Groepen theorie

Luc Veldhuis

15 Mei 2017

$\S 4.1$

Een groep G werkt (links) op een verzameling $A \neq \emptyset$ wil zeggen: $G \times A \to A$ met $(g, a) \mapsto ga$ Er geldt $\forall g_1, g_2 \in G$ en $\forall a \in A$ dat:

- $g_1(g_2a) = (g_1g_2)a$
- ea = a

 $\forall g \in G \text{ in } \sigma_g : A \to A \text{ is een element van } S_A \text{ (permutaties van } A)$ met inverse afbeelding $(\sigma g)^{-1} = \sigma_{g^{-1}} \text{ dan is } \psi : G \to S_A \text{ een homomorfisme met } \psi(g) = \sigma_g$ $\sigma_{g_1g_2} = \psi(g_1g_2) = \psi(g_1)\psi(g_2) = \sigma_{g_1}\sigma_{g_2} \text{ Controleer dit door } \sigma_{g_1g_2} \text{ en } \sigma_{g_1}\sigma_{g_2} \text{ te berekenen op alle } a \in A \text{ (opgave)}$

Stelling van Cagley

Als G een groep is met |G| = n, dan is G isomorf met een ondergroep van S_n .

Namelijk G werkt op A = G via linksvermenigvuldiging:

 $G \times A = A \text{ met } (g, a) \mapsto ga \text{ (product in } G)$

Dus we krijgen: $\psi: G \to S_A \cong S_n$ met $g \mapsto \sigma_g$ via het permuteren van elementen van G.

Maar ψ is injectief: als $g \in Ker(\psi)$, dan is $\sigma_g = id_A$. Dus

 $ga = \sigma_g(a) = id_A(a) = a, \ \forall a \in A$

Neem a=e: $g=ge=e \rightarrow g=e \Rightarrow Ker(\psi)=\{e\}$, dus injectief en ψ een homomorfisme.

Dus $\psi: G \to Im(\psi)$ is een isomorfisme. Het beeld van een homomorfisme is altijd een ondergroep, in dit geval van S_A

Voorbeeld

Voor $G = S_3 = \{e, (1\ 2), (1\ 3), (2\ 3), (1\ 2\ 3), (1\ 3\ 2)\}$ Nummer dit 1, 2, 3, 4, 5, 6

Er geldt: (1 2) werkt in G op G = A via linkswerkingen als:

- 1 \rightarrow 2 want $e \rightarrow$ (1 2) want (1 2)e = (1 2)
- ullet 2 ightarrow 1 want (1 2) ightarrow e want (1 2)(1 2) = e
- $3 \to 6$ want $(1\ 3) \to (1\ 3\ 2)$
- ullet 6 ightarrow 3 want (1 3 2) ightarrow (1 3)
- $4 \to 5$ want $(2\ 3) \to (1\ 2\ 3)$
- $5 \to 4 \text{ want } (1\ 2\ 3) \to (2\ 3)$

Dus het beeld van $(1\ 2) \in S_3$ is $(1\ 2)(3\ 6)(4\ 5) \in S_6$

Definitie

- De kern van de werking $(Ker(\psi))$ is $\{g \in G | ga = a \forall a \in A\}$
- $G_a = \{g \in G | ga = a\}$ voor een vaste $a \in A$ heet de stabilisator van a in G.
- $Ga = \{ga|g \in G\} \subseteq A$ heet de **baan** van a. De grootte van de baan heet de **lengte**.

Voorbeeld

G werkt op zichzelf via conjungatie $(g,a) \mapsto gag^{-1}$ (ga na) De stabilisator van a is $C_G(a)$ centralizator van a.

Baan stabilisator stelling

- Als G op A werkt met $a, b \in A$ dan is $a \sim b \Leftrightarrow^{def} \exists g \in G$ met a = gb een equivalentie relatie op A. De equivalentie klasse van a is de baan Ga van a.
- ullet Er is een bijectie $G/G_a o Ga$ met $gG_a\mapsto Ga$

Opmerking

Stel
$$G$$
 eindig, dan is $|Ga| = |G/G_a| = \frac{|G|}{|G_a|}$.
Dus $|G_a| \cdot |Ga| = |G|$

Voorbeeld

```
G = S_4 werkt op A = \{ \text{deelverzameling van } \{1,2,3,4\} \text{ met } 2 \text{ elementen} \} Bijvoorbeeld \sigma\{1,2\} = \{\sigma(1),\sigma(2)\} A heeft maar 1 baan (ga na), dus G \cdot \{1,2\} = A heeft \binom{4}{2} = 6 elementen. |G_{\{1,2\}}| = \frac{|G|}{|G\{1,2\}|} = \frac{4!}{6} = 4. Hier is G_{\{1,2\}} de stabilisator. Dan is G_{\{1,2\}} = \{e,(1\ 2),(3\ 4),(1\ 2)(3\ 4)\}
```

Stelling

Als G eindig is en $H \leq G$ met |G:H| de kleinste priemdeler van |G|, dan is $H \leq G$.

Opmerking (Stelling van Cauchy)

Als G eindig is met p een priemdeler van |G| dan bevat G een element van orde p.

Bewijs

Laat G werken op $A \stackrel{\text{def}}{=} G/H$ via $(g, H) \mapsto g \times H$ Dat geeft het homomorfisme: $\psi: G \to S_A$. |A| = p e $|S_A| = p!$ $Im(\psi)$ is een ondergroep van S_A , dus $|Im(\psi)|||S_A| = p!$ (Lagrange) Ook $G/Ker(\psi) \cong Im(\psi)$ (1e isomorfie stelling) Dus $|Im(\psi)| ||G/Ker(\psi)| = \frac{|G|}{|Ker(\psi)|}$ en $|Ker(\psi)| \cdot |Im(\psi)| = |G|$ en $|Im(\psi)||G|$ hieruit volgt: $|Im(\psi)|$ deelt ggd(p!, |G|). De priemgetallen < p delen |G| niet, want p is de kleinste priemdeler van |G|. Dus $|Im(\psi)| = 1$ of $|Im(\psi)| = p$. $Ker(\psi) \leqslant H$ want gH = H als $g \in Ker(\psi)$ $H \neq G$ dus $Ker(\psi) \neq G \Rightarrow |Im(\psi)| \neq 1$ dus $|Im(\psi)| = p$ en $|Ker(\psi)| = \frac{|G|}{n} = |H| \Rightarrow Ker(\psi) = H$ en een kern is altijd een normaaldeler.

Voorbeeld

Als $|G| = 21 = 3 \cdot 7$ en $H \leq G$ met |H| = 7, dan geldt $H \leq G$ (|G:H| = 3 is de kleinste priemdeler van |G|)

§4.3 De klassenformule

Definitie

G een groep. G werkt op zichzelf door middel van conjungatie. $(g,a)\mapsto gag^{-1}$ met $g\in G$ en $a\in A$. De baan van $a=\{gag^{-1}|g\in G\}=$ de conjungatie klasse van a. De stabilisator van $a=\{g\in G|gag^{-1}=a\}=C_G(a)$ Nu geeft de baan-stabilisator formule: $|G|=|C_G(a)|\cdot|$ conjungatie klasse van a| want $|C_G(a)|=|G_a|$ en |conjungatie klasse van a|=|Ga|

§4.3 De klassenformule

Voorbeeld

 $G = D_100$, een groep met 100 elementen, 50 rotaties en 50 spiegelingen.

Conjungatie klasse van sr^i bevat elke $r^j sr^i r^{-j} = sr^{i-2j} = sr^i \langle r^2 \rangle$ (25 elementen, want 50 is even aantal rotaties en $\langle r^2 \rangle$ oneven cykels)

 $C_G(sr^i)$ bevat $\{e, sr^i, r^25, sr^{i+25}\}$ dat geeft minimaal 4 elementen $|G|=100, |C_G(a)| \geq 4, |Ga| \geq 25$ en $100=4 \cdot 25$ Dus $|C_G(a)|=4$ en |conjungatie klasse $sr^i\langle r^2\rangle|=25$ voor $a=sr^i$

§4.3 De klassenformule

Voorbeeld

De conjungatieklasse in $S_n \Leftrightarrow$ partitie van $n \Leftrightarrow$ cykeltype. Kies n = 4:

Cykeltype	Voorbeeld	Grootte conjungatieklasse
1,1,1,1	е	
1,1,2	(1 2)	
1,3	$(1\ 2\ 3)$	
4	(1234)	
2,2	$(1\ 2)(3\ 4)$	3

$$|C_{S_4}((1\ 2)(3\ 4))| = \frac{|S_4|}{|\text{conjungatie klasse}|} = \frac{4!}{3} = 8$$

Zie: $(1\ 3\ 2\ 4) \in H$, $(1\ 3\ 2\ 4)^2 = (1\ 2)(3\ 4)$, ook $(1\ 2) \in H$
 $\langle (1\ 3\ 2\ 4) \rangle \leqslant H$ met $|H| = 8$ en $\langle (1\ 3\ 2\ 4) \rangle = 4$