

CS 6334 Virtual Reality
Professor Yapeng Tian
The University of Texas at Dallas

Review of VR Systems

The Geometry of Virtual Worlds

The Physics of Virtual Worlds

PyBullet Example

PyBullet Example

Credit: Xiangyun Meng at UW

Physics Simulation

Dynamical system

State of the virtual world

- Object positions
- Object shapes
- Forces
- Energy

• • •

 $\mathbf{s}_t \longrightarrow$

Physics Engine

Pendulum

Particle Dynamics

• Determine the states of particles (e.g., position)

Particle Dynamics

- Determine the position of a mass-less particle
- ullet Given velocity field ${f v}({f x},t)$
- Initial Value Problem

$$\frac{\mathbf{x}_p(0) = \mathbf{x}_0}{d\mathbf{x}_p(t)} = \dot{\mathbf{x}}_p(t) = \mathbf{v}(\mathbf{x}_p, t)$$

How to calculate $\mathbf{x}_p(t)$

 x_1

Differential Equations

 A differential equation is an equation that relates one or more functions and their derivatives

$$\frac{d\mathbf{x}_p(t)}{dt} = \dot{\mathbf{x}}_p(t) = \mathbf{v}(\mathbf{x}_p, t)$$

- Ordinary Differential Equation (ODE)
 - An equation that contains functions of only one independent variable and its derivatives
 - First-order ODE

Initial Value Problem

$$\mathbf{x}_p(0) = \mathbf{x}_0$$

$$\frac{d\mathbf{x}_p(t)}{dt} = \dot{\mathbf{x}}_p(t) = \mathbf{v}(\mathbf{x}_p, t)$$

Euler integration

$$\frac{d\mathbf{x}_p(t)}{dt} = \lim_{\epsilon \to 0} \frac{\mathbf{x}_p(t+\epsilon) - \mathbf{x}_p(t)}{\epsilon}$$

$$\frac{d\mathbf{x}_p(t)}{dt} \approx \frac{\mathbf{x}_p(t + \Delta t) - \mathbf{x}_p(t)}{\Delta t}$$

$$\frac{\mathbf{x}_p(t+\Delta t)-\mathbf{x}_p(t)}{\Delta t}=\mathbf{v}(\mathbf{x}_p,t)$$

Position of the mass-less particle

$$\mathbf{x}_p(t + \Delta t) = \mathbf{x}_p(t) + \Delta t \cdot \mathbf{v}(\mathbf{x}_p, t)$$

 χ_1

Particle Dynamics

Determine the position of a particle with mass

Mass of the body, kg

Acceleration of gravity g=9.81 m/sec²

Momentum

The momentum of a body is

$$\mathbf{p}(t) = m\mathbf{v}(t)$$

Mass of the body, kg Velocity of the body, m/sec

Newton's second law

$$\mathbf{f}(t) = \frac{d}{dt}\mathbf{p}(t) = m\frac{d}{dt}\mathbf{v}(t) = m\mathbf{a}(t)$$

Newton's Second Law

Example

Bargteil, A., Shinar T. An introduction to physics-based animation, ACM SIGGRAPH 2018 Courses, 2018

A Particle with Mass

Initial value problem

$$\frac{\mathbf{x}_p(0) = \mathbf{x}_0}{dt^2} = \ddot{\mathbf{x}}_p(t) = \frac{\mathbf{f}(\mathbf{x}_p, t)}{m_p}$$

• First-order equations

$$\mathbf{x}_{p}(0) = \mathbf{x}_{0}$$

$$\mathbf{v}_{p}(0) = \mathbf{v}_{0}$$

$$\frac{d\mathbf{x}_{p}(t)}{dt} = \dot{\mathbf{x}}_{p}(t) = \mathbf{v}_{p}(t)$$

$$\frac{d\mathbf{v}_{p}(t)}{dt} = \dot{\mathbf{v}}_{p}(t) = \frac{\mathbf{f}(\mathbf{x}_{p}, t)}{m_{p}}$$

Euler's method

$$\mathbf{v}_p(t + \Delta t) = \mathbf{v}_p(t) + \Delta t \cdot \frac{\mathbf{f}(\mathbf{x}_p, t)}{m_p}$$
$$\mathbf{x}_p(t + \Delta t) = \mathbf{x}_p(t) + \Delta t \cdot \mathbf{v}_p(t)$$

Materials

Rigid bodies

No deformation

Soft bodies

• Deform elastically and plastically

Fluids

• Air, water, honey, etc.

16

Rigid Bodies

- No deformation
- 6 DOF: 3D translation and 3D rotation
- Particles with very stiff springs
- Center of mass

$$\mathbf{x}_{com} = \frac{\sum_{i=1}^{N} m_i \mathbf{p}_i}{\sum_{i=1}^{N} m_i}$$

Bargteil, A., Shinar T. An introduction to physics-based animation, ACM SIGGRAPH 2018 Courses, 2018

Object Space vs. World Space

(a) Object space.

(b) World space.

World position

$$\mathbf{r}(t) = \mathbf{R}(t)\mathbf{r}_0$$

$$\mathbf{p}(t) = \mathbf{x}(t) + \mathbf{r}(t)$$

$$\mathbf{p}(t) = \mathbf{x}(t) + \mathbf{R}(t)\mathbf{r}_0$$

Linear Velocity

$$\mathbf{p}(t) = \mathbf{x}(t) + \mathbf{R}(t)\mathbf{r}_0$$

$$\mathbf{v}(t) = \dot{\mathbf{p}}(t) = \dot{\mathbf{x}}(t) + \dot{\mathbf{R}}(t)\mathbf{r}_0$$

19

Linear velocity

Motion of the particle due to linear velocity of the body

Instantaneous Rotation

$$\mathbf{p}(t) = \mathbf{x}(t) + \mathbf{R}(t)\mathbf{r}_0$$

$$\mathbf{v}(t) = \dot{\mathbf{p}}(t) = \dot{\mathbf{x}}(t) + \dot{\mathbf{R}}(t)\mathbf{r}_0$$

Motion of the particle due to the instantaneous rotation of the body about its center of mass

(b) World space.

Angular Velocity $\,\omega\,$

Euler's rotation theorem $\dot{\mathbf{R}}(t)\mathbf{r}_0$

- ω
- The vector whose direction is the instantaneous axis of rotation
- Length is the rate of rotation in radians per second

$$\dot{\mathbf{R}}(t)\mathbf{r}_0 = \boldsymbol{\omega}(t) \times \mathbf{r}(t)$$

$$\mathbf{v}(t) = \dot{\mathbf{p}}(t) = \dot{\mathbf{x}}(t) + \boldsymbol{\omega}(t) \times \mathbf{r}(t)$$

$$\mathbf{r}(t) = \mathbf{R}(t)\mathbf{r}_0 \quad \dot{\mathbf{R}}(t) = \boldsymbol{\omega}(t) \times \mathbf{R}(t)$$

Linear Momentum

$$P(t) = \sum_{i=1}^{N} m_i \mathbf{v}_i(t)$$

$$P(t) = \sum_{i=1}^{N} m_i (\dot{\mathbf{x}}(t) + \boldsymbol{\omega}(t) \times \mathbf{r}_i(t))$$

$$= \sum_{i=1}^{N} m_i \dot{\mathbf{x}}(t) + \boldsymbol{\omega}(t) \times \left(\sum_{i=1}^{N} m_i \mathbf{r}_i(t)\right)$$

$$P(t) = M\dot{\mathbf{x}}(t) \qquad M = \sum_{i=1}^{N} m_i$$

(b) World space.

Angular Momentum

$$\mathbf{L}(t) = \sum_{i=1}^{N} \mathbf{r}_{i}(t) \times m_{i} \mathbf{v}_{i}(t)$$

$$\mathbf{L}(t) = \sum_{i=1}^{N} m_{i} \mathbf{r}_{i}(t) \times (\dot{\mathbf{x}}(t) + \boldsymbol{\omega}(t) \times \mathbf{r}_{i}(t))$$

$$= \sum_{i=1}^{N} m_{i} \mathbf{r}_{i}(t) \times \dot{\mathbf{x}}(t) + \sum_{i=1}^{N} m_{i} \mathbf{r}_{i}(t) \times \boldsymbol{\omega}(t) \times \mathbf{r}_{i}(t)$$

$$\mathbf{L}(t) = \sum_{i=1}^{N} m_i \mathbf{r}_i(t) \times (\boldsymbol{\omega}(t) \times \mathbf{r}_i(t))$$

(b) World space.

Angular Momentum

$$\mathbf{L}(t) = \sum_{i=1}^{N} m_i \mathbf{r}_i(t) \times (\boldsymbol{\omega}(t) \times \mathbf{r}_i(t))$$

$$\omega \times \mathbf{r} = -\mathbf{r} \times \omega$$

$$\mathbf{L}(t) = \sum_{i=1}^{N} m_i \mathbf{r}_i(t) \times (-\mathbf{r}_i(t) \times \boldsymbol{\omega}(t))$$

$$\mathbf{r}^{\star} = \begin{pmatrix} 0 & -r_z & r_y \\ r_z & 0 & -r_x \\ -r_y & r_x & 0 \end{pmatrix}$$

(b) World space.

$$\mathbf{L}(t) = \sum_{i=1}^{N} m_i \mathbf{r}_i^{\star}(t) (\mathbf{r}_i^{\star T}(t) \boldsymbol{\omega}(t))$$
$$= \left(\sum_{i=1}^{N} m_i \mathbf{r}_i^{\star}(t) \mathbf{r}_i^{\star T}(t)\right) \boldsymbol{\omega}(t)$$

Angular Momentum

$$\mathbf{L}(t) = \sum_{i=1}^{N} m_i \mathbf{r}_i^{\star}(t) (\mathbf{r}_i^{\star T}(t) \boldsymbol{\omega}(t))$$
$$= \left(\sum_{i=1}^{N} m_i \mathbf{r}_i^{\star}(t) \mathbf{r}_i^{\star T}(t)\right) \boldsymbol{\omega}(t)$$

Inertia tensor

$$\mathbf{I}(t) = \sum_{i=1}^{N} m_i \mathbf{r}_i^{\star}(t) \mathbf{r}_i^{\star T}(t)$$

$$\mathbf{L}(t) = \mathbf{I}(t)\boldsymbol{\omega}(t)$$

$$\mathbf{I}(t) = \sum_{i=1}^{N} m_{i} \mathbf{r}_{i}^{*}(t) \mathbf{r}_{i}^{*T}(t) \qquad \mathbf{r}^{*T} \mathbf{r}_{i}^{T}(t)$$

$$= \sum_{i=1}^{N} m_{i} \left(\mathbf{r}_{i}^{T} \mathbf{r}_{i} \boldsymbol{\delta} - \mathbf{r}_{i} \mathbf{r}_{i}^{T} \right) \qquad \mathbf{r} =$$

$$= \mathbf{R}(t) \sum_{i=1}^{N} m_{i} \left(\mathbf{r}_{0i}^{T} \mathbf{r}_{0i} \boldsymbol{\delta} - \mathbf{r}_{0i} \mathbf{r}_{0i}^{T} \right) \mathbf{R}(t)^{T}$$

$$= \mathbf{R}(t) \mathbf{I}_{0} \mathbf{R}(t)^{T}.$$

(b) World space.

$$\mathbf{r}^* \mathbf{r}^{*T} = \mathbf{r}^T \mathbf{r} \boldsymbol{\delta} - \mathbf{r} \mathbf{r}^T$$

 $\boldsymbol{\delta}$ is the 3 × 3 identity matrix $\mathbf{r} = \mathbf{R} \mathbf{r}_0$

Force and Torque

Linear momentum
$$\mathbf{P}(t) = M\dot{\mathbf{x}}(t)$$
 $M = \sum_{i=1}^{N} m_i$

Angular momentum
$$L(t) = I(t)\omega(t)$$

(b) World space.

Newton's second law

$$\frac{d}{dt} \begin{pmatrix} \mathbf{P}(t) \\ \mathbf{L}(t) \end{pmatrix} = \begin{pmatrix} \mathbf{f}(t) \\ \boldsymbol{\tau}(t) \end{pmatrix}$$
 Torque

If a force apply to center of mass

$$\mathbf{a} = \mathbf{f}/M$$

If a force apply to a point

$$\tau = \mathbf{r} \times \mathbf{f}$$

Force

Dynamics of Rigid Bodies

$$\mathbf{v}(t) = \frac{\mathbf{P}(t)}{M} \qquad \mathbf{I}(t) = \mathbf{R}(t)\mathbf{I}_0\mathbf{R}(t)^T \qquad \boldsymbol{\omega}(t) = \mathbf{I}(t)^{-1}\mathbf{L}(t)$$

$$\frac{d}{dt} \begin{pmatrix} \mathbf{X}(t) \\ \mathbf{R}(t) \\ \mathbf{P}(t) \\ \mathbf{L}(t) \end{pmatrix} = \begin{pmatrix} \mathbf{v}(t) \\ \boldsymbol{\omega}^{\star}(t) \mathbf{R}(t) \\ \mathbf{f}(t) \\ \boldsymbol{\tau}(t) \end{pmatrix}$$

Linear Velocity

Angular Velocity

Force

Torque

Rigid Body Simulation Examples

 $\mathbf{s}_t \longrightarrow$

Physics Engine

$$\longrightarrow$$
 \mathbf{S}_{t+1}

https://gfycat.com/

Further Readings

• Section 8.1, 8.3 in Virtual Reality, Steven LaValle

• Bargteil, A., Shinar T. <u>An introduction to physics-based animation</u>, ACM SIGGRAPH 2018 Courses, 2018.