

Robust Route Planner

Final Project

Team SAFJ

Serif Soner Serbest Asli Yorusun Fatine Benhsain Jelena Banjac Lab in Data Science
June 2019

Content

- Data Cleaning and Analysis
- Connection Graph
- > Timetable
- Confidence Calculation
- Robust Route Calculation
- > Visualization

Data Analysis

Can be seen in the notebook: SBB_Data_Analysis.ipynb

Data Cleaning

- ADDITIONAL_TRIPS where trip is additional
- **FAILED** if trip failed
- PASSES_BY if trip passes by the station
- SCHEDULE/ACTIVE ARRIVE/DEPART TIMES if any of the times is null
- Etc.

Connection Graph

- Distances between stations and Zurich (using coordinates)
- Stations around Zurich (≤10 km)
- Distances between stations
- Form a matrix with the connections
- Walking matrix: with the connections feasible during the max_walking_time
- Then: merge connection and walk matrices into a one single adjacency matrix of all possible paths

Timetable

- Using the available data, we can now form a timetable that links between two stations at specific times when connections exist
- Using a self join

Confidence Calculation

- We created clusters using the data and several different attributes each time to find relationships between the attributes and the delays:
 - ACTUAL_ARRIVE_TIME
 - ACTUAL_DEPART_TIME
 - OPERATOR_ID
 - SERVICE_TYPE
 - STATION_ID
- Probability of delay computed using number of times delayed
- P(successful trip) = \prod_{i} P(segment_i delayed)

Robust Route Calculation

- Find best routes for given start and end destinations (reuse all previous methods)
 - by eliminating duplicate paths that involve only walking
 - by considering the probabilities of the arrival of each transportation on time
- Provide to user the best 3 options

Visualization

DEMO