ECE368 Fall 2016 Homework #1

IMPORTANT:

- Do NOT leave your name or Purdue ID on this homework.
- Write your homework security number at the TOP of EACH page.

Read and sign the **Academic Honesty Statement** that follows:

"In signing this statement, I hereby certify that the work on this exercise is my own and
that I have not copied the work of any other student while completing it. I understand that,
if I fail to honor this agreement, I will receive a score of zero for this exercise and will be
subject to further disciplinary action."
Homework security number:
Homowork beeding number.

Please acknowledge any people who have helped you with this homework.

Question	Credits
1	
2	
3	
4	

1. (30 points) For each function f(n) and time t in the following table, determine the largest size n of a problem that can be solved in time t, assuming that the algorithm to solve the problem takes f(n) microseconds. You might want to write a small program or script to help you with the calculations.

	t							
f(n)	1	1	1	1	1	1	1	
	second	minute	hour	day	month	year	century	
$\log_2 n$								
\sqrt{n}								
n								
$n\log_2 n$								
n^2								
n^3								
2^n								
n!								

- **2.** (30 points) Rank the following functions by order of growth, i.e., $g_i = \Omega(g_{i+1})$ (Note: look carefully at the equation above and give the correct order):
 - n^2
 - *n*!
 - \bullet n^3
 - $(\log_2 n)^2$
 - $log_2(n!)$
 - $n2^n$
 - $2^{\log_2 n}$
 - $n^{1/\log_2 n}$

Justify your answer.

3. (20 points) Is $2^{(n+1)} = O(2^n)$? Is $2^{2n} = O(2^n)$? Prove your answer.

4. (20 points) Prove the following theorem:

For any two functions f(n) and g(n), we have $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.