

Lecture 10: Precision + Recall / **kNN**

Created @July 29, 2024 5:47 PM

[paper notes]

In KNN, we return the k nearest documents in the corpus that have the smallest distance (closest) to the document x_i

We need to figure out how to find the distance between 2 documents as well as how to represent the documents

Document representation

Represent the document as a vector

- Bag-of-words representation
 - you have a dictionary, where the keys are the words, and the values are the counts of the occurrences of that word
 - pros: easy to explain and easy to computer
 - cons: it can count unnecessary/meaningless words such as the, and, and, etc
 - this means that looking at the uncommon words is more useful/interesting since they are usually what uniquely define a text
- TF-IDF
 - our goal is to emphasize the important words

- the important words are those that are more unique to one document compared to another
- Term Frequency (TF)
 - word counts dictionary
- Inverse Document Frequency
 - log(#docs/(1+#docs that have that word))
 - this is the inverse document frequency
 - For every word, do TF * IDF
 - more unique words will have a larger TF-IDF value

Ways of measuring distance

- Euclidean distance (L2 Norm): distance formula (sum of the squares of the distances)
 - smooth voronoi diagram boundaries
- Manhattan distance (L1 norm): sum of the absolute values of the distances
 - jagged voronoi diagram boundaries
- Weighted distances
 - put more weight on the dimension that doesn't change as much as the other ones9for example weight kilometers more over seconds)
 - o less weight to the data that is more spread out
 - weighted euclidean distance formula

0

distance
$$(x_i, x_q) = \sqrt{\sum_{j=1}^{D} a_j^2 (x_i[j] - x_q[j])^2}$$

ou can just do E of G because, uh, you are you are just taking the

For feature j:
$$\frac{1}{\max_{i}(x_{i}[j])-\min_{i}(x_{i}[j])} = a_{j}$$

- Similarity
 - NOT a measure of distance
 - higher similarity number is better
 - Similarity metrics:
 - Natural similarity
 - dot product of 2 vectors (multiplying each side by side and then summing it up)
 - helps us see how similar the magnitudes are
 - Cosine similarity
 - take the cosine of the angle between the 2 vectors
 - dot product of the 2 vectors / euclidean distance magnitude
 - this helps us see how similar the directions of the 2 vectors are
 - very efficient for sparse vectors since the dot product is more efficient (mostly zeros)
 - distance = 1 similarity
 - Jaccard similarity
 - compares the overlap of words between the 2 texts

 $J(Doc_i, Doc_j) = \frac{|Doc_i \cap Doc_j|}{|Doc_i \cup Doc_j|}$

- Normalization of embeddings
 - normalization isn't good for when you have 2 documents of differing sizes
 - o maximum cap normalization: cap the maximum word count
- Weighted KNN
 - put more emphasis on closer points than farther points
- Kernel regression
 - use a kernel to weight all training points
- Efficient Nearest Neighbors algorithm
 - no training required
 - however it has an O(n) runtime
 - you can approximate the nearest neighbor instead of actually finding the real one which will improve efficiency

Locality Sensitive Hashing (LSH)