2.2.1 Linear Classification

In linear classification, we start with the binary case and make the assumption that the sought (to search) sets are half-spaces in \mathbb{R}^d separated by a hyperplane of the form $\{x\in\mathbb{R}^d|\langle w,x\rangle+b\}$

We consider the following function $\hat{f}: \mathbb{R}^d \to \{-1,1\}$, which assigns a label $\hat{f}(x) \in \{-1,1\}$ to a data point $x \in \mathbb{R}^d$:

2.2.1

$$\hat{f}(x) := egin{cases} 1 & ext{if } \langle w, x
angle + b \geq 0 \ -1 & ext{if } \langle w, x
angle + b < 0 \end{cases}$$

As with regression problems, we now need to determine the parameters $w\in\mathbb{R}^d$ and $b\in\mathbb{R}$ so that $\hat{f}(x_i)\approx y_i$ for all data points $i=1,\ldots,N$.

At this point, we emphasize that $\hat{f}(x) = \operatorname{sign}(\langle w, x \rangle + b)$ and thus the activation function \hat{f} is a neural network with one neuron and an activation function $\sigma = \operatorname{sign}$, where

2.2.2

$$ext{sign}(t) := egin{cases} 1 & ext{if } t \geq 0, \ -1 & ext{if } t < 0 \end{cases}$$

is the sign function with the convention $\mathrm{sign}(0)=1$