Задача 6. Геометрия и Алгебра слов.

Анатолий Коченюк, команда ЛНМО $\#\mathbb{N}$ Февраль 2018

Аннотация

В этой статье решены первые два пункта исходной задачи. Доказано, что R- и X-эквивалентность – отношение эквивалентности. Доказаны несколько теорем на фиксированных наборах условий

Содержание

1	Условия и Определения	3
2	Задача 0.1 Х-эквивалентность – отношение эвивалентности	4
3	Задача 0.2	4
	1 пункт 4.1 a)	4 5 6
5	2 пункт 5.1 a)	7 7
6	Заключение	7

1 Условия и Определения

 $A=\{a_1,a_2,\ldots,a_m\}$ – алфавит. $\forall a\in A$ $\exists a^{-1}$. Множество таких элементов обозначим за A^{-1} . $\Sigma=A\cup A^{-1}$ – расширенный алфавит

Можно рассмотреть набор

$$\Sigma^* = \{\varepsilon, a_1, a_2, \dots, a_1^{-1}, a_2^{-1}, \dots, a_1 a_1, a_1 a_2, \dots, a_1 a_1^{-1}, a_1 a_2^{-1} \dots \}$$

всех слов, которые можно получить из алфавита Σ , где ε – пустое слово длины ноль.

На этом множестве определена операция $(\cdot): \Sigma \times \Sigma \to \Sigma$

Пример: $abaa \cdot ba = abaaba$

Будем коротко записывать $a^n = a \cdot a \cdot \ldots \cdot a$ (n раз) $= aa \ldots a$ (n раз)

Зафиксируем некоторый набор изометрий $X = \{x_1, x_2, \dots, x_m\} \subseteq Isom(\mathbb{R}^n)$ пространства \mathbb{R}^n

Мы можем компонировать изометрии между собой $xy := x \circ y$

 \forall изометрии х $\exists x^{-1}$, которая тоже является изометрией

Определим функцию $f_X: \Sigma^* \to Isom(\mathbb{R}^n)$, которая будет действовать следущим образом:

- 1. буквам a_i будет опоставляться x_i
- 2. буквам a_i^{-1} будет сопоставляться x_i^{-1}
- 3. образ слов будет вычисляться по реккурентному правилу $f_X(w_1w_2) = f_X(w_1) \circ f_X(w_2)$

Будем говорить, что два слова $u,w\in \Sigma^*$ X-эквивалентны, если $f_X(u)=f_X(w)$

Через W_X обозначим фактор-множество Σ^* по получаемому бинарному отношению

Через $R \subset \Sigma^*$ будем обозначать какой-то фиксированный набор слов, а слова из R будем называть пустыми (на геометрическом уровне пустые слова будут соответствовать тождественным изометриям)

Будем говорить, что два слова $u,w\in \Sigma^*$ R-эквивалентны и писать $u\equiv w,$ если u можно получить из w многократным повторением следущей опреации:

- 1. между любыми двумя буквами слова w (или с краю) можно вставить (приписать) любое слово из $\overline{R}:=R\cup\{\varepsilon\}\cup\{aa^{-1}|a\in A\}\cup\{a^{-1}a|a\in A\}$
- 2. А также из слова w можно вычеркнуть отрезок (часть), равную одному из слов в \overline{R} . (Считается, что если вычеркнуть из слова само млово, то останется слово длины 0, то есть ε)

Через $\langle \Sigma | R \rangle$ обозначим фактор-множество Σ^* по такому отношению эквивалентности.

Также введём множество движений (чаще отражений), сохраняющи х данную геометрическую фигуру Φ в \mathbb{R}^n – $Fix(\Phi):=\{\varphi\in Isom(\mathbb{R}^n)|\varphi(\Phi)=\Phi\}$

2 Задача 0.1 Х-эквивалентность – отношение эвивалентности

- 1. Рефлективность. Каждому слову из Σ^* соответсвует одна изометрия из X. Значит $\forall a \in \Sigma^* f_x(a) = f_x(a)$
- 2. Симметричность. $\forall a,b \in \Sigma^*: f_x(a) = f_x(b) \Rightarrow f_x(b) = f_x(a)$. Это очевидно, ведь отношение равенства симметрично.
- 3. Транзитивность. $\forall a, b, c \in \Sigma^* : f_x(a) = f_x(b) \& f_x(b) = f_x(c) \Rightarrow f_x(a) = f_x(c)$. Это очевидно, потому что отношение равенства транзитивно.

3 Задача 0.2

R-эквивалентность – отношение эвивалентности

- 1. Рефлексивность. $\forall a \in \Sigma^* a \equiv a$. Это очевидно, потому что мы можем получить слово из него же с помощью приписания а затем удаленияя слова длины 0 ε
- 2. Симметричность $\forall u, w \in \Sigma^* u \equiv w \Rightarrow w \equiv u. \ u \equiv w$, следовательно мы можем получить w припысыванием/вычёркиванием слов из \overline{R} . Но мы так же можем сделать обратные действия в обратном порядке и получить u из w. А значит $w \equiv u$ что и требовалось доказать
- 3. Транзитивность. $\forall u, w, v \in \Sigma^* u \equiv w\&w \equiv v \Rightarrow u \equiv v$. Нам нужно показать, что мы можем получить v из u. По условию мы можем получить w из u, а затем мы можем из w получить v. то есть существует искомая поледовательность действий, что и требовалось показать.

Теорема 3.1. если $u,v,w,w'\in \Sigma^*$ & w=w', то uwv=uw'v.

Доказательство. $w \equiv w' \Rightarrow$ существует поледовательность действий по прибавлению/вычёркиванию слов из \overline{R} для преобразования w в w'. То же самое преобразование мы можем совершить внутри слова uwv (так, что если в преобразовании приписывалось какое-то слово, то теперь оно будет вставляться между w и одним из двух других слов), получив uw'v, что и требовалось доказать

4 1 пункт

$$\begin{array}{ll} A = \{a,b\} & R = \{a^2,b^2,abab\} \\ \overline{R} = R \cup \{\varepsilon\} \cup \{cc^{-1}|c \in A\} \cup \{c^{-1}c|c \in A\} \end{array}$$

4.1 a)

Теорема 4.1. $\forall x \in \Sigma^* \quad \exists y \in \{\varepsilon, a, b, ab\} : x \equiv y$

рассмотрим несколько длин слов и попробуем сделать вывод

0. n = 0:

Слово длинны $0 - \varepsilon$ он эквивалентен сам себе по рефлексивности R-эквивалентности

- 1. n = 1:
 - a, b эквивалентны себе
 - $\bullet \ a^{-1} = a^{-1}a^2 = a^{-1}aa = a$

- $b^{-1} \equiv b^{-1}b^2 = b^{-1}bb \equiv b$
- 2. n = 2: Существует 16 случаев:
 - так как $a\equiv a^{-1}$ и $b\equiv b^{-1}$ то $\varepsilon\equiv a^2=aa\equiv aa^{-1}\equiv a^{-1}a\equiv a^{-1}a^{-1}$ и $\varepsilon\equiv b^2=bb\equiv bb^{-1}\equiv b^{-1}b\equiv b^{-1}b^{-1}$
 - по той же причине

$$ab\equiv ab^{-1}\equiv a^{-1}b\equiv a^{-1}b^{-1}$$
 и
$$ba\equiv ba^{-1}\equiv b^{-1}a\equiv b^{-1}a^{-1}$$
 и
$$ba\equiv baabab=ba^2bab\equiv bbab=b^2ab\equiv ab\equiv \varepsilon$$

.....

3. n=3 : т.е. новое слово имеет вид cs, где $c\in \Sigma$ и s – слово длинны 2. По предыдущему пункту $s\equiv \varepsilon \vee s\equiv ab$

 ε : тогда слово имеет вид $c\varepsilon\equiv c$. По первому пункту слово длины 1 $c\equiv a\vee c\equiv b$

ab: тогда слово имеет вид cab

- $-c=a\equiv a^{-1}$ тогда по предыдущему пункту $ca\equiv a^{-1}a\equiv \varepsilon$, а тогда $cab\equiv \varepsilon b\equiv b$
- $-c=b\equiv b^{-1}$ тогда по предыдущему пункту $cab\equiv cba$ далее аналогично $cab\equiv a$
- 4. n=4: тогда по предыдущему пункту $cs\equiv ca\lor cs\equiv cb$, что в свою очередь R-эквивалентно либо ε либо ab

Заметим, что далее можно применить метод математическо индукции.

Таким образом любое слово чётной длины будет R-эквивалентно либо ε либо ab, а нечётной – a или b

доказано

4.2 б)

Необходимо найти пару из двухэлементного множества изометрий $X = \{x,y\}$ и функции f_X , так, чтобы в этой паре понятия R- и X- эквивалентности совпадали.

По пункту [a] $a \equiv a^{-1}$. следовательно $f_X(a) = f_X(a^{-1})$ тогда скажем, что они обе равны x аналогично $f_X(b) = f_X(b^{-1}) = y$

При этом было бы очень хорошо, если бы при повторном применении обеих ихометрий получался бы id и была бы коммутативность относительно композиции.

Для начала поищем в одном из самых прострых пространств вида $\mathbb{R}^n - \mathbb{R}^2$

Рассмотрим симметрии относительно кажой из осей, где x– симметрия относительно оси OX, а y – симметрия относительно оси OY.

Для доказательство того, что мы нашли то, что нам нужно рассмотрим все операции, используемые в R-эквивалентности

Докажем, что они все ни что иное, как композиция/удаление композиции с id, что никак не меняет ряд комозиций X-эквивалентности

- 1. добавление/удаление ε в реккуретной записи X-эквивалентности добавление/удаление композиции с id
- 2. добавление/удаление $a^2 \lor b^2$ аналогично

- 3. добавление/удаление abab в записи X-эквиалентности это $xyxy=x^2y^2=id$
- 4. добавление/удаление $cc^{-1}, c \in \Sigma$ это то же самое, что добавить в записи X-эквивалентности $vv^{-1}, v \in X$, но $vv^{-1} = id$

мы перебрали все операции с помощью которых мы доказывали R-эквивалентность и не одна из них не меняет ничего в композиционном ряду.

Таким образом для любого слова
$$c \in \Sigma^*$$
 $f_X(c) = \begin{cases} id \\ x \\ y \\ xy \end{cases}$ доказано

4.3 B)

Необходимо доказать, что никакие два слова из множества $\{\varepsilon, a, b, ab\}$ не R-эквивалентны друг другу

• $\varepsilon \not\equiv a$ любая операция по добавлению/удалению слов из \overline{R} изменяет длину слова на 2, то есть сохраняет чётность длины. ε – слово длины 0. a– слово длины 1. они разной чётности \Rightarrow не R-эквивалентны

По той же причине

 $\varepsilon \not\equiv b$

 $a \not\equiv ab$

 $b \not\equiv ab$

• $\varepsilon \not\equiv ab$

Допустим обратное $\varepsilon \equiv ab$

Тогда $abab \equiv ab\varepsilon \equiv ab$

Докажем, что без этого допущения это не так:

Каждое R-преобразование сохраняет чётность количества букв a и a^{-1} вместе взятых. Также и с (b, b^{-1}) . Это можно показать так. В множестве R лежат:

- $-a^2$ добавляет/удаляет чётное количество 'а-шек' не изменяя общую их чётность
- $-b^2$ аналогично
- abab изменяет количесвто и того и того на 2, всё ещё не меняя четность

В множестве \overline{R} помимо элементов из R также лежат:

- $-\varepsilon$ добавление/удаление которого не меняет количество букв вообще
- слова вида cc^{-1} , где $c \in \Sigma$ снова изменяет общее количество одной из двух букв на 2.

Тем самым abab точно не R-эквивалентно ab Так как чётность количества обоих букв изменилась. Но по нашему допущению это так. Противоречие??!

• $a \not\equiv b$ Допустим обратное $a \equiv b$. Также по пункту [a] мы знаем, что $a \equiv a^{-1}$ Таким образом $ab \equiv aa \equiv aa^{-1} \equiv \varepsilon$. Как можно видеть мы вышли на только что рассмотренный и доказанный случай.

5 2 пункт

Пусть $X = \{x, y\}$, где x, y — это нетривиальный перенос на вектор (1, 0) и нетривиальная скользящая симметрия в перпендикулярном направлении соответственно.

5.1 a)

Докажите, что xyx = y, то есть $xyxy^{-1} = id$.

Для связи этой теоремы с алгеброй и геометрией слов зададим алфавит $A = \{a, b\}$ и соответственно расширенный алфавит $\Sigma = \{a, b, a^{-1}, b^{-1}\}$

Теперь для связи с геометрией зададим плоскость с двумя перпендикулярными осями:

- ось ОХ. 0 отметим как ε . 1 отметим как a. При отдлении от нуля вправо степень a будет возрастать $(15 \to a^{15})$
 - -1 отметим как a^{-1} При отдалении влево будем увеличивать степень $(-15 \to (a^{-1})^{15})$
- Аналогично со второй осью ОҮ, только там будет использоваться b и b^{-1}

обозначим за $a^{-n} = (a^{-1})^n, n \in \mathbb{Z}$

фиксируем произвольные $n, m \in \mathbb{Z}$ и пронаблюдаем как действуют преобразования x и y:

- $x(a^nb^m) = x(n,m) = (n+1,m) = a^{n+1}b^m$
- $y(a^nb^m) = y(n,m) = (-n,m+1) = (a^{-n}b^{m+1})$

Теперь пронаблюдаем что делает хух:

 $xyx(a^nb^m) = x(y(x(n,m))) = x(y(n+1,m)) = x(-n-1,m+1) = (-n,m+1) = a^{-n}b^{m+1} = y(a^nb^m)$ Что и требовалось показать.

5.2 б)

Пусть $A = \{a,b\}$ и $R = \{abab^{-1}\} \subseteq \Sigma^*$. Определена функция f_X , переводящая a,b в x,y и продолжающаяся на все слова алфавита Σ по установленным в условии правилам. Докажите, что отношения R– и X–эквивалентности совпадают.

Как и раньше покажем, что любые преобразования связанные с R-эквивалентностью есть ничто иное, как (не)домножение

 ε Понятно что в реккурентной записи X-эквиалентности это всего лишь домножение на id и не домонжение на id, которое не меняет копмозиционный ряд

 $abab^{-1}$ $f_X(abab^{-1}) = xyxy^{-1}$, что по предыдущему пункту = idА значит аналогично ε его добавление/удаление ничего не меняет

$$cc^{-1}$$
, $c \in \Sigma$ $f_X(cc^{-1}) = uu^{-1} = id.u \in X$ Аналогично.

Таким образом никакое преобразование, связанное с R-эквивалентностью никак не меняет X-эквивалентность. что и требовалось показать.

6 Заключение

Автор полагает надежды, что весь материал, описанный в данной статье, будет понятен читателю любого уровня.

Список литературы:

[1] Юрай Громкович Теоритическая информатика изд. 3-е БХВ-Петербург