CS 440: Introduction to Artificial Intelligence Lecture 20, Nov 18, 2015

Matthew Stone

November 20, 2015

Recap—Decision principle

Agent prefers outcome that maximizes expected utility

Recap—Decision principle

Agent prefers outcome that maximizes expected utility

Formalism

► Choose a as

$$\underset{a}{\operatorname{argmax}} EU(a|\mathbf{e})$$

Recap—Methodology

- ► Build prototype agent
- Build schema of possible designs
- Get experience from agent acting randomly
- Build model from schema plus experience
- Solve model for policy
- Use policy

Recap—Efficient Representation

- Have set of states
- Have set of actions
- ▶ Have transition model $P(S_{i+1}|A_i, S_i)$
- ▶ Have reward function $R(S_i, A_i, S_{i+1})$
- Utility is sum of rewards, perhaps discounted into the future (1 unit of fun tomorrow is worth γ units of fun now)

Simple Illustration

Robot navigation.

- ▶ The robot can try to move in any of the cardinal directions. When the robot tries to move, there is a 40% chance it heads in the direction it wants. There is a 20% chance it heads to the right instead (90 degrees clockwise), a 20% chance it heads to the left (90 degrees counterclockwise), and a 20% chance it stays still.
- Discount factor 0.5

Model is called "Markov Decision Process"

- Describes certain situations well.
- Named for independence assumptions.
- Solution is again a policy: Here policy says what action to do in each state

Solving MDPs

- Same idea: Work backwards
- Jointly predict value
 Expected utility of each state
- and optimal policy
 Mapping from state to best action

Demo: http://www.cs.ubc.ca/~poole/demos/mdp/vi.html

Technical Concepts

Value of a state $S_i - V(S_i)$

 Expected value over the indefinite future starting in state S_i and acting optimally

Fixed-point equation

$$V(S_i) = \max_{A} \sum P(S_{i+1}|A, S_i)(R(S_i, A, S_{i+1}) + \gamma V(S_{i+1}))$$

Special case of definition of expected utility

Value and Q-value

▶ Value V gives expected outcome for each state.

$$V(S) = \max_{A} \sum_{S'} P(S'|A,S)(R(S,A,S') + \gamma V(S'))$$

 Q-value Q gives expected outcome for each action in each state

$$Q(S,A) = \sum_{S'} P(S'|A,S)(R(S,A,S') + \gamma V(S'))$$

or

$$Q(S,A) = \sum_{S'} P(S'|A,S)(R(S,A,S') + \gamma \max_{A'} Q(S',A'))$$

Value Iteration

Iteratively approximate the value function

- ▶ Compute series of approximations $V^k(S_i)$
- ► Each approximation looks further into the future

Initial Step

Set
$$V^0(S_i) = Q^0(S_i, A) = 0$$
.

▶ Don't worry about the future at all

Iteration

Update with

$$V^{j+1}(S_i) = \max_{A} \sum P(S_{i+1}|A, S_i) (R(S_i, A, S_{i+1}) + \gamma V^j(S_{i+1}))$$

or

$$Q^{j+1}(S_i, A) = \sum P(S_{i+1}|A, S_i)(R(S_i, A, S_{i+1}) + \max_{A'} \gamma Q^j(S_{i+1}, A'))$$

Repeat until changes from V^{j} to V^{j+1} are small

small changes are unlikely to lead to changes to the optimal policy

Go right:

$$Q^1(S, right) = 0.4*10-0.2*10+0.4*0 = 2$$

Go down:

$$Q^1(S, \text{down}) = 0.2 * 10 + 0.8 * 0 = 2$$

$$Q^{1}(S, up) = -.4 * 10 + 0.2 * 10 + 0.4 * 0 = -2$$

$$V^1(S) = \max_A Q^1(S, A) = 2$$

Go right:

$$Q^2(S, \text{right}) = 0.4 * 10 - 0.2 * 10 + 0.4 * 1 = 2.4$$

Go down:

$$Q^2(S, \text{down}) = 0.2 * 10 + 0.8 * 1 = 2.8$$

$$Q^{2}(S, up) = -.4 * 10 + 0.2 * 10 + 0.4 * 1 = -1.6$$
$$V^{2}(S) = \max_{A} Q^{2}(S, A) = 2.8$$

Go right:

 $Q^3(S, right) = 0.4 * 10 - 0.2 * 10 + 0.4 * 1.4 = 2.56$

Go down:

 $Q^3(S, \text{down}) = 0.2 * 10 + 0.8 * 1.4 = 3.12$

$$Q^{3}(S, up) = -.4 * 10 + 0.2 * 10 + 0.4 * 1.4 = -1.44$$

$$V^3(S) = \max_A Q^3(S, A) = 3.12$$

Go right:

 $Q^4(S, right) = 0.4 * 10 - 0.2 * 10 + 0.4 * 1.56 = 2.624$

Go down:

 $Q^4(S, \text{down}) = 0.2*10+0.8*1.56 = 3.248$

$$Q^4(S, up) = -.4*10+0.2*$$

 $10 + 0.4*1.56 = -1.376$

$$V^4(S) = \max_A Q^4(S, A) = 3.248$$

Other Techniques

Can solve for value of a given policy exactly

- ► Have N unknowns—values of each state
- ► Have *N* equations—fixed point equation for each state
- Solve using linear algebra (ie. invert a big matrix)

Simple example

Can solve for value of a given policy exactly—take go right:

$$V(S) = 0.2 * 10 + 0.8 * 0.5 * V(S)$$

$$V(S) = 2 + 0.4 * V(S)$$

$$-0.6V(S) = 2$$

$$V(S) = 10/3 = 3.333$$

Other Techniques

Policy Iteration

- Start with a reasonable initial policy
- ► Compute the exact values for each state
- Update the policy
 Chose the action with largest expected utility in each state
 Measured using computed values
- Repeat until policy does not change