CSCI 335 Theory of Computing

Lecture 15 – Decidability I: Decidable Languages

DATE: December 11 2022

Learning Outcomes

NEWGIZA UNIVERSITY

Learning Outcomes

By the end of this section you will be able to:

- Construct Turing machines for some decidable regular languages
- Construct Turing machines for some decidable context-free languages
- Get acquainted with examples of undecidable languages

- Decidable problems concerning regular languages
- Decidable problems concerning contextfree languages
- Undecidable problems concerning context-free languages

Decidable problems concerning regular languages

Acceptance Problem for DFAs

Shorthand:

Let $A_{DFA} = \{\langle B, w \rangle | B \text{ is a DFA and } B \text{ accepts } w\}$

Theorem: A_{DFA} is decidable

Proof: Give TM $D_{\mathrm{A-DFA}}$ that decides A_{DFA} .

$$D_{A-DFA}$$
 = "On input s

- Check that s has the form $\langle B, w \rangle$ where
 - On input $\langle B, w \rangle$ B is a DFA and w is a string; reject if not.
- Simulate the computation of B on w.
- If B ends in an accept state then accept. If not then reject."

work tape with current state and input head location

Acceptance Problem for NFAs

NEWGIZA UNIVERSITY

Let $A_{NFA} = \{\langle B, w \rangle | B \text{ is a NFA and } B \text{ accepts } w\}$

Theorem: A_{NFA} is decidable

Proof: Give TM D_{A-NFA} that decides A_{NFA} .

 $D_{A-NFA} =$ "On input $\langle B, w \rangle$

- 1. Convert NFA B to equivalent DFA B'.
- 2. Run TM $D_{
 m A-DFA}$ on input $\langle B',w
 angle$. [Recall that $D_{
 m A-DFA}$ decides $A_{
 m DFA}$]
- 3. Accept if D_{A-DFA} accepts. Reject if not."

New element: Use conversion construction and previously constructed TM as a subroutine.

Emptiness Problem for DFAs

NEWGIZA UNIVERSITY

Let $E_{DFA} = \{\langle B \rangle | B \text{ is a DFA and } L(B) = \emptyset \}$

Theorem: E_{DFA} is decidable

Proof: Give TM $D_{\rm E-DFA}$ that decides $E_{\rm DFA}$.

 D_{E-DFA} = "On input $\langle B \rangle$ [IDEA: Check for a path from start to accept.]

- 1. Mark start state.
- 2. Repeat until no new state is marked:

Mark every state that has an incoming arrow from a previously marked state.

Accept if no accept state is marked.
 Reject if some accept state is marked."

Equivalence problem for DFAs

NEWGIZA UNIVERSITY

Let $EQ_{DFA} = \{\langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$

Theorem: EQ_{DFA} is decidable

Proof: Give TM $D_{
m EQ-DFA}$ that decides $EQ_{
m DFA}$.

 $D_{\rm EQ-DFA}=$ "On input $\langle A,B \rangle$ [IDEA: Make DFA $\cal C$ that accepts w where A and B disagree.]

- 1. Construct DFA C where $L(C) = \left(L(A) \cap \overline{L(B)}\right) \cup \left(\overline{L(A)} \cap L(B)\right)$.
- 2. Run $D_{\mathrm{E-DFA}}$ on $\langle \mathcal{C}
 angle$.
- 3. Accept if $D_{\mathrm{E-DFA}}$ accepts. Reject if $D_{\mathrm{E-DFA}}$ rejects."

Symmetric difference

Equivalence problem for DFAs

NEW GIZA UNIVERSITY

Let $EQ_{DFA} = \{\langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$

Theorem: EQ_{DFA} is decidable

Proof: Give TM $D_{
m EO-DFA}$ that decides $EQ_{
m DFA}$.

 $D_{\mathrm{EQ-DFA}} =$ "On input $\langle A, B \rangle$ [IDEA: Make DFA C that accepts w where A and B disagree.]

- 1. Construct DFA C where $L(C) = \left(L(A) \cap \overline{L(B)}\right) \cup \left(\overline{L(A)} \cap L(B)\right)$.
- 2. Run $D_{\rm E-DFA}$ on $\langle C \rangle$.
- 3. Accept if $D_{\mathrm{E-DFA}}$ accepts. Reject if $D_{\mathrm{E-DFA}}$ rejects."

Check-in 7.1

Let $EQ_{REX} = \{\langle R_1, R_2 \rangle | R_1 \text{ and } R_2 \text{ are regular expressions and } L(R_1) = L(R_2) \}$

Can we now conclude that EQ_{REX} is decidable?

- a) Yes, it follows immediately from things we've already shown.
- b) Yes, but it would take significant additional work.
- c) No, intersection is not a regular operation.

Decidable problems concerning context-free languages

Acceptance Problem for CFGs

Recall Chomsky Normal Form (CNF) only allows rules:

 $A \rightarrow BC$

 $B \rightarrow b$

Lemma 1: Can convert every CFG into CNF. Proof and construction in book.

Lemma 2: If H is in CNF and $w \in L(H)$ then every derivation of w has 2|w| - 1 steps. Proof: exercise.

NEWGI7A IINIVERSITY

Acceptance Problem for CFGs

Let $A_{CFG} = \{\langle G, w \rangle | G \text{ is a CFG and } w \in L(G) \}$

Theorem: A_{CFG} is decidable

Proof: Give TM D_{A-CFG} that decides A_{CFG} .

 $D_{A-CFG} =$ "On input $\langle G, w \rangle$

- 1. Convert *G* into CNF.
- 2. Try all derivations of length 2|w| 1.
- 3. Accept if any generate w. Reject if not.

Corollary: Every CFL is decidable.

Proof: Let A be a CFL, generated by CFG G. Construct TM $M_G =$ "on input w

- 1. Run D_{A-CFG} on $\langle G, w \rangle$.
- 2. Accept if D_{A-CFG} accepts Reject if it rejects."

Check-in 7.2

Can we conclude that $A_{\rm PDA}$ is decidable?

- a) Yes.
- b) No, PDAs may be nondeterministic.
- c) No, PDAs may not halt.

Emptiness Problem for CFGs

NEWGIZA UNIVERSITY

Let $E_{CFG} = \{\langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}$

Theorem: E_{CFG} is decidable

Proof:

 $D_{\rm E-CFG}$ = "On input $\langle G \rangle$ [IDEA: work backwards from terminals]

- 1. Mark all occurrences of terminals in *G*.
- 2. Repeat until no new variables are marked Mark all occurrences of variable A if $A \rightarrow B_1 B_2 \cdots B_k$ is a rule and all B_i were already marked.
- 3. *Reject* if the start variable is marked. *Accept* if not."

Mark the terminals first. Then mark a variable if it is the antecedent in a rule whose all consequences are all marked. $\begin{array}{c} S \to RTa \\ R \to Tb \\ T \to a \end{array}$

Example undecidable problems

Undecidable problems of context-free languages

Let
$$EQ_{\mathrm{CFG}} = \{\langle G, H \rangle | G, H \text{ are CFGs and } L(G) = L(H) \}$$

Theorem: EQ_{CFG} is NOT decidable

Let $AMBIG_{CFG} = \{\langle G \rangle | G \text{ is an ambiguous CFG } \}$

Theorem: $AMBIG_{CFG}$ is NOT decidable

Check-in 7.3

Why can't we use the same technique we used to show $EQ_{\rm DFA}$ is decidable to show that $EQ_{\rm CFG}$ is decidable?

- a) Because CFGs are generators and DFAs are recognizers.
- b) Because CFLs are closed under union.
- c) Because CFLs are not closed under complementation and intersection.

NEWGI7A IINIVERSITY

Acceptance problem for Turing machines

Let $A_{TM} = \{\langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w\}$

Theorem: A_{TM} is not decidable

Theorem: A_{TM} is T-recognizable

Proof: The following TM U recognizes $A_{\rm TM}$

U = "On input $\langle M, w \rangle$

1. Simulate M on input w.

- 2. Accept if M halts and accepts.
- 3. Reject if M halts and rejects.
- 4. Reject if M never halts." Not a legal TM action.

Von Neumann said U inspired the concept of a stored program computer.

Summary

Summary

- Decidable problems concerning regular languages: $A_{
 m DFA}$, $A_{
 m NFA}$, $E_{
 m DFA}$, $EQ_{
 m DFA}$,
- \bullet Decidable problems concerning context-free languages: $A_{\rm CFG}$, $E_{\rm CFG}$
- Examples of undecidable problems: $EQ_{\mathrm{CFG'}}$ $AMBIG_{\mathrm{CFG}}$
- Example of an undecidable but recognizable problem: A_{TM}

Summary

Readings

Decidable languages: Section 4.1 (Sipser 2013)