TRG. Trigonométrie

QCOP TRG.1

3. On peut, par exemple, utiliser $x = \frac{\pi}{2}$ et $y = \frac{\pi}{4}$.

QCOP TRG.2

- 2. La démonstration attendue est géométrique. Soit $\theta \in \mathbb{R}$. On note $M_{\theta} \left(\cos(\theta), \sin(\theta) \right)$. Le symétrique par rapport à l'axe des abscisses est $M_{-\theta}$ et a pour coordonnées $M_{-\theta} \left(\cos(\theta), -\sin(\theta) \right)$ d'où $\sin(-\theta) = -\sin(\theta)$.
- 3. Utiliser que $\cos^2 + \sin^2 = 1$.

QCOP TRG.3

3. On a $tan(\theta) = tan\left(\frac{\theta}{2} + \frac{\theta}{2}\right)$.

Pour $\cos(\theta)$, on peut utiliser que $1+\tan^2=\frac{1}{\cos^2}$ et $\cos(\theta)=\cos^2\left(\frac{\theta}{2}\right)-1$.

Enfin, on déduit celle pour $sin(\theta)$ grâce à la définition de $tan(\theta)$ en fonction de $cos(\theta)$ et $sin(\theta)$.

QCOP TRG.4

2. Additionner les formules donnant $\cos(\theta + \theta')$ et $\cos(\theta - \theta')$ en choisissant judicieusement θ et θ' en fonction de p et q pour faire apparaître les quantités souhaitées.

QCOP TRG.5

- **2.** a) Utiliser que $\frac{\sin\left(\frac{\theta}{2}\right)}{\theta} = \frac{1}{2} \frac{\sin\left(\frac{\theta}{2}\right)}{\frac{\theta}{2}}$.
 - **b)** Utiliser les formules de trigonométrie pour montrer que $\cos(\theta) 1 = -2\frac{\sin^2(\frac{\theta}{2})}{\theta}$.

QCOP TRG.6

- 3. Résultat. La fonction $tan(\cdot)$ est π -périodique et impaire.
- **4.** Résultat. $\tan' = 1 + \tan^2 = \frac{1}{\cos^2} \sup \mathcal{D}_{tan}$.