ネットワーク囚人のジレンマにおける成功者模倣戦略と満足化戦略: ネットワーク互恵性モデルの批判的検討

髙橋龍,大坪庸介(東京大学大学院人文社会系研究科)

Introduction

ネットワーク互恵性モデル (Ohtsuki et al., 2006)

● ネットワーク構造下で協力の利益(b)がコスト(c)に 対して十分に大きい場合に協力の増加を予測する理論

表 1. ネットワーク構造下でのPDゲームの利得構造

		4人の近傍 (k=4)のうち							
		0人が協力	1人が協力	2人が協力	3人が協力	4人が協力			
自分が	協力	-4 (-4)	2 (0)	8 (4)	14 (8)	20 (12)			
	非協力	0 (0)	6 (4)	12 (8)	18 (12)	24 (16)			

オレンジの数字はb/c=6の利得を,()内の青の数字はb/c=4の利得を表す.

● *k* < *b*/*c* のとき,協力が増加すると予想(図 1)

図 1. 成功者模倣を仮定すると k < b/c で協力者が増加(k=4, b/c=6)

● 近傍の成功者を模倣する成功者模倣を仮定(図 2)

成功者模倣(自分を含む近傍の中で最大の利得を得ている者の行動を模倣) self.next_action = self.max_payoff_neighbors_action

図 2. ネットワーク互恵性理論が仮定する成功者模倣のアルゴリズム

- ネットワーク互恵性の予測を 実験によって検証
- k < b/c で協力率が高い
- ネットワーク互恵性の予測が 支持されたと主張

図 3. Rand et al. (2014) の実験結果

- Rand et al. (2014) の結果は他の戦略でも再現される可能性
 - k < b/c では,近傍に一人でも協力がいれば利得は正
 - 利得が正なら協力を継続する満足化戦略(図 4)と比較

満足化戦略(協力をして利得がプラスであれば協力のまま) if self.payoff < 0: self.next_action = "defect"</pre>

図 4. 満足化戦略のアルゴリズム

Study 1:エージェント・ベース・シミュレーション

Method

- パラメータ: N = 25, $k \in \{2,4,6\}$, $b/c \in \{2,4,6\}$
- エージェントの初期の協力率: 0.6

Results

- Rand et al. (2014) の実験結果(図 3)に近いのは 満足化戦略の結果 (図 5)
 - 人間は成功者模倣戦略を採用していない可能性

図 5. 成功者模倣戦略,満足化戦略が予測する協力率の変化

Study 2:オンライン実験

Method

- *k*=4 のサークル型ネットワーク (*N*=111, 10 sessions)
- 実験条件(2×3=6水準)
 - 2 要因 (b/c: 参加者間要因)
 - 3 要因(情報条件: 参加者内要因; 図 6)

図 6. 実験の画面と,各条件の概要図 (k=4, b/c=4)

Results

- b/c, 情報条件によって協力率に変化なし(図7)
- (利得が正) × (協力を選択) の交互作用が有意(表 2) 満足化戦略ルールが次の行動を説明した

図 7. 条件別の協力率の遷移

表 2. t+1の行動 (C_{t+1}) を従属変数としたロジスティック回帰分析

	Coef.	Std.Err.	<i>t</i>	<i>p</i> -value	95% CI				
Intercept	0.13	0.01	12.6	< .001	[0.11,	0.15]			
(a) Payoff _t †	0.01	0.01	0.6	.54	[-0.03,	0.02]			
$(oldsymbol{b})$ $\mathbf{C}_{oldsymbol{t}}$ (時点 t での協力)	0.30	0.02	15.6	< .001	[0.26,	0.33]			
$(a) \times (b)$	0.14	0.03	4.7	< .001	[0.08,	0.19]			
Most Successful's C _t ‡	0.10	0.07	1.3	.20	[-0.24,	0.05]			

時点 t の利得が正の場合 1,それ以外で 0 を取る変数

#自身を含む近傍で最大利得を得ている者の時点 t の行動が協力の場合 1, 非協力の場合 0

Discussion

本研究の示唆

- ●人々は協力の選択において満足化戦略を採用
- 協力行動の社会学習は成功者模倣ではない可能性

本研究の限界

- 協力率が先行研究よりも著しく低い
- 情報条件間の差異を検出することができなかった