

KARATINA UNIVERSITY

UNIVERSITY REGULAR EXAMINATIONS

2024/2025 ACADEMIC YEAR

SECOND YEAR **FIRST** SEMESTER

REGULAR EXAMINATION

FOR THE DEGREE OF:

BACHELOR OF SCIENCE AND EDUCATION

(P102/P106/P107 & E100/E101/E103/E111/E112)

COURSE CODE: MAT 214

COURSE TITLE: VECTOR ANALYSIS

DATE: 20/12/24 TIME: 9:00-11:00AM

INSTRUCTION TO CANDIDATES

• SEE INSIDE

INSTRUCTION: Answer questions ONE in section A and any other TWO in section B

SECTION A

Question One (30 marks)

- a) Find the directional derivative of $\varphi(x,y,z)=x^2y^2z+4x^2$ at (1,2,-1) in the direction of the vector $2\hat{\imath}-\hat{\jmath}-2\hat{k}$. (4 marks)
- b) If $\varphi = 3x^2y y^3z^2$, find grad ϕ at the point (1, -2, -1). (4 marks)
- c) Given that the three vectors $\vec{A} = \hat{\imath} + \hat{\jmath} + a\hat{k}$, $\vec{B} = 7\hat{\imath} + 2\hat{\jmath} + 0\hat{k}$ and $\vec{C} = 0\hat{\imath} + \hat{\jmath} + 7\hat{k}$ are coplanar, determine the value of a. (4 marks)
- d) Determine the curl of the vector $\vec{F} = y\hat{\imath} + 2xz\hat{\jmath} + ze^x\hat{k}$ (4 marks)
- e) Given the parametric equation x = sint, y = cost, z = 45t, $0 \le t \le 2\pi$. Find;
 - i. The tangent vector $\vec{F}'(t)$. (3 marks)
 - ii. The arc length. (4 marks)
- f) Find the volume of a parallelopiped whose edges are represented by

$$\vec{F} = 3\hat{i} + \hat{j} + \hat{k}, \qquad \vec{G} = 2\hat{i} - 3\hat{j} + \hat{k}, \qquad \vec{H} = \hat{i} - 3\hat{j} - 4\hat{k}$$
 (4 marks)

g) Determine the value of 'd' such that the vectors of \vec{A} and \vec{B} are orthogonal.

$$\vec{A} = 6\hat{\imath} - d\hat{\jmath} + 2\hat{k} \text{ and } \vec{B} = 3\hat{\imath} + \hat{\jmath} + 4\hat{k}$$
 (3 marks)

SECTION B

Question Two (20 marks)

- a) For the space curve $x = 3 \cos(t)$, $y = 3 \sin(t)$, z = 4t. Find the;
 - i) Unit tangent vector \hat{T} . (4 marks)
 - ii) Curvature k. (3marks)
 - iii) Principal normal vector \hat{N} . (2 marks)
 - iv) Binormal vector \hat{B} and torsion τ . (5 marks)
- b) Evaluate the triple integral $\int_0^1 \int_0^{\sqrt{1-y^2}} \int_{x^2+y^2}^{1-x^2-y^2} x dz dx dy$ (6 marks)

Question Three (20 marks)

- a) A projectile is fired from the origin over a horizontal ground with an initial speed of 50m/s and a launch angle of 30 degrees where will the projectile be 10 seconds later? (take $g = 9.8\text{m/s}^2$) (6 marks)
- b) Given the vector $\vec{A} = 2\hat{\imath} 3\hat{\jmath} + 4\hat{k}$ and $\vec{B} = -\hat{\imath} + 2\hat{\jmath} 2\hat{k}$ determine;

i.
$$\left| \vec{A} \right|$$
, (1 mark)

ii.
$$|\vec{B}|$$
, (1 mark)

iii.
$$\vec{A} \cdot \vec{B}$$
 (1 mark)

iv. hence determine the angle between the two vectors (1 mark)

- c) Given $\emptyset(x, y, z) = xyz^2$ and $\vec{A} = xz\hat{\imath} xy^2\hat{\jmath} + yz^2\hat{k}$. Compute $\frac{\partial^3}{\partial z \partial x \partial y}(\emptyset \vec{A})$ at the point (2, -2, 2). (5 marks)
- d) What is the area of a triangle determined by the points P(-1,2,0), Q(2,3,-2)

and
$$R(0, -3,4)$$
. (5 marks)

Question Four (20 marks)

- a) Show that $\overline{F} = (y^2 \cos x + z^3)\hat{i} + (2y \sin x 4)j + (3xz^2 + 2)k$ is a conservative force field. Determine the scalar potential and work done in moving a particle in this force field from (0,1,-1) to $(\frac{\pi}{2},-1,2)$.
 - b) Find an equation for the plane determined by the points (1,2,1), (-1,1,3) and (-2,-2,-2).
 - c) The formula for the orthogonal projection of u onto v is $proj_v u = \left(\frac{u \cdot v}{v \cdot v}\right) v$.
 - i. Find $proj_v u$ if $u = \langle 2,1,2 \rangle$ and $v = \langle 0,-1,1 \rangle$. (3 marks)
 - ii. Find the projection of u ORTHOGONAL to v. (1 mark)

Question Five (20 marks)

- a) Show that $\vec{F} = \frac{\vec{r}}{r^2}$ is an irrotational vector for $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$. (6 marks)
- b) A particle moves along a curve whose parametric equations are $x = \sin(t)$, $y = 2e^{-t}$, $z = t^2$ where t is the time. Then
 - i. Determine its velocity at any time. (2 marks)
 - ii. acceleration at any time. (1 mark)
 - iii. determine the speed of the particle at any time. (1 mark)
 - iv. Find the magnitudes of the velocity and acceleration at t = 0. (2 marks)
- c) Use divergence theorem to evaluate: $\int \int_s \vec{F} \cdot \hat{n} \, ds$ for the vector field $\vec{F} = \sin(\pi x) \,\hat{\imath} + z y^3 \hat{\jmath} + (z^2 + 4x) \hat{k}$ where s is the surface of the of the box with $-1 \le x \le 2$, $0 \le y \le 1$ and $1 \le z \le 4$. (8 marks)