

Piksi Settings

Piksi Firmware version v0.21

1 Introduction

Piksi Firmware has a number of settings that can be controlled by the end user via the provided Piksi Console or through the SBP binary message protocol. This Document serves to enumerate these settings with an explanation and any relevant notes. If a setting is listed as "Expert" in this document, the –expert command line argument must be passed to the Piksi Console in order to see or modify the value.

2 Settings Table

Grouping	Name	Description
ext events		
	edge trigger	Select DEBUG0 edges to trigger timestamped event capture.
float kf	who are way	Assumed various of a satellita's whose massument
	phase var	Assumed variance of a satellite's phase measurement
	code var	Assumed variance of a satellite's pseudorange measurement
	amb init var new amb var	Initial integer ambiguity variance at filter initialization
frontend	new amb var	Variance for new ambiguity measurements
rrontena	antonna calaction	Determines which antenna to use.
:	antenna selection	Determines which antenna to use.
iar	mhaga yay	Determines the massived sourier phase various of far use in the interest one
	phase var	Determines the measured carrier phase variance for use in the integer am-
	anda was	biguity resolution test loop
	code var	Determines the pseudocode variance for the integer ambiguity resolution
		subroutine
nmea		Number of Airly between CDCI I NIAATA
	gpgll msg rate	Number of ticks between GPGLL NMEA messages being sent.
	gpgsv msg rate	Number of ticks between GPGSV NMEA messages being sent.
	gprmc msg rate	Number of ticks between GPRMC NMEA messages being sent.
	gpvtg msg rate	Number of ticks between GPVTG NMEA messages being sent.
pps		N
	width	Number of microseconds the PPS will remain high (1-999999).
sbp		
	obs msg max size	Determines the maximum message length for raw observation sbp messages.
simulator		
	mode mask	Determines the types of position outputs for the simulator.
	radius	Radius of the circle around which the simulated Piksi will move
	base ecef x	Simulated base station position
	base ecef y	Simulated base station position
	base ecef z	Simulated base station position
	speed	Simulated tangential speed of Piksi
	phase sigma	Standard deviation of noise added to the simulated carrier phase
	pseudorange sigma	Standard deviation of noise added to the simulated pseudo range
	cn0 sigma	Standard deviation of noise added to the simulated signal to noise ratio
	speed sigma	Standard deviation of noise addition to simulated tangential speed.
	pos sigma	Standard deviation of simulated single point position
	num sats	The number of satellites for the simulator.
	enabled	Toggles the Piksi internal simulator on and off
solution		
	known baseline d	Determines the baseline vector for the "init known baseline" feature.
	known baseline e	Determines the baseline vector for the "init known baseline" feature.
	known baseline n	Determines the baseline vector for the "init known baseline" feature.
	dgnss solution mode	Determines the type of RTK solution which will be output.
	output every n obs	Integer divisor of solution frequency for which the observations will be out-
		put.
	elevation mask	SPP / RTK elevation mask
	soln freq	The rate at which a solution is generated internally to the Piksi.
	dgnss filter	Determines the type of carrier phase ambiguity resolution that the Piksi will
		attempt to achieve.

	send heading	Enables SBP heading output. Heading is caculated from base station to
		rover and represents the inverse tangent of the north and east components
		of the baseline.
	disable raim	Receiver Autonomous Integrity Monitoring
surveyed position		
	broadcast	Broadcast surveyed base station location
	surveyed alt	Surveyed altitude of the Piksi's antenna
	surveyed lan	Surveyed latitude of the Piksi's antenna
system info	surveyed lon	Surveyed longitude of the Piksi's antenna
system into	firmware built	Date of firmware build
	firmware version	Indicates the firmware version for the Local Piksi
	nap fft index bits	Number of bits to represent the result of fast fourier transform in SwiftNAP
	nap ne maox bits	firmware
	nap channels	Number of tracking channels in the SwiftNAP firmware
	serial number	The serial number of the Piksi
	nap version	Version of the SwiftNAP FPGA firmware.
	hw revision	hardware revision for Piksi
system monitor		
	watchdog	Enable hardware watchdog timer to reset the Piksi if it locks up for any
		reason.
	heartbeat period millisec-	Period for sending the SBP HEARTBEAT messages
	onds	
telemetry radio	C:	Configuration string to soul and in our damper of the DT colors detected
tuack	configuration string	Configuration string to send radio modem over UART when detected
track	cn0 use	C/N0 threshold for navigation.
	cn0 drop	C/NO threshold for tracking.
	lock detect params	PLL lock detector parameters
	loop params	Tracking loop filter parameters
	iq output mask	Output raw I/Q correlations
	alias detect	Use phase-lock alias detection + correction
uart ftdi		
	mode	Configure mode for USB serial port on Piksi
	sbp message mask	Configure the message mask for SBP messages on the UART for the USB
		port on Piksi
	baudrate	The baudrate for the UART for the USB port on Piksi
uart uarta		
	mode	Configure mode for UART
	sbp message mask	Configure the message mask for SBP messages on UART
	configure telemetry radio	Determines whether this UART will attempt to configure a telemetry radio
	on boot baudrate	upon boot The baudrate for the UART
uart uartb	Dauurate	THE DAUGIAGE TOT THE WAR I
ualt ualtu	mode	Configure mode for UART
	sbp message mask	Configure the message mask for SBP messages on UART
	configure telemetry radio	Determines whether this UART will attempt to configure a telemetry radio
	on boot	upon boot
	baudrate	The baudrate for the uart

Table 2.0.1: Summary of message types

3 Settings Detail

3.1 ext events

3.1.1 edge trigger

Description: Select DEBUG0 edges to trigger timestamped event capture.

Label	Value
group enumerated possible values name units default value type	ext events None, Rising, Falling, Both edge trigger None None enum

Table 3.1.1: edge trigger

Notes: You can use this to record the exact time that some external event in your system occurred, e.g. camera shutter time. Upon detecting the event, Piksi will generate a MSG_EXT_EVENT message reporting the event, including a timestamp accurate to better than a microsecond. Requires NAP firmware ≥ 0.12 .

3.2 float kf

3.2.1 phase var

Description: Assumed variance of a satellite's phase measurement

Label	Value
group	float kf
name	phase var
expert	True
enumerated possible values	None
units	cycles ²
default value	0.0144
type	Double

Table 3.2.1: phase var

Notes: This setting adjusts variance estimates in the Swift Kalman filter which aids in integer ambiguity resolution (IAR). Increasing this value can reduce the occurrence of false carrier phase locks but can also increase the time required to achieve an IAR fixed solution. This setting should not be adjusted by end users.

3.2.2 code var

Description: Assumed variance of a satellite's pseudorange measurement

Label	Value	
group	float kf	
name	code var	
expert	True	
enumerated possible values	None	
units	meters ²	
default value	40000	
type	Double	

Table 3.2.2: code var

Notes: This setting adjusts variance estimates in the Swift Kalman filter which aids in integer ambiguity resolution (IAR). Increasing this value can reduce the occurrence of false carrier phase locks but can also increase the time required to achieve an IAR fixed solution. This setting should not be adjusted by end users.

3.2.3 amb init var

Description: Initial integer ambiguity variance at filter initialization

Label	Value
group	float kf
name	amb init var
expert	True
enumerated possible values	None
units	nondimensional
default value	1.00E + 25
type	Double

Table 3.2.3: amb init var

Notes: This setting adjusts variance estimates in the Swift Kalman filter which aids in integer ambiguity resolution (IAR). Increasing this value can reduce the occurrence of false carrier phase locks but can also increase the time required to achieve an IAR fixed solution. This setting should not be adjusted by end users.

3.2.4 new amb var

Description: Variance for new ambiguity measurements

f b var
b var
ensional
- 25

Table 3.2.4: new amb var

Notes: This setting adjusts variance estimates in the Swift Kalman filter which aids in integer ambiguity resolution (IAR). Increasing this value can reduce the occurrence of false carrier phase locks but can also increase the time required to achieve an IAR fixed solution. This setting should not be adjusted by end users.

3.3 frontend

3.3.1 antenna selection

Description: Determines which antenna to use.

Label	Value
group enumerated possible values name units default value	frontend Auto, Patch, External, External(nobias) antenna selection None Auto
type	enum

Table 3.3.1: antenna selection

Notes: This setting selects the antenna input that should be used by the Piksi. When set to "Auto", if the unit senses an external antenna attached to the Piksi from a load placed on the antenna output DC bias, it will use the external antenna. If no external antenna is attached (or a passive antenna is attached), it will use the integrated patch antenna. Selecting "Patch" or "External" for this setting can override the automatic antenna selection and force the external or patch antenna to be used.

3.4 iar

3.4.1 phase var

Description: Determines the measured carrier phase variance for use in the integer ambiguity resolution test loop

Label	Value
group	iar
name	phase var
expert	True
enumerated possible values	None
units	cycles ²
default value	0.0144
type	double

Table 3.4.1: phase var

Notes: This setting adjusts variance estimates in the integer ambiguity resolution (IAR) subroutine. Increasing this value can reduce the occurrence of false carrier phase locks but can also increase the time required to achieve an IAR fixed solution. This setting should not be adjusted by end users.

3.4.2 code var

Description: Determines the pseudocode variance for the integer ambiguity resolution subroutine

Label	Value	
group	iar	
name	code var	
expert	True	
enumerated possible values	None	
units	meters ²	
default value	40000	
type	double	
	_	

Table 3.4.2: code var

Notes: This setting adjusts variance estimates in the integer ambiguity resolution (IAR) subroutine. Increasing this value can reduce the occurrence of false carrier phase locks but can also increase the time required to achieve an IAR fixed solution. This setting should not be adjusted by end users.

3.5 nmea

3.5.1 gpgll msg rate

Description: Number of ticks between GPGLL NMEA messages being sent.

Label	Value
group units	nmea Ticks
default value	10
type	integer
name	gpgll msg rate

Table 3.5.1: gpgll msg rate

Notes: None

3.5.2 gpgsv msg rate

Description: Number of ticks between GPGSV NMEA messages being sent.

Label	Value
group units	nmea Ticks
default value	10
type	integer
name	gpgsv msg rate

Table 3.5.2: gpgsv msg rate

Notes: None

3.5.3 gprmc msg rate

Description: Number of ticks between GPRMC NMEA messages being sent.

Label	Value	
group units	nmea Ticks	
default value	10	
type	integer	
name	gprmc msg rate	

Table 3.5.3: gprmc msg rate

Notes: None

3.5.4 gpvtg msg rate

Description: Number of ticks between GPVTG NMEA messages being sent.

Label	Value
group units default value type name	nmea Ticks 10 integer gpvtg msg rate

Table 3.5.4: gpvtg msg rate

Notes: None

3.6 pps

3.6.1 width

Description: Number of microseconds the PPS will remain high (1-999999).

Label	Value
group	pps
enumerated possible values	None
name	width
units	microseconds
default value	200000
type	integer

Table 3.6.1: width

Notes: None

3.7 sbp

3.7.1 obs msg max size

Description: Determines the maximum message length for raw observation sbp messages.

Label	Value	
group enumerated possible values name units default value	sbp None obs msg max size bytes 102	
type	integer	

Table 3.7.1: obs msg max size

Notes: This parameter is useful for tuning observation messages for compatibility with radio modems. Some serial modems will internally split serial packets for their protocol and this parameter allows the size of the message to be reduced as to prevent the modem from sending multiple packets. If the parameter exceeds 255 bytes (the maximum size of an SBP message), the Piksi firmware will ignore the parameter and use 255 bytes. If the parameter is set smaller than the size of one observation, the Piksi firmware will ignore the parameter and use the size of one observation as the maximum message size.

3.8 simulator

3.8.1 mode mask

Description: Determines the types of position outputs for the simulator.

Value
simulator
None
mode mask
None
15(decimal), 0xF(hexadecimal)
packedbitfield

Table 3.8.1: mode mask

Notes: bit 0 (decimal value 1) turns on single point position PVT simulated outputs

bit 1 (decimal value 2) turns on the satellite tracking simulated outputs

bit 2 (decimal value 4) turns on Float IAR simulated RTK outputs

bit 3 (decimal value 8) turns on Fixed IAR simulated RTK outputs

3.8.2 radius

Description: Radius of the circle around which the simulated Piksi will move

Label	Value
group enumerated possible values name units default value type	simulator None radius meters 100 double

Table 3.8.2: radius

Notes: None

3.8.3 base ecef x

Description: Simulated base station position

Label	Value
group enumerated possible values name units default value type	simulator None base ecef x meters None double

Table 3.8.3: base ecef x

Notes: Earth centered earth fixed (ECEF) x position of the simulated base station.

3.8.4 base ecef y

Description: Simulated base station position

Label	Value
group	simulator
enumerated possible values	None
name	base ecef y
units	meters
default value	None
type	double

Table 3.8.4: base ecef y

Notes: Earth centered earth fixed (ECEF) y position of the simulated base station.

3.8.5 base ecef z

Description: Simulated base station position

Label	Value
group enumerated possible values name units default value type	simulator None base ecef z meters None double

Table 3.8.5: base ecef z

Notes: Earth centered earth fixed (ECEF) z position of the simulated base station.

3.8.6 speed

Description: Simulated tangential speed of Piksi

ulator
ne ed ers/s ble
6

Table 3.8.6: speed

Notes: None

3.8.7 phase sigma

Description: Standard deviation of noise added to the simulated carrier phase

Value
simulator
None
phase sigma
cycles
0.0009
double

Table 3.8.7: phase sigma

Notes: None

3.8.8 pseudorange sigma

Description: Standard deviation of noise added to the simulated pseudo range

Label	Value
group enumerated possible values name	simulator None pseudorange sigma
units default value	meters 16
type	double

Table 3.8.8: pseudorange sigma

Notes: None

3.8.9 cn0 sigma

Description: Standard deviation of noise added to the simulated signal to noise ratio

group simulator enumerated possible values None name cn0 sigma units dbmhz default value 0.1	Label	Value
type	enumerated possible values name units	None cn0 sigma dbmhz

Table 3.8.9: cn0 sigma

Notes: None

3.8.10 speed sigma

Description: Standard deviation of noise addition to simulated tangential speed.

Value
simulator
None
speed sigma
$meters^2/s^2$
0.02
double

Table 3.8.10: speed sigma

Notes: None

3.8.11 pos sigma

Description: Standard deviation of simulated single point position

Label	Value
group	simulator
enumerated possible values	None
name	pos sigma
units	meters ²
default value	2
type	double

Table 3.8.11: pos sigma

Notes: None

3.8.12 num sats

Description: The number of satellites for the simulator.

Value
simulator None
num sats
None 9
integer

Table 3.8.12: num sats

Notes: None

3.8.13 enabled

Description: Toggles the Piksi internal simulator on and off

Label	Value
group	simulator
enumerated possible values	true, false
name	enabled
units	None
default value	false
type	boolean

Table 3.8.13: enabled

Notes: The Piksi simulator will provide simulated outputs of a stationary base station and the Local Piksi moving in a circle around the base station The simulator is intended to aid in system integration by providing realistic looking outputs but does not faithfully simulate every aspect of device operation.

3.9 solution

3.9.1 known baseline d

Description: Determines the baseline vector for the "init known baseline" feature.

Label	Value	
group enumerated possible values name units default value	solution None known baseline d meters(down) 0	
type	double	

Table 3.9.1: known baseline d

Notes: This sets the number of meters that the rover is Down from the base station when the "init known baseline" feature is used.

3.9.2 known baseline e

Description: Determines the baseline vector for the "init known baseline" feature.

group enumerated possible values name units default value solution None known baseline e meters(east) 0	Label	Value
typo	enumerated possible values name units	None known baseline e meters(east)

Table 3.9.2: known baseline e

Notes: This sets the number of meters that the rover is East from the base station when the "init known baseline" feature is used.

3.9.3 known baseline n

Description: Determines the baseline vector for the "init known baseline" feature.

Label	Value
group enumerated possible values name units default value type	solution None known baseline n meters(north) 0 double
default value	0

Table 3.9.3: known baseline n

Notes: This sets the number of meters that the rover is North from the base station when the "init known baseline" feature is used.

3.9.4 dgnss solution mode

Description: Determines the type of RTK solution which will be output.

Label	Value
group	solution
enumerated possible values	LowLatency, TimeMatched
name	dgnss solution mode
units	None
default value	None
type	enum

Table 3.9.4: dgnss solution mode

Notes: A "Low Latency" solution uses an internal model of anticipated satellite observations to provide RTK output with minimal latency but slightly reduced accuracy. "Low Latency" mode assumes that the base station is stationary. For applications where accuracy is desired over timelieness or when both Piksi's are moving, "Time matched" mode can be chosen. This means that the RTK output will require a corresponding set of correction observations for each timestamp.

3.9.5 output every n obs

Description: Integer divisor of solution frequency for which the observations will be output.

Value
solution None
output every n obs None
2
integer

Table 3.9.5: output every n obs

Notes: For instance, if the solution frequency is 10 hz, and the "output every n obs" parameter is 2, it means that the observation output will occur at a rate of 5hz. Since the observations are the information used by the Piksi receiving corrections from the connected Piksi, this determines the rate of information sharing for RTK solution output. This parameter is designed to tune the rate at which correction information is passed from one Piksi to the other as to efficiently use radio modem bandwidth and fit with user applications.

3.9.6 elevation mask

Description: SPP / RTK elevation mask

Label	Value
group enumerated possible values name units default value type	solution None elevation mask degrees 5 float

Table 3.9.6: elevation mask

Notes: Satellites must be above the horizon by at least this angle before they will be used in a solution.

3.9.7 soln freq

Description: The rate at which a solution is generated internally to the Piksi.

Value
solution None soln freq hz 10 integer

Table 3.9.7: soln freq

Notes: None

3.9.8 dgnss filter

Description: Determines the type of carrier phase ambiguity resolution that the Piksi will attempt to achieve.

Label	Value
group	solution
name	dgnss filter
expert	True
enumerated possible values	Fixed, Float
units	None
default value	Fixed
type	enum

Table 3.9.8: dgnss filter

Notes: If "fixed", the Piksi will output a integer fixed ambiguity estimate. If no fixed solution is available, it will revert to the float solution. If "float", the device will only output the float ambiguity estimate.

3.9.9 send heading

Description: Enables SBP heading output. Heading is caculated from base station to rover and represents the inverse tangent of the north and east components of the baseline.

Label	Value
group	solution
name	send heading
expert	True
enumerated possible values	True, False
units	None
default value	False
type	boolean

Table 3.9.9: send heading

Notes: No smoothing or additional processing is provided to improve heading output.

3.9.10 disable raim

Description: Receiver Autonomous Integrity Monitoring

Label	Value
group	solution
name	disable raim
expert	True
enumerated possible values	True, False
units	None
default value	False
type	boolean

Table 3.9.10: disable raim

Notes: If True, RAIM checks will not be performed.

3.10 surveyed position

3.10.1 broadcast

Description: Broadcast surveyed base station location

Label	Value
group enumerated possible values name units default value	surveyed position true, false broadcast None false
type	boolean

Table 3.10.1: broadcast

Notes: This flag ultimately determines whether the SBP message with identifier MSG_BASE_POS will be calculated and sent. Logically, setting this attribute to "true" sets the Local Piksi as a base station and configures the unit to send its surveyed location coordinates to the other Piksi(s) with which the base station is communicating. If "true", the remote Piksi that receives the surveyed position will calculate and communicate a pseudo absolute RTK position based upon the received position.

3.10.2 surveyed alt

Description: Surveyed altitude of the Piksi's antenna

group surveyed position enumerated possible values None name surveyed alt units meters	Label	Value
type Double	enumerated possible values name units default value	None surveyed alt meters 0

Table 3.10.2: surveyed alt

Notes: This setting represents the altitude of the Piksi's antenna above the WGS84 ellipsoid. If surveyed position "broadcast" is set to "true", this coordinate will be communicated to remote Piksi's against which to calculate a pseudo-absolute position. This value should be precise to 1 cm. Any errors in the surveyed position will directly affect the pseudo-absolute RTK position measurement reported by the Rover.

3.10.3 surveyed lat

Description: Surveyed latitude of the Piksi's antenna

Label	Value
group	surveyed position
enumerated possible values	None
name	surveyed lat
units	degrees
default value	0
type	Double

Table 3.10.3: surveyed lat

Notes: This setting represents the latitude of the local Piksi's antenna. If surveyed position "broadcast" is set to "true", the coordinate will be communicated to remote Piksis with which to calculate their pseudo-absolute RTK position. The value should be as accurate as possible and should have precision to at least 7 digits following the decimal point. For reference, 1e-7 degrees of latitude is about 1.1cm on the surface of the earth. Any errors in the surveyed position will directly affect the pseudo-absolute RTK position measurement reported by the remote Piksi.

3.10.4 surveyed lon

Description: Surveyed longitude of the Piksi's antenna

Label	Value
group enumerated possible values name units default value type	surveyed position None surveyed lon degrees 0 Double

Table 3.10.4: surveyed lon

Notes: This setting represents the longitude of the local Piksi's antenna. If surveyed position "broadcast" is set to "true", the coordinate will be communicated to remote Piksis with which to calculate their pseudo-absolute RTK position. The value should be as accurate as possible and should have precision to at least 7 digits following the decimal point. For reference, 1e-7 degrees of longitude at 35 degree latitude is about 1 cm. Any errors in the surveyed position will directly affect the pseudo-absolute RTK position measurement reported by the remote Piksi.

3.11 system info

3.11.1 firmware built

Description: Date of firmware build

Label	Value
group	system info
enumerated possible values	None
name	firmware built
units	None
default value	None
type	string

Table 3.11.1: firmware built

Notes: None

3.11.2 firmware version

Description: Indicates the firmware version for the Local Piksi

Label	Value
group enumerated possible values name units default value	system info None firmware version None None
type	string

Table 3.11.2: firmware version

Notes: For user generated firmware, this information will appear the same as the git command: "git describe -dirty"

3.11.3 nap fft index bits

Description: Number of bits to represent the result of fast fourier transform in SwiftNAP firmware

Label	Value
group enumerated possible values name units default value type	system info None nap fft index bits None None None

Table 3.11.3: nap fft index bits

Notes: None

3.11.4 nap channels

Description: Number of tracking channels in the SwiftNAP firmware

Label	Value
group	system info
enumerated possible values	None
name	nap channels
units	None
default value	None
type	integer

Table 3.11.4: nap channels

Notes: None

3.11.5 serial number

Description: The serial number of the Piksi

Label	Value
group enumerated possible values name units default value type	system info None serial number None None integer

Table 3.11.5: serial number

Notes: This number should match the number on the barcode and cannot be modified

3.11.6 nap version

Description: Version of the SwiftNAP FPGA firmware.

Label	Value
group enumerated possible values name units default value type	system info None nap version None None integer
туре	mteger

Table 3.11.6: nap version

Notes: None

3.11.7 hw revision

Description: hardware revision for Piksi

Label	Value
group	system info
enumerated possible values	None
name	hw revision
units	None
default value	None
type	string

Table 3.11.7: hw revision

Notes: None

3.12 system monitor

3.12.1 watchdog

Description: Enable hardware watchdog timer to reset the Piksi if it locks up for any reason.

Label	Value	
group	system monitor	
enumerated possible values	true, false	
name	watchdog	
units	None	
default value	true	
type	boolean	

Table 3.12.1: watchdog

Notes: You must reset the Piksi for changes to this setting to take effect.

3.12.2 heartbeat period milliseconds

Description: Period for sending the SBP_HEARTBEAT messages

group system monitor enumerated possible values name heartbeat period milliseconds units None default value None	Label	Value
type integer	enumerated possible values name units default value	None heartbeat period milliseconds None None

Table 3.12.2: heartbeat period milliseconds

Notes: None

3.13 telemetry radio

3.13.1 configuration string

Description: Configuration string to send radio modem over UART when detected

Label	Value
group	telemetry radio
enumerated possible values	None
name	configuration string
units	None
default value	None
type	string

Table 3.13.1: configuration string

Notes: This configuration string is intended for radios that use AT style commands

3.14 track

3.14.1 cn0 use

Description: C/N0 threshold for navigation.

Label	Value	
group	track	
name	cn0 use	
expert	True	
units	db – Hz	
default value	31	
type	Double	

Table 3.14.1: cn0 use

Notes: If the estimated C/N0 drops below this even momentarily, the satellite will not be used for SPP or RTK solutions and the integer ambiguity for that channel will be reinitialized. This is in addition to PLL lock detection.

3.14.2 cn0 drop

Description: C/N0 threshold for tracking.

Label	Value	
group name expert units default value type	track cn0 drop True db — Hz 30 Double	

Table 3.14.2: cn0 drop

Notes: If the estimated C/N0 for a satellite drops below this for more than 5 seconds, the signal will be considered lost and the channel reset.

3.14.3 lock detect params

Description: PLL lock detector parameters

Label	Value
group	track
name	lock detect params
expert	True
units	None
default value	0.02, 1.4, 150, 50
type	string

Table 3.14.3: lock detect params

Notes: <k1>, <k2>, <lp>, <lo>

where

k1 = LPF coefficient (@ 1 ms)

k2 = I arm divisor

Ip = Pessimistic lock count threshold Io = Optimistic lock count threshold

3.14.4 loop params

Description: Tracking loop filter parameters

Label	Value
group	track
name	loop params
expert	True
units	None
default value	(1ms, (1, 0.7, 1, 1540), (10, 0.7, 1, 5)), (5ms, (1, 0.7, 1, 1540), (50, 0.7, 1, 0))
type	string

Table 3.14.4: loop params

Notes: '<LOOP_PARAMS_STAGE1>[, <LOOP_PARAMS_STAGE2>]'

where <LOOP_PARAMS_STAGEn>= (<COHERENT_MS>ms, (CODE_BW, CODE_ZETA, CODE_K, CARR_TO_CODE), (CARR_BW, CARR_ZETA, CARR_K, FLL_AID_GAIN))

LOOP_PARAMS_STAGE1 will be used until navigation bit synchronization is achieved, after which LOOP_PARAMS_STAGE2 will be used.

COHERENT_MS must be a factor of 20, and must be 1 for LOOP_PARAMS_STAGE1.

CARR_TO_CODE should be 0 (carrier aiding disabled) or 1540 (ratio of GPS L1 C/A carrier freq to code freq).

3.14.5 iq output mask

Description: Output raw I/Q correlations

Label	Value
group	track
name	iq output mask
expert	True
enumerated possible values	None
units	None
default value	None
type	integer
	_

Table 3.14.5: iq output mask

Notes: Bitmask of channel IDs (not PRNs)

3.14.6 alias detect

Description: Use phase-lock alias detection + correction

Label	Value
group	track
name	alias detect
expert	True
enumerated possible values	True, False
units	None
type	boolean

Table 3.14.6: alias detect

Notes: None

3.15 uart ftdi

3.15.1 mode

Description: Configure mode for USB serial port on Piksi

Label	Value
group enumerated possible values	uart ftdi SBP, NMEA, RTCM
name	mode
units	None
default value	SBP
type	enum

Table 3.15.1: mode

Notes: None

3.15.2 sbp message mask

Description: Configure the message mask for SBP messages on the UART for the USB port on Piksi

Label	Value
group	uart ftdi
enumerated possible values	None
name	sbp message mask
units	None
default value	65535(<i>decimal</i>), 0 <i>xFFFF</i> (<i>hex</i>)
type	integer

Table 3.15.2: sbp message mask

Notes: The message mask is bitwise anded to the message identifier for a particular message. If the result is non-zero, the message will be sent over this UART. For example, consider the Piksi firmware sending an SBP message with ID 0x0041. If UART A has mask "64" (0x0040), The SBP subsystem bitwise-ands the message id with the UART A mask giving the result of 0x0040. Since the result is non-zero, the message is valid for UART A and is sent. Practically, the UART with mask 64 (0x0040) transmits only RTK observation data and the USART with mask 65280 (0xFF00) transmits most messages of interest to the host system (such as position and velocity). A mask of 0xFFFF will transmit all messages at the expense of bandwidth.

3.15.3 baudrate

Description: The baudrate for the UART for the USB port on Piksi

Label	Value
group	uart ftdi
enumerated possible values	None
name	baudrate
units	baud
default value	1000000
type	integer

Table 3.15.3: baudrate

Notes: None

3.16 uart uarta

3.16.1 mode

Description: Configure mode for UART

Label	Value
group enumerated possible values name units default value	uart uarta SBP, NMEA, RTCM mode None SBP
type	enum

Table 3.16.1: mode

Notes: None

3.16.2 sbp message mask

Description: Configure the message mask for SBP messages on UART

Label	Value
group enumerated possible values name units default value type	uart uarta None sbp message mask None 64(decimal), 0x0040(hex) integer

Table 3.16.2: sbp message mask

Notes: The default message mask on this UART (0x0040) is appropriate for a radio to communicate observation messages to another Piksi. The out-of-the box configuration uses UART A for Piksi to Piksi communication.

3.16.3 configure telemetry radio on boot

Description: Determines whether this UART will attempt to configure a telemetry radio upon boot

Label	Value
group	uart uarta
enumerated possible values	true, false
name	configure telemetry radio on boot
units	None
default value	TRUE
type	boolean

Table 3.16.3: configure telemetry radio on boot

Notes: If a telemetry radio is connected to this UART, this should be set to true in order to send the configuration string to the radio.

3.16.4 baudrate

Description: The baudrate for the UART

Label	Value	
group enumerated possible values name units default value	uart uarta None baudrate baud 57600	
type	integer	

Table 3.16.4: baudrate

Notes: The radio baudrate may be constrained by the particular RF equipment used for the telemetry radio.

3.17 uart uartb

3.17.1 mode

Description: Configure mode for UART

Label	Value
group enumerated possible values name units default value	uart uartb SBP, NMEA, RTCM mode None SBP
type	enum

Table 3.17.1: mode

3.17.2 sbp message mask

Description: Configure the message mask for SBP messages on UART

Label	Value
group enumerated possible values name units default value type	uart uartb None sbp message mask None 655280(decimal), 0xFF00(hex) integer

Table 3.17.2: sbp message mask

Notes: The default message mask on this uart (0xFF00) is appropriate for a general purpose interface to the Piksi.

3.17.3 configure telemetry radio on boot

Description: Determines whether this UART will attempt to configure a telemetry radio upon boot

Label	Value
group enumerated possible values	uart uartb true, false
name units default value	configure telemetry radio on boot None TRUE
type	boolean

Table 3.17.3: configure telemetry radio on boot

Notes: If a telemetry radio is connected to this UART, this should be set to true in order to send the configuration string to the radio.

3.17.4 baudrate

Description: The baudrate for the uart

Label	Value
group enumerated possible values name units default value type	uart uartb None baudrate baud 115200 integer

Table 3.17.4: baudrate

Notes: None