Contents

1	Introduction	2
2	Non-Parametric Estimation of the Survival Distribution	3
3	Appendix	8

1 Introduction

Definition 1.1 (Random Censorship Model). In the random censorship model, the ordered pairs (T_{ij}, U_{ij}) , $j = 1, ..., n_i, i = 1, ..., r$, are $n(=\sum_{i=1}^r n_i)$ independent finite failure and censoring time random variables that satisfy the equation $\frac{dF(z)}{1-F(z-)} = \frac{-dP\{T \ge z; U \ge T\}}{P\{T \ge z; U \ge T\}}$ for all z such that $P\{T \ge z; U \ge T\} > 0$ for each n = 1, 2, ... The observable data are:

$$X_{ij} = min(T_{ij}, U_{ij})$$
$$\equiv T_{ij} \wedge U_{ij}$$

and

$$\delta_{ij} = I_{(X_{ij} = T_{ij})}$$

The notation for the underlying distributions in the random censorship model will be

$$S_i(t) = P\{T_{ij} > t\},$$

 $F_i(t) = 1 - S_i(t),$
 $C_{ij}(t) = P\{U_{ij} > t\},$
 $L_{ij}(t) = 1 - C_{ij}(t),$

and

$$\pi_{ij}(t) = P\{X_{ij} \ge t\}.$$

The following stochastic processes are introduced:

$$\overline{N_{i}}(t) = \sum_{j=1}^{n_{i}} N_{ij}(t) = \sum_{j=1}^{n_{i}} I_{(X_{ij} \leq t, \delta_{ij} = 1)},$$

$$N_{ij}^{U}(t) = I_{(X_{ij} \leq t, \delta_{ij} = 0)},$$

$$\overline{Y_{i}}(t) = \sum_{j=1}^{n_{i}} Y_{ij}(t) = \sum_{j=1}^{n_{i}} I_{(X_{ij} \geq t)},$$

$$M_{ij}(t) = N_{ij}(t) - \int_{0}^{t} Y_{ij}(s) d\Lambda s,$$

$$M_{i}(t) = \sum_{j=1}^{n_{i}} M_{ij}(t) = \overline{N_{i}}(t) - \int_{0}^{t} \overline{Y_{i}}(s) d\Lambda s,$$

where,

$$\Lambda_i(t) = \int_0^t [1 - F_i(s-)]^{-1} dF_i(s).$$

All martingale properties depend on a specification of the way information accrues over time or, in other words, a filtration. Until specified otherwise, we will use the filtration $\{\mathcal{F}_t : t \geq 0\}$ is given by:

$$\mathcal{F}_t = \sigma\{N_{ij}(s), N_{ij}^U(s) : 0 \le s \le t, j = 1, \dots, n_i, i = 1, \dots, r\}.$$

This filtration specifies at time t, which items have failed or have been censored up to and including that time and, in this setting the assumption that for each $t \geq 0$, given \mathcal{F}_{t-} , $\{\Delta N_{ij}(t): j = 1, \ldots, n_i, i = 1, \ldots, r\}$ are all independent 0,1 random variables for the counting processes $\{N_{ij}(t): j = 1, \ldots, n_i, i = 1, \ldots, r\}$.

2 Non-Parametric Estimation of the Survival Distribution

In this section, we examine finite sample properties of estimators of the survival distribution in a single homogeneous sample (r = 1), and suppress the subscript i.

We first examine methods for estimating the cumulative hazard function, $\Lambda(t)$. From **Theorem 3.1** and **Lemma 3.1** $M_j(t) = N_j(t) - \int_0^t I_{(X_j \ge u)} d\Lambda(u)$ is a martingale for each j with respect to $\{\mathcal{F}_t : t \ge 0\}$. In turn, $M(t) = \overline{N}(t) - \int_0^t \overline{Y}(s) d\Lambda(s)$ is a martingale, where $\overline{N}(t) = \sum_{j=1}^n N_j(t)$ and $\overline{Y}(t) = \sum_{j=1}^n Y_j(t)$. Since, the process given at time t by

$$\frac{I_{(\overline{Y}(t)>0)}}{\overline{Y}(t)} = \begin{cases} 1/\overline{Y}(t), & \overline{Y}(t)>0\\ 0, & \overline{Y}(t)=0 \end{cases}$$

is a left-continuous adapted process with right-hand limits, then $\{\mathcal{M}(t):t\geq 0\}$ given by

$$\mathcal{M}(t) = \int_0^t \frac{I_{(\overline{Y}(s)>0)}}{\overline{Y}(s)} dM(s) \qquad \text{(Theorem 3.2)}$$

$$= \int_0^t \frac{I_{(\overline{Y}(s)>0)}}{\overline{Y}(s)} [d\overline{N}(s) - \overline{Y}(s) d\Lambda(s)] \qquad \text{(by definition of } M(t))$$

$$= \int_0^t \frac{d\overline{N}(s)}{\overline{Y}(s)} - \int_0^t I_{(\overline{Y}(s)>0)} d\Lambda(s) \qquad \text{(since } I_{(\overline{Y}(s)>0)} \cdot d\overline{N}(s) = d\overline{N}(s) \text{ almost surely)}$$

is a martingale. It follows since $\mathcal{M}(0) = 0$, that

$$E\left\{\int_0^t \frac{d\overline{N}(s)}{\overline{Y}(s)}\right\} = E\left\{\int_0^t I_{(\overline{Y}(s)>0))} d\Lambda(s)\right\}$$
 (by the martingale property) (1)

Let $\Lambda^*(t) = \int_0^t I_{(\overline{Y}(s)>0)} d\Lambda(s)$. Then, if $T = \inf\{t : \overline{Y}(t) = 0\}$, $\Lambda^*(t) = \int_0^{t \wedge T} d\Lambda(s) = \Lambda(t \wedge T)$. By Eq. 1, we might expect that $\hat{\Lambda}(t) = \int_0^t \frac{d\overline{N}(s)}{\overline{Y}(s)}$ would be a good "estimator" for $\Lambda^*(t) = \Lambda(t \wedge T)$, but that it would not be possible to obtain an unbiased estimator of $\Lambda(t)$ without making parametric assumptions.

The following theorem summarizes some properties of $\hat{\Lambda}$, an estimator first proposed by Nelson (1969).

Theorem 2.1. Let $t \geq 0$ be such that $\Lambda(t) < \infty$. Then

a.
$$E[\hat{\Lambda}(t) - \Lambda^*(t)] = 0$$
,

b.
$$E[\hat{\Lambda}(t) - \Lambda(t)] = -\int_0^t [\prod_{j=1}^n \{1 - \pi_j(s)\}] d\Lambda(s)$$

b'. if $\pi_i(s) = \pi(s)$ for all j then

$$E[\hat{\Lambda}(t) - \Lambda(t)] = \int_0^t \{1 - \pi(s)\}^n d\Lambda(s) \ge -\{1 - \pi(t)\}^n \Lambda(t),$$

c.
$$\sigma_*^2(t) = E[\sqrt{n}\{\hat{\Lambda}(t) - \Lambda^*(t)\}]^2 = E\left[n\int_0^t \frac{I_{(\overline{Y}(s)>0)}}{\overline{Y}(s)}\{1 - \Delta\Lambda(s)\}d\Lambda(s)\right]$$

Proof. From equation (1), we conclude that $E[\hat{\Lambda}(t)] = E[\Lambda^*(t)]$, since $\hat{\Lambda}(t) = \int_0^t \frac{d\overline{N}(s)}{\overline{Y}(s)}$ and $\Lambda^*(t) = \int_0^t I_{(\overline{Y}(s)>0)} d\Lambda(s)$, thus establishing (a).

Now, $E[\hat{\Lambda}(t) - \Lambda^*(t)] = 0$ implies

$$\begin{split} E[\hat{\Lambda}(t) - \Lambda(t)] &= E[\Lambda^*(t) - \Lambda(t)] \\ &= E\left[\int_0^t I_{(\overline{Y}(s) > 0)} d\Lambda(s) - \int_0^t d\Lambda(s)\right] \\ &= E\left[\int_0^t (I_{(\overline{Y}(s) > 0)} - 1) d\Lambda(s)\right] \\ &= E\left[-\int_0^t I_{(\overline{Y}(s) = 0)} d\Lambda(s)\right] = -E\left[\int_0^t I_{(\overline{Y}(s) = 0)} d\Lambda(s)\right] \\ &= -\int_0^t P(\overline{Y}(s) = 0) d\Lambda(s) \\ &= -\int_0^t P\left(\sum_{i=1}^n \overline{Y_i}(s) = 0\right) d\Lambda(s) \\ &= -\int_0^t P\left(\sum_{i=1}^n I_{(X_i \ge t)} = 0\right) d\Lambda(s) \end{split}$$

and since, $\{\sum_{i=1}^{n} I_{(X_i \ge t)} = 0\} \equiv \{X_1 \le t, X_2 \le t, \dots, X_n \le t\}$ we have,

$$E[\hat{\Lambda}(t) - \Lambda(t)] = -\int_0^t \prod_{i=1}^n \{1 - \pi_i(s)\} d\Lambda(s),$$

thus establishing (b).

Note that, if $\pi_j(s) = \pi(s)$ for all j then the above expression changes to,

$$E[\hat{\Lambda}(t) - \Lambda(t)] = -\int_{0}^{t} \{1 - \pi(s)\}^{n} d\Lambda(s) \ge -\{1 - \pi(t)\}^{n} \Lambda(t)$$

since $\pi(s)$ is non-decreasing, thus establishing (b').

To prove (c), the equation

$$\langle M, M \rangle(t) = \int_0^t \overline{Y}(s) \{1 - \Delta \Lambda(s)\} d\Lambda(s)$$
 (2)

follows from **Theorem 3.3 (2)**, for our case we replace $M=M_j$ and $A=A_j=\int_0^t \overline{Y}(s)d\Lambda(s)$ and

substitute $\Delta A(t) = \overline{Y}(t)\Delta\Lambda(t)$ into the theorem thus yielding the above equation. Therefore,

$$\begin{split} E[\hat{\Lambda}(t) - \Lambda^*(t)]^2 &= E\left\{\int_0^t \frac{I_{(\overline{Y}(s)>0)}}{\overline{Y}(s)} dM(s)\right\}^2 \\ &= E\left\{\int_0^t \frac{I_{(\overline{Y}(s)>0)}}{\overline{Y}^2(s)} d\langle M, M\rangle(s)\right\} & \text{(from Corollary 3.1 and Theorem 3.4)} \\ &= E\left\{\int_0^t \frac{I_{(\overline{Y}(s)>0)}}{\overline{Y}(s)} \{1 - \Delta\Lambda(s)\} d\Lambda(s)\right\} & \text{(using equation 2)} \end{split}$$

Suppose $\pi_j(s) = \pi(s)$ for all j and s. If $\pi(t) > 0$, Theorem 2.1 indicates that $\hat{\Lambda}(t)$ is an unbiased estimator of $\Lambda(t)$, with bias converging to zero at an exponential rate as $n \to \infty$. For the second moment,

$$\begin{split} \sigma_*^2(t) &= E[n\{\hat{\Lambda}(t) - \Lambda^*(t)\}^2] \\ &= E\int_0^t \frac{n}{\overline{Y}(s)} I_{(\overline{Y}(s)>0)} \{1 - \Delta \Lambda(s)\} d\Lambda(s) \end{split} \tag{from above theorem)}$$

which for large n should approach

$$\sigma^{2}(t) \equiv \int_{0}^{t} \{\pi(s)\}^{-1} \{1 - \Delta\Lambda(s)\} d\Lambda(s)$$

since $E[n\{\hat{\Lambda}(t) - \Lambda(t)\}^2] = E[n\{\Lambda^*(t) - \Lambda(t)\}^2]$ and $E[n\{\Lambda^*(t) - \Lambda(t)\}^2]$ converges to zero when $\pi(t) > 0$, since

$$\sqrt{n}\{\hat{\Lambda}(t) - \Lambda^*(t)\} = \frac{1}{\sqrt{n}} \int_0^t n \frac{I_{(\overline{Y}(s)>0)}}{\overline{Y}(s)} dM_j(s) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \int_0^t \frac{n}{\overline{Y}(s)} dM_j(s),$$

where $\{M_j\}$ is independent and identically distributed collection, and since $n\{\overline{Y}(s)\}^{-1}$ converges to $\{\pi(s)\}^{-1}$, we might expect that $\sqrt{n}\{\hat{\Lambda}(t) - \Lambda(t)\}$ is approximately distributed as $N(0, \sigma^2(t))$ for large n.

The precision of $\hat{\Lambda}$ at time t can be measured either by its variance, $E\{\hat{\Lambda}(t) - E\hat{\Lambda}(t)\}^2$ or since it is biased, by its mean square error, $E[\{\hat{\Lambda}(t) - \Lambda(t)\}^2]$. Since the squared bias satisfies

$$[E\{\hat{\Lambda}(t) - \Lambda(t)\}^2 \le \{1 - \pi(t)\}^{2n} \{\Lambda(t)\}^2$$
 (from **Theorem 2.1(b')**)

these will be nearly equal, and the variance of $\hat{\Lambda}(t)$ can be safely used except when $\Lambda(t)$ is large and n is small, or when $\pi(t) = 0$. The variance is given by

$$\begin{split} var[\hat{\Lambda}(t)] &= E\{\hat{\Lambda}(t) - E\hat{\Lambda}(t)\}^2 = E\{\hat{\Lambda}(t) - E\Lambda^*(t)\}^2 \qquad \text{(since } E\hat{\Lambda}(t) = E\Lambda^*(t)) \\ &= E\{\hat{\Lambda}(t) - \Lambda^*(t) + \Lambda^*(t) - E\Lambda^*(t)\}^2 \\ &= n^{-1}\sigma_*^2(t) + 2E[\{\hat{\Lambda}(t) - \Lambda^*(t)\}\{\Lambda^*(t) - E\Lambda^*(t)\}] + E\{\Lambda^*(t) - E\Lambda^*(t)\}^2 \\ &\approx \frac{1}{n}\sigma_*^2(t), \end{split}$$

for even relatively small values of n. In estimating the variance of $\hat{\Lambda}(t)$, it is therefore sufficient to find a good estimator of $n^{-1}\sigma_*^2(t)$.

Theorem 2.2. Let $t \geq 0$ be such that $\Lambda(t) < \infty$. Define

$$\frac{1}{n}\hat{\sigma}^2(t) = \int_0^t \frac{I_{(\overline{Y}(s)>0)}}{\overline{Y}^2(s)} \left\{ 1 - \frac{\Delta \overline{N}(s) - 1}{\overline{Y}(s) - 1} \right\} d\overline{N}(s),$$

where $0/0 \equiv 0$ as usual. Then

$$E\left\{\frac{1}{n}\hat{\sigma}^2(t) - \frac{1}{n}\sigma_*^2(t)\right\} = \int_0^t P\{\overline{Y}(s) = 1\}\Delta\Lambda(s)d\Lambda(s).$$

Proof.

$$E\left\{\frac{1}{n}\hat{\sigma}^{2}(t) - \frac{1}{n}\sigma_{*}^{2}(t)\right\} = E\int_{0}^{t} \frac{I_{(\overline{Y}(s)>0)}}{\overline{Y}^{2}(s)} \{d\overline{N}(s) - \overline{Y}(s)d\Lambda(s)\}$$

$$- E\int_{0}^{t} \frac{I_{(\overline{Y}(s)>1)}}{\overline{Y}^{2}(s)\{\overline{Y}(s)-1\}} [\{\Delta\overline{N}(s)-1\}d\overline{N}(s) - \overline{Y}(s)\{\overline{Y}(s)-1\}\Delta\Lambda(s)d\Lambda(s)]$$

$$+ E\int_{0}^{t} I_{(\overline{Y}(s)=1)}\Delta\Lambda(s)d\Lambda(s). \tag{3}$$

The first term on the right-hand side of Eq. (3) is zero since it is the expectation at time t of a zero mean martingale. The second term will be zero for the same reason if

$$\int [\{\Delta \overline{N}(s) - 1\} d\overline{N}(s) - \overline{Y}(s) \{\overline{Y}(s) - 1\} \Delta \Lambda(s) d\Lambda(s)] \tag{4}$$

is also a zero mean martingale, where an integral without limits denotes a process whose value at time t is the integral over the interval (0, t]. Now,

$$\begin{split} & [\{\Delta\overline{N}(s)-1\}d\overline{N}(s)-\int\overline{Y}(s)\{\overline{Y}(s)-1\}\Delta\Lambda(s)d\Lambda(s)] \\ & = \int \{\Delta\overline{N}(s)-1\}d\overline{N}(s)-\int\Delta\overline{N}(s)\overline{Y}(s)d\Lambda(s)+\int\overline{Y}(s)\Delta\Lambda(s)d\Lambda(s) \\ & + \int\overline{Y}(s)\Delta\Lambda(s)\{d\overline{N}(s)-\overline{Y}(s)d\Lambda(s)\} \qquad \text{(since } \Delta\overline{N}(s)=d\overline{N}(s) \text{ at jump points and 0 everywhere else)} \\ & = \int \{\Delta\overline{N}(s)-\overline{Y}(s)\Delta\Lambda(s)\}\{d\overline{N}(s)-\overline{Y}(s)d\Lambda(s)-\int\overline{Y}(s)\{1-\Delta\Lambda(s)\}d\Lambda(s) \\ & + \int \{2\overline{Y}(s)\Delta\Lambda(s)-1\}\{d\overline{N}(s)-\overline{Y}(s)d\Lambda(s)\} \\ & = \int\Delta M(s)dM(s)-\langle M,M\rangle(s)+\int \{2\overline{Y}(s)\Delta\Lambda(s)-1\}dM(s), \end{split}$$

where $M(s) = \overline{N}(s) - \int \overline{Y}(s)d\Lambda(s)$. Thus, to establish expression (4) is a zero mean martingale, it is sufficient to show that $\int \Delta M(s)dM(s) - \langle M,M\rangle(s)$ is a zero mean martingale which will follow from **Theorem 3.3** if $\int \Delta M_i(s)dM_j(s)$ is a zero mean martingale whenever $i \neq j$. Also, $\int \{2\overline{Y}(s)\Delta\Lambda(s) - 1\}dM(s)$ is a bounded predictable process.

We first show that $\int \Delta N_i(s) dM_j(s)$ is a zero mean martingale when $i \neq j$. For s < t, $E\left\{\int_s^t \Delta N_i(v) dM_j(v) \mid \mathcal{F}_s\right\}$

$$= E\left[\sum_{s < v \le t} \Delta N_i(v)(\Delta N_j - \Delta A_j)(v) \mid \mathcal{F}_s\right] \text{ (since } dM_j = dN_j - dA_j = \Delta N_j - \Delta A_j \text{ at the jump points)}$$

$$= E\left[\sum_{s < v \le t} E\{\Delta N_i(v)\Delta N_j(v) \mid \mathcal{F}_{v-}\} \mid \mathcal{F}_s\right] \text{ (since } E\{\Delta N_i\Delta N_j \mid \mathcal{F}_{v-}\} = \Delta N_i\Delta N_j)$$

$$- E\left[\sum_{s < v \le t} \Delta A_j(v)E\{\Delta N_i(v) \mid \mathcal{F}_{v-}\} \mid \mathcal{F}_s\right]$$

$$= E\left[\sum_{s < v \le t} E\{\Delta N_i(v) \mid \mathcal{F}_{v-}\}E\{\Delta M_j(v) \mid \mathcal{F}_{v-}\} \mid \mathcal{F}_s\right]$$

where the second equality follows from the predictability of A_j and the third follows because of the assumption that for each $t \geq 0$, given \mathcal{F}_{t-} , $\{\Delta N_j(t): j=1,\ldots,n\}$ are all independent 0,1 random variables for the counting processes $\{N_j(t): j=1,\ldots,n\}$. Since ΔA_i is a bounded predictable process, $\int \Delta M_i dM_j = \int \Delta N_i dM_j - \int \Delta A_i dM_j$ is a zero mean martingale whenever $i \neq j$.

When Λ is a continuous function of t, **Theorem 2.2** indicates that $\hat{\sigma}^2(t)$ provides an unbiased estimator of $\sigma_*^2(t)$. In fact, the theorem suggests that bias arises from situations in which $\Delta\Lambda(s) > 0$ and $\overline{Y}(s) = 1$. the situations here is closely related to problems encountered in estimating a binomial parameter since, when $\Delta\Lambda(s) > 0$,

$$\Delta\Lambda(s) = P\{T = s \mid T \ge s\}.$$

Suppose $\Delta\Lambda(t_0) \equiv p > 0$ for some $t_0 < t$. The "binomial parameter" p has the usual estimator $\hat{p} \equiv \Delta \overline{N}(t_0)/\overline{Y}(t_0)$ with conditional variance, given $\overline{Y}(t_0) \equiv n, \tilde{\sigma}^2 \equiv p(1-p)/n$. When n > 1,

$$\hat{\tilde{\sigma}}^2 \equiv \frac{n}{n-1} \frac{\hat{p}(1-\hat{p})}{n}$$

$$= \frac{1}{\overline{Y}^2(t_0)} \left\{ 1 - \frac{\Delta \overline{N}(t_0) - 1}{\overline{Y}(t_0) - 1} \right\} \Delta \overline{N}(t_0)$$

is an unbiased estimator of $\tilde{\sigma}^2$, while no unbiased estimator exists when n=1. If we use $\hat{\tilde{\sigma}}^2 \equiv \hat{p} = \Delta \overline{N}(t_0)/\overline{Y}(t_0)$ when n=1, a bias of $p^2 = \Delta \Lambda d\Lambda$ will arise in that special case. In summary, then, the classical setting of estimating a binomial parameter motivates $\hat{\Lambda}$ as an "unbiased estimator" of $\Lambda^*(t)$, the form of $\sigma^2_*(t)$ and of its estimator $\hat{\sigma}^2$, and the bias of $\hat{\sigma}^2$ as an estimator of $\sigma^2_*(t)$.

3 Appendix

Theorem 3.1. Let T be an absolutely continuous failure time random variable and U is a censoring time random variable with an arbitrary distribution. Let X = min(T, U), $\delta = I_{(T \leq U)}$ and let λ denote the hazard function for T. Define

$$N(t) = I_{(X \le t, \delta = 1)},$$

$$N^{U}(t) = I_{(X \le t, \delta = 0)},$$

$$\mathcal{F}_t = \sigma\{N(s), N^{U}(s) : 0 \le s \le t\}.$$

Then the process M given by

$$M(t) = N(t) - \int_0^t I_{(X \ge u)} d\Lambda(u)$$

is an \mathcal{F}_t martingale if and only if

$$\frac{dF(z)}{1 - F(z -)} = \frac{-dP(T \ge z, U \ge T)}{P(T \ge z, U \ge z)}, \qquad \text{for all } z \text{ such that } P(T \ge z, U \ge z) > 0.$$
 (5)

Proof. In order to show that M(t) is a martingale, first we need to show that $E|M(t)| < \infty$ for all $t \ge 0$. Note that

$$E\{|M(t)|\} \le E\{N(t)\} + E\left\{\int_0^t I_{(X \ge u)} \lambda(u) du\right\}$$

$$\le 1 + \int_0^t P(X \ge u) \lambda(u) du$$

$$\le 1 + \int_0^t P(T \ge u) \lambda(u) du \quad \text{since } P(X \ge u) = P(T \ge u, U \ge u) \le P(T \ge u)$$

$$= 1 + 1 - S(t) \le 2$$

Thus it only remains to show that $E[M(t+s) \mid \mathcal{F}_t] = M(s)$ almost surely for all $s \geq 0, t \geq 0$ iff Condition 5 holds. Now,

$$E\{M(t+s) \mid \mathcal{F}_t\} = E\left\{N(t+s) - \int_0^{t+s} I_{(X \ge u)} \lambda(u) du \mid \mathcal{F}_t\right\}$$

$$= E\left\{N(t+s) - N(t) + N(t) - \int_0^t I_{(X \ge u)} \lambda(u) du - \int_t^{t+s} I_{(X \ge u)} \lambda(u) du \mid \mathcal{F}_t\right\}$$

$$= N(t) - \int_0^t I_{(X \ge u)} \lambda(u) du + E\{N(t+s) - N(t) \mid \mathcal{F}_t\} - E\left\{\int_t^{t+s} I_{(X \ge u)} \lambda(u) du \mid \mathcal{F}_t\right\}$$

The first two terms on the right-hand side are M(t), so it remains to show that the last two terms are equal to zero almost surely. Now,

$$E\{N(t+s) - N(t) \mid \mathcal{F}_t\} = E\{I_{(X \le t+s,\delta=1)} - I_{(X \le t,\delta=1)} \mid \{N(u), N^U(u) : 0 \le u \le t\}\}$$

= $E\{I_{(t < X \le t+s,\delta=1)} \mid \{N(u), N^U(u) : 0 \le u \le t\}\}$

If either N or N^U has jumped at or before time t, then $I_{(t < X \le t + s, \delta = 1)} = 0$, so the conditional expectation must be 0 on the set $\{X \le t\}$. On the \mathcal{F}_t set $\{N(u) = N^U(u) = 0 \text{ for any } u \in [0, t]\} = \{X > t\}$.

Now, given a random variable Y on (Ω, \mathcal{F}, P) and let $G \subseteq \mathcal{F}$. Then if X satisfies:

- X is G-measureable,
- $\int_B Y dP = \int_B X dp$ for all $B \in G$,

then $X = E[Y \mid G]$.

So, $N(t) = I_{(X \le t, \delta = 1)}$ indicates whether failure has occurred by time t and $N^U(t) = I_{(X \le t, \delta = 0)}$ indicates whether censoring has occurred by time t.

Thus, knowing \mathcal{F}_t is equivalent to knowing whether $\{X \leq t\}$ or $\{X > t\}$, since if X > t, then $N(t) = N^U(t) = 0$ and if $X \leq t$, then N(t) = 1 or $N^U(t) = 1$. Therefore, given \mathcal{F}_t . we can partition the probability space into two sets, $\{X \leq t\}$ and $\{X > t\}$.

Now if failure or censoring has already happened by time t, then $N(t+s) = N(t) \implies E\{N(t+s) - N(t) \mid X \leq t\} = 0$, but for $\{X > t\}$, we have the conditional expectation of $I_{(t < X \leq t + s, \delta = 1)}$ must be a constant since it is $\{X > t\}$ measurable. Thus,

$$\begin{split} E[I_{\{t < X \le t + s, \delta = 1\}} \mid X > t] &= P(t < X \le t + s, \delta = 1 \mid X > t) \\ &= \frac{P(t < X \le t + s, \delta = 1)}{P(X > t)} \end{split}$$

$$\implies E[N(t+s) - N(t) \mid \mathcal{F}_t] = \begin{cases} 0, & X \le t \\ \frac{P(t < X \le t + s, \delta = 1)}{P(X > t)}, & X > t \end{cases}$$
 (6)

$$=I_{\{X>t\}} \frac{P(t < X \le t+s, \delta = 1)}{P(X > t)} \tag{7}$$

Now, for $\{X \leq t\}$, $\int_t^{t+s} I_{\{X \geq u\}} \lambda(u) du = 0 \implies E\left[\int_t^{t+s} I_{\{X \geq u\}} \lambda(u) du \mid \mathcal{F}_t\right] = 0$ and for $\{X > t\}$,

$$E\left[\int_{t}^{t+s} I_{\{X \ge u\}} \lambda(u) du \mid X > t\right] = \frac{\int_{t}^{t+s} P(X \ge u) \lambda(u) du}{P(X > t)}$$
(8)

Therefore, $E[N(t+s) - N(t) \mid \mathcal{F}_t] = E\left[\int_t^{t+s} I_{\{X \geq u\}} \lambda(u) du \mid \mathcal{F}_t\right]$ a.s., is equivalent to,

$$I_{\{X>t\}} \frac{P(t < X \le t + s, \delta = 1)}{P(X > t)} = I_{\{X>t\}} \frac{\int_{t}^{t+s} P(X \ge u)\lambda(u)du}{P(X > t)}, \text{ a.s.}$$
(9)

If P(X > t) = 0, $I_{\{X > t\}} = 0$ a.s. and if P(X > t) > 0,

$$\begin{split} P(t < X \le t + s, \delta = 1) &= P(t < T \le t + s, T \le U) \\ &= \int_{z=t}^{t+s} -dP(T \ge z, U \ge T) \\ &= \int_{z=t}^{t+s} -P(X \ge z) \frac{dP(T \ge z, U \ge T)}{P(T \ge z, U \ge z)} \\ &= \int_{z=t}^{t+s} P(X \ge z) \lambda^{\#}(z) dz, \qquad \text{since } \frac{-dP(T \ge z, U \ge T)}{P(T > z, U > z)} = \lambda^{\#}(z) \end{split}$$

Therefore, $\int_t^{t+s} P(X \ge z) \lambda^\#(z) dz = \int_t^{t+s} P(X \ge z) \lambda(z) dz$ a.s. if eqn.(5) holds which as we have shown is equivalent to $E[M(t+s) \mid \mathcal{F}_t] = M(t)$ a.s.

Lemma 3.1. Suppose we have n independent and identically distributed pairs (T_i, U_i) , i = 1, ..., n, where each pair satisfies equation (5). Let $X_i = min(T_i, U_i)$ and $\delta_i = I_{(X_i = T_i)}$ and let $N_i(t) = I_{(X_i \le t, \delta_i = 1)}$ and $N_i^U(t) = I_{(X_i \le t, \delta_i = 0)}$. Let λ denote the hazard function for t_i .

The process $M_i(t) = N_i(t) - \int_0^t I_{(X_i \geq u)} \lambda_i(u) du$ is a martingale w.r.t the richer σ -algebras $\{\mathcal{F}_t^n : t \geq 0\}$, where $\mathcal{F}_t^n = \sigma[\{N_i(s), N_i^U(s) : 0 \leq s \leq t\}, i = 1, \ldots, n]$. It immediately follows that $\{\overline{N_i}(t) - \int_0^t \overline{Y_i}(s) d\Lambda s\}$ is a martingale w.r.t $\{\mathcal{F}_t^n : t \geq 0\}$ where $\overline{N_i}(t) = \sum_{j=1}^{n_i} N_{ij}(t)$ and $\overline{Y_i}(t) = \sum_{j=1}^{n_i} Y_{ij}(t)$.

Lemma 3.2. Let $\{\mathcal{F}_t : t > 0\}$ be a filtration and X a left-continuous real-valued process adapted to $\{\mathcal{F}_t : t > 0\}$. Then X is predictable.

Proof. let I_A denote the indicator of any interval $A \subset \mathcal{R}+$. We show that a left-continuous process X is a limit of predictable processes, and hence must be predictable. Let

$$X^{n}(t,\omega) = X(0,\omega)I_{[0]}(t) + \sum_{k=0}^{\infty} X(k/n,\omega)I_{(\frac{k}{n},\frac{k+1}{n}]}(t)$$

Each term in the infinite sum of X^n is predictable since each is the limit of sums of simple predictable processes. hence, X^n is a predictable process. Because X is a.s. left continuous,

$$X(t) = \lim_{n \to \infty} X^n(t)$$

except on a set of probability zero.

Theorem 3.2. Let N be a counting process with $E[N(t)] < \infty$ for any t. Let $\{\mathcal{F}_t : t > 0\}$ be a right-continuous filtration such that

- 1. M = N A is an \mathcal{F}_t -martingale, where $A = \{A(t) : t > 0\}$ is an increasing \mathcal{F}_t -predictable process with A(0) = 0;
- 2. H is a bounded, \mathcal{F}_t -predictable process.

Then the process L given by

$$L(t) = \int_0^t H(u)dM(u)$$

is an \mathcal{F}_t -martingale.

Proof. Let S denote the class of measurable rectangles: $\begin{cases} [0] \times A, & A \in \mathcal{F}_0 \\ (a,b] \times A, & A \in \mathcal{F}_a \end{cases}$ along with the empty set ϕ . It is easy to show that S is closed under finite intersection since \mathcal{F}_0 and \mathcal{F}_a are both σ -algebras.

Let \mathcal{H} denote the vector space of bounded, measurable and adapted processes H such that $\int HdM$ is a martingale with respect to $\{\mathcal{F}_t: t>0\}$. \mathcal{H} obviously contains the constant functions, and also contains I_B where $B \subset \mathcal{R}^+ \times \Omega$ and belongs to the class \mathcal{S} . Now let $H_n, n=1,2,\ldots$, be an increasing sequence of mappings from $\mathcal{R}^+ \times \Omega$ to \mathcal{R} in \mathcal{H} such that $\sup_n H_n \equiv H$ is bounded on a set of probability one. We must show that $\int HdM$ is a martingale.

For any t,

$$E\left|\int_0^t H(u)dM(u)\right| < \infty$$

Each process $\int H_n dM$ is a martingale and consequently an adapted process. Since, $\int_0^t H(u) dM(u)$ is the pointwise limit of the \mathcal{F}_t -measurable variables $\int_0^t H_n(u) dM(u)$, hence, $\int_0^t H(u) dM(u)$ is itself \mathcal{F}_t -measurable. Finally,

$$E\left\{\int_{0}^{t+s} H(u)dM(u) \mid \mathcal{F}_{t}\right\} = E\left\{\int_{0}^{t+s} \lim_{n \to \infty} H_{n}(u)dM(u) \mid \mathcal{F}_{t}\right\}$$

$$= E\left\{\lim_{n \to \infty} \int_{0}^{t+s} H_{n}(u)dM(u) \mid \mathcal{F}_{t}\right\}$$

$$= \lim_{n \to \infty} \int_{0}^{t} H_{n}(u)dM(u)$$

$$= \int_{0}^{t} H(u)dM(u),$$

where all changes of limits with integrals or conditional expectations follow from the Monotone Convergence Theorem. \Box

Theorem 3.3. Let N_j : j = 1, ..., n be a collection of counting processes on a stochastic basis $(\Omega, \mathcal{F}, \{\mathcal{F}_t, t \geq 0\}, P)$, A_j the \mathcal{F}_t -compensator of N_j , and $M_j = N_j - A_j$. Then,

- 1. $\int \Delta M_j dM_j \int (1 A_j) dA_j$ is an \mathcal{F}_t -martingale.
- 2. $\langle M_j, M_j \rangle = \int (1 \Delta A_j) dA_j$; that is, $\int (1 \Delta A_j) dA_j$ is the unique predictable right-continuous increasing process which is a.s. zero at t = 0 and finite at any t, such that $M_j^2 \int (1 \Delta A_j) dA_j$ is a local martingale.
- 3. If N_1, N_2, \ldots, N_n is a multivariate counting process, $\langle M_i, M_j \rangle = -\int \Delta A_i dA_j$ when $i \neq j$.
- 4. Suppose $E[N_i(t)] < \infty$ for any t, i. Then the local martingales mentioned above are martingales.

Proof. We only provide the proof the statements (1) and (2). Using the integration by parts formula fro Lebegue-Stieljes integrals,

$$M_j^2(t) = 2 \int_0^t M_j(s-) dM_j(s) + \int_0^t \Delta M_j(s) dM_j(s)$$

In turn,

$$\begin{split} \int_0^t \Delta M_j(s) dM_j(s) &= \sum_{s \le t} \Delta N_j(s) \{ \Delta N_j(s) - \Delta A_j(s) \} - \int_0^t \Delta A_j(s) dM_j(s) \\ &= \sum_{s \le t} \Delta N_j(s) - \int_0^t \Delta A_j(s) dA_j(s) - 2 \int_0^t A_j(s) dM_j(s), \end{split}$$

so,

$$\int \Delta M_j dM_j - \int (1 - A_j) dA_j = M_j - 2 \int_0^t \Delta A_j dM_j.$$

Since, ΔA_j is bounded and predictable and M_j is a local martingale of locally bounded variation, hence, $\int_0^t \Delta A_j dM_j$ is a local square integrable martingale, thus proving (1).

Since, M_i is a compensated local martingale, we can conclude that

$$2\int M_j(s-)dM_j(s) + M_j - 2\int \Delta A_j(s)dM_j(s)$$

is a local square integrable martingale. The predictable process $\int (1 - A_j) dA_j$ is increasing and consequently the Doob-Meyer Decomposition yields (2).

Lemma 3.3. Let $\{N_j : j = 1, ..., n\}$ be a collection of counting processes such that for each $t \geq 0$, given $\mathcal{F}_{t-}, \{\Delta N_1(t), ..., \Delta N_n(t)\}$ are independent 0, 1 random variables. Set $M_j = N_j - A_j$, where A_j is the compensator for N_j . Then for any $i \neq j$ and $t \geq 0$,

$$\langle M_i, M_j \rangle (t) = 0$$
 a.s.

Proof. By integration by parts,

$$M_1(t)M_2(t) = M_1(0)M_2(0) + \int_0^t M_1(s-)dM_2(s) + \int_0^t M_2(s-)dM_1(s) + \int_0^t \Delta M_1(s)dM_2(s).$$

The first term on the right hand side of the equation is zero a.s., and since, $\{M_i(s-): s \geq 0\}$ is an adapted left-continuous process with right-hand limits, the next two are local square integrable martingales. By the almost sure finiteness of the counting process, we can write the last term as finite sum,

$$\int_0^t \Delta M_1(s) dM_2(s) = \sum_{0 < s \le t} \Delta M_1(s) \Delta M_2(s)$$

It remains to show this last term is a local martingale. Let $\{\tau_n\}$ be a localizing sequence for M_1 and M_2 , and $0 \le u \le t$. Then

$$E\left\{\int_{u}^{t} \Delta M_{1}(s \wedge \tau_{n}) dM_{2}(s \wedge \tau_{n}) \mid \mathcal{F}_{u}\right\}$$

$$= \sum_{u < s \leq t} E[E\{\Delta M_{1}(s \wedge \tau_{n}) \Delta M_{2}(s \wedge \tau_{n}) \mid \mathcal{F}_{s-}\} \mid \mathcal{F}_{u}] = 0$$

Corollary 3.1. If the local square integrable martingale M is a martingale with M(0) = 0 a.s.,

then for any $t \geq 0$,

$$EM^{2}(t) = E\langle M, M \rangle(t).$$

Proof. Suppose $EM^2(t) < \infty$. Then, by the Doob-Meyer Decomposition, $M^2 - \langle M, M \rangle$ is a martingale on [0,t] and $EM^2(t) = E\langle M, M \rangle(t)$.

If $EM^2(t) = \infty$, $E\langle M, M \rangle(t) = \infty$ as well since

$$EM^{2}(t) \leq \lim_{n \to \infty} EM^{2}(t \wedge \tau_{n}) = E\langle M, M \rangle(t),$$

where $\{\tau_n\}$ is a localizing sequence for M.

Theorem 3.4. Assume that on a stochastic basis $(\Omega, \mathcal{F}, \{\mathcal{F}_t : t \geq 0\}, P)$:

- 1. H_i is locally bounded \mathcal{F}_t -predictable process.
- 2. N_i is a counting process.

Then for the local martingales $M_i = N_i - A_i$,

$$\left\langle \int H_1 dM_1, \int H_2 dM_2 \right\rangle = \int H_1 H_2 d\langle M_1, M_2 \rangle; \tag{10}$$

that is, the process

$$\int H_1 dM_1 \int H_2 dM_2 - \int H_1 H_2 d\langle M_1, M_2 \rangle$$

is a local martingale over $[0, \infty)$.

Proof. Since H_i is locally bounded \mathcal{F}_t -predictable process, N_i is a counting process and M_i are local martingales hence, each $\int H_i dM_i$ is a local square integrable martingale on $[0, \infty)$. This implies that there exists a unique predictable right-continuous increasing process

$$\left\langle \int H_i dM_i, \int H_i dM_i \right\rangle$$

and is given almost surely by

$$\left\langle \int H_i dM_i, \int H_i dM_i \right\rangle(t) = \lim_{n \to \infty} \left\langle \int_0^{\cdot \wedge \tau_n^i} H_i dM_i, \int_0^{\cdot \wedge \tau_n^i} H_i dM_i \right\rangle(t), \tag{11}$$

where $\{\tau_n^i\}$ is a localizing sequence for $\int H_i dM_i$. The localizing sequences $\{\tau_n^i\}$ can be taken to be

$$\tau_n^i = n \wedge \sup\{t : N_i(t) < n\} \wedge \tau_n^{0i} \wedge \tau_n^{1i},$$

where $\{\tau_n^{0i}\}$ is such that $\sup_{0 \leq t} A_i(t \wedge \tau_n^{0i}) \leq n$ a.s., and $\{\tau_n^{1i}\}$ is a sequence rendering H_i locally bounded. Since $H_i(. \wedge \tau_n^i)$ and $N_i(. \wedge \tau_n^i)$ are bounded and $M_i(. \wedge \tau_n^i)$ is a square integrable martingale, it follows that

$$\left\langle \int_0^{\cdot \wedge \tau_n^i} H_i dM_i, \int_0^{\cdot \wedge \tau_n^i} H_i dM_i \right\rangle (t) = \int_0^t H_i^2(u \wedge \tau_n^i) d\langle M_i, M_i \rangle (u \wedge \tau_n^i)$$
$$= \int_0^{t \wedge \tau_n^i} H_i^2(u) d\langle M_i, M_i \rangle (u) \text{ a.s.}$$

this last equation and Eq.11 establishes Eq.10 for the case when both $H_1 = H_2$ and $M_1 = M_2$. When $i \neq j$, since $\int H_i dM_i$, $\int H_j dM_j$ are right-continuous integrable local square martingale on $[0, \infty)$ thus there uniquely exists predictable right-continuous process $\langle \int H_i dM_i, \int H_j dM_j \rangle$ and is given almost surely by

 $\lim_{n \to \infty} \left\langle \int_0^{. \wedge \tau_n} H_i dM_i, \int_0^{. \wedge \tau_n} H_j dM_j \right\rangle (t) \tag{12}$

where $\{\tau_n^i\}$ is a localizing sequence for $\int H_i dM_i$, and $\tau_n \equiv \tau_n^i \wedge \tau_n^j$. Each of τ_n^i and τ_n^j can be taken as in the first part of the proof and then it follows

$$\left\langle \int_0^{\cdot \wedge \tau_n} H_i dM_i, \int_0^{\cdot \wedge \tau_n} H_j dM_j \right\rangle (t) = \int_0^t H_i(u \wedge \tau_n) H_j(u \wedge \tau_n) d\langle M_i, M_j \rangle (u \wedge \tau_n)$$

$$= \int_0^{t \wedge \tau_n} H_i(u) H_j(u) d\langle M_i, M_j \rangle (u \wedge \tau_n) \text{ a.s.}$$

For $i \neq j$, the result now follows from Eq.12 and the last equation.