UMA204: Introduction to Basic Analysis

Naman Mishra

January 2024

Contents

1	Nui	mber Systems 3	
	1.1	The Naturals	
	1.2	Relations	
	1.3	The Integers	
	1.4	The Rationals	
	1.5	Ordered Fields with LUB	
		1.5.1 Assignment 1	
	1.6	The Reals	
		1.6.1 Dedekind's Construction	
		1.6.2 Cauchy's Construction	
		1.6.3 Assignment 2	cture
		01	: Mor
		01	Jan
		'2/	1

The course

Instructor: Prof. Purvi Gupta

Office: L-25

Office hours: Wed 17:00–18:00

Lecture hours: MW 12:00–12:50, Thu 9:00–9:50

Tutorial hours: Fri 12:00–12:50

We assume the following.

• Basics of set theory

• Existence of $\mathbb{N} = \{0, 1, 2, \ldots\}$ with the usual operations + and \cdot

For a recap, refer lectures 1 to 3 of UMA101.

Chapter 1

Number Systems

 $\mathbb{N}\subseteq\mathbb{Z}\subseteq\mathbb{Q}\subseteq\mathbb{R}\subseteq\mathbb{C}$

1.1 The Naturals

(Recall from UM101) \mathbb{N} is the unique minimal inductive set granted by the ZFC axioms. Addition and multiplication are defined by the recursion principle and we showed that they

- are associative and commutative,
- admit identity elements 0 and 1 respectively,
- satisfy the distributive law,
- satisfy cancellation laws,
- but do not admit inverses.

1.2 Relations

(Recall) A relation on a set A is a subset $R \subseteq A \times A$. We write $a \ R \ b$ to denote $(a,b) \in R$.

Definition 1.1 (Partial order). A relation R on A is called a partial order if it is

- reflexive -a R a for all $a \in A$;
- antisymmetric if a R b and b R a then a = b for all $a, b \in A$;
- transitive if a R b and b R c then a R c for all $a, b, c \in A$.

Additionally, if for all $x, y \in A$, x R y or y R x, then R is called a total order.

A set A equipped with a partial order \leq is called a partially ordered set (or poset).

A set A equipped with a total order \leq is called a totally ordered set or simply an ordered set.

Examples.

- (\mathbb{N}, \leq) where we say that $a \leq b$ if $\exists c \in \mathbb{N}$ such that a + c = b.
- $(\mathbb{N}, |)$ where we say that a | b if $\exists c \in \mathbb{N}$ such that $a \cdot c = b$.

In UMA101, we defined order slightly differently, where we said that either a < b or b < a but never both. This is a "strict order". We will denote a weak partial order by \leq and a strict partial order by <. (the notation is suggestive of how to every order there is a corresponding strict order and vice versa).

Definition 1.2 (Equivalence). An equivalence relation on a set A is a relation R satisfying

- reflexivity;
- symmetry if a R b then b R a for all $a, b \in A$;
- transitivity.

Notation. We write $[x]_R$ to denote the set $\{y \in A \mid x R y\}$.

Proposition 1.3. The collection $\mathscr{A} = \{[x]_R \mid x \in A\}$ partitions A under any equivalence relation R on A.

Proof. For every $x \in A$, $x \in [x]_R$ and so $\bigcup \mathscr{A} = A$.

Let $[x]_R \cap [y]_R \neq \emptyset$, where $x, y \in A$. Then there exists $z \in A$ such that x R z and y R z, from which it follows that x R y and $[x]_R = [y]_R$.

1.3 The Integers

We cannot solve 3 + x = 2 in \mathbb{N} . We introduce \mathbb{Z} to solve this problem.

Consider the relation R on $\mathbb{N} \times \mathbb{N}$ given by

$$(a,b) R(c,d) \iff a+d=b+c.$$

(check that this is an equivalence relation trivial).

Definition 1.4. We define \mathbb{Z} to be the set of equivalence classes of R, notated $\mathbb{N} \times \mathbb{N}/R$.

Further, define

- $[(a,b)] +_{\mathbb{Z}} [(c,d)] := [(a+c,b+d)];$
- $[(a,b)] \cdot_{\mathbb{Z}} [(c,d)] := [(ac+bd,ad+bc)].$
- $z_1 \leq_{\mathbb{Z}} z_2$ iff there exists $n \in \mathbb{N}$ such that $z_1 +_{\mathbb{Z}} [(n,0)] = z_2$ (alternatively, $[(a,b)] \leq_{\mathbb{Z}} [(c,d)]$ iff $a+d \leq b+c$).

We need to check that these are well-defined. What does this mean? Consider

$$[(1,2)] +_{\mathbb{Z}} [(3,4)] = [(4,6)]$$
$$[(3,4)] +_{\mathbb{Z}} [(3,4)] = [(6,8)]$$

Our definition must ensure that [(4,6)] = [(6,8)].

In general, the definitions are well-defined if they are independent of the choice of representatives. Throughout this section, we will omit the parentheses in [(a,b)] and write it as [a,b].

Lecture 02: Tue 02 Jan '24

Proposition 1.5. The operations $+_{\mathbb{Z}}$, $\cdot_{\mathbb{Z}}$ and the relation $\leq_{\mathbb{Z}}$ are well-defined.

Proof. Suppose
$$x = [a, b] = [a', b']$$
 and $y = [c, d] = [c', d']$. Then
$$a + b' = a' + b$$
$$c + d' = c' + d$$
$$(a + c) + (b' + d') = (a' + c') + (b + d)$$
$$(a + c, b + d) R (a' + c', b' + d')$$
$$[a + c, b + d] = [a' + c', b' + d']$$

Since $\leq_{\mathbb{Z}}$ is defined in terms of $+_{\mathbb{Z}}$, it is also well-defined. For multiplication,

$$(a+b')c + (a'+b)d = (a'+b)c + (a+b')d$$

$$(ac+bd) + (a'd+b'c) = (a'c+b'd) + (ad+bc)$$

$$[ac+bd, ad+bc] = [a'c+b'd, a'd+b'c]$$

and symmetrically

$$[a'c + b'd, a'd + b'c] = [a'c' + b'd', a'c' + b'd']$$

so by transitivity

$$[ac + bd, ad + bc] = [a'c' + b'd', a'c' + b'd']$$

Proposition 1.6. The relation $\leq_{\mathbb{Z}}$ is a total order on \mathbb{Z} .

Proof. Let $x = [a, b], y = [c, d] \in \mathbb{Z}$. Since $x +_{\mathbb{Z}} [0, 0] = [a + 0, b + 0] = x, <math>x \leq_{\mathbb{Z}} x$.

Suppose $x \leq_{\mathbb{Z}} y$ and $y \leq_{\mathbb{Z}} x$. Then there exist $m, n \in \mathbb{N}$ such that x + [m, 0] = y and $y +_{\mathbb{Z}} [n, 0] = x$. Thus $x +_{\mathbb{Z}} [m, 0] +_{\mathbb{Z}} [n, 0] = [a + m + n, b] = [a, b]$. This gives a + m + n + b = a + b and so m + n = 0. This can only be when m = n = 0 and so x = y.

Now suppose $x \leq_{\mathbb{Z}} y$ and $y \leq_{\mathbb{Z}} z$. Then there exist $m, n \in \mathbb{N}$ such that x + [m, 0] = y and $y +_{\mathbb{Z}} [n, 0] = z$. This immediately gives x + [m + n, 0] = z and so $x \leq_{\mathbb{Z}} z$.

For trichotomy, note that either $a+d \leq b+c$ or $b+c \leq a+d$ by trichotomy of (\mathbb{N}, \leq) . In the first case, a+d+n=b+c for some $n \in \mathbb{N}$, so $[a,b]+_{\mathbb{Z}}[n,0]=[c,d]$. Thus $x \leq_{\mathbb{Z}} y$. Similarly, in the second case, $y \leq x$.

Definition 1.7 (Ring). A ring is a set S with two binary operations + and \cdot such that for all $a, b, c \in S$,

- (R1) addition is associative,
- (R2) addition is commutative,
- (R3) there exists an additive identity 0,
- (R4) there exists an additive inverse -a,
- (R5) multiplication is associative,
- (R6) there exists a multiplicative identity 1,
- (R7) multiplication is distributive over addition (on both sides).

For a commutative ring, we require additionally that

(CR1) multiplication is commutative.

Note that inverses are unique, since if a + b = 0 and a + b' = 0, then b = (b' + a) + b = b' + (a + b) = b'.

Definition 1.8 (Ordered Ring). An ordered ring is a ring S with a total order \leq such that for all $a, b, c \in S$,

- (OR1) $a \le b$ implies $a + c \le b + c$,
- (OR2) $0 \le a$ and $0 \le b$ implies $0 \le ab$.

Theorem 1.9.

- $(\mathbb{Z}, +_{\mathbb{Z}}, \cdot_{\mathbb{Z}}, \leq_{\mathbb{Z}})$ is an ordered (commutative) ring.
- The map $f = n \mapsto [n, 0]$ from \mathbb{N} to \mathbb{Z} is an injective map that respects +, \cdot and \leq . That is, for all $n, m \in \mathbb{N}$,
 - (i) $f(n+m) = f(n) +_{\mathbb{Z}} f(m)$,
 - (ii) $f(nm) = f(n) \cdot_{\mathbb{Z}} f(m)$,
 - (iii) $n \le m \iff f(n) \le_{\mathbb{Z}} f(m)$.

In other words, f is an isomorphism onto a subset of \mathbb{Z} .

Proof. For the first part of the theorem, we check all commutative ring axioms. We omit the subscripts on + and \cdot for brevity.

(R1) Addition is associative:

$$([a,b] + [c,d]) + [e,f] = [a+c,b+d] + [e,f]$$
$$= [a+c+e,b+d+f]$$
$$= [a,b] + [c+e,d+f]$$
$$= [a,b] + ([c,d] + [e,f])$$

- (R2) Addition is commutative: immediate from commutativity of + on \mathbb{N} .
- (R3) Additive identity: [a, b] + [0, 0] = [a + 0, b + 0] = [a, b].
- (R4) Additive inverse: [a, b] + [b, a] = [a + b, b + a] = [0, 0] since a + b + 0 = b + a + 0.
- (R5) Multiplication is associative:

$$([a,b] \cdot [c,d]) \cdot [e,f] = [ac+bd, ad+bc] \cdot [e,f]$$

$$= [ace+bde+adf+bcf, ade+bce+acf+bdf]$$

$$= [a(ce+df)+b(cf+de), a(cf+de)+b(ce+df]$$

$$= [a,b] \cdot [ce+df, cf+de]$$

$$= [a,b] \cdot ([c,d] \cdot [e,f])$$

- (R6) Multiplicative identity: $[a, b] \cdot [1, 0] = [a, b]$.
- (R7) Multiplication distributes over addition:

$$\begin{split} [a,b] \cdot \big([c,d] + [e,f] \big) &= [a,b] \cdot [c+e,d+f] \\ &= [ac+ae+bd+bf,ad+af+bc+be] \\ &= [ac+bd,ad+bc] + [ae+bf,af+be] \\ &= [a,b] \cdot [c,d] + [a,b] \cdot [e,f] \end{split}$$

Distributivity on the other side follows from commutativity proved below.

For commutativity of multiplication,

$$[a, b] \cdot [c, d] = [ac + bd, ad + bc]$$
$$= [ca + db, cb + da]$$
$$= [c, d] \cdot [a, b]$$

(OR1) follows immediately from the definition. For (OR2), suppose $0 \le x, y \in \mathbb{Z}$. Then x = [n, 0] and y = [m, 0] for some $n, m \in \mathbb{N}$. Thus xy = [nm, 0] and so $0 \le xy$.

The second part is again yawningly brute force.

- (i) $f(n+m) = [n+m,0] = [n,0] + [m,0] = f(n) +_{\mathbb{Z}} f(m)$.
- (ii) $f(nm) = [nm, 0] = [n, 0] \cdot [m, 0] = f(n) \cdot \mathbb{Z} f(m)$.
- (iii) $n \le m \iff \exists k \in \mathbb{N}(n+k=m) \iff \exists k \in \mathbb{N}([n,0]+[k,0]=[m,0]) \iff f(n) \le_{\mathbb{Z}} f(m).$

Thus, we may view $(\mathbb{N}, +, \cdot, \leq)$ as a subset of $(\mathbb{Z}, +_{\mathbb{Z}}, \cdot_{\mathbb{Z}}, \leq_{\mathbb{Z}})$, denote [n, 0] as n and drop \mathbb{Z} in the subscript. We further define -[a, b] := [b, a] and $z_1 - z_2 := z_1 + (-z_2)$.

Moreover, we have the following properties.

Proposition 1.10.

- There are no zero divisors in \mathbb{Z} . That is, for all $x, y \in \mathbb{Z}$, xy = 0 implies x = 0 or y = 0.
- The cancellation laws hold: for all $x, y, z \in \mathbb{Z}$, x + y = x + z implies y = z, and xy = xz implies x = 0 or y = z.
- (trichotomy) For all $z \in \mathbb{Z}$, z = n or z = -n for some $n \in \mathbb{N}$.
- *Proof.* From trichotomy proven below, we have x = n or x = -n and y = m or y = -m for some $n, m \in \mathbb{N}$. In any case xy = nm or xy = -nm. Since there are no zero divisors in \mathbb{N} , xy = 0 implies n = 0 or m = 0, which in turn implies x = 0 or y = 0.
 - The first cancellation law follows from the fact that additive inverses exist. For the second, note that $xy = xz \iff x(y-z) = 0$ and invoke the fact that there are no zero divisors.

Here we have also used that -xz = x(-z), since $-\tilde{z} = -1 \cdot \tilde{z}$ for all $\tilde{z} \in \mathbb{Z}$, and multiplication is associative and commutative.

• Let z = [a, b]. From trichotomy of \leq on \mathbb{N} we know that either a + n = b or a = b + n for some $n \in \mathbb{N}$. (which \mathbb{N} ?) That is, either z = [0, n] = -n, or z = [n, 0] = n.

1.4 The Rationals

We cannot solve 3x = 2 in \mathbb{Z} .

Proof. Suppose 3x = 2 for some $x = [a, b] \in \mathbb{Z}$. Then

$$3x = 2$$

$$[3, 0] \cdot [a, b] = [2, 0]$$

$$[3a, 3b] = [2, 0]$$

$$3a = 3b + 2$$

What now? \Box

We define \mathbb{Z}^* to be $\mathbb{Z} \setminus \{0\}$ and define the relation R on $\mathbb{Z} \times \mathbb{Z}^*$ by (a, b)R(c, d) if ad = bc. Then R is an equivalence relation on $\mathbb{Z} \times \mathbb{Z}^*$.

Definition 1.11. We define \mathbb{Q} to be the set of equivalence classes of R, notated $\mathbb{Z} \times \mathbb{Z}^*/R$.

We define operations $+_{\mathbb{Q}}$ and $\cdot_{\mathbb{Q}}$ on \mathbb{Q} by

$$\begin{aligned} [(a,b)] +_{\mathbb{Q}} [(c,d)] &\coloneqq [(ad+bc,bd)] \\ [(a,b)] \cdot_{\mathbb{Q}} [(c,d)] &\coloneqq [(ac,bd)] \end{aligned}$$

Since there are no zero divisors in \mathbb{Z} , $bd \neq 0$.

We define an order $\leq_{\mathbb{Q}}$ on \mathbb{Q} by

$$[(a,b)] \leq_{\mathbb{Q}} [(c,d)] \iff (ad-bc)bd \leq 0.$$

We will again omit the parentheses in this section.

Proposition 1.12. The operations $+_{\mathbb{Q}}$, $\cdot_{\mathbb{Q}}$ and the relation $\leq_{\mathbb{Q}}$ are well-defined.

Proof. Suppose
$$[a,b]=[a',b']$$
 and $[c,d]=[c',d']$. Then
$$ab'=a'b$$

$$cd'=c'd$$

$$(ad+bc)(b'd')=(a'd'+b'c')(bd)$$

$$[ad+bc,bd]=[a'd'+b'c',b'd']$$

For multiplication,

$$(ac)(b'd') = (a'c')(bd)$$
$$[ac, bd] = [a'c', b'd']$$

For order,

$$(ad - bc)bd \le 0$$

$$\iff (b'd')(ad - bc)bd(b'd') \le 0$$

$$\iff (ab'dd' - bb'cd')bdb'd' \le 0$$

$$\iff (a'bdd' - bb'c'd)bdb'd' \le 0$$

$$\iff (bd)^{2}(a'd' - b'c')b'd' \le 0$$

$$\iff (a'd' - b'c')b'd' \le 0$$

since $bd \neq 0 \neq b'd'$. Thus $+_{\mathbb{Q}}$, $\cdot_{\mathbb{Q}}$ and $\leq_{\mathbb{Q}}$ are well-defined.

Proposition 1.13. The relation $\leq_{\mathbb{Q}}$ is a total order on \mathbb{Q} .

Proof. Transitivity: Suppose $(ad - bc)bd \le 0$ and $(cf - de)df \le 0$. Then $(adf - bcf)bdf \le 0$ and $(bcf - bde)bdf \le 0$. Adding these gives $(adf - bde)bdf \le 0$ and so $(af - be)bf \le 0$.

Antisymmetry: Suppose $(ad - bc)bd \le 0$ and $(cb - da)db \le 0$. Then (ad - bc)bd = 0 which gives ad = bc so x = y.

Theorem 1.14.

- $(\mathbb{Q}, +_{\mathbb{Q}}, \cdot_{\mathbb{Q}}, \leq_{\mathbb{Q}})$ is an ordered field.
- The map $f = z \mapsto [z, 1]$ from \mathbb{Z} to \mathbb{Q} is an injective map that respects +, \cdot and \leq . That is, for all $z_1, z_2 \in \mathbb{Z}$,

(i)
$$f(z_1 + z_2) = f(z_1) +_{\mathbb{Q}} f(z_2)$$
,

(ii)
$$f(z_1 z_2) = f(z_1) \cdot_{\mathbb{Q}} f(z_2)$$
,

(iii)
$$z_1 \leq z_2 \iff f(z_1) \leq_{\mathbb{Q}} f(z_2)$$

In other words, f is a commutative ring isomorphism into \mathbb{Q} .

Proof. For the first part, we check all ordered field axioms. We again omit the subscripts on + and \cdot for brevity. Numbering is from UMA101.

- (F1) + and \cdot are commutative: immediate from commutativity of + and \cdot on \mathbb{Z}
- (F2) + and \cdot are associative:

$$([a,b] + [c,d]) + [e,f] = [ad + bc,bd] + [e,f]$$

$$= [(ad + bc)f + bde,bdf]$$

$$= [adf + b(cf + de),bdf]$$

$$= [a,b] + [cf + de,df]$$

$$= [a,b] + ([c,d] + [e,f])$$

Associativity of \cdot is immediate from associativity on \mathbb{Z} .

(F3) Distributivity:

$$[a,b] \cdot ([c,d] + [e,f]) = [a,b] \cdot [cf + de, df]$$

$$= [acf + ade, bdf]$$

$$= [abcf + abde, b^2df] \qquad (b \text{ is nonzero})$$

$$= [(ac)(bf) + (bd)(ae), (bd)(bf)]$$

$$= [ac, bd] + [ae, bf]$$

- (F4) Identities: $[0,1] \neq [1,1]$, [a,b] + [0,1] = [a,b] and $[a,b] \cdot [1,1] = [a,b]$.
- (F5) Additive inverse: [a, b] + [-a, b] = [0, 1].

- (F6) Multiplicative inverse: $[a,b] \cdot [b,a] = [1,1]$ for $a \neq 0 \iff [a,b] \neq [0,1]$. For the second part,
 - (i) $f(z_1 + z_2) = [z_1 + z_2, 1] = [z_1, 1] + [z_2, 1].$
 - (ii) $f(z_1z_2) = [z_1z_2, 1] = [z_1, 1] \cdot [z_2, 1]$

(iii)
$$f(z_1) \le f(z_2) \iff (z_1 - z_2) \le 0 \iff z_1 \le z_2.$$

We now introduce the division operation $/: \mathbb{Q} \times \mathbb{Q}^* \to \mathbb{Q}$ by $a/b = \frac{a}{b} = ab^{-1}$.

Notation. Note that every rational number x = [a, b] can be written as x = a/b. We thus largely drop the notation [a, b] and write a/b instead.

We will now accept basic algebraic manipulations of rational numbers without justification.

Lecture 03: Wed 03 Jan '24

Definition 1.15 (Exponentiation). The recursion principle guarantees the existence of pow : $\mathbb{Z} \times \mathbb{N} \to \mathbb{N}$ such that for all $n, m \in \mathbb{N}$,

$$pow(m, 0) = 1$$
$$pow(m, n + 1) = m \cdot pow(m, n)$$

We extend this to pow : $\mathbb{Q}^* \times \mathbb{Z} \to \mathbb{Q}$ as follows.

$$\operatorname{pow}\left(\frac{a}{b}, m\right) := \begin{cases} a^m / b^m & \text{if } m \in \mathbb{N} \\ b^m / a^m & \text{if } -m \in \mathbb{N} \end{cases}$$

We write z^n to denote pow(z, n).

Remark. Note that we have defined 0^0 to be 1, but we don't really care.

Proposition 1.16. Expoentiation is well-defined.

Proof. Let $a/b = \tilde{a}/\tilde{b} \in \mathbb{Q}$. That is, $a\tilde{b} = b\tilde{a} \in \mathbb{Z}$. For $m \in \mathbb{N}$, thus $a^m \tilde{b}^m = b^m \tilde{a}^m$ (easily proved by induction).

Similarly if
$$-m \in \mathbb{N}$$
.

Theorem 1.17. There exists no $x \in \mathbb{Q}$ such that $x^2 = 2$.

We first make note of the following lemma.

Lemma 1.18. Let $x \in \mathbb{Q}$. Then there exists $p \in \mathbb{Z}$, $q \in \mathbb{N}^*$ such that x = p/q.

In particular, if x > 0, then x = p/q for some $p \in \mathbb{N}$, $q \in \mathbb{N}^*$.

Proof. Let x = a/b. If $b \in \mathbb{N}$, we are done. Otherwise, x = -a/-b and $-b \in \mathbb{N}$.

We will make use of the well-ordered property of (\mathbb{N}, \leq) proved below in theorem 1.19.

Proof of theorem 1.17. Suppose there exists such an x. By the field properties, $(-x)^2 = x^2$. Thus we may assume $x \ge 0$. Let x = p/q for some $q \in \mathbb{N}^*$. Since $x \ge 0$, we have $p \ge 0 \iff p \in \mathbb{N}$.

Let $A = \{q \in \mathbb{N}^* \mid x = p/q \text{ for some } p \in \mathbb{N}\}$. A is non-empty.

By the well-ordering principle, A has a least element q_0 . Let $p_0 \in \mathbb{N}$ such that $x = p_0/q_0$.

We know that 1 < x < 2 [why? because $(\cdot)^2$ is an increasing function on positive rationals (why? difference of squares)] and so $0 < p_0 - q_0 < q_0$. Now

$$\frac{2q_0 - p_0}{p_0 - q_0} = \frac{2 - x}{x - 1}$$

$$= \frac{(2 - x)(x + 1)}{x^2 - 1}$$

$$= 2x + 2 - x^2 - x$$

$$= x,$$

in contradiction to the minimality of q_0 .

Theorem 1.19 (Well-ordering principle). Every non-empty subset of \mathbb{N} has a least element.

Proof. Let $S \subseteq \mathbb{N}$ be non-empty. We define P(n) to be "if $n \in S$, then S has a least element". Clearly P(0) holds.

Suppose P(k) holds for all $k \leq n \in \mathbb{N}$.

If $n+1 \notin S$, P(n+1) holds vacuously.

If $\exists m \in S(m < n + 1)$, then P(n + 1) holds by virtue of P(m).

Otherwise $n+1 \in S$ and $\forall m \in S(n+1 \leq m)$, so that n+1 is the least element of S.

In any case, P(n+1) holds.

Theorem 1.20. Let

$$A = \{x \in \mathbb{Q} \mid x^2 < 2\}$$

$$B = \{x \in \mathbb{Q} \mid x^2 > 2, x > 0\}$$

Then A has no largest element and B has no smallest element.

Proof. Let $a \in A$. a > -2 since otherwise $a^2 \ge 4$. Let $c = a + \frac{2-a^2}{2+a}$. Clearly c > a. Now

$$c = \frac{2a+2}{2+a}$$

$$c^2 = \frac{4a^2+8a+4}{4+4a+a^2}$$

$$c^2 - 2 = \frac{2a^2-4}{(2+a)^2} < 0$$

Thus $c \in A$.

For B, let $c = b + \frac{2-b^2}{2+b} = \frac{2b+2}{2+b}$. Clearly 0 < c < b and $c^2 - 2 = \frac{2b^2 - 4}{(2+b)^2} > 0$. Thus $c \in B$.

Corollary 1.21. (\mathbb{Q}, \leq) does not have the least upper bound property.

Proof. Let b be an upper bound of A. Clearly b > 0. b cannot be in A since A has no largest element. b cannot have square 2 by theorem 1.17. Thus $b \in B$. But since B has no smallest element, there is a $b' \in B$ which is less than b.

For any $a \in A$, if a < 0 then a < b'. Otherwise, $0 < (b')^2 - a^2 = (b' - a)(b' + a)$ and so a < b'. Thus b' is an upper bound of A which is less than b.

1.5 Ordered Fields with LUB

(Recall from UMA101 Lecture 6) Given an ordered set (X, \leq) , a subset $S \subseteq X$ is said to be bounded above (resp. below) if there exists $x \in X$ such that for all $s \in S$, $s \leq x$ (resp. $x \leq s$), and any such x is called an upper (resp. lower) bound of S.

A (The) supremum or least upper bound of S is an element $x \in X$ such that x is an upper bound of S and for all upper bounds y of S, $x \leq y$. Similarly, infimum or greatest lower bound.

 (X, \leq) is said to have the least upper bound property if every non-empty bounded above subset of X admits a supremum.

Proposition 1.22. (\mathbb{Q}, \leq) does not have the least upper bound property.

Proof. From theorem 1.20, we know that A has no largest element and B has no smallest element.

Let s be a supremum of A. Since there is no largest element in $A, s \notin A$. From theorem 1.17, we know that $s^2 \neq 2$. Thus by trichotomy, $s^2 > 2$ and so $s \in B$. But then there is an $s' \in B$ which is less than s but also an upper bound of A. This is a contradiction.

Theorem 1.23. Every ordered field F "contains" \mathbb{Q} , *i.e.*, there exists an injective map $f: \mathbb{Q} \to F$ that respects $+, \cdot$ and \leq .

We will notate this statement as $\mathbb{Q} \subseteq F$.

Proof. Let $f: \mathbb{Z} \to F$ be defined as

$$f(n) = \begin{cases} 0_F & \text{if } n = 0\\ 1_F + \dots + 1_F & \text{if } n > 0\\ \underbrace{(-1_F) + \dots + (-1_F)}_{m \text{ times}} & \text{if } n = -m, m > 0 \end{cases}$$

Note that f(-n) = -f(n) for all $n \in \mathbb{N}$. Let us show that f(n+m) = f(n) + f(m) for all $n, m \in \mathbb{Z}$.

Case 1: n = 0 or m = 0. Immediate.

Case 2: n > 0 and m > 0. Then

$$f(n+m) = \underbrace{1_F + \dots + 1_F}_{n+m \text{ times}}$$

$$= \underbrace{1_F + \dots + 1_F}_{n \text{ times}} + \underbrace{1_F + \dots + 1_F}_{m \text{ times}}$$

$$= f(n) + f(m)$$

Case 3: n < 0 and m < 0. Then f(n+m) = -f((-n)+(-m)) = -(f(-n)+f(-m)) = f(n) + f(m).

Case 4: nm < 0. WLOG, let m < 0 < n. Suppose 0 < n + m. Then f(n+m) + f(-m) = f(n+m-m) = f(n) from case 2. Now suppose n+m < 0. Then f(n) + f(-n-m) = f(n-n-m) = -f(m) from case 3. In either case, f(n+m) = f(n) + f(m).

Now consider f(nm). If nm = 0, then $f(nm) = 0_F = f(n)f(m)$. If 0 < n, m, then

$$f(nm) = \overbrace{1_F + \dots + 1_F}^{nm \text{ times}}$$

$$= \underbrace{(1_F + \dots + 1_F) + \dots + (1_F + \dots + 1_F)}_{m \text{ times}}$$

$$= \underbrace{(1_F + \dots + 1_F) \cdot (1_F + \dots + 1_F)}_{n \text{ times}}$$

$$= f(n)f(m)$$

If either of n, m is negative, then we take the negative sign out and use the above case.

Thus f respects + and \cdot .

Suppose that m < n. Then $f(n) - f(m) = f(n) + f(-m) = f(n-m) = (n-m)1_F$ (where $z1_F$ is notation for 1_F added z times). n-m is positive, but 1_F added to itself a positive number of times must be positive. This is

because $0_F < 1_F$ (UMA101) and so $k1_F < (k+1)1_F$ for all $k \in \mathbb{N}^+$. Induction gives $0_F < k1_F$ for all $k \in \mathbb{N}^+$. Thus f(m) < f(n) and so f respects < (and hence <).

Finally, injectivity of f follows from order preservation.

We extend f to \mathbb{Q} by defining $f(a/b) = f(a)f(b)^{-1}$. This continues to be an isomorphism.

1.5.1 Assignment 1

quiz Fri 12 Jan 2024

Problem 1.1. Let $(\mathbb{Z}, +_{\mathbb{Z}}, \cdot_{\mathbb{Z}}, \leq_{\mathbb{Z}})$ be defined as in class. Recall that we identify $n \in \mathbb{N}$ with $[(n,0)] \in \mathbb{Z}$. Show that any element of \mathbb{Z} is either m or -m for some $m \in \mathbb{N}$.

Proof. Proved in proposition 1.10.

Problem 1.2. Recall the construction of \mathbb{Q} as the set of equivalence classes of the relation R on $\mathbb{Z} \times \mathbb{Z} \setminus \{0\}$ given by $(a,b)R(c,d) \iff ad = bc$. We say that $[(a,b)] \leq [(c,d)]$ if $(bc-ad)(bd) \geq 0$. Using only the arithmetic and order properties of integers, show that the relation \leq is well-defined. Remember you are no allowed to divide yet!

Proof. Proposition 1.12.

Problem 1.3. Without assuming the existence of irrational numbers, show that

- (a) (\mathbb{Z}, \leq) has the least upper bound property.
- (b) (\mathbb{Q}, \leq) does not have the least upper bound property.

You may directly cite any theorem(s) proved in class.

Proof.

(a) Let S be a non-empty bounded above subset of \mathbb{Z} . Let b be an upper bounded of S and let $f: \mathbb{Z} \to \mathbb{N}$ be as f(x) = b - x. By the well-ordering principle, f(S) has a least element m. Then b - m is the maximum of S.

(b) Corollary 1.21.

Problem 1.4. Let F be an ordered field. Recall that $\mathbb{Q} \subseteq F$. Show that the following two statements are equivalent.

- (i) For every a, b > 0 in F, there is an $n \in \mathbb{N}$ such that na > b.
- (ii) For every a < b in F, there is an $r \in \mathbb{Q}$ such that a < r < b.

Proof. Suppose (i) holds. Let a < b in F. Then 1/(b-a) > 0. Let $n \in \mathbb{N}$ be such that n > 1/(b-a), that is, 1/n < b-a. We first show that there is a rational at most a. If $a \geq 0$, this is trivial. Otherwise, -a > 0 and so by (i) there is an $m \in \mathbb{N}$ such that $m > 1/(-a) \iff -1/m < a$. Thus the set $S = \left\{k \in \mathbb{Z} \mid k \cdot \frac{1}{n} \leq a\right\}$ is non-empty. By (i), it is bounded above. By problem 1.3(a), it has a maximum M. Then $\frac{M}{n} \leq a < \frac{M+1}{n} \leq a + \frac{1}{n} < b$. Thus $\frac{M+1}{n}$ is the required rational.

Suppose (ii) holds. Let 0 < a, b. Then there exist $p \in \mathbb{N}$ and $q \in \mathbb{N}^*$ such that 0 < b/a < p/q < b/a + 1. Since $1 \le q, p/q \le p$. Then b < pa as required. \square

Problem 1.5. Let F be a field. An absolute value of F is a function $A \colon F \to \mathbb{R}$ satisfying

- (1) $A(x) \ge 0$ for all $x \in F$, (2) A(x) = 0 if and only if x = 0, (3) A(xy) = A(x)A(y) for all $x, y \in F$,
- (4) $A(x+y) \le A(x) + A(y)$ for all $x, y \in F$.

A subset $S \subseteq F$ is said to be A-bounded if there exists an M > 0 such that $A(s) \leq M$ for all $s \in S$. This is a way to define boundedness of sets in the absence of an order relation.

Let $p \in \mathbb{N}$ be a prime number. Define $\nu_p \colon \mathbb{Z} \to \mathbb{Z} \cup \{\infty\}$ by

$$\nu_p(n) = \begin{cases} \max\{k \in \mathbb{N} : p^k \mid n\}, & \text{if } n \neq 0, \\ \infty, & \text{if } n = 0. \end{cases}$$

Extend ν_p to \mathbb{Q} by

$$\nu_p(a/b) = \nu_p(a) - \nu_p(b), \quad a, b \in \mathbb{Z}, b \neq 0.$$

Now, define $A_p: \mathbb{Q} \to \mathbb{R}$ by $A_p(x) = e^{-\nu_p(x)}$ if $x \neq 0$, and $A_p(0) = 0$.

- (a) Show that A_p is an absolute value on \mathbb{Q} .
- (b) Show that

$$A_p(x+y) \le \max\{A_p(x), A_p(y)\}, \quad x, y \in \mathbb{Q}.$$

(c) Show that \mathbb{Z} is A_p -bounded.

You may use basic facts about factorization without proof, but clearly state what you are using.

Proof. A_p satisfies (1) and (2) by definition.

Let x = a/b, y = c/d in \mathbb{Q} . If either is zero, (3) holds trivially. Otherwise xy = ac/bd with $a, b, c, d \in \mathbb{Z}^*$. Let $a = p^{\nu_p(a)}a', c = p^{\nu_p(c)}c'$, where a', c' are coprime to p. Then $ac = p^{\nu_p(a) + \nu_p(c)}(a'c')$. Thus $\nu_p(ac) = \nu_p(a) + \nu_p(c)$. Similarly, $\nu_p(bd) = \nu_p(b) + \nu_p(d)$. Thus $\nu_p(xy) = \nu_p(x) + \nu_p(y)$ and so $A_p(xy) = A_p(x)A_p(y).$

(4) follows from (b), which we prove now. If either x or y is zero, (b) holds trivially. Let

$$x = \frac{p^{\alpha}a}{p^{\beta}b}, \quad y = \frac{p^{\gamma}c}{p^{\delta}d},$$

where $a, b, c, d \in \mathbb{Z}^*$ are coprime to p. Thus $\nu_p(x) = \alpha - \beta$ and $\nu_p(y) = \gamma - \delta$. WLOG suppose that $A_p(x) \geq A_p(y) \iff \nu_p(x) \leq \nu_p(y)$ which gives $\alpha - \beta \leq \gamma - \delta$.

$$x + y = \frac{p^{\alpha + \delta}ad + p^{\beta + \gamma}bc}{p^{\beta + \delta}bd}$$
$$= \frac{p^{\alpha + \delta}(ad + p^{\beta + \gamma - \alpha - \delta}bc)}{p^{\beta + \delta}bd}$$

Thus $\nu_p(x+y) \ge \alpha + \delta - \beta - \delta = \alpha - \beta$ and so $A_p(x+y) \le A_p(x) = \max\{A_p(x), A_p(y)\}.$

(c) follows from $\nu_p(x) \geq 0$, so $A_p(x) \leq 1$ for all $x \in \mathbb{Z}$.

Definition 1.24 (Archimedean property). An ordered field F is said to have the *Archimedean property* if for every x, y > 0, there exists an $n \in \mathbb{N} \subseteq F$ such that nx > y.

Lecture 04: Wed 10 Jan '24

Theorem 1.25. \mathbb{Q} has the Archimedean property.

Proof. Let x, y > 0 be rationals. If x > y, n = 1 works. Suppose $x \le y$. It suffices to show that $\exists n \in \mathbb{N}(nr > 1)$, where r = x/y. Since r is positive, we have $p, q \in \mathbb{N}^*$ such that r = p/q. Let n = 2q. This gives nr > 1.

Remark. Not all ordered fields have the Archimedean property.

Theorem 1.26. Let F be an ordered field with the LUB property. Then F has the Archimedean property.

Proof. Let x, y > 0. Suppose $\forall n \in \mathbb{N} (nx \leq y)$. Let $A = \{nx \mid n \in \mathbb{N}\}$. Clearly A is non-empty and bounded above. Then $\sup A$ exists and so there exists an $m \in \mathbb{N}$ such that $\sup A - x < mx$. Thus $\sup A < (m+1)x \in A$, a contradiction.

Theorem 1.27. Let F be an ordered field with the LUB property. Then \mathbb{Q} is dense in F, *i.e.*, given $x < y \in F$, there exists a rational $r \in \mathbb{Q}$ such that x < r < y.

Proof. Follows from theorem 1.25 and problem 1.4.

1.6 The Reals

Theorem 1.28 (Dedekind/Cauchy). There exists a unique (up to isomorphism) ordered field with the LUB property.

We first recover some properties of supremums.

Lemma 1.29. Let F be an ordered field with the LUB property. Let A and B be non-empty bounded above subsets of F. Then $\sup A + \sup B = \sup(A + B)$. Further, if all elements of A and B are non-negative, then $\sup A \sup B = \sup(AB)$.

Here $A + B := \{a + b \mid a \in A, b \in B\}$ and $AB := \{ab \mid a \in A, b \in B\}$.

Proof. Let $\alpha = \sup A$ and $\beta = \sup B$. For all $a \in A$ and $b \in B$, $a + b \le \alpha + \beta$. Thus $\alpha + \beta$ is an upper bound of A + B.

Let $c < \alpha + \beta$. Since $c - \beta < \alpha$, there exists an $a \in A$ larger than $c - \beta$. Then $c - a < \beta$ and so there exists a $b \in B$ larger than c - a. Thus $c < a + b \in A + B$ and so $\alpha + \beta = \sup(A + B)$.

Now suppose all elements of A and B are non-negative. If $\alpha = 0$ or $\beta = 0$, then $\alpha\beta = 0$ and so $\alpha\beta = \sup(AB)$.

For all $a \in A$ and $b \in B$, $ab \le \alpha \beta$. Let $c < \alpha \beta$. Since $c/\beta < \alpha$, there exists an $a \in A$ larger than c/β . Then $c/a < \beta$ and so there exists a $b \in B$ larger than c/a. Thus $c < ab \in AB$ and so $\alpha\beta = \sup(AB)$.

Proof of uniqueness. Let F and G be OFWLUB. Let h be identity on $\mathbb{Q} \subseteq F, G$. For $z \in F$ let

$$A_z = \{ w \in \mathbb{Q} \mid w <_F z \}.$$

Claim: A_z is non-empty and bounded above when viewed as a subset of G, and therefore has a supremum in G.

First, A_z is non-empty by density applied to $(z - 1_F, z)$ or Archimedean applied to -z. Secondly, by Archimedean (or density) there exists a rational upper bound q of A_z in F. This q is also an upper bound of A_z in G.

By LUB, A_z has a supremum in G.

We define $h(z) := \sup_G A_z$. For this we need to show that h(r) = r for all $r \in \mathbb{Q}$, so that the definitions coincide. Let $r \in \mathbb{Q}$ so that $A_r = \{w \in \mathbb{Q} \mid w <_F r\}$. Clearly r is an upper bound of A_r in G. For any $g \in G$, there is some $q \in \mathbb{Q}$ such that $g <_G q <_G r$ (by density of \mathbb{Q} in G). Thus g cannot be an upper bound of $A_r \subseteq G$. Thus $r = \sup_G A_r = h(r)$.

Claim: h preserves order.

Let $z < w \in F$. By density of \mathbb{Q} in F, there exist rationals r, s, t such that z < r < s < t < w. Then $A_z \subsetneq A_w$ as subsets of F and hence of G. Thus

$$h(z) = \sup_{G} A_z \le_G r < s < t \le_G \sup_{G} A_w = h(w).$$

Claim: h preserves addition.

It is sufficient to show that $A_{x+y} = A_x + A_y$, where set addition is defined pairwise. If a rational $q \in A_x + A_y$, then clearly $q <_F x + y$ and so $q \in A_{x+y}$. Let $q \in A_{x+y} \iff q <_F x + y$. Then $q - x \in A_y$. Since A_y has no largest element (by density), there exists an $r \in A_y$ with q - x < r < y. Then q - r < x and so $q - r \in A_x$. Thus $q = (q - r) + r \in A_x + A_y$ which gives equality of the sets.

From the previous lemma, $\sup A_x + \sup A_y = \sup (A_x + A_y) = \sup A_{x+y}$ and so h preserves addition.

Claim: h preserves multiplication.

Let $0 < x, y \in F$. Let $A_z^+ = \{w \in \mathbb{Q} \mid 0 < w <_F z\}$. We will show that $A_{xy}^+ = A_x^+ A_y^+$, where set product is defined pairwise. If a rational $q \in A_x^+ A_y^+$, then clearly $0 < q <_F xy$ and so $q \in A_{xy}^+$. Let $q \in A_{xy}^+ \iff$ $0 < q <_F xy$. Then $q/x \in A_y^+$. Since A_y^+ has no largest element, there exists an $r \in A_y^+$ with q/x < r < y. Then q/r < x and so $q/r \in A_x^+$. Thus $q = (q/r) \cdot r \in A_x^+ A_y^+$ which gives equality of the sets.

From the previous lemma, $\sup A_x^+ \sup A_y^+ = \sup (A_x^+ A_y^+) = \sup A_{xy}^+$ and so h preserves multiplication of positive elements.

Since h preserves addition, h preserves additive inverses. So h preserves multiplication of all elements.

1.6.1 Dedekind's Construction

Definition 1.30 (Dedekind cut). A Dedekind cut is a non-empty proper subset $A \subseteq \mathbb{Q}$ such that

- (i) if $a \in A$, then $b \in A$ for all $b \in \mathbb{Q}$ with b < a.
- (ii) if $a \in A$, then there exists a $c \in A$ such that a < c.

Definition 1.31 (\mathbb{R}). We define

$$\mathbb{R} := \{ A \in 2^{\mathbb{Q}} \mid A \text{ is a Dedekind cut} \}.$$

Further,

- (i) $A \leq B \iff A \subseteq B$; (ii) $A+B=\{a+b \mid a \in A, b \in B\}$.
- (iii) for A, B > 0,

$$A \cdot B = \{ q \in \mathbb{Q} \mid q \le rs \text{ for some } r \in A, s \in B \}.$$

If A < 0 but B > 0, then $A \cdot B = -((-A) \cdot B)$. If B < 0 but A > 0, then $A \cdot B = -(A \cdot (-B))$. If A < 0 and B < 0, then $A \cdot B = (-A) \cdot (-B).$

Proposition 1.32. $O = \{z \in \mathbb{Q} \mid z < 0\}$ is the additive identity of \mathbb{R} . For any $A \in \mathbb{R}$,

$$B = \{ x \in \mathbb{Q} \mid \exists \, r \in O(r - x \notin A) \}$$

is an additive inverse of A.

Proof. Let $A \in \mathbb{R}$. For all $a \in A$, there exists $a' \in A$ larger than a. So $a - a' \in O$ and thus $a' + (a - a') = a \in A + O$.

For all $a \in A + O$, there exists $a' \in A$ and $o \in O$ such that a = a' + o. But then a' > a, so $a \in A$. Thus A + O = A.

Let B be as defined. Let $a+b \in A+B$ where $a \in A$ and $b \in B$. Then there exists $r \in O$ such that $r-b \notin A$. So r-b>a and thus a+b < r < 0.

Now let $o \in O$. Since O has no largest element, there exists an $o' \in O$ such that o' > o. Let $a \in A$. Consider the set $\alpha = \{n \in \mathbb{Z} \mid a + n(o' - o) \in A\}$. By archimedean property of \mathbb{Q} , α is bounded. It is obviously non-empty fucker. Thus it has a supremum n. Let a' = a + n(o' - o). $a' + (o' - o) = o' - (o - a') \notin A$ because n was supremum. This gives $o - a' \in B$. Thus $o \in A + B$.

Theorem 1.33. \mathbb{R} has the least upper bound property.

Lecture 05: Thu 11 Jan '24

Proof. Let α be a non-empty subset of \mathbb{R} that is bounded above. We claim that $S = \bigcup_{A \in \alpha} A$ is the supremum of α .

s is a cut: Since S is a union of a non-empty set of non-empty sets, it is non-empty. Since S is bounded above, say by some cut C, we have $S \subseteq C \subsetneq \mathbb{Q}$ and so $S \neq \mathbb{Q}$. If $a \in S$, then $a \in A$ for some $A \in \alpha$. Since A is a cut, every rational smaller than a is contained in A and thereby in S. Moreover, there exists an $a' \in A$ which is larger than a. Thus $a' \in S$ is larger than a.

upper bound: $A \subseteq S$ for all $A \in \alpha$.

least upper bound: For any $D \subsetneq S$, let $b \in S \setminus D$. But since $b \in A$ for some $A \in \alpha$, D is not an upper bound of α .

Dedekind's construction is an "order completion". Thus all the order properties (LUB, density) are nice, but arithmetic is ugly.

1.6.2 Cauchy's Construction

There seem to be sequences in \mathbb{Q} that "should" have a limit (e.g., a monotone and bounded sequence) but do not (within \mathbb{Q}). We construct equivalence classes of sequences which "converge" to the same number, and define reals by those classes.

Definition 1.34 (Sequence). A sequence of rational numbers is a $f: \mathbb{N} \to \mathbb{Q}$. We usually denote f(k) by a_k and call it the k-th term of the sequence. The function f is usually written as $(a_k)_{k \in \mathbb{N}}$.

Definition 1.35. A sequence $(a_k)_{k\in\mathbb{N}}\subseteq\mathbb{Q}$ is said to be

- (i) \mathbb{Q} -bounded if there exists an $M \in \mathbb{Q}$ such that $|a_k| \leq M$ for all $k \in \mathbb{N}$.
- (ii) Q-Cauchy if for every rational $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that $|a_m a_n| < \epsilon$ for all $m, n \geq N$.
- (iii) convergent in \mathbb{Q} if there exists an $L \in \mathbb{Q}$ such that for all (rational) $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that $|a_n L| < \varepsilon$ for all $n \geq N$.

Exercise 1.36. Show that if a sequence is convergent in \mathbb{Q} , then it is \mathbb{Q} -Cauchy, and if it is \mathbb{Q} -Cauchy, then it is \mathbb{Q} -bounded.

Remark. From UMA101, we know that if a sequence is convergent in \mathbb{Q} , the limit is unique. We also know arithmetic laws of limits (which we proved over \mathbb{R} , but they hold over \mathbb{Q} as well).

Definition 1.37. Two sequences $a = (a_n)_{n \in \mathbb{N}}$ and $b = (b_n)_{n \in \mathbb{N}}$ are said to be *equivalent* if their difference converges to 0.

Proposition 1.38. Let C denote the space of \mathbb{Q} -cauchy sequences. Then \sim given by $a \sim b$ if a and b are equivalent (as per the previous definition) is an equivalence relation.

Proof. Reflixivity and symmetry are immediate. Transitivity follows from the triangle inequality. \Box

Definition 1.39 (\mathbb{R}). We define

$$\mathbb{R} := \mathcal{C}/\sim$$
.

Further,

- (i) $[a] +_{\mathbb{R}} [b] := [a+b]$.
- (ii) The additive identity $0 = [(0)_{n \in \mathbb{N}}].$
- (iii) $[a] \cdot_{\mathbb{R}} [b] \coloneqq [a \cdot b].$
- (iv) $[a] >_{\mathbb{R}} 0$ if there exists a rational c > 0 and an $N \in \mathbb{N}$ such that $a_n > c$ for all $n \geq N$. From positivity, we can define order as $[a] >_{\mathbb{R}} [b]$ iff there is some [d] > 0 such that [a] + [d] = [b].

Proposition 1.40. The operations $+\mathbb{R}$ and $\cdot_{\mathbb{R}}$ and the relation $>_{\mathbb{R}}$ are well-defined.

Proof. Let $a \sim a'$ and $b \sim b'$. Then $a+b-(a'+b')=(a-a')+(b-b')\to 0$. \square

1.6.3 Assignment 2

Problem 2.1. Let F and G be ordered fields with the LUB property. In Lecture 04, we defined $h \colon F \to G$ as

$$h(z) = \sup_{G} \{ w \in \mathbb{Q} : w \le z \}.$$

Show that h is a field isomorphism, i.e.,

- (1) h is a bijection between F and G,
- (2) h(x+y) = h(x) + h(y) for all $x, y \in F$,
- (3) $h(x \cdot y) = h(x) \cdot h(y)$ for all $x, y \in F$.

Proof. Theorem 1.28.

quiz Fri 19 Jan

2024

Problem 2.2. In this problem, you may assume the well-definedness, commutativity and associativty of addition of Dedekind cuts (as defined in Lecture 04). Let $O = \{z \in \mathbb{Q} : z < 0\}$. Verify that O is a Dedekind cut, and A + O = A for all Dedekind cuts A. Let A be a Dedekind cut. Define a Dedekind cut B such that A + B = O. You must justify your answer.

Proof. Proposition 1.32.

Problem 2.3. Let $a = (a_n)_{n \in \mathbb{N}}$ and $b = (b_n)_{n \in \mathbb{N}}$ be sequences of rational numbers such that $b_n \neq 0$ for all $n \in \mathbb{N}$. Suppose

$$\lim_{n \to \infty} \frac{a_n}{b_n} = 1.$$

- (i) Are a and b equivalent?
- (ii) Are a and b equivalent if a is a \mathbb{Q} -bounded sequence?

Solution.

- (i) No. $a_n = n + 1$ and $b_n = n$ gives a counterexample.
- (ii) Yes.

Let a be bounded by M. Let n_0 be such that for all $n \ge n_0$, $\frac{1}{2} < \frac{a_n}{b_n}$. Then, for all $n \ge n_0$, $|b_n| < 2|a_n| \le 2M$. Thus b is bounded.

Let $\varepsilon > 0$. Let N be such that for all $n \geq N$,

$$\left| \frac{a_n}{b_n} - 1 \right| < \frac{\varepsilon}{2M}.$$

Then for all $n \geq N$,

$$|a_n - b_n| = |b_n| \left| \frac{a_n}{b_n} - 1 \right|$$

$$< 2M \frac{\varepsilon}{2M}$$

$$= \varepsilon.$$

Problem 2.4. You cannot use the existence (or the LUB property) of the ordered field of real numbers in this problem, so you must work "within" \mathbb{Q} .