UFABC - Física Quântica - Curso 2017.3

Prof. Germán Lugones

Aula 2

Evidências experimentais da teoria quântica: efeito fotoelétrico e efeito Compton

Efeito fotoelétrico

Em 1887 H. R. Hertz descobriu que a luz incidindo sobre certas superfícies metálicas fazia com que partículas negativas (hoje identificadas como elétrons) fossem arrancadas dessas superfícies.

Montagem usada para estudar o efeito fotelétrico:

- A luz incide no alvo (catodo), ejetando elétrons, que são recolhidos pelo coletor (anodo).
- Os elétrons se movem no circuito no sentido oposto ao sentido convencional da corrente elétrica, indicado por setas na figura.
- A bateria é usada para produzir uma diferença de potencial entre alvo e coletor.
- O amperímetro mede a corrente no circuito.

Primeiro Experimento do Efeito Fotelétrico

Ajustando a diferença de potencial V podemos reduzir a velocidade dos elétrons ejetados. Em particular, podemos ajustar V até que o potencial atinja o valor, V_0 , chamado **potencial de corte**, para o qual a corrente medida pelo amperímetro A é nula.

Para $V = V_0$, os elétrons de maior energia ejetados pelo alvo são detidos pouco antes de chegar ao coletor. Assim, K_{max} , a energia cinética desses elétrons, é dada por:

$$K_{max} = \left(\frac{1}{2}mv^2\right)_{max} = eV_0$$

onde e é a carga do elétron.

Os experimentos mostram que, para uma luz de uma dada frequência, o valor de K_{max} não depende da intensidade da luz que incide no alvo.

Quer o alvo seja iluminado por uma luz ofuscante, quer seja iluminado por uma vela, a energia cinética máxima dos elétrons ejetados tem sempre o mesmo valor, contanto que a frequência da luz permaneça a mesma.

Esse resultado experimental não pode ser explicado pela física clássica:

- Classicamente, a luz que incide no alvo é uma onda eletromagnética.
 O campo elétrico associado a essa onda exerce uma força sobre os elétrons do alvo, fazendo com que oscilem com a mesma frequência que a onda.
- Quando a amplitude das oscilações de um elétron ultrapassa certo valor, o elétron é ejetado da superfície do alvo.
- Assim, se a intensidade (amplitude) da onda aumenta, os elétrons deveriam ser ejetados com maior energia.
- Entretanto, não é isso que acontece. Para uma dada frequência, a energia máxima dos elétrons emitidos pelo alvo é sempre a mesma, qualquer que seja a intensidade da luz incidente.

Segundo Experimento do Efeito Fotoelétrico

O segundo experimento consiste em medir o potencial de corte V_0 para várias frequências f da luz incidente. O gráfico de V_0 em função de f mostra que:

- O efeito fotelétrico não é observado se a frequência da luz for menor que certa frequência de corte f_t
- Ou seja, não há efeito fotoelétrico se o comprimento de onda for maior que λ_t = c/f_t (comprimento de onda de corte).
- O resultado não depende da intensidade da luz incidente.

Esse resultado constitui outro mistério para a física clássica.

- Se a luz se comportasse apenas como uma onda eletromagnética, teria energia suficiente para ejetar elétrons, qualquer que fosse a frequência, contanto que a luz fosse suficientemente intensa.
- Entretanto, não é isso que acontece. Quando a frequência da luz é menor que a frequência de corte f_t, não são ejetados elétrons, por mais intensa que seja a luz.

A teoria de Einstein para o efeito fotoelétrico

Em 1905, Einstein postulou que a quantização da energia usada por Planck no problema do corpo negro é uma característica universal da luz.

Em vez de estar distribuída uniformemente no espaço no qual se propaga, a luz é formada por quanta discretos de energia E = hf.

Quando um desses quanta, denominados **fótons**, chega à superfície do alvo, **toda a sua energia é transferida para um único elétron**.

Função trabalho

Os elétrons são mantidos no metal por forças elétricas.

Para escapar do alvo, um elétron necessita de uma **energia mínima**, ϕ , que depende do tipo de metal e recebe o nome de **função trabalho**:

- se a energia cedida por um fóton a um elétron é maior que ϕ , (hf > ϕ), o elétron pode escapar do alvo.
- se a energia cedida é menor que a função trabalho (hf $< \phi$), o elétron não pode escapar.

A energia cinética máxima de um elétron que deixa a superfície será hf- ϕ como conseqüência da conservação de energia.

Alguns elétrons terão menos do que esta quantidade por causa da energia perdida ao atravessar o metal).

Assim, usando a conservação da energia temos:

$$eV_0 = \left(\frac{1}{2}mv^2\right)_{max} = hf - \phi$$

O elétron recebe do fóton uma energia hf, mas perde (no mínimo) uma energia ϕ para escapar do metal. O resto da energia aparece na forma de energia cinética do elétron.

A equação acima é chamada de **equação do efeito fotoelétrico**.

De acordo com a **equação do efeito fotoelétrico**, se representamos o potencial de corte V_0 em função da frequência f da luz incidente, devemos obter uma reta cuja inclinação é (h/e), ou seja, independente da natureza da substância emissora.

Experimentos realizados por Millikan entre 1914 e 1916 verificaram que a **equação do efeito fotoelétrico** estava correta.

O valor de h obtido a partir desses experimentos concordou com o valor que o Planck tinha obtido antes para o corpo negro!

Frequência de corte para o efeito fotoelétrico

Se potencial de corte V_0 for nulo, obtém-se o valor da frequência abaixo do qual não ocorre o efeito fotoelétrico (frequência de corte f_t).

A partir da equação do efeito fotoelétrico obtemos:

$$eV_0 = 0 = hf_t - \phi \qquad \Rightarrow \qquad \phi = hf_t = \frac{hc}{\lambda_t}$$

Os fótons de freqüências inferiores a f_t (e, portanto, com comprimentos de onda maiores que λ_t) não possuem energia suficiente para expulsar um elétron do metal.

As funções de trabalho para metais são tipicamente da ordem de alguns elétrons volts.

Elemento	ϕ (eV)
Na	2,28
Cd	4,07
Al	4,08
Ag	4,73
Pt	6,35
Mg	3,68
Ni	5,01
Pb	4,14

O elétron volt (eV) é uma unidade de energia definida como:

 $1eV = 1Volt \times lcarga do elétronl = 1.6 \times 10^{-19} J$

TESTE:

A figura mostra vários gráficos do potencial de corte em função da freqüência da luz incidente para alvos de césio, potássio, sódio e lítio. As retas são paralelas. Coloque os alvos na ordem decrescente do valor da função trabalho.

Tempo de emissão dos fotoelétrons

Outra característica importante do efeito fotoelétrico que está em desacordo física clássica, mas é facilmente explicada pela hipótese dos fótons é a ausência de um intervalo de tempo entre a ativação da fonte de luz e o aparecimento de fotoelétrons.

Classicamente, é seria possível ajustar a intensidade da luz incidente de forma que o atraso de tempo teórico seja de vários minutos, ou mesmo horas.

No entanto, se observa experimentalmente que $\Delta t \lesssim 10^{-9}$ s.

A explicação deste resultado é que, embora a taxa a que os fótons incidam no metal é muito pequena quando a intensidade é baixa, cada fóton tem energia suficiente para expulsar um elétron, e há chance de que um fóton seja absorvido imediatamente.

O efeito Compton

No efeito fotoelétrico temos absorção de fótons pela matéria. Esse efeito se manifesta até energias de raios X, i. e., $E_X \sim 10^5 \text{eV}$. Para energias a partir das de raios X os processos de interação de fótons com a matéria passam a ser do tipo espalhamento elétron-fóton.

Em 1923, Arthur Compton fez incidir um **feixe de raios X**, de comprimento de onda λ , em um **alvo de carbono**, como mostra a Figura.

Os raios X são uma forma de radiação eletromagnética de alta frequência e pequeno comprimento de onda.

Compton mediu o comprimento de onda e a intensidade dos raios X espalhados em diversas direções pelo alvo de carbono.

A Figura mostra os resultados obtidos por Compton para quatro valores do ângulo de espalhamento θ .

- Existe um único comprimento de onda ($\lambda = 71,1$ pm) no feixe incidente.
- No entanto, os raios X espalhados contêm vários comprimentos de onda, com dois picos de intensidade.
- Um dos picos corresponde ao comprimento de onda do feixe incidente, λ ;
- O outro pico corresponde a um comprimento de onda λ' maior que λ .
- A diferença entre os comprimentos de onda dos dois picos, $\Delta\lambda$, conhecida como deslocamento de Compton, depende do ângulo no qual os raios X espalhados são medidos; quanto maior o ângulo, maior o valor de $\Delta\lambda$.

Os resultados obtidos por Compton constituem mais um mistério para a física clássica.

- Classicamente, o feixe incidente de raios X é uma onda eletromagnética senoidal.
- A força associada ao campo elétrico da onda incidente deveria fazer os elétrons do alvo oscilarem com a mesma frequência que essa onda e, portanto, produzirem novas ondas com a mesma frequência que a onda incidente, como se fossem pequenas antenas transmissoras.
- Assim, os raios X espalhados por elétrons deveriam ter todos a mesma frequência e o mesmo comprimento de onda que os raios X do feixe incidente, o que simplesmente não é verdade.

Interpretação de Compton:

Um fóton de raios X do feixe incidente tem uma **colisão relativística** com os elétrons quase livres do alvo de carbono. Nessa colisão há troca energia e momento entre essas partículas.

A energia do elétron ligado ao material (~ eV), é desprezível em relação a de fótons de raio X (~10⁵eV).

Assim, o elétron ligado ao material pode ser considerado como inicialmente no estado de repouso.

De acordo com a teoria da relatividade, a energia total e o momento estão relacionados através da expressão

$$E^2 = p^2c^2 + m^2c^4$$
.

Para o fóton, que possui massa zero, obtemos E = pc. Para um fóton de energia hf, o módulo do momento é dado por:

$$p = \frac{E}{c} = \frac{hf}{c} \qquad \Rightarrow \qquad p = \frac{h}{\lambda}$$

onde foi usada a relação $f = c/\lambda$.

Durante o processo de uma colisão relativística, há a **conservação da energia** relativística total e o momento linear.

Conservação da energia:

$$E_e + E_{\gamma} = E'_e + E'_{\gamma}$$

Visto de um referencial onde o elétron esta inicialmente no estado de repouso temos:

- energia inicial do elétron: $E_e = m_e c^2$
- energia inicial do fóton: $E_{\gamma} = hf = hc /\lambda$
- energia final do elétron: $E'_e = (p_e^2c^2 + m_e^2c^4)^{1/2}$
- energia final do fóton: $E'_{\nu} = hf' = hc / \lambda'$

Substituindo, obtemos:

$$m_e c^2 + rac{hc}{\lambda} = (p_e'^2 c^2 + m_e^2 c^4)^{1/2} + rac{hc}{\lambda'}$$
 Eq. (1)

Conservação do momentum:

$$\mathbf{p}_e + \mathbf{p}_\gamma = \mathbf{p}_e' + \mathbf{p}_\gamma'$$

Lembrando que $\mathbf{p}=0$ para o elétron em repouso, temos:

$$\mathbf{p}_{\gamma}=\mathbf{p}_{e}^{\prime}+\mathbf{p}_{\gamma}^{\prime}$$

Estes três vetores são os lados de um triângulo como o da figura, cujos lados podem ser relacionados pela regra do coseno:

$$p_e^{\prime 2} = p_{\gamma}^2 + p_{\gamma}^{\prime 2} - 2p_{\gamma}p_{\gamma}^{\prime}\cos\theta$$

Substituindo $p_{\gamma} = h/\lambda$ e $p'_{\gamma} = h/\lambda'$ obtemos:

$$p_e'^2=rac{h^2}{\lambda^2}+rac{h^2}{\lambda'^2}-2rac{h}{\lambda}rac{h}{\lambda'}\cos heta$$
 Eq. (2)

Eliminando p_e' das Eqs. (1) e (2) obtemos a **equação de Compton**:

$$\lambda' - \lambda = \frac{h}{m_e c} (1 - \cos \theta)$$

onde

- λ é o comprimento de onda da radiação X incidente
- λ ' é o comprimento de onda da radiação X espalhada no ângulo θ .
- Define-se o comprimento de onda Compton do elétron como sendo

$$\lambda_C = \frac{h}{m_e c}$$

• Numericamente, tem-se que $\lambda_{\rm C}$ = 0.02426 Å

A equação de Compton, $\Delta \lambda = \lambda_C$ (1-cos θ) consegue reproduzir o $\Delta \lambda$ observado no experimento de espalhamento.

Resta explicar o outro pico, que corresponde a λ da radiação incidente.

Esse pico não está associado a interações da radiação incidente com elétrons quase livres do alvo e sim a interações com elétrons fortemente ligados aos núcleos de carbono do alvo.

Nesse caso, tudo se passa como se a colisão ocorresse entre um fóton do feixe incidente e um átomo inteiro do alvo.

Fazendo m igual à massa do átomo de carbono (que é aproximadamente 22.000 vezes maior que a do elétron), vemos que $\Delta\lambda$ se torna 22.000 vezes menor que o deslocamento de Compton para um elétron livre, ou seja, um deslocamento tão pequeno que não pode ser medido.

Assim, em colisões desse tipo, os fótons espalhados têm praticamente o mesmo comprimento de onda que os fótons incidentes, o que explica o outro pico dos gráficos.

A conclusão final é que o efeito Compton pode ser explicado se consideramos que a luz é formada quantos de energia (fótons) que possuem energia E = h f.