Zhengdong Zhang

Email: zhengz@uoregon.edu

Course: MATH 635 - Algebraic Topology II Term: Winter 2025

Homework 7

ID: 952091294

Instructor: Dr.Daniel Dugger Due Date: 27th February, 2025

Problem 1

Let \mathcal{C} be a category, and $i:A\to B$ and $p:X\to Y$ be two maps. One says that p has the **Right Lifting Property**(RLP) with respect to i if every solid-arrow diagram

$$\begin{array}{ccc}
A & \longrightarrow X \\
\downarrow i & & \downarrow p \\
B & \longrightarrow Y
\end{array}$$

has a lifting as shown. One also says that i has the **Left Lifting Property** (LLP) with respect to p in the same situation. Prove the following:

(a) If $i: A \to B$ and $j: B \to C$ both have the LLP with respect to p, then so does ji.

(b) If $i: A \to B$ has the LLP with respect to p and

$$\begin{array}{ccc}
A & \longrightarrow & C \\
\downarrow i & & \downarrow f \\
B & \longrightarrow & B \sqcup_A C
\end{array}$$

is a pushout diagram, then f also has the LLP with respect to p.

(c) If $i_{\alpha}: A_{\alpha} \to B_{\alpha}$ is a set of maps having the LLP with respect to p, then $\sqcup_{\alpha} A_{\alpha} \to \sqcup_{\alpha} B_{\alpha}$ also has the LLP with respect to p.

(d) If $X_1 \to X_2 \to X_3 \to \cdots$ is a sequence of maps and each $X_i \to X_{i+1}$ has the LLP with respect to p, then so does the map $X_1 \to \operatorname{colim}_n X_n$.

(e) One says that a map $f':A'\to B'$ is a retract of a map $f:A\to B$ if there exists a commutative diagram

$$A' \xrightarrow{i_A} A \xrightarrow{r_A} A'$$

$$f' \downarrow \qquad \qquad f \downarrow \qquad \qquad \downarrow f'$$

$$B' \xrightarrow{i_B} B \xrightarrow{r_B} B'$$

in which the two horizontal composites are the identities (compare this to the definition of one space being a retract of another). Prove that if f' is a retract of f and f has the LLP with respect to p, then so does f'.

(f) Explain the following: If a map of topological spaces $E \to B$ has the RLP with respect to the maps $I^{n-1} \times \{0\} \hookrightarrow I^n$ (for all n), then it also has the RLP with respect to the following maps:

1

i. $\{(0,0,\ldots,0)\} \hookrightarrow I^{n+1}$

ii. $(I^n \times \{0\}) \cup (\partial I^n \times I) \hookrightarrow I^{n+1}$

iii. $(D^n \times \{0\}) \cup (S^{n-1} \times I) \to D^n \times I$

iv. $(X \times \{0\}) \cup (A \times I) \hookrightarrow X \times I$, for any inclusion $A \hookrightarrow X$ where X is obtained from A by attaching a single n-cell.

v. $(X \times \{0\}) \cup A \times I \hookrightarrow X \times I$, for any relative CW-complex (X, A).

vi.

Solution:

(a) Suppose we have a commutative square

$$\begin{array}{ccc} A & \stackrel{g}{\longrightarrow} X \\ \downarrow^{ji} & & \downarrow^{p} \\ C & \stackrel{f}{\longrightarrow} Y \end{array}$$

We want to construct a lift $\tilde{f}: C \to X$. The above square is the same as the following solid-arrow square

$$\begin{array}{ccc}
A & \xrightarrow{g} X \\
\downarrow \downarrow & & \downarrow p \\
B & \xrightarrow{fj} Y
\end{array}$$

We know that $i: A \to B$ has the LLP with respect to $p: X \to Y$, so there exists $h: B \to X$ such that hi = g and ph = fj. Next, consider the following solid-arrow square

$$B \xrightarrow{f} X$$

$$\downarrow p$$

$$C \xrightarrow{f} Y$$

This square commutes because the construction of h guarantees ph = fj. Since $j: B \to C$ has the LLP with respect to $p: X \to Y$, there exists $\tilde{f}: C \to X$ such that $p\tilde{f} = f$ and $\tilde{f}j = h$. We claim that \tilde{f} is the lift we wants, namely the following diagram commutes

$$\begin{array}{ccc}
A & \xrightarrow{g} & X \\
\downarrow ji & & \downarrow p \\
C & \xrightarrow{f} & Y
\end{array}$$

We need to check the two triangle commutes. By definition of \tilde{f} , we have $p\tilde{f}=f$, so the bottom triangle commutes. For the top triangle, we have $\tilde{f}ji=hi=g$ by definition of h and \tilde{f} . We are done.

2

(b) Suppse we have the following square

$$\begin{array}{ccc}
C & \xrightarrow{h} & X \\
f \downarrow & & \downarrow^{p} \\
B \sqcup_{A} C & \xrightarrow{q} & Y
\end{array}$$

satisfying ph = qf. We need to find a lift $\tilde{q}: B \sqcup_A C \to X$. We know we have a pushout square

$$\begin{array}{ccc}
A & \xrightarrow{j} & C \\
\downarrow i & & \downarrow f \\
B & \xrightarrow{g} & B \sqcup_{A} C
\end{array}$$

satisfying fj=gi. Consider the composition $hj:A\to X$ and $qg:B\to Y$, we have a solid-arrow diagram

$$\begin{array}{ccc}
A & \xrightarrow{hj} & X \\
\downarrow & & \downarrow^{p} \\
B & \xrightarrow{qq} & Y
\end{array}$$

We check the commutativity on the outer square. Indeed, phj = qfj = qgi from the commutativity of the previous two squares. We know $i: A \to B$ has the LLP with respect to $p: X \to Y$, so there exists $r: B \to X$ such that qg = pr and ri = hj. Note that ri = hj gives us the following commutative diagram

The universal property of the pushout $B \sqcup_A C$ tells us there exists $\tilde{q}: B \sqcup_A C \to X$ such that $\tilde{q}g = r$ and $\tilde{q}f = h$. We claim that \tilde{q} is the lift we are looking for. Consider the diagram

$$C \xrightarrow{h} X$$

$$f \downarrow \qquad \qquad \downarrow p$$

$$B \sqcup_A C \xrightarrow{\tilde{q}} Y$$

we need to check this commutes in both triangles. For the top triangle, we have $\tilde{q}f = h$ from the previous diagram. For the bottom triangle, we need to show that $p\tilde{g} = q$. Consider the

3

following solid-arrow diagram

This outer diagram commutes because

$$p\tilde{q}fj = phj = qqi$$

By the universal property of the pushout, there exists a unique map $B \sqcup_A C \to Y$ such that the two diagrams commutes. Note that

$$qf = ph = p\tilde{q}f$$

and

$$p\tilde{q}g = pr = qg.$$

So both $q: B \sqcup_A C \to Y$ and $p\tilde{q}: B \sqcup_A C \to Y$ satisfy this condition. By uniqueness we know that $p\tilde{q} = q$.

(c) Suppose we have a commutative diagram

$$\sqcup_{\alpha} A_{\alpha} \xrightarrow{f} X$$

$$\sqcup_{\alpha} i_{\alpha} \downarrow \qquad \qquad \downarrow^{p}$$

$$\sqcup_{\alpha} B_{\alpha} \xrightarrow{q} Y$$

satisfying $pf = g(\sqcup_{\alpha} i_{\alpha})$. We need to find a lift $\tilde{g} : \sqcup_{\alpha} B_{\alpha} \to X$. For any α , we have the canonical inclusion $j_{\alpha} : A_{\alpha} \to \sqcup_{\alpha} A_{\alpha}$ and $k_{\alpha} : B_{\alpha} \to \sqcup_{\alpha} B_{\alpha}$. By the definition of disjoint union, we have a commutative diagram

$$A_{\alpha} \xrightarrow{j_{\alpha}} \sqcup_{\alpha} A_{\alpha}$$

$$\downarrow_{i_{\alpha}} \qquad \qquad \downarrow_{u_{\alpha}i_{\alpha}}$$

$$B_{\alpha} \xrightarrow{k_{\alpha}} \sqcup_{\alpha} B_{\alpha}$$

namely, $(\sqcup_{\alpha} i_{\alpha})j_{\alpha} = k_{\alpha}i_{\alpha}$. For each α , we have the following solid-arrow diagram

$$\begin{array}{ccc}
A_{\alpha} & \xrightarrow{fj_{\alpha}} X \\
\downarrow i_{\alpha} & & \downarrow p \\
B_{\alpha} & \xrightarrow{gk_{\alpha}} Y
\end{array}$$

This diagram commutes because $pfj_{\alpha} = g(\sqcup_{\alpha}i_{\alpha})j_{\alpha} = gk_{\alpha}i_{\alpha}$. We know each $i_{\alpha}: A_{\alpha} \to B_{\alpha}$ has the LLP with respect to $p: X \to Y$, so there exists $h_{\alpha}: B_{\alpha} \to X$ such that $ph_{\alpha} = gk_{\alpha}$ and

 $h_{\alpha}i_{\alpha} = fj_{\alpha}$. Consider the family of maps $\{h_{\alpha}: B_{\alpha} \to X\}_{\alpha}$, the universal property of $\sqcup_{\alpha}B_{\alpha}$ tells us that there exists a map $\tilde{g}: \sqcup_{\alpha}B_{\alpha} \to X$ such that $\tilde{g}k_{\alpha} = h_{\alpha}$. We claim that \tilde{g} is the lift we want. We need to show we have a commutative diagram

We need to check the commutativity of the two triangle. For the top triangle, we have

$$\tilde{g}(\sqcup_{\alpha} i_{\alpha})j_{\alpha} = \tilde{g}k_{\alpha}i_{\alpha} = h_{\alpha}i_{\alpha} = fj_{\alpha}$$

So they should induce a unique map $\sqcup_{\alpha} A_{\alpha} \to X$. This means $\tilde{g}(\sqcup_{\alpha} i_{\alpha}) = f$. For the bottom triangle, we have $p\tilde{g}k_{\alpha} = ph_{\alpha} = gk_{\alpha}$. So they should induce a unque map $\sqcup_{\alpha} B_{\alpha} \to Y$. This means $p\tilde{g} = g$. We are done.

(d) Let

$$X_1 \xrightarrow{j_1} X_2 \xrightarrow{j_2} \cdots$$

be a sequence of maps and each $j_i: X_i \to X_{i+1}$ has the LLP with respect to $p: X \to Y$. Denote the colimit $\operatorname{colim}_n X_n$ by Z and the canonical map by $f_i: X_i \to Z$. We have a commutative diagram

$$X_{i} \xrightarrow{j_{i}} X_{i+1}$$

$$X_{i+1}$$

$$Z$$

satisfying $f_{i+1}j_i = f_i$ for all $i \geq 1$. Suppose we have a commutative diagram

$$X_{1} \xrightarrow{g} X$$

$$\downarrow^{f_{1}} \qquad \downarrow^{p}$$

$$Z \xrightarrow{g} Y$$

satisfying $pg = qf_1$. We need to find a lift $\tilde{q}: Z \to X$. Note that the previous square gives us a lift $g: X_1 \to X$ for the following solid-arrow square

$$X_{1} \xrightarrow{g} X$$

$$id=k_{1} \downarrow \qquad \qquad \downarrow p$$

$$X_{1} \xrightarrow{gf_{1}} Y$$

Define $k_1: X_1 \to X_1$ be the identity map and for $i \geq 2$, define

$$k_i = j_{i-1}j_{i-2}\cdots j_1: X_1 \to X_i.$$

We have proved in (a) that composition has the LLP if each of them has the LLP, so for any $i \geq 1$, $k_i : X_1 \to X_i$ has the LLP with respect to $p : X \to Y$. Consider the following

solid-arrow diagram

$$X_{1} \xrightarrow{g} X$$

$$\downarrow k_{i} \downarrow \qquad \downarrow p$$

$$X_{i} \xrightarrow{qf_{i}} Y$$

This diagram commutes because

$$pg = qf_1 = qf_2j_1 = qf_3j_2j_1 = \cdots = qf_ij_{i-1}\cdots j_1 = qf_ik_i.$$

We know that $k_i: X_1 \to X_i$ has the LLP with respect to $p: X \to Y$, so there exists $h_i: X_i \to X$ such that $h_i k_i = g$ and $ph_i = qf_i$. Note that $h_1 = g$ by our previous discussion. Consider the family of maps $\{h_i: X_i \to X\}_{i\geq 1}$, by the universal property of $Z = \operatorname{colim}_n X_n$, there exists $h: Z \to X$ such that $hf_i = h_i$ for all $i \geq 1$. We claim that h is the lift we are looking for. We need to show that there is a commutative diagram

$$X_{1} \xrightarrow{g} X$$

$$f_{1} \downarrow \qquad \qquad \downarrow p$$

$$Z \xrightarrow{g} Y$$

We need to check the two triangles commutes. For the top triangle, we have $hf_1 = h_1 = g$. For the bottom triangle, for every $1 \ge 1$, we have

$$ph f_i = ph_i = q f_i$$
.

This means ph = q because $phf_i = qf_i$ induces a unque map $Z \to Y$. We are done.

(e) We have two commutative squares

$$\begin{array}{cccc} A' & \xrightarrow{i_A} & A & \xrightarrow{r_A} & A' \\ f' \downarrow & & f \downarrow & & \downarrow f' \\ B' & \xrightarrow{i_B} & B & \xrightarrow{r_B} & B' \end{array}$$

such that $f'r_A = r_B f$, $fi_A = i_B f'$, $r_A i_A = i d_A$ and $r_B i_B = i d_B$. Suppose we have a commutative square

$$\begin{array}{ccc}
A' & \xrightarrow{g} & X \\
f' \downarrow & & \downarrow p \\
B' & \xrightarrow{j} & Y
\end{array}$$

satisfying pg = jf'. We need to find a lift $h: B' \to X$. Consider the following solid-arrow square

$$\begin{array}{ccc}
A & \xrightarrow{gr_A} X \\
f \downarrow & & \downarrow p \\
B & \xrightarrow{jr_B} Y
\end{array}$$

This diagram commutes because $pgr_A = jf'r_A = jr_B f$. We know that $f: A \to B$ has the

LLP with respect to $p: X \to Y$, so there exists $k: B \to X$ such that $pk = jr_B$ and $kf = gr_A$. Now let $h = ki_B: B' \to X$. We claim that this is the lift we want. We need to prove the following digram commutes

$$A' \xrightarrow{g} X$$

$$f' \downarrow ki_B \downarrow p$$

$$B' \xrightarrow{j} Y$$

For the top triangle, we have $ki_Bf' = kfi_A = gr_Ai_A = g(id_A) = g$. For the bottom triangle, we have $pki_B = jr_Bi_B = j(id_B) = j$. We are done.

- (f) This is equivalent to saying $i: I^{n-1} \times \{0\} \to I^n$ has the LLP with respect to $p: E \to B$. We need to show the following maps also have LLP with respect to $p: E \to B$.
 - i. We write $\{0,\ldots,0\}\to I^{n+1}$ as the composition of the following maps

$$\{0,\ldots,0\} \to I \to I^2 \to \cdots \to I^{n+1}$$

where

$$I^i = \{(x_1, x_2, \dots, x_i, 0, \dots, 0) : 0 \le x_1, \dots, x_i \le 1\}.$$

From the the assumption we know each $I^i \to I^{i+1}$ has the LLP with respect to $p: E \to B$. By (a), we know the composition also has the LLP with respect to $p: E \to B$.

- ii. We show that the space $A = (I^n \times \{0\}) \cup (\partial I^n \times I)$ is homeomorphic to $I^n \times \{0\}$. The key idea here is to note that $\partial I^n \times I$ is homeomorphic to an annulus and A is the same n-disk with larger radius, so A is homeomorphic to $I^n \times \{0\}$. We know that $I^n \times \{0\} \hookrightarrow I^{n+1}$ has the LLP with respect to $p: E \to B$ from our assumption. Use (e) and we choose i and r to be the homeomorphisms in this case.
- iii. Note that I^n is homeomorphic to D^n with $\partial I^n \cong S^{n-1}$, so $(D^n \times \{0\}) \cup (S^{n-1} \times I) \hookrightarrow D^n \times I$ is a retract of the map in ii. (use the homeomorphism and its inverse as i and r), then use (e).
- iv. We know that X as a CW complex can be obtained from A by attaching a n-cell, so (X, A) is a relative CW complex and recall that $X \times I$ has a CW structure obtained from $X \times \{0\} \cup A \times I$ by attaching $D^n \times I$ via the map

$$D^n \times \{0\} \cup S^{n-1} \times I \to (X \times \{0\}) \cup (A \times I).$$

This implies we have a pushout square

$$(D^{n} \times \{0\}) \cup (S^{n-1} \times I) \longrightarrow (X \times \{0\}) \cup (A \times I)$$

$$\downarrow \qquad \qquad \downarrow$$

$$D^{n} \times I \longrightarrow X \times I$$

We know the left vertical map has the LLP with respect to $p: E \to B$ from iii., so by (b), the right vertical map also has the LLP.

v. Combine iv. and iii., we define $X_0 = X \times \{0\} \cup A \times I$. For $i \geq 1$, X_i is obtained from X_{i-1} by adding one cell in X. So X_i can be written as $X_i = (X \times \{0\}) \cup X_{i-1} \times I$. We

obtain a sequence of spaces

$$X_1 \hookrightarrow X_2 \hookrightarrow \cdots$$

For any $i \geq 1$, $X_{i-1} \hookrightarrow X_i$ has the LLP with respect to $p: E \to B$ from iv. Moreover, note that $X \times I$ is the colimit of this sequence. From (d), we know that

$$X_0 = (X \times \{0\}) \cup (A \times I) \hookrightarrow X \times I$$

also has the LLP with respect to $p: E \to B$.

Problem 3

Suppose that $A \hookrightarrow X$ is a CW-pair and a strong deformation retract (meaning that the deformation retraction can be taken to be constant on A at all times). Let $p: E \to B$ be a Serre fibration. Prove that any square

$$\begin{array}{ccc} A & \longrightarrow & E \\ \downarrow^i & & \downarrow^p \\ X & \longrightarrow & B \end{array}$$

has a lifting.

Solution: Suppose we have the following commutative square

$$\begin{array}{ccc}
A & \xrightarrow{f} & E \\
\downarrow^{i} & & \downarrow^{p} \\
X & \xrightarrow{g} & B
\end{array}$$

satisfying pf = gi. The strong deformation retraction implies there exists a homotopy $H: X \times I \to X$ such that $H(-,0) = id_X$, $H(x,1) \in A$ for any $x \in X$ and H(a,t) = a for any $a \in A$ and $t \in I$. $H(x,1) \in A$ for any $x \in X$ tells us there exists $r: X \to A$ such that the following diagram commutes

$$X \xrightarrow[r]{H(-,1)} X$$

$$\uparrow_i$$

$$A$$

namely, ir = H(-, 1). Define a constant homotopy $F: A \times I \to E$ with F(a, t) = f(a) for all $t \in I$. Consider the following solid-arrow square

$$\begin{array}{c} X \times \{1\} \cup A \times I \xrightarrow{fr \cup F} E \\ \downarrow & \downarrow p \\ X \times I \xrightarrow{gH} B \end{array}$$

where $i': X \times \{1\} \to X \times I$ and $i: A \times I \to X \times I$ are both inclusions. This is commutative because on $X \times \{1\}$, we have gH(-,1) = gir = pfr. On $A \times I$, for any time $t \in I$ and $a \in A$, we have pF(a,t) = pf(a) = gi(a). We know (X,A) is a CW pair and $p: E \to B$ is a Serre fibration, by HELP, there exists a map $J: X \times I \to E$ such that pJ = gH and $J(i' \cup i) = fr \cup F$. Take

 $h = J(-,0): X \to E$. We claim that h is the lift we are looking for. We need to show the following diagram commutes

$$\begin{array}{ccc}
A & \xrightarrow{f} & E \\
\downarrow^{i} & & \downarrow^{p} \\
X & \xrightarrow{g} & B
\end{array}$$

We check the commutativity for two triangles. For the top triangle, we have hi = J(-,0)i = F(-,0) = f. For the bottom triangle, we have $ph = pJ(-,0) = gH(-,0) = g \circ id_X = g$. We are done.

Problem 4

Let

$$V_{k}(\mathbb{R}^{n}) = \{(v_{1}, \dots, v_{k}) : v_{i} \in \mathbb{R}^{n}, v_{i} \cdot v_{j} = \delta_{i,j}\},$$

$$V'_{k}(\mathbb{R}^{n}) = \{(v_{1}, \dots, v_{k}) : v_{i} \in \mathbb{R}^{n} - \{0\}, v_{i} \cdot v_{j} = 0 \text{ if } i \neq j\}$$

$$VI_{k}(\mathbb{R}^{n}) = \{(v_{1}, \dots, v_{k}) : v_{i} \in \mathbb{R}^{n} \text{ and } v_{1}, \dots, v_{k} \text{ are linearly independent}\}.$$

Note that there are inclusions

$$V_k(\mathbb{R}^n) \hookrightarrow V'_k(\mathbb{R}^n) \hookrightarrow VI_k(\mathbb{R}^n) \hookrightarrow (\mathbb{R}^n)^k$$
.

Prove that the first two of these inclusions are homotopy equivalences. Deduce that $O(n) \hookrightarrow GL_n(\mathbb{R})$ is a homotopy equivalence, where O(n) is the usual group of orthogonal $n \times n$ matrices.

Solution: We divide the solution into three parts. In part (a), we prove that $V_k(\mathbb{R}^n) \hookrightarrow V'_k(\mathbb{R}^n)$ is a homotopy equivalence. In part (b), we prove that $V'_k(\mathbb{R}) \hookrightarrow VI_k(\mathbb{R}^n)$ is a homotopy equivalence. In part (c), we show that $O(n) \hookrightarrow GL_n(\mathbb{R}^n)$ is a homotopy equivalence.

(a) Choose $e_1, \ldots, e_n \in \mathbb{R}^n$ to be the canonical basis of \mathbb{R}^n (e_i has all coordinates equal to 0 except for *i*th coordinate equal to 1). For $v \in \mathbb{R}^n$, let |v| denote the standard norm under this basis. We define a map $H: V'_k(\mathbb{R}^n) \times I \to V'_k(\mathbb{R}^n)$. For any $t \in I = [0, 1]$, given $(v_1, \ldots, v_k) \in V'_k(\mathbb{R}^n)$, let

$$H((v_1,\ldots,v_k),t)=((1-t+\frac{t}{|v_1|})v_1,\ldots,(1-t+\frac{t}{|v_k|})v_k).$$

H is continous and well-defined because for any $t \in I$, we have

$$(1 - t + \frac{t}{|v_i|})v_i \cdot (1 - t + \frac{t}{|v_j|})v_j = (1 - t + \frac{t}{|v_i|})(1 - t + \frac{t}{|v_j|})v_i \cdot v_j = 0$$

if $i \neq j$. Note that for any $(v_1, \ldots, v_k) \in V_k'(\mathbb{R}^n)$, we have $H((v_1, \ldots, v_k), 0) = (v_1, \ldots, v_k)$ and

$$H((v_1, \dots, v_k), 1) = (\frac{v_1}{|v_1|}, \dots, \frac{v_k}{|v_k|}) \in V_k(\mathbb{R}^n).$$

H defines a strong deformation retraction between $V_k(\mathbb{R}^n)$ and $V'_k(\mathbb{R}^n)$, so the inclusion map is a homotopy equivalence.

(b) We choose the same basis and norm for \mathbb{R}^n as before and let $v \cdot w$ denote the canonical inner product of two vectors in \mathbb{R}^n . Let $(v_1, \ldots, v_k) \in VI_k(\mathbb{R}^n)$ be linearly independent vectors in \mathbb{R}^n . Recall the Gram-Schmit Process. we define

$$p: \mathbb{R}^n - \{0\} \times \mathbb{R}^n - \{0\} \to \mathbb{R},$$
$$(u, v) \mapsto \frac{u \cdot v}{u \cdot u}.$$

p is continuous in both variables. Now define inductively

$$u_{1} = v_{1},$$

$$u_{2} = v_{2} - p(u_{1}, v_{2})u_{1},$$

$$u_{3} = v_{3} - p(u_{1}, v_{3})u_{1} - p(u_{2}, v_{3})u_{2},$$

$$\dots$$

$$u_{k} = v_{k} - \sum_{i=1}^{k-1} p(u_{i}, v_{k})u_{i}.$$

For $t \in I$ and every $1 \le j \le k$, consider the following sequence of $k \times k$ matrices: $M_1(t) = 0$ is the zero matrix, for $2 \le j \le k$, $M_j(t)$ has all entries zero except the jth row, which is

$$(-p(u_1,v_j)t -p(u_2,v_j)t \cdots -p(u_{j-1},v_j)t \quad 0 \quad \cdots \quad 0).$$

Now we define

$$M(t) = (I + M_k(t))(I + M_{k-1}(t)) \cdots (I + M_1(t)).$$

When t = 0, all $M_j(t) = 0$, so M(0) = I is the identity matrix. When t = 1, we can see that

$$(I + M_{1}(1)) \begin{pmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{k} \end{pmatrix} = \begin{pmatrix} 1 \\ \ddots \\ 1 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{k} \end{pmatrix} = \begin{pmatrix} u_{1} \\ v_{2} \\ \vdots \\ v_{k} \end{pmatrix},$$

$$(I + M_{2}(1)) \begin{pmatrix} u_{1} \\ v_{2} \\ \vdots \\ v_{k} \end{pmatrix} = \begin{pmatrix} 1 \\ -p(u_{1}, v_{2}) & 1 \\ & \ddots \\ & & 1 \end{pmatrix} \begin{pmatrix} u_{1} \\ v_{2} \\ \vdots \\ v_{k} \end{pmatrix} = \begin{pmatrix} u_{1} \\ u_{2} \\ v_{3} \\ \vdots \\ v_{k} \end{pmatrix}$$

Similarly, after applying all $(I + M_i(1))$, we obtain

$$M(1) \begin{pmatrix} v_1 \\ \vdots \\ v_k \end{pmatrix} = (I + M_k(1))(I + M_{k-1}(1)) \cdots (I + M_1(1)) = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_k \end{pmatrix}.$$

Now we can define a homotopy, write

$$M(t) \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_k \end{pmatrix} = \begin{pmatrix} w_1(t) \\ w_2(t) \\ \vdots \\ w_k(t) \end{pmatrix}.$$

Note that for any $t \in I$, $I + M_j(t)$ is a lower triangular matrix for all j, we have

$$\det M(t) = \det(I + M_k(t)) \cdot \det(I + M_{k-1}(t)) \cdots \det(I + M_1(t)) = 1.$$

So $w_1(t), \ldots, w_k(t)$ are always linearly independent. The map

$$J: VI_k(\mathbb{R}^n) \times I \to VI_k(\mathbb{R}^n),$$

$$((v_1, \dots, v_k), t) \mapsto (w_1(t), \dots, w_k(t)).$$

is continous and well-defined. When t=0, note that $M(0)=I_k$, so J(-,0) is the identity map. When $t=1, w_1(1), \ldots, w_k(1)$ is the result after applying the Gram-Schmit process, so we have

$$w_i(1) \cdot w_j(1) = 0$$

if $i \neq j$. This means the image of J(-,1) is contained in $V'_k(\mathbb{R}^n)$. So we proved the inclusion $V'_k(\mathbb{R}) \hookrightarrow VI_k(\mathbb{R}^n)$ is a strong deformation retraction, so it is a homotopy equivalence.

(c) From the definition, it is easy to see that $GL_n(\mathbb{R}) = VI_n(\mathbb{R}^n)$ if we write $n \times n$ a matrix $A = (v_1, v_2, \dots, v_n)$ and each v_i is a column vector. Note that the transpose

$$A^T = \begin{pmatrix} v_1^T \\ v_2^T \\ \vdots \\ v_n^T \end{pmatrix}$$

where each of v_i^T is a row vector. So we have

$$A^{T}A = \begin{pmatrix} v_{1}^{T} \\ v_{2}^{T} \\ \vdots \\ v_{n}^{T} \end{pmatrix} \begin{pmatrix} v_{1} & v_{2} & \cdots & v_{n} \end{pmatrix} = \begin{pmatrix} v_{1} \cdot v_{1} & v_{1} \cdot v_{2} & \cdots & v_{1} \cdot v_{n} \\ v_{2} \cdot v_{1} & v_{2} \cdot v_{2} & \cdots & v_{2} \cdot v_{n} \\ \vdots & \vdots & & \vdots \\ v_{n} \cdot v_{1} & v_{n} \cdot v_{2} & \cdots & v_{n} \cdot v_{n} \end{pmatrix} = I_{n}.$$

This proves that $A \in O(n)$ if and only if $(v_1, \ldots, v_n) \in V_n(\mathbb{R}^n)$, from we proved in (a) and (b), we know that $O(n) \hookrightarrow GL_n(\mathbb{R})$ is a homotopy equivalence.

Problem 5

Let $p_1: V_k(\mathbb{R}^n) \to S^{n-1}$ be the map that sends a k-frame (v_1, \dots, v_k) to its first vector v_1 .

- (a) For $n \geq 2$ prove that p_1 is a fiber bundle with fiber $V_{k-1}(\mathbb{R}^{n-1})$.
- (b) Here is an easy fact: if $E \to B$ is a fiber bundle with fiber F and both B and F are manifolds, then E is also a manifold and dim $E = \dim B + \dim F$. Using this prove that $V_k(\mathbb{R}^n)$ is a manifold and calculate its dimension. Calculate the dimension of O_n .
- (c) Compute $\pi_i(V_2(\mathbb{R}^7))$ for $i \geq 4$ and say as much as you can about π_5 . Then figure out as much as you can about $\pi_*(V_3(\mathbb{R}^8))$.

Solution:

(a) By symmetry it suffices to produce a local trivilization on some open neighborhood of U around the point $e_1 = (1, 0, ..., 0) \in S^{n-1}$. We first prove the following useful result that will help us produce the local trivialization.

<u>Claim</u>: If we choose U small enough, there exists a well-defined, continous map $R: U \to O(n)$ such that for any $x \in S^{n-1}$, where x is viewed as a row vector in \mathbb{R}^n , the first row of the image $R(x) \in O(n) = V_n(\mathbb{R}^n)$ coincides with x.

<u>Proof:</u> We first define a map $R': U \to VI_n(\mathbb{R}^n)$:

$$R': U \to VI_n(\mathbb{R}^n),$$

$$x \mapsto \begin{pmatrix} x \\ e_2 \\ \vdots \\ e \end{pmatrix}$$

Here x is a row vector and for $i \geq 2$, e_i is the standard basis in \mathbb{R}^n . Note that U is an open neighborhood of e_1 , so if we choose U small enough, x, e_2, \ldots, e_n is linearly independent, thus R' is well-defined and continuous. From the previous problem, we know that $VI_n(\mathbb{R}^n)$ is homotopy equivalent to $V_n(\mathbb{R}^n) = O(n)$, so there exists $r: VI_n(\mathbb{R}^n) \to O(n)$ such that the first row does not change under this map r. Let $R = r \circ r'$, and R is well-defined and continuous. Write

$$R(x) = \begin{pmatrix} x \\ t_1 \\ \vdots \\ t_n \end{pmatrix}$$

where for any $2 \le i \le n$, each t_i viewed as a row vector is orthogonal to x and $t_i \cdot t_i = 1$. \blacksquare Choose U small enough to satisfy the claim. We define a map $h: p^{-1}(U) \to U \times V_{k-1}(\mathbb{R}^{n-1})$. By definition of $p: V_k(\mathbb{R}^n) \to S^{n-1}$ (this is just a projection), we can write every element in $p^{-1}(U)$ as a $n \times k$ matrix

$$\begin{pmatrix} x & v_2 & \cdots & v_k \end{pmatrix}$$

where

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} \in U \subset S^{n-1}$$

and

$$v_i = \begin{pmatrix} v_{i1} \\ v_{i2} \\ \vdots \\ v_{in} \end{pmatrix}$$

is a column vector for $2 \le i \le k$. For any $x \in U$, apply R(x) in the claim to the $n \times k - 1$ matrix $(v_2 \cdots v_k)$ and we have

$$R(x) (v_2 \cdots v_k) = \begin{pmatrix} x \\ t_1 \\ \vdots \\ t_n \end{pmatrix} \begin{pmatrix} v_{21} & v_{31} & \cdots & v_{k1} \\ v_{22} & v_{32} & \cdots & v_{k2} \\ \vdots & \vdots & & \vdots \\ v_{2n} & v_{3n} & \cdots & v_{kn} \end{pmatrix}$$

Note that x is orthogonal to v_2, v_3, \ldots, v_k , so what we obtain is

$$R(x) \begin{pmatrix} v_2 & \cdots & v_k \end{pmatrix} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ w_2 & w_3 & \cdots & w_k \end{pmatrix}$$

where $w_k \in \mathbb{R}^{n-1}$ and $\{w_2, w_2, \dots, w_k\} \subset \mathbb{R}^{n-1}$ is still orthonormal because $R(x) \in O(n)$ for any $x \in U$. Define

$$h: p^{-1}(U) \to U \times V_{k-1}(\mathbb{R}^{n-1}),$$

$$(x \quad v_2 \quad \cdots \quad v_k) \mapsto (x, w_2, \dots, w_k).$$

This map is continous because R is continous. h is also invertible because $R(x) \in O(n)$ is invertible and we can define an inverse, for any point x, w_2, \ldots, w_k for $x \in S^{n-1}$ and $w_2, \ldots, w_k \in V_{k-1}(\mathbb{R}^{n-1})$, we first embed it into the $n \times k$ matrix

$$\begin{pmatrix} x_1 & 0 & \cdots & 0 \\ x_2 & & & \\ \vdots & w_2 & \cdots & w_k \\ x_n \end{pmatrix}$$

Then multiply $R(x)^{-1}$ on the left. It is easy to check that $h \circ h^{-1} = id$ and $h^{-1} \circ h = id$. This proves that h is a homeomorphism. We have a commutative diagram

$$U \times V_{k-1}(\mathbb{R}^{n-1}) \xleftarrow{h} p^{-1}(U)$$

For $n \geq 2$, we have a fiber bundle

$$V_{k-1}(\mathbb{R}^{n-1}) \to V_k(\mathbb{R}^n) \to S^{n-1}.$$

(b) If k > n, then $V_k(\mathbb{R}^n)$ is empty by definition. For n = k = 1, $V_1(\mathbb{R}) = \{1, -1\}$ contains only two points, so it is a zero dimensional manifold. For $n \geq 2$, assume $k \leq n$, then by definition

 $V_1(\mathbb{R}^{n-k+1}) \cong S^{n-k}$ is a (n-k)-dimensional manifold. We have a fiber bundle

$$V_1(\mathbb{R}^{n-k+1}) \to V_2(\mathbb{R}^{n-k+2}) \to S^{n-k+1}$$
.

where S^{n-k+1} is a (n-k+1)-dimensional manifold. This implies that $V_2(\mathbb{R}^{n-k+2})$ is a manifold and

$$\dim V_2(\mathbb{R}^{n-k+2}) = \dim S^{n-k+1} + \dim V_1(\mathbb{R}^{n-k+1}) = n-k+n-k+1 = 2n-2k+1$$

By induction we can prove that $V_k(\mathbb{R}^n)$ is a manifold and

$$\dim V_k(\mathbb{R}^n) = (n-k) + (n-k+1) + (n-k+2) + \dots + (n-1)$$

$$= \frac{(n-1+n-k)k}{2}$$

$$= \frac{k(2n-k-1)}{2}$$

Recall that $O(n) = V_n(\mathbb{R}^n)$, so dim $O(n) = \frac{n(n-1)}{2}$.

(c) We have a fiber bundle $V_1(\mathbb{R}^6) \to V_2(\mathbb{R}^7) \to S^6$.

$$S^{5} \qquad V_{2}(\mathbb{R}^{7}) \qquad S^{6}$$

$$\pi_{6} \qquad ? \longrightarrow ? \longrightarrow \mathbb{Z}$$

$$\pi_{5} \qquad \mathbb{Z} \longrightarrow ? \longrightarrow 0$$

$$\pi_{4} \qquad 0 \longrightarrow ? \longrightarrow 0$$

$$\pi_{2} \qquad 0 \longrightarrow ? \longrightarrow 0$$

$$\pi_{1} \qquad 0 \longrightarrow ? \longrightarrow 0$$

$$\pi_{1} \qquad 0 \longrightarrow ? \longrightarrow 0$$

Note that $V_1(\mathbb{R}^6) \cong S^5$, and we have a long exact sequence in homotopy groups as above. By exactness, we know that $\pi_i(V_2(\mathbb{R}^7))$ is trivial for $0 \leq i \leq 4$. For $\pi_5(V_2(\mathbb{R}^7))$, from the exact sequence we know it is isomorphic to $\mathbb{Z}/\text{Im }\partial_6$ where $\partial_6: \pi_6(S^6) \to \pi_5(S^5)$ is the connecting homeomorphism. So $\pi_5(V_2(\mathbb{R}^7))$ is cyclic. Next, consider the fiber bundle

$$V_2(\mathbb{R}^7) \to V_3(\mathbb{R}^8) \to S^7.$$

This induces a long exact sequence in homotopy groups

$$V_{2}(\mathbb{R}^{7}) \qquad V_{3}(\mathbb{R}^{8}) \qquad S^{7}$$

$$\pi_{6} \qquad ? \longrightarrow ? \longrightarrow 0$$

$$\pi_{5} \qquad \mathbb{Z}/\operatorname{im} \partial_{6} \stackrel{\longleftarrow}{\longrightarrow} ? \longrightarrow 0$$

$$\pi_{4} \qquad 0 \stackrel{\longleftarrow}{\longrightarrow} ? \longrightarrow 0$$

$$\pi_{2} \qquad 0 \stackrel{\longleftarrow}{\longrightarrow} ? \longrightarrow 0$$

$$\pi_{1} \qquad 0 \stackrel{\longleftarrow}{\longrightarrow} ? \longrightarrow 0$$

$$\pi_{0} \qquad * \stackrel{\longleftarrow}{\longrightarrow} ? \longrightarrow *$$

By exactness, we know that $\pi_i(V_3(\mathbb{R}^8))$ is trivial for $0 \le i \le 4$, and

$$\pi_5(V_3(\mathbb{R}^8)) \cong \pi_5(V_2(\mathbb{R}^7)) \cong \mathbb{Z}/\partial_6$$

is also cyclic.

Problem 6

Let $G = D_4 = \langle a, b \mid a^4 = b^2 = 1, abab = 1 \rangle$, the dihedral group of order 8. Draw the Cayley graphs for all of the transitive G-sets. In each of your pictures, identify the stabilizer of each point in the G-set. Which of the G-sets S have the property that $\operatorname{Aut}_G(S)$ (the group of automorphisms of S as a left G-set) acts transitively on the points?

Solution: We know that any transitive G-set must have the form G/H for some $H \leq G$ is a subgroup of G. The order of G is 8, so the order of its subgroup must be 1, 2, 4, 8. So the size of the G-set G must be 1, 2, 4, 8. In all the following Cayley graphs, the black line corresponds to the generator G and the red line corresponds to the generator G. Note that the group acts on the left for every G-set G so we apply the elements on G from the right. For convenience, we assume every element in G has the form G0 where G1 and G2 denotes the identity element. Before discussing the group action, we prove a useful fact.

Claim: Let S be a left G-set and $\operatorname{Aut}_G(S)$ be the automorphism group of left G-set S. Assume the group action is transitive. Suppose $s \in S$ and $\phi \in \operatorname{Aut}_G(S)$. Then $\phi(s)$ and s have the same stabilizer. Conversely, if $s, t \in S$ have the same stabilizer, then there exists $\phi \in \operatorname{Aut}_G(S)$ such that $\phi(s) = t$.

<u>Proof:</u> Let $g \in \operatorname{Stab}_G(s)$. Then we have

$$\phi(s) = \phi(g \cdot s) = g \cdot \phi(s).$$

So g is also in the stabilizer of $\phi(s)$. Conversely, assume $s,t \in S$ have the same stabilizer. Define $\phi(s) := t$ and $\phi(g \cdot s) := g \cdot \phi(s) = g \cdot t$. Since G acts transitively on S, this defines a map $\phi : S \to S$ and compatible with group action. Note that ϕ is well-defined. Indeed, suppose $a \cdot s = b \cdot s \in S$, then $b^{-1}a \in \operatorname{Stab}_G(S)$. And by definition,

$$a \cdot t = a \cdot \phi(s) = \phi(a \cdot s) = \phi(b \cdot s) = b \cdot \phi(s) = b \cdot t.$$

So $b^{-1}a \in \operatorname{Stab}_G(t)$. Since $\operatorname{Stab}_G(s) = \operatorname{Stab}_G(t)$, this map ϕ is well-defined.

(1) When |S| = 1.

We have only one Cayley Graph as follows: We only have one point in this graph, so the

Figure 1: Cayley Graph 1.1

stabilizer is the whole group G. The automorphism group $\operatorname{Aut}_G(S)$ is trivial, and since we only have one point, it obviously acts transitively on the point.

(2) When |S| = 2.

We have three connected Cayley graphs. In all three Cayley Graphs, we can see that |S|=2,

so the stabilizer $\operatorname{Stab}_G(s_1) = \operatorname{Stab}_G(s_2)$ is an order 4 subgroup of G. In Cayley Graph 2.1, we have

$$\operatorname{Stab}_{G}(s_{1}) = \operatorname{Stab}_{G}(s_{2}) = \left\{a^{2}, b, ba^{2}, e\right\}.$$

In Cayley Graph 2.2, we have

$$\operatorname{Stab}_{G}(s_{1}) = \operatorname{Stab}_{G}(s_{2}) = \left\{ba, a^{2}, ba^{3}, e\right\}.$$

In Cayley Graph 2.3, we have

$$Stab_G(s_1) = Stab_G(s_2) = \{a, a^2, a^3, e\}.$$

We claim that for all three Cayley Graphs, the automorphism group $\operatorname{Aut}_G(S)$ acts transitively on s_1, s_2 . We need to show that given $\phi: S \to S$ by interchange s_1 and s_2 , ϕ is compatible with the group action. This is true since s_1, s_2 has the same stabilizer under every group action.

(3) When |S| = 4.

In this case, the size of the stabilizer is 2 and we have three connected Cayley Graphs: In all

three Cayley Graphs, the stabilizer has order 2. In Cayley Graph 4.1, we have

$$\operatorname{Stab}_{G}(s_{1}) = \left\{ba^{3}, e\right\},$$

$$\operatorname{Stab}_{G}(s_{2}) = \left\{ba, e\right\},$$

$$\operatorname{Stab}_{G}(s_{3}) = \left\{ba^{3}, e\right\},$$

$$\operatorname{Stab}_{G}(s_{4}) = \left\{ba, e\right\}.$$

In Cayley Graph 4.2, we have

$$Stab_G(s_1) = \{ba^2, e\},$$

$$Stab_G(s_2) = \{b, e\},$$

$$Stab_G(s_3) = \{ba^2, e\},$$

$$Stab_G(s_4) = \{b, e\}.$$

In Cayley Graph 4.3, we have

$$Stab_G(s_1) = \{a^2, e\},$$

$$Stab_G(s_2) = \{a^2, e\},$$

$$Stab_G(s_3) = \{a^2, e\},$$

$$Stab_G(s_4) = \{a^2, e\}.$$

From the claim we proved, we know that for Cayley Graph 4.1 and Cayley Graph 4.2, the automorphism group $\operatorname{Aut}_G(S)$ does not act transitively on S because s_1 and s_2 have different stabilizers. In Cayley Graph 4.3, the automorphism group $\operatorname{Aut}_G(S)$ acts transitively on S because all the stabilizers are the same.

(4) When |S| = 8.

In the case, the G-set is just the quotient $G/\{e\}$, so S is isomorphic to G, and the action is

given by group operation. The Cayley Graph is as follows:

The stabilizer for any point $\operatorname{Stab}_G = \{e\}$, and we know that $\operatorname{Aut}_G(G) = G$. It is obvious that G acts on G transitively because for any $g \in G$ and $h \in G$, we have $(hg^{-1})g = h$.