Stéréochimie & Spectroscopie I.R.

Jean-François Olivieri (jfolivie@clipper.ens.fr)

2019-01-16

Question de cours :

Spectroscopie I.R.: origine physique, allure des spectres et position de quelques banques caractéristiques.

Exercice 1.A: Mutarotation du glucose

À 25 °C, lorsqu'on dissout 1.0 g d' α -D-glucopyranose cristallisé dans un litre de solution aqueuse acidifiée, on observe une évolution du pouvoir rotatoire de la solution jusqu'à atteindre une valeur d'équilibre à 52.5 ° (la mesure étant effectuée dans une cuve de longueur l=1.0 dm). L'analyse spectroscopique montre l'isomérisation de la molécule en β -D-glucopyranose (fig. 1)

FIGURE 1 – Équilibre de mutarotation du glucose.

- 1 Quel est le stéréodescripteur du carbone anomérique du β -D-glucopyranose (le carbone anomère est celui relié à deux atomes d'oxygène)? En déduire le descripteur stéréochimique du carbone anomère de l' α -D-gkucopyranose. Quelle relation de stéréochimie relie les deux molécules?
- 2 Calculer la concentration massique des deux espèces à l'équilibre thermodynamique. En déduire la constante standard K° de cet équilibre.

- 3 Par une analyse conformationnelle, pouvait-on prévoir quelle serait l'espèce majoritaire? La valeur de la constante standard permettrait-elle de prévoir l'existence d'une autre interaction que l'interaction 1, 3-diaxiale?

On indique qu'il existe une relation approchée entre la constante standard d'équilibre K_T° et la variation d'énergie potentielle molaire ΔE_p :

$$\Delta E_p = -RT \ln K_T^{\circ} \tag{1}$$

Exercice 2.A: Identification de composés hydrogénocarbonés par I.R.

Les spectres infrarouges ci-après correspondent aux molécules représentées ci-dessous. Affecter chacun des spectres à une des molécules.

Figure 2 – Spectre A

Figure 3 – Spectre B

Figure 4 – Spectre C

Stéréochimie & Spectroscopie I.R.

2019-01-16

Question de cours :

Analyse conformationnelle : principe général ; exemples : courbes d'analyse conformationnelle $Ep = f(\phi)$ du butane, cyclohexane et du cyclohexane monosubstitué.

Exercice 1.B: Analyse stéréochimique

1 Représenter le (1R, 2R)-1,2-diméthoxycyclohexane dans la conformation chaise suivante : Pour

Figure 5 – Convention

des raisons de clarté sur le cycle, outre les substituants méthoxyle notés sous la forme condensée $-\mathrm{OCH}_3$, ne seront représentés que les atomes d'hydrogène portés par les atomes de carbone 1, 2, 3 et 6.

- 2 a Montrer qu'il existe un autre conformère de cette molécule.
 - b Représenter l'équilibre conformationnel.
 - c Quel est le conformère le plus stable? Justifier la réponse.

Dans tout ce qui suit, un seul conformère sera considéré pour chacun des composés qui seront décrits.

- 3 a Montrer qu'il existe deux autres stéréoisomères pour le 1,2-diméthoxycyclohexane.
 - b Quelle relation d'isomérie existe-t-il entre ces trois stéréoisomères?
 - c Utiliser une nomenclature de type « cis-trans » pour décrire ces trois isomères.
- 4 a Déterminer les stéréoisomères du dicyclohexyl-18-couronne-6 :

FIGURE 6 – Structure du dicyclohexyl-18-cou- ronne-6

Préciser si les molécules sont chirales et les relations de stéréoisomérie entre elles.

b En pratique, seuls deux isomères sont obtenus à la suite d'une réaction de réduction : les atomes d'hydrogène de jonction des cycles (c'est-à-dire ceux qui sont représentés ci-dessus) sont en position cis (au sens de la question 3.c.). L'isomère possédant un centre de symétrie est noté A, l'autre est noté B. Identifier les isomères A et B dans les représentations qui ont été données

Exercice 2.B : Identification de molécules par I.R.

Attribuer, en justifiant votre choix, les spectres ci-après à chacune des deux molécules suivantes.

Stéréochimie & Spectroscopie I.R.

Jean-François Olivieri (jfolivie@clipper.ens.fr) 2019-01-16

Question de cours :

Énantiomérie (définition, exemples), propriétés comparées de deux énantiomères, mélange racémique, propriétés comparées de deux diastéréoisomères; exemple de séparation d'un mélange d'énantiomères (résolution de l'amphétamine par l'acide tartrique).

Exercice 1.C: Système 1,3-dioxane

1 Prévoir l'énergie molaire de la réaction d'inversion conformationelle chaise-chaise du 1-tert-2-méthylclohexane, présentée figure ci-dessous. On précise pour cela que la valeur A d'un groupe méthyle est de 7.3 kJ mol⁻¹ et d'un groupe tert-butyle de 20 kJ mol⁻¹. Lequel de ces deux conformères est le plus stable?

2 Dans le cas du composé dérivé du 1,3-dioxane présenté figure ci-dessous, on mesure expérimentalement une énergie de $-5.9 \text{ kJ} \text{ mol}^{-1}$. Le signe négatif signifie que le conformère de droite est le plus stable. Interpréter la différence avec le résultat précédent.

Exercice 2.C: Identification de molécules par I.R.

Le spectre infrarouge ci-dessous correspond à la molécule de formule brute $C_8H_{11}NO_2$.

Analyser le spectre de cette molécule et donner la structure dévéloppée en choisissant parmi les composés qui sont présentés ci-après et en justifiant votre choix.

$$\begin{array}{c} OH \\ \\ OH \\ OH \\ \end{array}$$

$$\begin{array}{c} OH \\ \\ OH \\ \end{array}$$