TMF

Javier Pérez

Invalid Date

Tabla de contenidos

L	Ìnd	ice
2	Ana	álisis de la varianza pregunta 18
	2.1	Preparación de datos
	2.2	Análisis de la varianza de un factor
	2.3	Contraste de hipótesis

Capítulo 1

Ìndice

Capítulo 2

Análisis de la varianza pregunta 18

Siguiendo a Lawson (2018, 353-54) vamos a realizar un análisis de la varianza.

2.1 Preparación de datos

TODO: Comentar y poner en bonito la tabla

# A tibble: 174 x 24											
	Row	Group	Test	User	LastTry		Q01	Q02	Q03	Q04	Q05
	<dbl></dbl>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dttm></dttm>		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	5	A	01	4	2022-04-13	14:21:55	2	2	2	2	2
2	4	A	02	4	2022-04-13	14:23:38	2	2	2	2	2
3	47	В	01	33	2022-04-28	07:52:08	3	3	3	3	1
4	27	В	02	33	2022-04-28	08:00:20	3	3	3	3	3
5	85	A	01	35	2022-04-14	02:53:36	4	4	4	4	4
6	49	A	02	35	2022-04-14	02:58:19	4	3	4	4	3
7	23	Α	01	38	2022-04-15	14:19:38	4	4	4	4	4
8	15	Α	02	38	2022-04-15	14:28:36	0	4	4	4	0
9	68	Α	01	59	2022-04-18	19:12:43	4	4	4	4	4
10	37	Α	02	59	2022-04-18	19:22:01	3	2	3	3	1
# .	# with 164 more rows, and 14 more variables: Q06 <dbl>, Q07 <dbl>,</dbl></dbl>										
#	Q08 ·	<dbl>,</dbl>	Q09 <	dbl>, (Q10 <dbl>, (</dbl>	Q11 <dbl>,</dbl>	, Q12 ∢	<dbl>,</dbl>	Q13 <	lbl>,	

Q14 <dbl>, Q15 <dbl>, Q16 <dbl>, Q17 <dbl>, Q18 <dbl>, Rows <int>

Disponemos de estos datos:

Test Group 01 02 A 43 43

B 44 44

Vamos a cambiar la nomenclatura para adaptarla a Lawson (2018):

- El grupo A pasará a llamarse AB.
- El grupo B pasará a llamarse BA.
- Los estudiantes se denominarán sujetos.
- $\bullet~$ Los test 01 y 02 tratamientos.
- Se introduce una variable periodo.

Los valores del test de Likert se desplazarán para que tengan valores más lógicos:

- 0 = No s'e / No constesto
- 1 = Muy en desacuerdo
- 2 = En desacuerdo
- 3 = Neutral
- 4 = De acuerdo
- 5 = Muy de acuerdo

... with 3,122 more rows

Finalmente la tabla se pasará a formato largo.

# A tibble: 3,132 x 6								
	${\tt Group}$	${\tt Period}$	${\tt Treat}$	Subject	${\tt Question}$	Response		
	<chr></chr>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<chr></chr>	<dbl></dbl>		
1	AB	1	Α	4	Q01	3		
2	AB	1	Α	4	Q02	3		
3	AB	1	Α	4	Q03	3		
4	AB	1	Α	4	Q04	3		
5	AB	1	Α	4	Q05	3		
6	AB	1	Α	4	Q06	3		
7	AB	1	Α	4	Q07	3		
8	AB	1	Α	4	Q08	3		
9	AB	1	Α	4	Q09	3		
10	AB	1	Α	4	Q10	3		

El análisis de la varianza, ANOVA, se debe realizar sobre datos cuantitativos (TODO: incluir supuestos de ANOVA). El test de Likert tiene una escala ordinal y, por lo tanto, ANOVA no es una técnica adecuada. De todas formas vamos a realizar un análisis de la varianza para la pregunta 18 que es una valoración general del subtitulado.

Vamos a seguir el proceso descrito en Meier (2022) para realizar el ANOVA.

2.2 Análisis de la varianza de un factor.

El factor va a ser el tratamiento con dos niveles A y B ¹.

El modelo que vamos a ajustar es:

$$Y_{ij} \sim N(\mu_i, \sigma^2)$$
, independientes (2.1)

Los valores observados y_{ij} corresponden a las respuestas a la pregunta 18 del sujeto j-ésimo que recibió el i-ésimo tratamiento (A o B) y siguen una distribución normal con media μ_i y varianza σ^2 . Es decir, que estamos suponiendo que los dos tratamientos tienen la misma varianza pero pueden tener distinta media.

El modelo (Ecuación 2.1) también se puede expresar:

$$Y_{ij} = \mu_i + \epsilon_{ij} \tag{2.2}$$

Con ϵ_{ij} i.i.d. $\sim N(0, \sigma^2)$. En esta ecuación simplemente hemos separado el término determinista μ_i del estocástico ϵ_{ij} .

Una reparametrización alternativa es:

$$Y_{ij} = \mu + \alpha_i + \epsilon_{ij} \tag{2.3}$$

En este caso, estamos considerando que existe un efecto fijo, μ , y que cada factor tiene una desviación, α_i , sobre el ese nivel fijo. Así $\sum_{i=1}^g \alpha_i = 0$. Lo que en nuestro, en el que sólo hay dos niveles (g=2), implica que $\alpha_A + \alpha_B = 0$. En R se puede elegir uno (Ecuación 2.2) u otro (Ecuación 2.2) tipo de parametrización.

Podemos visualizar que los valores de respuesta cada nivel de tratamiento está claramente separado:

 $^{^{-1}}$ Para este ejemplo en el que sólo hay dos niveles de factor, podríamos haber utilizado un t-test de comparación de medias.

Finalmente ajustamos el modelo y mostramos los coeficientes:

```
fit.q18 <- aov(Response ~ Treat, data = df18)
coef.q18 <- coef(fit.q18)
coef.q18</pre>
```

```
(Intercept) TreatB
4.459770 -1.574713
```

Por defecto R elige como nivel de referencia del factor el A por ser menor alfabéticamente y el término de intercepción se corresponde con este valor, así $\mu_A=4.46$ y el nivel del tratamiento B está como diferencias sobre el de referencia. Por lo tanto, $\mu_B=2.89$.

Alternativamente podemos obtener las medias de cada nivel de esta forma:

```
predict(fit.q18, newdata = data.frame(Treat = c("A", "B")))
```

O con la librería emmeans, que también nos proporciona el intervalo de confianza con el 95%:

Confidence level used: 0.95

```
library(emmeans)
emmeans(fit.q18, specs = ~Treat)

Treat emmean SE df lower.CL upper.CL
A 4.46 0.11 172 4.24 4.68
B 2.89 0.11 172 2.67 3.10
```

Con R, podemos obtener los valores correspondientes a la segunda parametrización (Ecuación 2.3) del modelo:

```
options(contrasts = c("contr.sum", "contr.poly"))
fit.q18.2 <- aov(Response ~ Treat, data = df18)
coef.q18.2 <- coef(fit.q18.2)
coef.q18.2

(Intercept) Treat1
3.6724138 0.7873563</pre>
```

Vemos que cambian tanto los valores como el esquema de nombrado. Ahora el término de intercepción se corresponde con la media global ($\mu=3.67$) y Treat1 es la diferencia del nivel de factor 1 con esa media ($\alpha_A=0.79$), como la suma de todos los niveles tiene que ser 0, $\alpha_B=-0.79$.

2.3 Contraste de hipótesis.

En ANOVA el contraste de hipótesis habitual es contrastar si las medias de los niveles de un factor son iguales o hay alguna diferente:

```
\begin{array}{lll} H_0 &:& \mu_1=\mu_2=\ldots=\mu_g \\ H_A &:& \mu_k\neq\mu_l \text{ para al menos un par } k\neq l \end{array}
```

References

Lawson, John E. 2018. Design and Analysis of Experiments. 1st ed. Chapman; Hall/CRC. https://www.taylorfrancis.com/books/mono/10.1201/b17883/design-analysis-experiments-john-lawson.

Meier, Lukas. 2022. ANOVA and mixed models: A short introduction using R. Chapman; Hall/CRC. https://www.taylorfrancis.com/books/mono/10. 1201/9781003146216/anova-mixed-models-lukas-meier.