STA261 Lecture 4 — 2017-07-17

Neil Montgomery

Last edited: 2017-07-17 19:01

Method of moments estimators are useful because:

1. They are consistent under some mild conditions.

Method of moments estimators are useful because:

- 1. They are consistent under some mild conditions.
- 2. They possess the "invariance" property.

Method of moments estimators are useful because:

- 1. They are consistent under some mild conditions.
- 2. They possess the "invariance" property.
- 3. They might be the only estimators available (i.e. other techniques we haven't seen yet don't work.)

Method of moments estimators are useful because:

- 1. They are consistent under some mild conditions.
- 2. They possess the "invariance" property.
- 3. They might be the only estimators available (i.e. other techniques we haven't seen yet don't work.)

Method of moments estimators are useful because:

- 1. They are consistent under some mild conditions.
- 2. They possess the "invariance" property.
- 3. They might be the only estimators available (i.e. other techniques we haven't seen yet don't work.)

But they are not usually the best available estimators.

a few facts about maximizing functions

Proposition 4.0: Suppose a twice-differentiable function f(x) has a critical value at x_0 , and g(x) is strictly increasing and twice-differentiable.

Then g(f(x)) also has a critical value at x_0 , and the sign of its second derivative at x_0 is the same as the sign of the second derivative of f at x_0 .

revisit estimating p from a Bernoulli(p) distribution

A Bernoulli(p) has p.m.f. usually expressed as:

$$p(x) = \begin{cases} p & : x = 1\\ 1 - p & : x = 0 \end{cases}$$

revisit estimating p from a Bernoulli(p) distribution

A Bernoulli(p) has p.m.f. usually expressed as:

$$p(x) = \begin{cases} p & : x = 1\\ 1 - p & : x = 0 \end{cases}$$

But a more concise way is:

$$p(x) = p^{x}(1-p)^{1-x}, \quad x \in \{0,1\}$$

revisit estimating p from a Bernoulli(p) distribution

A Bernoulli(p) has p.m.f. usually expressed as:

$$p(x) = \begin{cases} p & : x = 1\\ 1 - p & : x = 0 \end{cases}$$

But a more concise way is:

$$p(x) = p^{x}(1-p)^{1-x}, x \in \{0,1\}$$

Given a sample X_1, \ldots, X_n an intuitive estimator for p is $\hat{p} = \overline{X}$.

the probability of the data, given p

Now suppose n = 10 and we observe a particular sequence of 0's and 1's.

Here's a simulated sequence of 0's and 1's from a Bernoulli(p) distribution. (I know what p is, but you don't.)

```
## [1] 0 0 0 0 1 1 0 0 0 0
```

the probability of the data, given p

Now suppose n = 10 and we observe a particular sequence of 0's and 1's.

Here's a simulated sequence of 0's and 1's from a Bernoulli(p) distribution. (I know what p is, but you don't.)

The probability of getting this sample exactly is:

$$L(p) = (1-p) \cdot (1-p) \cdot (1-p) \cdot (1-p) \cdot p \cdot p \cdot (1-p) \cdot (1-p) \cdot (1-p) \cdot (1-p)$$

= $p^2 (1-p)^8$

As will often be the case, it is easier to maximize $\log L(p)$, which works due to **Proposition 4.0**.

As will often be the case, it is easier to maximize $\log L(p)$, which works due to **Proposition 4.0**.

Example 4.1: The maximum is at $\frac{2}{10}$.

As will often be the case, it is easier to maximize $\log L(p)$, which works due to **Proposition 4.0**.

Example 4.1: The maximum is at $\frac{2}{10}$.

It would have been no harder to work in general, with k 1's out of a sample of size n, and maximizing $L(p) = p^k (1-p)^{n-k}$

As will often be the case, it is easier to maximize $\log L(p)$, which works due to **Proposition 4.0**.

Example 4.1: The maximum is at $\frac{2}{10}$.

It would have been no harder to work in general, with k 1's out of a sample of size n, and maximizing $L(p) = p^k (1-p)^{n-k}$

The same calculus gives the maximum at k/n, which is what you get when you plug data into the formula \overline{X} .

the likelihood function

Given a sequence of observations $\{x_1, \ldots, x_n\}$ ("the data") from a random variable X with pmf or pdf $f(x; \theta)$, a likelihood function $L(\theta) = L(x_1, \ldots, x_n; \theta)$ for the parameter θ is defined as (for any positive g):

$$L(\theta) = L(\theta; x_1, \dots, x_n) = L(\theta; \mathbf{x}) = \prod_{i=1}^n f(x_i; \theta)$$

the likelihood function

Given a sequence of observations $\{x_1, \ldots, x_n\}$ ("the data") from a random variable X with pmf or pdf $f(x; \theta)$, a likelihood function $L(\theta) = L(x_1, \ldots, x_n; \theta)$ for the parameter θ is defined as (for any positive g):

$$L(\theta) = L(\theta; x_1, \dots, x_n) = L(\theta; \mathbf{x}) = \prod_{i=1}^n f(x_i; \theta)$$

We will tend to work with the logarithm $\ell(\theta) = \log L(\theta)$. Note that θ could be a vector.

Notes 4.2: I noticed a few notation issues in the textbook...

When X is discrete, $L(\theta)$ is literally the probability of the data that were observed.

When X is discrete, $L(\theta)$ is literally the probability of the data that were observed.

When X is continuous, $L(\theta)$ is not a probability, but it still provides what I call an "index" to compare different θ values.

When X is discrete, $L(\theta)$ is literally the probability of the data that were observed.

When X is continuous, $L(\theta)$ is not a probability, but it still provides what I call an "index" to compare different θ values.

Note 4.3: Recall (or, welcome to...) the interpretation of density f(x) as a "local" probability very near to x.

When X is discrete, $L(\theta)$ is literally the probability of the data that were observed.

When X is continuous, $L(\theta)$ is not a probability, but it still provides what I call an "index" to compare different θ values.

Note 4.3: Recall (or, welcome to...) the interpretation of density f(x) as a "local" probability very near to x.

So instead of probability, we say likelihood. It's a good shortcut to think of likelihood as ("like a") probability.

The likelihood $L(\theta)$ is a function of θ and some observed data $\mathbf{x} = x_1, \dots, x_n$, which can be thought of as a "realization" of the model for the idea of "sample", which is $\mathbf{X} = X_1, \dots, X_n$.

The likelihood $L(\theta)$ is a function of θ and some observed data $\mathbf{x} = x_1, \dots, x_n$, which can be thought of as a "realization" of the model for the idea of "sample", which is $\mathbf{X} = X_1, \dots, X_n$.

Suppose $\hat{\theta}(\mathbf{x})$ is a value of θ at which $L(\theta)$ is maximized.

The likelihood $L(\theta)$ is a function of θ and some observed data $\mathbf{x} = x_1, \dots, x_n$, which can be thought of as a "realization" of the model for the idea of "sample", which is $\mathbf{X} = X_1, \dots, X_n$.

Suppose $\hat{\theta}(\mathbf{x})$ is a value of θ at which $L(\theta)$ is maximized.

Then $\hat{\theta}(\mathbf{X})$ is a maximum likelihood estimator for θ , or MLE for short.

The likelihood $L(\theta)$ is a function of θ and some observed data $\mathbf{x} = x_1, \dots, x_n$, which can be thought of as a "realization" of the model for the idea of "sample", which is $\mathbf{X} = X_1, \dots, X_n$.

Suppose $\hat{\theta}(\mathbf{x})$ is a value of θ at which $L(\theta)$ is maximized.

Then $\hat{\theta}(\mathbf{X})$ is a maximum likelihood estimator for θ , or MLE for short.

As usual, θ can be a vector.

MLE examples

Example 4.4: Exponential with rate λ

Example 4.5: Poisson with rate λ

Example 4.6: Uniform $(0, \theta)$

Proposition 4.7: For any numbers x_1, \ldots, x_n , and a, the expression $\sum_{i=1}^{n} (x_i - a)^2$ is minimized at $a = \overline{x}$.

Example 4.8: $N(\mu, \sigma^2)$