# Toolbox to Mitigate Bias in AI

Presented By:

Gabriela de Queiroz Saishruthi Swaminathan Stacey Ronaghan



Materials: bit.ly/north-conf-toolbox

# Agenda



## Responsible AI

### • AI Opportunities

- Increased Revenue
- Efficiencies

### AI Risks

- Harm to Users
- Harm to Business

### A Solution

- Regulation
- Ethical & Moral Practices



### Places

privileged groups at
systematic advantage

and

unprivileged groups at systematic disadvantage.

Types of Bias







- Human Centric
- Optimization Metrics



**DATA** 

- Representative
- Protected



MODEL

- Interpretable
- Fair



MONITORING

- Staged rollout
- Feedback loop



**ACCOUNTABILITY** 

- Transparency
- Responsibilities

# Responsible AI Pipeline

# Responsible AI Benefits

- Prevent harm
- Build an inclusive product
- Delightful customer experiences
- Responsible branding

## A Step Towards Building Trustworthy AI system

## AI Fairness 360 Toolkit (AIF360)



## Al Fairness 360 (AIF360)

An extensible, open source toolkit for measuring, understanding, and reducing AI bias. It combines the top bias metrics, bias mitigation algorithms, and metric explainers from fairness researchers across industry and academia

- Implement techniques from eight published papers across the greater AI fairness research community
- Available in Python and R

## Terminology

- **Favorable label**: A label whose value corresponds to an outcome that provides an <u>advantage to the recipient</u> (such as receiving a loan, being hired for a job, not being arrested)
- **Protected attribute**: An attribute that <u>partitions a population</u> into groups whose outcomes should have parity (such as race, sex, caste, and religion)
- **Privileged value** (of a protected attribute): A protected attribute value indicating a group that has historically been at a systemic advantage
- **Discrimination/unwanted bias**: When specific privileged groups are placed at a systematic advantage and specific unprivileged groups are placed at a systematic disadvantage. This relates to attributes such as race, sex, age, and sexual orientation.

## Terminologies

- Favorable label: No Credit Risk
- Unfavorable label: Credit Risk
- Protected Attribute: Sex
- Privileged Protected Attribute: Male



## Mitigating bias throughout the AI application lifecycle



## Metrics

A quantification of unwanted bias in training data or models.

### **Group fairness**

Partitions a population into groups defined by protected attributes & seeks for some statistical measure to be equal across groups.

#### **Individual fairness**

Seeks for similar individuals to be treated similarly.

## Group Fairness

**Data Vs Model** 

Measure fairness on the training data

Vs

Measure fairness on the learned model

## Metrics

## Metrics

### Group Fairness

### We are all Equal

All groups have similar abilities with respect to the task (even if we cannot observe this properly)

Vs

#### **What You See is What You Get**

Observations reflect ability with respect to the task

## Group Fairness Metrics

- Difference
- Number of instance
- Ratio
- Base Rate
- Consistency
- Difference
- Disparate Impact
- Mean Difference

- Number of negatives
- Number of Positives
- Ratio
- Smoothed empirical differential fairness
- Statistical Parity Difference
- Rich Subgroup
- false\_negative\_rate
- false\_negative\_rate

## Individual Fairness Metrics

- average\_euclidean\_distance
- average\_mahalanobis\_distance
- average\_manhattan\_distance
- difference
- euclidean\_distance
- mahalanobis\_distance
- manhattan\_distance

- mean\_euclidean\_distance\_difference
- mean\_euclidean\_distance\_ratio
- mean\_mahalanobis\_distance\_difference
- mean\_mahalanobis\_distance\_ratio
- mean\_manhattan\_distance\_difference
- mean\_manhattan\_distance\_ratio

Full Guidance Available Here: https://aif360.mybluemix.net/resources#guidance

## Fairness Metrics Tree



Full Guidance Available Here: https://aif360.mybluemix.net/resources#guidance

## Algorithms

- Bias mitigation algorithms attempt to improve the fairness metrics by modifying the training data, the learning algorithm, or the predictions.
- These algorithm categories are known as pre-processing, in-processing, and post-processing, respectively.

## Algorithms

## **Pre-Processing Algorithms**Mitigate bias in training data

## **In-Processing Algorithms**Mitigate bias in classifiers

## **Post-Processing Algorithms**Mitigate bias in predictions

#### Reweighing

Modifies the weights of different training examples

#### **Adversarial Debiasing**

Uses adversarial techniques to maximize accuracy and reduce evidence of protected attributes in predictions

#### **Reject Option Classification**

Changes predictions from a classifier to make them more fair

#### **Disparate Impact Remover**

Edits feature values to improve group fairness

#### **Prejudice Remover**

Adds a discrimination-aware regularization term to the learning objective

#### **Calibrated Equalized Odds**

Optimizes over calibrated classifier score outputs that lead to fair output labels

#### **Optimized Preprocessing**

Modifies training data features and labels

#### **Meta Fair Classifier**

Takes the fairness metric as part of the input and returns a classifier optimized for the metric

#### **Equalized Odds**

Modifies the predicted label using an optimization scheme to make predictions more fair

#### Learning Fair Representations

Learns fair respresentations by obfuscating information about protected attributes

# Using AIF360 in R

## R Package Installation

You can install the **aif360** R package in your machine

Or you can use **Docker** for example and install the package

# Example Use-Case

#### Business use-case

Select customers who are likely to buy our new product.

#### **Target Audience**

Those whose income is over \$50,000.

#### Dataset

https://archive.ics.uci.edu/ml/datasets/adult

#### **Example Attributes**

- Age
- Work Classification (e.g. Private, Self-Employed, Never worked, etc.)
- Education (e.g. Bachelors, Some college, High School graduate, etc.)
- Years of Education
- Marital Status
- Occupation
- Race
- Sex
- Hours-per-week
- Native country

# Live Demo

```
Source on Save

Source on Sav
```

# Call To Action



## AIF360 - Interactive Demo

## aif360.mybluemix.net

#### AI Fairness 360

This extensible open source toolkit can help you examine, report, and mitigate discrimination and bias in machine learning models throughout the AI application lifecycle. We invite you to use and improve it.















# **Thank You!**







linkedin.com/in/ staceyronaghan

linkedin.com/in/ gabrieladequeiroz

linkedin.com/in/ saishruthi-swaminathan