Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Отчёт по лабораторной работе № 1

Дисциплина: Низкоуровневое программирование Вариант 17.

Выполнил студент гр. 353	0901/90002	(подпись)	_ А.И. Юрченко		
Принял преподаватель	(подпись)		Д.С. Степанов		
		" "	2021 г.		

Санкт-Петербург 2021

Задача

Построить машину Тьюринга, проверяющую, является ли заданное слово палиндромом.

Алфавит

«0, 1, 2»

Начальное и конечное состояния

Головка должна находиться на первом символе числа.

В конце работы должен быть один символ:

- «1» если слово является палиндромом;
- «0» если слово не является палиндромом.

Диаграмма состояний

На диаграмме пробел обозначен буквой «S»

Рис. 1. Диаграмма состояний.

Описание работы

	Q ₁	Q ₂	Q ₃	Q ₄	Q ₅	Q ₆	Q ₇	Q ₈	Q ₉
0	_ → Q ₂	0 → Q ₂	_ ← Q ₄	0 ← Q ₄	0 → Q ₅	_ ← Q ₉	0 → Q ₇	_ ← Q ₉	_ ← Q ₉
1	_ → Q5	1 → Q ₂	_ ← Q ₉	1 ← Q ₄	1 → Q ₅	_ ← Q4	1 → Q ₇	_ ← Q ₉	_ ← Q ₉
2	_ → Q ₇	2 → Q ₂	_ ← Q ₉	2 ← Q ₄	2 → Q ₅	_ ← Q ₉	2 → Q ₇	_ ← Q4	_ ← Q ₉
	1 + 👄	_ ← Q ₃	1 + 👄	_ → Q ₁	_ ← Q ₆	1 + 👄	_ ← Q ₈	1 + 👄	0 + 👄

Машина начинает работу в состоянии 1, стирая первый символ, и в зависимости от того, какой это был символ, переходит в состояние 2, 5 или 7:

- $2 \cot \theta + \cot \theta = (0)$;
- 5 состояние если символ = «1»;
- $7 \cot \theta \cot \theta = (2)$.

По сути, состояния 2, 5 и 7 выполняют одинаковую функцию, они ищут конец слова. Но они отличаются тем, что после нахождения конца слова переходят в разные состояния, чтобы сравнить начальный символ и конечный.

Таким образом, после 2 состояния машина переходит в 3, где проверяет, является ли последний символ «0»:

- если символ = «0», то машина его стирает и переходит в состояние 4, которое ищет начало слово, и когда его находит, возвращается в 1.
- если символ = «1» или «2», то машина переходит в состояние 9, которое удаляет всё слово (программа «аннигиляция»), и ставит «0», что сигнализирует о том, что слово не является палиндромом.
- если символ = «S», такое может случиться, когда количество символов в слове нечётное. Машина ставит «1», что значит, что слово является палиндромом, и переходит в состояние 0.

По аналогии со 2 состоянием, 6 состояние сравнивает последний символ с $\ll 1$ », а $8-c \ll 2$ ».

Если в слове чётное количество символов и оно палиндром, то после удаления последнего, машина перейдёт в 4 состояние, затем в 1 и, встретив «S», запишет «1» и перейдёт в 0 состояние.