AIL 862

Lecture 19

CLIP

Some discussion on performance

Figure 5. Zero-shot CLIP is competitive with a fully supervised baseline. Across a 27 dataset eval suite, a zero-shot CLIP classifier outperforms a fully supervised linear classifier fitted on ResNet-50 features on 16 datasets, including ImageNet.

Figure 5. Zero-shot CLIP is competitive with a fully supervised baseline. Across a 27 dataset eval suite, a zero-shot CLIP classifier outperforms a fully supervised linear classifier fitted on ResNet-50 features on 16 datasets, including ImageNet.

Read the last name

Use full sentence

A photo of {label}

A satellite photo of {label}

Ranking with CLIP

Enhancing GAN with CLIP

ROI proposal and CLIP cascade

ROI proposal and CLIP cascade

- ✓ ROI proposal generation from a given image
- ✓ Cropped segments are passed to CLIP
- ✓ CLIP compares these segments with text prompts describing the target

RSClip

Algorithm 1 Curriculum learning for zero-shot RSSC.

- 1: Initialize the CLIP model using weights trained on WIT for the WebImageText dataset.
- 2: for iteration r={1,2,...R} do
- 3: (1) Predict classification probabilities for all unlabeled samples using Eq. (1) and Eq. (2).
- 4: (2) Select top-K, samples with the highest probabilities for each class as pseudo labels according to Eq. (3) and Eq. (4).
- 5: (3) Retrain the CLIP model using pseudo labels.
- 6: (4) Update the CLIP model.
- 7: end for

Global context

ViT for semantic segmentation

Decoder from previous slide

U-Net recap

Importance of context at multiple scales

Image sequentialization

Patch-embedding

CNN-transformer hybrid encoder

• CNN is first used as a feature extractor to generate a feature map for the input. Patch embedding is applied to patches extracted from the CNN feature map instead of from raw images.

 It allows us to leverage the intermediate high resolution CNN feature maps in the decoding path

Cascaded upsampler

Look at code

Look at code

```
class Encoder(nn.Module):
def __init__(self, img_dim, in_channels, out_channels, head_num, mlp_dim, block_num, patch_dim):
    super().__init__()
     self.conv1 = nn.Conv2d(in_channels, out_channels, kernel size=7, stride=2, padding=3, bias=False)
     self.norm1 = nn.BatchNorm2d(out_channels)
     self.relu = nn.ReLU(inplace=True)
     self.encoder1 = EncoderBottleneck(out_channels, out_channels * 2, stride=2)
     self.encoder2 = EncoderBottleneck(out_channels * 2, out_channels * 4, stride=2)
     self.encoder3 = EncoderBottleneck(out_channels * 4, out_channels * 8, stride=2)
     self.vit_img_dim = img_dim // patch_dim
     self.vit = ViT(self.vit_img_dim, out_channels * 8, out_channels * 8,
                    head_num, mlp_dim, block_num, patch_dim=1, classification=False)
     self.conv2 = nn.Conv2d(out_channels * 8, 512, kernel_size=3, stride=1, padding=1)
     self.norm2 = nn.BatchNorm2d(512)
 def forward(self, x):
    x = self.conv1(x)
    x = self.norm1(x)
    x1 = self.relu(x)
     x2 = self.encoder1(x1)
     x3 = self.encoder2(x2)
    x = self.encoder3(x3)
    x = self.vit(x)
    x = rearrange(x, "b (x y) c -> b c x y", x=self.vit_img_dim, y=self.vit_img_dim)
    x = self.conv2(x)
    x = self.norm2(x)
    x = self.relu(x)
    return x, x1, x2, x3
```

```
class EncoderBottleneck(nn.Module):
def __init__(self, in_channels, out_channels, stride=1, base_width=64):
    super().__init__()
    self.downsample = nn.Sequential(
        nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
        nn.BatchNorm2d(out_channels)
     width = int(out_channels * (base_width / 64))
    self.conv1 = nn.Conv2d(in_channels, width, kernel_size=1, stride=1, bias=False)
     self.norm1 = nn.BatchNorm2d(width)
    self.conv2 = nn.Conv2d(width, width, kernel_size=3, stride=2, groups=1, padding=1, dilation=1, bias=False)
     self.norm2 = nn.BatchNorm2d(width)
    self.conv3 = nn.Conv2d(width, out_channels, kernel_size=1, stride=1, bias=False)
    self.norm3 = nn.BatchNorm2d(out_channels)
    self.relu = nn.ReLU(inplace=True)
def forward(self, x):
    x_down = self.downsample(x)
    x = self.conv1(x)
    x = self.norm1(x)
    x = self.relu(x)
    x = self.conv2(x)
    x = self.norm2(x)
    x = self.relu(x)
    x = self.conv3(x)
    x = self.norm3(x)
    x = x + x_down
    x = self.relu(x)
    return x
```

```
class Decoder(nn.Module):
def __init__(self, out_channels, class_num):
    super().__init__()
    self.decoder1 = DecoderBottleneck(out_channels * 8, out_channels * 2)
    self.decoder2 = DecoderBottleneck(out_channels * 4, out_channels)
    self.decoder3 = DecoderBottleneck(out_channels * 2, int(out_channels * 1 / 2))
    self.decoder4 = DecoderBottleneck(int(out_channels * 1 / 2), int(out_channels * 1 / 8))
    self.conv1 = nn.Conv2d(int(out_channels * 1 / 8), class_num, kernel_size=1)
def forward(self, x, x1, x2, x3):
    x = self.decoder1(x, x3)
    x = self.decoder2(x, x2)
    x = self.decoder3(x, x1)
    x = self.decoder4(x)
    x = self.conv1(x)
```

return x

```
class DecoderBottleneck(nn.Module):
 def __init__(self, in_channels, out_channels, scale_factor=2):
     super().__init__()
     self.upsample = nn.Upsample(scale_factor=scale_factor, mode='bilinear', align_corners=True)
     self.layer = nn.Sequential(
         nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1),
         nn.BatchNorm2d(out_channels),
        nn.ReLU(inplace=True),
         nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),
         nn.BatchNorm2d(out_channels),
         nn.ReLU(inplace=True)
 def forward(self, x, x_concat=None):
     x = self.upsample(x)
     if x_concat is not None:
         x = torch.cat([x_concat, x], dim=1)
     x = self.layer(x)
```

return x

Performance

Fram	Average			
Encoder	Decoder	DSC ↑	$\mathrm{HD}\downarrow$	
V-No	et [9]	68.81	-	
DAR	\mathbb{R} [5]	69.77	-	
R50	U-Net [12]	74.68	36.87	
R50	AttnUNet [13]	75.57	36.97	
ViT [4]	None	61.50	39.61	
ViT [4]	CUP	67.86	36.11	
R50-ViT [4]	CUP	71.29	32.87	
Trans	77.48	31.69		

On Synapse multi-organ dataset

Performance: role of skip connection

Patch size

Patch size	Seq_length	Average DSC	4
32	49	76.99	
16	196	77.48	
8	784	77.83	

Performance: model scaling

Table 4: Ablation study on the model scale.

Model scale	Average DSC	Aorta	Gallbladder	Kidney (L)	Kidney (R)	Liver	Pancreas	Spleen	Stomach
Base	77.48	87.23	63.13	81.87	77.02	94.08	55.86	85.08	75.62
Large	78.52	87.42	63.92	82.17	80.19	94.47	57.64	87.42	74.90