CPP 523: Foundations of Program Evaluation I

Lab #1

Type out your responses (show your work) and submit via Canvas. Name your file **Lab-##-LastName.doc**.

In this assignment you will be working with a very small data set. You need to build a regression from the ground up. Read pages 9-25 in the Lewis-Beck text, *Applied Regression*, posted on the course website to review basic regression formulas.

I want you to focus on your understanding of the regression error term (often called the "residual"). Can you have an error term without first having a regression line?

X	Y	Ŷ	e	e^2
2	1			
4	5			
6	6			
8	7			
10	11			
Mean=6	Mean=6	Mean=6	Sum=0	Sum=

Regression model: $Y = b_0 + b_1 X + e$

var(x): 10 var(y): 13 cov(x,y): 11

- (1) Calculate b_1 using the knowledge the slope can be calculated as cov(x,y) / var(x).
- (2) Interpret the coefficient b_1 in plain English.
- (3) Calculate b_0 (recall that $\bar{y} = b_0 + b_1 \bar{x}$)
- (4) What is the predicted value of Y when X has a value of 14?
- (5) Calculate the sum of the squared errors (see page Lewis-Beck, p14) by completing the table above.
- (6) Calculate the regression sum of squares (Lewis-Beck p21). You can check your work for questions 5-6 against the ANOVA table below.
- (7) Calculate the R^2 using the sum of squares in the table.

Analysis of Variance Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
x	1	48.4	48.4	40.33	0.007898
Residuals	3	3.6	1.2	NA	NA