Khái niệm về vào ra nối tiếp

TS Nguyễn Hồng Quang

Electrical Engineering

1

Cơ bản về truyền thông

- Hai phương pháp truyền dữ liệu cơ bản
 - Truyền song song với 8 or 16 đường dây vật lý dùng truyền dữ liệu
 - Truyền nối tiếp với dữ liệu được chuyển thành từng bit và mỗi bit được truyền qua 2 dây
- Các phương án truyền nối tiếp cơ bản
 - RS232, RS422, RS485, CAN, Ethernet, SPI, I2C, USB

8

Electrical Engineering

Truyền dữ liệu song song tồn tại không?

- Bus địa chỉ, dữ liệu
- VME Bus
- IEEE 488 (GPIB, HPIB)
- Parallel port

- HPIB phát triển bởi HP
- IEEE 488.1 định nghĩa về phần cứng và cách nối dây điện
- IEEE 488.2 định nghĩa về chuẩn truyền

Electrical Engineering

3

Ví dụ

- 8 đường truyền dữ liệu
- 8 đường điều khiển
- BUS được điều khiển bởi chip GPIB chuyên dụng

Electrical Engineering

Các tham số chính trong truyền nối tiếp

- Phần cứng (vật lý)
 - Loại đầu nối (connector)
 - Mức điện áp
 - Đặc tính thời gian và phương pháp bắt tay
- Phần mềm (software protocol)
 - Phương án mã hóa và giải mã dữ liệu
 - Phương án kiểm tra lỗi đường truyền

Electrical Engineering

5

Khái niệm cơ bản

- Tại đầu truyền, một byte sẽ chuyển thành chuỗi bit nối tiếp
- Tại đầu nhận, một chuỗi bit nối tiếp sẽ chuyển thành byte
- Tùy theo khoảng cách truyền mà cho phép có thêm các tín hiệu hỗ trợ ở giữa như repeater, modem.

Electrical Engineering

Cách thức truyền

- Truyền nối tiếp sử dụng 2 phương pháp
 - Truyền động bộ cho phép gửi một mảng dữ liệu vào cùng một thời điểm
 - Truyền không đồng bộ yêu cầu truyền từng byte trong một thời điểm
- Việc truyền dữ liệu này được thực hiện bởi IC chuyên dụng với 2 loại
 - UART (universal asynchronous Receiver transmitter)
 - USART (universal synchronous asynchronous Receivertransmitter), thường dùng truyền ký tự

Electrical Engineering

7

Tên phương thức truyền

- Truyền song công
- Truyền bán song công
- Truyền đơn công

8

Electrical Engineering

Ví dụ

- Start bit dùng bit 0
- Stop bit dùng bit 1
- Tín hiệu 1 (Mark) báo dừng truyền

Khung truyền (frame)

- Start bit
- 8 bit dữ liệu (255 ký tự ASCII), hoặc 7bit
- Stop bit (1,2 stop bit)
- Bit chẵn lẻ cho kiểm tra

8

Electrical Engineering

Tốc độ truyền

- Được tính theo baud rate
 - -1200, 2400, 4800, 9600, 19200, 38400, 57600
- 115200 bit/sec thường dùng cho truyền theo chuẩn RS485
- Tốc độ càng cao thì dây truyền càng ngắn

Electrical Engineering

1

Chuẩn RS232

- Được đưa ra năm 1966 do EIA, và ứng dụng trong truyền thông tại công ty Bell Technology
- Cho phép truyền dữ liệu giữa máy tính và các Terminal DTE, hoặc các modem DCE
- Úng dụng chủ yếu trong truyền dữ liệu trong khoảng cách gần (<1.2m)

Electrical Engineering

d d

Electrical Engineering

12

Giải thích các chân

- DTR (data terminal ready)
 - Đặt tính hiệu này lên 1 khi Terminal sẵn sàng
- DSR (data set ready)
 - Sẵn sàng truyền thông khi modem bắt đầu
- RTS (request to send)
 - Khi DTE có dữ liệu để truyền, RTS được đặt lên 1
- CTS (clear to send)
 - Có vùng trống để bắt đầu nhận dữ liệu

Electrical Engineering

- Không tương thích với chuẩn TTL
 - ✓ 3÷ 25 V ứng với logic 0
 - ✓ -3÷ -25 V ứng với logic 1
- Sử dụng chuyển đổi mức chuyên dụng MAX 232, 233, MC 1488, 1489

Electrical Engineering

15

Chuyển mức logic với 8051

Tương ứng với chân P3.0, P3.1 là chân TxD and RxD trong truyền dữ liệu nối tiếp

8

Electrical Engineering

Thanh ghi SCON

Bit	Name	Bit Addres		Giải thích				
7	SM0		9Fh	Set mode				
6	SM1		9Eh	Set mode				
5	SM2		9Dh	Cho phép truyền thông nhiều VXL				
4	REN	9Ch		Receiver Enable. Bit này lên 1 cho phép nhận ký				
3	TB8	9Bh		Transmit bit 8. Chi dùng mode 2 and 3.				
2	RB8	9Ah		Receive bit 8. Chỉ dùng mode 2 and 3.				
1	TI	99h		Transmit Flag. Lên 1 khi kết thúc truyền byte				
0	RI	98h		Receive Flag. Lên 1 khi kết thúc nhận byte				
SM0	SM1	Serial Mode	Giải thích	Baud Rate				
0	0	0	8-bit Shift Register	Oscillator / 12				
0	1	1	8-bit UART	Set by Timer 1 (*)				
1	0	2	9-bit UART	Oscillator / 64 (*)				
1	1	3	9-bit UART	Set by Timer 1 (*)				

8

Electrical Engineering

Giải thích thêm

- The **TB8** bit dùng trong mode 2 và 3 và truyền tổng cộng 9 bit. Bao gồm 8 bit dữ liệu và 1 bit thêm vào theo giá trị TB8.
- The **RB8** tương tự TB8, nhận 8 bit dữ liệu và bit thứ 9 trong RB8.

Electrical Engineering

19

TI và RI

- TI (transmit interrupt)
 - Cờ TI đặt lên khi kết thúc quá trình truyền 1
 byte và sẵn sàng cho truyền byte tiếp theo
- RI (receive interrupt)
 - Cò RI đặt lên khi kết thúc quá trình nhận 1
 byte và đặt dữ liệu trong thanh ghi SBUF (sau khi loại bit start và stop)

Electrical Engineering

Tốc độ truyền

- Đơn vị là baud, 1 baud tương ứng với tốc độ 1 bit truyền trong 1 giây
- Tốc độ này do lịch sử để lại với giá trị
- Tốc độ của máy tính PC hiện này có thể đạt tới 115.000 baud cho truyền RS232 và lên tới xấp xỉ 1M baud cho truyền 485

PC	Rand	Rates
rC	Dauu	Raies

110
150
300
600
1200
2400
4800
9600
19200

Electrical Engineering

Thanh ghi SBUF

- SBUF là thanh ghi 8 bit chỉ dùng trong truyền thông nối tiếp.
 - Khi truyền dữ liệu qua dùng TxD, dữ liệu đặt trong SBUF
 - Khi dữ liệu nhận được ở RxD, phần cứng sẽ loại bỏ bit Start và Stop, rồi đặt trong SBUF
- MOV SBUF,#'D'
- MOV SBUF,A
- MOV A,SBUF

Electrical Engineering

Ví dụ truyền dữ liệu

MOV TMOD,#20H ;timer 1,mode 2(auto reload)

MOV TH1,#-6

;4800 baud rate

MOV SCON,#50H ;8-bit, 1 stop, REN enabled

SETB TR1 ;start timer 1

AGAIN:

MOV SBUF,#"A"

HERE: JNB TI, HERE

CLR TI

SJMP AGAIN

Electrical Engineering

2

Ví dụ nhận dữ liệu

MOV TMOD,#20H ;timer 1,mode 2(auto reload)

MOV TH1,#-6;4800 baud rate

MOV SCON,#50H; 8-bit, 1 stop, REN enabled

SETB TR1 ;start timer 1

HERE: JNB RI, HERE

MOV A,SBUF

MOV P1,A

CLR RI

SJMP HERE

Electrical Engineering

```
Ví dụ truyền và nhận sử dụng polling
         org $00\,\mathrm{h}$ ; Set up Timer 1 to act as clock for Serial Port
                          tmod,#20h ; Set Timer1 to Mode 2
th1,#0fdh ; Reload value
         ; SETUP SERIAL PORT
         mov scon,#50h ; Serial Mode
mov tcon,#40h ; Start Timer
         ; Save char to memory - as a Log
mov r0,#$60 ; Serial Buffer ptr
         ; Setup Done, Main Program starts here
                acall getch
                                   ; Get char from keybd
; put into Log buffer
; inc log pointer
         lup:
                          0r0,a
        ti ; Reset TI bit
sbuf,a ; Store ch in A to Output
ti,gone ; Wait until it's gone
; return
         putch: clr
        mov
gone: jnb
ret
Electrical Engineering
```


Ngắt với cổng nối tiếp

- Với 8051, ngắt sẽ được tạo ra với cả
 - Nhận và truyền dữ liệu
 - Bit 4, (IE.4) trong thanh ghi IE được đặt lên
 - PC nhảy về địa chỉ 0023H
- Phần mềm phải kiểm tra đấy là ngắt do RI hay TI gây ra và viết chương trình tương ứng

Electrical Engineering

29

Ví dụ

```
ORG 0000H
       LJMP MAIN
       ORG 23H
       LJMP SERIAL
                      ; jump to serial int ISR
       ORG 30H
 MAIN: MOV P1, #0FFH ; make P1 an input port
       MOV TMOD, #20H ; timer 1, auto reload
       MOV TH1, #0FDH ;9600 baud rate
       MOV SCON, #50H; 8-bit, 1 stop, ren enabled
       MOV IE,10010000B ; enable serial int.
       SETB TR1
                  start timer 1;
 BACK: MOV A, P1
                    ;read data from port 1
       MOV SBUF, A ; give a copy to SBUF
       MOV P2,A ;send it to P2
       SJMP BACK
                    stay in loop indefinitely;
       ORG 100H
SERIAL: JB TI, TRANS; jump if TI is high
       MOV A, SBUF ; otherwise due to receive
                   ;clear RI since CPU doesn't
       CLR RI
       RETI
                  ;return from ISR
TRANS: CLR TI
                 ;clear TI since CPU doesn't
                   ;return from ISR
```

SACH KHOA

Electrical Engineering

Bảng tốc độ truyền

TH1		7.3728 MHz	8.00 MHz	11.0592 MHz	11.0592 MHz	12.00 MHz	12.00 MHz	14.7456 MHz	22.1184 MHz
				smod=0	smod=1	smod=0	smod=1		smod=1
E0		600	651	900		976		1,200	
E6	-26					1,202			
E8	-24			1,200	2,400				4,800
F0	-16	1,200	1,302	1,800		1,953		2,400	
F3	-13					2,404			
F4	-12			2,400	4,800				9,600
F8	-8	2,400	2,604	3,600		3,906		4,800	
F9	-7	2,743	2,976		8,299	4,464	8,923	5,486	
FA	-6	3,200	3,472	4,800	9,600	5,208		6,400	19,200
FD	-3			9,600	19,200				38,400
FF	-1	19,200	20,833	28,800	57.6K		62,500		115.2K

Electrical Engineering