Determinants III

Problem Set

The cross product of $v, w \in \mathbb{R}^3$ is the "symbolic determinant" given by

$$egin{aligned} oldsymbol{v} imes oldsymbol{w} = egin{bmatrix} oldsymbol{e}_1 & oldsymbol{e}_2 & oldsymbol{e}_3 \ v_1 & v_2 & v_3 \ w_1 & w_2 & w_3 \end{bmatrix} = \left[egin{array}{ccc} oldsymbol{v}_2 & v_3 \ w_2 & w_3 \end{bmatrix} & -egin{bmatrix} v_1 & v_3 \ w_1 & w_3 \end{bmatrix} & egin{bmatrix} v_1 & v_2 \ w_1 & w_2 \end{bmatrix}
ight]^\intercal$$

Note that $\mathbf{v} \times \mathbf{w}$ is a vector.

Problem 1. Let $\mathbf{n} = \mathbf{v} \times \mathbf{w}$ where $\mathbf{v} = \begin{bmatrix} 3 & -7 & 5 \end{bmatrix}^\mathsf{T}$ and $\mathbf{w} = \begin{bmatrix} 5 & 4 & 2 \end{bmatrix}^\mathsf{T}$. Find \mathbf{n} and calculate the inner products $\langle \mathbf{n}, \mathbf{v} \rangle$ and $\langle \mathbf{n}, \mathbf{w} \rangle$.

Problem 2. The scalar triple product states that any three vectors $v, w, x \in \mathbb{R}^3$ satisfy the equation

$$\langle \boldsymbol{x}, \boldsymbol{v} \times \boldsymbol{w} \rangle = \begin{vmatrix} x_1 & x_2 & x_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

Use this equation to show that v is orthogonal to $v \times w$.

Hint. What is the rank of the matrix in this equation when x = v?

Problem 3. Consider the parallelogram \mathcal{P} formed by two vectors $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^3$.

The area of this parallelogram is given by $\text{area}(\mathcal{P}) = \| \boldsymbol{v} \times \boldsymbol{w} \|$. Use this fact to calculate the area of the following parallelogram

