



## COVID-19'S EFFECT ON THE RHYTHMS OF SMILING ON SOCIAL MEDIA

JEFFREY M. GIRARD, UNIVERSITY OF KANSAS

#### INTRODUCTION

- Smiling is a salient, common, and impactful socio-affective signal
- Photos posted to social media are a rich source of data for studies of smiling (large, frequent, global)
- Social behavior and affect are known to have temporal rhythms (e.g., daily, weekly, and seasonal)
- We planned to analyze temporal rhythms of smiling on Instagram
- Then something happened in 2020...



#### INTRODUCTION

- The COVID-19 pandemic was highly disruptive to many aspects of life
- Fear, uncertainty, loneliness, and loss were widespread negative emotions
- Social distancing and face masks changed social communication
- Lockdowns and work-from-home policies altered temporal rhythms
- We measured smiling on social media to study temporal rhythms before and during the pandemic



#### **HYPOTHESES**



#### **HYPOTHESIS 1**

At baseline, smiling will be higher during weekend days and show a seasonal cycle that peaks during summer months



#### **HYPOTHESIS 2**

Smiling will *decrease* during COVID's first year and then *partially return to baseline* during COVID's second year



**HYPOTHESIS 3** 

COVID's first year will show a dampened weekend effect and partially return to baseline during COVID's second year



**HYPOTHESIS 4** 

COVID's first year will show a dampened seasonal amplitude and partially return to baseline during COVID's second year

## **DATA AND MEASURES**

Where did the data come from? How did we measure smiling?



#### **SOURCE & COUNTS**

Partnered with **Whalar** (an international influencer management company)

- 1,905,424 images publicly uploaded
- 5,469 influencers on Instagram
  - 77.3% female, 21.2% male, 1.4% other
  - Age 18-64 (M=29.34, SD = 5.98)
- 76 countries of origin for influencers
  - 48.5% USA, 26.5% UK, 25% other
- 921 days from May 2019 Oct 2021
  - All data were missing during Apr 2020



#### **MEASURES**

 Smile intensity was estimated using the OpenFace 2.0 toolkit (CV + ML system)



 Validated by 5 crowd-workers and 1 expert (subsample of 300 images)

| Correlation  | OpenFace | Positive | Smile |
|--------------|----------|----------|-------|
| CW: Positive | 0.79     |          |       |
| CW: Smile    | 0.78     | 0.94     |       |
| Expert: FACS | 0.87     | 0.97     | 0.94  |



## **MODELING APPROACH**

How can we parameterize a model to test our hypotheses?



#### **COMPARING TEMPORAL RHYTHMS**

#### **SEASONAL PERIODIC EFFECTS**



$$Amplitude = \sin\left(t \times \frac{2\pi}{365}\right)$$

How large is the peak of the seasonal cycle?

Phase Shift = 
$$\cos\left(t \times \frac{2\pi}{365}\right)$$

When (in the year) does the cycle start?

- Add amplitude and phase shift parameters
- Add a dummy code for weekend day
- Add dummy codes for study period
   (1 = Baseline, 2 = First Year, 3 = Second Year)
- Add interactions with period dummy codes
- Does the weekend effect differ by period?
- Does seasonal amplitude differ by period?
- Does seasonal phase shift differ by period?



#### **MODERATION BY PERIOD**



Dynamic Structural Equation Modeling

- Built for intensive longitudinal data
- Combines MLM, SEM, TSA, TVEM
- Jointly models participants' time series



Latent within-person autoregression Is smiling today related to smiling yesterday?



Within-person temporal effects

Differences between periods

Weekend and seasonal effects



Moderation by period

Does the weekend effect vary by period?

Do the seasonal effects vary by period?



Latent between-person regression

Does average smiling differ by country?

Does average smiling differ by age?

Does average smiling differ by gender?

# RESULTS

What did our model find?



| Parameter          | Est.  | р     | Sig. |
|--------------------|-------|-------|------|
| Intercept          | 20.65 | <.001 | ***  |
| Age                | 0.73  | <.001 | ***  |
| Sex: Male          | -4.03 | <.001 | ***  |
| Sex: Other         | -2.11 | <.001 | ***  |
| Autoregression     | 0.03  | <.001 | ***  |
| Period 2           | -0.11 | .038  | *    |
| Period 3           | 0.32  | <.001 | ***  |
| Weekend            | 0.75  | <.001 | ***  |
| Yearly Amplitude   | 0.33  | <.001 | ***  |
| Yearly Phase Shift | 0.00  | .456  |      |

| Ш |    | 1  |
|---|----|----|
|   | J. | Д, |

|                             | Est   | р     | Sig. |
|-----------------------------|-------|-------|------|
| Weekend × Period 2          | -0.14 | .027  | *    |
| Weekend × Period 3          | 0.25  | <.001 | ***  |
| Amplitude × Period 2        | -0.02 | .400  |      |
| Amplitude $\times$ Period 3 | 0.52  | <.001 | ***  |

| Parameter          | Est.  | р     | Sig. |
|--------------------|-------|-------|------|
| Intercept          | 20.65 | <.001 | ***  |
| Age                | 0.73  | <.001 | ***  |
| Sex: Male          | -4.03 | <.001 | ***  |
| Sex: Other         | -2.11 | <.001 | ***  |
| Autoregression     | 0.03  | <.001 | ***  |
| Period 2           | -0.11 | .038  | *    |
| Period 3           | 0.32  | <.001 | ***  |
| Weekend            | 0.75  | <.001 | ***  |
| Yearly Amplitude   | 0.33  | <.001 | ***  |
| Yearly Phase Shift | 0.00  | .456  |      |

**H2** 

|                      | Est   | р     | Sig. |
|----------------------|-------|-------|------|
| Weekend × Period 2   | -0.14 | .027  | *    |
| Weekend × Period 3   | 0.25  | <.001 | ***  |
| Amplitude × Period 2 | -0.02 | .400  |      |
| Amplitude × Period 3 | 0.52  | <.001 | ***  |

| Parameter          | Est.  | р     | Sig. |
|--------------------|-------|-------|------|
| Intercept          | 20.65 | <.001 | ***  |
| Age                | 0.73  | <.001 | ***  |
| Sex: Male          | -4.03 | <.001 | ***  |
| Sex: Other         | -2.11 | <.001 | ***  |
| Autoregression     | 0.03  | <.001 | ***  |
| Period 2           | -0.11 | .038  | *    |
| Period 3           | 0.32  | <.001 | ***  |
| Weekend            | 0.75  | <.001 | ***  |
| Yearly Amplitude   | 0.33  | <.001 | ***  |
| Yearly Phase Shift | 0.00  | .456  |      |

|                             | Est   | р     | Sig. |
|-----------------------------|-------|-------|------|
| Weekend × Period 2          | -0.14 | .027  | *    |
| Weekend × Period 3          | 0.25  | <.001 | ***  |
| Amplitude × Period 2        | -0.02 | .400  |      |
| Amplitude $\times$ Period 3 | 0.52  | <.001 | ***  |



| Parameter          | Est.  | р     | Sig. |
|--------------------|-------|-------|------|
| Intercept          | 20.65 | <.001 | ***  |
| Age                | 0.73  | <.001 | ***  |
| Sex: Male          | -4.03 | <.001 | ***  |
| Sex: Other         | -2.11 | <.001 | ***  |
| Autoregression     | 0.03  | <.001 | ***  |
| Period 2           | -0.11 | .038  | *    |
| Period 3           | 0.32  | <.001 | ***  |
| Weekend            | 0.75  | <.001 | ***  |
| Yearly Amplitude   | 0.33  | <.001 | ***  |
| Yearly Phase Shift | 0.00  | .456  |      |

|                      | Est   | р     | Sig. |
|----------------------|-------|-------|------|
| Weekend × Period 2   | -0.14 | .027  | *    |
| Weekend × Period 3   | 0.25  | <.001 | ***  |
| Amplitude × Period 2 | -0.02 | .400  |      |
| Amplitude × Period 3 | 0.52  | <.001 | ***  |



#### DAILY AVERAGES ACROSS PERIODS



#### **WEEKDAY AVERAGES BY PERIOD**



#### **MONTH AVERAGE BY PERIOD**



# **DISCUSSION**

What does it all mean?



#### **CONCLUSIONS**

- The baseline (pre-COVID) year showed weekend and seasonal effects on social media smiling
- COVID year 1 showed *lower smiling* and a *dampened weekend* effect
- COVID year 2 showed higher smiling and an amplified weekend and an amplified seasonal effect
- These results are consistent with a "rebound" effect as lockdowns ended
- Socio-affective rhythms are sensitive to shifts in environmental context



#### **RESEARCH TEAM**



**DASHAYERMOL** 

PhD Student in Psychology at University of Kansas

Helped in conceptualizing the project, conducting literature reviews, and writing the paper.



**DANIEL MCDUFF** 

Staff Research Scientist at Google

Helped in conceptualizing the project, processing the image data, and writing the paper.



**COLIN CAMPBELL** 

Assoc. Professor of Marketing at University of San Diego

Helped access and collect the data, provided expertise on Instagram and influencers.



**SARA ROSENGREN** 

Professor of Marketing & Strategy Stockholm School of Economics

Helped access and collect the data, provided expertise on Instagram and influencers.





# **THANKYOU**



JMGIRARD@KU.EDU



HTTPS://AFFCOM.KU.EDU

Affective Communication and Computing Lab *Kansas Data Science Consortium*