Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики Кафедра «Прикладная математика»

КУРСОВАЯ РАБОТА ПО ДИСЦИПЛИНЕ «МАТЕМАТИЧЕСКАЯ СТАТИСТИКА»

Выполнил студент группы 3630102/70201

Пестряков Д. Д.

Проверил к. ф.-м. н., доцент

Баженов А. Н.

Санкт-Петербург 2020

Содержание

1		становка задачи	2
	1.1	Подготовка данных	2
	1.2	Расчеты	2
	1.3	Анализ	2
2	Teo	рия	2
3	Pea	лизация	3
4	Рез	ультаты	4
	4.1	Визуализация сигналов и результаты работы алгоритма на всем про-	
		межутке	4
	4.2	Результаты на половине промежутка	5
	4.3	Результаты на четверти промежутка	6
	4.4	Результаты на малом промежутке	8
5	Обо	зуждение	9
6	Прі	ложения	10
C	пис	сок иллюстраций	
	1	Шумы в 20 сигнале из разряда sht38917	3
	2	Извлеченные и стандартизованные сигналы	4
	3	Результат работы на всем промежутке	5
	4	Половина: начало промежутка	5
	5	Половина: конец промежутка	6
	6	Половина: середина промежутка	6
	7	Четверть: начало промежутка	7
	8	Четверть: конец промежутка	7
	9	Четверть: середина промежутка	8
	10	Малый промежуток: начало промежутка	8
	11	Малый промежуток: конец промежутка	9
	12	Малый промежуток: середина промежутка	9

1 Постановка задачи

1.1 Подготовка данных

- Считать данные из файла .sht;
- Выделить шумы;
- Нормализовать сигналы.

1.2 Расчеты

• Выявить подобие сигналов.

1.3 Анализ

Установить границы применимости введенного метода выявления подобия.

2 Теория

Для того, чтобы найти подобие сигналов, в первую очередь следует стандартизировать наши данные - вычесть среднее и поделить на стандартное отклонение. Это поможет нам избежать неправильных вычислений в дальнейшем:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{1}$$

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$
 (2)

$$x_{i}^{'} = \frac{x_{i} - \bar{x}}{\sigma} \tag{3}$$

Будем использовать алгоритм динамической трансформации временной шкалы для измерения "расстояния" между сигналами - степени неподобия. Классический алгоритм имеет квадратичную скорость - $O(N^2)$, поэтому была найдена его аппроксимация - fastdtw, которая работает почти за линейное время. Суть данных алгоритмов в том, чтобы найти позволяющий найти оптимальное соответствие между временными последовательностями. Делается это с помощью динамического программирования. Более подробно описано в оригинальных источниках.

Минусы данного алгоритма - он выдаёт значение из диапазона [0, + inf] и он показывает степень различия. Для решения этой проблемы было решено модифицировать алогоритм - добавив гиперпараметр М. С помощью данного гиперпараметр мы задаём ожидаемо возможное "максимальное" расстояние между сигналами. Тогда результат полученный алгоритмом fastdtw преобразуем следующим образом:

$$dtw_n = \frac{M - dtw}{M} \tag{4}$$

Близкое значение к 1 будет характеризовать максимальное подобие. Отрицательные значения и значения близкие к 0 - будут говорить о минимальном подобии. Нет единого и правильного алгоритма подбора параметра М - его стоит подбирать исходя из длины сигналов, средней поточечной разности сигналов (в случае одинаковой длины) и дополнительной инфорамации о сигналах.

Описанный выше алгоритм применяется для относительно больших временных промежутков. В этой работе будет рассмотрено, как он будет вести себя при уменьшении временных промежутков. Рассмотрим, что будет происходить с алгоритмом в начале временного промежутка, конце и середине.

Выделениие шумов:

Рис. 1: Шумы в 20 сигнале из разряда sht38917

3 Реализация

Курсовая работа выполнена с помощью встроенных средств языка программирования Python в среде разработки PyCharm. Python сам по себе не имеет встроенные функции рисования и статистические модули для проведения испытаний. Поэтому используются дополнительные модули – numpy, scipy, matplotlib, pandas. Исходный код и полученные данные в ходе выполнения курсовой работы можно найти на репозитории в GitHub, ссылку на который можно найти в приложениях.

4 Результаты

4.1 Визуализация сигналов и результаты работы алгоритма на всем промежутке

Рис. 2: Извлеченные и стандартизованные сигналы

В качестве примеров выбраны 20 сигналы 38916 - 38919 разрядов. Далее будем опускать первые три цифры номера разряда.

Результаты работы алгоритма на всем промежутке:

Рис. 3: Результат работы на всем промежутке

Как видим, менее подобны 18 и 19 разряды, что подтверждается их графиками.

4.2 Результаты на половине промежутка

Рассмотрим результаты на половине промежутка:

Рис. 4: Половина: начало промежутка

Рис. 5: Половина: конец промежутка

Рис. 6: Половина: середина промежутка

Видим, что 17 и 19 разряды сильнее отличаются, если рассматривать конец промежутка или середину.

4.3 Результаты на четверти промежутка

Рассмотрим результаты на четверти промежутка:

Рис. 7: Четверть: начало промежутка

Рис. 8: Четверть: конец промежутка

Рис. 9: Четверть: середина промежутка

Получили, что на четверти промежутка 17 и 19 сигналы в центре более подобны, чем на половине.

4.4 Результаты на малом промежутке

Далее алгоритм начал показывать свою несостоятельность. Поэтому приведем данные для 1/512 промежутка:

Рис. 10: Малый промежуток: начало промежутка

Рис. 11: Малый промежуток: конец промежутка

Рис. 12: Малый промежуток: середина промежутка

Получили, что на относительно малом промежутке сигналы практически не различаются. Данный промежуток приведен, так как именно здесь все числа стали близки или совпадать с 1.

5 Обсуждение

В ходе выполнения курсовой работы установлено следующее:

- 1. Справедливость работы алгоритма проверена с помощью графических представлений сигналов.
- 2. Допустимые пределы: четверть временного промежутка измерений. Рассмотренные сигналы были длиной порядка 100 тысяч измерений. То есть оптимальный набор в данном случае состоит из 20 25 тысяч измерений.

6 Приложения

Koд программы на GitHub, URL: https://github.com/DanilPestryakov/MatStat

Список литературы

[1] Вероятностные разделы математики. Учебник для бакалавров технических направлений.//Под ред. Максимова Ю.Д. — Спб.: «Иван Федоров», 2001.-592 с., илл.