```
In [1]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        import os
        from sklearn.metrics import r2 score;
        from sklearn.metrics import mean squared error
        from statsmodels.tools import add constant
        from statsmodels.regression.linear model import OLS;
        from statsmodels.tsa.stattools import kpss;
        from statsmodels.tsa.stattools import acf;
        from statsmodels.tsa.stattools import pacf;
        from statsmodels.graphics.tsaplots import plot acf;
        from statsmodels.graphics.tsaplots import plot pacf;
        from statsmodels.tsa.arima.model import ARIMA;
        import warnings
        warnings.filterwarnings('ignore')
        data dir = './data'
In [2]: data = pd.read csv(os.path.join(data dir, 'DAAA.csv'), parse dates=['observation date'], index col='observation date')
        data
```

observation_date				
1995-01-03	8.53			
1995-01-04	8.46			
1995-01-05	8.51			
1995-01-06	8.45			
1995-01-09	8.49			
•••				
2025-02-25	5.21			
2025-02-26	5.17			
2025-02-27	5.21			
2025-02-28	5.21			
2025-03-03				

7870 rows × 1 columns

```
In [3]: data.plot()
```

Out[3]: <Axes: xlabel='observation_date'>

Tishchenko PM23-1 3hw 06.03.2025, 22:59

Out[6]:

OLS Regression Results

Dep. Variable:	у	R-squared:	0.722
Model:	OLS	Adj. R-squared:	0.722
Method:	Least Squares	F-statistic:	2.046e+04
Date:	Thu, 06 Mar 2025	Prob (F-statistic):	0.00
Time:	10:27:32	Log-Likelihood:	-9177.1
No. Observations:	7870	AIC:	1.836e+04
Df Residuals:	7868	BIC:	1.837e+04
Df Model:	1		
Covariance Type:	nonrohust		

Covariance Type: nonrobust

		coef	std err	t	P> t	[0.025	0.975]
•	const	7.3352	0.018	418.955	0.000	7.301	7.370
	x 1	-0.0006	3.85e-06	-143.048	0.000	-0.001	-0.001

Omnibus:	821.405	Durbin-Watson:	0.005
Prob(Omnibus):	0.000	Jarque-Bera (JB):	1124.300
Skew:	0.843	Prob(JB):	7.27e-245
Kurtosis:	3.764	Cond. No.	9.09e+03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 9.09e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [7]: plt.plot(y)
    plt.plot(model.predict(add_constant(t)))
    plt.plot(y - model.predict(add_constant(t)))
    #plt.xLabel()
    plt.show()
```



```
plt.plot(x_t)
plt.show()
display(kpss(x_t,'ct',1)[0])
```


0.029595843295856076

2. Нарисуйте график АСF и РАСF

```
In [10]: fig = plot_acf(data,use_vlines=True,lags=100)
fig = plot_pacf(data)
```


3. Является ли ho(5) значимым?

```
In [11]: r, conf = acf(data, alpha=0.05)

if conf[5][0] < r[5]<conf[5][1]:
    print('Значим')

else:
    print(f'Незначим')</pre>
```

Значим

4. Постройте подходящую ARMA модель.

```
In [13]: from statsmodels.tsa.stattools import adfuller
    result = adfuller(data)
    print(f'ADF Statistic: {result[0]}')
    print(f'p-value: {result[1]}')

ADF Statistic: -2.2250525396248118
    p-value: 0.1972787867912364

In [14]: from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
    import matplotlib.pyplot as plt

    fig, (ax1, ax2) = plt.subplots(1, 2)
    plot_acf(data, ax=ax1)
    plot_pacf(data, ax=ax2)
    plt.show()
```


Performing stepwise search to minimize aic

Best model: ARIMA(0,1,0)(0,0,0)[0]

Total fit time: 9.782 seconds

Out[19]:

SARIMAX Results

Dep. Variable:	У	No. Observations:	7870
Model:	SARIMAX(0, 1, 0)	Log Likelihood	11924.912
Date:	Thu, 06 Mar 2025	AIC	-23847.824
Time:	10:30:32	ВІС	-23840.853
Sample:	01-03-1995	HQIC	-23845.436
	- 03-03-2025		

Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]
sigma2	0.0028	2.26e-05	125.006	0.000	0.003	0.003

Ljung-Box (L1) (Q): 3.15 **Jarque-Bera (JB):** 11640.41

Prob(Q):	0.08	Prob(JB):	0.00
Heteroskedasticity (H):	1.33	Skew:	0.18
Prob(H) (two-sided):	0.00	Kurtosis:	8.95

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

```
In [25]: # Проверка с помощью Ljung-Box mecma
from statsmodels.stats.diagnostic import acorr_ljungbox

lb_test = acorr_ljungbox(model.resid(), lags=[10])
print(f'Ljung-Box p-value: {lb_test.iloc[0, 1]}') # p-value > 0.05 - остатки случайны

Ljung-Box p-value: 0.9844364560965213
```

5. Дайте прогноз на 10 месяцев вперед.

```
In [30]: model.predict(int(365/12 * 10))
Out[30]: 2025-03-04
                        5.16
          2025-03-05
                        5.16
          2025-03-06
                        5.16
          2025-03-07
                        5.16
          2025-03-10
                        5.16
          2026-04-27
                        5.16
          2026-04-28
                        5.16
          2026-04-29
                        5.16
          2026-04-30
                        5.16
          2026-05-01
                        5.16
          Freq: B, Length: 304, dtype: float64
```