Types, Type Inference and Unification

Mooly Sagiv

Slides by Kathleen Fisher and John Mitchell Cornell CS 6110

Outline

- General discussion of types
 - What is a type?
 - Compile-time versus run-time checking
 - Conservative program analysis
- Type inference
 - Discuss algorithm and examples
 - Illustrative example of static analysis algorithm
- Polymorphism
 - Uniform versus non-uniform implementations

Language Goals and Trade-offs

- Thoughts to keep in mind
 - What features are convenient for programmer?
 - What other features do they prevent?
 - What are design tradeoffs?
 - Easy to write but harder to read?
 - Easy to write but poorer error messages?

- What are the implementation costs?

Architect

Programmer

O/A

Tester

Diagnostic

Tools

Programmer

Compiler,
Runtime environment

What is a type?

 A type is a collection of computable values that share some structural property.

<u>Examples</u>

```
int
string
int \rightarrow bool
(int \rightarrow int) \rightarrow bool
[a] \rightarrow a
[a] \times a \rightarrow [a]
```

Non-examples

```
{3, True, x-x}

Even integers

{f:int \rightarrow int | x>3 =>

f(x) > x *(x+1)}
```

Distinction between sets of values that are types and sets that are not types is *language dependent*

Advantages of Types

- Program organization and documentation
 - Separate types for separate concepts
 - Represent concepts from problem domain
 - Document intended use of declared identifiers
 - Types can be checked, unlike program comments
- Identify and prevent errors
 - Compile-time or run-time checking can prevent meaningless computations such as 3 + true – "Bill"
- Support optimization
 - Example: short integers require fewer bits
 - Access components of structures by known offset

What is a type error?

- Whatever the compiler/interpreter says it is?
- Something to do with bad bit sequences?
 - Floating point representation has specific form
 - An integer may not be a valid float
- Something about programmer intent and use?
 - A type error occurs when a value is used in a way that is inconsistent with its definition
 - Example: declare as character, use as integer

Type errors are language dependent

- Array out of bounds access
 - C/C++: run-time errors
 - OCaml/Java: dynamic type errors
- Null pointer dereference
 - C/C++: run-time errors
 - OCaml: pointers are hidden inside datatypes
 - Null pointer dereferences would be incorrect use of these datatypes, therefore static type errors

Compile-time vs Run-time Checking

- JavaScript and Lisp use run-time type checking
 - f(x) Make sure f is a function before calling f

```
js> var f= 3;
js> f(2);
typein:3: TypeError: f is not a function
js>
```

- OCaml and Java use compile-time type checking
 - f(x) Must have $f: A \rightarrow B$ and x: A
- Basic tradeoff
 - Both kinds of checking prevent type errors
 - Run-time checking slows down execution
 - Compile-time checking restricts program flexibility
 - JavaScript array: elements can have different types
 - OCaml list: all elements must have same type
 - Which gives better programmer diagnostics?

Expressiveness

In JavaScript, we can write a function like

```
function f(x) { return x < 10 ? x : x(); }
```

Some uses will produce type error, some will not

Static typing always conservative

```
if (complicated-boolean-expression)
          then f(5);
          else f(15);
```

Type Safety

- Type safe programming languages protect its own abstractions
- Type safe programs cannot go wrong
- No run-time errors
- But exceptions are fine
- The small step semantics cannot get stuck
- Type safety is proven at language design time

Relative Type-Safety of Languages

- Not safe: BCPL family, including C and C++
 - Casts, unions, pointer arithmetic
- Almost safe: Algol family, Pascal, Ada
 - Dangling pointers
 - Allocate a pointer p to an integer, deallocate the memory referenced by p, then later use the value pointed to by p
 - Hard to make languages with explicit deallocation of memory fully type-safe
- Safe: Lisp, Smalltalk, ML, Haskell, Java, JavaScript
 - Dynamically typed: Lisp, Smalltalk, JavaScript
 - Statically typed: OCaml, Haskell, Java

If code accesses data, it is handled with the type associated with the creation and previous manipulation of that data

Type Checking vs Type Inference

Standard type checking:

```
int f(int x) { return x+1; };
int g(int y) { return f(y+1)*2; };
```

- Examine body of each function
- Use declared types to check agreement
- Type inference:

```
int f(int x) { return x+1; };
int g(int y) { return f(y+1)*2; };
```

- Examine code without type information
- Infer the most general types that could have been declared

Why study type inference?

- Types and type checking
 - Improved steadily since Algol 60
 - Eliminated sources of unsoundness
 - Become substantially more expressive
 - Important for modularity, reliability and compilation
- Type inference
 - Reduces syntactic overhead of expressive types
 - Guaranteed to produce most general type
 - Widely regarded as important language innovation
 - Illustrative example of a flow-insensitive static analysis algorithm

History

- Original type inference algorithm
 - Invented by Haskell Curry and Robert Feys for the simply typed lambda calculus in 1958
- In 1969, Hindley
 - extended the algorithm to a richer language and proved it always produced the most general type
- In 1978, Milner
 - independently developed equivalent algorithm, called algorithm
 W, during his work designing ML
- In 1982, Damas proved the algorithm was complete.
 - Currently used in many languages: ML, Ada, Haskell, C# 3.0, F#,
 Visual Basic .Net 9.0. Have been plans for Fortress, Perl 6,
 C++0x,...

Example

```
fun x -> 2 + x
-: int -> int = <fun>
```

- What is the type of the expression?
 - + has type: int \rightarrow int \rightarrow int
 - 2 has type: int
 - Since we are applying + to x we need x : int
 - Therefore $fun x \rightarrow 2 + x$ has type int \rightarrow int

Imperative Example

```
x := b[z]
a [b[y]] := x
```

Example

```
fun f -> f 3
(int -> a) -> a = <fun>
```

- What is the type of the expression?
 - 3 has type: int
 - Since we are applying f to 3 we need f : int \rightarrow a and the result is of type a
 - -Therefore **fun f** -> **f** 3 has type (int \rightarrow a) \rightarrow a

Example

```
fun f -> f (f 3)
(int -> int) -> int = <fun>
```

Example

```
fun f -> f (f "hi")
(string -> string) -> string = <fun>
```

Example

```
fun f -> f (f 3, f 4)
```

Type Inference: Complex Example

```
let square = λz. z * z
  in
  λf.λx. λy.
if (f x y)
  then (f (square x) y)
  else (f x (f x y))
```

*: int \rightarrow int \rightarrow int

z : int

square : int \rightarrow int

 $f: a \rightarrow b \rightarrow bool, x: a, y: b$

a: int

b: bool

 $(int \rightarrow bool \rightarrow bool) \rightarrow int \rightarrow bool \rightarrow bool$

Unification

- Unifies two terms
- Used for pattern matching and type inference
- Simple examples
 - int * x and y * (bool * bool) are unifiable for y =
 int and x = (bool * bool)
 - int * int and int * bool are not unifiable

Substitution

- The essential task of unification is to find a substitution that makes the two terms equal f(x, h(x, y)) {x →g(y), y →z} = f(g(y), h(g(y), z)
 - The terms t_1 and t_2 are unifiable if there exists a substiltution S such that $t_1 S = t_2 S$
 - Example: $t_1 = f(x, g(y)), t_2 = f(g(z), w)$

Most General Unifiers (mgu)

- It is possible that no unifier for given two terms exist
 - For example x and f(x) cannot be unified
- There may be several unifiers
 - Example: $t_1 = f(x, g(y)), t_2 = f(g(z), w)$
 - $S = \{x \mapsto g(z), w \mapsto g(w)\}$
 - $S' = \{x \mapsto g(f(a, b)), y \mapsto f(b, a), z \mapsto f(a, b), w \mapsto g(f(b, a)\}$
- When a unifier exists, there is always a most general unifier (mgu) that is unique up to renaming
- S is the most general unifier of t1 and t2 if
 - It is a unifier of t₁ and t₂
 - For every other unifier S' of t₁ and t₂ there exists a refinement of S to give S'
- mguS can be efficiently computed

Type Inference with mgu

Example

```
fun f -> f (f "hi")
(string -> string) -> string = <fun>
```

```
\begin{split} &\lambda f: T_1. \\ &apply(f: T_1, \\ &apply(f: T_1, ``hi'': string): T_2): T_3 \\ &- mgu(T_1, string \rightarrow T_2) = \{T_1 \mapsto string \rightarrow T_2\} = S \\ &- mgu(T_1, T_2 \rightarrow T_3)(S) = \\ &\{T_1 \mapsto string \rightarrow T_2, T_2 \mapsto sring, T_3 \mapsto sring\} \end{split}
```

Type Inference Algorithm

- Parse program to build parse tree
- Assign type variables to nodes in tree
- Generate constraints:
 - From environment: literals (2), built-in operators
 (+), known functions (tail)
 - From form of parse tree: e.g., application and abstraction nodes
- Solve constraints using unification
- Determine types of top-level declarations

Step 1: Parse Program

Parse program text to construct parse tree

Step 2: Assign type variables to nodes

Variables are given same type as binding occurrence

Step 3: Add Constraints

:: ≡ :

Step 4: Solve Constraints

```
t 0 = t_1 -> t_6
t_4 = t_1 -> t_6
t_2 = t_3 -> t_4
                                t_3 -> t_4 = int -> (int -> int)
t_2 |= int -> int -> int
t 3 = int
                                t 3 = int
t 0 = t 1 -> t 6
                                t 4 = int -> int
t_4 = t_1 -> t_6
t_4 = int -> int
                                t_1 -> t_6 = int -> int
t_2 = int -> int -> int
t 3 = int
t 0 = int -> int
                                t 1 = int
t 1 = int
                                t_6 = int
t 6 = int
t 4 = int -> int
t_2 = int -> int -> int
t 3 = int
```

Step 5: Determine type of declaration

```
t 0 = int -> int
t 1 = int
                                 let f x = 2 + x
t_6 = int -> int
                                 val f : int -> int =<fun>
t_4 = int -> int
t_2 = int -> int -> int
                                   Fun
t 3 = int
                                x :: t_1
                    f :: t_0
                                               (@) :: t_6
                                        (@) :: t_4
                                                      x :: t_1
                                              2 :: t_3
                                (+) :: t_2
```

Constraints from Application Nodes

Function application (apply f to x)

- Type of f (t_0 in figure) must be domain → range
- Domain of f must be type of argument x (t_1 in fig)
- Range of f must be result of application (t_2 in fig)
- Constraint: $t_0 = t_1 -> t_2$

```
:: ≡ :
```

Constraints from Abstractions

Function declaration:

- Type of f (t_0 in figure) must domain → range
- Domain is type of abstracted variable x (t_1 in fig)
- Range is type of function body e (t_2 in fig)
- Constraint: t_0 = t_1 -> t_2

```
:: ≡ :
```

Inferring Polymorphic Types

• Example:

```
let f g = g 2
val f : (int -> t_4) -> t_4 = <fun>
```

Step 1: Build Parse Tree

Inferring Polymorphic Types

• Example:

```
let f g = g 2
val f : (int -> t_4) -> t_4 = fun
```

• Step 2:

Assign type variables

:: ≡ :

Inferring Polymorphic Types

• Example:

• Step 3:

Generate constraints

Inferring Polymorphic Types

• Example:

• Step 4:

Solve constraints

Inferring Polymorphic Types

• Example:

• Step 5:

Determine type of top-level declaration

Unconstrained type variables become polymorphic types

f:: t_0

g:: t_1

(0) :: t_4

1 = int -> t_4

g:: t_1

2

Using Polymorphic Functions

• Function:

```
let f g = g 2
val f : (int -> t_4) -> t_4 = <fun>
```

Possible applications:

```
let add x = 2 + x
val add : int -> int = <fun>
f add
:- int = 4
```

```
let isEven x = mod (x, 2) == 0
val isEven: int -> bool = <fun>
f isEven
:- bool= true
```

Recognizing Type Errors

• Function:

```
let f g = g 2
val f : (int -> t_4) -> t_4 = <fun>
```

Incorrect use

```
let not x = if x then true else false
val not : bool -> bool = <fun>
f not
> Error: operator and operand don't agree
  operator domain: int -> a
  operand: bool-> bool
```

 Type error: cannot unify bool → bool and int → t

Example:

```
let f (g,x) = g (g x)
val f : ((t_8 -> t_8) * t_8) -> t_8
```

Step 1: Build Parse Tree

:: ≡ :

• Example:

```
let f (g,x) = g (g x)
val f : ((t_8 -> t_8) * t_8) -> t_8
```

• Step 2:

Assign type variables

• Example:

 $t_0 = t_3 -> t_8$

• Step 3:

Generate constraints

• Example:

 $t_0 = t_3 -> t_8$

• Step 4:

Solve constraints

Example:

 $t_0 = t_3 -> t_8$

• Step 5:

Determine type of f

Pattern Matching

Matching with multiple cases

- Infer type of each case
 - First case:

```
[t_1] -> bool
```

– Second case:

```
t_2 -> bool
```

Combine by unification of the types of the cases

```
val isempty : [t_1] -> bool = <fun>
```

Bad Pattern Matching

Matching with multiple cases

- Infer type of each case
 - First case:

```
[t_1] -> bool
```

– Second case:

```
t_2 -> int
```

Combine by unification of the types of the cases

```
Type Error: cannot unify bool and int
```

Recursion

To handle recursion, introduce type variables for the function:

```
concat : t_1 -> t_2 -> t_3
```

- Use these types to conclude the type of the body:
 - Pattern matching first case:

```
[t_4] -> t_5 -> t_5
unify [t_4] with t_1 and t_5 with t_2 and t_3
```

Pattern matching second case:

```
[t_6] -> t_7 -> t_3
unify [t_6] with t_1 and t_7 with t_2
```

Conclude the type of the function:

```
val concat : [t_4] -> [t_4] -> [t_4] = <fun>
```

Most General Type

Type inference produces the most general type

```
let rec map f arg = function
    [] -> []
    | hd :: tl -> f hd :: (map f tl)

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
```

Functions may have many less general types

```
val map : (t_1 -> int, [t_1]) -> [int]
val map : (bool -> t_2, [bool]) -> [t_2]
val map : (char -> int, [cChar]) -> [int]
```

 Less general types are all instances of most general type, also called the *principal type*

Information from Type Inference

Consider this function...

```
let reverse ls = match ls with
  [] -> []
  | x :: xs -> reverse xs
```

... and its most general type:

```
:- reverse :: list `t_1 -> list `t_2
```

What does this type mean?

Reversing a list should not change its type, so there must be an error in the definition of reverse!

Complexity of Type Inference Algorithm

- When Hindley/Milner type inference algorithm was developed, its complexity was unknown
- In 1989, Kanellakis, Mairson, and Mitchell proved that the problem was exponentialtime complete
- Usually linear in practice though...
 - Running time is exponential in the depth of polymorphic declarations

Type Inference: Key Points

- Type inference computes the types of expressions
 - Does not require type declarations for variables
 - Finds the most general type by solving constraints
 - Leads to polymorphism
- Sometimes better error detection than type checking
 - Type may indicate a programming error even if no type error
- Some costs
 - More difficult to identify program line that causes error
 - Natural implementation requires uniform representation sizes
 - Complications regarding assignment took years to work out
- Idea can be applied to other program properties
 - Discover properties of program using same kind of analysis

Parametric Polymorphism: OCaml vs C++

OCaml polymorphic function

- Declarations (generally) require no type information
- Type inference uses type variables to type expressions
- Type inference substitutes for type variables as needed to instantiate polymorphic code

C++ function template

- Programmer must declare the argument and result types of functions
- Programmers must use explicit type parameters to express polymorphism
- Function application: type checker does instantiation

Example: Swap Two Values

OCaml

```
let swap (x, y) =
  let temp = !x in
    (x := !y; y := temp)
val swap : 'a ref * 'a ref -> unit = <fun>
```

• C++

```
template <typename T>
void swap(T& x, T& y){
    T tmp = x; x=y; y=tmp;
}
```

Declarations both swap two values polymorphically, but they are compiled very differently

Implementation

OCaml

- swap is compiled into one function
- Typechecker determines how function can be used
- C++
 - swap is compiled differently for each instance (details beyond scope of this course ...)
- Why the difference?
 - OCaml ref cell is passed by pointer. The local x is a pointer to value on heap, so its size is constant
 - C++ arguments passed by reference (pointer), but local x is on the stack, so its size depends on the type

Polymorphism vs Overloading

Parametric polymorphism

- Single algorithm may be given many types
- Type variable may be replaced by any type
- if f:t→t then f:int→int, f:bool→bool, ...

Overloading

- A single symbol may refer to more than one algorithm
- Each algorithm may have different type
- Choice of algorithm determined by type context
- Types of symbol may be arbitrarily different
- In ML, + has types int*int→int, real*real→real, no others
- Haskel permits more general overloading and requires user assistance

Varieties of Polymorphism

- Parametric polymorphism A single piece of code is typed generically
 - Imperative or first-class polymorphism
 - ML-style or let-polymorphism
- Ad-hoc polymorphism The same expression exhibit different behaviors when viewed in different types
 - Overloading
 - Multi-method dispatch
 - intentional polymorphism
- Subtype polymorphism A single term may have many types using the rule of subsumption allowing to selectively forget information

Summary

- Types are important in modern languages
 - Program organization and documentation
 - Prevent program errors
 - Provide important information to compiler
- Type inference
 - Determine best type for an expression, based on known information about symbols in the expression
- Polymorphism
 - Single algorithm (function) can have many types