A Level Maths - FP2 Sam Robbins 13SE

FP2

1 First order differential equations

1.1 Solving first order DE using an integrating factor

Solving
$$\frac{dy}{dx} + P(x)y = Q(x)$$

IF(Integrating factor) is found by finding $e^{\int p(x) dx}$ And multiplying the DE by the IF.

This will result in the DE being in the form:

$$f(x)\frac{dy}{dx} + f'(x)y$$

This form can then be shortened by integrating:

$$\int f'(x)g(x) + f(x)g'(x)dx = f(x)g(x) + c$$

Integrate both sides then simplify

2 Further complex numbers

2.1 Converting between forms

When converting from x + iy to a form in r and θ , take the angle from the positive x axis

2.2 Multiplying and dividing complex numbers

It is easiest to use the exponential form, then convert if needed

2.2.1 Multiplying

$$Z_1 Z_2 = r_1 e^{i\theta_1} \times r_2 e^{i\theta_2} = r_1 r_2 e^{i(\theta_1 + \theta_2)}$$

2.2.2 Dividing

$$\frac{Z_1}{Z_2} = r_1 e^{i\theta_1} \div r_2 e^{i\theta_2} = \frac{r+1}{r+2} e^{i(\theta_1 - \theta_2)}$$

2.3 De Moivre's theorem

This is given on the data sheet

2.3.1 Z formulas

If
$$z = \cos \theta + i \sin \theta$$

$$z + \frac{1}{z} = 2\cos\theta$$
$$z - \frac{1}{z} = 2i\sin\theta$$
$$z^n + \frac{1}{z^n} = 2\cos n\theta$$
$$z^n - \frac{1}{z^n} = 2i\sin n\theta$$

A Level Maths - FP2 Sam Robbins 13SE

2.4 Loci on the complex plane

Equation	Description
$ z-z_1 =r$	A circle centre (x_1, y_1) with a radius r
$ z-z_1 = z-z_2 $	A perpendicular bisector of the line segment joining
	points z_1 and z_2
$\arg(z-z_1)=\theta$	The half line from a fixed point z_1 , making an angle θ with the positive real axis
$\arg(\frac{z-z_1}{z-z_2}) = \theta$	An arc between the points z_1 and z_2 where the angle the lines from z_1 and z_2 to any point on the arc is θ

2.5 Translations

- w = z + a + ib represents a translation with translation vector $\begin{pmatrix} a \\ b \end{pmatrix}$
- w = kz represents an enlargement with scale factor k centre (0,0)
- w = kz + a + ib represents an enlargement scale factor k centre (0,0) followed by a translation with translation vector $\begin{pmatrix} a \\ b \end{pmatrix}$
- $w=z^2$ multiply a shape by itself, for example a circle of radius 4 would go to radius 16

3 Inequalities

We can build upon our previous algebraic skills in order to solve more complex inequalities Remember:

- Don't multiply anything that could be negative use "squared" things
- Find the critical values (f(x)=0)
- Sketch the graph to solve

4 Maclaurin and Taylor Series

Use the formulas on the data sheet

4.1 Solving differential equations using the Taylor expansion

From the differential equation, calculate the values of $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ etc up to whatever is needed. Then substitute those values into the Taylor series to solve the differential equation