Prof. Dr. Peer Küppers

Agenda – Part 5

- Introduction to Unsupervised Learning and Clustering
- Prototype-based Clustering (k-Means)
- Density-based Clustering (DBSCAN)
- □ Summary & Outlook

- Clustering is an unsupervised learning technique for identifying and grouping similar objects
 - labels attached to the clusters are not available in the historical data
 - we want to derive these labels.
- Supervised learning
 - Goal: predict target value (numerical=regression, categorical=classification) for samples with unknown target value
 - Search for and model dependencies between features and target

- Unsupervised learning
 - Goal: Create a pattern or a more compact description input data
 - No reference to target attribute, error not directly measureable.
 - We cannot hold back a fraction of the data (train-test-split) as in classification / regression!

- Pre-Requisites
 - Set of samples
 - Similarity measure to compare objects
- Goal: Find groups of objects (=clusters)
- Conditions:
 - Objects within one cluster are similar to each other
 - Objects in different clusters are different from each other
- Result: Descriptive grouping of objects

5

- Basic difference of cluster analyses
 - Exclusive or strict partitioning clusters
 - Each data object belongs to one exclusive cluster (most common type of cluster analysis)
 - Overlapping clusters: Cluster groups are not exclusive and each data object may belong to more than one cluster.

Summer School Introduction

Prototype-based clustering

6

- Each cluster is represented by a central data object, also called a prototype.
- The prototype of each cluster is usually the center of the cluster, also called "centroid".
- Objects with similar properties like the centroid are grouped in this cluster.

Summer School Introduction

Density-based clustering

- Cluster is defined as a dense region where
 - objects are concentrated surrounded by
 - a low-density area where data objects are sparse.
- Each dense area is assigned a cluster and the low-density area can be discarded as noise.
- Note: not all data objects need to be clustered

Agenda – Part 5

- Introduction to Unsupervised Learning and Clustering
- Prototype-based Clustering (k-Means)
- Density-based Clustering (DBSCAN)
- Summary & Outlook

k-Means Clustering

- Prototype-based method which divides data into k clusters
 - k needs to be pre-defined.
 - Goal: Find k clusters from a collection of m objects with n attributes
- Each sample can be formalized as (x_i,y_i) with i = 1, ..., n
 - In case of two features x and y
 - n=number of samples in the dataset
- For a given cluster, the point that corresponds to the mean value of all samples' x and y-values called centroid
 - Variations:
 - K-Median: median value instead of mean
 - K-Medoid: most centrally located data point (out of the original samples)

k-Means Clustering: Similarity Measures

 Remember the distance measures? These are important in k-Means clustering, too, since we need a mechanism to evaluation "proximity" of samples.

Euclidian distance

$$d(x, x') = \sqrt{\sum_{i=1}^{m} (x_i - x'_i)^2}$$

Manhattan distance

$$d(x, x') = \sum_{i=1}^{m} |x_i - x'_i|$$

k-Means Clustering

Algorithm

- 1. Choose value of k and k initial centroid guesses
- 2. Compute distance d_{ij} from each data point (x_i, y_i) to each centroid (cx_i, cy_i) and assign each point to closest centroid:

$$d_{ij} = \sqrt{(x_i - cx_j)^2 + (y_i - cy_j)^2}$$

3. Compute the centroid of each defined cluster from step 2. The centroid of the m samples in a k-means cluster is calculated as:

$$(x_i, y_i) = \left(\frac{\sum_{i=1}^m x_i}{m}, \frac{\sum_{i=1}^m y_i}{m}\right)$$

4. Repeat steps 2 and 3 until centroids stay stable

Initial samples with two features: x and y:

Step 1: Choose value of k and guess initial centroids

 Step 2: Compute distance of each data point to each centroid and assign each point to its closest centroid

 Step 3: Compute the centroid of the newly defined clusters by calculating the mean for x and y

 Step 4: Repeat steps 2 and 3 until centroids stay stable: Re-assign each point to closest centroid & compute the centroid of each newly defined cluster

Let us take a look at another example:

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

- What are the challenges?
 - Number of centroids (k)
 - Initial centroid position influences clustering result
 - k-Means cannot distinguish dense areas and hence identify arbitrary types of clusters.

Lab

Clustering using sklearn

k-Means Clustering: Finding the right k

Clustering with small SSE

Challenge: finding the best value for k

Clustering with large SSE

- We can use Sum of Squared Error (SSE)
 - For each point, the error is the distance to the nearest centroid.
 - To get the SSE, we square these errors and build the sum.

SSE =
$$\sum_{i=1}^{M} d(p_i, cpi)^2 = \sum_{i=1}^{M} (p_i - cpi)^2$$

- p_i: one sample of M data points in total
- cp_i: centroid to which p_i is associated
- We should prefer the k which results in the smallest SSE.
- Another measure for cluster-quality is the Davies-Boulding index.
 - Measure of uniqueness of the clusters
 - Considers cohesiveness of the cluster (distance between the data points and center of the cluster) and separation between the clusters
 - The lower the value of the Davies-Bouldin index, the better the clustering.

k-Means Clustering: Weaknesses

Importance of Initial Centroids:

k-Means Clustering: Weaknesses

Influence of Outliers:

Agenda – Part 5

- Introduction to Unsupervised Learning and Clustering
- ☐ Prototype-based Clustering (k-Means)
- Density-based Clustering (DBSCAN)
- Summary & Outlook

Density-Based Clustering: Introduction

- In many applications, the number of clusters will not be known a priori.
 - → Issue of k-Means
- Furthermore, we saw that k-Means cannot handle complex data structures that we might need to handle.

- For these situations, we can rely on density-based clustering:
 - Clusters are formed by high-density areas amongst relatively low-density areas.

Density-Based Clustering: Introduction

- Measuring density
 - Density = number of points within a circular space with radius ε (epsilon)
 - Example: Density around data point A is 6

 Based on this idea, the DBSCAN algorithm identifies dense regions based on the hyperparameters radius (ε) and the minimum number of points that are necessary to define a region dense (MinPts):

Density-Based Clustering: DBSCAN

- DBSCAN "walks" through the whole dataset and calculates the density for all data points with a given radius ε (epsilon).
 - Any density above MinPoints is considered high density.

- Using a pre-defined threshold (MinPoints), DBSCAN decides whether a neighborhood is high density or low density
 - DBSCAN distinguishes core points and border points (forming high density areas).
 - A interconnected high density area becomes one cluster!
 - Points that are not in a dense region (or at the border of a dense region)
 - Labeled as "Noise" (default cluster)

Density-Based Clustering: DBSCAN

Let us take a look at how this algorithm works:
https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/

Issues

 If the dataset contains regions with varying density, DBSCAN is not able to identify the clusters correctly.

Either we set MinPoints too low / epsilon too high
 → worst case: identify just one cluster

Or we set MinPoints too high / epsilon too low
 → worst case: assign all points as "Noise", i.e. do not "jump" over low-density regions

K-means clustering is more suitable in this case

Density-Based Clustering: DBSCAN

Advantages

- Does not require specification of number of clusters in the data a priori, as opposed to k-means.
- Can find arbitrarily shaped clusters
- Simplicity: Requires just two parameters

Disadvantages

- Risk of finding bridges between two natural clusters and merging them into one cluster
- Does not work well if data has varying densities
- Not suitable if all data points shall be assigned to a cluster
- Data sets with high number of attributes will have processing challenges with density clustering

Overall Conclusion / Recommendation

- In many practical applications, the number of clusters to be discovered will be unknown
 - DBSCAN can work better here than k-Means clustering
 - MinPts and ε should be set by a domain expert (data needs to be well understood)
- Given the complementary pros and cons of the k-Means and DBSCAN methods, it is advisable to cluster the data set by **both methods** and understand the patterns of both result sets
 - → Next step would be Ensemble Learning (apply both methods and implement a voting mechanism)
 - We will not go into detail on this!

Agenda – Part 5

- Introduction to Unsupervised Learning and Clustering
- Prototype-based Clustering (k-Means)
- Density-based Clustering (DBSCAN)
- Summary & Outlook

Thank you!

