Question: Write a Program to Calculate and visualize a correlation matrix using pandas and seaborn.

Aim: The aim of this program is to calculate and visualize a correlation matrix using pandas and seaborn python library.

Procedure:

import pandas as pd

import seaborn as sns

 $data = \{'A': [34,76,20,23],'B': [87,43,40,45],'C': [10,98,30,76],'D': [49,19,60,28]\}$

df = pd.DataFrame(data)

sns.heatmap(df.corr(),annot=True,)

Output:

Result: We successfully plot the correlation matrix using pandas and seaborn.

Question: Write a program to handle missing values using pandas (Data Cleaning).

Aim: The aim of this program is to handle (fill or drop) missing values using pandas.

Procedure:

import pandas as pd

data =

 $\{'A': [34,76,20,23,None],'B': [87,None,24,40,45],'C': [10,98,30,76,34],'D': [49,19,60,34,None]\}$

df = pd.DataFrame(data)

print(df)

Output (Original Dataframe):

	Α	В	С	D
0	34.0	87.0	10	49.0
1	76.0	NaN	98	19.0
2	20.0	24.0	30	60.0
3	23.0	40.0	76	34.0
4	NaN	45.0	34	NaN

1. Remove Missing Values:

df_without_mv = df.dropna(axis=0)

df without mv

Output:

	Α	В	С	D
0	34.0	87.0	10	49.0
2	20.0	24.0	30	60.0
3	23.0	40.0	76	34.0

2. Fill Missing Values:

Output:

 $df_filled_values = df.fillna(df.mean())$

df_filled_values

	Α	В	С	D
0	34.00	87.0	10	49.0
1	76.00	49.0	98	19.0
2	20.00	24.0	30	60.0
3	23.00	40.0	76	34.0
4	38.25	45.0	34	40.5

Result: We successfully handle the missing values using pandas

Question: Write a program to Normalize data using scikit-learn.

Aim: The aim of this program is to normalize data using python scikit-learn library.

Procedure:

```
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
data = {'A':[34,76,20,23],'B':[87,43,40,45],'C':[10,98,30,76],'D':[49,19,60,28]}
df = pd.DataFrame(data)
scaler = MinMaxScaler()
scaled_data = scaler.fit_transform(df)
```

print('Original Data:\n',data)

print('Scaled Data:\n',scaled data)

Output:

Result: We successfully normalized the data using python scikit-learn library.

Question: Write a Program to Perform K-Means clustering using scikit-learn.

Aim: The aim of this program is to perform k-means clustering using scikit-learn.

Procedure:

```
from sklearn.cluster import KMeans
```

```
kmean = KMeans(n clusters=2)
```

```
data = [[28],[76],[51],[48],[34],[40],[87],[67],[75],[39]]
```

kmean.fit(data)

pred = kmean.predict(data)

print('Prediction: Cluster alloted to each data points are:\n',pred)

Output:

```
Prediction: Cluster alloted to each data points are: [0 1 0 0 0 0 1 1 1 0]
```

Result: We successfully executed the k-means clustering program, which divide each data points into cluster.

Question: Write a Program to implement a decision tree classifier using scikit-learn.

Aim: The aim of this program is to implement a decision tree classifier using python scikit-learn library.

Procedure:

```
from sklearn.tree import DecisionTreeClassifier

dtree = DecisionTreeClassifier()

X_train = [[28],[76],[51],[48],[34],[40],[87],[67],[75],[39]]

y_train = [[0],[1],[1],[0],[0],[0],[1],[1],[1],[0]]

dtree.fit(X_train,y_train)

# Testing Data

X_test = [[46],[54],[50],[42]]

pred = dtree.predict(X_test)

# Prediction

print('Prediction of Test Data:\n',pred)
```

Output:

```
Prediction of Test Data:
  [0 1 1 0]
```

Result: We successfully implemented a decision tree classifier model, which divide the data points into classes.

Question: Write a Program to build a random forest classifier using scikit-learn.

Aim: The aim of this program is to build a random forest classifier using python scikit-learn library.

Procedure:

```
from sklearn.ensemble import RandomForestClassifier

rfc = RandomForestClassifier()

X_train = [[28],[76],[51],[48],[34],[40],[87],[67],[75],[39]]

y_train = [[0],[1],[1],[0],[0],[0],[1],[1],[1],[0]]

rfc.fit(X_train,y_train)

# Testing Data

X_test = [[46],[54],[50],[42]]

pred = rfc.predict(X_test)

# Prediction

print('Prediction of Test Data:\n',pred)
```

Output:

```
Prediction of Test Data:
  [0 1 1 0]
```

Result: We successfully implemented a random forest classifier model, which divide the data points into classes.

Question: Write a Program to apply PCA for dimensionality reduction using scikit-learn.

Aim: The aim of this program is to apply PCA for reduce the data dimensions using python scikit-learn library.

Procedure:

```
from sklearn.decomposition import PCA
import numpy as np

pca = PCA(n_components=2)

data = np.array([[34,76,20,23],[87,43,40,45],[10,98,30,76],[49,19,60,28]])

transformed_data = pca.fit_transform(data)

print('Original Data:\n',data)

print('Data After Appling PCA:\n',transformed_data)
```

Output:

```
Original Data:
  [[34 76 20 23]
  [87 43 40 45]
  [10 98 30 76]
  [49 19 60 28]]

Data After Appling PCA:
  [[ 16.38102936 -10.97233447]
  [-35.47704737 27.66701872]
  [ 60.25710461 4.67481146]
  [-41.1610866 -21.36949571]]
```

Result: We successfully applied PCA to reduce the dimensions of the data using python scikit-learn library.

Question: Write a Program to create a time series plot using pandas and matplotlib.

Aim: The aim of this program is to create a time-series plot using python pandas and matplotlib library.

Procedure:

```
import pandas as pd
import matplotlib.pyplot as plt
data = {'Date': pd.date_range('2024-01-01', periods=7), 'Value': [90, 115, 80, 120, 85, 97, 150]}
df = pd.DataFrame(data)
plt.figure(figsize=(12,8))
plt.plot(df['Date'], df['Value'])
plt.xlabel('Date')
plt.ylabel('Value')
plt.show()
```

Output:

Result: We successfully plot the time-series graph using python pandas and matplotlib library.

Question: Write a Program to load a dataset using pandas and Basic exploration of dataset properties.

Aim: The aim of this program is to load a dataset using python pandas library and do basic exploration of dataset.

Procedure:

import pandas as pd

df = pd.read csv('customers-100.csv')

df.head()

Output 1 (Top 5 records of dataset):

1	ndex	Customer Id	First Name	Last Name	Company	City	Country	Phone 1	Phone 2	Email	Subscription Date	
0	1	DD37Cf93aecA6Dc	Sheryl	Baxter	Rasmussen Group	East Leonard	Chile	229.077.5154	397.884.0519x718	zunigavanessa@smith.info	2020-08-24	htt
1	2	1Ef7b82A4CAAD10	Preston	Lozano	Vega- Gentry	East Jimmychester	Djibouti	5153435776	686-620- 1820x944	vmata@colon.com	2021-04-23	
2	3	6F94879bDAfE5a6	Roy	Berry	Murillo- Perry	Isabelborough	Antigua and Barbuda	+1-539-402- 0259	(496)978- 3969x58947	beckycarr@hogan.com	2020-03-25	
3	4	5Cef8BFA16c5e3c	Linda	Olsen	Dominguez, Mcmillan and Donovan	Bensonview	Dominican Republic	001-808-617- 6467x12895	+1-813-324-8756	stanleyblackwell@benson.org	2020-06-02	ht
4	5	053d585Ab6b3159	Joanna	Bender	Martin, Lang and Andrade	West Priscilla	Slovakia (Slovak Republic)	001-234-203- 0635x76146	001-199-446- 3860x3486	colinalvarado@miles.net	2021-04-17	

Dataset Information:

df.info()

Output 2 (Information of dataset):

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 12 columns):
Column

#	Column	Non-Null Count	Dtype
0	Index	100 non-null	int64
1	Customer Id	100 non-null	object
2	First Name	100 non-null	object
3	Last Name	100 non-null	object
4	Company	100 non-null	object
5	City	100 non-null	object
6	Country	100 non-null	object
7	Phone 1	100 non-null	object
8	Phone 2	100 non-null	object
9	Email	100 non-null	object
10	Subscription Date	100 non-null	object
11	Website	100 non-null	object

dtypes: int64(1), object(11)

memory usage: 9.5+ KB

Dataset Description:

df.describe(include='object')

Output 3 (Description of dataset):

	Customer Id	First Name	Last Name	Company	City	Country	Phone 1	Phone 2	Email	Subscription Date	
count	100	100	100	100	100	100	100	100	100	100	
unique	100	93	97	99	100	85	100	100	100	96	
top	DD37Cf93aecA6Dc	Sheryl	Greer	Simon LLC	East Leonard	Solomon Islands	229.077.5154	397.884.0519x718	zunigavanessa@smith.info	2021-12-02	http://www.stepher
freq	1	2	2	2	1	4	1	1	1	2	

Result: We successfully load the dataset using python pandas library and do some basic exploration of dataset.