

In the Name of God

Communication Systems

Computer Homework_1 Report

Multi-Path Channels &

Signal Reconstruction

Armin Panjehpour – 98101288

1- Multi-Path Channels:

1.1 -

paramters:

```
mu = 0;
sigma = 0.5;
Tm = 0.01;
n = [1 10]; % length of a
a = normrnd(mu, sigma, n); % coefficients of impulses
tau = unifrnd(0, Tm, n); % shiftings of impulses
```

Hc is defined using a syms function and then using abs and angle, the magnitude and phase of the channel is drawn:

```
syms f;
syms HcF(f);
HcF(f) = sum(a.*exp(-1i*2*pi*f.*tau));
```


1.3 – By testing different Tm values, we find out that the distance between each two local minimums has a inverse relationship with Tm.

tau = (1/fs).*randi([0 floor(Tm*fs)],n); % samples

2- Signal Reconstruction in multi path channels:

Using M-Tapped-Delay Line Equalizer, the output signal of the multipath channel will be reconstructed:

2.1

$$H_{EQ}(f)H_{C}(f) = |ce^{-\sqrt{2}\pi ft}|.$$

$$\longrightarrow H_{EQ}(f) = \frac{|ce^{-\sqrt{2}\pi ft}|}{\sum_{i=1}^{n} a_{i}e^{-i\sqrt{2}\pi ft}} = \frac{1}{1 + \sum_{i=2}^{n} |c_{i}e^{-i\sqrt{2}\pi ft}|}$$

$$\longrightarrow k = a_{1}, t_{0} = V_{1}, l_{0} = \frac{a_{1}^{*}}{l_{0}}, t_{1} = \frac{N_{0}^{*} - t_{0}}{l_{0}}$$

$$= a_{1}, t_{0} = V_{1}, l_{0} = \frac{a_{1}^{*}}{l_{0}}, t_{1} = \frac{N_{0}^{*} - t_{0}}{l_{0}}$$

$$= a_{1}, t_{0} = V_{1}, l_{0} = \frac{a_{1}^{*}}{l_{0}}, t_{1} = \frac{N_{0}^{*} - t_{0}}{l_{0}}$$

$$= a_{1}, t_{0} = V_{1}, l_{0} = \frac{a_{1}^{*}}{l_{0}}, t_{1} = \frac{N_{0}^{*} - t_{0}}{l_{0}}$$

$$= a_{1}, t_{0} = V_{1}, l_{0} = \frac{a_{1}^{*}}{l_{0}}, l_{0} = \frac{N_{0}^{*} - t_{0}}{l_{0}}$$

$$= a_{1}, t_{0} = V_{1}, l_{0} = \frac{a_{1}^{*}}{l_{0}}, l_{0} = \frac{N_{0}^{*} - t_{0}}{l_{0}}$$

$$= a_{1}, t_{0} = V_{1}, l_{0} = \frac{a_{1}^{*}}{l_{0}}, l_{0} = \frac{N_{0}^{*} - t_{0}}{l_{0}}$$

$$= a_{1}, t_{0} = V_{1}, l_{0} = \frac{a_{1}^{*}}{l_{0}}, l_{0} = \frac{N_{0}^{*} - t_{0}}{l_{0}}$$

$$= a_{1}, t_{0} = V_{1}, l_{0} = \frac{a_{1}^{*}}{l_{0}}, l_{0} = \frac{N_{0}^{*} - t_{0}}{l_{0}}$$

$$= a_{1}, t_{0} = V_{1}, l_{0} = \frac{a_{1}^{*}}{l_{0}}, l_{0} = \frac{N_{0}^{*} - t_{0}}{l_{0}}$$

$$= a_{1}, t_{0} = V_{1}, l_{0} = \frac{a_{1}^{*}}{l_{0}}, l_{0} = \frac{N_{0}^{*} - t_{0}}{l_{0}}$$

$$= a_{1}, t_{0} = V_{1}, l_{0} = \frac{a_{1}^{*}}{l_{0}}, l_{0} = \frac{N_{0}^{*} - t_{0}}{l_{0}}$$

$$= a_{1}, t_{0} = V_{1}, l_{0} = \frac{N_{0}^{*} - t_{0}}{l_{0}}$$

$$= a_{1}, t_{0} = V_{1}, l_{0} = \frac{N_{0}^{*} - t_{0}}{l_{0}}$$

$$= a_{1}, t_{0} = V_{1}, l_{0} = \frac{N_{0}^{*} - t_{0}}{l_{0}}$$

$$= a_{1}, t_{0} = V_{1}, l_{0} = \frac{N_{0}^{*} - t_{0}}{l_{0}}$$

$$= a_{1}, t_{0} = V_{1}, l_{0} = \frac{N_{0}^{*} - t_{0}^{*} - t_{0}^{$$

2.2 -

$$H_{EQ}(f) = \frac{1}{1 + \sum_{i=2}^{n} k_{i} e^{-i \sqrt{2\pi \beta t} i}}$$

$$m > \text{taglor Series of } \frac{1}{1 + n} \text{ when lank } 1:$$

$$= 1 - n + n^{2} - n^{3} + n^{4} - n^{5} + \cdots - \frac{1}{1 + n}$$

$$= 1 - \sum_{i=2}^{n} k_{i} e^{-i \sqrt{2\pi \beta t} i} + \left(\sum_{i=2}^{n} k_{i} e^{-i \sqrt{2\pi \beta t} i}\right)^{2} - \left(\sum_{i=2}^{n} k_{i} e^{-i \sqrt{2\pi \beta t} i}\right)^{3} + \cdots - \frac{1}{1 + n}$$

$$= C_{0} + C_{1} e^{-i \sqrt{2\pi \beta t} i} + C_{2} e^{-i \sqrt{2\pi \beta t} i} + C_{3} e^{-i \sqrt{2\pi \beta t} i}$$

m–Tapped-Delay Line Equalizer :۱ شکل

2.3 -

2.4 -

2.5 -

2.6 – According to part 2.1, Ti and Ci are:

0.010	0.0200	0.0300	0.0400	0.0500	0.0600	0.0700	0.0800	0.0900	0.1000

As you can see in RMS plots, by increasing m, a better signal would be reconstructed:

2.7 -

As we see, y(t) which is the output of the multipath channel is destroyed because the domain is changed and if we zoom, there are some impulses on the signal:

but \hat{y} and \tilde{x} which are in order, the output of the ideal channel and reconstructed signal are the same and has a low RMS as we saw.