Día 2

Daniel M.

October 24, 2019

Salvo que se indique todo lo contrario G será un grupo profinito y todos los G-módulos vendrán equipados con la topología discreta.

Definición 1. Sea (I, \leq) un conjunto parcialmente ordenado y dirigido. Sea $\{A_i\}_{i\in I}$ una familia de objetos en una categoría \mathcal{A} y sea $\{f_{ij}\}_{i\leq j}$ una familia de morfismos que verifican $f_{ij} \in \operatorname{Mor}(A_i, A_j), f_{ii} = \operatorname{id}_{A_i} \text{ y } f_{ik} = f_{jk} \circ f_{ij}$ para $i \leq j \leq k$. Al par $((A_i)_{i\in I}, (f_{ij})_{i\leq j})$ le llamamos un **sistema directo**.

Un **límite directo** es un par $(X, (\phi_i)_{i \in I})$ donde X es un objeto en la categoría, $\phi_i : X_i \to X$ verifican $\phi_i = \phi_j \circ f_{ij}$ para $i \leq j$ y además para cualquier otro $(Y, (\psi_i)_{i \in I})$ con la misma propiedad hay un único morfismo $u : X \to Y$ tal que el siguiente diagrama conmuta:

A una propiedad de ese tipo se le denomina una propiedad universal. La notación para el límite directo es $X = \varinjlim A_i$.

Proposición 1. El límite directo es único salvo isomorfismo.

Demostración. Con la misma notación que antes, sean $(X, (\phi_i)_{i \in I})$ y $(Y, (\psi_i)_{i \in I})$ dos límites inversos. Por la propiedad universal, sabemos que existen dos morfismos únicos $u: X \to Y$ y $v: Y \to X$ tal que $\phi_i = v \circ \psi_i$ y $\psi_i = u \circ \phi_i$.

Combinando ambas obtenemos $\phi_i = v \circ u \circ \phi_i$ y también $\psi_i = u \circ v \circ \psi_i$. Como u, v son únicas y $\mathrm{id}_X, \mathrm{id}_Y$ satisfacen las identidades, deducimos que $u \circ v = \mathrm{id}_X$ y $v \circ U = \mathrm{id}_Y$ de lo que deducimos que son isomorfismos. \square

Proposición 2. La categoría de R-módulos tiene límites directos

A continuación podemos estudiar cómo los grupos de cohomología $H^n(G, A)$ de un grupo profinito G con coeficientes en A se construyen a partir la cohomología de cocientes los G/U, donde U es un subgrupo normal y abierto.

Dados dos subgrupos normales y abiertos $V\subseteq U$ de G, las proyecciones canónicas:

$$G^{n+1} \to (G/V)^{n+1} \to (G/U)^{n+1}$$

inducen homomorfismos de complejos de cocadenas:

$$C^{\bullet}(G/U, A^U) \to C^{\bullet}(G/V, A^V) \to C^{\bullet}(G, A).$$

De aquí obtenemos homomorfismos:

$$H^n(G/U, A^U) \to H^n(G/V, A^V) \to H^n(G, A).$$

Es decir, los grupos $H^n(G/U, A^U)$ donde U recorre subgrupos normales y abiertos forman un sistema directo con un homomorfismo canónico:

$$\varinjlim_U H^n(G/U,A^U) \to H^n(G,A).$$

Proposición 3. El homomorfismo canónico es en realidad un isomorfismo:

$$\varinjlim_{U} H^n(G/U,A^U) \stackrel{\sim}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} H^n(G,A).$$

Demostración. El homomorfismo de complejos:

$$\varinjlim_U C^{\bullet}(G/U, A^U) \to C^{\bullet}(G, A)$$

es en realidad un isomorfismo. La invectividad se sigue de la invectividad de los homomorfismos $C^{\bullet}(G/U, A^U) \to C^{\bullet}(G, A)$.

Para ver que es sobreyectivo, sea $x:G^{n+1}\to A$ una cocadena de G. Como A tiene la topología discreta x es localmente constante. Afirmo que podemos encontrar un subgrupo normal y abierto H_0 de G tal que x es constante en las clases laterales de H_0^{n+1} en G^{n+1} .

Por compacidad, sea im $x = \{a_1, ..., a_n\}$ y sean $U_i = x^{-1}(a_i)$. Como los U_i son abiertos, los podemos escribir como una unión de clases laterales $U_i = \cup g_i H_i$, donde los H_i son abiertos y normales. Como además U_i es cerrado y por tanto compacto, la unión es finita y de la forma $g_i H$ si tomamos H la interseccion de los correspondientes H_i . Tomando un H_0 suficientemente pequeño logramos escribir todos los $x^{-1}(a_i)$ como una unión de clases laterales de H_0 y obtenemos que x es constante en ellas. Todo esto lo podemos hacer por que al ser G profinito hay una base fundamental de entornos del elemento neutro formada por subgrupos abiertos. Además tenemos que para $h \in H_0$:

$$x(\sigma_0, ..., \sigma_n) = x(h\sigma_0, ..., h\sigma_n) = hx(\sigma_0, ..., \sigma_n),$$

luego x factoriza de la siguiente manera:

$$G^{n+1} \longrightarrow (G/H_0)^{n+1} \xrightarrow{x_{H_0}} A^{H_0}$$

y x es la imagen de la clase de x_{H_0} en $\varinjlim_U C^n(G/U,A^U)$. Luego efectivamente es sobreyectivo. Para terminar utilizamos que \varinjlim es un un functor exacto:

$$\lim_{U} H^{n}(G/U, A^{U}) \simeq H^{n} \lim_{U} C^{\bullet}(G/U, A^{U})$$

$$\simeq H^{n}(C^{\bullet}(G, A))$$

$$= H^{n}(G, A).$$

1 Cohomología de Tate para grupos finitos

Sea G un grupo finito en esta sección. Denotamos por $N_G:A\to A$ la función norma $N_Ga=\sum_{g\in G}ga$ y sean:

$$\hat{H}^{n}(G,A) = \begin{cases} A^{G}/N_{G}A, & \text{para } n = 0\\ H^{n}(G,A) & \text{para } n \ge 1, \end{cases}$$

a los que denominamos **grupos modificados de cohomología**. Además de A^G podemos definir un módulo de elementos cofijos $A_G = A/I_G A$, donde $I_G A$ es el subgrupo de A generado por elementos de la forma $ga - a, a \in A$ y $g \in G$. A_G es el cociente más grande de A en el que G actúa trivialmente. Sea $H_0(G,A) = A_G$.

Nótese que siempre que G sea finito, $I_GA \subseteq \ker N_G = {}_{N_G}A$, luego podemos denotar:

$$\hat{H}_0(G, A) = {}_{N_G}A/I_GA.$$

Todo esto nos da una sucesión exacta:

$$0 \longrightarrow \hat{H}_0(G,A) \longrightarrow H_0(G,A) \stackrel{N_G}{\longrightarrow} H^0(G,A) \longrightarrow \hat{H}^0(G,A) \longrightarrow 0,$$

donde $N_G: H_0(G, A) \to H^0(G, A)$ es inducida por N_G . El primer y el último término que no son cero son respectivamente el núcleo y conúcleo de N_G .

A continuación vamos a extender nuestros grupos de cohomología a todo $n \in \mathbb{Z}$. Para $n \geq 0$, sea $\mathbb{Z}[G^{n+1}]$ el grupo abeliano libre generado por elementos de G^{n+1} , que tiene estructura de G-módulo. Consideremos la **resolución** estándar completa de \mathbb{Z} :

$$\cdot \longrightarrow X_2 \xrightarrow{\partial_2} X_1 \xrightarrow{\partial_1} X_0 \xrightarrow{\partial_0} X_{-1} \xrightarrow{\partial_{-1}} X_{-2} \longrightarrow \cdots$$

donde $X_n = X_{-1-n} = \mathbb{Z}[G^{n+1}]$ para $n \ge 0$ y los homomorfismos para n > 0 son:

$$\partial_n(\sigma_0, ..., \sigma_n) = \sum_{i=0}^n (-1)^i(\sigma_0, ..., \sigma_{i-1}, \sigma_{i+1}, ..., \sigma_n)$$
$$\partial_{-n}(\sigma_0, ..., \sigma_{n-1}) = \sum_{\tau \in G} \sum_{i=0}^n (-1)^i(\sigma_0, ..., \sigma_{i-1}, \tau, \sigma_{i+1}, ..., \sigma_{n+1}).$$

A su vez definimos $\partial_0: X_0 \to X_{-1}$ como:

$$\partial_0(\sigma_0) = \sum_{\tau \in G} \tau.$$

A partir de esto, la **resolución estándar completa** de A se define tomando $X^{\bullet}(X_{\bullet}, A), \partial^{n} = \text{Hom}(\partial_{n}, A)$ para $n \in \mathbb{Z}$. Uno puede demostrar que el complejo X^{\bullet} es exacto porque la identidad es null-homotópica.

Definición 2. Para $n \in \mathbb{Z}$ definimos el enésimo grupo de cohomología de Tate $\hat{H}(G, A)$ como el grupo de cohomología del complejo:

$$\hat{C}^{\bullet}(G,A) = ((X^n)^G)_{n \in \mathbb{Z}}$$

en el término n:

$$\hat{H}^n(G,A) = H^n(\hat{C}^{\bullet}(G,A)).$$

Obsérvese que para $n \geq 0$ obtenemos los grupos de cohomología modificados de antes y que para n = -1 obtenemos $\hat{H}_0(G, A)$. Las dimensiones negativas corresponden a la homología, algo que veremos más adelante.

2 Módulos inducidos

Dada una sucesión exacta corta:

$$0 \to A \to B \to C \to 0$$

con su correspondiente sucesión larga, es importante observar que si se verifica $H^n(G,B) = H^{n+1}(G,B) = 0$ para algún n entonces:

$$\delta: H^n(G,C) \to H^{n+1}(G,A)$$

es un isomorfismo, lo cual motiva la siguiente definición:

Definición 3. Un G-módulo A es **acíclico** si $H^n(G, A) = 0$ para todo n > 0. A es **cohomológicamente trivial** si $H^n(H, A) = 0$ para todos los subgrupos cerrados $H \leq G$ y para todo n > 0.

Un ejemplo importante de módulos cohomológicamente triviales son los Gmódulos inducidos:

$$\operatorname{Ind}_G(A) = \operatorname{Map}(G, A),$$

es decir las funciones continuas $x: G \to A$ con la acción dada por $(\sigma x)(g) = \sigma x(\sigma^{-1}g)$. Cuando G es finito tenemos un isomorfismo:

$$\operatorname{Ind}_G(A) \cong A \otimes \mathbb{Z}[G]$$

dado por $x \mapsto \sum_{g \in G} x(g) \otimes g$.

Proposición 4. i) El functor $A \mapsto \operatorname{Ind}_G(A)$ es exacto.

- ii) Un G-módulo inducido A también es un H-módulo inducido para todo subgrupo cerrado $H \leq G$. Además si H es normal, A^H es un G/H-módulo inducido.
- iii) $A \otimes B$ es G-inducido si uno de los dos lo es. Lo mismo es cierto para Hom(A, B) si G es finito.
- iv) Si U recorre los subgrupos normales abiertos de G, tenemos:

$$\operatorname{Ind}_G(A) = \varinjlim_U \operatorname{Ind}_{G/U}(A^U).$$

Como comentábamos, el resultado más importante de esta sección sobre módulos inducidos es el siguiente:

Proposición 5. Los G-módulos inducidos $M = \operatorname{Ind}_G(A)$ son cohomológicamente triviales. Si además G es finito, tenemos que $\hat{H}^n(G, M) = 0$ para todo $n \in \mathbb{Z}$.

Demostración. Consideramos las resoluciones estándar $X^{\bullet}(G, A)$ y $X^{\bullet}(G, \operatorname{Ind}_{G}(A))$, es decir aquellas en las que:

$$X^{n} = \text{Map}(G^{n+1}, A); X^{n} = \text{Map}(G^{n+1}, \text{Ind}_{G}(A))$$

respectivamente. Tenemos una aplicación:

$$X^n(G, \operatorname{Ind}_G(A))^G \to X^n(G, A)$$

dada por $x(\sigma_0, ..., \sigma_n) \mapsto y(\sigma_0, ..., \sigma_n) = x(\sigma_0, ..., \sigma_n)(1)$. De hecho, esto un isomorfismo (ejercicio: encontrar el inverso) luego tenemos un isomorfismo de complejos:

$$C^{\bullet}(G, \operatorname{Ind}_G(A)) \cong X^{\bullet}(G, A).$$

El primer día demostramos que $X^{\bullet}(G, A)$ era exacta, luego:

$$H^n(G, \operatorname{Ind}_G(A)) = H^n(C^{\bullet}(G, \operatorname{Ind}_G(A))) = 0$$

para $n \geq 1$. Si H es un subgrupo cerrado de G, por la proposición anterior podemos escribir $\operatorname{Ind}_G(A) = \operatorname{Ind}_H(B)$ para algún B y entonces:

$$H^n(H, \operatorname{Ind}_G(A)) = 0.$$

Cuando G es finito, se puede repetir el argumento en el complejo extendido $(X^n)_{n\in\mathbb{Z}}$ para obtener $\hat{H}^n(G,\operatorname{Ind}_G(A))=0$ para todo $n\in\mathbb{Z}$.

Este resultado nos permite aplicar una técnica conocida como dimension shifting que consiste en reducir demostraciones sobre todos los grupos de cohomología a una única dimension. Dado A, definimos A_1 con la siguiente sucesión exacta:

$$0 \longrightarrow A \stackrel{i}{\longrightarrow} \operatorname{Ind}_{G}(A) \longrightarrow A_{1} \longrightarrow 0,$$

donde ia es la función constante $ia(\sigma) = a$. Si $H \leq G$ es un subgrupo cerrado, por la proposición anterior tenemos que el homomorfismo:

$$\delta: H^n(H, A_1) \to H^{n+1}(H, A)$$

es sobreyectivo para n=0 y un isomorfismo para n>0. Aplicando el mismo proceso inductivamente para $A_0=A$ y $A_+=(A_{p-1})_1$ para p>0 obtenemos:

Proposición 6. Para $n, p \ge 0$ y cualquier subgrupo H de G, tenemos un homomorfismo canónico:

$$\delta^p: H^n(H, A_p) \to H^{n+p}(H, A)$$

que es sobreyectivo para n = 0 y un isomorfismo para n > 0.

Si G es un grupo finito, también podemos obtener un resultado parecido para la cohomología de Tate. Consideremos la sucesión exacta:

$$0 \longrightarrow A_{-1} \longrightarrow \operatorname{Ind}_G(A) \stackrel{\nu}{\longrightarrow} A \longrightarrow 0,$$

donde $\nu: x \mapsto \sum_{g \in G} x(g)$. Definimos $A_p = (A_{p+1})_{-1}$ para p < 0; utilizando que $\operatorname{Ind}_G(A) \cong A \otimes \mathbb{Z}[G]$ es fácil ver que:

$$A_p \cong A \otimes J_G^{\otimes p} \text{ y } A_{-p} \cong I_G^{\otimes p}$$

para $p \geq 0$, donde I_G, J_G vienen dados por las sucesiones:

$$0 \longrightarrow I_G \longrightarrow \mathbb{Z}[G] \stackrel{\epsilon}{\longrightarrow} \mathbb{Z} \longrightarrow 0,$$

$$0 \longrightarrow \mathbb{Z} \xrightarrow{N_G} \mathbb{Z}[G] \longrightarrow J_G \longrightarrow 0.$$

A ϵ se le denomina augmentation map:

$$\epsilon: \sum_{\sigma \in G} a_{\sigma} \sigma \mapsto \sum_{\sigma \in G} a_{\sigma},$$

y al G-módulo I_G se le llama augmentation ideal. Como $\hat{H}^n(H, \operatorname{Ind}_G(A)) = 0$, obtenemos isomorfismos canónicos:

$$\hat{H}^n(H,A) \cong \hat{H}^{n-p}(H,A_p)$$

para todo $n, p \in \mathbb{Z}$.

Volviendo a caso general de un grupo profinito G, otra forma de calcular los grupos de cohomología es utilizando resoluciones acíclicas Y^{\bullet} de A, en cuyo caso $H^n(G,A) \cong H^n(H^0(G,Y^{\bullet}))$ (ver Proposición 1.3.9).

3 El producto cup

Recordamos que dados dos G-módulos A y B, $A \otimes_{\mathbb{Z}} B$ con la acción diagonal también es un G-módulo. Esto nos permite definir para $p, q \geq 0$:

$$C^p(G,A) \times C^q(G,B) \xrightarrow{\cup} C^{p+q}(G,A \otimes B)$$

dado por:

$$(a \cup b)(\sigma_0, ..., \sigma_{p+q}) = a(\sigma_0, ..., \sigma_q) \otimes b(\sigma_p, ..., \sigma_{p+q}).$$

Esta función verifica la siguiente formula:

$$\partial(a \cup b) = (\partial a) \cup b + (-1)^p (a \cup \partial b),$$

que puede verificarse con un simple cálculo. Claramente, si a y b son cociclos entonces $a \cup b$ también es un cociclo. Además, si uno es un cociclo y el otro es un coborde, $a \cup b$ también es un coborde. En definitiva, \cup induce una aplicación bilineal:

$$H^p(G,A) \times H^q(G,B) \xrightarrow{\cup} H^{p+q}(G,A \otimes B),$$

dado por $(\alpha, \beta) \mapsto \alpha \cup \beta$. A esta aplicación le llamamos **producto cup**. También se le llama producto cup a la composición:

$$H^p(G,A) \times H^q(G,B) \xrightarrow{\cup} H^{p+q}(G,A \otimes B) \longrightarrow H^{p+q}(G,C),$$

que viene inducida por una aplicación bilineal $A \times B \to C$ que factoriza en el producto tensorial.

Cada vez que definimos una aplicación nueva en la cohomología, tenemos que verificar sus propiedades functoriales y su compatibilidad con las anteriores. Directamente de la definición se sigue que el producto cup conmuta con homomorfismos $A \to A', B \to B'$. A continuación demostramos la compatibilidad con δ :

Proposición 7. Sean

$$0 \to A' \to A \to A'' \to 0 \ y \ 0 \to C' \to C \to C'' \to 0.$$

dos sucesiones exactas de G-módulos. Sea B otro G-módulo y supongamos que existe un emparejamiento $A \times B \to C$ que induce $A' \times B \to C''$ y $A'' \times B \to C''$. Entonces el diagrama siguiente conmuta:

$$H^{p}(G, A'') \times H^{q}(G, B) \xrightarrow{\cup} H^{p+q}(G, C'')$$

$$\downarrow^{\delta} \qquad \qquad \downarrow^{id} \qquad \downarrow^{\delta}$$

$$H^{p+1}(G, A') \times H^{q}(G, B) \xrightarrow{\cup} H^{p+q+1}(G, C')$$

Es decir, $\delta(\alpha'' \cup \beta) = \delta\alpha'' \cup \beta$.

Análogamente, dadas dos sucesiones exactas:

$$0 \rightarrow B' \rightarrow B \rightarrow B'' \rightarrow 0 \ y \ 0 \rightarrow C' \rightarrow C \rightarrow C'' \rightarrow 0$$

con un emparejamiento $A \times B \to C$ que induce $A \times B' \to C'$ y $A \times B'' \to C''$, el diagrama siguiente conmuta:

$$H^{p}(G,A) \times H^{q}(G,B'') \xrightarrow{\cup} H^{p+q}(G,C'')$$

$$\downarrow_{id} \qquad \qquad \downarrow_{\delta} \qquad \qquad \downarrow_{(-1)^{p}\delta}$$

$$H^{p}(G,A) \times H^{q+1}(G,B') \xrightarrow{\cup} H^{p+q+1}(G,C'').$$

Es decir, $(-1)^p \delta(\alpha \cup \beta'') = \alpha \cup \delta \beta''$.

Demostración. Demostramos la primera igualdad, siendo análoga la demostración de la segunda. Sean $\alpha'' = \overline{a''}, \beta = \overline{b}$ para $a'' \in Z^p(G, A''), b \in Z^q(G, A)$.

El functor $A \mapsto C^p(G, A)$ es exacto, luego podemos elegir $a \in C^p(G, A)$ que esté en la preimagen de a''. Entonces por definición de δ , $\delta \alpha'' \in H^{p+1}(G, A')$ es representado por $\partial a \in Z^{p+1}(G, A')$ (identificando A' con su imagen en A).

A su vez, $\delta(\alpha'' \cup \beta)$ es representado por $\partial(a \cup b) = \partial a \cup b$, ya que $\partial b = 0$. Pasando a cohomología esto significa:

$$\delta(\alpha'' \cup \beta) = \delta\alpha'' \cup \beta.$$

Proposición 8. El producto cup verifica:

$$i) \ (\alpha \cup \beta) \cup \gamma = \alpha \cup (\beta \cup \gamma).$$

$$ii) \ \alpha \cup \beta = (-1)^{pq} (\beta \cup \alpha).$$

Demostración. La primera afirmación es una comprobación directa. Para la segunda utilizaremos el método de dimension shifting introducido en la Proposición 6. Recordamos que existen homomorfismos sobreyectivos δ^n : $H^0(G, A_n) \to H^n(G, A)$. Aplicando la proposición anterior p y q veces respectivamente obtenemos un diagrama commutativo:

$$H^{0}(G, A_{p}) \times H^{0}(G, B_{q}) \xrightarrow{\cup} H^{0}(G, (A \otimes B_{q})_{p}) = H^{0}(G, A_{p} \otimes B_{q})$$

$$\downarrow^{\delta^{p}} \qquad \downarrow^{id} \qquad \downarrow^{\delta^{p}}$$

$$H^{p}(G, A') \times H^{0}(G, B_{q}) \xrightarrow{\cup} H^{p}(G, (A \otimes B)_{q}) = H^{p}(G, A \otimes B_{q})$$

$$\downarrow^{id} \qquad \downarrow^{\delta^{p}} \qquad \downarrow^{(-1)^{pq}\delta^{q}}$$

$$H^{p}(G, A \times H^{q}(G, B) \xrightarrow{\cup} H^{p+q}(G, A \otimes B)$$

Para p=q=0 la identidad es trivial. Como las flechas verticales son sobreyectivas, obtenemos $\alpha \cup B = (-1)^{pq} (\beta \cup \alpha)$ para $p,q \geq 0$.

El producto cup también se puede definir en dimensiones arbitrarias cuando G es finito (es decir, para cohomología de Tate) y de manera que los resultados que hemos demostrado también se cumplan. Esto se puede consultar en la Proposición 1.4.7 del libro.

4 Cambios en el grupo G

En esta sección estudiaremos cómo se comportan los grupos de cohomología en la siguiente situación: tenemos dos grupos profinitos G y G', un G-módulo A y respectivamente un G'-módulo A' junto a homomorfismos:

$$\phi: G' \to G, f: A \to A'$$

que verifican $f(\phi(\sigma')a) = \sigma'f(a)$. Esto nos permite obtener otro homomorfismo $C^n(G,A) \to C^n(G',A')$ dado por $a \mapsto f \circ a \circ \phi$. Claramente esto conmuta con ∂ luego induce un homomorfismo:

$$H^n(G,A) \to H^n(G',A').$$

De hecho, los $H^n(G, A)$ es functorial tanto en A como een G, es decir, dados $G'' \to G' \to G$ y $A'' \to A' \to A$, el homomorfismo:

$$H^n(G,A) \to H^n(G'',A'')$$

es la composición de los dos homomorfismos intermedios. Esto nos permite generalizar la Proposición 3.

Proposición 9. Si
$$G = \varprojlim_{i \in I} G_i \ y \ A = \varinjlim_{i \in I} A_i$$
, entonces:

$$H^n(G,A) \cong \varinjlim_{i \in I} H^n(G_i,A_i).$$

Demostraci'on. La acción de G sobre A se define de la siguiente manera: