

AZ431

General Description

The AZ431 series ICs are three-terminal adjustable shunt regulators with guaranteed thermal stability over a full operation range. These ICs feature sharp turn-on characteristics, low temperature coefficient and low output impedance, which make them ideal substitutes for Zener diodes in applications such as switching power supply, charger and other adjustable regulators.

The AZ431 series ICs contain two voltage types, AZ431-A for 40V and AZ431-B for 20V. The output voltage of both types can be set to any value between $V_{\rm REF}(2.5{\rm V})$ and the corresponding maximum cathode voltage.

The AZ431 precision reference is offered in two bandgap tolerance: 0.4% and 0.8%.

These ICs are available in 5 Packages: TO-92, SOT-23-3, SOT-23-5, SOT-89 and SOIC-8.

Features

- Programmable Precise Output Voltage from 2.5V to 36V or 18V
- Very Accurate Reference Voltage: 0.15% Typical
- High Stability under Capacitive Load
- Low Temperature Deviation: 4.5mV Typical
- Low Equivalent Full-range Temperature Coefficient with 20PPM/°C Typical
- Low Dynamic Output Resistance: 0.2Ω Typical
- Sink Current Capacity from 1mA to 100 mA
- Low Output Noise
- Wide Operating Range of -40 to 125°C

Applications

- Charger
- Voltage Adapter
- Switching Power Supply
- Graphic Card
- Precision Voltage Reference

Figure 1. Package Types of AZ431

AZ431

Pin Configuration

Figure 2. Pin Configuration of AZ431 (Top View)

Functional Block Diagram

Figure 3. Functional Block Diagram of AZ431

AZ431

Ordering Information

40V Products

Doelrogo	Tempera-	Voltage	Part I	Number	Mark	Packing		
Package	ture Range	Tolerance	Tin Lead	Lead Free	Tin Lead	Lead Free	Туре	
SOT-23-3	40 + 1250C	0.4%	AZ431AN-ATR	AZ431AN-ATRE1	N41	EA1	Tape & Reel	
301-23-3	-40 to 125°C	0.8%	AZ431BN-ATR	AZ431BN-ATRE1	N42	EA2	Tape & Reel	
SOT-23-5	-40 to 125°C	0.4%	AZ431AK-ATR	AZ431AK-ATRE1	K3A	E3A	Tape & Reel	
301-23-3		0.8%	AZ431BK-ATR	AZ431BK-ATRE1	К3В	ЕЗВ	Tape & Reel	
		0.4%	AZ431AZ-A	AZ431AZ-AE1	AZ431AZ-A	AZ431AZ-AE1	Bulk	
TO-92	-40 to 125°C	0.4%	AZ431AZ-ATR	AZ431AZ-ATRE1	AZ431AZ-A	AZ431AZ-AE1	Ammo	
10-92		0.8%	AZ431BZ-A	AZ431BZ-AE1	AZ431BZ-A	AZ431BZ-AE1	Bulk	
		0.8%	AZ431BZ-ATR	AZ431BZ-ATRE1	AZ431BZ-A	AZ431BZ-AE1	Ammo	
		0.4%	AZ431AM-A	AZ431AM-AE1	AZ431AM-A	AZ431AM-AE1	Tube	
SOIC-8	-40 to 125°C	0.4%	AZ431AM-ATR	AZ431AM-ATRE1	AZ431AM-A	AZ431AM-AE1	Tape & Reel	
301C-8		0.8%	AZ431BM-A	AZ431BM-AE1	AZ431BM-A	AZ431BM-AE1	Tube	
		0.8%	AZ431BM-ATR	AZ431BM-ATRE1	AZ431BM-A	AZ431BM-AE1	Tape & Reel	
SOT-89	-40 to 125°C	0.4%	AZ431AR-ATR	AZ431AR-ATRE1	431A	E43A	Tape & Reel	
301-89		0.8%	AZ431BR-ATR	AZ431BR-ATRE1	431B	E43B	Tape & Reel	

AZ431

Ordering Information (Continued)

20V Products

Package	Tempera-	Voltage	Part I	Number	Mark	Packing		
rackage	ture Range	Tolerance	Tin Lead	Lead Free	Tin Lead	Lead Free	Type	
SOT-23-3	40 + 1250C	0.4%	AZ431AN-BTR	AZ431AN-BTRE1	N44	EA4	Tape & Reel	
301-23-3	-40 to 125°C	0.8%	AZ431BN-BTR	AZ431BN-BTRE1	N45	EA5	Tape & Reel	
SOT-23-5	-40 to 125°C	0.4%	AZ431AK-BTR	AZ431AK-BTRE1	K4A	E4A	Tape & Reel	
301-23-3		0.8%	AZ431BK-BTR	AZ431BK-BTRE1	K4B	E4B	Tape & Reel	
	-40 to 125°C	0.4%	AZ431AZ-B	AZ431AZ-BE1	AZ431AZ-B	AZ431AZ-BE1	Bulk	
TO-92		0.4%	AZ431AZ-BTR	AZ431AZ-BTRE1	AZ431AZ-B	AZ431AZ-BE1	Ammo	
10-72		0.8%	AZ431BZ-B	AZ431BZ-BE1	AZ431BZ-B	AZ431BZ-BE1	Bulk	
		0.8%	AZ431BZ-BTR	AZ431BZ-BTRE1	AZ431BZ-B	AZ431BZ-BE1	Ammo	
	-40 to 125°C	0.4%	AZ431AM-B	AZ431AM-BE1	AZ431AM-B	AZ431AM-BE1	Tube	
SOIC-8		0.4%	AZ431AM-BTR	AZ431AM-BTRE1	AZ431AM-B	AZ431AM-BE1	Tape & Reel	
3010-8		0.8%	AZ431BM-B	AZ431BM-BE1	AZ431BM-B	AZ431BM-BE1	Tube	
		0.8%	AZ431BM-BTR	AZ431BM-BTRE1	AZ431BM-B	AZ431BM-BE1	Tape & Reel	
SOT-89	40 to 1250C	0.4%	AZ431AR-BTR	AZ431AR-BTRE1	431C	E43C	Tape & Reel	
301-89	-40 to 125°C	0.8%	AZ431BR-BTR	AZ431BR-BTRE1	431D	E43D	Tape & Reel	

BCD Semiconductor's Pb-free products, as designated with "E1" suffix in the part number, are RoHS compliant.

Advanced Analog Circuits Data Sheet

ADJUSTABLE PRECISION SHUNT REGULATORS

AZ431

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value	Unit	
Called J. Valles a	V	AZ431 (40V): 40	V	
Cathode Voltage	V_{KA}	AZ431 (20V): 20	V	
Cathode Current Range (Continuous)	I _{KA}	-100 to +150	mA	
Reference Input Current Range	I_{REF}	10	mA	
Down Discinction	P_{D}	M,Z,R Package: 770	mW	
Power Dissipation	1 D	N,K Package: 370	III VV	
Junction Temperature	T _J 160		°C	
Storage Temperature Range	T _{STG}	-65 to +150	°C	
		M Package: 150		
		N Package: 330		
Package Thermal Impedance	$ heta_{ m JA}$	Z Package: 150	°C/W	
		R Package: 50		
		K Package: 250		

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit	
Cathode Voltage	V _{KA}	$V_{ m REF}$	AZ431(40V): 36	V	
Cathode voltage	' KA	' REF	AZ431(20V): 18	•	
Cathode Current	I _{KA}	1.0	100	mA	
Operating Ambient Temperature Range		-40	125	°C	

Advanced Analog Circuits Data Sheet

ADJUSTABLE PRECISION SHUNT REGULATORS

AZ431

Electrical Characteristics for AZ431(40V)

Operating Conditions: $T_A=25^{\circ}C$ unless otherwise specified.

Parameter		Test	Symbol	Conditions		AZ431 (40V)			Unit
		Circuit		Conditions		Min	Тур	Max	Ome
Reference Voltage	0.4%	4	V _{REF}	V _{KA} =V _{REF,} I _{KA} =10mA		2.490	2.500	2.510	V
Reference voltage	0.8%	7				2.480	2.500	2.520	
Deviation of Reference		4	$\Delta V_{ m REF}$	V _{KA} =V _{REF}	0 to 70°C		4.5	8	mV
Voltage Over-Temperat	Voltage Over-Temperature		△ V REF	$I_{KA} = 10mA$	-40 to 85°C		4.5	10	111 V
Ratio of Change in Reference Voltage to the Change in Cathode Voltage		5	$\frac{\Delta V_{REF}}{\Delta V_{KA}}$	I _{KA} =10mA	$\Delta V_{KA} =$ 10V to V_{REF}		-1.0	-2.7	mV/V
					$\Delta V_{KA} =$ 36V to 10V		-0.5	-2.0	
Reference Current		5	I _{REF}	I _{KA} =10mA,R	I=10KΩ, R2=∞		0.7	4	μΑ
Deviation of Reference Current Over Full Temperature Range		5	ΔI_{REF}	I_{KA} =10mA, R1=10K Ω R2= ∞ , T_{A} =-40 to 85 o C			0.4	1.2	μΑ
Minimum Cathode Current for Regulation		4	I _{KA} (MIN)	V _{KA} =V _{REF}			0.4	1.0	mA
Off-State Cathode Current		6	I _{KA} (OFF)	V _{KA} =36 V, V _{REF} =0			0.05	1.0	μΑ
Dynamic Impedance		4	Z_{KA}	$V_{KA}=V_{REF}, I_{KA}=1 \text{ to } 100\text{mA},$ $f \le 1.0\text{KHz}$			0.15	0.5	Ω

Advanced Analog Circuits Data Sheet

ADJUSTABLE PRECISION SHUNT REGULATORS

AZ431

Electrical Characteristics for AZ431(20V)

Operating Conditions: T_A =25 o C unless otherwise specified.

Parameter		Test	Cumbal	Symbol Conditions		AZ431 (20V)			Unit
		Circuit	Symbol			Min	Тур	Max	Cilit
Reference Voltage	0.4%	4	V _{REF}	V _{KA} =V _{REF} , I _{KA} =10mA		2.490	2.500	2.510	V
Reference voltage	0.8%	1 4	* REF			2.480	2.500	2.520	
Deviation of Reference	Deviation of Reference Voltage		ΔV_{REF}	IXI IXLI	0 to 70°C		4.5	8	mV
Over-Temperature		4	- KEF	I _{KA} =10mA	-40 to 85°C		4.5	10	111 V
Ratio of Change in Refe Voltage to the Change in		5	$\Delta V_{ m REF}$	I _{KA} =10mA	$\Delta V_{KA} =$ 10V to V_{REF}		-1.0	-2.7	mV/V
Cathode Voltage		3	ΔV_{KA}	IKA-10IIIY	$\Delta V_{KA} = 18V \text{ to } 10V$		-0.5 -2.0	-2.0	111177
Reference Current		5	I _{REF}	I_{KA} =10mA, R1=10KΩ, R2=∞			0.7	4	μΑ
Deviation of Reference Current Over Full Temperature Range		5	ΔI_{REF}	I_{KA} =10mA, R1=10KΩ,R2=∞ T_{A} =-40 to 85°C			0.4	1.2	μΑ
Minimum Cathode Current for Regulation		4	I _{KA} (MIN)	$V_{KA} = V_{REF}$			0.4	1.0	mA
Off-State Cathode Current		6	I _{KA} (OFF)	V _{KA} =18V, V _{REF} =0			0.05	1.0	μΑ
Dynamic Impedance		4	Z_{KA}	$V_{KA}=V_{REF}$, $I_{KA}=1$ to 100mA $f \le 1.0$ KHz			0.2	0.5	Ω

AZ431

Electrical Characteristics (Continued)

Figure 4. Test Circuit 4 for $V_{KA}=V_{ref}$

Figure 5. Test Circuit 5 for V_{KA} > V_{ref}

Figure 6. Test Circuit 6 for I_{OFF}

AZ43

Typical Performance Characteristics

Figure 7. Reference Voltage vs. Ambient Temperature

Figure 8. Reference Current vs. Ambient Temperature

Figure 10. Current vs. Cathode Voltage

A743

Typical Performance Characteristics (Continued)

-0.9 AZ431-20V: V_{KA}=3.5V to 18V AZ431-40V: V_{KA}=3.5V to 36V -1.0

-1.0

-1.1

-1.2

-1.3

-1.4

-40

-20

0

20

40

60

80

100

120

Ambient Temperature (°C)

Figure 11. Off-state Cathode Current vs.

Ambient Temperature

Figure 12. Ratio of Delta Reference Voltage to the Ratio of Delta Cathode Voltage

Apr. 2005 Rev. 1. 7

Figure 13. Small Signal Voltage Gain vs. Frequency

AZ431

Typical Performance Characteristics (Continued)

Figure 14. Reference Impedance vs. Frequency

Figure 15. Stability Boundary Conditions vs. Load Capacitance

AZ431

Typical Performance Characteristics (Continued)

Figure 16. Pulse Response of Input and Output Voltage

AZ431

Typical Application

Figure 17. Shunt Regulator

Figure 18. High Current Shunt Regulator

Figure 19. Current Source or Current Limit

AZ431

Typical Application (Continued)

Figure 20. Precision 5V 1.5A Regulator

Figure 21. PWM Converter with Reference

AZ431

Mechanical Dimensions

TO-92 Unit: mm (inch)

AZ431

Mechanical Dimensions (Continued)

SOT-23-3 Unit: mm(inch)

AZ431

Mechanical Dimensions (Continued)

SOT-23-5 Unit: mm(inch)

AZ431

Mechanical Dimensions (Continued)

SOT-89 Unit: mm(inch)

AZ431

Mechanical Dimensions (Continued)

SOIC-8 Unit: mm(inch)

http://www.bcdsemi.com

BCD Semiconductor Corporation

3170 De La Cruz Blvd, Suite # 105 Santa Clara, CA 95054-2411, U.S.A Tel: +1-408-988 6388, Fax: +1-408-988 6386

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd.

800 Yi Shan Road, Shanghai 200233, PRC Tel: +86-21-6485-1491, Fax: +86-21-5450-0008

Advanced Analog Circuits (Shanghai) Corporation

8F, B Zone, 900 Yi Shan Road, Shanghai 200233, PRC Tel: +86-21-6495 9539, Fax: +86-21-6485 9673

BCD Semiconductor (Taiwan) Company Limited

Room 2210, 22nd Fl, 333, Keelung Road, Sec. 1, TaiPei (110), Taiwan Tel: +886-2-2758 6828, Fax: +886-2-2758 6892

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.