Numerical Linear Algebra

Sheet 1 — MT24

Norms and SVD, up to lecture 4

Questions are split into three sections: Section A (basic, not marked, solutions provided): 1–3. Section B (will be marked): 4–8. Section C (new, solutions provided): 9.

- 1. Show that $||x||_{\infty} = \max_{i} |x_{i}|$ satisfies the axioms for a vector norm.
- 2. Show that if ||x|| is a vector norm then $\sup_{x} \frac{||Ax||}{||x||}$ satisfies the axioms for a matrix norm. Further show that

$$||AB|| \le ||A|| \, ||B||.$$

3. By considering the individual columns a_j of A and b_j of B = QA, show that

$$||QA||_{F} = ||A||_{F}$$

if Q is an orthogonal matrix.

4. From the definition of the vector 1-norm show that

$$||A||_1 = \max_j \sum_i |a_{ij}|.$$

- 5. Full SVD. Prove the existence of $A=U\begin{bmatrix} \Sigma \\ 0_{(m-n)\times n} \end{bmatrix}V^*$, where $U\in\mathbb{C}^{m\times m}$ and $V\in\mathbb{C}^{n\times n}$ are unitary matrices i.e., $U^*U=I_m$ and $V^*V=I_n$, and $\Sigma\in\mathbb{R}^{n\times n}$ is diagonal.
- 6. What is the SVD of a normal matrix A, with respect to the eigenvalues and eigenvectors? What if A is (real) symmetric? And unitary?
- 7. If $A \in \mathbb{R}^{n \times n}$ is nonsingular, what is the SVD of A^{-1} in terms of that of A?
- 8. Let B be a square $n \times n$ matrix. Bound the ith singular values of AB using $\sigma_i(A)$ and $\sigma_i(B)$: Specifically, prove that for each i,

$$\sigma_i(A)\sigma_n(B) \le \sigma_i(AB) \le \sigma_i(A)\sigma_1(B).$$

9. (optional; harder) Let $A \in \mathbb{R}^{m \times n}$, $m \ge n$ and $\sigma_1(A) \ge \sigma_2(A) \ge \cdots \ge \sigma_n(A) \ge 0$ be its singular values. Prove that for $k = 1, 2, \ldots, n$,

$$\sum_{i=1}^{k} \sigma_i(A) = \max_{Q^T Q = I_k, W^T W = I_k} \operatorname{trace}(Q^T A W).$$

 $(Q \in \mathbb{R}^{m \times k}, W \in \mathbb{R}^{n \times k})$ are orthonormal. Recall for an $k \times k$ matrix B, trace $(B) = \sum_{i=1}^k B_{ii}$; a useful property is $\operatorname{trace}(CD) = \operatorname{trace}(DC)$ as long as CD is square.)