Calcul Matriciel

Exercices

2.1. Exercices

Exercice 2.1. Résoudre les systèmes d'équations linéaires suivants :

$$\begin{cases} X + Y + Z = 3 \\ Y + Z = 2 \\ Z = 1 \end{cases} \begin{cases} X + Y + Z = 3 \\ Y + Z = 2 \\ X + Y = 2 \end{cases} \begin{cases} 2X + 3Y = 4 \\ X - 2Z = 5 \end{cases}$$

Exercice 2.2. Pour chacun des systèmes suivants, tracer la droite de \mathbb{R}^2 correspondant à chaque équation ax + by = c du système et trouver graphiquement l'ensemble des solutions. Vérifier le résultat en utilisant le pivot de Gauss.

$$\begin{cases} X + Y = 1 \\ X - Y = 0 \end{cases} \begin{cases} X - Y = 2 \\ Y - X = 1 \end{cases} \begin{cases} X - 3Y = -3 \\ X - Y = 1 \\ X + Y = 5 \end{cases}$$

Exercice 2.3. Résoudre par la méthode du pivot de Gauss les systèmes linéaires suivants :

$$\begin{cases} 3X + Y = 2 \\ X + 2Y = 1 \end{cases} \begin{cases} 2X + 3Y = 1 \\ 5X + 7Y = 3 \end{cases}$$
$$\begin{cases} 3X + Y = 2 \\ 6X + 2Y = 1 \end{cases} \begin{cases} 2X + 4Y = 10 \\ 3X + 6Y = 15 \end{cases}$$

Exercice 2.4. Résoudre par la méthode du pivot de Gauss les systèmes linéaires suivants :

$$\begin{cases} X + Y + Z = 1 \\ X + 2Y + 2Z = 0 \\ Y + 4Z = -4 \end{cases} \begin{cases} X + Y + Z = 2 \\ X + Y + 2Z = 0 \\ X + 2Y - Z = 0 \end{cases}$$

$$\begin{cases} 2X + Y - 3Z = 5 \\ 3X - 2Y + 2Z = 5 \\ 5X - 3Y - Z = 16 \end{cases} \begin{cases} X + Y + Z + T = 2 \\ X + Y + 2Z + 2T = 0 \\ X + 2Y - Z - T = 1 \\ Z - T = 0 \end{cases}$$

Exercice 2.5. 1. Déterminer suivant les valeurs du paramètre a les solutions des systèmes suivants :

$$\begin{cases} X + aY = 2 \\ aX + Y = 2 \end{cases} \begin{cases} X - 2Y = 2 \\ X - aY = a \end{cases} \begin{cases} X + Y = 3 \\ aX + Y = a. \end{cases}$$

2. Déterminer suivant les valeurs des paramètres réels a et b les solutions des systèmes linéaires suivants :

$$\begin{cases} X - aY = 2 \\ aX + Y = b \end{cases} \begin{cases} aX + 8Y = b \\ X - bY = a \end{cases} \begin{cases} aX + bY = 1 \\ bX + aY = 1 \end{cases}$$

- 3. Interprétez les résultats des questions précédentes en termes d'intersections de droites dans le plan.
- **Exercice 2.6.** 1. Résoudre, en appliquant soigneusement la méthode du pivot de Gauss et en indiquant chaque opération effectuée, le système d'équations linéaires

$$\begin{cases} X + Y + Z + T = 5 \\ 2X + 3Y - 2Z - 2T = 4 \\ X + 3Y - 6Z + 3T = 4 \\ X - Y + Z - T = -1. \end{cases}$$

2. Vérifier que la ou les solutions obtenues vérifient le système initial.

Exercice 2.7. Equilibrer les reactions chimiques suivantes en interpretant la conservation des divers éléments comme une condition linéaire sur les quantités de réactif :

- 1. $NO_2 + H_2O \longrightarrow HNO_3 + NO$;
- 2. $\operatorname{Fe}_{7} \operatorname{S}_{8} + \operatorname{O}_{2} \longrightarrow \operatorname{Fe}_{3} \operatorname{O}_{4} + \operatorname{SO}_{2}$;
- $3. \ C_2H_6 \longrightarrow C_2H_4 + H_2.$

Exercice 2.8. On considère la matrice suivante.

$$A = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right) .$$

- 1. Calculer A et A^2 . Exprimer simplement A^2 en termes de A.
- 2. Pour $k \in \mathbb{N}^*$, démontrer par récurrence que $A^k = 3^{k-1}A$.
- 3. En déduire l'expression de A^k en fonction de k.

Exercice 2.9. Pour chacune des application linéaires suivantes de \mathbb{R}^n dans \mathbb{R}^m , écrire la matrice qui lui correspond.

$$f(x, y, z) = x + 2y + 3z f(x) = (x, -x, 2x)$$

$$f(x, y) = (x + y, x - y) f(x, y, z) = (x + 2y + 3z, x + y + z, x - y - z)$$

$$f(x, y, z) = (x - 2y, 3y) f(x, y, z, t) = (x + y - 2z + t, x + y + t)$$

Exercice 2.10. Dans cet exercice, on note A la matrice

$$A = \begin{pmatrix} 3 & 0 & -1 \\ 1 & 2 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$

On note B la matrice $A - 2I_3$.

- 1. Calculer les matrices A^2 et A^3 .
- 2.(a) Calculer la matrice B.
 - (b) Calculer les matrices B^2 et B^3 .
 - (c) Calculer les produits de matrices $(2I_3)B$ et $B(2I_3)$, comparer les résultats obtenus.
- 3. Dans cette question, on pourra utiliser, sans le prouver, que si M et $N \in \mathcal{M}_3(\mathbf{R})$ sont des matrices telles que MN = NM, alors pour tout entier n, la formule du binôme s'applique :

$$(M+N)^n = \sum_{k=0}^n \binom{n}{k} M^k N^{n-k}$$

où $\binom{n}{k}$ désigne ici le coefficient binomial $\frac{n!}{k!(n-k)!}$.

En utilisant cette formule et la question précédente calculer les neuf coefficients de la matrice A^n pour tout entier $n \in \mathbb{N}$.

4. Vérifier pour les trois entiers n=1, 2 et 3 que l'expression obtenue dans la question précédente pour A^n redonne bien les matrices A, A^2 et A^3 obtenues auparavant.

Exercice 2.11. On considère la matrice suivante.

$$A = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{array}\right) \ .$$

On note φ l'endomorphisme de \mathbf{R}^3 défini par la matrice A. On pose $e_1=(1,0,0),$ $e_2=(0,1,0)$ et $e_3=(0,0,1).$

- 1. Démontrer que $\varphi \circ \varphi(\vec{e}_1) = \varphi(\vec{e}_2) = 0$. Démontrer que $\varphi \circ \varphi(\vec{e}_3) = \varphi(\vec{e}_3)$.
- 2. En déduire A^2 . Vérifier en effectuant le produit matriciel.
- 3. Démontrer que $A^3=A^2$ sans effectuer le produit matriciel, puis vérifier en l'effectuant.
- 4. Donner une base de $Ker(\varphi)$ et une base de $Im(\varphi)$

Exercice 2.12. On considère la matrice suivante.

$$A = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right) \ .$$

On note φ l'endomorphisme de \mathbf{R}^3 défini par la matrice A. On pose $e_1=(1,0,0),$ $e_2=(0,1,0)$ et $e_3=(0,0,1).$

- 1. Pour i = 1, 2, 3, déterminer $\varphi \circ \varphi(\vec{e_i})$, puis $\varphi \circ \varphi \circ \varphi(\vec{e_i})$.
- 2. En déduire que $A^2 = A^{-1}$. Vérifier en calculant le produit matriciel.

Exercice 2.13. On considère la matrice suivante.

$$A = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right) .$$

On note φ l'endomorphisme de \mathbf{R}^3 défini par la matrice A. On pose $e_1=(1,0,0),$ $e_2=(0,1,0)$ et $e_3=(0,0,1).$

- 1. Pour i = 1, 2, 3, déterminer $\varphi \circ \varphi(\vec{e_i})$, puis $\varphi \circ \varphi \circ \varphi(\vec{e_i})$.
- 2. En déduire A^2 et A^3 .
- 3. Pour $k \in \mathbb{N}^*$, donner une expression de $(I_3 + A)^k$ en fonction de k. Vérifier votre expression pour k = 3 en effectuant le produit matriciel.
- 4. Reprendre la question précédente pour $(I_3 A)^k$, puis pour $(3I_3 2A)^k$.