A second year mathematics degree

Yu Coughlin

Contents

\mathbf{Re}	al Ana	lysis and Topology		
1	Euclie	dean spaces		
	1.1	Euclidean norm		
	1.2	Convergence in \mathbb{R}^n		
2		nuity and limits of functions		
-	2.1	Open sets		
	$\frac{2.1}{2.2}$	Continuity		
3				
3		ative of maps of Euclidean spaces		
	3.1	Total derivatives		
	3.2	Directional and partial derivatives		
	3.3	Higher order derivatives		
4	reaction of the control of the contr			
	4.1	Inverse function theorem		
	4.2	Implicit function theorem		
5	Metri	c spaces		
	5.1	Introduction		
	5.2	Normed vector spaces		
	5.3	Sets in metric spaces		
	5.4	Continuous maps of metric spaces		
6		logical spaces		
U	6.1	Topologies and their spaces		
	6.2			
		Convergence and Hausdorff property		
	6.3	Closed sets		
_	6.4	Continuous maps		
7		ectedness		
	7.1	Definition		
	7.2	Continuous maps		
	7.3	Path connected sets		
8	Comp	pactness		
	8.1	Covers		
	8.2	Sequential compactness		
	8.3	Continuous maps		
	8.4	Arzelá-Ascoli theorem		
9		pleteness		
9	9.1	Banach spaces		
		•		
	9.2	Fixed point theorem	•	
	-	nd Rings		
1	-	ient groups		
	1.1	Group homomorphisms		
	1.2	Normal subgroups		
	1.3	Quotient groups		
	1.4	Isomorphism theorems		
	1.5	Centres		
	1.6	Commutators		
	1.7	Torsion and <i>p</i> -primary subgroups		
	1.8	Generators		
	1.9	Classification of finitely generated Abelian groups	•	
	17	- Maganiyaddal Ol Hillioliy golioladda Anonall gioddo		

MATH50000 Contents

	2	Group actions	9
		2.1 Actions	9
		2.2 Orbit-stabiliser theorem	9
		2.3 Jordan's theorem	
	3	Rings	
	_	3.1 Rings	
		3.2 Ring homomorphisms	
		3.3 Ideals	
	4	Integral domains	
	4	4.1 Integral domains	
		4.2 Charateristic	
	_	4.3 Polynomial rings	
	5	PIDs and UFDs	
		5.1 Euclidian domains	
		5.2 Principal ideal domains	
		5.3 Unique factorisation domains	
	6	Fields	12
		6.1 Vector spaces	12
		6.2 Field extensions	13
		6.3 Constructing fields	13
		6.4 Existence of finite fields	
3	Leb	esgue Measure and Integration	14
L1	1	Motivation	17
	2	Measures	
		2.1 Algebras and σ -algebras	
		2.2 Measures	
		2.3 Complete measure spaces	
	3	Constructing measures	
	3	3.1 Pre-measure	
		3.2 Outer measure	
		3.3 Restriction	
		3.4 Lebesgue measure	
	4	Measurable functions	
		4.1 Defintion	
		4.2 Properties	
		4.3 Continuity	
	5	Lebesgue integral	17
		5.1 Construction	17
		5.2 Properties	17
	6	Convergence	17
		6.1 Monotone convergence	
		6.2 Fatou's lemma	
		6.3 Lebesgue dominated convergence	
		6.4 Vitali's theorem	
	7	L^p spaces	
	•	7.1 Norms	
		7.2 L^p spaces	
		7.3 Normed vector spaces	
		1	
	0	7.4 Completeness	
	8	Product measures	
		8.1 Products of sets	
		8.2 σ -algebras on product sets	
		8.3 Product measures	17
	9	Fubini's theorem	17
		9.1 Motivations	17
		9.2 Setup	17
		9.3 Fubini's theorem	17
	10	Differentiation	17

MATH50000 Contents

	10.1	Hardy-Littlewood maximal function	17
	10.2	Compact support spaces	17
	10.3		
11	Decom		
	11.1	Signed measures	17
	11.2	Hahn decomposition theorem	17
	11.3	Mutually singular measures	17
	11.4	Jordan decomposition theorem	17
	11.5	Lebesgue decomposition theorem	17
	11.6	Radon-Nikodym theorem	17
a .			10
Cat			18
1	Basic of	lefinitions	19
	1.1	Categories	19
	1.2	Functors	19
	1.3	Natural transformations	20
	1.4	Equivalence of categories	20
	1.5	Representable functors	20
	1.6	Yoneda lemma	20
		10.2 10.3 11 Decom 11.1 11.2 11.3 11.4 11.5 11.6 Categories 1 Basic of 1.1 1.2 1.3 1.4 1.5	10.2 Compact support spaces 10.3 Lebesgue's differentiation theorem 11 Decomposition 11.1 Signed measures 11.2 Hahn decomposition theorem 11.3 Mutually singular measures 11.4 Jordan decomposition theorem 11.5 Lebesgue decomposition theorem 11.6 Radon-Nikodym theorem Categories 1 Basic definitions 1.1 Categories 1.2 Functors 1.3 Natural transformations 1.4 Equivalence of categories 1.5 Representable functors

Chapter 1

Real Analysis and Topology

Lectured by Someone Typed by Yu Coughlin Season Year

Introduction

The following are complementary reading for the course.

- G. Grimmett and D. J. A. Welsh, Probability: An Introduction, 1986
- J. K. Blitzstein and J. Hwang, Introduction to Probability, 2019
- D. F. Anderson et al, Introduction to Probability, 2018
- S. M. Ross, Introduction to Pro ability Models, 2014
- G. Grimmett and D. Stirzaker, Probability and Random Processes, 2001
- G. Grimmett and D. Stirzaker, One Thousand Exercises in Probability, 2009

Notation. Unbracketed superscripts are used to label the components of vectors, with unbracketed subscripts labellin different vectors.

Lecture 1 Monday 30/10/2023

1 Euclidean spaces

Definition 1.0.1 (\mathbb{R}^n). The set $\mathbb{R}^n = \{(x^1, x^2, \dots, x^n) : x^i \in \mathbb{R}, \forall i \in [1, n]\}$ will be considered with the operations to make it a real vector space.

1.1 Euclidean norm

Definition 1.1.1 (Inner product). We will have the **inner product** on \mathbb{R}^n by $\langle \cdot, \cdot \rangle : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ satisfying:

$$\langle x, y \rangle := \sum_{i=1}^{n} x^{i} y^{i},$$

with the Euclidean norm given by,

$$||\cdot||: \mathbb{R}^n \to [0,\infty) \text{ with } ||x|| = \sqrt{\langle x,x\rangle}.$$

Proposition 1.1.2 (Properties of the Euclidean norm). The Euclidean norm satisfies the following properties:

- (N1) for all $x \in \mathbb{R}^n$, $||x|| \ge 0$ achieving equality iff x = 0,
- (N2) for all $x \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$, $||\lambda x|| = |\lambda| \cdot ||x||$,
- (N3) for all $x, y \in \mathbb{R}^n$: $||x + y|| \le ||x|| + ||y||$,

Theorem 1.1.3 (Cauchy-Swartz innequality). For all $x, y \in \mathbb{R}^n$, $|\langle x, y \rangle| \leq ||x|| \cdot ||y||$.

Theorem 1.1.4 (Reverse triangle innequality). For all $x, y \in \mathbb{R}^n$, $||x|| - ||y|| \le ||x - y||$.

Proposition 1.1.5. For $x = (x^1, x^2, \dots, x^n) \in \mathbb{R}^n$,

$$\max_{k \in [1,n]} |x^k| \le ||x|| \le \sqrt{n} \max_{k \in [1,n]} |x^k|.$$

Proof. Exercise

1.2 Convergence in \mathbb{R}^n

Definition 1.2.1 (Open ball). In \mathbb{R}^n we define the open ball around $x \in \mathbb{R}^n$ of size $r \in \mathbb{R}$ as

$$B_r(x) := \{ y \in \mathbb{R}^n : ||x - y|| < r \}.$$

This will be analoguous the the notion of open intervals used throughout analysis 1.

Definition 1.2.2 (Sequence in \mathbb{R}^n). A sequence in \mathbb{R}^n is an ordered list $x_0, x_1, \ldots, x_i \ldots$ with $x_i \in \mathbb{R}^n$ for all $i \in \mathbb{N}$, written $(x_i)_{i=0}^{\infty}$

Definition 1.2.3 (Convergence in \mathbb{R}^n). We say a sequence in \mathbb{R}^n , $(x_i)_{i=0}^{\infty}$ converges to $x \in \mathbb{R}^n$ iff

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} \text{ such that, } \forall n \geq N, \ ||x_i - x|| < \epsilon$$

and we write $x_i \to x$ as $i \to \infty$ or $\lim_{i \to \infty} x_i = x$.

Lemma 1.2.4. The sequence of vectors in \mathbb{R}^n , $(x_i)_{i=0}^{\infty}$, converges to some $x = (x^1, x^2, \dots, x^n) \in \mathbb{R}^n$ iff each component of x_i converges to the corresponding component in x:

$$\forall k \in [1, n] \lim_{i \to \infty} x_i^k = x^k.$$

Proof. (\Longrightarrow) Given $\lim_{i\to\infty} x_i^k = x^k$ for all $k\in[1,n]$ we have that for all $\epsilon>0$, $\left|x_i^k-x^k\right|<\frac{\epsilon}{\sqrt{n}}$ for all $i\geq N_k$ for each $k\in[1,n]$ respectively. We take $N=\max_i N_k$ and now have:

for each
$$k \in [1, n]$$
 respectively. We take $N = \max_{k \in [1, n]} N_k$ and now have:
$$\max_{k \in [1, n]} \left| x_i^k - x^k \right| < \frac{\epsilon}{\sqrt{n}} \implies ||x_i - x|| \le \sqrt{n} \max_{k \in [1, n]} \left| x_i^k - x^k \right| < \epsilon.$$

(\iff) Similarly, given $\lim_{i\to\infty} x_i = x \implies ||x_i - x|| < \epsilon$ for all $\epsilon > 0$:

$$|x_i^k - x^k| \le \max_{k \in [1,n]} |x_i^k - x^k| \le ||x_i - x|| < \epsilon,$$

therefore $\lim_{i\to\infty} x_i^k = x^k$ for all $k\in[1,n].$

2 Continuity and limits of functions

2.1 Open sets

Definition 2.1.1 (Open set in \mathbb{R}^n). A subset $U \subseteq \mathbb{R}^n$ is open in \mathbb{R}^n iff:

 $\forall x \in U, \ \exists r > 0 \text{ such that } B_r(x) \subseteq U.$

2.2 Continuity

- 3 Derivative of maps of Euclidean spaces
- 3.1 Total derivatives
- 3.2 Directional and partial derivatives
- 3.3 Higher order derivatives
- 4 Inverse and implicit function theorems
- 4.1 Inverse function theorem
- 4.2 Implicit function theorem
- 5 Metric spaces
- 5.1 Introduction
- 5.2 Normed vector spaces
- 5.3 Sets in metric spaces
- 5.4 Continuous maps of metric spaces
- 6 Topological spaces
- 6.1 Topologies and their spaces
- 6.2 Convergence and Hausdorff property
- 6.3 Closed sets
- 6.4 Continuous maps
- 7 Connectedness
- 7.1 Definition
- 7.2 Continuous maps
- 7.3 Path connected sets
- 8 Compactness
- 8.1 Covers
- 8.2 Sequential compactness
- 8.3 Continuous maps
- 8.4 Arzelá-Ascoli theorem
- 9 Completeness
- 9.1 Banach spaces
- 9.2 Fixed point theorem

Chapter 2

Groups and Rings

Lectured by Someone Typed by Yu Coughlin Autumn 2024

Introduction

The following are complementary reading for the course.

- G. Grimmett and D. J. A. Welsh, Probability: An Introduction, 1986
- J. K. Blitzstein and J. Hwang, Introduction to Probability, 2019
- D. F. Anderson et al, Introduction to Probability, 2018
- S. M. Ross, Introduction to Pro ability Models, 2014
- G. Grimmett and D. Stirzaker, Probability and Random Processes, 2001
- G. Grimmett and D. Stirzaker, One Thousand Exercises in Probability, 2009

1 Quotient groups

1.1 Group homomorphisms

Definition 1.1.1 (Group isomorphism). Given groups G, H, a function $f: G \to H$ is a **group isomorphism** if it is a bijective group homomorphism. If there exists an isomorphism between groups, G is **isomorphic** to H written $G \cong H$.

Definition 1.1.2 (Group automorphism). Given G a group, an isomorphism $f: G \xrightarrow{\sim} G$ is a group automorphism.

Theorem 1.1.3. Aut G (the set of automorphisms of a group G) is a group under function composition.

Proof. By examining the defintion of $\operatorname{Aut} G$, taking $e = \operatorname{id}$ and showing association elementwise.

Theorem 1.1.4. Given groups G, H, if $f: G \xrightarrow{\sim} H$ then $f^{-1}: H \xrightarrow{\sim} G$.

Proof. $f^{-1}(f(g_1))f^{-1}(f(g_2)) = g_1g_2 = f^{-1}(f(g_1g_2)) = f^{-1}(f(g_1)g(g_2))$ is sufficient as f is surjective. \Box

1.2 Normal subgroups

Definition 1.2.1 (Normal subgroup). A sugroup N of G is **normal**, written $N \leq G$, if it satisfies any of these equal properties:

- (N1) N is the kernel of some group homomorphism ϕ ,
- (N2) N is stable under conjugations $(\forall n \in N \text{ and } g \in G, gng^{-1} \in N)$,
- (N3) for all $g \in G$ gN = Ng.

Proof of equivalence. (N1 \Longrightarrow N2): $\phi(gng^{-1}) = \phi(g)\phi(n)\phi(g^{-1}) = \phi(g)\phi(g)^{-1} = e_H$.

(N2 \Longrightarrow N3): $gng^{-1} \in N \implies gn \in Ng$ by g^{-1} so $gN \subseteq Ng$, similarly for $Ng \subseteq gN$ with g^{-1} replacing g.

 $(N3 \Longrightarrow N2)$: The set of left and right cosets of G by N are isomorphic with N as the kernel.

1.3 Quotient groups

Definition 1.3.1 (Quotient groups). Let $N \subseteq G$, the quotient group of G modulo N, written G/N, is the group with elements as left cosets of N in G with $(g_1N) \cdot (g_2N) = (g_1g_2N)$.

Proof. One can easily check this satisfies all of the group axioms.

Remark 1.3.2. By Lagrange's theorem |G/N| = |G|/|N|.

Definition 1.3.3 (Simple group). A group G is **simple** if it has no normal subgroups except $\{e_G\}$ and G.

1.4 Isomorphism theorems

Theorem 1.4.1 (First isomorphism theorem). If $f: G \to H$ is a group homomorphism, $G/\ker f \cong \operatorname{im} f$.

Proof. Have $\phi: G/\ker f \to \operatorname{im} f$ with $\phi: g \ker f \mapsto f(g)$.

```
well defined: if g \ker f = h \ker f, gh^{-1} \ker f = \ker f \implies f(g) = f(gh^{-1}h) = f(gh^{-1})f(h) = f(h).
```

homomorphism: $\phi((g \ker f)(h \ker f)) = \phi(gh \ker f) = f(gh) = f(g)f(h) = \phi(g \ker f)\phi(h \ker f)$.

surjective: any $h = f(g) \in \operatorname{im} f$ is clearly $\phi(g \ker f)$ for any $g \in G$.

injective: if $\phi(g \ker f) = e_H$, $f(g) = e_H \implies g \in \ker f$ so $\ker f = \{\ker \phi\} = \{e_{G/\ker \phi}\}$. By a lemma from *Linear algebra and groups*, we now have ϕ injective.

Theorem 1.4.2 (Universal property of quotients). Let $N \subseteq G$ and $f: G \to H$ be a group homomorphism such that $N \subseteq \ker f$. There exists a *unique* homomorphism $\tilde{f}: G/N \to H$ such that the diagram

commutes, (here $\pi: G \to G/N$ is the projection map with $\pi: g \to gN$).

Proof. The proof is essentially that of Theorem 1.4.1 with $H = \operatorname{im} f$.

Lemma 1.4.3. If $N \subseteq G$ and $N \subseteq H \subseteq G$ then $N \subseteq H$.

Proof. gN = Ng for all $g \in G$ so also for all $g \in H$.

Theorem 1.4.4 (Second isomorphism theorem). Let $K, L \subseteq G$ with $K \subseteq L$, $G/L \cong (G/K)/(L/K)$

Proof. Have $f: G/K \to G/L$, via same arguments in Theorem 1.4.1, f is a surjective group homomorphism, $gK \in \ker f \implies f(gK) = gL = L$ so $g \in L$ and $\ker f = L/K$. By Theorem 1.4.1, $(G/K)/(\ker f) = (G/K)/(L/K) \cong (G/L)$.

Definition 1.4.5 (Frobenius product). Given $A, B \subseteq G$ a group, the (Frobenius) product of A and B is

$$AB := \{ab \in G : a \in A, b \in B\}.$$

Lemma 1.4.6. Given $H, N \leq G$ a group, N is normal $\implies HN \leq G$ and N, H normal $\implies HN \leq G$.

Proof. 1. HN is nonempty with $(h_1n_1)(h_2n_2) = (n_1n_3)(h_1h_2) \in NH$ for some $n_3 \in N$ and $(hn)^{-1} = n^{-1}h^{-1} \in Nh^{-1} = h^{-1}N \subset HN$.

2.
$$gHNg^{-1} = gHg^{-1} \cdot gNg^{-1} = HN$$
.

Theorem 1.4.7 (Third isomorphism theorem). If $H \leq G$ and $N \leq G$, $H/(H \cap N) \cong (HN)/N$. This is ometimes called the *diamond theorem* due to the shape of the subgroup lattice it produces:

where arrows point to subgroups.

Proof. Have $\phi: H \to G/N$ be the canonical map, $\ker \phi = H \cap N$ as hN = N iff $h \in N$, $\operatorname{im} \phi = \{hN : h \in H\} = HN/N$, Theorem 1.4.1 on ϕ gives the result.

Note 1.4.8. The naming of the group isomorphism theorems throughout literatue is very inconsistent.

1.5 Centres

Definition 1.5.1 (Inner automorphisms). Given the group G the conjugations by elements of G form the group $Inn G \subseteq Aut G$.

Proof. Have $\phi: G \to \operatorname{Aut}(G)$ assigning to each element in $g \in G$ the conjugation map by G, $\operatorname{Inn}(G) = \operatorname{im} \phi \subset \operatorname{Aut}(G)$.

Definition 1.5.2 (Centre of group). Given the group G the elements of G that commute with all other elements form the **centre** of G, $Z(G) \subseteq G$.

Proof of normality. Have $\phi: G \to \operatorname{Aut} G$ with $\phi: g \mapsto \operatorname{conjugation}$ by $g, \ker \phi = Z(G)$.

Proposition 1.5.3. If G/Z(G) is cyclic, G is Abelian.

Proof. $G/Z(G) = \langle aZ(G) \rangle$ for some $a \in G$, for all $g \in G$ $gZ(G) = [aZ(G)]^m = a^m Z(G)$ for some $m \in \mathbb{N}$ therefore $a^{-m}g = z \in Z(G)$ so $g = a^m z$ and for all $g, h \in G$ we have $gh = a^n z_g a^m z_h = a^{n+m} z_g z_h = a^m z_h a^n z_g = hg$.

1.6 Commutators

Definition 1.6.1 (Commutator). For $a, b \in G$ a group, we have $[a, b] := aba^{-1}b^{-1}$ the **commutator** of a and b. [G, G] is the smallest subgroup of G containing all commutators of elements of G, called the **commutator** of G.

Remark 1.6.2. A group G is Abelian iff $[G, G] = e_G$.

Theorem 1.6.3. Given G a group, $[G,G] \triangleleft G$ with its quotient in G Abelian.

Theorem 1.6.4. Let $N \subseteq G$, G/N is Abelian iff $[G,G] \subseteq N$.

Theorem 1.6.5. Given a group G with $A, B \subseteq G$, $A \cap B = \{e_G\}$ and AB = G; $A \times B \cong G$.

1.7 Torsion and p-primary subgroups

Definition 1.7.1 (Torsion subgroup). Given an abelian group G, the set of elemnts of G with finite order form the **torsion subgroup** of G, denoted G_{tors} . When $G = G_{tors}$, we call G a **torsion Abelian group**.

Definition 1.7.2 (*p*-primary subgroups). Given an abelian group G, the set of elements of g with order p (a prime) is the p-primary subgroup of G, written $G\{p\}$. When $G = G_G\{p\}$, we call G a p-primary torsion Abelian group.

Theorem 1.7.3. Let the prime factorisation of $n \in \mathbb{N}$ be $p_1^{a_1} p_2^{a_2} \dots p_m^{a_m}$ with C_n the cyclic group of order

$$C_n \cong C_{p_1^{a_1}} \times C_{p_2^{a_2}} \times \cdots \times C_{p_m^{a_m}}.$$

Proof.

1.8 Generators

Lemma 1.8.1. Given an indexing set \mathcal{I} , and a sequence of subgroups $(H_i)_{i\in\mathcal{I}} \leq H$, $\bigcap_{i\in\mathcal{I}} H_i \leq G$.

Definition 1.8.2 (Subgroup generated by a set). Given $S \subseteq G$ a group,

$$\langle S \rangle := \left(\bigcap_{S \subseteq H \le G} H \right) \le G$$

is the subgroup of G generated by S. If $\langle S \rangle = G$ then we say S generates G and G is finitely generated is S is finite.

1.9 Classification of finitely generated Abelian groups

Definition 1.9.1 (Free Abelian group of rank n). The Free Abelian group of rank n is the group \mathbb{Z}^n under addition. The free abelian group of rank 0 is the trivial group.

Lemma 1.9.2. If $\mathbb{Z}^m \cong \mathbb{Z}^n$ then n=m, so the rank of a free abelian group is well defined.

Lemma 1.9.3. Any subgroup of \mathbb{Z}^n is isomorphic to some \mathbb{Z}^m for some $m \leq m$.

Theorem 1.9.4. Every finitely generated Abelian group is isomorphic to a product of finitely many cyclic groups.

Theorem 1.9.5. Every finitely generated Abelian group is isomorphic to a product of finitely many infinite cyclic groups and finitely many cyclic groups of prime order. The number of ininfite cyclic factors and the number of cclic factors of order p^r , where p is primse and $r \in \mathbb{N}$ is determined solely by the group.

Theorem 1.9.6. A finitely generated Abelian group, G, is not cyclic iff there exists a prime p such that $G \cong C_p \times C_p$.

2 Group actions

2.1 Actions

Definition 2.1.1 (Actions). Given a group G and a set X, a group action is: a binary operation

$$\begin{array}{cccc} \cdot & : & G \times X & \longrightarrow & X \\ & (g,x) & \longmapsto & g \cdot x \end{array}$$

with $e_G \cdot x = x$ for all $x \in X$ and $(g_1g_2) \cdot x = g_1 \cdot (g_2x)$ for all $g_1, g_2 \in G$ and $x \in X$; or, equivalently, a homomorphism $\rho : G \to \operatorname{Sym}(X)$.

Definition 2.1.2 (Faithful set). An action of a group G on a set X is **faithful** if the map $\rho: G \to \operatorname{Sym}(X)$ is injective.

2.2 Orbit-stabiliser theorem

Definition 2.2.1 (Orbit). Given a group G acting on a set X, the G-orbit of $x \in X$ is

$$G(x) := \{q \cdot x : q \in G\} \subseteq X.$$

Orbits partition X into X/G.

Definition 2.2.2 (Stabiliser). Given a group G acting on a set X, the **stabiliser** of $x \in X$ is

$$\operatorname{Stab}_G(x) := \{ g \in G : g \cdot x = x \} \subseteq G.$$

Stabilisers also partition G.

Remark 2.2.3 (Conjugacy classes). When G acts on itself by conjugations, orbits of G are the **conjugacy** classes, x^G of G and the stabilisers of G are the centralisers of G.

Lemma 2.2.4. Given a group G acting on a set X, $\operatorname{Stab}_G(g \cdot x) = g \operatorname{Stab}_G(x) g^{-1}$

Theorem 2.2.5 (Orbit-stabiliser theorem). Given a group G acting on a set X. For all $x \in X$, we have $\phi_x : G/\operatorname{Stab}(x) \xrightarrow{\sim} G(x)$ by $\phi_x : g\operatorname{Stab}(x) \mapsto g \cdot x$, giving $|G(x)| = |G| \cdot |\operatorname{Stab}(x)| = |G| / |\operatorname{Stab}(x)|$.

Proof. asdfsd
$$\qquad \qquad \square$$

Corollary 2.2.6.
$$|X| = \sum_{i=1}^{n} |G(x_i)| = \sum_{i=1}^{n} [G : Stab(x_i)].$$

Corollary 2.2.7 (Cayley's theorem). Let G be a finite group of order n. Then $S_n \cong \operatorname{Sym}(G)$ contains a finite subgroup isomorphic to G.

Corollary 2.2.8 (Cauchy's theorem). Let G be a finite group of order n and let p be a prime factor of n. Then G contains an element of order p.

Definition 2.2.9 (p-group). A finite group G is a p-group is the order of G is a power of prime p.

Theorem 2.2.10. Let G be a p-group, $Z(G) \neq \{e_G\}$.

Proof.

2.3 Jordan's theorem

Definition 2.3.1 (Transitive action). Given a group G acting on a set X, if X is a G-orbit then we say G acts **transitively** on X.

Definition 2.3.2 (Fixed points). Given a group G acting on a set X, an element $x \in X$ is a fixed point of $g \in G$ iff $g \cdot x = x$. We have $Fix(g) \subseteq X$ the set of fixed points of $g \in G$ satisfying:

$$\operatorname{Stab}(x) \leftarrow_{\overline{\pi_G}} \{(x,g) \in X \times G; \ g \cdot x = x\} \xrightarrow{\pi_X} \operatorname{Fix}(g) \ .$$

Theorem 2.3.3 (Jordan's theorem). Let G act transitively on a finite set X, we have

$$\sum_{g \in G} |\operatorname{Fix}(g)| = |G|,$$

with there being some element $g \in G$ such that $Fix(g) = \emptyset$.

Corollary 2.3.4 (Burnside's lemma). Given a group G acting on a finite set X:

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |\operatorname{Fix}(g)|.$$

3 Rings

3.1 Rings

Definition 3.1.1 (Ring). A ring (with 1) is a set R with elements 0,1 and binary operations $+,\times$ such that

- 1. (R, +) is an abelian group with identity 0,
- 2. (R, \times) is a semigroup with 1 as the identity,
- 3. both left and right multiplication are distributive over addition.

Examples 3.1.2. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are all rings with their normal operations. $\mathbb{R}[x]$ is the set of real-valued polynomials and is also a ring.

Definition 3.1.3 (Subring). A subset of a ring wich is itself a ring under the same operators with the same 1 is a **subring**.

Definition 3.1.4 (Commutative ring). A ring, R, is commutative iff a + b = b + a for all $a, b \in \mathbb{R}$.

Definition 3.1.5 (Invertible). An element x of a ring R is invertible if there exists $y, z \in R$ with yx = zx = 1.

Definition 3.1.6 (Division ring). A ring R is called a **division ring** if $R \setminus \{0\}$ is a group under multiplication with identity 1.

Remark 3.1.7. A commutative division ring is a field.

Definition 3.1.8 (Integral domain). A commutative ring R is an integral domain iff $0 \neq 1$ and for all $a, b \in R$ $ab = 0 \implies a = 0$ or b = 0.

3.2 Ring homomorphisms

Definition 3.2.1 (Ring homomorphism). Let R, S be rings, a function $f: R \to S$ is a **ring homomorphism** iff it satisfies

- 1. $f:(R,+)\to(S,+)$ is a group homomorphism,
- 2. f(xy) = f(x)f(y) for all $x, y \in R$,
- 3. $f(1_R) = 1_S$.

Lemma 3.2.2. Given the ring homomorphism $f: R \to S$ the kernel of f is a subgroup of (R, +) which satisfies $xr, rx \in \ker f$ for all $x \in \ker f$ and $r \in R$.

3.3 Ideals

Definition 3.3.1 (Ideal). For a ring R, a subset $I \subseteq R$ is a **left ideal**, denoted $I \subseteq R$ iff

- 1. (I, +) is a subgroups of (R, +),
- 2. if $r \in R$ and $i \in I$, $ri \in R$.

Similarly, for **right ideals**. A subset *I* is a bi-ideal if it is both a left and right ideal.

Definition 3.3.2 (Quotient ring). Given ring R with proper ideal $I \subset R$, The quotient abelian group R/I, with natural multiplication, forms the **quotient ring** of R by I.

Definition 3.3.3 (Principal ideal). Given a commutative ring R and some $a \in R$, $aR := \{ax : x \in R\}$ is an ideal called a **principal ideal** with **generator** a.

Definition 3.3.4. A bijective ring homomorphism is a **ring isomorphism**, a ring homomorphism $f: R \to R$ is a **ring endomorphism**, an isomorphic ring endomorphism is **ring automorphism**.

Proposition 3.3.5. Given the ring homomorphism $f: R \to S$, $f(R) = \operatorname{im} R$ is a subring of S which is isomorphic to $R/\ker f$.

Proposition 3.3.6. A commutative ring is a field iff its only proper ideal is the trivial / zero ideal.

Proposition 3.3.7. Given $f: R \to S$ a ring homomorphism with J a left (or right or bi) ideal of S, $f^{-1}(J)$ is a left (respectively) ideal of R.

Definition 3.3.8 (Prime ideal). Let R be a commutative ring, a proper ideal $I \subset R$ is a **prime ideal** iff $ab \in I$ for $a, b \in R \implies a \in I$ or $b \in I$.

Theorem 3.3.9. If $I \subset R$ is a prime ideal, R/I is an integral domain

Definition 3.3.10 (Maximal ideal). A proper ideal I in a commutative rign R is **maximal** iff there are no other proper ideals J with $I \subset J$.

Theorem 3.3.11. I is a maximal ideal of R iff R/I is a field.

4 Integral domains

Throughout this section we will always have R be an integral domain.

4.1 Integral domains

Theorem 4.1.1. $ab = ac \implies b = c$ for all $a, b, c \in R$. (the cancellation law holds for all integral domains)

Proposition 4.1.2. For $a, b \in R$, aR = bR iff a = br for some $r \neq 0 \in R$.

Proof.

Theorem 4.1.3. All fields are integral domains and all finite integral domains are fields.

Remark 4.1.4. The ring $\mathbb{Z}/n\mathbb{Z}$ is an integral domain iff it is a field \iff n is prime.

Definition 4.1.5 (Unit). $r \in R$ is a **unit** if there exists some $y \in R$ with $x \times y = 1_R$. We write R^{\times} for the group of units in R under multiplication.

Definition 4.1.6 (Irreducible). $r \in R \setminus R^{\times}$ is **irreducible** if it cannot be written as the product of two elements of $R \setminus R^{\times}$.

4.2 Charateristic

Lemma 4.2.1. For any ring S there is a uniquer ring homomorphism $f: \mathbb{Z} \to S$.

Proof. Have $f(0_R) = 0$, $f(1) \to 1_S$ and inductively have f(n) be the sum of 1_S n times.

Lemma 4.2.2. The kernel of the unique homomorphism $\mathbb{Z} \to \mathbb{R}$ is either $\{0\}$ or $p\mathbb{Z}$ for some prime p.

Definition 4.2.3 (Charateristic). The **characteristic** of R is the unique non-negative generator of the kernel of $\mathbb{Z} \to R$, denoted char R.

4.3 Polynomial rings

Definition 4.3.1 (Polynomial ring). R[t] is, formally, the set of infinite sequences of elements of R with finitely many non-zero terms, but more helpfully: the set of polynomials in t with coefficients in R.

Definition 4.3.2 (Polynomial degree). The **degree** of a polynomial, $r_0 + r_1t + r_2t^2 + \ldots + r_it^i + \ldots \in R[t]$, is the unique maximum $i \in \mathbb{N}$ with $r_i \neq 0$ and 0 otherwise.

Lemma 4.3.3. Given $p(t), q(t) \in R$, $\deg(p(t)q(t)) = \deg(p(t)) + \deg(q(t))$, R[t] is an integral domain and $R[t]^* = R^*$.

Theorem 4.3.4. If k is a field with $a(t), b(t) \in k[t]$ with $b(t) \neq 0$, there exists $q(t), r(t) \in k[t]$ such that a(t) = q(t)b(t) = r(t) with $\deg(r(t)) < \deg(b(t))$ and q(t), r(t) unique.

5 PIDs and UFDs

5.1 Euclidian domains

Definition 5.1.1 (Euclidian domain). An integral domain R is a Euclidian domain if there exists some $\phi: R^* \to \mathbb{N}_0$ satisfying:

- 1. $\phi(ab) \leq \phi(a)$ for all $a, b \neq 0$,
- 2. for all $a, b \in R$ there exists $q, r \in R$ with a = qb + r with r = 0 or $\phi(r) \leq \phi(b)$.

5.2 Principal ideal domains

Definition 5.2.1 (Principal integral domain). An integral domain R is a **principal integral domain** iff every ideal of R is principal.

Theorem 5.2.2. R is a Euclidian domain $\implies R$ is a principal integral domain.

Proof.

Corollary 5.2.3. F is a field $\implies F[t]$ is a PID.

5.3 Unique factorisation domains

Definition 5.3.1 (Unique factorisation domain). An integral domain R is a **unique factorisation domain** iff every element of $R \setminus R^{\times}$ can be written as the product of a single unit and finitely many irreducibles in R which is unique up to rearrangement.

Definition 5.3.2 (Division). Given a, b in the integral domain R, we say a divides b, written a|b iff b = ra for some $r \in R$ and **properly divides** if $r \notin R^{\times}$.

Lemma 5.3.3. Given $p, a, b \in R$ a UFD, if p is irreducible then $p|ab \implies p|a$ or p|b.

Lemma 5.3.4. There is no infinite sequence of non-zero $r_1, r_2, \ldots \in R$ a UFD such that r_{n+1} properly divides r for all $n \ge 1$.

Theorem 5.3.5. The integral domain \mathbb{R} is a UFD iff the properties in Lemma 5.3.3 and Lemma 5.3.4 hold.

Theorem 5.3.6. Every principal ideal domain is a unique factorisation domain.

6 Fields

6.1 Vector spaces

Throughout this section let k be a field.

Definition 6.1.1 (Vector space). A k-vector space V is an abelian group with an action of k on the elements of V satisfying

- 1. $1_k v = v$ for all $v \in V$,
- 2. (x+y)V = xv + yv for all $x, y \in k$ and $v \in V$,

3. x(v+w) = xv + xw for all $x \in k$ and $v, w \in V$.

Proposition 6.1.2. If $\operatorname{ch} k = 0$ then k contains a unique subfield isomorphic to \mathbb{Q} . Otherwise, if $\operatorname{ch} k = p$ then k contains a unique subfield isomorphic to \mathbb{F}_p .

Theorem 6.1.3. Every finite field has p^n elements for some prime p and $n \in \mathbb{N}$.

6.2 Field extensions

Definition 6.2.1 (Field extension). A field extension F of k is a k-vector space.

Proposition 6.2.2. All homomorphisms between fields and rings are injective.

Proof. The only possible maps between fields are field extensions, the only proper ideal of a field is the zero ideal. \Box

Definition 6.2.3 (Finite field extension). An extension of the fields $k \subset K$ is **finite** iff K is a finite dimensional vector space over k with $\dim K$ the **degree** of the extension

Remark 6.2.5. Degree 2 and 3 field extensions are called quadratics and cubics respectively.

6.3 Constructing fields

Lemma 6.3.1. Given R a PID with $a \neq 0 \in R$, aR is maximal iff a is irreducible.

Proof.

Corollary 6.3.2. Given R a PID with reducible $a \in R$, R/aR is a field.

Theorem 6.3.3. A polynomial $f(t) \in k[t]$ of degree 2 or 3 is irreducible iff it has no root in k.

Definition 6.3.4 (Non-Square). $a \in k$ is non-square if there is no element $b \in k$ with $b^2 = a$.

Lemma 6.3.5. Let p be an odd prime. The field \mathbb{F}_p contins (p-1)/2 non-squares. For all non-square $a \in \mathbb{F}_p$, $t^2 - a$ is irreducible in $\mathbb{F}_p[t]$.

Theorem 6.3.6. For all $p(t) \in k[t]$, there exists a finite field extension $k \subset K$ such that:

$$p(t) = c \prod_{i=1}^{n} (t - a_i),$$

for some $c \in k^{\times}$ and $a_i \in K$ for all $i \in [1, n]$.

6.4 Existence of finite fields

Theorem 6.4.1. Let k have characteristic $p \neq 0$, for all $x, y \in k$ and $m \in \mathbb{Z}^{\geq 0}$,

$$(x+y)^{p^m} = x^{p^m} + y^{p^m}.$$

Definition 6.4.2 (Derivative). Let $p(t) = a_0 + a_1 t + \ldots + a_n t^n \in k[t]$, the derivative of p(t) is

$$p'(t) := a_1 + 2a_2t + \ldots + na_nt^{n-1}.$$

Lemma 6.4.3. Let $p(t) = (x - a_1)(x - a_2) \dots (x - a_n) \in k[t]$, $a_i \neq a_j$ for all $i \neq j$ iff p(t) and p'(t) have no common roots.

Theorem 6.4.4. For all prime p and natural n, there exists a field with p^n elements.

Chapter 3

Lebesgue Measure and Integration

Lectured by Someone Typed by Yu Coughlin Season Year

Introduction

The following are complementary reading for the course.

- G. Grimmett and D. J. A. Welsh, Probability: An Introduction, 1986
- J. K. Blitzstein and J. Hwang, Introduction to Probability, 2019
- D. F. Anderson et al, Introduction to Probability, 2018
- S. M. Ross, Introduction to Pro ability Models, 2014
- G. Grimmett and D. Stirzaker, Probability and Random Processes, 2001
- G. Grimmett and D. Stirzaker, One Thousand Exercises in Probability, 2009

Lecture 1 Monday 30/10/2023

1 Motivation

- 2 Measures
- 2.1 Algebras and σ -algebras
- 2.2 Measures
- 2.3 Complete measure spaces
- 3 Constructing measures
- 3.1 Pre-measure
- 3.2 Outer measure
- 3.3 Restriction
- 3.4 Lebesgue measure
- 4 Measurable functions
- 4.1 Defintion
- 4.2 Properties
- 4.3 Continuity
- 5 Lebesgue integral
- 5.1 Construction
- 5.2 Properties
- 6 Convergence
- 6.1 Monotone convergence
- 6.2 Fatou's lemma
- 6.3 Lebesgue dominated convergence
- 6.4 Vitali's theorem
- 7 L^p spaces
- 7.1 Norms
- 7.2 L^p spaces
- 7.3 Normed vector spaces
- 7.4 Completeness
- 8 Product measures
- 8.1 Products of sets
- 8.2 σ -algebras on product sets

17

- 8.3 Product measures
- 9 Fubini's theorem
- 9.1 Motivations
- 9.2 Setup
- 9.3 Fubini's theorem
- 10 Differentiation

Chapter 4

Categories

Lectured by noone Typed by Yu Coughlin Season Year

Introduction

The following are complementary reading for the course.

- G. Grimmett and D. J. A. Welsh, Probability: An Introduction, 1986
- J. K. Blitzstein and J. Hwang, Introduction to Probability, 2019
- D. F. Anderson et al, Introduction to Probability, 2018
- S. M. Ross, Introduction to Pro ability Models, 2014
- G. Grimmett and D. Stirzaker, Probability and Random Processes, 2001
- G. Grimmett and D. Stirzaker, One Thousand Exercises in Probability, 2009

1 Basic definitions

1.1 Categories

Definition 1.1.1 (Category). A category \mathcal{C} contains the following data:

- 1. a collection of objects, $Ob(\mathcal{C})$,
- 2. for every $x, y \in \text{Ob}(\mathcal{C})$ a collection of morphisms $\text{Hom}_{\mathcal{C}}(x, y)$ from x to y,
- 3. an identity morphism $id_x \in Hom_{\mathcal{C}}(x,x)$ for all $x \in Ob(\mathcal{C})$,
- 4. a composition map of morphisms, $\circ : \operatorname{Hom}_{\mathcal{C}}(y,z) \times \operatorname{Hom}_{\mathcal{C}}(x,y) \to \operatorname{Hom}_{\mathcal{C}}(x,z)$ for all $x,y,z \in \operatorname{Ob}(\mathcal{C})$.

Which satisfy the two axioms:

- 1. for all $f \in \operatorname{Hom}_{\mathcal{C}}(x,y)$ with $x,y \in \operatorname{Ob}(\mathcal{C})$ we have $f \circ \operatorname{id}_x = f = \operatorname{id}_y \circ f$,
- 2. for compatible morphisms f, g, h we have $f \circ (g \circ h) = (f \circ g) \circ h$.

We will use the shorthand $x \in \mathcal{C}$ for $x \in \text{Ob } \mathcal{C}$, Hom(x,y) for $\text{Hom}_{\mathcal{C}}(x,y)$ when \mathcal{C} is obvious and End(x) for Hom(x,x).

Note 1.1.2. Note that in our definition the term *collection* is used instead of set, this is commonplace and necessary to prevent paradoxes when constructing the category of sets.

Examples 1.1.3. The following are all categories:

- 1. Set with sets as objects and functions as their morphisms,
- 2. Grp with groups as objects and their homomorphisms as morphisms,
- 3. Ab, Grp restricted to abelian groups,
- 4. for a field k, $Vect_k$ with k-vector spaces as objects and linear transformations as morphisms,
- 5. Cat with categories as objects and soon to be defined functors as morphisms,
- 6. Top, Rng, Meas, Poset, Man with their objects and morphisms all defined similarly
- 7. Given a category \mathcal{C} , \mathcal{C}^{op} wich has the same opjects as \mathcal{C} but $\operatorname{Hom}_{\mathcal{C}^{op}}(x,y) = \operatorname{Hom}_{\mathcal{C}}(y,x)$ for all $x,y \in \mathcal{C}$,
- 8. Any set X with objects as elements in X and no morphisms except the identities
- 9. (\mathbb{R}, \leq) with objects as \mathbb{R} and a morphisms from x to y iff $x \leq y$ for all $x, y \in \mathbb{R}$.

Definition 1.1.4 (Isomorphism). A morphism $f \in \text{Hom}(x, y)$ is an **isomorphism** iff there is a morphism $f^{-1} \in \text{Hom}(y, x)$ with $f \circ f^{-1} = \text{id}_y$ and $f^{-1} \circ f = \text{id}_x$.

1.2 Functors

Definition 1.2.1 ((Covariant) Functor). Given categories \mathcal{C}, \mathcal{D} a (covariant) functor $F : \mathcal{C} \to \mathcal{D}$ is the following data:

- 1. a map $Ob(\mathcal{C}) \to Ob(\mathcal{D})$ (also denoted F),
- 2. for any two objects $x, y \in \mathcal{C}$ a map $\operatorname{Hom}_{\mathcal{C}}(x, y) \to \operatorname{Hom}_{\mathcal{D}}(F(x), F(y))$ (also also denoted F)

satisfying the properties:

- 1. for all $x \in \mathcal{C}$, $F(\mathrm{id}_x) = \mathrm{id}_{F(x)}$,
- 2. for all x, y, z with f, g in $\operatorname{Hom}_{\mathcal{C}}(y, z), \operatorname{Hom}_{\mathcal{C}}(x, y), F(f \circ g) = F(f) \circ F(g)$.

Definition 1.2.2 (Contravariant functor). A **contravariant functor** from \mathcal{C} to \mathcal{D} is a covariant functor from \mathcal{C}^{op} to \mathcal{D} .

Definition 1.2.3 (Hom-functor). The **hom-functor** for a given category \mathcal{C} is $\operatorname{Hom}_{\mathcal{C}}: \mathcal{C}^{op} \times \mathcal{C} \to \operatorname{Set}$ sending a pair of elements $c, d \in \mathcal{C}$ to $\operatorname{Hom}_{\mathcal{C}}(c, d)$.

1.3 Natural transformations

Definition 1.3.1 (Natural transformation). Given categories \mathcal{C}, \mathcal{D} with functors $F, G : \mathcal{C} \to \mathcal{D}$, a **natural** transformation $\eta : F \to G$ consists of morphisms η_x for all $x \in \mathcal{C}$ such that the diagram,

$$F(x) \xrightarrow{F(f)} F(y)$$

$$\downarrow^{\eta_x} \qquad \downarrow^{\eta_y}$$

$$G(x) \xrightarrow{G(f)} G(y)$$

commutes for all $x, y \in \mathcal{C}$ and $f \in \text{Hom}_{\mathcal{C}}(x, y)$.

Remark 1.3.2. By constructing the category of functors from \mathcal{C} to \mathcal{D} , denoted $\text{Fun}(\mathcal{C}, \mathcal{D})$, morphisms are natural transformations. **Natural isomorphisms** are defined as isomorphisms in this category.

1.4 Equivalence of categories

Definition 1.4.1 (Equivalence). Given categories \mathcal{C}, \mathcal{D} an **equivalence of categories** is a pair of functors $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$ with natural isomorphisms $FG \xrightarrow{\sim} \mathrm{id}_{\mathcal{D}}$ and $\mathrm{id}_{\mathcal{C}} \xrightarrow{\sim} GF$.

Definition 1.4.2 (Adjunction). An **adjuction** between categories \mathcal{C}, \mathcal{D} is a pair of functors $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$ such that for all $x \in \mathcal{C}$ and $y \in \mathcal{D}$, there exists an $\eta_{x,y} : \operatorname{Hom}_{\mathcal{C}}(x, G(y)) \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{D}}(F(x), y)$ such that the diagram

$$\operatorname{Hom}_{\mathcal{D}}(F(x'), y) \xrightarrow{\circ F(f)} \operatorname{Hom}_{\mathcal{D}}(F(x), y) \xrightarrow{g \circ} \operatorname{Hom}_{\mathcal{D}}(F(x), y')$$

$$\downarrow^{\eta_{x', y}} \qquad \downarrow^{\eta_{x, y}} \qquad \downarrow^{\eta_{x, y'}}$$

$$\operatorname{Hom}_{\mathcal{C}}(x', G(y)) \xrightarrow{\circ f} \operatorname{Hom}_{\mathcal{C}}(x, G(y)) \xrightarrow{G(g) \circ} \operatorname{Hom}_{\mathcal{C}}(x, G(y'))$$

commutes for all $x, x' \in \mathcal{C}$; $y, y' \in \mathcal{D}$; $f: x \to x'$ and $g: y \to y'$.

Theorem 1.4.3. If F, G form an equivalence of the categories C, \mathcal{D} then F, G are an adjunction.

Examples 1.4.4 (Adjunctions in group theory). Consider the **forgetful functor** $F: Ab \to Grp$ which simply forgets the Abelian property of a group. We also have the **abeliantisation functor** $(-)^{ab}: Grp \to Ab$ which maps $G \mapsto G^{ab} := G/[G, G]$. F and $(-)^{ab}$ for an adjuction between Grp and Ab.

1.5 Representable functors

Definition 1.5.1 (Yoneda functor). Given some x in a category C, there is a functor $\operatorname{Hom}_{C}(-,x): C^{op} \to \operatorname{Set}$ which satisfies the required properties to have the **Yoneda functor**:

$$Y: \mathcal{C} \to \operatorname{Fun}(\mathcal{C}^{op}, \operatorname{Set}).$$

Which sends an element $y \in \mathcal{C}$ to the functor from objects in \mathcal{C}^{op} to the set of morphisms from these objects to y.

Lemma 1.5.2. The Yoneda functor and the hom-functor form an adjunction in Cat.

Definition 1.5.3 (Representable). A functor $F \in \text{Fun}(\mathcal{C}^{op}, \text{Set})$ is **representable** if $F \cong Y(c)$ for some $c \in \mathcal{C}$.

Example 1.5.4. Consider the functor $F : Set^{(op)} \to Set$ sending a set to its powerset. F is clearly isomorphic the functor $Hom(-, \{0, 1\})$ from subsets to indicator functions on X. This is the image of the Yoneda functor so F is representable.

1.6 Yoneda lemma

Theorem 1.6.1 (Yoneda lemma). Given some $x \in \mathcal{C}$ and $F \in \text{Fun}(\mathcal{C}^{op}, \text{Set})$ we have

$$\operatorname{Hom}_{\operatorname{Fun}(\mathcal{C}^{op},\operatorname{Set})}(Y(x),F)\cong F(x).$$

Remark 1.6.2. This is a generalisation of Cayley's theorem which shows that we can study a group by instead studying the permutations of its underlying set.