COMS 4771 Dimensionality Reduction

Example: Handwritten digits

Handwritten digit data, but with no labels

0123456789 0123456789 0123456789 0123456789

What can we do?

- Suppose know that there are 10 groupings, can we find the groups?
- What if we don't know there are 10 groups?
- How can we discover/explore other structure in such data?

A 2D visualization of digits dataset

Dimensionality Reduction

Data: $\vec{x}_1, \vec{x}_2, \dots \vec{x}_n \in \mathbf{R}^d$

Goal: find a 'useful' transformation $\phi : \mathbf{R}^d \to \mathbf{R}^k$ that helps in the downstream prediction task.

Some previously seen useful transformations:

• z-scoring $(x_1, \dots, x_d) \mapsto \left(\frac{x_1 - \mu_1}{\sigma_1}, \dots, \frac{x_d - \mu_d}{\sigma_d}\right)$

Keeps same dimensionality but with better scaling

Kernel transformations.

Higher dimensionality, making data linearly separable

What are other desirable feature transformations?

How about lower dimensionality while keeping the relevant information?

Principal Components Analysis (PCA)

Data: $\vec{x}_1, \vec{x}_2, \dots \vec{x}_n \in \mathbf{R}^d$

Goal: find the best **linear** transformation $\phi: \mathbf{R}^d \to \mathbf{R}^k$ that best maintains reconstruction accuracy.

Equivalently, minimize aggregate residual error

Define: $\Pi^k: \mathbf{R}^d o \mathbf{R}^d$ k-dimensional orthogonal linear projector

minimize
$$\frac{1}{n} \sum_{i=1}^{n} \left\| \vec{x}_i - \Pi^k(\vec{x}_i) \right\|^2$$

How do we optimize this?

Dimensionality Reduction via Projections

A k dimensional subspace can be represented by $\vec{q}_1, \dots, \vec{q}_k \in \mathbf{R}^d$ orthonormal vectors.

The projection of any $\vec{x} \in \mathbf{R}^d$ in the $\operatorname{span}(\vec{q}_1, \dots, \vec{q}_k)$ is given by

$$\sum_{i=1}^{k} (\vec{q}_i \cdot \vec{x}) \ \vec{q}_i = \left(\sum_{i=1}^{k} \vec{q}_i \vec{q}_i^{\mathsf{T}}\right) \vec{x}$$

To represent it in \mathbf{R}^k (using basis $\vec{q}_1, \dots, \vec{q}_k$) the coefficients simply are: $(\vec{q}_1 \cdot \vec{x}), \dots, (\vec{q}_k \cdot \vec{x})$

PCA: k = 1 case

If projection dimension k = 1, then looking for a q such that

minimize
$$\|\mathbf{q}\| = 1$$
 $\frac{1}{n} \sum_{i=1}^{n} \|\vec{x}_i - (\vec{q} \ \vec{q}^{\mathsf{T}}) \vec{x}_i\|^2$

$$\frac{1}{n} \sum_{i=1}^{n} \left\| \vec{x}_i - (\vec{q} \ \vec{q}^{\mathsf{T}}) \vec{x}_i \right\|^2 = \left(\frac{1}{n} \sum_{i=1}^{n} \vec{x}_i^{\mathsf{T}} \vec{x}_i \right) - \vec{q}^{\mathsf{T}} \left(\frac{1}{n} \sum_{i=1}^{n} \vec{x}_i \vec{x}_i^{\mathsf{T}} \right) \vec{q}$$

$$\propto - \vec{q}^{\mathsf{T}} \left(\frac{1}{n} X X^{\mathsf{T}} \right) \vec{q}$$

Equivalent formulation:

$$maximize_{||q||=1} \vec{q}^{\mathsf{T}} \left(\frac{1}{n} X X^{\mathsf{T}}\right) \vec{q}$$

How to solve?

Eigenvectors and Eigenvalues

Recall for any matrix M, the (λ, v) pairs of the fixed point equation

$$Mv = \lambda v$$

are the eigenvalue and the eigenvectors of M. ($v \neq 0$)

$$v^{\mathsf{T}} M v = \lambda v^{\mathsf{T}} v$$

$$\lambda = \frac{v^\mathsf{T} M v}{v^\mathsf{T} v} = \bar{v}^\mathsf{T} M \bar{v}$$
 where $\bar{v} = \frac{v}{\|v\|}$ (ie, unit length)

where
$$\bar{v} = \frac{v}{\|v\|}$$

So,

$$\textit{maximize}_{||q||=1} \ \vec{q}^{\,\mathsf{T}} \Big(\frac{1}{n} X X^{\mathsf{T}} \Big) \vec{q}$$

Basically is the top eigenvector of matrix $(1/n) XX^{T}!$

PCA: k = 1 case

$$maximize_{||q||=1} \quad \vec{q}^{\mathsf{T}} \underbrace{\begin{pmatrix} 1 \\ n \end{pmatrix} X X^{\mathsf{T}} }_{n} \vec{q}$$
 Covariance of data (if mean = 0)

For any q the quadratic form $\vec{q}^{\, \mathrm{T}} \Big(\frac{1}{n} X X^{\mathrm{T}} \Big) \vec{q}$ is the empirical

variance of data in the direction q, ie, of data $\vec{q}^T \vec{x}_1, \dots, \vec{q}^T \vec{x}_n$

why?

Therefore, the top eigenvector solution implies that the direction of maximum variance minimizes the residual error!

What about general k?

PCA: general k case

$$\arg\min_{\substack{Q \in \mathbf{R}^{d \times k} \\ Q^{\mathsf{T}}Q = I}} \frac{1}{n} \sum_{i=1}^{n} \left\| \vec{x}_i - QQ^{\mathsf{T}} \vec{x}_i \right\|^2 = \arg\max_{\substack{Q \in \mathbf{R}^{d \times k} \\ Q^{\mathsf{T}}Q = I}} \operatorname{tr}\left(Q^{\mathsf{T}}\left(\frac{1}{n} X X^{\mathsf{T}}\right) Q\right)$$

Solution: Basically is the top k eigenvectors of the matrix XX^T !

$$\operatorname{tr}\left(Q^{\mathsf{T}}\left(\frac{1}{n}XX^{\mathsf{T}}\right)Q\right) = \sum_{i=1}^{k} \text{empirical variance of } \vec{q_i}^{\mathsf{T}}x$$

k-dimensional subspace preserving maximum amount of variance

PCA: Example Handwritten Digits

Images of handwritten 3s in R⁷⁸⁴

We can compress the each datapoint to just k numbers!

Other Popular Dimension Reduction Methods

Multi-dimensional Scaling

Independent Component Analysis (ICA) (for blind source separation)

Non-negative matrix factorization (to create additive models)

Dictionary Learning

Random Projections

• • •

All of them are **linear** methods

Non-Linear Dimensionality Reduction

Consider non-linear data

non-linear embedding

Non-Linear Dimensionality Reduction

Basic optimization criterion:

Find an embedding that:

- Keeps neighboring points close
- Keeps far-off points far

Example variation 1:

Distort neighboring distances by at most $(1\pm\varepsilon)$ factor, while maximizing non-neighbor distances.

Example variation 2:

Compute **geodesic** (local hop) distances, and find an embedding that best preserves geodesics.

Non-linear embedding: Example

Popular Non-Linear Methods

Locally Linear Embedding (LLE)

Isometric Mapping (IsoMap)

Laplacian Eigenmaps (LE)

Local Tangent Space Alignment (LTSA)

Maximum Variance Unfolding (MVU)

• • •

What We Learned...

- Dimensionality Reduction
 Linear vs non-linear Dimensionality Reduction
- Principal Component Analysis

Questions?