

UNIVERSIDADE FEDERAL DO PARÁ

INSTITUTO DE TECNOLOGIA

FACULDADE DE ENGENHARIA DA COMPUTAÇÃO E TELECOMUNICAÇÕES

TITULO A DEFINIR

Autor: Danilo Henrique Costa Souza

Orientador: Prof. Dr. Ronaldo de Freitas Zampolo

UNIVERSIDADE FEDERAL DO PARÁ

INSTITUTO DE TECNOLOGIA

FACULDADE DE ENGENHARIA DA COMPUTAÇÃO E TELECOMUNICAÇÕES

TITULO A DEFINIR

Autor: Danilo Henrique Costa Souza

Orientador: Prof. Dr. Ronaldo de Freitas Zampolo

Disciplina: Trabalho de Conclusão de Curso

Trabalho de Conclusão de Curso apresentado como requisito parcial para obtenção do Grau de Bacharel em Engenharia da Computação pela Universidade Federal do Pará.

TITULO A DEFINIR

Autor: Danilo Henrique Costa Souza

Banca examinadora:

Prof. Dr. Ronaldo de Freitas Zampolo (Orientador – Engenharia da Computação)

> Prof. Dr. A DEFINIR (Membro – Ciência da Computação)

Prof. Dr. A DEFINIR (Membro – Engenharia da Computação)

Agradecimentos

Resumo

PALAVRAS-CHAVE:

Abstract

KEYWORDS:

<u>Sumário</u> vi

Sumário

1	Introdução	1
2	Redes de sensores ópticos baseados em FBG	2
3	Descrição da técnica estudada e Implementação	3
	3.1 Descrição da técnica estudada	3
	3.2 Implementação	3
4	Resultados	4
5	Considerações finais e Trabalhos futuros	5
Re	eferências Bibliográficas	6

Lista de Figuras

Lista de Tabelas viii

Lista de Tabelas

1. Introdução 1

Capítulo 1

Introdução

Capítulo 2

Redes de sensores ópticos baseados em FBG

Capítulo 3

Descrição da técnica estudada e Implementação

3.1 Descrição da técnica estudada

A técnica implementada neste trabalho, introduzida em [1], pode ser classificada como semi-automática pois necessita da intervenção do usuário para marcar as regiões de interesse da imagem. Estas regiões podem ser objeto ou fundo, havendo a possibilidade de se marcar mais de um objeto para segmentação, nesse caso a imagem resultante seria a soma das imagens de cada objeto separado.

Essa técnica parte da premissa de que as regiões de interesse a serem definidas são bem distintas em termos de cor e textura e utilizando o conjunto de pixels marcados Ω_n , sendo n o número de regiões distintas, é calculada a distribuição gaussiana mostrando a probabilidade de um pixel p(x,y) pertencer a uma determinada região l. Com base nessas distribuições são calculados pesos para cada canal da imagem que serão explicados mais detalhadamente a seguir.

Em [1] o autor utilizou 19 canais para segmentação, sendo 3 destes canais a Luminância (Y) e Crominância $(Cr \ e \ Cb)$ e os outros 16 são o resultado da filtragem do canal de Y por 16 filtros diferentes de Gabor, [2] Procurar mais artigos sobre gabor. O autor utilizou 4 direções $(\theta = 0, \pi/4, \pi/2 \ e \ 3\pi/4)$ e 4 frequências centrais $(\omega = 1/2, 1/4, 1/8 \ e \ 1/16)$ para definir os filtros. A escolha de apenas 4 direções se dá em função da simetria, uma vez que o sentido não importa, ou seja, $0 = \pi, \pi/4 = 5\pi/4, \pi/2 = 3\pi/2 \ e \ 3\pi/4 = 7\pi/4$

3.2 Implementação

4. Resultados 4

Capítulo 4

Resultados

Capítulo 5

Considerações finais e Trabalhos futuros

Referências Bibliográficas

- [1] Alexis Protiere and Guillermo Sapiro. Interactive image segmentation via adaptive weighted distances. *IEEE Transactions on Image Processing*, 16(4):1046–1057, 2007.
- [2] B Manjunath and W Ma. Texture features for browsing and retrivieval of image data. \mbox{IEEE} Trans. on Pattern Analysis and Machine Intelligence, 8(18):837-842, 1996.