

Overview

- 1. Syntax: data
- 2. Manipulating data: Unification
- 3. Syntax: code
- 4. Semantics: meaning of programs
- 5. Executing logic programs

Syntax: Terms (Variables, Constants, and Structures)

• Variables: start with uppercase character (or "_"), may include "_" and digits:

```
Examples: X, Im4u, A_little_garden, _, _x, _22
```

Constructor: (or functor) lowercase first character, may include "_" and digits.
 Also, some special characters. Quoted, any character:

```
Examples: a, dog, a_big_cat, x22, 'Hungry man', [], *, >
'Doesn''t matter'
```

• **Structures:** a constructor (the structure name) followed by a fixed number of arguments between parentheses:

```
Example: date(monday, Month, 1994)
```

Arguments can in turn be variables, constants and structures.

- Constants: structures without arguments (only name) and also numbers (with the usual decimal, float, and sign notations).
 - ♦ Numbers: 0, 999, -77, 5.23, 0.23e-5, 0.23E-5.

Syntax: Terms

- Arity: is the number of arguments of a structure. Constructors are represented as name/arity (e.g., date/3).
 - A constant can be seen as a structure with arity zero.

Variables, constants, and structures as a whole are called **terms** (they are the terms of a first–order language): the *data structures* of a logic program.

• Examples:

Term	Туре	Constructor
dad	constant	dad/0
time(min, sec)	structure	time/2
pair(Calvin, tiger(Hobbes))	structure	pair/2
Tee(Alf, rob)	illegal	_
A_good_time	variable	

- A variable is **free** if it has not been assigned a value yet.
- A term is ground if it does not contain free variables.

Manipulating Data Structures (Unification)

- Unification is the only mechanism available in logic programs for manipulating data structures. It is used to:
 - Pass parameters.
 - Return values.
 - Access parts of structures.
 - Give values to variables.
- Unification is a procedure to solve equations on data structures.
 - ♦ As usual, it returns a minimal solution to the equation (or the equation system).
 - As many equation solving procedures it is based on isolating variables and then substituting them by their values.

Unification

- **Unifying two terms A and B:** is asking if they can be made syntactically identical by giving (minimal) values to their variables.
 - \diamond I.e., find a solution θ to equation A = B (or, if impossible, *fail*).
 - Only variables can be given values!
 - Two structures can be made identical only by making their arguments identical.

E.g.:

А	В	θ	$A\theta$	$B\theta$
dog	dog	Ø	dog	dog
X	a	$\{X=a\}$	a	a
X	Y	$\{X = Y\}$	Y	Y
f(X, g(t))	f(m(h), g(M))	${X=m(h), M=t}$	f(m(h), g(t))	f(m(h), g(t))
f(X, g(t))	f(m(h), t(M))	Impossible (1)		
f(X, X)	f(Y, 1(Y))	Impossible (2)		

- (1) Structures with different name and/or arity cannot be unified.
- (2) A variable cannot be given as value a term which contains that variable, because it would create an infinite term. This is known as the occurs check.

Unification Algorithm

Let A and B be two terms:

- **1**. $\theta = \emptyset$, $E = \{A = B\}$
- **2.** while not $E = \emptyset$:
 - **2.1.** delete an equation T = S from E
 - 2.2. case T or S (or both) are (distinct) variables. Assuming T variables
 - ullet (occur check) if T occurs in the term $S \to \mathsf{halt}$ with failure
 - ullet substitute variable T by term S in all terms in heta
 - ullet substitute variable T by term S in all terms in E
 - add T = S to θ
 - **2.3.** case T and S are non-variable terms:
 - if their names or arities are different → halt with failure
 - obtain the arguments $\{T_1,\ldots,T_n\}$ of T and $\{S_1,\ldots,S_n\}$ of S
 - add $\{T_1 = S_1, \dots, T_n = S_n\}$ to E
- 3. halt with θ being the m.g.u of A and B

Unification Algorithm Examples (I)

• Unify: A = p(X,X) and B = p(f(Z),f(W))

θ	E	T	S
{}	${p(X,X)=p(f(Z),f(W))}$	p(X,X)	p(f(Z),f(W))
{}	$\{ X=f(Z), X=f(W) \}$	X	f(Z)
$\{X=f(Z)\}$	$\{f(Z)=f(W)\}$	f(Z)	f(W)
$\{X=f(Z)\}$	$\{Z=W\}$	Z	W
$\{ X=f(W), Z=W \}$	{}		

• Unify: A = p(X,f(Y)) and B = p(Z,X)

θ	E	T	\overline{S}
{}	${p(X,f(Y))=p(Z,X)}$	p(X,f(Y))	p(Z,X)
{}	$\{ X=Z, f(Y)=X \}$	X	Z
$\{ X=Z \}$	$\{f(Y)=Z\}$	f(Y)	Z
$\{X=f(Y),Z=f(Y)\}$	{}		

Unification Algorithm Examples (II)

• Unify: A = p(X,f(Y)) and B = p(a,g(b))

• Unify: A = p(X,f(X)) and B = p(Z,Z)

Syntax: Literals and Predicates (Procedures)

• **Literal:** a *predicate name* (like a *functor*) followed by a fixed number of arguments between parentheses:

```
Example: arrives(john,date(monday, Month, 1994))
```

- ⋄ The arguments are terms.
- The number of arguments is the arity of the predicate.
- Full predicate names are denoted as name/arity (e.g., arrives/2).
- Literals and terms are syntactically identical!
 But, they are distinguished by context:

 if dog(name(barry), color(black)) is a literal
 then name(barry) and color(black) are terms
 if color(dog(barry,black)) is a literal
 then dog(barry,black) is a term
- Literals are used to define procedures and procedure calls. Terms are data structures, so the arguments of literals.

Syntax: Operators

- Functors and predicate names can be defined as prefix, postfix, or infix operators (just syntax!).
- Examples:

a + b	is the term	+(a,b)	if +/2 declared infix
- b	is the term	-(b)	if -/1 declared prefix
a < b	is the term	<(a,b)	if 2 declared infix</td
john father mary	is the term	<pre>father(john,mary)</pre>	if father/2 declared infix

• We assume that some such operator definitions are always preloaded, so that they can be always used.

Syntax: Clauses (Rules and Facts)

Rule: an expression of the form:

$$p_0(t_1, t_2, \dots, t_{n_0})$$
:-
 $p_1(t_1^1, t_2^1, \dots, t_{n_1}^1),$
 \dots
 $p_m(t_1^m, t_2^m, \dots, t_{n_m}^m).$

- $\diamond p_0(...)$ to $p_m(...)$ are *literals*.
- $\diamond p_0(...)$ is called the **head** of the rule.
- \diamond The p_i to the right of :- are called **goals** and form the **body** of the rule. They are also called **procedure calls**.
- ♦ Usually, :- is called the neck of the rule.
- Fact: an expression of the form:

$$p(t_1,t_2,\ldots,t_n).$$

(i.e., a rule with empty body -no neck-).

Syntax: Clauses

Rules and facts are both called **clauses** (since they are clauses in first–order logic) and form the code of a logic program.

```
meal(soup, beef, coffee).
meal(First, Second, Third) :-
appetizer(First),
main_dish(Second),
dessert(Third).
```

- :- stands for ←, i.e., logical implication (but written "backwards").
 Comma is conjunction.
 - Therefore, the above rule stands for:

```
{\tt appetizer(First) \land main\_dish(Second) \land dessert(Third) \rightarrow \\ {\tt meal(First, Second, Third)}}
```

And thus, is a *Horn clause* of the form:

```
¬ appetizer(First) \lor ¬ main_dish(Second) \lor ¬ dessert(Third) \lor meal(First, Second, Third)
```

Syntax: Predicates and Programs

• **Predicate** (or *procedure definition*): a set of clauses whose heads have the same name and arity (the **predicate name**).

Examples:

```
\begin{array}{lll} \text{pet(barry).} & & \text{animal(tim).} \\ \text{pet(X) :- animal(X), barks(X).} & & \text{animal(spot).} \\ \text{pet(X) :- animal(X), meows(X).} & & \text{animal(hobbes).} \end{array}
```

Predicate pet/1 has three clauses. Of those, one is a fact and two are rules. Predicate animal/1 has three clauses, all facts.

- **Note** (variable *scope*): the X vars. in the two clauses above are different, despite the same name. Vars. are *local to clauses* (and are *renamed* any time a clause is used –as with vars. local to a procedure in conventional languages).
- Logic Program: a set of predicates.

Declarative Meaning of Facts and Rules

The declarative meaning is the corresponding one in first–order logic, according to certain conventions:

- Facts: state things that are true.
 (Note that a fact "p." can be seen as the rule " p ← true ")
 Example: the fact animal(spot).
 can be read as "spot is an animal".
- Rules: state implications that are true.
 - $\diamond p : \neg p_1, \cdots, p_m$. represents $p_1 \wedge \cdots \wedge p_m \rightarrow p$.
 - \diamond Thus, a rule p: $p_1,\cdots,p_m.$ means "if p_1 and ... and p_m are true, then p is true"

Example: the rule pet(X):- animal(X), barks(X). can be read as "X is a pet if it is an animal and it barks".

Declarative Meaning of Predicates and Programs

Predicates: clauses in the same predicate

```
p : - p_1, ..., p_n
p : - q_1, ..., q_m
```

provide different alternatives (for p).

Example: the rules

```
pet(X) :- animal(X), barks(X).
pet(X) :- animal(X), meows(X).
```

express two ways for X to be a pet.

- **Programs** are sets of logic formulae, i.e., a first-order theory: a set of statements assumed to be true. In fact, a set of Horn clauses.
 - The declarative meaning of a program is the set of all (ground) facts that can be logically deduced from it.

Queries

• Query: an expression of the form:

?-
$$p_1(t_1^1,\ldots,t_{n_1}^1),\ldots,p_n(t_1^n,\ldots,t_{n_m}^n).$$

(i.e., a clause without a head)(?- stands also for ←).

- \diamond The p_i to the right of ?- are called **goals** (*procedure calls*).
- Sometimes, also the whole query is called a (complex) goal.
- A query is a clause to be deduced:

```
<u>Example</u>: ?- pet(X).
can be seen as "true \leftarrow pet(X)", i.e., "\neg pet(X)"
```

• A query represents a question to the program.

Examples:

```
?- pet(spot). ?- pet(X). asks whether spot is a pet. asks: "Is there an X which is a pet?"
```

Execution

• Example of a logic program:

```
pet(X) :- animal(X), barks(X).
pet(X) :- animal(X), meows(X).
animal(tim).
animal(spot).
animal(hobbes).
roars(hobbes).
```

• **Execution:** given a program and a query, *executing* the logic program is attempting to find an answer to the query.

<u>Example</u>: given the program above and the query ?- pet(X). the system will try to find a "solution" for X which makes pet(X) true.

- This can be done in several ways:
 - View the program as a set of formulae and apply deduction.
 - View the program as a set of clauses and apply SLD-resolution.
 - View the program as a set of procedure definitions and execute the procedure calls corresponding to the queries.

The Search Tree

A query + a logic program together specify a search tree.
 <u>Example</u>: query ?- pet(X) with the previous program generates this search tree (the boxes represent the "and" parts [except leaves]):

- Different query → different tree.
- A particular execution strategy defines how the search tree will be explored during execution.
- Note: execution always finishes in the leaves (the facts).

Exploring the Search Tree

- ullet Explore the tree top-down o "call"
- Explore the tree bottom-up → "deduce"
- Explore goals in boxes left-to-right or right-to-left
- Explore branches left—to—right or right—to—left
- Explore goals in boxes all at the same time
- Explore branches all at the same time

• ...

Running Programs: Interaction with the System

- Practical systems implement a particular strategy (all Prolog systems implement the same one).
- The strategy is meant to explore the whole tree, but returns solutions one by one: *Example*: (?- is the system prompt)

- Prolog systems also allow to create executables that start with a given predefined query (which is usually main/0 and/or main/n).
- Some systems allow to introduce queries in the text of the program, starting with :- (remember: a rule without head). These are executed upon loading the file (or starting the executable).

Operational Meaning of Programs

- A logic program is operationally a set of procedure definitions (the predicates).
- A query ?- p is an initial procedure call.
- A procedure definition with one *clause* $p := p_1, \ldots, p_m$. means: "to execute a call to p you have to *call* p_1 and ...and p_m "
 - \diamond In principle, the order in which p_1 , ..., p_n are called does not matter, but, in practical systems it is fixed.
- If several clauses (definitions) $p:-p_1, \ldots, p_n$ means: $p:-q_1, \ldots, q_m$

"to execute a call to p, call p_1 and ...and p_n , or, alternatively, q_1 and ...and q_n , or ..."

- ♦ Unique to logic programming —it is like having several alternative procedure definitions.
- Means that several possible paths may exist to a solution and they should be explored.
- System usually stops when the first solution found, user can ask for more.
- Again, in principle, the order in which these paths are explored does not matter (*if certain conditions are met*), but, for a given system, this is typically also fixed.

A (Schematic) Interpreter for Logic Programs (Prolog)

Let a logic program P and a query Q,

- 1. Make a copy Q' of Q
- 2. Initialize the *resolvent* R to be $\{Q\}$
- 3. While R is nonempty do:
 - 3.1. Take the leftmost literal A in R
 - 3.2. Take the first clause $A': \neg B_1, \dots, B_n$ (renamed) from P with A' same predicate as A
 - 3.2.1. If there is a solution θ to A = A' (*unification*) continue
 - 3.2.2. Otherwise, take next clause and repeat
 - 3.2.3. If there are no more clauses, explore the last pending branch
 - 3.2.4. If there are no pending branches, output failure
 - 3.3. Replace A in R by B_1, \ldots, B_n
 - **3.4.** Apply θ to R and Q
- **4.** Output solution μ to Q = Q'
- 5. Explore last pending branch for more solutions (upon request)

Running Programs: Alternative Execution Paths

• ?- pet(X). (top-down, left-to-right)

Q	R	Clause	θ
pet(X)	pet(X)	C_1^*	$\{ X=X_1 \}$
$\mathtt{pet}(\mathtt{X}_1)$	$\underline{\text{animal}(X_1)}, \text{barks}(X_1)$	C ₃ *	$\{X_1=tim\}$
pet(tim)	<u>barks(tim)</u>	???	failure

* means
choice-point,
i.e.,
other clauses
applicable.

But solutions exist in other paths!

Running Programs: Different Branches

• ?- pet(X). (top-down, left-to-right, different branch)

Q	R	Clause	θ
pet(X)	pet(X)	$C_1^{ \star}$	$\{ X=X_1 \}$
$\mathtt{pet}(\mathtt{X}_1)$	$\underline{\text{animal}(X_1)}, \text{barks}(X_1)$	C_4^{ullet}	$\{ X_1 = spot \}$
pet(spot)	barks(spot)	C_6	{}
pet(spot)	-		_

Backtracking (Prolog)

- Backtracking is the way in which Prolog execution strategy explores different branches of the search tree.
- It is a kind of "backwards execution".
- (Schematic) Algorithm:

"Explore the last pending branch" means:

- 1. Take the last literal successfully executed
- 2. Take the clause against which it was executed
- 3. Take the unifier of the literal and the clause head
- 4. Undo the unifications
- 5. Go to 3.2.2 (forwards execution again)
- Shallow backtracking: the clause selection performed in 3.2.2.
- **Deep backtracking:** the application of the above procedure (undo the execution of the previous goal(s)).

Running Programs: Complete Execution (All Solutions)

• ?- pet(X). (top-down, left-to-right)

Q	R	Clause	θ	Choice-point		oints
pet(X)	pet(X)	C ₁ *	$\{ X=X_1 \}$			*
$pet(X_1)$	$\underline{\text{animal}(X_1)}, \text{barks}(X_1)$	C ₃ *	$\{ X_1 = tim \}$		*	
pet(tim)	barks(tim)	???	failure			
	deep backtracking				*	
$pet(X_1)$	$\underline{\text{animal}(X_1)}, \text{barks}(X_1)$	C ₄ *	$\{ X_1 = spot \}$		*	
pet(spot)	barks(spot)	C_6	{}			
pet(spot)	_		_			
;	triggers backtracking				*	
continues	-					

Running Programs: Complete Execution (All Solutions)

```
\begin{array}{llll} C_1\colon & \text{pet}(X) := \text{animal}(X), \; \text{barks}(X). \\ C_2\colon & \text{pet}(X) := \text{animal}(X), \; \text{meows}(X). \\ C_3\colon & \text{animal}(\text{tim}). & & & & & & & & & & \\ C_4\colon & \text{animal}(\text{spot}). & & & & & & & & & \\ C_5\colon & \text{animal}(\text{hobbes}). & & & & & & & & & \\ \end{array}
```

• ?- pet(X). (continued)

Q	R	Clause	θ	Choice-points		oints
$\mathtt{pet}(\mathtt{X}_1)$	$\underline{\text{animal}(X_1)}, \text{barks}(X_1)$	C_5	$\{X_1=hobbes\}$			
pet(hobbes)	barks(hobbes)	???	failure			
	deep backtracking					*
pet(X)	pet(X)	C_2	$\{ X=X_2 \}$			
$\mathtt{pet}(\mathtt{X}_2)$	$\underline{\text{animal}(X_2)}, \text{meows}(X_2)$	C ₃ *	$\{ X_2 = tim \}$		*	
pet(tim)	meows(tim)	C ₇	{}			
pet(tim)	_		_			
,	triggers backtracking				*	
continues						

Running Programs: Complete Execution (All Solutions)

```
\begin{array}{lll} C_1\colon & \text{pet}(X) := \text{animal}(X), \; \text{barks}(X)\,. \\ C_2\colon & \text{pet}(X) := \text{animal}(X), \; \text{meows}(X)\,. \\ C_3\colon & \text{animal}(\text{tim})\,. & C_6\colon & \text{barks}(\text{spot})\,. \\ C_4\colon & \text{animal}(\text{spot})\,. & C_7\colon & \text{meows}(\text{tim})\,. \\ C_5\colon & \text{animal}(\text{hobbes})\,. & C_8\colon & \text{roars}(\text{hobbes})\,. \end{array}
```

• ?- pet(X). (continued)

Q	R	Clause	θ	Choice-point		oints
$\mathtt{pet}(\mathtt{X}_2)$	$\underline{\text{animal}(X_2)}$, $\underline{\text{meows}(X_2)}$	C_4^{ullet}	$\{ X_2 = spot \}$		*	
pet(spot)	meows(spot)	???	failure			
	deep backtracking				*	
$\mathtt{pet}(\mathtt{X}_2)$	$\underline{\text{animal}(X_2)}, \text{meows}(X_2)$	C_5	$\{ X_2 = hobbes \}$			
pet(hobbes)	meows(hobbes)	???	failure			
	deep backtracking					
failure						

The Search Tree Revisited

- Different execution strategies explore the tree in a different way.
- A strategy is complete if it guarantees that it will find all existing solutions.
- Prolog does it top-down, left-to-right (i.e., depth-first).

Characterization of the Search Tree

- All solutions are at *finite depth* in the tree.
- Failures can be at finite depth or, in some cases, be an infinite branch.

Depth-First Search

- Incomplete: may fall through an infinite branch before finding all solutions.
- But very efficient: it can be implemented with a call stack, very similar to a traditional programming language.

Breadth-First Search

- Will find all solutions before falling through an infinite branch.
- But costly in terms of time and memory.
- Used in some of our examples (via Ciao's bf package).

The Execution Mechanism of Prolog

- Always execute literals in the body of clauses left-to-right.
- At a *choice point*, take *first unifying clause* (i.e., the leftmost unexplored branch).
- On failure, backtrack to the next unexplored clause of last choice point.

Comparison with Conventional Languages

Conventional languages and Prolog both implement (forward) continuations:
 the place to go after a procedure call succeeds. I.e., in:

```
p(X,Y) := q(X,Z), r(Z,Y).
q(X,Z) := ...
```

when the call to q/2 finishes (with "success"), execution continues in the next procedure call (literal) in p/2, i.e., the call to r/2 (the *forward continuation*).

• In Prolog, when there are procedures with multiple definitions, there is also a backward continuation: the place to go to if there is a failure. I.e., in:

```
p(X,Y):=q(X,Z), r(Z,Y).

q(X,Z):=...

q(X,Z):=...
```

if the call to q/2 succeeds, it is as above, but if it fails at any point, execution continues ("backtracks") at the second clause of q/2 (the *backward continuation*).

Again, the debugger (see later) can be useful to observe execution.

Ordering of Clauses and Goals

- Since the execution strategy of Prolog is fixed, the ordering in which the programmer writes clauses and goals is important.
- Ordering of clauses determines the order in which alternative paths are explored.
 Thus:
 - ♦ The order in which solutions are found.
 - The order in which failure occurs (and backtracking triggered).
 - The order in which infinite failure occurs (and the program flounders).
- Ordering of goals determines the order in which unification is performed. Thus:
 - The selection of clauses during execution. That is: the order in which alternative paths are explored.
- The order in which failure occurs affects the size of the computation (efficiency).
- The order in which infinite failure occurs affects completeness (termination).

Ordering of Clauses

- An infinite computation which yields all solutions
- An infinite computation with no solutions (infinite failure)

Ordering of Goals

```
seq(a+X):-seq(X).
                                           singleton(b).
seq(b).
singleton_seq(X):- seq(X),
                                           singleton_seq(X):- singleton(X),
                     singleton(X).
                                                                 seq(X).
                         singleton_seq(S)
                                                       singleton_seq(S)
                        seq(S), singleton(S)
                                                      singleton(S), seq(S)
                     S=a+X1
                                   S=b
                                                          S=b
                                                            seq(b)
         seq(X1), singleton(a+X1)
                                     singleton(b)
      X1=a+X2
                           X1=b
                                       solution
seq(X2), singleton(a+a+X2)
                                                        fail
                                                               solution
                      singleton(a+b)

    A finite failure plus all

                                                     solutions (1)
                            fail
```

Execution Strategies

- **Search rule(s):** how are clauses/branches selected in the search tree (step 3.2 of the resolution algorithm).
- Computation rule(s): how are goals selected in the boxes of the search tree (step 3.1 of the resolution algorithm).
- Prolog execution strategy:
 - Computation rule: left-to-right (as written)
 - Search rule: top-down (as written)

Summary

- A logic program declares known information in the form of rules (implications) and facts.
- Executing a logic program is deducing new information.
- A logic program can be executed in any way which is equivalent to deducing the query from the program.
- Different execution strategies have different consequences on the computation of programs.
- Prolog is a logic programming language which uses a particular strategy (and goes beyond logic because of its predefined predicates).

Exercise

- Write a predicate jefe/2 which lists who is boss of whom (a list of facts). It reads: jefe(X,Y) iff X is direct boss of Y.
- Write a predicate curritos/2 which lists pairs of people who have the same direct boss (should not be a list of facts). It reads:
 - curritos(X,Y) iff X and Y have a common direct boss.
- Write a predicate jefazo/2 (no facts) which reads: jefazo(X,Y) iff X is above Y in the chain of "who is boss of whom".