D \cdot \neg 2D \cdot \neg 3D \cdot Y1 \cdot \neg Y2)
+ (1D \cdot \neg 2D \cdot 3D \cdot \neg Y1 \cdot \neg Y2) + (1D \cdot \neg 2D \cdot 3D \cdot \neg Y1 \cdot Y2)
+ (1D \cdot 2D \cdot \neg 3D \cdot \neg Y1 \cdot \neg Y2) + (1D \cdot 2D \cdot \neg 3D \cdot Y1 \cdot Y2)
+ (1D \cdot 2D \cdot 3D \cdot Y1 \cdot \neg Y2) + (1D \cdot 2D \cdot 3D \cdot Y1 \cdot Y2)
```

Esto simplificado da lo siguiente:

```
f_{R2}(1D, 2D, 3D, Y1, Y2)
= [(\neg 1D \cdot \neg 2D \cdot \neg 3D) \cdot (Y1 \oplus Y2)] + [(\neg 1D \cdot \neg 2D \cdot 3D) \cdot (\neg Y1)] + [(\neg 1D \cdot 2D \cdot 3D) \cdot (Y1)] + [(\neg 1D \cdot 2D \cdot 3D) \cdot (Y1)] + [(1D \cdot \neg 2D \cdot \neg 3D) \cdot (Y1)] + [(1D \cdot \neg 2D \cdot 3D) \cdot (\neg Y1)] + [(1D \cdot 2D \cdot \neg 3D) \cdot (Y1 \oplus Y2)] + [(1D \cdot 2D \cdot 3D) \cdot (Y1)]
```

Función#3:

La siguiente función será:

$$f_{R3}(1D, 2D, 3D, Y1, Y2) = (\bar{A} \cdot B \cdot \bar{C} \cdot \bar{D}) + (\bar{A} \cdot \bar{B} \cdot \bar{C} \cdot D)$$

Figura 2: Circuito Final del Decodificador