Graph-based Virtual Data Integration

Oscar Romero
Facultat d'Informàtica de Barcelona
Universitat Politècnica de Catalunya

Data Integration

Data integration is an area of study within data management aimed at facilitating transparent access to a variety of heterogeneous data sources

- Two main options to perform data integration:
 - Physical data integration
 - Virtual data integration

In this course we will focus on using graphs to solve data integration

Graph-Based Data Integration at a Glance

Option 1: Physical Data Integration

Graph-Based Data Integration at a Glance

Option 2: Virtual Data Integration

Why Virtual Data Integration?

- When the data sources are not under your control and owners require a federation (e.g., data exchange between companies)
 - E.g., Data Portability
- When we do not want to move the data from where it resides
 - For example, key-based models are more performant than graph models for table scans
- When data freshness is crucial
 - ETLs run from time to time and the period between updates is called the update window
- Virtual data integration is simpler to maintain (most of the work resides on the rewriting algorithm)

Why Virtual Data Integration?

- Virtual Integration is very trendy in Data Science because we can use graph-based models to perform rich and complex data integration while benefitting from sequential reads when querying the data (which can reside in the most appropriate data storage)
- Many Big Data Integration systems work under this assumption
 - Data Tamer (<u>https://www.tamr.com/</u>)
 - The BigDAWG Polystore System (https://dl.acm.org/citation.cfm?id=3226620)
 - Ontop (http://ontop.inf.unibz.it/)
 - ODIN (http://www.essi.upc.edu/~snadal/odin.html)

Two Main Approaches

- Ontology-based data access
 - Monolithic approach
 - The TBox is directly related to the sources via mappings
- Ontology-mediated queries
 - Relies on the concept of wrapper
 - Thus, we can select a subset of the data source to be exposed to the whole integration System
 - Security
 - Modularity
 - It allows pay-as-you-go data Integration
 - The integrated schema is built incrementally as new data sources arrive

GAV Data Integration

ONTOLOGY-BASED DATA ACCESS

Ontology-Based Data Access

Ontology-mediated data access

An Approach for Data Integration

The DL-Lite Family

- Right trade-off between expressiveness and data complexity query answering
 - PTime in the size of the TBOX
 - LogSpace in the size of the ABOX
- Two maximal DLs satisfying this trade-off
 - DL-Lite_F
 - DL-Lite_R

Remember the DL-Lite family maps to **OWL 2 QL**

DL-Lite_F

TBox assertions:

• Concept inclusion assertions: $Cl \subseteq Cr$, with:

• Functionality assertions: (funct Q)

ABox assertions: A(c), $P(c_1, c_2)$, with c_1 , c_2 constants

Observations:

- Captures all the basic constructs of UML Class Diagrams and ER
- Notable exception: covering constraints in generalizations.

Semantics of DL-Lite

It basically captures the expressivity of a UML class diagram

ISA between classes	$A_1 \sqsubseteq A_2$	
Disjointness between classes	$A_1 \sqsubseteq \neg A_2$	
Domain and range of relations	$\exists P \sqsubseteq A_1$	$\exists P^- \sqsubseteq A_2$
Mandatory participation	$A_1 \sqsubseteq \exists P$	$A_2 \sqsubseteq \exists P^-$
Functionality of relations (in DL - $Lite_{\mathcal{F}}$)	(funct $P)$	$({\bf funct}\; P^-)$
ISA between relations (in DL - $Lite_{\mathcal{R}}$)	$Q_1 \sqsubseteq Q_2$	
Disjointness between relations (in DL - $Lite_{\mathcal{R}}$)	$Q \sqsubseteq \neg Q$	

Construct	Syntax	Example	Semantics
atomic conc.	A	Doctor	$A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
exist. restr.	$\exists Q$	∃child [—]	$\{d \mid \exists e. (d, e) \in Q^{\mathcal{I}}\}$
at. conc. neg.	$\neg A$	$\neg Doctor$	$\Delta^{\mathcal{I}} \setminus A^{\mathcal{I}}$
conc. neg.	$\neg \exists Q$	¬∃child	$\Delta^{\mathcal{I}} \setminus (\exists Q)^{\mathcal{I}}$
atomic role	P	child	$P^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
inverse role	P^-	child ⁻	$\{(o,o')\mid (o',o)\in P^{\mathcal{I}}\}$
role negation	$\neg Q$	¬manages	$(\Delta_O^{\mathcal{I}} \times \Delta_O^{\mathcal{I}}) \setminus Q^{\mathcal{I}}$
conc. incl.	$Cl \sqsubseteq Cr$	Father ⊑ ∃child	$Cl^{\mathcal{I}} \subseteq Cr^{\mathcal{I}}$
role incl.	$Q \sqsubseteq R$	$hasFather \sqsubseteq child$	$Q^{\mathcal{I}} \subseteq R^{\mathcal{I}}$
funct. asser.	$(\mathbf{funct}\ Q)$	(funct succ)	$\forall d, e, e'. (d, e) \in Q^{\mathcal{I}} \land (d, e') \in Q^{\mathcal{I}} \rightarrow e = e'$
mem. asser.	A(c)	Father(bob)	$c^{\mathcal{I}} \in A^{\mathcal{I}}$
mem. asser.	$P(c_1, c_2)$	child(bob, ann)	$(c_1^{\mathcal{I}}, c_2^{\mathcal{I}}) \in P^{\mathcal{I}}$

Linking Data to Ontologies

- The ABOX is stored in a relational database
 - OBDA has recently been extended to other kind of sources, like document-stores
- Direct mappings between the TBOX and DB
 - Query answering is reformulated in terms of the TBOX, a set of mappings and a RDBMS

Theorem

Query answering in a DL-Lite $_A$ OBDM system $\mathcal{O} = \langle \mathcal{T}, \mathcal{M}, \mathcal{D} \rangle$ is

- NP-complete in the size of the query.
- **2** PTIME in the size of the TBox \mathcal{T} and the mappings \mathcal{M} .
- **3** LogSpace in the size of the database \mathcal{D} .

Mappings

- OBDA works with GAV mappings
- Typically, they use RDF-based mapping languages to express them
 - R2RML (a language to express mappings from global concepts to relational databases)

```
mappingId Actor
target imdb:name/{person_id} a dbpedia:Actor .
source select person id from cast info where cast info.role id = 1
```

RML is a generalisation to map to any kind of source (http://rml.io/)

A Tool for OBDA

- Ontop: http://ontop.inf.unibz.it/
 - OWL 2 QL
 - RDFS

Code, examples and more:

https://github.com/ontop/ontop

LAV Data Integration

ONTOLOGY-MEDIATED QUERIES

OMQ

- It is a family of systems performing graphbased data integration with LAV
 - Conceptually, GAV is also possible
- Based on the well-known wrappermediator architecture
- To make the querying rewriting feasible, they adopt several measures:
 - Exact mappings (i.e., Closed-World assumption)
 - Very basic reasoning capabilities (taxonomies and domain / range inference)

Ontology-mediated Query

Virtual integration with LAV mappings

Big Data Integration Ontology

- We revisit the Data Integration framework and construct an ontology as follows:
 - Global level (G) Integrated view
 - Source levels (S) Views on the data sources (wrappers)
 - Mappings (M) LAV mappings between G and S
- Example:
 - Cross-domain queries on:
 - Monitored data on video players (lag ratio, etc.)
 - Tweets in English gathered through a feedback gathering tool

Wrappers

- They represent a view on the source
- You can think of a <u>named</u> query over the source. For example:

W1: SELECT a, b, c FROM T

- Typical assumptions made by wrappers:
 - They expose the source in **tabular format** (1NF)
 - Thus, Cypher, SPARQL or MongoDB's aggregation framework would also meet the requirements
 - In general, most query languages produce tabular format
 - A data source may generate several wrappers
 - Typically, new versions of data are considered new wrappers

Global Level

- ☐ Green: concepts
- Yellow: attributes

- Sources are exposed by means of wrappers
 - We automatically bootstrap the attributes projected by the wrappers

Red: Wrappers; Blue: Wrapper attributes

- Mappings
- A LAV mapping for a wrapper Q is defined as: $M = \langle G, S \rangle$ where:
 - G is a named graph
 - S is a set of triples of the form:
 - <x, owl:sameAs, y>, where
 - <x, rdf:type, S:Attribute> and
 - < < y, rdf:type, G:Feature>

LAV Mapping Example

LAV Mappings (Q1)

LAV Mappings (Q3)

LAV Mappings (Q2)

Query Answering – Rewriting Algorithm

- Any SPARQL query on the global graph must be rewritten as a query in terms of the wrappers
- Example of query over G:

SPARQL Query:

```
SELECT ?w,?t WHERE

?t rdf:type sup:lagRatio
?x G:hasFeature ?t
?x rdf:type sup:InfoMonitor
?y sup:generatesQoS ?x
?y rdf:type sup:VoDMonitor
?z sup:hasMonitor ?y
?z rdf:type sc:SoftwareApp
?z G:hasFeature ?w
?w rdf:type sup:idSoftwareApp
FILTER ?w = "SUPERSEDE"
```


Notions on the Query Rewriting Alg.

Start from a Terminal Feature

Navigate G from the Feature

Navigate G from the Feature

Navigate G from the Feature

Explore Join Candidates

Join to an Alternative Wrapper

Continue Navigating G

Computational Complexity

- This query rewriting algorithm is:
 - Linear in the size of the subgraph of *G* to navigate
 - Linear in the size of the wrappers mappings
 - Exponential in the number of wrappers that may join
 - Our experiments show that typically Big Data sources have few join points and therefore this exponential complexity is affordable in real cases

Example of application: The World Health Organisation

Standardisation

- Data has been organized into 4 packages
 - **Healthcare**: to collect patient data
 - Vector control: to collect data on vector control activities
 - Health system: to collect general information on how NTDs are included in the national health systems
 - Normative: to collect information about regulations implemented in to country in order to control and eliminate NTDs

Standardisation

WISCENTD provides a single standardised view of the whole domain

WISCENTD provides a graph-based metaphor representing the domain:

- Concepts
- Data elements of each concept (and their datatypes)
- Relationships between concepts

Master Data: Geographic and Temporal Components

Coordinates

Timestamps

Polygons

LOCATION

Time periods

^	August 2013					~	^	September 2013						
Su	Мо	Tu	We	Th	Fr	Sa	Su	Mo	Tu	We	Th	Fr		
				1	2	3	25	26	27	28	29	30	3	
4	5	6	7	8	9	10	1	2	3	4	5	6	7	
11	12	13	14	15	16	17	8	9	10	11	12	13	14	
18	19	20	21	22	23	24	15	16	17	18	19	20	2	
	26	27	28	29	30	31	22	23	24	25	26	27	2	
1	2	3	4	s	6	7	29	30						
	Tuesday, August 13, 2013							Tuesday, August 13, 2013						

TIME

Master data:

geographical and temporal components

Master data:

geographical and temporal components

WIMEDS:

medicament request and distribution

Master data:

geographical and temporal components

WIMEDS:

medicament request and distribution

WIDP:

diagnosis and treatment

UN Data:

Health
economics
(two sources:
population and
immigration
data)

Master data:

geographical and temporal components

WIMEDS:

medicament request and distribution

WIDP:

diagnosis and treatment

"I would like to correlate the number of treatments with the population and number of immigrants of a specific greographical area per year"

Find this video in Learn-SQL (video 1)

"I would like to correlate the number of treatments with the number of medicines distributed in a specific greographical area per year.

This information should also include the population and the number of immigrants of that area"

Find this video in Learn-SQL (video 2)

Management: Extending the Ontology

My new data source contains data elements not covered by the attributes of the standardised model. How do I extend it? Find this video in Learn-SQL (video 3)

- My data source contains data that is not covered in the attributes of the standardised model. How do I extend it?
- Great! Now, I want to register a new source providing such data

Find this video in Learn-SQL (video 4)

Management: Querying a New Source

- My data source contains data that is not covered in the attributes of the standardised model. How do I extend it?
- Great! Now, I want to register a new source providing such data
- Good! Now "I would like to see the medicine distribution per medicine sender, per year and geographical area"

Find this video in Learn-SQL (video 5)

A Tool for OMQ

ODIN:

http://www.essi.upc.edu/~snadal/odin.html

- RDFS / OWL (but limited reasoning)
- LAV mappings
- Pay-as-you-go data integration

Oscar Romero 63

Summary

- Graph-based Virtual Data Integration
- Ontology-based Data Access
 - DL-Lite
 - GAV mappings
 - Linking Data to Ontologies
- Ontology-mediated Queries
 - RDFS
 - LAV mappings
 - Sources exposed as wrappers

Oscar Romero 64