# Untitled1

May 14, 2020

# 1 DATA ANALYSIS

# 2 AUTHOR

#### 2.1 S SAI SURYATEJA

- 2.2 Vellore Institute of Technology, Vellore
- 2.3 Why do we need to perform Exploratory Data Analysis?
- \* To Maximise the insight into dataset.
- st To understand the connection between the variables and to uncover the underlying structure
- \* To extract the import Variables
- \* To detect anomalies
- \* To test the underlying assumptions.

### 2.4 Objective of this kernel:

To understand the how the student's performance (test scores) is affected by the other variables (Gender, Ethnicity, Parental level of education, Lunch, Test preparation course)

### 2.4.1 Lets import the required libraries

```
[1]: import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns
  import os
```

#### 2.4.2 Read the Dataset

#### 2.4.3 Information of the Dataset

```
[3]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 8 columns):

| # | Column                      | Non-Null Count | Dtype  |
|---|-----------------------------|----------------|--------|
|   |                             |                |        |
| 0 | gender                      | 1000 non-null  | object |
| 1 | race/ethnicity              | 1000 non-null  | object |
| 2 | parental level of education | 1000 non-null  | object |
| 3 | lunch                       | 1000 non-null  | object |
| 4 | test preparation course     | 1000 non-null  | object |
| 5 | math score                  | 1000 non-null  | int64  |
| 6 | reading score               | 1000 non-null  | int64  |
| 7 | writing score               | 1000 non-null  | int64  |
|   |                             |                |        |

dtypes: int64(3), object(5) memory usage: 62.6+ KB

Here, you can see all the column names, total values and type of the values.

# 2.5 We have 2 types of variables.

- Numerical variables : which contains number as values
- Categorical variables: which contains descriptions of groups or things.

# 2.5.1 In this Dataset,

- Numerical Variables are Math score, Reading score and Writing score.
- Categorical Variables are Gender, Race/ethnicity, Parental level of education, Lunch and Test preparation course.

#### 2.5.2 Statistics the numerical variables

# [4]: df.describe()

| [4]: |       | math score | reading score | writing score |
|------|-------|------------|---------------|---------------|
|      | count | 1000.00000 | 1000.000000   | 1000.000000   |
|      | mean  | 66.08900   | 69.169000     | 68.054000     |
|      | std   | 15.16308   | 14.600192     | 15.195657     |
|      | min   | 0.00000    | 17.000000     | 10.000000     |
|      | 25%   | 57.00000   | 59.000000     | 57.750000     |
|      | 50%   | 66.00000   | 70.000000     | 69.000000     |
|      | 75%   | 77.00000   | 79.000000     | 79.000000     |
|      | max   | 100.00000  | 100.000000    | 100.000000    |

You can see the descriptive statistics of numerical variables such as total count, mean, standard deviation, minimum and maximum values and three quantiles of the data (25%,50%,75%).

#### 2.5.3 Count the number of rows and columns

```
[5]: df.shape
```

[5]: (1000, 8)

### 2.5.4 Null Value Check

```
[6]: df.isnull().sum()
```

```
[6]: gender
                                     0
    race/ethnicity
                                     0
    parental level of education
                                     0
                                     0
    lunch
     test preparation course
                                     0
                                     0
    math score
                                     0
    reading score
                                     0
    writing score
     dtype: int64
```

# 2.6 Plots of Numerical Variables:

# 2.6.1 Maths Score Distribution

```
[7]: plt.rcParams['figure.figsize'] = (20, 10)
sns.countplot(df['math score'], palette = 'prism')
plt.title('Math Score',fontsize = 20)
plt.show()
```



# 2.6.2 Reading Score Distribution

```
[8]: plt.rcParams['figure.figsize'] = (20, 10)
sns.countplot(df['reading score'], palette = 'prism')
plt.title('Reading Score',fontsize = 20)
plt.show()
```



# 2.6.3 Writing Score Distribution

```
[9]: plt.rcParams['figure.figsize'] = (20, 10)
sns.countplot(df['writing score'], palette = 'prism')
plt.title('Writing Score', fontsize = 20)
plt.show()
```



# 2.6.4 Statistical Distribution



From the above plots, we can see that the maximum number of students have scored 60-80 in all three subjects i.e., math, reading and writing.

# 2.7 Plots of Categorical Variables

```
[11]: plt.figure(figsize=(20,10))
      plt.subplots_adjust(left=0.125, bottom=0.1, right=0.9, top=0.9,
                            wspace=0.5, hspace=0.2)
      plt.subplot(141)
      plt.title('Gender',fontsize = 20)
      df['gender'].value_counts().plot.pie(autopct="%1.1f%%")
      plt.subplot(142)
      plt.title('Ethinicity',fontsize = 20)
      df['race/ethnicity'].value_counts().plot.pie(autopct="%1.1f%%")
      plt.subplot(143)
      plt.title('Lunch',fontsize = 20)
      df['lunch'].value_counts().plot.pie(autopct="%1.1f%%")
      plt.subplot(144)
      plt.title('Parentel level of Education',fontsize = 20)
      df['parental level of education'].value_counts().plot.pie(autopct="%1.1f%%")
      plt.show()
```



#### 2.8 Observations:

- The proportion of male and female are almost same
- Highest number of students belong to Group C ethinicity followed by Group D
- Highest proportion of the students have standard lunch
- Highest proportion of parentel level of Education is 'Some college', 'associate's degreee' and 'high school'

# 2.9 Division of data using different categories for subject scores:

#### 2.9.1 Gender







We can see that male students scored higher in Maths where as female students scored higher in Reading and writing

# 2.9.2 Gender and Test Preparation Course







So the students (male and female) who completed the test preparation course scored higher in all three subjects.

# 2.9.3 Gender and Ethnicity

```
[14]: plt.title('Gender Vs Ethnicity',fontsize = 20)
sns.countplot(x="gender", hue="race/ethnicity", data=df)
plt.show()
```



# 2.9.4 Ethinicity and Parental Level of Education



#### 2.9.5 Parental education, Lunch and Gender





# 2.9.6 Gender, Lunch and Ethenicity





So, the students with standard lunch were better performers when compared with free lunch. So, the students in group C performs better than other races.

#### 2.9.7 Gender, Test Preparation Course and Ethnicity

```
[18]: plt.figure(figsize=(15,5))
      plt.subplots_adjust(left=0.125, bottom=0.1, right=0.9, top=0.9,
                            wspace=0.5, hspace=0.2)
      plt.subplot(131)
      plt.title('Math Scores')
      sns.barplot(hue="test preparation course", y="math score", x="race/ethnicity", u
      →data=df)
      plt.subplot(132)
      plt.title('Reading Scores')
      sns.barplot(hue="test preparation course", y="reading score", x="race/
      ⇔ethnicity", data=df)
      plt.subplot(133)
      plt.title('Writing Scores')
      sns.barplot(hue="test preparation course", y="writing score", x= 'race/
       ⇔ethnicity',data=df)
     plt.show()
```







Highest number of Students who belongs to Group E has completed the test preparation course in Math and Reading and scored highest.

Highest number of Students who belongs to Group D and E has completed the test preparation course in Writing and scored highest.

### 2.9.8 Test Preparation Course vs. All Other Categorial Variables

```
[19]: plt.figure(figsize=(30,15))
      plt.subplots_adjust(left=0.125, bottom=0.1, right=0.9, top=0.9,
                            wspace=0.5, hspace=0.2)
      plt.subplot(251)
      plt.title('Test Preparation course Vs Gender',fontsize = 15)
      sns.countplot(hue="test preparation course", x="gender", data=df)
      plt.subplot(252)
      plt.title('Test Preparation course Vs Ethnicity',fontsize = 15)
      sns.countplot(hue="test preparation course", y="race/ethnicity", data=df)
      plt.subplot(253)
      plt.title('Test Preparation course Vs Lunch',fontsize = 15)
      sns.countplot(hue="test preparation course", x="lunch", data=df)
      plt.subplot(254)
      plt.title('Test Preparation course Vs Parental Level Of Education',fontsize =
       \rightarrow 15)
      sns.countplot(hue="test preparation course", y="parental level of education",
       →data=df)
      plt.show()
```



#### 2.9.9 Observations:

- Most of the students have not completed the test preparation course.
- Highest number Students who belong to group C ethinicity have completed the test preparation course.
- Standard lunch students have completed the test preparation course
- Students whos parental level of education is 'some college, 'associate's degree', and high school have completed the test preparation course.

# 3 Statistical Study

3.0.1 To analyse the data in more deeper way, lets few new columns: Total marks, Percentage and Grades.

```
[20]: df['total marks']=df['math score']+df['reading score']+df['writing score']
df['percentage']=df['total marks']/300*100
```

### 3.0.2 Grading System

```
85-100 : Grade A
70-84 : Grade B
55-69 : Grade C
35-54 : Grade D
0-35 : Grade E
```

```
[21]: def determine_grade(scores):
    if scores >= 85 and scores <= 100:
        return 'Grade A'
    elif scores >= 70 and scores < 85:
        return 'Grade B'
    elif scores >= 55 and scores < 70:
        return 'Grade C'
    elif scores >= 35 and scores < 55:
        return 'Grade D'</pre>
```

```
elif scores >= 0 and scores < 35:</pre>
        return 'Grade E'
df['grades'] = df['percentage'].apply(determine_grade)
```

Now the columns "total marks", "percentage" and "grades" are created

# [22]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1000 entries, 0 to 999 Data columns (total 11 columns):

| #                                       | Column                      | Non-Null Count | Dtype   |  |  |
|-----------------------------------------|-----------------------------|----------------|---------|--|--|
|                                         |                             |                |         |  |  |
| 0                                       | gender                      | 1000 non-null  | object  |  |  |
| 1                                       | race/ethnicity              | 1000 non-null  | object  |  |  |
| 2                                       | parental level of education | 1000 non-null  | object  |  |  |
| 3                                       | lunch                       | 1000 non-null  | object  |  |  |
| 4                                       | test preparation course     | 1000 non-null  | object  |  |  |
| 5                                       | math score                  | 1000 non-null  | int64   |  |  |
| 6                                       | reading score               | 1000 non-null  | int64   |  |  |
| 7                                       | writing score               | 1000 non-null  | int64   |  |  |
| 8                                       | total marks                 | 1000 non-null  | int64   |  |  |
| 9                                       | percentage                  | 1000 non-null  | float64 |  |  |
| 10                                      | grades                      | 1000 non-null  | object  |  |  |
| dtypes: float64(1), int64(4), object(6) |                             |                |         |  |  |

memory usage: 86.1+ KB

# 3.0.3 Plot for grades of all the students

```
[23]: df['grades'].value_counts().plot.pie(autopct="%1.1f%%")
      plt.show()
```



Most of the students got Grade B and Grade C.

# 3.0.4 Grades vs. All Other Categorial Variables

```
plt.subplot(253)
plt.title('Grades and Test preparation Course')
sns.countplot(hue="test preparation course", x="grades", data=df)
plt.show()
```







[25]: plt.title('Grades and Parental level of Education',fontsize=20)
sns.countplot(x="parental level of education", hue="grades", data=df)
plt.show()



```
[26]: plt.title('Grades and Ethinicity',fontsize=20)
sns.countplot(x="race/ethnicity", hue="grades", data=df)
```





#### 3.0.5 Conclusion

- Most male students performed well in maths and females in literature, however considering the total scores females have an upper hand
- Parents with better degrees didn't send their children for any prep course.
- Most of the students got Grade B and Grade C.
- Most of the students have not completed the test preparation course.
- Highest number Students who belong to group C ethinicity have completed the test preparation course.
- Standard lunch students have completed the test preparation course
- Students whos parental level of education is 'some college, 'associate's degree', and high school have completed the test preparation course.