Лабораторная работа №3

Разумов Т.Е., Швечков И.В.

Еще раз присылать мне текст отчета не нужно, ответьте на замечания.

1. Для полинома Лагранжа проведите следующий тест. Постройте полином Лагранжа для функции $f(x) \equiv 1$ по 3, 10 и 100 точкам на отрезке [0, 1]. Оцените погрешность приближения f(x) с помощью полинома Лагранжа, построенного на равномерной сетке и на чебышевской. Полученный результат объяснить.

Можете просто заполнить таблицу, не приводя картинок.

	Полином Лагранжа	Полином Лагранжа
	на равномерной сетке	на Чебышевской сетке
n=3		
n = 10		
n = 100		

2. Для тестового примера 4 заполните таблицу погрешностей

	Полином Лагранжа	Полином Лагранжа
	на равномерной сетке	на Чебышевской сетке
n=4		
n = 10		
n = 15		

Определить необходимое количество узлов чебышевской сетки, которое обеспечивает восстановление исходной функции с погрешностью, не превышающей 0.01, 0.0001.

- 3. Проведите интерполяцию сплайнами функций $f_1(x) = x^2$ и $f_2(x) = x^3$ на отрезке [-1,1]. С какой точностью полученный сплайн приближает функцию $f_i(x)$, i=1,2? Прокомментируйте полученный результат (аналогичная таблица).
- 4. Что такое ненасыщаемость алгоритма? Какие из реализованных Вами способы интерполирования обладают свойством ненасыщаемости?