Lecture 9 Asymmetric (aka public key) encryption

Nicola Laurenti October 28, 2020

Except where otherwise stated, this work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.

Lecture 9— Contents

General model of an asymmetric encryption system One-way functions

Examples of asymmetric encryption mechanisms

The RSA cryptosystem The Elgamal cryptosystem

Elliptic curve cryptography

Visualization of the group operation

Post quantum cryptography

The McEliece cryptosystem

Security goals, threats, services and mechanisms

Motivation for asymmetric encryption

Consider the problem of a single user B having to receive confidential messages u_1,\ldots,u_N from each of N different sources A_i , so that B obtains message u_i but any A_i cannot learn any message u_j , $j \neq i$.

With a symmetric encryption mechanism $(\mathcal{M}, \mathcal{X}, \mathcal{K}, E, D, p_k, p_u)$, B must agree and share a different key k_i with any A_i

Can we build a mechanism where B uses a single key $k_{\rm B}$?

General model of an asymmetric encryption system

Glossary and notation

private key $k \in \mathcal{K}$ private key space public key $k' \in \mathcal{K}'$ public key space

(reparametrized) encryption map
$$E': \mathcal{K}' \times \mathcal{M} \mapsto \mathcal{X}$$

$$E_{k'}: \mathcal{M} \mapsto \mathcal{X} \quad E_{k'}(u) \doteq E(k',u)$$

decryption map
$$D: \mathcal{K} \times \mathcal{X} \mapsto \mathcal{M}$$

$$D_k: \mathcal{X} \mapsto \mathcal{M} \quad D_k(x) \doteq D(k,x)$$

Keys are random with joint probability mass distribution $p_{kk'}: \mathcal{K} \times \mathcal{K'} \mapsto [0,1]$ typically $(k,k') \not\sim \mathcal{U}(\mathcal{K} \times \mathcal{K'})$ are uniform but not independent often $k \sim \mathcal{U}(\mathcal{K})$ is random and uniform, k' = f(k) is computed with $f: \mathcal{K} \mapsto \mathcal{K'}$ deterministic The encryption system is completely specified as:

$$\mathcal{S} = (\mathcal{M}, \mathcal{X}, \mathcal{K}, \mathcal{K}', E', D, p_u, p_{kk'})$$

General assumptions

▶ (perfect reliability) The receiver must be able to recover the secret message perfectly

$$D_c = E_c^{-1} = (E'_{c'})^{-1} \quad \forall c \in \mathcal{K}, c' \in \mathcal{K}' : p_{kk'}(c, c') > 0 \quad \text{(or } c' = f(c)\text{)}$$

• (Kerchoff's assumption) The eavesdropper knows the system \mathcal{S} (in particular the maps $E'(\cdot,\cdot)$ and $D(\cdot,\cdot)$)

Where does secrecy come from?

Secrecy can only be computational and is based on the following requirements

- 1. it is hard to derive k from k' (i.e., f is one-way)
- 2. it is hard to derive u from (k', x) (i.e., $E'_{k'}$ is one-way)
- 3. it is hard to derive k from (u, x) (i.e., $D(\cdot, x)$ is one-way)

One-way function: definitions

One-way functions are a fundamental tool in many computationally secure mechanisms and their analysis. They are informally referred to as "easy to compute and hard to invert".

Definition (concrete)

A function $f: \mathcal{X} \mapsto \mathcal{Y}$ is said to be $(\varepsilon_0, T_0; \varepsilon_1, T_1)$ -one-way if

(easy to compute) there exists a probabilistic algorithm A such that

$$\forall x \in \mathcal{X} \quad , \quad P\left[\left\{\mathbf{A}[x] \to f(x)\right\} \cap \left\{T_{\mathbf{A}} \leq T_{1}\right\}\right] \geq 1 - \varepsilon_{1}$$

(hard to invert) for any probabilistic algorithm B

$$\forall y \in \mathcal{Y} \quad , \quad \sum_{x \in f^{-1}(y)} P\left[\{ \mathbb{B}[y] \to x \} \cap \{ T_{\mathbb{B}} \le T_0 \} \right] \le \varepsilon_0$$

A deterministic variant for the easy to compute requires that there exists a deterministic algorithm A such that $T_{\mathbf{A}} \leq T_1$ and $\mathbf{A}[x] \to f(x)$, $\forall x \in \mathcal{X}$

One-way function: definitions

In order to provide an asymptotic definition we introduce a security parameter n

Definition (asymptotic)

A sequence $\{f_n\}, n \in \mathbb{N}$ of functions $f_n : \mathcal{X}_n \mapsto \mathcal{Y}_n$ is one-way if

(easy to compute) $\forall \varepsilon > 0$, there exists a sequence of probabilistic algorithms \mathbf{A}_n and a polynomial $p(\cdot)$ such that

$$\forall n \in \mathbb{N}, \forall x \in \mathcal{X}_n, P[\{\mathbf{A}_n[x] \to f_n(x)\} \cap \{T_{\mathbf{A}_n} \le p(n)\}] \ge 1 - \varepsilon$$

(hard to invert) for any sequence of probabilistic algorithms B_n , and any polynomials $q(\cdot), s(\cdot)$, there is a n_0 such that

$$\forall n > n_0 \ , \ \forall y \in \mathcal{Y}_n \ , \ \sum_{x \in f_n^{-1}(y)} P\left[\{ \mathbf{B}_n[y] \to x \} \cap \{ T_{\mathbf{B}_n} \le q(n) \} \right] \le \frac{1}{s(n)}$$

Deterministic easy to compute requires a sequence of deterministic algorithms A_n such that $T_{A_n} < p(n)$ and $A_n[x] \to f_n(x)$, $\forall x \in \mathcal{X}_n$

Nicola Laurenti

Relationships between one-way functions and complexity classes

- The problem of computing a one-way function f_n must $\in \mathsf{BPP}$
- ▶ The problem of inverting a one-way function f_n must \notin BPP
- ▶ Typically, the problem of computing a one-way function f_n ∈ P and that of inverting it ∈ NP, as a candidate inverse x can be verified by computing $f_n(x)$

The RSA cryptosystem [Rivest-Shamir-Adleman, '77]

Based on NP problems

integer factorization

```
easy given p,q\in\mathbb{Z}, compute n=pq
hard given n\in\mathbb{Z}, find p,q\in\mathbb{Z} such that pq=n
```

► finite logarithm and finite root

```
easy given n \in \mathbb{Z}, x, d \in \mathbb{Z}_n compute y = x^d \mod n (finite exponential) hard given n \in \mathbb{Z}, x, y \in \mathbb{Z}_n find d \in \mathbb{Z}_n such that x^d \mod n = y hard given n \in \mathbb{Z}, d, y \in \mathbb{Z}_n find x \in \mathbb{Z}_n such that x^d \mod n = y
```


Key generation (ℓ-bit)

```
B chooses p,q<2^{\ell/2} primes computes n=pq, \varphi=(p-1)(q-1) chooses d\in\mathbb{Z}_n such that \gcd(\varphi,d)=1 computes e\in\mathbb{Z}_n such that ed=1\pmod{\varphi} private key k=(p,q,d) , \mathcal{K}=\mathbb{Z}_{2^\ell}^3 public key k'=(n,e) , \mathcal{K}'=\mathbb{Z}_{2^\ell}^3
```

Encryption by A (public key)

$$\mathcal{M} = \mathcal{X} = \mathbb{Z}_n$$

$$E' : \mathcal{K}' \times \mathcal{M} \mapsto \mathcal{X}$$

$$x = E'(k', u) = E'(n, e, u) = u^e \mod n$$

Decryption by B (private key)

$$D: \mathcal{K} \times \mathcal{X} \mapsto \mathcal{M}$$

 $\hat{u} = D(k, x) = D(n, d, x) = x^d \mod n$

Theorem (Euler's theorem)

Let $n, \varphi \in \mathbb{Z}$ as in the key generation and $u \in \mathbb{Z}_n$. If gcd(u, n) = 1, then $u^{\varphi} = 1 \pmod n$

Correctness of RSA

We show that $\hat{u} = u$. Consider the equalities in \mathbb{Z}_n

$$\hat{u} = x^d = (u^e)^d = u^{ed} = u^{r\varphi+1}$$

with r an arbitrary integer. Then by Euler's theorem, in \mathbb{Z}_n

$$\hat{u} = (u^{\varphi})^r u = 1^r u = u$$

Computability

```
choosing p,q primes probabilistic algorithm O(\ell): randomly generate them, then check if primes, else repeat. Probabilistic primality test run in O(\ell) (e.g., Fermat test), the fastest deterministic primality test (Lenstra-Pomerance variant of the AKS test) has complexity O(\ell^6) (still prohibitive)
```

```
computing n, \varphi is O(\ell)
```

choosing d probabilistic algorithm $O(\ell)$: randomly generate d, then check if coprime with φ , else repeat. Coprimality can be tested with Euclidean algorithm that is $O(\ell)$

computing e can be done with Euclidean algorithm

encryption and decryption finite exp $O(\ell^2)$ (typically, $e \ll n$, so encryption is fast)

Security

```
x=E'_{k'}(u) is one-way finding u from x and e is hard (finite root) k'=f(k) is one-way finding d from e, without knowing \varphi is hard finding \varphi from n is hard (no easier than finding p,q) finding p,q from n is hard (integer factorization) u=D(\cdot,x) is one-way finding d from u0 finite logarithm)
```

The Elgamal cryptosystem [Elgamal, '85]

Based on NP problem

finite logarithm

In a group (\mathbb{G}, \circ) , we denote $\alpha \stackrel{n}{\circ} = \underbrace{\alpha \circ \cdots \circ \alpha}_{n \text{ times}}$

easy given
$$\alpha\in\mathbb{G}, n\in\mathbb{N}$$
, compute $\beta=\alpha\overset{n}{\circ}$

hard given $\alpha, \beta \in \mathbb{G}$, find $n \in \mathbb{N}$ such that $\alpha \stackrel{n}{\circ} = \beta$

Key generation

Let (\mathbb{G}, \circ) be a group with a primitive element $\alpha \in \mathbb{G}$, i.e. such that $\forall \beta \in \mathbb{G}, \exists n : \alpha \stackrel{n}{\circ} = \beta$.

private key space
$$\mathcal{K} = \{1, \dots, |\mathbb{G}| - 1\} \subset \mathbb{N}$$
 public key space $\mathcal{K}' = \mathbb{G}$

Let (\mathbb{G}, \circ) and α be publicly known. B generates $k \sim \mathcal{U}(\mathcal{K})$, then computes $k' = f(k) = \alpha^k \circ$

The Elgamal cryptosystem

Encryption by A (public key, probabilistic)

$$\mathcal{M} = \mathbb{G}$$
 , $\mathcal{X} = \mathbb{G}^2$

A generates
$$b \sim \mathcal{U}(\mathcal{K})$$

$$x = E'_{k'}(u, b) = (x_1, x_2)$$
 ,
$$\begin{cases} x_1 = \alpha \stackrel{b}{\circ} \\ x_2 = u \circ (k' \stackrel{b}{\circ}) \end{cases}$$

Decryption by B (private key)

B need not know b

$$\hat{u} = D_k(x) = D_k(x_1, x_2) = x_2 \circ \left((x_1 \circ)^{-1} \right)$$

where $\cdot \stackrel{-1}{\circ}$ denotes the inverse in (\mathbb{G}, \circ)

The Elgamal cryptosystem

Correctness

We prove that $\hat{u} = u$

$$\hat{u} = x_2 \circ \left((x_1 \circ)^{b} \right)^{-1}$$

$$= u \circ (k' \circ) \circ \left(((\alpha \circ)^{b} \circ)^{-1} \right)$$

$$= u \circ \left((\alpha \circ)^{b} \circ \right) \circ \left(\left((\alpha \circ)^{b} \circ \right)^{-1} \circ \right)$$

$$= u \circ (\alpha \circ) \circ \left((\alpha \circ)^{b} \circ \right)^{-1}$$

$$= u \circ (\alpha \circ) \circ \left((\alpha \circ)^{b} \circ \right)$$

$$= u \circ e = u$$

where e denotes the identity in (\mathbb{G}, \circ)

The Elgamal cryptosystem

Security

 $x = E'_{k'}(u)$ is one-way given x and k', but not k nor b, it is hard to find u

$$k' = \alpha \overset{k}{\circ}$$
 is one-way finding k from k' is hard (finite log problem)

 $D(\cdot,x)$ is one-way given x and u, it is hard to find k from the equation $x_1 \stackrel{k}{\circ} = (u \stackrel{-1}{\circ}) \circ x_2$ (finite log problem)

Importance of b

secret if attacker learns b he can find $u = x_2 \circ (k' \circ)^{-1} \circ$ varied if the same b is used to encrypt both u and u', then $x_1 = x_1'$ and

$$x_{2}' \circ (x_{2} \overset{-1}{\circ}) = u' \circ (k' \overset{b}{\circ}) \circ \left(u \circ (k' \overset{b}{\circ}) \right) \overset{-1}{\circ} = u' \circ (k' \overset{b}{\circ}) \circ ((k' \overset{b}{\circ}) \overset{-1}{\circ}) \circ (u \overset{-1}{\circ})$$

attacker can do a KPA, learn u' from u, x_2, x'_2

19 / 32

The finite logarithm problem

A strong requirement for security of the Elgamal encryption is that "exponentiation" $f_{\alpha}(n) = \alpha^{n}$ is a one-way function of n and this depends on the choice of the group (\mathbb{G}, \circ) . If computing \circ has linear complexity in $\ell = \log |\mathbb{G}|$, exponentiation can be computed with complexity $O(\ell^{2})$, by iterative squaring and multiplying

For a general group (\mathbb{G}, \circ)

Nicola Laurenti

Consider the computation of $y=x\overset{n}{\diamond}$, with $n<|\mathbb{G}|$. Let $\boldsymbol{b}=[b_0,b_1,\ldots,b_{\ell-1}]$ be the binary representation of n

$$n = \sum_{i=0}^{\ell-1} b_i 2^i$$

Then
$$y = x \stackrel{n}{\circ} = x \stackrel{\sum_{i=0}^{\ell-1} b_i 2^i}{\circ} = \left(x \stackrel{b_0 2^0}{\circ}\right) \circ \cdots \circ \left(x \stackrel{b_{\ell-1} 2^{\ell-1}}{\circ}\right)$$

Iterative square and multiply

 $c \leftarrow e$ (identity in \mathbb{G})

 $a \leftarrow x$

for i=0 to $\ell-1$ do

if $b_i = 1$ then $c \leftarrow c \circ a$

end if

 $a \leftarrow a \circ a$

end for

 $y \leftarrow c$

Asymmetric (aka public key) encryption

Octo

20 / 32

The finite logarithm problem

Regarding inversion, different cases exist, for instance:

- ▶ if $(\mathbb{G}, \circ) = (\mathbb{Z}_p, \cdot)$ is the multiplicative group of integers modulo some prime p, it holds, the best algorithms run in $O(\sqrt{p}) = O(2^{\ell/2})$ time
- ▶ if $(\mathbb{G}, \circ) = (\mathbb{Z}_N, +)$ is the additive group of integers modulo N, it does not hold, infact:

$$f_{\alpha}(n) = \alpha \stackrel{n}{\circ} = n\alpha \mod N \quad \Rightarrow \quad f_{\alpha}^{-1}(\beta) = \beta/\alpha \mod N$$

- and $f_{\alpha}^{-1}(\cdot)$ can be computed efficiently via the Euclidean algorithm
- ▶ in general the finite log problem is at most $O(|\mathbb{G}|) = O(2^{\ell})$ time, one can find groups where the fastest known algorithms run in $O(2^{\ell})$ time

Finite elliptic curve arithmetics

Given a finite field $(\mathbb{F}, +, \cdot)$, an elliptic curve on \mathbb{F} is the set of points (locus)

$$\mathcal{E} = \{(x, y) \in \mathbb{F}^2 : y^2 = x^3 + ax + b\}$$

for some coefficients $a, b \in \mathbb{F}$.

The set \mathcal{E} can be made a group (\mathcal{E}, \circ) by equipping it with an operation \circ (called point addition) between two points P_1 and P_2 , that yields a third point $P_1 \circ P_2$

In the elliptic curve group (\mathcal{E}, \circ) the finite logarithm problem is harder than in (\mathbb{Z}_p, \cdot) with the same cardinality.

Group operation between two points

$$\mathbb{F} = GF(41)$$

$$\mathcal{E}: y^2 = x^3 + 5x - 7 \quad , \quad |\mathcal{E}| = 43$$

$$P_1 = (4,6)$$
 , $P_2 = (10,10)$

$$r: -8x + 12y + 1 = 0 \quad , \quad |r| = 41$$

$$P_3 = (-9, 11)$$

$$P_1 \circ P_2 = (-9, -11)$$

n-fold group operation

$$\mathbb{F} = GF(41)$$

$$\mathcal{E}: y^2 = x^3 + 5x - 7$$
 , $|\mathcal{E}| = 43$

$$P = (-4, -14)$$

$$P \stackrel{2}{\circ} = P \circ P = (4, -6)$$

$$P \stackrel{3}{\circ} = (P \stackrel{2}{\circ}) \circ P = (1,9)$$

$$P \stackrel{4}{\circ} = (P \stackrel{3}{\circ}) \circ P = (P \stackrel{2}{\circ}) \circ (P \stackrel{2}{\circ}) = (-7, -5)$$

The Shor algorithm and post-quantum cryptography

In 1994, Peter Shor invented a quantum algorithm to efficiently compute the order of any element x in a group (\mathbb{G}, \circ) , that is the minimum positive integer n for which $x \circ = x$.

As a consequence,

- ▶ The finite logarithm problem is shown to \in BQP \Rightarrow Elgamal
- ▶ The integer factorization problem is shown to \in BQP \Rightarrow RSA
- Other NP problems may ∉ BQP

Mechanisms that rely only on NP problems that are not known to be \in BQP are called post quantum.

We shall see an example shortly

The McEliece cryptosystem [McEliece, '78]

Based on NP problem

minimum Hamming distance (mHd) decoding of binary codes

In a (n,ℓ,t) linear binary FEC code (e.g., Goppa codes) with

- n codeword length
- ℓ code dimension = information word length
- t maximum nr. of correctable errors
- easy given an information word $b \in \mathbb{B}^{\ell}$ and a generating matrix $G \in \mathbb{B}^{n \times \ell}$, compute the codeword $c = Gb \in \mathbb{B}^n$
- hard given a received word (not necessarily a codeword) $\tilde{c} \in \mathbb{B}^n$ and a generating matrix $G \in \mathbb{B}^{n \times \ell}$, compute $\hat{b} = \arg\min_{\beta \in \mathbb{R}^\ell} d_{\mathsf{H}}(\tilde{c}, G\beta)$
- easy given a received word (not necessarily a codeword) $\tilde{c} \in \mathbb{B}^n$ and a generating matrix $G \in \mathbb{B}^{n \times \ell}$ in canonical form, compute $\hat{b} = \arg\min_{\beta \in \mathbb{B}^\ell} d_{\mathsf{H}}(\tilde{c}, G\beta)$

Key generation

- 1. B chooses $G \in \mathbb{B}^{n \times \ell}$ canonical generating matrix of a (n, ℓ, t) Goppa code
- 2. generates $S \in \mathbb{B}^{\ell \times \ell}$ non singular
- 3. generates $P \in \mathbb{B}^{n \times n}$ a permutation matrix (exactly one '1' in each row and column)
- 4. computes S^{-1}, P^{-1} , and $G' = P^{-1}GS^{-1} \in \mathbb{B}^{n \times \ell}$ noncanonical generating matrix of an equivalent (n, ℓ, t) Goppa code

$$\begin{array}{ll} \text{private key } k = (\boldsymbol{G}, \boldsymbol{P}, \boldsymbol{S}) \quad , \quad \mathcal{K} = \mathbb{B}^{n \times \ell} \times \mathbb{B}^{n \times n} \times \mathbb{B}^{\ell \times \ell} \\ \text{public key } k' = f(k) = (\boldsymbol{G}', t) \quad , \quad \mathcal{K}' = \mathbb{B}^{n \times \ell} \times \mathbb{N} \end{array}$$

Encryption by A (public key, probabilistic)

$$\mathcal{M} = \mathbb{B}^\ell$$
 , $\mathcal{X} = \mathbb{B}^n$

A generates a random $e \in \mathbb{B}^n$ such that $w_{\mathsf{H}}(e) \leq t$ (i.e., a correctable error pattern)

$$E'_{k'}: \boldsymbol{x} = \boldsymbol{G}'\boldsymbol{u} + \boldsymbol{e}$$

Decryption by B (private key)

$$\hat{u} = D(k, x) = D(G, P, S, x)$$
 is computed as follows

- 1. B computes x' = Px
- 2. B solves the mHd decoding of x' in the Goppa code with canonical G, i.e.,

$$oldsymbol{u}' = rg\min_{oldsymbol{eta} \in \mathbb{B}^\ell} d_{\mathsf{H}}(oldsymbol{x}', oldsymbol{G}oldsymbol{eta})$$

3. B computes $\hat{\boldsymbol{u}} = \boldsymbol{S}\boldsymbol{u}'$

Correctness

We prove that $\hat{m{u}} = m{u}$

$$egin{aligned} x' &= Px \ &= P(G'u + e) \ &= PP^{-1}GS^{-1}u + Pe \ &= GS^{-1}u + e' \ &= Gu' + e' \end{aligned}$$

where $u' = S^{-1}u$ is an information word, too, and e' = Pe has $w_H(e') = w_H(e) \le t$, so it is a correctable error pattern, too.

Therefore the mHd decoding of x' with G is u' and

$$\hat{\boldsymbol{u}} = \boldsymbol{S}\boldsymbol{u}' = \boldsymbol{S}\boldsymbol{S}^{-1}\boldsymbol{u} = \boldsymbol{u}$$

Security

 $x = E'_{k'}(u)$ is one-way given x and noncanonical G', it is hard to find u (mHd decoding) k' = f(k) is one-way given the non canonical $G' = P^{-1}GS^{-1}$ it is hard to factor it into P, G, S with a canonical G

Summary

In this lecture we have:

- provided a general model for asymmetric encryption
- introduced the notion of one-way functions and described the RSA cryptosystem
- described the ElGamal cryptosystem and introduced elliptic curve cryptography
- introduced post quantum cryptography and described the McEliece cryptosystem

Assignment

- class notes
- ► textbook, §6.1, §6.3, §7.5, §9.1, §9.3

End of lecture

IT WASN'T THAT LONG
AGO THAT RSA WAS
ILLEGAL TO EXPORT,
CLASSIFIED A MUNITION.

Legal Hacks, reproduced from XKCd URL: xkcd.com/504