PEU 323 Assignment 2

Mohamed Hussien El-Deeb (201900052)

October 1, 2024

Contents

1	Pro	Problem 1 1.1 Problem																2							
	1.1	Problem																							2
	1.2	Solution																							2
2	Problem 2															2									
	2.1	Problem																							2
	2.2	Solution																							2
3	Problem 3															2									
	3.1	Problem																							2
		Solution																							3
4	Problem 4																3								
	4.1	Problem																							3
		Solution																							3
5	Problem 5															3									
	5.1	Problem																							3
		Solution																							

1 Problem 1

1.1 Problem

Consider a particle which is free to be anywhere, with equal probability, on a line segment of length L.

- (a) Find the normalized probability distribution for such a particle.
- (b) Calculate $\langle x \rangle$ and σ_x .
- (c) Calculate the probability of finding the particle within σ_x of $\langle x \rangle$.
- (d) What are the dimensions of the probability density?

1.2 Solution

2 Problem 2

2.1 Problem

Buffon's Needle: A needle of length l is dropped at random on a sheet of paper with parallel lines a distance l apart. What is the probability that it crosses a line?

2.2 Solution

3 Problem 3

3.1 Problem

Find the probability distribution for the momentum of a harmonic oscillator with angular frequency ω .

3.2 Solution

4 Problem 4

4.1 Problem

Consider the probability density for the location of the electron inside the Hydrogen atom:

$$\rho(r) = Ae^{-2r/a_0},\tag{1}$$

where a_0 is the Bohr radius.

- (a) Find A which normalizes this probability distribution.
- (b) Hint:

$$\int_0^\infty e^{-x} x^n dx = n!. \tag{2}$$

(c) Calculate the probability for the electron to be found in a sphere, centered about the origin, of radius b_0 , with $b_0 \ll a_0$.

P.S.: You can do this calculation exactly or approximately. The approximate one is much easier.

4.2 Solution

5 Problem 5

5.1 Problem

Consider the map

$$f: \mathbb{C} \to \mathbb{R}_{2 \times 2} \tag{3}$$

$$x + iy \mapsto \begin{pmatrix} x & -y \\ y & x \end{pmatrix}$$

from the complex numbers to the set of 2×2 real matrices.

(a) Show that this map is an isomorphism. That is, show that it is invertible and that for $z_1, z_2 \in \mathbb{C}$,

$$f(z_1 z_2) = f(z_1) f(z_2)$$
 (4)

and hence prove that, in two dimensions, rotations commute.

(b) Prove De Moivre's formula for complex numbers:

$$(r(\cos(\theta) + i\sin(\theta)))^n = r^n(\cos(n\theta) + i\sin(n\theta))$$
 (5)

and hence prove that

$$\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}^n = \begin{pmatrix} \cos(n\theta) & -\sin(n\theta) \\ \sin(n\theta) & \cos(n\theta) \end{pmatrix}$$
 (6)

5.2 Solution

References

[1] M.H. El-Deeb. PEU-323 Assignments.