Inverse Function Theorem Proof

Ameer Qaqish

Lemma 1: Suppose U is an open convex subset of \mathbb{R}^n and that $F: U \to \mathbb{R}^m$ is C^1 and that for every $x \in U$, $||DF(x)|| \leq M$. Then for any $x_1, x_2 \in U$,

$$||F(x_2) - F(x_1)|| \le M ||x_2 - x_1||.$$

Proof: Define $\phi: [0,1] \to \mathbb{R}^m$ by $\phi(t) = F(x_1 + t(x_2 - x_1))$. By the chain rule, $\phi'(t) = DF(x_1 + t(x_2 - x_1))(x_2 - x_1)$. By the fundamental theorem of calculus,

$$||F(x_{2}) - F(x_{1})|| = ||\phi(1) - \phi(0)||$$

$$= \left\| \int_{0}^{1} DF(x_{1} + t(x_{2} - x_{1}))(x_{2} - x_{1}) dt \right\|$$

$$\leq \int_{0}^{1} ||DF(x_{1} + t(x_{2} - x_{1}))(x_{2} - x_{1})|| dt$$

$$\leq \int_{0}^{1} ||DF(x_{1} + t(x_{2} - x_{1}))|| ||x_{2} - x_{1}|| dt$$

$$\leq \int_{0}^{1} M ||x_{2} - x_{1}|| dt$$

$$= M ||x_{2} - x_{1}||.$$

Lemma 2: Suppose Ω is an open subset of \mathbb{R}^n and $F: \Omega \to \mathbb{R}^n$ is C^1 . Suppose $p_0 \in \Omega$ is such that $DF(p_0)$ is invertible. Then there exist open sets $U \ni p_0, V \ni F(p_0)$ such that $F: U \to V$ is a bijection and F^{-1} is differentiable at $F(p_0)$.

Proof: By a C^{∞} change of coordinates (shifting F and scaling F by $DF(p_0)^{-1}$), we may assume that $p_0 = 0$, F(0) = 0, and DF(0) = I. Write F(x) = x + R(x), where R(x) = F(x) - x. Note that R(0) = 0 and DR(0) = 0 and R is C^1 and R(x) = o(||x||) as $x \to 0$. Choose r > 0 such that $B(0, r) \subset \Omega$ and

$$x \in B(0,r) \implies ||DR(x)|| < \frac{1}{2}.$$

We will prove that $B(0, \frac{r}{2}) \subset F(B(0, r))$, i.e. that for every $y \in B(0, \frac{r}{2})$, there exists $x \in B(0, r)$ such that F(x) = y. Let $y \in B(0, \frac{r}{2})$ be arbitrary. Motivated by Newton's method for solving F(x) = y, define a function $G: B(0, r) \to \mathbb{R}^n$ by

$$G(x) = x - DF(0)^{-1}(F(x) - y)$$

= x - F(x) + y
= y - R(x).

Note that G(x) = x if and only if F(x) = y. Note that for all $x \in B(0, r)$, $||DG(x)|| = ||DR(x)|| \le \frac{1}{2}$. Thus for $x_1, x_2 \in B(0, r)$ we have

$$||G(x_2) - G(x_1)|| \le \frac{1}{2} ||x_2 - x_1||.$$

This implies that if $x_1, x_2 \in B(0, r)$ with $G(x_1) = x_1$ and $G(x_2) = x_2$, then $\|x_2 - x_1\| \le \frac{1}{2} \|x_2 - x_1\|$, which means $x_1 = x_2$. Thus if a solution $x \in B(0, r)$ to F(x) = y exists, then it is unique. We claim that G maps $\overline{B(y, 2 \| R(y) \|)}$ to itself. Note that since $\|R(y)\| = \|R(y) - R(0)\| \le \frac{1}{2} \|y\|$, $\overline{B(y, 2 \| R(y) \|)} \subset B(y, \|y\|) \subset B(0, r)$. Thus for all $x \in \overline{B(y, 2 \| R(y) \|)}$ we have

$$||G(x) - y|| = ||R(x)||$$

$$\leq ||R(x) - R(y)|| + ||R(y)||$$

$$\leq \frac{1}{2} ||x - y|| + ||R(y)||$$

$$\leq 2 ||R(y)||.$$

Thus G maps $\overline{B}(y,2 || R(y) ||)$ to itself. By the contraction mapping theorem, there exists $x \in \overline{B}(y,2 || R(y) ||)$ such that F(x) = y. Thus we have established that for every $y \in B(0,\frac{r}{2})$, there exists a unique $x \in B(0,r)$ such that F(x) = y, and that we actually have $x \in \overline{B}(y,2 || R(y) ||)$. If we set $V = B(0,\frac{r}{2})$, $U = F^{-1}(V)$, then $F \colon U \to V$ is a bijection, and U is open since F is continuous and V is open. Note that for $y \in V$ we have established that $F^{-1}(y)$ is within 2 || R(y) || of y. Since R(y) = o(||y||) as $y \to 0$, this means $F^{-1}(y) = y + o(||y||)$. Thus $DF^{-1}(0) = I$. This proves the claim

Inverse Function Theorem: Suppose Ω is an open subset of \mathbb{R}^n and $F: \Omega \to \mathbb{R}^n$ is C^1 . Suppose $p_0 \in \Omega$ is such that $DF(p_0)$ is invertible. Then there exist open sets $U \ni p_0, V \ni F(p_0)$ such that $F: U \to V$ is a C^1 diffeomorphism.

Proof: Since F is C^1 and the set of invertible $n \times n$ matrices is open, we can choose r > 0 such that $B(p_0, r) \subset \Omega$ and for each $x \in B(p_0, r)$, DF(x) is invertible. Applying lemma 2 to $F \colon B(p_0, r) \to \mathbb{R}^n$, we get open sets $U \subset B(p_0, r)$ containing p_0, V containing $F(p_0)$ such that $F \colon U \to V$ is a bijection. Applying lemma 2 to every $x \in U$ shows that F^{-1} is differentiable at every point in V. Using the identity $F(F^{-1}(y)) = y$ and the chain rule, we get $DF^{-1}(y) = DF(F^{-1}(y))^{-1}$. Since F^{-1} , DF, and the map $A \mapsto A^{-1}$ are continuous, DF^{-1} is continuous. Thus $F \colon U \to V$ is a C^1 diffeomorphism.