abc 予想入門

小野寺一浩

千葉工業大学

2022年10月15日

- 1 abc 予想
 - ■概略
 - ■定式化
 - 正しいか?
 - 同値な言い換え
- 2 abc 予想の応用
 - Fermat の最終定理
 - Siegel の定理
 - Erdos-Mollin-Walsh 予想
 - Roth の定理
 - Faltings の定理 (Mordell 予想)
 - 数論的力学系
- 3 abc 予想の起源
- 4 知られている事実
- 5 abc 予想の改良

§1.1 abc 予想:概略

abc 予想

「かけ算」と「たし算」の間にある奥深い規則性を見出して定式化したもの

本講演では、まず 3 個の自然数 a,b,c に対して、

ある種の「かけ算的性質」と「たし算的性質:a+b=c」

が両立しづらいことを確認する.

その後で、abc 予想により、そのような現象を見通し良く理解出来ることを説明する.

両立しづらい例1

定理 1 (Fermat の最終定理 (Wiles, 1995))

n を 3 以上の整数とする. 自然数 x,y,z で

$$x^n + y^n = z^n$$

を満たすものは存在しない.

** n=2 のときは無数に解をもつ. (cf. ピタゴラス数)

要するに、3個の自然数 a, b, c に対して

「かけ算的性質:n 乗数 $(n\geq 3)$ 」と「たし算的性質:a+b=c」

は両立しない.

例 3乗数の列 $1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, \dots$ から a+b=c を満たす組 (a,b,c) を見つけることはできない.

両立しづらい例2

「かけ算的性質」= 「2,3,5 以外の素因数を持たない」…(*)

例 (*) を満たす自然数:

 $1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 8,\ 9,\ 10,\ 12,\ 15,\ 16,\ 18,\ 20,\ 24,\ 25,\ 27,\ 30,\ 32,\ 36,\\ 40,\ 45,\ 48,\ 50,\ 54,\ 60,\ 64,\ 72,\ 75,\ 80,\ 81,\ 90,\ 96,\ 100,\ 108,\ 120,\ 125,\\ 128,\ 135,\ 144,\ 150,\ 160,\ 162,\ 180,\ 192,\ 200,\ 216,\ 225,\ 240,\ 243,\ 250,\\ 256,\ 270,\ 288,\ 300,\ 320,\ 324,\ 360,\ 375,\ 384,\ 400,\ 405,\ldots$

問題

上の数列から a+b=c を満たす<u>互いに素</u>な自然数の組 (a,b,c) をどれ位見つけることが出来るか?ただし,a,b,c が<mark>互いに素</mark>であるとは,a,b,c が共通の約数 (>1) を持たないことをいう.

【注意】条件「 \underline{G} いに素」を課さないと、一つの組から無数の組が簡単に構成できてしまう。 例えば、 $(1,2,3) \to (n,2n,3n)$ (n は (*) を満たす自然数)

定理 2 (Siegel の結果 (1921) の一例)

次の2条件を満たす互いに素な自然数の組(a,b,c)は有限個しかない.

- (1) [かけ算的性質] a,b,c が (*) を満たす
- (2) [たし算的性質] a+b=c

例 条件を満たす組(a,b,c) $(a \le b)$:

$$(1,1,2), (1,2,3), (1,3,4), (1,4,5), (2,3,5), (1,5,6), (3,5,8), (1,8,9), (4,5,9), (1,9,10), (1,15,16), (1,24,25), (9,16,25), (2,25,27), (5,27,32), (1,80,81), (3,125,128)$$

「たし算的性質:a+b=c」と両立しづらい「かけ算的性質」の例:

- 1 n 乗数 $(n \ge 3)$
- 2 2,3,5 以外の素因数を持たない

この2種類の「かけ算的性質」は、一見異なるように思える.

しかし、それらの背後にはある共通した性質があり、 それが原因で両立しづらくなっている。

abc 予想は、その事実を見通し良く説明してくれる.

§1.2 abc 予想の定式化

定義 (根基)

自然数 n の根基 (radical) を rad(n) で表し、次で定義する:

- rad(1) := 1
- ・2 以上の整数 n に対しては $n=p_1^{e_1}p_2^{e_2}\cdots p_r^{e_r}$ と素数分解できるとき

$$rad(n) := p_1 p_2 \cdots p_r$$

要するに, rad(n) は n の素因数の積である.

例

$$rad(8) = rad(2^{3}) = 2$$

$$rad(10) = rad(2 \cdot 5) = 2 \cdot 5 = 10$$

$$rad(12) = rad(2^{2} \cdot 3) = 2 \cdot 3 = 6$$

$$rad(36) = rad(2^{2} \cdot 3^{2}) = 2 \cdot 3 = 6$$

abc-triple とは, a+b=c を満たす互いに素な自然数の組 (a,b,c) のこと

予想 1 (abc 予想 (Oesterlé-Masser, 1985))

arepsilon を任意の正の数とする.このとき,abc-triple (a,b,c) は,有限個の例外を除いて,

$$c < {\operatorname{rad}(abc)}^{1+\varepsilon} \tag{1}$$

を満たす.

※不等式 (1) は

「足し算的性質:a+b=c」と「かけ算的対象:rad」

の間にある規則性を表現している

【補足】

2012 年に望月新一教授が証明を発表

2020 年に論文が査読を通過

2021 年に論文が雑誌に掲載

例

 $arepsilon=0.2,\ 0.4,\ 0.6,\ 0.8,\ 1.0$ に対して、 ${\sf abc-triple}\ (a,b,c)$ で

$$c < \{\operatorname{rad}(abc)\}^{1+\varepsilon} \quad \left(\Leftrightarrow q = q(a,b,c) := \frac{\log c}{\log \operatorname{rad}(abc)} < 1 + \varepsilon \right)$$

を満たす例 (○) と満たさない例 (×):

a	b	c	0.2	0.4	0.6	0.8	1.0	q
1	2	3	0	0	0	0	0	0.6131
2	5^{2}	3^{3}	0	0	0	0	0	0.9690
2^{2}	11^{2}	5^{3}	0	0	0	0	0	1.0272
3^{2}	$2^8 \cdot 61$	5^6	×	0	0	0	0	1.2855
$2^{10} \cdot 7$	5^7	$2 \cdot 3^{13} \cdot 47^2$	×	×	0	0	0	1.4362
1	$2 \cdot 3^7$	$5^4 \cdot 7$	×	×	0	0	0	1.5679
2	$3^{10} \cdot 109$	23^{5}	×	×	×	0	0	1.6299

abc 予想の意味 (一つの側面)

準備として、まず次の命題を示す.

命題 1

 $c < \{ \mathrm{rad}(abc) \}^{1+arepsilon}$ を満たす $\mathsf{abc} ext{-triple}(a,b,c)$ に対して、次が成り立つ:

$$\frac{a}{\{\operatorname{rad}(a)\}^{3(1+\varepsilon)}} \cdot \frac{b}{\{\operatorname{rad}(b)\}^{3(1+\varepsilon)}} \cdot \frac{c}{\{\operatorname{rad}(c)\}^{3(1+\varepsilon)}} < 1.$$

つまり、「(左辺) ≥ 1 」を満たす abc-triple は、abc 予想の例外である.

【証明】以下の二つの事実から, 直ちに従う.

- $a < c, b < c \ \ \, \text{\downarrow} \ \ \, abc < c^3 < \{ rad(abc) \}^{3(1+\varepsilon)}$
- a,b,c はどの二つも互いに素だから $\operatorname{rad}(abc) = \operatorname{rad}(a)\operatorname{rad}(b)\operatorname{rad}(c)$ \square

命題1から分かる「abc 予想の意味」

自然数 a,b,c が次のような性質を満たすとする:

「自然数
$$m$$
 に対して $\frac{m}{\{\mathrm{rad}(m)\}^{3(1+arepsilon)}} \geq 1$ が起こりやすい性質」 \cdots $(*)$

$$o rac{a}{\{\mathrm{rad}(a)\}^{3(1+arepsilon)}} \cdot rac{b}{\{\mathrm{rad}(b)\}^{3(1+arepsilon)}} \cdot rac{c}{\{\mathrm{rad}(c)\}^{3(1+arepsilon)}} \geq 1$$
 になりやすい

- ightarrow 仮に (a,b,c) が abc-triple ならば, それは abc 予想の例外になりやすい
- ightarrow abc 予想の例外は有限個だから, (a,b,c) は abc-triple になりづらい
- \rightarrow 性質 (*) は「たし算的性質:a+b=c」との両立が難しい.

性質(*)の例 先ほど扱った二つの「かけ算的性質」があげられる:

- 1 n 乗数 $(n \ge 3)$ (n = 3 の場合は微妙?)
- 2 2,3,5 以外の素因数を持たない

§1.3 abc 予想は正しいか? (数値計算による分析)

表 1: $q = (\log c)/\{\log \operatorname{rad}(abc)\}$ (a < b)

	q > 1	q > 1.05	q > 1.1	q > 1.2	q > 1.3	q > 1.4
$c < 10^2$	6	4	4	2	0	0
$c < 10^3$	31	17	14	8	3	1
$c < 10^4$	120	74	50	22	8	3
$c < 10^5$	418	240	152	51	13	6
$c < 10^6$	1,268	667	379	102	29	11
$c < 10^7$	3,499	1,669	856	210	60	17
$c < 10^8$	8,987	3,869	1,801	384	98	25
$c < 10^9$	22,316	8,742	3,693	706	144	34
$c < 10^{10}$	51,677	18,233	7,035	1,159	218	51
$c < 10^{11}$	116,978	37,612	13,266	1,947	327	64
$c < 10^{12}$	252,856	73,714	23,773	3,028	455	74
$c < 10^{13}$	528,274	139,762	41,438	4,519	599	84
$c < 10^{14}$	1,055,541	258,146	70,047	6,665	769	98
$c < 10^{15}$	1,880,836	446,903	114,712	9,497	998	112
$c < 10^{16}$	3,055,163	700, 263	175, 134	13, 116	1,232	126
$c < 10^{17}$	4,685,632	1,024,027	247, 237	17,576	1,530	143
$c < 10^{18}$	6,619,318	1,379,207	321, 371	21,890	1,822	160

小野寺一浩 (千葉工大) abc 予想入門 2022 年 10 月 15 日

13 / 44

表 2: $q = (\log c)/\{\log \operatorname{rad}(abc)\}$ が大きい abc-triple 知られている中でのベスト $10 \ (a < b)$

	a	b	c	q
1	2	$3^{10} \cdot 109$	23^{5}	1.62991
2	11^{2}	$3^2 \cdot 5^6 \cdot 7^3$	$2^{21} \cdot 23$	1.62599
3	$19 \cdot 1307$	$7 \cdot 29^2 \cdot 31^8$	$2^8 \cdot 3^{22} \cdot 5^4$	1.62349
4	283	$5^{11} \cdot 13^2$	$2^8 \cdot 3^8 \cdot 17^3$	1.58076
5	1	$2\cdot 3^7$	$5^4 \cdot 7$	1.56789
6	7^{3}	3^{10}	$2^{11} \cdot 29$	1.54708
7	$7^2 \cdot 41^2 \cdot 311^3$	$11^{16} \cdot 13^2 \cdot 79$	$2\cdot 3^3\cdot 5^{23}\cdot 953$	1.54443
8	5^{3}	$2^9 \cdot 3^{17} \cdot 13^2$	$11^5 \cdot 17 \cdot 31^3 \cdot 137$	1.53671
9	$13 \cdot 19^{6}$	$2^{30} \cdot 5$	$3^{13} \cdot 11^2 \cdot 31$	1.52700
10	$3^{18} \cdot 23 \cdot 2269$	$17^3 \cdot 29 \cdot 31^8$	$2^{10} \cdot 5^2 \cdot 7^{15}$	1.52216

引用元:

表 1 は "Synthese resultaten" rekenmeemetabc.nl.

表 2 は Nitaj, The abc conjecture home page.

数値計算からの分析(私見):

1 任意の $\varepsilon>0$ に対して, $c\geq\{\mathrm{rad}(abc)\}^{1+\varepsilon}$ を満たすような例外的な abc-triple の (ある種の) 密度は 0 になりそう. 例えば,

$$\lim_{x \to \infty} rac{\#\{c \le x \mid$$
例外的な abc-triple (a,b,c) が存在する $\}$ $= 0$ (2)

が成り立ちそう.

しかし、例外が有限組しかないかどうかは正直予想できない。

2 ε がある一定数より大きければ、例外はなさそう.

前者について

- ・(2) は比較的容易に証明できる.
- ・例外の有限性を期待できる「確率的な発見的方法」は知られている。

(ref. せきゅーん, INTEGERS, Q&ABC (その 5))

後者について 例えば, 次の予想が広く知られている.

予想 2 (abc 予想 (簡潔版))

全ての abc-triple に対して, 次が成立する:

$$c < {\operatorname{rad}(abc)}^2$$

【注意】予想 1, 2 は, それぞれ「弱い abc 予想」,「強い abc 予想」と呼ばれることがあるが, 論理的な強弱関係はない (少なくとも現時点では知られていない). また, 予想 2 は現時点では未解決である.

§1.4 abc 予想の同値な言い換え

予想 1 (abc 予想 [再掲])

arepsilon を任意の正の数とする. このとき, abc-triple (a,b,c) は, 有限個の例外を除いて, 次を満たす:

$$c < {\operatorname{rad}(abc)}^{1+\varepsilon}$$

予想1は次の予想と同値である:

予想 3 (abc 予想 (不等式調整版))

 ε を任意の正数とする. このとき, 全ての abc-triple に対して

$$c < K_{\varepsilon} \{ \operatorname{rad}(abc) \}^{1+\varepsilon}$$

が成り立つような定数 $K_{\varepsilon} \geq 1$ が存在する.

予想 2(abc 予想 (簡潔版)) は, $\varepsilon=1$ のとき $K_{\varepsilon}=1$ であることを主張する.

【同値性の証明】予想 1 ⇒ 予想 3

- (i) 例外的な abc-triple がない ε に対しては $K_{\varepsilon}=1$ とすれば良い.
- (ii) 例外的な abc-triple がある ε に対しては、その有限組を

$$(a_1,b_1,c_1),(a_2,b_2,c_2),\ldots,(a_n,b_n,c_n)$$

とする: $c_i \geq \{\operatorname{rad}(a_ib_ic_i)\}^{1+\varepsilon}$ $(i=1,2,\ldots,n)$. ここで

$$1 \le \max_{1 \le i \le n} \frac{c_i}{\{\operatorname{rad}(a_i b_i c_i)\}^{1+\varepsilon}} < K_{\varepsilon}$$

を満たすような $K_{\varepsilon} > 1$ を選べば,

$$c_i < K_{\varepsilon} \{ \operatorname{rad}(a_i b_i c_i) \}^{1+\varepsilon} \quad (i = 1, 2, \dots, n)$$

が成り立つ. 一方, 例外でない abc-triple (a,b,c) に対しても

$$c < {\operatorname{rad}(abc)}^{1+\varepsilon} < K_{\varepsilon} {\operatorname{rad}(abc)}^{1+\varepsilon}$$

が成り立つ. 故に, 予想3が成り立つ.

小野寺一浩 (千葉工大)

予想 $3 \Rightarrow$ 予想 1

(a,b,c) を例外的な abc-triple とする: $c \geq \{\operatorname{rad}(abc)\}^{1+\varepsilon} \cdots (*)$ $0 < \varepsilon' < \varepsilon$ なる ε' を一つ選ぶ、予想 3 より

$$c < K_{\varepsilon'} \{ \operatorname{rad}(abc) \}^{1+\varepsilon'}$$

が成り立つような $K_{\varepsilon'} \geq 1$ が存在する. よって

$$c^{1+\varepsilon} < K_{\varepsilon'}^{1+\varepsilon} \{ \operatorname{rad}(abc) \}^{(1+\varepsilon)(1+\varepsilon')}$$

$$\leq K_{\varepsilon'}^{1+\varepsilon} c^{1+\varepsilon'} \quad (\because \ (*))$$

$$c^{\varepsilon-\varepsilon'} < K_{\varepsilon'}^{1+\varepsilon}$$

$$c < K_{\varepsilon'}^{(1+\varepsilon)/(\varepsilon-\varepsilon')}$$

従って, c の取り得る値は有限個である. a+b=c より, a,b の取り得る値も有限個だから, 例外的な abc-triple も有限個である.

故に、予想1が成り立つ、

§1.5 補足

補足1

abc-triple とは, a+b=c を満たす<u>互いに素</u>な自然数の組 (a,b,c) のこと. ここで, 条件「互いに素」は必要である.

仮にこの条件を外してしまうと、abc 予想の例外が無数に現れてしまう.

例えば、 $(a,b,c)=(1\cdot 3^k,\ 2\cdot 3^k,\ 3\cdot 3^k)$ (k は自然数) は、a+b=c を満たす互いに素でない組である.一方、

$$c = 3^{k+1}, \qquad {\operatorname{rad}(abc)}^{1+\varepsilon} = 6^{1+\varepsilon}$$

だから、十分大きなkに対して常に $c \geq \{\operatorname{rad}(abc)\}^{1+\varepsilon}$ を満たす.

また、上記の (a,b,c) たちに対して $c < K_{arepsilon}\{\mathrm{rad}(abc)\}^{1+arepsilon}$ が成り立つような定数 $K_{arepsilon} \geq 1$ も存在しない.

補足 2

arepsilon=0 の場合の不等式 $c<\mathrm{rad}(abc)$ を満たさない $\mathsf{abc} ext{-triple}$ は無数にある.

例えば、abc-triple
$$(a,b,c)=(3^{2^r}-1,1,3^{2^r})$$
 $(r=1,2,3,\ldots)$. 実際、
$$3^{2^r}-1=(3^{2^{r-1}})^2-1^2=(3^{2^{r-1}}+1)(3^{2^{r-1}}-1)$$
$$=(3^{2^{r-1}}+1)(3^{2^{r-2}}+1)(3^{2^{r-2}}-1)$$
$$\ldots$$
$$=\underbrace{(3^{2^{r-1}}+1)(3^{2^{r-2}}+1)\cdots(3^2+1)(3+1)(3-1)}_{r+1$$
個の値の積

各因数は偶数であり、また 3+1=4 に注意すると、 $3^{2^r}-1$ は 2^{r+2} で割り切れるので

$$\operatorname{rad}(abc) = \operatorname{rad}\left(\left(3^{2^{r}} - 1\right)3^{2^{r}}\right) = \operatorname{rad}\left(2 \cdot \frac{3^{2^{r}} - 1}{2^{r+2}} \cdot 3\right)$$
$$\leq 2 \cdot \frac{3^{2^{r}} - 1}{2^{r+2}} \cdot 3 < \frac{3}{2^{r+1}}c < c.$$

21 / 44

また, 上記の (a,b,c) たちに対して

 $c < K_0 \operatorname{rad}(abc)$ が成り立つような定数 $K_0 \ge 1$ も存在しない.

小野寺一浩 (千葉工大) abc 予想入門 2022 年 10 月 15 日

§2.1 応用:Fermat の最終定理

定理 3 (「Fermat の最終定理」への応用)

ある $\varepsilon > 0$ に対して、全ての abc-triple (a,b,c) が

$$c < K_{\varepsilon} \{ \operatorname{rad}(abc) \}^{1+\varepsilon}$$

を満たすような定数 $K_{\varepsilon} \geq 1$ が存在するならば,

Fermat 方程式 $x^n + y^n = z^n$ について, 以下が成り立つ:

- (1) $n > 3(1+\varepsilon)$ のとき, 互いに素な解の個数は有限個である.
- (2) 特に, $n \ge 3(1+\varepsilon) + \log_2 K_{\varepsilon}$ のとき, 解は存在しない.

【注意】Fermat 方程式の解(x,y,z) に対して,

共通の約数 d>1 があれば (x/d,y/d,z/d) も解である.

従って, 互いに素な解が本質的である.

系 1

abc 予想 (予想 1 or 3) が正しいなら, $x^n+y^n=z^n$ について次が成り立つ:

- (1) $n \geq 3$ のとき, 互いに素な解の個数は有限個である.
- (2) 十分大きなnに対して、解は存在しない。

【証明】(1) 任意の $\varepsilon > 0$ に対して定理 3 の仮定を満たすから, n > 3 のときは正しい. n = 3 のときは, Euler により解が存在しないことが知られている. (2) 定理 3 より明らか.

系 2

簡潔版 abc 予想 (予想 2) が正しいなら「Fermat の最終定理」が成立する.

【証明】定理 3 (2) より, $x^n + y^n = z^n$ $(n \ge 6)$ は解を持たない.

n=3,4,5 のとき解を持たないことは, 既に知られている.

 $(n=3: {\sf Euler}, \quad n=4: {\sf Fermat}, \quad n=5: {\sf Germain}, {\sf Dirichlet}, {\sf Legendre})$

補足

Mochizuki(2021): 系 1 の結果は得られる.

 K_{ε} の大きさは不明のため、「Fermat の最終定理」は得られない.

Mochizuki-Fesenko-Hoshi-Minamide-Porowski (2022):

 K_{ε} ($\varepsilon > 0.5$) の大きさを具体的に評価することに成功した.

様々の先行研究と組み合わせることで、「Fermat の最終定理」に対して、 Wiles のものとは異なる別証明を与えた。

更に、「一般化された Fermat 方程式」について次の結果を得た:

定理 4

r, s, t は、どの二つも互いに素な整数とする. l, m, n は、

 $\min\{l, m, n\} > \max\{2.453 \times 10^{30}, \log_2 |rst|, 10 + 5\log_2(\text{rad}(rst))\}$

を満たす自然数とする. このとき, 方程式 $rx^l + sy^m = tz^n$ を満たす互いに 素な自然数解 (x, y, z) $(\neq (1, 1, 1))$ は存在しない.

定理3の証明

(1) 互いに素な組 (x,y,z) が Fermat 方程式 $x^n+y^n=z^n$ を満たすとする. このとき, (x^n,y^n,z^n) は abc-triple であるから

$$z^{n} < K_{\varepsilon} \{ \operatorname{rad}(x^{n}y^{n}z^{n}) \}^{1+\varepsilon}$$

$$= K_{\varepsilon} \{ \operatorname{rad}(xyz) \}^{1+\varepsilon} \quad (\because \operatorname{rad}(a^{n}) = \operatorname{rad}(a))$$

$$\leq K_{\varepsilon}(xyz)^{1+\varepsilon} \quad (\because \operatorname{rad}(a) \leq a)$$

$$< K_{\varepsilon}z^{3(1+\varepsilon)} \quad (\because x < z, \ y < z)$$

$$\therefore z^{n-3(1+\varepsilon)} < K_{\varepsilon}$$

仮定より $n-3(1+\varepsilon)>0$ だから, $z< K_{\varepsilon}^{\frac{1}{n-3(1+\varepsilon)}}$ である. 従って. 条件を満たす z は有限個である.

x < z, y < z だから、条件を満たす組(x, y, z) は有限個である.

背理法で示すため,

「Fermat 方程式 $x^n + y^n = z^n$ を満たす互いに素な組 (x,y,z) が存在する」と仮定する.このとき、(1) と同様にして

$$z^{n-3(1+\varepsilon)} < K_{\varepsilon}$$

が成り立つ. $n \geq 3(1+\varepsilon)$ と $2 \leq z$ より

$$2^{n-3(1+\varepsilon)} \le z^{n-3(1+\varepsilon)} < K_{\varepsilon}$$

だから, $n-3(1+\varepsilon)<\log_2 K_\varepsilon$ である. これは (*) に矛盾する.

故に, $n \ge 3(1+\varepsilon) + \log_2 K_{\varepsilon}$ のとき, $x^n + y^n = z^n$ の解は存在しない.

§2.2 応用:Siegel の定理

 $S = \{p_1, p_2, \dots, p_s\}$ を有限個の素数の集合とする.

自然数 n が S-単数であるとは, n が p_1, p_2, \ldots, p_s 以外の素因数を持たないときにいう.

定理 5 (Siegel, 1921)

a+b=c を満たすような互いに素な S-単数の組 (a,b,c) は有限個しかない.

【abc 予想を用いた証明】条件を満たす組 (a,b,c) は abc-triple だから, ある $\varepsilon>0$ と $K_{\varepsilon}\geq 1$ が存在して,

$$c < K_{\varepsilon} \{ \operatorname{rad}(abc) \}^{1+\varepsilon} \le K_{\varepsilon} (p_1 p_2 \cdots p_s)^{1+\varepsilon}$$

が成り立つ. よって, 条件を満たす c は有限個である. a < c, b < c より, 条件を満たす (a, b, c) は有限個である.

小野寺一浩(千葉工大) abc 予想入門 2022 年 10 月 15 日 27 / 44

§2.3 応用:Erdös-Mollin-Walsh 予想

多冪数 …素因数分解したときの各素因数の指数が全て 2 以上となる自然数例 $4 = 2^2$, $8 = 2^3$, $9 = 3^2$, $16 = 2^4$, $25 = 5^2$, $27 = 3^3$, $32 = 2^5$, $36 = 2^2 \cdot 3^2$

予想 4 (Erdös(1976), Mollin-Walsh(1986))

3連続する多冪数は存在しない.

定理 6

ある $\varepsilon < 1/3$ に対して、全ての abc-triple (a,b,c) が

$$c < K_{\varepsilon} \{ \operatorname{rad}(abc) \}^{1+\varepsilon}$$

を満たす定数 $K_{\varepsilon} \geq 1$ が存在するならば、3 連続する多冪数は有限個である.

【補足】2連続する多冪数は無数に存在する.

例えば, $x_n + y_n\sqrt{2} = (3 + 2\sqrt{2})^n$ (n は自然数) とおくと,

 $2^3x_n^2y_n^2$, $(x_n^2+2y_n^2)^2$ は 2 連続する多冪数である.

小野寺一浩 (千葉工大)

【定理6の証明】

3 連続する自然数 n-1, n, n+1 が多冪数であるとする. このとき, $(n^2-1, 1, n^2)$ は abc-triple だから

$$n^2 < K_{\varepsilon} \{ \operatorname{rad}(n^2(n^2-1)) \}^{1+\varepsilon}$$

$$= K_{\varepsilon} \{ \operatorname{rad}(n(n-1)(n+1)) \}^{1+\varepsilon}$$

$$\leq K_{\varepsilon} \{ \sqrt{n(n-1)(n+1)} \}^{1+\varepsilon}$$

$$(∵ a が多冪数ならば \{ \operatorname{rad}(a) \}^2 \leq a)$$

$$= K_{\varepsilon} \{ \sqrt{n(n^2-1)} \}^{1+\varepsilon}$$

$$< K_{\varepsilon} n^{\frac{3}{2}(1+\varepsilon)}.$$

従って, $n^{\frac{1}{2}(1-3\varepsilon)} < K_{\varepsilon}$, つまり $n < K_{\varepsilon}^{\frac{2}{1-3\varepsilon}}$ が成り立つ. 故に. 条件を満たす n は有限個しかない.

§2.4 応用: Roth の定理

代数的無理数 … ある整数係数多項式の解となるような無理数

例 $\sqrt{2}$, $\sqrt{3}$, $\sqrt[4]{5}$ は代数的無理数 $(\log 2, \log 3, e, \pi$ はそうではない)

1994 年に Bombieri は, abc 予想から次の定理 (の精密版) を示した.

定理 7 (Roth,1955 → フィールズ賞 (1958))

 $\varepsilon > 0$ とし、 α を代数的無理数とする. このとき

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{q^{2+\varepsilon}}$$

を満たす既約分数 p/q (q>0) は有限個しかない.

§2.5 応用:Faltings の定理 (Mordell 予想)

1991 年に Elkies は. abc 予想から次の定理を示した.

定理 8 (Faltings, 1983 → フィールズ賞 (1986))

有理数係数の 2 変数数多項式 f(x,y) に対して, 曲面 f(x,y)=0 の種数が 2以上であれば、f(a,b)=0 を満たす有理数の組 (a,b) は有限個である.

- ※ 種数とは、方程式 f(x,y)=0 の複素数解 $(x,y)=(x_1+ix_2,y_1+iy_2)$ $(x_i,y_i\in\mathbb{R})$ が作り出す, 実 4 次元空間の曲面内の穴の個数.
- 例 $f(x,y) = x^n + y^n 1 \ (n \ge 4)$ の種数は 2 以上
- → 「Fermat の最終定理」への応用

【補足】 K_{ε} が計算可能な形で abc 予想が証明されると、 可能な有理数の組の範囲が分かる. これは Faltings の手法では得られない.

§2.6 応用:数論的力学系

数論的力学系では、例えば、有理数 lpha の有理関数 $\phi(x)$ による軌道

$$\mathcal{O}_{\phi}(\alpha) = \{\alpha, \phi(\alpha), \phi^{(2)}(\alpha), \phi^{(3)}(\alpha), \ldots\}$$

(ただし, $\phi^{(n)}$ は ϕ を n 回合成した関数) の数論的性質を研究する.

定理 9 (Gratton-Nguyen-Tucker, 2013)

- $\phi(x) = p(x)/q(x)$ (既約分数) が次の 2 条件を満たすとする.
 - (i) $\phi(x)$ は cx^d の形ではなく, $\max\{\deg p, \deg q\} > 2$
 - (ii) $\mathcal{O}_{\phi}(\alpha)$ は無限集合

abc 予想が正しいならば、数列 $\{\phi^{(n)}(\alpha)\}$ の既約分数表示の分母 $\}_{n=1}^{\infty}$ には、 有限項を除いて原始的素因数が存在する。

** 数列 $\{a_n\}$ において, a_n の原始的素因数とは, a_n の素因数であって、それより前の項の素因数ではないもの

§2.7 応用:その他

他にも様々な応用が知られている.

例えば、次を参照:

Nitaj, The abc conjecture home page (https://nitaj.users.lmno.cnrs.fr/abc.html)

2022 年 10 月 15 日現在では、32 個の応用が掲載されている。 ただし、代数体上の abc 予想などの応用も含む。

§3 abc 予想の起源

疑問

Oesterlé と Masser は、abc 予想をどうやって思いついたか?

Baker と Wüstholz によると

「この予想は最初オステルレ (Oesterlé) により、このような ε が存在するかもしれないという弱い形で述べられ、続いてマッサーにより精密化された上記の形として予想された.オステルレの動機はもともと楕円曲線についてのスピロ (Szpiro) の予想にあり、またマッサーは対数 1 次形式を用いた関数体上での abc-予想のメイソン (Mason) による解決から精密化のヒントを得たとされている。」

(『数学の最先端 21 世紀への挑戦 第 5 巻』11-12 ページから引用)

Szpiro 予想

有理数体 $\mathbb Q$ 上の楕円曲線 E に対して, その重要な不変量である「極小判別式 Δ_E 」と「導手 f_E 」の関係を述べた予想.

予想 5 (Szpiro, 1980 年代)

arepsilon を任意の正数とする. $\mathbb Q$ 上定義された全ての楕円曲線 E に対して

$$|\Delta_E| < K_\varepsilon f_E^{6(1+\varepsilon)} \tag{3}$$

が成り立つような定数 $K_{\varepsilon} \geq 1$ が存在する.

【abc 予想との関連(概略)】abc-triple (a,b,c) に対して、精円曲線 $E: y^2 = x(x-a)(x+b)$ を考える。条件 「 $a \equiv -1 \pmod 4$, $b \equiv 0 \mod 16$ 」の下では $\Delta_E = \left(\frac{abc}{2}\right)^2$, $f_E = \operatorname{rad}\left(\frac{abc}{16}\right)$ であり、
(3) は $(abc)^{1/3} < K'_{\varepsilon}\{\operatorname{rad}(abc)\}^{1+\varepsilon}$ (ただし、 $K'_{\varepsilon} > 0$) の形に書ける。 $(abc)^{1/3} < c$ より、abc 予想から、この E に対しては (3) が成り立つ。

Szpiro 予想は, $1728\Delta_E = c_4^3 - c_6^2 \ (c_4, c_6 \ \text{ti} \ E \ \text{のよく知られた不変量})$ と書けることを利用して, 次の強い予想に修正できる.

予想 6 (強い Szpiro 予想)

arepsilon を任意の正数とする. 全ての $\mathbb Q$ 上の楕円曲線 E に対して

$$\max\{|c_4|^3, |c_6|^2\} < K_{\varepsilon} f_E^{6(1+\varepsilon)}$$

が成り立つような定数 $K_s > 1$ が存在する.

【事実】

- •「abc 予想」⇒「Szpiro 予想」
- ・「Szpiro 予想」 \Rightarrow 「弱い abc 予想: $c < K_{arepsilon}\{\mathrm{rad}(abc)\}^{rac{6}{5}+arepsilon}$ 」
- ・「強い Szpiro 予想」⇔「abc 予想」

Mason-Stothers の定理

定理 10 (多項式版「abc 定理」(Stothers, 1981; Mason, 1984))

定数でない複素数係数 1 変数多項式 a(t),b(t),c(t) が互いに素であり, a(t)+b(t)=c(t) を満たすならば

$$\max\{\deg a, \deg b, \deg c\} < \deg \operatorname{rad}(abc) \tag{4}$$

が成り立つ。ただし、多項式
$$f(t)$$
 に対して $\mathrm{rad}(f) = \prod_{\alpha: f \ {\it o}$ 零点

「整数」と「多項式」の対応

「整数」	\leftrightarrow	「多項式」
$\log a $	\leftrightarrow	$\deg a$
素数	\leftrightarrow	1 次式

を考えると,

不等式 (4) は、整数の世界では、abc-triple (a,b,c) に対して

$$\log c < \log \operatorname{rad}(abc)$$
 i.e. $c < \operatorname{rad}(abc)$

が成り立つことに対応する. (実際はそのままでは成り立たないが…)

その他の整数と多項式の類似例:

定理 11 (多項式版「Fermat の最終定理」(Liouville, 1879))

n を 3 以上の整数とする.

定数ではない複素数係数 1 変数多項式 x(t), y(t), z(t) で

$$x(t)^n + y(t)^n = z(t)^n$$

を満たすものは存在しない.

【補足 1】定理 10 と定理 11 は, 高校数学程度の知識で, それぞれを直接示すことも可能. また定理 10 を認めれば, 定理 11 は直ちに得られる.

【補足 2】abc 予想の他の類似物:

複素関数の値分布理論である「Nevanlinna 理論」の第二主要定理 (1925 年に証明されている)

§4 知られている事実

望月 (2021) 以前

定理 12 (Stewart-Yu, 2001)

全ての abc-triple (a, b, c) に対して

$$c \le e^{\kappa N^{1/3}(\log N)^3}$$
 (ただし, $N = \operatorname{rad}(abc)$)

が成り立つような定数 $\kappa > 0$ が存在する.

下からの評価:

定理 13 (Stewart-Tijdeman, 1986)

 $\delta > 0$ とする. 次を満たす abc-triple は無限に存在する:

$$c > N \exp\left((4 - \delta) \frac{\sqrt{\log N}}{\log \log N}\right).$$

% abc 予想: $c < K_{\varepsilon}N^{1+\varepsilon} = K_{\varepsilon}N\exp(\varepsilon\log N)$

望月 (2021) 以後

定理 14 (abc 予想 (Mochizuki, 2021))

 ε を任意の正数とする. このとき, 全ての abc-triple に対して

$$c < K_{\varepsilon} \{ \operatorname{rad}(abc) \}^{1+\varepsilon}$$

が成り立つような定数 $K_{\varepsilon} \geq 1$ が存在する.

定理 15 (Mochizuki-Fesenko-Hoshi-Minamide-Porowski, 2022)

 $0 < \varepsilon \le 1$ とする. このとき, 全ての abc-triple に対して

$$c \le 2^{\frac{5}{2}} \max \left\{ \exp(8.5 \times 10^{29} \times \varepsilon^{-166/81}), \left\{ \operatorname{rad}(abc) \right\}^{\frac{3}{2}(1+\varepsilon)} \right\}$$
$$\le 2^{\frac{5}{2}} \exp(8.5 \times 10^{29} \times \varepsilon^{-166/81}) \left\{ \operatorname{rad}(abc) \right\}^{\frac{3}{2}(1+\varepsilon)}$$

が成り立つ.

→ 「Fermat の最終定理」の新証明,「一般化 Fermat 方程式」への応用

§5 abc 予想の改良

予想 7 (強い abc 予想 (Robert-Stewart-Tenenbaum, 2014))

全ての abc-triple (a, b, c) が

$$c < N \exp \left(4 \sqrt{\frac{3 \log N}{\log \log N}} \left(1 + \frac{\log \log \log N}{2 \log N} + \frac{C_1}{\log \log N} \right) \right)$$

を満たすような実数 C_1 が存在する. ただし, $N=\mathrm{rad}(abc)$ とする.

% abc 予想: $c < K_{\varepsilon}N^{1+\varepsilon} = K_{\varepsilon}N\exp(\varepsilon\log N)$

更に, Robert-Stewart-Tenenbaum は, 同じ論文で次も予想している:

無限個の abc-triple (a,b,c) が

$$c > N \exp \left(4 \sqrt{\frac{3 \log N}{\log \log N}} \left(1 + \frac{\log \log \log N}{2 \log N} + \frac{C_2}{\log \log N} \right) \right)$$

を満たすような実数 C_2 が存在する.

予想 8 (明示的 abc 予想 (Baker, 2004))

abc-triple (a,b,c) は, N := rad(abc) > 2 のとき 1 ,

$$c < \frac{6}{5} \frac{N(\log N)^{\omega}}{\omega!}$$

を満たす. ただし, ω は $N = \operatorname{rad}(abc)$ の素因数の個数である.

この予想から, 予想 2(abc 予想 (簡潔版)) が従うことは, 簡単な計算によって分かるが, 更に深い事実が証明できる:

定理 16

予想 8 の下で、任意の abc-triple (a,b,c) に対して、以下が成り立つ:

- (1) $c < {rad(abc)}^{1.7}$ (Chim-Nair-Shorey, 2018)
- (2) $c < 32\{rad(abc)\}^{1.6}$ (Chim-Shorey-Sinha, 2019)

 $^{^{1}}N \leq 2 \Leftrightarrow (a,b,c) = (1,1,2)$. このとき, 右辺は $1.663 \cdots$ で不成立.

まとめ

abc 予想:「かけ算」と「たし算」の間にある奥深い規則性を定式化したもの

<u>広範囲にわたる応用</u>: Fermat の最終定理, Siegel の定理 (S-単数の方程式), Erdös-Mollin-Walsh 予想 (多冪数), Roth の定理 (代数的無理数の近似), Faltings の定理 (有理数解の有限性), 数論的力学 (原始素数の無限性) など

<u>起源</u>:楕円曲線に関する Szpiro 予想, abc 予想の多項式類似である Mason-Stothers の定理

知られている事実: Mochizuki(2021) により abc 予想は証明済み. Mochizuki 等 (2022) により $K_{arepsilon}(arepsilon>0.5)$ を具体的に評価.

<u>改良</u> Robert-Stewart-Tenenbaum(2014) により, より精密な予想が提出. Baker(2004) による明示的な予想もあり.

参考文献 (読書案内)

スライドを作成する上で、頻繁に参考にしたもの:

- 安福悠、『発見・予想を積み重ねる それが整数論』、オーム社
- せきゅーん, INTEGERS, https://integers.hatenablog.com/

本講演より内容が平易なもの:

■ 小山信也、『日本一わかりやすい ABC 予想』,ビジネス教育出版社

Szpiro 予想や多項式版 abc 定理について解説が詳しいもの:

黒川信重・小山信也、『ABC 予想入門』、PHP 研究所