Stream Splitting Moving Target Defense

Progress Report Presentation

Objective

Provide moving target defense against man-in-the-middle attacks on communication over the Internet with stream splitting

Team:

Utsav Bhatt Sri Harsha Lenka Lauren Murphy David Stenson

Sponsor:

Joshua Lyle

Concepts

Man-in-the-middle Attack on the Internet

- Adversary sits between two parties and passes along their communication
 - Their objective is to inspect or alter the communication
- Methods for maintaining confidentiality and integrity are already implemented in several protocols
 - E.g. authenticated encryption, etc.
 - Increase difficulty of deciphering or tampering with it
- Hosts can't stop communication from going through untrusted nodes entirely

Stream Splitting as a Moving Target Defense

- Split one stream of data into several at the source and send them simultaneously, then receive and reassemble them at the destination
- Routing each stream over geographically and/or physically different paths from other streams increases difficulty of capturing entire transmission
 - Adversaries must control one node on each path
 - They also have to resequence the data
- Changing the paths results in
 - Increased difficulty of controlling nodes on any of the paths
 - Selecting diverse paths
 - Increased efficiency
 - Balancing load on each path according to bandwidth

Path Diversity

- We can enforce diversity by deploying entry / exit nodes to relay the streams
 - In different geographic locations or on different physical media
- Each host forwards one stream
 - Source to entry
 - Entry to exit
 - Exit to destination

Diversity Quotient

- Source host determines each possible path and selects a subset of paths and load for each according to diversity quotient, Q
 - It increases efficiency to route over the one or a few routes
 - Exploit best bandwidth
 - However, by putting more data on one or a few routes, we decrease path diversity
- Tradeoff between efficiency and confidentiality decided by user

Previous Work

Moving Target Defense

- Making attack surface of system dynamic by changing aspects of system
 - Forces attackers to expend more time and energy on reconnaissance
 - Minimizes usefulness of exploits
- Focus on security
- Multiple Operating System Rotational Environment (MORE)
 - Rotate the operating system running on the host
- Dynamic Application Rotation Environment (DARE)
 - o Rotate the platform (Nginx, Apache, etc.)
- These strategies are focused on protecting hosts from intrusion, rather than preserving confidentiality of communication between hosts

Multipath Transport Layer Protocols

- Focus on efficiency
- Multipath TCP (MPTCP)
 - Transmits data over multiple TCP connections
 - If one connection drops, then transmission continues on other connections
 - Maintain connections when switching between networks, i.e. from WiFi to mobile, etc.
 - Apple uses MPTCP for Siri
- Stream Transfer Control Protocol (SCTP)
 - Made for multihomed devices
 - First, they exchange lists of their reachable IP addresses (on different NICs)
 - Next, they select one pair of the possible to communicate with
 - When the current path between two IP addresses fails, the devices switch to a backup pair to utilize an alternative path

Concurrent Multipath SCTP (CMT-SCTP) VS MPTCP

- CMT-SCTP is a variant of SCTP that utilizes multiple paths at the same time
 - Instead of selecting one and failing back onto others
 - Load balancing over each path
- We chose CMT-SCTP over MPTCP to utilize / modify
 - MPTCP has overhead by maintaining multiple TCP connections
 - CMT-SCTP is geared towards multihomed devices
 - SCTP offers better congestion control and fault detection
 - Chunks in SCTP lend themselves to stream splitting better than streams of MPTCP

Approach

Modifying CMT-SCTP

- CMT-SCTP defines path between two network interfaces, one on each host
- Instead splitting CMT-SCTP streams over network interfaces on the host, we treat entry and exit nodes as network interfaces and form paths between them
 - Source and entry nodes are symbolic client
 - Destination and exit nodes are symbolic server

Plan

Environment

Deploy Common Open Research Emulator (CORE) to emulate network

- Emulation allows us to quickly
 - Add / drop nodes / links
 - Configure services on each node
 - Adjust link bandwidth
 - Scale

Stream Splitting, Load Balancing

Select an implementation of CMT-SCTP to modify to support stream splitting

- We chose a userspace implementation by Tuxen et al.
 - Portable
 - Same throughput and latency as FreeBSD kernel implementation
 - Modifiable as open source

Modify implementation to support load balancing

- Check capacity of node and latency of all paths to select subset of viable
- Balance load across viable paths
 - Maintain geographic diversity and efficiency according to user-defined quotient

Resilience

Test resilience of implementation and implement appropriate safeguards

- Network degradation
 - Drop nodes and decrease bandwidth
 - Track path diversity and efficiency
- Source check
 - Check program is verifying source
- Integrity check
 - Check program can detect streams modified in transit

Encryption

Utilize AES to double encrypt data and encrypt indices for sequencing data

- Only clients should decrypt message
 - Each client should have unique key

Amazon Web Services

Time permitting, develop program for AWS and test it over the Internet

Progress

Tasks

- √ Configure and deploy network emulator
- ✓ Select protocol, e.g. MPTCP, SCTP, etc. to utilize or modify
- Implement stream splitting
 - Thwart MITM attack
- Implement load balancing and recovery mechanisms
 - Speed
 - Resilience
- Implement encryption
 - Further confidentiality
 - Integrity

Deliverables

- √ Literature review
- ✓ Proposal
- √ Midterm report
- √ Midterm presentation
- Implementation
 - Documentation
- Final report
- Final presentation

Current Progress

Issues

Issues

- Efficiency
 - Our modifications to CMT-SCTP shouldn't reduce its efficiency
- Scaling
 - Multipath protocols show promise in simulations, but not necessarily better in reality
 - Complete disjointedness of paths may not be possible
 - Attempt to detect and resolve fairness issue
- Security
 - o Encryption could add overhead

Resources

- Patent on Stream Splitting Moving Target Defense
- Report on Moving Target Defenses by Argonne National Laboratory
 - MORE
 - DARE
 - Stream Splitting