Processus en temps continu

January 20, 2014

Processus et filtrations

Définition

On appelle processus d'espace détats (E, \mathcal{E}) toute famille de variables aléatoires $(X_t)_{t\in\mathbb{T}}$ définies sur un même espace de probabilité et à valeurs dans (E, \mathcal{E}) .

Processus et filtrations

Définition

On appelle processus d'espace détats (E, \mathcal{E}) toute famille de variables aléatoires $(X_t)_{t\in\mathbb{T}}$ définies sur un même espace de probabilité et à valeurs dans (E, \mathcal{E}) .

Définition

(i) Soit (Ω, \mathcal{F}) un espace mesuré. Alors, on appelle filtration sur (Ω, \mathcal{F}) toute famille croissante (ou décroissante) $(\mathcal{F}_t)_{t \in \mathbb{T}}$ de sous-tribu de \mathcal{F} , i.e. $s < t \Rightarrow \mathcal{F}_s \subset \mathcal{F}_t$.

200

Processus et filtrations

Définition

On appelle processus d'espace détats (E, \mathcal{E}) toute famille de variables aléatoires $(X_t)_{t\in\mathbb{T}}$ définies sur un même espace de probabilité et à valeurs dans (E, \mathcal{E}) .

Définition

- (i) Soit (Ω, \mathcal{F}) un espace mesuré. Alors, on appelle filtration sur (Ω, \mathcal{F}) toute famille croissante (ou décroissante) $(\mathcal{F}_t)_{t \in \mathbb{T}}$ de sous-tribu de \mathcal{F} , i.e. $s < t \Rightarrow \mathcal{F}_s \subset \mathcal{F}_t$.
- (ii) Si $(\mathcal{F}_t)_{t\in\mathbb{T}}$ est une filtration sur (Ω, \mathcal{F}) , on lui associe deux filtrations comme suit

$$\mathcal{F}_t^- = \vee_{s < t} \mathcal{F}_s \qquad \text{et} \qquad \mathcal{F}_t^+ = \cap_{s > t} \mathcal{F}_s \qquad \forall t \in \mathbb{T},$$

et on dit que (\mathcal{F}_t) est continue à droite (resp. à gauche) si $\mathcal{F}_t = \mathcal{F}_t^+$ (resp. $\mathcal{F}_t = \mathcal{F}_t^-$), pour tout $t \in \mathbb{T}$.

() Q ()

Si $\mathbb{T}=\mathbb{R}$ ou $\mathbb{T}=\mathbb{N}$, on note $\mathcal{F}_{\infty}:=ee_{t\in\mathbb{T}}\mathcal{F}_{t}.$

Si $\mathbb{T}=\mathbb{R}$ ou $\mathbb{T}=\mathbb{N}$, on note $\mathcal{F}_{\infty}:=ee_{t\in\mathbb{T}}\mathcal{F}_{t}.$

Etant donné un processus $(X_t)_{t\in\mathbb{T}}$, on lui associe sa filtration naturelle $(\mathcal{F}_t^0)_{t\in\mathbb{T}}$ définie par $\mathcal{F}_t^0 = \sigma\{X_s, s \leq t\}$ pour tout $t \in \mathbb{T}$.

Si $\mathbb{T}=\mathbb{R}$ ou $\mathbb{T}=\mathbb{N}$, on note $\mathcal{F}_{\infty}:=\vee_{t\in\mathbb{T}}\mathcal{F}_{t}$.

Etant donné un processus $(X_t)_{t\in\mathbb{T}}$, on lui associe sa filtration naturelle $(\mathcal{F}_t^0)_{t\in\mathbb{T}}$ définie par $\mathcal{F}_t^0=\sigma\{X_s,\ s\leq t\}$ pour tout $t\in\mathbb{T}$.

Définition

Soit $(X_t)_{t\in\mathbb{T}}$ et $(X_t')_{t\in\mathbb{T}}$ définis respectivement sur $(\Omega, \mathcal{F}, \mathbb{P})$ et $(\Omega', \mathcal{F}', \mathbb{P}')$ et admettant le même espace d'états (E, \mathcal{E}) .

Si $\mathbb{T}=\mathbb{R}$ ou $\mathbb{T}=\mathbb{N}$, on note $\mathcal{F}_{\infty}:=\vee_{t\in\mathbb{T}}\mathcal{F}_{t}$.

Etant donné un processus $(X_t)_{t\in\mathbb{T}}$, on lui associe sa filtration naturelle $(\mathcal{F}_t^0)_{t\in\mathbb{T}}$ définie par $\mathcal{F}_t^0=\sigma\{X_s,\ s\leq t\}$ pour tout $t\in\mathbb{T}$.

Définition

Soit $(X_t)_{t\in\mathbb{T}}$ et $(X_t')_{t\in\mathbb{T}}$ définis respectivement sur $(\Omega, \mathcal{F}, \mathbb{P})$ et $(\Omega', \mathcal{F}', \mathbb{P}')$ et admettant le même espace d'états (E, \mathcal{E}) . Ces processus sont dits équivalents si pour tout $t_1, \ldots, t_n \in \mathbb{T}$, $A_1, \ldots, A_n \in \mathcal{E}$,

$$\mathbb{P}(X_{t_1} \in A_1, \dots, X_{t_n} \in A_n) = \mathbb{P}'(X'_{t_1} \in A_1, \dots, X'_{t_n} \in A_n).$$

Si $\mathbb{T}=\mathbb{R}$ ou $\mathbb{T}=\mathbb{N}$, on note $\mathcal{F}_{\infty}:=ee_{t\in\mathbb{T}}\mathcal{F}_{t}$.

Etant donné un processus $(X_t)_{t\in\mathbb{T}}$, on lui associe sa filtration naturelle $(\mathcal{F}_t^0)_{t\in\mathbb{T}}$ définie par $\mathcal{F}_t^0=\sigma\{X_s,\ s\leq t\}$ pour tout $t\in\mathbb{T}$.

Définition

Soit $(X_t)_{t\in\mathbb{T}}$ et $(X_t')_{t\in\mathbb{T}}$ définis respectivement sur $(\Omega, \mathcal{F}, \mathbb{P})$ et $(\Omega', \mathcal{F}', \mathbb{P}')$ et admettant le même espace d'états (E, \mathcal{E}) . Ces processus sont dits équivalents si pour tout $t_1, \ldots, t_n \in \mathbb{T}$, $A_1, \ldots, A_n \in \mathcal{E}$,

$$\mathbb{P}(X_{t_1} \in A_1, \ldots, X_{t_n} \in A_n) = \mathbb{P}'(X'_{t_1} \in A_1, \ldots, X'_{t_n} \in A_n).$$

On dit aussi que chacun des processus est une version de l'autre.

Définition

Soit $(X_t)_{t\in\mathbb{T}}$ et $(X_t')_{t\in\mathbb{T}}$ définis sur un même espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$ et admettant le même espace d'états (E, \mathcal{E}) .

Définition

Soit $(X_t)_{t\in\mathbb{T}}$ et $(X_t')_{t\in\mathbb{T}}$ définis sur un même espace de probabilité $(\Omega,\mathcal{F},\mathbb{P})$ et admettant le même espace d'états (E,\mathcal{E}) . On dit qu'ils sont des modifications l'un de l'autre si pour tout $t\in \mathcal{T}$, $X_t=X_t'$ \mathbb{P} -p.s. et qu'ils sont indistinguables s'il existe $\Omega_0\in\mathcal{F}$ avec $\mathbb{P}(\Omega_0)=1$ tel que pour tout $\omega\in\Omega_0$ et tout $t\in\mathbb{T}$, $X_t(\omega)=X_t'(\omega)$.

Processus canonique

Soit (E,\mathcal{E}) un espace mesuré. On munit $E^{\mathbb{T}}$ de la tribu $\mathcal{E}^{\otimes \mathbb{T}}$, la tribu engendrée par les applications coordonnées $(Y_t)_{t\in\mathbb{T}}$.

Processus canonique

Soit (E,\mathcal{E}) un espace mesuré. On munit $E^{\mathbb{T}}$ de la tribu $\mathcal{E}^{\otimes \mathbb{T}}$, la tribu engendrée par les applications coordonnées $(Y_t)_{t\in\mathbb{T}}$.

Soit $(X_t)_{t\in\mathbb{T}}$ un processus défini sur $(\Omega, \mathcal{F}, \mathbb{P})$, à valeurs dans $(\mathcal{E}, \mathcal{E})$. On lui associe une application mesurable $\psi = \psi_X$ de (Ω, \mathcal{F}) dans $(\mathcal{E}^{\mathbb{T}}, \mathcal{E}^{\mathbb{T}})$, définie par $\psi(\omega) = (X_t(\omega))_{t\in\mathbb{T}}$.

Processus canonique

Soit (E,\mathcal{E}) un espace mesuré. On munit $E^{\mathbb{T}}$ de la tribu $\mathcal{E}^{\otimes \mathbb{T}}$, la tribu engendrée par les applications coordonnées $(Y_t)_{t\in\mathbb{T}}$.

Soit $(X_t)_{t\in\mathbb{T}}$ un processus défini sur $(\Omega, \mathcal{F}, \mathbb{P})$, à valeurs dans (E, \mathcal{E}) . On lui associe une application mesurable $\psi = \psi_X$ de (Ω, \mathcal{F}) dans $(E^{\mathbb{T}}, \mathcal{E}^{\mathbb{T}})$, définie par $\psi(\omega) = (X_t(\omega))_{t\in\mathbb{T}}$.

On note \mathbb{P}_X la loi image de \mathbb{P} par ψ , i.e. la probabilité sur $\mathcal{E}^{\mathbb{T}}$) définie par

$$\mathbb{P}_X(\Gamma) = \mathbb{P}(\psi^{-1}(\Gamma),$$

pour tout $\Gamma \in \mathcal{E}^{\mathbb{T}}$.

Alors, sous \mathbb{P}_X , $(Y_t)_{t\in\mathbb{T}}$ est un processus équivalent à $(X_t)_{t\in\mathbb{T}}$, appelé processus canonique associé à $(X_t)_{t\in\mathbb{T}}$.

On appelle alors \mathbb{P}_X , la loi du processus $(X_t)_{t\in\mathbb{T}}$.

On rappelle que $E^{\mathbb{T}}$ s'identifie à $\mathcal{F}(\mathbb{T}, E)$, l'espace vectoriel des fonctions de \mathbb{T} dans E.

On rappelle que $E^{\mathbb{T}}$ s'identifie à $\mathcal{F}(\mathbb{T}, E)$, l'espace vectoriel des fonctions de \mathbb{T} dans E.

Lorsque E est métrique séparable et $\mathbb T$ est un intervalle de $\mathbb R$, il peut exister $\Omega_0 \in \mathcal F$, tel que $\mathbb P(\Omega_0)=1$ et pour tout $\omega \in \Omega_0$, $t \mapsto X_t(\omega)$ est continue sur $\mathbb T$.

On rappelle que $E^{\mathbb{T}}$ s'identifie à $\mathcal{F}(\mathbb{T}, E)$, l'espace vectoriel des fonctions de \mathbb{T} dans E.

Lorsque E est métrique séparable et $\mathbb T$ est un intervalle de $\mathbb R$, il peut exister $\Omega_0 \in \mathcal F$, tel que $\mathbb P(\Omega_0)=1$ et pour tout $\omega \in \Omega_0$, $t\mapsto X_t(\omega)$ est continue sur $\mathbb T$.

Cette propriété de continuité n'a aucun raison d'être transportée au processus canonique. Par contre on peut reprendre la construction précédente en remplaçant $\mathcal{F}(\mathbb{T},E)$ par $C(\mathbb{T},E)$. De même on peut travailler avec $D(\mathbb{T},E)$, l'espace des fonctions continues à droite et limitées à gauche.

On rappelle que $E^{\mathbb{T}}$ s'identifie à $\mathcal{F}(\mathbb{T}, E)$, l'espace vectoriel des fonctions de \mathbb{T} dans E.

Lorsque E est métrique séparable et $\mathbb T$ est un intervalle de $\mathbb R$, il peut exister $\Omega_0 \in \mathcal F$, tel que $\mathbb P(\Omega_0)=1$ et pour tout $\omega \in \Omega_0$, $t \mapsto X_t(\omega)$ est continue sur $\mathbb T$.

Cette propriété de continuité n'a aucun raison d'être transportée au processus canonique. Par contre on peut reprendre la construction précédente en remplaçant $\mathcal{F}(\mathbb{T},E)$ par $C(\mathbb{T},E)$. De même on peut travailler avec $D(\mathbb{T},E)$, l'espace des fonctions continues à droite et limitées à gauche.

Enfin sur tous ces espaces (avec $\mathbb{T}=\mathbb{R}^+$) on considère les opérateurs de décalage $(\theta_t)_{t\in\mathbb{R}^+}$, défini par $\theta_t((\omega_u)_{u\in\mathbb{R}^+})=(\omega_{t+u})_{u\in\mathbb{R}^+}$.

On rappelle que $E^{\mathbb{T}}$ s'identifie à $\mathcal{F}(\mathbb{T}, E)$, l'espace vectoriel des fonctions de \mathbb{T} dans E.

Lorsque E est métrique séparable et $\mathbb T$ est un intervalle de $\mathbb R$, il peut exister $\Omega_0 \in \mathcal F$, tel que $\mathbb P(\Omega_0)=1$ et pour tout $\omega \in \Omega_0$, $t \mapsto X_t(\omega)$ est continue sur $\mathbb T$.

Cette propriété de continuité n'a aucun raison d'être transportée au processus canonique. Par contre on peut reprendre la construction précédente en remplaçant $\mathcal{F}(\mathbb{T},E)$ par $C(\mathbb{T},E)$. De même on peut travailler avec $D(\mathbb{T},E)$, l'espace des fonctions continues à droite et limitées à gauche.

Enfin sur tous ces espaces (avec $\mathbb{T}=\mathbb{R}^+$) on considère les opérateurs de décalage $(\theta_t)_{t\in\mathbb{R}^+}$, défini par $\theta_t((\omega_u)_{u\in\mathbb{R}^+})=(\omega_{t+u})_{u\in\mathbb{R}^+}$. On a alors $Y_s\circ\theta^t=Y_{s+t}$, pour tous $s,t\geq 0$.

Définition

Soit $(X_t)_{t \in \mathbb{R}^+}$ un processus défini sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$ et $(\mathcal{F}_t)_{t \in \mathbb{R}^+}$ une filtration.

Définition

Soit $(X_t)_{t \in \mathbb{R}^+}$ un processus défini sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$ et $(\mathcal{F}_t)_{t \in \mathbb{R}^+}$ une filtration. On dit que $(X_t)_{t \in \mathbb{R}^+}$ est (\mathcal{F}_t) -adapté si, pour tout $t \geq 0$, X_t est \mathcal{F}_t -mesurable.

Définition

Soit $(X_t)_{t\in\mathbb{R}^+}$ un processus défini sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$ et $(\mathcal{F}_t)_{t\in\mathbb{R}^+}$ une filtration. On dit que $(X_t)_{t\in\mathbb{R}^+}$ est (\mathcal{F}_t) -adapté si, pour tout $t\geq 0$, X_t est \mathcal{F}_t -mesurable. On dit qu'une variable aléatoire $T:\Omega\to[0,+\infty]$ est un temps d'arrêt relativement à la filtration (\mathcal{F}_t) si $\{T\leq t\}$ est \mathcal{F}_t -mesurable.

Définition

Soit $(X_t)_{t\in\mathbb{R}^+}$ un processus défini sur un espace de probabilité $(\Omega,\mathcal{F},\mathbb{P})$ et $(\mathcal{F}_t)_{t\in\mathbb{R}^+}$ une filtration. On dit que $(X_t)_{t\in\mathbb{R}^+}$ est (\mathcal{F}_t) -adapté si, pour tout $t\geq 0$, X_t est \mathcal{F}_t -mesurable. On dit qu'une variable aléatoire $T:\Omega\to[0,+\infty]$ est un temps d'arrêt relativement à la filtration (\mathcal{F}_t) si $\{T\leq t\}$ est \mathcal{F}_t -mesurable.

Proposition

Tout temps d'arrêt est la limite décroissante d'une suite de temps d'arrêt ne prenant chacun qu'un nombre fini de valeurs.

Définition

Soit T un temps d'arrêt relativement à une filtration $(\mathcal{F}_t)_{t\in\mathbb{R}^+}$. On définit une tribu \mathcal{F}_T comme suit

$$\mathcal{F}_{\mathcal{T}} := \{ A \in \mathcal{F}_{\infty} : \forall t \in \mathbb{R}^+, A \cap \{ T \leq t \} \in \mathcal{F}_t \}.$$

Définition

Soit T un temps d'arrêt relativement à une filtration $(\mathcal{F}_t)_{t\in\mathbb{R}^+}$. On définit une tribu \mathcal{F}_T comme suit

$$\mathcal{F}_T := \{ A \in \mathcal{F}_{\infty} : \forall t \in \mathbb{R}^+, A \cap \{ T \le t \} \in \mathcal{F}_t \}.$$

Proposition

Soit $(X_t)_{t \in \mathbb{R}^+}$ un processus (\mathcal{F}_t) -adapté, dont les trajectoires sont \mathbb{P} -p.s. continues à droite ou à gauche.

Définition

Soit T un temps d'arrêt relativement à une filtration $(\mathcal{F}_t)_{t\in\mathbb{R}^+}$. On définit une tribu \mathcal{F}_T comme suit

$$\mathcal{F}_T := \{ A \in \mathcal{F}_{\infty} : \forall t \in \mathbb{R}^+, A \cap \{ T \le t \} \in \mathcal{F}_t \}.$$

Proposition

Soit $(X_t)_{t \in \mathbb{R}^+}$ un processus (\mathcal{F}_t) -adapté, dont les trajectoires sont \mathbb{P} -p.s. continues à droite ou à gauche. Soit T un temps d'arrêt relativement à (\mathcal{F}_t) .

Définition

Soit T un temps d'arrêt relativement à une filtration $(\mathcal{F}_t)_{t\in\mathbb{R}^+}$. On définit une tribu \mathcal{F}_T comme suit

$$\mathcal{F}_{\mathcal{T}} := \{ A \in \mathcal{F}_{\infty} : \forall t \in \mathbb{R}^+, A \cap \{ T \le t \} \in \mathcal{F}_t \}.$$

Proposition

Soit $(X_t)_{t \in \mathbb{R}^+}$ un processus (\mathcal{F}_t) -adapté, dont les trajectoires sont \mathbb{P} -p.s. continues à droite ou à gauche. Soit T un temps d'arrêt relativement à (\mathcal{F}_t) . Alors, X_T est une variable aléatoire, mesurable (sur $\{T < \infty\}$) relativement à la filtration \mathcal{F}_T .

Définition

Soit $(X_t)_{t\in\mathbb{T}}$ un processus à valeurs réelles, (\mathcal{F}_t) -adapté.

Définition

Soit $(X_t)_{t\in\mathbb{T}}$ un processus à valeurs réelles, (\mathcal{F}_t) -adapté. On dit que c'est une sous-martingale relativement à $(\mathcal{F}_t)_{t\in\mathbb{T}}$ si

(i) $\mathbb{E}(X_t^+) < \infty$, pour tout $t \in \mathbb{T}$;

Définition

Soit $(X_t)_{t\in\mathbb{T}}$ un processus à valeurs réelles, (\mathcal{F}_t) -adapté. On dit que c'est une sous-martingale relativement à $(\mathcal{F}_t)_{t\in\mathbb{T}}$ si

- (i) $\mathbb{E}(X_t^+) < \infty$, pour tout $t \in \mathbb{T}$;
- (ii) $X_s \leq \mathbb{E}(X_t|\mathcal{F}_s)$ a.s., pour tout s < t dans \mathbb{T} .

Définition

Soit $(X_t)_{t\in\mathbb{T}}$ un processus à valeurs réelles, (\mathcal{F}_t) -adapté. On dit que c'est une sous-martingale relativement à $(\mathcal{F}_t)_{t\in\mathbb{T}}$ si

- (i) $\mathbb{E}(X_t^+) < \infty$, pour tout $t \in \mathbb{T}$;
- (ii) $X_s \leq \mathbb{E}(X_t|\mathcal{F}_s)$ a.s., pour tout s < t dans \mathbb{T} .

On dit que c'est une sur-martingale si $(-X_t)_{t\in\mathbb{T}}$ est une sous-martingale et que c'est une martingale si c'est à la fois une sous et une sur-martingale.

Théorème (Doob's maximal inequality)

Soit $\mathbb T$ un intervalle réel et $(X_t)_{t\in T}$ un processus continu à droite.

Théorème (Doob's maximal inequality)

Soit $\mathbb T$ un intervalle réel et $(X_t)_{t\in T}$ un processus continu à droite. Supposons que (X_t) est une martingale ou une sous-martingale positive.

Théorème (Doob's maximal inequality)

Soit $\mathbb T$ un intervalle réel et $(X_t)_{t\in T}$ un processus continu à droite. Supposons que (X_t) est une martingale ou une sous-martingale positive. Alors $X^* := \sup_{t\in \mathbb T} |X_t|$ définit une variable aléatoire et

$$\sup_{\lambda>0} \lambda^p \mathbb{P}(X^* \geq \lambda) \leq \sup_{t \in \mathbb{T}} \mathbb{E}(|X_t|^p), \qquad \text{pour tout } p \geq 1 ;$$
$$\|X^*\|_p \leq \frac{p}{p-1} \sup_{t \in \mathbb{T}} \|X_t\|_p.$$

Théorème (Doob's maximal inequality)

Soit $\mathbb T$ un intervalle réel et $(X_t)_{t\in T}$ un processus continu à droite. Supposons que (X_t) est une martingale ou une sous-martingale positive. Alors $X^* := \sup_{t\in \mathbb T} |X_t|$ définit une variable aléatoire et

$$\sup_{\lambda>0} \lambda^p \mathbb{P}(X^* \geq \lambda) \leq \sup_{t \in \mathbb{T}} \mathbb{E}(|X_t|^p), \qquad \textit{pour tout } p \geq 1 ;$$
$$\|X^*\|_p \leq \frac{p}{p-1} \sup_{t \in \mathbb{T}} \|X_t\|_p.$$

Remarque : Si $\mathbb{T} = [0, A]$, on a aussi, pour tout $\lambda > 0$,

$$\lambda \mathbb{P}(\sup_{t \in [0,A]} |X_t| \ge \lambda) \le \mathbb{E}(|X_A| \mathbf{1}_{\{\sup_{t \in [0,A]} |X_t| \ge \lambda\}}).$$

Lemme des montées de Doob

Soit f une fonction à valeurs réelles, définie sur un sous-ensemble \mathbb{T} de \mathbb{R} . Soit $t_1, \ldots, t_d \in \mathbb{T}$ et a < b des réels.

Soit f une fonction à valeurs réelles, définie sur un sous-ensemble \mathbb{T} de \mathbb{R} . Soit $t_1, \ldots, t_d \in \mathbb{T}$ et a < b des réels.

On définit par récurrence une suite (stationnaire) (s_n) , par $s_0=0$, $s_{2n+1}=\inf\{t_i>s_{2n}: f(t_i)< a\}$

Soit f une fonction à valeurs réelles, définie sur un sous-ensemble \mathbb{T} de \mathbb{R} . Soit $t_1, \ldots, t_d \in \mathbb{T}$ et a < b des réels.

On définit par récurrence une suite (stationnaire) (s_n) , par $s_0=0$, $s_{2n+1}=\inf\{t_i>s_{2n}: f(t_i)< a\}$ $s_{2n+2}=\inf\{t_i>s_{2n+1}: f(t_i)> b\}.$

Soit f une fonction à valeurs réelles, définie sur un sous-ensemble \mathbb{T} de \mathbb{R} . Soit $t_1, \ldots, t_d \in \mathbb{T}$ et a < b des réels.

On définit par récurrence une suite (stationnaire) (s_n) , par $s_0=0$, $s_{2n+1}=\inf\{t_i>s_{2n}:\ f(t_i)< a\}$ $s_{2n+2}=\inf\{t_i>s_{2n+1}:\ f(t_i)> b\}.$

On convient que inf $\emptyset = t_d$.

Soit f une fonction à valeurs réelles, définie sur un sous-ensemble \mathbb{T} de \mathbb{R} . Soit $t_1, \ldots, t_d \in \mathbb{T}$ et a < b des réels.

On définit par récurrence une suite (stationnaire)
$$(s_n)$$
, par $s_0=0$, $s_{2n+1}=\inf\{t_i>s_{2n}: f(t_i)< a\}$ $s_{2n+2}=\inf\{t_i>s_{2n+1}: f(t_i)> b\}.$

On convient que inf $\emptyset = t_d$.

Posons,
$$F = \{t_1, \dots, t_d\}$$
 et notons $\tilde{U}(f, F, [a, b]) = \sup\{n : s_{2n} < t_d\}.$

Soit f une fonction à valeurs réelles, définie sur un sous-ensemble \mathbb{T} de \mathbb{R} . Soit $t_1, \ldots, t_d \in \mathbb{T}$ et a < b des réels.

On définit par récurrence une suite (stationnaire)
$$(s_n)$$
, par $s_0=0$, $s_{2n+1}=\inf\{t_i>s_{2n}: f(t_i)< a\}$ $s_{2n+2}=\inf\{t_i>s_{2n+1}: f(t_i)> b\}.$

On convient que inf $\emptyset = t_d$.

Posons,
$$F = \{t_1, \dots, t_d\}$$
 et notons $\tilde{U}(f, F, [a, b]) = \sup\{n : s_{2n} < t_d\}.$ $U(f, \mathbb{T}, [a, b]) = \sup\{D(f, F, [a, b]) : F \subset \mathbb{T}, \text{ fini}\}.$

Soit f une fonction à valeurs réelles, définie sur un sous-ensemble \mathbb{T} de \mathbb{R} . Soit $t_1, \ldots, t_d \in \mathbb{T}$ et a < b des réels.

On définit par récurrence une suite (stationnaire) (s_n) , par $s_0=0$, $s_{2n+1}=\inf\{t_i>s_{2n}:\ f(t_i)< a\}$ $s_{2n+2}=\inf\{t_i>s_{2n+1}:\ f(t_i)>b\}.$

On convient que inf $\emptyset = t_d$.

Posons,
$$F = \{t_1, \dots, t_d\}$$
 et notons $\tilde{U}(f, F, [a, b]) = \sup\{n : s_{2n} < t_d\}.$ $U(f, \mathbb{T}, [a, b]) = \sup\{D(f, F, [a, b]) : F \subset \mathbb{T}, \text{ fini}\}.$

On remarquera que $U(f, \mathbb{T}, [a, b])$ est fini pour toute paire $\{a, b\}$ de rationnels, si et seulement si f n'admet pas de discontinuité de seconde espèce sur \mathbb{T} .

Proposition

Soit $(X_t)_{t\in\mathbb{T}}$ une sous-martingale, avec \mathbb{T} dénombrable.

Proposition

Soit $(X_t)_{t\in\mathbb{T}}$ une sous-martingale, avec \mathbb{T} dénombrable. Pour tout $a,b\in\mathbb{T}$, on a :

$$(b-a)\mathbb{E}(D(X,\mathbb{T},[a,b]) \leq \sup_{t\in\mathbb{T}}\mathbb{E}((X_t-b)^+).$$

Proposition

Soit $(X_t)_{t\in\mathbb{T}}$ une sous-martingale, avec \mathbb{T} dénombrable. Pour tout $a,b\in\mathbb{T}$, on a :

$$(b-a)\mathbb{E}(D(X,\mathbb{T},[a,b]) \leq \sup_{t\in\mathbb{T}}\mathbb{E}((X_t-b)^+).$$

Théorème

Soit $(X_t)_{t\in\mathbb{R}^+}$ une sous-martingale. Il existe $\Omega_0\in\mathcal{F}$ tel que $\mathbb{P}(\Omega_0)=1$ et pour tout $\omega\in\Omega_0$, et tout $t\in\mathbb{R}^+$ les limites

Proposition

Soit $(X_t)_{t\in\mathbb{T}}$ une sous-martingale, avec \mathbb{T} dénombrable. Pour tout $a,b\in\mathbb{T}$, on a :

$$(b-a)\mathbb{E}(D(X,\mathbb{T},[a,b]) \leq \sup_{t\in\mathbb{T}}\mathbb{E}((X_t-b)^+).$$

Théorème

Soit $(X_t)_{t\in\mathbb{R}^+}$ une sous-martingale. Il existe $\Omega_0\in\mathcal{F}$ tel que $\mathbb{P}(\Omega_0)=1$ et pour tout $\omega\in\Omega_0$, et tout $t\in\mathbb{R}^+$ les limites $\lim_{r\uparrow t,\ r\in\mathbb{Q}}X_t(\omega)$ et $\lim_{r\downarrow t,\ r\in\mathbb{Q}}X_t(\omega)$ existent.

Théorème

Soit $(X_t)_{t \in \mathbb{R}^+}$ une sous-martingale (par rapport à une filtration (\mathcal{F}_t)) continue à droite en probabilité.

Théorème

Soit $(X_t)_{t \in \mathbb{R}^+}$ une sous-martingale (par rapport à une filtration (\mathcal{F}_t)) continue à droite en probabilité. Alors $(X_t)_{t \in \mathbb{R}^+}$ admet une modification cadlag qui est une martingale (par rapport à la même filtration).

Théorème

Soit $(X_t)_{t \in \mathbb{R}^+}$ une sous-martingale (par rapport à une filtration (\mathcal{F}_t)) continue à droite en probabilité. Alors $(X_t)_{t \in \mathbb{R}^+}$ admet une modification cadlag qui est une martingale (par rapport à la même filtration).

Remarque : le théorème reste vrai si l'on remplace l'hypothèse de continuité à droite de la martingale par : la continuité à droite de la filtration et de l'application $t \to \mathbb{E}(X_t)$.

Théorème

Soit $(X_t)_{t \in \mathbb{R}^+}$ une sous-martingale (par rapport à une filtration (\mathcal{F}_t)) continue à droite en probabilité. Alors $(X_t)_{t \in \mathbb{R}^+}$ admet une modification cadlag qui est une martingale (par rapport à la même filtration).

Remarque : le théorème reste vrai si l'on remplace l'hypothèse de continuité à droite de la martingale par : la continuité à droite de la filtration et de l'application $t \to \mathbb{E}(X_t)$.

On pourra donc dorénavant considérer des martingales continues à droite (p.s.) et par exemple utiliser le théorème 3.

