Sprawozdanie 1

Jan Bronicki Nr indeksu: 249011 Ćwiczenie: 100b

Celem Ćwiczenia 100b jest zapoznanie się z podstawowymi pomiarami elektrycznymi i wyznaczeniem zależności natężenia, napięcia oraz rezystancji z Prawa Ohma. Następnie analiza otrzymanych wyników łącznie z obliczeniem niepewności pomiarowych. Uzyskane zostały one po złożeniu układu:

Uzyskane dane oraz ich wyliczone niepewności:

U(V)	$u_B(U)[V]$	I[mA]	u(I)[mA]	$R[\Omega]$	$u_c(R)[\Omega]$	$\bar{R}[\Omega]$	$u(\bar{R})[\Omega]$	$R_w[\Omega]$	$u_c(R_w)[\Omega]$
3.29	± 0.02	18.7	± 0.2	175.94	$\pm \ 2.16$	175	±0.62	175.74	±1.13
4.78	± 0.02	27.8	±0.3	171.94	± 1.99				
6.35	± 0.02	36.1	±0.3	175.90	$\pm \ 1.70$				
7.89	± 0.03	44.9	±0.4	175.72	± 1.41				
9.50	± 0.03	54.2	±0.4	175.28	± 1.51				
12.44	± 0.04	71.0	±0.6	175.21	± 1.58				

Przykładowe obliczenia:

Delta niepewności napięcia:

$$\Delta u_p(U) = 0.5\% \cdot rdg + 1 \cdot dgt = \frac{0.5}{100} \cdot 3.29 + 0.01 = 0.0264 \approx 0.03 \ V$$

Niepewność napięcia:

$$u_B(U) = \frac{\Delta u_p(U)}{\sqrt{3}} = 0.015 \approx 0.02 \ V$$

Delta niepewności natężenia:

$$\Delta u(I) = 1.2\% \cdot rdg + 1 \cdot dgt = \frac{1.2}{100} \cdot 18.7 + 0.1 = 0.3244 \ mA$$

Niepewność natężenia:

$$u(I) = \frac{\Delta u(I)}{\sqrt{3}} \approx 0.2 \ mA$$

$$R = \frac{U}{I} = \frac{\text{Op\'or:}}{0.0187} \approx 175.94~\Omega$$

Niepewność całkowita R:

$$u_c(R) = \sqrt{\sum_{j=1}^k \left(\frac{\partial f}{\partial x_j}\right)^2 u^2(x_j)} = \sqrt{\frac{u^2(U)}{I^2} + \frac{U^2 \cdot u^2(I)}{I^4}} = \sqrt{\frac{\left(\frac{0.02}{1000}\right)^2}{0.0187^2} + \frac{3.29^2 \cdot \left(\frac{0.2}{1000}\right)^2}{0.0187^4}} \approx 2.16 \ \Omega$$

$$\bar{R} = \frac{\sum_{i=1}^{n} x_i}{n} = 174.9983333 \approx 175~\Omega$$

Niepewność wartości średniej R:
$$u(\bar{R}) = \sqrt{\frac{\sum_{i=1}^{n} \left(x_i - \bar{x}\right)^2}{n(n-1)}} \approx 0.62~\Omega$$

Opór wewnętrzny:

$$R_w = A \approx 175.74 \ \Omega$$

Niepewność
$$R_w$$
: $u_c(R_w) = 1.13 \ \Omega$

Rysunek 1: Wykres Napięcia od Natężenia z naniesionymi pomiarami, niepewnościami oraz funkcją REGLINP

Wnioski:

Wyniki pomiarów przedstawione w tabeli z wynikami oraz na powyższym wykresie wyraźnie potwierdzają Prawo Ohma. Wszelkie niepewności pomiarowe są małe i nieznacznie wpływają na wynik pomiarów.