## CSF661 – Distributed Systems 分散式系統

# Chapter 1 Characterization of Distributed Systems

吳俊興 國立高雄大學 資訊工程學系

## Chapter 1 Characterization of Distributed Systems

- 1.1 Introduction
- 1.2 Examples of distributed systems
- 1.3 Trends in distributed systems
- 1.4 Focus on resource sharing
- 1.5 Challenges
- 1.6 Case study: The World Wide Web
- 1.7 Summary

#### 1.1 Introduction

#### Motivation:

#### **Networks of computers are everywhere!**

- Mobile phone networks
- Corporate networks
- Factory networks
- Campus networks
- Home networks
- In-car networks
- Planetary networks
  Why networked?

Desire to share resources

#### Influence:

Networked computers impact system designers and implementers

### **Defining Distributed Systems**

- "A system in which hardware or software components located at networked computers communicate and coordinate their actions only by message passing."
   [Coulouris]
  - Networked computers could be far apart or in the same room
    - relying on computer networking
    - i.e. cluster and grid
- "A distributed system is a collection of independent computers that appear to the users of the system as a single computer." [Tanenbaum]

## Consequences of Distributed Systems

- -Concurrency
  - Autonomous: Computers carry out tasks independently
  - Cooperative: Computers coordinate actions
- No global clock
  - Hard to synchronize their clocks precisely
  - Coordinate by exchanges messages
- Independent failures
  - Part of network or node faults does stop the running of the whole system

## 1.2 Examples of Distributed Systems

- Examples
  - 1.2.1 Web search (Google)
  - 1.2.2 Massively multiplayer online games (MMOGs)
  - 1.2.3 Financial trading

## Figure 1.1 Selected application domains and associated networked applications

| Finance and commerce                  | eCommerce e.g. Amazon and eBay, PayPal, online banking and trading                              |
|---------------------------------------|-------------------------------------------------------------------------------------------------|
| The information society               | Web information and search engines, ebooks, Wikipedia; social networking: Facebook and MySpace. |
| Creative industries and entertainment | online gaming, music and film in the home, usergenerated content, e.g. YouTube, Flickr          |
| Healthcare                            | health informatics, on online patient records, monitoring patients                              |
| Education                             | e-learning, virtual learning environments;<br>distance learning                                 |
| Transport and logistics               | GPS in route finding systems, map services:<br>Google Maps, Google Earth                        |
| Science                               | The Grid as an enabling technology for collaboration between scientists                         |
| Environmental management              | sensor technology to monitor earthquakes, floods or tsunamis                                    |

## Figure 1.2 An example financial trading system



#### 戶役政資訊系統



7萬2千個中文字

http://www.iisigroup.com/tw/cases/gov-ris.html

## 1.3 Trends in distributed systems

#### Influential trends

- Emergence of pervasive networking technology
- Emergence of ubiquitous computing coupled with the desire to support mobility
- Increasing demand of multimedia services
- View of distributed systems as a utility

#### Sections

- 1.3.1 Pervasive networking and the modern Internet
- 1.3.2 Mobile and ubiquitous computing
- 1.3.3 Distributed multimedia systems
- 1.3.4 Distributed computing as a utility (cloud)

## Figure 1.3 Typical Portion of the Internet



The Internet is a vast collection of computer networks of many different types and hosts supporting various types of services

## Figure 1.4 Portable and handheld devices



Support continued access to Home intranet resources via wireless and provision to utilize resources (e.g., printers) that are conveniently located (location-aware computing)

## Figure 1.5 Cloud Computing



A *cloud* is a set of Internet-based application, storage and computing services sufficient to support most users' needs, thus enabling them to largely or totally dispense with local data storage and application software

## 1.4 Focus on Resource Sharing

- Users are accustomed to the benefits of resource sharing
  - Share hardware resources such as printers
  - Share data such as files
  - Share specific functionality such as search engines
- Service-oriented: client-server computing
  - remote invocation of an operation to an object

## 1.5 Challenges

#### 1.5.1 Heterogeneity

- networks, hardware, os, languages...
- solutions: middleware (i.e. corba), mobile code, virtual machines

#### • 1.5.2 Openness

- extended and re-implemented in various ways
- standard published interfaces, RFC (request for comments)

#### • 1.5.3 Security

- confidentiality, integrity, availability

#### 1.5.4 Scalability

- effective with significant increase in resources
- cost and performance

#### 1.5.5 Failure handling

- detecting
- masking: hide, less severe (retransmit)
- tolerating: ignore, timeout
- recovery: logs, rollback
- redundancy

#### • 1.5.6 Concurrency

-several clients access a shared resource at the same time

## Challenges (Cont.)

#### 1.5.7 Transparency

- Access transparency: enables local and remote resources to be accessed using identical operations
- <u>Location transparency</u>: enables resources to be accessed without knowledge of their physical or network location (for example, which building or IP address)
- <u>Concurrency transparency</u>: enables several processes to operate concurrently using shared resources without interference between them
- Replication transparency: enables multiple instances of resources to be used to increase reliability and performance without knowledge of the replicas by users or application programmers
- <u>Failure transparency</u>: enables the concealment of faults, allowing users and application programs to complete their tasks despite the failure of hardware or software components
- Mobility transparency: allows the movement of resources and clients within a system without affecting the operation of users or programs.
- Performance transparency: allows the system to be reconfigured to improve performance as loads vary
- Scaling transparency: allows the system and applications to expand in scale without change to the system structure or application algorithms

#### • 1.5.8 Quality of Service

## 1.6 Case Study: The World Wide Web

#### Three major parts

- HTML, Hyper Text Markup Language
- URL, Uniform Resource Locator
  - http://servername[:port] [/pathname] [?arguments]
- HTTP, HyperText Transfer Protocol
  - request-reply protocol (client-server)
  - content types--MIME types, multipurpose internet mail extensions
  - one resource per request
  - simple access control (mostly public)

### Figure 1.7 Web Servers and Web Browsers



## Other Web Technologies

- web forms
- CGI programs, common gateway interface, run on the server
- applets, run on the client
- RDF, resource description framework, vocabulary for meta-data
- XML, extensible markup language, allow meta-data information to be included

## 1.7 Summary

- Computer networks and distributed systems are everywhere
- Resource sharing is the main motivating factor for constructing distributed systems
- Challenges: heterogeneity, openness, security, scalability, failure handling, concurrency, transparency