

PROBABILIDADE E ESTATÍSTICA

Prof^o Agnaldo Cieslak

PLANO DE ENSINO

Postado no moodle.

```
Tópico 1 - "Boas Vindas"
Tópico 2 - Planejamento semanal + Plano de Ensino + Cronograma das aulas
Tópico 3 - Fórum de Discussão ou Fórum de Dúvidas
Tópico 4 – aulas
              aulas
              gravação das aulas
              resumo da aula
              atividade a ser feita
Tópico 5 – Materiais complementares
              material de apoio
```

HORÁRIO:

ANÁLISE E DESENVOLVIMENTO DE SISTEMAS EN ACCESA DE SENVOLVIMENTO DE SISTEMA SENACIONA DE SIST

PROBABILIDADE E ESTATÍSTICA

CONTEXTUALIZAÇÃO DA UNIDADE CURRICULAR

Todo o processo computacional demanda conhecer as ferramentas estatísticas e de probabilidade para seu desenvolvimento. Os estudos requerem o uso das ferramentas estatísticas de modo adequado, fornecendo insumos importantes para a tomada de decisão, principalmente na análise dos fluxos computacionais. A manipulação de base de dados para fornecimento de serviços via sistemas requer invariavelmente análises estatísticas dos dados para que o serviço seja oferecido de forma consistente para atender ao mercado.

Nesta UNIDADE CURRICULAR avaliaremos o:

- ✓ Resolver problemas utilizando as ferramentas estatísticas.
- ✓ Aplicar as técnicas de tratamento estatístico de dados e informações importantes para o processo de tomada de decisão.

Processo de Avaliação

A avaliação do desempenho do estudante será feita por Unidade Curricular

Considera-se aprovado na Unidade Curricular, o estudante que tiver comparecido a pelo menos 75% (setenta e cinco por cento) das aulas e tiver obtido o conceito Suficiente na unidade curricular/disciplina.

O que é Projeto Integrador?

Metodologia que proporciona a interdisciplinaridade entre todos os temas abordados durante o módulo, promovendo:

- ✓ Articulação dos conhecimentos;
- ✓ Interdisciplinaridade e contextualização;
- ✓ Trabalho em equipe e interação entre docente x alunos, docente x docente, mundo do trabalho x docentes e alunos;
- ✓ Incentivar criatividade, iniciativa, inovação e colaboração.
- ✓ Desenvolvimento do Domínio técnico-científico, Visão crítica , Atitude empreendedora, Atitude sustentável, Atitude colaborativa;
 - ✓ Atuação com foco em resultados.

ÓTIMO

Desempenho supera com excelência a performance requerida.

BOM

Desempenho supera a performance requerida.

SUFICIENTE

Desempenho atende a performance requerida.

INSUFICIENTE

Desempenho não atende a performance requerida.

Recuperação

A recuperação acontecerá durante a execução de cada Unidade Curricular, realizada pelo Professor, imediatamente após a identificação das dificuldades de aprendizagem do estudante.

A recuperação será contínua, no decorrer do processo.

Recuperação

Considera-se aprovado, após a recuperação, o estudante que obtiver o conceito mínimo (Suficiente), ou seja, idêntico ao exigido para aprovação direta.

As atividades de recuperação serão organizadas individualmente ou em grupos em torno das competências em que o desempenho foi considerado inferior ao requerido para a aprovação direta.

Revisão de conceito e frequência

Os estudantes podem solicitar revisão de conceito e frequência via Requerimento Web e a coordenação pedagógica analisará cada caso junto à coordenação de curso.

Atendimento em Regime especial

Esse atendimento acontecerá nos seguintes casos:

- ✓ Alunas grávidas, a partir do 8º mês de gestação, durante três meses (Lei Federal nº 6.202/75);
- ✓ Portadores de problemas de saúde previstos no Decreto-Lei Federal nº 1.044/69;

Atenção!

A solicitação para o atendimento em regime especial, bem como a apresentação de documentos comprobatórios, deve ser feita no prazo de cinco dias úteis, a contar do primeiro dia de afastamento, via <u>Requerimento Web</u>. O regime especial não é concedido com efeito retroativo e não abona falta. Não haverá aplicação do regime especial para atividades práticas e de estágios.

ANÁLISE E DESENVOLVIMENTO DE SISTEMAS

Acordos:

- Tarefas terão prazos de entrega de 1 semana(conceito máximo), ficarão abertas para postagem atrasada no limite de + 1 semana;
- Ferramentas adicionais usadas:
 - Kahoot, padlet, edupulses, socrative
- As aulas (ppt) serão postadas, as atividades ficarão nas pastas das aulas.

Metas

Competências:

- ✓ Resolver problemas utilizando as ferramentas estatísticas.
- ✓ Aplicar as técnicas de tratamento estatístico de dados e informações importantes para o processo de tomada de decisão.

Ementa

Bases tecnológicas (conteúdos):

- ✓ Conceito de estatística;
- ✓ População e Amostra;
- ✓ Estatística indutiva (inferencial) e dedutiva (descritiva);
- ✓ Dados estatísticos;
- ✓ Método estatístico e suas fases(coleta, crítica, apuração, exposição e análise);
- ✓ Técnicas de amostragem: aleatória, estratificada e sistemática;
- ✓ Representação gráfica, aplicação e traçado;
- ✓ Distribuição de frequências;
- ✓ Medidas de posição;
- ✓ Probabilidade condicional;
- ✓ Intervalos de Confiança;
- ✓ Testes de Hipótese.
- ✓ (Introdução a redes Bayesianas e modelo de Markov (estocástico))

Acordos

Trabalhos:

Seguir norma ABNT de apresentação de trabalhos acadêmicos, quando solicitado.

Comunicação:

Via plataforma e whatsup se precisarem.

Avaliação:

tarefas entregues, participação nas tarefas e aulas, resolução da avaliação

Ciclo 1: a marcar Ciclo 2: a marcar

Recuperação ao longo do período.

Acordos

Bibliografia Básica:

- •COSTA, Giovani Glaucio de Oliveira. **Estatística aplicada à informática e às suas novas tecnologias**. v. 2. Rio de Janeiro: Ciência Moderna, 2015.
- •SILVA, Alecir. Estatística aplicada. Rio de Janeiro: Ciência Moderna, 2016.
- •SPIEGEL, Murray R.; SCHILLER, John J.; SRINIVASAN, R. Alu. **Probabilidade e estatística**. 3. ed. Porta Alegre: Bookman: 2013.

Bibliografia Complementar:

- •COSTA, Giovani Glaucio de Oliveira. **Curso de estatística básica**: teoria e prática. 2. ed. Editora Atlas 2015.
- PINHEIRO, João Ismael; CUNHA, Sonia Baptista da. **Estatística básica**: a arte de trabalhar com dados. 2. ed. São Paulo: Campus, 2008.
- •COSTA, Giovani Glaucio de Oliveira. **Curso de estatística inferencial e probabilidades**: teoria e prática. São Paulo: Atlas, 2012.
- •MEYER, Paul L. **Probabilidade: aplicações à estatística**. Rio de Janeiro: LTC, 2009.
- •ROSS, Sheldon. **Probabilidade**: um curso moderno com aplicações. 8. ed. Porto Alegre: Bookman, 2010.

Estatística

Qual sua faixa de idade? O que você entende por estatística?

Estatística

O que você entende por estatística?

Coleção de métodos para planejamento de experimento, obtenção de dados e, consequente:

- ✓ organização,
- ✓ análise,
- √ interpretação e
- ✓ elaboração de conclusões

baseadas nos dados.

Estatística - história

Império Romano -> Censo Romano -> Censo -> Censere -> Taxar

Estatística -> Status -> Estado Século XVII

> Em 1662:

Observações sobre os Censos de Mortalidade, de John Graunt – marco inicial da estatística;

- Primeiras aplicações necessidades do Estado
 - Demografia e economia
- Fundamentos matemáticos foram introduzidos
 - Teoria da probabilidade (Blaise Pascall e Pierre de Fermat)

Século XVIII

Godofredo ACHENWALL, estudo de como tirar conclusão sobre o todo, observando parte dele.

- O símbolo X_j representa qualquer um dos "N" valores, X₁, X₂, X₃,..., X_N, assumidos pela variável X
- O símbolo é a legra grega maiúscula sigma, que indica soma.
- O símbolo $\sum_{j=1}^{N} X_j$ é usado para representar a soma de todos os X_i desde j=1 até j=N, isto é:

•
$$\sum_{j=1}^{N} X_j = X_1 + X_2 + X_3 + ... + X_N$$

 Pode-se indicar a soma de um modo mais simples, da seguinte forma:

$$\sum X$$
, $\sum X_j$ $\sum_j X_j$

As principais representações são:

1)
$$\sum_{i=1}^{n} X_i = X_1 + X_2 + \cdots + X_n$$
, soma simples

2)
$$\sum_{i=1}^{n} X_i^2 = X_1^2 + X_2^2 + \dots + X_n^2$$
, soma de quadrados (SQ)

3)
$$(\sum_{i=1}^{n} X_i)^2 = (X_1 + X_2 + \dots + X_n)^2$$
, quadrado da soma

4)
$$\sum_{i=1}^{n} X_{i}Y_{i} = X_{1}Y_{1} + X_{2}Y_{2} + \cdots + X_{n}Y_{n}$$
, soma de produtos (SP)

5)
$$\sum_{i=1}^{n} X_i \sum_{j=1}^{m} Y_j = (X_1 + X_2 + \dots + X_n).(Y_1 + Y_2 + \dots + Y_m)$$
, produto das somas

Lê-se $\sum_{i=1}^{n} X_i$ como: somatório de X índice i, com i variando de 1 até n, onde:

n, é a ordem da última parcela ou limite superior (LS) do somatório;
i=1, é a ordem da primeira parcela da soma ou limite inferior do somatório (LI);
i, é o índice que está indexando os valores da variável X (outras letras como j, l, k podem ser utilizadas).

Considere as variáveis X e Y que representam, respectivamente, as notas de duas disciplinas, para um grupo de 6 alunos.

$$X = \{90, 95, 97, 98, 100, 60\}$$

 $Y = \{60, 70, 80, 60, 90, 75\}$

Verifique se os seguintes somatórios fornecem as respostas conforme apresentado.

a)
$$\sum_{i=1}^{6} X_{i} =$$
b) $\sum_{i=1}^{6} X_{i}^{2} =$
c) $\left(\sum_{i=1}^{6} X_{i}\right)^{2} =$
d) $\sum_{i=1}^{6} X_{i}Y_{i} =$
e) $\left(\sum_{i=1}^{6} X_{i}\right)\left(\sum_{i=1}^{6} Y_{i}\right) =$

Considere as variáveis X e Y que representam, respectivamente, as notas de duas disciplinas, para um grupo de 6 alunos.

$$X = \{90, 95, 97, 98, 100, 60\}$$

 $Y = \{60, 70, 80, 60, 90, 75\}$

Verifique se os seguintes somatórios fornecem as respostas conforme apresentado.

a)
$$\sum_{i=1}^{6} X_i = 540$$
 b) $\sum_{i=1}^{6} X_i^2 = 49738$ c) $\left(\sum_{i=1}^{6} X_i\right)^2 = 291600$ d) $\sum_{i=1}^{6} X_i Y_i = 39190$ e) $\left(\sum_{i=1}^{6} X_i\right) \left(\sum_{i=1}^{6} Y_i\right) = 234900$

senac rio Somatório

- Exemplo prático:
- 1-Uma variável X assume os seguintes valores $X_1 = 2$, $X_2 = -5$, $X_3 = 4$ e $X_4 = -8$.

Calcule
$$\sum_{j=1}^{N} X_{j}$$

2- Uma variável Z assume os seguintes valores Z₁ =4, Z₂ = 12, Z₃ =-5, Z₄ = -4 e Z₅ = 10. Calcule $\sum_{j=1}^{4} Z_j$

Somatório quando há duas variáveis:

$$\sum_{j=1}^{N} X_{j} Y_{j} = X_{1}Y_{1} + X_{2}Y_{2} + ... + X_{N}Y_{N}$$

 Somatório quando há uma constante, no exemplo abaixo a constante é o "a".

•
$$\sum_{j=1}^{N} aX_{j} = aX_{1} + aX_{2} + ... + aX_{N} = a(X_{1} + X_{2} + ... + X_{N}) = a\sum_{j=1}^{N} X_{j}$$

• Se a, b, c, são constantes quaisquer, então:

$$\sum (aX + bY - cZ) = a\sum X + b\sum Y - c\sum Z$$

• As constantes a, b e c tem os seguintes valores 2, 4 e 7 respectivamente. A variável X assume os seguintes valores $X_1 = 2$, $X_2 = 5$, $X_3 = 4$, a variável Y assume os seguintes valores $Y_1 = 3$, $Y_2 = 8$, $Y_3 = 11$ e a variável Z assume os que seguem $Z_1 = 5$, $Z_2 = 9$, $Z_3 = 6$. Calcule

$$\sum (aX + bY - cZ)$$

Pesquisa de percepção

app.edupulses.io

PIN: 14845

Caso 1:

• Numa empresa quer se saber qual o lucro de vendas do produto X, esse produto tem cinco possíveis modelos de vendas uma vez que o cliente pode escolher a sua cor preferida num mix de cinco cores disponíveis, sabendo que foram vendidas 5 unidades do modelo X1, 3 unidades do modelo X2, 15 unidades do modelo X3 e 25 unidades do modelo X4 e 40 unidades do modelo X5. Usando de seu conhecimento prévio e sabendo que cada produto tem um lucro respectivo de R\$19,80, R\$10,20, R\$5,00, R\$22,30 e R\$1,00. Qual foi o lucro total que a empresa obteve?

Noções de somatório

 Em 2003 o lucro com a venda de uma garrafa de cerveja era de R\$ 0,90, em 2004 de R\$ 0,92, em 2005 prejuízo de R\$ 0,93 e em 2006 prejuízo de R\$ 0,91. Dessa maneira, usando o seu conhecimento prévio de noções de somatório, calcule o lucro total que essa empresa de bebidas obteve ao longo destes quatro anos. R:

	2003	2004	2005	2006
	(milhão de garrafas)	(milhão de garrafas)	(milhão de garrafas)	(milhão de garrafas)
Janeiro	53	74,4	52,4	70,2
Fevereiro	53,4	82,7	87,5	82,5
Março	95,4	55,3	71,4	51,1
Abril	53,5	69,5	85,8	64,3
Maio	72,3	54,1	69,1	59,5
Junho	70,2	55,7	50,7	84,3
Julho	82,5	78,5	53	67,3
Agosto	51,1	73	53,4	69,5
Setembro	64,3	77,8	95,4	54,1
Outubro	59,5	70,5	53,5	55,7
Novembro	84,3	63,5	72,3	78,5
Dezembro	67,3	55,7	82,5	73

Prática

a) Cinco funcionários de um mercado recebem os seguintes salários: R\$ 1.000,R\$ 1.250,R\$ 1.500,R\$ 1.750 e R\$ 2.000. O chefe propõe dobrar seus salários quando o faturamento do escritório aumentar em 50%. Quando a meta for alcançada, quanto o chefe passará a desembolsar por essa equipe?

a) Cinco funcionários de uma fábrica de bolas de futebol recebem os seguintes salários: R\$ 1.500,R\$ 2.000,R\$ 2.500,R\$ 3.000 e R\$ 3.500. O chefe propõe um bônus de R\$ 1.000, para cada funcionário, nos meses em que houver um aumento de produção acima de 10%. Nos meses em que a meta for alcançada, quanto o chefe pagará a essa equipe?

Para próxima aula

- ✓ Ler artigo postado na aula 2-20
- ✓ Resolver tarefa 1 postado na aula 2.