EE204: Analog Circuits Dept of Electrical Engineering IIT Bombay Autumn Semester 2023

Assignment 2

Total Marks: 10

Submission Deadline: 11:59 p.m., 26-08-2023

Mode of Submission: Scan your assignment and upload on Moodle as a single pdf file.

- 1. For the circuit shown in Figure 1, $V_{dd} = 1.8 V$, $\mu_n C_{ox} = 260 \mu A/V^2$, $V_t = 0.4 V$, $\frac{3\mu m}{0.5\mu m} < \left(\frac{W}{L}\right)_1 < \frac{5\mu m}{0.5\mu m}$ (Choose any aspect ratio in this range).
 - (a) Find V_{GS} of transistor M1 for the Figure 1(a). (1.5 Marks)
 - (b) The circuit in Figure 1(b) is 1:1 current mirror, Plot I_{out} v/s V_{DS} for two lengths of M2, $(L_2)_1 = 0.5 \ \mu m$ and $(L_2)_2 = 1 \ \mu m$ (keeping aspect ratio same as Q1(a)) and write the approximate value of slope in saturation and ohmic region, given that $\lambda = 0.025 \ V^{-1}$ for $L_2 = 1 \ \mu m$ and $\frac{d\lambda}{dL} = -0.05 \ V^{-1}/\mu m$ for $L \leq 1 \mu m$. (1.5 Marks)
 - (c) The circuit in Figure 1(c) is 1:1 current mirror, Find the region of operation of M2 and I_{out} for $R=20~k\Omega$ and $R=40~k\Omega$. (2 Marks)

Figure 1: Circuits for Q1

- 2. Refer to Figure 2 and answer the following questions:
 - (a) What should be the value of R2 such that I_{load} is independent of R_1 . Given that $R_1 = 1 k\Omega$, $R_3 = 1 k\Omega$, $R_4 = 9 k\Omega$, A = 100? (1.5 Marks)
 - (b) Derive the expression for the I_{load} , if R_3 reduces by a% (0 < $a \le 5$) and R_2 increases by b% (0 < $a \le 4$). Then specify the condition for worst-case error in the load current.(2.5 Marks)
 - (c) Use the worst-case values you obtained in Q2(b) and calculate the numerical value of the error in the worst-case condition (Choose a reasonable value of V_{ctrl}).(1 Mark)

Figure 2: Circuit for Q2