Работа 4.1.1/4.1.2

Геометрическая оптика

Киркича Андрей, Б01-202, МФТИ

Аннотация

В данной работе мы определили фокусные расстояния нескольких линз с помощью подзорной трубы, измерили фокусные расстояния с помощью формулы тонкой линзы, методами Бесселя и Аббе, собрали и изучили подзорную трубу Кеплера, а также исследовали составную оптическую систему.

Теоретическая справка

Для определения фокусного расстояния отрицательной линзы мы воспользовались формулой:

$$f = l - a_0,$$

где l - расстояние между отрицательной и вспомогательной положительной линзами, a_0 - расстояние от положительной линзы до экрана.

Формула тонкой линзы:

$$\frac{1}{f} = \frac{1}{s} + \frac{1}{L-s}.$$

Формула Бесселя:

$$f = \frac{L^2 - l^2}{4L}.$$

Рассчёт фокусного расстояния по методу Аббе:

$$f = \frac{\Delta x'}{\frac{y_1}{y_0} - \frac{y_2}{y_0}} = \frac{\Delta x}{\frac{y_0}{y_2} - \frac{y_0}{y_1}}.$$

Фокусное расстояние составной системы:

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{l}{f_1 f_2}.$$

Оптический интервал системы мы рассчитывали как

$$\delta = l - f_{\text{of}} - f_{\text{ok}}.$$

1

Экспериментальная установка

Рис. 1: Схемы экспериментов, 1 - определение фокусных расстояний с помощью подзорной трубы, 2 - метод Бесселя, 3 - метод Аббе, 4 - труба Кеплера, 5 - составная система

Ход работы

Определение фокусных расстояний линз с помощью подзорной трубы

В первом эксперименте мы измеряли фокусные расстояния четырёх положительных и одной отрицательной линз с помощью подзорной трубы, добиваясь чёткого изображения перемещением линзы. Для измерений у отрицательной линзы использовалась вспомогательная короткофокусная положительная. Линзы ставились разными сторонами к источнику. Результаты измерений приведены в таблице.

$N_{\overline{0}}$	1	2	3	4	5
$f_{\rm np}, { m cm}$	$7,3 \pm 0,2$	$12,2 \pm 0,2$	$25,5 \pm 0,2$	17.3 ± 0.2	-9.4 ± 0.2
$f_{ m obp},~{ m cm}$	7.3 ± 0.2	$12,2 \pm 0,2$	24.5 ± 0.2	17.5 ± 0.2	-9.7 ± 0.2

Измерение фокусных расстояний линз по формуле тонкой линзы и методом Бесселя

Измерения проводились только для одной линзы (под номером 1). Мы находили два положения линзы, при которых на экране возникают чёткие действительные изображения - в одном случае увеличенное, а в другом - уменьшенное. Затем рассчитывали фокусные расстояния по приведённым выше формулам.

L, cm	s_1 , cm	s_2 , cm	l, см	$f_{\scriptscriptstyle m TOHK}$	c, cm	$f_{ m Becc},{ m cm}$
62.5 ± 0.1			44.8 ± 0.2			
	8.6 ± 0.1	$54,2 \pm 0,1$	$45,6 \pm 0,2$	7.4 ± 0.4	7.1 ± 0.4	7.3 ± 0.5
Среднее:				7.3 ± 0.4	7.5 ± 0.4	7.4 ± 0.5

Измерение фокусных расстояний методом Аббе

В этом эксперименте мы отводили осветитель от линзы, а экран - придвигали к линзе. Измеряя соответствующие смещения и размеры изображения на экране, рассчитывали фокусное расстояние.

y_0 , mm	y_1 , mm	y_2 , mm	x_1 , cm	x_2 , cm	x_1' , cm	x_2' , cm	f', cm	f, cm
1 ± 1	3 ± 1	$1,2 \pm 1,0$	9.5 ± 0.1	$12,7 \pm 0,1$	$33,3 \pm 0,1$	$18,2 \pm 0,1$	$8,3 \pm 0,7$	6.4 ± 0.7
1 ± 1	4 ± 1	0.8 ± 1.0	$9,3 \pm 0,1$	$15,5 \pm 0,1$	$36,7 \pm 0,1$	$14,2 \pm 0,1$	$7,0 \pm 0,7$	6.2 ± 0.7
1 ± 1	3 ± 1	$1,2 \pm 1,0$	9.7 ± 0.1	$12,5 \pm 0,1$	$35,3 \pm 0,1$	$18,8 \pm 0,1$	$9,1 \pm 0,7$	5.6 ± 0.7
Среднее:						$8,1 \pm 0,7$	6.1 ± 0.7	

Общая таблица наглядно отражает результаты измерений фокусного расстояния всеми методами:

	Ф.Т.Л. (s_1)	Ф.Т.Л. (s_2)	Бессель	Aббе (Δx)	Аббе ($\Delta x'$)
f, cm	7.3 ± 0.4	7.5 ± 0.4	7.4 ± 0.5	6.1 ± 0.7	8.1 ± 0.7

Сборка и изучение подзорной трубы Кеплера

С помощью подзорной трубы мы определили, что в поле зрения на размере окулярной риски укладывается 1.5 ячейки сетки изображения. Затем мы собрали схему из коллиматора (линза 4), объектива (линза 3) и окуляра (линза 1). Снова измерив угловой размер изображения ячейки, мы нашли угловое увеличение трубы: $\gamma_{\rm эксп} = \frac{\alpha}{\alpha_0} = 3 \pm 1$. Мы также рассчитали увеличение отношением диаметров светового пятна перед объективом и за окуляром: $\gamma = \frac{D_{\rm of}}{D_{\rm ok}} = \frac{4,5~{\rm cm}}{3~{\rm cm}} = 1.5 \pm 0.9$.

Изучение составной оптической системы

В качестве составной оптической схемы мы использовали две линзы (1 и 5), расположенные на фиксированном расстоянии друг от друга (4.2 см). Фокусное расстояние системы оценивали по формуле, приведённой в теоретической справке:

 $f \approx 10.8 \; \mathrm{cm}$. Затем провели расчёт фокусного расстояния и оптического интервала по методу Бесселя.

x_1 , cm	x_2 , cm	L, cm	l,c M	f, cm
18.5 ± 0.1	77.5 ± 0.1	90.0 ± 0.1	59.0 ± 0.1	12.8 ± 0.5
19.7 ± 0.1	$68,3 \pm 0,1$	$81,0 \pm 0,1$	$48,6 \pm 0,1$	$12,9 \pm 0,5$
21.2 ± 0.1	$53,2 \pm 0,1$	67.5 ± 0.1	$32,0 \pm 0,1$	$13,0 \pm 0,5$
11.8 ± 0.1	44.5 ± 0.1	60.0 ± 0.1	$32,7 \pm 0,1$	$10,5 \pm 0,5$
23.5 ± 0.1	$38,7 \pm 0,1$	$55,5 \pm 0,1$	$15,2 \pm 0,1$	12.8 ± 0.5

Оптический интервал равен $\delta = 6.4 \pm 0.3$ см.

В переменных $(\frac{l^2}{L-\delta}, L-\delta-4f)$ расчётная формула для метода Бесселя $l^2=(L-\delta)(L-\delta-4f)$ даёт линейную зависимость:

Рис. 2: График, отражающий зависимость в формуле метода Бесселя

Выводы

Фокусные расстояния, определённые разными способами, сильно разнятся. Метод Аббе даёт наименьшую точность. Это связано с тем, что в методе Аббе мы оценивали чёткость маленькой картинки на экране на глаз, а смещение могло сильно варьироваться. Метод Бесселя даёт значения, хорошо приближенные к теоретическим рассчётам по формуле тонкой линзы. Формулу тонкой линзы в этом опыте действительно можно применять, потому что фокусные расстояния с обеих сторон выбранной нами линзы одинаковы.

Собранная нами труба Кеплера давала увеличение порядка $\gamma \approx 3$, исходя из оценки угловых размеров ячеек. Это немного расходится с теоретическим расчётом ($\gamma_{\text{теор}} \approx 3.42$). Это можно связать с двумя причинами: во-первых, неточное определение фокусных расстояний составляющих линз (которое производилось на глаз) и, как следствие, отклонение в теоретическом значении; во-вторых, неточная оценка угловых размеров объекта (которая тоже производилась на глаз). Существенный вклад в качество эксперимента привнесла бы аппаратная оценка этих параметров. Также мы рассчитали увеличение на основе диаметров светового пятна перед объективом и за окуляром: $\gamma = 1.5$. Такое сильное расхождение с полученными данными связано с очень грубой оценкой диаметров: край световых пятен был размыт.

В последней части эксперимента мы изучали составную оптическую систему. Теоретическая оценка фокусного расстояния такой системы расходится с экспериментальнами данными. Вероятно, это связано с относительно большим расстоянием между двумя линзами, составляющими систему.