

Сеть и сетевые протоколы: L2-сеть

Андрей Вахутинский

Заместитель начальника ІТ-отдела АО "ИНТЕКО"

Предисловие

Эта лекция содержит основные понятия, связанные со 2-м уровнем модели OSI (Data link layer / Канальный уровень).

Также вы познакомитесь с основными командами, которые позволяют получать информацию / вносить изменения в настройки ОС на 2-м уровне модели OSI.

План занятия

- 1. Предисловие
- 2. Виды сред передачи данных
- 3. <u>Канальный уровень (OSI)</u>
- 4. VLAN
- 5. Spanning Tree Protocol (STP)
- 6. Address Resolution Protocol (ARP)
- 7. Итоги
- 8. Домашнее задание

Виды сред передачи данных

Виды сред

Общая медиа (разделяемая среда)

- **-** КОЛЛИЗИИ
- + не нужны доп.устройства

Switched (коммутируемая среда)

- цена выше
- + нет коллизий выше скорость, больше участников ⁶

Домен коллизий

Домен коллизий — часть сети Ethernet, все узлы которой конкурируют за общую разделяемую среду передачи и, следовательно, каждый узел которой может создать коллизию с любым другим узлом этой части сети.

Чем больше узлов в таком сегменте — тем выше вероятность коллизий.

Для разделения домена коллизий применяются коммутаторы.

Сетевые устройства и домен коллизий

Сетевые устройства, работающие на канальном уровне модели OSI, могут продлевать, либо ограничивать домен коллизий.

Устройства первого уровня OSI (концентраторы, повторители) только ретранслируют любой сигнал, поступающий из среды передачи, и продлевают домен коллизий.

Устройства второго уровня OSI (мосты, коммутаторы), разделяют домен коллизий.

Канальный уровень (OSI)

Канальный уровень

Протоколы канального уровня отвечают за доставку данных внутри одного сегмента сети.

Стандарт для сетей Ethernet имеет название IEEE 802.3 и детальное описание приведено в документе.

Сегмент сети, согласно IEEE 802.3, – это электрически соединенные устройства, использующие общую среду. Сегменты соединяются в сеть при помощи повторителей или коммутаторов

Канальный уровень

Все узлы внутри одного сегмента имеют доступ друг к другу при помощи аппаратных адресов и образуют широковещательный домен.

Для IEEE 802.3 такой адрес называется **МАС-адресом**. МАС-адрес «зашивается» в сетевые карты (но может быть изменён).

Широковещательный домен – метод доставки сообщений, при котором сообщение получают сразу все участники обмена (связи). Нужное сообщение фильтруется самим узлом по МАС-адресу.

Формат кадра Ethernet

Формат кадра Ethernet имеет вид:

- MACs адрес приемника и отправителя;
- Ether Type тип Ethernet либо размер Payload;
- Payload данные;
- **CRC** контрольная сумма.

MTU

TCP/IP Illustrated, Vol. 1

^{*}MTU (Maximum Transmission Unit) – размер полезных данных в одном фрейме (размер фрейма минус заголовки Ethernet, минус трейлер Ethernet),

Типы передачи трафика

- **Broadcast трафик** процесс отправки пакета от одного хоста *ко всем хостам в сети*;
 - → Пример: служебный трафик.
- **Unicast трафик** процесс отправки пакета от одного хоста κ другому хосту;
 - → Пример: общение 2-х компьютеров.
- **Multicast трафик** процесс отправки пакета от одного хоста к некоторой *ограниченной группе хостов*.
 - → Пример: видео по подписке (IPTV).

Аналогии типов передачи трафика

Представим, что у нас есть жилой дом на несколько подъездов и у этого дома есть доска объявлений, на которой управляющая компания информирует жильцов своего дома.

Если в объявление будет написано «всем жильцам дома», то это будет похоже на broadcast.

Если написано «жильцам третьего этажа» или «жильцам второго подъезда», то это будет похоже на multicast.

Письмо в почтовый ящик – похоже на unicast.

--VLAN

Локальная сеть

Локальная сеть (LAN) – компьютерная сеть, расположенная в небольшой области, например, в офисе, университете, здании.

Локальная сеть, как правило, разбивается коммутаторами на несколько сегментов (VLAN), что облегчает администрирование и уменьшает широковещательный трафик внутри сети.

Виртуальная LAN (VLAN) – логически обособленный сегмент локальной сети внутри одной физической сети.

Виртуальная LAN (VLAN)

VLAN – технология, которая позволяет строить виртуальные сети с независимой от физических устройств топологией.

Например, можно объединить в одну сеть отдел компании, сотрудники которого работают в разных зданиях и подключены к разным коммутаторам. или наоборот, создать отдельные сети для устройств, подключённых к одному коммутатору, если этого требует политика безопасности.

Возможности VLAN

→ Объединить в единую сеть группы компьютеров, подключённых к разным коммутаторам.

Компьютеры в VLAN 1 будут взаимодействовать между собой, хотя подключены к разным физическим коммутаторам, при этом сети VLAN 1 и VLAN 2 будут невидимы друг для друга.

Возможности VLAN

→ Разделить на разные сети компьютеры, подключённые к одному коммутатору.

При этом устройства в VLAN 1 и VLAN 2 **не смогут напрямую** взаимодействовать между собой.

Преимущества VLAN

- сокращение числа широковещательных запросов, которые снижают пропускную способность сети;
- повышение безопасности каждой виртуальной сети.
 - Работники одного отдела офиса не смогут отслеживать трафик отделов, не входящих в их VLAN, и не получат доступ к их ресурсам.
- создание новой виртуальной сети без прокладки кабеля и покупки коммутатора;
- объединение в одну сеть компьютеров, подключенных к разным коммутаторам;
- упрощение сетевого администрирования.

Пример VLAN

lsmod | grep 8021q

```
# ip link add link eth0 name eth0.10 type vlan id 10
# ip -d link show eth0.10
 root@localhost ~]# ip -d link show eth0.10
  eth0.10@eth0 <BROADCAST, MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT qr
oup default qien 1000
    link/ether 52:02:a4:e3:26:b5 brd ff:ff:ff:ff:ff:ff promiscuity 0
   vlan protocol 802.1Q id 10 <REORDER_HDR> addrgenmode eui64 numtxqueues 1 numrxque
ues 1 gso_max_size 65536 gso_max_segs 65535
# ip addr add 192.168.1.200/24 brd 192.168.1.255 dev eth0.10
# ip link set dev eth0.10 up
# ip link set dev eth0.10 down
# ip link delete eth0.10
```

sudo modprobe 8021q # если появляется ошибка "Maybe you need to load the 8021q module"

Пример VLAN

```
lsmod | grep 8021q
sudo modprobe 8021q # если появляется ошибка "Maybe you need to load the 8021q module"
```

```
# nano /etc/netplan/01-netcfg.yaml
network:
 version: 2
 ethernets:
   eth0:
     dhcp4: true
 vlans:
   vlan200:
     id: 200
     link: eth0
     dhcp4: no
      addresses: [192.168.200.2/24]
     gateway4: 192.168.200.1
     routes:
        - to: 192.168.100.1/24
         via: 192.168.200.3
          on-link: true
```

netplan apply

Spanning Tree Protocol (STP)

Broadcast шторм

Размножение широковещательных сообщений активным сетевым оборудованием приводит к экспоненциальному росту их числа и парализует работу сети.

Считается нормальным, если широковещательные пакеты составляют не более 10 % от общего числа пакетов в сети.

STP

Чтобы не происходило зацикливания, петлю нужно разорвать.

Для этого придумали специальный протокол – **Spanning Tree Protocol** (STP).

Его задача – выбрать порты, которые нужно отключить.

Необходимость двухуровневой адресации

Разделяемая среда – одноуровневая адресация.

- вся сеть локальная, поэтому только адреса локальной сети;
- «все слышат всех», проблем с доставкой до адресата нет.

Выделенная среда – одноуровневая адресация.

- появляется дополнительное устройство коммутатор, который обеспечивает выделенный канал между своим портом и устройством и понимает кому предназначаются данные (отсутствие коллизий);
- все уже не слышат всех, коммутатор знает какой адрес находится за каким физическим портом.

Необходимость двухуровневой адресации

Но что будет, если в коммутатор уже невозможно подключить новых участников сети, или они удалены по расстоянию?

Можно сделать несколько локальных сетей и объединить их.

Двухуровневая адресация – необходимость при объединении нескольких сетей.

МАС и IP

Но как между собой связаны МАС и IPадреса?

Как можно из одного получить другой – и наоборот?

Address Resolution Protocol (ARP)

Address Resolution Protocol (ARP)

ARP (протокол определения адреса) – в стеке протоколов TCP/IP определяет IP-адрес по MAC-адресу узла и наоборот.

ARP таблица в Linux

Просмотр ARP таблицы

```
# ip neigh show dev eth1

# ping -c 1 192.168.11.12
PING 192.168.11.12 (192.168.11.12) 56(84) bytes of data.
64 bytes from 192.168.11.12: icmp_seq=1 ttl=64 time=1.58 ms
--- 192.168.11.12 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 1.588/1.588/1.588/0.000 ms

# ip neigh show dev eth1
192.168.11.12 lladdr 08:00:27:23:22:97 REACHABLE
```

Если узел 192.168.11.10 через интерфейс eth1 осуществит сетевое взаимодействие с узлом 192.168.11.12 (например, с помощью утилиты ping), то в его ARP-таблице появится новая запись, которую можно просмотреть командой **ip neigh show** (параметр dev указывает фильтровать записи относящиеся к интерфейсу eth1).

ARP таблица в Linux

Добавление статической записи

```
# ip neigh add 192.168.11.100 lladdr 00:00:00:00:00:AA dev eth1
# ip neigh show dev eth1
192.168.11.100 lladdr 00:00:00:00:aa PERMANENT
```

Обратите внимание: на статический характер записи указывает ключевое слово PERMANENT, в отличие от REACHABLE, означающий динамическую запись

Удаление записи

```
# ip neighb del 192.168.11.100 dev eth1
```

ARP таблица в Linux

Все тоже самое можно делать с помощью «традиционной» утилиты ARP

```
# arp -s 192.168.11.100 00:00:00:00:00:AA
# arp -i eth1
Address HWtype HWaddress Flags Mask Iface
192.168.11.100 ether 00:00:00:00:00 cm cth1
# arp -d 192.168.11.100
```

arping

Опрос узлов локальной сети на L2

```
$ ping -c 1 10.0.2.3
PING 10.0.2.3 (10.0.2.3) 56(84) bytes of data.
..
--- 10.0.2.3 ping statistics ---
1 packets transmitted, 0 received, 100% packet loss, time 0ms

$ sudo arping -c 1 10.0.2.3
60 bytes from 52:54:00:12:35:03 (10.0.2.3): index=0 time=7.346 usec
--- 10.0.2.3 statistics ---
1 packets transmitted, 1 packets received, 0% unanswered (0 extra)
rtt min/avg/max/std-dev = 0.007/0.007/0.0007/0.000 ms
```

Если протокол ICMP, с помощью которого можно протестировать работоспособность удалённых узлов, зафильтрован, мы можем использовать утилиту APRING, которая работает на 2-м уровне модели OSI.

tcpdump

Просмотр трафика L2

```
# sudo tcpdump -i any arp -nn -v -A -e
```

- С опцией -е программа tcpdump будет печатать заголовки канального уровня в каждой выведенной строке.
- → Это может использоваться, например, для показа аппаратных адресов МАС для таких протоколов как Ethernet и IEEE 802.11.
 - С опцией А команда tcpdump будет отображать на экране содержимое пакетов в формате ASCII.
 - ...

tcpdump

Просмотр трафика L2

```
# sudo tcpdump -i any arp -nn -v -A -e
```

- Опция v при парсинге и выводе печатает чуть больше информации.
- → Например, добавляет время жизни пакета, идентификацию, общую длину и опции в IP пакетах.
 - Опция -nn отображает порты и ip-адреса цифрами вместо имён (localhost, ssh, http, и т.д.)

Итоги

Итоги

Сегодня мы узнали:

- основы L2;
- о взаимодействии между L2 и L3;
- основные команды ОС на 2-м уровне модели OSI.
- → Теперь мы умеем проводить базовую диагностику коннективити на 2-м уровне модели OSI.

Домашнее задание

Домашнее задание

Давайте посмотрим ваше домашнее задание.

- Вопросы по домашней работе задавайте **в чате** мессенджера Slack.
- Задачи можно сдавать по частям.
- Зачёт по домашней работе проставляется после того, как приняты все задачи.

Задавайте вопросы и пишите отзыв о лекции!

Андрей Вахутинский