Dernière mise à jour	TD	Denis DEFAUCHY
16/03/2020	Cinématique	TD8 - Correction

Liaisons équivalentes

Exercice 1: 3 glissières orthogonales

Question 1: Etablir le graph des liaisons du mécanisme

Question 2: Les liaisons sont-elles en série ou en parallèle ?

Série — Cinématique — Somme

Question 3: Choisir, en le justifiant, point et base utiles à la détermination de la liaison équivalente

On ne reconnaît pas de liaison normalisée :

- On peut prendre n'importe quel point de l'espace : Notons le P
- Compte tenu des axes des glissières, on choisit la base : \mathfrak{B}_0

Dernière mise à jour	TD	Denis DEFAUCHY
16/03/2020	Cinématique	TD8 - Correction

Question 4: Mener l'analyse et donner le torseur équivalent

$$\begin{aligned} \left\{ \mathcal{V}_{4/1} \right\} &= \left\{ \mathcal{V}_{4/3} \right\} + \left\{ \mathcal{V}_{3/2} \right\} + \left\{ \mathcal{V}_{2/1} \right\} \\ \left\{ \mathcal{V}_{4/1} \right\} &= \left\{ \begin{matrix} P_{4/1} & U_{4/1} \\ Q_{4/1} & V_{4/1} \\ R_{4/1} & W_{4/1} \end{matrix} \right\}_{P}^{\mathfrak{B}_{0}} \end{aligned}$$

Liaison	Torseur canonique	Changement de pt	En P dans 🏵
$\{\mathcal{V}_{4/3}\}$	$ \begin{pmatrix} 0 & U_{4/3} \\ 0 & 0 \\ 0 & 0 \end{pmatrix}_P^{\mathfrak{B}_0} $	RAS	$\begin{pmatrix} 0 & U_{4/3} \\ 0 & 0 \\ 0 & 0 \end{pmatrix}_P^{\mathfrak{B}_0}$
$\{\mathcal{V}_{3/2}\}$		RAS	
$\{\mathcal{V}_{2/1}\}$	$ \begin{pmatrix} 0 & 0 \\ 0 & V_{2/1} \\ 0 & 0 \end{pmatrix}_{P}^{\mathfrak{B}_{0}} $	RAS	$ \begin{cases} 0 & 0 \\ 0 & V_{2/1} \\ 0 & 0 \end{cases}_{P}^{\mathfrak{B}_{0}} $

$$\begin{cases} P_{4/1} & U_{4/1} \\ Q_{4/1} & V_{4/1} \\ R_{4/1} & W_{4/1} \end{cases}_P^{\mathfrak{B}_0} = \begin{cases} 0 & U_{4/3} \\ 0 & 0 \\ 0 & 0 \end{cases}_P^{\mathfrak{B}_0} + \begin{cases} 0 & 0 \\ 0 & 0 \\ 0 & W_{3/2} \end{cases}_P^{\mathfrak{B}_0} + \begin{cases} 0 & 0 \\ 0 & V_{2/1} \\ 0 & 0 \end{cases}_P^{\mathfrak{B}_0}$$

$$\{ \mathcal{V}_{4/1} \} = \begin{cases} 0 & U_{4/3} \\ 0 & V_{2/1} \\ 0 & W_{3/2} \end{cases}_P^{\mathfrak{B}_0} = \begin{cases} 0 & U_{4/1} \\ 0 & V_{4/1} \\ 0 & W_{4/1} \end{cases}_P^{\mathfrak{B}_0}$$

Question 5: Les inconnues de la liaison équivalente sont-elles indépendantes

$$\begin{cases} U_{4/1} = U_{4/3} \\ V_{4/1} = V_{2/1} \\ W_{4/1} = W_{3/2} \end{cases}$$

Les 3 inconnues $U_{4/1}$, $V_{4/1}$ et $W_{4/1}$ sont indépendantes.

Question 6: Combien d'inconnues indépendantes possède cette liaison équivalente ?

$$I_{c} = 3$$

Question 7: La liaison est-elle une liaison normalisée ?

Non

Dernière mise à jour	TD	Denis DEFAUCHY
16/03/2020	Cinématique	TD8 - Correction

Exercice 2: Pompe hydraulique à pistons axiaux

Question 1: Etablir le graph des liaisons du mécanisme

Question 2: Les liaisons sont-elles en série ou en parallèle ?

Série – Cinématique – Somme

Question 3: Choisir, en le justifiant, point et base utiles à la détermination de la liaison équivalente

Soit on reconnaît une liaison ponctuelle en A de normale $(A, \overrightarrow{x_1})$: on va se placer en A dans la base 1

- On choisit le point de contact : A
- On choisit la base contenant la normale : \mathfrak{B}_1

Sinon:

- La liaison appui plan est valable partout dans l'espace
- La liaison rotule est valable en A: il est donc judicieux de se placer en A
- On voit que la liaison appui plan est définie par le vecteur $\overrightarrow{x_1}$, le torseur de la rotule est aussi simple dans toute base de l'espace, on choisit donc la base 1

Dernière mise à jour	TD	Denis DEFAUCHY
16/03/2020	Cinématique	TD8 - Correction

Question 4: Mener l'analyse et donner le torseur équivalent

$$\{\mathcal{V}_{2/0}\} = \{\mathcal{V}_{2/1}\} + \{\mathcal{V}_{1/0}\}$$

$$\{\mathcal{V}_{2/0}\} = \begin{cases} P_{2/0} & U_{2/0} \\ Q_{2/0} & V_{2/0} \\ R_{2/0} & W_{2/0} \end{cases}_A^{\mathfrak{B}_0}$$

Liaison	Torseur canonique	Changement de pt	En P dans 🏵
$\{\mathcal{V}_{2/1}\}$	$ \begin{pmatrix} P_{2/1} & 0 \\ Q_{2/1} & 0 \\ R_{2/1} & 0 \end{pmatrix}_{A}^{\mathfrak{B}_{1}} $	RAS	$ \left\{ \begin{cases} P_{2/1} & 0 \\ $
$\{\mathcal{V}_{1/0}\}$		RAS	$\begin{bmatrix} P_{1/0} & 0 \\ 0 & V_{1/0} \\ 0 & W_{1/0} \end{bmatrix}_A^{\mathfrak{B}_1}$

$$\begin{cases}
P_{2/0} & U_{2/0} \\
Q_{2/0} & V_{2/0} \\
R_{2/0} & W_{2/0}
\end{cases}_{P} = \begin{cases}
P_{2/1} & 0 \\
Q_{2/1} & 0 \\
R_{2/1} & 0
\end{cases}_{A} + \begin{cases}
P_{1/0} & 0 \\
0 & V_{1/0} \\
0 & W_{1/0}
\end{cases}_{A} \\
\{V_{2/0}\} = \begin{cases}
P_{2/1} + P_{1/0} & 0 \\
Q_{2/1} & V_{1/0} \\
R_{2/1} & W_{1/0}
\end{cases}_{A} = \begin{cases}
P_{2/0} & 0 \\
Q_{2/0} & V_{2/0} \\
R_{2/0} & W_{2/0}
\end{cases}_{A}$$

Question 5: Les inconnues de la liaison équivalente sont-elles indépendantes

$$\begin{cases} P_{2/0} = P_{2/1} + P_{1/0} \\ Q_{2/0} = Q_{2/1} \\ R_{2/0} = R_{2/1} \\ V_{2/0} = V_{1/0} \\ W_{2/0} = W_{1/0} \end{cases}$$

Les 5 inconnues $P_{2/0}$, $Q_{2/0}$, $R_{2/0}$, $V_{2/0}$ et $W_{2/0}$ sont indépendantes.

Question 6: Combien d'inconnues indépendantes possède cette liaison équivalente ?

$$I_c = 5$$

Question 7: La liaison est-elle une liaison normalisée ?

$$Pctl(A, \overrightarrow{x_1})$$

Dernière mise à jour	TD	Denis DEFAUCHY
16/03/2020	Cinématique	TD8 - Correction

Exercice 3: Guidage en rotation

On s'intéresse à la liaison équivalente 1/0.

Question 1: Etablir le graph des liaisons du mécanisme

Question 2: Les liaisons sont-elles en série ou en parallèle ?

Parallèle – Cinématique – Egalité

Question 3: Choisir, en le justifiant, point et base utiles à la détermination de la liaison équivalente

Soit on reconnaît une liaison pivot d'axe $(A, \overrightarrow{x_1})$

- On choisit un point de l'axe : A
- On choisit la base contenant l'axe : \mathfrak{B}_1

Soit:

- On voit deux rotules qui sont uniquement valables en leur centre, ce qui nous conduit à choisir soit A, soit B
- Si on ne se place pas dans la base 1, on aura un déplacement de point d'un des deux torseurs qui fera apparaître deux termes au lieu d'un, on choisit donc la base 1

Dernière mise à jour	TD	Denis DEFAUCHY
16/03/2020	Cinématique	TD8 - Correction

Question 4: Mener l'analyse et donner le torseur équivalent dans le cas où $L_1 \neq 0$

$$\left\{\mathcal{V}_{1/0}\right\} = \left\{\mathcal{V}_{1/0}^{1}\right\} = \left\{\mathcal{V}_{1/0}^{2}\right\}$$

$$\left\{\mathcal{V}_{1/0}\right\} = \left\{\begin{matrix} P_{1/0} & U_{1/0} \\ Q_{1/0} & V_{1/0} \\ R_{1/0} & W_{1/0} \end{matrix}\right\}_A^{\mathfrak{B}_1}$$

Liaison	Torseur canonique	Changement de pt	En P dans ${\mathfrak B}$
$\left\{\mathcal{V}_{1/0}^{1}\right\}$	$ \begin{bmatrix} P_{1/0}^1 & 0 \\ Q_{1/0}^1 & 0 \\ R_{1/0}^1 & 0 \end{bmatrix}_A^{\mathfrak{B}_1} $	RAS	$ \left\{ $
$\left\{\mathcal{V}_{1/0}^{2} ight\}$		$\vec{V}^{2}(A, 1/0) = \vec{V}^{2}(B, 1/0) + \overrightarrow{AB} \wedge \overrightarrow{\Omega_{10}^{2}}$ $= \begin{pmatrix} L_{1} \\ 0 \\ 0 \end{pmatrix}^{\mathfrak{B}_{1}} \wedge \begin{pmatrix} P_{1/0}^{2} \\ Q_{1/0}^{2} \\ R_{1/0}^{2} \end{pmatrix}^{\mathfrak{B}_{1}} = \begin{pmatrix} 0 \\ -L_{1}R_{1/0}^{2} \\ L_{1}Q_{1/0}^{2} \end{pmatrix}^{\mathfrak{B}_{1}}$	$ \begin{pmatrix} P_{1/0}^2 & 0 \\ Q_{1/0}^2 & -L_1 R_{1/0}^2 \\ R_{1/0}^2 & L_1 Q_{1/0}^2 \end{pmatrix}_A^{\mathfrak{B}_1} $

$$\begin{cases} P_{1/0} & U_{1/0} \\ Q_{1/0} & V_{1/0} \\ R_{1/0} & W_{1/0} \end{cases}^{\mathfrak{B}_{1}} = \begin{cases} P_{1/0}^{1} & 0 \\ Q_{1/0}^{1} & 0 \\ R_{1/0}^{1} & 0 \end{cases}^{\mathfrak{B}_{1}} = \begin{cases} P_{1/0}^{2} & 0 \\ Q_{1/0}^{2} & -L_{1}R_{1/0}^{2} \\ R_{1/0}^{2} & L_{1}Q_{1/0}^{2} \end{cases}^{\mathfrak{B}_{1}} \\ \begin{cases} P_{1/0} = P_{1/0}^{1} = P_{1/0}^{2} \\ Q_{1/0} = Q_{1/0}^{1} = Q_{1/0}^{2} \\ R_{1/0} = R_{1/0}^{1} = R_{1/0}^{2} \\ U_{1/0} = 0 = 0 \end{cases} \Leftrightarrow \begin{cases} P_{1/0} = P_{1/0}^{1} = P_{1/0}^{2} \\ Q_{1/0} = Q_{1/0}^{1} = 0 \\ R_{1/0} = R_{1/0}^{1} = 0 \\ R_{1/0} = R_{1/0}^{1} = 0 \\ W_{1/0} = 0 \end{cases} \\ V_{1/0} = 0 \end{cases} \\ \begin{cases} V_{1/0} \} = \begin{cases} P_{1/0} & 0 \\ 0 & 0 \\ 0 & 0 \end{cases}^{\mathfrak{B}_{1}} \end{cases}$$

Question 5: Les inconnues de la liaison équivalente sont-elles indépendantes

Une seule inconnue, pas de problèmes d'indépendance.

Question 6: Combien d'inconnues indépendantes possède cette liaison équivalente ?

$$I_c = 1$$

Question 7: La liaison est-elle une liaison normalisée ?

$$P(A, \overrightarrow{x_1})$$

Dernière mise à jour	TD	Denis DEFAUCHY
16/03/2020	Cinématique	TD8 - Correction

Question 8: Que se passe-t-il si $L_1=0$?

$$\begin{cases} P_{1/0} = P_{1/0}^1 = P_{1/0}^2 \\ Q_{1/0} = Q_{1/0}^1 = Q_{1/0}^2 \\ R_{1/0} = R_{1/0}^1 = R_{1/0}^2 \\ W_{1/0} = 0 = 0 \\ W_{1/0} = 0 = L_1 Q_{1/0}^2 \end{cases} \Leftrightarrow \begin{cases} P_{1/0} = P_{1/0}^1 = P_{1/0}^2 \\ Q_{1/0} = Q_{1/0}^1 = Q_{1/0}^2 \\ R_{1/0} = R_{1/0}^1 = R_{1/0}^2 \\ W_{1/0} = 0 = 0 \\ W_{1/0} = 0 = 0 \\ W_{1/0} = 0 = 0 \end{cases}$$

$$\begin{cases} V_{1/0} = 0 = 0 \\ W_{1/0} = 0 = 0 \end{cases}$$

$$\begin{cases} V_{1/0} = 0 = 0 \\ W_{1/0} = 0 = 0 \end{cases}$$

Liaisons rotule de centre A=B à 3 DDL

Dernière mise à jour	TD	Denis DEFAUCHY
16/03/2020	Cinématique	TD8 - Correction

Exercice 4: Guidage en translation

Question 1: Etablir le graph des liaisons du mécanisme

Question 2: Les liaisons sont-elles en série ou en parallèle ?

Question 3: Choisir, en le justifiant, point et base utiles à la détermination de la liaison équivalente

Soit on reconnaît une liaison glissière d'axe $\overrightarrow{x_0}$

- On peut prendre tout point de l'espace mais le travail sera plus simple sur l'un des deux axes $(P_1, \overrightarrow{x_0})$ ou $(P_2, \overrightarrow{x_0})$ puisque deux des 4 torseurs y sont définis. Choix : P_1
- On prend la base : \mathfrak{B}_0

Soit:

- On choisit un des points des deux axes $(P_1, \overrightarrow{x_0})$ ou $(P_2, \overrightarrow{x_0})$ puisque deux des 4 torseurs y sont définis. Choix : P_1
- On choisit la base 0 commune aux 4 torseurs : \mathfrak{B}_0

Question 4: Mener l'analyse et donner le torseur équivalent

$$\begin{split} \{\mathcal{V}_{1/0}\} &= \{\mathcal{V}_{1/0}^{1}\} = \{\mathcal{V}_{1/0}^{2}\} = \{\mathcal{V}_{1/0}^{3}\} = \{\mathcal{V}_{1/0}^{4}\} \\ \{\mathcal{V}_{1/0}\} &= \left\{\begin{matrix} P_{1/0} & U_{1/0} \\ Q_{1/0} & V_{1/0} \\ R_{1/0} & W_{1/0} \end{matrix}\right\}_{P_{1}}^{\mathfrak{B}_{0}} \end{split}$$

Page 8 sur 14

Dernière mise à jour	TD	Denis DEFAUCHY
16/03/2020	Cinématique	TD8 - Correction

Liaison	Torseur canonique	Changement de pt	En <i>P</i> dans ${\mathfrak B}$
$\left\{\mathcal{V}_{1/0}^{1} ight\}$	$ \left\{ \begin{cases} P_{1/0}^1 & U_{1/0}^1 \\ 0 & 0 \\ 0 & 0 $	RAS	$\begin{cases} P_{1/0}^1 & U_{1/0}^1 \\ 0 & 0 \\ 0 & 0 \end{cases}_{P_1}^{\mathfrak{B}_0}$
$\left\{\mathcal{V}_{1/0}^{2}\right\}$	$ \begin{cases} P_{1/0}^2 & U_{1/0}^2 \\ 0 & 0 \\ 0 & 0 \end{cases}_{P_1}^{\mathfrak{B}_0} $	RAS	$ \left\{ P_{1/0}^2 & U_{1/0}^2 \\ 0 & 0 \\ 0 & 0 \right\}_{P_1}^{\mathfrak{B}_0} $
$\{v_{1/0}^3\}$	$ \left\{ P_{1/0}^3 & U_{1/0}^3 \\ 0 & 0 \\ 0 & 0 $	$\vec{V}^{3}(P_{1}, 1/0) = \vec{V}^{3}(P_{3}, 1/0) + \overrightarrow{P_{1}P_{3}} \wedge \overrightarrow{\Omega_{10}^{3}}$ $= \begin{pmatrix} 0 \\ -a \\ 0 \end{pmatrix}^{\mathfrak{B}_{0}} \wedge \begin{pmatrix} P_{1/0}^{3} \\ 0 \\ 0 \end{pmatrix}^{\mathfrak{B}_{0}} = \begin{pmatrix} 0 \\ 0 \\ aP_{1/0}^{3} \end{pmatrix}^{\mathfrak{B}_{0}}$	$ \left\{ $
$\left\{\mathcal{V}_{1/0}^4 ight\}$	m	$\vec{V}^{4}(P_{1}, 1/0) = \vec{V}^{4}(P_{3}, 1/0) + \overrightarrow{P_{1}P_{3}} \wedge \overrightarrow{\Omega_{10}^{4}}$ $= \begin{pmatrix} 0 \\ -a \\ 0 \end{pmatrix}^{\mathfrak{B}_{0}} \wedge \begin{pmatrix} P_{1/0}^{4} \\ 0 \\ 0 \end{pmatrix}^{\mathfrak{B}_{0}} = \begin{pmatrix} 0 \\ 0 \\ aP_{1/0}^{4} \end{pmatrix}^{\mathfrak{B}_{0}}$	$ \left\{ $

$$\begin{cases} P_{1/0} & U_{1/0} \\ Q_{1/0} & V_{1/0} \\ R_{1/0} & W_{1/0} \end{cases}^{\mathfrak{B}_0} = \begin{cases} P_{1/0}^1 & U_{1/0}^1 \\ 0 & 0 \\ 0 & 0 \end{cases}^{\mathfrak{B}_0} = \begin{cases} P_{1/0}^2 & U_{1/0}^2 \\ 0 & 0 \\ 0 & 0 \end{cases}^{\mathfrak{B}_0} = \begin{cases} P_{1/0}^3 & U_{1/0}^3 \\ 0 & 0 \\ 0 & 0 \end{cases}^{\mathfrak{B}_0} = \begin{cases} P_{1/0}^4 & U_{1/0}^4 \\ 0 & 0 \\ 0 & aP_{1/0}^3 \end{cases}^{\mathfrak{B}_0} = \begin{cases} P_{1/0}^4 & U_{1/0}^4 \\ 0 & 0 \\ 0 & aP_{1/0}^4 \end{cases}^{\mathfrak{B}_0} = \begin{cases} P_{1/0} & P_{1/0}^3 & P_{1/0}^4 \\ 0 & 0 \\ 0 & aP_{1/0}^4 \end{cases}^{\mathfrak{B}_0} = \begin{cases} P_{1/0} & P_{1/0}^3 & P_{1/0}^4 \\ 0 & 0 \\ 0 & aP_{1/0}^4 \end{cases}^{\mathfrak{B}_0} = \begin{cases} P_{1/0} & P_{1/0}^3 & P_{1/0}^4 \\ 0 & 0 \\ 0 & aP_{1/0}^4 \end{cases}^{\mathfrak{B}_0} = \begin{cases} P_{1/0} & P_{1/0}^3 & P_{1/0}^4 \\ 0 & 0 \\ 0 & aP_{1/0}^4 \end{cases}^{\mathfrak{B}_0} = \begin{cases} P_{1/0} & P_{1/0}^3 & P_{1/0}^4 \\ 0 & 0 \\ 0 & aP_{1/0}^4 \end{cases}^{\mathfrak{B}_0} = \begin{cases} P_{1/0} & P_{1/0}^3 & P_{1/0}^4 \\ 0 & 0 \\ 0 & aP_{1/0}^4 \end{cases}^{\mathfrak{B}_0} = \begin{cases} P_{1/0} & P_{1/0}^3 & P_{1/0}^4 \\ 0 & 0 \\ 0 & aP_{1/0}^4 \end{cases}^{\mathfrak{B}_0} = \begin{cases} P_{1/0} & P_{1/0}^3 & P_{1/0}^4 \\ 0 & 0 \\ 0 & aP_{1/0}^4 \end{cases}^{\mathfrak{B}_0} = \begin{cases} P_{1/0} & P_{1/0}^3 & P_{1/0}^4 \\ 0 & 0 \\ 0 & aP_{1/0}^4 \end{cases}^{\mathfrak{B}_0} = \begin{cases} P_{1/0} & P_{1/0}^4 & P_{1/0}^4 \\ 0 & 0 \\ 0 & aP_{1/0}^4 \end{cases}^{\mathfrak{B}_0} = \begin{cases} P_{1/0} & P_{1/0}^4 & P_{1/0}^4 \\ 0 & 0 \\ 0 & aP_{1/0}^4 \end{cases}^{\mathfrak{B}_0} = \begin{cases} P_{1/0} & P_{1/0}^4 & P_{1/0}^4 \\ 0 & 0 \\ 0 & aP_{1/0}^4 \end{cases}^{\mathfrak{B}_0} = \begin{cases} P_{1/0} & P_{1/0}^4 & P_{1/0}^4 \\ 0 & 0 \\ 0 & aP_{1/0}^4 \end{cases}^{\mathfrak{B}_0} = \begin{cases} P_{1/0} & P_{1/0}^4 & P_{1/0}^4 \\ 0 & 0 \\ 0 & aP_{1/0}^4 \end{cases}^{\mathfrak{B}_0} = \begin{cases} P_{1/0} & P_{1/0}^4 & P_{1/0}^4 \\ 0 & 0 \\ 0 & aP_{1/0}^4 \end{cases}^{\mathfrak{B}_0} = \begin{cases} P_{1/0} & P_{1/0}^4 & P_{1/0}^4 \\ 0 & 0 \\ 0 & aP_{1/0}^4 \end{cases}^{\mathfrak{B}_0} = \begin{cases} P_{1/0} & P_{1/0}^4 & P_{1/0}^4 \\ 0 & 0 \\ 0 & aP_{1/0}^4 \end{cases}^{\mathfrak{B}_0} = \begin{cases} P_{1/0} & P_{1/0}^4 & P_{1/0}^4 \\ 0 & 0 \\ 0 & aP_{1/0}^4 \end{cases}^{\mathfrak{B}_0} = \begin{cases} P_{1/0} & P_{1/0}^4 & P_{1/0}^4 \\ 0 & 0 \\ 0 & aP_{1/0}^4 \end{cases}^{\mathfrak{B}_0} = \begin{cases} P_{1/0} & P_{1/0}^4 & P_{1/0}^4 \\ 0 & 0 \\ 0 & aP_{1/0}^4 \end{cases}^{\mathfrak{B}_0} = \begin{cases} P_{1/0} & P_{1/0}^4 & P_{1/0}^4 \\ 0 & 0 \\ 0 & aP_{1/0}^4 \end{cases}^{\mathfrak{B}_0} = \begin{cases} P_{1/0} & P_{1/0}^4 & P_{1/0}^4 \\ 0 & 0 \\ 0 & aP_{1/0}^4 \end{cases}^{\mathfrak{B}_0} = \begin{cases} P_{1/0} & P_{1/0}^4 & P_{1/0}^4 \\ 0 & 0 \\ 0 & aP_{1/0}^4 \end{cases}^{\mathfrak{B}_0} = \begin{cases} P_{1/0} & P_{1/0}^4 & P_{1/0}$$

$$\left\{\mathcal{V}_{1/0}\right\} = \left\{\begin{matrix} 0 & U_{1/0} \\ 0 & 0 \\ 0 & 0 \end{matrix}\right\}_{P_1}^{\mathfrak{B}_0}$$

Question 5: Les inconnues de la liaison équivalente sont-elles indépendantes

Une seule inconnue, pas de problèmes d'indépendance.

Question 6: Combien d'inconnues indépendantes possède cette liaison équivalente ?

$$I_c = 1$$

Question 7: La liaison est-elle une liaison normalisée ?

 $Gl(\overrightarrow{x_0})$

Question 8: Quelle liaison est réalisée si a = 0?

Dernière mise à jour	TD	Denis DEFAUCHY
16/03/2020	Cinématique	TD8 - Correction

Le système devient :

$$\begin{cases} P_{1/0} = P_{1/0}^1 = P_{1/0}^2 = P_{1/0}^3 = P_{1/0}^4 \\ Q_{1/0} = 0 = 0 = 0 = 0 \\ R_{1/0} = 0 = 0 = 0 = 0 \end{cases}$$

$$U_{1/0} = U_{1/0}^1 = U_{1/0}^2 = U_{1/0}^3 = U_{1/0}^4$$

$$V_{1/0} = 0 = 0 = 0 = 0$$

$$W_{1/0} = 0 = 0 = 0 = 0$$

$$\begin{aligned} \{\mathcal{V}_{1/0}\} &= \begin{cases} P_{1/0} & U_{1/0} \\ 0 & 0 \\ 0 & 0 \end{cases} \Big\}_{P_1}^{\mathfrak{B}_1} \\
I_c &= 2 \\
PG(P_1, \overrightarrow{x_0})
\end{aligned}$$

Dernière mise à jour	TD	Denis DEFAUCHY
16/03/2020	Cinématique	TD8 - Correction

Exercice 5: Liaison complexe

Soit le schéma cinématique suivant :

On s'intéresse à la liaison équivalente 2/1.

Question 1: Etablir le graph des liaisons du mécanisme

Question 2: Les liaisons sont-elles en série ou en parallèle ?

Parallèle – Cinématique – Egalité

Question 3: Choisir, en le justifiant, point et base utiles à la détermination de la liaison équivalente

On ne reconnaît pas de liaison usuelle :

- Il existe un point commun aux lieux de définition des deux torseurs : Point $\mathcal C$
- La ponctuelle est définie dans la base 1 et la linéaire rectiligne est définie dans la base 2. On choisit la base : \mathfrak{B}_1

Dernière mise à jour	TD	Denis DEFAUCHY
16/03/2020	Cinématique	TD8 - Correction

Question 4: Mener l'analyse et donner le torseur équivalent

$$\left\{\mathcal{V}_{2/1}\right\} = \left\{\mathcal{V}_{2/1}^{1}\right\} = \left\{\mathcal{V}_{2/1}^{2}\right\}$$

$$\{\mathcal{V}_{2/1}\} = \begin{cases} P_{2/1} & U_{2/1} \\ Q_{2/1} & V_{2/1} \\ R_{2/1} & W_{2/1} \end{cases}_{C}^{\mathfrak{B}_{1}}$$

Liaison	Torseur canonique	Changement de pt	En <i>P</i> dans ${\mathfrak B}$
$\left\{\mathcal{V}_{2/1}^{1}\right\}$	$ \left\{ P_{2/1}^1 & U_{2/1}^1 \\ Q_{2/1}^1 & 0 \\ R_{2/1}^1 & W_{2/1}^1 \right\}_C $	RAS	$\begin{pmatrix} P_{2/1}^1 & U_{2/1}^1 \\ Q_{2/1}^1 & 0 \\ R_{2/1}^1 & W_{2/1}^1 \end{pmatrix}_C^{\mathfrak{B}_1}$
$\left\{\mathcal{V}_{2/1}^2\right\}$	$ \begin{cases} P_{2/1}^2 & U_{2/1}^2 \\ 0 & V_{2/1}^2 \\ R_{2/1}^2 & 0 \end{cases} $	RAS	$\begin{cases} P_{2/1}^2 \cos \theta_{2/1} & U_{2/1}^2 \cos \theta_{2/1} - V_{2/1}^2 \sin \theta_{2/1} \\ P_{2/1}^2 \sin \theta_{2/1} & U_{2/1}^2 \sin \theta_{2/1} + V_{2/1}^2 \cos \theta_{2/1} \\ R_{2/1}^2 & 0 \end{cases}^{\mathfrak{B}_1}$

$$\begin{cases} P_{2/1} & U_{2/1} \\ Q_{2/1} & V_{2/1} \\ R_{2/1} & W_{2/1} \end{cases}^{\mathfrak{B}_{1}} = \begin{cases} P_{2/1}^{1} & U_{2/1}^{1} \\ Q_{2/1}^{1} & 0 \\ R_{2/1}^{1} & W_{2/1}^{1} \end{cases}^{\mathfrak{B}_{1}} = \begin{cases} P_{2/1}^{1} \cos \theta_{2/1} & U_{2/1}^{2} \cos \theta_{2/1} - V_{2/1}^{2} \sin \theta_{2/1} \\ P_{2/1}^{2} \sin \theta_{2/1} & U_{2/1}^{2} \sin \theta_{2/1} + V_{2/1}^{2} \cos \theta_{2/1} \\ P_{2/1}^{2} \sin \theta_{2/1} & U_{2/1}^{2} \sin \theta_{2/1} + V_{2/1}^{2} \cos \theta_{2/1} \\ Q_{2/1} = P_{2/1}^{1} = P_{2/1}^{2} \sin \theta_{2/1} \\ Q_{2/1} = Q_{2/1}^{1} = P_{2/1}^{2} \sin \theta_{2/1} \\ R_{2/1} = R_{2/1}^{1} = R_{2/1}^{2} \end{cases} \Leftrightarrow \begin{cases} P_{2/1} = P_{2/1}^{1} \cos \theta_{2/1} + P_{2/1}^{2} \cos \theta_{2/1} \\ Q_{2/1} = Q_{2/1}^{1} = P_{2/1}^{2} \sin \theta_{2/1} \\ R_{2/1} = R_{2/1}^{1} = R_{2/1}^{2} \end{cases} \\ W_{2/1} = 0 = U_{2/1}^{2} \sin \theta_{2/1} + V_{2/1}^{2} \cos \theta_{2/1} \\ W_{2/1} = W_{2/1}^{1} = 0 \end{cases} \end{cases}$$

$$\frac{Q_{2/1}}{P_{2/1}} = \frac{P_{2/1}^2 \sin \theta_{2/1}}{P_{2/1}^2 \cos \theta_{2/1}} = \tan \theta_{2/1} \Leftrightarrow Q_{2/1} = \tan \theta_{2/1} P_{2/1}$$

$$\left\{ \mathcal{V}_{2/1} \right\} = \left\{ \begin{aligned} & P_{2/1} & U_{2/1} \\ \tan \theta_{2/1} P_{2/1} & 0 \\ & R_{2/1} & 0 \end{aligned} \right\}^{\mathfrak{B}_1}$$

Et dans l'autre base ? De toute manière, comme la relation entre composantes d'un même vecteur n'est vraie que pour un seul des deux, dans l'autre base on va faire apparaître une nouvelle dépendance

$$\left\{\mathcal{V}_{2/1}\right\} = \begin{cases} P_{2/1}\cos\theta_{2/1} - \tan\theta_{2/1}\,P_{2/1}\sin\theta_{2/1} & U_{2/1}\cos\theta_{2/1} \\ P_{2/1}\sin\theta_{2/1} + \tan\theta_{2/1}\,P_{2/1}\cos\theta_{2/1} & U_{2/1}\sin\theta_{2/1} \\ R_{2/1} & 0 \end{cases}^{\mathfrak{B}_{2}}$$

Dernière mise à jour	TD	Denis DEFAUCHY
16/03/2020	Cinématique	TD8 - Correction

$$\left\{ \mathcal{V}_{2/1} \right\} = \left\{ \begin{aligned} & P_{2/1} \cos \theta_{2/1} + \tan \theta_{2/1} \, P_{2/1} \sin \theta_{2/1} & U_{2/1} \cos \theta_{1/2} \\ & - P_{2/1} \sin \theta_{2/1} + \tan \theta_{2/1} \, P_{2/1} \cos \theta_{2/1} & U_{2/1} \sin \theta_{1/2} \\ & R_{2/1} & 0 \end{aligned} \right\}_{\mathcal{C}}^{\mathfrak{B}_{2}}$$

$$\left\{ \mathcal{V}_{2/1} \right\} = \left\{ \begin{aligned} & P_{2/1} \cos \theta_{2/1} + \tan \theta_{2/1} \, P_{2/1} \cos \theta_{2/1} & U_{2/1} \sin \theta_{1/2} \\ & - P_{2/1} \sin \theta_{2/1} + \sin \theta_{2/1} \, P_{2/1} & U_{2/1} \sin \theta_{1/2} \\ & - P_{2/1} \sin \theta_{2/1} + \sin \theta_{2/1} \, P_{2/1} & 0 \end{aligned} \right\}_{\mathcal{C}}^{\mathfrak{B}_{2}}$$

$$\left\{ \mathcal{V}_{2/1} \right\} = \left\{ \begin{aligned} & P_{2/1} \left(\frac{\cos^{2} \theta_{2/1} + 1 - \cos^{2} \theta_{2/1}}{\cos \theta_{2/1}} \right) & U_{2/1} \cos \theta_{1/2} \\ & 0 & U_{2/1} \sin \theta_{1/2} \\ & 0 & 0 \end{aligned} \right\}_{\mathcal{C}}^{\mathfrak{B}_{2}}$$

$$\left\{ \mathcal{V}_{2/1} \right\} = \left\{ \begin{aligned} & \frac{P_{2/1}}{\cos \theta_{2/1}} & U_{2/1} \cos \theta_{1/2} \\ & 0 & U_{2/1} \sin \theta_{2/1} \end{aligned} \right\}_{\mathcal{C}}^{\mathfrak{B}_{2}}$$

$$\left\{ \mathcal{V}_{2/1} \right\} = \left\{ \begin{aligned} & P_{2/1} & U_{2/1} \cos \theta_{1/2} \\ & 0 & U_{2/1} \sin \theta_{1/2} \\ & 0 & U_{2/1} \sin \theta_{1/2} \\ & 0 & U_{2/1} \sin \theta_{2/1} \end{aligned} \right\}_{\mathcal{C}}^{\mathfrak{B}_{2}}$$

On ne peut reconnaître une liaison usuelle car :

- Il y a dépendance entre inconnues
- La forme ne ressemble à aucun torseur connu

Question 5: Les inconnues de la liaison équivalente sont-elles indépendantes

Attention, on ne peut utiliser la tangente que si $\theta_{2/1} \neq \frac{\pi}{2}$

$$\{\mathcal{V}_{2/1}\} = \begin{cases} P'_{2/1} & U'_{2/1} \\ 0 & U'_{2/1} \tan \theta_{2/1} \\ R'_{2/1} & 0 \end{cases}^{\mathfrak{B}_{2}} = \begin{cases} P_{2/1} & U_{2/1} \\ \tan \theta_{2/1} P_{2/1} & 0 \\ R_{2/1} & 0 \end{cases}^{\mathfrak{B}_{1}}$$

Il y a dépendance entre 2 inconnues quelle que soit la base choisie

Question 6: Combien d'inconnues indépendantes possède cette liaison équivalente ?

$$I_c = 3$$

Question 7: La liaison est-elle une liaison normalisée ?

Non

Dernière mise à jour	TD	Denis DEFAUCHY
16/03/2020	Cinématique	TD8 - Correction

Question 8: Quelle est la liaison obtenue ?

$$\theta_{21} = 0$$

$$\cos\theta_{21} = 1 \quad ; \quad \sin\theta_{21} = 0$$

$$\begin{cases} P_{2/1} = P_{2/1}^1 = P_{2/1}^2 \\ Q_{2/1} = Q_{2/1}^1 = 0 \\ R_{2/1} = R_{2/1}^1 = R_{2/1}^2 \\ U_{2/1} = U_{2/1}^1 = U_{2/1}^2 \\ V_{2/1} = 0 = V_{2/1}^2 \\ W_{2/1} = W_{2/1}^1 = 0 \end{cases}$$

$$\begin{cases} P_{2/1} & U_{2/1} \\ 0 & 0 \\ R_{2/1} & 0 \end{cases}_{C}^{\mathfrak{B}_{1}}$$

Liaison non normalisée à 3 DDL

Question 9: Quelle est la liaison obtenue ?

$$\theta_{21} = \frac{\pi}{2}$$

$$\cos \theta_{21} = 0 \quad ; \quad \sin \theta_{21} = 1$$

$$\begin{cases} P_{2/1} = P_{2/1}^1 = 0 \\ Q_{2/1} = Q_{2/1}^1 = \pm P_{2/1}^2 \\ R_{2/1} = R_{2/1}^1 = R_{2/1}^2 \\ U_{2/1} = U_{2/1}^1 = -V_{2/1}^2 \\ V_{2/1} = 0 = -U_{2/1}^2 \\ W_{2/1} = W_{2/1}^1 = 0 \\ \begin{cases} 0 & U_{2/1} \\ Q_{2/1} & 0 \\ R_{2/1} & 0 \end{cases} \end{cases}^{\mathfrak{B}_1}$$

Liaison Linéaire annulaire à doigt d'axe \vec{x} - 3 DDL