Epreuve écrite

Examen de fin d'études secondaires 2005	Nom et prénom du candidat
Section: B/C	
Branche: chimie	

I. Réactions d'addition (18 pts.)

- 1) Etudier le mécanisme de l'addition électrophile du bromure d'hydrogène sur le hex-1-ène. (OC:7)
- 2) Dresser l'équation globale de l'hydratation du propène (sans mécanisme). (QC:1)
- 3) Dresser un schéma global de la polyaddition du styrène (sans mécanisme). (QC:2)
- 4) Selon la conception classique, le benzène devrait engager des réactions d'addition. Mais le benzène donne plutôt des réactions de substitution. Expliquer en étudiant la structure électronique du noyau benzénique. (QC:5)
- 5) Expliquer pourquoi les réactions d'addition nucléophiles sont faciles à réaliser sur les aldéhydes et les cétones. (QC:3)

II. Acide benzoïque et dérivés aromatiques (12 pts.)

- 1) La nitration de l'acide benzoïque donne 83 % de produit *méta*, 15 % de produit *ortho* et 2 % de produit *para*.
 - Dresser l'équation chimique de la réaction prioritaire (sans mécanisme) et indiquer l'effet mésomère exercé par le groupement carboxylique (sans dessiner les formes contributives à la mésomérie). (AT:3)
- 2) À partir de l'acide benzoïque, on peut synthétiser le benzoate de propyle (odeur de jasmin).
 - a) Pour obtenir un bon rendement, il faut d'abord convertir l'acide benzoïque en chlorure de benzoyle. Dresser l'équation chimique. (AT:2)
 - b) Ensuite, on fait réagir en milieu basique un excès de chlorure de benzoyle avec un alcool approprié. Dresser l'équation chimique. (AT:2)
 - c) Combien de ml de cet alcool avec une densité de 0,992 nécessite-t-on pour obtenir 100 g de benzoate de propyle, sachant que le rendement de la réaction est de 90 % ? (EN:3)
 - d) Le chlorure de benzoyle peut également réagir avec un excès d'ammoniac pour donner un autre composé organique important. Lequel ? Dresser l'équation chimique. (QC:2)

III. Recherche et structure de molécules organiques (16 pts.)

- a) Donner le nom scientifique de l'alanine en nomenclature CIP. (AT:1)
- b) Dessiner la projection de FISCHER de la molécule représentée et préciser si elle appartient à la forme D ou L. (AT:1)
- c) Représenter la conformation la plus stable de la molécule en projection de NEWMANN le long de l'axe $C_2 \rightarrow C_3$. (AT:1)
- d) Donner la formule développée de l'alanine en milieu nettement basique et en milieu nettement acide. (AT:1)

Epreuve écrite

Examen de fin d'études secondaires 2005

Section: B/C

Branche: chimie

Le composé A est utilisé en parfumerie pour son odeur de lavande.

Le composé B est un des ingrédients du célèbre parfum Chanel N° 5.

- a) Nommer A et B. Pour A, préciser s'il s'agit de la configuration R ou S. (AT:2)
- b) Est-ce que A réagit avec une solution acidulée de permanganate de potassium?

 Justifier. (AT:1)
- c) Dresser le système rédox de la réaction de B avec la liqueur de FEHLING. (AT:4)
- 3) À partir de la gelée royale (= sécrétion des abeilles servant à nourrir les larves et la reine), on isole un composé avec les propriétés suivantes :
 - il ne renferme que des atomes C, H et O;
 - il n'est pas chiral;
 - sa chaîne carbonée est saturée et non-ramifiée ;
 - ses seuls groupements fontionnels sont un groupement carboxylique et un groupement hydroxyle;
 - sa teneur en O vaut 25,53 %.

Trouver sa formule développée et son nom. (EN:5)

IV. Titrage d'une solution d'acide chloroéthanoïque (14 pts.)

Une prise de 50 cm³ d'une solution d'acide chloroéthanoïque est titrée avec NaOH_(aq) 0,2 M.

- 1) Dresser l'équation de protolyse demandée et montrer à l'aide de ΔpK_a que cette réaction est complète. (AT/EN:2)
- 2) Le degré de dissociation de l'acide chloroéthanoïque analysé vaut 0,098.

Calculer sa concentration initiale. (EN:2)

- 3) On considère la solution obtenue au point d'équivalence.
 - a) Quel est alors le volume de NaOH(aq) ajouté? (EN:1)
 - b) Calculer le pH. (EN:3)
 - c) Est-ce que le méthylorange est un indicateur approprié pour ce titrage? Justifier. (AT:1)
- 4) a) Calculer le pH après ajout de 18 ml de NaOH_(aq). (EN:3)
 - b) Calculer le pH après ajout de 40 ml de NaOH(aq). (EN:2)

(QC = question de cours ; AT = application, transfert ; EN = exercice numérique)

Tableau des pKa (abréviations : ac. = acide ; cat. = cation ; an. = anion)

acides forts (plus forts que H₃O⁺) HI, HBr, HCl, HClO₄, HNO₃, H₂SO₄

bases de force négligeable

cat. hydronium	H ₃ O ⁺	H₂O	eau	-1,74
ac. chlorique	HClO₃	ClO ₃	an. chlorate	-1,00
ac. trichloroéthanoïque	CCl₃COOH	CCl₃COO ⁻	an. trichloroéthanoate	0,70
ac. iodique	HIO ₃	IO ₃	an. iodate	0,80
cat. hexaqua thallium III	TI(H ₂ O) ₆ ³⁺	TI(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo thallium III	1,14
ac. oxalique	нооссоон	HOOCCOO-	an. hydrogénooxalate	1,23
ac. dichloroéthanoïque	CHCl₂COOH	CHCl₂COO ⁻	an. dichloroéthanoate	1,26
ac. sulfureux	H ₂ SO ₃	HSO ₃ -	an. hydrogénosulfite	1,80
an. hydrogénosulfate	HSO ₄	SO ₄ ²⁻	an. sulfate	1,92
ac. chloreux	HClO ₂	ClO ₂ -	an. chlorite	2,00
ac. phosphorique	H ₃ PO ₄	H ₂ PO ₄	an. dihydrogénophosphate	2,12
ac. fluoroéthanoïque	CH₂FCOOH	CH₂FCOO ⁻	an. fluoroéthanoate	2,57
cat. hexaqua gallium III	Ga(H ₂ O) ₆ ³⁺	Ga(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo gallium III	2,62
cat. hexaqua fer III	Fe(H ₂ O) ₆ ³⁺	Fe(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo fer III	2,83
ac. chloroéthanoïque	CH₂CICOOH	CH ₂ CICOO ⁻	an. chloroéthanoate	2,86
ac. bromoéthanoïque	CH₂BrCOOH	CH₂BrCOO ⁻	an. bromoéthanoate	2,90
cat. hexaqua vanadium III	V(H ₂ O) ₆ ³⁺	V(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo vanadium III	2,92
ac. nitreux	HNO ₂	NO ₂	an. nitrite	3,14
ac. iodoéthanoïque	CH₂ICOOH	CH₂ICOO ⁻	an. iodoéthanoate	3,16
ac. fluorhydrique	HF	F	an. fluorure	3,17
ac. acétylsalicylique	C ₈ H ₇ O ₂ COOH	C ₈ H ₇ O ₂ COO	an. acétylsalicylate	3,48
ac. cyanique	HOCN	OCN-	an. cyanate	3,66
ac. méthanoïque	НСООН	HCOO-	an. méthanoate	3,75
ac. lactique	CH₃CHOHCOOH	CH₃CHOHCOO ⁻	an. lactate	3,87
ac. ascorbique	C ₆ H ₈ O ₆	C ₆ H ₇ O ₆ -	an. ascorbate	4,17
ac. benzoïque	C ₆ H ₅ COOH	C ₆ H₅COO⁻	an. benzoate	4,19
cat. anilinium	C ₆ H ₅ NH ₃ ⁺	C ₆ H ₅ NH ₂	aniline	4,62

ac. éthanoïque	CH₃COOH	CH₃COO ⁻	an. éthanoate	4,75
ac. propanoïque	CH₃CH₂COOH	CH₃CH₂COO⁻	an. propanoate	4,87
cat. hexaqua aluminium	AI(H ₂ O) ₆ ³⁺	AI(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo aluminium	4,95
cat. pyridinium	C₅H₅NH ⁺	C₅H₅N	pyridine	5,25
cat. hydroxylammonium	NH₃OH ⁺	NH₂OH	hydroxylamine	6,00
dioxyde de carbone (aq)	CO ₂ + H ₂ O	HCO ₃	an. hydrogénocarbonate	6,12
ac. sulfhydrique	H₂S	HS ⁻	an. hydrogénosulfure	7,04
an. hydrogénosulfite	HSO ₃	SO ₃ ²⁻	an. sulfite	7,20
an. dihydrogénophosphate	H ₂ PO ₄	HPO ₄ ²⁻	an. hydrogénophosphate	7,21
ac. hypochloreux	HCIO	CIO ⁻	an. hypochlorite	7,55
cat. hexaqua cadmium	Cd(H ₂ O) ₆ ²⁺	Cd(OH)(H ₂ O) ₅ ⁺	cat. pentaqua hydroxo cadmium	8,50
cat. hexaqua zinc	Zn(H ₂ O) ₆ ²⁺	Zn(OH)(H ₂ O) ₅ ⁺	cat. pentaqua hydroxo zinc	8,96
cat. ammonium	NH ₄ ⁺	NH ₃	ammoniac	9,20
ac. borique	H ₃ BO ₃	H ₂ BO ₃	an. borate	9,23
ac. hypobromeux	HBrO	BrO ⁻	an. hypobromite	9,24
ac. cyanhydrique	HCN	CN ⁻	an. cyanure	9,31
cat. triméthylammonium	(CH₃)₃NH ⁺	(CH₃)₃N	triméthylamine	9,87
phénol	C ₆ H ₅ OH	C ₆ H ₅ O ⁻	an. phénolate	9,89
an. hydrogénocarbonate	HCO₃ ⁻	CO ₃ ²⁻	an. carbonate	10,25
ac. hypoiodeux	HIO	IO-	an. hypoiodite	10,64
cat. méthylammonium	CH ₃ NH ₃ ⁺	CH ₃ NH ₂	méthylamine	10,70
cat. éthylammonium	CH₃CH₂NH₃ ⁺	CH ₃ CH ₂ NH ₂	éthylamine	10,75
cat. triéthylammonium	(C ₂ H ₅) ₃ NH ⁺	$(C_2H_5)_3N$	triéthylamine	10,81
cat. diméthylammonium	(CH ₃) ₂ NH ₂ ⁺	(CH ₃) ₂ NH	diméthylamine	10,87
cat. diéthylammonium	$(C_2H_5)_2NH_2^+$	(C ₂ H ₅) ₂ NH	diéthylamine	11,10
an. hydrogénophosphate	HPO ₄ ²⁻	PO ₄ ³⁻	an. phosphate	12,32
an. hydrogénosulfure	HS ⁻	S ²⁻	an. sulfure	12,90
eau	H₂O	OH ⁻	anion hydroxyde	15,74

acides de force négligeable

bases fortes (plus fortes que OH⁻) O²⁻, NH₂⁻, anion alcoolate RO⁻)

Classification périodique des éléments

																:	
1,01	İ																4,00
																	He
H																	2
1	0.01											10,8	12,0	14,0	16,0	19,0	20,2
6,94	9,01											В	C	N	0	F	Ne
Li	Be											5	6 .	7	8	9	10
3	4											27,0	28,1	31,0	32,1	35,5	39,9
23,0	24,3											Al	Si	P	S	Cl	Ar
Na	Mg											13	14	15	16	17	18
11	12				50.0	540	EE 0	58,9	58,7	63,5	65,4	69,7	72,6	74,9	79,0	79,9	83,8
39,1	40,1	45,0	47,9	50,9	52,0	54,9	55,8		l .		Zn	Ga	Ge	As	Se	Br	Kr
\mathbf{K}	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	1	31	32	33	34	35	36
19	20	21	22	23	24	25	26	27	28	29	30	114,8	118,7	121,8	127,6	126,9	131,3
85,5	87,6	88,9	91,2	92,9	95,9	99,0	101,1	102,9	106,4	107,9	112,4	1	4		E	T	Xe
Rb	Sr	\mathbf{Y}	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	1
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53 210	222
132,9	137,3	138,9	178,5	180,9	183,9	186,2	190,2	192,2	195,1	197,0	200,6	204,4	207,2	209,0	210	ł	1
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
223	226,1	227	260	260	 										1	1	1
	1		Ku	Ha	1		1	1	1	1	}				1	1	
Fr	Ra	Ac			1	1	1	ĺ]		1	١	l	l
87	88	89	104	105	<u> </u>		Ь	ــــــــــــــــــــــــــــــــــــــ	ــــــــــــــــــــــــــــــــــــــ	<u> </u>	<u> </u>	·					

140,1	140,9	144,2	145	150,4	152,0	157,3	158,9	162,5	164,9	167,3	168,9	173,0	175,0
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	67	68	69	70	71
232,0 Th	231 Pa	238,0 U 92	237 Np 93	242 Pu 94	243 Am 95	247 Cm 96	249 Bk 97	249 Cf 98	254 Es 99	255 Fm 100	256 Md 101	253 No 102	257 Lw 103

indicateurs de pH

indicateur	couleur acide	changement de couleur	couleur alcaline
violet de méthyle bleu de thymol bleu de bromophénol méthyl-orange vert de bromocrésol rouge de méthyle litmus bleu de bromothymol rouge de phénol bleu de thymol phénolphtaléine thymolphtaléine jaune d'alizarine trinitrobenzène	jaune rouge jaune rouge jaune rouge rouge rouge jaune jaune jaune jaune incolore jaune jaune	0 à 2,0 1,2 à 2,8 3,0 à 4,6 3,1 à 4,5 3,8 à 5,5 4,2 à 6,3 5,0 à 8,0 6,0 à 7,6 6,4 à 8,2 8,0 à 9,6 8,3 à 10,0 9,3 à 10,5 0,0 à 12,1 12,0 à 14,0	violet jaune violet jaune bleu jaune bleu bleu rouge bleu rose bleu lavande orange