Counting Trees

- 1) How many simple graphs with weetex set [n]?
- (2) How many paths with vertex set [n]?
- (3) How many stars with westex set [n]?
- (4) How many trees with vertex set [n]?

Counting Trees

- 1) How many simple graphs with weetex set [n]?
- (2) How many paths with vertex set [n]?
- 3 How many stars with vertex set [n]?
- 4 How many trees with vertex set [n]?

Assume Kn has newlex set [n]

Then "tree with vertex set [n]" 13 same as "spanning tree of kn"

Define T(G) to be # of spanning trees of G

n	イ (Kン
t	1
2	l
3	3
4	16
5	?
6	?

$$\gamma(k_n) =$$

Assume Kn has veulex set [n]

Then "tree with vertex set [n]" is same as

"spanning tree of kn"

Define T(G) to be # of spanning trees of G

n	~ CKJ
1	1
2	l
3	3
4	16
5	?
6	?

$$\gamma(k_n) = n^{n-2}$$

(what else does This count?) $\frac{1}{2 \cdot 2 \cdot 3}$ $\gamma(K_n) = n^{n-2}$

[Cayley 1889]

pf. [Prüfer correspondence] Show bijection:

spanning trees

of Kn

sequences of n-2 elements

from [n]

$$\frac{1}{2 \cdot 2 \cdot 3}$$
 $\gamma(K_n) = n^{n-2}$

pf. [Prûfer correspondence]

Show bijection:

(1) Spanning tree -> sequence

smallest remaining leaf	vertex adjacent to it

$$\frac{1}{2 \cdot 2 \cdot 3}$$
 $\gamma(K_n) = n^{n-2}$

pf. [Prûfer correspondence]

Show bijection:

$$\leftarrow$$

(1) Spanning tree -> sequence

smallest remaining leaf	vertex adjacent to it
2 (remove)	6

$$\frac{1}{2 \cdot 2 \cdot 3}$$
 $\gamma(K_n) = n^{n-2}$

pf. [Prüfer correspondence]

Show bijection:

$$\langle \longrightarrow \rangle$$

(1) spanning tree -> sequence

vertex adjacent to it
6
6

$$\frac{1}{2 \cdot 2 \cdot 3}$$
 $\gamma(K_n) = n^{n-2}$

pf. [Prûfer correspondence]

Show bijection:

(1) Spanning tree -> sequence

smallest remaining leaf	vertex adjacent to it
2 (remove)	6
3 (remove)	6
4 (temove)	1

$$\frac{1}{2 \cdot 2 \cdot 3}$$
 $\gamma(K_n) = n^{n-2}$

pf. [Prûfer correspondence]

Show bijection:

spanning trees
of kn

sequences of n-2 elements
from [n]

(1) spanning tree -> sequence

smallest remaining leaf	vertex adjacent to it
2 (remove)	6
3 (remove)	6
4 (temore)	1
5 (remove)	1

$$\frac{1}{2 \cdot 2 \cdot 3}$$
 $\gamma(K_n) = n^{n-2}$

pf. [Prûfer correspondence]

Show bijection:

(1) spanning tree -> sequence

•	1
	/•

Sequence:
((e, 6, 1, 1)

smallest remaining leaf	vertex adjacent to it
2 (remove)	6
3 (remove)	6
4 (temove)	1
5 (remove)	1

1 5 4 3 2 6

What about the reverse?

spanning trees
of kn

sequences of n-2 elements
from [n]

n-2

(2) sequence -> spanning tree

(revuse the process)

Given (t,,t2,tn-2)	Construct $(S_1,, S_{n-2})$ $S_1 = Smallest \lor \underline{not}$ in $\{t_1,, t_{n-2}\} \cup \{s_1,, s_{n-1}\}$	and tree edges trsi
t _i = 5		
t ₂ = 4		
t3= 3		
ty= 2		

and

V	
Given (t,,t2,tn-2)	
	in
L= 5	
.1	

Construct
$$(S_1,...,S_{n-2})$$

$$S_{1} = Smallest \lor not$$

$$\{t_{1},...t_{n-2}\} \cup \{s_{1},...,s_{n-1}\}$$

(2) sequence -> spanning tree

U	•	
Given (t,,t2,tn-2)	Construct $(S_1,, S_{n-2})$ $S_{1} = Smallest \vee \underline{not}$ in $\{t_1,, t_{n-2}\} \cup \{s_1,, s_{n-1}\}$	and tree edges tasi
L= 5	s,= 1	5 1
	S ₂ = 5	4 5
t ₃ = 3		
1 - 7		

(2) sequence -> spanning tree

Given (t,,t2,tn-2)	Construct $(S_1,, S_{n-2})$ $S_1 = Smallest \vee \underline{not}$ in $\{t_1,, t_{n-2}\} \cup \{s_1,, s_{n-1}\}$	and tree edges trsi	
L= 5	$s_1 = 1$	5 1	
t ₂ = 4	$S_{\lambda} = 5$	4 5	
43= 3	S ₃ = 4	3 4	
L = 2			

(2) sequence -> spanning tree

Given (t ₁₁ t ₂₁ t _{n-2})	Construct $(S_1,, S_{n-2})$ $S_1 = Smallest \lor \underline{not}$ in $\{t_1,, t_{n-2}\} \cup \{s_1,, s_{n-3}\}$	and tree edges trsi
L= 5	s,= 1	5 1
t ₂ = 4	$S_{\lambda} = 5$	4 5
t ₃ = 3	S3 = 4	3 4
to= 2	S ₄ = 3	2 3

(2) sequence -> spanning tree

Given (t ₁ , t ₂ ,, t _{n-2})	Construct $(S_1,,S_{n-2})$ $S_{1} = Smallest \vee \underline{not}$ in $\{t_1,t_{n-2}\} \cup \{s_1,,s_{n-1}\}$	and tree edges trsi
L= 5	s,= 1	51
t ₂ = 4	$S_{\lambda} = 5$	4 5
t3= 3	S ₃ = 4	3 4
ty= 2	54=3	2 3
_ ~~		

Last tree edge joins 2 vertices not in 2 - 6
{5,1,...,5,n-2}

Start with (6,6,1,1) & see if you get back tree in first example

EX

$$(2,2,2,2,2)$$
 \longrightarrow $?$
 $(5,8,1,2,7,1,3,9)$ \longrightarrow $?$

NEXT:

Finding 7 (G) for arbitrary G

Edge Contraction

For non-loop, e, $G \cdot e$ denotes the graph obtained from G by **contracting** edge e.

"Contract e" means identify the endpoints of e and delete e.

Example:

Edge Contraction

For non-loop, e, $G \cdot e$ denotes the graph obtained from G by **contracting** edge e.

"Contract e" means identify the endpoints of e and delete e.

Example:

(if there were another edge joining x & y it would become a loop.)

Graph G, e non-loop edge

(i) T is a spanning tree of G not containing e T is a spanning tree of G-C.

(ii) T is a spanning tree of G containing e Teis a spanning tree of G.e Graph G, e non-loop edge

(i) T is a spanning tree of G not containing e

T is a spanning tree of G-c.

(ii) T is a spanning tree of G containing e T is a spanning tree of G.e

Proposition 2.2.8

For a non-loop edge, e,

$$\Upsilon(G) = \Upsilon(G-e) + \Upsilon(G \cdot e)$$

Example

Proposition 2.2.8. For non-loop $e \in E(G)$,

$$\tau(G) = \tau(G - e) + \tau(G \cdot e)$$

(Gives recursion for counting spanning trees of a graph.)

Example:

$$\Upsilon(H_n) = \Upsilon(G_n) + \Upsilon(H_{n-1})$$

Matrix Tree Theorem 2.2.12.

 $oldsymbol{G}$ - loopless multigraph

D - diagonal matrix with $d_{ii}=d_G(v_i)$

$$Q = D - A$$
 \longrightarrow Laplacian

Then, for any $s, t \in [n]$:

$$\tau(G) = (-1)^{s+t} det(Q^{(s,t)})$$

where $Q^{(s,t)}$ is obtained from Q by deleting row s and column t.

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix} D = \begin{bmatrix} \frac{3}{2} & \frac{2}{3} & \frac{3}{3} \\ 0 & 0 & \frac{3}{3} \end{bmatrix}$$

$$Q = D - A = \begin{bmatrix} 3 & -1 & -2 & 7 \\ -1 & 2 & -1 \\ -2 & -1 & 3 \end{bmatrix}$$

$$Q^{(1/2)} = \begin{bmatrix} -1 & -1 \\ -2 & 3 \end{bmatrix} \leftarrow det: -3-2 = -5$$

$$P(6) = 5$$

$$(-1)^{S+b} = -1$$