Time Series Modeling Seasonal ARIMA Model

Contents

- 1. Seasonal Box-Jenkins (ARIMA) Models
- 2. Five Step Iterative Procedure
 - i. Stationarity Checking and Seasonal Differencing
 - Differencing, Correlograms, and Dickey Fuller Test in R
 - ii. Model Identification
 - iii. Parameter Estimation
 - Simple and Automated Model Estimation in R
 - Running ARIMA in R
 - iv. Diagnostic Checking
 - Box Pierce Test in R
 - v. Forecasting
 - Predictions on ARIMA Model in R

Seasonal Box-Jenkins (ARIMA) Models

 ARIMA (Auto Regressive Integrated Moving Average) models are Regression models that use lagged values of the dependent variable and/or random disturbance term as explanatory variables.

• Seasonal ARIMA (Often abbreviated as SARIMA) Model is formed by including seasonal terms in the ARIMA model.

• Several real world time series have a seasonal component. Some examples are: Sales of woolen clothes, demand for fertilizers, electricity consumption, etc.

Seasonal Box-Jenkins (ARIMA) Models

- The seasonal ARIMA model incorporates both non-seasonal and seasonal factors in a multiplicative model.
- Shorthand notation for the model is,

ARIMA (p, d, q) \times (P, D, Q)S,

```
with,
p = non-seasonal AR order,
d = non-seasonal differencing,
q = non-seasonal MA order,
P = seasonal AR order,
D = seasonal differencing,
Q = seasonal MA order, and
S = time span of repeating seasonal pattern.
```

Five-Step Iterative Procedure

Step 1: Stationarity Checking

Assessing Stationarity of Time Series

• Stationarity of a time series can be assessed using:

• If a time series is non-stationary then it can be converted via

Differencing

De-trending

Seasonal Differencing

Seasonal differencing is denoted as ,

$$\Delta_{s} y_{t} = y_{t} - y_{t-s}$$

Where,

s denotes **frequency of season**

s = 12 if data is monthly; s = 4 if data is quarterly and so on

First and seasonal span differencing for monthly data is,

$$\Delta_1 \Delta_s y_t = \Delta_1 (y_t - y_{t-s}) = y_t - y_{t-1} - y_{t-s} + y_{t-s-1}$$

Case Study

Background

• Sales Data for 3 Years (2013, 2014, 2015)

Objective

• To develop seasonal ARIMA Model for generating forecasts

Available Information

- Sample size is 36
- Variables: Year, Month, Sales

Data Snapshot

Sales Data for 3 Years

Variables

_		
n		_
_		
=		
2		
_,		
אמר		
ס		
>		
ī.		
עַ		
n		
שאחר		
=		
)		
>		
_'		
_		
_		
=		
_		
\	_	
_		
>		
_		

Ye	ar	Month	Sales
201	13	Jan	123
201	13	Feb	142
201	13	Mar	164
201	13	Apr	173
201	13	May	183
201	13	Jun	192
201	13	Jul	199
201	13	Aug	203
201	13	Sep	207
201	13	Oct	209
201	13	Nov	214
201		D	255

Columns	Description	Type	Measurement	Possible values
Year	Year	nemeric	2013, 2014, 2015	3
Month	Month	factor	Jan - Dec	12
Sales	Sales in USD Million	numeric	USD Million	Positive values
	2014	Jul	245	

Plotting a Time Series in R

Output

Interpretation:

 The time series shows periodic peaks, indicative of seasonality.

Correlogram

acf(salesseries,col="blue")

Output

Interpretation:

ACF plot shows a slow decay indicating non-stationarit y.

Determining the Order of Differencing and Dickey Fuller Test For Original Series

Better Way of Determining the Order of Differencing

```
ndiffs(salesseries)
[1] 1

# Dickey Fuller Test

df<-ur.df(salesseries, lag=0)
summary(df)</pre>
```

```
# Augmented Dickey-Fuller Test Unit Root Test
Test regression none
Call:
lm(formula = z.diff \sim z.lag.1 - 1)
Residuals:
          1Q Median 3Q
   Min
                             Max
-49.216 -4.668 -1.959 3.965 49.363
Coefficients:
      Estimate Std. Error t value Pr(>|t|)
z.lag.1 0.02065
                0.01274
Residual standard error: 17.82 on 34 degrees of freedom
Multiple R-squared: 0.07176, Adjusted R-squared: 0.04446
F-statistic: 2.628 on 1 and 34 DF, p-value: 0.1142
```

Interpretation:

Time series is non-stationary.
Value of test statistic is greater than 5% critical value.

nsdiffs() function in forecast package uses seasonal unit root tests to determine the number of seasonal differences required for time series x to be made stationary. However, in most cases seasonal differencing of the first order is enough and hence not much focus is put on checking order of differencing.

Dickey Fuller Test – Differenced Series

Dickey Fuller Test for Difference Series

```
salesdiff <- diff(salesseries, differences = 1)
summary(ur.df(salesdiff, lags = 0))</pre>
```

Output

```
# Augmented Dickey-Fuller Test Unit Root Test #
Test regression none
Call:
lm(formula = z.diff \sim z.lag.1 - 1)
Residuals:
   Min
          10 Median
                        3Q
-26.753 1.097
             2.598
                    7.343 55.287
Coefficients:
      Estimate Std. Error t value Pr(>|t|)
z.lag.1 -1.3186 0.1913 -6.891 7.18e-08 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 17.75 on 33 degrees of freedom
Multiple R-squared: 0.59, Adjusted R-squared: 0.5776
F-statistic: 47.49 on 1 and 33 DF, p-value: 7.184e-08
Value of test-statistic is: -6.8914
Critical values for test statistics:
     1pct 5pct 10pct
tau1 -2.62 -1.95 -1.61
```

Interpretation:

Time series is stationary.
 Value of test statistic is less than 5% critical value.

Step 2: Model Identification

Model Identification

• When the data are confirmed stationary, proceed to tentative identification of models through visual inspection of correlogram and partial correlogram

Model	AC	PAC
AR(p) $y_t = \delta + \phi_1 y_{t-1} + \phi_2 y_{t-2} + + \phi_p y_{t-p} + \varepsilon_t$	Dies down	Cuts off after lag p
	Cuts off after lag q	Dies down
ARMA (p,q) $y_t = \delta + \phi_1 y_{t-1} + \phi_2 y_{t-2} + + \phi_p y_{t-p} + \epsilon_t - \theta_1 \epsilon_{t-1} - \theta_2 \epsilon_{t-2} - \cdots - \theta_q \epsilon_{t-q}$	Dies down	Dies down

Model Identification

- Seasonal ARIMA model is expressed as arima(p,d,q) (P,D,Q) where
 - p = no. of autoregressive terms
 - d = order of differencing
 - q = no. of moving average terms
 - (P,D,Q) are seasonal equivalents of autoregressive, difference and moving average terms

Step 3: Parameter Estimation

Parameter Estimation

- There are two ways in which parameters of arima models can be estimated
- 1. Ordinary Least Squares
- 2. Maximum Likelihood Method when the model involves MA component
- Given n observations $y_1, y_2, ..., y_n$, the likelihood function L is defined as the probability of obtaining the data actually observed
- The maximum likelihood estimators (MLE) are those values of the parameters for which the data actually observed are most likely, that is, the values that maximize the likelihood function L.

Parameter Estimation in R

```
# Install and load package "forecast"
# Automatic Model Identification and Parameter Estimation
```

- auto.arima() generates the best order arima model. The function conducts a search over possible model within the order constraints provided.
- Seasonal model requires max.D,max.P and max.Q arguments as well.
- trace= TRUE returns the list of all models considered.
- **ic=** specifies the information criterion. We have specified it as "aic".

Automatic Model Identification

Output

```
> auto.arima(salesseries,d=1,D=1,max.p=2,max.q=2,max.P=2,max.Q=2,
             trace=TRUE, ic="aic")
ARIMA(2,1,2)(1,1,1)[12]
                                             : 157.0397
ARIMA(0,1,0)(0,1,0)[12]
                                             : 156.1096
ARIMA(1,1,0)(1,1,0)[12]
                                             : 159.1271
ARIMA(0,1,1)(0,1,1)[12]
                                             : 159.4057
ARIMA(0,1,0)(1,1,0)[12]
                                             : 157.6536
 ARIMA(0,1,0)(0,1,1)[12]
                                             : 157.6536
ARIMA(0,1,0)(1,1,1)[12]
                                             : 159.6536
ARIMA(1,1,0)(0,1,0)[12]
                                             : 157.1806
ARIMA(0,1,1)(0,1,0)[12]
                                             : 157.6069
ARIMA(1,1,1)(0,1,0)[12]
                                             : 154.6016
                                             : 161.3531
 ARIMA(1,1,1)(1,1,0)[12]
ARIMA(1,1,1)(0,1,1)[12]
                                             : 156.6
ARIMA(1,1,1)(1,1,1)[12]
                                             : 163.329
ARIMA(2,1,1)(0,1,0)[12]
                                             : 152.5563
ARIMA(2,1,1)(1,1,0)[12]
                                             : 153.1015
 ARIMA(2,1,1)(0,1,1)[12]
                                             : Inf
ARIMA(2,1,1)(1,1,1)[12]
                                             : 155.0459
ARIMA(2,1,0)(0,1,0)[12]
                                             : 151.6156
 ARIMA(2,1,0)(1,1,0)[12]
                                             : 151.8961
ARIMA(2,1,0)(0,1,1)[12]
                                             : Inf
ARIMA(2,1,0)(1,1,1)[12]
                                             : 153.864
Best model: ARIMA(2,1,0)(0,1,0)[12]
Series: salesseries
ARIMA(2,1,0)(0,1,0)[12]
Coefficients:
         ar1
                 ar2
      0.1583
             0.6353
s.e. 0.1545 0.1856
sigma^2 estimated as 34.14: log likelihood=-72.81
                           BIC=155.02
AIC=151.62
             AICc=152.88
```

Interpretation:

Model with the lowest AIC value is selected as the best model.

Using BEST order in arima Function

Obtaining Coefficient

Model Selection Criteria

Akaike Information Criterion (AIC)

$$AIC = -2 ln(L) + 2k$$

where L = Likelihood function

k = Number of parameters to be estimated

Ideally, AIC should be as small as possible

Step 4: Diagnostic Checking

Residual Analysis

If an ARMA(p,q) model is an adequate representation of the data generating process then the residuals should be 'White Noise'

- White Noise time series has zero mean, constant variance and zero covariance with lagged time series.
- Box-Pierce Test (Q Statistic) is the most recommended method for checking if the residuals are white noise process.
- Ljung-Box test is also used for the same purpose.

Box Pierce Test

Objective

To test the null hypothesis that et is a white noise process

Test Statistic	$Q_{BP}=T\sum_{\tau=1}^m\hat\rho^2(\tau){\sim}\chi^2(m)$ for large T (based on autocorrelations upto lag m and T observations in a time series)
Decision Criteria	Reject the null hypothesis if p-value < 0.05

Box-Pierce Test in R

```
# Box Test
resi<-residuals(salesmodel)</pre>
Box.test(resi)
# Output
       Box-Pierce test
data: resi
X-squared = 0.78552, df = 1, p-value = 0.3755
plot(resi,col="red")
                                               Interpretation:
                                                   Do not reject Ho, as p-value
                                                   is greater than 0.05.
                                                   Errors follow white noise
                                                   process.
```

2014.0

2014.5

2013.5

2015.0

Step 5: Forecasting

Forecasting

Forecast for next 3years predict(salesmodel, n.ahead=3) predict() function is used to forecast sales for next 3 # Output periods > predict(salesmodel,n.ahead=3) \$pred **N**ext 3 period sales forecasts Jan Feb Mar 2016 285.6334 292.1748 292.0954 \$se Jan Feb Mar 2016 5.582376 8.542627 13.268502

Quick Recap

· Use **ndiffs()** to determine order of **Stationarity** differencing Checking Plot correlogram using acf() and validate stationarity using ur.df() Tentative identification of models through visual inspection of correlogram and partial Model Identification correlogram • auto.arima() is recommended for obtaining Parameter best ARIMA model **Estimation** • It uses AIC as the model selection criteria • Box.test() performs a Box-Pierce test for Diagnostic Checking checking whether errors follow white noise process Forecasting Use predict() to generate forecasts