A PDE System Modeling Biological Network Formation

Peter Markowich

DAMTP, Cambridge

Work in collaboration with Jan Haskovec (KAUST) and Benoit Perthame (Paris VI)

Biological transport networks

Discrete modeling

Static and dynamic discrete graph-based models, deterministic and (geometric) random graphs.
 Topological and geometric properties - loops, trees, connectivity, scale-free graphs [Barabasi&Albert'1999, Newman'2003, Watts&Strogatz'1998, ...]

 Optimal mass transportation network modeling, based on a transportation cost law and Monge-Kantorovich theory [Bernot&Caselles&Morel'2009, Villani'2003&'2008, ...]

Optimal mass transportation

c(x, y) - cost of transport of a unit mass from x to yFind a measure $\gamma(x, y)$ which minimizes the total transportation cost

$$C_{\gamma} := \int_{\Omega \times \Omega} c(x, y) \gamma(\,\mathrm{d} x, \,\mathrm{d} y)$$

where the marginals of γ are given.

River Branching

New program

- Dynamic discrete network adaptation model by [Hu&Cai'2014] based on
 - Kirchoff's law
 - Darcy's pressure law
 - local energy minimization
- PDE model derived as gradient flow of the continuous version of the energy functional.

The network formation model

- $\Omega \subseteq \mathbb{R}^d$, $d \le 3$, bounded network domain (porous medium)
- p = p(t, x) scalar valued pressure
- m = m(t, x) vector valued conductance
- S = S(x) scalar valued source term

Kirchoff's conservation law: total outflux = the volume integral of sources.

$$-\nabla \cdot \underbrace{[(I+m\otimes m)\nabla p]}_{\text{flux}} = S \qquad \text{(Darcy's law)}$$

- $\mathbb{P}[m] := I + m \otimes m$ permeability tensor. Principal directions of network flow:
 - ① $\frac{m}{|m|}$ with principal permeability $1 + |m|^2$
 - 2 m^{\perp} with principal permeability 1 (uniform background)

The network formation model [Hu-Cai'2014]

Reaction diffusion system for the conductance *m*

$$\frac{\partial m}{\partial t} = \underbrace{D^2 \Delta m}_{\substack{\text{random effects} \\ \text{in the porous medium}}} + \underbrace{c^2 (m \cdot \nabla p) \nabla p}_{\substack{\text{activation (force)} \\ \text{term}}} - \underbrace{|m|^{2(\gamma - 1)} m}_{\substack{\text{relaxation term}}}$$

- ullet c>0 activation parameter, $D\geq 0$ diffusivity
- $\gamma \in \mathbb{R}$ relaxation exponent; in this talk: $\gamma > 1/2$ (transient sols.), $\gamma \geq 1$ (stationary sols.)
- homogeneous Dirichlet BC for m and p,

$$m|_{\partial\Omega}=0, \qquad p|_{\partial\Omega}=0 \qquad \forall t>0$$

• $m(t = 0, x) = m'(x), x \in \Omega$

PDE simulation results - Trees (D. Hu, 2014)

PDE simulation results - Loops (D. Hu, 2014)

First observation

• Switching the sign of c^2 , i.e.,

$$\frac{\partial m}{\partial t} = D^2 \Delta m - c^2 (m \cdot \nabla p) \nabla p - |m|^{2(\gamma - 1)} m$$

with p arbitrary, gives

$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} |m|^2 \, \mathrm{d}x = - D^2 \int_{\Omega} |\nabla m|^2 \, \mathrm{d}x - c^2 \int_{\Omega} |m \cdot \nabla p|^2 \, \mathrm{d}x$$
$$- \int_{\Omega} |m|^{2\gamma} \, \mathrm{d}x \le -C \int_{\Omega} |m|^2 \, \mathrm{d}x.$$

- \Rightarrow the only stationary solution is $m \equiv 0$.
- Therefore, $+c^2(m \cdot \nabla p)\nabla p$ is the activation term.

Gradient flow structure

 $L^2(\Omega)$ -gradient flow associated with the non-convex energy

$$\mathcal{E}(m) := \frac{1}{2} \int_{\Omega} \left(D^2 |\nabla m|^2 + \frac{|m|^{2\gamma}}{\gamma} + c^2 |m \cdot \nabla p[m]|^2 + c^2 |\nabla p[m]|^2 \right) dx.$$

Observe: $\int_{\Omega} \left(D^2 |\nabla m|^2 + \frac{|m|^{2\gamma}}{\gamma} \right) dx$ is convex for $\gamma \geq 1/2$; non-convexity due to the coupling with the Poisson equation.

Energy dissipation: Along smooth solutions m, p = p[m],

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{E}(m) = -\int_{\Omega} \left(\frac{\partial m}{\partial t}(t,x)\right)^2 \,\mathrm{d}x.$$

Mathematical problems

$$-\nabla \cdot [(I + m \otimes m)\nabla p] = S$$
$$\frac{\partial m}{\partial t} = D^2 \Delta m + c^2 (m \cdot \nabla p)\nabla p - |m|^{2(\gamma - 1)} m$$

General regularity results for the Poisson equation

$$-\nabla \cdot (\mathbf{A}(\mathbf{x})\nabla p) = \nabla \cdot F \quad \text{in } \Omega$$
$$p = 0 \quad \text{on } \partial \Omega$$

require at least $A \in L^{\infty}(\Omega)$.

- While the divergence part is controlled, how to control the rotational part of $(m \otimes m) \nabla p$?
- Iterating between *m* and *p* in the system destroys the energy dissipation equation.

Global existence of weak solutions for $\gamma>1/2$

Weak solutions for a regularized system

Thm: Let $S \in L^2(\Omega)$, $m^l \in L^2(\Omega)$. The regularized system

$$-\nabla \cdot [\nabla p + m((m \cdot \nabla p) * \eta_{\varepsilon})] = S$$
$$\frac{\partial m}{\partial t} = D^{2} \Delta m + c^{2} [(m \cdot \nabla p) * \eta_{\varepsilon}] \nabla p - |m|^{2(\gamma - 1)} m$$

with $\eta_{\varepsilon}(x) := (4\pi\varepsilon)^{-d/2} \exp(-|x|^2/4\varepsilon)$, admits a weak solution.

Proof: Leray-Schauder fixed point theorem for the mapping

$$\Phi: L^{2}((0,T)\times\Omega)\to L^{2}((0,T)\times\Omega)$$

$$\Phi: \overline{m}\mapsto p[\overline{m}]\mapsto m$$

Technical Lemma

For any $u \in L^1(\mathbb{R}^d)$ and $\eta \in L^\infty(\mathbb{R}^d) \cap L^1(\mathbb{R}^d)$ with $\hat{\eta} \geq 0$, we have

$$\int_{\mathbb{R}^d} (u * \eta) u \, \mathrm{d}x = \int_{\mathbb{R}^d} |u * \varrho|^2 \, \mathrm{d}x \ge 0$$

where $\varrho = \mathcal{F}^{-1}[(\hat{\eta})^{1/2}].$

Proof: Parseval's identity.

The regularized Poisson equation

For every $m, S \in L^2(\Omega)$ the regularized Poisson equation

$$-\nabla \cdot [\nabla p + m((m \cdot \nabla p) * \eta_{\varepsilon})] = S$$

admits a unique weak solution $p \in H_0^1(\Omega)$ such that

$$\|\nabla p\|_{L^2(\Omega)} \leq C_{\Omega} \|S\|_{L^2(\Omega)}$$
.

Proof: Lax-Milgram lemma for the bilinear form

$$B(p,\varphi) := \int_{\Omega} \nabla p \cdot \nabla \varphi \, \mathrm{d}x + \int_{\Omega} [(m \cdot \nabla p) * \eta_{\varepsilon}] (m \cdot \nabla \varphi) \, \mathrm{d}x.$$

Weak-strong argument for the Poisson equation

Let $m^k \to m$ strongly in $L^2(\Omega)$ and $p^k \in H^1_0(\Omega)$ be the weak solutions of

$$-\nabla\cdot[\nabla p^k+m^k((m^k\cdot\nabla p^k)*\eta_{\varepsilon})]=S.$$

Then $p^k \to p$ strongly in $H_0^1(\Omega)$, with p the unique solution of the regularized Poisson equation with m.

Proof: In Hilbert space,

 $\left. \begin{array}{l} \text{weak convergence} \\ \text{and convergence of } \text{norms} \end{array} \right\} \Rightarrow \text{ strong convergence}.$

Regularity for a parabolic problem

For every
$$f\in L^2((0,T) imes\Omega)^d$$
 and $m^l\in L^2(\Omega)^d$, the PDE
$$\frac{\partial m}{\partial t}-D^2\Delta m+|m|^{2(\gamma-1)}m=f$$

admits a unique weak solution m with

$$||m||_{L^{\infty}(0,T;L^{2}(\Omega))}, \qquad ||m||_{L^{2\gamma}((0,T)\times\Omega)}, \qquad ||\nabla m||_{L^{2}((0,T)\times\Omega)}$$

a-priori bounded in terms of $||f||_{L^2((0,T)\times\Omega)}$ and $||m'||_{L^2((0,T)\times\Omega)}$.

Note:
$$f := c^2[(m^k \cdot \nabla p[m^k]) * \eta_{\varepsilon}] \nabla p[m^k] \in L^2((0,T) \times \Omega).$$

Convergence of the algebraic term

Let $\{m^k\}_{k\in\mathbb{N}}$ uniformly bounded in $L^{\infty}(0, T; L^{2\gamma}(\Omega))$ and $m^k \to m$ strongly in $L^2((0, T) \times \Omega)$. Then

$$|m^k|^{2(\gamma-1)}m^k \rightharpoonup |m|^{2(\gamma-1)}m$$
 weakly* in $L^{\infty}(0,T;L^{\frac{2\gamma}{2\gamma-1}}(\Omega))$.

Proof:

- $h(m^k) := |m^k|^{2(\gamma-1)} m^k$ bounded in $L^{\infty}(0, T; L^{\frac{2\gamma}{2\gamma-1}}(\Omega))$ \Rightarrow a weakly* converging subsequence to $h^{\infty} \in L^{\infty}(0, T; L^{\frac{2\gamma}{2\gamma-1}}(\Omega))$
- $m^k \to m$ strongly in $L^2((0,T) \times \Omega) \Rightarrow$ a subsequence converging a.e. to m and $h(m^k)$ converging a.e. to h(m)

Consequently, $h^{\infty} = h(m)$.

Limit $\varepsilon \to 0$

The modified energy

$$\mathcal{E}_{\varepsilon}(m) := \frac{1}{2} \int_{\mathbb{R}^d} D^2 |\nabla m|^2 + \frac{|m|^{2\gamma}}{\gamma} + c^2 (m \cdot \nabla p) [(m \cdot \nabla p) * \eta_{\varepsilon}] + c^2 |\nabla p|^2 dx$$

satisfies, for (m, p) a solution of the regularized network formation system,

$$\frac{\mathrm{d}\mathcal{E}_{\varepsilon}(t)}{\mathrm{d}t} = -\int |\partial_t m|^2 \,\mathrm{d}x \leq 0$$

 \Rightarrow uniform a priori estimates in $\varepsilon > 0$

Note: With the heat kernel η_{ε} ,

$$c^2 \int_{\mathbb{R}^d} (m \cdot \nabla p) [(m \cdot \nabla p) * \eta_{\varepsilon}] \, \mathrm{d}x \ge 0 \qquad \text{for every } \varepsilon > 0.$$

Limit $\varepsilon \to 0$

- $m^{\varepsilon} \to m$ strongly in $L^2((0,T) \times \Omega)$ due to compact Sobolev embedding
- $p^{\varepsilon} \to p$ strongly in $L^2(0, T; H^1_0(\Omega))$ due to the weak-strong argument for the Poisson equation
- $q^{\varepsilon} := (m^{\varepsilon} \cdot \nabla p^{\varepsilon}) * \eta_{\varepsilon} \rightharpoonup q$ weakly* in $L^{\infty}(0, T; L^{2}(\Omega))$ due to the a priori energy estimate
- $q = m \cdot \nabla p$ due to the strong convergence of m^{ε} and ∇p^{ε}
- $q^{\varepsilon}m^{\varepsilon} \rightharpoonup qm$ and $q^{\varepsilon}\nabla p^{\varepsilon} \rightharpoonup q\nabla p$
- $|m^{\varepsilon}|^{2(\gamma-1)}m^{\varepsilon} \rightharpoonup |m|^{2(\gamma-1)}m$ weakly in $L^{\frac{2\gamma}{2\gamma-1}}((0,T)\times\Omega)$
- \bullet (m, p) weak solution of the network formation system
- Weak lower semicontinuity for the energy

$$\mathcal{E}(m(t)) + \int_0^t \int_{\Omega} \left(\frac{\partial m}{\partial t}(s, x) \right)^2 dx ds \leq \mathcal{E}(m^l) \quad \text{for all } t \geq 0.$$

The case $\gamma = 1/2$

- Relaxation term $r(m) := \frac{m}{|m|} \dots$ singularity in m = 0!
- Relaxation energy $R(m) := \int_{\Omega} |m| dx$ convex!

We prove the existence of a weak solution of

$$\partial_t m = D^2 \Delta m + c^2 (m \cdot \nabla p[m]) \nabla p[m] - \tilde{r}(m)$$

with

$$\tilde{r}(m) \in \partial R(m) = \{r \in L^{\infty}(\Omega); \ r(x) = m(x)/|m(x)| \ \text{if } m(x) \neq 0, \ |r(x)| \leq 1 \ \text{if } m(x) = 0\}$$

Conjecture:

$$\tilde{r}(m) = \begin{cases} \frac{m}{|m|} & \text{for } m \neq 0\\ 0 & \text{for } m = 0 \end{cases}$$

- Compact support property of solutions (e.g., [Brezis'1974])
- Sparse networks!

Besov regularity

$$\frac{\partial m}{\partial t} = D^2 \Delta m + c^2 (m \cdot \nabla p) \nabla p - |m|^{2(\gamma - 1)} m$$

• $m \cdot \nabla p \in L^{\infty}(0, \infty; L^{2}(\Omega)), \ \nabla p \in L^{\infty}(0, \infty; L^{2}(\Omega)) \ \text{imply}$ $(m \cdot \nabla p) \nabla p \in L^{\infty}(0, \infty; L^{1}(\Omega))$

the energy dissipation gives

$$\partial_t m \in L^2((0,\infty) \times \Omega), \qquad |m|^{2(\gamma-1)} m \in L^\infty(0,\infty; L^{\frac{2\gamma}{2\gamma-1}}(\Omega))$$

Consequently, $\Delta m \in L^2(0,\infty;L^1(\Omega))$ and the L^1 -parabolic regularity theory [Guidetti'93] implies the Besov regularity

$$m \in L^2(0,\infty; B^{2,1}_{\infty}(\Omega)).$$

Existence of mild solutions $(\gamma>1/2)$ and their uniqueness $(\gamma\geq1)$

Existence and uniqueness of mild solutions

Define the Banach spaces

$$\mathbb{X} := (L^{\infty}(\Omega) \cap VMO(\Omega)), \qquad \mathcal{X}_{\mathcal{T}} := L^{\infty}(0, \mathcal{T}; \mathbb{X}).$$

By the Duhamel formula, (m, p[m]) is a mild solution on the time interval (0, T) for a given activation parameter $c^2 > 0$ iff $(c, m) \in \mathbb{R}^+ \times \mathcal{X}_T$ is a solution of the nonlinear eigenvalue problem

$$\mathcal{T}(c^2,m)=m$$

with the operator \mathcal{T} defined on $\mathbb{R}^+ \times \mathcal{X}_{\mathcal{T}}$ by

$$\mathcal{T}(c^2, m) = e^{Lt} m' + \int_0^t e^{L(t-s)} (c^2 F[m](s) - G[m](s)) ds,$$

where $L := D^2 \Delta$ is the Dirichlet Laplacian and

$$F[m] = (m \cdot \nabla p[m]) \nabla p[m], \qquad G[m] = |m|^{2\gamma - 1}m.$$

Elliptic regularity

• [Marino'02]: Let $m \in \mathbb{X}$, $F \in L^q(\Omega)$, $S \in L^r(\Omega)$, $r := \max\{1, dq/(d+q)\}$. Then

$$-\nabla \cdot ((I + m \otimes m)\nabla p + F) = S \quad \text{in } \Omega,$$

$$p = 0 \quad \text{on } \partial \Omega$$

has a unique weak solution $p \in W^{1,q}(\Omega)$ such that

$$\|\nabla p\|_{L^{q}(\Omega)} \leq C(\|m\|_{\mathbb{X}}) \left(\|F\|_{L^{q}(\Omega)} + \|S\|_{L^{r}(\Omega)}\right).$$

• [Meyers'63]: For some q > 2 the above estimate holds with $C = C(\|m\|_{L^{\infty}(\Omega)})$.

Existence and uniqueness of mild solutions

Thm: Let $m' \in \mathbb{X}$ and $S \in L^{\infty}(\Omega)$.

A) There exists an unbounded continuum of solutions (c^2, m) of $\mathcal{T}(c^2, m) = m$ in $[0, \infty) \times \mathcal{X}_T$ emanating from $(0, m_0)$, where m_0 is the unique solution of

$$\frac{\partial m_0}{\partial t} - D^2 \Delta m_0 + |m_0|^{2(\gamma-1)} m_0 = 0.$$

B) If $\gamma \geq 1$, then the mild solutions are unique.

Thus, we have the blow-up alternative:

- Either there is a fixed point of \mathcal{T} in $\mathcal{X}_{\mathcal{T}}$ for all $c^2 > 0$,
- or there exists a bounded sequence of $c_k^2 > 0$ and a sequence of corresponding fixed points $m^k \in \mathcal{X}_T$ of $\mathcal{T}(c_k^2, \cdot)$ such that $\|m^k\|_{\mathcal{X}_T} \to \infty$ as $k \to \infty$.

Proof: Global theory for nonlinear eigenvalue problems of compact operators by Krasnoselski and Rabinowitz.

Blow-up alternative

Existence for all $c^2 \ge 0$

OR

Blow-up for finite c^2

Global branch in the one-dimensional case

The unique solution of the Poisson equation

$$-\partial_{x}((1+m^{2}(x))\partial_{x}p(x))=S(x)$$

on (0,1) satisfies

$$|\partial_x p(x)| \le \frac{2 \|S\|_{L^1(0,1)}}{1 + m^2(x)}$$
 for all $x \in (0,1)$.

Maximum principle \Rightarrow a priori bound on m in $\mathcal{X}_{\mathcal{T}}$ for every $\mathcal{T}>0$, so that a unique global in time mild solution exists for every c^2 and $m^l\in L^\infty(0,1)$.

Stationary states and network formation

Long time convergence

Thm: Fix T > 0, a sequence $t_k \to \infty$ as $k \to \infty$, and for $\tau \in (0, T)$ define the time-shifts

$$m^{(t_k)}(\tau,x) := m(\tau + t_k,x), \qquad p^{(t_k)}(\tau,x) := p(\tau + t_k,x).$$

Then, after extraction of a subsequence,

$$m^{(t_k)} \rightarrow m^{\infty}$$
 strongly in $L^q(0,T;L^4(\Omega))$ for any $q < \infty$, $p^{(t_k)} \rightarrow p^{\infty}$ strongly in $L^2(0,T;H^1_0(\Omega))$.

where (m^{∞}, p^{∞}) is a weak solution of the stationary system.

Proof: A priori estimates provided by energy dissipation, Aubion-Lions compactness theorem.

Stationary states

Trivial stationary state:

$$m_0 \equiv 0, \qquad -\Delta p_0 = S.$$

Q: Do nontrivial stationary states (\bar{m}, \bar{p}) exist?

- If $D \to \infty$, then the weak stationary solutions $\bar{m}^D \to 0$ and $\bar{p}^D \to p_0$ in $H_0^1(\Omega)$.
- In the 1d case, if D^2/c^2 is big enough, then $\bar{m}^D\equiv 0$ and $\bar{p}^D=p_0$

Bifurcations off the branch of trivial stationary solutions

The stationary system is equivalent to the fixed point problem

$$m = \beta Lm + F(m, \beta)$$

with $\beta := c^2/D^2$ the bifurcation parameter and

• the linear part

$$Lm := (-\Delta)^{-1} (\nabla p_0 \otimes \nabla p_0) m, \qquad -\Delta p_0 = S$$

• the nonlinear part $F(m, \beta)$

Moreover, define

$$\mathcal{R}(L) := \{ \beta \in \mathbb{R}; \exists m \in \mathbb{X}, m \neq 0 \text{ such that } m = \beta L m \}.$$

Spectral Theorem
$$\Rightarrow \mathcal{R}(L) = \{0 < \beta_1 < \beta_2 < \dots\}.$$

Bifurcations off the branch of trivial stationary solutions

Thm: Let $\gamma \geq 1$. At every point $(m_0 \equiv 0, \beta_0 > 0) \in \mathbb{X} \times \mathbb{R}$ for which $\beta_0 \in \mathcal{R}(L)$ there is a bifurcation off the branch of trivial solutions $(m \equiv 0, \beta)$ of a solution branch of the stationary system. The branch

- either meets ∞ in $\mathbb{X} \times \mathbb{R}$
- or meets a point $(m_0 \equiv 0, \beta_1)$ where $\beta_1 \in \mathcal{R}(L)$

Proof: Global bifurcation theorem by [Rabinowitz'71].

Note: Bifurcation occurs at all eigenvalues (even and odd multiplicity).

Bifurcations off the branch of trivial stationary solutions

Network formation in 1d with D=0

$$\begin{split} -\partial_x \big(\partial_x p + m^2 \partial_x p\big) &= S \\ \partial_t m - c^2 (\partial_x p)^2 m + |m|^{2(\gamma - 1)} m &= 0 \end{split}$$

on $\Omega = (0,1)$ with

$$\partial_x p(0) = 0, \ p(1) = 0,$$

 $m(t = 0, x) = m^I(x).$

Integrate the Poisson equation,

$$\partial_x p = -\frac{B(x)}{1+m^2}, \qquad B(x) := \int_0^x S(y) \,\mathrm{d}y.$$

Inserting into the *m*-equation gives the ODE family

$$\partial_t m = \left(\frac{c^2 B(x)^2}{(1+m^2)^2} - |m|^{2(\gamma-1)} \right) m$$
 for $x \in (0,1)$.

Network formation in 1d with $D=0, \gamma>1$

Stationary points:

- $m_0 = 0$ (unstable)
- $\pm m_s(x)$ (asympt. stable)

$$\lim_{t\to\infty} m(t,x) = m^{\infty}(x) := m_s(x) \operatorname{sign}(m^I(x)).$$

Note: $sign(m^{\infty}(x)) = sign(m^{I}(x))$ for all $x \in (0,1)$.

Stationary solutions in any dimension, $D=0, \gamma>1$

$$c^2(\nabla p^{\infty}\otimes\nabla p^{\infty})m^{\infty}=|m^{\infty}|^{2(\gamma-1)}m^{\infty}$$

- $m^{\infty} \parallel \nabla p^{\infty}$ with $c^2 |\nabla p^{\infty}|^2 = |m^{\infty}|^{2(\gamma-1)}$
- Fix measurable disjoint sets $A_{+} \subseteq \Omega$, $A_{-} \subseteq \Omega$
- $m^{\infty}(x) := \left(\chi_{\mathcal{A}_{+}}(x) \chi_{\mathcal{A}_{-}}(x)\right) c^{\frac{1}{\gamma-1}} |\nabla p^{\infty}(x)|^{\frac{2-\gamma}{\gamma-1}} \nabla p^{\infty}(x)$ with p^{∞} the solution of

$$-\nabla \cdot \left[\left(1 + c^{\frac{2}{\gamma - 1}} |\nabla p^{\infty}(x)|^{\frac{2}{\gamma - 1}} \chi_{\mathcal{A}_{+} \cup \mathcal{A}_{-}}(x) \right) \nabla p^{\infty}(x) \right] = S$$

Thm: For any $S \in L^2(\Omega)$, $\gamma > 1$ and for any pair of measurable disjoint sets \mathcal{A}_+ , $\mathcal{A}_- \subseteq \Omega$ there exists a unique weak solution $p^\infty \in H^1_0(\Omega) \cap W^{1,2\gamma/(\gamma-1)}_0(\mathcal{A}_+ \cup \mathcal{A}_-)$.

Linearized stability analysis, $D=0, \gamma>1$

- Fix A_+ , $A_- \subseteq \Omega$ and construct (m^{∞}, p^{∞}) .
- Linearize (Gâteaux derivative) the network formation system at (m^{∞}, p^{∞}) in direction (n, q).

Thm:

a)
$$\lim_{t\to\infty}\int_{\Omega}\left(|\nabla q(t,x)|^2+|\textit{n}(t,x)|^2\right)\,\mathrm{d}x=0$$

iff
$$(\Omega \setminus (\mathcal{A}_+ \cup \mathcal{A}_-)) \cup \{\nabla p^{\infty}(x) = 0\} \subseteq \{n^I(x) = 0\}.$$

- b) On $\{\nabla p^{\infty}(x) = 0\}$: $n(t, x) = n^{l}(x)$.
- c) On $\Omega \setminus (A_+ \cup A_-)$: $\partial_t n = c^2 (\nabla p^{\infty} \otimes \nabla p^{\infty}) n$.
- ⇒ Networks are inherently unstable!!

Limit of vanishing diffusion in 1d

For D > 0 let (m^D, p^D) be classical solutions in 1d on [0, T]. Then

$$egin{aligned} m^D &
ightarrow m & & ext{in } L^q((0,T) imes(0,1)) ext{ for any } q < \infty \ \partial_x p^D &
ightarrow \partial_x p & & ext{in } L^2((0,T) imes(0,1)) \end{aligned}$$

where (m, p) is a solution of

$$-\partial_x ((1+m^2)\partial_x p) = S$$
$$\partial_t m - c^2 (\partial_x p)^2 m + |m|^{2(\gamma-1)} m = 0$$

Proof: The uniform BV-estimate for *m*,

$$\max_{t \in [0,T]} \int_0^1 |\partial_x m| \, \mathrm{d} x < C.$$

Outlook and open questions

- A) Open PDE analysis problems:
 - $\gamma < 1$ open for strong solutions; $\gamma \le 1/2$ open $(\gamma = 1/2 \text{ for leaf venation}; \gamma = 1 \text{ for blood capillaries})$
 - Is the branch of mild solutions global in c^2 also in more than one dimension?
 - Rigorous limit $D \rightarrow 0$ in multiple dimensions.
 - Existence of weak or strong solutions with D = 0.
 - Existence for stationary states and their classification for D=0, $\gamma \leq 1$.
- B) Structural problems in network formation:
 - How to measure the complexity of the network (loops/trees) and how does it depend on the data?
 - How does branching occur?
 - How do stationary states depend on the initial data in multi-dimensional settings?

Conclusions

Thank you for your attention!