Static Visualizations (I)

Riccardo Pucella

September 28, 2015

A visualization spectrum

Explorative

Characteristics

- minimalist
- only includes elements that represent data
- seeks to communicate information in the most clear, concise manner

Applications

- academic research
- science
- business intelligence
- data analysis

Narrative

Characteristics

- illustrative
- design-focused
- seeks to appeal to viewer by engaging visuals
- informs and entertains

Applications

- publications
- blogs
- content marketing
- sales and marketing materials

Infographics formats quadrant

Source: Lankov, Ritchie, Crooks, Infographics (2012)

Infographics formats quadrant

We will dwell here

DISPLAY UPDATES

DYNAMIC

STATIC

Source: Lankov, Ritchie, Crooks, Infographics (2012)

Infographics formats quadrant

Source: Lankov, Ritchie, Crooks, Infographics (2012)

Quantitative data

Graphs:

Representation of the relationships in *quantitative* information

Most common types of relationships:

- nominal comparisons
- time series
- ranking
- part-to-whole

Quantitative data

- Dot charts / scatter plots
 - mostly nominal (dot charts), time series (discrete)
- Line charts
 - time series (continuous)
- Bar graphs (vertical, horizontal)
 - often nominal, ranking (horiz), time (vert)
- Stacked bar charts
 - multiple part-to-whole
- Pie charts
 - part-to-whole
- Bubble charts
 - nominal, ranking

Basic visualization architecture

Basic visualization architecture

Example: Social Media usage

Mobile Messaging and Social Media 2014 (Pew Research Center)

Simple charts are available in packages:

- Google Charts
- HighCharts
- etc...
- basic website dashboarding needs

(If that's all you care about, stop now)

Example:

Source: http://www.pewinternet. org/2015/01/09/social-media-update-2014/

Facebook users

Among online adults, the % who use Facebook

2013	2014
71%	71%
66	66
76	77
71	71
76	67
73	73
84	87
79	73
60	63
45	56*
71	70
75	71
68	74*
76	77
76	69
68	74
69	72
75	71
69	72
71	69
	71% 66 76 71 76 73 84 79 60 45 71 75 68 76 76 68 69

Source: Pew Research Center's Internet Project September Combined Omnibus Survey, September 11-14 & September 18-21, 2014. N=1,597 internet users ages 18+. The margin of error for all internet users is +/- 2.9 percentage points. 2013 data from Pew Internet August Tracking Survey, August 07 – September 16, 2013, n= 1,445 internet users ages 18+.

Note: Percentages marked with an asterisk (*) represent a significant change from 2013. Results are significant at the 95% confidence level using an independent z-test.

PEW RESEARCH CENTER

About data

Two questions:

- How do we structure it?
- How do we access it?

About data

Two questions:

- How do we structure it?
- How do we access it?

Data structuring a huge topic

- Excel-like multi-dimensional tables?
- SQL-like row-based tables?
- JSON-based structured data?

Sometimes need to go back and forth

About data

Two questions:

- How do we structure it?
- How do we access it?

How to access data really depends on size:

- do we load the data all at once?
- or do we pull only the slice of data needed from the data source upon request?

Abou

Two questions:

- How do we structur
- How do we access

Abstract away from this by using a function (or an object) to access the data

How to access data really depends on size:

- do we load the data all at once?
- or do we pull only the slice of data needed from the data source upon request?

Example: the data

Let's use a row-based representation:

```
[{ category: "all", group: "all", year: 2013, value: 71},
 { category: "all", group: "all", year: 2014, value: 71},
 { category: "gender", group: "Men", year: 2013, value: 66},
 { category: "gender", group: "Men", year: 2014, value: 66},
 { category: "gender", group: "Women", year: 2013, value: 76},
 { category: "gender", group: "Women", year: 2014, value: 77},
 { category: "race", group: "White, Non-Hispanic", year: 2013, value: 71},
 { category: "race", group: "White, Non-Hispanic", year: 2014, value: 71},
 { category: "race", group: "Black, Non-Hispanic", year: 2013, value: 76},
 { category: "race", group: "Black, Non-Hispanic", year: 2014, value: 67},
 { category: "race", group: "Hispanic", year: 2013, value: 73},
 { category: "race", group: "Hispanic", year: 2014, value: 73},
 { category: "age", group: "18-29", year: 2013, value: 84},
 ... ]
```

Example: Choosing a chart

Let's keep things simple.

The data is categorical

- split by category: age 18-29, 30-49, ...
- for each category, a single value
- Spread across two years

Histogram: emphasizes the categories

Alternatives?

Building a histogram by hand

For each data element:

- draw a bar of the right size
- show the data value
- label the bar

One year: social-media-1.html

Multiple years: social-media-2.html

D3

A JS library for manipulating the DOM following the structure of supplied data

- D3 = Data-Driven Documents

Derived from the ProtoVis project at Stanford

Not restricted to data visualization, but it has nice features for building visualizations

D3 for DOM manipulation

There's a cottage industry of JS libraries to help make DOM manipulation easier

- jQuery the common example
- \$("#some-element") VS
 document.getElementById("some-element")

D3 plays that role as well

- and it's tied in nicely with data manipulation

```
var svg = d3.select("#viz");
var height = svg.attr("height);
var rect = svg.append("rect");
rect.attr("x",0);
rect.attr("y",0);
rect.attr("width",100);
rect.attr("height",100);
rect.style("fill","blue");
```

```
var svg = d3.select("#viz");
var height
var rect
                Get element with ID viz
rect.attr("x
                     from the DOM
rect.attr(")
rect.attr("w
rect.attr("height",100);
rect.style("fill","blue");
```

```
var svg = d3.select("#viz");
var height = svg.attr("height);
var rect = svg.ax
rect.attr("x
rect.attr("y
                Look up the attribute of a
rect.attr("w
                    selected element
rect.attr("h
rect.style(
```

```
var svg = 0
```

Create a new child element of selected element

var heigh

```
var rect = svg.append("rect");
rect.attr("x",0);
rect.attr("y",0);
rect.attr("width",100);
rect.attr("height",100);
rect.style("fill","blue");
```

```
var svg = 0
```

Change attributes / style attributes of element

var heigh

```
var rect = svg.append("rect");
rect.attr("x",0);
rect.attr("y",0);
rect.attr("width",100);
rect.attr("height",100);
rect.style("fill","blue");
```

```
var svg = d3.select("#viz");
var height = svg.attr("height);
var rect = svg.append("rect")
               .attr("x",0)
               .attr("y",0)
              .attr("width",100)
Method
               .attr("height",100)
chaining!
               .style("fill","blue");
```

Rewritten in D3: social-media-3.html

Next time

- D3 selections and data binding
- Managing multiple static visualizations