Neo_M590E

硬件设计指南

Version V1.1

WWWXXOCIN.COM

深圳市有方科技有限公司

有无线, 方精彩

Let's enjoy the wireless life!

版权声明

Copyright © 2008 neoway tech

深圳市有方科技有限公司保留所有权利。

cin.com

是深圳市有方科技有限公司所有商标。

本手册中出现的其他商标,由商标所有者所有。

说明

本指南的使用对象为系统工程师,开发工程师及测试工程师。

由于产品版本升级或其它原因,本手册内容会在不预先通知的情况下进行必要的更新。

除非另有约定, 本手册中的所有陈述、信息和建议不构成任何明示或暗示的担保。

深圳市有方科技有限公司为客户提供全方位的技术支持,任何垂询请直接联系您的客户经理或发送邮件至 以下邮箱:

Sales@neoway.com.cn

Support@neoway.com.cn

公司网址: www.neoway.com.cn

目 录

1.	概述	5
2.	外形	5
	设计框图	
	特性	6
5.	管脚定义	7
6.	接口设计参考	8
	. 电源及复位接口	
	6.1.1. 电源	8
	6.1.2. 上电时序	10
	6.1.3. ON/OFF 管脚说明	
	6.1.4. 模块的异常恢复	12
	6.1.5. VCCIO 管脚说明	14
6. 2	- 串口	15
6. 3	3. SIM 卡接口	17
	. 指示灯	
	. 射频连接器	
6.6	5. 信号连接器和 PCB 封装	19
7.	装配	20
8.	缩略语	20
9	附录— M580 的待机(低功耗)模式使用说明	22

	修	订	记	录	
版本号		更改内	容		生效年月
V1. 0	初始版本				201004
V1. 1	修订版本,完善	设计中的注意事项	页		201104
					. 1

1. 概述

M590E 通信模块是一款 Dual Band 的 GSM/GPRS 工业无线模块,提供短信、数据业务等功能,在各种工业和民用领域得到广泛的应用。

2. 外形

表 1 M590E 外形规格

	1 M330L 9170 M4H
规格	描述
尺寸	27.6mm*21.6mm*2.6mm (长*宽*高)
重量	5g
正视图	NEOWAY M590E CMIIT ID:2009CP2625 IMEI:35851102 164918 5

3. 设计框图

4. 特性

表 2 M590E 主要规格

规格	描述
频段	双频 EGSM900/DCS180,可选 GSM850/1900
灵敏度	-106dBm
最大发射功率	850/900 Class4(2W)
	1800/1900 Class 1(1W)
瞬间电流	Max 2A
工作电流	210mA
待机电流(Idle)	30mA
休眠电流 (Sleep)	2. 5mA
工作温度	-40°C ∼+80°C
工作电压	3.3V~4.8V (推荐值 3.9V)
协议	兼容 GSM/GPRS Phase2/2+
AT	GSM07.07
	扩展指令集
连接器	插针式连接
	Murata (村田) GSC 射频连接器
短消息	TEXT/PDU
	点对点/小区广播
分组数据	GPRS CLASS 10
	编码方式 CS1, CS2, CS3, CS4
电路交换数据	支持 CSD 数据业务
	支持 USSD

5. 管脚定义

表 3 M590E 模块管脚定义

表 5 MOSOL 快久自冲之入					
管脚	信号名称	I/0	功能描述	备注	
1	GND	PWR	地		
2-3	VCC_MAIN	PWR	模块主电源输入		
4	GND	PWR	地		
5	LIGHT	0	工作状态指示	4	
6	VCCIO	0	2.85V接口电平输出	IO 参考电平, 负载能力	
				<15mA	
7	RXD	I	模块接收数据	最大电压3.3V	
8	TXD	О	模块发送数据		
9	DTR	I	用户电路就绪		
10	RING	О	振铃指示		
11	SIMIO	I/O	SIM卡数据	需要外部上拉到	
				SIMVCC	
12	SIMCLK	O	SIM卡时钟	N. N	
13	SIMRST	О	SIM卡复位	256	
14	SIMVCC	PWR	SIM卡电源输出		
15	GND	PWR	地		
16	DCD	О	数据载波检测	暂不支持	
17	DSR	0 _	模块就绪	暂不支持	
18	EMERGOFF	I/O	紧急关机	模块内部上拉到	
\ \	/ V V V \	V.V	KUNUUII	VCCRTC, 外部不能输入	
		/		高电平。	
19	ON/OFF	I	开关机控制	低电平开机。更多说明	
	_	()		请参见后面开机、复位	
	1/2			说明。	
20	GND	PWR	地		
21	RF_ANT	I/O	射频输入/输出	此管脚适用M590E	
其他焊盘	为测试点, 主板之	 走线时请	注意对应位置不能露铜,防止	:贴片时短路	

说明: 所有 IO 口的最高电压不能超过 3.15V。

低电平, 300ms

6. 接口设计参考

6.1. 电源及复位接口

ON/OFF

I

备注 管脚 信号名称 功能描述 I/O 地 1, 4, 15, 20 GND PWR 模块主电源输入 2, 3 VCC_MAIN **PWR** IO 参考电平,负载能 2.85V 接口电平输出//模 6 VCCIO O 块正常运行状态指示 力<15mA 紧急关机 低电平, 10uS I/O EMERGOFF 18

表 4 电源及复位接口

6.1.1. 电源

19

第 2、3pin 的 VCC_MAIN 为模块主电源,电源输入范围为 3.3V-4.8V,推荐值为 3.9V。模块管脚处输入的瞬间最大电流为 2A,请在靠近模块处放置低阻抗的滤波电容,电容的容值越大,要求电源输出的最大电流越低;具体数据请见下图:

开关机控制

C1 推荐使用 1000uF 的低阻抗铝电解电容,如果体积受限,可以改用 470uF 的钽电解。如果是锂电池直接供电,由于锂电池的内阻小,瞬间大电流的驱动能力强,C1 可以考虑用 100uF 的钽电容。

最大电流出现在弱信号下的通话或者数据传输过程中,典型的电流、电压曲线如下图:

电源设计要保证在运行过程中, 电压不能低于 3.3 V, 否则模块会关机。

另外,请注意,模块在主电源断电、但 10 (串口接收 3.3V) 还有电的情况下,外加的 3.3V 会通过模块内部两个保护二极管串到 VBATT 和其他 10 上。如下图

图 1 IO 电流反馈到 VBATT 上或其他 IO 上

解决办法: 在模块未加电时,请保证单片机和模块的连接都为低电平或者高阻,比如将单片机的串口发送设置为低电平(配置为 I0 输入等)。

6.1.2. 上电时序

第 18pin 的 EMERGOFF 为模块紧急关机脚。EMERGOFF 信号详细上电时序如图 2,模块上电后,当 VCCRTC 稳定达到 2.85V 4ms 后,EMERGOFF 为高阻态,持续时间为 14ms。之后,EMERGOFF 输出 22ms 低电平,使模块内部复位。

VCCRTC 为 RTC 电源,管脚未引出模块,VCC_MAIN 达到 2.5V 135uS 后,VCCRTC 输出 2.0V 电压。

6.1.3. ON/OFF 管脚说明

第 19pin 的 ON/OFF 为输入管脚,可由外部控制模块开机和关机,低电平有效。ON/OFF 模块内部有弱上拉。

开机流程:在模块处于关机时,模块的 ON/OFF 脚如果拉低持续 300ms 以上,则模块开机。开机时,模块的串口会自动输出"MODEM STARTUP"提示,同时模块的 LIGHT 会开始 1 秒的闪烁, VCCIO 持续输出 2.85V。

关机流程:在开机状态下,若ON/OFF 为高电平,此时将ON/OFF 加低电平持续300ms 以上(或者使用 AT 指令,参考 AT 指令手册),则模块会进入关机流程,注销网络,通常5秒左右会完全关机,此时再将主电源关闭;若ON/OFF 为低电平,将ON/OFF 拉高后再加低电平持续300ms 以上,模块会进入关机流程,注销网络,通常5秒左右会完全关机,此时再将主电源关闭。

M590 推荐的高电平开机电路:

图 3 M590 推荐的高开机电路

M590 需要低电平开机,通过以上电平变换后,用户控制侧(USER_ON)为高电平开机。

ON/OFF 也可以直接和地短接,这样模块会上电自动开机。

注意: ON/OFF 管脚具备关机和开机功能,注意避免重复触发导致开机或关机失败。如: 用户希望进行开机时,却给了 2 次 300 ms 的低脉冲,导致模块关机。

ON/OFF 管脚的关机功能是通过模块软件识别的,如模块软件未正常运行,将不能正常关机。

6.1.4. 模块的异常恢复

模块由于运行环境复杂,工作时间长,存在死机、假连接等异常问题。出现异常时如何自动恢复, 模块的应用设计时必须充分考虑。我们推荐两种方式:

- (1) 模块的主电源可以控制,关闭主电源,再重新上电。这种方式最彻底、最可靠,无人值守的 设备,建议用这种方式。
- (2) 控制 EMERGOFF 脚(紧急关机)为低电平 100ms,使模块硬关机,类似于处理器硬复位。 这种方式一般用于电池供电的手持设备,如果这种方式无法恢复,可能需要手动断电。

在断电或者复位前,不管模块是否有响应,请先执行关机流程,5秒后再开始上述操作。因为在硬关机时,如果模块正执行存储器写操作,有可能造成程序损坏。

第 18pin 的 EMERGOFF 的功能是紧急关机,在模块上电后,有短暂的输出态。注意:用户采用 EMERGOFF 关机,属于硬关机,即不需要模块软件识别关机,相当于直接关电源。如关机时,模块正执行 FLASH 写操作,有可能造成 FLASH 损害,因此,建议用户采用 EMERGOFF 结合 AT 关机命令对模块关机。

EMERGOFF 在模块内部上拉到 VCCRTC,外部不能输入高电平,否则可能会导致开机异常。 EMERGOFF 在模块内部的连接示意图如下:

图 4 EMERGOFF 在模块内部的连接示意图

模块上电时,由内部的电源管理部分(PMU)完成对基带的上电复位,见上图中的 EMERGOFF 信号,这个上电复位输出的脉冲宽度为 22ms 左右。PMU 的复位输出为 OC 输出,内部上拉到 VCCRTC(2.0V),上拉电阻的阻值范围在 10~15K 左右。

紧急关机电路设计建议:

1) 对 EMERGOFF 的控制最好为 OC 输出,如不需要使用,EMERGOFF 可以悬空。

图 5 EMERGOFF OC 控制 (C6、R11 要靠近模块管脚)

2) EMERGOFF 的有效紧急关机脉冲宽度最少 10uS。有效低电平不能高于 0.4V。

强烈要求用户不使用此管脚做关机处理,模块异常时可通过断电恢复,若必须使用,要做好抗干扰处理,且必须 OC 控制。

6.1.5. VCCIO 管脚说明

第 6pin 的 VCCIO 是模块提供的参考电压,幅值为 2.85V,负载能力为 15mA,建议仅用于接口电平转换,不作它用。关机后, VCCIO 输出关闭。

另外这个管脚可以用作模块运行的指示: 正常运行或者休眠为为高电平, 关机时为低电平。

6.2. 串口

表 5 串口接口

管脚	信号名称	I/0	功能描述	备注
17	DSR	О	模块就绪	暂不支持
10	RING	О	振铃指示	
8	TXD	О	模块发送数据	
7	RXD	I	模块接收数据	
9	DTR	I	用户电路就绪	4
16	DCD	О	数据载波检测	暂不支持

模块作为 DCE 设备, 模块和终端 (DTE) 设备信号连接如下图:

图 6 DCE 和 DTE 设备信号连接图

模块串口为 2.85V 的 CMOS 电平信号,最高允许 3.3V 输入,支持 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 的波特率,默认速率为 115200bps。

图 7 电平变换电路图

图 7 为电平变换电路,当 CPU 电压大于 3.3V 时,模块接收要进行电平变换(注意,此电平变换电路 无法对模块进行软件升级,使用时请根据需要选择方案)。CPU 电压为 3.3V 时,可串 200 欧的电阻直接与 模块进行通讯,不需要进行电平变换。

靠近模块接收端建议加小于 100PF 的滤波电容,以提高模块接收的抗干扰能力(如图 7)。

请注意: 串口请避免在加电瞬间有数据产生,应等模块开机至少 2S 后再给模块发送数据,目的是为了避免模块进入工厂模式。

串口通常用于 AT 指令、数据业务、升级模块软件等。特别提醒:目前不提供 DCD/DSR 功能。

IO 输入/输出特性描述					
IO 输入/输出特性	符号	最小值	最大值	单位	条件
低电平输入范围	VIL	-0.2	0.57	V	
高电平输入范围	VIH	2.0	3.3	V	
低电平输出范围	VOL		0.2	V	负载电流<2mA
高电平输出范围	VOH	2.5	2.85	V	

表格 6 10 输入/输出特性

DTR 管脚为低功耗控制管脚, 若不使用建议悬空。低功耗使用见 AT 指令集。

RING 信号指示:

- 语音来电:有语音来电时,输出周期为 5s 脉宽为 30ms 的低脉冲。电话接通后,恢复成高电平;
- 2) 来短信: 有短信到来时,产生一个 35ms 脉宽的低脉冲提示;

SIM卡接口 6.3.

表 7 SIM 卡接口

管脚	信号名称	I/0	功能描述	备注			
11	SIMIO	I/O	SIM 卡数据	模块外部需要接上拉电阻(4.7K~10K) 到 SIMVCC			
12	SIMCLK	О	SIM 卡时钟	结电容<100pF			
13	SIMRST	О	SIM卡复位				
14	SIMVCC	PWR	SIM卡电源输出	4			

模块支持 3V 和 1.8V 的 SIM 卡。

第 14pin 的 SIMVCC 是 SIM 卡供电电源, 电压 2.85V, 负载能力 30mA。只有对 SIM 有操作时, 该 电源才有输出

第 11pin 的 SIMIO 一般为 50K 波特左右,需要外接上拉电阻到 SIMVCC,上拉电阻的大小可以根据 SIM 卡走线情况选择,一般为 10K。

第 12pin 的 SIMCLK 是 SIM 卡时钟线,一般为 3.25MHz,要求 PCB 布线不能分叉,短粗。远离天线 和射频,结电容不能超过 100pF。

SIM 卡电路建议在靠近卡座除 SIMVCC 脚用 0.1UF 的电容外, 其他管脚并接 27~33pF 的电容(见图 8), 且在设计 PCB 时, 电容尽量靠近 SIM 卡管脚放置。

注:小的滤波电容主要防止天线距离主板/SIM 卡过近,导致射频辐射相互干扰,比如使用短胶棒天线或者内置天线的情况。

6.4. 指示灯

表 8 指示灯接口

管脚	信号名称	I/O	功能描述	备注
5 LIGHT O		О	工作状态指示	

模块运行时,指示灯就 1 秒亮、1 秒灭地闪烁,没有插卡或者没有信号也是如此。若改变 LIGHT 的工作状态指示,请参考 AT 指令集。

6.5. 射频连接器

M580 使用的天线接口为 Murata (村田) 公司的 GSC 射频连接器,具体型号为 MM9329-2700RA1,外接天线通过射频电缆连接。该连接器封装信息如下图所示。

射频接口的阻抗为 50Ω,模块天线部分应采取必要措施避免有用频段干扰信号,在外部天线和射频 连接之间要有良好的屏蔽,而且,要使外部的射频缆线远离所有的干扰源,特别是高速数字信号及开关电源等。

模块所用天线按照移动设备标准,驻波比应在 1.1 到 1.5 之间,输入阻抗 50Ω,使用环境不同,对天 线的增益要求也不同,一般情况下,带内增益越大,带外增益越小,天线的性能越好。当使用多端口天线

时,各个端口之间的隔离度应大于 30dB。如双极化天线的两个不同极化端口,双频天线的两个不同频段端口之间,以及双频双极化天线的四个端口之间,隔离度应大于 30dB。

6.6. 信号连接器和 PCB 封装

M590E 采用 21pin 半孔 (邮票孔)连接,管脚间距为 2.54mm。 推荐的模块 PCB 封装如图 9 所示。

图 9 M590E 模块推荐的 PCB 封装图 (topview)

如果射频焊盘(pin21)未用,则该焊盘对应的主板位置需要挖铜处理。

如果有射频走线,射频走线背面也要做挖铜处理,且周围要多打地孔。

模块射频测试点周围要有直径大约 2mm 的挖铜区域,且周围打满地孔;此挖铜区域与第 21 脚挖铜

区域之间要有地做隔离。

模块的第 20 脚要接地完整,要被地完整包围,不能留有缺口,对射频造成影响,或射频通过缺口造成模块掉卡问题。

图 10 M590E 模块推荐的 PCB Layout 图

标注为 NC 的管脚,主板上可以不设计焊盘,对应位置需要用丝印覆盖,防止绿油破损导致短路。

7. 装配

M590E的连接采用焊盘焊接方式连接。

8. 缩略语

ADC	Analog-Digital Converter	模数转换
AFC	Automatic Frequency Control	自动频率控制
AGC	Automatic Gain Control	自动增益控制
AMR	Acknowledged multirate (speech coder)	自适应多速率
CSD	Circuit Switched Data	电路交换数据
CPU	Central Processing Unit	中央处理单元
DAI	Digital Audio interface	数字音频接口
DAC	Digital-to-Analog Converter	数模转换
DCE	Data Communication Equipment	数据通讯设备

DSP	Digital Signal Processor	数字信号处理
DTE	Data Terminal Equipment	数据终端设备
DTMF	Dual Tone Multi-Frequency	双音多频
DTR	Data Terminal Ready	数据终端准备好
EFR	Enhanced Full Rate	增强型全速率
EGSM	Enhanced GSM	增强型 GSM
EMC		电磁兼容
	Electromagnetic Compatibility	电磁干扰
EMI	Electro Magnetic Interference	静电放电
ESD	Electronic Static Discharge	
ETS	European Telecommunication Standard	欧洲通信标准
FDMA	Frequency Division Multiple Access	频分多址
FR	Full Rate	全速率
GPRS	General Packet Radio Service	通用分组无线业务
GSM	Global Standard for Mobile Communications	全球移动通讯系统
HR	Half Rate	半速率
IC	Integrated Circuit	集成电路
IMEI	International Mobile Equipment Identity	国际移动设备标识
LCD	Liquid Crystal Display	液晶显示器
LED	Light Emitting Diode	发光二极管
MS	Mobile Station	移动台
PCB	Printed Circuit Board	印刷电路板
PCS	Personal Communication System	个人通讯系统
RAM	Random Access Memory	随机访问存储器
RF	Radio Frequency	无线频率
ROM	Read-only Memory	只读存储器
RMS	Root Mean Square	均方根
RTC	Real Time Clock	实时时钟
SIM	Subscriber Identification Module	用户识别卡
SMS	Short Message Service	短消息服务
SRAM	Static Random Access Memory	静态随机访问存储器
TA	Terminal adapter	终端适配器
TDMA	Time Division Multiple Access	时分多址
UART	Universal asynchronous receiver-transmitter	通用异步接收/发送器
VSWR	Voltage Standing Wave Ratio	电压驻波比
	0	

9. 附录一 M580 的待机(低功耗)模式使用说明

M580 在通话、数据过程中的工作电流约为 220mA, 在非连接状态下的工作电流约为 25mA, 在待机(低功耗)模式下的平均工作电流大概是 2.8mA。

在待机模式下,模块会及时响应系统侧的来电、短信和数据业务。在本端,外部 CPU 也可以通过硬件 IO (DTR) 来控制模块退出休眠模式。

控制模块进入待机模式的基本流程:

- 保持模块的 DTR 输入为高电平,通过 AT 指令将模块设置为允许进入休眠模式,参考指令: at+enpwrsave。
- 2. 将模块的 DTR 输入置低,硬件控制模块进入低功耗状态。通常模块会在 2 秒左右进入待机。在待机模式下,模块的串口是关闭的,没有响应。运行灯也会停止闪烁。

模块只有在空闲时才会进入待机模式,如果有数据交互未结束,不会进入待机。

- 如果本端有数据或者呼叫等主叫业务,可以将 DTR 置高,模块立即退出待机模式,进入正常模式, 串口打开响应 AT 指令。在主叫业务处理完毕后,外部 CPU 再将 DTR 置低,模块进入待机模式。
- 4. 在待机状态下,如果模块有被叫业务,比如来电、来短信、服务器来的数据,模块会立刻退出待机模式,并通过串口输出来电信息,外部 CPU 在检测到串口信息后,建议先将 DTR 置高,再处理来电、数据等。待处理完毕后,将 DTR 置低,是模块进入待机模式。如果来电时, DTR 没有置高,且串口没有信息,则模块会在 2 秒左右自动进入待机模式。

在语音来电时,在振铃过程中,模块的 RING 脚会持续输出周期的 6 秒,低脉冲宽度为 30ms 的周期信号。

在短信来电时,在使用 AT+CNMI 设置短信提醒后,在收到短信时,模块的 RING 脚会输出一个 25ms 低脉冲。

在数据业务来电时, RING 信号每有变化, 保持为高电平。

控制信号连接示意图

