ASSIGNMENT DUE DATE: February 24, 2015 (by 5pm) LATE DUE DATE: February 25, 2015 (by 1pm in class)

We will use the following definitions in this homework:

Convolution: $f(x) \otimes g(x) = \int f(\alpha)g(x - \alpha)d\alpha$

Cross-correlation: $f(x) \star g(x) = \int f(\alpha)g^*(\alpha - x)d\alpha$

1. Consider a system defined by the following operator:

$$g(y) = S \{f(x)\} = \int_{-\infty}^{+\infty} f(\alpha) \operatorname{rect}(y - \alpha) d\alpha$$

- a. Is the system linear? Is it shift-invariant? Show your proof.
- b. Calculate and sketch the output g(y) for f(x) = rect(x).
- c. Calculate the output g(y) for f(x) = rect(x+2).

[40 points]

2. Assume the system is characterized by the following operator:

$$S{f(x)} = \left[a\left(\frac{d^2}{dx^2}\right) + b\right]f(x)$$

where a and b are arbitrary constants.

- a. Is the system linear? Shift invariant? Show your proof.
- b. Calculate and sketch the output for $a = (2\pi)^{-1}$, b = 0, and f(x) = Gaus(x).

[30 points]

- 3. If the system operator S is linear and shift-invariant and we know that $S\{f_1(x)\} = g_1(x)$ and $S\{f_2(x)\} = g_2(x)$ then what would be the system output for the input:
- a. $f(x) = \alpha \cdot f_1(x) + \beta \cdot f_2(x x_o)$? Show your steps and reasoning.
- b. $f(x) = \delta(x)$? Is there a name of this particular output?
- c. If you know the output from (b) how would you use it to express the system output for a general input function k(x) i.e. $\mathcal{S}\{k(x)\}=?$

[30 points]

- 4. For an arbitrary function f(x) and b, x_o , and x_1 real constants, do the following convolutions:
- a. $\delta(bx + x_o) \otimes f(x)$
- b. $\delta(x-x_o)\otimes f(x+x_1)$
- c. $[\delta(x-x_o)-\delta(x+x_o)]\otimes f(x)$ d. $\delta^{(1)}(x)\otimes f(x)$

[45 points]

- 5. Perform the following convolutions and sketch the output:
- a. $\operatorname{rect}(x) \otimes \operatorname{rect}(\frac{x}{2})$
- b. $\operatorname{rect}(x) \otimes \operatorname{tri}(x-1)$ c. $\operatorname{rect}(x) \otimes [\delta(x-2) + \delta(x+2)]$

[45 points]

- 6. Sketch each of the following functions, then compute and sketch the auto-correlation (i.e. $f(x) \star f(x)$) of each:
- a. f(x) = tri(x)
- b. $f(x) = \text{ramp}(x) \cdot \text{rect}(x)$

[30 points]

7. Show that if $\gamma_{ff}(x) = f(x) \star f(x)$ and f(x) is real and even function, then: $\gamma_{ff}(x) = \gamma_{ff}(-x)$ and $\gamma_{ff}(x) = \gamma_{ff}^*(x)$

[10 points]