A Book of Abstract Algebra | (2nd Edition)

Chapter 29, Problem 3EG

Bookmark

Show all steps: ON

Problem

Let $F \subseteq K$ and $a, b \in K$. We have seen on page 295 that if a and b are algebraic over F, then F(a, b) is a finite extension of F.

Use the above to prove part.

Prove: $\mathbf{Q}(a_0, a_1, ..., a_n)$ is a finite extension of \mathbf{Q} .

Let $\mathbb{Q}(a_0, ..., a_n) = \mathbb{Q}_1$ Since $a(x) \in \mathbb{Q}_1[x]$, c is algebraic over 1 Prove parts 4 and 5:

Step-by-step solution

Step 1 of 3

Consider a field Q and a field A of set of all algebraic numbers. Let

$$a(x) = a_0 + a_1 x + \dots + a_n x^n \in \mathbf{A}[x],$$

and c be any root of a(x). Objective is to prove that $Q(a_0, a_1, ..., a_n)$ is a finite extension of Q.

Since $a(x) \in \mathbf{A}[x]$, therefore all the coefficients a_0, a_1, \dots, a_n are algebraic over Q. Let $Q(a_0, a_1, ..., a_n)$ be the smallest field containing Q and $a_0, a_1, ..., a_n$. The formation of $Q(a_0, a_1, ..., a_n)$ can be done step by step by adjoining one a_i at a time.

С	comment				
	Step 2 of 3				
N	lote that, the degree of $F(c)$ over F is equal to the degree of the minimal polynomial of c over F				
lf	a_0, a_1, \ldots, a_n are algebraic over Q , then by this result, each extension in				
($Q \subseteq Q(a_0) \subseteq Q(a_0, a_1) \subseteq Q(a_0, a_1, a_2) \subseteq \cdots \subseteq Q(a_0, a_1, \dots, a_n)$				
	s a finite extension. Again by the theorem of finite extension, $Q(a_0,a_1)$ is a finite extension of Q . Also, $Q(a_0,a_1,a_2)$ is a finite extension of Q , and so on.				
С	comment				
	Step 3 of 3				
Н	lence, if a_0, a_1, \ldots, a_n are algebraic over Q , then $Q(a_0, a_1, \ldots, a_n)$ is a finite extension of Q .				
	comment				