

Advanced R Unit 1

Sereina Herzog

Institute for Medical Informatics. Statistics and Documentation Medical University of Graz

05.03.2025

Course Content - Advanced R (Unit 1)

- ► Short repetition
 - Reproducibility Rmarkdown for reports
 - Project structure
 - Visualization with ggplot

05.03.2025

Repetition

What is reproducibility in science?

- ► Ability to reproduce results by a peer
- ► Requires data, methods, and procedures
- ▶ Increasingly, science is supposed to be reproducible

Be nice to your future selves!

Reproducibility with RStudio & R

- ► R with RMarkdown can be used to produce different types of documents [see: http://rmarkdown.rstudio.com/gallery.html]
 - standardised reports (html, pdf)
 - word documents (.docx)
 - slides for presentations (html, pdf, powerpoint)
 - journal articles. using the rticles package (.pdf)
 - ..

Reproducibility with RStudio & R

- ► R with RMarkdown can be used to produce different types of documents [see: http://rmarkdown.rstudio.com/gallery.html]
 - standardised reports (html, pdf)
 - word documents (.docx)
 - slides for presentations (html, pdf, powerpoint)
 - journal articles. using the rticles package (.pdf)
 - ..

⇒ making transparent and reproducible analysis

Folder structure

Suggestion how to structure your project folder

- project1
 - literature
 - reports
 - ...
 - R

Folder structure

Suggestion how to structure your project folder

- project1
 - literature
 - reports
 - ...
 - R
- orig
- Rdata
- Rfiles
- Rmarkdown
- ► Routput

Folder structure

Suggestion how to structure your project folder

- project1
 - literature
 - reports
 - ...
 - R
- orig
- Rdata
- Rfiles
- ► Rmarkdown
- ► Routput

Hint: never touch the original data!

R project

- ► An R project
 - is a way to organize files and folders related to a specific analysis or project
 - easy to switch different projects
 - the working directory is the project's root folder

R project

- ► An R project
 - is a way to organize files and folders related to a specific analysis or project
 - easy to switch different projects
 - the working directory is the project's root folder

Create folder structure & R project

- 1) Download prepared folder structure
 - download 'projectstructure_for_students.zip' from GitHub
 - unzip the file
 - put folder 'Course Advanced R' wherever you want to have it
- 2) Generate a 'R project' (together)
 - $\bullet \ \, \mathsf{File} \, \to \, \mathsf{New} \, \, \mathsf{Project.} \, \ldots \, \to \, \mathsf{Existing} \, \, \mathsf{Directory}$

- powerful data visualization package in R
 - wide range of high-quality plots and graphics
 - provides a consistent syntax
 - a layered approach to building plots

- powerful data visualization package in R
 - wide range of high-quality plots and graphics
 - provides a consistent syntax
 - a layered approach to building plots
- consists of three main components:

- powerful data visualization package in R
 - wide range of high-quality plots and graphics
 - provides a consistent syntax
 - a layered approach to building plots
- consists of three main components:
 - data
 - represents the dataset being visualized

- powerful data visualization package in R
 - · wide range of high-quality plots and graphics
 - provides a consistent syntax
 - · a layered approach to building plots
- consists of three main components:
 - data
 - represents the dataset being visualized
 - aesthetics (aes)
 - ▶ define how variables are mapped to visual properties (e.g., x-axis, y-axis, color)

- powerful data visualization package in R
 - wide range of high-quality plots and graphics
 - provides a consistent syntax
 - · a layered approach to building plots
- consists of three main components:
 - data
 - represents the dataset being visualized
 - aesthetics (aes)
 - define how variables are mapped to visual properties (e.g., x-axis, y-axis, color)
 - geometric objects (geom)
 - determine the type of plot (e.g., points, lines, bars)

Example - Iris

A famous iris data set gives the measurements in centimeters of the variables

- sepal length
- sepal width
- petal length
- petal width

for 50 flowers from each of 3 species of iris (Iris setosa, versicolor, and virginica).

Example - Iris

Example - Iris: including species as colour

Example - Iris: increase point size

Example - Iris: adding title

Example - Iris

Example - Iris: using another geom

Saving ggplots

```
plot_iris <-
    ggplot(data = iris,
        aes(x = Sepal.Length, y = Sepal.Width, colour = Species)) +
    geom_point() +
    theme_bw()

ggsave(filename = "../Routputs/example_iris.png", plot = plot_iris,
    units = "cm", width = 12, height = 7)</pre>
```


Exercise repetition

► Work through 'Unit 1 - Exercise 1'

Placeholders

Example - Iris


```
var_int <- "Sepal.Width"
group_int <- "Species"</pre>
```


Problem: axis labels and legend title \rightarrow need to adapt them too


```
var_int <- "Sepal.Width"
var_int_lab <- "Sepal width [cm]"
group_int <- "Species"
group_int_lab <- "Species Iris"</pre>
```



```
var int <- "Sepal.Width"</pre>
var_int_lab <- "Sepal width [cm]"</pre>
group_int <- "Species"</pre>
group_int_lab <- "Species Iris"</pre>
ggplot(data = iris.
       aes(x = get(group_int), y = get(var_int), fill = get(group_int))) +
  geom boxplot() +
  guides(fill = guide_legend(group_int_lab)) +
  xlab(group_int_lab) +
  vlab(var int lab) +
  theme bw()
```


Advantage - can reuse same code for plots and only need to change things at one place

Advantage - can reuse same code for plots and only need to change things at one place

```
var_int <- "Sepal.Length"
var_int_lab <- "Sepal length [cm]"
group_int <- "Species"
group_int_lab <- "Species Iris"</pre>
```


25

Working with variables as placeholders

Advantage - can reuse same code for plots and only need to change things at one place

```
var_int <- "Sepal.Length"
var_int_lab <- "Sepal length [cm]"
group_int <- "Species"
group_int_lab <- "Species Iris"</pre>
```


05.03.2025

Exercise placeholders

► Work through 'Unit 1 - Exercise 2'

Links

Links (I)

- ► Introduction to R
 - R for Data Science (https://r4ds.hadley.nz/)
- ► Plots using ggplot
 - Overview with further links to course material: https://ggplot2.tidyverse.org/
- Display tables using flextable
 - flextable bool https://ardata-fr.github.io/flextable-book/
 - Function references https://davidgohel.github.io/flextable/reference/index.html
- knit_child()
 - link (https://bookdown.org/yihui/rmarkdown-cookbook/child-document.html)

Links (II)

- ▶ Download R
 - CRAN (https://cran.r-project.org/)
- ► Download RStudio
 - RStudio Desktop (https://posit.co/download/rstudio-desktop/)