MAC 105 - Fundamentos de Matemática para Computação

Prova 1 — 19/4/2016

Instruções:

- Identifique sua prova na primeira página, com nome e número USP
- Numere as páginas, principalmente se usar mais de uma folha
- A prova pode ser feita a lápis
- As questões podem estar em qualquer ordem

Onde escrever uma demonstração, pode precedê-la por uma argumentação esquemática, como visto em aula, com as idéias e métodos usados. Mas separe de forma clara essa parte da demonstração.

- 1. Seja A um conjunto. Uma função $f:A\to A$ é uma involução se $f\circ f$ é a função identidade em A (isto é, $f\circ f(x)=\mathrm{id}_A(x)=x$ para todo $x\in A$). Um elemento $t\in A$ é ponto fixo de f se f(t)=t.
 - (a) Mostre que toda involução é uma função bijetora.
 - (b) Dados números reais a, b, a expressão f(x) = ax + b define uma função real.
 - i. Para que valores de a,b essa função tem ponto fixo? Descreva, em função desses parâmetros, todos os pontos fixos.
 - ii. Para que valores de a, b essa função é uma involução?
 - iii. Para que valores de a, b essa função é uma involução sem ponto fixo?
- 2. Suponha que você quer provar que "Se $y=m_1x+b_1$ e $y=m_2x+b_1$ são retas paralelas, então $m_1=m_2$ ". Quais dessas perguntas são úteis e quais não, para o método do vai-e-vem:
 - (a) Como posso provar que $m_1 = m_2$?
 - (b) Como posso provar que duas linhas são paralelas?
 - (c) Como posso provar que dois números reais são iguais?
- 3. Prove detalhadamente que se n é a soma de dois inteiros consecutivos, então n^2 é impar. Deixe claro quais as definições que usou. Sua prova tem a forma "vai", "vem" ou "vai e vem"?
- 4. Seja $\mathcal F$ o conjunto de todas as funções dos números reais nos reais. Vamos definir em $\mathcal F$ a relação \prec por:

 $f \prec g$ se e só se existe um x_0 tal que $f(x) \leq g(x)$ para todo $x \geq x_0$.

Por exemplo, $x^2 \prec x^3$ (basta tomar $x_0 = 1$) e $1000x + 100 \prec x^2$ (basta tomar $x_0 = 1001$).

Mostre que \prec é reflexiva e transitiva.