Curso "Electromagnetismo"

Tema 2: Electrostática

Ley de Gauss para el campo eléctrico

J.E. Prieto

Fuente principal de figuras: "Physics for scientists and engineers" (5th edition), P.A. Tipler, G. Mosca

Previo: concepto de ángulo solido

- Ángulo plano. Se mide en radianes (rad)
- Ángulo plano correspondiente a la *circunferencia completa* con $s = 2\pi R$: $\theta = 2\pi$ (rad)
- Ángulo sólido. Se mide en estéreoradianes (sr)
- Ángulo sólido correspondiente a la esfera completa con $S = 4\pi R^2$: $\Omega = 4\pi$ (sr)

Previo: concepto de ángulo solido

• Si la superficie ΔA no es perpendicular a \mathbf{r} , (esto es, si $\Delta \mathbf{A}$ no es

paralelo a r) hay que tomar la proyección sobre la dirección radial (esto es, hay que multiplicar por cos θ)

$$\Delta\Omega = \frac{\Delta A \cos\theta}{r^2}$$

Flujo del campo eléctrico de una carga puntual a través de una esfera

 Flujo de *E* a través de una esfera de radio *R* centrada en *Q*

 Muy fácil de calcular debido a la gran simetría (esférica) del problema:

$$E = \frac{Q}{4\pi\epsilon_0 r^2} u_r$$

• E es constante en los puntos de la esfera (r = R) y es siempre paralelo a dA.

Flujo del campo eléctrico de una carga puntual a través de una esfera

$$\Phi_E = \oint E \, dS = \oint E \, dS$$

$$\Phi_E = \oint \frac{Q}{4\pi \,\epsilon_0 R^2} \, dS$$

$$\Phi_E = \frac{Q}{4\pi\epsilon_0 R^2} \oint dS = \frac{Q}{4\pi\epsilon_0 R^2} S$$

Superficie de una esfera de radio *R*:

$$S = 4\pi R^2 \rightarrow$$

$$\Phi_{E} = \frac{Q}{\epsilon_{0}}$$

Flujo de \boldsymbol{E} es igual a la carga Q dividida por ε_0

Flujo del campo eléctrico a través de una superficie arbitraria (cerrada)

$$\Phi_E = \oint E \, dS = \oint E \cos\theta \, dS$$

$$\Phi_E = \oint_{4\pi\epsilon_0}^{Q} \cos\theta \, dS$$

$$\Phi_{E} = \frac{Q}{4\pi\epsilon_{0}} \oint_{0}^{\cos\theta} \frac{dS}{r^{2}} = \frac{Q}{4\pi\epsilon_{0}} \oint_{0}^{d\Omega} d\Omega$$

Ley de Gauss

$$\Phi_{E} = \frac{Q}{\epsilon_{0}}$$

Flujo de \boldsymbol{E} es igual a la carga Q encerrada dividida por ε_0

Ley de Gauss para el campo eléctrico

$$\Phi_E = \frac{Q}{\epsilon_0}$$

- Gauss: Ley completamente general: el flujo de ${\bf E}$ a través de cualquier superficie cerrada es igual a la carga ${\bf Q}$ encerrada dividida por ε_0
- Si no hay cargas dentro, $\Phi = 0$.
- Origen físico de la Ley de Gauss:

a Ley de Gauss:
$$E$$
 E
 $S \sim r^2$

j Ley de Coulomb!

Superficie crece con r^2

Gauss ↔ Coulomb

Leyes del campo *E electrostático* en forma integral

• Ley de Gauss:

$$\oint E \, dS = \left| \begin{array}{c} Q \\ \epsilon_0 \end{array} \right|$$

• El campo electrostático es conservativo:

$$\oint E \, dr = 0$$

Ley de Gauss

Completamente general

$$\Phi_E = \begin{bmatrix} Q \\ \epsilon_0 \end{bmatrix}$$

- Importantísima desde el punto de vista "teórico":
 - es una de las ecuaciones de Maxwell
 - es equivalente a la Ley de Coulomb

- Muy útil también desde el punto de vista práctico:
 - Permite calcular *E* fácilmente en situaciones de gran simetría. Lo vemos a continuación en varios ejemplos.

 Cálculo del campo eléctrico creado por un plano infinito uniformemente cargado

- Simetría: por simetría, esperamos que el campo E dependa sólo de x y tenga sólo componente E_x:
- Elegimos "superficie Gaussiana" para calcular $\Phi_{\mathbf{F}}$

$$\Phi_{E} = \frac{Q}{\epsilon_{0}}$$

$$\oint E \, dS = \frac{Q}{\epsilon_0}$$

Sólo contribuyen al flujo las "tapas" del cilindro:

$$\oint E \, dS = 2ES$$

Carga encerrada:

$$Q = \sigma S$$

$$\Rightarrow 2ES = \frac{\sigma}{\epsilon_0} S$$

$$\rightarrow$$

$$E = \frac{\sigma}{2\epsilon_0}$$

$$E = \frac{\sigma}{2\epsilon_0} u_x, \quad x > 0$$

$$E = -\frac{\sigma}{2\epsilon_0} u_x, \quad x < 0$$

$$E = \frac{\sigma}{2\epsilon_0} u_x, \quad x > 0$$

$$E = -\frac{\sigma}{2\epsilon_0} u_x, \quad x < 0$$

Potencial *V*: Integrando *E* (constante):

$$V(x) = -E|_{X} + cte.$$

$$V(x) = -\frac{\sigma}{2\epsilon_0} |x| + V_0$$

2) Condensador plano - paralelo

• Cálculo del campo eléctrico entre dos planos infinitos uniformemente cargados con signos opuestos (condensador

• Un plano:

$$E = \frac{\sigma}{2\epsilon_0}$$

• Condensador: *el doble* del resultado anterior:

$$E = \frac{\sigma}{\epsilon_0}$$

• Entre los planos: campo uniforme (constante en dirección y módulo:

$$E = \frac{\sigma}{\epsilon_0} u_x$$

2) Condensador plano - paralelo

• Cálculo del campo eléctrico entre dos planos infinitos uniformemente cargados con signos opuestos (condensador plano-paralelo)

d: separación

 Diferencia de potencial entre las placas:

$$|\Delta V| = Ed$$

2) Condensador plano - paralelo

• Condensador plano-paralelo: líneas de campo E

Diferencia de potencial:

$$|\Delta V| = Ed$$

3) Corteza esférica cargada

 Cálculo del campo eléctrico creado por una corteza esférica de carga

- Simetría: en principio, esperamos que el campo E dependa sólo de r y tenga sólo componente E_r:
- Elegimos "superficie Gaussiana" para calcular $\Phi_{\rm E}$

$$\Phi_{E} = \frac{Q}{\epsilon_{0}}$$

3) Corteza esférica cargada

Cálculo del campo eléctrico creado por una corteza esférica de

Potencial V: integrando el campo E_r e imponiendo continuidad en r = R:

 Fuera: como si toda la carga estuviera en el centro (Coulomb)

4) Esfera homogéneamente cargada

 Cálculo del campo eléctrico creado por una esfera homogéneamente cargada

 Simetría: en principio, esperamos que el campo E dependa sólo de r y tenga sólo componente E_r:

• Elegimos "superficie Gaussiana" para calcular $\Phi_{\rm E}$

$$\Phi_{E} = \frac{Q}{\epsilon_{0}}$$

Ley de Gauss: esfera homogéneamente cargada

 Cálculo del campo eléctrico creado por una esfera homogéneamente cargada

Potencial V: integrando el campo E_r e imponiendo continuidad en r = R:

 Fuera: como si toda la carga estuviera en el centro (Coulomb)

5) Hilo infinito cargado

 Cálculo del campo eléctrico creado por un hilo infinito uniformemente cargado

- Simetría: en principio, esperamos que el campo E dependa sólo de R y tenga sólo componente E_R
- Elegimos "superficie Gaussiana" para calcular Φ_{E}

$$\Phi_{E} = \frac{Q}{\epsilon_{0}}$$

5) Hilo infinito cargado

$$\oint E \, dS = \begin{cases} Q \\ \epsilon_0 \end{cases}$$

Sólo contribuye al flujo el "manto" del cilindro:

$$\oint E \, dS = E \, 2\pi RL$$

Carga encerrada:

$$Q = \lambda L$$

$$\rightarrow E \ 2\pi RL = \frac{\lambda L}{\epsilon_0}$$

$$E = \frac{\lambda}{2\pi\epsilon_0} \frac{1}{R}$$

$$\rightarrow V = -\frac{\Lambda}{2\pi\epsilon_0} \ln(R) + cte.$$

Resumen: Ley de Gauss (1)

$$\Phi_{E} = \frac{Q}{\epsilon_{0}}$$

- Gauss: Ley completamente general: el flujo de ${\bf E}$ a través de cualquier superficie cerrada es igual a la carga ${\bf Q}$ encerrada dividida por ε_0
- Si no hay cargas dentro, $\Phi = 0$.
- Origen físico de la Ley de Gauss:

¡ Ley de Coulomb!

Gauss ↔ Coulomb

Resumen: Ley de Gauss (2)

Completamente general

$$\Phi_{E} = \begin{bmatrix} Q \\ \epsilon_{0} \end{bmatrix}$$

- Importantísima desde el punto de vista "teórico":
 - es una de las ecuaciones de Maxwell
 - es equivalente a la Ley de Coulomb

- Muy útil también desde el punto de vista práctico:
 - Permite calcular *E* fácilmente *en situaciones de gran* simetría. Lo vemos a continuación en varios ejemplos.

Resumen: Plano infinito cargado

Resumen: Condensador plano-paralelo

• Cálculo del campo eléctrico entre dos planos infinitos uniformemente cargados con signos opuestos (condensador plano-paralelo)

d: separación

 Diferencia de potencial entre las placas:

$$|\Delta V| = Ed$$

Resumen: Corteza esférica cargada

 Cálculo del campo eléctrico creado por una corteza esférica de carga

Potencial V: integrando el campo E_r e imponiendo continuidad en r = R:

 Fuera: como si toda la carga estuviera en el centro (Coulomb)

Resumen: Esfera homogéneamente cargada

 Cálculo del campo eléctrico creado por una esfera homogéneamente cargada

Potencial V: integrando el campo E_r e imponiendo continuidad en r = R:

 Fuera: como si toda la carga estuviera en el centro (Coulomb)

