Announcements & Such

- Administrative Stuff
 - There will be no lecture on Thursday (4/15).
 - HW #5 first submission is due on Thursday.
 - My handout "Working with LMPL Interpretations" is posted (useful for part of HW #5). I will discuss this in class today.
 - From now on, my office hours are: 4-6pm Tuesdays starting today. [This supercedes my previous planned change of office hours.]
- Today: Chapter 6 LMPL Semantics
 - Supplementing LSL semantics with LMPL notions.
 - New definition of *interpretation* for LMPL sentences.
 - Working with LMPL interpretations.
 - Validity and Invalidity in LMPL.
 - Next: Natural Deductions in LMPL (*i.e.*, rules for the quantifiers).

Chapter 6 — Formal Semantics for LMPL

- Venn diagrams can be useful to help us figure out and visualize the conditions under which some *simple* LMPL sentences are true or false.
- But, this technique only works for sentences that have three predicates or less. If a sentence has four predicates or more, then Venn diagrams become quite difficult to draw or comprehend. [Explain this.]
- Chapter 6 provides us with a *general* semantics for LMPL. This will allow us to understand, more generally, the conditions under which *any* (*closed*!) LMPL sentence will be true or false. [Like truth-tables for LSL.]
- In Chapter 6, we will also see a precise definition of the *semantic* consequence relation (⊨) for our new theory LMPL. This will allow us to determine whether LMPL arguments are valid or invalid (in general).
- We begin with some new terminology . . .

Formal Semantics for LMPL I: Some Terminology

- A **domain** (\mathcal{D}) is a nonempty (finite) set of individuals.
- The **reference of an individual constant** τ [Ref(τ)] is the object in the domain \mathcal{D} to which τ refers (*e.g.*, 「Ref(τ) = x abbreviates 「 τ denotes x]).
- The **extension of a predicate P** [Ext(**P**)] is the set of all objects in the domain which satisfy **P** (*e.g.*, if P_{--} : __ is at the podium, and Ref(b) = Branden, then Ext(P) = {b}). Note: extensions are always subsets of the domain \mathcal{D} .
- The **instances of a** (*closed*!) **quantified sentence** $\lceil (Qv)\phi v \rceil$ **in a domain** \mathcal{D} are the sentences one gets by replacing all occurrences of v in $\lceil \phi v \rceil$ with the name of each element of \mathcal{D} (*e.g.*, instances of ' $(\forall x)Px$ ' in \mathcal{D} are 'Pa', 'Pb', . . . , for each individual in \mathcal{D} . \therefore there are $|\mathcal{D}|$ instances of $\lceil (Qv)\phi v \rceil$ in \mathcal{D}).
- An interpretation (1) of an (closed!) LMPL sentence p (or argument \mathscr{A}) is: (i) a domain \mathcal{D} ,
 - (ii) an assignment of extensions to any predicate letters in p (\mathscr{A}),
 - (iii) an assignment of references to any individual constants in $p(\mathcal{A})$, and
 - (iv) an assignment of truth-values to any sentence letters in p (\mathscr{A}).

Formal Semantics for LMPL II: \top and \bot in LMPL

- We're now in a position to give precise *truth-conditions* for each kind of (*closed*!) LMPL sentence (augmenting the truth-table definitions of LSL).
- First, the truth conditions for the (*closed*!) *atomic* sentences of LMPL:
 - An atomic sentence $\mathbf{P}\tau$ is $true(\top)$ on an interpretation \mathcal{I} if the object referred to by the individual constant τ belongs to the extension of the predicate \mathbf{P} (*i.e.*, if $\tau \in \text{Ext}(\mathbf{P})$). If τ does *not* belong to the extension of the predicate \mathbf{P} that is, if $\tau \notin \text{Ext}(\mathbf{P})$ then $\mathbf{P}\tau$ is $false(\bot)$.
- Next, the truth conditions for the (*closed*!) *quantified* sentences of LMPL:
 - A universal sentence $\lceil (\forall v) \phi v \rceil$ is *true* (\top) *in* \mathcal{I} if *all* its instances in \mathcal{I} are true. If some of its instances are false (in \mathcal{I}), then $\lceil (\forall v) \phi v \rceil$ is *false* (\bot) .
 - An existential sentence $\lceil (\exists v) \phi v \rceil$ is *true* (\top) *in* \mathcal{I} if *some* of its instances are true in \mathcal{I} . If *all* its instances are false (in \mathcal{I}), then it's *false* (\bot) .
- NOTE: the usual *truth-tables* for &, \lor , \rightarrow , \leftarrow , \sim are still in force in LMPL!

An Example of an LMPL Interpretation

Matrix Representation:

(1)
$$\begin{array}{c|cccc} & F & G \\ \hline \alpha & + & - \end{array}$$

[Ignoring sentence letters.]

- Greek letters ' α '-' σ ' (viz., the objects named by the *constants* 'a'-'s') are placed in the left column, alphabetically. All of the predicates in the interpretation I are placed across the top row, alphabetically. '+' means 'satisfies the predicate', and '–' means 'does *not* satisfy the predicate'.
- This matrix says (in addition to $Ref(a) = \alpha$, and $Ref(b) = \beta$):
 - (i) The *domain* \mathcal{D} of \mathcal{I} consists of the two objects α , β (*i.e.*, $\mathcal{D} = \{\alpha, \beta\}$).
 - (ii) The *extension* of 'F' consists of the object α (i.e., $\text{Ext}(F) = \{\alpha\}$), and the *extension* of 'G' consists of the object β (i.e., $\text{Ext}(G) = \{\beta\}$).
- **Quiz**: What are the truth-values in \mathcal{I} of the following 4 sentences?

$$(1) (\exists x) Fx \& (\exists x) Gx, (2) (\exists x) (Fx \& Gx), (3) (\forall x) (Fx \lor Gx), (4) (\forall x) Fx \lor (\forall x) Gx$$

Validity and Invalidity of LMPL Arguments

• An argument-form \mathscr{A} in LMPL is **valid** iff there is no interpretation in which all of \mathscr{A} 's premises are true (\top) , but \mathscr{A} 's conclusion is false (\bot) .

Example: Consider the following LMPL argument-form:

$$(\mathscr{A}_1) \qquad (\exists x) Fx \& (\exists x) Gx \\ \therefore (\exists x) (Fx \& Gx)$$

- We have *already* proven that \mathscr{A}_1 is *in*valid! We just showed that in \mathcal{I} the only premise [(1)] of \mathscr{A}_1 is \top , but the conclusion [(2)] of \mathscr{A}_1 is \bot .
- Interpretation I can also be used to show that the argument-form:

$$(\mathscr{A}_2) \qquad (\forall x)(Fx \vee Gx)$$
$$\therefore (\forall x)Fx \vee (\forall x)Gx$$

is invalid. Its premise (3) is \top in \mathcal{I} , but its conclusion (4) is \bot in \mathcal{I} .

More Practice Working with LMPL Interpretations

• Consider the following LMPL interpretation:

- So, \mathcal{I}_1 is such that: $\mathcal{D} = \{\alpha, \beta, \gamma\}$, $\operatorname{Ext}(F) = \{\alpha, \gamma\}$, $\operatorname{Ext}(G) = \{\alpha\}$, $\operatorname{Ext}(H) = \emptyset$ (\emptyset is the *null set*), $\operatorname{Ext}(I) = \{\alpha, \beta\}$, and $\operatorname{Ext}(J) = \{\beta, \gamma\}$.
- What are the *1*-truth-values of the following LMPL sentences?

$$(5) \sim Ja$$

$$(8) (\forall x) [Jx \to (Gx \vee Fx)]$$

(6)
$$Fc \rightarrow Ic$$

$$(9) (\exists x) Gx \to (\forall y) (Fy \lor Gy)$$

$$(7) (\exists x) (Jx \leftrightarrow Hx)$$

$$(7) (\exists x) (Jx \leftrightarrow Hx) \qquad (10) (\exists y) (\forall x) [Gy \& (Jx \to (Ix \lor Fx))]$$

• These are solved on page 1 of my "Working with LMPL Interpretations".

Constructing LMPL Interpretations to Prove ≠ Claims

- The notion of *semantic consequence* (\models) in LMPL is defined in the usual way. We say that $p_1, \ldots, p_n \models q$ in LMPL *iff* there is no LMPL interpretation on which all of p_1, \ldots, p_n are true, but q is false.
- In HW #5, you are asked to prove that $p_1, ..., p_n \not\models q$, for various p's and q's. This means you must *construct* (or, *find*) LMPL interpretations on which $p_1, ..., p_n$ are all true, but q is false.
- On page 2 of my "Working with LMPL Interpretations" handout, I have included two problems of this kind. There, I explain in detail *how I* arrived at my interpretations. This is a method you should emulate.
- On your HW's and exams, you will **not** need to explain how you arrived at your interpretations. But, you will need to demonstrate that your interpretations really are counterexamples (i.e., that they really are interpretations on which p_1, \ldots, p_n are all true, but q is false).

How Do We *Prove* \models Claims in LMPL?

- In LSL, we had *systematic*, truth-table procedures for proving *both* negative (⊭) *and* affirmative (⊨) semantical claims.
- The method of constructing LMPL interpretations *is* a general way to establish *negative* (⊭) LMPL-semantical claims.
- We will *not* be learning any systematic methods for (*directly*) establishing *affirmative* (\models) LMPL-semantical claims. There *are* such methods, but they are beyond the scope of this course.^a
- In LMPL, we will rely on *natural deduction proofs* to give us an (*in*direct) method for demonstrating the *validity* of LMPL argument-forms. We'll talk about LMPL natural deductions soon.

alf an LMPL argument with k predicate letters is *in*valid, then there exists a *counterexample interpretation* \mathcal{I} whose domain \mathcal{D} has no more than 2^k elements. So, *exhaustive search* over *all* interpretations such that $|\mathcal{D}| \leq 2^k$ is a *decision procedure* for LMPL-validity. Note: this means checking $2^{2^k \cdot k}$ matrices. This is too many to check, even for small k. If k = 2, then $2^{2^k \cdot k} = 2^8 = 256$. For k = 3, this is 16777216! See pages 212–215 of Hunter's *Metalogic* (our 140A text). We discuss this in 140A.

Construction of LMPL Interpretations: Examples

- Here are six sample problems that require you to *construct* (or, *find*) LMPL interpretations that are *counterexamples* to \models claims (the first two of these are solved on p. 2 of my handout on constructing LMPL interpretations):
 - (1) $(\forall x)(Fx \to Gx), (\forall x)(Fx \to Hx) \not\models (\forall x)(Gx \to Hx)$
 - $(2) (\exists x)(Fx \& Gx), (\exists x)(Fx \& Hx), (\forall x)(Gx \to \sim Hx) \neq (\forall x)[Fx \leftrightarrow (Gx \lor Hx)]$
 - (3) $(\forall x)Fx \leftrightarrow (\forall x)Gx \not\models (\exists x)(Fx \leftrightarrow Gx)^a$
 - $(4) (\forall x) Fx \leftrightarrow A \not\models (\forall x) (Fx \leftrightarrow A)^{\mathsf{b}}$
 - (5) $Fa \rightarrow (\exists x)Gx \neq (\exists x)Fx \rightarrow (\exists x)Gx^{c}$
 - (6) $(\exists x)(\forall y)(Fx \to Gy) \not\models (\exists y)(\forall x)(Fx \to Gy)^{\mathbf{d}}$

^aOne solution: $\mathcal{D} = \{a, b\}$, $\operatorname{Ext}(F) = \{a\}$, $\operatorname{Ext}(G) = \{b\}$.

^bOne solution: $\mathcal{D} = \{a, b\}$, 'A' is \bot , $\text{Ext}(F) = \{a\}$.

^cOne solution: $\mathcal{D} = \{a, b\}$, $\operatorname{Ext}(F) = \{b\}$, $\operatorname{Ext}(G) = \emptyset$.

^dOne solution: $\mathcal{D} = \{a, b\}$, $\operatorname{Ext}(F) = \{a\}$, $\operatorname{Ext}(G) = \emptyset$.

Construction of LMPL Interpretations: Example #1

- (1) $(\forall x)(Fx \to Gx), (\forall x)(Fx \to Hx) \not\models (\forall x)(Gx \to Hx)$
 - To prove (1), we need to construct (find) an interpretation \mathcal{I} such that:
 - (i) ' $(\forall x)(Fx \rightarrow Gx)$ ' is true in 1.
 - (ii) ' $(\forall x)(Fx \rightarrow Hx)$ ' is true in 1.
 - (iii) ' $(\forall x)(Gx \rightarrow Hx)$ ' is false in \mathcal{I} .
 - **Step 1**: We begin *provisionally* with the smallest domain $\mathcal{D} = \{a\}$.
 - **Step 2**: We make sure that the object a is a *counterexample* to the conclusion ' $(\forall x)(Gx \to Hx)$ '. That is, we make sure that the *instance* ' $Ga \to Ha$ ' of the conclusion is *false* on I. So, we must have $a \in \text{Ext}(G)$, but $a \notin \text{Ext}(H)$. We can achieve this by: $\text{Ext}(G) = \{a\}$, and $\text{Ext}(H) = \emptyset$.
 - **Step 3**: At the same time, we try to make *both* of the premises $(\forall x)(Fx \rightarrow Gx)'$ and $(\forall x)(Fx \rightarrow Hx)'$ true on \mathcal{I} .

In this case, we can make both premises true simply by ensuring that a ∉ Ext(F). The simplest way to do this is to stipulate that Ext(F) = Ø
— which yields the following interpretation that does the trick:

- We have discovered an interpretation $\mathcal{I}_{(1)}$ on which ' $(\forall x)(Fx \to Gx)$ ' and ' $(\forall x)(Fx \to Hx)$ ' are both true, but ' $(\forall x)(Gx \to Hx)$ ' is false (*demonstrate this!*). Therefore, claim (1) is true.
- When you're asked to prove a claim like (1), you must do 2 things:
 - *Report* an interpretation (like I_2) which serves as a counterexample to the validity of the LMPL argument-form, *and*
 - *Demonstrate* that your interpretation *really is* a counterexample *i.e.*, *show* that your interpretation makes all the premises true and the conclusion false, using the methods above. You do *not* need to explain the process which led to the *discovery* of the interpretation.

Construction of LMPL Interpretations: Example #2

- (2) $(\exists x)(Fx \& Gx), (\exists x)(Fx \& Hx), (\forall x)(Gx \rightarrow \sim Hx) \not\models (\forall x)[Fx \leftrightarrow (Gx \lor Hx)]$
- We need an interpretation \mathcal{I} on which ' $(\exists x)(Fx \& Gx)$ ', ' $(\exists x)(Fx \& Hx)$ ', and ' $(\forall x)(Gx \to \sim Hx)$ ' are all \top , but ' $(\forall x)[Fx \leftrightarrow (Gx \lor Hx)]$ ' is \bot .
- **Step 1**: We begin with the smallest possible domain $\mathcal{D} = \{a\}$.
- **Step 2**: We make sure that a is a *counterexample* to the conclusion ' $(\forall x)[Fx \leftrightarrow (Gx \lor Hx)]$ '. So, we make its *instance* ' $Fa \leftrightarrow (Ga \lor Ha)$ ' \bot on \mathcal{I} . One way to do this is: $a \in \operatorname{Ext}(F)$, $a \notin \operatorname{Ext}(G)$, and $a \notin \operatorname{Ext}(H)$. So far, we have the following: $\operatorname{Ext}(F) = \{a\}$, and $\operatorname{Ext}(G) = \operatorname{Ext}(H) = \emptyset$.
- **Step 3**: Now, we must make *all three* of the premises (i) ' $(\exists x)(Fx \& Gx)$ ', (ii) ' $(\exists x)(Fx \& Hx)$ ', and (iii) ' $(\forall x)(Gx \to \sim Hx)$ ' \top on \mathcal{I} . In order to make $(i) \top$ on \mathcal{I} , we must ensure that there is some object in the domain \mathcal{D} which satisfies *both* 'F' and 'G'. But, since a must *not* satisfy both 'F' and 'G', this means we will need to *add another object b* to our domain \mathcal{D} .

- This new object b must be such that: $b \in \text{Ext}(F)$, and $b \in \text{Ext}(G)$. Now, we have $\text{Ext}(F) = \{a, b\}$, $\text{Ext}(G) = \{b\}$, and $\text{Ext}(H) = \emptyset$.
- All that remains is to ensure that premises (ii) and (iii) are also \top on \mathcal{I} . In order to make (ii) \top on \mathcal{I} , we'll need to make sure that there is some object in \mathcal{D} which satisfies both 'F' and 'H'. We could try to make b satisfy all three 'F', 'G', and 'H'. But, if we were to do this, then premise (iii) would become false on \mathcal{I} , since its instance ' $Gb \rightarrow \sim Hb$ ' would then be false on \mathcal{I} . Thus, we'll need to add a third object c to \mathcal{D} such that: $c \in Ext(F)$, $c \notin Ext(G)$, and $c \in Ext(H)$ and that does the trick:

$$I_{(2)}$$
: $egin{array}{c|ccccc} & F & G & H \\ \hline a & + & - & - \\ b & + & + & - \\ c & + & - & + \\ \hline \end{array}$

• We have discovered an interpretation $\mathcal{I}_{(2)}$ on which ' $(\exists x)(Fx \& Gx)$ ', ' $(\exists x)(Fx \& Hx)$ ', and ' $(\forall x)(Gx \to \sim Hx)$ ' are all \top , but on which ' $(\forall x)[Fx \leftrightarrow (Gx \lor Hx)]$ ' is false (*demonstrate this!*). \therefore claim (2) is true.

Construction of LMPL Interpretations for ⊭: **Procedure**

- 1. Begin with smallest domain possible $\mathcal{D} = \{\alpha\}$.
- 2. Make the conclusion of the $\not\equiv$ claim false (for α).
 - That is, make the *a*-instance of the conclusion false.
- 3. Try to make all premises of the $\not\equiv$ claim true (for α).
 - That is, make the *a*-instance of each of the premises true.
- 4. If you succeed, then you're done. Now report and verify your matrix.
- 5. If you fail, then add a new individual β to $\mathcal{D} = \{\alpha, \beta\}$, and continue.
- 6. Make the conclusion of the \neq claim false.
 - If the conclusion is an \forall claim, then it's already false.
 - If it's an \exists , then you must make sure its b-instance is also false.
- 7. Make the premises of the \neq claim true.
 - If a premise is an \forall claim, then *all* its instances must be true.
 - If it's an ∃ claim, only *one* of its instances needs to be true.
- 8. If you succeed, you're done. If not, add another (γ) to \mathcal{D} . Repeat ...

Using Sentential Reasoning to "Verify" LMPL ⊨ Claims

$$(\forall x)(\exists y)(Fx \& Gy) = (\exists y)(\forall x)(Fx \& Gy)$$

• To see why, think about the truth-conditions for each side:

$$(\forall x)(\exists y)(Fx \& Gy) \approx (\exists y)(Fa \& Gy) \& (\exists y)(Fb \& Gy) \& \cdots$$

$$\approx [(Fa \& Ga) \lor (Fa \& Gb) \lor \cdots] \& [(Fb \& Ga) \lor (Fb \& Gb) \lor \cdots] \& \cdots$$

$$\approx [Fa \& (Ga \lor Gb \lor \cdots)] \& [Fb \& (Ga \lor Gb \lor \cdots)] \& \cdots$$

$$\approx (Fa \& Fb \& Fc \& \cdots) \& (Ga \lor Gb \lor Gc \lor \cdots)$$

```
(\exists y)(\forall x)(Fx \& Gy) \approx (\forall x)(Fx \& Ga) \vee (\forall x)(Fx \& Gb) \vee \cdots
\approx [(Fa \& Ga) \& (Fb \& Ga) \& \cdots] \vee [(Fa \& Gb) \& (Fb \& Gb) \& \cdots] \vee \cdots
\approx [Ga \& (Fa \& Fb \& \cdots)] \vee [Gb \& (Fa \& Fb \& \cdots)] \vee \cdots
\approx (Ga \vee Gb \vee Gc \vee \cdots) \& (Fa \& Fb \& Fc \& \cdots)
```

• : These two formulas are *equivalent*, since the two red formulas are

$$(Ga \lor Gb \lor \cdots) \& (Fa \& Fb \& \cdots) \approx (Fa \& Fb \& \cdots) \& (Ga \lor Gb \lor \cdots)$$