

Unser Team für Sie

"Information is the oil of the 21st century, and analytics is the combustion engine"

—Peter Sondergaard, Gartner Research

SmartBuild

Ziel: Produktion optimieren

Ist es möglich anhand der Eingangsdaten die Eigenschaften der Endprodukte vorherzusagen, um somit die Produktion zu optimieren?

Optimierung durch Machine Learning

Epic Data in der Auswertung

10.000 Datensätze

13 Parameter

Die Nummer 1 im Wettbewerb

Was die Daten in der Analyse sagen

Qualität maximieren

93% Genauigkeit bei der Bestimmung der Qualität des Endproduktes

LScore erhöhen

Rohmaterialien mit einem Gewicht über 250 Gramm maximieren LScore gut/mittel

Ausschuss minimieren

Rohmaterialien zw. 250 und 300 Gramm verringen den Ausschuss auf ca. 3%

Vielseitige Analysen

Viele, teils gute, Vorhersagen über Merkmale wie Gammawert, Farbreinheit usw.

Weitere Daten

Zusätzliche Daten und Merkmale können Modelle und Prognose optimieren

Schnelle Integration

Mit R lassen sich Ergebnisse, Visualisierung und Reports leicht in die Unternehmens-IT integrieren

LScore im Visier - Decision Tree

93.25% korrekte Vorhersage mit unserem Modell Gewicht größer als 250 Gramm führt zu guten und mittleren Ergebnissen.

Schlecht

Tatsächliche Zuordnung

20

974

Fehler unter der Lupe – AdaBoost

78.65% korrekte Vorhersage mit unserem Modell Gewicht zwischen 250 und 300 Gramm minimiert den Ausschuss

Was hat Fehler? - AdaBoost

88.8% korrekte Vorhersage mit unserem Modell
Ob es zu einem Fehler kommt, kann sehr gut vorhergesagt werden

Ausschuss – Logistische Regression

74% korrekte Vorhersage mit unserem Model jedoch Pauschalisierung bei Gewichten von >250 Gramm

Erkenntnis: Eher Materialien verwenden, die über 250 Gramm wiegen

Ausschuss - Decision Tree

78.85% der Fälle wurden korrekt vorhergesagt
Gewicht zwischen 250 und 300 Gramm verringert den
Ausschuss enorm

Tradeoff Fehler «» LScore

Gewicht < 250 Gramm führt zu schlechten LScore (96%) und hohen Ausschuss (70%)

Gewicht 250 - 300 Gramm führt zu wenigen, keinen Fehlern (97%), LScore ist mittel (86%) und gut (7%)

Gewicht > 300 Gramm Mindert Anteil von Nicht-Ausschuss (52%), jedoch ist LScore gut/mittel (~100%)

Qualität evaluiert

93.45% korrekte Vorhersage mit unserem Modell, eingestuft in Ist-Nicht-Qualitativ < 1.5 < Ist-Qualitativ

Qualität abhängig von Eingangsattributen.

Durchschnittliche Abweichung: 0.02

Warpfaktor im Visier

Ionisationsfaktor analysiert

Gammawert - SHAP Value

Gammawert abhängig von der Höhe Regression Polynom zweiten Grades

Gammawert - Polynomiale Regression

Durchschnittliche Abweichung im Model: 1.767

Durchschnittliche Abweichung in Baseline: 80.508

Fluxkomensation - Poly. Regression

Fluxkomensation abhängig von Höhe. Durchschnittliche Abweichung: 1.619

ShineScore - Lineare Regression

ShineScore nicht abhängig von Eingangsattributen
Unterschied der Baseline- und Testdaten-Error < 0.001

ShineScore - Neuronale Netze

Starke Abweichungen bei den Vorhersagen Baseline nur minimal schlechter

5.037 Abweichung

Durchschnittlich bei den Vorhersagen

Abweichung in der Baseline beträgt 5.038

Bei einem Wertebereich zwischen -0.409 und 20.436

Hängt nicht von den Eingangswerten ab

Clustering unter der Lupe

Für sämtliche Label keine Clustergruppen möglich Hoher Davies Bouldin Index aller Cluster

Farbreinheit visualisiert – Lineare R.

Farbeinheit nicht abhängig von Eingangsattributen

XKlasse evaluiert - RandomForest

25.2% korrekte Vorhersage mit unserem Modell Es konnten keine Muster erkannt werden

XKlasse nicht abhängig von den Eingangsattributen

Unsere Ergebnisse

Gute Vorhersagen

- Qualität
- Ist Qualitativ
- Hat Fehler
- Ausschuss (DT)
- LScore
- Warpfaktor
- Gammawert
- Fluxkomen.

Mittlere Vorhersagen

- Fehler
- Ionisationsfaktor
- Ausschuss (LogR)

Schlechte Vorhersagen

- XKlasse
- ShineScore
- Farbreinheit

Die Technologie R

Der Data Science Prozess

Die Daten genauer betrachtet

Eingangseigenschaften

Abgeleitete Attribute

IstQualitativ:

Hier wird ein Endprodukt nach seiner Qualität unterschieden mit 1.5 als Trennung

Ausschuss:

Hier wird aus Fehler Ausschuss gegen keine Fehler und Fehler im Toleranzbereich gestellt.

HatFehler:

Hier wird mit Fehler geprüft ob ein Fehler vorliegt (auch im Toleranzbereich) oder nicht

Aufteilung der Daten

Die Daten werden aufgeteilt in...

80% Trainings-Daten
Um die Modelle zu trainieren
20% Test-Daten
Um die Aussagekraft und Güte der
Modelle zu testen und evaluieren

Supervised Learning

Die Trainings-Daten besitzen Labels, über wir analysieren und vorhersagen wollen

Mit einem Seed wird sichergestellt, dass wir immer mit den gleichen zufälligen Daten arbeiten

Machine Learning Modelle

Neuronale Netze

Qualitaet Min.: 1.011 Median: 1.5 Mean: 1.5

Max.: 2.0

Regression

Vorhersage eines numerischen Wertes

u.a. Qualität

Klassifikation Vorhersage einer Kategorie u.a. Fehler

Fehler A: 3969 FiT: 1072 nein: 4959

Lineare Regression

Vorhersage einer abhängigen numerischen Variablen mit Hilfe von unabhängigen Variablen mittels einer Regressionslinie

Stellt linearen Zusammenhang zwischen den Variablen dar

Je stärker die Korrelation der Variablen, desto genauer werden die Vorhersagen

Erweiterung mit der Multilinearen und Polynomialen Regression

Vorteile	Nachteile
Einfach und zuverlässigWenig fehleranfälligGute Visualisierung	 Nicht genau bei nicht-linearen Beziehungen Abweichung und Varianz Reagiert auf Ausreißer

Regression an Fluxkomensation

Neuronale Netze

KI inspiriert vom menschlichen Gehirn

Nutzung von Neuronen und Connections in einem Netz, die Funktionen implementieren und Output aus Input generieren

Im Hidden Layer, zwischen Input und Output Neuronen, werden Inputs in Neuronen berechnet bis ein Output erfolgt

Die Neuronen im Hidden Layer sind Komponenten mit Einfluss, die dann das Neuronale Netz zu erkennen lernt

Vorteile	Nachteile
 Erkennt komplexe Muster Gut für viele Daten und mehrere Dimensionen Sehr gute Vorhersagen Multiple Outputs 	Benötigt viele qualitative DatenPerformanceBlack Box

Decision Tree (Entscheidungsbaum)

Algorithmus zur Klassifikation von Objekten bzw. Datenpunkten mithilfe von bekannten Attributen und Werte

Ziel ist die Bildung einer hierarchischen Struktur mit möglichst wenigen Entscheidungswegen

Bildet mögliche Auswirkungen von aufeinanderfolgenden und zusammenhängenden Entscheidungen ab

Ermittlung erfolgt über direkte Klassifikation oder Wahrscheinlichkeiten

Vorteile	Nachteile
 Anschaulich, leicht verständlich Leicht implementierbar Identifizierung von Abhängigkeiten 	• Viele Daten führen zu Überanpassung

Einteilung

in schlecht

Decision Tree und LScore

37

in gut

Random Forest

Mit zufälligen Features wird ein Entscheidungsbaum gebaut

Dies wird oft parallel wiederholt mit zufälligen Subsets und Variablen → Vielfalt an Bäumen

Jeder Baum stimmt für die Klassifizierung ab. Mehrheit gewinnt

Vorteile	Nachteile
 Bessere Vorhersagen, da mehr Sichtweisen Unempfindlich ggü. Ausreißer Gut für viele Daten 	 Hohe Varianz Langsam Komplex → Pruning nötig

Random Forest und IstQualitativ

AdaBoost

Weak Learner

Stümpfe, die ein Feature und Subset nutzen, um Vorhersagen zu treffen, wodurch sie keine hohe Genauigkeit haben

Über Validierung und Testen wird die Gewichtung berechnet. Die Gewichtung sagt aus, wie viel Sagen ein Stumpf hat

Anhand der letzten Ergebnisse und Fehler werden die Stümpfe nacheinander beeinflusst und gebaut mit neuen Subsets

Jeder Stumpf stimmt ab mit seinen jeweiligen Gewichtungen. Die Klassifizierung mit der höchsten Gewichtung gewinnt

Vorteile	Nachteile	
 Kombination von Weak Learner Bestrafung falscher Vorhersagen Weniger Varianz anfällig 	LangsamBenötigt qualitative DatenReagiert auf Rauschen und Ausreißer	

Logistische Regression

Binäre logistische Regression

Sagt vorher ob es zu einer Kategorie oder zur Anderen gehört

Mithilfe einer Sigmoid Kurve werden Wahrscheinlichkeiten bestimmt, ob es zu einer Kategorie gehört. Wende bei 50%

Anfang und Ende haben hohe Wahrscheinlichkeiten für die Klassifizierung, während in der Mitte es ungenau ist

Vorteile	Nachteile
Effizient im LernenStark in simplenZusammenhängen	 Benötigt viele Daten Pauschalisierung ab der Wende Nicht gut für komplexe Muster

Why should I trust you?

Erklärungs Modelle

... um das wieso Zu beantworten

LIME

Local Interpretable Model-agnostic Explanation

Für eine lokale Interpretierbarkeit der Features und deren Auswirkungen auf die Vorhersage

SHAP SHapley Additive exPlanation

Für die umfassende Interpretierbarkeit der Auswirkungen der Feature-Werte auf die Vorhersagen

Regression erklärt an Qualität mit SHAP

Ein hohes Gewicht verringert die Qualität

Ein großer Durchmesser und große Höhe wirken sich positiv auf die Qualität aus

Viele Datenpunkte sammeln sich um 0

Regression erklärt an XKlasse mit SHAP

Viele Datenpunkte sammeln sich um 0

Kein eindeutiges Muster auffindbar

XKlasse nicht abhängig von Attributen

Regression erklärt an Gammawert mit SHAP

Gammawert nur abhängig von Höhe → linearer Zusammenhang

Große Höhe führt zu hohem Gammawert

Nur minimales Rauschen sichtbar bei Durchmesser & Gewicht

Random Forest erklärt an Fehler mit LIME

Wahrscheinlichkeit der Vorhersage hier hoch

Blaue Balken unterstützen die Entscheidung

Rote sprechen gegen die Entscheidung

Jeder Einfluss hat eine Gewichtung

Evaluierung der Modelle

Metriken

... um das wie gut zu beantworten

Accuracy

Anteil der richtig vorhergesagten Klassifizierungen

Mean Absolute Error

Durchschnittliche Abweichung der Vorhersage vom tatsächlichen Wert

0.02

Confusion Matrix

Gegenüberstellung der, auf Basis der Testdaten vorhergesagten Werte mit den tatsächlichen Werten

Empfehlung für SmartBuild

Erstellen von Reports und Vorhersagen

Empfehlung für SmartBuild

Daten in Echtzeit verarbeiten und Produkte steuern

Ihr Kontakt zum Erfolg

Niko Kauz Senior Manager – Data Analytics

T +49 177 60358817

M +49 800 11111111

@ niko.kauz@epic-data.com

Zögern Sie nicht, uns zeitnah zu kontaktieren. Gerne besprechen Wir in einem weiteren Termin die Details unserer Partnerschaft.

Unser Code zum Einsehen

https://github.com/NicolasMahn/BusinessIntelligence2

Clustering

Einteilung von Datenpunkten in homogene Gruppen (Cluster)

Durch wiederholende Berechnungen und Anpassungen von Centroiden werden Schwerpunkte für Gruppierungen gesetzt. Ändern sich die Centroiden nicht mehr im Cluster wurden die Schwerpunkte gefunden

Ein neuer Datenpunkt wird anhand seiner Attribute einem Cluster zugeordnet

Die gruppierten Datenpunkte sollten am Ende ähnlich sein

Vorteile	Nachteile
 Effizient für einfache Modelle Für verschiedene Szenarien und Datentypen nutzbar 	 Reagiert empfindlich auf Ausreißer Clustern nicht immer möglich Kugel-\Kreisförmige Zusammenhänge nötig

Random Forest

Aufteilung der Daten in ein bootstrapped Subset. Der Out-Of-Bag Dataset, die nicht genutzten Daten, wird zur Evaluierung verwendet einmal für den Entscheidungsbaum, wo er nicht reinkam und ein Mal für die anderen Bäume zur Abstimmung. Bei solchen Evaluierungen kommt es zum Out-Of-Bag Error, dem Anteil der nicht korrekten Vorhersagen

Mit einigen zufällig gewählten Features wird ein Entscheidungsbaum gebaut. Je nach Einstellung werden X Features gewählt (Default ist Wurzel der Anzahl aller Features). Der Node mit dem größten Information Gain wird gewählt

Dies wird oft wiederholt mit zufälligen Subsets und Variablen, wodurch eine Vielfalt an Bäumen entsteht, die zusammen oft bessere Ergebnisse liefern als ein Baum, da diese alle abstimmen, welche Klassifizierung für einen neuen Datenpunkt gewählt wird und die Klassifizierung mit den meisten Stimmen gewählt wird

Bei der Optimierung des Random Forests kann die Anzahl der zu erstellenden Bäume und auch die Anzahl der gewählten Feature konfiguriert werden. Weiter ist Pruning und Boosting mit Weighting möglich

56

Benchmark

LScore Klassifizierung

Durchschnittliche Ausführungszeit bei 10 Versuchen und Generierung von 50 Decision Trees / Decision Stumps

Random Forest AdaBoost

FastAdaBoost

Ausführungs-7eit

Vorhersage Genauigkeit 0.4 Sekunden

77.85%

9.2 Sekunden

78.6%

2.62 Sekunden

71.35%

Qualität weiter im Visier

Vorhersage ob Produkt Qualität von mind. 1.5 hat

Umsetzung mit weiterer Kategorisierung IstQualitativ: → Qualität > 1.5 = Ja, sonst Nein

Regression erklärt an Warpfaktor

Nach 100 Durchläufen train-rmse: 1.570859

Gammawert nur abhängig von Gewicht

→ linearer Zusammenhang

Große Höhe führt zu hohem Gammawert

Leichtes Rauschen sichtbar bei Durchmesser und Gewicht

Regression erklärt an Qualität mit SHAP

Qualität im Visier

Durchschnittliche Abweichung: 0.02

XKlasse im Visier - Decision Tree

24,25% korrekte Vorhersage mit unserem Modell Die XKlasse ist weitestgehend unabhängig von den Bemaßungen der Teile

Tatsächliche Zuordnung

		- 1	Ш	Ш	IV
gt	- 1	273	295	290	301
Vorhergesagt	П	0	0	0	0
rher	Ш	0	0	0	0
۸٥	IV	192	227	210	212

Klasse II und III konnten nicht vorhergesagt werden

Einteilung

Decision Tree und Fehler

Nicht-kritischen und redundante Zweige absägen, die eventuell auf Ausreißer reagierten

Damit wird das Risiko von Overfitting gesenkt und die Vorhersagen werden genauer

XKlasse exploriert

Gleichverteilung der XKlassen über die Daten

XKlasse - Decision Tree

Kein Zusammenhang mit Inputdaten gefunden

	rea	l		
vorhergesagt		Ш	Ш	IV
1	273	295	290	301
H	0	0	0	0
III	0	0	0	0
IV	192	227	210	212

24,25% der Vorhersagen waren Korrekt

Klasse II und III konnten nicht vorhergesagt werden

XKlasse im Visier

	real				
pred	1	Ш	Ш	IV	Fehlerrate
Î.	119	123	122	130	72,4%
Ш	116	156	140	122	74,4%
Ш	104	123	114	141	74,3%
IV	126	120	124	120	76,9%

25,5% der Vorhersagen waren Korrekt – etwas besser

Klasse II und III werden erkannt

Mit steigender Anzahl der Bäume sinkt die Fehlerrate hier nur gering

Neuronale Netze an Gammawert

Multiple Outputs mit Neuronalen Netzen

Wichtigkeit der Attribute auf Qualität

Gewicht am wichtigsten für Qualität

Durchmesser und Höhe ungefähr gleicht

Wichtigkeit der Attribute auf XKlasse

Alle Attribute sind fast gleich wichtig für das Merkmal XKlasse

LScore im Visier – RF

93% korrekte Vorhersage

Fehler im Visier - Decision Tree

78.6% korrekte Vorhersage

	real		
vorhergesagt	Ausschuss	FiT	nein
Ausschuss	775	204	188
FiT	0	0	0
nein	27	9	797

Fehler im Toleranzbereich konnte nicht vorhergesagt werden

Fehler im Visier – Random Forest

Anzahl der Bäume

HatFehler - ROC Kurve

Sehr viele

werden in Ja

zugeteilt

HatFehler - Decision Tree

