Standard Normal Distribution

Objectives

1 Find the area under a normal curve given z score(s)

Find the z scores corresponding to a given area

Continuous Distributions

Continuous Probability Distribution

A **continuous probability distribution** is a probability distribution in which the observations are continuous variables.

Continuous Distributions

Continuous Probability Distribution

A **continuous probability distribution** is a probability distribution in which the observations are continuous variables.

In this section, we are going to discuss the **standard normal distribution**, whose histogram resembles a bell-shaped curve.

Equation and Graph of Standard Normal Distribution

$$f(z) = \frac{1}{\sqrt{2\pi}}e^{-z^2/2}$$

• The mean is 0 and the standard deviation is 1

- The mean is 0 and the standard deviation is 1
- The graph is symmetric about the mean

- The mean is 0 and the standard deviation is 1
- The graph is symmetric about the mean
- The area under the curve represents the probability of obtaining a z score in that area.

- The mean is 0 and the standard deviation is 1
- The graph is symmetric about the mean
- The area under the curve represents the probability of obtaining a z score in that area.
- The total area under the curve equals 1

(a)
$$z=0$$

(a)
$$z = -0.25$$

(b)
$$z = 2$$

Finding the Area Between Two z Scores

Objectives

Find the area under a normal curve given z score(s)

2 Find the z scores corresponding to a given area