1. La molécule de clenbutérol (4P)

a. Isomérie optique ; présence d'un atome de carbone asymétrique. (ANN1)

b.

c. (Mélange) racémique (ou racémate) (QC1)

2. Les aromates (composés aromatiques) (6P)

a. p. 4-5: Hybridation sp² \rightarrow angle 120° (QC1)

 \rightarrow hexagone régulier plan avec 6 liaisons σ (QC1) orbitales p libres perpendiculaires à ce plan confluent en un seul nuage moléculaire renfermant 6 électrons π (QC1) 2 tores, système π continu (QC1)

b. p. 5 : Egalité des liaisons (QC1), stabilité du noyau benzénique (QC1)

3. La fonction alcool (12P)

a. Cétone, produit d'oxydation d'un alcool secondaire. (ANN1)

b. Ox.:
$$C_6H_5$$
-CHOH-R $\rightleftharpoons C_6H_5$ -CO-R + 2 e⁻+ 2 H⁺ | ·3 (QC3)
Réd.: $Cr_2O_7^{2^-}$ + 6 e⁻+ 14 H⁺ \rightleftharpoons 2 Cr^{3^+} + 7 H₂O
Rédox: 3 C_6H_5 -CHOH-R + $Cr_2O_7^{2^-}$ + 8 H⁺ \rightarrow 3 C_6H_5 -CO-R + 2 Cr^{3^+} + 7 H₂O

c.
$$n(Cr_2O_7^{2-}) = 0.5 \frac{mol}{L} \cdot 0.01 L = 0.005 mol$$

 $n(A) = 3 \cdot 0.005 mol = 0.015 mol$
 $M(A) = \frac{2.04 g}{0.015 mol} = 136 g/mol$ (AN4)

$$M(R) = 136 - 77 - 30 = 29g/mol \Rightarrow R \triangleq C_2H_5$$

Donc A \triangleq C₉H₁₂O \triangleq C₆H₅-CHOH-CH₂-CH₃ (ou formule en bâtonnets)

e.
$$\frac{\text{élimination}}{(ANN1,5)} + \text{H}_2\text{O}$$

$$\frac{\text{E/Z }(ANN1)}{\text{nom }(ANN1)}$$

$$\text{e.}$$

$$\text{(E)-}$$

$$\text{(en fait [(1E)-}$$

$$\text{[(1Z)-prop-1-én-1-yl]benzène)}$$

4. La fonction amine (24P)

a. p. 82 : doublet libre sur N qui est polarisé 3δ - \Longrightarrow base (QC1) effet I+ \Longrightarrow plus basiques que NH₃ (QC1) discussion effet I+ et gène stérique, classification (QC2)

b.

Le doublet libre sur l'atome d'azote est délocalisé et participe à la mésomérie du cycle aromatique, donc il est beaucoup moins disponible pour capter un proton ⇒ faible basicité. (ANN1)

c. $C_6H_5-NH_2$ + HCl \rightarrow $C_6H_5-NH_3^+$ + Cl aniline (B) phénylammonium(A)

Graphique \Rightarrow V(HCl) = 8 mL; pH \approx 2,5 (AN2)

d.
$$c_B \cdot V_B = c_{HCl} \cdot V_{HCl} \iff c_B = \frac{1 \frac{mol}{L} \cdot 8 \, mL}{10 \, mL} = 0.8 \, mol/L \, (AN2)$$

e. Graphique : pH au P. $\frac{1}{2}$ E. \triangleq pK_A \Longrightarrow pK_A = 4,6 \Longrightarrow pK_B = 14-4,6 = 9,4 (AN2)

f. Base faible (B):
$$[OH^-]^2 + K_B \cdot [OH^-] - K_B \cdot c_B = 0$$

 $avec K_B = 10^{-pK_B} = 10^{-9.4} \frac{mol}{L} et c_B = 0.8 \ mol/L$
 $\Rightarrow [OH^-] = 1.785 \cdot 10^{-5} \frac{mol}{L}$
 $\Rightarrow pH = 14 + \log(1.785 \cdot 10^{-5}) = 9.25 \ (AN3)$

g. Acide faible (A):
$$[H_3O^+]^2 + K_A \cdot [H_3O^+] - K_A \cdot c_A = 0$$

$$n_A = n_{0B} = 0.8 \frac{mol}{L} \cdot 0.01 L = 8 \cdot 10^{-3} \, mol$$

$$c_A = \frac{8 \cdot 10^{-3} \, mol}{(10 + 8) \cdot 10^{-3} \, L} = 0. \, \bar{4} \, \frac{mol}{L} \, et \, K_A = 10^{-4.6} \, \frac{mol}{L}$$

$$\Rightarrow [H_3O^+] = 3.329 \cdot 10^{-3} \, \frac{mol}{L}$$

$$\Rightarrow pH = -\log(3.329 \cdot 10^{-3}) = 2.48 \, (AN3)$$

h. +/- 1 unité de pH autour du p K_A du couple \Longrightarrow domaine : 3,6-5,6 (ANN1)

i.
$$pH = pK_A + log \frac{n_B}{n_A} \Longleftrightarrow \frac{n_B}{n_A} = 10^{pH - pK_A}$$

$$\Leftrightarrow n_B = 10^{5 - 4.6} \cdot n_A \Leftrightarrow n_B = 2.5 \cdot n_A \text{ (AN2)}$$

j.
$$C_6H_5-NH_2$$
 + $HCI \rightarrow C_6H_5-NH_3^+$ + CI^-
0,05 mol début
$$(0,05-x) \text{ mol} \qquad x \text{ mol} \qquad x \text{ mol} \qquad réaction$$

$$n_B = \frac{4,65 \ g}{93 \ g/mol} = 0,05 \ mol$$

$$\frac{n_B}{n_A} = \frac{0,05-x}{x} = 2,5 \Leftrightarrow 2,5 \ x = 0,05-x \Leftrightarrow x = \frac{0,05}{3,5} = 0,0143 \ mol$$

$$V_{HCI} = \frac{n_{HCI}}{c_{HCI}} = \frac{0,0143 \ mol}{1 \ mol/L} = 0,0143 \ L \triangleq 14,3 \ mL \ (AN3)$$

5. Synthèse du clenbutérol (14P)

- a. SE (ANN1)
- b. Effet M+ du groupement –NH₂ \Rightarrow effet orienteur o/p $(ANN_{\frac{1}{2}}^{1})$ Effet M- du groupement –CO-CH₃ \Rightarrow effet orienteur m $(ANN_{\frac{1}{2}}^{1})$ En positions o et p la densité électronique est augmentée $(ANN_{\frac{1}{2}}^{1})$ \Rightarrow attaque du réactif électrophile Cl⁺ en ces positions $(ANN_{\frac{1}{2}}^{1})$

c. p. 45 (fond jaune) : génération du réactif électrophile (QC1) $\text{attaque électrophile} \Longrightarrow \text{aromaticité détruite (QC2)}$ $\text{départ électrofuge de H}^{+}, \text{ régénération du catalyseur (QC2)}$

d. SN (ANN1)

$$NH_{2} \qquad (ANN_{\frac{1}{2}}) \qquad (ANN_{\frac{1}{2}})$$

e. t(ert(io))-butylamine ou autre nom systématique correct

f.

Doublet libre sur l'atome d'azote avec densité électronique augmentée par effet I+ du groupement t-butyle \Longrightarrow réactif nucléophile.

L'atome de carbone où l'atome de brome est fixé constitue un centre électrophile.

Pour une déprotonation en 2^e étape par Br⁻ ou OH⁻ une pénalité de 0,5 P est proposée.

g. réduction

motivations possibles : l'inverse de l'oxydation d'un alcool secondaire

discussion des nombres d'oxydation

... (ANN1)