Newton's Method

- Gradient method uses only gradient information (first derivative).
- If we also use the second derivative (Hessian), we should be able to do better (but it may be more computationally demanding).
- Newton's method uses Hessian.
- For quadratics, converges in 1 step (order of convergence ∞).
- In general, it has order of convergence at least 2.

Underlying idea (§9.1)

- Given: $f: \mathbb{R}^n \to \mathbb{R}$, and current iterate $\boldsymbol{x}^{(k)}$. Write $\boldsymbol{g}^{(k)} = \nabla f(\boldsymbol{x}^{(k)})$.
- To compute $x^{(k+1)}$, approximate f by a quadratic:

$$\begin{array}{lcl} q({\bm x}) & = & f({\bm x}^{(k)}) + ({\bm x} - {\bm x}^{(k)})^T {\bm g}^{(k)} \\ & & + \frac{1}{2} ({\bm x} - {\bm x}^{(k)})^T {\bm F}({\bm x}^{(k)}) ({\bm x} - {\bm x}^{(k)}). \end{array}$$

- Use minimizer of q as next iterate $x^{(k+1)}$.
- By FONC, we have $\nabla q(\boldsymbol{x}^{(k+1)}) = 0$, where

$$abla q(m{x}^{(k+1)}) = m{g}^{(k)} + m{F}(m{x}^{(k)})(m{x}^{(k+1)} - m{x}^{(k)}).$$

• Newton's algorithm:

$$x^{(k+1)} = x^{(k)} - F(x^{(k)})^{-1}q^{(k)}.$$

- Note: no step size (or, step size = 1).
- See Example 9.1.
- Can break down into two steps:
 - 1. Solve $F(x^{(k)})d^{(k)} = -g^{(k)}$ for $d^{(k)}$
 - 2. Set $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{d}^{(k)}$
- No need to explicitly compute $F(x^{(k)})^{-1}$.

Analysis of Newton's method (§9.2)

- Does the method work? When does it work? How well does it work?
- If f is a quadratic (with invertible Hessian Q), then Newton's method always converges to x^* in 1 step.
- For general f,
 - Hessian may not be invertible;
 - algorithm may not converge if we don't start close enough to x^* ;
 - it may not have descent property;
 - if/when it works, it is fast.

Convergence of Newton's method

- What is the order of convergence of Newton's algorithm?
- Easy to show that it is > 1 ("superlinear") if the inverse Hessian is bounded.
- By Taylor's formula:

$$\mathbf{0} = \nabla f(\mathbf{x}^*)
= \nabla f(\mathbf{x}^{(k)}) + \mathbf{F}(\mathbf{x}^{(k)})(\mathbf{x}^* - \mathbf{x}^{(k)}) + o(\|\mathbf{x}^* - \mathbf{x}^{(k)}\|).$$

• Rearranging, we obtain

$$\mathbf{x}^{(k)} - \mathbf{F}(\mathbf{x}^{(k)})^{-1} \nabla f(\mathbf{x}^{(k)}) - \mathbf{x}^*$$

= $\mathbf{F}(\mathbf{x}^{(k)})^{-1} o(\|\mathbf{x}^* - \mathbf{x}^{(k)}\|) = o(\|\mathbf{x}^* - \mathbf{x}^{(k)}\|)$

by boundedness of $F(\cdot)^{-1}$.

Version: Initial distribution

- Hence, $x^{(k+1)} x^* = o(||x^{(k)} x^*||).$
- Thus,

$$\lim_{k \to \infty} \frac{\|\boldsymbol{x}^{(k+1)} - \boldsymbol{x}^*\|}{\|\boldsymbol{x}^{(k)} - \boldsymbol{x}^*\|} = \lim_{k \to \infty} \frac{o(\|\boldsymbol{x}^{(k)} - \boldsymbol{x}^*\|)}{\|\boldsymbol{x}^{(k)} - \boldsymbol{x}^*\|} = 0.$$

• The order of convergence is *superlinear* (if the order of convergence exists, it must be > 1).

Theorem (9.1): Suppose

- 1. $f \in \mathcal{C}^3$,
- $2. \nabla f(\boldsymbol{x}^*) = \boldsymbol{0},$
- 3. $F(x^*)$ invertible.

Then, for all $x^{(0)}$ sufficiently close to x^* , Newton's method converges to x^* with order of convergence at least 2.

• Idea of proof: show

$$\|\boldsymbol{x}^{(k+1)} - \boldsymbol{x}^*\| = O(\|\boldsymbol{x}^{(k)} - \boldsymbol{x}^*\|^2).$$

Sketch of proof:

• We have:

$$egin{aligned} m{x}^{(k+1)} - m{x}^* \ &= m{x}^{(k)} - m{F}(m{x}^{(k)})^{-1}
abla f(m{x}^{(k)}) - m{x}^* \ &= -m{F}(m{x}^{(k)})^{-1} \left(
abla f(m{x}^{(k)}) + m{F}(m{x}^{(k)})(m{x}^* - m{x}^{(k)})
ight). \end{aligned}$$

• By Taylor's formula and assumption 2,

$$\mathbf{0} = \nabla f(\mathbf{x}^*) = \nabla f(\mathbf{x}^{(k)}) + \mathbf{F}(\mathbf{x}^{(k)})(\mathbf{x}^* - \mathbf{x}^{(k)}) + O(\|\mathbf{x}^* - \mathbf{x}^{(k)}\|^2).$$

Thus

$$- (\nabla f(\boldsymbol{x}^{(k)}) + \boldsymbol{F}(\boldsymbol{x}^{(k)})(\boldsymbol{x}^* - \boldsymbol{x}^{(k)})) = O(\|\boldsymbol{x}^* - \boldsymbol{x}^{(k)}\|^2).$$

• Substituting Taylor's formula into first equation, we get

$$\boldsymbol{x}^{(k+1)} - \boldsymbol{x}^* = \boldsymbol{F}(\boldsymbol{x}^{(k)})^{-1} \cdot O(\|\boldsymbol{x}^* - \boldsymbol{x}^{(k)}\|^2).$$

• Hence, taking norms,

$$\|\boldsymbol{x}^{(k+1)} - \boldsymbol{x}^*\| \le \|\boldsymbol{F}(\boldsymbol{x}^{(k)})^{-1}\| \cdot O(\|\boldsymbol{x}^* - \boldsymbol{x}^{(k)}\|^2)$$

- By assumptions 1 and 3, $F(x^{(k)})^{-1}$ exists if $x^{(k)}$ is sufficiently near x^* , and is bounded.
- To make the argument rigorous, use induction and some technical lemmas (read proof in book).

Newton's method and descent property

- Newton's method may not have descent property.
- It is possible that for some k,

$$f(\boldsymbol{x}^{(k+1)}) \ge f(\boldsymbol{x}^{(k)}).$$

• Fortunately, the vector

$$d^{(k)} = -F(x^{(k)})^{-1}g^{(k)}$$

points in a direction of decreasing f.

• Theorem (9.2): Suppose $F(x^{(k)}) > 0$ and $g^{(k)} \neq 0$. Then, there exists $\bar{\alpha} > 0$ such that for all $\alpha \in (0, \bar{\alpha})$,

$$f(\boldsymbol{x}^{(k)} + \alpha \boldsymbol{d}^{(k)}) < f(\boldsymbol{x}^{(k)}).$$

• Consequence: if we include a step size in Newton's algorithm,

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} - \alpha_k \boldsymbol{F}(\boldsymbol{x}^{(k)})^{-1} \boldsymbol{g}^{(k)}$$

and we choose α_k appropriately, e.g.,

$$\alpha_k = \operatorname*{arg\,min}_{\alpha > 0} f(\boldsymbol{x}^{(k)} + \alpha \boldsymbol{d}^{(k)}),$$

then the modified Newton's algorithm has a descent property.

Proof of theorem:

• As usual, write

$$\phi(\alpha) = f(\mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)}).$$

• By chain rule,

$$\phi'(0) = \nabla f(\mathbf{x}^{(k)})^T \mathbf{d}^{(k)} = -\mathbf{g}^{(k)T} \mathbf{F}(\mathbf{x}^{(k)})^{-1} \mathbf{g}^{(k)}.$$

- Because $F(x^{(k)}) > 0$ and $g^{(k)} \neq 0$, we deduce that $\phi'(0) < 0$.
- Hence, there exists $\bar{\alpha} > 0$ such that for all $\alpha \in (0, \bar{\alpha})$, we have $\phi(\alpha) < \phi(0)$, or

$$f(\boldsymbol{x}^{(k)} + \alpha \boldsymbol{d}^{(k)}) < f(\boldsymbol{x}^{(k)}).$$

Summary

- Newton's method performs well if we start close enough.
- We can incorporate a step size to ensure descent.
- For a quadratic, converges in one step.
- Is there some way of using only gradients, but still only converge in one or a finite number of steps for quadratics?
- Yes ... conjugate direction method.

General algorithms

• We have already seen two examples of algorithms of the form

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} + \alpha_k \boldsymbol{d}^{(k)},$$

where

$$\alpha_k = \operatorname*{arg\,min}_{\alpha \geq 0} f(\boldsymbol{x}^{(k)} + \alpha \boldsymbol{d}^{(k)}).$$

- In steepest descent algorithm, $d^{(k)} = -g^{(k)}$.
- In (modified) Newton's algorithm, $d^{(k)} = -F(x^{(k)})^{-1}g^{(k)}$.
- There are some general statements we can make about algorithms of the above form.
- Prop.: Suppose $\alpha_k > 0$. Then, the following equation holds:

$$\boldsymbol{d}^{(k)T}\boldsymbol{g}^{(k+1)} = 0.$$

• Proof: Consider $\phi(\alpha) = f(\boldsymbol{x}^{(k)} + \alpha \boldsymbol{d}^{(k)})$. By FONC, we have $\phi'(\alpha_k) = 0$.

By chain rule,

$$\phi'(\alpha_k) = \boldsymbol{d}^{(k)T} \nabla f(\boldsymbol{x}^{(k)} + \alpha_k \boldsymbol{d}^{(k)}) = \boldsymbol{d}^{(k)T} \boldsymbol{g}^{(k+1)}.$$

- Prop.: If $d^{(k)T}g^{(k)} < 0$, then
 - 1. $\alpha_k > 0$,
 - 2. $f(\mathbf{x}^{(k+1)}) < f(\mathbf{x}^{(k)})$.
- Proof: Exercise.

Remark:

- Steepest descent and Newton's algorithms satisfy $d^{(k)T}g^{(k)} < 0$ (if $g^{(k)} \neq 0$).
- Prop.: Suppose

$$f(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^T \boldsymbol{Q} \boldsymbol{x} - \boldsymbol{x}^T \boldsymbol{b},$$

with $Q = Q^T > 0$. Then,

$$lpha_k = -rac{oldsymbol{d}^{(k)T}oldsymbol{g}^{(k)}}{oldsymbol{d}^{(k)T}oldsymbol{O}oldsymbol{d}^{(k)}}.$$

• Proof: Exercise. *Hint*: Consider ϕ .