# CROSS SECTIONS AND RATE COEFFICIENTS FOR EXCITATION OF $\Delta n = 0$ TRANSITIONS IN Be-LIKE IONS WITH $6 \le Z \le 54$

U. I. SAFRONOVA and A. S. SHLYAPTSEVA

Institute of Spectroscopy, Russian Academy of Sciences Troitsk, Moscow region, 142092, Russia

T. KATO and K. MASAI

National Institute for Fusion Science Nagoya 464-01, Japan

and

### L. A. VAINSHTEIN

Lebedev Physical Institute, Russian Academy of Sciences Moscow, 117924, Russia

Excitation cross sections and rate coefficients by electron impact are calculated for the transitions among the  $1s^22s^2$ ,  $1s^22s2p$ ,  $1s^22p^2$  levels of the Be-like ions C III, O V, Ne VII, Mg IX, Si XI, S XIII, Ar XV, Ca XVII, Ti XIX, Fe XXIII, Zn XXVII, Kr XXXIII, Mo XXXIX, and Xe LI by a Coulomb-Born approximation with exchange and including relativistic effects and configuration interactions. The cross-section and rate coefficient data are fitted by simple functions of the (scaled) electron impact energy and temperature, respectively. Level energies, mixing coefficients, and transition wavelengths and probabilities are also given. © 1995 Academic Press, Inc.

### **CONTENTS**

| INTRODUCTION                                                               | 2  |
|----------------------------------------------------------------------------|----|
| Level Energies, Mixing Coefficients, and Radiative Transitions             | 2  |
| Excitation Cross Sections and Rate Coefficients                            | _  |
| Fitting Formulas                                                           | 4  |
| Summary                                                                    | 6  |
| EXPLANATION OF TABLES                                                      | 7  |
| EXPLANATION OF GRAPHS                                                      | 8  |
| EXAMPLE OF USE OF TABLE IV                                                 | 9  |
| TABLES                                                                     |    |
| I. Ionization Potentials for Be-like Ions, $Z = 6-54$                      | 11 |
| II. Mixing Coefficients for Be-like Ions, $Z = 6-54$                       | 12 |
| III. Wavelengths, Transition Probabilities, and Weighted Oscil-            |    |
| lator Strengths, $Z = 6-54$                                                | 14 |
| IV. Fit Parameters for Excitation Cross Sections and Rate Coef-            |    |
| ficients for $\Delta n = 0$ Transitions, $Z = 6, 8, 10, 12, 14, 16,$       |    |
| 18, 20, 22, 26, 30, 36, 42, 54                                             | 23 |
| GRAPHS                                                                     |    |
| I. Excitation Cross Sections for $\Delta n = 0$ Transitions, $Z = 6, 8,$   |    |
| 10, 12, 14, 16, 18, 20, 22, 26, 30, 36, 42, 54                             | 29 |
| II. Excitation Rate Coefficients for $\Delta n = 0$ Transitions, $Z = 6$ , |    |
| 8, 10, 12, 14, 16, 18, 20, 22, 26, 30, 36, 42, 54                          | 33 |

### INTRODUCTION

In a previous paper on Be-like ions we presented excitation cross sections, rate coefficients, and oscillator strengths for OV, Si XI, Fe XXIII, and Mo XXXIX. The calculations for energy levels, mixing coefficients, and radiative transitions were done using 1/Z perturbation theory, and those for the collisional data were done using a Coulomb-Born approximation with exchange and with inclusion of relativistic effects and configuration interaction. In Ref. 1, we compared our results for O V with R-matrix data by the Belfast group<sup>2,3</sup> and with previous Coulomb-Born calculations<sup>4</sup> for Si XI, Fe XXIII, and Mo XXXIX. Two kinds of fitting formulas for cross sections and rate coefficients were also discussed, and fit parameters were given. Here, we present further results for  $\Delta n = 0$  transitions among the 24 levels arising from the  $1s^22s^2$ ,  $1s^22s2p$ , and  $1s^22p^2$  configurations of Be-like ions in the range Z = 6-54. The theoretical approach to the

calculation has been discussed in detail in Ref. 1 and is therefore not repeated.

### Level Energies, Mixing Coefficients, and Radiative Transitions

The configurations included in the diagonalization of the energy matrix are  $1s^22s^2$ ,  $1s^22s2p$ , and  $1s^22p^2$ . Table I gives ionization potentials for the  $1s^22l2l'LSJ$  levels. Our designations for levels follow Ref. 5: letters for configurations  $(E, 1s^22s^2; F, 1s^22p^2; C, 1s^22s2p; S, 1s^22s; P, 1s^22p)$  and numbers for levels (three numbers indicating (2S+1)(2L+1)(2J+1)). These data are used as input to the ATOM program.<sup>6</sup> Calculation of excitation cross sections from  $1s^22p^2$  states involves the ionization energy of the 2p electron. Thus, we have added

the  $1s^22p-1s^22s$  transition energy in Table I where appropriate.

Mixing coefficients obtained in intermediate coupling are given in Table II for Z = 6-54. Note that the  $2p^2$   $^3P_1$  and 2s2p  $^3P_2$ ,  $^3P_0$  states are unmixed and that the coefficients for these states are equal to 1. Note also that between Z = 35 and 36 there is a level crossing which required a change in level designations between the  $1s^22p^2$   $^3P_2$  and  $^1D_2$  levels.

Wavelengths, transition probabilities, and weighted oscillator strengths gf for the 16 allowed dipole transitions are given in Table III. In comparing our gf values with those of Ref. 7, agreement to better than 10% has been found for nearly all transitions in the range Z=14-54, except for some very weak transitions and the  $2s2p^{-1}P_1-2p^{2-1}S_0$  transition, for which deviations increased to 15-20% at low Z.

#### **Excitation Cross Sections and Rate Coefficients**

Our calculated cross sections for the  $24 2s^2-2s2p$  and  $2s2p-2p^2$  transitions for the 14 Be-like ions are shown in Graphs I as a function of the scaled scattered electron energy u, given in units of  $Z_s^2$  (Ry), where  $Z_s = Z - 3$  is the effective nuclear charge. Cross sections for allowed and J'-J=0-0, 0-2, and 2-0 forbidden transitions change smoothly with u and their energy dependence does not change very much with Z. For such transitions the curves for different ions do not cross in the entire energy interval; the cross sections at the same energy values decrease with Z. It is possible to display these dependencies in graphs

without using a logarithmic scale by dividing all the cross sections by  $Z^4$ . The cross-section variations for intercombination transitions are much more complicated. The ratio of the largest to the smallest cross-section value at the same energy is equal to approximately  $10^5$  for the smallest value of energy. It decreases with increasing energy and is equal to 10-100 for u=10.24. The curves for different ions also begin to cross.

The collisional excitation rates, R, were calculated from the excitation cross sections assuming a Maxwellian distribution of electron velocities. In Graphs II, scaled excitation rate coefficients,  $R_{\rm C}$ , are shown as a function of the scaled electron temperature  $1/\beta$  in units of  $Z_{\rm S}^2({\rm Ry})$  for the same 14 Be-like ions. R is obtained from the plotted  $R_{\rm C}$  values by multiplying with  $10^{-10}e^{-\beta\Delta\epsilon}$ , where  $\Delta\epsilon$  is the transition energy in units of  $Z_{\rm S}^2({\rm Ry})$  given in Table IV. The variations with energy and Z are very similar to those seen in Graphs I. These dependencies can be displayed in graphs without using a logarithmic scale by dividing all  $R_{\rm C}$  values by  $Z^3$ .

In Ref. 1, we had compared our results with those of Refs. 2-4. Here, we show some additional comparisons of our collisional strengths (derivable from the cross sections with the usual expression as given in, for example, Ref. 4) with recent relativistic distorted-wave calculations. Figure 1 shows that there is rather good agreement for the  $2s^2$   $^1S_0$ -2s2p  $^3P_0$  forbidden transition for the entire range of Z considered here. For the 2s2p  $^3P_0$ - $2p^2$   $^3P_1$  allowed transition shown in Fig. 2, agreement is not as good, especially at low energies and low Z; the discrepancies are generally well within 10%, however.





Figure 1. Comparison of collision strengths, plotted against scaled scattered electron energies u, from this work (filled symbols) with those of Ref. 7 (open symbols) for the  $2s^2$   $^1S_0$ -2s2p  $^3P_0$  forbidden transition (a) for low-Z ions O V and Ne VII and (b) for high-Z ions Mo XXXIX and Xe LI.





Figure 2. Same as for Fig. 1 but for the  $2s2p^{3}P_{0}-2p^{2}^{3}P_{1}$  allowed transition.

### **Fitting Formulas**

In Ref. 1 a fitting formula based on parameters with a smooth dependence on Z is suggested for the excitation cross section:

$$\sigma(a'J'-aJ) = \frac{\pi a_0^2}{Z_s^4} \frac{\epsilon_1^{3/2}}{\epsilon_0^{7/2}} \left( \frac{C_1(u^2 + a^2)\ln(u + \Delta\epsilon)4f^2}{(u + F_1)(u^2 + a^2 + bu)} + \frac{C_2\epsilon_0^2}{(u + F_2)(u + 0.4)^2} \right). \tag{1}$$

There are two pairs of fit parameters,  $(C_1, F_1)$  and  $(C_2, F_2)$ , which correspond to the direct and exchange

contributions to the cross section, respectively. The values of a, b, and f are

$$a = -\Delta\epsilon \ln \Delta\epsilon, \quad b = 0.04a^3/(\Delta\epsilon)^2,$$

$$f^2 = \epsilon_0 \epsilon_1/(\Delta\epsilon)^2, \quad (2)$$

with  $\Delta \epsilon = \epsilon_1 - \epsilon_0$ , where  $\epsilon_0$  and  $\epsilon_1$  are the ionization energies of the initial and the final states in units of  $Z_S^2$  (Ry).  $Z_S$ , the effective nuclear charge, is set at Z-3;  $a_0$  is the Bohr radius. The impact electron energy E is defined in terms of the scattered electron energy u as  $E=(u+\Delta\epsilon)Z_S^2$  (Ry). Table IV gives the values of  $\Delta\epsilon$ ,  $\epsilon_0$ , and  $\epsilon_1$ . These values are calculated from Table I except that at very high Z they are allowed to vary slightly in order to improve the fits.

TABLE A

Ratio of Calculated to Fitted Excitation Cross Section for the  $2s^2$   $^1S_0$ –2s2p  $^3P_0$  Transition

| <i>u</i> ∖ion         | o v  | Mg IX | Ar XV | Ti XIX | Fe XXIII | Zn XXVII | Kr XXXIII | Mo XXXIX | Xe Ll |
|-----------------------|------|-------|-------|--------|----------|----------|-----------|----------|-------|
| $6.25 \times 10^{-4}$ | 0.98 | 0.97  | 0.93  | 0.91   | 0.90     | 0.89     | 0.87      | 0.87     | 0.86  |
| $2.5 \times 10^{-3}$  | 0.98 | 0.97  | 0.96  | 0.97   | 0.97     | 0.98     | 0.99      | 0.98     | 0.96  |
| 0.01                  | 1.00 | 0.99  | 1.05  | 1.08   | 1.11     | 1.13     | 1.16      | 1.16     | 1.14  |
| 0.04                  | 1.01 | 1.06  | 1,17  | 1.21   | 1.24     | 1.26     | 1.27      | 1.29     | 1.30  |
| 0.16                  | 1.07 | 1.23  | 1.30  | 1.31   | 1.31     | 1.31     | 1.31      | 1.32     | 1.34  |
| 0.64                  | 1.29 | 1.31  | 1.25  | 1.22   | 1.19     | 1.18     | 1.16      | 1.16     | 1.17  |
| 2.56                  | 0.97 | 0.86  | 0.78  | 0.75   | 0.73     | 0.72     | 0.70      | 0.70     | 0.71  |
| 10.24                 | 0.47 | 0.36  | 0.30  | 0.28   | 0.26     | 0.25     | 0.24      | 0.24     | 0.23  |

O V Mg IX Ar XV Ti XIX Fe XXIII Zn XXVII Kr XXXIII Mo XXXIX Xe LI β\ion 1.01 1.02 1.01 1.01 1.01 1.01 0.5 1.02 1.00 1.01 0.970.98 0.98 0.98 0.98 0.98 0.98 0.98 0.980.96 0.96 0.96 0.96 2 0.94 0.97 0.97 0.96 0.96 0.97 0.97 0.96 0.96 0.96 0.96 0.96 4 0.94 0.98 8 0.96 1.00 0.99 0.990.98 0.98 0.98 0.97 0.97 1.00 1.00 1.00 1.00 16 0.99 1.01 1.01 1.01 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02 32 1.03 1.02 1.01 1.01 1.01 1.02 128 1.04 0.99 1.00 1.00 1.01

TABLE B Ratio of Calculated to Fitted Excitation Rate Coefficient for the 2s<sup>2</sup> <sup>1</sup>S<sub>0</sub>-2s2p <sup>3</sup>P<sub>0</sub> Transition

The excitation rate coefficients (in units of  $cm^3 s^{-1}$ ) are fitted as 1

$$R(a'J'-aJ) = \frac{10^{-8}}{Z_{S}^{3}} e^{-\beta \Delta \epsilon} \beta^{1/2} \frac{\epsilon_{1}^{3/2}}{\epsilon_{0}^{7/2}} \times \left( A_{1} \frac{\beta+1}{\beta+\kappa_{1}} \ln(2f^{2}/\beta+f) + \epsilon_{0}^{2} A_{2} \frac{\beta}{\beta+\kappa_{2}} \right), \quad (3)$$

where  $\beta = Z_s^2 (Ry)/kT$  (k is the Boltzmann constant) and  $(A_1, \kappa_1)$ ,  $(A_2, \kappa_2)$  are two pairs of fit parameters.

Fitting formulas (1) and (3) are divided into two parts, corresponding to the direct and exchange contributions. For forbidden transitions (J'-J=0-0, 0-2, and2-0) only the exchange part contributes to the cross sections and rate coefficients. In this case  $C_1$ ,  $F_1$  and  $A_1$ ,  $\kappa_1$ are equal to zero and only the second part in Eqs. (1) and (3) is used.

For allowed transitions, good fits to the excitation cross sections can be obtained using only  $C_1$  and  $F_1$ . For the rate coefficients we determined not only  $A_1, A_2, \kappa_1$ and  $\kappa_2$ , but also A and  $\kappa$ . The fit parameters A and  $\kappa$  are calculated using Eq. (3), but omitting the exchange part  $(A_2 = 0, \kappa_2 = 0)$ . In the case of  $\Delta S = 0$  spin-allowed transitions, the values  $A_1$  and  $A_2$ ,  $\kappa_1$  and  $\kappa$  are almost equal because the influence of the exchange part is not very strong. For intercombination transitions ( $\Delta S = 1$ ) the exchange part gives a more important contribution, especially for small Z. With increasing Z the difference between fits using A or  $A_1$ ,  $\kappa$  or  $\kappa_1$  becomes progressively smaller (for Mo XXXIX this difference is about 1-2%). We therefore conclude that it is possible to use only two fit parameters: A and  $\kappa$ . This is very convenient for estimation of R values.

The coefficients  $C_i$ ,  $F_i$ ,  $A_i$ ,  $\kappa_i$  (i = 1, 2), A, and  $\kappa$ are listed in Table IV.

It should be noted that all fit parameters were determined using the calculated values of the cross section  $\sigma(a'J'-aJ)$  and the excitation rate coefficients R(a'J'-aJ).

TABLE C Ratio of Calculated to Fitted Excitation Cross Section for the 2s<sup>2+</sup>S<sub>0</sub>-2s2p<sup>+</sup>P<sub>1</sub> Transition

| u\ion                 | o v  | Mg IX | Ar XV | Ti XIX | Fe XXIII | Zn XXVII | Kr XXXIII | Mo XXXIX | Xe LI |
|-----------------------|------|-------|-------|--------|----------|----------|-----------|----------|-------|
| $6.25 \times 10^{-4}$ | 1.00 | 0.98  | 0.99  | 0.97   | 0.97     | 0.97     | 0.97      | 0.97     | 0.97  |
| $2.5 \times 10^{-3}$  | 1.00 | 1.00  | 1.00  | 1.00   | 1.00     | 0.99     | 0.99      | 0.99     | 1.00  |
| 0.01                  | 1.00 | 1.01  | 0.98  | 1.00   | 1.03     | 1.04     | 1.04      | 1.04     | 1.00  |
| 0.04                  | 0.99 | 1.00  | 1.05  | 1.05   | 1.02     | 1.00     | 0.99      | 1.00     | 1.05  |
| 0.16                  | 0.99 | 0.98  | 0.95  | 0.94   | 0.94     | 0.94     | 0.94      | 0.94     | 0.94  |
| 0.64                  | 0.96 | 0.97  | 0.98  | 0.98   | 0.99     | 0.99     | 0.99      | 0.99     | 0.98  |
| 2.56                  | 1.02 | 1.02  | 1.02  | 1.01   | 1.02     | 1.02     | 1.02      | 1.02     | 1.02  |
| 10.24                 | 1.04 | 1.03  | 1.03  | 1.02   | 1.03     | 1.03     | 1.03      | 1.03     | 1.03  |

For each value of the scaled scattered electron energy u and inverse temperature  $\beta$ , the ratio, K, of calculated to fitted data was obtained in order to assess the accuracy of the fit parameters. Table A lists K for the cross section of the  $2s^2 {}^1S_0 - 2s2p {}^3P_0$  forbidden transition. Note that K is generally close to unity but substantial deviations occur at the highest u and Z values. The behavior is typical for the J'-J=0-0, 0-2, and 2-0 transitions. For the corresponding rate coefficient the deviations between fitted and calculated data are never more than 6% (Table B), due to the fact that the lower electron velocities make the predominant contribution to the rate coefficient at all temperatures. For the cross section of the  $2s^{2-1}S_0-2s2p^{-1}P_1$ allowed transition, calculated and fitted data are within about  $\pm 5\%$  of each other for the entire range of u and Z (Table C), as is typical for other allowed transitions. The same is true for the corresponding rate coefficients.

### **Summary**

This paper has presented collisional data for Belike ions with  $6 \le Z \le 54$ . The 1/Z perturbation theory and Coulomb-Born approximation calculations performed here are less complicated than the *R*-matrix method<sup>2.3</sup> and the relativistic distorted-wave approximation<sup>7</sup> but give good agreement with those results as discussed here and in Ref. 1. The fitting formulas we proposed for excitation cross sections and rate coefficients

separate naturally into direct and exchange contributions, and the fit parameters exhibit a smooth dependence on Z. In the majority of cases, our numerical results can be approximated using only two fit parameters; this makes our approach very convenient for the estimation of collisional data for ions in a wide range of Z values.

### References

- 1. U. I. Safronova, A. S. Shlyapzeva, L. A. Vainshtein, T. Kato, and K. Masai, Phys. Scr. 46, 409 (1992)
- 2. K. A. Berrington, P. G. Burke, P. L. Dufton, and A. E. Kingston, ATOMIC DATA AND NUCLEAR DATA TABLES **26**, 1 (1981)
- 3. K. A. Berrington, P. G. Burke, P. L. Dufton, and A. E. Kingston, ATOMIC DATA AND NUCLEAR DATA TABLES 33, 195 (1985)
- 4. S. L. Goett, R. E. H. Clark, and D. H. Sampson, ATOMIC DATA AND NUCLEAR DATA TABLES **25**, 185 (1980)
- 5. L. A. Vainshtein and U. I. Safronova, ATOMIC DATA AND NUCLEAR DATA TABLES 21, 49 (1978)
- 6. L. A. Vainshtein and V. P. Shevelko, Structure and Properties of Ions in Hot Plasma (Nauka, Moscow, 1986)
- 7. H. L. Zhang and D. H. Sampson, ATOMIC DATA AND NUCLEAR DATA TABLES **52**, 143 (1992)

### **EXPLANATION OF TABLES**

### TABLE I. Ionization Potentials (in $10^4$ cm<sup>-1</sup>) for Be-like Ions, Z = 6-54

Letters indicate the configuration and the three numbers following a letter the LSJ level, given as (2S + 1)(2L + 1)(2J + 1).

- E  $1s^22s^2$  configuration
- F  $1s^22p^2$  configuration
- C  $1s^2 2s 2p$  configuration
- S  $1s^22s$  configuration
- P  $1s^22p$  configuration

### TABLE II. Mixing Coefficients for Be-like Ions, Z = 6-54

Rows list expansion coefficients for LSJ levels in the LS-coupling basis set. For example, for Z=8 the wave function of the second excited even-parity J=0 level (labeled F 111 in Table I) is given by  $\Psi(3)=0.257939\Psi(1s^22s^2{}^1S_0)+0.005465\Psi(1s^22p^2{}^3P_0)+0.966146\Psi(1s^22p^2{}^1S_0)$ . Note that there is a level crossing between Z=35 and 36 for the  $1s^22p^2{}^3P_2$  and  ${}^1D_2$  levels and that the order of the basis states is interchanged for Z>35.

# TABLE III. Wavelengths, Transition Probabilities, and Weighted Oscillator Strengths, Z = 6-54

TRANSITION Labels for initial and final state as in Table I.

WL Transition wavelength in Angstroms

A Transition probability in s<sup>-1</sup>; 1.18+03 means  $1.18 \times 10^3$  s<sup>-1</sup>

gf Weighted oscillator strength; 1.05-07 means  $1.05 \times 10^{-7}$ 

# TABLE IV. Fit Parameters for Excitation Cross Sections and Rate Coefficients for $\Delta n = 0$ Transitions, Z = 6, 8, 10, 12, 14, 16, 18, 20, 22, 26, 30, 36, 42, 54

Each data block gives fitting parameters for the transition listed in the first row for the 14 ions identified by their spectroscopic designation in the second row.

Δε Transition energy,  $\Delta \epsilon = \epsilon_0 - \epsilon_1$ ;  $\epsilon_0$ ,  $\epsilon_1$ , and  $\Delta \epsilon$  are given in units of  $Z_S^2$  (Ry) with  $Z_S = Z - 3$ , where 5.303 - 2

means  $5.303 \times 10^{-2}$  Ry

 $\epsilon_0$  Ionization threshold of lower level

 $\epsilon_1$  Ionization threshold of upper level

C1, F1, C2, F2 Fit parameters  $C_1$ ,  $F_1$ ,  $C_2$ , and  $F_2$  for the excitation cross section (Eq. (1)); parameters not listed are zero

A1,  $\kappa$ 1, A2,  $\kappa$ 2 Fit parameters  $A_1$ ,  $\kappa_1$ ,  $A_2$ , and  $\kappa_2$  for the excitation rate

coefficient (Eq. (3)); parameters not listed are zero A,  $\kappa$  Fit parameters for the excitation rate coefficient (Eq. (3))

to be used in place of  $A_1$ ,  $\kappa_1$  with  $A_2$ ,  $\kappa_2$  set equal to

zero

### **EXPLANATION OF GRAPHS**

Each graph is labeled on top by the transition. The symbols are keyed to the ions on the right-hand side.

- GRAPHS I. Excitation Cross Sections for  $\Delta n = 0$  Transitions, Z = 6, 8, 10, 12, 14, 16, 18, 20, 22, 26, 30, 36, 42, 54
  - Abscissa Scaled scattered electron energy, u; the impact electron energy (in eV) is given by  $E = 13.6 \times Z_S^2 (\Delta \epsilon + u)$ , with  $Z_S = Z 3$  and  $\Delta \epsilon$  from Table IV

Ordinate Excitation cross section, in 10<sup>-n</sup> cm<sup>2</sup>

- GRAPHS II. Excitation Rate Coefficients for  $\Delta n = 0$  Transitions, Z = 6, 8, 10, 12, 14, 16, 18, 20, 22, 26, 30, 36, 42, 54
  - Abscissa Scaled temperature  $1/\beta$ ; the temperature (in eV) is given by  $T = 13.6 \times Z_S^2/\beta$
  - Ordinate Scaled excitation rate coefficient  $R_{\rm C}$ ; the excitation rate coefficient (in cm<sup>3</sup> s<sup>-1</sup>) is given by  $R=10^{-10}e^{-\beta\Delta\epsilon}R_{\rm C}$ , with  $\Delta\epsilon$  from Table IV

### **EXAMPLE OF USE OF TABLE IV**

We consider the  $2s^{2-1}S_0$ – $2s2p^{-3}P_0$  and  $2s^{2-1}S_0$ – $2s2p^{-1}P_1$  transitions for Mg IX when the scaled scattered electron energy u = 0.01 and the scaled temperature  $1/\beta = 1/0.5$ .

a) The 
$$2s^{2} {}^{1}S_{0}-2s2p {}^{3}P_{0}$$
 Transition

For this transition we find from the column for Mg IX that  $\Delta \epsilon = 1.582 \times 10^{-2}$ ,  $\epsilon_0 = 0.2977$ ,  $\epsilon_1 = 0.2819$ ,  $C_2 = 1.17 \times 10^{-1}$ ,  $F_2 = 1.56 \times 10^{-2}$ ,  $A_2 = 1.50$ , and  $\kappa_2 = 2.37$ . Use of these values and the recommended value of Z - 3 for the screened charge  $Z_S$  in Eq. (1) gives for the cross section

$$\sigma(2s^{2} {}^{1}S_{0}-2s2p {}^{3}P_{0}) = \frac{8.797 \times 10^{-17}}{(12-3)^{4}} \frac{(0.2819)^{3/2}}{(0.2977)^{7/2}} \frac{0.117(0.2977)^{2}}{(0.01+0.0156)(0.01+0.4)^{2}}$$
$$= 3.36 \times 10^{-19} \text{ cm}^{-2}.$$

The impact electron energy E in eV is equal to

$$E = 13.6(12 - 3)^2(0.01 + 0.01582) \text{ eV} = 28.4 \text{ eV}.$$

We use Eq. (3) and the parameter values from Table IV and obtain for the excitation rate coefficient

$$R(2s^{2} {}^{1}S_{0}-2s2p {}^{3}P_{0}) = \frac{10^{-8}}{(12-3)^{3}} \exp(-0.5 \times 0.01582)(0.5)^{1/2} \frac{(0.2819)^{3/2}}{(0.2977)^{7/2}} \times (0.2977)^{2} 1.50 \frac{0.5}{(0.5+2.37)} = 2.32 \times 10^{-12} \text{ cm}^{3} \text{ s}^{-1}.$$

The electron temperature T in eV for  $\beta = 0.5$  is equal to

$$T(eV) = 13.6(12 - 3)^2/0.5 = 2204 eV.$$

## b) The $2s^{2-1}S_0-2s2p^{-1}P_1$ Transition

For this transition we find from the column for Mg IX that  $\Delta\epsilon = 3.056 \times 10^{-2}$ ,  $\epsilon_0 = 0.2977$ ,  $\epsilon_1 = 0.2671$ ,  $C_1 = 4.16$ ,  $F_1 = 2.63 \times 10^{-2}$ ,  $A_1 = 9.36$ ,  $\kappa_1 = 1.11$ ,  $A_2 = 2.91$ , and  $\kappa_2 = 2.57$ . First we calculate a, b, and f using Eq. (2):

$$a = -0.03056 \ln(0.03056) = 0.1066,$$
  $b = 0.04(0.1066)^3/(0.03056)^2 = 0.05188,$   $f^2 = 0.2977 \times 0.2671/(0.03056)^2 = 85.14.$ 

Use of these values together with Eq. (1) gives for the cross section

$$\sigma(2s^{2} {}^{1}S_{0}-2s2p {}^{1}P_{1}) = \frac{8.797 \times 10^{-17}}{(12-3)^{4}} \frac{(0.2671)^{3/2}}{(0.2977)^{7/2}} \frac{4.16}{(0.01+0.0263)} \times \frac{[(0.01)^{2}+(0.1066)^{2}] ln[(0.01+0.03056)4 \times 85.14]}{[(0.01)^{2}+(0.1066)^{2}+0.05188 \times 0.01]} = 3.70 \times 10^{-17} cm^{-2}.$$

The impact electron energy E in eV is equal to

$$E = 13.6(12 - 3)^2(0.01 + 0.03056) \text{ eV} = 44.7 \text{ eV}.$$

### **EXAMPLE OF USE OF TABLE IV continued**

We use Eq. (3) and the above parameter values from Table IV and obtain for the excitation rate coefficient

$$R(2s^{2} {}^{1}S_{0}-2s2p {}^{1}P_{1}) = \frac{10^{-8}}{(12-3)^{3}} \exp(-0.5 \times 0.03056)(0.5)^{1/2} \frac{(0.2671)^{3/2}}{(0.2977)^{7/2}} \times \left(9.36 \frac{(0.5+1)}{0.5+1.11} \ln(2 \times 85.14/0.5 + 9.227) + (0.2977)^{2} \times 2.91 \frac{0.5}{0.5+2.57}\right)$$

$$= 9.16 \times 10^{-11} (51.08 + 0.042)$$

$$= 4.68 \times 10^{-9} \text{ cm}^{3} \text{ s}^{-1}.$$

The electron temperature T in eV for  $\beta = 0.5$  is equal to

$$T (eV) = 13.6(12 - 3)^2 / 0.5 = 2204 eV.$$

Using instead the parameters A = 9.45 and  $\kappa = 1.12$  in Eq. (3) results in a fitted value for the excitation rate coefficient,

$$R(2s^{2} {}^{1}S_{0}-2s2p {}^{1}P_{1}) = \frac{10^{-8}}{(12-3)^{3}} \exp(-0.5 \times 0.03056)(0.5)^{1/2} \frac{(0.2671)^{3/2}}{(0.2977)^{7/2}} \times 9.45 \frac{(0.5+1)}{0.5+1.12} \ln(2 \times 85.14/0.5 + 9.227) = 4.69 \times 10^{-9} \text{ cm}^{3} \text{ s}^{-1},$$

which is very close to the value given above.

TABLE I. Ionization Potentials (in  $10^4$  cm<sup>-1</sup>) for Be-like Ions, Z = 6-54See page 7 for Explanation of Tables

Designations:  $E-1s^22s^2$ ,  $F-1s^22p^2$ ,  $C-1s^22s2p$ ,  $S-1s^22s$ ,  $P-1s^22p$ ; numbers after letter: (2S+1) (2L+1) (2J+1)

| _  | E 111    | F 331     | F 333      | F 335    | F 155     | F 111            | C 133    | C 331       | C 333    | C 335    | P 234    | P 232           |
|----|----------|-----------|------------|----------|-----------|------------------|----------|-------------|----------|----------|----------|-----------------|
| z  | -S 212   | -S 212    | -5 212     | -S 212   | -s 212    | -s 212           | -S 212   | -S 212      | -S 212   | -S 212   | -S 212   |                 |
| ~  |          |           |            |          |           |                  |          |             |          |          |          |                 |
| _  |          |           |            |          |           |                  |          | *********** |          |          |          |                 |
| 6  | 38.6397  | 24.9043   | 24.9011    | 24.8961  | 24,0621   | 20.3780          | 28.3827  | 33.4025     | 33.3998  | 33.3932  | 6.4592   | 6.4476          |
| 7  | 62.5018  | 44.9492   | 44.9413    | 44.9284  | 43.6140   | 38.9653          | 49.4330  | 55.7818     | 55.7749  | 55.7589  |          | 8.0463          |
| 8  | 91.8828  | 70.5331   | 70.5166    | 70.4890  | 68.7040   | 63.0910          | 76.0116  | 83.6878     | 83.6732  | 83.6403  |          | 9.6373          |
| 9  |          | 101.6380  |            |          | 99.3080   | 92.7326          |          |             | 117.0883 |          |          |                 |
|    | 167.1973 | 138.2554  | 138.2024   |          | 135.4117  |                  | 145.7120 | 156.0659    | 156.0189 | 155.9154 |          |                 |
| 10 | 167.1973 | 130.2334  | 130.2024   | 130.1129 | 133.4117  | 127.0762         | 145.7120 | 136.0633    | 136.0109 | 155.5154 | 12.9032  | 12.0130         |
|    | 013 1300 |           | 100 0001   | 100 1500 | 177 0066  | 160 6101         | 100 0000 | 200 5420    | 200 4675 | 202 2017 |          |                 |
|    | 213.1398 |           |            |          |           |                  |          |             |          |          |          |                 |
|    | 264.6158 |           |            |          | 224.0823  |                  |          |             |          |          |          |                 |
|    | 321.6348 |           |            |          |           |                  |          |             |          | 305.5665 |          |                 |
|    | 384.2074 |           |            |          | 334.6585  |                  |          |             |          |          |          |                 |
| 15 | 452.3456 | 404.0136  | 403.6069   | 402.9946 | 398.1447  | 385.8460         | 416.4036 | 433.8782    | 433.5533 | 432.8245 | 21.9445  | 20.8107         |
|    |          |           |            |          |           |                  |          |             |          |          |          |                 |
|    | 526.0628 |           |            |          |           |                  |          |             |          |          |          |                 |
| 17 | 605.3732 |           |            |          |           |                  |          |             |          |          |          | 24.0541         |
| 18 | 690.2927 | 629.7908  | 628.7645   | 627.4437 | 621.2975  | 606.1907         | 645.0510 | 667.3989    | 666.6747 | 664.9744 | 28.2613  | 25.6881         |
| 19 | 780.8378 | 716.1641  | 714.8073   | 713.1747 | 706.5417  | 690.5165         | 732.3295 | 756.4626    | 755.5522 | 753.3694 | 30.6032  | 27.3314         |
| 20 | 877.0267 | 808.1203  | 806.3481   | 804.3694 | 797.1915  | 780.2615         | 825.1466 | 351.1669    | 850.0405 | 847.2748 | 33.0891  | 28.9851         |
|    |          |           |            |          |           |                  |          |             |          |          |          |                 |
| 21 | 978.8792 | 905.6779  | 903.3891   | 901.0340 | 893.2280  | 875.4112         | 923.5065 | 951.5309    | 950.1575 | 946.6934 | 35.7350  | 30.6491         |
| 22 | 1086.415 | 1008.858  | 1005.932   | 1003.177 | 994.6302  | 975.9495         | 1027.413 | 1057.575    | 1055.922 | 1051.628 | 38.5608  | 32.3246         |
|    | 1199.657 |           |            |          |           |                  |          |             |          |          |          |                 |
| 24 |          |           |            |          | 1213.441  |                  |          |             |          |          |          |                 |
| 25 |          |           |            |          | 1330.802  |                  |          |             |          |          |          |                 |
|    |          |           |            |          |           |                  |          |             |          |          |          |                 |
| 26 | 1573.858 | 1478.309  | 1471.183   | 1466.730 | 1453.435  | 1431.599         | 1498.575 | 1539.002    | 1535.908 | 1526.601 | 52.0515  | 39.1470         |
|    | 1710.168 |           |            |          |           |                  |          |             |          |          |          |                 |
|    | 1852.316 |           |            |          |           |                  |          | 1814.418    |          | 1797.281 |          |                 |
|    | 2000.329 |           |            |          |           |                  |          | 1960.900    |          |          |          |                 |
|    | 2154.240 |           |            |          |           |                  |          |             |          |          |          |                 |
| 30 | 2154.240 | 2039.936  | 2024.711   | 2018.642 | 1996.227  | 1971.737         | 2058.720 | 2113.270    | 2108.275 | 2090.136 | 70.1308  | 46.1957         |
|    |          |           |            |          |           |                  |          |             |          |          |          |                 |
|    | E 111    | F 331     | F 333      | F 335    | F 155     | F 111            | C 133    | C 331       | C 333    | c 335    | P 234    | P 232           |
| Z  | -S 212   | -S 212    | -S 212     | -s 212   | -s 212    | -S 212           | -S 212   | -S 212      | -s 212   | -s 212   | -S 212   | -S 212          |
|    |          |           |            |          |           |                  |          |             |          |          |          |                 |
|    |          |           |            |          |           |                  |          |             |          |          |          |                 |
| 31 | 2314.081 | 2194.991  | 2176.914   | 2170.469 | 2144.875  | 2119.780         | 2212.675 | 2271.562    | 2266.036 | 2244.891 | 75.5600  | 47.9988         |
| 32 | 2479.888 | 2355.976  | 2334.653   | 2327.844 | 2298.656  | 2272.972         | 2372.202 | 2435.809    | 2429.735 | 2405.204 | 81.4099  | 49.8166         |
| 33 | 2651.696 | 2522.928  | 2497.933   | 2490.771 | 2457.547  | 2431.283         | 2537.303 | 2606.046    | 2599.412 | 2571.081 | 87.7085  | 51.6531         |
| 34 | 2829.543 | 2695.884  | 2666.759   | 2659.255 | 2621.519  | 2594.686         | 2707.980 | 2782.310    | 2775.104 | 2742.525 | 94.4947  | 53.5071         |
| 35 |          | 2874.884  | 2841.135   |          | 2790.545  |                  | 2884.234 | 2964.640    | 2956.853 | 2919.544 | 101.7966 |                 |
|    |          |           |            |          |           |                  |          |             |          |          |          |                 |
| 36 | 3203.513 | 3059.969  | 3021.066   | 2964.599 | 3012.906  | 2936.642         | 3066.071 | 3153.074    | 3144.702 | 3102.143 | 109.6517 | 57.2752         |
|    | 3399.718 |           |            |          |           | 3115.132         |          |             | 3338.693 |          | 118.0963 |                 |
|    | 3602.129 |           |            |          |           |                  |          | 3548.425    | 3538.871 |          | 127.1664 |                 |
| 39 | 3810.792 | 3652.147  |            | 3516.615 |           | 3486.974         |          | 3755.429    |          |          | 136.9037 |                 |
| 40 | 4025.753 | 3861.994  |            | 3710.463 | 3787.069  | 3680.254         | 3849,309 | 3968.714    |          |          | 147.3495 |                 |
|    |          |           |            |          |           |                  |          |             |          |          |          |                 |
| 41 | 4247.063 | 4078.150  | 4004.224   | 3909.175 | 3994.568  | 3878.395         | 4059.115 | 4188.327    | 4177.001 | 4099.040 | 158.5415 | 67.0554         |
|    | 4474.771 |           |            |          |           |                  |          |             |          |          |          |                 |
|    | 4708.931 |           |            |          |           |                  |          |             |          |          |          |                 |
|    | 4949.598 |           |            |          |           |                  |          |             |          |          |          |                 |
|    | 5196.828 |           |            |          |           |                  |          |             |          |          |          |                 |
|    | -150.520 | - 700.025 | .,,,,,,,,, | .,01.000 |           |                  |          |             |          | .52510   |          | . 5 . 2 . 5 . 5 |
| 46 | 5450.680 | 5255 278  | 5127 066   | 4974 323 | 5116 076  | 4940 582         | 5192 373 | 5383 135    | 5368 932 | 5236 355 | 227 4001 | 77 4236         |
|    | 5711.215 |           |            |          |           |                  |          |             |          |          |          |                 |
|    | 5978.499 |           |            |          |           |                  |          |             |          |          |          |                 |
|    |          |           |            |          |           |                  |          |             |          |          |          |                 |
|    | 6252.590 |           |            |          |           |                  |          |             |          |          |          |                 |
| 50 | 6533.561 | 0112.980  | 0120.41/   | 5909.719 | 0114.431  | 30/3.403         | 0∠00.443 | 0438.31/    | 0445.114 | 6247.880 | 301.0248 | 86.1977         |
|    | (00)     | CE 00 22: | 6300 346   | 6154 335 | 6270 - 1- | 611 <b>7</b> 617 |          | 6744 400    | 4303     |          |          |                 |
|    | 6821.481 |           |            |          |           |                  |          |             |          |          |          |                 |
|    | 7116.424 |           |            |          |           |                  |          |             |          |          |          |                 |
|    | 7418.459 |           |            |          |           |                  |          |             |          |          |          |                 |
| 54 | 7727.670 | 7486.879  | /216.064   | 6915.620 | 7203.187  | 68/6.694         | 7299.183 | /644.663    | /626.157 | /350.289 | 395.2198 | 95.4541         |
|    |          |           |            |          |           |                  |          |             |          |          |          |                 |

## TABLE II. Mixing Coefficients for Be-like Ions, Z = 6-54See page 7 for Explanation of Tables

 $\Psi(\mathtt{i}) = \mathtt{C}(\mathtt{i},\mathtt{1}) \, \Psi(\mathtt{1s}^2 \mathtt{2s}^{2-1} \mathtt{S}_0) \ + \ \mathtt{C}(\mathtt{i},\mathtt{2}) \, \Psi(\mathtt{1s}^2 \mathtt{2p}^{2-3} \mathtt{P}_0) + \ \mathtt{C}(\mathtt{i},\mathtt{3}) \, \Psi(\mathtt{1s}^2 \mathtt{2p}^{2-1} \mathtt{S}_0)$ 

| <b>z</b> =6                                                 | Z=7                                                         | Z=8                                                         |
|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| 0.961227 -0.000645 -0.275757                                | 0.964219 -0.001182 -0.265105                                | 0.966161 -0.001955 -0.257932                                |
| 0.000148 0.999998 -0.001823                                 | 0.000282 0.999994 -0.003434                                 | 0.000479 0.999983 -0.005784                                 |
| 0.275758 0.001711 0.961226                                  | 0.265108 0.003236 0.964213                                  | 0.257939 0.005465 0.966146                                  |
| Z= 9                                                        | Z=10                                                        | Z=11                                                        |
| 0.967548 -0.003002 -0.252669<br>0.000750 0.999959 -0.009008 | 0.968613 -0.004361 -0.248536<br>0.001107 0.999912 -0.013232 | 0.969479 -0.006067 -0.245098<br>0.001560 0.999826 -0.018578 |
| 0.252685 0.008526 0.967511                                  | 0.248572 0.012542 0.968532                                  | 0.245168 0.017629 0.969320                                  |
| Z=12                                                        | Z=13                                                        | Z=14                                                        |
| 0.970221 -0.008147 -0.242086                                | 0.970882 -0.010626 -0.239324                                | 0.971492 -0.013520 -0.236686                                |
| 0.002118 0.999681 -0.025155                                 | 0.002789 0.999449 -0.033060                                 | 0.003582 0.999096 -0.042370                                 |
| 0.242214 0.023894 0.969929                                  | 0.239543 0.031429 0.970377                                  | 0.237045 0.040314 0.970662                                  |
| Z=15                                                        | Z=16                                                        | Z=17                                                        |
| 0.972072 -0.016838 -0.234078<br>0.004500 0.998577 -0.053142 | 0.972635 -0.020579 -0.231427<br>0.005549 0.997843 -0.065407 | 0.973190 -0.024732 -0.228670<br>0.006732 0.996839 -0.079163 |
| 0.234640 0.050605 0.970764                                  | 0.232274 0.062333 0.970651                                  | 0.229905 0.075501 0.970280                                  |
| Z=18                                                        | Z=19                                                        | Z=20                                                        |
| 0.973744 -0.029273 -0.225758                                | 0.974300 -0.034169 -0.222647                                | 0.974862 -0.039373 -0.219304                                |
| 0.008048 0.995505 -0.094370                                 | 0.009498 0.993781 -0.110951                                 | 0.011078 0.991611 -0.128785                                 |
| 0.227506 0.090076 0.969602                                  | 0.225054 0.105985 0.968565                                  | 0.222535 0.123118 0.967119                                  |
| Z=21                                                        | Z=22                                                        | Z=23                                                        |
| 0.975429 -0.044827 -0.215704                                | 0.976003 -0.050465 -0.211829                                | 0.976582 -0.056215 -0.207673                                |
| 0.012784                                                    | 0.014610 0.985759 -0.167527<br>0.217266 0.160413 0.962841   | 0.016548                                                    |
| Z=24                                                        | Z=25                                                        | Z=26                                                        |
| 0.977164 -0.062001 -0.203240                                | 0.977747 -0.067748 -0.198545                                | 0.978330 -0.073386 -0.193608                                |
| 0.018589 0.977760 -0.208903                                 | 0.020723 0.972981 -0.229952                                 | 0.022939 0.967740 -0.250903                                 |
| 0.211672 0.200354 0.956584                                  | 0.208759 0.220720 0.952734                                  | 0.205775 0.241025 0.948453                                  |
| Z=27                                                        | Z=28                                                        | Z=29                                                        |
| 0.978910 -0.078852 -0.188461                                | 0.979484 -0.084091 -0.183140                                | 0.980049 -0.089063 -0.177683                                |
| 0.025224 0.962102 -0.271520                                 | 0.027567 0.956145 -0.291593                                 | 0.029953 0.949955 -0.310949                                 |
| 0.202729 0.261040 0.943800<br>Z=30                          | 0.199629 0.280562 0.938847<br>Z=31                          | 0.196485 0.299423 0.933670<br>Z=32                          |
| 0.980604 -0.093735 -0.172131                                | 0.981146 -0.098089 -0.166524                                | 0.981674 -0.102115 -0.160900                                |
| 0.032370 0.943619 -0.329448                                 | 0.034805 0.937222 -0.346993                                 | 0.037245 0.930841 -0.363521                                 |
| 0.193307 0.317486 0.928351                                  | 0.190106 0.334655 0.922966                                  | 0.186893 0.350867 0.917586                                  |
| Z=33                                                        | Z=34                                                        | Z=35                                                        |
| 0.982185 -0.105812 -0.155292                                | 0.982679 -0.109186 -0.149733                                | 0.983154 -0.112249 -0.144248                                |
| 0.039679 0.924545 -0.379002                                 | 0.042095 0.918390 -0.393431                                 | 0.044484 0.912422 -0.406826                                 |
| 0.183678                                                    | 0.180470 0.380313 0.907079<br>Z=37                          | 0.177281 0.393556 0.902045<br>Z=38                          |
| 0.983610 -0.115014 -0.138861                                | 0.984047 -0.117498 -0.133589                                | 0.984463 -0.119721 -0.128448                                |
| 0.046834 0.906675 -0.419222                                 | 0.049138 0.901173 -0.430665                                 | 0.051388  0.895933 -0.441206                                |
| 0.174118 0.405848 0.897201                                  | 0.170989 0.417230 0.892570                                  | 0.167903 0.427750 0.888166                                  |
| Z=39                                                        | Z = 40                                                      | Z = 4.1                                                     |
| 0.984860 -0.121700 -0.123450                                | 0.985237 -0.123455 -0.1186                                  | 0.985595 -0.125004 -0.113912                                |
| 0.053578  0.890963 -0.450903                                | 0.055701 0.886266 -0.4598                                   | 0.057754 0.881838 -0.468002                                 |
| 0.164864 0.437462 0.883995                                  | 0.161880 0.446421 0.8800<br>Z=43                            | 0.158954 0.454682 0.876355<br>Z=44                          |
| Z=42<br>0.985935 -0.126363 -0.109383                        | 0.986257 -0.127549 -0.105018                                | 0.986562 -0.128576 -0.100816                                |
| 0.059732 0.877675 -0.475520                                 | 0.061632 0.873768 -0.482423                                 | 0.063453  0.870106 -0.488763                                |
| 0.156091 0.462298 0.872878                                  | 0.153294 0.469320 0.869620                                  | 0.150564 0.475798 0.866572                                  |
| Z=45                                                        | Z=46                                                        | Z=47                                                        |
| 0.986851 -0.129460 -0.096778                                | 0.987124 -0.130213 -0.092901                                | 0.987383 -0.130845 -0.089183                                |
| 0.065192                                                    | 0.066850 0.863473 -0.499946                                 | 0.068426                                                    |
| 0.147905 0.481777 0.863722                                  | 0.145317 0.487298 0.861060                                  | 0.142800 0.492401 0.858574                                  |
| Z=48<br>0.987629 -0.131369 -0.085621                        | Z=49<br>0.987862 -0.131793 -0.082210                        | Z=50<br>0.988084 -0.132126 -0.078947                        |
| 0.069921 0.857678 -0.509411                                 | 0.071335 0.855064 -0.513592                                 | 0.072669 0.852623 -0.517449                                 |
| 0.140356 0.497122 0.856253                                  | 0.137983 0.501494 0.854087                                  | 0.135681 0.505546 0.852065                                  |
| Z=51                                                        | Z=52                                                        | Z=53                                                        |
| 0.988295 -0.132377 -0.075827                                | 0.988496 -0.132553 -0.072844                                | 0.988687 -0.132659 -0.069995                                |
| 0.073925 0.850344 -0.521010                                 | 0.075105 0.848215 -0.524301                                 | 0.076210 0.846226 -0.527345                                 |
| 0.133448 0.509305 0.850176                                  | 0.131285 0.512798 0.848412                                  | 0.129189 0.516045 0.846763                                  |
| Z=54<br>0.988870 -0.132703 -0.067273                        |                                                             |                                                             |
| 0.077244 0.844369 -0.530165                                 |                                                             |                                                             |
| 0.127158 0.519068 0.845221                                  |                                                             |                                                             |
|                                                             |                                                             |                                                             |

TABLE II. Mixing Coefficients for Be-like Ions, Z = 6-54See page 7 for Explanation of Tables

 $\Psi(\mathtt{i})\!=\!\!\mathsf{C}(\mathtt{i},1)\Psi(\mathtt{1s}^2\mathtt{2p}^2\ ^3\mathtt{P}_2\ )\ +\ \mathsf{C}(\mathtt{i},2)\Psi(\mathtt{1s}^2\mathtt{2p}^2\ ^1\mathtt{D}_2)$ 

| z=6       |           | z=7       |           | Z=8       |           | Z= 9      |           |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 0.999988  | 0.004942  | 0.999968  | 0.008051  | 0.999922  | 0.012518  | 0.999828  | 0.018567  |
| -0.004942 | 0.999988  | -0.008051 | 0.999968  | -0.012518 | 0.999922  | -0.018567 | 0.999828  |
| z = 10    |           | z = 11    |           | z = 12    |           | Z=13      |           |
| 0.999650  | 0.026451  | 0.999336  | 0.036442  | 0.998807  | 0.048832  | 0.997955  | 0.063923  |
| -0.026451 | 0.999650  | -0.036442 | 0.999336  | -0.048832 | 0.998807  | -0.063923 | 0.997955  |
| z = 14    |           | z=15      |           | z = 16    |           | z=17      |           |
| 0.996630  | 0.082024  | 0.994637  | 0.103431  | 0.991722  | 0.128401  | 0.987581  | 0.157109  |
| -0.082024 | 0.996630  | -0.103431 | 0.994637  | -0.128401 | 0.991722  | -0.157109 | 0.987581  |
| Z=18      |           | Z=19      |           | z = 20    |           | z = 21    |           |
| 0.981863  | 0.189590  | 0.974203  | 0.225674  | 0.964268  | 0.264929  | 0.951835  | 0.306611  |
| -0.189590 | 0.981863  | -0.225674 | 0.974203  | -0.264929 | 0.964268  | -0.306611 | 0.951835  |
| z = 22    |           | 2=23      |           | 2 = 24    |           | Z=25      |           |
| 0.936861  | 0.349703  | 0.919534  | 0.393009  | 0.900283  | 0.435306  | 0.879713  | 0.475506  |
| -0.349703 | 0.936861  | -0.393009 | 0.919534  | -0.435306 | 0.900283  | -0.475506 | 0.879713  |
| Z=26      |           | z=27      |           | z = 28    |           | Z=29      |           |
| 0.858512  | 0.512794  | 0.837338  | 0.546685  | 0.816747  | 0.576995  | 0.797146  | 0.603787  |
| -0.512794 | 0.858512  | -0.546685 | 0.837338  | -0.576995 | 0.816747  | -0.603787 | 0.797146  |
| z=30      |           | z = 31    |           | Z=32      |           | z=33      |           |
| 0.778795  | 0.627278  | 0.761832  | 0.647775  | 0.746291  | 0.665619  | 0.732145  | 0.681148  |
| -0.627278 | 0.778795  | -0.647775 | 0.761832  | -0.665619 | 0.746291  | -0.681148 | 0.732145  |
| Z=34      |           | Z=35      |           | z = 36    |           | z = 37    |           |
| 0.719323  | 0.694676  | 0.707730  | 0.706483  |           | -0.697262 |           | -0.687814 |
| -0.694676 | 0.719323  | -0.706483 | 0.707730  | -0.697262 | 0.716817  | 0.687814  | 0.725887  |
| z = 38    |           | z=39      |           | z = 40    |           | z = 4.1   |           |
|           | -0.679283 |           | -0.671576 |           | -0.664605 |           | -0.658290 |
| 0.679283  | 0.733876  | 0.671576  | 0.740935  | 0.664605  | 0.747195  | 0.658290  | 0.752764  |
| z = 42    |           | Z=43      |           | Z = 44    |           | z = 45    |           |
|           | -0.652562 |           | -0.647356 |           | -0.642618 |           | -0.638297 |
| 0.652562  | 0.757736  | 0.647356  | 0.762188  | 0.642618  | 0.766187  | 0.638297  | 0.769790  |
| Z=46      |           | z=47      |           | Z = 48    |           | 2 = 49    |           |
|           | -0.634350 |           | -0.630738 |           | -0.627426 |           | -0.624386 |
|           | 0.773046  | 0.630738  | 0.775996  | 0.627426  | 0.778676  | 0.624386  | 0.781116  |
| z=50      |           | z = 51    |           | Z=52      |           | 2=53      |           |
|           | -0.621589 |           | -0.619013 |           | -0.616635 |           | -0.614438 |
|           | 0.783343  | 0.619013  | 0.785381  | 0.616635  | 0.787249  | 0.614438  | 0.788965  |
| Z=54      |           |           |           |           |           |           |           |
|           | -0.612405 |           |           |           |           |           |           |
| 0.612405  | 0.790544  |           |           |           |           |           |           |
|           |           |           |           |           |           |           |           |

# $\Psi(i) = C(i,1)\Psi(1s^22s2p^{-1}P_1) + C(i,2)\Psi(1s^22s2p^{-3}P_1)$

| 2=6       |          | z=7       |          | z=8       |                                         | 2= 9      |          |
|-----------|----------|-----------|----------|-----------|-----------------------------------------|-----------|----------|
| 1.000000  | 0.000948 | 0.999998  | 0.001816 | 0.999995  | 0.003096                                | 0.999988  | 0.004863 |
| -0.000948 | 1.000000 | -0.001816 | 0.999998 | -0.003096 | 0.999995                                | -0.004863 | 0.999988 |
| Z=10      |          | z=11      |          | Z=12      |                                         | Z=13      |          |
| 0.999974  | 0.007193 | 0.999948  | 0.010158 | 0.999904  | 0.013828                                | 0.999833  | 0.018267 |
| -0.007193 | 0.999974 | -0.010158 | 0.999948 | -0.013828 | 0.999904                                | -0.018267 | 0.999833 |
| Z=14      |          | 2=15      |          | Z=16      |                                         | Z=17      |          |
| 0.999723  | 0.023533 | 0.999559  | 0.029680 | 0.999325  | 0.036750                                | 0.998997  | 0.044779 |
| -0.023533 | 0.999723 | -0.029680 | 0.999559 | 0.036750  | 0.999325                                | -0.044779 | 0.998997 |
| Z=18      |          | Z=19      |          | z = 20    |                                         | Z=21      |          |
| 0.998552  | 0.053787 | 0.997964  | 0.063784 | 0.997201  | 0.074764                                | 0.996234  | 0.086704 |
| -0.053787 | 0.998552 | -0.063784 | 0.997964 | -0.074764 | 0.997201                                | -0.086704 | 0.996234 |
| 2=22      |          | z=23      |          | Z=24      |                                         | Z=25      |          |
| 0.995031  | 0.099564 | 0.993563  | 0.113285 | 0.991801  | 0.127791                                | 0.989725  | 0.142986 |
| -0.099564 | 0.995031 | -0.113285 | 0.993563 | -0.127791 | 0.991801                                | -0.142986 | 0.989725 |
| 2=26      |          | z = 27    |          | Z=28      |                                         | Z=29      | ******   |
| 0.987317  | 0.158763 | 0.984569  | 0.174999 | 0.981480  | 0.191563                                | 0.978061  | 0.208319 |
| -0.158763 | 0.987317 | -0.174999 | 0.984569 | -0.191563 | 0.981480                                | -0.208319 | 0.978061 |
| z=30      |          | 2=31      |          | Z=32      | • • • • • • • • • • • • • • • • • • • • | Z=33      | 0.0001   |
| 0.974328  | 0.225132 | 0.970309  | 0.241869 | 0.966036  | 0.258407                                | 0.961549  | 0.274633 |
| -0.225132 | 0.974328 | -0.241869 | 0.970309 | -0.258407 | 0.966036                                | -0.274633 | 0.961549 |
| z = 34    |          | z = 35    |          | z=36      |                                         | Z=37      |          |
| 0.956890  | 0.290451 | 0.952103  | 0.305777 | 0.947233  | 0.320547                                | 0.942321  | 0.334710 |
| -0.290451 | 0.956890 | -0.305777 | 0.952103 | -0.320547 | 0.947233                                | -0.334710 | 0.942321 |
| Z=38      |          | Z=39      |          | z = 40    |                                         | Z = 41    |          |
| 0.937408  | 0.348233 | 0.932529  | 0.361095 | 0.927716  | 0.373287                                | 0.922995  | 0.384812 |
| -0.348233 | 0.937408 | -0.361095 | 0.932529 | -0.373287 | 0.927716                                | -0.384812 | 0.922995 |
| z = 42    |          | z = 4.3   |          | Z = 4.4   |                                         | Z=45      |          |
| 0.918389  | 0.395680 | 0.913914  | 0.405907 | 0.909585  | 0.415517                                | 0.905412  | 0.424534 |
| -0.395680 | 0.918389 | -0.405907 | 0.913914 | -0.415517 | 0.909585                                | -0.424534 | 0.905412 |
| z = 46    |          | z = 47    |          | Z = 4.8   |                                         | Z=49      |          |
| 0.901401  | 0.432986 | 0.897555  | 0.440903 | 0.893875  | 0.448316                                | 0.890363  | 0.455252 |
| -0.432986 | 0.901401 | -0.440903 | 0.897555 | -0.448316 | 0.893875                                | -0.455252 | 0.890363 |
| z = 50    |          | z = 51    |          | z = 52    |                                         | Z=53      |          |
| 0.887013  | 0.461743 | 0.883825  | 0.467817 | 0.880793  | 0.473502                                | 0.877912  | 0.478822 |
| -0.461743 | 0.887013 | -0.467817 | 0.883825 | -0.473502 | 0.880793                                | -0.478822 | 0.877912 |
| z = 54    |          |           |          |           |                                         |           |          |
| 0.875176  | 0.483805 |           |          |           |                                         |           |          |
| -0.483805 | 0.875176 |           |          |           |                                         |           |          |
|           |          |           |          |           |                                         |           |          |

TABLE III. Wavelengths, Transition Probabilities, and Weighted Oscillator Strengths, Z = 6-54See page 7 for Explanation of Tables

Designations:  $E-1s^22s^2$ ,  $F-1s^22p^2$ ,  $C-1s^22s2p$ , numbers after letter: (2S+1) (2L+1) (2J+1)

| TRANSITION          | WL             | Α                  | qf                 | TRANSITION WL                            | A                  |                  |
|---------------------|----------------|--------------------|--------------------|------------------------------------------|--------------------|------------------|
| TRANSTITON          | MT             | Α                  |                    | TRANSTITON WE                            | A                  | gf               |
| 7 111-C 333         | 67.94          | 1.18+03            | 1.05-07            | F 111-C 333 594.90                       | 5.62+03            | 2.98-0           |
| : 133-E 111 9       | 74.95          | 1.21+09            | 5.19-01            | C 133-E 111 765.18                       | 1.78+09            | 4.68-0           |
|                     | .070.9         | 4.96+03            | 4.26-06            | F 155-C 333 822.31                       | 1.35+04            | 6.87-0           |
|                     | 071.7          | 3.38+04            | 2.90-05            | F 155-C 335 823.39                       | 1.20+05            | 6.10-0           |
|                     | 176.0          | 2.66+08            | 2.75-01            | F 335-C 333 921.96                       | 3.78+08            | 2.41-0           |
|                     |                | 2.54.00            |                    |                                          | 5 04:00            |                  |
|                     | 176.3<br>176.6 | 3.54+08<br>2.65+08 | 2.20-01<br>1.65-01 | F 333-C 331 922.47<br>F 333-C 333 923.05 | 5.04+08<br>3.77+08 | 1.93-0<br>1.44-0 |
|                     | 176.9          |                    | 8.25-01            | F 335-C 335 923.31                       |                    |                  |
|                     |                | 7.95+08            |                    |                                          | 1.13+09            | 7.20-0           |
|                     | 177.1          | 1.06+09            | 2.20-01            | F 331-C 333 923.73                       | 1.51+09            | 1.92-0           |
| 333-C 335 1         | 177.6          | 4.41+08            | 2.75-01            | F 333-C 335 924.41                       | 6.26+08            | 2.40-0           |
|                     | 249.3          | 1.74+09            | 4.08-01            | F 111-C 133 955.32                       | 2.60+09            | 3.57-0           |
| 333-E 111 I         | 908.4          | 1.20+02            | 1.96-07            | C 333-E 111 1486.6                       | 6.53+02            | 6.48-0           |
| 155-C 133 2         | 314.5          | 1.31+08            | 5.28-01            | F 155-C 133 1718.5                       | 2.22+08            | 4.92-0           |
|                     | 868.1          | 1.84+03            | 1.13-05            | F 335-C 133 2220.0                       | 6.12+03            | 2.26-0           |
|                     | 872.2          | 1.76+01            | 6.54-08            | F 333-C 133 2226.3                       | 9.30+01            | 2.07-0           |
|                     | 874.9          | 2.83+02            | 3.51-07            | F 331-C 133 2230.3                       | 1.33+03            | 9.87-0           |
| = 8                 |                |                    |                    | Z= 9                                     |                    |                  |
| TRANSITION          | WL             | A                  | gf                 | TRANSITION WL                            |                    | gf               |
|                     |                |                    |                    |                                          |                    |                  |
|                     | 85.86          | 1.99+04            | 7.02-07            |                                          | 5.74+04            | 1.45-            |
|                     | 30.07          | 2.35+09            | 4.20-01            | C 133-E 111 535.51                       | 2.94+09            | 3.78-            |
|                     | 68.04          | 3.51+04            | 1.17-05            | F 155-C 333 562.42                       | 8.35+04            | 1.98-            |
| 155-C 335 €         | 69.51          | 3.70+05            | 1.24-04            | F 155-C 335 564.35                       | 1.00+06            | 2.39-            |
| 335-C 333           | 58.48          | 4.94+08            | 2.13-01            | F 335-C 333 643.79                       | 6.12+08            | 1.90-            |
| 333-C 331 7         | 59.23          | 6.56+08            | 1.70-01            | F 333-C 331 644.81                       | 8.12+08            | 1.52-            |
|                     | 60.07          | 4.91+08            | 1.27-01            | F 333-C 333 645.95                       | 6.06+08            | 1.13-            |
|                     | 60.38          | 1.47+09            | 6.35-01            | F 335-C 335 646.32                       | 1.81+09            | 5.65-            |
|                     | 61.03          | 1.95+09            | 1.69-01            | F 331-C 333 647.24                       | 2.41+09            | 1.51-            |
|                     | 61.03          | 8.12+08            | 2.11-01            | F 333-C 335 648.50                       | 9.97+08            | 1.88-            |
| . 111 @ 122 -       | 172 06         | 2 50100            | 2 15 01            | E 111 C 122 CEO 4C                       | 4 42100            | 2 01             |
|                     | 73.96          | 3.50+09            | 3.15-01            | F 111-C 133 650.46                       | 4.43+09            | 2.81-            |
|                     | 218.1          | 2.54+03            | 1.69-06            | C 333-E 111 1031.8                       | 7.87+03            | 3.75-            |
| 155-C 133 1         | .368.4         | 3.21+08            | 4.50-01            | F 155-C 133 1136.6                       | 4.26+08            | 4.11-            |
| 335-C 133 1         | 810.7          | 1.83+04            | 4.50-05            | F 335-C 133 1526.4                       | 4.88+04            | 8.52-            |
| 333-C 133 1         | 819.8          | 3.54+02            | 5.28-07            | F 333-C 133 1538.7                       | 1.09+03            | 1.15-            |
|                     | 825.3          | 4.68+03            | 2.34-06            | F 331-C 133 1546.0                       | 1.36+04            | 4.86-            |
| =10                 |                |                    |                    | Z=11                                     |                    |                  |
| TRANSITION          | WL             | A                  | gf                 | TRANSITION WL                            | A                  | gf               |
| 111-C 333           | 355.33         | 1.44+05            | 2.72-06            | F 111-C 333 312.94                       | 3.22+05            | 4.74-0           |
|                     | 165.43         | 3.53+09            | 3.45-01            | C 133-E 111 411.30                       | 4.13+09            | 3.15-0           |
|                     | 185.27         | 1.85+05            | 3.27-05            | F 155-C 333 426.22                       | 3.84+05            | 5.22-0           |
|                     |                |                    |                    |                                          | 5.36+06            |                  |
|                     | 187.72         | 2.42+06            | 4.32-04            |                                          |                    | 7.40-0           |
| 335-C 333 5         | 558.47         | 7.33+08            | 1.71-01            | F 335-C 333 492.24                       | 8.60+08            | 1.56-0           |
|                     | 59.80          | 9.71+08            | 1.37-01            | F 111-C 133 492.26                       | 6.35+09            | 2.31-0           |
|                     | 60.67          | 5.38+09            | 2.53-01            | F 333-C 331 493.91                       | 1.14+09            | 1.25-0           |
|                     | 61.28          | 7.22+08            | 1.02-01            | F 333-C 333 495.75                       | 8.42+08            | 9.30-0           |
|                     | 61.72          | 2.16+09            | 5.10-01            | F 335-C 335 496.29                       | 2.52+09            | 4.64-0           |
| 331-C 333 5         | 62.95          | 2.86+09            | 1.36-01            | F 331-C 333 497.87                       | 3.33+09            | 1.24-0           |
| 333-C 335           | 64.56          | 1.18+09            | 1.69-01            | F 333-C 335 499.86                       | 1.37+09            | 1.54-0           |
|                     | 394.59         | 2.08+04            | 7.47-06            | C 333-E 111 789.12                       | 4.88+04            | 1.36-0           |
|                     | 970.85         | 5.37+08            | 3.78-01            | F 155-C 133 845.95                       | 6.53+08            | 3.51-0           |
|                     |                |                    | 1.53-04            | F 335-C 133 1152.8                       | 2.63+05            |                  |
|                     | 1315.9         | 1.18+05            |                    |                                          |                    | 2.62-0           |
| ' <b>333-</b> C 133 | 1331.6         | 2.85+03            | 2.27-06            | F 333-C 133 1172.3                       | 6.68+03            | 4.11-0           |
|                     | 1341.1         | 3.42+04            | 9.24-06            | F 331-C 133 1184.2                       | 7.71+04            | 1.62-0           |

TABLE III. Wavelengths, Transition Probabilities, and Weighted Oscillator Strengths, Z = 6-54See page 7 for Explanation of Tables

Designations:  $E-1s^22s^2$ ,  $F-1s^22p^2$ ,  $C-1s^22s2p$ ; numbers after letter: (2S+1) (2L+1) (2J+1)

| Z=12                                   |            |                    | Z=13                                     |                                    |
|----------------------------------------|------------|--------------------|------------------------------------------|------------------------------------|
| TRANSITION W                           | TL A       | gf                 | TRANSITION WL                            | A gf                               |
| F 111-C 333 279.2                      | 9 6.62+05  | 7.74-06            | F 111-C 333 251.86                       | 1.27+06 1.21-05                    |
| C 133-E 111 368.1                      | .2 4.75+09 | 2.89-01            | C 133-E 111 332.80                       | 5.39+09 2.68-01                    |
| F 155-C 333 379.4                      | 2 7.60+05  | 8.19-05            | F 155-C 333 341.27                       | 1.45+06 1.26-04                    |
| F 155-C 335 383.1                      | 0 1.10+07  | 1.21-03            | F 155-C 335 345.65                       | 2.14+07 1.91-03                    |
| F 111-C 133 438.2                      | 7.36+09    | 2.12-01            | F 111-C 133 394.43                       | 8.39+09 1.96-01                    |
| F 335-C 333 439.1                      |            | 1.44-01            | F 335-C 333 395.40                       | 1.14+09 1.33-01                    |
| F 333-C 331 441.1                      |            | 1.14-01            | F 333-C 331 397.79                       | 1.49+09 1.06-01                    |
| F 333-C 333 443.3                      |            | 8.52-02            | F 333-C 333 400.47                       | 1.09+09 7.89-02                    |
| F 335-C 335 444.0<br>F 331-C 333 446.0 |            | 4.25-01<br>1.13-01 | F 335-C 335 401.29<br>F 331-C 333 403.67 | 3.25+09 3.92-01<br>4.27+09 1.04-01 |
|                                        |            |                    |                                          |                                    |
| F 333-C 335 448.4                      |            | 1.40-01            | F 333-C 335 406.51                       | 1.74+09 1.29-01                    |
| C 333-E 111 705.3                      |            | 2.33-05            | C 333-E 111 637.05                       | 2.07+05 3.78-05                    |
| F 155-C 133 748.0                      |            | 3.27-01            | F 155-C 133 668.85                       | 9.08+08 3.03-01                    |
| F 335-C 133 1021.                      |            | 4.32-04            | F 335-C 133 914.08                       | 1.09+06 6.84-04                    |
| F 333-C 133 1045.<br>F 331-C 133 1060. |            | 7.02-06<br>2.68-05 | F 333-C 133 941.63<br>F 331-C 133 959.57 | 2.84+04 1.13-05<br>3.04+05 4.20-05 |
| Z=14                                   |            |                    | Z=15                                     |                                    |
| TRANSITION W                           | 'L A       | gf                 | TRANSITION WL                            | A gf                               |
| F 111-C 333 229.0                      | 1 2.29+06  | 1.80-05            | F 111-C 333 209.61                       | 3.92+06 2.58-05                    |
| C 133-E 111 303.3                      |            | 2.50-01            | C 133-E 111 278.23                       | 6.75+09 2.35-01                    |
| F 155-C 333 309.4                      |            | 1.91-04            | F 155-C 333 282.42                       | 4.76+06 2.84-04                    |
| F 155-C 335 314.5                      |            | 2.92-03            | F 155-C 335 288.35                       | 6.95+07 4.33-03                    |
| F 111-C 133 358.0                      |            | 1.82-01            | F 335-C 333 327.24                       | 1.46+09 1.17-01                    |
| F 335-C 333 358.6                      | 5 1.29+09  | 1.24-01            | F 111-C 133 327.25                       | 1.06+10 1.70-01                    |
| F 333-C 331 361.4                      |            | 9.87-02            | F 333-C 331 330.35                       | 1.89+09 9.26-02                    |
| F 333-C 331 364.5                      |            | 7.32-02            | F 333-C 333 333.93                       | 1.37+09 6.87-02                    |
| F 335-C 335 365.5                      |            | 3.63-01            | F 335-C 335 335.24                       | 4.02+09 3.38-01                    |
| F 331-C 333 368.4                      |            | 9.69-02            | F 331-C 333 338.52                       | 5.27+09 9.06-02                    |
| F 333-C 335 371.6                      | 8 1.93+09  | 1.20-01            | F 333-C 335 342.26                       | 2.12+09 1.11-01                    |
| C 333-E 111 580.2                      |            | 5.85-05            | C 333-E 111 532.13                       | 6.87+05 8.73-05                    |
| F 155-C 133 603.2                      |            | 2.86-01            | F 155-C 133 547.68                       | 1.20+09 2.69-01                    |
| F 335-C 133 823.3                      |            | 1.06-03            | F 335-C 133 745.78                       | 3.82+06 1.59-03                    |
| F 333-C 133 855.0                      |            | 1.75-05            | F 333-C 133 781.45                       | 9.50+04 2.61-05                    |
| F 331-C 133 876.5                      |            | 6.30-05            | F 331-C 133 807.08                       | 9.35+05 9.12-05                    |
| Z=16                                   |            |                    | Z=17                                     |                                    |
| TRANSITION W                           | L A        | gf                 | TRANSITION WL                            | A gf                               |
|                                        |            |                    |                                          |                                    |
| F 111-C 333 192.8<br>C 133-E 111 256.6 |            | 3.57-05<br>2.22-01 | F 111-C 333 178.27<br>C 133-E 111 237.72 | 1.01+07 4.83-0<br>8.27+09 2.10-0   |
| F 155-C 333 259.0                      |            | 4.17-04            | F 155-C 333 238.57                       | 1.41+07 6.00-0                     |
| F 155-C 335 265.8                      |            | 6.25-03            | F 155-C 335 246.23                       | 1.95+08 8.85-0                     |
| F 335-C 333 300.0                      |            | 1.11-01            | F 335-C 333 276.09                       | 1.84+09 1.05-0                     |
| F 111-C 133 300.7                      | 8 1.18+10  | 1.60-01            | F 111-C 133 277.70                       | 1.30+10 1.51-0                     |
| F 333-C 331 303.4                      |            | 8.74-02            | F 333-C 331 279.80                       | 2.36+09 8.30-0                     |
| F 333-C 333 307.4                      |            | 6.45-02            | F 333-C 333 284.30                       | 1.68+09 6.12-0                     |
| F 335-C 335 309.1                      | 3 4.42+09  | 3.16-01            | F 335-C 335 286.41                       | 4.82+09 2.96-0                     |
| F 331-C 333 312.8                      | 8 5.79+09  | 8.49-02            | F 331-C 333 290.62                       | 6.33+09 8.01-0                     |
| F 333-C 335 317.0                      |            | 1.04-01            | F 333-C 335 295.26                       | 2.51+09 9.85-0                     |
| C 333-E 111 490.8                      |            | 1.27-04            | C 333-E 111 454.93                       | 1.92+06 1.78-0                     |
| F 155-C 133 499.8                      | 6 1.36+09  | 2.55-01            | F 155-C 133 458.04                       | 1.54+09 2.42-0                     |
| F 335-C 133 678.5                      | 6 6.77+06  | 2.33-03            | F 335-C 133 619.76                       | 1.17+07 3.36-0                     |
| F 333-C 133 718.0                      |            | 3.78-05            | F 333-C 133 662.73                       | 2.68+05 5.31-0                     |
| F 331-C 133 748.2                      | 6 1.52+06  | 1.27-04            | F 331-C 133 698.13                       | 2.36+06 1.73-0                     |
|                                        |            |                    |                                          |                                    |

TABLE III. Wavelengths, Transition Probabilities, and Weighted Oscillator Strengths, Z = 6-54See page 7 for Explanation of Tables

Designations:  $E-1s^22s^2$ ,  $F-1s^22p^2$ ,  $C-1s^22s2p$ ; numbers after letter: (2S+1) (2L+1) (2J+1)

| Z=18                                   |            |                    | Z=19                                     |                                  |
|----------------------------------------|------------|--------------------|------------------------------------------|----------------------------------|
| TRANSITION                             | WL A       | gf                 | TRANSITION WL                            | A gf                             |
| F 111-C 333 165.                       | 33 1.54+07 | 6.30-05            | F 111-C 333 153.76                       | 2.27+07 8.04-0                   |
| F 155-C 333 220.                       | 38 2.34+07 | 8.52-04            | F 155-C 333 204.04                       | 3.80+07 1.18-0                   |
| C 133-E 111 221.                       | 04 9.10+09 | 2.00-01            | C 133-E 111 206.15                       | 1.00+10 1.91-0                   |
| F 155-C 335 228.                       | 96 3.10+08 | 1.22-02            | F 155-C 335 213.55                       | 4.81+08 1.64-0                   |
| F 335-C 333 254.                       | 90 2.07+09 | 1.00-01            | F 335-C 333 235.98                       | 2.31+09 9.66-0                   |
| F 111-C 133 257.                       |            | 1.43-01            | F 111-C 133 239.16                       | 1.58+10 1.36-0                   |
| F 333-C 331 258.<br>F 333-C 333 263.   |            | 7.91-02<br>5.82-02 | F 333-C 331 240.07<br>F 333-C 333 245.43 | 2.93+09 7.58-0                   |
| F 335-C 335 266.                       |            | 2.78-01            | F 335-C 335 245.43<br>F 335-C 335 248.79 | 2.05+09 5.55-0<br>5.61+09 2.60-0 |
| F 331-C 333 271.                       |            | 7.59-02            | F 331-C 333 253.87                       | 7.46+09 7.20-0                   |
| F 333-C 335 276.                       | 17 2.70+09 | 9.25-02            | F 333-C 335 259.32                       | 2.90+09 8.75-0                   |
| F 155-C 133 420.                       | 99 1.74+09 | 2.31-01            | F 155-C 133 387.78                       | 1.95+09 2.20-0                   |
| C 333-E 111 423.                       |            | 2.45-04            | C 333-E 111 395.48                       | 4.69+06 3.30-0                   |
| F 335-C 133 567.                       |            | 4.71-03            | F 335-C 133 522.07                       | 3.17+07 6.48-0                   |
| F 333-C 133 614.                       | 00 4.29+05 | 7.26-05            | F 333-C 133 570.70                       | 6.68+05 9.78-0                   |
| F 331-C 133 655.                       | 24 3.53+06 | 2.27-04            | F 331-C 133 618.54                       | 5.07+06 2.91-0                   |
| Z=20                                   |            |                    | Z=21                                     |                                  |
| TRANSITION                             | WL A       | gf                 | TRANSITION WL                            | A gf                             |
| F 111-C 333 143.                       |            | 9.96-05            | F 111-C 333 133.78                       | 4.49+07 1.20-                    |
| F 155-C 333 189.                       |            | 1.61-03            | F 155-C 333 175.66<br>C 133-E 111 180.59 | 9.21+07 2.13-                    |
| C 133-E 111 192.7<br>F 155-C 335 199.0 |            | 1.83-01<br>2.16-02 | C 133-E 111 180.59<br>F 155-C 335 187.04 | 1.20+10 1.76-<br>1.06+09 2.78-   |
| F 335-C 333 218.                       |            | 9.30-02            | F 335-C 333 203.57                       | 2.90+09 9.00-                    |
| F 111-C 133 222.                       | 79 1.74+10 | 1.29-01            | F 333-C 331 207.72                       | 3.64+09 7.05-                    |
| F 333-C 331 223.                       |            | 7.30-02            | F 111-C 133 207.92                       | 1.91+10 1.24-                    |
| F 333-C 333 228.                       |            | 5.31-02            | F 333-C 333 213.82                       | 2.48+09 5.10-                    |
| F 335-C 335 233.                       | 07 5.98+09 | 2.43-01            | F 335-C 335 219.02                       | 6.32+09 2.27-                    |
| F 331-C 333 238.                       | 54 8.06+09 | 6.87-02            | F 331-C 333 224.81                       | 8.68+09 6.57-                    |
| F 333-C 335 244.                       | 34 3.10+09 | 8.35-02            | F 333-C 335 230.92                       | 3.31+09 7.95-                    |
| F 155-C 133 357.                       | 72 2.19+09 | 2.10-01            | F 155-C 133 330.27                       | 2.46+09 2.01-                    |
| C 333-E 111 370.                       | 56 7.05+06 | 4.35-04            | C 333-E 111 348.17                       | 1.03+07 5.64-                    |
| F 335-C 133 481.                       | 31 4.99+07 | 8.67-03            | F 335-C 133 445.00                       | 7.62+07 1.13-                    |
| F 333-C 133 531.                       | 96 1.01+06 | 1.29-04            | F 333-C 133 497.08                       | 1.50+06 1.67-                    |
| F 331-C 133 587.                       | 25 7.01+06 | 3.63-04            | F 331-C 133 560.80                       | 9.34+06 4.41-                    |
| Z=22                                   |            |                    | Z=23                                     |                                  |
| TRANSITION                             | WL A       | gf                 | TRANSITION WL                            | A gf                             |
| F 111-C 333 125.                       |            | 1.42-04            | F 111-C 333 116.96                       | 7.95+07 1.63-                    |
| F 155-C 333 163.                       |            | 2.73-03            | F 155-C 333 151.56                       | 1.97+08 3.39-                    |
| C 133-E 111 169.                       |            | 1.71-01            | C 133-E 111 159.27                       | 1.45+10 1.65-                    |
| F 155-C 335 175.                       |            | 3.48-02            | F 155-C 335 164.73                       | 2.09+09 4.25-                    |
| F 335-C 333 189.                       | 60 3.25+09 | 8.76-02            | F 335-C 333 176.85                       | 3.65+09 8.55-                    |
| F 333-C 331 193.                       |            | 6.84-02            | F 333-C 331 180.70                       | 4.54+09 6.66-                    |
| F 111-C 133 194.                       |            | 1.18-01            | F 111-C 133 181.78                       | 2.31+10 1.14-                    |
| F 333-C 333 200.                       |            | 4.92-02            | F 333-C 333 187.35                       | 3.02+09 4.77-                    |
| F 335-C 335 206.4<br>F 331-C 333 212.4 |            | 2.11-01<br>6.30-02 | F 335-C 335 195.04<br>F 331-C 333 201.31 | 6.87+09 1.95-<br>9.99+09 6.06-   |
| r 331-C 333 212.                       | 3.34409    | 0.30-02            |                                          |                                  |
| F 333-C 335 218.                       |            | 7.55-02            | F 333-C 335 207.89                       | 3.73+09 7.25-                    |
| F 155-C 133 305.                       |            | 1.92-01            | F 155-C 133 281.74                       | 3.09+09 1.84-                    |
| C 333-E 111 327.                       |            | 7.17-04            | C 333-E 111 309.58                       | 2.09+07 9.00-                    |
| F 335-C 133 412.                       |            | 1.43-02            | F 335-C 133 383.73                       | 1.60+08 1.77-                    |
| F 333-C 133 465.                       |            | 2.12-04            | F 333-C 133 436.88                       | 3.10+06 2.66-                    |
| F 331-C 133 538.                       | 83 1.20+07 | 5.22-04            | F 331-C 133 521.11                       | 1.48+07 6.00-                    |
|                                        | ·          |                    |                                          |                                  |

TABLE III. Wavelengths, Transition Probabilities, and Weighted Oscillator Strengths, Z=6-54See page 7 for Explanation of Tables

Designations:  $E-1s^22s^2$ ,  $F-1s^22p^2$ ,  $C-1s^22s2p$ , numbers after letter: (2S+1) (2L+1) (2J+1)

|                |                |                    |                    | Z=25                                     |                             |                  |
|----------------|----------------|--------------------|--------------------|------------------------------------------|-----------------------------|------------------|
| TRANSITION     | WL             | A                  | gf                 | TRANSITION WL                            | А                           | gf               |
| F 111-C 333 10 | 9.45           | 1.02+08            | 1.82-04            | F 111-C 333 102.44                       | 1.27+08                     | 1.99-0           |
| F 155-C 333 14 | 10.77          | 2.75+08            | 4.08-03            | F 155-C 333 130.68                       | 3.70+08                     | 4.74-0           |
|                | 19.82          | 1.59+10            | 1.61-01            | C 133-E 111 141.03                       | 1.75+10                     | 1.57-0           |
|                | 4.75           | 2.82+09            | 5.05-02            | F 155-C 335 145.43                       | 3.72+09                     | 5.90~0           |
| F 335-C 333 16 | 55.18          | 4.10+09            | 8.37-02            | F 335-C 333 154.45                       | 4.61+09                     | 8.25-0           |
|                | 8.76           | 5.09+09            | 6.51-02            | F 333-C 331 157.71                       | 5.71+09                     | 6.39-0           |
|                | 0.17           | 2.54+10            | 1.10-01            | F 111-C 133 159.38                       | 2.80+10                     | 1.06-0           |
|                | 5.61           | 3.33+09            | 4.62-02            | F 333-C 333 164.69                       | 3.69+09                     | 4.50-0           |
|                | 4.77           | 7.06+09            | 1.80-01            | F 335-C 335 175.48                       | 7.22+09                     | 1.66-0           |
| F 331-C 333 19 | 1.19           | 1.07+10            | 5.85-02            | F 331-C 333 181.98                       | 1.14+10                     | 5.64-0           |
|                | 97.92          | 3.94+09            | 6.95-02            | F 333-C 335 188.81                       | 4.16+09                     | 6.65-0           |
|                | 50.15          | 3.47+09            | 1.76-01            | F 155-C 133 240.12                       | 3.91+09                     | 1.69-0           |
|                | 2.85           | 2.88+07            | 1.11-03            | C 333-E 111 277.55                       | 3.91+07                     | 1.35-0           |
|                | 7.91           | 2.21+08            | 2.11-02<br>3.30-04 | F 335-C 133 334.79<br>F 333-C 133 386.92 | 2.93+08<br>5.95+06          | 2.46-0           |
|                | .0.77<br>)7.53 | 4.33+06<br>1.75+07 | 6.78-04            | F 333-C 133 386.92<br>F 331-C 133 498.14 | 2.00+07                     | 3.99-0<br>7.44-0 |
| Z=26           |                |                    |                    | Z=27                                     |                             |                  |
| TRANSITION     | WL             | A                  | gf                 | TRANSITION WL                            | A                           | gf               |
|                | .868           | 1.54+08            | 2.13-04            | F 111-C 333 89.693                       | 1.84+08                     | 2.22-0           |
|                | 1.25           | 4.85+08            | 5.34-03            | F 155-C 333 112.43                       | 6.17+08                     | 5.85-0           |
|                | 32.83          | 1.93+10            | 1.53-01            | C 133-E 111 125.15                       | 2.13+10                     | 1.50-0           |
|                | 6.68           | 4.79+09            | 6.70-02            | F 155-C 335 128.45                       | 6.05+09                     | 7.45-0           |
| F 335-C 333 14 | 14.56          | 5.21+09            | 8.16-02            | F 335-C 333 135.40                       | 5.91+09                     | 8.13-0           |
|                | 7.45           | 6.43+09            | 6.28-02            | F 333-C 331 137.90                       | 7.25+09                     | 6.20-0           |
|                | 19.30          | 3.09+10            | 1.03-01            | F 111-C 133 139.88                       | 3.42+10                     | 1.00-0           |
|                | 4.50           | 4.09+09            | 4.38-02            | F 333-C 333 144.96                       | 4.54+09                     | 4.29-0           |
|                | 57.03          | 7.33+09            | 1.53-01            | F 335-C 335 159.34                       | 7.41+09                     | 1.41-0           |
| F 331-C 333 17 | 3.58           | 1.21+10            | 5.49-02            | F 331-C 333 165.88                       | 1.29+10                     | 5.31-0           |
| F 333-C 335 18 | 0.45           | 4.39+09            | 6.40-02            | F 333-C 335 172.74                       | 4.61+09                     | 6.20-0           |
| F 155-C 133 22 | 1.54           | 4.42+09            | 1.62-01            | F 155-C 133 204.31                       | 5.01+09                     | 1.57-0           |
| C 333-E 111 26 | 3.51           | 5.22+07            | 1.63-03            | C 333-E 111 250.60                       | 6.84+07                     | 1.93-0           |
| F 335-C 133 31 | 4.05           | 3.77+08            | 2.79-02            | F 335-C 133 295.40                       | 4.71+08                     | 3.09-0           |
|                | 55.07          | 8.02+06            | 4.80-04            | F 333-C 133 345.03                       | 1.07+07                     | 5.70-0           |
| F 331-C 133 49 | 3.18           | 2.18+07            | 7.95-04            | F 331-C 133 493.05                       | 2.28+07                     | 8.31-0           |
| Z=28           |                |                    |                    | Z=29                                     |                             |                  |
| TRANSITION     | WL             | A                  | gf                 | TRANSITION WL                            | A                           | gf               |
|                | .880           | 2.14+08            | 2.26-04            | F 111-C 333 78.402                       | 2.44+08                     | 2.25-0           |
|                | 4.17           | 7.67+08            | 6.24-03            | F 155-C 333 96.451                       | 9.32+08                     | 6.48-0           |
|                | 7.92           | 2.36+10            | 1.47-01            | C 133-E 111 111.12                       | 2.61+10                     | 1.45-0           |
|                | 0.69           | 7.52+09            | 8.20-02            | F 155-C 335 113.38                       | 9.21+09                     | 8.85-0           |
| F 335-C 333 12 | 6.90           | 6.74+09            | 8.13-02            | F 335-C 333 118.97                       | 7.71+09                     | 8.19-0           |
|                | 9.00           | 8.20+09            | 6.13-02            | F 333-C 331 120.69                       | 9.30+09                     | 6.09-0           |
|                | 1.04           | 3.80+10            | 9.78-02            | F 111-C 133 122.75                       | 4.23+10                     | 9.54-0           |
|                | 6.01           | 5.06+09            | 4.20-02            | F 333-C 333 127.59                       | 5.65+09                     | 4.14-0           |
|                | 2.30<br>8.81   | 7.47+09<br>1.37+10 | 1.30-01<br>5.19-02 | F 335-C 335 145.84<br>F 331-C 333 152.30 | 7.53+09<br>1. <b>4</b> 5+10 | 1.20-0<br>5.04-0 |
|                | 5.61           | 4.85+09            | 5.95-02            | F 333-C 335 159.00                       | 5.08+09                     |                  |
|                | 8.36           | 5.72+09            | 1.52-01            | F 155-C 133 173.62                       | 6.56+09                     | 5.75-0           |
|                | 8.71           | 8.84+07            | 2.26-03            | C 333-E 111 227.72                       | 1.12+08                     | 1.48-0<br>2.62-0 |
|                | 8.59           | 5.73+08            | 3.33-02            | F 335-C 133 263.37                       | 6.80+08                     | 3.54-0           |
|                | 6.61           | 1.39+07            | 6.69-04            | F 333-C 133 263.37                       | 1.79+07                     | 7.74-0           |
| 1 12           |                |                    |                    |                                          |                             |                  |
| F 331-C 133 49 | 8.50           | 2.27+07            | 8.46-04            | F 331-C 133 510.73                       | 2.14+07                     | 8.37-0           |

TABLE III. Wavelengths, Transition Probabilities, and Weighted Oscillator Strengths, Z = 6-54See page 7 for Explanation of Tables

Designations:  $E-1s^22s^2$ ,  $F-1s^22p^2$ ,  $C-1s^22s2p$ , numbers after letter: (2S+1) (2L+1) (2J+1)

| Z=30                                     |           |                    | Z=31                                     |                    |                    |
|------------------------------------------|-----------|--------------------|------------------------------------------|--------------------|--------------------|
| TRANSITION W                             | L A       | gf                 | TRANSITION WL                            | A                  | gf                 |
| F 111-C 333 73.238                       | 8 2.73+08 | 2.19-04            | F 111-C 333 68.372                       | 3.00+08            | 2.10-04            |
| F 155-C 333 89.248                       | 8 1.11+09 | 6.63-03            | F 155-C 333 82.536                       | 1.31+09            | 6.66-03            |
| C 133-E 111 104.69                       | 9 2.91+10 | 1.43-01            | C 133-E 111 98.614                       | 3.24+10            | 1.42-01            |
| F 155-C 335 106.49                       | 9 1.12+10 | 9.50-02            | F 155-C 335 99.985                       | 1.34+10            | 1.00-01            |
| F 335-C 333 111.58                       |           | 8.28-02            | F 335-C 333 104.65                       | 1.02+10            | 8.40-02            |
| F 333-C 331 112.92                       | 2 1.06+10 | 6.05-02            | F 333-C 331 105.66                       | 1.20+10            | 6.04-02            |
| F 111-C 133 114.96                       | 6 4.72+10 | 9.36-02            | F 111-C 133 107.65                       | 5.29+10            | 9.18-02            |
| F 333-C 333 119.6°                       | 7 6.32+09 | 4.08-02            | F 333-C 333 112.21                       | 7.09+09            | 4.02-02            |
| F 335-C 335 139.89                       | 7.58+09   | 1.11-01            | F 335-C 335 134.39                       | 7.63+09            | 1.03-0             |
| F 331-C 333 146.28                       | 3 1.54+10 | 4.92-02            | F 331-C 333 140.70                       | 1.62+10            | 4.80-02            |
| F 333-C 335 152.85                       |           | 5.60-02            | F 333-C 335 147.11                       | 5.57+09            | 5.40-0             |
| F 155-C 133 160.02                       |           | 1.45-01            | F 155-C 133 147.49                       | 8.76+09            | 1.43-0             |
| C 333-E 111 217.50                       |           | 3.00-03            | C 333-E 111 208.14                       | 1.75+08            | 3.39-03            |
| F 335-C 133 249.50                       |           | 3.69-02            | F 335-C 133 236.98                       | 9.07+08            | 3.81-02            |
| F 333-C 133 294.04                       | 1 2.28+07 | 8.85-04            | F 333-C 133 279.63                       | 2.85+07            | 1.00-03            |
| F 331-C 133 531.64                       | 1.90+07   | 8.07-04            | F 331-C 133 564.49                       | 1.58+07            | 7.53-04            |
| Z=32                                     |           |                    | Z=33                                     |                    |                    |
| TRANSITION WI                            | L A       | gf                 | TRANSITION WL                            | A                  | gf                 |
| F 111-C 333 63.789                       |           | 1.97-04            | F 111-C 333 59.478                       | 3.43+08            | 1.82-04            |
| F 155-C 333 76.291                       |           | 6.60-03            | F 155-C 333 70.490                       | 1.74+09            | 6.48-03            |
| C 133-E 111 92.864                       |           | 1.40-01            | C 133-E 111 87.419                       | 4.06+10            | 1.39-01            |
| F 155-C 335 93.856                       |           | 1.05-01            | F 155-C 335 88.080                       | 1.90+10            | 1.10-01            |
| F 335-C 333 98.155                       | 1.19+10   | 8.58-02            | F 335-C 333 92.059                       | 1.38+10            | 8.79-02            |
| F 333-C 331 98.858                       |           | 6.03-02            | F 333-C 331 92.496                       | 1.57+10            | 6.04-02            |
| F 111-C 133 100.77                       |           | 9.03-02            | F 111-C 133 94.320                       | 6.69+10            | 8.91-02            |
| F 333-C 333 105.17                       |           | 3.96-02            | F 333-C 333 98.543                       | 9.01+09            | 3.93-02            |
| F 335-C 335 129.29<br>F 331-C 333 135.51 |           | 9.65-02<br>4.71-02 | F 335-C 335 124.54<br>F 155-C 133 125.38 | 7.76+09<br>1.19+10 | 9.00-02<br>1.40-01 |
|                                          |           |                    |                                          |                    |                    |
| F 155-C 133 135.97                       |           | 1.41-01            | F 331-C 333 130.67                       | 1.80+10            | 4.62-02            |
| F 333-C 335 141.74                       |           | 5.25-02            | F 333-C 335 136.71                       | 6.09+09            | 5.10-02            |
| C 333-E 111 199.40                       |           | 3.81-03            | C 333-E 111 191.27                       | 2.57+08            | 4.23-03            |
| F 335-C 133 225.50                       |           | 3.90-02            | F 335-C 133 214.97                       | 1.14+09            | 3.93-02            |
| F 333-C 133 266.32                       |           | 1.12-03            | F 333-C 133 254.00                       | 4.30+07            | 1.24-03            |
| F 331-C 133 614.89                       | 1.20+07   | 6.78-04            | F 331-C 133 693.53                       | 8.11+06            | 5.85-04            |
| Z=34                                     |           |                    | z=35                                     |                    |                    |
| TRANSITION WI                            | . А       | gf                 | TRANSITION WL                            | A                  | gf                 |
| F 111-C 333 55.426                       |           | 1.65-04            | F 111-C 333 51.624                       | 3.69+08            | 1.47-04            |
| F 155-C 333 65.111                       |           | 6.27-03            | F 155-C 333 60.130                       | 2.23+09            | 6.03-03            |
| C 133-E 111 82.263                       |           | 1.39-01            | C 133-E 111 77.380                       | 5.14+10            | 1.38-01            |
| F 155-C 335 82.641                       | 2.25+10   | 1.15-01            | F 155-C 335 77.520                       | 2.65+10            | 1.19-01            |
| F 335-C 333 86.331                       | 1.62+10   | 9.03-02            | F 335-C 333 80.948                       | 1.89+10            | 9.30-02            |
| F 333-C 331 86.542                       |           | 6.07-02            | F 333-C 331 80.969                       | 2.07+10            | 6.10-02            |
| F 111-C 133 88.264                       |           | 8.82-02            | F 111-C 133 82.584                       | 8.55+10            | 8.73-02            |
| F 333-C 333 92.298                       |           | 3.90-02            | F 333-C 333 86.417                       | 1.16+10            | 3.90-02            |
| F 155-C 133 115.66<br>F 335-C 335 120.11 |           | 1.40-01<br>8.50-02 | F 155-C 133 106.74<br>F 335-C 335 115.97 | 1.64+10<br>7.94+09 | 1.40-01<br>8.00-02 |
|                                          |           |                    |                                          |                    |                    |
| F 331-C 333 126.15                       |           | 4.53-02            | F 331-C 333 121.91                       | 1.99+10            | 4.44-02            |
| F 333-C 335 131.99                       |           | 4.97-02            | F 333-C 335 127.54                       | 6.62+09            | 4.84-02            |
| C 333-E 111 183.70                       |           | 4.65-03            | C 333-E 111 176.63                       | 3.62+08            | 5.07-03            |
| F 335-C 133 205.30                       |           | 3.96-02            | F 335-C 133 196.40                       | 1.37+09            | 3.96-02            |
| F 333-C 133 242.60                       | 5.18+07   | 1.37-03            | F 333-C 133 232.02                       | 6.18+07            | 1.49-03            |
| F 331-C 133 823.24                       |           | 4.77-04            | F 331-C 133 1062.6                       | 2.09+06            | 3.54-04            |

TABLE III. Wavelengths, Transition Probabilities, and Weighted Oscillator Strengths, Z = 6-54See page 7 for Explanation of Tables

Designations:  $E-1s^22s^2$ ,  $F-1s^22p^2$ ,  $C-1s^22s2p$ , numbers after letter: (2S+1) (2L+1) (2J+1)

| 2=36                                 |         |         | Z=37               |         |        |
|--------------------------------------|---------|---------|--------------------|---------|--------|
| TRANSITION WL                        | A       | gf      | TRANSITION WL      | A       | gf     |
| F 111-C 333 48.063                   | 3.75+08 | 1.30-04 | F 111-C 333 44.730 | 3.76+08 | 1.13-0 |
| 335-C 333 55.524                     | 2.50+09 | 5.79-03 | F 335-C 333 51.271 | 2.79+09 | 5.49-0 |
| 335-C 335 72.705                     | 3.12+10 | 1.23-01 | F 335-C 335 68.177 | 3.66+10 | 1.27-0 |
| 133-E 111 72.759                     | 5.81+10 | 1.38-01 | C 133-E 111 68.389 | 6.58+10 | 1.38-0 |
| 333-C 331 75.752                     | 2.38+10 | 6.15-02 | F 333-C 331 70.872 | 2.75+10 | 6.20-0 |
| 7 155-C 333 75.888                   | 2.22+10 | 9.57-02 | F 155-C 333 71.131 | 2.61+10 | 9.90-0 |
| 7 111-C 133 77.261                   | 9.70+10 | 8.67-02 | F 111-C 133 72.273 | 1.10+11 | 8.64-0 |
| 333-C 333 80.883                     | 1.32+10 | 3.87-02 | F 333-C 333 75.680 | 1.50+10 | 3.87-0 |
| 335-C 133 98.551                     | 1.93+10 | 1.40-01 | F 335-C 133 91.039 | 2.28+10 | 1.42-0 |
| 155-C 335 112.09                     | 8.05+09 | 7.55-02 | F 155-C 335 108.44 | 8.17+09 | 7.20-0 |
| 331-C 333 117.92                     | 2.09+10 | 4.35-02 | F 331-C 333 114.16 | 2.20+10 | 4.29-0 |
| 333-C 335 123.34                     | 6.90+09 | 4.72-02 | F 333-C 335 119.37 | 7.19+09 | 4.60-0 |
| 333-E 111 170.04                     | 4.23+08 | 5.49-03 | C 333-E 111 163.87 | 4.89+08 | 5.91-0 |
| 155-C 133 188.17                     | 1.48+09 | 3.93-02 | F 155-C 133 180.55 | 1.59+09 | 3.90-0 |
| 333-C 133 222.19                     | 7.28+07 | 1.62-03 | F 333-C 133 213.05 | 8.51+07 | 1.73-0 |
| 333-C 133 222.19<br>331-C 133 1619.9 | 5.63+05 | 2.21-04 | F 331-C 133 4169.3 | 3.13+04 | 8.16-0 |
| =38                                  |         |         | Z=39               |         |        |
| TRANSITION WL                        | A       | gf      | TRANSITION WL      | A       | gf     |
| 111-C 333 41.617                     | 3,72+08 | 9.66-05 | F 111-C 333 38.713 | 3.65+08 | 8.19-0 |
| 335-C 333 47.348                     | 3.09+09 | 5.19-03 | F 335-C 333 43.732 | 3,42+09 |        |
|                                      |         |         |                    |         | 4.89-0 |
| 335-C 335 63.924                     | 4.29+10 | 1.31-01 | F 335-C 335 59.931 | 5.03+10 | 1.35-0 |
| 133-E 111 64.258                     | 7.47+10 | 1.39-01 | C 133-E 111 60.357 | 8.51+10 | 1.39-0 |
| 333-C 331 66.307                     | 3.17+10 | 6.27-02 | F 333-C 331 62.038 | 3.67+10 | 6.35-0 |
| 155-C 333 66.662                     | 3.07+10 | 1.02-01 | F 155-C 333 62.465 | 3.62+10 | 1.06-0 |
| 111-C 133 67.605                     | 1.26+11 | 8.61-02 | F 111-C 133 63.236 | 1.44+11 | 8.61-0 |
| 7 333-C 333 70.792                   | 1.72+10 | 3.87-02 | F 333-C 333 66.206 | 1.97+10 | 3.87-0 |
| 335-C 133 84.149                     | 2.70+10 | 1.43-01 | F 335-C 133 77.826 | 3.19+10 | 1.45-0 |
| 155-C 335 105.00                     | 8.30+09 | 6.85-02 | F 155-C 335 101.75 | 8.44+09 | 6.55-0 |
| 331-C 333 110.61                     | 2.30+10 | 4.23-02 | F 331-C 333 107.24 | 2.41+10 | 4.14-0 |
| 333-c 335 115.62                     | 7.48+09 | 4.49-02 | F 333-C 335 112.06 | 7.78+09 | 4.39-0 |
| 333-E 111 158.09                     | 5.60+08 | 6.30-03 | C 333-E 111 152.66 | 6.37+08 | 6.66-0 |
| 155-C 133 173.48                     | 1.70+09 | 3.84-02 | F 155-C 133 166.91 | 1.81+09 | 3.78-0 |
| 333-C 133 204.53                     | 9.84+07 | 1.85-03 | F 333-C 133 196.58 | 1.13+08 | 1.96-0 |
| 133-F 331 5109.6                     | 5.37+03 | 6.30-05 | C 133-F 331 1443.2 | 2.25+05 | 2.10-0 |
| =40                                  |         |         | 2=41               |         |        |
| TRANSITION WL                        | Ā       | gf      | TRANSITION WL      | A       | gf     |
| 111-C 333 36.007                     | 3.53+08 | 6.87-05 | F 111-C 333 33.489 | 3.38+08 | 5.67-0 |
| 335-C 333 40.402                     | 3.77+09 | 4.62-03 | F 335-C 333 37.338 | 4.14+09 | 4.32-0 |
| 335-C 335 56.184                     | 5.89+10 | 1.39-01 | F 335-C 335 52.669 | 6.89+10 | 1.43-0 |
| 133-E 111 56.676                     | 9.71+10 | 1.40-01 | C 133-E 111 53.207 | 1.11+11 | 1.41-0 |
| 333-C 331 58.047                     | 4.25+10 | 6.44-02 | F 333-C 331 54.317 | 4.93+10 | 6.53-0 |
| 155-C 333 58.525                     | 4.27+10 | 1.09-01 | F 155-C 333 54.828 | 5.04+10 | 1.13-0 |
| 111-c 133 59.152                     | 1.64+11 | 8.61-02 | F 111-C 133 55.334 | 1.88+11 | 8.64-0 |
| 333-C 333 61.906                     | 2.26+10 | 3.90-02 | F 333-C 333 57.878 | 2.60+10 | 3.93-0 |
| 335-C 133 72.023                     | 3.78+10 | 1.47-01 | F 335-C 133 66.694 | 4.48+10 | 1.49-0 |
| 155-C 335 98.675                     | 8.60+09 | 6.25-02 | F 155-C 335 95.761 | 8.76+09 | 6.00-0 |
| 331-C 333 104.05                     | 2.52+10 | 4.08-02 | F 331-C 333 101.01 | 2.63+10 | 4.02-0 |
| 333-C 335 108.68                     | 8.09+09 | 4.29-02 | F 333-C 335 105.47 | 8.41+09 | 4.20-0 |
| 333-E 111 147.55                     | 7.18+08 | 7.02-03 | C 333-E 111 142.74 | 8.05+08 | 7.38-0 |
| 155-C 133 160.77                     | 1.92+09 | 3.72-02 | F 155-C 133 155.04 | 2.02+09 | 3.66-0 |
| 333-C 133 189.15                     |         |         |                    |         |        |
| 107.15 CCT 7-CCC                     | 1.28+08 | 2.06-03 |                    | 1.45+08 | 2.16-0 |
| 133-F 331 796.29                     | 1.26+06 | 3.60-04 | C 133-F 331 529.41 | 4.03+06 | 5.07-0 |

TABLE III. Wavelengths, Transition Probabilities, and Weighted Oscillator Strengths, Z = 6-54See page 7 for Explanation of Tables

Designations:  $E-1s^22s^2$ ,  $F-1s^22p^2$ ,  $C-1s^22s2p$ , numbers after letter: (2S+1)(2L+1)(2J+1)

| Z=42                                     |           |                    | Z=43                                     |                    |                             |
|------------------------------------------|-----------|--------------------|------------------------------------------|--------------------|-----------------------------|
| TRANSITION W                             | L A       | gf                 | TRANSITION WL                            | A                  | gf                          |
| F 111-C 333 31.14                        | 7 3.20+08 | 4.65-05            | F 111-C 333 28.972                       | 3.00+08            | 3.78-05                     |
| F 335-C 333 34.519                       | 9 4.54+09 | 4.05-03            | F 335-C 333 31.928                       | 4.97+09            | 3.81-03                     |
| F 335-C 335 49.376                       | 6 8.06+10 | 1.47-01            | F 335-C 335 46,290                       | 9.42+10            | 1.51-01                     |
| C 133-E 111 49.940                       | 0 1.27+11 | 1.42-01            | C 133-E 111 46.866                       | 1.46+11            | 1.44-01                     |
| F 333-C 331 50.833                       | 3 5.72+10 | 6.64-02            | F 333-C 331 47.578                       | 6.64+10            | 6.75-02                     |
| F 155-C 333 51.362                       |           | 1.17-01            | F 155-C 333 48.114                       | 7.02+10            | 1.22-01                     |
| F 111-C 133 51.76                        |           | 8.67-02            | F 111-C 133 48.436                       | 2.48+11            | 8.73-02                     |
| F 333-C 333 54.109                       |           | 3.93-02            | F 333-C 333 50.584                       | 3.46+10            | 3.99-02                     |
| F 335-C 133 61.800                       |           | 1.52-01            | F 335-C 133 57.303                       | 6.30+10            | 1.55-01                     |
| F 155-C 335 92.997                       | 7 8.94+09 | 5.80-02            | F 155-C 335 90.368                       | 9.13+09            | 5.60-02                     |
| F 331-C 333 98.119                       |           | 3.96-02            | F 331-C 333 95.358                       | 2.87+10            | 3.90-02                     |
| F 333-C 335 102.41                       |           | 4.12-02            | F 333-C 335 99.491                       | 9.07+09            | 4.03-02                     |
| C 333-E 111 138.20                       |           | 7.68-03            | C 333-E 111 133.91                       | 9.90+08            | 7.98-03                     |
| F 155-C 133 149.67                       |           | 3.57-02            | F 155-C 133 144.63                       | 2.24+09            | 3.51-02                     |
| F 333-C 133 175.65<br>C 133-F 331 385.15 |           | 2.26-03<br>6.54-04 | F 333-C 133 169.51<br>C 133-F 331 295.61 | 1.81+08<br>2.04+07 | 2.3 <b>4-</b> 03<br>7.98-04 |
| Z=44                                     |           |                    | Z=45                                     |                    |                             |
|                                          |           |                    |                                          |                    |                             |
| TRANSITION WI                            | . A       | g£                 | TRANSITION WL                            | Α                  | gf<br>—                     |
| F 111-C 333 26.954                       |           | 3.03-05            | F 111-C 333 25.081                       | 2.53+08            | 2.38-05                     |
| F 335-C 333 29.545                       |           | 3.54-03            | F 335-C 333 27.355                       | 5.92+09            | 3.33-03                     |
| F 335-C 335 43.400                       |           | 1.55-01            | F 335-C 335 40.695                       | 1.29+11            | 1.59-01                     |
| C 133-E 111 43.976                       |           | 1.46-01            | C 133-E 111 41.262                       | 1.93+11            | 1.48-01                     |
| F 333-C 331 44.539                       | 7.71+10   | 6.88-02            | F 333-C 331 41.701                       | 8.97+10            | 7.01-02                     |
| F 155-C 333 45.072                       |           | 1.26-01            | F 155-C 333 42.225                       | 9.78+10            | 1.30-01                     |
| F 111-C 133 45.326                       |           | 8.79-02            | F 111-C 133 42.423                       | 3.29+11            | 8.88-02                     |
| F 333-C 333 47.291                       |           | 4.02-02            | F 333-C 333 44.215                       | 4.63+10            | 4.05-02                     |
| F 335-C 133 53.167                       |           | 1.58-01            | F 335-C 133 49.363                       | 8.85+10            | 1.61-01                     |
| F 155-C 335 87.864                       | 9.33+09   | 5.40-02            | F 155-C 335 85.478                       | 9.54+09            | 5.20-02                     |
| F 331-C 333 92.719                       |           | 3.84-02            | F 331-C 333 90.193                       | 3.11+10            | 3.78-02                     |
| F 333-C 335 96.707                       | 9.42+09   | 3.96-02            | F 333-C 335 94.046                       | 9.77+09            | 3.88-02                     |
| C 333-E 111 129.85                       |           | 8.25-03            | C 333-E 111 125.99                       | 1.19+09            | 8.52-03                     |
| F 155-C 133 139.89                       | 2.34+09   | 3.42-02            | F 155-C 133 135.43                       | 2.45+09            | 3.36-02                     |
| F 333-C 133 163.73                       |           | 2.42-03            | F 333-C 133 158.27                       | 2.22+08            | 2.50-03                     |
| C 133-F 331 235.14                       | 3.79+07   | 9.42-04            | C 133-F 331 191.89                       | 6.53+07            | 1.08-03                     |
| Z=46                                     |           |                    | Z=47                                     |                    |                             |
| TRANSITION WI                            | A         | gf                 | TRANSITION WL                            | Α                  | gf                          |
| F 111-C 333 23.345                       | 2.28+08   | 1.86-05            | F 111-C 333 21.736                       | 2.03+08            | 1.43-05                     |
| F 111-C 333 23.345<br>F 335-C 333 25.342 |           | 3.09-03            | F 335-C 333 21.736                       | 7.02+09            | 2.90-03                     |
| F 335-C 335 25.342                       |           | 1.64-01            | F 335-C 335 25.491                       | 1.76+11            | 1.68-01                     |
| C 133-E 111 38.715                       |           | 1.50-01            | C 133-E 111 36.325                       | 2.57+11            | 1.53-01                     |
| F 333-C 331 39.052                       |           | 7.15-02            | F 333-C 331 36.580                       | 1.21+11            | 7.30-02                     |
|                                          |           | 1.35-01            |                                          | 1.36+11            | 1 40 01                     |
| F 155-C 333 39.562<br>F 111-C 133 39.715 |           | 1.35-01<br>8.97-02 | F 155-C 333 37.070<br>F 111-C 133 37.188 | 4.37+11            | 1.40-01<br>9.06-02          |
| F 333-C 333 41.345                       |           | 4.11-02            | F 333-C 333 38.668                       | 6.21+10            | 4.17-02                     |
| F 335-C 333 41.345<br>F 335-C 133 45.862 |           | 1.65-01            | F 335-C 333 36.666<br>F 335-C 133 42.637 | 1.24+11            | 1.69-01                     |
| F 155-C 335 83.200                       |           | 5.05-02            | F 155-C 335 81.021                       | 1.00+10            | 4.91-02                     |
| F 331-C 333 87.773                       | 3.24+10   | 3.75-02            | F 331-C 333 85.451                       | 3.38+10            | 3.69-02                     |
| F 333-C 335 91.501                       |           | 3.81-02            | F 333-C 335 89.063                       | 1.05+10            | 3.75-02                     |
| C 333-E 111 122.34                       |           | 8.76-03            | C 333-E 111 118.86                       | 1.41+09            | 8.97-03                     |
| F 155-C 133 131.21                       |           | 3.30-02            | F 155-C 133 127.23                       | 2.66+09            | 3.21-02                     |
| F 333-C 133 153.12                       |           | 2.56-03            | C 133-F 331 134.89                       | 1.65+08            | 1.35-03                     |
| C 133-F 331 159.67                       |           | 1.22-03            | F 333-C 133 148.25                       | 2.66+08            | 2.63-03                     |
|                                          |           |                    |                                          |                    |                             |

TABLE III. Wavelengths, Transition Probabilities, and Weighted Oscillator Strengths, Z = 6-54See page 7 for Explanation of Tables

Designations:  $E-1s^22s^2$ ,  $F-1s^22p^2$ ,  $C-1s^22s2p$ , numbers after letter: (2S+1) (2L+1) (2J+1)

| Z=48                                     | ····        |                  | Z=49                                 | ······································ | <del></del>        |
|------------------------------------------|-------------|------------------|--------------------------------------|----------------------------------------|--------------------|
| TRANSITION WI                            | A           | gf               | TRANSITION                           | WL A                                   | gf                 |
| F 111-C 333 20.246                       | 1.77+08 1   | .09-05           | F 111-C 333 18.8                     | 65 1.52+08                             | 8.10-06            |
| F 335-C 333 21.789                       |             | .71-03           | F 335-C 333 20.2                     |                                        | 2.54-03            |
| F 335-C 335 33.580                       |             | .73-01           | F 335-C 335 31.5                     | 09 2.39+11                             | 1.78-01            |
| C 133-E 111 34.085                       | 2.97+11 1   | .55-01           | C 133-E 111 31.9                     | 86 3.44+11                             | 1.58-01            |
| F 333-C 331 34.273                       | 3 1.41+11 7 | .46-02           | F 333-C 331 32.1                     | 20 1.64+11                             | 7.63-02            |
| F 155-C 333 34.742                       |             | .45-01           | F 155-C 333 32.5                     |                                        | 1.50-01            |
| F 111-C 133 34.832                       |             | .18-02           | F 111-C 133 32.6                     |                                        | 9.30-02            |
| F 333-C 333 36.171                       |             | .23-02           | F 333-C 333 33.8                     |                                        | 4.29-02            |
| F 335-C 133 39.666<br>F 155-C 335 78.936 |             | .73-01<br>.78-02 | F 335-C 133 36.9<br>F 155-C 335 76.9 |                                        | 1.77-01<br>4.65-02 |
| F 331-C 333 83.219                       |             | .63-02           | F 331-C 333 81.0                     |                                        | 3.60-02            |
| F 333-C 335 86.726                       |             | .68-02           | F 333-C 335 84.4                     |                                        | 3.62-02            |
| C 133-F 331 115.37                       |             | .48-03           | C 133-F 331 99.6                     |                                        | 1.61-03            |
| C 333-E 111 115.54                       |             | .15-03           | C 333-E 111 112.                     |                                        | 9.33-03            |
| F 155-C 133 123.46                       |             | .15-02           | F 155-C 133 119.                     |                                        | 3.09-02            |
| F 333-C 133 143.63                       |             | .68-03           | F 333-C 133 139.                     |                                        | 2.73-03            |
| Z=50                                     |             |                  | Z=51                                 |                                        |                    |
| TRANSITION WI                            | . А         | gf               | TRANSITION                           | WL A                                   | gf                 |
| F 111-C 333 17.585                       |             | .88-06           | F 111-C 333 16.4                     |                                        | 4.17-06            |
| F 335-C 333 18.783                       |             | .38-03           | F 335-C 333 17.4                     |                                        | 2.23-03            |
| F 335-C 335 29.572                       |             | .83-01           | F 335-C 335 27.7                     |                                        | 1.88-01            |
| C 133-E 111 30.020                       |             | .61-01           | C 133-E 111 28.1                     |                                        | 1.64-01            |
| F 333-C 331 30.111                       | 1.91+11 7   | .80-02           | F 333-C 331 28.2                     | 37 2.23+11                             | 7.98-02            |
| F 155-C 333 30.532                       |             | .55-01           | F 155-C 333 28.6                     |                                        | 1.61-01            |
| F 111-C 133 30.583                       |             | .42-02           | F 111-C 133 28.6                     |                                        | 9.57-02            |
| F 333-C 333 31.676                       |             | .38-02           | F 333-C 333 29.6                     |                                        | 4.44-02            |
| F 335-C 133 34.398<br>F 155-C 335 75.023 |             | .82-01<br>.53-02 | F 335-C 133 32.0<br>F 155-C 335 73.1 |                                        | 1.87-01<br>4.42-02 |
| F 331-C 333 79.008                       | 3.80+10 3   | .54-02           | C 133-F 331 76.2                     | 7.10+08                                | 1.85-03            |
| F 333-C 335 82.330                       |             | .56-02           | F 331-C 333 77.0                     |                                        | 3.51-02            |
| C 133-F 331 86.879                       |             | .73-03           | F 333-C 335 80.2                     |                                        | 3.51-02            |
| C 333-E 111 109.36                       |             | .51-03           | C 333-E 111 106.                     |                                        | 9.63-03            |
| F 155-C 133 116.48                       |             | .03-02           | F 155-C 133 113.                     |                                        | 2.97-02            |
| F 333-C 133 135.09                       |             | .78-03           | F 333-C 133 131.                     |                                        | 2.82-03            |
| Z=52                                     |             |                  | Z=53                                 |                                        |                    |
| TRANSITION WI                            | A           | gf               | TRANSITION                           | WL A                                   | gf                 |
| F 111-C 333 15.303                       | 8.18+07 2   | .87-06           | F 111-C 333 14.2                     | 86 6.17+07                             | 1.89-06            |
| F 335-C 333 16.236                       |             | .09-03           | F 335-C 333 15.1                     |                                        | 1.96-03            |
| F 335-C 335 26.069                       |             | .93-01           | F 335-C 335 24.4                     |                                        | 1.98-01            |
| C 133-E 111 26.458                       |             | .68-01           | C 133-E 111 24.8                     |                                        | 1.71-01            |
| F 333-C 331 26.488                       |             | .18-02           | F 333-C 331 24.8                     |                                        | 8.38-02            |
| F 155-C 333 26.858                       |             | .66-01           | F 155-C 333 25.2                     |                                        | 1.72-01            |
| F 111-C 133 26.886                       |             | .72-02           | F 111-C 133 25.2                     |                                        | 9.90-02            |
| F 333-C 333 27.773                       |             | .53-02           | F 333-C 333 26.0                     |                                        | 4.62-02            |
| F 335-C 133 29.908<br>C 133-F 331 67.392 |             | .91-01<br>.97-03 | F 335-C 133 27.9<br>C 133-F 331 59.8 |                                        | 1.96-01<br>2.09-03 |
|                                          |             | .32-02           |                                      |                                        |                    |
| F 155-C 335 71.415<br>F 331-C 333 75.100 |             | .48-02           | F 155-C 335 69.7<br>F 331-C 333 73.2 |                                        | 4.23-02            |
| F 333-C 335 78.268                       |             | .46-02           | F 333-C 335 76.3                     |                                        | 3.42-02<br>3.41-02 |
| C 333-E 111 103.71                       |             | .78-03           | C 333-E 111 101.                     |                                        | 9.90-03            |
| F 155-C 133 110.15                       |             | .91-02           | F 155-C 133 107.                     |                                        | 2.86-02            |
| F 333-C 133 127.35                       |             | .86-03           | F 333-C 133 123.                     |                                        | 2.89-02            |
|                                          |             |                  |                                      |                                        |                    |
|                                          |             |                  |                                      | -                                      |                    |

TABLE III. Wavelengths, Transition Probabilities, and Weighted Oscillator Strengths, Z = 6-54See page 7 for Explanation of Tables

Designations:  $E-1s^22s^2$ ,  $F-1s^22p^2$ ,  $C-1s^22s2p$ , numbers after letter: (2S+1) (2L+1) (2J+1)

| z=54    |       |        |         |         |
|---------|-------|--------|---------|---------|
| TRAN    | SITIO | N WL   | A       | gf      |
| F 111-C |       | 13.343 | 4.38+07 | 1.17-06 |
| F 335-C | 333   | 14.074 | 1.24+10 | 1.84-03 |
| F 335-C | 335   | 23.006 | 5.15+11 | 2.04-01 |
| F 333-C | 331   | 23.332 | 3.51+11 | 8.59-02 |
| C 133-E | 111   | 23.339 | 7.15+11 | 1.75-01 |
| F 155-C | 333   | 23.654 | 4.25+11 | 1.78-01 |
| F 111-C | 133   | 23.669 | 1.20+12 | 1.01-01 |
| F 333-C | 333   | 24.385 | 1.77+11 | 4.71-02 |
| F 335-C | 133   | 26.072 | 3.97+11 | 2.02-01 |
| С 133-F | 331   | 53.467 | 1.72+09 | 2.20-03 |
| F 155-C | 335   | 68.077 | 1.19+10 | 4.14-02 |
| F 331-C | 333   | 71.458 | 4.43+10 | 3.39-02 |
| F 333-C | 335   | 74.502 | 1.35+10 | 3.36-02 |
| C 333-E | 111   | 98.521 | 2.29+09 | 9.99-03 |
| F 155-C | 133   | 104.40 | 3.44+09 | 2.81-02 |
| F 333-C | 133   | 120.31 | 4.49+08 | 2.92-03 |

TABLE IV. Fit Parameters for Excitation Cross Sections and Rate Coefficients for  $\Delta n = 0$  Transitions, Z = 6, 8, 10, 12, 14, 16, 18, 20, 22, 26, 30, 36, 42, 54 See page 7 for Explanation of Tables

|                                                               | 2 <b>s</b> <sup>2</sup> 1S,                                                                                             | <sub>0</sub> -2 <b>s</b> 2p <sup>3</sup> P <sub>0</sub>                                                                               | )                                                                                                                                                             |                                                                                                                  |                                                                                                                                                              |                                                                                                                                           | _                                                                                                                                        |                                                                                                                                                      |                                                                                                                                                               |                                                                                                                                                                           |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |
|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|                                                               | CIII                                                                                                                    | ov                                                                                                                                    | NeVII                                                                                                                                                         | MgIX                                                                                                             | SiXI                                                                                                                                                         | SXIII                                                                                                                                     | ArXV                                                                                                                                     | CaXVII                                                                                                                                               | TiXIX                                                                                                                                                         | FeXXIII                                                                                                                                                                   | ZnXXVII                                                                                                                                                                   | KrXXXII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I MoXXXIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | XeLI                                                                                                           |
| ΔE                                                            | 5.303-2                                                                                                                 | 2.987-2                                                                                                                               | 2.070-2                                                                                                                                                       | 1.582-2                                                                                                          | 1.280-2                                                                                                                                                      | 1.076-2                                                                                                                                   | 9.273-3                                                                                                                                  | 8.155-3                                                                                                                                              | 7.281-3                                                                                                                                                       | 6.005-3                                                                                                                                                                   | 5.122-3                                                                                                                                                                   | 4.221-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.047-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.892-                                                                                                         |
| εο                                                            | 0.3912                                                                                                                  | 0.3349                                                                                                                                | 0.3110                                                                                                                                                        | 0.2977                                                                                                           | 0.2894                                                                                                                                                       | 0.2837                                                                                                                                    | 0.2796                                                                                                                                   | 0.2766                                                                                                                                               | 0.2743                                                                                                                                                        | 0.2711                                                                                                                                                                    | 0.2699                                                                                                                                                                    | 0.2681                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2682                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.2710                                                                                                         |
| $\boldsymbol{\epsilon}_1$                                     | 0.3382                                                                                                                  | 0.3051                                                                                                                                | 0.2902                                                                                                                                                        | 0.2819                                                                                                           | 0.2766                                                                                                                                                       | 0.2729                                                                                                                                    | 0.2703                                                                                                                                   | 0.2684                                                                                                                                               | 0.2670                                                                                                                                                        | 0.2651                                                                                                                                                                    | 0.2642                                                                                                                                                                    | 0.2639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.2631                                                                                                         |
| C 2                                                           | 2.34-1                                                                                                                  | 1.53-1                                                                                                                                | 1.29-1                                                                                                                                                        | 1.17-1                                                                                                           | 1.11-1                                                                                                                                                       | 1.07-1                                                                                                                                    | 1.04-1                                                                                                                                   | 1.02-1                                                                                                                                               | 1.01-1                                                                                                                                                        | 9.98-2                                                                                                                                                                    | 9.89-2                                                                                                                                                                    | 9.82-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.73-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.52-2                                                                                                         |
| F2                                                            | 4.06-2                                                                                                                  | 2.73-2                                                                                                                                | 2.13-2                                                                                                                                                        | 1.56-2                                                                                                           | 1.17-2                                                                                                                                                       | 9.21-3                                                                                                                                    | 7.49-3                                                                                                                                   | 6.29-3                                                                                                                                               | 5.39-3                                                                                                                                                        | 4.10-3                                                                                                                                                                    | 3.40-3                                                                                                                                                                    | 2.67-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.09-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.65-3                                                                                                         |
| A2                                                            | 3.63+0                                                                                                                  | 2.01+0                                                                                                                                | 1.58+0                                                                                                                                                        | 1.50+0                                                                                                           | 1.51+0                                                                                                                                                       | 1.52+0                                                                                                                                    | 1.54+0                                                                                                                                   | 1.55+0                                                                                                                                               | 1.57+0                                                                                                                                                        | 1.59+0                                                                                                                                                                    | 1.60+0                                                                                                                                                                    | 1.62+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.64+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.68+0                                                                                                         |
| ĸ2                                                            | 3.05+0                                                                                                                  | 2.61+0                                                                                                                                | 2.32+0                                                                                                                                                        | 2.37+0                                                                                                           | 2.49+0                                                                                                                                                       | 2.61+0                                                                                                                                    | 2.71+0                                                                                                                                   | 2.80+0                                                                                                                                               | 2.87+0                                                                                                                                                        | 2.97+0                                                                                                                                                                    | 3.05+0                                                                                                                                                                    | 3.13+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.19+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.26+0                                                                                                         |
|                                                               | 25 <sup>2</sup> 1S                                                                                                      | <sub>0</sub> -2s2p <sup>3</sup> p <sub>1</sub>                                                                                        |                                                                                                                                                               |                                                                                                                  |                                                                                                                                                              |                                                                                                                                           |                                                                                                                                          |                                                                                                                                                      |                                                                                                                                                               |                                                                                                                                                                           |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                |
|                                                               | CIII                                                                                                                    | ov                                                                                                                                    | NeVII                                                                                                                                                         | MgIX                                                                                                             | SiXI                                                                                                                                                         | SXIII                                                                                                                                     | ArXV                                                                                                                                     | CaXVII                                                                                                                                               | TiXIX                                                                                                                                                         | FeXXIII                                                                                                                                                                   | ZnXXVII                                                                                                                                                                   | KrXXXII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I MOXXXIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | XeLI                                                                                                           |
| Δε                                                            | 5.306-2                                                                                                                 | 2.993-2                                                                                                                               | 2.079-2                                                                                                                                                       | 1.595-2                                                                                                          | 1.298-2                                                                                                                                                      | 1.099-2                                                                                                                                   | 9.566-3                                                                                                                                  | 8.510-3                                                                                                                                              | 7.698-3                                                                                                                                                       | 6.538-3                                                                                                                                                                   | 5.746-3                                                                                                                                                                   | 4.922-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.054-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.903-3                                                                                                        |
| $\epsilon_{0}$                                                | 0.3912                                                                                                                  | 0.3349                                                                                                                                | 0.3110                                                                                                                                                        | 0.2977                                                                                                           | 0.2894                                                                                                                                                       | 0.2837                                                                                                                                    | 0.2796                                                                                                                                   | 0.2766                                                                                                                                               | 0.2743                                                                                                                                                        | 0.2711                                                                                                                                                                    | 0.2699                                                                                                                                                                    | 0.2681                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2682                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.2710                                                                                                         |
| ε,                                                            | 0.3382                                                                                                                  | 0.3050                                                                                                                                | 0.2902                                                                                                                                                        | 0.2818                                                                                                           | 0.2764                                                                                                                                                       | 0.2727                                                                                                                                    | 0.2700                                                                                                                                   | 0.2680                                                                                                                                               | 0.2666                                                                                                                                                        | 0.2646                                                                                                                                                                    | 0.2636                                                                                                                                                                    | 0.2632                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.2630                                                                                                         |
| C 1                                                           | 4.08-2                                                                                                                  | 2.05-2                                                                                                                                | 1.57-2                                                                                                                                                        | 1.43-2                                                                                                           | 1.45-2                                                                                                                                                       | 1.62-2                                                                                                                                    | 2.01-2                                                                                                                                   | 2.73-2                                                                                                                                               | 3.91~2                                                                                                                                                        | 8.25-2                                                                                                                                                                    | 1.56-1                                                                                                                                                                    | 3.15-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.91-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.14-1                                                                                                         |
| Fl                                                            | 9.33-4                                                                                                                  | 6.77-4                                                                                                                                | 6.17-4                                                                                                                                                        | 4.41-4                                                                                                           | 4.18-4                                                                                                                                                       | 6.37-4                                                                                                                                    | 1.11-3                                                                                                                                   | 1.82-3                                                                                                                                               | 2.61-3                                                                                                                                                        | 4.00-3                                                                                                                                                                    | 4.78-3                                                                                                                                                                    | 5.27-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.61-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.20-3                                                                                                         |
| A                                                             | 6.77-1                                                                                                                  | 2.47-1                                                                                                                                | 1.47-1                                                                                                                                                        | 1.22-1                                                                                                           | 1.18-1                                                                                                                                                       | 1.16-1                                                                                                                                    | 1.08-1                                                                                                                                   | 1.06-1                                                                                                                                               | 1.18-1                                                                                                                                                        | 1.79-1                                                                                                                                                                    | 2.88-1                                                                                                                                                                    | 5.15-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.90-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.47+0                                                                                                         |
| ĸ                                                             | 1.18+1                                                                                                                  | 1.21+1                                                                                                                                | 1.08+1                                                                                                                                                        | 1.10+1                                                                                                           | 1.15+1                                                                                                                                                       | 1.01+1                                                                                                                                    | 6.47+0                                                                                                                                   | 3.70+0                                                                                                                                               | 2.31+0                                                                                                                                                        | 1.20+0                                                                                                                                                                    | 0.38-1                                                                                                                                                                    | 6.33-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.00-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.71-1                                                                                                         |
| A1                                                            | 6.57-6                                                                                                                  | 6.51-5                                                                                                                                | 3.16-4                                                                                                                                                        | 1.09~3                                                                                                           | 3.03-3                                                                                                                                                       | 7.16-3                                                                                                                                    | 1.48-2                                                                                                                                   | 2.79-2                                                                                                                                               | 4.81-2                                                                                                                                                        | 1.19-1                                                                                                                                                                    | 2.32-1                                                                                                                                                                    | 4.65-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.40-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.41+0                                                                                                         |
| Κl                                                            | 9.73-1                                                                                                                  | 1.03+0                                                                                                                                | 9.61-1                                                                                                                                                        | 9.00-1                                                                                                           | B.67-1                                                                                                                                                       | 8.35-1                                                                                                                                    | 7.96-1                                                                                                                                   | 7.54-1                                                                                                                                               | 7.14-1                                                                                                                                                        | 6.42-1                                                                                                                                                                    | 5.85-1                                                                                                                                                                    | 5.22-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.30-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.20-1                                                                                                         |
| <b>A.</b> 2                                                   | 1.01+1                                                                                                                  | 5.91+0                                                                                                                                | 4.70+0                                                                                                                                                        | 4.49+0                                                                                                           | 4.49+0                                                                                                                                                       | 4.54+0                                                                                                                                    | 4.59+0                                                                                                                                   | 4.61+0                                                                                                                                               | 4.65+0                                                                                                                                                        | 4.65+0                                                                                                                                                                    | 4.63+0                                                                                                                                                                    | 4.55+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.48+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.46+0                                                                                                         |
| K2                                                            | 2.92+0                                                                                                                  | 2.57+0                                                                                                                                | 2.30+0                                                                                                                                                        | 2.36+0                                                                                                           | 2.49+0                                                                                                                                                       | 2.61+0                                                                                                                                    | 2.71+0                                                                                                                                   | 2.80+0                                                                                                                                               | 2.87+0                                                                                                                                                        | 2.98+0                                                                                                                                                                    | 3.06+0                                                                                                                                                                    | 3.14+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.19+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.26+0                                                                                                         |
|                                                               |                                                                                                                         |                                                                                                                                       |                                                                                                                                                               |                                                                                                                  |                                                                                                                                                              |                                                                                                                                           |                                                                                                                                          |                                                                                                                                                      |                                                                                                                                                               |                                                                                                                                                                           |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |
|                                                               | 2 <b>s</b> <sup>2</sup> <sup>1</sup> <b>s</b> <sub>0</sub> .                                                            | -2 <b>s</b> 2p <sup>3</sup> P <sub>2</sub>                                                                                            | NeVII                                                                                                                                                         | MgIX                                                                                                             | SiXI                                                                                                                                                         | SXIII                                                                                                                                     | ArXV                                                                                                                                     | CaXVII                                                                                                                                               | TiXIX                                                                                                                                                         | FeXXIII                                                                                                                                                                   | 2nXXVII                                                                                                                                                                   | KrXXXIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Moxxxix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | XeLI                                                                                                           |
|                                                               | CIII                                                                                                                    | ov                                                                                                                                    |                                                                                                                                                               |                                                                                                                  |                                                                                                                                                              |                                                                                                                                           |                                                                                                                                          |                                                                                                                                                      | TiXIX<br>8.782-3                                                                                                                                              |                                                                                                                                                                           |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |
| ε                                                             | CIII<br>5.313-2                                                                                                         | ov<br>3.005-2                                                                                                                         | 2.098-2                                                                                                                                                       | 1.624-2                                                                                                          | 1.338-2                                                                                                                                                      | 1.152-2                                                                                                                                   | ArXV<br>1.025-2<br>0.2796                                                                                                                | CaXVII<br>9.382-3<br>0.2766                                                                                                                          |                                                                                                                                                               |                                                                                                                                                                           | 8.013-3                                                                                                                                                                   | KrXXXIII<br>8.483-3<br>0.2681                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.322-2                                                                                                        |
| D                                                             | CIII<br>5.313-2<br>0.3912                                                                                               | ov<br>3.005-2<br>0.3349                                                                                                               |                                                                                                                                                               |                                                                                                                  |                                                                                                                                                              |                                                                                                                                           | 1.025-2                                                                                                                                  | 9.382-3                                                                                                                                              | 8.782-3                                                                                                                                                       | 8.141-3<br>0.2711                                                                                                                                                         | 8.013-3<br>0.2699                                                                                                                                                         | 8.483-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.558-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.322-2                                                                                                        |
| 0                                                             | CIII<br>5.313-2<br>0.3912<br>0.3381                                                                                     | ov<br>3.005-2<br>0.3349<br>0.3049                                                                                                     | 2.098-2<br>0.3110<br>0.2900                                                                                                                                   | 1.624-2<br>0.2977<br>0.2815                                                                                      | 1.338-2<br>0.2894<br>0.2760                                                                                                                                  | 1.152-2<br>0.2837<br>0.2722                                                                                                               | 1.025-2<br>0.2796<br>0.2693                                                                                                              | 9.382-3<br>0.2766<br>0.2672                                                                                                                          | 8.782-3<br>0.2743<br>0.2655                                                                                                                                   | 8.141-3<br>0.2711<br>0.2630                                                                                                                                               | 8.013-3<br>0.2699<br>0.2613                                                                                                                                               | 8.483-3<br>0.2681<br>0.2596                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.558-3<br>0.2682<br>0.2586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.322-2<br>0.2710<br>0.2577                                                                                    |
| 0<br>1<br>2                                                   | 5.313-2<br>0.3912<br>0.3381<br>1.17+0                                                                                   | 0V<br>3.005-2<br>0.3349<br>0.3049<br>7.65-1                                                                                           | 2.098-2<br>0.3110<br>0.2900<br>6.46-1                                                                                                                         | 1.624-2                                                                                                          | 1.338-2<br>0.2894<br>0.2760<br>5.50-1                                                                                                                        | 1.152-2<br>0.2837<br>0.2722<br>5.27-1                                                                                                     | 1.025-2<br>0.2796<br>0.2693<br>5.12-1                                                                                                    | 9.382-3<br>0.2766<br>0.2672<br>5.00-1                                                                                                                | 8.782-3<br>0.2743<br>0.2655<br>4.90-1                                                                                                                         | 8.141-3<br>0.2711<br>0.2630<br>4.72-1                                                                                                                                     | 8.013-3<br>0.2699<br>0.2613<br>4.57-1                                                                                                                                     | 8.483-3<br>0.2681<br>0.2596<br>4.38-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.558-3<br>0.2682<br>0.2586<br>4.20-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.322-2<br>0.2710<br>0.2577<br>3.96-1                                                                          |
| 0                                                             | 5.313-2<br>0.3912<br>0.3381<br>1.17+0<br>4.28-2                                                                         | 3.005-2<br>0.3349<br>0.3049<br>7.65-1<br>2.76-2                                                                                       | 2.098-2<br>0.3110<br>0.2900                                                                                                                                   | 1.624-2<br>0.2977<br>0.2815<br>5.84-1                                                                            | 1.338-2<br>0.2894<br>0.2760                                                                                                                                  | 1.152-2<br>0.2837<br>0.2722<br>5.27-1<br>9.78-3                                                                                           | 1.025-2<br>0.2796<br>0.2693<br>5.12-1<br>8.20-3                                                                                          | 9.382-3<br>0.2766<br>0.2672                                                                                                                          | 8.782-3<br>0.2743<br>0.2655<br>4.90-1<br>6.41-3                                                                                                               | 8.141-3<br>0.2711<br>0.2630<br>4.72-1<br>5.58-3                                                                                                                           | 8.013-3<br>0.2699<br>0.2613<br>4.57-1<br>5.24-3                                                                                                                           | 8.483-3<br>0.2681<br>0.2596                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.558-3<br>0.2682<br>0.2586<br>4.20-1<br>5.73-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.322-2<br>0.2710<br>0.2577<br>3.96-1<br>7.55-3                                                                |
| 1 2                                                           | 5.313-2<br>0.3912<br>0.3381<br>1.17+0                                                                                   | 0V<br>3.005-2<br>0.3349<br>0.3049<br>7.65-1                                                                                           | 2.098-2<br>0.3110<br>0.2900<br>6.46-1<br>2.16-2                                                                                                               | 1.624-2<br>0.2977<br>0.2815<br>5.84-1<br>1.60-2                                                                  | 1.338-2<br>0.2894<br>0.2760<br>5.50-1<br>1.22-2                                                                                                              | 1.152-2<br>0.2837<br>0.2722<br>5.27-1                                                                                                     | 1.025-2<br>0.2796<br>0.2693<br>5.12-1                                                                                                    | 9.382-3<br>0.2766<br>0.2672<br>5.00-1<br>7.14-3                                                                                                      | 8.782-3<br>0.2743<br>0.2655<br>4.90-1                                                                                                                         | 8.141-3<br>0.2711<br>0.2630<br>4.72-1                                                                                                                                     | 8.013-3<br>0.2699<br>0.2613<br>4.57-1<br>5.24-3                                                                                                                           | 8.483-3<br>0.2681<br>0.2596<br>4.38-1<br>5.27-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.558-3<br>0.2682<br>0.2586<br>4.20-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.322-2<br>0.2710<br>0.2577<br>3.96-1                                                                          |
| 1 2 2 2                                                       | 5.313-2<br>0.3912<br>0.3381<br>1.17+0<br>4.28-2<br>1.74+1                                                               | 0V  3.005-2 0.3349 0.3049 7.65-1 2.76-2 1.00+1 2.59+0                                                                                 | 2.098-2<br>0.3110<br>0.2900<br>6.46-1<br>2.16-2<br>7.92+0                                                                                                     | 1.624-2<br>0.2977<br>0.2815<br>5.84-1<br>1.60-2<br>7.51+0                                                        | 1.338-2<br>0.2894<br>0.2760<br>5.50-1<br>1.22-2<br>7.50+0                                                                                                    | 1.152-2<br>0.2837<br>0.2722<br>5.27-1<br>9.78-3<br>7.56+0                                                                                 | 1.025-2<br>0.2796<br>0.2693<br>5.12-1<br>8.20-3<br>7.61+0                                                                                | 9.382-3<br>0.2766<br>0.2672<br>5.00-1<br>7.14-3<br>7.65+0                                                                                            | 8.782-3<br>0.2743<br>0.2655<br>4.90-1<br>6.41-3<br>7.68+0                                                                                                     | 8.141-3<br>0.2711<br>0.2630<br>4.72-1<br>5.58-3<br>7.67+0                                                                                                                 | 8.013-3<br>0.2699<br>0.2613<br>4.57-1<br>5.24-3<br>7.63+0                                                                                                                 | 8.483-3<br>0.2681<br>0.2596<br>4.38-1<br>5.27-3<br>7.52+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.558-3<br>0.2682<br>0.2586<br>4.20-1<br>5.73-3<br>7.41+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.322-2<br>0.2710<br>0.2577<br>3.96-1<br>7.55-3<br>7.30+0                                                      |
| 1 2 2 2                                                       | 5.313-2<br>0.3912<br>0.3381<br>1.17+0<br>4.28-2<br>1.74+1<br>2.95+0                                                     | 0V  3.005-2 0.3349 0.3049 7.65-1 2.76-2 1.00+1 2.59+0                                                                                 | 2.098-2<br>0.3110<br>0.2900<br>6.46-1<br>2.16-2<br>7.92+0                                                                                                     | 1.624-2<br>0.2977<br>0.2815<br>5.84-1<br>1.60-2<br>7.51+0                                                        | 1.338-2<br>0.2894<br>0.2760<br>5.50-1<br>1.22-2<br>7.50+0                                                                                                    | 1.152-2<br>0.2837<br>0.2722<br>5.27-1<br>9.78-3<br>7.56+0                                                                                 | 1.025-2<br>0.2796<br>0.2693<br>5.12-1<br>8.20-3<br>7.61+0                                                                                | 9.382-3<br>0.2766<br>0.2672<br>5.00-1<br>7.14-3<br>7.65+0                                                                                            | 8.782-3<br>0.2743<br>0.2655<br>4.90-1<br>6.41-3<br>7.68+0                                                                                                     | 8.141-3<br>0.2711<br>0.2630<br>4.72-1<br>5.58-3<br>7.67+0<br>3.00+0                                                                                                       | 8.013-3<br>0.2699<br>0.2613<br>4.57-1<br>5.24-3<br>7.63+0<br>3.08+0                                                                                                       | 8.483-3<br>0.2681<br>0.2596<br>4.38-1<br>5.27-3<br>7.52+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.558-3<br>0.2682<br>0.2586<br>4.20-1<br>5.73-3<br>7.41+0<br>3.23+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.322-2<br>0.2710<br>0.2577<br>3.96-1<br>7.55-3<br>7.30+0<br>3.31+0                                            |
| 1<br>2<br>2<br>2<br>2                                         | 5.313-2<br>0.3912<br>0.3381<br>1.17+0<br>4.28-2<br>1.74+1<br>2.95+0<br>25 <sup>2 1</sup> S <sub>0</sub>                 | 0V  3.005-2 0.3349 0.3049 7.65-1 2.76-2 1.00+1 2.59+0 -2s2p <sup>1</sup> P <sub>1</sub> 0V                                            | 2.098-2<br>0.3110<br>0.2900<br>6.46-1<br>2.16-2<br>7.92+0<br>2.32+0                                                                                           | 1.624-2<br>0.2977<br>0.2815<br>5.84-1<br>1.60-2<br>7.51+0<br>2.37+0                                              | 1.338-2<br>0.2894<br>0.2760<br>5.50-1<br>1.22-2<br>7.50+0<br>2.50+0                                                                                          | 1.152-2<br>0.2837<br>0.2722<br>5.27-1<br>9.78-3<br>7.56+0<br>2.62+0                                                                       | 1.025-2<br>0.2796<br>0.2693<br>5.12-1<br>8.20-3<br>7.61+0<br>2.72+0                                                                      | 9.382-3<br>0.2766<br>0.2672<br>5.00-1<br>7.14-3<br>7.65+0<br>2.81+0                                                                                  | 8.782-3<br>0.2743<br>0.2655<br>4.90-1<br>6.41-3<br>7.68+0<br>2.89+0                                                                                           | 8.141-3<br>0.2711<br>0.2630<br>4.72-1<br>5.58-3<br>7.67+0<br>3.00+0                                                                                                       | 8.013-3<br>0.2699<br>0.2613<br>4.57-1<br>5.24-3<br>7.63+0<br>3.08+0                                                                                                       | 8.483-3<br>0.2681<br>0.2596<br>4.38-1<br>5.27-3<br>7.52+0<br>3.17+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.558-3<br>0.2682<br>0.2586<br>4.20-1<br>5.73-3<br>7.41+0<br>3.23+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.322-2<br>0.2710<br>0.2577<br>3.96-1<br>7.55-3<br>7.30+0<br>3.31+0                                            |
| 1<br>2<br>2<br>2<br>2                                         | CIII  5.313-2 0.3912 0.3381 1.17+0 4.28-2 1.74+1 2.95+0  CIII                                                           | 0V  3.005-2 0.3349 0.3049 7.65-1 2.76-2 1.00+1 2.59+0 -2s2p <sup>1</sup> P <sub>1</sub> 0V                                            | 2.098-2<br>0.3110<br>0.2900<br>6.46-1<br>2.16-2<br>7.92+0<br>2.32+0                                                                                           | 1.624-2<br>0.2977<br>0.2815<br>5.84-1<br>1.60-2<br>7.51+0<br>2.37+0                                              | 1.338-2<br>0.2894<br>0.2760<br>5.50-1<br>1.22-2<br>7.50+0<br>2.50+0                                                                                          | 1.152-2<br>0.2837<br>0.2722<br>5.27-1<br>9.78-3<br>7.56+0<br>2.62+0                                                                       | 1.025-2<br>0.2796<br>0.2693<br>5.12-1<br>8.20-3<br>7.61+0<br>2.72+0                                                                      | 9.382-3<br>0.2766<br>0.2672<br>5.00-1<br>7.14-3<br>7.65+0<br>2.81+0                                                                                  | 8.782-3<br>0.2743<br>0.2655<br>4.90-1<br>6.41-3<br>7.68+0<br>2.89+0                                                                                           | 8.141-3<br>0.2711<br>0.2630<br>4.72-1<br>5.58-3<br>7.67+0<br>3.00+0<br>FeXXIII                                                                                            | 8.013-3<br>0.2699<br>0.2613<br>4.57-1<br>5.24-3<br>7.63+0<br>3.08+0<br>ZnXXVII                                                                                            | 8.483-3<br>0.2681<br>0.2596<br>4.38-1<br>5.27-3<br>7.52+0<br>3.17+0<br>KrXXXIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.558-3<br>0.2682<br>0.2586<br>4.20-1<br>5.73-3<br>7.41+0<br>3.23+0<br>MoXXXIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.322-2<br>0.2710<br>0.2577<br>3.96-1<br>7.55-3<br>7.30+0<br>3.31+0                                            |
| 0<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2                     | CIII  5.313-2 0.3912 0.3381 1.17+0 4.28-2 1.74+1 2.95+0  CIII  1.039-1                                                  | 0V  3.005-2 0.3349 0.3049 7.65-1 2.76-2 1.00+1 2.59+0  -2s2p <sup>1</sup> P <sub>1</sub> 0V  5.786-2                                  | 2.098-2<br>0.3110<br>0.2900<br>6.46-1<br>2.16-2<br>7.92+0<br>2.32+0<br>NeVII                                                                                  | 1.624-2<br>0.2977<br>0.2815<br>5.84-1<br>1.60-2<br>7.51+0<br>2.37+0<br>MgIX<br>3.056-2                           | 1.338-2<br>0.2894<br>0.2760<br>5.50-1<br>1.22-2<br>7.50+0<br>2.50+0                                                                                          | 1.152-2<br>0.2837<br>0.2722<br>5.27-1<br>9.78-3<br>7.56+0<br>2.62+0                                                                       | 1.025-2<br>0.2796<br>0.2693<br>5.12-1<br>8.20-3<br>7.61+0<br>2.72+0<br>ArXV                                                              | 9.382-3<br>0.2766<br>0.2672<br>5.00-1<br>7.14-3<br>7.65+0<br>2.81+0                                                                                  | 8.782-3<br>0.2743<br>0.2655<br>4.90-1<br>6.41-3<br>7.68+0<br>2.89+0<br>TiXIX                                                                                  | 8.141-3<br>0.2711<br>0.2630<br>4.72-1<br>5.58-3<br>7.67+0<br>3.00+0<br>FeXXIII<br>1.297-2<br>0.2711                                                                       | 8.013-3<br>0.2699<br>0.2613<br>4.57-1<br>5.24-3<br>7.63+0<br>3.08+0<br>ZnXXVII<br>1.194-2<br>0.2699                                                                       | 8.483-3<br>0.2681<br>0.2596<br>4.38-1<br>5.27-3<br>7.52+0<br>3.17+0<br>KrXXXIII<br>1.150-2<br>0.2681                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.558-3<br>0.2682<br>0.2586<br>4.20-1<br>5.73-3<br>7.41+0<br>3.23+0<br>MoXXXIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.322-2<br>0.2710<br>0.2577<br>3.96-1<br>7.55-3<br>7.30+0<br>3.31+0<br>XeLI                                    |
| ο<br>1<br>2<br>2<br>2<br>2<br>2                               | CIII  5.313-2 0.3912 0.3381 1.17+0 4.28-2 1.74+1 2.95+0  25 <sup>2-1</sup> S <sub>0</sub> CIII  1.039-1 0.3912          | 0V  3.005-2 0.3349 0.3049 7.65-1 2.76-2 1.00+1 2.59+0  -2s2p <sup>1</sup> P <sub>1</sub> 0V  5.786-2 0.3349                           | 2.098-2<br>0.3110<br>0.2900<br>6.46-1<br>2.16-2<br>7.92+0<br>2.32+0<br>NeVII<br>3.996-2<br>0.3110                                                             | 1.624-2<br>0.2977<br>0.2815<br>5.84-1<br>1.60-2<br>7.51+0<br>2.37+0<br>MgIX<br>3.056-2<br>0.2977                 | 1.338-2<br>0.2894<br>0.2760<br>5.50-1<br>1.22-2<br>7.50+0<br>2.50+0<br>SiXI<br>2.483-2<br>0.2894                                                             | 1.152-2<br>0.2837<br>0.2722<br>5.27-1<br>9.78-3<br>7.56+0<br>2.62+0<br>SXIII<br>2.101-2<br>0.2837                                         | 1.025-2<br>0.2796<br>0.2693<br>5.12-1<br>8.20-3<br>7.61+0<br>2.72+0<br>ArXV<br>1.832-2<br>0.2796                                         | 9.382-3<br>0.2766<br>0.2672<br>5.00-1<br>7.14-3<br>7.65+0<br>2.81+0<br>CaXVII<br>1.636-2<br>0.2766                                                   | 8.782-3<br>0.2743<br>0.2655<br>4.90-1<br>6.41-3<br>7.68+0<br>2.89+0<br>TiXIX                                                                                  | 8.141-3<br>0.2711<br>0.2630<br>4.72-1<br>5.58-3<br>7.67+0<br>3.00+0<br>FeXXIII<br>1.297-2<br>0.2711<br>0.2582                                                             | 8.013-3<br>0.2699<br>0.2613<br>4.57-1<br>5.24-3<br>7.63+0<br>3.08+0<br>2nXXVII<br>1.194-2<br>0.2699<br>0.2574                                                             | 8.483-3<br>0.2681<br>0.2596<br>4.38-1<br>5.27-3<br>7.52+0<br>3.17+0<br>KrXXXIII<br>1.150-2<br>0.2681 (0.2566)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.558-3<br>0.2682<br>0.2586<br>4.20-1<br>5.73-3<br>7.41+0<br>3.23+0<br>MOXXXIX<br>1.200-2<br>1.200-2<br>0.2682<br>0.2562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.322-2<br>0.2710<br>0.2577<br>3.96-1<br>7.55-3<br>7.30+0<br>3.31+0<br>XeLI                                    |
| □ 1 2 2 2 2 2 2 2 E € □ 0 1 1                                 | CIII  5.313-2 0.3912 0.3381 1.17+0 4.28-2 1.74+1 2.95+0  CIII  1.039-1 0.3912 0.2874                                    | 0V  3.005-2 0.3349 0.3049 7.65-1 2.76-2 1.00+1 2.59+0  -2s2p <sup>1</sup> P <sub>1</sub> 0V  5.786-2 0.3349 0.2771                    | 2.098-2<br>0.3110<br>0.2900<br>6.46-1<br>2.16-2<br>7.92+0<br>2.32+0<br>NeVII<br>3.996-2<br>0.3110<br>0.2710                                                   | 1.624-2 0.2977 0.2815 5.84-1 1.60-2 7.51+0 2.37+0  MgIX 3.056-2 0.2977 0.2671                                    | 1.338-2<br>0.2894<br>0.2760<br>5.50-1<br>1.22-2<br>7.50+0<br>2.50+0<br>SiXI<br>2.483-2<br>0.2894<br>0.2645                                                   | 1.152-2<br>0.2837<br>0.2722<br>5.27-1<br>9.78-3<br>7.56+0<br>2.62+0<br>SXIII<br>2.101-2<br>0.2837<br>0.2627                               | 1.025-2<br>0.2796<br>0.2693<br>5.12-1<br>8.20-3<br>7.61+0<br>2.72+0<br>Arxv<br>1.832-2<br>0.2796<br>0.2613                               | 9.382-3<br>0.2766<br>0.2672<br>5.00-1<br>7.14-3<br>7.65+0<br>2.81+0<br>CaXVII<br>1.636-2<br>0.2766<br>0.2602                                         | 8.782-3<br>0.2743<br>0.2655<br>4.90-1<br>6.41-3<br>7.68+0<br>2.89+0<br>TiXIX<br>1.489-2<br>0.2743<br>0.2594                                                   | 8.141-3<br>0.2711<br>0.2630<br>4.72-1<br>5.58-3<br>7.67+0<br>3.00+0<br>FEXXIII<br>1.297-2<br>0.2711<br>0.2582<br>3.72+0                                                   | 8.013-3<br>0.2699<br>0.2613<br>4.57-1<br>5.24-3<br>7.63+0<br>3.08+0<br>2nXXVII<br>1.194-2<br>0.2699<br>0.2574<br>3.68+0                                                   | 8.483-3<br>0.2681<br>0.2596<br>4.38-1<br>5.27-3<br>7.52+0<br>3.17+0<br>KFXXXIII<br>1.150-2<br>0.2681 (0.2566 (0.363+0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.558-3<br>0.2682<br>0.2586<br>4.20-1<br>5.73-3<br>7.41+0<br>3.23+0<br>MOXXXIX<br>1.200-2<br>0.2682<br>0.2562<br>0.360+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.322-2<br>0.2710<br>0.2577<br>3.96-1<br>7.55-3<br>7.30+0<br>3.31+0<br>XeLI<br>493-2                           |
| 0<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>1<br>1           | CIII  5.313-2 0.3912 0.3381 1.17+0 4.28-2 1.74+1 2.95+0 CIII 1.039-1 0.3912 0.2874 6.24+0                               | OV  3.005-2 0.3349 0.3049 7.65-1 2.76-2 1.00+1 2.59+0 -292p <sup>1</sup> P <sub>1</sub> OV 5.786-2 0.3349 0.2771 4.93+0               | 2.098-2<br>0.3110<br>0.2900<br>6.46-1<br>2.16-2<br>7.92+0<br>2.32+0<br>NeVII<br>3.996-2<br>0.3110<br>0.2710<br>4.43+0                                         | 1.624-2 0.2977 0.2815 5.84-1 1.60-2 7.51+0 2.37+0  MgIX 3.056-2 0.2977 0.2671 4.16+0                             | 1.338-2<br>0.2894<br>0.2760<br>5.50-1<br>1.22-2<br>7.50+0<br>2.50+0<br>SiXI<br>2.483-2<br>0.2894<br>0.2645<br>3.98+0                                         | 1.152-2<br>0.2837<br>0.2722<br>5.27-1<br>9.78-3<br>7.56+0<br>2.62+0<br>SXIII<br>2.101-2<br>0.2837<br>0.2627<br>3.89+0                     | 1.025-2<br>0.2796<br>0.2693<br>5.12-1<br>8.20-3<br>7.61+0<br>2.72+0<br>ArXV<br>1.832-2<br>0.2796<br>0.2613<br>3.83+0                     | 9.382-3<br>0.2766<br>0.2672<br>5.00-1<br>7.14-3<br>7.65+0<br>2.81+0<br>CaXVII<br>1.636-2<br>0.2766<br>0.2602<br>3.80+0                               | 8.782-3<br>0.2743<br>0.2655<br>4.90-1<br>6.41-3<br>7.68+0<br>2.89+0<br>TiXIX<br>1.489-2<br>0.2743<br>0.2594<br>3.76+0                                         | 8.141-3<br>0.2711<br>0.2630<br>4.72-1<br>5.58-3<br>7.67+0<br>3.00+0<br>FEXXIII<br>1.297-2<br>0.2711<br>0.2582<br>3.72+0<br>1.20-2                                         | 8.013-3<br>0.2699<br>0.2613<br>4.57-1<br>5.24-3<br>7.63+0<br>3.08+0<br>2nxxvII<br>1.194-2<br>0.2699<br>0.2574<br>3.68+0<br>1.10-2                                         | 8.483-3<br>0.2681<br>0.2596<br>4.38-1<br>5.27-3<br>7.52+0<br>3.17+0<br>KFXXXIII<br>1.150-2<br>0.2681 (0.2566 (0.363+0)<br>1.05-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.558-3<br>0.2682<br>0.2586<br>4.20-1<br>5.73-3<br>7.41+0<br>3.23+0<br>MOXXXIX<br>1.200-2<br>0.2682<br>0.2562<br>0.2562<br>0.3.60+0<br>1.10-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.322-4<br>0.2710<br>0.2577<br>3.96-1<br>7.55-3<br>7.30+0<br>3.31+0<br>XeLI<br>493-2<br>2710<br>2560<br>3.69+0 |
| 1 2 2 2 2 2 2 1 1 1 1 1                                       | CIII  5.313-2 0.3912 0.3381 1.17+0 4.28-2 1.74+1 2.95+0 CIII  1.039-1 0.3912 0.2874 6.24+0 1.13-1                       | OV  3.005-2 0.3349 0.3049 7.65-1 2.76-2 1.00+1 2.59+0 -2s2p <sup>1</sup> P <sub>1</sub> OV 5.786-2 0.3349 0.2771 4.93+0 5.19-2        | 2.098-2<br>0.3110<br>0.2900<br>6.46-1<br>2.16-2<br>7.92+0<br>2.32+0<br>NeVII<br>3.996-2<br>0.3110<br>0.2710<br>4.43+0<br>3.45-2                               | 1.624-2 0.2977 0.2815 5.84-1 1.60-2 7.51+0 2.37+0  MgIX 3.056-2 0.2977 0.2671 4.16+0 2.63-2                      | 1.338-2<br>0.2894<br>0.2760<br>5.50-1<br>1.22-2<br>7.50+0<br>2.50+0<br>SiXI<br>2.483-2<br>0.2894<br>0.2645<br>3.98+0<br>2.11-2                               | 1.152-2<br>0.2837<br>0.2722<br>5.27-1<br>9.78-3<br>7.56+0<br>2.62+0<br>SXIII<br>2.101-2<br>0.2837<br>0.2627<br>3.89+0<br>1.85-2           | 1.025-2<br>0.2796<br>0.2693<br>5.12-1<br>8.20-3<br>7.61+0<br>2.72+0<br>ArXV<br>1.832-2<br>0.2796<br>0.2613<br>3.83+0<br>1.68-2           | 9.382-3<br>0.2766<br>0.2672<br>5.00-1<br>7.14-3<br>7.65+0<br>2.81+0<br>CaXVII<br>1.636-2<br>0.2766<br>0.2602<br>3.80+0<br>1.53-2                     | 8.782-3<br>0.2743<br>0.2655<br>4.90-1<br>6.41-3<br>7.68+0<br>2.89+0<br>TiXIX<br>1.489-2<br>0.2743<br>0.2594<br>3.76+0<br>1.40-2                               | 8.141-3<br>0.2711<br>0.2630<br>4.72-1<br>5.58-3<br>7.67+0<br>3.00+0<br>FEXXIII<br>1.297-2<br>0.2711<br>0.2582<br>3.72+0<br>1.20-2<br>7.21+0                               | 8.013-3<br>0.2699<br>0.2613<br>4.57-1<br>5.24-3<br>7.63+0<br>3.08+0<br>2nxxvII<br>1.194-2<br>0.2699<br>0.2574<br>3.68+0<br>1.10-2<br>7.07+0                               | 8.483-3<br>0.2681<br>0.2596<br>4.38-1<br>5.27-3<br>7.52+0<br>3.17+0<br>KrXXXIII<br>1.150-2<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566<br>0.2566 | 9.558-3<br>0.2682<br>0.2586<br>4.20-1<br>5.73-3<br>7.41+0<br>3.23+0<br>MOXXXIX<br>1.200-2<br>10.2682<br>0.2562<br>0.2562<br>0.2562<br>0.10-2<br>1.10-2<br>1.66.94+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.322-4<br>0.2710<br>0.2577<br>3.96-1<br>7.55-3<br>7.30+0<br>3.31+0<br>XeLI<br>493-2<br>2710<br>2560<br>3.69+0 |
| 0<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>1<br>1<br>1 | CIII  5.313-2 0.3912 0.3381 1.17+0 4.28-2 1.74+1 2.95+0 CIII  1.039-1 0.3912 0.2874 6.24+0 1.13-1 1.49+1                | ov  3.005-2 0.3349 0.3049 7.65-1 2.76-2 1.00+1 2.59+0 -2s2p <sup>1</sup> P <sub>1</sub> ov 5.786-2 0.3349 0.2771 4.93+0 5.19-2 1.21+1 | 2.098-2<br>0.3110<br>0.2900<br>6.46-1<br>2.16-2<br>7.92+0<br>2.32+0<br>NeVII<br>3.996-2<br>0.3110<br>0.2710<br>4.43+0<br>3.45-2<br>1.04+1                     | 1.624-2 0.2977 0.2815 5.84-1 1.60-2 7.51+0 2.37+0  MgIX 3.056-2 0.2977 0.2671 4.16+0 2.63-2 9.45+0               | 1.338-2<br>0.2894<br>0.2760<br>5.50-1<br>1.22-2<br>7.50+0<br>2.50+0<br>SiXI<br>2.483-2<br>0.2894<br>0.2645<br>3.98+0<br>2.11-2<br>8.74+0                     | 1.152-2<br>0.2837<br>0.2722<br>5.27-1<br>9.78-3<br>7.56+0<br>2.62+0<br>SXIII<br>2.101-2<br>0.2837<br>0.2627<br>3.89+0<br>1.85-2<br>8.19+0 | 1.025-2<br>0.2796<br>0.2693<br>5.12-1<br>8.20-3<br>7.61+0<br>2.72+0<br>ArXV<br>1.832-2<br>0.2796<br>0.2613<br>3.83+0<br>1.68-2<br>7.81+0 | 9.382-3<br>0.2766<br>0.2672<br>5.00-1<br>7.14-3<br>7.65+0<br>2.81+0<br>CaXVII<br>1.636-2<br>0.2766<br>0.2602<br>3.80+0<br>1.53-2<br>7.58+0           | 8.782-3<br>0.2743<br>0.2655<br>4.90-1<br>6.41-3<br>7.68+0<br>2.89+0<br>TiXIX<br>1.489-2<br>0.2743<br>0.2594<br>3.76+0<br>1.40-2<br>7.42+0                     | 8.141-3<br>0.2711<br>0.2630<br>4.72-1<br>5.58-3<br>7.67+0<br>3.00+0<br>FEXXIII<br>1.297-2<br>0.2711<br>0.2582<br>3.72+0<br>1.20-2<br>7.21+0<br>8.90-1                     | 8.013-3<br>0.2699<br>0.2613<br>4.57-1<br>5.24-3<br>7.63+0<br>3.08+0<br>2nxxVII<br>1.194-2<br>0.2699<br>0.2574<br>3.68+0<br>1.10-2<br>7.07+0<br>8.73-1                     | 8.483-3<br>0.2681<br>0.2596<br>4.38-1<br>5.27-3<br>7.52+0<br>3.17+0<br>KrXXXIII<br>1.150-2<br>0.2681<br>0.2566<br>3.63+0<br>1.05-2<br>6.95+0<br>8.65-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.558-3<br>0.2682<br>0.2586<br>4.20-1<br>5.73-3<br>7.41+0<br>3.23+0<br>MOXXXIX<br>1.200-2<br>1.200-2<br>0.2682<br>0.2562<br>0.2562<br>0.2562<br>0.2562<br>0.360+0<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1.10-2<br>1 | 1.322-2 0.2710 0.2577 3.96-1 7.55-3 7.30+0 3.31+0  XeLI493-227102560 3.69+038-2 7.31+0                         |
| 1 2 2 2 2 E 0 1 1 1 1                                         | CIII  5.313-2 0.3912 0.3381 1.17+0 4.28-2 1.74+1 2.95+0 CIII  1.039-1 0.3912 0.2874 6.24+0 1.13-1 1.49+1 1.13+0         | OV  3.005-2 0.3349 0.3049 7.65-1 2.76-2 1.00+1 2.59+0 OV  5.786-2 0.3349 0.2771 4.93+0 5.19-2 1.21+1 1.21+0                           | 2.098-2<br>0.3110<br>0.2900<br>6.46-1<br>2.16-2<br>7.92+0<br>2.32+0<br>NeVII<br>3.996-2<br>0.3110<br>0.2710<br>4.43+0<br>3.45-2<br>1.04+1<br>1.16+0           | 1.624-2 0.2977 0.2815 5.84-1 1.60-2 7.51+0 2.37+0  MgIX 3.056-2 0.2977 0.2671 4.16+0 2.63-2 9.45+0 1.12+0        | 1.338-2<br>0.2894<br>0.2760<br>5.50-1<br>1.22-2<br>7.50+0<br>2.50+0<br>SiXI<br>2.483-2<br>0.2894<br>0.2645<br>3.98+0<br>2.11-2<br>8.74+0<br>1.07+0           | 1.152-2 0.2837 0.2722 5.27-1 9.78-3 7.56+0 2.62+0  SXIII 2.101-2 0.2837 0.2627 3.89+0 1.85-2 8.19+0 1.01+0                                | 1.025-2 0.2796 0.2693 5.12-1 8.20-3 7.61+0 2.72+0  ArXV  1.832-2 0.2796 0.2613 3.83+0 1.68-2 7.81+0 9.62-1                               | 9.382-3<br>0.2766<br>0.2672<br>5.00-1<br>7.14-3<br>7.65+0<br>2.81+0<br>CaXVII<br>1.636-2<br>0.2766<br>0.2602<br>3.80+0<br>1.53-2<br>7.58+0<br>9.34-1 | 8.782-3<br>0.2743<br>0.2655<br>4.90-1<br>6.41-3<br>7.68+0<br>2.89+0<br>Tixix<br>1.489-2<br>0.2743<br>0.2594<br>3.76+0<br>1.40-2<br>7.42+0<br>9.15-1           | 8.141-3<br>0.2711<br>0.2630<br>4.72-1<br>5.58-3<br>7.67+0<br>3.00+0<br>FeXXIII<br>1.297-2<br>0.2711<br>0.2582<br>3.72+0<br>1.20-2<br>7.21+0<br>8.90-1<br>7.16+0           | 8.013-3<br>0.2699<br>0.2613<br>4.57-1<br>5.24-3<br>7.63+0<br>3.08+0<br>ZnXXVII<br>1.194-2<br>0.2699<br>0.2574<br>3.68+0<br>1.10-2<br>7.07+0<br>8.73-1<br>7.02+0           | 8.483-3<br>0.2681<br>0.2596<br>4.38-1<br>5.27-3<br>7.52+0<br>3.17+0<br>KrXXXIII<br>1.150-2<br>0.2681 (0.2566 (3.63+0)<br>1.05-2<br>6.95+0 (8.65-1)<br>6.90+0 (4.38-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.558-3<br>0.2682<br>0.2586<br>4.20-1<br>5.73-3<br>7.41+0<br>3.23+0<br>MOXXXIX<br>1.200-2<br>1.20682<br>0.2562<br>0.2562<br>0.2562<br>0.2562<br>0.694+0<br>8.76-1<br>6.88+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.322-2 0.2710 0.2577 3.96-1 7.55-3 7.30+0 3.31+0  XeLI493-2 1.2710 1.2560 1.38-2 7.31+0 1.22-1                |
| 0<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>1<br>1<br>1           | CIII  5.313-2 0.3912 0.3381 1.17+0 4.28-2 1.74+1 2.95+0  CIII  1.039-1 0.3912 0.2874 6.24+0 1.13-1 1.49+1 1.13+0 1.42+1 | OV  3.005-2 0.3349 0.3049 7.65-1 2.76-2 1.00+1 2.59+0 OV  5.786-2 0.3349 0.2771 4.93+0 5.19-2 1.21+1 1.21+0 1.19+1                    | 2.098-2<br>0.3110<br>0.2900<br>6.46-1<br>2.16-2<br>7.92+0<br>2.32+0<br>NeVII<br>3.996-2<br>0.3110<br>0.2710<br>4.43+0<br>3.45-2<br>1.04+1<br>1.16+0<br>1.03+1 | 1.624-2 0.2977 0.2815 5.84-1 1.60-2 7.51+0 2.37+0  MgIX 3.056-2 0.2977 0.2671 4.16+0 2.63-2 9.45+0 1.12+0 9.36+0 | 1.338-2<br>0.2894<br>0.2760<br>5.50-1<br>1.22-2<br>7.50+0<br>2.50+0<br>SiXI<br>2.483-2<br>0.2894<br>0.2645<br>3.98+0<br>2.11-2<br>8.74+0<br>1.07+0<br>8.66+0 | 1.152-2 0.2837 0.2722 5.27-1 9.78-3 7.56+0 2.62+0  SXIII  2.101-2 0.2837 0.2627 3.89+0 1.85-2 8.19+0 1.01+0 8.13+0                        | 1.025-2 0.2796 0.2693 5.12-1 8.20-3 7.61+0 2.72+0  ArXV  1.832-2 0.2796 0.2613 3.83+0 1.68-2 7.81+0 9.62-1 7.76+0                        | 9.382-3<br>0.2766<br>0.2672<br>5.00-1<br>7.14-3<br>7.65+0<br>2.81+0<br>                                                                              | 8.782-3<br>0.2743<br>0.2655<br>4.90-1<br>6.41-3<br>7.68+0<br>2.89+0<br>TiXIX<br>1.489-2<br>0.2743<br>0.2594<br>3.76+0<br>1.40-2<br>7.42+0<br>9.15-1<br>7.37+0 | 8.141-3<br>0.2711<br>0.2630<br>4.72-1<br>5.58-3<br>7.67+0<br>3.00+0<br>FeXXIII<br>1.297-2<br>0.2711<br>0.2582<br>3.72+0<br>1.20-2<br>7.21+0<br>8.90-1<br>7.16+0<br>8.81-1 | 8.013-3<br>0.2699<br>0.2613<br>4.57-1<br>5.24-3<br>7.63+0<br>3.08+0<br>2nxxVII<br>1.194-2<br>0.2699<br>0.2574<br>3.68+0<br>1.10-2<br>7.07+0<br>8.73-1<br>7.02+0<br>8.63-1 | 8.483-3<br>0.2681<br>0.2596<br>4.38-1<br>5.27-3<br>7.52+0<br>3.17+0<br>KrXXXIII<br>1.150-2<br>0.2681<br>0.2566<br>3.63+0<br>1.05-2<br>6.95+0<br>8.65-1<br>6.90+0<br>8.55-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.558-3 0.2682 0.2586 4.20-1 5.73-3 7.41+0 3.23+0  MoXXXIX  1.200-2 1.2062 0.2562 0.2562 0.2562 0.2562 3.60+0 1.10-2 1.6.94+0 8.76-1 8.76-1 8.68+0 8.65-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.322-2 0.2710 0.2577 3.96-1 7.55-3 7.30+0 3.31+0 XeLI493-2 0.2710 0.2560 0.38-2 7.31+0 0.22-1 7.24+0          |

| See page 7 f | or Exp | lanation | of Tables |  |
|--------------|--------|----------|-----------|--|
|--------------|--------|----------|-----------|--|

|                                                                                                                                                                                                                                                                     | 252p <sup>3</sup> p                                                                                                                                                                                                | -2p <sup>2-3</sup> P <sub>0</sub>                                                                                                                                                                      |                                                                                                                                                |                                                                                                                                              |                                                                                                                                                     |                                                                                                                                                       | <del> </del>                                                                                                                                        |                                                                                                                                                  |                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                 |                                                                                                                                                                                                   |                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                     | CIII                                                                                                                                                                                                               | ov                                                                                                                                                                                                     | NeVII                                                                                                                                          | MgIX                                                                                                                                         | SiXI                                                                                                                                                | SXIII                                                                                                                                                 | ArXV                                                                                                                                                | CaXVII                                                                                                                                           | TiXIX                                                                                                                                         | FeXXIII                                                                                                                                          | ZnXXVII                                                                                                                                          | KrXXXII                                                                                                                                         | MoXXXI                                                                                                                                                                                            | X XeLI                                                                                                                                        |
| Δε                                                                                                                                                                                                                                                                  | 8.601-2                                                                                                                                                                                                            | 4.790-2                                                                                                                                                                                                | 3.304-2                                                                                                                                        | 2.523-2                                                                                                                                      | 2.044-2                                                                                                                                             | 1.723-2                                                                                                                                               | 1.494-2                                                                                                                                             | 1.322-2                                                                                                                                          | 1.188-2                                                                                                                                       | 9.923-3                                                                                                                                          | 8.543-3                                                                                                                                          | 7.091-3                                                                                                                                         | 6.097-3                                                                                                                                                                                           | 7.722-3                                                                                                                                       |
| $\mathbf{\epsilon}_{\scriptscriptstyle{0}}$                                                                                                                                                                                                                         | 0.4036                                                                                                                                                                                                             | 0.3403                                                                                                                                                                                                 | 0.3143                                                                                                                                         | 0.3002                                                                                                                                       | 0.2913                                                                                                                                              | 0.2856                                                                                                                                                | 0.2815                                                                                                                                              | 0.2785                                                                                                                                           | 0.2763                                                                                                                                        | 0.2736                                                                                                                                           | 0.2694                                                                                                                                           | 0.2680                                                                                                                                          | 0.2680                                                                                                                                                                                            | 0.2707                                                                                                                                        |
| $\boldsymbol{\epsilon}_1$                                                                                                                                                                                                                                           | 0.3176                                                                                                                                                                                                             | 0.2924                                                                                                                                                                                                 | 0.2813                                                                                                                                         | 0.2750                                                                                                                                       | 0.2710                                                                                                                                              | 0.2684                                                                                                                                                | 0.2665                                                                                                                                              | 0.2653                                                                                                                                           | 0.2644                                                                                                                                        | 0.2637                                                                                                                                           | 0.2608                                                                                                                                           | 0.2609                                                                                                                                          | 0.2619                                                                                                                                                                                            | 0.2630                                                                                                                                        |
| C1                                                                                                                                                                                                                                                                  | 9.56-1                                                                                                                                                                                                             | 7.64-1                                                                                                                                                                                                 | 6.84-1                                                                                                                                         | 6.38-1                                                                                                                                       | 6.12-1                                                                                                                                              | 5.98-1                                                                                                                                                | 5.05~1                                                                                                                                              | 5.77-1                                                                                                                                           | 5.70-1                                                                                                                                        | 5.63-1                                                                                                                                           | 5.69-1                                                                                                                                           | 5.84-1                                                                                                                                          | 6.05-1                                                                                                                                                                                            | 6.64-1                                                                                                                                        |
| F1                                                                                                                                                                                                                                                                  | 7.39-2                                                                                                                                                                                                             | 4.33-2                                                                                                                                                                                                 | 2.94-2                                                                                                                                         | 2.18-2                                                                                                                                       | 1.84-2                                                                                                                                              | 1.61-2                                                                                                                                                | 1.41-2                                                                                                                                              | 1.24-2                                                                                                                                           | 1.10-2                                                                                                                                        | 9.13-3                                                                                                                                           | 7.93-3                                                                                                                                           | 6.93-3                                                                                                                                          | 6.43-3                                                                                                                                                                                            | 7.35-3                                                                                                                                        |
| A                                                                                                                                                                                                                                                                   | 1.95+0                                                                                                                                                                                                             | 1.82+0                                                                                                                                                                                                 | 1.56+0                                                                                                                                         | 1.40+0                                                                                                                                       | 1.28+0                                                                                                                                              | 1.20+0                                                                                                                                                | 1.15+0                                                                                                                                              | 1.12+0                                                                                                                                           | 1.09+0                                                                                                                                        | 1.05+0                                                                                                                                           | 1.03+0                                                                                                                                           | 1.01+0                                                                                                                                          | 9.93-1                                                                                                                                                                                            | 1.17+0                                                                                                                                        |
| ĸ                                                                                                                                                                                                                                                                   | 1.09+0                                                                                                                                                                                                             | 1.18+0                                                                                                                                                                                                 | 1.12+0                                                                                                                                         | 1.07+0                                                                                                                                       | 9.94-1                                                                                                                                              | 9.46-1                                                                                                                                                | 9.16-1                                                                                                                                              | 8.95-1                                                                                                                                           | 8.73-1                                                                                                                                        | 8.25-1                                                                                                                                           | 7.72-1                                                                                                                                           | 6.91-1                                                                                                                                          | 6.22-1                                                                                                                                                                                            | 7.26-1                                                                                                                                        |
| A1                                                                                                                                                                                                                                                                  | 1.84+0                                                                                                                                                                                                             | 1.78+0                                                                                                                                                                                                 | 1.53+0                                                                                                                                         | 1.38+0                                                                                                                                       | 1.26+0                                                                                                                                              | 1.19+0                                                                                                                                                | 1.14+0                                                                                                                                              | 1.11+0                                                                                                                                           | 1.08+0                                                                                                                                        | 1.04+0                                                                                                                                           | 1.02+0                                                                                                                                           | 9.93-1                                                                                                                                          | 9.81-1                                                                                                                                                                                            | 1.15+0                                                                                                                                        |
| K1                                                                                                                                                                                                                                                                  | 1.00+0                                                                                                                                                                                                             | 1.14+0                                                                                                                                                                                                 | 1.10+0                                                                                                                                         | 1.05+0                                                                                                                                       | 9.77-1                                                                                                                                              | 9.29-1                                                                                                                                                | 9.00-1                                                                                                                                              | 8.79-1                                                                                                                                           | 8.58-1                                                                                                                                        | 8.10-1                                                                                                                                           | 7.56-1                                                                                                                                           | 6.76-1                                                                                                                                          | 6.08-1                                                                                                                                                                                            | 7.10-1                                                                                                                                        |
| A2<br>K2                                                                                                                                                                                                                                                            | 1.47+0<br>2.94+0                                                                                                                                                                                                   | 9.37-1<br>2.72+0                                                                                                                                                                                       | 7.22-1<br>2.43+0                                                                                                                               | 6.78-1<br>2.46+0                                                                                                                             | 6.77-1<br>2.56+0                                                                                                                                    | 6.89-1<br>2.66+0                                                                                                                                      | 7.08-1<br>2.75+0                                                                                                                                    | 7.34-1<br>2.82+0                                                                                                                                 | 7.63-1<br>2.88+0                                                                                                                              | 8.27-1<br>2.96+0                                                                                                                                 | 9.16-1<br>3.09+0                                                                                                                                 | 1.01+0<br>3.16+0                                                                                                                                | 1.08+0<br>3.20+0                                                                                                                                                                                  | 1.13+0<br>3.27+0                                                                                                                              |
|                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                    |                                                                                                                                                                                                        |                                                                                                                                                |                                                                                                                                              |                                                                                                                                                     |                                                                                                                                                       |                                                                                                                                                     | 2.02.0                                                                                                                                           |                                                                                                                                               | 2.3010                                                                                                                                           |                                                                                                                                                  |                                                                                                                                                 |                                                                                                                                                                                                   |                                                                                                                                               |
|                                                                                                                                                                                                                                                                     | 252p <sup>3</sup> P                                                                                                                                                                                                | <sub>0</sub> -2p <sup>2</sup> <sup>3</sup> P <sub>1</sub>                                                                                                                                              |                                                                                                                                                |                                                                                                                                              |                                                                                                                                                     |                                                                                                                                                       |                                                                                                                                                     |                                                                                                                                                  |                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                 |                                                                                                                                                                                                   |                                                                                                                                               |
|                                                                                                                                                                                                                                                                     | CIII                                                                                                                                                                                                               | ov                                                                                                                                                                                                     | NeVII                                                                                                                                          | MgIX                                                                                                                                         | SiXI                                                                                                                                                | SXIII                                                                                                                                                 | ArXV                                                                                                                                                | CaXVII                                                                                                                                           | TiXIX                                                                                                                                         | FeXXIII                                                                                                                                          | ZnXXVII                                                                                                                                          | KrXXXII                                                                                                                                         | MoxxxI                                                                                                                                                                                            | X XeLI                                                                                                                                        |
| Δε                                                                                                                                                                                                                                                                  | 8.608-2                                                                                                                                                                                                            | 4.801-2                                                                                                                                                                                                | 3.322-2                                                                                                                                        | 2.550-2                                                                                                                                      | 2.084-2                                                                                                                                             | 2.777-2                                                                                                                                               | 1.565-2                                                                                                                                             | 1.413-2                                                                                                                                          | 1.304-2                                                                                                                                       | 1.168-2                                                                                                                                          | 1.107-2                                                                                                                                          | 1.105-2                                                                                                                                         | 1.179-2                                                                                                                                                                                           | 1.502-2                                                                                                                                       |
| εο                                                                                                                                                                                                                                                                  | 0.4036                                                                                                                                                                                                             | 0.3404                                                                                                                                                                                                 | 0.3144                                                                                                                                         | 0.3003                                                                                                                                       | 0.2916                                                                                                                                              | 0.2858                                                                                                                                                | 0.2818                                                                                                                                              | 0.2788                                                                                                                                           | 0.2767                                                                                                                                        | 0.2741                                                                                                                                           | 0.2700                                                                                                                                           | 0.2687                                                                                                                                          | 0.2687                                                                                                                                                                                            | 0.2714                                                                                                                                        |
| $\boldsymbol{\varepsilon}_1$                                                                                                                                                                                                                                        | 0.3175                                                                                                                                                                                                             | 0.2924                                                                                                                                                                                                 | 0.2812                                                                                                                                         | 0.2748                                                                                                                                       | 0.2708                                                                                                                                              | 0.2681                                                                                                                                                | 0.2661                                                                                                                                              | 0.2647                                                                                                                                           | 0.2637                                                                                                                                        | 0.2624                                                                                                                                           | 0.2589                                                                                                                                           | 0.2577                                                                                                                                          | 0.2569                                                                                                                                                                                            | 0.2564                                                                                                                                        |
| C1                                                                                                                                                                                                                                                                  | 2.92+0                                                                                                                                                                                                             | 2.30+0                                                                                                                                                                                                 | 2.06+0                                                                                                                                         | 1.92+0                                                                                                                                       | 1.84+0                                                                                                                                              | 1.80+0                                                                                                                                                | 1.76+0                                                                                                                                              | 1.74+0                                                                                                                                           | 1.71+0                                                                                                                                        | 1.69+0                                                                                                                                           | 1.68+0                                                                                                                                           | 1.68+0                                                                                                                                          | 1.71+0                                                                                                                                                                                            | 1.82+0                                                                                                                                        |
| F1                                                                                                                                                                                                                                                                  | 9.34-2                                                                                                                                                                                                             | 4.34-2                                                                                                                                                                                                 | 2.96-2                                                                                                                                         | 2.21-2                                                                                                                                       | 1.86-2                                                                                                                                              | 1.65-2                                                                                                                                                | 1.48-2                                                                                                                                              | 1.33-2                                                                                                                                           | 1.22-2                                                                                                                                        | 1.08-2                                                                                                                                           | 1.01-2                                                                                                                                           | 1.01-2                                                                                                                                          | 1.07-2                                                                                                                                                                                            | 1.39-2                                                                                                                                        |
| A                                                                                                                                                                                                                                                                   | 6.88+0                                                                                                                                                                                                             | 5.48+0                                                                                                                                                                                                 | 4.69+0                                                                                                                                         | 4.23+0                                                                                                                                       | 3.87+0                                                                                                                                              | 3.64+0                                                                                                                                                | 3.50+0                                                                                                                                              | 3.40+0                                                                                                                                           | 3.33+0                                                                                                                                        | 3.24+0                                                                                                                                           | 3.19+0                                                                                                                                           | 3.21+0                                                                                                                                          | 3.30+0                                                                                                                                                                                            | 3.61+0                                                                                                                                        |
| κ                                                                                                                                                                                                                                                                   | 1.13+0                                                                                                                                                                                                             | 1.18+0                                                                                                                                                                                                 | 1.12+0                                                                                                                                         | 1.07+0                                                                                                                                       | 1.00+0                                                                                                                                              | 9.53-1                                                                                                                                                | 9.25-1                                                                                                                                              | 9.06-1                                                                                                                                           | 8.92-1                                                                                                                                        | 8.68-1                                                                                                                                           | 8.57-1                                                                                                                                           | 8.57-1                                                                                                                                          | 8.73-1                                                                                                                                                                                            | 9.24-1                                                                                                                                        |
| A1                                                                                                                                                                                                                                                                  | 6.44+0                                                                                                                                                                                                             | 5.35+0                                                                                                                                                                                                 | 4.62+0                                                                                                                                         | 4.17+0                                                                                                                                       | 3.83+0                                                                                                                                              | 3.60+0                                                                                                                                                | 3.46+0                                                                                                                                              | 3.36+0                                                                                                                                           | 3.30+0                                                                                                                                        | 3.20+0                                                                                                                                           | 3.16+0                                                                                                                                           | 3.18+0                                                                                                                                          | 3.27+0                                                                                                                                                                                            | 3.57+0                                                                                                                                        |
| к1                                                                                                                                                                                                                                                                  | 1.02+0                                                                                                                                                                                                             | 1.14+0                                                                                                                                                                                                 | 1.10+0                                                                                                                                         | 1.05+0                                                                                                                                       | 9.84-1                                                                                                                                              | 9.37-1                                                                                                                                                | 9.10-1                                                                                                                                              | 8.92-1                                                                                                                                           | 8.78-1                                                                                                                                        | 8.55-1                                                                                                                                           | 8.44-1                                                                                                                                           | 8.44-1                                                                                                                                          | 8.60-1                                                                                                                                                                                            | 9.10-1                                                                                                                                        |
| A2<br>K2                                                                                                                                                                                                                                                            | 5.16+0<br>3.12+0                                                                                                                                                                                                   | 2.80+0                                                                                                                                                                                                 | 2.14+0                                                                                                                                         | 1.99+0<br>2.46+0                                                                                                                             | 1.96+0<br>2.56+0                                                                                                                                    | 1.96+0<br>2.66+0                                                                                                                                      | 1.96+0<br>2.75+0                                                                                                                                    | 1.96+0<br>2.82+0                                                                                                                                 | 1.97+0<br>2.88+0                                                                                                                              | 1.98+0<br>2.97+0                                                                                                                                 | 2.01+0<br>3.10+0                                                                                                                                 | 2.02+0<br>3.18+0                                                                                                                                | 2.04+0<br>3.24+0                                                                                                                                                                                  | 2.09+0<br>3.30+0                                                                                                                              |
|                                                                                                                                                                                                                                                                     | 3.10.0                                                                                                                                                                                                             | 2.72.0                                                                                                                                                                                                 | 2.10.0                                                                                                                                         |                                                                                                                                              |                                                                                                                                                     |                                                                                                                                                       |                                                                                                                                                     |                                                                                                                                                  |                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                 |                                                                                                                                                                                                   |                                                                                                                                               |
|                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                    |                                                                                                                                                                                                        |                                                                                                                                                |                                                                                                                                              |                                                                                                                                                     |                                                                                                                                                       |                                                                                                                                                     |                                                                                                                                                  |                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                 |                                                                                                                                                                                                   |                                                                                                                                               |
|                                                                                                                                                                                                                                                                     | · · · · · ·                                                                                                                                                                                                        | 1-2p <sup>2-3</sup> p <sub>1</sub>                                                                                                                                                                     |                                                                                                                                                |                                                                                                                                              |                                                                                                                                                     |                                                                                                                                                       |                                                                                                                                                     |                                                                                                                                                  |                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                  | -                                                                                                                                               |                                                                                                                                                                                                   |                                                                                                                                               |
|                                                                                                                                                                                                                                                                     | · · · · · ·                                                                                                                                                                                                        |                                                                                                                                                                                                        | NeVII                                                                                                                                          | MgIX                                                                                                                                         | SiXI                                                                                                                                                | SXIII                                                                                                                                                 | ArXV                                                                                                                                                | CaXVII                                                                                                                                           | TiXIX                                                                                                                                         | FeXXIII                                                                                                                                          | ZnXXVII                                                                                                                                          | KrXXXII                                                                                                                                         | I MoxxxI                                                                                                                                                                                          | X XeLI                                                                                                                                        |
| Δε                                                                                                                                                                                                                                                                  | 2s2p <sup>3</sup> p                                                                                                                                                                                                | 1-2p <sup>2-3</sup> p <sub>1</sub>                                                                                                                                                                     | NeVII                                                                                                                                          |                                                                                                                                              | SiXI                                                                                                                                                | SXIII                                                                                                                                                 | Arxv                                                                                                                                                |                                                                                                                                                  |                                                                                                                                               | FeXXIII                                                                                                                                          |                                                                                                                                                  | KrXXXII                                                                                                                                         | I MoxxxI                                                                                                                                                                                          | X XeLI                                                                                                                                        |
| <br>Δε<br>ε <sub>0</sub>                                                                                                                                                                                                                                            | 2s2p <sup>3</sup> p                                                                                                                                                                                                | 1 <sup>-2</sup> p <sup>2 3</sup> p <sub>1</sub>                                                                                                                                                        | NeVII                                                                                                                                          | MgIX                                                                                                                                         | SiXI                                                                                                                                                | SXIII                                                                                                                                                 | Arxv                                                                                                                                                | CaXVII                                                                                                                                           |                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                 | I MoxxxI                                                                                                                                                                                          |                                                                                                                                               |
| εο                                                                                                                                                                                                                                                                  | 2s2p <sup>3</sup> p<br>CIII<br>8.606-2                                                                                                                                                                             | 1-2p <sup>2-3</sup> p <sub>1</sub><br>ov<br>4.796-2                                                                                                                                                    | NeVII<br>3.314-2                                                                                                                               | MgIX<br>2.537-2                                                                                                                              | SiXI<br>2.066-2                                                                                                                                     | SXIII<br>1.754-2                                                                                                                                      | ArXV<br>1.535-2                                                                                                                                     | CaXVII<br>1.378-2                                                                                                                                | 1.262-2                                                                                                                                       | 1.115-2                                                                                                                                          | 1.045-2                                                                                                                                          | 1.035-2                                                                                                                                         | I MOXXXI                                                                                                                                                                                          | 1.437-2                                                                                                                                       |
| εο                                                                                                                                                                                                                                                                  | 2s2p <sup>3</sup> p CIII  8.606-2 0.4036                                                                                                                                                                           | 1 <sup>-2p<sup>2-3</sup>p<sub>1</sub><br/>ov<br/>4.796-2<br/>0.3403</sup>                                                                                                                              | NeVII<br>3.314-2<br>0.3143                                                                                                                     | MgIX 2.537-2 0.3002                                                                                                                          | SiXI<br>2.066-2<br>0.2913                                                                                                                           | SXIII<br>1.754-2<br>0.2856                                                                                                                            | ArXV<br>1.535-2<br>0.2015                                                                                                                           | CaXVII<br>1.378-2<br>0.2785                                                                                                                      | 1.262-2                                                                                                                                       | 1.115-2<br>0.2736                                                                                                                                | 1.045-2                                                                                                                                          | 1.035-2<br>0.2680                                                                                                                               | I MoXXXI 1.107-2 0.2680                                                                                                                                                                           | 1.437-2                                                                                                                                       |
| $\mathbf{\epsilon}_0$ $\mathbf{\epsilon}_1$                                                                                                                                                                                                                         | 2s2p <sup>3</sup> p<br>CIII<br>8.606-2<br>0.4036<br>0.3175                                                                                                                                                         | 1-2p <sup>2-3</sup> p <sub>1</sub> ov 4.796-2 0.3403 0.2924                                                                                                                                            | NeVII 3.314-2 0.3143 0.2812                                                                                                                    | MgIX 2.537-2 0.3002 0.2748                                                                                                                   | SiXI<br>2.066-2<br>0.2913<br>0.2708                                                                                                                 | SXIII<br>1.754-2<br>0.2856<br>0.2681                                                                                                                  | ArXV<br>1.535-2<br>0.2815<br>0.2661                                                                                                                 | CaXVII<br>1.378-2<br>0.2785<br>0.2647                                                                                                            | 1.262-2<br>0.2763<br>0.2637                                                                                                                   | 1.115-2<br>0.2736<br>0.2624                                                                                                                      | 1.045-2<br>0.2694<br>0.2589                                                                                                                      | 1.035-2<br>0.2680<br>0.2577                                                                                                                     | 1.107-2<br>0.2680<br>0.2569                                                                                                                                                                       | 1.437-2<br>0.2707<br>0.2564                                                                                                                   |
| $oldsymbol{arepsilon}_0$ $oldsymbol{arepsilon}_1$                                                                                                                                                                                                                   | 252p <sup>3</sup> p<br>CIII<br>8.606-2<br>0.4036<br>0.3175<br>7.28-1                                                                                                                                               | 1. <sup>-2</sup> p <sup>2 - 3</sup> p <sub>1</sub> ov  4.796-2 0.3403 0.2924 5.78-1 4.04-2 1.45+0                                                                                                      | NeVII 3.314-2 0.3143 0.2812 5.18-1                                                                                                             | MgIX  2.537-2 0.3002 0.2748 4.83-1 2.12-2 1.09+0                                                                                             | SiXI<br>2.066-2<br>0.2913<br>0.2708<br>4.64-1                                                                                                       | SXIII<br>1.754-2<br>0.2856<br>0.2681<br>4.49-1                                                                                                        | Arxv<br>1.535-2<br>0.2815<br>0.2661<br>4.40-1                                                                                                       | CaXVII<br>1.378-2<br>0.2785<br>0.2647<br>4.33-1                                                                                                  | 1.262-2<br>0.2763<br>0.2637<br>4.25-1                                                                                                         | 1.115-2<br>0.2736<br>0.2624<br>4.10-1                                                                                                            | 1.045-2<br>0.2694<br>0.2589<br>3.96-1                                                                                                            | 1.035-2<br>0.2680<br>0.2577<br>3.78-1                                                                                                           | 1.107-2<br>0.2680<br>0.2569<br>3.62-1                                                                                                                                                             | 1.437-2<br>0.2707<br>0.2564<br>3.44-1                                                                                                         |
| ε <sub>0</sub><br>ε <sub>1</sub><br>c1                                                                                                                                                                                                                              | 2s2p <sup>3</sup> p<br>CIII<br>8.606-2<br>0.4036<br>0.3175<br>7.28-1<br>7.70-2                                                                                                                                     | 1-2p <sup>2-3</sup> p <sub>1</sub><br>ov<br>4.796-2<br>0.3403<br>0.2924<br>5.78-1<br>4.04-2                                                                                                            | NeVII  3.314-2 0.3143 0.2812 5.18-1 2.82-2                                                                                                     | MgIX 2.537-2 0.3002 0.2748 4.83-1 2.12-2 1.09+0 1.11+0                                                                                       | SiXI<br>2.066-2<br>0.2913<br>0.2708<br>4.64-1<br>1.79-2                                                                                             | SXIII<br>1.754-2<br>0.2856<br>0.2681<br>4.49-1<br>1.58-2                                                                                              | ArXV<br>1.535-2<br>0.2815<br>0.2661<br>4.40-1<br>1.40-2                                                                                             | CaXVII<br>1.378-2<br>0.2785<br>0.2647<br>4.33-1<br>1.26-2                                                                                        | 1.262-2<br>0.2763<br>0.2637<br>4.25-1<br>1.14-2                                                                                               | 1.115-2<br>0.2736<br>0.2624<br>4.10-1<br>9.93-3                                                                                                  | 1.045-2<br>0.2694<br>0.2589<br>3.96-1<br>9.21-3<br>7.63-1<br>8.76-1                                                                              | 1.035-2<br>0.2680<br>0.2577<br>3.78-1<br>9.05-3                                                                                                 | 1.107-2<br>0.2680<br>0.2569<br>3.62-1<br>9.62-3                                                                                                                                                   | 1.437-2<br>0.2707<br>0.2564<br>3.44-1<br>1.25-2<br>7.02-1<br>9.74-1                                                                           |
| ε <sub>0</sub><br>ε <sub>1</sub><br>c1<br>f1<br>A<br>κ                                                                                                                                                                                                              | 2s2p <sup>3</sup> p<br>CIII<br>8.606-2<br>0.4036<br>0.3175<br>7.28-1<br>7.70-2<br>1.98+0<br>1.37+0<br>1.61+0                                                                                                       | 1-2p <sup>2-3p</sup> 1  ov  4.796-2 0.3403 0.2924 5.78-1 4.04-2 1.45+0 1.27+0 1.34+0                                                                                                                   | NeVII  3.314-2 0.3143 0.2812 5.18-1 2.82-2 1.22+0 1.18+0 1.15+0                                                                                | MgIX 2.537-2 0.3002 0.2748 4.83-1 2.12-2 1.09+0 1.11+0 1.04+0                                                                                | SiXI  2.066-2 0.2913 0.2708 4.64-1 1.79-2 9.93-1 1.04+0 9.54-1                                                                                      | SXIII  1.754-2 0.2856 0.2681 4.49-1 1.58-2 9.26-1 9.87-1 8.92-1                                                                                       | ArXV<br>1.535-2<br>0.2815<br>0.2661<br>4.40-1<br>1.40-2<br>8.88-1<br>9.57-1<br>8.56-1                                                               | CaXVII<br>1.378-2<br>0.2785<br>0.2647<br>4.33-1<br>1.26-2<br>8.61-1<br>9.36-1<br>8.31-1                                                          | 1.262-2<br>0.2763<br>0.2637<br>4.25-1<br>1.14-2<br>8.37-1<br>9.19-1<br>8.07-1                                                                 | 1.115-2<br>0.2736<br>0.2624<br>4.10-1<br>9.93-3<br>7.95-1<br>8.92-1<br>7.67-1                                                                    | 1.045-2<br>0.2694<br>0.2589<br>3.96-1<br>9.21-3<br>7.63-1<br>8.76-1<br>7.35-1                                                                    | 1.035-2<br>0.2680<br>0.2577<br>3.78-1<br>9.05-3<br>7.28-1<br>8.78-1<br>7.00-1                                                                   | 1 .107-2<br>0.2680<br>0.2569<br>3.62-1<br>9.62-3<br>7.07-1<br>9.03-1<br>6.77-1                                                                                                                    | 1.437-2<br>0.2707<br>0.2564<br>3.44-1<br>1.25-2<br>7.02-1<br>9.74-1<br>6.66-1                                                                 |
| ε <sub>0</sub> ε <sub>1</sub> c1 F1 A κ                                                                                                                                                                                                                             | 2s2p <sup>3</sup> p<br>CIII<br>8.606-2<br>0.4036<br>0.3175<br>7.28-1<br>7.70-2<br>1.98+0<br>1.37+0<br>1.61+0<br>1.02+0                                                                                             | 1-2p <sup>2-3p</sup> 1<br>ov<br>4.796-2<br>0.3403<br>0.2924<br>5.78-1<br>4.04-2<br>1.45+0<br>1.27+0<br>1.34+0<br>1.14+0                                                                                | NeVII  3.314-2 0.3143 0.2812 5.18-1 2.82-2 1.22+0 1.18+0 1.15+0 1.10+0                                                                         | MgIX 2.537-2 0.3002 0.2748 4.83-1 2.12-2 1.09+0 1.11+0 1.04+0 1.05+0                                                                         | SiXI  2.066-2 0.2913 0.2708 4.64-1 1.79-2 9.93-1 1.04+0 9.54-1 9.81-1                                                                               | SXIII  1.754-2 0.2856 0.2681 4.49-1 1.58-2 9.26-1 9.87-1 8.92-1 9.34-1                                                                                | ArXV<br>1.535-2<br>0.2815<br>0.2661<br>4.40-1<br>1.40-2<br>8.88-1<br>9.57-1<br>8.56-1<br>9.07-1                                                     | CaXVII  1.378-2 0.2785 0.2647 4.33-1 1.26-2 8.61-1 9.36-1 8.31-1 8.87-1                                                                          | 1.262-2<br>0.2763<br>0.2637<br>4.25-1<br>1.14-2<br>8.37-1<br>9.19-1<br>8.07-1<br>8.71-1                                                       | 1.115-2<br>0.2736<br>0.2624<br>4.10-1<br>9.93-3<br>7.95-1<br>8.92-1<br>7.67-1<br>8.44-1                                                          | 1.045-2<br>0.2694<br>0.2589<br>3.96-1<br>9.21-3<br>7.63-1<br>8.76-1<br>7.35-1<br>8.27-1                                                          | 1.035-2<br>0.2680<br>0.2577<br>3.78-1<br>9.05-3<br>7.28-1<br>8.78-1<br>7.00-1<br>8.25-1                                                         | 1 MoXXXI<br>1.107-2<br>0.2680<br>0.2569<br>3.62-1<br>9.62-3<br>7.07-1<br>9.03-1<br>6.77-1<br>8.45-1                                                                                               | 1.437-2<br>0.2707<br>0.2564<br>3.44-1<br>1.25-2<br>7.02-1<br>9.74-1<br>6.66-1<br>9.02-1                                                       |
| ε <sub>0</sub><br>ε <sub>1</sub><br>c1<br>f1<br>A<br>κ                                                                                                                                                                                                              | 2s2p <sup>3</sup> p<br>CIII<br>8.606-2<br>0.4036<br>0.3175<br>7.28-1<br>7.70-2<br>1.98+0<br>1.37+0<br>1.61+0                                                                                                       | 1-2p <sup>2-3p</sup> 1  ov  4.796-2 0.3403 0.2924 5.78-1 4.04-2 1.45+0 1.27+0 1.34+0                                                                                                                   | NeVII  3.314-2 0.3143 0.2812 5.18-1 2.82-2 1.22+0 1.18+0 1.15+0                                                                                | MgIX 2.537-2 0.3002 0.2748 4.83-1 2.12-2 1.09+0 1.11+0 1.04+0                                                                                | SiXI  2.066-2 0.2913 0.2708 4.64-1 1.79-2 9.93-1 1.04+0 9.54-1                                                                                      | SXIII  1.754-2 0.2856 0.2681 4.49-1 1.58-2 9.26-1 9.87-1 8.92-1                                                                                       | ArXV<br>1.535-2<br>0.2815<br>0.2661<br>4.40-1<br>1.40-2<br>8.88-1<br>9.57-1<br>8.56-1                                                               | CaXVII<br>1.378-2<br>0.2785<br>0.2647<br>4.33-1<br>1.26-2<br>8.61-1<br>9.36-1<br>8.31-1                                                          | 1.262-2<br>0.2763<br>0.2637<br>4.25-1<br>1.14-2<br>8.37-1<br>9.19-1<br>8.07-1                                                                 | 1.115-2<br>0.2736<br>0.2624<br>4.10-1<br>9.93-3<br>7.95-1<br>8.92-1<br>7.67-1                                                                    | 1.045-2<br>0.2694<br>0.2589<br>3.96-1<br>9.21-3<br>7.63-1<br>8.76-1<br>7.35-1                                                                    | 1.035-2<br>0.2680<br>0.2577<br>3.78-1<br>9.05-3<br>7.28-1<br>8.78-1<br>7.00-1                                                                   | 1 .107-2<br>0.2680<br>0.2569<br>3.62-1<br>9.62-3<br>7.07-1<br>9.03-1<br>6.77-1                                                                                                                    | 1.437-2<br>0.2707<br>0.2564<br>3.44-1<br>1.25-2<br>7.02-1<br>9.74-1<br>6.66-1                                                                 |
| ε <sub>0</sub> ε <sub>1</sub> c1 F1 A κ A1 κ1                                                                                                                                                                                                                       | 2s2p <sup>3p</sup> CIII  8.606-2 0.4036 0.3175 7.28-1 7.70-2 1.98+0 1.37+0 1.61+0 1.02+0 4.29+0 3.12+0                                                                                                             | 1-2p <sup>2-3</sup> p <sub>1</sub> ov  4.796-2 0.3403 0.2924 5.78-1 4.04-2 1.45+0 1.27+0 1.34+0 2.34+0                                                                                                 | NeVII  3.314-2 0.3143 0.2812 5.18-1 2.82-2 1.22+0 1.18+0 1.15+0 1.79+0                                                                         | MgIX 2.537-2 0.3002 0.2748 4.83-1 2.12-2 1.09+0 1.11+0 1.04+0 1.05+0 1.67+0                                                                  | SiXI  2.066-2 0.2913 0.2708 4.64-1 1.79-2 9.93-1 1.04+0 9.54-1 9.81-1 1.65+0                                                                        | SXIII  1.754-2 0.2856 0.2681 4.49-1 1.58-2 9.26-1 9.87-1 8.92-1 9.34-1 1.66+0                                                                         | Arxv<br>1.535-2<br>0.2815<br>0.2661<br>4.40-1<br>1.40-2<br>8.88-1<br>9.57-1<br>8.56-1<br>9.07-1<br>1.68+0                                           | CaXVII  1.378-2 0.2785 0.2647 4.33-1 1.26-2 8.61-1 9.36-1 8.31-1 8.87-1 1.70+0                                                                   | 1.262-2<br>0.2763<br>0.2637<br>4.25-1<br>1.14-2<br>8.37-1<br>9.19-1<br>8.07-1<br>8.71-1<br>1.73+0                                             | 1.115-2<br>0.2736<br>0.2624<br>4.10-1<br>9.93-3<br>7.95-1<br>8.92-1<br>7.67-1<br>8.44-1<br>1.78+0                                                | 1.045-2<br>0.2694<br>0.2589<br>3.96-1<br>9.21-3<br>7.63-1<br>8.76-1<br>7.35-1<br>8.27-1<br>1.86+0                                                | 1.035-2<br>0.2680<br>0.2577<br>3.78-1<br>9.05-3<br>7.28-1<br>8.78-1<br>7.00-1<br>8.25-1<br>1.94+0                                               | 1 MoXXXI<br>1.107-2<br>0.2680<br>0.2569<br>3.62-1<br>9.62-3<br>7.07-1<br>9.03-1<br>6.77-1<br>8.45-1<br>2.00+0                                                                                     | 1.437-2<br>0.2707<br>0.2564<br>3.44-1<br>1.25-2<br>7.02-1<br>9.74-1<br>6.66-1<br>9.02-1<br>2.06+0                                             |
| ε <sub>0</sub> ε <sub>1</sub> c1 F1 A κ A1 κ1                                                                                                                                                                                                                       | 2s2p <sup>3p</sup> CIII  8.606-2 0.4036 0.3175 7.28-1 7.70-2 1.98+0 1.37+0 1.61+0 1.02+0 4.29+0 3.12+0                                                                                                             | 1.292 3p1  OV  4.796-2 0.3403 0.2924 5.78-1 4.04-2 1.45+0 1.27+0 1.34+0 2.34+0 2.72+0                                                                                                                  | NeVII  3.314-2 0.3143 0.2812 5.18-1 2.82-2 1.22+0 1.18+0 1.15+0 1.79+0                                                                         | MgIX 2.537-2 0.3002 0.2748 4.83-1 2.12-2 1.09+0 1.11+0 1.04+0 1.05+0 1.67+0                                                                  | SiXI  2.066-2 0.2913 0.2708 4.64-1 1.79-2 9.93-1 1.04+0 9.54-1 9.81-1 1.65+0                                                                        | SXIII  1.754-2 0.2856 0.2681 4.49-1 1.58-2 9.26-1 9.87-1 8.92-1 9.34-1 1.66+0                                                                         | Arxv<br>1.535-2<br>0.2815<br>0.2661<br>4.40-1<br>1.40-2<br>8.88-1<br>9.57-1<br>8.56-1<br>9.07-1<br>1.68+0                                           | CaXVII  1.378-2 0.2785 0.2647 4.33-1 1.26-2 8.61-1 9.36-1 8.31-1 8.87-1 1.70+0                                                                   | 1.262-2<br>0.2763<br>0.2637<br>4.25-1<br>1.14-2<br>8.37-1<br>9.19-1<br>8.07-1<br>8.71-1<br>1.73+0                                             | 1.115-2<br>0.2736<br>0.2624<br>4.10-1<br>9.93-3<br>7.95-1<br>8.92-1<br>7.67-1<br>8.44-1<br>1.78+0                                                | 1.045-2<br>0.2694<br>0.2589<br>3.96-1<br>9.21-3<br>7.63-1<br>8.76-1<br>7.35-1<br>8.27-1<br>1.86+0<br>3.11+0                                      | 1.035-2<br>0.2680<br>0.2577<br>3.78-1<br>9.05-3<br>7.28-1<br>8.78-1<br>7.00-1<br>8.25-1<br>1.94+0                                               | 1 MoXXXI<br>1.107-2<br>0.2680<br>0.2569<br>3.62-1<br>9.62-3<br>7.07-1<br>9.03-1<br>6.77-1<br>8.45-1<br>2.00+0<br>3.25+0                                                                           | 1.437-2<br>0.2707<br>0.2564<br>3.44-1<br>1.25-2<br>7.02-1<br>9.74-1<br>6.66-1<br>9.02-1<br>2.06+0<br>3.32+0                                   |
| ε <sub>0</sub> ε <sub>1</sub> c1 F1 A κ A1 κ1                                                                                                                                                                                                                       | 2s2p <sup>3</sup> p<br>CIII<br>8.606-2<br>0.4036<br>0.3175<br>7.28-1<br>7.70-2<br>1.98+0<br>1.37+0<br>1.02+0<br>4.29+0<br>3.12+0                                                                                   | 1-2p <sup>2-3</sup> p <sub>1</sub> ov  4.796-2 0.3403 0.2924 5.78-1 4.04-2 1.45+0 1.27+0 1.34+0 1.14+0 2.34+0 2.72+0  2-2p <sup>2-3</sup> p <sub>1</sub> ov                                            | NeVII  3.314-2 0.3143 0.2812 5.18-1 2.82-2 1.22+0 1.18+0 1.15+0 1.79+0 2.43+0  NeVII                                                           | MgIX 2.537-2 0.3002 0.2748 4.83-1 2.12-2 1.09+0 1.11+0 1.05+0 1.67+0 2.46+0                                                                  | SiXI  2.066-2 0.2913 0.2708 4.64-1 1.79-2 9.93-1 1.04+0 9.54-1 9.81-1 1.65+0 2.56+0                                                                 | SXIII  1.754-2 0.2856 0.2681 4.49-1 1.58-2 9.26-1 9.87-1 8.92-1 9.34-1 1.66+0 2.66+0                                                                  | Arxv<br>1.535-2<br>0.2815<br>0.2661<br>4.40-1<br>1.40-2<br>8.88-1<br>9.57-1<br>8.56-1<br>9.07-1<br>1.68+0<br>2.75+0                                 | CaXVII  1.378-2 0.2785 0.2647 4.33-1 1.26-2 8.61-1 9.36-1 8.31-1 8.87-1 1.70+0 2.82+0                                                            | 1.262-2 0.2763 0.2637 4.25-1 1.14-2 8.37-1 9.19-1 8.07-1 8.71-1 1.73+0 2.89+0                                                                 | 1.115-2<br>0.2736<br>0.2624<br>4.10-1<br>9.93-3<br>7.95-1<br>8.92-1<br>7.67-1<br>8.44-1<br>1.78+0<br>2.98+0                                      | 1.045-2 0.2694 0.2589 3.96-1 9.21-3 7.63-1 8.76-1 7.35-1 8.27-1 1.86+0 3.11+0                                                                    | 1.035-2 0.2680 0.2577 3.78-1 9.05-3 7.28-1 8.78-1 7.00-1 8.25-1 1.94+0 3.19+0                                                                   | I MoXXXI<br>1.107-2<br>0.2680<br>0.2569<br>3.62-1<br>9.62-3<br>7.07-1<br>9.03-1<br>6.77-1<br>8.45-1<br>2.00+0<br>3.25+0                                                                           | 1.437-2 0.2707 0.2564 3.44-1 1.25-2 7.02-1 9.74-1 6.66-1 9.02-1 2.06+0 3.32+0                                                                 |
| ε <sub>0</sub> ε <sub>1</sub> c1 F1 A κ A1 κ1 A2                                                                                                                                                                                                                    | 2s2p <sup>3</sup> p<br>CIII<br>8.606-2<br>0.4036<br>0.3175<br>7.28-1<br>7.70-2<br>1.98+0<br>1.61+0<br>1.02+0<br>4.29+0<br>3.12+0<br>CIII                                                                           | 1-2p <sup>2-3</sup> p <sub>1</sub> ov  4.796-2 0.3403 0.2924 5.78-1 4.04-2 1.45+0 1.27+0 1.34+0 1.14+0 2.34+0 2.72+0  2-2p <sup>2-3</sup> p <sub>1</sub> ov                                            | NeVII  3.314-2 0.3143 0.2812 5.18-1 2.82-2 1.22+0 1.18+0 1.15+0 1.79+0 2.43+0  NeVII                                                           | MgIX 2.537-2 0.3002 0.2748 4.83-1 2.12-2 1.09+0 1.11+0 1.05+0 1.67+0 2.46+0                                                                  | SiXI  2.066-2 0.2913 0.2708 4.64-1 1.79-2 9.93-1 1.04+0 9.54-1 9.81-1 1.65+0 2.56+0                                                                 | SXIII  1.754-2 0.2856 0.2681 4.49-1 1.58-2 9.26-1 9.87-1 8.92-1 9.34-1 1.66+0 2.66+0                                                                  | Arxv<br>1.535-2<br>0.2815<br>0.2661<br>4.40-1<br>1.40-2<br>8.88-1<br>9.57-1<br>8.56-1<br>9.07-1<br>1.68+0<br>2.75+0                                 | CaXVII  1.378-2 0.2785 0.2647 4.33-1 1.26-2 8.61-1 9.36-1 8.31-1 8.87-1 1.70+0 2.82+0                                                            | 1.262-2 0.2763 0.2637 4.25-1 1.14-2 8.37-1 9.19-1 8.07-1 8.71-1 1.73+0 2.89+0                                                                 | 1.115-2<br>0.2736<br>0.2624<br>4.10-1<br>9.93-3<br>7.95-1<br>8.92-1<br>7.67-1<br>8.44-1<br>1.78+0<br>2.98+0                                      | 1.045-2 0.2694 0.2589 3.96-1 9.21-3 7.63-1 8.76-1 7.35-1 8.27-1 1.86+0 3.11+0                                                                    | 1.035-2 0.2680 0.2577 3.78-1 9.05-3 7.28-1 8.78-1 7.00-1 8.25-1 1.94+0 3.19+0                                                                   | I MoXXXI<br>1.107-2<br>0.2680<br>0.2569<br>3.62-1<br>9.62-3<br>7.07-1<br>9.03-1<br>6.77-1<br>8.45-1<br>2.00+0<br>3.25+0                                                                           | 1.437-2 0.2707 0.2564 3.44-1 1.25-2 7.02-1 9.74-1 6.66-1 9.02-1 2.06+0 3.32+0                                                                 |
| ε <sub>0</sub> ε <sub>1</sub> c1 F1 A κ A1 κ1 Δ2                                                                                                                                                                                                                    | 2s2p <sup>3</sup> p<br>CIII<br>8.606-2<br>0.4036<br>0.3175<br>7.28-1<br>7.70-2<br>1.98-0<br>1.37+0<br>1.02+0<br>4.29+0<br>3.12+0<br>CIII<br>8.599-2                                                                | 1-2p <sup>2-3</sup> p <sub>1</sub> ov  4.796-2 0.3403 0.2924 5.78-1 4.04-2 1.45+0 1.27+0 1.34+0 2.34+0 2.72+0  cy-2p <sup>2-3</sup> p <sub>1</sub> ov                                                  | NeVII  3.314-2 0.3143 0.2812 5.18-1 2.82-2 1.22+0 1.18+0 1.15+0 1.10+0 1.79+0 2.43+0  NeVII                                                    | MgIX 2.537-2 0.3002 0.2748 4.83-1 2.12-2 1.09+0 1.11+0 1.05+0 1.67+0 2.46+0                                                                  | SiXI  2.066-2 0.2913 0.2708 4.64-1 1.79-2 9.93-1 1.04+0 9.54-1 9.81-1 1.65+0 2.56+0                                                                 | SXIII  1.754-2 0.2856 0.2681 4.49-1 1.58-2 9.26-1 9.87-1 8.92-1 9.34-1 1.66+0 2.66+0                                                                  | ArXV  1.535-2 0.2615 0.2661 4.40-1 1.40-2 8.88-1 9.57-1 8.56-1 9.07-1 1.68+0 2.75+0  ArXV                                                           | CaXVII  1.378-2 0.2785 0.2647 4.33-1 1.26-2 8.61-1 9.36-1 8.31-1 8.87-1 1.70+0 2.82+0  CaXVII                                                    | 1.262-2 0.2763 0.2637 4.25-1 1.14-2 8.37-1 9.19-1 8.07-1 8.71-1 1.73+0 2.89+0                                                                 | 1.115-2 0.2736 0.2624 4.10-1 9.93-3 7.95-1 8.92-1 7.67-1 8.44-1 1.78+0 2.98+0  FEXXIII                                                           | 1.045-2 0.2694 0.2589 3.96-1 9.21-3 7.63-1 8.76-1 7.35-1 8.27-1 1.86+0 3.11+0  ZnXXVII                                                           | 1.035-2 0.2680 0.2577 3.78-1 9.05-3 7.28-1 8.78-1 7.00-1 8.25-1 1.94+0 3.19+0  KrXXXII                                                          | I MoXXXI<br>1.107-2<br>0.2680<br>0.2569<br>3.62-1<br>9.62-3<br>7.07-1<br>9.03-1<br>6.77-1<br>8.45-1<br>2.00+0<br>3.25+0                                                                           | 1.437-2 0.2707 0.2564 3.44-1 1.25-2 7.02-1 9.74-1 6.66-1 9.02-1 2.06+0 3.32+0  XeLI 8.984-2                                                   |
| ε <sub>0</sub> ε <sub>1</sub> c1 F1 A κ A1 κ1 Δ2 Ε <sub>0</sub>                                                                                                                                                                                                     | 2s2p <sup>3</sup> p<br>CIII<br>8.606-2<br>0.4036<br>0.3175<br>7.28-1<br>7.70-2<br>1.98+0<br>1.37+0<br>1.02+0<br>4.29+0<br>3.12+0<br>CIII<br>8.599-2<br>0.4035                                                      | 2-2p <sup>2-3</sup> p <sub>1</sub> ov  4.796-2 0.3403 0.2924 5.78-1 4.04-2 1.45+0 1.27+0 1.34+0 2.34+0 2.72+0  ov  4.784-2 0.3402                                                                      | NeVII  3.314-2 0.3143 0.2812 5.18-1 2.82-2 1.22+0 1.18+0 1.15+0 1.79+0 2.43+0  NeVII  2.3.294-2 0.3141                                         | MgIX 2.537-2 0.3002 0.2748 4.83-1 2.12-2 1.09+0 1.11+0 1.04+0 1.05+0 2.46+0  MgIX 2.509-2 0.2999                                             | SiXI  2.066-2 0.2913 0.2708 4.64-1 1.79-2 9.93-1 1.04+0 9.54-1 9.81-1 1.65+0 2.56+0  SiXI  2.026-2 0.2911                                           | SXIII  1.754-2 0.2856 0.2681 4.49-1 1.58-2 9.26-1 9.87-1 8.92-1 9.34-1 1.66+0 2.66+0  SXIII  1.701-2 0.2851                                           | Arxv  1.535-2 0.2815 0.2661 4.40-1 1.40-2 8.88-1 9.57-1 8.56-1 9.07-1 1.68+0 2.75+0  Arxv  1.467-2 0.2808                                           | CaXVII  1.378-2 0.2785 0.2647 4.33-1 1.26-2 8.61-1 9.36-1 8.31-1 1.70+0 2.82+0  CaXVII  1.291-2 0.2776                                           | 1.262-2 0.2763 0.2637 4.25-1 1.14-2 8.37-1 9.19-1 8.07-1 8.71-1 1.73+0 2.89+0  Tixix 1.154-2 0.2752                                           | 1.115-2 0.2736 0.2624 4.10-1 9.93-3 7.95-1 8.92-1 7.67-1 8.44-1 1.78+0 2.98+0  FEXXIII 9.547-3 0.2720                                            | 1.045-2 0.2694 0.2589 3.96-1 9.21-3 7.63-1 8.76-1 7.35-1 8.27-1 1.86+0 3.11+0  ZnXXVII 8.197-3 0.2671                                            | 1.035-2 0.2680 0.2577 3.78-1 9.05-3 7.28-1 8.78-1 7.00-1 8.25-1 1.94+0 3.19+0  KrXXXII 6.785-3 0.2644                                           | I MoXXXII  1.107-2 0.2680 0.2569 3.62-1 9.62-3 7.07-1 9.03-1 6.77-1 8.45-1 2.00+0 3.25+0  I MoXXXIX 0.2628                                                                                        | 1.437-2 0.2707 0.2564 3.44-1 1.25-2 7.02-1 9.74-1 6.66-1 9.02-1 2.06+0 3.32+0  XeLI 8.984-1                                                   |
| $ \epsilon_0 $ $ \epsilon_1 $ $ \epsilon_2 $ $ \epsilon_2 $ $ \epsilon_0 $ $ \epsilon_1 $                                                                                 | 2s2p <sup>3</sup> p<br>CIII<br>8.606-2<br>0.4036<br>0.3175<br>7.28-1<br>7.70-2<br>1.98+0<br>1.37+0<br>1.61+0<br>1.02+0<br>4.29+0<br>3.12+0<br>CIII<br>8.599-2<br>0.4035<br>0.3175                                  | 1-2p <sup>2-3</sup> p <sub>1</sub> ov 4.796-2 0.3403 0.2924 5.78-1 4.04-2 1.45+0 1.27+0 1.34+0 2.34+0 2.72+0 c 2-2p <sup>2-3</sup> p <sub>1</sub> ov 4.784-2 0.3402 0.2924                             | NeVII  3.314-2 0.3143 0.2812 5.18-1 2.82-2 1.22+0 1.18+0 1.15+0 1.79+0 2.43+0  NeVII  2.3.294-2 0.3141 0.2812                                  | MgIX 2.537-2 0.3002 0.2748 4.83-1 2.12-2 1.09+0 1.11+0 1.04+0 1.05+0 2.46+0  MgIX 2.509-2 0.2999 0.2748                                      | SiXI  2.066-2 0.2913 0.2708 4.64-1 1.79-2 9.93-1 1.04+0 9.54-1 9.81-1 1.65+0 2.56+0  SiXI  2.026-2 0.2911 0.2708                                    | SXIII  1.754-2 0.2856 0.2681 4.49-1 1.58-2 9.26-1 9.87-1 8.92-1 9.34-1 1.66+0 2.66+0  SXIII  1.701-2 0.2851 0.2681                                    | ArXV  1.535-2 0.2815 0.2661 4.40-1 1.40-2 8.88-1 9.57-1 8.56-1 9.07-1 1.68+0 2.75+0  ArXV  1.467-2 0.2808 0.2661                                    | CaXVII  1.378-2 0.2785 0.2647 4.33-1 1.26-2 8.61-1 9.36-1 8.31-1 1.70+0 2.82+0  CaXVII  1.291-2 0.2776 0.2647                                    | 1.262-2 0.2763 0.2637 4.25-1 1.14-2 8.37-1 9.19-1 8.07-1 1.73+0 2.89+0  TiXIX  1.154-2 0.2752 0.2637                                          | 1.115-2 0.2736 0.2624 4.10-1 9.93-3 7.95-1 8.92-1 7.67-1 8.44-1 1.78+0 2.98+0  FEXXIII 9.547-3 0.2720 0.2624                                     | 1.045-2 0.2694 0.2589 3.96-1 9.21-3 7.63-1 8.76-1 7.35-1 8.27-1 1.86+0 3.11+0  ZNXXVII  8.197-3 0.2671 0.2589                                    | 1.035-2 0.2680 0.2577 3.78-1 9.05-3 7.28-1 8.78-1 7.00-1 8.25-1 1.94+0 3.19+0  KrXXXII 6.785-3 0.2644 0.2577                                    | I MoXXXII  1.107-2 0.2680 0.2569 3.62-1 9.62-3 7.07-1 9.03-1 6.77-1 8.45-1 2.00+0 3.25+0  I MoXXXIX  5.852-3 0.2628 0.2569                                                                        | 1.437-2 0.2707 0.2564 3.44-1 1.25-2 7.02-1 9.74-1 6.66-1 9.02-1 2.06+0 3.32+0  XeLI  8.984-: 0.2654 0.2564 4.19-1                             |
| $\epsilon_0$ $\epsilon_1$ $\epsilon_1$ $\epsilon_1$ $\epsilon_1$ $\epsilon_2$ $\epsilon_2$ $\epsilon_2$ $\epsilon_3$ $\epsilon_4$ $\epsilon_5$ $\epsilon_6$ $\epsilon_1$ $\epsilon_1$                                                                               | 2s2p <sup>3</sup> p<br>CIII<br>8.606-2<br>0.4036<br>0.3175<br>7.28-1<br>7.70-2<br>1.98+0<br>1.37+0<br>1.61+0<br>1.02+0<br>4.29+0<br>3.12+0<br>2s2p <sup>3</sup> p<br>CIII<br>8.599-2<br>0.4035<br>0.3175<br>7.29-1 | 2-2p <sup>2-3</sup> p <sub>1</sub> OV  4.796-2 0.3403 0.2924 5.78-1 4.04-2 1.45+0 1.27+0 1.34+0 2.72+0 0.72+0 OV  4.784-2 0.3402 0.2924 5.76-1                                                         | NeVII  3.314-2 0.3143 0.2812 5.18-1 2.82-2 1.22+0 1.18+0 1.15+0 1.79+0 2.43+0  NeVII  2.3.294-2 0.3141 0.2812 5.16-1                           | MgIX  2.537-2 0.3002 0.2748 4.83-1 2.12-2 1.09+0 1.11+0 1.05+0 1.67+0 2.46+0  MgIX  2.509-2 0.2999 0.2748 4.80-1                             | SiXI  2.066-2 0.2913 0.2708 4.64-1 1.79-2 9.93-1 1.04+0 9.54-1 9.81-1 1.65+0 2.56+0  SiXI  2.026-2 0.2911 0.2708 4.61-1                             | SXIII  1.754-2 0.2856 0.2681 4.49-1 1.58-2 9.26-1 9.87-1 8.92-1 9.34-1 1.66+0  SXIII 1.701-2 0.2851 0.2681 4.48-1                                     | Arxv  1.535-2 0.2615 0.2661 4.40-1 1.40-2 8.88-1 9.57-1 8.56-1 9.07-1 1.68+0 2.75+0  Arxv  1.467-2 0.2808 0.2661 4.38-1                             | CaXVII  1.378-2 0.2785 0.2647 4.33-1 1.26-2 8.61-1 9.36-1 8.31-1 1.70+0 2.82+0  CaXVII  1.291-2 0.2776 0.2647 4.29-1                             | 1.262-2 0.2763 0.2637 4.25-1 1.14-2 8.37-1 9.19-1 8.07-1 8.71-1 1.73+0 2.89+0  TiXIX 1.154-2 0.2752 0.2637 4.22-1                             | 1.115-2 0.2736 0.2624 4.10-1 9.93-3 7.95-1 8.92-1 7.67-1 8.44-1 1.78+0 2.98+0  FEXXIII 9.547-3 0.2720 0.2624 4.11-1                              | 1.045-2 0.2694 0.2589 3.96-1 9.21-3 7.63-1 8.76-1 7.35-1 8.27-1 1.86+0 3.11+0  ZnXXVII  8.197-3 0.2671 0.2589 4.02-1                             | 1.035-2 0.2680 0.2577 3.78-1 9.05-3 7.28-1 8.78-1 7.00-1 8.25-1 1.94+0 3.19+0  KrXXXII 6.785-3 0.2644 0.2577 3.94-1                             | I MoXXXII  1.107-2 0.2680 0.2569 3.62-1 9.62-3 7.07-1 9.03-1 6.77-1 8.45-1 2.00+0 3.25+0  I MoXXXIX  5.852-3 0.2628 0.2569 3.90-1                                                                 | 1.437-2 0.2707 0.2564 3.44-1 1.25-2 7.02-1 9.74-1 6.66-1 9.02-1 2.06+0 3.32+0  XeLI  8.984-: 0.2654 0.2564 4.19-1                             |
| $\epsilon_0$ $\epsilon_1$ $\epsilon_1$ $\epsilon_1$ $\epsilon_1$ $\epsilon_2$ $\epsilon_3$ $\epsilon_4$ $\epsilon_6$ $\epsilon_1$ $\epsilon_1$ $\epsilon_1$ $\epsilon_1$ $\epsilon_2$ $\epsilon_1$ $\epsilon_1$ $\epsilon_1$                                        | 2s2p <sup>3p</sup> CIII  8.606-2 0.4036 0.3175 7.28-1 7.70-2 1.98+0 1.37+0 1.61+0 1.02+0 4.29+0 3.12+0 CIII  8.599-2 0.4035 0.3175 7.29-1 8.55-2                                                                   | 2-2p <sup>2-3</sup> p <sub>1</sub> OV  4.796-2 0.3403 0.2924 5.78-1 4.04-2 1.45+0 1.27+0 1.34+0 2.72+0 2.72+0 OV  4.784-2 0.3402 0.2924 5.76-1 4.20-2                                                  | NeVII  3.314-2 0.3143 0.2812 5.18-1 2.82-2 1.22+0 1.18+0 1.15+0 1.79+0 2.43+0  NeVII  3.294-2 0.3141 0.2812 5.16-1 2.88-2                      | MgIX  2.537-2 0.3002 0.2748 4.83-1 2.12-2 1.09+0 1.11+0 1.05+0 1.67+0 2.46+0  MgIX  2.509-2 0.2999 0.2748 4.80-1 2.14-2                      | SiXI  2.066-2 0.2913 0.2708 4.64-1 1.79-2 9.93-1 1.04+0 9.54-1 9.81-1 1.65+0 2.56+0  SiXI  2.026-2 0.2911 0.2708 4.61-1 1.80-2                      | SXIII  1.754-2 0.2856 0.2681 4.49-1 1.58-2 9.26-1 9.87-1 8.92-1 9.34-1 1.66+0 2.66+0  SXIII  1.701-2 0.2851 0.2681 4.48-1 1.57-2                      | Arxv  1.535-2 0.2615 0.2661 4.40-1 1.40-2 8.88-1 9.57-1 8.56-1 9.07-1 1.68+0 2.75+0  Arxv  1.467-2 0.2808 0.2661 4.38-1 1.37-2                      | CaXVII  1.378-2 0.2785 0.2647 4.33-1 1.26-2 8.61-1 9.36-1 8.31-1 1.70+0 2.82+0  CaXVII  1.291-2 0.2776 0.2647 4.29-1 1.20-2                      | 1.262-2 0.2763 0.2637 4.25-1 1.14-2 8.37-1 9.19-1 8.07-1 8.71-1 1.73+0 2.89+0  Tixix 1.154-2 0.2752 0.2637 4.22-1 1.06-2                      | 1.115-2 0.2736 0.2624 4.10-1 9.93-3 7.95-1 8.92-1 7.67-1 8.44-1 1.78+0 2.98+0  FEXXIII 9.547-3 0.2720 0.2624 4.11-1 8.70-3                       | 1.045-2 0.2694 0.2589 3.96-1 9.21-3 7.63-1 8.76-1 7.35-1 8.27-1 1.86+0 3.11+0  ZnXXVII 8.197-3 0.2671 0.2589 4.02-1 7.58-3                       | 1.035-2 0.2680 0.2577 3.78-1 9.05-3 7.28-1 8.78-1 7.00-1 8.25-1 1.94+0 3.19+0  KrXXXII 6.785-3 0.2644 0.2577 3.94-1 6.68-3                      | I MoXXXI<br>1.107-2<br>0.2680<br>0.2569<br>3.62-1<br>9.62-3<br>7.07-1<br>9.03-1<br>6.77-1<br>8.45-1<br>2.00+0<br>3.25+0<br>I MoXXXIX<br>5.852-3<br>0.2628<br>0.2569<br>3.90-1<br>6.24-3           | 1.437-2 0.2707 0.2564 3.44-1 1.25-2 7.02-1 9.74-1 6.66-1 9.02-1 2.06+0 3.32+0  XeLI  8.984-2 0.2654 4.19-1 8.14-3                             |
| $\epsilon_0$ $\epsilon_1$ C1 F1 A K A1 K1 A2 $\epsilon_0$ $\epsilon_0$ $\epsilon_1$ C1 F1 A                                                                                                                                                                         | 2s2p <sup>3</sup> p<br>CITI<br>8.606-2<br>0.4036<br>0.3175<br>7.28-1<br>7.70-2<br>1.37+0<br>1.61+0<br>1.02+0<br>4.29+0<br>3.12+0<br>CITI<br>8.599-2<br>0.4035<br>0.3175<br>7.29-1<br>8.55-2<br>1.83+0              | 2-2p <sup>2-3</sup> p <sub>1</sub> OV  4.796-2 0.3403 0.2924 5.78-1 4.04-2 1.45+0 1.27+0 1.34+0 2.72+0 2-2p <sup>2-3</sup> p <sub>1</sub> OV  4.784-2 0.3402 0.2924 5.76-1 4.20-2 1.40+0               | NeVII  3.314-2 0.3143 0.2812 5.18-1 2.82-2 1.22+0 1.18+0 1.15+0 1.79+0 2.43+0  NeVII  3.294-2 0.3141 0.2812 5.16-1 2.88-2 1.19+0               | MgIX  2.537-2 0.3002 0.2748 4.83-1 2.12-2 1.09+0 1.11+0 1.05+0 1.67+0 2.46+0  MgIX  2.509-2 0.2999 0.2748 4.80-1 2.14-2 1.06+0               | SiXI  2.066-2 0.2913 0.2708 4.64-1 1.79-2 9.93-1 1.04+0 9.54-1 9.81-1 1.65+0 2.56+0  SiXI  2.026-2 0.2911 0.2708 4.61-1 1.80-2 9.69-1               | SXIII  1.754-2 0.2856 0.2681 4.49-1 1.58-2 9.26-1 9.87-1 8.92-1 9.34-1 1.66+0 2.66+0  SXIII  1.701-2 0.2851 0.2681 4.48-1 1.57-2 9.07-1               | ArXV  1.535-2 0.2815 0.2661 4.40-1 1.40-2 8.88-1 9.57-1 8.56-1 9.07-1 1.68+0 2.75+0  ArXV  1.467-2 0.2808 0.2661 4.38-1 1.37-2 8.67-1               | CaXVII  1.378-2 0.2785 0.2647 4.33-1 1.26-2 8.61-1 9.36-1 8.31-1 1.70+0 2.82+0  CaXVII  1.291-2 0.2776 0.2647 4.29-1 1.20-2 8.38-1               | 1.262-2 0.2763 0.2637 4.25-1 1.14-2 8.37-1 9.19-1 8.07-1 8.71-1 1.73+0 2.89+0  TiXIX 1.154-2 0.2752 0.2637 4.22-1 1.06-2 8.12-1               | 1.115-2 0.2736 0.2624 4.10-1 9.93-3 7.95-1 8.92-1 7.67-1 8.44-1 1.78+0 2.98+0  FEXXIII 9.547-3 0.2720 0.2624 4.11-1 8.70-3 7.65-1                | 1.045-2 0.2694 0.2589 3.96-1 9.21-3 7.63-1 8.76-1 7.35-1 8.27-1 1.86+0 3.11+0  ZNXXVII 8.197-3 0.2671 0.2589 4.02-1 7.58-3 7.24-1                | 1.035-2 0.2680 0.2577 3.78-1 9.05-3 7.28-1 8.78-1 7.00-1 8.25-1 1.94+0 3.19+0  KrXXXII 6.785-3 0.2644 0.2577 3.94-1 6.68-3 6.73-1               | I MoXXXI<br>1.107-2<br>0.2680<br>0.2569<br>3.62-1<br>9.62-3<br>7.07-1<br>9.03-1<br>6.77-1<br>8.45-1<br>2.00+0<br>3.25+0<br>I MoXXXIX<br>5.852-3<br>0.2628<br>0.2569<br>3.90-1<br>6.24-3<br>6.36-1 | 1.437-2 0.2707 0.2564 3.44-1 1.25-2 7.02-1 9.74-1 6.66-1 9.02-1 2.06+0 3.32+0  XeLI  8.984-2 0.2564 4.19-1 8.14-3 7.72-1 7.99-1               |
| $\epsilon_0$ $\epsilon_1$ $\epsilon_1$ $\epsilon_1$ $\epsilon_2$ $\epsilon_3$ $\epsilon_4$ $\epsilon_6$ $\epsilon_1$ $\epsilon_1$ $\epsilon_1$ $\epsilon_2$ $\epsilon_3$ $\epsilon_4$ $\epsilon_5$ $\epsilon_6$ $\epsilon_1$ $\epsilon_1$ $\epsilon_1$ $\epsilon_2$ | 2s2p <sup>3p</sup> CITI  8.606-2 0.4036 0.3175 7.28-1 7.70-2 1.98+0 1.37+0 1.02+0 4.29+0 3.12+0 CITI  8.599-2 0.4035 0.3175 7.29-1 8.55-2 1.83+0 1.23+0                                                            | 2-2p <sup>2-3</sup> p <sub>1</sub> OV  4.796-2 0.3403 0.2924 5.78-1 4.04-2 1.45+0 1.27+0 1.34+0 2.72+0 2-2p <sup>2-3</sup> p <sub>1</sub> OV  4.784-2 0.3402 0.2924 5.76-1 4.20-2 1.40+0 1.21+0        | NeVII  3.314-2 0.3143 0.2812 5.18-1 2.82-2 1.22+0 1.18+0 1.15+0 1.10+0 2.43+0  NeVII  2.3.294-2 0.3141 0.2812 5.16-1 2.88-2 1.19+0 1.14+0      | MgIX  2.537-2 0.3002 0.2748 4.83-1 2.12-2 1.09+0 1.11+0 1.05+0 1.67+0 2.46+0  MgIX  2.509-2 0.2999 0.2748 4.80-1 2.14-2 1.06+0 1.08+0        | SiXI  2.066-2 0.2913 0.2708 4.64-1 1.79-2 9.93-1 1.04+0 9.54-1 9.81-1 1.65+0 2.56+0  SiXI  2.026-2 0.2911 0.2708 4.61-1 1.80-2 9.69-1 1.01+0        | SXIII  1.754-2 0.2856 0.2681 4.49-1 1.58-2 9.26-1 9.87-1 8.92-1 9.34-1 1.66+0 2.66+0  SXIII  1.701-2 0.2851 0.2681 4.48-1 1.57-2 9.07-1 9.57-1        | Arxv  1.535-2 0.2815 0.2661 4.40-1 1.40-2 8.88-1 9.57-1 8.56-1 9.07-1 1.68+0 2.75+0  Arxv  1.467-2 0.2808 0.2661 4.38-1 1.37-2 8.67-1 9.26-1        | CaXVII  1.378-2 0.2785 0.2647 4.33-1 1.26-2 8.61-1 9.36-1 8.31-1 1.70+0 2.82+0  CaXVII  1.291-2 0.2776 0.2647 4.29-1 1.20-2 8.38-1 9.02-1        | 1.262-2 0.2763 0.2637 4.25-1 1.14-2 8.37-1 9.19-1 8.07-1 8.71-1 1.73+0 2.89+0  TiXIX  1.154-2 0.2752 0.2637 4.22-1 1.06-2 8.12-1 8.78-1       | 1.115-2 0.2736 0.2624 4.10-1 9.93-3 7.95-1 8.92-1 7.67-1 8.44-1 1.78+0 2.98+0  FEXXIII 9.547-3 0.2720 0.2624 4.11-1 8.70-3 7.65-1 8.21-1         | 1.045-2 0.2694 0.2589 3.96-1 9.21-3 7.63-1 8.76-1 7.35-1 8.27-1 1.96+0 3.11+0  ZNXXVII  8.197-3 0.2671 0.2589 4.02-1 7.58-3 7.24-1 7.62-1        | 1.035-2 0.2680 0.2577 3.78-1 9.05-3 7.28-1 8.78-1 7.00-1 8.25-1 1.94+0 3.19+0  KrXXXII 6.785-3 0.2644 0.2577 3.94-1 6.68-3 6.73-1 6.79-1        | I MoXXXI  1.107-2 0.2680 0.2569 3.62-1 9.62-3 7.07-1 9.03-1 6.77-1 8.45-1 2.00+0 3.25+0  I MoXXXIX  5.852-3 0.2628 0.2569 3.90-1 6.24-3 6.36-1 6.12-1                                             | 1.437-2 0.2707 0.2564 3.44-1 1.25-2 7.02-1 9.74-1 6.66-1 9.02-1 2.06+0 3.32+0  XeLI  8.984-2 0.2654 0.2564 4.19-1 8.14-3 7.72-1 7.99-1 7.58-1 |
| ε <sub>0</sub> ε <sub>1</sub> C1 A K A1 K1 A2 Δε ε <sub>0</sub> ε <sub>1</sub> C1 F1 A                                                                                                                                                                              | 2s2p <sup>3p</sup> CIII  8.606-2 0.4036 0.3175 7.28-1 7.70-2 1.98+0 1.37+0 1.02+0 4.29+0 3.12+0  2s2p <sup>3p</sup> CIII  8.599-2 0.4035 0.3175 7.29-1 8.55-2 1.83+0 1.23+0 1.61+0                                 | 2-2p <sup>2-3</sup> p <sub>1</sub> OV  4.796-2 0.3403 0.2924 5.78-1 4.04-2 1.45+0 1.27+0 1.34+0 2.72+0 2-2p <sup>2-3</sup> p <sub>1</sub> OV  4.784-2 0.3402 0.2924 5.76-1 4.20-2 1.40+0 1.21+0 1.34+0 | NeVII  3.314-2 0.3143 0.2812 5.18-1 2.82-2 1.22+0 1.18+0 1.15+0 1.79+0 2.43+0  NeVII  3.294-2 0.3141 0.2812 5.16-1 2.88-2 1.19+0 1.15+0 1.15+0 | MgIX  2.537-2 0.3002 0.2748 4.83-1 2.12-2 1.09+0 1.11+0 1.05+0 1.67+0 2.46+0  MgIX  2.509-2 0.2999 0.2748 4.80-1 2.14-2 1.06+0 1.08+0 1.04+0 | SiXI  2.066-2 0.2913 0.2708 4.64-1 1.79-2 9.93-1 1.04+0 9.54-1 9.81-1 1.65+0 2.56+0  SiXI  2.026-2 0.2911 0.2708 4.61-1 1.80-2 9.69-1 1.01+0 9.46-1 | SXIII  1.754-2 0.2856 0.2681 4.49-1 1.58-2 9.26-1 9.87-1 8.92-1 9.34-1 1.66+0 2.66+0  SXIII  1.701-2 0.2851 0.2681 4.48-1 1.57-2 9.07-1 9.57-1 8.87-1 | ArXV  1.535-2 0.2815 0.2661 4.40-1 1.40-2 8.88-1 9.57-1 8.56-1 9.07-1 1.68+0 2.75+0  ArXV  1.467-2 0.2808 0.2661 4.38-1 1.37-2 8.67-1 9.26-1 8.49-1 | CaXVII  1.378-2 0.2785 0.2647 4.33-1 1.26-2 8.61-1 9.36-1 8.31-1 1.70+0 2.82+0  CaXVII  1.291-2 0.2776 0.2647 4.29-1 1.20-2 8.38-1 9.02-1 8.21-1 | 1.262-2 0.2763 0.2637 4.25-1 1.14-2 8.37-1 9.19-1 8.07-1 8.71-1 1.73+0 2.89+0  TiXIX 1.154-2 0.2752 0.2637 4.22-1 1.06-2 8.12-1 8.78-1 7.96-1 | 1.115-2 0.2736 0.2624 4.10-1 9.93-3 7.95-1 8.92-1 7.67-1 8.44-1 1.78+0 2.98+0  FEXXIII  9.547-3 0.2720 0.2624 4.11-1 8.70-3 7.65-1 8.21-1 7.51-1 | 1.045-2 0.2694 0.2589 3.96-1 9.21-3 7.63-1 8.76-1 7.35-1 8.27-1 1.86+0 3.11+0  2nXXVII  8.197-3 0.2671 0.2589 4.02-1 7.58-3 7.24-1 7.62-1 7.11-1 | 1.035-2 0.2680 0.2577 3.78-1 9.05-3 7.28-1 8.78-1 7.00-1 8.25-1 1.94+0 3.19+0  KrXXXII 6.785-3 0.2644 0.2577 3.94-1 6.68-3 6.73-1 6.79-1 6.61-1 | I MoXXXII  1.107-2 0.2680 0.2569 3.62-1 9.62-3 7.07-1 9.03-1 6.77-1 8.45-1 2.00+0 3.25+0  I MoXXXIX  5.852-3 0.2628 0.2569 3.90-1 6.24-3 6.36-1 6.12-1 6.25-1                                     | 1.437-2 0.2707 0.2564 3.44-1 1.25-2 7.02-1 9.74-1 6.66-1 9.02-1 2.06+0 3.32+0  XeLI  8.984-2 0.2654 0.2564 4.19-1 8.14-3 7.72-1               |

TABLE IV. Fit Parameters for Excitation Cross Sections and Rate Coefficients for  $\Delta n = 0$  Transitions, Z = 6, 8, 10, 12, 14, 16, 18, 20, 22, 26, 30, 36, 42, 54 See page 7 for Explanation of Tables

|            | 2 <b>s</b> 2 <b>p</b> <sup>3</sup> <b>P</b> <sub>1</sub> | -2p <sup>2</sup> <sup>3</sup> P <sub>2</sub> |         |         |         |         |         |         |         |         |         |          |         |         |
|------------|----------------------------------------------------------|----------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|---------|---------|
|            | CIII                                                     | ov                                           | NeVII   | MgIX    | SiXI    | SXIII   | ArXV    | CaXVII  | TiXIX   | FeXXIII | ZnXXVII | KrXXXIII | MoXXXIX | XeLI    |
| Δε         | 8.611-2                                                  | 4.806-2                                      | 3.330-2 | 2.562-2 | 2.100-2 | 1.798-2 | 1.589-2 | 1.440-2 | 1.332-2 | 1.192-2 | 1.120-2 | 1.103-2  | 1.167-2 | 1.422-2 |
| εο         | 0.4036                                                   | 0.3403                                       | 0.3143  | 0.3002  | 0.2913  | 0.2856  | 0.2815  | 0.2785  | 0.2763  | 0.2736  | 0.2694  | 0.2680   | 0.2680  | 0.2707  |
| ε,         | 0.3175                                                   | 0.2923                                       | 0.2810  | 0.2746  | 0.2705  | 0.2676  | 0.2656  | 0.2641  | 0.2630  | 0.2617  | 0.2581  | 0.2570   | 0.2563  | 0.2560  |
| C1         | 1.21+0                                                   | 9.60-1                                       | 8.61-1  | 8.04-1  | 7.72-1  | 7.53-1  | 7.39-1  | 7.28-1  | 7.23-1  | 7.25-1  | 7.62-1  | 8.83-1   | 1.03+0  | 1.28+0  |
| Fl         | 8.56-2                                                   | 4.21-2                                       | 2.91-2  | 2.18-2  | 1.84-2  | 1.64-2  | 1.47-2  | 1.33-2  | 1.22-2  | 1.07-2  | 9.96-3  | 9.79-3   | 1.04-2  | 1.33-2  |
| A          | 3.06+0                                                   | 2.34+0                                       | 1.99+0  | 1.79+0  | 1.64+0  | 1.54+0  | 1.49+0  | 1.45+0  | 1.42+0  | 1.41+0  | 1.40+0  | 1.71+0   | 2.00+0  | 2.56+0  |
| κ          | 1.23+0                                                   | 1.22+0                                       | 1.15+0  | 1.09+0  | 1.02+0  | 9.75-1  | 9.48-1  | 9.32-1  | 9.19-1  | 9.01-1  | 8.88-1  | 8.82-1   | 8.93-1  | 9.39-1  |
| A1         | 2.68+0                                                   | 2.23+0                                       | 1.93+0  | 1.74+0  | 1.60+0  | 1.51+0  | 1.45+0  | 1.41+0  | 1.39+0  | 1.37+0  | 1.43+0  | 1.66+0   | 1.95+0  | 2.50+0  |
| κ1         | 1.02+0                                                   | 1.14+0                                       | 1.10+0  | 1.05+0  | 9.87-1  | 9.41-1  | 9.14-1  | 8.96-1  | 8.82~1  | 8.61-1  | 8.47-1  | 8.44-1   | 8.59-1  | 9.06-1  |
| A2         | 4.32+0                                                   | 2.35+0                                       | 1.82+0  | 1.73+0  | 1.74+0  | 1.81+0  | 1.91+0  | 2.06+0  | 2.23+0  | 2.60+0  | 2.92+0  | 3.10+0   | 3.31+0  | 3.45+0  |
| K2         | 3.12+0                                                   | 2.72+0                                       | 2.43+0  | 2.46+0  | 2.56+0  | 2.67+0  | 2.76+0  | 2.83+0  | 2.89+0  | 2.99+0  | 3.11+0  | 3.20+0   | 3.26+0  | 3.33+0  |
|            | 252p <sup>3</sup> P <sub>2</sub>                         | -2p <sup>2 3</sup> P <sub>2</sub>            |         |         |         |         |         |         |         |         |         |          |         |         |
|            | CIII                                                     | ov                                           | NeVII   | MgIX    | SiXI    | SXIII   | ArXV    | CaXVII  | TiXIX   | FeXXIII | ZnXXVII | KrXXXIII | Moxxxix | XeLI    |
| ΔE         | 8.604-2                                                  | 4.794-2                                      | 3.311-2 | 2.534-2 | 2.060-2 | 1.744-2 | 1.520-2 | 1.353-2 | 1.223-2 | 1.031-2 | 8.938-3 | 7.468-3  | 6.447-3 | 9.350-2 |
| εο         | 0.4035                                                   | 0.3402                                       | 0.3141  | 0.2999  | 0.2911  | 0.2851  | 0.2808  | 0.2776  | 0.2752  | 0.2720  | 0.2671  | 0.2644   | 0.2628  | 0.2654  |
| Ε,         | 0.3175                                                   | 0.2923                                       | 0.2810  | 0.2746  | 0.2705  | 0.2676  | 0.2656  | 0.2641  | 0.2630  | 0.2617  | 0.2581  | 0.2570   | 0.2563  | 0.2560  |
| C 1        | 2.18+0                                                   | 1.72+0                                       | 1.55+0  | 1.44+0  | 1.37+0  | 1.32+0  | 1.27+0  | 1.20+0  | 1.12+0  | 9.14-1  | 7.38-1  | 5.81-1   | 5.04-1  | 4.71-1  |
| F1         | 8.66-2                                                   | 4.22-2                                       | 2.90-2  | 2.17-2  | 1.83-2  | 1.61-2  | 1.42-2  | 1.26-2  | 1.13-2  | 9.39-3  | 8.15-3  | 7.04-3   | 6.44-3  | 8.32-3  |
| A.         | 5.44+0                                                   | 4.19+0                                       | 3.55+0  | 3.19+0  | 2.90+0  | 2.69+0  | 2.52+0  | 2.36+0  | 2.16+0  | 1.73+0  | 1.36+0  | 1.02+0   | 8.50-1  | 8.81-1  |
| ĸ          | 1.21+0                                                   | 1.21+0                                       | 1.14+0  | 1.08+0  | 1.01+0  | 9.60-1  | 9.30-1  | 9.07-1  | 8.87-1  | 8.45-1  | 7.98-1  | 7.26-1   | 6.61-1  | 8.26-1  |
| <b>A</b> 1 | 4.83+0                                                   | 4.01+0                                       | 3.46+0  | 3.11+0  | 2.84+0  | 2.64+0  | 2.48+0  | 2.32+0  | 2.13+0  | 1.70+0  | 1.33+0  | 1.00+0   | 8.30-1  | 8.57-1  |
| <b>C</b> 1 | 1.02+0                                                   | 1.14+0                                       | 1.10+0  | 1.05+0  | 9.80-1  | 9.33-1  | 9.05-1  | 8.84-1  | 8.65-1  | 8.23-1  | 7.75-1  | 7.01-1   | 6.35-1  | 7.91-1  |
| <b>A</b> 2 | 7.14+0                                                   | 3.86+0                                       | 2.93+0  | 2.69+0  | 2.60+0  | 2.51+0  | 2.42+0  | 2.30+0  | 2.16+0  | 1.91+0  | 1.79+0  | 1.71+0   | 1.69+0  | 1.72+0  |
| <b>K</b> 2 | 3.12+0                                                   | 2.72+0                                       | 2.43+0  | 2.46+0  | 2.56+0  | 2.67+0  | 2.76+0  | 2.84+0  | 2.91+0  | 3.00+0  | 3.14+0  | 3.25+0   | 3.34+0  | 3.32+0  |

|    | CIII                         | ov                                | NeVII   | MgIX          | SiXI    | SXIII   | ArXV    | CaXVII  | TiXIX   | FeXXIII | ZnXXVII | KrXXXII | I MOXXXI | X XeLI  |
|----|------------------------------|-----------------------------------|---------|---------------|---------|---------|---------|---------|---------|---------|---------|---------|----------|---------|
| Δε | 8.604-2                      | 4.793-2                           | 3.312-2 | 2.533-2       | 2.062-2 | 1.747-2 | 1.523-2 | 1.354-2 | 1.230-2 | 1.046-2 | 9.168-3 | 7.792-3 | 6.811-3  | 8.375-3 |
| Ε0 | 0.4036                       | 0.3404                            | 0.3144  | 0.3003        | 0.2916  | 0.2858  | 0.2818  | 0.2788  | 0.2767  | 0.2741  | 0.2700  | 0.2687  | 0.2687   | 0.2714  |
| :  | 0.3176                       | 0.2924                            | 0.2813  | 0.2750        | 0.2710  | 0.2684  | 0.2665  | 0.2653  | 0.2644  | 0.2637  | 0.2608  | 0.2609  | 0.2619   | 0.2630  |
| 2  | 1.33-1                       | 8.89-2                            | 7.38-2  | 6.69-2        | 6.32-2  | 6.10-2  | 5.86-2  | 5.94-2  | 5.93-2  | 5.89-2  | 5.81-2  | 5.72-2  | 5.61-2   | 5.50-2  |
| 2  | 5.02-2                       | 3.95-2                            | 3.08-2  | 2.30-2        | 1.77-2  | 1.42-2  | 1.18-2  | 1.02-2  | 8.94-3  | 7.27-3  | 5.98-3  | 4.90-3  | 4.18-3   | 4.94-3  |
| 12 | 2.13+0                       | 1.28+0                            | 9.72-1  | 9.06-1        | 8.95-1  | 9.00-1  | 8.92-1  | 9.24-1  | 9.40-1  | 9.55-1  | 9.73-1  | 9.72-1  | 9.61-1   | 9.71-1  |
| ς2 | 3.09+0                       | 2.76+0                            | 2.45+0  | 2.47+0        | 2.56+0  | 2.66+0  | 2.75+0  | 2.82+0  | 2.88+0  | 2.96+0  | 3.08+0  | 3.15+0  | 3.20+0   | 3.20+0  |
|    | 2 <b>5</b> 2p <sup>1</sup> P | 1-2p <sup>2</sup> 3p <sub>0</sub> |         | <del></del> - |         |         |         |         |         |         |         |         |          |         |
|    | CIII                         | ov                                | NeVII   | MgIX          | SiXI    | SXIII   | ArXV    | CaXVII  | TiXIX   | FeXXIII | ZnXXVII | KrXXXII | I MoxxXI | X XeLI  |
| νε | 3.522-2                      | 1.996-2                           | 1.387-2 | 1.061-2       | 8.592-3 | 7.206-3 | 6.181-3 | 5.369-3 | 4.684-3 | 3.491-3 | 2.349-3 | 5.11-4  | 1.000-5  | 2.234-3 |
| 0  | 0.3528                       | 0.3124                            | 0.2951  | 0.2856        | 0.2796  | 0.2756  | 0.2727  | 0.2706  | 0.2691  | 0.2671  | 0.2623  | 0.2614  | 0.2618   | 0.2653  |
| 1  | 0.3176                       | 0.2924                            | 0.2813  | 0.2750        | 0.2710  | 0.2684  | 0.2665  | 0.2653  | 0.2644  | 0.2637  | 0.2608  | 0.2609  | 0.2619   | 0.2630  |
| 1  | 3.47-3                       | 1.52-3                            | 1.32-3  | 1.90-3        | 1.93-3  | 3.09-3  | 3.77-3  | 7.86-3  | 1.20-2  | 2.27-2  | 3.36-2  | 4.06-2  | 3.79-2   | 3.24-2  |
| 1  | 5.98-4                       | 4.11-4                            | 4.47-4  | 1.52-3        | 1.31-3  | 2.35-3  | 2.62-3  | 3.94-3  | 4.44-3  | 5.11-3  | 5.92-3  | 1.39-3  | 1.08-4   | 6.73-3  |
|    | 6.62-2                       | 1.50-2                            | 1.08-2  | 9.99-3        | 8.87-3  | 9.44-3  | 9.75-3  | 1.54-2  | 2.08-2  | 3.41-2  | 4.61-2  | 6.12-2  | 7.04-2   | 4.29-2  |
| :  | 1.22+1                       | 1.19+1                            | 1.13+1  | 6.06+0        | 5.11+0  | 2.41+0  | 1.78+0  | 9.81-1  | 7.45-1  | 5.25-1  | 4.43-1  | 5.33-1  | 6.64-1   | 4.05-1  |
| 1  | 7.96-6                       | 4.39-5                            | 1.92-4  | 1.48-3        | 1.58-3  | 3.60-3  | 4.61-3  | 1.09-2  | 1.68-2  | 3.10-2  | 4.39-2  | 6.01-2  | 7.00-2   | 4.23-2  |
| 1  | 9.98-1                       | 9.26-1                            | 8.68-1  | 8.24-1        | 7.61-1  | 6.90-1  | 6.23-1  | 5.63-1  | 5.11-1  | 4.33-1  | 3.97-1  | 5.15-1  | 6.58-1   | 3.93-1  |
| 2  | 1.06+0                       | 4.68-1                            | 4.01-1  | 3.93-1        | 3.93-1  | 3.90-1  | 3.83-1  | 3.70-1  | 3.54-1  | 3.09-1  | 2.59-1  | 1.80-1  | 1.23-1   | 6.80-2  |
|    |                              |                                   |         |               |         |         |         |         | 2.95+0  |         |         |         |          |         |

TABLE IV. Fit Parameters for Excitation Cross Sections and Rate Coefficients for  $\Delta n = 0$  Transitions, Z = 6, 8, 10, 12, 14, 16, 18, 20, 22, 26, 30, 36, 42, 54 See page 7 for Explanation of Tables

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2s2p <sup>3</sup> P                                                                                                                                                    | 0-2p <sup>2</sup> 3p <sub>2</sub>                                                                                                                                 |                                                                                                                          |                                                                                                                          |                                                                                                                          |                                                                                                                          |                                                                                                                          |                                                                                                                           |                                                                                                                          |                                                                                                                                                                           |                                                                                                                             |                                                                                                                            |                                                                                                                              |                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CIII                                                                                                                                                                   | vo                                                                                                                                                                | NeVII                                                                                                                    | MgIX                                                                                                                     | SiXI                                                                                                                     | SXIII                                                                                                                    | ArXV                                                                                                                     | CaXVII                                                                                                                    | TiXIX                                                                                                                    | FeXXIII                                                                                                                                                                   | ZnXXVII                                                                                                                     | KrXXXII                                                                                                                    | I MoXXXI                                                                                                                     | X XeLI                                                                                                                     |
| Δε                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.612-2                                                                                                                                                                | 4.811-2                                                                                                                                                           | 3.339-2                                                                                                                  | 2.575-2                                                                                                                  | 2.118-2                                                                                                                  | 1.821-2                                                                                                                  | 1.618-2                                                                                                                  | 1.476-2                                                                                                                   | 1.373-2                                                                                                                  | 1.245-2                                                                                                                                                                   | 1.183-2                                                                                                                     | 1.173-2                                                                                                                    | 1.238-2                                                                                                                      | 1.536-2                                                                                                                    |
| $\mathbf{\epsilon}_{\scriptscriptstyle 0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.4036                                                                                                                                                                 | 0.3404                                                                                                                                                            | 0.3144                                                                                                                   | 0.3003                                                                                                                   | 0.2916                                                                                                                   | 0.2858                                                                                                                   | 0.2818                                                                                                                   | 0.2788                                                                                                                    | 0.2767                                                                                                                   | 0.2741                                                                                                                                                                    | 0.2700                                                                                                                      | 0.2687                                                                                                                     | 0.2687                                                                                                                       | 0.2714                                                                                                                     |
| $\boldsymbol{\epsilon}_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3175                                                                                                                                                                 | 0.2923                                                                                                                                                            | 0.2810                                                                                                                   | 0.2746                                                                                                                   | 0.2705                                                                                                                   | 0.2676                                                                                                                   | 0.2656                                                                                                                   | 0.2641                                                                                                                    | 0.2630                                                                                                                   | 0.2617                                                                                                                                                                    | 0.2581                                                                                                                      | 0.2570                                                                                                                     | 0.2563                                                                                                                       | 0.2560                                                                                                                     |
| C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.78-1                                                                                                                                                                 | 1.15-1                                                                                                                                                            | 9.89-2                                                                                                                   | 9.43-2                                                                                                                   | 9.55-2                                                                                                                   | 1.02-1                                                                                                                   | 1.12-1                                                                                                                   | 1.26-1                                                                                                                    | 1.41-1                                                                                                                   | 1.69-1                                                                                                                                                                    | 1.82-1                                                                                                                      | 1.88-1                                                                                                                     | 1.89-1                                                                                                                       | 1.86-1                                                                                                                     |
| F2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.62-2                                                                                                                                                                 | 3.96-2                                                                                                                                                            | 3.10-2                                                                                                                   | 2.33-2                                                                                                                   | 1.81-2                                                                                                                   | 1.47-2                                                                                                                   | 1.24-2                                                                                                                   | 1.09-2                                                                                                                    | 9.84-3                                                                                                                   | 8.52-3                                                                                                                                                                    | 7.55-3                                                                                                                      | 7.16-3                                                                                                                     | 7.31-3                                                                                                                       | 8.67-3                                                                                                                     |
| A2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.10+0                                                                                                                                                                 | 1.66+0                                                                                                                                                            | 1.30+0                                                                                                                   | 1.20+0                                                                                                                   | 1.36+0                                                                                                                   | 1.51+0                                                                                                                   | 1.71+0                                                                                                                   | 1.97+0                                                                                                                    | 2.26+0                                                                                                                   | 2.78+0                                                                                                                                                                    | 3.12+0                                                                                                                      | 3.32+0                                                                                                                     | 3.41+0                                                                                                                       | 3.48+0                                                                                                                     |
| <b>K</b> 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.27+0                                                                                                                                                                 | 2.76+0                                                                                                                                                            | 2.45+0                                                                                                                   | 2.47+0                                                                                                                   | 2.57+0                                                                                                                   | 2.67+0                                                                                                                   | 2.76+0                                                                                                                   | 2.83+0                                                                                                                    | 2.89+0                                                                                                                   | 2.98+0                                                                                                                                                                    | 3.11+0                                                                                                                      | 3.19+0                                                                                                                     | 3.25+0                                                                                                                       | 3.32+0                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2s2p <sup>1</sup> P                                                                                                                                                    | 1-2p <sup>2</sup> 3p <sub>1</sub>                                                                                                                                 |                                                                                                                          |                                                                                                                          |                                                                                                                          |                                                                                                                          |                                                                                                                          |                                                                                                                           |                                                                                                                          |                                                                                                                                                                           |                                                                                                                             |                                                                                                                            |                                                                                                                              |                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CIII                                                                                                                                                                   | ov                                                                                                                                                                | NeVII                                                                                                                    | MgIX                                                                                                                     | SiXI                                                                                                                     | SXIII                                                                                                                    | Arxv                                                                                                                     | CaXVII                                                                                                                    | TiXIX                                                                                                                    | FeXXIII                                                                                                                                                                   | ZnXXVII                                                                                                                     | KrXXXII                                                                                                                    | I MoXXXI                                                                                                                     | X XeLI                                                                                                                     |
| Δε                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.526-2                                                                                                                                                                | 2.002-2                                                                                                                                                           | 1.397-2                                                                                                                  | 1.076-2                                                                                                                  | 8.809-3                                                                                                                  | 7.510-3                                                                                                                  | 6.597-3                                                                                                                  | 5.928-3                                                                                                                   | 5.423-3                                                                                                                  | 4.719-3                                                                                                                                                                   | 4.252-3                                                                                                                     | 3.767-3                                                                                                                    | 4.847-3                                                                                                                      | 8.891-3                                                                                                                    |
| $\epsilon_{o}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.3528                                                                                                                                                                 | 0.3124                                                                                                                                                            | 0.2951                                                                                                                   | 0.2856                                                                                                                   | 0.2796                                                                                                                   | 0.2756                                                                                                                   | 0.2727                                                                                                                   | 0.2706                                                                                                                    | 0.2691                                                                                                                   | 0.2671                                                                                                                                                                    | 0.2623                                                                                                                      | 0.2614                                                                                                                     | 0.2618                                                                                                                       | 0.2653                                                                                                                     |
| $\boldsymbol{\epsilon}_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3175                                                                                                                                                                 | 0.2924                                                                                                                                                            | 0.2812                                                                                                                   | 0.2748                                                                                                                   | 0.2708                                                                                                                   | 0.2681                                                                                                                   | 0.2661                                                                                                                   | 0.2647                                                                                                                    | 0.2637                                                                                                                   | 0.2624                                                                                                                                                                    | 0.2589                                                                                                                      | 0.2577                                                                                                                     | 0.2569                                                                                                                       | 0.2564                                                                                                                     |
| C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.29-3                                                                                                                                                                 | 4.50-3                                                                                                                                                            | 3.70-3                                                                                                                   | 3.47-3                                                                                                                   | 3.46-3                                                                                                                   | 3.66-3                                                                                                                   | 3.81-3                                                                                                                   | 5.09-3                                                                                                                    | 6.64-3                                                                                                                   | 1.22-2                                                                                                                                                                    | 2.15-2                                                                                                                      | 4.07-2                                                                                                                     | 6.19-2                                                                                                                       | 9.93-2                                                                                                                     |
| F1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.39-4                                                                                                                                                                 | 3.63-4                                                                                                                                                            | 2.23-4                                                                                                                   | 2.67-5                                                                                                                   | 5.50-5                                                                                                                   | 8.70-6                                                                                                                   | 4.93-5                                                                                                                   | 6.30-4                                                                                                                    | 1.18-3                                                                                                                   | 2.45-3                                                                                                                                                                    | 3.50-3                                                                                                                      | 4.47-3                                                                                                                     | 5.12-3                                                                                                                       | 7.45-3                                                                                                                     |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.15-1                                                                                                                                                                 | 4.39-2                                                                                                                                                            | 2.94-2                                                                                                                   | 2.56-2                                                                                                                   | 2.49-2                                                                                                                   | 2.47-2                                                                                                                   | 2.36-2                                                                                                                   | 2.18-2                                                                                                                    | 2.18-2                                                                                                                   | 2.76-2                                                                                                                                                                    | 3.97-2                                                                                                                      | 6.53-2                                                                                                                     | 1.02-1                                                                                                                       | 1.90-1                                                                                                                     |
| κ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.27+1                                                                                                                                                                 | 1.16+1                                                                                                                                                            | 1.06+1                                                                                                                   | 1.09+1                                                                                                                   | 1.16+1                                                                                                                   | 1.12+1                                                                                                                   | 1.01+1                                                                                                                   | 5.10+0                                                                                                                    | 3.05+0                                                                                                                   | 1.40+0                                                                                                                                                                    | 8.84-1                                                                                                                      | 6.26-1                                                                                                                     | 6.41-1                                                                                                                       | 8.71-1                                                                                                                     |
| A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.02-6                                                                                                                                                                 | 8.92-6                                                                                                                                                            | 4.31-5                                                                                                                   | 1.49-4                                                                                                                   | 4.04-4                                                                                                                   | 9.29-4                                                                                                                   | 1.30-3                                                                                                                   | 3.48-3                                                                                                                    | 5.96-3                                                                                                                   | 1.44-2                                                                                                                                                                    | 2.80-2                                                                                                                      | 5.49-2                                                                                                                     | 9.08-2                                                                                                                       | 1.76-1                                                                                                                     |
| κ1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.25-1                                                                                                                                                                 | 9.27-1                                                                                                                                                            | 8.68-1                                                                                                                   | 8.27-1                                                                                                                   | 7.70-1                                                                                                                   | 7.08-1                                                                                                                   | 6.51-1                                                                                                                   | 6.03-1                                                                                                                    | 5.65-1                                                                                                                   | 5.12-1                                                                                                                                                                    | 4.78-1                                                                                                                      | 4.46-1                                                                                                                     | 5.17-1                                                                                                                       | 7.72-1                                                                                                                     |
| A2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.44+0                                                                                                                                                                 | 1.40+0                                                                                                                                                            | 1.21+0                                                                                                                   | 1.19+0                                                                                                                   | 1.20+0                                                                                                                   | 1.21+0                                                                                                                   | 1.21+0                                                                                                                   | 1.20+0                                                                                                                    | 1.18+0                                                                                                                   | 1.15+0                                                                                                                                                                    | 1.12+0                                                                                                                      | 1.07+0                                                                                                                     | 1.04+0                                                                                                                       | 1.04+0                                                                                                                     |
| K2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.11+0                                                                                                                                                                 | 2.48+0                                                                                                                                                            | 2.35+0                                                                                                                   | 2.46+0                                                                                                                   | 2.61+0                                                                                                                   | 2.73+0                                                                                                                   | 2.82+0                                                                                                                   | 2.90+0                                                                                                                    | 2.96+0                                                                                                                   | 3.05+0                                                                                                                                                                    | 3.20+0                                                                                                                      | 3.30+0                                                                                                                     | 3.35+0                                                                                                                       | 3.41+0                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                        |                                                                                                                                                                   |                                                                                                                          |                                                                                                                          |                                                                                                                          |                                                                                                                          |                                                                                                                          |                                                                                                                           |                                                                                                                          |                                                                                                                                                                           |                                                                                                                             |                                                                                                                            |                                                                                                                              |                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2s2p <sup>3</sup> p                                                                                                                                                    | P <sub>2</sub> -2p <sup>2</sup> <sup>3</sup> P <sub>0</sub>                                                                                                       |                                                                                                                          |                                                                                                                          |                                                                                                                          | ····                                                                                                                     |                                                                                                                          |                                                                                                                           |                                                                                                                          |                                                                                                                                                                           | <del>,</del>                                                                                                                |                                                                                                                            |                                                                                                                              |                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2s2p <sup>3</sup> P                                                                                                                                                    | ov ov                                                                                                                                                             | NeVII                                                                                                                    | MgIX                                                                                                                     | SiXI                                                                                                                     | SXIII                                                                                                                    | ArXV                                                                                                                     | CaXVII                                                                                                                    | TiXIX                                                                                                                    | FeXXIII                                                                                                                                                                   | ZnXXVII                                                                                                                     | KrXXXII                                                                                                                    | I MOXXXI                                                                                                                     | X XeLI                                                                                                                     |
| Δε                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                        |                                                                                                                                                                   | NeVII<br>3.285-2                                                                                                         | MgIX<br>2.494-2                                                                                                          | SiXI<br>2.005-2                                                                                                          | 5XIII<br>1.670-2                                                                                                         | Arxv<br>1.425-2                                                                                                          | CaXVII<br>1.235-2                                                                                                         | TiXIX                                                                                                                    | FeXXIII<br>8.320-3                                                                                                                                                        | ZnXXVII<br>6.276-3                                                                                                          | KrXXXII<br>3.530-2                                                                                                         | I MOXXXI<br>8.757-4                                                                                                          | X XeLI<br>2.327-3                                                                                                          |
| <br>Δε<br>ε <sub>0</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CIII                                                                                                                                                                   | ov                                                                                                                                                                |                                                                                                                          |                                                                                                                          |                                                                                                                          |                                                                                                                          |                                                                                                                          |                                                                                                                           |                                                                                                                          |                                                                                                                                                                           |                                                                                                                             |                                                                                                                            |                                                                                                                              |                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B.595-2                                                                                                                                                                | ov<br>4.778-2                                                                                                                                                     | 3.285-2                                                                                                                  | 2.494-2                                                                                                                  | 2.005-2                                                                                                                  | 1.670-2                                                                                                                  | 1.425-2                                                                                                                  | 1.235-2                                                                                                                   | 1.080-2                                                                                                                  | 8.320-3                                                                                                                                                                   | 6.276-3                                                                                                                     | 3.530-2                                                                                                                    | 8.757-4                                                                                                                      | 2.327-3                                                                                                                    |
| εο                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.595-2<br>0.4035                                                                                                                                                      | ov<br>4.778-2<br>0.3402                                                                                                                                           | 3.285-2<br>0.3141                                                                                                        | 2.494-2                                                                                                                  | 2.005-2<br>0.2911                                                                                                        | 1.670-2                                                                                                                  | 1.425-2                                                                                                                  | 1.235-2                                                                                                                   | 1.080-2                                                                                                                  | 8.320-3<br>0.2720                                                                                                                                                         | 6.276-3<br>0.2671                                                                                                           | 3.530-2<br>0.2644                                                                                                          | 8.757- <b>4</b><br>0.2628                                                                                                    | 2.327-3<br>0.2654                                                                                                          |
| $\epsilon_0$ $\epsilon_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.595-2<br>0.4035<br>0.3176                                                                                                                                            | ov<br>4.778-2<br>0.3402<br>0.2924                                                                                                                                 | 3.285-2<br>0.3141<br>0.2813                                                                                              | 2.494-2<br>0.2999<br>0.2750                                                                                              | 2.005-2<br>0.2911<br>0.2710                                                                                              | 1.670-2<br>0.2851<br>0.2684                                                                                              | 1.425-2<br>0.2808<br>0.2665                                                                                              | 1.235-2<br>0.2776<br>0.2653                                                                                               | 1.080-2<br>0.2752<br>0.2644                                                                                              | 8.320-3<br>0.2720<br>0.2637                                                                                                                                               | 6.276-3<br>0.2671<br>0.2608                                                                                                 | 3.530-2<br>0.2644<br>0.2609                                                                                                | 8.757-4<br>0.2628<br>0.2619                                                                                                  | 2.327-3<br>0.2654<br>0.2630                                                                                                |
| ε <sub>0</sub><br>ε <sub>1</sub><br>c2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.4035<br>0.3176<br>3.32-2                                                                                                                                             | OV<br>4.778-2<br>0.3402<br>0.2924<br>2.21-2                                                                                                                       | 3.285-2<br>0.3141<br>0.2813<br>1.80-2                                                                                    | 2.494-2<br>0.2999<br>0.2750<br>1.60-2                                                                                    | 2.005-2<br>0.2911<br>0.2710<br>1.46-2                                                                                    | 1.670-2<br>0.2851<br>0.2684<br>1.35-2                                                                                    | 1.425-2<br>0.2808<br>0.2665<br>1.25-2                                                                                    | 1.235-2<br>0.2776<br>0.2653<br>1.16-2                                                                                     | 1.080-2<br>0.2752<br>0.2644<br>1.06-2                                                                                    | 8.320-3<br>0.2720<br>0.2637<br>8.69-3                                                                                                                                     | 6.276-3<br>0.2671<br>0.2608<br>6.86-3                                                                                       | 3.530-2<br>0.2644<br>0.2609<br>4.88-2                                                                                      | 8.757-4<br>0.2628<br>0.2619<br>3.71-3                                                                                        | 2.327-3<br>0.2654<br>0.2630<br>2.40-3                                                                                      |
| ε <sub>0</sub><br>ε <sub>1</sub><br>c2<br>F2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.595-2<br>0.4035<br>0.3176<br>3.32-2<br>4.99-2                                                                                                                        | OV<br>4.778-2<br>0.3402<br>0.2924<br>2.21-2<br>3.93-2                                                                                                             | 3.285-2<br>0.3141<br>0.2813<br>1.80-2<br>3.06-2                                                                          | 2.494-2<br>0.2999<br>0.2750<br>1.60-2<br>2.27-2                                                                          | 2.005-2<br>0.2911<br>0.2710<br>1.46-2<br>1.72-2                                                                          | 1.670-2<br>0.2851<br>0.2684<br>1.35-2<br>1.36-2                                                                          | 1.425-2<br>0.2808<br>0.2665<br>1.25-2<br>1.11-2                                                                          | 1.235-2<br>0.2776<br>0.2653<br>1.16-2<br>9.23-3                                                                           | 1.080-2<br>0.2752<br>0.2644<br>1.06-2<br>7.82-3                                                                          | 8.320-3<br>0.2720<br>0.2637<br>8.69-3<br>5.75-3                                                                                                                           | 6.276-3<br>0.2671<br>0.2608<br>6.86-3<br>4.02-3                                                                             | 3.530-2<br>0.2644<br>0.2609<br>4.88-2<br>2.10-3                                                                            | 8.757-4<br>0.2628<br>0.2619<br>3.71-3<br>3.60-4                                                                              | 2.327-3<br>0.2654<br>0.2630<br>2.40-3<br>1.20-3                                                                            |
| ε <sub>0</sub><br>ε <sub>1</sub><br>c2<br>F2<br>A2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.595-2<br>0.4035<br>0.3176<br>3.32-2<br>4.99-2<br>5.35-1<br>3.11+0                                                                                                    | OV<br>4.778-2<br>0.3402<br>0.2924<br>2.21-2<br>3.93-2<br>3.17-1                                                                                                   | 3.285-2<br>0.3141<br>0.2813<br>1.80-2<br>3.06-2<br>2.37-1                                                                | 2.494-2<br>0.2999<br>0.2750<br>1.60-2<br>2.27-2<br>2.16-1                                                                | 2.005-2<br>0.2911<br>0.2710<br>1.46-2<br>1.72-2<br>2.07-1                                                                | 1.670-2<br>0.2851<br>0.2684<br>1.35-2<br>1.36-2<br>2.00-1                                                                | 1.425-2<br>0.2808<br>0.2665<br>1.25-2<br>1.11-2<br>1.91-1                                                                | 1.235-2<br>0.2776<br>0.2653<br>1.16-2<br>9.23-3<br>1.81-1                                                                 | 1.080-2<br>0.2752<br>0.2644<br>1.06-2<br>7.82-3<br>1.68-1                                                                | 8.320-3<br>0.2720<br>0.2637<br>8.69-3<br>5.75-3<br>1.41-1                                                                                                                 | 6.276-3<br>0.2671<br>0.2608<br>6.86-3<br>4.02-3<br>1.14-1                                                                   | 3.530-2<br>0.2644<br>0.2609<br>4.88-2<br>2.10-3<br>8.16-1                                                                  | 8.757-4<br>0.2628<br>0.2619<br>3.71-3<br>3.60-4<br>6.07-2                                                                    | 2.327-3<br>0.2654<br>0.2630<br>2.40-3<br>1.20-3<br>4.11-2                                                                  |
| ε <sub>0</sub><br>ε <sub>1</sub><br>c2<br>F2<br>A2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.595-2<br>0.4035<br>0.3176<br>3.32-2<br>4.99-2<br>5.35-1<br>3.11+0                                                                                                    | OV<br>4.778-2<br>0.3402<br>0.2924<br>2.21-2<br>3.93-2<br>3.17-1<br>2.76+0                                                                                         | 3.285-2<br>0.3141<br>0.2813<br>1.80-2<br>3.06-2<br>2.37-1                                                                | 2.494-2<br>0.2999<br>0.2750<br>1.60-2<br>2.27-2<br>2.16-1                                                                | 2.005-2<br>0.2911<br>0.2710<br>1.46-2<br>1.72-2<br>2.07-1                                                                | 1.670-2<br>0.2851<br>0.2684<br>1.35-2<br>1.36-2<br>2.00-1                                                                | 1.425-2<br>0.2808<br>0.2665<br>1.25-2<br>1.11-2<br>1.91-1                                                                | 1.235-2<br>0.2776<br>0.2653<br>1.16-2<br>9.23-3<br>1.81-1                                                                 | 1.080-2<br>0.2752<br>0.2644<br>1.06-2<br>7.82-3<br>1.68-1                                                                | 8.320-3<br>0.2720<br>0.2637<br>8.69-3<br>5.75-3<br>1.41-1<br>2.98+0                                                                                                       | 6.276-3<br>0.2671<br>0.2608<br>6.86-3<br>4.02-3<br>1.14-1<br>3.12+0                                                         | 3.530-2<br>0.2644<br>0.2609<br>4.88-2<br>2.10-3<br>8.16-1                                                                  | 8.757-4<br>0.2628<br>0.2619<br>3.71-3<br>3.60-4<br>6.07-2<br>3.27+0                                                          | 2.327-3<br>0.2654<br>0.2630<br>2.40-3<br>1.20-3<br>4.11-2<br>3.35+0                                                        |
| ε <sub>0</sub> ε <sub>1</sub> c2 F2 A2 K2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.4035<br>0.4035<br>0.3176<br>3.32-2<br>4.99-2<br>5.35-1<br>3.11+0                                                                                                     | ov<br>4.778-2<br>0.3402<br>0.2924<br>2.21-2<br>3.93-2<br>3.17-1<br>2.76+0                                                                                         | 3.285-2<br>0.3141<br>0.2813<br>1.80-2<br>3.06-2<br>2.37-1<br>2.45+0                                                      | 2.494-2<br>0.2999<br>0.2750<br>1.60-2<br>2.27-2<br>2.16-1<br>2.47+0                                                      | 2.005-2<br>0.2911<br>0.2710<br>1.46-2<br>1.72-2<br>2.07-1<br>2.56+0                                                      | 1.670-2<br>0.2851<br>0.2684<br>1.35-2<br>1.36-2<br>2.00-1<br>2.67+0                                                      | 1.425-2<br>0.2808<br>0.2665<br>1.25-2<br>1.11-2<br>1.91-1<br>2.75+0                                                      | 1.235-2<br>0.2776<br>0.2653<br>1.16-2<br>9.23-3<br>1.81-1<br>2.83+0                                                       | 1.080-2<br>0.2752<br>0.2644<br>1.06-2<br>7.82-3<br>1.68-1<br>2.89+0                                                      | 8.320-3<br>0.2720<br>0.2637<br>8.69-3<br>5.75-3<br>1.41-1<br>2.98+0                                                                                                       | 6.276-3<br>0.2671<br>0.2608<br>6.86-3<br>4.02-3<br>1.14-1<br>3.12+0                                                         | 3.530-2<br>0.2644<br>0.2609<br>4.88-2<br>2.10-3<br>8.16-1<br>3.21+0                                                        | 8.757-4<br>0.2628<br>0.2619<br>3.71-3<br>3.60-4<br>6.07-2<br>3.27+0                                                          | 2.327-3<br>0.2654<br>0.2630<br>2.40-3<br>1.20-3<br>4.11-2<br>3.35+0                                                        |
| ε <sub>0</sub><br>ε <sub>1</sub><br>c2<br>F2<br>A2<br>K2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.4035<br>0.4035<br>0.3176<br>3.32-2<br>4.99-2<br>5.35-1<br>3.11+0                                                                                                     | OV<br>4.778-2<br>0.3402<br>0.2924<br>2.21-2<br>3.93-2<br>3.17-1<br>2.76+0<br>Ov                                                                                   | 3.285-2<br>0.3141<br>0.2813<br>1.80-2<br>3.06-2<br>2.37-1<br>2.45+0                                                      | 2.494-2<br>0.2999<br>0.2750<br>1.60-2<br>2.27-2<br>2.16-1<br>2.47+0                                                      | 2.005-2<br>0.2911<br>0.2710<br>1.46-2<br>1.72-2<br>2.07-1<br>2.56+0                                                      | 1.670-2<br>0.2851<br>0.2684<br>1.35-2<br>1.36-2<br>2.00-1<br>2.67+0                                                      | 1.425-2<br>0.2808<br>0.2665<br>1.25-2<br>1.11-2<br>1.91-1<br>2.75+0                                                      | 1.235-2<br>0.2776<br>0.2653<br>1.16-2<br>9.23-3<br>1.81-1<br>2.83+0                                                       | 1.080-2<br>0.2752<br>0.2644<br>1.06-2<br>7.82-3<br>1.68-1<br>2.89+0                                                      | 8.320-3<br>0.2720<br>0.2637<br>8.69-3<br>5.75-3<br>1.41-1<br>2.98+0                                                                                                       | 6.276-3<br>0.2671<br>0.2608<br>6.86-3<br>4.02-3<br>1.14-1<br>3.12+0                                                         | 3.530-2<br>0.2644<br>0.2609<br>4.88-2<br>2.10-3<br>8.16-1<br>3.21+0                                                        | 8.757-4<br>0.2628<br>0.2619<br>3.71-3<br>3.60-4<br>6.07-2<br>3.27+0                                                          | 2.327-3<br>0.2654<br>0.2630<br>2.40-3<br>1.20-3<br>4.11-2<br>3.35+0                                                        |
| ε <sub>0</sub> ε <sub>1</sub> c2 F2 A2 κ2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.4035<br>0.4035<br>0.3176<br>3.32-2<br>4.99-2<br>5.35-1<br>3.11+0<br>2s2p 1E                                                                                          | OV  4.778-2 0.3402 0.2924 2.21-2 3.93-2 3.17-1 2.76+0 OV  2.012-2                                                                                                 | 3.285-2 0.3141 0.2813 1.80-2 3.06-2 2.37-1 2.45+0  NeVII 1.413-2                                                         | 2.494-2<br>0.2999<br>0.2750<br>1.60-2<br>2.27-2<br>2.16-1<br>2.47+0<br>MgIX                                              | 2.005-2<br>0.2911<br>0.2710<br>1.46-2<br>1.72-2<br>2.07-1<br>2.56+0<br>SiXI                                              | 1.670-2 0.2851 0.2684 1.35-2 1.36-2 2.00-1 2.67+0  SXIII 7.947-3                                                         | 1.425-2 0.2808 0.2665 1.25-2 1.11-2 1.91-1 2.75+0  Arxv                                                                  | 1.235-2<br>0.2776<br>0.2653<br>1.16-2<br>9.23-3<br>1.81-1<br>2.83+0                                                       | 1.080-2 0.2752 0.2644 1.06-2 7.82-3 1.68-1 2.89+0 TiXIX                                                                  | 8.320-3<br>0.2720<br>0.2637<br>8.69-3<br>5.75-3<br>1.41-1<br>2.98+0<br>FeXXIII                                                                                            | 6.276-3<br>0.2671<br>0.2608<br>6.86-3<br>4.02-3<br>1.14-1<br>3.12+0<br>ZnXXVII                                              | 3.530-2 0.2644 0.2609 4.88-2 2.10-3 8.16-1 3.21+0  KFXXXII                                                                 | 8.757-4<br>0.2628<br>0.2619<br>3.71-3<br>3.60-4<br>6.07-2<br>3.27+0                                                          | 2.327-3 0.2654 0.2630 2.40-3 1.20-3 4.11-2 3.35+0  X XeLI 9.257-3                                                          |
| $\begin{array}{c} \epsilon_0 \\ \epsilon_1 \\ \epsilon_2 \\ \epsilon_2 \\ \epsilon_2 \\ \epsilon_2 \\ \hline \\ \Delta \epsilon \\ \epsilon_0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.4035<br>0.4035<br>0.3176<br>3.32-2<br>4.99-2<br>5.35-1<br>3.11+0<br>2s2p 1F<br>CIII                                                                                  | OV  4.778-2 0.3402 0.2924 2.21-2 3.93-2 3.17-1 2.76+0 Ov  2.012-2 0.3124                                                                                          | 3.285-2 0.3141 0.2813 1.80-2 3.06-2 2.37-1 2.45+0  NeVII 1.413-2 0.2951                                                  | 2.494-2 0.2999 0.2750 1.60-2 2.27-2 2.16-1 2.47+0  MgIX 1.101-2 0.2856                                                   | 2.005-2 0.2911 0.2710 1.46-2 1.72-2 2.07-1 2.56+0  S1XI 9.147-3 0.2796                                                   | 1.670-2 0.2851 0.2684 1.35-2 1.36-2 2.00-1 2.67+0  SXIII 7.947-3 0.2756                                                  | 1.425-2 0.2808 0.2665 1.25-2 1.11-2 1.91-1 2.75+0  Arxv 7.132-3 0.2727                                                   | 1.235-2 0.2776 0.2653 1.16-2 9.23-3 1.81-1 2.83+0  CaXVII 6.552-3 0.2706                                                  | 1.080-2<br>0.2752<br>0.2644<br>1.06-2<br>7.82-3<br>1.68-1<br>2.89+0<br>TiXIX                                             | 8.320-3<br>0.2720<br>0.2637<br>8.69-3<br>5.75-3<br>1.41-1<br>2.98+0<br>FeXXIII<br>5.486-3<br>0.2671                                                                       | 6.276-3<br>0.2671<br>0.2608<br>6.86-3<br>4.02-3<br>1.14-1<br>3.12+0<br>ZnXXVII<br>5.010-3<br>0.2632                         | 3.530-2<br>0.2644<br>0.2609<br>4.88-2<br>2.10-3<br>8.16-1<br>3.21+0<br>KrXXXII<br>4.449-3<br>0.2614                        | 8.757-4 0.2628 0.2619 3.71-3 3.60-4 6.07-2 3.27+0  I MOXXXI 5.443-3 0.2618                                                   | 2.327-3 0.2654 0.2630 2.40-3 1.20-3 4.11-2 3.35+0  X XeLI 9.257-3 0.2653                                                   |
| $\begin{array}{c} \epsilon_0 \\ \epsilon_1 \\ \epsilon_2 \\ \epsilon_2 \\ \epsilon_2 \\ \epsilon_2 \\ \epsilon_0 \\ \epsilon_1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.595-2<br>0.4035<br>0.3176<br>3.32-2<br>4.99-2<br>5.35-1<br>3.11+0<br>2s2p 1g<br>CIII<br>3.530-2<br>0.3528<br>0.3175                                                  | OV  4.778-2 0.3402 0.2924 2.21-2 3.93-2 3.17-1 2.76+0  P <sub>1</sub> -2p <sup>2-3</sup> P <sub>2</sub> OV  2.012-2 0.3124 0.2923                                 | 3.285-2 0.3141 0.2813 1.80-2 3.06-2 2.37-1 2.45+0  NeVII 1.413-2 0.2951 0.2810                                           | 2.494-2 0.2999 0.2750 1.60-2 2.27-2 2.16-1 2.47+0  MgIX  1.101-2 0.2856 0.2746                                           | 2.005-2 0.2911 0.2710 1.46-2 1.72-2 2.07-1 2.56+0  S1XI 9.147-3 0.2796 0.2705                                            | 1.670-2 0.2851 0.2684 1.35-2 1.36-2 2.00-1 2.67+0  SXIII 7.947-3 0.2756 0.2676                                           | 1.425-2 0.2808 0.2665 1.25-2 1.11-2 1.91-1 2.75+0  ArXV  7.132-3 0.2727 0.2656                                           | 1.235-2 0.2776 0.2653 1.16-2 9.23-3 1.81-1 2.83+0  CaXVII 6.552-3 0.2706 0.2641                                           | 1.080-2 0.2752 0.2644 1.06-2 7.82-3 1.68-1 2.89+0 TiXIX 6.118-3 0.2691 0.2630                                            | 8.320-3<br>0.2720<br>0.2637<br>8.69-3<br>5.75-3<br>1.41-1<br>2.98+0<br>FeXXIII<br>5.486-3<br>0.2671<br>0.2617                                                             | 6.276-3 0.2671 0.2608 6.86-3 4.02-3 1.14-1 3.12+0  ZnXXVII  5.010-3 0.2632 0.2581                                           | 3.530-2 0.2644 0.2609 4.88-2 2.10-3 8.16-1 3.21+0  KFXXXII 4.449-3 0.2614 0.2570                                           | 8.757-4 0.2628 0.2619 3.71-3 3.60-4 6.07-2 3.27+0  I MOXXXI 5.443-3 0.2618 0.2563                                            | 2.327-3 0.2654 0.2630 2.40-3 1.20-3 4.11-2 3.35+0  X XeLI 9.257-3 0.2653 0.2560                                            |
| $\begin{array}{c} \epsilon_0 \\ \epsilon_1 \\ \text{C2} \\ \text{F2} \\ \text{A2} \\ \text{K2} \\ \hline \\ \Delta \epsilon \\ \epsilon_0 \\ \epsilon_1 \\ \text{C1} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.595-2<br>0.4035<br>0.3176<br>3.32-2<br>4.99-2<br>5.35-1<br>3.11+0<br>2s2p 1g<br>CIII<br>3.530-2<br>0.3528<br>0.3175<br>1.39-2                                        | OV  4.778-2 0.3402 0.2924 2.21-2 3.93-2 3.17-1 2.76+0 01-2p <sup>2-3</sup> P <sub>2</sub> OV  2.012-2 0.3124 0.2923 7.92-3                                        | 3.285-2 0.3141 0.2813 1.80-2 3.06-2 2.37-1 2.45+0  NeVII 1.413-2 0.2951 0.2810 7.72-3                                    | 2.494-2 0.2999 0.2750 1.60-2 2.27-2 2.16-1 2.47+0  MgIX  1.101-2 0.2856 0.2746 1.07-2                                    | 2.005-2 0.2911 0.2710 1.46-2 1.72-2 2.07-1 2.56+0  S1XI 9.147-3 0.2796 0.2705 1.90-2                                     | 1.670-2 0.2851 0.2684 1.35-2 1.36-2 2.00-1 2.67+0  SXIII 7.947-3 0.2756 0.2676 3.78-2                                    | 1.425-2 0.2808 0.2665 1.25-2 1.11-2 1.91-1 2.75+0  ArXV 7.132-3 0.2727 0.2656 5.32-2                                     | 1.235-2 0.2776 0.2653 1.16-2 9.23-3 1.81-1 2.83+0  CaXVII 6.552-3 0.2706 0.2641 1.40-1                                    | 1.080-2 0.2752 0.2644 1.06-2 7.82-3 1.68-1 2.89+0  TiXIX 6.118-3 0.2691 0.2630 2.40-1                                    | 8.320-3<br>0.2720<br>0.2637<br>8.69-3<br>5.75-3<br>1.41-1<br>2.98+0<br>FeXXIII<br>5.486-3<br>0.2671<br>0.2617<br>4.93-1                                                   | 6.276-3 0.2671 0.2608 6.86-3 4.02-3 1.14-1 3.12+0  ZINXXVII  5.010-3 0.2632 0.2581 6.95-1                                   | 3.530-2 0.2644 0.2609 4.88-2 2.10-3 8.16-1 3.21+0  KEXXXII 4.449-3 0.2614 0.2570 8.12-1                                    | 8.757-4 0.2628 0.2619 3.71-3 3.60-4 6.07-2 3.27+0  I MOXXXI 5.443-3 0.2618 0.2563 8.27-1                                     | 2.327-3 0.2654 0.2630 2.40-3 1.20-3 4.11-2 3.35+0  X XeLI 9.257-3 0.2653 0.2560 8.26-1                                     |
| $\begin{array}{c} \epsilon_0 \\ \epsilon_1 \\ \text{C2} \\ \text{F2} \\ \text{A2} \\ \text{K2} \\ \hline \\ \Delta \epsilon \\ \epsilon_0 \\ \epsilon_1 \\ \text{C1} \\ \text{F1} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.595-2 0.4035 0.3176 3.32-2 4.99-2 5.35-1 3.11+0 2s2p <sup>1</sup> E CIII 3.530-2 0.3528 0.3175 1.39-2 3.70-4                                                         | OV  4.778-2 0.3402 0.2924 2.21-2 3.93-2 3.17-1 2.76+0 0v  2.012-2 0.3124 0.2923 7.92-3 5.56-4                                                                     | 3.285-2 0.3141 0.2813 1.80-2 3.06-2 2.37-1 2.45+0  NeVII 1.413-2 0.2951 0.2810 7.72-3 9.58-4                             | 2.494-2 0.2999 0.2750 1.60-2 2.27-2 2.16-1 2.47+0  MgIX  1.101-2 0.2856 0.2746 1.07-2 1.86-3                             | 2.005-2 0.2911 0.2710 1.46-2 1.72-2 2.07-1 2.56+0  S1XI  9.147-3 0.2796 0.2705 1.90-2 3.27-3                             | 1.670-2 0.2851 0.2684 1.35-2 1.36-2 2.00-1 2.67+0  SXIII 7.947-3 0.2756 0.2676 3.78-2 4.58-3                             | 1.425-2 0.2808 0.2665 1.25-2 1.11-2 1.91-1 2.75+0  ArXV 7.132-3 0.2727 0.2656 5.32-2 4.87-3                              | 1.235-2 0.2776 0.2653 1.16-2 9.23-3 1.81-1 2.83+0  CaXVII 6.552-3 0.2706 0.2641 1.40-1 5.80-3                             | 1.080-2 0.2752 0.2644 1.06-2 7.82-3 1.68-1 2.89+0  TiXIX 6.118-3 0.2691 0.2630 2.40-1 5.96-3                             | 8.320-3<br>0.2720<br>0.2637<br>8.69-3<br>5.75-3<br>1.41-1<br>2.98+0<br>FeXXIII<br>5.486-3<br>0.2671<br>0.2617<br>4.93-1<br>5.99-3                                         | 6.276-3 0.2671 0.2608 6.86-3 4.02-3 1.14-1 3.12+0  ZNXXVII  5.010-3 0.2632 0.2581 6.95-1 5.92-3                             | 3.530-2 0.2644 0.2609 4.88-2 2.10-3 8.16-1 3.21+0  KrXXXII 4.449-3 0.2614 0.2570 8.12-1 5.86-3                             | 8.757-4 0.2628 0.2619 3.71-3 3.60-4 6.07-2 3.27+0  I MOXXXI 5.443-3 0.2618 0.2563 8.27-1 6.11-3                              | 2.327-3 0.2654 0.2630 2.40-3 1.20-3 4.11-2 3.35+0  X XeL1 9.257-3 0.2653 0.2560 8.26-1 8.38-3                              |
| $\epsilon_0$ $\epsilon_1$ $\epsilon_2$ $\epsilon_2$ $\epsilon_2$ $\epsilon_3$ $\epsilon_4$ $\epsilon_0$ $\epsilon_1$ $\epsilon_1$ $\epsilon_1$ $\epsilon_1$ $\epsilon_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.595-2 0.4035 0.3176 3.32-2 4.99-2 5.35-1 3.11+0 2s2p 1g CIII 3.530-2 0.3528 0.3175 1.39-2 3.70-4 1.95-1                                                              | OV  4.778-2 0.3402 0.2924 2.21-2 3.93-2 3.17-1 2.76+0  P <sub>1</sub> -2p <sup>2</sup> <sup>3</sup> P <sub>2</sub> OV  2.012-2 0.3124 0.2923 7.92-3 5.56-4 7.99-2 | 3.285-2 0.3141 0.2813 1.80-2 3.06-2 2.37-1 2.45+0  NeVII 1.413-2 0.2951 0.2810 7.72-3 9.58-4 6.02-2                      | 2.494-2 0.2999 0.2750 1.60-2 2.27-2 2.16-1 2.47+0  MgIX  1.101-2 0.2856 0.2746 1.07-2 1.86-3 5.29-2                      | 2.005-2 0.2911 0.2710 1.46-2 1.72-2 2.07-1 2.56+0  S1XI 9.147-3 0.2796 0.2705 1.90-2 3.27-3 5.94-2                       | 1.670-2 0.2851 0.2684 1.35-2 1.36-2 2.00-1 2.67+0  SXIII 7.947-3 0.2756 0.2676 3.78-2 4.58-3 8.81-2                      | 1.425-2 0.2808 0.2665 1.25-2 1.11-2 1.91-1 2.75+0  ArXV 7.132-3 0.2727 0.2656 5.32-2 4.87-3 1.11-1                       | 1.235-2 0.2776 0.2653 1.16-2 9.23-3 1.81-1 2.83+0  CaXVII 6.552-3 0.2706 0.2641 1.40-1 5.80-3 2.53-1                      | 1.080-2 0.2752 0.2644 1.06-2 7.82-3 1.68-1 2.89+0  Tixix 6.118-3 0.2691 0.2630 2.40-1 5.96-3 4.10-1                      | 8.320-3<br>0.2720<br>0.2637<br>8.69-3<br>5.75-3<br>1.41-1<br>2.98+0<br>FeXXIII<br>5.486-3<br>0.2671<br>0.2617<br>4.93-1<br>5.99-3<br>7.95-1                               | 6.276-3 0.2671 0.2608 6.86-3 4.02-3 1.14-1 3.12+0  ZNXXVII  5.010-3 0.2632 0.2581 6.95-1 5.92-3 1.08+0                      | 3.530-2 0.2644 0.2609 4.88-2 2.10-3 8.16-1 3.21+0  KrXXXII 4.449-3 0.2614 0.2570 8.12-1 5.86-3 1.22+0                      | 8.757-4 0.2628 0.2619 3.71-3 3.60-4 6.07-2 3.27+0  I MOXXXI 5.443-3 0.2618 0.2563 8.27-1 6.11-3 1.32+0                       | 2.327-3 0.2654 0.2630 2.40-3 1.20-3 4.11-2 3.35+0  X XeL1 9.257-3 0.2653 0.2560 8.26-1 8.38-3 1.53+0                       |
| $\begin{array}{c} \boldsymbol{\epsilon}_0 \\ \boldsymbol{\epsilon}_1 \\ \text{C2} \\ \text{F2} \\ \text{A2} \\ \text{K2} \\ \hline \\ \Delta \boldsymbol{\epsilon} \\ \boldsymbol{\epsilon}_0 \\ \boldsymbol{\epsilon}_1 \\ \text{C1} \\ \text{F1} \\ \text{A} \\ \text{K} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.595-2 0.4035 0.3176 3.32-2 4.99-2 5.35-1 3.11+0 2s2p 1g CIII 3.530-2 0.3528 0.3175 1.39-2 3.70-4 1.95-1 1.29+1                                                       | OV  4.778-2 0.3402 0.2924 2.21-2 3.93-2 3.17-1 2.76+0  OV  2.012-2 0.3124 0.2923 7.92-3 5.56-4 7.99-2 1.24+1                                                      | 3.285-2 0.3141 0.2813 1.80-2 3.06-2 2.37-1 2.45+0  NeVII  1.413-2 0.2951 0.2810 7.72-3 9.58-4 6.02-2 1.04+1              | 2.494-2 0.2999 0.2750 1.60-2 2.27-2 2.16-1 2.47+0  MgIX  1.101-2 0.2856 0.2746 1.07-2 1.86-3 5.29-2 5.34+0               | 2.005-2 0.2911 0.2710 1.46-2 1.72-2 2.07-1 2.56+0  SiXI 9.147-3 0.2796 0.2705 1.90-2 3.27-3 5.94-2 2.38+0                | 1.670-2 0.2851 0.2684 1.35-2 1.36-2 2.00-1 2.67+0  SXIII 7.947-3 0.2756 0.2676 3.78-2 4.58-3 8.81-2 1.35+0               | 1.425-2 0.2808 0.2665 1.25-2 1.11-2 1.91-1 2.75+0  Arxv 7.132-3 0.2727 0.2656 5.32-2 4.87-3 1.11-1 1.08+0                | 1.235-2 0.2776 0.2653 1.16-2 9.23-3 1.81-1 2.83+0  CaXVII 6.552-3 0.2706 0.2641 1.40-1 5.80-3 2.53-1 7.81-1               | 1.080-2 0.2752 0.2644 1.06-2 7.82-3 1.68-1 2.89+0  TiXIX 6.118-3 0.2691 0.2630 2.40-1 5.96-3 4.10-1 6.90-1               | 8.320-3<br>0.2720<br>0.2637<br>8.69-3<br>5.75-3<br>1.41-1<br>2.98+0<br>FeXXIII<br>5.486-3<br>0.2671<br>0.2617<br>4.93-1<br>5.99-3<br>7.95-1<br>6.00-1                     | 6.276-3 0.2671 0.2608 6.86-3 4.02-3 1.14-1 3.12+0  ZNXXVII  5.010-3 0.2632 0.2581 6.95-1 5.92-3 1.08+0 5.53-1               | 3.530-2 0.2644 0.2609 4.88-2 2.10-3 8.16-1 3.21+0  KrXXXII 4.449-3 0.2614 0.2570 8.12-1 5.86-3 1.22+0 5.06-1               | 8.757-4 0.2628 0.2619 3.71-3 3.60-4 6.07-2 3.27+0  I MOXXXI 5.443-3 0.2618 0.2563 8.27-1 6.11-3 1.32+0 5.78-1                | 2.327-3 0.2654 0.2630 2.40-3 1.20-3 4.11-2 3.35+0  X XeLI 9.257-3 0.2653 0.2560 8.26-1 8.38-3 1.53+0 8.07-1                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.595-2 0.4035 0.3176 3.32-2 4.99-2 5.35-1 3.11+0 2s2p 1E CIII 3.530-2 0.3528 0.3175 1.39-2 3.70-4 1.95-1 1.29+1 1.01-4                                                | OV  4.778-2 0.3402 0.2924 2.21-2 3.93-2 3.17-1 2.76+0  OV  2.012-2 0.3124 0.2923 7.92-3 5.56-4 7.99-2 1.24+1 8.05-4                                               | 3.285-2 0.3141 0.2813 1.80-2 3.06-2 2.37-1 2.45+0  NeVII  1.413-2 0.2951 0.2810 7.72-3 9.58-4 6.02-2 1.04+1 3.01-3       | 2.494-2 0.2999 0.2750 1.60-2 2.27-2 2.16-1 2.47+0  MgIX  1.101-2 0.2856 0.2746 1.07-2 1.86-3 5.29-2 5.34+0 9.38-3        | 2.005-2 0.2911 0.2710 1.46-2 1.72-2 2.07-1 2.56+0  S1XI  9.147-3 0.2796 0.2705 1.90-2 3.27-3 5.94-2 2.38+0 2.47-2        | 1.670-2 0.2851 0.2684 1.35-2 1.36-2 2.00-1 2.67+0  SXIII 7.947-3 0.2756 0.2676 3.78-2 4.58-3 8.81-2 1.35+0 5.73-2        | 1.425-2 0.2808 0.2665 1.25-2 1.11-2 1.91-1 2.75+0  Arxv 7.132-3 0.2727 0.2656 5.32-2 4.87-3 1.11-1 1.08+0 8.21-2         | 1.235-2 0.2776 0.2653 1.16-2 9.23-3 1.81-1 2.83+0  CaXVII 6.552-3 0.2706 0.2641 1.40-1 5.80-3 2.53-1 7.81-1 2.26-1        | 1.080-2 0.2752 0.2644 1.06-2 7.82-3 1.68-1 2.89+0  TiXIX 6.118-3 0.2691 0.2630 2.40-1 5.96-3 4.10-1 6.90-1 3.84-1        | 8.320-3<br>0.2720<br>0.2637<br>8.69-3<br>5.75-3<br>1.41-1<br>2.98+0<br>FeXXIII<br>5.486-3<br>0.2671<br>0.2617<br>4.93-1<br>5.99-3<br>7.95-1<br>6.00-1<br>7.72-1           | 6.276-3 0.2671 0.2608 6.86-3 4.02-3 1.14-1 3.12+0  ZnXXVII  5.010-3 0.2632 0.2581 6.95-1 5.92-3 1.08+0 5.53-1 1.06+0        | 3.530-2 0.2644 0.2609 4.88-2 2.10-3 8.16-1 3.21+0  KrXXXII 4.449-3 0.2614 0.2570 8.12-1 5.86-3 1.22+0 5.06-1 1.20+0        | 8.757-4 0.2628 0.2619 3.71-3 3.60-4 6.07-2 3.27+0  I MOXXXI 5.443-3 0.2618 0.2563 8.27-1 6.11-3 1.32+0 5.78-1 1.30+0         | 2.327-3 0.2654 0.2630 2.40-3 1.20-3 4.11-2 3.35+0  X XeLI 9.257-3 0.2653 0.2560 8.26-1 8.30-3 1.53+0 8.07-1 1.51+0         |
| $\begin{array}{c} \epsilon_0 \\ \epsilon_1 \\ \epsilon_2 \\ \epsilon_2 \\ \epsilon_2 \\ \epsilon_0 \\ \epsilon_1 \\ \epsilon_1 \\ \epsilon_1 \\ \epsilon_1 \\ \kappa_1 \\ \kappa_1 \\ \kappa_1 \\ \kappa_1 \\ \kappa_1 \\ \kappa_1 \\ \kappa_2 \\ \kappa_2 \\ \kappa_3 \\ \kappa_4 \\ \kappa_1 \\ \kappa_1 \\ \kappa_1 \\ \kappa_2 \\ \kappa_3 \\ \kappa_4 \\ \kappa_5 \\ \kappa_6 \\ \kappa_1 \\ \kappa_1 \\ \kappa_2 \\ \kappa_3 \\ \kappa_4 \\ \kappa_5 \\ \kappa_6 \\$ | 0.4035<br>0.4035<br>0.3176<br>3.32-2<br>4.99-2<br>5.35-1<br>3.11+0<br>2s2p 1E<br>CIII<br>3.530-2<br>0.3175<br>1.39-2<br>3.70-4<br>1.95-1<br>1.29+1<br>1.01-4<br>9.25-1 | OV  4.778-2 0.3402 0.2924 2.21-2 3.93-2 3.17-1 2.76+0 0v  2.012-2 0.3124 0.2923 7.92-3 5.56-4 7.99-2 1.24+1 8.05-4 9.28-1                                         | 3.285-2 0.3141 0.2813 1.80-2 3.06-2 2.37-1 2.45+0  NeVII 1.413-2 0.2951 0.2810 7.72-3 9.58-4 6.02-2 1.04+1 3.01-3 8.71-1 | 2.494-2 0.2999 0.2750 1.60-2 2.27-2 2.16-1 2.47+0  MgIX  1.101-2 0.2856 0.2746 1.07-2 1.86-3 5.29-2 5.34+0 9.38-3 6.33-1 | 2.005-2 0.2911 0.2710 1.46-2 1.72-2 2.07-1 2.56+0  S1XI  9.147-3 0.2796 0.2705 1.90-2 3.27-3 5.94-2 2.38+0 2.47-2 7.83-1 | 1.670-2 0.2851 0.2684 1.35-2 1.36-2 2.00-1 2.67+0  SXIII 7.947-3 0.2756 0.2676 3.78-2 4.58-3 8.81-2 1.35+0 5.73-2 7.31-1 | 1.425-2 0.2808 0.2665 1.25-2 1.11-2 1.91-1 2.75+0  Arxv  7.132-3 0.2727 0.2656 5.32-2 4.87-3 1.11-1 1.08+0 8.21-2 6.85-1 | 1.235-2 0.2776 0.2653 1.16-2 9.23-3 1.81-1 2.83+0  CaXVII 6.552-3 0.2706 0.2641 1.40-1 5.80-3 2.53-1 7.81-1 2.26-1 6.46-1 | 1.080-2 0.2752 0.2644 1.06-2 7.82-3 1.68-1 2.89+0  TiXIX 6.118-3 0.2691 0.2630 2.40-1 5.96-3 4.10-1 6.90-1 3.84-1 6.16-1 | 8.320-3<br>0.2720<br>0.2637<br>8.69-3<br>5.75-3<br>1.41-1<br>2.98+0<br>FeXXIII<br>5.486-3<br>0.2671<br>0.2617<br>4.93-1<br>5.99-3<br>7.95-1<br>6.00-1<br>7.72-1<br>5.68-1 | 6.276-3 0.2671 0.2608 6.86-3 4.02-3 1.14-1 3.12+0  ZnXXVII  5.010-3 0.2632 0.2581 6.95-1 5.92-3 1.08+0 5.53-1 1.06+0 5.32-1 | 3.530-2 0.2644 0.2609 4.88-2 2.10-3 8.16-1 3.21+0  KFXXXII 4.449-3 0.2614 0.2570 8.12-1 5.86-3 1.22+0 5.06-1 1.20+0 4.90-1 | 8.757-4 0.2628 0.2619 3.71-3 3.60-4 6.07-2 3.27+0  I MOXXXI  5.443-3 0.2618 0.2563 8.27-1 6.11-3 1.32+0 5.78-1 1.30+0 5.62-1 | 2.327-3 0.2654 0.2630 2.40-3 1.20-3 4.11-2 3.35+0  X XELI  9.257-3 0.2653 0.2560 8.26-1 8.38-3 1.53+0 8.07-1 1.51+0 7.87-1 |

TABLE IV. Fit Parameters for Excitation Cross Sections and Rate Coefficients for  $\Delta n = 0$  Transitions, Z = 6, 8, 10, 12, 14, 16, 18, 20, 22, 26, 30, 36, 42, 54 See page 7 for Explanation of Tables

|            | 2s2p 1P <sub>1</sub>             | 1-2p <sup>2-1</sup> D <sub>2</sub>           |         |         |         |         |         |         |         |         |         |                                         |         |         |
|------------|----------------------------------|----------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-----------------------------------------|---------|---------|
|            | CIII                             | ov                                           | NeVII   | MgIX    | SiXI    | SXIII   | ArXV    | CaXVII  | TiXIX   | FeXXIII | ZnXXVII | KrXXXII                                 | MoxxxI) | ( XeLI  |
| Æ          | 4.375-2                          | 2.663-2                                      | 1.916-2 | 1.504-2 | 1.249-2 | 1.079-2 | 9.621-3 | 8.815-3 | 8.169-3 | 7.776-3 | 7.812-3 | 7.973-3                                 | 7.712-3 | 9.430-3 |
| 0          | 0.3528                           | 0.3124                                       | 0.2951  | 0.2856  | 0.2796  | 0.2756  | 0.2727  | 0.2706  | 0.2691  | 0.2671  | 0.2623  | 0.2614                                  | 0.2618  | 0.2653  |
| 1          | 0.3090                           | 0.2658                                       | 0.2760  | 0.2706  | 0.2671  | 0.2648  | 0.2631  | 0.2618  | 0.2609  | 0.2594  | 0.2553  | 0.2534                                  | 0.2541  | 0.2558  |
| :1         | 3.59+0                           | 3.18+0                                       | 3.00+0  | 2.90+0  | 2.81+0  | 2.73+0  | 2.63+0  | 2.53+0  | 2.39+0  | 2.08+0  | 1.82+0  | 1.61+0                                  | 1.51+0  | 1.48+0  |
| -1         | 4.69-2                           | 2.48-2                                       | 1.81-2  | 1.47-2  | 1.19-2  | 1.01-2  | 8.96~3  | 8.24-3  | 7.71-3  | 7.39-3  | 7.35-3  | 7.41-3                                  | 7.23-3  | 8.50-3  |
| ١.         | 7.62+0                           | 6.83+0                                       | 6.08+0  | 5.65+0  | 5.39+0  | 5.14+0  | 4.87+0  | 4.60+0  | 4.26+0  | 3.68+0  | 3.23+0  | 2.88+0                                  | 2.67+0  | 2.76+0  |
| c          | 9.96-1                           | 1.03+0                                       | 9.51-1  | 9.02-1  | 8.73-1  | 0.43-1  | 8.10~1  | 7.79-1  | 7.50-1  | 7.30-1  | 7.36-1  | 7.48-1                                  | 7.34-1  | 8.16-1  |
| <b>A</b> 1 | 7.42+0                           | 6.75+0                                       | 6.03+0  | 5.61+0  | 5.35+0  | 5.11+0  | 4.84+0  | 4.75+0  | 4.23+0  | 3.64+0  | 3.19+0  | 2.84+0                                  | 2.63+0  | 2.72+0  |
| <b>C</b> 1 | 9.58-1                           | 1.01+0                                       | 9.39-1  | 8.92-1  | 8.64-1  | 0.34-1  | 8.01~1  | 7.71-1  | 7.41-1  | 7.20-1  | 7.22-1  | 7.31-1                                  | 7.15-1  | 7.94-1  |
| 12         | 4.43+0                           | 2.53+0                                       | 2.16+0  | 2.11+0  | 2.13+0  | 2.16+0  | 2.19+0  | 2.26+0  | 2.34+0  | 2.55+0  | 2.82+0  | 3.11+0                                  | 3.25+0  | 3.38+0  |
| <b>C</b> 2 | 3.21+0                           | 2.56+0                                       | 2.42+0  | 2.53+0  | 2.66+0  | 2.78+0  | 2.87+0  | 2.94+0  | 3.00+0  | 3.09+0  | 3.24+0  | 3.35+0                                  | 3.39+0  | 3.42+0  |
|            | 252p <sup>1</sup> P <sub>1</sub> | 1-2p <sup>2</sup> 1s <sub>0</sub>            |         |         |         |         |         |         |         |         |         |                                         |         |         |
|            | CIII                             | ov                                           | NeVII   | MgIX    | SiXI    | SXIII   | ArXV    | CaXVII  | TiXIX   | FeXXIII | ZnXXVII | KrXXXII                                 | MOXXXI) | K XeLI  |
| Æ          | 8.105-2                          | 4.709-2                                      | 3.317-2 | 2.567-2 | 2.104-2 | 1.793-2 | 1.574-2 | 1.415-2 | 1.299-2 | 1.154-2 | 1.016-2 | 7.990-3                                 | 7.731-3 | 9.455-  |
| 0          | 0.3528                           | 0.3124                                       | 0.2951  | 0.2856  | 0.2796  | 0.2756  | 0.2727  | 0.2706  | 0.2691  | 0.2671  | 0.2623  | 0.2614                                  | 0.2618  | 0.2653  |
| 1          | 0.2717                           | 0.2653                                       | 0.2620  | 0.2599  | 0.2586  | 0.2576  | 0.2570  | 0.2576  | 0.2561  | 0.2556  | 0.2530  | 0.2534                                  | 0.2541  | 0.2556  |
| : 1        | 2.12+0                           | 1.57+0                                       | 1.37+0  | 1.25+0  | 1.18+0  | 1.14+0  | 1.10+0  | 1.06+0  | 1.02+0  | 9.58-1  | 8.89-1  | 7.87-1                                  | 7.26-1  | 6.75-   |
| 71         | 8.50-2                           | 4.14-2                                       | 2.89-2  | 2.18-2  | 1.85-2  | 1.65-2  | 1.47-2  | 1.33-2  | 1.21-2  | 1.06-2  | 9.25-3  | 7.49-3                                  | 7.32-3  | 8.63-   |
| ١.         | 4.90+0                           | 3.74+0                                       | 3.12+0  | 2.76+0  | 2.49+0  | 2.30+0  | 2.18+0  | 2.07+0  | 1.99+0  | 1.83+0  | 1.67+0  | 1.40+0                                  | 1.28+0  | 1.25+   |
| •          | 1.09+0                           | 1.17+0                                       | 1.12+0  | 1.07+0  | 1.00+0  | 9.55-1  | 9.26-1  | 9.06-1  | 8.91-1  | 8.65-1  | 8.31-1  | 7.41-1                                  | 7.25-1  | 8.0-1   |
| <b>1</b> 1 | 4.71+0                           | 3.69+0                                       | 3.09+0  | 2.74+0  | 2.47+0  | 2.29+0  | 2.16+0  | 2.08+0  | 1.97+0  | 1.82+0  | 1.66+0  | 1.39+0                                  | 1.27+0  | 1.24+   |
| ς1         | 1.03+0                           | 1.14+0                                       | 1.11+0  | 1.06+0  | 9.93-1  | 9.45-1  | 9.16-1  | 8.96-1  | 8.81-1  | 8.56-1  | 8.22-1  | 7.32-1                                  | 7.16-1  | 7.95-   |
| 12         | 2.71+0                           | 1.28+0                                       | 1.01+0  | 9.29-1  | 8.99-1  | 8.73-1  | 8.67-1  | 8.47-1  | 8.37-1  | 8.26-1  | 8.17-1  | 7.89-1                                  | 7.66-1  | 7.35-   |
|            | 252p <sup>3</sup> P <sub>0</sub> | -2p <sup>2</sup> 1p <sub>2</sub>             |         |         |         |         |         |         |         |         |         |                                         |         |         |
|            | CIII                             | ov                                           | NeVII   | MgIX    | SiXI    | SXIII   | ArXV    | CaXVII  | TiXIX   | FeXXIII | ZnXXVII | KrXXXII                                 | Moxxxi  | XeLI    |
| ε          | 9.457-2                          | 5.462-2                                      | 3.841-2 | 2.978-2 | 2.452-2 | 2.105-2 | 1.867-2 | 1.702-2 | 1.578-2 | 1.474-2 | 1.463-2 | 1.526-2                                 | 1.463-2 | 1.554-2 |
| 0          | 0.4036                           | 0.3404                                       | 0.3144  | 0.3003  | 0.2916  | 0.2858  | 0.2818  | 0.2788  | 0.2767  | 0.2741  | 0.2700  | 0.2687                                  | 0.2687  | 0.2714  |
| 1          | 0.3090                           | 0.2658                                       | 0.2760  | 0.2706  | 0.2671  | 0.2648  | 0.2631  | 0.2618  | 0.2609  | 0.2594  | 0.2553  | 0.2534                                  | 0.2541  | 0.2558  |
| 2          | 3.58-1                           | 2.24-1                                       | 1.79-1  | 1.55-1  | 1.37-1  | 1.20-1  | 1.03-1  | 8.45-2  | 6.55-2  | 3.30-2  | 1.47-2  | 4.62-3                                  | 1.72-3  | 3.54-4  |
| 2          | 5.91-2                           | 4.31-2                                       | 3.40-2  | 2.58-2  | 2.02-2  | 1.65-2  | 1.40-2  | 1.23-2  | 1.11-2  | 9.86-3  | 9.09-3  | 9.02-3                                  | 8.47-3  | 8.76-3  |
|            | 6.64+0                           | 3.33+0                                       | 2.45+0  | 2.17+0  | 2.00+0  | 1.82+0  | 1.61+0  | 1.35+0  | 1.07+0  | 5.53-1  | 2.58-1  | 8.39-2                                  | 3.16-2  | 6.63-3  |
| :          | 3.33+0                           | 2.82+0                                       | 2.51+0  | 2.53+0  | 2.62+0  | 2.71+0  | 2.79+0  | 2.86+0  | 2.92+0  | 3.01+0  | 3.14+0  | 3.23+0                                  | 3.27+0  | 3.32+0  |
|            | 252p 3P2                         | -2p <sup>2</sup> <sup>1</sup> D <sub>2</sub> |         |         |         |         |         |         |         |         |         | • • • • • • • • • • • • • • • • • • • • |         |         |
|            | CIII                             | ov                                           | NeVII   | MgIX    | SiXI    | SXIII   | ArXV    | CaXVII  | TiXIX   | FeXXIII | ZnXXVII | KrXXXII                                 | MoXXXI  | XeLI    |
| ε          | 9.448-2                          |                                              |         |         | 2.394-2 |         |         |         |         |         |         | 1.101-2                                 | 8.696-3 | 9.524-  |
| Ç          | 0.4035                           | 0.3402                                       | 0.3141  | 0.2999  | 0.2911  | 0.2051  | 0.2808  | 0.2776  | 0.2752  | 0.2720  | 0.2671  | 0.2644                                  | 0.2628  | 0.265   |
| 1          | 0.3090                           | 0.2658                                       | 0.2760  | 0.2706  | 0.2671  | 0.2648  | 0.2631  | 0.2618  | 0.2609  | 0.2594  | 0.2553  | 0.2534                                  | 0.2541  | 0.255   |
| 1          | 2.55-2                           | 1.19-2                                       | 8.49-3  | 1.08-2  | 1.63-2  | 2.92-2  | 5.49-2  | 9.95-2  | 1.66-1  | 3.44-1  | 5.02-1  | 6.56-1                                  | 7.09-1  | 7.92    |
| 1          | 1.30-3                           | 1.30-3                                       | 1.09-3  | 2.83-3  | 4.97-3  | 7.66-3  | 9.89-3  | 1.10-2  | 1.12-2  | 1.07-2  | 9.69-3  | 9.57-3                                  | 7.72-3  | 8.40    |
|            | 5.99-1                           | 1.96-1                                       | 1.07-1  | 1.06-1  | 9.39-2  | 1.07-1  | 1.52-1  | 2.36-1  | 3.62-1  | 6.99-1  | 9.89-1  | 1.28+0                                  | 1.31+0  | 1.49    |
| :          | 1.12+1                           | 1.24+1                                       | 1.12+1  | 1.05+1  | 5.18+0  | 2.63+0  | 1.67+0  | 1.29+0  | 1.11+0  | 9.78-1  | 9.19-1  | 8.99-1                                  | 8.09-1  | 8.39    |
| .1         | 1.25-4                           | 7.45-4                                       | 2.72-4  | 8.23-3  | 2.10-2  | 4.77-2  | 9.85-2  | 1.85-1  | 3.12-1  | 6.48-1  | 9.39-1  | 1.23+0                                  | 1.27+0  | 1.45    |
| 1          | 1.03+0                           | 1.16+0                                       | 1.13+0  | 1.09+0  | 1.04+0  | 9.80-1  | 9.40-1  | 9.15-1  | 8.97-1  | 8.74-1  | 8.49-1  | 8.45-1                                  | 7.65-1  | 7.98    |
|            |                                  |                                              |         |         |         |         |         |         |         |         |         |                                         |         |         |
| 2          | 6.18+0                           | 3.32+0                                       | 2.56+0  | 2.40+0  | 2.39+0  | 2.45+0  | 2.55+0  | 2.67+0  | 2.82+0  | 3.08+0  | 3.27+0  | 3.41+0                                  | 3.41+0  | 3.42+   |

TABLE IV. Fit Parameters for Excitation Cross Sections and Rate Coefficients for  $\Delta n = 0$  Transitions, Z = 6, 8, 10, 12, 14, 16, 18, 20, 22, 26, 30, 36, 42, 54 See page 7 for Explanation of Tables

|                                                                    | 2 <b>5</b> 2p <sup>3</sup> 1                                                                                                                                                                              | -2 <b>-p</b> -0                                                                                                                                                                          |                                                                                                                           |                                                                                                                         |                                                                                                                                                    |                                                                                                                           |                                                                                                                         |                                                                                                                           |                                                                                                                         |                                                                                                                               |                                                                                                                              |                                                                                                                               |                                                                                                                                  |                                                                                                                           |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
|                                                                    | CIII                                                                                                                                                                                                      | ov                                                                                                                                                                                       | NeVII                                                                                                                     | MgIX                                                                                                                    | SiXI                                                                                                                                               | SXIII                                                                                                                     | ArXV                                                                                                                    | CaXVII                                                                                                                    | TiXIX                                                                                                                   | FeXXIII                                                                                                                       | ZnXXVI                                                                                                                       | KrXXXI                                                                                                                        | II MoXXX                                                                                                                         | IX XeLI                                                                                                                   |
| æ                                                                  | 1.318-1                                                                                                                                                                                                   | 7.491-2                                                                                                                                                                                  | 5.213-2                                                                                                                   | 4.000-2                                                                                                                 | 3.249-2                                                                                                                                            | 2.743-2                                                                                                                   | 2.381-2                                                                                                                 | 2.113-2                                                                                                                   | 1.910-2                                                                                                                 | 1.637-2                                                                                                                       | 1.411-2                                                                                                                      | 1.107-2                                                                                                                       | 8.715-3                                                                                                                          | 9.548-                                                                                                                    |
| 0                                                                  | 0.4035                                                                                                                                                                                                    | 0.3402                                                                                                                                                                                   | 0.3141                                                                                                                    | 0.2999                                                                                                                  | 0.2911                                                                                                                                             | 0.2851                                                                                                                    | 0.2808                                                                                                                  | 0.2776                                                                                                                    | 0.2752                                                                                                                  | 0.2720                                                                                                                        | 0.2671                                                                                                                       | 0.2644                                                                                                                        | 0.2628                                                                                                                           | 0.265                                                                                                                     |
| 1                                                                  | 0.2717                                                                                                                                                                                                    | 0.2653                                                                                                                                                                                   | 0.2620                                                                                                                    | 0.2599                                                                                                                  | 0.2586                                                                                                                                             | 0.2576                                                                                                                    | 0.2570                                                                                                                  | 0.2576                                                                                                                    | 0.2561                                                                                                                  | 0.2556                                                                                                                        | 0.2530                                                                                                                       | 0.2534                                                                                                                        | 0.2541                                                                                                                           | 0.2556                                                                                                                    |
| 2                                                                  | 1.54-2                                                                                                                                                                                                    | 1.23-2                                                                                                                                                                                   | 1.13-2                                                                                                                    | 1.08-2                                                                                                                  | 1.09-2                                                                                                                                             | 1.13-2                                                                                                                    | 1.20-2                                                                                                                  | 1.29-2                                                                                                                    | 1.40-2                                                                                                                  | 1.67-2                                                                                                                        | 1.93-2                                                                                                                       | 2.30-2                                                                                                                        | 2.59-2                                                                                                                           | 2.98-                                                                                                                     |
| 2                                                                  | 6.38-2                                                                                                                                                                                                    | 5.07-2                                                                                                                                                                                   | 4.05-2                                                                                                                    | 3.09-2                                                                                                                  | 2.43-2                                                                                                                                             | 1.98-2                                                                                                                    | 1.67-2                                                                                                                  | 1.44-2                                                                                                                    | 1.27-2                                                                                                                  | 1.05-2                                                                                                                        | 8.45-3                                                                                                                       | 6.36-3                                                                                                                        | 4.84-3                                                                                                                           | 5.16-                                                                                                                     |
| A                                                                  | 3.61-1                                                                                                                                                                                                    | 2.10-1                                                                                                                                                                                   | 1.71-1                                                                                                                    | 1.66-1                                                                                                                  | 1.71-1                                                                                                                                             | 1.82-1                                                                                                                    | 1.97-1                                                                                                                  | 2.16-1                                                                                                                    | 2.38-1                                                                                                                  | 2.89-1                                                                                                                        | 3.47-1                                                                                                                       | 4.18-1                                                                                                                        | 4.74-1                                                                                                                           | 5.57-                                                                                                                     |
| (                                                                  | 3.73+0                                                                                                                                                                                                    | 3.01+0                                                                                                                                                                                   | 2.69+0                                                                                                                    | 2.69+0                                                                                                                  | 2.75+0                                                                                                                                             | 2.82+0                                                                                                                    | 2.89+0                                                                                                                  | 2.95+0                                                                                                                    | 3.00+0                                                                                                                  | 3.08+0                                                                                                                        | 3.21+0                                                                                                                       | 3.29+0                                                                                                                        | 3.37+0                                                                                                                           | 3.42+                                                                                                                     |
| _                                                                  | 2 <b>52</b> p <sup>3</sup> F                                                                                                                                                                              | P <sub>1</sub> -2p <sup>2</sup> <sup>1</sup> D <sub>2</sub>                                                                                                                              |                                                                                                                           |                                                                                                                         |                                                                                                                                                    |                                                                                                                           |                                                                                                                         |                                                                                                                           |                                                                                                                         |                                                                                                                               |                                                                                                                              |                                                                                                                               |                                                                                                                                  |                                                                                                                           |
|                                                                    | CIII                                                                                                                                                                                                      | ov                                                                                                                                                                                       | NeVII                                                                                                                     | MgIX                                                                                                                    | SiXI                                                                                                                                               | SXIII                                                                                                                     | ArXV                                                                                                                    | CaXVII                                                                                                                    | TiXIX                                                                                                                   | FeXXIII                                                                                                                       | ZnXXVI I                                                                                                                     | KrXXXI                                                                                                                        | II MOXXX                                                                                                                         | IX XeL                                                                                                                    |
| Œ                                                                  | 9.454-2                                                                                                                                                                                                   | 5.457-2                                                                                                                                                                                  | 3.033-2                                                                                                                   | 2.965-2                                                                                                                 | 2.434-2                                                                                                                                            | 2.082-2                                                                                                                   | 1.838-2                                                                                                                 | 1.667-2                                                                                                                   | 1.537-2                                                                                                                 | 1.421-2                                                                                                                       | 1.401-2                                                                                                                      | 1.456-2                                                                                                                       | 1.392-2                                                                                                                          | 1.490-                                                                                                                    |
| 0                                                                  | 0.4036                                                                                                                                                                                                    | 0.3403                                                                                                                                                                                   | 0.3143                                                                                                                    | 0.3002                                                                                                                  | 0.2913                                                                                                                                             | 0.2856                                                                                                                    | 0.2815                                                                                                                  | 0.2785                                                                                                                    | 0.2763                                                                                                                  | 0.2736                                                                                                                        | 0.2694                                                                                                                       | 0.2680                                                                                                                        | 0.2680                                                                                                                           | 0.2707                                                                                                                    |
| 1                                                                  | 0.3090                                                                                                                                                                                                    | 0.2658                                                                                                                                                                                   | 0.2760                                                                                                                    | 0.2706                                                                                                                  | 0.2671                                                                                                                                             | 0.2648                                                                                                                    | 0.2631                                                                                                                  | 0.2618                                                                                                                    | 0.2609                                                                                                                  | 0.2594                                                                                                                        | 0.2553                                                                                                                       | 0.2534                                                                                                                        | 0.2541                                                                                                                           | 0.2556                                                                                                                    |
| 1                                                                  | 2.53-2                                                                                                                                                                                                    | 1.14-2                                                                                                                                                                                   | 8.21-3                                                                                                                    | 7.17-3                                                                                                                  | 7.04-3                                                                                                                                             | 7.84-3                                                                                                                    | 1.02-2                                                                                                                  | 1.49-2                                                                                                                    | 2.27-2                                                                                                                  | 4.19-2                                                                                                                        | 5.07-2                                                                                                                       | 4.04-2                                                                                                                        | 1.06-1                                                                                                                           | 7.54-3                                                                                                                    |
| ?1                                                                 | 1.29-3                                                                                                                                                                                                    | 1.17-3                                                                                                                                                                                   | 1.12-3                                                                                                                    | 9.85-4                                                                                                                  | 1.12-3                                                                                                                                             | 1.76-3                                                                                                                    | 3.13-3                                                                                                                  | 5.22-3                                                                                                                    | 7.40-3                                                                                                                  | 1.02-2                                                                                                                        | 1.12-2                                                                                                                       | 1.23-2                                                                                                                        | 1.27-2                                                                                                                           | 1.29-2                                                                                                                    |
| 4                                                                  | 5.95-1                                                                                                                                                                                                    | 1.87-1                                                                                                                                                                                   | 1.04-1                                                                                                                    | 8.14-2                                                                                                                  | 7.48-2                                                                                                                                             | 6.94-2                                                                                                                    | 5.98-2                                                                                                                  | 5.85-2                                                                                                                    | 6.70-2                                                                                                                  | 9.59-2                                                                                                                        | 1.08-1                                                                                                                       | 8.41-2                                                                                                                        | 2.09-1                                                                                                                           | 1.55-2                                                                                                                    |
| •                                                                  | 1.11+1                                                                                                                                                                                                    | 1.19+1                                                                                                                                                                                   | 1.12+1                                                                                                                    | 1.17+1                                                                                                                  | 1.25+1                                                                                                                                             | 1.06+1                                                                                                                    | 5.90+0                                                                                                                  | 3.08+0                                                                                                                    | 1.91+0                                                                                                                  | 1.22+0                                                                                                                        | 1.06+0                                                                                                                       | 1.01+0                                                                                                                        | 9.16-1                                                                                                                           | 9.88-                                                                                                                     |
| <b>A1</b>                                                          | 1.25-4                                                                                                                                                                                                    | 1.12-4                                                                                                                                                                                   | 3.27-4                                                                                                                    | 8.80-4                                                                                                                  | 2.19-3                                                                                                                                             | 5.05-3                                                                                                                    | 1.09-2                                                                                                                  | 2.15-2                                                                                                                    | 3.79-2                                                                                                                  | 7.73-2                                                                                                                        | 9.63-2                                                                                                                       | 7.80-2                                                                                                                        | 2.06-1                                                                                                                           | 1.46-2                                                                                                                    |
| (1                                                                 | 1.03+0                                                                                                                                                                                                    | 1.16+0                                                                                                                                                                                   | 1.13+0                                                                                                                    | 1.10+0                                                                                                                  | 1.04+0                                                                                                                                             | 9.89-1                                                                                                                    | 9.51-1                                                                                                                  | 9.27-1                                                                                                                    | 9.11-1                                                                                                                  | 8.97-1                                                                                                                        | 8.97-1                                                                                                                       | 9.06-1                                                                                                                        | 8.97-1                                                                                                                           | 9.09-                                                                                                                     |
| 12                                                                 | 6.14+0                                                                                                                                                                                                    | 3.27+0                                                                                                                                                                                   | 2.46+0                                                                                                                    | 2.23+0                                                                                                                  | 2.12+0                                                                                                                                             | 2.01+0                                                                                                                    | 1.88+0                                                                                                                  | 1.70+0                                                                                                                    | 1.49+0                                                                                                                  | 1.04+0                                                                                                                        | 6.95-1                                                                                                                       | 3.57-1                                                                                                                        | 1.78-1                                                                                                                           | 4.88-2                                                                                                                    |
|                                                                    | 3.19+0                                                                                                                                                                                                    | 2 77.0                                                                                                                                                                                   |                                                                                                                           |                                                                                                                         |                                                                                                                                                    |                                                                                                                           |                                                                                                                         |                                                                                                                           | 2.92+0                                                                                                                  | 2 01+0                                                                                                                        | 2 15 . 0                                                                                                                     | 2 24.0                                                                                                                        | 3.28+0                                                                                                                           | 3.33+0                                                                                                                    |
| <b>C</b> 2                                                         |                                                                                                                                                                                                           | 2.77+0                                                                                                                                                                                   | 2.49+0                                                                                                                    | 2.52+0                                                                                                                  | 2.61+0                                                                                                                                             | 2.71+0                                                                                                                    | 2.79+0                                                                                                                  | 2.86+0                                                                                                                    |                                                                                                                         | 3.01+0                                                                                                                        | 3.15+0                                                                                                                       | 3.24+0                                                                                                                        | 3.20+0                                                                                                                           | 3.33*                                                                                                                     |
|                                                                    | 2s2p <sup>3</sup> P,                                                                                                                                                                                      | <sub>0</sub> -2 <b>p</b> <sup>2</sup> 1 <b>s</b> <sub>0</sub>                                                                                                                            |                                                                                                                           |                                                                                                                         |                                                                                                                                                    |                                                                                                                           |                                                                                                                         |                                                                                                                           |                                                                                                                         |                                                                                                                               |                                                                                                                              |                                                                                                                               |                                                                                                                                  |                                                                                                                           |
|                                                                    |                                                                                                                                                                                                           |                                                                                                                                                                                          | NeVII                                                                                                                     | MgIX                                                                                                                    | SiXI                                                                                                                                               | SXIII                                                                                                                     | Arxv                                                                                                                    | CaXVII                                                                                                                    | TiXIX                                                                                                                   | FeXXIII                                                                                                                       |                                                                                                                              |                                                                                                                               | I MoxXXI                                                                                                                         |                                                                                                                           |
|                                                                    | 2s2p <sup>3</sup> P,                                                                                                                                                                                      | <sub>0</sub> -2 <b>p</b> <sup>2</sup> 1 <b>s</b> <sub>0</sub>                                                                                                                            |                                                                                                                           | MgIX                                                                                                                    | SiXI                                                                                                                                               |                                                                                                                           | Arxv                                                                                                                    | CaXVII                                                                                                                    | TiXIX                                                                                                                   | FeXXIII                                                                                                                       | žnXXVII                                                                                                                      | KrXXXII                                                                                                                       | I MOXXXI                                                                                                                         | X XeLI                                                                                                                    |
| Ε                                                                  | 2s2p <sup>3</sup> P,                                                                                                                                                                                      | 0 <sup>-2p<sup>2-1</sup>s<sub>0</sub></sup>                                                                                                                                              | NeVII                                                                                                                     | MgIX                                                                                                                    | SiXI                                                                                                                                               | SXIII                                                                                                                     | Arxv                                                                                                                    | CaXVII                                                                                                                    | TiXIX                                                                                                                   | FeXXIII 1.850-2                                                                                                               | 2nXXVII<br>1.698-2                                                                                                           | KrXXXII                                                                                                                       | I MOXXXI                                                                                                                         | X XeLI                                                                                                                    |
| <br>ε                                                              | 2s2p <sup>3</sup> P,<br>CIII<br>1.319-1                                                                                                                                                                   | ov 7.506-2                                                                                                                                                                               | NeVII 5.243-2                                                                                                             | MgIX<br>4.041-2                                                                                                         | SiXI<br>3.307-2                                                                                                                                    | SXIII<br>2.819-2                                                                                                          | Arxv<br>2.479-2                                                                                                         | CaXVII<br>2.239-2                                                                                                         | TiXIX 2.061-2                                                                                                           | FeXXIII 1.850-2 0.2741                                                                                                        | 2nXXVII<br>1.698-2                                                                                                           | KrXXXII                                                                                                                       | I MOXXXII                                                                                                                        | x XeLI                                                                                                                    |
| ε<br>0                                                             | 252p <sup>3</sup> P,<br>CIII<br>1.319-1<br>0.4036<br>0.2717<br>1.52-2                                                                                                                                     | 0-2p <sup>2</sup> 1s <sub>0</sub> OV  7.508-2  0.3404  0.2653  1.17-2                                                                                                                    | NeVII<br>5.243-2<br>0.3144<br>0.2620<br>1.01-2                                                                            | MgIX<br>4.041-2<br>0.3003<br>0.2599<br>8.89-3                                                                           | SiXI<br>3.307-2<br>0.2916<br>0.2586<br>7.82-3                                                                                                      | SXIII<br>2.819-2<br>0.2858<br>0.2576<br>6.78-3                                                                            | ArXV 2.479-2 0.2818 0.2570 5.70-3                                                                                       | CaXVII<br>2.239-2<br>0.2788<br>0.2576<br>4.60-3                                                                           | TiXIX 2.061-2 0.2767 0.2561 3.54-3                                                                                      | FeXXIII  1.850-2  0.2741  0.2556  1.78-3                                                                                      | ZnXXVII<br>1.698-2<br>0.2700<br>0.2530<br>6.98-4                                                                             | KrXXXII<br>1.528-2<br>0.2687<br>0.2534<br>1.03-4                                                                              | I MOXXXI<br>1.465-2<br>0.2687<br>0.2541<br>7.28-6                                                                                | X XeLI<br>1.556-2<br>0.2714<br>0.2558<br>1.09-5                                                                           |
| ε<br>0<br>1<br>2                                                   | 2s2p 3P,<br>CIII<br>1.319-1<br>0.4036<br>0.2717<br>1.52-2<br>6.3B-2                                                                                                                                       | 0-2p <sup>2-1</sup> S <sub>0</sub> OV  7.508-2 0.3404 0.2653 1.17-2 5.08-2                                                                                                               | NeVII<br>5.243-2<br>0.3144<br>0.2620<br>1.01-2<br>4.07-2                                                                  | MgIX 4.041-2 0.3003 0.2599 8.89-3 3.13-2                                                                                | \$1XI<br>3.307-2<br>0.2916<br>0.2586<br>7.82-3<br>2.47-2                                                                                           | SXIII  2.819-2 0.2858 0.2576 6.78-3 2.06-2                                                                                | Arxv<br>2.479-2<br>0.2818<br>0.2570<br>5.70-3<br>1.74-2                                                                 | CaXVII<br>2.239-2<br>0.2788<br>0.2576<br>4.60-3<br>1.53-2                                                                 | T1XIX 2.061-2 0.2767 0.2561 3.54-3 1.38-2                                                                               | FeXXIII  1.850-2 0.2741 0.2556 1.78-3 1.19-2                                                                                  | ZnXXVII<br>1.698-2<br>0.2700<br>0.2530<br>6.98-4<br>1.03-2                                                                   | KrXXXII<br>1.528-2<br>0.2687<br>0.2534<br>1.03-4<br>9.03-3                                                                    | I MOXXXII<br>1.465-2<br>0.2687<br>0.2541<br>7.28-6<br>8.48-3                                                                     | X XeLI<br>1.556-;<br>0.2714<br>0.2558<br>1.09-5<br>5.11-3                                                                 |
| ε<br>0<br>1<br>2                                                   | 2s2p 3P,<br>CIII<br>1.319-1<br>0.4036<br>0.2717<br>1.52-2<br>6.38-2<br>3.55-1                                                                                                                             | 0-2p <sup>2-1</sup> S <sub>0</sub> OV  7.508-2 0.3404 0.2653 1.17-2 5.08-2 2.00-1                                                                                                        | NeVII<br>5.243-2<br>0.3144<br>0.2620<br>1.01-2<br>4.07-2<br>1.53-1                                                        | MgIX 4.041-2 0.3003 0.2599 8.89-3 3.13-2 1.36-1                                                                         | \$1XI<br>3.307-2<br>0.2916<br>0.2586<br>7.82-3<br>2.47-2<br>1.23-1                                                                                 | SXIII  2.819-2 0.2858 0.2576 6.78-3 2.06-2 1.10-1                                                                         | ArXV<br>2.479-2<br>0.2818<br>0.2570<br>5.70-3<br>1.74-2<br>9.36-2                                                       | CaXVII 2.239-2 0.2788 0.2576 4.60-3 1.53-2 7.67-2                                                                         | T1XIX 2.061-2 0.2767 0.2561 3.54-3 1.38-2 5.99-2                                                                        | FeXXIII  1.850-2 0.2741 0.2556 1.78-3 1.19-2 3.08-2                                                                           | ZnXXVII<br>1.698-2<br>0.2700<br>0.2530<br>6.98-4<br>1.03-2<br>1.25-2                                                         | KrXXXII<br>1.520-2<br>0.2687<br>0.2534<br>1.03-4<br>9.03-3<br>1.87-3                                                          | I MOXXXII<br>1.465-2<br>0.2687<br>0.2541<br>7.28-6<br>8.48-3<br>1.34-4                                                           | X XeLI<br>1.556-2<br>0.2714<br>0.2558<br>1.09-5<br>5.11-3<br>2.04-4                                                       |
| ε<br>0<br>1<br>2                                                   | 2s2p <sup>3</sup> P,<br>CIII<br>1.319-1<br>0.4036<br>0.2717<br>1.52-2<br>6.38-2<br>3.55-1<br>3.73+0                                                                                                       | 0-2p <sup>2</sup> 1s <sub>0</sub> OV  7.508-2 0.3404 0.2653 1.17-2 5.08-2 2.00-1 3.01+0                                                                                                  | NeVII<br>5.243-2<br>0.3144<br>0.2620<br>1.01-2<br>4.07-2                                                                  | MgIX 4.041-2 0.3003 0.2599 8.89-3 3.13-2                                                                                | \$1XI<br>3.307-2<br>0.2916<br>0.2586<br>7.82-3<br>2.47-2                                                                                           | SXIII  2.819-2 0.2858 0.2576 6.78-3 2.06-2                                                                                | Arxv<br>2.479-2<br>0.2818<br>0.2570<br>5.70-3<br>1.74-2                                                                 | CaXVII<br>2.239-2<br>0.2788<br>0.2576<br>4.60-3<br>1.53-2                                                                 | T1XIX 2.061-2 0.2767 0.2561 3.54-3 1.38-2                                                                               | FeXXIII  1.850-2 0.2741 0.2556 1.78-3 1.19-2                                                                                  | ZnXXVII<br>1.698-2<br>0.2700<br>0.2530<br>6.98-4<br>1.03-2                                                                   | KrXXXII<br>1.528-2<br>0.2687<br>0.2534<br>1.03-4<br>9.03-3                                                                    | I MOXXXII<br>1.465-2<br>0.2687<br>0.2541<br>7.28-6<br>8.48-3                                                                     | X XeLI<br>1.556-;<br>0.2714<br>0.2558<br>1.09-5<br>5.11-3                                                                 |
| €<br>0<br>1<br>2                                                   | 2s2p 3P,<br>CIII<br>1.319-1<br>0.4036<br>0.2717<br>1.52-2<br>6.38-2<br>3.55-1<br>3.73+0<br>2s2p 3P                                                                                                        | 0-2p <sup>2-1</sup> S <sub>0</sub> OV  7.508-2 0.3404 0.2653 1.17-2 5.08-2 2.00-1 3.01+0 1-2p <sup>2-1</sup> S <sub>0</sub>                                                              | NeVII<br>5.243-2<br>0.3144<br>0.2620<br>1.01-2<br>4.07-2<br>1.53-1<br>2.69+0                                              | MgIX 4.041-2 0.3003 0.2599 8.89-3 3.13-2 1.36-1 2.69+0                                                                  | \$1XI<br>3.307-2<br>0.2916<br>0.2586<br>7.82-3<br>2.47-2<br>1.23-1<br>2.75+0                                                                       | SXIII  2.819-2 0.2858 0.2576 6.78-3 2.06-2 1.10-1 2.83+0                                                                  | ArXV 2.479-2 0.2818 0.2570 5.70-3 1.74-2 9.36-2 2.88+0                                                                  | CaXVII 2.239-2 0.2788 0.2576 4.60-3 1.53-2 7.67-2 2.94+0                                                                  | T1XIX 2.061-2 0.2767 0.2561 3.54-3 1.38-2 5.99-2 2.99+0                                                                 | FeXXIII  1.850-2 0.2741 0.2556 1.78-3 1.19-2 3.08-2 3.06+0                                                                    | 2nxxvII<br>1.698-2<br>0.2700<br>0.2530<br>6.98-4<br>1.03-2<br>1.25-2<br>3.17+0                                               | KrXXXII<br>1.528-2<br>0.2687<br>0.2534<br>1.03-4<br>9.03-3<br>1.87-3<br>3.23+0                                                | I MOXXXII<br>1.465-2<br>0.2687<br>0.2541<br>7.28-6<br>8.48-3<br>1.34-4<br>3.27+0                                                 | X XeLI 1.556-: 0.2714 0.2558 1.09-5 5.11-3 2.04-4 3.42+0                                                                  |
| ε 0 1 2 2 2                                                        | 2s2p <sup>3</sup> P,<br>CIII<br>1.319-1<br>0.4036<br>0.2717<br>1.52-2<br>6.38-2<br>3.55-1<br>3.73+0<br>2s2p <sup>3</sup> P                                                                                | 0-2p <sup>2</sup> 1s <sub>0</sub> OV  7.508-2 0.3404 0.2653 1.17-2 5.08-2 2.00-1 3.01+0 1-2p <sup>2</sup> 1s <sub>0</sub> OV                                                             | NeVII 5.243-2 0.3144 0.2620 1.01-2 4.07-2 1.53-1 2.69+0                                                                   | MgIX 4.041-2 0.3003 0.2599 8.89-3 3.13-2 1.36-1 2.69+0                                                                  | SiXI 3.307-2 0.2916 0.2586 7.82-3 2.47-2 1.23-1 2.75+0                                                                                             | SXIII  2.819-2 0.2858 0.2576 6.78-3 2.06-2 1.10-1 2.83+0                                                                  | ArXV 2.479-2 0.2818 0.2570 5.70-3 1.74-2 9.36-2 2.88+0                                                                  | CaXVII 2.239-2 0.2788 0.2576 4.60-3 1.53-2 7.67-2 2.94+0                                                                  | T1XIX 2.061-2 0.2767 0.2561 3.54-3 1.38-2 5.99-2 2.98+0                                                                 | FeXXIII  1.850-2 0.2741 0.2556 1.78-3 1.19-2 3.08-2 3.06+0                                                                    | 2nXXVII<br>1.698-2<br>0.2700<br>0.2530<br>6.98-4<br>1.03-2<br>1.25-2<br>3.17+0                                               | KrXXXII<br>1.528-2<br>0.2687<br>0.2534<br>1.03-4<br>9.03-3<br>1.87-3<br>3.23+0                                                | I MOXXXII  1.465-2 0.2687 0.2541 7.28-6 8.48-3 1.34-4 3.27+0                                                                     | X XeLI<br>1.556-<br>0.2714<br>0.2558<br>1.09-5<br>5.11-3<br>2.04-4<br>3.42+0                                              |
| ε<br>0<br>1<br>2<br>2                                              | 2s2p 3P, CIII  1.319-1 0.4036 0.2717 1.52-2 6.38-2 3.55-1 3.73+0 2s2p 3P CIII                                                                                                                             | 0-2p <sup>2-1</sup> S <sub>0</sub> OV  7.508-2 0.3404 0.2653 1.17-2 5.08-2 2.00-1 3.01+0 i-2p <sup>2-1</sup> S <sub>0</sub> OV  7.503-2                                                  | NeVII 5.243-2 0.3144 0.2620 1.01-2 4.07-2 1.53-1 2.69+0 NeVII 5.234-2                                                     | MgIX 4.041-2 0.3003 0.2599 8.89-3 3.13-2 1.36-1 2.69+0 MgIX 4.028-2                                                     | \$1XI<br>3.307-2<br>0.2916<br>0.2586<br>7.82-3<br>2.47-2<br>1.23-1<br>2.75+0<br>\$1XI<br>3.289-2                                                   | SXIII  2.819-2 0.2858 0.2576 6.78-3 2.06-2 1.10-1 2.83+0  SXIII  2.796-2                                                  | Arxv<br>2.479-2<br>0.2818<br>0.2570<br>5.70-3<br>1.74-2<br>9.36-2<br>2.88+0<br>Arxv<br>2.450-2                          | CaXVII 2.239-2 0.2788 0.2576 4.60-3 1.53-2 7.67-2 2.94+0  CaXVII                                                          | T1XIX 2.061-2 0.2767 0.2561 3.54-3 1.38-2 5.99-2 2.98+0 T1XIX 2.019-2                                                   | FeXXIII  1.850-2 0.2741 0.2556 1.78-3 1.19-2 3.08-2 3.06+0  FEXXIII                                                           | ZnxxVII<br>1.698-2<br>0.2700<br>0.2530<br>6.98-4<br>1.03-2<br>1.25-2<br>3.17+0<br>ZnxxVII                                    | KrXXXII<br>1.520-2<br>0.2687<br>0.2534<br>1.03-4<br>9.03-3<br>1.87-3<br>3.23+0<br>KrXXXII                                     | I MOXXXII  1.465-2 0.2687 0.2541 7.28-6 8.48-3 1.34-4 3.27+0 I MOXXXII                                                           | X XeLI  1.556- 0.2714 0.2558 1.09-5 5.11-3 2.04-4 3.42+0  X XeLI                                                          |
| £ 0 1 2 2                                                          | 2s2p 3p, CIII  1.319-1 0.4036 0.2717 1.52-2 6.38-2 3.55-1 3.73+0 2s2p 3p CIII 1.318-1 0.4036                                                                                                              | 0-2p <sup>2-1</sup> S <sub>0</sub> OV  7.508-2 0.3404 0.2653 1.17-2 5.08-2 2.00-1 3.01+0 1-2p <sup>2-1</sup> S <sub>0</sub> OV  7.503-2 0.3403                                           | NeVII 5.243-2 0.3144 0.2620 1.01-2 4.07-2 1.53-1 2.69+0  NeVII 5.234-2 0.3143                                             | MgIX  4.041-2 0.3003 0.2599 8.89-3 3.13-2 1.36-1 2.69+0  MgIX  4.028-2 0.3002                                           | \$1XI<br>3.307-2<br>0.2916<br>0.2586<br>7.82-3<br>2.47-2<br>1.23-1<br>2.75+0<br>\$1XI<br>3.289-2<br>0.2913                                         | SXIII  2.819-2 0.2858 0.2576 6.78-3 2.06-2 1.10-1 2.83+0  SXIII  2.796-2 0.2856                                           | ArXV 2.479-2 0.2818 0.2570 5.70-3 1.74-2 9.36-2 2.88+0 ArXV 2.450-2 0.2815                                              | CaXVII 2.239-2 0.2788 0.2576 4.60-3 1.53-2 7.67-2 2.94+0  CaXVII 2.200-2 0.2785                                           | T1XIX 2.061-2 0.2767 0.2561 3.54-3 1.38-2 5.99-2 2.99+0 T1XIX 2.019-2 0.2763                                            | FeXXIII  1.850-2 0.2741 0.2556 1.78-3 1.19-2 3.08-2 3.06+0  FeXXIII 1.797-2 0.2736                                            | ZnXXVII<br>1.698-2<br>0.2700<br>0.2530<br>6.98-4<br>1.03-2<br>1.25-2<br>3.17+0<br>ZnXXVII<br>1.636-2<br>0.2694               | KrXXXII<br>1.528-2<br>0.2687<br>0.2534<br>1.03-4<br>9.03-3<br>1.87-3<br>3.23+0<br>KrXXXII<br>1.458-2<br>0.2680                | I MOXXXII  1.465-2 0.2687 0.2541 7.28-6 8.48-3 1.34-4 3.27+0 I MOXXXII 1.394-2 0.2680                                            | X XeLI  1.556- 0.2714 0.2558 1.09-5 5.11-3 2.04-4 3.42+0  X XeLI  1.492- 0.2707                                           |
| ε<br>2<br>2<br>2                                                   | 252p <sup>3</sup> P,<br>CIII<br>1.319-1<br>0.4036<br>0.2717<br>1.52-2<br>6.38-2<br>3.55-1<br>3.73+0<br>252p <sup>3</sup> P,<br>CIII<br>1.318-1<br>0.4036<br>0.2717                                        | 0-2p <sup>2-1</sup> S <sub>0</sub> OV  7.508-2 0.3404 0.2653 1.17-2 5.08-2 2.00-1 3.01+0 1-2p <sup>2-1</sup> S <sub>0</sub> OV  7.503-2 0.3403 0.2653                                    | NeVII 5.243-2 0.3144 0.2620 1.01-2 4.07-2 1.53-1 2.69+0  NeVII 5.234-2 0.3143 0.2620                                      | MgIX 4.041-2 0.3003 0.2599 8.89-3 3.13-2 1.36-1 2.69+0  MgIX 4.028-2 0.3002 0.2599                                      | \$1XI<br>3.307-2<br>0.2916<br>0.2586<br>7.82-3<br>2.47-2<br>1.23-1<br>2.75+0<br>\$1XI<br>3.289-2<br>0.2913<br>0.2586                               | SXIII  2.819-2 0.2858 0.2576 6.78-3 2.06-2 1.10-1 2.83+0  SXIII  2.796-2 0.2856 0.2576                                    | ArXV 2.479-2 0.2818 0.2570 5.70-3 1.74-2 9.36-2 2.88+0  ArXV 2.450-2 0.2815 0.2570                                      | CaXVII 2.239-2 0.2788 0.2576 4.60-3 1.53-2 7.67-2 2.94+0  CaXVII 2.200-2 0.2785 0.2576                                    | T1XIX 2.061-2 0.2767 0.2561 3.54-3 1.38-2 5.99-2 2.98+0  T1XIX 2.019-2 0.2763 0.2561                                    | FeXXIII  1.850-2 0.2741 0.2556 1.78-3 1.19-2 3.08-2 3.06+0  FEXXIII 1.797-2 0.2736 0.2556                                     | ZnxxVII  1.698-2 0.2700 0.2530 6.98-4 1.03-2 1.25-2 3.17+0  ZnxxVII  1.636-2 0.2694 0.2530                                   | KrXXXII  1.528-2 0.2687 0.2534 1.03-4 9.03-3 1.87-3 3.23+0  KrXXXII  1.458-2 0.2680 0.2534                                    | I MOXXXII  1.465-2 0.2687 0.2541 7.28-6 8.48-3 1.34-4 3.27+0 I MOXXXII 1.394-2 0.2680 0.2541                                     | X XeLI  1.556- 0.2714 0.2558 1.09-5 5.11-3 2.04-4 3.42+0  XeLI  1.492- 0.2707 0.2558                                      |
| ε<br>2<br>2<br>1<br>1                                              | 252p <sup>3</sup> P,<br>CIII<br>1.319-1<br>0.4036<br>0.2717<br>1.52-2<br>6.38-2<br>3.55-1<br>3.73+0<br>252p <sup>3</sup> P<br>CIII<br>1.318-1<br>0.4036<br>0.2717<br>1.36-3                               | 0-2p <sup>2-1</sup> S <sub>0</sub> ov  7.508-2 0.3404 0.2653 1.17-2 5.08-2 2.00-1 3.01+0 1-2p <sup>2-1</sup> S <sub>0</sub> ov  7.503-2 0.3403 0.2653 6.91-4                             | NeVII 5.243-2 0.3144 0.2620 1.01-2 4.07-2 1.53-1 2.69+0  NeVII 5.234-2 0.3143 0.2620 5.17-4                               | MgIX  4.041-2 0.3003 0.2599 8.89-3 3.13-2 1.36-1 2.69+0  MgIX  4.028-2 0.3002 0.2599 4.57-4                             | \$1XI<br>3.307-2<br>0.2916<br>0.2586<br>7.82-3<br>2.47-2<br>1.23-1<br>2.75+0<br>\$1XI<br>3.289-2<br>0.2913<br>0.2586<br>4.50-4                     | SXIII  2.819-2 0.2858 0.2576 6.78-3 2.06-2 1.10-1 2.83+0  SXIII  2.796-2 0.2856 0.2576 4.93-4                             | ArXV 2.479-2 0.2818 0.2570 5.70-3 1.74-2 9.36-2 2.88+0  ArXV 2.450-2 0.2815 0.2570 5.91-4                               | CaXVII 2.239-2 0.2788 0.2576 4.60-3 1.53-2 7.67-2 2.94+0  CaXVII 2.200-2 0.2785 0.2576 7.50-4                             | T1XIX 2.061-2 0.2767 0.2561 3.54-3 1.38-2 5.99-2 2.98+0  T1XIX 2.019-2 0.2763 0.2561 9.56-4                             | FeXXIII  1.850-2 0.2741 0.2556 1.78-3 1.19-2 3.08-2 3.06+0  FEXXIII 1.797-2 0.2736 0.2556 1.32-3                              | ZnXXVII  1.698-2 0.2700 0.2530 6.98-4 1.03-2 1.25-2 3.17+0  ZnXXVII  1.636-2 0.2694 0.2530 1.30-3                            | KrXXXII  1.528-2 0.2687 0.2534 1.03-4 9.03-3 1.87-3 3.23+0  KrXXXII  1.458-2 0.2680 0.2534 6.58-4                             | I MOXXXII  1.465-2 0.2687 0.2541 7.28-6 8.48-3 1.34-4 3.27+0  I MOXXXII 1.394-2 0.2680 0.2541 1.74-4                             | X XeLI  1.556- 0.2714 0.2558 1.09-5 5.11-3 2.04-4 3.42+0  X XeLI  1.492- 0.2707 0.2558 4.03-6                             |
| ε ο ι 2 2                                                          | 2s2p <sup>3</sup> P,<br>CIII<br>1.319-1<br>0.4036<br>0.2717<br>1.52-2<br>6.38-2<br>3.55-1<br>3.73+0<br>2s2p <sup>3</sup> P<br>CIII<br>1.318-1<br>0.4036<br>0.2717<br>1.36-3<br>1.18-3                     | 0-2p <sup>2-1</sup> S <sub>0</sub> ov  7.508-2 0.3404 0.2653 1.17-2 5.08-2 2.00-1 3.01+0 1-2p <sup>2-1</sup> S <sub>0</sub> ov  7.503-2 0.3403 0.2653 6.91-4 1.29-3                      | NeVII 5.243-2 0.3144 0.2620 1.01-2 4.07-2 1.53-1 2.69+0  NeVII 5.234-2 0.3143 0.2620 5.17-4 1.24-3                        | MgIX  4.041-2 0.3003 0.2599 8.89-3 3.13-2 1.36-1 2.69+0  MgIX  4.028-2 0.3002 0.2599 4.57-4 1.17-3                      | \$1XI<br>3.307-2<br>0.2916<br>0.2586<br>7.82-3<br>2.47-2<br>1.23-1<br>2.75+0<br>\$1XI<br>3.289-2<br>0.2913<br>0.2586<br>4.50-4<br>1.40-3           | SXIII  2.819-2 0.2858 0.2576 6.78-3 2.06-2 1.10-1 2.83+0  SXIII  2.796-2 0.2856 0.2576 4.93-4 2.08-3                      | Arxv 2.479-2 0.2818 0.2570 5.70-3 1.74-2 9.36-2 2.88+0  Arxv 2.450-2 0.2815 0.2570 5.91-4 3.29-3                        | CaXVII 2.239-2 0.2788 0.2576 4.60-3 1.53-2 7.67-2 2.94+0  CaXVII 2.200-2 0.2785 0.2576 7.50-4 4.88-3                      | T1XIX 2.061-2 0.2767 0.2561 3.54-3 1.38-2 5.99-2 2.98+0  T1XIX 2.019-2 0.2763 0.2561 9.56-4 6.56-3                      | FeXXIII  1.850-2 0.2741 0.2556 1.78-3 1.19-2 3.08-2 3.06+0  FEXXIII 1.797-2 0.2736 0.2556 1.32-3 9.28-3                       | ZnXxVII  1.698-2 0.2700 0.2530 6.98-4 1.03-2 1.25-2 3.17+0  ZnXxVII  1.636-2 0.2694 0.2530 1.30-3 1.03-2                     | KrXXXII  1.528-2 0.2687 0.2534 1.03-4 9.03-3 1.87-3 3.23+0  KrXXXII  1.458-2 0.2680 0.2534 6.58-4 9.76-3                      | I MOXXXII  1.465-2 0.2687 0.2541 7.28-6 8.48-3 1.34-4 3.27+0  I MOXXXII 1.394-2 0.2680 0.2541 1.74-4 8.09-3                      | X XeLI  1.556- 0.2714 0.2558 1.09-5 5.11-3 2.04-4 3.42+0  X XeLI  1.492- 0.2707 0.2558 4.03-6 6.19-4                      |
| ε<br>ε<br>ε<br>ε<br>ε<br>ε<br>ε<br>ε<br>ε<br>ε<br>ε<br>ε<br>ε<br>ε | 2s2p <sup>3</sup> P,<br>CIII<br>1.319-1<br>0.4036<br>0.2717<br>1.52-2<br>6.38-2<br>3.55-1<br>3.73+0<br>2s2p <sup>3</sup> P<br>CIII<br>1.318-1<br>0.4036<br>0.2717<br>1.36-3<br>1.18-3<br>4.01-2           | 0-2p <sup>2-1</sup> S <sub>0</sub> ov  7.506-2 0.3404 0.2653 1.17-2 5.08-2 2.00-1 3.01+0  ov  7.503-2 0.3403 0.2653 6.91-4 1.29-3 1.34-2                                                 | NeVII 5.243-2 0.3144 0.2620 1.01-2 4.07-2 1.53-1 2.69+0  NeVII 5.234-2 0.3143 0.2620 5.17-4 1.24-3 7.76-3                 | MgIX  4.041-2 0.3003 0.2599 8.89-3 3.13-2 1.36-1 2.69+0  MgIX  4.028-2 0.3002 0.2599 4.57-4 1.17-3 6.11-3               | \$1XI<br>3.307-2<br>0.2916<br>0.2586<br>7.82-3<br>2.47-2<br>1.23-1<br>2.75+0<br>\$1XI<br>3.289-2<br>0.2913<br>0.2586<br>4.50-4<br>1.40-3<br>5.59-3 | SXIII  2.819-2 0.2858 0.2576 6.78-3 2.06-2 1.10-1 2.83+0  SXIII  2.796-2 0.2856 0.2576 4.93-4 2.08-3 5.21-3               | Arxv 2.479-2 0.2818 0.2570 5.70-3 1.74-2 9.36-2 2.88+0  Arxv 2.450-2 0.2815 0.2570 5.91-4 3.29-3 4.44-3                 | CaXVII 2.239-2 0.2788 0.2576 4.60-3 1.53-2 7.67-2 2.94+0  CaXVII 2.200-2 0.2785 0.2576 7.50-4 4.88-3 3.94-3               | Tixix 2.061-2 0.2767 0.2561 3.54-3 1.38-2 5.99-2 2.98+0  Tixix 2.019-2 0.2763 0.2561 9.56-4 6.56-3 3.81-3               | FeXXIII  1.850-2 0.2741 0.2556 1.78-3 1.19-2 3.08-2 3.06+0  FEXXIII 1.797-2 0.2736 0.2556 1.32-3 9.28-3 3.82-3                | ZnXxVII  1.698-2 0.2700 0.2530 6.98-4 1.03-2 1.25-2 3.17+0  ZnXxVII  1.636-2 0.2694 0.2530 1.30-3 1.03-2 3.27-3              | KrXXXII  1.528-2 0.2687 0.2534 1.03-4 9.03-3 1.87-3 3.23+0  KrXXXII  1.458-2 0.2680 0.2534 6.58-4 9.76-3 1.57-3               | I MOXXXII  1.465-2 0.2687 0.2541 7.28-6 8.48-3 1.34-4 3.27+0  I MOXXXII 1.394-2 0.2680 0.2541 1.74-4 8.09-3 4.45-4               | X XeLI  1.556- 0.2714 0.2558 1.09-5 5.11-3 2.04-4 3.42+0  XeLI  1.492- 0.2707 0.2558 4.03-6 6.19-4 3.62-5                 |
| ε ε ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο                            | 2s2p <sup>3</sup> p,<br>CIII<br>1.319-1<br>0.4036<br>0.2717<br>1.52-2<br>6.38-2<br>3.55-1<br>3.73+0<br>2s2p <sup>3</sup> p<br>CIII<br>1.318-1<br>0.4036<br>0.2717<br>1.36-3<br>1.18-3<br>4.01-2<br>1.02+1 | 0-2p <sup>2-1</sup> S <sub>0</sub> OV  7.506-2 0.3404 0.2653 1.17-2 5.08-2 2.00-1 3.01+0  OV  7.503-2 0.3403 0.2653 6.91-4 1.29-3 1.34-2 1.14+1                                          | NeVII 5.243-2 0.3144 0.2620 1.01-2 4.07-2 1.53-1 2.69+0  NeVII 5.234-2 0.3143 0.2620 5.17-4 1.24-3 7.76-3 1.12+1          | MgIX  4.041-2 0.3003 0.2599 8.89-3 3.13-2 1.36-1 2.69+0  MgIX  4.028-2 0.3002 0.2599 4.57-4 1.17-3 6.11-3 1.20+1        | SiXI  3.307-2 0.2916 0.2596 7.82-3 2.47-2 1.23-1 2.75+0  SiXI  3.289-2 0.2913 0.2586 4.50-4 1.40-3 5.59-3 1.31+1                                   | SXIII  2.819-2 0.2858 0.2576 6.78-3 2.06-2 1.10-1 2.83+0  SXIII  2.796-2 0.2856 0.2576 4.93-4 2.08-3 5.21-3 1.19+1        | Arxv 2.479-2 0.2818 0.2570 5.70-3 1.74-2 9.36-2 2.88+0  Arxv 2.450-2 0.2815 0.2570 5.91-4 3.29-3 4.44-3 7.68+0          | CaXVII  2.239-2 0.2788 0.2576 4.60-3 1.53-2 7.67-2 2.94+0  CaXVII  2.200-2 0.2785 0.2576 7.50-4 4.88-3 3.94-3 4.56+0      | T1XIX 2.061-2 0.2767 0.2561 3.54-3 1.38-2 5.99-2 2.98+0  T1XIX 2.019-2 0.2763 0.2561 9.56-4 6.56-3 3.81-3 2.99+0        | FeXXIII  1.850-2 0.2741 0.2556 1.78-3 1.19-2 3.08-2 3.06+0  FeXXIII 1.797-2 0.2736 0.2556 1.32-3 9.28-3 3.82-3 1.78+0         | ZnXXVII  1.698-2 0.2700 0.2530 6.98-4 1.03-2 1.25-2 3.17+0  ZnXXVII 1.636-2 0.2694 0.2530 1.30-3 1.03-2 3.27-3 1.42+0        | KrXXXII  1.528-2 0.2687 0.2534 1.03-4 9.03-3 1.87-3 3.23+0  KrXXXII  1.458-2 0.2680 0.2534 6.58-4 9.76-3 1.57-3 1.30+0        | I MOXXXII  1.465-2 0.2687 0.2541 7.28-6 8.48-3 1.34-4 3.27+0  I MOXXXII 1.394-2 0.2680 0.2541 1.74-4 8.09-3 4.45-4 1.49+0        | X XeLI  1.556- 0.2714 0.2558 1.09-5 5.11-3 2.04-4 3.42+0  X XeLI  1.492- 0.2707 0.2558 4.03-6 6.19-4 3.62-5 1.25+1        |
| ε<br>ε<br>ε<br>ε<br>ε<br>ε<br>ε<br>ε<br>ε<br>1<br>1<br>1<br>1      | 2s2p <sup>3</sup> p,  CIII  1.319-1 0.4036 0.2717 1.52-2 6.38-2 3.55-1 3.73+0  2s2p <sup>3</sup> p  CIII  1.318-1 0.4036 0.2717 1.36-3 1.18-3 4.01-2 1.02+1 7.96-7                                        | 0-2p <sup>2-1</sup> S <sub>0</sub> OV  7.506-2 0.3404 0.2653 1.17-2 5.08-2 2.00-1 3.01+0 i-2p <sup>2-1</sup> S <sub>0</sub> OV  7.503-2 0.3403 0.2653 6.91-4 1.29-3 1.34-2 1.14+1 5.27-6 | NeVII  5.243-2 0.3144 0.2620 1.01-2 4.07-2 1.53-1 2.69+0  NeVII  5.234-2 0.3143 0.2620 5.17-4 1.24-3 7.76-3 1.12+1 2.13-5 | MgIX  4.041-2 0.3003 0.2599 8.89-3 3.13-2 1.36-1 2.69+0  MgIX  4.028-2 0.3002 0.2599 4.57-4 1.17-3 6.11-3 1.20+1 6.39-5 | SiXI  3.307-2 0.2916 0.2596 7.82-3 2.47-2 1.23-1 2.75+0  SiXI  3.289-2 0.2913 0.2586 4.50-4 1.40-3 5.59-3 1.31+1 1.58-4                            | SXIII  2.819-2 0.2858 0.2576 6.78-3 2.06-2 1.10-1 2.83+0  SXIII  2.796-2 0.2856 0.2576 4.93-4 2.08-3 5.21-3 1.19+1 3.38-4 | Arxv  2.479-2 0.2818 0.2570 5.70-3 1.74-2 9.36-2 2.88+0  Arxv  2.450-2 0.2815 0.2570 5.91-4 3.29-3 4.44-3 7.68+0 6.27-4 | CaXVII 2.239-2 0.2788 0.2576 4.60-3 1.53-2 7.67-2 2.94+0  CaXVII 2.200-2 0.2785 0.2576 7.50-4 4.88-3 3.94-3 4.56+0 1.03-3 | T1XIX 2.061-2 0.2767 0.2561 3.54-3 1.38-2 5.99-2 2.98+0  T1XIX 2.019-2 0.2763 0.2561 9.56-4 6.56-3 3.81-3 2.99+0 1.52-3 | FeXXIII  1.850-2 0.2741 0.2556 1.78-3 1.19-2 3.08-2 3.06+0  FEXXIII  1.797-2 0.2736 0.2556 1.32-3 9.28-3 3.82-3 1.78+0 2.37-3 | ZnXxVII  1.698-2 0.2700 0.2530 6.98-4 1.03-2 1.25-2 3.17+0  ZnXxVII 1.636-2 0.2694 0.2530 1.30-3 1.03-2 3.27-3 1.42+0 2.41-3 | KrXXXII  1.528-2 0.2687 0.2534 1.03-4 9.03-3 1.87-3 3.23+0  KrXXXII  1.458-2 0.2680 0.2534 6.58-4 9.76-3 1.57-3 1.30+0 1.21-3 | I MOXXXII  1.465-2 0.2687 0.2541 7.28-6 8.48-3 1.34-4 3.27+0  I MOXXXII 1.394-2 0.2680 0.2541 1.74-4 8.09-3 4.45-4 1.49+0 3.07-4 | X XeLI  1.556- 0.2714 0.2558 1.09-5 5.11-3 2.04-4 3.42+0  X XeLI  1.492- 0.2707 0.2558 4.03-6 6.19-4 3.62-5 1.25+1 2.04-6 |
| ε ο 1 2 2                                                          | 2s2p <sup>3</sup> p,<br>CIII<br>1.319-1<br>0.4036<br>0.2717<br>1.52-2<br>6.38-2<br>3.55-1<br>3.73+0<br>2s2p <sup>3</sup> p<br>CIII<br>1.318-1<br>0.4036<br>0.2717<br>1.36-3<br>1.18-3<br>4.01-2<br>1.02+1 | 0-2p <sup>2-1</sup> S <sub>0</sub> OV  7.506-2 0.3404 0.2653 1.17-2 5.08-2 2.00-1 3.01+0  OV  7.503-2 0.3403 0.2653 6.91-4 1.29-3 1.34-2 1.14+1                                          | NeVII 5.243-2 0.3144 0.2620 1.01-2 4.07-2 1.53-1 2.69+0  NeVII 5.234-2 0.3143 0.2620 5.17-4 1.24-3 7.76-3 1.12+1          | MgIX  4.041-2 0.3003 0.2599 8.89-3 3.13-2 1.36-1 2.69+0  MgIX  4.028-2 0.3002 0.2599 4.57-4 1.17-3 6.11-3 1.20+1        | SiXI  3.307-2 0.2916 0.2596 7.82-3 2.47-2 1.23-1 2.75+0  SiXI  3.289-2 0.2913 0.2586 4.50-4 1.40-3 5.59-3 1.31+1                                   | SXIII  2.819-2 0.2858 0.2576 6.78-3 2.06-2 1.10-1 2.83+0  SXIII  2.796-2 0.2856 0.2576 4.93-4 2.08-3 5.21-3 1.19+1        | Arxv 2.479-2 0.2818 0.2570 5.70-3 1.74-2 9.36-2 2.88+0  Arxv 2.450-2 0.2815 0.2570 5.91-4 3.29-3 4.44-3 7.68+0          | CaXVII  2.239-2 0.2788 0.2576 4.60-3 1.53-2 7.67-2 2.94+0  CaXVII  2.200-2 0.2785 0.2576 7.50-4 4.88-3 3.94-3 4.56+0      | T1XIX 2.061-2 0.2767 0.2561 3.54-3 1.38-2 5.99-2 2.98+0  T1XIX 2.019-2 0.2763 0.2561 9.56-4 6.56-3 3.81-3 2.99+0        | FeXXIII  1.850-2 0.2741 0.2556 1.78-3 1.19-2 3.08-2 3.06+0  FeXXIII 1.797-2 0.2736 0.2556 1.32-3 9.28-3 3.82-3 1.78+0         | ZnXXVII  1.698-2 0.2700 0.2530 6.98-4 1.03-2 1.25-2 3.17+0  ZnXXVII 1.636-2 0.2694 0.2530 1.30-3 1.03-2 3.27-3 1.42+0        | KrXXXII  1.528-2 0.2687 0.2534 1.03-4 9.03-3 1.87-3 3.23+0  KrXXXII  1.458-2 0.2680 0.2534 6.58-4 9.76-3 1.57-3 1.30+0        | I MOXXXII  1.465-2 0.2687 0.2541 7.28-6 8.48-3 1.34-4 3.27+0  I MOXXXII 1.394-2 0.2680 0.2541 1.74-4 8.09-3 4.45-4 1.49+0        | X Xe 1.55 0.27: 0.25: 1.09 5.11 2.04 3.42  X Xe: 0.27( 0.25: 4.03 6.19 3.62: 1.25                                         |



GRAPHS I. Excitation Cross Sections for  $\Delta n = 0$  Transitions, Z = 6, 8, 10, 12, 14, 16, 18, 20, 22, 26, 30, 36, 42, 54



GRAPHS I. Excitation Cross Sections for  $\Delta n = 0$  Transitions, Z = 6, 8, 10, 12, 14, 16, 18, 20, 22, 26, 30, 36, 42, 54



GRAPHS I. Excitation Cross Sections for  $\Delta n = 0$  Transitions, Z = 6, 8, 10, 12, 14, 16, 18, 20, 22, 26, 30, 36, 42, 54



GRAPHS II. Excitation Rate Coefficients for  $\Delta n = 0$  Transitions, Z = 6, 8, 10, 12, 14, 16, 18, 20, 22, 26, 30, 36, 42, 54





GRAPHS II. Excitation Rate Coefficients for  $\Delta n = 0$  Transitions, Z = 6, 8, 10, 12, 14, 16, 18, 20,22, 26, 30, 36, 42, 54 See page 8 for Explanation of Graphs



GRAPHS II. Excitation Rate Coefficients for  $\Delta n = 0$  Transitions, Z = 6, 8, 10, 12, 14, 16, 18, 20, 22, 26, 30, 36, 42, 54



GRAPHS II. Excitation Rate Coefficients for  $\Delta n = 0$  Transitions, Z = 6, 8, 10, 12, 14, 16, 18, 20,22, 26, 30, 36, 42, 54

