Who's Who in the Network. Wanted: Key Player

郭宇杰¹, Yu-Chieh Kuo²

¹Department of Information Management, National Taiwan University ²Department of Electronic Engineering, National Taiwan University

June 3, 2022

Motivation

- ▶ As a decision-maker or policymaker, we may want to find the most influential player in the network to break or strengthen such effect.
- ▶ As a decision-maker or policymaker, we may want to find the most influential player in the network to break or strengthen such effect.
- As a decision-maker or policymaker, we may want to find the most influential player in the network to break or strengthen such effect.
- As a decision-maker or policymaker, we may want to find the most influential player in the network to break or strengthen such effect.

Literature Review

 \triangleright

Outline

- 1. Model Settings
 - ⊳ Second line of dots

2. Section no. 2

1. Model Settings

2. Section no. 2

Nash-Bonacich Equilibrium

Theorem 1

Let $\mu_1(G)$ be the largest eigenvalue of G, the matrix $\beta[I - \lambda^*G]$ is well-defined and nonnegative if and only if $\beta > \lambda \mu_1(G)$, thus the unique interior Nash equilibrium is given by

$$\mathbf{x}^*(\mathbf{\Sigma}) = \frac{\alpha}{\beta + \gamma b(\mathcal{G}, \lambda^*)} b(\mathcal{G}, \lambda^*).$$

- Given the unique Nash equilibrium $\mathbf{x}^*(\mathbf{\Sigma}) = \frac{\alpha}{\beta + \gamma \mathbf{b}(\mathbf{G}, \lambda^*)} \mathbf{b}(\mathbf{G}, \lambda^*)$, we want to analyze how three different effects influence the equilibrium.
 - \triangleright There exists no equilibrium if the matrix of cross-effects Σ reduces to λG .
 - \triangleright There is a unique equilirium if Σ reduces to $-\beta \mathbf{l} \gamma \mathbf{U}$.

Model

Proposition 1

Let $\mu_1(G)$ be the largest eigenvalue of G, ¹ the matrix $\beta[I - \lambda^*G]$ is well-defined and nonnegative if and only if $\beta > \lambda \mu_1(G)$, thus the unique interior Nash equilibrium is given by

$$\mathbf{x}^*(\mathbf{\Sigma}) = \frac{\alpha}{\beta + \gamma b(\mathbf{G}, \lambda^*)} b(\mathbf{G}, \lambda^*).$$

- As a decision-maker or policymaker, we may want to find the most influential player in the network to break or strengthen such effect.
- As a decision-maker or policymaker, we may want to find the most influential player in the network to break or strengthen such effect.

 $^{^{1}\}mu_{1}(G)$ is well-define and larger than 0 since all eigenvalues of a symmetric matrix G are real, and the diagnal of G is zero.

1. Model Setting

2. Section no. 2

Section no. 2