Cryptography Lecture 24

Arkady Yerukhimovich

November 20, 2024

Outline

Lecture 23 Review

2 Digital Signatures from Private-Key Techniques

3 Digital Signatures from Discrete Log

Lecture 23 Review

- Defining digital signatures
- Applications of signatures
- RSA digital signature

Outline

Lecture 23 Review

2 Digital Signatures from Private-Key Techniques

3 Digital Signatures from Discrete Log

One-Way Function

A function $f:\{0.1\}^* \rightarrow \{0,1\}^*$ is one-way if

One-Way Function

A function $f: \{0.1\}^* \rightarrow \{0,1\}^*$ is *one-way* if

• Easy to compute: Can compute f(x) in poly time for all x

One-Way Function

A function $f:\{0.1\}^* \rightarrow \{0,1\}^*$ is one-way if

- Easy to compute: Can compute f(x) in poly time for all x
- Hard to invert: \forall PPT \mathcal{A} , $\Pr[\mathsf{Invert}_{\mathcal{A},f}(n)=1] \leq \mathsf{negl}(n)$

One-Way Function

A function $f: \{0.1\}^* \rightarrow \{0,1\}^*$ is *one-way* if

- Easy to compute: Can compute f(x) in poly time for all x
- Hard to invert: $\forall \ \mathsf{PPT} \ \mathcal{A}, \ \mathsf{Pr}[\mathsf{Invert}_{\mathcal{A},f}(n)=1] \leq \mathsf{negl}(n)$

Invert $_{A,f}(n)$ is the following game between A and a challenger:

$\mathsf{Invert}_{\mathcal{A},f}(n)$

One-Way Function

A function $f: \{0.1\}^* \rightarrow \{0,1\}^*$ is *one-way* if

- Easy to compute: Can compute f(x) in poly time for all x
- ullet Hard to invert: \forall PPT \mathcal{A} , $\Pr[\mathsf{Invert}_{\mathcal{A},f}(n)=1] \leq \mathsf{negl}(n)$

Invert_{A,f}(n) is the following game between A and a challenger:

$\mathsf{Invert}_{\mathcal{A},f}(n)$

• Challenger chooses $x \leftarrow \{0,1\}^n$ and computes y = f(x)

One-Way Function

A function $f: \{0.1\}^* \rightarrow \{0,1\}^*$ is *one-way* if

- Easy to compute: Can compute f(x) in poly time for all x
- ullet Hard to invert: \forall PPT \mathcal{A} , $\Pr[\mathsf{Invert}_{\mathcal{A},f}(n)=1] \leq \mathsf{negl}(n)$

Invert_{A,f}(n) is the following game between A and a challenger:

$\mathsf{Invert}_{\mathcal{A},f}(n)$

- Challenger chooses $x \leftarrow \{0,1\}^n$ and computes y = f(x)
- \bullet \mathcal{A} gets y and outputs x'

One-Way Function

A function $f: \{0.1\}^* \rightarrow \{0,1\}^*$ is *one-way* if

- Easy to compute: Can compute f(x) in poly time for all x
- ullet Hard to invert: \forall PPT \mathcal{A} , $\Pr[\mathsf{Invert}_{\mathcal{A},f}(n)=1] \leq \mathsf{negl}(n)$

Invert $_{\mathcal{A},f}(n)$ is the following game between \mathcal{A} and a challenger:

$\mathsf{Invert}_{\mathcal{A},f}(n)$

- Challenger chooses $x \leftarrow \{0,1\}^n$ and computes y = f(x)
- ullet ${\cal A}$ gets y and outputs x'
- We say that Invert_{A,f}(n) = 1 (i.e., A wins) if f(x') = y.

One-Way Function

A function $f: \{0.1\}^* \rightarrow \{0,1\}^*$ is *one-way* if

- Easy to compute: Can compute f(x) in poly time for all x
- ullet Hard to invert: \forall PPT \mathcal{A} , $\Pr[\mathsf{Invert}_{\mathcal{A},f}(n)=1] \leq \mathsf{negl}(n)$

Invert $_{\mathcal{A},f}(n)$ is the following game between \mathcal{A} and a challenger:

$\mathsf{Invert}_{\mathcal{A},f}(n)$

- Challenger chooses $x \leftarrow \{0,1\}^n$ and computes y = f(x)
- \bullet \mathcal{A} gets y and outputs x'
- We say that Invert_{A,f}(n) = 1 (i.e., A wins) if f(x') = y.

Observations:

ullet ${\cal A}$ does not necessarily have to recover ${\it x}$ to win

One-Way Function

A function $f: \{0.1\}^* \rightarrow \{0,1\}^*$ is *one-way* if

- Easy to compute: Can compute f(x) in poly time for all x
- ullet Hard to invert: \forall PPT \mathcal{A} , $\Pr[\mathsf{Invert}_{\mathcal{A},f}(n)=1] \leq \mathsf{negl}(n)$

Invert $_{\mathcal{A},f}(n)$ is the following game between \mathcal{A} and a challenger:

$\mathsf{Invert}_{\mathcal{A},f}(n)$

- Challenger chooses $x \leftarrow \{0,1\}^n$ and computes y = f(x)
- \mathcal{A} gets y and outputs x'
- We say that Invert_{A,f}(n) = 1 (i.e., A wins) if f(x') = y.

Observations:

- A does not necessarily have to recover x to win
- One-way functions are the most basic private-key primitives

One-Way Function

A function $f: \{0.1\}^* \rightarrow \{0,1\}^*$ is *one-way* if

- Easy to compute: Can compute f(x) in poly time for all x
- ullet Hard to invert: \forall PPT \mathcal{A} , $\Pr[\mathsf{Invert}_{\mathcal{A},f}(n)=1] \leq \mathsf{negl}(n)$

Invert_{A,f}(n) is the following game between A and a challenger:

$\mathsf{Invert}_{\mathcal{A},f}(n)$

- Challenger chooses $x \leftarrow \{0,1\}^n$ and computes y = f(x)
- \mathcal{A} gets y and outputs x'
- We say that Invert_{A,f}(n) = 1 (i.e., A wins) if f(x') = y.

Observations:

- A does not necessarily have to recover x to win
- One-way functions are the most basic private-key primitives
- We've seen many examples: CRHFs, PRG, RSA

Let Π be a digital signature scheme. Consider the following game between an adversary $\mathcal A$ and a challenger:

$\mathsf{SigForge}_{\mathcal{A},\Pi}(n)$

- Challenger runs $(pk, sk) \leftarrow \mathsf{Gen}(1^n)$ and gives pk to \mathcal{A}
- ullet ${\cal A}$ gets pk and oracle access to ${\sf Sign}_{sk}(\cdot)$ and outputs (m,σ)
 - ullet Let Q denote the set of $\mathsf{Sign}_{\mathit{sk}}(\cdot)$ queries made by $\mathcal A$
- We say that SigForge_{A,Π}(n) = 1 (i.e., A wins) if Verify_{pk} $(m, \sigma) = 1$ and $m \notin Q$.

Let Π be a digital signature scheme. Consider the following game between an adversary $\mathcal A$ and a challenger:

$SigForge_{A,\Pi}(n)$

- Challenger runs $(pk, sk) \leftarrow \text{Gen}(1^n)$ and gives pk to A
- \mathcal{A} gets pk and oracle access to $\operatorname{Sign}_{sk}(\cdot)$ and outputs (m, σ)
 - ullet Let Q denote the set of $\mathrm{Sign}_{sk}(\cdot)$ queries made by $\mathcal A$
- We say that SigForge_{A,Π}(n) = 1 (i.e., A wins) if Verify_{pk} $(m, \sigma) = 1$ and $m \notin Q$.

One-time signature:

Let Π be a digital signature scheme. Consider the following game between an adversary $\mathcal A$ and a challenger:

$SigForge_{A,\Pi}(n)$

- Challenger runs $(pk, sk) \leftarrow \text{Gen}(1^n)$ and gives pk to A
- ullet ${\cal A}$ gets pk and oracle access to ${\sf Sign}_{sk}(\cdot)$ and outputs (m,σ)
 - ullet Let Q denote the set of $\mathsf{Sign}_{\mathit{sk}}(\cdot)$ queries made by $\mathcal A$
- We say that SigForge_{A,Π}(n) = 1 (i.e., A wins) if Verify_{pk} $(m, \sigma) = 1$ and $m \notin Q$.

One-time signature:

 \bullet In a one-time signature, ${\mathcal A}$ can only query the ${\rm Sign}_{sk}(\cdot)$ oracle once.

Let Π be a digital signature scheme. Consider the following game between an adversary $\mathcal A$ and a challenger:

$SigForge_{A,\Pi}(n)$

- Challenger runs $(pk, sk) \leftarrow \mathsf{Gen}(1^n)$ and gives pk to \mathcal{A}
- ullet ${\cal A}$ gets pk and oracle access to ${\sf Sign}_{sk}(\cdot)$ and outputs (m,σ)
 - ullet Let Q denote the set of $\mathsf{Sign}_{sk}(\cdot)$ queries made by $\mathcal A$
- We say that SigForge_{A,Π}(n) = 1 (i.e., A wins) if Verify_{pk} $(m, \sigma) = 1$ and $m \notin Q$.

One-time signature:

- In a one-time signature, \mathcal{A} can only query the $\mathsf{Sign}_{\mathsf{sk}}(\cdot)$ oracle once.
- ullet Informally: After seeing one signature, ${\cal A}$ can't forge another one

Let Π be a digital signature scheme. Consider the following game between an adversary $\mathcal A$ and a challenger:

$SigForge_{A,\Pi}(n)$

- Challenger runs $(pk, sk) \leftarrow \text{Gen}(1^n)$ and gives pk to A
- \mathcal{A} gets pk and oracle access to $\mathsf{Sign}_{sk}(\cdot)$ and outputs (m,σ)
 - ullet Let Q denote the set of $\mathsf{Sign}_{sk}(\cdot)$ queries made by $\mathcal A$
- We say that SigForge_{A,Π}(n) = 1 (i.e., A wins) if Verify_{pk} $(m, \sigma) = 1$ and $m \notin Q$.

One-time signature:

- ullet In a one-time signature, ${\mathcal A}$ can only query the ${\sf Sign}_{{\it sk}}(\cdot)$ oracle once.
- ullet Informally: After seeing one signature, ${\cal A}$ can't forge another one
- This is not a very useful notion of security, but we will use it as a building block

Arkady Yerukhimovich Cryptography November 20, 2024 6/21

We construct a signature scheme from any OWF as follows:

• Gen(1ⁿ): To sign ℓ -bit messages, for $i \in \{1, ..., \ell\}$:

- Gen(1ⁿ): To sign ℓ -bit messages, for $i \in \{1, ..., \ell\}$:
 - Choose $x_{i,0}, x_{i,1} \leftarrow \{0,1\}^n$

- Gen(1ⁿ): To sign ℓ -bit messages, for $i \in \{1, ..., \ell\}$:
 - Choose $x_{i,0}, x_{i,1} \leftarrow \{0,1\}^n$
 - Compute $y_{i,0} = f(x_{i,0})$ and $y_{i,1} = f(x_{i,1})$

- Gen(1ⁿ): To sign ℓ -bit messages, for $i \in \{1, ..., \ell\}$:
 - Choose $x_{i,0}, x_{i,1} \leftarrow \{0,1\}^n$
 - Compute $y_{i,0} = f(x_{i,0})$ and $y_{i,1} = f(x_{i,1})$
 - Output

$$pk = \begin{pmatrix} y_{1,0} & y_{2,0} & \cdots & y_{\ell,0} \\ y_{1,1} & y_{2,1} & \cdots & y_{\ell,1} \end{pmatrix} \qquad sk = \begin{pmatrix} x_{1,0} & x_{2,0} & \cdots & x_{\ell,0} \\ x_{1,1} & x_{2,1} & \cdots & x_{\ell,1} \end{pmatrix}$$

We construct a signature scheme from any OWF as follows:

- Gen(1ⁿ): To sign ℓ -bit messages, for $i \in \{1, \dots, \ell\}$:
 - Choose $x_{i,0}, x_{i,1} \leftarrow \{0,1\}^n$
 - Compute $y_{i,0} = f(x_{i,0})$ and $y_{i,1} = f(x_{i,1})$
 - Output

$$pk = \begin{pmatrix} y_{1,0} & y_{2,0} & \cdots & y_{\ell,0} \\ y_{1,1} & y_{2,1} & \cdots & y_{\ell,1} \end{pmatrix} \qquad sk = \begin{pmatrix} x_{1,0} & x_{2,0} & \cdots & x_{\ell,0} \\ x_{1,1} & x_{2,1} & \cdots & x_{\ell,1} \end{pmatrix}$$

• Sign_{sk} $(m \in \{0,1\}^{\ell})$: Output $\sigma = x_{1,m_1}, x_{2,m_2}, \dots, x_{\ell,m_{\ell}}$

- Gen(1ⁿ): To sign ℓ -bit messages, for $i \in \{1, ..., \ell\}$:
 - Choose $x_{i,0}, x_{i,1} \leftarrow \{0,1\}^n$
 - Compute $y_{i,0} = f(x_{i,0})$ and $y_{i,1} = f(x_{i,1})$
 - Output

$$pk = \begin{pmatrix} y_{1,0} & y_{2,0} & \cdots & y_{\ell,0} \\ y_{1,1} & y_{2,1} & \cdots & y_{\ell,1} \end{pmatrix} \qquad sk = \begin{pmatrix} x_{1,0} & x_{2,0} & \cdots & x_{\ell,0} \\ x_{1,1} & x_{2,1} & \cdots & x_{\ell,1} \end{pmatrix}$$

- Sign_{sk} $(m \in \{0,1\}^{\ell})$: Output $\sigma = x_{1,m_1}, x_{2,m_2}, \dots, x_{\ell,m_{\ell}}$
- Verify_{pk} (m, σ) : Output 1 if $f(x_{i,m_i}) = y_{i,m_i}$ for all $i \in \{1, \dots, \ell\}$

We construct a signature scheme from any OWF as follows:

- Gen(1ⁿ): To sign ℓ -bit messages, for $i \in \{1, ..., \ell\}$:
 - Choose $x_{i,0}, x_{i,1} \leftarrow \{0,1\}^n$
 - Compute $y_{i,0} = f(x_{i,0})$ and $y_{i,1} = f(x_{i,1})$
 - Output

$$pk = \begin{pmatrix} y_{1,0} & y_{2,0} & \cdots & y_{\ell,0} \\ y_{1,1} & y_{2,1} & \cdots & y_{\ell,1} \end{pmatrix} \qquad sk = \begin{pmatrix} x_{1,0} & x_{2,0} & \cdots & x_{\ell,0} \\ x_{1,1} & x_{2,1} & \cdots & x_{\ell,1} \end{pmatrix}$$

- Sign_{sk} $(m \in \{0,1\}^{\ell})$: Output $\sigma = x_{1,m_1}, x_{2,m_2}, \dots, x_{\ell,m_{\ell}}$
- Verify_{pk} (m, σ) : Output 1 if $f(x_{i,m_i}) = y_{i,m_i}$ for all $i \in \{1, \dots, \ell\}$

Security Intuition

We construct a signature scheme from any OWF as follows:

- Gen(1ⁿ): To sign ℓ -bit messages, for $i \in \{1, ..., \ell\}$:
 - Choose $x_{i,0}, x_{i,1} \leftarrow \{0,1\}^n$
 - Compute $y_{i,0} = f(x_{i,0})$ and $y_{i,1} = f(x_{i,1})$
 - Output

$$pk = \begin{pmatrix} y_{1,0} & y_{2,0} & \cdots & y_{\ell,0} \\ y_{1,1} & y_{2,1} & \cdots & y_{\ell,1} \end{pmatrix} \qquad sk = \begin{pmatrix} x_{1,0} & x_{2,0} & \cdots & x_{\ell,0} \\ x_{1,1} & x_{2,1} & \cdots & x_{\ell,1} \end{pmatrix}$$

- $\operatorname{Sign}_{sk}(m \in \{0,1\}^{\ell})$: Output $\sigma = x_{1,m_1}, x_{2,m_2}, \dots, x_{\ell,m_{\ell}}$
- Verify_{pk} (m, σ) : Output 1 if $f(x_{i,m_i}) = y_{i,m_i}$ for all $i \in \{1, \dots, \ell\}$

Security Intuition

• σ includes one $x_{i,b}$ for each i, this the value of $x_{i,\bar{b}}$ remains secret

Arkady Yerukhimovich

We construct a signature scheme from any OWF as follows:

- Gen(1ⁿ): To sign ℓ -bit messages, for $i \in \{1, ..., \ell\}$:
 - Choose $x_{i,0}, x_{i,1} \leftarrow \{0,1\}^n$
 - Compute $y_{i,0} = f(x_{i,0})$ and $y_{i,1} = f(x_{i,1})$
 - Output

$$pk = \begin{pmatrix} y_{1,0} & y_{2,0} & \cdots & y_{\ell,0} \\ y_{1,1} & y_{2,1} & \cdots & y_{\ell,1} \end{pmatrix} \qquad sk = \begin{pmatrix} x_{1,0} & x_{2,0} & \cdots & x_{\ell,0} \\ x_{1,1} & x_{2,1} & \cdots & x_{\ell,1} \end{pmatrix}$$

- $\operatorname{Sign}_{sk}(m \in \{0,1\}^{\ell})$: Output $\sigma = x_{1,m_1}, x_{2,m_2}, \dots, x_{\ell,m_{\ell}}$
- Verify_{pk} (m, σ) : Output 1 if $f(x_{i,m_i}) = y_{i,m_i}$ for all $i \in \{1, \dots, \ell\}$

Security Intuition

- σ includes one $x_{i,b}$ for each i, this the value of $x_{i,\bar{b}}$ remains secret
- To produce sig on $m' \neq m$, \mathcal{A} needs to recover at least one value $x_{i,b}$ he doesn't know

Arkady Yerukhimovich

We construct a signature scheme from any OWF as follows:

- Gen(1ⁿ): To sign ℓ -bit messages, for $i \in \{1, ..., \ell\}$:
 - Choose $x_{i,0}, x_{i,1} \leftarrow \{0,1\}^n$
 - Compute $y_{i,0} = f(x_{i,0})$ and $y_{i,1} = f(x_{i,1})$
 - Output

$$pk = \begin{pmatrix} y_{1,0} & y_{2,0} & \cdots & y_{\ell,0} \\ y_{1,1} & y_{2,1} & \cdots & y_{\ell,1} \end{pmatrix} \qquad sk = \begin{pmatrix} x_{1,0} & x_{2,0} & \cdots & x_{\ell,0} \\ x_{1,1} & x_{2,1} & \cdots & x_{\ell,1} \end{pmatrix}$$

- $\operatorname{Sign}_{sk}(m \in \{0,1\}^{\ell})$: Output $\sigma = x_{1,m_1}, x_{2,m_2}, \dots, x_{\ell,m_{\ell}}$
- Verify_{pk} (m, σ) : Output 1 if $f(x_{i,m_i}) = y_{i,m_i}$ for all $i \in \{1, \dots, \ell\}$

Security Intuition

- σ includes one $x_{i,b}$ for each i, this the value of $x_{i,\bar{b}}$ remains secret
- To produce sig on $m' \neq m$, \mathcal{A} needs to recover at least one value $x_{i,b}$ he doesn't know
- Hence, A needs to invert f on the corresponding $y_{i,b}$ in the pk

Assume A_c breaks OTS security of Lamport, build A_r that inverts f

Assume A_c breaks OTS security of Lamport, build A_r that inverts f

$$A_r(y = f(x))$$
 – Inverts f on y

• \mathcal{A}_r chooses $i^* \leftarrow \{1, \dots, \ell\}, b^* \leftarrow \{0, 1\}$, and sets $y_{i^*, b^*} = y$

Assume A_c breaks OTS security of Lamport, build A_r that inverts f

$$A_r(y = f(x))$$
 – Inverts f on y

- \mathcal{A}_r chooses $i^* \leftarrow \{1, \dots, \ell\}, b^* \leftarrow \{0, 1\}$, and sets $y_{i^*, b^*} = y$
 - For all other locations, \mathcal{A}_r chooses $x_{i,b} \leftarrow \{0,1\}^n$ and sets $y_{i,b} = f(x_{i,b})$

Assume A_c breaks OTS security of Lamport, build A_r that inverts f

$$A_r(y = f(x))$$
 – Inverts f on y

- \mathcal{A}_r chooses $i^* \leftarrow \{1, \dots, \ell\}, b^* \leftarrow \{0, 1\}$, and sets $y_{i^*, b^*} = y$
 - For all other locations, A_r chooses $x_{i,b} \leftarrow \{0,1\}^n$ and sets $y_{i,b} = f(x_{i,b})$
 - Output $pk = \begin{pmatrix} y_{1,0} & y_{2,0} & \cdots & y_{\ell,0} \\ y_{1,1} & y_{2,1} & \cdots & y_{\ell,1} \end{pmatrix}$

Assume A_c breaks OTS security of Lamport, build A_r that inverts f

$A_r(y = f(x))$ – Inverts f on y

- \mathcal{A}_r chooses $i^* \leftarrow \{1, \dots, \ell\}, b^* \leftarrow \{0, 1\}$, and sets $y_{i^*, b^*} = y$
 - For all other locations, \mathcal{A}_r chooses $x_{i,b} \leftarrow \{0,1\}^n$ and sets $y_{i,b} = f(x_{i,b})$
 - Output $pk = \begin{pmatrix} y_{1,0} & y_{2,0} & \cdots & y_{\ell,0} \\ y_{1,1} & y_{2,1} & \cdots & y_{\ell,1} \end{pmatrix}$
- Run A_c on pk

Assume A_c breaks OTS security of Lamport, build A_r that inverts f

$A_r(y = f(x))$ – Inverts f on y

- A_r chooses $i^* \leftarrow \{1, \dots, \ell\}, b^* \leftarrow \{0, 1\}$, and sets $y_{i^*, b^*} = y$
 - For all other locations, A_r chooses $x_{i,b} \leftarrow \{0,1\}^n$ and sets $y_{i,b} = f(x_{i,b})$

• Output
$$pk = \begin{pmatrix} y_{1,0} & y_{2,0} & \cdots & y_{\ell,0} \\ y_{1,1} & y_{2,1} & \cdots & y_{\ell,1} \end{pmatrix}$$

- Run A_c on pk
- ullet When \mathcal{A}_c requests signature on a message m

Assume A_c breaks OTS security of Lamport, build A_r that inverts f

- A_r chooses $i^* \leftarrow \{1, \dots, \ell\}, b^* \leftarrow \{0, 1\}$, and sets $y_{i^*, b^*} = y$
 - For all other locations, \mathcal{A}_r chooses $x_{i,b} \leftarrow \{0,1\}^n$ and sets $y_{i,b} = f(x_{i,b})$
 - Output $pk = \begin{pmatrix} y_{1,0} & y_{2,0} & \cdots & y_{\ell,0} \\ y_{1,1} & y_{2,1} & \cdots & y_{\ell,1} \end{pmatrix}$
- Run A_c on pk
- ullet When ${\cal A}_c$ requests signature on a message m
 - If $m_{i^*} = b^*$, then \mathcal{A}_r aborts

Assume A_c breaks OTS security of Lamport, build A_r that inverts f

- A_r chooses $i^* \leftarrow \{1, \dots, \ell\}, b^* \leftarrow \{0, 1\}$, and sets $y_{i^*, b^*} = y$
 - For all other locations, A_r chooses $x_{i,b} \leftarrow \{0,1\}^n$ and sets $y_{i,b} = f(x_{i,b})$
 - Output $pk = \begin{pmatrix} y_{1,0} & y_{2,0} & \cdots & y_{\ell,0} \\ y_{1,1} & y_{2,1} & \cdots & y_{\ell,1} \end{pmatrix}$
- Run A_c on pk
- When A_c requests signature on a message m
 - If $m_{i^*} = b^*$, then \mathcal{A}_r aborts
 - Otherwise, return $\sigma = (x_{1,m_1}, \dots, x_{\ell,m_\ell}) A_r$ knows all these x_i 's

Assume A_c breaks OTS security of Lamport, build A_r that inverts f

- A_r chooses $i^* \leftarrow \{1, \dots, \ell\}, b^* \leftarrow \{0, 1\}$, and sets $y_{i^*, b^*} = y$
 - For all other locations, \mathcal{A}_r chooses $x_{i,b} \leftarrow \{0,1\}^n$ and sets $y_{i,b} = f(x_{i,b})$
 - Output $pk = \begin{pmatrix} y_{1,0} & y_{2,0} & \cdots & y_{\ell,0} \\ y_{1,1} & y_{2,1} & \cdots & y_{\ell,1} \end{pmatrix}$
- Run A_c on pk
- When A_c requests signature on a message m
 - If $m_{i^*} = b^*$, then \mathcal{A}_r aborts
 - Otherwise, return $\sigma = (x_{1,m_1}, \dots, x_{\ell,m_\ell}) \mathcal{A}_r$ knows all these x_i 's
- When \mathcal{A}_c outputs a forgery (m', σ)

Assume A_c breaks OTS security of Lamport, build A_r that inverts f

- A_r chooses $i^* \leftarrow \{1, \dots, \ell\}, b^* \leftarrow \{0, 1\}$, and sets $y_{i^*, b^*} = y$
 - For all other locations, \mathcal{A}_r chooses $x_{i,b} \leftarrow \{0,1\}^n$ and sets $y_{i,b} = f(x_{i,b})$
 - Output $pk = \begin{pmatrix} y_{1,0} & y_{2,0} & \cdots & y_{\ell,0} \\ y_{1,1} & y_{2,1} & \cdots & y_{\ell,1} \end{pmatrix}$
- Run A_c on pk
- When A_c requests signature on a message m
 - If $m_{i^*} = b^*$, then \mathcal{A}_r aborts
 - Otherwise, return $\sigma = (x_{1,m_1}, \dots, x_{\ell,m_\ell}) \mathcal{A}_r$ knows all these x_i 's
- When A_c outputs a forgery (m', σ)
 - Check if $m'_{i^*} = b^*$, if so output x_{i^*,b^*} (from σ) as inverse

Assume A_c breaks OTS security of Lamport, build A_r that inverts f

$A_r(y = f(x))$ – Inverts f on y

- \mathcal{A}_r chooses $i^* \leftarrow \{1, \dots, \ell\}, b^* \leftarrow \{0, 1\}$, and sets $y_{i^*, b^*} = y$
 - ullet For all other locations, \mathcal{A}_r chooses $x_{i,b} \leftarrow \{0,1\}^n$ and sets $y_{i,b} = f(x_{i,b})$
 - Output $pk = \begin{pmatrix} y_{1,0} & y_{2,0} & \cdots & y_{\ell,0} \\ y_{1,1} & y_{2,1} & \cdots & y_{\ell,1} \end{pmatrix}$
- Run A_c on pk
- When A_c requests signature on a message m
 - If $m_{i^*} = b^*$, then \mathcal{A}_r aborts
 - Otherwise, return $\sigma = (x_{1,m_1}, \dots, x_{\ell,m_\ell}) \mathcal{A}_r$ knows all these x_i 's
- When \mathcal{A}_c outputs a forgery (m', σ)
 - Check if $m'_{i^*} = b^*$, if so output x_{i^*,b^*} (from σ) as inverse

Analysis: (i^*,b^*) is random to \mathcal{A}_c , so $\Pr[m'_{i^*} \neq m_{i^*} \land m'_{i^*} = b^*] \geq \frac{1}{2\ell}$

8 / 21

Assume A_c breaks OTS security of Lamport, build A_r that inverts f

$A_r(y = f(x))$ – Inverts f on y

- \mathcal{A}_r chooses $i^* \leftarrow \{1, \dots, \ell\}, b^* \leftarrow \{0, 1\}$, and sets $y_{i^*, b^*} = y$
 - ullet For all other locations, \mathcal{A}_r chooses $x_{i,b} \leftarrow \{0,1\}^n$ and sets $y_{i,b} = f(x_{i,b})$
 - Output $pk = \begin{pmatrix} y_{1,0} & y_{2,0} & \cdots & y_{\ell,0} \\ y_{1,1} & y_{2,1} & \cdots & y_{\ell,1} \end{pmatrix}$
- Run A_c on pk
- ullet When ${\cal A}_c$ requests signature on a message m
 - If $m_{i^*} = b^*$, then \mathcal{A}_r aborts
 - Otherwise, return $\sigma = (x_{1,m_1}, \dots, x_{\ell,m_\ell}) A_r$ knows all these x_i 's
- When A_c outputs a forgery (m', σ)
 - Check if $m'_{i^*} = b^*$, if so output x_{i^*,b^*} (from σ) as inverse

Analysis: (i^*,b^*) is random to \mathcal{A}_c , so $\Pr[m'_{i^*} \neq m_{i^*} \land m'_{i^*} = b^*] \geq \frac{1}{2\ell}$

$$\mathsf{Pr}[\mathsf{Invert}_{\mathcal{A}_r,f}=1] \geq \frac{1}{2\ell} \cdot \mathsf{Pr}[\mathsf{SigForge}_{\mathcal{A},\Pi}(n)=1] \geq 1/\mathsf{poly}(n)$$

Arkady Yerukhimovich Cryptography November 20, 2024 8 / 21

Weaknesses of Lamport:

ullet Can only sign $\ell\text{-bit}$ messages

Weaknesses of Lamport:

- ullet Can only sign ℓ -bit messages
- Can only sign 1 message

Weaknesses of Lamport:

- ullet Can only sign ℓ -bit messages
- Can only sign 1 message

Signing Arbitrary Length Messages:

Weaknesses of Lamport:

- ullet Can only sign ℓ -bit messages
- Can only sign 1 message

Signing Arbitrary Length Messages:

Weaknesses of Lamport:

- Can only sign ℓ-bit messages
- Can only sign 1 message

Signing Arbitrary Length Messages:

Hash-and-Sign

• Same idea as in Hash-and-MAC

Weaknesses of Lamport:

- Can only sign ℓ-bit messages
- Can only sign 1 message

Signing Arbitrary Length Messages:

- Same idea as in Hash-and-MAC
- To sign $m \in \{0,1\}^*$, instead sign $H^s(m)$

Weaknesses of Lamport:

- Can only sign ℓ-bit messages
- Can only sign 1 message

Signing Arbitrary Length Messages:

- Same idea as in Hash-and-MAC
- To sign $m \in \{0,1\}^*$, instead sign $H^s(m)$
- Now, only need to sign ℓ -bit hash outputs

Weaknesses of Lamport:

- Can only sign ℓ-bit messages
- Can only sign 1 message

Signing Arbitrary Length Messages:

- Same idea as in Hash-and-MAC
- To sign $m \in \{0,1\}^*$, instead sign $H^s(m)$
- Now, only need to sign ℓ -bit hash outputs
- Include hash key s in public key

Weaknesses of Lamport:

- Can only sign ℓ-bit messages
- Can only sign 1 message

Signing Arbitrary Length Messages:

- Same idea as in Hash-and-MAC
- To sign $m \in \{0,1\}^*$, instead sign $H^s(m)$
- Now, only need to sign ℓ -bit hash outputs
- Include hash key s in public key
- Secure if H is CRHF

Try 1 – Many Keys

Try 1 – Many Keys

• Gen generates t key pairs (pk_i, sk_i)

Try 1 – Many Keys

- Gen generates t key pairs (pk_i, sk_i)
- Each key pair is used once

Try 1 – Many Keys

- Gen generates t key pairs (pk_i, sk_i)
- Each key pair is used once
- Sign stores which keys have already been used to prevent reuse

Try 1 - Many Keys

- Gen generates t key pairs (pk_i, sk_i)
- Each key pair is used once
- Sign stores which keys have already been used to prevent reuse

Limitations:

Try 1 – Many Keys

- Gen generates t key pairs (pk_i, sk_i)
- Each key pair is used once
- Sign stores which keys have already been used to prevent reuse

Limitations:

• |pk| is large – grows with t

Try 1 – Many Keys

- Gen generates t key pairs (pk_i, sk_i)
- Each key pair is used once
- Sign stores which keys have already been used to prevent reuse

Limitations:

- |pk| is large grows with t
- number of possible signatures, t, bounded at Gen time

Try 1 – Many Keys

- Gen generates t key pairs (pk_i, sk_i)
- Each key pair is used once
- Sign stores which keys have already been used to prevent reuse

Limitations:

- |pk| is large grows with t
- number of possible signatures, t, bounded at Gen time
- Signature is stateful problematic if state is reset

Try 2 – Chain-Based Signatures

ullet Generate key pairs (pk_i,sk_i) as we go

 pk_1

Try 2 – Chain-Based Signatures

ullet Generate key pairs (pk_i, sk_i) as we go

$$pk_1$$

$$m_1 || pk_2$$

Try 2 – Chain-Based Signatures

• Generate key pairs (pk_i, sk_i) as we go

$$pk_1$$

$$\widetilde{m_1||pk_2}$$

$$m_2||pk_3$$

- Generate key pairs (pk_i, sk_i) as we go
- Use sk_i to sign $m_i||pk_{i+1}$

$$pk_1$$
 $m_1 || pk_2$

- Generate key pairs (pk_i, sk_i) as we go
- Use sk_i to sign $m_i||pk_{i+1}$

- Generate key pairs (pk_i, sk_i) as we go
- Use sk_i to sign $m_i||pk_{i+1}$
- ullet σ includes all sigs (and pks) in chain

- Generate key pairs (pk_i, sk_i) as we go
- Use sk_i to sign $m_i||pk_{i+1}|$
- ullet σ includes all sigs (and pks) in chain
- pk includes just original pk₁

- Generate key pairs (pk_i, sk_i) as we go
- Use sk_i to sign $m_i||pk_{i+1}|$
- ullet σ includes all sigs (and pks) in chain
- pk includes just original pk₁
- Verify verifies all signatures in chain starting at the top

Try 2 – Chain-Based Signatures

- Generate key pairs (pk_i, sk_i) as we go
- Use sk_i to sign $m_i||pk_{i+1}|$
- ullet σ includes all sigs (and pks) in chain
- pk includes just original pk₁
- Verify verifies all signatures in chain starting at the top

Pros:

Try 2 – Chain-Based Signatures

- Generate key pairs (pk_i, sk_i) as we go
- Use sk_i to sign $m_i||pk_{i+1}|$
- ullet σ includes all sigs (and pks) in chain
- pk includes just original pk₁
- Verify verifies all signatures in chain starting at the top

Pros:

Every pk only used once – OTS security is sufficient

Try 2 – Chain-Based Signatures

- Generate key pairs (pk_i, sk_i) as we go
- Use sk_i to sign $m_i || pk_{i+1}$
- ullet σ includes all sigs (and pks) in chain
- pk includes just original pk₁
- Verify verifies all signatures in chain starting at the top

Pros:

- Every pk only used once OTS security is sufficient
- No bound on number of signatures that can be issued

Try 2 – Chain-Based Signatures

- Generate key pairs (pk_i, sk_i) as we go
- Use sk_i to sign $m_i || pk_{i+1}$
- ullet σ includes all sigs (and pks) in chain
- pk includes just original pk₁
- Verify verifies all signatures in chain starting at the top

Pros:

- Every pk only used once OTS security is sufficient
- No bound on number of signatures that can be issued

Limitations:

Try 2 – Chain-Based Signatures

- Generate key pairs (pk_i, sk_i) as we go
- Use sk_i to sign $m_i||pk_{i+1}$
- ullet σ includes all sigs (and pks) in chain
- pk includes just original pk₁
- Verify verifies all signatures in chain starting at the top

Pros:

- Every pk only used once OTS security is sufficient
- No bound on number of signatures that can be issued

Limitations:

 \bullet $|\sigma|$ grows with the number of signatures issued

1 ▶ ∢御 ▶ ∢ 差 ▶ ∢ 差 ▶ ○ 章 ○ 幻 ♀ ♡ ♡

11/21

Try 2 – Chain-Based Signatures

- Generate key pairs (pk_i, sk_i) as we go
- Use sk_i to sign $m_i||pk_{i+1}$
- ullet σ includes all sigs (and pks) in chain
- pk includes just original pk₁
- Verify verifies all signatures in chain starting at the top

Pros:

- Every pk only used once OTS security is sufficient
- No bound on number of signatures that can be issued

Limitations:

- ullet | σ | grows with the number of signatures issued
- Still have to store state

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ○

Try 3 – Tree-Based Signatures

• Use a different *pk* for each possible message

- Use a different *pk* for each possible message
- Use depth ℓ tree to encode pk's

Try 3 – Tree-Based Signatures

- Use a different *pk* for each possible message
- Use depth ℓ tree to encode pk's

 pk_{ϵ}

- Use a different *pk* for each possible message
- Use depth ℓ tree to encode pk's

- Use a different *pk* for each possible message
- Use depth ℓ tree to encode pk's

- Use a different pk for each possible message
- Use depth ℓ tree to encode pk's

- Use a different pk for each possible message
- Use depth ℓ tree to encode pk's

- Use a different pk for each possible message
- Use depth ℓ tree to encode pk's
- pk_i signs next node on path to m

- Use a different pk for each possible message
- Use depth ℓ tree to encode pk's
- pk_i signs next node on path to m

- Use a different pk for each possible message
- Use depth ℓ tree to encode pk's
- pk_i signs next node on path to m

- Use a different pk for each possible message
- Use depth ℓ tree to encode pk's
- pk_i signs next node on path to m

- Use a different pk for each possible message
- Use depth ℓ tree to encode pk's
- pk_i signs next node on path to m

- Use a different pk for each possible message
- Use depth ℓ tree to encode pk's
- pk_i signs next node on path to m
- σ on message m, outputs signatures on path to m

- Use a different pk for each possible message
- Use depth ℓ tree to encode pk's
- pk_i signs next node on path to m
- σ on message m, outputs signatures on path to m
- Only generate keys as needed, otherwise exponential time

Try 3 – Tree-Based Signatures

- Use a different pk for each possible message
- Use depth ℓ tree to encode pk's
- pk_i signs next node on path to m
- σ on message m, outputs signatures on path to m
- Only generate keys as needed, otherwise exponential time

Pros:

ullet $|\sigma|={\it O}(\ell)$, can sign up to 2^ℓ messages

Try 3 – Tree-Based Signatures

- Use a different pk for each possible message
- Use depth ℓ tree to encode pk's
- pk_i signs next node on path to m
- σ on message m, outputs signatures on path to m
- Only generate keys as needed, otherwise exponential time

Pros:

• $|\sigma| = O(\ell)$, can sign up to 2^{ℓ} messages

Limitations:

• Still stateful - Tree is the state

4□ > 4□ > 4 = > 4 = > = 900

Idea: Use a PRF to generate randomness for Gen at each node

Idea: Use a PRF to generate randomness for Gen at each node

• For each node w, store r_w and set $(sk_w, pk_w) = \text{Gen}(r_w)$

Idea: Use a PRF to generate randomness for Gen at each node

- For each node w, store r_w and set $(sk_w, pk_w) = \text{Gen}(r_w)$
- Instead of storing r_w , compute it as $r_w = F_k(w)$

Idea: Use a PRF to generate randomness for Gen at each node

- For each node w, store r_w and set $(sk_w, pk_w) = \text{Gen}(r_w)$
- Instead of storing r_w , compute it as $r_w = F_k(w)$
- PRF key k is stored as part of global secret key

Idea: Use a PRF to generate randomness for Gen at each node

- For each node w, store r_w and set $(sk_w, pk_w) = \text{Gen}(r_w)$
- Instead of storing r_w , compute it as $r_w = F_k(w)$
- PRF key k is stored as part of global secret key

Final Result – Stateless Tree-Based Signatures

Idea: Use a PRF to generate randomness for Gen at each node

- For each node w, store r_w and set $(sk_w, pk_w) = \text{Gen}(r_w)$
- Instead of storing r_w , compute it as $r_w = F_k(w)$
- PRF key k is stored as part of global secret key

Final Result – Stateless Tree-Based Signatures

Idea: Use a PRF to generate randomness for Gen at each node

- For each node w, store r_w and set $(sk_w, pk_w) = \text{Gen}(r_w)$
- Instead of storing r_w , compute it as $r_w = F_k(w)$
- ullet PRF key k is stored as part of global secret key

Final Result – Stateless Tree-Based Signatures

We have constructed a signature scheme that is:

Stateless

Idea: Use a PRF to generate randomness for Gen at each node

- For each node w, store r_w and set $(sk_w, pk_w) = \text{Gen}(r_w)$
- Instead of storing r_w , compute it as $r_w = F_k(w)$
- ullet PRF key k is stored as part of global secret key

Final Result – Stateless Tree-Based Signatures

- Stateless
- $|\sigma| = \ell$ signatures

Idea: Use a PRF to generate randomness for Gen at each node

- For each node w, store r_w and set $(sk_w, pk_w) = \text{Gen}(r_w)$
- Instead of storing r_w , compute it as $r_w = F_k(w)$
- ullet PRF key k is stored as part of global secret key

Final Result – Stateless Tree-Based Signatures

- Stateless
- $|\sigma| = \ell$ signatures
- Can sign arbitrary length m using Hash-and-MAC

Idea: Use a PRF to generate randomness for Gen at each node

- For each node w, store r_w and set $(sk_w, pk_w) = \text{Gen}(r_w)$
- Instead of storing r_w , compute it as $r_w = F_k(w)$
- ullet PRF key k is stored as part of global secret key

Final Result – Stateless Tree-Based Signatures

- Stateless
- $|\sigma| = \ell$ signatures
- Can sign arbitrary length m using Hash-and-MAC
- Only requires private-key primitives (OWFs, CRHFs)

Idea: Use a PRF to generate randomness for Gen at each node

- For each node w, store r_w and set $(sk_w, pk_w) = \text{Gen}(r_w)$
- Instead of storing r_w , compute it as $r_w = F_k(w)$
- PRF key k is stored as part of global secret key

Final Result - Stateless Tree-Based Signatures

We have constructed a signature scheme that is:

- Stateless
- $|\sigma| = \ell$ signatures
- Can sign arbitrary length m using Hash-and-MAC
- Only requires private-key primitives (OWFs, CRHFs)

Comparison to Public-Key Signatures

- Surprisingly, we can build signatures from private-key techniques
- But, public-key based signatures are more efficient (shorter sigs)

13 / 21

Outline

Lecture 23 Review

2 Digital Signatures from Private-Key Techniques

3 Digital Signatures from Discrete Log

Identification Scheme:

• Interactive protocol to allow a party to prove identity

Identification Scheme:

- Interactive protocol to allow a party to prove identity
- Relaxation of signature, similar to KE as relaxation for PKE

Identification Scheme:

- Interactive protocol to allow a party to prove identity
- Relaxation of signature, similar to KE as relaxation for PKE
- We consider 3-round variant with following form

Identification Scheme:

- Interactive protocol to allow a party to prove identity
- Relaxation of signature, similar to KE as relaxation for PKE
- We consider 3-round variant with following form

Identification Scheme:

- Interactive protocol to allow a party to prove identity
- Relaxation of signature, similar to KE as relaxation for PKE
- We consider 3-round variant with following form

Identification Scheme:

- Interactive protocol to allow a party to prove identity
- Relaxation of signature, similar to KE as relaxation for PKE
- We consider 3-round variant with following form

Identification Scheme:

- Interactive protocol to allow a party to prove identity
- Relaxation of signature, similar to KE as relaxation for PKE
- We consider 3-round variant with following form

Identification Scheme:

- Interactive protocol to allow a party to prove identity
- Relaxation of signature, similar to KE as relaxation for PKE
- We consider 3-round variant with following form

Non-degenerate:

• ID scheme is non-degenerate if for all *sk*, each *l* occurs with only negligible probability.

Informal

Prover should not be able to get Verifier to accept without knowing sk

Informal

Prover should not be able to get Verifier to accept without knowing sk

Let $\Pi = (\text{Gen}, P_1, P_2, V)$ be an ID scheme. Consider the following game between an adversary A and a challenger:

Informal

Prover should not be able to get Verifier to accept without knowing sk

Let $\Pi = (\text{Gen}, P_1, P_2, V)$ be an ID scheme. Consider the following game between an adversary A and a challenger:

$\mathsf{Ident}_{\mathcal{A},\Pi}(n)$

• Challenger runs $(pk, sk) \leftarrow \mathsf{Gen}(1^n)$ and gives pk to \mathcal{A}

Informal

Prover should not be able to get Verifier to accept without knowing sk

Let $\Pi = (\text{Gen}, P_1, P_2, V)$ be an ID scheme. Consider the following game between an adversary A and a challenger:

- ullet Challenger runs $(pk,sk) \leftarrow \mathsf{Gen}(1^n)$ and gives pk to $\mathcal A$
- ullet ${\cal A}$ gets pk and oracle access to Trans_{sk} and outputs I

Informal

Prover should not be able to get Verifier to accept without knowing sk

Let $\Pi = (\text{Gen}, P_1, P_2, V)$ be an ID scheme. Consider the following game between an adversary A and a challenger:

- Challenger runs $(pk, sk) \leftarrow \mathsf{Gen}(1^n)$ and gives pk to \mathcal{A}
- ullet ${\cal A}$ gets pk and oracle access to Trans_{sk} and outputs I
 - Trans_{sk} runs honest execution and outputs transcript (I, r, s)

Informal

Prover should not be able to get Verifier to accept without knowing sk

Let $\Pi = (\text{Gen}, P_1, P_2, V)$ be an ID scheme. Consider the following game between an adversary A and a challenger:

- Challenger runs $(pk, sk) \leftarrow \mathsf{Gen}(1^n)$ and gives pk to \mathcal{A}
- ullet ${\cal A}$ gets pk and oracle access to Trans $_{sk}$ and outputs I
 - Trans_{sk} runs honest execution and outputs transcript (I, r, s)
- Challenger chooses $r \leftarrow \Omega_{pk}$ and gives r to \mathcal{A}

Informal

Prover should not be able to get Verifier to accept without knowing sk

Let $\Pi = (\text{Gen}, P_1, P_2, V)$ be an ID scheme. Consider the following game between an adversary A and a challenger:

- Challenger runs $(pk, sk) \leftarrow \mathsf{Gen}(1^n)$ and gives pk to \mathcal{A}
- ullet ${\cal A}$ gets pk and oracle access to Trans $_{sk}$ and outputs I
 - Trans_{sk} runs honest execution and outputs transcript (I, r, s)
- Challenger chooses $r \leftarrow \Omega_{pk}$ and gives r to \mathcal{A}
- ullet ${\cal A}$ receives r and responds with s

Informal

Prover should not be able to get Verifier to accept without knowing sk

Let $\Pi = (\text{Gen}, P_1, P_2, V)$ be an ID scheme. Consider the following game between an adversary A and a challenger:

- Challenger runs $(pk, sk) \leftarrow \text{Gen}(1^n)$ and gives pk to \mathcal{A}
- ullet ${\cal A}$ gets pk and oracle access to Trans $_{sk}$ and outputs I
 - Trans_{sk} runs honest execution and outputs transcript (I, r, s)
- Challenger chooses $r \leftarrow \Omega_{pk}$ and gives r to \mathcal{A}
- ullet ${\cal A}$ receives r and responds with s
- We say that $Ident_{A,\Pi}(n) = 1$ (i.e., A wins) if V(pk, r, s) = I

Informal

Prover should not be able to get Verifier to accept without knowing sk

Let $\Pi = (\text{Gen}, P_1, P_2, V)$ be an ID scheme. Consider the following game between an adversary A and a challenger:

$\mathsf{Ident}_{\mathcal{A},\Pi}(n)$

- Challenger runs $(pk, sk) \leftarrow \mathsf{Gen}(1^n)$ and gives pk to \mathcal{A}
- ullet ${\cal A}$ gets pk and oracle access to Trans $_{sk}$ and outputs I
 - Trans_{sk} runs honest execution and outputs transcript (I, r, s)
- Challenger chooses $r \leftarrow \Omega_{pk}$ and gives r to \mathcal{A}
- ullet ${\cal A}$ receives r and responds with s
- We say that $Ident_{A,\Pi}(n) = 1$ (i.e., A wins) if V(pk, r, s) = I.

Definition: An ID scheme $\Pi = (Gen, P_1, P_2, V)$ is *secure* if for all PPT A,

$$\Pr[\mathsf{Ident}_{\mathcal{A},\Pi}(n)=1] \leq \mathsf{negl}(n)$$

16 / 21

Arkady Yerukhimovich Cryptography November 20, 2024

Correctness:
$$g^s \cdot y^{-r} = g^{(rx+k)} \cdot g^{-rx} = g^k = I$$

Proof Sketch:

Proof Sketch:

• Assume that A_c breaks ID scheme security:

- Assume that A_c breaks ID scheme security:
 - ullet Trans oracle is not useful, \mathcal{A}_c can simulate transcripts on its own
 - Sample $r, s \leftarrow \mathbb{Z}_q$, set $I = g^s \cdot y^{-r}$

- Assume that A_c breaks ID scheme security:
 - ullet Trans oracle is not useful, \mathcal{A}_c can simulate transcripts on its own
 - Sample $r, s \leftarrow \mathbb{Z}_q$, set $I = g^s \cdot y^{-r}$
 - A_c gets $y = g^x$, sends I, gets r, and computes s s.t. $g^s \cdot y^{-r} = I$

- Assume that A_c breaks ID scheme security:
 - ullet Trans oracle is not useful, \mathcal{A}_c can simulate transcripts on its own
 - Sample $r, s \leftarrow \mathbb{Z}_q$, set $I = g^s \cdot y^{-r}$
 - A_c gets $y = g^x$, sends I, gets r, and computes s s.t. $g^s \cdot y^{-r} = I$
 - If A_c can do this twice (for same I), it can solve DLOG

Proof Sketch:

- Assume that A_c breaks ID scheme security:
 - ullet Trans oracle is not useful, \mathcal{A}_c can simulate transcripts on its own
 - Sample $r, s \leftarrow \mathbb{Z}_q$, set $I = g^s \cdot y^{-r}$
 - A_c gets $y = g^x$, sends I, gets r, and computes s s.t. $g^s \cdot y^{-r} = I$
 - If A_c can do this twice (for same I), it can solve DLOG

$$g^{s_1} \cdot y^{-r_1} = I = g^{s_2} \cdot y^{-r_2} \quad \Longrightarrow \quad g^{s_1 - s_2} = y^{r_1 - r_2} \\ \Longrightarrow \quad \log_g y = [(s_1 - s_2)(r_1 - r_2)^{-1} \bmod q]$$

• Build A_r that solves DLOG:

- Assume that A_c breaks ID scheme security:
 - ullet Trans oracle is not useful, \mathcal{A}_c can simulate transcripts on its own
 - Sample $r, s \leftarrow \mathbb{Z}_q$, set $I = g^s \cdot y^{-r}$
 - A_c gets $y = g^x$, sends I, gets r, and computes s s.t. $g^s \cdot y^{-r} = I$
 - If A_c can do this twice (for same I), it can solve DLOG

$$g^{s_1} \cdot y^{-r_1} = I = g^{s_2} \cdot y^{-r_2} \implies g^{s_1 - s_2} = y^{r_1 - r_2}$$

$$\implies \log_g y = [(s_1 - s_2)(r_1 - r_2)^{-1} \mod q]$$

- Build A_r that solves DLOG:
 - A_r runs A_c twice with the same randomness (producing same I), but gives it two different r

- Assume that A_c breaks ID scheme security:
 - ullet Trans oracle is not useful, \mathcal{A}_c can simulate transcripts on its own
 - Sample $r, s \leftarrow \mathbb{Z}_q$, set $I = g^s \cdot y^{-r}$
 - A_c gets $y = g^x$, sends I, gets r, and computes s s.t. $g^s \cdot y^{-r} = I$
 - If A_c can do this twice (for same I), it can solve DLOG

$$g^{s_1} \cdot y^{-r_1} = I = g^{s_2} \cdot y^{-r_2} \implies g^{s_1 - s_2} = y^{r_1 - r_2}$$

$$\implies \log_g y = [(s_1 - s_2)(r_1 - r_2)^{-1} \mod q]$$

- Build A_r that solves DLOG:
 - A_r runs A_c twice with the same randomness (producing same I), but gives it two different r
 - ullet If \mathcal{A}_c succeeds twice, then break DLOG

Goal

Convert 3-round ID scheme as earlier to a non-interactive signature

ullet Key Idea: Have Signer compute r himself using a hash

Goal

Convert 3-round ID scheme as earlier to a non-interactive signature

 \bullet Key Idea: Have Signer compute r himself using a hash

Goal

Convert 3-round ID scheme as earlier to a non-interactive signature

ullet Key Idea: Have Signer compute r himself using a hash

Goal

Convert 3-round ID scheme as earlier to a non-interactive signature

 \bullet Key Idea: Have Signer compute r himself using a hash

Fiat-Shamir Transform

Goal

Convert 3-round ID scheme as earlier to a non-interactive signature

 \bullet Key Idea: Have Signer compute r himself using a hash

Fiat-Shamir Transform

• Sign_{sk}(m): $I \leftarrow P_1(sk)$, set r = H(I, m), $s = P_2(sk, r)$, out $\sigma = (r, s)$

Goal

Convert 3-round ID scheme as earlier to a non-interactive signature

ullet Key Idea: Have Signer compute r himself using a hash

Fiat-Shamir Transform

- Sign_{sk}(m): $I \leftarrow P_1(sk)$, set r = H(I, m), $s = P_2(sk, r)$, out $\sigma = (r, s)$
- Verify_{pk} (m, σ) : Compute I = V(pk, r, s), check if r = H(I, m)

Arkady Yerukhimovich Cryptography November 20, 2024

Goal

Convert 3-round ID scheme as earlier to a non-interactive signature

• Key Idea: Have Signer compute *r* himself using a hash

Fiat-Shamir Transform

- Sign_{sk}(m): $I \leftarrow P_1(sk)$, set r = H(I, m), $s = P_2(sk, r)$, out $\sigma = (r, s)$
- Verify_{pk} (m, σ) : Compute I = V(pk, r, s), check if r = H(I, m)
- Security: Secure if *H* is modeled as random oracle

Arkady Yerukhimovich Cryptography November 20, 2024 19 / 21

Correctness:
$$g^s \cdot y^{-r} = g^{(rx+k)} \cdot g^{-rx} = g^k = I$$

Apply Fiat Shamir

Replace $r \leftarrow \mathbb{Z}_q$ with H(I, m)

- $Gen(1^n)$:
 - $(G,q,g) \leftarrow \text{Gen}(1^n)$, $x \leftarrow \mathbb{Z}_q$, $y = g^x$

- $Gen(1^n)$:
 - $(G, q, g) \leftarrow \text{Gen}(1^n), x \leftarrow \mathbb{Z}_q, y = g^x$
 - pk = (G, q, g, y), sk = x

- $Gen(1^n)$:
 - $(G, q, g) \leftarrow \text{Gen}(1^n), x \leftarrow \mathbb{Z}_q, y = g^x$
 - pk = (G, q, g, y), sk = x
- $\operatorname{Sign}_{sk}(m \in \{0,1\}^*)$:
 - $k \leftarrow \mathbb{Z}_q$, $I = g^k$, r = H(I, m) using $H : \{0, 1\}^* \to \mathbb{Z}_q$

- $Gen(1^n)$:
 - $(G, q, g) \leftarrow \text{Gen}(1^n), x \leftarrow \mathbb{Z}_q, y = g^x$
 - pk = (G, q, g, y), sk = x
- $Sign_{sk}(m \in \{0,1\}^*)$:
 - $k \leftarrow \mathbb{Z}_q$, $I = g^k$, r = H(I, m) using $H : \{0, 1\}^* \rightarrow \mathbb{Z}_q$
 - $s = [rx + k \mod q]$

- $Gen(1^n)$:
 - $(G, q, g) \leftarrow \text{Gen}(1^n), x \leftarrow \mathbb{Z}_q, y = g^x$
 - pk = (G, q, g, y), sk = x
- $Sign_{sk}(m \in \{0,1\}^*)$:
 - $k \leftarrow \mathbb{Z}_q$, $I = g^k$, r = H(I, m) using $H : \{0, 1\}^* \rightarrow \mathbb{Z}_q$
 - $s = [rx + k \mod q]$
 - Output $\sigma = (r, s)$

- $Gen(1^n)$:
 - $(G, q, g) \leftarrow \text{Gen}(1^n), x \leftarrow \mathbb{Z}_q, y = g^x$
 - pk = (G, q, g, y), sk = x
- $Sign_{sk}(m \in \{0,1\}^*)$:
 - $k \leftarrow \mathbb{Z}_q$, $I = g^k$, r = H(I, m) using $H : \{0, 1\}^* \rightarrow \mathbb{Z}_q$
 - $s = [rx + k \mod q]$
 - Output $\sigma = (r, s)$
- Verify_{pk} (m, σ) :
 - Set $I = g^s \cdot y^{-r}$

- $Gen(1^n)$:
 - $(G, q, g) \leftarrow \text{Gen}(1^n), x \leftarrow \mathbb{Z}_q, y = g^x$
 - pk = (G, q, g, y), sk = x
- $Sign_{sk}(m \in \{0,1\}^*)$:
 - $k \leftarrow \mathbb{Z}_q$, $I = g^k$, r = H(I, m) using $H : \{0, 1\}^* \rightarrow \mathbb{Z}_q$
 - $s = [rx + k \mod q]$
 - Output $\sigma = (r, s)$
- Verify_{pk} (m, σ) :
 - Set $I = g^s \cdot y^{-r}$
 - Output 1 if H(I, m) = r

Schnorr Signature

- $Gen(1^n)$:
 - $(G, q, g) \leftarrow \text{Gen}(1^n), x \leftarrow \mathbb{Z}_q, y = g^x$
 - pk = (G, q, g, y), sk = x
- $Sign_{sk}(m \in \{0,1\}^*)$:
 - $k \leftarrow \mathbb{Z}_q$, $I = g^k$, r = H(I, m) using $H : \{0, 1\}^* \to \mathbb{Z}_q$
 - $s = [rx + k \mod q]$
 - Output $\sigma = (r, s)$
- Verify_{pk} (m, σ) :
 - Set $I = g^s \cdot y^{-r}$
 - Output 1 if H(I, m) = r

Security: Secure based on DLOG in random oracle model

Schnorr Signature

- $Gen(1^n)$:
 - $(G, q, g) \leftarrow \text{Gen}(1^n), x \leftarrow \mathbb{Z}_q, y = g^x$
 - pk = (G, q, g, y), sk = x
- $Sign_{sk}(m \in \{0,1\}^*)$:
 - $k \leftarrow \mathbb{Z}_a$, $I = g^k$, r = H(I, m) using $H : \{0, 1\}^* \rightarrow \mathbb{Z}_a$
 - $s = [rx + k \mod q]$
 - Output $\sigma = (r, s)$
- Verify_{pk} (m, σ) :
 - Set $I = g^s \cdot y^{-r}$
 - Output 1 if H(I, m) = r

Security: Secure based on DLOG in random oracle model

Digital Signature Algorithm (DSA)

Standard DSA algorithm uses similar paradigm, achieves same security