重庆育才信息学奥林匹克测试试题

(请选手务必仔细阅读本业内容)

一. 题目概况

中文题目名称	表达式求值	小朋友的数字	车站分级	货车运输							
英文题目与子目录名	expr	number	level	truck							
可执行文件名	expr	number	level	truck							
输入文件名	expr.in	number.in	level.in	truck.in							
输出文件名	expr.out	number.out	level.out	truck.out							
每个测试点时限	0.2秒	0.2秒	0.2秒	0.2秒							
测试点数目	10	10	10	20							
每个测试点分值	10	10	10	5							
附加样例文件	有	有	有	有							
结果比较方式	全文比较(过》	全文比较(过滤行末空格及文末回车)									
题目类型	传统	传统	传统	传统							
运行内存上限	128M	128M	128M	128M							

二. 提交源程序文件名

对于 C++语言	expr.cpp	number.cpp	level.cpp	truck.cpp
----------	----------	------------	-----------	-----------

三. 编译命令(不包含任何优化开关)

对于 C++语言	g++ -o expr	g++ -o number	g++-o level	g++ -o truck		
	expr.cpp –lm	number.cpp -lm	level.cpp -lm	truck.cpp -lm		

T1 表达式求值

题目描述

给定一个只包含加法和乘法的算术表达式,请你编程计算表达式的值。

输入格式

一行,为需要你计算的表达式,表达式中只包含数字、加法运算符 "+" 和乘法运算符 "×",且没有括号,所有参与运算的数字均为 0 到 $2^{31}-1$ 之间的整数。

输入数据保证这一行只有0-9、+、 \times 这12种字符。

输出格式

一个整数,表示这个表达式的值。

注意: 当答案长度多于4位时,请只输出最后4位,前导0不输出。

样例 #1

样例输入#1

1+1*3+4

样例输出#1

8

样例 #2

样例输入#2

1+1234567890*1

样例输出#2

7891

样例 #3

样例输入#3

1+100000003*1

样例输出#3

4

提示

对于 30% 的数据, $0 \le$ 表达式中加法运算符和乘法运算符的总数 ≤ 100 。

对于 80% 的数据, $0 \le$ 表达式中加法运算符和乘法运算符的总数 ≤ 1000 。

对于 100% 的数据, $0 \le$ 表达式中加法运算符和乘法运算符的总数 ≤ 100000 。

T2 小朋友的数字

题目描述

有 n 个小朋友排成一列。每个小朋友手上都有一个数字,这个数字可正可负。规定每个小朋友的特征值等于排在他前面(包括他本人)的小朋友中连续若干个(最少有一个)小朋友手上的数字之和的最大值。

作为这些小朋友的老师,你需要给每个小朋友一个分数,分数是这样规定的:第一个小朋友的分数是他的特征值,其它小朋友的分数为排在他前面的所有小朋友中(不包括他本人),小朋友分数加上其特征值的最大值。

请计算所有小朋友分数的最大值,输出时保持最大值的符号,将其绝对值对 p 取模后输出。

输入格式

第一行包含两个正整数 n, p,之间用一个空格隔开。

第二行包含 n 个数,每两个整数之间用一个空格隔开,表示每个小朋友手上的数字。

输出格式

一个整数,表示最大分数对 p 取模的结果。

样例 #1

样例输入#1

5 997 1 2 3 4 5

样例输出#1

21

样例 #2

样例输入#2

5 7 -1 -1 -1 -1 -1

样例输出#2

-1

提示

【样例解释#1】

小朋友的特征值分别为 1,3,6,10,15, 分数分别为 1,2,5,11,21, 最大值 21 对 997 的模是 21.

【样例解释#2】

小朋友的特征值分别为 -1,

【数据范围】

对于 50% 的数据, $1 \le n \le 1000$, $1 \le p \le 1000$,所有数字的绝对值不超过 1000;对于 100% 的数据, $1 \le n \le 10^6$, $1 \le p \le 10^9$,其他数字的绝对值均不超过 10^9 。

T3 车站分级

题目描述

一条单向的铁路线上,依次有编号为 $1,2,\ldots,n$ 的 n个火车站。每个火车站都有一个级别,最低为 1级。现有若干趟车次在这条线路上行驶,每一趟都满足如下要求:如果这趟车次停靠了火车站 x,则始发站、终点站之间所有级别大于等于火车站x 的都必须停靠。(注意:起始站和终点站自然也算作事先已知需要停靠的站点)

例如,下表是5趟车次的运行情况。其中,前4趟车次均满足要求,而第5趟车次由于停靠了3号火车站(2级)却未停靠途经的6号火车站(亦为2级)而不满足要求。

车站编号	1		2		3		4		5		6		7		8		9
车站级别 车次	3		1		2		1		3		2		1		1		3
1	始	→	→	→	停	→	→	→	停	→	终						
2					始	→	→	→	停	→	终						
3	始	→	→	→	→	-	→	→	停	→	终						
4							始	→	停	→	停	→	停	→	停	→	终
5					始	→	→	→	停	→	终						

现有m趟车次的运行情况(全部满足要求),试推算这n个火车站至少分为几个不同的级别。

输入格式

第一行包含 2 个正整数 n, m,用一个空格隔开。

第 i+1 行 $(1 \le i \le m)$ 中,首先是一个正整数 $s_i(2 \le s_i \le n)$,表示第i 趟车次有 s_i 个停靠站;接下来有 s_i 个正整数,表示所有停靠站的编号,从小到大排列。每两个数之间用一个空格隔开。输入保证所有的车次都满足要求。

输出格式

一个正整数, 即 n 个火车站最少划分的级别数。

样例 #1

样例输入#1

9 2 4 1 3 5 6 3 3 5 6

样例输出#1

2

样例 #2

样例输入#2

```
9 3
4 1 3 5 6
3 3 5 6
3 1 5 9
```

样例输出#2

3

提示

对于20%的数据, $1 \le n, m \le 10$;

对于 50%的数据, $1 \le n, m \le 100$;

对于 100%的数据, $1 \le n, m \le 1000$ 。

T4 货车运输

题目描述

A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路。每一条道路对车辆都有重量限制,简称限 重。

现在有q辆货车在运输货物,司机们想知道每辆车在不超过车辆限重的情况下,最多能运多重的货物。

输入格式

第一行有两个用一个空格隔开的整数 n, m,表示 A 国有 n 座城市和 m 条道路。

接下来 m 行每行三个整数 x,y,z,每两个整数之间用一个空格隔开,表示从 x 号城市到 y 号城市有一条限重为 z 的道路。

注意: $x \neq y$, 两座城市之间可能有多条道路。

接下来一行有一个整数 q,表示有 q 辆货车需要运货。

接下来 q 行,每行两个整数 x,y,之间用一个空格隔开,表示一辆货车需要从 x 城市运输货物到 y 城市,保证 $x\neq y$

输出格式

共有 q 行,每行一个整数,表示对于每一辆货车,它的最大载重是多少。 如果货车不能到达目的地,输出 -1。

样例 #1

样例输入#1

```
4 3
1 2 4
2 3 3
3 1 1
3
1 3
1 4
1 3
```

样例输出#1

```
3
-1
3
```

提示

```
对于 30\% 的数据, 1\leq n<1000, 1\leq m<10,000, 1\leq q<1000; 对于 60\% 的数据, 1\leq n<1000, 1\leq m<5\times10^4, 1\leq q<1000; 对于 100\% 的数据, 1\leq n<10^4, 1\leq m<5\times10^4, 1\leq q<3\times10^4, 0\leq z\leq10^5。
```