

Universidade Federal de Viçosa Departamento de Informática INF 498 - Seminário I

Implementação de algoritmos de mineração em FPGA

Aluno: Michael Canesche

Orientador: Ricardo dos Santos Ferreira

Co-orientador: Giovanni Ventorim Comarela

Sumário

- Resumo da apresentação anterior
- O que foi planejado
- Onde o artigo será publicado
- K-Means
- Atacando o problema
- O que foi feito / Obtido
- Cronograma
- Referência
- Agradecimentos

^{*} Imagem sugestiva retirada no google imagens

Resumo da apresentação anterior

- O que é FPGA
- Os algoritmos que serão implementados em FPGA
 - K-Means
 - K-Medoids
 - K-Center
- Eficiência será comparada com outros aceleradores em plataformas heterogêneas
 - GPU
- Validação dos algoritmos será por meio de bases de dados
 - Ainda para se definir
- O trabalho final será entregue em forma de artigo

O que foi planejado

Tarefas	Março	Abril	Maio	Junho
Definição do Tema	X			
Revisão Bibliográfica	X	X	X	X
Implementação		X	X	X
Redação do artigo			X	X

Onde irá publicar o artigo

^{*} Imagem retirada em: http://www2.sbc.org.br/wscad/current/index.html

K-Means

- Algoritmo de agrupamento de dados, no qual particiona p conjuntos de dados em k grupos, onde cada dado pertence no mais próximo centróide.
- NP-Difícil
- Cálculo da distância

$$DE(x,y) = \sqrt{\sum_{i}^{p} (x_i - y_i)^2}$$

^{*} Gif retirado em: https://en.wikipedia.org/wiki/K-means_clustering - último acesso em 18/05/18

Atacando o problema

Atacando o problema

Legenda:

IN: Dados

QUAD: elevar ao quadrado

CMP: Compara

IMM: Centroides

ADD: soma

O que foi feito/obtido

- Algoritmo em C++ do K-Means [1]
 - Para verificar se os resultados batem com a implementação em FPGA e GPU.
- Algoritmo em GPU do K-Means [2]
 - Gerado dinâmicamente (Wei-keng Liao's parallel k-means)
- Algoritmo em FPGA
 - Em fase de teste...

[1] GIT original: https://github.com/marcoscastro/kmeans - último acesso em 18/05/18

[2] GIT original: https://github.com/serban/kmeans - último acesso em 20/05/18

O que foi feito (Artigo)

- Partes da Introdução (Não revisado)
- Ínicio de desenvolvimento (K-Means)

^{*} Imagem retirada do google

Cronograma - 2018/1*

Tarefas	Março	Abril	Maio	Junho
Definição do Tema	X			
Revisão Bibliográfica	X	X	X	X
Implementação		X	X	X
Redação do artigo			X	X

^{*} O cronograma pode ser mutável.

Referência

- [1] Alam, S. R. et al, Using FPGA Devices to Accelerate Biomolecular Simulations, IEEE Xplore, Vol. 40, 2007.
- [2] Gschwind, M.; Salapura, V.; Maurer, D. **FPGA prototyping of a RISC processor core for embedded applications**, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 9, 2001.
- [3] Chen, D.; Cong, J. and Pan, P; **FPGA Design Automation: A Survey**, Eletronic Design Automation, Vol. 1, No 3, 2006.
- [4] Cong, J.; et al; Understanding Performance Differences of FPGAs and GPUs, FCCM, 2018

Links Interessantes: https://www.nextplatform.com/

http://isfpga.org/

http://www2.sbc.org.br/wscad/current/index.html

Agradecimentos

Agradecimentos

Em especial a todos presentes!

Contatos

E-mail: michael.canesche@gmail.com

Projeto: https://github.com/canesche/INF496

Michael Canesche canesche

I'm student Computer Science at UFV. I love coffee and code.

Dúvidas?

