

ASM Solution 2

Christa Smith, Frank Ferrer-Gonzalez

Abstract

Citation: Christa Smith, Frank Ferrer-Gonzalez ASM Solution 2. protocols.io

dx.doi.org/10.17504/protocols.io.jwacpae

Published: 28 Jun 2018

Guidelines

First, prepare primary stock solutions. Glassware should be acid-washed and rinsed well with dH_2O before use. If unable to measure small quantities accurately, either scale up the recipe or prepare additional stock solutions of the individual compounds.

Before start

Prepare primary stock solutions (in dH₂O) of the following:

- NaNO₃: 75.00 g/L
- NaH₂PO₄·H₂O: 5.00 g/L
- Na₂SiO₃·9HO: 30.00 g/L (Note: this will only be used if phytoplankton require silicates)

Filter sterilize through a 0.2 micron PES membrane and store frozen in 1 mL aliquots.

Protocol

Step 1.

Measure 500 mL dH₂O into a 1 L glass bottle.

Step 2.

Dissolve 4.796 g MgCl₂·6H₂O into bottle.

Step 3.

Dissolve 0.672 g CaCl₂·2H₂O into bottle.

Step 4.

Dissolve 10.95 mg SrCl₂·6H₂O into bottle.

Step 5.

NaNO₃: 1 ml primary stock solution (75.00 g/L)

Step 6.

NaH₂PO₄·H₂O: 1 ml primary stock solution (5.00 g/L)

Step 7.

Na₂SiO₃· 9H₂O (optional): 1 ml primary stock solution (30.00 g/L)

Christa Smith 14 Sep 2017

Only add if phytoplankton requires silicates.

Step 8.

Mix final solution well and set aside until ready to autoclave.

Published: 28 Jun 2018