Prazo para entrega: segunda-feira 23/09 até as 23:59h. Enviar relatório em formato PDF para bernardomartinsrocha@gmail.com

Problema 1

Faça um programa em qualquer linguagem de programação que: declare uma variável x com precisão simples (dupla). Inicialize essa variável com o valor 0.5 e faça uma estrutura de repetição que irá dividir o valor dessa variável sucessivamente por 2. A repetição deve ocorrer enquanto o seguinte critério for satisfeito: 1+x != 1. Tendo em vista a teoria de ponto flutuante e a especificação do padrão IEEE-754 vista em sala de aula, responda:

- (a) Qual o valor de x obtido ao executar o programa com precisão simples e dupla? Qual o sentido desse número x obtido ao final do processo? Por que isso ocorre?
- (b) Conte quantos passos do algoritmo foram executados. Com o que esse número pode ser relacionado?

Problema 2

Considere a equação quadrática: $ax^2 + bx + c = 0$ e o problema de determinar suas raízes. Considere os seguintes coeficientes e as respectivas raízes para a equação:

a	b	c	x_1	x_2
6	5	-4	-4/3	$\frac{1}{2}$
6×10^{30}	5×10^{30}	-4×10^{30}	-4/3	1/2
0	1	1	-1	-
1	-10^{5}	1	$1.0000000001 \times 10^{-5}$	99999.99999
1	-4	3.999999	1.999	2.001
10^{-30}	-10^{30}	10^{30}	1	1×10^{60}

Tabela 1: Coeficientes para testes.

Sendo assim

- (a) Escreva um programa que calcule as duas raízes x_1 e x_2 utilizando a fórmula de Bhaskara sem modificações. Seu programa deve detectar quando as raízes forem imaginárias, mas não é necessário realizar aritmética complexa, além de tratar outras possíveis exceções.
- (b) Realize testes com todos os casos da Tabela 1. Descreva o que ocorre em cada caso. Ambas as raízes encontradas são satisfatórias? Ocorreram erros? De que tipo? Compare seus resultados com os dados da tabela.
- (c) Utilize as estratégias discutidas em sala de aula para melhorar o cálculo das raízes.

Problema 3

(a) Escreva um programa para computar um valor aproximado para a derivada de uma função usando a fórmula de diferenças finitas dada por:

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

Teste o seu programa usando a função $\sin(x)$ para x = 1. Determine o erro da aproximação comparando com o valor exato da derivada dado pela função nativa da linguagem utilizada $\cos(x)$.

- (b) Faça um gráfico da magnitude do erro em função de h, para $h = \frac{1}{2}, \frac{1}{4}, \frac{1}{8}$ Utilize uma escala logarítmica para h e para a magnitude do erro (valor absoluto).
- (c) Existe um valor mínimo para a magnitude do erro? Qual o valor de h nesse caso? Podese demonstrar que um valor ideal para h é dado por $h_{opt} \approx \sqrt{\varepsilon_{mach}}|x|$. Como esse valor se compara com o valor dado por h_{opt} ?
- (d) Repita o exercício usando a aproximação por diferença central

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$