UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i: FYS1120 Elektromagnetisme

Eksamensdag: 6. oktober 2014. Tid for eksamen: 10:00 – 13:00 Oppgavesettet er på 3 sider

Vedlegg: Liste med likninger (3 sider)

Tillatte hjelpemidler: Angell/Øgrim og Lian: Fysiske størrelser og enheter

Rottman: Matematisk formelsamling Elektronisk kalkulator av godkjent type

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Oppgave 1

(a) Skriv opp Gauss' lov, og forklar symbolenes betydning.

SVAR: Gauss' lov kan skrives; $\Phi_E = \int \vec{E} \cdot d\vec{A} = Q_{encl} / \varepsilon_0$, der integralet går over en lukket flate. Her er Φ_E den totale fluksen av det elektriske feltet, \vec{E} , gjennom flate-elementene, $d\vec{A}$. Ladningen som omsluttes av flaten er Q_{encl} , og ε_0 er vakuum permittiviteten.

En hul sylinder med neglisjerbar veggtykkelse har en uniform overflateladningstetthet σ . Sylinderen har radius R, se figur under, og vi regner sylinderen som uendelig lang.

b) Bruk Gauss' lov til å beregne det elektriske feltet utenfor sylinderen.

SVAR: Vi legger Gauss flaten som en sylinderflate konsentrisk med den ladde sylinderen. Av symmetrien følger det at E-feltet er rettet radielt, og for en sylinderflate med radius r>R blir

fluksen av E-feltet gjennom en vilkårlig lengde l av sylinderen, $\Phi_E = E(r) 2\pi r l$. Ladningen som da omsluttes av flaten er $Q = \sigma 2\pi R l$, og Gauss' lov gir dermed at

$$E(r) = \sigma R/\varepsilon_0 r$$
,

og retningen på feltet peker vekk fra/inn mot sylinderaksen dersom σ er positiv/negativ.

Betrakt nå en slik sylinder der R = 10 cm og $\sigma = 2 \times 10^{-5}$ C/m². I en avstand x = 5 cm ut fra sylinderveggen festes en masseløs snor med lengde L = 30 cm. I den andre enden henger en liten kule med masse m = 0.4 kg og ukjent ladning q. Snora og vertikalen utspenner en vinkel $\theta = 20^{\circ}$ når kula er i ro.

- c) Finn ladningen, q.
- SVAR: Geometrien medfører at kula befinner seg i avstanden, $r = R + x + L \sin\theta$ fra sylinderaksen, og der har den elektriske kraften størrelsen, $F_{\rm e} = q \, E(r) = q \, \sigma R / [\, \varepsilon_0 \, (R + x + L \sin\theta) \,]$. Sammen med tyngde-kraften på kula må resultanten av de 2 vektorene peke langs snora, og derfor gjelder at, $\tan\theta = F_{\rm e} / mg = q \, \sigma R / [mg \, \varepsilon_0 \, (R + x + L \sin\theta) \,]$. Her er q eneste ukjente, og ved innsetting av de oppgitte tallverdier finner man at $q = 1.6 \, \mu C$.
- d) Hva blir vinkelen θ dersom snoras opphengspunkt er 5 cm *innenfor* sylinderflaten?
- SVAR: Bruker vi Gauss' lov anvendt på en tilsvarende sylinderflate men som ligger innenfor den ladde sylinderveggen vil ladningen som omsluttes av Gauss-flaten være null. Da følger det at E-feltet også er null, og dermed forsvinner den elektriske kraften på q når den plasseres innenfor sylinderveggen, dvs. $\theta = 0$.

Oppgave 2

(a) Hva er en kondensator? Beskriv hvordan kapasitans defineres. Skriv ned uttrykket for kapasitansen til en parallell-plate kondensator med et dielektrikum mellom platene, og definer alle symbolene i uttrykket.

SVAR: se seksjon 4.1 i læreboka

- (b) Lag en skisse av en parallell-plate kondensator med et dielektrikum mellom platene, og illustrer fordelingen av ladning når kondensatorplatene er ladet med en overflate-tetthet σ . Regn ut det elektriske feltet mellom platene når $\sigma = 10^{-8}$ C/m² og dielektrisitets-konstanten er lik 4.
- SVAR: Skisse: Se Fig. 4.15(b) i læreboka.

E-feltet mellom platene, dvs i dielektrikumet, er gitt ved $E = \sigma/(K\varepsilon_0)$ der K = 4. Innsettes tallverdier får man $E = 2.8 \cdot 10^2 \text{ V/m}$.

Figuren under viser et sentralt snitt gjennom en kuleformet kondensator. De 2 tynne kuleskallene, som har radius r_a og r_b , er uten dielektrikum imellom, og har respektive ladninger -Q og +Q.

(c) Vis at potensialforskjellen mellom skallene kan skrives;

$$V_{\rm b} - V_{\rm a} = Q(r_{\rm b} - r_{\rm a}) / (4\pi \epsilon_0 r_{\rm a} r_{\rm b})$$
.

SVAR: Se eksempel 4.3 i læreboka.

(d) Beregn kapasitansen dersom $r_a = 10$ cm, $r_b = 15$ cm, og Q = 1 nC. Bestem også hvor mye energi som er lagret i kondensatoren.

SVAR: Bruker at kapasitansen er gitt som $C = Q/(V_b - V_a) = 4\pi\epsilon_0 r_a r_b/(r_b - r_a)$, som ved innsetting av tall gir C = 33 pF.

Energien lagret i kondensatoren er, $U = Q^2/2C = 1.5 \cdot 10^{-8} \text{ J}.$

Oppgave 3

Betrakt kretsen vist under, der alle måleinstrumentene regnes som ideelle.

La R = 3 Ω og $\boldsymbol{\varepsilon}$ = 10 V, og se bort fra indre resistans i batteriet.

(a) Bestem strømmen som måles av amperemeteret i hovedgreina, og spenningen målt av voltmeteret.

SVAR: Med ideelle måleinstrumenter kan kretsen regnes som et batteri koplet i serie med en resistans R, og resultanten av 2R i parallell med R, som er 2R/3. Totalresistansen i kretsen er derfor $5R/3 = 5 \Omega$. Strømmen i hovedgreina, I, er gitt av $\mathcal{E} = (5R/3) I$, som gir I = 2 A. Voltmeteret måler da spenningen RI, dvs. 6 V.

(b) Bestem strømmen målt av amperemeteret i parallellkoplingen.

SVAR: Spenningsfallet over parallelkoplingen blir da batterispenningen minus 6 V, dvs. 4 V, og strømmen målt i den øvre greina blir, $I_1 = 4 \text{ V/R} = 4/3 \text{ A}$.

(c) Bestem effektutviklingen i hver av de 3 resistansene.

SVAR: Resistansen i parallell med voltmeteret utvikler effekten $P = RI^2 = 12$ W. Resistansen R i serie med amperemeteret utvikler $P_1 = R I_1^2 = 16/3$ W. Resistansen 2R utvikler $P_2 = 2R (I - I_1)^2 = 8/3$ W.

(d) I en stasjonær strøm av ladninger, q, med drifthastighet, v_d , kan strømtettheten skrives som, $J = nqv_d$, der n er antall ladninger per volum. Vis dette.

SVAR: Se læreboka, seksjon 5.1, der formelen over utledes.