I. Aus alten Aufnahmeprüfungen

Aufnahmeprüfung 2023 Serie e

2.b)
$$(x+12)(x-4)$$
 $x^{2}-16$ x

Aufnahmeprüfung 2023 Serie d (x+3)(x-3) (x-3) $x^2 - 9$ x - 32a) (x-3)Beispielprüfung 2023 x + 4 = $(x + 4)^2$ $x^2 + 2xy + y^2$ $\frac{3}{3} \times -12$ $\frac{7}{(x+9)(x-9)}$ 3(x-4)3(x-4)3(x-4)x+4

Aufnahmeprüfung 2022 Serie B

2.a)
$$\frac{1}{4} \left(\frac{1}{4} - \frac{x}{2} \right) - \left(\frac{3x}{8} - \frac{3x}{2} \right)$$

Iclammern aullösen

$$\frac{1}{8}$$
 $\frac{3}{8}$ $\frac{3}{2}$

gleich u amig

$$\frac{8+8\times}{8} = \frac{8(1+\times)}{8} = 1+\times$$

$$\frac{2a+10}{a^2+10a+25} = \frac{2(a+5)}{(a+5)^2} = \frac{2}{a+5}$$

Aufnahmeprüfung 2022 Serie A 1.c) $-\sqrt{130 \times^2 - (7 \times)^2}$ 5 x $\sqrt{130x^2-49x^2}$ $\frac{1}{8}(x+\frac{1}{2}) - \frac{3x^2}{8}: \frac{12x}{4}$

Aufnahmeprüfung 2021 Serie B1 12 -2×+5 $a + \frac{3}{2} + \frac{3}{2} + \frac{3}{2} + \frac{3}{2} + \frac{3}{2} = \frac{2a}{2} = \frac{2a}{2}$ 3x + 4 5x + 10 3x + 4 5(x + 2) x - 7 (x + 2)(x - 2)3. c) (x+2) (x-7) $= (3 \times +4) : 5$

Aufnahmeprüfung 2021 Serie A2

3.b)
$$16a \cdot \frac{b^2}{8} + 9a \cdot \frac{3}{b^2} = \frac{16a \cdot b^2}{8} + \frac{9a \cdot b^2}{3}$$

$$= ab^{2} \left(\frac{16}{8} + \frac{9}{3} \right) = ab^{2} \left(2+3 \right) = 5ab^{2}$$

3. c)
$$\frac{4 \times -12}{x^2 - 5 \times +6}$$
 $\frac{3x + 1}{x - 2}$ $\frac{4(x + 3)}{(x + 3)(x - 2)}$ $\frac{3x + 1}{3x + 1}$

Aufnahmeprüfung 2020 Serie B2

$$\frac{15(x-4)}{12} = \frac{2(x+5)}{12} = \frac{15x-60-(2x+10)}{12}$$

3.b)
$$\frac{8a^2}{2b}$$
; $\frac{a^2}{3b^2}$ $\frac{b}{5}$ $\frac{4a^2}{b}$; $\frac{a^2}{3b^2}$ $\frac{b}{5}$

$$= \frac{4a^{2} - 3b^{2}}{b} - \frac{5}{5} = \frac{12b}{5}$$

3.c)
$$x^2 + 6 \times x^2 - 25$$
 $x^2 + 7 \times 46$ $x^2 - 25$ $x^2 + 6 \times x^2 - 25$ $x^2 + 6 \times x^2 - 25$ $x^2 + 6 \times x^2 - 25$

Aufnahmeprüfung 2020 Serie B1

3. a) $\frac{4b^2}{2a} \cdot \frac{b^2}{3c^2} \cdot \frac{c}{5} = 3b$ Sevie B2 (2.020)

$$3(x-2)$$
 $2(x+4)$ $=$ $9x-18-2(x+4)$ $=$ 12 $=$ 12

$$= 9 \times - 18 - 2 \times - 8 - 7 \times - 26$$

$$= 12$$

3.c)
$$\frac{x-4}{x^2+5x}$$
, $\frac{x^2+6x+5}{x^2-16}$ $\frac{x-4}{x(x+5)}$, $\frac{(x+1)(x+5)}{(x+4)(x+4)}$

Aufnahmeprüfung 2020 Serie A2

3. a) Vereinfachen Sie so weit wie möglich

$$\frac{1}{3} (x-1) = \frac{1}{3} (x-1) \cdot 2 = \frac{(x+4) \cdot 3}{6} \cdot 3$$

$$\frac{1}{3} (x-1) = \frac{3}{6} \cdot 3 = \frac{3}{6} \cdot 3$$

$$\frac{1}{3} (x-1) = \frac{3}{6} \cdot 3 = \frac{3}{6} \cdot 3$$

$$\frac{1}{3} (x-1) = \frac{3}{6} \cdot 3 = \frac{3}{6} \cdot 3$$

$$\frac{1}{3} (x-1) = \frac{3}{6} \cdot 3 = \frac{3}{6} \cdot 3$$

$$\frac{1}{3} (x-1) = \frac{3}{6} \cdot 3 = \frac{3}{6} \cdot 3$$

$$\frac{1}{3} (x-1) = \frac{3}{6} \cdot 3 = \frac{3}{6} \cdot 3$$

$$\frac{1}{3} (x-1) = \frac{3}{6} \cdot 3 = \frac{3}{6} \cdot 3$$

$$\frac{1}{3} (x-1) = \frac{3}{6} \cdot 3 = \frac{3}{6} \cdot 3$$

$$\frac{1}{3} (x-1) = \frac{3}{6} \cdot 3 = \frac{3}{6} \cdot 3$$

$$\frac{1}{3} (x-1) = \frac{3}{6} \cdot 3 = \frac{3}{6} \cdot 3$$

$$\frac{1}{3} (x-1) = \frac{3}{6} \cdot 3 = \frac{3}{6} \cdot 3$$

$$\frac{1}{3} (x-1) = \frac{3}{6} \cdot 3 = \frac{3}{6} \cdot 3$$

$$\frac{1}{3} (x-1) = \frac{3}{6} \cdot 3 = \frac{3}{6} \cdot 3$$

$$\frac{1}{3} (x-1) = \frac{3}{6} \cdot 3 = \frac{3}{6} \cdot 3$$

$$\frac{1}{3} (x-1) = \frac{3}{6} \cdot 3 = \frac{3}{6} \cdot 3$$

$$\frac{1}{3} (x-1) = \frac{3}{6} \cdot 3 = \frac{3}{6} \cdot 3$$

$$\frac{1}{3} (x-1) = \frac{3}{6} \cdot 3 = \frac{3}{6} \cdot 3$$

$$\frac{1}{3} (x-1) = \frac{3}{6} \cdot 3 = \frac{3}{6} \cdot 3$$

$$\frac{1}{3} (x-1) = \frac{3}{6} \cdot 3 = \frac{3}{6} \cdot 3$$

$$\frac{1}{3} (x-1) = \frac{3}{6} \cdot 3 = \frac{3}{6} \cdot 3$$

$$\frac{1}{3} (x-1) = \frac{3}{6} \cdot 3 = \frac{3}{6} \cdot 3$$

$$\frac{1}{3} (x-1) = \frac{3}{6} \cdot 3 = \frac{3}{6} \cdot 3$$

$$\frac{1}{3} (x-1) = \frac{3}{6} \cdot 3 = \frac{3}{6} \cdot 3$$

$$\frac{1}{3} (x-1) = \frac{3}{6} \cdot 3 = \frac{3}{6} \cdot 3$$

$$\frac{1}{3} (x-1) = \frac{3}{6} \cdot 3 = \frac{3}{6} \cdot 3$$

3.b) Vereinfachen Sie so weit wie möglich

3. c) Vereinfachen Sie so weit wie möglich

Einzelbrüche faktorisieren

$$\begin{array}{c} \times (\times -6) \\ \times (\times +1)(\times -1) \\ \hline \times +1)(\times +1) \\ \end{array}$$

$$(x+1)(x+1)(x-1) = x(x-1)$$

 $(x+1)(x+1)(x-6)$

Aufnahmeprüfung 2020 Serie A1

Vereinfachen Sie den Term so weit wie möglich 3. a)

$$\frac{17a}{3} - \frac{2b^2}{4a} \cdot \frac{b^2}{6a^2}$$

$$= \frac{17a}{3} - \frac{3}{8a} = \frac{3}{3} = \frac{3}{1}$$

3. b) Vereinfachen Sie den Term so weit wie möglich

$$5(x-1)$$
 $x+3$ $5(x-1)\cdot 3$ $(x+3)\cdot 2$ $6\cdot 3$ $9\cdot 2$

$$= \frac{15(x-1)}{18} = \frac{2x+6}{18}$$

$$= 15(x-1) - (2x+6) = 15x-15-7x-6$$

$$= 18$$

$$= \frac{13 \times -21}{18} = \frac{13 \times 21}{18} = \frac{13 \times 7}{18} = \frac{7}{6}$$

Vereinfachen Sie den Term so weit wie möglich 3. c)

Einzelbrüche faktorisieren

$$(x+1)(x+1)$$
 $(x+1)(x-1)$ $(x+3) \cdot (x+3)(x-1)$ $(x+1)(x+1)(x-3)$

Aufnahmeprüfung 2019 Serie B2

3. a) Vereinfachen Sie den Term so weit wie möglich

3. b) Vereinfachen Sie den Term so weit wie möglich

$$3(x-y)^{2}$$
 $6 \times y + 6y^{2}$ $\times + y$ $\times^{2} - 2 \times y + y^{2}$

Einzelbrüche faktorisieren und anschließend kürzen

$$\frac{3(x + 3)(x + 5)}{x + 3} = \frac{3 \cdot 6 \cdot y}{(x + 3)} = \frac{3 \cdot 6 \cdot y}{1} = \frac{18y}{1}$$

Aufnahmeprüfung 2019 Serie B1

3. a)

Vereinfachen Sie die Terme und kürzen Sie die Resultate so weit wie möglich.

a)
$$\frac{5x}{2}:\frac{15}{4}-\frac{2x}{21}\cdot\frac{7}{6}$$

b)
$$\frac{4xy+4y^2}{x^2-2xy+y^2} \cdot \frac{6(x-y)^2}{x+y}$$

$$\frac{4 \times y + 4y^{2}}{x^{2} - 2 \times y + y^{2}} = \frac{6(x - y)(x - y)}{x + y}$$

Einzubrüche faktorisieren

Aufnahmeprüfung 2019 Serie A2 Vereinfachen Sie so weit wie moglich 3. a) 2 x . 9 3 x . 9 3 x . 9 $\frac{3 \times \frac{3}{9}}{3 \cdot 4}$ $\frac{3 \times \frac{16}{2}}{2}$ $\frac{3 \times \frac{16}{2}}$ $\frac{3 \times \frac{16}{2}}{2}$ $\frac{3 \times \frac{16}{2}}{2}$ $\frac{3 \times \frac$ $\frac{3 \times 3}{2 - 3} + \frac{16 \times }{2 \cdot 3} = \frac{9 \times }{6} + \frac{16 \times }{6} = \frac{25 \times }{6}$ $\frac{4 \times^{2} - 4 \times 9}{\times^{2} + 2 \times 9 + 9^{2}} = \frac{5 \left(x + 9\right)^{2}}{x - 9}$ 3. b) Einzelbrüche faktorisieren $\frac{4\times(\times-5)}{(\times+5)(\times+5)} \cdot \frac{5(\times+5)(\times+5)}{(\times-5)}$ alles out einen Bruchstrich schreiben 4 · × (× - y).5 · (× + y) (× + y) (x+y) (x+y) (x-y) Kurzen $4 \cdot \times (\times \times 5) \cdot 5 \cdot (\times \times 5) = 4 \cdot \times \cdot 5$ 20 x (x+3) (x+3) (x g)

Aufnahmeprüfung 2019 Serie A1

$$\frac{3 \times 4}{2} + \frac{2 \times 8}{3} = \frac{3 \times 4}{2 \cdot 8} + \frac{2 \times 9}{3 \cdot 8}$$

$$= \frac{2 \times 1}{3} + \frac{\cancel{2} \cdot 9 \cdot \cancel{\times}}{3 \cdot \cancel{8} \cdot 4} = \frac{2 \times \cdot 4}{3 \cdot 4} + \frac{9 \times 1}{3 \cdot 4}$$

3. b)
$$3(x+y)^2$$
 $5x^2-5xy$ $x^2+2xy+y^2$

Einzelbrüche faktorisieren

Kürzen:

Aufnahmeprüfung 2018 Serie B2

1.a) Vereinfachen Sie so weit wie möglich

$$\frac{5\times}{14} + \frac{14\times}{4} + \frac{1}{7} + \frac{28}{28} = \frac{5\times\cdot2}{14\cdot2} + \frac{14\times}{4\cdot7} + \frac{\times}{28}$$

2.) Vereinfachen Sie so weit wie möglich

$$x^{2} + 10x + 25$$
 $x + 5$
 $x^{2} + 2x - 8$
 $x + 4$

Einzelbrüche faktorisieren

Einzelbrüche kürzen

$$=$$
 \times + \times + \times + \times + 2 $=$ $2 \times + 3$

Aufnahmeprüfung 2018 Serie B1

Vereinfachen Sie so weit wie möglich

$$\frac{5 \times }{12} + \frac{14 \times }{4} \cdot \frac{1}{6} - \frac{\times}{24}$$

auf
$$\frac{1}{24}$$
 erweitern:

Vereinfachen Sie so weit wie möglich

$$x^{2} + 8 \times + 16 + x^{2} - 3 \times - 4$$

Einzelbrüche faktorisieren und wenn möglich kürzen:

$$= \frac{(x+4)(x+4)}{x+4} + \frac{(x+1)(x-4)}{x+1} = \frac{(x+4)(x+4)}{x+4} + \frac{(x+7)(x-4)}{x+4}$$

Aufnahmeprüfung 2018 Serie A2

1. b) Vereinfachen Sie so weit wie möglich

$$\frac{3 \times 10 \times 1}{4 + 8} - \frac{1}{2} - \frac{\times}{16}$$

$$= \frac{3 \times \cdot 4}{4 \cdot 4} + \frac{10 \times }{8 \cdot 2} \times \frac{12 \times + 10 \times - \times}{16} = \frac{21 \times }{16}$$

2.) Vereinfachen Sie so weit wie möglich

$$x^{2} + 4x + 4$$
 $x^{2} + 2x - 15$ $x + 2$ $x - 3$

$$= \frac{(x+1)(x+1)}{x+2} + \frac{(x-3)(x+5)}{x-3}$$

$$= \frac{(x+1)(x+2)}{x+2} + \frac{(x-3)(x+5)}{x-3} = x+2+x+5 = 2x+3$$

Aufnahmeprüfung 2018 Serie A1

1. a) Vereinfachen Sie so weit wie möglich

gleichnamig

Vereinfachen Sie so weit wie möglich

$$x^{2} + 6 \times +9$$
 $x^{2} - 3 \times -10$ $x + 3$ $x - 5$

Einzelbrüche faktorisieren und kürzen

$$(x+3)(x+3)$$
 + $(x-5)(x+2)$ = $(x+3)(x+3)$ + $(x-5)(x+2)$ + $(x+3)(x+3)$ + $(x+3$

$$= \times + 3 + \times + 2 = 2 \times + 5$$

Aufnahmeprüfung 2017 Serie B2

1.) Vereinfachen Sie den Term so weit wie möglich

$$b^{2} - 8b + 16 = (b - 4)(b - 4) = (b - 4)(b - 4) = b - 4$$
 $b^{2} - 7b + 17 = (b - 4)(b - 3) = (b - 4)(b - 3) = 5 - 3$

Vereinfachen Sie den Term so weit wie möglich

$$\frac{5}{7x} : \frac{12}{49x^{2}} + \frac{31x}{\sqrt{400x^{2} - (16x)^{2}}}$$

$$= \frac{31 \times }{12 \times } + \frac{31 \times }{12 \times } = \frac{36 \times }{12 \times } = \frac{3}{12 \times } =$$

400

Aufnahmeprüfung 2017 Serie B1 Vereinfachen Sie den Term so weit wie möglich a^2-5a+6 (a-3) (a-2) (a-3)(a-3)Vereinfachen Sie den Term so weit wie möglich $1169 \times^2 - (12 \times)^2$ 169 x2 - 144 x2 169 -144 2 × 25

Aufnahmeprüfung 2017 Serie A2

Vereinfachen Sie den Term so weit wie möglich

$$\frac{y^2 + 8y + 16}{y^2 - 16} = \frac{(y + 4)(y + 4)}{(y - 4)(y + 4)} = \frac{y + 4}{y - 4}$$

2.) Vereinfachen Sie den Term so weit wie möglich

$$\frac{19 \times }{\sqrt{(17 \times)^2 - 64 \times^2}} + \frac{\sqrt{121 \times^2}}{\times^2} : \frac{15}{\times}$$

Aufnahmeprüfung 2017 Serie A1

$$x^{2}-25$$
 = $(x-5)(x+5)$ = $x-5$
 $x^{2}+10x+25$ (x+5)(x+5) = $x+5$

Vereinfachen Sie den Term so weit wie möglich

$$\frac{1}{2} \frac{89}{89} \times^{2} - (15 \times)^{2} + \frac{2 \times^{2}}{19 \times^{2}} \times \frac{5}{5}$$

$$\frac{3}{2} \times \frac{2}{19} \times \frac$$

$$= \frac{-64 \times^{2}}{3 \times} + \frac{10 \times^{2}}{3 \times^{2}}$$

$$\frac{8 \times 10}{3 \times 3} = \frac{8}{3} + \frac{10}{3} = \frac{18}{3} = 6$$

Aufnahmeprüfung 2016 Serie B2

1.) Vereinfachen Sie den Term so weit wie möglich. Das Resultat darf keine Klammern enthalten

$$\frac{2(p-r)}{3a} = \frac{6(r-p)}{24a} = \frac{2\cdot(p-r)\cdot 6\cdot(r-p)}{3a\cdot 24a} = \frac{3a\cdot 24a}{4f} = \frac{4}{2}$$

$$= \frac{(p-r) \cdot (r-p)}{6a^2} = \frac{-p^2 - 2pr - r^2}{6a^2}$$

Die Musterlösung geht von einer anderen Aufgabenstellung aus:

$$\frac{2(p-r)\cdot 6\cdot (r+p)}{3\cdot a\cdot 24\cdot a} = \frac{2\cdot 2\cdot 2\cdot 3}{2\cdot 2\cdot 2\cdot 3\cdot a^2} = \frac{\rho^2-r^2}{6a^2}$$

Vereinfachen Sie den Trem so weit wie möglich.

$$\sqrt{(4a)^2 + 4a^2 + 4a \cdot 11a}$$
 3b $\sqrt{(2b \cdot 3)^2 + 45b^2}$

$$\frac{1}{16a^{2} + 4a^{2} + 44a^{2}} = \frac{3b}{14b^{2} \cdot 9 + 45b^{2}}$$

$$\frac{-64a^2}{21a} = \frac{3b}{\sqrt{36b^2 + 45b^2}} = \frac{8a}{21a} = \frac{3b}{\sqrt{81b^2}}$$

Aufnahmeprüfung 2016 Serie B1

1.) Vereinfachen Sie den Term so weit wie möglich. Das Resultat darf keine Klammern enthalten

$$\frac{(b+a)(b-a)}{2b^2} = \frac{b^2-a^2}{2b^2} = \frac{b^2}{2b^2} = \frac{a^2}{2b^2} = \frac{1}{2} = \frac{a^2}{2b^2}$$

2.) Vereinfachen Sie den Term so weit wie möglich.

$$-(3c)^{2} + 15c^{2} + 5c \cdot 5c$$

$$-(10d)^{2} + 21d^{2}$$

$$-(9c^{2} + 15c^{2} + 25c^{2})$$

$$-(100d^{2} + 21d^{2})$$

$$\frac{1}{49c^2} d = \frac{7}{21c} d = \frac{1}{11} \frac{1}{11}$$

$$\frac{1}{21c} \frac{1}{121d^2} = \frac{1}{21c} \frac{1}{11d} = \frac{1}{21} \frac{1}{11} = \frac{1}{3} \frac{1}{11}$$

Aufnahmeprüfung 2016 Serie A2

1.) Vereinfachen Sie den Term so weit wie möglich.

$$3r^2$$
. $12r$ $3r^2$ $15p^2$ $3 \cdot r^2 \cdot 3 \cdot 5 \cdot p^2$ $-5p$ $15p^2$ $5p$ $12r$ $5 \cdot p \cdot 4 \cdot 3 \cdot r$

^{2.)} Vereinfachen Sie den Term so weit wie möglich.

$$\sqrt{5a^2 + 22a \cdot 2a} + \sqrt{(8a)^2 - 39 a^2}$$

$$= \frac{1}{\sqrt{5}a^2 + 44a^2} + \frac{1}{\sqrt{64a^2 - 39a^2}} = \frac{1}{\sqrt{49a^2}} + \frac{1}{\sqrt{25a^2}}$$

Aufnahmeprüfung 2016 Serie A1

1.) Vereinfachen Sie den Term so weit wie möglich.

2.) Vereinfachen Sie den Term so weit wie möglich.

$$\frac{1}{\sqrt{5}b^2 + 10b \cdot 2b} + \frac{1}{\sqrt{(10b)^2 - 19b^2}} + \frac{1}{\sqrt{5b^2 + 20 \cdot b^2}} + \frac{1}{\sqrt{100b^2 - 19b^2}}$$

$$= \sqrt{25b^2} + \sqrt{81b^2} = \frac{1}{5b} + \frac{1}{9b} = \frac{1 \cdot 9}{5b \cdot 9} + \frac{1 \cdot 5}{9b \cdot 5}$$

Aufnahmeprüfung 2015 Serie B2

Vereinfachen Sie den Term und schreiben Sie das Resultat als Bruchterm.

2.) Vereinfachen Sie so weit wie möglich.

$$\frac{\sqrt{(5y)^2 + 3y \cdot 8y}}{2} = \frac{\sqrt{5y^2 - y^2}}{8} = \frac{\sqrt{25y^2 + 24y^2}}{2} = \frac{\sqrt{4y^2}}{8}$$

Aufnahmeprüfung 2015 Serie B1

1.) Vereinfachen Sie den Term und schreiben Sie das Resultat als Bruchterm.

Vereinfachen Sie so weit wie möglich.

Aufnahmeprüfung 2015 Serie A2

1.) Vereinfachen Sie den Term und schreiben Sie das Resultat als Bruchterm.

$$\frac{76}{9} - \left(\begin{array}{c} 3b \\ \hline 6 \\ \hline \end{array} \right) = \frac{5}{3 \cdot 3} + \frac{5}{3} + \frac$$

Vereinfachen Sie so weit wie möglich.

Aufnahmeprüfung 2015 Serie A1

1.) Vereinfachen Sie den Term und schreiben Sie das Resultat als Bruchterm.

Vereinfachen Sie so weit wie möglich.

$$\sqrt{(13a)^2 - 25a^2}$$
 $\sqrt{10a^2 - a^2}$ $\sqrt{169a^2 - 25a^2}$ $\sqrt{9a^2}$ 6 ab 2 b 6 a b 2 b

$$= \frac{12a}{6 \cdot a \cdot b} = \frac{3a}{2 \cdot b} = \frac{12a}{6ab} = \frac{3a}{2b}$$