CS 587 Database Implementation Database Benchmarking Project (Part 1) (Punam Rani Pal, Weiwei Chen)

Description:

In this project, we have followed the Wisconsin benchmark project that have been applied on the different relational database management systems to measure the performance on various sets of queries and predict its efficiency. This project is a good practice for us to increase our understanding of Database Performance. We can get some experience with a relational-style data management system of our choice as well as programming experience.

we accomplished two tasks for the first part of the project:

- **Data generation:** For the data generation, we used Python script. The data model and the schema is based on the Wisconsin Benchmark. We generated the data directly into a system.
- **System selection:** We selected MySQL for database implementation and running queries.

System used:

For this project MySQL has been chosen because we got an opportunity to use postgresql in the database introductory class (CS586) and now we planned to experience a different system since MySQL is a stable and reliable open-source database, it also features a distinct storage-engine framework that facilitates system management to configure the MySQL database server for a flawless performance.

- Following are the prominent benefits:
 - User friendly
 - On demand high scalability
 - Data security
 - High performance
 - Supports transactional feature
 - Ease of connection with different systems

Furthermore, it also ensures high speed and unique memory caches for enhanced performance on many cloud databases.

Data sample loaded:

We followed the relational schema specified on the Wisconsin paper. There are three tables in the database: OENKTUP of size 1000, TENKTUP1 and TENKTUP2 of size 10000 respectively. All the tables share the same schema given below:

```
CREATE TABLE TENKTUP1
( unique1
                  integer NOT NULL,
   unique2
                  integer NOT NULL PRIMARY KEY,
   two
                  integer NOT NULL,
   four
                  integer NOT NULL,
   ten
                  integer NOT NULL,
                  integer NOT NULL,
   twenty
   hundred
                  integer NOT NULL,
   thousand
                  integer NOT NULL,
   twothous
                  integer NOT NULL,
   fivethous
                  integer NOT NULL,
                  integer NOT NULL,
   tenthous
   odd100
                  integer NOT NULL,
   even100
                  integer NOT NULL,
   stringu1
                  char (52) NOT NULL,
   stringu2
                  char (52) NOT NULL,
   string4
                  char (52) NOT NULL
)
```

Following are the constraints of each attribute:

Attribute Name	Range of Values Ord	der Comm	ent
unique1	0-(MAXTUPLES-1)	random	unique, random order
unique2	0-(MAXTUPLES-1)	sequential	unique, sequential
two	0-1	random	(unique1 mod 2)
four	0-3	random	(unique1 mod 4)
ten	0-9	random	(unique1 mod 10)
twenty	0-19	random	(unique1 mod 20
onePercent	0-99	random	(unique1 mod 100)
tenPercent	0-9	random	(unique1 mod 10)
twentyPercent	0-4	random	(unique1 mod 5)
fiftyPercent	0-1	random	(unique1 mod 2)
unique3	0-(MAXTUPLES-1)	random	unique1
evenOnePercent	0,2,4,,198	random	(onePercent * 2)
oddOnePercent	1,3,5,,199	random	(onePercent * 2)+1
stringu1	_	random	candidate key
stringu2	-	random	candidate key
string4		cyclic	

Method for data generation:

- Established connection between MySQL server and the local machine Python editor.
- Populated records in each table by Python script.
- Exported the generated tables from MySQL Workbench as CSV files.

Examples of the generated tables:

Table ONEKTUP:

Α	В	C	0)	E	F	G	Н	1	J	K	L	M	N	0	P	Q	R	
unique1	unique2	two	four	te	en	twenty	onePercen	tenPercen	t twentyPero	fiftyPercen	unique3	evenOnePeo	ddOnePe	stringu1	stringu2	stringu4			
436	5	0	1	2	8	14	95	5	0	1	601	L 86	63	UQAAAA	AAAAAA	X AAAAxxxx	xxxxxxxxx	(XXXXXXXXX	XXXX
161	L	1	1	1	6	11	. 76	4	3	0	340	34	125	FGAAAAA	x BAAAAAA	x HHHHxxx	xxxxxxxxx	xxxxxxxx	XXXX
300)	2	0	3	2	. 7	18	4	4	1	388	158	1	OLAAAAA	x CAAAAA	x 0000xxx	xxxxxxxxx	(XXXXXXXXX	xxxx
754	1	3	0	2	6		78	7	3	1	221	L 70	115	ADBAAAA	X DAAAAA	Ax VVVVxxxx	xxxxxxxxx	(XXXXXXXXX	XXXX
126	5	4	0	1	3	8	14	2	1	1	52	2 0	195	WEAAAA	A EAAAAA	x AAAAxxxx	xxxxxxxxx	(XXXXXXXXX	XXXX
37	7	5	0	2	4	13	91	9	0	1	35	76	7	LBAAAAA	x: FAAAAAA	x: HHHHxxxx	xxxxxxxxx	xxxxxxxx	XXX
245	5	6	1	2	8	10	39	6	4	1	323	64	119	LJAAAAA	x GAAAAA	Ax 0000xxx	(XXXXXXXXXXX	(XXXXXXXXX	XXXX
428	3	7	0	1	2	16	47	7	0	0	332	2 34	79	MQAAAA	A HAAAAA	Ax VVVVxxxx	xxxxxxxxx	(XXXXXXXXX	XXXX
903	3	8	0	1	1	. (13	6	0	1	528	3 150	43	TIBAAAA	X IAAAAAA	xx AAAAxxxx	(XXXXXXXXXXX	(XXXXXXXXX	XXXX
452	2	9	1	0	8		72	5	0	0	491	184	67	KRAAAAA	x JAAAAAA	хэ НННН хххх	xxxxxxxxxx	xxxxxxxx	XXX
758	3 1	10	0	1	1	. 19	66	7	0	0	299	180	165	EDBAAAA	x KAAAAAA	x OOOOxxx	(XXXXXXXXXXX	(XXXXXXXXX	XXXX
990) 1	11	0	0	6		76	5	3	0	194	1 38	1	CMBAAA	A LAAAAAA	x: VVVVxxxx	(XXXXXXXXXXX	(XXXXXXXXX	XXXX
47	7 1	12	0	2	9	11	. 71	3	1	0	492	2 50	55	VBAAAAA	x MAAAAA	A: AAAAxxxx	xxxxxxxxx	(XXXXXXXXX	XXXX
462	2 1	13	1	3	9	16	96	1	2	1	967	7 114	103	URAAAA	X NAAAAA	Ax HHHHxxxx	xxxxxxxxxx	xxxxxxxx	XXXX
			_	-	-			-											

Table TENKTUP1:

А	В	С		D	E	F		G	Н	1		J	K	L	М	N	0	Р	Q	R	
unique1	unique2	two	1	four	ten	twenty	/	onePercen	tenPerce	nt twenty	Percfifty	Percent	inique3	evenOneP	coddOnePe	stringu1	stringu2	stringu4			
436		0	1		2	8	14	95		5	0	1	601	. 86	63	UQAAAAA	AAAAAAA	AAAAxxxx	xxxxxxxx	xxxxxxxxx	XXXX
161		1	1		1	6	11	76		4	3	0	340	34	125	FGAAAAA:	BAAAAA	HHHHXXXX	xxxxxxxxx	(XXXXXXXXX	XXXX
300		2	0		3	2	7	18		4	4	1	388	158	1	OLAAAAA:	CAAAAAA	0000xxx	xxxxxxxxx	xxxxxxxxx	XXXX
754		3	0		2	6	9	78		7	3	1	221	. 70	115	ADBAAAA	DAAAAA	VVVVxxxx	xxxxxxxxx	xxxxxxxxx	XXXX
126		4	0		1	3	8	14		2	1	1	52	. 0	195	WEAAAAA	EAAAAAA	AAAAxxxx	xxxxxxxxx	xxxxxxxxx	XXXX
37		5	0		2	4	13	91		9	0	1	35	76	7	LBAAAAA	FAAAAAA	HHHHxxxx	xxxxxxxxx	(XXXXXXXXX	XXXX
245		6	1		2	8	10	39		6	4	1	323	64	119	LJAAAAAx	GAAAAAA	0000xxx	xxxxxxxxx	xxxxxxxxx	XXXX
428		7	0		1	2	16	47		7	0	0	332	34	79	MQAAAAA	HAAAAAA	VVVVxxxx	xxxxxxxxx	xxxxxxxxx	XXXX
903		8	0		1	1	0	13		6	0	1	528	150	43	TIBAAAAx	(IAAAAAA	AAAAxxxx	«xxxxxxxx	xxxxxxxxx	XXXX
452		9	1		0	8	0	72		5	0	0	491	184	67	KRAAAAA	JAAAAAA	HHHHXXXX	xxxxxxxxx	xxxxxxxx	XXXX
758	1	.0	0		1	1	19	66		7	0	0	299	180	165	EDBAAAA	KAAAAAA	0000xxx	xxxxxxxxx	xxxxxxxxx	XXXX
990	1	1	0		0	6	5	76		5	3	0	194	38	1	CMBAAAA	LAAAAAA	VVVVxxxx	xxxxxxxxx	xxxxxxxxx	XXXX
47	1	.2	0		2	9	11	71		3	1	0	492	50	55	VBAAAAA	MAAAAAA	AAAAxxxx	«xxxxxxxxx	xxxxxxxxx	XXXX
462	1	.3	1		3	9	16	96		1	2	1	967	114	103	URAAAAA	NAAAAA	HHHHxxxx	xxxxxxxxxx	(XXXXXXXXX	XXXX

Table TENKTUP2:

А	В	C	D	E	F	G	Н	1	J		K	L	M	N	0	P	Q	R
unique1	unique2	two	four	ten	twenty	onePer	en tenPerce	ent twentyPe	ercfiftyPerc	en un	ique3	evenOnePe or	ddOneP	eistringu1	stringu2	stringu4		
436		0	1	2	8	14	95	5	0	1	601	86	6	UQAAAAA	AAAAAAA	AAAAxxxx	xxxxxxxxxx	«xxxxxxxxx
161		1	1	1	6	11	76	4	3	0	340	34	12	FGAAAAA	x BAAAAAA	HHHHxxx	xxxxxxxxxx	xxxxxxxxxx
300		2	0	3	2	7	18	4	4	1	388	158		1 OLAAAAA	x CAAAAAA	0000xxx	xxxxxxxxxx	«xxxxxxxxx
754		3	0	2	6	9	78	7	3	1	221	70	11	ADBAAAA	x DAAAAAA	×VVVVxxxx	xxxxxxxxxx	xxxxxxxxx
126		4	0	1	3	8	14	2	1	1	52	0	19	WEAAAA	EAAAAAA	AAAAxxxx	xxxxxxxxxx	xxxxxxxxxxx
37		5	0	2	4	13	91	9	0	1	35	76		7 LBAAAAA	c FAAAAAA	HHHHxxx	xxxxxxxxxx	xxxxxxxxxx
245		6	1	2	8	10	39	6	4	1	323	64	11	LJAAAAA	x GAAAAAA	0000xxx	xxxxxxxxxx	xxxxxxxxx
428		7	0	1	2	16	47	7	0	0	332	34	7	MQAAAA	A HAAAAAA	×VVVVxxxx	xxxxxxxxxx	(XXXXXXXXXXX
903		8	0	1	1	0	13	6	0	1	528	150	4	3 TIBAAAAx	x IAAAAAAx	AAAAxxxx	xxxxxxxxxx	xxxxxxxxxx
452		9	1	0	8	0	72	5	0	0	491	184	6	KRAAAAA	x JAAAAAAx	HHHHXXX	xxxxxxxxxx	xxxxxxxxxx
758	1	0	0	1	1	19	66	7	0	0	299	180	16	EDBAAAA	x KAAAAAA	0000xxx	xxxxxxxxxx	«xxxxxxxxx
990	1	1	0	0	6	5	76	5	3	0	194	38		1 CMBAAA	LAAAAAA	VVVVxxxx	xxxxxxxxxx	xxxxxxxxx
47	1	2	0	2	9	11	71	3	1	0	492	50	5.	VBAAAAA	х МААААА	AAAAxxxx	xxxxxxxxxx	xxxxxxxxx
462	1	3	1	3	9	16	96	1	2	1	967	114	10	URAAAA	x NAAAAAA	HHHHXXX	xxxxxxxxxx	xxxxxxxxxx
478	1	4	0	0	2	1	44	6	4	1	359	158	6	3 KSAAAAA	COAAAAA	0000xxx	xxxxxxxxxx	xxxxxxxxxx
788	1	5	1	0	4	12	90	2	2	0	41	154	16	3 IEBAAAAx	x PAAAAAA	VVVVxxxx	xxxxxxxxxx	(XXXXXXXXXXXX

Discussion:

Through this project we gained a better understanding of how systems manages data, generating data based on a specific schema and uploading data into the system using a generated script. We also got familiar with how to establish connection from an editor to any system and populate table instead of directly uploading from a CSV file which we have done in our previous projects in database. It was a great experience learning about these technical aspects and last but not the least learning from others researches.

We have encountered some issues while installing softwares for connecting MySQL and an editor (Intellij). While uploading data, we also got some problems regarding tempering the integrity of the relational schema. For example, the attribute which is the primary key was mentioned not null and it shouldn't be mentioned, because it is by default unique.