ANNÉE UNIVERSITAIRE 2020/2021 1 ÈRE ANNÉE MI ALGEBRE I

SÉRIE TD N≗4 STRUCTURES ALGÉBRIQUES

Exercices 1 : (Contrôle 2018)

On définit sur \mathbb{R} les deux lois * et \bot par :

$$\forall (x,y) \in \mathbb{R}^2, x * y = \sqrt{x^2 + y^2}$$

$$\forall (x,y) \in \mathbb{R}^2, x \perp y = \sqrt{x + y}$$

1 − Les lois * et ⊥ sont-elles des lois de composition interne ? (Justifier votre réponse)

2 – La loi * est-elle commutative ? Associative ?

Exercices 2:

Soit les LCI \star et \perp définies sur $\mathbb R$ par :

$$\forall x \in \mathbb{R}: x \star y = x + y - 1$$

$$\forall x \in \mathbb{R}: x \perp y = x + y - xy$$

1/ La loi * est-elle associative ? est-elle commutative ? admet-elle un élément neutre ?

2/ La loi \bot est-elle associative ? est-elle commutative ? admet-elle un élément neutre ?

3/ Montrer que ⊥ est distributive par rapport à *.

Exercice 3:

Soit la loi * définie sur $\mathbb R$ par :

$$x * y = (x^3 + y^3)^{\frac{1}{3}}$$

Montrer que $(\mathbb{R},*)$ est un groupe abélien.

Exercice 4:

Soit $(\mathbb{R}, +, \cdot)$ l'anneau des nombres réels.

On définit les deux lois \oplus et \otimes définies sur $\mathbb R$ par :

$$\forall (x,y) \in \mathbb{R} : x \oplus y = x + y - 2$$

$$\forall (x,y) \in \mathbb{R} : x \otimes y = x \cdot y - 2x - 2y + 6$$

Montrer que (\mathbb{R}, \oplus) est un groupe abélien.

Montrer que $(\mathbb{R}, \bigoplus, \bigotimes)$ est un anneau commutatif unitaire.

Exercice 5:

On définit dans \mathbb{R} deux lois \oplus et \otimes par :

$$x \oplus y = x + y - 1$$
$$x \otimes y = x + y - xy$$

Montrer que $(\mathbb{R}, \bigoplus, \bigotimes)$ est un corps commutatif.