Fixed Wing Drone - Detailed Hardware Wiring Guide

Power System Wiring

Solar Panel Configuration

Components: 2x 5V Solar Panels

Series Connection (Recommended):

```
Solar Panel 1 (+) → Solar Panel 2 (-)
Solar Panel 1 (-) → Power Management Ground
Solar Panel 2 (+) → Power Management Input (10V)
```

Parallel Connection (Alternative):

```
Solar Panel 1 (+) \rightarrow Solar Panel 2 (+) \rightarrow Power Management Input (5V)
Solar Panel 1 (-) \rightarrow Solar Panel 2 (-) \rightarrow Power Management Ground
```

Power Management Circuit

Required Components:

- Voltage Regulator (7805 or LM2596 Buck Converter)
- Filter Capacitors (1000μF, 100μF)
- Schottky Diodes (1N5819) for reverse protection
- Fuse (2A for protection)

Wiring:

```
Solar Input (10V) → Diode → Capacitor → Voltage Regulator Input

Voltage Regulator Output → 5V Rail (Arduino VIN)

Ground → Common Ground Rail
```

Arduino Uno Connections

Power Connections

```
VIN Pin → 5V from Power Management (7-12V input range)
5V Pin → 5V Rail Distribution (for servos and sensors)
GND Pins → Common Ground Rail (connect all GND pins)
```

Digital Pin Assignments

```
Pin D2 → Reserved (External Interrupt)

Pin D3 → Servo 1 Signal Wire (PWM - Left Aileron)

Pin D4 → Reserved

Pin D5 → Servo 2 Signal Wire (PWM - Right Aileron)

Pin D6 → ESC Signal Wire (PWM - Motor Control)

Pin D7 → Reserved

Pin D8 → NRF24L01 CE Pin

Pin D9 → NRF24L01 CSN Pin

Pin D10 → Reserved (Hardware SS)

Pin D11 → NRF24L01 MOSI (SPI)

Pin D12 → NRF24L01 MISO (SPI)

Pin D13 → NRF24L01 SCK (SPI)
```

Analog Pin Assignments

```
Pin A0 → Battery Voltage Monitor (Voltage Divider)

Pin A1 → Solar Panel Voltage Monitor

Pin A2 → Current Sensor (Optional)

Pin A3 → Reserved

Pin A4 → I2C SDA (for future sensors like IMU)

Pin A5 → I2C SCL (for future sensors like IMU)
```

NRF24L01 Radio Module Wiring

Pin Configuration

```
NRF24L01 Pin Arduino Pin Wire Color
VCC (3.3V) \rightarrow 3.3V \rightarrow Red
\mathsf{GND} \longrightarrow \mathsf{GND} \longrightarrow \mathsf{Black}
        → D8 → Orange
CE
     → D9
                    → Yellow
CSN
SCK
        → D13
                     → Green
MOSI → D11 → Blue
MISO
         \rightarrow D12 \rightarrow Purple
IRQ
         → Not Used → (Leave disconnected)
```

Important Notes:

- **NEVER connect NRF24L01 VCC to 5V** it will damage the module
- Use 3.3V output from Arduino
- Add 10µF capacitor between VCC and GND near the module
- Keep wires short (< 10cm) to reduce interference

Consider using a breakout board with voltage regulator

Servo Wiring (Control Surfaces)

Servo 1 (Left Aileron)

```
Servo Pin Connection

Red Wire → 5V Rail

Brown/Black → Ground Rail

Orange/White→ Arduino Pin D3 (PWM)
```

Servo 2 (Right Aileron)

```
Servo Pin Connection

Red Wire → 5V Rail

Brown/Black → Ground Rail

Orange/White→ Arduino Pin D5 (PWM)
```

Servo Power Considerations:

- Standard 9g servos draw 100-200mA each
- Use separate 5V rail with adequate current capacity (1A minimum)
- Consider using a BEC (Battery Eliminator Circuit) for servo power
- Add 470µF capacitor near servo power connections to reduce voltage spikes

Motor and ESC Wiring

ESC (Electronic Speed Controller)

ESC Input (from Arduino):

```
ESC Signal Wire (Usually White) → Arduino Pin D6 (PWM)

ESC Red Wire (+5V BEC) → Not Connected (or 5V rail if no separate BEC)

ESC Black Wire (Ground) → Ground Rail
```

ESC Output (to Motor):

```
ESC Motor Wire A → Motor Wire A (Any color)

ESC Motor Wire B → Motor Wire B (Any color)

ESC Motor Wire C → Motor Wire C (Any color)
```

ESC Power Input:

ESC Red Power Wire \rightarrow Battery/Solar Positive (7.4V-11.1V recommended) ESC Black Power Wire \rightarrow Battery/Solar Negative

Motor Connections

1200KV Brushless Motor:

- Connect the three motor wires to ESC output wires
- Order doesn't matter initially if motor spins backward, swap any two wires
- Secure all connections with heat shrink tubing
- Mount motor with proper cooling airflow

Ground System (Critical!)

Ground Rail Distribution

All grounds must be connected together:

Arduino GND → Ground Rail

NRF24L01 GND → Ground Rail

Servo Grounds → Ground Rail

ESC Ground → Ground Rail

Power Management Ground → Ground Rail

Solar Panel Negative → Ground Rail

Ground Loop Prevention:

- Use a single ground point (star grounding)
- Keep ground wires short and thick (16-18 AWG minimum)
- Avoid ground loops by not creating multiple ground paths

Voltage Monitoring Circuit

Battery/Solar Voltage Divider

Solar/Battery $+ \rightarrow 10k\Omega$ Resistor \rightarrow Arduino A0 $\rightarrow 10k\Omega$ Resistor \rightarrow Ground

Calculation for voltage reading:

Actual Voltage = (Analog Reading / 1023) \times 5V \times 2

Wire Gauge and Color Coding

Recommended Wire Gauges:

Power Rails (5V, Battery): 16-18 AWG

Motor/ESC Power: 14-16 AWG

Signal Wires: 22-24 AWG

Ground Connections: 16-18 AWG

Color Coding Standard:

Red: Positive Power (+5V, +Battery)

Black: Ground/Negative Orange: PWM Signals Yellow: Digital Control

Green: SPI Clock
Blue: SPI Data

White: Serial Communication

Connection Checklist

Pre-Flight Checks:

1. Power System:
☐ Solar panels connected with correct polarity
\square Voltage regulator outputting stable 5V
■ All power connections secure
2. Arduino Connections:
All pins connected per pin assignment table
■ No loose connections on breadboard/PCB
Power LED on Arduino illuminated
3. Radio System:
■ NRF24L01 powered from 3.3V (NOT 5V)
SPI connections correct
Antenna properly connected
4. Servos:
Correct PWM signal connections
Adequate power supply for servo operation
Servo horns and linkages secure
5. Motor System:

ESC properly calibrated

■ Motor rotation direction correct

Propeller securely mounted

■ ESC thermal protection adequate

Troubleshooting Common Issues

Power Problems:

• **Symptom:** Arduino resets randomly

• Solution: Check voltage regulation, add larger filter capacitors

Communication Issues:

• Symptom: NRF24L01 not responding

• **Solution:** Verify 3.3V power, check SPI connections, add power filtering

Servo Problems:

• Symptom: Servos jittering or not responding

Solution: Check PWM signal quality, ensure adequate power supply

Motor Issues:

Symptom: Motor not starting or running rough

Solution: Verify ESC calibration, check motor wire connections

Safety Considerations

Electrical Safety:

- Always disconnect power when making connections
- Use fuses on main power lines
- Insulate all connections properly
- Check for shorts with multimeter before powering up

Mechanical Safety:

- Secure all wiring away from moving parts (propeller)
- Use strain relief on all cable connections
- Mount components securely to prevent vibration damage

Flight Safety:

- Test all systems on the ground before flight
- Have manual override capability
- Monitor battery/solar voltage during flight
- Implement failsafe procedures in software

Tools Required

For Assembly:

- Soldering iron (40W minimum)
- Solder (60/40 rosin core)
- Wire strippers
- Heat shrink tubing and heat gun
- Multimeter for testing
- Small screwdrivers
- Crimping tool for connectors

For Testing:

- Digital multimeter
- Oscilloscope (for signal verification)
- Servo tester
- ESC programming card

This wiring guide provides the foundation for a reliable fixed-wing drone electrical system. Always double-check connections before applying power, and test each subsystem individually before integrating everything together.