

2012 (I) भौतिक विज्ञान प्रश्न पत्र विषय कांड पुस्तिका कोड

5

पूर्णाक : 200 अंक

समय : 3:00 घंटे

अनुदेश

- आपने हिन्दी को माध्यम चुना है। इस परीक्षा पुनितका में पचहत्तर (20 मान 'A' में + 25 मान 'B' + 30 मान 'C' में) बहुल विकल्प प्रश्न (MCQ) दिए गए हैं। आपको भाग 'A' में से अधिकतम 15 और भाग 'B' में 20 तथा भाग 'C' में से 20 प्रश्नों के उत्तर देने हैं। यदि निर्धारित से अधिक प्रश्नों के उत्तर दिए गए तब केवल पहले मान 'A' से 15 भाग 'B' से 20 तथा भाग 'C' से 20 उत्तरों की जांव की जाएगी।
- 2. उतार पत्र अलग से दिया गया है । अपना रौल नम्बर और केन्द्र का नाम लिखने से पहले यह जांच लीजिए कि पुस्तिका में पृद्ध पूरे और सही है तथा कहीं से करे-फटे नहीं हैं । यदि ऐसा है तो आप इन्थिजीलेटर से पुस्तिका बदलने का निवेदन कर सकते हैं । इसी तरह से उत्तर पत्र को भी जांच लें। इस पुस्तिका में रफ काम करने के लिए अतिरिक्त पन्ने संलग्न हैं।
- उत्तर पत्र को पृथ्व 1 में दिए गए स्थान पर अपना रोल नम्बर, नाम, अपना पता तथा इस परीक्षा पुरितका का क्रमांक लिखिए । आपके हस्ताक्षर भी जरूरी हैं ।
- 4. आप अपनी ओ.एम.आर. उत्तर पुरितका में रोल नंबर, पिषय कोछ, पुरितका कोड और केन्द्र कोड से संबंधित रामुचित युक्तों को अवश्य काला कर दें । यह एक मात्र परीक्षार्थी की जिम्मेदारी है कि वह उत्तर पुरितका में दिए गए निर्देशों का पूरी सावधानी रो यालन करें, ऐसा न करने पर कम्प्यूटर विवरणों को सही तरीके से अकृटित नहीं कर थाएगा, जिससे अंततः आपको हानि, जिससे आपकी उत्तर पुरितका की अस्वीकृति भी शामिल, हो सकती हैं ।
- आम 'A' में प्रत्येक प्रश्न के 2 अंक , भाग 'B' में प्रत्येक प्रश्न के 3.5 अंक तथा 'C' में प्रत्येक प्रश्न 5 अंक का है । प्रत्येक मलत उत्तर का ऋणात्मक मृत्य्यंक 25 % की दर से किया जाएंगा ।
- प्रत्येक प्रश्न के नीचं चार विकला दिए गए हैं । इनमें से केवल एक विकल्प ही "सड़ी" अथवा "सर्वोत्सय हल" है । आपको प्रत्येक प्रश्न का सड़ी अथवा सर्वोत्सम हल ढूँढनाड़ै ।
- नकल करते हुए या अनुशित शरीकों का प्रयोग करते हुए पाएं जाने वाले अभ्यार्थियों का इस और अन्य भावी परीक्षाओं के लिए अयोग्य टहराया जा सकता है ।
- अभ्यर्थी को उत्तर या रफ पन्नो के अतिरिक्त कहीं और कुछ भी नहीं लिखना चाहिए ।
- परीक्षा समाप्त हो जाने पर परीक्षा पुनितका और उत्तर पत्र को इन्चिजीलेटर को अवश्य सींप पीजिए ।
- 10. केलकूलेटर का उपयोग करने की अनुसरी नहीं है ।
- 11. किसी प्रश्न में पिसंगति के मामले में अंग्रेजी संस्करण प्रबस होगा ।

रोल नंबर	अध्यर्थी द्वास भरी गई जानकारी को मैं सत्यापित
नाम	करता हूँ ।
7/7	***************************************

इन्विजीलेटर के इस्ताक्षर

H

भाग А

- निश्चल ह्या में जलती हुई अगरवली की सुगंध प्रेक्षक द्वारा सबसे जल्दी पहचानी जा सकती है जब यह प्रयोग किया जाता है,
 - 1. न्यून तुंगता व उच्च तापमान में ।
 - 2. उच्च तुंगता व न्यून तापमान में ।
 - 3. न्यून तुंगता व न्यून तापमान में ।
 - 4. उच्च तुंगता व उच्च तापमान में ।
- 2. चित्र में किसने वर्ग हैं ?

1. 9

2. 14

- 3. 15
- 4. 17
- एक पहादी रास्ता तीन अलग प्रावण्य वाले भागों में वंटा है, जैसे दर्शाया गया है । पूरी चढ़ाई का औसत प्रावण्य m वया है?

- 1
- 2. $(1/3) \le m \le (1/2)$
- 3 1 < m < \3
- 4. $(1/\sqrt{3}) < m < 1$
- 4. तापमान को स्थिर रखते हुए एक संतृष्टा शक्कर का घोल बनाया जाता है । इस प्रक्रिया में, निम्न में से कीनसा चित्र शक्कर की सांद्रता य जुल मिलाये गये शक्कर की द्रव्यमान के बीच के रिश्ते को सही दर्शाता है?

PART A

- In still air, fragrance of a burning incense stick will be smelt by an observer quickest when the experiment is carried out at
 - 1. low altitude and high air temperature.
 - 2. high altitude and low air temperature.
 - 3. low altitude and low air temperature.
 - 4. high altitude and high air temperature.
- 2. How many squares are there in this figure?

1. 9

2. 14

3. 15

- 4. 17
- 3. A mountain road has 3 sections of different slopes as shown. What is the average slope m of the entire climb?

- 1: 1
- 2. $(1/3) \le m \le (1/2)$
- 3. $1 \le m \le \sqrt{3}$
- 4. $(1/\sqrt{3}) \le m \le 1$
- 4. Which of the following graphs shows the concentration of a sugar solution as a function of the cumulative amount of sugar added in the process of preparing a saturated solution (the temperature remaining constant)?

- रेकानांगिक रामान्य वर मिल ग्रंबाइ क ग्रामु क ईर पढ़े में । यो ग्रावांकालमा पुने मेंने में द्रायमानों का मनागत.
 - उसकी अकारतों के उत्पुष्टत के समान होगा। /
 - वनार्व अंगावर्थ के मार्ग के अनुवार के समान राजा
 - इसके द्वारावां ने प्रमा से अनुसार को समान होगा।
 - 4 जनकी जैयाहरों के पन मुन्ते के अनुभाव में लेगा।
- 6. अवस्था V अ यो प्रकलन नती में एक खाली न बुतारे में पर कामान जातर एक लकानी का खुता है । योनी काला में पुतानकुक मानी मानमा अध्या है । योनी अप्रकार मिन A में B में दहाँगी गयी है । अगर पानी के बीनता का में में गुरुतमां अधीय त्यान पूर्व हो

- i त्र द B शयान वजन को है ।
- 2 \ 8 से क अधिया व्यक्ततार है ।
- A B में (Vpg w)अधिक प्रत्यक्षार है ।
- 4. B. A if (Figg. w) sitten mineral # 1
- क्षण विशेष कर रक्षमध्य O है व माल का AB, इनके पहली के रक्षणी क्षण गया हो सकते हैं ?
 - 1. O. AB. A
 - 2. A.B
 - 3 A.O.
 - 4. B, AB

- There are sand-piles which are geometrically similar but of different heights. The ratio of the masses of the sand comprising two randomly chosen piles will be equal to the ratio of the
 - 1. pile heights.
 - 2. squares of the pile heights.
 - 3. cubes of the pile heights.
 - 4. cube-roots of the pile heights.
- 6. There are two identical vessels of volume V each, one empty, and the other containing a block of wood of weight w. The vessels are then filled with water up to the brim. The two arrangements are shown as A and B in the figure. If the density of water is ρ and g is the acceleration due to gravity, then

- 1. A and B have equal weights.
- 2. A is heavier than B by an amount w.
- A is heavier than B by an amount Vog w.
- 4. B is heavier than A by an amount Vog w.
- 7. If the father has blood group O and the mother has blood group AB, what are the possible blood groups of their children?
 - 1. O, AB, A
 - 2. A, B
 - 3. A, O
 - 4. B. AB

- समान विभवांतर से स्वरित ³²P व ³²S के नाभिक, एक अवर अनुप्रस्थ चुम्चकीय क्षेत्र में प्रवेश करते हैं (P के लिए Z =15 व Sके लिए Z =16)। जब वे चुम्बकीय क्षेत्र से बाहर आते हैं, तो
 - दोनों नाभिक यिना किसी विक्षेप के निकलते हैं ।
 - 2. ³²P का विक्षेप ³²S के विक्षेप से कम है 1
 - 3. ³²P का विक्षेप ³²S के विक्षेप से अधिक हैं ।
 - 4. दोनों का विशेष समान पहता है ।
- जेट वायुयान में एक पर्यटक जो बगलगम ववाता है, उसको जहाज के जमीन पर उत्तरते समय कान में दर्द नहीं होता, पर दूसरा जो बवलगम नहीं चवाता, उत्तरको कान में दर्द होता है । इसका कारण यह हो सकता है कि
 - 1. वयलगम दर्दनाशक है।
 - इयलगम का चमाना कानों के दोगों तरफ के दाय का साम्यवारण करता है ।
 - 3. बबलगम के चवाने से कान का परदा बना होता है।
 - 4. बदलगम का चवाना दर्द से ध्यान हटाता है ।
- 10. हर पूर्णिमा में चंद्रग्रहण इसलिये देखा नहीं जाता कि
 - सर्य का स्थान सभी पूर्णिमाओं में अनुकूल नहीं होता।
 - भन्द्र व पृथ्वी के परिक्रमा पथ के तल एक दूसरे से कम कोणिक अंतर में हैं ।
 - 3. पृथ्वी की आकृति परिपूर्ण गोला नहीं है ।
 - 4. चन्द्र अपनी एक ही गोलार्घ से प्रतिवर्तित करता है।
- 11. एक लडका एक पत्थर को किसी एक प्रारंभिक वेम के साथक्रवांचर दिशा में फॅकता है । अगर गुरुत्वाकर्षणीय त्वरण को अचर व एकरूप माना जाये, तो निम्न में से कौन चित्र उसके समय के साथ होने बाले गति परिवर्तन को सही दर्शाता है ?

12. एक ही आकृति, पर अलग-अलग (ρ ४ 2ρ) घनता वाले दो लटफन एक सख्त एकरूप ४एडे के दोनों छोरों से एक समान लटकाये जाते हैं । जैसे वित्र में दशीया गया है, जब उण्डा आलम्ब पर संतुलित रहता है d य d' के बीच का रिस्ता है :

- Nuclei of ³²P and ³³S, accelerated through the same potential difference enter a uniform, transverse magnetic field (Z=15 for P and Z= 16 for S). As they emerge from the magnetic field
 - 1. both nuclei emerge undeflected.
 - ¹²P is deflected less than ¹²S.
 - 3. 32P is deflected more than 32S.
 - 4. both are equally deflected.
- A person chewing a bubble gum did not experience ear pain in a jet plane while landing whereas another person not chewing a gum had ear pain. The reason could be
 - 1. chewing gum is a pain killer
 - chewing equilibrates pressure on both sides of the ear drum
 - 3. chewing gum closes the ear drum
 - 4. chewing distracts the person
- 10. The reason why a lunar eclipse does not occur at every full moon is
 - the position of the sun is not favourable at all full moons.
 - the orbital planes of the moon and that of the earth are inclined to each other by a small angle
 - the shape of the earth is not a perfect sphere.
 - 4. the moon reflects only from one hemisphere.
- 11.A boy throws a stone vertically upwards with a certain initial velocity. Which of the following graphs depicts the velocity as a function of time, if the acceleration due to gravity is assumed to be uniform and constant?

12. A rigid uniform bar of a certain mass has two bobs of the same size, but with different densities ρ and 2ρ suspended identically from its ends.

- 1. 2d = d'
- 2. d > 2d'
- 3. d = 2d'
- 4. d < 2d'
- 13. बिन्दु A व A' भूमध्य रेखा के ऊपर 0° व 90° व दीर्घाश में क्रमशः स्थित हैं । दो और बिन्दु B प B'उन्हीं दीवाशों में क्रमशः , पर 60° व अक्षांश पर स्थित हैं । अक्षरेखाओं में ऊपर से A # A' बीच की दूरी, B # B'ने बीच की दूरी से इस प्रकार संबंधित है ।
 - 1. AA' = BB'
- 2. AA'=2BB'
- 3. $AA' = (\sqrt{3}) BB'$ 4. $AA' = (\sqrt{2}) BB'$

14.

जैसे दर्शाया गया है, एक नहीं में पानी वह रहा है । A य Cको अनुप्रस्थ क्षेत्रफल समान, व B को अनुप्रस्थ क्षेत्रफल से अधिक हैं । जब वहाव असुबा है, तब B की भित्तियों के ऊपर पडनेवाला दबाव

- A च C की वृक्षना में कम है ।
- 2. A ब C की तुलना ने अधिक है।
- 3. A प C पर पड़नेवाले हावों के समान है ।
- 4. A की तुलना में अधिक, पर Cकी तुलना में कम ।
- 15. दोनों सुवियों का सही जोहा बनायें :

कच्चा माल	उत्पाद			
A. सूना पत्थर	a. पोसिलिन			
B. जिप्सम	b. कॉब			
C. सिलिका बालू	c. प्लारटर ऑफ पैरिस			
D. मृतितका	d. Rivie			

	A	В	C	D
1.	a	Ь	c	d
2.	d	C	c b d	а
3,	a	C	d	ь
4	d	a	C	b

When the bar is level on a fulcrum as shown in the figure, d and d' are related by

- 1. 2d = d'
- 2. d > 2d'
- 3. d = 2d'
- 4. d < 2d'
- 13. There are two points A and A' on the equator at longitudes 0° and 90°E, and two other points B and B' on the same longitudes, respectively, but at latitude 60°S. The distances (along the latitudes) between the points A, A' and B, B' are related by
 - 1. AA' = BB'
- 2. AA' = 2BB'
- 3. $AA' = (\sqrt{3}) BB'$ 4. $AA' = (\sqrt{2}) BB'$

14.

Water is flowing through a tube as shown. The cross-sectional areas at A and C are equal, and greater than the cross-sectional area at B. If the flow is steady, then the pressure on the walls at B is

- less than that at A and that at C.
- more than that at A and that at C.
- same as that at A and that at C.
- more than that at A but less than that at C.
- 15. Match the two lists

Raw Material	Product		
A. Limestone	a. Porcelain		
B. Gypsum	b. Glass		
C. Silica sand	c. Plaster of Paris		
D. Clay	d. Cement		

d

- आयु निर्धारण हेतु 14C प्रणाली का प्रयोग नहीं किया जाता. वयोंकि
 - ऐसे पदार्थों में कार्यन विलें ही पाया जाता है ।
 - 2. ऐसे पदार्थ अपने बनावट के परवात ¹⁴C का संवयन करते हैं।
 - 3. उस समय ¹⁴C का उत्पादन नहीं होता था ।
 - नमूने का अधिकतम ¹⁴C विघटित हो चुका होगा ।
- 17. एक भूकंपमापी P तरंग को अंकित करने के 60 सेकेण्ड बाद S तरंग को अंकित करता है। अगर P व S तरंगों की गतियाँ क्रमशः 7 किंठ भीठ प्रति शेठ व 6 किंठ मीठ प्रति सं0 है,तो भूकंप के केंद्र की भूकंपमापी से दूरी है :
 - 2520किंग मीठ
- 42 fbo 中lo
- 3. 7070 fiso 和o
- 4. 72 fato 410
- रेडियोधर्मी समस्थानिक P के विघटन से स्थिर पुत्री समस्थानिक D बनती है । दो अर्घाय के बाद P य D की अण् संख्याओं का अनुपात होगा :
 - 1. 1/4

3/4

3. 3

- 2
- 19. दो समस्तप उपकरणों से मापे गये आंकड़े विखराय चिंत्र में दर्शाये गये हैं । वित्रों में बिन्दु A सही मूल्य क्री दर्शाता है । मापनों की गुणता का सही विवरण निम्न में से किस कथन में मिलता है ?

- थित्र 1 : अच्छी यथार्थता च अच्छी परिशक्ति चित्र 2 : अच्छी यथार्थता व अच्छी परिसुद्धि
- वित्र १ : अल्प यथार्थता य अल्प परिशुद्धि चित्र 2 : अच्छी यथार्थला व अल्प परिश्विद्ध
- 3. चित्र 1 : अल्प यथार्थता व अच्छी परिशृद्धि चित्र 2 : अल्प यथार्थता व अल्प परिश्विद
- चित्र 1 : अल्प यथार्थता व अल्प परिशदिः चित्र 2 : अल्प यथार्थता व अच्छी परिशृद्धि
- 20. उच्च तुंगता व समुद्र तल दोनों में वरापि CO2 की मात्रा समान है, उच्च तुंगता की अपेक्षा समुद्र तल पर उगाये जाने वाले पादप में प्रकाश संश्लेषण गति अधिक इसलिये पायी जाती है, कि
 - 1. समुद्रतल पर प्रकाश की तीव्रता अधिक है ।
 - उच्च तंगता में तापमान कम होता है ।
 - समुद्रतल पर वायुमण्डलीय दवाव अधिक है ।
 - 4. रागुद्रतल पर आपेक्षिक आर्द्रता अधिक है ।

- 16. करीय ~60,000 साल से पुराने कॉर्बनिक पदार्थों की 16. The 14C dating method is not usually used for dating organic substances older than ~60,000 years, because
 - such objects rarely contain carbon.
 - such objects accumulated ¹⁶C after their formation.
 - in those times there was no production of ¹⁴C.
 - 'most of the ¹⁴C in the sample would have decayed.
 - 17. A seismograph receives a S-wave 60 s after it receives the P-wave. If the velocities of P- and S-waves are 7 km/s and 6 km/s respectively, then the distance of the seismic focus from the seismograph is
 - 2520 km
- 42 km
- 7070 km
- 4. 72 km
- 18. The decay of a radioactive isotope P produces a stable daughter isotope D. The ratio of the number of atoms of D to the number of atoms of P after 2 half lives would be
 - 1. 1/4

3/4

3. 3

- 2
- 19. The scatter plots represent the values measured by two similar instruments. Point A in the figures represents the true value. Which of the following is a correct description of the quality of these measurements?

- Fig.1: good accuracy, good precision Fig. 2: good accuracy, good precision
- 2. Fig.1: poor accuracy, poor precision Fig. 2: good accuracy, poor precision
- 3. Fig.1 : poor accuracy, good precision Fig. 2 : poor accuracy, poor precision
- 4. Fig.1: poor accuracy, poor precision Fig. 2: poor accuracy, good precision
- 20. Even though the concentration of CO2 is the same at sea level and at high altitude, the photosynthetic rate is higher in a plant grown at sea level than in a plant (of the same species) grown at high altitude. The reason for this is
 - light intensity is more at sea level.
 - temperature is lower at higher altitude.
 - atmospheric pressure is higher at sea level.
 - relative humidity is higher at sea level.

भाग В

- 21. x+y+z=5 ਦੇ ਪ੍ਰਿੰਘਾਮਿੰਗ ਪ੍ਰਯ ਰਾਜ ਤਾਰ ਕਿੰਦਰ ਕਿੰਦੀ 21. A vector perpendicular to any vector that lies on भी सदिश का लंब सदिश है
 - $1 \qquad i+j \qquad \qquad 2 \qquad j+k$

 - 3. $\hat{i} + \hat{j} + \hat{k}$ 4. $2\hat{i} + 3\hat{j} + 5\hat{k}$
- 22. आखूह A = 2 4 6 वे अभिलक्षाणिक मान है :
 - (1, 4, 9)
- 2. (0, 7, 7)
- (0, 1, 13)
- 4. (0, 0, 14)
- 23. | ≤ | | ≤ 2 क्षेत्र में | | | | | के आलपास

 $\frac{1}{(z-1)(z-2)}$ के लॉरेन्ट श्रेपी के पहले कुछ यह है .

- $1 = \frac{1}{2} \left[1 + z + z^2 + z^2 + z^2 + \dots \right] \left[1 + \frac{z}{2} + \frac{z^2}{4} + \frac{z^2}{8} + \dots \right]$
- 2. $\frac{1}{1-z}+z-(1-z)^2+(1-z)^3+...$
- 3. $\frac{1}{a^2} \left[1 + \frac{1}{a} + \frac{1}{a^2} + \dots \right] \left[1 + \frac{2}{a} + \frac{4}{a^2} + \dots \right]$
- 4. $2(z-1)+5(z-1)^2+7(z-1)^2+...$
- 24. किसी मिविवत प्रवार्थ का विघटनाभिक क्षय मुख्य गति 2, प्रति रोकण्ड के साथ पासी साविवकी का समाधान करती है । सापेक्ष वृद्धि को एक प्रतिशत से कम रखने में तिथे विश्वस्तारीक गणगा का न्यून्तम अवकाश (संकण्ड में) कितनी होनी पाहिए ?
 - 1: 10072
- 2. $10^4 / \lambda^2$
- 3. 101/2

PART B

- the plane defined by x + y + z = 5, is
 - 1. Î+Î

- 3. $\hat{i} + \hat{j} + \hat{k}$ 4. $2\hat{i} + 3\hat{j} + 5\hat{k}$
- The eigenvalues of the matrix A = 2 4 6

are

- 1. (1, 4, 9)
- (0, 1, 13)
 - 4. (0, 0, 14)
- 23. The first few terms in the Laurent series for

$$\frac{1}{(z-1)(z-2)}$$

in the region $1 \le |z| \le 2$, and around z=1 is

- $1 \frac{1}{2} \left[1 + z + z^2 + z^3 + ... \right] \left[1 + \frac{z}{2} + \frac{z^2}{4} + \frac{z^3}{8} + ... \right]$
- 2. $\frac{1}{1-z}+z-(1-z)^2+(1-z)^2+...$
- 3. $\frac{1}{2} \left[1 + \frac{1}{2} + \frac{1}{2^2} + \dots \right] \left[1 + \frac{2}{2} + \frac{4}{2^2} + \dots \right]$
- 4. $2(z-1)+5(z-1)^2+7(z-1)^3+...$
- 24. The radioactive decay of a certain material satisfies Poisson statistics with a mean rate of A per second. What should be the minimum duration of counting (in seconds) so that the relative error is less than 195?
 - 1. 100/2
- 2. 10⁴/2²

.

- 3. 10°/2

 मार्ने कि सम्मिश्र घर z=x+iy के एक वैश्लेषिक फलन f(z) का वास्तविक भाग

$$u(x,y)=x+\frac{1}{2}(x^2-y^2)$$
 है / $f(z)$ कर
अधिकल्पित भाग है :

4.
$$y^2 - x^2$$

- 26. माने कि y(x), अंतराल 0 व 2π के बीच, एक संतत वालागिक फलन है एवं वह असमधाती अवकल समीकरण $\sin x \frac{d^2y}{dx^2} + \cos x \frac{dy}{dx} = \delta\left(x \frac{\pi}{2}\right)$ का समाधान करता है । बिन्दु $x = \pi/2$ पर dy/dx का मूल्य
 - 1. संतर है /
 - 2. का असांतस्य 3 है ।
 - 3. का सांतत्य 1/3 है /
 - 4. का असांतस्य है 1 ।
- 27. दो संदूकों में क्रमशः 2 काले य 3 सफेद गेंद, एवं 3 काले व 4 सफेद गेंद हैं 1 इन दोनों संदूकों में से एक से यादृष्टिकतः एक गेंद निकाली जाती है 1 इस गेंद के सफेद होने की प्रथिकता क्या है ?
 - 1. 34/70
- 2. 41/70
- 3. 36/70
- 4. 29/70
- 28. एक सामान्य लोलक, जिसका दोलन छोटा है, के गोलक को पानी में डुवाया जाता है । निम्न में से कीन चित्र लोलक के प्रायस्था—समिष्टि चित्र का श्रेष्ठतम प्रतिनिधित्व करता है ?

1.

25. Let $u(x,y)=x+\frac{1}{2}(x^2-y^2)$ be the real part of an analytic function f(z) of the complex variable z=x+iy. The imaginary part of f(z) is

$$4, \quad y^2 - x^2$$

 Let y(x) be a continuous real function in the range 0 and 2π, satisfying the inhomogeneous differential equation;

$$\sin x \frac{d^2y}{dx^2} + \cos x \frac{dy}{dx} = \delta \left(x - \frac{\pi}{2} \right).$$
 The

value of dy/dx at the point $x=\pi/2$

- 1. is continuous
- 2. has a discontinuity of 3
- 3. has a discontinuity of 1/3
- 4. has a discontinuity of 1
- 27. A ball is picked at random from one of two boxes that contain 2 black and 3 white and 3 black and 4 white balls respectively. What is the probability that it is white?
 - 1. 34/70

2. 41/70

3. 36/70

- 4. 29/70
- 28. The bob of a simple pendulum, which undergoes small oscillations, is immersed in water. Which of the following figures best represents the phase space diagram for the pendulum?

ä.

2.

3.

 अपम में 9 × 10⁹ मीठ दूरी पर घटनैवाली दो घटनायें एक जडलीय फ्रेंभ में एककालिक हैं । एक दूसरे फ्रेंम, जो 0.8 c की विधार गति के साथ (जहाँ c = 3 x 10⁸मीठ प्रति सेठ जो प्रकाश की गति है) चलता है, में इन दोनों घटनाओं के बीच कालांतर होगा :

1. 60 do

2. 40 %

3. 20 do

30. यदि एक कथ, जो एक-विभीय चलन करता है, की लगांजी $L = \frac{\dot{x}^2}{2x} - V(x)$ से विका जाता है, तो उसकी हैमिल्टनी होगी:

1.
$$\frac{1}{2}xp^2 + V(x)$$
 2. $\frac{\dot{x}^2}{2x} + V(x)$

3.
$$\frac{1}{2}\dot{x}^2 + V(x)$$
 4. $\frac{p^2}{2x} + V(x)$

31. एक धीतेज बर्तुलाकार प्लेटफार्म एक स्थिर कोणीय गति Ω, जो लम्ब, ऊपरी तरफ है, के साथ ऐम रहा है । उसमें फेन्द्र में विधव एक आदमी द्रव्यमान m की गांली को v के गति से क्षैतिज दिशा में चलाता है । गौली मारनेवाले के निर्देश फ्रेम में गोली का त्वरण होगा :

2.

3.

4.

29. Two events, separated by a (spatial) distance 9 × 109 m, are simultaneous in one inertial frame. The time interval between these two events in a frame moving with a constant speed 0.8 c (where the speed of light $c = 3 \times 10^8$ m/s) is

1. 60 s

3. 20 5

0.5

30. If the Lagrangian of a particle moving in one dimensions is given by $L = \frac{\dot{x}^2}{2r} - V(x)$, the Hamiltonian is

1.
$$\frac{1}{2}xp^2 + V(x)$$
 2. $\frac{\dot{x}^2}{2x} + V(x)$

$$2. \qquad \frac{\dot{x}^2}{2x} + V(x)$$

3.
$$\frac{1}{2}\dot{x}^2 + V(x)$$
 4. $\frac{p^2}{2x} + V(x)$

4.
$$\frac{p^2}{2x} + V(x)$$

31. A horizontal circular platform rotates with a constant angular velocity Ω directed vertically upwards. A person seated at the centre shoots a bullet of mass m horizontally with speed v. The acceleration of the bullet, in the reference frame of the shooter, is

- जसकी दायीं और 2vΩ I I.
- 2. जसकी यायीं और 2v\Q I
- उसकी दायीं ओर νΩ /
- उसकी बायीं ओर ए\\ 1
- 32. सदिश विभव $\vec{A} = \frac{1}{2}\vec{F} \times \vec{r} + \frac{10}{3}\vec{r}$, जहाँ \vec{F} एक स्थिए सदिश है, से संगत चुंबक क्षेत्र है :
 - 1. \vec{F}

- 3. $\vec{F} + \frac{30}{r^4}\vec{F}$ 4. $\vec{F} \frac{30}{r^4}\vec{F}$
- 33. एक विद्युतसुम्बकीय तरंग एक पानी-हवा अंतरापृष्ठ पर आपतित होती है । पानी में परावर्तित तरंग के पिश्त क्षेत्र के सम्ब घटक की प्रावस्था सभी आपसन कोण के लिये समान रहता है । चुम्बकीय क्षेत्र H की प्रावस्था
 - परिवर्तित नहीं होती
 - 3π/2 परिवर्तित होती है
 - π/2 परिवर्तित होती है
 - तः परिवर्तिस होती हैं
- 34. स्थिर विद्युत धारा I का वहन करता हुआ एक लंबे रीधे तार से R दूरी पर चुम्बकीय क्षेत्र इस अनुपात में होगा :
 - 1. IR
- 3. I^2/R^2
- 35. प्रयक्रण- 🗓 वालं एक कण के प्रयक्रण का घटक एक स्वेच्छ दिशा n̂ , जिसके दिवकोज्या (n, n, n, n) है. में नापा जाता है । परिणाम है :
- 2. $\pm \frac{\hbar}{2} n_i$
- 3. $\pm \frac{\hbar}{2} \left(n_x + n_y + n_z \right)$ 4. $\pm \frac{\hbar}{2}$

- $2\nu\Omega$ to his right
- 2vΩ to his left
- vΩ to his right
- vΩ to his left
- 32. The magnetic field corresponding to the vector potential

$$\vec{A} = \frac{1}{2}\vec{F} \times \vec{r} + \frac{10}{r^3}\vec{r}$$

where \vec{F} is a constant vector, is

1. \vec{F}

- 3. $\vec{F} + \frac{30}{4}\vec{r}$ 4. $\vec{F} \frac{30}{4}\vec{r}$
- 33. An electromagnetic wave is incident on a water-air The phase of the perpendicular component of the electric field, E_1 , of the reflected wave into the water is found to remain the same for all angles of incidence. The phase of the magnetic field H
 - 1. does not change
 - changes by $3\pi/2$ 2.
 - changes by $\pi/2$ 3.
 - changes by π 4.
- 34. The magnetic field at a distance R from a long straight wire carrying a steady current I is proportional to
- 1. IR
- 2. I/R2
- I²/R²
- 4. I/R
- 35. The component along an arbitrary direction \hat{n} , with direction cosines (n_x, n_y, n_t) , of the spin of a

spin - $\frac{1}{2}$ particle is measured. The result is

- 3. $\pm \frac{\hbar}{2} (n_x + n_y + n_z)$ 4. $\pm \frac{\hbar}{2}$

- 36. m द्रव्यमान जाला एक कण a आमाप पाले एक धन संदूर्ण में स्थित है । संदूर्क के अंदर $(0 \le x < a, 0 \le y < a, 0 \le z < a,)$ विभव शुन्य है व बाहर अनंत है । अगर कण जार्जा की अभिलक्षणिक विश्ववि $E = \frac{14\pi^2 h^2}{2ma^2}$ में ई तो उसका तरंगफलन है :
 - 1. $\psi = \left(\frac{2}{a}\right)^{3/2} \sin \frac{3\pi x}{a} \sin \frac{5\pi y}{a} \sin \frac{6\pi z}{a}$
 - 2. $\psi = \left(\frac{2}{a}\right)^{3/2} \sin \frac{7\pi x}{a} \sin \frac{4\pi y}{a} \sin \frac{3\pi z}{a}$
 - 3. $\psi = \left(\frac{2}{a}\right)^{3/2} \sin \frac{4\pi x}{a} \sin \frac{8\pi y}{a} \sin \frac{2\pi z}{a}$
 - 4. $\psi = \left(\frac{2}{a}\right)^{3/2} \sin \frac{\pi x}{a} \sin \frac{2\pi y}{a} \sin \frac{3\pi z}{a}$
- 37. मानें कि गोलीय समीनिक विभव V(r) के लिये हेमिल्टनी के अभिलक्षणिक फलनों को प्र_{नान} निर्दिश्व $\psi = \frac{1}{4} \left[\psi_{210} + \sqrt{5} \psi_{21-1} + \sqrt{10} \psi_{211} \right] \eta t \pi$ grass अभित्यक्षणिक फलनः । श्रीगाः :
 - 1. H, L' 7 L 2. H 7 L

 - 3. $H \neq L^2$ 4. $L^2 \neq L$
- 38. $am Qi am a = \begin{bmatrix} x^2, p^2 \end{bmatrix} \ddot{x}$
 - 1 2ih xp
- 2. 2ih(xp+px)
- 2ih px
- 4. 2ih(xp-px)
- 39. d -विनीस अन्यांन्य कियादीन कणों की प्रणाली के बारे में विभारें जो परिशेषम संगंध ह = Ak^{+} का अनुसारम करती है, जहाँ ह उन्माँ है सरंग सदिया ह एक पूर्णक म A एक विधानंक हैं । विधानि धनाम $N(\varepsilon)$ इस अनुपात में हैं -
- 3, 23
- 4. 64

 A particle of mass m is in a cubic box of size a. The potential inside the box $\{0 \le x < a, \ 0 \le y < a, \ 0 \le z < a,\}$ is zero and infinite outside. If the particle is in an eigenstate of

energy $E = \frac{14\pi^2 h^2}{2ma^2}$, its wavefunction is

- 1. $\psi = \left(\frac{2}{a}\right)^{3/2} \sin \frac{3\pi x}{a} \sin \frac{5\pi y}{a} \sin \frac{6\pi z}{a}$
- 2. $\psi = \left(\frac{2}{\pi}\right)^{3/2} \sin \frac{7\pi x}{2} \sin \frac{4\pi y}{2} \sin \frac{3\pi z}{2}$
- 3. $\psi = \left(\frac{2}{a}\right)^{3/2} \sin \frac{4\pi x}{a} \sin \frac{8\pi y}{a} \sin \frac{2\pi z}{a}$
- 4. $\psi = \left(\frac{2}{a}\right)^{3/2} \sin \frac{\pi x}{a} \sin \frac{2\pi y}{a} \sin \frac{3\pi z}{a}$
- Let ψ_{n/n} denote the eigenfunctions of a Hamiltonian for a spherically symmetric potential V(r). The wavefunction

$$\psi = \frac{1}{4} \left[\psi_{210} + \sqrt{5} \, \psi_{21-1} + \sqrt{10} \, \psi_{211} \right]$$
 is an eigenfunction only of

- H, L² and L,
 H and L,
- 3. H and L2
- L² and L.
- 38. The commutator $[x^2, p^2]$ is
 - 1. 2ilixp
- 2ih(xp+px)
- 4. 2ih(xp-px)
- 39. Consider a system of non-interacting particles in d dimensions obeying the dispersion relation $\varepsilon = Ak^s$, where ε is the energy, k is the wavevector, s is an integer and A a constant. The density of states. $N(\varepsilon)$, is proportional to

- 40. N समरूप बोसॉन दो ऊर्जा स्तरों के बीच कुल कितने तरीकों में बोटित हो सकते हैं ?
- N(N-1)/2
- N(N+1)/23.
- 41. N कणों वाले एक गैरा जिसकी आयतन V व सापमान T है, की मुक्त फर्जा है

$$F = Nk_BT \ln \left[a_0V \left(k_BT \right)^{5/2} / N \right].$$

जहाँ uo एक स्थितांक है व ka बोल्ट्समैन स्थितांक को निर्दिष्ट करता है । यैस की आंतरिक ऊर्जा है :

- $\frac{5}{2}Nk_BT$ 2.
- $Nk_BT \ln \left[a_0V(k_BT)^{3/2}/N \right] -$
- $Nk_BT \ln \left[a_0V/(k_BT)^{5/2} \right]$ 4.
- 42. निम्न दर्शाये गये सक्रियात्मक प्रवर्धक परिपथ में निवेश वोल्टेज V₁ एक कोल्ट है । निर्मत V₀ 1K का मृत्य है :

- -0.33 V
- -0.50 V
- -1.00 V
- -0.25 V
- 43. एक व्रकाश ज़त्सर्जक हायोह (प्र उ हा) अग्रदिशिक वायस में 1.5 V व 5 mA पर सक्रिय है। प्र उ डा की बाहरी क्षयता को 80% मानते हुये, प्रति सेकण्ड कितने फोटान उत्सर्जित होते हैं ?
 - 5.0×10^{16}
- 1.5 × 10¹⁶
- 0.8×10^{16} 3.
- 4. 2.5 × 10¹⁶

- 40. The number of ways in which N identical bosons can be distributed in two energy levels, is
 - N+1
- N(N-1)/2
- 3. N(N+1)/2
- 41. The free energy of a gas of N particles in a volume V and at a temperature T is

$$F = Nk_BT \ln \left[a_0V \left(k_BT \right)^{5/2} / N \right],$$

where a_0 is a constant and k_n denotes the Boltzmann constant. The internal energy of the gas

- $Nk_BT \ln \left[a_0V \left(k_BT\right)^{5/2}/N \right] \frac{3}{2}Nk_BT$
- $Nk_BT \ln \left[a_0V/(k_BT)^{5/2} \right]$
- 42. In the op-amp circuit shown in the figure below, the input voltage Vi is 1 V. The value of the output Va is

- -0.33 V
- 0.50 V
- -1.00 V
- -0.25 V
- 43. An LED operates at 1.5 V and 5 mA in forward bias. Assuming an 80% external efficiency of the LED, how many photons are emitted per second?
 - 1. 5.0 × 10¹⁶
- 1.5 × 10¹⁶
 2.5 × 10¹⁶
- 0.8 × 10¹⁶
- 2.5×10^{16}

44. दिये गर्य परिपथ में ट्रेन्सिस्टर के $h_{\rm fe} = 35\Omega$ प $h_{\rm ie} = 1000\Omega$ हैं । गरि भार प्रतिरोधक $R_{\rm L} = 1000\Omega$, तो गोर्स्टन य धारा क्रमशः हैं :

- 1. 35 7 + 35
- 2. 35 7-35
- 3. 35 7-0.97
- 4. 0.98 # 35
- 43. धातु, पृथक्कारी व अर्धचालक पतली परलों में प्रयोग में मार्प एवं पारंगमन स्पेक्ट्रा निम्न चित्र में दर्शाये यथे है। यह निकार्ष पर पहुँचा जा सकता है कि क्रमशः 1, 11 व 111 की संगति होगी:

- मृथकारी अधीवालक व धातु
- अर्थचालक, धातु व पृथवकारी
- धातु अर्थबालक व पृथकारी
- 4. पृथाकारी, धातु व अर्धचालक

44. The transistor in the given circuit has $h_{\rm fe} = 35\Omega$ and $h_{\rm ie} = 1000\Omega$. If the load resistance $R_{\rm L} = 1000\Omega$, the voltage and current gain are, respectively.

- 1. -357+35
- 2. 35 7-35
- 35 ₹ − 0.97
- 4. 0.98 7-35
- The experimentally measured transmission spectra of metal, insulator and semiconductor thin films are shown in the figure. It can be inferred that I, II and III correspond, respectively, to

- 1. insulator, semiconductor and metal
- 2. semiconductor, metal and insulator
- 3. metal, semiconductor and insulator
- 4. insulator, metal and semiconductor

भाग С

46. प्रतिसमामित आव्यूह
$$A = \begin{pmatrix} 0 & -n_3 & n_2 \\ n_3 & 0 & -n_1 \\ -n_2 & n_1 & 0 \end{pmatrix}$$
 जहाँ n_1 , n_2 च n_3 महत्रक सदिश के घटक हैं. के अभित्साणिक

मान हैं :

46. The eigenvalues of the antisymmetric matrix,
$$A = \begin{pmatrix} 0 & -n_3 & n_2 \\ n_3 & 0 & -n_1 \\ -n_2 & n_1 & 0 \end{pmatrix}$$
 where n_1 , n_2 and n_3 are

the components of a unit vector, are

47. निम्न में से किस सीमांत का अस्तित्व है ?

1.
$$\lim_{N \to \infty} \left(\sum_{n=1}^{N} \frac{1}{n} + \ln N \right)$$

2.
$$\lim_{N\to\infty} \left(\sum_{m=1}^{N} \frac{1}{m} - \ln N \right)$$

3.
$$\lim_{N\to\infty} \left(\sum_{m=1}^{N} \frac{1}{\sqrt{m}} - \ln N \right)$$

4.
$$\lim_{N\to\infty} \sum_{m=1}^{N} \frac{1}{m}$$

47. Which of the following limits exists?

1.
$$\lim_{N\to\infty} \left(\sum_{m=1}^N \frac{1}{m} + \ln N \right)$$

$$2. \quad \lim_{N \to \infty} \left(\sum_{m=1}^{N} \frac{1}{m} - \ln N \right)$$

3.
$$\lim_{N \to \infty} \left(\sum_{n=1}^{N} \frac{1}{\sqrt{n}i} - \ln N \right)$$

4.
$$\lim_{N\to\infty} \sum_{m=1}^{N} \frac{1}{m}$$

48. एक थैली में बहुत सी गेंदें हैं, हर एक के ऊपर एक अंक चित्रित है । 'n' अंक वाली ठीक-ठीक 'n' गेंदें हैं (अर्थात् 1 अंक वाली 1, 2 अंक. पाली 2, ऐसे ही N अंकवाली N गेंदों तक) । एक प्रयोग के अंतर्गत, याद्धिक रूप से एक गेंद घुनी जाती है, उसका अंक अंकित किया जाता है व वापस की जाती है । इस प्रयोग को बहुत बार दोहराये जाने पर निकाले गये अंक का माध्य मूल्य होगा :

1.
$$\frac{2N+1}{3}$$

$$3. \frac{N+1}{2}$$

1.
$$\frac{2N+1}{3}$$
 2. $\frac{N}{2}$ 3. $\frac{N+1}{2}$ 4. $\frac{N(N+1)}{2}$

 A bag contains many balls, each with a number painted on it. There are exactly n balls which have the number n (namely one ball with 1, two balls with 2, and so on until N balls with N on them). An experiment consists of choosing a ball at random, noting the number on it and returning it to the bag. If the experiment is repeated a large number of times, the average value of the number will tend to

1.
$$\frac{2N+}{3}$$

2.
$$\frac{N}{2}$$

3.
$$\frac{N+1}{2}$$

1.
$$\frac{2N+1}{3}$$
 2. $\frac{N}{2}$ 3. $\frac{N+1}{2}$ 4. $\frac{N(N+1)}{2}$

49. $\frac{1}{r^2-R^2}\cos\left(\frac{rt}{2R}\right)dt$ we get t^* .

1.
$$-2\pi/R$$
 2. $-\pi/R$ 3. π/R

$$2. -\pi/R$$

 $2\pi/R$

49. The value of the integral $\int_{1}^{\infty} \frac{1}{t^2 - R^2} \cos\left(\frac{rt}{2R}\right) dt$ is

1.
$$-2\pi/R$$
 2. $-\pi/R$ 3. π/R

 $2\pi/R$

50. यामां कोष्टक { |r|, |p|} का मूल्य है

2.
$$\vec{r} \cdot \vec{p}$$
 3. 3

4. 1

50. The Poisson bracket $\{|\mathbf{r}|, |\mathbf{p}|\}$ has the value

2.
$$\hat{r}, \hat{p}$$
 3. 3

- 4. I
- 51. एक-विमीय द्विकूप विभव $V\left(x\right) = \frac{1}{4}\left(x^2-2\right)^2$ में चलने वालं एक भिरप्रतिष्ठित कण के चलन पर विचारें । यदि कण के धनात्मक अंश के न्यून से अरयाणयिक विस्तापन पाता है (धर्षण की उपेक्षा करते हुये) ती
 - कण दाये कूप में कोणीय आवृत्ति ω = √2 के साथ सरल आवर्त गरी पर चलेगा ।
 - कण दायें कूप में कोणीय आवृत्ति $\omega=2$ के साथ सरस आवर्त गीठ पर चलेगा ।
 - कण दार्थे व बार्थ कूपों के बीध व्यस्यस्त होगा ।
 - कण दाये कृष के अधीभाग के पास जाकर वहीं रह जायेगा ।
- 51. Consider the motion of a classical particle in a one dimensional double-well potential $V(x) = \frac{1}{4}(x^2 - 2)^2$. If the particle is displaced infinitesimally from the minimum on the positive x-axis (and friction is neglected), then

- the particle will execute simple harmonic motion in the right well with an angular frequency
- 2. the particle will execute simple harmonic motion in the right well with an angular frequency
- 3. the particle will switch between the right and left wells
- the particle will approach the bottom of the right well and settle there
- 52. एक जड़त्वीय फ्रेम में दो घटनायें 7.5 × 10⁸ मीठ दूरी व 6.5 सेठ समयांतर में घटती हैं, तो इन दोनों घटनाओं के बीच का उचित कालांतर वया है ?
 - 6.50 ₹lo
- 2. 6.00 ₹0
- 3. 5.75 ₹b
- 5.00 ₹0
- What is the proper time interval between the occurence of two events if in one inertial frame the 52. events are separated by 7.5 × 108 m and occur 6.5 s apart?
 - 1. 6.50 s
- 2. 6.00 s
- 3. 5.75 s
- धनात्मक z-दिशा में चलते, एक समतल तरंग से वर्णित, एक मुक्त कथा एक विभव $V(r) = \begin{cases} V_0 & \text{all } r \leq R \\ 0 & \text{all } r > R \end{cases}$ it all all limits l if lकिया जाय, तो बॉर्न सन्तिकटीकरण में अंतरात्मक प्रकीर्णन अनुप्रस्थ
 - अपने पूर्व मृत्य से वीग्ना बढता है ।
 अपने पूर्व मृत्य से दृगुना बढ़ता है ।

 - अपने पूर्व मृत्य का आधा हो जाता है ।
 अपने पूर्व मृत्य का एक चौथाई हो जाता है ।
- A free particle described by a plane wave and moving in the positive z-direction undergoes scattering by a potential

$$V(r) = \begin{cases} V_0 & \text{if } r \leq R \\ 0 & \text{if } r > R \end{cases}$$

If V_0 is changed to $2V_0$, keeping R fixed, then the differential scattering cross-section, in the Born approximation,

- 1, increases to four times the original value
- increases to twice the original value
- 3. decreases to half the original value
- 4. decreases to one fourth the original value
- 54. एक-प्रिमीय विभव कूप $V(x) = \begin{cases} 0 & all & |x| \leq a \\ \infty & all & |x| > a \end{cases}$ लिये एक प्रसामान्यीकृत अभिप्रायोगिक तरंग फलन

 $\psi(x) = \frac{\sqrt{15}}{4a^{5/2}} (a^2 - x^2)$ के साथ एक विचरण परिकलन किया जाता है । ऊर्जा की निम्नलम अवस्था का

$$\frac{9n^2}{3ma^2}$$

$$2ma^{2}$$

$$3. \quad \frac{3h^2}{5ma^2}$$

4.
$$\frac{5h^2}{4ma}$$

54. A variational calculation is done with the normalized trial wavefunction $\psi(x) = \frac{\sqrt{15}}{4a^{5/3}} (a^2 - x^2)$; for the one-dimensional potential well

$$|f(x)\rangle = \begin{cases} 0 & \text{if } |x| \leq \varepsilon \\ \infty & \text{if } |x| > \varepsilon. \end{cases}$$

The ground state energy is estimated to be

$$1. = \frac{5h^3}{3ma^3}$$

E.
$$\frac{8h^2}{3ma^2}$$
 2. $\frac{3h^2}{2ma^4}$ 3. $\frac{3h^2}{5ma^2}$

$$3. \quad \frac{3h^3}{5ma^2}$$

$$4. \quad \frac{5h^2}{4ma^2}$$

55. THE WAY THE PARTY DAY

$$V(x) = \begin{cases} \infty & \text{if } 0 \le x \le 0 \\ -1, & \text{if } 1 \le x \le 0 \\ 0 & \text{if } 1 \le x \ge 0 \end{cases}$$

ा है । एडि कम वो कम एक परिवास अवस्था है, तो विभाव की न्यूनतम राहराई है :

$$1 = \frac{h^2 \pi^2}{8 \pi r^2}$$

2.
$$\frac{h^2\pi^2}{2m\ell^2}$$

1.
$$\frac{h^2\pi^2}{8\pi i^2}$$
 2. $\frac{h^2\pi^2}{2m\ell^2}$ 3. $\frac{2h^2\pi^2}{m\ell^3}$ 4. $\frac{h^2\pi^2}{m\ell^2}$

$$4. \quad \frac{h^2\pi^2}{m\ell^2}$$

A particle in one-dimension is in the potential

$$F(x) = \begin{cases} \infty & \text{if } x < 0 \\ -F_a & \text{if } 0 \le x \le \ell \\ 0 & \text{if } x > \ell \end{cases}$$

if there is at least one bound state, the minimum depth of the potential is

$$1 = \frac{h^2 \pi^2}{8m\ell}$$

2.
$$\frac{h^2\pi^2}{2m\ell^2}$$

$$1 = \frac{h^2 \pi^2}{8m\ell^2}$$
 2. $\frac{h^2 \pi^2}{2m\ell^2}$ 3. $\frac{2h^2 \pi^2}{m\ell^2}$ 4. $\frac{h^2 \pi^2}{m\ell^2}$

$$4. \quad \frac{\hbar^2 \pi^2}{m\ell^2}$$

पालीय दुरीय सिर्वेशांक प्रणाली (r, fl, \o) में निम्म में से कौन एक स्वसंतरम संकारक है ?

1.
$$\frac{i\hbar}{\sin^2\theta} \frac{\partial}{\partial \theta}$$

2.
$$-i\hbar \frac{\partial}{\partial \theta}$$

3.
$$-\frac{i\hbar}{\sin\theta} \frac{\partial}{\partial\theta}$$

1.
$$\frac{i\hbar}{\sin^2\theta} \frac{\partial}{\partial \theta}$$
 2. $-i\hbar \frac{\partial}{\partial \theta}$ 3. $-\frac{i\hbar}{\sin\theta} \frac{\partial}{\partial \theta}$ 4. $-i\hbar \sin\theta \frac{\partial}{\partial \theta}$

Which of the following is a self-adjoint operator in the spherical polar coordinate system (r. 0, 0)?

1.
$$-\frac{i\hbar}{\sin^2\theta} \frac{\partial}{\partial \theta}$$

2.
$$-i\hbar \frac{\partial}{\partial \theta}$$

1.
$$-\frac{i\hbar}{\sin^3\theta} \frac{\partial}{\partial \theta}$$
 2. $-i\hbar \frac{\partial}{\partial \theta}$ 3. $-\frac{i\hbar}{\sin\theta} \frac{\partial}{\partial \theta}$ 4. $-i\hbar \sin\theta \frac{\partial}{\partial \theta}$

4.
$$-i\hbar \sin\theta \frac{\partial}{\partial\theta}$$

57. निम्न में से कौन लॉरेन्ट्स निश्वर है ?

1.
$$\left|\mathbf{E} \times \mathbf{B}\right|^2$$

2.
$$|\mathbf{E}|^2 - |\mathbf{B}|^2$$
 3. $|\mathbf{E}|^2 + |\mathbf{B}|^2$

3.
$$|E|^2 + |B|$$

4.
$$|\mathbf{E}|^2 |\mathbf{B}|^2$$

57. Which of the following quantities is Lorentz invariant?

1.
$$|\mathbf{E} \times \mathbf{B}|^2$$

2.
$$|E|^2 - |B|^2$$
 3. $|E|^2 + |B|^2$

3.
$$|\mathbf{E}|^2 + |\mathbf{B}|^2$$

4.
$$|E|^2|B|$$

58. पक्ष α के समग्रह त्रिकोण ABC के शीर्षों में थित्र में दर्शार्थनुसार आवेश Q, Q य −2Q रखे जाते हैं /

मूल-विन्दु की चुनाव-निश्पेक्ष, इस आवेश संख्यण का छिद्युव आधूर्ण है

1.
$$+2aQ\hat{i}$$

2.
$$+\sqrt{3}aQ\hat{j}$$
 3. $-\sqrt{3}aQ\hat{j}$ 4. 0

Charges Q, Q and -2Q are placed on the vertices of an equilateral triangle ABC of sides of length a, as shown in the figure

The dipole moment of this configuration of charges, irrespective of the choice of origin, is

1.
$$+2aQ\hat{i}$$

2.
$$+\sqrt{3}aQ$$

2.
$$+\sqrt{3}aQ\hat{j}$$
 3. $-\sqrt{3}aQ\hat{j}$

59. बिन्दु \mathbf{r} पर स्थित एक घुम्बकीय आयूर्ण \mathbf{m} के कारण होने वाले चुम्बकीय सदिश विभव $\mathbf{A} = \frac{\mathbf{m} \times \mathbf{r}}{r^2}$ है । यदि \mathbf{m} धंगामक z अक्ष की दिशा में है तो बिन्दु \mathbf{r} पर चुम्बकीय क्षेत्र का x घटक है :

$$1. \frac{3myz}{r^3}$$

$$= 2, \quad -\frac{3mxy}{r^5}$$

$$3, \frac{3mxz}{r^5}$$

4.
$$\frac{3m(z^2-xy)}{r^5}$$

59. The vector potential A due to a magnetic moment \mathbf{m} at a point \mathbf{r} is given by $\mathbf{A} = \frac{\mathbf{m} \times \mathbf{r}}{r^3}$. If \mathbf{m} is directed along the positive z-axis, the x-component of the magnetic field, at the point \mathbf{r} , is

1.
$$\frac{3myz}{r^5}$$

$$2. \quad -\frac{3mxy}{x^2}$$

3.
$$\frac{3mxz}{r^3}$$

$$4. \quad \frac{3m(z^2-xy)}{r^5}$$

60. एक प्रणाली में कंपन के, आवृतिसमें ω_1 में $\omega_2 = 2\omega_1$ में साथ, दो प्रास्तमान्य विधाये हैं । क्रायमान T पर प्रणाली की कर्ना $4\hbar\omega_1$ से कम होने की प्राधिकता गया है ? (निम्न में $x=e^{-\beta \hbar\omega_1}$ a Z प्रणाली का सीनेत्तरण फलन है)

1.
$$x^{3/2}(x+2x^2)/Z$$

2.
$$x^{\frac{1}{2}}(1+x+x^2)/Z$$

3.
$$x^{3/2}(1+2x^2)/Z$$

4.
$$x^{\frac{3}{2}}(1+x+2x^2)/Z$$

60. A system has two normal modes of vibration, with frequencies ω₁ and ω₂ = 2ω₁. What is the probability that at temperature T, the system has an energy less than 4hω₁?
[In the following x = e^{-f(h)ω₁} and Z is the partition function of the system.]

1.
$$x^{\frac{3}{2}}(x+2x^2)/Z$$

2.
$$x^{\frac{1}{2}}(1+x+x^2)/Z$$

3.
$$x^{\frac{1}{2}}(1+2x^2)/z$$

4.
$$x^{\frac{1}{2}}(1+x+2x^{2})/Z$$

61. एक लोहमुम्बक का बुध्वकन \dot{M} , सापमान T व बुध्वकीय क्षेत्र H के फलन के रूप में समीकरण $M = \tanh\left(\frac{T_c}{T}M + \frac{H}{T}\right)$ से पर्णित है । इन एकलों में शुस्य क्षेत्र बुध्वकीय प्रवृत्ति M(0) = M(H=0) के अनुसार इस प्रकार दिया जाता है :

1.
$$\frac{1-M^2(0)}{T-T_c(1-M^2(0))}$$
 2.
$$\frac{1-M^2(0)}{T-T_c}$$

3.
$$\frac{1-M^2(0)}{T+T_c}$$
 4. $\frac{1-M^2(0)}{T}$

61. The magnetization M of a ferromagnet, as a function of the temperature T and the magnetic field H, is described by the equation $M = \tanh\left(\frac{T_c}{T}M + \frac{H}{T}\right)$. In these units, the zero-field magnetic susceptibility in terms of M(0) = M(H = 0) is given by

1.
$$\frac{1-M^{2}(0)}{T-T_{c}(1-M^{2}(0))}$$
2.
$$\frac{1-M^{2}(0)}{T-T_{c}}$$
3.
$$\frac{1-M^{2}(0)}{T+T_{c}}$$
4.
$$\frac{1-M^{2}(0)}{T}$$

62. द्वीय He जो परिवेशी दाव में 2,17 K पर रखा गया है, में बोस संघनन संगवित होता है । वायवी He , जिसका धनत्व द्वीय He से एक इजार गुना कम है, में किस तापमान पर बोस संघनन संगवित होगा ? (मानें कि वह परिपूर्ण बोस गैस है)

1. 2.17 mK 2. 21.7 mK 3. 21.7 μK 4. 2.17 μK

62. Bose condensation occurs in liquid He⁴ kept at ambient pressure at 2.17 K. At which temperature will Bose condensation occur in He⁴ in gaseous state, the density of which is 1000 times smaller than that of liquid He⁴?
(Assume that it is a perfect Bose gas.)

1. 2.17 mK 2. 21.7 mK 3. 21.7 μK 4. 2.17 μK

63. एक कोटर, जिसकी भित्तियाँ तापमान T पर हैं, के अंदर स्थित कृष्णिका विकिरण के बारे में विचारें । यदि भित्तियाँ के तापमान को 2T तक बढ़ाया जाय, व विकिरण को नये तापमान पर साम्यायस्था पर आने दिया जाय, तो विकिरण की एन्ट्रोपी इतनी पुना बढ़ती हैं :

1, 2 2, 4 3, 8 4, 16

63. Consider black body radiation contained in a cavity whose walls are at temperature T. The radiation is in equilibrium with the walls of the cavity. If the temperature of the walls is increased to 2T and the radiation is allowed to come to equilibrium at the new temperature, the entropy of the radiation increases by a factor of

1. 2 2. 4 3. 8 4. 16

- 64. दिये गये परिपथ में दशायें I व II में निर्गत () क्रमश होंगे
 - ($\sqrt{3}$ $\sqrt{6}$ $\sqrt{7}$ $\sqrt{7}$
 - यशा II: A, B = 0; C, D = 0; E, F = 0 व G = 1)

- Har ILO
- 0. 1
- 0.0
- 4. 1.1
- 64. The output, O, of the given circuit in cases I and II, where
 - Case I : A, B = 1; C, D = 0; E, F = 1 and G = 0
 - Case II: A, B = 0; C, D = 0; E, F = 0 and G = 1
 - are, respectively

- 1. 1.0
- 2. 0.1
- 0,0
- 4. 1.1
- 65. एक प्रतिरोध हान प्रमायी को एक इस्पाती जुङ्गार के साथ जोड़कर 1000 किंठ ग्राठ प्रति वर्ग नीठ के सनाय के अधीन लागा जाता है । यदि प्रमाणी गुणक 3 है. व इस्मात की प्रत्यावस्था गुणकि 2 × 10 0 किल्याल प्रति वर्ग भीठ है, हो दिये गये तनाव के कारण हान प्रमायी के प्रतिरोध में अबे प्रभावी परिवर्तन है :

(सूचना प्रमापी गुणक प्रतिरोध के प्रभावी परिवर्तन व लग्बाई को प्रभावी परिवर्तन के अनुपात के रूप में परिभागित है)

- 1. 1.5×10^{-7} 2. 3.0×10^{-7} 3. 0.16×10^{-10} 4. 0.5×10^{-7}
- A resistance strain gauge is fastened to a steel fixture and subjected to a stress of 1000 kg/m2. If the gauge factor is 3 and the modulus of elasticity of steel is 2 × 10 kg/m2, then the fractional change in resistance of the strain gauge due to the applied stress is

(Note: The gauge factor is defined as the ratio of the fractional change in resistance to the fractional change in length.)

- L 4.5 × 10.
- 2. 3.0 × 10
- 3. 0.16× 10⁻¹⁰
- 4. 0.5 × 10⁻⁷

66.	आयाम 1 V य आयुक्ति f_o के एक ज्यावक्रीय तरंग रूप पर विचारें । किसी खेच्छ प्रारंभिक काल से शुरू करते
	हुये, तरंग रूप के $1/(2f_0)$ कालांतर में प्रतिदर्श निकाले जाते हैं । यदि भगत फूरिये स्पेक्ट्रम आवृत्ति \widehat{f} व
	A आयाम में शिखरित होता है तो

1.
$$\overline{f} = 2 f_0 \neq \overline{A} = 1 \text{ V}$$

2.
$$\overline{f} = f_0 \ \overline{v} \ 0 \le \overline{A} \le 1 \ V$$

3.
$$\overline{f} = 0$$
 \overline{a} $\overline{A} = 1$ V

4.
$$\overline{f} = \frac{f_0}{2} \, \forall \, \overline{A} = \frac{1}{\sqrt{2}} \, V$$

Consider a sinusoidal waveform of amplitude 1 V and frequency f_0 . Starting from an arbitrary initial time, the waveform is sampled at intervals of $1/(2f_0)$. If the corresponding Fourier spectrum peaks at a frequency f and an amplitude A, then

1.
$$\overline{f} = 2 f_0$$
 and $\overline{A} = 1 \text{ V}$

2.
$$\overline{f} = f_0 \text{ and } 0 \le \overline{A} \le 1 \text{ V}$$

3.
$$\overline{f} = 0$$
 and $\overline{A} = 1 \text{ V}$

4.
$$\overline{f} = \frac{f_o}{2}$$
 and $\overline{A} = \frac{1}{\sqrt{2}}$ V

¹²C¹⁶O का प्रथम अवसोगण स्पेक्ट्रम 3.842 से०मी०⁻¹ पर है, जबकि ¹³C¹⁶O का 3.673 से०मी०⁻¹ पर है । उनके जड़रव आघूणों की अनुपात है :

- 1. 1.851
- 1.286 3, 1.046

67. The first absorption spectrum of 12C16O is at 3.842 cm⁻¹ while that of 15C16O is at 3.673 cm⁻¹. The ratio of their moments of inertia is

- 1. 1.851
- 1.286
- 3. 1.046
- 4. 1.038

68. एक परमाणु में प्रचक्रण-कक्षा अन्योन्यक्रिया $H=a\,\mathbf{L}.\mathbf{S}$ से दिया जाता है, जहाँ \mathbf{L} व \mathbf{S} क्रमशा एलेक्ट्रोन के कशीय व प्रयक्रण कोणीय संवेग हैं । स्तरें $^{2}P_{3/2}$ व $^{2}P_{1/2}$ के बीच विपाटन है :

- 1. $\frac{3}{2}ah^2$
- 2. $\frac{1}{2}ah^2$ 3. $3ah^2$

The spin-orbit interaction in an atom is given by H = aL.S, where L and S denote the orbital and spin angular momenta, respectively, of the electron. The splitting between the levels ${}^2P_{3/2}$ and ${}^{2}P_{\nu}$, is

- 1. $\frac{3}{2}ah^2$ 2. $\frac{1}{2}ah^2$ 3. $3ah^2$

69.	$J=1$ से $J=0$ अवस्थाओं पर होने वाले परमाणिक संक्रमण से संगत स्पेक्ट्रल रेखा $1~{ m kG}$ चुम्मकीय क्षेत्र मे							
	1.6×10 ⁻³ Å <i>से वि</i> व	$1.6 imes 10^{-3}$ Å ते विच्छोदित तीन घटकों में विपाटित होती है । यदि शून्य अंत्र स्पेक्ट्रल रेखा 1849 Å ते संगत						
	है. $J=1$ अवस्था का g	-गुणक बया ह	? (अग्रप $\frac{hc}{\mu_B}$:	≈2×10 ⁴	रोठगीठ का उपय	ोग कर सक	ते हैं)	
	1. 2	2.	3/2	3.	1	4,	1/2	
69.	The spectral line corresponding to an atomic transition from $J=1$ to $J=0$ states splits in a magnetic field of 1 kG into three components separated by 1.6×10^{-3} Å. If the zero field spectral line corresponds to 1849 Å, what is the g -factor corresponding to the $J=1$ state? (You may use $\frac{hc}{\mu_0}\approx2\times10^4$ cm.)							
	1. 2	2, .	3/2	3.	1	4.	1/2	
70.	एक स्कटिक में जालक रिवित की रचना हेतु l eV की कर्जा की आवश्यकता है । जब स्कटिक 1200 K ब 300 K सापमान में क्रमशः साम्यायस्था में हैं, रिक्तियों की संख्या धनता का अनुपात n(1200 K)/n(300 K) लगभग है :							
	1. exp(-30)	2.	exp(-15)	3.	exp(15)	4,	exp(30)	
70.	The energy required to create a lattice vacancy in a crystal is equal to 1 eV. The ratio of the number densities of vacancies $n(1200\mathrm{K})/n(300\mathrm{K})$, when the crystal is at equilibrium at 1200 K and 300 K, respectively, is approximately							
	1. exp(-30)	2.	exp(-15)	3.	exp(15)	4.	exp(30)	
71.	एक योस मदार्थ में कोनानों का परिक्षेपण संजना $\omega^2(k) = \omega_0^2 (3 - \cos k_s a - \cos k_s a - \cos k_s a)$ से दिया जाता है । अधिक तरंगलम्बाई में कोनाना की गरि। है :							
	$1. \omega_0 a/\sqrt{3}$	2. ($\theta_{ii}a$	3.	$\sqrt{3} \omega_v a$	4.	$\omega_0 a/\sqrt{2}$	
71.	The dispersion relation of phonons in a solid is given by $\omega^2(k) = \omega_0^2 \left(3 - \cos k_1 a - \cos k_2 a - \cos k_2 a\right).$							
The velocity of the phonons at large wavelength is								
	1. $\omega_0 a / \sqrt{3}$	2. 0	$\epsilon_{\mu}a$	3.	$\sqrt{3} \omega_0 a$	4.	$\omega_0 a / \sqrt{2}$	

72. L लम्बाई की एक सदूक में आवर्ती सीमा प्रतिबंध $\psi(x) = \psi(x+L)$ के साथ रहते एक एलेक्ट्रॉन के बारे में चिचारें । यदि एलेक्ट्रॉन $\psi_k(x) = \frac{1}{\sqrt{L}} e^{ikx}$ अवस्था में कर्जा $\varepsilon_k = \frac{h^2 k^2}{2m}$ के साथ है, तो जब उस पर एक निर्वल आयर्ती विभव $V(x) = V_0 \cos gx$ लगाया जाता है, जहाँ g, $2\pi/L$ का एक पूर्णांक बहुगुण है, दूसरी कोटि के क्षोग सिद्धांत के अनुसार उसकी कर्जा की संशुद्धि क्या है ?

1.
$$V_0^2 \varepsilon_g / \varepsilon_k^2$$

2.
$$-\frac{mV_{\phi}^{2}}{2\hbar^{2}}\left(\frac{1}{g^{2}+2kg}+\frac{1}{g^{2}-2kg}\right)$$

3.
$$V_o^2(\varepsilon_k - \varepsilon_g)/\varepsilon_g^2$$

4.
$$V_0^2/(\varepsilon_k + \varepsilon_x)$$

72. Consider an electron in a box of length L with periodic boundary condition $\psi(x) = \psi(x+L)$.

If the electron is in the $\psi_k(x) = \frac{1}{\sqrt{L}} e^{ikx}$ with energy $\varepsilon_k = \frac{h^2 k^2}{2m}$, what is the correction to its energy, to second order of perturbation theory, when it is subjected to a weak periodic potential $V(x) = V_0 \cos gx$, where g is an integral multiple of the $2\pi/L$?

1.
$$V_0^2 \varepsilon_g / \varepsilon_k^2$$

2.
$$-\frac{mV_0^2}{2h^2}\left(\frac{1}{g^2+2kg}+\frac{1}{g^2-2kg}\right)$$

3.
$$V_0^2 \left(\varepsilon_k - \varepsilon_g\right) / \varepsilon_g^2$$

4.
$$V_0^2/(\varepsilon_k + \varepsilon_g)$$

73. $^{201}_{12}$ Pb नाभिक की निम्नतम अवस्था का प्रवक्षण सादृश्य $J^P = \frac{1}{2}$ है, जबकि पहली उत्तंजित अवस्था का $J^P = \frac{5}{2}$ है । जब नाभिक पहली उत्तंजित अवस्था से निम्नतम अवस्था में संक्रमण करता है तो उत्सर्जित विद्युत चुम्बकीय विकिश्ण हैं :

- 1. E2 7 E3
- 2. M2 7 E3
- 3. E2 7 M3
- 4. M2 7 M3

73. The ground state of $^{207}_{82}$ Pb nucleus has spin-parity $J^P = \frac{1}{2}^-$, while the first excited state has $J^P = \frac{5}{2}^-$. The electromagnetic radiation emitted when the nucleus makes a transition from the first excited state to the ground state are

- 1, E2 and E3
- M2 and E3.
- E2 and M3
- M2 and M3

74. निम्न प्रक्रियाओं में प्रमाधी अन्योत्यक्रियायें हैं -

A.
$$K^- + p \rightarrow \Sigma^- + \pi^+$$

B. $\mu^- + \mu^+ \rightarrow K^- + K^+$
C. $\Sigma^+ \rightarrow p + \pi^0$

- A: प्रवल, B: विद्वालुम्बकीय व C: निवील 2. A: प्रवल, B: निर्वल व C: निवील
- A: विदेश, B: विदानपुष्यकीय व C: प्रवस 3.
- 4. A: निर्वल, B: विद्युत्तपुम्पकीय प C: निर्वल

100

74. The dominant interactions underlying the following processes

D.
$$K^- + p \rightarrow \Sigma^- + \pi^+$$

E.
$$\mu^* + \mu^* \rightarrow K^* + K^*$$

F.
$$\Sigma' \rightarrow p + \pi^0$$

are

- 1. A: strong, B: electromagnetic and C: weak 2. A: strong, B: weak and C: weak
- 3. A: weak, B: electromagnetic and C: strong
- 4. A: weak, B: electromagnetic and C: weak

75. यदि द्रथ्यमान $m_{\rm H}$ का हिम्मस् गोसान जो गति $eta=rac{v}{c}$ में साथ नल रहा है, उसकी एक दुम्म फोटानों में धरा होती है. तो फोटात युग्न का निश्चर द्रव्यमान है : (सूचना : कार-मधेग p, व p, के दो कर्णों की प्रणाली का निश्चर द्रायमान्य $(p_1 + p_2)^2 \beta^* \psi$

βm_H

2. m₁₁

3. $m_{ij}/\sqrt{1-\beta^2}$

4. $\beta m_H / \sqrt{1-\beta^2}$

75. If a Higgs boson of mass $m_{\rm H}$ moving with a speed $\beta = \frac{v}{c}$ decays into a pair of photons, then the invariant mass of the photon pair is

Note: The invariant mass of a system of two particles, with four-momenta p_t and p_s is $(p_1 + p_2)^2$

βm_Ω

2. m_H

3. $m_{\rm H}/\sqrt{1-\beta^2}$

4. $\beta m_H / \sqrt{1 - \beta^2}$