Задачи для Клуба теории вероятностей ФЭН ВШЭ

Николай Аверьянов

9 сентября 2021

Задача 1

Доказать, что если F(x) – функция распределения, то при любом $h \neq 0$ функции

$$\Phi(x) = \frac{1}{h} \int_{x}^{x+h} F(t)dt, \quad \Psi(x) = \frac{1}{2h} \int_{x-h}^{x+h} F(t)dt$$

также являются функциями распределения.

Задача 2

Пусть $\alpha(x) = x + [x]$, где квадратные скобки означают взятие целой части числа. Вычислите следующий интеграл:

$$\int_{0}^{10} x d\alpha(x)$$

Задача 3

Функции распределения $F_1(x)$ и $F_2(x)$ удовлетворяют условию

$$F_1(x) \leq F_2(x) \ \forall x.$$

Показать, что можно так задать на одном вероятностном пространстве случайные величины ξ_1 и ξ_2 с функциями распределения $F_1(x)$ и $F_2(x)$ соответственно, что

$$\mathbb{P}\{\xi_1 \ge \xi_2\} = 1$$

Задача 4

Покажите, что функция распределения $F_{\xi}(x)$ непрерывна в точке $x=x_0$ тогда и только тогда, когда $\mathbb{P}\{\xi=x_0\}=0$

Задача 5

Доказать, что любая функция распределения обладает следующими свойствами:

$$\lim_{x \to \infty} x \int_{x}^{\infty} \frac{1}{z} dF(z) = 0, \quad \lim_{x \to +0} x \int_{x}^{\infty} \frac{1}{z} dF(z) = 0,$$

$$\lim_{x \to -\infty} x \int_{-\infty}^{x} \frac{1}{z} dF(z) = 0, \quad \lim_{x \to -0} x \int_{-\infty}^{x} \frac{1}{z} dF(z) = 0,$$