음식이미지 분류기

전체 개요

데이터 전처리

모델 학습

결과

서론/필요성

배경

인공지능 기말과제발표

현대 사회에서 건강한 식단 관리의 중요성이 증가하고 있으며, 많은 사람들이 섭취하는 음식의 종류와 영양소를 알고 싶어함

필요성

음식 이미지를 자동으로 분류하여 영양 성분을 예측하면 개인 맞춤형 영양 관리가 가능하며, 이는 건강 증진과 식습관 개선에 기여할 수 있음

관련 연구 / 내용

관련 연구

Food-101 데이터셋을 사용한 음식 분류 연구

내용

이데이터셋을 활용한 연구들은 CNN(Convolutional Neural Network)을 주로사용하여 높은 성능을 달성

목표

딥러닝을 사용해 음식 이미지를 보고 음식 종류를 인식하며, 영양 정보를 제공

프로젝트 목표 및 개요

데이터 수집

데이터 수집, 전처리

모델 학습

모델학습및평가

결과 분석

최종결과및분석

日期時間場日

Data Explorer Version 5 (5.82 GB) Images Images

food_test_c101_n1000_r...

food_test_c101_n1000_r...

Version 5 (5.82 GB) images ▼ □ meta ▼ □ meta ■ classes.txt ■ labels.txt {i} test.json test.txt {i} train.json **h** food_c101_n1000_r384×... food_c101_n10099_r32×... food_c101_n10099_r32×... food_c101_n10099_r64×... food_c101_n10099_r64×... food test c101 n1000 r... food_test_c101_n1000_r... food_test_c101_n1000_r...

food_test_c101_n1000_r...

food_test_c101_n1000_r...

f food_test_c101_n1000_r...

데이터 셋 종류: Food-101 클래수 수: 101개 음식 종류 이미지 개수: 총 101,000장

인공지능모델선택및구조

전이 학습(Transfer Learning)

대규모 데이터셋으로 미리 학습된 모델을 가져와, 새로운 데이터셋(음식 이미지)으로 다시 학습시키는 방법 이를 통해 데이터가 적더라도 빠르게 높은 정확도를 얻을 수 있음

Inception V3 모델의 전이 학습 적용 과정

기존 모델의 기본 레이어를 고정하고, 음식 분류를 위한 새로운 레이어를 추가 최종 레이어만 학습시키는 방식으로 새로운 데이터셋에 빠르게 적응하도록 함

```
# 모델 생성 함수
def create_model(): 1 usage
   base_model = InceptionV3(weights='imagenet', include_top=False, input_shape=(224, 224, 3)
   x = base_model.output
   x = GlobalAveragePooling2D() (x)
   x = Dense(1024, activation='relu')(x)
   predictions = Dense(train_generator.num_classes, activation='softmax')(x)
    model = Model(inputs=base_model.input, outputs=predictions)
#사전 학습된 기본 레이어는 고정
    for layer in base_model.layers:
        layer.trainable = False
   model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
    return model
```

데이터전처리의목표및과정

데이터 전처리의 필요성 및 목표이미지 크기와 색상 등을 표준화하여 모델이 더 쉽게 학습할 수 있도록 도움데이터 증강을 통해 적은 데이터를 다양한 형태로 변형하여 더 많은 데이터를 학습하는 효과를 얻음

데이터전처리과정-이미지크기조정

모든 이미지 크기를 224 X 224 크기로 맞춰, 모델 입력에 적합하도록 함.

데이터전처리과정-데이터증강 회전-음식 이미지를 20도 범위에서 무작위로 회전하여 다양한 각도 학습 수평 이동, 수직 이동-20% 범위 내에서 이동하여 중심이 다소 변한 이미지 학습 확대/축소-20% 확대 또는 축소 II 수평 뒤집기-이미지 좌우 반전을 통해 양방향 학습

데이터전처리의목표및과정

```
# 이미지 증강 설정
train_datagen = ImageDataGenerator(
    rescale=1./255,
    rotation_range=20,
    width_shift_range=0.2,
    height_shift_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True
```

데이터 전처리를 위한

ImageDataGenerator 코드

#픽셀값을 0-1 사이로 조정

#회전

#수평이동

#수직이동

#확대/축소

#수평 반전

학습 데이터 준비 및 학습 과정

학습 데이터 준비 및 설정

```
# 이미지 데이터 로딩

train_generator = train_datagen.flow_from_directory(
    train_data_dir,
    target_size=(224, 224), #이미지크기
    batch_size=32,
    class_mode='categorical' #다중클래스분류
)
```

flow_from_directory 함수로 이미지 데이터를 생성하고 배치 단위로 모델에 공급하여 학습 배치 크기 32, 에포크 10으로 학습 설정

모델 학습 과정 설명

```
# 모델 학습

epochs = 10

model.fit(train_generator, epochs=epochs, steps_per_epoch=len(train_generator))

Epoch 1/10
3157/3157 — 2077s 657ms/step - accuracy: 0.2995 - loss: 2.9593
Epoch 2/10
805/3157 — 25:51 659ms/step - accuracy: 0.4199 - loss: 2.2908
```

학습 목표는 손실(loss)을 줄이고, 정확도(accuracy)를 높이는 것 학습이 진행되면서 손실 값은 낮아지고, 정확도는 높아지도록 모델을 최적화함 -> model.fit 함수 사용 인공지능 기말과제발표

인공지능 기말과제발표

인공지능 기말과제발표

