COL341: Assignment 2

Neural Network

Name

neural - Run the executable program for linear regression

Synopsis

./neural <part> <ts> <out> <other_options>

Description

This program will train neural network model using given code on train data, make predictions on test data and write final predictions in given output file.

Note:

- You should be able to find the input_size and num_output_classes from training data.
- For part a use **MSE error** as the loss function and fix the activation function for the last layer to be sigmoid .

Options

part:

Part as per question i.e. a/b/c.

tr:

File containing training data in csv format where 1st entry is the target

ts:

File containing test data in csv format where 1st entry is the target

out:

Output file for predictions. One value in each line.

- other_options: Only for part a
 - batch_size
 - η₀ (Initial Learning rate)
 - activation_function_for_the_hidden_layer: relu, tanh, sigmoid (Output layer should always have sigmoid as the activation function)
 - o space seperated list of hidden layer sizes

Example

- 1. Suppose
 - batch size: 100
 - \circ η_0 : 0.1
 - activation_function: sigmoid
 - three hidden layers containing 50, 10 and 5 perceptrons each

```
./neural a train.csv test.csv output 100 0.1 relu 50 10 5
```

- 2. ./neural b train.csv test.csv output
- 3. ./neural c train.csv test.csv output

Data

- · devnagri train.csv: Train data
- devnagri test public.sv: Public Test data

Note: In the Public test data, actual class labels are replaced with -1

Marking scheme

Marks will be given based on following categories:

- For code, you can get 0 (error), half (code runs fine but predictions are incorrect within some predefined threshold) and full (works as expected).
- For part-b and part-c, marks will be given based on training time and accuracy on test data-set. There will be relative marking for this part.
- For part-b and part-c marking will be done in two parts: code (75%) and report(25%).

Submission

- 1. Your submission should be "ENTRY_NO.zip".
- 2. Make sure you clean up extra files/directories such as " MACOSX"
- 3. Command "unzip ENTRY_NO.zip", should result in a single directory "ENTRY_NO".

Naive Bayes

Name

naive - Run the executable program for Naive Bayes

Synopsis

```
./naive <part>  <ts> <output>
```

Description

This program will train naive bayes model using given code on train data, make predictions on test data and write final predictions in given output file.

Options

part

Part as per question i.e. a,b or c.

tr

File containing training data in csv format where 1st entry is the target

• ts

File containing test data in csv format where 1st entry is the target

Out

Output file (write your predictions in this file)

Example

```
./naive a train.csv test.csv output
```

Data

• amazon train.csv: Train data

• amazon_test_public.csv: Public Test data

Note: In the Public test data, actual class labels are replaced with -1

Marking scheme

Marks will be given based on following categories:

- For code: you can get 0 (error), half (code runs fine but predictions are incorrect within some predefined threshold) and full (works as expected).
- For part-c, marks will be given based on training time and macro-Fscore on test data-set. There will be relative marking for this part.
- For part-c marking will be done in two parts: code (10) and report(5).

Submission

- 1. Your submission should be "ENTRY_NO.zip".
- 2. Make sure you clean up extra files/directories such as " MACOSX"
- 3. Command "unzip ENTRY NO.zip", should result in a single directory "ENTRY NO".