CHAPTER 10

Infinite Series

1. (a)
$$f^{(k)}(x) = (-1)^k e^{-x}$$
, $f^{(k)}(0) = (-1)^k$; $e^{-x} \approx 1 - x + x^2/2$ (quadratic), $e^{-x} \approx 1 - x$ (linear)

(b)
$$f'(x) = -\sin x, f''(x) = -\cos x, f(0) = 1, f'(0) = 0, f''(0) = -1,$$

 $\cos x \approx 1 - x^2/2 \text{ (quadratic)}, \cos x \approx 1 \text{ (linear)}$

(c)
$$f'(x) = \cos x, f''(x) = -\sin x, f(\pi/2) = 1, f'(\pi/2) = 0, f''(\pi/2) = -1,$$

 $\sin x \approx 1 - (x - \pi/2)^2/2$ (quadratic), $\sin x \approx 1$ (linear)

(d)
$$f(1) = 1, f'(1) = 1/2, f''(1) = -1/4;$$

 $\sqrt{x} = 1 + \frac{1}{2}(x-1) - \frac{1}{8}(x-1)^2 \text{ (quadratic)}, \sqrt{x} \approx 1 + \frac{1}{2}(x-1) \text{ (linear)}$

2. (a)
$$p_2(x) = 1 + x + x^2/2, p_1(x) = 1 + x$$

(b)
$$p_2(x) = 3 + \frac{1}{6}(x-9) - \frac{1}{216}(x-9)^2, p_1(x) = 3 + \frac{1}{6}(x-9)$$

(c)
$$p_2(x) = \frac{\pi}{3} + \frac{\sqrt{3}}{6}(x-2) - \frac{7}{72}\sqrt{3}(x-2)^2, p_1(x) = \frac{\pi}{3} + \frac{\sqrt{3}}{6}(x-2)$$

(d)
$$p_2(x) = x, p_1(x) = x$$

3. (a)
$$f'(x) = \frac{1}{2}x^{-1/2}$$
, $f''(x) = -\frac{1}{4}x^{-3/2}$; $f(1) = 1$, $f'(1) = \frac{1}{2}$, $f''(1) = -\frac{1}{4}$; $\sqrt{x} \approx 1 + \frac{1}{2}(x-1) - \frac{1}{8}(x-1)^2$

(b)
$$x = 1.1, x_0 = 1, \sqrt{1.1} \approx 1 + \frac{1}{2}(0.1) - \frac{1}{8}(0.1)^2 = 1.04875$$
, calculator value ≈ 1.0488088

4. (a)
$$\cos x \approx 1 - x^2/2$$

(b)
$$2^{\circ} = \pi/90 \text{ rad}, \cos 2^{\circ} = \cos(\pi/90) \approx 1 - \frac{\pi^2}{2 \cdot 90^2} \approx 0.99939077$$
, calculator value ≈ 0.99939083

5.
$$f(x) = \tan x$$
, $61^{\circ} = \pi/3 + \pi/180 \text{ rad}$; $x_0 = \pi/3$, $f'(x) = \sec^2 x$, $f''(x) = 2\sec^2 x \tan x$; $f(\pi/3) = \sqrt{3}$, $f'(\pi/3) = 4$, $f''(x) = 8\sqrt{3}$; $\tan x \approx \sqrt{3} + 4(x - \pi/3) + 4\sqrt{3}(x - \pi/3)^2$, $\tan 61^{\circ} = \tan(\pi/3 + \pi/180) \approx \sqrt{3} + 4\pi/180 + 4\sqrt{3}(\pi/180)^2 \approx 1.80397443$, calculator value ≈ 1.80404776

6.
$$f(x) = \sqrt{x}$$
, $x_0 = 36$, $f'(x) = \frac{1}{2}x^{-1/2}$, $f''(x) = -\frac{1}{4}x^{-3/2}$;
 $f(36) = 6$, $f'(36) = \frac{1}{12}$, $f''(36) = -\frac{1}{864}$; $\sqrt{x} \approx 6 + \frac{1}{12}(x - 36) - \frac{1}{1728}(x - 36)^2$;
 $\sqrt{36.03} \approx 6 + \frac{0.03}{12} - \frac{(0.03)^2}{1728} \approx 6.00249947917$, calculator value ≈ 6.00249947938

7.
$$f^{(k)}(x) = (-1)^k e^{-x}$$
, $f^{(k)}(0) = (-1)^k$; $p_0(x) = 1$, $p_1(x) = 1 - x$, $p_2(x) = 1 - x + \frac{1}{2}x^2$, $p_3(x) = 1 - x + \frac{1}{2}x^2 - \frac{1}{3!}x^3$, $p_4(x) = 1 - x + \frac{1}{2}x^2 - \frac{1}{3!}x^3 + \frac{1}{4!}x^4$; $\sum_{k=0}^{n} \frac{(-1)^k}{k!}x^k$

8.
$$f^{(k)}(x) = a^k e^{ax}$$
, $f^{(k)}(0) = a^k$; $p_0(x) = 1$, $p_1(x) = 1 + ax$, $p_2(x) = 1 + ax + \frac{a^2}{2}x^2$, $p_3(x) = 1 + ax + \frac{a^2}{2}x^2 + \frac{a^3}{3!}x^3$, $p_4(x) = 1 + ax + \frac{a^2}{2}x^2 + \frac{a^3}{3!}x^3 + \frac{a^4}{4!}x^4$; $\sum_{k=0}^{n} \frac{a^k}{k!}x^k$

9. $f^{(k)}(0) = 0$ if k is odd, $f^{(k)}(0)$ is alternately π^k and $-\pi^k$ if k is even; $p_0(x) = 1$, $p_1(x) = 1$, $p_2(x) = 1 - \frac{\pi^2}{2!}x^2$; $p_3(x) = 1 - \frac{\pi^2}{2!}x^2$, $p_4(x) = 1 - \frac{\pi^2}{2!}x^2 + \frac{\pi^4}{4!}x^4$; $\sum_{k=1}^{\lfloor \frac{n}{2} \rfloor} \frac{(-1)^k \pi^{2k}}{(2k)!} x^{2k}$

NB: The function [x] defined for real x indicates the greatest integer which is $\leq x$

10. $f^{(k)}(0) = 0$ if k is even, $f^{(k)}(0)$ is alternately π^k and $-\pi^k$ if k is odd; $p_0(x) = 0$, $p_1(x) = \pi x$, $p_2(x) = \pi x$; $p_3(x) = \pi x - \frac{\pi^3}{3!}x^3$, $p_4(x) = \pi x - \frac{\pi^3}{3!}x^3$; $\sum_{k=0}^{\left[\frac{n-1}{2}\right]} \frac{(-1)^k \pi^{2k+1}}{(2k+1)!} x^{2k+1}$

NB If n = 0 then $\left[\frac{n-1}{2}\right] = -1$; by definition any sum which runs from k = 0 to k = -1 is called the 'empty sum' and has value 0.

11.
$$f^{(0)}(0) = 0$$
; for $k \ge 1$, $f^{(k)}(x) = \frac{(-1)^{k+1}(k-1)!}{(1+x)^k}$, $f^{(k)}(0) = (-1)^{k+1}(k-1)!$; $p_0(x) = 0$, $p_1(x) = x$, $p_2(x) = x - \frac{1}{2}x^2$, $p_3(x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3$, $p_4(x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4$; $\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k}x^k$

12.
$$f^{(k)}(x) = (-1)^k \frac{k!}{(1+x)^{k+1}}$$
; $f^{(k)}(0) = (-1)^k k!$; $p_0(x) = 1$, $p_1(x) = 1 - x$, $p_2(x) = 1 - x + x^2$, $p_3(x) = 1 - x + x^2 - x^3$, $p_4(x) = 1 - x + x^2 - x^3 + x^4$; $\sum_{k=0}^{n} (-1)^k x^k$

13.
$$f^{(k)}(0) = 0$$
 if k is odd, $f^{(k)}(0) = 1$ if k is even; $p_0(x) = 1, p_1(x) = 1$,
$$p_2(x) = 1 + x^2/2, \ p_3(x) = 1 + x^2/2, \ p_4(x) = 1 + x^2/2 + x^4/4!; \ \sum_{k=0}^{\left[\frac{n}{2}\right]} \frac{1}{(2k)!} x^{2k}$$

14.
$$f^{(k)}(0) = 0$$
 if k is even, $f^{(k)}(0) = 1$ if k is odd; $p_0(x) = 0$, $p_1(x) = x$, $p_2(x) = x$, $p_3(x) = x + x^3/3!$, $p_4(x) = x + x^3/3!$; $\sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor} \frac{1}{(2k+1)!} x^{2k+1}$

15.
$$f^{(k)}(x) = \begin{cases} (-1)^{k/2}(x\sin x - k\cos x) & k \text{ even} \\ (-1)^{(k-1)/2}(x\cos x + k\sin x) & k \text{ odd} \end{cases}$$
, $f^{(k)}(0) = \begin{cases} (-1)^{1+k/2}k & k \text{ even} \\ 0 & k \text{ odd} \end{cases}$
 $p_0(x) = 0, \ p_1(x) = 0, \ p_2(x) = x^2, p_3(x) = x^2, \ p_4(x) = x^2 - \frac{1}{6}x^4; \ \sum_{k=0}^{\left[\frac{n}{2}\right]-1} \frac{(-1)^k}{(2k+1)!}x^{2k+2}$

16.
$$f^{(k)}(x) = (k+x)e^x$$
, $f^{(k)}(0) = k$; $p_0(x) = 0$, $p_1(x) = x$, $p_2(x) = x + x^2$, $p_3(x) = x + x^2 + \frac{1}{2}x^3$, $p_4(x) = x + x^2 + \frac{1}{2}x^3 + \frac{1}{3!}x^4$; $\sum_{k=1}^{n} \frac{1}{(k-1)!}x^k$

Exercise Set 10.1 399

17.
$$f^{(k)}(x_0) = e$$
; $p_0(x) = e$, $p_1(x) = e + e(x - 1)$, $p_2(x) = e + e(x - 1) + \frac{e}{2}(x - 1)^2$, $p_3(x) = e + e(x - 1) + \frac{e}{2}(x - 1)^2 + \frac{e}{3!}(x - 1)^3$, $p_4(x) = e + e(x - 1) + \frac{e}{2}(x - 1)^2 + \frac{e}{3!}(x - 1)^3 + \frac{e}{4!}(x - 1)^4$; $\sum_{k=0}^{n} \frac{e}{k!}(x - 1)^k$

18.
$$f^{(k)}(x) = (-1)^k e^{-x}$$
, $f^{(k)}(\ln 2) = (-1)^k \frac{1}{2}$; $p_0(x) = \frac{1}{2}$, $p_1(x) = \frac{1}{2} - \frac{1}{2}(x - \ln 2)$, $p_2(x) = \frac{1}{2} - \frac{1}{2}(x - \ln 2) + \frac{1}{2 \cdot 2}(x - \ln 2)^2$, $p_3(x) = \frac{1}{2} - \frac{1}{2}(x - \ln 2) + \frac{1}{2 \cdot 2}(x - \ln 2)^2 - \frac{1}{2 \cdot 3!}(x - \ln 2)^3$, $p_4(x) = \frac{1}{2} - \frac{1}{2}(x - \ln 2) + \frac{1}{2 \cdot 2}(x - \ln 2)^2 - \frac{1}{2 \cdot 3!}(x - \ln 2)^3 + \frac{1}{2 \cdot 4!}(x - \ln 2)^4$; $\sum_{k=0}^{n} \frac{(-1)^k}{2 \cdot k!}(x - \ln 2)^k$

19.
$$f^{(k)}(x) = \frac{(-1)^k k!}{x^{k+1}}, f^{(k)}(-1) = -k!; p_0(x) = -1; p_1(x) = -1 - (x+1);$$

$$p_2(x) = -1 - (x+1) - (x+1)^2; p_3(x) = -1 - (x+1) - (x+1)^2 - (x+1)^3;$$

$$p_4(x) = -1 - (x+1) - (x+1)^2 - (x+1)^3 - (x+1)^4; \sum_{k=0}^{n} (-1)(x+1)^k$$

20.
$$f^{(k)}(x) = \frac{(-1)^k k!}{(x+2)^{k+1}}, f^{(k)}(3) = \frac{(-1)^k k!}{5^{k+1}}; p_0(x) = \frac{1}{5}; p_1(x) = \frac{1}{5} - \frac{1}{25}(x-3);$$

$$p_2(x) = \frac{1}{5} - \frac{1}{25}(x-3) + \frac{1}{125}(x-3)^2; p_3(x) = \frac{1}{5} - \frac{1}{25}(x-3) + \frac{1}{125}(x-3)^2 - \frac{1}{625}(x-3)^3;$$

$$p_4(x) = \frac{1}{5} - \frac{1}{25}(x-3) + \frac{1}{125}(x-3)^2 - \frac{1}{625}(x-3)^3 + \frac{1}{3125}(x-3)^4; \sum_{k=0}^{n} \frac{(-1)^k}{5^{k+1}}(x-3)^k$$

21.
$$f^{(k)}(1/2) = 0$$
 if k is odd, $f^{(k)}(1/2)$ is alternately π^k and $-\pi^k$ if k is even;
$$p_0(x) = p_1(x) = 1, p_2(x) = p_3(x) = 1 - \frac{\pi^2}{2}(x - 1/2)^2,$$
$$p_4(x) = 1 - \frac{\pi^2}{2}(x - 1/2)^2 + \frac{\pi^4}{4!}(x - 1/2)^4; \sum_{k=0}^{\left[\frac{n}{2}\right]} \frac{(-1)^k \pi^{2k}}{(2k)!} (x - 1/2)^{2k}$$

22.
$$f^{(k)}(\pi/2) = 0$$
 if k is even, $f^{(k)}(\pi/2)$ is alternately -1 and 1 if k is odd; $p_0(x) = 0$, $p_1(x) = -(x - \pi/2), \ p_2(x) = -(x - \pi/2), \ p_3(x) = -(x - \pi/2) + \frac{1}{3!}(x - \pi/2)^3,$ $p_4(x) = -(x - \pi/2) + \frac{1}{3!}(x - \pi/2)^3; \ \sum_{k=0}^{\left[\frac{n-1}{2}\right]} \frac{(-1)^{k+1}}{(2k+1)!}(x - \pi/2)^{2k+1}$

400

23.
$$f(1) = 0$$
, for $k \ge 1$, $f^{(k)}(x) = \frac{(-1)^{k-1}(k-1)!}{x^k}$; $f^{(k)}(1) = (-1)^{k-1}(k-1)!$; $p_0(x) = 0$, $p_1(x) = (x-1)$; $p_2(x) = (x-1) - \frac{1}{2}(x-1)^2$; $p_3(x) = (x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3$, $p_4(x) = (x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3 - \frac{1}{4}(x-1)^4$; $\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k}(x-1)^k$

24.
$$f(e) = 1$$
, for $k \ge 1$, $f^{(k)}(x) = \frac{(-1)^{k-1}(k-1)!}{x^k}$; $f^{(k)}(e) = \frac{(-1)^{k-1}(k-1)!}{e^k}$; $p_0(x) = 1$, $p_1(x) = 1 + \frac{1}{e}(x-e)$; $p_2(x) = 1 + \frac{1}{e}(x-e) - \frac{1}{2e^2}(x-e)^2$; $p_3(x) = 1 + \frac{1}{e}(x-e) - \frac{1}{2e^2}(x-e)^2 + \frac{1}{3e^3}(x-e)^3$, $p_4(x) = 1 + \frac{1}{e}(x-e) - \frac{1}{2e^2}(x-e)^2 + \frac{1}{3e^3}(x-e)^3 - \frac{1}{4e^4}(x-e)^4$; $1 + \sum_{k=1}^{n} \frac{(-1)^{k-1}}{ke^k}(x-e)^k$

- **25.** (a) f(0) = 1, f'(0) = 2, f''(0) = -2, f'''(0) = 6, the third MacLaurin polynomial for f(x) is f(x). (b) f(1) = 1, f'(1) = 2, f''(1) = -2, f'''(1) = 6, the third Taylor polynomial for f(x) is f(x).
- **26.** (a) $f^{(k)}(0) = k!c_k$ for $k \le n$; the *n*th Maclaurin polynomial for f(x) is f(x). (b) $f^{(k)}(x_0) = k!c_k$ for $k \le n$; the *n*th Taylor polynomial about x = 1 for f(x) is f(x).
- **27.** $f^{(k)}(0) = (-2)^k$; $p_0(x) = 1$, $p_1(x) = 1 2x$, $p_2(x) = 1 2x + 2x^2$, $p_3(x) = 1 2x + 2x^2 \frac{4}{3}x^3$

28. $f^{(k)}(\pi/2) = 0$ if k is odd, $f^{(k)}(\pi/2)$ is alternately 1 and -1 if k is even; $p_0(x) = 1$, $p_2(x) = 1 - \frac{1}{2}(x - \pi/2)^2$, $p_4(x) = 1 - \frac{1}{2}(x - \pi/2)^2 + \frac{1}{24}(x - \pi/2)^4$, $p_6(x) = 1 - \frac{1}{2}(x - \pi/2)^2 + \frac{1}{24}(x - \pi/2)^4 - \frac{1}{720}(x - \pi/2)^6$

29. $f^{(k)}(\pi) = 0$ if k is odd, $f^{(k)}(\pi)$ is alternately -1 and 1 if k is even; $p_0(x) = -1$, $p_2(x) = -1 + \frac{1}{2}(x - \pi)^2$, $p_4(x) = -1 + \frac{1}{2}(x - \pi)^2 - \frac{1}{24}(x - \pi)^4$, $p_6(x) = -1 + \frac{1}{2}(x - \pi)^2 - \frac{1}{24}(x - \pi)^4 + \frac{1}{720}(x - \pi)^6$

Exercise Set 10.1

401

30.
$$f(0) = 0$$
; for $k \ge 1$, $f^{(k)}(x) = \frac{(-1)^{k-1}(k-1)!}{(x+1)^k}$, $f^{(k)}(0) = (-1)^{k-1}(k-1)!$; $p_0(x) = 0$, $p_1(x) = x$, $p_2(x) = x - \frac{1}{2}x^2$, $p_3(x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3$

31.
$$f^{(k)}(x) = e^x, |f^{(k)}(x)| \le e^{1/2} < 2$$
 on $[0, 1/2]$, let $M = 2$, $e^{1/2} = 1 + \frac{1}{2} + \frac{1}{8} + \frac{1}{48} + \frac{1}{24 \cdot 16} + \dots + \frac{1}{n!2^n} + R_n(1/2)$; $|R_n(1/2)| \le \frac{M}{(n+1)!} (1/2)^{n+1} \le \frac{2}{(n+1)!} (1/2)^{n+1} \le 0.00005$ for $n = 5$; $e^{1/2} \approx 1 + \frac{1}{2} + \frac{1}{8} + \frac{1}{48} + \frac{1}{24 \cdot 16} + \frac{1}{120 \cdot 32} \approx 1.64870$, calculator value 1.64872

32.
$$f(x) = e^x$$
, $f^{(k)}(x) = e^x$, $|f^{(k)}(x)| \le 1$ on $[-1,0]$, $|R_n(x)| \le \frac{1}{(n+1)!}(1)^{n+1} = \frac{1}{(n+1)!} < 0.5 \times 10^{-3}$ if $n = 6$, so $e^{-1} \approx 1 - 1 + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \frac{1}{6!} \approx 0.3681$, calculator value 0.3679

- **33.** p(0) = 1, p(x) has slope -1 at x = 0, and p(x) is concave up at x = 0, eliminating I, II and III respectively and leaving IV.
- **34.** Let $p_0(x) = 2$, $p_1(x) = p_2(x) = 2 3(x 1)$, $p_3(x) = 2 3(x 1) + (x 1)^3$.
- **35.** $f^{(k)}(\ln 4) = 15/8$ for k even, $f^{(k)}(\ln 4) = 17/8$ for k odd, which can be written as $f^{(k)}(\ln 4) = \frac{16 (-1)^k}{8}; \sum_{k=0}^n \frac{16 (-1)^k}{8k!} (x \ln 4)^k$
- **36.** (a) $\cos \alpha \approx 1 \alpha^2/2$; $x = r r \cos \alpha = r(1 \cos \alpha) \approx r\alpha^2/2$
 - (b) In Figure Ex-36 let r=4000 mi and $\alpha=1/80$ so that the arc has length $2r\alpha=100$ mi. Then $x\approx r\alpha^2/2=\frac{4000}{2\cdot 80^2}=5/16$ mi.
- **37.** From Exercise 2(a), $p_1(x) = 1 + x$, $p_2(x) = 1 + x + x^2/2$

402

Chapter 10		

(b)	x	-1.000	-0.750	-0.500	-0.250	0.000	0.250	0.500	0.750	1.000
	f(x)	0.431	0.506	0.619	0.781	1.000	1.281	1.615	1.977	2.320
	$p_1(x)$	0.000	0.250	0.500	0.750	1.000	1.250	1.500	1.750	2.000
	$p_2(x)$	0.500	0.531	0.625	0.781	1.000	1.281	1.625	2.031	2.500

(c)
$$|e^{\sin x} - (1+x)| < 0.01$$

for $-0.14 < x < 0.14$

(d)
$$|e^{\sin x} - (1 + x + x^2/2)| < 0.01$$

for $-0.50 < x < 0.50$

38. (a)
$$f^{(k)}(x) = e^x \le e^b$$
,
$$|R_2(x)| \le \frac{e^b b^3}{3!} < 0.0005,$$
 $e^b b^3 < 0.003$ if $b \le 0.137$ (by trial and error with a hand calculator), so $[0, 0.137]$.

39. (a)
$$\sin x = x - \frac{x^3}{3!} + 0 \cdot x^4 + R_4(x),$$
 (b)
$$|R_4(x)| \le \frac{|x|^5}{5!} < 0.5 \times 10^{-3} \text{ if } |x|^5 < 0.06,$$
$$|x| < (0.06)^{1/5} \approx 0.569, (-0.569, 0.569)$$

EXERCISE SET 10.2

- 1. (a) $\frac{1}{3^{n-1}}$ (b) $\frac{(-1)^{n-1}}{3^{n-1}}$ (c) $\frac{2n-1}{2n}$ (d) $\frac{n^2}{\pi^{1/(n+1)}}$
- **2.** (a) $(-r)^{n-1}$; $(-r)^n$

(b) $(-1)^{n+1}r^n$; $(-1)^nr^{n+1}$

3. (a) 2, 0, 2, 0

- **(b)** 1, -1, 1, -1 **(c)** $2(1 + (-1)^n); 2 + 2\cos n\pi$
- **4.** (a) (2n)!

- **(b)** (2n-1)!
- **5.** 1/3, 2/4, 3/5, 4/6, 5/7,...; $\lim_{n\to+\infty} \frac{n}{n+2} = 1$, converges

Exercise Set 10.2 403

6.
$$1/3, 4/5, 9/7, 16/9, 25/11, \dots; \lim_{n \to +\infty} \frac{n^2}{2n+1} = +\infty$$
, diverges

7.
$$2, 2, 2, 2, 2, \ldots$$
; $\lim_{n \to +\infty} 2 = 2$, converges

8.
$$\ln 1$$
, $\ln \frac{1}{2}$, $\ln \frac{1}{3}$, $\ln \frac{1}{4}$, $\ln \frac{1}{5}$,...; $\lim_{n \to +\infty} \ln(1/n) = -\infty$, diverges

9.
$$\frac{\ln 1}{1}$$
, $\frac{\ln 2}{2}$, $\frac{\ln 3}{3}$, $\frac{\ln 4}{4}$, $\frac{\ln 5}{5}$,...;
$$\lim_{n \to +\infty} \frac{\ln n}{n} = \lim_{n \to +\infty} \frac{1}{n} = 0 \text{ (apply L'Hôpital's Rule to } \frac{\ln x}{x} \text{), converges}$$

10.
$$\sin \pi$$
, $2\sin(\pi/2)$, $3\sin(\pi/3)$, $4\sin(\pi/4)$, $5\sin(\pi/5)$,...;

$$\lim_{n \to +\infty} n\sin(\pi/n) = \lim_{n \to +\infty} \frac{\sin(\pi/n)}{1/n} = \lim_{n \to +\infty} \frac{(-\pi/n^2)\cos(\pi/n)}{-1/n^2} = \pi$$
, converges

11.
$$0, 2, 0, 2, 0, \ldots$$
; diverges

12. 1,
$$-1/4$$
, $1/9$, $-1/16$, $1/25$,...; $\lim_{n \to +\infty} \frac{(-1)^{n+1}}{n^2} = 0$, converges

13. -1, 16/9, -54/28, 128/65, -250/126, ...; diverges because odd-numbered terms approach -2, even-numbered terms approach 2.

14.
$$1/2, 2/4, 3/8, 4/16, 5/32, \dots; \lim_{n \to +\infty} \frac{n}{2^n} = \lim_{n \to +\infty} \frac{1}{2^n \ln 2} = 0$$
, converges

15. 6/2, 12/8, 20/18, 30/32, 42/50,...;
$$\lim_{n \to +\infty} \frac{1}{2} (1 + 1/n)(1 + 2/n) = 1/2$$
, converges

16.
$$\pi/4$$
, $\pi^2/4^2$, $\pi^3/4^3$, $\pi^4/4^4$, $\pi^5/4^5$, ...; $\lim_{n \to +\infty} (\pi/4)^n = 0$, converges

17.
$$\cos(3)$$
, $\cos(3/2)$, $\cos(3/4)$, $\cos(3/5)$, ...; $\lim_{n \to +\infty} \cos(3/n) = 1$, converges

18.
$$0, -1, 0, 1, 0, \ldots$$
; diverges

19.
$$e^{-1}$$
, $4e^{-2}$, $9e^{-3}$, $16e^{-4}$, $25e^{-5}$, ...; $\lim_{x \to +\infty} x^2 e^{-x} = \lim_{x \to +\infty} \frac{x^2}{e^x} = 0$, so $\lim_{n \to +\infty} n^2 e^{-n} = 0$, converges

20.
$$1, \sqrt{10} - 2, \sqrt{18} - 3, \sqrt{28} - 4, \sqrt{40} - 5, \dots;$$

$$\lim_{n \to +\infty} (\sqrt{n^2 + 3n} - n) = \lim_{n \to +\infty} \frac{3n}{\sqrt{n^2 + 3n} + n} = \lim_{n \to +\infty} \frac{3}{\sqrt{1 + 3/n} + 1} = \frac{3}{2}, \text{ converges}$$

21. 2,
$$(5/3)^2$$
, $(6/4)^3$, $(7/5)^4$, $(8/6)^5$, ...; let $y = \left[\frac{x+3}{x+1}\right]^x$, converges because

$$\lim_{x \to +\infty} \ln y = \lim_{x \to +\infty} \frac{\ln \frac{x+3}{x+1}}{1/x} = \lim_{x \to +\infty} \frac{2x^2}{(x+1)(x+3)} = 2, \text{ so } \lim_{n \to +\infty} \left[\frac{n+3}{n+1} \right]^n = e^2$$

22.
$$-1, 0, (1/3)^3, (2/4)^4, (3/5)^5, \dots$$
; let $y = (1 - 2/x)^x$, converges because
$$\lim_{x \to +\infty} \ln y = \lim_{x \to +\infty} \frac{\ln(1 - 2/x)}{1/x} = \lim_{x \to +\infty} \frac{-2}{1 - 2/x} = -2, \lim_{n \to +\infty} (1 - 2/n)^n = \lim_{x \to +\infty} y = e^{-2}$$

23.
$$\left\{\frac{2n-1}{2n}\right\}_{n=1}^{+\infty}$$
; $\lim_{n\to+\infty}\frac{2n-1}{2n}=1$, converges

24.
$$\left\{\frac{n-1}{n^2}\right\}_{n=1}^{+\infty}$$
; $\lim_{n\to+\infty} \frac{n-1}{n^2} = 0$, converges **25.** $\left\{\frac{1}{3^n}\right\}_{n=1}^{+\infty}$; $\lim_{n\to+\infty} \frac{1}{3^n} = 0$, converges

- **26.** $\{(-1)^n n\}_{n=1}^{+\infty}$; diverges because odd-numbered terms tend toward $-\infty$, even-numbered terms tend toward $+\infty$.
- **27.** $\left\{\frac{1}{n} \frac{1}{n+1}\right\}_{n=1}^{+\infty}$; $\lim_{n \to +\infty} \left(\frac{1}{n} \frac{1}{n+1}\right) = 0$, converges
- **28.** $\left\{3/2^{n-1}\right\}_{n=1}^{+\infty}$; $\lim_{n \to +\infty} 3/2^{n-1} = 0$, converges
- **29.** $\left\{\sqrt{n+1} \sqrt{n+2}\right\}_{n=1}^{+\infty}$; converges because $\lim_{n \to +\infty} (\sqrt{n+1} \sqrt{n+2}) = \lim_{n \to +\infty} \frac{(n+1) (n+2)}{\sqrt{n+1} + \sqrt{n+2}} = \lim_{n \to +\infty} \frac{-1}{\sqrt{n+1} + \sqrt{n+2}} = 0$
- **30.** $\{(-1)^{n+1}/3^{n+4}\}_{n=1}^{+\infty}$; $\lim_{n \to +\infty} (-1)^{n+1}/3^{n+4} = 0$, converges
- **31.** (a) 1, 2, 1, 4, 1, 6 (b) $a_n = \begin{cases} n, & n \text{ odd} \\ 1/2^n, & n \text{ even} \end{cases}$ (c) $a_n = \begin{cases} 1/n, & n \text{ odd} \\ 1/(n+1), & n \text{ even} \end{cases}$
 - (d) In Part (a) the sequence diverges, since the even terms diverge to $+\infty$ and the odd terms equal 1; in Part (b) the sequence diverges, since the odd terms diverge to $+\infty$ and the even terms tend to zero; in Part (c) $\lim_{n\to+\infty} a_n = 0$.
- **32.** The even terms are zero, so the odd terms must converge to zero, and this is true if and only if $\lim_{n \to +\infty} b^n = 0$, or -1 < b < 1.
- **33.** $\lim_{n \to +\infty} \sqrt[n]{n} = 1$, so $\lim_{n \to +\infty} \sqrt[n]{n^3} = 1^3 = 1$
- **35.** $\lim_{n \to +\infty} x_{n+1} = \frac{1}{2} \lim_{n \to +\infty} \left(x_n + \frac{a}{x_n} \right)$ or $L = \frac{1}{2} \left(L + \frac{a}{L} \right)$, $2L^2 L^2 a = 0$, $L = \sqrt{a}$ (we reject $-\sqrt{a}$ because $x_n > 0$, thus $L \ge 0$.
- **36.** (a) $a_{n+1} = \sqrt{6 + a_n}$
 - (b) $\lim_{n \to +\infty} a_{n+1} = \lim_{n \to +\infty} \sqrt{6+a_n}, L = \sqrt{6+L}, L^2 L 6 = 0, (L-3)(L+2) = 0,$

L=-2 (reject, because the terms in the sequence are positive) or L=3; $\lim_{n\to+\infty}a_n=3$.

Exercise Set 10.2 405

37. (a)
$$1, \frac{1}{4} + \frac{2}{4}, \frac{1}{9} + \frac{2}{9} + \frac{3}{9}, \frac{1}{16} + \frac{2}{16} + \frac{3}{16} + \frac{4}{16} = 1, \frac{3}{4}, \frac{2}{3}, \frac{5}{8}$$

(c)
$$a_n = \frac{1}{n^2}(1+2+\cdots+n) = \frac{1}{n^2}\frac{1}{2}n(n+1) = \frac{1}{2}\frac{n+1}{n}, \lim_{n \to +\infty} a_n = 1/2$$

38. (a)
$$1, \frac{1}{8} + \frac{4}{8}, \frac{1}{27} + \frac{4}{27} + \frac{9}{27}, \frac{1}{64} + \frac{4}{64} + \frac{9}{64} + \frac{16}{64} = 1, \frac{5}{8}, \frac{14}{27}, \frac{15}{32}$$

(c)
$$a_n = \frac{1}{n^3} (1^2 + 2^2 + \dots + n^2) = \frac{1}{n^3} \frac{1}{6} n(n+1)(2n+1) = \frac{1}{6} \frac{(n+1)(2n+1)}{n^2},$$

$$\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} \frac{1}{6} (1+1/n)(2+1/n) = 1/3$$

39. Let
$$a_n = 0, b_n = \frac{\sin^2 n}{n}, c_n = \frac{1}{n}$$
; then $a_n \le b_n \le c_n$, $\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} c_n = 0$, so $\lim_{n \to +\infty} b_n = 0$.

40. Let
$$a_n = 0, b_n = \left(\frac{1+n}{2n}\right)^n, c_n = \left(\frac{3}{4}\right)^n$$
; then (for $n \ge 2$), $a_n \le b_n \le \left(\frac{n/2+n}{2n}\right)^n = c_n$, $\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} c_n = 0$, so $\lim_{n \to +\infty} b_n = 0$.

41. (a)
$$a_1 = (0.5)^2, a_2 = a_1^2 = (0.5)^4, \dots, a_n = (0.5)^{2^n}$$

(c)
$$\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} e^{2^n \ln(0.5)} = 0$$
, since $\ln(0.5) < 0$.

- (d) Replace 0.5 in Part (a) with a_0 ; then the sequence converges for $-1 \le a_0 \le 1$, because if $a_0 = \pm 1$, then $a_n = 1$ for $n \ge 1$; if $a_0 = 0$ then $a_n = 0$ for $n \ge 1$; and if $0 < |a_0| < 1$ then $a_1 = a_0^2 > 0$ and $\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} e^{2^{n-1} \ln a_1} = 0$ since $0 < a_1 < 1$. This same argument proves divergence to $+\infty$ for |a| > 1 since then $\ln a_1 > 0$.
- **42.** f(0.2) = 0.4, f(0.4) = 0.8, f(0.8) = 0.6, f(0.6) = 0.2 and then the cycle repeats, so the sequence does not converge.

(b) Let
$$y = (2^x + 3^x)^{1/x}$$
, $\lim_{x \to +\infty} \ln y = \lim_{x \to +\infty} \frac{\ln(2^x + 3^x)}{x} = \lim_{x \to +\infty} \frac{2^x \ln 2 + 3^x \ln 3}{2^x + 3^x}$
= $\lim_{x \to +\infty} \frac{(2/3)^x \ln 2 + \ln 3}{(2/3)^x + 1} = \ln 3$, so $\lim_{n \to +\infty} (2^n + 3^n)^{1/n} = e^{\ln 3} = 3$

Alternate proof: $3 = (3^n)^{1/n} < (2^n + 3^n)^{1/n} < (2 \cdot 3^n)^{1/n} = 3 \cdot 2^{1/n}$. Then apply the Squeezing Theorem.

44. Let f(x) = 1/(1+x), $0 \le x \le 1$. Take $\Delta x_k = 1/n$ and $x_k^* = k/n$ then

$$a_n = \sum_{k=1}^n \frac{1}{1 + (k/n)} (1/n) = \sum_{k=1}^n \frac{1}{1 + x_k^*} \Delta x_k \text{ so } \lim_{n \to +\infty} a_n = \int_0^1 \frac{1}{1 + x} dx = \ln(1 + x) \Big]_0^1 = \ln 2$$

45.
$$a_n = \frac{1}{n-1} \int_1^n \frac{1}{x} dx = \frac{\ln n}{n-1}, \lim_{n \to +\infty} a_n = \lim_{n \to +\infty} \frac{\ln n}{n-1} = \lim_{n \to +\infty} \frac{1}{n} = 0,$$
 (apply L'Hôpital's Rule to $\frac{\ln n}{n-1}$), converges

46. (a) If
$$n \ge 1$$
, then $a_{n+2} = a_{n+1} + a_n$, so $\frac{a_{n+2}}{a_{n+1}} = 1 + \frac{a_n}{a_{n+1}}$.

(c) With
$$L = \lim_{n \to +\infty} (a_{n+2}/a_{n+1}) = \lim_{n \to +\infty} (a_{n+1}/a_n)$$
, $L = 1 + 1/L$, $L^2 - L - 1 = 0$, $L = (1 \pm \sqrt{5})/2$, so $L = (1 + \sqrt{5})/2$ because the limit cannot be negative.

47.
$$\left|\frac{1}{n} - 0\right| = \frac{1}{n} < \epsilon \text{ if } n > 1/\epsilon$$

(a)
$$1/\epsilon = 1/0.5 = 2$$
, $N = 3$

(b)
$$1/\epsilon = 1/0.1 = 10, N = 11$$

(c)
$$1/\epsilon = 1/0.001 = 1000, N = 1001$$

48.
$$\left| \frac{n}{n+1} - 1 \right| = \frac{1}{n+1} < \epsilon \text{ if } n+1 > 1/\epsilon, \ n > 1/\epsilon - 1$$

(a)
$$1/\epsilon - 1 = 1/0.25 - 1 = 3, N = 4$$

(b)
$$1/\epsilon - 1 = 1/0.1 - 1 = 9, N = 10$$

(c)
$$1/\epsilon - 1 = 1/0.001 - 1 = 999$$
, $N = 1000$

49. (a)
$$\left| \frac{1}{n} - 0 \right| = \frac{1}{n} < \epsilon \text{ if } n > 1/\epsilon, \text{ choose any } N > 1/\epsilon.$$

(b)
$$\left| \frac{n}{n+1} - 1 \right| = \frac{1}{n+1} < \epsilon \text{ if } n > 1/\epsilon - 1, \text{ choose any } N > 1/\epsilon - 1.$$

50. If |r| < 1 then $\lim_{n \to +\infty} r^n = 0$; if r > 1 then $\lim_{n \to +\infty} r^n = +\infty$, if r < -1 then r^n oscillates between positive and negative values that grow in magnitude so $\lim_{n \to +\infty} r^n$ does not exist for |r| > 1; if r = 1 then $\lim_{n \to +\infty} 1^n = 1$; if r = -1 then $(-1)^n$ oscillates between -1 and 1 so $\lim_{n \to +\infty} (-1)^n$ does not exist.

1.
$$a_{n+1} - a_n = \frac{1}{n+1} - \frac{1}{n} = -\frac{1}{n(n+1)} < 0$$
 for $n \ge 1$, so strictly decreasing.

2.
$$a_{n+1} - a_n = (1 - \frac{1}{n+1}) - (1 - \frac{1}{n}) = \frac{1}{n(n+1)} > 0$$
 for $n \ge 1$, so strictly increasing.

3.
$$a_{n+1} - a_n = \frac{n+1}{2n+3} - \frac{n}{2n+1} = \frac{1}{(2n+1)(2n+3)} > 0$$
 for $n \ge 1$, so strictly increasing.

4.
$$a_{n+1} - a_n = \frac{n+1}{4n+3} - \frac{n}{4n-1} = -\frac{1}{(4n-1)(4n+3)} < 0$$
 for $n \ge 1$, so strictly decreasing.

5.
$$a_{n+1} - a_n = (n+1-2^{n+1}) - (n-2^n) = 1-2^n < 0$$
 for $n \ge 1$, so strictly decreasing.

Exercise Set 10.3 407

6.
$$a_{n+1} - a_n = [(n+1) - (n+1)^2] - (n-n^2) = -2n < 0$$
 for $n \ge 1$, so strictly decreasing.

7.
$$\frac{a_{n+1}}{a_n} = \frac{(n+1)/(2n+3)}{n/(2n+1)} = \frac{(n+1)(2n+1)}{n(2n+3)} = \frac{2n^2+3n+1}{2n^2+3n} > 1$$
 for $n \ge 1$, so strictly increasing.

8.
$$\frac{a_{n+1}}{a_n} = \frac{2^{n+1}}{1+2^{n+1}} \cdot \frac{1+2^n}{2^n} = \frac{2+2^{n+1}}{1+2^{n+1}} = 1 + \frac{1}{1+2^{n+1}} > 1$$
 for $n \ge 1$, so strictly increasing.

9.
$$\frac{a_{n+1}}{a_n} = \frac{(n+1)e^{-(n+1)}}{ne^{-n}} = (1+1/n)e^{-1} < 1$$
 for $n \ge 1$, so strictly decreasing.

10.
$$\frac{a_{n+1}}{a_n} = \frac{10^{n+1}}{(2n+2)!} \cdot \frac{(2n)!}{10^n} = \frac{10}{(2n+2)(2n+1)} < 1 \text{ for } n \ge 1, \text{ so strictly decreasing.}$$

11.
$$\frac{a_{n+1}}{a_n} = \frac{(n+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{n^n} = \frac{(n+1)^n}{n^n} = (1+1/n)^n > 1$$
 for $n \ge 1$, so strictly increasing.

12.
$$\frac{a_{n+1}}{a_n} = \frac{5^{n+1}}{2^{(n+1)^2}} \cdot \frac{2^{n^2}}{5^n} = \frac{5}{2^{2n+1}} < 1$$
 for $n \ge 1$, so strictly decreasing.

13.
$$f(x) = x/(2x+1)$$
, $f'(x) = 1/(2x+1)^2 > 0$ for $x \ge 1$, so strictly increasing.

14.
$$f(x) = 3 - 1/x$$
, $f'(x) = 1/x^2 > 0$ for $x \ge 1$, so strictly increasing.

15.
$$f(x) = 1/(x + \ln x)$$
, $f'(x) = -\frac{1 + 1/x}{(x + \ln x)^2} < 0$ for $x \ge 1$, so strictly decreasing.

16.
$$f(x) = xe^{-2x}$$
, $f'(x) = (1 - 2x)e^{-2x} < 0$ for $x \ge 1$, so strictly decreasing.

17.
$$f(x) = \frac{\ln(x+2)}{x+2}$$
, $f'(x) = \frac{1 - \ln(x+2)}{(x+2)^2} < 0$ for $x \ge 1$, so strictly decreasing.

18.
$$f(x) = \tan^{-1} x$$
, $f'(x) = 1/(1+x^2) > 0$ for $x \ge 1$, so strictly increasing.

19.
$$f(x) = 2x^2 - 7x$$
, $f'(x) = 4x - 7 > 0$ for $x \ge 2$, so eventually strictly increasing.

20.
$$f(x) = x^3 - 4x^2$$
, $f'(x) = 3x^2 - 8x = x(3x - 8) > 0$ for $x \ge 3$, so eventually strictly increasing.

21.
$$f(x) = \frac{x}{x^2 + 10}$$
, $f'(x) = \frac{10 - x^2}{(x^2 + 10)^2} < 0$ for $x \ge 4$, so eventually strictly decreasing.

22.
$$f(x) = x + \frac{17}{x}$$
, $f'(x) = \frac{x^2 - 17}{x^2} > 0$ for $x \ge 5$, so eventually strictly increasing.

23.
$$\frac{a_{n+1}}{a_n} = \frac{(n+1)!}{3^{n+1}} \cdot \frac{3^n}{n!} = \frac{n+1}{3} > 1$$
 for $n \ge 3$, so eventually strictly increasing.

24.
$$f(x) = x^5 e^{-x}$$
, $f'(x) = x^4 (5-x) e^{-x} < 0$ for $x \ge 6$, so eventually strictly decreasing.

- **25.** (a) Yes: a monotone sequence is increasing or decreasing; if it is increasing, then it is increasing and bounded above, so by Theorem 10.3.3 it converges; if decreasing, then use Theorem 10.3.4. The limit lies in the interval [1, 2].
 - (b) Such a sequence may converge, in which case, by the argument in Part (a), its limit is ≤ 2 . But convergence may not happen: for example, the sequence $\{-n\}_{n=1}^{+\infty}$ diverges.

26. (a)
$$a_{n+1} = \frac{|x|^{n+1}}{(n+1)!} = \frac{|x|}{n+1} \frac{|x|^n}{n!} = \frac{|x|}{n+1} a_n$$

- **(b)** $a_{n+1}/a_n = |x|/(n+1) < 1 \text{ if } n > |x| 1.$
- (c) From Part (b) the sequence is eventually decreasing, and it is bounded below by 0, so by Theorem 10.3.4 it converges.
- (d) If $\lim_{n \to +\infty} a_n = L$ then from Part (a), $L = \frac{|x|}{\lim_{n \to +\infty} (n+1)} L = 0$.
- (e) $\lim_{n \to +\infty} \frac{|x|^n}{n!} = \lim_{n \to +\infty} a_n = 0$
- **27.** (a) $\sqrt{2}$, $\sqrt{2+\sqrt{2}}$, $\sqrt{2+\sqrt{2+\sqrt{2}}}$
 - (b) $a_1 = \sqrt{2} < 2$ so $a_2 = \sqrt{2 + a_1} < \sqrt{2 + 2} = 2$, $a_3 = \sqrt{2 + a_2} < \sqrt{2 + 2} = 2$, and so on indefinitely.
 - (c) $a_{n+1}^2 a_n^2 = (2 + a_n) a_n^2 = 2 + a_n a_n^2 = (2 a_n)(1 + a_n)$
 - (d) $a_n > 0$ and, from Part (b), $a_n < 2$ so $2 a_n > 0$ and $1 + a_n > 0$ thus, from Part (c), $a_{n+1}^2 a_n^2 > 0$, $a_{n+1} a_n > 0$, $a_{n+1} > a_n$; $\{a_n\}$ is a strictly increasing sequence.
 - (e) The sequence is increasing and has 2 as an upper bound so it must converge to a limit L, $\lim_{n\to+\infty}a_{n+1}=\lim_{n\to+\infty}\sqrt{2+a_n},\ L=\sqrt{2+L},\ L^2-L-2=0,\ (L-2)(L+1)=0$ thus $\lim_{n\to+\infty}a_n=2$.
- **28.** (a) If $f(x) = \frac{1}{2}(x+3/x)$, then $f'(x) = (x^2-3)/(2x^2)$ and f'(x) = 0 for $x = \sqrt{3}$; the minimum value of f(x) for x > 0 is $f(\sqrt{3}) = \sqrt{3}$. Thus $f(x) \ge \sqrt{3}$ for x > 0 and hence $a_n \ge \sqrt{3}$ for n > 2.
 - (b) $a_{n+1} a_n = (3 a_n^2)/(2a_n) \le 0$ for $n \ge 2$ since $a_n \ge \sqrt{3}$ for $n \ge 2$; $\{a_n\}$ is eventually decreasing.
 - (c) $\sqrt{3}$ is a lower bound for a_n so $\{a_n\}$ converges; $\lim_{n \to +\infty} a_{n+1} = \lim_{n \to +\infty} \frac{1}{2}(a_n + 3/a_n)$, $L = \frac{1}{2}(L + 3/L), L^2 3 = 0, L = \sqrt{3}$.
- **29.** (a) The altitudes of the rectangles are $\ln k$ for k=2 to n, and their bases all have length 1 so the sum of their areas is $\ln 2 + \ln 3 + \cdots + \ln n = \ln(2 \cdot 3 \cdots n) = \ln n!$. The area under the curve $y = \ln x$ for x in the interval [1, n] is $\int_{1}^{n} \ln x \, dx$, and $\int_{1}^{n+1} \ln x \, dx$ is the area for x in the interval [1, n+1] so, from the figure, $\int_{1}^{n} \ln x \, dx < \ln n! < \int_{1}^{n+1} \ln x \, dx$.
 - (b) $\int_{1}^{n} \ln x \, dx = (x \ln x x) \Big]_{1}^{n} = n \ln n n + 1 \text{ and } \int_{1}^{n+1} \ln x \, dx = (n+1) \ln(n+1) n \text{ so from Part (a)}, \ n \ln n n + 1 < \ln n! < (n+1) \ln(n+1) n, \ e^{n \ln n n + 1} < n! < e^{(n+1) \ln(n+1) n},$ $e^{n \ln n} e^{1-n} < n! < e^{(n+1) \ln(n+1)} e^{-n}, \ \frac{n^{n}}{e^{n-1}} < n! < \frac{(n+1)^{n+1}}{e^{n}}$
 - (c) From Part (b), $\left[\frac{n^n}{e^{n-1}}\right]^{1/n} < \sqrt[n]{n!} < \left[\frac{(n+1)^{n+1}}{e^n}\right]^{1/n}$, $\frac{n}{e^{1-1/n}} < \sqrt[n]{n!} < \frac{(n+1)^{1+1/n}}{e}$, $\frac{1}{e^{1-1/n}} < \frac{\sqrt[n]{n!}}{n} < \frac{(1+1/n)(n+1)^{1/n}}{e}$, but $\frac{1}{e^{1-1/n}} \to \frac{1}{e}$ and $\frac{(1+1/n)(n+1)^{1/n}}{e} \to \frac{1}{e}$ as $n \to +\infty$ (why?), so $\lim_{n \to +\infty} \frac{\sqrt[n]{n!}}{n} = \frac{1}{e}$.

Exercise Set 10.4 409

30.
$$n! > \frac{n^n}{e^{n-1}}, \sqrt[n]{n!} > \frac{n}{e^{1-1/n}}, \lim_{n \to +\infty} \frac{n}{e^{1-1/n}} = +\infty \text{ so } \lim_{n \to +\infty} \sqrt[n]{n!} = +\infty.$$

EXERCISE SET 10.4

1. (a)
$$s_1 = 2$$
, $s_2 = 12/5$, $s_3 = \frac{62}{25}$, $s_4 = \frac{312}{125}$ $s_n = \frac{2 - 2(1/5)^n}{1 - 1/5} = \frac{5}{2} - \frac{5}{2}(1/5)^n$, $\lim_{n \to +\infty} s_n = \frac{5}{2}$, converges

(b)
$$s_1 = \frac{1}{4}$$
, $s_2 = \frac{3}{4}$, $s_3 = \frac{7}{4}$, $s_4 = \frac{15}{4}$ $s_n = \frac{(1/4) - (1/4)2^n}{1 - 2} = -\frac{1}{4} + \frac{1}{4}(2^n)$, $\lim_{n \to +\infty} s_n = +\infty$, diverges

(c)
$$\frac{1}{(k+1)(k+2)} = \frac{1}{k+1} - \frac{1}{k+2}$$
, $s_1 = \frac{1}{6}$, $s_2 = \frac{1}{4}$, $s_3 = \frac{3}{10}$, $s_4 = \frac{1}{3}$; $s_n = \frac{1}{2} - \frac{1}{n+2}$, $\lim_{n \to +\infty} s_n = \frac{1}{2}$, converges

2. (a)
$$s_1 = 1/4, s_2 = 5/16, s_3 = 21/64, s_4 = 85/256$$

$$s_n = \frac{1}{4} \left(1 + \frac{1}{4} + \dots + \left(\frac{1}{4} \right)^{n-1} \right) = \frac{1}{4} \frac{1 - (1/4)^n}{1 - 1/4} = \frac{1}{3} \left(1 - \left(\frac{1}{4} \right)^n \right); \lim_{n \to +\infty} s_n = \frac{1}{3}$$

(b)
$$s_1 = 1, s_2 = 5, s_3 = 21, s_4 = 85; s_n = \frac{4^n - 1}{3}$$
, diverges

(c)
$$s_1 = 1/20, s_2 = 1/12, s_3 = 3/28, s_4 = 1/8;$$

 $s_n = \sum_{k=1}^n \left(\frac{1}{k+3} - \frac{1}{k+4}\right) = \frac{1}{4} - \frac{1}{n+4}, \lim_{n \to +\infty} s_n = 1/4$

3. geometric,
$$a = 1$$
, $r = -3/4$, sum $= \frac{1}{1 - (-3/4)} = 4/7$

4. geometric,
$$a = (2/3)^3$$
, $r = 2/3$, sum $= \frac{(2/3)^3}{1 - 2/3} = 8/9$

5. geometric,
$$a = 7$$
, $r = -1/6$, sum $= \frac{7}{1 + 1/6} = 6$

6. geometric, r = -3/2, diverges

7.
$$s_n = \sum_{k=1}^n \left(\frac{1}{k+2} - \frac{1}{k+3} \right) = \frac{1}{3} - \frac{1}{n+3}, \lim_{n \to +\infty} s_n = 1/3$$

8.
$$s_n = \sum_{k=1}^n \left(\frac{1}{2^k} - \frac{1}{2^{k+1}} \right) = \frac{1}{2} - \frac{1}{2^{n+1}}, \lim_{n \to +\infty} s_n = 1/2$$

9.
$$s_n = \sum_{k=1}^n \left(\frac{1/3}{3k-1} - \frac{1/3}{3k+2} \right) = \frac{1}{6} - \frac{1/3}{3n+2}, \lim_{n \to +\infty} s_n = 1/6$$

10.
$$s_n = \sum_{k=2}^{n+1} \left[\frac{1/2}{k-1} - \frac{1/2}{k+1} \right] = \frac{1}{2} \left[\sum_{k=2}^{n+1} \frac{1}{k-1} - \sum_{k=2}^{n+1} \frac{1}{k+1} \right]$$

$$= \frac{1}{2} \left[\sum_{k=2}^{n+1} \frac{1}{k-1} - \sum_{k=4}^{n+3} \frac{1}{k-1} \right] = \frac{1}{2} \left[1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2} \right]; \lim_{n \to +\infty} s_n = \frac{3}{4}$$

- 11. $\sum_{k=3}^{\infty} \frac{1}{k-2} = \sum_{k=1}^{\infty} 1/k$, the harmonic series, so the series diverges.
- **12.** geometric, $a = (e/\pi)^4$, $r = e/\pi < 1$, sum $= \frac{(e/\pi)^4}{1 e/\pi} = \frac{e^4}{\pi^3(\pi e)}$
- **13.** $\sum_{k=1}^{\infty} \frac{4^{k+2}}{7^{k-1}} = \sum_{k=1}^{\infty} 64 \left(\frac{4}{7}\right)^{k-1}$; geometric, a = 64, r = 4/7, sum $= \frac{64}{1 4/7} = 448/3$
- **14.** geometric, a = 125, r = 125/7, diverges
- **15.** $0.4444 \cdots = 0.4 + 0.04 + 0.004 + \cdots = \frac{0.4}{1 0.1} = 4/9$
- **16.** $0.9999 \dots = 0.9 + 0.09 + 0.009 + \dots = \frac{0.9}{1 0.1} = 1$
- 17. $5.373737\cdots = 5 + 0.37 + 0.0037 + 0.000037 + \cdots = 5 + \frac{0.37}{1 0.01} = 5 + 37/99 = 532/99$
- **18.** $0.159159159 \cdot \cdot \cdot = 0.159 + 0.000159 + 0.000000159 + \cdot \cdot \cdot = \frac{0.159}{1 0.001} = 159/999 = 53/333$
- **19.** $0.782178217821 \cdots = 0.7821 + 0.00007821 + 0.000000007821 + \cdots = \frac{0.7821}{1 0.0001} = \frac{7821}{9999} = \frac{79}{101}$
- **20.** $0.451141414 \cdot \cdots = 0.451 + 0.00014 + 0.0000014 + 0.000000014 + \cdots = 0.451 + \frac{0.00014}{1 0.01} = \frac{44663}{99000}$
- **21.** $d = 10 + 2 \cdot \frac{3}{4} \cdot 10 + 2 \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot 10 + 2 \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot 10 + \cdots$ = $10 + 20 \left(\frac{3}{4}\right) + 20 \left(\frac{3}{4}\right)^2 + 20 \left(\frac{3}{4}\right)^3 + \cdots = 10 + \frac{20(3/4)}{1 - 3/4} = 10 + 60 = 70 \text{ meters}$
- **22.** volume = $1^3 + \left(\frac{1}{2}\right)^3 + \left(\frac{1}{4}\right)^3 + \dots + \left(\frac{1}{2^n}\right)^3 + \dots = 1 + \frac{1}{8} + \left(\frac{1}{8}\right)^2 + \dots + \left(\frac{1}{8}\right)^n + \dots$ = $\frac{1}{1 - (1/8)} = 8/7$
- **23.** (a) $s_n = \ln \frac{1}{2} + \ln \frac{2}{3} + \ln \frac{3}{4} + \dots + \ln \frac{n}{n+1} = \ln \left(\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdot \dots \cdot \frac{n}{n+1} \right) = \ln \frac{1}{n+1} = -\ln(n+1),$ $\lim_{n \to +\infty} s_n = -\infty$, series diverges.

Exercise Set 10.4 411

(b)
$$\ln(1-1/k^2) = \ln\frac{k^2-1}{k^2} = \ln\frac{(k-1)(k+1)}{k^2} = \ln\frac{k-1}{k} + \ln\frac{k+1}{k} = \ln\frac{k-1}{k} - \ln\frac{k}{k+1},$$

$$s_n = \sum_{k=2}^{n+1} \left[\ln\frac{k-1}{k} - \ln\frac{k}{k+1} \right]$$

$$= \left(\ln\frac{1}{2} - \ln\frac{2}{3} \right) + \left(\ln\frac{2}{3} - \ln\frac{3}{4} \right) + \left(\ln\frac{3}{4} - \ln\frac{4}{5} \right) + \dots + \left(\ln\frac{n}{n+1} - \ln\frac{n+1}{n+2} \right)$$

$$= \ln\frac{1}{2} - \ln\frac{n+1}{n+2}, \lim_{n \to +\infty} s_n = \ln\frac{1}{2} = -\ln 2$$

24. (a)
$$\sum_{k=0}^{\infty} (-1)^k x^k = 1 - x + x^2 - x^3 + \dots = \frac{1}{1 - (-x)} = \frac{1}{1 + x}$$
 if $|-x| < 1, |x| < 1, -1 < x < 1$.

(b)
$$\sum_{k=0}^{\infty} (x-3)^k = 1 + (x-3) + (x-3)^2 + \dots = \frac{1}{1 - (x-3)} = \frac{1}{4-x} \text{ if } |x-3| < 1, \ 2 < x < 4.$$

(c)
$$\sum_{k=0}^{\infty} (-1)^k x^{2k} = 1 - x^2 + x^4 - x^6 + \dots = \frac{1}{1 - (-x^2)} = \frac{1}{1 + x^2} \text{ if } |-x^2| < 1, |x| < 1, -1 < x < 1.$$

- **25.** (a) Geometric series, a = x, $r = -x^2$. Converges for $|-x^2| < 1$, |x| < 1; $S = \frac{x}{1 (-x^2)} = \frac{x}{1 + x^2}$.
 - (b) Geometric series, $a = 1/x^2$, r = 2/x. Converges for |2/x| < 1, |x| > 2; $S = \frac{1/x^2}{1 2/x} = \frac{1}{x^2 2x}$.
 - (c) Geometric series, $a = e^{-x}$, $r = e^{-x}$. Converges for $|e^{-x}| < 1$, $e^{-x} < 1$, $e^x > 1$, x > 0; $S = \frac{e^{-x}}{1 e^{-x}} = \frac{1}{e^x 1}$.

26.
$$\frac{\sqrt{k+1} - \sqrt{k}}{\sqrt{k^2 + k}} = \frac{\sqrt{k+1} - \sqrt{k}}{\sqrt{k}\sqrt{k+1}} = \frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}},$$

$$s_n = \sum_{k=1}^n \left(\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}}\right) = \left(\frac{1}{\sqrt{1}} - \frac{1}{\sqrt{2}}\right) + \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}}\right) + \left(\frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}}\right)$$

$$+ \dots + \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}\right) = 1 - \frac{1}{\sqrt{n+1}}; \lim_{n \to +\infty} s_n = 1$$

27.
$$s_n = (1 - 1/3) + (1/2 - 1/4) + (1/3 - 1/5) + (1/4 - 1/6) + \dots + [1/n - 1/(n+2)]$$

= $(1 + 1/2 + 1/3 + \dots + 1/n) - (1/3 + 1/4 + 1/5 + \dots + 1/(n+2))$
= $3/2 - 1/(n+1) - 1/(n+2)$, $\lim_{n \to +\infty} s_n = 3/2$

28.
$$s_n = \sum_{k=1}^n \frac{1}{k(k+2)} = \sum_{k=1}^n \left[\frac{1/2}{k} - \frac{1/2}{k+2} \right] = \frac{1}{2} \left[\sum_{k=1}^n \frac{1}{k} - \sum_{k=1}^n \frac{1}{k+2} \right]$$
$$= \frac{1}{2} \left[\sum_{k=1}^n \frac{1}{k} - \sum_{k=3}^{n+2} \frac{1}{k} \right] = \frac{1}{2} \left[1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2} \right]; \lim_{n \to +\infty} s_n = \frac{3}{4}$$

29.
$$s_n = \sum_{k=1}^n \frac{1}{(2k-1)(2k+1)} = \sum_{k=1}^n \left[\frac{1/2}{2k-1} - \frac{1/2}{2k+1} \right] = \frac{1}{2} \left[\sum_{k=1}^n \frac{1}{2k-1} - \sum_{k=1}^n \frac{1}{2k+1} \right]$$

$$= \frac{1}{2} \left[\sum_{k=1}^n \frac{1}{2k-1} - \sum_{k=2}^{n+1} \frac{1}{2k-1} \right] = \frac{1}{2} \left[1 - \frac{1}{2n+1} \right]; \lim_{n \to +\infty} s_n = \frac{1}{2}$$

- **30.** Geometric series, $a = \sin x$, $r = -\frac{1}{2}\sin x$. Converges for $|-\frac{1}{2}\sin x| < 1$, $|\sin x| < 2$, so converges for all values of x. $S = \frac{\sin x}{1 + \frac{1}{2}\sin x} = \frac{2\sin x}{2 + \sin x}$.
- 31. $a_2 = \frac{1}{2}a_1 + \frac{1}{2}$, $a_3 = \frac{1}{2}a_2 + \frac{1}{2} = \frac{1}{2^2}a_1 + \frac{1}{2^2} + \frac{1}{2}$, $a_4 = \frac{1}{2}a_3 + \frac{1}{2} = \frac{1}{2^3}a_1 + \frac{1}{2^3} + \frac{1}{2^2} + \frac{1}{2}$, $a_5 = \frac{1}{2}a_4 + \frac{1}{2} = \frac{1}{2^4}a_1 + \frac{1}{2^4} + \frac{1}{2^3} + \frac{1}{2^2} + \frac{1}{2}$, ..., $a_n = \frac{1}{2^{n-1}}a_1 + \frac{1}{2^{n-1}} + \frac{1}{2^{n-2}} + \dots + \frac{1}{2}$, $\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} \frac{a_1}{2^{n-1}} + \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n = 0 + \frac{1/2}{1 1/2} = 1$
- 32. $0.a_1a_2 \cdots a_n 9999 \cdots = 0.a_1a_2 \cdots a_n + 0.9 (10^{-n}) + 0.09 (10^{-n}) + \cdots$ $= 0.a_1a_2 \cdots a_n + \frac{0.9 (10^{-n})}{1 - 0.1} = 0.a_1a_2 \cdots a_n + 10^{-n}$ $= 0.a_1a_2 \cdots (a_n + 1) = 0.a_1a_2 \cdots (a_n + 1) 0000 \cdots$
- **33.** The series converges to 1/(1-x) only if -1 < x < 1.
- 34. $P_0P_1 = a\sin\theta,$ $P_1P_2 = a\sin\theta\cos\theta,$ $P_2P_3 = a\sin\theta\cos^2\theta,$ $P_3P_4 = a\sin\theta\cos^3\theta,...$ (see figure) Each sum is a geometric series.

- (a) $P_0P_1 + P_1P_2 + P_2P_3 + \dots = a\sin\theta + a\sin\theta\cos\theta + a\sin\theta\cos^2\theta + \dots = \frac{a\sin\theta}{1-\cos\theta}$
- (b) $P_0P_1 + P_2P_3 + P_4P_5 + \dots = a\sin\theta + a\sin\theta\cos^2\theta + a\sin\theta\cos^4\theta + \dots$ $= \frac{a\sin\theta}{1 - \cos^2\theta} = \frac{a\sin\theta}{\sin^2\theta} = a\csc\theta$
- (c) $P_1P_2 + P_3P_4 + P_5P_6 + \dots = a\sin\theta\cos\theta + a\sin\theta\cos^3\theta + \dots$ = $\frac{a\sin\theta\cos\theta}{1-\cos^2\theta} = \frac{a\sin\theta\cos\theta}{\sin^2\theta} = a\cot\theta$
- **35.** By inspection, $\frac{\theta}{2} \frac{\theta}{4} + \frac{\theta}{8} \frac{\theta}{16} + \dots = \frac{\theta/2}{1 (-1/2)} = \theta/3$

Exercise Set 10.5 413

36.
$$A_1 + A_2 + A_3 + \dots = 1 + 1/2 + 1/4 + \dots = \frac{1}{1 - (1/2)} = 2$$

37. **(b)**
$$\frac{2^k A}{3^k - 2^k} + \frac{2^k B}{3^{k+1} - 2^{k+1}} = \frac{2^k \left(3^{k+1} - 2^{k+1}\right) A + 2^k \left(3^k - 2^k\right) B}{\left(3^k - 2^k\right) \left(3^{k+1} - 2^{k+1}\right)}$$
$$= \frac{\left(3 \cdot 6^k - 2 \cdot 2^{2k}\right) A + \left(6^k - 2^{2k}\right) B}{\left(3^k - 2^k\right) \left(3^{k+1} - 2^{k+1}\right)} = \frac{\left(3A + B\right) 6^k - \left(2A + B\right) 2^{2k}}{\left(3^k - 2^k\right) \left(3^{k+1} - 2^{k+1}\right)}$$

so
$$3A + B = 1$$
 and $2A + B = 0$, $A = 1$ and $B = -2$

(c)
$$s_n = \sum_{k=1}^n \left[\frac{2^k}{3^k - 2^k} - \frac{2^{k+1}}{3^{k+1} - 2^{k+1}} \right] = \sum_{k=1}^n (a_k - a_{k+1}) \text{ where } a_k = \frac{2^k}{3^k - 2^k}.$$
But $s_n = (a_1 - a_2) + (a_2 - a_3) + (a_3 - a_4) + \dots + (a_n - a_{n+1}) \text{ which is a telescoping sum,}$

$$s_n = a_1 - a_{n+1} = 2 - \frac{2^{n+1}}{3^{n+1} - 2^{n+1}}, \lim_{n \to +\infty} s_n = \lim_{n \to +\infty} \left[2 - \frac{(2/3)^{n+1}}{1 - (2/3)^{n+1}} \right] = 2.$$

38. (a) geometric; 18/5 (b) geometric; diverges (c) $\sum_{k=1}^{\infty} \frac{1}{2} \left(\frac{1}{2k-1} - \frac{1}{2k+1} \right) = 1/2$

1. (a)
$$\sum_{k=1}^{\infty} \frac{1}{2^k} = \frac{1/2}{1-1/2} = 1;$$
 $\sum_{k=1}^{\infty} \frac{1}{4^k} = \frac{1/4}{1-1/4} = 1/3;$ $\sum_{k=1}^{\infty} \left(\frac{1}{2^k} + \frac{1}{4^k}\right) = 1 + 1/3 = 4/3$

(b)
$$\sum_{k=1}^{\infty} \frac{1}{5^k} = \frac{1/5}{1 - 1/5} = 1/4;$$
 $\sum_{k=1}^{\infty} \frac{1}{k(k+1)} = 1$ (Example 5, Section 10 .4); $\sum_{k=1}^{\infty} \left[\frac{1}{5^k} - \frac{1}{k(k+1)} \right] = 1/4 - 1 = -3/4$

2. (a)
$$\sum_{k=2}^{\infty} \frac{1}{k^2 - 1} = 3/4 \text{ (Exercise 10, Section 10.4)}; \sum_{k=2}^{\infty} \frac{7}{10^{k-1}} = \frac{7/10}{1 - 1/10} = 7/9;$$
 so
$$\sum_{k=2}^{\infty} \left[\frac{1}{k^2 - 1} - \frac{7}{10^{k-1}} \right] = 3/4 - 7/9 = -1/36$$

(b) with
$$a = 9/7, r = 3/7$$
, geometric, $\sum_{k=1}^{\infty} 7^{-k} 3^{k+1} = \frac{9/7}{1 - (3/7)} = 9/4$; with $a = 4/5, r = 2/5$, geometric, $\sum_{k=1}^{\infty} \frac{2^{k+1}}{5^k} = \frac{4/5}{1 - (2/5)} = 4/3$;
$$\sum_{k=1}^{\infty} \left[7^{-k} 3^{k+1} - \frac{2^{k+1}}{5^k} \right] = 9/4 - 4/3 = 11/12$$

3. (a)
$$p=3$$
, converges (b) $p=1/2$, diverges (c) $p=1$, diverges (d) $p=2/3$, diverges

4. (a)
$$p=4/3$$
, converges (b) $p=1/4$, diverges (c) $p=5/3$, converges (d) $p=\pi$, converges

5. (a)
$$\lim_{k \to +\infty} \frac{k^2 + k + 3}{2k^2 + 1} = \frac{1}{2}$$
; the series diverges. (b) $\lim_{k \to +\infty} \left(1 + \frac{1}{k}\right)^k = e$; the series diverges.

(b)
$$\lim_{k \to +\infty} \left(1 + \frac{1}{k}\right)^k = e$$
; the series diverges

(c)
$$\lim_{k \to +\infty} \cos k\pi$$
 does not exist;
the series diverges.

(d)
$$\lim_{k \to +\infty} \frac{1}{k!} = 0$$
; no information

6. (a)
$$\lim_{k \to +\infty} \frac{k}{e^k} = 0$$
; no information

(b)
$$\lim_{k \to +\infty} \ln k = +\infty$$
; the series diverges.

(c)
$$\lim_{k \to +\infty} \frac{1}{\sqrt{k}} = 0$$
; no information

(d)
$$\lim_{k \to +\infty} \frac{\sqrt{k}}{\sqrt{k}+3} = 1$$
; the series diverges.

7. (a)
$$\int_{1}^{+\infty} \frac{1}{5x+2} = \lim_{\ell \to +\infty} \frac{1}{5} \ln(5x+2) \Big]_{1}^{\ell} = +\infty, \text{ the series diverges by the Integral Test.}$$

(b)
$$\int_{1}^{+\infty} \frac{1}{1+9x^2} dx = \lim_{\ell \to +\infty} \frac{1}{3} \tan^{-1} 3x \Big]_{1}^{\ell} = \frac{1}{3} (\pi/2 - \tan^{-1} 3),$$
 the series converges by the Integral Test.

8. (a)
$$\int_{1}^{+\infty} \frac{x}{1+x^2} dx = \lim_{\ell \to +\infty} \frac{1}{2} \ln(1+x^2) \bigg]_{1}^{\ell} = +\infty, \text{ the series diverges by the Integral Test.}$$

(b)
$$\int_{1}^{+\infty} (4+2x)^{-3/2} dx = \lim_{\ell \to +\infty} -1/\sqrt{4+2x} \bigg]_{1}^{\ell} = 1/\sqrt{6},$$
 the series converges by the Integral Test.

9.
$$\sum_{k=1}^{\infty} \frac{1}{k+6} = \sum_{k=7}^{\infty} \frac{1}{k}$$
, diverges because the harmonic series diverges.

10.
$$\sum_{k=1}^{\infty} \frac{3}{5k} = \sum_{k=1}^{\infty} \frac{3}{5} \left(\frac{1}{k} \right)$$
, diverges because the harmonic series diverges.

11.
$$\sum_{k=1}^{\infty} \frac{1}{\sqrt{k+5}} = \sum_{k=6}^{\infty} \frac{1}{\sqrt{k}}$$
, diverges because the *p*-series with $p = 1/2 \le 1$ diverges.

12.
$$\lim_{k \to +\infty} \frac{1}{e^{1/k}} = 1$$
, the series diverges because $\lim_{k \to +\infty} u_k = 1 \neq 0$.

13.
$$\int_{1}^{+\infty} (2x-1)^{-1/3} dx = \lim_{\ell \to +\infty} \frac{3}{4} (2x-1)^{2/3} \Big]_{1}^{\ell} = +\infty$$
, the series diverges by the Integral Test.

14.
$$\frac{\ln x}{x}$$
 is decreasing for $x \ge e$, and $\int_3^{+\infty} \frac{\ln x}{x} = \lim_{\ell \to +\infty} \frac{1}{2} (\ln x)^2 \Big]_3^{\ell} = +\infty$, so the series diverges by the Integral Test.

15.
$$\lim_{k \to +\infty} \frac{k}{\ln(k+1)} = \lim_{k \to +\infty} \frac{1}{1/(k+1)} = +\infty$$
, the series diverges because $\lim_{k \to +\infty} u_k \neq 0$.

16.
$$\int_1^{+\infty} xe^{-x^2} dx = \lim_{\ell \to +\infty} -\frac{1}{2}e^{-x^2} \bigg]_1^{\ell} = e^{-1}/2$$
, the series converges by the Integral Test.

Exercise Set 10.5 415

17.
$$\lim_{k \to +\infty} (1 + 1/k)^{-k} = 1/e \neq 0$$
, the series diverges.

18.
$$\lim_{k \to +\infty} \frac{k^2 + 1}{k^2 + 3} = 1 \neq 0$$
, the series diverges.

19.
$$\int_{1}^{+\infty} \frac{\tan^{-1} x}{1+x^{2}} dx = \lim_{\ell \to +\infty} \frac{1}{2} \left(\tan^{-1} x \right)^{2} \Big]_{1}^{\ell} = 3\pi^{2}/32, \text{ the series converges by the Integral Test, since }$$

$$\frac{d}{dx} \frac{\tan^{-1} x}{1+x^{2}} = \frac{1-2x \tan^{-1} x}{(1+x^{2})^{2}} < 0 \text{ for } x \ge 1.$$

20.
$$\int_{1}^{+\infty} \frac{1}{\sqrt{x^2+1}} dx = \lim_{\ell \to +\infty} \sinh^{-1} x \bigg]_{1}^{\ell} = +\infty, \text{ the series diverges by the Integral Test.}$$

21.
$$\lim_{k \to +\infty} k^2 \sin^2(1/k) = 1 \neq 0$$
, the series diverges.

22.
$$\int_{1}^{+\infty} x^{2} e^{-x^{3}} dx = \lim_{\ell \to +\infty} -\frac{1}{3} e^{-x^{3}} \bigg|_{1}^{\ell} = e^{-1}/3,$$

the series converges by the Integral Test $(x^2e^{-x^3})$ is decreasing for $x \ge 1$.

23.
$$7\sum_{k=5}^{\infty} k^{-1.01}$$
, *p*-series with $p > 1$, converges

24.
$$\int_{1}^{+\infty} \operatorname{sech}^{2} x \, dx = \lim_{\ell \to +\infty} \tanh x \bigg]_{1}^{\ell} = 1 - \tanh(1), \text{ the series converges by the Integral Test.}$$

25.
$$\frac{1}{x(\ln x)^p}$$
 is decreasing for $x \ge e^p$, so use the Integral Test with $\int_{e^p}^{+\infty} \frac{dx}{x(\ln x)^p}$ to get

$$\lim_{\ell \to +\infty} \ln(\ln x) \bigg]_{e^p}^{\ell} = +\infty \text{ if } p = 1, \qquad \lim_{\ell \to +\infty} \frac{(\ln x)^{1-p}}{1-p} \bigg]_{e^p}^{\ell} = \left\{ \begin{array}{ll} +\infty & \text{if } p < 1 \\ \frac{p^{1-p}}{p-1} & \text{if } p > 1 \end{array} \right.$$

Thus the series converges for p > 1.

26. If p > 0 set $g(x) = x(\ln x)[\ln(\ln x)]^p$, $g'(x) = (\ln(\ln x))^{p-1}[(1+\ln x)\ln(\ln x)+p]$, and, for $x > e^e$, g'(x) > 0, thus 1/g(x) is decreasing for $x > e^e$; use the Integral Test with $\int_{e^e}^{+\infty} \frac{dx}{x(\ln x)[\ln(\ln x)]^p}$ to get

$$\lim_{\ell \to +\infty} \ln[\ln(\ln x)] \bigg]_{e^e}^{\ell} = +\infty \text{ if } p = 1, \\ \lim_{\ell \to +\infty} \frac{[\ln(\ln x)]^{1-p}}{1-p} \bigg]_{e^e}^{\ell} = \begin{cases} +\infty & \text{if } p < 1, \\ \frac{1}{p-1} & \text{if } p > 1 \end{cases}$$

Thus the series converges for p > 1 and diverges for $0 . If <math>p \le 0$ then $\frac{[\ln(\ln x)]^p}{x \ln x} \ge \frac{1}{x \ln x}$ for $x > e^e$ so the series diverges.

27. (a)
$$3\sum_{k=1}^{\infty} \frac{1}{k^2} - \sum_{k=1}^{\infty} \frac{1}{k^4} = \pi^2/2 - \pi^4/90$$
 (b) $\sum_{k=1}^{\infty} \frac{1}{k^2} - 1 - \frac{1}{2^2} = \pi^2/6 - 5/4$

(c)
$$\sum_{k=2}^{\infty} \frac{1}{(k-1)^4} = \sum_{k=1}^{\infty} \frac{1}{k^4} = \pi^4/90$$

28. (a) Suppose $\Sigma(u_k + v_k)$ converges; then so does $\Sigma[(u_k + v_k) - u_k]$, but $\Sigma[(u_k + v_k) - u_k] = \Sigma v_k$, so Σv_k converges which contradicts the assumption that Σv_k diverges. Suppose $\Sigma(u_k - v_k)$ converges; then so does $\Sigma[u_k - (u_k - v_k)] = \Sigma v_k$ which leads to the same contradiction as before

- (b) Let $u_k = 2/k$ and $v_k = 1/k$; then both $\Sigma(u_k + v_k)$ and $\Sigma(u_k v_k)$ diverge; let $u_k = 1/k$ and $v_k = -1/k$ then $\Sigma(u_k + v_k)$ converges; let $u_k = v_k = 1/k$ then $\Sigma(u_k v_k)$ converges.
- **29.** (a) diverges because $\sum_{k=1}^{\infty} (2/3)^{k-1}$ converges and $\sum_{k=1}^{\infty} 1/k$ diverges.
 - (b) diverges because $\sum_{k=1}^{\infty} 1/(3k+2)$ diverges and $\sum_{k=1}^{\infty} 1/k^{3/2}$ converges.
 - (c) converges because both $\sum_{k=2}^{\infty} \frac{1}{k(\ln k)^2}$ (Exercise 25) and $\sum_{k=2}^{\infty} 1/k^2$ converge.
- **30.** (a) If $S = \sum_{k=1}^{\infty} u_k$ and $s_n = \sum_{k=1}^{n} u_k$, then $S s_n = \sum_{k=n+1}^{\infty} u_k$. Interpret u_k , $k = n+1, n+2, \ldots$, as the areas of inscribed or circumscribed rectangles with height u_k and base of length one for the curve y = f(x) to obtain the result.
 - (b) Add $s_n = \sum_{k=1}^n u_k$ to each term in the conclusion of Part (a) to get the desired result:

$$s_n + \int_{n+1}^{+\infty} f(x) dx < \sum_{k=1}^{+\infty} u_k < s_n + \int_n^{+\infty} f(x) dx$$

- **31.** (a) In Exercise 30 above let $f(x) = \frac{1}{x^2}$. Then $\int_n^{+\infty} f(x) dx = -\frac{1}{x} \Big|_n^{+\infty} = \frac{1}{n}$; use this result and the same result with n+1 replacing n to obtain the desired result.
 - **(b)** $s_3 = 1 + 1/4 + 1/9 = 49/36$; $58/36 = s_3 + \frac{1}{4} < \frac{1}{6}\pi^2 < s_3 + \frac{1}{3} = 61/36$
 - (d) $1/11 < \frac{1}{6}\pi^2 s_{10} < 1/10$
- **33.** Apply Exercise 30 in each case:

(a)
$$f(x) = \frac{1}{(2x+1)^2}$$
, $\int_n^{+\infty} f(x) dx = \frac{1}{2(2n+1)}$, so $\frac{1}{46} < \sum_{k=1}^{\infty} \frac{1}{(2k+1)^2} - s_{10} < \frac{1}{42}$

(b)
$$f(x) = \frac{1}{k^2 + 1}$$
, $\int_n^{+\infty} f(x) dx = \frac{\pi}{2} - \tan^{-1}(n)$, so $\pi/2 - \tan^{-1}(11) < \sum_{k=1}^{\infty} \frac{1}{k^2 + 1} - s_{10} < \pi/2 - \tan^{-1}(10)$

(c)
$$f(x) = \frac{x}{e^x}$$
, $\int_n^{+\infty} f(x) dx = (n+1)e^{-n}$, so $12e^{-11} < \sum_{k=1}^{\infty} \frac{k}{e^k} - s_{10} < 11e^{-10}$

Exercise Set 10.6 417

34. (a)
$$\int_{n}^{+\infty} \frac{1}{x^3} dx = \frac{1}{2n^2}$$
; use Exercise 30(b)

(b)
$$\frac{1}{2n^2} - \frac{1}{2(n+1)^2} < 0.01$$
 for $n = 5$.

(c) From Part (a) with n = 5 obtain 1.200 < S < 1.206, so $S \approx 1.203$.

35. (a)
$$\int_{n}^{+\infty} \frac{1}{x^4} dx = \frac{1}{3n^3}$$
; choose n so that $\frac{1}{3n^3} - \frac{1}{3(n+1)^3} < 0.005, \ n = 4$; $S \approx 1.08$

36. (a) Let
$$F(x) = \frac{1}{x}$$
, then $\int_{1}^{n} \frac{1}{x} dx = \ln n$ and $\int_{1}^{n+1} \frac{1}{x} dx = \ln(n+1)$, $u_1 = 1$ so $\ln(n+1) < s_n < 1 + \ln n$.

(b)
$$\ln(1,000,001) < s_{1,000,000} < 1 + \ln(1,000,000), 13 < s_{1,000,000} < 15$$

(c)
$$s_{10^9} < 1 + \ln 10^9 = 1 + 9 \ln 10 < 22$$

(d)
$$s_n > \ln(n+1) \ge 100, \ n \ge e^{100} - 1 \approx 2.688 \times 10^{43}; \ n = 2.69 \times 10^{43}$$

- **37.** *p*-series with $p = \ln a$; convergence for p > 1, a > e
- **38.** x^2e^{-x} is decreasing and positive for x>2 so the Integral Test applies:

$$\int_{1}^{\infty} x^{2}e^{-x} dx = -(x^{2} + 2x + 2)e^{-x}\Big]_{1}^{\infty} = 5e^{-1} \text{ so the series converges.}$$

39. (a) $f(x) = 1/(x^3 + 1)$ is decreasing and continuous on the interval $[1, +\infty]$, so the Integral Test applies.

(c)	n 10		20	30	40	50	
	s_n	0.681980	0.685314	0.685966	0.686199	0.686307	
	n	60	70	80	90	100	
	s_n	0.686367	0.686403	0.686426	0.686442	0.686454	

(e) Set
$$g(n) = \int_{n}^{+\infty} \frac{1}{x^3 + 1} dx = \frac{\sqrt{3}}{6}\pi + \frac{1}{6} \ln \frac{n^3 + 1}{(n+1)^3} - \frac{\sqrt{3}}{3} \tan^{-1} \left(\frac{2n-1}{\sqrt{3}}\right)$$
; for $n \ge 13$, $g(n) - g(n+1) \le 0.0005$; $s_{13} + (g(13) + g(14))/2 \approx 0.6865$, so the sum ≈ 0.6865 to three decimal places.

1. (a)
$$\frac{1}{5k^2 - k} \le \frac{1}{5k^2 - k^2} = \frac{1}{4k^2}, \sum_{k=1}^{\infty} \frac{1}{4k^2}$$
 converges

(b)
$$\frac{3}{k-1/4} > \frac{3}{k}, \sum_{k=1}^{\infty} 3/k \text{ diverges}$$

2. (a)
$$\frac{k+1}{k^2-k} > \frac{k}{k^2} = \frac{1}{k}$$
, $\sum_{k=2}^{\infty} 1/k$ diverges (b) $\frac{2}{k^4+k} < \frac{2}{k^4}$, $\sum_{k=1}^{\infty} \frac{2}{k^4}$ converges

3. (a)
$$\frac{1}{3^k+5} < \frac{1}{3^k}, \sum_{k=1}^{\infty} \frac{1}{3^k}$$
 converges

(b)
$$\frac{5\sin^2 k}{k!} < \frac{5}{k!}, \sum_{k=1}^{\infty} \frac{5}{k!}$$
 converges

4. (a)
$$\frac{\ln k}{k} > \frac{1}{k}$$
 for $k \ge 3$, $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges

(b)
$$\frac{k}{k^{3/2} - 1/2} > \frac{k}{k^{3/2}} = \frac{1}{\sqrt{k}}; \sum_{k=1}^{\infty} \frac{1}{\sqrt{k}} \text{ diverges}$$

5. compare with the convergent series
$$\sum_{k=1}^{\infty} 1/k^5, \ \rho = \lim_{k \to +\infty} \frac{4k^7 - 2k^6 + 6k^5}{8k^7 + k - 8} = 1/2, \text{ converges}$$

6. compare with the divergent series
$$\sum_{k=1}^{\infty} 1/k$$
, $\rho = \lim_{k \to +\infty} \frac{k}{9k+6} = 1/9$, diverges

7. compare with the convergent series
$$\sum_{k=1}^{\infty} 5/3^k$$
, $\rho = \lim_{k \to +\infty} \frac{3^k}{3^k + 1} = 1$, converges

8. compare with the divergent series
$$\sum_{k=1}^{\infty} 1/k, \ \rho = \lim_{k \to +\infty} \frac{k^2(k+3)}{(k+1)(k+2)(k+5)} = 1, \text{ diverges}$$

9. compare with the divergent series
$$\sum_{k=1}^{\infty} \frac{1}{k^{2/3}}$$
,

$$\rho = \lim_{k \to +\infty} \frac{k^{2/3}}{(8k^2 - 3k)^{1/3}} = \lim_{k \to +\infty} \frac{1}{(8 - 3/k)^{1/3}} = 1/2, \text{ diverges}$$

10. compare with the convergent series
$$\sum_{k=1}^{\infty} 1/k^{17}$$
,

$$\rho = \lim_{k \to +\infty} \frac{k^{17}}{(2k+3)^{17}} = \lim_{k \to +\infty} \frac{1}{(2+3/k)^{17}} = 1/2^{17}, \text{ converges}$$

11.
$$\rho = \lim_{k \to +\infty} \frac{3^{k+1}/(k+1)!}{3^k/k!} = \lim_{k \to +\infty} \frac{3}{k+1} = 0$$
, the series converges

12.
$$\rho = \lim_{k \to +\infty} \frac{4^{k+1}/(k+1)^2}{4^k/k^2} = \lim_{k \to +\infty} \frac{4k^2}{(k+1)^2} = 4$$
, the series diverges

13.
$$\rho = \lim_{k \to +\infty} \frac{k}{k+1} = 1$$
, the result is inconclusive

14.
$$\rho = \lim_{k \to +\infty} \frac{(k+1)(1/2)^{k+1}}{k(1/2)^k} = \lim_{k \to +\infty} \frac{k+1}{2k} = 1/2$$
, the series converges

15.
$$\rho = \lim_{k \to +\infty} \frac{(k+1)!/(k+1)^3}{k!/k^3} = \lim_{k \to +\infty} \frac{k^3}{(k+1)^2} = +\infty$$
, the series diverges

16.
$$\rho = \lim_{k \to +\infty} \frac{(k+1)/[(k+1)^2+1]}{k/(k^2+1)} = \lim_{k \to +\infty} \frac{(k+1)(k^2+1)}{k(k^2+2k+2)} = 1$$
, the result is inconclusive.

Exercise Set 10.6 419

17.
$$\rho = \lim_{k \to +\infty} \frac{3k+2}{2k-1} = 3/2$$
, the series diverges

18.
$$\rho = \lim_{k \to +\infty} k/100 = +\infty$$
, the series diverges

19.
$$\rho = \lim_{k \to +\infty} \frac{k^{1/k}}{5} = 1/5$$
, the series converges

20.
$$\rho = \lim_{k \to +\infty} (1 - e^{-k}) = 1$$
, the result is inconclusive

21. Ratio Test,
$$\rho = \lim_{k \to +\infty} 7/(k+1) = 0$$
, converges

22. Limit Comparison Test, compare with the divergent series $\sum_{k=1}^{\infty} 1/k$

23. Ratio Test,
$$\rho = \lim_{k \to +\infty} \frac{(k+1)^2}{5k^2} = 1/5$$
, converges

24. Ratio Test,
$$\rho = \lim_{k \to +\infty} (10/3)(k+1) = +\infty$$
, diverges

25. Ratio Test,
$$\rho = \lim_{k \to +\infty} e^{-1} (k+1)^{50} / k^{50} = e^{-1} < 1$$
, converges

- **26.** Limit Comparison Test, compare with the divergent series $\sum_{k=1}^{\infty} 1/k$
- 27. Limit Comparison Test, compare with the convergent series $\sum_{k=1}^{\infty} 1/k^{5/2}$, $\rho = \lim_{k \to +\infty} \frac{k^3}{k^3 + 1} = 1$, converges
- **28.** $\frac{4}{2+3^kk} < \frac{4}{3^kk}, \sum_{k=1}^{\infty} \frac{4}{3^kk}$ converges (Ratio Test) so $\sum_{k=1}^{\infty} \frac{4}{2+k3^k}$ converges by the Comparison Test
- **29.** Limit Comparison Test, compare with the divergent series $\sum_{k=1}^{\infty} 1/k$, $\rho = \lim_{k \to +\infty} \frac{k}{\sqrt{k^2 + k}} = 1$, diverges

30.
$$\frac{2+(-1)^k}{5^k} \le \frac{3}{5^k}, \sum_{k=1}^{\infty} 3/5^k \text{ converges so } \sum_{k=1}^{\infty} \frac{2+(-1)^k}{5^k} \text{ converges}$$

31. Limit Comparison Test, compare with the convergent series $\sum_{k=1}^{\infty} 1/k^{5/2}$, $\rho = \lim_{k \to +\infty} \frac{k^3 + 2k^{5/2}}{k^3 + 3k^2 + 3k} = 1$, converges

32.
$$\frac{4+|\cos k|}{k^3} < \frac{5}{k^3}, \sum_{k=1}^{\infty} 5/k^3 \text{ converges so } \sum_{k=1}^{\infty} \frac{4+|\cos k|}{k^3} \text{ converges}$$

33. Limit Comparison Test, compare with the divergent series $\sum_{k=1}^{\infty} 1/\sqrt{k}$

34. Ratio Test,
$$\rho = \lim_{k \to +\infty} (1 + 1/k)^{-k} = 1/e < 1$$
, converges

35. Ratio Test,
$$\rho = \lim_{k \to +\infty} \frac{\ln(k+1)}{e \ln k} = \lim_{k \to +\infty} \frac{k}{e(k+1)} = 1/e < 1$$
, converges

36. Ratio Test,
$$\rho = \lim_{k \to +\infty} \frac{k+1}{e^{2k+1}} = \lim_{k \to +\infty} \frac{1}{2e^{2k+1}} = 0$$
, converges

37. Ratio Test,
$$\rho = \lim_{k \to +\infty} \frac{k+5}{4(k+1)} = 1/4$$
, converges

38. Root Test,
$$\rho = \lim_{k \to +\infty} (\frac{k}{k+1})^k = \lim_{k \to +\infty} \frac{1}{(1+1/k)^k} = 1/e$$
, converges

39. diverges because
$$\lim_{k \to +\infty} \frac{1}{4 + 2^{-k}} = 1/4 \neq 0$$

40.
$$\sum_{k=1}^{\infty} \frac{\sqrt{k} \ln k}{k^3 + 1} = \sum_{k=2}^{\infty} \frac{\sqrt{k} \ln k}{k^3 + 1} \text{ because } \ln 1 = 0, \ \frac{\sqrt{k} \ln k}{k^3 + 1} < \frac{k \ln k}{k^3} = \frac{\ln k}{k^2},$$

$$\int_2^{+\infty} \frac{\ln x}{x^2} dx = \lim_{\ell \to +\infty} \left(-\frac{\ln x}{x} - \frac{1}{x} \right) \bigg]_2^{\ell} = \frac{1}{2} (\ln 2 + 1) \text{ so } \sum_{k=2}^{\infty} \frac{\ln k}{k^2} \text{ converges and so does } \sum_{k=1}^{\infty} \frac{\sqrt{k} \ln k}{k^3 + 1}.$$

41.
$$\frac{\tan^{-1} k}{k^2} < \frac{\pi/2}{k^2}, \sum_{k=1}^{\infty} \frac{\pi/2}{k^2}$$
 converges so $\sum_{k=1}^{\infty} \frac{\tan^{-1} k}{k^2}$ converges

42.
$$\frac{5^k + k}{k! + 3} < \frac{5^k + 5^k}{k!} = \frac{2(5^k)}{k!}, \sum_{k=1}^{\infty} 2(\frac{5^k}{k!})$$
 converges (Ratio Test) so $\sum_{k=1}^{\infty} \frac{5^k + k}{k! + 3}$ converges

43. Ratio Test,
$$\rho = \lim_{k \to +\infty} \frac{(k+1)^2}{(2k+2)(2k+1)} = 1/4$$
, converges

44. Ratio Test,
$$\rho = \lim_{k \to +\infty} \frac{2(k+1)^2}{(2k+4)(2k+3)} = 1/2$$
, converges

45.
$$u_k = \frac{k!}{1 \cdot 3 \cdot 5 \cdots (2k-1)}$$
, by the Ratio Test $\rho = \lim_{k \to +\infty} \frac{k+1}{2k+1} = 1/2$; converges

46.
$$u_k = \frac{1 \cdot 3 \cdot 5 \cdots (2k-1)}{(2k-1)!}$$
, by the Ratio Test $\rho = \lim_{k \to +\infty} \frac{1}{2k} = 0$; converges

47. Root Test:
$$\rho = \lim_{k \to +\infty} \frac{1}{3} (\ln k)^{1/k} = 1/3$$
, converges

48. Root Test:
$$\rho = \lim_{k \to +\infty} \frac{\pi(k+1)}{k^{1+1/k}} = \lim_{k \to +\infty} \pi \frac{k+1}{k} = \pi$$
, diverges

49. (b)
$$\rho = \lim_{k \to +\infty} \frac{\sin(\pi/k)}{\pi/k} = 1$$
 and $\sum_{k=1}^{\infty} \pi/k$ diverges

50. (a)
$$\cos x \approx 1 - x^2/2, 1 - \cos\left(\frac{1}{k}\right) \approx \frac{1}{2k^2}$$
 (b) $\rho = \lim_{k \to +\infty} \frac{1 - \cos(1/k)}{1/k^2} = 2$, converges

Exercise Set 10.7 421

51. Set $g(x) = \sqrt{x} - \ln x$; $\frac{d}{dx}g(x) = \frac{1}{2\sqrt{x}} - \frac{1}{x} = 0$ when x = 4. Since $\lim_{x \to 0+} g(x) = \lim_{x \to +\infty} g(x) = +\infty$ it follows that g(x) has its minimum at x = 4, $g(4) = \sqrt{4} - \ln 4 > 0$, and thus $\sqrt{x} - \ln x > 0$ for x > 0.

(a)
$$\frac{\ln k}{k^2} < \frac{\sqrt{k}}{k^2} = \frac{1}{k^{3/2}}, \sum_{k=1}^{\infty} \frac{1}{k^{3/2}}$$
 converges so $\sum_{k=1}^{\infty} \frac{\ln k}{k^2}$ converges.

- (b) $\frac{1}{(\ln k)^2} > \frac{1}{k}$, $\sum_{k=2}^{\infty} \frac{1}{k}$ diverges so $\sum_{k=2}^{\infty} \frac{1}{(\ln k)^2}$ diverges.
- **52.** By the Root Test, $\rho = \lim_{k \to +\infty} \frac{\alpha}{(k^{1/k})^{\alpha}} = \frac{\alpha}{1^{\alpha}} = \alpha$, the series converges if $\alpha < 1$ and diverges if $\alpha > 1$. If $\alpha = 1$ then the series is $\sum_{k=1}^{\infty} 1/k$ which diverges.
- **53.** (a) If $\sum b_k$ converges, then set $M = \sum b_k$. Then $a_1 + a_2 + \cdots + a_n \leq b_1 + b_2 + \cdots + b_n \leq M$; apply Theorem 10.5.6 to get convergence of $\sum a_k$.
 - (b) Assume the contrary, that $\sum b_k$ converges; then use Part (a) of the Theorem to show that $\sum a_k$ converges, a contradiction.
- **54.** (a) If $\lim_{k \to +\infty} (a_k/b_k) = 0$ then for $k \ge K$, $a_k/b_k < 1$, $a_k < b_k$ so $\sum a_k$ converges by the Comparison Test.
 - (b) If $\lim_{k\to+\infty}(a_k/b_k)=+\infty$ then for $k\geq K,\ a_k/b_k>1,\ a_k>b_k$ so $\sum a_k$ diverges by the Comparison Test.

- 1. $a_{k+1} < a_k, \lim_{k \to +\infty} a_k = 0, a_k > 0$
- 2. $\frac{a_{k+1}}{a_k} = \frac{k+1}{3k} \le \frac{2k}{3k} = \frac{2}{3}$ for $k \ge 1$, so $\{a_k\}$ is decreasing and tends to zero.
- 3. diverges because $\lim_{k \to +\infty} a_k = \lim_{k \to +\infty} \frac{k+1}{3k+1} = 1/3 \neq 0$
- **4.** diverges because $\lim_{k \to +\infty} a_k = \lim_{k \to +\infty} \frac{k+1}{\sqrt{k}+1} = +\infty \neq 0$
- **5.** $\{e^{-k}\}\$ is decreasing and $\lim_{k\to+\infty}e^{-k}=0$, converges
- **6.** $\left\{\frac{\ln k}{k}\right\}$ is decreasing and $\lim_{k\to+\infty}\frac{\ln k}{k}=0$, converges
- 7. $\rho = \lim_{k \to +\infty} \frac{(3/5)^{k+1}}{(3/5)^k} = 3/5$, converges absolutely
- 8. $\rho = \lim_{k \to +\infty} \frac{2}{k+1} = 0$, converges absolutely

9.
$$\rho = \lim_{k \to +\infty} \frac{3k^2}{(k+1)^2} = 3$$
, diverges

10.
$$\rho = \lim_{k \to +\infty} \frac{k+1}{5k} = 1/5$$
, converges absolutely

11.
$$\rho = \lim_{k \to +\infty} \frac{(k+1)^3}{ek^3} = 1/e$$
, converges absolutely

12.
$$\rho = \lim_{k \to +\infty} \frac{(k+1)^{k+1} k!}{(k+1)! k^k} = \lim_{k \to +\infty} (1+1/k)^k = e$$
, diverges

- 13. conditionally convergent, $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{3k}$ converges by the Alternating Series Test but $\sum_{k=1}^{\infty} \frac{1}{3k}$ diverges
- 14. absolutely convergent, $\sum_{k=1}^{\infty} \frac{1}{k^{4/3}}$ converges
- **15.** divergent, $\lim_{k \to +\infty} a_k \neq 0$
- 16. absolutely convergent, Ratio Test for absolute convergence
- 17. $\sum_{k=1}^{\infty} \frac{\cos k\pi}{k} = \sum_{k=1}^{\infty} \frac{(-1)^k}{k}$ is conditionally convergent, $\sum_{k=1}^{\infty} \frac{(-1)^k}{k}$ converges by the Alternating Series Test but $\sum_{k=1}^{\infty} 1/k$ diverges.
- 18. conditionally convergent, $\sum_{k=3}^{\infty} \frac{(-1)^k \ln k}{k}$ converges by the Alternating Series Test but $\sum_{k=3}^{\infty} \frac{\ln k}{k}$ diverges (Limit Comparison Test with $\sum 1/k$).
- 19. conditionally convergent, $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{k+2}{k(k+3)}$ converges by the

 Alternating Series Test but $\sum_{k=1}^{\infty} \frac{k+2}{k(k+3)}$ diverges (Limit Comparison Test with $\sum 1/k$)
- **20.** conditionally convergent, $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}k^2}{k^3+1}$ converges by the Alternating Series Test but $\sum_{k=1}^{\infty} \frac{k^2}{k^3+1}$ diverges (Limit Comparison Test with $\sum (1/k)$)
- **21.** $\sum_{k=1}^{\infty} \sin(k\pi/2) = 1 + 0 1 + 0 + 1 + 0 1 + 0 + \cdots$, divergent $(\lim_{k \to +\infty} \sin(k\pi/2))$ does not exist)
- **22.** absolutely convergent, $\sum_{k=1}^{\infty} \frac{|\sin k|}{k^3}$ converges (compare with $\sum 1/k^3$)

Exercise Set 10.7 423

23. conditionally convergent, $\sum_{k=2}^{\infty} \frac{(-1)^k}{k \ln k}$ converges by the Alternating Series Test but $\sum_{k=2}^{\infty} \frac{1}{k \ln k}$ diverges (Integral Test)

- **24.** conditionally convergent, $\sum_{k=1}^{\infty} \frac{(-1)^k}{\sqrt{k(k+1)}}$ converges by the Alternating Series Test but $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k(k+1)}}$ diverges (Limit Comparison Test with $\sum 1/k$)
- **25.** absolutely convergent, $\sum_{k=2}^{\infty} (1/\ln k)^k$ converges by the Root Test
- **26.** conditionally convergent, $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{\sqrt{k+1} + \sqrt{k}}$ converges by the Alternating Series Test but $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k+1} + \sqrt{k}}$ diverges (Limit Comparison Test with $\sum 1/\sqrt{k}$)
- 27. conditionally convergent, let $f(x) = \frac{x^2 + 1}{x^3 + 2}$ then $f'(x) = \frac{x(4 3x x^3)}{(x^3 + 2)^2} \le 0$ for $x \ge 1$ so $\{a_k\}_{k=2}^{+\infty} = \left\{\frac{k^2 + 1}{k^3 + 2}\right\}_{k=2}^{+\infty}$ is decreasing, $\lim_{k \to +\infty} a_k = 0$; the series converges by the Alternating Series Test but $\sum_{k=2}^{\infty} \frac{k^2 + 1}{k^3 + 2}$ diverges (Limit Comparison Test with $\sum 1/k$)
- 28. $\sum_{k=1}^{\infty} \frac{k \cos k\pi}{k^2 + 1} = \sum_{k=1}^{\infty} \frac{(-1)^k k}{k^2 + 1}$ is conditionally convergent, $\sum_{k=1}^{\infty} \frac{(-1)^k k}{k^2 + 1}$ converges by the Alternating Series Test but $\sum_{k=1}^{\infty} \frac{k}{k^2 + 1}$ diverges
- **29.** absolutely convergent by the Ratio Test, $\rho = \lim_{k \to +\infty} \frac{k+1}{(2k+1)(2k)} = 0$
- **30.** divergent, $\lim_{k \to +\infty} a_k = +\infty$

- **31.** $|\text{error}| < a_8 = 1/8 = 0.125$
- **32.** $|\text{error}| < a_6 = 1/6! < 0.0014$
- **33.** $|\text{error}| < a_{100} = 1/\sqrt{100} = 0.1$
- **34.** $|\text{error}| < a_4 = 1/(5 \ln 5) < 0.125$
- **35.** $|\text{error}| < 0.0001 \text{ if } a_{n+1} \le 0.0001, \ 1/(n+1) \le 0.0001, \ n+1 \ge 10,000, \ n \ge 9,999, \ n=9,999$
- **36.** $|\text{error}| < 0.00001 \text{ if } a_{n+1} \le 0.00001, \ 1/(n+1)! \le 0.00001, \ (n+1)! \ge 100,000. \text{ But } 8! = 40,320, \ 9! = 362,880 \text{ so } (n+1)! \ge 100,000 \text{ if } n+1 \ge 9, \ n \ge 8, \ n=8$
- **37.** $|\text{error}| < 0.005 \text{ if } a_{n+1} \le 0.005, \ 1/\sqrt{n+1} \le 0.005, \ \sqrt{n+1} \ge 200, \ n+1 \ge 40,000, \ n \ge 39,999, \ n = 39,999$

38. $|\text{error}| < 0.05 \text{ if } a_{n+1} \le 0.05, \ 1/[(n+2)\ln(n+2)] \le 0.05, \ (n+2)\ln(n+2) \ge 20. \text{ But } 9 \ln 9 \approx 19.8$ and $10\ln 10 \approx 23.0 \text{ so } (n+2)\ln(n+2) \ge 20 \text{ if } n+2 \ge 10, \ n \ge 8, \ n=8$

39.
$$a_k = \frac{3}{2^{k+1}}$$
, $|\text{error}| < a_{11} = \frac{3}{2^{12}} < 0.00074$; $s_{10} \approx 0.4995$; $S = \frac{3/4}{1 - (-1/2)} = 0.5$

40.
$$a_k = \left(\frac{2}{3}\right)^{k-1}$$
, $|\text{error}| < a_{11} = \left(\frac{2}{3}\right)^{10} < 0.01735$; $s_{10} \approx 0.5896$; $S = \frac{1}{1 - (-2/3)} = 0.6$

41.
$$a_k = \frac{1}{(2k-1)!}$$
, $a_{n+1} = \frac{1}{(2n+1)!} \le 0.005$, $(2n+1)! \ge 200$, $2n+1 \ge 6$, $n \ge 2.5$; $n = 3$, $s_3 = 1 - 1/6 + 1/120 \approx 0.84$

42.
$$a_k = \frac{1}{(2k-2)!}$$
, $a_{n+1} = \frac{1}{(2n)!} \le 0.005$, $(2n)! \ge 200$, $2n \ge 6$, $n \ge 3$; $n = 3$, $s_3 \approx 0.54$

43.
$$a_k = \frac{1}{k2^k}$$
, $a_{n+1} = \frac{1}{(n+1)2^{n+1}} \le 0.005$, $(n+1)2^{n+1} \ge 200$, $n+1 \ge 6$, $n \ge 5$; $n = 5$, $s_5 \approx 0.41$

44.
$$a_k = \frac{1}{(2k-1)^5 + 4(2k-1)}, \ a_{n+1} = \frac{1}{(2n+1)^5 + 4(2n+1)} \le 0.005,$$
 $(2n+1)^5 + 4(2n+1) \ge 200, \ 2n+1 \ge 3, \ n \ge 1; \ n=1, \ s_1=0.20$

45. (c)
$$a_k = \frac{1}{2k-1}$$
, $a_{n+1} = \frac{1}{2n+1} \le 10^{-2}$, $2n+1 \ge 100$, $n \ge 49.5$; $n = 50$

- **46.** $\sum (1/k^p)$ converges if p > 1 and diverges if $p \le 1$, so $\sum_{k=1}^{\infty} (-1)^k \frac{1}{k^p}$ converges absolutely if p > 1, and converges conditionally if $0 since it satisfies the Alternating Series Test; it diverges for <math>p \le 0$ since $\lim_{k \to +\infty} a_k \ne 0$.
- **47.** $1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \left[1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots\right] \left[\frac{1}{2^2} + \frac{1}{4^2} + \frac{1}{6^2} + \dots\right]$ $= \frac{\pi^2}{6} \frac{1}{2^2} \left[1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots\right] = \frac{\pi^2}{6} \frac{1}{4} \frac{\pi^2}{6} = \frac{\pi^2}{8}$

48.
$$1 + \frac{1}{3^4} + \frac{1}{5^4} + \dots = \left[1 + \frac{1}{2^4} + \frac{1}{3^4} + \dots\right] - \left[\frac{1}{2^4} + \frac{1}{4^4} + \frac{1}{6^4} + \dots\right]$$

$$= \frac{\pi^4}{90} - \frac{1}{2^4} \left[1 + \frac{1}{2^4} + \frac{1}{3^4} + \dots\right] = \frac{\pi^4}{90} - \frac{1}{16} \frac{\pi^4}{90} = \frac{\pi^4}{96}$$

49. Every positive integer can be written in exactly one of the three forms 2k-1 or 4k-2 or 4k, so a rearrangement is

$$\left(1 - \frac{1}{2} - \frac{1}{4}\right) + \left(\frac{1}{3} - \frac{1}{6} - \frac{1}{8}\right) + \left(\frac{1}{5} - \frac{1}{10} - \frac{1}{12}\right) + \dots + \left(\frac{1}{2k - 1} - \frac{1}{4k - 2} - \frac{1}{4k}\right) + \dots$$

$$= \left(\frac{1}{2} - \frac{1}{4}\right) + \left(\frac{1}{6} - \frac{1}{8}\right) + \left(\frac{1}{10} - \frac{1}{12}\right) + \dots + \left(\frac{1}{4k - 2} - \frac{1}{4k}\right) + \dots = \frac{1}{2}\ln 2$$

Exercise Set 10.8

425

- (b) Yes; since f(x) is decreasing for $x \ge 1$ and $\lim_{x \to +\infty} f(x) = 0$, the series satisfies the Alternating Series Test.
- 51. (a) The distance d from the starting point is

$$d = 180 - \frac{180}{2} + \frac{180}{3} - \dots - \frac{180}{1000} = 180 \left[1 - \frac{1}{2} + \frac{1}{3} - \dots - \frac{1}{1000} \right].$$

From Theorem 10.7.2, $1 - \frac{1}{2} + \frac{1}{3} - \dots - \frac{1}{1000}$ differs from $\ln 2$ by less than 1/1001 so $180(\ln 2 - 1/1001) < d < 180 \ln 2$, 124.58 < d < 124.77.

(b) The total distance traveled is $s = 180 + \frac{180}{2} + \frac{180}{3} + \dots + \frac{180}{1000}$, and from inequality (2) in Section 10.5,

$$\int_{1}^{1001} \frac{180}{x} dx < s < 180 + \int_{1}^{1000} \frac{180}{x} dx$$

$$180 \ln 1001 < s < 180(1 + \ln 1000)$$

- **52.** (a) Suppose $\Sigma |a_k|$ converges, then $\lim_{k\to +\infty} |a_k|=0$ so $|a_k|<1$ for $k\geq K$ and thus $|a_k|^2<|a_k|$, $a_k^2<|a_k|$ hence Σa_k^2 converges by the Comparison Test.
 - **(b)** Let $a_k = \frac{1}{k}$, then $\sum a_k^2$ converges but $\sum a_k$ diverges.

1.
$$f^{(k)}(x) = (-1)^k e^{-x}$$
, $f^{(k)}(0) = (-1)^k$; $\sum_{k=0}^{\infty} \frac{(-1)^k}{k!} x^k$

2.
$$f^{(k)}(x) = a^k e^{ax}, f^{(k)}(0) = a^k; \sum_{k=0}^{\infty} \frac{a^k}{k!} x^k$$

- **3.** $f^{(k)}(0) = 0$ if k is odd, $f^{(k)}(0)$ is alternately π^k and $-\pi^k$ if k is even; $\sum_{k=0}^{\infty} \frac{(-1)^k \pi^{2k}}{(2k)!} x^{2k}$
- **4.** $f^{(k)}(0) = 0$ if k is even, $f^{(k)}(0)$ is alternately π^k and $-\pi^k$ if k is odd; $\sum_{k=0}^{\infty} \frac{(-1)^k \pi^{2k+1}}{(2k+1)!} x^{2k+1}$
- 5. $f^{(0)}(0) = 0$; for $k \ge 1$, $f^{(k)}(x) = \frac{(-1)^{k+1}(k-1)!}{(1+x)^k}$, $f^{(k)}(0) = (-1)^{k+1}(k-1)!$; $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^k$

6.
$$f^{(k)}(x) = (-1)^k \frac{k!}{(1+x)^{k+1}}$$
; $f^{(k)}(0) = (-1)^k k!$; $\sum_{k=0}^{\infty} (-1)^k x^k$

7.
$$f^{(k)}(0) = 0$$
 if k is odd, $f^{(k)}(0) = 1$ if k is even; $\sum_{k=0}^{\infty} \frac{1}{(2k)!} x^{2k}$

8.
$$f^{(k)}(0) = 0$$
 if k is even, $f^{(k)}(0) = 1$ if k is odd;
$$\sum_{k=0}^{\infty} \frac{1}{(2k+1)!} x^{2k+1}$$

$$\mathbf{9.} \quad f^{(k)}(x) = \begin{cases} (-1)^{k/2} (x \sin x - k \cos x) & k \text{ even} \\ (-1)^{(k-1)/2} (x \cos x + k \sin x) & k \text{ odd} \end{cases}, \qquad f^{(k)}(0) = \begin{cases} (-1)^{1+k/2} k & k \text{ even} \\ 0 & k \text{ odd} \end{cases}$$

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+2}$$

10.
$$f^{(k)}(x) = (k+x)e^x$$
, $f^{(k)}(0) = k$; $\sum_{k=1}^{\infty} \frac{1}{(k-1)!} x^k$

11.
$$f^{(k)}(x_0) = e; \quad \sum_{k=0}^{\infty} \frac{e}{k!} (x-1)^k$$

12.
$$f^{(k)}(x) = (-1)^k e^{-x}$$
, $f^{(k)}(\ln 2) = (-1)^k \frac{1}{2}$; $\sum_{k=0}^{\infty} \frac{(-1)^k}{2 \cdot k!} (x - \ln 2)^k$

13.
$$f^{(k)}(x) = \frac{(-1)^k k!}{x^{k+1}}, f^{(k)}(-1) = -k!; \sum_{k=0}^{\infty} (-1)(x+1)^k$$

14.
$$f^{(k)}(x) = \frac{(-1)^k k!}{(x+2)^{k+1}}, f^{(k)}(3) = \frac{(-1)^k k!}{5^{k+1}}; \sum_{k=0}^{\infty} \frac{(-1)^k}{5^{k+1}} (x-3)^k$$

15. $f^{(k)}(1/2) = 0$ if k is odd, $f^{(k)}(1/2)$ is alternately π^k and $-\pi^k$ if k is even; $\sum_{k=0}^{\infty} \frac{(-1)^k \pi^{2k}}{(2k)!} (x - 1/2)^{2k}$

16.
$$f^{(k)}(\pi/2) = 0$$
 if k is even, $f^{(k)}(\pi/2)$ is alternately -1 and 1 if k is odd;
$$\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+1)!} (x-\pi/2)^{2k+1}$$

17.
$$f(1) = 0$$
, for $k \ge 1$, $f^{(k)}(x) = \frac{(-1)^{k-1}(k-1)!}{x^k}$; $f^{(k)}(1) = (-1)^{k-1}(k-1)!$;
$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} (x-1)^k$$

18.
$$f(e) = 1$$
, for $k \ge 1$, $f^{(k)}(x) = \frac{(-1)^{k-1}(k-1)!}{x^k}$; $f^{(k)}(e) = \frac{(-1)^{k-1}(k-1)!}{e^k}$; $1 + \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{ke^k} (x-e)^k$

Exercise Set 10.8 427

19. geometric series, $\rho = \lim_{k \to +\infty} \left| \frac{u_{k+1}}{u_k} \right| = |x|$, so the interval of convergence is -1 < x < 1, converges there to $\frac{1}{1+x}$ (the series diverges for $x = \pm 1$)

- **20.** geometric series, $\rho = \lim_{k \to +\infty} \left| \frac{u_{k+1}}{u_k} \right| = |x|^2$, so the interval of convergence is -1 < x < 1, converges there to $\frac{1}{1-x^2}$ (the series diverges for $x = \pm 1$)
- **21.** geometric series, $\rho = \lim_{k \to +\infty} \left| \frac{u_{k+1}}{u_k} \right| = |x-2|$, so the interval of convergence is 1 < x < 3, converges there to $\frac{1}{1-(x-2)} = \frac{1}{3-x}$ (the series diverges for x=1,3)
- **22.** geometric series, $\rho = \lim_{k \to +\infty} \left| \frac{u_{k+1}}{u_k} \right| = |x+3|$, so the interval of convergence is -4 < x < -2, converges there to $\frac{1}{1+(x+3)} = \frac{1}{4+x}$ (the series diverges for x = -4, -2)
- **23.** (a) geometric series, $\rho = \lim_{k \to +\infty} \left| \frac{u_{k+1}}{u_k} \right| = |x/2|$, so the interval of convergence is -2 < x < 2, converges there to $\frac{1}{1+x/2} = \frac{2}{2+x}$; (the series diverges for x = -2, 2)
 - **(b)** f(0) = 1; f(1) = 2/3
- **24.** (a) geometric series, $\rho = \lim_{k \to +\infty} \left| \frac{u_{k+1}}{u_k} \right| = \left| \frac{x-5}{3} \right|$, so the interval of convergence is 2 < x < 8, converges to $\frac{1}{1+(x-5)/3} = \frac{3}{x-2}$ (the series diverges for x=2,8)
 - **(b)** f(3) = 3, f(6) = 3/4
- **25.** $\rho = \lim_{k \to +\infty} \frac{k+1}{k+2} |x| = |x|$, the series converges if |x| < 1 and diverges if |x| > 1. If x = -1, $\sum_{k=0}^{\infty} \frac{(-1)^k}{k+1}$ converges by the Alternating Series Test; if x = 1, $\sum_{k=0}^{\infty} \frac{1}{k+1}$ diverges. The radius of convergence is 1, the interval of convergence is [-1,1).
- **26.** $\rho = \lim_{k \to +\infty} 3|x| = 3|x|$, the series converges if 3|x| < 1 or |x| < 1/3 and diverges if |x| > 1/3. If x = -1/3, $\sum_{k=0}^{\infty} (-1)^k$ diverges, if x = 1/3, $\sum_{k=0}^{\infty} (1)$ diverges. The radius of convergence is 1/3, the interval of convergence is (-1/3, 1/3).
- **27.** $\rho = \lim_{k \to +\infty} \frac{|x|}{k+1} = 0$, the radius of convergence is $+\infty$, the interval is $(-\infty, +\infty)$.

28.
$$\rho = \lim_{k \to +\infty} \frac{k+1}{2} |x| = +\infty$$
, the radius of convergence is 0, the series converges only if $x = 0$.

- **29.** $\rho = \lim_{k \to +\infty} \frac{5k^2|x|}{(k+1)^2} = 5|x|$, converges if |x| < 1/5 and diverges if |x| > 1/5. If x = -1/5, $\sum_{k=1}^{\infty} \frac{(-1)^k}{k^2}$ converges; if x = 1/5, $\sum_{k=1}^{\infty} 1/k^2$ converges. Radius of convergence is 1/5, interval of convergence is [-1/5, 1/5].
- **30.** $\rho = \lim_{k \to +\infty} \frac{\ln k}{\ln(k+1)} |x| = |x|$, the series converges if |x| < 1 and diverges if |x| > 1. If x = -1, $\sum_{k=2}^{\infty} \frac{(-1)^k}{\ln k}$ converges; if x = 1, $\sum_{k=2}^{\infty} 1/(\ln k)$ diverges (compare to $\sum (1/k)$). Radius of convergence is 1, interval of convergence is [-1, 1).
- **31.** $\rho = \lim_{k \to +\infty} \frac{k|x|}{k+2} = |x|$, converges if |x| < 1, diverges if |x| > 1. If x = -1, $\sum_{k=1}^{\infty} \frac{(-1)^k}{k(k+1)}$ converges; if x = 1, $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$ converges. Radius of convergence is 1, interval of convergence is [-1, 1].
- 32. $\rho = \lim_{k \to +\infty} 2 \frac{k+1}{k+2} |x| = 2|x|$, converges if |x| < 1/2, diverges if |x| > 1/2. If x = -1/2, $\sum_{k=0}^{\infty} \frac{-1}{2(k+1)}$ diverges; if x = 1/2, $\sum_{k=0}^{\infty} \frac{(-1)^k}{2(k+1)}$ converges. Radius of convergence is 1/2, interval of convergence is (-1/2, 1/2].
- **33.** $\rho = \lim_{k \to +\infty} \frac{\sqrt{k}}{\sqrt{k+1}} |x| = |x|$, converges if |x| < 1, diverges if |x| > 1. If x = -1, $\sum_{k=1}^{\infty} \frac{-1}{\sqrt{k}}$ diverges; if x = 1, $\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{\sqrt{k}}$ converges. Radius of convergence is 1, interval of convergence is (-1, 1].
- **34.** $\rho = \lim_{k \to +\infty} \frac{|x|^2}{(2k+2)(2k+1)} = 0$, radius of convergence is $+\infty$, interval of convergence is $(-\infty, +\infty)$.
- **35.** $\rho = \lim_{k \to +\infty} \frac{|x|^2}{(2k+3)(2k+2)} = 0$, radius of convergence is $+\infty$, interval of convergence is $(-\infty, +\infty)$.
- **36.** $\rho = \lim_{k \to +\infty} \frac{k^{3/2}|x|^3}{(k+1)^{3/2}} = |x|^3$, converges if |x| < 1, diverges if |x| > 1. If x = -1, $\sum_{k=0}^{\infty} \frac{1}{k^{3/2}}$ converges; if x = 1, $\sum_{k=0}^{\infty} \frac{(-1)^k}{k^{3/2}}$ converges. Radius of convergence is 1, interval of convergence is [-1, 1].
- **37.** $\rho = \lim_{k \to +\infty} \frac{3|x|}{k+1} = 0$, radius of convergence is $+\infty$, interval of convergence is $(-\infty, +\infty)$.

Exercise Set 10.8 429

38. $\rho = \lim_{k \to +\infty} \frac{k(\ln k)^2 |x|}{(k+1)[\ln(k+1)]^2} = |x|$, converges if |x| < 1, diverges if |x| > 1. If x = -1, then, by Exercise 10.5.25, $\sum_{k=2}^{\infty} \frac{-1}{k(\ln k)^2}$ converges; if x = 1, $\sum_{k=2}^{\infty} \frac{(-1)^{k+1}}{k(\ln k)^2}$ converges. Radius of convergence is 1, interval of convergence is [-1, 1].

- **39.** $\rho = \lim_{k \to +\infty} \frac{1+k^2}{1+(k+1)^2} |x| = |x|$, converges if |x| < 1, diverges if |x| > 1. If x = -1, $\sum_{k=0}^{\infty} \frac{(-1)^k}{1+k^2}$ converges; if x = 1, $\sum_{k=0}^{\infty} \frac{1}{1+k^2}$ converges. Radius of convergence is 1, interval of convergence is [-1,1].
- **40.** $\rho = \lim_{k \to +\infty} \frac{1}{2}|x-3| = \frac{1}{2}|x-3|$, converges if |x-3| < 2, diverges if |x-3| > 2. If x = 1, $\sum_{k=0}^{\infty} (-1)^k$ diverges; if x = 5, $\sum_{k=0}^{\infty} 1$ diverges. Radius of convergence is 2, interval of convergence is (1,5).
- **41.** $\rho = \lim_{k \to +\infty} \frac{k|x+1|}{k+1} = |x+1|$, converges if |x+1| < 1, diverges if |x+1| > 1. If x = -2, $\sum_{k=1}^{\infty} \frac{-1}{k}$ diverges; if x = 0, $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$ converges. Radius of convergence is 1, interval of convergence is (-2,0].
- **42.** $\rho = \lim_{k \to +\infty} \frac{(k+1)^2}{(k+2)^2} |x-4| = |x-4|$, converges if |x-4| < 1, diverges if |x-4| > 1. If x = 3, $\sum_{k=0}^{\infty} 1/(k+1)^2$ converges; if x = 5, $\sum_{k=0}^{\infty} (-1)^k/(k+1)^2$ converges. Radius of convergence is 1, interval of convergence is [3,5].
- **43.** $\rho = \lim_{k \to +\infty} (3/4)|x+5| = \frac{3}{4}|x+5|$, converges if |x+5| < 4/3, diverges if |x+5| > 4/3. If x = -19/3, $\sum_{k=0}^{\infty} (-1)^k$ diverges; if x = -11/3, $\sum_{k=0}^{\infty} 1$ diverges. Radius of convergence is 4/3, interval of convergence is (-19/3, -11/3).
- **44.** $\rho = \lim_{k \to +\infty} \frac{(2k+3)(2k+2)k^3}{(k+1)^3} |x-2| = +\infty$, radius of convergence is 0, series converges only at x=2.
- **45.** $\rho = \lim_{k \to +\infty} \frac{k^2 + 4}{(k+1)^2 + 4} |x+1|^2 = |x+1|^2$, converges if |x+1| < 1, diverges if |x+1| > 1. If x = -2, $\sum_{k=1}^{\infty} \frac{(-1)^{3k+1}}{k^2 + 4}$ converges; if x = 0, $\sum_{k=1}^{\infty} \frac{(-1)^k}{k^2 + 4}$ converges. Radius of convergence is 1, interval of convergence is [-2, 0].

46.
$$\rho = \lim_{k \to +\infty} \frac{k \ln(k+1)}{(k+1) \ln k} |x-3| = |x-3|$$
, converges if $|x-3| < 1$, diverges if $|x-3| > 1$. If $x = 2$, $\sum_{k=1}^{\infty} \frac{(-1)^k \ln k}{k}$ converges; if $x = 4$, $\sum_{k=1}^{\infty} \frac{\ln k}{k}$ diverges. Radius of convergence is 1, interval of convergence is [2, 4).

- 47. $\rho = \lim_{k \to +\infty} \frac{\pi |x-1|^2}{(2k+3)(2k+2)} = 0$, radius of convergence $+\infty$, interval of convergence $(-\infty, +\infty)$.
- **48.** $\rho = \lim_{k \to +\infty} \frac{1}{16} |2x 3| = \frac{1}{16} |2x 3|$, converges if $\frac{1}{16} |2x 3| < 1$ or |x 3/2| < 8, diverges if |x 3/2| > 8. If x = -13/2, $\sum_{k=0}^{\infty} (-1)^k$ diverges; if x = 19/2, $\sum_{k=0}^{\infty} 1$ diverges. Radius of convergence is 8, interval of convergence is (-13/2, 19/2).
- **49.** $\rho = \lim_{k \to +\infty} \sqrt[k]{|u_k|} = \lim_{k \to +\infty} \frac{|x|}{\ln k} = 0$, the series converges absolutely for all x so the interval of convergence is $(-\infty, +\infty)$.
- 50. $\rho = \lim_{k \to +\infty} \frac{2k+1}{(2k)(2k-1)} |x| = 0$ so $R = +\infty$.
- 1. (a) 10
- **52.** Ratio Test: $\rho = \lim_{k \to +\infty} \frac{|x|^2}{4(k+1)(k+2)} = 0, \ R = +\infty$
- **53.** By the Ratio Test for absolute convergence,

$$\begin{split} \rho &= \lim_{k \to +\infty} \frac{(pk+p)!(k!)^p}{(pk)![(k+1)!]^p} |x| = \lim_{k \to +\infty} \frac{(pk+p)(pk+p-1)(pk+p-2)\cdots(pk+p-[p-1])}{(k+1)^p} |x| \\ &= \lim_{k \to +\infty} p\left(p - \frac{1}{k+1}\right) \left(p - \frac{2}{k+1}\right) \cdots \left(p - \frac{p-1}{k+1}\right) |x| = p^p |x|, \end{split}$$

converges if $|x| < 1/p^p$, diverges if $|x| > 1/p^p$. Radius of convergence is $1/p^p$.

54. By the Ratio Test for absolute convergence,

$$\rho = \lim_{k \to +\infty} \frac{(k+1+p)!k!(k+q)!}{(k+p)!(k+1)!(k+1+q)!} |x| = \lim_{k \to +\infty} \frac{k+1+p}{(k+1)(k+1+q)} |x| = 0,$$

radius of convergence is $+\infty$.

55. (a) By Theorem 10.5.3(b) both series converge or diverge together, so they have the same radius of convergence.

Exercise Set 10.9 431

(b) By Theorem 10.5.3(a) the series $\sum (c_k + d_k)(x - x_0)^k$ converges if $|x - x_0| < R$; if $|x - x_0| > R$ then $\sum (c_k + d_k)(x - x_0)^k$ cannot converge, as otherwise $\sum c_k(x - x_0)^k$ would converge by the same Theorem. Hence the radius of convergence of $\sum (c_k + d_k)(x - x_0)^k$ is R.

- (c) Let r be the radius of convergence of $\sum (c_k + d_k)(x x_0)^k$. If $|x x_0| < \min(R_1, R_2)$ then $\sum c_k(x x_0)^k$ and $\sum d_k(x x_0)^k$ converge, so $\sum (c_k + d_k)(x x_0)^k$ converges. Hence $r \ge \min(R_1, R_2)$ (to see that $r > \min(R_1, R_2)$ is possible consider the case $c_k = -d_k = 1$). If in addition $R_1 \ne R_2$, and $R_1 < |x x_0| < R_2$ (or $R_2 < |x x_0| < R_1$) then $\sum (c_k + d_k)(x x_0)^k$ cannot converge, as otherwise all three series would converge. Thus in this case $r = \min(R_1, R_2)$.
- **56.** By the Root Test for absolute convergence, $\rho = \lim_{k \to +\infty} |c_k|^{1/k} |x| = L|x|, L|x| < 1 \text{ if } |x| < 1/L \text{ so the radius of convergence is } 1/L.$
- **57.** By assumption $\sum_{k=0}^{\infty} c_k x^k$ converges if |x| < R so $\sum_{k=0}^{\infty} c_k x^{2k} = \sum_{k=0}^{\infty} c_k (x^2)^k$ converges if $|x^2| < R$, $|x| < \sqrt{R}$. Moreover, $\sum_{k=0}^{\infty} c_k x^{2k} = \sum_{k=0}^{\infty} c_k (x^2)^k$ diverges if $|x^2| > R$, $|x| > \sqrt{R}$. Thus $\sum_{k=0}^{\infty} c_k x^{2k}$ has radius of convergence \sqrt{R} .
- 58. The assumption is that $\sum_{k=0}^{\infty} c_k R^k$ is convergent and $\sum_{k=0}^{\infty} c_k (-R)^k$ is divergent. Suppose that $\sum_{k=0}^{\infty} c_k R^k$ is absolutely convergent then $\sum_{k=0}^{\infty} c_k (-R)^k$ is also absolutely convergent and hence convergent because $|c_k R^k| = |c_k (-R)^k|$, which contradicts the assumption that $\sum_{k=0}^{\infty} c_k (-R)^k$ is divergent so $\sum_{k=0}^{\infty} c_k R^k$ must be conditionally convergent.

- 1. $\sin 4^\circ = \sin \left(\frac{\pi}{45}\right) = \frac{\pi}{45} \frac{(\pi/45)^3}{3!} + \frac{(\pi/45)^5}{5!} \cdots$
 - (a) Method 1: $|R_n(\pi/45)| \le \frac{(\pi/45)^{n+1}}{(n+1)!} < 0.000005$ for n+1=4, n=3; $\sin 4^\circ \approx \frac{\pi}{45} \frac{(\pi/45)^3}{3!} \approx 0.069756$
 - (b) Method 2: The first term in the alternating series that is less than 0.000005 is $\frac{(\pi/45)^5}{5!}$, so the result is the same as in Part (a).
- **2.** $\cos 3^{\circ} = \cos \left(\frac{\pi}{60}\right) = 1 \frac{(\pi/60)^2}{2} + \frac{(\pi/60)^4}{4!} \cdots$
 - (a) Method 1: $|R_n(\pi/60)| \le \frac{(\pi/60)^{n+1}}{(n+1)!} < 0.0005 \text{ for } n=2; \cos 3^{\circ} \approx 1 \frac{(\pi/60)^2}{2} \approx 0.9986.$
 - (b) Method 2: The first term in the alternating series that is less than 0.0005 is $\frac{(\pi/60)^4}{4!}$, so the result is the same as in Part (a).

3. $|R_n(0.1)| \le \frac{(0.1)^{n+1}}{(n+1)!} \le 0.000005$ for n=3; $\cos 0.1 \approx 1 - (0.1)^2/2 = 0.99500$, calculator value 0.995004...

- **4.** $(0.1)^3/3 < 0.5 \times 10^{-3}$ so $\tan^{-1}(0.1) \approx 0.100$, calculator value ≈ 0.0997
- 5. Expand about $\pi/2$ to get $\sin x = 1 \frac{1}{2!}(x \pi/2)^2 + \frac{1}{4!}(x \pi/2)^4 \cdots$, $85^\circ = 17\pi/36$ radians, $|R_n(x)| \le \frac{|x \pi/2|^{n+1}}{(n+1)!}$, $|R_n(17\pi/36)| \le \frac{|17\pi/36 \pi/2|^{n+1}}{(n+1)!} = \frac{(\pi/36)^{n+1}}{(n+1)!} < 0.5 \times 10^{-4}$ if n = 3, $\sin 85^\circ \approx 1 \frac{1}{2}(-\pi/36)^2 \approx 0.99619$, calculator value 0.99619...
- **6.** $-175^{\circ} = -\pi + \pi/36 \text{ rad}; \ x_0 = -\pi, x = -\pi + \pi/36, \ \cos x = -1 + \frac{(x+\pi)^2}{2} \frac{(x+\pi)^4}{4!} \cdots;$ $|R_n| \le \frac{(\pi/36)^{n+1}}{(n+1)!} \le 0.00005 \text{ for } n = 3; \ \cos(-\pi + \pi/36) = -1 + \frac{(\pi/36)^2}{2} \approx -0.99619,$ calculator value -0.99619...
- 7. $f^{(k)}(x) = \cosh x$ or $\sinh x, |f^{(k)}(x)| \le \cosh x \le \cosh 0.5 = \frac{1}{2} \left(e^{0.5} + e^{-0.5} \right) < \frac{1}{2} (2+1) = 1.5$ so $|R_n(x)| < \frac{1.5(0.5)^{n+1}}{(n+1)!} \le 0.5 \times 10^{-3}$ if n = 4, $\sinh 0.5 \approx 0.5 + \frac{(0.5)^3}{3!} \approx 0.5208$, calculator value 0.52109...
- 8. $f^{(k)}(x) = \cosh x$ or $\sinh x, |f^{(k)}(x)| \le \cosh x \le \cosh 0.1 = \frac{1}{2} \left(e^{0.1} + e^{-0.1} \right) < 1.06$ so $|R_n(x)| < \frac{1.06(0.1)^{n+1}}{(n+1)!} \le 0.5 \times 10^{-3}$ for n = 2, $\cosh 0.1 \approx 1 + \frac{(0.1)^2}{2!} = 1.005$, calculator value 1.0050...
- 9. $f(x) = \sin x, \ f^{(n+1)}(x) = \pm \sin x \text{ or } \pm \cos x, \ |f^{(n+1)}(x)| \le 1, \ |R_n(x)| \le \frac{|x \pi/4|^{n+1}}{(n+1)!},$ $\lim_{n \to +\infty} \frac{|x \pi/4|^{n+1}}{(n+1)!} = 0; \text{ by the Squeezing Theorem}, \lim_{n \to +\infty} |R_n(x)| = 0$ so $\lim_{n \to +\infty} R_n(x) = 0$ for all x.
- **10.** $f(x) = e^x$, $f^{(n+1)}(x) = e^x$; if x > 1 then $|R_n(x)| \le \frac{e^x}{(n+1)!} |x-1|^{n+1}$; if x < 1 then $|R_n(x)| \le \frac{e}{(n+1)!} |x-1|^{n+1}$. But $\lim_{n \to +\infty} \frac{|x-1|^{n+1}}{(n+1)!} = 0$ so $\lim_{n \to +\infty} R_n(x) = 0$.
- 11. (a) Let x = 1/9 in series (13).
 - (b) $\ln 1.25 \approx 2\left(1/9 + \frac{(1/9)^3}{3}\right) = 2(1/9 + 1/3^7) \approx 0.223$, which agrees with the calculator value 0.22314... to three decimal places.

12. (a) Let
$$x = 1/2$$
 in series (13).

(b)
$$\ln 3 \approx 2 \left(1/2 + \frac{(1/2)^3}{3} \right) = 2(1/2 + 1/24) = 13/12 \approx 1.083$$
; the calculator value is 1.099 to three decimal places.

13. (a)
$$(1/2)^9/9 < 0.5 \times 10^{-3} \text{ and } (1/3)^7/7 < 0.5 \times 10^{-3} \text{ so}$$

$$\tan^{-1}(1/2) \approx 1/2 - \frac{(1/2)^3}{3} + \frac{(1/2)^5}{5} - \frac{(1/2)^7}{7} \approx 0.4635$$

$$\tan^{-1}(1/3) \approx 1/3 - \frac{(1/3)^3}{3} + \frac{(1/3)^5}{5} \approx 0.3218$$

(b) From Formula (17), $\pi \approx 4(0.4635 + 0.3218) = 3.1412$

(c) Let
$$a = \tan^{-1} \frac{1}{2}$$
, $b = \tan^{-1} \frac{1}{3}$; then $|a - 0.4635| < 0.0005$ and $|b - 0.3218| < 0.0005$, so $|4(a+b) - 3.1412| \le 4|a - 0.4635| + 4|b - 0.3218| < 0.004$, so two decimal-place accuracy is guaranteed, but not three.

14.
$$(27+x)^{1/3} = 3(1+x/3^3)^{1/3} = 3\left(1+\frac{1}{3^4}x - \frac{1\cdot 2}{3^82}x^2 + \frac{1\cdot 2\cdot 5}{3^{12}3!}x^3 + \dots\right)$$
, alternates after first term, $\frac{3\cdot 2}{3^82} < 0.0005$, $\sqrt{28} \approx 3\left(1+\frac{1}{3^4}\right) \approx 3.0370$

15. (a)
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + (0)x^5 + R_5(x),$$

$$|R_5(x)| \le \frac{|x|^6}{6!} \le \frac{(0.2)^6}{6!} < 9 \times 10^{-8}$$

17. (a)
$$(1+x)^{-1} = 1 - x + \frac{-1(-2)}{2!}x^2 + \frac{-1(-2)(-3)}{3!}x^3 + \dots + \frac{-1(-2)(-3)\cdots(-k)}{k!}x^k + \dots$$
$$= \sum_{k=0}^{\infty} (-1)^k x^k$$

(b)
$$(1+x)^{1/3} = 1 + (1/3)x + \frac{(1/3)(-2/3)}{2!}x^2 + \frac{(1/3)(-2/3)(-5/3)}{3!}x^3 + \cdots + \frac{(1/3)(-2/3)\cdots(4-3k)/3}{k!}x^k + \cdots = 1 + x/3 + \sum_{k=2}^{\infty} (-1)^{k-1} \frac{2 \cdot 5 \cdots (3k-4)}{3^k k!}x^k$$

(c)
$$(1+x)^{-3} = 1 - 3x + \frac{(-3)(-4)}{2!}x^2 + \frac{(-3)(-4)(-5)}{3!}x^3 + \dots + \frac{(-3)(-4)\cdots(-2-k)}{k!}x^k + \dots$$

$$= \sum_{k=0}^{\infty} (-1)^k \frac{(k+2)!}{2 \cdot k!} x^k = \sum_{k=0}^{\infty} (-1)^k \frac{(k+2)(k+1)}{2} x^k$$

18.
$$(1+x)^m = \binom{m}{0} + \sum_{k=1}^{\infty} \binom{m}{k} x^k = \sum_{k=0}^{\infty} \binom{m}{k} x^k$$

19. (a)
$$\frac{d}{dx}\ln(1+x) = \frac{1}{1+x}, \frac{d^k}{dx^k}\ln(1+x) = (-1)^{k-1}\frac{(k-1)!}{(1+x)^k};$$
 similarly $\frac{d}{dx}\ln(1-x) = -\frac{(k-1)!}{(1-x)^k},$ so $f^{(n+1)}(x) = n! \left[\frac{(-1)^n}{(1+x)^{n+1}} + \frac{1}{(1-x)^{n+1}} \right].$

(b)
$$|f^{(n+1)}(x)| \le n! \left| \frac{(-1)^n}{(1+x)^{n+1}} \right| + n! \left| \frac{1}{(1-x)^{n+1}} \right| = n! \left[\frac{1}{(1+x)^{n+1}} + \frac{1}{(1-x)^{n+1}} \right]$$

(c) If
$$|f^{(n+1)}(x)| \le M$$
 on the interval $[0, 1/3]$ then $|R_n(1/3)| \le \frac{M}{(n+1)!} \left(\frac{1}{3}\right)^{n+1}$.

(d) If
$$0 \le x \le 1/3$$
 then $1 + x \ge 1, 1 - x \ge 2/3$, $|f^{(n+1)}(x)| \le M = n! \left[1 + \frac{1}{(2/3)^{n+1}} \right]$.

(e)
$$0.000005 \ge \frac{M}{(n+1)!} \left(\frac{1}{3}\right)^{n+1} = \frac{1}{n+1} \left[\left(\frac{1}{3}\right)^{n+1} + \frac{(1/3)^{n+1}}{(2/3)^{n+1}} \right] = \frac{1}{n+1} \left[\left(\frac{1}{3}\right)^{n+1} + \left(\frac{1}{2}\right)^{n+1} \right]$$

20. Set x = 1/4 in Formula (13). Follow the argument of Exercise 19: Parts (a) and (b) remain unchanged; in Part (c) replace (1/3) with (1/4):

$$\left| R_n \left(\frac{1}{4} \right) \right| \leq \frac{M}{(n+1)!} \left(\frac{1}{4} \right)^{n+1} \leq 0.000005 \text{ for } x \text{ in the interval } [0,1/4]. \text{ From Part (b), together with } 0 \leq x \leq 1/4, 1+x \geq 1, 1-x \geq 3/4, \text{ follows Part (d): } M=n! \left[1+\frac{1}{(3/4)^{n+1}} \right]. \text{ Part (e) now becomes } 0.000005 \geq \frac{M}{(n+1)!} \left(\frac{1}{4} \right)^{n+1} = \frac{1}{n+1} \left[\left(\frac{1}{4} \right)^{n+1} + \left(\frac{1}{3} \right)^{n+1} \right], \text{ which is true for } n=9.$$

- **21.** $f(x) = \cos x, f^{(n+1)}(x) = \pm \sin x \text{ or } \pm \cos x, |f^{(n+1)}(x)| \le 1, \text{ set } M = 1,$ $|R_n(x)| \le \frac{1}{(n+1)!} |x-a|^{n+1}, \lim_{n \to +\infty} \frac{|x-a|^{n+1}}{(n+1)!} = 0 \text{ so } \lim_{n \to +\infty} R_n(x) = 0 \text{ for all } x.$
- **22.** $f(x) = \sin x, f^{(n+1)}(x) = \pm \sin x \text{ or } \pm \cos x, |f^{(n+1)}(x)| \le 1, \text{ follow Exercise 21.}$
- 23. (a) From Machin's formula and a CAS, $\frac{\pi}{4} \approx 0.7853981633974483096156608$, accurate to the 25th decimal place.

(b)	n	s_n
	0	0.318309878
	1	0.3183098 861837906 067
	2	$0.31830988618379067153776695\dots$
	3	$0.3183098861837906715377675267450234\dots$
	$1/\pi$	$0.3183098861837906715377675267450287\dots$

24. (a)
$$f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{e^{-1/h^2}}{h}$$
, let $t = 1/h$ then $h = 1/t$ and
$$\lim_{h \to 0^+} \frac{e^{-1/h^2}}{h} = \lim_{t \to +\infty} te^{-t^2} = \lim_{t \to +\infty} \frac{t}{e^{t^2}} = \lim_{t \to +\infty} \frac{1}{2te^{t^2}} = 0$$
, similarly $\lim_{h \to 0^-} \frac{e^{-1/h^2}}{h} = 0$ so $f'(0) = 0$.

(b) The Maclaurin series is $0 + 0 \cdot x + 0 \cdot x^2 + \dots = 0$, but f(0) = 0 and f(x) > 0 if $x \neq 0$ so the series converges to f(x) only at the point x = 0.

EXERCISE SET 10.10

1. (a) Replace
$$x$$
 with $-x$: $\frac{1}{1+x} = 1 - x + x^2 - \dots + (-1)^k x^k + \dots$; $R = 1$.

(b) Replace
$$x$$
 with $x^2 : \frac{1}{1-x^2} = 1 + x^2 + x^4 + \dots + x^{2k} + \dots; R = 1.$

(c) Replace
$$x$$
 with $2x : \frac{1}{1-2x} = 1 + 2x + 4x^2 + \dots + 2^k x^k + \dots; R = 1/2.$

(d)
$$\frac{1}{2-x} = \frac{1/2}{1-x/2}$$
; replace x with $x/2 : \frac{1}{2-x} = \frac{1}{2} + \frac{1}{2^2}x + \frac{1}{2^3}x^2 + \dots + \frac{1}{2^{k+1}}x^k + \dots$; $R = 2$.

2. (a) Replace
$$x$$
 with $-x : \ln(1-x) = -x - x^2/2 - x^3/3 - \dots - x^k/k - \dots$; $R = 1$.

(b) Replace
$$x$$
 with $x^2 : \ln(1+x^2) = x^2 - x^4/2 + x^6/3 - \dots + (-1)^{k-1}x^{2k}/k + \dots$; $R = 1$.

(c) Replace
$$x$$
 with $2x : \ln(1+2x) = 2x - (2x)^2/2 + (2x)^3/3 - \dots + (-1)^{k-1}(2x)^k/k + \dots$; $R = 1/2$.

(d)
$$\ln(2+x) = \ln 2 + \ln(1+x/2)$$
; replace x with $x/2$: $\ln(2+x) = \ln 2 + x/2 - (x/2)^2/2 + (x/2)^3/3 + \dots + (-1)^{k-1}(x/2)^k/k + \dots$; $R = 2$.

3. (a) From Section 10.9, Example 5(b),
$$\frac{1}{\sqrt{1+x}} = 1 - \frac{1}{2}x + \frac{1 \cdot 3}{2^2 \cdot 2!}x^2 - \frac{1 \cdot 3 \cdot 5}{2^3 \cdot 3!}x^3 + \cdots$$
, so $(2+x)^{-1/2} = \frac{1}{\sqrt{2}\sqrt{1+x/2}} = \frac{1}{2^{1/2}} - \frac{1}{2^{5/2}}x + \frac{1 \cdot 3}{2^{9/2} \cdot 2!}x^2 - \frac{1 \cdot 3 \cdot 5}{2^{13/2} \cdot 3!}x^3 + \cdots$

(b) Example 5(a):
$$\frac{1}{(1+x)^2} = 1 - 2x + 3x^2 - 4x^3 + \cdots$$
, so $\frac{1}{(1-x^2)^2} = 1 + 2x^2 + 3x^4 + 4x^6 + \cdots$

4. (a)
$$\frac{1}{a-x} = \frac{1/a}{1-x/a} = 1/a + x/a^2 + x^2/a^3 + \dots + x^k/a^{k+1} + \dots$$
; $R = |a|$.

(b)
$$1/(a+x)^2 = \frac{1}{a^2} \frac{1}{(1+x/a)^2} = \frac{1}{a^2} \left(1 - 2(x/a) + 3(x/a)^2 - 4(x/a)^3 + \cdots \right)$$

= $\frac{1}{a^2} - \frac{2}{a^3}x + \frac{3}{a^4}x^2 - \frac{4}{a^5}x^3 + \cdots; \quad R = |a|$

5. (a)
$$2x - \frac{2^3}{3!}x^3 + \frac{2^5}{5!}x^5 - \frac{2^7}{7!}x^7 + \cdots; R = +\infty$$

(b)
$$1 - 2x + 2x^2 - \frac{4}{3}x^3 + \cdots$$
; $R = +\infty$

(c)
$$1+x^2+\frac{1}{2!}x^4+\frac{1}{3!}x^6+\cdots$$
; $R=+\infty$

(d)
$$x^2 - \frac{\pi^2}{2}x^4 + \frac{\pi^4}{4!}x^6 - \frac{\pi^6}{6!}x^8 + \dots; R = +\infty$$

6. (a)
$$1 - \frac{2^2}{2!}x^2 + \frac{2^4}{4!}x^4 - \frac{2^6}{6!}x^6 + \cdots; R = +\infty$$

(b)
$$x^2 \left(1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \dots \right) = x^2 + x^3 + \frac{1}{2!}x^4 + \frac{1}{3!}x^5 + \dots; R = +\infty$$

(c)
$$x\left(1-x+\frac{1}{2!}x^2-\frac{1}{3!}x^3+\cdots\right)=x-x^2+\frac{1}{2!}x^3-\frac{1}{3!}x^4+\cdots; R=+\infty$$

(d)
$$x^2 - \frac{1}{3!}x^6 + \frac{1}{5!}x^{10} - \frac{1}{7!}x^{14} + \cdots; R = +\infty$$

7. (a)
$$x^2 (1 - 3x + 9x^2 - 27x^3 + \cdots) = x^2 - 3x^3 + 9x^4 - 27x^5 + \cdots; R = 1/3$$

(b)
$$x\left(2x+\frac{2^3}{3!}x^3+\frac{2^5}{5!}x^5+\frac{2^7}{7!}x^7+\cdots\right)=2x^2+\frac{2^3}{3!}x^4+\frac{2^5}{5!}x^6+\frac{2^7}{7!}x^8+\cdots; R=+\infty$$

(c) Substitute 3/2 for m and $-x^2$ for x in Equation (18) of Section 10.9, then multiply by x: $x - \frac{3}{2}x^3 + \frac{3}{8}x^5 + \frac{1}{16}x^7 + \cdots; R = 1$

8. (a)
$$\frac{x}{x-1} = \frac{-x}{1-x} = -x(1+x+x^2+x^3+\cdots) = -x-x^2-x^3-x^4-\cdots$$
; $R=1$.

(b)
$$3 + \frac{3}{2!}x^4 + \frac{3}{4!}x^8 + \frac{3}{6!}x^{12} + \cdots; R = +\infty$$

(c) From Table 10.9.1 with
$$m = -3$$
, $(1+x)^{-3} = 1 - 3x + 6x^2 - 10x^3 + \cdots$, so $x(1+2x)^{-3} = x - 6x^2 + 24x^3 - 80x^4 + \cdots$; $R = 1/2$

9. (a)
$$\sin^2 x = \frac{1}{2}(1 - \cos 2x) = \frac{1}{2}\left[1 - \left(1 - \frac{2^2}{2!}x^2 + \frac{2^4}{4!}x^4 - \frac{2^6}{6!}x^6 + \cdots\right)\right]$$

= $x^2 - \frac{2^3}{4!}x^4 + \frac{2^5}{6!}x^6 - \frac{2^7}{8!}x^8 + \cdots$

(b)
$$\ln\left[(1+x^3)^{12}\right] = 12\ln(1+x^3) = 12x^3 - 6x^6 + 4x^9 - 3x^{12} + \cdots$$

10. (a)
$$\cos^2 x = \frac{1}{2}(1 + \cos 2x) = \frac{1}{2} \left[1 + \left(1 - \frac{2^2}{2!}x^2 + \frac{2^4}{4!}x^4 - \frac{2^6}{6!}x^6 + \cdots \right) \right]$$

= $1 - x^2 + \frac{2^3}{4!}x^4 - \frac{2^5}{6!}x^6 + \cdots$

(b) In Equation (13) of Section 10.9 replace
$$x$$
 with $-x$: $\ln\left(\frac{1-x}{1+x}\right) = -2\left(x + \frac{1}{3}x^3 + \frac{1}{5}x^5 + \cdots\right)$

11. (a)
$$\frac{1}{x} = \frac{1}{1 - (1 - x)} = 1 + (1 - x) + (1 - x)^2 + \dots + (1 - x)^k + \dots$$

= $1 - (x - 1) + (x - 1)^2 - \dots + (-1)^k (x - 1)^k + \dots$

(b) (0,2)

12. (a)
$$\frac{1}{x} = \frac{1/x_0}{1 + (x - x_0)/x_0} = 1/x_0 - (x - x_0)/x_0^2 + (x - x_0)^2/x_0^3 - \dots + (-1)^k(x - x_0)^k/x_0^{k+1} + \dots$$

(b) $(0,2x_0)$

13. (a)
$$(1+x+x^2/2+x^3/3!+x^4/4!+\cdots)(x-x^3/3!+x^5/5!-\cdots)=x+x^2+x^3/3-x^5/30+\cdots$$

(b)
$$(1+x/2-x^2/8+x^3/16-(5/128)x^4+\cdots)(x-x^2/2+x^3/3-x^4/4+x^5/5-\cdots)$$

= $x-x^3/24+x^4/24-(71/1920)x^5+\cdots$

14. (a)
$$(1-x^2+x^4/2-x^6/6+\cdots)\left(1-\frac{1}{2}x^2+\frac{1}{24}x^4-\frac{1}{720}x^6\cdots\right)=1-\frac{3}{2}x^2+\frac{25}{24}x^4-\frac{331}{720}x^6+\cdots$$

(b)
$$\left(1 + \frac{4}{3}x^2 + \cdots\right) \left(1 + \frac{1}{3}x - \frac{1}{9}x^2 + \frac{5}{81}x^3 - \cdots\right) = 1 + \frac{1}{3}x + \frac{11}{9}x^2 + \frac{41}{81}x^3 + \cdots$$

15. (a)
$$\frac{1}{\cos x} = 1 / \left(1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \cdots \right) = 1 + \frac{1}{2}x^2 + \frac{5}{24}x^4 + \frac{61}{720}x^6 + \cdots$$

(b)
$$\frac{\sin x}{e^x} = \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots\right) / \left(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots\right) = x - x^2 + \frac{1}{3}x^3 - \frac{1}{30}x^5 + \cdots$$

16. (a)
$$\frac{\tan^{-1} x}{1+x} = (x-x^3/3+x^5/5-\cdots)/(1+x) = x-x^2+\frac{2}{3}x^3-\frac{2}{3}x^4\cdots$$

(b)
$$\frac{\ln(1+x)}{1-x} = \left(x - x^2/2 + x^3/3 - x^4/4 + \cdots\right) / (1-x) = x + \frac{1}{2}x^2 + \frac{5}{6}x^3 + \frac{7}{12}x^4 + \cdots$$

17.
$$e^x = 1 + x + x^2/2 + x^3/3! + \dots + x^k/k! + \dots$$
, $e^{-x} = 1 - x + x^2/2 - x^3/3! + \dots + (-1)^k x^k/k! + \dots$; $\sinh x = \frac{1}{2} \left(e^x - e^{-x} \right) = x + x^3/3! + x^5/5! + \dots + x^{2k+1}/(2k+1)! + \dots$, $R = +\infty$ $\cosh x = \frac{1}{2} \left(e^x + e^{-x} \right) = 1 + x^2/2 + x^4/4! + \dots + x^{2k}/(2k)! + \dots$, $R = +\infty$

18.
$$\tanh x = \frac{x + x^3/3! + x^5/5! + x^7/7! + \cdots}{1 + x^2/2 + x^4/4! + x^6/6! + \cdots} = x - \frac{1}{3}x^3 + \frac{2}{15}x^5 - \frac{17}{315}x^7 + \cdots$$

19.
$$\frac{4x-2}{x^2-1} = \frac{-1}{1-x} + \frac{3}{1+x} = -\left(1+x+x^2+x^3+x^4+\cdots\right) + 3\left(1-x+x^2-x^3+x^4+\cdots\right)$$
$$= 2-4x+2x^2-4x^3+2x^4+\cdots$$

20.
$$\frac{x^3 + x^2 + 2x - 2}{x^2 - 1} = x + 1 - \frac{1}{1 - x} + \frac{2}{1 + x}$$
$$= x + 1 - \left(1 + x + x^2 + x^3 + x^4 + \cdots\right) + 2\left(1 - x + x^2 - x^3 + x^4 + \cdots\right)$$
$$= 2 - 2x + x^2 - 3x^3 + x^4 - \cdots$$

21. (a)
$$\frac{d}{dx} (1 - x^2/2! + x^4/4! - x^6/6! + \cdots) = -x + x^3/3! - x^5/5! + \cdots = -\sin x$$

(b)
$$\frac{d}{dx}(x-x^2/2+x^3/3-\cdots)=1-x+x^2-\cdots=1/(1+x)$$

22. (a)
$$\frac{d}{dx}(x+x^3/3!+x^5/5!+\cdots)=1+x^2/2!+x^4/4!+\cdots=\cosh x$$

(b)
$$\frac{d}{dx}(x-x^3/3+x^5/5-x^7/7+\cdots)=1-x^2+x^4-x^6+\cdots=\frac{1}{1+x^2}$$

23. (a)
$$\int (1+x+x^2/2!+\cdots) dx = (x+x^2/2!+x^3/3!+\cdots)+C_1$$
$$= (1+x+x^2/2!+x^3/3!+\cdots)+C_1-1=e^x+C$$

(b)
$$\int (x+x^3/3!+x^5/5!+\cdots) = x^2/2!+x^4/4!+\cdots+C_1$$
$$= 1+x^2/2!+x^4/4!+\cdots+C_1-1 = \cosh x+C$$

24. (a)
$$\int (x - x^3/3! + x^5/5! - \cdots) dx = (x^2/2! - x^4/4! + x^6/6! - \cdots) + C_1$$
$$= -(1 - x^2/2! + x^4/4! - x^6/6! + \cdots) + C_1 + 1$$
$$= -\cos x + C$$

(b)
$$\int (1 - x + x^2 - \dots) dx = (x - x^2/2 + x^3/3 - \dots) + C = \ln(1 + x) + C$$
(Note: $-1 < x < 1$, so $|1 + x| = 1 + x$)

25. (a) Substitute x^2 for x in the Maclaurin Series for 1/(1-x) (Table 10.9.1) and then multiply by x: $\frac{x}{1-x^2} = x \sum_{k=0}^{\infty} (x^2)^k = \sum_{k=0}^{\infty} x^{2k+1}$

(b)
$$f^{(5)}(0) = 5!c_5 = 5!$$
, $f^{(6)}(0) = 6!c_6 = 0$ **(c)** $f^{(n)}(0) = n!c_n = \begin{cases} n! & \text{if } n \text{ odd} \\ 0 & \text{if } n \text{ even} \end{cases}$

26.
$$x^2 \cos 2x = \sum_{k=0}^{\infty} \frac{(-1)^k 2^{2k}}{(2k)!} x^{2k+2}$$
; $f^{(99)}(0) = 0$ because $c_{99} = 0$.

27. (a)
$$\lim_{x\to 0} \frac{\sin x}{x} = \lim_{x\to 0} \left(1 - x^2/3! + x^4/5! - \cdots\right) = 1$$

(b)
$$\lim_{x \to 0} \frac{\tan^{-1} x - x}{x^3} = \lim_{x \to 0} \frac{\left(x - x^3/3 + x^5/5 - x^7/7 + \cdots\right) - x}{x^3} = -1/3$$

28. (a)
$$\frac{1-\cos x}{\sin x} = \frac{1-\left(1-x^2/2!+x^4/4!-x^6/6!+\cdots\right)}{x-x^3/3!+x^5/5!-\cdots} = \frac{x^2/2!-x^4/4!+x^6/6!-\cdots}{x-x^3/3!+x^5/5!-\cdots}$$
$$= \frac{x/2!-x^3/4!+x^5/6!-\cdots}{1-x^2/3!+x^4/5!-\cdots}, x \neq 0; \lim_{x\to 0} \frac{1-\cos x}{\sin x} = \frac{0}{1} = 0$$

(b)
$$\lim_{x \to 0} \frac{1}{x} \left[\ln \sqrt{1+x} - \sin 2x \right] = \lim_{x \to 0} \frac{1}{x} \left[\frac{1}{2} \ln(1+x) - \sin 2x \right]$$
$$= \lim_{x \to 0} \frac{1}{x} \left[\frac{1}{2} \left(x - \frac{1}{2} x^2 + \frac{1}{3} x^3 - \dots \right) - \left(2x - \frac{4}{3} x^3 + \frac{4}{15} x^5 - \dots \right) \right]$$
$$= \lim_{x \to 0} \left(-\frac{3}{2} - \frac{1}{4} x + \frac{3}{2} x^2 + \dots \right) = -3/2$$

29.
$$\int_0^1 \sin(x^2) dx = \int_0^1 \left(x^2 - \frac{1}{3!} x^6 + \frac{1}{5!} x^{10} - \frac{1}{7!} x^{14} + \cdots \right) dx$$
$$= \frac{1}{3} x^3 - \frac{1}{7 \cdot 3!} x^7 + \frac{1}{11 \cdot 5!} x^{11} - \frac{1}{15 \cdot 7!} x^{15} + \cdots \right]_0^1$$
$$= \frac{1}{3} - \frac{1}{7 \cdot 3!} + \frac{1}{11 \cdot 5!} - \frac{1}{15 \cdot 7!} + \cdots,$$

but
$$\frac{1}{15 \cdot 7!} < 0.5 \times 10^{-3} \text{ so } \int_0^1 \sin(x^2) dx \approx \frac{1}{3} - \frac{1}{7 \cdot 3!} + \frac{1}{11 \cdot 5!} \approx 0.3103$$

30.
$$\int_0^{1/2} \tan^{-1} (2x^2) dx = \int_0^{1/2} \left(2x^2 - \frac{8}{3}x^6 + \frac{32}{5}x^{10} - \frac{128}{7}x^{14} + \cdots \right) dx$$
$$= \frac{2}{3}x^3 - \frac{8}{21}x^7 + \frac{32}{55}x^{11} - \frac{128}{105}x^{15} + \cdots \right]_0^{1/2}$$
$$= \frac{2}{3}\frac{1}{2^3} - \frac{8}{21}\frac{1}{2^7} + \frac{32}{55}\frac{1}{2^{11}} - \frac{128}{105}\frac{1}{2^{15}} - \cdots,$$

but
$$\frac{32}{55 \cdot 2^{11}} < 0.5 \times 10^{-3} \text{ so } \int_0^{1/2} \tan^{-1}(2x^2) dx \approx \frac{2}{3 \cdot 2^3} - \frac{8}{21 \cdot 2^7} \approx 0.0804$$

31.
$$\int_0^{0.2} (1+x^4)^{1/3} dx = \int_0^{0.2} \left(1 + \frac{1}{3}x^4 - \frac{1}{9}x^8 + \cdots\right) dx$$
$$= x + \frac{1}{15}x^5 - \frac{1}{81}x^9 + \cdots \Big]_0^{0.2} = 0.2 + \frac{1}{15}(0.2)^5 - \frac{1}{81}(0.2)^9 + \cdots,$$
but $\frac{1}{15}(0.2)^5 < 0.5 \times 10^{-3}$ so $\int_0^{0.2} (1+x^4)^{1/3} dx \approx 0.200$

32.
$$\int_0^{1/2} (1+x^2)^{-1/4} dx = \int_0^{1/2} \left(1 - \frac{1}{4}x^2 + \frac{5}{32}x^4 - \frac{15}{128}x^6 + \cdots \right) dx$$

$$= x - \frac{1}{12}x^3 + \frac{1}{32}x^5 - \frac{15}{896}x^7 + \cdots \Big]_0^{1/2}$$

$$= 1/2 - \frac{1}{12}(1/2)^3 + \frac{1}{32}(1/2)^5 - \frac{15}{896}(1/2)^7 + \cdots,$$
but $\frac{15}{896}(1/2)^7 < 0.5 \times 10^{-3}$ so $\int_0^{1/2} (1+x^2)^{-1/4} dx \approx 1/2 - \frac{1}{12}(1/2)^3 + \frac{1}{32}(1/2)^5 \approx 0.4906$

33. (a)
$$\frac{x}{(1-x)^2} = x \frac{d}{dx} \left[\frac{1}{1-x} \right] = x \frac{d}{dx} \left[\sum_{k=0}^{\infty} x^k \right] = x \left[\sum_{k=1}^{\infty} kx^{k-1} \right] = \sum_{k=1}^{\infty} kx^k$$

(b)
$$-\ln(1-x) = \int \frac{1}{1-x} dx - C = \int \left[\sum_{k=0}^{\infty} x^k\right] dx - C$$

= $\sum_{k=0}^{\infty} \frac{x^{k+1}}{k+1} - C = \sum_{k=1}^{\infty} \frac{x^k}{k} - C, -\ln(1-0) = 0 \text{ so } C = 0.$

- (c) Replace x with -x in Part (b): $\ln(1+x) = -\sum_{k=1}^{+\infty} \frac{(-1)^k}{k} x^k = \sum_{k=1}^{+\infty} \frac{(-1)^{k+1}}{k} x^k$
- (d) $\sum_{k=1}^{+\infty} \frac{(-1)^{k+1}}{k}$ converges by the Alternating Series Test.
- (e) By Parts (c) and (d) and the remark, $\sum_{k=1}^{+\infty} \frac{(-1)^{k+1}}{k} x^k$ converges to $\ln(1+x)$ for $-1 < x \le 1$.
- **34.** (a) In Exercise 33(a), set $x = \frac{1}{3}$, $S = \frac{1/3}{(1-1/3)^2} = \frac{3}{4}$
 - **(b)** In Part (b) set $x = 1/4, S = \ln(4/3)$
 - (c) In Part (e) set $x = 1, S = \ln 2$

35. (a)
$$\sinh^{-1} x = \int (1+x^2)^{-1/2} dx - C = \int \left(1 - \frac{1}{2}x^2 + \frac{3}{8}x^4 - \frac{5}{16}x^6 + \cdots\right) dx - C$$

= $\left(x - \frac{1}{6}x^3 + \frac{3}{40}x^5 - \frac{5}{112}x^7 + \cdots\right) - C$; $\sinh^{-1} 0 = 0$ so $C = 0$.

(b)
$$(1+x^2)^{-1/2} = 1 + \sum_{k=1}^{\infty} \frac{(-1/2)(-3/2)(-5/2)\cdots(-1/2-k+1)}{k!} (x^2)^k$$

 $= 1 + \sum_{k=1}^{\infty} (-1)^k \frac{1 \cdot 3 \cdot 5 \cdots (2k-1)}{2^k k!} x^{2k},$
 $\sinh^{-1} x = x + \sum_{k=1}^{\infty} (-1)^k \frac{1 \cdot 3 \cdot 5 \cdots (2k-1)}{2^k k! (2k+1)} x^{2k+1}$

(c) R = 1

36. (a)
$$\sin^{-1} x = \int (1 - x^2)^{-1/2} dx - C = \int \left(1 + \frac{1}{2} x^2 + \frac{3}{8} x^4 + \frac{5}{16} x^6 + \cdots \right) dx - C$$

$$= \left(x + \frac{1}{6} x^3 + \frac{3}{40} x^5 + \frac{5}{112} x^7 + \cdots \right) - C, \sin^{-1} 0 = 0 \text{ so } C = 0$$

(b)
$$(1-x^2)^{-1/2} = 1 + \sum_{k=1}^{\infty} \frac{(-1/2)(-3/2)(-5/2)\cdots(-1/2-k+1)}{k!} (-x^2)^k$$

 $= 1 + \sum_{k=1}^{\infty} \frac{(-1)^k (1/2)^k (1)(3)(5)\cdots(2k-1)}{k!} (-1)^k x^{2k}$
 $= 1 + \sum_{k=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2k-1)}{2^k k!} x^{2k}$
 $\sin^{-1} x = x + \sum_{k=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2k-1)}{2^k k! (2k+1)} x^{2k+1}$

(c) R = 1

37. (a)
$$y(t) = y_0 \sum_{k=0}^{\infty} \frac{(-1)^k (0.000121)^k t^k}{k!}$$

(b)
$$y(1) \approx y_0(1 - 0.000121t)\Big|_{t=1} = 0.999879y_0$$

(c)
$$y_0 e^{-0.000121} \approx 0.9998790073 y_0$$

38. (a) If
$$\frac{ct}{m} \approx 0$$
 then $e^{-ct/m} \approx 1 - \frac{ct}{m}$, and $v(t) \approx \left(1 - \frac{ct}{m}\right)\left(v_0 + \frac{mg}{c}\right) - \frac{mg}{c} = v_0 - \left(\frac{cv_0}{m} + g\right)t$.

(b) The quadratic approximation is

$$v_0 \approx \left(1 - \frac{ct}{m} + \frac{(ct)^2}{2m^2}\right) \left(v_0 + \frac{mg}{c}\right) - \frac{mg}{c} = v_0 - \left(\frac{cv_0}{m} + g\right)t + \frac{c^2}{2m^2}\left(v_0 + \frac{mg}{c}\right)t^2.$$

39.
$$\theta_0 = 5^\circ = \pi/36 \text{ rad}, k = \sin(\pi/72)$$

(a)
$$T \approx 2\pi \sqrt{\frac{L}{g}} = 2\pi \sqrt{1/9.8} \approx 2.00709$$

(b)
$$T \approx 2\pi \sqrt{\frac{L}{g}} \left(1 + \frac{k^2}{4} \right) \approx 2.008044621$$

- (c) 2.008045644
- **40.** The third order model gives the same result as the second, because there is no term of degree three in (5). By the Wallis sine formula, $\int_0^{\pi/2} \sin^4 \phi \, d\phi = \frac{1 \cdot 3}{2 \cdot 4} \frac{\pi}{2}$, and

$$T \approx 4\sqrt{\frac{L}{g}} \int_0^{\pi/2} \left(1 + \frac{1}{2}k^2 \sin^2 \phi + \frac{1 \cdot 3}{2^2 2!} k^4 \sin^4 \phi \right) d\phi = 4\sqrt{\frac{L}{g}} \left(\frac{\pi}{2} + \frac{k^2}{2} \frac{\pi}{4} + \frac{3k^4}{8} \frac{3\pi}{16} \right)$$
$$= 2\pi \sqrt{\frac{L}{g}} \left(1 + \frac{k^2}{4} + \frac{9k^4}{64} \right)$$

41. (a)
$$F = \frac{mgR^2}{(R+h)^2} = \frac{mg}{(1+h/R)^2} = mg\left(1-2h/R+3h^2/R^2-4h^3/R^3+\cdots\right)$$

- (b) If h = 0, then the binomial series converges to 1 and F = mg.
- (c) Sum the series to the linear term, $F \approx mg 2mgh/R$.

(d)
$$\frac{mg - 2mgh/R}{mg} = 1 - \frac{2h}{R} = 1 - \frac{2 \cdot 29,028}{4000 \cdot 5280} \approx 0.9973$$
, so about 0.27% less.

42. (a) We can differentiate term-by-term:

$$y' = \sum_{k=1}^{\infty} \frac{(-1)^k x^{2k-1}}{2^{2k-1} k! (k-1)!} = \sum_{k=0}^{\infty} \frac{(-1)^{k+1} x^{2k+1}}{2^{2k+1} (k+1)! k!}, \ y'' = \sum_{k=0}^{\infty} \frac{(-1)^{k+1} (2k+1) x^{2k}}{2^{2k+1} (k+1)! k!}, \ \text{and}$$

$$xy'' + y' + xy = \sum_{k=0}^{\infty} \frac{(-1)^{k+1} (2k+1) x^{2k+1}}{2^{2k+1} (k+1)! k!} + \sum_{k=0}^{\infty} \frac{(-1)^{k+1} x^{2k+1}}{2^{2k+1} (k+1)! k!} + \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{2^{2k} (k!)^2},$$

$$xy'' + y' + xy = \sum_{k=0}^{\infty} \frac{(-1)^{k+1} x^{2k+1}}{2^{2k} (k!)^2} \left[\frac{2k+1}{2(k+1)} + \frac{1}{2(k+1)} - 1 \right] = 0$$

(b)
$$y' = \sum_{k=0}^{\infty} \frac{(-1)^k (2k+1)x^{2k}}{2^{2k+1}k!(k+1)!}, \ y'' = \sum_{k=1}^{\infty} \frac{(-1)^k (2k+1)x^{2k-1}}{2^{2k}(k-1)!(k+1)!}.$$

Since
$$J_1(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{2^{2k+1} k! (k+1)!}$$
 and $x^2 J_1(x) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1} x^{2k+1}}{2^{2k-1} (k-1)! k!}$, it follows that

$$x^2y'' + xy' + (x^2 - 1)y$$

$$= \sum_{k=1}^{\infty} \frac{(-1)^k (2k+1) x^{2k+1}}{2^{2k} (k-1)! (k+1)!} + \sum_{k=0}^{\infty} \frac{(-1)^k (2k+1) x^{2k+1}}{2^{2k+1} (k!) (k+1)!} + \sum_{k=1}^{\infty} \frac{(-1)^{k-1} x^{2k+1}}{2^{2k-1} (k-1)! k!} - \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{2^{2k+1} k! (k+1)!}$$

$$=\frac{x}{2}-\frac{x}{2}+\sum_{k=1}^{\infty}\frac{(-1)^kx^{2k+1}}{2^{2k-1}(k-1)!k!}\left(\frac{2k+1}{2(k+1)}+\frac{2k+1}{4k(k+1)}-1-\frac{1}{4k(k+1)}\right)=0.$$

(c) From Part (a),
$$J_0'(x) = \sum_{k=0}^{\infty} \frac{(-1)^{k+1} x^{2k+1}}{2^{2k+1} (k+1)! k!} = -J_1(x).$$

43. Let
$$f(x) = \sum_{k=0}^{\infty} a_k x^k = \sum_{k=0}^{\infty} b_k x^k$$
 for $-r < x < r$. Then $a_k = f^{(k)}(0)/k! = b_k$ for all k .

CHAPTER 10 SUPPLEMENTARY EXERCISES

4. (a)
$$\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k$$
 (b) $\sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$

- 9. (a) always true by Theorem 10.5.2
 - (b) sometimes false, for example the harmonic series diverges but $\sum (1/k^2)$ converges

- (c) sometimes false, for example $f(x) = \sin \pi x, a_k = 0, L = 0$
- (d) always true by the comments which follow Example 3(d) of Section 10.2
- (e) sometimes false, for example $a_n = \frac{1}{2} + (-1)^n \frac{1}{4}$
- (f) sometimes false, for example $u_k = 1/2$
- (g) always false by Theorem 10.5.3
- (h) sometimes false, for example $u_k = 1/k$, $v_k = 2/k$
- (i) always true by the Comparison Test
- (j) always true by the Comparison Test
- (k) sometimes false, for example $\sum (-1)^k/k$
- (1) sometimes false, for example $\sum (-1)^k/k$
- 10. (a) false, f(x) is not differentiable at x = 0, Definition 10.8.1
 - **(b)** true: $s_n = 1$ if n is odd and $s_{2n} = 1 + 1/(n+1)$; $\lim_{n \to +\infty} s_n = 1$
 - (c) false, $\lim a_k \neq 0$
- 11. (a) geometric, r = 1/5, converges
- **(b)** $1/(5^k + 1) < 1/5^k$, converges

(c)
$$\frac{9}{\sqrt{k}+1} \ge \frac{9}{\sqrt{k}+\sqrt{k}} = \frac{9}{2\sqrt{k}}, \sum_{k=1}^{\infty} \frac{9}{2\sqrt{k}}$$
 diverges

- 12. (a) converges by Alternating Series Test
 - (b) absolutely convergent, $\sum_{k=1}^{\infty} \left[\frac{k+2}{3k-1} \right]^k$ converges by the Root Test.

(c)
$$\frac{k^{-1/2}}{2+\sin^2 k} > \frac{k^{-1}}{2+1} = \frac{1}{3k}$$
, $\sum_{k=1}^{\infty} \frac{1}{3k}$ diverges

- **13.** (a) $\frac{1}{k^3 + 2k + 1} < \frac{1}{k^3}$, $\sum_{k=1}^{\infty} 1/k^3$ converges, so $\sum_{k=1}^{\infty} \frac{1}{k^3 + 2k + 1}$ converges by the Comparison Test
 - (b) Limit Comparison Test, compare with the divergent series $\sum_{k=1}^{\infty} \frac{1}{k^{2/5}}$, diverges
 - (c) $\left| \frac{\cos(1/k)}{k^2} \right| < \frac{1}{k^2}$, $\sum_{k=1}^{\infty} \frac{1}{k^2}$ converges, so $\sum_{k=1}^{\infty} \frac{\cos(1/k)}{k^2}$ converges absolutely
- **14.** (a) $\sum_{k=1}^{\infty} \frac{\ln k}{k\sqrt{k}} = \sum_{k=2}^{\infty} \frac{\ln k}{k\sqrt{k}}$ because $\ln 1 = 0$,

$$\int_{2}^{+\infty} \frac{\ln x}{x^{3/2}} dx = \lim_{\ell \to +\infty} \left[-\frac{2 \ln x}{x^{1/2}} - \frac{4}{x^{1/2}} \right]_{2}^{\ell} = \sqrt{2} (\ln 2 + 2) \text{ so } \sum_{k=2}^{\infty} \frac{\ln k}{k^{3/2}} \text{ converges }$$

(b)
$$\frac{k^{4/3}}{8k^2 + 5k + 1} \ge \frac{k^{4/3}}{8k^2 + 5k^2 + k^2} = \frac{1}{14k^{2/3}}, \sum_{k=1}^{\infty} \frac{1}{14k^{2/3}}$$
 diverges

(c) absolutely convergent, $\sum_{k=1}^{\infty} \frac{1}{k^2 + 1}$ converges (compare with $\sum 1/k^2$)

15.
$$\sum_{k=0}^{\infty} \frac{1}{5^k} - \sum_{k=0}^{99} \frac{1}{5^k} = \sum_{k=100}^{\infty} \frac{1}{5^k} = \frac{1}{5^{100}} \sum_{k=0}^{\infty} \frac{1}{5^k} = \frac{1}{4 \cdot 5^{99}}$$

16. no,
$$\lim_{k \to +\infty} a_k = \frac{1}{2} \neq 0$$
 (Divergence Test)

- **17.** (a) $p_0(x) = 1, p_1(x) = 1 7x, p_2(x) = 1 7x + 5x^2, p_3(x) = 1 7x + 5x^2 + 4x^3, p_4(x) = 1 7x + 5x^2 + 4x^3$
 - (b) If f(x) is a polynomial of degree n and $k \ge n$ then the Maclaurin polynomial of degree k is the polynomial itself; if k < n then it is the truncated polynomial.
- **18.** $\ln(1+x) = x x^2/2 + \cdots$; so $|\ln(1+x) x| \le x^2/2$ by Theorem 10.7.2.
- **19.** $\sin x = x x^3/3! + x^5/5! x^7/7! + \cdots$ is an alternating series, so $|\sin x x + x^3/3! x^5/5!| \le x^7/7! \le \pi^7/(4^77!) \le 0.00005$
- **20.** $\int_0^1 \frac{1 \cos x}{x} \, dx = \left[\frac{x^2}{2 \cdot 2!} \frac{x^4}{4 \cdot 4!} + \frac{x^6}{6 \cdot 6!} \cdots \right]_0^1 = \frac{1}{2 \cdot 2!} \frac{1}{4 \cdot 4!} + \frac{1}{6 \cdot 6!} \cdots, \text{ and } \frac{1}{6 \cdot 6!} < 0.0005,$ so $\int_0^1 \frac{1 \cos x}{x} \, dx = \frac{1}{2 \cdot 2!} \frac{1}{4 \cdot 4!} = 0.2396$ to three decimal-place accuracy.
- **21.** (a) $\rho = \lim_{k \to +\infty} \left(\frac{2^k}{k!} \right)^{1/k} = \lim_{k \to +\infty} \frac{2}{\sqrt[k]{k!}} = 0$, converges
 - **(b)** $\rho = \lim_{k \to +\infty} u_k^{1/k} = \lim_{k \to +\infty} \frac{k}{\sqrt[k]{k!}} = e$, diverges
- **22.** (a) $1 \le k, 2 \le k, 3 \le k, \dots, k \le k$, therefore $1 \cdot 2 \cdot 3 \cdots k \le k \cdot k \cdot k \cdots k$, or $k! \le k^k$.
 - (b) $\sum \frac{1}{k^k} \le \sum \frac{1}{k!}$, converges
 - (c) $\lim_{k \to +\infty} \left(\frac{1}{k^k}\right)^{1/k} = \lim_{k \to +\infty} \frac{1}{k} = 0$, converges
- **23.** (a) $u_{100} = \sum_{k=1}^{100} u_k \sum_{k=1}^{99} u_k = \left(2 \frac{1}{100}\right) \left(2 \frac{1}{99}\right) = \frac{1}{9900}$
 - **(b)** $u_1 = 1$; for $k \ge 2$, $u_k = \left(2 \frac{1}{k}\right) \left(2 \frac{1}{k-1}\right) = \frac{1}{k(k-1)}$, $\lim_{k \to +\infty} u_k = 0$
 - (c) $\sum_{k=1}^{\infty} u_k = \lim_{n \to +\infty} \sum_{k=1}^{n} u_k = \lim_{n \to +\infty} \left(2 \frac{1}{n} \right) = 2$
- **24.** (a) $\sum_{k=1}^{\infty} \left(\frac{3}{2^k} \frac{2}{3^k} \right) = \sum_{k=1}^{\infty} \frac{3}{2^k} \sum_{k=1}^{\infty} \frac{2}{3^k} = \left(\frac{3}{2} \right) \frac{1}{1 (1/2)} \left(\frac{2}{3} \right) \frac{1}{1 (1/3)} = 2$ (geometric series)

(b)
$$\sum_{k=1}^{n} [\ln(k+1) - \ln k] = \ln(n+1)$$
, so $\sum_{k=1}^{\infty} [\ln(k+1) - \ln k] = \lim_{n \to +\infty} \ln(n+1) = +\infty$, diverges

(c)
$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{2} \left(\frac{1}{k} - \frac{1}{k+2} \right) = \lim_{n \to +\infty} \frac{1}{2} \left(1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2} \right) = \frac{3}{4}$$

(d)
$$\lim_{n \to +\infty} \sum_{k=1}^{n} \left[\tan^{-1}(k+1) - \tan^{-1}k \right] = \lim_{n \to +\infty} \left[\tan^{-1}(n+1) - \tan^{-1}(1) \right] = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}$$

25. (a)
$$e^2 - 1$$
 (b) $\sin \pi = 0$ (c) $\cos e$ (d) $e^{-\ln 3} = 1/3$

26.
$$a_k = \sqrt{a_{k-1}} = a_{k-1}^{1/2} = a_{k-2}^{1/4} = \dots = a_1^{1/2^{k-1}} = c^{1/2^k}$$

(a) If
$$c = 1/2$$
 then $\lim_{k \to +\infty} a_k = 1$. (b) if $c = 3/2$ then $\lim_{k \to +\infty} a_k = 1$.

27.
$$e^{-x} = 1 - x + x^2/2! + \cdots$$
. Replace x with $-(\frac{x - 100}{16})^2/2$ to obtain $e^{-(\frac{x - 100}{16})^2/2} = 1 - \frac{(x - 100)^2}{2 \cdot 16^2} + \frac{(x - 100)^4}{8 \cdot 16^4} + \cdots$, thus $p \approx \frac{1}{16\sqrt{2\pi}} \int_{100}^{110} \left[1 - \frac{(x - 100)^2}{2 \cdot 16^2} + \frac{(x - 100)^4}{8 \cdot 16^4} \right] dx \approx 0.23406 \text{ or } 23.406\%.$

28.
$$f(x) = xe^x = x + x^2 + \frac{x^3}{2!} + \frac{x^4}{3!} + \dots = \sum_{k=0}^{\infty} \frac{x^{k+1}}{k!},$$

 $f'(x) = (x+1)e^x = 1 + 2x + \frac{3x^2}{2!} + \frac{4x^3}{3!} + \dots = \sum_{k=0}^{\infty} \frac{k+1}{k!} x^k; \sum_{k=0}^{\infty} \frac{k+1}{k!} = f'(1) = 2e.$

29. Let
$$A = 1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots$$
; since the series all converge absolutely,
$$\frac{\pi^2}{6} - A = 2\frac{1}{2^2} + 2\frac{1}{4^2} + 2\frac{1}{6^2} + \cdots = \frac{1}{2}\left(1 + \frac{1}{2^2} + \frac{1}{3^2} + \cdots\right) = \frac{1}{2}\frac{\pi^2}{6}$$
, so $A = \frac{1}{2}\frac{\pi^2}{6} = \frac{\pi^2}{12}$.

30. Compare with $1/k^p$: converges if p > 1, diverges otherwise.

31. (a)
$$x + \frac{1}{2}x^2 + \frac{3}{14}x^3 + \frac{3}{35}x^4 + \cdots$$
; $\rho = \lim_{k \to +\infty} \frac{k+1}{3k+1}|x| = \frac{1}{3}|x|$, converges if $\frac{1}{3}|x| < 1$, $|x| < 3$ so $R = 3$.
(b) $-x^3 + \frac{2}{3}x^5 - \frac{2}{5}x^7 + \frac{8}{35}x^9 - \cdots$; $\rho = \lim_{k \to +\infty} \frac{k+1}{2k+1}|x|^2 = \frac{1}{2}|x|^2$, converges if $\frac{1}{2}|x|^2 < 1$, $|x|^2 < 2$, $|x| < \sqrt{2}$ so $R = \sqrt{2}$.

32. By the Ratio Test for absolute convergence,
$$\rho = \lim_{k \to +\infty} \frac{|x - x_0|}{b} = \frac{|x - x_0|}{b}$$
; converges if $|x - x_0| < b$, diverges if $|x - x_0| > b$. If $x = x_0 - b$, $\sum_{k=0}^{\infty} (-1)^k$ diverges; if $x = x_0 + b$, $\sum_{k=0}^{\infty} 1$ diverges. The interval of convergence is $(x_0 - b, x_0 + b)$.

33. If
$$x \ge 0$$
, then $\cos \sqrt{x} = 1 - \frac{(\sqrt{x})^2}{2!} + \frac{(\sqrt{x})^4}{4!} - \frac{(\sqrt{x})^6}{6!} + \dots = 1 - \frac{x}{2!} + \frac{x^2}{4!} - \frac{x^3}{6!} + \dots$; if $x \le 0$, then $\cosh(\sqrt{-x}) = 1 + \frac{(\sqrt{-x})^2}{2!} + \frac{(\sqrt{-x})^4}{4!} + \frac{(\sqrt{-x})^6}{6!} + \dots = 1 - \frac{x}{2!} + \frac{x^2}{4!} - \frac{x^3}{6!} + \dots$

- **34.** By Exercise 74 of Section 3.5, the derivative of an odd (even) function is even (odd); hence all odd-numbered derivatives of an odd function are even, all even-numbered derivatives of an odd function are odd; a similar statement holds for an even function.
 - (a) If f(x) is an even function, then $f^{(2k-1)}(x)$ is an odd function, so $f^{(2k-1)}(0) = 0$, and thus the MacLaurin series coefficients $a_{2k-1} = 0, k = 1, 2, \cdots$.
 - (b) If f(x) is an odd function, then $f^{(2k)}(x)$ is an odd function, so $f^{(2k)}(0) = 0$, and thus the MacLaurin series coefficients $a_{2k} = 0, k = 1, 2, \cdots$

35.
$$\left(1 - \frac{v^2}{c^2}\right)^{-1/2} \approx 1 + \frac{v^2}{2c^2}$$
, so $K = m_0 c^2 \left[\frac{1}{\sqrt{1 - v^2/c^2}} - 1\right] \approx m_0 c^2 (v^2/(2c^2)) = m_0 v^2/2$

36. (a)
$$\int_{n}^{+\infty} \frac{1}{x^{3.7}} dx < 0.005 \text{ if } n > 4.93; \text{ let } n = 5.$$

(b) $s_n \approx 1.1062$; CAS: 1.10628824