

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 7

CERTIFICATION TEST REPORT

FOR

AN ELECTRONIC READING DEVICE

MODEL NUMBER: BNRV200

FCC ID: XHHBNRV200-A IC: 8961A-BNRV200A

REPORT NUMBER: 10U13404-2, Revision A

ISSUE DATE: OCTOBER 28, 2010

Prepared for

BARNES&NOBLE.COM 76 NINTH AVE., 9TH FLOOR NEW YORK, NY 10011

Prepared by

COMPLIANCE CERTIFICATION SERVICES (UL CCS)
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

REPORT NO: 10U13404-2A FCC ID: XHHBNRV200-A

Revision History

DATE: OCTOBER 28, 2010

IC: 8961A-BNRV200A

Rev.	Issue Date	Revisions	Revised By
	10/13/10	Initial Issue	T. Chan
A	10/28/10	Updated client company name and address	A. Zaffar

TABLE OF CONTENTS

1.	ATTESTATION OF TEST RESULTS	5
2.	TEST METHODOLOGY	6
3.	FACILITIES AND ACCREDITATION	6
4.	CALIBRATION AND UNCERTAINTY	6
4	4.1. MEASURING INSTRUMENT CALIBRATION	6
4	4.2. SAMPLE CALCULATION	6
4	4.3. MEASUREMENT UNCERTAINTY	6
5.	EQUIPMENT UNDER TEST	7
5	5.1. DESCRIPTION OF EUT	7
5	5.2. MAXIMUM OUTPUT POWER	7
5	5.3. DESCRIPTION OF AVAILABLE ANTENNAS	7
5	5.4. SOFTWARE AND FIRMWARE	
	5.5. WORST-CASE CONFIGURATION AND MODE	
	5.6. DESCRIPTION OF TEST SETUP	
6.	TEST AND MEASUREMENT EQUIPMENT	10
7.	ANTENNA PORT TEST RESULTS	11
7	7.1. 802.11b MODE IN THE 2.4 GHz BAND	
	7.1.1. 6 dB BANDWIDTH	
	7.1.2. 99% BANDWIDTH	
	7.1.4. AVERAGE POWER	20
	7.1.5. POWER SPECTRAL DENSITY	
	7.1.6. CONDUCTED SPURIOUS EMISSIONS	
7	7.2. 802.11g MODE IN THE 2.4 GHz BAND	
	7.2.2. 99% BANDWIDTH	
	7.2.3. OUTPUT POWER	
	7.2.4. AVERAGE POWER	
	7.2.5. POWER SPECTRAL DENSITY	
_	7.2.6. CONDUCTED SPURIOUS EMISSIONS	
7	7.3. 802.11 HT20 SISO MODE IN THE 2.4 GHz BAND 7.3.1. 6 dB BANDWIDTH	
	7.3.2. 99% BANDWIDTH	
	7.3.3. OUTPUT POWER	50
	7.3.4. AVERAGE POWER	
	7.3.5. POWER SPECTRAL DENSITY	
	7.3.6. CONDUCTED SPURIOUS EMISSIONS	55
8.		59
	Page 3 of 91	

	0 1	/ //	AITC AN	ID PROCED	IIDE									50
	0.1.	LIIV	III S AN	DPROCED	UKE	•••••			• • • • • • • • • • • • • • • • • • • •					J9
	8.2.	TR.	<i>ANSMI</i> 7	TTER ABOV	E 1 GHz									60
	8.2	2.1.	TRAN	SMITTER A	BOVE 1	GHz FO	R 802.	11b N	10DE II	N TH	E 2.4 (GHz E	BAND	60
	8.2	2.2.	TRAN	SMITTER A	BOVE 1	GHz FO	R 802.	11g N	10DE II	N TH	E 2.4 (GHz E	BAND	66
	8.2	2.3.	TRAN	SMITTER A	BOVE 1	GHz FO	R 802.	11 H	20 SIS	ОМО	DDE IN	N THE	2.4 G	Hz
	BA	AND	71											
	8.3.	RE	CEIVER	R ABOVE 1 (ЭHz									76
	0.4													
	8.4.	WC	JRST-C	ASE BELOV	V1 GHZ.									//
9.	AC	POV	VER LIN	IE CONDUC	TED EM	IISSION	S							80
10		MAXI	MUM P	ERMISSIBL	E EXPO	SURE								84
11		SETU	IP PHO	TOS										87

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: BARNES&NOBLE.COM

76 NINTH AVE., 9TH FLOOR

NEW YORK, NY 10011

EUT DESCRIPTION: AN ELECTRONIC READING DEVICE

MODEL: BNRV200

SERIAL NUMBER: BDAA4100B308E0A

DATE TESTED: SEPTEMBER 30 - OCTOBER 12, 2010

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C Pass

INDUSTRY CANADA RSS-210 Issue 7 Annex 8 Pass

INDUSTRY CANADA RSS-GEN Issue 2 Pass

Compliance Certification Services (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By: Tested By:

meny 3r mercin

THU CHAN MENGISTU MEKURIA ENGINEERING MANAGER EMC ENGINEER UL CCS UL CCS

Page 5 of 91

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 2, and RSS-210 Issue 7.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is an eBook reader with WiFi and USB ports device, without WWAN. The radio module is manufactured by Marvel.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2412 - 2462	802.11b	19.20	83.18
2412 - 2462	802.11g	27.04	505.82
2412 - 2462	HT20 SISO 11n	27.08	510.50

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a chip antenna, with a maximum gain of 1.62 dBi.

5.4. SOFTWARE AND FIRMWARE

The EUT driver software installed during testing was Usbnet driver and bumin1 tool v0.12

The test utility software used during testing was telnet 192.168.0.17.

5.5. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power.

802.11b Mode (20 MHz BW operation): 1 Mbps, CCK.

802.11g Mode (20 MHz BW operation): 6 Mbps, OFDM.

802.11HT20 SISO Mode (20 MHz BW operation): MCS_0, OFDM.

Since the EUT is a portable device, the X, Y and Z orientations and the worst orientation among them with AC adapter and USB cable attached to the laptop is investigated. After the investigation the worst case was found to be Z orientation with USB connection to the support laptop.

For radiated emissions below 1 GHz the worst-case configuration is determined to be the mode and channel with the highest output power.

REPORT NO: 10U13404-2A FCC ID: XHHBNRV200-A

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST					
Description	Manufacturer	Model	Serial Number	FCC ID	
Laptop	HP	EliteBook 2530p	CND9051NRG	Doc	
AC Adapter	HP		WACLN0CLLX56XS	Doc	
AC Adapter	Nook	NA	NA	NA	
Headset	N/A	NA	NA	NA	

DATE: OCTOBER 28, 2010

IC: 8961A-BNRV200A

I/O CABLES

	I/O CABLE LIST							
Cable	Port	# of	Connector	Cable	Cable	Remarks		
No.		Identica	Туре	Туре	Length			
		Ports						
1	AC	1	US 115V	Un-shielded	2.0m	NA		
2	DC	1	DC	Un-shielded	2.0m	NA		
3	USB	1	USB	Un-shielded	1.5m	NA		
4	Jack	1	Headset	Un-shielded	2.0m	NA		

TEST SETUP

The EUT is installed in a host laptop computer during the tests. Test software exercised the radio card.

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

DATE: OCTOBER 28, 2010

IC: 8961A-BNRV200A

TEST EQUIPMENT LIST					
Description	Manufacturer	Model	Asset	Cal Due	
Peak Power Sensor	Boonton	57006	CO1203	02/24/11	
Peak Power Meter	Boonton	4541	CO1 186	03/01/11	
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	CO0986	05/05/11	
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	CO1 178	08/30/11	
EMI Test Receiver, 30 MHz	R&S	ESHS 20	N02396	5/6/2011	
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-BNC	N02481	11/05/10	
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	CO1016	07/12/11	
Antenna, Horn, 18 GHz	EMCO	3115	C00783	06/29/11	
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C00749	07/14/11	
Preamplifier, 26.5 GHz	Agilent / HP	8449B	CO1063	07/14/11	

7. ANTENNA PORT TEST RESULTS

7.1. 802.11b MODE IN THE 2.4 GHz BAND

7.1.1. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

DATE: OCTOBER 28, 2010

IC: 8961A-BNRV200A

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2412	9.00	0.5
Middle	2437	9.17	0.5
High	2462	9.08	0.5

6 dB BANDWIDTH

7.1.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2412	14.018
Middle	2437	13.316
High	2462	13.483

99% BANDWIDTH

7.1.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a power meter.

Channel	Frequency	Power meter	Attenuator and	Output	Limit	Margin
		Reading	Cable Offset	Power		
	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)
Low	2412	8.17	11.00	19.17	30	-10.83
Middle	2437	8.16	11.00	19.16	30	-10.84
High	2462	8.20	11.00	19.20	30	-10.80

7.1.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.0 dB (including 10 dB pad and 1.0 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
Low	2412	16.07
Middle	2437	16.09
High	2462	16.09

7.1.5. POWER SPECTRAL DENSITY

LIMITS

FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-6.16	8	-14.16
Middle	2437	-5.07	8	-13.07
High	2462	-4.79	8	-12.79

POWER SPECTRAL DENSITY

REPORT NO: 10U13404-2A FCC ID: XHHBNRV200-A

7.1.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

DATE: OCTOBER 28, 2010

IC: 8961A-BNRV200A

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL

SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

7.2. 802.11g MODE IN THE 2.4 GHz BAND

7.2.1. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2412	15.17	0.5
Middle	2437	15.58	0.5
High	2462	15.25	0.5

6dB BANDWIDTH

7.2.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

Channel	Frequency	99% Bandwidth	
	(MHz)	(MHz)	
Low	2412	16.1081	
Middle	2437	16.3716	
High	2462	16.0047	

99% BANDWIDTH

7.2.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a power meter.

Channel	Frequency	Power Meter	Attenuator and	Output	Limit	Margin
	(MHz)	PK Reading (dBm)	Cable Offset (dB)	Power (dBm)	(dBm)	(dB)
Low	2412	15.69	11.00	26.69	30	-3.31
Middle	2437	15.90	11.00	26.90	30	-3.10
High	2462	16.04	11.00	27.04	30	-2.96

7.2.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.0 dB (including 10 dB pad and .1.0 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power	
	(MHz)	(dBm)	
Low	2412	16.17	
Middle	2437	16.22	
High	2462	16.18	

7.2.5. POWER SPECTRAL DENSITY

LIMITS

FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

RESULTS

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-14.82	8	-22.82
Middle	2437	-14.88	8	-22.88
High	2462	-15.59	8	-23.59

POWER SPECTRAL DENSITY

REPORT NO: 10U13404-2A FCC ID: XHHBNRV200-A

7.2.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

DATE: OCTOBER 28, 2010

IC: 8961A-BNRV200A

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL

SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

REPORT NO: 10U13404-2A DATE: OCTOBER 28, 2010 FCC ID: XHHBNRV200-A IC: 8961A-BNRV200A

7.3. 802.11 HT20 SISO MODE IN THE 2.4 GHz BAND

7.3.1. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

RESULTS

Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2412	15.17	0.5
Middle	2437	15.08	0.5
High	2462	15.25	0.5

6dB BANDWIDTH

7.3.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2412	17.2792
Middle	2437	17.5500
High	2462	17.5900

99% BANDWIDTH

7.3.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

Channel	Frequency	Power Meter	Attenuator and	Output	Limit	Margin
		PK Reading	Cable Offset	Power		
	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)
Low	2412	15.75	11.00	26.75	30	-3.25
Middle	2437	16.02	11.00	27.02	30	-2.98
High	2462	16.08	11.00	27.08	30	-2.92

7.3.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.0 dB (including 10 dB pad and .1.0 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power	
	(MHz)	(dBm)	
Low	2412	16.13	
Middle	2437	16.18	
High 2462		16.19	

7.3.5. POWER SPECTRAL DENSITY

LIMITS

FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

RESULTS

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-7.08	8	-15.08
Middle	2437	-6.86	8	-14.86
High	2462	-7.20	8	-15.20

POWER SPECTRAL DENSITY

REPORT NO: 10U13404-2A FCC ID: XHHBNRV200-A

7.3.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

DATE: OCTOBER 28, 2010

IC: 8961A-BNRV200A

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL

SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each appplicable band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

8.2. TRANSMITTER ABOVE 1 GHz

8.2.1. TRANSMITTER ABOVE 1 GHz FOR 802.11b MODE IN THE 2.4 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

DATE: OCTOBER 28, 2010

IC: 8961A-BNRV200A

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

HARMONICS AND SPURIOUS EMISSIONS

8.2.2. TRANSMITTER ABOVE 1 GHz FOR 802.11g MODE IN THE 2.4 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

HARMONICS AND SPURIOUS EMISSIONS

8.2.3. TRANSMITTER ABOVE 1 GHz FOR 802.11 HT20 SISO MODE IN THE 2.4 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

HARMONICS AND SPURIOUS EMISSIONS

8.3. RECEIVER ABOVE 1 GHz

Note:

8.4. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

HORIZONTAL AND VERTICAL DATA

30-1000MHz Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: MENGISTU MEKURIA

Date: 10/03/10 Project #: 10U13404

Company: BARNES & NOBLE
Test Target: FCC CLASS B
Mode Oper: TX, WORST-CASE

f Measurement Frequency Amp Preamp Gain Margin Margin vs. Limit

Distance to Antenna D Corr Distance Correct to 3 meters
Read Analyzer Reading Filter Filter Insert Loss
AF Antenna Factor Corr. Calculated Field Strength
CL Cable Loss Limit Field Strength Limit

f	Dist	Read	AF	CL	Amp	D Corr	Pad	Corr.	Limit	Margin	Ant Pol	Det	Notes
MHz	(m)	dBuV	dB/m	dВ	dВ	dВ	dВ	dBuV/m	dBuV/m	dВ	V/H	P/A/QP	
32.64	3.0	40.8	19.1	0.5	29.7	0.0	0.0	30.8	40.0	-9.2	Н	P	
114.483	3.0	48.0	12.7	1.0	29.5	0.0	0.0	32.1	43.5	-11.4	H	P	
727.949	3.0	44.9	19.7	2.7	29.4	0.0	0.0	37.8	46.0	-8.2	н	P	
780.031	3.0	46.3	20.7	2.8	29.2	0.0	0.0	40.5	46.0	-5.5	H	P	
831.993	3.0	40.8	21.2	2.9	29.0	0.0	0.0	35.9	46.0	-10.1	Н	P	
32.4	3.0	49.1	19.2	0.5	29.7	0.0	0.0	39.1	40.0	-0.9	v	P	
32.479	3.0	46.7	19.2	0.5	29.7	0.0	0.0	36.7	40.0	-3.3	V	QP	
47.881	3.0	57.6	9.3	0.6	29.6	0.0	0.0	37.9	40.0	-2.1	V	P	
47.975	3.0	53.7	9.2	0.6	29.6	0.0	0.0	33.9	40.0	-6.1	V	QP	
109.203	3.0	49.5	11.8	0.9	29.5	0.0	0.0	32.7	43.5	-10.8	V	P	
727.949	3.0	39.5	19.7	2.7	29.4	0.0	0.0	32.5	46.0	-13.5	v	P	
780.031	3.0	40.2	20.7	2.8	29.2	0.0	0.0	34.4	46.0	-11.6	v	P	
831.993	3.0	35.1	21.2	2.9	29.0	0.0	0.0	30.1	46.0	-15.9	v	P	
									•		•		
		······			• :	1		1	•		•		•

Rev. 1.27.09

Note: No other emissions were detected above the system noise floor.

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted Limit (dBuV)			
	Quasi-peak	Average		
0.15-0.5	66 to 56 °	56 to 46 *		
0.5-5	56	46		
5-30	60	50		

DATE: OCTOBER 28, 2010

IC: 8961A-BNRV200A

TEST PROCEDURE

ANSI C63.4

RESULTS

Decreases with the logarithm of the frequency.

REPORT NO: 10U13404-2A DATE: OCTOBER 28, 2010 FCC ID: XHHBNRV200-A IC: 8961A-BNRV200A

6 WORST EMISSIONS

	CONDUCTED EMISSIONS DATA (115VAC 60Hz)								
Freq.	. Reading				Limit	EN_B	Margin		Remark
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV(dB)	L1/L2
0.21	49.83		31.65	0.00	63.41	53.41	-13.58	-21.76	L1
0.64	45.12		21.38	0.00	56.00	46.00	-10.88	-24.62	L1
0.86	45.08		23.15	0.00	56.00	46.00	-10.92	-22.85	L1
0.42	47.72		29.38	0.00	57.37	47.37	-9.65	-17.99	L2
0.53	47.30		27.14	0.00	56.00	46.00	-8.70	-18.86	L2
0.74	46.41		25.23	0.00	56.00	46.00	-9.59	-20.77	L2
6 Worst l	Data								

LINE 1 RESULTS

DATE: OCTOBER 28, 2010

IC: 8961A-BNRV200A

LINE 2 RESULTS

10. MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

DATE: OCTOBER 28, 2010

IC: 8961A-BNRV200A

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	nits for Occupational	/Controlled Exposu	res	
0.3–3.0 3.0–30 30–300 300–1500	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300	6 6 6
1500–100,000			1/300	6
(B) Limits	for General Populati	on/Uncontrolled Exp	oosure	
0.3–1.34	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

f = frequency in MHz

* = Plane-wave equivalent power density

NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposured or the potential for exposure or can part exercise control over their exposure.

exposure or can not exercise control over their exposure.

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

DATE: OCTOBER 28, 2010

IC: 8961A-BNRV200A

Table 5
Exposure Limits for Persons Not Classed As RF and Microwave Exposed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003–1	280	2.19		6
1–10	280/f	2.19/ <i>f</i>		6
10–30	28	2.19/f		6
30–300	28	0.073	2*	6
300–1 500	1.585 $f^{0.5}$	0.0042f ^{0.5}	f/150	6
1 500–15 000	61.4	0.163	10	6
15 000–150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000–300 000	0.158f ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

^{*} Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

2. A power density of 10 W/m² is equivalent to 1 mW/cm².

 A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG). REPORT NO: 10U13404-2A FCC ID: XHHBNRV200-A

DATE: OCTOBER 28, 2010

IC: 8961A-BNRV200A

EQUATIONS

Power density is given by:

$$S = EIRP / (4 * Pi * D^2)$$

where

S = Power density in W/m^2

EIRP = Equivalent Isotropic Radiated Power in W

D = Separation distance in m

Power density in units of W/m² is converted to units of mWc/m² by dividing by 10.

Distance is given by:

$$D = SQRT (EIRP / (4 * Pi * S))$$

where

D = Separation distance in m

EIRP = Equivalent Isotropic Radiated Power in W

S = Power density in W/m^2

For multiple colocated transmitters operating simultaneously in frequency bands where the limit is identical, the total power density is calculated using the total EIRP obtained by summing the Power * Gain product (in linear units) of each transmitter.

Total EIRP =
$$(P1 * G1) + (P2 * G2) + ... + (Pn * Pn)$$

where

Px = Power of transmitter x

Gx = Numeric gain of antenna x

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

LIMITS

From FCC §1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm²

From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m²

RESULTS

Band	Mode	Separation	Output	Antenna	IC Power	FCC Power
		Distance	Power	Gain	Density	Density
		(m)	(dBm)	(dBi)	(W/m^2)	(mW/cm^2)