Università degli Studi della Basilicata

Corso di Laurea in Scienze e Tecnologie Informatiche

Sistemi Operativi - A.A. 2019/2020

Esame del 15/07/2020 – VERSIONE A

Tempo a disposizione: 2 ore e 30 minuti

Domanda 1 (max 5 punti)

Descrivere i principali algoritmi di scheduling della CPU.

Domanda 2 (max 5 punti)

Spiegare in che cosa consista la situazione di attesa attiva ("busy waiting"). Fornire un esempio per integrare la spiegazione.

Domanda 3 (max 5 punti)

Che cos'è un dispositivo NVM? Si discutano vantaggi e svantaggi di tali dispositivi.

Esercizio 1 (max 7,5 punti)

Sia data la seguente successione di riferimenti alle pagine di memoria:

Si assuma

- di avere una tabella delle pagine di 3 elementi, gestita con politica Last Recently Used (LRU)
- che Tma e Tpf siano rispettivamente i tempi di accesso in memoria e di gestione del page fault
- 1. Qual è il tempo di accesso effettivo in memoria per la situazione descritta?
- 2. Qual è la probabilità di avere un page fault?

Esercizio 2 (max 7,5 punti)

Si assuma di avere la memoria nella situazione illustrata a lato, con la seguente lista delle allocazioni disponibili:

200 KB, 200 KB, 500 KB, 100 KB, 100 KB.

Utilizzando un approccio di allocazione first-fit e una politica di scheduling dei processi FCFS, come verranno allocati i processi seguenti?

- P1 richiede 202 KB
- P2 richiede 155 KB
- P3 richiede 145 KB
- P4 richiede 50 KB

Motivare la risposta, mostrando graficamente l'evoluzione dell'occupazione della memoria con l'allocazione dei processi sopra elencati.

so
200 KB
P5
200 KB
Р6
500 KB
P7
100 KB
P8
100 KB