Feuille 16 : Séries numériques

I EXERCICES TECHNIQUES

Exercice 1

Déterminer la nature de la série de terme général u_n dans les cas suivants :

$$\mathbf{a.} \quad u_n = \sin \frac{1}{n^2}$$

b.
$$u_n = \frac{1}{n} \operatorname{Arctan} \frac{1}{n}$$

$$\mathbf{c.} \quad u_n = \mathrm{e}^{\cos(n)}$$

$$\mathbf{d.} \quad u_n = \left(\frac{1+n}{1+n^2}\right)^n$$

e.
$$u_n = \sqrt[n]{n+1} - \sqrt[n]{n}$$

f.
$$u_n = e - \left(1 + \frac{1}{n}\right)^n$$

$$\mathbf{g.} \quad u_n = a^{\sqrt{n}} \quad \text{où } a \in \mathbb{R}_+^*$$

h.
$$u_n = n^{-\cos\frac{1}{n}}$$

i.
$$u_n = n^{-(1+\frac{1}{n})}$$

j.
$$u_n = 1 - \sqrt[n]{\frac{n}{n+1}}$$

Exercice 2

Montrer que les séries suivantes convergent, et déterminer leurs sommes :

$$\mathbf{a.} \quad \sum_{n>0} e^{-2n} \mathrm{ch}(n)$$

b.
$$\sum_{n\geq 2} \left(\frac{1}{\sqrt{n-1}} - \frac{2}{\sqrt{n}} + \frac{1}{\sqrt{n+1}} \right)$$

c.
$$\sum_{n>1} \frac{2}{n(n+2)}$$

$$\mathbf{d.} \quad \sum_{n \ge 1} \ln \left(1 + \frac{2}{n(n+3)} \right)$$

e.
$$\sum_{n>1} \frac{1}{n(n+1)(n+2)}$$

$$\mathbf{f.} \quad \sum_{n \ge 0} \frac{n-1}{n!} 2^n$$

$$\mathbf{g.} \quad \sum_{n>2} \frac{2}{(n^2-1)n}$$

h.
$$\sum_{n>0} \frac{(n+1)(n-2)}{n!}$$

II EXERCICES SUR LES SERIES NUMERIQUES

Exercice 3

a. Montrer que

$$\forall x \in \mathbb{R}_+^*, \quad \operatorname{Arctan}\left(\frac{1}{1+x+x^2}\right) = \operatorname{Arctan}\left(\frac{1}{x}\right) - \operatorname{Arctan}\left(\frac{1}{1+x}\right)$$

Faire une étude de fonction.

b. En déduire que la série $\sum_{n\geq 0} \operatorname{Arctan}\left(\frac{1}{1+n+n^2}\right)$ converge, et calculer sa somme.

Télescopage, mais attention au démarrage...

Exercice 4

On considère la suite (u_n) telle que $\lim_{n\to+\infty}u_n=0$. Pour tout n, on note $v_n=u_{2n}+u_{2n+1}$.

- a. Montrer que les séries $\sum u_n$ et $\sum v_n$ sont de même nature. Expliciter les sommes partielles de $\sum u_n$ à l'aide de celles de $\sum v_n$.
- **b.** En déduire la nature de $\sum_{n>1} \frac{(-1)^n}{n}$.
- c. Montrer que sans l'hypothèse $\lim_{n\to+\infty}u_n=0$ on peut avoir $\sum v_n$ convergente et $\sum u_n$ divergente. On attend un contrexemple.

Exercice 5

On considère une série numérique $\sum u_n$.

a. Montrer que si $\sum u_{2n}$ et $\sum u_{2n+1}$ convergent, alors $\sum u_n$ converge et que dans ce cas,

$$\sum_{n=0}^{+\infty} u_n = \sum_{n=0}^{+\infty} u_{2n} + \sum_{n=0}^{+\infty} u_{2n+1}.$$

Exprimer les sommes partielles de rangs pairs et impairs à l'aide des sommes partielles de $\sum u_{2k}$ et $\sum u_{2k+1}$.

- **b.** En déduire $\sum_{n=0}^{+\infty} (3 + (-1)^n)^{-n}$.
- c. Montrer que l'on peut avoir $\sum u_n$ convergente alors que $\sum u_{2n}$ et $\sum u_{2n+1}$ divergentes. On attend un contrexemple.

Exercice 6 Séries alternées

Soit (a_n) une suite de réels positifs, strictement décroissante, de limite nulle. On considère la série de terme général $u_n = (-1)^n a_n$.

- **a.** Montrer que les sommes partielles (S_{2n}) et (S_{2n+1}) sont adjacentes.
- **b.** En déduire la convergence de la série $\sum u_n$.

Exercice 7

Soient $\sum u_n$ et $\sum v_n$ deux séries convergentes à termes strictement positifs. Montrer que les séries suivantes convergent :

a.
$$\sum \max(u_n, v_n)$$

b.
$$\sum \sqrt{u_n v_n}$$

a.
$$\sum \max(u_n, v_n)$$
 b. $\sum \sqrt{u_n v_n}$ c. $\sum \frac{u_n v_n}{u_n + v_n}$

Majorer les termes généraux par des combinaisons linéaires de u_n et v_n

Exercice 8 Séries de Bertrand

a. Etudier la série de terme général $u_n = \frac{1}{n^{\alpha} (\ln n)^{\beta}}$, avec α et β réels, en comparant à une série de Riemann si $\alpha \neq 1$ et à une intégrale si $\alpha = 1$.

Pour le cas $\alpha = 1$ il faut calculer l'intégrale à laquelle on compare la série. Une disjonction de cas apparaît sur β .

En déduire la nature des séries de termes généraux

$$v_n = \frac{1}{\ln(n!)}$$
 et $w_n = n^{\frac{\ln n}{n}} - 1$

Critère de d'Alembert

Soit $\sum u_n$ une série à termes positifs tels que $\lim_{n\to+\infty}\frac{u_{n+1}}{u_n}=L\in\mathbb{R}^+$. Montrer que :

- \checkmark Si L > 1, alors la série diverge;
- ✓ Si L < 1, alors la série converge;
- \checkmark Si L=1 tout est possible.

Utiliser le fait qu'entre deux réels distincts, il en existe toujours un troisième, distinct des deux, puis appliquer un télescopage.

Pour le cas L=1 on attend deux exemples contradictoires.

Exercice 10 Critère de Cauchy

Soit $\sum u_n$ une série à termes positifs tels que $\lim_{n\to+\infty} \sqrt[n]{u_n} = L \in \mathbb{R}^+$. Montrer que :

- ✓ Si L > 1, alors la série diverge;
- ✓ Si L < 1, alors la série converge;
- \checkmark Si L=1 tout est possible.

Donner un équivalent de u_n . Attention au cas où L=0 qui est à traiter à part!

Pour le cas L = 1 on attend deux exemples contradictoires.

Comparaison logarithmique

Soient (u_n) et (v_n) deux suites de réels strictement positifs. On suppose qu'il existe $n_0 \in \mathbb{N}$ tel que

$$\forall n \in \mathbb{N}, \quad (n \ge n_0) \Longrightarrow \left(\frac{u_{n+1}}{u_n} \le \frac{v_{n+1}}{v_n}\right)$$

Montrer que si $\sum v_n$ converge, alors $\sum u_n$ converge. Faire un télescopage.

Exercice 12 Règle de Raabe Duhamel

Soit (u_n) une suite de réels strictement positifs, telle que

$$\frac{u_{n+1}}{u_n} \underset{n \to +\infty}{=} 1 - \frac{a}{n} + o\left(\frac{1}{n}\right)$$

Montrer que si a > 1, $\sum u_n$ converge et si a < 1, $\sum u_n$ diverge.

Indication: Appliquer l'exercice précédent avec $v_n = \frac{1}{n^b}$ pour un réel b bien choisi.

Exercice 13

Pour $n \in \mathbb{N}$, on note

$$I_n = \int_0^1 \frac{x^n}{1+x} \mathrm{d}x$$

- a. Montrer que la suite (I_n) est décroissante, de limite nulle. Pour les variations étudier le signe de $I_{n+1} - I_n$; pour la limite, encadrer I_n .
- **b.** En calculant $I_{n+1} + I_n$, déterminer une expression de I_n sous la forme d'une somme. Faire apparaître un télescopage.
- c. Déduire de ce qui précède la somme de la série de terme général $u_n = \frac{(-1)^n}{n}$ pour $n \in \mathbb{N}^*$.

LES BONS RÉFLEXES

- 🖈 SI une série converge, ALORS son terme général tend vers 0. La réciproque est FAUSSE.
- ¥ On ne sait (pour l'instant) calculer la somme que de séries géométriques, télescopiques et exponentielles. Si on vous demande de calculer une somme, c'est l'un de ces cas...
- \maltese Dans la plupart des cas, si on demande de montrer la convergence d'une série sans en calculer la somme, on utilise un théorème de comparaison.