

Fundamentals of Momentum, Heat, and Mass Transfer

Sixth Edition

Welty • Rorrer • Foster

Chapter 7

Shear Stress in Laminar Flow

Newton's law of viscosity

The **shear modulus** of an elastic solid

shear modulus =
$$\frac{\text{shear stress}}{\text{shear strain}}$$
 (7-1)

The viscosity of a fluid

viscosity =
$$\frac{\text{shear stress}}{\text{rate of shear strain}}$$
 Rate of deformation (7-2)

The **viscosity** is the property of a fluid to resist the rate at which deformation takes place when the fluid is acted upon by shear forces

Newton's law of viscosity

$$\tau = \mu \frac{dv}{dv} \tag{7-4}$$

Bingham (Ideal) plastic

$$\tau = \mu \frac{dv}{dy} \pm \tau_0 \tag{7-5}$$

Toothpaste, mayonnaise, ketchup

Ostwald-De Waele or power law model

$$\tau = m \left| \frac{dv}{dy} \right|^{n-1} \frac{dv}{dy} \tag{7-6}$$

n = 1, Newtonian fluid

n< 1, pseudo plastic (Shear-thinning)

n> 1, dilatant (Shear-thickening)

Shear-thinning materials: hair gel, plasma, syrup, latex paint

Shear-thickening materials: mixture of cornstarch and water

Fluid	Viscosity (cP) at 20°C
Ethanol	1.194
Mercury	15.47
H_2SO_4	19.15
Water	1.0019
Air	0.018
CO_2	0.015
Blood	2.5 (at 37°C)
SAE 40 motor oil	290
Corn oil	72
Ketchup	50,000
Peanut butter	250,000
Honey	10,000

¹ centipoise (cP) = 0.001 kilogram/meter second.

¹ centipoise (cP) = 0.001 Pascal second.

Shear stress

Shear stress components τ_{ij} Normal stress components σ_{ij}

The first subscript i: **orientation**, direction of axis to which plane of action of shear stress is normal

The second subscript j: **direction** of action of shear stress

$$\tau_{ij} = \tau_j$$

Shear stress

Cartesian coordinates

$$\tau_{xy} = \tau_{yx} = \mu \left(\frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial x} \right) \tag{7-15a}$$

$$\tau_{yz} = \tau_{zy} = \mu \left(\frac{\partial v_y}{\partial z} + \frac{\partial v_z}{\partial y} \right)$$

$$\tau_{zx} = \tau_{xz} = \mu \left(\frac{\partial v_z}{\partial x} + \frac{\partial v_x}{\partial z} \right)$$
(7-15b)

$$\tau_{zx} = \tau_{xz} = \mu \left(\frac{\partial v_z}{\partial x} + \frac{\partial v_x}{\partial z} \right) \tag{7-15c}$$

Normal stress

Generalized Hooke's law

$$\sigma_{xx} = \mu \left(2 \frac{\partial v_x}{\partial x} - \frac{2}{3} \nabla \cdot \mathbf{v} \right) - P \tag{7-16a}$$

$$\sigma_{yy} = \mu \left(2 \frac{\partial v_y}{\partial v} - \frac{2}{3} \nabla \cdot \mathbf{v} \right) - P \tag{7-16b}$$

$$\sigma_{zz} = \mu \left(2 \frac{\partial v_z}{\partial z} - \frac{2}{3} \nabla \cdot \mathbf{v} \right) - P \tag{7-16c}$$

The shear stress components in cylindrical coordinates

The shear stress components in spherical coordinates

$$\tau_{r\theta} = \tau_{\theta r} = \mu \left[r \frac{\partial}{\partial r} \left(\frac{\upsilon_{\theta}}{r} \right) + \frac{1}{r} \frac{\partial \upsilon_{r}}{\partial \theta} \right]$$

$$\tau_{z\theta} = \tau_{\theta z} = \mu \left[\frac{\partial \upsilon_{\theta}}{\partial z} + \frac{1}{r} \frac{\partial \upsilon_{z}}{\partial \theta} \right]$$

$$\tau_{zr} = \tau_{rz} = \mu \left[\frac{\partial \upsilon_{z}}{\partial r} + \frac{\partial \upsilon_{r}}{\partial z} \right]$$

$$\begin{split} & \tau_{r\theta} = \tau_{\theta r} = \mu \Bigg[r \frac{\partial}{\partial r} \bigg(\frac{\upsilon_{\theta}}{r} \bigg) + \frac{1}{r} \frac{\partial \upsilon_{r}}{\partial \theta} \Bigg] \\ & \tau_{\phi \theta} = \tau_{\theta \phi} = \mu \Bigg[\frac{\sin \theta}{r} \frac{\partial}{\partial \theta} \bigg(\frac{\upsilon_{\phi}}{\sin \theta} \bigg) + \frac{1}{r \sin \theta} \frac{\partial \upsilon_{\theta}}{\partial \phi} \Bigg] \\ & \tau_{\phi r} = \tau_{r\phi} = \mu \Bigg[\frac{1}{r \sin \theta} \frac{\partial \upsilon_{r}}{\partial \phi} + r \frac{\partial}{\partial r} \bigg(\frac{\upsilon_{\phi}}{r} \bigg) \Bigg] \end{split}$$

