

IIC2223 — Teoría de Autómatas y Lenguajes Formales — 2' 2021

PAUTA INTERROGACIÓN 1

Pregunta 1

Podemos interpretar el lenguaje buscado como "Las palabras sobre el alfabeto $\{a,b,c\}$ que no contienen la subpalabra abc ni la subpalabra acc".

Una posible expresión regular que satisface lo que buscamos es:

$$(b+c)^*(a^+\cdot(b+c)\cdot(b\cdot(b+c)^*)^?)^*a^*$$

La idea de la expresión es primero capturar las palabras que no contengan la letra a (primer paréntesis), luego, en caso de tener (al menos) una a seguida de una b o c, debe haber una letra b antes de la siguiente c para evitar que se formen los patrones (segundo paréntesis) y, finalmente, capturamos las palabras formadas solo por letras a (a^* final).

Dado lo anterior, la distribución de puntaje es la siguiente:

- (1 punto) Por manejar correctamente las palabras que no contienen letras a. $((b+c)^*)$
- (0.5 puntos) Por manejar correctamente las palabras que contienen solamente letras a. (a^*)
- (4.5 puntos) Por manejar correctamente las palabras que contienen las 3 letras posibles.
 - (0.5 puntos) Por considerar que las palabras pueden tener varias letras a. (a^+)
 - (2 puntos) Por notar que el patrón se comienza a formar al leer una b o c luego de la última a. ((b+c))
 - (2 puntos) Por evitar que se lea una c luego de leer ab y ac. $(b \cdot (b+c)^*)$
- Nota: Si la expresión no está completamente correcta, se descontará puntaje por las palabras que están en el lenguaje, pero no están definidas por la expresión y por las palabras definidas por la expresión que no estén en el lenguaje.

Otra forma, igualmente correcta, de resolver el problema era construir el autómata que definía el lenguaje y luego utilizar MNY para obtener la expresión asociada.

Idealmente, luego de completar el proceso se haría un análisis de la expresión encontrada para eliminar redundancias y luego se daría una explicación de cómo funciona la expresión encontrada.

Para este caso, la distribución de puntaje es la siguiente:

- (6 puntos) Si la expresión encontrada es correcta.
- (3-5.5 puntos) Si la expresión encontrada no produce "abc" ni "acc", pero hay palabras en el lenguaje que no define. El puntaje dependerá de la explicación dada, la legibilidad de la expresión y de cuántos casos no estén cubiertos.
- (0-4 puntos) Si la expresión encontrada produce "abc" o "acc". El puntaje dependerá de la explicación dada, la legibilidad de la expresión y de si existen palabras en el lenguaje que no están definidas por la expresión.
- (0-2.5 puntos) Si la expresión encontrada produce "abc" y "acc". El puntaje dependerá de la explicación dada, la legibilidad de la expresión y de si existen palabras en el lenguaje que no están definidas por la expresión.

Pregunta 2

Para demostrar que el lenguaje es regular, basta con demostrar que existe un autómata que lo define. Como L es regular, sabemos que existe un DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ tal que $\mathcal{L}(\mathcal{A}) = L$. A partir de este, podemos contruir el autómata $\mathcal{A}' = (Q', \Sigma, \Delta, q_0, q_f)$ con:

$$\begin{split} Q' &= Q^1 \uplus Q^2 \uplus \{q_f\} \text{ , d\'onde } Q^i = \{q^i \mid q \in Q\} \\ \Delta &= \left\{ (p^1, a, q^1) \mid \delta(p, a) = q \wedge p^1, q^1 \in Q^1 \right\} \\ & \cup \left\{ (p^1, \varepsilon, q^2) \mid \exists a. \, \delta(p, a) = q \wedge p^1 \in Q^1 \wedge q^2 \in Q^2 \right\} \\ & \cup \left\{ (p^2, a, q_f) \mid \delta(p, a) \in F \wedge p^2 \in Q^2 \right\} \end{split}$$

Intuitivamente, este autómata es igual al original (pero los estados finales dejan de serlo) y además tiene una copia de todos sus estados y un único estado final. Luego, el autómata intentará, de manera no determinista, adivinar que se encuentra donde debería estar la penúltima letra de la palabra y tomará la épsilon transición simulando que leyó esta letra; si tomó la transición en el momento correcto, debería quedar solamente una letra por leer que lleva a un estado final en el autómata original, por lo que simulamos este comportamiento con el último grupo de transiciones de Δ .

A continuación, debemos demostrar que $\mathcal{L}(\mathcal{A}') = L - 2$.

 $L-2 \subseteq \mathcal{L}(\mathcal{A}'):$

Sea $w = a_1...a_n \in L - 2$. Sabemos por definición que existe b tal que $a_1...a_{n-1}ba_n \in L$, por lo que existirá la siguiente ejecución de aceptación de A:

$$\rho_{\mathcal{A}}:\ q_0\xrightarrow{a_1}q_1\xrightarrow{a_2}\dots\xrightarrow{a_{n-1}}q_{n-1}\xrightarrow{b}q\xrightarrow{a_n}q_n\ \land\ q_n\in F$$

Sabemos por la construcción de \mathcal{A}' que $(q_{n-1}^1, \varepsilon, q^2) \in \Delta$ y que $(q^2, a_n, q_f) \in \Delta$, por lo que podremos formar la siguiente ejecución en \mathcal{A}' :

$$\rho_{\mathcal{A}}': q_0^1 \xrightarrow{a_1} q_1^1 \xrightarrow{a_2} \dots \xrightarrow{a_{n-1}} q_{n-1}^1 \xrightarrow{\varepsilon} q^2 \xrightarrow{a_n} q_f$$

Por tanto, $w \in \mathcal{L}(\mathcal{A}')$.

 $\mathcal{L}(\mathcal{A}') \subseteq L-2$:

Similarmente, sea $w = a_1...a_n \in \mathcal{L}(\mathcal{A}')$. Por construcción sabes que una ejecución de aceptación de \mathcal{A}' sobre w será de la forma:

$$\rho_{\mathcal{A}}': q_0^1 \xrightarrow{a_1} q_1^1 \xrightarrow{a_2} \dots \xrightarrow{a_{n-1}} q_{n-1}^1 \xrightarrow{\varepsilon} q^2 \xrightarrow{a_n} q_f$$

Sabemos entonces por la construcción de \mathcal{A}' que existe b tal que $\delta(q,b) = q^2$ y que $\delta(q^2,a_n) \in F$. Por lo que podemos construir la siguiente ejecución de \mathcal{A} :

$$\rho_{\mathcal{A}}:\ q_0\xrightarrow{a_1}q_1\xrightarrow{a_2}\dots\xrightarrow{a_{n-1}}q_{n-1}\xrightarrow{b}q\xrightarrow{a_n}q_n\ \land\ q_n\in F$$

Entonces $w \in L - 2$. Por tanto $\mathcal{L}(\mathcal{A}') = L - 2$.

Dado lo anterior, la distribución de puntaje es la siguiente:

- (1 punto) Por definir correctamente los estados de \mathcal{A}' .
- (3 puntos) Por definir Δ correctamente:
 - (1 punto) Por simular las transiciones de A.
 - (1 punto) Por simular la lectura de la penúltima letra de la palabra.
 - (1 punto) Por simular la lectura de la última letra de la palabra.
- (1 punto) Por demostrar $L-2 \subseteq \mathcal{L}(\mathcal{A}')$.
- (1 punto) Por demostrar $\mathcal{L}(\mathcal{A}') \subseteq L 2$.

Pregunta 3

El lenguaje Window(L) está definido por:

$$Window(L) = \{a^k \# w \mid k \ge 1 \land w \in \Sigma^* \land w|_k \in L\}$$

Un posible lenguaje regular L que hace que Window(L) no sea regular es:

$$L = \mathcal{L}(a^*)$$

Demostraremos que Window(L) no es un lenguaje regular. Sea un N cualquiera. Elegimos la palabra:

$$\underbrace{a^N \# b}_{x} \underbrace{a^N}_{y} \underbrace{\epsilon}_{z}$$

Tal que se cumpla:

$$a^N = \underbrace{a^i}_u \underbrace{a^j}_v \underbrace{a^k}_w$$

y tal que i+j+k=N, con $j\neq 0$. Al bombear esta palabra, tenemos lo siguiente:

$$a^N \# ba^i (a^j)^0 a^k = a^N \# ba^i a^k$$

Esta última palabra no pertenece a Window(L), dado que $(ba^{i+k})|_N = ba^{i+k} \notin L$, por lo tanto según el lema de bombeo Window(L) no es un lenguaje regular.

Dado lo anterior, la distribución de puntaje es la siguiente:

- lacktriangle (2 puntos) Por encontrar un lenguaje L regular que cumpla con que Window(L) no es regular.
- (2 puntos) Por encontrar una palabra perteneciente a Window(L) para cada N y dividirla correctamente en x, y, z.
- (1 punto) Por bombear la palabra de forma que no pertenezca al lenguaje.
- (1 punto) Por utilizar correctamente el lema de bombeo.