

Constructions Ex 11.2 Q3

Answer:

Given that

Construct a triangle of given data, $BC = 6 \, \mathrm{cm}$, $\angle B = 50^{\circ}$ and $\angle C = 60^{\circ}$ and then a triangle similar to it whose sides are $\left(\frac{2}{3}\right)$ of the corresponding sides of $\triangle ABC$.

We follow the following steps to construct the given

Step of construction

Step: I- First of all we draw a line segment $BC = 6 \, \mathrm{cm}$.

Step: II- With B as centre draw an angle $\angle B = 50^{\circ}$

Step: III- With C as centre draw an angle $\angle C = 60^{\circ}$ which intersecting the line drawn in step II at A.

Step: IV- Joins AB and AC to obtain $\triangle ABC$.

Step: V -Below BC, makes an acute angle $\angle CBX = 60^\circ$

Step: VI -Along BX, mark off three points B_1 , B_2 and B_3 such that $BB_1 = B_1B_2 = B_2B_3$

Step: VII -Join B_3C

Step: VIII -Since we have to construct a triangle each of whose sides is two-third of the corresponding sides of ΔABC .

So, we take two parts out of three equal parts on BX from point B_2 draw $B_2C'\|B_3C$, and meeting BC at C'.

Step: IX -From C' draw $C'A' \parallel AC$, and meeting AB at A'

Thus, $\Delta \!\!\!/BC$ is the required triangle, each of whose sides is two third of the corresponding sides of $\Delta \!\!\!/BC$

Constructions Ex 11.2 Q4

Answer:

Given that

Construct a triangle of sides $AB=4\,\mathrm{cm}$, $BC=6\,\mathrm{cm}$ and $AC=5\,\mathrm{cm}$ and then a triangle similar to it whose sides are $\left(\frac{3}{4}\right)^\mathrm{th}$ of the corresponding sides of ΔABC .

We follow the following steps to construct the given

Step of construction

Step: I- First of all we draw a line segment AB = 4 cm

Step: II- With A as centre and radius = AC = 5 cm, draw an arc.

Step: III -With B as centre and radius = $BC = 6 \, \mathrm{cm}$, draw an arc, intersecting the arc drawn in step II at C

Step: IV -Joins AC and BC to obtain $\triangle ABC$

Step: V -Below AB, makes an acute angle $\angle BAX = 60^{\circ}$

Step: VI -Along AX, mark off four points A_1 , A_2 A_3 and A_4 such that $AA_1 = A_1A_2 = A_2A_3 = A_3A_4$

Step: VII -Join A₄B

Step: VIII -Since we have to construct a triangle each of whose sides is $\binom{3}{4}^{\text{th}}$ of the corresponding sides of $\triangle ABC$.

So, we take three parts out of four equal parts on AX from point A_3 draw $A_3B'\|A_4B$, and meeting AB at B'.

Step: IX- From B' draw $B'C \| BC$, and meeting AC at C'

Thus, $\triangle AB'C'$ is the required triangle, each of whose sides is $\binom{3}{4}^{\text{th}}$ of the corresponding sides of

Constructions Ex 11.2 Q5

Answer:

Given that

Construct a triangle of sides $AB = 5 \, \mathrm{cm}$, $BC = 6 \, \mathrm{cm}$ and $AC = 7 \, \mathrm{cm}$ and then a triangle similar to it whose sides are $\left(\frac{7}{5}\right)^{\mathrm{th}}$ of the corresponding sides of ΔABC .

We follow the following steps to construct the given

Step of construction

Step: I- First of all we draw a line segment $AB = 5 \, \text{cm}$.

Step: II- With A as centre and radius $AC = 7 \, \mathrm{cm}$, draw an arc.

Step: III- With B as centre and radius = $BC = 6 \, \mathrm{cm}$, draw an arc, intersecting the arc drawn in step II at C.

Step: IV- Joins AC and BC to obtain ΔABC .

Step: V- Below AB, makes an acute angle $\angle BAX = 60^{\circ}$.

Step: VI- Along AX, mark off seven points $A_1, A_2, A_3, A_4, A_5, A_6$ and A_7 such that

 $AA_1 = A_1A_2 = A_2A_3 = A_3A_4 = A_4A_5 = A_5A_6 = A_6A_7$

Step: VII-Join A_5B

Step: VIII- Since we have to construct a triangle each of whose sides is $\left(\frac{7}{5}\right)^{\text{th}}$ of the corresponding

sides of ΔABC .

So, we draw a line A_3B' on AX from point A_7 which is $A_7B'\|A_5B$, and meeting AB at B'.

Step: IX- From B' point draw $B'C' \parallel BC$, and meeting AC at C'

Thus, $\Delta AB'C'$ is the required triangle, each of whose sides is $\left(\frac{7}{5}\right)^{\text{th}}$ of the corresponding sides of ΔABC .

******* END *******