Erweiterungen des R-Baums für räumliche Datenbankanfragen

Der R*-Baum

Patrick Schulz & Simon Hötten

Seminar Geodatenbanken
Dozent: Prof. Dr.-Ing. Jan-Henrik Haunert
Institut für Geoinformatik und Fernerkundung
Universität Osnabrück
Sommersemester 2015

Schlüsselwörter: Geodatenbanken, R*, Spatial Access

1 Motivation

Herkömmliche eindimensionale Indexstrukturen bieten keine Möglichkeiten, mehrdimensionale räumliche Daten effizient zu durchsuchen. Die Reduzierung auf Punkte, um Objekte mit Point access methods (PAM) abzufragen, ist mit gewissen Einbußen möglich, aber insbesondere für komplexere Anfragen unzureichend. Der 1984 von Guttman entwickelte R-Baum (Guttman, 1984) versucht dieses Problem zu lösen, in dem der Index direkt auf den räumlichen Eigenschaften basiert. Mittlerweile existieren unzählige Varianten und Verwandte des R-Baums, dessen Einsatzgebiet weit über die klassische Geoinformatik hinaus geht.

Eine dieser Varianten ist der R*-Baum, welcher die (teils unbegründeten) Annahmen in der ursprünglichen Veröffentlichung hinterfragt und so die Datenstruktur weiter optimiert. Im Folgenden gehen wir auf die Verfahren und Eigenheiten des regulären R-, als auch des R*-Baums ein, stellen allgemeine Optimierungskriterien auf und schließen mit einem Vergleich.

2 Prinzipien eines R-Baums

3 Optimierungskriterien

Bei dem herkömmlichen R-Baum wird, sowohl beim Hinzufügen neuer Elemente als auch beim Split, lediglich die Fläche der umschließenden Rechtecke minimiert (vgl. ebd., S. 50-51). Einige der daraus resultierenden Probleme wurden bereits im vorherigen Abschnitt dargelegt. Im Folgenden werden weitere mögliche Optimierungen und ihre Wechselwirkungen aufgeführt.

Flächenausnutzung maximieren

Die Fläche, welche von dem umschließenden Rechteck, aber nicht von den in ihm enthaltenen Rechtecken, überdeckt wird, soll minimiert werden. Es soll also möglichst wenig Platz "verschwendet" werden.

2 Patrick Schulz & Simon Hötten

$\ddot{\mathbf{U}}\mathbf{berlappung\ minimieren}$

Die Überlappung der umschließenden Rechtecke soll minimiert werden.

- 4 Der R*-Baum
- 5 Fazit

Anhang

Abkürzungsverzeichnis

SAM Spatial access methods **PAM** Point access methods

MBR Minimum bounding Rectangle

Literatur

Beckmann, Norbert, Hans-Peter Kriegel, Ralf Schneider und Bernhard Seeger (1990). "The R*-tree: An Efficient and Robust Access Method for Points and Rectangles". In: *Proceedings of the 1990 ACM SIGMOD International Conference on Management of Data.* SIGMOD '90. Atlantic City, New Jersey, USA: ACM, S. 322–331. DOI: 10.1145/93597.98741.

Guttman, Antonin (1984). "R-trees: a dynamic index structure for spatial searching". In: *Proceedings of the 1984 ACM SIGMOD International Conference on Management of Data*. SIGMOD '84. New York, NY, USA: ACM, S. 47–57. DOI: 10.1145/602259.602266 (siehe S. 1).