01:640:311 - Homework n

Pranav Tikkawar

January 24, 2025

This is a set of all of the theorems talked in class and in the book numbered.

Theorem 1 (0.0.0: Theorem Name). This is a theorem. and a teplate for theorems.. Proof. This is a proof.

This is a proof.
$$e = mc^2$$

Theorem 2 (Nested Interval Property: (s 1.4)). If $I_1 \supseteq I_2 \supseteq I_3 \supseteq \ldots$ is a sequence of closed intervals in \mathbb{R} then $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$.

Proof. Let $A = \{a_1, a_2, a_3, \dots\}$ be the set of left endpoints of the intervals.

Now since the I_n s are nested, $I_n \subseteq I_1$ for all n.

Thus each $a_n \in I_1$ for all n.

so $a_n \leq b_1$.

It follows that b_1 is an upper bound for A so sup A exists.

Now we need to prove that $x \in \bigcap_{n=1}^{\infty} I_n$.

To do this we need to how that $x \in I_n$ for all n.

This mean that $a_n \leq x \leq b_n$ for all n.

Step 1 $a_n \leq x$ for all n.

Remember that $x = \sup A$.

So $a_n \leq x$ for all n.

Step 2 $x \leq b_n$ for all n.

Since $x = \sup A$, x i less than very upper bound of A so it i enough to show that b_n is an upper bound of A.

 $b_n \geq a_m$ for all m.

Case 1 n > m.

Then $I_n \subset I_m$ so $b_n \in [a_m, b_m] = I_m$.

Case 2 $n \leq m$.

Then $I_m \subset I_n$ so $a_m \in [a_n, b_n] = I_n$.

so $a_m \leq b_n$.

This b_n is an upper bound of A.

Thus $x \leq b_n$ for all n.

Thus $x \in I_n$ for all n.

Thus $x \in \bigcap_{n=1}^{\infty} I_n$. which means the intersection is not empty.

Theorem 3 (Archimedan Property). The set \mathbb{N} is not bounded above.

Proof. Suppose (by contradiction) \mathbb{N} is bounded above.

Then by the least upper bound property, sup \mathbb{N} exists.

Let us call $\alpha = \sup \mathbb{N}$ and it is a real number.

Thus $\alpha - 1 < \alpha$ so $\alpha - 1$ is not an upper bound of \mathbb{N} .

So we can fine an $n \in \mathbb{N}$ such that $\alpha - 1 < n$.

Thus $\alpha < n+1$.

But $n+1 \in \mathbb{N}$ so α is not an upper bound of \mathbb{N} .

Theorem 4 (Density of \mathbb{Q} in \mathbb{R}). $\forall a < b \in \mathbb{R}$ there exists $q \in \mathbb{Q}$ such that a < q < b.