

M.EIC

Natural Language Processing

Henrique Lopes Cardoso

FEUP / LIACC

hlc@fe.up.pt

Neural Networks in NLP

representation learning, deep learning, RNN, sequence-to-sequence, attention, Transformer, large language models

Neural Networks

- Neurons organized in multiple layers
- Feed-forward neural network
 - Fully connected: often, neurons in a layer have connections to every neuron in the next layer
- Loss function (cross-entropy loss) and gradient descent using error back propagation

Learning in Neural Networks

• Non-convex optimization problem

Useful to initialize weights with small random numbers and to normalize input values

Regularization: dropout, early stopping (dev set)

• Hyperparameter tuning on a dev set: learning rate, mini-batch size, model architecture and activation functions, regularization techniques, optimizer, ...

Representation Learning

- Most early work on NLP focused on human-designed representations and input features
- Representation learning attempts to automatically learn good features and representations
 - Word embeddings to represent continuous semantics
 - Each hidden layer builds a vector which is a hidden representation of its input
- Deep learning attempts to learn multiple levels of representation of increasing complexity/abstraction

Deep Learning

"The general approach to building Deep Learning systems is compelling and powerful: The researcher defines a model architecture and a top-level loss function and then both the parameters and the representations of the model self-organize so as to minimize this loss, in an end-to-end learning framework."

[Chris Manning, 2015]

Using Embeddings as Input

Feed-forward neural network

Using Embeddings as Input

How do we deal with text of varying length?

- Simple approaches:
 - Set input length to the length of the longest sentence
 - If shorter, pad with zero embeddings
 - If longer (at test time), truncate
 - Create a single sentence embedding
 - Take the mean of all word embeddings in the sentence
 - Take the element-wise max of all word embeddings in the sentence

Feed-forward Neural Language Models

- Advantages over n-gram language models:
 - Handle much longer histories
 - Generalize better to similar words
 - More accurate at word-prediction

- Drawbacks:
 - More complex and slower to train
 - Less interpretable

[Bengio et al., 2003]

Recurrent Neural Networks (RNN)

• Dealing with dynamic input sequences

RNN for Sequence Labeling

RNN for Sequence Classification

RNN for Language Modeling and Text Generation

Stacked RNN

Bidirectional RNN

Long-term Dependency Problem

• Vanilla RNNs have problems with long-term dependencies

the clouds are in the sky

I grew up in France (...) I speak fluent French

Long Short-Term Memory (LSTM)

- LSTMs are designed to avoid the long-term dependency problem
 - The <u>flights</u> the airline was cancelling <u>were</u> full.

Gated Units

Embeddings from Language Models (ELMo)

[Peters et al., 2018]

- Train a forward and a backward LSTM-based language model on some large corpus
- Use the hidden states for each token to compute a vector representation of each word

Neural Language Models

- Word embeddings are context-agnostic
- Language models pretrained on a large corpus capture a lot of context-specific information

- Language model embeddings can be used as features in a target model
 - Contextual word embeddings
- Language models can be fine-tuned on target task data

Sequence-to-Sequence Models

• A general framework for mapping one sequence to another using a neural network

• Useful in many natural language generation tasks: machine translation, summarization, question

answering, ...

Sequence-to-Sequence Models

- Main components:
 - Encoder network: processes a sentence token by token and compresses it into a vector representation
 - Decoder network: predicts the output token by token based on the encoder state, taking as input at every step the previously predicted token

Encoder-Decoder Networks

Attention

- Attention alleviates the "bottleneck" problem of needing to compress the entire context, by allowing the decoder to look back at the source sequence hidden states
- It allows making decisions based on certain parts of the input

[Bahdanau et al., 2015]

Attention

Attention

• Attention learns the notion of alignment: which source words are more relevant to the current target word?

Convolutional Neural Networks (CNN)

Output Probabilities Softmax Linear Add & Norm Feed Forward Add & Norm Add & Norm Multi-Head Attention Forward $N \times$ Add & Norm N× Add & Norm Multi-Head Attention Attention Positional Positional Encoding Encoding Output Embedding Embedding Inputs Outputs (shifted right)

Transformer

[Vaswani et al., 2017]

Self-Attention

- Instead of using the decoder hidden-state to match with encoder hidden states, use each word's representation in the same sequence
- Model the relationships between all words inside a sentence
 - Encoder-encoder attention: each word attends to each other word within the input

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Self-Attention

Transformer-based Architectures

- Decoders: auto-regressive models
 - Language Models conditioned on previous words
 - Example: GPT, GPT-2, GPT-3
- Encoders: auto-encoding models
 - Auto-encoding from bidirectional context
 - Example: BERT and its variants (DistillBERT, RoBERTa, ...)
- Encoder-Decoders: sequence-to-sequence models
 - Use the full Transformer model
 - Example: T5, BART

GPT Generative Pre-trained Transformer

[Radford et al., 2018]

- Autoregressive model: Transformer decoder with 12 layers; Byte-pair encoding with 40k merges
- Pre-trained as a Language Model on the BooksCorpus (+7000 books, 800M words)
 - Predict next word given the previous words
 - Helpful for text generation tasks

- Fine-tuning
 - Task-specific input transformations

BERT

Bidirectional Encoder Representations from Transformers

[Devlin et al., 2019]

- Autoencoding model (bidirectional context) with 12 (BERT-base) or 24 (BERT-large) layers
- Trained on BooksCorpus (800M words) and English Wikipedia (2,500M words)
 - Masked Language Modeling
 - Replace some words with a special [MASK] token, and learn to predict those words
 - Next Sentence Prediction (abandoned in subsequent models, e.g. RoBERTa)
- Input representation:

BERT

Bidirectional Encoder Representations from Transformers

[Devlin et al., 2019]

- Pre-trained with 16 (BERT-base) or 64 (BERT-large)
 TPU chips for 4 days
- Fine-tuning (doable on a single GPU in a few hours)

T5 Text-to-Text Transfer Transformer

[Raffel et al., 2020]

- Encoder-decoder
- Pre-trained on 700GB C4 corpus
 - Language Model, but where the prefix of every input is provided (not predicted)
 - Span-corruption (masking)
- Fine-tuned on downstream tasks in a multi-task text-to-text format, with a task-specific (text) prefix added to the original input sequence

Pre-training and Fine-tuning

https://ruder.io/recent-advances-lm-fine-tuning/

Bias

Language models are more capable than ever, but also more biased

Large language models are setting new records on technical benchmarks, but new data shows that larger models are also more capable of reflecting biases from their training data. A 280 billion parameter model developed in 2021 shows a 29% increase in elicited toxicity over a 117 million parameter model considered the state of the art as of 2018. The systems are growing significantly more capable over time, though as they increase in capabilities, so does the potential severity of their biases.

Four paradigms in NLP

[Liu et al., 2021]

Paradigm	Engineering	Task Relation
a. Fully Supervised Learning (Non-Neural Network)	Features (e.g. word identity, part-of-speech,	CLS TAG
	sentence length)	GEN
b. Fully Supervised Learning (Neural Network)	Architecture (e.g. convolutional, recurrent,	CLS TAG
	self-attentional)	GEN
c. Pre-train, Fine-tune	Objective (e.g. masked language modeling, next sentence prediction)	CLS TAG LM GÉN
d. Pre-train, Prompt, Predict	Prompt (e.g. cloze, prefix)	CLS TAG LM GEN

Table 1: Four paradigms in NLP. The "engineering" column represents the type of engineering to be done to build strong systems. The "task relation" column, shows the relationship between language models (LM) and other NLP tasks (CLS: classification, TAG: sequence tagging, GEN: text generation). ☐: fully unsupervised training. ☐: fully supervised training. ☐: supervised training combined with unsupervised training. ☐: indicates a textual prompt. Dashed lines suggest that different tasks can be connected by sharing parameters of pre-trained models. "LM→Task" represents adapting LMs (objectives) to downstream tasks while "Task→LM" denotes adapting downstream tasks (formulations) to LMs.

Pretrain, Prompt, Predict [Liu et al., 2021]

Type	Task	Input ([X])	Template	Answer ([Z])
Text CLS	Sentiment	I love this movie.	[X] The movie is [Z].	great fantastic
	Topics	He prompted the LM.	[X] The text is about [Z].	sports science
	Intention	What is taxi fare to Denver?	[X] The question is about [Z].	quantity city
Text-span CLS	Aspect Sentiment	Poor service but good food.	[X] What about service? [Z].	Bad Terrible
Text-pair CLS	NLI	[X1]: An old man with [X2]: A man walks	[X1]? [Z], [X2]	Yes No
Tagging	NER	[X1]: Mike went to Paris. [X2]: Paris	[X1] [X2] is a [Z] entity.	organization location
Text Generation	Summarization	Las Vegas police	[X] TL;DR: [Z]	The victim A woman
	Translation	Je vous aime.	French: [X] English: [Z]	I love you. I fancy you.

Conclusions

- Neural NLP models are the rule
- RNN \rightarrow seq2seq \rightarrow seq2seq + attention \rightarrow Transformers
- Fully supervised → Pre-train and fine-tune → Prompt engineering
- Large Language Models
 - OpenAl: GPT, GPT-2, GPT-3, ChatGPT, GPT-4
 - DeepMind: Chinchilla, Sparrow
 - Google: BERT, T5, PaLM, Bard
 - FB/Meta: BART, OPT, LLaMA

https://vicuna.lmsys.org/