Measurement and visualization, 1

Frank Edwards 10/5/2021

Data: Attitudes on Intimate Partner Violence

Increasing Rejection of Intimate Partner Violence: Evidence of Global Cultural Diffusion

American Sociological Review 78(2) 240–265

© American Sociological Association 2013
DOI: 10.1177/0003122413480363
http://asr.sagepub.com

Rachael S. Pierotti^a

Abstract

This study extends existing world society research on ideational diffusion by going beyond examinations of national policy change to investigate the spread of ideas among nonelite individuals. Specifically, I test whether recent trends in women's attitudes about intimate partner violence are converging toward global cultural scripts. Results suggest that global norms regarding violence against women are reaching citizens worldwide, including in some of the least privileged parts of the globe. During the first decade of the 2000s, women in 23 of the 26 countries studied became more likely to reject intimate partner violence. Structural socioeconomic or demographic changes, such as urbanization, rising educational attainment, increasing media access, and cohort replacement, fail to explain the majority of the observed trend. Rather, women of all ages and social locations became less likely to accept justifications for intimate partner violence. The near uniformity of the trend and speed of the change in attitudes about intimate partner violence suggest that global cultural diffusion has played an important role.

Reading in the data

```
ipv<-read_csv("./slides/data/dhs_ipv.csv")</pre>
```

The Data: USAID Demographic and Health Surveys

beat_goesout: Percentage of women in each country that think a
husband is justified to beat his wife if she goes out without telling him.

beat_burnfood: Percentage of women in each country that think a husband is justified to beat his wife if she burns his food.

no_media: Percentage of women in each country that rarely encounter a newspaper, radio, or television.

sec_school: Percentage of women in each country with secondary or higher education.

year: Year of the survey

region: Region of the world

country: Country

Describing the data: country

unique(ipv\$country)

```
[1] "Albania"
                                    "Armenia"
   [3] "Azerbaijan"
                                    "Bangladesh"
  [5] "Benin"
                                    "Bolivia"
   [7] "Burkina Faso"
                                    "Burundi"
   [9] "Cambodia"
                                    "Cameroon"
## [11] "Chad"
                                    "Colombia"
## [13] "Comoros"
                                    "Congo (Brazzaville)"
## [15] "Congo Democratic Republic" "Cote d'Ivoire"
## [17] "Dominican Republic"
                                    "Egypt"
## [19] "Eritrea"
                                    "Ethiopia"
## [21] "Gabon"
                                    "Gambia"
## [23] "Ghana"
                                    "Guinea"
## [25] "Guyana"
                                    "Haiti"
## [27] "Honduras"
                                    "India"
## [29] "Indonesia"
                                    "Jordan"
## [31] "Kenya"
                                    "Kyrgyz Republic"
## [33] "Lesotho"
                                    "Liberia"
## [35] "Madagascar"
                                    "Malawi"
## [37] "Maldives"
                                    "Mali"
## [39] "Mauritania"
                                    "Moldova"
## [41] "Morocco"
                                    "Mozambique"
## [43] "Namibia"
                                    "Nepal"
## [45] "Nicaragua"
                                    "Niger"
## [47] "Nigeria"
                                    "Pakistan"
## [49] "Peru"
                                    "Philippines"
## [51] "Rwanda"
                                    "Sao Tome and Principe"
## [53] "Senegal"
                                    "Sierra Leone"
```

Describing the data: country

```
length(unique(ipv$country))
## [1] 65
nrow(ipv)
## [1] 151
```

Describing the data: region

##

```
table(ipv$region)

##

## Asia Latin America
## 24 24

## Middle East and Central Asia Sub-Saharan Africa
```

19

84

Describing the data: time

```
table(ipv$year)
```

##

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 ## 1 14 5 5 11 8 17 8 10 10 9 12 13 14 11 3

Describing continuous measures: what do these measures show?

```
beat burnfood
                                 sec_school
                                               no media
##
                 beat_goesout
##
   Min. : 0.10
                 Min. : 0.30
                               Min. : 3.10
                                             Min. : 0.80
   1st Ou.: 4.50
                1st Ou.:11.85
                               1st Qu.:10.18 1st Qu.:11.25
##
##
   Median :11.85
                 Median :28.10
                               Median :22.40 Median :29.15
                 Mean :28.60
##
   Mean
         :15.04
                               Mean
                                     :24.40 Mean :28.40
##
   3rd Qu.:22.25
                 3rd Qu.:42.08
                               3rd Qu.:34.90 3rd Qu.:43.23
##
   Max.
         :64.50
                 Max. :82.70
                               Max.
                                     :74.60
                                             Max.
                                                   :86.40
   NA's :31
##
                 NA's :27
                               NA's
                                     :3
                                             NA's :13
```

Missing data in R

a<-NA a+a

[1] NA

a*2

[1] NA

```
a==TRUE

## [1] NA

is.na(a)

## [1] TRUE
```

```
!(is.na(a))
```

[1] FALSE

Missing data in vectors

```
my_cool_vector<-c(2, 3, NA, 4)
mean(my_cool_vector)
## [1] NA</pre>
```

Missing data in vectors

```
min(my_cool_vector)
```

[1] NA

Dealing with missing data in vectors

```
mean(my_cool_vector, na.rm=TRUE)
## [1] 3
min(my_cool_vector, na.rm=TRUE)
## [1] 2
sd(my cool vector, na.rm=TRUE)
## [1] 1
```

Dealing with missing data in vectors

```
min(my_cool_vector, na.rm=TRUE)
```

[1] 2

Dealing with missing data in vectors

```
sd(my_cool_vector, na.rm=TRUE)
```

[1] 1

Dealing with missing data in practice

Counting missing values

```
ipv %>%
  summarise(beat burnfood missing =
              sum(is.na(beat_burnfood))/n())
## # A tibble: 1 x 1
     beat_burnfood_missing
##
##
                      <dbl>
## 1
                      0.205
table(is.na(ipv$beat burnfood))
##
## FALSE
          TRUE
##
     120
            31
```

Filtering out missing values

[1] 116

```
### aggressive, all variables
ipv_no_missing<-na.omit(ipv)

nrow(ipv_no_missing)</pre>
```

Filtering out missing values

[1] 120

```
ipv_no_missing_onevar<-ipv %>%
  filter(!(is.na(beat_burnfood)))

nrow(ipv_no_missing_onevar)
```

Visualizing the distribution of single variables (univariate visuals)

Visuals for categorical variables

Barplots

Show the count of rows in each value of a category

```
ggplot(ipv,
    aes(x = region)) +
  geom_bar()
```


The anatomy of a basic ggplot() call

Adding to our call

Nesting dplyr transformations in ggplot calls

Visuals for continuous variables

Histograms

Histograms show the density of cases that fall within a given range

Histograms in base R

hist(ipv\$year)

Density plots

Densities are smoothed continuous histograms (with binwidth=0)

Another set of histograms/densities

```
ggplot(ipv, aes(x = beat_burnfood)) +
  geom_histogram()
```

beat burnfood

Boxplots

Show the distribution of a continuous variable with the median, quartiles, and outliers

```
ggplot(ipv, aes(y = beat_burnfood)) +
  geom_boxplot()
```


Bivariate (two variable) data visuals

One continuous, one categorical variable

Boxplots of a continuous by a categorical

```
ggplot(ipv, aes(y = beat_burnfood, x = region)) +
  geom_boxplot()
```


Violin plots

Like a boxplot + densityplot

```
ggplot(ipv, aes(y = beat_burnfood, x = region)) +
  geom_violin() +
  coord_flip()
```


Faceting

Create separate plots (facet) by some categorical variable

```
ggplot(ipv, aes(x = beat_burnfood)) +
  geom_density() +
  facet_wrap(~country)
```

á.6	Albania	Armenia	Azerbaijan	Bangladesh	Benin	Bolivia	Burkina Faso	Burundi	Cambodia
0.0	Cameroon	Chad	Colombia	Comoros	ongo (Brazzaville	o Democratic Rep	Cote d'Ivoire	ominican Republi	Egypt
0.0	Eritrea	Ethiopia	Gabon	Gambia	Ghana	Guinea	Guyana	Haiti	Honduras
1	India	Indonesia	Jordan	Kenya	Kyrgyz Republic	Lesotho	Liberia	Madagascar	Malawi
density	Maldives	Mali	Mauritania	Moldova	Morocco	Mozambique	Namibia	Nepal	Nicaragua
ტ.B ±	Niger	Nigeria	Pakistan	Peru	Philippines	Rwanda	o Tome and Princ	Senegal	Sierra Leone
0.0	Tajikistan	Tanzania	Timor-Leste	Togo	Turkmenistan	Uganda	Ukraine	Vietnam	Yemen
6.6	Zambia	Zimbabwe	0 20 40 60	0 20 40 60	0 20 40 60	0 20 40 60	0 20 40 60	0 20 40 60	0 20 40 60
	0 20 40 60	0 20 40 60			beat_burnfood				

Two continuous variables

Scatterplots

Plot points on an x,y plane based on two continuous variables

```
ggplot(ipv, aes(x = beat_burnfood, y = beat_goesout)) +
  geom_point() +
  geom_smooth(method = "lm")
```


Scatterplots, continued

```
ggplot(ipv, aes(y = beat_burnfood, x = sec_school)) +
  geom_point() +
  geom_smooth(method = "lm")
```


Adding a third variable to the plot

Another way to present three variables

```
ggplot(ipv, aes(y = beat_burnfood, x = sec_school)) +
  geom_point() +
  facet_wrap(~region)
```


Homework

 \cdot Practice with dplyr and gpplot for data visualization

Lab

Using the ipv data

 create a new data.frame named ipv_no_missing filter out all observations where we are missing data on sec_school

- create a new data.frame named ipv_no_missing filter out all observations where we are missing data on sec_school
- create a new data.frame named ipv2 with the variables country, year, region

- create a new data.frame named ipv_no_missing filter out all observations where we are missing data on sec_school
- create a new data.frame named ipv2 with the variables country, year, region
- create a new data.frame named country_summary that provides the average value of sec_school for each country across years with all non-missing values

- create a new data.frame named ipv_no_missing filter out all observations where we are missing data on sec_school
- create a new data.frame named ipv2 with the variables country, year, region
- create a new data.frame named country_summary that provides the average value of sec_school for each country across years with all non-missing values
- create a new data.frame with all country-years with sec_school above the mean value. Compute the average value of beat_burnfood for these country-years

Using the ipv data

- Using ggplot, construct a histogram of ${\tt no_media}$

- Using ggplot, construct a histogram of no_media
- \cdot Using ggplot, construct a histogram of ${\tt sec_school}$

- Using ggplot, construct a histogram of no_media
- Using ggplot, construct a histogram of sec_school
- Using ggplot, construct a boxplot of sec_school by year

- Using ggplot, construct a histogram of no_media
- Using ggplot, construct a histogram of sec_school
- Using ggplot, construct a boxplot of sec_school by year
- Using ggplot, construct a histogram of beat_burnfood faceted by region

- Using ggplot, construct a histogram of no_media
- Using ggplot, construct a histogram of sec_school
- Using ggplot, construct a boxplot of sec_school by year
- Using ggplot, construct a histogram of beat_burnfood faceted by region
- Using ggplot, construct a scatterplot with beat_burnfood on the y-axis and sec_school on the x-axis

- Using ggplot, construct a histogram of no_media
- Using ggplot, construct a histogram of sec_school
- Using ggplot, construct a boxplot of sec_school by year
- Using ggplot, construct a histogram of beat_burnfood faceted by region
- Using ggplot, construct a scatterplot with beat_burnfood on the y-axis and sec_school on the x-axis
- Using ggplot, construct a scatterplot with beat_burnfood on the y-axis and sec_school on the x-axis, faceted by region

- Using ggplot, construct a histogram of no_media
- Using ggplot, construct a histogram of sec_school
- Using ggplot, construct a boxplot of sec_school by year
- Using ggplot, construct a histogram of beat_burnfood faceted by region
- Using ggplot, construct a scatterplot with beat_burnfood on the y-axis and sec_school on the x-axis
- Using ggplot, construct a scatterplot with beat_burnfood on the y-axis and sec_school on the x-axis, faceted by region