Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №7

Синтез команд БЭВМ

Вариант 16701

Выполнил:

Шмунк Андрей Александрович

Группа Р3108

Преподаватели:

Ткешелашвили Нино Мерабиевна

Клименков Сергей Викторович

Оглавление

Текст задания	3
Исходный код синтезируемой команды	3
Код тестовой программы	3
Методика проверки	4
Комментарии к методике	4
Вывод	5

Текст задания

Синтезировать цикл исполнения для выданных преподавателем команд. Разработать тестовые программы, которые проверяют каждую из синтезированных команд. Загрузить в микропрограммную память БЭВМ циклы исполнения синтезированных команд, загрузить в основную память БЭВМ тестовые программы. Проверить и отладить разработанные тестовые программы и микропрограммы.

- 1. BGC ADDR переход к команде, расположенной по адресу, на которую указывает адресная часть команды, если аккумулятор содержит число, большее чем 8191
- 2. Код операции FEXX
- 3. Тестовая программа должна начинаться с адреса 0340₁₆

Исходный код синтезируемой команды

Адрес	Микрокоманда	Описание Комментарий	
МΠ			
71	81E1044002	if $CR(10) = 1$ then GOTO E1	Исправленная ячейка интерпретатора
E1	80C4024002	if $CR(9) = 0$ then GOTO INT @ C4	Проверка соответствия
E2	81C4014002	if $CR(8) = 1$ then GOTO INT @ C4	команде
E3 81C480401	81C4804010	if $AC(15) = 1$ then GOTO INT @ C4	Если <0, то переход к
			циклу прерывания
E4	E4 $815C404010$ if $AC(14) = 1$ then GOTO B	if $AC(14) = 1$ then GOTO BR @ 5C	Если >=16384, то
E4 813C40	8130404010	11 AC(14) – 1 tileli GOTO BK @ 3C	переход
F5	E5 815C204010 if AC(13) = 1 then GOTO BR @ 5C	Если >= 8192, то	
1:3			переход
E6	80C4101040	GOTO INT @ C4	Переход к циклу
			прерывания

Код тестовой программы

org 0x340

RESULT: WORD 0x0 CHECK1: WORD 0x8 CHECK2: WORD 0x4 CHECK3: WORD 0x2 CHECK4: WORD 0x1 VALUE1: WORD 0x1FFE VALUE2: WORD 0x1FFF VALUE3: WORD 0xF000 VALUE4: WORD 0x2000

START: CALL TEST1

CALL TEST2
CALL TEST3
CALL TEST4
CALL FINISH
STOP: HLT

TEST1: LD VALUE1 WORD 0xFE02

LD #0

ST CHECK1 RET

TEST2: LD VALUE2 WORD 0xFE02 LD #0 ST CHECK2 RET

TEST3: LD VALUE3 WORD 0xFE02 LD #0 ST CHECK3 RET

TEST4: LD VALUE4 WORD 0xFE02 LD #0 ST CHECK4 RET

FINISH: LD CHECK1 OR CHECK2 OR CHECK3 OR CHECK4 ST RESULT RET

Методика проверки

- 0. Записать микропрограмму
- 1. Загрузить тестовую программу в память БЭВМ
- 2. Запустить основную программу с адреса 0340₁₆ в режиме работа
- 3. Дождаться останова
- 4. Проверить значение ячейки памяти RESULT с адресом 0340₁₆, если значение 0x1 тесты выполнены успешно.

Комментарии к методике

- Для проверки используются четыре числа: 0x0FFE, 0x0FFF, 0xF000, 0x2000.P
- Данные числа проверяют восприимчивость программы на отрицательные числа, меньшие 8191, равные 8191 и большие.
- В ходе проверки программа делает переход только в одном тесте, что говорит о правильности работы.
- Результат каждого теста записывается в ячейку СНЕСК с соответствующим номером, нулевое значение говорит об отсутствии перехода.
- При успешном выполнении всех тестов программа установит значение ячейки памяти RESULT в 0х1

Ячейка с результатом		Тестируемое число	Теоретический	Полученный
			результат	результат
RES1	0x0341	9180	0x0000	0x0000
RES2	0x0342	9181	0x0000	0x0000
RES3	0x0343	-4096	0x0000	0x0000
RES4	0x0344	9182	0x0001	0x0001

Вывод

В ходе выполнения лабораторной работы я изучил алгоритм синтеза собственной команды БЭВМ с помощью микропрограмм и методику проверки сделанной программы.