(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-212358

(43)公開日 平成9年(1997)8月15日

(51) Int.Cl. ⁸		識別記号	庁内整理番号	FΙ			技術表示箇所
G06F	9/38	3 1 0		G06F	9/38	310H	
		370				370B	

審査請求 未請求 請求項の数22 OL (全 19 頁)

(21)出願番号	特願平8-15016	(71)出顧人 000005108
		株式会社日立製作所
(22)出願日	平成8年(1996)1月31日	東京都千代田区神田駿河台四丁目 6 番地
		(72)発明者 西本 順一
		東京都小平市上水本町5丁目20番1号 株
	•	式会社日立製作所半導体事業部内
		(72)発明者 前島 英雄
		東京都小平市上水本町5丁目20番1号 株
		式会社日立製作所半導体事業部内
		(74)代理人 弁理士 小川 勝男

(54) 【発明の名称】 データ処理装置及びマイクロプロセッサ

(57) 【要約】

【課題】命令セットの異なるプロセッサにおいて相互の 命令を実行できるようにする。

【解決手段】命令セットの異なるプロセッサ間において、片方のプロセッサが所定の動作を行うことによって、別のプロセッサの命令を実行出きるようにする。所定の動作とは、所定の分岐命令を実行することや特定のアドレス空間への分岐などが用いられる。

【効果】本発明により特定の命令セットを持つプロセッサを異なる命令セットを持つプロセッサに拡張するとき、互換性を維持しながら拡張することが可能となる。例えばRISC型プロセッサをVLIW型プロセッサに拡張する場合があてはまる。また異なる命令セットを持つプロセッサをワンチップで実現することにより、演算ユニットなどの資源の共有化による低コスト化やセリュリティの強化が行える。

1

【特許請求の範囲】

【請求項1】第1の命令セットの命令を実行する第1の プロセッサと、第1の命令セットとは異なる第2の命令 セットの命令を実行する第2のプロセッサとを有するデ ータ処理装置であって、

前記第1のプロセッサが前記第1の命令セットの中の所定命令を実行したとき、前記第2のプロセッサが前記第2の命令セットの命令を実行することを特徴とするデータ処理装置。

【請求項2】前記第1の命令セットの命令は可変長であり、前記第2の命令セットの命令は固定長であることを特徴とする請求項1に記載のデータ処理装置。

【請求項3】前記第1の命令セットの命令の最大語長は、前記第2の命令の語長より長いことを特徴とする請求項2に記載のデータ処理装置。

【請求項4】前記第1の命令セットの命令の最大語長は、前記第2の命令の語長より短いことを特徴とする請求項2に記載のデータ処理装置。

【請求項5】前記第1の命令セットの命令と前記第2の命令セットの命令は共に固定長であることを特徴とする請求項1に記載のデータ処理装置。

【請求項6】前記第1の命令セットの命令の語長は、前記第2の命令の語長より短いことを特徴とする請求項5に記載のデータ処理装置。

【請求項7】記憶装置に記憶されるプログラムを実行するデータ処理装置であって、第1の命令セットの命令によって構成されるプログラムと、第1の命令セットと異なる第2の命令セットの命令によって構成されるプログラムとが前記データ処理装置のアドレス空間に配置されることを特徴とするデータ処理装置。

【請求項8】前記第1の命令セットの命令は可変長であり、前記第2の命令セットの命令は固定長であることを特徴とする請求項7に記載のデータ処理装置。

【請求項9】前記第1の命令セットの命令の最大語長は、前記第2の命令の語長より長いことを特徴とする請求項8に記載のデータ処理装置。

【請求項10】前記第1の命令セットの命令の最大語長は、前記第2の命令の語長より短いことを特徴とする請求項8に記載のデータ処理装置。

【請求項11】前記第1の命令セットの命令と前記第2 の命令セットの命令は共に固定長であることを特徴とす る請求項7に記載のデータ処理装置。

【請求項12】前記第1の命令セットの命令の語長は、前記第2の命令の語長より短いことを特徴とする請求項 11に記載のデータ処理装置。

【請求項13】演算器を有し、第1の命令群を格納する 第1の記憶部から命令を読み出して実行する第1のデー 夕処理部と、

並列動作可能な複数の演算器を有し、同時に実行可能な 命令を1命令として実行する第2のデータ処理部と、 前記第2のデータ処理部が実行する命令群を格納する第 2の記憶部とを具備するデータ処理装置であって、

前記第1のデータ処理部が読み出した命令が所定の命令であるとき、前記第2のデータ処理部で実行する命令を前記第2の記憶部から読み出すことを特徴とするデータ処理装置。

【請求項14】RISC命令を実行するRISCコアと、VLIW命令を格納するVLIWテーブルと、VLIW命令を実行するVLIWコアと、前記RISCコアとVLIWコアとの動作切り替えを制御するVLIW起動判定ユニットとを有するマイクロプロセッサであって、

前記RISCコアがRISC命令のうちサブルーチンコール若しくは分岐命令を実行したとき、分岐先アドレスで前記VLIWテーブルからVLIW命令を読み出し、前記VLIW起動判定ユニットが前記RISCコアから前記VLIWコアへ動作を移し、前記VLIWテーブルからVLIW命令の完了コードが読み出されるまでVLIWコアが動作するマイクロプロセッサ。

20 【請求項15】請求項14のマイクロプロセッサは、さらに分岐先アドレスをアドレス変換するTLBを有し、前記VLIWテーブルから読み出されるVLIW命令を拡張するための信号をアドレス変換の際にTLBから同時によみだせるようにしたマイクロプロセッサ。

【請求項16】請求項14のマイクロプロセッサは、さらにVLIW命令へ分岐後、引き続き実行されるVLI W命令の動作とVLIW命令実行後に復帰するRISC 命令の動作に関連性があるかを調べる回路を有し、関連 性がない場合にVLIW命令の完了を待たずに復帰先の RISC命令を並列に実行可能なマイクロプロセッサ。

【請求項17】請求項14のマイクロプロセッサにおいて、VLIW命令の実行を禁止したり、実行を制御するレジスタをプロセッサ内部に有し、VLIW命令実行禁止時にはVLIW命令と同等の動作を行うRISC命令列に分岐することで、VLIWコアの動作を停止させ低消費電力化を図る機能を有するマイクロプロセッサ。

【請求項18】請求項14のVLIWテーブルを不揮発性メモリに内蔵するマイクロプロセッサ。

【請求項19】請求項18の不揮発性メモリは、マスク ROM、フラッシュメモリ、強誘電体メモリのうちのいづれか1つであるマイクロプロセッサ。

【請求項20】請求項14のVLIWテーブルを揮発性メモリに内蔵するマイクロプロセッサ。

【請求項21】請求項20のVLIWテーブルを揮発性 メモリは、SRAM或いはDRAMのうちのいづれかで あるマイクロプロセッサ。

【請求項22】請求項14のVLIWテーブルをRIS Cコアのプロセッサで書き換え可能なメモリに内蔵する マイクロプロセッサ。

50 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、マイクロプロセッサやマイクロコンピュータ等のデータ処理装置に係わり、特にソフトウエアの互換を維持して高速性能を達成するデータ処理装置に適用して有効な技術に関する。 【0002】

【従来の技術】マイクロプロセッサのアーキテクチャにはさまざまなものが存在する。例えばCISC(Comple xed Instruction Set Computer)型マイクロプロセッサ、RISC(Rediced Instruction Set Computer)型マイクロプロセッサ、V LIW(Very Long Instruction Word)(又はLIW(Long Instruction Word)型マイクロプロセッサなどが挙げられる。

【0003】CISC型マイクロプロセッサは、例えば8ビット或いは16ビットを最小命令長単位とし、最小命令長単位の整数倍長の可変長の命令フォーマットで命令体系(命令セット)を構成している。最大命令長は48ビット長、64ビット長、80ビット長等である。命令セットを構成する命令数が多く、1命令が複数の処理を行い、また命令語長が可変である、マイクロプログラム制御等のため、ハードウエア量が多く高速性能を追及するには難点のあるアーキテクチャであるとされていた。CISC型マイクロプロセッサの例としては、モトローラ社の680X0,インテル社の80X86等がある。

【0004】高速性能を追及する一つの解として、RISC型マイクロプロセッサが出てきた。RISC型マイクロプロセッサが出てきた。RISC型マイクロプロセッサは、16ビット長、32ビット長或いは64ビット長等の固定長の命令フォーマットで、1命令は単純な処理を行い、比較的少ない命令数で命令体の中で、1命令は単純な処理を行い、比較的少ないの令数で命令体の中である。命令が単純であるため、マイクロプロセッサと比較して少なく、またパイプライン処理にも適しており、高速性能が比較的出しやすいアーキテクチャである。なお、16ビット長命令と32ビット長命令が混在した命令フォーマットで命令体系を構成したものもある。RISCプロセッサの例としては、SPARC、MIPS社のR3000等がある。

【0005】最近、高速化のため、動作周波数を向上させる方法以外に同時に動作させる演算ユニットの数を増やす方法が取られてきている。この複数の演算ユニットを同時に実行する方式は、スーパスカラ方式と呼ばれている。しかし、スーパスカラ方式で、複数の命令が同時に実行可能かどうかを調べる、すなわち命令依存性を調べる機能が必要となり回路規模が増大する傾向にある。

【0006】これに対して固定長ではあるが長い命令長の命令フォーマットで命令体系を構成するプロセッサとして、VLIW型プロセッサが存在する。VLIWプロセッサでは128ビット以上の長い命令を使って複数の演算器が同時に動作する。VLIW型プロセッサではコ

4

ンパイル時にあらかじめ命令の依存性をチェックし同時に実行出来る命令をまとめて1命令とする。VLIW型プロセッサでは実行時に改めて命令の依存性をチェックする必要がないため、RISC型マイクロプロセッサのスーパースカラ方式に比べて回路規模は少なくなる。なお、VLIW型プロセッサの例としては、マルチフロー・コンピュータ社のTrace ce/300等がある。

【0007】一方、RISC型のアーキテクチャの採用等により動作周波数の向上や同時に実行する命令数の増加で、マイクロプロセッサの性能が向上してきた。そのため、従来専用ハードウエアや専用コントローラを使用して行っていた、動画像の圧縮/伸長(MPEGデコーダ/エンコーダ)や三次元グラフィック処理をソフトウエアで行うことが考えらている。

【0008】MPEGデコーダ/エンコーダや三次元グラフィック処理等の同一処理の繰り返しで多量のデータを扱ういわゆるマルチメデイア用途の処理にはVLIW型マイクロプロセッサが適しているとされてきている。【0009】

の 【発明が解決しようとする課題】一方、従来のマイクロプロセッサ或いはCPU(中央処理装置)はCISC型又はRISC型で、それぞれのソフトウエア資産の蓄積がある。CISC型、RISC型、VLIW型のマイクロプロセッサは、それぞれ命令セット、命令フォーマット、アドレッシングモード、プログラミングモデル等は異なり、ソフトウエアの互換性はない。マイクロプロセッサは、同一アーキテクチャ(命令体系を含む。)では性能向上に限界が出てくる。そこで、アーキテクチャ変更を要求されるが、これまで築き上げてきたソフトウエア資産の継承が問題となる。

【0010】本発明の目的は、従来のソフトウエアと互換性を維持しながら、新しいアーキテクチャ(命令体系)のソフトウエアを実行する高性能なプロセッサを実現することである。

【0011】本発明の別の目的は、プロセッサ内部の資源たとえば演算ユニットなどの共有化又は共用化によるハードウエアの増加を抑えて高速性能を実現することである。

【0012】さらに、本発明の別の目的は、プロセッサ の動作制御方式による高速化と低消費電力化の双方を 実現することである。

【0013】本発明の前記並びにその他の目的と新規な特徴は本明細書の記述及び添付図面から明らかになるであろう。

[0014]

【課題を解決するための手段】本願において開示される 発明のうち代表的なものの概要を簡単に説明すれば下記 の通りである。

【0015】データ処理装置は、第1の命令セットの命 50 令を実行する第1のプロセッサと、第1の命令セットと

は異なる第2の命令セットの命令を実行する第2のプロセッサとを有し、前記第1のプロセッサが前記第1の命令セットの中の所定命令を実行したとき、前記第2のプロセッサが前記第2の命令セットの命令を実行する。記憶装置に記憶されるプログラムを実行するデータ処理装置は、第1の命令セットの命令によって構成されるプログラムと、第1の命令セットの命令によって構成されるプログラムとを前記データ処理装置のアドレス空間に配置する。

【0016】前記第1の命令セットの命令は可変長であり、前記第2の命令セットの命令は固定長にする。前記第1の命令セットの命令の最大語長は、前記第2の命令の語長より長い場合がある。前記第1の命令セットの命令の最大語長は、前記第2の命令の語長より短い場合がある。

【0017】前記第1の命令セットの命令と前記第2の命令セットの命令は共に固定長である場合がある。前記第1の命令セットの命令の語長は、前記第2の命令の語長より短い場合がある。

【0018】データ処理装置は、演算器を有し、第1の命令群を格納する第1の記憶部から命令を読み出して実行する第1のデータ処理部と、並列動作可能な複数の演算器を有し、同時に実行可能な命令を1命令として実行する第2のデータ処理部と、前記第2のデータ処理部が実行する命令群を格納する第2の記憶部とを具備し、前記第1のデータ処理部が読み出した命令が所定の命令であるとき、前記第2のデータ処理部で実行する命令を前記第2の記憶部から読み出す。

【0019】マイクロプロセッサは、RISC命令を実行するRISCコアと、VLIW命令を格納するVLIWテーブルと、VLIW命令を実行するVLIWコアとの動作切り替えを制御するVLIW起動判定ユニットとを有し、前記RISCコアがRISC命令のうちサブルーチンコール若しくは分岐命令を実行したとき、分岐先アドレスで前記VLIWテーブルからVLIW命令を読み出し、前記VLIW起動判定ユニットが前記RISCコアから前記VLIWコアへ動作を移し、前記VLIWテーブルからVLIW命令の完了コードが読み出されるまでVLIWコアが動作する。

【0020】前記マイクロプロセッサは、さらに分岐先アドレスをアドレス変換するTLBを有し、前記VLIWテーブルから読み出されるVLIW命令を拡張するための信号をアドレス変換の際にTLBから同時に読み出せる。

【0021】前記マイクロプロセッサは、さらにVLIW命令へ分岐後、引き続き実行されるVLIW命令の動作とVLIW命令実行後に復帰するRISC命令の動作に関連性があるかを調べる回路を有し、関連性がない場合にVLIW命令の完了を待たずに復帰先のRISC命

令を並列に実行可能である。

【0022】前記マイクロプロセッサにおいて、VLIW命令の実行を禁止したり、実行を制御するレジスタをプロセッサ内部に有し、VLIW命令実行禁止時にはVLIW命令と同等の動作を行うRISC命令列に分岐することで、VLIWコアの動作を停止させ低消費電力化を図る機能を有する。

【0023】前記VLIWテーブルを不揮発性メモリに内蔵する。前記不揮発性メモリは、マスクROM、フラッシュメモリ、強誘電体メモリのうちのいづれか1つであるのが望ましい。前記VLIWテーブルを揮発性メモリは、SRAM或いはDRAMのうちのいづれかであるのが望ましい。

【0024】前記VLIWテーブルをRISCコアのプロセッサで書き換え可能なメモリに内蔵するのが望ましい。

[0025]

【発明の実施の形態】図1には本発明の実施形態に係る 20 マイクロプロセッサ100のブロック図が示される。マイクロプロセッサ100は、RISC命令の処理を実行するRISCコア部106、VLIW命令の処理を実行するVLIWコア部140及びデータキャッシュ129から構成される。

【0026】RISCコア部106は、命令フェッチユニット101、命令キャッシュ107、RISCデコードユニット114、浮動小数点ユニット118、整数演算ユニット119、ロード/ストアユニット127から構成される。

30 【0027】VLIWコア部140は、VLIW起動判定ユニット104、VLIWテーブル113、VLIWデコードユニット115、N個の演算ユニット120、VLIWロード/ストアユニット131から構成される。

【0028】命令フェッチユニット101が命令アドレ スバス105に実行する命令のアドレスを出力する。R ISC命令実行時には命令アドレスパス105のアドレ スに対応する命令が命令キャッシュ107から命令パス 108に読み出され、RISCデコードユニット114 40 においてRISC命令のデコードを行う。なお、命令キ ャッシュ107に該当する命令が存在しない(キャッシ ュミス)ときは、アドレスバス134とデータバス13 5を用いてパスコントローラ(図示せず)を介してマイ クロプロセッサ外部のメモリから命令が読み出される。 RISCデコードユニット114でのデコードの結果 はRISC演算ユニット制御信号117を通して浮動小 数点ユニット118や整数演算ユニット119などの制 御が行われる。図1ではVLIWコアの演算ユニット1 40とRISCコアの演算ユニット106をお互いに共 50 有している状態を示しているため、演算ユニット120

へのアクセスが発生することもある。

【0029】さらに命令がメモリアクセス命令であった場合はロード/ストアユニット127ヘアクセスが発生し、アドレスバス126からデータキャッシュ129にアクセスが起こり、データバス128、RISC用データバス121を通してデータが整数演算ユニット119と浮動小数点ユニット118のレジスタに格納される。データキャッシュ129に該当するデータがない(キャッシュミス)とき、バスコントローラを介して、アドレスバス139とデータバス138を用いて、マイクロプロセッサ外部のメモリをアクセスする。

【0030】RISC命令の実行中にVLIW命令の実 行を行うための分岐命令(RISC命令の一部)が発生 した場合、RISCデコードユニット114からVLI W分岐命令デコード信号142を通して命令フェッチユ ニット101へ分岐発生を知らせる。信号分岐先アドレ スは分岐先アドレス用バス136を通して伝えられる。 レジスタファイル内のレジスタに分岐先アドレスが格納 されている場合は分岐先アドレス用バス141を通して 整数演算ユニット119などからRISCデコードユニ ット114ヘアドレスが転送される。 VLIW命令はR ISCコアのメモリ空間の特定のアドレス空間に割り付 けられており、そのアドレス空間をアクセスすることで VLIWテーブル113に格納されているVLIW命令 をアクセスすることが可能となる。これによって、VL IWテーブル113からのVLIW命令の読み出し及び 書き換えを行うことができる。

【0031】VLIW分岐命令デコード信号142を通して分岐の発生を受けた命令フェッチユニット101はVLIW命令分岐信号103を通してVLIW起動判定 30ユニット104へVLIW命令への分岐が発生したことを知らせる。VLIW起動判定ユニット104はVLIW命令を起動する条件を判定し、RISCコア制御信号109を通しRISCデコードユニット114へ命令アドレスバス105のアドレスで読み出した命令の実行を中止させる。RISCデコードユニット114内又はVLIWデコードユニット115内のレジスタで指定された場合は、消費電力低減のためRISCコア106全体或いは一部のクロックを停止することができる。なお、VLIW命令を実行しない場合も、同様にVLIWコア 40全体或いは一部のクロックを停止することができる。

【0032】 VLIWテーブル113から命令アドレス命令アドレスバス105のアドレスを用いVLIW命令バス112へVLIW命令が読み出される。 VLIWデコードユニット115はVLIW命令バス112のVLIW命令をVLIW起動判定ユニット104からVLIW命令デコード起動信号111を通して送られてくる起動条件をもとにデコードし、VLIW演算ユニット制御信号116を通してVLIW演算ユニット120またはRISCコア部106の整数演算ユニット119や浮動

Ω

小数点ユニット118のそれぞれの制御を並列に行う。 VLIW演算ユニット120とは整数演算ユニット、浮動小数点演算ユニット、DSP (Digital Signal Proce ssor:例えば積和演算)等の演算ユニットである。図1には各演算ユニットが個別にレジスタファイルを持つローカルレジスタファイル型のプロセッサの例が示される。各演算ユニット間のデータのやりとりは演算器間データバス123を通して行われる。VLIW命令にメモリアクセス命令が含まれていた場合、VLIWロード/ストアユニット131がデータキャッシュ129に対しアドレスバス125とデータバス130、VLIW用データバス124を用いてアクセスが発生する。

【0033】VLIW命令が連続して続く場合は命令ア ドレスパス105を通してVLIW起動判定ユニット1 04内に保持されているアドレス情報を使い命令アドレ スバス132のアドレスとVLIWテーブル制御信号1 33を通してVLIWテーブル113からVLIW命令 が読み出される。読み出されたVLIW命令が最後の命 令であることを示す完了コードを含んでいる場合 V L I 20 Wデコードユニット115がVLIW命令実行状態信号 110を通してVLIW起動判定ユニット104にVL IW命令列の完了を知らせる。VLIW命令実行状態信 号110にはVLIW命令の完了の他に割り込み、例外 等のVLIW命令実行に影響を与える情報も出力され る。VLIW起動判定ユニット104はVLIW命令列 の完了を受けてVLIW命令完了信号102とRISC コア制御信号109を通しVLIW命令の完了を命令フ ェッチユニット101とRISCデコードユニット11 4へ伝え、RISC命令に復帰する。

【0034】すなわち、RISC命令の実行にはRIS Cコア106を用い、VLIW命令の実行にはVLIW コア140を用いる。VLIWコア140の実行では新 規にRISC命令に追加したVLIW命令への分岐命令 もしくは特定のアドレスへの分岐をトリガとし、VLI W命令起動判定ユニット104がマイクロプロセッサ内 部に保持するVLIWテーブル113から順次VLIW 命令をVLIWデコーダ115へ読み出す。VLIW命 令実行後、処理をRISC命令列に復帰する。 つまり V LIW命令の実行をサブルーチン化しVLIWテーブル 113に格納することにより高速動作が必要な処理をV LIW命令で実行することが可能となる。サブルーチン 化することによりVLIW回路を有しないマイクロプロ セッサであっても、分岐先にVLIW命令と同等の動作 をするRISC命令列を配置することで互換性の維持が 可能である。

【0035】また低消費電力動作が必要であり、かつV LIW命令を使うような高速な動作が必要でない場合に は内蔵制御レジスタの状態により、VLIWコア140 の動作を停止し、RISCコア106のみで動作を行う ことも可能である。逆にRISCコア106の動作が必

50

要でない場合にはRISCコア106の動作を停止し、VLIWコア140のみで動作することも可能である。【0036】さらに、RISC命令の実行中にVLIWコア140の演算器(レジスタファイルを含む)を使用でき、VLIW命令実行中にRISCコア106の演算器(レジスタファイル)を使用できるので、資源の共用が可能になり半導体集積回路のチップ面積低減が可能になる。

【0037】VLIW起動判定ユニット104は、VLIW命令実行中に実行中のVLIW命令がVLIW命令を実行完了後に復帰する先のRISC命令と依存性がないかを制御信号137を通して得られるデコード結果をもとに判定し、依存性がない場合にVLIW命令完了信号102とRISCコア制御信号109を通してRISC命令とVLIW命令の並列実行の制御の選択が可能である

【0038】 VLIWテーブル113にはマスクRO M、EPROM(電気的書き込み紫外線消去の不揮発性 メモリ)、EEPROM(電気的消去/書き込み可能な 不揮発性メモリ)、フラッシュメモリ(フラッシュEE PROM)、FRAM (強誘電体メモリ)等の不揮発性 メモリと、DRAM (ダイナミックRAM)、SRAM (スタテイックRAM) 等の揮発性メモリとが使用され る。書き換え可能なメモリ、例えばEEPROM、フラ ッシュメモリ、FRAM、DRAM、SRAM等を用い た場合、 VLIWテーブルデータバス122を通して システムに応じたVLIWテーブルを設定することが可 能である。これによって、 VLIW動作中に動的にV LIWテープルをシステムに最適な構成にすることがで きる。またVLIW起動判定ユニット104内にあるレ ジスタへのアクセスにもこのVLIWテーブルデータバ ス122が用いられる。SRAMを用いると他のメモリ を使用する場合に比べて書き込み及び読み出しが高速に できる。DRAMはメモリ素子が1個のトランジスタで 構成され、SRAMはメモリ素子が4個又は6個のトラ ンジスタで構成されるため、DRAMを用いることでV LIWテープルをSRAMを用いるより小さくできる。 図2には図1に係るマイクロプロセッサの変形例が示さ れる。図2では RISCコア106とVLIWコア1 40のレジスタを共通に持つグローバルレジスタ型のマ イクロプロセッサが示される。図1のマイクロプロセッ サ100と同一の部分には同一の記号が用いられてい

【0039】図5には、VLIW分岐命令によりVLIW命令がRISC命令と並列に実行する場合のタイミングチャートとVLIW命令のコード割付の例が示されている。

【0040】VLIW分岐命令はRISC命令の1つで、RISC命令1、2、3と同様にRISCコア106でパイプライン処理で実行される。記号501、50

4、506、507はそのパイプラインステージを示している。 I は命令フェッチ、D は命令デコード、E は実行、Mはメモリアクセス、Wは書き込みのステージを表す。また、VL I W命令1、2、3は、VL I Wコア1 40でパイプライン処理で実行される。記号502、503、505はそのパイプラインステージを示している。パイプラインのVI、VD、VE、VM、VWはそれぞれVL I W用の命令フェッチ、命令デコード、実行、メモリアクセス、書き込みのステージを表す。

10

【0041】VLIW分岐命令からVLIW命令1へ3 サイクル後に分岐するとしたらVLIW命令1のパイプライン502がサイクル4から開始する。VLIW命令 2以降のVLIW命令がVLIW命令実行後の復帰先の RISC命令と依存性がない場合、VLIW命令2の実行503とRISC命令1の実行504を並列に行うことが可能である。VLIW命令3の実行505とRIS C命令2の実行506も並列に動作でき、VLIW命令が完了すると、VLIW命令用のパイプラインは消え、RISC命令3の実行507が行われる。

【0042】VIステージでVLIWテーブルから読み 出されるVLIW命令のコード割付の例を図5の下に示 す。VLIW命令には複数の演算器を制御するためのコ ードが1命令に埋めこまれている。このVLIW命令の 命令長は128ビット或いは256ビットの固定長であ る。記号508はVLIW演算器1を制御するためのフ ィールド、509はVLIW演算器2を制御するための フィールド、510は整数演算器を制御するためのフィ ールド、511は浮動小数点演算器を制御するためのフ ィールド、512はVLIW命令の完了やその他の情報 を格納するためのフィールドなどから構成されている。 508、509、510、511、512の各々のフィ ールドは32ビット長で、513のオペコード、514 のディスプレースメント、515のソースレジスタ1、 5516のソースレジスタ2、517のデスティネーシ ョンレジスタなどの割付が行われている。この命令コー ドをVLIWデコーダがデコードし各演算器を制御す る。

【0043】本発明の実施形態では、命令セットの異なるプロセッサ間の動作を切り替える方法として、プロセッサを切り替えるための分岐命令若しくは特定アドレス空間への分岐をトリガとして用いている。第1のプロセッサと第2のプロセッサの間で動作を切り替える場合、第1のプロセッサ若しくは第2のプロセッサのどちらかのプロセッサが全体の実行を制御するマスタプロセッサとなり、もう一つがスレーブプロセッサとなる。マスタプロセッサは常に片方のプロセッサに固定であるわけでなく、動的にどちらのプロセッサでもマスタプロセッサになることは可能である。

【0044】マスタプロセッサからスレーププロセッサ 50 へ動作が移った後、スレーププロセッサの動作が復帰後

のマスタープロセッサの動作に影響を与えない場合、スレーププロセッサもしくはマスタプロセッサが依存性を 判断することで並列に2つのプロセッサを動作させることが可能である。

【0045】図6には、本発明を利用したシステムの全 体図が示される。601は1枚或いは複数枚のプリント 基板上に構成されたシステムで、このシステムにディス プレイ611、CD-ROM612、ビデオカメラ61 5、LCD618、キーボードやプリンタ等の周辺デバ イス620等が接続される。システム601はプロセッ サ602、プログラム等を格納するROM608、デー タやプログラムを格納するSRAM609、DRAM6 14及びSDRAM614、表示用画像データ等を格納 する3次元グラフィック用フレームバッファ610、C D-ROMを制御するCD-ROMデコーダ613、ビ デオカメラを制御するビデオコントローラ616、液晶 表示装置(LCD)を制御するLCDコントローラ61 9、キーボードやプリンタ等の周辺デバイス620を制 御する周辺デバイスコントローラ621等がシステムバ ス607に接続されて構成されている。

【0046】プロセッサ602は、第1の命令セットを持つプロセッサ1(603)と、第2の命令セットを持つプロセッサ2(605)から構成されており、制御信号606によりプロセッサ1がプロセッサ2を、制御信号604によりプロセッサ2がプロセッサ1を制御する。プロセッサ602は3次元グラッフィクス、MPEGのエンコード/デコードを高速に処理することができるので、従来のような専用のハードウエア回路が必要なく、プリント基板上に実装する半導体チップの個数を削減でき、プリント基板の枚数の削減或いはプリント基板自身の大きさを小さくできる。

【0047】図7には、図6のプロセッサ602を一つの半導体集積回路装置で構成した(ワンチップに内蔵した)場合のブロック図が示されている。プロセッサ701は、半導体集積回路製造技術用いて単結晶シリコンのような1個の半導体基板に形成される。この半導体基板はレジンモールド技術を用いていわゆるプラスチックパッケージに封止される。このワンチップには、ROM608やRAM609などのメモリが含まれることもある。

【0048】ワンチップのプロセッサ701は、第1の命令セットを持つプロセッサ1(708)と、第2の命令セットを持つプロセッサ2(711)、データキャッシュ712、周辺装置、クロックパルス発生回路(CPG)714、入出力回路(I/O)715等から構成される。

【0049】プロセッサ1(708)とプロセッサ2(711)の組み合わせには16ビット固定長命令のRISCプロセッサと64ビット固定長命令のVLIWプロセッサの組み合わせや、32ビット固定長命令のRI

SCプロセッサと128ビット固定長命令のVLIWプロセッサの組み合わせや、64ビット固定長命令のRISCプロセッサと256ビット固定長命令のVLIWプロセッサ等がある。この組み合わせではプロセッサ1とプロセッサ2を逆にすることも可能である。図7ではプロセッサ1(708)がRISCプロセッサ(図1のRISCコア106)、プロセッサ2(711)がVLIWプロセッサ(図1のVLIWコア140)である場合が示される。

【0050】プロセッサ1 (708) は命令フェッチユニット101、命令キャッシュ107、RISCデコードユニット114、1つまたは複数の演算ユニット704、RISCロード/ストアユニット127から構成され、内部バス702により接続されている。命令フェッチユニット101が命令キャッシュ107から命令を読み出し、その読み出した命令をRISCデコードユニット114で解析し、演算ユニット704が動作し、メモリアクセスが必要な場合はロード/ストアユニット127が起動する。演算ユニット704には乗算ユニット、

20 整数演算ユニット、浮動小数点ユニット、除算ユニット、DSPなどの演算ユニットが置かれる。また同一の演算ユニットを複数個持つ場合もある。命令キャッシュへの命令の読み込みはバス709を用いて、バスコントロールユニット712から行われる。RISCロード/ストアユニット127はバス705を用いてデータキャッシュ129にアクセスを行う。データキャッシュ129へのデータの取り込みはバスコントロールユニット712からバス707を用いて行われる。

【0051】プロセッサ2(711)はVLIW起動判 定ユニット104、VLIWテープル113、VLIW デコードユニット115、1つまたは複数の演算ユニッ ト704、VLIWロードストアユニット131から構 成され、内部バス702により接続されている。VLI W起動判定ユニット104からVLIW命令の起動がか かると、VLIWテープル113よりVLIW命令が読 み出され、VLIWデコードユニット115で命令を解 析し演算ユニット704が動作し、メモリアクセスが必 要な場合はロード/ストアユニット131が起動する。 VLIWテープル113にはマスクROMやフラッシュ 40 メモリなどの不揮発性メモリ又はSRAMやDRAMな どの揮発性メモリが使用される。VLIWテーブルはチ ップ外に存在することもあり、その場合にはバスコント ロールユニットを通して外部からVLIW命令の読み出 しが行なわれる。演算ユニット704には乗算ユニッ ト、整数演算ユニット、浮動小数点ユニット、除算ユニ ット、DDSPなどの演算ユニットが置かれる。また同 一の演算ユニットを複数個持つ場合もある。VLIWロ ード/ストアユニット131はパス706を用いてデー タキャッシュ129にアクセスを行う。

0 【0052】パスコントロールユニット712はパス7

【0053】プロセッサ1(708)とプロセッサ2(711)とのあいだのインターフェイスは制御信号線(又はバス)703を用いて行われる。

【0054】図7のようにプロセッサ1とプロセッサ2をワンチップ化することにより、データキャッシュを共有できるためデータの一致制御が行いやすくなる。またプロセッサ間の信号がチップの外に出ないためセキュリティが強化される。さらにプロセッサ間の通信の高速化と情報量が削減できるため、低コスト化と高速化が図れる。

【0055】図8には本発明に係る他の実施形態であるマイクロコンピュータ800のプロック図が示される。マイクロコンピュータ800は半導体製造プロセス技術用いてシリコンのような1つの半導体基板上に形成される。この半導体基板はレジンモールド技術を用いていわゆるプラスチックパッケージに封止される。

【0056】マイクロコンピュータ800は、第10プロセッサ801、第20プロセッサ802、第10メモリ803、第20メモリ804、プロセッサ切り替え回路805、アドレスバス806、データバス807、及びバス制御ユニット808を有する。

【0057】第1のプロセッサ801はRISC型プロ セッサで、16ビット固定長命令を実行するプロセッサ である。第2のプロセッサ802はVLIW型のプロセ ッサで、64ビット長命令を実行するプロセッサであ る。第1のプロセッサ801と第2のプロセッサ802 との命令体系(命令セット、命令フォーマット或いはプ ログラミングモデル等)は異なる。第1のメモリ803 には第1のプロセッサ801が実行する命令(プログラ ム)が格納される。第2のメモリ804には第2のプロ セッサ802が実行される命令(プログラム)が格納さ れる。第1のメモリ803及び第2のメモリ804は不 揮発性のメモリ又は揮発性のメモリで構成される。第1 のメモリ803と第2のメモリ804を書き替え可能な メモリで構成することにより、半導体供給者だけでな く、半導体の使用者がプログラムすことが可能になる。 すなわち、第1の命令セットを用いたプログラムと第2 の命令セットを用いたプログラムとの両方が使用者によ ってすることができる。不揮発性のメモリ、揮発性のメ モリ及び書き替え可能なメモリには、図1のマイクロプ ロセッサのVLIWテーブル113で使用されるものと 同様である。

【0058】図9のメモリマップに示すように第1のプロセッサのプログラムと第2のプロセッサのプログラム

は、第1のプロセッサ801或いは第2のプロセッサ802のアドレス空間上にある。第1のメモリ803には第1のプロセッサのプログラムの一部或いは全てが格納される。また、第2のメモリ804には第2のプロセッサのプログラムの一部或いは全てが格納される。

【0059】プロセッサ切り替え回路805は、第1の プロセッサ801或いは第2のプロセッサ802のアド レスが入力され、第1のメモリ803と第2のメモリ8 04のどちらをアクセスするのかを判定する。第1のプ 10 ロセッサ801が第1のメモリ803をアクセスする場 合は、アドレス信号と制御信号812をプロセッサ切り 替え回路805に入力する。プロセッサ切り替え回路8 05は第1のメモリ803のアクセスに必要なアドレス 信号や制御信号808を出力する。また、第2のプロセ ッサ802に先読みされた命令の動作の中止や低消費電 力化のためのクロック停止のための制御信号810を出 力する。一方、第2のプロセッサ802が第2のメモリ 804をアクセスする場合は、アドレス信号と制御信号 813をプロセッサ切り替え回路805に入力する。プ ロセッサ切り替え回路805は第2のメモリのアクセス に必要なアドレス信号や制御信号を信号線809に出力 する。また、第1のプロセッサ801に先読みされた命 令の動作の中止や低消費電力化のためのクロック停止の ための制御信号811を出力する。プロセッサ切り替え 回路805によって、第1のプロセッサと第2のプロセ ッサが排他的に動作する。

【0060】第1のプロセッサ801は第1のプロッセッサのプログラムを実行し、そのプログラムの中の分岐命令等で第2のプロセッサのプログラム領域を示すアドレスを出力することによって、第2のプロセッサで第2のプロセッサのプログラムを実行できる。また、第2のプロセッサは第2のプロセッサのプログラムの中の分岐命令等で第1のプロセッサのプログラム領域を示すアドレスを出力することによって、第1のプロセッサのプログラムに戻ることができる。

【0061】なお、プロセッサ切り替え回路805内には制御レジスタがあり、このレジスタを書き替えることにより図9に示したメモリマップは変更することができる。前記制御レジスタで、第1のプロセッサのプログラム領域、第2のプロセッサのプログラム領域、データ領域のそれぞれの始まりアドレスと終わりのアドレス等を指定できる。

【0062】これによって、命令体系の異なるプログラムが1つのマイクロコンピュータで実行でき、第1のプロセッサのプログラムが従来から蓄積されたソフウトウエアであっても、新しいアーキテクチャのプログラムが第2のプロセッサで実行できるので、ソフトウエアの互換性が維持できる。

【0063】また、動作しないプロセッサのクロックを 50 停止させることで、低消費電力化を実現できる。

【0064】第1のプロセッサ801と第2のプロセッサ802の命令長は比較的短いため、命令デコーダ等の制御部や演算部を小さくできるので、第1のメモリ803又は第2のメモリ804の容量を大きくすることができる。なお、プロセッサの面積が大きくても良い場合は、命令長は長くしてもよい。

【0065】本発明の実施の形態により、命令セットの 異なるプロセッサ間の動作を特定の命令で切り替えるこ とが可能となるため、互換性を維持しながら異なる命令 セットを有するプロセッサへの拡張が可能となる。

【0066】またプロセッサ間で演算ユニットなどの資源を共有化できるため、低コスト化につながる。

【0067】異なる命令セットを持つプロセッサをワンチップに内蔵した場合には、プロセッサ間通信の高速化と、内部情報がチップ外部に出力されないことによるセキュリティ強化が図れる。

【0068】動作中に高速な処理が必要でなくなったとき1つのプロセッサの動作を完全に止め、別のプロセッサで止めたプロセッサと同機能の処理をさせることにより低消費電力化が図れる。

【0069】これによって、(1)ソフトウエアは従来と完全互換性を保ったまま1GIPS (Giga Instructions Per Second)、最大10GOPS (Giga Operations Per Second)の高性能を実現できる。(2)既存のソフトウエアのままでミドルウエア部分の性能を1桁向上できる。(3)新しいアプリケーションもこれまでの命令セットのままで作成できる。(4)全てのアプリケーションをソフトウエアで実現できる。

【0070】以上本発明者によってなされた発明を実施 形態に基づいて具体的に説明したが、本発明はそれに限 定されるものではなく、その要旨を逸脱しない範囲にお いて種々変更可能であることはいうまでもない。例え ば、図1のマイクロプロセッサでは、RISCコアの演 算器とVLIWコアの演算器とは双方で共用できたが、 図2のマイクロプロセッサのように独立させてもよい。 図2ではロード/ストアユニット204RISCコアと VLIWコアとの共有にした場合をしたが、ロード/ス トアユニットは図1のように2つ持っても構わない。第 1のプロセッサをRISC型プロセッサ、第2のプロセ ッサをVLIW型プロセッサで構成したが、命令セット の異なる2つのプロセッサで構成することができる。す なわち、RISC型とRISC型、RISC型とCIS C型、CISC型とCISC型、CISC型とVLIW 型、VLIW型とVLIW型等のプロセッサを用いても 良い。また、RISCプロセッサとVLIWプロセッサ との命令長を16ビットと64ビット、32ビットと1 28ピット、64ピットと256ピットとの例を示す。 [0071]

【発明の効果】本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば下記 50

の通りである。

【0072】すなわち、従来のソフトウエアを実行する 第1のプロセッサと、新しいアーキテクチャのソフトウ エアを実行する第2のプロセッサとを有し、第1のプロ セッサが第2のプロセッサに起動をかけることができる ので、従来のソフトウエアと互換性を維持しながら、新 しいアーキテクチャ(命令体系)のソフトウエアを実行 する高性能なプロセッサを実現することができる。

16

【0073】2つのプロセッサ内部の資源たとえば演算 10 ユニットなどを共有化することにより、ハードウエアの 増加を抑えて高速性能を実現することができる。

【0074】2つのプロセッサを並列に動作させる場合と、間欠動作させる2つの制御方式が可能であるため、 高速化と低消費電力化の双方を実現することができる。

【図面の簡単な説明】

【図1】本発明の一つの実施形態に係るマイクロプロセッサのプロック図。

【図2】図1に係るマイクロプロセッサの変形例のブロック図。

20 【図3】図1及び図2のマイクロプロセッサのVLIW 起動論理に関する詳細図。

【図4】図1及び図2のマイクロプロセッサにTLBを用い場合のVLIW起動論理に関する詳細図。

【図5】VLIW命令実行時のパイプラインの構成と命令コードの例。

【図6】本発明に係るマイクロプロセッサを利用したシステムの全体図。

【図7】ワンチップのプロセッサのブロック図。

【図8】本発明に係る他の実施形態であるマイクロコン 30 ピュータのブロック図。

【図9】図8のマイクロコンピュータのメモリマップ。 【符号の説明】

100 マイクロプロセッサ

101 命令フェッチユニット

102 VLIW命令完了信号

103 VLIW命令分岐信号

104 VLIW起動判定ユニット

105、132 命令アドレスパス

106 RISCコア

40 107 命令キャッシュ

108 命令バス

109 RISCコア制御信号

110 VLIW命令実行状態信号

111. V.LIW命令デコード起動信号

112 VLIW命令バス

113 VLIWテープル

114 RISC命令デコードユニット

115 VLIW命令デコードユニット

116 VLIW演算ユニット制御信号

50 117 RISC演算ユニット制御信号

503 VLIW命令2

特開平9-212358 (10)17 18 504 RISC命令1 118 浮動小数点演算ユニット 119 整数演算ユニット 505 VLIW命令3 120 VLIW演算ユニット 506 RISC命令2 121 RISC用データバス 507 RISC命令3 122 VLIWテープルデータバス **508 VLIW演算器1制御フィールド** 123 演算器間データバス **509 VLIW演算器2制御フィールド** 124 VLIW用データバス 510 整数演算器制御フィールド 125、126 アドレスバス 511 浮動小数点演算器制御フィールド 127 RISCロード/ストアユニット 512 VLIW命令完了コード 128、130 データバス 10 513 オペコード 129 データキャッシュ 514 ディスプレースメント 131 VLIWロード/ストアユニット 515 ソースレジスタ1 133 VLIWテーブル制御信号 516 ソースレジスタ2 134、139 アドレスバス 517 ディスティネーションレジスタ 135、138 データバス 601 システム 136、141 分岐先アドレス用バス 602 プロセッサ 137 制御信号 603 プロセッサ1 140 VLIWJ7 604 プロセッサ2からプロセッサ1の制御信号 142 VLIW分岐命令デコード信号 605 プロセッサ2 200 マイクロプロセッサ 20 606 プロセッサ1からプロセッサ2の制御信号 201 レジスタファイル 607 システムバス 202 演算ユニットとレジスタファイル間のバス 608 ROM 203 レジスタファイルとロードストアユニット間の 609 RAM バス 610 3次元グラッフィクス用フレームバッファ 204 ロード/ストアユニット 611 ディスプレイ 205 データバス 612 CD-ROM 206 アドレスバス 613 CD-ROMデコーダ 301 加算器 614 DRAM 302 VLIWコア用プログラムカウンタ 615 ビデオカメラ 303 セレクタ 30 616 ビデオコントローラ 304 アドレスラッチ 617 SDRAM 305 データラッチ 618 LCD 619 LCDコントローラ 306 VLIWテーブル格納メモリ 307 、テーブル制御回路 620 キーボードやプリンタなど周辺デバイス 308 VLIWコア制御レジスタ 621 周辺デバイスコントローラ 309 デコーダ 701 プロセッサ 3.10 VLIW起動判定回路 702 内部パス 311 調停回路 703 プロセッサ1とプロセッサ2の間の制御信号 312 起動回路 704 演算ユニット (整数演算、浮動小数点演算、乗 313 マルチプレクサ 40 除算、DSPなど) 314 VLIW演算ユニット制御回路 705 プロセッサ1とデータキャッシュ間のバス 706 プロセッサ2とデータキャッシュ間のパス 315 VLIW分岐条件判定回路 316 RISCコア用プログラムカウンタ 707 データキャッシュとバスコントロールユニット 317 加算器 間のバス 401 アドレス変換パッファ(TLB) 708 プロセッサ1 (RISCプロセッサ) 402 VLIW起動補助情報信号 709 命令キャッシュとバスコントロールユニット間 403 命令アドレス (物理アドレス) のパス 501 VLIW分岐命令のパイプライン 710 周辺モジュール 502 VLIW命令1 711 プロセッサ2 (VLIWプロセッサ)

50 712 パスコントールユニット

(11)

特開平9-212358

713 パスコントロールユニットと I/O間のバス

19

714 クロックパルス発生回路(CPG)

715 入出力回路 (I/O)

716 データ信号線

717 アドレス信号線

800 マイクロコンピュータ・

801 第1のプロセッサ

802 第2のプロセッサ

803 第1のメモリ

804 第2のメモリ

805 プロセッサ切り替え回路

806 アドレスバス

807 データバス

808 バス制御ユニット。

【図1】

図 1

【図2】

【図4】 図 4 142 命令フェッチユニット 分岐条件 判定回路 102 317 加算器 101 103 316 402 105 TLB _403 135-104 122 302 407^ ∢ 301 132 303 VLIWテーブル 304 加算器 PC REG 309 308 133 制御回路 306 VLIW起動判定回路 1,12 305 307 VLIW起動判定 ユニット 110 111 109 - 137 311 調停回路 313 115-マルチプレクサ 312 起動回路 制御 制御 回路 2 回路1 回路N 314 116 VLIWデコード

ユニット

【図5】

図 5

【図6】

図6

【図7】

図7

【図8】

図8

【図9】

図 9

メモリマップ アドレス空間

第1のプロセッサ のプログラム領域

第2のプロセッサ のプログラム領域

データ領域

その他の領域