Arhitectura sistemelor de calcul paralel - examen

20 iunie 2022

Durata examenului este de două ore. Tratați următoarele subiecte (soluția dumneavoastră va fi sub forma unor coduri sursă C MPI).

- 1. Scrieti un program C MPI care să asigure următoarea funcționalitate:
 - (a) fiecare proces definește două șiruri de întregi send_data[10], recv_data[10], primul fiind inițializat cu valori succesive, începând cu rangul procesului, al doilea inițializat cu 0;
 - (b) pe o topologie inelară, fiecare proces trimite către procesul de rang imediat superior valorile șirului send_data și recepționează în recv_data valorile primite de la procesul cu rang imediat inferior (veți utiliza MPI_Sendrecv());
 - (c) procesul cu rang 0 afisează la final continutul sirurilor send_data[10], recv_data[10] pe care le detine.
 - (d) Funcții MPI sugerate: $MPI_Init()$, $MPI_Comm_size()$, $MPI_Comm_rank()$, $MPI_Sendrecv()$, $MPI_Finalize()$ (4p)
- 2. Se dă fragmentul de cod C MPI $exam_comm_mpi.c$ atașat. Programul trebuie să calculeze într-o implementare paralelizată valoarea medie

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

și varianța

$$\sigma = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu)^2$$
 (2)

unui șir de N valori double, disponibil in fisierul text $input_vec.dat$, atașat de asemenea. Veți construi programul, introducând în locurile corespunzătoare, marcate cu simbolurile

/************/
codul dumneavoastră, astfel încât să asigurați următoarea funcționalitate:

- (a) Veți grupa procesele lansate în execuție (se va presupune ca numărul lor nproc este par și, în plus, că $\frac{nproc}{2}$ este divizor al lui N) în două subgrupuri distincte, respectiv subgrupul group1 al proceselor cu ranguri pare în comunicatorul global MPI_COMM_WORLD și subgrupul group2 al proceselor cu ranguri impare. Primul subgrup va calcula media șirului, iar cel de-al doilea varianța lui;
- (b) Veți crea doi noi comunicatori, comm1 si comm2, pe baza comunicatorului standard MPI_COMM_WORLD, subgrupurile asociate fiind group1 și group2;
- (c) Procesele cu rangul nou $new_rank = 0$ din noii comunicatori citesc fișierul de date în blocurile data (pe care le alocă numai ele!) pe care le redistribuie în mod egal în interiorul acestor noi comunicatori cu $MPI_Scatter()$.
- (d) Procesele din primul grup calculează sumele parțiale $\sum_{i}^{\frac{2N}{nproc}} local_data[i]$, acumulate de procesul cu rangul $new_rank = 0$ din comm1, care calculează valoarea medie μ , distribuită apoi cu $MPI_Bcast()$ tuturor proceselor în comunicatorul global MPI_COMM_WORLD;
- (e) Procesele din al doilea grup calculează (după finalizarea $MPI_Bcast()$) sumele parțiale $\sum_{i}^{\frac{2N}{nproc}} (local_data[i] \mu)^2, \text{ acumulate de procesul cu rangul } new_rank = 0 \text{ din } comm2, \text{ care calculează varianța } \sigma;$
- (f) Cele două procese cu rangul $new_rank = 0$ afișează valorile calculate.
- (g) Funcții MPI sugerate: $MPI_Init()$, $MPI_Comm_size()$, $MPI_Comm_rank()$, $MPI_Comm_group()$, $MPI_Group_incl()$, $MPI_Comm_create()$, $MPI_Scatter()$, $MPI_Bcast()$, $MPI_Reduce()$, $MPI_Finalize()$ (5p).

Se acordă $\mathbf{1p}$ din oficiu. Funcțiile MPI indicate mai sus sunt doar sugestii de lucru. Orice soluție corectă, care asigură funcționalitatea cerută, va fi luată în considerare.

Succes!