Answers to Exercise 1

1.	Wh	Vhat is a cipher?								
		An algorithm performing encryption/decryption								
		An encrypted message								
		A method for breaking encrypted messages								
		An unencrypted message								
2.	The	e process of discovering a plaintext of a key is known as								
		Cryptography								
		Cryptanalysis								
		Steganography								
		Cryptoprocessing								
3.	The	ne unencrypted message is called								
		Plaintext								
		Cleartext								
		Chiffre								
		Ciphertext								
4.	The	he order of letters in a message is rearranged by								
		Substitution cipher								
		Asymmetric cipher								
		Transpositional cipher								
		Symmetric cipher								
5.	End	cryption protects against								
		Attacks								
		Loss of Data								
		Unavailability								
		None of the mentioned								

Answer to Exercise 2

First, we need to count the frequencies of the characters in our cipher text:

Cipher	6	9	:	С	D	<u>@</u>	2	?	Ε	5	4	Α	7	G	>	=	J	8	
Frequency	12	7	7	7	6	6	5	5	5	3	3	3	3	2	2	2	2	1	_

Thus, we obtain:

6G6CJ@?6 92D E96 C:89E E@ C6DA64E 7@C 9:D AC:G2E6 2?5 72>:=J =:76 9:D 9@>6 2?5 9:D 4@CC6DA@?56?46

The plain text is a sentence from the European Convention on Human Rights.

The substitution table of the applied encryption scheme is:

Further information: The applied substitution cipher is called ROT47, a variant of ROT13 that supports numbers, upper-case and lower-case letters.

Answer to Exercise 3

Round function is defined as below for each round:

$$f_1(x,K) = (1 \cdot x)^K \mod 16 = x^K \mod 16$$

$$f_2(x,K) = (2 \cdot x)^K \mod 16 = (2x)^K \mod 16$$

$$f_3(x,K) = (3 \cdot x)^K \mod 16 = (3x)^K \mod 16$$

$$f_4(x,K) = (4 \cdot x)^K \mod 16 = (4x)^K \mod 16$$

Key
$$K = 0101_2 = 0.2^3 + 1.2^2 + 0.2^1 + 1.2^0 = 5_{10} = 5$$

1. With
$$L_0 = 0001_2$$
, $R_0 = 1001_2$
$$L_1 = R_0 = 1001_2$$

2. With $L_1 = 1001_2$, $R_1 = 1000_2$

$$f_1(R_0, K) = f_1(1001_2, 0101_2) = f_1(9,5) = (1 \cdot 9)^5 \mod 16 = 9^5 \mod 16 = 9 = 1001_2$$

 $R_1 = L_0 \oplus f_1(R_0, K) = 0001_2 \oplus 1001_2 = 1000_2$

$$L_2 = R_1 = 1000_2$$

$$f_2(R_1, K) = f_2(1000_2, 0101_2) = f_2(8,5) = (2 \cdot 8)^5 \mod 16 = 16^5 \mod 16 = 0 = 0000_2$$

$$R_2 = L_1 \oplus f_2(R_1, K) = 1001_2 \oplus 0000_2 = 1001_2$$

3. With
$$L_2 = 1000_2$$
, $R_2 = 1001_2$

$$L_3 = R_2 = 1001_2$$

$$f_3(R_2, K) = f_3(1001_2, 0101_2) = f_1(9,5) = (3 \cdot 9)^5 \mod 16 = 27^5 \mod 16 = 11 = 1011_2$$

$$R_3 = L_2 \oplus f_3(R_2, K) = 1000_2 \oplus 1011_2 = 0011_2$$

4. With
$$L_3 = 1001_2$$
, $R_3 = 0011_2$
$$L_4 = R_3 = 0011_2$$

$$f_4(R_3, K) = f_4(0011_2, 0101_2) = f_1(3,5) = (4 \cdot 3)^5 \mod 16 = 12^5 \mod 16 = 0 = 0000_2$$

$$R_4 = L_3 \oplus f_4(R_3, K) = 1001_2 \oplus 0000_2 = 1001_2$$

Thus, as $L_4 = 0011_2$ and $R_4 = 1001_2$, the ciphertext is

$$00111001_2 = 0.2^7 + 0.2^6 + 1.2^5 + 1.2^4 + 1.2^3 + 0.2^2 + 0.2^1 + 1.2^0 = 57_{10} = 57$$