Experimental	General	Physics	for	Engineers	I
	OCH CHAI	1 1173163		LIIGIIICCIJ	

Laboratory Report PHYS 192 spring 2022

Section:	L06
Section.	LUG

Experiment name: Viscosity

Student Name:	Talha Abdullah Punjabi	Student ID	201903446	

Date submitted: 4/2/2022

Table of results (1.25 pts)	
Graph (1.25 pts)	
Data analysis (2 pts)	
Discussion (0.5 pt)	
References	
Others	
Report Grade (5 pts)	

1. Table of Results

Ball Radius	<i>u(R)</i> (m)	time t (s)			R ² (m^2)				s)	average velocity	$u(ar{v}) \ (m/s)$
R (m)	(,	$t_1(s)$	$t_2(s)$	t ₃ (s)	(111 2)	(111 2)	v_1 (m/s)	v_2 (m/s)	v_3 (m/s	\bar{v}	(111/3)
)	(m/s)	
0.00316	±0.00	2.87	2.92	3.02	0.000	0.00000	0.2090	0.2054	0.1986	0.20440	0.00304
	0005				00998	0032					
0.00157	±0.00	9.62	9.63	9.65	0.000	0.00000	0.06237	0.06230	0.0621	0.06228	0.000057
	0005				00246	0016					
0.00276	±0.00	3.79	3.78	3.77	0.000	0.00000	0.1583	0.1587	0.1591	0.15873	0.000242
	0005				00764	0028					
0.00223	±0.00	6.39	6.35	6.34	0.000	0.00000	0.0938	0.0944	0.0946	0.09434	0.000226
	0005				00497	0022					
0.00236	±0.00	4.86	4.83	4.88	0.000	0.00000	0.1234	0.1242	0.1229	0.12354	0.000369
	0005				00559	0024					

- 2. Graph
- 2.1. Graph of the velocity vs. the radius square

Insert Excel graph of ν (y-axis) vs. R^2 (x-axis) on Excel. Include error bars on both x and y-axis.

Errors are so small that it is not visible on the graph

- 3. Data analysis
- 3.1. Standard deviation of the mean velocity

Show explicitly how to calculate *SDOM* for the first row

Mean = 0.2090+0.2054+0.1986 / 3 = 0.2043

SDOM = Standard deviation of v /sqrt (3) = sqrt ((0.2090-0.2043)^2+(0.2054-0.2043)^2+(0.1986-0.2043)^2 / sqrt(3) = ± 0.00304 m/sec

3.2. Error of R²

Show explicitly how to calculate error of R² for the first row

 $R^2 = R^R$ $U(R^2) = 2R * U(R)$ = 2*0.00316*0.000005 $= \pm 0.000000032 \text{ m}^2$

3.3. Slope and intercept of the graph and their uncertainties.

Use the linest function in excel to find the slope intercept and their uncertainties. Report those values here.

Slope (m*s)^-1 :19345.41 Intercept (m/sec):0.010028 Slope Intercept(m*s)^-1: 1411.477 Intercept Error(m/sec): 0.009368

3.4. Value of the viscosity coefficient.

From your result above calculate the value of the viscosity. (Show your calculation)

Mass density of sphere= 7860 kg/m³ Mass density of Liquid = 880 kg/m³

$$\eta = \frac{2(\rho_s - \rho_L)g}{9 * Slope}$$

=0.785762 kg/m^3

4. Discussion

The obtained value of viscosity is obtained to be 0.785762 kg/m³ which satisfies the value itself. The values ranging from 0.5 to 1.0 kg/m³ are satisfied values.

Sources of error could also have affected the answer. This is when errors such as human errors while measuring the time and radiuses may have resulted in the some errors.

5. References