Art Insight Lab HTP Project

최종 결과물 발표

조영훈, 김영준, 이진균

Contents

프로젝트 개요 및 기획

- 1. 팀소개 및 업무분장
- 2. 기획배경 및 개발일정
- 3. 사용 프레임워크

솔루션 소개

- 4. 데이터 분석
- 5. 검증 시스템
- 6. 아키텍처

정리

- 7. 결론
- 8. 애로사항 및 발전방향

1

팀소개 및 업무분장

조영훈 (팀장)

- 1. 프로젝트 진행 총괄
- 2. 요구사항 정의 및 기획서 제작
- 3. 프로젝트 일정 및 업무 분담 관리
- 4. 데이터 전처리 및 모델 고도화
- 5. 최종 산출물 정리 및 발표 자료 제작

김영준 (팀원)

- 1. 프로젝트 운영 지원
- 2. 데이터 전처리 및 모델 고도화
- 3. 학습 모델 결과 정보 관리

이진균 (팀원)

- 1. 프로젝트 운영 지원
- 2. EDA 분석
- 3. 데이터 전처리 및 파이프라인 설계
- 4. 도메인 지식에 대한 리서치

기획배경 및 개발일정

기획배경

유아동 그림을 기반으로 어린이의 성향을 분석하기 위해서는 먼저 그림 내 18개의 세부 요인(KPI) 측정이 되어야 합니다 3개의 다른 타입의 이미지에서 각각에 맞는 특징을 분류해내는 과제입니다

세부 요인(KPI) 예시

- 1. House 그림 내 창문 유무
- 2. Tree 그림 내 열매 유무
- 3. Person 그림 내 눈 유무

기획배경 및 개발일정

사용 프레임워크

사용언어 Python

IDE VisualStudio Code

IDE
Google Colaboratory

Detection Framework
Ultraytics

DeepLearning Framework
PyTorch

데이터 분석 - House 이미지 Target 분포

4

데이터 분석 - Tree 이미지 Target 분포

4

데이터 분석 - Person 이미지 Target 분포

검증 시스템

ResNet 101

5-CV

EfficientNet B4

Holdout

Swin Transformer V1

Holdout

Using Different Validation set

아키텍처 – 초기 버전

ResNet 101

EfficientNet B4

Swin Transformer V1

Detected

ResNet 101

EfficientNet B4

Swin Transformer V1

Weighted Average

Not Detected

아키텍처 – 평가 성능 정리

Type	Backbone Model	Evaluation Score (Accuracy)	Average
House	ResNet 101	83%	
	EfficientNet B4	83%	86.67%
	Swin Transformer V1	82%	
Tree	ResNet 101	86%	
	EfficientNet B4	84%	86.33%
	Swin Transformer V1	82%	
Person	ResNet 101	82%	
	EfficientNet B4	93%	88.00%
	Swin Transformer V1	89%	

Validation Accuracy

87.00%

Test Accuracy

88.83%

7 결론

결론 1

검증 성능보다 테스트 성능이 더 높게 나오는 것으로 보아 오버피팅이 일어나지 않도록 일반화가 잘 된 아키텍처를 설계하였다고 할 수 있다.

결론 2

Detection모델을 위해 레이블링을 또 하는 작업을 최소화하는 방향으로 아키텍처를 구성하였고, 모든 객체를 모두 레이블링하지 않아도 그에 준하는 성능을 뽑아낼 수 있음을 증명하였다.

애로사항 및 발전방향

애로사항

- 1. 제공받은 데이터 내 레이블이 실제 이미지 내용과 다른 부분들이 있어, 이상치를 제거하고 훈련시키는 데 어려움이 있었다.
- 2. 각자 훈련시킨 모델을 앙상블하여 최종 결과를 산출하는 추론 시스템을 구축하는 것이 까다로웠다.

발전방향

- 1. GAN을 이용한 추가 학습용 데이터 생성
- 2. Raw Image 및 Cropped Image에 대한 Augmentation
- 3. 모든 모델에 대한 K-Fold 검증 시스템 구축 및 그에 따른 Fold 모델 활용

THANK YOU

감사합니다.