#### Sejong University

# 음성인식

모듈Ⅱ

변용혁 장혜원 황수영 박소진

#### Sound Recognition

CONTENTS 모듈॥ 개요문제 상황 분석접근 방법 & 생각개발환경

**본론** 데이터 분석 특징 선택 과정 Decision Tree

결과테스트 및 오류 수정결과문제점 분석

# 문제 상황

0 1 2 3 45 6 7 8 9

- 성인 여성의 목소리
- 0.5초 길이 음성
- 특정 크기의 볼륨

### 접근 방법

0 1 2 3 45 6 7 8 9

구별하기 위한 특징 스펙트로그램, 피치, 포먼트, 주파수···

프로그램

Praat 음성 분석 프로그램





프로그램

Praat 음성 분석 프로그램

#### 라이브러리

#### Parselmouth

프라트 프로그램을 위한 파이썬 라이브러리

- Maximum formant = 5500Hz
- Number of formants = 4
- window length = 0.025
- time\_step = 0.0625

#### 데이터 분석

0 1 2 3 4 5 6 7 8 9

프라트 분석 프로그램으로 본 데이터 분석

- 숫자 수치
- 그래프 형태

이론 중심으로 본 데이터 분석

- 입벌림 정도에 대한 포먼트 값
  - 고모음과 저모음 포먼트 차이



#### 데이터 분석



숫자 수치 분석

# 사용한 특징

- 포먼트 값 formant value
- F2평균 F1평균
- F3평균 F2평균
- F1의 Max

비치 값 pitch value

- 포먼트 구간 정의
   모음 시작 그룹, 자음시작 그룹 구분
- 피치 그래프 개형

#### 흐름도





### 그룹화



0 모음/자음 모음 Max(F1) 700Hz 기준 Group 1 7 자음 낮 Group 2

1 2 5 6
모음 모음 모음
낮 낮 낮 낮
Group 3

 3
 4
 8

 자음
 자음

 노
 노

Group 4



### ○ 모음 시작 / 자음 시작 Praat 분석프로그램 상에 서 Pitch가 정의되는 구간 과 포먼트가 정의되는 구간 의 시작점의 차이를 이용함



Pitch가 정의되는 구간과 포먼트가 정의되는 구간이 유사함



Pitch가 정의되는 구간과 포먼트가 정의되는 구간의 차이가 큼

#### ○ 자음 시작 그룹과 모음 시작 그룹을 구분할 때 시행착오

#### 문제

테스트할 때 위치를 옮겼던 음성데이터에서 기존의음성에서는 나타나지 않았던 포먼트값들이 발생

→ 자음과 모음 특징을 초반에 사용했기 때문에 이 후 대부분의 결과에 큰 영향

#### 해결책

praat분석 프로그램의 결과에 따라 테스트데이터를 분석해본 결과 모든 변조된 데이터의 앞,뒤 부분에 10개정도의 데이터가 의도적으 로 잡혀있음을 확인함

→ 필요한 데이터만 필터링 해 사용





| Num | Max(F1) |  |
|-----|---------|--|
| 0   | 855     |  |
| 1   | 524     |  |
| 2   | 284     |  |
| 3   | 946     |  |
| 4   | 969     |  |
| 5   | 613     |  |
| 6   | 500     |  |
| 7   | 555     |  |
| 8   | 1128    |  |
|     | 오류값 제거  |  |

단위 : Hz

#### ○ F1의 MAX값을 구할 때 시행착오



### 문제

정확치 않은 Pitch 범위로 인해 F1의 max값 에서 이상치 존재

→ 그룹1(숫자 0), 그룹2(숫자 7)을 구할 때 잘못된 결과 발생

#### 해결책

4분위수를 이용해 값의75퍼센트만 고려

4분위수란 관측값을 작은 순서로 배열했을 때 전체를 사등분하는 값, 극단 값에 영향을 받지 않게 되고, 한쪽으로 치우친 분포에서 극단 값을 제외한 퍼진 정도를 알려고 할 때 사용한다.



제3사분위수, 누적 백분율이 75%에 해당하는 값

단위 : Hz

| 오류깂  | Max(F1) | Num |
|------|---------|-----|
|      | 855     | 0   |
|      | 524     | 1   |
| 676  | 284     | 2   |
|      | 946     | 3   |
| 1083 | 969     | 4   |
|      | 613     | 5   |
|      | 500     | 6   |
| 885  | 555     | 7   |
|      | 1128    | 8   |
| •    | 오류값 제거  |     |



F2 - F1의 평균 차이를 구할 때 수행착오 Group3에서 확연히 낮은 값을 5로 리턴

#### 문제

Undefined 값이 발생해 이용하려는 특징인 F2-F1의 평균값에 영향을 미치는 것을 발견

기본 음성 파일에서는 undefined값이 다소 적었으나 음성 파일의 앞 뒤에 공백이 생길 때는 많은 undefined값 발생

- **해결책** 정확도 향상을 위해 피치 구간이 정의된 구간 에서의 포먼트 값만 사용
  - f1, f2, f3, f4 중 하나라도 undefined값이 존 재하면 사용하지 않음

| time     | f1         | f2          | f3          | f4        |
|----------|------------|-------------|-------------|-----------|
|          | FF6 F47022 | . —         | . •         |           |
| 0.334062 | 556.547033 | 2010.185040 |             | undefined |
| 0.340312 | 554.228798 | 2036.185222 |             | undefined |
| 0.346562 | 551.749547 | 2062.532576 | 5448.574190 | undefined |
| 0.352812 | 549.114188 | 2088.837466 | 5448.572667 | undefined |
| 0.359062 | 546.423040 | 2114.011581 | 5448.572127 | undefined |
| 0.365312 | 543.726331 | 2137.375575 | 5448.573347 | undefined |
| 0.371562 | 541.132198 | 2158.670776 | 5448.577845 | undefined |
| 0.377812 | 538.655448 | 2177.704957 | 5448.588490 | undefined |
| 0.384062 | 536.370294 | 2194.189145 | 5448.610329 | undefined |
| 0.390312 | 534.308488 | 2208.549340 | 5448.653061 | undefined |
| 0.396562 | 532.553044 | 2219.724465 | 5448.733298 | undefined |
| 0.402812 | 531.035843 | 2229.038391 | 5448.889712 | undefined |
| 0.409062 | 529.773447 | 2236.674235 | 5449.195292 | undefined |
| 0.415312 | 528.756979 | 2242.939221 | 5449.804047 | undefined |
| 0.421562 | 527.972712 | 2247.742080 | undefined   | undefined |
| 0.427812 | 527.379556 | 2251.899675 | undefined   | undefined |
| 0.434062 | 526.955936 | 2256.360292 | undefined   | undefined |
| 0.440312 | 526.716478 | 2261.246604 | undefined   | undefined |
| 0.446562 | 526.670713 | 2267.575789 | undefined   | undefined |
| 0.452812 | 526.832892 | 2277.028878 | undefined   | undefined |
| 0.459062 | 527.233528 | 2291.539032 | undefined   | undefined |
| 0.465312 | 527.884665 | 2313.975762 | undefined   | undefined |
| 0.471562 | 528.706805 | 2345.838089 | undefined   | undefined |
| 0.477812 | 529.573095 | 2386.728882 | undefined   | undefined |



# ○ 5를 제외한 Group4 (1, 2, 6) 구분

Pitch가 생성된 구간을 4등분하여 구간마다 피치 그래프 개형이 증가/감소 하는지 확인





Pitch가 생성된 구간을 4등분하여 구간마다 피치 그래프 개형이 증가/감소 하는지 확인



# ○ 5를 제외한 Group4 (1, 2, 6) 구분

Pitch가 생성된 구간을 4등분하여 구간마다 피치 <mark>그래프 개형이 증가/감소</mark> 하는지 확인

| 1구간 | 2구간 | 3구간 | 4구간 | num |
|-----|-----|-----|-----|-----|
| +   | +   | +   | -   | 1   |
| +   | -   | -   | +   | 2   |
| +   | +   | _   | _   | 6   |







Pitch 시점 – Formant 시점 절댓값

- 3 0.054 **→** 5
- 4 0.037 → 3
- 8 0.07 **→** 7

# 숫자 4



# O Pitch 정의 구간 재사용

Praat 분석프로그램 상에서 Pitch가 정의되는 구간과 포먼트가 정의되는 구간의 시작점의 차이를 이용함

3, 4, 8이 피치 구간과 포먼 트 구간에서 확실한 차이를 보이기 때문에 구분 가능

# 숫자 8



### 테스트 과정

# 테스트 데이터

- 볼륨 조절 (50% 200%)
- 위치 조절 (앞, 뒤 공백)



5-2

**o** 



**o** 

5-3

8-2



3-2

**o** 

8-3



**o** 

**o** 

**o** 



**o** 

6-3

9-2



4-2

7-1

9-3







4-3





7-2









#### 테스트 결과 & 문제점 분석

5<sub>/10</sub>

문제점 분석

시작음의 자음 모음 구분 특징

→ 포먼트와 피치 구간의 차이

해결방안 및 계획

분석 프로그램의 성능으로부터 영향을 받지않는 특징을 도출

#### 계획

분석 프로그램의 성능으로부터 영향을 받지않는 새로운 특징을 도출

> 기존의 특징들을 이용한 각 함수들을 재검토



성능 및 인식률 향상이 기대됨

흐름의 영향을 줄이기 위해 함수들 개별화 시도