PROGRAMACIÓN 3D

Máster en Programación de Videojuegos

TEMA 7: Billboards y partículas

Juan Mira Núñez

Índice

- Introducción
- Billboards
- Sistemas de partículas
 - Emisor
 - Partícula
 - Modificador

Introducción.

- Los billboards son **elementos 2D** incluidos en una escena 3D.
- Como se vio en el tema de introducción a la programación gráfica, los gráficos 2D no tienen volumen.
- Un billboard se muestra en la escena siempre perpendicular al observador.
- En el motor, lo implementaremos como una clase Billboard que hereda de Entity.
- Su información de rotación será ignorada, ya que ésta es calculada automáticamente para enfocar a la cámara.

- En los primeros juegos pseudo-3D, se simulaban las 3 dimensiones utilizando imágenes planas (sprites) y jugando con su tamaño para dar el efecto de profundidad.
- Esto era debido a que la potencia de aquellas máquinas no permitía rasterizar gráficos vectoriales en 3D con texturas.

- No obstante, incluso en máquinas modernas, si queremos dibujar múltiples objetos con una geometría excesivamente compleja, se puede ralentizar la escena.
- Para acelerar este proceso de renderizado, se vuelve a la técnica de utilizar imágenes sin volumen para representar estos objetos.
- Consiste en capturar una imagen del objeto a representar, y utilizar en el motor un rectángulo (dos triángulos) con la imagen capturada como textura.

- Este rectángulo está orientado de forma que siempre se orienta de frente al observador.
- Independientemente de la complejidad del objeto, se utilizarán únicamente dos triángulos.
- Esta técnica es muy utilizada para representar vegetación(árboles, plantas, hierba), y se utiliza también en los sistemas de partículas, como veremos más adelante.

- A pesar de que la rotación de la entidad es ignorada (ya que la rotación del billboard se calcula automáticamente a cada frame para que mire al espectador), es posible hacer rotar un billboard sobre su eje Z local.
- A esta rotación se la denomina **spin**.

• Para representar billboards en el motor, ignoraremos la transformación que realiza el método Entity::draw, y la redefiniremos codificando los siguientes datos de la matriz vista en la matriz modelo:

left.x	left.y	left.z	model.x
lup.x	up.y	up.z	model.y
forward.x	forward.y	forward.z	model.z
0	0	0	1

- A continuación, rotamos en torno al eje Z el número de grados indicado por su variable spin.
- Por último, escalamos con el ancho y alto del billboard (por defecto, el tamaño de la imagen)

Sistemas de partículas

- Cuando en un juego necesitamos reproducir efectos atmosféricos, explosiones, fuego, etc, utilizaremos partículas.
- En general, se utilizan partículas para todos los efectos que tienen un cierto grado de aleatoriedad (no queremos que se representen siempre de la misma forma exactamente).
- Los representaremos utilizando múltiples billboards que se generan constantemente con un grado de aleatoriedad.

Sistemas de partículas. Emisor

El **emisor** es el objeto de la escena encargado de generar partículas a una tasa determinada y con unas propiedades dadas para conseguir el efecto deseado.

En nuestro motor, pertenecerá a la clase Emitter, que deriva de Entity (es, por lo tanto, un elemento del mundo).

Algunas de sus propiedades pueden ser:

- Material
- Fundido automático
- Tasa de generación
- Velocidad de desplazamiento
- o Escala
- Velocidad de spin
- Tiempo de vida
- o Color

Sistemas de partículas. Emisor

• Lo habitual es que el emisor tenga unos rangos mínimo y máximo para cada uno de los valores, y genere partículas dentro de esos rangos (de forma que no todas las partículas se generen exactamente con las mismas propiedades).

• El emisor de partículas puede generar las partículas desde un único punto, o bien desde cualquier punto del área de una figura geométrica (por ejemplo, un rectángulo o un círculo, o desde los vértices de una malla).

En esta asignatura, generaremos las partículas desde la posición del emisor

Sistemas de partículas. Partícula

Una partícula se comporta como un billboard con una serie de atributos adicionales:

- Velocidad
- Velocidad de spin
- Tiempo de vida
- O ...

Es generada por un emisor, y cuando su tiempo de vida es sobrepasado, el propio emisor será encargado de eliminarla de la escena.

Muchas veces, se utiliza una textura muy simple y monocroma, y el color tiene gran relevancia en el aspecto final del efecto (por ejemplo, mezclando partículas amarillas y naranjas podemos conseguir efecto de llamas)

Sistemas de partículas. Modificador

Cuando un emisor genera partículas, da valores a las propiedades de cada una de ellas.

Cuando necesitamos modificar estas propiedades durante el tiempo de vida de cada partícula, usamos **modificadores** (por ejemplo, cuando ha pasado el 50% de su tiempo de vida, o cuando le queda el 20%, o al entrar en un área determinada).

Al igual que el emisor, también puede dar valores dentro de un rango

Algunos modificadores muy utilizados son:

- Modificar el color de una partícula justo antes de desaparecer.
- Modificar su trayectoria según avanza (por ejemplo, para conseguir efecto de viento desplazando humo)

¿Dudas?

