Analysis 1 - Vorlesung 24

8.1.2025

Contents

	0.1	Hauptsatz der Differentialrechnung	3
1	1.1	Satz 9.24	3 3
2	9.6 2.1	Substitutionsregel Satz 9.26 2.1.1 Beispiel	3 4
3	3.1 3.2 3.3 3.4	Uneigentliche Integrale 1 (unbeschränkte Integrale) Definition Uneigentliches Integral 9.27	
	3.5	Satz 9.31 Majorantenkriterium für Integrale	- 5

0.1 Hauptsatz der Differentialrechnung

sei $f \in C^0([a, b])$, dann

a)
$$c \in [a, b], F(x) = \int_{c}^{x} f(t) dt \Rightarrow F \in C^{1}([a, b])$$

b) F sei die stammfunktion von f, dann $\int_a^b f(x) dx = F(b) - F(a)$

1 Partielle Integration

1.1 Satz 9.24

Seien $f, g \in C^1([a, b])$, dann ist

$$\int_{a}^{b} f'(x)g(x) = -\int_{a}^{b} f(x)g'(x) + (f(b)g(b) - f(a)g(a))$$

Beweis:

$$f(b)g(b) - f(a)g(a) = \int_{a}^{b} (fg)'(x)dx = \int_{a}^{b} f'gdx + \int_{a}^{b} fg'dx$$

1.2 Korollar 9.25

seien $f \in C^0([a, b]), g \in C^1$. Dann

$$\int_a^b F(x)g(x)\mathrm{d}x = -\int f(x)g(x)\mathrm{d}x + F(x)g(x)\big|_{x=a}^b$$

2 9.6 Substitutionsregel

2.1 Satz 9.26

Seien I, J abgeschlossene beschränkte Intervalle. Sei $f \in C^0(I)$ und $\phi \in C^1(J)$ mit $\phi(J) \subset I$. Dann gilt $\forall \alpha, \beta \in J$

$$\int_{\alpha}^{\beta} f(\phi(t))\phi'(t)dt = \int_{\phi(\alpha)}^{\phi(\beta)} f(x)dx$$

Beweis: Sei F die Stammfunktion von f. Sei $g(t) = F(\phi(t))$. Dann ist $g'(t) = F'(\phi(t))\phi'(t) = f(\phi(t))\phi'(t)$. Somit ist

$$\int_{\alpha}^{\beta} f(\phi(t))\phi'(x)dt = \int_{\alpha}^{\beta} g'(x)dt = g(\beta) - g(\alpha) = F(\phi(\beta)) - F(\phi(\alpha)) = \int_{\phi(\alpha)}^{\phi(\beta)} f(x)dx$$

2.1.1 Beispiel

Verschiebung

$$\int_{a}^{b} f(t+c)dt = \int_{a+c)}^{b+c} f(x)dx$$

Multiplikation

$$\int_{a}^{b} f(cx) dx = \frac{1}{c} \int_{ca}^{cb} f(x) dx$$

3 9.7 Uneigentliche Integrale 1 (unbeschränkte Integrale)

Ziel: Integral über unbeschränkte Integrale definieren, zum Beispiel

$$\int_0^\infty e^{-x^2} \mathrm{d}x$$

3.1 Definition Uneigentliches Integral 9.27

Sei $I = [a, \infty)$ ein Intervall mit $a \in \mathbb{R}$. Sei $f \in R([a, b]) \quad \forall b < \infty, b > a$ dann ist

$$\int_0^\infty f(x) dx = \lim_{b \to \infty} \int_a^b f(x) dx$$

falls dieser limes existiert. Dieses Integral heißt dann uneigentliches Integral von f über $[a, \infty)$. Ansonsten ist das Integral divergent.

3.2 Satz 9.28

Das Uneigentliche Integral $\int_a^\infty f(x) \mathrm{d}x$ existiert genau dann, wenn $\forall \epsilon > 0 \exists \xi \geq a$ s.d.

$$\left| \int_{b}^{b'} f(x) \mathrm{d}x \right| < \epsilon \quad \forall b, b' > \xi$$

3.3 Definition Absolut Konvergentes Uneigentliches Integral 9.29

Das Integral $\int_a^\infty f(x) dx$ heißt absolut konvergent, falls $\int_a^\infty |f(x)| dx$ konvergiert.

3.4 Satz 9.30

Falls ein Integral absolut konvergent ist, ist es auch konvergent.

Beweis:

$$\left| \int_{b}^{b'} f(x) \mathrm{d}x \right| \le \int_{b}^{b'} |f(x)| \mathrm{d}x$$

3.5 Satz 9.31 Majorantenkriterium für Integrale

Sei $g \in R([a,b])$, $\forall b < \infty$, $g \ge 0$, $\int_a^\infty g(x) dx$ konvergiert dann existiert ein $y \ge a$ für das $|f(x)| \le g(x)$ für alle x. Dann konvergiert $\int_a^\infty f(x) dx$ absolut *Beweis:* Sei $\epsilon > 0$.

$$\int_{b}^{b'} |f(x)| \mathrm{d}x \le \int_{b}^{b'} g(x) \mathrm{d}x < \epsilon \ \forall b, b' \ge \max(\xi, y)$$