Лабораторная работа №5. Решение задач классификации с помощью байесовского классификатора и метода k-ближайших соседей.

Часть 2. Полиномиальный наивный байесовский классификатор.

Используемый набор данных: <u>Breast Cancer Wisconsin (Diagnostic)</u> (https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29)

In [1]:

```
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import classification_report
from sklearn.metrics import roc_curve
from sklearn.metrics import roc_auc_score
import os
import requests

%matplotlib inline

pd.options.display.max_columns = None
```

In [2]:

```
def downloadFile(url, filePath):
    if not os.path.exists(filePath):
        req = requests.get(url)
        f = open(filePath, "wb")
        f.write(req.content)
        f.close

url = "https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/"
downloadFile(url + "/wdbc.data", "dataset/wdbc.data")
downloadFile(url + "/wdbc.names", "dataset/wdbc.names")
```

In [3]:

Out[3]:

	ID	Diagnosis	Radius Mean	Texture Mean	Perimeter Mean	Area Mean	Smoothness Mean	Compactness Mean	C
138	868826	М	14.950	17.57	96.85	678.1	0.11670	0.13050	
424	907145	В	9.742	19.12	61.93	289.7	0.10750	0.08333	
159	871149	В	10.900	12.96	68.69	366.8	0.07515	0.03718	
116	864726	В	8.950	15.76	58.74	245.2	0.09462	0.12430	
131	8670	M	15.460	19.48	101.70	748.9	0.10920	0.12230	
478	911685	В	11.490	14.59	73.99	404.9	0.10460	0.08228	
264	889719	M	17.190	22.07	111.60	928.3	0.09726	0.08995	
219	88119002	M	19.530	32.47	128.00	1223.0	0.08420	0.11300	
134	867739	M	18.450	21.91	120.20	1075.0	0.09430	0.09709	
27	852781	M	18.610	20.25	122.10	1094.0	0.09440	0.10660	
430	907914	M	14.900	22.53	102.10	685.0	0.09947	0.22250	
375	901303	В	16.170	16.07	106.30	788.5	0.09880	0.14380	
520	917092	В	9.295	13.90	59.96	257.8	0.13710	0.12250	
568	92751	В	7.760	24.54	47.92	181.0	0.05263	0.04362	
186	874217	M	18.310	18.58	118.60	1041.0	0.08588	0.08468	
65	859283	M	14.780	23.94	97.40	668.3	0.11720	0.14790	
468	9113538	M	17.600	23.33	119.00	980.5	0.09289	0.20040	
269	8910720	В	10.710	20.39	69.50	344.9	0.10820	0.12890	
562	925622	M	15.220	30.62	103.40	716.9	0.10480	0.20870	
557	925236	В	9.423	27.88	59.26	271.3	0.08123	0.04971	
395	903811	В	14.060	17.18	89.75	609.1	0.08045	0.05361	
217	8811779	В	10.200	17.48	65.05	321.2	0.08054	0.05907	
91	861799	M	15.370	22.76	100.20	728.2	0.09200	0.10360	
122	865423	M	24.250	20.20	166.20	1761.0	0.14470	0.28670	
462	9113156	В	14.400	26.99	92.25	646.1	0.06995	0.05223	
481	91227	В	13.900	19.24	88.73	602.9	0.07991	0.05326	
434	908469	В	14.860	16.94	94.89	673.7	0.08924	0.07074	
259	88725602	M	15.530	33.56	103.70	744.9	0.10630	0.16390	
155	8711003	В	12.250	17.94	78.27	460.3	0.08654	0.06679	
248	88466802	В	10.650	25.22	68.01	347.0	0.09657	0.07234	
413	905557	В	14.990	22.11	97.53	693.7	0.08515	0.10250	
69	859487	В	12.780	16.49	81.37	502.5	0.09831	0.05234	
376	901315	В	10.570	20.22	70.15	338.3	0.09073	0.16600	
556	924964	В	10.160	19.59	64.73	311.7	0.10030	0.07504	
19	8510426	В	13.540	14.36	87.46	566.3	0.09779	0.08129	
54	857438	M	15.100	22.02	97.26	712.8	0.09056	0.07081	

	ID	Diagnosis	Radius Mean	Texture Mean	Perimeter Mean	Area Mean	Smoothness Mean	Compactness Mean	C
128	866458	В	15.100	16.39	99.58	674.5	0.11500	0.18070	
197	877159	М	18.080	21.84	117.40	1024.0	0.07371	0.08642	
153	87106	В	11.150	13.08	70.87	381.9	0.09754	0.05113	
531	91903901	В	11.670	20.02	75.21	416.2	0.10160	0.09453	
4									

In [4]:

```
display(data.describe())
display(data.isna().sum())
```

		ID	Radius Mean	Texture Mean	Perimeter Mean	Area Mean	Smoothness Mean	Compac
С	ount	5.690000e+02	569.000000	569.000000	569.000000	569.000000	569.000000	569.0
n	nean	3.037183e+07	14.127292	19.289649	91.969033	654.889104	0.096360	0.1
	std	1.250206e+08	3.524049	4.301036	24.298981	351.914129	0.014064	0.0
	min	8.670000e+03	6.981000	9.710000	43.790000	143.500000	0.052630	0.0
	25%	8.692180e+05	11.700000	16.170000	75.170000	420.300000	0.086370	0.0
	50%	9.060240e+05	13.370000	18.840000	86.240000	551.100000	0.095870	0.0
	75%	8.813129e+06	15.780000	21.800000	104.100000	782.700000	0.105300	0.1
	max	9.113205e+08	28.110000	39.280000	188.500000	2501.000000	0.163400	0.3
4								

ID	0
Diagnosis	0
Radius Mean	0
Texture Mean	0
Perimeter Mean	0
Area Mean	0
Smoothness Mean	0
Compactness Mean	0
Concavity Mean	0
Concave points Mean	0
Symmetry Mean	0
Fractal dimension Mean	0
Radius SE	0
Texture SE	0
Perimeter SE	0
Area SE	0
Smoothness SE	0
Compactness SE	0
Concavity SE	0
Concave points SE	0
Symmetry SE	0
Fractal dimension SE	0
Radius Worst	0
Texture Worst	0
Perimeter Worst	0
Area Worst	0
Smoothness Worst	0
Compactness Worst	0
Concavity Worst	0
Concave points Worst	0
Symmetry Worst	0
Fractal dimension Worst	0
dtype: int64	

Пропусков в данных нет.

Подготовим данные для классификации: выберем признаки и метки и сформируем тренировочные и тестовые наборы.

In [5]:

```
X = data.drop(columns=["ID", "Diagnosis"]).copy()
y = data["Diagnosis"].copy().cat.codes

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=2
4)
```

Создадим классификатор, обучим его, а затем выполним классификацию.

In [6]:

```
y_pred = MultinomialNB().fit(X_train, y_train).predict(X_test)
```

Оценим получившуюся классификацию.

In [7]:

```
print(classification_report(y_test, y_pred))
                            recall f1-score
              precision
                                                support
           0
                    0.89
                              0.97
                                         0.93
                                                      73
           1
                    0.94
                              0.78
                                         0.85
                                                      41
                                         0.90
                                                     114
    accuracy
   macro avg
                    0.91
                              0.88
                                         0.89
                                                     114
                              0.90
weighted avg
                    0.91
                                         0.90
                                                     114
```

In [8]:

```
fpr, tpr, _ = roc_curve(y_test, y_pred)
auc = roc_auc_score(y_test, y_pred)
```

In [9]:

```
plt.title('Receiver Operating Characteristic')
plt.plot(fpr, tpr, 'b', label = "AUC = %0.2f"%auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
```

