Fenómenos Termoeléctricos Efecto Seebeck

Laboratorio de termodinámica (TS)

José Pazos Pérez Grupo T2a

Índice

I	Introducción	2
1.	Obxetivos	2
2.	Material	2
3.	O problema de estudo	3
П	Procedemento experimental	4
1.	Caracterización da resistencia	4
	1.1. Medidas	4
	1.2. Regresión lineal	4
2.	Evolución ó estado estacionario	5
	2.1. Medidas	5
	2.2. Regresión non lineal	9
	2.3. Cálculo de λ_T e C	10
3.	Medida da forza electromotríz	11
	3.1. Modo aberto	11
	3.2. Modo pechado	11
	3.2.1. Medidas	12
	3.2.2. Regresión lineal	12
4.	Coeficientes de Seebeck	13
II	I Conclusións	14

Parte I

Introducción

1. Obxetivos

Nesta práctica faremos varios experimentos cun dispositivo termoeléctrico e obteremos:

- ullet O coeficiente de Seebeck(S)
- A resistencia interna (r_i)
- \blacksquare A capacidade calorífica (C)
- A condutividade térmica (λ_T)

O obxetivo, ademáis de determinar estas cantidades, é a familiarización co uso e funcionamento dun dispositivo termoeléctrico. Ademáis, traballaremos a análise de datos e a regresión a curvas expoñenciais.

2. Material

- Dispositivo termoeléctrico con 142 pares de conductores A e B
- Unión fría: conectada ó grifo
- Unión quente: contectada á resistencia calefactora
- Fonte de corrente alterna
- Potenciómetro (como resistencia variable)
- Termómetro dixital conectado ás unións fría e quente
- Multímetros en configuración voltímetro e amperímetro

3. O problema de estudo

O efecto Seebeck prodúcese cando conectamos dous materiais, A e B, a dúas unións, fría e quente, que teñen unha diferencia de temperatura ΔT . Esta diferencia provoca que apareza unha corrente entre ambos, cuxa forza electromotríz ε ven dada por:

$$\varepsilon = S \cdot \Delta T \tag{1}$$

S é o coeficiente de Seebeck que buscamos determinar. Para iso quentaremos a unión quente mediante a resistencia, que proporcionará unha potencia W_R . Chamaremos T_2 á unión quente e T_1 á fría. Ademáis, tendo en conta a capacidade calorífica C e a condutividade térmica λ_T , podemos escribir e ecuación de balance enerxético:

$$C\frac{dT_2}{t} = W_R - \lambda_T (T_2 - T_1) \tag{2}$$

A temperatura da unión quente T_2 crece exponencialmente ata que chega ó **estado estacionario**, no que acada o valor máximo T_2^{∞} . Neste estado no que a temperatura non varía cúmprese:

$$W_R = \lambda_T (T_2^{\infty} - T_1) \tag{3}$$

Tamén podemos ver como evoluciona a temperatura T_2 có tempo:

$$T_2(t) = T_2^{\infty} - (T_2^{\infty} - T_2(0)) \cdot e^{-\frac{\lambda_T}{C}t}$$
(4)

Parte II

Procedemento experimental

1. Caracterización da resistencia

Antes de estudar o sistema termoeléctrico debemos de coñecer o valor da resitencia calefactora, R_C . Para iso podemos utilizar a ley de Ohm:

$$V = IR \tag{5}$$

1.1. Medidas

Tomaremos pares de datos V, I para facer unha regresión lineal e obter o valor da resistencia. Para iso, colocamos o voltímetro en paralelo á fonte de corriente alterna e o amperímetro en serie coa fonte e a resistencia. Facemos varias medidas e obtemos a seguinte táboa:

$V(V) \pm 0, 1V$	$I(mA) \pm 0, 1mA$
10,43	12,3
20,0	24,1
40,5	49,7
59,7	73,5
80,2	98,5
100,4	123,3
120,5	147,7
139,9	170,8
160,7	195,7
162,5	198,1

Cadro 1: Medidas de tensión (V) e intensidade (I)

1.2. Regresión lineal

Tendo o cadro cos datos podemos facer unha regresión lineal simple por mínimos cadrados sen término independiente (explicación nos apuntes de técnicas experimentais de Alfredo Amigo). Obtemos a seguinte gráfica e o valor para R_C :

$$R_C = 818, 5 \pm 1,0\Omega \tag{6}$$

É un axuste de 5 noves, con $R^2 = 0,999993$, polo que diremos que é moi preciso.

Figura 1: Tensión frente a Intensidade con regresión lineal

2. Evolución ó estado estacionario

Agora procederemos a quentar o circuito quente coa resistencia calefactora e ver como evoluciona a temperatura do sistema. Primeiro desconectamos o amperímetro e mantemos o voltímetro. Miramos que o grifo da unión fría esté funcionando e acendemos o termómetro e a fonte de corrente alterna. Veremos como o valor de T_2 comezará a subir no termómetro.

2.1. Medidas

Elaboraremos un cadro no que anotaremos T_1 e T_2 cada minuto ata que T_2 non suba máis de $0, 1^{\circ}C$ cada 2 minutos. Presentamos as táboas para 125, 2V e 150, 5V.

As incertidumbres das medidas serán de $0,1^{\circ}C$ para as temperaturas, e de apróximadamente 3s para o tempo, para ter en conta calquer error pola nosa parte ao anotar os datos xusto cando pasa 1min.

t(min)	$T_1(^{\circ}C)$	$T_2(^{\circ}C)$
1	19,4	25,3
2	19,5	25,9
3	19,4	26,4
4	19,4	27,0
5	19,4	27,5
6	19,5	28,1
7	19,6	28,6
8	18,2	29,0
9	18,2	29,4
10	18,3	29,9
11	18,4	30,4
12	18,4	30,8
13	18,5	31,2
14	18,8	31,6
15	18,7	31,9
16	18,6	32,2
17	18,7	32,6
18	18,8	32,9
19	18,9	33,2
20	19,0	33,5
21	19,2	33,7
22	19,1	33,9
23	19,0	34,2
24	19,1	34,4
25	19,1	34,7
26	19,4	34,9
27	19,5	35,1
28	19,3	35,3
29	19,5	35,6
30	19,4	35,8
31	19,3	35,9
32	19,6	36,1
33	19,9	36,3
34	20,0	36,4

t(min)	$T_1(^{\circ}C)$	$T_2(^{\circ}C)$
35	20,1	36,7
36	20,4	36,8
37	20,1	36,9
38	20,0	37,1
39	19,9	37,3
40	20,1	37,4
41	20,3	37,5
42	20,4	37,7
43	20,3	37,9
44	20,5	38,0
45	20,4	38,1
46	20,5	38,2
47	20,5	38,3
48	20,4	38,4
49	20,5	38,5
50	20,5	38,6
51	20,6	38,8
52	20,5	38,9
53	20,7	38,9
54	20,7	39,0
55	20,6	39,1
56	20,5	39,2
57	20,7	39,3
58	20,6	39,4
59	20,6	39,4
60	20,7	39,5
61	20,7	39,6
62	20,9	39,7
63	17,3	39,5
64	17,3	39,5
65	17,3	39,6
66	17,3	39,6
67	17,3	39,7
68	17,3	39,7

t(min)	$T_1(^{\circ}C)$	$T_2(^{\circ}C)$
1	17,7	42,0
2	17,6	42,3
3	17,7	42,6
4	17,7	42,9
5	17,7	43,3
6	17,6	43,6
7	17,7	43,9
8	17,7	44,3
9	17,8	44,5
10	17,8	44,8
11	17,8	45,0
12	17,7	45,2
13	17,7	45,5
14	17,7	45,7
15	17,8	45,8
16	17,8	46,1
17	17,9	46,3
18	17,8	46,4
19	17,9	46,6
20	17,9	46,8
21	17,9	47,0
22	17,9	47,1

t(min)	$T_1({}^{\circ}C)$	$T_2(^{\circ}C)$
23	17,9	47,3
24	18,0	47,4
25	17,9	47,6
26	17,9	47,7
27	18,0	47,8
28	17,9	48,0
29	17,9	48,1
30	17,9	48,2
31	18,0	48,3
32	17,9	48,4
33	18,0	48,5
34	17,9	48,6
35	17,9	48,7
36	17,9	48,8
37	18,0	48,9
38	18,0	48,9
39	18,1	49,0
40	18,1	49,1
41	18,1	49,2
42	18,1	49,3
43	18,1	49,3
44	18,1	49,3

Cadro 3: Medidas de T_1 e T_2 respecto ó tempo para $V_2 = 150, 5V$

Podemos debuxar as gráficas correspondentes a estes valores con matplotlib. Sen embargo, na primeira (2) veremos algo curioso. O circuito quente sube exponencialmente ata acadar unha temperatura máxima na que se estabiliza. O circuito frío tamén tende a subir, pero hai dous saltos preocupantes arredor de t = 8min e t = 63min.

Tras comunicarlle o comportamento extraño do circuito ó profesor encargado este recolocou as sondas do termómetro e as medicións subsequentes non presentaron este problema (ó facer iso, o circuito termoeléctrico enfriouse un pouco, por eso podemos ver un salto en T_2 cara ó final). Deducimos pois que foi un mal contacto da sonda colocada no circuito frío T_1 , e descartaremos a súa contribucón na primeira gráfica. A sonda de T_2 parece que funcionou correctamente á vista dos resultados.

Figura 2: Temperaturas do circuito frío T_1 e do quente T_2 fronte o tempo para V=125, 2V

Figura 3: Temperaturas do circuito frío T_1 e do quente T_2 fronte o tempo para V=150,5V

Tamén podemos observar que na segunda medición, con V=150,5V, tivemos que tomar menos valores ata chegar ó estado estacionario. Esto se debe a que o circuito xa estaba quente da expericiencia anterior.

Nesta segunda gráfica (3) vemos que T_1 non ten ningún salto raro. Ademáis, vemos que crece moi pouquiño, pero aumenta algo de valor, non é constante. Esto se debe á transmisión de calor que se produce dende o circuito quente ó frío.

2.2. Regresión non lineal

Faremos unha regresión non lineal de \mathcal{T}_2 a unha curva do estilo:

$$y = a + b \cdot e^{cx} \tag{7}$$

Se a comparamos con (4) podemos identificar:

$$y = T_2(t) x = t$$

$$a = T_2^{\infty} b = -(T_2^{\infty} - T_2(0)) c = -\frac{\lambda_T}{C}$$

Debuxamos as gráficas cos seus parámetros de axuste¹:

Figura 4: Temperaturas do circuito quente T_2 con regresión non lineal para V=125,2V

 $^{^{1}}$ Representaremos as gráficas en gra
os celsius por ser máis intuitivas pero realizaremos todos os cálculos en Kelvin.

Figura 5: Temperaturas do circuito quente T_2 con regresión non lineal para V = 150, 5V

	$\mathbf{a}(\mathbf{K})$	$\mathbf{b}(\mathbf{K})$	$c(s^{-1})$
$\mathbf{V}=125,\mathbf{2V}$	$314,094 \pm 0,051$	$-16,330 \pm 0,045$	$(-6,271 \pm 0,057) \cdot 10^{-4}$
$\mathbf{V} = 150, \mathbf{5V}$	$323,846 \pm 0,054$	$-9,284 \pm 0,044$	$(-6,954 \pm 0,093) \cdot 10^{-4}$

Cadro 4: Valores do axuste non lineal

Vemos que ambos valores de $a=T_2^{\infty}$ son algo maiores que os acadados nos experimentos, ainda que non moito, polo que non quedaba demasiado para acadar o estado estacionario.

2.3. Cálculo de λ_T e C

A partir destes datos podemos calcular λ_T e C. Despexamos λ_T de (3) e temos:

$$\lambda_T = \frac{W_R}{T_2^{\infty} - T_1} = \frac{V^2}{R_C(T_2^{\infty} - T_1)} \tag{8}$$

$$s(\lambda_T) = \lambda_T \sqrt{\left(\frac{2s(V)}{V}\right)^2 + \left(\frac{s(R_C)}{R_C}\right)^2 + \left(\frac{s(T_2^{\infty})}{T_2^{\infty} - T_1}\right)^2 + \left(\frac{s(T_1)}{T_2^{\infty} - T_1}\right)^2}$$
(9)

Na ecuación anterior aparece T_1 , que asumiremos constante ó longo do experimento. Sen embargo, como o seu valor variou tanto no primeiro experimento, e non era estríctamente constante no segundo, tomaremos as súas medias con tratamento de incertidumbres. Para V = 125, 2V tomaremos a incertidumbre de T_1 como $\pm 2K$, xa que é o rango que cubre o

salto maior. Podemos intuír que este resultado non terá un índice de confianza alto. No segundo caso, con $V=150,5V,\,s(T_1)=\pm0,1K.$

$$V = 125, 2V$$
 $\bar{T}_1 = 292, 7 \pm 2, 0K$
 $V = 150, 5V$ $\bar{T}_1 = 290, 8 \pm 0, 10K$

Cadro 5: Valores medios de T_1

Sustituíndo podemos calcular a condutividade, e unha vez a teñamos tamén podemos despexar a capacidade calorífica có parámetro c da regresión anterior:

$$C = -\frac{\lambda_T}{c} \qquad s(C) = \left| \frac{1}{c} \right| \sqrt{s(\lambda_T)^2 + (C \cdot s(c))^2}$$
 (10)

V = 125, 2V	$\lambda_T = 0.895 \pm 0.084 \ W/K$	$C = 1430 \pm 130 J/K$
V = 150, 5V	$\lambda_T = 0.8392 \pm 0.0033 \ W/K$	$C = 1207 \pm 17J/K$

Cadro 6: Condutividade e capacidade caloífica do termoeléctrico

3. Medida da forza electromotríz

Agora, mantendo o voltaxe do xerador para permanecer no estado estacionario, retiramos o voltímetro do circuito RC. Mediremos a ε xerada polo efecto Seebeck en dúas configuracións.

3.1. Modo aberto

Conectamos o voltímetro directamente ós bornes do módulo termoeléctrico, en configuración DC. Obtemos os seguintes valores:

$$V = 125, 2V$$
 $\varepsilon = 1,172 \pm 0,001V$
 $V = 150, 5V$ $\varepsilon = 1,661 \pm 0,001V$

Cadro 7: Forza electromotríz ε en modo aberto, medindo en bornes

3.2. Modo pechado

Cerramos o dispositivo termoeléctrico conectando ambos bornes en serie cun potenciómetro (resistencia variable). A caída de potencial do circuito é debida tanto á resistencia interna r_i como á do potenciómetro R_P .

$$\varepsilon = \Delta V_{r_i} + \Delta V_{R_P} \quad \to \quad \Delta V_{R_P} = \varepsilon - r_i I$$
 (11)

3.2.1. Medidas

Conectando o voltímetro en paralelo nos bornes do potenciómetro e o amperímetro en serie, mediremos pares ΔV_{R_P} , I cos que poderemos facer un axuste lineal con término independente e obter ε e r_i . A continuación detallamos os cadros cas medidas:

$V_{R_P}(V) \pm 0,001V$	$\boxed{I(mA) \pm 0, 1mA}$
0,245	194,9
0,320	175,1
0,356	168,4
0,399	159,0
0,441	149,6
0,495	137,6
0,569	121,8
0,605	114,5
0,643	106,5
0,695	95,7

$V_{R_P}(V) \pm 0,001V$	$I(mA) \pm 0, 1mA$
0,728	192,6
0,800	176,7
0,899	155,5
0,935	148,1
0,998	134,5
1,033	126,9
1,096	113,8
1,126	107,6
1,184	95,4
1,221	87,8

3.2.2. Regresión lineal

Figura 6: ΔV_{R_P} fronte a I con regresión lineal

	$\mathbf{r_i}$	ε	R^2
$\mathbf{V} = 125, \mathbf{2V}$	$4,59116 \pm 1, 1 \cdot 10^{-4}\Omega$	$1{,}130128 \pm 1{,}6 \cdot 10^{-5}V$	0,9995
$\mathbf{V} = 150, \mathbf{5V}$	$4,709041 \pm 1,1 \cdot 10^{-5}\Omega$	$1,6324936 \pm 1, 5 \cdot 10^{-6}V$	0,99996

Cadro 10: Valores do axuste lineal

Vendo os datos, ambos axustes son bastante precisos, un de 3 e outro de 4 noves. Procedamos agora a calcular os coeficientes de Seebeck, obxetivo final da práctica.

4. Coeficientes de Seebeck

Despexamos o coeficiente de Seebeck da ecuación (1) e sustituímos ΔT por $T_2^{\infty} - \bar{T}_1$ (xa que a forza electromotríz foi calculada no estado estacionario). Utilizando os datos obtidos nos cadros 4, 5 e 10 podemos calcular:

$$S = \frac{\varepsilon}{T_2^{\infty} - \bar{T}_1} \qquad s(S) = S\sqrt{\left(\frac{s(\varepsilon)}{\varepsilon}\right)^2 + \left(\frac{s(T_2^{\infty})}{T_2^{\infty} - \bar{T}_1}\right)^2 + \left(\frac{s(\bar{T}_1)}{T_2^{\infty} - \bar{T}_1}\right)^2}$$
(12)

Necesitamos un único valor de ε , así que tomamos a media entre o modo aberto e pechado, e obtemos:

$$V = 125, 2V$$
 $\varepsilon = 1,15106 \pm 0,00050V$ $V = 150, 5V$ $\varepsilon = 1,64675 \pm 0,00050V$

Cadro 11: Valores medios da forza electromotríz ε

E finalmente temos os coeficientes de Seebeck:

V = 125, 2V	$S = 0.0538 \pm 0.0050 V/K$
V = 150, 5V	$S = 0.04994 \pm 0.00017V/K$

Cadro 12: Coeficiente de Seebeck S do dispositivo termoeléctrico

Parte III

Conclusións

Nesta práctica estudamos un dispositivo termoeléctrico que, ó ser sometido a unha diferencia de temperatura, produce unha corrente polo efecto Seebeck. Calculamos varios parámetros que describen este fenómeno:

V = 125, 2V	V = 150, 5V
$S = 0.0538 \pm 0.0050 \ V/K$	$S = 0.04994 \pm 0.00017 \ V/K$
$r_i = 4.59116 \pm 1.1 \cdot 10^{-4} \ \Omega$	$r_i = 4,709041 \pm 1,1 \cdot 10^{-5} \ \Omega$
$C = 1430 \pm 130 \ J/K$	$C = 1207 \pm 17 \ J/K$
$\lambda_T = 0.895 \pm 0.084 \ W/K$	$\lambda_T = 0.8392 \pm 0.0033 \ W/K$

Cadro 13: Medicións obxetivo da práctica

Antes de pasar ó análise dos datos, podemos facer varias críticas á xestión da práctica. En primeiro lugar, a práctica ten unha clara fonte de error, que é a anomalía presentada polo termómetro. Un salto de máis de $3^{\circ}C$ sobrepasa todos os límites razoables de error, e o idóneo sería repetir a práctica dende o principio. Isto non era factible xa que habería que esperar a que o dispositivo se enfríase e xa levábamos unha hora de práctica, polo que a instrucción foi seguir con eses datos.

O guión indica co coeficiente de Seebeck S ten un valor aproximado de 0,059V/K. Os nosos valores foron entre 0,054 e 0,050, non tan preto como sería desexable. Tamén vemos que entre eles hai unha difernencia considerable, e que as incertidumbres obtidas por tratamento de erroes foron ridículamente baixas, polo que está claro que nalgunha parte do proceso deberíamos de introducir unha horquilla de erro máis amplia.

A diferencia entre os valores obtidos e o teórico pode deberse a varios factores. Primeiramente, ós problemas ocasionados polo termómetro. Pode que o aumento da temperatura do foco frío, que non permanece constante, e que tomáramos a media e non o valor máis alto tamén influa, así como quizáis non atopar con precisión o valor estacionario. Por último, tamén sería posible que o dispositivo non tivera o valor tabulado do coeficiente de Seebeck.

Para o resto de valores non temos unha referencia sobre cánto teñen que medir. Estes serán de utilidade na próxima práctica, a do efecto Peltier.