Given, a graph G=(D,C,A) with set of depot nodes D with capacity  $q_d$ , operational  $\cot \tau_d^o$ , fixed  $\cot \tau_d^f$ , and fleet of delivery vehicles  $V_d$  with capacity  $q_v$ , speed  $s_v$ , refueling time  $\tau_v^f$ , service time at the depot node  $\tau_v^d$  (per unit demand), service time at the customer node  $\tau_v^c$ , operational  $\cot \tau_v^o$  (per unit distance traveled), fixed  $\cot \tau_v^f$ , working hours  $v_v$  for every vehicle  $v \in V_d$  for every depot  $v_v^f$  for customer nodes  $v_v^f$  with demand  $v_v^f$ , delivery time-window  $v_v^f$  for every customer  $v_v^f$ , set of arcs  $v_v^f$  with length  $v_v^f$  for every arc  $v_v^f$ , the objective is to develop least cost routes from select depot nodes using select vehicles such that every customer node is visited exactly once while also accounting for vehicle capacities.



Fig. A typical LRP solution

Route constraints,

$$\begin{split} l_r &= \sum\nolimits_{i \in T_j} x_{ij}^r \, l_{ij} & \forall \, j \in \{D \cup C\}; r \in R_v; v \in V_d; d \in D \\ q_r &= \sum\nolimits_{c \in C} z_{cr} \, q_c & \forall \, c \in C; r \in R_v; v \in V_d; d \in D \end{split}$$

Capacity constraints,

$$\begin{split} \sum_{c \in C} q_c z_{cr} &\leq q_v y_v & \forall \ v \in V_d; d \in D \\ \sum_{c \in C} q_c \sum_{v \in V_d} \sum_{r \in R_v} z_{cr} &\leq q_d y_d \ \forall \ d \in D \end{split}$$

Vehicle range constraint,

$$\sum\nolimits_{d \in D} \sum\nolimits_{v \in V_d} \sum\nolimits_{r \in R_v} l_r \leq l_v \qquad \forall \ v \in V_d; d \in D$$

Route start and end time constraint,

$$\begin{split} t^s_{r_1} &= 0 & \forall \ v \in V_d; d \in D \\ t^s_{r_k} &= t^e_{r_{k-1}} + \tau^f_v l_r / l_v + \tau^d_v q_r & \forall \ r \in R_v; \in V_d; d \in D \end{split}$$

Driver working hours constraint,

$$t_{r_K}^e \le w_v \qquad \qquad \forall \ v \in V_d; d \in D$$

Customer node arrival and departure time constraint,

$$\begin{aligned} t_c^a + M(1 - x_{dc}^r) &\geq t_r^s + x_{dc}^r \, l_{dc}/s_v & \forall \, c \in H_d; r \in R_v; v \in V_d; d \in D \\ t_c^a + M(1 - x_{ic}^r) &\geq t_i^d + x_{ic}^r \, l_{ic}/s_v & \forall \, i \in T_c; c \in C; r \in R_v; v \in V_d; d \in D \\ t_c^d &\geq t_c^a + \max(0, t_c^e - t_c^a) + \tau_c^v & \forall \, c \in C \end{aligned}$$

Time-window constraint,

$$t_c^a \le t_c^l \qquad \forall c \in C$$

Binary constraints,

Arc use,

$$x_{ij}^r \in \{0,1\} \qquad \qquad \forall \; (i,j) \in A; r \in R_v; v \in V_d; d \in D$$

Vehicle use,

$$y_v \in \{0,1\}$$
  $\forall v \in V_d; d \in D$ 

Depot use,

$$y_d \in \{0,1\}$$
  $\forall d \in D$ 

Customer node allocation,

$$z_{cr} \in \{0,1\} \qquad \forall \ c \in C; r \in R_v; v \in V_d; d \in D$$

Where,

$$\begin{split} T_j &= \{i; (i,j) \in A\} \\ H_j &= \{k; (j,k) \in A\} \\ R_v &= \{r_1, r_2, \dots, r_k, \dots, r_K\} \\ &\forall \ v \in V_d; d \in D \end{split}$$