# Statistics for Computing MA4413

# Lecture 15

Hypothesis Testing

**Kevin Burke** 

kevin.burke@ul.ie

#### Confidence Intervals

Confidence Intervals

Confidence intervals are used mainly for *statistical estimation*.

They provide a range of plausible values for the parameter of interest at a given level of confidence via

statistic 
$$\pm z_{\alpha/2} \times s(\text{statistic})$$

where s(statistic) is the *standard error* of the estimate and  $z_{\alpha/2}$  is the z value which puts probability  $\alpha/2$  in the lower and upper tails, i.e.,

Pr(interval contains parameter) =  $1 - \alpha$ .

 $\Rightarrow$  (1 –  $\alpha$ )100% confident that the interval contains the parameter.

## **Confidence Intervals**

We have calculated confidence intervals for the following parameters:

• One mean:  $\mu$ .

Confidence Intervals

- One proportion: p.
- Difference between means:  $\mu_1 \mu_2$ .
- Difference between proportions:  $p_1 p_2$ .

In each case there is a formula for calculating the standard error.

For numerical data, we replace the  $z_{\alpha/2}$  value with a  $t_{\nu,\alpha/2}$  value when the sample size is small and *approximately normal*.

Furthermore, when comparing means in two small samples, there is a different formula for  $s(\overline{X}_1 - \overline{X}_2)$  if we assume equal variances.

## Confidence Intervals for Hypothesis Testing

A **hypothesis** is a *belief* about the value of a parameter.

We can use confidence intervals to investigate hypotheses.

Recall the gameplay example from Lecture 13 where a developer believes there are 16 hours of gameplay; the *hypothesis* is  $\mu = 16$ .

- Data was collected and a 95% confidence interval was then calculated: [14.62, 16.18].
- The interval contains  $\mu = 16$  and, therefore, we accept the hypothesis that there are 16 hours of gameplay.

Confidence Intervals

# **Hypothesis Testing**

There is a more *formal approach* to **hypothesis testing**:

- 1. State hypotheses *before* collecting data.
  - The **null hypothesis**, denoted  $H_0$ , is the hypothesis to be tested.
  - The alternative hypothesis, denoted  $H_a$ , is the counter-hypothesis, i.e., the *complement* of  $H_0$ .
- 2. Choose the **significance level**: the probability of *error* (denoted  $\alpha$ ) in rejecting  $H_0$ , i.e., the chance of rejecting  $H_0$  when it is true.
- 3. Collect data and calculate a test statistic.
- 4. Compare this statistic to a **critical value** from statistical tables.
- 5. Make a decision; either there is:
  - a) Evidence to **reject**  $H_0$  (in favour of  $H_a$ ) at the  $\alpha$  significance level.
  - b) Not enough evidence to reject  $H_0$  at the  $\alpha$  level, i.e., accept  $H_0$ .

#### **Test Statistic**

By the central limit theorem,

$$\overline{X} \sim \mathsf{Normal}\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

 $\Rightarrow$  95% of the time, the  $\bar{x}$  calculated will be in  $\mu \pm$  1.96  $\frac{\sigma}{\sqrt{n}}$ .

Standardising the above gives:

$$Z = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim \text{Normal}(0, 1)$$

 $\Rightarrow$  95% of the time, the **z** score calculated will be in  $\pm 1.96$ .

(note: usually  $\sigma$  is unknown but when n > 30 we can substitute with s)

## **Test Statistic**

We *hypothesise* that the true mean is equal to some value,  $\mu_0$ . This gives us the following null and alternative hypotheses:

$$H_0: \quad \mu = \mu_0$$
 $H_a: \quad \mu \neq \mu_0$ 

Assuming the null hypothesis is true (i.e.,  $\mu=\mu_0$ ), we know that, 95% of the time, the calculated **test statistic** 

$$z = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$$

will be within  $\pm 1.96$ , i.e., only 5% of the time will we get a z value outside of this range.

#### **Critical Values**

If our calculated z value is outside of  $\pm 1.96$  then we reject  $H_0$  at the 5% level of significance (note: in 5% of cases we will wrongly reject  $H_0$ ).

Of course, we can test  $H_0$  at other significance levels by using different **critical values**, cv, i.e., the values

$$\pm z_{\alpha/2}$$

correspond to testing at the  $\alpha$  significance level and, furthermore, if  $n \leq 30$ , the critical values come from the t tables:

$$oxed{\pm t_{
u,\,lpha/2}}$$

- 1. When testing the hypothesis that  $\mu = \mu_0$  we have:
  - $H_0: \mu = \mu_0$ ,
  - $H_a$ :  $\mu \neq \mu_0$ .
- 2. Select the  $\alpha$  level, e.g.,  $\alpha = 0.05$ .
- 3. Collect data  $\Rightarrow$  calculate  $\bar{x}$ , s and, hence, the test statistic  $z=\frac{\bar{x}-\mu_0}{s/\sqrt{n}}$ .
- 4. Compare z to the critical values, cv: either  $\pm z_{\alpha/2}$  or  $\pm t_{\nu,\,\alpha/2}$  depending on the sample size.
- 5. Conclusion:
  - a) If z is outside of  $\pm cv \Rightarrow$  reject  $H_0$  (in favour of  $H_a$ ) at the  $\alpha$  level.
  - b) If z is inside  $\pm cv \Rightarrow$  accept  $H_0$  at the  $\alpha$  level.

P Value

## Acceptance and Rejection Regions



- Significance level  $\alpha \Rightarrow$  each tail contains probability  $\alpha/2$ .
- Acceptance region lies within  $\pm z_{\alpha/2}$ .
- Rejection region lies outside of  $\pm z_{\alpha/2}$ .

Note: If *n* is small use  $\pm t_{\nu,\alpha/2}$  instead of  $\pm z_{\alpha/2}$ .

#### **Proof Vs Evidence**

Note that we **never** use the word *proof* since there is always some probability of error.

- Cannot: prove  $H_0$  to be true or untrue.
- Can: provide evidence that  $H_0$  is reasonable or unreasonable.

If the test statistic falls into the **acceptance region**, we say that the evidence against  $H_0$  is **non-significant**  $\Rightarrow$  we accept it.

If the test statistic falls into the **rejection region**, we say that the evidence against  $H_0$  is **significant**  $\Rightarrow$  we reject it.

## **Example: Tubs of Butter**

A machine is programmed to put 250g of butter into each tub. We wish to test this hypothesis at the 5% level. Thus,

$$H_0: \mu = 250,$$

$$H_a$$
:  $\mu \neq$  250,

i.e., the hypothesised value is  $\mu_0 = 250$ .

We are testing at the 5% level  $\Rightarrow \alpha = 0.05 \Rightarrow \alpha/2 = 0.025$ .

Therefore, the critical values will be  $\pm z_{0.025} = \pm 1.96$  or, if the selected sample is small,  $\pm t_{\nu,0.025}$  where  $\nu = n - 1$ .

## **Example: Tubs of Butter**

We randomly select 35 tubs of butter and measure the contents. The average for this sample is 251.6g and the standard deviation is 3.1g.

Since n > 30 the critical values are  $\pm 1.96$ .

The test statistic is:

$$z = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}} = \frac{251.6 - 250}{\frac{3.1}{\sqrt{35}}} = \frac{1.6}{0.524} = 3.05.$$

The calculated z=3.05 lies outside of  $\pm 1.96$ . Therefore we reject the null hypothesis that  $\mu=250$  at 5% level of significance.

Conclusion: the evidence suggests that the machine is *not* working as programmed.

## **Question 1**

A particular CPU design is expected to have a clock speed of 2.5Ghz. To test this hypothesis, 4 CPUs were selected and the results are as follows:

- a) State the null and alternative hypotheses.
- b) What are the critical values (use  $\alpha = 0.1$ ).
- c) Calculate  $\bar{x}$  and s.
- d) Calculate the test statistic.
- e) State your conclusion.

#### Two-Tailed Test

For the butter tub example note that the alternative hypothesis was

$$H_a: \mu \neq 250.$$

If  $\mu$  is not equal to 250  $\Rightarrow$  it is either less than 250 or greater than 250:

$$\Rightarrow$$
  $H_a$ :  $\mu < 250$  or  $\mu > 250$ .

The alternative hypothesis points to the rejection region, i.e., we see that the rejection region appears in both the lower and upper tails via the "<" and ">" inequality signs.

Hence, this is known as a **two-tailed** hypothesis test.

#### **Two-Tailed Test**

$$H_0: \quad \mu = \mu_0$$
 $H_a: \quad \mu \neq \mu_0$ 



Note: If *n* is small use  $\pm t_{\nu, \alpha/2}$  instead of  $\pm z_{\alpha/2}$ .

#### One-Tailed Test

In other situations, it makes more sense to carry out a **one-tailed** test.

Consider the gameplay example. Really it is of interest to test the null hypothesis that there are at least 16 hours of gameplay:

$$H_0: \mu \geq 16.$$

Thus, the alternative hypothesis is

$$H_a$$
:  $\mu$  < 16.

For a one-tailed test we **do not divide**  $\alpha$  **by two** since all of this probability goes into one tail.

The alternative hypothesis points to the rejection region.

#### **One-Tailed Test: Lower Tail**

$$H_0: \quad \mu \ge \mu_0$$
 $H_a: \quad \mu < \mu_0$ 



Note: If *n* is small use  $-t_{\nu,\alpha}$  instead of  $-z_{\alpha}$ .

P Value

## **One-Tailed Test: Upper Tail**

$$H_0: \quad \mu \leq \mu_0$$
 $H_a: \quad \mu > \mu_0$ 



Note: If *n* is small use  $t_{\nu,\alpha}$  instead of  $z_{\alpha}$ .

P Value

## **Direction of Test**

| Hypotheses       |                                | Tails | Critical Values                         | Rejection Region        |
|------------------|--------------------------------|-------|-----------------------------------------|-------------------------|
| H <sub>0</sub> : | $\mu = \mu_0$ $\mu \neq \mu_0$ | Two   | $\pm z_{lpha/2}$ or $\pm t_{ u,lpha/2}$ | Outside critical values |
| H <sub>0</sub> : | $\mu \ge \mu_0$ $\mu < \mu_0$  | One   | $-z_{lpha}$ or $-t_{ u,lpha}$           | Below critical value    |
| H <sub>0</sub> : | $\mu \le \mu_0$ $\mu > \mu_0$  | One   | $z_lpha$ or $t_{ u,lpha}$               | Above critical value    |

Note: the null hypothesis always contains the equals.

## **Example: Gameplay**

We return to the gameplay example.

A games developer wishes to test the null hypothesis that their game has at least 16 hours of gameplay using the 5% level of significance.

00000000

Thus the hypotheses are:

$$H_0: \mu \ge 16$$

$$H_{a}: \mu < 16$$

- One-sided test  $\Rightarrow$  use  $\alpha = 0.05$  (do *not* divide by two).
- Alternative hypothesis points to the *lower tail*  $\Rightarrow -z_{\alpha}$  or  $-t_{\nu,\alpha}$ .

## **Example: Gameplay**

From a sample of n = 33,  $\bar{x} = 15.4$  and s = 2.3.

Note that  $n > 30 \Rightarrow$  the critical value is  $-z_{0.05} = -1.64$ .

The test statistic is:

$$z = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}} = \frac{15.4 - 16}{\frac{2.3}{\sqrt{33}}} = \frac{-0.6}{0.4} = -1.5.$$

Since z=-1.5 is *not* in the rejection region (i.e., the region below -1.64), we accept  $H_0: \mu \ge 16$  at the 5% level.

Conclusion: the number of gameplay hours is sufficient (at least 16) and, therefore, we do not have to add extra content to the game.

## **Question 2**

Assume that a particular CPU is designed to have a normal operating temperature of 30 degrees or less. A sample of 40 CPUs were tested: the average for this sample was 32 degrees and the variance was 10 degrees-squared.

We wish to test the hypothesis that the temperature is less than or equal to 30 degrees at the 1% level.

- a) State the null and alternative hypotheses.
- b) Define the rejection region.
- c) Calculate the test statistic.
- d) State your conclusion.

Errors

000

#### **Decisions**

When we carry out a hypothesis test, there are two possible decisions:

- a) Reject  $H_0$ .
- b) Accept  $H_0$ .

This leads to four different scenarios:

- i) Reject  $H_0$  when  $H_0$  is true  $\Rightarrow$  **type 1 error**.
- ii) Reject  $H_0$  when  $H_0$  is false.
- iii) Accept  $H_0$  when  $H_0$  is true.
- iv) Accept  $H_0$  when  $H_0$  is false  $\Rightarrow$  type 2 error.

#### **Errors**

We fix the probability of wrongly *rejecting H*<sub>0</sub> at the  $\alpha$  level:

$$Pr(Reject H_0 \mid H_0 \text{ is true}) = \alpha,$$

i.e., we control the probability of a type 1 error.

The probability of wrongly accepting  $H_0$  is

$$Pr(Accept H_0 \mid H_0 \text{ is false}) = \beta,$$

i.e., a type 2 error.

# Relationship Between $\alpha$ and $\beta$

The value of  $\beta$  depends on  $\alpha$ . It can be *calculated* once we have chosen the  $\alpha$  level.

We will not calculate  $\beta$  in this course but just know the relationship:

#### Decreasing $\alpha$ leads to an increase in $\beta$ .

If we reduce  $\alpha$ , the acceptance region increases  $\Rightarrow$  rejection of  $H_0$  is less likely  $\Rightarrow$  we are more open to a type 2 error.

In practice, these values will be chosen to reflect the costs (often monetary) associated with making the two types of error.

## **Example: Tubs of Butter**

Recall that in the butter tub example we had the following hypotheses:

$$H_0: \mu = 250$$

$$H_a$$
:  $\mu \neq 250$ 

We tested  $H_0$  at the 5% level and, since the test is two-tailed and n was large, the critical values were  $z_{0.025} = \pm 1.96$ .

The test statistic z = 3.05 and, since this is outside of  $\pm 1.96$ , we rejected  $H_0$  at the 5% level.

However, with z = 3.05, the evidence is stronger than the 5% level. In fact we would reject  $H_0$  at the 1% level also (since  $z_{0.005} = \pm 2.58$ ).

## **Example: Tubs of Butter**

The question that arises is, just how strong is the evidence against  $H_0$ ?

What is the lowest  $\alpha$  level at which we would reject  $H_0$  if z=3.05? We require the  $\alpha$  level that leads to the critical values  $z_{\alpha/2} = \pm 3.05$ .

From the normal tables we find that Pr(Z > 3.05) = 0.00114. This is the  $\alpha/2$  value  $\Rightarrow \alpha = 2(0.00114) = 0.00228$  is the lowest  $\alpha$  level at which  $H_0$  would be rejected.

Thus, we can see that the evidence against  $H_0$  is very strong.

P Value

#### P-Value

The quantity we have just calculated is called a **p-value**.

It tells us the how likely the data is if  $H_0$  were true. Thus, a p-value is a measure of evidence against  $H_0$ :

- Small p-value  $\Rightarrow$  data is unlikely under  $H_0 \Rightarrow$  evidence to reject  $H_0$ .
- Large p-value  $\Rightarrow$  data is likely under  $H_0 \Rightarrow$  evidence to accept  $H_0$ .

We can calculate p-values as follows:

$$\text{p-value} = \left\{ \begin{array}{ll} 2 \times \Pr(Z > |z|) & \text{if } H_a: \mu \neq \mu_0 \\ & \Pr(Z < z) & \text{if } H_a: \mu < \mu_0 \\ & \Pr(Z > z) & \text{if } H_a: \mu > \mu_0 \end{array} \right.$$

(note: |z| is the absolute value of z)

## P-Value

Since 1%, 5% and 10% are commonly used significance levels, we can use the following as a rough guide to interpreting p-values:

- 0.00 < p-value  $< 0.01 \Rightarrow$  strong evidence against  $H_0$ .
- 0.01 < p-value < 0.05  $\Rightarrow$  evidence against  $H_0$ .
- 0.05 < p-value  $< 0.10 \Rightarrow$  some evidence against  $H_0$  (not strong).
- 0.10 < p-value < 1.00  $\Rightarrow$  no evidence against  $H_0$ .

# **Example: Gameplay**

Recall that in the gameplay example:

$$H_0: \mu \ge 16$$

$$H_a: \mu < 16$$

This is a one-sided test (with rejection region in the lower tail) and, therefore, the p-value is Pr(Z < z) where z is the test statistic.

Since the calculated test statistic was z = -1.5, we have

p-value = 
$$Pr(Z < -1.5) = Pr(Z > 1.5) = 0.0668$$
.

Thus, although there is some evidence against  $H_0$ , it is not strong.

Furthermore, since the stated significance level was  $\alpha = 0.05$  in this example, we would not reject  $H_0$ .

#### Other Parameters

We have introduced the idea of hypothesis testing using  $\mu$ .

The general procedure is much the same for other parameters.

That is, we calculate:

$$z = \frac{\text{statistic } - \text{ hypothesised value}}{\text{standard error}}$$

and then compare this to a critical value.

## **Proportions**

Recall that for a proportion, the *true* standard error is  $\sigma(\widehat{P}) = \sqrt{\frac{p(1-p)}{n}}$ .

For the calculation of confidence intervals, we replaced p with  $\hat{p}$  (since p is unknown)  $\Rightarrow s(\hat{P}) = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ .

For hypothesis testing, we use the **hypothesised value**  $p = p_0$ :

$$s(\widehat{P}) = \sqrt{\frac{p_0 (1 - p_0)}{n}}$$

Apart from this difference, everything is the same as in the case of hypothesis testing for  $\mu$  as covered already.

# **Example: User Age**

A company believes that 70% of users of their product are teenagers; this impacts advertising campaigns. They wish to test this hypothesis. Therefore, we have the following null and alternative hypotheses:

Direction of Test

$$H_0: p = 0.7$$

$$H_a: p \neq 0.7$$

A random sample of users were selected and it was found that 40 out of 75 were teenagers, i.e.,  $\hat{p} = \frac{40}{75} = 0.533$ .

$$\Rightarrow z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{0.533 - 0.7}{\sqrt{\frac{0.7(0.3)}{75}}} = \frac{-0.167}{0.0529} = -3.16.$$

Note that  $p_0$  is used in the standard error.

## **Example: User Age**

We will view the evidence against  $H_0$  using the p-value approach. Since this is a two tailed test we have:

p-value = 2 
$$Pr(Z > |z|) = 2 Pr(Z > |-3.16|)$$
  
= 2  $Pr(Z > 3.16)$   
= 2 (0.00079)  
= 0.00158.

Thus, it appears that  $H_0$  is unlikely. The proportion of teenagers who use the product is not as much as they thought.

## Question 3

A new version of an operating system is being developed. A beta version is released to some randomly selected individuals who are then asked: "Do you prefer the new system?".

By default, the company will assume that the old system is preferred, i.e., the hypothesis to be tested is p < 0.5.

It was found that 38 out of 65 people prefer the new system.

- a) State the null and alternative hypotheses.
- b) What is the critical value if  $\alpha = 0.05$ ?
- c) Calculate the test statistic.
- d) Provide your conclusion.
- e) Calculate a p-value also.