Improving Training

Geena Kim

Better training

The Goals:

- Smallest generalization error
- Better test performance score

Generalization error

Where is the error coming from?

Flexibility

How do we know which term to drop/include?

Parameters

Design parameters factor

features

hyperloarmeter

hyperloarmeter

$$X_1, X_2, X_3$$
 X_1, X_2, X_3

What features to include?

Method 1. Best subset method

• The idea: test all possible combinations $\times_{i} \sim \times$

Curse of dimensionality!

$$\begin{array}{ccc} & & & \times_1 & & \\ & & & \times_1 & \times_2 & \\ & & & & \times_2 & & \end{array}$$

Method 2. Regularization

Regularization

Original loss function

Let's penalize some terms that are not necessary

$$\mathcal{L} = \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j X_{ij} \right)^2 + \mathcal{C}_{\beta_i}$$

With a L2 regularization

$$\mathcal{L} = \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j X_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \qquad \underline{\lambda \ge 0}$$

L2 regularization (Ridge)

$$\mathcal{L} = \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j X_{ij} \right)^2 + \underbrace{\lambda \sum_{j=1}^{p} \beta_j^2}_{j}$$

Also called Ridge regression

What does the lambda (λ) do?

L2 regularization

What does the lambda (λ) do?

$$\mathcal{L} = \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j X_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

|β| Total Loss (L)

Original Loss (L₀)

L2 regularization

What does the lambda (λ) do?

 λ vs. $|\beta|_2$

7-

 λ vs. β_j

L2 regularization

What does the lambda (λ) do?

L1 regularization (Lasso)

$$\mathcal{L} = \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j X_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

What does the lambda (1) do?

Penty Li = 1 (lil + 1/2/4/+) ~ 0,11.7

Lasso can make certain β 0. Why?

Ridge and Lasso

Elastic Net

$$\mathcal{L} = \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j X_{ij} \right)^2 + \lambda \left(\alpha \sum_{j=1}^{p} |\beta_j| + \frac{1 - \alpha}{2} \sum_{j=1}^{p} \beta_j^2 \right)$$

- Elastic Net is a convex combination of Ridge and Lasso
- Elastic Net > Ridge > Lasso

What features to include?

Method 1. Best subset method

- The idea: test all possible combinations
- Curse of dimensionality!

Method 2. Regularization

- The idea: Penalize unnecessary complexity/features
- Hyperparameter lambda
- Ridge (L2), Lasso (L1), Elastic Net (L1+L2)

TIP: normalize the columns

Method 3. Cross-Validation

Model validation during the training

The general idea:

- Split dataset into Train, Validation, Test
- Train using train data with a hyperparam(s) fixed
- Tune the hyperparameter(s) with validation
- When tuning is done, test with the test data
- How do I know my validation dataset was good or bad?

Cross-Validation

