Graphs

Single Source Shortest Paths

Paolo Camurati and Stefano Quer Dipartimento di Automatica e Informatica Politecnico di Torino

Problem definition

Example

- Given a road map on which the distance between each pair of adjacent intersactions is marked
- ➤ How is it possible to determine the shortest route?
- > One possibility is to
 - Enumerate all routes, add the distance on each route, disallowing routes with cycles
 - Select the shortes routes
- This implies examining an enourmous number of possibilities
- ❖ A better solution implies solving the so called Single-Source Shortest Path problem

Shortest Paths

- \bullet Given a graph G = (V, E)
 - Directed
 - Weighted
 - With a positive real-value weight function w: E→R
 - ➤ With a weight w(p) over a path

•
$$p = \langle v_0, v_1, ..., v_k \rangle$$

is equal to

•
$$W(p) = \sum_{i=1}^{k} W(v_{i-1}, v_i)$$

Shortest Paths

* We define the shortest path weight $\delta(u,v)$ from u to v as

$$\bullet \ \delta(u,v) = \begin{cases} \min\{w(p)\} & \text{if } \exists \ u \to_p v \\ \infty & \text{otherwise} \end{cases}$$

A shortest path from u to v is any path p with weigth

•
$$w(p) = \delta(u,v)$$

Variants

- Shortest path problems
 - Single-source shortest-paths
 - Minimum path and its weight from s to all other vertices v
 - **Dijkstra**'s algorithm
 - **Bellman-Ford**'s algorithm
 - Notice that with unweighted graph a simple BFS (Breadth-First Search) solves the problem

Variants

Single-destination shortest-paths

- Find the shortest path to a given destination
- Use the reverse graph

Single-pair shortest-paths

- Find a shortest path from v₁ to v₂ given vertices v₁ to v₂
- Soved when the SSSP is solved
- All alternative solutions have the same worst-case asymptotic running time

> All-pairs shortest-path

- Find a shortest-path for every vertex pair
- Can be solved running SSSP from each vertex
- Can be solved faster

Negative Weight Edges

- If there are edges with negative weight but there are no cycles with negative weight
 - Djikstra's algorithm
 - Optimum solution not guaranted
 - Bellman-Ford's algorithm
 - Optimum solution guaranted
- It there are cycle with negative weight
 - > The problem is not defined (there is no solution)
 - Dijkstra's algorithm
 - Meaningless result
 - Bellman-Ford's algorithm
 - Find cycles with negative weights

Representing Shortest Paths

- Often we wish to compute vertices on shorterst path, not only weights
 - > A few representations are possible
- Array of predecessors v.pred

■
$$\forall v \in V$$
 v.pred =
$$\begin{cases} parent(v) \text{ if } \exists \\ NULL \text{ otherwise} \end{cases}$$

Predecessor's sub-graph

Representing Shortest Paths

Shortest-Paths Tree

- > G' = (V', E')
 - Where $V' \subseteq V \&\& E' \subseteq E$
 - V' is the set of vertices reachable from s
 - S is the tree root
 - $\forall v \in V'$ the unique simple path from s to v in G' is a minimum weight from s to v in G

Theoretical Background

Lemma

- > Sub-paths of shortest paths are shortest paths
- \triangleright G = (V, E)
 - Directed, weighted w: E→R
- $P = \langle v_1, v_2, ..., v_k \rangle$
 - Is a shortest path from v₁ to v_k
- $\rightarrow \forall i, j \ 1 \le i \le j \le k, p_{ij} = \langle v_i, v_{i+1}, \dots, v_j \rangle$
 - Sub-path of p from v_i to v_j
- \triangleright The p_{ij} is a shortest path from v_i to v_j

Theoretical Background

- Corollary
 - \rightarrow G = (V, E)
 - Directed, weighted w: E→R
 - A shortest path p from s to v may be decomposed into
 - A shortest sub-path from s to u
 - An edge (u,v)
 - > Then
 - $\delta(s,v) = \delta(s,u) + w(u,v)$

Theoretical Background

Lemma

- \triangleright G = (V, E)
 - Directed, weighted w: E→R
- $ightharpoonup orall (u,v) \in E$
 - $\delta(s,v) \leq \delta(s,u) + w(u,v)$
- A shortest path from s to v cannot have a weight larger than the path formed by a shortest path from s to u and an edge (u, v)

Relaxation

- The algorithms we are going to analyse use the technique of relaxation
- For each vertex we mantain an estimate v.d (superior limit) of the weight of the path from s to v
 (Single) source

```
initialize_single_source (G, s)
for each v ∈ V
   v.d = ∞
   v.pred = NULL
   s.d = 0
```

v.pred = predecessor

v.d = shortest path estimate = upper bound on the weight of a shortest path from s to v

Relaxation

Relaxation

▶ Update v.d and v.pred by testing whether it is possibile to improve the shortest path to v found so far by going through the edge e = (u,v), where w(u,v) is the weigth of the edge

```
relax (u, v, w)
if ( v.d > (u.d + w(u, v)) )
v.d = u.d + w (u, v)
v.pred = u
```


Properties

- Lemma
 - Given G=(V,E)
 - \triangleright Directed, weighted w: E \rightarrow R, with e = (u,v) \in E
- \diamond After relaxing e = (u,v) we have
 - \triangleright v.d \leq u.d + w (u, v)
- That is, after relaxing e, v.d cannot increase
 - > Either v.d is unchanged (relaxation with no effect)
 - Or v.d is decreased (effective relaxation)

Properties

Lemma

- ightharpoonup Given G=(V,E), directed, weighted w: E \rightarrow R, with source s \in V
- > After a proper initialization of v.d and v.pred
- $\forall v \in V \text{ v.d} \geq \delta(s,v)$
 - > For all relaxation steps on the edges
 - When v.d = $\delta(s,v)$, then v.d does not change any more

Properties

- Lemma
 - ightharpoonup Given G=(V,E) directed, weighted w: E \rightarrow R, with source s \in V
 - > After a proper initialization of v.d and v.pred
- The shortest path from s to v is made-up of
 - > Path from s to u
 - \triangleright Edge e = (u, v)
- \diamond Application of relaxation on e=(u,v)
 - \triangleright If before relaxation u.d = $\delta(s,u)$
 - \triangleright After relaxation v.d = $\delta(s,v)$

Dijkstra's Algorithm

- It works on graphs with no negative weigth
- It is a greedy strategy
 - > It applies relaxation once for all edges
- Algorithm
 - S: set of vertices whose shortest path from s has already been computed
 - > V-S: priority queue Q of vertices till to estimate
 - Stop when Q is empty
 - Extract u from V-S (u.d is minimum)
 - Insert u in S
 - Relax all outgoing edges from u

Implementation

Pseudo-code

```
sssp_Dijkstra (G, w, s)
initialize_single_source (G, s)
S = \( \phi \)
Q = V
while Q \( \neq \phi \)
u = extract_min (Q)
S = S U \{ u \}
for each vertex v \( \in \) adjacency list of u
relax (u, v, w)
For all vertices
starting from s

Extract vertex with
minimum distance
```

Insert if in S

Relax all adjancecy vertices

Example 2: Negative edges

There are no cycles with negative weight

Example 2: Negative edges

Complexity

Pseudo-code

```
O(|V|)
sssp_Dijkstra (G, w, s)
  initialize single source (G, s)
  s = \phi
                                               Executed |V| times
  Q = V
  while Q \neq \emptyset
                                              O(|g|V|) \rightarrow O(|V| \log |V|)
     u = extract_min (Q)
     S = S \cup \{u\}
     for each vertex v ∈ adjacency list of u
        relax (u, v, w)
                                                                    Overall
                                                                    O(|E|)
                                     O(|g|V|) \rightarrow O(|E|\log|V|)
                                          due to PQ change
    Overall running time complexity
     T(n) = O((|V|+|E|) \cdot |g|V|)
```

Complexity

- In general
 - $ightharpoonup T(n) = O((|V|+|E|) \cdot |g|V|)$
- This can be reduced to

$$ightharpoonup T(n) = O(|E| \cdot |g||V|)$$

if all vertices are reachable from the source s

Bellman-Ford's Algorithm

- Bellman-Ford may run on graph
 - With negative weight edges
 - > If there is a cycle with negative weight it detects it
 - > It applies relaxation more than once for all edges
 - ➤ |V|-1 step of relaxation on all edges
 - > At the i-th relaxation step either
 - It decreases at least one estimate

or

 It has already found an optimal solution and it can stop returning an optimum solution

Implementation

Pseudo-code

```
sssp_Bellman_Ford (G, w, s)
initialize_single_source (G, s)
for i = 1 to |V| - 1
  for each edge (u, v) ∈ E
    relax (u, v, w)
for each edge (u, v) ∈ E
  if ( v.d > (u.d + w(u, v)) )
    return FALSE
return TRUE

Returns FALSE if a negative
  weight cycle is detected
```

Returns TRUE otherwise

Lessicographic order of the edges:

(A,B)

(A,D) (B,C) (B,D) (B,E) (C,B)

(D,C) (D,E) (E,A) (E,C)

Step # (5 vertices → 4 iterations)

	#0	#1	#2	#3	#4
Α	0	0	0	0	0
В	∞	6	2	2	2
С	∞	11→4	4	4	4
D	∞	7	7	7	7
Е	∞	2	2	-2	-2

Example 2: Negative cycles

Lessicographic order of the edges:

(A,B)

(A,D)

(B,C) (B,D) (B,E) (C,B)

(D,C) (D,E) (E,A) (E,C)

Example 2: Negative cycles

Step # (5 vertices → 4 iterations)

	#0	#1	#2	#3	#4
Α	0	0	0	0	0
В	∞	6→3	1	-2	-5
С	∞	5→4	3	0	-3
D	∞	7	7	7	7
Е	∞	2	-1	-3	-7

At the next iteration, edges BC and CB would make B and C reachable in -8 and -6

Complexity

Pseudo-code O (|V|) Executed |V|-1 times sssp_Bellman_Ford (G, w, s) initialize_single_source (G, s) for i = 1 to |V| - 1Executed |E| times for each edge (u, v) E E relax (u, v, w) $O(1) \rightarrow O(|E|\cdot|V|)$ for each edge $(u, v) \in E$ if (v.d > (u.d + w(u, v)))Executed |E| times → return FALSE O(|E|) return TRUE

> Oerall running time complexity $T(n) = O(|V| \cdot |E|)$