<u>Durée 2 heures</u> <u>Tout document interdit</u>

Exercice 1 (8, 4)

On se donne quatre formules α_1 , α_2 , α_3 et β telles que :

 $\alpha_1: \forall x \forall y (P(x) \land Q(y) \rightarrow R(x,y))$

 α_2 : $\exists x \exists y \ P(x) \land Q(y)$

 $\alpha_3 : \exists x \exists y P(x) \lor Q(y)$

 β : $\exists x \exists y \ R(x,y)$

Question 1 (2, 2, 2, 2)

Donner:

- 1. un modèle de l'ensemble $S : \{\alpha_1, \alpha_2, \alpha_3\}$
- 2. une interprétation qui falsifie S.
- 3. deux modèles de Herbrand de S. Ces modèles seront aussi petits que possible.
- 4. deux interprétations de Herbrand qui falsifient S

Question 2 (4)

Montrer sans utiliser la propriété de complétude de la résolution que : $S \models \beta$

Exercice 2 (2-4)

Question 1. Ecrire les énoncés suivants dans le langage des prédicats du premier ordre :

 E_1 : Il y'a un x tel que : tous ceux qui sont plus grands que x sont grands et tous ceux qui sont plus petits que x sont petits.

 E_2 : Si x est plus grand que y alors y est plus petit que x.

 E_3 : Si x est grand alors il n'est pas petit.

 E_4 : Il existe un x qui n'est pas plus grand que lui-même.

Question 2. Déduire E₄ à partir de E₁, E₂ et E₃. (Ne pas utiliser la propriété de complétude de la résolution).

Exercice 3 (2)

Trouver la plus générale instance commune aux expressions suivantes si elle existe :

 $E_1 : Q(x, y) \text{ et } E_2 : Q(f(y), g(x))$

Correction

Exercice I

Question 1.

Un modèle de l'ensemble S :

P: pair Q: impair R: x est un multiple de y

 $D: \{3,6\}$

Une interprétation qui falsifie S : (i-e qui falsifie au moins une formule de S)

P: pair Q: impair R: x est un multiple de y

D: {2,4,6}

Cette interprétation falsifie α_2 .

Deux modèles de Herbrand de S:

ightarrow Mettre sous forme de Skolem (0.25 pt)

 \rightarrow Mettre sous forme clausale : (0.25 pt)

S': { $P(x) \lor Q(y) \lor R(x,y), P(a), Q(b), P(c) \lor Q(d)$ }

→ Deux modèles de Herbrand de S

• M_1 : { P(a), Q(b), P(c) } (0.75 pt)

• M_2 : { P(a), Q(b), P(d)} (0.75 pt)

→ Deux interprétations de Herbrand qui falsifient

• I_1 : {P(a)} (1 pt)

 $I_2: \{ \exists Q(b) \}$ (1 pt)

Question 2.

Montrer que $S \models \beta$ ssi $S \cup \{ \exists \beta \}$ inconsistant ssi de l'ensemble de clauses issu de $S \cup \{ \exists \beta \}$ on peut déduire la clause vide

 $C_1: \exists P(x) \lor \exists Q(y) \lor R(x,y)$

C₂: P(a)

 C_3 : Q(b)

 $C_4: \exists P(c) \lor \exists Q(d)$

 $C_5: \exists R(u,v)$

 $C_6: \exists R(x,y)$

 C_7 : $\exists P(x) \lor \exists Q(y)$ res (1,6)

 $C_8: \exists P(a) \lor \exists Q(y)$

 $C_{10}: \ \ Q(b)$

 C_{11} : \Box res (3,10)

Exercice 2 (2-4)

Question 1. 0,5 point par expression

 E_1 : Il y'a un x tel que : tous ceux qui sont plus grands que x sont grands et tous ceux qui sont plus petits que x sont petits.

$$\beta_1: \exists x \forall y ((G(y,x) \to G(y)) \land (P(y,x) \to P(y)))$$

 E_2 : Si x est plus grand que y alors y est plus petit que x.

$$\beta_2: \forall x \forall y (G(x,y) \rightarrow P(y,x))$$

 E_3 : Si x est grand alors il n'est pas petit.

$$\beta_3: \forall x (G(x) \rightarrow P(x))$$

Question 2. Déduire de E_1 et E_2 qu'il existe un x qui n'est pas plus grand que lui-même : γ : $\exists x \ G(x,x)$

 β_1 , β_2 , $\beta_3 \vdash \gamma$ ssi $\{\beta_1, \beta_2, \beta_3, \gamma\}$ inconsistant ssi de l'ensemble S de clauses on peut déduire la clause vide.

Forme de Skolem : (0.5 pt)

$$\forall y ((G(y,a) \to G(y)) \land (P(y,a) \to P(y)))$$

$$\forall x \forall y (G(x,y) \to P(y,x))$$

$$\forall x (G(x) \to P(x))$$

$$\forall x G(x,x)$$

Ensemble de clauses : (0.5 pt)

S: {
$$| G(y,a) \lor G(y), | P(y,a) \lor P(y), | G(x,y) \lor P(y,x), | G(x) \lor | P(x), G(x,x)$$
}

On renomme les variables : (0.5 pt)

S': {
$$\neg G(y,a) \lor G(y)$$
, $\neg P(z,a) \lor P(z)$, $\neg G(u,v) \lor P(v,u)$, $\neg G(w) \lor \neg P(w)$, $G(x,x)$ }

Déduction de la clause vide : (2.5 pt)

 c_{14} :

```
c_1: G(y,a) \vee G(y)
c_2: P(z,a) \vee P(z)
c_3: G(u,v) \vee P(v,u)
c_4: G(w) \vee P(w)
c_5: G(x,x)
c_6: G(x,x) \vee P(x,x)
                                     c_3[x/u, x/v]
\mathbf{c}_7: \mathbf{P}(x,x)
                                     res (5,6)
c_9 : P(a,a)
                                     c_7 : [a/x]
c_{10} : P(a)
                                     res (2,9)
c_{11}: |G(a)|
                                     res (4,10)
c_{12}: G(a,a)
                                     res (1,11)
c_{13} : G(a,a)
                                     c_5[a/x]
```

Exercice 3 (2)

```
Trouver la plus générale instance commune aux expressions suivantes si elle existe :
```

 $E_1 : Q(x, y) \text{ et } E_2 : Q(f(y), g(x))$

On renomme les variables (1 pt)

 $E_1 : Q(u, v) \text{ et } E_2 : Q(f(y), g(x))$

 $\theta_1:\{f(y)/u\}$

 $E_{1\theta 1}: Q(f(y), v) \text{ et } E_2\theta_1: Q(f(y), g(x))$

 θ_2 : {f(y)/u}o {{g(x)/v} = {f(y)/u, g(x)/v}

 $E_{1\theta 2}: Q(f(y), g(x)) \text{ et } E_{2\theta 2}: Q(f(y), g(x))$

La plus générale instance commune aux 2 expressions est : Q(f(y), g(x)) (1 pt)