13. Намагничивание магнетиков, диа- и парамагнетики. Вектор намагничивания. Объемные и поверхностные токи намагничивания, их связь с вектором намагничивания

Магнетик - вещество, способное намагничиваться.

Намагничивание - наведение в веществе магнитных диполей, то есть токов намагничивания.

Любое вещество при внесении его во внешнее магнитное поле $\overrightarrow{B_0}$ приобретает магнитный момент, т.е. намагничивается. Намагниченное вещество создает собственное магнитное поле $\overrightarrow{B_\mu}$. Согласно принципу суперпозиции результирующее магнитное поле

Следовательно, намагничивание вещества обусловлено преимущественной ориентацией магнитных моментов молекул в одном направлении.

Вектор намагничивания

Любое вещество при внесении его во внешнее магнитное поле намагничивается в той или иной степени. Количественной характеристикой вещества в магнитном поле является вектор намагничивания \vec{J} . Суммарный магнитный момент единицы объема вещества называют вектором намагничивания.

 m_i – магнитный момент («маленький магнитик»). В СИ намагниченность измеряется в А/м.

В результате намагничивания в магнетике возникают токи намагничивания.

Диамагнетики и парамагнетики

Вещества, у которых в отсутствие внешнего магнитного поля результирующий магнитный момент равен нулю, называют <u>диамагнетиками</u>. К ним относятся, например: инертные газы, молекулярный водород, азот, цинк, медь, золото и др.

<u>Парамагнетиками</u> называют вещества, у которых атомы, молекулы или ионы обладают магнитным моментом, не равным нулю. К парамагнетикам относятся, например, щелочные и щелочноземельные металлы, некоторые переходные металлы и их сплавы, кислород, и др.

- 1. Диамагнетики, $m_i = 0$ при $B_0 = 0$;
- 2. Парамагнетики, $m_i \neq 0$ при $B_0 = 0$.

m_i — магнитный момент атомов (молекул)

Диамагнетики ослабляют внешнее поле. В поле $\overrightarrow{B_0}$ индуцируются $m_i \uparrow \downarrow \overrightarrow{B}_0$ (из-за электромагнитной индукции на молекулярном уровне).

Парамагнетики усиливают внешнее поле. В поле $\overrightarrow{B_0}$ происходит частичная ориентация m_i по полю $\overrightarrow{B_0}$ (из-за действия на m_i момента сил со стороны $\overrightarrow{B_0}$).

Для большинства магнетиков $\mu \approx 1$.

Объемные и поверхностные токи намагничивания, их связь с вектором намагничивания

