TD1. Intégrales doubles et couples de variables aléatoires.

Exercice 1. Calculer les intégrales $\int_D f(x,y) dxdy$ dans les cas suivants :

a)
$$f(x,y) = 1/(x+y+1)^2$$
 et $D = \{(x,y) \in \mathbb{R}^2 | 0 \le x \le 1, 0 \le y \le 1\}$.

b)
$$f(x,y) = \sin(x+y)$$
 et $D = \{(x,y) \in \mathbb{R}^2 | 0 \le x \le \pi/2, 0 \le y \le \pi/2 \}.$

c)
$$f(x,y) = x^2 + y^2$$
 et $D = \{(x,y) \in \mathbb{R}^2 | 0 \le x \le 1, 0 \le y \le x\}.$

d)
$$f(x,y) = \exp(-y)/(2\sqrt{x})$$
 et $D = \{(x,y) \in \mathbb{R}^2 | x > 0, y > 0, x < y^2 \}$.

e)
$$f(x,y)=1/\sqrt{x^2+y^2+1}$$
 et $D=\{(x,y)\in\mathbb{R}^2|x^2+y^2\leq 1\}$ (Utiliser le passage en coordonnées polaires) .

f)
$$f(x,y) = (x+y)^2 \exp(x^2 - y^2)$$
 et $D = \{(x,y) \in \mathbb{R}^2 | x \ge 0, y \ge 0, x+y \le 1\}$ (Utiliser le changement de variable $u = x + y$ et $v = x - y$).

g) $f(x, y) = y \exp(-x y)$ et $D = \{(x, y) \in \mathbb{R}^2 | 0 \le x \le 1, 0 \le y \le 1\}$. On demande ici de calculer l'intégrale de deux façons différentes (intégrer d'abord en x puis en y; faire ensuite le contraire).

Exercice 2. Soit

$$f(x,y) = \begin{cases} k(y^2 - x^2 + 1) & \text{si} \quad 0 \le x \le 1, 0 \le y \le 1 \\ 0 & \text{sinon} \end{cases}.$$

Pour quelle valeur de k, f peut-elle représenter la densité d'un couple de variables aléatoires ?

Exercice 3. Soit V = (X, Y) un couple de variables aléatoires admettant pour densité

$$f_V(x,y) = \begin{cases} k & \text{si} \quad |x| + |y| \leq 1 \\ 0 & \text{sinon} \end{cases}$$
.

- a) Déterminer k ainsi que les lois marginales de X et de Y.
- b) Déterminer cov(X,Y) et étudier l'indépendance de X et Y.

Exercice 4. Soient X et Y deux variables aléatoires indépendantes et de même loi continue uniforme sur [0,1].

- a) Calculer la densité de probabilité de $T = \inf(X, Y)$ et de $Z = \sup(X, Y)$.
- b) Calculer l'espérance mathématique de Z et de T.
- c) Calculer le coefficient de corrélation linéaire entre Z et T.

Exercice 5. Soient X et Y deux variables aléatoires admettant pour densité de probabilité $f_{(X,Y)}(x,y) = \exp(-y)\mathbb{I}_{[x,+\infty[}(y)\mathbb{I}_{\mathbb{R}_+}(x).$

a) Vérifier que $f_{(X,Y)}$ est bien une densité de probabilité.

- b) Déterminer les lois marginales de X et de Y.
- c) Calculer $\mathbb{P}(X \leq 1|Y > 2)$.

Exercice 6. Soit X une variable aléatoire admettant pour loi conditionnelle lorsque Y = y, la loi de densité : $y^2x \exp(-yx)1_{\mathbb{R}_+}(x)$. La variable aléatoire Y admet pour densité $f_Y(y) = 1/y^21_{]1,+\infty[}(y)$. Calculer la loi conditionnelle de Y sachant que X = x ainsi que l'espérance conditionnelle $\mathbb{E}(Y|X)$.

Exercice 7. Soient X et Y deux variables aléatoires indépendantes suivant une loi exponentielle de paramètre $\lambda = 1$. On considère les variables U et V définies par U = X + Y et V = X/Y.

- a) Déterminer la loi du couple de variables aléatoires (U,V). Les variables U et V sont-elles indépendantes ?
- b) Calculer $\mathbb{E}(U)$ et $\mathbb{E}(V)$.