Geometria B

Università degli Studi di Trento Corso di Laurea in Matematica A.A. 2017/2018 4 febbraio 2019

Lo studente svolga i seguenti esercizi. **Ogni risposta deve essere adeguatamente motivata**. Si terrà conto non solo della correttezza dei risultati, ma anche della completezza e chiarezza delle spiegazioni.

Attenzione. Il testo è composto da due pagine (la seconda pagina è sul retro di questo foglio).

Esercizio 1. Sia \mathbb{R} la retta reale, sia τ la topologia euclidea di \mathbb{R} e sia η la famiglia di sottoinsiemi di \mathbb{R} definita ponendo:

$$\eta := \{\emptyset\} \cup \{A \in \tau \mid \mathbb{R} \setminus A \text{ è limitato}\}.$$

- (1a) Si dimostri che η è una topologia su \mathbb{R} che non soddisfa la condizione di Hausdorff.
- (1b) Si dica se lo spazio topologico (\mathbb{R}, η) è compatto.
- (1c) Definiamo la relazione di equivalenza \mathcal{R} su \mathbb{R} ponendo:

$$x \mathcal{R} y$$
 se e soltanto se $x, y \in [-1, 1]$ oppure $(x = y \in x \notin [-1, 1])$.

Si dimostri che lo spazio topologico quoziente $(\mathbb{R}/_{\mathcal{R}}, \tau_{\mathbb{R}})$ di (\mathbb{R}, τ) modulo \mathcal{R} è omeomorfo a (\mathbb{R}, τ) stesso.

(1d) Sia (\mathbb{R}^2, ξ) lo spazio topologico prodotto di (\mathbb{R}, τ) e (\mathbb{R}, η) . Si calcoli la chiusura di $\mathbb{Z} \times \{0\}$ in (\mathbb{R}^2, ξ) . Si calcoli inoltre la parte interna di $\mathbb{R}^2 \setminus (\{0\} \times \mathbb{Z})$ in (\mathbb{R}^2, ξ) .

SOLUZIONE. (1a) $\emptyset \in \eta$ per definizione e $\mathbb{R} \in \eta$ in quanto $\mathbb{R} \setminus \mathbb{R} = \emptyset$ è limitato. Sia $\{A_i\}_{i \in I} \subset \eta$ una famiglia nonvuota di sottoinsiemi di \mathbb{R} appartenenti a η . Vogliamo provare che $\bigcup_{i \in I} A_i \in \eta$. Se $\bigcup_{i \in I} A_i = \emptyset$ allora evidentemente $\bigcup_{i \in I} A_i \in \eta$. Possiamo dunque supporre che $\bigcup_{i \in I} A_i \neq \emptyset$. Omettendo gli insiemi A_i vuoti, possiamo anche supporre che $A_i \neq \emptyset$ per ogni $i \in I$. Scegliamo $i_0 \in I$. Poiché $\bigcup_{i \in I} A_i \in \tau$, $\mathbb{R} \setminus \bigcup_{i \in I} A_i = \bigcap_{i \in I} (\mathbb{R} \setminus A_i) \subset \mathbb{R} \setminus A_{i_0}$ e $\mathbb{R} \setminus A_{i_0}$ è limitato, anche $\mathbb{R} \setminus \bigcup_{i \in I} A_i$ è limitato, quindi $\bigcup_{i \in I} A_i \in \eta$. Siano ora $A_1, A_2 \in \eta$ tali che $A_1 \cap A_2 \neq \emptyset$. Allora $A_1 \neq \emptyset$, $A_2 \neq \emptyset$ e quindi $\mathbb{R} \setminus A_1 \subset [-r_1, r_1]$ e $\mathbb{R} \setminus A_2 \subset [-r_2, r_2]$ per qualche $r_1 > 0$ e $r_2 > 0$. Sia $r := \max\{r_1, r_2\}$. Poiché $A_1 \cap A_2 \in \tau$ e $\mathbb{R} \setminus (A_1 \cap A_2) = (\mathbb{R} \setminus A_1) \cup (\mathbb{R} \setminus A_2) \subset [-r, r]$, $A_1 \cap A_2 \in \eta$. Segue che η è una topologia su \mathbb{R} .

Scegliamo due punti x e y di \mathbb{R} con $x \neq y$. Siano U e V intorni aperti rispettivamente di x e di y in (\mathbb{R}, η) . Si osservi che $U \cap V \neq \emptyset$, altrimenti $\mathbb{R} = \mathbb{R} \setminus (U \cap V) = (\mathbb{R} \setminus U) \cup (\mathbb{R} \setminus V)$ e quindi \mathbb{R} sarebbe limitato (essendo unione dei suoi due sottoinsiemi limitati $\mathbb{R} \setminus U$ e $\mathbb{R} \setminus V$). Segue che η non è di Hausdorff.

(1b) (\mathbb{R}, η) è compatto. Proviamolo. Sia $\{A_i\}_{i \in I}$ un ricoprimento aperto di (\mathbb{R}, η) . Possiamo supporre che $A_i \neq \emptyset$ per ogni $i \in I$. Scegliamo un indice j in I ed indichiamo con F il sottoinsieme chiuso e limitato di (\mathbb{R}, τ) definito ponendo $F := \mathbb{R} \setminus A_j$. Poiché F è compatto in (\mathbb{R}, τ) e $\{A_i\}_{i \in I \setminus \{j\}}$ è un ricoprimento aperto di F in (\mathbb{R}, τ) , esiste un sottoinsieme finito I di $I \setminus \{j\}$ tale che $F \subset \bigcup_{i \in J} A_i$. Segue che $\{A_i\}_{i \in J \cup \{j\}}$ è un sottoricoprimento aperto finito di (\mathbb{R}, η) estratto da $\{A_i\}_{i \in I}$.

(1c) Sia $\pi: (\mathbb{R}, \tau) \to (\mathbb{R}/\mathfrak{R}, \tau_{\mathbb{R}})$ la proiezione naturale al quoziente e sia $f: (\mathbb{R}, \tau) \to (\mathbb{R}, \tau)$ l'applicazione continua (affine a tratti) definita ponendo: f(x) := x + 1 se x < -1, f(x) = 0 se $x \in [-1, 1]$ e f(x) := x - 1 se x > 1. Dato un numero reale α , indichiamo con $t_{\alpha}: (\mathbb{R}, \tau) \to (\mathbb{R}, \tau)$ la traslazione di \mathbb{R} lungo α , cioè $t_{\alpha}(x) := x + \alpha$, che è un omeomorfismo (infatti è una bigezione continua con inversa $t_{-\alpha}$). Per definizione f coincide con t_1 su $(-\infty, -1)$ e con t_{-1} su $(1, +\infty)$.

Si osservi che \mathcal{R} è uguale alla relazione di equivalenza \mathcal{R}_f su \mathbb{R} indotta da f, ovvero le \mathcal{R} -classi di equivalenza sono tutte e sole le fibre di f. Esiste allora una bigezione continua $g:(\mathbb{R}/\mathfrak{R},\tau_{\mathcal{R}})=(\mathbb{R}/\mathfrak{R}_f,\tau_{\mathcal{R}_f})\to(\mathbb{R},\tau)$ tale che $g\circ\pi=f$. È sufficiente ora dimostrare che g è una applicazione aperta e quindi un omeomorfismo. Sia $A\in\tau_{\mathcal{R}}$ e sia U un aperto π -saturo di (\mathbb{R},τ) tale che $A=\pi(U)$ (cioè $U=\pi^{-1}(A)$). Dobbiamo provare che $g(A)\in\tau$. Osserviamo che $g(A)=g(\pi(U))=(g\circ\pi)(U)=f(U)$. Definiamo $U_-:=(-\infty,-1)\cap U\in\tau$, $U_0:=[-1,1]\cap U$ e $U_+:=(1,+\infty)\cap U\in\tau$. Evidentemente vale:

$$f(U) = f(U_{-} \cup U_{0} \cup U_{+}) = f(U_{-}) \cup f(U_{0}) \cup f(U_{+}) = t_{1}(U_{-}) \cup f(U_{0}) \cup t_{-1}(U_{+}),$$

dove $t_1(U_-) \in \tau$ e $t_{-1}(U_+) \in \tau$. Se $U_0 = \emptyset$, allora $f(U_0) = \emptyset$ da cui $f(U) = t_1(U_-) \cup t_{-1}(U_+) \in \tau$. Supponiamo infine che $U_0 \neq \emptyset$. Poiché U è π -saturo e $U \in \tau$, si ha che $[-1,1] \subset U$ ed esiste $\varepsilon > 0$ tale che $(-1 - \varepsilon, 1 + \varepsilon) \subset U$. Si osservi che $f((-1 - \varepsilon, 1 + \varepsilon)) = (-\varepsilon, \varepsilon) \in \tau$ e $U = U_- \cup (-1 - \varepsilon, 1 + \varepsilon) \cup U_+$. Dunque

$$f(U) = t_1(U_-) \cup (-\varepsilon, \varepsilon) \cup t_{-1}(U_+) \in \tau.$$

(1d) $\mathbb{Z} \times \{0\}$ è chiuso in (\mathbb{R}^2, ξ) , dunque coincide con la sua chiusura. Infatti, vale:

$$\mathbb{R}^2 \setminus (\mathbb{Z} \times \{0\}) = (\mathbb{R} \times (\mathbb{R} \setminus \{0\})) \cup ((\mathbb{R} \setminus \mathbb{Z}) \times \mathbb{R}) \in \xi.$$

Poiché $(\mathbb{R}\setminus\{0\})\times\mathbb{R}$ è un aperto di ξ che non interseca $\{0\}\times\mathbb{Z}$, la parte interna A di $\mathbb{R}^2\setminus(\{0\}\times\mathbb{Z})$ in (\mathbb{R}^2,ξ) contiene $(\mathbb{R}\setminus\{0\})\times\mathbb{R}$. Proviamo che $A=(\mathbb{R}\setminus\{0\})\times\mathbb{R}$. Dobbiamo far vedere che, se $y\in\mathbb{R}\setminus\mathbb{Z}$, allora $(0,y)\not\in A$. Ogni intorno U di (0,y) in (\mathbb{R}^2,ξ) contiene un aperto della forma $(-\varepsilon,\varepsilon)\times(\mathbb{R}\setminus[-M,M])$ per qualche $\varepsilon,M>0$. Poiché $(\mathbb{R}\setminus[-M,M])\cap\mathbb{Z}\neq\emptyset$ per ogni $M>0,\ (-\varepsilon,\varepsilon)\times(\mathbb{R}\setminus[-M,M])\not\subset\mathbb{R}^2\setminus(\{0\}\times\mathbb{Z})$ e quindi anche $U\not\subset\mathbb{R}^2\setminus(\{0\}\times\mathbb{Z})$. Segue che $(0,y)\not\in A$ come desiderato.

Esercizio 2. Sia X uno spazio topologico compatto, sia Y uno spazio topologico metrizzabile e sia $f: X \to Y$ una applicazione continua e surgettiva. Consideriamo un sottospazio topologico A di X e un sottospazio topologico B di Y tali che $A = f^{-1}(B)$. Indichiamo con $g: A \to B$ la restrizione di f da A a B. Si dimostri che g è una applicazione continua, surgettiva e chiusa.

SOLUZIONE. Sia P un aperto di B e sia Q un aperto di Y tale che $P = Q \cap B$. Poiché f è continua e $g^{-1}(P) = A \cap f^{-1}(Q)$, $f^{-1}(Q)$ è un aperto di X e quindi $g^{-1}(P)$ è un aperto di A. Abbiamo così dimostrato che g è continua. Osserviamo che $f(A) = f(f^{-1}(B)) = B$ in quanto f è surgettiva. Segue che anche g lo è: g(A) = f(A) = B. Proviamo che g è chiusa. Sia C un chiuso di A e sia D un chiuso di X tale che $C = D \cap A$. Poiché X è compatto e f è continua, si ha che D è un sottoinsieme compatto di X e f(D) è un sottoinsieme compatto di Y. Essendo Y

metrizzabile (e quindi T_2), si ha anche che f(D) è un sottoinsieme chiuso di Y. Per dimostrare che g è chiusa, è ora sufficiente provare che $g(C) = f(D) \cap B$. Osserviamo che

$$g(C) = f(C) = f(D \cap A) \subset f(D) \cap f(A) = f(D) \cap B.$$

Sia $y \in f(D) \cap B$ e sia $x \in D$ tale che f(x) = y. Poiché $x \in f^{-1}(y) \subset f^{-1}(B) = A$, si ha che $x \in A$. Dunque $x \in D \cap A = C$ e g(x) = f(x) = y. Ciò dimostrare che $f(D) \cap B \subset g(C)$ e quindi $g(C) = f(D) \cap B$ come desiderato.

Esercizio 3. Siano S e T i sottospazi topologici di \mathbb{R}^2 così definiti:

$$S = \{(x,y) \in \mathbb{R}^2 \mid 1 \le x^2 + (y-4)^2 \le 4, \ y \ne 2\} \quad \text{(corona circolare privata di un punto)},$$

$$T = T_1 \cup T_2 \cup \{P\}, \ \text{con } P = (2,4), \ \text{e} \ T_1 = \{(x,y) \in \mathbb{R}^2 \mid 1 \le x^2 + (y-4)^2 \le 4, \ y > 4\},$$

$$T_2 = \{(x,y) \in \mathbb{R}^2 \mid 1 \le (x-4)^2 + (y-4)^2 \le 4, \ y > 4\} \quad \text{(due semi-corone circolari unite in un punto)}.$$

Siano S' e T' ottenuti da S e T mediante la riflessione rispetto all'asse x. Sia X lo spazio quoziente ottenuto da $S \cup S'$ identificando i punti della frontiera di S appartenenti a S con i punti simmetrici rispetto all'asse x, appartenenti a S'. Analogamente, sia Y ottenuto da $T \cup T'$ con la stessa identificazione.

- (3a) Si mostri che X e Y sono omotopicamente equivalenti e si calcoli il loro gruppo fondamentale
- (3b) Si dica se X e Y sono spazi omeomorfi.

SOLUZIONE. (3a) Lo spazio X è omeomorfo a un toro privato di un punto, che si retrae, con deformazione, sul bouquet di due circonferenze. Lo spazio Y è omeomorfo all'unione di due cilindri nel punto P, appartenente al bordo dei due cilindri. Si vede facilmente che anche Y si retrae, con deformazione, sul bouquet di due circonferenze. Quindi $X \sim Y$ e $\pi(X, x_0) \simeq \pi(Y, y_0) \simeq \mathbb{Z} * \mathbb{Z}$.

(3b) I due spazi non sono omeomorfi: X è localmente euclideo, essendo omeomorfo ad un aperto del toro, che è localmente euclideo. Invece Y non è localmente euclideo: il punto P non ha un intorno aperto omeomorfo a un disco aperto del piano, poiché ogni intorno aperto di P in Y, privato di P, è un sottospazio non connesso.

Esercizio 4.

- (4a) Si consideri la funzione di due variabili reali $u(x,y) = e^{-y} \cos x$. Esiste una funzione olomorfa f = u + iv con parte reale u? In caso affermativo, si trovi v tale che v(0,0) = 1.
- (4b) Si mostri, usando il Teorema dei residui, che vale

$$\int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + 1} dx = \frac{\pi}{e}.$$

SOLUZIONE. (4a) La funzione u è armonica: $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, come si verifica facilmente. Per ottenere v si può definire la funzione olomorfa $g = u_x - iu_y = ie^{-y}(\cos x + i\sin x) = ie^{-y}e^{ix} = ie^{iz}$ e osservare che g ha primitiva olomorfa $h = e^{iz}$. Essendo $Re(h) = e^{-y}\cos x$ e $Im(h) = e^{-y}\sin x$, la funzione olomorfa $f = h + i = u + i(e^{-y}\sin x + 1)$ ha parte reale u e parte immaginaria tale che v(0,0) = 1.

(4b) Sia $f(z) = -iz/(z^2+1)$. Allora $Re(f(z)e^{iz})_{|y=0} = x\sin x/(x^2+1)$. Inoltre vale la stima

$$|f(z)| \le \frac{2}{|z|}$$

per |z| sufficientemente grande (ad es. per $|z| > \sqrt{2}$). Dunque si può applicare il Teorema dei residui (cf. Applicazione 12.18 delle note) e ottenere

$$\int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + 1} dx = Re\left(\int_{-\infty}^{\infty} f(z)e^{iz}dz\right) = Re(2\pi i \operatorname{Res}_i(fe^{iz})) = 2\pi i(-i/2e) = \pi/e.$$

Vale infatti

$$\operatorname{Res}_{i}(fe^{iz}) = \operatorname{Res}_{i}\left(\frac{-zie^{iz}}{z+i}\frac{1}{z-i}\right) = \frac{-zie^{iz}}{z+i}\Big|_{z=i} = -\frac{i}{2e}.$$