Complex power functions

Arijit Ganguly Department of Mathematics and Statistics Indian Institute of Technology Kanpur

August 20, 2023

To begin with, let us recall how power functions are defined over \mathbb{R} . For x > 0 and $a \in \mathbb{R}$,

$$x^{a} \stackrel{\text{def}}{=} e^{a \log x}. \tag{*1}$$

It follows from the definition, given as above in (*1), that for any fixed $a \in \mathbb{R}$, $x \mapsto x^a$ is a C^{∞} function from $(0, \infty)$ to $(0, \infty)$. We now adapt (*1) over \mathbb{C} to define complex power functions.

Let $z \in \mathbb{C} \setminus \{0\}$ and $w \in \mathbb{C}$. Unlike the real scenario, here we have too many (branches of) logarithm, and moreover, there is no canonical choice among them. Hence To make the definition of z^w , we first need to make a choice of $\alpha \in \mathbb{R}$, and then we proceed as before:

$$z^{w} \stackrel{\text{def}}{=} \exp(w \log_{\alpha} z). \tag{*2}$$

Thus we can see that, for given $z \in \mathbb{C} \setminus \{0\}$ and $w \in \mathbb{C}$, z^w does depend upon the choice of the branch \log_{α} . Indeed, varying α , one obtains all possible values of z^w . It is now immediate in view of the definition (*2) that, given $\alpha \in \mathbb{R}$,

$$\mathbb{C} \setminus \overline{R_{\alpha}} \longrightarrow \mathbb{C} \setminus \{0\}, \ z \mapsto z^{w}, \tag{*3}$$

is a holomorphic function. From now on, once we have made the choice of α , we shall assume that the domain of the power function $z \mapsto z^w$ is $\mathbb{C} \setminus \overline{R_\alpha}$, unless otherwise mentioned. It is clear that the derivative of (*3) at any point $z \in \mathbb{C} \setminus \overline{R_\alpha}$ is wz^{w-1} .

As mentioned above, unlike the scenario over \mathbb{R} where power of a positive number is a unique number, here z^w has more than one values, until and unless we make a choice of α . In fact, for given x > 0 and $a \in \mathbb{R}$, the value of x^a obtained from (*1) is included in the set of values that (*2) yields by varying α . To see this, take $\alpha = -\pi$. Then

$$x^{a} = \exp(a \log_{-\pi} x) = \exp(a \log x) = e^{a \log x},$$

as exp and $\log_{-\pi}$ extends the exponential and logarithm functions over \mathbb{R} respectively. In what follows, when $a = \frac{1}{n}$, where $n \in \mathbb{N}$, we shall see how all *n*-th roots of *a*, including the complex ones, can be obtained by making different choices of α .

Let us first consider the simple case where $a = \frac{1}{2}$. As seen above, taking $\alpha = -\pi$, we get the \sqrt{x} , i.e., the positive square root of x. Now observe that

$$\exp\left(\frac{1}{2}\log_{\pi}x\right) = \exp\left(\frac{1}{2}\log_{\pi}(\exp(\log x + 2\pi i))\right) = \exp\left(\frac{1}{2}(\log x + 2\pi i)\right) = \sqrt{x}\exp(i\pi) = -\sqrt{x}.$$

Thus $\alpha = \pi$ gives us the negative square root. As, for any $\alpha \in \mathbb{R}$, $\left(\exp\left(\frac{1}{2}\log_{\pi}x\right)\right)^2 = \exp(\log_{\alpha}x) = x$, so \sqrt{x} and $-\sqrt{x}$ are precisely all the values that we obtain from (*2) by varying α . Geometrically the curve $y^2 = x$ has two branches. It is customary to choose the branch in which y > 0 and denote y by \sqrt{x} . We obtain this branch from that of the complex square root function corresponding to $\alpha = -\pi$, while $\alpha = \pi$ yields us the other branch, i.e., in which y < 0.

Let $n \in \mathbb{N}$. Choose $k \in \mathbb{Z}$ such that $2k\pi \le \alpha < 2(k+1)\pi$. If $\alpha = 2k\pi$, we see that

$$\exp\left(\frac{1}{n}\log_{\alpha}x\right) = \exp\left(\frac{1}{n}\log_{\alpha}\left(\exp(\log x + 2k\pi i)\right)\right)$$
$$= \exp\left(\frac{1}{n}(\log x + 2k\pi i)\right)$$
$$= \sqrt[n]{x} \cdot \exp\left(\frac{2k\pi i}{n}\right).$$

Similarly one obtains that $\exp\left(\frac{1}{n}\log_{\alpha}x\right) = \sqrt[n]{x} \cdot \exp\left(\frac{2(k+1)\pi i}{n}\right)$, when $\alpha > 2k\pi$, as then one has $2(k+1)\pi$ lies in $\in [\alpha, \alpha + 2\pi)$. Thus $\exp\left(\frac{1}{n}\log_{\alpha}x\right)$ is always of the form $\sqrt[n]{x} \cdot \exp\left(\frac{2k\pi i}{n}\right)$, where $k \in \mathbb{Z}$. Write k = nq + r, where $q \in \mathbb{Z}$ and $r \in \{0, 1, \dots, n-1\}$. Then it is easy to see that $\exp\left(\frac{2k\pi i}{n}\right) = \exp\left(\frac{2r\pi i}{n}\right)$. This shows that, the values of $x^{\frac{1}{n}}$ that we obtain from (*2) by varying α are precisely the following:

$$\sqrt[n]{x}$$
, $\sqrt[n]{x} \cdot \exp\left(\frac{2\pi i}{n}\right)$, $\sqrt[n]{x} \cdot \exp\left(\frac{4\pi i}{n}\right)$, ..., $\sqrt[n]{x} \cdot \exp\left(\frac{2(n-1)\pi i}{n}\right)$. (*4)

Note that, the complex numbers as listed above in (*4), are precisely all roots of the equation $z^n = x$.