Multilayer NN + Gradient Descent

AW

Lecture Overview

1. Multilayer Networks

2. Gradient-based optimization

Feed-forward Networks: Terminology

- Every element which holds an input and has output is called a 'neuron'. A shallow neural network consists of two or three layers, anything more than that is considered deep.
 - Example of shallow network: Perceptron contains an input and output layer, of which the output layer is the only computation performing layer. It is a shallow neural network
- The architecture of multilayer neural networks is referred to as *feed-forward* networks, when successive layers feed into one another in the forward direction from input to output. The default architecture of feed-forward networks assumes that all nodes in one layer are connected to those of the next layer.
- Feed-forward networks are also known as Multi-Layer Perceptron

Examples of Multilayer Networks

- Neural networks may use neurons with or without constant bias. Bias neurons can be used both in the hidden layers and in the output layers.
- The neural network is almost fully defined by
 - 1. The number of layers
 - 2. The number and type (weight vector and activation function) of nodes in each layer
 - 3. The loss function that is optimized in the output layer.

Network Graphs and Their Matrix Representation

- If a neural network contains p_1, \ldots, p_k units in each of its k layers, then the (column) vector representations of these outputs (denoted by $\vec{h}_1, \ldots, \vec{h}_k$) have dimensionalities $\dim \vec{h}_1 = p_1, \ldots, \dim \vec{h}_k = p_k$.

 Example: for the net on the figure $\dim \vec{h}_1 = \dim \vec{h}_2 = 3$
- The number of units in each layer is referred to as the dimensionality of that layer

NN Matrix Representation (continued)

- The weights of the connections between the input layer and the first hidden layer are contained in a matrix W_1 with size $d \times p_1$, where d is the number of inputs into network, column \overrightarrow{w}_i^1 contains the weights of inputs into Σ -part of i^{th} neuron in layer 1
- The weights between the r^{th} hidden layer and the $(r+1)^{st}$ hidden layer are given in the $p_r \times p_{r+1}$ matrix W_r in which column \overrightarrow{w}_i^r defines the weights of inputs into Σ -part of i^{th} neuron in layer r

Let weight vectors for neurons h_{11} , h_{12} , h_{13} be given by their Σ -parts

$$1x_1 + 2.5x_2 + 2x_3 + 2.5x_4 + 1x_5$$

 $2x_1 + 5x_2 + 2x_3 + 1x_4 + 2x_5$,
 $1x_1 + 3x_2 + 4x_3 + 3x_4 + 1x_5$

Then

$$W_1 = \begin{pmatrix} 1 & 2 & 1 \\ 2.5 & 5 & 3 \\ 2 & 2 & 4 \\ 2.5 & 1 & 3 \\ 1 & 2 & 1 \end{pmatrix}$$

Let weight vectors for neurons h_{11} , h_{12} , h_{13} be given by their Σ -parts

$$1x_1 + 2.5x_2 + 2x_3 + 2.5x_4 + 1x_5$$

$$2x_1 + 5x_2 + 2x_3 + 1x_4 + 2x_5$$

$$1x_1 + 3x_2 + 4x_3 + 3x_4 + 1x_5$$

and weight vectors for input of neurons h_{21} , h_{22} , h_{23} be given by their Σ -parts

$$1h_{11} + 2h_{12} + 3h_{13}$$

 $2h_{11} + 3h_{12} + 1h_{13}$,
 $1h_{11} + 2h_{12} + 1h_{13}$

. Then

$$W_1 = \begin{pmatrix} 1 & 2 & 1 \\ 2.5 & 5 & 3 \\ 2 & 2 & 4 \\ 2.5 & 1 & 3 \\ 1 & 2 & 1 \end{pmatrix}, W_2 = ?$$

Let weight vectors for neurons h_{11} , h_{12} , h_{13} be given by their Σ -parts

$$1x_1 + 2.5x_2 + 2x_3 + 2.5x_4 + 1x_5$$

$$2x_1 + 5x_2 + 2x_3 + 1x_4 + 2x_5$$

$$1x_1 + 3x_2 + 4x_3 + 3x_4 + 1x_5$$

and weight vectors for neurons h_{21} , h_{22} , h_{23} be given by their Σ -parts

$$1h_{11} + 2h_{12} + 3h_{13}$$

 $2h_{11} + 3h_{12} + 1h_{13}$,
 $1h_{11} + 2h_{12} + 1h_{13}$

and weights of output neuron be given by $4h_{21} + 2h_{22} + 3h_{23}$. Then

$$W_1 = \begin{pmatrix} 1 & 2 & 1 \\ 2.5 & 5 & 3 \\ 2 & 2 & 4 \\ 2.5 & 1 & 3 \\ 1 & 2 & 1 \end{pmatrix}, W_2 = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & 2 \\ 3 & 1 & 1 \end{pmatrix} \text{ and } W_o = ?$$

Let weight vectors for neurons h_{11} , h_{12} , h_{13} be given by their Σ -parts

$$1x_1 + 2.5x_2 + 2x_3 + 2.5x_4 + 1x_5$$

$$2x_1 + 5x_2 + 2x_3 + 1x_4 + 2x_5$$

$$1x_1 + 3x_2 + 4x_3 + 3x_4 + 1x_5$$

and weight vectors for neurons h_{21} , h_{22} , h_{23} be given by their Σ -parts

$$1h_{11} + 2h_{12} + 3h_{13}$$

 $2h_{11} + 3h_{12} + 1h_{13}$,
 $1h_{11} + 2h_{12} + 1h_{13}$

and weights of output neuron be given by $4h_{21} + 2h_{22} + 3h_{23}$. Then

$$W_1 = \begin{pmatrix} 1 & 2 & 1 \\ 2.5 & 5 & 3 \\ 2 & 2 & 4 \\ 2.5 & 1 & 3 \\ 1 & 2 & 1 \end{pmatrix}, W_2 = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & 2 \\ 3 & 1 & 1 \end{pmatrix} \text{ and } W_o = \begin{pmatrix} 4 \\ 2 \\ 3 \end{pmatrix}$$

NN Matrix Representation - continued

The neural network is a transformation that takes d-dimensional input vector \vec{x} and transforms it into the output using the following recursive equations:

$$h_1 = \Phi(W_1^T \vec{x})$$
 [Input to Hidden Layer]

$$h_{p+1} = \Phi(W_{p+1}^T \vec{h}_p) \forall p \in \{1, ..., k-1\}$$
 [Hidden to Hidden Layer]

$$o = \Phi(W_{k+1}^T \vec{h}_k)$$
 [Hidden to Output Layer]

where the activation functions (like the ReLU or sigmoid) are applied in

element-wise fashion to their vector arguments, i.e.
$$\Phi\left(\begin{bmatrix}v_1\\ \vdots\\ v_k\end{bmatrix}\right) = \begin{bmatrix}\Phi(v_1)\\ \vdots\\ \Phi(v_k)\end{bmatrix}$$

Notes:

- 1. It is implicitly assume that all neurons within a layer have the same activation function (though it is not a requirement)
- 2. some activation functions such as the softmax (which are typically used in the output layers) naturally have vector arguments.

$$W_1 = \begin{pmatrix} 1 & 2 & 1 \\ 2.5 & 5 & 3 \\ 2 & 2 & 4 \\ 2.5 & 1 & 3 \\ 1 & 2 & 1 \end{pmatrix}, W_2 = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & 2 \\ 3 & 1 & 1 \end{pmatrix} \text{ and } W_o = \begin{pmatrix} 4 \\ 2 \\ 3 \end{pmatrix}$$

Let $\Phi_1(v) = \max\{v,0\}$ (ReLU), $\Phi_2(v) = \text{sign}(v)$ (step), $\Phi_3(v) = v$ (linear)

Let input
$$\vec{x} = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \\ 1 \end{pmatrix}$$
. Then $v_1 = W_1^T \vec{x} = \begin{pmatrix} 1 & 2 & 1 \\ 2.5 & 5 & 3 \\ 2 & 2 & 4 \\ 2.5 & 1 & 3 \\ 1 & 2 & 1 \end{pmatrix}^T \begin{pmatrix} 1 \\ -1 \\ 3 \\ -1 \\ -2 \end{pmatrix} = \begin{pmatrix} 0 \\ -3 \\ 5 \end{pmatrix}$,

and
$$\vec{h}_1 = \Phi_1(v_1) = \begin{pmatrix} \max(0,0) \\ \max(0,-3) \\ \max(0,5) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 5 \end{pmatrix}$$

$$W_1 = \begin{pmatrix} 1 & 2 & 1 \\ 2.5 & 5 & 3 \\ 2 & 2 & 4 \\ 2.5 & 1 & 3 \\ 1 & 2 & 1 \end{pmatrix}, W_2 = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & 2 \\ 3 & 1 & 1 \end{pmatrix} \text{ and } W_o = \begin{pmatrix} 4 \\ 2 \\ 3 \end{pmatrix}$$

Let $\Phi_1(v) = \max\{v,0\}$ (ReLU), $\Phi_2(v) = \operatorname{sign}(v)$ (step), $\Phi_3(v) = v$ (linear)

Let input
$$\vec{x} = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \\ 1 \end{pmatrix}$$
. Then $v_1 = \begin{pmatrix} 0 \\ -3 \\ 5 \end{pmatrix}$, $\vec{h}_1 = \begin{pmatrix} 0 \\ 0 \\ 5 \end{pmatrix}$ and $v_2 = ?$, $h_2 = ?$

$$W_1 = \begin{pmatrix} 1 & 2 & 1 \\ 2.5 & 5 & 3 \\ 2 & 2 & 4 \\ 2.5 & 1 & 3 \\ 1 & 2 & 1 \end{pmatrix}, W_2 = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & 2 \\ 3 & 1 & 1 \end{pmatrix} \text{ and } W_o = \begin{pmatrix} 4 \\ 2 \\ 3 \end{pmatrix}$$

Let $\Phi_1(v) = \max\{v,0\}$ (ReLU), $\Phi_2(v) = \text{sign}(v)$ (step), $\Phi_3(v) = v$ (linear)

Let input
$$\vec{x} = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \\ 1 \end{pmatrix}$$
. Then $v_1 = \begin{pmatrix} 0 \\ -3 \\ 5 \end{pmatrix}$, $\vec{h}_1 = \begin{pmatrix} 0 \\ 0 \\ 5 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 15 \\ 5 \\ 5 \end{pmatrix}$, $h_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, so $y = ?$

$$W_1 = \begin{pmatrix} 1 & 2 & 1 \\ 2.5 & 5 & 3 \\ 2 & 2 & 4 \\ 2.5 & 1 & 3 \\ 1 & 2 & 1 \end{pmatrix}, W_2 = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & 2 \\ 3 & 1 & 1 \end{pmatrix} \text{ and } W_o = \begin{pmatrix} 4 \\ 2 \\ 3 \end{pmatrix}$$

Let $\Phi_1(v) = \max\{v,0\}$ (ReLU), $\Phi_2(v) = \text{sign}(v)$ (step), $\Phi_3(v) = v$ (linear)

Let input
$$\vec{x} = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \\ 1 \end{pmatrix}$$
. Then $v_1 = \begin{pmatrix} 0 \\ -3 \\ 5 \end{pmatrix}$, $\vec{h}_1 = \begin{pmatrix} 0 \\ 0 \\ 5 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 15 \\ 5 \\ 5 \end{pmatrix}$, $h_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, so $y = 9$

Typical Activations in Multilayer Networks

- Activation in output layer depends on the type of output. If
 - The intended output is a real-valued number then it is typically identity,
 - The intended output is in $\{0,1\}$ then it is typically sigmoid i.e. output of the ANN is not 0/1 but the probability of 1
 - The intended output is belongs to a finite set then it is typically softmax – i.e. output of the ANN is not an element of the set but a probability distribution on the output set!
 - Softmax is almost exclusively is used for output. It is always paired with *cross-entropy* loss.
- Hidden layer activations are almost always nonlinear
- Hidden neurons always use the same activation function over the entire layer of the network and often the same over the whole ANN.
 - Tanh often (but not always) preferable to sigmoid.
 - ReLU has largely replaced tanh and sigmoid in many applications.

Hidden Layers Must be Nonlinear!

- Suppose hidden layers are not nonlinear so activation is identity
- Claim: multi-layer network that uses only the identity activation function in all layers reduces to a single-layer network that performs linear regression.
- $\vec{h}_1 = \Phi(W_1^T \vec{x}) = W_1^T \vec{x}$
- $\vec{h}_{p+1} = \Phi(W_{p+1}^T \vec{h}_p) = W_{p+1}^T \vec{h}_p \quad \forall p \in \{1, \dots, k-1\}$
- $o = \Phi(W_{k+1}^T \vec{h}_k) = W_{k+1}^T \vec{h}_k$

Composition gives

$$o = W_{k+1}^T W_k^T \cdot \dots \cdot W_1^T \vec{x}_1 = \underbrace{(W_1 W_2 \cdot \dots \cdot W_{k+1})^T}_{W_{total}} \vec{x}$$

so it is equivalent to single layer network.

Role of Hidden Layers

- Nonlinear hidden layers perform hierarchical feature selection/aggregation :
 - Early layers learn atomic features and later layers learn complex features

Example. Image data:

- Early layers learn elementary edges
- Middle layers learn more contain complex features (e.g. honeycombs)
- End layers contain complex features like a part of a face.
- The final output layer performs inference with transformed features

Schematic Depiction of Feature Engineering

Example: Linearly Inseparable Data

The hidden units have ReLU activation, and they learn the two new features h_1 and h_2 with linear separator

$$h_1 + h_2 = 0.5$$

where $h_1 = \max\{x_1, 0\}$ and $h_2 = \max\{-x_1, 0\}$

Lecture Overview

1. Multilayer Networks

2. Gradient-based optimization

Derivative and Gradient Descent - Intuition

• The derivative $f'(x) = \frac{df(x)}{dx}$ gives the slope of f(x) at x, i.e. it specifies how to scale a small change in the input in order to obtain the corresponding change in the output:

$$f(x + \varepsilon) \approx f(x) + \varepsilon \frac{df(x)}{dx}$$

- The derivative is useful for minimizing a function because it tells us how to change x to make a small improvement in y:
 - $f\left(x-\varepsilon\cdot\operatorname{sign}\left(\frac{df(x)}{dx}\right)\right)$ is less than $f\left(x\right)$ for small enough ε , so when searching for minimum, we can reduce $f\left(x\right)$ by moving x in small steps with opposite sign of the derivative. This technique is called *gradient descent*.
- When $\frac{df(x)}{dx} = 0$ we have no information in which direction to move. The points where $\frac{df(x)}{dx} = 0$ are stationary points: minimums, maximums, and saddle points

Minimums, Maximums, and Saddle Points

- Local minimum is a point x where f(x) is lower than at all neighboring points, so it is no longer possible to decrease f(x) by making infinitesimal steps.
- Local maximum x is a point where f(x) is higher than at all neighboring points, so it is not possible to increase f(x) by making infinitesimal steps.
- Stationary points that are neither maxima nor minima and both increase and decrease by making infinitesimal steps are possible but which way which is not clear are saddle points.
- A point that obtains the absolute lowest (highest) value of f(x) is a global minimum (resp. global maximum)

Partial, Directional Derivatives and Gradient

• Chain rule of taking derivatives: for f(y(x)) we have

$$[f(y(x))]'_x|_{x_0} = \frac{df}{dx}|_{x_0} = \frac{df}{dy}|_{y(x_0)} \cdot \frac{dy}{dx}|_{x_0}$$

- We often minimize functions that have multiple inputs:
- $f: \mathbb{R}^n \to \mathbb{R}$. For functions with multiple inputs, we need partial derivatives $\frac{\partial f(x)}{\partial x_i}|_{\vec{x}_0}$ to find minimums. It measures how f changes near point \vec{x}_0 when only coordinate x_i is increased by ε .
- To determine how f changes when 2 coordinates change we have second derivative: $\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right) = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right)$
- Gradient of f is the vector $\nabla_{\vec{x}} f(\vec{x})|_{x_0}$ with entries partial derivatives at point \vec{x}_0 . Element i of the gradient is the partial derivative of f with respect to x_i .
- In multiple dimensions a point \vec{x}_0 is stationary if every element of the gradient is 0, i.e. $\nabla_{\vec{x}} f(\vec{x})|_{\vec{x}_0} = \vec{0}$.
- Chain rule applies to partial derivatives too. For $f(g_1(x_1, ..., x_n), ..., g_k(x_1, ..., x_n))$ we have :

$$\frac{\partial f}{\partial x_i} = \frac{\partial f}{\partial g_1} \cdot \frac{\partial g_1}{\partial x_i} + \frac{\partial f}{\partial g_2} \cdot \frac{\partial g_2}{\partial x_i} + \dots + \frac{\partial f}{\partial g_k} \cdot \frac{\partial g_k}{\partial x_i}$$

Example of Chain Rule for Partial Derviatives

Calculate
$$\frac{\partial f}{\partial u}$$
 given $f(x, y, z) = 3x^2 - 2xy + 4z^2$ where $x(u, v) = e^{u \cdot \sin v}$; $y(u, v) = e^{u \cdot \cos v}$; $z(u, v) = e^u$. We need $\frac{\partial f}{\partial u} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial u} + \frac{\partial f}{\partial z} \cdot \frac{\partial z}{\partial u}$

So we need to first compute

$$\frac{\partial f}{\partial x} = ? \qquad \qquad \frac{\partial f}{\partial y} = ? \qquad \qquad \frac{\partial f}{\partial z} = ?$$

Recall that for $f(x) = ax^c$ where a and c are constants we have $f'_x = ac \ x^{c-1}$ or you can use Mathemtica/Wolfram Alpa

Example of Chain Rule for Partial Derviatives

Calculate
$$\frac{\partial f}{\partial u}$$
 given $f(x, y, z) = 3x^2 - 2xy + 4z^2$ where

$$x(u,v) = e^{u \cdot \sin v}$$
; $y(u,v) = e^{u \cdot \cos v}$; $z(u,v) = e^{u}$.

We need
$$\frac{\partial f}{\partial u} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial u} + \frac{\partial f}{\partial z} \cdot \frac{\partial z}{\partial u}$$

We have:

$$\frac{\partial f}{\partial x} = 6x - 2;$$

$$\frac{\partial f}{\partial y} = -2x;$$

$$\frac{\partial f}{\partial z} = 8z$$

We need

$$\frac{\partial x}{\partial u} = ? \qquad \frac{\partial y}{\partial u} = ? \qquad \frac{\partial z}{\partial u} = ?$$

Recall that $f(g(x))'_x = g(x)'_x f(g)'_g$ and $(e^x)'_x = e^x$

or use Mathematica/Wolfram alpha for all these equalities

Example of Chain Rule for Partial Derviatives

Calculate
$$\frac{\partial f}{\partial u}$$
 given $f(x, y, z) = 3x^2 - 2xy + 4z^2$ where

$$x(u, v) = e^{u \cdot \sin v}; y(u, v) = e^{u \cdot \cos v}; z(u, v) = e^{u}.$$

We have:

$$\frac{\partial f}{\partial x} = 6x - 2;$$

$$\frac{\partial f}{\partial y} = -2x;$$

$$\frac{\partial f}{\partial z} = 8z$$

$$\frac{\partial x}{\partial u} = \sin v \cdot e^{u \cdot \sin v}; \qquad \frac{\partial y}{\partial u} = \cos v \cdot e^{u \cdot \cos v}; \qquad \frac{\partial z}{\partial u} = e^{u};$$

$$\frac{\partial y}{\partial u} = \cos v \cdot e^{u \cdot \cos v};$$

$$\frac{\partial z}{\partial u} = e^u;$$

Then

$$\frac{\partial f}{\partial u} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial u} + \frac{\partial f}{\partial z} \cdot \frac{\partial z}{\partial u}$$

$$= (6e^{u \cdot \sin v} - 2) \sin v \cdot e^{u \sin v} - 2e^{u \cdot \sin v} \cos v \cdot e^{u \cdot \cos v} + 8e^{u}e^{u}$$

Directional Derivative and its Use

• directional derivative of $f(\vec{x})$ in direction \vec{u} (where ||u||=1) is the slope of the function f in direction \vec{u} , i.e. it is a derivative of a function $f(\vec{x} + \alpha \vec{u})$ at a point $\vec{x}_0 + \alpha \vec{u}$ when $\alpha \to 0$ (i.e. taken with respect to α). Using chain rule

$$\frac{\partial}{\partial \alpha} f(\vec{x} + \alpha \vec{u})|_{\alpha = 0} = \vec{u}^T \nabla_{\vec{x}} f(x) = \vec{u} \cdot \nabla_{\vec{x}} f(\vec{x})$$

- To minimize f, we'd like to use the direction in which f decreases the fastest. Using the directional derivative:
- $\min_{\vec{u},\|u\|=1} \vec{u} \cdot \nabla_{\vec{x}} f(x) = \min_{\vec{u},\|u\|=1} \|\vec{u}\| \|\nabla_{\vec{x}} f(x)\| \cos \theta$ where θ is an angle between u and $\nabla_{\vec{x}} f(x)$ (recall that $\frac{a \cdot b}{\|a\| \|b\|} = \cos \theta$). Since it is required $\|\vec{u}\| = 1$ and $\|\nabla_{\vec{x}} f(x)\|$ does not depend on \vec{u} we get $\min_{\vec{u},\|u\|=1} \|\vec{u}\| \|\nabla_{\vec{x}} f(x)\| \cos \theta = \min_{\vec{u}} \cos \theta$ which is at $\min = -1$ when u points in the opposite direction from gradient!

Gradient Descent

 Decreasing f by moving in the direction of the negative gradient is known as the method of steepest descent or gradient descent. Steepest descent proposes a new point

$$\vec{x}' = \vec{x} - \varepsilon \nabla_{\vec{x}} f(\vec{x})$$

- ε is a positive scalar determining the size of the step. It is called *learning rate*
- Steepest descent converges when every element of the gradient is zero at stationary points!

Jacobian

• To implement gradient descent from layer-to-layer of NN we need to compute a gradient of maps of the form $f: \mathbb{R}^n \to \mathbb{R}^m$, i.e. we need to compute partial derivatives of a function whose input and output are both vectors. The matrix containing all such partial derivatives is known as a *Jacobian* matrix, denoted $\mathbb{J} \in \mathbb{R}^{m \times n}$ where $[\mathbb{J}]_{ij} = \frac{\partial}{\partial x_i} (\vec{f}(\vec{x}))_i$.

Example:

Let
$$\vec{f} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1^2 + x_1 x_2 \\ 3x_1 + x_2^2 x_1 \end{pmatrix}$$
 then
$$\mathbb{J}(f) = ?$$

Jacobian

 To implement gradient descent from layer-to-layer of NN we need to compute a gradient of maps of the form

 $f: \mathbb{R}^n \to \mathbb{R}^m$, i.e. we need to compute partial derivatives of a function whose input and output are both vectors. The matrix containing all such partial derivatives is known as a **Jacobian** matrix, denoted $\mathbb{J} \in \mathbb{R}^{m \times n}$ where $[\mathbb{J}]_{ij} = \frac{\partial}{\partial x_i} (\vec{f}(\vec{x}))_i$.

Example:

Let
$$\vec{f} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1^2 + x_1 x_2 \\ 3x_1 + x_2^2 x_1 \end{pmatrix}$$
 then

$$\mathbb{J}(f) = \begin{pmatrix} \frac{\partial}{\partial x_1} (x_1^2 + x_1 x_2) & \frac{\partial}{\partial x_2} (x_1^2 + x_1 x_2) \\ \frac{\partial}{\partial x_1} (3x_1 + x_2^2 x_1) & \frac{\partial}{\partial x_2} (3x_1 + x_2^2 x_1) \end{pmatrix} = ?$$

Jacobian

• To implement gradient descent from layer-to-layer of NN we need to compute a gradient of maps of the form $f: \mathbb{R}^n \to \mathbb{R}^m$, i.e. we need to compute partial derivatives of a function whose input and output are both vectors. The matrix containing all such partial derivatives is known as a *Jacobian* matrix, denoted $\mathbb{J} \in \mathbb{R}^{m \times n}$ where $[\mathbb{J}]_{ij} = \frac{\partial}{\partial x_i} (f(\vec{x}))_i$.

Example:

Let
$$f \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1^2 + x_1 x_2 \\ 3x_1 + x_2^2 x_1 \end{pmatrix}$$
 then $\mathbb{J}(f) = \begin{pmatrix} 2x_1 + x_2 & x_1 \\ 3 + x_2^2 & 2x_2 x_1 \end{pmatrix}$

Chain Rule in Vector form

Gradient of a vector function:

Given
$$\vec{f}(\vec{x}) = \begin{pmatrix} f_1(\vec{x}) \\ \vdots \\ f_k(\vec{x}) \end{pmatrix}$$
 by definition $\nabla_{\vec{x}} f_i(\vec{x}) = \begin{pmatrix} \frac{\partial f_i}{\partial x_1} \\ \vdots \\ \frac{\partial f_i}{\partial x_n} \end{pmatrix}$ and $\nabla_{\vec{x}} \vec{f}(\vec{x}) = \begin{pmatrix} (\nabla_{\vec{x}} f_1(\vec{x})) & \cdots & (\nabla_{\vec{x}} f_k(\vec{x})) &$

Chain Rule: For a given $f(g_1(x_1, ..., x_n), ..., g_k(x_1, ..., x_n))$ holds

$$\frac{\partial f}{\partial x_i} = \sum_{j=1}^k \frac{\partial f}{\partial g_j} \cdot \frac{\partial g_j}{\partial x_i} = \nabla_{\vec{g}} f(\vec{g}) \cdot \begin{pmatrix} \frac{\partial g_1}{\partial x_i} \\ \vdots \\ \frac{\partial g_k}{\partial x_i} \end{pmatrix}$$

Then for a vector function $f(\vec{g}(\vec{x}))$ we obtain $\nabla_{\vec{x}} f = J(\vec{g})^T \nabla_{\vec{g}} f$

Reading

• Ch. 1.3