Informatyczne Systemy Sterowania Ćwiczenie 3: Regulacja dwu- i trójpołożeniowa

Adam Jordanek 168139, Tomasz Klimek 168092

1 grudnia 2018

1 Wstęp

1.1 Cel ćwiczenia

Celem tego ćwiczenia jest symulacja działania systemu regulacji z przekaźnikami dwui trójpołożeniowymi. Ćwiczenie ma umożliwić zapoznanie się z nieliniowymi algorytmami sterowania (przełącznikami dwu- i trójpołożeniowymi) oraz zapoznanie się ze środowiskiem Simulink oraz Matlab w zakresie nieliniowych algorytmów sterowania.

1.2 Plan badań

- 1. Symulacja systemu regulacji. Dobór parametrów regulatora.
 - W trakcie realizacji zadania należy zasymulować działanie systemu regulacji pracującego z regulatorem oraz należy zbadać wpływ wartości parametrów przekaźników na przebieg błędu regulacji
 - (a) Regulator dwupołożeniowy bez histerezy.
 - (b) Regulator dwupołożeniowy z histerezą.
 - (c) Regulator trójpołożeniowy bez histerezy.
 - (d) Regulator trójpołożeniowy z histerezą.
- 2. Zastosowanie członów korekcyjnych.
 - (a) Modyfikacja systemów z zadania 1 o korekcję w postaci członu liniowego o transmitancji:

$$K_k(s) = \frac{k_k}{T_k s + 1} \tag{1}$$

(b) Doświadczalny dobor parametrów członu korekcyjnego.

2 Realizacja planu i wyniki

2.1 Symulacja systemu regulacji. Dobór parametrów regulatora.

System regulacji będziemy symulować przy użyciu programu Simulink będącego częścią pakietu MATLAB.

2.1.1 Regulator dwupołożeniowy bez histerezy

Schemat systemu służącego nam do symulacji regulatora dwupołożeniowego przedstawiony został na poniższym rysunku.

Rys. 1: Schemat symulacji regulatora dwupołożeniowego.

Aby zasymulować regulator dwupołożeniowy bez histerezy musimy ustawić parametry 'On' i 'Off' obiektu 'Relay1' na wartość 0.

Za przeprowadzenie testu odpowiedzialna jest poniższa funkcja.

```
{\tt function} \  \  {\tt testDwupoziomowy1} \, (\, {\tt step} \, \, , \,
 2
     load_system('dwupoziomowy.mdl');
     hold on;
     set_param('dwupoziomowy/Relay1', 'On_switch_value', num2str(0));
set_param('dwupoziomowy/Relay1', 'Off_switch_value', num2str(0));
     sim('dwupoziomowy.mdl');
     figure (1);
     \mathtt{uwy} {=} \ \mathtt{u.signals.values} \ ;
10
     plot(tout, uwy, '-k');
11
     figure(2);
14
     if flag hold on;
15
16
             plot([0'20], [0 0], '-r');
17
18
19
     ewy= e.signals.values;
21
      {\color{red} \textbf{plot}} \, (\, {\color{red} \textbf{tout}} \, , \  \, {\color{red} \textbf{ewy}} \, , \  \, {\color{gray} \textbf{'}} {-k} \, {\color{gray} \textbf{'}} \, ) \, ; \\
     end
```

Fun. 1: Funkcja testująca regulator dwupołożeniowy bez histerezy.

Po wywołaniu tej funkcji otrzymaliśmy poniższe wykresy.

Rys. 2: Wykresy $\varepsilon(t)$, oraz u(t) dla regulatora dwupołożeniowego bez histerezy.

Widzimy z nich, że wykres błędu oscyluje z czasem coraz bliżej zera, więc wartość na wyjściu jest blisko pożądanej, lecz z czasem rośnie również częstotliwość przełączania regulatora, przez co znacznie rośnie jego zużycie i maleje żywotność.

2.1.2 Regulator dwupołożeniowy z histerezą

Histereza dwupoziomowa sprawia, że przełączanie stanu z wysokiego na niski nie zachodzi przy tej samej wartości co przełączanie stanu z niskiego na wysoki. Jej działanie przedstawione zostało na poniższym obrazku.

Rys. 3: Jak działa histereza dwupoziomowa.

Symulacje regulatora dwupoziomowego z histerezą przeprowadzimy na tym samym modelu, który posłużył nam w zadaniu 2.1.1, jednak w obiekcie 'Relay1' parametry 'On' i 'Off' będą różne, dzięki czemu ustawimy żądaną histerezę.

Za przeprowadzenie testu odpowiedzialna jest poniższa funkcja.

```
function testDwupoziomowy2(step,
                                                          stop, flag)
    load_system('dwupoziomowy.mdl');
    hold on;
    i = 1;
    color = char('y', 'k', 'b', 'g', 'r', 'm');
 5
 6
    while (step*i <= stop)
          set_param('dwupoziomowy/Relay1', 'On_switch_value', num2str(step*i));
set_param('dwupoziomowy/Relay1', 'Off_switch_value', num2str(-step*i));
 9
10
11
           sim('dwupoziomowy.mdl');
12
           figure (1);
13
          \mathtt{uwy} \! = \! \lfloor \mathtt{u.signals.values} \; ; \\
           {\tt plot} \, (\, {\tt tout} \, \bar{\,,\,\,} \, {\tt uwy} \, , \quad {\tt 'Color'} \, , \quad {\tt color} \, (\, {\tt mod} \, (\, {\tt i} \, , 6 \, ) \, + 1) \, ) \, ;
14
15
16
          ewy= e.signals.values;
          plot(tout, ewy, 'Color', color(mod(i,6)+1));
18
19
           if flag
20
                 hold on;
21
                 plot([0 30], [0 0], '-r');
plot([0 30], [step*i step*i],
22
                 plot([0 30], [step*i step*i], strcat('--', color(mod(i,6)+1)));
plot([0 30], [-step*i -step*i], strcat('--', color(mod(i,6)+1)));
23
24
25
26
           i=i+1;
27
          hold all;
28
    end
29
30
    end
```

Fun. 2: Funkcja testująca regulator dwupołożeniowy z histerezą.

Po wywołaniu powyższej funkcji dla wartości (0.5, 0.6, true) otrzymaliśmy poniższe wykresy.

Rys. 4: Wykresy $\varepsilon(t)$, oraz u(t) dla regulatora dwupołożeniowego z histerezą.

Widzimy na nich, że amplituda oscylacji błędu wokół zera z czasem stabilizuje się, a liczba przełączeń znacznie maleje w stosunku do regulatora dwupołożeniowego bez histerezy, a więc i wydłuża się jego żywotnosć.

Aby zbadać wpływ zakresu histerezy na wykres $\varepsilon(t)$ wywołamy funkcję dla wartości (0.5, 2, false), w wyniku czego otrzymamy poniższe wykresy.

Rys. 5: Wykres $\varepsilon(t)$ dla regulatora dwupołożeniowego z histerezą przy rosnącym a.

Widzimy na nich, że w miarę zwiększania zakresu histerezy rośnie amplituda oscylacji wykresu błędu wokół zera, oraz maleje częstotliwość przełączeń regulatora.

2.1.3 Regulator trójpołożeniowy bez histerezy

Schemat systemu służącego nam do symulacji regulatora trójpołożeniowego przedstawiony został na poniższym rysunku.

Rys. 6: Schemat symulacji regulatora trójpołożeniowego.

Aby zasymulować regulator trójpołożeniowy bez histerezy musimy ustawić parametry 'On' i 'Off' obiektów 'Relay1' i 'Relay2' na wartość 0.

Za przeprowadzenie testu odpowiedzialna jest poniższa funkcja.

```
function testTrojpoziomowy(n, step, stop, flag)
load_system('trojpoziomowy.mdl');
     hold on;
    noid on;
set_param('trojpoziomowy/Relay1', 'Off_switch_value', num2str(n));
set_param('trojpoziomowy/Relay1', 'On_switch_value', num2str(n));
set_param('trojpoziomowy/Relay2', 'Off_switch_value', num2str(-n));
set_param('trojpoziomowy/Relay2', 'On_switch_value', num2str(-n));
     sim('trojpoziomowy.mdl');
10
11
    figure(1);
    uwy= u.signals.values;
12
    13
14
15
     figure (2);
16
    if flag
    hold on;
    plot([0 30], [n n], '-r');
    plot([0 30], [-n -n], '-r');
17
18
19
20
21
    ewy= e.signals.values;
    25
    end
```

Fun. 3: Funkcja testująca regulator trójpołożeniowy bez histerezy.

Po wywołaniu tej funkcji otrzymaliśmy poniższe wykresy.

Rys. 7: Wykresy $\varepsilon(t)$, oraz u(t) dla regulatora trójpołożeniowego bez histerezy.

Widzimy z nich, że wykres błędu oscyluje z czasem coraz bliżej zera, więc wartość na wyjściu jest blisko pożądanej, lecz z czasem rośnie również częstotliwość przełączania regulatora, przez co znacznie rośnie jego zużycie i maleje żywotność.

Widzimy również, że regulator trójpołożeniowy w stan niski wszedł tylko raz, a później przełączał się tylko na stan wysoki i zerowy. Dzieje się tak, ponieważ przełączenia regulatora z czasem są coraz krótsze, więc tempo malenia wartości błędu nie ma szans wzrosnąć na tyle, aby 'przelecieć' siłą bezwładności systemu do wartości -n, gdzie nastąpiłoby przełączenie na stan niski.

2.1.4 Regulator trójpołożeniowy z histerezą

Histereza trójpoziomowa to nic innego niż połączenie dwóch histerez dwupoziomowych. Jej działanie przedstawione zostało na poniższym obrazku.

Rys. 8: Jak działa histereza trójpoziomowa.

Symulacje regulatora trójpołożeniowego z histerezą przeprowadzimy na tym samym modelu, który posłużył nam w zadaniu 2.1.3, jednak w obiektach 'Relay1' i 'Relay2' parametry 'On' i 'Off' będą różne, dzięki czemu ustawimy żądaną histerezę. Za przeprowadzenie testu odpowiedzialna jest poniższa funkcja.

```
function testTrojpoziomowy(n, step, stop, flag)
            load_system('trojpoziomowy.mdl');
             hold on; i=1;
             \mathtt{color} = \mathtt{char} (\ 'y\ ',\ 'k\ ',
                                                                                                                    'b', 'r', 'g', 'm');
             while (step*i <= stop)
                             set_param('trojpoziomowy/Relay1', 'Off_switch_value', num2str(n-step*i));
set_param('trojpoziomowy/Relay1', 'On_switch_value', num2str(n+step*i));
set_param('trojpoziomowy/Relay2', 'Off_switch_value', num2str(-(n+step*i));
set_param('trojpoziomowy/Relay2', 'On_switch_value', num2str(-(n-step*i));
   6
                                                                                                                                                                                          'On_switch_value', num2str(n+step*i));
'Off_switch_value', num2str(-(n+step*i)));
'On_switch_value', num2str(-(n-step*i)));
 10
                                                   'trojpoziomowy.mdl');
                               sim (
 11
                               figure (1);
 12
                              {\tt uwy} = {\tt u.signals.values} \; ;
                               plot (tout, uwy,
                                                                                                         Color', color(mod(i,6)+1);
 13
                                figure (2);
 14
 15
                               ewy= e.signals.values;
                                                                                                         Color, color(mod(i,6)+1);
 16
                               plot(tout, ewy,
                                         flag
 17
 18
                                                  plot([0 30],
                                                                                                            [n n],
                                                                                                             \begin{bmatrix} \mathbf{n} & \mathbf{n} \end{bmatrix}, \begin{bmatrix} -\mathbf{n} & -\mathbf{n} \end{bmatrix},
                                                 plot([0 30],
plot([0 30],
19
                                                                                                              \begin{array}{ll} (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-1), & (1-1), \\ (1-
20
                                                  plot([0 30],
                                                                                                                 -(n-step*i) -(n-step*i)], strcat('-', color(mod(i,6)+1)));
-(n+step*i) -(n+step*i)], strcat('-', color(mod(i,6)+1)));
22
                                                  plot([0 30],
                                                                                                             [-(n+step*i) - (n+step*i)], strcat(
23
                                                  plot ([0 30],
                                                                                                                                                                                                                                                                                             , color (mod(i, 6) + 1));
                              end
24
                               i=i+1;
25
                               hold all;
26
```

Fun. 4: Funkcja testująca regulator trójpołożeniowy z histerezą.

Po wywołaniu powyższej funkcji dla wartości (0.15, 0.05, 0.06, true) otrzymaliśmy poniższe wykresy.

Rys. 9: Wykresy $\varepsilon(t)$, oraz u(t) dla regulatora trójpołożeniowego z histerezą.

Widzimy na nich, że amplituda oscylacji błędu wokół zera z czasem stabilizuje się, a liczba przełączeń znacznie maleje w stosunku do regulatora trójpołożeniowego bez histerezy, a więc i wydłuża się jego żywotnosć.

Aby zbadać wpływ zakresu histerezy na wykres $\varepsilon(t)$ wywołamy funkcję dla wartości (0.15, 0.05, 0.16, false), w wyniku czego otrzymamy poniższe wykresy.

Rys. 10: Wykres $\varepsilon(t)$ dla regulatora trójpołożeniowego z histerezą przy rosnącym a.

Widzimy na nich, że w miarę zwiększania zakresu histerezy rośnie amplituda oscylacji wokół zera wykresu błędu, oraz maleje częstotliwość przełączeń regulatora.

2.2 Zastosowanie członów korekcyjnych.

Podstawową zaletą regulacji dwupołożeniowej jest prostota realizacji. Niestety, cecha ta jest okupiona pogorszeniem jakości parametrów regulacji w porównaniu regulacją ciągłą. Jedną z możliwości poprawienia jakości regulacji jest zastosowanie układu z korekcją. Człon korekcyjny posiada następującą transmitancję:

$$G_w = \frac{k}{T_k s + 1} \tag{2}$$

2.2.1 Modyfikacja systemów z zadania 1

Rys. 11: Schemat regulatora dwupolożeniowego z korekcją.

Człon korekcyjny włączony w obwód ujemnego sprzężenia zwrotnego przekaźnika wprowadza modyfikację sygnału błędu e(t), co powoduje częstsze niż bez korekcji przełączanie przekaźnika. Korekcja jest skuteczna wówczas gdy, prędkość narastania sygnału z korektora w jest większa od prędkości zmian wejścia (dobór kw i Tw). Zsumowanie sygnałów sprzężenia zwrotnego z obiektu i korektora oraz odjęcie ich sumy od wartości zadanej daje zastępczy sygnał błędu, którego prędkość i sposób narastania jest określona głównie przez sygnał.

Rys. 12: Schemat regulatora trojpolożeniowego z korekcją.

2.2.2 Doświadczalny dobor parametrów członu korekcyjnego.

1. Regulator dwupołożeniowy.

Do sprawdzania regulatorów wykorzystaliśmy następujące funkcje testujące.

```
function testDwupoziomowyKorekcjaT(start, step, stop)
   load_system('dwupoziomowyKorekcja.mdl');
   hold on;
   i = 1;
   color = char('y',
legendtext{1}='';
legendtext1{1}='';
                             'k', 'b', 'g', 'r', 'm');
    while (start+step*i <= stop)
               set_param('dwupoziomowyKorekcja/Transfer Fcn2', 'Denominator', ← strcat('[',num2str(start+step*i),' 1]'));
               sim('dwupoziomowyKorekcja.mdl');
11
               figure(1);
               uwy= u.signals.values;
plot(tout, uwy, 'Color', co
legendtext{i}= strcat('Tk='
12
13
                                                   color(mod(i,6)+1));
14
                                                       , num2str(start+step*i));
15
               legend(legendtext1);
16
               figure (2);
               ewy = e. signals.values;
plot(tout, ewy, 'Color', color(mod(i,6)+1));
legendtext1{i}= strcat('Tk=', num2str(start+step*i));
17
18
19
               legend(legendtext1);
20
21
               i=i+1;
22
               hold all;
23
   end
24
   end
```

Fun. 5: Funkcja testująca regulator dwupoziomowy z korekcją zmiana T.

Analogicznie do testowania K i C

```
set_param('dwupoziomowyKorekcja/Transfer Fcn2', 'Numerator', num2str(start+↔ step*i));
```

Fun. 6: set param dla K.

```
set_param('dwupoziomowyKorekcja/Constant', 'value', num2str(start+step*i));
```

Fun. 7: set param dla C.

Na początek testowany był układ z histerezą. Zadanie polegało on doświadczalnym dobraniu parametrów układu korekcyjnego. Parametrami nas interesującymi jest Tk, K i C gdzie C to wartość stała (blok Constant).

Rys. 13: Zmiana Tk przy stałym k=1 i C=0

Z Wyresu można zauważyć, że dla wartości k=1, wartość optymalna Tk=1.5 ze względu, że nie występują duże wachania wartości.

Rys. 14: Zmiana k przy stałym Tk=1.5 i C=0

Gdy Tk=1 najbardziej optymalne k=0.5 ze względu, że osiąga wartość 0. Z wykresu można zauważyć, że najlepiej układ się zachowuje kiedy C jest równe 0.

Rys. 15: Zmiana C przy stałym k=0.5 i Tk=1.5

Widać, że układ najlepiej zachoduje się gdy K=0.5 i Tk=1. Da takich parametrów wykres dla a=0.5 wygląda:

Dla układu bez histerezy otrzymaliśmy bardzo podobne wyniki:

Rys. 17: Zmiana Tk przy stałym k=0.5 i C=0

Rys. 18: Zmiana K

2. Regulator trójpołożeniowy Do testowania regulatora wykorzystaliśmy funkcje z regulatora dwupołożeniowego. Całe ćwiczenie zostało wykonane w analogiszny sposób do poprzedniego.

Rys. 19: Przy zmianie Tk

Rys. 20: Przy zmianie K

Z wykresów można wywnioskować, że stała nie ma wpływu na regulację. Wybrane parametry to: Tk=20 K=0.1 C=-2

Rys. 21: Przy zmianie C

Przy zmianie 'a' wykres wyglada:

Rys. 22: Przy zmianie a

Dla układu bez histerezy wykonaliśmy takie same pomiary.

Rys. 23: Przy zmianie Tk bez histerezy

Rys. 24: Przy zmianie K bez histerezy

3 Wnioski.

Histereza pozwala nam na zmieniszenie zużycia sprzętu przez zmniejszenie częstotliwości przełączeń między stanami, kosztem odchyłów od pożądanych wartości. Wybór zakresu histerezy zależy od systemu w którym działa regulator oraz od tego jakiej dokładności wyjściowej wymaga.

Regulator trójpołożeniowy pozwa na określenie 3 stanów, dzięki którym uzyskujemy większą kontrolę nad działaniem systemu.

Człon korekcyjny pozwala dostosować system do naszych potrzeb, pozwala on na zmianę częstotliwości przęłączania.

Koszt wydruku w ksero wzrósł dlatego dobrym rozwiązaniem będzie przerzucenie się na system elektroniczny. Pozwoli to na dodatkowe piwko oraz uratuje lasy deszczowe.