

UV Automatique

Cours 5

Marges de stabilité et performances des systèmes linéaires asservis

ASI3

Contenu

- Robustesse de la stabilité
 - Notion de robustesse de la stabilité
 - Marges de stabilité (marges de gain et de phase)
- Performances des systèmes asservis
 - Précision des systèmes asservis
 - Erreur en régime permanent liée à la consigne
 - Rejet des perturbations
 - Rapidité des systèmes asservis
 - Dilemme stabilité, rapidité, précision

Robustesse de la stabilité (1)

Introduction

- Caractéristiques des critères de Routh et de Nyquist
 - Déterminer si le système est stable, oscillant ou instable en BF
 - Déterminer les conditions limite de stabilité
 - Ne permettent pas de dire si le système stable en BF est plus ou moins proche de l'instabilité (point critique)
- Concept de marges de stabilité (système à stabilité absolue)
 - Intuitivement, la stabilité est satisfaisante si le lieu de Nyquist ou de Black du système en BO passe loin du point critique -1

Robustesse de la stabilité (2)

Marges de stabilité

Elles permettent d'estimer la proximité de la réponse fréquentielle $H_{RO}(j\omega)$ du point critique $-1 = 1^{\angle -\pi}$

lacktriangle Marge de phase m_{φ}

Soit ω_{c0} la pulsation telle que $|H_{BO}(j\omega_{c0})|=1$. La marge de phase est la différence entre $\varphi_{BO}(\omega_{c0})$ et $-\pi$

$$m_{\varphi} = \varphi_{BO}(\omega_{c0}) + \pi$$
 avec $\varphi_{BO}(\omega_{c0}) = \arg(H(j\omega_{C0}))$

Marge de gain m_g

Soit $\omega_{-\pi}$ la pulsation telle que $\arg H_{BO}(j\omega_{-\pi}) = -\pi$. La marge de gain est l'écart entre 0dB et le gain à la pulsation $\omega_{-\pi}$

$$m_g = -20\log_{10}|H_{BO}(j\omega_{-\pi})|$$
 avec $\varphi_{BO}(\omega_{-\pi}) = -\pi$

Robustesse de la stabilité (3)

Interprétation des marges de stabilité

- Un système est stable en BF si la marge de phase est positive
- La marge de gain correspond au gain supplémentaire maximum que l'on peut donner au système en BO sans risquer de le rendre instable en BF
- Plus les marges sont grandes, plus robuste est la stabilité

Remarques

- Pour une bonne stabilité, on considère satisfaisantes les valeurs minimales : $m_{\varphi} = \pi/4$ à $\pi/3$ (45° à 60°) et m_{g} =10dB à 15dB
- lacktriangle On définit aussi la marge de retard m_r comme le retard maximal admissible sans déstabiliser le système en BF

$$m_r = \frac{m_{\varphi}}{\omega_{c0}}$$

 $e^{-\tau s}$ introduit un déphasage de $-\tau \omega$

Condition de stabilité : $-\tau\omega_{c0} + \varphi_{BO}(\omega_{c0}) \ge -\pi \Rightarrow \tau_{\lim} \le \frac{m_{\varphi}}{\omega_{c0}}$

Robustesse de la stabilité (4)

Détermination des marges de stabilité

Performances des systèmes asservis

Introduction

En boucle fermée, on désire que :

- le système suive la consigne en régime établi (précision)
- le système élimine les perturbations (rejet des perturbations)
- le système ait une dynamique rapide

Précision des systèmes asservis

Considérons le schéma simplifié d'asservissement

La précision est définie à partir du signal d'erreur ε :

$$\mathcal{E}(t) = y_c(t) - y(t)$$

On s'intéresse à l'erreur en régime permanent : $\mathcal{E}_{\infty} = \lim_{t \to \infty} \mathcal{E}(t)$

Précision des systèmes asservis (1)

Sortie du système asservi

$$Y(s) = \frac{H_{BO}(s)}{1 + H_{BO}(s)} Y_c(s) + \frac{F(s)}{1 + H_{BO}(s)} D(s)$$

avec
$$H_{BO}(s) = C(s)H(s)$$

TL de l'erreur

$$E(t) = Y_c(s) - Y(s)$$

$$E(t) = Y_c(s) - \frac{H_{BO}(s)}{1 + H_{BO}(s)} Y_c(s) - \frac{F(s)}{1 + H_{BO}(s)} D(s)$$

$$E(s) = \frac{1}{1 + H_{BO}(s)} Y_c(s) - \frac{F(s)}{1 + H_{BO}(s)} D(s) \qquad H_{BO}(s) = C(s)H(s)$$

$$H_{BO}(s) = C(s)H(s)$$

Précision des systèmes asservis (2)

Erreur d'asservissement

$$E(s) = \frac{1}{1 + H_{BO}(s)} Y_c(s) - \frac{F(s)}{1 + H_{BO}(s)} D(s)$$

L'erreur est fonction de deux termes :

Un terme relatif à l'écart avec la consigne

$$E_c(s) = \frac{1}{1 + H_{RO}(s)} Y_c(s)$$

Un terme d'erreur dû à la perturbation

$$E_d(s) = -\frac{F(s)}{1 + H_{BO}(s)}D(s)$$

Le système est d'autant plus précis que l'erreur en régime permanent est proche de 0

 $\lim \mathcal{E}(t) \to 0$

Précision des systèmes asservis (3)

 \square Erreur relative à la consigne ε_c

$$\mathcal{E}_{c}(\infty) = \lim_{t \to \infty} \mathcal{E}_{c}(t) \implies \mathcal{E}_{c}(\infty) = \lim_{s \to 0} sE_{c}(s)$$

$$\mathcal{E}_c(\infty) = \lim_{s \to 0} \frac{s}{1 + H_{RO}(s)} Y_c(s)$$

Ecrivons $H_{BO}(s)$ sous la forme $H_{BO}(s) = \frac{K_0}{s} \frac{N_0(s)}{D_0(s)}$

avec
$$\frac{N_0(s)}{D_0(s)} = \frac{b_m s^m + \dots + b_1 s + 1}{a_{n-\alpha_0} s^{n-\alpha_0} + \dots + a_1 s + 1} \implies \lim_{s \to 0} \frac{N_0(s)}{D_0(s)} = 1$$

$$\mathcal{E}_{c}(\infty) = \lim_{s \to 0} \frac{S}{1 + \frac{K_{0}}{s^{\alpha_{0}}} \frac{N_{0}(s)}{D_{0}(s)}} Y_{c}(s) \quad \Rightarrow \quad \mathcal{E}_{c}(\infty) = \lim_{s \to 0} \frac{S}{1 + \frac{K_{0}}{s^{\alpha_{0}}}} Y_{c}(s)$$

$$\varepsilon_c(\infty) = \lim_{s \to 0} \frac{s^{\alpha_0 + 1}}{s^{\alpha_0} + K_0} Y_c(s)$$

Précision des systèmes asservis (4)

\square Erreur relative à la consigne ε_c

L'étude peut être menée pour tout signal de consigne. En pratique, on s'intéresse à l'erreur pour des consignes suivantes :

- $y_c(t) = \Gamma(t)$: consigne échelon. On parle d'erreur de position ou erreur statique
- $y_c(t) = v(t)$: consigne rampe. On parle d'erreur de vitesse ou erreur de traînage
- $y_c(t) = \frac{1}{2}t^2$: consigne parabole. On parle d'erreur d'accélération

Remarque

Un système ayant α_0 intégrateurs est dit de classe α_0 ou de type α_0

Précision des systèmes asservis (5)

- \square Erreur relative à la consigne ε_c
 - Consigne échelon (erreur statique ou de position)

$$y_c(t) = \Gamma(t) \Rightarrow Y_c(s) = \frac{1}{s} \Rightarrow \varepsilon_{c,p}(\infty) = \lim_{s \to 0} \frac{s^{\alpha_0}}{s^{\alpha_0} + K_0}$$

$$\varepsilon_{c,p}(\infty) = \frac{1}{1+K_0} = \frac{1}{Kp} \quad \text{avec} \quad Kp = \lim_{s \to 0} (1+H_{BO}(s))$$

Si le système n'a pas d'intégrateur en BO, le système en BF présente une erreur statique permanente. Cette erreur est d'autant plus petite que le gain en BO K_0 est grande

- $> \alpha_0 \ge 1$ (au moins un intégrateur en BO)
- $\mathcal{E}_{c,p}(\infty) = 0$ Si le système a au moins un intégrateur en BO, le système en BF a une erreur statique nulle.

Précision des systèmes asservis (6)

- \square Erreur relative à la consigne ε_c
 - Consigne rampe (erreur de vitesse)

$$y_c(t) = v(t) \implies Y_c(s) = \frac{1}{s^2} \implies \varepsilon_{c,v}(\infty) = \lim_{s \to 0} \frac{s^{\alpha_0 - 1}}{s^{\alpha_0} + K_0}$$

$$\mathcal{E}_{c,v}(\infty) = \infty$$

 $\sim \alpha_0 = 1$ (système de classe 1, 1 intégrateur en BO)

$$\varepsilon_{c,v}(\infty) = \frac{1}{K_v}$$
 avec $K_v = \lim_{s \to 0} sH_{BO}(s)$ Gain en vitesse

 $> \alpha_0 \ge 2$ (système de classe 2 ou supérieure)

$$\mathcal{E}_{c,v}(\infty) = 0$$

Précision des systèmes asservis (7)

- \square Erreur relative à la consigne ε_c
 - Consigne parabole (erreur d'accélération)

$$y_c(t) = \frac{1}{2}t^2 \implies Y_c(s) = \frac{1}{s^3} \implies \varepsilon_{c,a}(\infty) = \lim_{s \to 0} \frac{s^{\alpha_0 - 2}}{s^{\alpha_0} + K_0}$$

≥ α₀ ≤1 (au plus 1 intégrateur en BO)

$$\mathcal{E}_{c,a}(\infty) = \infty$$

 $\sim \alpha_0 = 2$ (système de classe 2, 2 intégrateurs en BO)

$$\mathcal{E}_{c,a}(\infty) = \frac{1}{K_a}$$
 avec $K_a = \lim_{s \to 0} s^2 H_{BO}(s)$ Gain en accélération

 $\rightarrow \alpha_0 \ge 3$ (plus de 2 intégrateurs en BO)

$$\mathcal{E}_{c,a}(\infty) = 0$$

Précision des systèmes asservis (8)

Récapitulation (erreur due à la consigne)

\mathcal{E} α_0	0	1	2	$\alpha_0>2$
$\mathcal{E}_{c,p}$	$\frac{1}{K_p}$	0	0	0
$\mathcal{E}_{c,v}$	8	$\frac{1}{K_v}$	0	0
$\mathcal{E}_{c,a}$	8	8	$\frac{1}{K_a}$	0

Ces résultats sont valables si le système est stable en BF!!

 α_0 : nombre d'intégrateurs de la fonction de transfert en BO

Remarques

- Dans le cas où l'erreur est non nulle mais bornée, cette erreur est d'autant plus petite que le gain en BO est grand
- Si le gain en BO est grand, il y a risque d'instabilité (cf Routh) : c'est le dilemme stabilité précision

Précision des systèmes asservis (9)

Précision des systèmes asservis (10)

\square Erreur relative à la perturbation \mathcal{E}_{A}

On parle de rejet asymptotique de la perturbation si l'erreur due à la perturbation ε_d tend vers 0 en régime permanent

$$E_d(s) = -\frac{F(s)}{1 + H_{BO}(s)}D(s)$$

$$\varepsilon_d(\infty) = \lim_{t \to \infty} \varepsilon_d(t) \implies \varepsilon_d(\infty) = \lim_{s \to 0} s E_d(s)$$

Posons
$$H_1$$

Posons
$$H_{BO}(s) = \frac{K_0}{s^{\alpha_0}} \frac{N_0(s)}{D_0(s)}$$
 avec $\frac{N_0(0)}{D_0(0)} = 1$

$$F(s) = \frac{K_d}{s^{\beta}} \frac{N_d(s)}{D_d(s)} \qquad \text{avec} \qquad \frac{N_d(0)}{D_d(0)} = 1$$

$$\Rightarrow \varepsilon_d(\infty) = \lim_{s \to 0} -\frac{K_d s^{\alpha_0 - \beta + 1}}{s^{\alpha_0} + K_0} D(s)$$

Précision des systèmes asservis (11)

- \square Erreur relative à la perturbation \mathcal{E}_{d}
 - Perturbation de type échelon $(D(s) = \frac{1}{s})$

$$\varepsilon_{d,p}(\infty) = \lim_{s \to 0} -\frac{K_d s^{\alpha_0 - \beta}}{s^{\alpha_0} + K_0}$$

- $\alpha_0 = 0$ (système de classe 0). On a : $\mathcal{E}_{d,p}(\infty) = \lim_{s \to 0} -\frac{K_d s^{-\beta}}{1 + K_0}$
 - Si $\beta = 0$, on obtient $\varepsilon_{d,p}(\infty) = -\frac{K_d}{1 + K_0} = -\frac{K_d}{K_p}$

L'erreur est bornée si F(s) n'a pas d'intégrateur

• Si $\beta \neq 0$, on obtient $\mathcal{E}_{d,p}(\infty) = -\infty$

La présence d'intégrateurs dans F(s) ne contribue pas à l'élimination asymptotique de la perturbation

Précision des systèmes asservis (12)

- \square Erreur relative à la perturbation \mathcal{E}_d
 - Perturbation de type échelon
 - $ightharpoonup lpha_0 \ge 1$ (au moins un intégrateur)

On a
$$\mathcal{E}_{d,p}(\infty) = \lim_{s \to 0} -\frac{K_d s^{\alpha_0 - \beta}}{K_0}$$

- Si $\alpha_0 \beta = 0$, on obtient $\mathcal{E}_{d,p}(\infty) = -\frac{K_d}{K_0}$
- Si $\alpha_0 \beta \ge 1$, on obtient $\varepsilon_{d,p}(\infty) = 0$

L'erreur de position $\mathcal{E}_{d,p}$ due à la perturbation est diminuée voire annulée si on augmente le nombre d'intégrateurs α_0 en amont du point d'application de la perturbation tout en veillant à ne pas déstabiliser le système

Précision des systèmes asservis (13)

\square Erreur relative à la perturbation \mathcal{E}_{A}

α_0	β	$\mathcal{E}_{d,p}$	$\mathcal{E}_{d,v}$	$\mathcal{E}_{d,a}$
0	0	$-\frac{K_d}{K_p}$	-∞	-∞
1	0	0	$-\frac{K_d}{K_v}$	-8
1	1	$-\frac{K_d}{K_v}$	-∞	-8
2	0	0	0	$-\frac{K_d}{K_a}$
2	1	0	$-\frac{K_d}{K_a}$	-8
3	0	0	0	0

Avec

$$K_p = \lim_{s \to 0} (1 + H_{BO}(s))$$

$$K_v = \lim_{s \to 0} s H_{BO}(s)$$

$$K_a = \lim_{s \to 0} s^2 H_{BO}(s)$$

L'erreur totale en régime permanent est la somme de l'erreur par rapport à la consigne et de l'erreur due à la perturbation 20

Précision des systèmes asservis (14)

Rejet de la perturbation par compensation

Si F(s) est connue, on peut éliminer totalement la perturbation en réalisant une correction par compensation

$$Y(s) = \frac{H_{BO}(s)}{1 + H_{BO}(s)} Y_c(s) + \frac{F(s) - W(s)H_{BO}(s)}{1 + H_{BO}(s)} D(s)$$

On élimine totalement la perturbation en prenant $W(s) = \frac{F(s)}{H_{PQ}(s)}$

$$W(s) = \frac{F(s)}{H_{BO}(s)}$$

Le hic! W(s) n'est pas toujours stable ou physiquement réalisable (contrainte de causalité)

Performances dynamiques (1)

Performances

On apprécie le comportement dynamique des systèmes asservis en termes de (cf cours 1 à 3) :

- lacktriangle rapidité : temps de montée t_m , temps de réponse t_r
- dépassement
- résonance

Ces performances peuvent être évaluées sur la réponse indicielle ou fréquentielle du système asservi

Résultats qualitatifs

Peut-on déduire les performances des systèmes asservis à partir de la connaissance de $H_{BO}(s)$?

- Oui pour les systèmes du 1^{er} ordre
- Des résultats qualitatifs pour les systèmes du 2^e ordre

Performances dynamiques (2)

Système du premier ordre en BF

Fonction de transfert en BF

$$H_{BF}(s) = \frac{K_0}{1 + K_0 + T_0 s} \implies H_{BF}(s) = \frac{K_{BF}}{1 + T_{BF} s}$$

avec
$$K_{BF} = \frac{K_0}{1 + K_0}$$
 et $T_{BF} = \frac{T_0}{1 + K_0}$

 K_{BF} : gain statique en BF

 T_{BF} : constante de temps en BF

Quand on boucle un système du 1^{er} ordre, on obtient en BF un système ayant le comportement d'un 1^{er} ordre

Performances dynamiques (3)

Système du premier ordre en BF

$$H_{BF}(s) = \frac{K_{BF}}{1 + T_{BF}s}$$
 avec $K_{BF} = \frac{K_0}{1 + K_0}$ et $T_{BF} = \frac{T_0}{1 + K_0}$

- Remarques
 - Le système du 1^{er} ordre en BF présente en régime permanent, une erreur statique non nulle. Cette erreur est d'autant plus petite que le gain K_0 est grand (mais attention à la saturation des actionneurs !!)
 - Temps de réponse en BF

$$t_{r,BF} = 3T_{BF} = \frac{3T_0}{1 + K_0}$$

- Le système est plus rapide en BF qu'en BO
- Le temps de réponse est d'autant plus petit que K_0 est grand

Performances dynamiques (4)

Système du deuxième ordre en BF

$$y_c$$
 $H_{BO}(s) = \frac{K_0}{\frac{s^2}{\omega_{n,0}^2} + 2\frac{\xi_0}{\omega_{n,0}}},$

Fonction de transfert en BF

$$H_{BF}(s) = \frac{K_0}{\frac{s^2}{\omega_{n,0}^2} + 2\frac{\xi_0}{\omega_{n,0}}} \implies H_{BF}(s) = \frac{K_{BF}}{\frac{s^2}{\omega_{n,BF}^2} + 2\frac{\xi_{BF}}{\omega_{n,BF}}} s + 1$$

$$K_{BF} = \frac{K_0}{1 + K_0}$$
 : gain statique en BF

$$\xi_{BF} = \frac{\xi_0}{\sqrt{1 + K_0}}$$
 : facteur d'amortissement en BF (0 < ξ_{BF} < 1)

$$\omega_{n,BF} = \omega_{n,0} \sqrt{1 + K_0}$$
: pulsation naturelle en BF

Performances dynamiques (5)

- Système du deuxième ordre en BF
 - Remarques
 - Le système en BF a une erreur statique non nulle
 - Le système en BF a un comportement oscillatoire amorti
 - Le facteur d'amortissement ξ_{BF} est faible si K_0 est grand \Rightarrow la réponse indicielle a un fort dépassement
 - \triangleright Le temps de montée t_m est rapide si K_0 grand

Pour
$$0.2 < \xi_{BF} < 0.8$$
 on a $2 < \omega_{n,BF} t_m < 4$

Pour les valeurs courantes de ξ_{BF} , on peut obtenir un *ordre de grandeur du temps de montée en BF* à partir des éléments de la BO

Automatique S^{BF} 26

Performances dynamiques (6)

- Système du deuxième ordre en BF
 - Relation empirique 1

Si
$$K_0 >> 1$$
, on montre que $\omega_{n,BF} = \omega_{n,0} \sqrt{1 + K_0} \approx \omega_{c0}$

avec ω_{c0} la pulsation telle que $|H_{BO}(j\omega_{c0})|=1$ ou $G(\omega_{c0})=0$ dB

 ω_{c0} est appelée aussi pulsation de coupure à 0 dB

 Relation empirique 2 : relation entre marge de phase et facteur d'amortissement en BF

$$\xi_{BF} \approx \frac{m_{\varphi}(\deg r\acute{e})}{100}$$
 m_{φ} : marge de phase $m_{\varphi} = \varphi_{BO}(\omega_{c0}) + 180^{\circ}$

Ces deux relations permettent de déduire les performances du système en BF à partir de la connaissance des caractéristiques fréquentielles de H_{BO}

Automatique 2⁻

Performances dynamiques (7)

- Système du deuxième ordre en BF
 - lacktriangle Influence du gain statique K_0 en BO sur la BF
 - ightharpoonup Augmentation de $K_0 \Rightarrow$
 - diminution de ξ_{BF} , augmentation de $\omega_{n.BF}$ (donc de la BP)
 - dépassement D_{BF} important
 - diminution de la marge de phase (stabilité moins bonne)
 - augmentation du temps de montée en BF et de la précision
 - \triangleright Diminution de $K_0 \Rightarrow$
 - augmentation de ξ_{BF} , diminution de $\omega_{n.BF}$ (donc de la BP)
 - diminution du dépassement D_{BF}
 - augmentation de la marge de phase (stabilité améliorée)
 - diminution du temps de montée en BF et de la précision

Il y a un compromis à trouver entre la rapidité, la stabilité et la précision