ACM Programming Challenges Lab

Exercise 1 – *Server placement on a circle*

In the island nation of Qux consists of an odd number n of islands arranged on a circle. Between any two neighbouring islands I_i and I_{i+1} (addition being mod n), there is an undersea telecommunications cable with a bandwidth of b_i . The following picture shows the situation for n = 7.

The national telecommunications company of Qux wants to choose two islands I_i and I_j as a location for new servers. For logistical reasons, there is some k < n/2 such that these two islands must have exactly k-1 islands between them on the circle, i.e., $j \equiv i+k \pmod{n}$.

The company wants you to choose the locations in such a way that the bandwidth between the two chosen islands is largest, where the bandwidth between two islands I_i and I_j is the maximum of the minimum bandwidths along the two paths from I_i to I_j on the circle.

Since they are not sure which k to pick exactly, your program should be able to evaluate several proposals for k.

Input The first line contains an integer $1 \le t \le 10$, the number of testcases following. Each testcase starts with a line containing a positive odd integer n and a positive integer q. This is followed by a line containing n integers b_0, \ldots, b_{n-1} where b_i represents the bandwidth between the islands I_i and and I_{i+1} (mod n). Then there is a third line containing q integers k_1, \ldots, k_q where $1 \le k_\ell < n/2$.

You can assume that $1 \le n \le 50\,000$, $1 \le q \le 10$ and $1 \le b_i \le 1\,000\,000$ for all i. For 30 points, you can assume that $n \le 2000$.

Output For each testcase output q lines containing where the ℓ -th line contains two numbers i and j between 0 and n-1 such that (i) $j \equiv i+k_{\ell} \pmod n$ and (ii) the islands I_i and I_j have minimal bandwidth between them. If there are several possible choices, output the one where i is smallest. Note that since addition is mode n it is possible that j < i.

Sample Input

Sample Output

(100 Points)