Stack In Real-Life

Analogy let's say on one fine morning you are going to a library

Imagine There is a pile of books

When you want to add a book you always put it on the top

And now suppose you want the fifth book Then first you have to remove the first four in a journey to reach the fifth one

(Unless you are smart enough to get the fifth one directly)

STACK

The same goes with the stack in programming (Last In First Out)

STACK

It is an imaginary way of organizing data in memory that follows certain rules

Brought you by @vairagi.codes

when you add something in stack it goes to the top of the stack

When you remove something from stack it should be from the top of the stack

