StarAl 2015

- Fifth International Workshop on Statistical Relational AI
- Statistical Relational P
- At the 31st Conference on Uncertainty in Artificial Intelligence (UAI) (right after ICML)
- In Amsterdam, The Netherlands, on July 16.
- Paper Submission: May 15
 - Full, 6+1 pages
 - Short, 2 page position paper or abstract

What we can't do (yet, well)?

Approximate Symmetries in Lifted Inference

Guy Van den Broeck

(on joint work with Mathias Niepert and Adnan Darwiche)

KU Leuven

Overview

- Lifted inference in 2 slides
- Complexity of evidence
- Over-symmetric approximations
- Approximate symmetries
- Conclusions

Overview

- Lifted inference in 2 slides
- Complexity of evidence
- Over-symmetric approximations
- Approximate symmetries
- Conclusions

Lifted Inference

- In AI: exploiting symmetries/exchangeability
- Example: WebKB

```
symmetry
Domain:
url ∈ { "google.com", "ibm.com", "aaai.org", ... }
Weighted clauses:
0.049 CoursePage(x) ^ Linked(x,y) => CoursePage(y)
-0.031 FacultyPage(x) ^ Linked(x,y) => FacultyPage (y)
0.235 HasWord("Lecture",x) => CoursePage(x)
0.048 HasWord("Office",x) => FacultyPage(x)
```


The State of Lifted Inference

- UCQ database queries: solved
 PTIME in database size (when possible)
- MLNs and related
 - Two logical variables: solved
 Partition function PTIME in domain size (always)
 - Three logical variables: #P₁-hard
- Bunch of great approximation algorithms
- Theoretical connections to exchangeability

Overview

- Lifted inference in 2 slides
- Complexity of evidence
- Over-symmetric approximations
- Approximate symmetries
- Conclusions

Problem: Prediction with Evidence

Add evidence on links:

```
Linked("google.com", "gmail.com")
Linked("google.com", "aaai.org")

Symmetry google.com – ibm.com? No!

Linked("ibm.com", "watson.com")

Linked("ibm.com", "ibm.ca")
```

Add evidence on words

```
HasWord("Android", "google.com")

HasWord("G+", "google.com")

Symmetry google.com – ibm.com? No!

HasWord("Blue", "ibm.com")

HasWord("Computing", "ibm.com")
```

Complexity in Size of "Evidence"

- Consider a model liftable for model counting:
 - 3.14 FacultyPage(x) \land Linked(x,y) \Rightarrow CoursePage(y)
- Given database DB, compute P(Q|DB). Complexity in DB size?
 - Evidence on unary relations: Efficient

FacultyPage("google.com")=0, CoursePage("coursera.org")=1, ...

Evidence on binary relations: #P-hard

Linked("google.com","gmail.com")=1, Linked("google.com","aaai.org")=0

Intuition: Binary evidence breaks symmetries

Consequence: Lifted algorithms reduce to ground (also approx)

Approach

- Conditioning on binary evidence is hard
- Conditioning on unary evidence is efficient
- Solution: Represent binary evidence as unary
- Matrix notation:

$$e = p(a, a) \land p(a, b) \land \neg p(a, c) \land \cdots \land \neg p(d, c) \land p(d, d)$$

$$\mathbf{P} = \begin{bmatrix} p(X,Y) & Y = a & Y = b & Y = c & Y = d \\ X = a & 1 & 0 & 0 \\ X = b & 1 & 0 & 1 \\ X = c & 0 & 1 & 0 \\ X = d & 1 & 0 & 1 \end{bmatrix}$$

- Solution: Represent binary evidence as unary
- Case 1: $\forall X, \ \forall Y, \ \mathrm{p}(X,Y) \Leftrightarrow \mathrm{q}(X) \wedge \mathrm{r}(Y)$

$$\mathbf{P} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

$$e = \neg p(a, a) \land \neg p(a, b) \land \cdots \land \neg p(d, c) \land p(d, d)$$

- Solution: Represent binary evidence as unary
- Case 1: $\forall X, \ \forall Y, \ \mathrm{p}(X,Y) \Leftrightarrow \mathrm{q}(X) \wedge \mathrm{r}(Y)$

$$\mathbf{P} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

$$e = \neg p(a, a) \land \neg p(a, b) \land \cdots \land \neg p(d, c) \land p(d, d)$$

- Solution: Represent binary evidence as unary
- Case 1: $\forall X, \ \forall Y, \ \mathrm{p}(X,Y) \Leftrightarrow \mathrm{q}(X) \wedge \mathrm{r}(Y)$

$$\mathbf{P} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}^{\mathsf{T}} = \mathbf{q} \, \mathbf{r}^{\mathsf{T}}$$

$$e = \neg p(a, a) \land \neg p(a, b) \land \cdots \land \neg p(d, c) \land p(d, d)$$

- Solution: Represent binary evidence as unary
- Case 1: $\forall X, \ \forall Y, \ \mathrm{p}(X,Y) \Leftrightarrow \mathrm{q}(X) \wedge \mathrm{r}(Y)$

$$\mathbf{P} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}^{\mathsf{T}} = \mathbf{q} \, \mathbf{r}^{\mathsf{T}}$$

$$e = \neg p(a, a) \land \neg p(a, b) \land \cdots \land \neg p(d, c) \land p(d, d)$$

$$e = \neg q(a) \land q(b) \land \neg q(c) \land q(d) \quad \text{old}$$
$$\land r(a) \land \neg r(b) \land \neg r(c) \land r(d) \quad \text{lod}$$

- Solution: Represent binary evidence as unary
- Case 2: $\forall X, \ \forall Y, \ \mathrm{p}(X,Y) \Leftrightarrow (\mathrm{q}_1(X) \wedge \mathrm{r}_1(Y)) \ \lor (\mathrm{q}_2(X) \wedge \mathrm{r}_2(Y)) \ \lor \ldots \ \lor (\mathrm{q}_n(X) \wedge \mathrm{r}_n(Y))$

- Solution: Represent binary evidence as unary
- Case 2: $\forall X, \ \forall Y, \ \mathrm{p}(X,Y) \Leftrightarrow (\mathrm{q}_1(X) \wedge \mathrm{r}_1(Y)) \ \lor (\mathrm{q}_2(X) \wedge \mathrm{r}_2(Y)) \ \lor \ldots \ \lor (\mathrm{q}_n(X) \wedge \mathrm{r}_n(Y))$

$$\mathbf{P} = \mathbf{q}_1 \, \mathbf{r}_1^\intercal \lor \mathbf{q}_2 \, \mathbf{r}_2^\intercal \lor \dots \lor \mathbf{q}_n \, \mathbf{r}_n^\intercal = \mathbf{Q} \, \mathbf{R}^\intercal$$
where $(\mathbf{Q} \, \mathbf{R}^\intercal)_{i,j} = \bigvee_r \mathbf{Q}_{i,r} \land \mathbf{R}_{j,r}$

Boolean Matrix Factorization

Decompose

$$\mathbf{P} = \mathbf{q}_1 \, \mathbf{r}_1^\intercal \vee \mathbf{q}_2 \, \mathbf{r}_2^\intercal \vee \dots \vee \mathbf{q}_n \, \mathbf{r}_n^\intercal = \mathbf{Q} \, \mathbf{R}^\intercal$$

- In Boolean algebra, where 1+1=1
- Minimum n is the Boolean rank
- Always possible

- Solution: Represent binary evidence as unary
- Example: $\mathbf{P} = \mathbf{q}_1 \, \mathbf{r}_1^\intercal \lor \mathbf{q}_2 \, \mathbf{r}_2^\intercal \lor \cdots \lor \mathbf{q}_n \, \mathbf{r}_n^\intercal = \mathbf{Q} \, \mathbf{R}^\intercal$

$$\mathbf{P} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \lor \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \lor \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \lor \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

- Solution: Represent binary evidence as unary
- Example: $\mathbf{P} = \mathbf{q}_1 \, \mathbf{r}_1^\intercal \lor \mathbf{q}_2 \, \mathbf{r}_2^\intercal \lor \cdots \lor \mathbf{q}_n \, \mathbf{r}_n^\intercal = \mathbf{Q} \, \mathbf{R}^\intercal$

$$\mathbf{P} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \lor \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \lor \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \lor \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

- Solution: Represent binary evidence as unary
- Example: $\mathbf{P} = \mathbf{q}_1 \, \mathbf{r}_1^\intercal \lor \mathbf{q}_2 \, \mathbf{r}_2^\intercal \lor \cdots \lor \mathbf{q}_n \, \mathbf{r}_n^\intercal = \mathbf{Q} \, \mathbf{R}^\intercal$

$$\mathbf{P} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \lor \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \lor \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \lor \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

- Solution: Represent binary evidence as unary
- Example: $\mathbf{P} = \mathbf{q}_1 \, \mathbf{r}_1^\intercal \lor \mathbf{q}_2 \, \mathbf{r}_2^\intercal \lor \cdots \lor \mathbf{q}_n \, \mathbf{r}_n^\intercal = \mathbf{Q} \, \mathbf{R}^\intercal$

$$\mathbf{P} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \lor \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \lor \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \lor \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

Boolean rank n=3
$$= \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}^\mathsf{T}$$

Theoretical Consequences

• Theorem:

Complexity of computing Pr(q|e) in SRL is polynomial in |e|, when e has bounded Boolean rank.

Boolean rank

- key parameter in the complexity of conditioning
- says how much lifting is possible

Analogy with Treewidth in Probabilistic Graphical Models

<u>Probabilistic</u> <u>graphical models:</u>

1. Find tree decomposition

- 1. Perform inference
 - Exponential in (tree)width of decomposition
 - Polynomial in size of Bayesian network

SRL Models:

- 1. Find Boolean matrix factorization of evidence
- 2. Perform inference
 - Exponential in Boolean rank of evidence
 - Polynomial in size of evidence database
 - Polynomial in domain size

Overview

- Lifted inference in 2 slides
- Complexity of evidence
- Over-symmetric approximations
- Approximate symmetries
- Conclusions

Over-Symmetric Approximation

- Approximate Pr(q|e) by Pr(q|e')
 Pr(q|e') has more symmetries, is more liftable
- E.g.: Low-rank Boolean matrix factorization

$$\mathbf{P} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \lor \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \lor \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \lor \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

Boolean rank 3

Over-Symmetric Approximation

- Approximate Pr(q|e) by Pr(q|e')
 Pr(q|e') has more symmetries, is more liftable
- E.g.: Low-rank Boolean matrix factorization

$$\mathbf{P} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \lor \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \lor \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \lor \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Boolean rank 2 approximation

$$\approx \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & \mathbf{0} & \mathbf{0} \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

Over-Symmetric Approximations

- OSA makes model more symmetric
- E.g., low-rank Boolean matrix factorization

```
Link ("aaai.org", "google.com")
Link ("google.com", "aaai.org")
Link ("google.com", "aaai.org")
Link ("google.com", "aaai.org")
- Link ("google.com", "gmail.com")
- Link ("google.com", "gmail.com")
- Link ("aaai.org", "ibm.com")
- Link ("aaai.org", "ibm.com")
- Link ("ibm.com", "aaai.org")
```

google.com and ibm.com become symmetric!

Markov Chain Monte-Carlo

Gibbs sampling or MC-SAT

- Problem: slow convergence, one variable changed
- One million random variables: need at least one million iteration to move between two states

Lifted MCMC: move between symmetric states

Lifted MCMC on WebKB

Rank 1 Approximation

Rank 2 Approximation

Rank 5 Approximation

Rank 10 Approximation

Rank 20 Approximation

Rank 50 Approximation

Rank 75 Approximation

Rank 100 Approximation

Rank 150 Approximation

Trend for Increasing Boolean Rank

Best Case

Overview

- Lifted inference in 2 slides
- Complexity of evidence
- Over-symmetric approximations
- Approximate symmetries
- Conclusions

Problem with OSAs

- Approximation can be crude
- Cannot converge to true distribution
- Lose information about subtle differences
 - Real distribution

```
Pr(PageClass("Faculty", "http://.../~pedro/")) = 0.47
Pr(PageClass("Faculty", "http://.../~luc/")) = 0.53
```

OSA distribution

```
Pr(PageClass("Faculty", "http://.../~pedro/")) = 0.50
Pr(PageClass("Faculty", "http://.../~luc/")) = 0.50
```

Approximate Symmetries

- Exploit approximate symmetries:
 - Exact symmetry g: Pr(x) = Pr(xg)
 E.g. Ising model
 without external field

Approximate symmetry g: Pr(x) ≈ Pr(xg)
 E.g. Ising model with external field

Orbital Metropolis Chain: Algorithm

- Given symmetry group G (approx. symmetries)
- Orbit x^G contains all states approx. symm. to x
- In state x:
 - 1. Select **y** uniformly at random from **x**^G
 - 2. Move from **x** to **y** with probability min $\left(\frac{\Pr(y)}{\Pr(x)}, 1\right)$
 - 3. Otherwise: stay in x (reject)
 - 4. Repeat

Orbital Metropolis Chain: Analysis

- ✓ Pr(.) is stationary distribution
- ✓ Many variables change (fast mixing)
- ✓ Few rejected samples:

$$\Pr(\mathbf{y}) \approx \Pr(\mathbf{x}) \Rightarrow \min\left(\frac{\Pr(\mathbf{y})}{\Pr(\mathbf{x})}, 1\right) \approx 1$$

Is this the perfect proposal distribution?

Orbital Metropolis Chain: Analysis

- ✓ Pr(.) is stationary distribution
- ✓ Many variables change (fast mixing)
- ✓ Few rejected samples:

$$\Pr(\mathbf{y}) \approx \Pr(\mathbf{x}) \Rightarrow \min\left(\frac{\Pr(\mathbf{y})}{\Pr(\mathbf{x})}, 1\right) \approx 1$$

Is this the perfect proposal distribution?

Not irreducible...
Can never reach 0100 from 1101.

Lifted Metropolis-Hastings: Algorithm

- Given an orbital Metropolis chain M_s for Pr(.)
- Given a base Markov chain M_B that
 - is irreducible and aperiodic
 - has stationary distribution Pr(.)(e.g., Gibbs chain or MC-SAT chain)
- In state x:
 - 1. With probability α , apply the kernel of M_B
 - 2. Otherwise apply the kernel of M_S

Lifted Metropolis-Hastings: Analysis

Theorem [Tierney 1994]:

A mixture of Markov chains is irreducible and aperiodic if at least one of the chains is irreducible and aperiodic.

- ✓ Pr(.) is stationary distribution
- Many variables change (fast mixing)
- ✓ Few rejected samples
- ✓ Irreducible
- Aperiodic

Experiments: WebKB

Overview

- Lifted inference in 2 slides
- Complexity of evidence
- Over-symmetric approximations
- Approximate symmetries
- Conclusions

Take-Away Message

Two problems:

- Lifted inference gives exponential speedups in symmetric graphical models.
 But what about real-world asymmetric problems?
- 2. When there are **many variables**, MCMC is **slow**. How to sample quickly in large graphical models?

One solution: Exploit approximate symmetries!

Open Problems

- Find approximate symmetries
 - Principled (theory)
 - Is a type of machine learning?
 - During inference, not preprocessing?
- Give guarantees on approximation quality/convergence speed
- Plug in lifted inference from prob. databases

Lots of Recent Activity

- Singla, Nath, and Domingos (2014)
- Venugopal and Gogate (2014)
- Kersting et al. (2014)

Thanks

Example: Grid Models

(a) Ising - Iterations

(c) Chimera - Iterations

(b) Ising - Time

(d) Chimera - Time