

## SCHOOL OF COMPUTER SCIENCE AND ENGINEERING CONTINUOUS ASSESSMENT TEST - 1 WINTER SEMESTER 2024-2025

SLOT: G1+TG1

Programme Name & Branch

: M.Tech CSE Integrated

Course Code and Course Name

: MDI3006, ADVANCED DATA ANALYTICS : Dr.Chellatamilan T, Dr.EBENEZER JULIET S

Faculty Name(s)

: VL2024250502876, VL2024250502880

Class Number(s) Date of Examination

: 02-02-2025

**Exam Duration** 

: 90 minutes

Maximum Marks: 50

## General instruction(s):

Answer All Questions

M - Max mark; CO - Course Outcome; BL - Blooms Taxonomy Level (1 - Remember, 2 -

Understand, 3 - Apply, 4 - Analyse, 5 - Evaluate, 6 - Create)

 Course Outcomes (Type the CO statements covered in this question paper. Use the CO number as per the syllabus copy)

CO1 - Understand the algorithms and functioning of advanced techniques and concepts such as deep learning, distance metric learning, and domain adaptation.

CO2 - Understand the advantages and limitations of the algorithms and their potential applications.

| 0.1   | Question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M      | CO  | BL  |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|-----|--|
| Q. No | Explain briefly the influence of kernel trick and high lights the property of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | 133 | 122 |  |
| 1.    | kernel functions used to transform the data into a higher dimensional space where it becomes linearly separable. Illustrate how this transformation work with suitable example and plots.                                                                                                                                                                                                                                                                                                                                                                                                      |        |     |     |  |
| 2.    | Consider a simple 2D dataset with labelled points and apply Multiple Kernel Learning (MKL) to determine the equation of the hyperplane Point A: (1, 2), Label: +1 Point B: (2, 3), Label: +1 Point C: (3, 3), Label: -1 Point D: (4, 5), Label: -1 Create a combined kernel with equal weight as in the order given below and then find the value of the decision function $f(x)$ . Linear Kernel Radial Basis Function (RBF) Kernel Let's assume some hypothetical values for $\alpha$ and $b$ . compute $f(x)$ for a new test point (4,5) $f(x) = \sum_{i=1}^{n} \alpha_i y_i K(x, x_i) + b$ | 10     | 1   | 4   |  |
| 3.    | Let's assume we have a hyper plane defined by: $w \cdot x + b = 0$ whereas the weight vector $w = [1,-1]$ and considering the classification decision rule of SVM as Decision=sign( $w \cdot x + b$ ). Classify each of the data points given below and identify which of the data points are correctly classified.                                                                                                                                                                                                                                                                            | 5<br>5 | 1   | 4   |  |



## SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

## CONTINUOUS ASSESSMENT TEST - 1 WINTER SEMESTER 2024-2025

SLOT: G1+TG1

|   | Point                                                                                                                                                                                                                                               | X1       | X2                    | Label                      |                                                                                          |    |   |   |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------|----------------------------|------------------------------------------------------------------------------------------|----|---|---|
|   | P1                                                                                                                                                                                                                                                  | 0        | 2                     | +1                         | 37                                                                                       |    |   |   |
|   | P2                                                                                                                                                                                                                                                  | 1        | 2                     | -1                         |                                                                                          |    |   |   |
|   | P3                                                                                                                                                                                                                                                  | 2        | 2                     | -1                         | 1 1 2 3                                                                                  |    |   |   |
|   | P4                                                                                                                                                                                                                                                  | 1        | 3                     | -1                         | -3-1-1                                                                                   |    |   |   |
|   | P5                                                                                                                                                                                                                                                  | 1        | -3                    | +1                         | 1                                                                                        |    |   |   |
| 4 | point, al                                                                                                                                                                                                                                           | so visu  | alize the             | m in a plot                |                                                                                          |    |   |   |
| 7 | explana                                                                                                                                                                                                                                             | tion wit | h suitab              | le diagram<br>ss and the s | e PAC Learning model and illustrate your showing the relationship between the target     | 10 | 1 | 3 |
| 5 | Suppose                                                                                                                                                                                                                                             | e we ha  | ave a bi<br>ent passe | nary classif               | fication problem where we want to predict ls (0) based on their study hours. We have the |    |   |   |
|   |                                                                                                                                                                                                                                                     |          |                       | Study I                    | Hours Pass/Fail                                                                          |    |   |   |
|   |                                                                                                                                                                                                                                                     |          |                       | 1                          | 4                                                                                        |    |   |   |
|   |                                                                                                                                                                                                                                                     |          |                       | 2 3                        | 17.47.1                                                                                  |    |   |   |
|   |                                                                                                                                                                                                                                                     |          |                       | 4                          | 1 Table Share                                                                            | 10 |   |   |
|   |                                                                                                                                                                                                                                                     |          |                       | 5                          | 1                                                                                        | 10 | 2 | 5 |
|   |                                                                                                                                                                                                                                                     |          |                       | 6                          | 1                                                                                        |    |   |   |
|   |                                                                                                                                                                                                                                                     |          |                       | 7                          | 1                                                                                        |    |   |   |
|   | Fit a simple decision stump (a one-level decision tree) to the residuals. Illustrates the iterative nature of Gradient Boosting, where each step aims to correct the errors of the previous model, eventually leading to a strong predictive model. |          |                       |                            |                                                                                          |    |   |   |

\*\*\*\*\*\*\*\*