Set Partitions, Tableaux, and Subspace Profiles of Regular Diagonal Operators Amritanshu Prasad¹ and Samrith Ram²

Institute of Mathematical Sciences Chennai¹, Indraprastha Institute of Information Technology Delhi²

0. Notation

 λ : Integer partition of n.

 $\Pi_n(\lambda)$: Set partitions of [n] of shape λ .

 $Tab(\lambda)$: Standard tableaux of shape λ .

 $b_{\lambda}(q)$: Polynomials indexed by integer partitions.

S(n,m): Stirling numbers of the second kind.

 $S_q(n,m): q$ -Stirling numbers of the second kind.

c(T): Statistic on standard tableaux.

1. Counting set partitions

$$|\Pi_n(\lambda)| = \sum_{T \in \operatorname{Tab}(\lambda)} c(T).$$

$$S(n,m) = \sum_{\substack{\lambda \vdash n \\ \ell(\lambda) = m}} \sum_{T \in \text{Tab}(\lambda)} c(T).$$

$$\int B_n = \sum_{T \in \text{Tab}_n} c(T).$$

Bell number

2. Specializations of $b_{\lambda}(q)$

#set partitions of shape λ . q = 0#standard tableaux of shape λ . q = -1#shifted standard tableaux of shape λ .

 $b_{\lambda}(q)$

3. Subspace profiles

 Δ : Regular diagonal operator on \mathbf{F}_q^n .

W: Subspace of \mathbf{F}_q^n .

W has Δ -profile $\mu = (\mu_1, \mu_2, ...)$ if

 $\dim(W + \Delta W + \dots + \Delta^{j-1}W) = \mu_1 + \dots + \mu_j \ (\forall j \ge 1)$

 $\sigma(\mu)$: #subspaces with Δ -profile μ .

$$\sigma(\mu) = \binom{n}{|\mu|} (q-1)^{\sum_{j\geq 2} \mu_j} q^{\sum_{j\geq 2} \binom{\mu_j}{2}} b_{\mu'}(q)$$

4. $b_{\lambda}(q)$ via a statistic on set partitions

An interlacing of a set partition is a crossing of j-th arcs for some j.

$$b_{\lambda}(q) = \sum_{\mathcal{A} \in \Pi_n(\lambda)} q^{v(\mathcal{A})}$$

5. q-Stirling numbers

$$S_q(n,m) = \sum_{\substack{\lambda \vdash n \\ \ell(\lambda) = m}} q^{\sum_i (i-1)(\lambda_i - 1)} b_{\lambda}(q)$$

6. λ has parts < 2

 $b_{\lambda}(q) \leftrightarrow \text{Catalan triangle associated}$ to q-Hermite orthogonal polynomials.

$$b_{(2^m)}(q) = T_m(q)$$

 $T_m(q)$: Generating polynomial for chord diagrams on 2m points by number of crossings.