Part A:- Click on following link to perform Virtual lab Experiment.

Virtual Lab Experiments to be performed.

Sr No	Department/Disci pline	Lab Name	Experiment Name	Direct Link
1	Electronics & Communications	Digital Electronics Lab (1) (New)	Verification and interpretation of truth table for AND, OR, NOT, NAND, NOR, Ex-OR, Ex-NOR gates.	https://de- iitr.vlabs.ac.in/exp/truth- table-gates/
2	Electronics & Communications	Basic Electronics Lab	Familiarisation with Resistor	http://vlabs.iitkgp.ac.in/be/ exp1/index.html
3	Electronics & Communications	Basic Electronics Lab	Familiarisation with Capacitor	http://vlabs.iitkgp.ac.in/be/ exp2/index.html
4	Electronics & Communications	Basic Electronics Lab	VI Characteristics of a Diode	http://vlabs.iitkgp.ac.in/be/ exp5/index.html
5	Electronics & Communications	Basic Electronics Lab	Half Wave Rectification	http://vlabs.iitkgp.ac.in/be/e xp6/index.html
6	Electronics & Communications	Basic Electronics Lab	Full Wave Rectification	http://vlabs.iitkgp.ac.in/be/e xp7/index.html
7	Electronics & Communications	Basic Electronics Lab	Zener Diode-Voltage Regulator	http://vlabs.iitkgp.ac.in/be/exp10/index.html#
8	Electronics & Communications	Basic Electronics Lab	Study of basic properties of Operational Amplifier: Inverting and Non-Inverting Amplifiers**	http://vlabs.iitkgp.ac.in/be/exp17/index.html
10	Electronics & Communications	Digital Applications Lab (New)	Washing machine control using basic AND and NOT gates	https://da- iitb.vlabs.ac.in/exp/washin -machine-control/
11	Electronics & Communications	Digital Applications Lab (New)	Basics of OR gate and its application in industrial control	https://da- iitb.vlabs.ac.in/exp/industrial -control/
12	Electronics & Communications	Digital Applications Lab (New)	Basic NOT gate and its application in fuel level indicator	https://da- iitb.vlabs.ac.in/exp/fuel- level-indicator/
13	Electronics & Communications	Digital Applications Lab (New)	Seat belt warning system using basic AND and NOT gates	<pre>https://da- iitb.vlabs.ac.in/exp/seat- belt-warning-system/</pre>
14	Electronics & Communications	Digital Applications Lab (New)	Basics of AND gate and its application in car wiper control	https://da- iitb.vlabs.ac.in/exp/car- wiper-control/
15	Electronics & Communications	Digital Applications Lab (New)	Water level control using basic AND and NOT gates	https://da- iitb.vlabs.ac.in/exp/water- level-control/index.html
16	Electronics & Communications	Digital Applications Lab (New)	Electronic lock using basic logic gates	https://da- iitb.vlabs.ac.in/exp/electroni c-lock/

17	Electronics & Communications	Digital Applications Lab (New)	Universal NAND gate and its application in level monitoring in chemical plant	https://da- iitb.vlabs.ac.in/exp/level- monitoring-chemical-plant/
18	Electronics & Communications	Digital Applications Lab (New)	Universal NOR gate and its application in automobile alarm system	https://da- iitb.vlabs.ac.in/exp/automob ile-alarm-system/
19	Electronics & Communications	Digital Applications Lab (New)	XOR gate and its application in staircase light control	https://da- iitb.vlabs.ac.in/exp/staircase -light-control/
20	Electronics & Communications	Digital Applications Lab (New)	Majority circuit using basic logic gates	https://da- iitb.vlabs.ac.in/exp/majority- circuit/
21	Electronics & Communications	Digital Applications Lab (New)	Cockpit warning light control using basic logic gates	https://da- iitb.vlabs.ac.in/exp/cockpit- warning-light-control/
22	Electronics & Communications	Digital Applications Lab (New)	DIY Build your own combinational logic circuit using generalized simulator	https://da- iitb.vlabs.ac.in/exp/generaliz ed-simulator/index.html

Perform all above experiments till 12th May 2023.

After performance of all above experiments (Part A), you have to submit feedback (Part B).

Time Table:

Sr No	Date	Day	Time	Division
1	12 May 2023	Friday	4:30pm – 7:00pm	A,B,C,D,E
2	13 May 2023	Saturday	4:30pm – 7:00pm	F,G,H,I J
3	14 May 2023	Sunday	4:30pm – 7:00pm	K,L M,N,O
4	15 May 2023	Monday	4:30pm – 7:00pm	P,Q,R,S,T

As per the above timetable respective division will submit feedback on scheduled date only.

Part B:- Steps for Feedback submission-

1. Click on link: https://iitb.vlabs.co.in/feedback/

2. Register through Vishwakarma Institute of Technology, Pune as a Nodal center(VLNC ID:13) (Please directly login if already registered)

3. Fill all details carefully. Please Enter Student PRN number instead of Roll no. (Note- for branches not mentioned in the list like AIDS Branch Click on Other Discipline and mention their respective branch name)

4. After successfully registration, click on Login.

- 5. After successfully login Feedback home page is appeared as below.
 - Select Current Semester- I
 - User-Workshop User
 - For Discipline tab, Lab Name & Experiment Name tabs, please refer table given below.
 - After selecting discipline please type lab name and Experiment name.

Discipline	Lab Name	Experiment Name
Electronics & Communications	Digital Electronics Lab (1) (New)	Verification and interpretation of truth table for AND, OR, NOT, NAND, NOR, Ex-OR, Ex-NOR gates.
Electronics & Communications	Basic Electronics Lab	Familiarisation with Resistor
Electronics & Communications	Basic Electronics Lab	Familiarisation with Capacitor
Electronics & Communications	Basic Electronics Lab	VI Characteristics of a Diode
Electronics & Communications	Basic Electronics Lab	Half Wave Rectification
Electronics & Communications	Basic Electronics Lab	Full Wave Rectification
Electronics & Communications	Basic Electronics Lab	Zener Diode-Voltage Regulator
Electronics & Communications	Basic Electronics Lab	Study of basic properties of Operational Amplifier: Inverting and Non-Inverting Amplifiers**
Electronics & Communications	Digital Applications Lab (New)	Washing machine control using basic AND and NOT gates
Electronics & Communications	Digital Applications Lab (New)	Basics of OR gate and its application in industrial control
Electronics & Communications	Digital Applications Lab (New)	Basic NOT gate and its application in fuel level indicator
Electronics & Communications	Digital Applications Lab (New)	Seat belt warning system using basic AND and NOT gates
Electronics & Communications	Digital Applications Lab (New)	Basics of AND gate and its application in car wiper control
Electronics & Communications	Digital Applications Lab (New)	Water level control using basic AND and NOT gates
Electronics & Communications	Digital Applications Lab (New)	Electronic lock using basic logic gates
Electronics & Communications	Digital Applications Lab (New)	Universal NAND gate and its application in level monitoring in chemical plant
Electronics & Communications	Digital Applications Lab (New)	Universal NOR gate and its application in automobile alarm system
Electronics &	Digital	XOR gate and its application

Communications	Applications Lab (New)	in staircase light control
Electronics & Communications	Digital Applications Lab (New)	Majority circuit using basic logic gates
Electronics & Communications	Digital Applications Lab (New)	Cockpit warning light control using basic logic gates
Electronics & Communications	Digital Applications Lab (New)	DIY Build your own combinational logic circuit using generalized simulator

Important Note: Students should perform all 22 experiments and also *mention all 22* experiments names in feedback form as shown in table above.

6. Answer the all Questionnaire mentioned in Form.

7. Take *Screenshot* of your feedback form (*Rename this file as Div-Roll no. Ex. G-09*) and *submit* the same on following link.

https://drive.google.com/drive/folders/1w07kB47ctB264aDwQCjN-q_9I7RRxwoU?usp=sharing

8. Click on Submit button.

