Universidad Simón Bolívar. Departamento de Matemáticas Puras y Aplicadas.

SEGUNDO PARCIAL - MA1116 (30%)SEPTIEMBRE-DICIEMBRE 2007 TIPO 2B

JUSTIFIQUE TODAS SUS RESPUESTAS

1. Tenemos dos rectas L_1 y L_2 dadas por las siguientes ecuaciones simétricas:

$$L_1: x-2=\frac{y-2}{3}=-(z+1)$$
 (1)

$$L_2: -(x-2) = \frac{y-2}{3} = \frac{z+1}{4}$$
 (2)

- a) Halle la intersección de ambas rectas (3 puntos).
- b) Calcule el coseno del ángulo que forman entre sí sus vectores directores (3 puntos).
- c) Dé una ecuación para el plano que contiene a ambas rectas (5 puntos).
- 2. Encuentre todos los valores de $r \in \mathbb{R}$ que hacen que los vectores $\vec{u} = (0, -1, 1)$, $\vec{v} = (1, 1, 0)$ y $\vec{w} = (4, -2, 2r)$ no sean coplanares (es decir para que \vec{u} , \vec{v} y \vec{w} no sean paralelos a un mismo plano) (5 puntos).
- 3. Sean:

$$V_1 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 - x_3 = 0\}$$
(3)

$$V_2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 0\}$$
(4)

- a) Demuestre que $V_1 + V_2 = \{\vec{v} + \vec{w} : \vec{v} \in V_1 \text{ y } \vec{w} \in V_2\}$ es un subespacio vectorial de \mathbb{R}^3 (6 puntos).
- b) Hallar la dimensión de $V_1 + V_2$ (2 puntos).
- 4. Determine si el conjunto de polinomios $\{-2x + x^2, -x, 3x + 5x^2\} \subset \mathbb{P}_2$ es linealmente independiente o linealmente dependiente (6 puntos).