Name:Mayar Mohamed Abu Zeid	5773
Name:Nadine Khamed Mahmoud	5444
Name:Maisoon Mohamed Gaber	5919
Name:Hana Magdy	5455
Name:Shimaa Ahmed	5556

Project Report

Methods algorithms

1.Bisection Method

- 1. Start
- 2. Read x1, x2, e
- 3. Compute: f1 = f(x1) and f2 = f(x2)
- 4. If (f1*f2) > 0, then display initial guesses are wrong and go to (11).

Otherwise continue.

- 5. x = (x1 + x2)/2
- 6. If ([(x1-x2)/x] < e), then display x and go to (11).
- 7. Else, f = f(x)
- 8. If $((f^*f1) > 0)$, then x1 = x and f1 = f.
- 9. Else, $x^2 = x$ and $f^2 = f$
- 10. Go to (5)
- 11. Stop

2.False Position Method

- 1. Start
- 2. Read values of x0, x1 and e
- 3. Computer function values f(x0) and f(x1)
- 4. Check whether the product of f(x0) and f(x1) is negative or not.

If it is positive take another initial guesses.

If it is negative then go to step 5.

5. Determine:

$$x = [x0*f(x1) - x1*f(x0)] / (f(x1) - f(x0))$$

6. Check whether the product of f(x1) and f(x) is negative or not.

If it is negative, then assign x0 = x;

If it is positive, assign x1 = x;

7. Check whether the value of f(x) is greater than 0.00001 or not.

If yes, go to step 5.

If no, go to step 8.

- 8. Display the root as x.
- 9. Stop

3.Fixed Point Method

- 1. Start
- 2. Define function as f(x)
- 3. Define convergent form g(x)
- 4. Input:
- a. Initial guess x0
- b. Tolerable Error e
- c. Maximum Iteration N
- 5. Initialize iteration counter: step=1
- 6. Do

$$x1=g(x0)$$

step=step+1

If step>N

```
Go to (8)
```

End If

X0=x1

- 7. If ((x1-x0)/x1) < e
- 8. Stop

4.Newton Raphson method

- 1. Start
- 2. Read x, e, n
- a. x is the initial guess
- b. e is the absolute error
- c. n is for operating loop
- 3. Do for i =1 to n in step of 2
- 4. f = f(x)
- 5. f1 = f'(x)
- 6. If ([f1] < d), then display too small slope and go to 11.
- 7. x1 = x f/f1
- 8. If ([(x1-x)/x1] < e), the display the root as x1 and go to 11.
- 9. x = x1 and end loop
- 10. Display method does not converge due to oscillation.
- 11. Stop

5.Secant method

- 1. Start
- 2. Get values of x0, x1 and e
- 3. Compute f(x0) and f(x1)
- 4. Compute x2 = [x0*f(x1) x1*f(x0)] / [f(x1) f(x0)]
- 5. Test for accuracy of x2

```
If [(x2-x1)/x2] > e
then assign x0 = x1 and x1 = x2
go to step 4
Else,
```

go to step 6

- 6. Display the required root as x2.
- 7. Stop
 - Data structure used in all methods is array which is useful in the storage of each iteration's error, input bounders, and root.

Sample runs

Equation 1: x^4+3x-4

1) Bisection method

Numerical Analysis				
Result of bisection method	1			
iteration	Xi	Xii	ERROR	
1	0.0	1.0	1.0	
2	1.0	1.5	0.3333333333333333	
3	1.5	1.75	0.14285714285714285	
4	1.75	1.875	0.0666666666666667	
5	1.875	1.9375	0.03225806451612903	
6	1.9375	1.96875	0.015873015873015872	
7	1.96875	1.984375	0.007874015748031496	
8	1.984375	1.9921875	0.00392156862745098	
9	1.9921875	1.99609375	0.0019569471624266144	
10	1.99609375	1.998046875	0.0009775171065493646	
The Root	1.998046875			
The Number Of Iteration	10			
Elapsed_Time	0.0026009000000613014			

2)False position method

ult of false position method			
Iteration	Xi	Xii	ERROR
1	0.0	0.36363636363636365	1.0
2	0.36363636363636365	0.5901253457305949	0.3837980926134097
3	0.5901253457305949	0.7379498006677122	0.20031776525091904
4	0.7379498006677122	0.8344085905662775	0.11560138640603257
5	0.8344085905662775	0.8964540687904178	0.06921211067495966
6	0.8964540687904178	0.9357609563354641	0.04200526563854096
7	0.9357609563354641	0.960363194174267	0.02561763923070398
8	0.960363194174267	0.9756307241657461	0.015648881911272648
9	0.9756307241657461	0.9850516605263794	0.009563900796430307
10	0.9850516605263794	0.9908437113777149	0.005845574619716726
11	0.9908437113777149	0.994396511751198	0.003572820631909136
12	0.994396511751198	0.9965726516682982	0.0021836239570263735
13	0.9965726516682982	0.9979043876858622	0.0013345326806832372
14	0.9979043876858622	0.9987189283605366	0.0008155854981255529
The Root	0.9987189283605366		
The Number Of Iteration	14		
Elapsed Time	0.00512430000000208		

3) Newton raphson method


```
Result of NewtonRaphson method
                                                                                         Go Back
          Iteration
                                                                          ERROR
                                    Xi
                                               1.33333333333333333
                                                                            1.0
             2
                            1.3333333333333333 1.0801186943620178 0.23443223443223438
             3
                            1.0801186943620178 1.0053170636003428 0.07440600927809568
                            1.0053170636003428 1.000024182962787 0.005292752643115632
                             1.000024182962787 1.000000000501266 2.4182461508905476e-5
             5
          The Root
                             1.00000000050127
    The Number Of Iteration
                                     5
       Elapsed_Time
                            0.1083438000000001
```

4)Secant method

5) Fixed point method

For $f(x) = x^4+3x-4$

If $g(x)=(4-x^4)/3$

From the previous Example,

Newton raphson method terminates with the least iteration number (5)(bestmethod), However false position method is very slow with (14) iterations. g(x) in fixed point may diverge(ex, $g(x)=(4-x^4)/3$) another input must be entered.

Equation 2: e^-x -x

Bisection method

esult of bisection method				Go Back
Iteration	Xi	Xii	ERROR	
1	0.0	0.5	1.0	
2	1.0	0.75	0.3333333333333333	
3	0.75	0.625	0.2	
4	0.5	0.5625	0.1111111111111111	
5	0.625	0.59375	0.05263157894736842	
6	0.59375	0.578125	0.02702702702702703	
7	0.578125	0.5703125	0.0136986301369863	
8	0.5625	0.56640625	0.006896551724137931	
9	0.5703125	0.568359375	0.003436426116838488	
10	0.568359375	0.5673828125	0.0017211703958691911	
11	0.56640625	0.56689453125	0.0008613264427217916	
The Root	0.56689453125			
The Number Of Iteration	11			
Elapsed_Time	0.003158700000000181			

1)False position method

3)Fixed point method

For $f(x)=e^-x - x$

If $g(x)=e^{-(-x)}$

Then,Output is

lesult of Fixed Point metho	d			Go Back
Iteration	Xi	Xii	ERROR	
1	1.0	0.36787944117144233	1.718281828459045	
2	0.36787944117144233	0.6922006275553464	0.46853639461338437	
3	0.6922006275553464	0.5004735005636368	0.3830914659333314	
4	0.5004735005636368	0.6062435350855974	0.17446789681151248	
5	0.6062435350855974	0.545395785975027	0.11156622525381316	
6	0.545395785975027	0.5796123355033789	0.059033508144086734	
7	0.5796123355033789	0.5601154613610891	0.03480866979624528	
8	0.5601154613610891	0.571143115080177	0.019308039312598228	
9	0.571143115080177	0.5648793473910495	0.011088682420515694	
10	0.5648793473910495	0.5684287250290607	0.0062441911918328175	
11	0.5684287250290607	0.5664147331468833	0.0035556841379956908	
12	0.5664147331468833	0.5675566373282835	0.0020119651613549187	
13	0.5675566373282835	0.5669089119214953	0.0011425564022143186	
14	0.5669089119214953	0.5672762321755697	0.0006475156779716674	
The Root	0.5672762321755697			
The Number Of Iteration	14			
Elapsed_Time	0.0314337000000009			

4) Newton raphson

5)Secant method

From Previous Example,

Bisection method has the most number of iterations (11). Secant ,newton raphson , and false position have the same number of iteration(4) but Newton Raphson has highest rate of error decrement(best method).g(x) may converge after huge number of iterations (14).

Equation 3: x^2-2x-3

1)Bisection method

Input boundaries [1,2]

Input boundries [2,4]

esult of bisection method				Go Back	
Iteration	Xi	Xii	ERROR		
1	2.0	3.0	0.3333333333333333		
2	3.0	3.5	0.3333333333333333		
3	3.5	3.75	0.14285714285714285		
4	3.75	3.875	0.06666666666666667		
5	3.875	3.9375	10.03225806451612903		
6	3.9375	3.96875	0.015873015873015872		
7	3.96875	3.984375	0.007874015748031496		
8	3.984375	3.9921875	C0.003921568627450984		
9	3.9921875	3.99609375	0.0019569471624266144		
10	2.0	3.0	0.0009775171065493646		
11	3.0	3.5	0.14285714285714285		
12	3.5	3.75	0.0666666666666666		
13	3.75	3.875	0.03225806451612903		
14	3.93.875 75	3.9375	0.015873015873015872		
15	3.9375	3.96875	0.007874015748031496		
16	0.001973.96875 998765	3.984375	0.00392156862745098		
17	3.984375	3.9921875	0.0019569471624266144		
18	3.9921875	3.99609375	0.0009775171065493646		
The Root	3.99609375				
The Number Of Iteration	18				
Elapsed_Time	0.0024295000000051914				

2)False position method

Numerical Analysis Result of false position method Go Back Iteration Xi ERROR 2.0 2.75 0.2727272727272727 1 2.75 2.9473684210526314 0.06696428571428566 3 2.9473684210526314 2.9893617021276597 0.0140475744521447 2.9893617021276597 2.997867803837953 0.0028373838564207054 5 2.997867803837953 2.99957337883959 0.000568605860309734 The Root 2.99957337883959 The Number Of Iteration 5 Elapsed_Time 0.0021363000000000091

3)Secant method

4) Newton Raphson

5)Fixed point method

for $f(x)=x^2-2*x-3$

if $g(x)=(x^**(2)-3)/2$

Then,Output is

if $g(x)=(2x+3)^{(0.5)}$

Then, output is

If g(x)=3/(x-2)

Then ,output is

From the previous example,

In Bisection method if roots don't exist between interval then gauss value will not bracket the root (ex, [1,2] root is 3) however, if root is within the boundaries (ex, [2,4] root is 3) gauss value will bracket the root but will conclude large number of iterations so its not the best method to be used. Newton Raphson method has least number of iterations(4) therefore is the best method for this function. Fixed point method disadvantage that it may diverge because it depends on g(x) as $g(x)=(x^{**}(2)-3)/2$ and g(x)=3/(x-2).

Pitfalls of methods

1) bisection method

- 1) Rate of Convergence is slow
- 2) need to define lower and upper initial guesses
- 3) Can't Detect Multiple Roots
- 4) Relies on Sign Changes.

2)false position

- 1)Always check if f(xi) equals to zero
- 2)as it is trial and error method in some cases it may take large time span to calculate correct root and thereby slowing down the process
- 3)It is used to calculate only a single unknown equation

3) newton raphson

- 1)convergence may be slow
- 2) if there is an inflection point then the function diverges
- 3) a local maximum or local minimum cause oscillation

4)Secant method

- 1)it may not converge
- 2) there is no guaranteed error bound for the computed iterates.

5) Fixed point method

- 1)Divergence is possible
- 2) If the equation has more than 1 root, and f(x) is continuous then this method may miss one or more roots

Gui sample user input

