5.3.2 reduce()通用函数的聚合操作

任务: reduce() 通用函数的聚合操作

习题:

5.3.3 outer()通用函数的外积操作

任务: outer 通用函数的外积操作

习题:

第六章 Numpy计算科学模块 (五)

6.1 Numpy数组的聚合统计分析

任务:认识numpy数组的聚合

习题:

6.1.1 数组聚合之求和

任务: np.sum() 数组的求和

任务:一维数组的求和

任务: 进阶 np.sum() 之 axis 参数分析

任务: 高维数组的求和

习题:

6.1.2 数组聚合之最小值和最大值

任务: np.min() 和 np.max() 数组的最小值和最大值

6.1.3 通过面向对象方式聚合数组

任务: 通过对象方法的方式对数组进行聚合

习题:

任务: numpy数组的聚合函数清单

习题:

6.1.4 实例: 分析美国总统身高特征

任务: 分析美国总统身高特征

任务: 通过pandas模块导入数据

任务: 通过聚合方法概括数组信息

任务: 可视化结果

6.2 (重要)数组向量化技术之广播

6.2.1 认识NumPy的广播机制

任务:认识NumPy的广播机制

6.2.2 广播机制的使用

任务:广播之标量和数组运算

任务:广播之一维和二维数组运算

任务: 两个数组同时广播

6.2.3 (重要)广播的两大规则

任务: 掌握广播两大规则

任务:一个数组的广播

任务: 两个数组的广播

任务:广播异常处理

任务: 手动升维来满足广播条件

6.2.4 实例: 广播的应用

应用广播:数组归一化处理应用广播:生成二维函数

5.3.2 reduce()通用函数的聚合操作

任务: reduce() 通用函数的聚合操作

知识点:

- numpy二元通用函数提供了非常有用的聚合 reduce() 方法,通过聚合可以实现对数组元素的累积操作。
- **reduce()** 聚合方法:对给定数组元素**累积**执行二元通用函数操作。即,将上次运算的结果和下个数组元素进行累积运算,直到遍历完所有元素。

例如,对 add 通用函数调用 reduce 方法会返回数组中所有元素的和。

```
1 x = np.arange(1, 6)
2 print(np.add.reduce(x))
```

例如,对 multiply 通用函数调用 reduce 方法会返回数组中所有元素的乘积。

```
1 x = np.arange(1, 6)
2 print(np.multiply.reduce(x))
```

知识点:如果需要存储每次计算的中间结果,可以使用 accumulate()方法。

```
1 x = np.arange(1, 6)
2 print(np.add.accumulate(x))
3 print(np.multiply.accumulate(x))
```

习题:

• 随机一个自定义 size 的二维数组,选定4种通用函数,然后使用 reduce() 和 accumulate() 对数组实现聚合运算,并输出结果。

代码:

```
1 x2 = np.random.randint(10, size=(3, 3))
2 print(x2)
3
4 print(f'\n{np.add.reduce(x2)}')
5 print(f'\n{np.subtract.reduce(x2)}')
6 print(f'\n{np.power.reduce(x2)}')
7 print(f'\n{np.multiply.reduce(x2)}')
8
9 print(f'\n{np.add.accumulate(x2)}')
10 print(f'\n{np.subtract.accumulate(x2)}')
11 print(f'\n{np.power.accumulate(x2)}')
12 print(f'\n{np.multiply.accumulate(x2)}')
```

输出结果:

```
[[4 7 5]
    [5 4 2]
   [6 3 2]]
   [15 14 9]
   [-7 0 1]
          0 956385313 625]
   [120 84 20]
12
   [[ 4 7 5]
   [ 9 11 7]
   [15 14 9]]
   [[ 4 7 5]
    [-1 3 3]
   [-7 0 1]]
   [[
                             5]
        1024
                             25]
                  2401
          0 956385313
                            625]]
   [[ 4 7 5]
            10]
    [120 84
             20]]
```

5.3.3 outer()通用函数的外积操作

任务: outer 通用函数的外积操作

知识点:

- 任何通用函数都可使用 outer 外积方法获得两个输入数组**所有元素对的函数运算结果**。
- 联系线性代数的叉乘外积(展成元素对),
- outer 方法: 首先将两个数组展成元素对形式, 然后再对这些元素对实现通用 函数运算。

```
1 x = np.arange(1, 6)
2 print(np.add.outer(x, x))
```

习题:

• 使用外积方式,实现99乘法表,并输出结果。 代码:

```
1 x = np.arange(1, 10)
2 print(np.multiply.outer(x, x))
```

输出结果:

```
1 [[ 1 2 3 4 5 6 7 8 9]
2 [ 2 4 6 8 10 12 14 16 18]
3 [ 3 6 9 12 15 18 21 24 27]
4 [ 4 8 12 16 20 24 28 32 36]
5 [ 5 10 15 20 25 30 35 40 45]
6 [ 6 12 18 24 30 36 42 48 54]
7 [ 7 14 21 28 35 42 49 56 63]
8 [ 8 16 24 32 40 48 56 64 72]
9 [ 9 18 27 36 45 54 63 72 81]]
```

第六章 Numpy计算科学模块 (五)

6.1 Numpy数组的聚合统计分析

当面对大量的数据时,首先需要计算数据的**相关统计值**。

常见统计值有均值和标准差,通过这两个值可快速了解数据的基本特征,但是其他一些 形式的聚合统计方式:求和、乘积、中位数、最小值和最大值、分位数等等。

任务: 认识numpy数组的聚合

知识点:经常会在numpy中听到聚合术语,那么何谓聚合?

- 聚合:指对数组进行某种操作或运算(求和、极值等),得到了一个对原数组信息概括的结果数组。而结果数组的维度 ndim 被压缩了。换言之,原数组的维度 ndim 大于结果数组的维度 ndim 。
- 聚合作用:结果数组按某种操作聚合(提炼)了原数组的信息;结果数组概括了原数组某些方面的统计信息,比如求和、均值、方差等。
- 原数组: numpy聚合函数的输入数组。
- 结果数组: numpy聚合函数的返回数组。

习题:

• 了解术语: 原数组、结果数组、聚合的概念。

6.1.1 数组聚合之求和

任务: np.sum() 数组的求和

为实现数组的求和, numpy提供了比python内置 sum() 函数功能更强大的求和方法 np.sum()。请耐心理解 np.sum() 的细节功能。

知识点: numpy.sum(a, axis=None, dtype=None, out=None)

• 描述: 按某种规则, 求和数组元素。

- 参数: numpy数组 a , 包括一维数组和多维数组。
- 参数: axis 指定沿第 axis 轴对数组进行求和。默认 axis=None , 此时对数组所有元素进行求和。(回顾 axis **参数的解析**)
- 参数: dtype 指定返回数据类型,默认不指定类型。
- 参数: out 指定预先分配的用于保存结果的空间, 默认不指定空间。(回顾通用函数的指定输出)
- 返回:返回求和结果。标量或数组。
- 如果不指定 axis 参数,返回所有数组元素之和,此时为一个标量。
 - 。 如果指定 axis 参数,返回**比原数组低一维的结果数组**。比如三维数组,那么结果结果是二维数组。
- 注意: np.sum() 通过设置不同的参数, 其功能涵盖了python内置 sum() 函数和 np.add.reduce()。

任务:一维数组的求和

下面例子分别调用python和numpy的求和函数对数组进行求和,并给出时间比较。

```
1 import numpy as np
2 # 对小数组进行运算
3 x = np.random.rand(100)
4 print(sum(x))
5 print(np.sum(x))
```

结果可知, np.sum() 比python的 sum() 快很多。

```
1 # 对大数组进行运算
2 big_array = np.random.rand(1000000)
3 %time sum(big_array)
4 %time np.sum(big_array)
```

任务: 进阶 np.sum() 之 axis 参数分析

知识点: axis 参数的深入。

- 为 np.sum() 指定 axis 参数后,返回的**结果数组** shape **为原数组的非** axis **轴** shape。
- 例如,三维数组 x 的 shape=(4,8,10)。如果沿 axis=0,那么结果数组 shape=(8,10);如果沿 axis=2,那么结果数组 shape=(4,8)。
- 由此可知, np.sum()的**结果数组是比原数组低一维的数组**。比如三维数组, 那么结果数组是二维数组。

```
1 x = np.random.randint(10, size=(4,8,10))
2 print('x', x.shape, x.ndim)
3
4 # 使用python的sum()
5 py_sum = sum(x)
6 print('py_sum', py_sum.shape, py_sum.ndim)
7
8 # 沿0轴对数组求和,等价于使用python的sum()
9 sum1 = np.sum(x, axis=0)
10 print('axis=0', sum1.shape, sum1.ndim)
11
12 # 沿1轴对数组求和
13 sum2 = np.sum(x, axis=1)
14 print('axis=1', sum2.shape, sum2.ndim)
```

任务: 高维数组的求和

知识点:

- python内置 sum(x) 函数等价于 np.sum(x, axis=0)。
- np.add.reduce() 通用函数的聚合等价于 np.sum(x, axis=0)。

```
1 x = np.random.randint(10, size=(3,4))
2 print(x)
3
4 print('sum(x)', sum(x))
5 print('np.add.reduce()', np.add.reduce(x))
6 print('np.sum(x)', np.sum(x))
7 # 对二维数组, axis=0, 沿列求和
8 print('np.sum(x, axis=0)', np.sum(x, axis=0))
9 # 对二维数组, axis=1, 沿行求和
10 print('np.sum(x, axis=1)', np.sum(x, axis=1))
```

习题:

1.(概念题) 结合原数组和结果数组的 shape , 分析 np.sum() 的 axis 参数的含义。

- 2.随机生成一个 size=(4,7) 的二维整形数组。
- 使用 np.sum(),设置不同的 axis 参数,对该数组进行求和聚合,输出结果数组的 shape 、 ndim 等信息。
 - 使用 sum() 、 np.add.reduce() 函数,输出结果数组,然后对比 np.sum()的结果。

代码:

```
1 x2 = np.random.randint(10, size=(4,7))
2
3 py_sum = sum(x)
4 print('py_sum', py_sum.shape, py_sum.ndim,"\n")
5
6 sum1 = np.sum(x, axis=0)
7 print('axis=0', sum1.shape, sum1.ndim,"\n")
8
9 sum2 = np.sum(x, axis=1)
10 print('axis=1', sum2.shape, sum2.ndim,"\n")
11
12 print('np.add.reduce()', np.add.reduce(x2))
13 print('np.sum(x2)', np.sum(x2))
```

输出结果:

```
1  py_sum (8, 10) 2
2
3  axis=0 (8, 10) 2
4
5  axis=1 (4, 10) 2
6
7  np.add.reduce() [26 15 21 20 12 15 22]
8  np.sum(x2) 131
```

• 3.随机生成一个 size=(4,7,8,10) 的四维整形数组。使用 np.sum() 对该数组进行求和聚合,通过设置 axis 参数,总共有多少种聚合的结果,列举每种 axis 对应的结果数组的 shape 和 ndim 。并用程序验证结论。

代码:

```
1 x4 = np.random.randint(10, size=(4,7,8,10))
2
3 sum1 = np.sum(x, axis=0)
4 print('axis=0', sum1.shape, sum1.ndim,"\n")
5
6 sum2 = np.sum(x, axis=1)
7 print('axis=1', sum2.shape, sum2.ndim,"\n")
8
9 sum3 = np.sum(x, axis=2)
10 print('axis=2', sum3.shape, sum3.ndim,"\n")
```

输出结果:

```
1 axis=0 (8, 10) 2
2
3 axis=1 (4, 10) 2
4
5 axis=2 (4, 8) 2
```

6.1.2 数组聚合之最小值和最大值

任务: np.min()和 np.max()数组的最小值和最大值

知识点: np.min() 和 np.max() 分别获取numpy数组的最小值和最大值。由于用法与 np.sum() 类似,这里不具体展开。

- 与 np.sum() 类似, np.min() 和 np.max() 也可以通过参数 axis 指明对哪个 axis 轴元素进行聚合。
- 最小值方法语法: numpy.min(a, axis=None, out=None)。
- 最大值方法语法: numpy.max(a, axis=None, out=None)。
- python也提供了内置 min() 和 max() 方法,但是该功能**仅限于一维数组,不 能用于高维数组**。
- 新numpy版本中, np.min() 的别名方法 np.amin(); np.max() 的别名方法 np.amax()。功能等价。

```
1 # 对大数组进行运算
2 big_array = np.random.rand(1000000)
3 %time min(big_array)
4 %time np.min(big_array)
```

```
1 x = np.random.randint(10, size=(3,4))
2 print(x)
3
4 #python內置的min不能用于高维数组
5 #print('min(x)', min(x))
6
7 print('np.min(x)', np.min(x))
8 # 对二维数组, axis=0, 沿列求最小值
9 print('np.min(x, axis=0)', np.min(x, axis=0))
10 # 对二维数组, axis=1, 沿行求最小值
11 print('np.min(x, axis=1)', np.min(x, axis=1))
```

习题:

- 随机生成一个 size=(4,7,2) 的三维整形数组。
- 使用 np.min() 和 np.max(), 设置不同的 axis 参数,对该数组进行聚合,输出结果数组的 shape 、 ndim 等信息。
 - 。 尝试着使用python内置函数,输出结果数组。
- 代码:

```
1 x = np.random.randint(10, size=(4,7,2))
2
3 min1 = np.min(x, axis=0)
4 print('np.min1(x, axis=0)',min1.shape, min1.ndim, "\n",)
5 max1 = np.max(x, axis=0)
6 print('np.max1(x, axis=0)',max1.shape, max1.ndim, "\n")
7
8 min2 = np.min(x, axis=1)
9 print('np.min2(x, axis=1)',min2.shape, min2.ndim, "\n",)
10 max2 = np.max(x, axis=1)
11 print('np.max2(x, axis=1)',max2.shape, max2.ndim, "\n",)
```

• 输出结果:

```
1  np.min1(x, axis=0) (7, 2) 2
2
3  np.max1(x, axis=0) (7, 2) 2
4
5  np.min2(x, axis=1) (4, 2) 2
6
7  np.max2(x, axis=1) (4, 2) 2
```

6.1.3 通过面向对象方式聚合数组

任务: 通过对象方法的方式对数组进行聚合

知识点:

- np.min() 、 np.max() 、 np.sum() 在数组对象 x 中,可以通过更简洁的 **面向对象方法**被调用。
- 调用方式: x.min() 、 x.max() 、 x.sum() 。其中 x 为数组对象。
- np.min() 第一个参数为数组。然而,在x.min()中,通过对象x调用min()方法,x被隐式传递给了min()方法。因此,不再需要额外传递数组参数。
- 通过对象来调用聚合方法,可实现数组的求和、最小值和最大值等功能。
- axis 参数功能类似,可以实现多维数组的聚合功能。

知识点:可以通过 axis 参数, 指明聚合函数是针对数组的哪个 axis 轴进行操作的。

知识点:如果缺省 axis 参数,那么聚合函数将会返回对整个数组的聚合结果。

```
1 x = np.random.randint(10, size=(3,4))
2 print(x)
3
4 # 缺省`axis`参数,返回整个数组元素的求和
5 print('x.sum()', x.sum())
6
7 # 对二维数组,axis=0,沿列求和
8 print('x.sum(axis=0)', x.sum(axis=0))
9
10 # 对二维数组,axis=1,沿行求和
11 print('x.sum(axis=1)', x.sum(axis=1))
```

习题:

• 随机生成一个 size=(4,7,4) 的三维整形数组,使用 x.min() 、 x.max() 对原数组进行聚合,分析不同 axis 参数对结果的影响,并输出结果数组的 shape 和 ndim 。

代码:

```
1 x = np.random.randint(10, size=(4,7,4))
```

```
min1 = x.min(axis=0)
print('x.min1(axis=0)',min1.shape, min1.ndim, "\n",)
max1 = x.max(axis=0)
print('x.max1(axis=0)',max1.shape, max1.ndim, "\n")

min2 = x.min(axis=1)
print('x.min2(axis=1)',min2.shape, min2.ndim, "\n",)
max2 = x.max(axis=1)
print('x.max2(axis=1)',max2.shape, max2.ndim, "\n",)

min3 = x.min(axis=2)
print('x.min3(axis=2)',min3.shape, min3.ndim, "\n",)
max3 = x.max(axis=2)
print('x.max3(axis=2)',max3.shape, max3.ndim, "\n",)
```

输出结果:

```
1 x.min1(axis=0) (7, 4) 2
2
3 x.max1(axis=0) (7, 4) 2
4
5 x.min2(axis=1) (4, 4) 2
6
7 x.max2(axis=1) (4, 4) 2
8
9 x.min3(axis=2) (4, 7) 2
10
11 x.max3(axis=2) (4, 7) 2
```

任务: numpy数组的聚合函数清单

numpy提供了很多聚合函数,下表提供了聚合函数的清单。NaN安全版本表示,数组含有缺失值时的聚合操作,后面小节会涉及到缺失值数组。

表格最右边栏不能完全显示,可以拖动滚动条显示结果。

函数名称	NaN安全版本	描述
np.sum	np.nansum	计算元素的和

函数名称	NaN安全版本	描述
np.prod	np.nanprod	计算元素的积
np.mean	np.nanmean	计算元素的平均值
np.std	np.nanstd	计算元素的标准差
np.var	np.nanvar	计算元素的方差
np.min	np.nanmin	找出最小值
np.max	np.nanmax	找出最大值
np.argmin	np.nanargmin	找出最小值的索引
np.argmax	np.nanargmax	找出最大值的索引
np.median	np.nanmedian	计算元素的中位数
np.percentile	np.nanpercentile	计算基于元素排序的统计值
np.any	N/A	验证任何一个元素是否为真
np.all	N/A	验证所有元素是否为真

习题:

• 随机生成一个 size=(4,7) 的二维整形数组。任选2种聚合方法(之前没学过的),设置不同 axis 参数对数组进行聚合,并分析结果。

代码:

```
1  x = np.random.randint(10, size=(4,7))
2
3  mean1 = x.mean(axis=0)
4  print('x.mean1(axis=0)',mean1)
5  var1 = x.var(axis=0)
6  print('x.var1(axis=0)',var1)
7
8  mean2 = x.mean(axis=1)
9  print('x.mean2(axis=1)',mean2)
10  var2 = x.var(axis=1)
11  print('x.var2(axis=1)',var2)
12
```

输出结果:

6.1.4 实例:分析美国总统身高特征

任务: 分析美国总统身高特征

用numpy的聚合功能来概括一组数据的信息是非常有用的。下面将通过一个简单的例子了解这项功能在实际问题中的应用——计算所有美国总统的身高。这个数据在president_heights.csv文件中.需要用Pandas模块来读文件并抽取身高信息。(请注意,身高的计量单位是厘米)。后续章节会详细解释Pandas。

知识点:如果发现模块不存在,安装 pandas 、 matplotlib 和 seaborn 模块。在控制台中,运行 conda install pandas matplotlib seaborn 命令进行安装(并选中 Y)。

任务: 通过pandas模块导入数据

```
import pandas as pd
data = pd.read_csv('president_heights.csv')
heights = np.array(data['height(cm)'])
print(heights)
```

任务: 通过聚合方法概括数组信息

针对身高数组 heights , 使用聚合函数获得各种概括的统计信息。

```
print("Mean height: ", heights.mean())
print("Standard deviation:", heights.std())
print("Minimum height: ", heights.min())
print("Maximum height: ", heights.max())
```

在这个例子中,聚合函数将整个数组缩减到一个值(思考为何是一个值而不是数组),通过 这些统计信息值,可以掌握 heights 数组的分布信息。下面获得分位数统计信息。

```
print("25th percentile: ", np.percentile(heights, 25))
print("Median: ", np.median(heights))
print("75th percentile: ", np.percentile(heights, 75))
```

任务: 可视化结果

可以看到,美国总统的身高中位数是 182cm,或者说不到 6 英尺。当然,有些时候将数据可视化更有用。这时可以先进行一个快速的可视化,通过Matplotlib模块(第4章将详细讨论该工具)建立可视化结果。

```
1 %matplotlib inline
2 import matplotlib.pyplot as plt
3 import seaborn; seaborn.set() # 设置绘图风格
4
5 plt.hist(heights)
6 plt.title('Height Distribution of US Presidents')
7 plt.xlabel('height (cm)')
8 plt.ylabel('number');
```

6.2 (重要)数组向量化技术之广播

6.2.1 认识NumPy的广播机制

任务:认识NumPy的广播机制

知识点:之前学习了NumPy是如何通过**向量化**技术(通用函数)来避免缓慢的Python循环。二元通用函数的向量化运算,要求两个参与运算的数组 .shape 必须相同。

- 因为需要对两个运算数组的相应元素进行逐个计算。
- 如果 ·shape 不匹配,必定有某些数组元素无法参与运算,致使程序出错。
- 为解决数组 .shape 不匹配问题, NumPy专门设计了一套广播机制 (broadcasting)。
- **在满足一定条件下**,NumPy在底层通过广播机制,修正运算的数组 . shape 匹配。进而允许 . shape 不匹配的数组,可以参与向量化运算。

• 广播技术堪称NumPy数组向量化的黑科技,它为NumPy通用函数带来了高效和便捷。

```
1 import numpy as np
2 a = np.array([0, 1, 2])
3 print('a:', a)
4 b = np.array([5, 5, 5])
5 print('b:', b)
6 print('a+b:', a + b)
```

知识点:

- 在满足一定规则下,广播(broadcasting)允许二元通用函数输入**不同大小的数** 组。
- 标量可认为是零维数组,它的 .ndim 为0; .shape 为 ()。

6.2.2 广播机制的使用

任务:广播之标量和数组运算

下面给出标量和一维数组的通用函数运算(相加)。

```
1 # 输出一维数组的维度和shape
2 x1 = np.arange(3)
3 print(x1, x1.shape, x1.ndim)
4
5 # 输出标量的维度和shape
6 x2 = np.array(5)
7 print(x2, x2.shape, x2.ndim)
8
9 # 调用二元通用函数(相加)进行运算,底层调用广播机制
10 print(x1 + x2)
```

知识点:广播机制的理解。

- 注意: x2 是标量 .shape 为 (), **可等价视为一维数组**,即 .shape 为 (1,)。下面对 x2 的分析都采用一维数组方式。
- x1的.shape为(3,)和x2的.shape为(1,)。

- 参与二元通用函数运算的 x1 和 x2 不匹配。
- 广播机制直观理解(结合下图):
- 首先NumPy对标量 x2 采用元素复制的方式,将它扩展为 [5,5,5] 一维向量。
 - 。 此时新的 x2 的 . shape 为 (3,) , 和 x1 匹配 , 满足通用函数运算条件。
 - 。 然后, 执行二元通用函数(相加)运算。
- 上面仅是广播机制的直观解释,实质上NumPy并非直接通过复制元素的方式,来匹配运算数组的 · shape ,而是采用了一种更高效的方式(这里就不展开讨论)。

浅色的盒子表示广播的值。同样需要注意的是,这个额外的内存并没有在实际操作中进行分配,但是这样的想象方式更方便我们从概念上理解。

任务:广播之一维和二维数组运算

广播机制同样适用于更高维数组之间的运算。下面给出一维数组和二维数组的通用函数运算(相加)。

```
1 # 输出一维数组的维度和shape
2 x1 = np.arange(3)
3 print(x1, x1.shape, x1.ndim)
4
5 # 输出二维数组的维度和shape
6 x2 = np.ones((3, 3))
7 print(x2, x2.shape, x2.ndim)
8
9 # 调用二元通用函数(相加)进行运算,底层调用广播机制
10 print(x1 + x2)
```

知识点:广播机制的理解。

- 注意: x1 是一维向量 .shape 为 (3,), 可等价视为二维数组(行向量), 即 .shape 为 (1,3)。下面对 x1 的分析都采用行向量。
- x1的.shape为(1,3)和x2的.shape为(3,3)。
- 参与二元通用函数运算的 x1 和 x2 不匹配。
- 广播机制直观理解(结合下图理解):
- - 。 那么NumPy对 x1 将沿着第1维度扩展至 .shape 为 (3,3) 的二维数组(类似复制元素的方式)。
 - 。 此时新的 x1 的 .shape 为 (3,3) , 和 x2 匹配 , 满足通用函数运算条件。
 - 。 然后, 执行二元通用函数(相加)运算。

浅色的盒子表示广播的值。

任务: 两个数组同时广播

上面两个例子都是对其中的一个数组进行广播。下面,将学习更复杂的两个数组同时广播。

```
1 # 输出一维数组的维度和shape
2 x1 = np.arange(3)
3 print(x1, x1.shape, x1.ndim)
4
5 # 将x1通过np.newaxis升维为二维数组(列向量)
6 # np.newaxis如何升维请自行回顾(之前知识点)
7 x2 = x1[:, np.newaxis]
8 # 输出二维数组(列向量)的维度和shape
9 print(x2, x2.shape, x2.ndim)
10
11 # 调用二元通用函数(相加)进行运算,底层调用广播机制
12 print(x1 + x2)
```

知识点:广播机制的理解。

- 注意: x1 是一维向量 .shape 为 (3,), 在NumPy中可等价视为二维数组 (行向量), 即 .shape 为 (1,3)。下面对 x1 的分析都采用行向量。
- x1的.shape为(1,3)和x2的.shape为(3,1)。
- 参与二元通用函数运算的 x1 和 x2 不匹配。
- 广播机制直观理解(结合下图理解):
- · 。 观察可知, x1 和 x2 在两个维度上都不匹配。
 - 。 首先, NumPy对 x1 将沿着第1维度扩展至 .shape 为 (3,3) 的二维 数组(类似复制元素的方式)。
 - 。 然后, NumPy对 x2 将沿着第2维度扩展至 .shape 为 (3,3) 的二维 数组(类似复制元素的方式)。
 - 。 此时新的 x1 的 .shape 为 (3,3) , 和 x2 的 .shape 为 (3,3) , 它 们相互匹配,满足通用函数运算条件。
 - 。 然后, 执行二元通用函数(相加)运算。

浅色的盒子表示广播的值。

6.2.3 (重要)广播的两大规则

任务: 掌握广播两大规则

知识点:并非所有的数组都能使用NumPy的广播功能。NumPy设定了一组严格规则,只有满足了才能进行数组广播。

规则1(.ndim 不匹配): 如果两个数组.ndim 维度数不相同,那么较小.ndim 的数组.shape 将会在最左边补1。

- 规则2(.shape 不匹配): 如果两个数组 .shape 存在不匹配。检查不匹配的那维 .shape **小的值**是否等于1,如果是,那么就按大的 .shape 值进行广播;如果为否,就会出现异常。
- 口诀: 先看 .ndim; 后看 .shape, 检查不匹配维度是否有1; 都不满足, 那么就会异常。

任务:一个数组的广播

二维数组与一维数组相加。

```
1  x1 = np.ones((2, 3))
2  print(x1.ndim, x1.shape,'\n', x1)
3
4  x2 = np.arange(3)
5  print(x2.ndim, x2.shape,'\n', x2)
6
7  print(x1 + x2)
```

请仔细看下面的广播规则分析,掌握2个规则的适用场合。

广播规则分析:

- x1的.ndim: 2, .shape: (2,3)。
- x2的.ndim: 1, .shape: (3,)。
- x2 应用规则1:由于 x2 的 .ndim 小于 x1 ,将 x2 的 .shape 左边补1为 (1,3)。
- x2 应用规则2:由于新 x2 的 .shape: (1,3),和 x1 在第1维上不匹配, 且 x2 在该维的 .shape 为1,满足规则2。因此,将 x2 广播为 .shape: (2,3)。
- 最终两个数组 .shape: (2,3),满足通用函数运算要求。

任务: 两个数组的广播

行向量和列向量相加。

```
1  x1 = np.arange(3).reshape((3, 1))
2  print(x1.ndim, x1.shape,'\n', x1)
3
4  x2 = np.arange(3)
5  print(x2.ndim, x2.shape,'\n', x2)
6
7  print(x1 + x2)
```

广播规则分析:

- x1的 .ndim: 2, .shape: (3,1)。
- x2的.ndim: 1, .shape: (3,)。
- x2 应用规则1: 由于 x2 的 .ndim 小于 x1 , 将 x2 的 .shape 左边补1为 (1,3)。
- x2 应用规则2:由于新 x2 的 .shape: (1,3),和 x1 在第1维上不匹配,且 x2 在该维的 .shape 为1,满足规则2。因此,将 x2 广播为 .shape: (3,3)。
- x1 应用规则2:由于新 x2 的 .shape: (3,3),和 x1 在第2维上不匹配,且 x1 在该维的 .shape 为1,满足规则2。因此,将 x1 广播为 .shape: (3,3)。
- 最终两个数组 .shape: (3,3),满足通用函数运算要求。

任务:广播异常处理

两个数组广播如果都不满足上述两条规则,那么就会发生异常。

```
1 x1 = np.ones((3, 2))
2 print(x1.ndim, x1.shape,'\n', x1)
3
4 x2 = np.arange(3)
5 print(x2.ndim, x2.shape,'\n', x2)
6
7 print(x1 + x2)
```

广播规则分析:

- x1的.ndim: 2, .shape: (3,2)。
- x2的.ndim: 1, .shape: (3,)。
- x2 应用规则1: 由于 x2 的 .ndim 小于 x1 , 将 x2 的 .shape 左边补1为 (1,3)。
- x2 应用规则2:由于新 x2 的 .shape: (1,3),和 x1 在第1维上不匹配, 且 x2 在该维的 .shape 为1,满足规则2。因此,将 x2 广播为 .shape: (3,3)。
- x1 应用规则2:由于新 x2 的 .shape: (3,3),和 x1 在第2维上不匹配,且 x1 在该维的 .shape 为2,不满足规则2(小的 .shape 必需要为1)。
- 程序将会报错(Traceback指出广播异常)。不满足通用函数运算要求。

任务: 手动升维来满足广播条件

注意:

- 如果能在 x1 数组的右边补1,而不是在左边补1,那么 x1 和 x2 后续的 .shape 就会变得兼容。
- 但是这不被广播的规则所允许,因为不满足规则1(必需左边补1)。
- 如果逻辑上允许右边补1,那么可以数组变形函数 reshape()或 np.newaxis 的方式手动升维。

```
1 x1 = np.ones((3, 2))
2 print(x1.ndim, x1.shape,'\n', x1)
3
4 # 使用np.newaxis在第2维上升维
5 # 可合并为x2 = np.arange(3)[:, np.newaxis]
6 x2 = np.arange(3)
7 x2 = x2[:, np.newaxis]
8 print(x2.ndim, x2.shape,'\n', x2)
9
10 print(x1 + x2)
```

6.2.4 实例: 广播的应用

应用广播:数组归一化处理

知识点:

- NumPy向量化技术包括:通用函数和广播技术。
- 通用函数让NumPy用户免于低效的Python循环。
- 广播技术扩展了NumPy向量化适用范围。

知识点:在数据预处理中,通常都需要对**数据进行归一化**。那么为何需要数据归一 化?

- 数据由样本组成,而样本是由特征所组成。
- 通常,数组的行代表样本,列代表特征。(联想Excel表格)。
- 例如,现在有一个身高体重的数据集,那么样本代表一条记录,每个样本都是有2个特征(身高和体重)组成。
- 由于每个特征的量纲(单位)不一样,如果直接使用原始数据处理,将会对某些数值较小的特征造成偏见。为此,需要使用**数据归一化技术,将每个特征都进**

假设数据集有10个样本,每个样本包含3个特征(属性或数值),那么可以使用10×3的数组存放该数据。

```
1 # 随机生成10×3的数据数组
2 # 数组每行为1个样本,每个列为数据的1个特征。
3 X = np.random.random((10, 3))
4 print(X)
5
6 # 调用通用函数mean()沿第0轴(样本)计算均值(聚合)
7 Xmean = X.mean(axis=0)
8 print('mean:', Xmean)
```

```
1 # 中心化处理: 对数组每个行加去特征矩阵
2 # 思考这里是如何进行广播的?
3 X_centered = X - Xmean
4
5 # 输出中心化后,每个特征的均值
6 # 查看归一化的数组的均值是否接近0。
7 # 计算机是
8 X_centered.mean(0)
9 计算机是对浮点数表示存在误差。在机器精度范围内,上述均值为 0。
```

应用广播: 生成二维函数

下面将通过广播技术, 生成一个二维函数, 并绘制该函数图像。

定义函数, 和的定义域为 [0,50)。这里将 x 作为第1维坐标, y 作为第2维坐标。使用 np.linspace() 生成数据。

```
1 # x和y表示0~5区间50个步长的序列
2 # 二维数组的列向量(axis=0)
3 x = np.linspace(0, 5, 50)[:, np.newaxis]
4
5 # 一维数组,广播规则1,等价于
6 # 二维数组的行向量(axis=1)
7 # np.linspace(0, 5, 50)[np.newaxis,:]
8 y = np.linspace(0, 5, 50)
```

```
1 # 根据z的二元函数,生成函数值
2 # 思考: z的`.shape`是多少?
3 # 思考广播技术是如何进行的?
4 z = np.sin(x) ** 10 + np.cos(10 + y * x) * np.cos(x)
```

```
1 # 使用matplotlib模块绘制函数图像
2 %matplotlib inline
3 import matplotlib.pyplot as plt
4 import seaborn; seaborn.set() # 设置绘图风格
5
6 # 绘制函数等高线
7 fig, ax = plt.subplots()
8 CS = plt.contour(z)
9 # 设置等高线上的文本
10 ax.clabel(CS, inline=1, fontsize=10)
```