Sequencing -

- Total processing time | elapsed time
 - Minimization model
 - Shop floor + WIP (Broduct is waiting to be processed)
 + MIC is wating for product

 (Machine Utilization)
 - Machine utilization
 - Huge investment (Block capital, capital cost ...)
 - ROR
 - Machine utilization as high as possible.

Theory question to be prepared

1. Stale the various assumptions in sequencing model.

Case 1st - Processing n jobs through two machines/ 2 machines, n jobs problem.

- A machine operator has to perform two operations -turning and threading on size jobs in the sequence turning and threading.
- 1. Determine the sequence in which job should be processed in order to minimize total time
- 2. Find out idle time of turning operation and threading operation.
- 3. Calculate percentage utilization of threading and turning machine.

Job	Time for turning (minutes)	Time for threading (minutes)
1	- 3	- 8
2	- 12	10
3	_ 5	9
4	- 2	6
5	- 9	3
6	- 11	1

Solution

						1
MIC	1	2	3	4	5	6
Toming	3	12	5	2	9	11
Threading	8	10	9	6	3	1

The optimum sequence of jobs is

1. Select the Least processing time if it is for MIC 1
then write the corresponding Job number to extreme
Left and if it is for MK 2, then write the
corresponding Job number to extreme right.

	7.	erning		Threading			
ob	tin	tout	tidle	tin	teut	Lidle	
9	0	2	_	2	8	2	
1	2	5	-	8	16	_	
3	5	10	-	16	25	-	
2	10	22	-	25	35	-	
5	22	31	-	35	38	-	
6	31	42	_	42	43	4	

Total elapsed time | total processing time = 43 minutes.

Idle time of hurning m/c = (43-42) = 1 min

Idle time of threading m/c = 06 min

Percentage utilization of turning mic

$$= \frac{(43-1)}{43} + 100 = 97.67\%$$

Simplarly total elapsed time for threading mic

$$= \frac{(43-6)}{43} \times 100 = 86.04 / 0$$

There are seven jobs to be processed through machines A and B in the order AB. Find out the optimum sequence to minimize total processing time.

Job:	1	2	3	4	5	6	7
Madrine A:							
Machine B:							

1 76

The reduced set of processing times becomes

Jobs : 2 3 4 5

Machine A: 12 15 6 10

Machine B: 10 10 6 12

Here minmum processing time is of 6 mins for MICA as.
Well as for m/c B, so there can be two possible sequence

The reduced set of processing times becomes.

Jobs: 2 3 5

Machine A: 12 15 10

Machine B: 10 10 12

1/4/5 76 or 1/5 476

5

The reduced set of processing time

Jobs: 2 3

Muchine A: 12 15

Muchine B: 10 10

Max - Left-

1 4 5 3 2 7 6

6 or 1 5 3 2 4 7 6

	Mo	Machine A			Machine B			
Job -	tin	tout	tidle	tin	teat	tidle		
1	0	3	_	3	11	3		
4	3	9	_	41	17	-		
5	9	19	_	19	31	2		
3	19	34	-	34	44	3		
			_	46	56	2		
2	34	46	_	56	59	_		
7	46	55	1	66	67	7		
6	55	66			1			

Potal elapsed time = 67 mins.

Idle time for M/C A = (67-66) = 1 min.

Idle time for m/C B = (3+2+3+2+7) = 17 mins.

Case 2nd: 3 machines and n jobs

Prob3

Jobs: 1 2 3 4 5 6

 Jobs
 : 1
 2
 3
 4
 5
 6

 Machine A
 : 3
 12
 5
 2
 9
 11

 Machine B
 : 8
 6
 4
 6
 3
 1

 Machine C
 : 13
 14
 9
 12
 8
 13

Min A = 2 Max B = 8 Min C = 8Min A = 7 Max B = 8 Min C = 8Min C = 8

Solution :-

- 1. As Minc (8) 7, Max B (8), The problem can be Solved.
- 2. Converting 8 m/cs problem to 2 m/c problem as below m/c & = m/cA + m/c B

 M/c x = M/cB + M/c C

Job : 1 2 3 4 5 6

Machine & : 11 18 9 8 12 12

Machine & : 21 20 13 18 11 14

Machine A				Machine 3			Machine c		
Job		tout	tidle	tin	tout	tidle	tin	tout	tidle.
4	tin	2	_	2	8	2	8	20	8
3	2	7	-	8	12	-	20	29	-
1	7	10		12	20		29	42	-
6	10	21	ebsuqe ues	21	22	01	42	55	-
		33	A Dies stores to	33	39	11	55	69	-
2	21			42	45	3	69	77	-
5	33	42	t conflict si	72	(11) 2-10-25-24	Barret (Trans			

Potal elapsed time = 77 mins

Idle time for mIC A = (77-42) = 35 mins.

Idle time for MIC B = (77-45)+(2+1+11+3)=32+17=49 mins.

Idle time for MICEC = 8 mins

Prob4

Four jobs 1,2,3 and 4 are to be processed on five M/cs A, B, c, D, and E in order ABCDE. Findoul-total processing time and idle time for each machines.

Job MIC	A	В	C	D	E
1	7	5	2	3	9
2	6	6	4	5	10
3	5	4	5	6	8
4	8	3	3	2	6

Solution

Min of first or last-m/c should be 7.

Max of in between machines.

Min A = 5 Max B = 6, Max C = 5, Max D = 6 Min E = 6

Min A(5) Max (B,C) (6,5) X or Min E(6) > Max (B,C)

Con While converting more thom 2 mlcs problem to 2 machines problem

MIG1 = First to last but one (exclude last MIC)

MIC2 = Second to last- MIC (exclude first MIC

... Converting given problem to 2 MIC problem

MIC x = MIC A+ MIC B+ MIC C+ MIC D

		- turn			
WIC	1	2_	3	4	
Machine X	17	21	20	16	
Machine y	19	25	23	14	

.. The optimum sequence will be

1 3 2 4

Answers

. Total elapsed time = 51 mins.

Idle time A = 51-26 = 25 mins.

B = 7+2+2 + (51-29) = 33 mins.

C = 12+2+3+1+(51-32) = 37 mins.

D = 14+4+1+ (51-35) = 35 mins.

E = 17+1 = 18 mins.