

# Data Linkage in IdM Systems - Revised

M.Sc. Wi.-Ing, M.Sc. CE

**Krasimir Stoyanov Zhelev** 

Regionales RechenZentrum Erlangen

**Chief Software Architect** 

**Projects & Processes** 

06. October 2009

### Content



- Data Linkage System
  - Overview
  - Problematic
  - Process
- Reporting
- Data Mapping
  - Standardization / Normalization
  - Rules
  - Data Sets
- Blocking
  - Overview
  - Types
- Statistics

### **Content II**



- Matching
  - Attribute Comparison
  - Name Comparison
  - Similarity Functions
  - Process
  - Business Rule Engine
- Result Aggregation
- DaLi
  - Framework
  - Domain Model
  - DaLiG
- Conclusions

### **Data Linkage Systems - Overview**



#### Goal:

 Linking and/or aggregating data from the same or various sources that refers to the same entity in the case where no unique entities identifiers are available

#### Reasons:

- Internal de-duplication of data sources
- Merging of different data sources
- Improve data quality clean up typos, ...
- Ensure data integrity correct data in all systems
- Extend existent data fill in missing data from other systems
- Provide basis for statistical evaluations normalized
- Support data mining
- Geocode matching

#### **Problematic**



- Unique identifiers are not available -> attributes matching
- Entity mapping:
  - Entities can have different cardinality
  - Attributes mapping is not always trivial types, formats
- Large amounts of data should be processed
  - For two source A and B: O(|A|x|B|)
  - Blocking or Filtering has to be applied
- Standardization, normalization and comparison can be computationally expensive
- Classification of matching results matched (confirmed match), rejected (confirmed reject), unsure, pending
- Automation is not feasible exact matches do not exist
  - Black lists has to be maintained
- Privacy and confidentiality

### **Data Linkage Process**





### Reporting



- Statistics reports:
  - Frequency distribution reports drill down
  - Frequency distribution reports pro source drill down
- Internal duplicates:
  - Traditional blocking
  - Similarity blocking
- Attributes reports:
  - Empty values
  - Traditional mapping
  - Similarity blocking
- False positives and false negatives reports
  - Generated from clerk review lists
- Simulation results reports pro group
- Birt as a reporting engine

# **Mapping and Standardization(Ontology)**



- Different types of objects:
  - X: persons P
  - Y: affiliations W
  - Z: entitlements E
- Mappings cardinality
  - one-to-one
  - one-to-many
  - many-to-one
  - many-to-many
- Different types of attributes

krasimir.zhelev@rrze.uni-erlangen.de

- dates
- names
- Data consistency
  - same semantics
  - same format



Set Z'

 $Z'=\{E_1, E_2, ..., E_n\}$ 

8

## **Mapping & Standardization II**



- Completeness Rule
  - as many attributes should be mapped as possible
  - allows cross system mappings
- Clarity Rule
  - Semantic definition of a Standardized Object
    - representation:  $SO = \{A_1, A_2, \dots, A_n\}$
    - usually by extending an existent type
    - proper attribute types should be selected
  - Attributes set definition
    - type string, date, number
    - value format and standardized form
  - Constraint definitions
    - imposed on the value of an attribute
    - related to the semantic meaning of the attribute
    - garbage data collection date(01.01.1000), name

### **Data Sets**



### Ontology Overlapping

| SO       | ID      | Source  | <b>A</b> <sub>1</sub> | <b>A</b> <sub>2</sub> | ••• | A <sub>n</sub> |
|----------|---------|---------|-----------------------|-----------------------|-----|----------------|
| Source X | 121525  | SOS     | Yes                   | Yes                   | ••• | No             |
| Source Y | 2118945 | diapers | Yes                   | Yes                   | ••• | Yes            |

### Weighted Ontology Overlapping

| SO       | ID      | Source  | A <sub>1</sub> | $A_{\!\scriptscriptstyle 2}$ |     | A <sub>n</sub> |
|----------|---------|---------|----------------|------------------------------|-----|----------------|
| Source X | 121525  | sos     | 0.9            | 0.75                         | ••• | 0              |
| Source Y | 2118945 | diapers | 0.85           | 0.87                         | ••• | 0.96           |

#### Case review

#### Typical case

$$M = X \cap Y = \{SO_1, SO_2, \dots, SO_m\}$$

#### Containment case

$$M = X$$
;  $M = X \cap Y = \{SO_1, SO_2, ..., SO_m\}$ 





**Typical** 

Containment

### **Data Sets Theoretically – Two Sources**



- **Linkage Couple:**  $LC = \{SO_k^x, SO_l^y\}$
- Subsets: Matched (M), False Positives (FP), False Negatives (FN)
- False Negatives can be found only by clerks



# **Data Sets Theoretically – Three Sources**





# **Blocking - Overview**



- Blocking required because of large problem size O(/A/x/B/)
- Effectively reduce problem size by fast grouping/filtering
- Traditionally blocked variable(date of birth):
  - wrong value groups entity in a wrong subset
  - uniformly distributed values



## **Blocking - Types**



- Traditional blocking
- Sorted neighborhood blocking
- Q-gram blocking
- Similarity blocking

SIMILARITY\_PLACEHOLDER( valueA, valueB) > THRESHOLD\_PLACE\_HOLDER



### **Statistics**



- Not all attributes have same significance
- Generate frequency distributions:
  - from IDM system if such exists
  - from a leading system
  - pro source
- Normalized data should be used for statistics





## **Matching - Attribute Comparison**



- Research shows: 80% of attribute errors are single errors
- Most common error types:
  - A letter was substituted for another letter
  - A letter is deleted
  - An extra letter is inserted
  - Two adjacent letters are transposed
- Errors according to data source
  - OCR similar looking characters or sequences
  - keyboard neighboring keys
  - telephone assuming spelling
  - system limitations max. length of input field
  - human factor different reporting of data
- Different sources match worse

## **Matching - Name Comparison**



- Generally there is no legislation on naming conventions
- Names have no correct spelling but rather a set of legitimate name variations
- Common problems:
  - Different spelling Meier, Meyer, Maier
  - Different structure middle name (Stoyanov, von ... )
  - Nicknames, short names (Wilhelm Willi)
  - Names change getting married, real name change
  - Compound names (Hans-Peter)
  - Different transliterations (Krassimir, Krasimir)
- Most important person related linkage attributes:
  - Name first name, surname
  - Date of birth
  - Place of birth
  - Address

## **Matching - Similarity Functions**



### **Pattern Matching**

- **Levenshtein counts insertions, deletions and substitutions**
- **Damerau-Levenshtein Distance includes transpositions**
- Smith-Waterman developed for DNA sequences
- Jaro also estimates transpositions
- Jaro-Winkler empirically improved Jaro for start of word

### **Phonetic Encoding**

- Soundex keeps first letter encodes the others
- **Phonet improved German version of Soundex**
- Phonix different rules for start, middle, end of word

#### Combined

## **Matching - Process**





## **Matching - Business Rule Engine**



- Business Rules Engine integration:
  - implementing a more complicated matching logic
  - investigating which combinations of similarity function is optimal on attribute basis
  - investigating which order of similarity function is optimal on attribute basis
  - rapid prototyping and evaluation of matching processes
  - evaluate blocking strategies
  - customization of the obtain results
  - appropriately handling system type initial load or realtime



## **Result Aggregation**



- Result aggregation can be complex:
  - data frequency distribution
  - weighting coefficients
  - number of errors
- Classification of matching results:
  - matched
  - rejected
  - unsure
  - confirmed match
  - confirmed reject
  - pending
- Clerk Lists:
  - Contain data for proven false positives
  - Contain data for proven false negatives

### **DaLi Framework**





### **DaLi - Domain Model**





### **Conclusion**



- Data linkage is a complex and error prone process
- Gained experience so far:
  - It is important to know the specifics of the involved systems.
  - First fast approximation functions should be used to filter out possible negative positives.
  - Phonetic comparison should always be combined with an approximation function unless specifically searching for phonetic errors.
  - Data should be statistically enriched.
  - Significant effort should be allocated to tuning up thresholds and weighted coefficients
  - Business rule engine can be used to improve results.
- A framework is developed to allow the generation of various reports and testing of different scenarios



# Thank You for the attention!

#### Contact



M.Sc. Wi.-Ing, M.Sc. CE

#### **Krasimir Zhelev**

**Chief Software Architect** 

**Projects & Processes** 

**RRZE Martensstrasse 1** 

D-91058 Erlangen

Tel.: +49 9131 85-28145

Fax: +49 9131 302941

krasimir.zhelev@rrze.uni-erlangen.de

http://www.rrze.uni-erlangen.de

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)



Regionales RechenZentrum Erlangen

Der IT-Dienstleister der FAU