Глубокие нейронные сети

K. B. Воронцов vokov@forecsys.ru

Этот курс доступен на странице вики-ресурса http://www.MachineLearning.ru/wiki «Машинное обучение (курс лекций, К.В.Воронцов)»

МФТИ ● пятница 5 февраля 2021

Содержание

- Обоснования глубоких нейронных сетей
 - Глубина важнее ширины
 - Ускорение сходимости
 - Векторизация сложных объектов
- 2 Свёрточные нейронные сети
 - Свёртки и пулинги для обработки изображений
 - Приложения: изображения, тексты, речь, игры
 - Обобщение: данные с локальными структурами
- Пекуррентные нейронные сети
 - Нейронные сети для обработки последовательностей
 - Сети долгой кратковременной памяти LSTM
 - Варианты LSTM, сети GRU и SRU

Глубокие нейронные сети (Deep Neural Network, DNN)

1965: первые глубокие нейронные сети

2012: свёрточная сеть для классификации изображений AlexNet

- *Архитектура сети* структура связей между нейронами, позволяющая наделять DNN нужными свойствами
- DNN позволяют принимать на входе и генерировать на выходе сложно структурированные данные

Ивахненко А. Г., Лапа В. Г. Кибернетические предсказывающие устройства. 1965. Krizhevsky A. et al. ImageNet classification with deep convolutional neural networks. 2012.

Глубина важнее ширины

 A_{LH}^n — семейство полносвязных многослойных сетей f(x,W): L слоёв, H нейронов в каждом слое, $x \in \mathbb{R}^n$, функции активации кусочно-линейные (ReLU, hard-tanh и т.п.).

Мера разнообразия семейства A_{LH}^n — максимальное число участков линейности f(x,W) — выпуклых многогранников в \mathbb{R}^n .

Пример. Участки линейности, n = 2, L = 3, H = 4:

Теорема. Разнообразие семейства A_{IH}^n растёт как $O(H^{nL})$.

M. Raghu et al. On the Expressive Power of Deep Neural Networks, 2016.

Избыточная параметризация может ускорять сходимость

Рассмотрим
$$t$$
-й шаг SGD: $\mathscr{L}(x_i w) \to \min_w, x_i, w \in \mathbb{R}^n, i \equiv i(t)$:

$$w^{t+1} := w^t - \eta x_i \mathcal{L}'(x_i w^t)$$

Пример избыточной параметризации: $\mathscr{L}(x_i w_1 v) \to \min_{w_1, v}, v \in \mathbb{R}$:

$$w_1^{t+1} := w_1^t - \eta x_i v^t \mathcal{L}'(x_i w_1^t v^t)$$

$$v^{t+1} := v^t - \eta\left(x_i w_1^t\right) \mathcal{L}'\left(x_i w_1^t v^t\right)$$

Рекуррентная формула для $w^t = w_1^t v^t$:

$$w^{t+1} := w_1^{t+1} v^{t+1} = w^t - \eta^t x_i \mathcal{L}'(x_i w^t) - \sum_{\tau=1}^{t-1} \eta^{t,\tau} x_{i(\tau)} \mathcal{L}'(x_{i(\tau)} w^\tau)$$

Это (неожиданно!) метод Momentum с адаптивным шагом η^t и адаптивными коэффициентами сглаживания $\eta^{t,\tau}$.

Sanjeev Arora, Nadav Cohen, Elad Hazan. On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization. 2018

Генерация признаков для распознавания изображений

Классический подход к распознаванию изображений:

Современный подход — end-to-end deep learning:

Sanjeev Arora. Toward theoretical understanding of deep learning. ICML-2018 Tutorial https://unsupervised.cs.princeton.edu/deeplearningtutorial.html

Свёрточный слой нейронов (convolution layer)

$$x[i,j]$$
 — исходные признаки, пиксели $n \times m$ -изображения w_{ab} — ядро свёртки, $a=-A,\ldots,+A$, $b=-B,\ldots,+B$

Неполносвязный свёрточный нейрон с (2A+1)(2B+1) весами:

$$(x*w)[i,j] = \sum_{a=-A}^{A} \sum_{b=-B}^{B} w_{ab} x[i+a,j+b]$$

Объединяющий слой нейронов (pooling layer)

Объединяющий нейрон — это необучаемая свёртка с шагом h > 1, агрегирующая данные прямоугольной области $h \times h$:

$$y[i,j] = F(x[hi,hj],...,x[hi+h-1,hj+h-1]),$$

где F — агрегирующая функция: max, average и т.п. max-pooling позволяет обнаружить элемент в любой из ячеек

Стандартная схема сверточной сети (Convolutional NN)

Свёрточная сеть обучается извлечению признаков

Чем выше слой, тем более крупные и сложные элементы изображений он способен распознавать

Krizhevsky A., Sutskever I., Hinton G. ImageNet Classification with Deep Convolutional Neural Networks. 2012.

ImageNet — большая выборка размеченных изображений

Li Fei-Fei et al. ImageNet: A large-scale hierarchical image database. 2009. Li Fei-Fei et al. Construction and analysis of a large scale image ontology. 2009.

Развитие свёрточных сетей (краткая история ImageNet)

ImageNet Classification top-5 error (%)

AlexNet: первый глубокий прорыв на ImageNet

- ReLU + Dropout + пополнение выборки
- 60 млн параметров (в основном в полносвязных слоях)
- Подбор размеров фильтров и пулинга
- GPU

Krizhevsky A., Sutskever I., Hinton G. ImageNet Classification with Deep Convolutional Neural Networks. 2012.

ResNet: остаточная нейронная сеть (Residual NN)

Сквозная связь (skip connection) слоя ℓ с предшествующим слоем $\ell-d$:

$$x_{\ell} = \sigma(Wx_{\ell-1}) + x_{\ell-d}$$

Слой ℓ выучивает не новое векторное представление x_{ℓ} , а его приращение $\mathit{x}_{\ell}-\mathit{x}_{\ell-d}$

- ullet Приращения более устойчивы \Rightarrow улучшается сходимость
- Появляется возможность увеличивать число слоёв
- Обобщение Highway Networks:

$$x_{\ell} = \sigma(Wx_{\ell-1})\underbrace{\tau(W'x_{\ell-1})}_{\text{transform gate}} + x_{\ell-d}\underbrace{\left(1 - \tau(W'x_{\ell-1})\right)}_{\text{carry gate}}$$

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Deep Residual Learning for Image Recognition. 2015

R.K.Srivastava, K.Greff, J.Schmidhuber. Highway Networks. 2015

Свёртки и пулинги для обработки изображений Приложения: изображения, тексты, речь, игры Обобщение: данные с локальными структурами

ResNet: визуализация оптимизационного критерия

Сквозные связи упрощают оптимизируемый критерий, устраняя локальные экстремумы и седловые точки:

without skip connections

with skip connections

Hao Li et al. Visualizing the Loss Landscape of Neural Nets. 2018

Часто используемые приёмы в CNN

- функции активации без горизонтальных асимптот, типа ReLU
- адаптивные градиентные методы
- dropout
- batch normalization
- остаточные нейронные сети (Residual NN)
- подбор числа слоёв и их размеров
- dataset augmentation пополнение выборки с помощью преобразований, сохраняющих класс объекта

Приложение: распознавание речевых сигналов

Последовательные фрагменты сигнала представляются векторами спектрального разложения

Qirong Mao, Ming Dong, Zhengwei Huang, Yongzhao Zhan. Learning salient features for speech emotion recognition using convolutional neural networks. 2014.

Приложение: классификация предложений в тексте

Последовательные слова в тексте представляются векторами с помощью векторных представлений (word2vec и др.)

Yoon Kim. Convolutional neural networks for sentence classification, 2014

Приложение: принятие решений в логических играх

David Silver et al. (DeepMind) Mastering the game of Go without human knowledge. 2017.

Глубокая свёрточная сеть как способ векторизации изображений

Визильтер Ю.В., Горбацевич В.С. Структурно-функциональный анализ и синтез глубоких конволюционных нейронных сетей. ММРО-2017.

Идея обобщения CNN на любые структурированные данные

Допустим, каждый объект имеет структуру, заданную графом

Свёртка определяется по локальной окрестности вершины Пулинг агрегирует векторы вершин локальной окрестности

Такая сеть обучается находить и классифицировать подграфы

Прямоугольное окно заданного размера с центром в заданной точке + + операция свёртки по окну

Локальная окрестность, определяемая для любой вершины графа + + операция свёртки по окрестности

Задачи обработки последовательностей

 x_t — входной вектор в момент t

 h_t — вектор скрытого состояния в момент t

 y_t — выходной вектор (в некоторых приложениях $y_t \equiv h_t$)

Разворачивание (unfolding) рекуррентной сети

$$h_{t} = \sigma_{h}(Ux_{t} + Wh_{t-1})$$

$$y_{t} = \sigma_{y}(Vh_{t})$$

$$v \downarrow_{h_{t-1}} V \downarrow_{h_{t}} V \downarrow_{h_{t}} V \downarrow_{h_{t+1}} V$$

Обучение рекуррентной сети:

$$\sum_{t=0}^{I} \mathscr{L}_t(U, V, W) \to \min_{U, V, W}$$

$$\mathscr{L}_t(U,V,W) = \mathscr{L}(y_t(U,V,W))$$
 — потеря от предсказания y_t

Приложения рекуррентных нейронных сетей

- Прогнозирование временных рядов
- Управление технологическими процессами
- Классификация текстов или их фрагментов
- Анализ тональности документа / предложений / слов
- Машинный перевод
- Распознавание речи
- Синтез речи
- Синтез ответов на вопросы, разговорный интеллект
- Генерация подписей к изображениям
- Генерация рукописного текста
- Интерпретация генома и другие задачи биоинформатики

Обучение рекуррентных сетей

Специальный вариант обратного распространения ошибок, Backpropagation Through Time (BPTT)

$$\frac{\partial \mathcal{L}_t}{\partial W} = \frac{\partial \mathcal{L}_t}{\partial y_t} \frac{\partial y_t}{\partial h_t} \sum_{k=0}^t \left(\prod_{i=k+1}^t \frac{\partial h_i}{\partial h_{i-1}} \right) \frac{\partial h_k}{\partial W}$$

Для предотвращения затухания и взрыва градиентов: $rac{\partial h_i}{\partial h_{i-1}} o 1$

Мотивация LSTM: сеть должна долго помнить контекст, какой именно — сеть должна выучить сама.

Вводится C_t — вектор состояния сети в момент t.

Hochreiter S., Schmidhuber J. Neural Computation, 9(8), 1997 Greff K., Schmidhuber J. http://arxiv.org/pdf/1503.04069.pdf, 2015

$$f_{t} = \sigma(W_{f} \cdot [h_{t-1}, x_{t}] + b_{f})$$

$$i_{t} = \sigma(W_{i} \cdot [h_{t-1}, x_{t}] + b_{i})$$

$$\tilde{C}_{t} = \operatorname{th}(W_{C} \cdot [h_{t-1}, x_{t}] + b_{C})$$

$$C_{t} = f_{t} \odot C_{t-1} + i_{t} \odot \tilde{C}_{t}$$

$$o_{t} = \sigma(W_{o} \cdot [h_{t-1}, x_{t}] + b_{o})$$

$$h_{t} = o_{t} \odot \operatorname{th}(C_{t})$$

 Φ ильтр забывания (forget gate) с параметрами W_f , b_f решает, какие координаты вектора состояния C_{t-1} надо запомнить.

 \odot — операция покомпонентного перемножения векторов, $[h_{t-1},x_t]$ — конкатенация векторов, σ — сигмоидная функция.

Christopher Olah. http://colah.github.io/posts/2015-08-Understanding-LSTMs

$$f_{t} = \sigma(W_{f} \cdot [h_{t-1}, x_{t}] + b_{f})$$

$$i_{t} = \sigma(W_{i} \cdot [h_{t-1}, x_{t}] + b_{i})$$

$$\tilde{C}_{t} = \operatorname{th}(W_{C} \cdot [h_{t-1}, x_{t}] + b_{C})$$

$$C_{t} = f_{t} \odot C_{t-1} + i_{t} \odot \tilde{C}_{t}$$

$$o_{t} = \sigma(W_{o} \cdot [h_{t-1}, x_{t}] + b_{o})$$

$$h_{t} = o_{t} \odot \operatorname{th}(C_{t})$$

 Φ ильтр входных данных (input gate) с параметрами W_i , b_i решает, какие координаты вектора состояния надо обновить.

Mодель нового состояния с параметрами W_C , b_C формирует вектор \tilde{C}_t значений-кандидатов нового состояния.

Christopher Olah. http://colah.github.io/posts/2015-08-Understanding-LSTMs

$$f_{t} = \sigma(W_{f} \cdot [h_{t-1}, x_{t}] + b_{f})$$

$$i_{t} = \sigma(W_{i} \cdot [h_{t-1}, x_{t}] + b_{i})$$

$$\tilde{C}_{t} = \operatorname{th}(W_{C} \cdot [h_{t-1}, x_{t}] + b_{C})$$

$$C_{t} = f_{t} \odot C_{t-1} + i_{t} \odot \tilde{C}_{t}$$

$$o_{t} = \sigma(W_{o} \cdot [h_{t-1}, x_{t}] + b_{o})$$

$$h_{t} = o_{t} \odot \operatorname{th}(C_{t})$$

Новое состояние C_t формируется как смесь старого состояния C_{t-1} с фильтром f_t и вектора значений-кандидатов \tilde{C}_t с фильтром i_t .

Настраиваемых параметров нет.

Фильтр выходных данных (output gate) с параметрами W_o , b_o решает, какие координаты вектора состояния C_t надо выдать.

Выходной сигнал h_t формируется из вектора состояния C_t с помощью нелинейного преобразования th и фильтра o_t .

Bapиaнт LSTM с «замочными скважинами» (peepholes)

Все фильтры «подглядывают» вектор состояния C_{t-1} или C_t .

Увеличивается число параметров модели.

Замочную скважину можно использовать не для всех фильтров.

Gers F. A., Schmidhuber J. Recurrent Nets that Time and Count. 2000.

Упрощение LSTM: Gated Recurrent Unit (GRU)

Используется только состояние h_t , вектор C_t не вводится.

 Φ ильтр обновления (update gate) вместо входного и забывающего.

Фильтр перезагрузки (reset gate) решает, какую часть памяти нужно перенести дальше с прошлого шага.

Cho K. On the properties of neural machine translation: encoder-decoder approaches. 2014.

Упрощение LSTM: Simple Recurrent Unit (SRU)

С предыдущего шага передаётся только вектор C_{t-1} . Два фильтра: забывания (forget gate) и перезагрузки (reset gate).

Сквозные связи (skip connections): x_t передаётся на все слои.

Облегчённая рекуррентность: $v_f \odot C_{t-1}$ вместо $W_f C_{t-1}$, позволяет вычислять координаты векторов параллельно.

Tao Lei et al. Simple recurrent units for highly parallelizable recurrence. 2018.

- *Свёрточные сети:* векторизация сложно структурированных данных, обучаемая совместно с основной моделью
- Рекуррентные сети: обучаемые преобразования входной последовательности в выходную (seq2seq)
- Приёмы, сделавшие возможным глубокое обучение:
 - продвинутые градиентные методы ускоряют сходимость
 - регуляризации и dropout предотвращают переобучение
 - batch norm сокращает вычислительные погрешности
 - augmentation обеспечивает устойчивость к искажениям
 - ReLU предотвращает затухание и взрыв градиентов
 - свёртки и разреживание сокращают число параметров
 - skip connections позволяют увеличивать глубину
- Переход от feature engineering к architecture engineering
- Подбор архитектуры и гиперпараметров всё ещё искусство