COMP8760

Lecture 3

Solutions to Worksheet for Practice

Sanjay Bhattacherjee

1. Consider the set $\mathbb{Z}_{11} = \{0, 1, 2, ..., 10\}$. How many elements are there in the set \mathbb{Z}_{11} ? Note: The number of elements in \mathbb{Z}_{11} is called its cardinality and is denoted as $|\mathbb{Z}_{11}|$. Answer:

$$|\mathbb{Z}_{11}| = 11.$$

2. Consider the set \mathbb{Z}_{11} and the operation + (mod 11) on its elements. Create a table for all operations $x + y \pmod{11}$ where $x, y \in \mathbb{Z}_{11}$. We will call it the "addition table of \mathbb{Z}_{11} ". Answer:

	0	1	ີ ຄ	า	1		C	7	0	0	10
	0	1	2	3	4	5	6	7	8	9	10
0	0	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10	0
2	2	3	4	5	6	7	8	9	10	0	1
3	3	4	5	6	7	8	9	10	0	1	2
4	4	5	6	7	8	9	10	0	1	2	3
5	5	6	7	8	9	10	0	1	2	3	4
6	6	7	8	9	10	0	1	2	3	4	5
7	7	8	9	10	0	1	2	3	4	5	6
8	8	9	10	0	1	2	3	4	5	6	7
9	9	10	0	1	2	3	4	5	6	7	8
_10	10	0	1	2	3	4	5	6	7	8	9

3. From the table in question 2, find the element \bar{x} for each $x \in \mathbb{Z}_{11}$ such that

$$x + \bar{x} = 0 \pmod{11}$$
.

Hint: In the row corresponding to the number x, find the column \bar{x} with the entry 0. Such a pair x, \bar{x} are additive inverses of each other with respect to $+ \pmod{11}$. **Answer:**

\overline{x}	0	1	2	3	4	5	6	7	8	9	10
\bar{x}	0	10	9	8	7	6	5	4	3	2	1

4. Prove that $(\mathbb{Z}_{11}, + \pmod{11})$ is a group.

Hint: Show that all four properties (closure, associativity, identity and inverse) hold.

Note: This proof is for advanced learning only. You may skip this question.

Answer:

- Let $x, y \in \mathbb{Z}_{11}$ be arbitrary (any two elements from the set \mathbb{Z}_{11}) and let z = x + y. Then, using the division theorem, we can uniquely write z = 11q + r, such that $0 \le r < 11$. Hence, $z \pmod{11} \in \mathbb{Z}_{11}$. Hence, the closure property holds.
- From the addition table, we see that for arbitrary $x, y, z \in \mathbb{Z}_{11}$, we have $(x+y)+z = x + (y+z) \pmod{11} \in \mathbb{Z}_{11}$. Hence, associativity holds. (A proof for a general \mathbb{Z}_N will be routine, but much longer.)
- Let $x \in \mathbb{Z}_{11}$ be arbitrary. Then, $x+0 = x \pmod{11}$. Hence, 0 is the identity element.
- Let $x \in \mathbb{Z}_{11}$ be arbitrary. Then, $\bar{x} = 11 x \in \mathbb{Z}_{11}$, and $x + \bar{x} \pmod{11} = 0$. Hence, \bar{x} is the inverse of x.
- 5. Find all numbers $1 \le x \le 20$ that are mutually prime to 20. We will denote this set of numbers as \mathbb{Z}_{20}^{\star} .

Answer: The following table shows the values of gcd(20, x) for all $x \in \{1, 2, ..., 19, 20\}$.

\overline{x}	1	2	3	4	5	6	7	8	9	10
$\gcd(20,x)$	1	2	1	4	5	2	1	4	1	2
\overline{x}	11	12	13	14	15	16	17	18	19	20
$\gcd(20,x)$	1	4	1	2	5	4	1	2	1	20

Hence, the set of numbers mutually prime to 20 is

$$\mathbb{Z}_{20}^{\star} = \{1, 3, 7, 9, 11, 13, 17, 19\}.$$

6. Find all numbers $1 \le x \le 11$ that are mutually prime to 11. We will denote this set of numbers as \mathbb{Z}_{11}^* .

Answer: The following table shows the values of gcd(11, x) for all $x \in \{1, 2, ..., 10, 11\}$.

\overline{x}	1	2	3	4	5	6	7	8	9	10	11
$\gcd(11,x)$	1	1	1	1	1	1	1	1	1	1	11

Hence, the set of numbers mutually prime to 11 is

$$\mathbb{Z}_{11}^{\star} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.$$

7. What is the value of $|\mathbb{Z}_{11}^{\star}|$?

Answer:

$$|\mathbb{Z}_{11}^{\star}| = 10.$$

8. What is the value of $\phi(11)$?

Answer:

$$\phi(11) = 11\left(1 - \frac{1}{11}\right) = 11\left(\frac{11 - 1}{11}\right) = 10.$$

9. What is the relationship between $\phi(11)$ and \mathbb{Z}_{11}^{\star} ?

Answer:

The number of elements in the set \mathbb{Z}_{11}^{\star} is $\phi(11)$. In other words,

$$\phi(11) = |\mathbb{Z}_{11}^{\star}| = 10.$$

10. Consider the set $\mathbb{Z}_{11}^{\star} = \{1, 2, \dots, 10\}$ of all $1 \leq x \leq 11$ that are mutually prime to 11 and the operation \cdot (mod 11) on its elements. Create a table for all operations $x \cdot y \pmod{11}$ where $x, y \in \mathbb{Z}_{11}^{\star}$. We will call it the "multiplication table of \mathbb{Z}_{11}^{\star} ".

Answer:

	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	1	3	5	7	9
3	3	6	9	1	4	7	10	2	5	8
4	4	8	1	5	9	2	6	10	3	7
5	5	10	4	9	3	8	2	7	1	6
6	6	1	7	2	8	3	9	4	10	5
7	7	3	10	6	2	9	5	1	8	4
8	8	5	2	10	7	4	1	9	6	3
9	9	7	5	3	1	10	8	6	4	2
_10	10	9	8	7	6	5	4	3	2	1

11. From the table in question 10, find the element \bar{x} for each $x \in \mathbb{Z}_{11}^{\star}$ such that

$$x \cdot \bar{x} = 1 \pmod{11}$$
.

Hint: In the row corresponding to the number x, find the column \bar{x} with the entry 1. Such a pair x, \bar{x} are multiplicative inverses of each other with respect to \cdot (mod 11). Answer:

\overline{x}	1	2	3	4	5	6	7	8	9	10
\bar{x}	1	6	4	3	9	2	8	7	5	10

12. Prove that $(\mathbb{Z}_{11}^{\star}, \cdot \pmod{11})$ is a group.

Hint: Show that all four properties (closure, associativity, identity and inverse) hold.

Note: This proof is for advanced learning only. You may skip this question.

Answer:

Similar to the previous proof.

13. What is the value of 3^{10} where $3 \in \mathbb{Z}_{11}^{\star}$?

In other words, find the value of $3^{10} = \underbrace{3 \times 3 \times \cdots \times 3}_{10 \text{ times}}$ (mod 11).

Answer:

You may find the value of $3^{10} = \underbrace{3 \times 3 \times \cdots \times 3}_{10 \text{ times}}$ (mod 11) by doing the multiplications.

However, there is a mathematical result that we can use in this situation when the exponent is $\phi(N)$.

By Lagrange's Theorem, when any element of a group is operated with itself as many times as the order of the group (number of elements in the group), we get the identity element. We note that $(\mathbb{Z}_{11}^{\star}, \cdot \pmod{11})$ forms a group of order $|\mathbb{Z}_{11}^{\star}| = 10$. We use Lagrange's Theorem on the element 3 of the group. Since $3 \in \mathbb{Z}_{11}^{\star}$, and $|\mathbb{Z}_{11}^{\star}| = 10$, hence we have

$$3^{10} = 1.$$

14. For any $x \in \mathbb{Z}_{11}^{\star}$, let us define $x^{10} = \underbrace{x \times x \times \cdots \times x}_{10 \text{ times}}$ (mod 11). Find the values of x^{10} for all $x \in \mathbb{Z}_{11}^{\star}$.

Answer:

By Lagrange's Theorem, when any element of a group is operated with itself as many times as the order of the group, we get the identity element. Since $(\mathbb{Z}_{11}^{\star}, \cdot \pmod{11})$ forms a group of order $|\mathbb{Z}_{11}^{\star}| = 10$, then for an arbitrary $x \in \mathbb{Z}_{11}^{\star}$, we have

$$x^{10} = 1.$$