Sign Operator for (L_0, L_1) -Smooth Optimization with Heavy-Tailed Noise

Ikonnikov Mark

Moscow Institute of physics and Technology

Course: My first scientific paper (Strijov's practice)/Group 206
Expert: Alexander Beznosikov
Consultant: Nikita Kornilov

May 22, 2025

Research Objective: Robust Optimization with Sign-Based Methods

Objectives

- 1. Define (L_0, L_1) -smoothness.
- 2. Develop Sign-based methods for heavy-tailed (HT) noise.
- 3. Prove convergence bounds under (L_0, L_1) -smoothness and HT noise.
- 4. Validate theory via computational experiments.

Sign-Based Optimization Tackles Hard Settings

Optimization Trajectories on Noisy, Non-smooth Function

Sign methods show faster convergence with HT

Background and Literature

Title Sign Operator for Coping with Heavy-Tailed Noise		Authors Kornilov et al.	Paper arXiv
signSGD: Compressed Optimisation for Non-Convex Problems	2018	Bernstein et al.	PMLR
Methods for Convex (L0,L1)-Smooth Optimization	2024	Gorbunov et al.	arXiv
Robustness to Unbounded Smoothness of Generalized SignSGD	2022	Crawshaw et al.	NeurIPS

Hypothesis and Model

Hypothesis

Sign-based optimization methods outperform traditional gradient-based methods in (L_0, L_1) -smooth problems with heavy-tailed noise, achieving faster convergence and robustness.

Model

 $f: \mathbb{R}^d \to \mathbb{R}$:

$$\min_{x \in \mathbb{R}^d} f(x) := \mathbb{E}_{\xi \sim \mathcal{S}}[f(x, \xi)],$$

Consider a function $f : \mathbb{R}^d \to \mathbb{R}$ that is (L_0, L_1) -smooth:

$$\|\nabla f(x) - \nabla f(y)\| \le (L_0 + L_1 \|\nabla f(u)\|) \|x - y\|,$$

with gradient estimates $\nabla f(x,\xi)$ under HT noise:

- $\blacktriangleright \mathbb{E}_{\xi}[\nabla f(x,\xi)] = \nabla f(x),$
- $\mathbb{E}_{\xi}[|\nabla f(x,\xi)_i \nabla f(x)_i|^{\kappa}] \leq \sigma_i^{\kappa}, \ \kappa \in (1,2].$

Examples of (L_0, L_1) -Smooth Functions

The following functions illustrate (L_0, L_1) -smoothness:

- Let $f(x) = ||x||^{2n}$, where n is a positive integer. Then, f(x) is convex and (2n, 2n 1)-smooth. Moreover, f(x) is not L-smooth for $n \ge 2$ and any $L \ge 0$.
- ▶ $f(x) = \log (1 + \exp(-a^{\top}x))$, where $a \in d$ is some vector. It is known that this function is L-smooth and convex with $L = \|a\|^2$. However, one can show that f is also (L_0, L_1) -smooth with $L_0 = 0$ and $L_1 = \|a\|$. For $\|a\| \gg 1$, both L_0 and L_1 are much smaller than L.

These are relevant to compressed sensing and machine learning.

Novel Lemma

Lemma (Sign Update Step Lemma (Ikonnikov))

Let $x, m \in {}^d$ be arbitrary vectors, $A = diag(a_1, ..., a_d)$ be diagonal matrix and f be L-smooth function. Then for the update step

$$x' = x - \gamma \cdot A \cdot (m)$$

with $\epsilon := m - \nabla f(x)$, the following inequality holds true

$$f(x') - f(x) \le -\gamma \|A\nabla f(x)\|_1 + 2\gamma \|A\|_F \|\epsilon\|_2 + \frac{L_0 + L_1 \|A\nabla f(x^k)\|_2}{2}$$

$$\cdot \exp\left(\gamma L_1 ||A||_F\right) \gamma^2 ||A||_F^2.$$

Our findings for minibatch-SignSGD

Smoothness	Step size γ	
$(L_0,L_1), \ arepsilon \geq rac{L_0}{L_1\sqrt{d}}$	$\gamma = \Theta\left(\frac{1}{L_1 d\sqrt{d}}\right)$	
$(L_0,L_1), \ \varepsilon < \frac{L_0}{L_1\sqrt{d}}$	same	
<i>L</i> -smooth	$\gamma = \Theta\left(\frac{1}{L\sqrt{d}}\right)$	

Iterations T		
$\mathcal{T} = \widetilde{O}\left(rac{L_1 d^{3/2}}{arepsilon} ight)$		
$T = \widetilde{O}\left(\frac{L_0 d}{\varepsilon^2}\right)$		
$T = \widetilde{O}\left(\frac{L\sqrt{d}}{arepsilon}\left(1 + \left(rac{\sigma}{arepsilon} ight)^{rac{\kappa}{\kappa-1}} ight) ight)$		

Table: Iteration complexity for minibatch-SignSGD

Our findings for M_SignSGD

Smoothness	Step size γ_k		
$(L_0,L_1), \ \varepsilon \geq \frac{3L_0}{cL_1}$	$\gamma_k = \frac{1 - \beta_k}{8cL_1 d},$		
	$1-eta_k=\min\left\{1,\left(rac{c\Delta_1L_1\sqrt{d}}{T\ ec{\sigma}\ _\kappa} ight)^{rac{\kappa}{2\kappa-1}} ight\}$		
$(L_0,L_1), \ \varepsilon<\frac{3L_0}{L_1}$	$\gamma_{k} = \sqrt{rac{\Delta_{1}(1-eta_{k})}{TL_{0}d}}$,		
	$\left\{1-eta_{\pmb{k}}=\min\left\{1,\left(rac{\Delta_1 L_0}{T\ ec{\sigma}\ _\kappa^2} ight)^{rac{\kappa}{3\kappa-2}} ight\}$		
<i>L</i> -smooth	$\gamma = \frac{1}{L\sqrt{d}}$,		
	$\beta = 1 - \Theta\left(\left(\frac{1}{T}\right)^{\frac{\kappa}{2\kappa - 1}}\right)$		

$$T = O\left(\frac{\Delta_1 L_1 d}{\varepsilon} \left(1 + \left(\frac{\sqrt{d} \|\vec{\sigma}\|_{\kappa}}{\varepsilon}\right)^{\frac{\kappa}{\kappa - 1}}\right)\right)$$

$$T = O\left(\frac{\Delta_1 L_1 d}{\varepsilon^2} \left(1 + \left(\frac{\sqrt{d} \|\vec{\sigma}\|_{\kappa}}{\varepsilon}\right)^{\frac{\kappa}{\kappa - 1}}\right)\right)$$

$$T = O\left(\frac{\Delta L \sqrt{d}}{\varepsilon} \left(1 + \left(\frac{\sigma}{\varepsilon}\right)^{\frac{\kappa}{\kappa - 1}}\right)\right)$$

Table: Iteration complexity for M-SignSGD

Computational Experiment: Goals and Statistics

Convergence and accuracy rates improve significantly with Sign-methods.

Error Analysis

Error comparison

Method	Mean Loss	Mean Acc.	Loss Var.	Acc. Var.
M-SignSGD	3.63	82.86	73.56	135.77
M-SGD	7.72	73.46	209.46	341.58
SignSGD	6.71	79.12	155.10	140.47
SGD	16.44	62.96	234.20	70.55

Table: comparison of convergence of several methods under the assumptions

Results and Conclusions

Results

- ▶ Sign-based methods outperform SGD in convergence under (L_0, L_1) -smoothness and HT noise.
- Novel lemma is proven.
- Momentum-SignSGD and minibatch-SignSGD convergence are bounded and proved.

Conclusions

- (L_0, L_1) -smoothness enables better rates under (L_0, L_1) and HT-noise assumptions.
- Sign-based methods are noise-robust and communication-efficient.