

The University of Manchester

Overview of Deep Learning for NLP

Viktor Schlegel

Motivation

What this is: high level overview with lots of pointers for self-study of relevant concepts, intuition

What this isn't: In-depth tutorial that will teach you deep learning so you go off and develop your own super deep and super neural supernetwork

Where can i get this: Coursework! Follow pointers! Resources Blackboard!

Why so: Deep Learning for NLP is its own semester long course, assuming you know deep learning by itself. Impossible to learn in 45 minutes.

Positive: less examinable stuff! Negative: self-study

What this videos are about

Covered:

- · High level conceptual overview of deep learning for NLP
- Expressing NLP tasks as sequence processing problems
- Some details on sequence processing with neural networks

Not covered:

d: Where can i get it?

- Details
- Depth
- Math

- Follow the pointers
- Coursework!

Data-driven approaches

Input: Sequence of tokens (text)

Possible tasks:

- Classify sequence Label tokens

- Generate another sequence Extract token span from input

Here: input is coordinates

For us: input is text

Geometrical view

Learning a representation

Traditional ML:

- decide on features (expert knowledge)
- learn their weight from training data

Deep Learning:

 Learn to extract features from raw input (text, image, audio)

Weight	Feature
1.16	(x, r, y) covers all words in s
0.50	The last preposition in r is for
0.49	The last preposition in r is on
0.46	The last preposition in r is of
0.43	$len(s) \leq 10$ words
0.43	There is a WH-word to the left of r
0.42	r matches VW*P from Figure 1
0.39	The last preposition in r is to
0.25	The last preposition in r is in
0.23	$10 \text{ words} < len(s) \le 20 \text{ words}$
0.21	s begins with x
0.16	y is a proper noun
0.01	x is a proper noun
-0.30	There is an NP to the left of x in s
-0.43	20 words < len(s)
-0.61	r matches V from Figure 1
-0.65	There is a preposition to the left of x in s
-0.81	There is an NP to the right of y in s
-0.93	Coord. conjunction to the left of r in s

Data

- For now, let's not focus on how this representation is learned (we will take a closer look later)
- Simplifying assumption: assume we express an NLP task as a set of textual inputs and expected outputs
 → a neural network will learn the underlying statistical patterns to succeed at the task
 (provided strong enough signal, representative training data, and much, much more)
- How do we represent NLP tasks as input/output pairs?

NLP as time series analysis

Sequence = time series time series = data points, indexed in time order data points = words in text time order = order appearance in text

We will be looking at:

- Sequence classification
- Sequence labelling
- Sequence extraction
- Sequence to Sequence translation

Sequence classification

S1: I like trains.

S2: The train is arriving on time.

straight year. The Patriots trailed 24-16 at the end of the third quarter. They scored on a 46-yard field goal with 4:00 left in the game to pull within 24-19. Then, with 56 seconds remaining, Dion Lewis scored on an 8-yard run and the Patriots added a two-point conversion to go ahead 27-24. The game ended on a Roethlisberger interception. Steelers wide receiver Antonio Brown left in the first half with a bruised calf.

Input text

Classifier

Possible classes

{Paraphrase,

NoParaphrase}

Probability distribution

{Paraphrase: 0.1, NoParaphrase: 0.9}

Applicable NLP tasks:

- Sentiment analysis
- textual entailment
- paraphrasing
- question type classification

http://paraphrase.org

I: {start: 0.8, end: 0.01}
like: {start: 0.1, end: 0.9}
trains: {start: 0.05, end: 0.05}
.: {start: 0.05, end: 0.04}
⇒ [0, 1): I

Applicable NLP tasks:

- Question Answering
- Relation Extraction

Sequence labelling

I like trains.

Input text Token Classifier straight year. The Patriots trailed 24-16 at the end of the third quarter. They scored on a 46-yard field goal with 4:00 left in the game to pull within 24-19. Then, with 56 seconds remaining, Dion Lewis scored on an 8-yard run and the Patriots added a two-point conversion to go ahead 27-24. The game ended on a Roethlisberger interception. Steelers wide receiver Antonio Brown left in the first half with a bruised calf.

Applicable NLP tasks:

- POS tagging Named Entity Recognition
- OpenIE, Semantic Role Labelling question type classification

https://www.cs.upc.edu/~srlconll/

Sequence to sequence

I like trains.

Applicable NLP tasks:

- Translation
- Abstractive Summarisation
- Text generation
- Question answering

Output text Words in the target vocabulary {я, самолет, зачем, поезда. ... } Probability distribution of next word given input and output sequence so far я : {я: 0.85, ты: 0.01, мы: ... люблю: {люблю: 0.7, пошел: } поезда: {поезда: 0.6, тебя: 0.2 ... } .: { .: 0.99, UH: 0.001 ... } ⇒ я люблю поезда.

http://www.statmt.org/wmt14/translation-task.html

Sequence what?

What about parsing? E.g. dependency parsing? In general where the output is neither a class nor a span nor a sequence?

- ⇒ Arguably, many lower-level tasks in the NLP pipeline can be omitted in favour of end-to-end modelling of the problem. But lower-level tasks are also interesting in themselves
- ⇒ more tricky approaches, combine encoding and parsing or more complex architecture ¹

Why?

- Deep learning for NLP would make a great
 1-semester course by itself, building on top of a general deep learning course
- Can't fit everything into 1 week's lecture
- Focus on "what" can be done, not "how".
 - Knowing "how" it works doesn't necessarily inform whether it will work in some particular instance, so experiments are needed anyways.
 - Learning "how" is best done hands-on, requires time

Motivation 2

Focus on "what", not on "how" (and not "why").

- even if you know the "how", the "what" requires a lot of experimentation
- ⇒ better to learn "hands-on", requires time
- ⇒ coursework, pointers, time