§ 1.5. Nested Chantifiers.

1. Nested Quantifiers: often necessary to express the meanty of sentences in English as well as important concepts in Cs are Math.

Ex. $\forall x \forall y (x+y=y+x)$

Translate: X+y=y+x for all real # x and y. (order doesn't matter)

= $\forall y \forall x (x+y=y+x)$

∃x dy (xy=1) (order doesn't marter)

Trunslate: there is a pair of real # x and y such that x. y=1

Ex. Y Xx = y (x+y=0) XxyER True!

For every Real # X, there is a real # Y s.t X+y=0.

"Corresponding"

Y,

x = 1 y = -1 x = -1000, y = 1000 x = 1 y = -1 x = -1000, y = 1000 x = 1 y = -1 x = -1000, y = 1000

2) 3x y (x+y=0) x,yer False yn

Translate: there is a \times , for all real # y. S.t $\times +y = 0$.

impossible let there is no such x can satisfy for all ys.

Ex. $\exists x \forall y (xy = 0)$ x = 0 $\forall 0. y = 0$ The!

Ex. Yxer Byer (xty=1) Tme. y = 1 - x

textbook: \$1.5 page 63.

	Stutement	Tme?	False?	
	₩ ∀y p(%y) ∀y ₩ p(%y)	p(xiy)=Tme for ency pair (x,y)	there is a part for which $p(x,y) = F$	Counter - example
	=x =y p(x,y)	ohe pair (Xy)=T	Every pair is false	-
	∀x 3y p(x,y)	For evy x, those is a correspondity y	There is an x set play)=False for ong y.
_	∃x ¥y pixiy).	one x words for ally	For eny X, then is a Co	mespadiy y for prxiy)=F
Ex		$(x^{2}+y^{2}=6)$ x,y $(x^{2}+y^{2}=5)$ x,y	EZ T (2,1	(-1, 2) (1, -2) (-1, -2)