

Page 1 of 66

EMC TEST REPORT

Report No.: 161200418TWN-001

Model No.: A001

Issued Date: Feb. 17, 2017

Applicant: Tetrascience Inc.

Harvard Innovation Launch lab 114 Western Ave., Alston,

MA, 02134 USA

Test Method/ Standard: 47 CFR FCC Part 15.247 & ANSI C63.10 2013

KDB 558074 D01 v03r05 KDB 662911 D01 v02r01

Registration No.: 93910

Test By: Intertek Testing Services Taiwan Ltd.,

Hsinchu Laboratory

No. 11, Lane 275, Ko-Nan 1 Street, Chia-Tung Li,

Shiang-Shan District, Hsinchu City, Taiwan

It may be duplicated completely for legal use with the allowance of the applicant. It shall not be reproduced except in full, without the written approval of Intertek Laboratory. The test result(s) in this report only applies to the tested sample(s).

The test report was prepared by:

Sunny Liu/Senior Officer

These measurements were taken by:

Maxy You/ Engineer

The test report was reviewed by:

Name Jimmy Yang
Title Senior Engineer

Testing Laboratory

Page 2 of 66

Revision History

Report No.	Issue Date	Revision Summary
161200418TWN-001	Feb. 17, 2017	Original report

Table of Contents

1. S	Summary of Test Data	5
	General Information	
2	2.1 Identification of the EUT	6
2	2.2 Adapter information	6
2	2.3 Antenna description	6
2	2.4 Peripherals equipment	7
2	2.5 Operation mode	7
2	2.6 Applied test modes and channels	8
2	2.7 Power setting of test software	9
3. N	Minimum 6 dB Bandwidth	12
3	3.1 Operating environment	12
3	3.2 Limit for minimum 6dB bandwidth	12
3	3.3 Measuring instrument setting	12
3	3.4 Test procedure	12
3	3.5 Test diagram	13
3	3.6 Test results	13
4. N	Maximum Peak Conducted Output Power	19
4	1.1 Operating environment	19
4	1.2 Limit for maximum peak conducted output power	19
4	1.3 Measuring instrument setting	19
4	1.4 Test procedure	19
4	1.5 Test diagram	19
4	4.6 Test result	20
5. I	Power Spectral Density	21
5	5.1 Operating environment	21
5	5.2 Limit for power spectrum density	21
5	5.3 Measuring instrument setting	21
5	5.4 Test procedure	22
5	5.5 Test diagram	22
5	5.6 Test results	22
6. I	Emissions In Non-Restricted Frequency Bands	28
6	5.1 Operating environment	28
6	5.2 Limit for emissions in non-restricted frequency bands	28
6	5.3 Measuring instruments setting	28
6	5.4 Test procedure	29

	6.5 Test diagram	29
	6.6 Test results	29
7.	. Emissions In Restricted Frequency Bands (Radiated emission measurements)	39
	7.1 Operating environment	
	7.2 Limit for emission in restricted frequency bands (Radiated emission measurement)	39
	7.3 Measuring instrument setting	40
	7.4 Test procedure	41
	7.5 Test configuration	42
	7.5.1 Radiated emission from 9kHz to 30MHz uses Loop Antenna:	42
	7.5.2 Radiated emission below 1GHz using Bilog Antenna	43
	7.5.3 Radiated emission above 1GHz using Horn Antenna	43
	7.6 Test result	44
	7.6.1 Measurement results: frequencies 9kHz to 30MHz	44
	7.6.2 Measurement results: frequencies below 1 GHz	45
	7.6.3 Measurement results: frequency above 1GHz to 25GHz	46
3.	. Emission On Band Edge	49
	8.1 Operating environment	
	8.2 Measuring instrument setting	49
	8.3 Test procedure	49
	8.4 Test results	50
).	. AC Power Line Conducted Emission	60
	9.1 Operating environment	60

9.2 Limit for AC power line conducted emission609.3 Measuring instrument setting609.4 Test procedure619.5 Test diagram619.6 Test results62

Intertek

Page 5 of 66

1. Summary of Test Data

Test Requirement	Applicable Rule (Section 15.247)	Result
Minimum 6 dB Bandwidth	15.247(a)(2)	Pass
Maximum Peak Conducted Output Power	15.247(b)(3)	Pass
Power Spectral Density	15.247(e)	Pass
Emissions In Non-Restricted Frequency Bands	15.247(d)	Pass
Emissions In Restricted Frequency Bands (Radiated emission measurements)	15.247(d), 15.205, 15.209	Pass
Emission On The Band Edge	15.247(d), 15.205	Pass
AC Power Line Conducted Emission	15.207	Pass
Antenna Requirement	15.203	Pass

Page 6 of 66

2. General Information

2.1 Identification of the EUT

Product: TetraScience Link

Model No: A001

Operating Frequency: 2412 MHz ~ 2462 MHz

Channel Number: 11 channels

Frequency of Each Channel: $2412+5 \text{ k}, \text{ k}=0 \sim 10$

Access scheme: DSSS, OFDM

Rated Power: DC 5 V from adapter

Power Cord: N/A

Sample Received: Dec. 30, 2016

Sample condition: Workable

Test Date(s): Feb. 06, 2017 ~ Feb. 10, 2017

Note 1: The test report only allows to be revised within three years from its original issued date unless further standard or the requirement was noticed.

Note 2: When determining the test conclusion, the Measurement Uncertainty of test has been considered.

Note 3: Except where explicitly agreed in writing, all work and services performed by Intertek is subject to our standard Terms and Conditions which can be obtained at our website: http://www.intertek-twn.com/terms/. Intertek's responsibility and liability are limited to the terms and conditions of the agreement.

This report is made solely on the basis of your instructions and / or information and materials supplied by you and provide no warranty on the tested sample(s) be truly representative of the sample source. The report is not intended to be a recommendation for any particular course of action, you are responsible for acting as you see fit on the basis of the report results. Intertek is under no obligation to refer to or report upon any facts or circumstances which are outside the specific instructions received and accepts no responsibility to any parties whatsoever, following the issue of the report, for any matters arising outside the agreed scope of the works. This report does not discharge or release you from your legal obligations and duties to any other person. You are the only one authorized to permit copying or distribution of this report (and then only in its entirety). Any such third parties to whom this report may be circulated rely on the content of the report solely at their own risk.

2.2 Adapter information

The EUT will be supplied with a power supply from below list:

No.	Brand	Model no.	Specification
Adapter 1	PHIHONG	PCS15R-050	I/P: 100-240 Vac, 50/60 Hz, 0.5 A O/P: 5.0 Vdc, 3.0 A

2.3 Antenna description

The antenna is affixed to the EUT using a unique connector, which allows for replacement of a broken antenna, but DOES NOT use a standard antenna jack or electrical connector.

Antenna Gain: 1.5 dBi

Antenna Type: Dipole Antenna Connector Type: RP-SMA type

2.4 Peripherals equipment

Peripherals	Brand	Model No.	Serial No.	Description of Data Cable
Notebook PC	DELL	Latitude D610	1YWZK1S	N/A

2.5 Operation mode

TX-MODE is based on the program "TeraTerm" and the program can select different frequency and modulation.

With individual verifying, the maximum output power was found out 1 Mbps data rate for 802.11b mode, 6 Mbps data rate for 802.11g mode, MCS0 data rate for 802.11n HT 20 mode.

The final tests were executed under these conditions recorded in this report individually.

Please refer the details below:

802.11b ch6 chain0		802.11g ch6 chain0		802.11n HT20 ch6 chain0	
Data rate (Mbps)	AV (dBm)	Data rate (Mbps)	AV (dBm)	Data rate (Mbps)	AV (dBm)
1	0.58	6	1.30	MCS0	4.48
2	0.51	9	1.25	MCS1	4.42
5.5	0.50	12	1.22	MCS2	4.40
11	0.44	18	1.20	MCS3	4.37
		24	1.20	MCS4	4.37
		36	1.17	MCS5	4.36
		48	1.16	MCS6	4.31
		54	1.12	MCS7	4.30

Intertek

Page 8 of 66

2.6 Applied test modes and channels

Test items	Mode	Data Rate (Mbps)	Channel	Antenna	
	802.11 b	1	1, 6, 11	Chain0	
Minimum 6 dB Bandwidth	802.11 g	6	1, 6, 11	Chain0	
	802.11 n (HT20)	6.5	1, 6, 11	Chain0	
Maximum maak aandustad	802.11 b	1	1, 6, 11	Chain0	
Maximum peak conducted	802.11 g	6	1, 6, 11	Chain0	
output power	802.11 n (HT20)	6.5	1, 6, 11	Chain0	
	802.11 b	1	1, 6, 11	Chain0	
Power Spectral Density	802.11 g	6	1, 6, 11	Chain0	
	802.11 n (HT20)	6.5	1, 6, 11	Chain0	
DE Antonno Conducted	802.11 b	1	1, 6, 11	Chain0	
RF Antenna Conducted	802.11 g	6	1, 6, 11	Chain0	
Spurious	802.11 n (HT20)	6.5	1, 6, 11	Chain0	
Radiated spurious Emission 9kHz~1GHz	worst Case(802.11n Ch6)				
D. F. d. 1 Commission Francisco	802.11 b	1	1, 6, 11	Chain0	
Radiated Spurious Emission 10GHz~10th Harmonic	802.11 g	6	1, 6, 11	Chain0	
10GHZ~10th Harmonic	802.11 n (HT20)	6.5	1, 6, 11	Chain0	
	802.11 b	1	1, 6, 11	Chain0	
Restricted-Band Band edge	802.11 g	6	1, 6, 11	Chain0	
	802.11 n (HT20)	6.5	1, 6, 11	Chain0	
AC Power Line Conducted Emission	Normal Link				

Page 9 of 66

2.7 Power setting of test software

Channels & power setting software provided by the client was used to change the operating channels as well as the output power level and is going to be installed in the final end product.

Mode	Channel	Frequency	Power setting
902 111	1	2412	32
802.11b	6	2437	32
(chain0)	11	2462	32
802.11g (chain0)	1	2412	32
	6	2437	32
	11	2462	32
802.11n	1	2412	32
	6	2437	32
(HT20)	11	2462	32

Note: The EUT was programmed to be in continuously transmitting mode and the transmit duty cycle is not less than 98%.

Mode	Channel	Frequency (MHz)	Data rate	Signal on time(s)	Total signal transmit time(s)	Duty cycle	Duty Cycle factor
802.11b	6	2437	1	1	1	1.000	0.000
802.11g	6	2437	6	1	1	1.000	0.000
802.11n (HT20)	6	2437	6.5	1	1	1.000	0.000

Chain0: Duty cycle @ 802.11b mode Ch 6

Chain0: Duty cycle @ 802.11g mode Ch 6

Chain0: Duty cycle @ 802.11n(HT20) mode Ch 6

eport No.: 161200418TWN-001 Page 12 of 66

3. Minimum 6 dB Bandwidth

3.1 Operating environment

Temperature:	25	$^{\circ}\!\mathbb{C}$	
Relative Humidity:	50	%	
Atmospheric Pressure	1008	hPa	
D 1	15.247(a)(2)		
Requirement & Test method	KDB 558074 D01 v03r05		

3.2 Limit for minimum 6dB bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.3 Measuring instrument setting

Spectrum analyzer settings			
Spectrum Analyzer function	Setting		
Detector	Peak		
RBW	100kHz		
VBW	≥3 x RBW		
Sweep	Auto couple		
Trace	Allow the trace to stabilize.		
Smon	Between two times and five times the		
Span	occupied bandwidth		
Attenuation	Auto		

3.4 Test procedure

- 1. The transmitter output was connected to the spectrum analyzer.
- 2. Test was performed in accordance with clause 8.1 option1 of KDB 558074 D01
- 3. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

Page 13 of 66

3.5 Test diagram

Spectrum Analyzer

3.6 Test results

Single TX

Mode	Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Limit (MHz)
002 111	1	2412	8.643	< 0.5
802.11b	6	2437	9.020	< 0.5
(chain0)	11	2462	9.045	< 0.5
902.11~	1	2412	16.314	< 0.5
802.11g	6	2437	16.372	< 0.5
(chain0)	11	2462	16.075	< 0.5
902 11 _m (HT20)	1	2412	17.603	< 0.5
802.11n(HT20) (chain0)	6	2437	17.668	< 0.5
	11	2462	17.628	< 0.5

Chain0: 6dB Bandwidth @ 802.11b mode Ch 1

Chain0: 6dB Bandwidth @ 802.11b mode ch6

Chain0: 6dB Bandwidth @ 802.11b mode ch11

Chain0: 6dB Bandwidth @ 802.11g mode ch1

Chain0: 6dB Bandwidth @ 802.11g mode ch6

Chain0: 6dB Bandwidth @ 802.11g mode ch11

Chain0: 6dB Bandwidth @ 802.11n(HT20) mode ch1

Chain0: 6dB Bandwidth @ 802.11n(HT20) mode ch6

Page 18 of 66

Chain0: 6dB Bandwidth @ 802.11n(HT20) mode ch11

4. Maximum Peak Conducted Output Power

4.1 Operating environment

Temperature:	25	$^{\circ}\!\mathbb{C}$	
Relative Humidity:	50	%	
Atmospheric Pressure	1008	hPa	
Degrinament & Test method	15.247(b)(3)		
Requirement & Test method	KDB 558074 D01 v03r05		

4.2 Limit for maximum peak conducted output power

For systems using digital modulation in the 2400-2483.5 MHz: 1 Watt (30dBm)

4.3 Measuring instrument setting

Power meter				
Power meter	Setting			
Bandwidth	65MHz bandwidth is greater than the EUT			
Bandwidth	emission bandwidth			
Detector	Peak & Average			

4.4 Test procedure

Test procedures refer to clause 9.1.2 peak power meter method and clause 9.2.3.2 measurement using a gated RF average power meter of KDB 558074 D01.

4.5 Test diagram

Page 20 of 66

4.6 Test result

Single TX

Mode	Channel	Frequency (MHz)	Data Rate (Mbps)	Output Power (AV) (dBm)	Total Power (AV) (mW)	Maximum power (PK) (dBm)	Maximum power (PK) (mW)	Limit (dBm)	Margin (dB)
902 115	1	2412		0.47	1.11	3.56	2.27	30	-26.44
802.11b	6	2437	1	0.58	1.14	4.79	3.01	30	-25.21
(chain0)	11	2462		0.08	1.02	3.01	2.00	30	-26.99
902 11-	1	2412		4.34	2.72	13.22	20.99	30	-16.78
802.11g	6	2437	6	1.3	1.35	12.21	16.63	30	-17.79
(chain0)	11	2462		2.41	1.74	13.51	22.44	30	-16.49
802.11n(HT20) - (chain0)	1	2412	6.5	4.25	2.66	13.28	21.28	30	-16.72
	6	2437		4.48	2.81	13.34	21.58	30	-16.66
	11	2462		3.24	2.11	14.79	30.13	30	-15.21

Page 21 of 66

5. Power Spectral Density

5.1 Operating environment

Temperature:	25	$^{\circ}\!\mathbb{C}$	
Relative Humidity:	50	%	
Atmospheric Pressure	1008	hPa	
De quinement % Test method	15.247(e)		
Requirement & Test method	KDB 558074 D01 v03r05		

5.2 Limit for power spectrum density

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission

5.3 Measuring instrument setting

Spectrum analyzer settings				
Spectrum Analyzer function	Setting			
Detector	Peak			
RBW	≥3 kHz			
VBW	≥3 x RBW			
Sweep	Auto couple			
Trace	Max hold			
Span	1.5 times x 6dB bandwidth			
Attenuation	Auto			

Intertek

5.4 Test procedure

- 1. Test procedure refer to clause 10.2 method PKPSD (peak PSD) of KDB 558074 D01 and clause E) 2) b) measure and sum spectral maxima across the outputs.
- 2. Using the maximum conducted output power in the fundamental emission demonstrates compliance. The EUT must be configured to transmit continuously at full power over the measurement duration.
- 3. Use the peak marker function to determine the maximum amplitude level within the RBW.

5.5 Test diagram

Spectrum Analyzer

5.6 Test results

Mode	Channel	Frequency	RBW	PSD in	PSD in	3kHz	Limit	Margin
Mode	Channel	(MHz)	factor	10 kHz	(dBm)	(mW)	(dBm)	(dB)
000 111	1	2412	5.229	-18.397	-23.63	0.004	8	-31.63
802.11b	6	2437	5.229	-19.014	-24.24	0.004	8	-32.24
(chain0)	11	2462	5.229	-18.094	-23.32	0.005	8	-31.32
002.11	1	2412	5.229	-16.238	-21.47	0.007	8	-29.47
802.11g	6	2437	5.229	-17.38	-22.61	0.005	8	-30.61
(chain0)	11	2462	5.229	-17.447	-22.68	0.005	8	-30.68
802.11n	1	2412	5.229	-17.346	-22.57	0.006	8	-30.57
(HT20)	6	2437	5.229	-17.326	-22.55	0.006	8	-30.55
(chain0)	11	2462	5.229	-17.102	-22.33	0.006	8	-30.33

Remark: RBW Correction: 10*log(10kHz/3kHz)

Chain0: Power Spectral Density @ 802.11b mode Ch 1

Chain0: Power Spectral Density @ 802.11b mode ch6

Chain0: Power Spectral Density @ 802.11b mode ch11

Chain 0: Power Spectral Density @ 802.11g mode ch1

Chain0: Power Spectral Density @ 802.11g mode ch6

Chain 0: Power Spectral Density @ 802.11g mode ch11

Chain0: Power Spectral Density @ 802.11n(HT20) mode ch1

Chain0: Power Spectral Density @ 802.11n(HT20) mode ch6

Page 27 of 66

Chain0: Power Spectral Density @ 802.11n(HT20) mode ch11

Intertek

Page 28 of 66

6. Emissions In Non-Restricted Frequency Bands

6.1 Operating environment

Temperature:	25	$^{\circ}\!\mathbb{C}$
Relative Humidity:	50	%
Atmospheric Pressure	1008	hPa
Requirement	15.247(d	.)
Channel number	Low · Middle	· High

6.2 Limit for emissions in non-restricted frequency bands

The peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz

6.3 Measuring instruments setting

Reference level measurement

Spectrum analyzer settings				
Spectrum Analyzer function	Setting			
Detector	Peak			
RBW	≥100 kHz			
VBW	≥3 x RBW			
Sweep	Auto couple			
Trace	Max hold			
Span	≥1.5 time 6dB bandwidth			
Attenuation	Auto			

Intertek FCC ID: 2AHL9-LNK001 Page 29 of 66

Emission level measurement

Spectrum analyzer settings				
Spectrum Analyzer function	Setting			
Detector	Peak			
RBW	≥100 kHz			
VBW	≥3 x RBW			
Sweep	Auto couple			
Trace	Max hold			
Attenuation	Auto			

6.4 Test procedure

- 1. The procedure was used in antenna-port conducted and connected to the spectrum analyzer.
- 2. Set instrument center frequency to center frequency
- 3. Use the parameter configured in clause 6.3 to measure
- 4. Use the peak marker function to determine the maximum amplitude level.

6.5 Test diagram

Spectrum Analyzer

6.6 Test results

Chain0: Conducted Spurious @ 802.11b mode Ch 1

Chain0: Conducted Spurious @ 802.11b mode Ch 1

Chain0: Conducted Spurious @ 802.11b mode ch6

Chain0: Conducted Spurious @ 802.11b mode ch6

Chain0: Conducted Spurious @ 802.11b mode ch11

Chain0: Conducted Spurious @ 802.11b mode ch11

Chain0: Conducted Spurious @ 802.11g mode ch1

Chain0: Conducted Spurious @ 802.11g mode ch1

Chain0: Conducted Spurious @ 802.11g mode ch6

Chain0: Conducted Spurious @ 802.11g mode ch6

Chain0: Conducted Spurious @ 802.11g mode ch11

Chain0: Conducted Spurious @ 802.11g mode ch11

Chain0: Conducted Spurious @ 802.11n(HT20) mode ch1

Chain0: Conducted Spurious @ 802.11n(HT20) mode ch1

Chain0: Conducted Spurious @ 802.11n(HT20) mode ch6

Chain0: Conducted Spurious @ 802.11n(HT20) mode ch6

Chain0: Conducted Spurious @ 802.11n(HT20) mode ch11

Chain0: Conducted Spurious @ 802.11n(HT20) mode ch11

200418TWN-001 Page 39 of 66

7. Emissions In Restricted Frequency Bands (Radiated emission measurements)

7.1 Operating environment

Temperature:	25	$^{\circ}\!\mathbb{C}$		
Relative Humidity:	50	%		
Atmospheric Pressure	1008	hPa		
Deguinement	15.247(d), 15.205,			
Requirement	15.209			

7.2 Limit for emission in restricted frequency bands (Radiated emission measurement)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement distance (meters)		
0.009~0.490	2400/F(kHz)	300		
0.490~1.705	2400/F(kHz)	30		
1.705~30	30	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		

Remark:

- 1. In the above table, the tighter limit applies at the band edges.
- 2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system

Intertek

eport No.: 161200418TWN-001 Page 40 of 66

7.3 Measuring instrument setting

Below 1GHz measurement

Receiver settings							
Receiver function	Setting						
Detector	QP						
	9-150 kHz ; 200-300 Hz						
RBW	0.15-30 MHz; 9-10 kHz						
	30-1000 MHz; 100-120 kHz						
VBW	≥3 x RBW						
Sweep	Auto couple						
Attenuation	Auto						

Above 1GHz measurement

Spectrum analyzer settings							
Spectrum Analyzer function	Setting						
Detector	Peak						
RBW	1MHz						
VBW	3MHz for Peak and Average						
Sweep	Auto couple						
Start Frequency	1GHz						
Stop Frequency	Tenth harmonic						
Attenuation	Auto						

Page 41 of 66

7.4 Test procedure

1. Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 1.5 meter above ground. The center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.

- 2. Power on the EUT and all the companion devices. The turntable was rotated by 360 degree to find the position of the maximum emission level.
- 3. The height of the receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of the both horizontal and vertical polarization
- 4. If find the frequencies above the limit or below within 3dB, the antenna tower was scan (from 1m to 4m) and then the turntable was rotated to find the maximum reading.
- 5. Set the test-receiver system to peak or CISPR quasi-peak detector with specified bandwidth under maximum hold mode.
- 6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak and average reading Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.
- 7. If the emissions level of the EUT in peak mode was 3dB lower than the average limit specified then testing will be stopped and peak values of the EUT will be reported. Otherwise, the emissions which do not have 3dB margin will be measured using the quasi-peak method for below 1GHz.
- 8. For testing above 1GHz, The emissions level of the EUT in peak mode was lower than average limit, then testing will be stopped and peak values of the EUT will be reported, otherwise, the emission will be measured in average mode again and reported.
- 9. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be quasi-peak measured by receiver.

Report No.: 161200418TWN-001 Page 42 of 66

7.5 Test configuration

Intertek

7.5.1 Radiated emission from 9kHz to 30MHz uses Loop Antenna:

Intertek

eport No.: 161200418TWN-001 Page 43 of 66

7.5.2 Radiated emission below 1GHz using Bilog Antenna

7.5.3 Radiated emission above 1GHz using Horn Antenna

Page 44 of 66

7.6 Test result

7.6.1 Measurement results: frequencies 9kHz to 30MHz

The test was performed on EUT under 802.11b/g/n continuously transmitting mode. The worst case occurred at 802.11 n HT 20 ch 6

EUT : A001

Worst Case : 802.11n HT 20 ch 6

Polarity	Frequency	Detection	Factor	Reading	Value	Limit @ 3m	Tolerance
(circle)	(MHz)	Value	(dB/m)	(dBµV)	(dBµV/m)	(dBµV/m)	(dB)
Plane	0.01	QP	20.97	52.67	73.64	127.60	-53.96
Plane	0.04	QP	20.85	44.30	65.14	115.56	-50.42
Plane	0.06	QP	20.82	38.48	59.30	112.04	-52.74
Plane	0.09	QP	20.78	31.33	52.11	108.52	-56.41
Plane	0.15	QP	20.77	25.03	45.80	104.08	-58.28
Plane	1.34	QP	21.33	19.33	40.66	65.06	-24.40
Plane	11.02	QP	22.31	14.66	36.97	69.54	-32.57
Plane	19.25	QP	22.20	15.32	37.52	69.54	-32.02

Remark: Corr. Factor = Antenna Factor + Cable Loss - PreAmplifier Gain

Page 45 of 66

7.6.2 Measurement results: frequencies below 1 GHz

The test was performed on EUT under 802.11b/g/n continuously transmitting mode. The worst case occurred at 802.11 n HT 20 ch 6 $\,$.

EUT : A001

Worst Case : 802.11n HT 20 ch 6

Antenna	Freq.	Receiver	Corr.	Reading	Corrected	Limit	Margin
Polariz.			Factor		Level	@ 3 m	
(V/H)	(MHz)	Detector	(dB/m)	(dBµV)	(dBµV/m)	(dBµV/m)	(dB)
Vertical	37.76	QP	14.49	10.55	35.95	40.00	-4.05
Vertical	70.74	QP	13.31	18.48	32.27	40.00	-7.73
Vertical	177.44	QP	12.72	19.65	40.58	43.50	-2.92
Vertical	524.70	QP	13.51	16.31	32.21	46.00	-13.79
Vertical	774.96	QP	15.29	11.59	37.83	46.00	-8.17
Vertical	875.84	QP	26.86	6.90	40.66	46.00	-5.34
Horizontal	179.38	QP	13.97	16.71	38.84	43.50	-4.66
Horizontal	198.78	QP	12.55	20.41	39.23	43.50	-4.27
Horizontal	239.52	QP	13.51	22.16	31.35	46.00	-14.65
Horizontal	291.90	QP	20.87	10.29	27.50	46.00	-18.50
Horizontal	474.26	QP	24.09	7.74	31.83	46.00	-14.17
Horizontal	524.70	QP	26.83	4.88	31.22	46.00	-14.78

Remark: Corr. Factor = Antenna Factor + Cable Loss

Page 46 of 66

7.6.3 Measurement results: frequency above 1GHz to 25GHz

EUT : A001 Test mode : TX Mode

	Frequency	Spectrum	Ant.	Preamp.	Correction	Reading	Corrected	Limit	Margin
Mode	11111	Analyzer	Pol.	Gain	Factor	9	Reading	@ 3 m	
	(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBµV)	(dBµV/m)	<u> </u>	(dB)
	3180	PK	V	39.87	-3.75	43.79	40.04	74.00	-33.96
	4050	PK	V	40.42	-1.48	43.29	41.81	74.00	-32.19
	4824	PK	V	40.10	-0.04	43.09	43.05	74.00	-30.95
000 111	7770	PK	V	37.58	10.15	39.34	49.49	74.00	-24.51
802.11b	3180	PK	Н	39.87	-3.75	44.70	40.95	74.00	-33.05
Ch_1	3450	PK	Н	40.01	-3.96	43.44	39.48	74.00	-34.52
	4824	PK	Н	40.10	-0.04	43.42	43.38	74.00	-30.62
	7350	PK	Н	37.99	8.54	39.93	48.47	74.00	-25.53
	8280	PK	Н	37.30	10.95	38.51	49.46	74.00	-24.54
	3180	PK	V	39.87	-3.75	45.16	41.41	74.00	-32.59
	4874	PK	V	40.00	0.13	43.36	43.49	74.00	-30.51
	7311	PK	V	38.02	8.42	41.23	49.65	74.00	-24.35
002 111	8040	PK	V	37.33	11.09	39.48	50.57	74.00	-23.43
802.11b	3270	PK	Н	39.92	-3.82	42.85	39.03	74.00	-34.97
Ch_6	4874	PK	Н	40.00	0.13	42.79	42.92	74.00	-31.08
	5160	PK	Н	39.27	1.56	42.46	44.02	74.00	-29.98
	7311	PK	Н	38.02	8.42	40.70	49.12	74.00	-24.88
	9540	PK	Н	38.04	11.45	41.08	52.53	74.00	-21.47
	3180	PK	V	39.87	-3.75	46.51	42.76	74.00	-31.24
	3600	PK	V	40.11	-3.50	42.90	39.40	74.00	-34.60
	4924	PK	V	39.91	0.30	43.07	43.37	74.00	-30.63
	5460	PK	V	38.33	3.45	40.87	44.32	74.00	-29.68
802.11b Ch_11	7020	PK	V	38.26	7.52	39.96	47.48	74.00	-26.52
	3090	PK	Н	39.82	-3.68	42.72	39.04	74.00	-34.96
	4140	PK	Н	40.48	-1.40	42.83	41.43	74.00	-32.57
	4924	PK	Н	39.91	0.30	43.19	43.49	74.00	-30.51
	7800	PK	Н	37.55	10.27	39.26	49.53	74.00	-24.47
	8190	PK	Н	37.31	11.00	38.73	49.73	74.00	-24.27

Remark: Correction Factor = Antenna Factor + Cable Loss + High Pass Filter Loss -

Pre_Amplifier Gain

Page 47 of 66

EUT : A001 Test mode : TX Mode

	Frequency	Spectrum	Ant.	Preamp.	Correction	Reading	Corrected	Limit	Margin
Mode	1 0	Analyzer	Pol.	Gain	Factor	0	Reading	@ 3 m	8
	(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBµV)	(dBµV/m)	(dBµV/m)	(dB)
	3180	PK	V	39.87	-3.75	46.62	42.87	74.00	-31.13
	4824	PK	V	40.10	-0.04	44.13	44.09	74.00	-29.91
	6540	PK	V	38.31	6.47	40.00	46.47	74.00	-27.53
	7350	PK	V	37.99	8.54	40.48	49.02	74.00	-24.98
802.11g	8280	PK	V	37.30	10.95	38.91	49.86	74.00	-24.14
Ch_1	3180	PK	Н	39.87	-3.75	44.13	40.38	74.00	-33.62
	4140	PK	Н	40.48	-1.40	43.33	41.93	74.00	-32.07
	4824	PK	Н	40.10	-0.04	43.23	43.19	74.00	-30.81
	6720	PK	Н	38.30	6.86	40.05	46.91	74.00	-27.09
	7740	PK	Н	37.61	10.02	39.44	49.46	74.00	-24.54
	4290	PK	V	40.57	-1.28	43.94	42.66	74.00	-31.34
	4874	PK	V	40.00	0.13	43.16	43.29	74.00	-30.71
	5130	PK	V	39.36	1.37	42.61	43.98	74.00	-30.02
802.11g	8130	PK	V	37.32	11.04	38.44	49.48	74.00	-24.52
Ch_6	3870	PK	Н	40.30	-2.16	41.69	39.53	74.00	-34.47
	4874	PK	Н	40.00	0.13	43.98	44.11	74.00	-29.89
	5160	PK	Н	39.27	1.56	42.66	44.22	74.00	-29.78
	7311	PK	Н	38.02	8.42	39.68	48.10	74.00	-25.90
	3180	PK	V	39.87	-3.75	46.48	42.73	74.00	-31.27
	4350	PK	V	40.61	-1.23	43.46	42.23	74.00	-31.77
	4924	PK	V	39.91	0.30	42.19	42.49	74.00	-31.51
	7830	PK	V	37.52	10.40	39.59	49.99	74.00	-24.01
802.11g	8280	PK	V	37.30	10.95	38.53	49.48	74.00	-24.52
Ch_11	3150	PK	Н	39.85	-3.73	43.23	39.50	74.00	-34.50
	4924	PK	Н	39.91	0.30	42.44	42.74	74.00	-31.26
	6000	PK	Н	38.23	3.94	41.31	45.25	74.00	-28.75
	6840	PK	Н	38.29	7.12	39.90	47.02	74.00	-26.98
	7350	PK	Н	37.99	8.54	41.23	49.77	74.00	-24.23

Remark: Correction Factor = Antenna Factor + Cable Loss + High Pass Filter Loss -

Pre_Amplifier Gain

Page 48 of 66

EUT : A001 Test mode : TX Mode

	Frequency	Spectrum	Ant.	Preamp.	Correction	Reading	Corrected	Limit	Margin
Mode	1 3	Analyzer	Pol.	Gain	Factor	8	Reading	@ 3 m	
	(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBµV)	(dBµV/m)	O .	(dB)
	3180	PK	V	39.87	-3.75	44.70	40.95	74.00	-33.05
	4200	PK	V	40.51	-1.35	43.07	41.72	74.00	-32.28
	4824	PK	V	40.10	-0.04	42.60	42.56	74.00	-31.44
	7350	PK	V	37.99	8.54	40.06	48.60	74.00	-25.40
802.11n	8220	PK	V	37.30	10.99	38.61	49.60	74.00	-24.40
(HT 20)	3060	PK	Н	39.80	-3.66	43.80	40.14	74.00	-33.86
Ch_1	3510	PK	Н	40.05	-3.95	43.58	39.63	74.00	-34.37
	4824	PK	Н	40.10	-0.04	42.50	42.46	74.00	-31.54
	7350	PK	Н	37.99	8.54	39.96	48.50	74.00	-25.50
	7980	PK	Н	37.36	11.03	38.83	49.86	74.00	-24.14
	3180	PK	V	39.87	-3.75	45.02	41.27	74.00	-32.73
	4350	PK	V	40.61	-1.23	42.84	41.61	74.00	-32.39
	4874	PK	V	40.00	0.13	43.54	43.67	74.00	-30.33
002.11	5550	PK	V	38.20	3.73	41.19	44.92	74.00	-29.08
802.11n	7650	PK	V	37.70	9.64	39.89	49.53	74.00	-24.47
(HT 20)	3090	PK	Н	39.82	-3.68	43.95	40.27	74.00	-33.73
Ch_6	4874	PK	Н	40.00	0.13	42.83	42.96	74.00	-31.04
	5520	PK	Н	38.20	3.71	40.26	43.97	74.00	-30.03
	6450	PK	Н	38.30	6.14	40.16	46.30	74.00	-27.70
	8190	PK	Н	37.31	11.00	38.60	49.60	74.00	-24.40
	3180	PK	V	39.87	-3.75	44.32	40.57	74.00	-33.43
	4380	PK	V	40.63	-1.20	44.01	42.81	74.00	-31.19
	4924	PK	V	39.91	0.30	42.83	43.13	74.00	-30.87
902 11	6810	PK	V	38.29	7.05	40.00	47.05	74.00	-26.95
802.11n (HT 20) Ch_11	8160	PK	V	37.31	11.02	38.96	49.98	74.00	-24.02
	3180	PK	Н	39.87	-3.75	43.39	39.64	74.00	-34.36
	4924	PK	Н	39.91	0.30	43.04	43.34	74.00	-30.66
	5610	PK	Н	38.21	3.75	40.96	44.71	74.00	-29.29
	6720	PK	Н	38.30	6.86	39.68	46.54	74.00	-27.46
	7710	PK	Н	37.64	9.89	39.12	49.01	74.00	-24.99

Remark: Correction Factor = Antenna Factor + Cable Loss + High Pass Filter Loss -

Pre_Amplifier Gain

Page 49 of 66

8. Emission On Band Edge

8.1 Operating environment

Temperature:	25	$^{\circ}\!\mathbb{C}$
Relative Humidity:	50	%
Atmospheric Pressure	1008	hPa
Requirement	15.247(d), 15	5.205

8.2 Measuring instrument setting

Spectrum analyzer settings							
Spectrum Analyzer function	Setting						
Detector	Peak						
RBW	1MHz						
VBW	3MHz for Peak and Average						
Sweep	Auto couple						
Doctrict hands	2310~2390MHz						
Restrict bands	2483.5 ~2500MHz						
Attenuation	Auto						

8.3 Test procedure

The test procedure is the same as clause 7.4

Page 50 of 66

8.4 Test results

EUT : A001 Test mode : TX Mode

	Freq.	Spectrum	Ant.	Correction	Reading	Corrected	Limit	Margin	Restricted
Mode		Analyzer	Pol.	Factor		Reading	@ 3 m		band
	(MHz)	Detector	(H/V)	(dB/m)	(dBµV)	(dBµV/m)	(dBµV/m)	(dB)	(MHz)
	2385.20	PK	V	33.83	22.91	56.74	74	-17.26	2210 2200
802.11b	2388.31	AV	V	33.84	10.25	44.09	54	-9.91	2310~2390
Chain0	2485.48	PK	V	34.31	21.51	55.82	74	-18.18	2492 5 2500
	2500.15	AV	V	34.38	11.55	45.93	54	-8.07	2483.5~2500
	2378.89	PK	V	33.80	31.43	65.23	74	-8.77	2210, 2200
802.11g	2389.27	AV	V	33.85	12.40	46.25	54	-7.75	2310~2390
Chain0	2483.50	PK	V	34.30	35.33	69.63	74	-4.37	2492 5 2500
	2483.50	AV	V	34.30	10.42	44.72	54	-9.28	2483.5~2500
	2385.64	PK	V	33.83	24.47	58.30	74	-15.70	2210, 2200
802.11n	2388.75	AV	V	33.85	12.57	46.42	54	-7.58	2310~2390
(HT20)	2503.38	PK	V	34.38	28.20	62.58	74	-11.42	2492 5 2500
	2508.69	AV	V	34.39	11.98	46.37	54	-7.63	2483.5~2500

Chain0: Restricted-Band Band edge @ 802.11b mode Ch 1 Peak

Date: 8.FEB.2017 14:07:40

Chain0: Restricted-Band Band edge @ 802.11b mode Ch 1 Average

Date: 8.FEB.2017 14:06:15

Chain0: Restricted-Band Band edge @ 802.11b mode ch11 Peak

Date: 8.FEB.2017 14:23:50

Chain0: Restricted-Band Band edge @ 802.11b mode ch11 Average

Date: 8.FEB.2017 14:22:40

Report No.: 161200418TWN-001 Page 53 of 66

Chain0: Restricted-Band Band edge @ 802.11g mode ch1 Peak

Date: 8.FEB.2017 13:41:12

Chain0: Restricted-Band Band edge @ 802.11g mode ch1 Average

Date: 8.FEB.2017 13:42:19

Page 54 of 66

Chain0: Restricted-Band Band edge @ 802.11g mode ch11 Peak

Date: 8.FEB.2017 12:09:39

Chain0: Restricted-Band Band edge @ 802.11g mode ch11 Average

Date: 8.FEB.2017 12:10:07

Date: 8.FEB.2017 14:40:29

Chain0: Restricted-Band Band edge @ 802.11n(HT20) mode ch1 Average

Date: 8.FEB.2017 14:38:16

Page 56 of 66

Chain0: Restricted-Band Band edge @ 802.11n(HT20) mode ch11 Peak

Date: 8.FEB.2017 14:54:06

Chain0: Restricted-Band Band edge @ 802.11n(HT20) mode ch11 Average

Date: 8.FEB.2017 14:55:21

Chain0: Authorized-Band Band edge @ 802.11b mode Ch 1

Chain0: Authorized-Band Band edge @ 802.11b mode ch11

Chain0: Authorized-Band Band edge @ 802.11g mode ch1

Chain0: Authorized-Band Band edge @ 802.11g mode ch11

Chain0: Authorized-Band Band edge @ 802.11n(HT20) mode ch1

Chain0: Authorized-Band Band edge @ 802.11n(HT20) mode ch11

Page 60 of 66

9. AC Power Line Conducted Emission

9.1 Operating environment

Intertek

Temperature:	25	$^{\circ}\!\mathbb{C}$
Relative Humidity:	50	%
Atmospheric Pressure	1008	hPa
Test Voltage	120V, 60H	łz
Requirement 15.207		

9.2 Limit for AC power line conducted emission

Freq.	Conducted Limit (dBuV)		
(MHz)	Q.P.	Ave.	
0.15~0.50	66 – 56*	56 – 46*	
0.50~5.00	56	46	
5.00~30.0	60	50	

9.3 Measuring instrument setting

Receiver settings				
Receiver function	Setting			
Detector	QP			
Start frequency	0.15MHz			
Stop frequency	30MHz			
IF bandwidth	9 kHz			
Attenuation	10dB			

: 161200418TWN-001 Page 61 of 66

9.4 Test procedure

- 1. Configure the EUT according to ANSI C63.10. The EUT or host of EHT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network.
- 3. All the companion devices are connected to the other LISN. The LISN should provide 50Uh/50ohms coupling impedance.
- 4. The frequency range from 150 kHz to 30MHz was searched
- 5. Set the test-receiver system to peak detector and specified bandwidth with maximum hold mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

9.5 Test diagram

Note: The EUT was tested while in normal communication mode.

9.6 Test results

Phase: Live Line Model No.: A001

Test Condition: Normal communication

Frequency	Corr. Factor	Level Qp	Limit Qp	Level AV	Limit Av	$ \text{Marg}; \\ (dB) $	
(MHz)	(dB)	(dBu√)	(dĎū∜)	(dBu∀)	(dBuV)	Qp (Av
0.755	9.80	34.44	56.00	29.99	46.00	-21.56	-16.01
1.367	9.85	23.41	56.00	17.85	46.00	-32.59	-28.15
1.888	9.88	26.50	56.00	22.69	46.00	-29.50	-23.31
2.527	9.90	26.81	56.00	21.71	46.00	-29.19	-24.29
4.224	9.92	28.00	56.00	21.26	46.00	-28.00	-24.74
7.606	9.97	25.07	60.00	18.77	50.00	-34.93	-31.23

Remark:

- 1. Correction Factor (dB)= LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Level (dBuV) Limit (dBuV)

Page 63 of 66

Phase: Neutral Line

Model No.: A001

Test Condition: Normal communication

Frequency	Corr. Level Limit Level Factor Qp Qp AV		Limit Av		Margin (dB)		
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	Qp (Av
0.775	9.83	35.10	56.00	30.81	46.00	-20.90	-15.19
1.043	9.85	24.68	56.00	20.64	46.00	-31.32	-25.36
2.055	9.89	26.26	56.00	21.79	46.00	-29.74	-24.21
3.041	9.91	23.08	56.00	15.49	46.00	-32.92	-30.51
4.292	9.93	24.61	56.00	19.36	46.00	-31.39	-26.64
7.646	9.98	25.04	60.00	20.12	50.00	-34.96	-29.88

Remark:

- 1. Correction Factor (dB)= LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Level (dBuV) Limit (dBuV)

Page 64 of 66

Appendix A: Test equipment list

Equipment	Brand	Model No.	Serial No.	Calibration Date	Next Calibration Date
ESCI EMI Test Receiver	Rohde & Schwarz	ESCI	100018	2016/11/30	2017/11/29
Spectrum Analyzer	Rohde & Schwarz	FSP30	100137	2016/08/16	2017/08/15
Horn Antenna (1-18G)	SHWARZBECK	BBHA 9120 D	9120D-456	2014/08/29	2017/08/27
Horn Antenna (14-42G)	SHWARZBECK	BBHA 9170	BBHA9170159	2014/09/16	2017/09/14
Broadband Antenna	SHWARZBECK	VULB 9168	9168-172	2016/03/22	2017/03/21
Pre-Amplifier	EMC Co.	EMC12635SE	980205	2016/10/08	2017/10/07
Pre-Amplifier	MITEQ	JS4-260040002 7-8A	828825	2016/09/12	2017/09/11
Power Meter	Anritsu	ML2495A	0844001	2016/11/09	2017/11/08
Power Sensor	Anritsu	MA2411B	0738452	2016/11/09	2017/11/08
Signal Analyzer	Agilent	N9030A	MY51380492	2016/09/13	2017/09/12
966-2(A) Cable 9kHz~26.5GHz	SUHNER	SMA / EX 100	N/A	2016/05/05	2017/05/04
966-2(B) Cable 9kHz~26.5GHz	SUHNER	SUCOFLEX 104P	CB0005	2016/05/04	2017/05/03
RF Cable 9kHz~26.5GHz	SUHNER	SUCOFLEX 102	CB0006	2016/05/05	2017/05/04
966-2_3m Semi-Anechoic Chamber	966_2	CEM-966_2	N/A	2016/02/24	2017/02/22
High Pass Filter	Reactel	7HS-3G/18G-S11	N/A	2016/06/03	2017/06/02
Active Loop Antenna	SCHWARZBECK MESS-ELEKTRO NIC	FMZB1519	1519-067	2016/03/03	2017/03/02
Attenuator	PASTERNACK	N/A	PA7001-20	2016/05/06	2017/05/05
Attenuator	EMCI	N/A	AT-N0619	2016/05/06	2017/05/05

Page 65 of 66

Test Equipment/ Test site	Brand	Model No.	Serial No.	Calibration Date	Next Calibration
EMI Receiver	R&S	ESCI	100059	2016/11/21	2017/11/20
Two-Line V-Network	R&S	ENV216	101159	2016/06/02	2017/06/01
Artificial Mains Network (LISN)	SCHAFFNER	MN2050D	1586	2016/05/25	2017/05/24
CON-1 Shielded Room	N/A	N/A	N/A	NCR	NCR
CON-1 Cable	SUHNER	SUCOFLEX-104	26438414	2016/05/05	2017/05/04
Test software	Audix	e3	4.2004-1-12k	NCR	NCR

Note: No Calibration Required (NCR).

Page 66 of 66

Appendix B: Measurement Uncertainty

This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level using a coverage factor of k=2.

Item	Uncertainty
Vertically polarized radiated disturbances from 30MHz~1GHz in a semi-anechoic chamber at a distance of 3m	5.14 dB
Horizontally polarized radiated disturbances from 30MHz~1GHz in a semi-anechoic chamber at a distance of 3m	5.22 dB
Vertically polarized Radiated disturbances from 1GHz~18GHz in a semi-anechoic chamber at a distance of 3m	3.64 dB
Horizontally polarized Radiated disturbances from 1GHz~18GHz in a semi-anechoic chamber at a distance of 3m	3.64 dB
Vertically polarized Radiated disturbances from 18GHz~40GHz in a semi-anechoic chamber at a distance of 3m	2.7 dB
Horizontally polarized Radiated disturbances from 18GHz~40GHz in a semi-anechoic chamber at a distance of 3m	2.7 dB
Radiated disturbances from 9kHz~30MHz in a semi-anechoic chamber at a distance of 3m	3.53 dB
Emission on the Band Edge Test	3.64 dB
Minimum 6 dB Bandwidth	0.85 dB
Maximum Peak Conducted Output Power	0.42 dB
Power Spectral Density	0.85 dB
Emissions In Non-Restricted Frequency Bands	0.85 dB
AC Power Line Conducted Emission	2.47 dB