Degrees of Relatedness

A Unified Framework for Parametricity, Irrelevance, Ad Hoc Polymorphism, Intersections, Unions and Algebra in Dependent Type Theory

Andreas Nuyts¹, Dominique Devriese², partly jww Andrea Vezzosi³

¹KU Leuven, Belgium ²Vrije Universiteit Brussel, Belgium, ³Chalmers University of Technology, Sweden

CHoCoLa meeting @ ENS Lyon Lyon, France January 24, 2019

Overview

- Parametricity
 - Intuition
 - In System F
 - In System Fω
 - In DTT
- Degrees of relatedness
 - Intro & known modalities
 - Structural modality
 - ∩ and ∪

Parametricity, intuitively

In System F, F ω , Haskell, ..., **type parameters** are parametric.

- Only used for type-checking,
- Not inspected (e.g. no pattern matching),
- Same algorithm on all types.

Enforced by the type system.

Example

 $g: \forall X. \text{Tree } X \rightarrow \text{List } X$ By parametricity:

$$\begin{array}{ccc}
A & \text{Tree } A \xrightarrow{g} \text{List } A \\
\downarrow f & \text{Tree } f & \text{List } f \\
B & \text{Tree } B \xrightarrow{g} \text{List } B
\end{array}$$

irrespective of implementation.

Parametricity, intuitively

In System F, F ω , Haskell, ..., **type parameters** are parametric.

- Only used for type-checking,
- Not inspected (e.g. no pattern matching),
- Same algorithm on all types.

Enforced by the type system.

Example

 $g : \forall X. \text{Tree } X \rightarrow \text{List } X$ By parametricity:

$$\begin{array}{ccc} A & & \text{Tree } A \stackrel{g}{\longrightarrow} \text{List } A \\ \downarrow^f & & \text{Tree } f \downarrow & & \downarrow \text{List } f \\ B & & \text{Tree } B \stackrel{g}{\longrightarrow} \text{List } B \end{array}$$

irrespective of implementation.

$R \in \operatorname{Rel}(A, B)$ if

- $R \subseteq A \times B$,
- $R: A \times B \rightarrow \mathsf{Prop}$,
- $R: A \times B \rightarrow Set$,

R(a,b) if

- $(a,b) \in R$,
- $* \in R(a,b)$,
- $r \in R(a, b)$.

Example (Isomorphic groups)

 $(\cong) \in \text{Rel}(\mathsf{Grp},\mathsf{Grp})$

 $\bar{x} \mapsto (\bar{x}, \bar{x}) : \mathbb{Z}/6\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$, so these groups are **isomorphic**.

Example (Related sets)

Rel ∈ Rel(Set, Set)

 $ElemOf \in Rel(X, List X)$, so these sets are **related**

$R \in \operatorname{Rel}(A, B)$ if

- $R \subseteq A \times B$,
- $R: A \times B \rightarrow \mathsf{Prop}$,
- $R: A \times B \rightarrow Set$,

R(a,b) if

- $(a,b) \in R$,
- $* \in R(a,b)$,
- $r \in R(a, b)$.

Example (Isomorphic groups)

 $(\cong) \in \text{Rel}(\mathsf{Grp},\mathsf{Grp})$

 $\bar{x}\mapsto (\bar{x},\bar{x}):\mathbb{Z}/6\mathbb{Z}\cong\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/3\mathbb{Z}$, so these groups are **isomorphic**.

Example (Related sets)

Rel ∈ Rel(Set, Set)

 $ElemOf \in Rel(X, List X)$, so these sets are **related**

$R \in \operatorname{Rel}(A, B)$ if

- $R \subseteq A \times B$,
- $R: A \times B \rightarrow \mathsf{Prop}$,
- $R: A \times B \rightarrow Set$,

R(a,b) if

- $(a,b) \in R$,
- $* \in R(a,b)$,
- $r \in R(a,b)$.

Example (Isomorphic groups)

 $(\cong) \in \text{Rel}(Grp, Grp)$

 $\bar{x} \mapsto (\bar{x}, \bar{x}) : \mathbb{Z}/6\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$, so these groups are **isomorphic**.

Example (Related sets)

Rel ∈ Rel(Set, Set)

 $ElemOf \in Rel(X, List X)$, so these sets are **related**

$R \in \text{Rel}(A, B)$ if

- $R \subseteq A \times B$,
- $R: A \times B \rightarrow \mathsf{Prop}$,
- $R: A \times B \rightarrow Set$,

R(a,b) if

- $(a,b) \in R$,
- $* \in R(a,b)$,
- $r \in R(a,b)$.

Example (Isomorphic groups)

 $(\cong) \in Rel(Grp, Grp)$

 $\bar{x}\mapsto (\bar{x},\bar{x}):\mathbb{Z}/6\mathbb{Z}\cong\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/3\mathbb{Z}$, so these groups are **isomorphic**.

Example (Related sets)

Rel ∈ Rel(Set, Set)

 $ElemOf \in Rel(X, List X)$, so these sets are **related**

 $R \in \text{Rel}(A, B)$ if

- $R \subseteq A \times B$,
- $R: A \times B \rightarrow \mathsf{Prop}$,
- *R* : *A* × *B* → Set,

R(a,b) if

- $(a,b) \in R$,
- $* \in R(a,b)$,
- $r \in R(a,b)$.

Example (Isomorphic groups)

 $(\cong) \in Rel(Grp, Grp)$

 $\bar{x} \mapsto (\bar{x}, \bar{x}) : \mathbb{Z}/6\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$, so these groups are **isomorphic**.

Example (Related sets)

 $Rel \in Rel(Set, Set)$

 $ElemOf \in Rel(X, List X)$, so these sets are **related**.

Parametricity in **System F** (Reynolds, 1983)

$$X:*, Y:* \vdash X\times Y:*$$

Object semantics

$$X \in \mathsf{Set}, \qquad Y \in \mathsf{Set} \qquad \Rightarrow \qquad X \times Y \in \mathsf{Set}$$

Relational semantics

$$X_1 \in \mathsf{Set}, \qquad Y_1 \in \mathsf{Set} \qquad \Rightarrow \qquad X_1 \times Y_1 \in \mathsf{Set}$$

$$X_2 \in \mathsf{Set}, \qquad Y_2 \in \mathsf{Set} \qquad \Rightarrow \qquad X_2 \times Y_2 \in \mathsf{Set}$$

Identity Extension Lemma (IEL)

 \ldots such that $\operatorname{Eq}_X \times \operatorname{Eq}_Y \cong \operatorname{Eq}_{X \times Y}$

$$X:*, \qquad Y:* \qquad \vdash \qquad X\times Y:*$$

Object semantics:

$$X \in \mathsf{Set}, \qquad Y \in \mathsf{Set} \qquad \Rightarrow \qquad X \times Y \in \mathsf{Set}$$

Relational semantics

$$X_1 \in \mathsf{Set}, \qquad Y_1 \in \mathsf{Set} \qquad \Rightarrow \qquad X_1 \times Y_1 \in \mathsf{Set}$$

$$X_2 \in \mathsf{Set}, \qquad Y_2 \in \mathsf{Set} \qquad \Rightarrow \qquad X_2 \times Y_2 \in \mathsf{Set}$$

Identity Extension Lemma (IEL)

 \ldots such that $\operatorname{Eq}_X \times \operatorname{Eq}_Y \cong \operatorname{Eq}_{X \times Y}$

$$\vdash$$

$$X \times Y$$
: *

Object semantics:

$$X \in Set$$
,

$$Y \in Set$$

$$\Rightarrow$$

$$X \times Y \in Set$$

Relational semantics:

$$X_1 \in Set$$
,

$$Y_1 \in Set \Rightarrow$$

$$\Rightarrow$$

$$X_1 \times Y_1 \in \mathsf{Set}$$

$$X_2 \in Set$$
,

$$Y_2 \in Set$$

$$\Rightarrow$$

$$X_2 \times Y_2 \in \mathsf{Set}$$

$$\ldots$$
 such that $\mathsf{Eq}_X imes \mathsf{Eq}_Y \cong \mathsf{Eq}_{X imes Y}$

$$X:*, \qquad Y:* \qquad \vdash \qquad X \times Y:*$$

Object semantics:

$$X \in \operatorname{Set}, \qquad Y \in \operatorname{Set} \qquad \Rightarrow \qquad X \times Y \in \operatorname{Set}$$

Relational semantics:

$$X_1 \in \text{Set},$$
 $Y_1 \in \text{Set}$ \Rightarrow $X_1 \times Y_1 \in \text{Set}$
 $\bar{X} \in \text{Rel}$ $\bar{Y} \in \text{Rel}$ \Rightarrow $\bar{X} \times \bar{Y} \in \text{Rel}$
 $X_2 \in \text{Set},$ $Y_2 \in \text{Set}$ \Rightarrow $X_2 \times Y_2 \in \text{Set}$

Identity Extension Lemma (IEL)

... such that $Eq_X \times Eq_Y \cong Eq_{X \times Y}$

$$X:*, \qquad Y:* \qquad \vdash \qquad X \times Y:*$$

Object semantics:

$$X \in \mathsf{Set}, \qquad Y \in \mathsf{Set} \qquad \Rightarrow \qquad X \times Y \in \mathsf{Set}$$

Relational semantics:

$$X_1 \in \mathsf{Set}, \qquad Y_1 \in \mathsf{Set} \qquad \Rightarrow \qquad X_1 \times Y_1 \in \mathsf{Set}$$
 $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$
 $\bar{X} \in \mathsf{Rel} \qquad \bar{Y} \in \mathsf{Rel} \qquad \Rightarrow \qquad \bar{X} \times \bar{Y} \in \mathsf{Rel}$
 $X_2 \in \mathsf{Set}, \qquad Y_2 \in \mathsf{Set} \qquad \Rightarrow \qquad X_2 \times Y_2 \in \mathsf{Set}$

Identity Extension Lemma (IEL)

 \dots such that $Eq_X \times Eq_Y \cong Eq_{X \times Y}$

Type formers propagate relations:

```
\bar{X} \times \bar{Y} Componentwise,
```

$$ar{X}
ightarrow ar{Y}$$
 For all $x_1, x_2 \colon ar{X}(x_1, x_2)
ightarrow ar{Y}(extit{f_1} \, x_1, extit{f_2} \, x_2),$

List \bar{X} Equal length, \bar{X} -related components,

 $\bar{X} \uplus \bar{Y}$ Same side, \bar{X} - or \bar{Y} -related.

Identity Extension Lemma (IEL

... always preserving Eq.

Type formers propagate relations:

 $\bar{X} \times \bar{Y}$ Componentwise,

$$ar{X}
ightarrow ar{Y}$$
 For all $x_1, x_2 \colon ar{X}(x_1, x_2)
ightarrow ar{Y}(extit{f_1} \ x_1, extit{f_2} \ x_2),$

List \bar{X} Equal length, \bar{X} -related components,

 $\bar{X} \uplus \bar{Y}$ Same side, \bar{X} - or \bar{Y} -related.

Identity Extension Lemma (IEL

... always preserving Eq

Type formers propagate relations:

 $\bar{X} \times \bar{Y}$ Componentwise,

$$\bar{X}
ightarrow \bar{Y}$$
 For all x_1, x_2 : $\bar{X}(x_1, x_2)
ightarrow \bar{Y}(f_1 x_1, f_2 x_2)$,

List \bar{X} Equal length, \bar{X} -related components,

 $\bar{X} \uplus \bar{Y}$ Same side, \bar{X} - or \bar{Y} -related.

Identity Extension Lemma (IEL)

... always preserving Eq

Type formers propagate relations:

 $\bar{X} \times \bar{Y}$ Componentwise,

$$\bar{X}
ightarrow \bar{Y}$$
 For all x_1, x_2 : $\bar{X}(x_1, x_2)
ightarrow \bar{Y}(f_1 x_1, f_2 x_2)$,

List \bar{X} Equal length, \bar{X} -related components,

 $\bar{X} \uplus \bar{Y}$ Same side, \bar{X} - or \bar{Y} -related.

Identity Extension Lemma (IEL)

...always preserving Eq

Type formers propagate relations:

 $\bar{X} \times \bar{Y}$ Componentwise,

$$\bar{X}
ightarrow \bar{Y}$$
 For all x_1, x_2 : $\bar{X}(x_1, x_2)
ightarrow \bar{Y}(f_1 x_1, f_2 x_2)$,

List \bar{X} Equal length, \bar{X} -related components,

 $\bar{X} \uplus \bar{Y}$ Same side, \bar{X} - or \bar{Y} -related.

Identity Extension Lemma (IEL)

... always preserving Eq

Type formers propagate relations:

 $\bar{X} \times \bar{Y}$ Componentwise,

$$ar{X}
ightarrow ar{Y}$$
 For all x_1, x_2 : $ar{X}(x_1, x_2)
ightarrow ar{Y}(f_1 x_1, f_2 x_2)$,

List \bar{X} Equal length, \bar{X} -related components,

 $\bar{X} \uplus \bar{Y}$ Same side, \bar{X} - or \bar{Y} -related.

Identity Extension Lemma (IEL)

... always preserving Eq.

$$X:*$$

$$\vdash$$

$$t[X,p,q]:X$$

Object semantics

$$X \in Set$$
,

$$p \in X$$
,

$$q \in X$$

$$\Rightarrow$$

$$t[X,p,q] \in X$$

Relational semantics:

$$X_1 \in \operatorname{Set}$$
,

$$p_1 \in X_1$$
,

$$q_1 \in X_1$$

$$\Rightarrow$$

$$t[X_1,p_1,q_1]\in X_1$$

$$X_2 \in \operatorname{Set}$$
,

$$p_2 \in X_2$$

$$q_2 \in X_2$$

$$\Rightarrow$$

$$t[X_2,p_2,q_2]\in X_2$$

Free Theorem (Church Booleans)

Either
$$t[X, p, q] = p$$
 or $t[X, p, q] = q$,

$$\vdash$$

Object semantics:

$$X \in Set$$
,

$$p \in X$$
,

$$q \in X$$

$$\Rightarrow$$

$$t[X,p,q] \in X$$

Relational semantics:

$$X_1 \in \operatorname{Set}$$
,

$$p_1 \in X_1$$
,

$$q_1 \in X_1$$

$$\Rightarrow$$

$$t[X_1,p_1,q_1]\in X_1$$

$$X_2 \in \operatorname{Set}$$
,

$$p_2 \in X_2$$

$$q_2 \in X_2$$

$$\Rightarrow$$

$$t[X_2,p_2,q_2] \in X_2$$

Free Theorem (Church Booleans)

Either
$$t[X, p, q] = p$$
 or $t[X, p, q] = q$,

$$\vdash$$

Object semantics:

$$X \in Set$$
,

$$p \in X$$
,

$$q \in X$$

$$\Rightarrow$$

$$t[X,p,q] \in X$$

Relational semantics:

$$X_1 \in Set$$
,

$$p_1 \in X_1$$
,

$$q_1 \in X_1$$

$$\Rightarrow$$

$$t[X_1,p_1,q_1]\in X_1$$

$$\textit{X}_2 \in Set,$$

$$p_2\in X_2,$$

$$q_2 \in X_2$$

$$\Rightarrow$$

$$t[X_2,p_2,q_2]\in X_2$$

Free Theorem (Church Booleans)

Either t[X, p, q] = p or t[X, p, q] = q, i.e. Bool $\cong \forall X.X \rightarrow X \rightarrow X$

$$\vdash$$

Object semantics:

$$X \in \mathsf{Set}$$
,

$$p \in X$$
,

$$q \in X$$

$$t[X,p,q]\in X$$

Relational semantics:

$$X_1 \in \text{Set},$$
 $X_1 \in \text{Set},$
 $X_2 \in \text{Set}.$

$$p_1 \in X_1,$$
 $\downarrow \\ \bar{p} \in \bar{X}$
 $\downarrow \\ p_2 \in X_2,$

$$egin{array}{ll} q_1 \in X_1 & \Rightarrow & & \Rightarrow & & & \Rightarrow & & & & \Rightarrow & & \\ ar{q} \in ar{X} & & \Rightarrow & & \Rightarrow & & \Rightarrow & & & \Rightarrow & & & & \Rightarrow & & & & & \end{array}$$

$$t[X_1, p_1, q_1] \in X_1$$
 $t[\bar{X}, \bar{p}, \bar{q}] \in \bar{X}$
 $t[X_2, p_2, q_2] \in X_2$

Free Theorem (Church Booleans)

Either
$$t[X, p, q] = p$$
 or $t[X, p, q] = q$, i.e. Bool $\cong \forall X.X \rightarrow X \rightarrow X$

$$X:* \mid p:X,$$

$$\vdash$$

Object semantics:

$$X \in Set$$
,

$$p \in X$$
,

$$q \in X$$

$$t[X, p, q] \in X$$

Relational semantics:

$$X_1 \in \text{Set},$$
 $X_1 \in \text{Rel}$
 $X_2 \in \text{Set}.$

$$p_1 \in X_1,$$
 $\downarrow \\ \bar{p} \in \bar{X}$
 $\downarrow \\ p_2 \in X_2,$

$$q_1 \in X_1$$
 \Rightarrow
 $\downarrow \\ \bar{q} \in \bar{X}$ \Rightarrow
 $q_2 \in X_2$ \Rightarrow

$$t[X_1, p_1, q_1] \in X_1$$
 $t[\bar{X}, \bar{p}, \bar{q}] \in \bar{X}$
 $t[X_2, p_2, q_2] \in X_2$

Free Theorem (Church Booleans)

Either
$$t[X, p, q] = p$$
 or $t[X, p, q] = q$,

i.e. Bool
$$\cong \forall X.X \rightarrow X \rightarrow X$$

When can we call a cross-type relation "heterogeneous equality"?

- Congruence (respected by everything),
- Extends equality: becomes equality in homogeneous case.

Term-relatedness à la Reynolds:

- √ Is a congruence (prev. slide)
- √ Identity extension
- \Rightarrow Is a notion of het. equality.

Type-relatedness à la Reynolds is NOT:

To prove relatedness is to give $\bar{X} \in \text{Rel}(X_1, X_2)$

 $Rel \neq Eq$

When can we call a cross-type relation "heterogeneous equality"?

- Congruence (respected by everything),
- Extends equality: becomes equality in homogeneous case.

Term-relatedness à la Reynolds:

- √ Is a congruence (prev. slide)
- √ Identity extension
- \Rightarrow Is a notion of het. equality.

Type-relatedness à la Reynolds is NOT:

To prove relatedness is to give $\bar{X} \in \text{Rel}(X_1, X_2)$

 $Rel \neq Eq$

When can we call a cross-type relation "heterogeneous equality"?

- Congruence (respected by everything),
- Extends equality: becomes equality in homogeneous case.

Term-relatedness à la Reynolds:

- $\sqrt{}$ Is a congruence (prev. slide)
- √ Identity extension
- \Rightarrow Is a notion of het. equality.

Type-relatedness à la Reynolds is **NOT**: To prove relatedness is to give $\bar{X} \in \operatorname{Rel}(X_1, X_2)$ Rel $\neq \text{Eq}$

When can we call a cross-type relation "heterogeneous equality"?

- Congruence (respected by everything),
- Extends equality: becomes equality in homogeneous case.

Term-relatedness à la Reynolds:

- $\sqrt{}$ Is a congruence (prev. slide)
- √ Identity extension
- \Rightarrow Is a notion of het. equality.

Type-relatedness à la Reynolds is **NOT**: To prove relatedness is to give $\bar{X} \in \text{Rel}(X_1, X_2)$ Rel \neq Eq

When can we call a cross-type relation "heterogeneous equality"?

- Congruence (respected by everything),
- Extends equality: becomes equality in homogeneous case.

Term-relatedness à la Reynolds:

- √ Is a congruence (prev. slide)
- √ Identity extension
- \Rightarrow Is a notion of het. equality.

Type-relatedness à la Reynolds is **NOT**: To prove relatedness is to give $\bar{X} \in \operatorname{Rel}(X_1, X_2)$ $\operatorname{Rel} \neq \operatorname{Eq}$

When can we call a cross-type relation "heterogeneous equality"?

- Congruence (respected by everything),
- Extends equality: becomes equality in homogeneous case.

Term-relatedness à la Reynolds:

- √ Is a congruence (prev. slide)
- √ Identity extension
- \Rightarrow Is a notion of het. equality.

Type-relatedness à la Reynolds is **NOT**: To prove relatedness is to give $\bar{X} \in \operatorname{Rel}(X_1, X_2)$ $\operatorname{Rel} \neq \operatorname{Eq}$

When can we call a cross-type relation "heterogeneous equality"?

- Congruence (respected by everything),
- Extends equality: becomes equality in homogeneous case.

Term-relatedness à la Reynolds:

- √ Is a congruence (prev. slide)
- √ Identity extension
- \Rightarrow Is a notion of het. equality.

Type-relatedness à la Reynolds is **NOT**: To prove relatedness is to give $\bar{X} \in \text{Rel}(X_1, X_2 \text{Rel} \neq \text{Eq})$

When can we call a cross-type relation "heterogeneous equality"?

- Congruence (respected by everything),
- Extends equality: becomes equality in homogeneous case.

Term-relatedness à la Reynolds:

- √ Is a congruence (prev. slide)
- √ Identity extension
- \Rightarrow Is a notion of het. equality.

Type-relatedness à la Reynolds is **NOT**:

To prove relatedness is to give $\bar{X} \in \text{Rel}(X_1, X_2)$

 $Rel \neq Eq$

Parametricity Summarized

Open types map Rel-related types to Rel-related types:

$$X_1 \in \text{Set},$$
 $Y_1 \in \text{Set}$ \Rightarrow $X_1 \times Y_1 \in \text{Set}$
 $\bar{X} \in \text{Rel}$ $\bar{Y} \in \text{Rel}$ \Rightarrow $\bar{X} \times \bar{Y} \in \text{Rel}$
 $X_2 \in \text{Set},$ $Y_2 \in \text{Set}$ \Rightarrow $X_2 \times Y_2 \in \text{Set}$

Open terms map Rel-related types and het. equal values:

Parametricity Summarized

Open types map Rel-related types to Rel-related types:

Open terms map Rel-related types

and het. equal values to het. equal values:

Parametricity in **System F** ω (Atkey, 2012)

IEL: Open types map preserve Eq.

```
If X \in \text{Set} (sem. of X : *), then \text{Eq}_X \in \text{Rel}(X,X)

If F \in \text{Set} \to \text{Set} (sem. of F : * \to *), then what is \text{Eq}_F \in (\text{Rel} \to \text{Rel})(F,F) = \text{Rel}(X,Y) \to \text{Rel}(FX,FY)?
```

IEL: Open types map preserve Eq.

```
If X \in \text{Set} (sem. of X : *), then \text{Eq}_X \in \text{Rel}(X,X)
```

```
f F \in \mathsf{Set} \to \mathsf{Set} (sem. of F : * \to *),
hen what is \mathsf{Eq}_F \in (\mathsf{Rel} \to \mathsf{Rel})(F,F) = \mathsf{Rel}(X,Y) \to \mathsf{Rel}(FX,FY)?
```

IEL: Open types map preserve Eq.

If $X \in \text{Set}$ (sem. of X : *),

```
then \operatorname{Eq}_X \in \operatorname{Rel}(X,X)

If F \in \operatorname{Set} \to \operatorname{Set} (sem. of F : * \to *),
```

then what is $Eq_F \in (Rel \to Rel)(F, F) = Rel(X, Y) \to Rel(FX, FY)$?

IEL: Open types map preserve Eq.

If $X \in \text{Set}$ (sem. of X : *),

```
then \operatorname{Eq}_X \in \operatorname{Rel}(X,X)

If F \in \operatorname{Set} \to \operatorname{Set} (sem. of F : * \to *),

then what is \operatorname{Eq}_F \in (\operatorname{Rel} \to \operatorname{Rel})(F,F) = \operatorname{Rel}(X,Y) \to \operatorname{Rel}(FX,FY)?
```

Kind κ	Obj. semantics κ	Rel. sem. $\bar{\kappa} \in \operatorname{Rel}(\kappa, \kappa)$	Reflexivity refl : $(T:\kappa) ightarrow ar{\kappa}(T,T)$
*	Set	Rel	$Eq: (T:*) \to Rel(T,T)$
$* \times *$	Set × Set	$Rel \times Rel$	$Eq \times Eq$
$* \rightarrow *$	$(T : Set) \xrightarrow{F} (FT : Set)$ $Eq \downarrow \qquad EL:\cong \qquad \downarrow Eq$ $Rel(T,T) \xrightarrow{\bar{F}} Rel(FT,FT)$	$\operatorname{Rel} o \operatorname{Rel}$	$(F, \overline{F}) \mapsto \overline{F}$
$\kappa \to \lambda$	$(T:\kappa) \xrightarrow{F} (FT:\lambda)$ $refl \downarrow \qquad \qquad \downarrow refl$ $\bar{\kappa}(T,T) \xrightarrow{\bar{F}} \bar{\lambda}(FT,FT)$	$ar{\kappa} ightarrow ar{\lambda}$	$(F,ar{F})\mapstoar{F}$

Kind	Obj. semantics	Rel. sem.	Reflexivity
κ	κ	$\bar{\kappa} \in \operatorname{Rel}(\kappa, \kappa)$	refl: $(T:\kappa) ightarrow ar{\kappa}(T,T)$
*	Set	Rel	$Eq: (T:*) \to Rel(T,T)$
$* \times *$	Set × Set	$Rel \times Rel$	$Eq \times Eq$
$* \rightarrow *$	$(T : Set) \xrightarrow{F} (FT : Set)$ $Eq \downarrow \qquad EL:\cong \qquad \downarrow Eq$ $Rel(T,T) \xrightarrow{\bar{F}} Rel(FT,FT)$	$Rel \rightarrow Rel$	$(F,ar{F})\mapstoar{F}$
$\kappa o \lambda$	$(T:K) \xrightarrow{F} (FT:\lambda)$ $refl \qquad \cong \qquad \qquad \downarrow refl$ $\bar{K}(T,T) \xrightarrow{\bar{F}} \bar{\lambda}(FT,FT)$	$ar{\kappa} ightarrow ar{\lambda}$	$(F,ar{F})\mapstoar{F}$

Kind	Obj. semantics	Rel. sem.	Reflexivity
K	κ	$\bar{\kappa} \in \operatorname{Rel}(\kappa, \kappa)$	$refl: (T:\kappa) o ar{\kappa}(T,T)$
*	Set	Rel	$Eq: (T:*) \to Rel(T,T)$
* × *	Set imes Set	$Rel \times Rel$	$Eq \times Eq$
$* \rightarrow *$	$(T : Set) \xrightarrow{F} (FT : Set)$ $Eq \downarrow \qquad EL:\cong \qquad \downarrow Eq$ $Rel(T,T) \xrightarrow{\bar{F}} Rel(FT,FT)$	$\mathrm{Rel} ightarrow \mathrm{Rel}$	$(F,ar{F})\mapstoar{F}$
$\kappa o \lambda$	$(T:K) \xrightarrow{F} (FT:\lambda)$ $refl \downarrow \qquad \qquad \downarrow refl$ $\bar{K}(T,T) \xrightarrow{\bar{F}} \bar{\lambda}(FT,FT)$	$ar{\kappa} ightarrow ar{\lambda}$	$(F,ar{F})\mapstoar{F}$

Kind	Obj. semantics	Rel. sem.	Reflexivity
κ	κ	$\bar{\kappa} \in \operatorname{Rel}(\kappa, \kappa)$	refl: $(T:\kappa) ightarrow ar{\kappa}(T,T)$
*	Set	Rel	$Eq: (T:*) \to Rel(T,T)$
×	Set × Set	$Rel \times Rel$	$Eq \times Eq$
$* \rightarrow *$	$(T: Set) \xrightarrow{F} (FT: Set)$	$\operatorname{Rel} o \operatorname{Rel}$	$(F, \bar{F}) \mapsto \bar{F}$
	$ \begin{array}{c c} & Eq & IEL: \cong & Eq \\ \hline & Rel(T,T) & \xrightarrow{\bar{F}} Rel(FT,FT) \end{array} $		
	$Rel(T,T) \rightarrow Rel(T,TT)$		
$\kappa o \lambda$	$(T:\kappa) \xrightarrow{F} (FT:\lambda)$ $refl \downarrow \qquad \qquad \downarrow refl$ $\bar{\kappa}(T,T) \xrightarrow{\bar{F}} \bar{\lambda}(FT,FT)$	$ar{\kappa} ightarrow ar{\lambda}$	$(F,ar{F})\mapstoar{F}$

Kind	Obj. semantics	Rel. sem.	Reflexivity
κ	κ	$\bar{\kappa} \in \operatorname{Rel}(\kappa, \kappa)$	refl: $(T:\kappa) ightarrow ar{\kappa}(T,T)$
*	Set	Rel	$Eq: (T:*) \to Rel(T,T)$
×	Set × Set	$Rel \times Rel$	$Eq \times Eq$
$* \rightarrow *$	$(T: Set) \xrightarrow{F} (FT: Set)$	$Rel \rightarrow Rel$	$(F, \bar{F}) \mapsto \bar{F}$
	$ \begin{array}{c c} & Eq & IEL:\cong & Eq \\ \hline & Rel(T,T) & \xrightarrow{\bar{F}} Rel(FT,FT) \end{array} $		
	$\operatorname{Kel}(T,T) \longrightarrow \operatorname{Kel}(TT,TT)$		
$\kappa ightarrow \lambda$	$(T:\kappa) \xrightarrow{F} (FT:\lambda)$ $refl \downarrow \qquad \qquad \downarrow refl$ $\bar{\kappa}(T,T) \xrightarrow{\bar{F}} \bar{\lambda}(FT,FT)$	$ar{\kappa} ightarrow ar{\lambda}$	$(F,ar{F})\mapstoar{F}$

Kind	Obj. semantics	Rel. sem.	Reflexivity
κ	κ	$\bar{\kappa} \in \operatorname{Rel}(\kappa, \kappa)$	$refl: (T:\kappa) o ar{\kappa}(T,T)$
*	Set	Rel	$Eq: (T:*) \to Rel(T,T)$
×	Set × Set	$Rel \times Rel$	$Eq \times Eq$
$* \rightarrow *$	$(T : Set) \xrightarrow{F} (FT : Set)$	$Rel \rightarrow Rel$	$(F,\bar{F})\mapsto \bar{F}$
	$ \begin{array}{c c} & Eq & Eq & Eq \\ \hline & Rel(T,T) & F \\ \hline & Rel(FT,FT) \end{array} $		
$\kappa o \lambda$	$(T:\kappa) \xrightarrow{F} (FT:\lambda)$ $\downarrow^{\text{refl}} \qquad \qquad \downarrow^{\text{refl}}$ $\bar{\kappa}(T,T) \xrightarrow{\bar{F}} \bar{\lambda}(FT,FT)$	$ar{\kappa} ightarrow ar{\lambda}$	$(F,ar{F})\mapstoar{F}$

Kind	Obj. semantics	Rel. sem.	Reflexivity
κ	κ	$\bar{\kappa} \in \text{Rel}(\kappa, \kappa)$	refl : $(T:\kappa) ightarrow ar{\kappa}(T,T)$
*	Set	Rel	$Eq: (T:*) \to Rel(T,T)$
* × *	Set imes Set	$Rel \times Rel$	$Eq \times Eq$
$* \rightarrow *$	$(T : Set) \xrightarrow{F} (FT : Set)$	$Rel \to Rel$	$(F, \bar{F}) \mapsto \bar{F}$
	$ \begin{array}{c c} & Fq & F \\ \hline & F \\ & F \\ \hline & F \\ & F$		
$\kappa o \lambda$	$(T:\kappa) \xrightarrow{F} (FT:\lambda)$ $refl \downarrow \qquad \qquad \qquad \downarrow refl$ $\bar{\kappa}(T,T) \xrightarrow{\bar{F}} \bar{\lambda}(FT,FT)$	$ar{\kappa} ightarrow ar{\lambda}$	$(F,ar{F})\mapstoar{F}$

Kind	Obj. semantics	Rel. sem.	Reflexivity
κ	κ	$\bar{\kappa} \in \operatorname{Rel}(\kappa, \kappa)$	$refl: (T:\kappa) o ar{\kappa}(T,T)$
*	Set	Rel	$Eq: (T:*) \to Rel(T,T)$
×	Set × Set	$Rel \times Rel$	$Eq \times Eq$
$* \rightarrow *$	$(T: Set) \xrightarrow{F} (FT: Set)$	$Rel \rightarrow Rel$	$(F, \bar{F}) \mapsto \bar{F}$
	$ \begin{array}{c c} & Fq & F \\ \hline & F \\ & F \\ \hline & F \\ & F$		
$\kappa o \lambda$	$(T:\kappa) \xrightarrow{F} (FT:\lambda)$ $refl \downarrow \qquad \qquad \qquad \downarrow refl$ $\bar{\kappa}(T,T) \xrightarrow{\bar{F}} \bar{\lambda}(FT,FT)$	$ar{\kappa} ightarrow ar{\lambda}$	$(F,ar{F})\mapstoar{F}$

Parametricity in **Dependent Type Theory**

DTT treats types and terms on equal footing, BUT

- Related terms are het. equal,
- Related **types** are **NOT**: Rel \neq Eq. $\bar{\kappa} \neq$ Eq.

Mainstream approach: Ignore this fact

Takeuti (2001), Krishnaswami & Dreyer (2013), Atkey, Ghani & Johann (2014)

⇒ Free theorems can break for large types

Parametricity in **Dependent Type Theory**

DTT treats types and terms on equal footing, BUT

- Related terms are het. equal,
- Related types are NOT: Rel \neq Eq. $\bar{k} \neq$ Eq.

Mainstream approach: Ignore this fact

Takeuti (2001), Krishnaswami & Dreyer (2013), Atkey, Ghani & Johann (2014)

⇒ Free theorems can break for large types

Parametricity in **Dependent Type Theory**

DTT treats types and terms on equal footing, BUT

- Related terms are het. equal,
- Related types are NOT: Rel \neq Eq. $\bar{k} \neq$ Eq.

Mainstream approach: Ignore this fact

Takeuti (2001), Krishnaswami & Dreyer (2013), Atkey, Ghani & Johann (2014)

⇒ Free theorems can break for large types.

Breaking free theorems in DTT

System F_{ω} :

Free Theorem (Yoneda lemma / Representation independence)

$$\forall (X:*).(X \to A) \to (X \to B) \cong A \to B$$

Dependent types:

$$leak: (X: \mathcal{U}) \to (X \to A) \to (X \to \mathcal{U})$$
$$leak X f x = X$$

Our solution (syntax-side):

$$(\mathbf{par} \mid X : \mathcal{U}) \rightarrow (X \rightarrow A) \rightarrow (X \rightarrow \mathcal{U})$$

 \Rightarrow Type-checker monitors the use of X

Breaking free theorems in DTT

System F_{ω} :

Free Theorem (Yoneda lemma / Representation independence)

$$\forall (X:*).(X \to A) \to (X \to B) \cong A \to B$$

Dependent types:

$$leak: (X:\mathcal{U}) \rightarrow (X \rightarrow A) \rightarrow (X \rightarrow \mathcal{U})$$

$$leak \ X \ f \ x = X$$

Our solution (syntax-side):

$$(\mathbf{par}:X:\mathcal{U})\to (X\to A)\to (X\to \mathcal{U})$$

 \Rightarrow Type-checker monitors the use of X

Breaking free theorems in DTT

System F_{ω} :

Free Theorem (Yoneda lemma / Representation independence)

$$\forall (X:*).(X \to A) \to (X \to B) \cong A \to B$$

Dependent types:

$$leak: (X: \mathcal{U}) \rightarrow (X \rightarrow A) \rightarrow (X \rightarrow \mathcal{U})$$
$$leak X f x = X$$

Our solution (syntax-side):

$$(\operatorname{par}:X:\mathcal{U})\to (X\to A)\to (X\to \mathcal{U})$$

 \Rightarrow Type-checker monitors the use of X.

System F

Values can be related:

$$(s:S) \frown^R (t:T)$$

IEL: if $(s:A) \cap^A (t:A)$ then s = t (heterogeneous equality)

Types can be related:

$$R:S \frown T$$

which gives meaning to

$$(s:S) \cap^R (t:T)$$

Dependent types

Things can be 0-related:

$$(s:S) \curvearrowright_0^R (t:T)$$

IEL: if $(s:A) \curvearrowright_0^A (t:A)$ then s=t (heterogeneous equality)

Things can be 1-related:

$$(S:\kappa) \curvearrowright^{\rho}_{\mathbf{1}} (T:\lambda)$$

where R : $(S:\mathcal{U}) \curvearrowright^\mathcal{U}_1 (T:\mathcal{U})$ gives meaning to

$$(s:S) \curvearrowright_0^R (t:T)$$

System F

Values can be related:

$$(s:S) \cap^R (t:T)$$

IEL: if $(s:A) \cap^A (t:A)$ then s = t (heterogeneous equality)

Types can be related:

$$R: S \frown T$$

which gives meaning to

$$(s:S) \frown^R (t:T)$$

Dependent types

Things can be 0-related:

$$(s:S) \curvearrowright_0^R (t:T)$$

IEL: if $(s:A) \curvearrowright_0^A (t:A)$ then s=t (heterogeneous equality)

Things can be 1-related:

$$(S:\kappa) \curvearrowright^{\rho}_{\mathbf{1}} (T:\lambda)$$

where $R:(S:\mathcal{U}) \curvearrowright^{\mathcal{U}} (T:\mathcal{U})$ gives meaning to

$$(s:S) \curvearrowright_0^R (t:T)$$

System F

Values can be related:

$$(s:S) \frown^R (t:T)$$

IEL: if $(s:A) \cap^A (t:A)$ then s=t (heterogeneous equality)

Types can be related:

$$R: S \frown T$$

which gives meaning to

$$(s:S) \frown^R (t:T)$$

Dependent types

Things can be 0-related:

$$(s:S) \curvearrowright_0^R (t:T)$$

IEL: if $(s:A) \curvearrowright_0^A (t:A)$ then s=t (heterogeneous equality)

Things can be 1-related:

$$(S:\kappa) \curvearrowright^{\rho}_{\mathbf{1}} (T:\lambda)$$

where $R:(S:\mathcal{U}) \curvearrowright^{\mathcal{U}}_{1} (T:\mathcal{U})$ gives meaning to

$$(s:S) \frown_0^R (t:T)$$

System F

Values can be related:

$$(s:S) \frown^R (t:T)$$

IEL: if $(s:A) \cap^A (t:A)$ then s = t (heterogeneous equality)

Types can be related:

$$R: S \frown T$$

which gives meaning to

$$(s:S) \frown^R (t:T)$$

Dependent types

Things can be 0-related:

$$(s:S) \curvearrowright_0^R (t:T)$$

IEL: if $(s:A) \curvearrowright_0^A (t:A)$ then s=t (heterogeneous equality) Will also write $s=^B t$ for $s \curvearrowright_0^B t$.

Things can be 1-related:

$$(S:\kappa) \curvearrowright^{\rho}_{\mathbf{1}} (T:\lambda)$$

where $R:(S:\mathcal{U}) \curvearrowright^{\mathcal{U}} (T:\mathcal{U})$ gives meaning to

$$(s:S) \curvearrowright_0^R (t:T)$$

System F

Values can be related:

$$(s:S) \frown^R (t:T)$$

IEL: if $(s:A) \cap^A (t:A)$ then s = t (heterogeneous equality)

Types can be related:

$$R: S \frown T$$

which gives meaning to

$$(s:S) \frown^R (t:T)$$

Dependent types

Things can be 0-related:

$$(s:S) \curvearrowright_{\mathbf{0}}^{R} (t:T)$$

IEL: if $(s:A) \curvearrowright_0^A (t:A)$ then s=t (heterogeneous equality) Will also write $s=^B t$ for $s \curvearrowright_0^B t$.

Things can be 1-related:

$$(S:\kappa) \curvearrowright^{\rho}_{\mathbf{1}} (T:\lambda)$$

where $R: (S:\mathcal{U}) \curvearrowright^{\mathcal{U}}_{1} (T:\mathcal{U})$ gives meaning to

$$(s:S) \curvearrowright_{\mathbf{0}}^{R} (t:T)$$

Continuity List : $(\mathbf{con} \mid \mathcal{U}_0) \rightarrow \mathcal{U}_0$

This wasn't there in System F

Continuity List : $(\mathbf{con} \mid \mathcal{U}_0) \rightarrow \mathcal{U}_0$ $X = Y \longrightarrow \text{List } X = \text{List } Y$ Eq IEL $X \curvearrowright_1 Y \longrightarrow \text{List } X \curvearrowright_1 \text{List } Y$

This wasn't there in System F

Continuity List : $(\mathbf{con} \mid \mathcal{U}_0) \rightarrow \mathcal{U}_0$ $X = Y \longrightarrow \text{List } X = \text{List } Y$ Eq IEL $X \curvearrowright_1 Y \longrightarrow \text{List } X \curvearrowright_1 \text{List } Y$

This wasn't there in System F

Continuity

List :
$$(\mathbf{con} \mid \mathcal{U}_0) \rightarrow \mathcal{U}_0$$

 $X = Y \longrightarrow \text{List } X = \text{List } Y$

This wasn't there in System F

Continuity

List :
$$(\mathbf{con} \mid \mathcal{U}_0) \rightarrow \mathcal{U}_0$$

$$X = Y \longrightarrow \text{List } X = \text{List } Y$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

In System F: \rightarrow

Eq

 $R: X \frown_1 Y$

In System F: \forall

 $[]_X \frown_1^{\operatorname{List} R} []_Y$

Continuity

List :
$$(\mathbf{con} \mid \mathcal{U}_0) \rightarrow \mathcal{U}_0$$

$$X = Y \longrightarrow \text{List } X = \text{List } Y$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad$$

This wasn't there in System F!

In System F: \rightarrow

```
■ Level -1 types: T (propositions)
```

- Level 0 types: $= \rightarrow \top$
- Level 1 types: $= \rightarrow \frown_1 \rightarrow \top$
- Level 2 types: $= \rightarrow \frown_1 \rightarrow \frown_2 \rightarrow \top$
- ...

```
    Level -1 types: ⊤ (propositions)
    Level 0 types: = → ⊤
```

- Level 1 types: $= \rightarrow \frown_1 \rightarrow \top$
- Level 2 types: $= \rightarrow \frown_1 \rightarrow \frown_2 \rightarrow \top$
- ...

- Level -1 types: ⊤ (propositions)
- Level 0 types: $= \rightarrow \top$
- Level 1 types: $= \rightarrow \frown_1 \rightarrow \top$
- Level 2 types: $= \rightarrow \frown_1 \rightarrow \frown_2 \rightarrow \top$
- ...

```
Level -1 types: ⊤ (propositions)
Level 0 types: = → ⊤
Level 1 types: = → ∩<sub>1</sub> → ⊤
Level 2 types: = → ∩<sub>1</sub> → ∩<sub>2</sub> → ⊤
...
```

```
Level -1 types: ⊤ (propositions)
Level 0 types: = → ⊤
Level 1 types: = → ¬₁ → ⊤
```

• Level 2 types: $= \rightarrow \frown_1 \rightarrow \frown_2 \rightarrow \top$

• ...

- Depth -1 types: ⊤ (propositions)
- Depth 0 types: $= \rightarrow \top$
- Depth 1 types: $= \rightarrow \frown_1 \rightarrow \top$
- Depth 2 types: $= \rightarrow \frown_1 \rightarrow \frown_2 \rightarrow \top$
- ...

Continuity: $1 \rightarrow 1$

List :
$$(\mathbf{con} \mid \mathcal{U}_0) \rightarrow \mathcal{U}_0$$

$$X = Y \longrightarrow \text{List } X = \text{List } Y$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X \frown_1 Y \longrightarrow \text{List } X \frown_1 \text{ List } Y$$

Parametricity: $1 \rightarrow 0$

$$[]: (\mathbf{par} \mid X : \mathcal{U}_0) \rightarrow \mathsf{List}\, X$$

Definition

A **modality** $\mu : c \rightarrow d$ is any diagram from c+1 to d+1 relations that preserves het. equality.

Multi-mode type theory:

Licata & Shulman (2016), Licata, Shulman & Riley (2017)

Continuity: $1 \rightarrow 1$

List :
$$(\mathbf{con} \mid \mathcal{U}_0) \rightarrow \mathcal{U}_0$$

$$X = Y \longrightarrow \text{List } X = \text{List } Y$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

Parametricity: $1 \rightarrow 0$

X = Y

$$[]:(\textbf{par} \mid X:\mathcal{U}_0) \to \mathsf{List}\, X$$

$$R: X \curvearrowright_{1} Y \longrightarrow []_{X} = ^{\mathsf{List}\,R} []_{Y}$$

Definition

A **modality** $\mu : c \rightarrow d$ is any diagram from c+1 to d+1 relations that preserves het. equality.

Multi-mode type theory:

Licata & Shulman (2016), Licata, Shulman & Riley (2017

Continuity: $1 \rightarrow 1$

List :
$$(\mathbf{con} \mid \mathcal{U}_0) \rightarrow \mathcal{U}_0$$

$$X = Y \longrightarrow \text{List } X = \text{List } Y$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad$$

Parametricity: $1 \rightarrow 0$

$$[]: (\mathbf{par} \mid X : \mathcal{U}_0) \to \mathsf{List} X$$

Definition

A **modality** $\mu:c\to d$ is any diagram from c+1 to d+1 relations that preserves het. equality.

Multi-mode type theory:

Licata & Shulman (2016), Licata, Shulman & Riley (2017)

	Value-level objects $a: A: \mathcal{U}_0$ can be	Type-level objects $A: \kappa: \mathcal{U}_1$ can be	
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_{0}^{\mathbb{N}} (7:\mathbb{N})$ $([]: \text{List}_{4} A) \curvearrowright_{0}^{\text{List}_{6}} A ([]: \text{List}_{6} A)$ $\exists R.(5:\mathbb{N}) \curvearrowright_{0}^{R} (\text{true}: \text{Bool})$ $\forall R.\textit{if}_{X} \curvearrowright_{0}^{\text{Bool} \to R \to R \to R} \textit{if}_{Y}$	$((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0)$ $([] : \operatorname{List_4} \kappa) \curvearrowright_0^{\operatorname{List_6} \kappa} ([] : \operatorname{List_6} \kappa)$ \dots	
1-related	n/a	$ \begin{pmatrix} (A:\mathcal{U}_0) & \stackrel{\mathcal{U}_0}{\longrightarrow} (B:\mathcal{U}_0) \end{pmatrix} := \operatorname{Rel}(A,B) $ $ \mathbb{N} := \operatorname{Eq}_{\mathbb{N}} : (\mathbb{N}:\mathcal{U}_0) & \stackrel{\mathcal{U}_0}{\longrightarrow} (\mathbb{N}:\mathcal{U}_0) $ $ \operatorname{List}_{\bullet} A : \operatorname{List}_4 A & \stackrel{\mathcal{U}_0}{\longrightarrow} \operatorname{List}_6 A $	

	Value-level objects $a: A: \mathcal{U}_0$ can be	Type-level objects $A: \kappa: \mathcal{U}_1$ can be	
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_{0}^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_{4} A) \curvearrowright_{0}^{List_{6} A} ([]: List_{6} A)$ $\exists R.(5:\mathbb{N}) \curvearrowright_{0}^{R} (true: Bool)$ $\forall R.if_{X} \curvearrowright_{0}^{Bool \to R \to R \to R} if_{Y}$	$ \begin{array}{c} ((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) & \stackrel{\mathcal{U}_0}{{_0}} (\operatorname{Bool} : \mathcal{U}_0) \\ ([] : \operatorname{List_4} \kappa) & \stackrel{\operatorname{List_6} \kappa}{{_0}} ([] : \operatorname{List_6} \kappa) \\ & \cdots \end{array} $	
1-related	n/a	$ \begin{pmatrix} (A: \mathcal{U}_0) & \stackrel{\mathcal{U}_0}{\longrightarrow} (B: \mathcal{U}_0) \\ \mathbb{N} := \operatorname{Eq}_{\mathbb{N}} : (\mathbb{N}: \mathcal{U}_0) & \stackrel{\mathcal{U}_0}{\longrightarrow} (\mathbb{N}: \mathcal{U}_0) \\ \operatorname{List}_{\bullet} A : \operatorname{List}_4 A & \stackrel{\mathcal{U}_0}{\longrightarrow} \operatorname{List}_6 A \end{pmatrix} $	

$$(2+5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (7:\mathbb{N})$$
 because
$$2+5 \equiv 7$$

	Value-level objects $a: A: \mathcal{U}_0$ can be	Type-level objects $A: \kappa: \mathcal{U}_1$ can be	
0-related (het. eq.)		$ ((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0) $ $ ([] : \operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([] : \operatorname{List}_6 \kappa) $ $ \cdots $	
1-related	n/a	$((A: \mathcal{U}_0) \curvearrowright_1^{\mathcal{U}_0} (B: \mathcal{U}_0)) := \operatorname{Rel}(A, B)$ $\mathbb{N} := \operatorname{Eq}_{\mathbb{N}} : (\mathbb{N} : \mathcal{U}_0) \curvearrowright_1^{\mathcal{U}_0} (\mathbb{N} : \mathcal{U}_0)$ $\operatorname{List}_{\bullet} A : \operatorname{List}_4 A \curvearrowright_1^{\mathcal{U}_0} \operatorname{List}_6 A$	

$$((\lambda X.X) \text{ Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\text{Bool} : \mathcal{U}_0)$$

because
 $(\lambda X.X) \text{ Bool} \equiv \text{Bool}$

	Value-level objects $a: A: \mathcal{U}_0$ can be	Type-level objects $A: \kappa: \mathcal{U}_1$ can be	
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_{0}^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_{4} A) \curvearrowright_{0}^{List_{6} A} ([]: List_{6} A)$ $\exists R.(5:\mathbb{N}) \curvearrowright_{0}^{R} (true: Bool)$ $\forall R.if_{X} \curvearrowright_{0}^{Bool \rightarrow R \rightarrow R \rightarrow R} if_{Y}$	$ ((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0) $ $ ([] : \operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([] : \operatorname{List}_6 \kappa) $ $ \cdots $	
1-related	n/a	$ \begin{pmatrix} (A:\mathcal{U}_0) & \stackrel{\mathcal{U}_0}{\longrightarrow} (B:\mathcal{U}_0) \end{pmatrix} := \operatorname{Rel}(A,B) $ $ \mathbb{N} := \operatorname{Eq}_{\mathbb{N}} : (\mathbb{N}:\mathcal{U}_0) & \stackrel{\mathcal{U}_0}{\longrightarrow} (\mathbb{N}:\mathcal{U}_0) $ $ \operatorname{List}_{\bullet} A : \operatorname{List}_4 A & \stackrel{\mathcal{U}_0}{\longrightarrow} \operatorname{List}_6 A $	

([]: List₄
$$A$$
) $\curvearrowright_0^{\text{List}_6} A$ ([]: List₆ A)
where
List_• $A \in \text{Rel}(\text{List}_4 A, \text{List}_6 A)$

	Value-level objects $a: A: \mathcal{U}_0$ can be	Type-level objects $A: \kappa: \mathcal{U}_1$ can be	
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_{0}^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_{4} A) \curvearrowright_{0}^{List_{6} A} ([]: List_{6} A)$ $\exists R. (5:\mathbb{N}) \curvearrowright_{0}^{R} (true: Bool)$ $\forall R. if_{X} \curvearrowright_{0}^{Bool \rightarrow R \rightarrow R \rightarrow R} if_{Y}$	$((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0)$ $([] : \operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([] : \operatorname{List}_6 \kappa)$	
1-related	n/a	$ \begin{pmatrix} (A: \mathcal{U}_0) & \stackrel{\mathcal{U}_0}{\longrightarrow} (B: \mathcal{U}_0) \\ \mathbb{N} := \operatorname{Eq}_{\mathbb{N}} : (\mathbb{N}: \mathcal{U}_0) & \stackrel{\mathcal{U}_0}{\longrightarrow} (\mathbb{N}: \mathcal{U}_0) \\ \operatorname{List}_{\bullet} A : \operatorname{List}_4 A & \stackrel{\mathcal{U}_0}{\longrightarrow} \operatorname{List}_6 A \end{pmatrix} $	

([]: List₄
$$\kappa$$
) $\sim_0^{\text{List}_{\bullet} \kappa}$ ([]: List₆ κ)

	Value-level objects $a: A: \mathcal{U}_0$ can be	Type-level objects $A: \kappa : \mathcal{U}_1$ can be	
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_{0}^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_{4} A) \curvearrowright_{0}^{List_{6} A} ([]: List_{6} A)$ $\exists R. (5:\mathbb{N}) \curvearrowright_{0}^{R} (true: Bool)$ $\forall R. \textit{if}_{X} \curvearrowright_{0}^{Bool \to R \to R \to R} \textit{if}_{Y}$	$((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0)$ $([] : \operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([] : \operatorname{List}_6 \kappa)$ \cdots	
1-related	n/a	$ \begin{pmatrix} (A: \mathcal{U}_0) & \stackrel{\mathcal{U}_0}{{_1}} (B: \mathcal{U}_0) \\ \mathbb{N} := \operatorname{Eq}_{\mathbb{N}} : (\mathbb{N} : \mathcal{U}_0) & \stackrel{\mathcal{U}_0}{{_1}} (\mathbb{N} : \mathcal{U}_0) \\ \operatorname{List}_{\bullet} A : \operatorname{List}_4 A & \stackrel{\mathcal{U}_0}{{_1}} \operatorname{List}_6 A \end{pmatrix} $	

$$(5:\mathbb{N}) \curvearrowright_0^R (\text{true}: \text{Bool})$$

for some
 $R \in \text{Rel}(\mathbb{N}, \text{Bool})$

	Value-level objects $a: A: \mathcal{U}_0$ can be	Type-level objects $A: \kappa : \mathcal{U}_1$ can be	
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_{0}^{\mathbb{N}} (7:\mathbb{N})$ $([]: \text{List}_{4} A) \curvearrowright_{0}^{\text{List}_{\bullet} A} ([]: \text{List}_{6} A)$ $\exists R.(5:\mathbb{N}) \curvearrowright_{0}^{R} (\text{true}: \text{Bool})$ $\forall R.\text{if}_{X} \curvearrowright_{0}^{\text{Bool} \to R \to R \to R} \text{if}_{Y}$	$((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0)$ $([] : \operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([] : \operatorname{List}_6 \kappa)$ \cdots	
1-related	n/a	$ \begin{pmatrix} (A: \mathcal{U}_0) & \stackrel{\mathcal{U}_0}{\longrightarrow} (B: \mathcal{U}_0) \\ \mathbb{N} := \operatorname{Eq}_{\mathbb{N}} : (\mathbb{N} : \mathcal{U}_0) & \stackrel{\mathcal{U}_0}{\longrightarrow} (\mathbb{N} : \mathcal{U}_0) \\ \operatorname{List}_{\bullet} A : \operatorname{List}_4 A & \stackrel{\mathcal{U}_0}{\longrightarrow} \operatorname{List}_6 A \end{pmatrix} $	

$$\begin{aligned} (\textit{if}_X : \mathsf{Bool} \to X \to X \to X) &\frown^{\mathsf{Bool} \to R \to R \to R}_0 (\textit{if}_Y : \mathsf{Bool} \to Y \to Y \to Y) \\ & \text{for all} \\ & R \in \mathsf{Rel}(X,Y) \end{aligned}$$

	Value-level objects $a: A: \mathcal{U}_0$ can be	Type-level objects $A: \kappa: \mathcal{U}_1$ can be	
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_{0}^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_{4} A) \curvearrowright_{0}^{List_{6}} A ([]: List_{6} A)$ $\exists R.(5:\mathbb{N}) \curvearrowright_{0}^{R} (true : Bool)$ $\forall R.if_{X} \curvearrowright_{0}^{Bool \to R \to R \to R} if_{Y}$	$((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0)$ $([] : \operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([] : \operatorname{List}_6 \kappa)$ \dots	
1-related	n/a	$ \begin{pmatrix} (A: \mathcal{U}_0) & \stackrel{\mathcal{U}_0}{\longrightarrow} (B: \mathcal{U}_0) \\ \mathbb{N} := \operatorname{Eq}_{\mathbb{N}} : (\mathbb{N} : \mathcal{U}_0) & \stackrel{\mathcal{U}_0}{\longrightarrow} (\mathbb{N} : \mathcal{U}_0) \\ \operatorname{List}_{\bullet} A : \operatorname{List}_{4} A & \stackrel{\mathcal{U}_0}{\longrightarrow} \operatorname{List}_{6} A \end{pmatrix} = \operatorname{Rel}(A, B) $	

$$(a:A) \curvearrowright_i^{\mathbf{R}} (b:B)$$
 is always w.r.t. $\mathbf{R}: (A:\mathcal{U}_n) \curvearrowright_{i+1}^{\mathcal{U}_n} (B:\mathcal{U}_n)$
$$\left((A:\mathcal{U}_0) \curvearrowright_1^{\mathcal{U}_0} (B:\mathcal{U}_0) \right) := \text{Rel}(A,B)$$

	Value-level objects $a: A: \mathcal{U}_0$ can be	Type-level objects $A: \kappa: \mathcal{U}_1$ can be	
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_{0}^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_{4} A) \curvearrowright_{0}^{List_{6} A} ([]: List_{6} A)$ $\exists R. (5:\mathbb{N}) \curvearrowright_{0}^{R} (true: Bool)$ $\forall R. \mathit{if}_{X} \curvearrowright_{0}^{Bool \to R \to R \to R} \mathit{if}_{Y}$	$((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0)$ $([] : \operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([] : \operatorname{List}_6 \kappa)$	
1-related	n/a	$ \begin{pmatrix} (A: \mathcal{U}_0) & \stackrel{\mathcal{U}_0}{{_1}} (B: \mathcal{U}_0) \\ \mathbb{N} := \operatorname{Eq}_{\mathbb{N}} : (\mathbb{N} : \mathcal{U}_0) & \stackrel{\mathcal{U}_0}{{_1}} (\mathbb{N} : \mathcal{U}_0) \\ \operatorname{List}_{\bullet} A : \operatorname{List}_{4} A & \stackrel{\mathcal{U}_0}{{_1}} \operatorname{List}_{6} A \end{pmatrix} $	

$$\mathbb{N} := \mathsf{Eq}_{\mathbb{N}} : (\mathbb{N} : \mathcal{U}_0) \frown_{\mathsf{1}}^{\mathcal{U}_0} (\mathbb{N} : \mathcal{U}_0)$$

	Value-level objects $a: A: \mathcal{U}_0$ can be	Type-level objects $A: \kappa : \mathcal{U}_1$ can be	
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_{0}^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_{4} A) \curvearrowright_{0}^{List_{6} A} ([]: List_{6} A)$ $\exists R. (5:\mathbb{N}) \curvearrowright_{0}^{R} (true: Bool)$ $\forall R. \mathit{if}_{X} \curvearrowright_{0}^{Bool \to R \to R \to R} \mathit{if}_{Y}$	$((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0)$ $([] : \operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([] : \operatorname{List}_6 \kappa)$	
1-related	n/a	$ \begin{pmatrix} (A: \mathcal{U}_0) & \stackrel{\mathcal{U}_0}{\longrightarrow} (B: \mathcal{U}_0) \\ \mathbb{N} := Eq_{\mathbb{N}} : (\mathbb{N}: \mathcal{U}_0) & \stackrel{\mathcal{U}_0}{\longrightarrow} (\mathbb{N}: \mathcal{U}_0) \\ List_{\bullet} & A: List_4 & A & \stackrel{\mathcal{U}_0}{\longrightarrow} List_6 & A \end{pmatrix} $	

$$\mathsf{List}_{\bullet} \ A : \big(\mathsf{List}_4 \ A : \mathcal{U}_0\big) \frown^{\mathcal{U}_0}_1 \big(\mathsf{List}_6 \ A : \mathcal{U}_0\big)$$

	Value-level objects $a: A: \mathcal{U}_0$ can be	Type-level objects $A: \kappa: \mathcal{U}_1$ can be	
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_{0}^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_{4} A) \curvearrowright_{0}^{List_{6} A} ([]: List_{6} A)$ $\exists R. (5:\mathbb{N}) \curvearrowright_{0}^{R} (true: Bool)$ $\forall R. \mathit{if}_{X} \curvearrowright_{0}^{Bool \to R \to R \to R} \mathit{if}_{Y}$	$((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0)$ $([] : \operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([] : \operatorname{List}_6 \kappa)$	
1-related	n/a	$\begin{pmatrix} (A: \mathcal{U}_0) & \stackrel{\mathcal{U}_0}{\longrightarrow} (B: \mathcal{U}_0) \end{pmatrix} := \operatorname{Rel}(A, B) \\ \mathbb{N} := \operatorname{Eq}_{\mathbb{N}} : (\mathbb{N}: \mathcal{U}_0) & \stackrel{\mathcal{U}_0}{\longrightarrow} (\mathbb{N}: \mathcal{U}_0) \\ \operatorname{List}_{\bullet} A : \operatorname{List}_4 A & \stackrel{\mathcal{U}_0}{\longrightarrow} \operatorname{List}_6 A \end{pmatrix}$	

See paper for \sim_2 (as of **kind-level**) and higher.

Four laws:

- Reflexivity: $(a:A) \frown_i^A (a:A)$
- Weakening: $((a:A) \curvearrowright_i^R (b:B)) \rightarrow ((a:A) \curvearrowright_{i+1}^R (b:B))$
- **Dependency:** $(a:A) \curvearrowright_i^{\mathbf{R}} (b:B)$ presumes $\mathbf{R}: A \curvearrowright_{i+1}^{\mathcal{U}_n} B$
- Identity extension: $(a: A) \curvearrowright_0^A (b: A)$ means $a \equiv b: A$.

Ad hoc polymorphism

Law of excluded middle (wrong):

$$lem : (par \mid X : \mathcal{U}) \rightarrow X \uplus (X \rightarrow Empty)$$

Free Theorem (contradiction!)

$$((\mathbf{par} \mid X : \mathcal{U}) \to X) \uplus ((\mathbf{par} \mid X : \mathcal{U}) \to X \to \mathsf{Empty})$$

Ad hoc: $1 \rightarrow 0$

$$lem : (\mathbf{hoc} : X : \mathcal{U}) \to X \uplus (X \to \mathsf{Empty})$$

$$X = Y \longrightarrow lem X = lem Y$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad$$

Ad hoc polymorphism

Law of excluded middle (wrong):

$$lem : (\mathbf{par} \mid X : \mathcal{U}) \rightarrow X \uplus (X \rightarrow \mathsf{Empty})$$

Free Theorem (contradiction!)

$$((\mathsf{par} \mid X : \mathcal{U}) \to X) \uplus ((\mathsf{par} \mid X : \mathcal{U}) \to X \to \mathsf{Empty})$$

Ad hoc: $1 \rightarrow 0$

$$lem : (\mathbf{hoc} : X : \mathcal{U}) \to X \uplus (X \to \mathsf{Empty})$$

$$X = Y \longrightarrow lem X = lem Y$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad$$

Ad hoc polymorphism

Law of excluded middle (wrong):

$$lem : (\mathbf{par} \mid X : \mathcal{U}) \rightarrow X \uplus (X \rightarrow \mathsf{Empty})$$

Free Theorem (contradiction!)

$$((\mathsf{par} \mid X : \mathcal{U}) \to X) \uplus ((\mathsf{par} \mid X : \mathcal{U}) \to X \to \mathsf{Empty})$$

Ad hoc: $1 \rightarrow 0$

$$lem: (\mathbf{hoc} : X : \mathcal{U}) \to X \uplus (X \to \mathsf{Empty})$$

$$X = Y \longrightarrow lem X = lem Y$$

$$\downarrow$$

$$X \frown_1 Y$$

Sized lists:

- $nil_X : (\mathbf{irr} \mid n : \mathbb{N}) \to (\mathbf{irr} \mid 0 < n) \to \mathsf{List}_n X$,
- $cons_X : (irr \mid mn : \mathbb{N}) \rightarrow (irr \mid m < n) \rightarrow X \rightarrow List_m X \rightarrow List_n X$

Two ways to annotate [a]:

- $as_2 :\equiv cons_A 25_a (nil_A 2_) : List_5 A$, $nil_A 2_a : List_2 A$
- $as_3 :\equiv cons_A 35 a(nil_A 3) : List_5 A$, $nil_A 3 : List_3 A$
- $cons_A \bullet \bullet _a(nil_A \bullet _) : List_5 A \Rightarrow as_2 \equiv as_3,$

Irrelevance is a **dependent** generalization of **constancy**.

Codomain List_ A must be shape-irrelevant

Abel & Scherer (2012), example 2.8

Sized lists:

- $nil_X : (\mathbf{irr} \mid n : \mathbb{N}) \to (\mathbf{irr} \mid 0 < n) \to \mathsf{List}_n X$,
- $cons_X : (\mathbf{irr} \mid mn : \mathbb{N}) \to (\mathbf{irr} \mid m < n) \to X \to \mathsf{List}_m X \to \mathsf{List}_n X$

Two ways to annotate [a]:

- $as_2 :\equiv cons_A 25_a (nil_A 2_) : List_5 A$, $nil_A 2_a : List_2 A$
- $as_3 :\equiv cons_A 35 a(nil_A 3) : List_5 A$, $nil_A 3 : List_3 A$
- $cons_A \bullet \bullet _a(nil_A \bullet _) : List_5 A \Rightarrow as_2 \equiv as_3,$

Irrelevance is a **dependent** generalization of **constancy**

Codomain List_ A must be shape-irrelevant

Abel & Scherer (2012), example 2.8

Sized lists:

- $nil_X : (\mathbf{irr} \mid n : \mathbb{N}) \to (\mathbf{irr} \mid 0 < n) \to \mathsf{List}_n X$,
- $cons_X : (irr \mid mn : \mathbb{N}) \rightarrow (irr \mid m < n) \rightarrow X \rightarrow List_m X \rightarrow List_n X$

Two ways to annotate [a]:

- $as_2 :\equiv cons_A 25 a(nil_A 2) : List_5 A$, $nil_A 2 : List_2 A$
- $as_3 :\equiv cons_A 35 a(nil_A 3) : List_5 A$, $nil_A 3 : List_3 A$
- $cons_A \bullet \bullet _a(nil_A \bullet _) : List_5 A \Rightarrow as_2 \equiv as_3,$

Irrelevance is a **dependent** generalization of **constancy**

Codomain List_ A must be **shape-irrelevant**

Abel & Scherer (2012), example 2.8

Sized lists:

- $nil_X : (\mathbf{irr} \mid n : \mathbb{N}) \to (\mathbf{irr} \mid 0 < n) \to \mathsf{List}_n X$,
- $cons_X : (irr + mn : \mathbb{N}) \to (irr + m < n) \to X \to List_m X \to List_n X$

Two ways to annotate [a]:

- $as_2 :\equiv cons_A 25 a(nil_A 2) : List_5 A$, $nil_A 2 : List_2 A$
- $as_3 :\equiv cons_A 35 a(nil_A 3) : List_5 A$, $nil_A 3 : List_3 A$
- $cons_A \bullet \bullet {}_{_}a(nil_A \bullet {}_{_}) : List_5 A \Rightarrow as_2 \equiv as_3,$

Irrelevance is a **dependent** generalization of **constancy**

Codomain List_ A must be **shape-irrelevant**

Abel & Scherer (2012), example 2.8

Sized lists:

- $nil_X : (\mathbf{irr} \mid n : \mathbb{N}) \to (\mathbf{irr} \mid 0 < n) \to \mathsf{List}_n X$,
- $cons_X : (irr + mn : \mathbb{N}) \to (irr + m < n) \to X \to List_m X \to List_n X$

Two ways to annotate [a]:

- $as_2 :\equiv cons_A 25_a (nil_A 2_) : List_5 A$, $nil_A 2_: List_2 A$
- $as_3 :\equiv cons_A 35_a (nil_A 3_) : List_5 A$, $nil_A 3_i : List_3 A$
- $cons_A \bullet \bullet _a(nil_A \bullet _) : List_5 A \Rightarrow as_2 \equiv as_3,$

Irrelevance is a **dependent** generalization of **constancy**

Codomain List_ A must be **shape-irrelevant**

Abel & Scherer (2012), example 2.8

Sized lists:

- $nil_X : (\mathbf{irr} \mid n : \mathbb{N}) \to (\mathbf{irr} \mid 0 < n) \to \mathsf{List}_n X$,
- $cons_X : (irr \mid mn : \mathbb{N}) \rightarrow (irr \mid m < n) \rightarrow X \rightarrow List_m X \rightarrow List_n X$

Two ways to annotate [a]:

- $as_2 :\equiv cons_A 25_a (nil_A 2_) : List_5 A$, $nil_A 2_: List_2 A$
- $as_3 :\equiv cons_A 35_a (nil_A 3_) : List_5 A$, $nil_A 3_i : List_3 A$
- $cons_A \bullet \bullet _a(nil_A \bullet _) : List_5 A \Rightarrow as_2 \equiv as_3,$

Irrelevance is a **dependent** generalization of **constancy**.

Codomain List, A must be shape-irrelevant

Abel & Scherer (2012), example 2.8

Sized lists:

- $nil_X : (\mathbf{irr} \mid n : \mathbb{N}) \to (\mathbf{irr} \mid 0 < n) \to \mathsf{List}_n X$,
- $cons_X : (irr + mn : \mathbb{N}) \to (irr + m < n) \to X \to List_m X \to List_n X$

Two ways to annotate [a]:

- $as_2 :\equiv cons_A 25_a (nil_A 2_) : List_5 A$, $nil_A 2_: List_2 A$
- $as_3 :\equiv cons_A 35_a (nil_A 3_) : List_5 A$, $nil_A 3_i : List_3 A$
- $cons_A \bullet \bullet _a(nil_A \bullet _) : List_5 A \Rightarrow as_2 \equiv as_3,$

Irrelevance is a **dependent** generalization of **constancy**.

Codomain List A must be **shape-irrelevant**.

Abel & Scherer (2012), example 2.8 Abel, Vezzosi & Winterhalter (2017)

Shape-irrelevance: $0 \rightarrow 1$

$$\mathsf{List}_{\sqcup} \mathsf{A} : (\mathsf{shi} \sqcup \mathbb{N}) \to \mathcal{U}_0$$

Irrelevance: $0 \rightarrow 0$

$$[]: (\mathbf{irr} \mid n : \mathbb{N}) \to \mathsf{List}_n X$$

$$m = n$$
 $[]_m = \text{List} A []_n$
 \downarrow
 \downarrow
 \downarrow
 \uparrow
 \uparrow

Given

- $f:(\mu \mid A) \rightarrow B$,
- $g:(v\mid B)\to C$,

what is the modality of $g \circ f : (\mathbf{v} \circ \boldsymbol{\mu} \mid A) \to C$?

Example

$$if_{(\mathsf{List}_4\,A)}: \mathsf{Bool} o \mathsf{List}_4\,A o \mathsf{List}_4\,A o \mathsf{List}_4\,A \ if_{(\mathsf{List}_5\,A)}: \mathsf{Bool} o \mathsf{List}_5\,A o \mathsf{List}_5\,A o \mathsf{List}_5\,A \$$

- We can ignore irrelevant parts.
- if uses first arg. parametrically.
- List uses size index shape-irrelevantly.

So par o shi = irr′

Given

- $f:(\mu \mid A) \rightarrow B$,
- $g:(v:B)\to C$,

what is the modality of $g \circ f : (\mathbf{v} \circ \mathbf{\mu} \mid A) \to C$?

Example

$$if_{(\mathsf{List_4}\,A)}: \mathsf{Bool} o \mathsf{List_4}\,A o \mathsf{List_4}\,A o \mathsf{List_4}\,A \ if_{(\mathsf{List_5}\,A)}: \mathsf{Bool} o \mathsf{List_5}\,A o \mathsf{List_5}\,A o \mathsf{List_5}\,A \$$

- We can ignore irrelevant parts.
- if uses first arg. parametrically.
- List uses size index shape-irrelevantly.

So par o shi = irr′

Given

- $f:(\mu \mid A) \rightarrow B$,
- $g:(v:B)\to C$,

what is the modality of $g \circ f : (\mathbf{v} \circ \mathbf{\mu} \mid A) \to C$?

Example

$$if_{(\mathsf{List_4}\,A)}: \mathsf{Bool} \to \mathsf{List_4}\,A \to \mathsf{List_4}\,A \to \mathsf{List_4}\,A$$

 $if_{(\mathsf{List_5}\,A)}: \mathsf{Bool} \to \mathsf{List_5}\,A \to \mathsf{List_5}\,A \to \mathsf{List_5}\,A$

- We can ignore irrelevant parts.
- if uses first arg. parametrically.
- List uses size index shape-irrelevantly.

So $par \circ shi = irr$?

Andreas Nuyts¹, Dominique Devriese², partly jww Andrea Vezzosi³

All modalities at lowest levels

$(\mu : A) o B$	$B:\mathcal{U}_0$	$B:\mathcal{U}_1$	$B:\mathcal{U}_n$
	values	types	
$A:\mathcal{U}_0$	hoc, irr	hoc, shi, irr	
values			
$A:\mathcal{U}_1$	hoc,par,irr	hoc,con,shi,	
types		par, shi∥, irr	
$A:\mathcal{U}_m$			
			$\frac{(m+n+2)!}{(m+1)!(n+1)!}$

Algebra: The Structural Modality

Church encoding

Least fixpoint MuF of functor F: Type \rightarrow Type:

- \cong inductive type *A* with constructor $\alpha : FA \rightarrow A$
- \cong initial *F*-algebra (i.e. type *X* with $\xi : FX \to X$)

$$\forall \underbrace{X}_{\text{carrier}} \cdot \underbrace{(FX \to X)}_{F-\text{algebra-structure}} \to X$$

View ∀ as **limit** operator.

Limit of everything is initial object

Church encoding: MuF is limit of all F-algebras

Church encoding

Least fixpoint MuF of functor F: Type \rightarrow Type:

- \cong inductive type *A* with constructor $\alpha : FA \rightarrow A$
- \cong initial *F*-algebra (i.e. type *X* with $\xi : FX \to X$)

$$\forall \underbrace{X}_{\text{carrier}} \cdot \underbrace{(FX \to X)}_{F-\text{algebra-structure}} \to X$$

View \forall as **limit** operator.

Limit of everything is initial object

Church encoding: MuF is limit of all F-algebras

Church encoding

Least fixpoint MuF of functor F: Type \rightarrow Type:

- \cong inductive type *A* with constructor $\alpha : FA \rightarrow A$
- \cong initial *F*-algebra (i.e. type *X* with $\xi : FX \to X$)

$$\forall \underbrace{X}_{\text{carrier}} \cdot \underbrace{(FX \to X)}_{F-\text{algebra-structure}} \to X$$

View \forall as **limit** operator.

Limit of everything is initial object.

Church encoding: MuF is limit of all F-algebras.

Currying = collecting arguments in a (dependent) tuple.

System F

$$\forall X.(FX \to X) \to X$$

$$\cong^?(\exists X.FX \to X) \to X$$

Scope error: X is out of scope!

DTT

$$(\mathbf{par} \mid X : \mathcal{U}) \to (FX \to X) \to X$$

$$\cong^{?} (\hat{X} : (\mathbf{par} \mid X : \mathcal{U}) \times (FX \to X)) \to (\mathbf{fst} \, \hat{X})$$

$$op: \mathsf{Bool} \curvearrowright^\mathcal{U}_1 \mathbb{N}$$
 $ullet: \mathsf{true} =^{\top} 4$
 $(\top, ullet) : (\mathsf{Bool}, \mathsf{true}) = (\mathbb{N}, 4)$
 $\mathsf{Bool} \neq \mathbb{N}$

Currying = collecting arguments in a (dependent) tuple.

System F

$$\forall X.(FX \to X) \to X$$

$$\cong^?(\exists X.FX \to X) \to X$$

Scope error: *X* is out of scope!

DTT

$$(\mathbf{par} \mid X : \mathcal{U}) \to (FX \to X) \to X$$

$$\cong^{?} (\hat{X} : (\mathbf{par} \mid X : \mathcal{U}) \times (FX \to X)) \to (\mathbf{fst} \, \hat{X})$$

$$op: \mathsf{Bool} \curvearrowright^\mathcal{U}_1 \mathbb{N}$$
 $ullet: \mathsf{true} =^{\top} 4$
 $(\top, ullet) : (\mathsf{Bool}, \mathsf{true}) = (\mathbb{N}, 4)$
 $\mathsf{Bool} \neq \mathbb{N}$

Currying = collecting arguments in a (dependent) tuple.

System F

$$\forall X.(FX \to X) \to X$$
$$\cong^?(\exists X.FX \to X) \to X$$

Scope error: X is out of scope!

DTT

$$(\mathbf{par} \mid X : \mathcal{U}) \to (FX \to X) \to X$$

$$\cong^{?} (\hat{X} : (\mathbf{par} \mid X : \mathcal{U}) \times (FX \to X)) \to (\mathbf{fst} \, \hat{X})$$

$$op: \mathsf{Bool} \curvearrowright^\mathcal{U}_1 \mathbb{N}$$
 $ullet: \mathsf{true} =^{\top} 4$
 $(\top, ullet) : (\mathsf{Bool}, \mathsf{true}) = (\mathbb{N}, 4)$
 $\mathsf{Bool} \neq \mathbb{N}$

Currying = collecting arguments in a (dependent) tuple.

System F

$$\forall X.(FX \to X) \to X$$

$$\cong^?(\exists X.FX \to X) \to X$$

Scope error: X is out of scope!

DTT

$$(\operatorname{par}:X:\mathcal{U}) o (FX o X) o X$$

$$\cong^{?} \left(\hat{X}: (\operatorname{par}:X:\mathcal{U}) imes (FX o X)\right) o (\operatorname{fst} \hat{X})$$

$$op: \mathsf{Bool} \curvearrowright^\mathcal{U}_1 \mathbb{N}$$
 $ullet: \mathsf{true} =^{\top} 4$
 $(\top, ullet) : (\mathsf{Bool}, \mathsf{true}) = (\mathbb{N}, 4)$
 $\mathsf{Bool} \neq \mathbb{N}$

Currying = collecting arguments in a (dependent) tuple.

System F

$$\forall X.(FX \to X) \to X$$

$$\cong^?(\exists X.FX \to X) \to X$$

Scope error: X is out of scope!

DTT

$$(\mathbf{par} \mid X : \mathcal{U}) \to (FX \to X) \to X$$

$$\cong^? (\hat{X} : (\mathbf{par} \mid X : \mathcal{U}) \times (FX \to X)) \to (\mathbf{fst} \, \hat{X})$$

$$op: \mathsf{Bool} \curvearrowright^\mathcal{U}_1 \mathbb{N}$$
 $ullet: \mathsf{true} =^{\top} 4$
 $(\top, ullet) : (\mathsf{Bool}, \mathsf{true}) = (\mathbb{N}, 4)$
 $\mathsf{Bool} \neq \mathbb{N}$

Currying = collecting arguments in a (dependent) tuple.

System F

$$\forall X.(FX \to X) \to X$$

$$\cong^?(\exists X.FX \to X) \to X$$

Scope error: X is out of scope!

DTT

$$(\mathbf{par} \mid X : \mathcal{U}) \to (FX \to X) \to X$$

$$\cong^? (\hat{X} : (\mathbf{par} \mid X : \mathcal{U}) \times (FX \to X)) \to (\mathbf{fst} \, \hat{X})$$

$$op$$
: Bool $ogliubleq^{\mathcal{U}}_1 \mathbb{N}$
 $ullet$: true $=^{ op} 4$
 $(op,ullet)$: (Bool,true) $= (\mathbb{N},4)$
Bool $eq \mathbb{N}$

Structurality to the rescue

 $(\mathbf{par} \mid X : \mathcal{U}) \times (FX \rightarrow X)$ is a **data**type:

- par takes type X to value level,
- related types are identified,

F-algebras are type-level objects:

- X should stay at the type-level,
- structure $\xi: FX \to X$ should be taken to the type-level

$$\mathsf{Alg} F = (X : \mathcal{U}) \times (\mathbf{str} : FX \to X)$$

Structurality to the rescue

$$(\mathbf{par} \mid X : \mathcal{U}) \times (FX \to X)$$
 is a datatype:

- par takes type X to value level,
- related types are identified,

F-algebras are **type**-level objects:

- X should stay at the type-level,
- ullet structure $\xi: FX o X$ should be taken to the type-level

$$\mathsf{Alg} F = (X : \mathcal{U}) \times (\mathsf{str} : FX \to X)$$

Structurality to the rescue

 $(\mathbf{par} \mid X : \mathcal{U}) \times (FX \rightarrow X)$ is a datatype:

- par takes type X to value level,
- related types are identified,

F-algebras are **type**-level objects:

- X should stay at the type-level,
- ullet structure $\xi: FX o X$ should be taken to the type-level

$$\mathsf{Alg} F = (X : \mathcal{U}) \times (\mathbf{str} : FX \to X)$$

Structurality

str : $d \rightarrow d+1$

Structurality: how algebras depend on their structure.

Example (F-algebras)

$$\mathsf{Alg} F = (X : \mathcal{U}) \times (\mathsf{str} : FX \to X)$$

$$(\mathbf{par} \mid X : \mathcal{U}) \to (FX \to X) \to X \qquad \cong \qquad (\mathbf{par} \mid \hat{X} : \mathsf{Alg}F) \to \mathsf{fst}\,\hat{X}$$

$$par \circ con = par$$

$$par \circ str = con$$

$$S \times T \cong (b : \mathsf{Bool}) \to if(b, S, T)$$
 requires $R \leftrightharpoons S \overset{\mathcal{U}}{\longrightarrow} T$
 $(s,t) \leftrightarrow \lambda b.if(b,s,t)$ requires $L \leftrightharpoons S \overset{\mathcal{U}}{\longrightarrow} T$
 $fst \leftrightarrow \lambda f.f$ true
 $snd \leftrightarrow \lambda f.f$ false

- Syntax: Type-checker can generate evidence.
- Semantics using erasure: Either hacky or WIP.

$$S \times T \cong (b : \mathsf{Bool}) \to \mathit{if}(b, S, T)$$
 requires $R \coloneqq S \curvearrowright_1^{\mathcal{U}} T$ $(s,t) \leftrightarrow \lambda b.\mathit{if}(b,s,t)$ requires $L \coloneqq S = R t$ so $S = R t$ requires $S = R t$ so $S = R t$ so $S = R t$ requires $S = R t$ requ

$$S \uplus T \cong (b : \mathsf{Bool}) \times \mathit{if}(b, S, T)$$
 requires $R \vDash S \curvearrowright_{1}^{\mathcal{U}} T$
 $\mathsf{inl}\, s \leftrightarrow (\mathsf{true}, s)$
 $\mathsf{inr}\, t \leftrightarrow (\mathsf{false}, t)$
 $\mathsf{case}(q, f, g) \leftrightarrow \mathit{if}(\mathsf{fst}\, q, f, g)(\mathsf{snd}\, q)$ requires $\bot \sqsubseteq f = \stackrel{R \to \mathcal{C}}{=} g$

- Syntax: Type-checker can generate evidence.
- Semantics using erasure: Either hacky or WIP.

$$S \cap T \cong (\mathbf{irr} \mid b : \mathsf{Bool}) \to if_{\mathsf{shi}}(b, S, T)$$
 requires $R \leftrightharpoons S \cap_1^{\mathcal{U}} T$
 $(s,t) \leftrightarrow \lambda b.if_{\mathsf{irr}}(b,s,t)$ requires $_{-} \leftrightharpoons s =^{R} t$
 $\mathsf{fst} \leftrightarrow \lambda f.f \mathsf{false}$

$$S \uplus T \cong (b : \mathsf{Bool}) \times \mathit{if}(b, S, T)$$
 requires $R \leftrightharpoons S \curvearrowright_1^{\mathcal{U}} T$ inl $s \leftrightarrow (\mathsf{true}, s)$ inr $t \leftrightarrow (\mathsf{false}, t)$ case $(q, f, g) \leftrightarrow \mathit{if}(\mathsf{fst}\, q, f, g) (\mathsf{snd}\, q)$ requires $\bot \sqsubseteq f = \stackrel{R \to \mathcal{C}}{} g$

- Syntax: Type-checker can generate evidence.
- Semantics using erasure: Either hacky or WIP.

$$S \cap T \cong (\mathbf{irr} \mid b : \mathsf{Bool}) \to if_{\mathsf{shi}}(b, S, T)$$
 requires $R \sqsubseteq S \cap_1^{\mathcal{U}} T$
 $(s,t) \leftrightarrow \lambda b.if_{\mathsf{irr}}(b,s,t)$ requires $L \sqsubseteq S = R t$
 $f\mathsf{st} \leftrightarrow \lambda f.f$ true
 $\mathsf{snd} \leftrightarrow \lambda f.f$ false

$$S \cup T \cong (\operatorname{irr} \mid b : \operatorname{Bool}) \times \operatorname{if}_{\operatorname{shi}}(b, S, T)$$
 requires $R \leftrightharpoons S \curvearrowright_1^{\mathcal{U}} T$ inl $s \leftrightarrow (\operatorname{true}, s)$ inr $t \leftrightarrow (\operatorname{false}, t)$ case $(q, f, g) \leftrightarrow \operatorname{if}_{\operatorname{irr}}(\operatorname{fst} q, f, g) (\operatorname{snd} q)$ requires $_{-} \leftrightharpoons f = ^{R \to C} g$

- Syntax: Type-checker can generate evidence.
- Semantics using erasure: Either hacky or WIP.

$$S \cap T \cong (\operatorname{irr} \mid b : \operatorname{Bool}) \to if_{\operatorname{shi}}(b, S, T)$$
 requires $R \leftrightharpoons S \cap_1^{\mathcal{U}} T$
 $(s,t) \leftrightarrow \lambda b.if_{\operatorname{irr}}(b,s,t)$ requires $_ \leftrightharpoons s = ^R t$
 $f\operatorname{st} \leftrightarrow \lambda f.f$ true
 $\operatorname{snd} \leftrightarrow \lambda f.f$ false

$$S \cup T \cong (\mathbf{irr} \mid b : \mathsf{Bool}) \times if_{\mathsf{shi}}(b, S, T)$$
 requires $R \leftrightharpoons S \cap_1^{\mathcal{U}} T$ inl $s \leftrightarrow (\mathsf{true}, s)$ inr $t \leftrightarrow (\mathsf{false}, t)$ case $(q, f, g) \leftrightarrow if_{\mathsf{irr}}(\mathsf{fst}\, q, f, g)(\mathsf{snd}\, q)$ requires $\Box \leftrightharpoons f = R \to C g$

- Syntax: Type-checker can generate evidence.
- Semantics using erasure: Either hacky or WIP.

Modelling multimode DTT:

- For every **mode** (depth) d, pick a **model** \mathcal{D} of MLTT.
- For every modality $\mu: c \to d$, pick a model morphism $\mu: \mathcal{C} \to \mathcal{D}$.

Presheaf models

• Every presheaf cat. models MLTT with Π , Σ , \mathcal{U} , = with UIP, . . .

- Model d using **refl. graphs** with edges labelled 0, 1, ..., d,
- Internal parametricity ⇒ iterated graphs (= cubical sets),
- Restrict to discrete types: those that satisfy IEL,
- ullet Fix type formers that do not preserve discreteness: modal Σ , \mathcal{U} .

Modelling multimode DTT:

- For every **mode** (depth) d, pick a **model** \mathcal{D} of MLTT.
- For every modality $\mu: c \to d$, pick a model morphism $\mu: \mathcal{C} \to \mathcal{D}$.

Presheaf models:

• Every presheaf cat. models MLTT with Π , Σ , \mathcal{U} , = with UIP, . . .

- Model d using **refl. graphs** with edges labelled 0, 1, ..., d,
- Internal parametricity ⇒ iterated graphs (= cubical sets),
- Restrict to discrete types: those that satisfy IEL,
- Fix type formers that do not preserve discreteness: modal Σ , \mathcal{U} .

Modelling multimode DTT:

- For every **mode** (depth) d, pick a **model** \mathcal{D} of MLTT.
- For every modality $\mu: c \to d$, pick a model morphism $\mu: \mathcal{C} \to \mathcal{D}$.

Presheaf models:

• Every presheaf cat. models MLTT with $\Pi, \Sigma, \mathcal{U}, =$ with UIP, . . .

- Model d using refl. graphs with edges labelled 0, 1, ..., d,
- Internal parametricity ⇒ iterated graphs (= cubical sets),
- Restrict to discrete types: those that satisfy IEL
- Fix type formers that do not preserve discreteness: modal Σ , \mathcal{U} .

Modelling multimode DTT:

- For every **mode** (depth) d, pick a **model** \mathcal{D} of MLTT.
- For every modality $\mu: c \to d$, pick a model morphism $\mu: \mathcal{C} \to \mathcal{D}$.

Presheaf models:

• Every presheaf cat. models MLTT with $\Pi, \Sigma, \mathcal{U}, =$ with UIP, . . .

- Model d using refl. graphs with edges labelled 0, 1, ..., d,
- Internal parametricity ⇒ iterated graphs (= cubical sets),
- Restrict to discrete types: those that satisfy IEL,
- Fix type formers that do not preserve discreteness: modal Σ , \mathcal{U} .

Modelling multimode DTT:

- For every **mode** (depth) d, pick a **model** \mathcal{D} of MLTT.
- For every modality $\mu: c \to d$, pick a model morphism $\mu: \mathcal{C} \to \mathcal{D}$.

Presheaf models:

• Every presheaf cat. models MLTT with $\Pi, \Sigma, \mathcal{U}, =$ with UIP, . . .

- Model d using refl. graphs with edges labelled 0, 1, ..., d,
- Internal parametricity ⇒ iterated graphs (= cubical sets),
- Restrict to discrete types: those that satisfy IEL,
- Fix type formers that do not preserve discreteness: modal Σ , \mathcal{U} .

Modelling multimode DTT:

- For every **mode** (depth) d, pick a **model** \mathcal{D} of MLTT.
- For every modality $\mu: c \to d$, pick a model morphism $\mu: \mathcal{C} \to \mathcal{D}$.

Presheaf models:

• Every presheaf cat. models MLTT with $\Pi, \Sigma, \mathcal{U}, =$ with UIP, . . .

- Model d using refl. graphs with edges labelled 0, 1, ..., d,
- Internal parametricity ⇒ iterated graphs (= cubical sets),
- Restrict to discrete types: those that satisfy IEL,
- Fix type formers that do not preserve discreteness: modal Σ , \mathcal{U} .

Fixing modal Σ -type:

- **Problem:** by default (Bool, true) \neq (N,4): (par \mid X: \mathcal{U}) \times X.
- Solution: take a quotient. Prove that eliminator still works. (fst becomes unsound.)

- ullet **Problem:** default Hofmann-Streicher universe \mathcal{U}^{HS} is not discrete.
- **Default:** To prove $R: S \curvearrowright_i^{\mathcal{U}^{HS}} T$ is to define $s \curvearrowright_i^R t$. **Wanted:** To prove $R: S \curvearrowright_{i+1}^{\mathcal{U}} T$ is to define $s \curvearrowright_i^R t$.
- Solution: Define $S \curvearrowright_0^{\mathcal{U}} T$ as $S \equiv T$, $S \curvearrowright_{i+1}^{\mathcal{U}} T$ as $S \curvearrowright_i^{\mathcal{U}^{HS}} T$.

Fixing modal Σ -type:

- **Problem:** by default (Bool, true) \neq (N,4): (par $: X : \mathcal{U}) \times X$.
- Solution: take a quotient. Prove that eliminator still works. (fst becomes unsound.)

- \bullet **Problem:** default Hofmann-Streicher universe $\mathcal{U}^{\mathit{HS}}$ is not discrete.
- **Default:** To prove $R: S \curvearrowright_i^{\mathcal{U}^{HS}} T$ is to define $s \curvearrowright_i^R t$. **Wanted:** To prove $R: S \curvearrowright_{i+1}^{\mathcal{U}} T$ is to define $s \curvearrowright_i^R t$.
- Solution: Define $S \curvearrowright_0^{\mathcal{U}} T$ as $S \equiv T$, $S \curvearrowright_{i+1}^{\mathcal{U}} T$ as $S \curvearrowright_i^{\mathcal{U}^{HS}} T$.

Fixing modal Σ -type:

- **Problem:** by default (Bool, true) \neq (N,4): (par $: X : \mathcal{U}) \times X$.
- Solution: take a quotient. Prove that eliminator still works. (fst becomes unsound.)

- \bullet **Problem:** default Hofmann-Streicher universe $\mathcal{U}^{\mathit{HS}}$ is not discrete.
- **Default:** To prove $R: S \curvearrowright_i^{\mathcal{U}^{HS}} T$ is to define $s \curvearrowright_i^R t$. **Wanted:** To prove $R: S \curvearrowright_{i+1}^{\mathcal{U}} T$ is to define $s \curvearrowright_i^R t$.
- Solution: Define $S \curvearrowright_0^{\mathcal{U}} T$ as $S \equiv T$, $S \curvearrowright_{i+1}^{\mathcal{U}} T$ as $S \curvearrowright_i^{\mathcal{U}^{HS}} T$

Fixing modal Σ -type:

- **Problem:** by default (Bool, true) \neq (N,4): (par $: X : \mathcal{U}) \times X$.
- Solution: take a quotient. Prove that eliminator still works. (fst becomes unsound.)

- \bullet **Problem:** default Hofmann-Streicher universe $\mathcal{U}^{\mathit{HS}}$ is not discrete.
- **Default:** To prove $R: S \curvearrowright_i^{\mathcal{U}^{HS}} T$ is to define $s \curvearrowright_i^R t$. **Wanted:** To prove $R: S \curvearrowright_{i+1}^{\mathcal{U}} T$ is to define $s \curvearrowright_i^R t$.
- **Solution:** Define $S \curvearrowright_{0}^{\mathcal{U}} T$ as $S \equiv T$, $S \curvearrowright_{i+1}^{\mathcal{U}} T$ as $S \curvearrowright_{i}^{\mathcal{U}^{HS}} T$.

- Unified framework (type system + presheaf model) for:
 - parametricity
 - continuity
 - . irrelevance
 - .. shape-irrelevance
 - ad hoc polym.
 - novel structural modality
- Understanding of
 - composition,
 - ullet corresp. term \leftrightarrow type (e.g. irr \leftrightarrow shi),
 - different nature of types (depth)
- Type-checking time erasure of irrelevant subterms
- Sheds light on: algebra, unions, intersections, Prop, ...

- Unified framework (type system + presheaf model) for:
 - parametricity
 - continuity
 - irrelevance
 - .. shape-irrelevance
 - ad hoc polym.
 - novel structural modality
- Understanding of
 - composition,
 - corresp. term \leftrightarrow type (e.g. irr \leftrightarrow shi),
 - different nature of types (depth)
- Type-checking time erasure of irrelevant subterms
- Sheds light on: algebra, unions, intersections, Prop, ...

- Unified framework (type system + presheaf model) for:
 - parametricity
 - continuity
 - irrelevance
 - .. shape-irrelevance
 - ad hoc polym.
 - novel structural modality
- Understanding of
 - composition,
 - corresp. term ↔ type (e.g. irr ↔ shi),
 - different nature of types (depth)
- Type-checking time erasure of irrelevant subterms
- Sheds light on: algebra, unions, intersections, Prop, ...

- Unified framework (type system + presheaf model) for:
 - parametricity
 - continuity
 - irrelevance
 - .. shape-irrelevance
 - ad hoc polym.
 - novel structural modality
- Understanding of
 - composition,
 - corresp. term ↔ type (e.g. irr ↔ shi),
 - different nature of types (depth)
- Type-checking time erasure of irrelevant subterms
- Sheds light on: algebra, unions, intersections, Prop, ...

Implementations

Try it out!

parametric branch of Agda (by Andrea Vezzosi)

- Implements ParamDTT (depth 1 fragment)
- With Glue/Weld, you can prove free theorems internally
- github.com/agda/agda/tree/parametric
- github.com/Saizan/parametric-demo
- All 6 modalities $\mu: 1 \to 1$ are available, unlike in Nuyts, Vezzosi & Devriese (2017)

Degrees of Relatedness: In progress.

Future Work

Asymmetric relations:

- Proof-relevant subtyping,
- Directed type theory (synthetic category theory),
- Directed univalence : $(A \curvearrowright_1 B) \simeq (A \to B)$.

Erasure-based presheaf models for def. relatedness, \cap and \cup .

Take home message

Describe function behaviour as action on degree of relatedness. **str**, **con**, **par**, **hoc**, **shi**, **irr** are instances of this.

Thanks!

Questions?

Comparison with HoTT

Degrees of Relatedness	HoTT
functions act on \frown_i	functions preserve \simeq
equality as \sim_0	equality as \simeq
relational HITs ¹	groupoidal HITs
depth: \mathcal{U}_{ℓ}^d : $\mathcal{U}_{\ell+1}^{d+1}$	h -level: \mathcal{U}_{ℓ}^{h} : $\mathcal{U}_{\ell+1}^{h+1}$

¹future work

	$a:A:\mathcal{U}_0$ can be	$A: \kappa: \mathcal{U}_1$ can be	$\kappa: \mathcal{A}: \mathcal{U}_2$ can be
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_4 A) \curvearrowright_0^{List_6 A} ([]: List_6 A)$ $\exists R. (5:\mathbb{N}) \curvearrowright_0^R (true: Bool)$ $\forall R. ii_X \curvearrowright_0^{Bool \to R \to R \to R} ii_Y$	$((\lambda X.X)\operatorname{Bool}:\mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool}:\mathcal{U}_0)$ $([]:\operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([]:\operatorname{List}_6 \kappa)$ \dots	$((\lambda \xi, \xi) \kappa : \mathcal{U}_1) \curvearrowright_0^{\mathcal{U}_1} (\kappa : \mathcal{U}_1)$ $([] : List_4 \mathcal{A}) \curvearrowright_0^{List_4 \mathcal{A}} ([] : List_6 \mathcal{A})$ \dots
1-related	n/a	$\begin{split} \left((A : \mathcal{U}_0) \curvearrowright_{1}^{\mathcal{U}_0} (B : \mathcal{U}_0) \right) &:= \operatorname{Rel}(A, B) \\ \mathbb{N} &:= \operatorname{Eq_N} : (\mathbb{N} : \mathcal{U}_0) \curvearrowright_{1}^{\mathcal{U}_0} (\mathbb{N} : \mathcal{U}_0) \\ & \operatorname{List_0} A : \operatorname{List_4} A \curvearrowright_{1}^{\mathcal{U}_0} \operatorname{List_6} A \\ & A : (G : \operatorname{Grp}) \curvearrowright_{1}^{\operatorname{Grp}} (H : \operatorname{Grp}) \\ & A : (G : \operatorname{Grp}) \curvearrowright_{1}^{V} (M : \operatorname{Mon}) \end{split}$	$\begin{split} \left((\kappa : \mathcal{U}_1) \curvearrowright_1^{\mathcal{U}_1} (\lambda : \mathcal{U}_1) \right) &:= \operatorname{Rel}(\kappa, \lambda)^{\{\bullet \to \bullet\}} \\ \mathcal{U}_0 : \left(\mathcal{U}_0 : \mathcal{U}_1 \right) \curvearrowright_1^{\mathcal{U}_1} (\mathcal{U}_0 : \mathcal{U}_1) \\ & \text{List}_{\bullet} \kappa : \operatorname{List}_4 \kappa \curvearrowright_1^{\mathcal{U}_1} \operatorname{List}_6 \kappa \\ & \rho : (\alpha : \operatorname{Cat}) \curvearrowright_1^{\operatorname{Cat}} (\beta : \operatorname{Cat}) \end{split}$
2-related	n/a	n/a	$V: (\operatorname{Grp}: \mathcal{U}_1) \cap_2^{\mathcal{U}_1} (\operatorname{Mon}: \mathcal{U}_1)$

Value-level objects

	Value-level objects $a: A: \mathcal{U}_0$ can be	Type-level objects $A: \kappa: \mathcal{U}_1 \text{ can be}$	Kind-level objects $\kappa: \mathcal{A}: \mathcal{U}_2$ can be
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (7:\mathbb{N})$ $([]: \text{List}_4 A) \curvearrowright_0^{\text{List}_6 A} ([]: \text{List}_6 A)$ $\exists R.(5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (\text{true}: \text{Bool})$ $\forall R.il_X \curvearrowright_0^{\text{Bool} \to R \to R \to R} il_Y$	$((\lambda X.X)\operatorname{Bool}:\mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool}:\mathcal{U}_0)$ $([]:\operatorname{List}_4 K) \curvearrowright_0^{\operatorname{List}_6 K} ([]:\operatorname{List}_6 K)$ \dots	$ ((\lambda \xi, \xi) \kappa : \mathcal{U}_1) \curvearrowright_0^{\mathcal{U}_1} (\kappa : \mathcal{U}_1) $ $ ([] : List_4 \mathcal{A}) \curvearrowright_0^{List_4 \mathcal{A}} ([] : List_6 \mathcal{A}) $ $ \dots $
1-related	n/a	$\begin{split} \left((A : \mathcal{U}_0) \frown_1^{\mathcal{U}_0} (B : \mathcal{U}_0) \right) &:= \operatorname{Rel}(A, B) \\ \mathbb{N} &:= \operatorname{Eq_N} : (\mathbb{N} : \mathcal{U}_0) \frown_1^{\mathcal{U}_0} (\mathbb{N} : \mathcal{U}_0) \\ & \operatorname{List}_\bullet A : \operatorname{List}_4 A \frown_1^{\mathcal{U}_0} \operatorname{List}_6 A \\ & A : (G : \operatorname{Grp}) \frown_1^{\operatorname{Grp}} (H : \operatorname{Grp}) \\ & A : (G : \operatorname{Grp}) \frown_1^V (M : \operatorname{Mon}) \end{split}$	$\begin{split} \left((\kappa : \mathcal{U}_1) \curvearrowright_1^{\mathcal{U}_1} (\lambda : \mathcal{U}_1) \right) &:= \operatorname{Rel}(\kappa, \lambda)^{\{\bullet \to \bullet\}} \\ \mathcal{U}_0 : \left(\mathcal{U}_0 : \mathcal{U}_1 \right) \curvearrowright_1^{\mathcal{U}_1} \left(\mathcal{U}_0 : \mathcal{U}_1 \right) \\ & \text{List}_{\bullet} \kappa : \operatorname{List}_4 \kappa \curvearrowright_1^{\mathcal{U}_1} \operatorname{List}_6 \kappa \\ & \rho : \left(\alpha : \operatorname{Cat} \right) \curvearrowright_1^{\operatorname{Cat}} \left(\beta : \operatorname{Cat} \right) \end{split}$
2-related	n/a	n/a	$V: (Grp:\mathcal{U}_1) \curvearrowright^{\mathcal{U}_1}_2 (Mon:\mathcal{U}_1)$
	nuts ¹ Dominique Devriese ² partiv ive	$(2+5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (7:\mathbb{N})$ because $2+5 \equiv 7$ where Verzos ³ Degrees of Relatedum	2/2

	$a:A:\mathcal{U}_0$ can be	$A: \kappa: \mathcal{U}_1$ can be	$\kappa:\mathcal{A}:\mathcal{U}_2$ can be
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (7:\mathbb{N})$ $([]: \operatorname{List}_4 A) \curvearrowright_0^{\operatorname{List}_6 A} ([]: \operatorname{List}_6 A)$ $\exists R.(5:\mathbb{N}) \curvearrowright_0^R (\operatorname{true}: \operatorname{Bool})$ $\forall R.if_X \curvearrowright_0^{\operatorname{Bool} \to R \to R \to R} if_Y$	$ \begin{aligned} & ((\lambda X.X)\operatorname{Bool}:\mathcal{U}_0) \bigcirc_0^{\mathcal{U}_0} (\operatorname{Bool}:\mathcal{U}_0) \\ & ([]:\operatorname{List}_4 \kappa) \bigcirc_0^{\operatorname{List}_6 \kappa} ([]:\operatorname{List}_6 \kappa) \\ & \dots \end{aligned} $	$ \begin{aligned} & \left((\lambda \xi. \xi) \kappa : \mathcal{U}_1 \right) {\overset{\mathcal{U}}{\bigcirc}}_0^1 \left(\kappa : \mathcal{U}_1 \right) \\ & \left([] : List_4 \mathcal{A} \right) {\overset{List_6}{\bigcirc}}_0^{\mathcal{A}} \left([] : List_6 \mathcal{A} \right) \\ & \cdots \end{aligned} $
1-related	n/a	$\begin{split} \left((A:\mathcal{U}_0) \curvearrowright_1^{\mathcal{U}_0} (B:\mathcal{U}_0) \right) &:= \operatorname{Rel}(A,B) \\ \mathbb{N} &:= \operatorname{Eq_N} : \left(\mathbb{N} : \mathcal{U}_0 \right) \curvearrowright_1^{\mathcal{U}_0} (\mathbb{N} : \mathcal{U}_0) \\ & \operatorname{List}_\bullet A : \operatorname{List}_4 A \curvearrowright_1^{\mathcal{U}_0} \operatorname{List}_6 A \\ & R : \left(G : \operatorname{Grp} \right) \curvearrowright_1^{\operatorname{Grp}} (H : \operatorname{Grp}) \\ & R : \left(G : \operatorname{Grp} \right) \curvearrowright_1^V (M : \operatorname{Mon}) \end{split}$	$\begin{split} \left((\kappa : \mathcal{U}_1) \curvearrowright_1^{\mathcal{U}_1} (\lambda : \mathcal{U}_1) \right) &:= \operatorname{Rel}(\kappa, \lambda)^{\{\bullet \to \bullet\}} \\ \mathcal{U}_0 : \left(\mathcal{U}_0 : \mathcal{U}_1 \right) \curvearrowright_1^{\mathcal{U}_1} \left(\mathcal{U}_0 : \mathcal{U}_1 \right) \\ & \qquad \qquad \operatorname{List}_{\bullet} \kappa : \operatorname{List}_4 \kappa \curvearrowright_1^{\mathcal{U}_1} \operatorname{List}_6 \kappa \\ & \qquad \qquad \rho : \left(\alpha : \operatorname{Cat} \right) \curvearrowright_1^{\operatorname{Cat}} \left(\beta : \operatorname{Cat} \right) \end{split}$
2-related	\ <u>-</u>	List ₄ A) $\frown_0^{\text{List}_\bullet A}$ ([] : List ₆ . where st_• $A \in \text{Rel}(\text{List}_4 A, \text{List}_6 A)$	

Value-level objects

	Value-level objects $a: A: \mathcal{U}_0$ can be	Type-level objects $A: \kappa : \mathcal{U}_1$ can be	Kind-level objects $\kappa: \mathcal{A}: \mathcal{U}_2$ can be
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_4 A) \curvearrowright_0^{List_6 A} ([]: List_6 A)$ $\exists R.(5:\mathbb{N}) \curvearrowright_0^R (true: Bool)$ $\forall R.fl_X \curvearrowright_0^{Bool\rightarrow R\rightarrow R\rightarrow R} fl_Y$	$ \begin{aligned} &((\lambda X.X)\operatorname{Bool}:\mathcal{U}_0) & \overset{\mathcal{U}_0}{{{{{{{{}{$	$((\lambda \xi, \xi) \kappa : \mathcal{U}_1) \curvearrowright_0^{\mathcal{U}_1} (\kappa : \mathcal{U}_1)$ $([] : List_4 \mathcal{A}) \curvearrowright_0^{List_4 \mathcal{A}} ([] : List_6 \mathcal{A})$
1-related	n/a	$\begin{split} \left((A:\mathcal{U}_0) \frown_1^{\mathcal{U}_0} (B:\mathcal{U}_0) \right) &:= \operatorname{Rel}(A,B) \\ \mathbb{N} &:= \operatorname{Eq}_{\mathbb{N}} : (\mathbb{N}:\mathcal{U}_0) \frown_1^{\mathcal{U}_0} (\mathbb{N}:\mathcal{U}_0) \\ & \operatorname{List}_\bullet A : \operatorname{List}_4 A \frown_1^{\mathcal{U}_0} \operatorname{List}_6 A \\ & R : (G:\operatorname{Grp}) \frown_1^{\operatorname{Grp}} (H:\operatorname{Grp}) \\ & R : (G:\operatorname{Grp}) \frown_1^V (M:\operatorname{Mon}) \end{split}$	$\begin{split} \left((\kappa : \mathcal{U}_1) \curvearrowright_{1}^{\mathcal{U}_1} (\lambda : \mathcal{U}_1) \right) &:= \operatorname{Rel}(\kappa, \lambda)^{\{\bullet \to \bullet\}} \\ \mathcal{U}_0 : \left(\mathcal{U}_0 : \mathcal{U}_1 \right) \curvearrowright_{1}^{\mathcal{U}_1} \left(\mathcal{U}_0 : \mathcal{U}_1 \right) \\ & \text{List}_{\bullet} \kappa : \operatorname{List}_{4} \kappa \curvearrowright_{1}^{\mathcal{U}_1} \operatorname{List}_{6} \kappa \\ & \rho : \left(\alpha : \operatorname{Cat} \right) \curvearrowright_{1}^{\operatorname{Cat}} \left(\beta : \operatorname{Cat} \right) \end{split}$
2-related	n/a	$(5:\mathbb{N}) \curvearrowright_0^R (\text{true}: Bool)$ for some $R \in Rel(\mathbb{N}, Bool)$	$V: (Grp:\mathcal{U}_1) \curvearrowright^{\mathcal{U}_1}_2 (Mon:\mathcal{U}_1)$

0-related	$(2+5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (7:\mathbb{N})$	$((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \frown_0^{\mathcal{U}_0} (\operatorname{Bool} : \mathcal{U}_0)$	$((\lambda \xi. \xi) \kappa: \mathcal{U}_1) \frown_0^{\mathcal{U}_1} (\kappa: \mathcal{U}_1)$
(het. eq.)	([]: List ₄ A) $\sim_0^{\text{List}_0 A}$ ([]: List ₆ A) $\exists R.(5:\mathbb{N}) \sim_0^R \text{ (true: Bool)}$ $\forall R.if_X \sim_0^{\text{Bool} \to R \to R \to R} if_Y$	$([]: List_4 \kappa) \frown_0^{List_6 \kappa} ([]: List_6 \kappa) \\ \cdots$	([]: List ₄ \mathcal{A}) $\cap_0^{\text{List}_6} \mathcal{A}$ ([]: List ₆ \mathcal{A}
1-related	n/a	$\begin{split} \left((A : \mathcal{U}_0) \frown_{1}^{\mathcal{U}_0} (B : \mathcal{U}_0) \right) &:= \operatorname{Rel}(A, B) \\ \mathbb{N} &:= \operatorname{Eq}_{\mathbb{N}} : (\mathbb{N} : \mathcal{U}_0) \frown_{1}^{\mathcal{U}_0} (\mathbb{N} : \mathcal{U}_0) \\ & \operatorname{List}_{\bullet} A : \operatorname{List}_{4} A \frown_{1}^{\mathcal{U}_0} \operatorname{List}_{6} A \\ & A : (G : \operatorname{Grp}) \frown_{1}^{\operatorname{Grp}} (H : \operatorname{Grp}) \\ & A : (G : \operatorname{Grp}) \frown_{1}^{V} (M : \operatorname{Mon}) \end{split}$	$\begin{split} \left((\kappa : \mathcal{U}_1) \curvearrowright_1^{\mathcal{U}_1} (\lambda : \mathcal{U}_1) \right) &:= \operatorname{Rel}(\kappa, \lambda) \\ \mathcal{U}_0 : \left(\mathcal{U}_0 : \mathcal{U}_1 \right) \curvearrowright_1^{\mathcal{U}_1} \left(\mathcal{U}_0 : \mathcal{U}_1 \right) \\ & \text{List}_{\bullet} \kappa : \operatorname{List}_{\bullet} \kappa \curvearrowright_1^{\mathcal{U}_1} \operatorname{List}_{\bullet} \kappa \\ & \rho : \left(\alpha : \operatorname{Cat} \right) \curvearrowright_1^{\operatorname{Cat}} \left(\beta : \operatorname{Cat} \right) \end{split}$
2-related	n/a	n/a	$V: (\operatorname{Grp}: \mathcal{U}_1) \frown_2^{\mathcal{U}_1} (\operatorname{Mon}: \mathcal{U}_1)$
	$(if_X : Bool \to X \to X -$	$(A \rightarrow X) \curvearrowright_0^{Bool \rightarrow R \rightarrow R \rightarrow R} (if_Y : E)$ for all $R \in Rel(X, Y)$	Bool o Y o Y o Y)

Degrees of Relatedness

Type-level objects

 $A: \kappa: \mathcal{U}_1$ can be

Kind-level objects

 $\kappa: \mathcal{A}: \mathcal{U}_2$ can be

Value-level objects

 $a:A:\mathcal{U}_0$ can be

Andreas Nuyts¹, Dominique Devriese², partly jww Andrea Vezzosi³

	$a:A:\mathcal{U}_0$ can be	$A: \kappa: \mathcal{U}_1$ can be	$\kappa: \mathcal{A}: \mathcal{U}_2$ can be
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (7:\mathbb{N})$ $([]: \text{List}_4 A) \curvearrowright_0^{\text{List}_6 A} ([]: \text{List}_6 A)$ $\exists R.(5:\mathbb{N}) \curvearrowright_0^R (\text{true}: \text{Bool})$ $\forall R.if_X \curvearrowright_0^{\text{Bool} \to R \to R \to R} if_Y$	$ \frac{((\lambda X.X)\operatorname{Bool}:\mathcal{U}_0)}{([]:\operatorname{List}_4\kappa)} \sim_0^{\mathcal{U}_0} \left(\operatorname{Bool}:\mathcal{U}_0\right) $ $ ([]:\operatorname{List}_4\kappa) \sim_0^{\operatorname{List}_4\kappa} \left([]:\operatorname{List}_6\kappa\right) $ $ \cdots $	$ \frac{((\lambda \xi, \xi) \kappa : \mathcal{U}_1) \cap_{0}^{\mathcal{U}_1} (\kappa : \mathcal{U}_1)}{([] : List_4 \mathcal{A}) \cap_{0}^{List_6 \mathcal{A}} ([] : List_6 \mathcal{A})}{\dots} $
1-related	n/a	$\begin{split} \left((A : \mathcal{U}_0) \frown_1^{\mathcal{U}_0} (B : \mathcal{U}_0) \right) &:= \operatorname{Rel}(A, B) \\ \mathbb{N} &:= \operatorname{Eq}_{\mathbb{N}} : (\mathbb{N} : \mathcal{U}_0) \frown_1^{\mathcal{U}_0} (\mathbb{N} : \mathcal{U}_0) \\ & \operatorname{List}_\bullet A : \operatorname{List}_4 A \frown_1^{\mathcal{U}_0} \operatorname{List}_6 A \\ & A : (G : \operatorname{Grp}) \frown_1^{\operatorname{Grp}} (H : \operatorname{Grp}) \\ & A : (G : \operatorname{Grp}) \frown_1^V (M : \operatorname{Mon}) \end{split}$	$\begin{split} \left((\kappa : \mathcal{U}_1) \curvearrowright_1^{\mathcal{U}_1} (\lambda : \mathcal{U}_1) \right) &:= \operatorname{Rel}(\kappa, \lambda)^{\{\bullet \to \bullet\}} \\ \mathcal{U}_0 &: (\mathcal{U}_0 : \mathcal{U}_1) \curvearrowright_1^{\mathcal{U}_1} (\mathcal{U}_0 : \mathcal{U}_1) \\ & \text{List}_{\bullet} \kappa : \operatorname{List}_4 \kappa \curvearrowright_1^{\mathcal{U}_1} \operatorname{List}_6 \kappa \\ & \rho : (\alpha : \operatorname{Cat}) \curvearrowright_1^{\operatorname{Cat}} (\beta : \operatorname{Cat}) \end{split}$
2-related	n/a ((λ <i>X</i> .	$X)$ Bool : \mathcal{U}_0) $\sim_0^{\mathcal{U}_0}$ (Bool : because $(\lambda X.X)$ Bool \equiv Bool	$V: (\operatorname{Grp}:\mathcal{U}_1) \curvearrowright^{\mathcal{U}_1}_2 (\operatorname{Mon}:\mathcal{U}_1)$

Degrees of Relatedness

Type-level objects

Kind-level objects

Value-level objects

Andreas Nuyts¹, Dominique Devriese², partly jww Andrea Vezzosi³

	$a:A:\mathcal{U}_0$ can be	$A: \kappa: \mathcal{U}_1$ can be	$\kappa: A: \mathcal{U}_2$ can be
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (7:\mathbb{N})$ $([]: \operatorname{List}_4 A) \curvearrowright_0^{\operatorname{List}_6 A} ([]: \operatorname{List}_6 A)$ $\exists R. (5:\mathbb{N}) \curvearrowright_0^R (\text{true}: \operatorname{Bool})$ $\forall R. if_X \curvearrowright_0^{\operatorname{Bool} \to R \to R} if_Y$	$((\lambda X.X)\operatorname{Bool}:\mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool}:\mathcal{U}_0)$ $([]:\operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([]:\operatorname{List}_6 \kappa)$	$((\lambda \xi, \xi) \kappa : \mathcal{U}_1) \curvearrowright_0^{\mathcal{U}_1} (\kappa : \mathcal{U}_1)$ $([] : List_4 \mathcal{A}) \curvearrowright_0^{List_6 \mathcal{A}} ([] : List_6 \mathcal{A})$
1-related	n/a	$\begin{split} \left((A \colon \mathcal{U}_0) & \smallfrown_{1}^{\mathcal{U}_0} (B \colon \mathcal{U}_0) \right) := \operatorname{Rel}(A, B) \\ \mathbb{N} := \operatorname{Eq}_{\mathbb{N}} : \left(\mathbb{N} \colon \mathcal{U}_0 \right) & \smallfrown_{1}^{\mathcal{U}_0} (\mathbb{N} \colon \mathcal{U}_0) \\ \operatorname{List}_{\bullet} A \colon \operatorname{List}_4 A & \smallfrown_{1}^{\mathcal{U}_0} \operatorname{List}_6 A \\ R : \left(G \colon \operatorname{Grp} \right) & \smallfrown_{1}^{\operatorname{Grp}} (H \colon \operatorname{Grp}) \\ R : \left(G \colon \operatorname{Grp} \right) & \smallfrown_{1}^{V} (M \colon \operatorname{Mon}) \end{split}$	$\begin{split} \left((\kappa : \mathcal{U}_1) \curvearrowright^{\mathcal{U}_1}_{1} (\lambda : \mathcal{U}_1) \right) &:= \operatorname{Rel}(\kappa, \lambda)^{\{\bullet \to \bullet\}} \\ \mathcal{U}_0 &: (\mathcal{U}_0 : \mathcal{U}_1) \curvearrowright^{\mathcal{U}_1}_{1} (\mathcal{U}_0 : \mathcal{U}_1) \\ & \operatorname{List}_{\bullet} \kappa : \operatorname{List}_{4} \kappa \curvearrowright^{\mathcal{U}_1}_{1} \operatorname{List}_{6} \kappa \\ & \rho : (\alpha : \operatorname{Cat}) \curvearrowright^{\operatorname{Cat}}_{1} (\beta : \operatorname{Cat}) \end{split}$
2-related	n/a ([] :	$List_4 \kappa$) $\frown_0^{List_6 \kappa}$ ([] : $List_6$	$V: (\operatorname{Grp}: \mathcal{U}_1) \sim_2^{\mathcal{U}_1} (\operatorname{Mon}: \mathcal{U}_1)$

Value-level objects

	Value-level objects $a: A: \mathcal{U}_0$ can be	Type-level objects $A: \kappa : \mathcal{U}_1$ can be	Kind-level objects $\kappa : \mathcal{A} : \mathcal{U}_2$ can be
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_0^\mathbb{N} (7:\mathbb{N})$ $([]: \text{List}_4 A) \curvearrowright_0^{\text{List}_6 A} ([]: \text{List}_6 A)$ $\exists R. (5:\mathbb{N}) \curvearrowright_0^R (\text{true}: \text{Bool})$ $\forall R. \text{if}_X \curvearrowright_0^{\text{Bool} \to R \to R \to R} \text{if}_Y$	$((\lambda X.X)\operatorname{Bool}:\mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool}:\mathcal{U}_0)$ $([]:\operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([]:\operatorname{List}_6 \kappa)$	$((\lambda \xi. \xi) \kappa : \mathcal{U}_1) \curvearrowright_0^{\mathcal{U}_1} (\kappa : \mathcal{U}_1)$ $([] : List_4 \mathcal{A}) \curvearrowright_0^{List_0 \mathcal{A}} ([] : List_6 \mathcal{A})$ \dots
1-related	n/a	$ \left((A: \mathcal{U}_0) \curvearrowright_1^{\mathcal{U}_0} (B: \mathcal{U}_0) \right) := \operatorname{Rel}(A, B) $ $ \mathbb{N} := \operatorname{Eq}_{\mathbb{N}} : (\mathbb{N} : \mathcal{U}_0) \curvearrowright_1^{\mathcal{U}_0} (\mathbb{N} : \mathcal{U}_0) $ $ \operatorname{List}_{\bullet} A : \operatorname{List}_4 A \curvearrowright_1^{\mathcal{U}_0} \operatorname{List}_6 A $ $ A : (G : \operatorname{Grp}) \curvearrowright_1^{\operatorname{Grp}} (H : \operatorname{Grp}) $ $ A : (G : \operatorname{Grp}) \curvearrowright_1^{V} (M : \operatorname{Mon}) $	$\begin{split} \left(\left(\kappa : \mathcal{U}_{1} \right) \frown_{1}^{\mathcal{U}_{1}} \left(\lambda : \mathcal{U}_{1} \right) \right) &:= \operatorname{Rel}(\kappa, \lambda)^{\{\bullet \to \bullet\}} \\ \mathcal{U}_{0} : \left(\mathcal{U}_{0} : \mathcal{U}_{1} \right) \frown_{1}^{\mathcal{U}_{1}} \left(\mathcal{U}_{0} : \mathcal{U}_{1} \right) \\ & \text{List}_{\bullet} \kappa : \operatorname{List}_{4} \kappa \frown_{1}^{\mathcal{U}_{1}} \operatorname{List}_{6} \kappa \\ & \rho : \left(\alpha : \operatorname{Cat} \right) \frown_{1}^{\operatorname{Cat}} \left(\beta : \operatorname{Cat} \right) \end{split}$
2-related n/a n/a $v: (\operatorname{Grp}: \mathcal{U}_1) \overset{\mathcal{U}_1}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{$			

	$a:A:\mathcal{U}_0$ can be	$A: \kappa: \mathcal{U}_1$ can be	$\kappa: \mathcal{A}: \mathcal{U}_2$ can be
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (7:\mathbb{N})$ $([]: \text{List}_4 A) \curvearrowright_0^{\text{List}_6 A} ([]: \text{List}_6 A)$ $\exists R.(5:\mathbb{N}) \curvearrowright_0^R (\text{true}: \text{Bool})$ $\forall R.if_X \curvearrowright_0^{\text{Bool} \to R \to R \to R} if_Y$	$((\lambda X.X)\operatorname{Bool}:\mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool}:\mathcal{U}_0)$ $([]:\operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([]:\operatorname{List}_6 \kappa)$	$((\lambda \xi, \xi) \kappa : \mathcal{U}_1) \curvearrowright_0^{\mathcal{U}_1} (\kappa : \mathcal{U}_1)$ $([] : List_4 \mathcal{A}) \curvearrowright_0^{List_6 \mathcal{A}} ([] : List_6 \mathcal{A})$ \dots
1-related	n/a	$ \left((A : \mathcal{U}_0) \curvearrowright_{1}^{\mathcal{U}_0} (B : \mathcal{U}_0) \right) := \operatorname{Rel}(A, B) $ $ \mathbb{N} := \operatorname{Eq}_{\mathbb{N}} : \left(\mathbb{N} : \mathcal{U}_0 \right) \curvearrowright_{1}^{\mathcal{U}_0} \left(\mathbb{N} : \mathcal{U}_0 \right) $ $ \operatorname{List}_b A : \operatorname{List}_d A \curvearrowright_{1}^{\mathcal{U}_0} \operatorname{List}_b A $ $ A : \left(G : \operatorname{Grp} \right) \curvearrowright_{1}^{\operatorname{Grp}} (H : \operatorname{Grp}) $ $ A : \left(G : \operatorname{Grp} \right) \curvearrowright_{1}^{V} (M : \operatorname{Mon}) $	$\begin{split} \left((\kappa : \mathcal{U}_1) \curvearrowright_1^{\mathcal{U}_1} (\lambda : \mathcal{U}_1) \right) &:= \operatorname{Rel}(\kappa, \lambda)^{\{\bullet \to \bullet\}} \\ \mathcal{U}_0 &: (\mathcal{U}_0 : \mathcal{U}_1) \curvearrowright_1^{\mathcal{U}_1} (\mathcal{U}_0 : \mathcal{U}_1) \\ & \qquad \qquad \operatorname{List}_{\bullet} \kappa : \operatorname{List}_{4} \kappa \curvearrowright_1^{\mathcal{U}_1} \operatorname{List}_{6} \kappa \\ & \qquad \qquad \rho : (\alpha : \operatorname{Cat}) \curvearrowright_1^{\operatorname{Cat}} (\beta : \operatorname{Cat}) \end{split}$
2-related	n/a N :=	$Eq_{\mathbb{N}}: (\mathbb{N}: \mathcal{U}_0) \curvearrowright^{\mathcal{U}_0}_1 (\mathbb{N}: \mathcal{U}_0)$	$V: (\operatorname{Grp}:\mathcal{U}_1) \sim_2^{\mathcal{U}_1} (\operatorname{Mon}:\mathcal{U}_1)$

Value-level objects

	•		1
	$a:A:\mathcal{U}_0$ can be	$A: \kappa: \mathcal{U}_1$ can be	κ : \mathcal{A} : \mathcal{U}_2 can be
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (7:\mathbb{N})$ $([]: \operatorname{List}_4 A) \curvearrowright_0^{\operatorname{List}_6 A} ([]: \operatorname{List}_6 A)$ $\exists R.(5:\mathbb{N}) \curvearrowright_0^R (\text{true}: \operatorname{Bool})$ $\forall R.if_X \curvearrowright_0^{\operatorname{Bool} \to R \to R \to R} if_Y$	$((\lambda X.X)\operatorname{Bool}:\mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool}:\mathcal{U}_0)$ $([]:\operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_4 \kappa} ([]:\operatorname{List}_6 \kappa)$	$((\lambda \xi, \xi) \kappa : \mathcal{U}_1) \curvearrowright_0^{\mathcal{U}_1} (\kappa : \mathcal{U}_1)$ $([] : List_4 \mathcal{A}) \curvearrowright_0^{List_4 \mathcal{A}} ([] : List_6 \mathcal{A})$
1-related	n/a	$ \left((A: \mathcal{U}_0) \curvearrowright_1^{\mathcal{U}_0} (B: \mathcal{U}_0) \right) := \operatorname{Rel}(A, B) $ $ \mathbb{N} := \operatorname{Eq}_{\mathbb{N}} : (\mathbb{N} : \mathcal{U}_0) \curvearrowright_1^{\mathcal{U}_0} (\mathbb{N} : \mathcal{U}_0) $ $ \operatorname{List}_{\bullet} A : \operatorname{List}_4 A \curvearrowright_1^{\mathcal{U}_0} \operatorname{List}_6 A $ $ A : (G : \operatorname{Grp}) \curvearrowright_1^{\operatorname{Grp}} (H : \operatorname{Grp}) $ $ A : (G : \operatorname{Grp}) \curvearrowright_1^V (M : \operatorname{Mon}) $	$ \begin{split} \left((\kappa : \mathcal{U}_1) \curvearrowright_1^{\mathcal{U}_1} (\lambda : \mathcal{U}_1) \right) &:= \operatorname{Rel}(\kappa, \lambda)^{\{\bullet \to \bullet\}} \\ \mathcal{U}_0 &: (\mathcal{U}_0 : \mathcal{U}_1) \curvearrowright_1^{\mathcal{U}_1} (\mathcal{U}_0 : \mathcal{U}_1) \\ & \text{List}_{\bullet} \ \kappa : \operatorname{List}_{\bullet} \kappa \curvearrowright_1^{\mathcal{U}_1} \operatorname{List}_{\bullet} \kappa \\ \rho &: (\alpha : \operatorname{Cat}) \curvearrowright_1^{\operatorname{Cat}} (\beta : \operatorname{Cat}) \end{split} $
2-related	n/a List₀ <i>A</i> :	n/a (List ₄ $A : \mathcal{U}_0$) $\sim_1^{\mathcal{U}_0}$ (List ₆ \mathcal{U}_0	$V: (\operatorname{Grp}: \mathcal{U}_1) \sim_2^{\mathcal{U}_1} (\operatorname{Mon}: \mathcal{U}_1)$ $A: \mathcal{U}_0)$
_			

Value-level objects

	Value-level objects	Type-level objects	Kind-level objects
	$a:A:\mathcal{U}_0$ can be	$A: \kappa: \mathcal{U}_1$ can be	$\kappa:\mathcal{A}:\mathcal{U}_2$ can be
0-related	$(2+5:\mathbb{N}) \cap_0^{\mathbb{N}} (7:\mathbb{N})$	$((\lambda X.X)$ Bool: $\mathcal{U}_0) \cap_0^{\mathcal{U}_0} (Bool: \mathcal{U}_0)$	$((\lambda \xi. \xi) \kappa : \mathcal{U}_1) \cap_{0}^{\mathcal{U}_1} (\kappa : \mathcal{U}_1)$
(het. eq.)	([]: List ₄ A) $\frown_0^{\text{List}_{\bullet} A}$ ([]: List ₆ A)	$([]: List_4 \kappa) \frown_0^{List_{\bullet} \kappa} ([]: List_6 \kappa)$	$([]: \operatorname{List}_4 \mathcal{A}) \frown_0^{\operatorname{List}_{ullet} \mathcal{A}} ([]: \operatorname{List}_6 \mathcal{A})$
	$\exists R. (5:\mathbb{N}) \curvearrowright_{0}^{R} (true:Bool)$		•••
	$\forall R.if_X \curvearrowright^{Bool \to R \to R \to R} if_Y$		
1-related	n/a	$\left((A: \mathcal{U}_0) \frown_1^{\mathcal{U}_0} (B: \mathcal{U}_0) \right) := \operatorname{Rel}(A, B)$	$\left(\left(\kappa:\mathcal{U}_{1}\right) \frown_{1}^{\mathcal{U}_{1}}\left(\lambda:\mathcal{U}_{1}\right)\right) := \operatorname{Rel}(\kappa,\lambda)^{\left\{\bullet \rightarrow \bullet\right\}}$
		$\mathbb{N} := Eq_{\mathbb{N}} : (\mathbb{N} : \mathcal{U}_0) \curvearrowright^{\mathcal{U}_0}_{1} (\mathbb{N} : \mathcal{U}_0)$	$\mathcal{U}_0: (\mathcal{U}_0:\mathcal{U}_1) \curvearrowright^{\mathcal{U}_1}_1 (\mathcal{U}_0:\mathcal{U}_1)$
		List _• A : List ₄ $A \curvearrowright_1^{\mathcal{U}_0}$ List ₆ A	List _• κ : List ₄ $\kappa \sim_1^{\mathcal{U}_1}$ List ₆ κ
		$R: (G: Grp) \curvearrowright_1^{Grp} (H: Grp)$	ρ : (α : Cat) \frown_1^{Cat} (β : Cat)
		$R: (G: Grp) \curvearrowright_1^V (M: Mon)$	
2-related	n/a	n/a	$V: (\operatorname{Grp}: \mathcal{U}_1) \curvearrowright^{\mathcal{U}_1}_2 (\operatorname{Mon}: \mathcal{U}_1)$
$(G: \operatorname{Grp}) \curvearrowright_{1}^{\operatorname{Grp}} (H: \operatorname{Grp})$			
$(\underline{R}:\underline{G} \curvearrowright_1^{\mathcal{U}_0} \underline{H}) \times (e_G \curvearrowright_0^{\underline{R}} e_H) \times (*_G \curvearrowright_0^{\underline{R} \to \underline{R} \to \underline{R}} *_H)$			
Andreas Nu	ıyts ¹ , Dominique Devriese ² , partly jwy	v Andrea Vezzosi ³ Degrees of Relatedno	ess 2/2

	Value-level objects	Type-level objects	Kind-level objects		
	$a:A:\mathcal{U}_0$ can be	$A: \kappa: \mathcal{U}_1$ can be	$\kappa:\mathcal{A}:\mathcal{U}_2$ can be		
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (7:\mathbb{N})$ $([]: \text{List}_4 A) \curvearrowright_0^{\text{List}_6 A} ([]: \text{List}_6 A)$ $\exists R.(5:\mathbb{N}) \curvearrowright_0^R (\text{true}: \text{Bool})$ $\forall R.if_X \curvearrowright_0^{\text{Bool} \to R \to R \to R} if_Y$	$((\lambda X.X) \operatorname{Bool} : \mathcal{U}_0) \overset{\mathcal{U}_0}{\circ} (\operatorname{Bool} : \mathcal{U}_0)$ $([] : \operatorname{List}_4 \kappa) \overset{\operatorname{List}_6 \kappa}{\circ} ([] : \operatorname{List}_6 \kappa)$ \cdots	$((\lambda \xi. \xi) \kappa : \mathcal{U}_1) \curvearrowright_0^{\mathcal{U}_1} (\kappa : \mathcal{U}_1)$ $([] : List_4 \mathcal{A}) \curvearrowright_0^{List_6 \mathcal{A}} ([] : List_6 \mathcal{A})$ \cdots		
1-related	n/a	$ \left((A : \mathcal{U}_0) \curvearrowright_{1}^{\mathcal{U}_0} (B : \mathcal{U}_0) \right) := \operatorname{Rel}(A, B) $ $ \mathbb{N} := \operatorname{Eq}_{\mathbb{N}} : (\mathbb{N} : \mathcal{U}_0) \curvearrowright_{1}^{\mathcal{U}_0} (\mathbb{N} : \mathcal{U}_0) $ $ \operatorname{List}_{\bullet} A : \operatorname{List}_4 A \curvearrowright_{1}^{\mathcal{U}_0} \operatorname{List}_6 A $ $ A : (G : \operatorname{Grp}) \curvearrowright_{1}^{\operatorname{Grp}} (H : \operatorname{Grp}) $ $ A : (G : \operatorname{Grp}) \curvearrowright_{1}^{V} (M : \operatorname{Mon}) $	$(\kappa: \mathcal{U}_1) \curvearrowright_1^{\mathcal{U}_1} (\lambda: \mathcal{U}_1)) := \operatorname{Rel}(\kappa; \lambda)^{\{\bullet \to \bullet\}}$ $\mathcal{U}_0 : (\mathcal{U}_0 : \mathcal{U}_1) \curvearrowright_1^{\mathcal{U}_1} (\mathcal{U}_0 : \mathcal{U}_1)$ $\operatorname{List}_{\bullet} \kappa : \operatorname{List}_{4} \kappa \curvearrowright_1^{\mathcal{U}_1} \operatorname{List}_{6} \kappa$ $\rho : (\alpha : \operatorname{Cat}) \curvearrowright_1^{\operatorname{Cat}} (\beta : \operatorname{Cat})$		
2-related	n/a	n/a	$V: (\operatorname{Grp}: \mathcal{U}_1) \curvearrowright^{\mathcal{U}_1}_2 (\operatorname{Mon}: \mathcal{U}_1)$		
	·	$(G: \mathbf{Grp}) \curvearrowright_{1}^{V} (M: \mathbf{Mon})$ $:=$ $() \times (e_{G} \curvearrowright_{0}^{\underline{R}} e_{M}) \times (*_{G} \curvearrowright)$	$\frac{R \rightarrow R \rightarrow R}{0} *_{M}$		
Andreas Nu	Andreas Nuyts ¹ , Dominique Devriese ² , partly jww Andrea Vezzosi ³ Degrees of Relatedness 2/2				

	$a:A:\mathcal{U}_0$ can be	$A: \kappa: \mathcal{U}_1$ can be	κ : \mathcal{A} : \mathcal{U}_2 can be		
0-related (het. eq.)	$(2+5:\mathbb{N}) \curvearrowright_0^{\mathbb{N}} (7:\mathbb{N})$ $([]: List_4 A) \curvearrowright_0^{List_6 A} ([]: List_6 A)$ $\exists R.(5:\mathbb{N}) \curvearrowright_0^R (true: Bool)$ $\forall R.if_X \curvearrowright_0^{Bool \to R \to R} if_Y$	$((\lambda X.X)\operatorname{Bool}:\mathcal{U}_0) \curvearrowright_0^{\mathcal{U}_0} (\operatorname{Bool}:\mathcal{U}_0)$ $([]:\operatorname{List}_4 \kappa) \curvearrowright_0^{\operatorname{List}_6 \kappa} ([]:\operatorname{List}_6 \kappa)$	$((\lambda\xi.\xi)\kappa:\mathcal{U}_1) \curvearrowright_0^{\mathcal{U}_1} (\kappa:\mathcal{U}_1)$ $([]: List_4\mathcal{A}) \curvearrowright_0^{List_6\mathcal{A}} ([]: List_6\mathcal{A})$		
1-related	n/a	$ \begin{pmatrix} (A:\mathcal{U}_0) & \curvearrowright_1^{\mathcal{U}_0} (B:\mathcal{U}_0) \end{pmatrix} := \operatorname{Rel}(A,B) $ $ \mathbb{N} := \operatorname{Eq}_{\mathbb{N}} : (\mathbb{N} : \mathcal{U}_0) & \curvearrowright_1^{\mathcal{U}_0} (\mathbb{N} : \mathcal{U}_0) $ $ \operatorname{List}_{\bullet} A : \operatorname{List}_4 A & \curvearrowright_1^{\mathcal{U}_0} \operatorname{List}_6 A $ $ A : (G : \operatorname{Grp}) & \curvearrowright_1^{\operatorname{Grp}} (H : \operatorname{Grp}) $ $ A : (G : \operatorname{Grp}) & \curvearrowright_1^{V} (M : \operatorname{Mon}) $	$(\kappa : \mathcal{U}_1) \curvearrowright_1^{\mathcal{U}_1} (\lambda : \mathcal{U}_1)) := \operatorname{Rel}(\kappa, \lambda)^{\{\bullet \to \bullet\}}$ $\mathcal{U}_0 : (\mathcal{U}_0 : \mathcal{U}_1) \curvearrowright_1^{\mathcal{U}_1} (\mathcal{U}_0 : \mathcal{U}_1)$ $\operatorname{List}_{\bullet} \kappa : \operatorname{List}_4 \kappa \curvearrowright_1^{\mathcal{U}_1} \operatorname{List}_6 \kappa$ $\rho : (\alpha : \operatorname{Cat}) \curvearrowright_1^{\operatorname{Cat}} (\beta : \operatorname{Cat})$		
2-related	n/a	n/a	$V: (Grp:\mathcal{U}_1) \curvearrowright^{\mathcal{U}_1}_2 (Mon:\mathcal{U}_1)$		
	$V: (Grp:\mathcal{U}_1) \curvearrowright_2^{\mathcal{U}_1} (Mon:\mathcal{U}_1)$				

Degrees of Relatedness

Type-level objects

Kind-level objects

Value-level objects

Andreas Nuyts¹, Dominique Devriese², partly jww Andrea Vezzosi³