RESPONSE TO RESTRICTION REQUIREMENT Serial No. 10/699,157 Page 2 of 4

IN THE CLAIMS

- 1. (Original) A method of forming a damascene structure comprising:
- (a) providing a substrate having a feature defined through a first dielectric layer formed on a barrier layer comprising one of a silicon carbide (SiC) layer and a silicon carbon nitride (SiCN) layer deposited on a metal wiring layer;
- (b) generating a plasma from a gas mixture comprising trifluoromethane (CHF₃); and
- (c) etching the barrier layer using the plasma to transfer the feature therethrough to the metal wiring layer.
- 2. (Original) The method of claim 1 wherein the first dielectric layer comprises one of organosilicate (SiOC) and fluorosilicate glass (FSG).
- 3. (Original) The method of claim 1 wherein the gas mixture further comprises one or more gases selected from the group consisting of nitrogen (N_2) , oxygen (O_2) and argon (Ar).
- 4. (Original) The method of claim 3 wherein the gas mixture comprises trifluoromethane (CHF₃) and nitrogen (N₂) at a CHF₃:N₂ flow ratio of 30:50.
- 5. (Original) The method of claim 3 wherein the gas mixture comprises trifluoromethane (CHF₃) and oxygen (O₂) at a CHF₃:O₂ flow ratio of 30:10.
- 6. (Original) The method of claim 3 wherein the gas mixture comprises trifluoromethane (CHF₃), oxygen (O₂) and argon (Ar) at a CHF₃:O₂:Ar flow ratio of 30:10:50.

RESPONSE TO RESTRICTION REQUIREMENT Serial No. 10/699,157 Page 3 of 4

- (Currently Amended) A method of forming a damascene structure comprising:
- (a) providing a substrate having a feature defined through a first dielectric layer formed on a barrier layer comprising one of a silicon carbide (SiC) layer and a silicon carbon nitride (SiCN) layer deposited on a metal wiring layer;
- (b) generating a plasma from a gas mixture comprising trifluoromethane (CHF₃) and one or more gases selected from the group consisting of nitrogen (N_2), oxygen (O_2) and argon (Ar); and
- (c) etching the barrier layer using the plasma to transfer the feature therethrough to the metal wiring layer.
- 8. (Original) The method of claim 7 wherein the first dielectric layer comprises one of organosilicate (SiOC) and fluorosilicate glass (FSG).
- 9. (Original) The method of claim 7 wherein the gas mixture comprises trifluoromethane (CHF₃) and nitrogen (N_2) at a CHF₃: N_2 flow ratio of 30:50.
- 10. (Original) The method of claim 7 wherein the gas mixture comprises trifluoromethane (CHF₃) and oxygen (O₂) at a CHF₃:O₂ flow ratio of 30:10.
- 11. (Original) The method of claim 7 wherein the gas mixture comprises trifluoromethane (CHF₃), oxygen (O₂) and argon (Ar) at a CHF₃:O₂:Ar flow ratio of 30:10:50.

12-17. (Cancelled)