Computação Científica II (EEL7031)

Resolução de Sistemas de Equações Lineares

(Métodos Iterativos)

Objetivos e Tópicos Principais

Objetivos

Estudar técnicas iterativas de resolução de sistemas de equações lineares algébricas, que surgem em diversas áreas do conhecimento

Tópicos principais

- ➤ Introdução
- Normas de vetores e matrizes
- > Autovalores e autovetores
- Métodos de Jacobi e Gauss-Seidel
- > O método SOR
- O método gradiente conjugado
- Comentários Finais

Introdução

Características dos métodos iterativos

- Necessitam de uma aproximação inicial
- Não fornecem solução exata, mesmo com aritmética exata, mas uma solução aproximada dentro de uma tolerância especificada
- ➤ Em muitos casos, os métodos iterativos são mais efetivos que os diretos, visto que podem requerer menor esforço computacional e, nestes casos, o erro de arredondamento é reduzido
- ➤ A sentença anterior é particularmente verdadeira quando a matriz de coeficientes é esparsa, ou seja, quando possui elevado percentual de elementos nulos

Aspectos gerais

- ightharpoonup A distância entre números reais x e y é |x-y|
- Esta medida é empregada para estimar a precisão da aproximação da solução no cálculo de raízes e para determinar quando uma aproximação é suficientemente precisa
- Nos métodos iterativos de resolução de sistemas de equações algébricas lineares emprega-se esta mesma lógica, porém aplicada a vetores
- **Convenção:** A equação $x = (x_1, x_2, ..., x_n)^t$ descreve todos os vetores coluna com dimensão n e coeficientes reais representados por

\square Norma de vetor no \Re^n

 \blacktriangleright A norma de um vetor no \Re^n é uma função, $\lVert \cdot \rVert$, de $\Re^n \to \Re$ com as seguintes propriedades

- $|x| \ge 0$ para todo $x \in \Re^n$
- |x| = 0 se e somente se $x = (0,0,\ldots,0)^t \equiv 0$
- $|\alpha x| = |\alpha| \cdot |x|$ para todo $\alpha \in \Re$ e $x \in \Re^n$
- $|x+y| \le |x| + |y|$ para todo $x, y \in \Re^n$
- As normas Euclidiana $l_2 = \|x\|_2$ e infinita $l_{\infty} = \|x\|_{\infty}$, para $x = (x_1, x_2, \dots, x_n)^t$ são definidas como:

$$||x||_2 = \left\{ \sum_{i=1}^n x_i^2 \right\}^{1/2}$$

$$||x||_{\infty} = \max_{1 \le i \le n} |x_i|$$

Interpretação geométrica da norma euclidiana

A norma $\|x\|_2$, p/ $x=(x_1,x_2,x_3)^t$, fornece a distância em linha reta entre os pontos (0,0,0) e (x_1,x_2,x_3) .

Interpretação geométrica da norma infinita

The vectors in \mathbb{R}^2 with l norm less than 1 are inside this figure.

The vectors in the first octant of \mathbb{R}^3 with l norm less than 1 are inside this figure.

Exemplo

> Para $x = (-1, 1, -2)^t$, tem-se:

$$||x||_2 = \sqrt{(-1)^2 + (1)^2 + (-2)^2} = \sqrt{6}$$

$$||x||_{\infty} = \max\{|-1|,|1|,|-2|\} = 2$$

Distância entre vetores

> Se $x = (x_1, x_2, ..., x_n)^t$ e $y = (y_1, y_2, ..., y_n)^t$ são vetores no \Re^n , as distâncias l_2 e l_{∞} entre x e y são definidas por

$$\|x - y\|_{2} = \left\{ \sum_{i=1}^{n} (x_{i} - y_{i})^{2} \right\}^{1/2}$$
 e
$$\|x - y\|_{\infty} = \max_{1 \le i \le n} |x_{i} - y_{i}|$$

$$||x - y||_{\infty} = \max_{1 \le i \le n} |x_i - y_i|$$

Exemplo

> Para $x = (1,1,1)^t$ e $y = (2,2,2)^t$, tem-se

$$||x-y||_2 = \sqrt{(2-1)^2 + (2-1)^2 + (2-1)^2} = \sqrt{3}$$

$$||x - y||_{\infty} = \max\{|2 - 1|, |2 - 1|, |2 - 1|\} = 1$$

Distância entre vetores (cont.)

- \triangleright O conceito de distância no \Re^n é usado para definir o limite de uma sequência de vetores
- ightharpoonup A sequência de vetores $\left\{x^k\right\}_{k=1}^\infty$ no \Re^n é dita convergir para x com respeito a norma $\left\|\cdot\right\|$ se, dado qualquer $\varepsilon>0$, existe um inteiro $N(\varepsilon)$ tal que

$$||x^k - x|| < \varepsilon$$
, para todo $k \ge N(\varepsilon)$

Distância entre vetores (exemplo)

 \triangleright Considere a sequência de vetores $x^{(k)} \in \Re^4$ ser definida por

$$x^{(k)} = (x_1^k, x_2^k, x_3^k, x_4^k)^t = (1, 2 + \frac{1}{k}, \frac{3}{k^2}, e^{-k} \sin k)^t$$

> Então

$$\lim_{k\to\infty}1=1$$

$$\lim_{k\to\infty} 2 + 1/k = 2$$

$$\lim_{k\to\infty} 3/k^2 = 0$$

$$\lim_{k\to\infty}e^{-k}\sin k=0$$

- ightharpoonup Portanto, para qualquer dado ϵ , pode ser encontrado um $N(\epsilon)$ tal que o maior valor de $\|x_1^{(k)}-1\|$, $\|x_2^{(k)}-2\|$, $\|x_3^{(k)}-0\|$ e $\|x_4^{(k)}-0\|$, é menor que ϵ
- \succ Este resultado implica que a sequência $x^{(k)}$ converge para $(1,2,0,0)^t$ com respeito a $\|\cdot\|_\infty$
- > Um resultado importante neste tema é que todas as normas no \Re^n são equivalentes com respeito a convergência

Norma de matriz

► Uma norma de matriz no conjunto de todas as matrizes $n \times n$ é uma função, $\|\cdot\|$, definida neste conjunto, satisfazendo para todas as matrizes $A \in B$, $n \times n$, e todos os números reais α

$$|A| \ge 0$$

- $\checkmark \|A\| = 0$, se e somente se $A \not\in 0$, matriz como todos os elem. nulos
- $||A + B|| \le ||A|| + ||B||$
- $\checkmark \|AB\| \le \|A\| \|B\|$

Distância entre matrizes

> Uma distância entre matrizes A e B, $n \times n$, com respeito a esta norma de matriz é $\|A-B\|$

Norma natural de matriz

ightharpoonup Se $\|\cdot\|$ é uma norma de vetor no \Re^n , a norma natural de matriz no conjunto de matrizes $(n \times n)$, dada por $\|\cdot\|$, é definida como segue

$$||A|| = \max_{\|x\|=1} ||Ax||$$

 \triangleright Aplicações para norma euclidiana l_2 e norma infinita l_{∞}

$$||A||_2 = \max ||Ax||_2$$

$$e \qquad ||A||_{\infty} = \max_{\|x\|_{\infty}=1} ||Ax||_{\infty}$$

Interpretação geométrica da norma natural euclidiana de matriz

Interpretação geométrica da norma natural infinita de matriz

Cálculo da norma natural infinita de matriz

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$

Exemplo:

Se
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 3 & -1 \\ 5 & -1 & 1 \end{bmatrix}$$

$$\sum_{j=1}^{3} a_{1j} = |1| + |2| + |-1| = 4$$

$$\sum_{j=1}^{3} a_{2j} = |0| + |3| + |-1| = 4$$

$$\sum_{j=1}^{3} a_{3j} = |5| + |-1| + |-1| = 7$$

Portanto:

$$||A||_{\infty} = \max\{4,4,7\} = 7$$

Aspectos gerais

- \triangleright Um <u>escalar</u> λ é autovalor de um <u>operador linear</u> $A: V \rightarrow V$ se existir um <u>vetor</u> $x \neq 0$ tal que $Ax = \lambda x$. O vetor x é chamado autovetor
- ➤ Os autovalores de uma dada <u>matriz quadrada</u> *A* de dimensão *nxn* são os *n* números que resumem as propriedades essenciais daquela <u>matriz</u>
- \triangleright O autovalor de A é um <u>número</u> λ tal que, se for subtraído de cada entrada na diagonal de A, converte A numa matriz singular
- > Subtrair um <u>escalar</u> λ de cada entrada na diagonal de A é o mesmo que subtrair λ vezes a <u>matriz identidade</u> I de A
- ightharpoonup Portanto, λ é um autovalor se e somente se a matriz $(A-\lambda I)$ for singular
- Há forte correlação λs e a possibilidade de um método iterativo convergir

Definições

ightharpoonup Para uma matriz quadrada $A_{(n \times n)}$ o polinômio característico de A é definido por

$$p(\lambda) = \det(A - \lambda I)$$

- \triangleright O polinômio $p(\lambda)$ tem grau n e, consequentemente, têm no máximo n zeros distintos (alguns podem ser complexos)
- \triangleright Os zeros de $p(\lambda)$ são denominados de **autovalores** da matriz A
- \triangleright Se λ é um autovalor de A, então:

$$\det(A - \lambda I) = 0$$
 $A - \lambda I$ é singular

ightharpoonup Consequentemente, se $(A-\lambda I)x=0$ e $x\neq 0$, então x é denominado um **autovetor** de A associado ao autovalor λ

Exemplo

 \triangleright Determine os autovalores e autovetores de $A = \begin{bmatrix} 0 & -1 \\ 2 & 3 \end{bmatrix}$

$$A = \begin{bmatrix} 0 & -1 \\ 2 & 3 \end{bmatrix}$$

Polinômio característico:

$$p(\lambda) = \det(A - \lambda I) \qquad \Longrightarrow \qquad p(\lambda) = \det\begin{bmatrix} 0 - \lambda & -1 \\ 2 & 3 - \lambda \end{bmatrix} = -\lambda(3 - \lambda) + 2$$

> Portanto:

$$p(\lambda) = \lambda^2 - 3\lambda + 2$$
 Autovalores: $\lambda_1 = 1$ e $\lambda_2 = 2$

> Autovetores:

$$\lambda_1 = 1 \quad \Rightarrow \quad (A - 1 \cdot I)x = 0 \quad \Rightarrow \quad \begin{bmatrix} -1 & -1 \\ 2 & 2 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$AV_1 = (1, -1)^t$$

$$\lambda_2 = 2 \qquad \Longrightarrow \qquad (A - 2 \cdot I)x = 0 \qquad \Longrightarrow \begin{bmatrix} -2 & -1 \\ 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad x_2 = -2x_1$$

$$AV_2 = (1, -2)^t$$

■ Exemplo 2 – Aplicação do Matlab

> Determine os autovalores e autovetores de

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ -1 & 1 & 1 \end{bmatrix}$$

Autovalores

$$A =$$

>> lambda=eig(A)

lambda =

Autovetores

lambda =

- Raio espectral de uma matriz
 - $ightharpoonup {
 m O}$ raio espectral ho(A) de uma matriz A é definido por $ho(A) = \max \left| \lambda \right|$, onde λ é um autovalor de A .
 - > Para o exemplo do slide anterior, tem-se

$$\rho(A) = \max \left\{ 1, \left| 1 + \sqrt{3}i \right|, \left| 1 - \sqrt{3}i \right| \right\} \quad \Longrightarrow \quad \rho(A) = \max \left\{ 1, 2, 2 \right\} = 2$$

- Caracterização da norma Euclidiana de matriz
 - \triangleright Se A é uma matriz $(n \times n)$, então

✓ $\rho(A) \le ||A||$ para qualquer norma

Exemplo – Norma Euclidiana de matriz

$$ightharpoonup$$
 Determine $\|A\|_2 = \left[\rho\left(A^tA\right)\right]^{1/2}$ para

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{bmatrix}$$

$$A^{t}A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 2 & -1 \\ 2 & 6 & 4 \\ -1 & 4 & 5 \end{bmatrix}$$

$$0 = \det(A^t A - \lambda I) = \det\begin{bmatrix} 3 - \lambda & 2 & -1 \\ 2 & 6 - \lambda & 4 \\ -1 & 4 & 5 - \lambda \end{bmatrix} \xrightarrow{0 = -\lambda(\lambda^2 - 14\lambda + 42)}$$

$$\lambda = 0, \quad \lambda = 7 + \sqrt{7}, \quad \lambda = 7 - \sqrt{7}$$

$$\lambda = 0, \quad \lambda = 7 + \sqrt{7}, \quad \lambda = 7 - \sqrt{7}$$

> Então:

$$\left\|A\right\|_2 = \sqrt{\rho\left(A^t A\right)}$$

$$||A||_2 = \sqrt{\rho(A^t A)}$$
 $||A||_2 = \sqrt{\max\{0, 7 - \sqrt{7}, 7 + \sqrt{7}\}} = \sqrt{7 + \sqrt{7}} \approx 3.106$

Métodos de Jacobi e Gauss-Seidel

Aspectos gerais

- São métodos iterativos especializados para sistemas com matrizes esparsas e de grande dimensão
- Sistemas com essas características são encontrados em estudos de circuitos integrados em grande escala e na solução numérica de problemas de valores de contorno e equações diferenciais parciais

Elementos básicos do método de Jacobi

- ightharpoonup A resolução de Ax=b, $A_{(n\times n)}$, por métodos iterativos, parte de uma aproximação inicial e gera uma sequência de vetores que converge para x
- > Este processo envolve a conversão de Ax = b \Leftrightarrow x = Tx + c
- \blacktriangleright A sequência de aproximações é gerada, a partir de $x^{(0)}$, calculando-se

$$x^{(k)} = Tx^{(k-1)} + c$$
; para $k = 1, 2, 3, ...$

Convergência e raio espectral

> A sequência $x^{(k)} = Tx^{(k-1)} + c$ converge para a solução única de x = Tx + c, para qualquer $\chi^{(0)} \in \Re^n$, se e somente se $\rho(T) < 1$

Exemplo

Exemplo

Considere o sistema linear
$$\begin{cases}
10x_1 + 2x_2 + 1x_3 = 7 \\
x_1 + 5x_2 + x_3 = -8 \\
2x_1 + 3x_2 + 10x_3 = 6
\end{cases}$$
, onde $x = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$

 \blacktriangleright A conversão para a forma x = Tx + c é feita isolando-se x_i na *i*-ésima linha, para i = 1,2,3

$$\begin{cases} x_1 = & -(2/10)x_2 - (1/10)x_3 + (7/10) \\ x_2 = -(1/5)x_1 - (1/5)x_3 - (8/5) \\ x_3 = -(2/10)x_1 - (3/10)x_2 + (6/10) \end{cases}$$

Exemplo (cont.)

ightharpoonup Assim, Ax = b tem a forma x = Tx + c abaixo

$$\begin{cases} x_1 = -(2/10)x_2 - (1/10)x_3 + (7/10) \\ x_2 = -(1/5)x_1 - (1/5)x_3 - (8/5) \\ x_3 = -(2/10)x_1 - (3/10)x_2 + (6/10) \end{cases}$$

> onde

$$T = \begin{bmatrix} 0 & \frac{-2}{10} & \frac{-1}{10} \\ \frac{-1}{5} & 0 & \frac{-1}{5} \\ \frac{-2}{10} & \frac{-3}{10} & 0 \end{bmatrix}$$
 e
$$c = \begin{bmatrix} \frac{7}{10} \\ \frac{-8}{5} \\ \frac{6}{10} \end{bmatrix}$$

$$c = \begin{bmatrix} \frac{7}{10} \\ \frac{-8}{5} \\ \frac{6}{10} \end{bmatrix}$$

> Autovalores de T

$$\lambda_1 = -0.3943, \quad \lambda_2 = 0.1391, \quad \lambda_3 = 0.2552$$

$$\rho(T) = 0.3943 < 1$$

Exemplo (cont.)

> O processo iterativo $x^{(k)} = Tx^{(k-1)} + c$ é executado como segue

$$\begin{cases} x_1^{(k)} = & -(2/10)x_2^{(k-1)} - (1/10)x_3^{(k-1)} + (7/10) \\ x_2^{(k)} = & -(1/5)x_1^{(k-1)} & -(1/5)x_3^{(k-1)} & -(8/5) \\ x_3^{(k)} = & -(2/10)x_1^{(k-1)} - (3/10)x_2^{(k-1)} & +(6/10) \end{cases}, \quad k = 1, 2, \dots$$

ightharpoonup Os resultados de cada iteração, para $x^{(0)} = (1,1,1)^t$ são

Critério de parada

$$\|x^{(10)} - x^{(9)}\|_{\infty} = \begin{bmatrix} 1.0001 \\ -1.9999 \\ 1.0001 \end{bmatrix} - \begin{bmatrix} 0.9998 \\ -2.0003 \\ 0.9997 \end{bmatrix} \|_{\infty} = 1.0 \times 10^{-3} \begin{bmatrix} 0.3059 \\ 0.3710 \\ 0.4456 \end{bmatrix} \|_{\infty}$$

Equação geral e formulação matricial

ightharpoonup O método iterativo de Jacobi para Ax = b; com $a_{ii} \neq 0$; $i = 1, 2, \dots, n$ consiste em obter

$$x_{i}^{(k)} = \sum_{\substack{j=1\\j\neq i}}^{n} \left(-\frac{a_{ij}x_{j}^{(k-1)}}{a_{ii}} \right) + \frac{b_{i}}{a_{ii}}, \quad p/i = 1, 2, \dots, n$$

$$\therefore A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & & a_{nn} \end{bmatrix}$$

 \blacktriangleright A matriz A pode ser dividida em A = D - L - U, como segue:

$$A = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix} - \begin{bmatrix} 0 & 0 & \cdots & 0 \\ -a_{21} & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ -a_{n1} & -a_{n2} & \cdots & 0 \end{bmatrix} - \begin{bmatrix} 0 & -a_{12} & \cdots & -a_{1n} \\ 0 & 0 & \cdots & -a_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

- Equação geral e formulação matricial (cont.)
 - ightharpoonup A equação Ax = b ou (D L U)x = b é então transformada em

$$Dx = (L + U)x + b$$

ightharpoonup Se $a_{ii} \neq 0$; $i = 1, 2, \dots, n$ existe D^{-1} e, então, pode-se escrever

$$x = D^{-1}(L+U)x + D^{-1}b$$

$$x^{(k)} = Tx^{(k-1)} + c$$

Se
$$a_{ii} \neq 0$$
; $i = 1, 2, \dots, n$ existe D^{-1} e, entao, pode-se escrever
$$x = D^{-1}(L+U)x + D^{-1}b$$

$$x^{(k)} = Tx^{(k-1)} + c$$
 onde
$$T = D^{-1}(L+U)$$
 e
$$c = D^{-1}b$$

Elementos básicos

- Representa a busca de melhor eficiência e desempenho, em relação ao método de Jacobi
- ightharpoonup Utiliza, no momento do cálculo de cada componente $x_i^{(k)}$, todas as componentes $x_1^{(k)},\ldots,x_{i-1}^{(k)}$, já determinadas, as quais, na maioria das vezes, representam melhores aproximações do que $x_1^{(k-1)},\ldots,x_{i-1}^{(k-1)}$
- > A técnica é denominada de método iterativo de Gauss-Seidel e descrita genericamente pela equação abaixo

$$x_i^{(k)} = \frac{-\sum\limits_{j=1}^{i-1} \left(a_{ij} x_j^{(k)}\right) - \sum\limits_{j=i+1}^{n} \left(a_{ij} x_j^{(k-1)}\right) + b_i}{a_{ii}}, \qquad \text{p}/\ i = 1, 2, \dots, n$$

Exemplo

> Considere o sistema linear:

$$\begin{cases} 10x_1 + 2x_2 + 1x_3 = 7 \\ x_1 + 5x_2 + x_3 = -8 \\ 2x_1 + 3x_2 + 10x_3 = 6 \end{cases}, \text{ cuja solução \'e}: \quad x = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$

Aplicando-se a equação geral do método de Gauss-Seidel, obtém-se

$$\begin{cases} x_1^{(k)} = -(2/10)x_2^{(k-1)} - (1/10)x_3^{(k-1)} + (7/10) \\ x_2^{(k)} = -(1/5)x_1^{(k)} - (1/5)x_3^{(k-1)} - (8/5) \\ x_3^{(k)} = -(2/10)x_1^{(k)} - (3/10)x_2^{(k)} + (6/10) \end{cases}$$

■ Exemplo (cont.)

$$\begin{cases} x_1^{(k)} = -(2/10)x_2^{(k-1)} - (1/10)x_3^{(k-1)} + (7/10) \\ x_2^{(k)} = -(1/5)x_1^{(k)} - (1/5)x_3^{(k-1)} - (8/5) \\ x_3^{(k)} = -(2/10)x_1^{(k)} - (3/10)x_2^{(k)} + (6/10) \end{cases}$$

ightharpoonup Realizando o processo iterativo para $\chi^{(0)} = (1,1,1)^t$, obtém-se:

$$k$$
 0 1 2 3 4 5
 $x_1^{(k)}$ 1.0 0.400 0.9676 1.0011 1.0004 1.0000
 $x_2^{(k)}$ 1.0 -1.88 -2.0021 -2.0021 -2.0002 -2.0000
 $x_3^{(k)}$ 1.0 1.084 1.0096 1.004 1.0000 1.0000

O critério de parada utilizado é dado por:

Formulação matricial

Na forma matricial, a equação geral do método de G-S é descrita por:

$$\left\{ \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix} - \begin{bmatrix} 0 & 0 & \cdots & 0 \\ -a_{21} & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ -a_{n1} & -a_{n2} & \cdots & 0 \end{bmatrix} \right\} \cdot \begin{bmatrix} x_1^{(k)} \\ x_2^{(k)} \\ \vdots \\ x_n^{(k)} \end{bmatrix} = \begin{bmatrix} 0 & -a_{12} & \cdots & -a_{1n} \\ 0 & 0 & \cdots & -a_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} \cdot \begin{bmatrix} x_1^{(k-1)} \\ x_2^{(k-1)} \\ \vdots \\ x_n^{(k-1)} \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

 $[x]^{(k)}$

Portanto, na forma compacta, tem-se:

$$(D-L)x^{(k)} = Ux^{(k-1)} + b$$

> Se existe $(D-L)^{-1}$, então:

$$x^{(k)} = (D - L)^{-1} U x^{(k-1)} + (D - L)^{-1} b$$

onde:
$$T = (D-L)^{-1}U$$
 e
 $x^{(k)} = Tx^{(k-1)} + c$ $c = (D-L)^{-1}b$

Note que:

$$det(D-L) = a_{11} \cdot a_{22} \cdot \cdots \cdot a_{nn}$$

- Formulação matricial (Exemplo)
 - > Considere o sistema linear:

 \triangleright Aplicando-se a equação geral x = Tx + c, obtém-se:

$$T = (D - L)^{-1}U = \begin{bmatrix} 10 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 10 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ -2 & -3 & 0 \end{bmatrix})^{-1} \cdot \begin{bmatrix} 0 & -2 & -1 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -0.2 & -0.10 \\ 0 & 0.04 & -0.18 \\ 0 & 0.028 & 0.074 \end{bmatrix}$$

> Autovalores de T

$$\lambda_1 = 0.0, \quad \lambda_2 = 0.057 + 0.0689i, \quad \lambda_3 = 0.057 - 0.0689i$$

$$\rho(T) = 0.0894 < 1.$$

Método de Jacobi e Gauss-Seidel

Comentários

- Se a matriz de coeficientes do sistema Ax = b for de diagonal estritamente dominante, então, para qualquer vetor de coeficientes b e para qualquer aproximação inicial $x^{(0)}$, ambos os métodos, Jacobi e Gauss-Seidel, convergem para a solução única de Ax = b
- ➤ Em geral, o método de Gauss-Seidel apresenta desempenho superior ao método de Jacobi; porém, há sistemas lineares em que o método de Jacobi converge e o método de Gauss-Seidel não converge
- A formulação matricial $x^{(k)} = Tx^{(k-1)} + c$ é comum aos dois métodos, porém a matriz T e o vetor c são distintos para cada método

Exercícios Sugeridos

1. Find the first two iterations of the Jacobi method for the following linear systems, using $\mathbf{x}^{(0)} = \mathbf{0}$:

(a)
$$3x_1 - x_2 + x_3 = 1$$
, (b) $10x_1 - x_2 = 9$, $3x_1 + 6x_2 + 2x_3 = 0$, $-x_1 + 10x_2 - 2x_3 = 7$, $-2x_2 + 10x_3 = 6$.

- 2. Repeat Exercise 1 using the Gauss-Seidel method.
- 3. Use the Jacobi method to solve the linear systems in Exercise 1, with $TOL=10^{-3}$ in the l_{∞} norm.
- 4. Repeat Exercise 3 using the Gauss-Seidel method.

O método SOR

Aspectos gerais

- O método SOR é uma técnica mais recente que os métodos Jacobi e Gauss-Seidel
- Utiliza o conceito de relaxação no método de Gauss-Seidel, através do uso de um fator de escala ω em cada iteração, para alterar a velocidade de convergência do processo de resolução

O método SOR

Formulação matemática

- > O método SOR é uma técnica iterativa para o cálculo de aproximações $x^{(k)};\ k=1,2,\ldots$, em um processo descrito por $x^{(k)}=g(x^{(k-1)})$, obtido a partir de um sistema do tipo Ax=b
- A equação geral do método SOR é dado por

$$x^{(k)} = x^{(k-1)} + \omega \cdot \left[g(x^{(k-1)}) - x^{(k-1)} \right]$$

 $\omega = 1 \rightarrow \text{m\'etodo de Gaus} - \text{Seidel}$

 $0 < \omega < 1$: método de sub-relaxação

 $1 < \omega$: método de sobre-relaxação

 \triangleright Usando-se os coeficientes do sistema Ax = b, resulta

$$x_i^{(k)} = (1 - \omega) x^{(k-1)} + \frac{\omega}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} (a_{ij} x_j^{(k)}) - \sum_{j=i+1}^{n} (a_{ij} x_j^{(k-1)}) \right],$$

$$p/i = 1, 2, \dots, n$$

Formulação matricial

> A equação geral anterior pode ser reescrita na seguinte forma

$$\begin{aligned} a_{ii}x_i^{(k)} + \omega \sum_{j=1}^{i-1} \left(a_{ij}x_j^{(k)}\right) &= \left(1-\omega\right)a_{ii}x^{(k-1)} - \omega \sum_{j=i+1}^{n} \left(a_{ij}x_j^{(k-1)}\right) + \omega b_i \\ \mathbf{p}/\ i &= 1, 2, \dots, n \end{aligned}$$

> Assim, na forma matricial compacta, tem-se

$$(D - \omega L) x^{(k)} = [(1 - \omega)D + \omega U] x^{(k-1)} + \omega b$$

> Se existe $(D - \omega L)^{-1}$, então

$$x^{(k)} = \left(D - \omega L\right)^{-1} \left[\left(1 - \omega\right)D + \omega U\right] x^{(k-1)} + \omega \left(D - \omega L\right)^{-1} b$$

$$x^{(k)} = Tx^{(k-1)} + c$$

Condições de convergência

 \triangleright Se a matriz A for positiva-definida e $0 < \omega < 2$, então o método SOR converge para qualquer escolha de condição inicial $x^{(0)}$.

Exemplo

Considere o sistema

$$\begin{bmatrix} 4 & 3 & 0 \\ 3 & 4 & -1 \\ 0 & -1 & 4 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 24 \\ 30 \\ -24 \end{bmatrix}$$
 cuja solucão é :
$$x = \begin{bmatrix} 3 \\ 4 \\ -5 \end{bmatrix}$$

$$x = \begin{bmatrix} 3 \\ 4 \\ -5 \end{bmatrix}$$

 \triangleright Resolva para $\chi^{(0)} = (1,1,1)^t$ usando GS e SOR com $\omega = 1.25$.

GS:
$$x^{(k)} = (D-L)^{-1}Ux^{(k-1)} + (D-L)^{-1}b$$

SOR:
$$x^{(k)} = (D - \omega L)^{-1} [(1 - \omega)D + \omega U] x^{(k-1)} + \omega (D - \omega L)^{-1} b$$

Matrizes do sistema

$$\begin{bmatrix} 4 & 3 & 0 \\ 3 & 4 & -1 \\ 0 & -1 & 4 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 24 \\ 30 \\ -24 \end{bmatrix} \implies D = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix} \qquad L = \begin{bmatrix} 0 & 0 & 0 \\ -3 & 0 & 0 \\ 0 & +1 & 0 \end{bmatrix} \qquad U = \begin{bmatrix} 0 & -3 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$D = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

$$L = \begin{bmatrix} 0 & 0 & 0 \\ -3 & 0 & 0 \\ 0 & +1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 0 & -3 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Portanto

Portanto
$$T = \begin{bmatrix} 0 & -0.75 & 0 \\ 0 & 0.5625 & 0.25 \\ 0 & 0.1406 & 0.0625 \end{bmatrix} \quad \rho(T_g) = 0.625$$

$$\rho(T_g) = 0.625$$

$$I_g = (D-L) U$$

SOR:

$$T = \begin{bmatrix} -0.25 & -0.9375 & 0\\ 0.2344 & 0.6289 & 0.3125\\ 0.0732 & 0.1965 & -0.1523 \end{bmatrix}$$

$$T_{\omega} = (D - \omega L)^{-1} [(1 - \omega)D + \omega U]$$

$$\rho(T_{\omega}) = 0.25$$

Resultados:

➤ Usando Gauss-Seidel

$$x^{(k)} = (D-L)^{-1}Ux^{(k-1)} + (D-L)^{-1}b$$

k	0	1	2	3	• • •	7
$x_1^{(k)}$	1.0	5.2500	3.1406	3.0879	•••	3.0134
$x_2^{(k)}$	1.0	3.8125	3.8828	3.9267	• • •	3.9888
$x_3^{(k)}$	1.0	-5.0487	-5.0293	-5.0183	• • •	-5.0028

Ordem de precisão: 10^{-6} p/34 iterações

➤ Usando SOR

$$\boldsymbol{x}^{(k)} = \left(\boldsymbol{D} - \boldsymbol{\omega}\boldsymbol{L}\right)^{-1} \left[\left(1 - \boldsymbol{\omega}\right)\boldsymbol{D} + \boldsymbol{\omega}\boldsymbol{U} \right] \boldsymbol{x}^{(k-1)} + \boldsymbol{\omega} \left(\boldsymbol{D} - \boldsymbol{\omega}\boldsymbol{L}\right)^{-1}\boldsymbol{b}$$

k	0	1	2	3	•••	7
$x_1^{(k)}$	1.0	6.3125	2.6223	3.1333	•••	3.00005
$x_2^{(k)}$	1.0	3.5195	3.9585	4.0103	•••	4.00026
$x_3^{(k)}$	1.0	-6.6501	-4.6004	-5.0967	•••	-5.0003

Ordem de precisão: 10^{-6} p/14 iterações

Aplicação para matrizes tri-diagonais

> Se A for uma matriz tri-diagonal, então $\rho(T_g) = \left[\rho(T_i)\right]^2 < 1$, e a escolha ótima de ω para o método SOR é:

$$\omega = \frac{2}{1 + \sqrt{1 - \left[\rho(T_j)\right]^2}}$$

$$\rho(T_{\omega}) = \omega - 1$$

Comentários

- ➤ Métodos de sub-relaxação 0 < ω < 1</p>
 - ⇒ Usados para se obter convergência em alguns sistemas que não são convergentes pelo método de Gauss-Seidel.
- ➤ Métodos de sobre-relaxação 1 < ω</p>
 - Usados para acelerar a convergência em sistemas que são convergentes pelo método de Gauss-Seidel.

Exercícios Sugeridos

1. Find the first two iterations of the SOR method with $\omega = 1.1$ for the following linear systems, using $\mathbf{x}^{(0)} = \mathbf{0}$:

(a)
$$3x_1 - x_2 + x_3 = 1$$
, (b) $10x_1 - x_2 = 9$, $3x_1 + 6x_2 + 2x_3 = 0$, $3x_1 + 3x_2 + 7x_3 = 4$. (b) $10x_1 - x_2 = 9$, $-x_1 + 10x_2 - 2x_3 = 7$, $-2x_2 + 10x_3 = 6$.

2. Use the SOR method with $\omega = 1.2$ to solve the linear systems in Exercise 1 with a tolerance $TOL = 10^{-3}$ in the l_{∞} norm.

Aspectos gerais

- ➤ O método gradiente conjugado (GC) foi originalmente desenvolvido em 1952, por Hestenes e Stiefel, como um método direto, mas apresentou desempenho inferior ao método da eliminação gaussiana
- ➤ Posteriormente, verificou-se que o GC é muito útil para sistemas de grande porte e esparsos, que surgem na resolução de problemas de valores de contorno descritos por equações diferenciais ordinárias e na resolução de equações diferenciais parciais
- O método é aplicável para sistemas com matriz de coeficientes simétrica e positiva definida

□ Representação de produto interno

> Utiliza-se a seguinte representação para produto interno de vetores

$$\langle x, y \rangle = x^t y$$

Propriedades do produto interno

 \triangleright Para quaisquer vetores $x, y \in z$ e qualquer número real α , tem-se

(i)
$$\langle x, y \rangle = \langle y, x \rangle$$

(ii)
$$\langle \alpha x, y \rangle = \langle x, \alpha y \rangle = \alpha \langle x, y \rangle$$

(iii)
$$\langle x+z,y\rangle = \langle x,y\rangle + \langle z,y\rangle$$

(iv)
$$\langle x, x \rangle \ge 0$$

(v)
$$\langle x, x \rangle = 0$$
 se e somente se $x = 0$

- Outras propriedades envolvendo o produto interno
 - > Para A positiva definida, tem-se

$$\langle x, Ax \rangle = x^t Ax > 0$$
, se $x \neq 0$

> Para A positiva definida e simétrica, tem-se

$$x^{t}Ay = x^{t}A^{t}y = (Ax)^{t}y \qquad \Longrightarrow \qquad \langle x, Ay \rangle = \langle Ax, y \rangle$$

$$\langle x, Ay \rangle = \langle Ax, y \rangle$$

Formulação básica

 \triangleright Para $A_{(n \times n)}$ simétrica e positiva definida, tem-se

$$Ax = b \Leftrightarrow \min g(x) = \langle x, Ax \rangle - 2\langle x, b \rangle$$
 \iff $\min g(x) = x^t Ax - 2x^t b$

- □ Ilustração para A_(2×2)
 - ightharpoonup Função $g(x) = g(x_1, x_2)$

$$g(x) = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \cdot \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - 2\begin{bmatrix} x_1 & x_2 \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

$$g(x) = a_{11}x_1^2 + a_{12}x_1x_2 + a_{21}x_1x_2 + a_{22}x_2^2 - 2x_1b_1 - 2x_2b_2$$

- □ Ilustração para $A_{(2\times2)}$ (cont.)
 - \triangleright Cálculo do gradiente de $g(x), \nabla g(x)$

$$g(x) = a_{11}x_1^2 + a_{12}x_1x_2 + a_{21}x_1x_2 + a_{22}x_2^2 - 2x_1b_1 - 2x_2b_2$$

$$\nabla g(x) = \begin{bmatrix} \frac{\partial g(x)}{\partial x_1} \\ \frac{\partial g(x)}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 2a_{11}x_1 + (a_{12} + a_{21})x_2 - 2b_1 \\ (a_{12} + a_{21})x_1 + 2a_{22}x_2 - 2b_2 \end{bmatrix}$$

 \triangleright Portanto, para A simétrica, $a_{12} = a_{21}$, tem-se

$$\nabla g(x) = 2(Ax - b) = -2r$$

é o vetor resíduo

Note que $(x_1^*, x_2^*)^t \in \nabla g(x) = 0$ é a solução do sistema Ax = b, sendo o resultado válido também para $A(n \times n)$.

Princípio geral

- \triangleright Escolher uma aproximação inicial $x^{(0)}$
- \triangleright Escolher uma direção em que g(x) diminui
- \triangleright Escolher um passo t tal que $g'(x) < g(x^{(0)})$

- ightharpoonup Note que t_k é um escalar que define a distância do deslocamento na direção $v^{(k)}$
- ightharpoonup A direção $-\nabla g(x)$ é a direção de maior decréscimo de g(x), neste caso equivalente a direção do vetor de resíduos r
- \blacktriangleright No método GC toma-se como primeira direção de busca a direção do vetor de resíduos, calculado a partir de uma aproximação inicial $x^{(0)}$

$$v^{(1)} = r^{(0)} = b - Ax^{(0)}$$

Condição de minimização

ightharpoonup O vetor χ^* é uma solução para o sistema linear $A\chi = b$, A positiva definida, se e somente se χ^* minimiza

$$g(x) = \langle x, Ax \rangle - 2\langle x, b \rangle$$

Para $x^{(k-1)}$ e $v^{(k)} \neq 0; k = 1,2,...$ a função $g(x^{(k-1)} + t_k v^{(k)})$ tem seu mínimo quando

$$t_k = \left\langle v^{(k)}, b - Ax^{(k-1)} \right\rangle / \left\langle v^{(k)}, Av^{(k)} \right\rangle$$

Note que t_k define um mínimo na direção $v^{(k)}$, sendo o mínimo de g(x) obtido com a repetição do processo em novas direções, ortogonais em relação a matriz A

Sumário de Fórmulas

- Resíduo e direção inicial: $r^{(0)} = b Ax^{(0)}$ e $v^{(1)} = r^{(0)}$
- Fórmulas do processo iterativo (para k = 1, 2, ..., n)

$$t_k = \frac{\left\langle r^{(k-1)}, r^{(k-1)} \right\rangle}{\left\langle v^{(k)}, Av^{(k)} \right\rangle}$$
 mínimo na direção $v^{(k)}$

$$x^{(k)} = x^{(k-1)} + t_k v^{(k)}$$

 $x^{(k)} = x^{(k-1)} + t_k v^{(k)}$ nova aproximação para x^*

$$r^{(k)} = r^{(k-1)} - t_k A v^{(k)}$$

 $r^{(k)} = r^{(k-1)} - t_k A v^{(k)}$ resíduo atualizado. Se $|r^{(k)}| < \varepsilon$, pare. Faca $x^{(*)} = x^{(k)}$

$$S_k = \frac{\left\langle r^{(k)}, r^{(k)} \right\rangle}{\left\langle r^{(k-1)}, r^{(k-1)} \right\rangle}$$

$$v^{(k+1)} = r^{(k)} + s_k v^{(k)}$$

direção conjugada
$$\langle v^{(k+1)}, Av^{(k)} \rangle = 0$$

Aspectos gerais

- ➢ Se a matriz A for mal-condicionada, o método gradiente conjugado (GC) torna-se altamente suscetível aos erros de arredondamento
- \gt O método GC é geralmente aplicado como um método iterativo para sistemas bem condicionados e, nestes casos, obtém-se uma aproximação aceitável para a solução em cerca de \sqrt{n} passos
- ➤ A aplicação do método GC a um sistema melhor condicionado é feita usando uma matriz *C* não-singular, de pré-condicionamento, tal que

$$\tilde{A} = C^{-1}A(C^{-1})^t$$

Assim, aplica-se o método GC ao sistema

$$\widetilde{A}\widetilde{x} = \widetilde{b}$$
 , onde: $\widetilde{x} = C^t x$ e $\widetilde{b} = C^{-1}b$

ightharpoonup A solução é obtida por $x = C^{-t}\tilde{x}$

Sumário de Fórmulas nas variáveis originais

- > Resíduo e direção inicial: $r^{(0)} = b Ax^{(0)}$, $w^{(0)} = C^{-1}r^{(0)}$, $v^{(1)} = C^{-t}w^{(0)}$
- Fórmulas do processo iterativo (para k = 1, 2, ..., n)

$$\widetilde{t_k} = \frac{\left\langle w^{(k-1)}, w^{(k-1)} \right\rangle}{\left\langle v^{(k)}, Av^{(k)} \right\rangle} \qquad \qquad \qquad \text{mínimo na direção } v^{(k)}$$

$$x^{(k)} = x^{(k-1)} + \widetilde{t_k} v^{(k)}$$

 $x^{(k)} = x^{(k-1)} + \widetilde{t}_k v^{(k)}$ nova aproximação para x^*

$$r^{(k)} = r^{(k-1)} - \widetilde{t}_k A v^{(k)}$$

 $r^{(k)} = r^{(k-1)} - \widetilde{t_k} A v^{(k)}$ resíduo atualizado. Se $||r^{(k)}|| < \varepsilon$, pare. Faça $x^{(*)} = x^{(k)}$

$$w^{(k)} = C^{-1} r^{(k)}$$

$$\widetilde{S}_{k} = \frac{\left\langle w^{(k)}, w^{(k)} \right\rangle}{\left\langle w^{(k-1)}, w^{(k-1)} \right\rangle}$$

$$v^{(k+1)} = C^{-t} w^{(k)} + \widetilde{s}_k v^{(k)}$$

Exemplo

> Considere o sistema:

$$\begin{bmatrix} 4 & 3 & 0 \\ 3 & 4 & -1 \\ 0 & -1 & 4 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 24 \\ 30 \\ -24 \end{bmatrix}$$

cuja solucão é

$$x = \begin{bmatrix} 3 \\ 4 \\ -5 \end{bmatrix}$$

- > Considere ainda $C = C^{-1} = I$ e $x^{(0)} = (0,0,0)^t$.
- > Então, obteve-se o seguinte resultado

Lembre-se que foram necessárias 34 e 14 iterações para resolver o mesmo sistema por G-S e SOR, respectivamente.

Comentários

- > O método GC pré-condicionado é frequentemente usado na resolução de sistemas lineares de grande porte e matrizes esparsas
- > Esses sistemas são comuns em problemas de valores de contorno descritos por equações diferenciais ordinárias
- Quanto maior a dimensão do sistema maiores são os benefícios, em geral, da opção pelo método GC, visto ser significativamente reduzido o número de interações necessárias, comparando-se a outros métodos
- ➤ É comum o uso da matriz de pré-condicionamento C aproximadamente igual a matriz L da fatoração de Choleski $LL^t = A$
- ➤ Geralmente, os elementos numericamente pequenos de A são ignorados no cálculo da matriz de pré-condicionamento C = L e, assim, denominada de fatoração incompleta de Choleski.

Exemplo de aplicação

> Considere o sistema linear:

$$\begin{bmatrix} 0.2 & 0.1 & 1 & 1 & 0 \\ 0.1 & 4 & -1 & 1 & -1 \\ 1 & -1 & 60 & 0 & -2 \\ 1 & 1 & 0 & 8 & 4 \\ 0 & -1 & -2 & 4 & 700 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \end{bmatrix}$$

cuja solucão é:

$$x^* = \begin{bmatrix} 7.85971307100 \\ 0.42292640820 \\ -0.07359223906 \\ -0.54064301640 \\ 0.01062616286 \end{bmatrix}$$

- Características da matriz A
 - √ simétrica
 - √ positiva definida
 - ✓ mal-condicionada $(\kappa_{\infty}(A) = 1396.71)$

■ Exemplo de aplicação (cont.)

> Comparação do desempenho de métodos

Method	Number	$\mathbf{x}^{(k)}$	$\ \mathbf{x}^* - \mathbf{x}^{(k)}\ _{\infty}$
	of Iterations		
Jacobi	49	(7.86277141, 0.42320802, -0.07348669,	0.00305834
		$-0.53975964, 0.01062847)^t$	
Gauss-Seidel	15	(7.83525748, 0.42257868, -0.07319124,	0.02445559
		$-0.53753055, 0.01060903)^t$	
$SOR(\omega = 1.25)$	7	(7.85152706, 0.42277371, -0.07348303,	0.00818607
		$-0.53978369, 0.01062286)^t$	
Conjugate Gradient	5	(7.85341523, 0.42298677, -0.07347963,	0.00629785
		$-0.53987920, 0.008628916)^t$	
Conjugate Gradient	4	(7.85968827, 0.42288329, -0.07359878,	0.00009312
(Preconditioned)		$-0.54063200, 0.01064344)^t$	

 $C = D^{1/2}$

Maior precisão e menor número de iterações

Exercícios Sugeridos

The linear system

$$x_1 + \frac{1}{2}x_2 = \frac{5}{21},$$
$$\frac{1}{2}x_1 + \frac{1}{3}x_2 = \frac{11}{84}$$

has solution $(x_1, x_2)^t = (1/6, 1/7)^t$.

- (a) Solve the linear system using Gaussian elimination with two-digit rounding arithmetic.
- (b) Solve the linear system using the conjugate gradient method $(C = C^{-1} = I)$ with two-digit rounding arithmetic.
- (c) Which method gives the better answer?
- (d) Choose $C^{-1} = D^{-1/2}$. Does this choice improve the conjugate gradient method?

Resolução de SL por métodos iterativos

Comentários Finais

- > Os métodos de Jacobi e Gauss-Seidel exigem a especificação de uma aproximação inicial $x^{(0)}$ e geram uma sequência de vetores $x^{(k)}$ usando a equação da forma $x^{(k)} = Tx^{(k-1)} + c$
- ightharpoonup A condição suficiente para a convergência desses métodos é que o raio espectral da matriz de iteração ho(T) < 1, e quanto menor for o raio espectral mais rápida será a convergência.
- > O método SOR é uma alternativa para acelerar a convergência do método de Gauss-Seidel usando-se um fator de escala $1 < \omega < 2$.
- ➤ O método gradiente conjugado é aplicável a sistemas com matrizes simétricas, positivas definidas, esparsas e de grande porte, que surgem normalmente em problemas de valores de contorno e equações diferenciais parciais.
- Na maioria das aplicações do método GC deve ser utilizada uma matriz de pré-condicionamento