Fundamentos de Datos para la Toma de Decisiones Estratégicas con IA

Clase 02 - Interpretación crítica de resultados con IA para decisiones estratégicas

2025-10-16

Enlaces

- 🖵 sebastian.egana@udd.cl
- 🖵 https://segana.netlify.app
- In https://www.linkedin.com/in/sebastian-egana-santibanez/
- Ohttps://github.com/sebaegana

Calidad y gobernanza de los datos

¿Por qué importa la calidad de los datos?

- El valor estratégico de la información depende de su calidad y gobernanza
- Decisiones erróneas \rightarrow modelos ineficientes \rightarrow pérdida de confianza.
- "Garbage in, qarbage out" ningún algoritmo corrige datos defectuosos

Dimensiones de la calidad de datos

Dimensión	Descripción breve	Ejemplo
Completitud	Ausencia de valores faltantes	% de clientes sin RUT o correo
Exactitud	Concordancia con la realidad	Dirección o edad correcta
Consistencia	Coherencia entre sistemas	Fecha nacimiento <> fecha afiliación
Actualización	Vigencia de la información	Cliente activo con contacto obsoleto

Pregunta: identificar un caso de baja calidad en datos internos o de clientes, por ejemplo, en la industria financiera.

Riesgos de decisiones con datos de mala calidad

- Operativos: reprocesos, errores en informes, baja productividad
- Financieros: decisiones de inversión o riesgo erradas
- Reputacionales: pérdida de confianza del cliente o del regulador
- Analíticos: modelos con sesgos o predicciones inconsistentes

Gobernanza de datos

Conjunto de políticas, roles y procesos que aseguran el uso responsable de los datos.

- Define roles claros: propietario, custodio, analista, consumidor
- Establece **procesos** de validación, trazabilidad y acceso
- Impulsa alineamiento con estrategia organizacional

Ejemplo: catálogo de datos, control de acceso y políticas de retención.

Ética y compliance en el uso de datos

- Responsabilidad: tratar los datos como un activo compartido
- Privacidad: cumplir normativas (LGPD, GDPR, Ley 19.628 en Chile)
- Transparencia: explicar decisiones automatizadas
- Equidad: evitar sesgos en IA o analítica predictiva

Cierre y reflexión

- La calidad asegura decisiones confiables.
- La gobernanza garantiza responsabilidad y cumplimiento.
- La ética construye confianza con clientes y sociedad.

Introducción a la IA y sus principios básicos

¿Qué es (y qué no es) Inteligencia Artificial?

- IA: capacidad de sistemas para aprender patrones y tomar decisiones basadas en datos
- No es: magia ni conciencia, sino algoritmos que aprenden de ejemplos
- Se basa en estadística, aprendizaje automático y automatización

Ejemplo: un modelo que predice abandono de clientes no "piensa", solo identifica patrones históricos.

Figura 1: Recuperado en: https://www.orsys.fr/orsys-lemag/es/aprendizaje-automatico-aprendizaje-profundo-ia-diferencias

La IA no es un modelo — es un ecosistema de componentes

Un LLM (Large Language Model) como GPT o Claude es solo una parte del sistema.

Para responder una consulta compleja, se articulan varios segmentos de IA:

- Computer Vision → detecta y analiza imágenes (objetos, rostros, escenas).
- OCR (Reconocimiento Óptico de Caracteres) → extrae texto de imágenes o PDFs.
- Speech Recognition / $TTS \rightarrow convierte$ audio en texto y viceversa.
- $\mathbf{LLM} \rightarrow \text{interpreta}$, contextualiza y genera una respuesta en lenguaje natural.
- Reasoning / Orchestration Layer \rightarrow decide qué componentes usar y en qué orden.

Ejemplo

"Subo una foto de un contrato y pregunto de qué trata"

Etapa	Segmento de IA	Función	Ejemplo de salida
1	Computer Vision	Detecta texto y no una persona o paisaje.	"Documento detectado"
2	OCR	Extrae texto	"Contrato de prestación de servicios"
3	LLM	Interpreta, resume cláusulas, responde preguntas.	"Este contrato regula la relación entre la empresa y un proveedor."
4	Orquestador	Coordina	Decide usar OCR \rightarrow LLM

• Resultado: "El documento corresponde a un contrato de servicios con fecha de inicio 2024-01-10 entre X y Y."

Modelos descriptivos vs. predictivos

Tipo de modelo	Objetivo	Ejemplo ejecutivo
Descriptivo	Explica qué ocurrió	Segmentación de clientes por
		comportamiento
Predictivo	Anticipa qué ocurrirá	Predicción de egreso o mora

Tipo de modelo	Objetivo	Ejemplo ejecutivo
Prescriptivo	Recomienda acciones	Sugerir la mejor oferta según propensión
		propensión

Interpretación de resultados de IA

Qué significa un "resultado confiable"

- Un modelo no entrega certezas, entrega probabilidades
- La confiabilidad depende de calidad de datos, validación del model, comparación entre predicciones y realidad
- Ejemplo: modelo de churn predice $80\% \to no$ dice "renunciará", sino "probabilidad alta de egreso"

Predicción y margen de error

Todo modelo tiene un grado de error aceptable según su propósito.

- Se mide con indicadores: precisión, recall, etc.
- En contexto ejecutivo "¿Cuánto confío en este resultado para tomar una decisión?"

Por ejemplo un 90% de precisión puede ser excelente en marketing, pero insuficiente en salud.

Overfitting explicado de forma ejecutiva

"Cuando el modelo aprende de memoria el pasado y no sabe generalizar al futuro."

- Se ajusta tanto a los datos históricos que pierde capacidad predictiva
- Síntomas: Resultados casi perfectos en entrenamiento y mal desempeño con nuevos datos
- Solución: validación cruzada, regularización, simplicidad del modelo

Ejemplo: modelo que predice bien a clientes antiguos pero falla en nuevos afiliados.

Sesgos en los datos y modelos

Tipos de sesgos

Tipo	Descripción	Ejemplo
Muestreo	Datos no representan la población	Solo clientes activos
Histórico	Refleja desigualdades pasadas	Sesgos en género o edad
De medición	Error en cómo se capturan datos	Encuestas incompletas

Ejemplos de sesgos y consecuencias

- Reclutamiento automatizado: modelos que excluyen perfiles femeninos por datos históricos
- Crédito: mayor probabilidad de rechazo en comunas con bajo historial financiero
- Salud: subrepresentación de grupos etarios o regiones

 $Impacto\ estrat\'egico:\ decisiones\ injustas \to da\~no\ reputacional \to p\'erdida de confianza \to riesgo legal.$

Cómo mitigar sesgos desde la gestión

- Diversificar fuentes de datos
- Monitorear resultados por grupo o segmento
- Revisar métricas éticas además de métricas de performance
- Incluir equipos interdisciplinarios en revisión de modelos

Aplicación práctica: decisiones informadas con IA

Actividad grupal - Interpretando resultados de IA

Caso:

Una AFP aplica un modelo de IA para predecir egresos de afiliados. El modelo entrega una **probabilidad de egreso del 75**% para un cliente de alto saldo. Los costos de retención estimados: \$20.000 CLP por cliente. Los costos de pérdida si egresa: \$250.000 CLP.

Instrucciones (20 min)

En grupos, respondan:

- 1. ¿Vale la pena intervenir al cliente?
- 2. ¿Qué información adicional pedirían antes de decidir?
- 3. ¿Qué riesgo asumen si el modelo se equivoca?

Compartir sus reflexiones.

Checklist ejecutivo para líderes

- Validar calidad de los datos usados.
- Exigir interpretación comprensible de los resultados.
- Evaluar sesgos potenciales y su impacto.
- Considerar el costo del error (falso positivo/negativo).
- Promover decisiones basadas en evidencia, no en intuición.

_			
_	• -		
		m	ro

La Inteligencia Artificial no reemplaza el juicio humano, lo potencia.

- Entender sus ${f principios}$, ${f límites}$ ${f y}$ ${f sesgos}$ es clave para liderar con responsabilidad.

Referencias

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30. https://arxiv.org/pdf/1706.03762