Warm-up

Welche Gleichungen sind quadratische Gleichungen?

Variabeln und Terme

Herr Hastings geht in die Kneipe und trinkt dort 4 Gläser Bier und 1 Gläschen Whisky. Es steht auf seiner Rechnung 5 Getränke und ein Betrag von 17,80€

Anzahl von Getränke = 4 Bier + 1 Whisky = 5

A = B + W

Gesamtbetrag = 4 mal Preis eines Biers + 1 mal Preis eines Whiskys = 17,80€

Preis eines Biers = 3,70€

i) Nenne Variabeln um die Getränke Preise darzustellen

- ii) Schreibe eine Gleichung um den Gesamtbetrag zu berechnen
- iii) Löse die Gleichung um herauszufinden wie viel ein Whisky kostet

Gleichungen Lösen

Lösen heißt eine Wert für die Variable zu finden die lässt die Gleichung stimmen

a)
$$5 = x + 3$$

c)
$$15 = -5 + 4x$$

d)
$$32 = x^2 + 7$$

Seite 51 Aufgabe 18, 21

Seite 103 Aufgabe 3

Aufgabe 3: Parabel und Rechteck

Julia zeichnet mithilfe einer Geometriesoftware die Parabel f mit der Funktionsgleichung $f(x) = -0.5x^2 + 5.5$ in ein Koordinatensystem (Abbildung 1).

Abbildung 1: Parabel f und Rechteck $A_1B_1C_1D_1$

c) Die Punkte C₁ und D₁ liegen auf der x-Achse und bilden mit den Punkten A₁ und B₁ das Rechteck A₁B₁C₁D₁.
Berechne den Umfang dieses Rechtecks.

Seite 103 Aufgabe 3

Aufgabe 3: Parabel und Rechteck

Julia zeichnet mithilfe einer Geometriesoftware die Parabel f mit der Funktionsgleichung

$$f(x) = -0.5x^2 + 5.5$$
 in ein Koordinatensystem (Abbildung 1).

Abbildung 1: Parabel f und Rechteck $A_1B_1C_1D_1$

- d) (1) Zeichne den Punkt $A_2(1|5)$ in Abbildung 1 ein.
 - (2) Ergänze die drei weiteren Punkte B_2 , C_2 und D_2 und verbinde die vier Punkte zu dem Rechteck $A_2B_2C_2D_2$.

Mit dem Term (I) kann man den Umfang für jedes dieser Rechtecke berechnen

(I)
$$2 \cdot 2x + 2 \cdot (-0.5x^2 + 5.5)$$
.

Dabei ist x > 0 und steht für die x-Koordinate des zum Rechteck gehörenden Punktes A_1, A_2 usw.

e) Berechne mit dem Term (I) den Umfang des Rechtecks, das durch den Punkt $A_2(1|5)$ festgelegt ist.

Seite 103 Aufgabe 3

Aufgabe 3: Parabel und Rechteck

Julia zeichnet mithilfe einer Geometriesoftware die Parabel f mit der Funktionsgleichung

$$f(x) = -0.5x^2 + 5.5$$
 in ein Koordinatensystem (Abbildung 1).

Abbildung 1: Parabel f und Rechteck $A_1B_1C_1D_1$

Mit dem Term (I) kann man den Umfang für jedes dieser Rechtecke berechnen

(I)
$$2 \cdot 2x + 2 \cdot (-0.5x^2 + 5.5)$$
.

Dabei ist x > 0 und steht für die x-Koordinate des zum Rechteck gehörenden Punktes A_1, A_2 usw.

Julia vereinfacht den Term (I) zu (II) $-x^2 + 4x + 11$.

- f) Zeige durch Termumformungen, dass die beiden Terme (I) und (II) gleichwertig sind.
- g) Julia stellt die folgende Gleichung auf:

$$-x^2 + 4x + 11 = 14,75$$

- (1) Löse die Gleichung.
- (2) Erkläre das Ergebnis in Bezug auf die Rechtecke unter der Parabel *f* .

- Seite 51 Aufgabe 18, 21
- Seite 74