The impact of the number and the size of clusters on prediction performance of the stratified and the conditional shared gamma frailty Cox proportional hazards models

R code for the illustrative case study

Daniele Giardiello* Edoardo Ratti[†] Peter C. Austin[‡]

Contents

$\mathbf{Overview}$			 														1
Some useful notations			 								 						1
Load packages			 								 						2
${\bf Import \ useful \ functions \ \ . \ .}$			 								 						2
${f Import\ data\ .\ .\ .\ .\ .\ .}$			 								 						8
1. Descriptive statistics																	
2. Analysis			 								 						13
2.1 Small cluster size			 														20
2.2 Large cluster size			 														27
3. Additional investigations			 														27
Reproducibility ticket			 								 						32

Overview

We illustrate the analysis of the case study accompanying the simulation study about the impact of the size and the number of clusters on prediction performance of the stratified and the conditional shared gamma frailty Cox proportional hazards models. The case study is the insem data from the R package parfm described by the book of Duchateau and Janssen The Frailty Model (2008) (example 1.8)

Some useful notations

Two type of predictions may be possible using frailty:

• Conditional: predictions given the frailty/random effects For the shared gamma frailty:

$$S_{ij}(t)=exp[-z_ie^{x_{ij}\beta}H_o(t)]=exp[-H_0(t)e^{x_{ij}\beta+\mu_j}]=exp[-z_jH(t)]=exp[-H(t)e^{\mu_j}]$$
 where
$$Z_j\sim\Gamma(\theta,\theta)$$
 and

$$\mu_j = log(Z_j)$$

^{*}University of Milan-Bicocca, daniele.giardiello1@gmail.com

[†]University of Milan-Bicocca

[‡]ICES

where $i=1,...,n_j$ represents the i^{th} subject and j=1,...,N represents the j^{th} cluster. The measure of within-cluster correlation is Kendall's τ . For the shared gamma frailty model, $\tau=\sigma^2/(\sigma^2+2)$ where σ^2 is the variance of Z_j . The higher is the variance, the higher within-cluster correlation (i.e., homogeneity). Note that $Z_j \sim \Gamma(\theta,\theta)$ then the variance is $\sigma^2=1/\theta$ then $\tau=1/(\theta+2)$. For details see Hougaard Analysis of Multivariate Survival Data (chapter 4) link here, and Collett Modelling Survival Data in Medical Research, 4^{th} edition, (chapter 10) link here.

• Marginal: integrating over frailty/random effects
For the shared gamma frailty the marginal predictions may be used when the new individual does not
belong to any cluster used to develop the model or to estimate predictions integrating over all frailty
Conditional predictions can be used when the new individual belongs to a cluster used to develop the
model.

$$S_i^*(t) = [1 + \theta^{-1} e^{\beta x_{ij}} H_0(t)]^{-\theta}$$

Load packages

The following libraries are needed to achieve the following goals, if you have not them installed, please use install.packages('') (e.g. install.packages('survival')) or use the user-friendly approach if you are using RStudio.

```
# Use pacman to check whether packages are installed, if not load
if (!require("pacman")) install.packages("pacman")
library(pacman)
pacman::p_load(
  rio,
  stringr,
  knitr,
  kableExtra,
  Hmisc,
  lattice,
  riskRegression,
  polspline,
  gtsummary,
  tidyverse,
  grid,
  gridExtra,
  webshot,
  plotly,
  ggplot2,
  ggpubr,
  patchwork,
  rms,
  webshot2,
 parfm
)
```

Import useful functions

We import useful functions

```
# Useful functions
source(here::here("Functions/predict.coxph.gammafrail.R"))
```

```
# We report the function also below
#' @description
#'
#' Function to estimate conditional and marginal
#' survival probabilities at specified time horizons
#' for shared Gamma frailty Cox proportional hazards models
# '
#' @author Daniele Giardiello
#' Oparam model cox model using survival::coxph including frailty gamma term
#' It is highly recommended to center all variables or define a reference value
#' for all predictors, especially the continuous predictors
#' Example: age50 = age - 50 or age_c = age - mean(age)
#' Cparam newdata newdata (for validation). This should have the same variables of the model.
#' Predictors with levels should be coded with exactly the same way and levels of the predictors
#' with factors used to develop the model
#' Oparam cluster cluster variable. Only one variable possible
#' Oparam times prediction horizon time(s)
#' @examples
#' # example code
#' data(lung, package = "survival")
#' lung$age_c <- lung$age - mean(lung$age)</pre>
#' cox_frailty_lung <- survival::coxph(Surv(time, status) ~ age_c + frailty(inst,</pre>
#' distribution = "gamma"),
#' data = lung,
\#' x = TRUE,
\#' y = TRUE,
#' model = TRUE,
#' ties = "breslow")
#' predict.coxph.gammafrail(model = cox_frailty_lung,
#' newdata = lung_sel,
#' cluster = "inst",
\#' times = c(100, 200, 300))
#' @references Collett D - Modelling Survival data in Medical Research, 4th edition chapter 10 (formula
predict.coxph.gammafrail <- function(model,</pre>
                                      newdata,
                                      cluster.
                                      times) {
  # sanity check message warning
  on.exit(base::message("
  Sanity check warning:
  please center all variables before fitting the model or assign reference values
                for continuous variable.
                For example age50 = age - 50.
                newdata should contain the centered/referenced values"))
  # Stopping messages
  if (!inherits(model, "coxph"))
    stop("`model` must be a survival::coxph fit.
         Please center all variables before fitting the model or assign reference values
```

```
for continuous variable. For example age50 = age - 50")
if (missing(cluster))
  stop("Please supply the name of the cluster variable (character).")
if (!is.character(cluster) || length(cluster) != 1L)
  stop("`cluster` must be a single character string giving the cluster column name.")
if (!cluster %in% names(newdata))
  stop("`cluster` not found in `newdata`.")
# Start function ----
# Step0:
# Formula with all terms including cluster as it is a fixed covariate
frm_allterms <- reformulate(base::all.vars(model$formula[[3]]))</pre>
# Select only the complete cases of fixed + frailty terms
newdata <- stats::model.frame(frm_allterms,</pre>
                              data = newdata,
                              na.action = na.omit)
# Step 1: survfit for
# a baseline cumulative hazard / survival
# Survfit of the coxph with frailty
sf model <- survival::survfit(model)</pre>
# NOTE: the survival::survfit with frailty does not accept newdata
# thus, it is important to center all variables or give them a reference.
# In this setting survfit$cumhaz will directly represent our baseline
# Step 2: linear predictors of fixed effects
# Estimate linear predictors only
# for fixed-effect effects without frailties
# This will be also useful later when
# marginal predictions are estimated
# Since with clusters size < vs >= 5
# frailty terms are treated as coefficients or not,
# I prefer calculate lp for the only fixed terms only manually
# lp calculation for marginal
# save all model coefficients
# for cluster < 5, frailty terms are included in coefficients (not practical)
coefs <- model$coefficients</pre>
# Remove frailty named "gamma"
# NOTE/WARNING:
# if a variables called gamma it must be a problem
# to be adjusted
```

```
coefs_fixed <- coefs[!base::grepl("gamma", names(coefs))]</pre>
# create formula of fixed terms only
terms_vec <- attr(terms(model$formula),</pre>
                   "term.labels")
# Remove specials using grep/grepl
# NOTE: working in progress
specials <- c("frailty", "strata", "cluster", "offset", "tt")</pre>
fixed_terms <- terms_vec[!grepl(paste(specials, collapse = "|"), terms_vec)]</pre>
formula_fixed <- stats::reformulate(fixed_terms,</pre>
                                      response = NULL)
# create design matrix of fixed term only
X_fixed <- model.matrix(formula_fixed,</pre>
                         newdata)
X_fixed <- X_fixed[, colnames(X_fixed) != "(Intercept)"]</pre>
# estimate linear predictor X*beta fixed term only
lp_fixed <- X_fixed %*% cbind(coefs_fixed)</pre>
# this should be equivalent to this (when cluster > 5)
# lp_nofrail <- cbind(predict(model,</pre>
                               newdata = newdata,
                                type = "lp"))
#
# Step 3: linear predictors for frailty terms
# NOTE/WARNING:
# for cluster < 5 predict.coxph(model, newdata) includes also frailty
# and frailty terms must not be included for marginal predictions.
# This leads to wrong estimations of marginal predictions
# and the corresponding performance metrics in riskRegression::Score()
# For frailty with not model$frail (where clusters < 5)</pre>
# add the model$frail and keep only fixed-effect coefficients
if(is.null(model$frail)) {
 coefs_model <- model$coefficients</pre>
 model$frail <- unname(coefs_model[base::grep("gamma", names(coefs_model))])</pre>
# Force cluster as a factor in the newdata
# number of clusters in the newdata
# otherwise a factor
# NOTE: for newdata with one cluster, factor does not work
# newdata[[cluster]] <- base::as.character(newdata[[cluster]])</pre>
newdata[[cluster]] <- base::factor(newdata[[cluster]],</pre>
                                     levels = unique(newdata[[cluster]]))
```

```
# newdata[[cluster]] <- base::factor(newdata[[cluster]],</pre>
                                        levels = 1:length(model$frail))
# Create the design matrix for frailty terms
all terms <- base::all.vars(model$formula[[3]])</pre>
frailty_terms <- c(-1, all_terms[all_terms == cluster])</pre>
X_frail <- stats::model.matrix(stats::reformulate(frailty_terms),</pre>
                                 response = NULL,
                                 data = newdata)
# Frailty terms linear predictors
lp_frail <- X_frail %*% cbind(model$frail)</pre>
# Total linear predictor
lp_total <- lp_fixed + lp_frail</pre>
# Cumulative hazards
# at fixed time horizons
\# H_0(t)
cumhaz0_thor <- stats::approx(</pre>
  x = sf model time,
 y = sf_model$cumhaz,
 yleft = 0, # y values below min(x). Cumulative hazard zero if below min(time)
 yright = NA, # y values above max(x). Cumulative hazard NA if above max(time)
  xout = times,
 method = "constant",
 f = 0.
 rule = 1)$y
# NOTE:
# stats:approx should work fine since
# all values from survival::survfit are unique
# for the event time of development data
# H(t)
cumhaz_thor <- exp(lp_total) %*% cumhaz0_thor</pre>
# conditional S(t)
S_cond_t <- exp(-cumhaz_thor)</pre>
# marginal S(t)
theta_hat <- model$history[[1]]$theta</pre>
S_marg_t <- (1 + theta_hat * (exp(lp_fixed) %*% cumhaz0_thor))^(-1/theta_hat)</pre>
# Output
# NOTE: to be better defined
res <- list("conditional" = S_cond_t,</pre>
             "marginal" = S_marg_t)
return(res)
# Report only conditional predictions
#return(S_cond_t)
```

```
}
# Other ad-hoc functions
# Score function with TryCatch
Score_tryCatch <- function(predictions,</pre>
                            t_hors,
                            frm) {
  tryCatch(
  {
    sc <-
      riskRegression::Score(
        list("prediction_model" = predictions),
        data = df,
        formula = frm,
        times = t_hors,
        metrics = "auc",
        summary = "ipa")
    # Merge AUC + IPA into a single tidy table
    score_metrics <-</pre>
      base::merge(
        sc$AUC$score[, c("model", "times", "AUC")],
        sc$Brier$score[, c("model", "times", "IPA")],
        by = c("model", "times"),
        all = TRUE)
    score_metrics_models <-</pre>
      score_metrics %>%
      dplyr::filter(model %nin% c("Null model"))
    score_metrics_models},
  error = function(msg) {
         message(paste("Prediction not possible"))
    base::expand.grid(
      times = t_hors,
      model = c("prediction_model")) %>%
      base::transform(AUC = NA_real_,
                       IPA = NA_real_)
  })
}
# smoothed calibration function
calhaz_map <- function(time,</pre>
                        status,
                        covariates,
                        t_hors,
```

```
predictions) {
  tryCatch(
    {
  # Hazard regression
  calhaz_mod <- polspline::hare(data = time,</pre>
                                  delta = status,
                                  cov = covariates)
  # estimated cumulative probability
  pred_calhaz <- polspline::phare(t_hors,</pre>
                                    cov = covariates,
                                    fit = calhaz_mod)
  # ICI/E50/E90
  ICI <- mean(abs(pred_calhaz - predictions),</pre>
              na.rm = T)
  E50 <- median(abs(pred_calhaz - predictions),
                 na.rm = T)
  E90 <- quantile(abs(pred_calhaz - predictions),</pre>
                   probs = .90,
                   na.rm = T)
  res <- c(ICI, E50, E90)
  res},
  error = function(msg) {
    message(paste("Calibration not possible"))
    rep(NA, 3)
}
```

Import data

Insem data can be imported using the parfm R package. We also saved insem data in our repository in the .rds format.

```
# Import from the repository
insem <- readRDS(here::here("Data/insem.rds"))

# Import from parf package
data(insem,
    package = "parfm")</pre>
```

1. Descriptive statistics

We provide some descriptive statistics of the case study

Characteristic	$ m N=10,\!513^{\it 1}$
Milk urem concentration (%)	
Mean (SD)	2.58(0.74)
Median (Range)	$2.55 \ (0.54, 8.24)$
Protein concentration (%)	, ,
Mean (SD)	3.25 (0.34)
Median (Range)	3.21 (2.25, 6.48)
Number of calvings	
Mean (SD)	2 (2)
Median (Range)	2 (1, 14)
Primiparous cow	4,200 (40%)
Inseminated cows	9,939 (95%)
1 (07)	

¹n (%)

```
Parity,
                 Heifer,
                 Status)
label(insem_tab_01$Ureum) <- "Milk urem concentration (%) at the start of the lactation period"</pre>
label(insem_tab_01$Protein) <- "Protein concentration (%) at the start of the lactation period"</pre>
label(insem_tab_01$Parity) <- "The number of calvings"</pre>
label(insem_tab_01$Heifer) <- "Primiparous cow"</pre>
label(insem_tab_01$Status) <- "Inseminated cow"</pre>
units(insem_tab_01$Ureum) <- "%"</pre>
units(insem_tab_01$Protein) <- "%"</pre>
gtsummary_table1 <-</pre>
 gtsummary::tbl_summary(
    data = insem_tab_01 ,
    label = list(Parity ~ "Number of calvings",
                  Heifer ~ "Primiparous cow",
                  Ureum ~ "Milk urem concentration (%) ",
                  Protein ~ "Protein concentration (%)",
                  Status ~ "Inseminated cows"),
    type = all_continuous() ~ "continuous2",
    statistic = all_continuous() ~ c(
      "{mean} ({sd})",
      "{median} ({min}, {max})"
    ),
  )
gtsummary_table1 %>%
 gtsummary::as_gt()
# Cluster size distribution
table_cluster <-
```

```
insem %>%
dplyr::group_by(Herd) %>%
dplyr::summarise(n = n()) %>%
dplyr::arrange(n)

par(xaxs = "i",
    yaxs = "i",
    las = 1)

barplot(table(insem$Herd),
    ylab = "Frequency",
    xlab = "Herd ID",
    ylim = c(0, 200),
    main = "Herd/cluster size")
```

Herd/cluster size

		Cluste	er size s	statistics		
min	q25	mean	sd	median	q75	max
1	35	58.1	31.8	56	77	174

```
# Event distribution per cluster
# kable(
  addmargins(
#
    table(insem$Herd,
#
           insem$Status,
#
           useNA = "ifany",
            dnn = c("Cluster",
#
#
                     "Status")))) %>%
#
    kableExtra::kable_styling("striped") %>%
# kableExtra::add_header_above(
#
      c("Cluster" = 1,
#
         "Status" = 2,
#
         "Sum" = 1))
# survfit
sf_overall <- survival::survfit(Surv(Time,</pre>
                                      Status) ~ 1,
                                 data = insem)
sf_cluster <- survival::survfit(Surv(Time,</pre>
                                      Status) ~ Herd,
                                 data = insem)
par(xaxs = "i",
    yaxs = "i",
    las = 1)
plot(sf_cluster,
     col = "gray",
     fun = "event",
     xlim = c(0, 350),
     ylim = c(0, 1),
     bty = "n",
     xlab = "Time-to-first insemination (days)",
     ylab = "Probability",
     main = "Overall and by herds inverted Kaplan-Meier curves")
lines(sf_overall,
```

```
fun = "event",
lwd = 2,
col = "red",
conf.int = FALSE)
```

Overall and by herds inverted Kaplan-Meier curves

	Time quantile					
	25	50	75			
Overall	52	91	150			

2. Analysis

We provide the accuracy of predictions from the stratified and the shared gamma frailty Cox proportional hazards models in two scenarios

- Small cluster scenario: it includes herds with less than 50 cows
- Large cluster scenario: it includes herds with at least 50 cows

The accuracy of predictions are evaluated in terms of:

- Discrimination using time-varying AUC
- Calibration using O/E ratio, integrated calibration index (ICI), E50 and E90
- Overall performance using time-varying Index of Prediction Accuracy (IPA)

We use the Monte Carlo cross-validation procedure to assess prediction performances of the stratified and frailty Cox model.

- The sample was split into two parts to define derivation (70%) and validation samples (30%)
- The 70/30% random splits are repeated 100 times
- The repeated random splits are stratified by herds(i.e., the cluster) to obtain the same herds in both the derivation and validation samples

We excluded herds with less than 10 cows since it was not possible to obtain sufficient cows in both derivation and validation sample.

The mean of the performances metrics across the 100 random validation samples with the corresponding standard deviation are reported for each scenario and at each prediction time horizon to assess the prediction performances of the stratified and the frailty Cox models.

The fixed time horizons are defined based on the 25^{th} , 50^{th} and 75^{th} quantile fo event time overall distribution using the Kaplan-Meier distribution which corresponds to 51, 91, 150 days, respectively.

```
# time horizons
time_hors <- c(52, 91, 150)
# reference values for continuous
# predictors
insem_ref <-</pre>
  insem %>%
  dplyr::mutate(
    Ureum_ref = Ureum - 2.5,
    Protein_ref = Protein - 2.5,
    Parity_ref = Parity - 2.5)
# Herds >= 50 cows
table_insem_small <-
  insem_ref %>%
  dplyr::count(Herd) %>%
  dplyr::filter(n < 50 \& n >= 10)
df_insem_small <-
  insem_ref %>%
  dplyr::filter(Herd %in% table_insem_small$Herd)
# Repeat B times
B <- 110
df_tbl_insem_ext <- do.call(rbind,</pre>
                        lapply(seq(1:B),
                                function(k) {
                                  cbind(id = k, df_insem_small)}))
# Nested tibble
set.seed(20250924)
df_tbl_insem <-
  df_tbl_insem_ext %>%
  dplyr::group_nest(id) %>%
  dplyr::mutate(
    # Splitting
    split = purrr::map(.x = data,
                        ~ rsample::initial_split(.x,
                                                 strata = Herd,
                                                 prop = 0.7,
                                                 pool = 0.001)),
    # Development
    development = purrr::map(.x = split,
                              rsample::training(.x)),
    # Validation
    validation = purrr::map(.x = split,
                              rsample::testing(.x)),
    # Check
    unique_cluster_dev = purrr::map(.x = development,
                                     ~ unique(.x$Herd)),
```

```
unique_cluster_val = purrr::map(.x = validation,
                                     ~ unique(.x$Herd)),
    check = purrr::map2(.x = unique_cluster_dev,
                        .y = unique_cluster_val,
                        ~ all.equal(.x, .y)))
# table(do.call(rbind, df_tbl_insem$check))
rm(df_tbl_insem_ext)
# gc()
# check
# table(do.call(rbind, df_tbl_insem$check))
# all TRUE
# Rewrite B
B <- 100
# Models + predictions + performances
# tictoc::tic()
df tbl insem <-
  df_tbl_insem %>%
  dplyr::filter(check == TRUE) %>%
  dplyr::select(data,
                development,
                validation) %>%
  dplyr::mutate(
    cox_strat = purrr::map(.x = development,
                           ~ survival::coxph(Surv(Time, Status) ~
                                               Heifer +
                                               Parity_ref +
                                               Ureum_ref +
                                               Protein_ref +
                                               strata(Herd),
                                              data = .x,
                                              x = T,
                                              y = T,
                                              ties = "breslow")),
    cox_frail = purrr::map(.x = development,
                           ~ survival::coxph(Surv(Time, Status) ~
                                               Heifer +
                                                Parity_ref +
                                               Ureum_ref +
                                               Protein_ref +
                                               frailty(Herd),
                                              data = .x,
                                              x = T,
                                              y = T,
                                              ties = "breslow")),
    # predictions at t25/t50/t75
```

```
# stratified cox
pred_strat = purrr::map2(.x = cox_strat,
                          .y = validation,
                          ~ 1 - pec::predictSurvProb(.x,
                                                      newdata = .y,
                                                      times = time_hors)),
# Extremes to make calibration suitable
pred_strat = purrr::map(pred_strat,
                         function(x) {
                           x \leftarrow ifelse(x == 0, 0.000001, x)
                           x \leftarrow ifelse(x == 1, 0.999999, x)
                           x}),
# separate prediction by time horizons
# due to possible missing values
pred_strat_t25 = purrr::map(.x = pred_strat,
                             - .x[, 1]),
pred_strat_t50 = purrr::map(.x = pred_strat,
                             - .x[, 2]),
pred_strat_t75 = purrr::map(.x = pred_strat,
                             - .x[, 3]),
pred_frail = purrr::map2(.x = cox_frail,
                          .y = validation,
                          ~ 1 - predict.coxph.gammafrail(model = .x,
                                                          newdata = .y,
                                                           cluster = "Herd",
                                                          times = time_hors)$conditional),
# Extremes to make calibration suitable
pred_frail = purrr::map(pred_frail,
                         function(x) {
                           x \leftarrow ifelse(x == 0, 0.000001, x)
                           x \leftarrow ifelse(x == 1, 0.999999, x)
# Score at t25/t50/t75 - frail
score_frail = purrr::map2(.x = pred_frail,
                           .y = validation,
                           ~ riskRegression::Score(
                             list("frail" = .x),
                             data = .y,
                             formula = Surv(Time, Status) ~ 1,
                             metrics = "auc",
                             summary = "ipa",
                             times = time_hors)),
# save results score - frail
score_frail_res = purrr::map(score_frail,
                              function(x) {
                                res_AUC <-
```

```
x$AUC$score %>%
                                  dplyr::select(model, times, AUC)
                                res IPA <-
                                  x$Brier$score %>%
                                  dplyr::select(model, times, IPA) %>%
                                  dplyr::filter(model %nin% c("Null model"))
                                res <- cbind(res_AUC,</pre>
                                              "IPA" = res_IPA$IPA)
                                return(res)
                              }),
 # Score at t25 - strata
score_strat_t25 = purrr::pmap(
   list(predictions = pred_strat_t25,
        df = validation,
        frm = list(as.formula(Surv(Time, Status) ~ 1)),
        t_hors = list(time_hors[1])),
  Score_tryCatch),
 # Score at t50 - strata
 score strat t50 = purrr::pmap(
  list(predictions = pred_strat_t50,
        df = validation,
        frm = list(as.formula(Surv(Time, Status) ~ 1)),
        t_hors = list(time_hors[2])),
  Score_tryCatch),
 # Score at t75 - strata
score_strat_t75 = purrr::pmap(
  list(predictions = pred_strat_t75,
        df = validation,
        frm = list(as.formula(Surv(Time, Status) ~ 1)),
        t_hors = list(time_hors[3])),
  Score_tryCatch),
 # cloglog
 # cloglog - strat
 cloglog_pred_strat = purrr::map(pred_strat,
                                 function(x) {
                                   apply(x, 2, function(y) {
                                     log(-log(1 - y))
                                   })
                                 }),
# cloqlog - strat t25/t50/t75
cloglog_pred_strat_t25 = purrr::map(.x = cloglog_pred_strat,
                                    ~ .x[, 1]),
```

```
cloglog_pred_strat_t50 = purrr::map(.x = cloglog_pred_strat,
                                     - .x[, 2]),
cloglog_pred_strat_t75 = purrr::map(.x = cloglog_pred_strat,
                                    - .x[, 3]),
# cloglog
 # cloglog - frail
 cloglog_pred_frail = purrr::map(pred_frail,
                                 function(x) {
                                   apply(x, 2, function(y) {
                                     log(-log(1 - y))
                                   })
                                 }),
# cloqlog - frail t25/t50/t75
cloglog_pred_frail_t25 = purrr::map(.x = cloglog_pred_frail,
                                      ~ .x[, 1]),
 cloglog_pred_frail_t50 = purrr::map(.x = cloglog_pred_frail,
                                      - .x[, 2]),
 cloglog_pred_frail_t75 = purrr::map(.x = cloglog_pred_frail,
                                     - .x[, 3]),
 # average expected risk
pred_avg_strat = purrr::map(pred_strat,
                             function(x){
                               apply(x, 2, mean)
                             }),
pred_avg_frail = purrr::map(pred_frail,
                             function(x) {
                              apply(x, 2, mean)
                            }),
 # estimated actual risk (estimated obs proportion, observed)
 sf_obs = purrr::map(validation,
                     function(x) {
                       sf sum <-
                         summary(survival::survfit(Surv(Time, Status) ~ 1,
                                                   data = x),
                                 extend = TRUE,
                                 times = time_hors)
                       sf_sum$surv[sf_sum$n.risk == 0] <- NA
                       sf_obs_event <- 1 - sf_sum$surv}),
# calibration
# OE ratio - strat
OE_strat = purrr::map2(.x = sf_obs,
                       .y = pred_avg_strat,
```

```
~ .x / .y),
 # OE ratio - frail
OE_frail = purrr::map2(.x = sf_obs,
                       .y = pred_avg_frail,
                       ~ .x / .y),
# ICI/E50/E90 - frail t25
cal meas frail t25 = purrr::pmap(
  list(time = purrr::map(validation, ~ .x$Time),
       status = purrr::map(validation, ~ .x$Status),
       covariates = cloglog_pred_frail_t25,
       t hors = list(time hors[1]),
       predictions = purrr::map(pred_frail, ~ .x[, 1])),
       calhaz_map),
# ICI/E50/E90 - frail t50
cal_meas_frail_t50 = purrr::pmap(
  list(time = purrr::map(validation, ~ .x$Time),
       status = purrr::map(validation, ~ .x$Status),
       covariates = cloglog_pred_frail_t50,
       t_hors = list(time_hors[2]),
      predictions = purrr::map(pred_frail, ~ .x[, 2])),
      calhaz_map),
# ICI/E50/E90 - frail t75
cal meas frail t75 = purrr::pmap(
  list(time = purrr::map(validation, ~ .x$Time),
       status = purrr::map(validation, ~ .x$Status),
       covariates = cloglog_pred_frail_t75,
       t_hors = list(time_hors[3]),
      predictions = purrr::map(pred_frail, ~ .x[, 3])),
       calhaz_map),
# stratify
# ICI/E50/E90 - strat t25
cal_meas_strat_t25 = purrr::pmap(
  list(time = purrr::map(validation, ~ .x$Time),
       status = purrr::map(validation, ~ .x$Status),
       covariates = cloglog_pred_strat_t25,
       t_hors = list(time_hors[1]),
      predictions = purrr::map(pred_strat, ~ .x[, 1])),
      calhaz_map),
# ICI/E50/E90 - strat t50
cal_meas_strat_t50 = purrr::pmap(
  list(time = purrr::map(validation, ~ .x$Time),
       status = purrr::map(validation, ~ .x$Status),
       covariates = cloglog_pred_strat_t50,
       t_hors = list(time_hors[2]),
      predictions = purrr::map(pred_strat, ~ .x[, 2])),
      calhaz_map),
```

```
# ICI/E50/E90 - strat t75
cal_meas_strat_t75 = purrr::pmap(
   list(time = purrr::map(validation, ~ .x$Time),
        status = purrr::map(validation, ~ .x$Status),
        covariates = cloglog_pred_strat_t75,
        t_hors = list(time_hors[3]),
        predictions = purrr::map(pred_strat, ~ .x[, 3])),
        calhaz_map))
# tictoc::toc()
```

2.1 Small cluster size

	Small cluster scenario											
	AUC IPA											
model	times	$\operatorname{pct} \operatorname{\underline{\hspace{1em}} comp}$	AUC_mean	AUC_sd	IPA_mean	IPA_sd						
frail	52	100	0.688	0.015	0.075	0.016						
strat	52	95	0.658	0.015	0.039	0.021						
frail	91	100	0.730	0.016	0.156	0.023						
strat	91	78	0.723	0.016	0.146	0.026						
frail	150	100	0.813	0.016	0.229	0.038						

	Small cluster scenario									
	O-E ratio									
model	$_{ m times}$	pct_comp	OE_ratio_mean	OE_ratio_sd						
frail	52	100	1.066	0.074						
strat	52	95	1.024	0.087						
frail	91	100	1.072	0.071						
strat	91	78	1.023	0.045						
frail	150	100	1.058	0.081						

	Small cluster scenario									
ICI E50 E90										
model	times	$\operatorname{pct} \operatorname{\underline{\hspace{1em}} comp}$	ICI_mean	ICI_sd	E50_mean	E50_sd	E90_mean	E90_sd		
frail	52	100	0.045	0.032	0.046	0.035	0.070	0.035		
strat	52	95	0.037	0.011	0.032	0.013	0.071	0.013		
frail	91	100	0.044	0.028	0.045	0.030	0.070	0.030		
strat	91	78	0.037	0.014	0.033	0.014	0.064	0.014		
frail	150	100	0.045	0.027	0.047	0.030	0.068	0.030		

```
# time horizons
time_hors <- c(52, 91, 150)
# reference values for continuous
# predictors
insem_ref <-</pre>
  insem %>%
  dplyr::mutate(
    Ureum_ref = Ureum - 2.5,
    Protein_ref = Protein - 2.5,
    Parity_ref = Parity - 2.5)
# Herds >= 50 cows
table_insem_large <-
  insem_ref %>%
  dplyr::count(Herd) %>%
  dplyr::filter(n >= 50)
df_insem_large <-</pre>
  insem ref %>%
  dplyr::filter(Herd %in% table_insem_large$Herd)
# Repeat B times
B <- 100
df_tbl_insem_ext <- do.call(rbind,</pre>
                         lapply(seq(1:B),
                                function(k) {
                                  cbind(id = k, df_insem_large)}))
# Nested tibble
set.seed(20250924)
df tbl insem <-
  df_tbl_insem_ext %>%
  dplyr::group_nest(id) %>%
  dplyr::mutate(
    # Splitting
    split = purrr::map(.x = data,
                        ~ rsample::initial_split(.x,
                                                  strata = Herd,
                                                  prop = 0.7)),
    # Development
    development = purrr::map(.x = split,
                              rsample::training(.x)),
    # Validation
    validation = purrr::map(.x = split,
                              rsample::testing(.x)),
    # Check
    unique_cluster_dev = purrr::map(.x = development,
                                     ~ unique(.x$Herd)),
```

```
unique_cluster_val = purrr::map(.x = validation,
                                     ~ unique(.x$Herd)),
    check = purrr::map2(.x = unique_cluster_dev,
                        .y = unique_cluster_val,
                        ~ all.equal(.x, .y)))
rm(df_tbl_insem_ext)
# gc()
# check
# table(do.call(rbind, df_tbl_insem$check))
# all TRUE
# Models + predictions + performances
# tictoc::tic()
df_tbl_insem <-
  df_tbl_insem %>%
  dplyr::select(data,
                development,
                validation) %>%
  dplyr::mutate(
    cox_strat = purrr::map(.x = development,
                           ~ survival::coxph(Surv(Time, Status) ~
                                                Heifer +
                                                Parity_ref +
                                                Ureum_ref +
                                                Protein_ref +
                                                strata(Herd),
                                              data = .x,
                                              x = T,
                                              y = T,
                                              ties = "breslow")),
    cox_frail = purrr::map(.x = development,
                           ~ survival::coxph(Surv(Time, Status) ~
                                                Heifer +
                                                Parity_ref +
                                                Ureum_ref +
                                                Protein_ref +
                                                frailty(Herd),
                                              data = .x,
                                              x = T,
                                              y = T,
                                              ties = "breslow")),
    # predictions at t25/t50/t75
    # stratified cox
    pred_strat = purrr::map2(.x = cox_strat,
                             .y = validation,
                             ~ 1 - pec::predictSurvProb(.x,
```

```
newdata = .y,
                                                      times = time_hors)),
# Extremes to make calibration suitable
pred_strat = purrr::map(pred_strat,
                         function(x) {
                           x \leftarrow ifelse(x == 0, 0.000001, x)
                           x \leftarrow ifelse(x == 1, 0.999999, x)
                           x}),
# separate prediction by time horizons
# due to possible missing values
pred_strat_t25 = purrr::map(.x = pred_strat,
                             - .x[, 1]),
pred_strat_t50 = purrr::map(.x = pred_strat,
                             - .x[, 2]),
pred_strat_t75 = purrr::map(.x = pred_strat,
                             - .x[, 3]),
pred_frail = purrr::map2(.x = cox_frail,
                          .y = validation,
                          ~ 1 - predict.coxph.gammafrail(model = .x,
                                                          newdata = .y,
                                                           cluster = "Herd",
                                                          times = time_hors)$conditional),
# Extremes to make calibration suitable
pred_frail = purrr::map(pred_frail,
                         function(x) {
                           x \leftarrow ifelse(x == 0, 0.000001, x)
                           x \leftarrow ifelse(x == 1, 0.999999, x)
# Score at t25/t50/t75 - frail
score_frail = purrr::map2(.x = pred_frail,
                           .y = validation,
                           ~ riskRegression::Score(
                             list("frail" = .x),
                             data = .y,
                             formula = Surv(Time, Status) ~ 1,
                             metrics = "auc",
                             summary = "ipa",
                             times = time_hors)),
# save results score - frail
score_frail_res = purrr::map(score_frail,
                              function(x) {
                                res_AUC <-
                                  x$AUC$score %>%
                                  dplyr::select(model, times, AUC)
                                res_IPA <-
```

```
x$Brier$score %>%
                                  dplyr::select(model, times, IPA) %>%
                                  dplyr::filter(model %nin% c("Null model"))
                                res <- cbind(res_AUC,
                                             "IPA" = res IPA$IPA)
                                return(res)
                              }),
 # Score at t25 - strata
score_strat_t25 = purrr::pmap(
   list(predictions = pred_strat_t25,
        df = validation,
        frm = list(as.formula(Surv(Time, Status) ~ 1)),
        t_hors = list(time_hors[1])),
   Score_tryCatch),
 # Score at t50 - strata
 score strat t50 = purrr::pmap(
   list(predictions = pred_strat_t50,
        df = validation,
        frm = list(as.formula(Surv(Time, Status) ~ 1)),
        t hors = list(time hors[2])),
  Score_tryCatch),
 # Score at t75 - strata
 score_strat_t75 = purrr::pmap(
  list(predictions = pred_strat_t75,
        df = validation,
        frm = list(as.formula(Surv(Time, Status) ~ 1)),
        t_hors = list(time_hors[3])),
   Score_tryCatch),
# cloglog
 # cloglog - strat
 cloglog_pred_strat = purrr::map(pred_strat,
                                 function(x) {
                                   apply(x, 2, function(y) {
                                     log(-log(1 - y))
                                   })
                                 }),
# cloqlog - strat t25/t50/t75
cloglog_pred_strat_t25 = purrr::map(.x = cloglog_pred_strat,
                                    - .x[, 1]),
cloglog_pred_strat_t50 = purrr::map(.x = cloglog_pred_strat,
                                    - .x[, 2]),
cloglog_pred_strat_t75 = purrr::map(.x = cloglog_pred_strat,
```

```
-.x[, 3]),
 # cloglog
 # cloglog - frail
 cloglog_pred_frail = purrr::map(pred_frail,
                                 function(x) {
                                    apply(x, 2, function(y) {
                                     log(-log(1 - y))
                                 }),
# cloglog - frail t25/t50/t75
cloglog_pred_frail_t25 = purrr::map(.x = cloglog_pred_frail,
                                      - .x[, 1]),
 cloglog_pred_frail_t50 = purrr::map(.x = cloglog_pred_frail,
                                      - .x[, 2]),
 cloglog_pred_frail_t75 = purrr::map(.x = cloglog_pred_frail,
                                      - .x[, 3]),
 # average expected risk
pred_avg_strat = purrr::map(pred_strat,
                             function(x){
                               apply(x, 2, mean)
                             }),
pred_avg_frail = purrr::map(pred_frail,
                             function(x) {
                              apply(x, 2, mean)
                            }),
 # estimated actual risk (estimated obs proportion, observed)
 sf_obs = purrr::map(validation,
                     function(x) {
                       sf_sum <-
                         summary(survival::survfit(Surv(Time, Status) ~ 1,
                                                    data = x),
                                 extend = TRUE,
                                 times = time_hors)
                       sf_sum$surv[sf_sum$n.risk == 0] <- NA
                       sf_obs_event <- 1 - sf_sum$surv}),</pre>
# calibration
# OE ratio - strat
OE_strat = purrr::map2(.x = sf_obs,
                       .y = pred_avg_strat,
                       ~ .x / .y),
 # OE ratio - frail
OE_frail = purrr::map2(.x = sf_obs,
```

```
.y = pred_avg_frail,
                        · .x / .y),
# ICI/E50/E90 - frail t25
cal meas frail t25 = purrr::pmap(
  list(time = purrr::map(validation, ~ .x$Time),
       status = purrr::map(validation, ~ .x$Status),
       covariates = cloglog_pred_frail_t25,
       t hors = list(time hors[1]),
       predictions = purrr::map(pred_frail, ~ .x[, 1])),
       calhaz_map),
# ICI/E50/E90 - frail t50
cal_meas_frail_t50 = purrr::pmap(
  list(time = purrr::map(validation, ~ .x$Time),
       status = purrr::map(validation, ~ .x$Status),
       covariates = cloglog_pred_frail_t50,
       t_hors = list(time_hors[2]),
       predictions = purrr::map(pred_frail, ~ .x[, 2])),
      calhaz_map),
# ICI/E50/E90 - frail t75
cal_meas_frail_t75 = purrr::pmap(
  list(time = purrr::map(validation, ~ .x$Time),
       status = purrr::map(validation, ~ .x$Status),
       covariates = cloglog pred frail t75,
       t_hors = list(time_hors[3]),
      predictions = purrr::map(pred_frail, ~ .x[, 3])),
       calhaz_map),
# stratify
# ICI/E50/E90 - strat t25
cal_meas_strat_t25 = purrr::pmap(
  list(time = purrr::map(validation, ~ .x$Time),
       status = purrr::map(validation, ~ .x$Status),
       covariates = cloglog_pred_strat_t25,
       t_hors = list(time_hors[1]),
       predictions = purrr::map(pred_strat, ~ .x[, 1])),
      calhaz map),
# ICI/E50/E90 - strat t50
cal_meas_strat_t50 = purrr::pmap(
  list(time = purrr::map(validation, ~ .x$Time),
       status = purrr::map(validation, ~ .x$Status),
       covariates = cloglog_pred_strat_t50,
       t_hors = list(time_hors[2]),
       predictions = purrr::map(pred_strat, ~ .x[, 2])),
       calhaz_map),
# ICI/E50/E90 - strat t75
cal_meas_strat_t75 = purrr::pmap(
  list(time = purrr::map(validation, ~ .x$Time),
       status = purrr::map(validation, ~ .x$Status),
```

```
covariates = cloglog_pred_strat_t75,
    t_hors = list(time_hors[3]),
    predictions = purrr::map(pred_strat, ~ .x[, 3])),
    calhaz_map))
# tictoc::toc()
```

2.2 Large cluster size

	Large cluster scenario									
AUC IPA										
model	times	$\operatorname{pct} \operatorname{\underline{\hspace{1em}} comp}$	AUC_mean	AUC_sd	IPA_mean	IPA_sd				
frail	52	100	0.670	0.010	0.067	0.009				
strat	52	100	0.656	0.009	0.055	0.009				
frail	91	100	0.706	0.008	0.122	0.011				
strat	91	97	0.701	0.008	0.124	0.011				
frail	150	100	0.776	0.010	0.162	0.022				

	Large cluster scenario									
		O-E ratio								
model	times	$\operatorname{pct} \operatorname{\underline{\hspace{1em}} comp}$	OE_ratio_mean	OE_ratio_sd						
frail	52	100	1.101	0.037						
strat	52	100	1.015	0.045						
frail	91	100	1.097	0.042						
strat	91	97	1.011	0.024						
frail	150	100	1.095	0.040						

	Large cluster scenario										
	ICI E50 E90										
model	times	$\operatorname{pct} \operatorname{\underline{\hspace{1em}} comp}$	ICI_mean	ICI_sd	E50_mean	E50_sd	E90_mean	E90_sd			
frail	52	100	0.050	0.030	0.053	0.031	0.066	0.040			
strat	52	100	0.026	0.047	0.023	0.039	0.048	0.087			
frail	91	100	0.050	0.032	0.052	0.032	0.066	0.049			
strat	91	97	0.020	0.009	0.019	0.010	0.036	0.018			
frail	150	100	0.048	0.035	0.050	0.031	0.067	0.067			

3. Additional investigations

We additionally estimate predictions from the stratified and the shared gamma frailty Cox model using all data without splitting among clusters in which predictions were possible in both models.

We provide the corresponding plots of predictions at different time horizons from the stratified versus the shared gamma frailty model in the small and large cluster scenario.

```
# Herds < 50 (herds >= 10)
table_insem_small <-
  insem %>%
  dplyr::count(Herd) %>%
```

```
dplyr::filter(n < 50 \& n >= 10)
# Herds >= 50 cows
table_insem_large <-
  insem %>%
  dplyr::count(Herd) %>%
  dplyr::filter(n >= 50)
df_insem <-
  insem %>%
  # dplyr::filter(Herd %in% table_insem_50$Herd) %>%
  # reference values for all continuous variable
  # to estimate predictions from frailty correctly
  dplyr::mutate(
    Ureum_ref = Ureum - 2.5,
    Protein_ref = Protein - 2.5,
    Parity_ref = Parity - 2.5)
# Small scenario overall data
df_insem_small <-</pre>
  df_insem %>%
  dplyr::filter(Herd %in% table_insem_small$Herd)
# Large scenario overall data
df_insem_large <-</pre>
  df insem %>%
  dplyr::filter(Herd %in% table_insem_large$Herd)
# Stratified Cox - small
cox_strat_small <-</pre>
  survival::coxph(Surv(Time, Status) ~
                     Heifer +
                     Parity_ref +
                     Ureum_ref +
                     Protein_ref +
                     strata(Herd),
      data = df_insem_small,
      x = T,
      y = T,
      ties = "breslow")
# Frailty Cox - small
cox_frail_small <-</pre>
  survival::coxph(Surv(Time, Status) ~
                    Heifer +
                     Parity_ref +
                     Ureum_ref +
                     Protein_ref +
                     frailty(Herd),
      data = df_insem_small,
      x = T,
      y = T,
      ties = "breslow")
```

```
# Stratified Cox - large
cox_strat_large <-</pre>
  survival::coxph(Surv(Time, Status) ~
                     Heifer +
                     Parity_ref +
                     Ureum ref +
                     Protein_ref +
                     strata(Herd),
      data = df_insem_large,
      x = T,
      y = T,
      ties = "breslow")
# Frailty Cox - small
cox_frail_large <-</pre>
  survival::coxph(Surv(Time, Status) ~
                     Heifer +
                     Parity_ref +
                     Ureum_ref +
                     Protein_ref +
                     frailty(Herd),
      data = df_insem_large,
      x = T,
      y = T,
      ties = "breslow")
## Predictions
# at 25th, 50th, 75th overall percentiles
time_hors <- c(52, 91, 150)
# time_hors <- q_surv[1, ]
# Predictions
# Stratified small
pred_strat_small <- 1 - pec::predictSurvProb(cox_strat_small,</pre>
                                               newdata = df_insem_small,
                                               times = time_hors)
# Frailty small
pred_frail_small <- 1 - predict.coxph.gammafrail(model = cox_frail_small,</pre>
                                                   newdata = df_insem_small,
                                                    cluster = "Herd",
                                                   times = time_hors)$conditional
# Predictions
# Stratified large
pred_strat_large <- 1 - pec::predictSurvProb(cox_strat_large,</pre>
                                               newdata = df_insem_large,
                                               times = time_hors)
# Frailty large
pred_frail_large <- 1 - predict.coxph.gammafrail(model = cox_frail_large,</pre>
                                                   newdata = df_insem_large,
                                                    cluster = "Herd",
```

```
times = time_hors)$conditional
# Plot predictions
# from stratify and frailty model
# Small scenario at T25, T50 and T75
oldpar <-
 par(
   mfrow = c(2, 3),
   xaxs = "i",
   yaxs = "i",
   las = 1)
plot(pred_strat_small[, 1],
     pred_frail_small[, 1],
     xlim = c(0, 1.2),
     xlab = expression("Predictions from stratified Cox at T"[25]),
     ylim = c(0, 1.2),
     ylab = expression("Predictions from frailty Cox at T"[25]),
     main = expression("Small case scenario at T"[25]),
     bty = "n")
abline(a = 0,
       b = 1,
       lwd = 2,
       col = "red")
par(xaxs = "i",
   yaxs = "i",
   las = 1)
plot(pred_strat_small[, 2],
    pred_frail_small[, 2],
     xlim = c(0, 1.2),
     xlab = expression("Predictions from stratified Cox at T"[50]),
     ylim = c(0, 1.2),
     ylab = expression("Predictions from frailty Cox at T"[50]),
     main = expression("Small case scenario at T"[50]),
     bty = "n")
abline(a = 0,
       b = 1,
       lwd = 2,
       col = "red")
par(xaxs = "i",
   yaxs = "i",
   las = 1)
plot(pred_strat_small[, 3],
     pred_frail_small[, 3],
     xlim = c(0, 1.2),
     xlab = expression("Predictions from stratified Cox at T"[75]),
     ylim = c(0, 1.2),
     ylab = expression("Predictions from frailty Cox at T"[75]),
     main = expression("Small case scenario at T"[75]),
     bty = "n")
abline(a = 0,
```

```
b = 1,
       lwd = 2,
       col = "red")
# Large scenario at T25, T50 and T75
par(xaxs = "i",
    yaxs = "i",
    las = 1)
plot(pred_strat_large[, 1],
     pred_frail_large[, 1],
     xlim = c(0, 1.2),
     xlab = expression("Predictions from stratified Cox at T"[25]),
     ylim = c(0, 1.2),
     ylab = expression("Predictions from frailty Cox at T"[25]),
     main = expression("Large case scenario at T"[25]),
     btv = "n")
abline(a = 0,
      b = 1,
       lwd = 2,
       col = "red")
par(xaxs = "i",
    yaxs = "i",
    las = 1)
plot(pred_strat_large[, 2],
     pred_frail_large[, 2],
     xlim = c(0, 1.2),
     xlab = expression("Predictions from stratified Cox at T"[50]),
     ylim = c(0, 1.2),
     ylab = expression("Predictions from frailty Cox at T"[50]),
     main = expression("Large case scenario at T"[50]),
     bty = "n")
abline(a = 0,
       b = 1,
       lwd = 2,
       col = "red")
par(xaxs = "i",
    yaxs = "i",
    las = 1)
plot(pred_strat_large[, 3],
     pred_frail_large[, 3],
     xlim = c(0, 1.2),
     xlab = expression("Predictions from stratified Cox at T"[75]),
     ylim = c(0, 1.2),
     ylab = expression("Predictions from frailty Cox at T"[75]),
     main = expression("Large case scenario at T"[75]),
     bty = "n")
abline(a = 0,
       b = 1,
       lwd = 2,
       col = "red")
```


NOTE: comparisons only among clusters where predictions were possible for both models

Reproducibility ticket

```
sessionInfo()
```

```
## R version 4.3.3 (2024-02-29 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19045)
##
## Matrix products: default
```

```
##
##
## locale:
## [1] LC_COLLATE=English_United Kingdom.utf8
## [2] LC_CTYPE=English_United Kingdom.utf8
## [3] LC MONETARY=English United Kingdom.utf8
## [4] LC NUMERIC=C
## [5] LC_TIME=English_United Kingdom.utf8
##
## time zone: Europe/Rome
## tzcode source: internal
## attached base packages:
## [1] grid
                 stats
                           graphics grDevices utils
                                                          datasets methods
## [8] base
##
## other attached packages:
   [1] parfm 2.7.8
                                   optimx 2025-4.9
##
  [3] survival_3.8-3
                                   webshot2_0.1.2
##
   [5] rms 6.8-0
                                   patchwork 1.2.0
##
  [7] ggpubr_0.6.0
                                   plotly_4.10.4
  [9] webshot_0.5.5
                                   gridExtra 2.3
## [11] lubridate_1.9.4
                                   forcats 1.0.0
## [13] dplyr_1.1.4
                                   purrr_1.0.2
## [15] readr 2.1.5
                                   tidyr_1.3.1
## [17] tibble_3.2.1
                                   ggplot2_3.5.2
## [19] tidyverse_2.0.0
                                   gtsummary_1.7.2
## [21] polspline_1.1.25
                                   riskRegression_2025.05.20
## [23] lattice_0.22-5
                                   Hmisc_5.2-3
## [25] kableExtra_1.4.0
                                   knitr_1.50
## [27] stringr_1.5.1
                                   rio_1.2.3
## [29] pacman_0.5.1
##
## loaded via a namespace (and not attached):
##
     [1] RColorBrewer 1.1-3
                              rstudioapi_0.17.1
                                                    jsonlite_1.8.9
##
     [4] shape_1.4.6.1
                              magrittr_2.0.3
                                                    TH.data_1.1-3
##
     [7] farver 2.1.2
                              nloptr 2.2.1
                                                    rmarkdown 2.29
##
   [10] vctrs_0.6.5
                                                    rstatix_0.7.2
                              base64enc_0.1-3
##
    [13] htmltools_0.5.8.1
                              broom_1.0.9
                                                    Formula_1.2-5
##
  [16] parallelly_1.45.1
                              pracma_2.4.4
                                                    htmlwidgets_1.6.4
  [19] sandwich_3.1-1
                              zoo 1.8-14
                                                    gt 1.0.0
                                                    cmprsk_2.2-12
##
   [22] commonmark 2.0.0
                              lifecycle_1.0.4
                              pkgconfig_2.0.3
##
   [25] iterators 1.0.14
                                                    Matrix_1.6-5
##
   [28] R6_2.6.1
                              fastmap_1.2.0
                                                    future_1.67.0
##
   [31] digest_0.6.35
                              numDeriv_2016.8-1.1
                                                    colorspace_2.1-1
##
   [34] ps_1.9.1
                              rprojroot_2.1.0
                                                    timechange_0.3.0
   [37] httr_1.4.7
##
                              abind_1.4-8
                                                    compiler_4.3.3
##
   [40] here_1.0.1
                              withr_3.0.2
                                                    htmlTable_2.4.3
   [43] backports_1.5.0
                              carData_3.0-5
                                                    ggsignif_0.6.4
##
   [46] MASS_7.3-60.0.1
                              lava_1.8.1
                                                    quantreg_6.1
##
   [49] tools_4.3.3
                                                    foreign_0.8-90
                              chromote_0.5.1
##
  [52] future.apply_1.20.0
                              nnet_7.3-20
                                                    glue 1.7.0
## [55] mets_1.3.5
                              nlme_3.1-164
                                                    promises_1.3.2
## [58] checkmate 2.3.2
                              cluster_2.1.8.1
                                                    generics_0.1.4
```

## ## ## ## ## ## ##	[64] [67] [70] [73] [76] [79] [82] [85] [88] [91]	gtable_0.3.6 websocket_1.4.2 xml2_1.3.6 pillar_1.11.0 splines_4.3.3 litedown_0.7 xfun_0.52 lazyeval_0.2.2 evaluate_1.0.4 cli_3.6.2 processx_3.8.6 parallel_4.3.3 glmnet 4.1-10	tzdb_0.5.0 data.table_1.16.2 car_3.1-3 markdown_2.0 SparseM_1.84-2 svglite_2.1.3 expm_1.0-0 yaml_2.3.10 codetools_0.2-20 rpart_4.1.24 Rcpp_1.1.0 MatrixModels_0.5-4 viridisLite 0.4.2	sn_2.1.1 hms_1.1.3 foreach_1.5.2 later_1.4.2 tidyselect_1.2.1 stats4_4.3.3 stringi_1.8.4 pec_2025.06.24 msm_1.8.2 systemfonts_1.2.3 globals_0.18.0 listenv_0.9.1 broom.helpers 1.15.0
##	[91]	processx_3.8.6	Rcpp_1.1.0	globals_0.18.0
## ## ##	[97] [100] [103]	glmnet_4.1-10 mvtnorm_1.3-3 prodlim_2025.04.28 mnormt_2.1.1	viridisLite_0.4.2 timereg_2.0.6 rlang_1.1.6	broom.helpers_1.15.0 scales_1.4.0 multcomp_1.4-28