

Broadband Low Power LNA for L1/L2/L5 GNSS Applications

Features

- Operation frequencies 1164 to 1615 MHz
- Multiple-Operating Modes for different applications
- · Current consumption down to 1.5 mA
- Wide supply voltage range 1.1 V to 3.3 V
- · High insertion power gain up to 19 dB
- Low noise figure down to 0.7 dB
- 2 kV HBM ESD protection (inluding AI pin)
- Broadband design ensures the functionality of all GNSS signals within 1164 to 1615 MHz with the same matching

Potential Application

The BGA525N6 enhances GNSS signal sensitivity for band L1/L2/L5 especially in wearables and mobile cellular IoT applications. It offers 3 different GPIO controlled modes:

- Low-Power Mode: small battery powered GNSS devices

- Standard Mode: best balance between power consumption and performance

- High-Gain Mode: lowest Noise Figure and fastest Time-To-First-Fix

The broadband design ensures the functionality of all GNSS signals within 1164 to 1615 MHz with the same matching. Simplified dual-band GNSS system designs with one RF-Path are enabled by BGA525N6.

Product Validation

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.

Block Diagram

Product Name	Marking	Package	Ordering Information
BGA525N6	8	PG-TSNP-6-10	BGA525N6 E6327

restricted

BGA525N6

Table of Contents

Table of Contents

Та	able of Contents	1
1	Absolute Maximum Ratings	2
2	Electrical Characteristics	3
3	Application Information	10
4	Package Information	12

Broadband Low Power LNA for L1/L2/L5 GNSS Applications

Absolute Maximum Ratings

1 Absolute Maximum Ratings

Table 1: Absolute Maximum Ratings

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Voltage at pin VCC	V _{cc}	-0.3	-	3.6	٧	1
Voltage at pin AI	V _{AI}	_	-	_	V	2
Voltage at pin AO	V _{AO}	-0.3	-	V _{CC} + 0.3	٧	$V_{\rm CC}$ + 0.3 must not exceed 3.6 V
Voltage at pin CTRL1/CTRL2	V _{CTRL}	-0.3	-	V _{CC} + 0.3	٧	-
Current into pin VCC	I _{cc}	_	-	10	mA	-
Junction temperature	T	_	-	150	°C	-
Ambient temperature range	T _A	-40	-	85	°C	-
Storage temperature range	T_{STG}	-55	-	150	°C	-
ESD capability, HBM	V _{ESD_HBM}	-2000	-	+2000	٧	3
ESD capability, CDM	V _{ESD_CDM}	-1000	-	+1000	٧	4
RF input power	P _{IN}	_	-	+25	dBm	CW signal, VSWR 10:1, (re-
						fer to 50 Ohm), device level,
						VCC/VCTRL type, 25°C, for 30s
						and all modes.

¹All voltages refer to GND-Nodes unless otherwise noted

Warning: Stresses above the max. values listed here may cause permanent damage to the device. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Exposure to conditions at or below absolute maximum rating but above the specified maximum operation conditions may affect device reliability and life time. Functionality of the device might not be given under these conditions.

²No external DC Voltage allowed

³Human Body Model ANSI/ESDA/JEDEC JS-001 ($R = 1.5 \text{ k}\Omega$, C = 100 pF)

⁴Field-Induced Charged-Device Model ANSI/ESDA/JEDEC JS-002. Simulates charging/discharging events that occur in production equipment and processes. Potential for CDM ESD events occurs whenever there is metal-to-metal contact in manufacturing.

Broadband Low Power LNA for L1/L2/L5 GNSS Applications

Electrical Characteristics

Table 2: Operation ranges at T_A = 25 °C, f = L1/L2/L5

Parameter ¹	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.	-	
Supply Voltage	V _{cc}	1.1	_	3.3	V	-
Control Input Voltage	V _{IH}	0.7 * VCC	_	VCC	V	logic H
Control input voltage	V _{IL}	0	-	0.3 * VCC	V	logic L
Stability	k	>1	_	_		f=20 MHz-10 GHz
						(all Modes)
		_	30	32	ns	Low Power Mode to OFF Mode
Transient time	t_{S}					Standard Mode to OFF Mode
						High Gain Mode to OFF Mode
		_	21.7	23.5	μs	C1=1nF
						OFF to LOW Power Mode
						OFF to Standard Mode
						OFF to High Gain Mode
		_	733	847	ns	C1=10pF
						OFF to LOW Power Mode
						OFF to Standard Mode
						OFF to High Gain Mode

¹Based on application described in chapter 4

Broadband Low Power LNA for L1/L2/L5 GNSS Applications

Table 3: Electrical Characteristics at $T_{\rm A}$ = 25 °C, Low Power Mode, f = 1164– 1300 MHz

Parameter ¹	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Committee Comment	,	_	1.5	1.8	mA	Low Power Mode, VCC=1.8V
Supply Current	I _{CC}	_	_	1	μΑ	OFF Mode
1		14.5	15.5	16.5	dB	VCC=1.2V
Insertion Power Gain ¹ f = 1176 MHz	$ S_{21} ^2$	14.5	15.5	16.5	dB	VCC=1.8V
7 - 1170 MITZ		14.5	15.5	16.5	dB	VCC=2.8V
Noise Figure ²		_	0.9	1.2	dB	VCC=1.2V
f = 1176 MHz	NF	-	0.9	1.2	dB	VCC=1.8V
7 – 1176 MITZ		-	0.9	1.2	dB	VCC=2.8V
Input return loss ³		8	9.5	-	dB	VCC=1.2V
f = 1176 MHz	RL _{IN}	7.5	9	-	dB	VCC=1.8V
7 – 1176 MITZ		7.5	9	_	dB	VCC=2.8V
Output return loss ³		9	11	-	dB	VCC=1.2V
f = 1176 MHz	RL _{OUT}	9	11	-	dB	VCC=1.8V
7 – 1176 MITZ		9	11	-	dB	VCC=2.8V
Davidana in alatin a3		30	33	_	dB	VCC=1.2V
Reverse isolation ³ f = 1176 MHz	$ 1/ S_{12} ^2$	30	34	-	dB	VCC=1.8V
		30	34	-	dB	VCC=2.8V
Inband input		-17	-14	_	dBm	VCC=1.2V
1dB-compression point ³	IP _{1dB}	-13	-10	-	dBm	VCC=1.8V
<i>f</i> = 1176 MHz		-9	-6	-	dBm	VCC=2.8V
Out of band input 3rd-order		-7	-4.5	_	dBm	VCC=1.2V,
intercept point	IIP _{300B}					$f_1 = 1785 \text{ MHz}, f_2 = 2401 \text{ MHz},$
intercept point						$P_1 = P_2 = -20 \text{ dBm}$
		-7.5	-5	_	dBm	VCC=1.8V,
						$f_1 = 1785 \text{ MHz}, f_2 = 2401 \text{ MHz},$
						$P_1 = P_2 = -20 \text{ dBm}$
		-8	-5.5	_	dBm	VCC=2.8V,
						$f_1 = 1785 \text{ MHz}, f_2 = 2401 \text{ MHz},$
						$P_1 = P_2 = -20 \text{ dBm}$

¹Based on application described in chapter 4

²PCB losses are substrated ³Verification based on AQL; not 100% tested in production

Broadband Low Power LNA for L1/L2/L5 GNSS Applications

Table 4: Electrical Characteristics at $T_{\rm A}$ = 25 °C, Standard Mode, f = 1164–1300 MHz

Parameter ¹	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Cumply Courset	,	-	2.3	2.4	mA	Standard Mode, VCC=1.8V
Supply Current	I _{CC}	_	_	1	μΑ	OFF Mode
Landing Barris Catal		16.8	17.8	18.8	dB	VCC=1.2V
Insertion Power Gain ¹ f = 1176 MHz	$ S_{21} ^2$	16.8	17.9	18.8	dB	VCC=1.8V
7 - 1170 WITE		16.8	17.8	18.8	dB	VCC=2.8V
Noise Figure ²		_	0.8	1.1	dB	VCC=1.2V
f = 1176 MHz	NF	-	0.8	1.1	dB	VCC=1.8V
7 – 1176 MITZ		-	0.8	1.1	dB	VCC=2.8V
Input return loss ³		8	11	-	dB	VCC=1.2V
f = 1176 MHz	RL _{IN}	7.5	10.5	_	dB	VCC=1.8V
7 – 1176 MITZ		7.5	10.5	_	dB	VCC=2.8V
Output return loss ³		9	11	-	dB	VCC=1.2V
f = 1176 MHz	RL _{OUT}	9	11	-	dB	VCC=1.8V
7 – 1176 MITZ		9	11	-	dB	VCC=2.8V
D		30	34	_	dB	VCC=1.2V
Reverse isolation ³ f = 1176 MHz	$ 1/ S_{12} ^2$	30	34	-	dB	VCC=1.8V
		30	34	-	dB	VCC=2.8V
Inband input		-19	-16.5	_	dBm	VCC=1.2V
1dB-compression point ³	IP _{1dB}	-15	-12	-	dBm	VCC=1.8V
<i>f</i> = 1176 MHz		-11	-8.5	_	dBm	VCC=2.8V
Out of band input 3rd-order		-2	0.5	_	dBm	VCC=1.2V,
intercept point	IIP _{300B}					$f_1 = 1785 \text{ MHz}, f_2 = 2401 \text{ MHz},$
intercept point						$P_1 = P_2 = -20 \text{ dBm}$
		-5	-2.5	_	dBm	VCC=1.8V,
						$f_1 = 1785 \text{ MHz}, f_2 = 2401 \text{ MHz},$
						$P_1 = P_2 = -20 \text{ dBm}$
		-5	-2.5	_	dBm	VCC=2.8V,
						$f_1 = 1785 \text{ MHz}, f_2 = 2401 \text{ MHz},$
						$P_1 = P_2 = -20 \text{ dBm}$

¹Based on application described in chapter 4

²PCB losses are substrated ³Verification based on AQL; not 100% tested in production

Broadband Low Power LNA for L1/L2/L5 GNSS Applications

Electrical Characteristics

Table 5: Electrical Characteristics at $T_{\rm A}$ = 25 °C, High Gain Mode, f = 1164– 1300 MHz

Parameter ¹	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Complex Commands	,	_	3.4	3.6	mA	High Gain Mode, VCC=1.8V
Supply Current	I _{cc}	_	_	1	μΑ	OFF Mode
Leading Brown Catal		18	19	20	dB	VCC=1.2V
Insertion Power Gain ¹ f = 1176 MHz	$ S_{21} ^2$	18	19	20	dB	VCC=1.8V
7 - 1170 MH 12		18	19	20	dB	VCC=2.8V
Noise Figure ²		_	0.7	1	dB	VCC=1.2V
f = 1176 MHz	NF	-	0.7	1	dB	VCC=1.8V
7 = 1176 MHZ		-	0.7	1	dB	VCC=2.8V
Input return loss ³		9.5	11.5	-	dB	VCC=1.2V
f = 1176 MHz	RLIN	8.5	10.5	-	dB	VCC=1.8V
7 – 1176 MHZ		8	10	_	dB	VCC=2.8V
O. t t t		8.5	10.5	-	dB	VCC=1.2V
Output return loss ³ f = 1176 MHz	RL _{OUT}	8.5	10.5	-	dB	VCC=1.8V
- 1176 MHZ		8	10	_	dB	VCC=2.8V
Davis and a latin a 3		30	34	_	dB	VCC=1.2V
Reverse isolation ³ f = 1176 MHz	$ 1/ S_{12} ^2$	30	34	-	dB	VCC=1.8V
		30	34	_	dB	VCC=2.8V
Inband input		-20	-18	_	dBm	VCC=1.2V
1dB-compression point ³	IP _{1dB}	-16	-14	-	dBm	VCC=1.8V
f = 1176 MHz		-12	-10	-	dBm	VCC=2.8V
Out of band input 3rd-order		-1.5	1	_	dBm	VCC=1.2V,
intercept point	IIP _{3OOB}					$f_1 = 1785 \text{ MHz}, f_2 = 2401 \text{ MHz}$
intercept point						$P_1 = P_2 = -20 \text{ dBm}$
		-1.5	1	_	dBm	VCC=1.8V,
						$f_1 = 1785 \text{ MHz}, f_2 = 2401 \text{ MHz}$
						$P_1 = P_2 = -20 \text{ dBm}$
		-3	-0.5	_	dBm	VCC=2.8V,
						$f_1 = 1785 \text{ MHz}, f_2 = 2401 \text{ MHz}$
						$P_1 = P_2 = -20 \text{ dBm}$

¹Based on application described in chapter 4

²PCB losses are substrated ³Verification based on AQL; not 100% tested in production

Broadband Low Power LNA for L1/L2/L5 GNSS Applications

Table 6: Electrical Characteristics at $T_{\rm A}$ = 25 °C, Low Power Mode, f = 1550– 1615 MHz

Parameter ¹	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Complet Coursest	,	_	1.5	1.8	mA	Standard Mode, VCC=1.8V
Supply Current	I _{CC}	_	_	1	μΑ	OFF Mode
Leading Brown Catal		13	14	15	dB	VCC=1.2V
Insertion Power Gain ¹ f = 1575 MHz	$ S_{21} ^2$	13.5	14.5	15.5	dB	VCC=1.8V
7 – 1373 WITZ		14	15	16	dB	VCC=2.8V
Noise Figure ²		_	1	1.3	dB	VCC=1.2V
f = 1575 MHz	NF	_	1	1.3	dB	VCC=1.8V
7 – 1373 MHZ		_	1	1.3	dB	VCC=2.8V
Input return loss ³		8.5	11.5	_	dB	VCC=1.2V
f = 1575 MHz	RL _{IN}	10.5	13.7	-	dB	VCC=1.8V
7 - 1373 WITZ		11	14	_	dB	VCC=2.8V
Output return loss ³		11	13	_	dB	VCC=1.2V
f = 1575 MHz	RL _{OUT}	11.5	13.5	_	dB	VCC=1.8V
7 - 1373 WITZ		12	14	_	dB	VCC=2.8V
Reverse isolation ³		30	36	-	dB	VCC=1.2V
f = 1575 MHz	$ 1/ S_{12} ^2$	30	36	_	dB	VCC=1.8V
		30	36	_	dB	VCC=2.8V
Inband input		-14	-12	_	dBm	VCC=1.2V
1dB-compression point ³	IP _{1dB}	-10.5	-8.5	_	dBm	VCC=1.8V
<i>f</i> = 1575 MHz		-6.5	-4.5	-	dBm	VCC=2.8V
Out of band input 3rd-order		-7.5	-5	_	dBm	VCC=1.2V,
intercept point	IIP _{300B}					$f_1 = 1713 \text{ MHz}, f_2 = 1850 \text{ MHz},$
intercept point						$P_1 = P_2 = -20 \text{ dBm}$
		-10	-7.5	-	dBm	VCC=1.8V,
						$f_1 = 1713 \text{ MHz}, f_2 = 1850 \text{ MHz},$
						$P_1 = P_2 = -20 \text{ dBm}$
		-11	-8.5	_	dBm	VCC=2.8V,
						$f_1 = 1713 \text{ MHz}, f_2 = 1850 \text{ MHz},$
						$P_1 = P_2 = -20 \text{ dBm}$

¹Based on application described in chapter 4

²PCB losses are substrated ³Verification based on AQL; not 100% tested in production

Broadband Low Power LNA for L1/L2/L5 GNSS Applications

Table 7: Electrical Characteristics at $T_{\rm A}$ = 25 °C, Standard Mode, f = 1550–1615 MHz

Parameter ¹	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Committee Committee	,	_	2.3	2.4	mA	Standard Mode, VCC=1.8V
Supply Current	I _{CC}	_	_	1	μΑ	OFF Mode
to a disconnection		15.5	16.5	17.5	dB	VCC=1.2V
Insertion Power Gain ¹ f = 1575 MHz	$ S_{21} ^2$	16	17	18	dB	VCC=1.8V
7 - 1373 WITE		16	17	18	dB	VCC=2.8V
Noise Figure ²		_	0.85	1.15	dB	VCC=1.2V
f = 1575 MHz	NF	-	0.85	1.15	dB	VCC=1.8V
7 = 1575 MHZ		-	0.85	1.15	dB	VCC=2.8V
Input return loss ³		15.5	18.5	-	dB	VCC=1.2V
f = 1575 MHz	RL _{IN}	16.5	19	-	dB	VCC=1.8V
7 – 1373 MITZ		16.5	19	T-	dB	VCC=2.8V
Output return loss ³		11	13	-	dB	VCC=1.2V
f = 1575 MHz	RL _{OUT}	11.5	13.5	-	dB	VCC=1.8V
7 – 1373 MITZ		12	14	-	dB	VCC=2.8V
Davida i a latia a 3		30	35	-	dB	VCC=1.2V
Reverse isolation ³ f = 1575 MHz	$ 1/ S_{12} ^2$	30	35	-	dB	VCC=1.8V
		30	35	-	dB	VCC=2.8V
Inband input		-17	-15	-	dBm	VCC=1.2V
1dB-compression point ³	IP _{1dB}	-13	-11	-	dBm	VCC=1.8V
<i>f</i> = 1575 MHz		-9	-6.7	_	dBm	VCC=2.8V
Out of band input 3rd-order		-7.5	-5	_	dBm	VCC=1.2V,
intercept point	IIP _{300B}					$f_1 = 1713 \text{ MHz}, f_2 = 1850 \text{ MHz},$
intercept point						$P_1 = P_2 = -20 \text{ dBm}$
		-5.5	-3	-	dBm	VCC=1.8V,
						$f_1 = 1713 \text{ MHz}, f_2 = 1850 \text{ MHz},$
						$P_1 = P_2 = -20 \text{ dBm}$
		-7.5	-5	_	dBm	VCC=2.8V,
						$f_1 = 1713 \text{ MHz}, f_2 = 1850 \text{ MHz},$
						$P_1 = P_2 = -20 \text{ dBm}$

¹Based on application described in chapter 4

²PCB losses are substrated ³Verification based on AQL; not 100% tested in production

Broadband Low Power LNA for L1/L2/L5 GNSS Applications

Electrical Characteristics

Table 8: Electrical Characteristics at $T_{\rm A}$ = 25 °C, High Gain Mode, f = 1550– 1615 MHz

Parameter ¹	Symbol	Values		Unit	Note / Test Condition	
		Min.	Тур.	Max.		
Committee Command	,	-	3.4	3.6	mA	High Gain Mode, VCC=1.8V
Supply Current	I _{CC}	_	_	1	μΑ	OFF Mode
The state of the s		17	18	19	dB	VCC=1.2V
Insertion Power Gain ¹ f = 1575 MHz	$ S_{21} ^2$	17	18	19	dB	VCC=1.8V
7 - 1373 WITZ		17.5	18.5	19.5	dB	VCC=2.8V
Noise Figure ²		_	0.75	1.05	dB	VCC=1.2V
f = 1575 MHz	NF	-	0.75	1.05	dB	VCC=1.8V
7 = 1575 MHZ		-	0.75	1.05	dB	VCC=2.8V
Inmust water was I a a a 3		12	14	_	dB	VCC=1.2V
Input return loss ³ f = 1575 MHz	RLIN	10.5	12.5	_	dB	VCC=1.8V
7 – 1373 MHZ		10	12	-	dB	VCC=2.8V
Output return loss ³		11	13	_	dB	VCC=1.2V
f = 1575 MHz	RLOUT	11.5	13.5	_	dB	VCC=1.8V
7 – 1373 MHZ		12	14	-	dB	VCC=2.8V
D		30	35	_	dB	VCC=1.2V
Reverse isolation ³ f = 1575 MHz	$ 1/ S_{12} ^2$	30	35	-	dB	VCC=1.8V
7 – 1373 MITZ		30	35	-	dB	VCC=2.8V
Inband input		-18	-16.5	_	dBm	VCC=1.2V
1dB-compression point ³	IP _{1dB}	-16	-14	-	dBm	VCC=1.8V
f = 1575 MHz		-11	-9	-	dBm	VCC=2.8V
Out of band input 3rd-order		-9.5	-7	-	dBm	VCC=1.2V,
intercept point	IIP _{300B}					$f_1 = 1713 \text{ MHz}, f_2 = 1850 \text{ MHz},$
intercept point						$P_1 = P_2 = -20 \text{ dBm}$
		-7.5	-5	-	dBm	VCC=1.8V,
						$f_1 = 1713 \text{ MHz}, f_2 = 1850 \text{ MHz},$
						$P_1 = P_2 = -20 \text{ dBm}$
		-3.5	-1	_	dBm	VCC=2.8V,
						$f_1 = 1713 \text{ MHz}, f_2 = 1850 \text{ MHz},$
						$P_1 = P_2 = -20 \text{ dBm}$

¹Based on application described in chapter 4

²PCB losses are substrated ³Verification based on AQL; not 100% tested in production

Broadband Low Power LNA for L1/L2/L5 GNSS Applications

Application Information

3 Application Information

Pin Configuration and Function

Figure 1: BGA525N6 Pin Configuration (top view)

Table 9: Pin Definition and Function

Pin No.	Name	Function
1	GND	Ground
2	VCC	DC Supply
3	AO	LNA Output
4	CTRL2	Control Pin 2
5	Al	LNA Input
6	CTRL1	Control Pin 1

Table 10: Gain Mode Selection Truth Table

Control Voltage $V_{\mathtt{CTRL1}}$	Control Voltage V _{CTRL2}	Gain Mode
Low	High	High Gain Mode
High	Low	Standard Mode
High	High	Low Power Mode
Low	Low	OFF Mode

Broadband Low Power LNA for L1/L2/L5 GNSS Applications

Application Information

Application Board Configuration

Figure 2: BGA525N6 Application Schematic for L1/L2/L5

Table 11: Bill of Materials Table

Name	Value	Package	Manufacturer	Function
C1	1nF	0402	Various	DC Block
C2	68pF	0402	Various	bypass ¹
L1	see Matching Table	0402	Murata LQW15 type	Input matching
N1	BGA525N6	PG-TSNP-6-10	Infineon	GNSS LNA

Table 12: Matching Table

Band	Operation Mode	Matching Inductor
L1 & L2/L5	Low Power - 1.5mA	12 nH
	Standard - 2.3mA	11 nH
	High Power - 3.6mA	10 nH

Broadband Low Power LNA for L1/L2/L5 GNSS Applications

Package Information

4 Package Information

Figure 3: PG-TSNP-6-10 Package Outline (0.7mm x 1.1mm x 0.37mm)

Figure 4: Footprint Recommendation

Broadband Low Power LNA for L1/L2/L5 GNSS Applications

Package Information

Figure 5: Marking Specification (top view)

Table 13: Monthly Date Code Marking

Month	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
1	а	р	Α	Р	а	р	Α	Р	а	р	Α	Р
2	b	q	В	Q	b	q	В	Q	b	q	В	Q
3	С	r	С	R	С	r	С	R	С	r	С	R
4	d	S	D	S	d	S	D	S	d	s	D	S
5	е	t	Е	Т	е	t	E	Т	е	t	E	Т
6	f	u	F	U	f	u	F	U	f	u	F	U
7	g	v	G	V	g	v	G	V	g	v	G	V
8	h	х	Н	Х	h	х	Н	Х	h	х	Н	Х
9	j	у	J	Υ	j	у	J	Υ	j	у	J	Υ
10	k	z	K	Z	k	z	K	Z	k	z	K	Z
11	l	2	L	4	l	2	L	4	ι	2	L	4
12	n	3	N	5	n	3	N	5	n	3	N	5

Figure 6: PG-TSNP-6-10 Carrier Tape

restricted

BGA525N6

Revision History					
-					
Page or Item	Subjects (major changes since previous revision)				
Revision 1.0, 202	3-05-12				
Revision History					
	Final Data Sheet Creation				

Trademarks

Edition 2023-05-12 Published by Infineon Technologies AG 81726 Munich, Germany

© 2023 Infineon Technologies AG. All Rights Reserved.

Do you have a question about any aspect of this document?
Email: erratum@infineon.com

Document reference Doc_Number

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.