

Trabajo Práctico Final

82.05 Análisis Predictivo

Abril Noguera

2022 1Q

AGENDA

01 Introducción

¿De qué se trata la base?

03 Análisis Exploratorio

Inspección y preparación de la base. Tratamiento estadístico y gráfico de los datos.

05 Modelos de Predicción

Presentación de los modelos predictivos utilizados y explicación del modelo con mejor ajuste.

02 Objetivo

¿Qué se quiere predecir?

04 Hipótesis y Supuestos

Qué suposiciones existen sobre el análisis. Planteo del modelo.

06 Fitting

Justificación del fitting del modelo.

01 Introducción

Encuesta de Inserción Laboral de Graduados Universitarios

- Ámbito Poblacional: graduados del sistema universitario español.
- **Ámbito Geográfico:** todo el territorio español, titulados de universidades españolas.
- **Ámbito Temporal:** se realizó la encuesta en el año 2019 con graduados del 2013 / 2014.

01 Introducción

Encuesta:

- Datos Personales y Sociodemográficos.
- Educación y Aprendizaje.
- Movilidad.
- Situación Laboral Actual del Graduado.

02 Objetivo

Objetivo General de la INe: "El objetivo principal es conocer la situación laboral de los graduados universitarios, así como los diversos aspectos de su proceso de inserción laboral, es decir, el acceso al mercado de trabajo."

Predecir el comportamiento laboral de los graduados universitarios.

- ¿Se puede predecir la inserción laboral?
- ¿Los graduados ocupan puestos acordes a sus estudios?

Preguntas Extra.

- ¿A mayor cantidad de estudios mayor sueldo?
- ¿La rama de estudios describe el sueldo?

03 Análisis Exploratorio

Variables Categoricas:

- → Variables Nominales
- → Variables Ordinales

Grupos:

- → Personales del Graduado:
 - Sexo
 - Edad
 - Nacionalidad
 - ◆ Tipo de Hogar
- → Estudios:
 - Rama de Estudio
 - Becado
 - Estudio en el Extranjero
 - Motivo
 - Capacidades
 - Otros Estudios

→ Laborales:

- Situación Laboral Actual
- Situación Profesional Actual
- Nivel de Formación adecuado para el Trabajo.
- Área de Estudio apropiada para el Trabajo.
- Sueldo
- Intento conseguir otro trabajo?

Estas variables van a definir el Target, pero no serán utilizadas para el modelo.

Registros Vacios:

- Variables que solo describen a una agrupación.
 - Ej: solo si sos empleado tenes sueldo...
- Vacíos sin sentido alguno.

Se agrega un valor a la variable que represente al otro grupo.

Se eliminan de la base por ser poco representativos.

Inconsistencias:

• No se encontraron valores inconsistentes, es decir que no cumplían con las respuestas predeterminadas.

Outliers:

 No se encontraron outliers, porque se tratan de variables categóricas con respuestas predeterminadas.

Correlación de Cramer:

* Porque son variables categóricas. Mide la correlación de 0 a 1.

Objetivo: Predecir el comportamiento laboral de los graduados universitarios.

¿Nos interesa un graduado empleado pero qué no aplique su título?

Empleado Productivo: graduado actualmente empleado que aplica sus estudios universitarios en su área en el trabajo al que se dedica.

04 Hipótesis y Supuestos

¿A mayor cantidad de estudios mayor sueldo?

Correlación de Spearman:

13.64%

* Cómo son variables ordinales spearman tiene sentido. Mide la correlación entre -1 y 1.

Correlación de Cramer:

9.65% * Porque

* Porque son variables categóricas. Mide la correlación de 0 a 1.

EMPLEADO_PRODUCTIVO

No
Si

15.22%

04 Hipótesis y Supuestos

¿La rama de estudios describe el sueldo?

04 Hipótesis y Supuestos

 ¿Los graduados ocupan puestos acordes a sus estudios?

- ¿Se puede predecir la inserción laboral?
- ¿Existe un patrón que refleje el comportamiento laboral de los graduados?

BUSCAMOS QUE LO RESPONDA EL MODELO DE PREDICCIÓN

TRA

04 Hipótesis y Supuestos

Casos de Aplicación del Modelo:

¿Cuántos graduados aplicarán sus estudios?

¿Qué tipo de cursos o carreras le recomiendo a este graduado? ¿Qué está pasando con los planes de estudio para qué los graduados no los apliquen?

¿Qué tipo de empleo le recomiendo a este graduado?

Objetivo: Predecir el comportamiento laboral de los graduados universitarios.

Variable Target: Empleados Productivos.

Modelo: Clasificación.

Partición de la Base:

70% de Training Stratified Split: por Rama de Estudio.

Métricas de Evaluación:

- Misma importancia a las categorías.
- Categorias balanceadas

Accuracy

AUROC

- Arboles:
 - CatBoost
 - Random Forest
 - AdaBoost
 - o Decisión Tree
 - LightGBM
 - XGBoost
- KNN
- SVM
- Kmeans

Herramientas:

Grid Search

Cross Validation

One Hot Encoding

Feature Importance

PCA

Cat por categorías y Boost por qué usa Gradient Boosting.

- > Bueno para variables categóricas.
- > Bueno para información limitada.
- Rápido.

Ajuste de Hiperparametros:

- Loss Function: especificar la métrica usada durante el entrenamiento qué el algoritmo de gradient boosting va a maximizar/minimizar → En el caso de los modelos de clasificación se utiliza logloss.
- Eval Metric: métrica de evaluación a utilizar → En este caso evaluaremos el modelo con AUROC y Accuracy
- Iterations: cantidad máxima de árboles que se construyen para resolver el problema de Machine Learning. → Cuantas más iteraciones más overfitting, hay que contratarlo. (default 1000)
- Learning Rate: usado para determinar el gradient step (determines the step size at each iteration while moving toward a minimum of a loss function). → Por defecto se define automáticamente según las propiedades del dataset. A menor sea menor overfitting
- Tree Depth: profundidad del árbol. → Se recomienda entre 6 y 12.
- L2 Regularization: fuerza qué remueve un porcentaje pequeño de peso en cada iteración → probar cual es el mejor.

06 Fitting

```
model = CatBoostClassifier(loss_function="Logloss", depth = 10, l2_leaf_reg = 3, iterations = 400, learning_rate = 0.03)
```

AUROC: 0.663Accuracy: 0.68

06 Fitting

06 Fitting

Gracias!