

Лекция 1. Введение в язык программирования СИ

Перышкова Евгения Николаевна

E-mail: e.peryshkova@gmail.com

Сайт кафедры: http://csc.sibsutis.ru

Курс «Программирование» Осенний семестр, 2016

Многообразие языков программирования

На сегодняшний день существует несколько тысяч языков программирования.

Наиболее полный перечень – Bill Kinnersley – около 2500 языков http://people.ku.edy/~nkinners/LangList/Extras/langlist.htm

Около 50 наиболее популярных языков в виде исторического графа с 1954 года по наши дни:

http://www.levenez.com/lang/

Прежде, чем начать программировать

- 1. Выбрать язык программирования
- 2. Выбрать среду разработки

Виды языков программирования

- 1. Компиляторы, компилируемые языки программирования
- 2. Интерпритаторы, интерпретируемые языки программирования

Компиляция

Процесс преобразования программы (трансляция), составленной на исходном языке высокого уровня (Си, Pascal и др.), в эквивалентную программу на низкоуровневом языке, близком к машинному коду.

Интерпретация

Пооператорный анализ, обработка и тут же выполнение исходной программы или запроса.

Классификация языков программирования

Язык программирования — система синтаксических правил для написания команд, из которых состоит программа, непосредственно исполняемая на компьютере (язык низкого уровня) или исполняемая на компьютере после преобразования (трансляции) в исполняемую программу (язык высокого уровня)

C:\Program	File	s ((x86	3)\F	arz	2∖Fa	ar.e	exe						12	251		1	138	3035	52	Col	L 0
0000000000:	4D	5A	90	00	03	00	00	00	04	00	00	00	FF	FF	00	00	MZ	j 🐧	•	•	яя	
0000000010:	B8	00	00	00	00	00	00	00	40	00	00	00	00	00	00	00	ë			@		
0000000020:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00						
0000000030:	00	00	00	00	00	00	00	00	00	00	00	00	F0	00	00	00					p	
0000000040:	0E	1 F	ВА	0E	00	В4	09	CD	21	В8	01	4C	CD	21	54	68	∄V€	E,S	나아	ł!ë⊚L	H!Th	
0000000050:	69	73	20	70	72	6F	67	72	61	6D	20	63	61	6E	6E	6F	is	pr	ogi	am c	anno	
0000000060:	74	20	62	65	20	72	75	6E	20	69	6E	20	44	4F	53	20	t k	эe	rur	n in	DOS	
0000000070:	6D	6F	64	65	2E	0D	0D	0A	24	00	00	00	00	00	00	00	mod	de.	7 70	1 \$		
0000000080:	63	78	2C	1E	27	19	42	4D	27	19	42	4D	27	19	42	4D	CX,	. A 1	↓BN	1'↓BM	I'↓BM	
0000000090:	2E	61	C1	4D	26	19	42	4D	2E	61	D1	4D	32	19	42	4D	. aE	5M8	&↓BN	1. aC№	l2↓BM	
00000000A0:	27	19	43	4D	74	18	42	4D	48	6F	DC	4D	05	19	42	4D	1.10	CMt	∶†BN	иноьм	I♣↓BM	
00000000B0:	48	6F	E8	4D	93	19	42	4D	48	6F	E9	4D	E0	19	42	4D	Hoi	4M4	′↓BN	ИНойМ	la↓BM	
00000000CO:	48	6F	D9	4D	26	19	42	4D	48	6F	D8	4D	26	19	42	4D	Hol	ЦΜδ	&↓BN	1НоШМ	I&↓BM	
0000000D0:	48	6F	DF	4D	26	19	42	4D	52	69	63	68	27	19	42	4D	Ноя	3MF	&↓BN	1Rich	ı'↓BM	
00000000E0:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00						
00000000F0:	50	45	00	00	4C	01	06	00	2B	E2	49	4D	00	00	00	00	PE	L	.⊕♠	+BIM	l e	
0000000100:	00	00	00	00	E0	00	22	01	0B	01	0A	00	00	F0	10	00		a	l "@	0∂'©©	p►	

\$ od -t x1 Far.exe |head

Ни одну сложную программу в наше время никто не будет писать на языке машинного кода.

Ассемблер, который представляет собой мнемоническую запись тех же машинных команд, используется системными программистами достаточно редко.

Чаще используют небольшие **ассемблерные вставки** в код на Си или подключаются (линкуются при сборке) библиотеки функций, скомпилированных на Ассемблере.

Процесс трансляции программы с языка Ассемблера в машинный код называется ассемблированием.

Обратный процесс – дизасемблированием.

Машинный код	Ассемблер			
0E	PUSH	CS		
1F	POP	DS		
BA0E00	MOV	DX,000E		
B409	MOV	AH,09		
CD21	INT	21		
B8014C	MOV	AX,4C01		
CD21	INT	21		
54	PUSH	SP		
68	DB	68		
69	DB	69		
7320	JNB	0033		

S cat hello.asm BITS32; Говорим компилятору, что код 32-битный ; В исполняемом файле может быть различное количество секций. ; Секции обычно выделяются по содержимому: ; .text – для кода, ; .data – для данных, ; .bss – для неинициализированных данных. section .text; Начало секции кода global start; Метка start должна быть глобальной, ; чтобы линкер смог её найти и сделать точкой входа в программу. _start: mov eax,4; системный вызов «write» mov ebx,1; стандартный вывод mov ecx,msg; адрес сообщения mov edx,[msg size]; длина int 0x80; вызов прерывания mov eax,1; системный вызов ≪exit≫ xor ebx,ebx; код выхода int 0x80; вызов прерывания section .data; Начало секции данных ; Объявление переменной с сообщением msg db 'Привет',0хА ; Объявление переменной с длиной сообщения msg size dd \$-msg \$ nasm -f elf hello.asm hello.asm:1: warning: label alone on a line without a colon might be in error \$ Id -m elf_i386 -o hello hello.o \$./hello Привет

Язык высокого уровня

Разрабатывались с целью повышения производительности труда программистов за счет использования команд (операторов), использующих слова английского языка (в основном), соответствующих последовательности из многих машинных инструкций

Язык высокого уровня

```
$ cat hello.c
#include <stdio.h>
void main(void)
printf("Привет\n");
$ gcc -c hello.c
$ gcc -o hello hello.o
$./hello
Привет
```

1. Универсальные

Fortran, Cobol, Algol, C

C++, C#, Pascal, Objective-C

2. Проблемно-ориентированные

PHP, Perl, JavaScript

Lisp, Prolog, Multilisp

Процедурные языки – языки высокого уровня, в которых используется метод декомпозиции программы на отдельные связные друг с другом модули – подпрограммы (процедуры и функции)

Объектно-ориентированные языки – дальнейший уровень развития процедурных языков с основной концепцией организации программы как совокупности программных объектов. Алгоритм решения задачи представляет собой последовательность создания экземпляров описанных предварительно пользователем библиотечных объектов и использования их методов

Функциональные языки – языки искусственного интеллекта.

Последовательность функций и выражения, которые нужно вычислить.

Основная структура данных – связный список.

Логические языки – ориентированы на решение проблем без описания алгоритмов, языки искусственного интеллекта.

PROGOL – эскпертные системы

Языки сценариев или скрипты – функциональные и/или ОО языки для создания программ, исполняемых в определенной программной среде

```
$ cat while.sh
                                             $./while.sh
#!/bin/bash
                                             Wed, 09 Jan 2013 18:44:33 +0400
date -R
                                             Начинаем отсчёт.
есho "Начинаем отсчёт."
                                             5
date
i=5
while [$i -ge 1]
do
echo $i
                                            Конец.
let i=i-1
done
есһо "Конец."
```

Языки, ориентированные на данные, созданы специально для работы с

одним определенным типом данных

APL – матрицы и векторы без циклов

Snobol, Icon – обработка строк

SETL – описание операций над множествами

Языки работы с базами данных

Автоматизация работы с офисными приложениями

Алгоритмизация

Алгоритм – описание последовательности действий для решения поставленной задачи.

Интуитивное определение:

Алгоритм – точное предписание, которое задает вычислительный процесс, начинающийся с произвольного исходного данного и направленный на получение полностью определяемого этим исходным данным результата

Особенности алгоритма

- 1. Конечность
- 2. Определенность
- 3. Ввод
- 4. Вывод
- 5. Эффективность

Схема алгоритмического процесса

Математические определения алгоритма

Были разработаны 3 типа математических моделей алгоритма:

- 1. Основан на понятии рекурсивной функции
- 2. На основе описания детерминированного устройства, работающего по шагам и выполняющего на каждом шаге заранее определенные операции с элементами устройства и данными (машина Тьюринга)
- 3. Связан с работой со словами в некотором фиксированном алфавите, которые с помощью подстановок переходят в другие слова (нормальный алгоритм Маркова)

Свойства и формы описания алгоритмов

Описание алгоритма может быть представлено в виде:

- 1. Текстовой инструкции;
- 2. Графической схемы;
- 3. Программы на одном из языков программирования

Свойства и формы описания алгоритмов

Каждый алгоритм должен иметь:

- 1. Название, отражающее суть решаемой задачи,
- 2. Описание исходной информации,
- 3. Описание последовательности действий,
- 4. Описание выходной информации.

Свойства алгоритмов

- 1. Универсальность
- 2. Дискретность
- 3. Однозначность
- 4. Результативность

Основные типовые алгоритмы

- Линейный неизменная последовательность операций от его начало до конца без повторов действий;
- **2. Разветвляющийся** последовательность выполняемых действий может изменяться в зависимости от каких-либо условий;
- **3. Циклический** группа операций, которые могут повторяться многократно, кратность повтора определяется некоторым условием.

Принципы фон Неймана

- 1. Использование **двоичной системы счисления** в вычислительных машинах. **Цель**: технически реализовать устройства хранения информации в двоичной системе счисления существенно проще, чем в устройства, основанные на десятичной системе. Также проще реализовать выполнение арифметических и логических операций.
- 2. Программное управление ЭВМ. Работа ЭВМ контролируется программой, состоящей из набора команд. *Команды выполняются последовательно друг за другом*. Цель: вычислительное устройство становится универсальным и может решать широкий круг задач, так как их программа может быть изменена.

Принципы фон Неймана

- **3. Память** компьютера **используется** не только **для хранения данных**, но **и программ**. Команды и данные кодируются в двоичной системе счисления, поэтому для их хранения может использоваться одно устройство. **Цель:** в определенных ситуациях над командами можно выполнять те же действия, что и над данными (изменять их!).
- **4. Ячейки памяти ЭВМ имеют адреса**, которые последовательно пронумерованы. **Цель:** возможность обращения к произвольным ячейкам памяти в любой момент времени. Данный принцип открыл возможность использовать переменные в программировании.

Принципы фон Неймана

5. Возможность условного перехода в процессе выполнения программы. Цель: обеспечить управление процессом вычислений. Не смотря на то, что команды выполняются последовательно, в программах можно реализовать возможность перехода к любому участку кода. Таким образом, входные данные могут влиять на ход выполнения программы. Данный принцип используется при организации ветвлений и циклов в программировании.

Ячейка памяти (элементная база)

Элементная база

Ферромагнетики

Два устойчивых состояния!

Ячейка памяти (логическое представление)

- Логическое представление ячейки не зависит от физических компонентов, использованных для ее изготовления.
- Ячейка рассматривается как набор двоичных разрядов, которые объединяются в группы из 8 штук, образующие байт.

Двоичная система счисления

Цифры двоичной CC: 0, 1

x_{10}	x_2
0	x_2
1	1
2	10
3	11
4	100
5	101
6	110
7	111

$$4_{10} = 3_{10} + 1 = 11_2 + 1 = 100_2$$

x_{10}	x_2
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

Шестнадцатеричная система счисления

Шестнадцатеричная система счисления (шестнадцатеричные числа) – позиционная система счисления по целочисленному основанию 16.

В качестве шестнадцатеричных цифр используются десятичные цифры от 0 до 9 и латинские буквы от A до F для обозначения цифр от 10_{10} до 15_{10} : **0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F**.

Широко используется в низкоуровневом программировании и компьютерной документации. Минимальная единица памяти (8-битный байт) можно записать двумя шестнадцатеричными цифрами. Такое использование началось с системы IBM/360.

- В математике основание системы счисления принято указывать в десятичной системе в нижнем индексе. Например, десятичное число 1443 можно записать как 1443₁₀ или как 5А3₁₆.
- В Си и языках схожего синтаксиса, например, в Java, используют префикс «**0x**». Например, «**0x5A3**».

Шестнадцатеричная система счисления

Двоичная и шестнадцатеричная СС являются родственными, т.к. $16 = 2^4$ (основание одной является степенью основания другой)

x_2	<i>x</i> ₁₀	<i>x</i> ₁₆
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7

x_2	<i>x</i> ₁₀	<i>x</i> ₁₆
1000	8	8
1001	9	9
1010	10	A
1011	11	В
1100	12	С
1101	13	D
1110	14	Е
1111	15	F

Связь двоичной и шестнадцатеричной СС

x_2	x_{10}	x_{16}
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7

x_2	x_{10}	<i>x</i> ₁₆
10000	16	10
10001	17	11
10010	18	12
10011	19	13
10100	20	14
10101	21	15
10110	22	16
10111	23	17

Перевод $x_2 \rightarrow x_{16}$

x_2	<i>x</i> ₁₆
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7

x_2	<i>x</i> ₁₆
1000	8
1001	9
1010	A
1011	В
1100	C
1101	D
1110	Е
1111	F

Для перевода из двоичной СС в шестнадцатеричную достаточно разбить x_2 на 4-хразрядные блоки и перевести каждый из них по отдельности: $11011010101_2 = 0110\ 1101\ 0101_2 = 6D5_{16}$

Перевод $x_2 \rightarrow x_{16}$ T01.1

$10011_2 = \mathbf{x}_{16}$
$1000000_2 = x_{16}$
$01010101_2 = \mathbf{x}_{16}$
$11111111_2 = x_{16}$
$10010010_2 = x_{16}$
$1010010010_2 = x_{16}$

x_2	<i>x</i> ₁₆
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7

x_2	<i>x</i> ₁₆
1000	8
1001	9
1010	A
1011	В
1100	C
1101	D
1110	Е
1111	F

Перевод $X_{16} \rightarrow X_2$

x_2	<i>x</i> ₁₆
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7

x_2	<i>x</i> ₁₆
1000	8
1001	9
1010	A
1011	В
1100	С
1101	D
1110	Е
1111	F

Для перевода из шестнадцатеричной СС в двоичную необходимо каждый разряд шестнадцатеричного числа представить 4-хразрядным двоичным числом:

2F8₁₆ = 0010 1111 1000₂

Перевод $x_{16} \to x_2 \text{ TO 1.2}$

$1A_{16} = x_2$	
$10_{16} = x_2$	
$211_{16} = x_2$	
$BEEF_{16} = x$	2
$ABC_{16} = x_2$	
$2A3B_{16} = x$	

x_2	<i>x</i> ₁₆
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7

x_2	<i>x</i> ₁₆
1000	8
1001	9
1010	A
1011	В
1100	C
1101	D
1110	Е
1111	F

Восьмеричная СС ТО1.3

По аналогии с шестнадцатеричной СС предложите алгоритм перевода $x_8 \to x_2$ и $x_2 \to x_8$. С помощью предложенного алгоритма проведите преобразования:

$$10011_2 = x_8$$
 $14_8 = x_2$ $1000000_2 = x_8$ $181_8 = x_2$ $547_8 = x_2$ $11111111_2 = x_8$ $10010010_2 = x_8$ $1234_8 = x_2$ $1010010010_2 = x_8$ $756_8 = x_2$

Системы счисления в языке Си

Для обозначения констант в десятичной системе счисления используется привычная запись:

26

Для обозначения восьмеричных к константе добавляется префикс "0":

$$26 = 032 (32_8)$$

Для обозначения шестнадцатеричных чисел к константе добавляется префикс "0x", **x** - **heXadecimal**:

$$26 = 0x1A (1A_{16})$$

Цель ВС – обработка информации

