Learning data.table Package for Finance

Neeraj Jain

```
library(data.table)
library(magrittr) #for pipe operations (just used once)
```

1. Loading R Libraries

```
price <- fread("https://raw.githubusercontent.com/Neeraj2308/DataSet/main/price.csv")</pre>
```

2. Reading data from GitHub Note: fread automatically detect date variable, and how values are separated. No need to add additional arguments.

Source: Prowess

```
price[, unique(company_name)] %>% length
```

3. Number of companies in the dataset

[1] 10

Pipe operations make the coding simple by using %>%

```
indicators <- c("company_name", "co_stkdate", "bse_closing_price", "bse_returns", "bse_market_cap")</pre>
```

4. Variables to be considered Getting data for above variables only

```
price <- price[, ..indicators]</pre>
```

```
setorder(price, company_name, co_stkdate)
```

- **5. Easy to put data into order** use to put data into descending order.. setorder(price, -company_name, co_stkdate)
- 6. Creating new variables For example: taking return in decimal forms

```
price[, returns.d := bse_returns / 100]
```

```
price <- price[!is.na(returns.d)]</pre>
```

7. Removing NA values

Group Operations

Easy to performs operations group wise in data.table package

```
price[, .N, by = company_name]
```

8. Number of observations for each company

```
##
                        company_name
                 EICHER MOTORS LTD. 7392
##
## 2: DR. REDDY'S LABORATORIES LTD. 7483
## 3:
           DIVI'S LABORATORIES LTD. 4489
## 4:
                    COAL INDIA LTD. 2579
## 5:
                         CIPLA LTD. 7446
          BRITANNIA INDUSTRIES LTD. 7363
## 6:
## 7:
                 BHARTI AIRTEL LTD. 4755
## 8: BHARAT PETROLEUM CORPN. LTD. 6801
## 9:
                 BAJAJ FINANCE LTD. 6513
## 10:
                  ASIAN PAINTS LTD. 7475
```

```
price[, logret := c(NA, diff(log(bse_closing_price))), by = company_name]
#alternative using shift
#price[, logre := log(bse_closing_price / shift(bse_closing_price, 1)), by = company_name]
```

9. Calculating log returns own for each company

```
price <- price[, .SD[-1], by = company_name]</pre>
```

10. Removing first observation of each company, as return is NA

11. Getting average return, sd, min, max, etc for each company

```
## company_name Avg SD Min
## 1: EICHER MOTORS LTD. 0.07070289 4.623578 -230.02948
## 2: DR. REDDY'S LABORATORIES LTD. 0.05820436 3.084957 -95.20088
## 3: DIVI'S LABORATORIES LTD. 0.06740415 3.678582 -158.74232
## 4: COAL INDIA LTD. -0.03744092 1.853884 -15.66800
```

```
##
   5:
                          CIPLA LTD. -0.01794040 4.821989 -229.61126
          BRITANNIA INDUSTRIES LTD. 0.04718162 2.843062 -147.95627
##
  6:
##
  7:
                 BHARTI AIRTEL LTD. 0.05176757 2.579431 -67.23549
       BHARAT PETROLEUM CORPN. LTD. -0.01248160 3.433130 -109.86123
## 8:
## 9:
                 BAJAJ FINANCE LTD. 0.05026933 4.090252 -228.30446
                   ASIAN PAINTS LTD. 0.03154937 3.520004 -230.50905
## 10:
price[, .(stdev = sd(logret, na.rm = TRUE)),
     keyby = .(company_name, year(co_stkdate))]
```

12. Calculating standard deviation of returns for each company for each year .

```
##
              company_name year
                                     stdev
##
        ASIAN PAINTS LTD. 1990 0.02130631
     1:
##
     2: ASIAN PAINTS LTD. 1991 0.01783447
     3: ASIAN PAINTS LTD. 1992 0.04783160
##
     4: ASIAN PAINTS LTD. 1993 0.02437176
##
        ASIAN PAINTS LTD. 1994 0.03489028
##
##
## 265: EICHER MOTORS LTD. 2017 0.01439050
## 266: EICHER MOTORS LTD. 2018 0.01940471
## 267: EICHER MOTORS LTD. 2019 0.02373352
## 268: EICHER MOTORS LTD. 2020 0.14744166
## 269: EICHER MOTORS LTD. 2021 0.01832763
```

Note: keyby also put data into ascending order too. by can also be used.

13. Doing winsorization for each company (for logret only) Defining winsorization function

```
winsorize <- function(x, prob = .01) {
  q <- quantile(x, probs = c(prob, 1 - prob))
  x[x < q[1]] <- q[1]
  x[x > q[2]] <- q[2]
  return(x)
}</pre>
```

Doing winsorization:

```
price[, logret.w := winsorize(logret, prob = 0.01), by = company_name]
```

New variable created logret.w

```
summary(price[, .(logret, logret.w)])
```

14. comparing summary of winsorized data with non-winsorized data.

```
##
       logret
                           logret.w
##
  Min.
          :-2.3050905
                        Min.
                               :-0.0984401
## 1st Qu.:-0.0109860
                        1st Qu.:-0.0109860
## Median: 0.0000000
                        Median: 0.0000000
## Mean
          : 0.0003375
                        Mean
                              : 0.0007869
## 3rd Qu.: 0.0118345
                        3rd Qu.: 0.0118345
## Max.
         : 0.5738004
                        Max.
                             : 0.1112256
```

```
price.m <- price[, .SD[.N], keyby = .(company_name, year(co_stkdate), month(co_stkdate))]</pre>
```

15. getting month end price only or monthly data This can be also done by other packages like quantmod

16. Getting average return for each day and setting this as a variable Similarly we can calculate weighted return using market cap data. This can be done for sector wise also.

Final Note

we can use this package to do any kind of calculations required with financial data. Most important is working with this package is very fast.