Langages et Compilation

L3: Analyse Syntaxique
T. Goubier
L3A
2019/2020

- Analyse lexicale → convertir du texte en mots
- Analyse syntaxique → organiser les mots en phrases
- Approche hiérarchique
 - Définir des documents comme des phrases composées de mots
 - Correspondant aux langages de programmation
 - Un fichier contient des déclarations et définitions de fonction
 - Une définition de fonction ce sont un jeu de paramètres et un corps (body)
 - Le body contient des déclarations et des statements
 - Un statement peut contenir un body

- Principe d'une grammaire
 - Définir de manière récursive comment un texte se décompose ou se structure en mots (i.e. des phrases se composant de mots)
 - Principe important:
 - la récursivité permet de décrire de manière très compacte une structure complexe
 - Mais elle rend l'analyse complexe
 - Mode de description: règles de production
 - stmt → if (expr) stmt else stmt
 - Un statement peut être un if/else contenant une expression et deux statements

- Principe d'une grammaire
 - La méthode la plus générale et puissante pour décrire un ensemble
- Hiérarchie de Noam Chomsky (1956)
 - Type 0 : presque aucune restriction
 - $\alpha \rightarrow \beta$ (où α contient au moins un non terminal)
 - Type 1 : contextuelle
 - $\alpha \land \beta \rightarrow \alpha \land \beta$
 - Type 2 : hors contexte
 - $A \rightarrow \alpha$
 - Type 3 : expressions régulières

- Principe d'une grammaire
 - La méthode la plus générale et puissante pour décrire un ensemble
- Hiérarchie de Noam Chomsky (1956)
 - Type 0 : presque aucune restriction
 - $\alpha \rightarrow \beta$ (où α contient au moins un non terminal)
 - Type 1 : contextuelle
 - $\alpha \land \beta \rightarrow \alpha \land \beta$
 - Type 2 : hors contexte
 - $A \rightarrow \alpha$
 - Type 3 : expressions régulières

Utilisation

- Grammaires pour les langues naturelles
 - L'origine des grammaires
- Grammaires pour les langages de programmation
 - Beaucoup de progrès sur les implémentations et normalisations
- Grammaires pour les formats de fichiers / données
 - Correctement spécifier les entrées / sorties et les échanges entre programmes

Histoire

- La plus vieille grammaire hors contexte connue est celle du Sanskrit
 - Panini, Ashtadhyayi, ~IVeme siècle av. J.C.
 - ~4000 règles.

- Importance 'Calcul'
 - Équivalence entre un type de grammaire et une structure de calcul
 - Type 3 → automates à états finis
 - → Programmes avec des boucles / sans récursion
 - Type 2 → automates à piles non-déterministes
 - Avec un sous-ensemble 'déterministes'
 - → Programmes avec récursion
 - Type 1 et Type 0 → machine de turing

- Une grammaire (dite hors contexte / context free)
 - Un ensemble de terminaux
 - symboles correspondant aux mots et ponctuations de notre langage
 - Un ensemble de non-terminaux
 - · Chaque non-terminal correspond à une phrase de notre langage
 - Un symbole de départ
 - Un non-terminal qui correspond à un document (un ensemble de phrases)
 - Des productions, règles de production
 - non-terminal → [terminal | non-terminal] *
 - Un non-terminal peut se décomposer en une séquence de terminaux / nonterminaux
 - Il peut aussi être vide

- Exemple de grammaire
 - Pour exprimer toutes les expressions
 - 3 + 4
 - 3 + 4 * 5
 - (7 + 3) * 6
 - •
 - Sous une forme récursive
 - Une expression est
 - une addition de deux nombres
 - une multiplication de deux nombres
 - une addition d'un nombre avec une multiplication de deux nombres
 - une addition d'un nombre avec une addition de deux nombres

- Exemple de grammaire
 - Pour exprimer toutes les expressions
 - 3 + 4
 - 3 + 4 * 5
 - (7 + 3) * 6
 - •
 - Sous une forme récursive
 - Une expression est
 - une addition de deux nombres → expression
 - une multiplication de deux nombres → expression
 - une addition d'un nombre avec une expression → expression
 - une addition d'un nombre avec une expression → expression

- Exemple de grammaire
 - Pour exprimer toutes les expressions
 - 3 + 4
 - 3 + 4 * 5
 - (7 + 3) * 6
 - •
 - Sous une forme récursive
 - Une expression est
 - un nombre → expression
 - une addition de deux expressions → expression
 - une multiplication de deux expressions → expression
 - une addition d'une expression avec une expression → expression

Grammaire

Départ: Expression

```
    Expression → Expression + Expression
    Expression → Expression (Expression)
    Expression → <number>
    Terminaux: { + ,*,(,), <number> }
    Non-terminaux: { Expression }
```

Grammaire

<number> }

```
Expression → Expression +
Expression
Expression → Expression * Expression
Expression → (Expression)
Expression → <number>
• Terminaux: { + , * , ( , ) ,
```

Non-terminaux: { Expression }

Forme compacte

```
E \rightarrow E + E \mid E * E

E \rightarrow (E) \mid

<number>
```

Dérivation

- Partir d'un non-terminal, appliquer une production
 - poursuivre jusqu'à n'obtenir que des symboles terminaux (ou le vide)
- Point de départ: le non-terminal de départ
 - Poursuivre jusqu'à obtenir l'entrée visée (ex: 3 + 4)
- Cascade:
 - si $\alpha \rightarrow \beta \rightarrow \delta$, alors on a:
 - $-\alpha \Rightarrow \beta$
 - α ⇒* δ

 Point de départ: 3 + 4 $E \rightarrow E + E$ → <number> + E → <number> + <number> • 3 + 4 * 5 $E \rightarrow E + E$ → <number> + E \rightarrow < number > + E * E → <number> + <number> * E

→ <number> + <number> * <number>

- Dérivation à droite / à gauche
 - À droite : je dérive le non-terminal le plus à droite dans ma phrase

```
E + E * E \rightarrow E + E * < number >
```

 À gauche : je dérive le non-terminal le plus à gauche dans ma phrase

```
E + E * E \rightarrow < number > + E * E
```

 Chaque type de parser a tendance à faire des dérivations dans un sens ou dans un autre

- Arbre de dérivation
 - Construire un arbre à partir des productions
- Exemple:

```
-3+4
E \rightarrow E + E
```

- Arbre de dérivation
 - Construire un arbre à partir des productions
- Exemple:

- Arbre de dérivation
 - Construire un arbre à partir des productions
- Exemple:

- Arbre de dérivation
 - Construire un arbre à partir des productions
- Exemple:
 - -3 + 4

- Arbre de dérivation
 - Construire un arbre à partir des productions
- Utilisation

- Ambiguïté
 - $-3 + 4 * 5 ... E \rightarrow E + E ou E \rightarrow E * E.$

Ambiguïté

- Une grammaire est ambiguë si elle autorise plusieurs

- Ambiguïté
 - Ici, ça correspond à un non-respect de la précédence

Ambiguïté:

- Écrire une grammaire non ambiguë

```
E \rightarrow E + T | T

T \rightarrow T * F | F

F \rightarrow (E) | < number >
```

- On décompose E (Expression) en T (Term) et F (Factor).
- Cette grammaire assure la précédence des opérateurs
- Exercice : vérifier que c'est le cas sur les expressions précédentes

Ambiguïté:

 Écrire une grammaire non ambiguë

```
E \rightarrow E + T | T

T \rightarrow T * F | F

F \rightarrow (E) | < number >
```


- Ambiguïté:
 - Dans les langages de programmation
 - if/else en C:
 stmt → if (expr) stmt else stmt
 stmt → if (expr) stmt

Construire l'arbre de dérivation de:

```
if (x > 0)

if (y > 0)

z = 1

else

z = 0
```

if/else en C


```
if (x > 0)
if (y > 0)
z = 1
else
z = 0
```

if/else en C (2)

if (x > 0)

- if/else en C (2)
 - Arbre de dérivation correct:

- On ne corrige pas dans la grammaire
- On repose sur les particularités du parser C pour résoudre ça

if (x > 0)

if (y > 0)

- Exercices
 - Bien maîtriser les arbres de dérivation
 - C'est essentiel pour comprendre les grammaires
 - Faire les arbres pour
 - (3) + 4 * 5
 - (3 + 4) * 5
 - 3*4+(5)
 - 3*4*5 $E \rightarrow E + T | T$ $T \rightarrow T*F | F$ $F \rightarrow (E) | < number >$

- Grammaires et expressions régulières
 - Toute expression régulière peut être représentée par une grammaire
 - L'inverse n'est pas vrai
- Exemples
 - $-S \rightarrow (S)S \mid \epsilon$
 - Le langage L des parenthèses allant par paires (par ex: (()())())
 - $L = \{a^nb^n \mid n >= 1 \}$
 - $S \rightarrow a S b \mid \epsilon$

- Récursivité à gauche:
 - Certains parseurs, les plus simples, ne la supportent pas
- Définition
 - Une grammaire est récursive à gauche si, pour un nonterminal A, Il existe une dérivation A =>+ A α pour une chaîne α .
 - La récursivité à gauche est directe si nous avons une production:
 - $A \rightarrow A \alpha$
 - Nous pouvons l'éliminer

- Élimination de la récursivité à gauche
 - Simple:
 - $A \rightarrow A \alpha \mid \beta$
 - Construction d'un arbre en récursion à gauche
 - Commence toujours par β

- Élimination de la récursivité à gauche
 - Remplacement par une construction par la droite

$$A \rightarrow \beta R$$

 $R \rightarrow \alpha R \mid \epsilon$

- Élimination de la récursivité à gauche
 - Sur la grammaire avec précédence:

$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow (E) \mid < number >$

- Règle:

$$A \rightarrow A \alpha \mid \beta$$

devient

$$A \rightarrow \beta R$$

 $R \rightarrow \alpha R \mid \epsilon$

$$E \rightarrow E + T \mid T$$

- devient

$$E \rightarrow T E'$$

$$E' \rightarrow + T E' \mid \epsilon$$

$$T \rightarrow T * F \mid F$$

- devient:

$$T \rightarrow F T'$$

$$T' \rightarrow * F T' \mid \epsilon$$

- Élimination de la récursivité à gauche
 - Sur la grammaire avec précédence:

$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow (E) \mid < number >$

- Règle:

$$A \rightarrow A \alpha \mid \beta$$

devient

$$A \rightarrow \beta R$$

 $R \rightarrow \alpha R \mid \epsilon$

```
E \rightarrow T E'
E' \rightarrow + T E' \mid \epsilon
T \rightarrow F T'
T' \rightarrow * F T' \mid \epsilon
F \rightarrow (E) \mid < number >
```

- Factorisation à gauche
 - Éviter les productions qui commencent par le même préfixe
 - Difficile de les distinguer:

```
stmt → if ( expr ) stmt else stmt
stmt → if ( expr ) stmt
```

- Factoriser en créant une règle pour le préfixe commun

```
stmt → if ( expr ) stmt if_else if else → else stmt | ε
```

- Factorisation à gauche
 - Définition:
 - Si $A \rightarrow \alpha \beta_1 \mid \alpha \beta_2$
 - Alors on remplace par:

$$A \rightarrow \alpha A'$$
 $A' \rightarrow \beta_1 \mid \beta_2$

- Analyse syntaxique top-down
 - La plus simple: consiste à construire un arbre de dérivation à gauche.
 - Se code à la main comme un ensemble de fonctions récursives
 - Ne supporte pas la récursivité à gauche
 - Restreint à une classe de grammaire appelée LL(k)

```
ast A() {
  choisir une production, A \rightarrow X 1 X 2 ... X k
   pour i de 1 à k {
     si ( X i est un non-terminal)
        appelle procédure X ; ()
     sinon si (X; est égal au token courant a)
        ajoute a aux tokens reconnus, et demande le token suivant
     sinon
        erreur de syntaxe
```

- Construction d'arbre
 - Chacune des fonctions retourne l'arborescence qu'elle a créée
- Exécution
 - Chacune des fonctions retourne la valeur qu'elle a calculée
- Problème avec ce code
 - le choix de la production A → X 1 X 2 ... est non déterministe
- Solution possible
 - Savoir avec quel terminal la séquence X 1 X 2 ... peut commencer.
 - Faire du back-tracking (retourner en arrière si la production est erronée)

 Exemple avec E'→ +TE' | ε ast E'() { if (current token is +) { add + get next token call T() call E'() else return ()

 Exemple avec E→ E+T | ε ast E() { if (? test pour première production) { call E() get next token if (current token!= +) syntax error call T() else if (? test pour deuxième) { call T()

- Classe de grammaire:
- LL(k)
 - premier L : Left to right (traite l'entrée de gauche à droite)
 - deuxième L : Leftmost (dérivation à gauche)
 - k : nombre de tokens de look-ahead
- Les exemples de code marchent avec un look-ahead de 1
 - LL(1)
- Une grammaire LL(1) n'a pas besoin de backtracking

- Analyse d'une grammaire:
 - Les ensembles FIRST et FOLLOW
 - FIRST:
 - pour un non terminal A, FIRST est l'ensemble des terminaux qui peuvent être en première position dans une dérivation de A
 - FOLLOW:
 - pour un non-terminal A, FOLLOW est l'ensemble des terminaux qui peuvent être juste après A dans une dérivation.
 - Spécial: le terminal \$ représente la fin de l'entrée

- Exemples:
- $E' \rightarrow + T E' \mid \epsilon$
 - E' peut commencer par +, ou être vide
 - Donc FIRST(E') = { +, ε }
- F → (E) | < number>
- E → TE'
 - Dans notre grammaire, E est le symbole de départ, donc E peut être suivi par le terminal fin de l'entrée.
 - Ensuite, F → (E) nous dit que E peut être suivi par)
 - FOLLOW(E) = { \$,) }

- Algorithme pour FIRST:
 - si X est un terminal, FIRST(X) = X
 - si X → ε, alors ε est dans FIRST(X)
 - si X → X 1 X 2 ... alors tous les éléments de FIRST(X 1) (sauf ε) sont dans FIRST(X)
 - Si ε est dans FIRST(X 1), alors tous les éléments de FIRST(X 2) sauf ε sont dans FIRST(X)
 - si ε est dans tous les FIRST(X_i), alors ε est dans FIRST(X)

- Algorithme pour FOLLOW:
 - Mettre \$ dans FOLLOW(S) (S : symbole de départ)
 - Si on a A → α B β, alors tout ce qui est dans FIRST(β) est dans FOLLOW(B)
 - Si on a A → α B ou A → α B β avec ε dans FIRST(β), alors tout ce qui est dans FOLLOW(A) est dans FOLLOW(B)
- Recommandation:
 - Attention à l'ordre dans lequel on calcule les FOLLOW.

Sur notre grammaire

```
E \rightarrow T E'
E' \rightarrow + T E' \mid \epsilon
T \rightarrow F T'
T' \rightarrow * F T' \mid \epsilon
F \rightarrow (E) \mid < number >
```

- FIRST(T) = FIRST(F)
- FIRST(E) = FIRST(T)
- $FIRST(T') = \{ *, \epsilon \}$
- $FIRST(E') = \{ +, \epsilon \}$

Sur notre grammaire

```
E \rightarrow T E'
E' \rightarrow + T E' \mid \epsilon
T \rightarrow F T'
T' \rightarrow * F T' \mid \epsilon
F \rightarrow (E) \mid < number >
```

- FOLLOW(E) = { \$,) }
- FOLLOW(E') =FOLLOW(E)
- $FOLLOW(T) = \{ +, \}$
- FOLLOW(T') =FOLLOW(T)
- FOLLOW(F) = { *, +,), \$ }

Définition

- Une grammaire G est LL(1) si et seulement si, pour A $\rightarrow \alpha \mid \beta$ deux productions distinctes de G on a:
- Pour aucun terminal a, α et β peuvent dériver des chaînes commençant par a.
 - FIRST(α) et FIRST(β) ont une intersection vide
- De α et β , au plus l'un des deux peut dériver la chaîne vide
 - Cf ci-dessus (si ε est dans FIRST(α), il ne peut être dans FIRST (β))
- Si $\beta = > *$ ε , alors α ne dérive aucune chaîne commençant par un terminal de FOLLOW(A) (même chose si $\alpha = > *$ ε)
 - FIRST(α) (FIRST(β)) et FOLLOW(A) sont disjoints

- Predictive parsing
 - Utiliser FIRST et FOLLOW pour construire un automate capable de parser.
 - Principe:
 - Si on a A $\rightarrow \alpha$ β et que nous sommes dans A(), alors
 - si le token courant a est dans FIRST(α) alors on prend A → α β
 - et on exécute α ()
 - si α est un terminal (donc égal à a), alors on absorbe le token.
 - Si on a A \rightarrow ϵ et que nous sommes dans A(), alors
 - si le token courant a est dans FOLLOW(A), alors on termine A()
 - on applique en fait A → ε

- Construction de la table du parseur LL(1)
 - Table M [A , a] (non-terminal / terminal)
 - Pour chaque production $A \rightarrow \alpha$
 - Pour tout a dans FIRST(α), ajouter A $\rightarrow \alpha$ en M [A , a]
 - Si $\varepsilon \in FIRST(\alpha)$, alors $\forall b \in FOLLOW(A)$, ajouter $A \rightarrow \alpha$ à M [A, b] (y compris M [A, \$] si \$ \in FOLLOW(A))
 - S'applique bien entendu si A → ε (i.e. FIRST(ε) = { ε })

Pour notre grammaire, cela donne:

Non Termin al	Token / terminal					
	<number></number>	+	*	()	\$
E	E → TE'			E → TE'		
E'		E' → +T E'			E' → ε	E' → ε
Т	T → F T'			T → FT'		
T'		T' → ε	T' → * FT'		T' → ε	T' → ε
F	F → <number></number>			$F \rightarrow (E)$		

```
    Utilisation sur (3 + 4)

                                                                                E' \rightarrow + T E'
                                                                                    + ⇒ absorbe +, entrée
   - tokens: (3 + 4)$
                                                                                    4 (<number>)
                                                                                    T \rightarrow F T'
   E → T E' #entrée (
                                                                                        F \rightarrow < number >
      T \rightarrow F T'
                                                                                            <number> ⇒
                                                                                            absorbe 4, entrée )
          F \rightarrow (E)
                                                                                        T' \rightarrow \epsilon
              ( ⇒ absorbe (, entrée 3
                                                                                    E' \rightarrow \epsilon
              (<number>)
                                                                            ) ⇒ absorbe ), entrée $
              F \rightarrow T F'
                                                                       T' \rightarrow \epsilon
                  T \rightarrow F T'
                                                                    E' \rightarrow \epsilon
                      F \rightarrow < number >
                          <number> ⇒
                                                            Fini!
                          absorbe 3, entrée +
                      T' \rightarrow \varepsilon
```