Picturing multivaniable adjunctions.

And the 2-Chu construction.

TallCat Chu Construction Seminar
MARIO ROMÁN.

An (n,m)-multivariable adjunction $(A_1,...,A_n) \rightarrow (B_1,...,B_m)$ is a profunctor $P: A_1^{op} \times ... \times A_n^{op} \times B_1 \times ... \times B_m \rightarrow SET$ that is representable in each variable.

$$P(a_1,...)$$

An (n,m)-multivariable adjunction $(A_1,...,A_n) \rightarrow (B_1,...,B_m)$ is a profuctor $P: A_1^{op} \times ... \times A_n^{op} \times B_1 \times ... \times B_m \rightarrow SET$ that is representable in each variable.

That means that there exist functors $g_1, ..., g_n$ and $f_1, ..., f_m$ such that there is the following isomorphism clique.

$$P(a_1,...,a_n,b_1,...,b_m) \cong hom(a_i,g_i(a_1,\overset{!}{\sim},a_n,b_1,...,b_m))$$

$$\cong hom(f_i(a_1,...,a_n,b_1,\overset{!}{\sim},b_m),b_i)$$

An (n,m)-multivariable adjunction $(A_1,...,A_n) \rightarrow (B_1,...,B_m)$ is a profuctor $P: A_1^{op} \times ... \times A_n^{op} \times B_1 \times ... \times B_m \rightarrow SET$ that is representable in each variable.

That means that there exist functors $g_1, ..., g_n$ and $f_1, ..., f_m$ such that there is the following isomorphism clique.

$$P(a_1,...,a_n,b_1,...,b_m) \cong hom(a_i,g_i(a_1,\overset{!}{\vee},a_n,b_1,...,b_m))$$

$$\cong hom(f_i(a_1,...,a_n,b_1,\overset{!}{\vee},b_m),b_i)$$

- A (1,1)-adjunction $A \rightarrow B$ is an ordinary adjunction. hom $(a,g(b)) \cong hom(f(a),b)$.
- A (2,1)-adjunction $A_1, A_2 \rightarrow B$ is a triple of functors hom $(f(a_1,a_2),b) \cong$ hom $(a_1,g,(a_2,b_2)) \cong$
 - hom $(a_2, g_2(a_1, b_2))$.
- · A (0,1)-adjunction is an object.

Polycategory of multivariable adjunctions.

Let $P: I \rightarrow A_1 \Delta$ and $Q: A_1 I' \rightarrow \Delta'$ be multivariable adjunctions. We claim that $(Q_{P})(r,r';\Delta,\Delta') := \int_{P(r;\Delta,a)\times Q(a,r';\Delta')}^{a\in A}$

is a multivaniable adjunction.

Polycategory of multivariable adjunctions.

Let $P: \Gamma, A \rightarrow \Delta$ and $Q: A, \Gamma' \rightarrow \Delta'$ be multivariable adjunctions. We claim that $(Q_{P}^{\circ}P)(\Gamma, \Gamma'; \Delta, \Delta') := \int_{P(\Gamma; \Delta, \Delta) \times Q} Q(\alpha, \Gamma'; \Delta')$

is a multivariable adjunction.

What does it mean for P and Q to be representable? $P(\Gamma; a, \Delta) \cong hom(\Gamma; g_i(\Gamma_{\sharp i}, a, \Delta)) \qquad Q(\Gamma', a; \Delta') \cong hom(\Gamma'; g'_i(\Gamma_{\sharp i}, a, \Delta'))$ $\cong hom(f_i(\Gamma, a, \Delta_{\sharp i}), \Delta_i) \qquad \cong hom(f_i'(\Gamma, a, \Delta'_{\sharp i}), \Delta_i')$ $\cong hom(h(\Gamma, \Delta), a) \qquad \cong hom(a, h'(\Gamma, \Delta)).$

Polycategory of multivariable adjunctions.

Let $P: I', A \rightarrow \Delta$ and $Q: A, I' \rightarrow \Delta'$ be multivariable adjunctions. We claim that $(Q_{P})(r, r'; \Delta, \Delta') := \int_{P(r; \Delta, a) \times Q} (a, r'; \Delta')$

is a multivariable adjunction.

Proof. Let us show it is representable in I:, the vest is analogous.

$$\int_{P(\Gamma_{i}, \Gamma_{\sharp i}; a, \Delta)}^{\alpha \in A} P(\Gamma_{i}, \Gamma_{\sharp i}; a, \Delta) \times Q(a, \Gamma'; \Delta') \simeq \int_{A \in A}^{A \in A} hom(\Gamma_{i}, g_{i}(\Gamma_{\sharp i}, a, \Delta)) \times hom(a, h'(\Gamma', \Delta')) \simeq hom(\Gamma_{i}, g_{i}(\Gamma_{\sharp i}, h'(\Gamma', \Delta'), \Delta))$$

A representable profunctor is depicted by its representing functor together with an amountip pointing in the direction of the represented vaniable.

Here $P: A_1^{op} \times A_2^{op} \times B_1 \times B_2 \times B_3 \rightarrow SET$ is representable in A_4

 $P(a_1,a_2,b_1,b_2,b_3) \cong hom(a_1,g_1(a_2,b_1,b_2,b_3)).$

A representable profunctor is depicted by its representing functor together with an amountip pointing in the direction of the represented vaniable.

Here $P: A_1^{op} \times A_2^{op} \times B_1 \times B_2 \times B_3 \rightarrow SET$ is representable in A_2

 $P(a_1,a_2,b_1,b_2,b_3) \cong hom(a_2,g_2(a_1,b_1,b_2,b_3)).$

A representable profunctor is depicted by its representing functor together with an amountip pointing in the direction of the represented vaniable.

Here $P: A_1^{op} \times A_2^{op} \times B_1 \times B_2 \times B_3 \rightarrow SET$ is representable in B3

 $P(a_1,a_2,b_1,b_2,b_3) \cong hom(f_3(a_1,a_2,b_1,b_2),b_3).$

A representable profunctor is depicted by its representing functor together with an amountip pointing in the direction of the represented vaniable.

Here $P: A_1^{op} \times A_2^{op} \times B_1 \times B_2 \times B_3 \rightarrow SET$ is representable in B_2

 $P(a_1,a_2,b_1,b_2,b_3) \cong hom(f_2(a_1,a_2,b_1,b_3),b_2).$

A representable profunctor is depicted by its representing functor together with an amountip pointing in the direction of the represented vaniable.

Here $P: A_1^{op} \times A_2^{op} B_1 \times B_2 \times B_3 \rightarrow SET$ is representable in B_1

 $P(a_1,a_2,b_1,b_2,b_3) \cong hom(f_1(a_1,a_2,b_2,b_3),b_1).$

DEF. A multivaniable adjunction is an isomorphism clique.

An example

hom (A⊗B,C)

DEF. A multivaniable adjunction is an isomorphism clique.

An example

DEF. A multivariable adjunction is an isomorphism clique.

An example

hom (A, C~B)

Polycategonical composition of multivariable adjunctions gets defined by the multicategorical composition of the representable functors.

Compare with the previous proof.

$$\int_{P(\Gamma_{i}, \Gamma_{\pm i}; a, \Delta)}^{\alpha \in A} \times \mathbb{Q}(a, \Gamma'; \Delta') \cong \int_{A \in A}^{A \in A} \operatorname{hom}(\Gamma_{i}, g_{i}(\Gamma_{\pm i}, a, \Delta)) \times \operatorname{hom}(a, h'(\Gamma', \Delta')) \cong \operatorname{hom}(\Gamma_{i}, g_{i}(\Gamma_{\pm i}, h'(\Gamma', \Delta'), \Delta))$$

Polycategonical composition of multivariable adjunctions gets defined by the multicategorical composition of the representable

This is the Chu Construction.

Given a multicategory, we want to construct a polycategory with duals. Morphisms should be diques.

We would want to put equalities, but that does not typecheck.

"Pulling" in each direction we get the multiarrow.

This is the Chu Construction.

Given a multicategory, we want to construct a polycategory with duals. Morphisms are diques.

We would want to put equalities, but that does not typecheck.

In a multicategory with empty codomains, we can ask each object to have a chosen "formal dual".

$$\begin{pmatrix}
A & Objects \\
A & (A, A^*, (A, A^*) \rightarrow (1))
\end{pmatrix}$$

This is the Chu Construction.

with multiarrows $\Gamma \rightarrow ()$. Given a multicategory, we want to construct a polycategory with duals. Morphisms are cliques.

We would want to put equalities, but that does not typecheck.

Morphisms.

In a multicategory with empty codomains, we can ask each object to have a chosen "formal dual".

$$\begin{array}{c}
A & Object \\
A, A^*, (A, A^*) \rightarrow (1)
\end{array}$$

Now, this typechecks.

A A° Object

(A, A°, (A, A°)
$$\rightarrow$$
 (1)

A B C° D° B A C° D° C° A B D° D° A B C°

(A, B°, (A, A°) \rightarrow (1)

Ow, this typechecks.

Polycategorical Chu Construction.

Objects.

$$(A,A^{\circ},(A,A^{\circ})\rightarrow ())$$

Polyarrows $(A, ... A_n) \rightarrow (B, ... B_m)$ are cliques.

$$A_{i} ... A_{n} B_{i}^{*} ... B_{m}^{*} B_{j}^{*}$$

$$= A_{i} ... A_{n} B_{i}^{*} ... B_{m}^{*} A_{i}$$

$$A_{i}^{*} ... A_{n}^{*} B_{i}^{*} ... B_{m}^{*} A_{i}$$

Usual Chu Construction

- · Objects (A, A°, A⊗A°→1)
- Morphisms

Polycategorical Chu Construction.

Objects.

$$(A,A^{\circ},(A,A^{\circ})\rightarrow ())$$

Polyarrows $(A, ... A_n) \rightarrow (B, ... B_m)$ are cliques.

How to add the 2-cells?

A homomorphism of n-diques is a family of maps.

It is completely determined by its value at any component.

In our case,
... = (1) = ...

Polycategorical Chu Construction.

Objects.

$$A \qquad A^{\circ} \qquad (A,A^{\circ},(A,A^{\circ}) \rightarrow ())$$

Polyarrows and cliques. $(A, ... A_n) \rightarrow (B, ... B_m)$

Multivariable adjunctions?

CAT is a multicategouy where

$$A_1, \dots, A_n \rightarrow B_1$$

means $A_1 \times \dots \times A_n \to B_1$. And we can take $A_1 \dots A_n \to ()$ to

$$A_1 \times \cdots \times A_n \rightarrow Set$$
.

Multivariable adjunctions are a subbicategory of Chu (Cat, Set).

And this is true because of the universal property of Chu.

Pseudomonoids in MADT are closed categories.

The 1-cells give the functors of the closed category.

 $hom(A \otimes B, C) \cong hom(B, A - C) \cong hom(A, C - B)$

(2,1) - Adjunction

hom(I,A)

(0,1) - Adjunction

The 2-cells are completely determined by the component on (8).

Pseudomonoids in MADT are closed categories.

The 1-cells give the functors of the closed category.

$$hom(A,B \otimes c) \cong hom(A \triangleleft B, c) \cong hom(c \triangleright A, B)$$
(1,2) - Adjunction

The 2-cells are completely determined by the component on (8).

Linearly distributive categories

Linearly distributive categorises which are closed and coclosed are lax Frobenius monoids in MADJ.

Sketch of the Proof. The monoid/comonoid pair gives (0,0).

The Frobenius nule gives,

 $(X \otimes Y) \Delta Z \longrightarrow X \otimes (Y \Delta Z)$

We only need to get the linear distributors

$$X\otimes(YOZ) \longrightarrow (X\otimes Y)OZ$$

from $(X\otimes Y)AZ \longrightarrow X\otimes(YAZ).$

Linearly distributive categories

Linearly distributive categories which are closed and coclosed are lax Frobenius monoids in MADJ.

Refevences.

- The 2-Chu-Dialectica construction. M. Shulman
- · Star-Autonomous Categories are Frob. pseudomonaids. M. Shulman

If you want more diagrams:

· Open Diagrams Via Coend Calculus. M.R.

The 'mates' correspondence:

· Multivaviable Adjunctions and Mates. Cheng, Richl, Gunski.