【图解CAN总线】-4-详述CANFD和Classic CAN的Frame帧结构差异

目录

- 1 Classic CAN标准帧结构
 - 1.1 SOF
 - 1.2 Arbitration field仲裁段
 - 1.3 Control field控制段
 - 1.4 Data field数据段
 - 1.5 CRC field
 - 1.6 ACK field
 - 1.7 EOF
- 2 Classic CAN扩展帧结构
 - 2.1 与Classic CAN标准帧结构的差异
 - 2.1.1 Arbitration field差异
 - 2.1.2 Control field差异
- 3 CANFD标准帧结构
 - 3.1 与Classic CAN标准帧结构的差异
 - 3.1.1 Control field差异
 - 3.1.2 CRC field差异
 - 3.1.3 ACK field差异
- 4 CANFD扩展帧结构
 - 4.1 与Classic CAN扩展帧结构的差异
 - 4.2 与CANFD标准帧结构的差异
- 5 结尾

不管是Classic CAN Frame还是CANFD Frame, 其帧结构都由以下7个段组成:

- SOF帧起始;
- arbitration field仲裁段;
- control field控制段;
- data field数据段;
- CRC field;
- ACK field;
- EOF.

П	Start of	Arbitration field	Control	Data	CRC	ACK	End of
}	frame	Arbitration field	field	field	field	field _@	frame

1 Classic CAN标准帧结构

默认显/隐性: 显性

描述:

SOF (start of frame帧开始)应标记数据帧和远程帧的开始。只有当总线空闲时(总线空闲时是隐性电平),节点才发送 SOF。

1.2 Arbitration field仲裁段

长度: 12 Bit。11位Base Identifier; 1位RTR (remote transmission request远程发送请求);

默认显/隐性: 不适用

描述:

在经典CAN标准帧(其中IDE位为显性)中,标识符位应表示为ID-28到ID-18。

1.3 Control field控制段

长度: 6Bit。4位 DLC (data length code 数据长度码); 1位IDE (identifier extension flag标识符扩展标志), 1位R0

默认显/隐性: 不适用

描述:

在经典CAN标准帧中,RTR和IDE位作为显性发送。

RO位作为以后的扩展保留。接收方应接收隐/显性位作为保留位RO。在指定保留位的功能之前,发送方只能发送一个显性位。

1.4 Data field数据段

长度:由最多64 Bit组成。

默认显/隐性: 不适用

描述:

数据的内容,一帧可发送0~8个字节的数据, MSB先发。

1.5 CRC field

长度: 16 Bit。15位CRC sequence; 1位CRC delimiter

默认显/隐性: 不适用

描述:

1)CRC sequence

校验SOF、仲裁段、控制段、数据段,具体算法详见ISO 11898-1:2003。

2) CRC delimiter

CRC sequence后面应是由一个隐性位组成的CRC delimiter。

1.6 ACK field

长度: 2 Bit。15位ACK slot; 1位ACK delimiter

默认显/隐性: 不适用

描述:

在ACK段中,发送方应发送两个隐性位。

1) ACK slot

所有收到匹配CRC sequence的节点都应在ACK slot内通过用显性位覆盖发送方的隐性位来发送ACK。

2) ACK delimiter

作为ACK字段的第二位的ACK delimiter应为隐性位。因此,ACK slot应被两个隐性位(CRC delimiter,ACK delimiter)包围。

1.7 **EOF**

长度: 7 Bit。

默认显/隐性: 隐性

描述:

每个数据帧和远程帧应由一个由七个隐性位组成的标志序列分隔,形成 EOF。

2 Classic CAN扩展帧结构

2.1 与Classic CAN标准帧结构的差异

2.1.1 Arbitration field差异

长度: 31 Bit。29位Base Identifier; 1位SRR (substitute remote request替代远程请求); 1位IDE (identifier extension flag标识符扩展标志)

默认显/隐性: 不适用

描述:

在经典CAN扩展帧中(其中**IDE位**为<mark>隐性</mark>),仲裁段应包括**11位**标准标识符(ID-28 到 ID-18)、**18位**标识符扩展(ID-17到ID-0),**1位**SRR 和**1位**IDE 位(两²性)。

1)SRR位 (仅限经典CAN扩展帧)

在经典CAN扩展帧中SRR位替代了经典CAN标准帧中的RTR位。发送方应仅发送<mark>隐性</mark>SRR位,但接收方应接受隐/显性SRR位。

2) IDE位

IDE位区分经典CAN标准帧(IDE位显性)和经典CAN扩展帧(IDE位隐性)。因此,需要解决经典CAN标准帧和经典CAN扩展帧的冲突,这两个帧具有相同的 Identifier,使得经典CAN标准帧优先于经典CAN扩展帧。

2.1.2 Control field差异

长度: 6Bit。4位DLC (data length code 数据长度码); 1位R1; 1位R0

默认显/隐性: 不适用

描述:

在经典CAN扩展帧中,前两位R1和R0应保留以供将来扩展。接收方应接收所有组合中的隐性和显性位作为保留位。在指定保留位的功能之前,发送发送只能发

3 CANFD 标准帧结构

CANFD标准帧格式中的位发送顺序,最多16个数据字节:

CANFD标准帧格式中的位发送顺序, 20到64个数据字节:

3.1 与Classic CAN标准帧结构的差异

3.1.1 Control field差异

长度: 9 Bit。4位DLC (data length code 数据长度码); 1位IDE; 1位FDF; 1位Res; 1位BRS; 1位ESI;

默认显/隐性: 不适用

描述:

1)FDF Bit

该位区分经典CAN帧和CANFD帧。它在CANFD帧中是<mark>隐性</mark>的,在经典CAN帧中是<mark>显性</mark>的(FDF位对应于经典CAN标准帧中的R0位和经典CAN扩展帧中的R1位。

2)Res Bit

在CANFD帧中,它是为协议的未来扩展保留的。Res位应以显性方式传输。

当启用CANFD的接收器检测到Res位为隐性而不是预期的显性值时,应检测到协议异常事件(这是一个实现选项,详见ISO 11898-1:2015)。

3)BRS Bit

该位指示是否在FD帧内切换比特率。如果检测到该位为<mark>隐性</mark>,则比特率应从**仲裁段的标准比特率**切换到**数据段的预配置数据比特率。单个网络中的所有CANFI** 位不需要相同。经典CAN帧中不存在BRS位。

4)ESI Bit

该标志应由错误主动节点显性传输,并由错误被动节点<mark>隐性</mark>传输。经典CAN帧中中不存在ESI位。

5)DLC:

Frames		Data len	Number of data bytes						
Frailles	DLC3	DLC2	DLC1	DLC0	reamber of data bytes				
Classical Frames and FD Frames	0	0	0	0	0				

1					
	0	0	0	1	1
	0	0	1	0	2
	0	0	1	1	3
	0	1	0	0	4
	0	1	0	1	5
	0	1	1	0	6
	0	1	1	1	7
	1	0	0	0	8
Classical Frames	1	0 or 1	0 or 1	0 or 1	8
	1	0	0	1	12
	1	0	1	0	16
	1	0	1	1	20
FD Frames	1	1	0	0	24
	1	1	0	1	32
	1	1	1	0	48
	1	1	1	1	64

3.1.2 CRC field差异

长度: 22/ 26 Bit。4位Stuff count; 17位 (Byte Data Field <= 16) /21位 (20 <= Byte Data Field <= 64) CRC sequence; 1位CRC delimiter。

默认显/隐性: 不适用

描述:

1) Stuff count

在 CANFD 帧中,Stuff count应位于CRC field的开头。它应由3位gray code中的stuff bit计数模8和奇偶校验位组成,如下表所示。

Stuff count	Coding													
Stuff bit count modulo 8	0	1	2	3	4	5	6							
Gray-coded with parity bit	000 0	001 1	011 0	010 1	110 0	111 1	101 0							

帧的发送器和接收器都应计算帧中第一个固定stuff bit之前的stuff bit数。发送方应在CRC field的开头,CRC sequence之前,发送它的stuff bit计数,编码为Stuf收方应检查接收到的Stuff count是否与根据他们自己的stuff bit计数计算的值匹配。

2)CRC sequence

校验SOF、仲裁段、控制段、数据段,具体算法详见ISO 11898-1:2015。

3)CRC delimiter

CRC sequence后面应跟有CRC delimiter。在经典CAN帧中,CRC delimiter是一个<mark>隐性位</mark>。在CANFD帧中,CRC delimiter可能由一个或两个<mark>隐性位</mark>组成。发法 送<mark>一个隐性位</mark>作为CRC delimiter,但它应在开始acknowledge slot的从隐性到显性的边缘之前接受两个隐性位。接收方将在第一个CRC delimiter位之后发送其定bit。

注意: 当CANFD帧到达CRC delimiter (的第一位)的采样点时, CAN实现从Data Field切换回Arbitration field。

3.1.3 ACK field差异

长度: 2 Bit。15位ACK slot; 1位ACK delimiter

默认显/隐性: 不适用

描述:

在CANFD帧中,所有节点都应接受最多2位长的重叠ACK slot位的显性位作为有效的ACK,以补偿接收器之间的相移。

在经典CAN帧中,单个ACK slot位之后的显性位应被视为格式错误。

4 CANFD扩展帧结构

CANFD扩展帧格式中的位传输顺序, 最多 16 个数据字节:

Arbitration Phase														_,	_	•					Data Phase (if BRS recessive)													A.	P
	Arbitration field													Control field								Da	ta fie	eld a		CRC field									
F.		base ID ID extension									Г	H	DL	.C					-	Ĺ	Stu	ff C	oun	t (Т	seq	uen	ce	miter						
S	Bit 28	BIT 27	٠ ا٠	Bit 19 Bit 18	SRR	핊	Bit 17	-		Bit 1	Bit 0	RRS	FDF	res	BRS	ESI	Bit 3	Bit 2	Bit 1	Bit 0	Byte (Byte ,		Byter	Byter	Bit 2		Parity	Bit 16	Bit 15		Bit 1	Bit 0	SRC Delir	_
M	SB (f	irst bi	it tr	ansr	nitte	ed)				_		_		_	_		_	_	_			_		_			3	D/14	166	77	r ip =	U.	L	вВ	_

CANFD扩展帧格式中的位传输顺序, 20 到 64 个数据字节:

4.1 与Classic CAN扩展帧结构的差异

同CANFD标准帧与Classic CAN标准帧结构的差异,这里不再重复描述。

4.2 与CANFD标准帧结构的差异

同Classic CAN标准帧与Classic CAN扩展帧结构的差异,这里不再重复描述。