Problem Set 2

Due 14th September 2021

Abstract

Only the questions with a star (*) are compulsory for submission; It is however *strongly* advised to attempt all question.

1 Functions Properties

Question 1. Show that the composition preserve injectivity/surjectivity/bijectivity/invertibility: $f: X \to Y, g: Y \to Z$ injectives $\implies f \circ g$ is injective

 $f: X \to Y, \ g: Y \to Z \ surjectives \implies f \circ g \ is \ surjective$

 $f: X \to Y, \ g: Y \to Z \ bijectives/invertibles \implies f \circ g \ is \ bijective/invertible$

Question 2. (*) An injection between two sets of the same size is bijective.

2 Finite Cardinalities

Question 3 (Counting the number of functions between two finite sets). Let X and Y be two non-empty finite sets. We want to count the number of functions in Y^X .

a. Let us assume that |X| = n with $X = \{x_1, ..., x_n\}$. Prove that the function

$$\Phi: \begin{array}{ccc} Y^X & \longrightarrow & Y^n \\ f & \longmapsto & (f(x_1), ..., f(x_n)) \end{array}$$

is a bijection.

- b. Deduce the value of $|Y^X|$.
- c. Let $n \in \mathbb{N}^*$. Let us consider the set $\mathfrak{S}_n \subset \llbracket 1; n \rrbracket^{\llbracket 1; n \rrbracket}$ containing the bijections from $\llbracket 1; n \rrbracket$ to itself. Prove that the sequence $(|(\mathfrak{S}_n)|)_{n \in \mathbb{N}^*}$ is defined by the recurrence relation

$$\left\{ \begin{array}{l} |\mathfrak{S}_1| = 1 \\ \forall n \in \mathbb{N}, \ |\mathfrak{S}_{n+1}| = (n+1)|\mathfrak{S}_n| \end{array} \right.$$

(hint: we can use the bijections $\forall k \in [1, n], g_k : [1, n] \setminus \{k\} \to [1, n-1]$)

d. The cardinal of \mathfrak{S}_n is the factorial of n, denoted as n!. Write a function returning the value of the factorial for a given $n \in \mathbb{N}$ (by convention 0! = 1).

Question 4 (Counting the number of sub-parts). (*) We study the function $(n,p) \in \mathbb{N}^2 \mapsto \binom{n}{k} \in \mathbb{N}$ the binomial coefficient, which is the number of subsets containing p elements in a set containing n elements.

- a. Prove that $\forall n, p \ge 1$, $\binom{n}{p} = \binom{n-1}{p-1} + \binom{n-1}{p}$.
- b. Deduce from this recurrence equation that

$$\forall n \in \mathbb{N}, \ \forall p \le n, \ \binom{n}{p} = \frac{n!}{(n-p)!p!}$$

1

c. Prove the formula

$$\forall n \in \mathbb{N}, \sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$

d. Derive the value of $|\mathcal{P}([1; n])|$ (power set).

3 Infinite Cardinalities

Question 5. (*) Find an explicit bijection between [a, b] and [c, d]

Question 6. (*) Show that there is a bijection between [0,1[and $\{0,1\}^{\mathbb{N}}]$

Question 7. (*) Let $A = \{a, b, c, ..., z\}$ be the set of letters in the alphabet. Show explicitly that $|A \cup \mathbb{N}| = |\mathbb{N}|$.

Question 8. Let $\mathbb C$ be the set of complex numbers. Compare $\mathbb R$ and $\mathbb C$.

Question 9. Let \mathbb{P} be the set of prime numbers. Compare \mathbb{P} with the usual sets (in particular with \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R}).