CSE460 Handout (Summer 2024)

Exam schedule (tentative)

Exam	Time	Date	Syllabus*	COs
Quiz 1	3rd Week		Lecture 1-3	CO1
Quiz 2	4th Week	[TBA]	Lecture 5-6	CO1
Quiz 3	6th Week		Lecture 8-10	
Midterm	7th Week		Lecture 1-10	CO1, CO2
Quiz 4	10th or 11th Week		Lecture 13-16	CO4
Quiz 5	12th or 13th Week	[TBA]	Lecture 17- 20	CO1
Final	14th Week	May 02, 2024	Lecture 11-20	CO1, CO3, CO4

^{*}Follow course timeline

Marks distribution

Theory/Lab	Assessment	Percentage	Total number of assessments	Number of assessment to be graded
Theory (75%)	Attendance	-	-	70% (90%+ for lab) or more to be eligible for Final Exam
	Assignment	10%	4	Best 3 (n-1)
	Quiz*	15%	5 (n)	Best 4 (n-1)
	Midterm	20%	1	1
	Final	30%	1	1
Lab	Lab Report	5%	1-2	All
(25%)	Lab Performance	10%	6-7 (n)	Best 5-6 (n-1)
	Lab-test	10%	2	2

^{*}The last quiz (nth quiz) will be considered as make-up for any missed quiz (maximum of 1), whatever the reason.

No other make-up quizzes will be taken.

Make-Up Lab Policy: No make-up of lab will be considered without valid reason.

Theory Class Schedule

Section	Faculty	Day	Schedule	Room
1	PMD	SAT, THU	08:00 AM-09:20 AM	12F-32L
2	KFP	SAT, THU	09:30 AM-10:50 AM	12F-32L
3	PMD	SAT, THU	11:00 AM-12:20 PM	12F-31L
4	KFP	SAT, THU	12:30 PM-01:50 PM	12F-32L
6	YAR	SAT, THU	03:30 PM-04:50 PM	09B-10L
7	HAD	SUN, TUE	03:30 PM-04:50 PM	12F-31L
8	AGS	MON, WED	08:00 AM-09:20 AM	12F-31L

Lab Schedule and Status

Section	Faculty	Day	Schedule	Room	Lab Executed
1	ABY, HAD	SUN	08:00 AM-10:50 AM	12F-32L	LAB1 (DSCH2) •
2	ABY, AGS	SUN	11:00 AM-01:50 PM	12F-32L	LAB1 (DSCH2) •
3	KFP, ABY	MON	11:00 AM-01:50 PM	12F-31L	LAB1 (DSCH2) ·
4	BRH, PMD	TUE	11:00 AM-01:50 PM	12F-32L	LAB1 (DSCH2) •
6	PMD, BRH	WED	02:00 PM-04:50 PM	09B-10L	LAB1 (DSCH2) •
7	PMD, BRH	THU	02:00 PM-04:50 PM	12F-31L	LAB1 (DSCH2)
8	YAR, ABY	SAT	08:00 AM-10:50 AM	12F-31L	LAB1 (DSCH2) •

Theory Faculties

Initial	ame BRACU Email		
HAD	Shadman Shahid	ext.shadman.shahid@bracu.ac.bd	
KFP	Kaniz Fatema Supti	ext.kaniz.fatema@bracu.ac.bd	
PMD	Prithu Mahmud	prithu.mahmud@bracu.ac.bd	
YAR	Yeasin Arafat Pritom	ext.yeasin.arafat@bracu.ac.bd	
AGS	Aroni Ghosh	aroni.ghosh@bracu.ac.bd	

Lab Faculties

Initial	Name	BRACU Email
HAD	Shadman Shahid	ext.shadman.shahid@bracu.ac.bd
KFP	Kaniz Fatema Supti	ext.kaniz.fatema@bracu.ac.bd
PMD	Prithu Mahmud	prithu.mahmud@bracu.ac.bd
YAR	Yeasin Arafat Pritom	ext.yeasin.arafat@bracu.ac.bd
AGS	Aroni Ghosh	aroni.ghosh@bracu.ac.bd
ABY	Md Asif Hossain Bhuiyan	asif.hossain@bracu.ac.bd
BRH	Beig Rajibul Hasan	rajib.hasan@bracu.ac.bd

Lab softwares

dsch2

Download link:

https://drive.google.com/drive/folders/1xwzh8gbnfAvQBYRBd9xDs20IFbyK6SIJ?usp = sharing (For experiments: 1)

Quartus

Download link:

https://drive.google.com/drive/folders/1VVXijpn4d9LY4PS-Q_dAKXCU8q9xoESm?usp=sharing (For experiments: 2, 3,4,5)

Microwind

Download link:

https://drive.google.com/drive/folders/11xGLeyzWkfMV4nPgUqLjLi4eXAZVs7WM?usp=sharing (For experiments: 6)

• Jupyter Notebook / Google Colab (For experiments: 7)

Communication platform

CSE460 Summer '24 Official Discord Server: https://discord.gg/SKWWkFet

Textbooks

- [Weste&Harris] CMOS VLSI Design A Circuit and Systems Perspective 4e Weste, Harris: http://library.lol/main/51BD9C7E9E62DF12B1122C9B874DBFAC [Solution manual is also available online]
- [Brown&Vranesic] Fundamentals of Digital Logic with Verilog Design 3e Stephen Brown, Zvonko Vranesic:

http://library.lol/main/7084609A715D3C56A468C66D66DD1019
[Solution manual is also available online]

- [Andrew,Jens,Igor&Jin] VLSI Physical Design: From Graph Partitioning to Timing Closure 1e - Andrew B. Kahng, Jens Lienig, Igor L. Markov, Jin Hu: https://theswissbay.ch/pdf/Gentoomen%20Library/Misc/Summerer%20-%20VLSI%20 Physical%20Design.pdf
- [Naveed A. Sherwani] Algorithms for VLSI Physical Design automation (third edition) https://drive.google.com/file/d/1zN8dcQeKMQdQj-ejm17JCRIWwx58VpfZ/view?usp=share_link
- Chapter wise topic lists from the Bookshttps://drive.google.com/file/d/1nVr EWHilCuEubedRChEcz0Y9VqXNJEx/view?usp=share_link

Practice problems sheet

After watching/attending the lectures and reading the corresponding texts, try to solve the following problems:

Week-wise Practice Problems:CSE460: VLSI Design Practice Problems for Exam (Fall 2023)

Solution Manual for Practice Problems: [Answer Sheet]

^{**[}The problems are compiled from the corresponding reading sections' solved example problems or exercises.]

^{**}The final questions in the exam will be conceptual & analytical (theoretical and problem-solving).

Course timeline

Week	Event	Details/Sylla bus	Reference	Slide	BuX Video Link
1 [May 28 - May 30]	Theory(1): Week 1 Lecture 1	Introduction to VLSI	[Weste&Harris] Chapter 1 1.1 A Brief History	P CSE4	1. Course Content 2. The transistor concept 3. History and basic transistor 4.MOSFETs: A closer look 5.Moore's Law 6.Design abstraction and methodologies
June 1 June 6]	Lab: Experiment 1	CMOS Schematic Circuit Design in DSCH2	CSE 460 Expe		1.CSE 460 Experiment 4 Part 1: Introduction to DSCH2 2.CSE 460 Experiment 4 Part 2: DSCH2 Example - CMOS Inverter 3.CSE 460 Experiment 4 Part 3: DSCH2 Example - F= AB+CD 4.CSE 460 Experiment 4 Part 4: DSCH2 Example - NAND gate 5.DSCH2 Example - D latch 6.DSCH2 Example D Flip Flop
	Theory(2): Week 2 Lecture 1	- Review of digital electronics - Logic gates in CMOS	[Brown&Vranesic] Chapters 2, 4, 5 2.4 Logic Gates and Networks [Full, up to Functionally Equivalent Networks] 2.3 Boolean Algebra: Axioms of Boolean Algebra, Examples: 2.3, 2.4 4.1 Multiplexers [up to example 4.1(included)] 5.3 Gated D Latch [Full, 5.3.1 will be covered in future] 5.4.1 Master-Slave D	P CSE4	1.Review of logic gates 2.Logic function synthesis (SOP, POS, K-maps) 3.Review of MUX 4.Review of Mux, Decoder and Encoder (optional) 5.Review of D latch 6.Review of D flip-flop 7.Level triggered vs. Edge triggered

			Flip-flop [Full]		
	Theory(3): Week 2 Lecture 2	Implementatio n of logic blocks and sequential elements in CMOS technology	[Weste&Harris] Chapter 1 1.3 MOS Transistors (full) 1.4 CMOS Logic (1.4.1-1.4.5)	P CSE4	1. 460 L3 P1 2. nMOS and pMOS operation 3. CMOS logic gate general structure: part 1 4. CMOS logic gate general structure: part 2 5. Example 1 6. Example 3
3 [Jun 8 - Jun 13]	Lab: Experiment 2	Introduction to Verilog; Verilog Design Part 1 (combinationa I logic)	■ Altera Quartus ■ CSE 460 Expe	P CSE4	
	Theory(4): Week 3 Lecture 1	CMOS Implementatio n	[Weste&Harris] Chapter 1 1.4 CMOS Logic (1.4.6-1.4.9)	P CSE4	1.nMOS and pMOS as pass transistors 2.CMOS Transmission gates 3.CMOS Tristate buffers and inverters 4.CMOS Multiplexers 5.CMOS D Latch 6.CMOS D Flip-flop
	Theory(5): Week 3 Lecture 2	CMOS transistor theory	[Weste&Harris] Chapter 2 2.1 Introduction 2.2 Long-channel I-V Characteristics	■ CSE4	1.MOS Operating modes 2.nMOS Regions of operation 3.nMOS I-V Characteristics derivation: part 1 4.nMOS I-V Characteristics derivation: part 2 5.MOSFET I-V Characteristics Summary
4 [Jun 22 - Jun 27]	Lab: Experiment 3	Verilog Design Part 2 (sequential logic)	■ CSE 460 Expe	P CSE4	

	Theory(6): Week 4 Lecture 1	CMOS transistor theory	[Weste&Harris] Chapter 2 2.2 Long-channel I-V characteristics Example 2.1 2.3.1 Simple MOS capacitance models + mathematical problem solving	■ CSE4■ CSE4	1.nMOS & pMOS I-V Characteristics Summary 2.Example 1 3.Example 2 4.Example 3 5.Gate and diffusion capacitance
	Theory(7): Week 4 Lecture 2	DC response of CMOS inverter	[Weste&Harris] Chapter 2 2.5 DC Transfer Characteristics 2.5.1 Static CMOS Inverter DC Characteristics 2.5.2 Beta Ratio Effects 2.5.4 Pass Transistor DC Characteristic	▶ CSE4	1.DC Response 2.CMOS Inverter DC Response Derivation 3.DC Response Practical Consideration \$ 4.
5 [Jun 29	Lab Test		periment 1 - Experiment periment 4 (Verilog 3) For p-4 FSM.pptx		
Jul 4]	Theory(8): Week 5 Lecture 1	Introduction to system design using finite state machines	[Brown&Vranesic] Chapter 6 6.1 Basic Design Steps [Brown&Vranesic] Chapter 6 Example 6.1 [full]	P CSE4 P CSE4	
	Theory(9): Week 5 Lecture 2	System design using moore and mealy type finite state machines (FSM1)	[Brown&Vranesic] Chapter 6 Section 6.2, 6.2.1 [Full], 6.3 Mealy State Model [full] Example 6.2, 6.4	P CSE4	
6 [Jul 6	Lab: Experiment 4	Verilog Design Part 3 (FSMs)		₽ CSE4	
Jul 11]	Theory(10): Week 6 Lecture 1	System design using moore and mealy type finite state machines (FSM2)	[Brown&Vranesic] Chapter 6 Section 6.2, 6.2.1 [Full], 6.3 Mealy State Model [full] Example 6.2, 6.4	P CSE4	
	Theory(11)		Reserved		

7	Midterm exam	1	Lecture 1 - Lecture 10		
8 [Jul 22	Lab: Experiment 5	Verilog Design Part 4 (FSMs)		P CSE4	
Jul 25]	Theory(12): Week 8 Lecture 1	Fabrication of CMOS devices	[Weste&Harris] Chapter 1 1.5 CMOS Fabrication and Layout (1.5.1-1.5.3)	P CSE4	
9 [Jul 22 -	Lab: Experiment 6	CMOS Layout Design in Microwind	■ CSE 460 Expe		
Jul 25]	Theory(13): Week 9 Lecture 1	Layouts and stick diagrams	[Weste&Harris] Chapter 1 1.5.5 Stick Diagrams (Full + Example 3)	P CSE4 P CSE4	
	Theory(14): Week 9 Lecture 2	1. Physical Design	https://nmsu.zoom.us /rec/share/wO2p7vq3 qyfhb1mMELK3d3pli aasuQRWnf649- ric_qXzLSd2Ci1GjXt Zio8Kze7.DihKIAL49 _UpAWnr	P CSE4	
10 [Jul 27 - Jul 31]	Lab: Experiment 7	Algorithm implementation using Python	ТВА		
	Theory(15): Week 10 Lecture 1	Physical Design (algorithm 1)	Video URL: https://nmsu.zoom.us /rec/share/wO2p7vq3 qyfhb1mMELK3d3pli aasuQRWnf649- ric_qXzLSd2Ci1GjXt Zio8Kze7.DihKIAL49 _UpAWnr	P CSE4	
	Theory(16): Week 10 Lecture 2	Physical Design (algorithm 2)	Lecture note	CSE4	
11					
[Aug 3 - Aug 8]	Theory(17): Week 11 Lecture 1	Delay in CMOS circuits(Part1)	[Weste&Harris] Chapter 4 4.2 Transient Response 4.3 RC Delay Model	■ CSE4	

			4.3.1 Effective Resistance 4.3.2 Gate and Diffusion Capacitance 4.3.3 Equivalent RC Circuits		
	Theory(18): Week 11 Lecture 2	Delay in CMOS circuits(Part2)	[Weste&Harris] Chapter 4 4.3.5 Elmore Delay Example 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9	● CSE4	
12	Lab: Presentation		Paper presentation		
[Aug 10 - Aug 14]	Theory(19): Week 12 Lecture 1	Power in CMOS circuits	[Weste&Harris] Chapter 5 5.1.1 Definitions	■ CSE4	
	Theory(20): Week 12 Lecture 2	Power in CMOS circuits (Continued)	5.1.2 Examples 5.1.3 Sources of Power Dissipation Example 5.1	■ CSE4	
13 [Aug 17	Lab		Reserved		
- Aug 22]	Theory(21)		Reserved		
14	Lab	Reserved			
[Aug 24 - Aug 29]	Theory(22)	Reserved			
14	Final exam	L	ecture 11 - Lecture 20		

Course contents

Detailed List of Topics

1. Week 1

- Introduction to VLSI, history, timeline. Moore's law.
- Review of digital logic design. Complete VLSI flow (top down / bottom up)

2. Week 2

- Logic circuit families: n-MOS, p-MOS, pseudo n-MOS and CMOS technologies. Introduction to CMOS logic. Pull-up and pull-down networks, implementation using series and parallel MOSFETs.
- Combinational logic circuit design using CMOS. Complex gate design using CMOS such as And-Or-Invert or Or-And-Invert. Implementation of different circuit elements like basic gates.
- Multiplexers, encoder, latch, flip-flops using CMOS

3. Week 3

CMOS transistor theory

4. Week 4

- DC Response of CMOS gates. Pass transistors. Logic levels and noise margins. DC transfer characteristics.
- FSM Introduction
- FSM moore and mealy type machines

•

Week 5

- System design using moore and mealy type finite state machines
- Different hardware implementation techniques

6. Week 6

 CMOS Transistor theory: modes of operation. Derivation of I-V characteristics. MOS Capacitance.

7. Week 7

• Midterm week

8. Week 8

- CMOS Fabrication: Inverter cross-section and layout analysis.
- Layout
- Masks. Stick diagrams and area estimation. (Eulerian path. Complex examples)

9. Week 9, 10

- Physical design: floorplanning, partitioning, routing, clock tree synthesis.
- KL algorithm for partitioning.
- Lee's maze algorithm for global routing

10. Week 11

- Transient response of CMOS gates. Delay definitions: rise time, fall time, propagation delay and contamination delay, RC delay model. Effective resistance. MOS Capacitance.
- Elmore delay. Parasitic and effort delay. Fan-in and fan-out. Layout comparisons

11. Week 12

 CMOS Power: Instantaneous and Average power, Energy. Power in circuit elements analysis (R, C, DC Supply). Switching waveforms of an inverter. Static power and Dynamic power. Activity factor. Power reduction techniques: Clock gating, Power gating, Dynamic voltage scaling.