Distributed Data
Analysis and Mining

A.A. 2020/2021

Biviano Matteo Currao Federica Racioppa Arianna

Dataset

Bank marketing campaigns

41.188 Records

21 Features:

- → 7 relative ai clienti della banca;
- ♦ 4 relative all'ultimo contatto con il cliente per la campagna di marketing in corso;
- ♦ 4 contenenti informazioni sulla campagna corrente;
- 5 relative al contesto sociale ed economico della banca.

Variabile target binaria: Sottoscrizione del deposito a termine.

Goal

Obiettivo del progetto

- Clustering dei dati relativi a clienti che hanno sottoscritto un deposito a termine.
- Classificazione della variabile target per i clusters ottenuti ed interpretazione degli stessi

Data

Data Understanding

Panoramica degli attributi:

- ♦ 10 variabili categoriche
- 10 variabili numeriche

Numeriche:

age, duration, campaign, pdays, previous, emp.var.rate, cons.price.idx, cons.conf.idx, euribor3m, nremployed.

Categoriche:

job, marital, education, default, housing, loan, contact, month.

Distribuzione del target:

La variabile target «y» assume valore **«yes»** nel caso in cui il cliente chiamato decida di sottoscrivere un deposito a termine, altrimenti assume **«no»**.

Il dataset è estremamente sbilanciato.

Data

Distribuzione delle variabili

Rappresentazione della variabile target in funzione al lavoro del cliente contattato

Distribuzione dell'età dei clienti contattati

Data preparation

Data Cleaning e Preparation

- Missing Value
- Rimozione di dati duplicati
- Normalizzazione

Data preparation

Correlazione - Pearson

Clustering

METODOLOGIA

- 1) Features usate: "age", "duration", "campaign", "previous"
- 2) Clustering effettuato solo sui dati con variabile target **«yes»**
- 3) Scelta del K attraverso l'Elbow method
- 4) Valutazione del clustering attraverso la silhouette

MODELLI

K-Means:

K: 6 Silhouette: 0.45

BisectingKMeans:

K: 7 Silhouette: 0.35

GaussianMixtureModel:

K: 6 Silhouette: 0.33

K-Means

KMEANS K=6									
	0	1	2	3	4	5			
N° Records	788	1563	414	623	1006	245			
Age	17-45	18-42	57-98	21-59	42-66	19-86			
Duration	63-1624	37-1141	63-1962	207-4199	73-1640	64-1472			
Campaign	1.74	1.82	1.79	3.34	2.036	1.73			
Previous	1.25	0	0.83	0.049	0.18	3			
Job	Admin (33.7%), technician (20.2%), student (13%)	Admin (33%), Technician (17%), blue-collar (13%)	Retired (71%)	Admin (26.6%), blue-collar (25.2%), technician (16.8%)	Admin (26.73%), blue-collar (17%), technician (13.8%)	Admin (34.2%), technician (15%)			
Marital	Single (54%), married (39.7%)	Irrilevante	Married (75%)	Married (58%), single (30% ⁾	Married (74.2%)	Married (59.6%), single (29%)			
Education	Degree (40.2%), high school (26%)	Degree (43.1%), high school (24.6%)	Basic 4y (41.3%), degree (16.6%)	Degree (29.3%), high school (24.8%)	Degree (31%)	Degree (46.12%), high school (18%)			

Cliente "tipo": admin o technician sposato con livello di istruzione elevato (laurea)

Classification

METODOLOGIA

- 1) Inserimento dei record con target negativo nei clusters ottenuti dall'analisi precedente
- 2) Features usate: "age", "duration", "campaign", "pdays", "previous", "emp_var_rate", "cons_price_idx", "cons_conf_idx", "euribor3m", "nr_employed"
- 3) Scelta degli iperparametri tramite CrossValidation (DecisionTree) e GridSearch (MLP, LSVC)

MODELLI

	Accuracy	F1-score	Precision	Recall
DECISION TREE	0.55	0.55	0.56	0.56
MULTILAYER PERCEPTRON	0.56	0.40	0.31	0.56
LINEARSVC	0.60	0.48	0.77	0.60

Il miglior modello rispetto all'F1-score è il Decision Tree.

Methodology Comparison

Results

Risultati classificazione

DecizioneTree vs KMeans+DecisioneTree

	Accuracy	Precision	Recall	F1 Score
MetricsDT	0.855	False:0.894 True:0.211	False:0.954 True:0.088	0.855
MetricsPredictionsLabels	0.908	False:0.931 True:0.624	False:0.969 True:0.417	0.908

Il modello creato risulta classificare meglio dell'applicazione triviale del Decisione Tree