Ontologías

Sistemas Inteligentes Distribuidos

Sergio Alvarez Javier Vázquez

Bibliografía

- Artificial intelligence: a modern approach (Russell & Norvig), cap.
 8, 10
- <u>The Description Logic Handbook</u> (Baader, McGuinness, Nardi, Patel-Schneider)

Ontología y epistemología

Ontologías

Agente deliberativo por objetivos

Representar el mundo

- En el tema anterior nos hemos centrado en la representación de objetivos e intenciones
- Otro aspecto fundamental es cómo representar el mundo: knowledge representation
 - Cómo adquirir conocimiento a partir de los hechos (percepciones)
 - Cómo adquirir conocimiento a partir de conocimiento
 - Cómo hacer inferencias de manera eficiente
 - Cómo comunicar conocimiento

- Múltiples formalismos de representación del conocimiento
 - Redes neuronales (representation learning)
 - Redes bayesianas
 - Modelos markovianos
 - Redes jerárquicas (HTNs)
 - Lógica de primer orden (FOL)
- Nos centraremos en subconjuntos decidibles de FOL: lógica descriptiva
 - Ontologías
 - Laboratorio: RDF/OWL

¿Por qué una ontología?

- "Sin lógica, una representación del conocimiento es incompleta, sin un criterio para determinar si un hecho es redundante o contradictorio. Sin una ontología, los términos y símbolos están pobremente definidos, son ambiguos y confusos. Y sin modelos computacionales, la lógica y la ontología no se pueden implementar en programas. La representación del conocimiento es la aplicación de la lógica y la ontología a la tarea de construir modelos computacionales para un cierto dominio."
 - John F. Sowa, Knowledge Representation: Logical, Philosophical, and Computational Foundations, 2000.

¿Qué es una ontología?

Merriam-Webster:

• Main Entry: on tology

• Pronunciation: än-'tä-l&-jE

• Function: noun

Etymology: New Latin ontologia, from ont- + -logia

• **Date**: circa 1721

- a branch of metaphysics concerned with the nature and relations of being;
- 2. a particular theory about the nature of being or the kinds of existents.

RAE:

- 1. f. Fil. Parte de la metafísica que trata del ser en general y de sus propiedades trascendentales.
- 2. f. En ciencias de la comunicación y en inteligencia artificial, red o sistema de datos que define las relaciones existentes entre los conceptos de un dominio o área del conocimiento.

Origen

- El término es relativamente moderno (siglo XIX)
 - Del griego ontos (del ser) y logos (palabra)
- Sus primeros usos fueron dirigidos a diferenciar el estudio de las categorías del ser de las categorías de la Biología
- De hecho, la categorización es una tarea común de diversas áreas del conocimiento
 - Filosofía, biología, medicina, lingüística, ...

Origen

- El desarrollo de ontologías está íntimamente relacionado con la Filosofía
- Aristóteles acuño el término Categoría para describir las diferentes clases de cosas en que se puede dividir el mundo
- El primer sistema de clasificación de Aristóteles se dedica a los seres (τὰ ὄντα), dividiendo en dos conceptos: cosas predicadas sobre otras cosas (said-of) y cosas halladas en otras cosas (present-in)

No predicado sobre / No presente en	No predicado sobre / Presente en
Substancias primarias	No sustanciales
Particulares no accidentales	Particulares accidentales
e.g. una persona específica (Sócrates)	e.g. el color de la piel de Sócrates
Predicado sobre / No presente en Substancias secundarias Universales no accidentales e.g. concepto de persona	Predicado sobre / Presente en Sustancias primarias Universales accidentales e.g. conocimiento

Ontología y Epistemología

- Ontología: cómo es la realidad, qué elementos básicos contiene
- Epistemología: estudio del criterio por el cual podemos saber qué constituye conocimiento justificado o científico
- La manera como pensamos que el mundo es (ontología) influencia:
 - lo que pensamos que puede conocerse sobre él (epistemología)
 - cómo pensamos que se puede investigar sobre él (metodología)
 - los tipos de teorías que se pueden construir sobre él
- If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck

Ontología y Epistemología

Ontología / ontología

- La Ontología tiene como objetivo el estudio de las categorías que existen en un determinado dominio
- El resultado de este estudio es una ontología
 - Un catálogo de los diferentes tipos de objetos que se asume que existen en un dominio D, desde la perspectiva de alguien que usa el lenguaje L para hablar sobre D
- Una ontología se puede ver como un vocabulario que los agentes necesitan para intercambiar información en el contexto de un dominio

Definiciones de ontología

- Una ontología define los términos y relaciones básicos que abarcan el vocabulario del área de un determinado tema, así como las reglas para combinar términos y relaciones para obtener extensions del vocabulario
 - Neches, R; Fikes, R; et al <u>Enabling Technology for Knowledge Sharing</u> Al Magazine.
 Winter 1991. pp36-56
- Una ontología es la especificación explícita de una conceptualización
 - Gruber, T. <u>A translation approach to portable ontology specifications</u> Knowledge Acquisition. Vol. 5. 1993. 199-220.
- Una ontología es una descripción (e.g. la especificación formal de un programa) de los conceptos y relaciones que pueden existir para un agente o para una comunidad de agentes
 - Gruber, T. What is an Ontology?

"Triángulo semiótico"

Símbolo: termino lingüístico usado para hacer referencia al concepto

Intensión (referencia, concepto o connotación): conjunto de atributos, características y propiedades que constituyen el significado del concepto

Extensión (referente o denotación): conjunto de casos particulares que están cubiertos por el concepto

"Triángulo semiótico"

Símbolo: termino lingüístico usado para hacer referencia al concepto

Intensión (referencia, concepto o connotación): conjunto de atributos, características y propiedades que constituyen el significado del concepto

Extensión (referente o denotación): conjunto de casos particulares que están cubiertos por el concepto

"Triángulo semiótico"

Símbolo: termino lingüístico usado para hacer referencia al concepto

Intensión (referencia, concepto o connotación): conjunto de atributos, características y propiedades que constituyen el significado del concepto

Extensión (referente o denotación): conjunto de casos particulares que están cubiertos por el concepto

Elementos de una ontología

- Conceptos: permiten modelar elementos como objetos, tareas, funciones, acciones, estrategias, planes, etc.
 - Algunos lenguajes de ontología se refieren a ellos como clases, compuestas de propiedades
- Relaciones: modelan un tipo de interacción entre conceptos del dominio
- Funciones: un tipo especial de relación
- Restricciones: reglas que pueden restringir el dominio de los valores para algunos conceptos y relaciones
- Instancias: constituyen los individuos concretos representados por los conceptos de la ontología
- Axiomas: proposiciones y reglas, sobre todos los demás elementos, que se consideran ciertas

OWL

Ontologías

RDF

 Las ontologías y grafos de conocimiento (knowledge graphs) se suelen representar como tripletas (triples) <sujeto, predicado, objeto>

- El formato estándar más común es RDF (Resource Description Framework)
- En RDF, cada uno de los tres elementos es una URI, e.g.
 - S: <http://dbpedia.org/resource/Tetris>
 - P: http://www.w3.org/1999/02/22-rdf-syntax-ns#type
 - O: <http://dbpedia.org/ontology/VideoGame>

RDF: Ejemplo

RDF: Ejemplo

RDF: Ejemplo

Grafos de conocimiento

Un grafo de conocimiento (o red semántica) representa una red de entidades del mundo (como objetos, eventos, situationes o conceptos) e ilustra las relaciones entre ellos

Esta información se guarda generalmente en bases de datos de grafos y se visualizan como una estructura en forma de grafo

[Jesús Barrasa (2019) "The fashion Knowledge Graph. Inferencing with Ontologies in Neo4j"]

Grafos de conocimiento

"Bill Gates fundó Microsoft" se representa como (Bill Gates, founded, Microsoft)

What Google's Knowledge Graph Looks Like

RDF Schema

Classes

- rdfs:Resource
- rdfs:Class
- rdfs:Literal
- rdfs:Datatype
- rdf:langString
- rdf:HTML
- rdf:XMLLiteral
- rdf:Property

Properties

- rdfs:range
- rdfs:domain
- rdf:type
- rdfs:subClassOf
- rdfs:subPropertyOf
- rdfs:label
- rdfs:comment

https://www.w3.org/TR/rdf-schema

RDF Schema

- La especificación es demasiado débil para poder describir recursos con suficiente detalle, NO permite:
 - Restricciones con rangos y dominios condicionales
 - E.g. no permite decir que el rango de utilizaEnergía es Eléctrica cuando se aplica a VehículoElectrico y que su rango es Gasolina cuando se aplica a VehículoDeCombustión
 - Combinar clases por unión, intersección ni complemento
 - E.g. no permite formalizar que utiliza Energía se puede aplicar tanto a vehículos como a seres vivos
 - Restricciones de existencia o cardinalidad
 - E.g. no permite formalizar que las bicicletas tienen dos ruedas
 - Propiedades transitivas, inversas o simétricas
 - E.g. no permite modelar que la relación esAncestroDe es transitiva
- Tampoco permite realizar razonamiento automático
 - No hay ningún razonador nativo disponible para RDFS

La utilidad de un razonador

Con acceso a un razonador, podemos

- Asegurarnos de que una base de conocimiento es
 - Coherente: todas las clases pueden tener instancias
 - Correcta: las suposiciones sobre el mundo se trasladan correctamente a las inferencias
 - Mínimamente redundante: existe una ambigüedad manejable
 - ... y, en general, **cualquier propiedad deseable** que podamos convertir en fórmulas lógicas
- Responder a preguntas sobre clases e instancias, por ejemplo:
 - Encontrar nuevas clases por inferencia
 - Obtener instancias que se correspondan con un patrón determinado
 - •

Lenguajes de ontología

DAML

- Fuertemente asociado a WebServices
- DARPA

OIL

- Comisión Europea
- Primer lenguaje de intercambio de Ontologías
- Anticuado y poco expresivo

RDF

- Resource description framework
- Esquema general de representación de información
- Sin semántica asociada

OWL

- Inspirado en DAML y OIL
- Construido sobre RDF

Ontology Web Language

- Motivación principal:
 - Sintáctica bien definida
 - Semántica formal
 - Posibilidad de razonamiento eficiente
- Recomendación W3C
 - OWL (2004)
 - OWL2 (2012)
 - https://www.w3.org/TR/owl2-overview/
 - https://www.w3.org/TR/2012/REC-owl2-quick-reference-20121211/
- El fundamento lógico de OWL es la lógica descriptiva (DL)

Lógica descriptiva

Ontologías

Lógica de primer orden

- La lógica proposicional es un lenguaje declarativo con una semántica clara
 - Con expresividad insuficiente para modelar conjuntos de entidades
 - Y por lo tanto insuficiente para expresar clases, propiedades, relaciones o axiomas
- La lógica de primer orden sí permite expresar todos los elementos identificados como importantes para una ontología:
 - Instancias (constantes o literales), conceptos (predicados unarios), relaciones (predicados binarios)
- Sin embargo, la lógica de primer orden NO es decidible
 - Intuición de la demostración: cualquier máquina de Turing es reducible a FOL

Lógica descriptiva

- Familia de lenguajes de representación del conocimiento
 - Elementos principales: conceptos, roles, instancias
 - Semántica formal
 - Fragmentos decidibles de la lógica de primer orden (FOL)
- Elementos básicos:
 - Individuos (instancias)
 - Conceptos (clases)
 - Roles (propiedades, relaciones)
- Es posible crear razonadores para cada lenguaje de la familia

- Los dialectos reciben un nombre basado en ciertas extensiones a añadir al lenguaje base
- El lenguaje base se llama \mathcal{AL} (Attributive Language)
 - negación atómica, pero no en la LHS de axiomas de inclusión o igualdad
 - intersección de conceptos
 - restricciones universales
 - restricciones existenciales, pero sólo para el concepto universal

Algunas extensiones

- \mathcal{F} propiedades funcionales
- E restricciones existenciales cualificadas
- C negación de concepto
- *U* unión de concepto
- \mathcal{H} jerarquía de roles
- $\mathcal R$ axiomas sobre inclusión de roles, reflexividad, irreflexividad, roles disjuntos
- O uso de individuos en la descripción de conceptos (nominales)
- J propiedades inversas
- $\mathcal N$ restricciones de cardinalidad (no cualificadas)
- Q restricciones de cardinalidad cualificadas
- (D) uso de tipos de datos, valores de datos y propiedades sobre tipos de datos

Lenguajes DL populares

• ALC (Attributive Language with Complement):

$$C, D \to A \mid T \mid \bot \mid \neg C \mid C \sqcap D \mid \exists R. C \mid \forall R. C$$

donde A es un concepto atómico, C y D son conceptos y R es un rol

- \mathcal{S} es \mathcal{ALC} con roles transitivos (\mathcal{R}_+)
- SHOIN(D) es el formalismo correspondiente a OWL-DL (OWL 1)
- SROJQ(D) es el formalismo correspondiente a OWL2
 - Razonadores: HermiT, Pellet

Construcciones básicas

- Conjunto de individuos que no son parte de un concepto
 - –Estudiante (todos los individuos que no son estudiantes)
- Intersección de dos conceptos
 - Estudiante □ Profesor (todos los individuos que estudian e imparten clases a la vez)
- Unión de dos conceptos (no soportado en muchos lenguajes DL)
 - Estudiante ⊔ Profesor (todos los individuos que o bien estudian o bien imparten clases, o ambas cosas a la vez)
- Restricción universal
 - Vasiste. Clase (todos los individuos que, siempre que asisten a algo, ese algo es a alguna clase)
- Restricción existencial
 - ∃imparte. Clase (todos los individuos que como mínimo imparten alguna clase)

Axiomas

- Inclusión
- Equivalencia
 - Humano

 □ Persona

 □ Persona

 □ Humano

 ⇔ Humano

 ≡ Persona
 - Madre ≡ Progenitor □ Mujer
 - Estudiante \equiv Persona \sqcap \exists atiende. Clase
- En \mathcal{ALC} no hay axiomas sobre roles pero en $\mathcal{SROIQ}(\mathcal{D})$ sí, e.g.
 - esHijoDe \equiv es ProgenitorDe⁻¹
 - Por la extensión \mathcal{I} (propiedades inversas)

Semántica

- La semántica se define a partir de interpretaciones
- Una interpretación I es un par (Δ^I, I^I) , donde

 Δ^{I} es el dominio (un conjunto no vacío de individuos)

I es una función de interpretación que mapea:

Cada concepto a un subconjunto de Δ^I

Cada rol a un subconjunto de $\Delta^I \times \Delta^I$

Cada individuo a un elemento de Δ^I

Semántica

Description	Syntax	<u>Semantics</u>
Top (everything)	Т	Δ^I
Bottom (empty concept)	Τ	Ø
Atomic concept ($\in N_C$)	Α	$A^I \subseteq \Delta^I$
Atomic role ($\in N_R$)	r	$r^I \subseteq \Delta^I \times \Delta^I$
Concept conjunction	$C\sqcap D$	$C^I \cap D^I$
Concept disjunction	$C \sqcup D$	$C^I \cup D^I$
Concept negation (complement)	$\neg C$	$\Delta^I \setminus C^I$
Universal restriction	$\forall r. C$	$\{x x\in\Delta^I\wedge\forall y(r(x,y)\in r^I\to y\in C^I)\}$
Existential restriction	$\exists r. \mathit{C}$	$\{x x\in\Delta^I\wedge\exists y(r(x,y)\in r^I\wedge y\in C^I)\}$
General Concept Inclusion	$C \sqsubseteq D$	$C^I \subseteq D^I$
Concept Equivalence	$C \equiv D$	$C^I = D^I$

Tabla extraída de Christophe Debruyne, Description Logics (Lecture)

TBox, ABox

TBox: la terminología

- Un TBox es un conjunto finito formado por inclusiones (□) y equivalencias (≡) de conceptos
- Una **definición** es una **equivalencia** entre conceptos donde, en la parte izquierda, el concepto es atómico: ayudan a darle un nombre simbólico a descripciones complejas
 - PizzaCuatroEstaciones ≡ Pizza □ ∃tieneIngrediente. Alcachofa □ ∃tieneIngrediente. Albahaca □ ∃tieneIngrediente. Jamon □ ∃tieneIngrediente. Seta □ ∃tieneIngrediente. Oliva
 - PizzaVegana ≡ Pizza □ ∀tieneIngrediente. IngredienteVegano
 - PizzaNoVegana ≡ Pizza □ ∃tieneIngrediente. ¬IngredienteVegano
 - Las instancias de PizzaCuatroEstaciones se podrían clasificar también como PizzaNoVegana por inferencia (dependerá del nivel del razonador)
- Si no podemos definir un concepto de manera completa, podemos usar la **inclusión** para modelar por lo menos sus **condiciones necesarias** (especialización):

ABox: las aserciones

- Un ABox es un conjunto A de aserciones que describe los hechos específicos del dominio
 - PizzaCuatroEstaciones(pizza342546)
 - Pizza(pizza123)
 - Rucula(rucula456)
 - tieneIngrediente(pizza123, rucula456)

- Dada una interpretación $I = (\Delta^I, I^I)$
 - I satisface C(a) sii $a^I \in C^I$
 - I satisface r(a,b) sii $(a^I,b^I) \in r^I$
- Un ABox A se satisface con respecto a una interpretación I sii cada aserción en A se satisface con respecto a I
 - 0 lo que es lo mismo: $I \models A$
- e.g. PizzaVegana(pizza123), al no ser una aserción, será satisfactible o no... dependiendo de I

ABox

ABox: las aserciones

Gato(Tom)
Gato(Garfield)
tieneMascota(Victor, Tom)

- Hay dos premisas comunes a todas las especificaciones de OWL sobre el ABox que influyen en la interpretación I:
 - NO hay suposición de nombre único (Unique Name Assumption, UNA): cada nombre de individuo en I puede no ser único, $a^I \neq b^I$
 - Sí hay suposición de mundo abierto (Open World Assumption, OWA): la información en el ABox es incompleta
 - Las aserciones en el ABox son ciertas en todos los modelos basados en él
 - Pero no todo lo que es desconocido en los modelos basados en el ABox es necesariamente falso
- Por ejemplo, si tenemos el ABox de arriba, ¿cuál es la respuesta a la pregunta "¿Tiene Victor a Garfield como mascota?" en OWL?
 - Primero, al no haber suposición de nombre único, puede ser que Tom = Garfield
 - Segundo, al ser mundo abierto, no sabemos seguro si tieneMascota(Victor, Tom) o no
 - Por lo tanto: no lo sabemos

ABox: las aserciones

La interpretación *I* también depende, en gran medida, del lenguaje DL específico, de las extensiones que usa y por lo tanto los axiomas que define KB

TBox

PizzaCuatroEstaciones ≡ Pizza □ ∃tieneIngrediente. Alcachofa □ ∃tieneIngrediente. Albahaca □ ∃tieneIngrediente. Jamon □ ∃tieneIngrediente. Seta □ ∃tieneIngrediente. Oliva
PizzaNoVegana ≡ Pizza □ ∃tieneIngrediente. ¬IngredienteVegano

ABox

PizzaCuatroEstaciones(pizza342546)

OWL 2 usa el lenguaje SROJQ(D)

En $SROJQ(\mathcal{D})$ se incluye ALC y por tanto negación y existenciales sobre conceptos:

 $I \models PizzaNoVegana(pizza342546)$

Si, en cambio, estuviéramos en el lenguaje \mathcal{AL} y por tanto sin existenciales sobre conceptos ni negación de concepto:

 $I \not\models PizzaNoVegana$ (pizza342546)

Arquitectura de un sistema de DL

Ontologías en la práctica

Ontologías

¿Por qué usar ontologías?

- Para compartir una compresión mutua sobre la estructura de la información entre diferentes personas y/o agentes
- Para permitir la reutilización del conocimiento de un dominio
- Para hacer explícitas las suposiciones sobre el dominio que se establecen al desarrollar una aplicación
- Para separar el conocimiento del dominio de su operacionalización
- Para permitir el análisis (semi-)automático del conocimiento

Ejemplos de ontologías

- Tráfico y movilidad
 - DATEX II (https://datex2.eu/)
- Medicina
 - Gene Ontology (https://www.geneontology.org/)
 - Semantic DICOM (https://bioportal.bioontology.org/ontologies/SEDI)
 - Disease Ontology (http://disease-ontology.org/)
 - HL7 RDF (http://build.fhir.org/rdf)
- Música
 - The Music Ontology (http://musicontology.com/)
- Información enciclopédica
 - DBPedia (https://wiki.dbpedia.org/)
- Metadatos, en general
 - Dublin Core (http://dublincore.org/)

Repositorios de ontologías públicas

- https://lod-cloud.net/
 - Proyecto de "linked data", con ontologías enlazadas por relaciones de equivalencias (owl:sameAs) o conceptos comunes, 1000+ grafos de conocimiento en RDF
- http://www.daml.org/ontologies/
 - 200+ ontologías en DAML+OIL/OWL
 - Temas muy diversos (departamentos académicos, cine, información geográfica, aeropuertos, bibliografía, biología, química, moda, meteorología, ...)
- https://protegewiki.stanford.edu/index.php?title=Protege_Ontology_Library&oldid =13780
 - Lista de ontologías interesantes (principalmente en OWL)
- https://bioportal.bioontology.org/
 - 1000+ ontologías relacionadas con la medicina y la farmacología

Algunas herramientas

- Protégé (editor)
 - Sistema de plugins: OKBC, RDF(S), OWL, UML, Prolog, Jess, OWL-S, etc.
 - http://protege.stanford.edu/, http://protege.stanford.edu/plugins/owl/
- Owlready2
 - API en Python para manipular RDF, RDF(S) y OWL
 - https://github.com/pwin/owlready2
- Jena
 - API Java para manipular RDF, RDF(S) y OWL
 - http://www.hpl.hp.com/semweb/jena.htm, http://jena.sourceforge.net/
- Pellet
 - Razonador open-source basado en Java para OWL-DL y OWL2
 - https://github.com/stardog-union/pellet
- RDF Validator
 - Permite probar grafos RDF online: http://www.w3.org/RDF/Validator/

Algunas herramientas

TopBraid Composer

- TopBraid Composer es un editor commercial de ontologías y una plataforma de desarrollo de aplicaciones para web semántica
- Suporta OWL, RDFS y el lenguaje de reglas SWRL, y proporciona funcionalidades para el desarrollo de ontologías, como visualización, depuración y prueba

PoolParty

- PoolParty es una suite comercial que incluye un editor de ontologías, un gestor de taxonomías y un sistema de gestión de tesauros
- Soporta OWL, RDFS y SKOS (Simple Knowledge Organization System) y proporciona funcionalidades para el desarrollo de ontologías, como clasificación automática y búsqueda semántica

WebProtege

- WebProtege es un editor gratuito de ontologías y un sistema de gestión de conocimiento. Está basado en Protégé y proporciona una interfaz usable para crear y editar ontologías
- Soporta OWL y RDFS y tiene funcionalidades para edición colaborativa de ontologías