Q What are the values of these sums, where $S = \{1, 3, 5, 7\}$?

 $j \in S$ $j \in S$ $j \in S$

b) ≤ j²

d) & 1

Sol a) 16 b) 84

c) 174 d) 4

what is the value of each of them sums of terms of a geometric progression?

a)
$$\frac{5}{j=0}$$
 3. 2

b) $\frac{8}{j=0}$ 2

d) $\frac{5}{j=0}$ 2. (-3)

 $\frac{5}{j=0}$

c)
$$\leq (-3)^{j}$$

$$St: ^{a})$$
 $y=2, a=3, n=8$
 $\Rightarrow 3(2^{9}-1)/(2-1) = 1533$

5)
$$7=2$$
, $\alpha=1$, $\gamma=8$
From $0-8$ this sum is $1\cdot(2^{9}-1)/(2-1)$

c)
$$\left[\left(\left(-3\right)^{9} - i \right) / \left(-3 - i \right) \right] - \left(-3\right)^{5} - \left(-3\right)^{5}$$

 $\Rightarrow 4921 - 1 + 3 \Rightarrow 4923$

a)
$$2((-3)^{9}-1)/(-3-1)$$

 $\Rightarrow 9843$

Q Show that $\sum_{j=1}^{n} (a_j - a_{j-1}) = a_n - a_0$,
where $a_0 : a_1 : a_2 : \dots : a_n$ is a

Sequence of real numbers. This type
of sum is called "telescoping".

St: $a_1 - a_0 + a_2 - a_1 + a_3 - a_2 + \dots + a_{N-1} - a_{N-2} + a_n - a_{N-1}$ $\Rightarrow a_n - a_0$

Q use we identity
$$\frac{1}{K(K+1)} = \frac{1}{K} - \frac{1}{K+1}$$
and 'telescoping from previous
exercise to compute
$$\frac{2}{K=1} \frac{1}{K(K+1)}$$
Since $\sum_{k=1}^{n} \left(\frac{1}{K} - \frac{1}{K+1}\right)$

$$\Rightarrow -\sum_{k=1}^{n} \left(\frac{1}{K+1} - \frac{1}{K}\right)$$
Since $\sum_{k=1}^{n} \left(a_k - a_{K-1}\right)$
Since $\sum_{k=1}^{n} \left(a_{k-1} - a_{k-1}\right)$

Sina
$$\leq (\alpha_i - \alpha_{i-1}) = \alpha_n - \alpha_0$$

$$\Rightarrow -(\alpha_n - \alpha_0)$$

$$\Rightarrow \alpha_0 - \alpha_n$$

$$\Rightarrow \sqrt{1 - \frac{1}{n+1}}$$

Q compute each of these double sums

a)
$$\frac{3}{2}$$
 $\frac{3}{2}$ (i+j)

i=1 j=1

Sol

a)
$$\underset{i=1}{\overset{2}{\leq}} (i+1) + \underset{i=1}{\overset{2}{\leq}} (i+2) + \underset{i=1}{\overset{2}{\leq}} (i+3)$$

 $\Rightarrow 1+1+1+2+1+3+2+1+2+2+2+3$
 $\Rightarrow 21$

b)
$$(0+0)+(0+3)+(0+6)+(0+9)+$$

 $(2+0)+(2+3)+(2+6)+(2+9)+$
 $(4+0)+(4+3)+(4+6)+(4+9)$
 $\Rightarrow 75$

c)
$$(1+1+1)+(2+2+2)+(3+3+3)$$

 $\Rightarrow 18$

d)
$$(0+0+0)+(1+2+3)+(2+4+6)$$

 $\Rightarrow 18$

c)
$$\frac{100}{11}$$
 (-1) d) $\frac{10}{11}$ 2

Find a formula for $\mathbb{Z}[\pi K]$, .

When m is a possitive integer.

There are 2i+1 copies of i, so we need to sum i(2i+1) for an appropriate range of values for i

$$\Rightarrow 2(n(n+1)(2n+1)) + \frac{n(n+1)}{2}$$

$$\Rightarrow \frac{n(n+1)(2n+1)}{3} + \frac{n(n+1)}{2}$$