ЗАДАЧИ, ДАВАНИ НА ПИСМЕН ИЗПИТ ПО АНАЛИТИЧНА ГЕОМЕТРИЯ

I част: Вектори.

1 зад. Дадени са линейно независимите вектори
$$\vec{a}$$
 и \vec{b} , като $|\vec{a}| = |\vec{b}| = 1$ и $\sphericalangle(\vec{a}, \vec{b}) = \frac{\pi}{3}$.

Нека
$$\overrightarrow{OA} = \overrightarrow{a} \times \overrightarrow{b}, \overrightarrow{OB} = \overrightarrow{b} \times (\overrightarrow{a} \times \overrightarrow{b}), \overrightarrow{OC} = 2\overrightarrow{a}$$
.

- а) Да се докаже, че векторите \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} са линейно независими;
- b) Ако т.H е петата на височината от върха O към страната BC на триъгълник BOC, да се изрази вектора \overrightarrow{OH} чрез \overrightarrow{a} и \overrightarrow{b} .
- с) Нека т.M е медицентърът на триъгълник ABC. Да се намери дължината на вектора \overrightarrow{OM} .

2 зад. Дадени са линейно независимите вектори
$$\vec{a}$$
 и \vec{b} , като $|\vec{a}| = 1, |\vec{b}| = 2$, $\sphericalangle(\vec{a}, \vec{b}) = \frac{\pi}{3}$.

Нека
$$\overrightarrow{OA} = \overrightarrow{b}, \overrightarrow{OB} = (\overrightarrow{a} \times \overrightarrow{b}) \times \overrightarrow{a}$$
.

- а) Ако точката G е медицентърът на триъгълник OAB, да се изрази вектора \overrightarrow{OG} като линейна комбинация на \vec{a} и \vec{b} . Да се намери дължината на вектора \overrightarrow{OG} .
- б) Да се намери лицето на триъгълник ОАВ.
- 3 зад. Даден е тетраедър OABC, за който $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$ и $\overrightarrow{OC} = \vec{c}$. Точките A_1 и C_1 са медицентровете съответно на триъгълниците BOC и AOB.

Да се изразят чрез \vec{a} , \vec{b} и \vec{c} векторите $\overrightarrow{OA_1}$, $\overrightarrow{OC_1}$ и $\overrightarrow{C_1A_1}$ и да се докаже, че $\overrightarrow{C_1A_1}$ и \overrightarrow{CA} са колинеарни.

Ако $|\vec{a}| = 1, |\vec{b}| = 2, |\vec{c}| = \sqrt{2}$ и всеки два вектора сключват ъгъл, равен на $\frac{\pi}{4}$, да се намери обема на тетраедъра OABC.

- 4 зад. Дадени са линейно независимите вектори \vec{a} и \vec{b} , $|\vec{a}| = |\vec{b}| = 1$. $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{a} \times \vec{b}$, $\overrightarrow{OC} = (\vec{a} \times \vec{b}) \times \vec{a}$.
 - а) Да се докаже, че векторите $\overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC}$ са линейно независими;
 - б) Нека т.*M* е медицентър на триъгълник *ABC*. Да се намери $∢(\vec{a}, \vec{b})$, ако $\left| \overrightarrow{OM} \right| = \frac{\sqrt{6}}{6}$;
 - в) При така намерения $\sphericalangle(\vec{a}, \vec{b})$, да се пресметне обема на тетраедъра *OABC*.

5зад. Дадени са линейно независимите вектори \vec{a} и \vec{b} , $|\vec{a}| = |\vec{b}| = 1$. $\overrightarrow{OA} = \vec{a} \times \vec{b}$, $\overrightarrow{OB} = \vec{b} \times (\vec{a} \times \vec{b})$, $\overrightarrow{OC} = \vec{a}$.

- а) Да се докаже, че векторите $\overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC}$ са линейно независими;
- б) Нека т.H е пета на височината от върха O към стената ABC на тетраедъра OABC. Да се изрази вектора \overrightarrow{OH} като линейна комбинация на $\overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC}$;
- в) Ако $\sphericalangle(\vec{a},\vec{b}) = \frac{\pi}{4}$, да се пресметне обема на тетраедъра *OABC*.
- 6 зад. Дадени са линейно независимите вектори \vec{a} и \vec{b} , като $\left| \vec{a} \right| = \left| \vec{b} \right| = 1$.

Нека $\overrightarrow{OA} = \overrightarrow{a}, \overrightarrow{OB} = \overrightarrow{a} \times \overrightarrow{b}, \overrightarrow{OC} = \overrightarrow{a} + \overrightarrow{b}$. Да се определи елементарно геометричния ъгъл между векторите \overrightarrow{a} и \overrightarrow{b} , ако обема на тетраедъра OABC е равен на $\frac{1}{8}$.

II част: Уравнения на права в равнината.

1 зад. Спрямо ОКС K=Oxy в равнината са дадени т.B(-4, 3) и правите:

$$m_c$$
: $4x - y + 6 = 0$ и h_c : $3x - y + 4 = 0$.

Да се намерят координатите на върховете A и C на триъгълник ABC, ако m_c е медианата, а h_c е височината при върха C на триъгълника. Да се намери лицето на триъгълник ABC.

2 зад. Спрямо ОКС K=Oxy в равнината са дадени т.B(3, 4) и правите:

$$b_c$$
: $2x + y - 5 = 0$ и h_c : $x + y - 5 = 0$.

Да се намерят координатите на върховете A и C на триъгълник ABC, ако b_c е вътрешната ъглополовяща, а h_c е височината при върха C на триъгълника. Да се намери лицето на триъгълник ABC.

3 зад. Спрямо ОКС K=Oxy са дадени точката P(-3,3) и правите:

$$a: 3x - 4y + 5 = 0$$
 и $g: 2x - y + 4 = 0$.

Светлинен лъч, успореден на правата a, се отразява от правата g и отразеният лъч минава през т.P. Намерете уравненията на правите b и b, съдържащи падащия и отразения лъчи.

- 4 зад. Спрямо ОКС K=Oxy в равнината са дадени т.B(6, 1), т.C(4, 3) и т.M(4, 1), които са съответно два от върховете и медицентъра на Δ ABC. Да се намерят: координатите на третия връх на триъгълника, лицето на триъгълника и уравнение на правата, която е успоредна на страната BC и минава през точката M.
- 5 зад. Спрямо ОКС K = Oxy са дадени правите:

$$h_1$$
: $2x - 3y + 7 = 0$, h_2 : $x + 2y - 7 = 0$ и точка $A(1, 5)$.

- а) Да се намерят уравненията на страните на триъгълник ABC, ако височините му през върховете B и C лежат съответно на правите h_1 и h_2 .
- б) Да се намерят лицето на триъгълника, координатите на центъра и дължината на радиуса на описаната около него окръжност.
- 6 зад. Спрямо ОКС K = Oxy са дадени правите:

$$h: x - 7y - 6 = 0$$
, $m: 5x - 13y - 30 = 0$ и точката $B\left(\frac{4}{3}, \frac{2}{3}\right)$.

- а) Да се намерят координатите на върховете на триъгълник ABC, ако височината и медианата му през върха C лежат съответно на правите h и m;
- б) Да се намерят координатите на центъра и дължината на радиуса на вписаната в триъгълника окръжност.
- 7 зад. Спрямо ОКС K = Oxy са дадени точките P(-5, 4) и S(-3, -1), и правата m: x + y 3 = 0.
 - а) Светлинен лъч минава през точката P и след отразяването си от правата m става успореден на ординатната ос. Намерете уравненията на правите g и g, съдържащи падащия и отразения лъчи;
 - б) Намерете координатите на върховете на триъгълник ABC, за който точката S е център на описаната окръжност, а падащият и отразения лъчи съдържат две от страните му.

III част: Уравнения на права и равнина в пространството.

1 зад. Дадени са точката
$$M(-1,1,2)$$
 и правата $a \begin{cases} x-y+1=0\\ x-z-2=0 \end{cases}$

- а) Да се намерят координатни параметрични уравнения на правата g, която е успоредна на правата a и минава през точката M;
- b) Да се намери разстоянието от точката M до правата a и координатите на точката M, ортогонално симетрична на точката M относно правата a;

- с) Да се намери уравнение на равнината α , която минава през т.M и правата α .
- 2 зад. Дадени са точките A(0,0,-1) и B(-2,-8,-3), равнината $\beta\colon 3x+4y-z+1=0$ и правата $b\begin{cases} x=3+3s\\ y=-8+1s,s\in\mathbb{R}. \ \text{Да се намерят:}\\ z=1-1s \end{cases}$
 - а) Уравнение на равнината γ , която минава през точките A и B, и е перпендикулярна на равнината β ;
 - b) Разстоянието от точката B до правата b и координатите на точката B $\dot{}$, ортогонално симетрична на точката B относно правата b.
- 3 зад. Спрямо ОКС K=Oxyz са дадени точката C(0, 0, -3), равнината α : 2x + 2y z + 1 = 0 и правите :

$$a \begin{cases} x = p \\ y = -2 + p \\ z = -1 + 2p \end{cases}, p \in \mathbb{R}, \ b \begin{cases} x + z = 0 \\ y + z - 2 = 0 \end{cases}, \quad c \begin{cases} x = 1 + 2q \\ y = -1 + 6q, q \in \mathbb{R} \end{cases}$$

- а) Да се намерят уравнения на трансверзалата t на кръстосаните прави a и b, която е успоредна на правата c;
- b) Ако т. $A = \alpha \cap \alpha$ и т. $B = b \cap \alpha$, намерете уравнения на височината h_c от върха C към страната AB на триъгълник ABC. Намерете лицето на ABC.
- 4 зад. Спрямо ОКС K=Oxyz в пространството са дадени точка P(1, 5, 0), правите

$$a: \begin{cases} x = 1 - 2q \\ y = 2 + q, \ q \in \mathbb{R} \end{cases}$$
 и $b: \begin{cases} x + y - 5 = 0 \\ 3x - 2z - 9 = 0 \end{cases}$, и равнина $\alpha: y - z - 2 = 0$.

- а) Светлинен лъч минава през точка P, отразява се от равнината α и пресича правите a и b. Да се намерят уравнения на правите съдържащи съответно падащия и отразения лъч.
- b) Нека правата a пресича равнината α в точка A, а правата b пресича равнината α в точка B. Да се намери лицето на триъгълник ABP.
- 5 зад. Спрямо ОКС K=Oxyz в пространството са дадени точките $M(1,\,5,\,0),\ B(\,5,\,0,\,3),\ A(3,\,1,\,3),$ правите $a:\begin{cases} x+z-1=0\\ 2y-z-4=0 \end{cases}$ и $b:\begin{cases} x=1+2s\\ y=4-2s\,,\,q\in\mathbb{R},\,$ и равнината $\alpha:y-z-2=0$. z=-3+3s
 - а) Да се намери трансверзала на правите a и b, минаваща през точка A.
 - b) Светлинен лъч l минава през точката M, отразява се от равнината α и отразения лъч l' минава през точката B. Да се намерят уравненията на l и l'.
- 6 зад. Спрямо ОКС K=Oxyz в пространството са дадени: точки P(3, 1, 5) и Q(-2, 12, 1),

равнина
$$\alpha$$
: $x+2y+2z-6=0$ и правите: $a: \begin{cases} x=3+s \\ y=0+s \text{ , } s \in R \text{ , } b: \begin{cases} x=2-p \\ y=3-p \text{ , } p \in R \text{ .} \end{cases} \\ z=1+3p \end{cases}$

- а) Да се намерят координатите на точки A и B краищата на оста-отсечка на кръстосаните прави a и b:
- b) Светлинен лъч l минава през т.P, отразява се от равнината α и отразения лъч l' минава през точката Q. Да се намерят кординатите на точката C, в която правите l и l' пробождат равнината α .
- с) Да се намери лицето на триъгълник АВС.