ФУНКЦИОНАЛЬНОЕ ЛОГИЧЕСКОЕ ПРОГРАММИРОВАНИЕ

Санкт-петербургский государственный политехнический университет

Институт Компьютерных Наук и Технологий

Кафедра: Информационные и Управляющий Системы

Автор: Лукашин Антон Андреевич

Содержание

Категории

- Пустая и тривиальная категории
- Категория двух и трех объектов
- Дискретные категории
- Множество как категория
- Моноиды
- Kатегория Scala

Конструкции

- Изоморфизмы
- Начальный и терминальные объекты
- Продукты и сопродукты
- Теория категорий и функциональное программирование

Содержание

Пустая и тривиальные категории

- Пустая категория 0 не содержит объектов и морфизм (это описывается как «ничего»)
- Тривиальная категория 1 содержит один объект и один морфизм
 - Какой это морфизм?

Пустая и тривиальные категории

- Пустая категория 0 не содержит объектов и морфизм (это описывается как «ничего»)
- Тривиальная категория 1 содержит один объект и один морфизм
 - Какой это морфизм?
 - Это морфизм id (идентифицирующий морфизм id $a: a \rightarrow a$)

Категории двух и трех объектов

- Категория 2 содержит 2 объекта и 3 морфизма
 - Два идентифицирующих морфизма
 - Один неидентифицирующий морфизм
- Категория 3 содержит 3 объекта и 6 морфизмов
 - Три идентифицирующих морфизма
 - Три неидентифицирующих морфизма
- Что представляют собой неидентифицирующие морфизмы?

Категории двух и трех объектов

- Категория 2 содержит 2 объекта и 3 морфизма
 - Два идентифицирующих морфизма
 - Один неидентифицирующий морфизм
- Категория 3 содержит 3 объекта и 6 морфизмов
 - Три идентифицирующих морфизма
 - Три неидентифицирующих морфизма
- Что представляют собой неидентифицирующие морфизмы?

Дискретные категории

- Дискретная категория это категория, единственными морфизмами которой являются тождественные (id)
- \blacksquare Рассматривая набор A, мы получаем дискретную категорию \mathcal{C} , взяв
 - Объекты категории А
 - Тождественные морфизмы по одному для каждого $x \in A$, которые однозначно определяются тождественной аксиомой
- Дискретная категория так определяется его объектами, так и соответствующими тождественными морфизмами

Категория множества

- Множество это категория наборов и функций
 - Объекты данной категории это наборы A, B, C, ...,
 - Морфизмы данной категории это функции f, g, h, ...
- Каждая функция $f: A \rightarrow B$ состоит из:
 - домена A = dom(f)
 - кодомена или диапазона B = cod(f)
 - Правила, присваивающего каждому элементу $x \in A$ элемент $f(x) \in B$
- Также для каждого множества A, существует тождественная функция $idA: A \to A$, такая что:
 - $\Delta \Lambda A$ всех $X \in A$

$$idA(x) = x$$
,

- И для каждой пары морфизмов $f:A\to B$ и $g:B\to C$, существует композиция $g\circ f:A\to C$ такая что:
 - $\Delta \Lambda A BCEX X \in A$,

$$(g \circ f)(x) = g(f(x)).$$

Множество - категория

■ Аксиома ассоциативности

```
Aля функций f:A \to B, \ g:B \to C \ и \ h:C \to D, для всех x \in A:  (h \circ g \circ f)(x) = (\text{по 2му свойству})   h((g \circ f)(x)) = (\text{по 2му свойству})   h(g(f(x))) = (\text{по 2му свойству})   (h \circ g)(f(x)) = (\text{по 2му свойству})   (h \circ g) \circ f(x)
```

Аксиома тождественности

– Δ ля функции $f: A \rightarrow B$, для всех $x \in A$:

```
(id_B \circ f)(x) = (по 2му свойству id_B(f(x)) = (по 1му свойству) f(x) = (по 1му свойству) f(id_A(x)) = (по 2му свойству) (f \circ id_A)(x)
```

Категория множества - замечание

- В какой-то степени мы определили объекты и морфизмы множества как множества всех множеств и всех функций, что выглядит как парадокс, такой как:
 - Множества всех множеств не содержат сами себя

Таким образом должно существовать множество – вселенная, которое содержит объекты Set (категории множества), которые являются меньшими множествами

- Моноид это категория с одним объектом. Моноид определяется своими морфизмами:
 - тождественным морфизмом
 - правилами композиции морфизмов.
- Более формально для категории \mathcal{C} с одним объектом a, мы получаем моноид $C = (\mathcal{C}M, \circ, ida)$ где элементы $\mathcal{C}M$ морфизмы \mathcal{C} . С другой стороны учитывая моноид M = (M, *, e), мы получаем категорию \mathcal{M} с одним объектом M, морфизмы элементов M, композицию * и тождественный морфизм e.

Категория Scala - начало

- Начнем описывать Scala как категорию
 - Типы данных (Unit, Boolean, Integer) объекты категории
 - Unit : Unit -> Unit
 - True, False : Unit -> Boolean
 - Zero: Unit -> Integer
 - Функции:
 - Succ : Integer -> Integer
 - Pred : Integer -> Integer
 - not : Boolean -> Boolean
 - IsZero : Integer -> Boolean
 - Zero.isZero = True
 - __isZero = False
 - etc

Конструкции

- Рассмотрим некоторые конструкции в категориях
 - Изоморфизм
 - Начальные и терминальные объекты
 - Продукты и сопродукты

Изоморфизм

- Определение: Пусть \mathcal{C} категория. Морфизм $f: a \to b$ является изоморфизмом если существует обратный морфизм $f_{-1}: b \to a$ такой что:
 - f-1 \circ f = ida
 - $f \circ f_{-1} = idb$
- Объекты a и b изоморфны если существует изоморфизм $f: a \to b$. Изоморфные объекты часто называют тождественными с точностью до изоморфизма
- Другими словами объект с некоторыми свойствами называется уникальным с точностью до изоморфизма, если каждый объект удовлетворяющий свойству изоморфен ему

Начальные и терминальные объекты

- Определение: Пусть \mathcal{C} категория. Объект 0 начальный объект категории \mathcal{C} , если для всех объектов a, существует уникальный морфизм $0 \to a$
- Определение: Пусть \mathcal{C} категория. Объект 1 терминальный объект категории \mathcal{C} , если для всех объектов a, существует уникальный морфизм $a \to 1$
- Лемма: начальные и терминальные объекты уникальны с точностью до изоморфизма
- Доказательство
- Пусть \mathcal{C} категория с начальными объектами 0 and 0′. Существует уникальные морфизмы $0_0: 0 \to 0'$ and $0'_0: 0' \to 0$ а также $0_0 = \mathrm{ido}\,\,\mathrm{ido}\,\,\mathrm{o}' = \mathrm{ido}'\,$, следовательно:
 - $O'o \circ Oo' = ido и Oo' \circ O'o = ido'$
 - То есть О уникален с точностью до изоморфизма
- Для терминальных объектов показать самостоятельно

Начальные и терминальные объекты

- Пустое множество Ø начальный объект. Любое одноэлеметное множество (singleton set) {x} терминальный объект
 - Уникальная функция empty $\emptyset \to A$
 - Уникальная функция присвоения x всем элементам $A \to \{x\}$
- Элементы множества A могут рассматриваться как функции из терминального объекта, который является однообъектным множество к A. Точнее если $x \in A$ и 1 это терминальный объект, тогда x может быть представлен как функция $x: 1 \to A$, которая присваивает x к элементу 1

Продукты и сопродукты

- lacktriangle Определение: продукт объектов a и b категории $\mathcal C$ состоит из:
 - объекта продукта $a \times b$
 - проекции π 1 : $a \times b$ → a
 - проекции π 2 : $a \times b \rightarrow b$
- Таких, что для всех объектов c, а так же морфизмов $f: c \to a$ и $g: c \to b$ существует уникальный морфизм $\langle f, g \rangle : c \to a \times b$, такой что

$$\pi 1 \circ \langle f, g \rangle = f \text{ and } \pi 2 \circ \langle f, g \rangle = g,$$

Пример

 \blacksquare Продукт двух множеств A и B описывается Декартовым произведением:

$$A \times B = \{(x, y) \mid x \in A \text{ and } y \in B\}$$

- Проецирующие фунцкии $\pi 1: A \times B \to A$ и $\pi 2: A \times B \to B$ такие что:
 - Для всех $(x, y) \in A \times B$, $\pi 1(x, y) = x$ и $\pi 2(x, y) = y$.
- lacktriangle Для множества C и двух функции $f:C \to A$ и $g:C \to B$ существует уникальная функция $\langle f,g \rangle:C \to A \times B$, определяемая как

$$\langle f, g \rangle (z) = (f(z), g(z))$$

Сопродукт

- lacktriangle Сопродукт объектов a и b в категории $\mathcal C$ состоит из:
 - Объекта сопродукта a+b
 - нагнетательного морфизма $\iota 1: a \rightarrow a+b$
 - $2:b \rightarrow a+b$
- Таких что для всех объектов c, а также морфизмов $f: a \to c$ и $g: b \to c$, существует уникальный морфизм $[f,g]: a+b \to c$ такой что:

$$[f, g] \circ \iota 1 = f$$
 и $[f, g] \circ \iota 2 = g$

Пример

- lacktriangle Сопродукт двух множеств A and B состоит из
 - Объединения $A + B = (\{1\} \times A) \cup (\{2\} \times B)$
- \blacksquare Двух нагнетающих функций $\iota 1:A \to A+B$ и $\iota 2:B \to A+B$ таких что,
 - Для всех $x \in A$ и $y \in B$,
 - $\iota 1(x) = (1, x) \text{ in } \iota 2(y) = (2, y)$
- Для множества C, а также двух функции $f:A \to C$ и $g:B \to C$, существует уникальная функция $[f,g]:A+B\to C$ определяемая как

$$[f, g](\iota 1(x)) = f(x) \text{ and } [f, g](\iota 2(y)) = g(y)$$

Спасибо за внимание

