Stochastic computation in recurrent networks of spiking neurons

Clayton Seitz

September 27, 2021

The squid giant axon

Hodkin and Huxley developed a mathematical model for nerve cell communication in 1952 using voltage data from the giant axon of a squid

→ Mammalian axon = 2 µm diameter

Na^+ and K^+ are the major charge carriers

Ca²⁺ sensors enable high-speed two-photon imaging

Animal models and experimental technologies have improved drastically

Scale bars: b, 250 um; c, d, 100 um 4mm^2 FOV at $\sim 8\text{Hz}$

Spiking neural networks: integrate and fire models

$$\tau \dot{V(t)} = -g_L V(t) + \sum_n w_n \theta_n(t)$$

Synaptic strengths are dynamic

 w_n represents the change in the post-synaptic membrane potential induced by an action potential at the presynaptic cell ($\sim 1-4\text{mV}$)

 w_n is a result of complex biochemical pathways and is not necessarily a constant (synaptic plasticity)

Synaptic current as a stochastic process

An example simulation

Fokker-Planck equation for Brownian motion

Predicting $I_n(t)$ is hard in complex networks. We instead solve for P(V, t)

$$\tau \frac{\partial P}{\partial t} = (\mu(t) - V) \frac{\partial P}{\partial V} + \sqrt{2D} \frac{\partial^2 P}{\partial V^2}$$