6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

6: Window Filter Design

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

For any BIBO stable filter, $H(e^{j\omega})$ is the DTFT of h[n]

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

For any BIBO stable filter, $H(e^{j\omega})$ is the DTFT of h[n]

$$H(e^{j\omega}) = \sum_{-\infty}^{\infty} h[n]e^{-j\omega n}$$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

For any BIBO stable filter, $H(e^{j\omega})$ is the DTFT of h[n]

$$H(e^{j\omega}) = \sum_{-\infty}^{\infty} h[n]e^{-j\omega n} \quad \Leftrightarrow \quad h[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega})e^{j\omega n} d\omega$$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

For any BIBO stable filter, $H(e^{j\omega})$ is the DTFT of h[n]

$$H(e^{j\omega}) = \sum_{-\infty}^{\infty} h[n]e^{-j\omega n} \quad \Leftrightarrow \quad h[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega})e^{j\omega n} d\omega$$

If we know $H(e^{j\omega})$ exactly, the IDTFT gives the ideal h[n]

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

For any BIBO stable filter, $H(e^{j\omega})$ is the DTFT of h[n]

$$H(e^{j\omega}) = \sum_{-\infty}^{\infty} h[n]e^{-j\omega n} \quad \Leftrightarrow \quad h[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega})e^{j\omega n} d\omega$$

If we know $H(e^{j\omega})$ exactly, the IDTFT gives the ideal h[n]

Example: Ideal Lowpass filter

$$H(e^{j\omega}) = \begin{cases} 1 & |\omega| \le \omega_0 \\ 0 & |\omega| > \omega_0 \end{cases}$$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

For any BIBO stable filter, $H(e^{j\omega})$ is the DTFT of h[n]

$$H(e^{j\omega}) = \sum_{-\infty}^{\infty} h[n]e^{-j\omega n} \quad \Leftrightarrow \quad h[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega})e^{j\omega n} d\omega$$

If we know $H(e^{j\omega})$ exactly, the IDTFT gives the ideal h[n]

Example: Ideal Lowpass filter

$$H(e^{j\omega}) = \begin{cases} 1 & |\omega| \le \omega_0 \\ 0 & |\omega| > \omega_0 \end{cases} \Leftrightarrow h[n] = \frac{\sin \omega_0 n}{\pi n}$$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

For any BIBO stable filter, $H(e^{j\omega})$ is the DTFT of h[n]

$$H(e^{j\omega}) = \sum_{-\infty}^{\infty} h[n]e^{-j\omega n} \quad \Leftrightarrow \quad h[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega})e^{j\omega n} d\omega$$

If we know $H(e^{j\omega})$ exactly, the IDTFT gives the ideal h[n]

Example: Ideal Lowpass filter

$$H(e^{j\omega}) = \begin{cases} 1 & |\omega| \le \omega_0 \\ 0 & |\omega| > \omega_0 \end{cases} \Leftrightarrow h[n] = \frac{\sin \omega_0 n}{\pi n}$$

Note: Width in ω is $2\omega_0$, width in n is $\frac{2\pi}{\omega_0}$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

For any BIBO stable filter, $H(e^{j\omega})$ is the DTFT of h[n]

$$H(e^{j\omega}) = \sum_{-\infty}^{\infty} h[n]e^{-j\omega n} \quad \Leftrightarrow \quad h[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega})e^{j\omega n} d\omega$$

If we know $H(e^{j\omega})$ exactly, the IDTFT gives the ideal h[n]

Example: Ideal Lowpass filter

$$H(e^{j\omega}) = \begin{cases} 1 & |\omega| \le \omega_0 \\ 0 & |\omega| > \omega_0 \end{cases} \Leftrightarrow h[n] = \frac{\sin \omega_0 n}{\pi n}$$

Note: Width in ω is $2\omega_0$, width in n is $\frac{2\pi}{\omega_0}$: product is 4π always

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

For any BIBO stable filter, $H(e^{j\omega})$ is the DTFT of h[n]

$$H(e^{j\omega}) = \sum_{-\infty}^{\infty} h[n]e^{-j\omega n} \quad \Leftrightarrow \quad h[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega})e^{j\omega n} d\omega$$

If we know $H(e^{j\omega})$ exactly, the IDTFT gives the ideal h[n]

Example: Ideal Lowpass filter

$$H(e^{j\omega}) = \begin{cases} 1 & |\omega| \le \omega_0 \\ 0 & |\omega| > \omega_0 \end{cases} \Leftrightarrow h[n] = \frac{\sin \omega_0 n}{\pi n}$$

Note: Width in ω is $2\omega_0$, width in n is $\frac{2\pi}{\omega_0}$: product is 4π always Sadly h[n] is infinite and non-causal.

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

For any BIBO stable filter, $H(e^{j\omega})$ is the DTFT of h[n]

$$H(e^{j\omega}) = \sum_{-\infty}^{\infty} h[n]e^{-j\omega n} \quad \Leftrightarrow \quad h[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega})e^{j\omega n} d\omega$$

If we know $H(e^{j\omega})$ exactly, the IDTFT gives the ideal h[n]

Example: Ideal Lowpass filter

$$H(e^{j\omega}) = \begin{cases} 1 & |\omega| \le \omega_0 \\ 0 & |\omega| > \omega_0 \end{cases} \Leftrightarrow h[n] = \frac{\sin \omega_0 n}{\pi n}$$

Note: Width in ω is $2\omega_0$, width in n is $\frac{2\pi}{\omega_0}$: product is 4π always Sadly h[n] is infinite and non-causal. Solution: multiply h[n] by a window

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Truncate to $\pm \frac{M}{2}$ to make finite

6: Window Filter Design

Inverse DTFT

Rectangular window

Dirichlet Kernel

Window relationships

Common Windows

Order Estimation

Example Design

Frequency sampling

Summary

MATLAB routines

Truncate to $\pm \frac{M}{2}$ to make finite; $h_1[n]$ is now of length M+1

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Truncate to $\pm \frac{M}{2}$ to make finite; $h_1[n]$ is now of length M+1

MSE Optimality:

Define mean square error (MSE) in frequency domain

$$E = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| H(e^{j\omega}) - H_1(e^{j\omega}) \right|^2 d\omega$$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Truncate to $\pm \frac{M}{2}$ to make finite; $h_1[n]$ is now of length M+1

MSE Optimality:

Define mean square error (MSE) in frequency domain

$$E = \frac{1}{2\pi} \int_{-\pi}^{\pi} |H(e^{j\omega}) - H_1(e^{j\omega})|^2 d\omega$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} |H(e^{j\omega}) - \sum_{-\frac{M}{2}}^{\frac{M}{2}} h_1[n] e^{-j\omega n}|^2 d\omega$$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Truncate to $\pm \frac{M}{2}$ to make finite; $h_1[n]$ is now of length M+1

MSE Optimality:

Define mean square error (MSE) in frequency domain

$$E = \frac{1}{2\pi} \int_{-\pi}^{\pi} |H(e^{j\omega}) - H_1(e^{j\omega})|^2 d\omega$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} |H(e^{j\omega}) - \sum_{-\frac{M}{2}}^{\frac{M}{2}} h_1[n] e^{-j\omega n}|^2 d\omega$$

Minimum E is when $h_1[n] = h[n]$.

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Truncate to $\pm \frac{M}{2}$ to make finite; $h_1[n]$ is now of length M+1

MSE Optimality:

Define mean square error (MSE) in frequency domain

$$E = \frac{1}{2\pi} \int_{-\pi}^{\pi} |H(e^{j\omega}) - H_1(e^{j\omega})|^2 d\omega$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} |H(e^{j\omega}) - \sum_{-\frac{M}{2}}^{\frac{M}{2}} h_1[n] e^{-j\omega n}|^2 d\omega$$

Minimum E is when $h_1[n] = h[n]$.

Proof: From Parseval:
$$E = \sum_{-\frac{M}{2}}^{\frac{M}{2}} |h[n] - h_1[n]|^2 + \sum_{|n| > \frac{M}{2}} |h[n]|^2$$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Truncate to $\pm \frac{M}{2}$ to make finite; $h_1[n]$ is now of length M+1

MSE Optimality:

Define mean square error (MSE) in frequency domain

$$E = \frac{1}{2\pi} \int_{-\pi}^{\pi} |H(e^{j\omega}) - H_1(e^{j\omega})|^2 d\omega$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} |H(e^{j\omega}) - \sum_{-\frac{M}{2}}^{\frac{M}{2}} h_1[n] e^{-j\omega n}|^2 d\omega$$

Minimum E is when $h_1[n] = h[n]$.

Proof: From Parseval: $E = \sum_{-\frac{M}{2}}^{\frac{M}{2}} |h[n] - h_1[n]|^2 + \sum_{|n| > \frac{M}{2}} |h[n]|^2$

However: 9% overshoot at a discontinuity even for large n.

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Truncate to $\pm \frac{M}{2}$ to make finite; $h_1[n]$ is now of length M+1

MSE Optimality:

Define mean square error (MSE) in frequency domain

$$E = \frac{1}{2\pi} \int_{-\pi}^{\pi} |H(e^{j\omega}) - H_1(e^{j\omega})|^2 d\omega$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} |H(e^{j\omega}) - \sum_{-\frac{M}{2}}^{\frac{M}{2}} h_1[n] e^{-j\omega n}|^2 d\omega$$

Minimum E is when $h_1[n] = h[n]$.

Proof: From Parseval: $E = \sum_{-\frac{M}{2}}^{\frac{M}{2}} |h[n] - h_1[n]|^2 + \sum_{|n| > \frac{M}{2}} |h[n]|^2$

However: 9% overshoot at a discontinuity even for large n.

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Truncate to $\pm \frac{M}{2}$ to make finite; $h_1[n]$ is now of length M+1

MSE Optimality:

Define mean square error (MSE) in frequency domain

$$E = \frac{1}{2\pi} \int_{-\pi}^{\pi} |H(e^{j\omega}) - H_1(e^{j\omega})|^2 d\omega$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} |H(e^{j\omega}) - \sum_{-\frac{M}{2}}^{\frac{M}{2}} h_1[n] e^{-j\omega n}|^2 d\omega$$

Minimum E is when $h_1[n] = h[n]$.

Proof: From Parseval: $E = \sum_{-\frac{M}{2}}^{\frac{M}{2}} |h[n] - h_1[n]|^2 + \sum_{|n| > \frac{M}{2}} |h[n]|^2$

However: 9% overshoot at a discontinuity even for large n.

Normal to delay by $\frac{M}{2}$ to make causal. Multiplies $H(e^{j\omega})$ by $e^{-j\frac{M}{2}\omega}$.

-

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Truncation \Leftrightarrow Multiply h[n] by a rectangular window, $w[n] = \delta_{-\frac{M}{2} \leq n \leq \frac{M}{2}}$

+

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Truncation \Leftrightarrow Multiply h[n] by a rectangular window, $w[n] = \delta_{-\frac{M}{2} \leq n \leq \frac{M}{2}}$ \Leftrightarrow Circular Convolution $H_{M+1}(e^{j\omega}) = \frac{1}{2\pi} H(e^{j\omega}) \circledast W(e^{j\omega})$

- +

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Truncation \Leftrightarrow Multiply h[n] by a rectangular window, $w[n] = \delta_{-\frac{M}{2} \leq n \leq \frac{M}{2}}$ \Leftrightarrow Circular Convolution $H_{M+1}(e^{j\omega}) = \frac{1}{2\pi}H(e^{j\omega}) \circledast W(e^{j\omega})$

$$W(e^{j\omega}) = \sum_{-\frac{M}{2}}^{\frac{M}{2}} e^{-j\omega n}$$

- +

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Truncation \Leftrightarrow Multiply h[n] by a rectangular window, $w[n] = \delta_{-\frac{M}{2} \leq n \leq \frac{M}{2}}$ \Leftrightarrow Circular Convolution $H_{M+1}(e^{j\omega}) = \frac{1}{2\pi} H(e^{j\omega}) \circledast W(e^{j\omega})$

$$W(e^{j\omega}) = \sum_{-\frac{M}{2}}^{\frac{M}{2}} e^{-j\omega n} \stackrel{\text{(i)}}{=} 1 + 2\sum_{1}^{0.5M} \cos(n\omega)$$

- +-

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Truncation \Leftrightarrow Multiply h[n] by a rectangular window, $w[n] = \delta_{-\frac{M}{2} \leq n \leq \frac{M}{2}}$ \Leftrightarrow Circular Convolution $H_{M+1}(e^{j\omega}) = \frac{1}{2\pi}H(e^{j\omega}) \circledast W(e^{j\omega})$

$$W(e^{j\omega}) = \sum_{-\frac{M}{2}}^{\frac{M}{2}} e^{-j\omega n} \stackrel{\text{(i)}}{=} 1 + 2\sum_{1}^{0.5M} \cos(n\omega)$$

Proof: (i)
$$e^{-j\omega(-n)} + e^{-j\omega(+n)} = 2\cos(n\omega)$$

-

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Truncation \Leftrightarrow Multiply h[n] by a rectangular window, $w[n] = \delta_{-\frac{M}{2} \leq n \leq \frac{M}{2}}$ \Leftrightarrow Circular Convolution $H_{M+1}(e^{j\omega}) = \frac{1}{2\pi} H(e^{j\omega}) \circledast W(e^{j\omega})$

$$W(e^{j\omega}) = \sum_{-\frac{M}{2}}^{\frac{M}{2}} e^{-j\omega n} \stackrel{\text{(i)}}{=} 1 + 2\sum_{1}^{0.5M} \cos{(n\omega)} \stackrel{\text{(ii)}}{=} \frac{\sin{0.5(M+1)\omega}}{\sin{0.5\omega}}$$
Proof: (i) $e^{-j\omega(-n)} + e^{-j\omega(+n)} = 2\cos{(n\omega)}$

+

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Truncation \Leftrightarrow Multiply h[n] by a rectangular window, $w[n] = \delta_{-\frac{M}{2} \leq n \leq \frac{M}{2}}$ \Leftrightarrow Circular Convolution $H_{M+1}(e^{j\omega}) = \frac{1}{2\pi} H(e^{j\omega}) \circledast W(e^{j\omega})$

$$W(e^{j\omega}) = \sum_{-\frac{M}{2}}^{\frac{M}{2}} e^{-j\omega n} \stackrel{\text{(i)}}{=} 1 + 2\sum_{1}^{0.5M} \cos(n\omega) \stackrel{\text{(ii)}}{=} \frac{\sin 0.5(M+1)\omega}{\sin 0.5\omega}$$

Proof: (i) $e^{-j\omega(-n)} + e^{-j\omega(+n)} = 2\cos(n\omega)$ (ii) Sum geom. progression

+

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Truncation \Leftrightarrow Multiply h[n] by a rectangular window, $w[n] = \delta_{-\frac{M}{2} \leq n \leq \frac{M}{2}}$ \Leftrightarrow Circular Convolution $H_{M+1}(e^{j\omega}) = \frac{1}{2\pi} H(e^{j\omega}) \circledast W(e^{j\omega})$

$$W(e^{j\omega}) = \sum_{-\frac{M}{2}}^{\frac{M}{2}} e^{-j\omega n} \stackrel{\text{(i)}}{=} 1 + 2\sum_{1}^{0.5M} \cos(n\omega) \stackrel{\text{(ii)}}{=} \frac{\sin 0.5(M+1)\omega}{\sin 0.5\omega}$$

Proof: (i) $e^{-j\omega(-n)} + e^{-j\omega(+n)} = 2\cos(n\omega)$ (ii) Sum geom. progression

-

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Truncation \Leftrightarrow Multiply h[n] by a rectangular window, $w[n] = \delta_{-\frac{M}{2} \leq n \leq \frac{M}{2}}$ \Leftrightarrow Circular Convolution $H_{M+1}(e^{j\omega}) = \frac{1}{2\pi}H(e^{j\omega}) \circledast W(e^{j\omega})$

$$W(e^{j\omega}) = \sum_{-\frac{M}{2}}^{\frac{M}{2}} e^{-j\omega n} \stackrel{\text{(i)}}{=} 1 + 2\sum_{1}^{0.5M} \cos(n\omega) \stackrel{\text{(ii)}}{=} \frac{\sin 0.5(M+1)\omega}{\sin 0.5\omega}$$

Proof: (i) $e^{-j\omega(-n)} + e^{-j\omega(+n)} = 2\cos(n\omega)$ (ii) Sum geom. progression

+

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Truncation \Leftrightarrow Multiply h[n] by a rectangular window, $w[n] = \delta_{-\frac{M}{2} \leq n \leq \frac{M}{2}}$ \Leftrightarrow Circular Convolution $H_{M+1}(e^{j\omega}) = \frac{1}{2\pi}H(e^{j\omega}) \circledast W(e^{j\omega})$

$$W(e^{j\omega}) = \sum_{-\frac{M}{2}}^{\frac{M}{2}} e^{-j\omega n} \stackrel{\text{(i)}}{=} 1 + 2\sum_{1}^{0.5M} \cos{(n\omega)} \stackrel{\text{(ii)}}{=} \frac{\sin{0.5(M+1)\omega}}{\sin{0.5\omega}}$$

Proof: (i) $e^{-j\omega(-n)} + e^{-j\omega(+n)} = 2\cos(n\omega)$ (ii) Sum geom. progression

+

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Truncation \Leftrightarrow Multiply h[n] by a rectangular window, $w[n] = \delta_{-\frac{M}{2} \leq n \leq \frac{M}{2}}$ \Leftrightarrow Circular Convolution $H_{M+1}(e^{j\omega}) = \frac{1}{2\pi}H(e^{j\omega}) \circledast W(e^{j\omega})$

$$W(e^{j\omega}) = \sum_{-\frac{M}{2}}^{\frac{M}{2}} e^{-j\omega n} \stackrel{\text{(i)}}{=} 1 + 2\sum_{1}^{0.5M} \cos{(n\omega)} \stackrel{\text{(ii)}}{=} \frac{\sin{0.5(M+1)\omega}}{\sin{0.5\omega}}$$

Proof: (i) $e^{-j\omega(-n)} + e^{-j\omega(+n)} = 2\cos(n\omega)$ (ii) Sum geom. progression

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Truncation \Leftrightarrow Multiply h[n] by a rectangular window, $w[n] = \delta_{-\frac{M}{2} \le n \le \frac{M}{2}}$ \Leftrightarrow Circular Convolution $H_{M+1}(e^{j\omega}) = \frac{1}{2\pi}H(e^{j\omega}) \circledast W(e^{j\omega})$

$$W(e^{j\omega}) = \sum_{-\frac{M}{2}}^{\frac{M}{2}} e^{-j\omega n} \stackrel{\text{(i)}}{=} 1 + 2\sum_{1}^{0.5M} \cos{(n\omega)} \stackrel{\text{(ii)}}{=} \frac{\sin{0.5(M+1)\omega}}{\sin{0.5\omega}}$$

Proof: (i) $e^{-j\omega(-n)} + e^{-j\omega(+n)} = 2\cos(n\omega)$ (ii) Sum geom. progression

Effect: convolve ideal freq response with Dirichlet kernel (aliassed sinc)

Provided that $\frac{4\pi}{M+1} \ll 2\omega_0 \Leftrightarrow M+1 \gg \frac{2\pi}{\omega_0}$:

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Truncation \Leftrightarrow Multiply h[n] by a rectangular window, $w[n] = \delta_{-\frac{M}{2} \le n \le \frac{M}{2}}$ \Leftrightarrow Circular Convolution $H_{M+1}(e^{j\omega}) = \frac{1}{2\pi}H(e^{j\omega}) \circledast W(e^{j\omega})$

$$W(e^{j\omega}) = \sum_{-\frac{M}{2}}^{\frac{M}{2}} e^{-j\omega n} \stackrel{\text{(i)}}{=} 1 + 2\sum_{1}^{0.5M} \cos{(n\omega)} \stackrel{\text{(ii)}}{=} \frac{\sin{0.5(M+1)\omega}}{\sin{0.5\omega}}$$

Proof: (i) $e^{-j\omega(-n)} + e^{-j\omega(+n)} = 2\cos(n\omega)$ (ii) Sum geom. progression

Effect: convolve ideal freq response with Dirichlet kernel (aliassed sinc)

Provided that $\frac{4\pi}{M+1} \ll 2\omega_0 \Leftrightarrow M+1 \gg \frac{2\pi}{\omega_0}$:

Passband ripple: $\Delta\omega pprox \frac{4\pi}{M+1}$

+

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Truncation \Leftrightarrow Multiply h[n] by a rectangular window, $w[n] = \delta_{-\frac{M}{2} \le n \le \frac{M}{2}}$ \Leftrightarrow Circular Convolution $H_{M+1}(e^{j\omega}) = \frac{1}{2\pi}H(e^{j\omega}) \circledast W(e^{j\omega})$

$$W(e^{j\omega}) = \sum_{-\frac{M}{2}}^{\frac{M}{2}} e^{-j\omega n} \stackrel{\text{(i)}}{=} 1 + 2\sum_{1}^{0.5M} \cos{(n\omega)} \stackrel{\text{(ii)}}{=} \frac{\sin{0.5(M+1)\omega}}{\sin{0.5\omega}}$$

Proof: (i) $e^{-j\omega(-n)} + e^{-j\omega(+n)} = 2\cos(n\omega)$ (ii) Sum geom. progression

Effect: convolve ideal freq response with Dirichlet kernel (aliassed sinc)

Provided that $\frac{4\pi}{M+1} \ll 2\omega_0 \Leftrightarrow M+1 \gg \frac{2\pi}{\omega_0}$:

Passband ripple: $\Delta\omega \approx \frac{4\pi}{M+1}$, stopband $\frac{2\pi}{M+1}$

Dirichlet Kernel

+

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Truncation \Leftrightarrow Multiply h[n] by a rectangular window, $w[n] = \delta_{-\frac{M}{2} \le n \le \frac{M}{2}}$ \Leftrightarrow Circular Convolution $H_{M+1}(e^{j\omega}) = \frac{1}{2\pi}H(e^{j\omega}) \circledast W(e^{j\omega})$

$$W(e^{j\omega}) = \sum_{-\frac{M}{2}}^{\frac{M}{2}} e^{-j\omega n} \stackrel{\text{(i)}}{=} 1 + 2\sum_{1}^{0.5M} \cos{(n\omega)} \stackrel{\text{(ii)}}{=} \frac{\sin{0.5(M+1)\omega}}{\sin{0.5\omega}}$$

Proof: (i) $e^{-j\omega(-n)} + e^{-j\omega(+n)} = 2\cos(n\omega)$ (ii) Sum geom. progression

Effect: convolve ideal freq response with Dirichlet kernel (aliassed sinc)

Provided that $\frac{4\pi}{M+1} \ll 2\omega_0 \Leftrightarrow M+1 \gg \frac{2\pi}{\omega_0}$: Passband ripple: $\Delta\omega \approx \frac{4\pi}{M+1}$, stopband $\frac{2\pi}{M+1}$ Transition pk-to-pk: $\Delta\omega \approx \frac{4\pi}{M+1}$

Dirichlet Kernel

+

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Truncation \Leftrightarrow Multiply h[n] by a rectangular window, $w[n] = \delta_{-\frac{M}{2} \le n \le \frac{M}{2}}$ \Leftrightarrow Circular Convolution $H_{M+1}(e^{j\omega}) = \frac{1}{2\pi} H(e^{j\omega}) \circledast W(e^{j\omega})$

$$W(e^{j\omega}) = \sum_{-\frac{M}{2}}^{\frac{M}{2}} e^{-j\omega n} \stackrel{\text{(i)}}{=} 1 + 2\sum_{1}^{0.5M} \cos(n\omega) \stackrel{\text{(ii)}}{=} \frac{\sin 0.5(M+1)\omega}{\sin 0.5\omega}$$

Proof: (i) $e^{-j\omega(-n)} + e^{-j\omega(+n)} = 2\cos{(n\omega)}$ (ii) Sum geom. progression

Effect: convolve ideal freq response with Dirichlet kernel (aliassed sinc)

Provided that $\frac{4\pi}{M+1} \ll 2\omega_0 \Leftrightarrow M+1 \gg \frac{2\pi}{\omega_0}$:

Passband ripple: $\Delta\omega \approx \frac{4\pi}{M+1}$, stopband $\frac{2\pi}{M+1}$

Transition pk-to-pk: $\Delta\omega \approx \frac{4\pi}{M+1}$

Transition Gradient: $\left. \frac{d|H|}{d\omega} \right|_{\omega=\omega_0} pprox \frac{M+1}{2\pi}$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

$$H_{M+1}(e^{j\omega}) = \frac{1}{2\pi}H(e^{j\omega}) \circledast W(e^{j\omega})$$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

$$H_{M+1}(e^{j\omega}) = \frac{1}{2\pi}H(e^{j\omega}) \circledast W(e^{j\omega})$$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

$$H_{M+1}(e^{j\omega}) = \frac{1}{2\pi}H(e^{j\omega}) \circledast W(e^{j\omega})$$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

$$H_{M+1}(e^{j\omega}) = \frac{1}{2\pi}H(e^{j\omega}) \circledast W(e^{j\omega})$$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

$$H_{M+1}(e^{j\omega}) = \frac{1}{2\pi}H(e^{j\omega}) \circledast W(e^{j\omega})$$

(a) passband gain
$$\approx w[0]$$
; peak $pprox rac{w[0]}{2} + rac{0.5}{2\pi} \int_{
m mainlobe} W(e^{j\omega}) d\omega$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

When you multiply an impulse response by a window M+1 long

$$H_{M+1}(e^{j\omega}) = \frac{1}{2\pi}H(e^{j\omega}) \circledast W(e^{j\omega})$$

(a) passband gain $\approx w[0]$; peak $\approx \frac{w[0]}{2} + \frac{0.5}{2\pi} \int_{\text{mainlobe}} W(e^{j\omega}) d\omega$ rectangular window: passband gain = 1; peak gain = 1.09

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

$$H_{M+1}(e^{j\omega}) = \frac{1}{2\pi}H(e^{j\omega}) \circledast W(e^{j\omega})$$

- (a) passband gain $\approx w[0]$; peak $\approx \frac{w[0]}{2} + \frac{0.5}{2\pi} \int_{\text{mainlobe}} W(e^{j\omega}) d\omega$ rectangular window: passband gain = 1; peak gain = 1.09
- (b) transition bandwidth, $\Delta\omega$ = width of the main lobe transition amplitude, ΔH = integral of main lobe $\div 2\pi$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

$$H_{M+1}(e^{j\omega}) = \frac{1}{2\pi}H(e^{j\omega}) \circledast W(e^{j\omega})$$

- (a) passband gain $\approx w[0]$; peak $\approx \frac{w[0]}{2} + \frac{0.5}{2\pi} \int_{\text{mainlobe}} W(e^{j\omega}) d\omega$ rectangular window: passband gain = 1; peak gain = 1.09
- (b) transition bandwidth, $\Delta\omega$ = width of the main lobe transition amplitude, ΔH = integral of main lobe $\div 2\pi$ rectangular window: $\Delta\omega=\frac{4\pi}{M+1}$, $\Delta H\approx 1.18$

Transition

Width

of Equivalent

Kaiser

Window

 $1.81\pi/M$

 $2.37\pi/M$

 $5.01\pi/M$

 $6.27\pi/M$

 $9.19\pi/M$

Equivalent

Kaiser

Window,

0

1.33

3.86

4.86

7.04

Peak

Approximation

Error,

 $20\log_{10}\delta$

(dB)

-21

-25

-44

-53

-74

Approximate

Width of

Main Lobe

 $4\pi/(M+1)$

 $8\pi/M$

 $8\pi/M$

 $8\pi/M$

 $12\pi/M$

	Type of Window	Peak Side-Lobe Amplitude (Relative)
$\left \frac{\sin\left(\omega\left(M+1\right)/2\right)}{\sin\left(\omega/2\right)} \right $	Rectangular Bartlett Hann Hamming Blackman	-13 -25 -31 -41 -57
	ion Amplitu $W(e^{j\omega})$	
$-\frac{2\pi}{M+1} + \frac{2\pi}{M+1}$		
Transition Bandwidth		

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

$$H_{M+1}(e^{j\omega}) = \frac{1}{2\pi}H(e^{j\omega}) \circledast W(e^{j\omega})$$

- τ 0.5 0 0 0 0 0 0 0 0 0
- (a) passband gain $\approx w[0]$; peak $\approx \frac{w[0]}{2} + \frac{0.5}{2\pi} \int_{\text{mainlobe}} W(e^{j\omega}) d\omega$ rectangular window: passband gain = 1; peak gain = 1.09
- (b) transition bandwidth, $\Delta\omega$ = width of the main lobe transition amplitude, ΔH = integral of main lobe÷ 2π rectangular window: $\Delta\omega=\frac{4\pi}{M+1},\,\Delta H\approx 1.18$
- (c) stopband gain is an integral over oscillating sidelobes of $W(e^{j\omega})$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

$$H_{M+1}(e^{j\omega}) = \frac{1}{2\pi}H(e^{j\omega}) \circledast W(e^{j\omega})$$

- (a) passband gain $\approx w[0]$; peak $\approx \frac{w[0]}{2} + \frac{0.5}{2\pi} \int_{\text{mainlobe}} W(e^{j\omega}) d\omega$ rectangular window: passband gain = 1; peak gain = 1.09
- (b) transition bandwidth, $\Delta\omega$ = width of the main lobe transition amplitude, ΔH = integral of main lobe÷ 2π rectangular window: $\Delta\omega=\frac{4\pi}{M+1}$, $\Delta H\approx 1.18$
- (c) stopband gain is an integral over oscillating sidelobes of $W(e^{j\omega})$ rect window: $\left|\min H(e^{j\omega})\right| = 0.09 \ll \left|\min W(e^{j\omega})\right| = \frac{M+1}{1.5\pi}$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

$$H_{M+1}(e^{j\omega}) = \frac{1}{2\pi}H(e^{j\omega}) \circledast W(e^{j\omega})$$

- (a) passband gain $\approx w[0]$; peak $\approx \frac{w[0]}{2} + \frac{0.5}{2\pi} \int_{\text{mainlobe}} W(e^{j\omega}) d\omega$ rectangular window: passband gain = 1; peak gain = 1.09
- (b) transition bandwidth, $\Delta\omega$ = width of the main lobe transition amplitude, ΔH = integral of main lobe÷ 2π rectangular window: $\Delta\omega=\frac{4\pi}{M+1}$, $\Delta H\approx 1.18$
- (c) stopband gain is an integral over oscillating sidelobes of $W(e^{j\omega})$ rect window: $\left|\min H(e^{j\omega})\right| = 0.09 \ll \left|\min W(e^{j\omega})\right| = \frac{M+1}{1.5\pi}$
- (d) features narrower than the main lobe will be broadened and attenuated

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Rectangular: $w[n] \equiv 1$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Rectangular: $w[n] \equiv 1$

don't use

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Rectangular: $w[n] \equiv 1$ don't use

Hanning: $0.5 + 0.5c_1$ $c_k = \cos \frac{2\pi kn}{M+1}$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Rectangular: $w[n] \equiv 1$ don't use

Hanning: $0.5 + 0.5c_1$ $c_k = \cos \frac{2\pi kn}{M+1}$ rapid sidelobe decay

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Rectangular: $w[n] \equiv 1$ don't use

Hanning: $0.5 + 0.5c_1$ $c_k = \cos \frac{2\pi kn}{M+1}$ rapid sidelobe decay

Hamming: $0.54 + 0.46c_1$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Rectangular: $w[n] \equiv 1$ don't use

Hanning: $0.5 + 0.5c_1$ $c_k = \cos \frac{2\pi kn}{M+1}$ rapid sidelobe decay

Hamming: $0.54 + 0.46c_1$ best peak sidelobe

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Rectangular: $w[n] \equiv 1$ don't use

Hanning: $0.5 + 0.5c_1$ $c_k = \cos \frac{2\pi kn}{M+1}$ rapid sidelobe decay

Hamming: $0.54 + 0.46c_1$ best peak sidelobe

Blackman-Harris 3-term: $0.42 + 0.5c_1 + 0.08c_2$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Rectangular: $w[n] \equiv 1$ don't use

Hanning: $0.5 + 0.5c_1$ $c_k = \cos \frac{2\pi kn}{M+1}$ rapid sidelobe decay

Hamming: $0.54 + 0.46c_1$ best peak sidelobe

Blackman-Harris 3-term: $0.42 + 0.5c_1 + 0.08c_2$ best peak sidelobe

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Rectangular: $w[n] \equiv 1$ don't use

Hanning: $0.5 + 0.5c_1$ $c_k = \cos \frac{2\pi kn}{M+1}$ rapid sidelobe decay

Hamming: $0.54 + 0.46c_1$ best peak sidelobe

Blackman-Harris 3-term: $0.42 + 0.5c_1 + 0.08c_2$ best peak sidelobe

Kaiser:
$$\frac{I_0\left(\beta\sqrt{1-\left(\frac{2n}{M}\right)^2}\right)}{I_0(\beta)}$$

 β controls width v sidelobes

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Rectangular: $w[n] \equiv 1$ don't use

Hanning: $0.5 + 0.5c_1$ $c_k = \cos \frac{2\pi kn}{M+1}$ rapid sidelobe decay

Hamming: $0.54 + 0.46c_1$ best peak sidelobe

Blackman-Harris 3-term: $0.42 + 0.5c_1 + 0.08c_2$ best peak sidelobe

Kaiser:
$$\frac{I_0\left(\beta\sqrt{1-\left(\frac{2n}{M}\right)^2}\right)}{I_0(\beta)}$$

 β controls width v sidelobes Good compromise: Width v sidelobe v decay

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Several formulae estimate the required order of a filter, M.

DSP and Digital Filters (2017-10159)

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Several formulae estimate the required order of a filter, M.

E.g. for lowpass filter

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Several formulae estimate the required order of a filter, M.

E.g. for lowpass filter

Estimated order is

$$M \approx \frac{-5.6 - 4.3 \log_{10}(\delta \epsilon)}{\omega_2 - \omega_1}$$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Several formulae estimate the required order of a filter, M.

E.g. for lowpass filter

Estimated order is

$$M \approx \frac{-5.6 - 4.3 \log_{10}(\delta \epsilon)}{\omega_2 - \omega_1} \approx \frac{-8 - 20 \log_{10} \epsilon}{2.2 \Delta \omega}$$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Several formulae estimate the required order of a filter, M.

E.g. for lowpass filter

Estimated order is

$$M \approx \frac{-5.6 - 4.3 \log_{10}(\delta \epsilon)}{\omega_2 - \omega_1} \approx \frac{-8 - 20 \log_{10} \epsilon}{2.2 \Delta \omega}$$

Required M increases as either the transition width, $\omega_2-\omega_1$, or the gain tolerances δ and ϵ get smaller.

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Several formulae estimate the required order of a filter, M.

E.g. for lowpass filter

Estimated order is

$$M \approx \frac{-5.6 - 4.3 \log_{10}(\delta \epsilon)}{\omega_2 - \omega_1} \approx \frac{-8 - 20 \log_{10} \epsilon}{2.2 \Delta \omega}$$

Required M increases as either the transition width, $\omega_2-\omega_1$, or the gain tolerances δ and ϵ get smaller.

Example:

Transition band: $f_1=1.8$ kHz, $f_2=2.0$ kHz, $f_s=12$ kHz,.

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Several formulae estimate the required order of a filter, M.

E.g. for lowpass filter

Estimated order is

$$M \approx \frac{-5.6 - 4.3 \log_{10}(\delta \epsilon)}{\omega_2 - \omega_1} \approx \frac{-8 - 20 \log_{10} \epsilon}{2.2 \Delta \omega}$$

Required M increases as either the transition width, $\omega_2-\omega_1$, or the gain tolerances δ and ϵ get smaller.

Transition band:
$$f_1=1.8$$
 kHz, $f_2=2.0$ kHz, $f_s=12$ kHz, $\omega_1=\frac{2\pi f_1}{f_s}=0.943,$ $\omega_2=\frac{2\pi f_2}{f_s}=1.047$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Several formulae estimate the required order of a filter, M.

E.g. for lowpass filter

Estimated order is

$$M \approx \frac{-5.6 - 4.3 \log_{10}(\delta \epsilon)}{\omega_2 - \omega_1} \approx \frac{-8 - 20 \log_{10} \epsilon}{2.2 \Delta \omega}$$

Required M increases as either the transition width, $\omega_2-\omega_1$, or the gain tolerances δ and ϵ get smaller.

Example:

Transition band:
$$f_1=1.8$$
 kHz, $f_2=2.0$ kHz, $f_s=12$ kHz, $\omega_1=\frac{2\pi f_1}{f_s}=0.943$, $\omega_2=\frac{2\pi f_2}{f_s}=1.047$

Ripple: $20 \log_{10}{(1+\delta)} = 0.1 \text{ dB}, \, 20 \log_{10}{\epsilon} = -35 \text{ dB}$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Several formulae estimate the required order of a filter, M.

E.g. for lowpass filter

Estimated order is

$$M \approx \frac{-5.6 - 4.3 \log_{10}(\delta \epsilon)}{\omega_2 - \omega_1} \approx \frac{-8 - 20 \log_{10} \epsilon}{2.2 \Delta \omega}$$

Required M increases as either the transition width, $\omega_2-\omega_1$, or the gain tolerances δ and ϵ get smaller.

Transition band:
$$f_1=1.8$$
 kHz, $f_2=2.0$ kHz, $f_s=12$ kHz,. $\omega_1=\frac{2\pi f_1}{f_s}=0.943, \omega_2=\frac{2\pi f_2}{f_s}=1.047$

Ripple:
$$20\log_{10}{(1+\delta)} = 0.1$$
 dB, $20\log_{10}{\epsilon} = -35$ dB $\delta = 10^{\frac{0.1}{20}} - 1 = 0.0116$, $\epsilon = 10^{\frac{-35}{20}} = 0.0178$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Several formulae estimate the required order of a filter, M.

E.g. for lowpass filter

Estimated order is

$$M \approx \frac{-5.6 - 4.3 \log_{10}(\delta \epsilon)}{\omega_2 - \omega_1} \approx \frac{-8 - 20 \log_{10} \epsilon}{2.2 \Delta \omega}$$

Required M increases as either the transition width, $\omega_2-\omega_1$, or the gain tolerances δ and ϵ get smaller.

Transition band:
$$f_1=1.8$$
 kHz, $f_2=2.0$ kHz, $f_s=12$ kHz, $\omega_1=\frac{2\pi f_1}{f_s}=0.943$, $\omega_2=\frac{2\pi f_2}{f_s}=1.047$

Ripple:
$$20\log_{10}{(1+\delta)} = 0.1$$
 dB, $20\log_{10}{\epsilon} = -35$ dB $\delta = 10^{\frac{0.1}{20}} - 1 = 0.0116$, $\epsilon = 10^{\frac{-35}{20}} = 0.0178$

$$M \approx \frac{-5.6 - 4.3 \log_{10}(2 \times 10^{-4})}{1.047 - 0.943} = \frac{10.25}{0.105} = 98$$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Several formulae estimate the required order of a filter, M.

E.g. for lowpass filter

Estimated order is

$$M \approx \frac{-5.6 - 4.3 \log_{10}(\delta \epsilon)}{\omega_2 - \omega_1} \approx \frac{-8 - 20 \log_{10} \epsilon}{2.2 \Delta \omega}$$

Required M increases as either the transition width, $\omega_2-\omega_1$, or the gain tolerances δ and ϵ get smaller.

Transition band:
$$f_1=1.8$$
 kHz, $f_2=2.0$ kHz, $f_s=12$ kHz, $\omega_1=\frac{2\pi f_1}{f_s}=0.943$, $\omega_2=\frac{2\pi f_2}{f_s}=1.047$

Ripple:
$$20\log_{10}{(1+\delta)} = 0.1$$
 dB, $20\log_{10}{\epsilon} = -35$ dB $\delta = 10^{\frac{0.1}{20}} - 1 = 0.0116$, $\epsilon = 10^{\frac{-35}{20}} = 0.0178$

$$M \approx \frac{-5.6 - 4.3 \log_{10}(2 \times 10^{-4})}{1.047 - 0.943} = \frac{10.25}{0.105} = 98$$
 or $\frac{35 - 8}{2.2\Delta\omega} = 117$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Several formulae estimate the required order of a filter, M.

E.g. for lowpass filter

Estimated order is

$$M \approx \frac{-5.6 - 4.3 \log_{10}(\delta \epsilon)}{\omega_2 - \omega_1} \approx \frac{-8 - 20 \log_{10} \epsilon}{2.2 \Delta \omega}$$

Required M increases as either the transition width, $\omega_2-\omega_1$, or the gain tolerances δ and ϵ get smaller.

Only approximate.

Transition band:
$$f_1=1.8$$
 kHz, $f_2=2.0$ kHz, $f_s=12$ kHz, $\omega_1=\frac{2\pi f_1}{f_s}=0.943$, $\omega_2=\frac{2\pi f_2}{f_s}=1.047$

Ripple:
$$20\log_{10}{(1+\delta)}=0.1$$
 dB, $20\log_{10}{\epsilon}=-35$ dB $\delta=10^{\frac{0.1}{20}}-1=0.0116,$ $\epsilon=10^{\frac{-35}{20}}=0.0178$

$$M \approx \frac{-5.6 - 4.3 \log_{10}(2 \times 10^{-4})}{1.047 - 0.943} = \frac{10.25}{0.105} = 98$$
 or $\frac{35 - 8}{2.2\Delta\omega} = 117$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Specifications:

Bandpass:
$$\omega_1=0.5$$
, $\omega_2=1$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Specifications:

Bandpass: $\omega_1=0.5,\,\omega_2=1$

Transition bandwidth: $\Delta\omega=0.1$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Specifications:

Bandpass: $\omega_1=0.5,\,\omega_2=1$

Transition bandwidth: $\Delta\omega=0.1$

Ripple: $\delta = \epsilon = 0.02$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Specifications:

Bandpass:
$$\omega_1 = 0.5$$
, $\omega_2 = 1$

Transition bandwidth: $\Delta\omega=0.1$

Ripple:
$$\delta = \epsilon = 0.02$$

$$20\log_{10}\epsilon = -34~\mathrm{dB}$$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Specifications:

Bandpass: $\omega_1=0.5,\,\omega_2=1$

Transition bandwidth: $\Delta\omega=0.1$

Ripple: $\delta = \epsilon = 0.02$

$$20\log_{10}\epsilon = -34\,\mathrm{dB}$$

$$20\log_{10}{(1+\delta)} = 0.17~{\rm dB}$$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Specifications:

Bandpass: $\omega_1=0.5,\,\omega_2=1$

Transition bandwidth: $\Delta\omega=0.1$

Ripple:
$$\delta = \epsilon = 0.02$$

$$20\log_{10}\epsilon = -34\,\mathrm{dB}$$

$$20\log_{10}{(1+\delta)} = 0.17~{\rm dB}$$

Order:

$$M \approx \frac{-5.6 - 4.3 \log_{10}(\delta \epsilon)}{\omega_2 - \omega_1} = 92$$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Specifications:

Bandpass: $\omega_1 = 0.5$, $\omega_2 = 1$

Transition bandwidth: $\Delta\omega=0.1$

Ripple:
$$\delta = \epsilon = 0.02$$

$$20\log_{10}\epsilon = -34~\mathrm{dB}$$

$$20\log_{10}{(1+\delta)} = 0.17~{\rm dB}$$

Order:

$$M \approx \frac{-5.6 - 4.3 \log_{10}(\delta \epsilon)}{\omega_2 - \omega_1} = 92$$

Ideal Impulse Response:

Difference of two lowpass filters

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Specifications:

Bandpass:
$$\omega_1 = 0.5$$
, $\omega_2 = 1$

Transition bandwidth: $\Delta\omega=0.1$

Ripple:
$$\delta = \epsilon = 0.02$$

$$20\log_{10}\epsilon = -34~\mathrm{dB}$$

$$20\log_{10}{(1+\delta)} = 0.17~{\rm dB}$$

Order:

$$M \approx \frac{-5.6 - 4.3 \log_{10}(\delta \epsilon)}{\omega_2 - \omega_1} = 92$$

Ideal Impulse Response:

Difference of two lowpass filters

$$h[n] = \frac{\sin \omega_2 n}{\pi n} - \frac{\sin \omega_1 n}{\pi n}$$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Specifications:

Bandpass:
$$\omega_1 = 0.5$$
, $\omega_2 = 1$

Transition bandwidth: $\Delta\omega=0.1$

Ripple:
$$\delta = \epsilon = 0.02$$

$$20\log_{10}\epsilon = -34\,\mathrm{dB}$$

$$20\log_{10}{(1+\delta)} = 0.17~{\rm dB}$$

Order:

$$M \approx \frac{-5.6 - 4.3 \log_{10}(\delta \epsilon)}{\omega_2 - \omega_1} = 92$$

Ideal Impulse Response:

Difference of two lowpass filters

$$h[n] = \frac{\sin \omega_2 n}{\pi n} - \frac{\sin \omega_1 n}{\pi n}$$

Kaiser Window: $\beta=2.5$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Specifications:

Bandpass: $\omega_1 = 0.5$, $\omega_2 = 1$

Transition bandwidth: $\Delta\omega=0.1$

Ripple:
$$\delta = \epsilon = 0.02$$

$$20\log_{10}\epsilon = -34\,\mathrm{dB}$$

$$20\log_{10}{(1+\delta)} = 0.17~{\rm dB}$$

Order:

$$M \approx \frac{-5.6 - 4.3 \log_{10}(\delta \epsilon)}{\omega_2 - \omega_1} = 92$$

Ideal Impulse Response:

Difference of two lowpass filters

$$h[n] = \frac{\sin \omega_2 n}{\pi n} - \frac{\sin \omega_1 n}{\pi n}$$

Kaiser Window: $\beta=2.5$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Specifications:

Bandpass: $\omega_1 = 0.5$, $\omega_2 = 1$

Transition bandwidth: $\Delta\omega=0.1$

Ripple: $\delta = \epsilon = 0.02$

$$20\log_{10}\epsilon = -34\,\mathrm{dB}$$

$$20\log_{10}{(1+\delta)} = 0.17\,\mathrm{dB}$$

Order:

$$M \approx \frac{-5.6 - 4.3 \log_{10}(\delta \epsilon)}{\omega_2 - \omega_1} = 92$$

Ideal Impulse Response:

Difference of two lowpass filters

$$h[n] = \frac{\sin \omega_2 n}{\pi n} - \frac{\sin \omega_1 n}{\pi n}$$

Kaiser Window: $\beta = 2.5$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Specifications:

Bandpass: $\omega_1 = 0.5$, $\omega_2 = 1$

Transition bandwidth: $\Delta\omega=0.1$

Ripple: $\delta = \epsilon = 0.02$

$$20\log_{10}\epsilon = -34\,\mathrm{dB}$$

$$20\log_{10}{(1+\delta)} = 0.17\,\mathrm{dB}$$

Order:

$$M \approx \frac{-5.6 - 4.3 \log_{10}(\delta \epsilon)}{\omega_2 - \omega_1} = 92$$

Ideal Impulse Response:

Difference of two lowpass filters

$$h[n] = \frac{\sin \omega_2 n}{\pi n} - \frac{\sin \omega_1 n}{\pi n}$$

Kaiser Window: $\beta = 2.5$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Take M+1 uniform samples of $H(e^{j\omega})$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Take M+1 uniform samples of $H(e^{j\omega})$

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Take M+1 uniform samples of $H(e^{j\omega})$; take IDFT to obtain h[n]

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Take M+1 uniform samples of $H(e^{j\omega})$; take IDFT to obtain h[n]

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Take M+1 uniform samples of $H(e^{j\omega})$; take IDFT to obtain h[n]

Advantage:

exact match at sample points

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Take M+1 uniform samples of $H(e^{j\omega})$; take IDFT to obtain h[n]

Advantage:

exact match at sample points

Disadvantage:

poor intermediate approximation if spectrum is varying rapidly

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Take M+1 uniform samples of $H(e^{j\omega})$; take IDFT to obtain h[n]

Advantage:

exact match at sample points

Disadvantage:

poor intermediate approximation if spectrum is varying rapidly

Solutions:

(1) make the filter transitions smooth over $\Delta\omega$ width

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Take M+1 uniform samples of $H(e^{j\omega})$; take IDFT to obtain h[n]

Advantage:

exact match at sample points

Disadvantage:

poor intermediate approximation if spectrum is varying rapidly

Solutions:

- (1) make the filter transitions smooth over $\Delta\omega$ width
- (2) oversample and do least squares fit (can't use IDFT)

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Take M+1 uniform samples of $H(e^{j\omega})$; take IDFT to obtain h[n]

Advantage:

exact match at sample points

Disadvantage:

poor intermediate approximation if spectrum is varying rapidly

Solutions:

- (1) make the filter transitions smooth over $\Delta\omega$ width
- (2) oversample and do least squares fit (can't use IDFT)
- (3) use non-uniform points with more near transition (can't use IDFT)

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

Make an FIR filter by windowing the IDTFT of the ideal response

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

- Make an FIR filter by windowing the IDTFT of the ideal response
 - \circ Ideal lowpass has $h[n] = \frac{\sin \omega_0 n}{\pi n}$

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

- Make an FIR filter by windowing the IDTFT of the ideal response
 - o Ideal lowpass has $h[n] = \frac{\sin \omega_0 n}{\pi n}$
 - Add/subtract lowpass filters to make any piecewise constant response

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

- Make an FIR filter by windowing the IDTFT of the ideal response
 - o Ideal lowpass has $h[n] = \frac{\sin \omega_0 n}{\pi n}$
 - Add/subtract lowpass filters to make any piecewise constant response
- Ideal filter response is * with the DTFT of the window

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

- Make an FIR filter by windowing the IDTFT of the ideal response
 - o Ideal lowpass has $h[n] = \frac{\sin \omega_0 n}{\pi n}$
 - Add/subtract lowpass filters to make any piecewise constant response
- Ideal filter response is *with the DTFT of the window
 - \circ Rectangular window (W(z)= Dirichlet kernel) has $-13~\mathrm{dB}$ sidelobes and is always a bad idea

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

- Make an FIR filter by windowing the IDTFT of the ideal response
 - o Ideal lowpass has $h[n] = \frac{\sin \omega_0 n}{\pi n}$
 - Add/subtract lowpass filters to make any piecewise constant response
- Ideal filter response is * with the DTFT of the window
 - \circ Rectangular window (W(z)= Dirichlet kernel) has $-13~{
 m dB}$ sidelobes and is always a bad idea
 - o Hamming, Blackman-Harris are good

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

- Make an FIR filter by windowing the IDTFT of the ideal response
 - \circ Ideal lowpass has $h[n] = \frac{\sin \omega_0 n}{\pi n}$
 - Add/subtract lowpass filters to make any piecewise constant response
- Ideal filter response is * with the DTFT of the window
 - \circ Rectangular window (W(z)= Dirichlet kernel) has $-13~{\rm dB}$ sidelobes and is always a bad idea
 - o Hamming, Blackman-Harris are good
 - \circ Kaiser good with eta trading off main lobe width v. sidelobes

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

- Make an FIR filter by windowing the IDTFT of the ideal response
 - o Ideal lowpass has $h[n] = \frac{\sin \omega_0 n}{\pi n}$
 - Add/subtract lowpass filters to make any piecewise constant response
- Ideal filter response is *with the DTFT of the window
 - \circ Rectangular window (W(z)= Dirichlet kernel) has $-13~{\rm dB}$ sidelobes and is always a bad idea
 - Hamming, Blackman-Harris are good
 - \circ Kaiser good with eta trading off main lobe width v. sidelobes
- Uncertainty principle: cannot be concentrated in both time and frequency

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

- Make an FIR filter by windowing the IDTFT of the ideal response
 - o Ideal lowpass has $h[n] = \frac{\sin \omega_0 n}{\pi n}$
 - Add/subtract lowpass filters to make any piecewise constant response
- Ideal filter response is *with the DTFT of the window
 - \circ Rectangular window (W(z)= Dirichlet kernel) has $-13~\mathrm{dB}$ sidelobes and is always a bad idea
 - Hamming, Blackman-Harris are good
 - \circ Kaiser good with eta trading off main lobe width v. sidelobes
- Uncertainty principle: cannot be concentrated in both time and frequency
- Frequency sampling: IDFT of uniform frequency samples: not so great

6: Window Filter Design

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

- Make an FIR filter by windowing the IDTFT of the ideal response
 - o Ideal lowpass has $h[n] = \frac{\sin \omega_0 n}{\pi n}$
 - Add/subtract lowpass filters to make any piecewise constant response
- Ideal filter response is *with the DTFT of the window
 - \circ Rectangular window (W(z)= Dirichlet kernel) has $-13~{\rm dB}$ sidelobes and is always a bad idea
 - Hamming, Blackman-Harris are good
 - \circ Kaiser good with eta trading off main lobe width v. sidelobes
- Uncertainty principle: cannot be concentrated in both time and frequency
- Frequency sampling: IDFT of uniform frequency samples: not so great

For further details see Mitra: 7, 10.

MATLAB routines

- Inverse DTFT
- Rectangular window
- Dirichlet Kernel
- Window relationships
- Common Windows
- Order Estimation
- Example Design
- Frequency sampling
- Summary
- MATLAB routines

diric(x,n)	Dirichlet kernel: $\frac{\sin 0.5nx}{\sin 0.5x}$
hanning	Window functions
hamming	(Note 'periodic' option)
kaiser	
kaiserord	Estimate required filter order and eta