

Enhancing Colon Polyp Detection Using Deep Learning

Md.Shah Maruf Siraj Mugdho ¹ Abdullah Al Islam ² Shahriar Shanto ³ Department of Computer Science and Engineering; Independent University Bangladesh

2220644@iub.edu.bd 2220126@iub.edu.bd 2222181@iub.edu.bd

Introduction

Colon polyps are small growths on the inner lining of the colon, with some types (e.g., adenomatous polyps) posing a significant risk of developing into colorectal cancer (CRC) if left undetected. Despite colonoscopy being the gold standard for diagnosis, challenges such as variability in endoscopist expertise, missed small/flat lesions, and patient discomfort during the procedure hinder early detection.

Figure 1: Global Cancer Statistics

Globally, CRC accounts for over 930,000 deaths annually, with cases projected to rise by 63% by 2040. This research aims to leverage deep learning to enhance polyp detection accuracy, reduce diagnostic delays and democratize access to high-quality screening. By integrating temporal analysis and advanced post-learning strategies, our Al-driven approach seeks to improve clinical outcomes and support real-time decision-making during colonoscopies.

Dataset

Figure 1: Real-Colon Dataset

Methods 6 Performance űŢ Achieving the best Post Learning ∽⊞ 6 Strategies Implementing strategies after initial learning Transfer Learning 5 Applying knowledge from **Data Augmentation ₽**Φ Enhancing the dataset with new data **Model Selection** ={B 3 Choosing the best model for the task **Model Architecture** Designing the structure of DAT Dataset Description Understanding the characteristics of the

Figure 3: Steps involved in this methodology

Model Architecture : We employ a Faster R-CNN framework with a ResNet-FPN backbone to extract features from colonoscopy images.

Training and Refinement Strategy: The model's accuracy and generalization are enhanced through a multi-stage training process:

Transfer Learning: The model is initialized with weights pre-trained on large datasets (ImageNet, MS COCO) and then fine-tuned on our specific polyp dataset.

REAL-colon Analysis: Polyp Detection Architecture Backbone Region Proposal Detection Head Input ResNet-50/101 Custom anchor boxes Rol Align Classification + Colonoscopy Scales & ratios Feature Pyramid Network Bounding Box Regression **Enhanced Components** Temporal Analysis Polyp Detection Output

Figure 5: Colon Polyp Detection architecture

Data Augmentation: We apply extensive geometric and photometric augmentations to simulate realistic colonoscopy variations and prevent overfitting.

Post-Learning Refinement: To minimize errors, the model is re-trained on high-confidence **false positives** (polyp mimics) and fine-tuned offline using reliably detected polyps.

Expected Outcomes

Figure 6: Expected Outcome from our research

Future Work

Future directions include expanding the model's capabilities to predict polyp malignancy risk using morphological features and integrating it into Clinical Decision Support Systems (CDSS) for real-time diagnostics. Collaborations to incorporate larger datasets (e.g., HyperKvasir) will improve generalizability across diverse populations. Additionally, we plan to explore semi-supervised learning to reduce annotation dependency and deploy the model in resource-limited settings via lightweight, edge-compatible versions.

References

- [1] Y. Shin, H. A. Qadir, L. Aabakken, J. Bergsland, and I. Balasingham, "Automatic Colon Polyp Detection Using Region Based Deep CNN and Post Learning Approaches," IEEE Access, vol. 6, pp. 40950–40962, 2018,doi:10.1109/ACCESS.2018.2856402
- [2] W. Wang, J. Tian, C. Zhang, Y. Luo, X. Wang, and J. Li, "An Improved Deep Learning Approach and Its Applications on Colonic Polyp Images Detection," BMC Medical Imaging, vol. 20, no. 83,2020, doi: 10.1186/s12880-020-00482-3.
- [3] Y.-C. Chou and C.-C. Chen, "Improving Deep Learning-Based Polyp Detection Using Feature Extraction and Data Augmentation," Multimedia Tools and Applications, vol. 82, pp. 16817–16837, 2023, doi: 10.1007/s11042-022-13995-6.
- [4] D.-P. Fan et al., "PraNet: Parallel Reverse Attention Network for Polyp Segmentation," in Medical Image Computing and Computer Assisted Intervention MICCAI 2020, vol. 12264, pp. 263–273, 2020, doi: 10.1007/978-3-030-59725-2 3.
- [5] Y. Zhang et al., "TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation," in Medical Image Computing and Computer Assisted Intervention MICCAI 2021, vol. 12902, pp. 391–401, 2021, doi: 10.1007/978-3-030-87193-2_28.

- [6] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, "YOLOv7: Trainable Bag- of- Freebies Sets New State-of-the-Art for Real-Time Object Detectors," arXiv:2207.02696, 2022.
- [7] J. Bernal et al., "Real-Time Polyp Detection, Segmentation, and Localization in Colonoscopy Using Deep Learning: A Systematic Review," Diagnostics, vol. 12, no. 2, p. 405, 2022, doi:10.3390/diagnostics12020405
- [8] M. Tan and Q. V. Le, "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks," arXiv:1905.11946, 2020.
- [9] V. Thambawita et al., "The HyperKvasir Dataset: A Comprehensive Multicenter Image and Video Dataset for Gastrointestinal Endoscopy," Scientific Data, vol. 9, no. 1, p. 283, 2022, doi: 10.1038/s41597-022-01156-1.
- [10] M. B. Wallace et al., "Artificial Intelligence for Polyp Detection During Colonoscopy: A Systematic Review and Meta-Analysis," Gastroenterology, vol. 160, no. 6, pp. 1899— 1907, 2021, doi: 10.1053/j.gastro.2021.01.233.