Questão 1

Dilema do Prisioneiro

• Jogadores: $N = \{1, 2\}$

• Estratégias: $S_i = \{C, NC\}$, para $i = \{1, 2\}$, onde C é Cooperar e NC é não cooperar

• Funcões utilidade: $v_i:\{S_1,S_2\}\to\mathbb{R}$ para $i=\{1,2\}$

$$v_1(NC, NC) = 5$$

$$v_1(C, NC) = 0$$

$$v_1(NC,C) = 10$$

$$v_1(C,C) = 2$$

Com v_2 idêntico se trocada a ordem dos elementos.

• Matriz de Payoff:

	C	NC
C	(2,2)	(0,10)
NC	(10,0)	(5,5)

Bach e Stravinsky

• Jogadores: $N = \{1, 2\}$

• Estratégias: $S_i = \{B, S\}$, para $i = \{1, 2\}$, onde B é escolher ir ao concerto de Bach e S é escolher ir ao concerto de stravinsky

• Funções utilidade: $v_i: \{S_1, S_2\} \to \mathbb{R}$ para $i = \{1, 2\}$

$$v_1(B, B) = 2$$

$$v_1(S, S) = 1$$

$$v_1(S,B) = 0$$

$$v_1(B, S) = 0$$

Com v_2 idêntico se trocar B por S e vice-versa.

• Matriz de Payoff:

	В	\overline{S}
B	(2,1)	(0,0)
S	(0,0)	(1,2)

Jogo de Chicken

- Jogadores: $N = \{1, 2\}$
- Estratégias: $S_i = \{D, N\}$, para $i = \{1, 2\}$, onde D é desviar e N é não desviar
- Funcões utilidade: $v_i:\{S_1,S_2\}\to\mathbb{R}$ para $i=\{1,2\}$

$$v_1(D, D) = 0$$

$$v_1(D, N) = -1$$

$$v_1(N,D)=3$$

$$v_1(N, N) = -10$$

Com v_2 idêntico se trocada a ordem dos elementos.

• Matriz de Payoff:

	N	D
\overline{N}	(-10,-10)	(3,-1)
D	(-1,3)	(0,0)

Stag Hunt

- Jogadores: $N = \{1, 2\}$
- Estratégias: $S_i = \{L, V\}$, para $i = \{1, 2\}$, onde L é caçar a lebre e V é caçar o veado
- Funcões utilidade: $v_i:\{S_1,S_2\}\to\mathbb{R}$ para $i=\{1,2\}$

$$v_1(L,L) = 1$$

$$v_1(L,V) = 2$$

$$v_1(V, L) = 0$$

$$v_1(V,V)=3$$

Com v_2 idêntico se trocada a ordem dos elementos.

• Matriz de Payoff:

	L	V
\overline{L}	(1,1)	(2,0)
V	(0,2)	(3,3)

Questão 2

- a) No dilema do prisioneiro, escolher não cooperar é estritamente dominado por escolher não cooperar, já que, independente da escolha do outro jogador, não cooperar sempre tem o melhor resultado. Esse é o único dos jogos que tem uma estratégia estritamente estritamente dominada.
- b) Como apenas o dilema do prisioneiro tem uma estratégia estritamente dominante (não cooperar), ele é o único que poderia ter um equilíbrio de estratégia estritamente dominante. De fato ele tem. Se ambos os jogadores escolherem não cooperar, ambos estarão escolhendo uma estratégia estritamente dominante
- c) No caso do dilema do prisioneiro, como existem apenas duas estratégias por jogador, a Eliminação Iterativa de Estratégias Estritamente Dominadas é trivial, é o mesmo que o anterior, onde apenas não cooperar é uma estratégia possível. No caso do dilema, não é um ótimo de Pareto, já que, se os dois cooperassem, ambos melhorariam seu resultado

Questão 3

a) Sim, para o segundo jogador, a estratégia centro é estritamente dominada por tanto Esquerda quanto Direita b) Não existem uma estratégia estritamente dominante c) Existe um equilíbrio, ao eliminarmos a estratégia Centro para o segundo jogador, a estratégia Alto para o primeiro jogador torna-se estritamente dominada, podendo assim ser eliminada. Assim, pode-se eliminar a estratégia Direita, que se torna estritamente dominada. O equilíbrio de EIEED é a estratégia (Baixo, Esquerda). Ela é ótimo de Pareto, já que para melhorar qualquer jogador, é necessário piorar o resultado do outro jogador.

Questão 4

Desse modo, a estratégia Centro e a estratégia Direita são fracamente dominadas para a jogadora 2.

Questão 5

- a) A estratégia fracamente dominada do jogador 1 é Alto, e as do jogador 2 é Esquerda. Eliminando primeiro Alto, A estratégia Direita é estritamente dominada e pode ser eliminada, sobrando as estratégias Centro e Esquerda para o jogador 2, sendo equivalentes. Se for eliminada a estratégia Esquerda inicialmente, as estratégias Alto e Baixo tornam-se equivalentes para o jogador 1 e não existe mais nenhuma estratégia fracamente dominada para o jogador 2.
- b) Se um jogo não tem estratégias estritamente dominadas o método de eliminação iterada pode levar a estratégias ambíguas, talvez não explicitando uma solução.

Questão 6

- Jogadores: $N = \{1, 2\}$
- Estratégias: $S_i = \{E, C, D\}$, para $i = \{1, 2\}$, onde as opçoes são Esquerda, Centro e Direita, respectivamente.
- Funcões utilidade: $v_i:\{S_1,S_2\}\to\mathbb{R}$ para $i=\{1,2\}$. Seja $N\in S_1$ e $M\in S_2$. Se N=M:

$$v_1(N,M) = -1$$

$$v_2(N,M) = 1$$

Se $N \neq M$:

$$v_1(N,M) = 1$$

$$v_2(N,M) = -1$$

• Matriz de Payoff:

	E	C	D
\overline{E}	(-1,1)	(1,-1)	(1,-1)
C	(1,-1)	(-1,1)	(1,-1)
D	(1,-1)	(1,-1)	(-1,1)

Questão 7

• Jogadores: $N = \{1, 2, 3\}$

• Estratégias: $S_i = \{P, N\}$, para $i = \{1, 2, 3\}$, onde P é pagar e N é não pagar

• Funcões utilidade: $v_i:\{S_1,S_2,S_3\} \to \mathbb{R}$ para $i=\{1,2,3\}$

$$v_1(N, N, N) = 0$$

$$v_1(N, N, P) = 0$$

$$v_1(N, P, N) = 0$$

$$v_1(N, P, P) = 3$$

$$v_1(P, N, N) = -1$$

$$v_1(P, N, P) = 2$$

$$v_1(P, P, N) = 2$$

$$v_1(P, P, P) = 2$$

 v_2 e v_3 são simétricos.

• Matriz de Payoff para $S_3 = N$:

	N	P
\overline{N}	(0,0,0)	(0,-1,0)
P	(-1,0,0)	(2,2,3)

Matriz de Payoff para $S_3 = P$:

	N	P
N	(0,0,1)	(3,2,2)
P	(2,3,2)	(2,2,2)

Questão 8

a)

• Jogadores: $N = \{1, 2, 3\}$

• Estratégias: $S_i = \{P, N\}$, para $i = \{1, 2, 3\}$, onde P é postar e N é não postar matérias sensacionalistas

• Funcões utilidade: $v_i: \{S_1, S_2, S_3\} \to \mathbb{R}$ para $i = \{1, 2, 3\}$

$$v_1(N, N, N) = 1$$

$$v_1(N, N, P) = -1$$

$$v_1(N, P, N) = -1$$

$$v_1(N, P, P) = -3$$

$$v_1(P, N, N) = 4$$

$$v_1(P, N, P) = 1$$

$$v_1(P, P, N) = 1$$

$$v_1(P, P, P, P) = -1$$

 v_2 e v_3 são simétricos.

• Matriz de Payoff para $S_3 = N$:

	N	P
N	(1,1,1)	(-1,3,-1)
P	(3,-1,-1)	(1,1,-3)

Matriz de Payoff para $S_3 = P$:

	N	P
\overline{N}	(-1,-1,3)	(-3,1,1)
P	(1,-3,1)	(-1,-1,-1)

b) O equilíbrio de estratégia estritamente dominada é todos postarem matérias sensacionalistas.

c) o equilíbrio de EIEED existe. Postar a matéria sensacionalista é estritamente dominante para os três jogadores. Essa estratégia não é ótimo de Pareto, já que a estratégia em que nenhum posta melhora o resultado para todos os jogadores.

d) Não é uma analogia muito precisa, por que nas redes sociais, geralmente, aquele que posta matérias sensacionalistas também se beneficia de outros postarem matérias similares.

Questão 9

a)

- Jogadores: $N = \{1, 2\}$
- Estratégias: $S_i = \{2, 4, 5\}$, para $i = \{1, 2\}$, onde a estratégia é quanto será cobrado.
- Funções utilidade: $v_i: \{S_1, S_2\} \to \mathbb{R}$ para $i = \{1, 2\}$

$$v_1(2,2) = 10000$$

$$v_1(2,4) = 14000$$

$$v_1(2,5) = 14000$$

$$v_1(4,2) = 12000$$

$$v_1(4,4) = 20000$$

$$v_1(4,5) = 28000$$

$$v_1(5,2) = 15000$$

$$v_1(5,4) = 15000$$

$$v_1(5,5) = 25000$$

Com v_2 idêntico se trocada a ordem dos elementos.

• Matriz de Payoff:

	2	4	5
2	(10,10)	(14,12)	(14,15)
4	(12,14)	(20,20)	(28,15)
5	(15,14)	(15,28)	(25,25)

- c) A opção 2 é estritamente dominada pela 4, podendo, assim, ser eliminada. Sem a possibilidade da estratégia 2, a estratégia 5 é estritamente dominada pela 4. O equilíbrio, assim, é os dois bares cobrarem 4 reais pela bebida.
- d) Elas não conseguem melhorar mudando a estratégia. Para seu resultado ser melhor, seria necessário que o outro bar mudasse o preço.
 - e) Se A anunciou 2 reais como preço, a melhor estratégia para B é cobrar 5 reais pela bebida.
- f) Se A nunca cobraria 4 reais, para B, cobrar 2 reais é estritamente dominado. Desse modo, para A, cobrar 2 reais torna-se estritamente dominado e o novo equilíbrio é os dois cobrarem 5 reais.

Questão 10

a)

- Jogadores: $N = \{1, 2\}$
- Estratégias: $S_i = \{0, 1, 2, 3, 4, 5\}$, para $i = \{1, 2\}$, onde a estratégia é o lance a ser dado.

• Matriz de Payoff:

	0	1	2	3	4	5
0	(4,0)	(0,2)	(0,1)	(0,0)	(0,-1)	(0,-2)
1	(3,0)	(3,0)	(0,1)	(0,0)	(0,-1)	(0,-2)
2	(2,0)	(2,0)	(2,0)	(0,0)	(0,-1)	(0,-2)
3	(1,0)	(1,0)	(1,0)	(1,0)	(0,-1)	(0,-2)
4	(0,0)	(0,0)	(0,0)	(0,0)	(0,0)	(0,-2)
5	(-1,0)	(-1,0)	(-1,1)	(-1,0)	(-1,-1)	(-1,0)

- c) Não há um equilíbrio de estratégia estritamente dominante.
- d) A única estratégia eliminada dessa maneira é dar um lance de 500 reais, para os dois jogadores. Como para todas as outras existe a possibilidade de payoff zero, nenhuma outra estratégia é eliminada. (No caso se perder o leilão o payoff é zero. O único lance que não pode perder é se o jogador 1 oferecer 400, mas esse lance tem payoff 0 independentemente, então não existem estratégias estritamente dominadas.)