TF-IDF

Natalie Parde UIC CS 421

critique

	C ₁		critique		c _n
\mathbf{w}_1					
		- ''-			
critique	?	?	?	?	?
W _n					

One Approach: TF-IDF

- Term Frequency * Inverse Document Frequency
- Meaning of a word is defined by the counts of words in the same document, as well as overall
- To do this, a **co-occurrence matrix** is needed

TF-IDF originated as a tool for information retrieval.

- Rows: Words in a vocabulary
- Columns: Documents in a selection

TF-IDF originated as a tool for information retrieval.

- Rows: Words in a vocabulary
- Columns: Documents in a selection

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

As You

"wit" appears 3 times in Henry V

In a term-document matrix, rows can be viewed as word vectors.

- Each dimension corresponds to a document
- Words with similar vectors occur in similar documents

		As You Like It	Twelfth Night	Julius Caesar	Henry V
	battle	1	0	7	13
	good	114	80	62	89
	fool	36	58	11	4
	wit	20	15	2	3
į					

In a term-document matrix, rows can be viewed as word vectors.

	/					
	As You Like It	Twelfth Night	Julius Caesar	Henry V		
battle	1	0	7	13		
good	114	80	62	89		
fool	36	58	1	4		
wit	20	15	2	3		

Julius Caesar

Different Types of Context

- Documents aren't the most common type of context used to represent meaning in word vectors
- More common: word context
 - Referred to as a term-term matrix, word-word matrix, or term-context matrix
- In a word-word matrix, the columns are also labeled by words
 - Thus, dimensionality is |V| x |V|
 - Each cell records the number of times the row (target) word and the column (context) word co-occur in some context in a training corpus

How can you decide if two words occur in the same context?

- Common context windows:
 - Entire document
 - Cell value = # times the words co-occur in the same document
 - Predetermined span surrounding the target
 - Cell value = # times the words co-occur in this span of words

Example Context Window (Size = 4)

- Take each occurrence of a word (e.g., strawberry)
- Count the context words in the four-word spans before and after it to get a word-word co-occurrence matrix

is	traditonally	followed	by	cherry	pie,	а	traditional	dessert
often	mixed,	such	as	strawberry	rhubarb	pie.	Apple	pie
computer	peripherais	and	personal	digital	assistants.	These	devices	usually
а	computer.	This	includes	information	available	on	the	internet

Example Context Window (Size = 4)

 A simplified subset of a wordword co-occurrence matrix could appear as follows, given a sufficient corpus

is	traditionally	followed	by	cherry	pie,	а	traditional	dessert
often	mixed,	such	as	strawberry	rhubarb	pie.	Apple	pie
computer	peripherals	and	personal	digital	assistants.	These	devices	usually
а	computer.	This	includes	information	available	on	the	internet

aardvark data result pie computer sugar 25 cherry 8 9 442 60 19 strawberry 0 1 85 5 digital 1670 1683 information 3325 3982 378 5 13 0

Natalie Parde - UIC CS 421

Vector for "strawberry"

So far, our cooccurrence matrices have contained raw frequency counts of word cooccurrences.

- However, this isn't the best measure of association between words
 - Some words co-occur frequently with many words, so won't be very informative
 - the, it, they
- We want to know about words that cooccur frequently with one another, but less frequently across all texts

This is where TF-IDF comes in handy!

- Term Frequency: The frequency of the word t in the document d
 - $tf_{t,d} = count(t,d)$
- Document Frequency: The number of documents in which the word t occurs
 - Different from collection frequency (the number of times the word occurs in the entire collection of documents)

•
$$idf_t = \frac{N}{df_t}$$

- IDF is higher when the term occurs in fewer documents
- What is a document?
 - Individual instance in your corpus (e.g., book, play, sentence, etc.)
- It is often useful to perform these computations in log space
 - TF: $\log_{10}(tf_{t,d}+1)$
 - IDF: $\log_{10} idf_t$

Computing TF-IDF

Computing TF*IDF

- TF-IDF is then simply the combination of TF and IDF
 - $tfidf_{t,d} = tf_{t,d} \times idf_t$

• TF-IDF(battle, d_1) = ?

	d ₁	d_2	d_3	d ₄
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

- TF-IDF(battle, d_1) = ?
- TF(battle, d_1) = 1

- TF-IDF(battle, d_1) = ?
- TF(battle, d_1) = 1
- IDF(battle) = N/DF(battle) = 37/21 = 1.76

- TF-IDF(battle, d_1) = ?
- TF(battle, d_1) = 1
- IDF(battle) = N/DF(battle) = 37/21 = 1.76
- TF-IDF(battle, d₁) = 1 * 1.76 = 1.76

	d ₁	d ₂	d_3	d_4
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

- TF-IDF(battle, d_1) = ?
- TF(battle, d_1) = 1
- IDF(battle) = N/DF(battle) = 37/21 = 1.76
- TF-IDF(battle, d₁) = 1 * 1.76 = 1.76
- Alternately, TF-IDF(battle, d_1) = $log_{10}(1+1) * log_{10} 1.76 = 0.074$

	d ₁	d_2	d_3	d_4
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

- TF-IDF(battle, d_1) = ?
- TF(battle, d_1) = 1
- IDF(battle) = N/DF(battle) = 37/21 = 1.76
- TF-IDF(battle, d_1) = 1 * 1.76 = 1.76
- Alternately, TF-IDF(battle, d_1) = $log_{10}(1+1) * log_{10} 1.76 = 0.074$

	d ₁	d ₂	d ₃	d ₄
battle	0.074	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

To convert our entire word cooccurrence matrix to a TF-IDF matrix, we need to repeat this calculation for each element.

	d ₁	d ₂	d_3	d ₄
battle	0.074	0.000	0.220	0.280
good	0.000	0.000	0.000	0.000
fool	0.019	0.021	0.004	0.008
wit	0.049	0.044	0.018	0.022

How does the TF-IDF matrix compare to the original term frequency matrix?

	d ₁	d ₂	d_3	d ₄
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

battle	0.074	0.000	0.220	0.280
good	0.000	0.000	0.000	0.000
fool	0.019	0.021	0.004	0.008
wit	0.049	0.044	0.018	0.022

How does the TF-IDF matrix compare to the original term frequency matrix?

Occurs in every document ...not important in the overall scheme of things!

How does the TF-IDF matrix compare to the original term frequency matrix?

Increases the importance of rarer words like "battle"

Note that the TF-IDF model produces a sparse vector.

• **Sparse:** Many (usually most) cells have values of 0

	d ₁	d ₂	d ₃	d ₄
battle	0.074	0.000	0.220	0.280
good	0.000	0.000	0.000	0.000
fool	0.019	0.021	0.004	0.008
wit	0.049	0.044	0.018	0.022

Note that the TF-IDF model produces a sparse vector.

• Sparse: Many (usually most) cells have values of 0

	d₁	d ₂	d ₃	d ₄	d ₅	d ₆	d ₇
battle	0.1	0.0	0.0	0.0	0.2	0.0	0.3
good	0.0	0.0	0.0	0.0	0.0	0.0	0.0
fool	0.0	0.0	0.0	0.0	0.0	0.0	0.0
wit	0.0	0.0	0.0	0.0	0.0	0.0	0.0

This can be problematic!

- However, TF-IDF remains a useful starting point for vector space models
- Generally combined with standard machine learning algorithms
 - Logistic Regression
 - Naïve Bayes