# ISPGR WS Bridging the Gap Best Practices in Mobile Brain Imaging

Processing of EEG data in relation to the gait cycle



#### Dimension in the EEG

- Classic Lab based EEG experiments look for event-related potentials (ERPs) in many repetitions
- Mobile EEG studies can relate brain activity (from clean EEG) to motor processes (e.g. gait cycle)
- Frequency, time and place of the brain activity can be used to explain neural control of motor processes or other activity (e.g. EMG)



-> How can this be done?

#### Frequency bands in the EEG



#### What is a time frequency representation?

 Frequency decomposition in windows (e.g. 1s) for every channel

 Task dynamics over time and in frequency

 Specific pipeline depends on the research question



#### Clean EEG data to meaningful outcomes



### Gait cycle + EEG



#### Gait cycle + EEG

#### **Gait events**

LHS left heel strike

LTO left toe-off

RHS right heel strike

RTO right toe-off

1. TFdecomposition

- 2. Cut to the gait cycle
  - 3. Normalise length
  - 4. Average gait cycles
- 5. Baseline correct





Time (% gait cycle)

#### Gait during different conditions



#### EEG during different conditions



#### **EEG-EMG** data



Roeder ea., iScience, 2024

## Thank you for listening

Any questions?