Lecture 16 Signals and Systems (ELL205)

By Dr. Abhishek Dixit

Dept. of Electrical Engineering

IIT Delhi

Towards Fourier Series

Analysis and Synthesis equation

$$x(t) = x(t+T) = \sum_{k} a_k e^{jk\omega_0 t}$$

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$

Analysis and Synthesis equation

Synthesis
$$x(t) = x(t+T) = \sum_{k} a_k e^{jk\omega_0 t}$$

Analysis
$$a_k = \frac{1}{T} \int_T x(t)e^{-jk\omega_0 t} dt$$

$$x(t) \text{ real implies } a_k = \overline{a_{-k}}$$
 (Rectangular)
$$a_k = B_k + jC_k$$

$$x(t) = a_o + \sum_{k=1}^{\infty} (B_k cosk\omega_o t - C_k sink\omega_o t)$$
 (Polar)
$$a_k = A_k e^{j\theta_k}$$

$$x(t) = a_o + \sum_{k=1}^{\infty} A_k cos(k\omega_o t + \theta_k)$$

Question

How many of the following statements are correct?

1. a_k are real and even	2. a_k are imaginary and odd
3. a_k is 0 if k is even but not	4. a_k decreases as k increases
zero and duty cycle is 50%	

Obs. 1: Even signal has even coefficients

If
$$x(t) \leftrightarrow a_k$$
 then $x(-t) \leftrightarrow a_{-k}$

Proof:

$$x(t) = \sum_{k} a_k e^{jk\omega_0 t}$$

$$x(-t) = \sum_{k} a_k e^{-jk\omega_0 t} = \sum_{k'} a_{-k'} e^{jk'\omega_0 t} = \sum_{k} a_{-k} e^{jk\omega_0 t}$$

If
$$x(t) \leftrightarrow a_k$$
 then $x(-t) \leftrightarrow a_{-k} \& \overline{x(t)} \leftrightarrow \overline{a_{-k}}$

Even:
$$a_k = a_{-k}$$

Real:
$$a_k = \overline{a_{-k}}$$

Real &
$$a_k = \overline{a_{-k}} = \overline{a_k}$$
 Even:

If
$$x(t) \leftrightarrow a_k$$
 then $x(-t) \leftrightarrow a_{-k} \& \overline{x(t)} \leftrightarrow \overline{a_{-k}}$

Even: $a_k = a_{-k}$

Signal	Coefficients
Real & Even	Real & Even

Real: $a_k = \overline{a_{-k}}$

Real &

Even: $a_k = \overline{a_{-k}} = \overline{a_k}$

If
$$x(t) \leftrightarrow a_k$$
 then $x(-t) \leftrightarrow a_{-k} \& \overline{x(t)} \leftrightarrow \overline{a_{-k}}$

Odd:
$$a_k = -a_{-k}$$

Real:
$$a_k = \overline{a_{-k}}$$

Real & $a_k = \overline{a_{-k}} = -\overline{a_k}$

Signal	Coefficients
Real & Even	Real & Even
Real & Odd	Imaginary & Odd

If
$$x(t) \leftrightarrow a_k$$
 then $x(-t) \leftrightarrow a_{-k} \& \overline{x(t)} \leftrightarrow \overline{a_{-k}}$

Even: $a_k = a_{-k}$

Imag.: $a_k = -\overline{a_{-k}}$

Imag. & $a_k = -\overline{a_{-k}} = -\overline{a_k}$ Even:

Signal	Coefficients
Real & Even	Real & Even
Real & Odd	Imaginary & Odd
Imaginary & Even	Imaginary & Even

If
$$x(t) \leftrightarrow a_k$$
 then $x(-t) \leftrightarrow a_{-k} \& \overline{x(t)} \leftrightarrow \overline{a_{-k}}$

Odd:
$$a_k = -a_{-k}$$

Imag.:
$$a_k = -\overline{a_{-k}}$$

Imag. &
$$a_k = -\overline{a_{-k}} = \overline{a_k}$$

Signal	Coefficients
Real & Even	Real & Even
Real & Odd	Imaginary & Odd
Imaginary & Even	Imaginary & Even
Imaginary & Odd	Real & Odd

Question

How many of the following statements are correct?

1. a_k are real and even	2. a_k are imaginary and odd
3. a_k is 0 if k is even but not zero and duty cycle is 50%	4. a_k decreases as k increases

$$a_k = \frac{1}{T} \int_{-T_1}^{T_1} e^{-jk\omega_o t} dt$$

$$a_k = \frac{1}{-jk\omega_o T} \left[e^{-jk\omega_o t} \right]_{-T_1}^{T_1}$$

$$a_k = \frac{1}{-jk\omega_o T} \left[e^{-jk\omega_o T_1} - e^{jk\omega_o T_1} \right]$$

$$a_k = \frac{1}{ik\omega_o T} \left[e^{jk\omega_o T_1} - e^{-jk\omega_o T_1} \right]$$

$$a_{k} = \frac{1}{jk\omega_{o}T} \left[e^{jk\omega_{o}T_{1}} - e^{-jk\omega_{o}T_{1}} \right]$$

$$= \frac{2}{k\omega_{o}T} \sin(k\omega_{o}T_{1})$$

$$= \frac{2T_{1}}{T} \frac{\sin(k\omega_{o}T_{1})}{k\omega_{o}T_{1}}$$

$$= \frac{2T_{1}}{T} \operatorname{sinc}(k\omega_{o}T_{1}) \qquad \text{where } \sin(\theta) = \frac{\sin\theta}{\theta}$$

$$= D \operatorname{sinc}(k\pi D) \qquad \text{where } D = \frac{2T_{1}}{T}$$

$$a_k = \frac{1}{2}\operatorname{sinc}(k\pi/2)$$
 where $\operatorname{sinc}(\theta) = \frac{\sin\theta}{\theta}$

$$a_k = \frac{1}{2}\operatorname{sinc}(k\pi/2)$$
 where $\operatorname{sinc}(\theta) = \frac{\sin\theta}{\theta}$

Question

How many of the following statements are correct?

1. a_k are real and even	2. a_k are imaginary and odd
3. a_k is 0 if k is even but not zero and duty cycle is 50% \checkmark	4. a_k decreases as k increases

Question

The signal has FS coefficients as $\,b_k$. How many of the following statements are correct?

1. b_k have the same magnitude as	2. b_k have the same phase as a_k
a_k	
$3. b_k = e^{-jk\omega_o T_1} a_k$	$b_k = e^{jk\omega_o T_1} a_k$

 a_k are the Fourier series coefficients of the previous signal.

Time-shifting

If
$$x(t) \leftrightarrow a_k$$
 then $x(t-t_o) \leftrightarrow e^{-jk\omega_o t_o} a_k$

Time-shifting

If
$$x(t) \leftrightarrow a_k$$
 then $x(t - t_o) \leftrightarrow e^{-jk\omega_o t_o} a_k$

Proof:

Starting from
$$b_k = \frac{1}{T} \int_T x(t-t_o) e^{-jk\omega_o t} dt$$
 & changing variable of

integration as $t - t_o = \lambda$

we get

$$b_k = \frac{1}{T} \int_T x(\lambda) e^{-jk\omega_o(\lambda + t_o)} d\lambda$$

On simplification, we get

$$b_k = e^{-jk\omega_o t_o} a_k$$

Question

The signal has FS coefficients as \boldsymbol{b}_k . How many of the following statements are correct?

1. b_k have the same magnitude as	2. b_k have the same phase as a_k
a_k	
$b_k = e^{-jk\omega_o T_1} a_k$	$4. b_k = e^{jk\omega_o T_1} a_k$

 a_k are the Fourier series coefficients of the previous signal.

List of Properties

1.
$$x(t) \leftrightarrow a_k$$

2.
$$x(-t) \leftrightarrow a_{-k}$$

3.
$$\overline{x(t)} \leftrightarrow \overline{a_{-k}}$$

4.
$$x(t-t_o) \leftrightarrow e^{-jk\omega_o t_o} a_k$$

Signal	Coefficients
Real & Even	Real & Even
Real & Odd	Imaginary & Odd
Imaginary & Even	Imaginary & Even
Imaginary & Odd	Real & Odd

List of Properties

1.
$$x(t) \leftrightarrow a_k$$

2.
$$x(-t) \leftrightarrow a_{-k}$$

3.
$$\overline{x(t)} \leftrightarrow \overline{a_{-k}}$$

4.
$$x(t-t_o) \leftrightarrow e^{-jk\omega_o t_o} a_k$$

Signal	Coefficients
Real & Even	Real & Even
Real & Odd	Imaginary & Odd
Imaginary & Even	Imaginary & Even
Imaginary & Odd	Real & Odd
Shifted signal	Only phase changes

$$x_N(t) \triangleq \sum_{k=-N}^N a_k e^{jk\omega_o t}$$

$$e_N(t) \triangleq x(t) - x_N(t)$$

Does $e_N(t)$ decrease as N increases?

Convergence of the Fourier Series by incrementally adding terms.

$$x(t) = \sum_{k=0}^{0} \frac{1}{j\pi k} e^{jk2\pi t}$$

Convergence of the Fourier Series by incrementally adding terms.

$$x(t) = \sum_{k=-1}^{1} \frac{1}{j\pi k} e^{jk2\pi t}$$

Convergence of the Fourier Series by incrementally adding terms.

$$x(t) = \sum_{k=-3}^{3} \frac{1}{j\pi k} e^{jk2\pi t}$$

Convergence of the Fourier Series by incrementally adding terms.

$$x(t) = \sum_{k=-5}^{5} \frac{1}{j\pi k} e^{jk2\pi t}$$

Convergence of the Fourier Series by incrementally adding terms.

$$x(t) = \sum_{k=-7}^{7} \frac{1}{j\pi k} e^{jk2\pi t}$$

Convergence of the Fourier Series by incrementally adding terms.

$$x(t) = \sum_{k=-9}^{9} \frac{1}{j\pi k} e^{jk2\pi t}$$

Convergence of the Fourier Series by incrementally adding terms.

$$x(t) = \sum_{k=-19}^{19} \frac{1}{j\pi k} e^{jk2\pi t}$$

Convergence of the Fourier Series by incrementally adding terms.

$$x(t) = \sum_{k=-29}^{29} \frac{1}{j\pi k} e^{jk2\pi t}$$

Convergence of the Fourier Series by incrementally adding terms.

$$x(t) = \sum_{k=-49}^{49} \frac{1}{j\pi k} e^{jk2\pi t}$$

Convergence of the Fourier Series by incrementally adding terms.

$$x(t) = \sum_{k=-79}^{79} \frac{1}{j\pi k} e^{jk2\pi t}$$

Convergence of the Fourier Series by incrementally adding terms.

$$x(t) = \sum_{k=-199}^{199} \frac{1}{j\pi k} e^{jk2\pi t}$$

Albert Michelson horror

Albert Michelson horror

Partial sums of Fourier series of discontinuous functions "ring" near discontinuities: Gibb's phenomenon. 1

Energy in Error

