Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels

Simon S. Du, Kangcheng Hou, Barnabas Poczos, Ruslan Salakhutdinov, Ruosong Wang, Keyulu Xu

Presenter: Jian Kang

04/01/2020

Outline

- Introduction
- Related Work
- Technical Details
 - Background: Infinite-Width Networks and Neural Tangent Kernel
 - Graph Neural Tangent Kernel (GNTK)
- Experimental Results
- Conclusion

Classification on Graphs

- Requirement: effectively exploit the structure of graphs
- Major classes of methods
 - Graph Kernels: build feature vectors based on combinatorial properties of input graphs
 - Examples: random walk kernel, WL subtree kernel, graphlet kernel
 - Graph Neural Networks: use multi-layer structures with non-linear activation functions to aggregate local information and to extract high-order features
 - Examples: GCN, GraphSAGE, GIN, JK-Net

Pros and Cons

Graph Kernels

- Pros
 - convex optimization: easy to train
 - explicit expressions: easy to analyze theoretical guarantees
- Cons
 - handcrafted features: not powerful enough to capture high-order information

Graph Neural Networks

- Pros
 - non-handcrafted high-order features
- Cons
 - non-convex optimization
 - bad stability
 - limited theoretical understanding

Pros and cons of GKs and GNNs are complementary.

Can we build a model that enjoys the best of both worlds?

Outline

- Introduction
- Related Work
- Technical Details
 - Background: Infinite-Width Networks and Neural Tangent Kernel
 - Graph Neural Tangent Kernel (GNTK)
- Experimental Results

Related Work: Connecting Kernels and NNs

- NNs as Gaussian processes
 - single-layer fully-connected neural network (FCNN) [Neal, 1996]
 - multi-layer FCNN [Lee et al., 2018]
 - convolutional neural network (CNN) [Novak et al., 2019]
- NNs as neural tangent kernels
 - FCNN [Jacot et al., 2018]
 - CNN [Arora et al., 2019]

Outline

- Introduction
- Related Work
- Technical Details
 - Background: Infinite-Width Networks and Neural Tangent Kernel
 - Graph Neural Tangent Kernel (GNTK)
- Experimental Results

Training Error vs. Test Error: Traditional Machine Learning

- Goal: find a 'sweet spot' for the model complexity
 - 'big' enough to achieve reasonably good training error
 - 'small' enough to control the generalization gap*

^{*} generalization gap = |training error - test error|

Training Error vs. Test Error: Deep Learning

- DNNs are over-parameterized -> high model complexity
- 'Double descent' phenomenon
 - training error: near zero
 - test error: low
- Question: how does an infinite-width network perform?

Infinite-Width Network

- Why infinite-width network?
 - infinite limit usually reveals interesting properties when studying a problem in math/physics
 - previous work on connecting infinite-width network with Gaussian processes (single-layer FCNN [Neal, 1996], multi-layer FCNN [Lee et al., 2018])

Infinite-Width Network

- Considering standard supervised learning,
 - n training data samples $\{(x_i, y_i)\}_{i=1}^n$
 - squred loss function $\ell(\boldsymbol{\theta}) = 1/2 \sum_{i=1}^{n} (f(\boldsymbol{\theta}, \boldsymbol{x}_i) y_i)^2$
 - minimizing by gradient descent with infinitesimal step size (aka. gradient flow)
 - gradient flow: steepest descent curve in continuous time, defined as $\frac{d\theta(t)}{dt} = -\nabla \ell(\theta(t))$
- Let $u(t)=ig(f(\pmb{\theta}(t),\pmb{x}_i)ig)_{i\in[n]}$ and $\pmb{y}=(y_i)_{i\in[n]}$, then the dynamics of $\pmb{u}(t)$ is equal to $-\pmb{H}(t)\cdot(\pmb{u}(t)-\pmb{y})$
 - $[\boldsymbol{H}(t)]_{ij} = <\frac{\partial f(\boldsymbol{\theta}(t), x_i)}{\partial \boldsymbol{\theta}}, \frac{\partial f(\boldsymbol{\theta}(t), x_j)}{\partial \boldsymbol{\theta}}>$
 - easy to prove: simple differentiation with chain rule

Neural Tangent Kernel (NTK)

• Recall
$$[\Theta(t)]_{ij} = < \frac{\partial f(\theta(t), x_i)}{\partial \theta}, \frac{\partial f(\theta(t), x_j)}{\partial \theta} >$$

- If width goes to infinity,
 - $\Theta(t)$ remains constant during training (i.e., equal to $\Theta(0)$)
 - proof by induction, the variations of activations and weights shrinks as the width grows
 - see detailed proof in [Jacot et al., 2018]
 - under random initialization on infinite-width network, $\Theta(0)$ converges to a deterministic kernel matrix Θ
- Neural Tangent Kernel (NTK): the deterministic kernel matrix Θ , where

$$[\mathbf{\Theta}(t)]_{ij} = <\frac{\partial f(\theta, x_i)}{\partial \theta}, \frac{\partial f(\theta, x_j)}{\partial \theta}>$$

NTK Formulas

• Building upon [Lee et al., 2018], let us define

$$\begin{split} & \Sigma^{(0)}(\boldsymbol{x}, \boldsymbol{x}') = \boldsymbol{x}^{\top} \boldsymbol{x}', \\ & \boldsymbol{\Lambda}^{(h)}(\boldsymbol{x}, \boldsymbol{x}') = \begin{pmatrix} \Sigma^{(h-1)}(\boldsymbol{x}, \boldsymbol{x}) & \Sigma^{(h-1)}(\boldsymbol{x}, \boldsymbol{x}') \\ \Sigma^{(h-1)}(\boldsymbol{x}', \boldsymbol{x}) & \Sigma^{(h-1)}(\boldsymbol{x}', \boldsymbol{x}') \end{pmatrix} \in \mathbb{R}^{2 \times 2}, \\ & \Sigma^{(h)}(\boldsymbol{x}, \boldsymbol{x}') = c_{\sigma} & \mathbb{E} \\ & (u, v) \sim \mathcal{N} \big(\mathbf{0}, \boldsymbol{\Lambda}^{(h)} \big) \\ & \dot{\Sigma}^{(h)}(\boldsymbol{x}, \boldsymbol{x}') = c_{\sigma} & \mathbb{E} \\ & (u, v) \sim \mathcal{N} \big(\mathbf{0}, \boldsymbol{\Lambda}^{(h)} \big) \\ & \dot{\boldsymbol{\Sigma}}^{(h)}(\boldsymbol{x}, \boldsymbol{x}') = c_{\sigma} & \mathbb{E} \\ & (u, v) \sim \mathcal{N} \big(\mathbf{0}, \boldsymbol{\Lambda}^{(h)} \big) \end{split}$$

- We have the final NTK expression of FCNN as $\Theta^{(L)}(x,x') = \sum_{h=1}^{L+1} \left(\Sigma^{(h-1)}(x,x') \cdot \prod_{h'=h}^{L+1} \dot{\Sigma}^{(h')}(x,x') \right)$
 - written in a recursive manner, we have

$$\Theta_{\infty}^{(L+1)}(x,x') = \Theta_{\infty}^{(L)}(x,x')\dot{\Sigma}^{(L+1)}(x,x') + \Sigma^{(L+1)}(x,x')$$

- Can be derived by first-order Taylor expansion on NN function
- See detailed derivation in [Jacot et al., 2018] or [Arora et al., 2019]

Outline

- Introduction
- Related Work
- Technical Details
 - Background: Infinite-Width Networks and Neural Tangent Kernel
 - Graph Neural Tangent Kernel (GNTK)
- Experimental Results

Graph Neural Networks

- BLOCK operation
 - aggregate features over the neighborhood $\mathcal{N}(u) \cup \{u\}$ of node u
 - transform the aggregated features with non-linearity

$$\text{BLOCK}^{(\ell)}(u) = \sqrt{\frac{c_{\sigma}}{m}} \cdot \sigma \left(W_{\ell} \cdot c_{u} \sum_{v \in \mathcal{N}(u) \cup \{u\}} h_{v}^{(\ell-1)} \right)$$

$$\text{BLOCK}^{(\ell)}(u) = \sqrt{\frac{c_{\sigma}}{m}} \sigma \left(W_{\ell,2} \sqrt{\frac{c_{\sigma}}{m}} \cdot \sigma \left(W_{\ell,1} \cdot c_{u} \sum_{v \in \mathcal{N}(u) \cup \{u\}} h_{v}^{(\ell-1)} \right) \right)$$

$$\text{# BLOCK} = \mathbf{1}$$

• READOUT operation: get the representation of an entire graph

$$\boldsymbol{h}_{G} = \operatorname{READOUT}\left(\left\{\boldsymbol{h}_{u}^{(L)}, u \in V\right\}\right) = \sum_{u \in V} \boldsymbol{h}_{u}^{(L)} \qquad \boldsymbol{h}_{G} = \operatorname{READOUT^{JK}}\left(\left\{\boldsymbol{h}_{u}^{(\ell)}, u \in V, \ell \in [L]\right\}\right) = \sum_{u \in V} \left[\boldsymbol{h}_{u}^{(0)}; \dots; \boldsymbol{h}_{u}^{(L)}\right]$$

without jumping knowledge with jumping knowledge

Graph Neural Tangent Kernel (GNTK)

- Goal: translate GNN architecture to GNTK
 - Key: how to translate BLOCK and READOUT operations
- Intuition: recall NTK formulas

$$\begin{split} & \boldsymbol{\Sigma}^{(0)}(\boldsymbol{x},\boldsymbol{x}') = \boldsymbol{x}^{\top}\boldsymbol{x}', \\ & \boldsymbol{\Lambda}^{(h)}(\boldsymbol{x},\boldsymbol{x}') = \begin{pmatrix} \boldsymbol{\Sigma}^{(h-1)}(\boldsymbol{x},\boldsymbol{x}) & \boldsymbol{\Sigma}^{(h-1)}(\boldsymbol{x},\boldsymbol{x}') \\ \boldsymbol{\Sigma}^{(h-1)}(\boldsymbol{x}',\boldsymbol{x}) & \boldsymbol{\Sigma}^{(h-1)}(\boldsymbol{x}',\boldsymbol{x}') \end{pmatrix} \in \mathbb{R}^{2\times2}, \\ & \boldsymbol{\Sigma}^{(h)}(\boldsymbol{x},\boldsymbol{x}') = c_{\sigma} & \mathbb{E} & [\sigma\left(u\right)\sigma\left(v\right)]. \\ & \dot{\boldsymbol{\Sigma}}^{(h)}(\boldsymbol{x},\boldsymbol{x}') = c_{\sigma} & \mathbb{E} & [\dot{\sigma}(u)\dot{\sigma}(v)]. \\ & \dot{\boldsymbol{\Sigma}}^{(h)}(\boldsymbol{x},\boldsymbol{x}') = c_{\sigma} & \mathbb{E} & [\dot{\sigma}(u)\dot{\sigma}(v)] \\ & \boldsymbol{U}(\boldsymbol{x},\boldsymbol{v}) \sim \mathcal{N}(\boldsymbol{0},\boldsymbol{\Lambda}^{(h)}) & \boldsymbol{U}(\boldsymbol{x},\boldsymbol{x}') = \boldsymbol{U}(\boldsymbol{x},\boldsymbol{x}') \cdot \boldsymbol{\Sigma}^{(L+1)}(\boldsymbol{x},\boldsymbol{x}') + \boldsymbol{\Sigma}^{(L+1)}(\boldsymbol{x},\boldsymbol{x}'). \end{split}$$

Graph Neural Tangent Kernel (GNTK)

• Connect x^Tx with BLOCK and READOUT

Initialization

$$\left[\Theta_{(1)}^{(0)}(G,G')\right]_{uu'} \ = \ \left[\Sigma_{(1)}^{(0)}(G,G')\right]_{uu'} \ = \ \left[\Sigma^{(0)}(G,G')\right]_{uu'} \ = \ h_u^\top h_{u'}$$

BLOCK operation

$$\begin{split} & \left[\Sigma_{(0)}^{(\ell)}(G, G') \right]_{uu'} = c_u c_{u'} \sum_{v \in \mathcal{N}(u) \cup \{u\}} \sum_{v' \in \mathcal{N}(u') \cup \{u'\}} \left[\Sigma_{(R)}^{(\ell-1)}(G, G') \right]_{vv'}, \\ & \left[\Theta_{(0)}^{(\ell)}(G, G') \right]_{uu'} = c_u c_{u'} \sum_{v \in \mathcal{N}(u) \cup \{u\}} \sum_{v' \in \mathcal{N}(u') \cup \{u'\}} \left[\Theta_{(R)}^{(\ell-1)}(G, G') \right]_{vv'}. \end{split}$$

READOUT operation

$$\Theta(G, G') = \begin{cases} \sum_{u \in V, u' \in V'} \left[\Theta_{(R)}^{(\ell)}(G, G') \right]_{uu'} \\ \sum_{u \in V, u' \in V'} \left[\sum_{\ell=0}^{L} \Theta_{(R)}^{(\ell)}(G, G') \right]_{uu'} \end{cases}$$

without jumping knowledge

with jumping knowledge

$$\Sigma^{(0)}(\boldsymbol{x}, \boldsymbol{x}') = \boldsymbol{x}^{\top} \boldsymbol{x}',$$

$$\boldsymbol{\Lambda}^{(h)}(\boldsymbol{x}, \boldsymbol{x}') = \begin{pmatrix} \Sigma^{(h-1)}(\boldsymbol{x}, \boldsymbol{x}) & \Sigma^{(h-1)}(\boldsymbol{x}, \boldsymbol{x}') \\ \Sigma^{(h-1)}(\boldsymbol{x}', \boldsymbol{x}) & \Sigma^{(h-1)}(\boldsymbol{x}', \boldsymbol{x}') \end{pmatrix} \in \mathbb{R}^{2 \times 2},$$

$$\Sigma^{(h)}(\boldsymbol{x}, \boldsymbol{x}') = c_{\sigma} \underset{(u,v) \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Lambda}^{(h)})}{\mathbb{E}} [\sigma(u) \sigma(v)].$$

$$\dot{\Sigma}^{(h)}(\boldsymbol{x}, \boldsymbol{x}') = c_{\sigma} \underset{(u,v) \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Lambda}^{(h)})}{\mathbb{E}} [\dot{\sigma}(u)\dot{\sigma}(v)]$$

$$\Theta_{\infty}^{(L+1)}(x, x') = \Theta_{\infty}^{(L)}(x, x')\dot{\Sigma}^{(L+1)}(x, x') + \Sigma^{(L+1)}(x, x')$$

Translation between GNN and GNTK

Figure 1: Illustration of our recipe that translates a GNN to a GNTK. For a GNN with L=2 BLOCK operations, R=1 fully-connected layer in each BLOCK operation, and jumping knowledge, the corresponding GNTK is calculated as follow. For two graphs G and G', we first calculate $\left[\Theta_{(1)}^{(0)}(G,G')\right]_{uu'}=\left[\Sigma_{(1)}^{(0)}(G,G')\right]_{uu'}=\left[\Sigma_{(1)}^{(0)}(G,G')\right]_{uu'}=h_u^\top h_{u'}$. We follow the kernel formulas in Section 3 to calculate $\Sigma_{(0)}^{(\ell)},\Theta_{(0)}^{(\ell)}$ using $\Sigma_{(R)}^{(\ell-1)},\Theta_{(R)}^{(\ell-1)}$ (Aggregation) and calculate $\Sigma_{(r)}^{(\ell)},\dot{\Sigma}_{(r)}^{(\ell)},\Theta_{(r)}^{(\ell)}$ using $\Sigma_{(r-1)}^{(\ell)},\Theta_{(r-1)}^{(\ell)}$ (Nonlinearity). The final output is $\Theta(G,G')=\sum_{u\in V,u'\in V'}\left[\sum_{\ell=0}^L\Theta_{(R)}^{(\ell)}(G,G')\right]_{uu'}$.

- Considering standard supervised learning setup,
 - n training data $\{(G_i, y_i)\}_{i=1}^n$ drawn iid from an underlying distribution \mathcal{D}
 - a simple GNN with a single BLOCK operation and a READOUT operation (without jumping knowledge)
 - scaling factor $c_u = \left(\left\|\sum_{v \in \mathcal{N}(u) \cup \{u\}} \boldsymbol{h}_v\right\|_2\right)^{-1}$
 - kernel matrix **O** (assumed to be invertible)
- ullet For a graph G (i.e., a test point), the prediction of kernel regression with GNTK is

$$f_{ker}(G) = [\Theta(G, G_1) \dots \Theta(G, G_n)]^T \mathbf{\Theta}^{-1} \mathbf{y}$$

• Building upon [Bartlett and Mendelson, 2002],

Theorem 4.1 (Bartlett and Mendelson [2002]). Given n training data $\{(G_i, y_i)\}_{i=1}^n$ drawn i.i.d. from the underlying distribution \mathcal{D} . Consider any loss function $\ell : \mathbb{R} \times \mathbb{R} \to [0, 1]$ that is 1-Lipschitz in the first argument such that $\ell(y, y) = 0$. With probability at least $1 - \delta$, the population loss of the GNTK predictor can be upper bounded by

$$L_{\mathcal{D}}(f_{ker}) = \mathbb{E}_{(G,y)\sim\mathcal{D}}\left[\ell(f_{ker}(G),y)\right] = O\left(\frac{\sqrt{\boldsymbol{y}^{\top}\boldsymbol{\Theta}^{-1}\boldsymbol{y}\cdot\operatorname{tr}\left(\boldsymbol{\Theta}\right)}}{n} + \sqrt{\frac{\log(1/\delta)}{n}}\right).$$

- Remarks
 - data-dependent population risk bound (related to $oldsymbol{\Theta}$ and $oldsymbol{y}$) derived using Rademacher complexity
 - if $y^T \Theta^{-1} y$ and $tr(\Theta)$ can be bounded, GNTK that corresponds to this GNN can learn the target function with polynomial number of samples

• Bounding $y^T \Theta^{-1} y$

Theorem 4.2. For each $i \in [n]$, if the labels $\{y_i\}_{i=1}^n$ satisfy

$$y_i = \alpha_1 \sum_{u \in V} \left(\overline{h}_u^{\top} \beta_1 \right) + \sum_{l=1}^{\infty} \alpha_{2l} \sum_{u \in V} \left(\overline{h}_u^{\top} \beta_{2l} \right)^{2l}, \tag{3}$$

where $\overline{h}_u = c_u \sum_{v \in \mathcal{N}(u) \cup \{u\}} h_v$, $\alpha_1, \alpha_2, \alpha_4, \ldots \in \mathbb{R}$, $\beta_1, \beta_2, \beta_4, \ldots \in \mathbb{R}^d$, and $G_i = (V, E)$, then we have

$$\sqrt{y^{\top}\Theta^{-1}y} \le 2|\alpha_1| \cdot ||\beta_1||_2 + \sum_{l=1}^{\infty} \sqrt{2\pi}(2l-1)|\alpha_{2l}| \cdot ||\beta_{2l}||_2^{2l}.$$

- Proof sketch
 - By definition, if we use ReLU activation, we have

$$\begin{split} \Theta(G,G') &= \sum_{u \in V, u' \in V'} \left(\left[\Sigma_{(0)}^{(1)}(G,G') \right]_{uu'} \left[\dot{\Sigma}_{(1)}^{(1)}(G,G') \right]_{uu'} + \left[\Sigma_{(1)}^{(1)}(G,G') \right]_{uu'} \right) \\ &\left[\dot{\Sigma}_{(1)}^{(1)}(G,G') \right]_{uu'} = \frac{\pi - \arccos\left(\left[\Sigma_{(0)}^{(1)}(G,G') \right]_{uu'} \right)}{2\pi}, \\ &\left[\Sigma_{(1)}^{(1)}(G,G') \right]_{uu'} = \frac{\pi - \arccos\left(\left[\Sigma_{(0)}^{(1)}(G,G') \right]_{uu'} \right) + \sqrt{1 - \left[\Sigma_{(0)}^{(1)}(G,G') \right]_{uu'}^2}}{2\pi}. \end{split}$$

- Let $\Theta = \Theta_1 + \Theta_2$ and $\Theta_1(G,G') = \sum_{u \in V, u' \in V'} \left[\Sigma^{(1)}_{(0)}(G,G') \right]_{uu'} \left[\dot{\Sigma}^{(1)}_{(1)}(G,G') \right]_{uu'}$
- Since $\arcsin(x) = \sum_{l=0}^{\infty} \frac{(2l-1)!!}{(2l)!!} \cdot \frac{x^{2l+1}}{2l+1}$, we can bound Θ_1

- Proof sketch (cont'd)
 - Since Θ_2 in $\Theta = \Theta_1 + \Theta_2$ is PSD (because it is a kernel matrix), we have $y^\top \Theta^{-1} y \leq y^\top \Theta_1^{-1} y$.
 - If we rewrite $y_i = \alpha_1 \sum_{u \in V} \left(\overline{h}_u^{\mathsf{T}} \beta_1\right) + \sum_{l=1}^{\infty} \alpha_{2l} \sum_{u \in V} \left(\overline{h}_u^{\mathsf{T}} \beta_{2l}\right)^{2l} = y_i^{(0)} + \sum_{l=1}^{\infty} y_i^{(2l)}$, we can get $y = y^{(0)} + \sum_{l=1}^{\infty} y^{(2l)}$
 - Let $\Phi^{(2l)}(\cdot)$ be the feature map of the polynomial kernel of degree 2l, we have

$$\sqrt{y^{\top}\Theta^{-1}y} \leq \sqrt{y^{\top}\Theta_1^{-1}y} \leq \sqrt{\left(y^{(0)}\right)^{\top}\Theta_1^{-1}y^{(0)}} + \sum_{l=1}^{\infty} \sqrt{\left(y^{(2l)}\right)^{\top}\Theta_1^{-1}y^{(2l)}}.$$

When l = 0, we have

$$\sqrt{(y^0)^\top \Theta_1^{-1} y^0} \le 2|\alpha_1| \|\beta_1\|_2.$$

When l > 1, we have

$$\sqrt{(y^{2l})^{\top} \Theta_1^{-1} y^{2l}} \le \sqrt{2\pi} (2l-1) |\alpha_{2l}| \|\Phi^{2l} (\beta_{2l})\|_2$$
.

Notice that

$$\left\|\Phi^{2l}\left(\beta_{2l}\right)\right\|_{2}^{2}=\left(\Phi^{2l}\left(\beta_{2l}\right)\right)^{\top}\Phi^{2l}\left(\beta_{2l}\right)=\left\|\beta_{2l}\right\|_{2}^{4l}.$$

Thus,

$$\sqrt{y^{\top}\Theta^{-1}y} \le 2|\alpha_1|\|\beta_1\|_2 + \sum_{l=1}^{\infty} \sqrt{2\pi}(2l-1)|\alpha_{2l}|\|\beta_{2l}\|_2^{2l}.$$

• Bounding $tr(\Theta)$

Theorem 4.3. If for all graphs $G_i = (V_i, E_i)$ in the training set, $|V_i|$ is upper bounded by \overline{V} , then $\operatorname{tr}(\Theta) \leq O(n\overline{V}^2)$. Here n is the number of training samples.

Proof sketch

$$\left[\Sigma_{(0)}^{(1)}(G, G') \right]_{uu'} = c_u c_{u'} \left(\sum_{v \in \mathcal{N}(u) \cup \{u\}} h_v \right)^{\top} \left(\sum_{v' \in \mathcal{N}(u') \cup \{u'\}} h_{v'} \right) = \overline{h}_u^{\top} \overline{h}_{u'}
\left[\dot{\Sigma}_{(1)}^{(1)}(G, G') \right]_{uu'} = \frac{\pi - \arccos\left(\left[\Sigma_{(0)}^{(1)}(G, G') \right]_{uu'} \right)}{2\pi},$$

$$\left[\Sigma_{(1)}^{(1)}(G,G')\right]_{uu'} = \frac{\pi - \arccos\left(\left[\Sigma_{(0)}^{(1)}(G,G')\right]_{uu'}\right) + \sqrt{1 - \left[\Sigma_{(0)}^{(1)}(G,G')\right]_{uu'}^2}}{2\pi}$$

- by definition, we have $\|\overline{h_u}\|_2 = 1$
- $\bullet \ \ \text{we can easily find out that} \left[\Sigma_{(0)}^{(1)}(G,G') \right]_{uu'} \leq 1, \left[\Sigma_{(1)}^{(1)}(G,G') \right]_{uu'} \leq 1 \ \text{and} \left[\dot{\Sigma}_{(1)}^{(1)}(G,G') \right]_{uu'} \leq 1/2$
- then $\Theta(G, G') \le 2|V||V'|$, which implies $\operatorname{tr}(\mathbf{\Theta}) \le 2n\overline{V}^2$

Outline

- Introduction
- Related Work
- Technical Details
 - Background: Infinite-Width Networks and Neural Tangent Kernel
 - Graph Neural Tangent Kernel (GNTK)
- Experimental Results

Experimental Setting

- Datasets
 - bioinformatics: MUTAG, PTC, NCI1, PROTEINS
 - social network: COLLAB, IMDB-BINARY, IMDB-MULTI
- Pre-processing
 - categorical features -> one-hot encoding
 - use degree as input feature if no available node feature (i.e., topology only)

Effectiveness Results

• Task: graph classification

	Method	COLLAB	IMDB-B	IMDB-M	PTC	NCI1	MUTAG	PROTEINS
GNN	GCN	79.0 ± 1.8	74.0 ± 3.4	51.9 ± 3.8	64.2 ± 4.3	80.2 ± 2.0	85.6 ± 5.8	76.0 ± 3.2
	${\bf GraphSAGE}$	_	72.3 ± 5.3	50.9 ± 2.2	63.9 ± 7.7	77.7 ± 1.5	85.1 ± 7.6	75.9 ± 3.2
	PatchySAN	72.6 ± 2.2	71.0 ± 2.2	45.2 ± 2.8	60.0 ± 4.8	78.6 ± 1.9	$\textbf{92.6}\pm\textbf{4.2}$	75.9 ± 2.8
	DGCNN	73.7	70.0	47.8	58.6	74.4	85.8	75.5
	GIN	80.2 ± 1.9	75.1 ± 5.1	52.3 ± 2.8	64.6 ± 7.0	82.7 ± 1.7	89.4 ± 5.6	$\textbf{76.2}\pm\textbf{2.8}$
$_{ m GK}$	WL subtree	78.9 ± 1.9	73.8 ± 3.9	50.9 ± 3.8	59.9 ± 4.3	86.0 ± 1.8	90.4 ± 5.7	75.0 ± 3.1
	AWL	73.9 ± 1.9	74.5 ± 5.9	51.5 ± 3.6	_	_	87.9 ± 9.8	_
	RetGK	81.0 ± 0.3	71.9 ± 1.0	47.7 ± 0.3	62.5 ± 1.6	84.5 ± 0.2	90.3 ± 1.1	75.8 ± 0.6
	GNTK	83.6 ± 1.0	76.9 ± 3.6	52.8 ± 4.6	67.9 ± 6.9	84.2 ± 1.5	90.0 ± 8.5	75.6 ± 4.2

Table 1: Classification results (in %) for graph classification datasets. GNN: graph neural network based methods. GK: graph kernel based methods. GNTK: fusion of GNN and GK.

Efficiency Results

- Training on IMDB-B datasets with TITAN X GPU,
 - GIN takes 19 mins
 - GNTK takes 2 mins
- Not much details mentioned in the paper

Ablation Study

• Effects of # BLOCK operations and the scaling factor c_u

Figure 2: Effects of number of BLOCK operations and the scaling factor c_u on the performance of GNTK. Each dot represents the performance of a particular GNTK architecture. We divide different architectures into different groups by number of BLOCK operations. We color these GNTK architecture points by the scaling factor c_u . We observe the test accuracy is correlated with the dataset and the architecture.

Ablation Study

Effects of jumping knowledge and # MLP layers

Figure 3: **Effects of jumping knowledge and number of MLP layers on the performance of GNTK.** Each dot represents the test performance of a GNTK architecture. We divide all GNTK architectures into different groups, according to whether jumping knowledge is applied, or number of MLP layers.

References

- Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R. R., & Wang, R. (2019). On exact computation with an infinitely wide neural net. In *Advances in Neural Information Processing Systems*.
- Bartlett, P. L., & Mendelson, S. (2002). Rademacher and Gaussian complexities: Risk bounds and structural results. *Journal of Machine Learning Research*.
- Jacot, A., Gabriel, F., & Hongler, C. (2018). Neural tangent kernel: Convergence and generalization in neural networks. In *Advances in neural information processing systems*.
- Lee, J., Bahri, Y., Novak, R., Schoenholz, S. S., Pennington, J., & Sohl-Dickstein, J. (2017). Deep neural networks as gaussian processes. arXiv preprint arXiv:1711.00165.
- Neal, R. M. (1996). Priors for infinite networks. In Bayesian Learning for Neural Networks.
 Springer, New York, NY.
- Novak, R., Xiao, L., Lee, J., Bahri, Y., Yang, G., Hron, J., ... & Sohl-Dickstein, J. (2018). Bayesian deep convolutional networks with many channels are gaussian processes. *arXiv preprint* arXiv:1810.05148.