Теория игр в топологии

Содержание

Полныве метрические пространства

Пространство Бэра

Последовательные игры

Пополнение метрического пространства

Пусть (X,d) есть метрическое пространство,

$$\mathfrak{F}(X)=\{(x_n)_n\in X^\omega\ : (x_n)_n \$$
есть фундаментальная последовательность $\}$

есть множество фундаментальных последовательностей X. Введем на $\mathfrak{F}(X)$ отношение:

$$(x_n)_n \sim (y_n)_n$$

если

$$\lim_{n\to\infty}d(x_n,y_n)=0.$$

Отношение \sim является отношением эквивалентности.

Предложение 1.

Для
$$(x_n)_n, (y_n)_n \in \mathfrak{F}(X)$$
 существует предел $ilde{d}((x_n)_n, (y_n)_n) = \lim_{n \to \infty} d(x_n, y_n).$

Если
$$(x_n)_n \sim (x_n')_n$$
 и $(y_n)_n \sim (y_n')_n$, то

$$\tilde{d}((x_n)_n, (y_n)_n) = \tilde{d}((x'_n)_n, (y'_n)_n).$$

Множество

$$[(x_n)_n] = \{(x'_n)_n \in \mathfrak{F}(X) : (x_n)_n \sim (x'_n)_n\}$$

есть класс эквивалентности, содержащий $(x_n)_n$. Положим

$$\widehat{X} = \{ [\xi] : \xi \in \mathfrak{F}(X) \}.$$

Для $\xi,\zeta\in\mathfrak{F}(X)$ положим

$$\hat{d}([\xi], [\zeta]) = \tilde{d}(\xi, \zeta).$$

Предложение 2.

Функция $\hat{d}:\widehat{X}\times\widehat{X}\to\mathbb{R}$ корректна определена, \hat{d} является полной метрикой.

Для $x \in X$ обозначим через s(x) стационарную последовательность $(x_n)_n$, у которой $x_n = x$ для всех n.

Предложение 3.

Отображение

$$i:X\to \widehat{X}:x\mapsto [s(x)].$$

является изометрическим вложением метрического пространства (X,d) в полное метрическое пространство $(\widehat{X},\widehat{d})$, то есть $\widehat{d}(i(x),i(y))=d(x,y)$ для всех $x,y\in X$. Кроме того, $i(X)\subset \widehat{X}\subset \overline{i(X)}$.

Обычно отождествляют X и i(X), тогда $(\widehat{X},\widehat{d})$ является полным метрическим расширением (X,d), $\overline{X}=\widehat{X}$, которое называется пополнением метрического пространства X по метрике d.

Предложение 4.

Пусть (X,d) полное метрическое пространство, $G=\bigcap_n U_n\subset X$, где U_n открыто в X,

$$f_n(x) = d(x, X \setminus U_n) = \inf\{d(x, y) : y \in X \setminus U_n\}$$

для $n \in \mathbb{N}$ и $x \in X$,

$$\rho_n(x,y) = \min\left\{1, \left|\frac{1}{f_n(x)} - \frac{1}{f_n(y)}\right|\right\},$$

$$\rho(x,y) = d(x,y) + \sum_{n=1}^{\infty} \frac{1}{2^n} \rho_n(x,y).$$

для $x,y\in G$. Тогда метрика ho полна и задает туже топологию на G что и метрика d

Предложение 5.

 ${\sf G}_\delta$ подмножество полного метрическое пространство метризуемо полной метрикой.

Предложение 6.

Если $Y\subset X\subset \overline{Y}$ и Y метризуемо полной метрикой, то Y множество типа G_δ в X.

Предложение 7.

Если $Y \subset X$, Y метризуемо полной метрикой и X метризуемо, то Y множество типа G_δ в X.

Пространство X называется абсолютной G_{δ} , если для любого расширения $Y,\ X\subset Y\subset \overline{X}$, множество X множеством типа G_{δ} в Y.

Из предложений 3, 5 и 6 вытекает

Предложение 8.

Метризуемое пространство X метризуемо полной метрикой если и только если X является абсолютной G_{δ} .

Theorem 1.1.

Пусть X есть метризуемое пространство, $M\subset X$. Игра BM(X,M) α -благоприятна если и только если существует открытое непустое $U\subset X$ и абсолютное G_δ подмножество $G\subset M$, так что $G\subset U\subset \overline{G}$.

Детерминированность игры Банаха-Мазура

Множество $M\subset X$ называется детерминированным, если игра Банаха-Мазура BN(X,M) детерминированна, то есть либо у α есть выигрышная стратегия либо у β есть выигрышная стратегия.

Предложение 9.

Если X является полным метрическим пространством без изолированных точек, $M \subset X$. Если M является детерминированным множеством, то либо в M либо в $X \setminus M$ есть подмножество G типа G_δ без изолированных точек.

Предложение 10.

Если X является полным метрическим пространством без изолированных точек то X содержит $Y\subset X$, гомеоморфное канторову множеству $\mathbb C$.

Множество Берштейна

Множество $M\subset X$ называется множеством Берштейна, если $P\cap M\neq\varnothing$ и $P\setminus M\neq\varnothing$ для любого несчетного замнутого нигде не плотного множества $P\subset X$. Дополнение $X\setminus M$ до множества Берштейна M также является множеством Берштейна.

Предложение 11.

Существует множество Берштейна $M\subset X=\mathbb{I}=[0,1].$

Для любого $Y\subset \mathbb{I}$, гомеоморфное канторову множеству \mathbb{C} , Y замкнуто и нигде не плотно в \mathbb{I} . Следовательно, $Y\cap M\neq\varnothing$ и $Y\setminus M\neq\varnothing$ для множества Берштейна M.

Предложение 12.

Множество Берштейна $M\subset \mathbb{I}$ не является детерминироанным множеством.

Пространство Бэра

Пусть X множество.

Метрическое пространство $B(X)=(X^\omega,d)$ называеться пространством Бэра, где

$$d(x,y) = \begin{cases} 0 & x = y, \\ \frac{1}{n+1} & n = \min\{m : x_m \neq y_m\} \end{cases}$$

где $x=(x_n)_n, y=(y_n)_n\in X^\omega.$

Положим

$$X^{<\omega} = \bigcup_{n=0}^{\infty} X^n,$$

где $X^0=\{\varnothing\}.$

Пусть $x = (x_k)_k \in X^m$, $y = (y_k)_k \in X^l$, $n \le m < \omega$, $l < \omega$. Положим

$$x|_n = (x_0, x_1, ... x_{n-1}),$$

 $x \hat{y} = (x_0, x_1, ... x_m, y_0, y_1, ... y_l)$

Введем порядок на $X^{<\omega}$,

$$x \prec y$$

если и только если $1 \le m$ и $y = x|_{I}$.

Положим $U(X,x)=\{z\in B(X):x\succ z\}=\{z\in X^\omega:x=z|_m\}$ для $x\in X^{<\omega}$.

Предложение 13.

Множества вида U(X,x), $x\in X^{<\omega}$ образуют базу в B(X).

Предложение 14.

(B(X),d) является полным метрическим пространством.

Предложение 15.

Отображение

$$f: B(\{0,1\}) \to \mathbb{C} \subset [0,1]: (x_0,x_1,...) \mapsto 2 \cdot (x_0x_1...)_3$$

гомеоморфно отображает $B(\{0,1\})$ на канторово множество \mathbb{C} .

Предложение 16.

Пусть $\mathbb{P}_+ = \mathbb{P} \cap (0, +\infty)$. Отображение

$$f: B(\mathbb{N}) \to \mathbb{P}_+: (x_0, x_1, ...) \mapsto [x_0; x_1, x_2, x_3, \cdots] =$$

$$= x_0 + \frac{1}{x_1 + \frac{1}{x_2 + \frac{1}{x_2 + \cdots}}}$$

гомеоморфно отображает $B(\mathbb{N})$ на положительные иррациональные числа \mathbb{P}_+ .

Ориентированный граф

Пусть X множество. Любое *отношение* $R\subset X\times X$ можно трактовать как *ориентированный граф*. Пара $(x,y)\in R$ можно воспринимать как *дугу* от *вершины* x к вершине y. Множество всех подмножеств множества X обозначим через 2^X . Отношению R соответствует отображение $X\to 2^X$: $R(x)=\{y\in X: (x,y)\in R\}$. Вершина x называется терминальной (концевой узел, лист) если $R(x)=\varnothing$.