

Claims:

1. A pharmaceutical composition for topical administration, comprising a phthalocyanine photosensitizer or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.

5 2. A pharmaceutical composition of claim 1, wherein the phthalocyanine has a structure of formula (I) or a pharmaceutically acceptable salt thereof

[Pc·M]

(I)

10 wherein Pc is a substituted or unsubstituted phthalocyanine; and M is a diamagnetic metal ion, optionally complexed with or covalently bound to one or two axial ligands, wherein the metal ion is coordinated to the phthalocyanine moiety.

15 3. A pharmaceutical composition of claim 1, wherein the phthalocyanine has a structure of formula (II) or a pharmaceutically acceptable salt thereof

(II)

20 wherein M is a diamagnetic metal ion optionally complexed with or covalently bound to one or two axial ligands, wherein the metal ion is coordinated to the phthalocyanine moiety; and

R¹ – R¹⁶ are each independently selected from hydrogen, halogen, nitro, cyano, hydroxy, thiol, amino, carboxy, aryl, heteroaryl, carbocyclyl, heterocyclyl, C₁₋₂₀alkyl, C₁₋₂₀alkenyl, C₁₋₂₀alkynyl, C₁₋₂₀alkoxy, C₁₋₂₀acyl, C₁₋₂₀alkylcarbonyloxy, C₁₋₂₀aralkyl, C₁₋₂₀hetaralkyl, C₁₋₂₀carbocyclylalkyl, C₁₋₂₀heterocyclylalkyl, C₁₋₂₀aminoalkyl, C₁₋₂₀alkylamino, C₁₋₂₀thioalkyl, C₁₋₂₀alkylthio, C₁₋₂₀hydroxyalkyl, C₁₋₂₀alkyloxycarbonyl, C₁₋₂₀alkylaminocarbonyl, C₁₋₂₀alkylcarbonylamino, C₁₋₁₀alkyl-Z-C₁₋₁₀alkyl;
 5 R¹⁷ is selected from hydrogen, C₁₋₂₀acyl, C₁₋₂₀alkyl, and C₁₋₂₀aralkyl; and
 Z is selected from S, NR¹⁷, and O.

10 4. A pharmaceutical composition of claim 1, wherein the phthalocyanine has a structure of Formula (III) or a pharmaceutically acceptable salt thereof

(III)

15 wherein M is (G)_aY[(OSi(CH₃)₂(CH₂)_bN_c(R')_d(R'')_e)_fX_g]_p;

Y is selected from Si, Al, Ga, Ge, or Sn;

R' is selected from H, CH₃, C₂H₅, C₄H₉, C₄H₈NH, C₄H₈N, C₄H₈NCH₃, C₄H₈S, C₄H₈O, C₄H₈Se, OC(O)CH₃, OC(O), CS, CO, CSe, OH, C₄H₈N(CH₂)₃CH₃, (CH₂)₂N(CH₃)₂, (CH₂)_nN((CH₂)_o(CH₃))₂, and an alkyl group having from 1

20 to 12 carbon atoms;

R'' is selected from H, SO₂CH₃, (CH₂)₂N(CH₃)₂, (CH₂)₁₁CH₃, C(S)NHC₆H₁₁O₅, (CH₂)_nN((CH₂)_o(CH₃))₂, and an alkyl group having from 1 to 12 carbon atoms;

G is selected from OH and CH₃;

- X is selected from I, F, Cl, or Br;
- a is 0 or 1;
- b is an integer from 2 to 12;
- c is 0 or 1;
- 5 d is an integer from 0 to 3;
- e is an integer from 0 to 2;
- f is 1 or 2;
- g is 0 or 1;
- n is an integer from 1 to 12;
- 10 o is an integer from 1 to 11; and
- p is 1 or 2.

5. A pharmaceutical composition of claim 4, wherein M is selected from $\text{AlOSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{N}(\text{CH}_3)_2$; $\text{AlOSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{N}(\text{CH}_3)_3^+\text{I}^-$; $\text{CH}_3\text{SiOSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{N}(\text{CH}_3)_2$; $\text{HOSiOSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{N}(\text{CH}_3)_2$;
 15 $\text{HOSiOSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{N}(\text{CH}_3)_3^+\text{I}^-$; $\text{Si}[\text{OSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{N}(\text{CH}_3)_3^+\text{I}^-]_2$; $\text{Si}[\text{OSi}(\text{CH}_3)_2(\text{CH}_2)_4\text{NH}_2]_2$; $\text{Si}[\text{OSi}(\text{CH}_3)_2(\text{CH}_2)_4\text{NHSO}_2\text{CH}_3]_2$;
 $\text{HOSiOSi}(\text{CH}_3)_2(\text{CH}_2)_4\text{NHSO}_2\text{CH}_3$;
 $\text{HOSiOSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{N}(\text{CH}_2\text{CH}_3)(\text{CH}_2)_2\text{N}(\text{CH}_3)_2$; $\text{Si}[\text{OSi}(\text{CH}_3)_2(\text{CH}_2)_4\text{NHCSNHC}_6\text{H}_{11}\text{O}_5]_2$; $\text{Si}[\text{OSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{N}(\text{CH}_3)_2]_2$;
 20 $\text{HOSiOSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{OCOCH}_3$; $\text{HOSiOSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{OH}$;
 $\text{Si}[\text{OSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{N}(\text{CH}_2\text{CH}_3)(\text{CH}_2)_2\text{N}(\text{CH}_3)_2]_2$; $\text{HOSiOSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{NC}_4\text{H}_8\text{O}$;
 $\text{AlOSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{N}^+(\text{CH}_3)_2(\text{CH}_2)_{11}\text{CH}_3\text{I}^-$; $\text{HOSiOSi}(\text{CH}_3)_2(\text{CH}_2)_8\text{N}(\text{CH}_3)_2$;
 $\text{Si}[\text{OSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{NC}_4\text{H}_8\text{O}]_2$; $\text{HOSiOSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{NC}_4\text{H}_8\text{S}$;
 $\text{HOSiOSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{N}(\text{CH}_2)_3(\text{CH}_3)_2$; $\text{HOSiOSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{NCS}$;
 25 $\text{HOSiOSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{N}[(\text{CH}_2)_3\text{N}(\text{CH}_3)_2]_2$; $\text{HOSiOSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{NC}_4\text{H}_8\text{NCH}_3$;
 $\text{Si}[\text{OSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{NC}_4\text{H}_8\text{NCH}_3]_2$; $\text{HOSiOSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{NC}_4\text{H}_8\text{N}(\text{CH}_2)_3\text{CH}_3$; and
 $\text{Si}[\text{OSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{NC}_4\text{H}_8\text{NH}]_2$.

6. A pharmaceutical composition of claim 5, wherein M is
HOSiOSi(CH₃)₂(CH₂)₃N(CH₃)₂.

7. A pharmaceutical composition of claim 1, wherein the
phthalocyanine has a structure of Formula (IV) or a pharmaceutically acceptable salt
5 thereof

(IV)

wherein R¹ is selected from H and R2;
each R² is independently Si(R³)₂(C₁₋₁₂alkyl-N(C₁₋₁₂alkyl)₂);
10 each R³ is independently selected from C₁₋₁₂alkyl, C₁₋₁₂alkoxy, C₁₋₁₂aralkyl, aryloxy,
and aryl.

8. A pharmaceutical composition of any one of claims 1-7, wherein the
phthalocyanine is formulated as a salt selected from hydrobromide, hydrochloride,
sulfate, bisulfate, phosphate, nitrate, acetate, pyruvate, valerate, oleate, palmitate,
15 stearate, laurate, benzoate, lactate, phosphate, tosylate, citrate, maleate, fumarate,
succinate, tartrate, naphthylate, mesylate, glucoheptonate, lactobionate, and
laurylsulphonate salts.

9. A pharmaceutical composition of claim 8, wherein the
phthalocyanine is formulated as a salt selected from hydrochloride and pyruvate.

20 10. A pharmaceutical composition of claim 9, wherein the
phthalocyanine is formulated as a hydrochloride salt.

11. A pharmaceutical composition of claim 10, wherein the
phthalocyanine is formulated as a pyruvate salt.

12. A method for treating epithelial cancer, comprising
25 (i) topically administering a photosensitizer to an epithelial surface; and

(ii) irradiating the epithelial surface.

13. A method of claim 12, further comprising a pharmaceutically acceptable carrier.

14. A method of claim 13, wherein the photosensitizer is a
5 phthalocyanine or a pharmaceutically acceptable salt thereof.

15. A method of claim 14, wherein the phthalocyanine has a structure of formula (I) or a pharmaceutically acceptable salt thereof

[Pc·M]

(I)

10 wherein Pc is a substituted or unsubstituted phthalocyanine; and
M is a diamagnetic metal ion, optionally complexed with or covalently bound to one
or two axial ligands, wherein the metal ion is coordinated to the
phthalocyanine moiety.

15 16. A pharmaceutical composition of claim 14, wherein the
phthalocyanine has a structure of formula (II) or a pharmaceutically acceptable salt
thereof

(II)

wherein M is a diamagnetic metal ion optionally complexed with or covalently bound to one or two axial ligands, wherein the metal ion is coordinated to the phthalocyanine moiety; and

R¹ – R¹⁶ are each independently selected from hydrogen, halogen, nitro, cyano,
 5 hydroxy, thiol, amino, carboxy, aryl, heteroaryl, carbocyclyl, heterocyclyl, C₁₋₂₀alkyl, C₁₋₂₀alkenyl, C₁₋₂₀alkynyl, C₁₋₂₀alkoxy, C₁₋₂₀acyl, C₁₋₂₀alkylcarbonyloxy, C₁₋₂₀aralkyl, C₁₋₂₀hetaralkyl, C₁₋₂₀carbocyclylalkyl, C₁₋₂₀heterocyclylalkyl, C₁₋₂₀aminoalkyl, C₁₋₂₀alkylamino, C₁₋₂₀thioalkyl, C₁₋₂₀alkylthio, C₁₋₂₀hydroxyalkyl, C₁₋₂₀alkyloxycarbonyl, C₁₋₂₀alkylaminocarbonyl, C₁₋₂₀alkylcarbonylamino, C₁₋₁₀alkyl-Z-C₁₋₁₀alkyl;
 10 R¹⁷ is selected from hydrogen, C₁₋₂₀acyl, C₁₋₂₀alkyl, and C₁₋₂₀aralkyl; and
 Z is selected from S, NR¹⁷, and O.

17. A method of claim 14, wherein the phthalocyanine has a structure of Formula (III) or a pharmaceutically acceptable salt thereof

15

(III)

wherein M is (G)_aY[(OSi(CH₃)₂(CH₂)_bN_c(R')_d(R'')_eX_g]_p;

Y is selected from Si, Al, Ga, Ge, or Sn;

R' is selected from H, CH₃, C₂H₅, C₄H₉, C₄H₈NH, C₄H₈N, C₄H₈NCH₃, C₄H₈S,
 20 C₄H₈O, C₄H₈Se, OC(O)CH₃, OC(O), CS, CO, CSe, OH, C₄H₈N(CH₂)₃CH₃,
 (CH₂)₂N(CH₃)₂, (CH₂)_nN((CH₂)_o(CH₃))₂, and an alkyl group having from 1
 to 12 carbon atoms;;

R" is selected from H, SO₂CH₃, (CH₂)₂N(CH₃)₂, (CH₂)₁₁CH₃, C(S)NHC₆H₁₁O₅, (CH₂)_nN((CH₂)_a(CH₃))₂, and an alkyl group having from 1 to 12 carbon atoms;

G is selected from OH and CH₃;

5 X is selected from I, F, Cl, or Br;

a is 0 or 1;

b is an integer from 2 to 12;

c is 0 or 1;

d is an integer from 0 to 3;

10 e is an integer from 0 to 2;

f is 1 or 2;

g is 0 or 1;

n is an integer from 1 to 12;

o is an integer from 1 to 11; and

15 p is 1 or 2.

18. A method of claim 17, wherein M is selected from
 AlOSi(CH₃)₂(CH₂)₃N(CH₃)₂; AlOSi(CH₃)₂(CH₂)₃N(CH₃)₃⁺I;
 CH₃SiOSi(CH₃)₂(CH₂)₃N(CH₃)₂; HOSiOSi(CH₃)₂(CH₂)₃N(CH₃)₂;
 HOSiOSi(CH₃)₂(CH₂)₃N(CH₃)₃⁺I; Si[OSi(CH₃)₂(CH₂)₃N(CH₃)₃⁺I]₂;
 20 Si[OSi(CH₃)₂(CH₂)₄NH₂]₂; Si[OSi(CH₃)₂(CH₂)₄NHSO₂CH₃]₂;
 HOSiOSi(CH₃)₂(CH₂)₄NHSO₂CH₃;
 HOSiOSi(CH₃)₂(CH₂)₃N(CH₂CH₃)(CH₂)₂N(CH₃)₂; Si[OSi(CH₃)₂(CH₂)₄
 NHCSNHC₆H₁₁O₅]₂; Si[OSi(CH₃)₂(CH₂)₃N(CH₃)₂];
 HOSiOSi(CH₃)₂(CH₂)₃OCOCH₃; HOSiOSi(CH₃)₂(CH₂)₃OH;
 25 Si[OSi(CH₃)₂(CH₂)₃N(CH₂CH₃)(CH₂)₂N(CH₃)₂]₂; HOSiOSi(CH₃)₂(CH₂)₃NC₄H₈O;
 AlOSi(CH₃)₂(CH₂)₃N⁺(CH₃)₂(CH₂)₁₁CH₃I⁻; HOSiOSi(CH₃)₂(CH₂)₈N(CH₃)₂;
 Si[OSi(CH₃)₂(CH₂)₃NC₄H₈O]₂; HOSiOSi(CH₃)₂(CH₂)₃NC₄H₈S;
 HOSiOSi(CH₃)₂(CH₂)₃N(CH₂)₃(CH₃)₂; HOSiOSi(CH₃)₂(CH₂)₃NCS;

HOSiOSi(CH₃)₂(CH₂)₃N[(CH₂)₃N(CH₃)₂]₂; HOSiOSi(CH₃)₂(CH₂)₃NC₄H₈NCH₃; Si[OSi(CH₃)₂(CH₂)₃NC₄H₈NCH₃]₂; HOSiOSi(CH₃)₂(CH₂)₃NC₄H₈N(CH₂)₃CH₃; and Si[OSi(CH₃)₂(CH₂)₃NC₄H₈NH]₂.

19. A method of claim 18, wherein M is HOSiOSi(CH₃)₂(CH₂)₃N(CH₃)₂.

5 20. A method of claim 14, wherein the phthalocyanine has a structure of Formula (IV) or a pharmaceutically acceptable salt thereof

(IV)

wherein R¹ is selected from H and R²;

10 each R² is independently Si(R³)₂(C₁₋₁₂alkyl-N(C₁₋₁₂alkyl)₂); each R³ is independently selected from C₁₋₁₂alkyl, C₁₋₁₂alkoxy, C₁₋₁₂aralkyl, aryloxy, and aryl.

15 21. A method of claim 12, wherein the phthalocyanine is formulated as a salt selected from hydrobromide, hydrochloride, sulfate, bisulfate, phosphate, nitrate, acetate, pyruvate, valerate, oleate, palmitate, stearate, laurate, benzoate, lactate, phosphate, tosylate, citrate, maleate, fumarate, succinate, tartrate, naphthylate, mesylate, glucoheptonate, lactobionate, and laurylsulphonate salts.

22. A method of any one of claims 15-20, wherein the phthalocyanine is formulated as a salt selected from hydrochloride and pyruvate.

20 23. A pharmaceutical composition of claim 22, wherein the phthalocyanine is formulated as a hydrochloride salt.

24. A method of claim 22, wherein the phthalocyanine is formulated as a pyruvate salt.

25. A pharmaceutically acceptable salt of a compound having a structure of formula (I) or a pharmaceutically acceptable salt thereof

[Pc·M]

(I)

wherein Pc is a substituted or unsubstituted phthalocyanine; and
 M is a diamagnetic metal ion, optionally complexed with or covalently bound to one
 5 or two axial ligands, wherein the metal ion is coordinated to the
 phthalocyanine moiety.

26. A pharmaceutically acceptable salt of a compound having a structure
 of formula (II) or a pharmaceutically acceptable salt thereof

10

(II)

wherein M is a diamagnetic metal ion optionally complexed with or covalently
 bound to one or two axial ligands, wherein the metal ion is coordinated to the
 phthalocyanine moiety; and

R¹ – R¹⁶ are each independently selected from hydrogen, halogen, nitro, cyano,
 15 hydroxy, thiol, amino, carboxy, aryl, heteroaryl, carbocyclyl, heterocyclyl,
 C₁₋₂₀alkyl, C₁₋₂₀alkenyl, C₁₋₂₀alkynyl, C₁₋₂₀alkoxy, C₁₋₂₀acyl, C₁₋₂₀alkylcarbonyloxy, C₁₋₂₀aralkyl, C₁₋₂₀hetaralkyl, C₁₋₂₀carbocyclylalkyl, C₁₋₂₀heterocyclylalkyl, C₁₋₂₀aminoalkyl, C₁₋₂₀alkylamino, C₁₋₂₀thioalkyl, C₁₋₂₀alkylthio, C₁₋₂₀hydroxyalkyl, C₁₋₂₀alkyloxycarbonyl, C₁₋₂₀alkylaminocarbonyl, C₁₋₂₀alkylcarbonylamino, C₁₋₁₀alkyl-Z-C₁₋₁₀alkyl;

20 R¹⁷ is selected from hydrogen, C₁₋₂₀acyl, C₁₋₂₀alkyl, and C₁₋₂₀aralkyl; and

Z is selected from S, NR¹⁷, and O.

27. A pharmaceutically acceptable salt of a compound having a structure of Formula (III) or a pharmaceutically acceptable salt thereof

(III)

5 wherein M is $(G)_a Y [(OSi(CH_3)_2(CH_2)_b N_c(R')_d(R'')_e)_f X_g]_p$;

Y is selected from Si, Al, Ga, Ge, or Sn;

R' is selected from H, CH₃, C₂H₅, C₄H₉, C₄H₈NH, C₄H₈N, C₄H₈NCH₃, C₄H₈S,
C₄H₈O, C₄H₈Se, OC(O)CH₃, OC(O), CS, CO, CSe, OH, C₄H₈N(CH₂)₃CH₃,
(CH₂)₂N(CH₃)₂, (CH₂)_nN((CH₂)_o(CH₃))₂, and an alkyl group having from 1

10 to 12 carbon atoms;;

R'' is selected from H, SO₂CH₃, (CH₂)₂N(CH₃)₂, (CH₂)₁₁CH₃, C(S)NHC₆H₁₁O₅,
(CH₂)_nN((CH₂)_o(CH₃))₂, and an alkyl group having from 1 to 12 carbon
atoms;

G is selected from OH and CH₃;

15 X is selected from I, F, Cl, or Br;

a is 0 or 1;

b is an integer from 2 to 12;

c is 0 or 1;

d is an integer from 0 to 3;

20 e is an integer from 0 to 2;

f is 1 or 2;

g is 0 or 1;

n is an integer from 1 to 12;

\circ is an integer from 1 to 11; and

p is 1 or 2.

28. A pharmaceutically acceptable salt of claim 17, wherein M is selected from $\text{AlOSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{N}(\text{CH}_3)_2$; $\text{AlOSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{N}(\text{CH}_3)_3^+\text{I}^-$; $\text{CH}_3\text{SiOSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{N}(\text{CH}_3)_2$; $\text{HOSiOSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{N}(\text{CH}_3)_2$; $\text{HOSiOSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{N}(\text{CH}_3)_3^+\text{I}^-$; $\text{Si}[\text{OSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{N}(\text{CH}_3)_3^+\text{I}^-]_2$; $\text{Si}[\text{OSi}(\text{CH}_3)_2(\text{CH}_2)_4\text{NH}_2]_2$; $\text{Si}[\text{OSi}(\text{CH}_3)_2(\text{CH}_2)_4\text{NHSO}_2\text{CH}_3]_2$; $\text{HOSiOSi}(\text{CH}_3)_2(\text{CH}_2)_4\text{NHSO}_2\text{CH}_3$; $\text{HOSiOSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{N}(\text{CH}_2\text{CH}_3)(\text{CH}_2)_2\text{N}(\text{CH}_3)_2$; $\text{Si}[\text{OSi}(\text{CH}_3)_2(\text{CH}_2)_4$
5 $\text{NHCSNHC}_6\text{H}_{11}\text{O}_5]_2$; $\text{Si}[\text{OSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{N}(\text{CH}_3)_2]_2$; $\text{HOSiOSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{OCOCH}_3$; $\text{HOSiOSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{OH}$; $\text{Si}[\text{OSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{N}(\text{CH}_2\text{CH}_3)(\text{CH}_2)_2\text{N}(\text{CH}_3)_2]_2$; $\text{HOSiOSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{NC}_4\text{H}_8\text{O}$; $\text{AlOSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{N}^+(\text{CH}_3)_2(\text{CH}_2)_{11}\text{CH}_3\text{I}^-$; $\text{HOSiOSi}(\text{CH}_3)_2(\text{CH}_2)_8\text{N}(\text{CH}_3)_2$; $\text{Si}[\text{OSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{NC}_4\text{H}_8\text{O}]_2$; $\text{HOSiOSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{NC}_4\text{H}_8\text{S}$;
10 $\text{HOSiOSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{N}(\text{CH}_2)_3(\text{CH}_3)_2$; $\text{HOSiOSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{NCS}$; $\text{HOSiOSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{N}[(\text{CH}_2)_3\text{N}(\text{CH}_3)_2]_2$; $\text{HOSiOSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{NC}_4\text{H}_8\text{NCH}_3$; $\text{Si}[\text{OSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{NC}_4\text{H}_8\text{NCH}_3]_2$; $\text{HOSiOSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{NC}_4\text{H}_8\text{N}(\text{CH}_2)_3\text{CH}_3$; and $\text{Si}[\text{OSi}(\text{CH}_3)_2(\text{CH}_2)_3\text{NC}_4\text{H}_8\text{NH}]_2$.

29. A pharmaceutically acceptable salt of claim 18, wherein M is
20 HOSiOSi(CH₃)₂(CH₂)₃N(CH₃)₂.

30. A pharmaceutically acceptable salt of claim 14, wherein the phthalocyanine has a structure of Formula (IV) or a pharmaceutically acceptable salt thereof

25 (IV)

wherein R¹ is selected from H and R²,

each R² is independently Si(R³)₂(C₁₋₁₂alkyl-N(C₁₋₁₂alkyl)₂);

each R³ is independently selected from C₁₋₁₂alkyl, C₁₋₁₂alkoxy, C₁₋₁₂aralkyl, aryloxy, and aryl.

31. A salt of any one of claims 25-30, wherein the salt is the hydrochloric salt.

5 32. A salt of any one of claims 25-30, wherein the salt is the pyruvate salt.

33. A pharmaceutical composition comprising a salt any one of claims 25-30 and a pharmaceutically acceptable carrier.