Exercise 8.1

Diet A	n	50
	Mean	5.341
	SD	2.536
Diet B	n	50
Diot B	Mean	3.710
	SD	2.769
	30	2.103

From the results above it is clear that Diet A had a higher average of weight loss. Diet A also had a lower variation compared to Diet B

Exercise 8.2

Diet A	_	50
DIET A	n	_
	Mean	5.341
	SD	2.536
	Median	5.642
	Q1	3.748
	Q3	7.033
	IQR	3.285
Diet B	n	50
DICEB	Mean	3.710
	SD	2.769
		3.745
	Q1	1.953
	_	5.404
	Q3	
	IQR	3.451

Diet A had a higher number of people lose weight in Q1 and Q3 and Diet B had a lower middle value

Frequenc	ies	
	Area 1	Area 2
Α	11	19
В	17	30
Other	42	41
Total	70	90
Percenta	ges	
	Area 1	Area 2
Α	15.7	21.1
В	24.3	33.3
Other	60.0	45.6
		100.0

The Two -Tailed Test

Exercise 8.4

Consider the filtration data of Data Set G. Open the Excel workbook **Exe8.4G.xlsx** which contains these data from the Exercises folder.

Assuming the data to be suitably distributed, complete a two-tailed test of whether the population mean impurity differs between the two filtration agents, and interpret your findings.

			t-Test: Paired Two Sample for		
Batch	Agent1	Agent2	Means		
1	7.7	8.5			
2	9.2	9.6		Agent1	Agent2
3	6.8	6.4	Mean	8.25	8.683333
4	9.5	9.8	Variance	1.059091	1.077879
5	8.7	9.3	Observations	12	12
6	6.9	7.6	Pearson Correlation	0.901056	
7	7.5	8.2	Hypothesized Mean Difference	0	
8	7.1	7.7	df	11	
9	8.7	9.4	t Stat	-3.26394	
10	9.4	8.9	P(T<=t) one-tail	0.003773	
11	9.4	9.7	t Critical one-tail	1.795885	
12	8.1	9.1	P(T<=t) two-tail	0.007546	
			t Critical two-tail	2.200985	
			Difference in Means	0.433333	

The sample mean for Agent1 was 8.25 and for Agent2 was 8.683333 The difference mean was 0.433333 which would suggest that Agent2 has the better filtration results

Looking at the Variance data we can see that although they are close are not the same.

The obtained related samples t =-3.26394

The associated two-tailed p-value is p = 0.007546

Exercise 8.5

Recall that in Exercise 8.4, a two-tailed test was undertaken of whether the population mean impurity differs between the two filtration agents in Data Set G.

Suppose instead a one-tailed test had been conducted to determine whether Filter Agent 1 was the more effective. What would your conclusions have been?

Exercise 8.6

Consider the bank cardholder data of Data Set C. Open the Excel workbook **Exe8.6C.xlsx** which contains this data from the Exercises folder.

Assuming the data to be suitably distributed, complete an appropriate test of whether the population mean income for males exceeds that of females and interpret your findings. What assumptions underpin the validity of your analysis, and how could you validate them?

F-Test Two-Sample for Variances

	Variable 1	Variable 2
Mean	52.91333	44.23333
Variance	233.129	190.1758
Observations	60	60
df	59	59
F	1.22586	
P(F<=f) one-tail	0.218246	
F Critical one-tail	1.539957	

t-Test: Two-Sample Assuming Equal Variances

	Variable	Variable
	1	2
Mean	52.91333	44.23333
Variance	233.129	190.1758
Observations	60	60
Pooled Variance	211.6524	
Hypothesized Mean Difference	0	
df	118	

t Stat	3.2679
P(T<=t) one-tail	0.00071
t Critical one-tail	1.65787
P(T<=t) two-tail	0.001419
t Critical two-tail	1.980272

From the data above we can see there is a significant difference between the mean in both F-Test and B-Test

9.1 Bar Charts

From Area 2 Brand B is the preferred brand and Brand A is the least preferred. However the other brand in both Area 1 and Area 2 are respondents preferred brand,

Complete a percentage frequency clustered column bar chart showing the heather species prevalences in the two different locations.

From location A the Abundant species is the most healthiest and from location B the Absent species is the most healthier.

9.2 Histograms

Looking at the results from the histogram for the two diets suggest that one is not better than the other. The results looks similar.