Семинар 16

Пусть $U, V \subseteq E$ — подпространства некоторого векторного пространства E. Напомню, что

- \bullet $U\cap V$ теоретико-множественное пересечение, тоже является подпространством.
- $U \cup V$ теоретико-множественное объединение, НЕ является подпространством. Потому рассматривают сумму подпространств $U+V = \{u+v \in E \mid u \in U, v \in V\}$. Это наименьшее подпространство, содержащее объединение.
- Если $U \cap V = 0$, то сумма U + V называется прямой и обозначается $U \oplus V$.
- Если $E = U \oplus V$, тогда любой вектор $z \in E$ представляется единственным образом в виде z = u + v, где $u \in U$ и $v \in V$. Тогда вектор u называется проекцией z на U вдоль V. (аналогично для v). Отображение $E \to E$ по правилу $z \mapsto u$ называется проектором на U вдоль W.
- Напомню, что матрица $A \in M_n(F)$ называется симметрической, если $A^t = A$, кососимметрической, если $A^t = -A$, верхнетреугольной, если под главной диагональю все элементы нули, верхненильтреульной, если на главной диагонали и под ней все элементы нули. E_{ij} – матричная единица, то есть матрица состоящая из нулей, а на i-ой строке, j-ом столбце стоит 1.

Задачи:

- 1. Задачник. §35, задача 35.15 (a).
- 2. Задачник. §35, задача 35.18.
- 3. Задачник. §35, задача 35.19.
- 4. Задачник. §35, задача 35.20.
- 5. Задачник. §35, задача 35.21.
- 6. Пусть $U, V, W \subseteq E$ подпространства некоторого векторного пространства E. Верно ли, что $U \cap (V + W) = (U \cap V) + (U \cap W)$?
- 7. Приведите пример подпространств $U, E, W \subseteq V$ таких, что любые два подпространства пересекаются по нулю, но при этом сумма U + E + W не прямая.
- 8. Пусть подпространства $U, V \subseteq \mathbb{R}^4$ заданы следующим образом:

$$V = \langle \begin{pmatrix} 2 \\ 1 \\ 4 \\ 1 \end{pmatrix}, \begin{pmatrix} -2 \\ -3 \\ 3 \\ 3 \end{pmatrix} \rangle, \quad U = \left\{ y \in \mathbb{R}^4 \mid \begin{pmatrix} 0 & 2 & 1 & 1 \\ 3 & 1 & 2 & 1 \end{pmatrix} y = 0 \right\}$$

Найдите базис пересечения $U \cap V$.

 $^{^{1}}$ Еще говорят napaллельно V