Задание 1. Как Уильям Томсон стал лордом Кельвином (Решение)

Задача 1.

1.1 Расчет характеристик приведенной цепи традиционен и основан на законах параллельного и последовательного соединения проводников. Результаты расчетов приведены в Таблице 1.

Таблица 1.

Схема	Сопротивление	Силы токов	
$ \begin{array}{c c} I_2 & I_3 \\ \hline I'_3 & R \\ \hline 2R & R_{x3} \end{array} $	$R_{x3} = R$	$I_3' = I_3 \frac{R_{x3}}{2R} = \frac{1}{2} I_3$	
$ \begin{array}{c c} I_1 & I_2 & I_3 \\ \hline I'_2 & R & A \\ \hline 2R & 2R & R_{x2} \end{array} $	3	$=\frac{1}{4}I_3$	·
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$I_1' = I_1 \frac{R_{x1}}{2R} = \frac{21}{8} I_3$	$I_0 = I_1 + I_1' = $ $= \frac{43}{8}I_3$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R_{x0} = R + \frac{2R \cdot R_{x1}}{2R + R_{x1}} = \frac{85}{43}R$		

1.2 Сила тока I_0 определяется по закону Ома (сопротивление всей цепи есть R_{x0}):

$$I_0 = \frac{U_0}{R_{x0}} = \frac{43}{85} \frac{U_0}{R} \,. \tag{1}$$

В Таблице получена связь между токами, из которой следует

$$I_0 = \frac{43}{8}I_3 \implies I_3 = \frac{8}{43}I_0 = \frac{8}{85}\frac{U_0}{R}.$$
 (2)

1.3 Требуемые отношения сил токов равны

$$\frac{I_1}{I_0} = \frac{11}{4} \frac{8}{43} = \frac{22}{43} \approx 0,51$$
 $\frac{I_2}{I_1} = \frac{3}{2} \frac{4}{11} = \frac{6}{11} \approx 0,55$
(3)

Задача 2.

2.1 В условии исходные данные заданы с двумя значащими цифрами, поэтому с такой же точностью следует проводить расчет цепи. Сопротивления R_2 в тысячу раз меньше сопротивлений R_1 . Поэтому силы токов через резисторы R_2 более чем в 100 раз меньше, чем силы токов через резисторы R_1 . Следовательно, с приемлемой погрешностью при расчете сил токов I_0 и I_1 токами через резисторы R_2 можно пренебречь. Поэтому эти силы токов равны

$$I_0 \approx I_1 = \frac{U_0}{7R_1} = 1,0 \ A. \tag{4}$$
 2.2 Разность сил токов $\Delta I = \left(I_0 - I_1\right)$ равна сумме сил токов «утечки» через резисторы R_2 .

2.2 Разность сил токов $\Delta I = (I_0 - I_1)$ равна сумме сил токов «утечки» через резисторы R_2 . Выберем произвольный резистор, номер которого обозначим k (k = 1,2,...7). В рамках использованного приближения, напряжение на этом резисторе равно

$$U_{k}' = U_{0} - I_{0}R_{1}k = \frac{U_{0}}{7}(7 - k).$$
(5)

Поэтому сила тока через этот резистор равна

$$I_k' = \frac{U_k'}{R_2} = \frac{U_0}{7R_2} (7 - k). \tag{6}$$

Осталось просуммировать эти силы токов:

$$\Delta I = (I_0 - I_1) = \sum_{k=1}^{7} I_k' = \sum_{k=1}^{7} \frac{U_0}{7R_2} (7 - k)$$
(7)

Элементарный расчет приводит к результату

$$\Delta I = \frac{U_0}{3R_2} = 0.33 \text{ mA} \tag{8}$$

Задача 3.

3.1 Расчет сопротивления бесконечной цепочки достаточно известен. Обозначим это сопротивление R_x . Если от бесконечной цепочки мысленно отключить первое звено, то сопротивление оставшейся цепочки также будет равно R_x . Это позволяет построить эквивалентную R_x Теоретический тур. Вариант 1.

9 класс. Решения задач. Бланк для жюри.

схему цепочки. Запишем теперь выражение для сопротивления всей цепочки

$$R_{x} = R_{1} + \frac{R_{x}R_{2}}{R_{x} + R_{2}}. (9)$$

Это выражение следует рассматривать как квадратное уравнение для нахождения неизвестного сопротивления R_x :

$$R_{\rm r}^2 - R_{\rm r} R_{\rm l} - R_{\rm l} R_{\rm 2} = 0. {10}$$

Положительный корень этого уравнения определяется по формуле (отрицательное сопротивления физического смысла не имеет):

$$R_x = \frac{R_1 + \sqrt{R_1^2 + 4R_1R_2}}{2} \,. \tag{11}$$

При $R_1 = R_0$, $R_2 = 2R_0$ сопротивление цепочки оказывается равным:

$$R_x = 2R_0. (12)$$

3.2 Рассмотрим произвольное звено бесконечной цепочки, схема которого и направления сил токов показаны на рисунке. Для этих сил токов можно записать два равенства

 $I_{k-1} = I_k + I_k'$

 $I_{\iota}R_{\iota}=I'_{\iota}R_{2}$

$$(13) \qquad \begin{matrix} R_1 \\ R_1 \\ I'_k \end{matrix} \qquad \begin{matrix} R_2 \\ R_z \end{matrix} \qquad \begin{matrix} R_x \\ R_x \end{matrix}$$

Из этих выражений следует, что

$$I_{k} = \frac{I_{k-1}}{1 + \frac{R_{x}}{R_{2}}} \tag{13}$$

Это рекуррентное соотношение определяет геометрическую прогрессию для последовательности значений сил токов. В явном виде можно записать формулу для геометрической прогрессии

$$I_k = \gamma^k I_0. (14)$$

где

$$\gamma = \left(1 + \frac{R_x}{R_2}\right)^{-1}, \quad I_0 = \frac{U_0}{R_x}.$$
 (15)

3.3 Подстановка параметров цепи в эти формулы дает $\gamma = \frac{1}{2}, \quad I_0 = \frac{U_0}{2R_0}$. Тогда значения всех

сил токов описываются формулой

$$I_{k} = \frac{U_{0}}{2R_{0}} \cdot 2^{-k} . {16}$$

Иными словами, после каждого звена сила тока уменьшается в два раза.

3.4 При условии $R_2 >> R_1$ в формуле (11) надо оставить только самое большое слагаемое, которое определяет сопротивление всей цепи

Теоретический тур. Вариант 1. 9 класс. Решения задач. Бланк для жюри.

Заключительный этап республиканской олимпиады по учебному предмету «Физика» 2023-2024 учебный год

$$R_{x} = \frac{R_{1} + \sqrt{R_{1}^{2} + 4R_{1}R_{2}}}{2} \approx \sqrt{R_{1}R_{2}}.$$
 (17)

3.5 В этом случае значения сил токов также образуют геометрическую прогрессию Знаменатель этой прогрессии и сила тока в цепи равны

$$\gamma = \left(1 + \frac{R_x}{R_2}\right)^{-1} = \left(1 + \sqrt{\frac{R_1}{R_2}}\right)^{-1} \approx \left(1 - \sqrt{\frac{R_1}{R_2}}\right).$$

$$I_k = \frac{U_0}{\sqrt{R_1 R_2}}$$
(18)

Тогда явный вид формулы для значений сил токов записывается в виде:

$$I_{k} = \frac{U_{0}}{\sqrt{R_{1}R_{2}}} \left(1 - \sqrt{\frac{R_{1}}{R_{2}}} \right)^{k}. \tag{19}$$

Задача 4

4.1 Сопротивление медной жилы длиной Δl рассчитывается по формуле

$$R_1 = \rho_1 \frac{4\Delta l}{\pi d_0^2} \ . \tag{20}$$

Подставив численные значения, получим (все величины в системе СИ):

$$R_1 = 1.7 \cdot 10^{-8} \frac{4 \cdot 10^4}{\pi \cdot (2 \cdot 10^{-2})^2} = 0.54 \, Om.$$
 (21)

Сопротивление всего кабеля

$$R_{1\Sigma} = R_1 \frac{L}{\Delta l} = 0,54 \frac{5000}{10} = 270 \ Om \ .$$
 (22)

4.2 Ток через изоляцию протекает перпендикулярно оси кабеля, поэтому ее сопротивление равно

$$R_2 = \rho_2 \frac{h}{\pi \left(d + \frac{h}{2}\right) \Delta l} = 1.7 \cdot 10^{10} \frac{5.0 \cdot 10^{-3}}{\pi \cdot 25 \cdot 10^{-3} \cdot 10^4} = 1.1 \cdot 10^5 Om.$$
 (23)

Толщина изоляции сравнима с диаметром жилы, поэтому площадь поперечного сечения увеличивается по мере удаления от жилы. Поэтому в качестве разумного приближения взято сечении на половине слоя изоляции.

4.3 Не смотря на то, что кабель представляет непрерывную систему, можно разбить ее на отдельные куски некоторой длины

Теоретический тур. Вариант 1.

9 класс. Решения задач. Бланк для жюри.

Заключительный этап республиканской олимпиады по учебному предмету «Физика» 2023-2024 учебный год

 Δl (например 10 км). В этом случае эквивалентной схемой является бесконечная цепочка, рассмотренная в задаче 3.

4.4 Для расчета отношения сил токов на выходе и входе следует воспользоваться формулой (19)

$$I_1 = I_0 \left(1 - \sqrt{\frac{R_1}{R_2}} \right)^N. \tag{24}$$

Здесь $N = \frac{L}{\Delta l}$. Выразим отношение сопротивлений, входящих в эту формулу

$$\sqrt{\frac{R_1}{R_2}} = \sqrt{\frac{\rho_1}{\rho_2} \frac{4\Delta l}{\pi d_0^2} \cdot \frac{\pi \left(d_0 + \frac{h}{2}\right) \Delta l}{h}} = \alpha \Delta l.$$
 (25)

Введенная здесь постоянная величина, равна

$$\alpha = \sqrt{\frac{\rho_1}{\rho_2} \frac{4\left(d_0 + \frac{h}{2}\right)}{d_0^2 h}} = 5.0 \cdot 10^{-7} \,\text{M}^{-1} \,. \tag{26}$$

Теперь можно переписать формулу (24) в виде

$$\frac{I_1}{I_0} = \left(1 - \sqrt{\frac{R_1}{R_2}}\right)^N = \left(1 - \alpha \Delta l\right)^{\frac{L}{\Delta l}}.$$
 (27)

Можно убедиться в том, что при $\alpha \Delta l << 1$ результаты расчетов практически не зависят от искусственно выбранного значения Δl .

Так при $\Delta l = 10 \kappa M$ получаем

$$\frac{I_1}{I_0} = (1 - \alpha \Delta l)^{\frac{L}{\Delta l}} = (1 - 5.0 \cdot 10^{-7} \cdot 10^4)^{500} = 0.082$$
 (28)

т.е. сила тока уменьшилась примерно в 20 раз. Понятно, что не утечка тока являлась основной причиной неработоспособности трансатлантического кабеля!

<u>Дополнение (от участников олимпиады не требуется).</u> Строго говоря, в формуле (27) необходимо устремить $\Delta l \to 0$. В этом случае

$$\frac{I_1}{I_0} = (1 - \alpha \Delta l)^{\frac{L}{\Delta l}} = \exp(-\alpha L) = 0.082,$$

что совпадает с ранее полученным результатом.

Также можно указать смысл постоянной α : обратная ей величина $\frac{1}{\alpha} \approx 2000 \, \text{км}$ есть расстояние на котором сила тока в кабеле убывает в $e \approx 2,7$ раз.

Задание 2. Вытекание (решение).

Часть 1. Бросок

Шарик равноускоренно ускорением движется свободного падения \vec{g} , направленным вертикально вниз. Если высота подъема шарика равна h, то введенная координата шарика равна

$$z = h_0 - h. (1)$$

$$\frac{mv_0^2}{2} = mgh_0 \tag{2}$$

Из этой формулы получаем:

$$h_0 = \frac{v_0^2}{2g}. (3)$$

1.2 Проекции ускорения и начальной скорости на введенную ось z равны

$$a_z = +g$$

$$v_{0z} = -v_0$$
(4)

1.3 Зависимость скорости шарика от его координаты легко выразить из закона сохранения энергии

$$\frac{mv_0^2}{2} = mgh_0 = \frac{mv^2}{2} + mgh. ag{5}$$

Из которого следует (с учетом знака проекции), что
$$v_z(z) = -\sqrt{2g(h_0 - h)} = -\sqrt{2gz} \ . \tag{6}$$

1.4 Из формулы (5) выразим

$$mgh_0 = \frac{mv^2}{2} + mgh \quad \Rightarrow \quad h = h_0 - \frac{v^2}{2g} \tag{7}$$

Так как движение шарика является равноускоренным, то зависимость скорости от времени описывается функцией

$$v = v_0 - gt. (8)$$

Поэтому зависимость координаты
$$z(t)$$
 имеет вид
$$z(t) = h_0 - h = \frac{v^2}{2g} = \frac{(v_0 - gt)^2}{2g}. \tag{9}$$

Примечание. Все формулы этой части могут быть получены чисто «кинематически», используя законы равноускоренного движения. При таком подходе проще всего использовать известную формулу

$$\Delta x = \frac{v^2 - v_0^2}{2a}.$$

Теоретический тур. Вариант 1. 9 класс. Решения задач. Бланк для жюри.

1.5 График функции (9) показан на рисунке

Кривая является параболой.

На графике обозначено

$$h_0 = \frac{v_0^2}{2g}$$
 - начальная и конечная

координата шарика;

 $au = \frac{v_0}{g}$ - время подъема шарика.

Зависимость координаты от времени

1.6 Значения показателей степеней могут легко быть найдены, используя метод размерностей

$$\alpha = \frac{1}{2}, \quad \beta = -\frac{1}{2}. \tag{10}$$

То есть формула для искомого времени имеет вид

$$\tau_{0,5} = C\sqrt{\frac{h_0}{g}} \ . \tag{11}$$

1.7 Для расчета значения коэффициента C подставим выражение (11) для времени и формулу $v_0 = \sqrt{2gh_0}$ для начальной скорости в уравнение (9):

$$z = \frac{\left(v_0 - gt\right)^2}{2g} \quad \Rightarrow \quad 2g\frac{h_0}{2} = \left(\sqrt{2gh_0} - gC\sqrt{\frac{h_0}{g}}\right)^2 \quad \Rightarrow \quad 1 = \left(\sqrt{2} - C\right)^2 \tag{12}$$

Из этого уравнения находим два возможных значения коэффициента C:

$$C_{12} = \sqrt{2} \pm 1 \tag{13}$$

Два корня имеют физический смысл: шарик находится на половине высоты дважды – при подъеме и при спуске. По смыслу задачи необходимо выбрать меньший корень, поэтому

$$C = \sqrt{2} - 1 \tag{14}$$

<u>Примечание.</u> Результаты могут быть получены и с помощью непосредственного решения уравнения (9) без перехода к безразмерным параметрам.