Name(s):

Fill in all sections – These are today's notes

Student learning objectives

- 1. What is terminal velocity? How to measure terminal velocity experimentally?
- 2. What is the terminal velocity of a disk face-down vs edge-on?
- 3. What useful information can one extract from terminal velocity?

Dimensions and details of the experiment

The experiment consists of a 3D printed polystyrene quarter being released either face-down or edge-on in a viscous liquid. Select a coin orientation and then use the release button and start a stopwatch. Measure the distance from the release height versus time and estimate the terminal velocity for the two orientations. Based on the measurements, estimate the viscosity of the liquid.

Before starting the experiment.

- 1. Which direction do you think will rise faster: face-down or edge-on? Why?
- 2. The current experiment is being done in a liquid with a density greater than that of polystyrene. If the same experiment were done in water, do you think the terminal velocity and direction would be the same? Why/why not?
- 3. How will you infer if the drag is dominated by viscous or inertial forces?

During the experiment.

1. Set the orientation to "face-down" and measure the distance from release versus time. Report the values.

Worksheet: 3D Printed Quarter: Face-Down vs. Edge-On Rising