Lecture 5

Topics covered in this lecture session

- 1. Expressing $a \cos x + b \sin x$ in the form $r \cos(\theta x)$
- Remainder and Factor Theorems
- 3. Polynomial Division
- 4. Polynomial Factorisation.

CELEN036 :: Lecture Slides - P.Gajja

'

CELEN03

Foundation Algebra for Physical Sciences & Engineering

Expressing $a \cos x + b \sin x$ in the form $r \cos(\theta - x)$ or similar forms

Example:

Express $f(x) = \sin x - \sqrt{3} \cos x$ in the form $r \sin(x - \theta)$, where

 $\theta \in \left(0, \frac{\pi}{2}\right)$. Sketch the graph of y = f(x). Find the range and period of f.

$$f(x) = \sin x - \sqrt{3}\cos x \equiv r\sin(x - \theta)$$

 $\Rightarrow \underline{\sin x} - \sqrt{3} \cos x \equiv \underline{r} \sin x \cos \theta - \underline{r} \cos x \sin \theta$

 $\Rightarrow r\cos\theta = 1$ and $r\sin\theta = \sqrt{3} \Rightarrow r = 2$

CFI FN036 :: Lecture Slides - P.Gaijar

CELEN036

Foundation Algebra for Physical Sciences & Engineering

Expressing $a\cos x + b\sin x$ in the form $r\cos(\theta - x)$ or similar forms

Sometimes it is important to express

$$f(x) = a\cos x + b\sin x$$
 in the form $r\cos(\theta - x)$,

so as to

- ullet determine the range of f
- find the period of f
- sketch the graph of the function *f*.

CELEN036 :: Lecture Slides - P.Gajjar

CELEN036 :: Lecture Slides - P.Gatia

CELEN036

Foundation Algebra for Physical Sciences & Engineering

Expressing $a\cos x + b\sin x$ in the form

$$r\cos(\theta-x)$$
 or similar forms

Also,
$$\cos \theta = \frac{1}{2}$$
 and $\sin \theta = \frac{\sqrt{3}}{2}$ \Rightarrow $\theta = \frac{\pi}{3}$

Thus $f(x) = \sin x - \sqrt{3}\cos x = 2\sin\left(x - \frac{\pi}{3}\right)$

Period of $f = 2\pi$, Range of f is [-2,2]

Division process (for numbers)

$$\therefore \frac{26}{3} = 8 + \frac{2}{3} = Quotient + \frac{Remainder}{Divisor}$$

CELEN036 :: Lecture Slides - P.Gajjar

5

CELEN036

Foundation Algebra for Physical Sciences & Engineering

Division of polynomials

Thus,
$$\frac{p(x)}{s(x)} = q(x) + \frac{r(x)}{s(x)}$$
 \Rightarrow $p(x) = s(x) q(x) + r(x)$

where, q(x) is the quotient, and

r(x) is the remainder - which is either a constant (r) or $\deg(r(x)) < \deg(s(x))$.

In particular, when p(x) is divided by (x-c), the remainder must be some constant r.

Foundation Algebra for Physical Sciences & Engineering

Division process (for polynomials)

e.g. $p(x) \div s(x)$ where $s(x) \neq 0$

University of

Nottingham

CELEN036

CELEN036

Foundation Algebra for Physical Sciences & Engineering

Remainder Theorem

i.e.
$$\frac{p(x)}{(x-c)} = q(x) + \frac{r}{(x-c)}$$

$$\Rightarrow$$
 $p(x) = (x - c) q(x) + r$

$$\Rightarrow p(c) = r$$

Remainder Theorem

If a polynomial p(x) is divided by (x-c), then the remainder is p(c).

CELEN036 :: Lecture Slides - P.Gajjar

Remainder Theorem

Example: If $x^2 - 7x + k$ has a remainder 1 when divided by (x+1), find k.

Solution: $(x+1) \equiv (x-c) \Rightarrow c = -1$

By Remainder Theorem, p(c) = r

$$\Rightarrow p(-1) = 1$$

$$\Rightarrow (-1)^2 - 7(-1) + k = 1$$

$$\Rightarrow k+8=1 \Rightarrow k=-7.$$

CELEN036 :: Lecture Slides - P.Gajjar

CELEN036

Foundation Algebra for Physical Sciences & Engineering

Factor Theorem

In particular, when (x-c) is a factor of the polynomial p(x), p(x) can be expressed as

$$p(x) = (x - c) q(x)$$
 i.e. $p(c) = 0$.

Factor Theorem

A polynomial p(x) has a factor (x-c), if and only if p(c)=0.

Note: p(c) = r is the Remainder Theorem p(c) = 0 is the Factor Theorem

Factor Theorem

Factorising a polynomial p(x) means to write it as a product of lower-degree polynomials - called factors of p(x).

For s(x) to be a factor of p(x), there must be no remainder when p(x) is divided by s(x).

i.e.
$$\frac{p(x)}{s(x)} = q(x) + \bigcirc$$
 or $p(x) = s(x) q(x)$

CELEN036 :: Lecture Slides - P.Gajjar

CELEN036 :: Lecture Slides - P.Gatia

10

CELEN036

Foundation Algebra for Physical Sciences & Engineering

Factor Theorem

Example: If (x-2) is a factor of $ax^2 - 12x + 4$, find a.

Solution: Here, $(x-c) = (x-2) \Rightarrow c = 2$

By Factor theorem, p(c) = 0.

$$\Rightarrow p(2) = 0 \Rightarrow a(2)^2 - 12(2) + 4 = 0$$

$$\Rightarrow$$
 4 a – 24 + 4 = 0

$$\Rightarrow$$
 4a = 20 \Rightarrow a = 5.

CELEN036:: Lecture Slides - P.Gajjar 11

Polynomial Division

1. Method of Long Division (or actual division)

The process of long division for dividing polynomials is similar to that of division of numbers.

Suppose, we want to determine

$$\frac{27x^3 + 9x^2 - 3x - 10}{3x - 2}$$

$$\begin{array}{r} 9x^2 + 9x + 5 \\ 3x - 2)27x^3 + 9x^2 - 3x - 10 \\ \underline{27x^3 - 18x^2} \\ 27x^2 - 3x - 10 \\ \underline{27x^2 - 18x} \\ 15x - 10 \\ \underline{15x - 10} \\ 0 \end{array}$$

Thus,
$$\frac{27x^3 + 9x^2 - 3x - 10}{3x - 2} = 9x^2 + 9x + 5$$

15

Nottingham

Foundation Algebra for Physical Sciences & Engineering

Method of Synthetic Division

Step 1

Write the coefficients of the polynomial to be divided at the top. Put zero as coefficient for unseen power(s) of x.

Step 2

CELEN036 :: Lecture Slides - P.Gaijan

Negate the constant term in the divisor, and write-in on the left side, that is, if (x - a) is the divisor, write

a on the left side.

Polynomial Division

2. Method of Synthetic Division

The method of Synthetic Division is a powerful alternative to the Method of Long Division.

We study this method only for linear divisors of the form (x-c).

To understand the method, let us consider the example:

Example: If
$$\frac{x^3 - 9x^2 - 20}{(x-3)} = q(x) + \frac{r(x)}{(x-3)}$$
, find $q(x)$ and $r(x)$.

CELEN036

Foundation Algebra for Physical Sciences & Engineering

Method of Synthetic Division

Drop the first coefficient after the bar to the last row.

Step 4

Multiply the dropped number with the number before the bar, and place it in

the next column

CELEN036 :: Lecture Slides - P.Gaija

Method of Synthetic Division

Perform addition in the next column.

Repeat the previous two steps to obtain the following.

Foundation Algebra for Physical Sciences & Engineering

Factorising Polynomials

(with at least one integer zero)

Result:

CELEN036 :: Lecture Slides - P.Gaijan

Let $p(x) = c_n x^n + c_{n-1} x^{n-1} + \dots + c_1 x + c_0$ be a polynomial with integer coefficients. Then, r is an integer zero of p(x), if r is a divisor of the constant term c_0 .

CELEN036

Foundation Algebra for Physical Sciences & Engineering

Method of Synthetic Division

Example: Given $p(x) = x^3 - 5x^2 + 4x + 9$ and s(x) = x + 1find q(x) and r when p(x) is divided by s(x).

Foundation Algebra for Physical Sciences & Engineering

Factorising Polynomials

Example: Show that s(x) = x - 1 is a factor of $p(x) = x^3 - 2x^2 - 19x + 20$. Hence solve p(x) = 0.

Here, 1 - 2 - 19 = 20p(1) = 1 - 2 - 19 + 20 = 0. 1 - 1 - 20

 \therefore (x-1) is one of the factor.

We use synthetic division to find the other factor.

CFLFN036 :: Lecture Slides - P.Gaijar

Factorising Polynomials

... The other factor is
$$(x^2 - x - 20)$$
.

$$\therefore$$
 The other factor is $(x^2 - x - 20)$

$$p(x) = (x-1) \cdot (x^2 - x - 20)$$
$$= (x-1) \cdot (x-5) \cdot (x+4)$$

$$\therefore p(x) = 0 \Rightarrow (x-1) \cdot (x-5) \cdot (x+4) = 0$$
$$\Rightarrow x = 1 \quad \text{or} \quad x = 5 \quad \text{or} \quad x = -4.$$

CELEN036 :: Lecture Slides - P.Gajjar