

Bien se préparer à coder

- · Créer un projet dans ce dossier :
 - Bien réfléchir au nom de ce projet
 - Bien réfléchir à l'endroit où ce projet sera situé
- · Créer un script
- · Savoir où sont les données, et sous quel format
- · Savoir ce que l'on veut faire!

C'est parti pour les commandes de base!

Le(s) prompt(s)

- · >: R attend une commande à exécuter
- · +: la commande qui a été entrée n'est pas complète car
 - il manque une parenthèse fermante
 - il manque un crochet fermant
 - il manque une accolade fermante
- · : la commande est en cours de traitement. On peut l'arrêter en cliquant sur le bouton "Stop"

Opérations de base

On peut effectuer toutes les opérations de base en R :

addition (+), soustraction (-), multiplication (*), division (/), exponentiation (** ou ^)...

appliquer les fonctions mathématiques de base :

 logarithme (log, log2, log10), exponentielle (exp) sinus (sin), cosinus (cos), tangente (tan)

On peut combiner les opérations et les fonctions, et gérer les priorités avec des parenthèses!

Un opérateur bien pratique, le :

Comment créer une suite d'entier?

- c(1, 2, 3, 4)seq(1, 4, 1)
- · 1:4

L'opérateur : est très utilisé en R. Sa syntaxe est la suivante

• i:j va créer une suite d'entiers de i à j. Les entiers peuvent être négatifs ou positifs, et on peut peut avoir i < j ou i > j, ou même i = j.

Attention à bien mettre des parenthèses dans le cas d'entiers négatifs!

Exemples

- 3:7: les entiers de 3 à 7
- 7:3: les entiers de 7 à 3
- -3:7: les entiers de -3 à 7
- \cdot -3:-7: les entiers de -3 à -7
- \cdot -(3:7): les entiers de -3 à -7

Assignation avec <-

Comment "sauvegarder" ces objets?

En utilisant l'opérateur d'assignation

Utilisation de l'opération d'assignation

- · A gauche : l'objet que l'on veut créer
- · A droite : sa définition
- Lecture de l'opération : "assigner à cet objet (à gauche) le résultat de cette commande (à droite)"
- · Assigner deux fois de suite écrasera la première valeur assignée
- · Alternative : =
- Exemples: a <- 1, b <- 1:10, a <- 2 etc.

Les noms d'objets

Règles absolues :

- · Commence par une lettre ou un point, si le premier caractère est un point, le deuxième ne peut pas être un chiffre,
- · Pas d'espace
- Pas de caractères correspondant à des opérations (+, -, *, /, ^, **, etc.)
- · Les minuscules et les majuscules sont différentes!
- · Certains "mots-clefs" sont strictement interdits (NA, TRUE, FALSE, for, if, else etc.)
- · MAIS on peut utiliser un nom d'objet qui existe déjà!

Bonnes pratiques:

- · Utiliser un nom qui a du sens
- · Ne pas utiliser des noms d'objets qui existent déjà et que l'on ne souhaite pas écraser!

Opérations

On peut appliquer des opérations à ces "vecteurs"!

```
a <- 1:5

a + 1

#> [1] 2 3 4 5 6

a * 2

#> [1] 2 4 6 8 10
```

Ces "vecteurs" sont des **objets**.

Les Objets

Classes d'objets

Nom	Appelation officielle	Exemple
Vecteur	vector	1:10
Facteur	factor	gl(2, 2)
Matrice	matrix	matrix(1:4, 2, 2)
Tableau	data.frame	mtcars
Liste	list	list(a = 1, b = 1:10, c = "Hello!")
Fonction	function	sin, exp, log

Pour connaître la classe d'un objet : class(objet).

Types de données

Nom	Appellation officielle	Exemple
Entier (\mathbb{Z})	integer	1:10, (ou 1L)
Réel (ℝ)	double	2.3, 1/3, etc
Caractères	character	month.name, "Bonjour"
Booléen	logical	TRUE

Bouh les quoi?

MATH., néol. Qui est relatif aux théories du logicien et mathématicien anglais George Boole.

- Trésor de la Langue Française informatisé
- TRUE (ou bien T) et FALSE (ou bien F)
- Résultat d'une comparaison : ==, !=, <, >, <=, >=
- · Opérations logiques : !, &, |, xor

Exercice

1. Effectuez les opérations suivantes :

```
· 1 == 2
· !(5 > −6)
· (1 <= 10) | (1 > 0)
```

1. Prédisez le résultat de la commande suivante : log(1) != 0

"Classification" des objets

Les objets qui ne contiennent qu'un seul type de données : vecteurs et matrices.

Les objets pouvant contenir des données mixtes : tableaux et listes.

La flexibilité a un coût : on ne peut plus faire certaines opérations !

Les objets ayant des "dimensions" : vecteurs, tableaux et matrices

Les objets pour qui cela ne signifie rien ou presque : listes et fonctions

Les tableaux

```
data("fruveg", package = "intro2r")
fruveq
#> # A tibble: 33 × 19
              group energy water proteins carbohydrates lipids sugar fibers alcohol
#>
     name
              <chr> <dbl> <dbl>
                                  <dbl>
                                                <dbl> <dbl> <dbl> <dbl> <
                                                                         <dbl>
     <chr>
   1 Mushroom raw ...
                    25.8 92.6
                                  2.37
                                                 1.88
                                                        0.23 1.43
                                                                   1.72
   2 Zucchini raw ...
                    20.1 94.7
                                  1.23
                                                        0.26 1.79
                                                 1.8
                                                                   1.05
  3 Leek
              raw ...
                    33.4 87.6
                                   1.49
                                                 4.9
                                                        0.25
                                                             3.15
                                                                   2.27
                                   0.86
                                                        0.26
                                                             2.48
                                                                    1.2
   4 Tomato raw ...
                    21
                           94.1
                                                 2.49
   5 Broccoli raw ...
                    35.2 88.9
                                   3.95
                                                                    2.9
                                                 1.7
                                                        0.48
                                                             1.7
  6 Green b... raw ... 31.8 90.4
                                                             3,26
                                   1.85
                                                 4.14
                                                        0.21
                                                                    2.85
  7 Red beet raw ... 50.9 86.7
                                   1.74
                                                 9.1
                                                        0.24
                                                                    2.55
                                                             6.76
   8 White c... raw ... 35.1 90
                                                                    3.5
                                   1.38
                                                 4.63
                                                        0.6
                                                              4.2
                                                             1.6
   9 Squash raw ... 17.9 92.3
                                   1.1
                                                 1.6
                                                        0.17
                                                                    1.3
#> 10 Pumpkin raw ... 33.8 91.6
                                                             2.76
                                                                    0.5
                                                 6
                                                        0.1
#> # i 23 more rows
#> # i 9 more variables: calcium <dbl>, copper <dbl>, iron <dbl>, magnesium <dbl>,
    manganese <dbl>, phosphorus <dbl>, potassium <dbl>, zinc <dbl>,
#> # vitaminC <dbl>
```

Importer des données en R

- · Des données de packages : data
- Des données au format R (RData): load
- Des données "tabulées" : read. table
- Des données Excel : openxlsx::read.xls
- Des données Stata, SPSS, images etc.

Les données "de R"

- Utiliser la commande data() pour avoir une liste (presque?) exhaustive.
- Bonne pratique : pour charger un jeu de données, utiliser la commande complète data("nom_des_data", package = "nom_du_package")
- Mais ces alternatives fonctionnent également :
 - data(mtcars)
 - DNase
 - library(ggplot2); data(diamonds)

Utilisation des guillemets

- · Obligation : quand l'argument doit être une chaîne de caractères
- Oubli: library, require, data
- Guillemets simples : fonctionnent comme les guillemets doubles. Ex.:
 "bonjour" est équivalent à 'bonjour'.
- Le "backtick" ou "backquote" : "`"

Explorer les données fruveg

Sur quels objets les utiliser?

Opérateur	Vecteurs	Matrices	Tableaux	Listes
[]	X		X	Χ
[,]		X	X	
[[]]			X	X
\$			X	Χ

L'opérateur de sélection classique : [,]

- Pour sélectionner la première ligne : fruveg [1,]
- Pour sélectionner la deuxième colonne : fruveg[, 2]
- Pour enlever la troisième ligne : fruveg [-3,]
- Pour enlever la quatrième colonne : fruveg[, -4]

Sélectionner plusieurs lignes / colonnes

- Pour sélectionner les lignes 1 et 3 : fruveg[c(1, 3),]
- · Pour sélectionner les colonnes 2 et 4 : fruveg[, c(2, 4)]
- Pour enlever les lignes 5 et 7 : fruveg [-c(5, 7),]
- Pour enlever les colonnes 6 et 8 : fruveg[, -c(6, 8)]

De l'utilité des deux points

Pour sélectionner une plage entière de lignes ou de colonnes adjacentes :

- Pour sélectionner les lignes 11 à 17 : fruveg [11:17,]
- Pour sélectionner les colonnes 3 à 5 : fruveg[, 3:5]
- Pour enlever les trois premières lignes : fruveg [-(1:3),]
- Pour enlever les cinq premières variables : fruveg[, -(1:5)]

Exercice

Que se passe-t-il quand on oublie les parenthèses dans la commande fruveg [-(1:3),]? Commentez!

Faites de même avec le jeu de données mtcars.

Pour extraire une seule colonne : le \$

La syntaxe donnees\$cible permet de sélectionner la colonne cible du tableau donnees.

- Par exemple : fruveg\$water
- Autre exemple : fruveg\$group

Exercice

Extrayez la colonne de la teneur en sucres de la table des fruits et légumes... de deux façons différentes !

Créez un objet contenant la teneur en sucres : quelle est la classe de cet objet ?

Les vecteurs...

- · ... sont "unidimensionnels"
- · ... ont une classe qui est égale au type de données qu'ils contiennent (R !!!)
- · ... sont indexés avec des crochets simples

Exemples:

- · i <- 1:10
- eau <- fruveg\$water</pre>
- eau[i]

Exercice

Créez un vecteur **groupe** contenant les groupes de fruits et légumes. Donnez deux façons différentes d'extraire les dix premières valeurs de ce vecteur.

Extraction avec des Booléens

Comment extraire les...

- fruits et légumes dont la teneur en eau est $\geq 90\%$?
- fruits crus?
- · légumes cuits contenant moins de 1g/100g de sucres ?

Réponse : en utilisant des vecteurs booléens

- 1. Créer le vecteur de booléens fruveg\$water >= 90
- Utiliser le résultat dans les crochets carrés fruveg[fruveg\$water >= 90,]

Ne pas oublier la virgule!

Le principe

Pour un vecteur v:

v[bool] extrait les valeurs de v pour lesquelles bool est vrai (TRUE).
 Contrainte : v et bool doivent contenir le même nombre d'éléments.

Pour un tableau tab:

- tab[brow,] pour extraire les lignes
- tab[, bcol]
- Contrainte 1 : brow doit avoir autant d'éléments que tab de lignes
- · Contrainte 2 : bcol doit avoir autant d'éléments que tab de colonnes

Attention

Vous verrez souvent des opérations logiques à l'intérieur des crochets carrés : cela permet d'aller plus vite !

Par exemple, en deux étapes :

- 1.bool <- fruveg\$group == "cooked vegetable" & fruveg\$sugar <=
 1</pre>
- 2. fruveg[bool,]

Devient, en une étape :

fruveg[fruveg\$group == "cooked vegetable" & fruveg\$sugar <=
1,]</pre>

Attention bis

On peut combiner deux méthodes d'extraction de données pour un tableau : une sur les lignes et une sur les colonnes !

Par exemple : tab[brow, icol], où brow est un vecteur de booléens et icol un vecteur d'indices.

Exercice

Construisez la sous-table contenant la teneur en protéines, en glucides et en lipides des fruits crus.

Les objets nommés

En R, on peut donner des "noms"...

- · aux éléments d'un vecteur,
- · aux lignes d'un tableau ou d'une matrice,
- · aux colonnes d'un tableau ou d'une matrice,
- · aux éléments d'une liste

Pourquoi ? Pour pouvoir disposer d'une nouvelle méthode d'extraction de données !

Pour un tableau

On utilise:

- rownames (tab) pour connaître le nom des lignes
- colnames (tab) pour connaître le nom des colonnes

Et, en bonus, on peut:

- changer les noms des lignes rownames (tab) <- new1
- changer les noms des colonnes colnames (tab) <- new2

Et, en super bonus, on peut :

- modifier quelques noms de lignes rownames(tab)[sel1] <- new1
- modifier quelques noms de colonnes rownames(tab)[sel1] <- new2

Modifier un objet ou son contenu

La syntaxe obj[i] <- newvalue (et ses variations) peut être utilisée pour tous les types d'objets indiçables. Mais il faut l'utiliser avec prudence!

Exemple: fruveg\$energy[1:10] <- 0</pre>

Que s'est-il passé ? Au secours !!!!

Pour revenir en arrière : data("fruveg", package = "intro2r")

Extraction avec des noms

Exemple:

- Pour extraire l'énergie : fruveg[, "energy"],
- Pour extraire le groupe : fruveg[, "group"],
- Pour extraire l'énergie et le groupe : fruveg[, c("energy", "group")],
- Pour enlever le groupe : fruveg[, -"group"]?

Bilan

Mode d'extraction	Exemples
Indices	fruveg[, 2]
Booléens	<pre>fruveg[fruveg\$name == "Apple",]</pre>
Noms	<pre>fruveg\$name ou fruveg[,"name"]</pre>

Exercice

Lister le maximum de façons possibles d'extraire du tableau **fruveg** les fruits crus sucrés riches en Vitamine C!

Construire ses propres objets

Vecteurs et facteurs

- La fonction c() permet de combiner des valeurs dans un vecteur.
 Attention, tout doit être du même "type"!
- · La fonction seq permet de créer des suites.
- La fonction rep permet de créer des vecteurs en répétant des valeurs. Ex: rep(c("a", "b"), c(3, 4))

Les facteurs sont une particularité de R!

- On les crée avec la fonction factor ou as factor
- Par exemple : factor(fruveg\$group)

Matrices et tableaux

- Les fonctions matrix, rbind et cbind pour créer des matrices. Attention, tout doit être du même "type"!
- · Les fonctions data.frame ou as.data.frame pour créer des

Ajouter des noms

```
Directement à la création de l'objet. Ex: x <- c(a = 1, b = 2), d <- data.frame(a = 1:26, b = letters)
```

Ou bien après la création de l'objet :

- names(obj) <- lesNoms pour un vecteur
- rownames(obj) <- lesLignes pour les lignes d'un tableau ou d'une matrice,
- colnames(obj) <- lesColonnes pour les colonnes d'un tableau ou d'une matrice.

Exercice

Créez un facteur à partir des groupes de fruits et légumes, puis testez la commande suivante :

```
factor(
  fruveg$group,
  levels = c(
    "raw vegetable",
    "cooked vegetable",
    "raw fruit"))
```

Que se passe-t-il ? Sauvez le résultat dans un objet et faites un diagramme en bâton avec ! Commentez !

Estimation ponctuelle

Définition

Il s'agit d'estimer un caractéristique statistique d'un ensemble de données avec une seule valeur.

Paramètre	Grandeur statistique	Commande
Position	Moyenne	mean
Position	Médiane	median
Position	Minimum	min
Position	Maximum	max
Dispersion	Variance	var
Dispersion	Ecart-type	sd
Dispersion	Intervalle inter-quartiles	IQR
Lien	Covariance	cov
Lien	Corrélation	cor

Rappel: la covariance

Permet de mesurer le degré de co-variation de deux variables :

$$cov(x, y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - m_x) (y_i - m_y)$$

Rappel: corrélation de Pearson

C'est une covariance normalisée entre -1 et 1!

$$cor(x, y) = \frac{cov(x, y)}{\sqrt{var(x)}\sqrt{var(y)}}$$

Rappel: corrélation de Spearman

C'est la corrélation (de Pearson) calculée sur les rangs!

$$\rho = \operatorname{cor}(r_x, r_y),$$

avec r_x le vecteur des rangs de x (rank(x)), et r_y le vecteur des rangs de y (rank(y)).

Rappel (?): corrélation de Kendall

- Paire concordante : $(x_i < x_j \text{ et } y_i < y_j) \text{ OU } (x_i > x_j \text{ et } y_i > y_j)$
- Paire discordante : $(x_i < x_j \text{ et } y_i > y_j) \text{ OU } (x_i > x_j \text{ et } y_i < y_j)$

$$\tau=\frac{n_C-n_D}{n_0},$$

avec n_C le nombre de paires concordantes, n_D le nombre de paires discordantes et n_0 le nombre total de paires de points.

Exercice

Calculez

- · la médiane de la teneur en sucres
- · la moyenne de la teneur en eau
- · l'écart-type de la teneur en eau

Appliquez la fonction summary aux données fruveg.

- · Calculez la corrélation de Pearson entre la teneur en eau et la teneur en sucres,
- · Calculez la corrélation de Spearman

Les fonctions astucieuses

- summary pour obtenir des statistiques
- str pour la structure des données
- table pour faire des tables de comptage
- seq_along pour créer un vecteur d'indices de même longueur qu'un vecteur donné

D'autres fonctions très utilies

- sum pour calculer la somme de nombres
- sort, order et rank pour ordonner, et calculer les rangs
- rowSums et colSums pour calculer les sommes des lignes et colonnes d'une table,
- rowMeans et colMeans pour calculer les moyennes des lignes et colonnes d'une table,

Les graphes de base

- · barplot : diagrammes en bâtons
- hist:histogrammes
- plot : nuages de points

La fonction barplot

Permet de réaliser des diagrammes en bâtons :

barplot(table(fruveg\$group))

La fonction hist

Permet de réaliser des histogrammes :

hist(fruveg\$water)

Histogram of fruveg\$water

La fonction plot

Permet de tracer des nuages de points :

plot(fruveg\$water, fruveg\$sugar)

Exercice

Faire un histogramme de la teneur en Vitamine C des fruits crus.

Import de données

Rappels sur les fonctions

Lire des fichiers tabulés : read.table, read.csv, read.csv2, read.delim, read.delim2.

Lire des fichiers Excel: openxlsx::read.xlsx(, readxl::read_excel)

Mais on peut utiliser aussi le menu "Import Dataset" de Rstudio!

Exercice

- 1. Téléchargez les données Nutriwi (https://vguillemot.github.io/intro2r/inst/extdata/nutrimenu.csv).
- 2. Placez ces données dans votre dossier de travail
- 3. Importez ces données dans votre environnement
- 4. Explorez rapidement les données Nutriwi avec les fonctions class, dim, summary etc.