

Relatedness 1: IBD and coefficients of relatedness

or

What does it mean to be related?

Magnus Dehli Vigeland

Statistical methods in genetic relatedness and pedigree analysis

NORBIS course, 13th – 17th of June 2022, Oslo

Plan

Kinship/inbreeding coefficient

IBD coefficients & IBD triangle

Jacquard's identity coefficients

- Attempt 1
 - being connected through a pedigree
 - having a common ancestor...not too far back
- Attempt 2 genetic
 - sharing DNA?
 - (more than unrelated people)
- To make this precise, we need some terminology!

IBD and autozygosity

- IBD = Identical by descent
 - identical alleles with a common origin in the given pedigree

autozygous = homozygous + IBD

Inbreeding coefficient f = P(autozygosity)

Coefficient of kinship/inbreeding

Sewall Wright (1889 - 1988)

• Wright (1921): The kinship coefficient φ between P and Q

```
\varphi_{P,Q} = P(\text{ random allele of P is IBD with random allele of Q})

= P(\text{ R receive IBD alleles from her parents})

= P(\text{ R is autozygous})

= f_R \qquad \text{the inbreeding coefficient of R}
```

P and Q related

$$\varphi_{P,Q} > 0$$

Example: Kinship coefficient of half siblings

Kinship coefficient

$$\varphi = P(\bigcirc \text{ from both}) \cdot 2$$

$$= 0.5^4 \cdot 2$$

$$= 1/8$$
green

Inbreding coefficient: Example

Wright's path formula:

$$\varphi_{P,Q} = \sum_{A} \sum_{v} \left(\frac{1}{2}\right)^{|v|+1} (1 + f_A)$$

By hand

In R

- library(pedsuite)
- x = cousinPed(1, child = T)
- inbreeding(x, ids = 9)

0.0625

Wright's path formula - simple form

$$\varphi_{P,Q} = \sum_{v} \left(\frac{1}{2}\right)^{|v|+1}$$

- Find all paths between P and Q
- For each path
 - count the number of steps S
 - compute 0.5^{S+1}
- Take the sum!

2 paths of length 4

$$\Rightarrow \quad \varphi = 0.5^5 + 0.5^5 = 0.0625$$

Wright's path formula in full generality

$$\varphi_{P,Q} = \sum_{A} \sum_{v} \left(\frac{1}{2}\right)^{|v|+1} (1 + f_A)$$

Explanation

- sum over all common ancestors A of P and Q ...
- ... and all non-collapsing paths v fra P til Q via A
- |v| is the length of v
- f_A is the inbreeding coefficient of A

Applicable to any pairwise relationship, however complex!

More kinship & inbreeding coefficients

Relationship	kinship $oldsymbol{arphi}$	f (child)
Parent-child	1/4	1/4
Full siblings	1/4	1/4
Half siblings	1/8	1/8
Grandparent- grandchild	1/8	1/8
Avuncular (uncle/aunt)	1/8	1/8
1st cousins	1/16	1/16
2nd cousins	1/64	1/64
3rd cousins	1/256	1/256


```
> x = nuclearPed(1, sex = 2)
> x = addSon(x, c(1, 3))

> kinship(x, ids = c(1, 3))
[1] 0.25
> inbreeding(x, id = 4)
[1] 0.25
```


The IBD triangle

Charles Cotterman (1914-1989)

Elisabeth Thompson (1949 -)

IBD coefficients: Warm-up

- Summary so far:
 - Two individuals are related if they can have IBD alleles
 - Their kinship coefficient meassures the amount of IBD sharing
- Natural generalisation:
 - How many alleles are IBD in each locus?

Humans are

IBD coefficients: Definition

Given two (non-inbred) individuals

For a random autosomal locus

$$\kappa_0 = P(0 \text{ alleles IBD})$$

$$\kappa_1 = P(1 \text{ alleles IBD})$$

$$\kappa_2 = P(2 \text{ alleles IBD})$$

• We always have: $\kappa_0 + \kappa_1 + \kappa_2 = 1$

The three extremes

The relatedness triangle

What are the coefficients of full sibs

ribd: Pedigree-based relatedness coefficients

- > library(pedsuite)
- > x = nuclearPed(2)
- > kinship(x, ids = 3:4)
- [1] 0.25
- > kappaIBD(x)

```
id1 id2 kappa0 kappa1 kappa2
```

- 1 2 1.00 0.0
- 1 3 0.00 1.0 0.00

0.00

- 1 4 0.00 1.0 0.00
- 2 3 0.00 1.0 0.00
- 2 4 0.00 1.0 0.00
- 3 4 0.25 0.5 0.25
- > k = kappaIBD(x, ids = 3:4)
- > showInTriangle(k)

The relatedness triangle

The relatedness triangle

An important identity:
$$\varphi = \frac{1}{4} \kappa_1 + \frac{1}{2} \kappa_2$$

What's missing?

Albert Jacquard (1925 - 2013)

Black belt: Jacquard's identity coefficients

- Jacquard (1970):
 - Structures Génétiques des Populations
- Motivation: Inbred relationships
 - $-\kappa_0, \kappa_1, \kappa_2$ are not well defined
- Example:

Configuration:

Albert Jacquard (1925 - 2013)

Jacquard's 9 coefficients

- Two individuals, two alleles each:
- ◆ ← alleles of individual 1
- ← alleles of individual 2

9 possible IBD configurations:

 Any pairwise relationship can be summarised by the relative frequencies of each of these.

Jacquard's condensed identity coefficients:

$$\Delta_{1}$$
, Δ_{2} , ..., Δ_{9}

Very simple with non-inbred individuals

\bowtie		7.	•	<i>N</i> .	• •	II	1:	• •
0	0	0	0	0	0	<i>κ</i> ₂	κ_1	κ_0

- ← alleles of individual 1
- ← alleles of individual 2

Non-trivial example

Suppose the parents are first cousins, but not themselves inbred

The Jacquard coefficients for the father vs child:

\bowtie		<i>V</i> .	•••	N.	•••	II	1:	• •
0	0	0	0	$\frac{1}{16}$	0	$\frac{1}{16}$	$\frac{7}{8}$	0

ribd: Pedigree-based relatedness coefficients

Main functions

- inbreeding(x, ids)
- kinship(x, ids)
- kappaIBD(x, ids)
- identityCoefs (x, ids)

Try it out!

- > library(pedsuite)
- > x = nuclearPed(2)
- > plot(x)
- > inbreeding(x)
 1 2 3 4
 0 0 0 0

>	kinship(x)					
	1	2	3	4		
1	0.50	0.00	0.25	0.25		
2	0.00	0.50	0.25	0.25		
3	0.25	0.25	0.50	0.25		
4	0.25	0.25	0.25	0.50		
4	0.25	0.25	0.25	0.50		

- kappaIBD(x) > id1 id2 kappa0 kappa1 kappa2 1.00 0.0 0.00 0.00 0.00 1.0 0.00 0.00 1.0 0.00 1.0 0.00 0.00 1.0 0.00 3 0.25 0.5 0.25
- identityCoefs(x) D1 D2 D3 D4 D5 D6 D7 D8 D9 0 0.00 0.0 1.00 0 0 0 0.00 1.0 0.00 0 0.00 1.0 0.00 0 0.00 1.0 0.00 2. 0.00 1.0 0.00 3 0 0.25 0.5 0.25

