ИССЛЕДОВАНИЕ СИСТЕМ РЕАЛЬНОГО ВРЕМЕНИ ПРИ БЕСПРИОРИТЕТНЫХ ДИСЦИПЛИНАХ ОБСЛУЖИВАНИЯ ЗАЯВОК

<u>Цель работы</u> - приобретение навыков составления и исследования простой модели системы реального времени при бесприоритетной дисциплине обслуживания заявок.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

1 Постановка задачи

Бесприоритетное обслуживание заявок в системе реального времени на основе дисциплины обслуживания в порядке поступления организуется в соответствии с рис.2.1, где $\mathbf{\Pi}\mathbf{p}$ - процессор и \mathbf{O} - очередь для заявок типа z_1 , $z_2,...,z_m$. Вновь поступившая заявка заносится в конец очереди. Заявки выбираются на обслуживание из начала очереди. Очередь в физическом отношении представляет собой буфер - совокупность ячеек оперативной памяти, в которых размещаются коды поступивших заявок.

Рассматривается случай поступления в систему одного входящего простейшего потока заявок со средним интервалом Т.

Одной из важнейших характеристик качества функционирования систем реального времени (CPB) является загрузка

$$\rho = \Theta/T$$
,

где Θ - средняя длительность обслуживания заявок. Длительность обслуживания имеет экспоненциальное распределение.

Условие существования стационарного режима работы СРВ определяется значением загрузки $\rho < 1$.

Качество функционирования СРВ определяется временем пребывания заявок в системе u, которое складывается из времени ожидания ω заявки в очереди и времени обслуживания ее в процессоре, т.е.

$$u = \omega + \Theta$$

Характеристика качества функционирования СРВ определяется также возможностью потери заявок из-за ограниченной емкости буфера для организации очереди.

2 Задание

Построить GPSS-модель, имитирующую работу CPB, и провести исследование характеристик качества их функционирования: времени пребывания, времени ожидания заявок в системе, количества и процента потерь заявок - в соответствии с конкретным вариантом задания.

Составить полную блок-схему GPSS-модели с учетом дополнений, связанных со спецификой конкретного исследования. Провести исследование на ЭВМ состав-

3 Метод построения модели

Для моделирования буфера используется многоканальное устройство **BUF** заданной емкости, для моделирования процессора - прибор **PROC** (табл.2.1). Блоксхема модели представлена на рис.2.2.

Когда транзакт (заявка) входит в систему, он попадает в блок **TRANSFER**, работающий в режиме **BOTH**. Из него транзакт пытается войти в многоканальное устройство, моделирующее буфер. Если вход запрещен (буфер заполнен полностью), то транзакт сразу же переходит в блок **TERMINATE**. В противном случае он входит в буфер с последующим обслуживанием в процессоре.

При исследовании времени пребывания или времени ожидания заявок следует сформировать таблицу и дополнить модель блоком **TABULATE**, вставленным соответственно после блока **RELEASE** или блока **LEAVE**.

При исследовании количества и процента потерь заявок следует дополнить модель арифметической переменной, осуществляющей вычисление процента потерь заявок и двумя блоками **SAVEVALUE**: одного - для подсчета в режиме накопления числа потерянных заявок, второго - для фиксации процента потерянных заявок.

Таблица 2.1 -	Таблица	определений

Элемент модели	Интерпретация	
Транзакты:		
1-й сегмент модели	Заявки	
2-й сегмент модели	Таймер	
Функции: XPDIS	Экспоненциальная функция распределения	
Многоканальные устройства:		
BUF	Буфер заданной емкости	
	для организации очереди	
	заявок	
Приборы:		
PROC	Процессор	
Единица модельного времени:	0,001 сек.	

Рис 2.2

Содержание отчета

- 1. Задание и его исходные данные.
- 2. Q-схема математической модели.
- 3. Блок-схема GPSS-модели.
- 4. Таблица определений GPSS-модели.
- 5. Распечатка текста GPSS-модели с результатами моделирования.
- 6. Результаты и выводы по выполненной работе.

Варианты заданий

Варианты заданий, представлены в таблице 2.2.

Таблица 2.2

№ варианта	Исследуемые характеристики	Изме- няемые пара- метры	Заданные параметры
1	U	Т	$\Theta = 200,$ емкость буфера = 15
2	ω	Θ	T = 150, емкость буфера = 20
3	Кол-во и процент потерь заявок	Емкость буфера	T = 200, $\Theta = 180$
4	U	Т	$\Theta = 150,$ емкость буфера = 20
5	ω	Т	Θ = 160, емкость буфера =15
6	Кол-во и процент потерь заявок	Θ	T = 170, емкость буфера = 20
7	U	Θ	T = 200, емкость буфера =15
8	Кол-во и процент потерь заявок	Т	⊕ = 140,емкость буфера =20
9	ω	Т	$\Theta = 180,$ емкость буфера = 20
10	U	Θ	T = 200 емкость буфера = 20