- 1. Exact string matching algorithms
- 2. Boyer Moore
- 3. Indexing structures

Lesson 04

Exact string matching algorithms

- Online exact matching algorithms (no preparation of the text)
 - o Boyer-Moore
- Offline exact matching algorithms (prepare some kind of index of the text)
 - Multimap table
 - Hash table
 - Suffix array
 - Tries, suffix tries
 - Suffix trees
 - Suffix arrays
 - Burrows-Wheeler transformation, FM index

String definitions

- String S is a finite sequence of characters
- Characters are drawn from alphabet Σ : Usually, $\Sigma = \{ A, C, G, T \}$
- \bullet | S | = number of characters in S
- ε is "empty string" | ε | = 0

Exact matching

- At what offsets does pattern P occur within text T?
- What's a simple algorithm for exact matching?
 Text: There would have been a time for such a word
 Pattern: word

 Answer: 40

Try all possible alignments. For each, check whether it's an occurrence. "Naïve algorithm".

Exact matching: Naïve algorithm

- Looking for places where a pattern P occurs as a substring of a Text
- Let n = |P|, and let m = |T|, and assume $n \le m$
- An alignment is a way of putting P's characters opposite T's characters. It may or may not correspond to an occurrence:

T: There would have been a time for such a word!

P: word

Alignment 1:word Alignment 2: word

Exact matching

Python demo: http://nbviewer.ipython.org/6513059

There would have been a time for such a word -----word-----word-----word

Exact matching: Naïve algorithm

• How many alignments are possible given n and m (| P | and | T |)?

$$m - n + 1$$

• What is the lowest and greatest number of possible character comparisons?

$$m - n + 1, n(m - n + 1)$$

• How many character comparisons in this example? There would have been a time for such a word

------word------word

m - n mismatches, 6 matches

Exact matching: Naïve algorithm

Greatest # character comparisons:

$$n(m - n + 1)$$

Least: m - n + 1

P: aaaa

Worst-case time bound of naïve algorithm is O(nm)In the best case, we do only \sim m character comparisons

Exact matching: Can it be done better?

- Can we skip some alignments?
- Define some heuristic that could increase the shifts of pattern!
- Preprocess Text or Pattern and extract some information.

There would have been a time for such a word

Online exact matching: Boyer Moore algorithm

Use knowledge gained from character comparisons to skip future alignments that definitely won't match:

- 1. **Bad character rule:** If we mismatch, use knowledge of the mismatched text character to skip alignments
- 2. Good suffix rule: If we match some characters, use knowledge of the matched characters to skip alignments
- 3. For longer skips: If we match some characters, use knowledge of the matched characters to skip alignments

Boyer Moore: Bad character rule

• Upon mismatch, let b be the mismatched character in T. Skip alignments until (a) b matches its opposite in P, or (b) P moves past b.

T: GCTTCTGCTACCTTTTGCGCGCGCGCGCAA

P: CCTTTTGC

Case (a)

b - mismatched character

T: GCTTCTGCTACCTTTTGCGCGCGCGCGCAA

P: CCTTTT<mark>G</mark>C

Case (b)

T: GCTTCTGCTACCTTTTGCGCGCGCGCGCAA

P:

CCTTTTGC

Compare characters from right to left!

We skipped 2 + 6 alignments!

Boyer Moore: Good suffix rule (weak)

Let t be the substring of T that matched a suffix of P. Skip alignments until (a) t matches opposite characters in P, or (b) a prefix of P matches a suffix of t, or (c) P moves past t, whichever happens first.

T: CGTGCCTACTTACTTACTTACGCGAA

P: CTTAC t Case (a)

T: CGTGCCTACTTACTTACTTACGCGAA

P: CTTACTTAC Case (b)

Prefix(P) = Suffix(t) = CTTAC

T: CGTGCCTACTTACTTACTTACTTACGCGAA

P: CTTACTTAC

Boyer Moore: Good suffix rule (strong)

Let t be the substring of T that matched a suffix of P. Skip alignments until (a) t matches opposite characters in P and character to the left of t is the same as it opposite character in P, or (b) a prefix of P matches a suffix of t, or (c) P moves past t, whichever happens first.

T: CGTGCCTACTTACTTACTTACTTACGCGAA

P: CTTACTTAC

Case (a)

T: CGTGCCTACTTACTTACTTACGCGAA

P: CTTACTTAC

Boyer Moore: Good suffix rule

Like with the bad character rule, the number of skips possible using the good suffix rule can be precalculated into a few tables (Gusfield 2.2.4 and 2.2.5)

Strong good suffix rule (Gusfield 2.2.3)

T: CGTGCCTACTTACTTACTTACGCGAA

P: CTTACTTAC

Weak: CTTACTTAC

Strong: CTTACTTAC

Guaranteed mismatch

Boyer Moore: Putting it all together

After each alignment, use bad character or good suffix rule, whichever skips more.

Good suffix rule:

Bad character rule:

Upon mismatch, let b be the mismatched character in T. Skip alignments until (a) b matches its opposite in P, or (b) P moves past b.

T: GTTATAGCTGATCGCGGCGTAGCGGCGAA

P: GTAGCGGCG

bc: 6, gs: 0 (Part (a) of bad character rule)

Let t be the substring of T that matched a suffix of P. Skip alignments

until (a) t matches opposite characters in P, or (b) a prefix of P matches

a suffix of t, or (c) P moves past t, whichever happens first.

T: GTTATAGCTGATCGCGGCGTAGCGGCGAA

P: GTAGCGGCG

be: 0, gs: 2 (Part (b) of good suffix rule)

T: GTTATAGCTGATCGCGGCGTAGCGGCGAA

P: GTAGCGGCG

bc: 2, gs: 7 (Part (b) of good suffix rule)

T: GTTATAGCTGATCGCGGCGTAGCGGCGAA

P: GTAGCGGCG

Boyer Moore: Preprocessing

• Pre-calculate skips. For bad character rule, P = TCGC:

		Ρ					
		Т	С	G	С		
Σ	Α	0	1	2	3		
	C	0	ı	0	1		
	G	0	1	1	0		
		ı	0	1	2		

Boyer-Moore exercise in Python

T: A ATC A A T A G C
P: TCGC

Boyer Moore: Worst and best cases

Boyer-Moore (or a slight variant) is O(m) worst-case time

What's the best case?

Every character comparison is a mismatch, and bad character rule always slides P fully past the mismatch

How many character comparisons?

floor(|T| / |P|)

Boyer Moore: Performance comparison

	Naïve matching		Boyer-Moore		
	# character comparisons	wall clock time	# character comparisons	wall clock time	
P: "tomorrow" T: Shakespeare's complete works	5,906,125	2.90 s	785,855	1.54 s	17 n <i>T</i>
P: 50 nt string from Alu repeat* T: Human reference (hg19) chromosome 1	307,013,905	137 s	32,495,111	55 s	336 <i>T</i>

17 matches | *T* | = 5.59 M

336 matches | *T* | = 249 M

7

Small digression

• Real genomes are not like "random" genomes

$$\{\bigcirc \bigcirc \bigcirc \bigcirc = A, \bigcirc \bigcirc \bigcirc \bigcirc = C, \bigcirc \bigcirc \bigcirc \bigcirc = G, \bigcirc \bigcirc \bigcirc = T\}$$

Repetitive sequences

Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet. 2009 Oct;10(10):691-703

genome

Image: Alus

in human

glowing green

chromosomes

Slide adapted from Ben Langmead

Offline exact matching: Create sorted index - Multimap

• T: <u>CGTGC</u>GTGCTT

• Index of T:

CGTGC:0,4

GCGTG:3

GTGCC: 1

GTGCT:5

TGCCT:2

TGCTT:6

5-mer index

Preprocessing: Use index

Preprocessing: Use index

Preprocessing: Use index

Multimap

 $GTG \mid 0$

TGC | 1

 $GCG \mid 2$

CGT | 3

 $GTG \mid 4$

TGT | 5 GTG | 6

TGG | 7

GGG | 8

GTG | 9

GGG |10

• T: <u>GTG</u>CGTGTGGGGG

Multimap

Alphabetical by k-mer

• T: GTGCGTGTGGGGG

CGT | 3 $GCG \mid 2$ GGG | 8 GGG | 9 GGG | 10 $GTG \mid 0$ $GTG \mid 4$ $GTG \mid 6$ TGC | 1 TGG | 7 TGT | 5

Binary search

TGG > GTG

• T: GTGCGTGTGGGGG

• P: GCG<u>TGG</u>

CGT | 3 $GCG \mid 2$ GGG | 8 $GGG \mid 9$ GGG | 10 $GTG \mid 0$ $GTG \mid 4$ $GTG \mid 6$ TGC | 1

TGG | 7

TGT | 5

Binary search

After 1st bisection

 $\frac{\text{TGG}}{}$ > TGC

• T: GTGCGTGTGGGGG

• P: GCG<u>TGG</u>

CGT | 3 $GCG \mid 2$ GGG | 8 GGG | 9 GGG | 10 $GTG \mid 0$ GTG | 4 $GTG \mid 6$ TGC | 1 TGG | 7 TGT | 5

Binary search

After 2nt bisection

• P: GCG<u>TGG</u>

CGT | 3 $GCG \mid 2$ GGG | 8 GGG | 9 GGG | 10 $GTG \mid 0$ GTG | 4 GTG | 6 TGC | 1 TGG | 7 TGT | 5

Binary search

How many bisections per query?

 $log_2(n)$

Binary search - python

bisect_bisect_left(a, x): Leftmost offset where x can be inserted into a to maintain order

```
>>> a = [1,3, 3, 6, 8, 8, 9, 10]
>>> import bisect
>>> bisect.bisect_left(a, 2)
1
>>> bisect.bisect_left(a, 4)
3
>>> bisect.bisect_left(a, 8)
4
```

Binary search - python

CGT | 3 GCG | 2

 ${\rm GGG}\mid 8$

 $GGG \mid 9$

GGG |10

 $GTG \mid 0$

GTG | 4

GTG | 6

TGC | 1

TGG | 7

TGT | 5

bisect_left(index, 'GTG')

• T: GTGCGTGTGGGGG

• P: GC<u>GTG</u>G

Index exercise in Python

Indexing subsequences

- Subsequence of S: string of characters also occurring in S in the same order
- Substrings are also subsequences, subsequences are not necessarily substrings

```
>>> seq = 'AACCGGTT'
>>> seq[0] + seq[1] + seq[5] + seq[7]
'AAGT' # subsequence
>>> seq.find('AAGT')
-1 # not a substring
```

Indexing subsequences

Using subsequences improves specificity! Why?

Dictionary in Python

Hash table comparison

Each line - 6 dots, corresponding to N=10,18,26,34,42,50 million inputs

10 years ago google_danse was fastest

Revisiting hash table performance

Suffix index

T = GTTATAGCTGATCGCGGCGTAGCGG\$ GTTATAGCTGATCGCGGCGTAGCGG\$ TTATAGCTGATCGCGGCGTAGCGG\$ TATAGCTGATCGCGGCGTAGCGG\$ ATAGCTGATCGCGGCGTAGCGG\$ TAGCTGATCGCGGCGTAGCGG\$ AGCTGATCGCGGCGTAGCGG\$ GCTGATCGCGGCGTAGCGG\$ CTGATCGCGGCGTAGCGG\$ TGATCGCGGCGTAGCGG\$ GATCGCGGCGTAGCGG\$ ATCGCGGCGTAGCGG\$ TCGCGGCGTAGCGG\$ CGCGGCGTAGCGG\$ GCGGCGTAGCGG\$ CGGCGTAGCGG\$ GGCGTAGCGG\$ GCGTAGCGG\$ CGTAGCGG\$ GTAGCGG\$ TAGCGG\$ AGCGG\$ GCGG\$ CGG\$ GG\$G\$ \$

Suffix Array

• Querying uses binary search

Suffix index

Modern genomics algorithms still use Suffix index? How come?

• Imagine suffix index of 3 billion nucleotides long human reference genome

```
T = GTTATAGCTGATCGCGGCGTAGCGG$
   GTTATAGCTGATCGCGGCGTAGCGG$
    TTATAGCTGATCGCGGCGTAGCGG$
     TATAGCTGATCGCGGCGTAGCGG$
      ATAGCTGATCGCGGCGTAGCGG$
       TAGCTGATCGCGGCGTAGCGG$
        AGCTGATCGCGGCGTAGCGG$
         GCTGATCGCGGCGTAGCGG$
          CTGATCGCGGCGTAGCGG$
           TGATCGCGGCGTAGCGG$
            GATCGCGGCGTAGCGG$
             ATCGCGGCGTAGCGG$
              TCGCGGCGTAGCGG$
               CGCGGCGTAGCGG$
                GCGGCGTAGCGG$
                 CGGCGTAGCGG$
                  GGCGTAGCGG$
                   GCGTAGCGG$
                     CGTAGCGG$
                      GTAGCGG$
                       TAGCGG$
                        AGCGG$
                         GCGG$
                          CGG$
                           GG\$
                            G$
```

\$ O

n(n+1)/2 chars $\approx (n2)/2$

Suffix array

T = abaabaabaaba baaba aaba Suffix array is |T| integers long aba 0 ba a **SuffixArray(T)**

• Save in index only positions of suffixes in T

References

- Dan Gusfield: Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology, Cambridge University Press
- Pavel Pevzner, Neils Jones: An Introduction to Bioinformatics Algorithms (Computational Molecular Biology), MIT Press
- R. Durbin, S. Eddy, A. Krogh, G. Mitchinson: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids, Cambridge University Press
- Veli M\u00e4kinen, Djamal Belazzougui, Fabio Cunial, Alexandru I. Tomescu: Genome-Scale Algorithm
 Design: Biological Sequence Analysis in the Era of High-Throughput Sequencing, Cambridge
 University press

