My First Math Theorem

Arpon Basu Vedang Asgaonkar

May 2021

1 Theorem

Prove that $\forall A \in \mathbb{K}^{n \times n} \exists X \in \mathbb{K}^{n \times n}$ such that $AX = \mathbf{O}$ and X has at most n rank A zeroes in it.

A statement differing from the above only in the order of multiplication of the two matrices still holds, ie:- $\forall A \in \mathbb{K}^{n \times n} \exists Y \in \mathbb{K}^{n \times n}$ such that $YA = \mathbf{O}$ and Y has at most n· rank A zeroes in it.

2 Proof

Note that if A is an invertible matrix, then $X=Y=\mathbf{O}$ does the job for us. If not, then for any $n\times n$ (non invertible) matrix A with rank $r\geq 1$, we have (n-r) "basic" solutions of the equation $A\mathbf{x}=\mathbf{O},\,\mathbf{x}\in\mathbb{K}^{n\times 1}$, ie:- column vectors whose entries are 1 at the position of any one of the (n-r) non-pivotal variables are determined by back substitution. Thus, by taking a linear combination (with all coefficients non-zero) of all the the basic solutions of the matrix, one can generate a new column vector which is a solution of $A\mathbf{x}=\mathbf{O}$ and all it's non-pivotal entries are non-zero, ie:- it has at most r zero entries in it. Stack that column vector together side by side, with itself, n times to get a $n\times n$ matrix X such that $AX=\mathbf{O}$ and X has at most $n\cdot r$ zeroes in it.

And as for the second part of the statement, we know $\exists X' \in \mathbb{K}^{n \times n}$ such that $A^T X' = \mathbf{O}$ and X' has at most $n \cdot \operatorname{rank} A^T$ zeroes in it. Since rank $A^T = \operatorname{rank} A$, and $(A^T X')^T = (X')^T A = \mathbf{O}$, we get that $Y = (X')^T$ satisfies all the desired properties.

Hence proved.