24/02/2021

Bài Nội dung

- 1. Viết chương trình hoán vị hai số theo khai báo void hoanVi (con trỏ x, con trỏ y).
- 2. Khai báo một mảng a gồm n số nguyên. Viết chương trình:
 - a. sử dụng con trỏ p nhập giá trị cho từng phần tử trong a.
 - b. Xuất các phần tử của mảng ra màn hình.
 - c. Tìm phần tử lớn nhất trong mảng và trả về địa chỉ của phần tử đó.
- 3. Khai báo một con trỏ p và được cấp phát vùng nhớ cho 100 số nguyên. Viết chương trình sử dụng con trỏ p nhập giá trị cho n phần tử (n<100) theo khai báo void nhap (con trỏ p, số phần tử n).
- 4. Cho đoạn chương trình sau:

```
void nhap2 (int *&p, int n)
{
    p=new int [100];
    for (int i=0;i<n;i++)
    {
        cin>>*p;
        p=p+1;
    }
}
```

Mục đích của chương trình nhập n số nguyên bằng cách dùng con trỏ p. Hãy dự đoán chương trình sẽ thực hiện như thế nào khi hàm main () được viết :

```
int main()
{
    int *p;
    nhap2(p, 5);
    for (int i=0;i<5;i++)
        cout<<*(p+i);
}</pre>
```

Để đạt mục đích, chúng ta cần xử lý như thế nào ? (có thể thay đổi trong hàm nhap2 hoặc trong main).

5. Cho một mảng a gồm n phần tử số nguyên. Viết chương trình dùng con trỏ p sao chép các phần tử mảng a sang vùng nhớ khác có địa chỉ bắt đầu là con trỏ dest. Hàm được khai báo void copyArray (mảng a, số phần tử n, con trỏ dest).

Bài Nội dung

- 6. Cho con trỏ p và mảng a gồm các phần tử là số nguyên
 - Viết chương trình sử dụng con trỏ tạo và nhập dữ liệu cho mảng a theo cấu trúc mảng 2 chiều có n dòng và m cột.
- 7. Cho mảng 2 chiều có n dòng và m cột chứa các số nguyên. Viết chương trình dùng con trỏ duyệt qua các phần tử trong mảng và in ra màn hình.
- 8. Viết chương trình nhập mảng hai chiều a có m dòng n cột, các phần tử là các số nguyên và một số nguyên x.
 - a. Hãy đếm xem trong mảng có bao nhiều số bằng x.
 - b. Cho biết vị trí của các phần tử bằng x.
- 9. Một node được định nghĩa như sau:

```
Struct node
```

```
{
    int x;
    struct node* next;
};
```

- a. Viết chương trình tạo 1 node p với giá trị x được nhập từ bàn phím và next mặc định trỏ tới NULL.
- b. Tạo 3 node p, q, k và kết nối 3 node theo thứ tự k, p, q, khai báo node phead là con trỏ trỏ về cùng địa chỉ với node k và xem phead là node đầu tiên của danh sách.
- c. tạo node t và chèn node t vào vị trí cuối cùng của danh sách.
- 10. Cho danh sách liên kết L, mỗi phần tử chứa một số nguyên dương.
 - a. Tính tổng các phần tử của L.
 - b. Thêm 1 phần tử vào đầu danh sách
 - c. Thêm 1 phần tử vào cuối danh sách
 - d. Thêm 1 phần tử vào vi trí k trong danh sách
 - e. Đếm xem danh sách L có bao nhiều số nguyên tố?
 - f. Tìm xem x có trong danh sách L hay không ? (trả về 0/1)
 - g. Tách danh sách L thành 2 danh sách chẵn, lẻ.
 - h. Đảo ngược các phần tử trong danh sách L. Xuất danh sách L.
 - i. Xóa các số nguyên tố trong danh sách L. Xuất danh sách L.
- 11. a.Dùng danh sách liên kết đơn để biểu diễn một đa thức P; trong đó mỗi đơn thức biết hệ số và số mũ của x. Lưu ý không cần biết số đơn thức của đa thức). Viết chương trình thực hiện:

Nhập một đa thức, xuất một đa thức. Tính giá trị của đa thức tại điểm x_0 .

- b.Dùng danh sách liên kết đơn để biểu diễn một đa thức như câu a). Viết chương trình nhập vào 2 đa thức P,Q. Thực hiện phép cộng hai đa thức này. Xuất đa thức kết quả lên màn hình.
- 12. Cho danh sách l_1 đã được sắp tăng, hãy chèn l_2 vào l_1 sao cho l_1 kết quả được sắp tăng.

Bài Nội dung

- 13. Cho 2 danh sách l_1 , l_2 đã được sắp tăng, hãy trộn hai danh sách trên thành một danh sách cũng được sắp tăng.
- 14. Cho danh sách liên kết I, mỗi phần tử là một số nguyên. Hãy sắp xếp các phần tử theo thứ tự tăng dần bằng thuật toán:
 - a. Đổi chỗ trực tiếp (Interchange Sort)
 - b. Chèn trực tiếp (Insertion sort)
 - c. Chọn trực tiếp (Selection sort)