AF-Embeddings of Certain Graph C*-Algebras Nebraska–lowa Functional Analysis Seminar

Christopher Schafhauser University of Nebraska - Lincoln

October 18, 2014

Finiteness Properties

Definition

A (unital) C^* -algebra A is *finite* if whenever $v \in A$, we have $v^*v = 1$ implies $vv^* = 1$.

We say A is stably finite if $M_n(A)$ is finite for all $n \ge 1$.

Definition

A C^* -algebra A is *quasidiagonal* if there are completely positive contractive maps $\varphi_n:A\to \mathbb{M}_{k(n)}$ such that for every $a,b\in A$,

$$\|\varphi_n(ab) - \varphi_n(a)\varphi_n(b)\| \to 0$$
 and $\|\varphi_n(a)\| \to \|a\|$.

Definition

A C^* -algebra A is AF if there are finite dimensional subalgebras $F_1 \subseteq F_2 \subseteq F_3 \subseteq \cdots A$ such that $\bigcup F_n$ is dense in A.

Finiteness Properties

Theorem

AF-embeddable \Rightarrow quasidiagonal \Rightarrow stably finite.

The converses are false:

 $C^*(\mathbb{F}_2)$ is quasidiagonal but not AF-embeddable.

 $C_r^*(\mathbb{F}_2)$ is stably finite but not quasidiagonal.

Conjectures (Blackadar, Kirchberg - 1997)

Quasidiagonal and exact \Rightarrow AF-embeddable.

Stably finite and nuclear \Rightarrow quasidiagonal.

Remark: The conjectures are open even for group C^* -algebras and Type I C^* -algebras.

Positive Results

For the following classes of C^* -algebras, stably finite \Rightarrow AF-embeddable:

- ▶ (Pimsner, 1983) $C(X) \times \mathbb{Z}$, where X is a compact Hausdorff space;
- ▶ (Brown, 1998) $A \rtimes \mathbb{Z}$, where A is an AF-alegbra;
- ▶ (S., 2014) *C**(*E*) where either
 - ▶ E is a discrete graph,
 - E is a compact topological graph with no sinks, or
 - ▶ *E* is a totally disconnected topological graph.
- ▶ (S., 2014) $\mathcal{O}_A(H)$ where A is an AF-algebra and H is a C^* -correspondence over A.

Graph C*-algebras

Definition

A directed graph is a quadruple $E = (E^0, E^1, r, s)$ where E^i are sets and $r, s : E^1 \to E^0$ are functions called the *range* and *source*.

Definition

A path in E is a word $\alpha = e_n \cdots e_2 e_1$ with $r(e_i) = s(e_{i+1})$ for every $i = 1, \dots, n-1$. Set $s(\alpha) = s(e_1)$ and $r(\alpha) = r(e_n)$.

$$r(\alpha) \xleftarrow{e_n} \bullet \xleftarrow{e_{n-1}} \cdots \xleftarrow{e_3} \bullet \xleftarrow{e_2} \bullet \xleftarrow{e_1} s(\alpha)$$

Definition

A loop in E is a path α in E such that $s(\alpha) = r(\alpha)$. We say $\alpha = e_n e_{n-1} \dots e_1$ has an entrance if $|r^{-1}(r(e_i))| > 1$ for some $i = 1, \dots, n$.

Graph C*-algebras

Definition

If E is a directed graph, a Cuntz-Krieger E-family in a C^* -algebra A is a collection of a pairwise orthogonal projections $(p_v)_{v \in E^0}$ and partial isometries $(s_e)_{e \in E^1}$ such that for all $v \in E^0$ and $e, f \in E^1$

- 1. $s_e^* s_e = p_{s(e)}$
- 2. $s_e s_e^* \le p_{r(e)}$
- 3. $s_e^* s_f = 0$ if $e \neq f$
- 4. $\sum_{r(e)=v} s_e s_e^* = p_v \text{ if } 0 < |r^{-1}(v)| < \infty.$

The universal C^* -algebra generated by a Cuntz-Krieger E-family is denoted $C^*(E)$.

Examples

1.
$$E: v > e$$
 $p_v = 1$ $s_e^* s_e = 1$ $s_e s_e^* = 1$.

$$C^*(E)\cong C(\mathbb{T})$$
2. $F: e \hookrightarrow v \hookrightarrow f$ $s_e^*s_e=s_f^*s_f=1$ $s_es_e^*+s_fs_f^*=1$. $C^*(F)\cong \mathcal{O}_2$

- 3. $G: v \xrightarrow{e} w \supset f$ $s_f^* s_f = p_w \quad s_e s_e^* + s_f s_f^* = p_w.$ p_w is infinite. In fact $C^*(G)$ is the Toeplitz algebra.
- 4. Up to Morita equivalence, all AF-algebras and all Kirchberg algebras with torsion free K_1 group are graph algebras.

AF-Embeddings of Graph C^* -algebras

Theorem (S. - 2014)

Suppose E is a countable directed graph. Then the following are equivalent:

- 1. $C^*(E)$ is AF-embeddable;
- 2. $C^*(E)$ is quasidiagonal;
- 3. $C^*(E)$ is stably finite;
- 4. $C^*(E)$ is finite;
- 5. No loop in *E* has an entrance.

We will show $(5) \Rightarrow (1)$.

Proof of AF-Embeddability

Suppose E is a countable directed graph such that no loop in E has an entrance.

The idea is to build a new graph F such that $C^*(F)$ is AF and $C^*(E) \subseteq C^*(F)$.

 $C^*(F)$ will be AF if and only if F has no loops.

Each entry-less loop in a graph generates a copy of $C(\mathbb{T})$.

Let B be the graph

Note that $C^*(B) \cong \mathbb{M}_{2^{\infty}} \otimes \mathbb{K}$ and $p_{\nu} C^*(B) p_{\nu} \cong \mathbb{M}_{2^{\infty}}$.

Let $t \in p_{\nu}C^*(E)p_{\nu}$ be a unitary with $\sigma(t) = \mathbb{T}$.

Given *E* and *B* as below:

form the graph F below:

Given an entry-less loop $e_n \cdots e_2 e_1$ in E, define $\tilde{s}_e \in C^*(F)$ by

$$\widetilde{s}_e = \begin{cases} s_e & e \in E^1 \setminus \{e_1, \dots, e_n\} \\ s_{f_i} t s_{f_{i-1}}^* & e = e_i. \end{cases}$$

and define $\tilde{p}_w = p_w \in C^*(F)$ for $w \in E^0$.

Then $\{\tilde{p}_v, \tilde{s}_e\}$ is a Cuntz-Kreiger *E*-family (this uses that the loop $e_n \cdots e_2 e_1$ has no entrance).

There is an injective *-homomorphism $\varphi: C^*(E) \to C^*(F)$ given by $s_e \mapsto \tilde{s}_e$ and $p_v \mapsto \tilde{p}_v$ (use Szymański's Uniqueness Theorem).

Since F has no loops, $C^*(F)$ is AF.

Hence $C^*(E)$ is AF-embeddable.

Hilbert Modules

A Hilbert module over a C^* -algebra A is a right A-module H together with an inner product $\langle \cdot, \cdot \rangle : H \times H \to A$ such that

- 1. $\langle \xi, \xi \rangle \geq 0$ for every $\xi \in H$,
- 2. $\langle \xi, \xi \rangle = 0$ implies $\xi = 0$ for $\xi \in H$.
- 3. $\langle \xi, \eta \rangle = \langle \eta, \xi \rangle^*$ for $\xi, \eta \in H$,
- 4. $\langle \xi, \eta + \zeta a \rangle = \langle \xi, \eta \rangle + \langle \xi, \zeta \rangle a$ for $\xi, \eta, \zeta \in H$, $a \in A$, and such that H is complete in the norm $\|\xi\|_H^2 = \|\langle \xi, \xi \rangle\|_A$.

An operator $T: H \to H$ is called *adjointable* if there is a $T^*: H \to H$ such that

$$\langle T\xi, \eta \rangle = \langle \xi, T^*\eta \rangle$$
 for every $\xi, \eta \in H$.

Every adjointable operator is bounded and A-linear.

C*-correspondences

The collection $\mathbb{B}(H)$ of all adjointable operators on H forms a C^* -algebra.

A C^* -correspondence over A is a Hilbert A-module H together with a *-homomorphism $\lambda:A\to \mathbb{B}(H)$.

Note that H is an A-A bimodule with $a\xi := \lambda(a)(\xi)$ for $a \in A$ and $\xi \in H$.

Example: Suppose A is a unital C^* -algebra and $\alpha: A \to A$ is a *-homomorphism.

Define $H_{\alpha} = A$ with the obvious Hilbert A-module structure and define the left action by $\lambda = \alpha : A \to A = \mathbb{B}(H_{\alpha})$.

Toeplitz Representations

Let H be a C^* -correspondence over A. A covariant Toeplitz representation of H on a C^* -algebra B consists of

- ▶ a *-homomorphism $\pi: A \rightarrow B$,
- ▶ a linear map $\tau: H \rightarrow B$,

such that the following hold:

- 1. $\tau(a\xi) = \pi(a)\tau(\xi)$,
- 2. $\tau(\xi a) = \tau(\xi)\pi(a)$,
- 3. $\pi(\langle \xi, \eta \rangle) = \tau(\xi)^* \tau(\eta)$,
- 4. a certain covariance condition

Remark: If π and τ are both contractive: Given $\xi \in H$,

$$\|\tau(\xi)\|^2 = \|\tau(\xi)^*\tau(\xi)\| = \|\pi(\langle \xi, \xi \rangle)\| \le \|\langle \xi, \xi \rangle\| = \|\xi\|^2.$$

Moreover, if π is injective, then π and τ are isometric.

Cuntz-Pimsner Algebras

There is a C^* -algebra $\mathcal{O}_A(H)$ and a covariant Toeplitz representation $(\pi, \tau) : (A, H) \to \mathcal{O}_A(H)$ which is universal in the following sense:

Given another covariant Toeplitz representation $(\pi', \tau'): (A, B) \to B$, there is a unique *-homomorphism $\psi: \mathcal{O}_A(H) \to B$ such that $\pi' = \psi \circ \pi$ and $\tau' = \psi \circ \tau$.

Example

Let A be a C^* -algebra and let $\alpha: A \to A$ be an automorphism.

Define $H_{\alpha} = A$ with the obvious right A-module structure and define the left action by $\lambda = \alpha : A \to A \subseteq \mathbb{B}(H_{\alpha})$.

Then $\mathcal{O}_A(H_\alpha) \cong A \rtimes_\alpha \mathbb{Z}$.

In general, the algebra $\mathcal{O}_A(H)$ is thought of as the crossed product of A by the generalized morphism H.

In fact, there is a certain "skew–product" correspondence H^∞ over a C^* -algebra A^∞ such that

$$\mathcal{O}_A(H)\otimes \mathbb{K}\cong \mathcal{O}_{A^\infty}(H^\infty)\rtimes_\sigma \mathbb{Z}\quad \text{and}\quad \mathcal{O}_{A^\infty}(H^\infty)\cong \mathcal{O}_A(H)\rtimes_\gamma \mathbb{T}.$$

C*-correspondences over AF-algebras

Theorem

If H is a (non-degenerate) C^* -correspondence over an AF-algebra A, then $\mathcal{O}_A(H) \rtimes_{\gamma} \mathbb{T}$ is AF, where γ is the gauge action on $\mathcal{O}_A(H)$.

Corollary

If H is a C^* -correspondence over an AF-algebra A, then $\mathcal{O}_A(H)$ is Morita equivalent to a crossed product of an AF-algebra by \mathbb{Z} .

Hence the following are equivalent:

- 1. $\mathcal{O}_A(H)$ is AF-embeddable;
- 2. $\mathcal{O}_A(H)$ is quasidiagonal;
- 3. $\mathcal{O}_A(H)$ is stably finite.

Topological Graphs

A topological graph $E=(E^0,E^1,r,s)$ is a directed graph such that the E^i are locally compact Hausdorff spaces, $r:E^1\to E^0$ is continuous, and $s:E^1\to E^0$ is a local homeomorphism.

 $C_c(E^1)$ is a bimodule over $C_0(E^0)$ with

$$(a\xi)(e) = a(r(e))\xi(e) \qquad (\xi a)(e) = \xi(e)a(s(e))$$

for $a \in C_0(E^0)$, $\xi \in C_c(E^1)$ and $e \in E^1$.

Define an $C_0(E^0)$ -valued inner product on $C_c(E^1)$ by

$$\langle \xi, \eta \rangle (v) = \sum_{s(e) = v} \xi(e) \overline{\eta(e)} \qquad \xi, \eta \in C_c(E^1), \ v \in E^0.$$

Complete to get a C^* -correspondence and let $C^*(E)$ denote the Cuntz-Pimsner algebra.

Examples

1. Suppose X is a locally compact, Hausdorff space and σ is a homeomorphism of X.

Set
$$E^0=E^1=X$$
, $r=\operatorname{id}$, and $s=\sigma$.

E is a topological graph and $C^*(E)\cong C_0(X)\rtimes_\sigma\mathbb{Z}$

- 2. In general, if E is a topological graph, E^1 can be thought of as a partially defined, multi-valued, continuous map $E^0 \to E^0$ given by $v \mapsto r(s^{-1}(v))$.
 - $C^*(E)$ is thought of as the crossed product of $C_0(E^0)$ by E^1 .
- Topological graph algebras include many "classifiable"
 C*-algebras; e.g., AF-algebra, Kirchberg algebras, and simple AT-algebras with real rank zero.

Finiteness of Topological Graphs

Theorem

Suppose E is a compact topological graph with no sinks. The following are equivalent:

- 1. $C^*(E)$ is AF-embeddable;
- 2. $C^*(E)$ is quasidiagonal;
- 3. $C^*(E)$ is stably finite;
- 4. $C^*(E)$ is finite;
- 5. Every vertex emits exactly one edge and every vertex is "pseudo-periodic" in the sense of Pimsner.

In this case, $C^*(E) \cong C(E^{\infty}) \rtimes_{\sigma} \mathbb{Z}$, where σ is the shift on E^{∞} .

Outline of Proof

The proof relies heavily on results from Z. JABŁOŃSKI, I. JUNG, J. STOCHEL, Weighted shifts on

Z. JABŁONSKI, I. JUNG, J. STOCHEL, Weighted shifts on directed trees, *Mem. Amer. Math. Soc.*, **216**(2012), no. 1017.

Given a directed tree $\Gamma = (\Gamma^0, \Gamma^1, r, s)$ and $\lambda = (\lambda_v)_{v \in \Gamma^0}$, we define weighted shifts S_{λ} on $\ell^2(\Gamma^0)$ by

$$S_{\lambda}\delta_{\nu} = \sum_{s(e)=\nu} \lambda_{r(e)}\delta_{r(e)}$$
 for $\delta_{\nu} \in \mathcal{D}(S_{\lambda})$.

Remark: S_{λ} is everywhere defined and bounded if and only if

$$\sup_{\nu\in\Gamma^0}\sum_{s(e)=\nu}|\lambda_{r(e)}|^2<\infty.$$

All the shift operators we consider will be bounded.

Examples

$$\cdots \longrightarrow -2 \longrightarrow -1 \longrightarrow 0 \longrightarrow 1 \longrightarrow 2 \longrightarrow \cdots$$

Then S_{λ} is a weighted bilateral shift. In particular,

$$S_{\lambda}\delta_n = \lambda_{n+1}\delta_{n+1}.$$

$$S_{\lambda} = egin{pmatrix} 0 & 0 & 0 & 0 \ \lambda_2 & 0 & 0 & 0 \ 0 & \lambda_3 & 0 & 0 \ 0 & \lambda_4 & 0 & 0 \end{pmatrix}$$

Fredholm Theory of Shifts

There is a very detailed analysis of the Fredholm theory of directed shifts from Jabłoński, Jung, and Stochel.

Theorem

Suppose S_{λ} is a bounded weighted shift of a tree Γ . Then S_{λ} is bounded below if and only if

$$\inf_{\nu \in E^0} \|S_{\lambda} \delta_{\nu}\| > 0.$$

Theorem

Suppose S_{λ} is bounded and bounded below. Then S_{λ} is surjective if and only if every vertex in Γ emits exactly one edge.

Outline of Proof

Suppose E is a compact topological graph with no sinks and $C^*(E)$ if finite. We claim E every vertex in E has emits exactly one edge.

We may view E^{∞} as a directed graph F where $F^0 = F^1 = E^{\infty}$, $r = \mathrm{id}$, and $s = \sigma$ is the backward shift.

Represent $C^*(E)$ faithfully on $\mathbb{B}(\ell^2(E^\infty))$ by

$$\pi: C(E^0) \to \mathbb{B}(\ell^2(E^\infty)) \qquad \pi(a)\delta_\alpha = a(r(\alpha))\delta(v)$$

$$\tau: C(E^1) \to \mathbb{B}(\ell^2(E^\infty)) \qquad \tau(\xi)\delta_\alpha = \sum_{s(e)=r(\alpha)} \xi(e)\delta_{e\alpha}.$$

Then $\tau(1)$ is an invertible weighted shift in $C^*(E) \subseteq \mathbb{B}(\ell^2(E^\infty))$. So every vertex of E^∞ admits exactly one edge, and hence every vertex of E admits exactly one edge.

We have
$$C^*(E) \cong C(E^0) \rtimes_{r \circ s^{-1}} \mathbb{N} \cong C(E^\infty) \rtimes_{\sigma} \mathbb{Z}$$
.

References

- N. P. Brown and N. Ozawa, *C*-Algebras and Finite-Dimensional Approximations*. Graduate Studies in Mathematics, 88. Amer. Math. Soc., Providence, RI, 2008.
- I. RAEBURN, *Graph algebras*, CBMS Regional Conference Series in Mathematics **103** Published for the Conference Board of the Mathematical Sciences, Washington D.C. by the AMS, Providence, RI (2005).
- C. Schafhauser, AF-embeddings of graph *C**-algebras, *J. Operator Theory*, to appear (arXiv:1406.7757 [math.OA]).
- © C. Schafhauser, Finiteness Properties of Certain Topological Graph Algebras, preprint (arxiv:1409.0157 [math.OA]).
- C. Schafhauser, Cuntz-Pimsner Algebras over AF-algebras, in preparation.