

Ouick start

import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt

X = np.linspace(0, 2*np.pi, 100) Y = np.cos(X)

fig, ax = plt.subplots() ax.plot(X,Y,color='C1')

fig.savefig("figure.pdf") fig.show()

Anatomy of a figure

Subplots layout

subplot[s](rows,cols,...) fig, axs = plt.subplots(3,3) G = gridspec(rows,cols,...) API ax = G[0,:]ax.inset_axes(extent) d=make axes locatable(ax) API ax=d.new_horizontal('10%')

Getting help

matplotlib.org

O discourse.matplotlib.org

₩ gitter.im/matplotlib

Matplotlib users mailing list

API

scatter(X,Y,...) X, Y, [s]izes, [c]olors, marker, cmap

imshow(Z,[cmap],...) Z, cmap, interpolation, extent, origin

fill[_between][x](...) X, Y1, Y2, color, where

Advanced plots

API

X, notch, sym, bootstrap, widths

ax.set_[xy]scale(scale,...) WWWW linear ∖∭ log any values values > 0 logit ₩//// symlog 1 0 < values < 1 any values

Scales

Tick locators

ticker.NullLocator()

ticker.AutoLocator()

ticker.MaxNLocator(n=4)

Tick formatters

ticker.NullFormatter()

Ornaments

ax.legend(...)

Legend ←

ax.colorbar(...)

0.0 0.1

from matplotlib import ticker

ticker.FormatStrFormatter('>%d<')

handles, labels, loc, title, frameon

Label 1

Label 2

mappable, ax, cax, orientation

Label 3

Label 4

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

from matplotlib import ticker

ticker.MultipleLocator(0.5)

ticker.FixedLocator([0, 1, 5])

ticker.LinearLocator(numticks=3)

ax.[xy]axis.set [minor|major] locator(locator)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

ticker.IndexLocator(base=0.5, offset=0.25)

ticker.LogLocator(base=10, numticks=15)

 $\verb"ax.[xy] axis.set_[minor|major]_formatter(formatter)"$

ticker.FuncFormatter(lambda x, pos: "[%.2f]" % x)

ticker.FixedFormatter(['', '0', '1', ...])

0.25 0.50 1 0.75 0.25 2 0.50 0.75 3 0.25 0.50 0.75

Projections subplot(...,projection=p) p='polar' p='3d' p=Orthographic() from cartopy.crs import Cartographic

plt.get_cmap(name)

Cyclic

coolwarm Event handling

fig, ax = plt.subplots() def on_click(event): print(event) fig.canvas.mpl_connect('button_press_event', on_click)

Animation

import matplotlib.animation as mpla

```
T = np.linspace(0,2*np.pi,100)
S = np.sin(T)
line, = plt.plot(T, S)
def animate(i):
  line.set_ydata(np.sin(T+i/50))
anim = mpla.FuncAnimation(
  plt.gcf(), animate, interval=5)
plt.show()
```

Styles

API

plt.style.use(style)

Quick reminder

ax.grid() ax.patch.set_alpha(0) ax.set_[xy]lim(vmin, vmax) ax.set_[xy]label(label) ax.set_[xy]ticks(list) ax.set_[xy]ticklabels(list) ax.set_[sup]title(title) ax.tick_params(width=10, ...) ax.set_axis_[on|off]()

ax.tight_layout() plt.gcf(), plt.gca() mpl.rc('axes', linewidth=1, ...) fig.patch.set alpha(0) text=r'\$\frac{-e^{i\pi}}{2^n}\$'

Keyboard shortcuts

ctrl + s Save ctrl + w Close plot r Reset view f Fullscreen 0/1

f View forward

p Pan view x X pan/zoom

g Minor grid 0/1

G Major grid 0/1 X axis log/linear L Y axis log/linear

b View back

O Zoom to rect

y Y pan/zoom

Ten simple rules

1. Know Your Audience

2. Identify Your Message

3. Adapt the Figure

4. Captions Are Not Optional

5. Do Not Trust the Defaults

6. Use Color Effectively

7. Do Not Mislead the Reader

8. Avoid "Chartiunk"

9. Message Trumps Beauty 10. Get the Right Tool

origin="upper" extent=[0.10.0.5] extent=[10.0.0.5] origin="lower origin="lower

Text alignments

Text parameters	API
ax.text(, family= , ax.text(, fontpropert	

The quick brown fox	xx-large (1.73)
The quick brown fox	x-large (1.44)
The guick brown fox	large (1.20)
The quick brown fox	medium (1.00)
The quick brown fox	small (0.83)
The quick brown fox	x-small (0.69)
The quick brown fox	xx-small (0.58)

The quick brown fox	xx-small	(0.58)
The quick brown fox jumps over the lazy dog	black	(900)
The quick brown fox jumps over the lazy dog	bold	(700)
The quick brown fox jumps over the lazy dog	semibold	(600)
The quick brown fox jumps over the lazy dog	normal	(400)
The quick brown fox jumps over the lazy dog	ultralight	(100)

The quick brown fox jumps over the lazy dog

Uniform colormaps

Sequential colormaps

Diverging colormaps

Qualitative colormaps

Color names cadetblue powderblue lightblue darkgoldenrod goldenrod dimgray dimgrey gray cornsilk gold deepskyblue lemonchiffon khaki grey darkgray skyblue liahtskyblue darkgrey palegoldenroc pa. darkkn. ivory beige lightyellow lightgoldenrodyellor oflive y yellow 'wedrab 'reer aliceblue lightgray lightgrey gainsboro whitesmoke dodgerblue lightslategray slategray slategray slategrey lightsteelblue cornflowerblue y yellow olivedrab yellowgreen darkolivegreen greenyellow chartreuse lawngreen honeydew larksewhite white snow rosybrowi lightcoral indianred brown firebrick maroon darkred cornflowerblu royalblue ghostwhite lavender midnightblue honeydew darkseagreer palegreen lightgreen forestgreen blue slateblue darkslateblue mistyrose salmon tomato darksalmon limegreen darkgreen mediumpurple rebeccapurple orangered green lime blueviolet indigo sienna seagreen mediumseagreen chocolate springgreen mintcream mediumorchid saddlebrown sandybrown mediumspringgreen plum peachpuff mediumaquama violet purple darkmagenta aguamarine turquoise lightseagreen mediumturquoise fuchsia darkorange burlywood antiquewhite tan navajowhite blanchedalmond azure lightcyan paleturquoise darkslategray darkslategrey magenta orchid mediumvioletred deeppink hotpink lavenderblush palevioletred crimson teal darkcyan aqua cyan pink lightpink

catrom

mitchell

gaussian

bessel

lanczos

Legend placement K 9 6 10 В Ě D

ax.legend(loc="string", bbox_to_anchor=(x,y))

2: upper left 9: upper center 1: upper right 6: center left 10: center 7: center right 3: lower left 8: lower center 4: lower right

A: upper right / (-0.1,0.9) B: center right / (-0.1,0.5) C: lower right / (-0.1,0.1) D: upper left / (0.1, -0.1) E: upper center / (0.5, -0.1) F: upper right / (0.9, -0.1) G: lower left / (1.1,0.1) H: center left / (1.1,0.5) I: upper left / (1.1,0.9) J: lower right / (0.9,1.1) K: lower center / (0.5,1.1) L: lower left / (0.1,1.1)

Annotation connection styles

How do I..

- ... resize a figure? \rightarrow fig.set_size_inches(w,h)
- ... save a figure?
- → fig.savefig("figure.pdf") ... save a transparent figure?
- → fig.savefig("figure.pdf", transparent=True)
- ... clear a figure?
- → ax.clear()
- ... close all figures?
- → plt.close("all")
- ... remove ticks? → ax.set xticks([])
- ... remove tick labels?
- → ax.set_[xv]ticklabels([])
- ... rotate tick labels?
- \rightarrow ax.set_[xv]ticks(rotation=90)
- ... hide top spine?
- \rightarrow ax.spines['top'].set_visible(False)
- ... hide legend border?
- → ax.legend(frameon=False)
- ... show error as shaded region?
- → ax.fill_between(X, Y+error, Y-error)
- ... draw a rectangle?
- \rightarrow ax.add_patch(plt.Rectangle((0, 0),1,1)
- ... draw a vertical line?
- \rightarrow ax.axvline(x=0.5)
- ... draw outside frame?
 - \rightarrow ax.plot(..., clip_on=False)
- ... use transparency?
 - \rightarrow ax.plot(..., alpha=0.25)
- ... convert an RGB image into a gray image?
- \rightarrow gray = 0.2989*R+0.5870*G+0.1140*B
- ... set figure background color?
- → fig.patch.set_facecolor("grey")
- ... get a reversed colormap?
- → plt.get_cmap("viridis_r")
- ... get a discrete colormap?
 - \rightarrow plt.get_cmap("viridis", 10)
- ... show a figure for one second?
 - \rightarrow fig.show(block=False), time.sleep(1)

Performance tips

Beyond Matplotlib

Seaborn: Statistical Data Visualization Cartopy: Geospatial Data Processing yt: Volumetric data Visualization mpld3: Bringing Matplotlib to the browser Datashader: Large data processing pipeline plotnine: A Grammar of Graphics for Python

Matplotlib Cheatsheets Copyright (c) 2021 Matplotlib Development Team Released under a CC-BY 4.0 International License

