Exercices : Alcènes I

Exercice 0:

- 1. Donner les produits des réactions suivantes :
 - (a) prop-1-ène + H₂O en présence d'acide sulfurique
 - (b) (Z)-but-2-ène + HBr
 - (c) (E)-but-2-ène + HBr
 - (d) prop-1-ène + BH $_3$ traité ensuite par un mélange $H_2O_2 + HO^-$
 - (e) (Z)-but-2-ène + m-CPBA
 - (f) (E)-but-2-ène + m-CPBA
 - (g) (Z)-but-2-ène + m-CPBA traité ensuite par HO^-/H_2O
 - (h) (E)-but-2-ène + m-CPBA traité ensuite par HO^-/H_2O
 - (i) (Z)-but-2-ène traité par OsO₄ catalytique en présence d'un cooxydant st $\frac{1}{2}$ chiométrique
 - (j) (E)-but-2-ène traité par OsO₄ catalytique en présence d'un cooxydant st $\frac{1}{2}$ chiométrique
 - (k) (Z)-3-methyl-pent-2-ène + OsO₄/NaIO₄
- 2. En comparant les produit des réactions 1b et 1c peut-on dire que la réaction d'hydrobromation des alcènes est stéréosélective? stéréospécifique? Expliquer pourquoi.
- 3. Comment peut-on qualifier le(s) produit(s) des réactions 1a et 1d? Commenter la complémentarité des deux réactions.
- 4. En comparant les produit des réactions 1e et 1f peut-on dire que la réaction d'époxydation des alcènes par le m CPBA est stéréosélective? stéréospécifique? Expliquer pourquoi.
- 5. Comment peut-on qualifier le(s) produit(s) des réactions 1g et 1i? Commenter la complémentarité des deux réactions.

Exercice 1:

Le composé **A** est traité par un équivalent de HBr dans le THF, à $0^{\circ}C$. On obtient un mélange de produits de formule brute $C_{12}H_{15}Br$. Le composé **B** est obtenu de façon largement majoritaire par rapport au composé **C** (ratio 9 :1).

- 1. Donner la structure de ${\bf B}$ et ${\bf C}$.
- 2. **B** et **C** sont-ils obtenus purs?
- 3. Expliquer pourquoi B est majoritairement obtenu.

Lorsque l'on effectue la réaction à reflux du THF on obtient un ratio \mathbf{B}/\mathbf{C} de 0,5.

- 4. Quel type de contrôle régit la chimiosélectivité de la réaction à 0°C? à reflux du THF?
- 5. Donner l'allure comparée des diagrammes d'énergie potentielle en fonction d'une coordonnée de réaction des chemins menant à **B** et **C**. On veillera à ce que ce diagramme reflète les observations expérimentales.

Exercice 2:

- 1. Quels produits obtient-on lorsqu'on réalise le traitement du myrcène en milieu permanganate de potassium, concentré, à chaud? Si on ne connaissait pas la structure du myrcène mais seulement celles des produits issus de ce traitement, quelle(s) structure(s) pourrait-on envisager pour le myrcène?
- 2. Le myrcène, traité par du chlorure d'hydrogène sec $\mathrm{HCl}(g)$, conduit à trois produits : \mathbf{A} , \mathbf{B} et \mathbf{C} (cf schéma) :
 - (a) Ecrire les différents carbocations que peut générer le myrcène en milieu acide. Lesquels semblent les plus stables?
 - (b) En déduire le mécanisme de formation de ${\bf A}$ et ${\bf C}$
 - (c) Proposer un mécanisme justifiant l'obtention de B.
 - (d) Pourquoi faut-il HCl gazeux et sec au lieu d'une solution aqueuse de HCl?

Exercice 3:

1. Préciser la formule du (ou des) produit(s) majoritaire(s) obtenu(s) lors de la réaction d'hydroborationoxydation sur les composés suivants. Les descripteurs stéréochimiques seront précisés dès que possible.

1. L'hydroboration du 3-méthylcyclohexène par le borane (BH₃) suivie de l'oxydation par le péroxyde d'hydrogène en solution aqueuse basique conduit au mélange de produits suivants :

	2-méthylcyclohexanol	3-méthylcyclohexanol
cis	16%	34%
trans	18%	32%

- (a) La réaction est-elle régiosélective?
- (b) La réaction est-elle stéréosélective?
- (c) Préciser la relation d'isomérie entre les différents produits obtenus.
- (d) Représenter les produits obtenus dans leur conformation la plus stable. On précise le groupement hydroxyle est moins volumineux que le groupement méthyle.

Exercice 4:

1. Donner les produits obtenus lors de la transformation ci-dessous réalisée dans un solvant polaire. On précisera ceux qui sont majoritaires.

- 2. Quelle relation stéréochimique lie les différents produits?
- 3. Le mélange final est-il optiquement actif?
- 4. Pourquoi la réaction est-elle réalisée à l'obscurité, dans un solvant polaire?
- 5. En présence de peroxydes, quel(s) produit(s) obtiendrait-on?

Evercice 5

L'hydrogénation catalytique des alcynes en alcènes se réalise sur palladium de Lindlar. Cette réaction permet d'obtenir l'alcène de configuration Z à partir d'un alcyne. Le bilan de la réaction est l'ajout de H_2 sur la triple liaison carbone-carbone.

On considère l'hydrogénation catalytique sur palladium de Lindlar du hex-3-yne (noté $\bf A$). Le produit obtenu est le hex-3-ène, noté $\bf B$. Soit $\bf C$ le diastéréoisomère de $\bf B$.

1. A l'aide des indications de l'énoncé, identifier B et C.

- 2. On réalise une époxydation séparément sur ${\bf B}$ et sur ${\bf C}$. A partir de ${\bf B}$, on obtient ${\bf D}$ et à partir de ${\bf C}$, on obtient ${\bf E}$.
 - (a) Comment réalise-t-on une époxydation?
 - (b) Identifier les formules de **D** et **E**.
 - (c) Que dire de l'activité optique des mélanges finaux D et E?
- 3. L'ouverture de l'époxyde **D**, par hydrolyse basique, conduit à un diol **F**, tandis que celle conduite sur **E** donne **G**. **F** et **G** diffèrent par leurs propriétés physiques : **G** est obtenu sous forme solide (température de fusion égale à 90 °C), tandis que **F** est liquide.
 - (a) Identifier **F** et **G**.
 - (b) Ecrire le mécanisme de l'ouverture en milieu basique des époxydes.
 - (c) Justifier leur obtention dans des états physiques différents.
 - (d) Pourquoi la dihydroxylation d'un alcène est-elle considérée comme une réaction d'oxydation?
- 4. Les alcènes se comportent en tant que réducteurs vis-à-vis du permanganate de potassium $KMnO_4$, dilué et froid en milieu alcalin (pH = 12). Dans ces conditions, **B** donne **G** et **C** donne **F**.
 - (a) Ecrire l'équation bilan de la réaction d'oxydation de C par le permanganate de potassium en milieu basique.
 - (b) Que peut-on dire de la stéréochimie de la réaction?
 - (c) Par quel réactif peut-on remplacer le permanganate de potassium? Décrire les conditions opératoires

Exercice 6:

Proposer un substrat pour former le composé indiqué dans les conditions expérimentales choisies.

- 1. Synthèse du (2R, 3S)-butane-2,3-diol par époxydation puis hydrolyse basique.
- 2. Synthèse du (2R,3R)-butane-2,3-diol par action du tétraoxyde d'osmium catalytique en présence de péroxyde d'hydrogène.

Proposer une synthèse des composés suivants, en précisant les conditions expérimentales à mettre en $\frac{1}{2}$ uvre.

- 3. Synthèse du propane-1,2-diol à partir du 1-chloropropane.
- 4. Synthèse du butane-2,3-diol à partir du but-1-ène.
- 5. Synthèse du butan-1-ol à partir de l'éthène.

Exercice 7: