Chapter 3) 운영체제

CPU 스케줄링

프로세스 간에는 메인 메모리 공간 분리

어떤 프로세스에 CPU를 할당하지?

스레드 간에는 메인 메모리 공간 공유

프로세스 간에는 메인 메모리 공간 분리

어떤 프로세스에 CPU를 할당하지?

"우선 순위"

스레드 간에는 메인 메모리 공간 공유

1 🖺

우선순위를 어떻게 할당하지?

우선 순위 결정

1 =

어떤 프로세스에 CPU를 할당하지?

CPU 활용률 "

우선 순위 결정

→ 전체 CPU이 가동 시간 중 작업을 처리하는 시간의 비율

→ 전체 CPU이 가동 시간 중 작업을 처리하는 시간의 비율

CPU burst :프로세스가 CPU를 이용하는 작업

I/O burst : 입출력 장치를 기다리는 작업

Time

→ 전체 CPU이 가동 시간 중 작업을 처리하는 시간의 비율

CPU 활용률이란?

→ 전체 CPU이 가동 시간 중 작업을 처리하는 시간의 비율

CPU 집중

<u>입출력 집중 프로세스</u>와 <u>CPU 집중 프로세스</u>가

동시에 CPU 자원을 요구한다면?

입출력 집

Time

CPU 활용률이란?

→ 전체 CPU이 가동 시간 중 작업을 처리하는 시간의 비율

CPU 집중

입출력 집중 프로세스를 먼저 실행시켜 입출력 장치를 작동시킨 다음, CPU 집중 프로세스에 집중적으로 CPU 할당

입출력 집원

Time

→ 전체 CPU이 가동 시간 중 작업을 처리하는 시간의 비율

CPU 집중

입출력 집중 프로세스 > CPU 집중 프로세스

입출력 집원

I ime

스케줄링 큐란?

→ 자원을 사용하려는 프로세스들이 대기하는 곳

[준비 큐] CPU를 이용하고 싶은 프로세스의 PCB가 서는 줄

[대기 큐] 대기 상태에 접어든 프로세스의 PCB가 서는 즐

선점형 스케줄링 운영체제가 프로세스로부터 CPU 자원을 강제로 빼앗아 다른 프로세스에 할당할 수 있는 스케줄링	
[Good]	[Bad]
・ 한 프로세스의 CPU 독점 방지 ・ CPU 자원 골고루 배분	・ 컨텍스트 스위칭 오버헤드 발생 가능성
비선점형 스케줄링	
어떤 프로세스가 CPU를 사용하고 있을 때, 그 프로세스가 종료되거나 스스로 대기 상태에 접어들기 전까지는 다른 프로세스가 끼어들 수 없는 스케줄링	
[Good]	[Bad]

무한 대기

・ 한 프로세스의 CPU 사용이 끝날 때까지

・ 문백 교환 횟수 적음

· 오베헤드 발생 가능성 낮음

──→ 운영체제가 프로세스에 CPU 배분하는 방법

1. 선입 선처리 스케줄링 "순서대로"

→ 운영체제가 프로세스에 CPU 배분하는 방법

2. 최단 작업 우선 스케줄링 "짧은 CPU 이용 시간"

─→ 운영체제가 프로세스에 CPU 배분하는 방법

3. 라운드 로빈 스케줄링 "타임 슬라이스" -> CPU 사용 시간

4. 최소 잔여 시간 우선 스케줄링 "최단 작업 우선 + 라운드 로빈"

→ 운영체제가 프로세스에 CPU 배분하는 방법

5. 우선 순위 스케줄링

J. TC E II — 1126

CPU 스케줄링 알고리즘______ 운영체제가 프로세스에 CPU 배분하는 방법

6. 다단계 큐 스케줄링 "여러 개의 준비 큐"

7. 다단계 피드백 큐 스케줄링

