Sformułowanie problemu decyzyjnego (pytanie o istnienie takiego zbioru manewrów samolotów, który pozwala uniknąć kolizji/konfliktu)

Dane wejściowe:

n – liczba samolotów

m – liczba manewrów – taka sama dla każdego samolotu (w tym "manewr" polegający na poruszaniu się po wcześniej ustalonej trasie)

 $\mathit{CM}[n \cdot m \times n \cdot m]$ – tablica konfliktów (ang. *Conflict Matrix*)

wersja dla tablicy CM indeksowanej od 1:

 $CM[(i-1)\cdot m+j;(k-1)\cdot m+l] = \begin{cases} 1, & \text{jeśli samolot } i\ (i=1,\dots,n) \text{wykonując manewr } j\ (j=1,\dots,m) \text{ jest w konflikcie z samolotem } k \text{ wykonującym manewr } l \\ 0, & \text{w przeciwnym przypadku (czyli nie ma kofliktu między samolotami wykonującymi dane manewry)} \end{cases}$

wersja dla tablicy CM indeksowanej od 0:

```
 \begin{split} \mathit{CM}[(i-1)\,m+j-1;(k-1)\,m+l-1] \\ &= \begin{cases} 1, & \text{jeśli samolot } i\ (i=1,\dots,n) \text{wykonując manewr } j\ (j=1,\dots,m) \text{ jest w konflikcie z samolotem } k \text{ wykonującym manewr } l \\ 0, & \text{w przeciwnym przypadku (czyli nie ma kofliktu między samolotami wykonującymi dane manewry)} \end{split}
```

Niewiadome:

 $x_{ij} \in \{0,1\}$

 x_{ij} – zmienna binarna wskazująca czy samolot i (i = 1, ..., n) wykonuje manewr j (j = 1, ..., m)

 $x_{ij} = \begin{cases} 1, & \text{jeśli samolot } i \ (i=1,\ldots,n) \text{ ma wykonać manewr } j \ (j=1,\ldots,m) \\ 0, & \text{w przeciwnym przypadku (czyli samolot } i \text{ nie wykonuje manewru } j) \end{cases}$

Sfomułowanie problemu decyzyjnego (wersja: *CM* indeksowana od 1):

//zmienne decyzyjne są binarne

Przykład dla n = 3, m = 4 i *CM postaci:*

Samolot			1				2	2			3	3	
	Manewr	1	2	3	4	1	2	3	4	1	2	3	4
1	1	-*	•	•	-	0	0	1	0	1	0	0	0
	2	-	-	1	-	1	1	0	0	0	1	0	1
	3	-	-	-	-	0	1	0	1	0	0	0	1
	4	-	-	-	-	1	0	1	1	0	0	0	0
2	1	0	1	0	1	-	-	-	-	1	1	0	0
	2	0	1	1	0	-	1	-	-	0	0	0	1
	3	1	0	0	1	ı	1	ı	-	1	0	1	1
	4	0	0	1	1	-	-	-	-	0	0	0	0
3	1	1	0	0	0	1	0	1	0	-	-	-	-
	2	0	1	0	0	1	0	0	0	-		-	-
	3	0	0	0	0	0	0	1	0	-		•	-
	4	0	1	1	0	0	1	1	0	-	-	-	-

^{*} pozycje CM o wartości "-" są nadmiarowe i nie są sprawdzane, gdyż samolot nie może być w konflikcie sam ze sobą

Sformułowanie problemu:

Minimize 1
s.t.

$$x_{11} + x_{12} + x_{13} + x_{14} = 1$$

$$x_{21} + x_{22} + x_{23} + x_{24} = 1$$

$$x_{31} + x_{32} + x_{33} + x_{34} = 1$$

$$x_{11} + x_{23} \le 1$$

$$x_{11} + x_{21} \le 1$$

$$x_{12} + x_{21} \le 1$$

$$x_{12} + x_{32} \le 1$$

$$x_{12} + x_{34} \le 1$$

$$x_{13} + x_{24} \le 1$$

$$x_{13} + x_{24} \le 1$$

$$x_{14} + x_{21} \le 1$$

$$x_{14} + x_{23} \le 1$$

$$x_{14} + x_{24} \le 1$$

$$x_{21} + x_{31} \le 1$$

$$x_{21} + x_{32} \le 1$$

 $x_{22} + x_{34} \le 1$ $x_{23} + x_{31} \le 1$ $x_{23} + x_{33} \le 1$ $x_{23} + x_{34} \le 1$

$$x_{11}, x_{12}, x_{13}, x_{14}, x_{21}, x_{22}, x_{23}, x_{24}, x_{31}, x_{32}, x_{33}, x_{34} \in \{0,1\}$$