## Содержание

| Ι | 3 семестр. Основы теории групп.                   | 2         |
|---|---------------------------------------------------|-----------|
| 1 | Самые начала теории групп                         | 2         |
|   | 1.1 Основные классы алгебраических систем         | 2         |
|   | 1.2 Группа                                        | 2         |
|   | 1.3 Подгруппа                                     | 4         |
| 2 | Не самые начала теории групп                      | 5         |
|   | 2.1 Отношение эквивалентности                     | 5         |
|   | 2.2 Немного(совсем) о кольцах                     | 6         |
|   | 2.3 Циклические группы                            | 6         |
|   | 2.4 Подстановки                                   | 7         |
| 3 | Какие подгруппы вообще бывают нормальными?        | 10        |
|   | 3.1 Классы смежности                              | 10        |
|   | 3.2 Нормальная подгруппа                          | 10        |
| 4 | Лагранж гуляет с Эйлером                          | 11        |
|   | 4.1 Теорема Лагранжа со своими следствиями        | 11        |
|   | 4.2 Пара слов об Эйлере                           | 11        |
| 5 | Морфизмы                                          | 13        |
| 6 | Прямое произведение                               | <b>15</b> |
| 7 | Интересные моменты, необходимые для решения задач | 18        |
|   | 7.1 Группа диэдра                                 | 18        |
|   | 7.2 Группа кватернионов                           | 18        |
|   | 7.3 Как определить прямое произведение групп?     | 18        |
| 8 | Вопросы к коллоквиуму                             | 19        |

### Часть І

# 3 семестр. Основы теории групп.

### 1 Самые начала теории групп

### 1.1 Основные классы алгебраических систем

Для определения группы введем несколько новых страшных понятий. **Группоид** — это множество чего угодно +бинарная операция.

**Полугруппа** — группоид + ассоциативность операции, т.е. (x \* y) \* z = x \* (y \* z).

**Моноид** — полугруппа + нейтральный элемент, т.е. (e \* x = x \* e = x) или (0 + x = x + 0 = x).

Выдохнули и забыли эти слова до экзамена.

### 1.2 Группа

**Группа** — моноид + обратный элемент для каждого жителя нашего множества, т.е.  $x * x^{-1} = x^{-1} * x = e$ .

Согласно сложившейся традиции будем обозначать произвольную группу латинской G.

### Свойства групп:

- 1. Единственность нейтрального элемента
  - $\blacksquare$  Пусть  $\exists e_1, e_2 \in G$ . Тогда  $e_1 = e_1 * e_2 = e_2$  ▶
- 2. Единственность обратного элемента
  - **◄** Пусть  $\exists x_1^{-1}, x_2^{-1} \in G: x*x_1^{-1} = e, x*x_2^{-1} = e.$  Тогда  $x*x_1^{-1} = e = x*x_2^{-1}$ . Домножаем слева на  $x^{-1}$  и получаем  $x_1^{-1} = x_2^{-1}$  ▶
- 3.  $(x*y)^{-1} = y^{-1}*x^{-1}$

Сперва одеваешь рубашку, а потом пиджак; снимаешь наоборот. (c) Если более строго, то

4. 
$$(x^{-1})^n = (x^n)^{-1}, n \in \mathbb{N}$$
 $\blacktriangleleft ! \blacktriangleright$ 

5. 
$$x^n * x^m = x^{n+m}n, m \in \mathbb{Z}$$
 $\blacktriangleleft ! \blacktriangleright$ 

- 6. Уравнение ax=b имеет единственное решение  $x=a^{-1}b$  ( $xa=b\Rightarrow x=ba^{-1}$ )
- 7.  $xy = e \Rightarrow y = x^{-1}$

**⋖!**▶

Пожалуйста, обратите внимание на тривиальные доказательства единственности. Всякий уважающий себя студент должен их воспроизвести даже во сне.

Еще несколько полезных определений, которые необходимо знать.

**Коммутативная группа**(абелева) — группа, в которой есть коммутативноста, т.е.  $\forall x,y \in \mathbb{G} \Rightarrow xy = yx)$ 

Порядок группы  $(|\mathbb{G}|)$  -число элементов в группе.

**Порядок элемента**  $(|x|) = min\{n \in \mathbb{N} : x^n = e\}$  (т.е. минимальная натуральная степень, в которую нужно возвести элемент, что бы он превратился в "единицу").

### 1.3 Подгруппа

Проводим аналогию с подпространствами и радуемся таким знакомым понятиям.

Подмножество H группы G называется **подгруппой** этой группы, если оно само является группой относительно той же операции.  $\mathbb{H} \leq \mathbb{G}$ ;  $\mathbb{G} : \mathbb{H}$  является группой относительно той же операции.

Тривиальные подгруппы- это e и  $\mathbb{G}$ 

Если  $\mathbb{H} \leq \mathbb{G}$  и  $\mathbb{H} \neq \mathbb{G}$ , то будем писать  $\mathbb{H} < \mathbb{G}$ .

Т. о равенстве единичных элементов в группе и подгруппе  $H < G \Rightarrow e_H = e_G \blacktriangleleft h \in \mathbb{H} \to he_H = h; he_G = h \Rightarrow e_G g^{-1} he_H = h^{-1} h = e_G e_H \Rightarrow e_H = e_G$ ▶

Т. о равенстве обратных элементов  $H < G, h \in H \Rightarrow h_H^{-1} = h_G^{-1}$  ◀!▶

\*!!Критерий подгруппы:  $\exists H < G$  и  $H < G \Leftrightarrow$ 

$$\begin{cases} H \neq \varnothing \\ x \in H \\ y \in H \end{cases}$$

, то xy = H

 $\exists G$  -конечная группа

Пусть  $H < G \Rightarrow$ 

$$\begin{cases} H \neq \varnothing \\ x, y \in H, xy \in H \end{cases}$$

 $x\in H\Rightarrow x^k< H, \forall k\in N,$  т.к.  $|G|<\infty\Rightarrow El, m: x^l=x^m\Rightarrow x^{l-m}\Rightarrow=e\Rightarrow e\in H$  !!\*

## 2 Не самые начала теории групп

#### 2.1 Отношение эквивалентности

Отношения на множестве M:  $T \leq M * M = \{(a,b) : a,b \in M\}$   $aTb \Leftrightarrow (a,b) \in T$  Примеры:

- 1.  $T = \emptyset$
- 2. T = M \* M
- 3. M = R,  $aTb \Leftrightarrow a \le b$
- 4.  $M = R, aTb \Leftrightarrow b = a^2$

T называется **отношением эквивалентности**, если оно удовлетворяет следующим условиям:

- 1. aTa (рефлексивность)
- 2.  $aTb \rightarrow bTa$  (симметричность)
- 3.  $aTb, bTc \rightarrow aTc$  (транзитивность)

Будем иметь ввиду вместо  $aTb=a\sim b,\, T_a=\{b\in M: a\sim b\}$  Теорема:

- 1.  $a \in T_a$
- $2. \bigcup_{a \in M} T_a = M$
- 3.  $T_a \cap T_b \neq \varnothing \rightarrow T_a = T_b \blacktriangleleft! \blacktriangleright$

Итак: М разбито на непересекающиеся подмножества  $M \to M/\sim$  (факторизация)

Пара необходимых теорем о отношениях эквивалентности:

1. 
$$a \sim a' \\ b \sim b'$$
 
$$\rightarrow \begin{cases} [a'+b'] = [a+b] \\ [a'b'] = [ab] \end{cases}$$
 
$$\blacktriangleleft a' = a + nl; b' = b + nk$$
 
$$a' + b' = a + b + n(l+k) \rightarrow [a'+b'] = [a+b]$$
 
$$a'b' = ab + n(ak+bl+nlk) \rightarrow [a'b'] = [ab] \blacktriangleright$$

2. 
$$H < G$$
,  $\cdot$ 
 $|T_x| = |T_z| = |H|$ 
 $\blacktriangleleft xh_1 = xh_2 \to h_1 = h_2 \blacktriangleright$ 

Пример:  $H < Gx \sim y \leftrightarrow x^{-1}y \in H \leftrightarrow \exists h \in H : x^{-1}y = h \leftrightarrow y = xh, h \in H$ ; таким образом  $T_x = \{y : x \sim y\} = \{y : y = xh\} = xH$ ;

### 2.2 Немного (совсем) о кольцах

Если (Z, +) и (nZ, +), то  $a \rightarrow a + nZ$ 

Вместо  $a \to a + nZ$  будем писать  $[a]_n$  или  $\bar{a}_n$  или  $\bar{a}$  или(like a pro) a  $Z/_\sim = Z/_{nZ} = Z_n$ 

Кольцо(A, \*, +)  $\bigcirc$ -коммутативность  $\bigcirc$ -дистрибутивность

Бывают кольца коммутативные(ab=ba) и с единицей(ea=ae=a)

Подкольцо-это кольцо относительно тех же операций

Поле-коммутативное ассоциативное кольцо с единицей  $e \neq 0$ . Кроме того,  $\forall x \neq 0 \exists x^{-1} (xx^{-1} = x^{-1}x = e)$ 

$$[a]_n + [b]_n = [a+b]_n$$
 и  $[a]_n [b]_n = [ab]_n$ 

### 2.3 Циклические группы

**Циклическая группа**  $\mathbb{G}$  - это такая группа, что  $\exists a \in \mathbb{G} : \mathbb{G} = \{a^k, k \in \mathbb{Z}\}$  (можно так же сказать, что циклическая подгруппа состоит из всех степеней элемента).

Традиционно обозначается  $G = \langle x \rangle_n$ , где n - порядок элемента. Путем нехитрых умозаключений можно сказать, что:

Циклическая группа называется конечной, если  $|\mathbb{G}| < \infty; |\mathbb{G}| = n \Rightarrow \mathbb{G} = \{e, a, a^2, \dots, a^{n-1}\}, a^n = e$ 

Циклическая группа называется **бесконечной**, если  $|G|=\infty\Rightarrow G=\{e,a,a^{-1},a^2,a^{-2},\ldots,a^k,a^{-k},\ldots\}$ 

Необходимые формулы и утверждения о циклических группах:

$$1. |x^k| = \frac{|x|}{(|x|,k)}$$

$$\blacktriangleleft ! \blacktriangleright$$

2. 
$$x^n x^m = x^{n+m}; (x^n)^m = x^{nm}; x^0 = e$$
 при  $n, m \in \mathbb{Z}$   $\blacktriangleleft! \blacktriangleright$ 

3.  $G, x < x >= \{x^n, \text{ где } n \in Z\}$ -циклическая подгруппа группы G

Если 
$$|x|=n<\infty\to< x>=\{e,x,x^2,\ldots,x^{n-1}\}$$
 Если  $|x|=\infty\to< x>=\{e,x,x^{-1},x^2,x^{-2},\ldots\}$   $< x>_n$ , т.е.  $|< x>_n|=|x|=n$   $< x>_\infty$  т.е.  $|< x>_\infty|=|x|=\infty$  См. семинар для св-в (Кострикин)  $G$ -циклическая группа, если  $\exists x\in\mathbb{G}:\mathbb{G}=< x>$ 

Теоремы о циклических группах:

**Теорема.** У циклической группы все подгруппы циклические, т.е. *G*циклическая группа. $(H < G \Rightarrow H$ -циклическая группа)



**Теорема.** G-циклическая группа, пусть  $|\mathbb{G}| = n$ и  $n : k \Rightarrow \exists ! H < G :$ |H| = k

**◄!**▶

$$*!!\mathbb{Z}_n$$
-поле  $\leftrightarrow n$ -простое

$$\mathbb{Z}_n$$
  $k$ -обратим в  $\mathbb{Z}_n \leftrightarrow n$  и  $k$ -взаимно просты  $\big\{(n,k)=1\big\}$ 

$$\phi:G_1 \to G_2$$
 называется изоморфизмом, если  $egin{cases} \phi(gh) = \phi(g)\phi(h) \\ \phi$ -биекция

$$\exists G = \langle x \rangle, \cdot$$

-Если  $|G| = \infty \Rightarrow G \cong \mathbb{Z}$ , +  $(\mathbb{Z} = <1>)(G_1 \cong G_2)$ , то группы называются изоморфными.

-Если 
$$|G| = n < \infty \Rightarrow G \cong \mathbb{Z}_n, + !!^*$$

#### 2.4Подстановки

 $S_n$ -группа подстановок (так же называют симметричной группой)

$$x = \{1, 2, 3, \dots, n\}, S_n$$
-мн-во биективных функций  $\varphi : X \to X$ 

$$x=\{1,2,3,\ldots,n\},\,S_n$$
-мн-во биективных функций  $\varphi:X o X$   $arphi=\begin{pmatrix}1&2&3&4&\ldots&n\\ arphi(1)&arphi(2)&arphi(3)&arphi(4)&\ldots&arphi(n)\end{pmatrix}$ 

Примеры: 
$$\varphi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}$$
 $\varphi(1) = 2, \varphi(2) = 4, \varphi(3) = 3, \varphi(4) = 1$ 
 $\phi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}$ 
 $(\varphi\phi)(1) = \varphi(\phi(1)) = \varphi(4) = 1$ 
 $\varphi^{-1}\varphi = \varphi\varphi^{-1} = e$ 
 $e = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}$ 
 $\varphi^{-1} = \begin{pmatrix} 2 & 4 & 3 & 1 \\ 1 & 2 & 3 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 3 \\ 4 & 1 & 3 & 2 \end{pmatrix}$ 
 $S_n$ -группа  $|S_n| = n!$ 
Цикл
 $\varphi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix} = (124)(3) = (3)(124)$ 
 $\phi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} = (12)(34) = (34)(12)$ 

**Независимые циклы** - это такие циклы, в которых числа входят в один цикл, но не входят во второй цикл. Например, (123)(456) - независимый.

Более обще: цикл вида  $(i_1i_2...i_k)(i_{k+1}...i_{k+l})...(i_{k+p}...i_{k+n})$ , где все  $i_j$  различны, будем называть независимым.

Циклом длины два называется транспозиция.

#### Теоремы:

- 1. Независимые циклы коммутируют друг с другом (или  $\alpha$ ,  $\beta$ -независимые циклы  $\to \alpha\beta = \beta\alpha$  )
- 2. Если  $\alpha=(i_1,i_2,\ldots,i_k)$ -цикл длины  $k\to |\alpha|=k$
- 3. Пусть  $\varphi = \alpha_1 \alpha_2 \dots \alpha_n$  произведение независимых циклов.  $\alpha_1 = (i_1, i_2, \dots, i_k)$   $\alpha_2 = (j_1, j_2, \dots, j_l) \to |\varphi| = HOK(|\alpha_1|, |\alpha_2|, \dots, |\alpha_m|)$

$$|G| = HOK(k_1, k_2, \dots, k_m)$$

**⋖!**▶

**Определение**: Инверсия ij - это если i > j, но i левее j.

Подстановка  $G = \begin{pmatrix} l_1 & l_2 & \dots & l_n \\ j_1 & j_2 & \dots & j_n \end{pmatrix}$  называется четной, если сумма инверсий в верхней и нижней строках четная. Иначе- нечетная.

Знак подстановки 
$$sgnG = (-1)^{[l_1l_2...l_n]+[k_1k_2...k_n]}$$
  $G$ -четная, если $sgnG = 1$  -нечетная, если $sgnG = -1$   $|\alpha| = k \to sgn\alpha = (-1)^{k-1} \quad (= (-1)^{k+1})$   $\alpha = (ij) = \begin{pmatrix} 1 & 2 & \dots & i & \dots & j & \dots & n \\ 1 & 2 & \dots & j & \dots & n \end{pmatrix}$ -нечет  $G = \alpha_1\alpha_2 \cdot \dots \cdot \alpha_n$ -произведение независимых циклов.  $sgnG = (-1)^{n-m} \quad (= (-1)^{n+m})$ 

### 3 Какие подгруппы вообще бывают нормальными?

#### 3.1 Классы смежности

$$H < G \quad x \sim y \quad x^{-1}y \in H \leftrightarrow y \in xH(\mbox{Левый смежный класс})$$
 
$$yx^{-1} \in H \leftrightarrow y \in Hx(\mbox{Правый смежный класс})$$
 Если  $G$ -коммутативна, то  $xH = Hx$  Множество левых смежных классов обозначается  $G/H$  Множество правых смежных классов обозначается  $H \setminus G$  
$$|G/H| = |H \setminus G| =$$
индекс подгруппы

### 3.2 Нормальная подгруппа

Пусть H < G

Пытаемся ввести операцию (xH)(yH) = (xy)H. Когда она корректна?

Когда 
$$\begin{cases} x \sim x' \\ y \sim y' \end{cases} \rightarrow xy \sim x'y' \ xy \sim x'y' = xh_1yh_2$$

$$xy = xh_1yh_2h_3 \qquad \Big| \cdot x^{-1}$$

$$y = h_1yh_4$$

$$e = y^{-1}h_1yh_4$$

$$y^{-1}h_1y = h_5 \rightarrow \boxed{y^{-1}Hy \leq H} \quad \forall y \in G(1)$$
Из (1)  $\rightarrow H \leq yHy^1 \quad \forall y \rightarrow H \leq y^{-1}Hy \leftrightarrow \boxed{y^{-1}Hy = H} \quad \forall y \in G(2) \leftrightarrow \boxed{Hy = yH} \quad \forall y \in G(3)$ 

$$(1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (1).$$

H < G называется **нормальной**, если выполнено любое из 3 равносильных условий.

В этом случае пишут  $H \lhd G$ 

 $ceil H \lhd o G/H$ -группа относительно (xH)(yH) = xyH

Группа G/H называется фактор-группой группы G по нормальной подгруппе H.

### 4 Лагранж гуляет с Эйлером

### 4.1 Теорема Лагранжа со своими следствиями

**Теорема Лагранжа** Если  $|G|=n<\infty \to |G|$ :|H|, что равносильно определению  $|G|=|H|\cdot|_{G}\diagup^{H}|$ где группа G-конечная группа

Следствия из теоремы Лагранжа:

1. |G|:|x|

$$\blacktriangleleft x \Rightarrow H = \langle x \rangle, |H| = |x| \blacktriangleright$$

- 2. |H| |G|
- $3. \ x \in G \to |x| \ |G|$
- 4. |G| = p простое число  $\to G$ циклическая группа, причем если $g \neq e \to G = < g >$
- 5. |G| = n $g \in G \rightarrow g^n = e$
- 6. Малая теорема Ферма  $a^p \equiv a \pmod{p}$
- 7. Теорема Вильсона

$$(p-1)! + 1 : p \leftrightarrow p$$
 — простое

### 4.2 Пара слов об Эйлере

**Функция Эйлера** $\{\varphi(n)\}$  равна количеству натуральных чисел, меньших чем n и взаимно простых с n.

Теорема Эйлера  $a^{\phi(n)} \equiv 1 \pmod{n}$ 

Свойства  $\varphi(n)$ :

1. 
$$\phi(p) = p - 1, p - простое$$

- 2.  $\phi(p^n) = p^n p^{n-1}, p \text{простое}$
- 3.  $\phi(mn) = \phi(m)\phi(n)$ , (m, n) = 1

### 5 Морфизмы

Гомоморфизм  $\phi:G_1\to G_2$  -если  $\phi(xy)=\phi(x)\phi(y)$ 

Мономорфизм — инъективный гоморфизм

Эпиморфизм — сюръективный гомомрфизм.

Эндоморфизм — если  $G_1 = G_2$ 

**Автоморфизм** — изоморфизм+эндоморфизм

 $Ker\phi = \{x \in G_1 : \phi(x) = e_2\}$   $(=\phi^{-1}(e_2))$  — ядро гомоморфизма.

 $Im\phi=\{z\in G_2;\exists x\in G_1:\phi(x)=z\}=\{\phi(x),x\in G_1\}=\phi(G_1)$  — образ гоморфизма.

#### Свойства гомоморфизма:

1.  $\phi(e_1) = e_2$  или  $e_G \rightarrow e_H$ 

**⋖**▶

2. 
$$\phi(x^{-1}) = (\phi(x))^{-1}$$
 или  $x \to y$  то  $x^{-1} \to y^{-1}$ 

3.  $|\phi(x)| |x|$ 

**◄!**▶

4. 
$$Im\phi < H$$
  $Im\phi = \{\phi(x), x \in G\}$ 

5. 
$$Ker\phi < G$$
  $Ker\phi = \{\phi^{-1}(e_H)\}\$ 

6.  $Ker \phi \triangleleft G$   $\blacktriangleleft! \blacktriangleright$ 

7. 
$$\phi(x_1) = \phi(x_2) \leftrightarrow x_1 \equiv x_2 \pmod{Ker\phi}$$
 $\blacktriangleleft ! \blacktriangleright$ 

8.  $\phi$  — мономорфизм  $\leftrightarrow Ker\phi = \{e\}$ 

9. 
$$\phi:G\to H, \psi:H\to K$$
 — гоморфизм  $\to \psi\cdot\phi:G\to K$  — гоморфизм  $\blacktriangleleft!$  ▶

10. 
$$\phi:G\to H$$
 — изомрфизм  $\to \phi^{-1}$  — изомрфизм  $\blacksquare$ 

11.  $\phi$ -изоморфизм, то  $|\phi(x)| = |x|$   $\blacktriangleleft!$ 

Док-во 6-го св-ва:  $]x_1,x_2\in Ker\phi\to x_1x_2\in Ker\phi$   $\phi(x_1)=e$   $\phi(x_2)=e$   $\phi(x_1x_2)=\phi(x_1)\phi(x_2)=e\cdot e=e$ 

### 6 Прямое произведение

#### Прямое произведение групп

 $G_1, G_2, \ldots, G_n$  – группы (·)  $G = G_1 \times G_2 \times \cdots \times G_n = \{(g_1, g_2, \ldots, g_n) : g_i \in G_i, i = 1, \ldots, n\}$ 

Введем операцию  $(g_1, g_2, \ldots, g_n) \cdot (g'_1, g'_2, \ldots, g'_n) = (g_1 g'_1, g_2, g'_2, \ldots, g_n g'_n)$ 

Внешнее прямое произведение:  $G=G_1\times G_2\times\ldots$   $(\cdot)$   $G=G_1\oplus G_2\oplus G_3\oplus\cdots\oplus G_n$  (+)

#### Свойства внешнего прямого произведения:

1. G-группа

2. 
$$\tilde{G}_i = \{(e_1, e_2, \dots, e_{i-1}, g_i, e_{i+1}, \dots, e_n) < G\}$$
  $= \{e_1\} \times \{e_2\} \times \dots \times \{e_{i-1}\} \times G_i \times \{e_{i+1}\} \dots \{e_n\}$ 

- 3.  $\tilde{G}_1\cong G_i \quad (\phi_i:G_i\to \tilde{G}_i \ \phi_i(g_i))=(e_1,e_2,\dots,e_{i-1},g_i,e_{i+1},\dots e_n)$  Изоморфизм
- 4.  $\tilde{G}_i \triangleleft G$

5. 
$$\forall g \in G \,\exists \tilde{g_1} \in \tilde{G_1}, \ldots, \, \tilde{g_n} \in \tilde{G_n} : g = \tilde{g_1} \tilde{g_2} \tilde{g_3} \ldots \tilde{g_n}$$

6. 
$$\forall g \in G \exists ! \tilde{g_1} \in \tilde{G_1}, \dots, \tilde{g_n} \in \tilde{G_n} : g = \tilde{g_1} \tilde{g_2} \tilde{g_3} \dots \tilde{g_n}$$

7. 
$$\tilde{G}_i \cap \tilde{G}_j = \{e\} \quad (i \neq j)$$

8. 
$$\tilde{g}_1 \in \tilde{G}_i, \tilde{g}_j \in \tilde{G}_j \to \tilde{g}_i \tilde{g}_j \to \tilde{g}_j \tilde{g}_i$$

9. 
$$|G| = |G_1||G_2| \dots |G_n|$$

10. 
$$|(g_1, g_2, \dots, g_n)| = HOK(|g_1|, |g_2|, \dots, |g_n|)$$

$$G, G_1, G_2, \ldots, G_n < G$$

1. 
$$(6 \Rightarrow 5)$$

2. 
$$6 \Rightarrow 7$$
, то если $\forall g \in G \exists ! g_1 \in G_1, \ldots, g_n \in G_n : g = g_1 g_2 \ldots g_n \Rightarrow G_i \cap G_j = \{e\} \quad (i \neq j)$ 
 $\lhd$  От противного. Пусть  $g \in G_i \cap G_j \Rightarrow g = ee \ldots g \ldots e \ldots e = ee \ldots e \ldots g \ldots e \Rightarrow g = e \Rightarrow G_i \cap G_j = \{e\} \triangleright$ 

3. 
$$\binom{4}{7}$$
  $\Rightarrow$  8 т.е. если  $G_i \triangleleft G_j$   $G_j \triangleleft G_i, G_i \cap G_j = \{e\}$   $\Rightarrow g_ig_j = g_jg_i \Leftrightarrow g_ig_jg_i^{-1}g_i^{-1} = e$ 

#### Внутренне прямое произведение:

 $G, G_i, \ldots, G_n < G$ 

G — внутренне прямое произведение этих подгрупп, если

1. 
$$\forall g \in G \exists ! g_1, \dots, g_n : g = g_1 g_2 \dots g_n$$

$$2. G_i \triangleleft G_i; i = 1, \ldots n$$

**Теорема** G изоморфно  $G_1 \times G_2 \times \cdots \times G_n$ 

(т.е. внутреннее прямое произведние изоморфно внешнему)

$$\triangleleft \phi: G_1 \times \cdots \times G_n \to G$$

$$\phi((g_1, g_2, \dots, g_n)) = g_1 g_2 \dots g_n$$

$$\phi$$
-гомоморфизм  $?\phi((g_1\ldots,g_n)(h_1,\ldots,h_n)=\phi(g_1h_1,g_2h_2,\ldots,g_nh_n)=g_1h_1g_2h_2\ldots g_nh_n$ 

 $\phi\phi((g_1\ldots,g_n)(h_1,\ldots,h_n)=g_1g_2\ldots g_nh_1h_2\ldots h_n$ Сие выражение выходит из предыдущей строки благодаря свойству 8

 $\phi$ -эпиморфизм. Пусть $g \in G \to \exists g_1, \dots g_n : g = g_1 \dots g_n \to \phi((g_1, \dots, g_n)) = g_1 \dots g_n = g$ 

 $\phi$ -мономорфизм  $Ker\phi = \{((g_1,\ldots,g_n):g_1g_2\ldots g_n=e)\} \rightarrow g_1=g_2=g_2=g_1$ 

$$** \begin{cases} \forall g! = g_1 \dots g_n & (1) \\ g_i g_j = g_j g_i & (2) \end{cases} \Leftrightarrow * \begin{cases} \forall g! = g_1 \dots g_n & (1) \\ G_i \triangleleft G & (2) \end{cases}$$

где $g_i$ -элемент і-ой группы, а $g_j$ -элемент ј-ой группы  $\lhd \to (1) * * \to (1) *$ 

$$(1) ** \rightarrow G_i \cap G_j = \{e\} \qquad \exists g \in G_i \cap G_j \rightarrow g = e \cdot e \dots e \cdot g \cdot e \dots e = e \dots e g e \dots e \rightarrow g = e$$

$$gg_ig^{-1} = g_1'g_2' \dots g_n'g_i'(g_n')^{-1} \dots (g_1')^{-1} = g_i'g_i(g_1')^{-1} \in G_i \to G_i \lhd G \rhd G_i = \{e\}$$
  $G_i \lhd G$ 

 $\lhd \leftarrow (1)* \to (1)** \to G_i \cap G_j = \{e\}$   $G_i \lhd G$ Требуется доказать: $g_ig_j = g_jg_i$ , т.е. $g_ig_jg_i^{-1}g_j^{-1} = e$ 

G-внутреннее прямое произведение, если выполнена (\*) ( $\Leftrightarrow$  Выполнена (\*\*)) Примеры:

1.  $G = \mathbb{Z}, +$  не раскладывается в внутренние прямые суммы  $G_n = n\mathbb{Z}$ -других подгупп нет На дом: продумать и записать доказательство.  $nm \in n\mathbb{Z} \cap m\mathbb{Z} \to n\mathbb{Z} \cap m\mathbb{Z} \neq \{0\}$ 

$$nm \in n\mathbb{Z} \cap m\mathbb{Z} \to n\mathbb{Z} \cap m\mathbb{Z} \neq \{0\}$$
2.  $G = \mathbb{C}^*$ ,  $G_1 = \mathbb{R}_{>0} = \{x > 0, x \in R\}$   $G_2 = U = \mathbb{T} = \{z : |z| = 1\} = \{z = e^{i\phi}\}$   $G = G_1 \times G_2$ ? G-коммутативна  $z \in G \to z = |z|e^{i\phi}$   $(|z| > 0 - e^{i\phi \in U})$  
$$|z = x_1u_1 = x_2u_2 \to ? \begin{cases} x_1 = x_2 \\ u_2 = u_2 \end{cases} \qquad x_1x_2^{-1} = u_1^{-1}u_2 \to \begin{cases} x_1x_2^{-1} = 1 \\ u_1^{-1}u_2 = 1 \end{cases} \to \begin{cases} x_1 = x_2 \\ u_2 = u_2 \end{cases}$$

$$(G_1 \times G_2)/G_1 \cong G_2$$

$$|G_1 \times G_2|/G_1 \cong G_2|$$

$$|G_2 \times G_1 \times G_2|$$

$$|G_1 \times G_2|/G_1 \cong G_2|$$

$$|G_2 \times G_1 \times G_2|$$

$$|G_1 \times G_2|/G_1 \cong G_2|$$

$$|G_1 \times G_2|/G_1 \cong G_2|$$

$$|G_2 \times G_2|/G_1 \cong G_2|$$

$$|G_1 \times G_2|/G_1 \cong G_2|$$

$$|G_2 \times G_2|/G_1 \cong G_2|$$

$$|G_1 \times G_2|/G_1 \cong G_2|$$

$$|G_2 \times G_2|/G_1 \cong G_2|$$

$$|G_1 \times G_2|/G_1 \cong G_2|$$

$$|G_2 \times G_2|/G_1 \cong G_2|$$

$$|G_1 \times G_2|/G_1 \cong G_2|$$

$$|G_2 \times G_2|/G_1 \cong G_2|$$

$$|G_1 \times G_2|/G_1 \cong G_2|$$

$$|G_2 \times G_2|/G_1 \cong G_2|$$

$$|G_1 \times G_2|/G_1 \cong G_2|$$

$$|G_2 \times G_2|/G_1 \cong G_2|$$

$$|G_1 \times G_1 \times G_2|/G_1 \cong G_2|$$

$$|G_1 \times G_2|/G_1 \cong G_2|/G_1 \cong G_2|$$

$$|G_1 \times G_2|/G_1 \cong G_2|/G_1 \cong G_2|$$

$$|G_1 \times G_1 \times G_2|/G_1 \cong G_2|/G_1 \cong G_2|$$

$$|G_1 \times G_2|/G_1 \cong G_2|/G_1 \cong G_2|$$

- 7 Интересные моменты, необходимые для решения задач
- 7.1 Группа диэдра
- 7.2 Группа кватернионов
- 7.3 Как определить прямое произведение групп?

### 8 Вопросы к коллоквиуму

- 1. Группоид
- 2. Полугруппа
- 3. Моноид
- 4. Группа
- 5. Порядок группы(|G|)
- 6. Порядок элемента(|x|)
- 7. Циклическая группа
- 8. Определение подгруппы
- 9. Чему равен  $|x^k|$ ?
- 10. Критерий подгруппы
- 11. Отношение эквивалентности
- 12. Левый и Правый смежные классы
- 13. Теорема Лагранжа
- 14. Малая теорема Ферма
- 15. Функция Эйлера
- 16. т. Эйлера
- 17. т. Вильсона
- 18. Нормальность группы
- 19. Фактор-группа
- 20. Автоморфизм
- 21. AutG
- 22. Внутренний автоморфизм

- 23. IntG
- 24. Гомоморфизм
- 25. Мономорфизм
- 26. Эпиморфизм
- 27. Эндоморфизм
- 28. Ядро гомоморфизма
- 29. Образ гомоморфизма
- 30. Внешнее прямое произведение групп
- 31. Внутреннее прямое произведение групп
- 32. т. Кэли
- 33. Группа подстановок
- 34. Цикл
- 35. Независимые циклы
- 36. Транспозиция
- 37. Определение полупрямого произведения
- 38. Четность и нечетность подстановки
- 39. Знак подстановки
- 40. Знак произведения подстановок
- 41. Длина цикла
- 42. Порядок цикла
- 43. Порядок произведения независимых циклов