

示性类理论

Author: 吕长乐

Institute: 中国科学技术大学

Date: 2024年6月

Characteristic class connects topology and curvature.

前言

示性类理论的研究是从 1935 年由 Stifel 和 Whitney 二人几乎同时开始独立进行的。Stifel 在 Hopf 的指导下研究了一种由流形的切丛决定的同调类,而 Whitney 在处理一般球丛的时候 引入了上同调的语言,正式定义了示性上同调类。1942 年 Pontrjagin 在研究 Grassmann 流形 的时候定义了 Pontrjagin 类,1946 年陈省身在昆明的高级研究所对复向量丛也定义了陈示性 类。再后来吴文俊引入了吴示性类,并导出了 S-W 示性类、陈示性类等由吴示性类的表示公式,将这一理论进行了进一步的发展。

上述示性类的定义都是从拓扑的角度出发的,而从曲率的角度来看,上述的示性类理论也有着非常重要的意义,这些上同调类都可以用曲率张量所表示。Chern-Weil 理论给出了这二者之间的联系,并让示性类理论所能应用的范围大幅变大。

本讲义为 2024 秋季学期开始的示性类理论讨论班而作,第一部分(第一到第四章)为拓扑示性类理论,第二部分(第五到第八章)为微分几何中的示性类理论。学习本讲义有关内容需要一定的代数拓扑、微分流形与黎曼几何基础,重要的前置知识会在正文中进行讲解。本讲义的主要参考书为 Hatcher 的《代数拓扑》、Milnor 的《示性类》、张伟平的《流形上的几何与分析》和 Kobayashi 的《复向量丛的微分几何》。

目录

前言		j
Chapte	r 1 拓扑理论的预备知识	1
1.1	向量丛	1
1.2	基本同调类	4
1.3	Grassmann 流形的有关讨论	5
Chapte	r 2 向量丛的上同调	6
2.1	Gysin 序列与 Euler 类	6
2.2	Thom 同构定理与 Thom 类	7
2.3	拓扑障碍理论	8
Chapte	r 3 Stiefel-Whitney 类	9
3.1	公理化定义	9
3.2	S-W 类的一些应用	10
3.3	存在性的证明	11
3.4	吴文俊公式	12
Chapte	r 4 复向量丛的示性类	13
4.1	陈类	13
4.2	Pontrjagin 类	14
4.3	具体的例子与计算	15

		目录
Chapter	r 5 微分几何的预备知识	16
5.1	联络与曲率	16
5.2	Kähler 流形	17
5.3	复几何中的一些计算	18
Chapter	r 6 Gauss-Bonnet-Chern 公式	19
6.1	微分几何中的 Thom 类与 Euler 类	19
6.2	超渡公式与 Chern-Weil 理论基本定理	20
6.3	Gauss-Bonnet-Chern 公式的证明	21
Chapter	r 7 微分几何中的陈类	22
7.1	曲率多项式定义	22
7.2	陈类与消灭定理	23
7.3	陈类与 Hermitian-Einstein 向量丛	24
Chapte	r 8 指标定理	25
8.1	其他示性类	25
8.2	Ativah-Singer 指标定理	26

Chapter 1 拓扑理论的预备知识

1.1 向量丛

向量丛是示性类理论中的基本研究对象之一,为此我们先回顾向量丛的有关知识。

1.1.1 基本概念

Definition 1.1

拓扑空间 B 上的一个**实向量丛** (或称为 \mathbb{R}^n 丛) ξ 有如下部分:

- (i) 一个拓扑空间 E,称为 ξ 的**全空间**
- (ii) 一个连续映射 $\pi: E \to B$, 称为投影

 $(iii)\forall b \in B$, 纤维 $\pi^{-1}(b)$ (也写作 $F_b(\xi)$) 上有 n 维实向量空间结构

且还需要满足局部平凡性 的条件,即

 $\forall b \in B$,存在 b 的邻域 U(如果 U 可以取为整个底空间 B,则称 ξ 是平凡的) 和一个同态 $h_U: U \times \mathbb{R}^n \to \pi^{-1}(U)$,使得对 U 中任意一个 c,有 $x \mapsto h_U(c,x)$ 给出了 \mathbb{R}^n 与纤维 $\pi^{-1}(c)$ 之间的同构。

下面是几个向量丛的例子。

Example 1.1 流形的<u>切丛</u> τ_M 。对任意一个流形 M, τ_M 的底空间为 M, 全空间为 $TM = \{(x,v): x \in M, v \in T_x M\}$,第一分量的投影即为丛的投影。不难验证纤维上的向量结构以及局部平凡性。如果 τ_M 是平凡的,则称流形 M 是**可平行化的**。

Example 1.2 流形的**法丛** ν_M 。具体讨论与上例类似。

Example 1.3 \mathbb{RP}^n 上的典范线丛 γ_n^1 。全空间 $E(\gamma_n^1) = \{(\{\pm x\}, v) \in \mathbb{RP}^n \times \mathbb{R}^{n+1} : v = kx(k \in \mathbb{R})\}$

(这里我们把 \mathbb{RP}^n 视为 S^n 上对径点对构成的集合),第一分量的投影即为丛的投影。每个纤维可以视为 \mathbb{R}^{n+1} 中穿过向量 x 的直线,故其上自然有 1 维向量结构。它的局部平凡化可以写出:

$$h_U: U \times \mathbb{R} \to \pi^{-1}(U)$$

$$(\{\pm x\}, t) \mapsto (\{\pm x\}, tx)$$

Definition 1.2

对向量丛 ξ , 一个截面 是一个连续映射 $s: B \to E$, 使得 $\pi \circ s = \mathrm{Id}$ 。

利用截面,可以给出一个向量从是否平凡的判据如下(具体证明在此省略)

Proposition 1.1

一个n维实向量丛 ξ 是平凡的当且仅当存在n个处处线性无关的截面 s_1, \ldots, s_n 。

Example 1.4 S^3 是可平行化的。定义其切丛的三个截面如下:将 S^3 自然嵌入到 \mathbb{R}^4 ,则对任意 $x = (x_1, x_2, x_3, x_4) \in S^3$,令 $s_i(x) = (x, t_i(x))(i = 1, 2, 3)$,其中

$$t_1(x) = (-x_2, x_1, -x_4, x_3)$$

$$t_2(x) = (-x_3, x_4, x_1, -x_2)$$

$$t_3(x) = (-x_4, -x_3, x_2, x_1)$$

可以验证这给出了三个处处无关的截面,则 au_{S^3} 是平凡的。

1.1.2 构造新的向量丛

这一小节我们讨论几种从已有向量丛给出新的向量丛的构造方法。

一、拉回丛

对任意向量丛 $\xi(B, E, \pi, h)$ 和拓扑空间 B_1 ,以及一个映射 $f: B_1 \to B$,在 B_1 上定义拉回丛 $f^*\xi$ 如下:

全空间定义为 $E_1=\{(b,e)\in B_1\times E: f(b)=\pi(e)\}$,第一分量的投影为丛投影。对 ξ 的一个平凡化邻域 U,在 $f^{-1}(U)$ 上定义 $f^*\xi$ 的局部平凡化 h_1 为

$$h_1: U_1 \times \mathbb{R}^n \to \pi_1^{-1}(U_1)$$
$$(b, x) \mapsto (b, h(f(b), x))$$

二、笛卡尔积

对两个向量丛 $\xi_i(B_i, E_i, \pi_i, h_i)(i=1,2)$,在 $B_1 \times B_2$ 上可以定义它们的笛卡尔积 $\xi_1 \times \xi_2$,全空间为 $E_1 \times E_2$ 。丛投影为 $\pi_1 \times \pi_2$ 。

三、Whitney 和

已知 B 上有两个向量丛 $\xi_1, xi_2, d: B \to B \times B, b \mapsto (b, b)$ 为对角嵌入,则定义 ξ_1 和 ξ_2 的 Whitney 和 $\xi_1 \oplus \xi_2$ 为拉回丛 $d^*(\xi_1 \times \xi_2)$ 。

四、正交补

对任意向量丛 $\xi \subset \eta$,定义 $F_b(\xi^{\perp})$ 为 $F_b(\xi)$ 在 $F_b(\eta)$ 中的正交补,并令 $E(\xi^{\perp})$ 为所有 $F_b(\xi^{\perp})$ 的并。对一个邻域 U,选取 $\xi|_U$ 的标准正交截面基 s_1,\ldots,s_m ,并扩张为 $\eta|_U$ 上的标准正交截面基 s_1,\ldots,s_n ,则定义局部平凡化如下:

$$h: U \times \mathbb{R}^{n-m} \to E(\xi^{\perp})$$

$$(b,x) \mapsto x_1 s_{m+1}(b) + \dots + x_{n-m} s_n(b)$$

可以验证如上条件给出了一个向量丛 ξ^{\perp} ,且有 $\eta \simeq \xi \bigoplus \xi^{\perp}$ 。

1.2 基本同调类

为了方便后续讨论,这里讨论在流形的定向中具有重要作用的基本同调类。

1.2.1 概念与基本性质

M 是一个闭连通的 n 维流形,并且是 R— 连通的,则我们熟知 $H_n(M;R)\equiv R$

1.3 Grassmann 流形的有关讨论

Chapter 2 向量丛的上同调

2.1 Gysin 序列与 Euler 类

在这一节我们默认读者熟悉代数拓扑中的有关概念,包括 CW 复形、上同调等。如果有需要,可以参考 Allen Hatcher 的代数拓扑教材第二、第三章。

2.2 Thom 同构定理与 Thom 类

2.3 拓扑障碍理论

Chapter 3 Stiefel-Whitney 类

3.1 公理化定义

3.2 S-W 类的一些应用

3.3 存在性的证明

3.4 吴文俊公式

Chapter 4 复向量丛的示性类

4.1 陈类

4.2 Pontrjagin 类

4.3 具体的例子与计算

Chapter 5 微分几何的预备知识

5.1 联络与曲率

5.2 Kähler 流形

5.3 复几何中的一些计算

Chapter 6 Gauss-Bonnet-Chern 公式

6.1 微分几何中的 Thom 类与 Euler 类

6.2 超渡公式与 Chern-Weil 理论基本定理

6.3 Gauss-Bonnet-Chern 公式的证明

Chapter 7 微分几何中的陈类

7.1 曲率多项式定义

7.2 陈类与消灭定理

7.3 陈类与 Hermitian-Einstein 向量丛

Chapter 8 指标定理

8.1 其他示性类

8.2 Atiyah-Singer 指标定理