Распределенная оптимизация Методы оптимизации

Александр Безносиков

Московский физико-технический институт

14 декабря 2023

Современные проблемы обучения

• Экспоненциальный рост размеров моделей и объемов данных.

Figure: Динамика роста современных языковых моделей

Разновидности распределенного обучения

- Кластерное обучение (крупные игроки): обучаем в пределах одного большого и мощного вычислительного кластера
- Коллаборативное обучение (все игроки): объединяем вычислительные ресурсы по сети Интернет

Разновидности распределенного обучения

- Кластерное обучение (крупные игроки): обучаем в пределах одного большого и мощного вычислительного кластера
- Коллаборативное обучение (все игроки): объединяем вычислительные ресурсы по сети Интернет
- Федеративное обучение (другая парадигма): обучаемся на локальных данных пользователей, используя их вычислительные мощности

Figure: Федеративное обучение

Самая популярная распределенная постановка

• Постановка (горизонтальная, оффлайн):

$$\min_{w \in \mathbb{R}^d} f(w) := \frac{1}{M} \sum_{m=1}^M f_m(w) := \frac{1}{M} \sum_{m=1}^M \frac{1}{n_m} \sum_{i=1}^{n_m} I(g(w, x_i), y_i).$$

- w веса модели, g модель, l функция потерь.
- Данные разделены между M вычислительными устройствами, на каждом устройстве m своя локальная подвыборка $\{x_i, y_i\}_{i=1}^{n_m}$ размера n_m .
- В фокусе этого доклада.

Общаемся через сервер

Посмотрим на примере, как обычный неопределенный GD становится централизованным.

Алгоритм 1 Централизованный GD

```
Вход: Размер шага \gamma>0, стартовая точка w_0\in\mathbb{R}^d, количество итераций K
 1: for k = 0, 1, ..., K - 1 do
 2:
        Отправить w_k всем рабочим
                                                            ⊳ выполняется сервером
 3:
        for i=1,\ldots,n параллельно do
            Принять w_k от мастера
                                                           ⊳ выполняется рабочими
 4:
            Вычислить градиент \nabla f_m(w_k) в точке w_k \triangleright выполняется рабочими
 5:
 6:
           Отправить \nabla f_m(w_k) мастеру
                                                           ⊳ выполняется рабочими
        end for
7:
 8:
        Принять \nabla f_m(w_k) от всех рабочих
                                                            ⊳ выполняется сервером
        Вычислить \nabla f(w_k) = \frac{1}{M} \sum_{m=1}^{M} \nabla f_m(w_k)
 9.
                                                           ⊳ выполняется сервером
        w_{k+1} = w_k - \gamma \nabla f(w_k)
10:
                                                            ⊳ выполняется сервером
11: end for
```

Выход: w^K

С чем и за что боремся?

• Вопрос: распределенность нужна для параллелизации, но почему не получается достигнуть полного распараллеливания?

С чем и за что боремся?

- **Bonpoc**: распределенность нужна для параллелизации, но почему не получается достигнуть полного распараллеливания?
- Коммуникационные затраты являются бесполезной тратой времени.
- Проблема коммуникационного узкого места актуальна для всех постановок распределенного обучения.
- Существует много способов борьбы за эффективные коммуникации.

Несмещённая компрессия (квантизация)

Несмещённая компрессия (квантизация)

Будем называть стохастический оператор $\mathcal{Q}(x)$ оператором несмещённой компрессии (квантизации), если для любого $x \in \mathbb{R}^d$ выполняется:

$$\mathbb{E}[\mathcal{Q}(x)] = x, \quad \mathbb{E}[\|\mathcal{Q}(x)\|_2^2] \le \omega \|x\|_2^2,$$

где $\omega \geq 1$.

Случайная спарсификация (выбор случайных компонент)

Рассмотрим стохастический оператор

$$\mathsf{Randk}(x) = \frac{d}{k} \sum_{i \in \mathcal{S}} [x]_i e_i,$$

где k — некоторое фиксированное число из множества $\{1,\ldots,d\}$ (количество компонент вектора x, которые мы передаём; например, можно выбрать k=1), S — случайное подмножество множества $\{1,\ldots,d\}$ размера k (подмножество S выбирается случайно и равновероятно среди всех возможных подмножеств размера d), $[\cdot]_i$ — i-я компонента вектора, (e_1,\ldots,e_d) — стандартный базис в \mathbb{R}^d .

Richtárik P. and Takáč M. Parallel coordinate descent methods for big data optimization

Случайная спарсификация (выбор случайных компонент)

Рассмотрим стохастический оператор

$$\mathsf{Randk}(x) = \frac{d}{k} \sum_{i \in S} [x]_i e_i,$$

где k — некоторое фиксированное число из множества $\{1,\ldots,d\}$ (количество компонент вектора x, которые мы передаём; например, можно выбрать k=1), S — случайное подмножество множества $\{1,\ldots,d\}$ размера k (подмножество S выбирается случайно и равновероятно среди всех возможных подмножеств размера d), $[\cdot]_i$ — i-я компонента вектора, (e_1,\ldots,e_d) — стандартный базис в \mathbb{R}^d .

Richtárik P. and Takáč M. Parallel coordinate descent methods for big data optimization

Boпрос: зачем нужен множитель $\frac{d}{k}$?

Случайная спарсификация (выбор случайных компонент)

Рассмотрим стохастический оператор

$$\mathsf{Randk}(x) = \frac{d}{k} \sum_{i \in \mathcal{S}} [x]_i e_i,$$

где k — некоторое фиксированное число из множества $\{1, \ldots, d\}$ (количество компонент вектора x, которые мы передаём; например, можно выбрать k = 1), S — случайное подмножество множества $\{1,\ldots,d\}$ размера k (подмножество S выбирается случайно и равновероятно среди всех возможных подмножеств размера d), $[\cdot]_i$ – i-я компонента вектора, (e_1,\ldots,e_d) — стандартный базис в \mathbb{R}^d .

Richtárik P. and Takáč M. Parallel coordinate descent methods for big data optimization

Вопрос: зачем нужен множитель $\frac{d}{\iota}$? Для несмещенности.

• **Bonpoc**: Чему равно ω для случайной спарсификации?

• Вопрос: Чему равно ω для случайной спарсификации? $\frac{d}{k}$. Каждая координата попадет в $\mathcal{Q}(x)$ с вероятностью $\frac{k}{d}$, поэтому

$$\mathbb{E}\left[\|\mathcal{Q}(x)\|^2\right] = \mathbb{E}\left[\sum_{i=1}^d [\mathcal{Q}(x)]_i^2\right]$$
$$= \frac{d^2}{k^2} \left[\sum_{i=1}^d \frac{k}{d} [x]_i^2\right]$$
$$= \frac{d}{k} \|x\|^2.$$

Здесь $[\cdot]_i$ – iая координата вектора.

Трёхуровневая ℓ_2 -квантизация

Рассмотрим следующий оператор:

 $[\mathcal{Q}(x)]_i = \|x\|_2 \mathrm{sign}(x_i) \xi_i, \ i=1,\ldots,d,$ где $[\cdot]_i - i$ -я компонента вектора, и ξ_i — случайная величина, имеющая распределение Бернулли с параметром $\frac{|x_i|}{||x||_2}$, т. е.

$$\xi_i = egin{cases} 1 & ext{ c вероятностью } rac{|x_i|}{\|x\|_2}, \ 0 & ext{ c вероятностью } 1 - rac{|x_i|}{\|x\|_2}. \end{cases}$$

Таким образом, если мы хотим передать вектор $\mathcal{Q}(x)$, то нам нужно передать вектор, состоящий из нулей и ± 1 , и вещественное число $\|x\|_2$, причём вероятность обнуления компоненты тем больше, чем компонента меньше по модулю. Можно показать, что данный оператор является несмещённой компрессией с константой $\omega = \sqrt{d}$.

Alistarh D. et al. QSGD: Communication-Efficient SGD via

- Вопрос: Будет ли округление несмещенным оператором?
- **Bonpoc**: Какое округление кажется наиболее естественным для вычислений на компьютере?

Натуральная компрессия (случайное округление к степени двойки)

Рассмотрим следующий оператор:

$$[\mathcal{Q}(x)]_i = egin{cases} \lfloor [x]_i
floor_2, & ext{c вероятностью } p = rac{[x]_i - \lceil [x]_i
floor_2}{\lceil [x]_i
floor_2 - \lfloor [x]_i
floor_2} \ \lceil [x]_i
floor_2, & ext{c вероятностью } 1 - p \end{cases}$$

где $[\cdot]_i$ – i-я компонента вектора, $|\cdot|_2$ – ближайшая степень двойки снизу, $\lceil \cdot \rceil_2$ – ближайшая степень двойки сверху. Округляем в двум ближайшим степеням двойки, вероятность округления больше, чем реальное число ближе к соотвествующей степени двойки. Можно показать, что $\omega = \frac{9}{8}$.

Horváth S. et al. Natural compression for distributed deep

12 / 84

Несмещенная компрессия: идея

 Самая простая идея, которая приходит в голову, состоит в том, чтобы использовать параллельный GD, но к градиентам, пересылаемым от рабочих на сервер, применять несмещённую компрессию.

Квантизированный GD (QGD)

Алгоритм 1 QGD

```
Вход: размер шага \gamma > 0, стартовая точка w_0 \in \mathbb{R}^d, количество итераций K
 1: for k = 0, 1, ..., K - 1 do
2:
       Отправить W_k всем рабочим
                                                          ⊳ выполняется сервером
       for m=1,\ldots,M параллельно do
 3:
 4:
           Принять w_k от мастера
                                                          ⊳ выполняется рабочими
           Вычислить градиент \nabla f_m(w_k) в точке w_k \triangleright выполняется рабочими
 5:
 6:
           Независимо сгенерировать g_{k,m} = \mathcal{Q}(\nabla f_m(w_k))
                                                                     ⊳ выполняется
    рабочими
 7:
           Отправить g_{k,m} мастеру
                                                          ⊳ выполняется рабочими
 8:
       end for
        Принять g_{k,m} от всех рабочих
                                                           ⊳ выполняется сервером
       Вычислить g_k = \frac{1}{M} \sum_{m=1}^{M} g_{k,m}
10:
                                                           ⊳ выполняется сервером
11:
       w_{k+1} = w_k - \gamma g_k
                                                           ⊳ выполняется сервером
12: end for
```

Выход: w^K

- Будем доказывать в случае, когда все f_m являются L-гладкими и μ -сильно выпуклыми.
- Рассмотрим одну итерацию метода:

$$\|w_{k+1} - w^*\|^2 = \|w_k - w^*\|^2 - 2\gamma \langle g_k, w_k - w^* \rangle + \|g_k\|^2.$$

- Будем доказывать в случае, когда все f_m являются L-гладкими и μ -сильно выпуклыми.
- Рассмотрим одну итерацию метода:

$$\|w_{k+1} - w^*\|^2 = \|w_k - w^*\|^2 - 2\gamma \langle g_k, w_k - w^* \rangle + \|g_k\|^2.$$

 Берем условное мат.ожидание по случайности только на итерации k:

$$\mathbb{E}\left[\|w_{k+1} - w^*\|^2 \mid w_k\right] = \|w_k - w^*\|^2 - 2\gamma \langle \mathbb{E}\left[g_k \mid w_k\right], w_k - w^* \rangle + \gamma^2 \mathbb{E}\left[\|g_k\|^2 \mid w_k\right].$$

• Работаем с $\mathbb{E}\left[g_k \mid w_k\right]$:

$$\begin{split} \mathbb{E}\left[g_{k} \mid w_{k}\right] &= \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}\left[g_{k,m} \mid w_{k}\right] \\ &= \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}\left[\mathbb{E}\left[\mathcal{Q}(\nabla f_{m}(w_{k})) \mid \nabla f_{m}(w_{k})\right] \mid w_{k}\right] \\ &= \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}\left[\nabla f_{m}(w_{k}) \mid w_{k}\right] = \frac{1}{M} \sum_{m=1}^{M} \nabla f_{m}(w_{k}) = \nabla f(w_{k}). \end{split}$$

• Работаем с $\mathbb{E}[g_k \mid w_k]$:

$$\mathbb{E}\left[g_{k} \mid w_{k}\right] = \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}\left[g_{k,m} \mid w_{k}\right]$$

$$= \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}\left[\mathbb{E}\left[\mathcal{Q}(\nabla f_{m}(w_{k})) \mid \nabla f_{m}(w_{k})\right] \mid w_{k}\right]$$

$$= \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}\left[\nabla f_{m}(w_{k}) \mid w_{k}\right] = \frac{1}{M} \sum_{m=1}^{M} \nabla f_{m}(w_{k}) = \nabla f(w_{k}).$$

• Работаем с $\mathbb{E} [\|g_k\|^2 | w_k]$:

$$\mathbb{E}\left[\|g_k\|^2 \mid w_k\right] = \mathbb{E}\left[\left\|\frac{1}{M}\sum_{m=1}^M g_{k,m}\right\|^2 \mid x_k\right] = \frac{1}{M^2}\mathbb{E}\left[\left\|\sum_{m=1}^M g_{k,m}\right\|^2 \mid w^k\right]$$

• Продолжаем и применяем первое свойство (несмещенность) в определении компрессии:

$$\begin{split} \mathbb{E}\left[\|g_{k}\|^{2} \mid w_{k}\right] &= \frac{1}{M^{2}} \mathbb{E}\left[\left\|\sum_{m=1}^{M} g_{k,m}\right\|^{2} \mid w_{k}\right] \\ &= \frac{1}{M^{2}} \sum_{m=1}^{M} \mathbb{E}\left[\|g_{k,m}\|^{2} \mid w_{k}\right] + \frac{2}{M^{2}} \sum_{m \neq l} \mathbb{E}\left[\langle g_{k,m}, g_{k,l} \rangle \mid w_{k}\right] \\ &= \frac{1}{M^{2}} \sum_{m=1}^{M} \mathbb{E}\left[\|g_{k,m}\|^{2} \mid w_{k}\right] \\ &+ \frac{1}{M^{2}} \sum_{m \neq l} \mathbb{E}\left[\langle \mathbb{E}\left[g_{k,m} \mid \nabla f_{m}(w_{k})\right], \mathbb{E}\left[g_{k,l} \mid \nabla f_{l}(x_{k})\right]\rangle \mid w_{k}\right]. \end{split}$$

 Продолжаем и применяем первое свойство (несмещенность) в определении компрессии:

$$\mathbb{E}\left[\|g_{k}\|^{2} \mid w_{k}\right] = \frac{1}{M^{2}} \mathbb{E}\left[\left\|\sum_{m=1}^{M} g_{k,m}\right\|^{2} \mid w_{k}\right]$$

$$= \frac{1}{M^{2}} \sum_{m=1}^{M} \mathbb{E}\left[\|g_{k,m}\|^{2} \mid w_{k}\right] + \frac{2}{M^{2}} \sum_{m \neq l} \mathbb{E}\left[\langle g_{k,m}, g_{k,l} \rangle \mid w_{k}\right]$$

$$= \frac{1}{M^{2}} \sum_{m=1}^{M} \mathbb{E}\left[\|g_{k,m}\|^{2} \mid w_{k}\right]$$

$$+ \frac{1}{M^{2}} \sum_{m \neq l} \mathbb{E}\left[\langle \mathbb{E}\left[g_{k,m} \mid \nabla f_{m}(w_{k})\right], \mathbb{E}\left[g_{k,l} \mid \nabla f_{l}(x_{k})\right] \rangle \mid w_{k}\right].$$

 Продолжаем и применяем второе свойство в определении компрессии:
 м

 Продолжаем и применяем второе свойство в определении компрессии:

$$\mathbb{E}\left[\|g_{k}\|^{2} \mid w_{k}\right] \leq \frac{4\omega L}{M^{2}} \sum_{m=1}^{M} (f_{m}(w_{k}) - f_{m}(w^{*}) - \langle \nabla f_{m}(w^{*}), w_{k} - w^{*} \rangle)$$

$$+ \frac{2\omega}{M^{2}} \sum_{m=1}^{M} \|\nabla f_{m}(w^{*})\|^{2} + 2L(f(w_{k}) - f(x^{*}))$$

$$= \frac{4\omega L}{M} (f(w_{k}) - f(w^{*}))$$

$$+ \frac{2\omega}{M^{2}} \sum_{m=1}^{M} \|\nabla f_{m}(w^{*})\|^{2} + 2L(f(w_{k}) - f(w^{*})).$$

• Все, что получили:

$$\mathbb{E}\left[\|w_{k+1} - w^*\|^2 \mid w_k\right] = \|w_k - w^*\|^2 - 2\gamma \langle \mathbb{E}\left[g_k \mid w_k\right], w_k - w^* \rangle + \gamma^2 \mathbb{E}\left[\|g_k\|^2 \mid w_k\right].$$

$$\mathbb{E}\left[g_k\mid w_k\right]=\nabla f(w_k).$$

$$\mathbb{E}\left[\|g_k\|^2 \mid w_k\right] \leq \frac{4\omega L}{M} (f(w_k) - f(w^*)) + \frac{2\omega}{M^2} \sum_{m=1}^{M} \|\nabla f_m(w^*)\|^2 + 2L(f(w_k) - f(w^*)).$$

Объединяем:

$$\mathbb{E}\left[\|w_{k+1} - w^*\|^2 \mid w_k\right] \leq \|w_k - w^*\|^2 - 2\gamma \langle \nabla f(w_k), w_k - w^* \rangle \\ + 2\gamma^2 L\left(\frac{2\omega}{M} + 1\right) (f(w_k) - f(w^*)) \\ + \frac{2\gamma^2 \omega}{M^2} \sum_{m=1}^{M} \|\nabla f_m(w^*)\|^2.$$

Пользуемся сильной выпуклостью:

$$\mathbb{E}\left[\|w_{k+1} - w^*\|^2 \mid w_k\right] \le \|w_k - w^*\|^2 - 2\gamma \left(\frac{\mu}{2} \|w_k - w^*\|^2 + f(w_k) - f(w^*)\right) + 2\gamma^2 L\left(\frac{2\omega}{M} + 1\right) \left(f(w_k) - f(w^*)\right)$$

• Если взять полное математическое ожидание

$$\mathbb{E} \left[\| w_{k+1} - w^* \|^2 \right] \le (1 - \gamma \mu) \mathbb{E} \left[\| w_k - w^* \|^2 \right]$$

$$- 2\gamma \left[1 - \gamma L \left(\frac{2\omega}{M} + 1 \right) \right] \mathbb{E} \left[(f(x_k) - f(x^*)) \right]$$

$$+ \frac{2\gamma^2 \omega}{M^2} \sum_{m=1}^{M} \| \nabla f_m(w^*) \|^2.$$

• Если $\gamma \leq L^{-1}\left(\frac{2\omega}{M}+1\right)^{-1}$, то $\mathbb{E}\left[\|w_{k+1}-w^*\|^2\right] \leq (1-\gamma\mu)\mathbb{E}\left[\|w_k-w^*\|^2\right] \\ + \frac{2\gamma^2\omega}{M^2}\sum_{m=1}^M\|\nabla f_m(w^*)\|^2\,.$

Teopeмa (QGD)

Пусть все локальные функции f_m являются μ -сильно выпуклыми и имеют L-Липшицев градиент, тогда если $\eta \leq L^{-1}\left(\frac{2\omega}{M}+1\right)^{-1}$, то

$$\mathbb{E}\left[\|w_{K}-w^{*}\|^{2}\right] = \mathcal{O}\left((1-\gamma\mu)^{K}\|w_{0}-w^{*}\|^{2} + \frac{1}{K} \cdot \frac{2\omega}{\mu M^{2}} \sum_{m=1}^{M} \|\nabla f_{m}(w^{*})\|^{2}\right)$$

При получении данного результата так же использовался подбор γ из работы:

Stich S. Unified Optimal Analysis of the (Stochastic) Gradient Method

Teopeмa (QGD)

Пусть все локальные функции f_m являются μ -сильно выпуклыми и имеют L-Липшицев градиент, тогда если $\eta \leq L^{-1}\left(\frac{2\omega}{M}+1\right)^{-1}$, то

$$\mathbb{E}\left[\|w_{K}-w^{*}\|^{2}\right] = \mathcal{O}\left((1-\gamma\mu)^{K}\|w_{0}-w^{*}\|^{2} + \frac{1}{K} \cdot \frac{2\omega}{\mu M^{2}} \sum_{m=1}^{M} \|\nabla f_{m}(w^{*})\|^{2}\right)$$

При получении данного результата так же использовался подбор γ из работы:

Stich S. Unified Optimal Analysis of the (Stochastic) Gradient Method

• **Bonpoc**: какие проблемы есть в этой оценке? (вспомните оценку сходимости GD)

Teopeмa (QGD)

Пусть все локальные функции f_m являются μ -сильно выпуклыми и имеют L-Липшицев градиент, тогда если $\eta \leq L^{-1}\left(\frac{2\omega}{M}+1\right)^{-1}$, то

$$\mathbb{E}\left[\|w_{K}-w^{*}\|^{2}\right] = \mathcal{O}\left((1-\gamma\mu)^{K}\|w_{0}-w^{*}\|^{2} + \frac{1}{K} \cdot \frac{2\omega}{\mu M^{2}} \sum_{m=1}^{M} \|\nabla f_{m}(w^{*})\|^{2}\right)$$

При получении данного результата так же использовался подбор γ из работы:

Stich S. Unified Optimal Analysis of the (Stochastic) Gradient Method

 Вопрос: какие проблемы есть в этой оценке? (вспомните оценку сходимости GD) Сублинейная сходимость (зависит от гетерогенности данных).

• Поведение на практике:

Figure: Поведение методов с несмещенным оператором сжатия и постоянным шагом

 В теории шаг подбирался хитро, при постояннном шаге теория предугадывает ровно этот же эффект – ранний выход на плато.

Несмещенная компрессия: решаем проблему с плато

• Метод DIANA - QGD с памятью:

Алгоритм 1 DIANA (скетч)

- 1: Каждое устройство m обладает вектором "памяти" $h_0^m=0$
- 2: Сервер хранит $h_0 = \frac{1}{M} \sum_{m=1}^{M} h_0^m = 0$
- 3: Досылаем на сервер сжатую версию разницы $\mathcal{Q}(\nabla f_m(w^k) h_k^m)$
- 4: Обновляем память $h_{k+1}^m = h_k^m + \alpha \mathcal{Q}(\nabla f_m(w^k) h_k^m)$
- 5: Сервер вычисляет $g_k = h_k + \frac{1}{M} \sum\limits_{m=1}^M \mathcal{Q}(\nabla f_m(w^k) h_k^m)$
- 6: Для апдейта $w_{k+1} = w_k \gamma g_k$
- 7: Сервер обновляет $h_{k+1} = h_k + \alpha \frac{1}{M} \sum_{m=1}^{M} \mathcal{Q}(\nabla f_m(w^k) h_k^m)$

Mishchenko K. et al. Distributed Learning with Compressed Gradient Differences

QGD и DIANA: сходимость

• **Bonpoc**: Какие есть еще вопросы к сходимости/оценкам сходимости?

- **Bonpoc**: Какие есть еще вопросы к сходимости/оценкам сходимости? Лучше ли вообще сходится?
- Лучшая оценка на число коммуникаций для неускоренного метода с несмещенной компрессией (DIANA):

$$\mathcal{O}\left(\left[1+\frac{\omega}{M}\right]\frac{L}{\mu}\log\frac{1}{\varepsilon}\right).$$

• Оценка на число коммуникаций для GD:

$$\mathcal{O}\left(\frac{L}{\mu}\log\frac{1}{\varepsilon}\right)$$
.

• С точки зрения числа коммуникаций методы с компрессией уступают базовым методам — это ожидаемо (плата за сжатие). HO!

• Компрессоры сжимают информацию в β раз и типично, что $\beta \geq \omega.$

- Компрессоры сжимают информацию в β раз и типично, что $\beta \geq \omega$.
- Лучшая оценка на число информации для неускоренного метода с несмещенной компрессией (DIANA):

$$\mathcal{O}\left(\left[\frac{1}{\beta} + \frac{1}{M}\right] \frac{L}{\mu} \log \frac{1}{\varepsilon}\right).$$

Оценка на число информации для GD:

$$\mathcal{O}\left(\frac{L}{\mu}\log\frac{1}{\varepsilon}\right)$$
.

- Компрессоры сжимают информацию в β раз и типично, что $\beta \geq \omega$.
- Лучшая оценка на число информации для неускоренного метода с несмещенной компрессией (DIANA):

$$\mathcal{O}\left(\left[\frac{1}{\beta} + \frac{1}{M}\right] \frac{L}{\mu} \log \frac{1}{\varepsilon}\right).$$

• Оценка на число информации для GD:

$$\mathcal{O}\left(\frac{L}{\mu}\log\frac{1}{\varepsilon}\right).$$

• Несмещенный компрессор доказуемо улучшает число передаваемой информации, фактор улучшения: $\left[rac{1}{eta} + rac{1}{M}
ight]$.

- Компрессоры сжимают информацию в β раз и типично, что $\beta>\omega$.
- Лучшая оценка на число информации для неускоренного метода с несмещенной компрессией (DIANA):

$$\mathcal{O}\left(\left[\frac{1}{\beta} + \frac{1}{M}\right] \frac{L}{\mu} \log \frac{1}{\varepsilon}\right).$$

• Оценка на число информации для GD:

$$\mathcal{O}\left(\frac{L}{\mu}\log\frac{1}{\varepsilon}\right).$$

- Несмещенный компрессор доказуемо улучшает число передаваемой информации, фактор улучшения: $\left\lceil \frac{1}{\beta} + \frac{1}{M} \right
 ceil$.
- Смещенный компрессор не улучшает число передаваемой информации в общем случае.

Сервера может и не быть

- Часто на практике "централизованные коммуникации через сервер" реализованы без "сервера".
- Архитектура с AllGather/AllReduce процедурой: задан некоторый граф связей/коммуникаций, обмен сообщениями происходит согласно этому графу, в том чсиле можно организовать усреднение.

Chan, E. et al. Collective communication: theory, practice, and experience

Централизованные коммуникации без сервера

Operation	Before	After
Broadcast	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Reduce(- to-one)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Scatter	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Gather	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Node 0 Node 1 Node 2 Node 3
Allgather	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Reduce- scatter	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Allreduce	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Ring AllReduce

Figure: Картинка отсюда

Ring AllReduce: первый шаг суммирования

Figure: Картинка отсюда

Ring AllReduce: второй шаг суммирования

Figure: Картинка отсюда

Ring AllReduce: первый шаг распространения

Figure: Картинка отсюда

Ring AllReduce: итог

Figure: Картинка отсюда

Квантизированный GD (QGD) с AllReduce

Алгоритм 1 QGD

Вход: размер шага $\gamma>0$, стартовая точка $w_0\in\mathbb{R}^d$, количество итераций K

- 1: **for** k = 0, 1, ..., K 1 **do**
- 2: **for** m = 1, ..., M параллельно **do**
- 3: Вычислить градиент $\nabla f_m(w_k)$ в точке w_k
- 4: Независимо сгенерировать $g_{k,m} = \mathcal{Q}(\nabla f_m(w_k))$
- 5: Запустить AllReduce $\{g_{k,m}\}$ и получить $g_k = \frac{1}{M} \sum_{m=1}^M g_{k,m}$
- 6: $w_{k+1} = w_k \gamma g_k$
- 7: end for
- 8: end for
- **Выход:** w^K

Квантизированный GD (QGD) с AllReduce

Алгоритм 1 QGD

Вход: размер шага $\gamma>0$, стартовая точка $\mathit{w}_0\in\mathbb{R}^\mathit{d}$, количество итераций K

- 1: **for** k = 0, 1, ..., K 1 **do**
- 2: **for** m = 1, ..., M параллельно **do**
- 3: Вычислить градиент $\nabla f_m(w_k)$ в точке w_k
- 4: Независимо сгенерировать $g_{k,m} = \mathcal{Q}(\nabla f_m(w_k))$
- 5: Запустить AllReduce $\{g_{k,m}\}$ и получить $g_k = \frac{1}{M} \sum_{m=1}^M g_{k,m}$
- 6: $w_{k+1} = w_k \gamma g_k$
- 7: end for
- 8: end for
- **Выход:** w^K
 - Вопрос: Какие проблемы могут появиться у (например) Randk?

Квантизированный GD (QGD) с AllReduce

Алгоритм 1 QGD

Вход: размер шага $\gamma>0$, стартовая точка $\mathit{w}_0\in\mathbb{R}^{\mathit{d}}$, количество итераций K

- 1: **for** k = 0, 1, ..., K 1 **do**
- 2: **for** m = 1, ..., M параллельно **do**
- 3: Вычислить градиент $\nabla f_m(w_k)$ в точке w_k
- 4: Независимо сгенерировать $g_{k,m} = \mathcal{Q}(\nabla f_m(w_k))$
- 5: Запустить AllReduce $\{g_{k,m}\}$ и получить $g_k = \frac{1}{M} \sum_{m=1}^M g_{k,m}$
- 6: $w_{k+1} = w_k \gamma g_k$
- 7: end for
- 8: end for
- **Выход**: w^K
 - **Bonpoc**: Какие проблемы могут появиться у (например) Randk? Одинаковые ненулевые координаты у разных устройств могут вызывать коллизии.

PermK: делаем зависимую рандомизацию

Перестановочный компрессор (зависимый RandK)

Предположим, что $d\geq n$ и d=qn, где $q\geq 1$ – целое число. Пусть $\pi=(\pi_1,\ldots,\pi_d)$ – случайная перестановка $\{1,\ldots,d\}$. Тогда для каждого $i\in\{1,2,\ldots,n\}$ имеем следующий оператор сжатия

$$Q_i(u) = n \cdot \sum_{j=q(i-1)+1}^{qi} u_{\pi_j} e_{\pi_j}.$$

Szlendak, R. et al. Permutation Compressors for Provably Faster Distributed Nonconvex Optimization

PermK: делаем зависимую рандомизацию

Перестановочный компрессор (зависимый RandK)

Предположим, что $d\geq n$ и d=qn, где $q\geq 1$ – целое число. Пусть $\pi=(\pi_1,\ldots,\pi_d)$ – случайная перестановка $\{1,\ldots,d\}$. Тогда для каждого $i\in\{1,2,\ldots,n\}$ имеем следующий оператор сжатия

$$Q_i(u) = n \cdot \sum_{j=q(i-1)+1}^{qi} u_{\pi_j} e_{\pi_j}.$$

- Szlendak, R. et al. Permutation Compressors for Provably Faster Distributed Nonconvex Optimization
- Дружественна к централизованным коммуникациям без сервера.
- В гомогенном случае имеют физику дешевой пересылки полного градиента.

Смещенная компрессия

 Случайный выбор – это хорошо, но и тут есть потенциал для улучшения.

Смещённая компрессия

Будем называть (стохастический) оператор (x) оператором смещённой компрессии, если для любого $x \in \mathbb{R}^d$ выполняется:

$$\mathbb{E}[\|C(x) - x\|_2^2] \le \left(1 - \frac{1}{\delta}\right) \|x\|_2^2,$$

где $\delta > 0$.

Смещенная компрессия: примеры

"Жадная" спарсификация (выбор наибольших по модулю компонент)

Рассмотрим стохастический оператор

$$\mathsf{Top}_k(x) = \sum_{i=d-k+1}^d x_{(i)} e_{(i)},$$

где k — некоторое фиксированное число из множества $\{1,\ldots,d\}$ (количество компонент вектора x, которые мы передаём; например, можно выбрать k=1), при этом координаты отсортированы по модулю: $|x_{(1)}| \leq |x_{(2)}| \leq \ldots \leq |x_{(d)}|, \ (e_1,\ldots,e_d)$ — стандартный базис в \mathbb{R}^d . Можно показать, что данный оператор является смещённой компрессией с константой $\delta = \frac{d}{k}$.

Alistarh D. et al. The convergence of sparsified gradient meth-

Лекция 14

Смещенная компрессия: примеры

- Различные примеры компрессоров (спарсификаторы, округления и тд):
 - Beznosikov A. et al. On Biased Compression for Distributed Learning
- Практичный смещенный компрессор на основе итеративного SVD разложения:
 - PDF

Vogels T. et al. PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization

• Использовать тот же подход, что и в несмещенном случае (QGD).

- Использовать тот же подход, что и в несмещенном случае (QGD).
- Докажем в случае одной ноды:

$$w_{k+1} = w_k - \gamma C(\nabla f(w_k)).$$

Пусть f имеет L-Липшицев градиент и является μ -сильно выпуклой.

- Использовать тот же подход, что и в несмещенном случае (QGD).
- Докажем в случае одной ноды:

$$w_{k+1} = w_k - \gamma C(\nabla f(w_k)).$$

Пусть f имеет L-Липшицев градиент и является μ -сильно выпуклой.

• Начнем с того, что воспользуемся Липшицевостью градиента:

$$f(w_{k+1}) = f(w_k - \gamma C(\nabla f(w_k)))$$

$$\leq f(w_k) + \langle \nabla f(w_k), -\gamma C(\nabla f(w_k)) \rangle + \frac{L}{2} \| -\gamma C(\nabla f(w_k)) \|^2$$

$$= f(w_k) - \gamma \langle C(\nabla f(w_k)), \nabla f(w_k) \rangle + \frac{\gamma^2 L}{2} \| C(\nabla f(w_k)) \|^2.$$

• Определение компрессора:

$$\begin{split} \|\nabla f(w_k)\|^2 - 2\mathbb{E}_C\left[\langle C(\nabla f(w_k)), \nabla f(w_k)\rangle\right] + \mathbb{E}_C\left[\|C(\nabla f(w_k))\|^2\right] \\ = \mathbb{E}_C\left[\|C(\nabla f(w_k)) - \nabla f(w_k)\|^2\right] \le \left(1 - \frac{1}{\delta}\right) \|\nabla f(w_k)\|^2. \end{split}$$

• Определение компрессора:

$$\begin{split} \|\nabla f(w_k)\|^2 - 2\mathbb{E}_C\left[\langle C(\nabla f(w_k)), \nabla f(w_k)\rangle\right] + \mathbb{E}_C\left[\|C(\nabla f(w_k))\|^2\right] \\ = \mathbb{E}_C\left[\|C(\nabla f(w_k)) - \nabla f(w_k)\|^2\right] \le \left(1 - \frac{1}{\delta}\right) \|\nabla f(w_k)\|^2. \end{split}$$

• Откуда:

$$-\gamma \mathbb{E}_{C}\left[\langle C(\nabla f(w_{k})), \nabla f(w_{k})\rangle\right] + \frac{\gamma}{2} \mathbb{E}_{C}\left[\|C(\nabla f(w_{k}))\|^{2}\right] \leq -\frac{\gamma}{2\delta} \|\nabla f(w_{k})\|^{2}.$$

• С двух предыдущих слайдов:

$$f(w_{k+1}) - \leq f(w_k) - \gamma \langle C(\nabla f(w_k)), \nabla f(w_k) \rangle + \frac{\gamma^2 L}{2} \|C(\nabla f(w_k))\|^2.$$

$$-\gamma \mathbb{E}_{C}\left[\left\langle C(\nabla f(w_{k})), \nabla f(w_{k})\right\rangle\right] + \frac{\gamma}{2} \mathbb{E}_{C}\left[\left\|C(\nabla f(w_{k}))\right\|^{2}\right] \leq -\frac{\gamma}{2\delta} \|\nabla f(w_{k})\|^{2}.$$

• С двух предыдущих слайдов:

$$f(w_{k+1}) - \leq f(w_k) - \gamma \langle C(\nabla f(w_k)), \nabla f(w_k) \rangle + \frac{\gamma^2 L}{2} \|C(\nabla f(w_k))\|^2.$$

$$-\gamma \mathbb{E}_{C}\left[\left\langle C(\nabla f(w_{k})), \nabla f(w_{k})\right\rangle\right] + \frac{\gamma}{2} \mathbb{E}_{C}\left[\left\|C(\nabla f(w_{k}))\right\|^{2}\right] \leq -\frac{\gamma}{2\delta} \|\nabla f(w_{k})\|^{2}.$$

• Сложим, вычтем из обоих частей $f(w^*)$ и возьмем полное мат. ожидание:

$$\mathbb{E}\left[f(w_{k+1}) - f(w^*)\right] \leq \mathbb{E}\left[f(w_k) - f(w^*)\right] - \frac{\gamma}{2}\left(1 - \gamma L\right) \mathbb{E}\left[\|C(\nabla f(w_k))\|^2\right] - \frac{\gamma}{2\delta} \mathbb{E}\left[\|\nabla f(w_k)\|^2\right].$$

• С двух предыдущих слайдов:

$$f(w_{k+1}) - \leq f(w_k) - \gamma \langle C(\nabla f(w_k)), \nabla f(w_k) \rangle + \frac{\gamma^2 L}{2} \|C(\nabla f(w_k))\|^2.$$

$$-\gamma \mathbb{E}_{C}\left[\left\langle C(\nabla f(w_{k})), \nabla f(w_{k})\right\rangle\right] + \frac{\gamma}{2} \mathbb{E}_{C}\left[\left\|C(\nabla f(w_{k}))\right\|^{2}\right] \leq -\frac{\gamma}{2\delta} \|\nabla f(w_{k})\|^{2}.$$

• Сложим, вычтем из обоих частей $f(w^*)$ и возьмем полное мат. ожидание:

$$\mathbb{E}\left[f(w_{k+1}) - f(w^*)\right] \leq \mathbb{E}\left[f(w_k) - f(w^*)\right] - \frac{\gamma}{2} (1 - \gamma L) \mathbb{E}\left[\|C(\nabla f(w_k))\|^2\right] - \frac{\gamma}{2\delta} \mathbb{E}\left[\|\nabla f(w_k)\|^2\right].$$

• Возьмем $\gamma \leq \frac{1}{L}$:

$$\mathbb{E}\left[f(w_{k+1}) - f(w^*)\right] \leq \mathbb{E}\left[f(w_k) - f(w^*)\right] - \frac{\gamma}{2\delta} \mathbb{E}\left[\|\nabla f(w_k)\|^2\right].$$

• С предыдущего слайда:

$$\mathbb{E}\left[f(w_{k+1}) - f(w^*)\right] \leq \mathbb{E}\left[f(w_k) - f(w^*)\right] - \frac{\gamma}{2\delta}\mathbb{E}\left[\|\nabla f(w_k)\|^2\right].$$

• С предыдущего слайда:

$$\mathbb{E}\left[f(w_{k+1}) - f(w^*)\right] \leq \mathbb{E}\left[f(w_k) - f(w^*)\right] - \frac{\gamma}{2\delta}\mathbb{E}\left[\|\nabla f(w_k)\|^2\right].$$

Сильная выпуклость (или даже более слабое условие PL):

$$2\mu(f(w_k) - f(w^*)) \le ||\nabla f(w_k)||^2.$$

• С предыдущего слайда:

$$\mathbb{E}\left[f(w_{k+1}) - f(w^*)\right] \leq \mathbb{E}\left[f(w_k) - f(w^*)\right] - \frac{\gamma}{2\delta}\mathbb{E}\left[\|\nabla f(w_k)\|^2\right].$$

• Сильная выпуклость (или даже более слабое условие PL):

$$2\mu(f(w_k) - f(w^*)) \le ||\nabla f(w_k)||^2.$$

• Соединим два предыдущих:

$$\mathbb{E}\left[f(w_{k+1})-f(w^*)\right] \leq \left(1-\frac{\gamma\mu}{\delta}\right)\mathbb{E}\left[f(w_k)-f(w^*)\right].$$

Смещенная компрессия: теорема в случае 1 ноды

Теорема (сходимость QGD со смещенной компрессией в случае 1 ноды)

Пусть f μ -сильно выпуклая (или PL) и имеет L-Липшицев градиент, тогда QGD для одной ноды с шагом $\gamma \leq 1/L$ и со смещенным компрессором с параметром δ сходится и выполнено:

$$f(w_K) - f(w^*) \leq \left(1 - \frac{\gamma \mu}{\delta}\right)^K (f(w_0) - f(w^*)).$$

Beznosikov A. et al. On Biased Compression for Distributed Learning

• Рассмотрим следующую распределенную задачу с M=3, d=3 и локальными функциями:

$$f_1(w)=\langle a,w
angle^2+rac{1}{4}\|w\|^2,\; f_2(w)=\langle b,w
angle^2+rac{1}{4}\|w\|^2,\; f_3(w)=\langle c,w
angle^2+rac{1}{4}\|w\|$$
 где $a=(-3,2,2),\; b=(2,-3,2)$ и $c=(2,2,-3).$

• Рассмотрим следующую распределенную задачу с $M=3,\ d=3$ и локальными функциями:

$$f_1(w)=\langle a,w
angle^2+rac{1}{4}\|w\|^2,\; f_2(w)=\langle b,w
angle^2+rac{1}{4}\|w\|^2,\; f_3(w)=\langle c,w
angle^2+rac{1}{4}\|w\|$$
 где $a=(-3,2,2),\; b=(2,-3,2)$ и $c=(2,2,-3).$

• Вопрос: где у нее оптимум?

• Рассмотрим следующую распределенную задачу с $M=3,\ d=3$ и локальными функциями:

$$f_1(w)=\langle a,w
angle^2+rac{1}{4}\|w\|^2,\; f_2(w)=\langle b,w
angle^2+rac{1}{4}\|w\|^2,\; f_3(w)=\langle c,w
angle^2+rac{1}{4}\|w\|$$
 где $a=(-3,2,2),\; b=(2,-3,2)$ и $c=(2,2,-3).$

Вопрос: где у нее оптимум? (0,0,0).

• Рассмотрим следующую распределенную задачу с $M=3,\ d=3$ и локальными функциями:

$$f_1(w)=\langle a,w
angle^2+rac{1}{4}\|w\|^2,\; f_2(w)=\langle b,w
angle^2+rac{1}{4}\|w\|^2,\; f_3(w)=\langle c,w
angle^2+rac{1}{4}\|w\|$$
 где $a=(-3,2,2),\; b=(2,-3,2)$ и $c=(2,2,-3).$

- **Вопрос:** где у нее оптимум? (0,0,0).
- Пусть стартовая точка $w_0 = (t, t, t)$ для какого-то t > 0. Тогда локальные градиенты:

$$\nabla f_1(w_0) = \frac{t}{2}(-11,9,9), \quad \nabla f_2(w_0) = \frac{t}{2}(9,-11,9), \quad \nabla f_3(w_0) = \frac{t}{2}(9,9,-11).$$

• **Bonpoc**: как будет выглядеть шаг QGD (градиентного спуска с сжатиями), если мы будем использовать *Top*1 компрессию?

Смещенная компрессия: не так все просто

• Рассмотрим следующую распределенную задачу с $M=3,\ d=3$ и локальными функциями:

$$f_1(w)=\langle a,w
angle^2+rac{1}{4}\|w\|^2,\; f_2(w)=\langle b,w
angle^2+rac{1}{4}\|w\|^2,\; f_3(w)=\langle c,w
angle^2+rac{1}{4}\|w\|$$
 где $a=(-3,2,2),\; b=(2,-3,2)$ и $c=(2,2,-3).$

- **Вопрос:** где у нее оптимум? (0,0,0).
- Пусть стартовая точка $w_0 = (t, t, t)$ для какого-то t > 0. Тогда локальные градиенты:

$$\nabla f_1(w_0) = \frac{t}{2}(-11, 9, 9), \quad \nabla f_2(w_0) = \frac{t}{2}(9, -11, 9), \quad \nabla f_3(w_0) = \frac{t}{2}(9, 9, -11).$$

• **Bonpoc**: как будет выглядеть шаг QGD (градиентного спуска с сжатиями), если мы будем использовать *Top*1 компрессию?

$$w_1 = (t, t, t) + \eta \cdot \frac{11}{6}(t, t, t) = \left(1 + \frac{11\eta}{6}\right)w_0.$$

ullet Мы удаляемся от решения геометрически для любого $\eta > 0$.

• Попробуем запоминать то, что не передали в процессе общения:

$$e_{1,m} = 0 + \gamma \nabla f_m(w_0) - C(0 + \gamma \nabla f_m(w_0)).$$

• Попробуем запоминать то, что не передали в процессе общения:

$$e_{1,m} = 0 + \gamma \nabla f_m(w_0) - C(0 + \gamma \nabla f_m(w_0)).$$

• И добавлять это в будущие посылки:

$$C(e_{1,m} + \gamma \nabla f_m(w_1))$$

• Попробуем запоминать то, что не передали в процессе общения:

$$e_{1,m} = 0 + \gamma \nabla f_m(w_0) - C(0 + \gamma \nabla f_m(w_0)).$$

• И добавлять это в будущие посылки:

$$C(e_{1,m} + \gamma \nabla f_m(w_1))$$

• На произвольной итерации это записывается так:

Посылка:
$$C(e_{k,m} + \gamma \nabla f_m(w_k))$$
, $e_{k+1,m} = e_{k,m} + \gamma \nabla f_m(w_k) - C(e_{k,m} + \gamma \nabla f_m(w_k))$

• Попробуем запоминать то, что не передали в процессе общения:

$$e_{1,m} = 0 + \gamma \nabla f_m(w_0) - C(0 + \gamma \nabla f_m(w_0)).$$

• И добавлять это в будущие посылки:

$$C(e_{1,m} + \gamma \nabla f_m(w_1))$$

• На произвольной итерации это записывается так:

Посылка:
$$C(e_{k,m} + \gamma \nabla f_m(w_k)),$$

 $e_{k+1,m} = e_{k,m} + \gamma \nabla f_m(w_k) - C(e_{k,m} + \gamma \nabla f_m(w_k))$

• Это техника называется компенсация ошибка (error feedback).

Stich S. et al. Sparsified SGD with memory

QGD c error feedback

Алгоритм 1 QGD c error feedback

Вход: Размер шага $\gamma > 0$, стартовая точка $w_0 \in \mathbb{R}^d$, стартовые ошибки $e_{0,m} = 0$ для всех m от 1 до M, количество итераций K

- 1: **for** k = 0, 1, ..., K 1 **do**
- 2: Отправить x_k всем рабочим

⊳ выполняется сервером

- for $m=1,\ldots,M$ параллельно do 4:
 - Принять w_k от мастера ⊳ выполняется рабочими
- 5: Вычислить градиент $\nabla f(w_k)$ в точке w_k \triangleright выполняется рабочими 6: Сгенерировать $g_{k,m} = C(e_{k,m} + \gamma \nabla f(w_k)) \triangleright$ выполняется рабочими
- 7: Вычислить $e_{k+1,m} = e_{k,m} + \gamma \nabla f_m(w_k) - g_{k,m}$ ⊳ выполняется
- рабочими

3:

8: Отправить $g_{k,m}$ мастеру ⊳ выполняется рабочими

- 9. end for
- Принять $g_{k,m}$ от всех рабочих 10:

⊳ выполняется сервером

Вычислить $g_k = \frac{1}{M} \sum_{m=1}^{M} g_{k,m}$ 11:

⊳ выполняется сервером ⊳ выполняется сервером

12: $w_{k+1} = w_k - g_k$ 12. and for

QGD c error feedback: сходимость

Figure: Точность в ходе обучения VGG19 на CIFAR10 с использование разных о

QGD c error feedback: сходимость

Теорема GD с error feedback

Пусть все локальные функции f_m являются μ -сильно выпуклыми и имеют L-Липшицев градиент, тогда если $\eta \leq \frac{1}{28 \lambda L}$, то

$$\mathbb{E}\left[f(\tilde{w}_{K}) - f(x^{*})\right] \leq \mathcal{O}\left(\delta L \|w_{0} - w^{*}\|^{2} \exp\left(-\frac{\gamma \mu K}{2}\right) + \frac{\delta}{\mu K} \cdot \frac{1}{M} \sum_{m=1}^{M} \|\nabla f_{m}(w^{*})\|^{2}\right).$$

Stich S. and Karimireddy S. The error-feedback framework: Better rates for SGD with delayed gradients and compressed communication

Beznosikov A. et al. On Biased Compression for Distributed Learning

Та же самая проблема, что и у QGD – второй член в оценке

Лекция 14

Смещенная компрессия: решение вопроса с плато

• Идкя похожа на DIANA: память + сжатие разности

Алгоритм 1 EF21 (скетч)

- 1: Каждое устройство m обладает вектором "памяти" $g_0^m = 0$
- 2: Сервер хранит $h_0 = \frac{1}{M} \sum_{m=1}^{M} h_0^m = 0$
- 3: Досылаем на сервер сжатую версию разницы $C(\nabla f_m(w^k) h_k^m)$
- 4: Обновляем память $h_{k+1}^m = h_k^m + C(\nabla f_m(w^k) h_k^m)$
- 5: Сервер вычисляет $h_{k+1} = h_k + rac{1}{M} \sum\limits_{m=1}^{M} C(\nabla f_m(w^k) h_k^m)$
- 6: Для апдейта $w_{k+1} = w_k \gamma h_{k+1}$

Richtarik P. et al. EF21: A New, Simpler, Theoretically Better, and Practically Faster Error Feedback

 Лучшая оценка на число коммуникаций для неускоренного метода с несмещенной компрессией (DIANA):

$$\mathcal{O}\left(\left[1+rac{\omega}{M}
ight]rac{L}{\mu}\lograc{1}{arepsilon}
ight).$$

 Лучшая оценка на число коммуникаций для неускоренного метода со смещенной компрессией (EF-21):

$$\mathcal{O}\left(\left[1+\delta\right]\frac{L}{\mu}\log\frac{1}{\varepsilon}\right).$$

• Уже обсуждалось, что эти оценки хуже, чем для базового GD.

• Компрессоры сжимают информацию в β раз и типично, что $\beta \geq \omega$ и $\beta \geq \delta$.

- Компрессоры сжимают информацию в β раз и типично, что $\beta \geq \omega$ и $\beta \geq \delta$.
- Лучшая оценка на число информации для неускоренного метода с несмещенной компрессией (DIANA):

$$\mathcal{O}\left(\left[\frac{1}{\beta} + \frac{1}{M}\right] \frac{L}{\mu} \log \frac{1}{\varepsilon}\right).$$

 Как уже обсуждалось, несмещенный компрессор доказуемо улучшает число передаваемой информации.

- Компрессоры сжимают информацию в β раз и типично, что $\beta \geq \omega$ и $\beta \geq \delta$.
- Лучшая оценка на число информации для неускоренного метода с несмещенной компрессией (DIANA):

$$\mathcal{O}\left(\left[\frac{1}{eta} + \frac{1}{M}\right] \frac{L}{\mu} \log \frac{1}{arepsilon}\right).$$

- Как уже обсуждалось, несмещенный компрессор доказуемо улучшает число передаваемой информации.
- Смещенный компрессор имеет оценку:

$$\mathcal{O}\left(\left\lceil \frac{1}{eta} + \frac{\delta}{eta} \right
ceil rac{L}{\mu} \log rac{1}{arepsilon}
ight).$$

• Смещенный компрессор не улучшает число передаваемой информации в общем случае. И это открытый вопрос: как увидеть теоретическое превосходство смещенных

Идея – больше локальных вычислений

- В базовом подходе коммуникации происходят каждую итерацию.
- Если считать (стохастические) градиенты значительно дешевле, почему бы не считать несколько раз между коммуникациями.

Локальный градиентный спуск

Идея метода:

• Делать локальные шаги:

$$x_m^{k+1} = x_m^k - \gamma \nabla f_m(x_m^k, \xi_m^k).$$

- Каждую tую итерацию пересылать текущий x_m^k на сервер. Сервер усредняет $x^k = \frac{1}{M} \sum_{m=1}^M x_m^k$, и пересылает x^k устройствам.
 - Устройства обновляют: $x_m^k = x^k$.
- Централизованный SGD это Локальный SGD с K=1.

Сходимость

• Типичная сходимость такого типа методов:

Figure: Сходимость Локального метода на практике для логистической регрессии.

• Быстрее с точки зрения коммуникаций, хуже качество придельной точности.

Khaled A. et al. Tighter Theory for Local SGD on Identical and Heterogeneous Data

Сходимость

- **Bonpoc**: из-за чего возникает такой эффект? Он возникает из-за разнородности локальных данных на разных устройствах.
- В верхних оценках сходимости метода это тоже проявляется:

$$\mathcal{O}\left(\frac{\|x^0 - x^*\|^2}{\gamma T} + \frac{\gamma \sigma_{opt}^2}{M}\right),\,$$

где $\gamma \leq \mathcal{O}\left(\frac{1}{Lt}\right)$ – шаг, K – кол-во локальных итераций на каждом устройстве, . Оценка дана для случая выпуклых и L-гладких f_m . Khaled A. et al. Tighter Theory for Local SGD on Identical

• Более того, фактор σ_{opt}^2 не устраняется.

Физика проблемы

• Далеко от решения:

• Близко к решению:

Решаем проблему

• **Bonpoc**: проблема локального метода – сходимость к окрестности. Как ее можно решить?

Решаем проблему

- **Bonpoc**: проблема локального метода сходимость к окрестности. Как ее можно решить?
- Регуляризация локальной задачи:

$$\tilde{f}_m(x) := f_m(x) + \frac{\lambda}{2} ||x - v||^2,$$

где v — некоторая референсная точка.

Karimireddy S. P. SCAFFOLD: Stochastic Controlled Averaging for Federated Learning

А вообще чего хотим достичь?

• Нижние оценки:

$$\mathcal{K} = \Omega\left(\sqrt{rac{L}{\mu}}\lograc{1}{arepsilon}
ight).$$

L и μ – константы гладкости и сильной выпуклости f.

• Вопрос: какой метод даст такие оценки?

А вообще чего хотим достичь?

• Нижние оценки:

$$\mathcal{K} = \Omega\left(\sqrt{rac{L}{\mu}}\lograc{1}{arepsilon}
ight).$$

L и μ – константы гладкости и сильной выпуклости f.

- **Bonpoc**: какой метод даст такие оценки? Распределенная версия метода Нестерова с 1 локальным шагом между коммуникациями.
- Отметим, что локальные методы стали для стохастических постановок.

А вообще чего хотим достичь?

• Нижние оценки:

$$K = \Omega\left(\sqrt{rac{L}{\mu}}\lograc{1}{arepsilon}
ight).$$

L и μ – константы гладкости и сильной выпуклости f.

- **Bonpoc**: какой метод даст такие оценки? Распределенная версия метода Нестерова с 1 локальным шагом между коммуникациями.
- Отметим, что локальные методы стали для стохастических постановок.
- Но и тут в общем случае нет улучшений.
 - Woodworth B. The Min-Max Complexity of Distributed Stochastic Convex Optimization with Intermittent Communication
- Но есть постановки, где локальные методы выстреливают.

• Распределенная задача обучения:

$$f(w) = \frac{1}{M} \sum_{m=1}^{M} f_m(w) = \frac{1}{M} \sum_{m=1}^{M} \left[\frac{1}{N} \sum_{i=1}^{N} \ell(w, z_i) \right],$$

где z_i — элемент выборки (x_i, y_i) , ℓ — функция потерь (в нее зашита l и g).

• Распределенная задача обучения:

$$f(w) = \frac{1}{M} \sum_{m=1}^{M} f_m(w) = \frac{1}{M} \sum_{m=1}^{M} \left[\frac{1}{N} \sum_{i=1}^{N} \ell(w, z_i) \right],$$

где z_i — элемент выборки (x_i, y_i) , ℓ — функция потерь (в нее зашита l и g).

 Предположим, что мы можем разбить обучающую выборку равномерно между устройствами (например, если используются кластерные или коллаборативные вычисления на открытых данных).

• Распределенная задача обучения:

$$f(w) = \frac{1}{M} \sum_{m=1}^{M} f_m(w) = \frac{1}{M} \sum_{m=1}^{M} \left[\frac{1}{N} \sum_{i=1}^{N} \ell(w, z_i) \right],$$

где z_i — элемент выборки (x_i, y_i) , ℓ — функция потерь (в нее зашита l и g).

- Предположим, что мы можем разбить обучающую выборку равномерно между устройствами (например, если используются кластерные или коллаборативные вычисления на открытых данных).
- Это дает похожесть локальных функций потерь.

• Распределенная задача обучения:

$$f(w) = \frac{1}{M} \sum_{m=1}^{M} f_m(w) = \frac{1}{M} \sum_{m=1}^{M} \left[\frac{1}{N} \sum_{i=1}^{N} \ell(w, z_i) \right],$$

где z_i — элемент выборки (x_i, y_i) , ℓ — функция потерь (в нее зашита l и g).

- Предположим, что мы можем разбить обучающую выборку равномерно между устройствами (например, если используются кластерные или коллаборативные вычисления на открытых данных).
- Это дает похожесть локальных функций потерь.
- Утверждается, что для любого w

$$\|\nabla^2 f_m(w) - \nabla^2 f(w)\| \le \delta.$$

Матричное неравенство Хёфдинга

Теорема (Матричное неравенство Хёфдинга)

Рассмотрим конечную последовательность случайных квадратных матриц $\{X_i\}_{i=1}^N$. Пусть в этой последовательности матрицы независимы, эрмитовы и имеют размерность d. Предположим так же, что $\mathbb{E}[X_i]=0$, и $X_i^2 \preceq A^2$ почти наверное, где A — неслучайная эрмитова матрица. Тогда с вероятностью 1-p выполнено, что

$$\left\|\sum_{i=1}^N X_i\right\| \leq \sqrt{8N\|A^2\| \cdot \ln\left(d/p\right)}.$$

Tropp J. An introduction to matrix concentration inequalities Tropp J. User-friendly tail bounds for sums of random matrices

Параметр схожести

• Локальная функция потерь:

$$f_m(w) = \frac{1}{N} \sum_{i=1}^N \ell(w, z_i).$$

- ℓL -гладкая (L-Липшицев градиент), выпуклая, дважды дифференцируемая функция (например, квадратичная или логрегрессия). Тогда имеем $\nabla^2 \ell(w,z_i) \preceq LI$ для любого w и z_i (здесь I единичная матрица.).
- Распределим все данные равномерно по всем нодам. $X_i = \frac{1}{N} \left[\nabla \ell(w, z_i) \nabla f(w) \right]$. Легко проверить, что все условия матричного неравенства Хёфдинга для нее выполнены, в частности, $A^2 = \frac{4L^2}{N^2}I$.

Параметр схожести: итог

• В итоге имеем

$$\|\nabla^2 f_m(w) - \nabla^2 f(w)\| \leq \delta \sim \frac{L}{\sqrt{N}}.$$

Параметр схожести: итог

• В итоге имеем

$$\|\nabla^2 f_m(w) - \nabla^2 f(w)\| \leq \delta \sim \frac{L}{\sqrt{N}}.$$

• Для квадратичных задач можно получить оценку вида:

$$\|\nabla^2 f_m(w) - \nabla^2 f(w)\| \le \delta \sim \frac{L}{N}.$$

Hendrikx H. et al. Statistically Preconditioned Accelerated Gradient Method for Distributed Optimization

Параметр схожести: итог

• В итоге имеем

$$\|\nabla^2 f_m(w) - \nabla^2 f(w)\| \leq \delta \sim \frac{L}{\sqrt{N}}.$$

• Для квадратичных задач можно получить оценку вида:

$$\|\nabla^2 f_m(w) - \nabla^2 f(w)\| \le \delta \sim \frac{L}{N}.$$

- Hendrikx H. et al. Statistically Preconditioned Accelerated Gradient Method for Distributed Optimization
- В любом случае следует вывод: чем больше размер локальной выборки, тем меньше параметр схожести (похожи между собой гессианы).

Метод в общем виде

• Рассмотрим зеркальный спуск:

$$w_{k+1} = \arg\min_{w \in \mathbb{R}^d} \left(\gamma \langle \nabla f(w_k), w \rangle + V(w, w_k) \right),$$

где V(x,y) – дивергенция Брегмана, порожденная функцией строго-выпуклой функцией $\varphi(x)$:

$$V(x,y) = \varphi(x) - \varphi(y) - \langle \nabla \varphi(y); x - y \rangle.$$

Метод в общем виде

• Рассмотрим зеркальный спуск:

$$w_{k+1} = \arg\min_{w \in \mathbb{R}^d} \left(\gamma \langle \nabla f(w_k), w \rangle + V(w, w_k) \right),$$

где V(x,y) – дивергенция Брегмана, порожденная функцией строго-выпуклой функцией $\varphi(x)$:

$$V(x,y) = \varphi(x) - \varphi(y) - \langle \nabla \varphi(y); x - y \rangle.$$

• Вопрос: Какой метод получится, если $\varphi(x) = \frac{1}{2} ||x||^2$?

Метод в общем виде

• Рассмотрим зеркальный спуск:

$$w_{k+1} = \arg\min_{w \in \mathbb{R}^d} \left(\gamma \langle \nabla f(w_k), w \rangle + V(w, w_k) \right),$$

где V(x,y) – дивергенция Брегмана, порожденная функцией строго-выпуклой функцией $\varphi(x)$:

$$V(x,y) = \varphi(x) - \varphi(y) - \langle \nabla \varphi(y); x - y \rangle.$$

• Вопрос: Какой метод получится, если $\varphi(x) = \frac{1}{2} \|x\|^2$? Градиентный спуск.

Сходимость в общем виде

Определение (относительная гладкость и сильная выпуклость)

Пусть $\varphi:\mathbb{R}^d\to\mathbb{R}$ является выпуклой и дважды дифференцируемой. Будем говорить, что функция f является L_{φ} -гладкой и μ_{φ} -сильно выпуклой относительно φ , если для любого $x\in\mathbb{R}^d$ выполнено

$$\mu_{\varphi} \nabla^2 \varphi(x) \preceq \nabla^2 f(x) \preceq L_{\varphi} \nabla^2 \varphi(x),$$

или эквивалентно для любых $x,y\in\mathbb{R}^d$

$$\mu_{\varphi}V(x,y) \leq f(x) - f(y) - \langle \nabla f(y); x - y \rangle \leq L_{\varphi}V(x,y).$$

Lu H. et al. Relatively-Smooth Convex Optimization by First-Order Methods, and Applications

• Первое условие оптимальности для шага зеркального спуска:

$$\gamma \nabla f(w_k) + \nabla \varphi(w_{k+1}) - \nabla \varphi(w_k) = 0.$$

• Первое условие оптимальности для шага зеркального спуска:

$$\gamma \nabla f(w_k) + \nabla \varphi(w_{k+1}) - \nabla \varphi(w_k) = 0.$$

Из него (здесь w* – оптимум):

$$\langle \gamma \nabla f(w_k) + \nabla \varphi(w_{k+1}) - \nabla \varphi(w_k), w_{k+1} - w^* \rangle = 0.$$

$$\langle \gamma \nabla f(w_k), w^{k+1} - w^* \rangle = \langle \nabla \varphi(w_k) - \nabla \varphi(w_{k+1}), w^{k+1} - w^* \rangle$$

= $V(w^*, w_k) - V(w^*, w_{k+1}) - V(w_{k+1}, w_k).$

(последнее утверждение называется теоремой Пифагора для дивергенций Брегмана и проверяется по определению)

Первое условие оптимальности для шага зеркального спуска:

$$\gamma \nabla f(w_k) + \nabla \varphi(w_{k+1}) - \nabla \varphi(w_k) = 0.$$

Из него (здесь w* – оптимум):

$$\langle \gamma \nabla f(w_k) + \nabla \varphi(w_{k+1}) - \nabla \varphi(w_k), w_{k+1} - w^* \rangle = 0.$$

$$\langle \gamma \nabla f(w_k), w^{k+1} - w^* \rangle = \langle \nabla \varphi(w_k) - \nabla \varphi(w_{k+1}), w^{k+1} - w^* \rangle$$

= $V(w^*, w_k) - V(w^*, w_{k+1}) - V(w_{k+1}, w_k).$

(последнее утверждение называется теоремой Пифагора для дивергенций Брегмана и проверяется по определению)

• Небольшие перестановки дадут:

$$\langle \gamma \nabla f(w_k), w_{k+1} - w_k \rangle + V(w_{k+1}, w_k)$$

$$= V(w^*, w_k) - V(w^*, w_{k+1}) - \langle \gamma \nabla f(w_k), w_k - w_k^* \rangle.$$

• Подставим $\gamma = \frac{1}{L_{\omega}}$:

$$\langle \nabla f(w_k), w^{k+1} - w^k \rangle + L_{\varphi} V(w_{k+1}, w_k)$$

$$= L_{\varphi} V(w^*, w_k) - L_{\varphi} V(w^*, w_{k+1})$$

$$- \langle \nabla f(w_k), w_k - w^* \rangle.$$

• Подставим $\gamma = \frac{1}{L_{\omega}}$:

$$\langle \nabla f(w_k), w^{k+1} - w^k \rangle + L_{\varphi} V(w_{k+1}, w_k)$$

$$= L_{\varphi} V(w^*, w_k) - L_{\varphi} V(w^*, w_{k+1})$$

$$- \langle \nabla f(w_k), w_k - w^* \rangle.$$

• Воспользуемся определением гладкость относительно φ с $x=w_{k+1},\ y=w_k$:

$$f(w_{k+1}) - f(w_k) \leq \langle \nabla f(w_k); w_{k+1} - w_k \rangle + L_{\varphi} V(w_{k+1}, w_k).$$

• Подставим $\gamma = \frac{1}{L_{\omega}}$:

$$\langle \nabla f(w_k), w^{k+1} - w^k \rangle + L_{\varphi} V(w_{k+1}, w_k)$$

$$= L_{\varphi} V(w^*, w_k) - L_{\varphi} V(w^*, w_{k+1})$$

$$- \langle \nabla f(w_k), w_k - w^* \rangle.$$

• Воспользуемся определением гладкость относительно φ с $x=w_{k+1},\ y=w_k$:

$$f(w_{k+1}) - f(w_k) \leq \langle \nabla f(w_k); w_{k+1} - w_k \rangle + L_{\varphi} V(w_{k+1}, w_k).$$

• Соединим два предыдущих:

$$f(w_{k+1}) - f(w_k) \le L_{\varphi}V(w^*, w_k) - L_{\varphi}V(w^*, w_{k+1}) - \langle \nabla f(w_k), w_k - w_k \rangle$$

С предыдущего слайда:

$$f(w_{k+1}) - f(w_k) \le L_{\varphi} V(w^*, w_k) - L_{\varphi} V(w^*, w_{k+1}) - \langle \nabla f(w_k), w_k - w^* \rangle.$$

• С предыдущего слайда:

$$f(w_{k+1}) - f(w_k) \le L_{\varphi} V(w^*, w_k) - L_{\varphi} V(w^*, w_{k+1}) - \langle \nabla f(w_k), w_k - w^* \rangle.$$

Относительная сильная выпуклость:

$$\mu_{\varphi}V(w^*, w_k) \leq f(w^*) - f(w_k) - \langle \nabla f(w_k); w^* - w_k \rangle$$

С предыдущего слайда:

$$f(w_{k+1}) - f(w_k) \le L_{\varphi} V(w^*, w_k) - L_{\varphi} V(w^*, w_{k+1}) - \langle \nabla f(w_k), w_k - w^* \rangle.$$

• Относительная сильная выпуклость:

$$\mu_{\varphi}V(w^*, w_k) \leq f(w^*) - f(w_k) - \langle \nabla f(w_k); w^* - w_k \rangle$$

• Сложим два предыдущих и немного поперемещаем:

$$f(w_{k+1}) - f(w^*) \le (L_{\varphi} - \mu_{\varphi})V(w^*, w_k) - L_{\varphi}V(w^*, w_{k+1}).$$

С предыдущего слайда:

$$f(w_{k+1}) - f(w_k) \le L_{\varphi} V(w^*, w_k) - L_{\varphi} V(w^*, w_{k+1}) - \langle \nabla f(w_k), w_k - w^* \rangle.$$

• Относительная сильная выпуклость:

$$\mu_{\varphi}V(w^*,w_k) \leq f(w^*) - f(w_k) - \langle \nabla f(w_k); w^* - w_k \rangle$$

• Сложим два предыдущих и немного поперемещаем:

$$f(w_{k+1}) - f(w^*) \le (L_{\varphi} - \mu_{\varphi})V(w^*, w_k) - L_{\varphi}V(w^*, w_{k+1}).$$

• В силу того, что w^* – оптимум:

$$V(w^*, w_{k+1}) \leq \left(1 - \frac{\mu_{\varphi}}{L}\right) V(w^*, w_k).$$

Сходимость в общем виде: теорема

Теорема (сходимость зеркального спуска)

Пусть φ и f удовлетворяют определению выше, тогда зеркальный спуск с шагом $\gamma=\frac{1}{L_G}$ сходится и выполнено:

$$V(w^*, w_K) \leq \left(1 - rac{\mu_{arphi}}{L_{arphi}}
ight)^K V(w^*, w_0).$$

Lu H. et al. Relatively-Smooth Convex Optimization by First-Order Methods, and Applications

• Зеркальный спуск:

$$w_{k+1} = \arg\min_{w \in \mathbb{R}^d} \left(\gamma \langle \nabla f(w_k), w \rangle + V(w, w_k) \right),$$

где с дивергенция Брегмана V(x,y), порожденной функцией $\varphi(x)$ (тут нужно потребовать, чтобы f_1 была выпуклой):

$$\varphi(x) = f_1(x) + \frac{\delta}{2} ||x||^2.$$

Функция f_1 хранится на сервере.

• Зеркальный спуск:

$$w_{k+1} = \arg\min_{w \in \mathbb{R}^d} \left(\gamma \langle \nabla f(w_k), w \rangle + V(w, w_k) \right),$$

где с дивергенция Брегмана V(x,y), порожденной функцией $\varphi(x)$ (тут нужно потребовать, чтобы f_1 была выпуклой):

$$\varphi(x) = f_1(x) + \frac{\delta}{2} ||x||^2.$$

Функция f_1 хранится на сервере.

• **Bonpoc**: Какое число коммуникаций происходит за K итераций такого зеркального спуска?

• Зеркальный спуск:

$$w_{k+1} = \arg\min_{w \in \mathbb{R}^d} \left(\gamma \langle \nabla f(w_k), w \rangle + V(w, w_k) \right),$$

где с дивергенция Брегмана V(x,y), порожденной функцией $\varphi(x)$ (тут нужно потребовать, чтобы f_1 была выпуклой):

$$\varphi(x) = f_1(x) + \frac{\delta}{2} ||x||^2.$$

Функция f_1 хранится на сервере.

• **Bonpoc:** Какое число коммуникаций происходит за K итераций такого зеркального спуска? K коммуникаций (количество подсчетов градиента ∇f), вычисления arg min требуют только вычислений на сервере.

Алгоритм 1 Зеркальный спуск для задачи data similarity

```
Вход: Размер шага \gamma > 0, стартовая точка w^0 \in \mathbb{R}^d, количество итераций K
 1: for k = 0, 1, ..., K - 1 do
 2:
        Отправить x_k всем рабочим
                                                                 ⊳ выполняется сервером
        for m=1,\ldots,M параллельно do
 3:
 4:
             Принять w_k от мастера
                                                                ⊳ выполняется рабочими
 5:
             Вычислить градиент \nabla f_m(w_k) в точке w_k \triangleright выполняется рабочими
             Отправить \nabla f_m(w_k) мастеру
 6:
                                                                ⊳ выполняется рабочими
        end for
 7:
         Принять \nabla f_m(w_k) от всех рабочих
 8:
                                                                 ⊳ выполняется сервером
         Вычислить \nabla f(w_k) = \frac{1}{M} \sum_{m=1}^{M} \nabla f_m(w_k)
 9:
                                                                 ⊳ выполняется сервером
         w_{k+1} = \operatorname{arg\,min}_{w \in \mathbb{R}^d} \left( \gamma \langle \nabla f(w_k), x \rangle + V(w, w_k) \right)
10:
                                                                             ⊳ выполняется
    сервером
11: end for
```

Выход: W_K

 Напомним, что сходимость определяется через константы из соотношения:

$$\mu_{\varphi} \nabla^2 \varphi(w) \leq \nabla^2 f(w) \leq L_{\varphi} \nabla^2 \varphi(w),$$

 Напомним, что сходимость определяется через константы из соотношения:

$$\mu_{\varphi} \nabla^2 \varphi(w) \preceq \nabla^2 f(w) \preceq L_{\varphi} \nabla^2 \varphi(w),$$

В нашем случае:

$$\mu_{\varphi}\left(\delta I + \nabla^{2} f_{1}(w)\right) \leq \nabla^{2} f(w) \leq L_{\varphi}\left(\delta I + \nabla^{2} f_{1}(w)\right)$$

 Напомним, что сходимость определяется через константы из соотношения:

$$\mu_{\varphi} \nabla^2 \varphi(w) \preceq \nabla^2 f(w) \preceq L_{\varphi} \nabla^2 \varphi(w),$$

В нашем случае:

$$\mu_{\varphi}\left(\delta I + \nabla^{2} f_{1}(w)\right) \leq \nabla^{2} f(w) \leq L_{\varphi}\left(\delta I + \nabla^{2} f_{1}(w)\right)$$

ullet Найдем L_{arphi} :

$$\|\nabla^2 f_1(w) - \nabla^2 f(w)\| \le \delta \Rightarrow \nabla^2 f(w) - \nabla^2 f_1(w) \le \delta I$$

$$\Rightarrow \nabla^2 f(w) \le \delta I + \nabla^2 f_1(w) \Rightarrow L_{\varphi} = 1.$$

 Напомним, что сходимость определяется через константы из соотношения:

$$\mu_{\varphi} \nabla^2 \varphi(w) \preceq \nabla^2 f(w) \preceq L_{\varphi} \nabla^2 \varphi(w),$$

В нашем случае:

$$\mu_{\varphi}\left(\delta I + \nabla^{2} f_{1}(w)\right) \leq \nabla^{2} f(w) \leq L_{\varphi}\left(\delta I + \nabla^{2} f_{1}(w)\right)$$

ullet Найдем L_{arphi} :

$$\begin{split} \|\nabla^2 f_1(w) - \nabla^2 f(w)\| &\leq \delta \Rightarrow \nabla^2 f(w) - \nabla^2 f_1(w) \leq \delta I \\ \Rightarrow \nabla^2 f(w) &\leq \delta I + \nabla^2 f_1(w) \Rightarrow L_{\varphi} = 1. \end{split}$$

• Найдем μ_{φ} . Из сильно выпуклости функции f:

$$\mu I \preceq \nabla^2 f(w) \Rightarrow \delta I \preceq \frac{2\delta}{\mu} \nabla^2 f(w) - \delta I.$$

• Из $\|\nabla^2 f_1(w) - \nabla^2 f(w)\| \le \delta$ имеем:

$$\nabla^2 f_1(w) - \nabla^2 f(w) \leq \delta I.$$

• Объединяем два предыдущих пункта:

$$\nabla^2 f_1(w) - \nabla^2 f(w) \leq \frac{2\delta}{\mu} \nabla^2 f(w) - \delta I.$$

Откуда:

$$\nabla^2 f_1(w) + \delta I \leq \frac{2\delta + \mu}{\mu} \nabla^2 f(w) \Rightarrow \mu_{\varphi} = \frac{\mu}{2\delta + \mu}.$$

• Найдем μ_{φ} . Из сильно выпуклости функции f:

$$\mu I \preceq \nabla^2 f(w) \Rightarrow \delta I \preceq \frac{2\delta}{\mu} \nabla^2 f(w) - \delta I.$$

• Найдем μ_{φ} . Из сильно выпуклости функции f:

$$\mu I \preceq \nabla^2 f(w) \Rightarrow \delta I \preceq \frac{2\delta}{\mu} \nabla^2 f(w) - \delta I.$$

• Из $\|\nabla^2 f_1(w) - \nabla^2 f(w)\| \le \delta$ имеем:

$$\nabla^2 f_1(w) - \nabla^2 f(w) \leq \delta I.$$

• Найдем μ_{φ} . Из сильно выпуклости функции f:

$$\mu I \preceq \nabla^2 f(w) \Rightarrow \delta I \preceq \frac{2\delta}{\mu} \nabla^2 f(w) - \delta I.$$

• Из $\|
abla^2 f_1(w) -
abla^2 f(w)\| \le \delta$ имеем:

$$\nabla^2 f_1(w) - \nabla^2 f(w) \leq \delta I.$$

• Объединяем два предыдущих пункта:

$$\nabla^2 f_1(w) - \nabla^2 f(w) \preceq \frac{2\delta}{\mu} \nabla^2 f(w) - \delta I.$$

• Найдем μ_{φ} . Из сильно выпуклости функции f:

$$\mu I \preceq \nabla^2 f(w) \Rightarrow \delta I \preceq \frac{2\delta}{\mu} \nabla^2 f(w) - \delta I.$$

• Из $\|\nabla^2 f_1(w) - \nabla^2 f(w)\| \le \delta$ имеем:

$$\nabla^2 f_1(w) - \nabla^2 f(w) \leq \delta I.$$

• Объединяем два предыдущих пункта:

$$\nabla^2 f_1(w) - \nabla^2 f(w) \leq \frac{2\delta}{\mu} \nabla^2 f(w) - \delta I.$$

Откуда:

$$\nabla^2 f_1(w) + \delta I \leq \frac{2\delta + \mu}{\mu} \nabla^2 f(w) \Rightarrow \mu_{\varphi} = \frac{\mu}{2\delta + \mu}$$

Найдем μ_{φ} . Из сильно выпуклости функции f:

$$\mu I \preceq \nabla^2 f(w) \Rightarrow \delta I \preceq \frac{2\delta}{\mu} \nabla^2 f(w) - \delta I.$$

• Из $\|\nabla^2 f_1(w) - \nabla^2 f(w)\| \le \delta$ имеем:

$$\nabla^2 f_1(w) - \nabla^2 f(w) \leq \delta I.$$

Объединяем два предыдущих пункта:

$$\nabla^2 f_1(w) - \nabla^2 f(w) \preceq \frac{2\delta}{\mu} \nabla^2 f(w) - \delta I.$$

Откуда:

$$\nabla^2 f_1(w) + \delta I \leq \frac{2\delta + \mu}{\mu} \nabla^2 f(w) \Rightarrow \mu_{\varphi} = \frac{\mu}{2\delta + \mu}$$

Сходимость для задачи data similarity: теорема

Теорема (сходимость для задачи data similarity)

Пусть f сильно выпуклая, f_i выпуклые, а ℓ - гладкие, а $\varphi(w)=f_1(w)+\delta\|w\|^2$, тогда зеркальный спуск с шагом $\gamma=1$ сходится и выполнено:

$$V(w^*, w_K) \leq \left(1 - \frac{\mu}{\mu + 2\delta}\right)^K V(w^*, w_0).$$

Сходимость для задачи data similarity: теорема

Теорема (сходимость для задачи data similarity)

Пусть f сильно выпуклая, f_i выпуклые, а ℓ - гладкие, а $\varphi(w)=f_1(w)+\delta\|w\|^2$, тогда зеркальный спуск с шагом $\gamma=1$ сходится и выполнено:

$$V(w^*, w_K) \leq \left(1 - \frac{\mu}{\mu + 2\delta}\right)^K V(w^*, w_0).$$

• Это означает, что если нам необходимо достигнуть точности ε $(V(w^*,w_K)\sim \varepsilon)$, то нам необходимо

$$K = \left(\left[1 + rac{\delta}{\mu}
ight]\lograc{V(w^*,w_0)}{arepsilon}
ight)$$
 коммуникаций.

Лучше?

• Оценка на число коммуникаций в условиях data similarity:

$$\mathcal{K} = \mathcal{O}\left(\left[1 + \frac{\delta}{\mu}\right] \log \frac{1}{\varepsilon}\right).$$

 Оценка на число коммуникаций для обычного распределенного градиентного спуска:

$$K = \mathcal{O}\left(\frac{L}{\mu}\log\frac{1}{\varepsilon}\right).$$

Лучше?

Оценка на число коммуникаций в условиях data similarity:

$$\mathcal{K} = \mathcal{O}\left(\left[1 + \frac{\delta}{\mu}\right] \log \frac{1}{\varepsilon}\right).$$

Оценка на число коммуникаций для обычного распределенного градиентного спуска:

$$K = \mathcal{O}\left(\frac{L}{\mu}\log\frac{1}{\varepsilon}\right).$$

• Напомним, что $\delta \sim \frac{L}{\sqrt{N}}$, т.е. может быть значительное улучшение.

Другой взгляд на зеркальный спуск

• Зеркальный спуск с $\gamma = 1$:

$$w_{k+1} = \arg\min_{w \in \mathbb{R}^d} \left(\left\langle \nabla f(w_k), w \right\rangle + V(w, w_k) \right),$$

где с дивергенция Брегмана V(x,y), порожденной функцией $\varphi(x)$:

$$\varphi(x) = f_1(x) + \frac{\delta}{2} ||x||^2.$$

• Подставим $\varphi(x)$:

$$w_{k+1} = \arg\min_{w \in \mathbb{R}^d} \left(f_1(w) + \langle \nabla f(w_k) - \nabla f_1(w_k), w \rangle + \frac{\delta}{2} \|w - w_k\|^2 \right).$$

Или чуть по-другому:

$$w_{k+1} = \arg\min_{w \in \mathbb{R}^d} \left(\frac{1}{\delta} f_1(w) + \frac{1}{2} \left\| w - \left(w_k - \frac{1}{\delta} (\nabla f(w_k) - \nabla f_1(w_k)) \right) \right\|^2 \right)$$

Итого про зеркальный спуск

- Всплыла идея регуляризации локальной подзадачи.
- Всплыла идея слайдинга ≈ проксимального метода с неточностью.
- Проксимальный метод для композитной целевой функции $g_1(w) + g_2(w)$:

$$w_{k+1} = \arg\min_{w \in \mathbb{R}^d} \left(\gamma g_2(w) + \frac{1}{2} \|w - (w_k - \gamma g_1(w_k))\|^2 \right).$$

• В нашем случае, $g_1 = f - f_1$, $g_2 = f_1$.

Лучше?

• Мы получили:

$$\mathcal{K} = \mathcal{O}\left(\left[1 + \frac{\delta}{\mu}\right] \log \frac{1}{\varepsilon}\right).$$

 Но есть ведь и ускоренный градиентный метод, который дает оценки:

$$K = \mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log{\frac{1}{\varepsilon}}\right).$$

- Непонятно, что лучше. Более того, можно ли ускорить метод для задачи с data similarity?
- Для задачи data similarity так же имеются нижние оценки:

$$\mathcal{K} = \Omega\left(\sqrt{1 + \frac{\delta}{\mu}\log\frac{1}{\varepsilon}}\right),$$

т.е. предполагается возможное ускорение.

Arievani Y. and Shamir O. Communication complexity of dis-

Оптимальный алгоритм

• У данной проблемы довольно большая история:

Reference	Communication complexity	Local gradient complexity	Order	Limitations
DANE [42]	$O\left(\frac{\delta^2}{\mu^2}\log\frac{1}{\epsilon}\right)$	_(3)	1st	quadratic
DiSCO [51]	$\mathcal{O}\left(\sqrt{\frac{\delta}{\mu}}(\log \frac{1}{\varepsilon} + C^2 \Delta F_0)\log \frac{L}{\mu}\right)$	$\mathcal{O}\left(\sqrt{\frac{\delta}{\mu}}(\log \frac{1}{\varepsilon} + C^2 \Delta F_0)\log \frac{L}{\mu}\right)$	2nd	C - self-concordant (3)
AIDE [40]	$O\left(\sqrt{\frac{\delta}{\mu}}\log\frac{1}{\varepsilon}\log\frac{L}{\delta}\right)$	$O\left(\sqrt{\frac{\delta}{\mu}}\sqrt{\frac{L}{\mu}}\log \frac{1}{\varepsilon}\log \frac{L}{\delta}\right)^{(4)}$	1st	quadratic
DANE-LS [50]	$O\left(\frac{\delta}{\mu}\log \frac{1}{\varepsilon}\right)$	$O\left(\sqrt{\frac{L}{\mu}} \frac{\delta^{3/2}}{\mu^{3/2}} \log \frac{1}{\epsilon}\right)^{(5)}$	1st/2nd	quadratic (6)
DANE-HB [50]	$O\left(\sqrt{\frac{\delta}{\mu}}\log\frac{1}{\varepsilon}\right)$	$O\left(\sqrt{\frac{L}{\mu}} \frac{\delta}{\mu} \log \frac{1}{\epsilon}\right)^{(5)}$	1st/2nd	quadratic (6)
SONATA [45]	$O\left(\frac{\delta}{\mu}\log\frac{1}{\varepsilon}\right)$	(2)	1st	decentralized
SPAG [21]	$O\left(\sqrt{\frac{L}{\mu}}\log \frac{1}{\varepsilon}\right)^{(1)}$	_(2)	1st	M - Lipshitz hessian
DiRegINA [12]	$O\left(\frac{\delta}{\mu} \log \frac{1}{\epsilon} + \sqrt{\frac{M\delta R_0}{\mu}}\right)$	_(2)	2nd	M -Lipshitz hessian
ACN [1]	$O\left(\sqrt{\frac{\delta}{\mu}}\log \frac{1}{\epsilon} + \sqrt[3]{\frac{M\delta R_0}{\mu}}\right)$	_(2)	2nd	M -Lipshitz hessian
Acc SONATA [46]	$O\left(\sqrt{\frac{\delta}{\mu}}\log\frac{1}{\varepsilon}\log\frac{\delta}{\mu}\right)$	_(3)	1st	decentralized
This paper	$O\left(\sqrt{\frac{\delta}{\mu}}\log\frac{1}{\varepsilon}\right)$	$O\left(\sqrt{\frac{L}{\mu}}\log \frac{1}{\varepsilon}\right)$	1st	

В частности, подход зеркального спуска с необычной дивергенцией называется DANE.

Оптимальный алгоритм

• У данной проблемы довольно большая история:

Reference	Communication complexity	Local gradient complexity	Order	Limitations
DANE [42]	$O\left(\frac{\delta^2}{\mu^2}\log\frac{1}{\epsilon}\right)$	_(3)	1st	quadratic
DiSCO [51]	$\mathcal{O}\left(\sqrt{\frac{\delta}{\mu}}(\log \frac{1}{\varepsilon} + C^2 \Delta F_0)\log \frac{L}{\mu}\right)$	$\mathcal{O}\left(\sqrt{\frac{\delta}{\mu}}(\log \frac{1}{\varepsilon} + C^2 \Delta F_0)\log \frac{L}{\mu}\right)$	2nd	C - self-concordant (3)
AIDE [40]	$O\left(\sqrt{\frac{\delta}{\mu}}\log \frac{1}{\varepsilon}\log \frac{L}{\delta}\right)$	$O\left(\sqrt{\frac{\delta}{\mu}}\sqrt{\frac{L}{\mu}}\log \frac{1}{\varepsilon}\log \frac{L}{\delta}\right)^{(4)}$	1st	quadratic
DANE-LS [50]	$O\left(\frac{\delta}{\mu}\log \frac{1}{\varepsilon}\right)$	$O\left(\sqrt{\frac{L}{\mu}} \frac{\delta^{3/2}}{\mu^{3/2}} \log \frac{1}{\epsilon}\right)^{(5)}$	1st/2nd	quadratic (6)
DANE-HB [50]	$O\left(\sqrt{\frac{\delta}{\mu}}\log\frac{1}{\varepsilon}\right)$	$O\left(\sqrt{\frac{L}{\mu}} \frac{\delta}{\mu} \log \frac{1}{\epsilon}\right)^{(5)}$	1st/2nd	quadratic (6)
SONATA [45]	$O\left(\frac{\delta}{\mu}\log\frac{1}{\epsilon}\right)$	(2)	1st	decentralized
SPAG [21]	$O\left(\sqrt{\frac{L}{\mu}}\log \frac{1}{\epsilon}\right)^{(1)}$	_(2)	1st	${\cal M}$ - Lipshitz hessian
DiRegINA [12]	$O\left(\frac{\delta}{\mu} \log \frac{1}{\varepsilon} + \sqrt{\frac{M\delta R_0}{\mu}}\right)$	_(2)	2nd	M -Lipshitz hessian
ACN [1]	$O\left(\sqrt{\frac{\delta}{\mu}}\log \frac{1}{\epsilon} + \sqrt[3]{\frac{M\delta R_0}{\mu}}\right)$	_(2)	2nd	M -Lipshitz hessian
Acc SONATA [46]	$O\left(\sqrt{\frac{\delta}{\mu}}\log\frac{1}{\varepsilon}\log\frac{\delta}{\mu}\right)$	_(3)	1st	decentralized
This paper	$O\left(\sqrt{\frac{\delta}{\mu}}\log\frac{1}{\varepsilon}\right)$	$O\left(\sqrt{\frac{L}{\mu}}\log \frac{1}{\varepsilon}\right)$	1st	

В частности, подход зеркального спуска с необычной дивергенцией называется DANE.

Оптимальный алгоритм был предложен в 2022 году:
 Kovalev D. et al. Optimal Gradient Sliding and its Application to Distributed Optimization Under Similarity

Оптимальный алгоритм

Для задачи:

$$f(w) = g_1(w) + g_2(w),$$

где
$$g_1 = f - f_1$$
 и $g_2 = f_1$.

Алгоритм 2 Accelerated Extragradient

- 1: Input: $w^0 = w_f^0 \in \mathbb{R}^d$
- 2: **Parameters:** $\tau \in (0,1]$, $\eta, \theta, \alpha > 0, K \in \{1, 2, ...\}$
- 3: **for** $k = 0, 1, 2, \dots, K 1$ **do**
- 4: $W_g^k = \tau W^k + (1 \tau) W_f^k$
- 5: $w_f^{k+1} \approx \operatorname*{argmin}_{\mathbf{y} \in \mathbb{R}^d} \left[\left\langle \nabla g_1(w_g^k), w w_g^k \right\rangle + \frac{1}{2\theta} \|w w_g^k\|^2 + g_2(w) \right]$
- 6: $w^{k+1} = w^k + \eta \alpha (w_f^{k+1} w^k) \eta \nabla g(w_f^{k+1})$
- 7: end for
- 8: **Output:** *w*^{*K*}

Три идеи

- 1 идея Ускорение Нестерова
- 2 идея Слайдинг
- 3 идея Экстраградиент
- Первые две идеи понятны, ключевой является третья идея.

• **Bonpoc**: забудем на 1 слайд про распределенку, и вспомним всегда ли метод Нестерова оптимален?

- **Bonpoc**: забудем на 1 слайд про распределенку, и вспомним всегда ли метод Нестерова оптимален? Нет, если учитывать специфику, что целевая функция может иметь виды суммы $f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$.
- **Bonpoc**: какой тогда метод является оптимальным? какие у него верхние оценки сходимости?

- Вопрос: забудем на 1 слайд про распределенку, и вспомним всегда ли метод Нестерова оптимален? Нет, если учитывать специфику, что целевая функция может иметь виды суммы $f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$.
- **Bonpoc:** какой тогда метод является оптимальным? какие у него верхние оценки сходимости?
- Метод называется Katyusha, он имеет следующую верхнюю оценку сходимости (оракульная сложность по вызову f_i):

$$\mathcal{O}\left(\left[n+\sqrt{n\frac{L}{\mu}}\right]\log\frac{1}{\varepsilon}\right).$$

Allen-Zhu Z. Katyusha: the first direct acceleration of stochastic gradient methods

Вопрос: А какая верхняя оценка на оракульную сложность для

- Вопрос: забудем на 1 слайд про распределенку, и вспомним всегда ли метод Нестерова оптимален? Нет, если учитывать специфику, что целевая функция может иметь виды суммы $f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x).$
- Вопрос: какой тогда метод является оптимальным? какие у него верхние оценки сходимости?
- Метод называется Katyusha, он имеет следующую верхнюю оценку сходимости (оракульная сложность по вызову f_i):

$$\mathcal{O}\left(\left[n+\sqrt{n\frac{L}{\mu}}\right]\log\frac{1}{\varepsilon}\right).$$

Allen-Zhu Z. Katyusha: the first direct acceleration of stochastic gradient methods

А какая верхняя оценка на оракульную сложность для

Редукция дисперсии для similarity

• Идея метода редукции дисперсии:

$$\nabla f(x) \downarrow \\ \nabla f_i(x) - \nabla f_i(w) + \nabla f(w),$$

где i - генерируется случайно на каждой итерации из [n], w — референсная точка, которая обновляется редко (случайно или детерминистически).

• Идея метода редукции дисперсии для data similarity:

$$\nabla f(x) - \nabla f_1(x)$$

$$\downarrow$$

$$\nabla f_i(x) - \nabla f_i(w) + \nabla f(w) - f_1(x),$$

где i - генерируется случайно на каждой итерации из [M].

Редукция дисперсии для similarity

- Beznosikov A. & Gasnikov A. Compression and data similarity:
 Combination of two techniques for communication-efficient solving of distributed variational inequalities
- Beznosikov A. & Gasnikov A. Similarity, Compression and Local Steps: Three Pillars of Efficient Communications for Distributed Variational Inequalities
- Khaled A. & Jin C. Faster federated optimization under second-order similarity
- Старая оценка:

$$\mathcal{O}\left(M\sqrt{1+\frac{\delta}{\mu}}\log\frac{1}{\varepsilon}\right).$$

• Что можно "выбить":

$$\mathcal{O}\left(\left[M+\frac{\delta^2}{\mu^2}\right]\log\frac{1}{\varepsilon}\right) \text{ or } \mathcal{O}\left(\left[M+\sqrt{M}\frac{\delta}{\mu}\right]\log\frac{1}{\varepsilon}\right) \text{ or } \mathcal{O}\left(\left[M+M^{3/4}\sqrt{\frac{\delta}{\mu}}\right]\log\frac{1}{\varepsilon}\right)$$