CSCI 4100 Assignment 5 Boliang Yang 661541863

1. Exercise 2.8 in LFD

- (a) By definition, $\bar{g}(x) = \frac{1}{K} \sum_{k=1}^{K} g_k(x)$, then $\bar{g}(x)$ is a linear combination of $g_k(x) \in H$. Since H is closed under linear combination, then $\bar{g} \in H$.
- (b) The simple model is a binary classification. If the model's hypothesis set H contains only two hypotheses: one that always returns +1 and one that always returns -1. Then for dataset that generated +1 and -1 with equal probability, $\bar{g}(x)$ is 0 which clearly will not be in H.
- (c) No, $\bar{g}(x)$ will most likely to be somewhere between -1 and +1, and thus cannot be a binary function.

2. Problem 2.14 in LFD

- (a) From problem we know, $H_1, H_2, ... H_K$ each has break point $d_{vc}+1$, then $m_{H_i}(d_{vc}+1) < 2^{d_{vc}+1}$ for all H_i where i=1,...k. Then for $H=H_1 \cup H_2 \cup ... \cup H_K$, $m_H(K(d_{vc}+1)) \leq \prod_{i=1}^K m_{H_i}(d_{vc}+1) < (2^{d_{vc}+1})^K = 2^{K(d_{vc}+1)}$. Since $m_H(K(d_{vc}+1)) < 2^{K(d_{vc}+1)}$, we have $d_{vc}(H) < K(d_{vc}+1)$.
- (b) Since $m_{H_i}(l) \leq l^{d_{vc}} + 1$ for all H_i where $i=1,\dots k$, then $m_H(l) \leq \sum_{l=1}^K m_{H_i}(l) \leq K(l^{d_{vc}}+1) = Kl^{d_{vc}} + K$. Since $2^l > 2Kl^{d_{vc}}$, then $2^l > Kl^{d_{vc}} + Kl^{d_{vc}} + Kl^{d_{vc}} + K$. We have $m_H(l) < 2^l$, and it follows that $d_{vc}(H) \leq l$.
- (c) Assume l be the value $7(d_{vc}+K)\log_2(d_{vc}K)$, and we get:

$$2^{l} > 2Kl^{d_{vc}}$$

$$2^{7(d_{vc}+K)\log_2(d_{vc}K)} > 2K[7(d_{vc}+K)\log_2(d_{vc}K)]^{d_{vc}}$$

$$(d_{vc}K)^{7(d_{vc}+K)} > 2K[7(d_{vc}+K)\log_2(d_{vc}K)]^{d_{vc}}$$

The inequality holds since the left-hand-side grows much faster than the right-hand-side: exponent in the left-hand-side is $7(d_{vc}+K)$, which is much greater than exponent d_{vc} in the right-hand-side. Then $l=7(d_{vc}+K)\log_2(d_{vc}K)$ satisfies $2^l>2Kl^{d_{vc}}$. From (a)&(b), $d_{vc}(H)< K(d_{vc}+1)$, $d_{vc}(H)\leq l$ where $2^l>2Kl^{d_{vc}}$. Thus, $d_{vc}(H)\leq \min(K(d_{vc}+1),7(d_{vc}+K)\log_2(d_{vc}K))$.

3. Problem 2.15 in LFD

- (a) One example of monotonic classifier in two dimensions is h(x,y)=sign(x+y): when $x+y\geq 0$ returns +1, when x+y<0 returns -1. Since for any two points (x_1,y_1) , (x_2,y_2) , if $x_1\leq x_2$, $y_1\leq y_2$, we have $sign(x_1+y_1)\leq sign(x_2+y_2)$, then the classifier is monotonic.
- (b) We first choose one point, and then generate the next point by increasing the first component (x) and decreasing the second component (y) in order to keep x+y unchanged until N points are obtained. In this case, all the points can always be shattered and all dichotomies exist. Then $m_H(N) = 2^N$, $d_{vc}(H) = \infty$.

4. Problem 2.24 in LFD

- (a) Since $D=\{(x_1,x_1^2),(x_2,x_2^2)\}$, and hypothesis is of the form h(x)=ax+b, then we have slope (x_1+x_2) , and intercept $-x_1x_2$. Since input variable x is uniformly distributed in [-1,1], then expected value $E(x_1)=E(x_2)=0$. Thus, $\bar{g}(x)=0$.
- (b) First generate 1000 points data set with target function $f(x) = x^2$ where $x \in [-1,1]$. Then compute hypothesis $g_k(x)$ based on each point. Now we can compute the average function $\bar{g}(x)$ using $\bar{g}(x) = \frac{1}{1000} \sum_{k=1}^{1000} g_k(x)$. We can compute bias as $bias = \left(\bar{g}(x) f(x)\right)^2$, compute var as $var = \mathbb{E}_D\left[\left(g^{(D)}(x) \bar{g}(x)\right)^2\right]$, compute $\mathbb{E}[E_{out}]$ as $\mathbb{E}[E_{out}] = bias + var$.
- (c) After running on 1000 points data set, the result is shown as following:

$$\bar{g}(x) = 0.014003x - 0.002224 \;, \; bias = 0.199232 \;, \; var = 0.334724 \;,$$

$$\mathbb{E}[E_{out}] = 0.533956$$

(d) Since
$$\bar{g}(x) = 0$$
, then $bias = \frac{1}{2} \int_{-1}^{1} (f(x) - \bar{g}(x))^2 dx = \frac{1}{2} \int_{-1}^{1} (x^2 - 0)^2 dx = \frac{1}{5}$.
$$var = \mathbb{E}_D \left[\left(g^{(D)}(x) - \bar{g}(x) \right)^2 \right] = \mathbb{E}_D \left[\left(g^{(D)}(x) \right)^2 \right] = \frac{1}{2} \int_{-1}^{1} x^2 dx = \frac{1}{3}.$$

$$\mathbb{E}[E_{out}] = bias + var = \frac{1}{5} + \frac{1}{3} = \frac{8}{15}.$$