#MComp Mower Project

ESP32 Programming

Open Lawnmower-system/Microcontroller/Robot Sensor Motor Controller - DMP/ in VSCode with the PlatformIO extension and upload the PIO project to the ESP32

Raspberry PI

- Install Ubuntu 22.04 and ROS2 (ROS2 install instruction: https://docs.ros.org/en/humble/Installation.html)
- Clone the Lawnmower-system repo (https://github.com/UEA-MComp/Lawnmower-system)
- Clone the BN0085-ROS2-Node repo (https://github.com/UEA-MComp/BNO085-ROS2-Node)
- Clone the telemetry repo (https://github.com/UEA-MComp/telemetry)
- Using a Terminal, navigate into Lawnmower-system/ros_mower_robot_ws/
 - Source ROS and run colcon build in this directory
 - Source (in the same repo) install/setup.bash
 - Need to start the bridge node for communication with the ESP32 over USB
 - run ros2 run robot_motor_control_py robot_bridge
- In a new Terminal session, navigate into telemetry
 - o check all sub module are present in src
 - o 11feb-linux.conf is the RTKLIB config file. You will need to update this with you RTK Setup
 - Follow the rest of the instruction detailed in README.md
 - There is a launch file in there that makes it nice and easy to run
 - By default, the robot doesn't send telemetry information to the server (it's commented out in the launch file), if you want to send information to the server you need to define a ROS discovery IP and a ROS session ID in a new ROS session. Again more notes on how to do this is in the repository
- Using a new Terminal session, navigate into Lawnmower-system/ros mower robot ws/
 - source ROS and install/setup.bash
 - In lidar_sim.py there are vars called test_shape, nogos, and path for the perimeter, nogo
 areas, and generated path respectively.
 - After updating perimeter, nogos, and path, run colcon build
 - run ros2 run path_nav robot_nav

Server

- The server acts as a bridge between the robot and phone app
- In practice, we didn't do too much with it, its more a proof of concept
- You need to have access to a server. You need to set up a wireguard server on that server
- All of the server stuff is in serverfiles-dockerfiles repo
- There is detailed notes in there.
- It is all docker stuff (learn docker \Leftrightarrow) there is a nice docker-compose.yml that deploys everything. First you will need to update the db.env file and the wireguard config file first
- The docker build clones other repos so you might need to update the repository URL in the Dockerfile.

Misc Note about running robot

 You will want to calibrate the IMU of the Robot. You can do that with the instruction in Lawnmowersystem/Calibration.md

Our email addresses

- Eden Attenborough eden.attenborough@outlook.com will hopefully be back at UEA in 2025 😛
- Tye Buckingham buckingham.t.g@gmail.com for pathing and obstacle avoidance further details can be found at repos under https://github.com/Tye-Buckingham
- Robert Stevenson RobertLStevenson@1@gmail.com for robot hardware