hybris数据库 读写分离和分库分表初探

Winston Zhang Nov 28, 2015

社区:52hybris.com

- 1. 从大规模可扩展电商系统说起
- 2. Database scalability patterns
- 3. Scale out Read & Write
- 4. Database Sharding
- 5. Hybris recommendation

Database Scalability Patterns

数据库扩展性考量点

Scale up (Read + Write)

Scale out Read

Hybris读写分离

[y]

1 JDBC Driver + Code (Driver依赖性强)

2 Code Scatter

3 Code Aspect

How 怎么样读写分离

When 什么时候读写分离

1 Spring AOP

2 Filter

[y]

Hybris datasource configuration


```
db.url=jdbc:mysql://perc56.<youraddress>.com/<dbname>?useConfigs=maxPerformance&cha
racterEncoding=utf8
db.driver=com.mysql.jdbc.Driver
db.username=<username>
db.password=<password>
db.tableprefix=
mysql.optional.tabledefs=CHARSET=utf8 COLLATE=utf8 bin
mysql.tabletype=InnoDB
db.customsessionsql=SET SESSION TRANSACTION ISOLATION LEVEL READ COMMITTED;
mysql.allow.fractional.seconds=true
slave.datasource.1.db.url=jdbc:mysql://perc56read.<youraddress>.com/<dbname>?useCon
figs=maxPerformance&characterEncoding=utf8
slave.datasource.1.db.driver=com.mysql.jdbc.Driver
slave.datasource.1.db.username=<username>
slave.datasource.1.db.password=<password>
slave.datasource.1.db.tableprefix=
slave.datasource.1.mysql.optional.tabledefs=CHARSET=utf8 COLLATE=utf8 bin
slave.datasource.1.mysql.tabletype=InnoDB
slave.datasource.1.db.customsessionsql=set session transaction isolation level read committed;
slave.datasource.1.mysql.allow.fractional.seconds=true
```

DataSource (master/slave)

return ret;

业务逻辑

... tenant.getDataSource()

```
@Override
public HybrisDataSource getDataSource()
 // this is thread safe because getMasterDataSource() relies on volatile 'state'
 HybrisDataSource ret = getMasterDataSource();
 if (hasAltDataSource())
   final DataSourceSelection currentAlternativeDS = getThreadDataSource();
   if (currentAlternativeDS != null)
     // allow alternative data source only if
     // - it has no connection error
     // - is is master or forceMaster mode is not active
     if (currentAlternativeDS.canUseDataSource())
       ret = currentAlternativeDS.getDataSource();
```


Feature list:

- ➤ All transactional db call, go master (can force to slave) 强读走写
- ➤ All non-transaction db call, go slave (can force to master) 弱读走读
- ➤ Always master (numseries generator) 强制走写
- ➤ Always slave 强制走读
- > Round robin balance slave
- ➤ Delay and retry interval
- > If slave down, switch to master automatically
- > If master down, fail
- > Can specific which tables are splitting (inclusive or exclusive)
- ➤ Supports all databases 支持所有hybris支持的数据库(Oracle, MySQL, SQL Server, HANA)

Scale out Write

Percona XtraDB Cluster / MariaDB Cluster

Oracle RAC

Scale out Write

Hybris读写分离十多写

db.url=jdbc:mysql:loadbalance://node01:3306,node02:3306,node03:3306/hybris?

useConfigs=maxPerformance&

characterEncoding=utf8& loadBalanceConnectionGroup=first& loadBalanceEnableJMX=true

db.url=jdbc:mysql://node02:3306,node03:3306,node01:3306/hybris?

useConfigs=maxPerformance&

characterEncoding=utf8& failOverReadOnly=false&

autoReconnect=true

Features	load balance url	failover url
balance in cluster	Yes	Yes (manually configured)
balance in node	Yes	No
failover	Yes	Yes
Init errors	lots of	none
Recommend to use		•

JDBC replication url


```
jdbc:mysql:replication://[master host][:port],[slave host
1][:port][,[slave host 2][:port]]...[/[database]] »
[?propertyName1=propertyValue1[&propertyName2=propertyValue2]...]
```

```
jdbc:mysql://
address=(type=master) (host=master1host),
address=(type=master) (host=master2host),
address=(type=slave) (host=slave1host)
/database
```


Is it enough?

Database sharding

Sharding solution alternatives

PoC deployment

优化部署方案

还能不能自由自在Join了

第一原则:能不切分尽量不要切分。

第二原则: 如果要切分一定要选择合适的切分规则,提前规划好。

第三原则: 数据切分尽量通过数据冗余或表分组(Table Group)来降低跨库Join的可能。

第四原则:由于数据库中间件对数据Join实现的优劣难以把握,而且实现高性能难度极

大,业务读取尽量少使用多表Join。

算法: E-R Join, Share Join

复制: MyCAT 全局表, DRDS 小区广播表

Sharding key

五个维度考量:数据均衡度、事务边界因素、常用查询效率、异构索引、简单性策略

订单

流水号	订单ID	买家ID	卖家ID	创建时间	订单状态	销售渠道	
		^	1				
购物车		ı	1				
流水号	订单ID	买家ID	卖家ID	创建时间	订单状态	销售渠道	
		1					

商品

流水号	商品ID	商品编号	品类ID	商品编码	商家ID	销售渠道	状态	baseProd	

分表查询优化

异构复制

Table_bid buyerID % 4

bizOrderID	buyerID	sellerID	content
0	0	1	床上用品
1	0	2	路上用品
2	0	3	销售路由 器
3	0	4	中文书籍
4	0	5	电脑
8	4	0	桌面

bizOrderID	buyerID	sellerID	content
5	1	0	ipad

bizOrderID	buyerID	sellerID	content
6	2	0	笔记本

bizOrderID	buyerID	sellerID	content
7	3	0	铅笔

Table_sid sellerID % 4

bizOrderID	buyerID	sellerID	content
5	1	0	ipad
6	2	0	笔记本
7	3	0	铅笔
8	4	0	桌面
3	0	4	中文书籍

bizOrderID	buyerID	sellerID	content
0	0	1	床上用品
4	0	5	电脑

bizOrderID	buyerID	sellerID	content
1	0	2	路上用品

bizOrderID buyerID sellerID content
2 0 3 销售路由
器

新的挑战

性能问题

事务问题

迁移扩容问题

代码问题

业务问题

Scalable architecture diagram

技术白皮书大纲 white paper TOC

典型hybris电商应用架构

大规模互联网与电商应用扩展原则

应用层无状态化与服务化

数据层读写分离与分库分表

hybris自带读写分离方案与测试

hybris分库分表方案与测试

MyCat中间件方案与测试

分布式搜索与SolrCloud

hybris大规模可扩展架构推荐实践

测试准备中

SAP hybris
MyCat开源社区
Accenture CDC
联合发布

- 1. 阿里分布式数据库实践
- 2. DRDS开发手册
- 3. DRDS最佳实践
- 4. MyCAT系列文档
- 5. MariaDB系列文档
- 6. Oracle技术嘉年华2015

THANK YOU

