Question Number	Answer		Mark
19(a)(i)	• Use of $r = p/Bq$ and $p = mv$		
	Or Use of $F = Bqv$ and $F = mv^2/r$	(1)	
	• Use of $v = 2\pi r/t$	(1)	
	• Algebra leading to $t = 2 m \pi / Bq$	(1)	
	Example of derivation		
	r = p/Bq		
	p = mv so r = mv/Bq		
	$v = 2\pi r/t$ so $r = m2\pi r/Bqt$		
	Therefore $t = 2 m \pi / Bq$		
			(3)
19(a)(ii)	Time independent of speed Or Time independent of radius	(1)	
	So particles take constant time to complete circular path		
	Or so particles spend the same time in each dee	(1)	
	So a fixed frequency can be used for the p.d.	(1)	
	• because the p.d./field across the gap will be in the correct direction to		
	increase the speed of the particles as they cross each time	(1)	
			(4)
19(b)	• Use of $t = 2\pi m/Bq$	(1)	` ,
	• Use of $E_{\rm K} = \frac{1}{2} mv^2$	(1)	
	• Use of $W = QV$	(1)	
	Total energy / accelerating p.d. for number of passes	(1)	
	• 1.9×10^{-6} s	(1)	
	Example of calculation		
	$t = 2\pi \times 1.67 \times 10^{-27} \text{ kg} / 1.6 \text{ T} \times 1.6 \times 10^{-19} \text{ C}$		
	$= 4.1 \times 10^{-8} \text{ s}$		
	$E_{\rm K} = \frac{1}{2} \times 1.67 \times 10^{-27} \mathrm{kg} \times (1.5 \times 10^6)^2$		
	$= 1.88 \times 10^{-13} \mathrm{J}$		
	$= 1.88 \times 10^{-13} \text{ J} \div 1.6 \times 10^{-19} \text{ C} = 1.17 \times 10^{6} \text{ eV}$		
	No of passes = $1.17 \times 10^6 \text{ eV} \div 13\ 000 \text{ eV} = 90.3$		
	2 passes per cycle, so 45.2 cycles		
	$45.2 \times 4.1 \times 10^{-8} \text{ s} = 1.85 \times 10^{-6} \text{ s}$		
	(or use 45.5 or 46)		(5)
19(c)			. ,
	High energy so particles have high momentum	(1)	
	High momentum so that (de Broglie) wavelength is small	(1)	
	Studying nucleons requires wavelengths of the order of nucleon size	(1)	
	, , , , , , , , , , , , , , , , , , , ,		(3)
	Total for question 19		15