#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변환

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 4) 각 변수간의 관계 파악

수치형 변수들의 이름

산점도 행렬

사고 최 려 file:///D:/10 선형회귀 예시(2).ipynb

선형회귀 예시 (2) - 의료비에 영향을 미치는 요소

#01. 작업 준비

1. 패키지 참조하기

```
import sys
sys.path.append("../../")
import helper

import numpy as np
from pandas import read_excel, DataFrame, merge, get_dummies
from pca import pca
from statsmodels.formula.api import ols
from statsmodels.stats.anova import anova_lm
from matplotlib import pyplot as plt
import seaborn as sb
from scipy import stats
import statsmodels.api as sm
from sklearn.preprocessing import StandardScaler
```

2. 데이터 가져오기

미국 환자의 의료비가 들어 있는 데이터셋으로 1,338 개의 관측치가 있다.

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변환

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 4) 각 변수간의 관계 파악

수치형 변수들의 이름

산점도 행렬

자니지 최 크 file:///D:/10_선형회귀_예시(2).ipynb 10_선형회귀_예시(2).ipynb

변수	의미	기타
age	수익자의 연령	수치형
sex	계약자의 성별	범주형 데이터(female/male)
bmi	미만도. 몸무게를 키의 제곱 으로 나눈 값.	수치형 정상범위: 18.5~24.9
children	의료보험이 적용되는 자녀 수	수치형 데이터
smoker	흡연 여부	범주형 데이터(yes/no)
region	거주지역	범주형 (북동: northeast, 남동: southeast / 남서: southwest / 북서: northwest)
expense	의료비	수치형 데이터

origin = read_excel("https://data.hossam.kr/E04/insurance.xlsx")
origin

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

23. 8. 14. 오전 10:53

선형회귀 예시 (2) - 의료비에 영향을 미치는 요소

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변환

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 4) 각 변수간의 관계 파악

수치형 변수들의 이름

산점도 행렬

자기 체크 file:///D:/10_선형회귀_예시(2).ipynb

10_선형회귀_예시(2).ipynb

	age	sex	bmi	children	smoker	region	charges
•••							
1333	50	male	30.970	3	no	northwest	10600.54830
1334	18	female	31.920	0	no	northeast	2205.98080
1335	18	female	36.850	0	no	southeast	1629.83350
1336	21	female	25.800	0	no	southwest	2007.94500
1337	61	female	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

#02. 데이터 전처리

1. 데이터 프레임 복사 후 결측치와 데이터 타입 확인

```
edf = origin.copy()
helper.prettyPrint(edf.isna().sum(), title="결측치 개수")
helper.prettyPrint(edf.dtypes, title="데이터 타입")
```

+	+		+	-
		결측치	개수	
	+			
age			0	
sex			0	
bmi	İ		0	

선형회귀 예시 (2) - 의료비에 영향을 미치는 요소

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변환

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 4) 각 변수간의 관계 파악

수치형 변수들의 이름

산점도 행렬

children	0		
smoker	0		
region	0		
charges	0		
 	+		
 -	+ 데이터 타입		
 age	int64		
sex	object		
bmi	float64		
children	int64		
smoker	object		
region	object		
3			

2. 범주형 타입 변환

범주형 필드 이름

```
cnames = ["sex", "smoker", "region"]
cnames
```

['sex', 'smoker', 'region']

범주형 컬럼 타입 변환

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변환

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 4) 각 변수간의 관계 파악

수치형 변수들의 이름

산점도 행렬

자리 취 려 file:///D:/10_선형회귀_예시(2).ipynb edf2 = helper.setCategory(edf, fields=cnames, labelling=False) helper.prettyPrint(edf2.dtypes, title="데이터 타입")

#03. 탐색적 데이터 분석

1. 수치형 변수

1) 기초 통계량 확인

수치형 데이터 타입은 전체적인 통계값을 파악하는 것이 좋다.

```
desc = edf2.describe()
helper.prettyPrint(desc)
```

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변환

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 4) 각 변수간의 관계 파악

수치형 변수들의 이름

산점도 행렬

사고 등 교 크 file:///D:/10_선형회귀_예시(2).ipynb

	age	bmi	children	charges
count	1338	1338	1338	1338
mean	39.207	30.6634	1.09492	13270.4
std	14.05	6.09819	1.20549	12110
min	18	15.96	0	1121.87
25%	27	26.2963	0	4740.29
50%	39	30.4	1	9382.03
75%	51	34.6938	2	16639.9
max	64	53.13	5	63770.4

의료비지출 변수의 통계값을 살펴보면 중앙값이 \$9,382 이고, 평균이 \$13,270 인 것을 알수 있다. 여기서 해당 변수의 평균값이 중앙값보다 크기 때문에 의료비 분포는 오른쪽으로 꼬리가 긴 분포를 지닐 것이다.

2) 전체 상자그림 확인

```
plt.figure(figsize=(10, 5))
sb.boxplot(data=edf)
plt.grid()
plt.show()
plt.close()
```

bmi

선형회귀 예시 (2) - 의료비에 영향을 미치는 요소

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변환

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 4) 각 변수간의 관계 파악

수치형 변수들의 이름

산점도 행렬

사기체크

children

charges

3) 개별 상자그림 확인

age

```
fig, ax = plt.subplots(2,2, figsize=(13, 10))
rows = len(ax)
cols = len(ax[0])

for i in range(0, rows):
    for j in range(0, cols):
        idx = i * cols + j
        fieldName = desc.columns[idx]
        field = edf2[fieldName]
        sb.boxplot(edf, y=field, ax=ax[i][j])
```

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변환

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 4) 각 변수간의 관계 파악

수치형 변수들의 이름

산점도 행렬

, 나고 하고 크 file:///D:/10_선형회귀_예시(2).ipynb

```
10_선형회귀_예시(2).ipynb
             if idx+1 = len(desc.columns):
                  break
 plt.show()
 plt.close()
                                                         50
 60
                                                         45
 50
                                                         40
age
40
                                                       <u>E</u> 35
                                                         30
 30
                                                         25
                                                         20
 20
                                                         15
                                                      60000
                                                      50000
                                                       40000
                                                    charges
- 00008
                                                      20000
  1 .
                                                      10000
```

4) 히스토그램 확인

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변환

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 4) 각 변수간의 관계 파악

수치형 변수들의 이름

산점도 행렬

사기기

```
fig, ax = plt.subplots(2, 2, figsize=(16, 8))
rows = len(ax)
cols = len(ax[0])
for i in range(rows):
    for j in range(cols):
        idx = i * cols + j
        fieldName = desc.columns[idx]
        field = edf[fieldName]
        hist, bins = np.histogram(field, bins=5)
        bins2 = np.round(bins, 1)
        sb.histplot(data=edf2, x=fieldName, bins=5, kde=True, ax=ax[i][j
        ax[i][j].set_xticks(bins2)
        ax[i][j].set xticklabels(bins2)
        if idx+1 = len(desc.columns):
            break
plt.show()
plt.close()
```

23. 8. 14. 오전 10:53

선형회귀 예시 (2) - 의료비에 영향을 미치는 요소

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변환

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 4) 각 변수간의 관계 파악

수치형 변수들의 이름

산점도 행렬

자리 취 로 file:///D:/10_선형회귀_예시(2).ipynb

10_선형회귀_예시(2).ipynb

대부분의 사람들은 연간 \$15,000 이하의 의료비 지출에 분포되어 있음을 알 수 있다.

마찬가지로 bmi지수를 살펴보면 과체중이상의 데이터가 절반 이상을 차지하는 것을 알 수 있다.

4) 각 변수간의 관계 파악

수치형 변수들의 이름

nnames = list(desc.columns)
nnames

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변환

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 4) 각 변수간의 관계 파악

수치형 변수들의 이름

산점도 행렬

자기 취 명 file:///D:/10_선형회귀_예시(2).ipynb

```
['age', 'bmi', 'children', 'charges']
```

```
ndf = edf.filter(nnames)
ndf.head()
```

	age	bmi	children	charges
0	19	27.900	0	16884.92400
1	18	33.770	1	1725.55230
2	28	33.000	3	4449.46200
3	33	22.705	0	21984.47061
4	32	28.880	0	3866.85520

산점도 행렬

실행 속도 관계로 주석으로 막아둠

```
# plt.figure(figsize=(20, 20))
# g = sb.pairplot(ndf, diag_kind='kde')
# g.map_upper(sb.kdeplot, alpha=0.3)
# g.map_lower(sb.regplot, scatter=False, truncate=False, ci=False)
# plt.savefig("pairplot.png", dpi=200)
# plt.show()
# plt.close()
```

선형회귀 예시 (2) - 의료비에 영향을 미치는 요소

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변화

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 4) 각 변수간의 관계 파악

수치형 변수들의 이름

산점도 행렬

corr = ndf.corr(method='pearson') helper.prettyPrint(corr)

이 그림에서 어떤 패턴이 눈에 띄는지 살펴보면 특정한 관계를 찾기는 어려워보임

여기 연령과 의료비지출의 산포도를 살펴보니, 상대적으로 직선 형태로 분포되어 있음을 볼 수 있다.

또, bmi지수와 의료비지출은 크게 두 개의 군집(cluster)로 나뉘어져 있는 것으로 보인다.

전체적으로 강한 상관관계를 보이지는 않지만 age-bmi lage-charges childrencharges 가 약한의 상관관계를 보인다.

나이가 들수록 몸무게가 증가하고. bmi 수치가 높거나 부양가족 수가 많아질 수록 의료비가 증 가하는 것은 어느정도 합리적인 결과라 할 수 있겠다.

상관행렬

대각선은 변수 자신이기 때문에 항상 '1'이 표기됨.

상관계수는 1에 가까울 수록 두 변수가 같은 방향으로 양의 상관관계가 높다고 판단할 수 있고, -1에 가까울 수록 반대 방향으로 음의 상관관계가 높다는 것을 나타냄

```
bmi
                                     children
                                                  charges
                age
                       0.109272
age
                  1
                                     0.042469
                                                 0.299008
bmi
                                    0.0127589
                                                 0.198341
           0.109272
                               1
children
           0.042469
                      0.0127589
                                                0.0679982
                                            1
```

선형회귀 예시 (2) - 의료비에 영향을 미치는 요소

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변환

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 4) 각 변수간의 관계 파악

수치형 변수들의 이름

산점도 행렬

자니 체크 file:///D:/10 선형회귀 예시(2).ipynb | charges | 0.299008 | 0.198341 | 0.0679982 | 1 | +------+

연령, bmi지수, 부양가족 수, 의료비지출은 약하지만 모두 양(+)의 상관관계를 보이고 있다.

예를 들어, 연령과 bmi지수는 나이가 들어갈 수록 몸무게가 증가되면서 bmi 지수가 높아지는 경향을 설명할 수 있고, 부양가족 수가 증가하면 의료비 지출이 많아진다고 보는 것도 합리적인 판단이 될 수 있다.

5) PCA 분석

회귀분석에 필요한 요인들을 선정하기 위해 주성분 분석을 수행한다.

데이터 표준화

범주형은 PCA를 수행할 수 없기 때문에 수치형 변수만 추출해 둔 ndf 를 사용한다.

종속 변수인 의료비 필드는 제외하고 진행한다.

x_train_std_df, y_train_std_df = helper.scalling(ndf[nnames], 'charges')
x_train_std_df

	age	bmi	children
0	-1.438764	-0.453320	-0.908614
1	-1.509965	0.509621	-0.078767
2	-0.797954	0.383307	1.580926
3	-0.441948	-1.305531	-0.908614

23. 8. 14. 오전 10:53

선형회귀 예시 (2) - 의료비에 영향을 미치는 요소

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변환

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 4) 각 변수간의 관계 파악

수치형 변수들의 이름

산점도 행렬

자기 취 려 file:///D:/10_선형회귀_예시(2).ipynb 10_선형회귀_예시(2).ipynb

	age	bmi	children
4	-0.513149	-0.292556	-0.908614
•••			
1333	0.768473	0.050297	1.580926
1334	-1.509965	0.206139	-0.908614
1335	-1.509965	1.014878	-0.908614
1336	-1.296362	-0.797813	-0.908614
1337	1.551686	-0.261388	-0.908614

1338 rows × 3 columns

PCA

```
model = pca()
# 표준화 결과를 활용하여 주성분 분석 수행
fit = model.fit_transform(x_train_std_df)
topfeat = fit['topfeat']

best = topfeat.query("type="best'")
best_names = list(set(list(best['feature'])))
print(best_names)

topfeat
```

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변환

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 4) 각 변수간의 관계 파악

수치형 변수들의 이름

산점도 행렬

사내게

[pca] >Extracting column labels from dataframe.

[pca] >Extracting row labels from dataframe.

[pca] >The PCA reduction is performed to capture [95.0%] explained varia

[pca] >Fit using PCA.

[pca] >Compute loadings and PCs.

[pca] >Compute explained variance.

[pca] >Number of components is [3] that covers the [95.00%] explained va

[pca] >The PCA reduction is performed on the [3] columns of the input da

[pca] >Fit using PCA.

[pca] >Compute loadings and PCs.

[pca] >Outlier detection using Hotelling T2 test with alpha=[0.05] and r

[pca] >Multiple test correction applied for Hotelling T2 test: [fdr bh]

[pca] >Outlier detection using SPE/DmodX with n std=[3]

['children', 'age']

	PC	feature	loading	type
0	PC1	age	0.692028	best
1	PC2	children	0.931148	best
2	PC3	age	-0.717326	best
3	PC3	bmi	0.669385	weak

2. 범주형 변수

1) 종류별로 데이터 수량 확인

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변환

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 4) 각 변수간의 관계 파악

수치형 변수들의 이름

산점도 행렬

자나기 취 려 file:///D:/10_선형회귀_예시(2).ipynb for name in cnames:
 helper.prettyPrint(edf2[name].value_counts(), title="count")

2) 범주형 데이터의 데이터 분포 시각화

fig, ax = plt.subplots(1, len(cnames), figsize=(25, 5))

선형회귀 예시 (2) - 의료비에 영향을 미치는 요소

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변환

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 4) 각 변수간의 관계 파악

수치형 변수들의 이름

산점도 행렬

자리 취 려 file:///D:/10 선형회귀 예시(2).ipynb

```
for i, v in enumerate(cnames):
```

```
vc = DataFrame(edf2[v].value_counts(), columns=['count'])
#print(vc)
```

```
sb.barplot(data=vc, x=vc.index, y='count', ax=ax[i])
ax[i].set title(v)
```

```
plt.show()
plt.close()
```


흡연 여부의 경우 비흡연자가 많이 분포되어 있다.

그 밖에 성별과 지역의 경우 비슷하게 분포되어 있기 때문에 분산분석을 통해 통제요인으로 넣는 것을 고려해 볼 수 있겠다.

3) 범주형 변수에 따라 평균이 차이가 나는지 확인하기

라벨링을 적용한 데이터프레임 생성

```
ldf = helper.setCategory(edf, fields=cnames, labelling=True)
```

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변환

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 4) 각 변수간의 관계 파악

수치형 변수들의 이름

산점도 행렬

사기체

```
helper.prettyPrint(ldf.dtypes)
{'female': 0, 'male': 1}
{'no': 0, 'yes': 1}
{'northeast': 0, 'northwest': 1, 'southeast': 2, 'southwest': 3}
             value
             int64
  age
             int32
  sex
  bmi
             float64
  children
             int64
  smoker
             int32
  region
             int32
  charges
             float64
```

분산분석

```
lm = ols('charges ~ C(sex)+C(smoker)+C(region)+C(sex):C(smoker)+C(smoker)
lmdf = anova_lm(lm)
lmdf['결과'] = lmdf['PR(>F)'] < 0.05
helper.prettyPrint(lmdf)
```

선형회귀 예시 (2) - 의료비에 영향을 미치는 요소

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변화

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 4) 각 변수간의 관계 파악

수치형 변수들의 이름

산점도 행렬

	10_20411_41/1(Z).ipyrib			
	C(sex)	1	6.4359e+08	6.4359e+08	1
	C(smoker)	1	1.20878e+11	1.20878e+11	220
	C(region)	3	1.078e+08	3.59335e+07	0.6
	C(sex):C(smoker)	1	4.90416e+08	4.90416e+08	8.9
	C(smoker):C(region)	3	1.34408e+09	4.48028e+08	8.1
	C(region):C(sex)	3	1.38228e+06	460760	0.0083
	C(sex):C(smoker):C(region)	3	7.51706e+07	2.50569e+07	0.45
	Residual	1322	7.2534e+10	5.48669e+07	
+	·	+	<u> </u>	+	<u> </u>

성별과 흡연 여부에 대한 p값이 모두 0.05 미만이므로 두 요인은 의료비 지출에 통계적으로 유의미한 영향을 미친다고 볼 수 있다.

√ 성별과 흡연량, 흡연량과 지역 간에는 교효작용 효과가 있음이 발견되었다.

교효작용을 보이는 변수간의 비교

```
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 5))
sb.countplot(data=edf, x='smoker', hue='sex', ax=ax1)
sb.countplot(data=edf, x='smoker', hue='region', ax=ax2)
plt.show()
plt.close()
```

선형회귀 예시 (2) - 의료비에 영향을 미치는 요소

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변환

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 4) 각 변수간의 관계 파악 수치형 변수들의 이름

산점도 행렬

#04. 최종적으로 선정된 요인

구분	변수	의미	기타
종속변 수	charges	의료비	수치형 데이터
독립변 수	age	수익자의 연령	수치형
독립변 수	bmi(?)	미만도. 몸무게를 키의 제곱으로 나눈 값.	수치형 정상범위: 18.5~24.9
독립변 수	children	의료보험이 적용되는 자녀 수	수치형 데이터
통제요 인	sex	계약자의 성별	범주형 데이터 (female/male)

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변화

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 4) 각 변수간의 관계 파악

수치형 변수들의 이름

산점도 행렬

ᄮᄓᆀᇷᄙ

구분	변수	의미	기타
통제요 인	smoker	흡연 여부	범주형 데이터(yes/no)

#05. 다중선형회귀 분석

- case 1 : 모든 변수 적용
- case 2: bmi를 제거하고 적용
- case 3 : 모든 변수 적용 + 표준화 적용
- case 4: bmi를 제거하고 적용 + 표준화 적용

1. 분석 케이스에 따른 분석용 데이터 생성

```
def get_df(case_number, is_scale=False):
# bmi를 제거하지 않은 경우
if case_number = 1:
# 사용할 변수 이름들
fnames1 = ['charges', 'age', 'bmi', 'children', 'sex', 'smoker']
# fname1 중에서 더미변수로 처리할 변수 이름들
fnames2 = ['sex', 'smoker']
# bmi를 제거한 경우
elif case_number = 2:
# 사용할 변수 이름들
fnames1 = ['charges', 'age', 'children', 'sex', 'smoker']
# fname1 중에서 더미변수로 처리할 변수 이름들
fnames2 = ['sex', 'smoker']
# 성별을 제거한 경우
elif case_number = 3:
```

```
선형회귀 예시 (2) - 의료비에 영향을
미치는 요소
```

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변화

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 4) 각 변수간의 관계 파악

수치형 변수들의 이름

산점도 행렬

자리 취 크 file:///D:/10 선형회귀 예시(2).ipynb

```
# 사용할 변수 이름들
   fnames1 = ['charges', 'age', 'bmi', 'children', 'smoker']
   # fname1 중에서 더미변수로 처리할 변수 이름들
   fnames2 = ['smoker']
# 성별과 bmi을 제거한 경우
elif case number = 4:
   # 사용할 변수 이름들
   fnames1 = ['charges', 'age', 'children', 'smoker']
   # fname1 중에서 더미변수로 처리할 변수 이름들
   fnames2 = ['smoker']
# 표준화를 적용하지 않은 경우
if not is scale:
   tmp = origin.filter(fnames1)
# 표준화를 적용한 경우
else:
   # 미리 적용해 둔 표준화 결과를 병합
   left = merge(x_train_std_df, y_train_std_df, left_index=True, ri
   # 원본에서 명목형만 다시 추출
   right = origin.filter(fnames2)
   # 결합
   tmp = merge(left, right, left_index=True, right index=True)
   None
tmp2 = get dummies(tmp, columns=fnames2, drop first=True, dtype='int
return tmp2
```

```
target_df = get_df(3, True)
helper.prettyPrint(target_df.head())
```

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변환

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 4) 각 변수간의 관계 파악

수치형 변수들의 이름

산점도 행렬

. . _ . . . _ .

```
# 독립변수 이름만 추출

xnames = list(target_df.columns)

xnames.remove('charges')

#xnames

ols_result = helper.myOls(target_df, y='charges', x=xnames)

helper.prettyPrint(ols_result.table)

print(ols_result.result, end="\n\n")

print(ols_result.goodness, end="\n\n")

for i in ols_result.varstr:
    print(i)
```

++ 	charges	age	+b	+ omi	childr	+- en	smoker_y	—+ es
0	0.298584	-1.43876	-0.453	32	-0.9086	14		1
1	-0.953689	-1.50997	0.5096	21	-0.07876	72		0
2	-0.728675	-0.797954	0.3833	07	1.580	93		0
3	0.719843	-0.441948	-1.305	53	-0.9086	14		0
4	-0.776802	-0.513149	-0.2925	56	-0.9086	14		0
++	-	+	++	+	+	+		+ +
		ĺ	В	Ξ	표준오차	βΙ	t	유요
	('charges', 'age') ('charges', 'bmi')		0.2992 0.1621		0.014	0	21.675* 11.756*	<u> </u>

선형회귀 예시 (2) - 의료비에 영향을 미치는 요소

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변환

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 4) 각 변수간의 관계 파악

수치형 변수들의 이름 산점도 행렬

```
('charges', 'children')
                                                3,436*
                        0.0471
                                     0.014
 ('charges', 'smoker yes')
                                                57.904*
                          1.967
                                     0.034
R(0.750), R^2(0.749), F(998.1), 유의확률(0.00), Durbin-Watson(2.087)
charges에 대하여 age, bmi, children, smoker yes로 예측하는 회귀분석을 실시한 결과
age의 회귀계수는 0.2992(p<0.05)로, charges에 대하여 유의미한 예측변인인 것으로
bmi의 회귀계수는 0.1621(p<0.05)로, charges에 대하여 유의미한 예측변인인 것으로
children의 회귀계수는 0.0471(p<0.05)로, charges에 대하여 유의미한 예측변인인 것
smoker ves의 회귀계수는 1.9670(p<0.05)로, charges에 대하여 유의미한 예측변인인
```

3. 결과 비교

1) 나이에 따른 의료비 지출

```
plt.figure(figsize=(15, 7))
sb.regplot(data=target df, x='age', y='charges')
sb.regplot(data=target df, x='age', y=ols result.fit.fittedvalues, color
plt.grid()
plt.plot()
plt.show()
```

선형회귀 예시 (2) - 의료비에 영향을 미치는 요소

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변환

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 4) 각 변수간의 관계 파악 수치형 변수들의 이름 산점도 행렬

2) BMI에 따른 의료비 지출 비교

```
plt.figure(figsize=(15, 7))
sb.regplot(data=target_df, x='bmi', y='charges')
sb.regplot(data=target_df, x='bmi', y=ols_result.fit.fittedvalues, color
plt.grid()
plt.plot()
plt.show()
```

선형회귀 예시 (2) - 의료비에 영향을 미치는 요소

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변환 범주형 필드 이름 범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 4) 각 변수간의 관계 파악 수치형 변수들의 이름 산점도 행렬

#06. 데이터 도메인 지식

도메인 지식이란 특정 분야의 전문화된 지식.

ex) 노하우

도메인 지식을 활용하면 도출된 분석모델의 성능을 개선할 수 있다.

1. 의료비 지출

의료비 지출에 대한 연령의 영향은 전 연령에 걸쳐 일정하지 않다.

20,30대와 50,60,70대 간의 의료비 지출 차이는 크게 날 수 밖에 없다.

기존의 연령변수는 전형적인 선형회귀 방정식을 따른다.

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변화

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 4) 각 변수간의 관계 파악

수치형 변수들의 이름

산점도 행렬

자기 취 려 file:///D:/10_선형회귀_예시(2).ipynb

```
y = \{a_1\}x + b
```

하지만 고연령대일수록 증가푝이 커지는 현상을 설명하기 위해서는 높은 차수의 항을 회귀 모델에 추가해서 다항식으로 만들어 주면 된다.

$$y = {a_2}^2 + {a_1}x + b$$

연령을 제곱한 형태로 연령 변수 교체

```
tmp_df = DataFrame({'age2': origin['age'] ** 2}, index=origin.index)
age2_std = StandardScaler().fit_transform(tmp_df)
target_df['age'] = age2_std
target_df.head()
```

	charges	age	bmi	children	smoker_yes
0	0.298584	-1.220462	-0.453320	-0.908614	1
1	-0.953689	-1.253341	0.509621	-0.078767	0
2	-0.728675	-0.844579	0.383307	1.580926	0
3	0.719843	-0.573551	-1.305531	-0.908614	0
4	-0.776802	-0.631311	-0.292556	-0.908614	0

회귀분석 수행

```
xnames = list(target_df.columns)
xnames.remove('charges')

ols_result = helper.myOls(target_df, y='charges', x=xnames)
```

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변화

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 4) 각 변수간의 관계 파악

수치형 변수들의 이름

산점도 행렬

사고하려

```
helper.prettyPrint(ols_result.table)
print(ols_result.result, end="\n\n")
print(ols_result.goodness, end="\n\n")
for i in ols result.varstr:
```

print(i)

```
표준오차
                                                                   유의
                                 В
('charges', 'age')
                            0.3036
                                          0.014
                                                        22.129*
('charges', 'bmi')
                            0.1603
                                          0.014
                                                        11.689*
('charges', 'children')
                            0.0608
                                          0.014
                                                        4.464*
('charges', 'smoker ves')
                           1.9679
                                          0.034
                                                        58.247*
```

R(0.752), $R^2(0.752)$, F(1013.), 유의확률(0.00), Durbin-Watson(2.094)

charges에 대하여 age,bmi,children,smoker_yes로 예측하는 회귀분석을 실시한 결과

age의 회귀계수는 0.3036(p<0.05)로, charges에 대하여 유의미한 예측변인인 것으로 lbmi의 회귀계수는 0.1603(p<0.05)로, charges에 대하여 유의미한 예측변인인 것으로 lchildren의 회귀계수는 0.0608(p<0.05)로, charges에 대하여 유의미한 예측변인인 것 smoker_yes의 회귀계수는 1.9679(p<0.05)로, charges에 대하여 유의미한 예측변인인

2. 비만도(BMI)

선형회귀 예시 (2) - 의료비에 영향을 미치는 요소

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변화

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 4) 각 변수간의 관계 파악

수치형 변수들의 이름

산점도 행렬

사기체

BMI는 특정 구간에서의 영향은 적지만 그 구간을 넘어가면 강한 영향을 미친다.

EDA를 진행하는 과정에서 BMI가 30이상인 사람과 30 미만인 사람들을 구분할 수 있음을 파악하였다.

이 내용을 더미변수로 추가할 수 있다.

BMI에 대한 비만도 파생 변수 만들기

```
tmp_df = origin.filter(['bmi'])
tmp_df['obesity'] = tmp_df['bmi'] \geq 30
tmp_df['obesity'] = tmp_df['obesity'].astype(int)
tmp_df
```

	bmi	obesity
0	27.900	0
1	33.770	1
2	33.000	1
3	22.705	0
4	28.880	0
•••		
1333	30.970	1
1334	31.920	1
1335	36.850	1

23. 8. 14. 오전 10:53

선형회귀 예시 (2) - 의료비에 영향을 미치는 요소

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변환

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 4) 각 변수간의 관계 파악

수치형 변수들의 이름

산점도 행렬

자기 체크 file:///D:/10_선형회귀_예시(2).ipynb

	bmi	obesity
1336	25.800	0
1337	29.070	0

1338 rows × 2 columns

파생변수를 원래의 데이터프레임에 결합

```
target_df['obesity'] = tmp_df['obesity']
target_df.head()
```

	charges	age	bmi	children	smoker_yes	obesity
0	0.298584	-1.220462	-0.453320	-0.908614	1	0
1	-0.953689	-1.253341	0.509621	-0.078767	0	1
2	-0.728675	-0.844579	0.383307	1.580926	0	1
3	0.719843	-0.573551	-1.305531	-0.908614	0	0
4	-0.776802	-0.631311	-0.292556	-0.908614	0	0

회귀분석 수행

```
xnames = list(target_df.columns)
xnames.remove('charges')

ols_result = helper.myOls(target_df, y='charges', x=xnames)
```

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변화

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 4) 각 변수간의 관계 파악

수치형 변수들의 이름

산점도 행렬

```
helper.prettyPrint(ols_result.table)
print(ols_result.result, end="\n\n")

print(ols_result.goodness, end="\n\n")

for i in ols_result.varstr:
    print(i)
```

```
표준오차
                                                                   유의
                                 В
('charges', 'age')
                            0.3032
                                          0.014
                                                        22.302*
('charges', 'bmi')
                            0.0685
                                          0.023
                                                        3.043*
('charges', 'children')
                            0.0609
                                          0.014
                                                        4.509*
('charges', 'smoker yes')
                            1.9684
                                          0.033
                                                        58.813*
('charges', 'obesity')
                            0.2304
                                          0.045
                                                        5.119*
```

R(0.757), $R^2(0.756)$, F(830.8), 유의확률(0.00), Durbin-Watson(2.098)

charges에 대하여 age, bmi, children, smoker yes, obesity로 예측하는 회귀분석을 실

age의 회귀계수는 0.3032(p<0.05)로, charges에 대하여 유의미한 예측변인인 것으로 lbmi의 회귀계수는 0.0685(p<0.05)로, charges에 대하여 유의미한 예측변인인 것으로 lchildren의 회귀계수는 0.0609(p<0.05)로, charges에 대하여 유의미한 예측변인인 것 smoker_yes의 회귀계수는 1.9684(p<0.05)로, charges에 대하여 유의미한 예측변인인 obesity의 회귀계수는 0.2304(p<0.05)로, charges에 대하여 유의미한 예측변인인 것 5

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변환

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 4) 각 변수간의 관계 파악

수치형 변수들의 이름

산점도 행렬

자리 취 려 file:///D:/10_선형회귀_예시(2).ipynb

3. 교효작용 추가

비만도와 흡연여부

```
xnames = list(target_df.columns)
xnames.remove('charges')

ols_result = helper.myOls(target_df, expr="charges~age+bmi+children+smok
helper.prettyPrint(ols_result.table)
print(ols_result.result, end="\n\n")

print(ols_result.goodness, end="\n\n")

for i in ols_result.varstr:
    print(i)
```

+	+		<u> </u>	+
	В	표준오차 	β	t
('charges', 'age')	0.3109	0.011	0	28.781*
('charges', 'bmi')	-0.0981	0.019	0	-5.203*
('charges', 'children')	0.0648	0.011	0	6.041*
('charges', 'smoker_yes')	1.9651	0.027	0	73.902*
('charges', 'obesity')	0.2476	0.036	0	6.925*
('charges', 'bmi:smoker_yes')	0.7242	0.026	0	27.919*

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변화

범주형 필드 이름

범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 4) 각 변수간의 관계 파악

수치형 변수들의 이름

산점도 행렬

사고 등 크로 file:///D:/10 선형회귀 예시(2).ipynb

```
R(0.847), R^2(0.846), F(1227.), 유의확률(0.00), Durbin-Watson(2.098) charges에 대하여 age,bmi,children,smoker_yes,obesity,bmi*smoker_yes로 예측 age의 회귀계수는 0.3109(p<0.05)로, charges에 대하여 유의미한 예측변인인 것으로 bmi의 회귀계수는 -0.0981(p<0.05)로, charges에 대하여 유의미한 예측변인인 것으로 children의 회귀계수는 0.0648(p<0.05)로, charges에 대하여 유의미한 예측변인인 것 smoker_yes의 회귀계수는 1.9651(p<0.05)로, charges에 대하여 유의미한 예측변인인 obesity의 회귀계수는 0.2476(p<0.05)로, charges에 대하여 유의미한 예측변인인 것을 bmi:smoker yes의 회귀계수는 0.7242(p<0.05)로, charges에 대하여 유의미한 예측변인인 것을
```

최종 결과 비교

```
plt.figure(figsize=(15, 7))
sb.regplot(data=target_df, x='age', y='charges')
sb.regplot(data=target_df, x='age', y=ols_result.fit.fittedvalues, color
plt.grid()
plt.plot()
plt.show()
```

선형회귀 예시 (2) - 의료비에 영향을 미치는 요소

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터 프레임 복사 후 결측 치와 데이터 타입 확인
- 2. 범주형 타입 변환 범주형 필드 이름 범주형 컬럼 타입 변환

#03. 탐색적 데이터 분석

- 1. 수치형 변수
 - 1) 기초 통계량 확인
- 2) 전체 상자그림 확인
- 3) 개별 상자그림 확인
 - 4) 히스토그램 확인
- 4) 각 변수간의 관계 파악수치형 변수들의 이름산점도 행렬

