Resumo de Medidas

Germano Barcelos

Março, 18,2019

Tabela 1: Unidade de Três Grandezas Fundamentais do SI

Grandeza	Nome da Unidade	Símbolo da Unidade
Comprimento	metro	m
Tempo	segundo	S
Massa	quilograma	kg

Tabela 2: Prefixos das Unidades do SI

Fator	Prefixo	Símbolo
10^{9}	giga-	G
10^{6}	mega-	M
10^{3}	quilo-	Q
10^{-2}	centi-	\mathbf{c}
10^{-3}	mili-	m
10^{-6}	micro-	μ
10^{-9}	nano-	n
10^{-12}	pico-	p

A Medição na Física

A física se baseia na medição de grandezas físicas. Algumas grandezas físicas, como comprimento, tempo e massa, foram escolhidas como grandezas fundamentais; cada uma foi definida através de um padrão e recebeu uma unidade de medida (como metro, segundo e quilograma). Outras grandezas físicas são definidas em termos das grandezas fundamentais e de seus padrões e unidades.

Mudança de Unidades

A conversão de unidades pode ser feita usando o meodo de conversão em cadeia, no qual os dados originais são multiplicados sucessivamente por fatores de conversão unitários e as unidades são manipuladas como quantidades algébricas até que apenas as unidades desejadas permaneçam.

Massa Específica

A massa específica ρ de uma substância é a massa por unidade de volume:

$$\rho = m/V \tag{1}$$

Unidade de Massa Atômica

$$u = 1.66053886 * 10^{-27} kg (2)$$