Applicant: For:

Houston et al.

SMART CULTURE VESSEL

1	1. A smart culture vessel for holding a sample to be tested in a culture
2	medium comprising:
3	a bio-sensor, in the vessel in the culture medium with the sample
4	having a coating for attracting at least one pathogen expected in the sample; and
5	a detection circuit responsive to the bio-sensor for indicating the
6	presence of a pathogen on the bio-sensor.
1	2. The smart culture vessel of claim 1 in which the bio-sensor includes an
2	array of bio-sensor elements.
1	3. The smart culture vessel of claim 2 in which each bio-sensor element has a
2	different coating for attracting pathogens.
·	
1	4. The smart culture vessel of claim 1 in which the detection circuit drives
2	the bio-sensor over a range of predetermined frequencies and detects a shift in frequency
3	over time due to the attached pathogen.

DR-332J JSI:ci

1

2

The smart culture vessel of claim 1 in which the detection circuit is

5.

external to the vessel.

1

2

1

2

1

2

1

2

3

1

2

3

- 1 6. The smart culture vessel of claim 4 in which the range of predetermined frequencies is near the resonant frequency of the bio-sensor.
- 7. The smart culture vessel of claim 1 in which the detection circuit drives
 the bio-sensor at a predetermined frequency and detects a shift in frequency due to the
 attached pathogen.
 - 8. The smart culture vessel of claim 7 in which the predetermined frequency is the resonant frequency of the bio-sensor.
 - 9. The smart culture vessel of claim 6 in which the shift in frequency is a shift in the resonant frequency of the bio-sensor.
 - 10. The smart culture vessel of claim 8 in which the shift in frequency is a shift in the resonant frequency of the bio-sensor.
 - 11. The smart culture vessel of claim 1 in which the detection circuit continuously drives the bio-sensor over a range of predetermined frequencies and detects a shift in frequency over time due to the attached pathogen.
 - 12. The smart culture vessel of claim 1 in which the detection circuit drives the bio-sensor over a range of predetermined frequencies and instantaneously detects a shift in resonant frequency due to the attached pathogen.

1

2

3

1	13. The smart culture vessel of claim 1 in which the detection circuit
2	continuously drives the bio-sensor at its resonant frequency and detects a shift in
3	frequency due to the attached pathogen.

14. The smart culture vessel of claim 1 in which the detection circuit drives the bio-sensor at its resonant frequency and instantaneously detects a shift in frequency due to the attached pathogen.