

Materiais Elétricos e Magnéticos para Engenharia

Código: 201391

PLANO DE ENSINO

Prof. Marcus Vinicius Batistuta Primeiro Semestre de 2018 Turma A

1. Objetivos da Disciplina

Fundamentos e aplicações em Materiais Elétricos e Magnéticos: Introdução ao Estudo dos Cristais; Introdução a Mecânica Quântica; Níveis de Energia de Elétrons em Sólidos; Metais: Condução e Fenômenos de Transporte; Materiais e Dispositivos Semicondutores; Materiais Magnéticos e Dielétricos; Propriedades de materiais em Campos Estáticos e Variáveis, Elétricos e Magnéticos;

2. Ementa

- 1 Fundamentos de Mecânica Quântica:
 - Introdução à estrutura e aos estados da matéria.
 - Postulados Básicos da Física Quântica (Dualidade, Constante de Planck).
 - Equação de Schrödinger e soluções para barreiras de potenciais.
 - Espectro de radiação de átomos, e números quânticos.
 - Efeito Fotoelétrico; Função Trabalho.
 - Emissão Termoiônica.

2 - Metais:

- Modelos para Resistência e Condução Elétrica.
- Dispositivos: Resistores, Termistores.
- Supercondutividade.
- 3 Teoria de Bandas de Energia em Sólidos:
 - Potencial periódico; Modelo de Kronig-Penney.
 - Zonas de Brillouin.
 - Função de Fermi; Densidade de Estados.
 - Estruturas de bandas em Condutores, Semicondutores e Isolantes.
 - Transporte de Portadores: Massa Efetiva e Mobilidade.
 - Efeito Hall; Efeito Schottky.
 - Potencial de contato; Termoeletricidade.

4 - Semicondutores:

- Equações de Transporte para elétrons e lacunas
- Diodos: Túnel, Zener, Fotodiodo, Schottky, Varicap, LED
- Transistores: CMOS, MESFET, BIPOLAR

Tecnologia de fabricação de circuitos integrados

5 - Materiais Magnéticos:

- Propriedades: Diamagnetismo, Paramagnetismo, Ferromagnetismo, Histerese, Antiferromagnetismo, Ferrimagnetismo.
- Materiais: Metálicos, Cerâmicos (Ferrites).
- Dispositivos: Indutor, Transformador e Aplicações.

6 - Materiais Isolantes ou Dielétricos:

- Propriedades: Permissividade, Ferroeletricidade, Piezeletricidade.
- Tecnologia de Capacitores: Plásticos, Cerâmicos, Eletrolíticos.
- Tecnologia de Supercapacitores.

7 - Eletroquímica:

- Tecnologia Baterias e pilhas.
- Tecnologia de Células de Combustível.
- Corrosão.

3. Horário de Aulas e Datas das Avaliações.

Teoria: sexta-feira, 16:00 - 17:50 (I3) Laboratório (Turma-A): segunda-feira, 08:00 - 09:50 (NEI)

PROVAS:

1ª Prova: 11/05/2018 2ª Prova: 29/06/2018

4. Metodologia.

Será utilizado o método expositivo para a apresentação do conteúdo da disciplina, na forma de slides POWERPOINT, e serão executados experimentos em laboratório, relacionados com os tópicos vistos na teoria. O material da disciplina será disponibilizado no Moodle.

5. Critérios de Avaliação

A avaliação do aluno na disciplina se fará por meio da execução de experimentos em laboratório e da entrega dos respectivos relatórios (R_i), cada um valendo até dez pontos (10,0 pontos), e por meio de duas provas (P_1 e P_2). Cada prova vale até dez pontos (10,0 pontos) e serão realizadas sem consulta, exceto ao formulário fornecido, sendo permitido o uso de calculadora. As provas podem ser executadas a lápis.

O aluno que perder qualquer uma das avaliações, **por motivo justificado**, poderá fazer uma avaliação substitutiva no final do semestre. Esta avaliação abrangerá todos os tópicos abordados no curso e substituirá a nota da prova pendente. Não haverá substituição para a falta no laboratório.

Para o abono de faltas, o aluno deverá justificar com atestado médico e receber a homologação da junta médica da universidade.

O cálculo da média final da disciplina será feito de acordo com as fórmulas:

$$MF = \frac{P_1 + P_2 + 2 \times ML}{4}$$
 (Média Final)
$$ML = \frac{\sum_{i=1}^{N} R_i}{N}$$
 (Média do Laboratório)

Para a aprovação na disciplina é necessário satisfazer os seguintes requisitos:

- -Média Final (MF) e Média do Laboratório (ML) maiores ou iguais a 5,0.
- -Percentual de faltas menor ou igual a 25% do total de aulas ministradas.

Será oferecida a oportunidade de pontuação extra nas provas e no laboratório, com a execução de trabalhos extras, a critério do professor.

6. Bibliografia.

BIBLIOGRAFIA BÁSICA:

Rezende, S., Materiais e Dispositivos Eletrônicos, 3ª edição, Livraria da Física, 2014.

Kittel, C., Introdução à Física do Estado Sólido, 8ª edição, LTC, 2006.

[EBRARY] Shur, M., Cristoloveanu, S., Frontiers in Electronics, World Scientific Publishing Co., 2009.

BIBLIOGRAFIA COMPLEMENTAR:

[EBRARY] Gardiner, F., Carter, E., Polymer Electronics: A Flexible Technology, Smithers Rapra, 2009.

[EBRARY] Arya, S. N., Fundamentals of Magnetism and Electricity, Global Media, 2009.

Swart, J. W., Semicondutores – Fundamentos, técnicas e aplicações, Ed.UNICAMP, 2008.

[EBRARY] Maheshwari, P., Electronic Components and Processes, New Age international, 2007.

[EBRARY] Orton, J. W., Material Science, New Age International, 2004.

[EBRARY] Buschow, K. H. J., Boer, F. R. de, Physics of Magnetism and Magnetic Materials, Kluwer Academic Publishers, 2003.

[EBRARY] Razeghi, M., Fundamentals of Solid State Engineering, Kluwer Academic Publishers, 2002.

7. Avisos

- Celulares ou outros dispositivos equivalentes devem estar em modo silencioso durante as aulas.
- Lembramos que "colas" serão punidas com rigor.
- A pontualidade nas aulas é requerida.

Calendário – Materiais E&M (1/2018)

Data	Dia	Aulas
05/03	Seg	Lab-0
09/03	Sex	Teoria-1
12/03	Seg	Lab-1
16/03	Sex	Teoria-2
19/03	Seg	Lab-2
23/03	Sex	Teoria-3
26/03	Seg	Lab-3
30/03	Sex	Feriado (Sexta-feira Santa)
02/04	Seg	Lab-4
06/04	Sex	Teoria-4
09/04	Seg	Lab-5
13/04	Sex	Teoria-5
16/04	Seg	Lab-6
20/04	Sex	Teoria-6
23/04	Seg	Lab-7
27/04	Sex	Teoria-7
30/04	Seg	Lab-8
04/05	Sex	Prova-1 Simulada
07/05	Seg	Lab-9
11/05	Sex	Prova-1
14/05	Seg	Lab-10
18/05	Sex	Teoria-8
21/05	Seg	Lab-11
25/05	Sex	Teoria-9
28/05	Seg	Lab-12
01/06	Sex	Ponto Facultativo (Corpus Christi – 31/05)
04/06	Seg	Lab-13
08/06	Sex	Teoria-10
11/06	Seg	Lab-14
15/06	Sex	Teoria-11
18/06	Seg	Lab-15
22/06	Sex	Prova-2 Simulada
25/06	Seg	Lab-16
29/06	Sex	Prova-2
02/07	Seg	Lab-17 (Lab. Demonstrativo)
06/07	Sex	Último Dia de Aula (Revisão Final de Notas)