pure HRT variable creation and summary

Variable summary from Yi:

From Yi and Yu:

Ever	Description
hrt_ref_pm2No	1= no EO and no EP and no any HRT; 0= any EO,EP,any HRT
pure_eo_allNo	$1 \! = \! \text{ no EO}$ and no EP and no any HRT; $0 \! = \! \text{ pure EO}$ and no EP and no any HRT
pure_eo_anyNo	1= no EO or no EP or no any HRT; 0 = pure EO and no EP and no any HRT
pure_ep_allNo	$1 {=}\ \mathrm{no}\ \mathrm{EO}$ and no EP and no any HRT; $0 {=}\ \mathrm{pure}\ \mathrm{EP}$ and no EO and no any HRT
pure_ep_anyNo	1= no EO or no EP or no any HRT; $0=$ pure EP and no EO and no any HRT
eo_allNo	1= no EO and no EP and no any HRT;0 = EO regardless EP/any HRT
eo_anyNo	1= no EO or no EP or no any HRT; $0=$ EO regardless EP/any HRT
ep_allNo	1= no EO and no EP and no any HRT; $0=$ EP regardless EP/any HRT
ep_anyNo	1= no EO or no EP or no any HRT; $0=$ EP regardless EP/any HRT
eo_ref_pm	Post menopausal EO use
ep_ref_pm	Post menopausal EP use
$horm_ref_pm$	Post menopausal any hormone use
hrt_ref_pm2	0= no EO and no EP and no any HRT; 1= any EO,EP,any HRT
pure_eo_all	0= no EO and no EP and no any HRT; $1=$ pure EO and no EP and no any HRT
pure_ep_all	0= no EO and no EP and no any HRT; $1=$ pure EO and no EP and no any HRT
eo all	0= no EO and no EP and no any HRT;1 = EO regardless EP/any HRT
$(eo_ref_pm_gxe)$	
ep_all	0= no EO and no EP and no any HRT; 1 = EP regardless EP/any HRT
(ep_ref_pm_gxe)	

Request from Yu:

I would like to request for re-analyzing GxE based on pure definition for EO and EP? Because we have found a significant SNP (rs79439591) by EP but neither SNPs in LD with it nor functional annotation, I guess the SNP could be gone if we use stringent EP definition. You could only check for this SNP first, don't have to run analysis for all.

recode variables and calculate associations

```
E+P
ep\_ref\_pm == "Yes"
ep_yes <- filter(figi_gxe, ep_ref_pm == "Yes")</pre>
cro(ep_yes$eo_ref_pm, ep_yes$hrt_ref_pm2)
ep_yes$hrt_ref_pm2
No
Yes
ep_yes$eo_ref_pm
 No
1955
  Yes
493
  \# Total \ cases
2448
ep_ref_pm == "No"
ep_no <- filter(figi_gxe, ep_ref_pm == "No")</pre>
cro(ep_no$eo_ref_pm, ep_no$hrt_ref_pm2)
ep\_no$hrt\_ref\_pm2
No
Yes
ep\_no\$eo\_ref\_pm
 No
6008
142
  Yes
2938
  #Total cases
6008
3080
ep_ref_pm_gxe includes individuals that were treated with ONLY ESTROGEN. Exclude from definition to
```

create pure_ep_allNo:

pure_ep_allNo:

1

```
tmp <- figi_gxe %>%
  mutate(pure_ep_allNo = ifelse(ep_ref_pm == "Yes" & eo_ref_pm == "No", "Yes",
                        ifelse(ep_ref_pm == "No" & hrt_ref_pm2 == "No" & eo_ref_pm == "No", "No", NA)))
cro(tmp$study_gxe, tmp$pure_ep_allNo)
tmp\pure\_ep\_allNo
No
Yes
tmp\$study\_gxe
 CCFR 1
389
99
  CCFR\_3
447
69
  \text{CCFR}\_4
336
62
  CLUEII
195
  {\rm CPSII\_1}
318
67
  CPSII_2
217
51
  Kentucky
334
142
  \mathrm{MEC}\_1
97
  MEC 2
6
```

```
\rm NFCCR\_2
155
  \mathrm{NHS}\_1\_2
495
91
  NHS_3_AD
320
110
  \mathrm{NHS}\_4
115
  NHS_5_AD
94
  REACH\_AD
  USC\_HRT\_CRC
277
149
  VITAL
121
61
  WHI\_1
579
158
  WHI_2
1088
416
  WHI_3
580
268
  \# {\it Total \ cases}
6008
1955
```

Remove studies that only have either 0 or 1 pure_ep_allNo value or very sparse cells e.g. CLUEII. While this isn't necessary for GLM, I do it for GxEScanR so let me keep things consistent just in case:

```
drops <- data.frame(table(tmp$outcome, tmp[, 'pure_ep_allNo'], tmp$study_gxe)) %>%
  filter(Freq <= 0)</pre>
figi_gxe_pure_ep <- tmp %>%
  filter(!study_gxe %in% unique(drops$Var3)) %>%
  dplyr::mutate(study_gxe = fct_drop(study_gxe)) %>%
  dplyr::select(vcfid, outcome, age_ref_imp, sex, study_gxe, pure_ep_allNo, pc1, pc2, pc3) %>%
  filter(complete.cases(.))
cro(figi_gxe_pure_ep$study_gxe, figi_gxe_pure_ep$pure_ep_allNo)
figi_gxe_pure_ep$pure_ep_allNo
No
Yes
figi\_gxe\_pure\_ep\$study\_gxe
 CCFR 1
389
99
  CCFR 3
447
69
  CCFR 4
336
62
  CPSII 1
318
67
  CPSII 2
217
51
 Kentucky
334
142
 NHS_1_2
495
91
 NHS_3_AD
320
110
  USC_HRT_CRC
```

```
277
149
 VITAL
121
61
 WHI_1
579
158
 WHI\_2
1088
416
 WHI 3
580
268
 \# Total \ cases
5501
1743
E only
eo_ref_pm == "Yes"
eo_yes <- filter(figi_gxe, eo_ref_pm == "Yes")</pre>
cro(eo_yes$ep_ref_pm, eo_yes$hrt_ref_pm2)
eo\_yes\$hrt\_ref\_pm2
No
```

Yes

No 2938 Yes

493

3431

 $eo_yes\$ep_ref_pm$

 $\# Total \ cases$

```
eo\_ref\_pm == "No"
```

eo_no <- filter(figi_gxe, eo_ref_pm == "No")</pre>

```
cro(eo_no$ep_ref_pm, eo_no$hrt_ref_pm2)
eo_no$hrt_ref_pm2
No
Yes
eo\_no\$ep\_ref\_pm
 No
6008
142
  Yes
1955
  \# Total \ cases
6008
2097
similar to estrogen+progesterone variable, eo_ref_pm_gxe includes individuals that were treated with E+P.
Exclude from definition to create pure_eo_allNo:
pure\_eo\_allNo:
tmp <- figi_gxe %>%
  mutate(pure_eo_allNo = ifelse(eo_ref_pm == "Yes" & ep_ref_pm == "No", "Yes",
                        ifelse(eo_ref_pm == "No" & hrt_ref_pm2 == "No" & ep_ref_pm == "No", "No", NA)))
cro(tmp$study_gxe, tmp$pure_eo_allNo)
tmp\$pure\_eo\_allNo
No
Yes
tmp$study_gxe
  CCFR 1
389
128
  CCFR 3
447
122
  CCFR\_4
```

CLUEII

CPSII_1

 $CPSII_2$

Kentucky

 MEC_1

 MEC_2

 $NFCCR_2$

 NHS_1_2

 NHS_3_AD

 NHS_4

 NHS_5_AD

 $REACH_AD$

 USC_HRT_CRC

```
277
191
  VITAL
121
44
 WHI 1
579
232
  WHI 2
1088
462
  WHI 3
580
265
  \# Total \ cases
6008
2938
Again, remove studies that only have either 0 or 1 pure eo_allNo value or very sparse cells:
drops <- data.frame(table(tmp$outcome, tmp[, 'pure_eo_allNo'], tmp$study_gxe)) %>%
  filter(Freq <= 0)</pre>
figi_gxe_pure_eo <- tmp %>%
  filter(!study_gxe %in% unique(drops$Var3)) %>%
  dplyr::mutate(study_gxe = fct_drop(study_gxe)) %>%
  dplyr::select(vcfid, outcome, age_ref_imp, sex, study_gxe, pure_eo_allNo, pc1, pc2, pc3) %>%
  filter(complete.cases(.))
cro(figi_gxe_pure_eo$study_gxe, figi_gxe_pure_eo$pure_eo_allNo)
figi_gxe_pure_eo$pure_eo_allNo
No
Yes
figi_gxe_pure_eo$study_gxe
 CCFR_1
389
128
  CCFR 3
447
122
  CCFR\_4
```

CLUEII

CPSII_1

 $CPSII_2$

Kentucky

 MEC_1

 MEC_2

 NHS_1_2

 NHS_3AD

USC_HRT_CRC

VITAL

 WHI_1

 WHI_2

```
1088
462
WHI_3
580
265
#Total cases
5799
2575
```

Association with rs79439591 (1:53785007:C:T)

start with pure_ep_allNo

```
exposure <- "pure_ep_allNo"</pre>
snp <- "X1.53785007.C.T_dose"</pre>
dat <- inner_join(figi_gxe_pure_ep, snps, 'vcfid')</pre>
        <- glm(glue("outcome ~ {exposure}*{snp} + age_ref_imp + pc1 + pc2 + pc3 + study_gxe"), data =
model_ref <- glm(glue("outcome ~ {exposure}+{snp} + age_ref_imp + pc1 + pc2 + pc3 + study_gxe"), data =</pre>
summary(model)
##
## Call:
## glm(formula = glue("outcome ~ {exposure}*{snp} + age_ref_imp + pc1 + pc2 + pc3 + study_gxe"),
     family = "binomial", data = dat)
##
##
## Deviance Residuals:
     Min 1Q Median
                             30
                                   Max
## -1.8649 -1.1764 0.7314 1.1343
                                 1.9447
##
## Coefficients:
##
                                   Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                                   -0.287589 0.060940 -4.719 2.37e-06
## pure_ep_allNoYes
## X1.53785007.C.T_dose
                                  ## age_ref_imp
                                  -50.100077 135.000998 -0.371 0.710556
## pc1
## pc2
                                  -23.166353 69.226211 -0.335 0.737891
## pc3
                                  35.407356 22.949553 1.543 0.122871
                                   0.866529 0.130921 6.619 3.62e-11
## study_gxeCCFR_3
                                   1.359072 0.148758 9.136 < 2e-16
## study_gxeCCFR_4
                                   ## study_gxeCPSII_1
## study_gxeCPSII_2
                                   ## study_gxeKentucky
```

```
## study_gxeNHS_1_2
                                      -0.398579
                                                 0.126420 -3.153 0.001617
                                       0.484469 0.134104 3.613 0.000303
## study_gxeNHS_3_AD
## study gxeUSC HRT CRC
                                       0.171921 0.135870 1.265 0.205752
                                       ## study_gxeVITAL
## study_gxeWHI_1
                                       0.272818 0.121594
                                                           2.244 0.024854
## study gxeWHI 2
                                       ## study_gxeWHI_3
                                       0.414247 0.116721 3.549 0.000387
## pure_ep_allNoYes:X1.53785007.C.T_dose -0.627070 0.210217 -2.983 0.002855
##
## (Intercept)
## pure_ep_allNoYes
## X1.53785007.C.T_dose
                                     **
## age_ref_imp
                                     ***
## pc1
## pc2
## pc3
## study_gxeCCFR_3
                                     ***
## study gxeCCFR 4
## study_gxeCPSII_1
                                     ***
## study gxeCPSII 2
## study_gxeKentucky
                                     **
## study_gxeNHS_1_2
## study_gxeNHS_3_AD
                                     ***
## study_gxeUSC_HRT_CRC
## study_gxeVITAL
## study_gxeWHI_1
## study_gxeWHI_2
                                     ***
## study_gxeWHI_3
## pure_ep_allNoYes:X1.53785007.C.T_dose **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 10034.8 on 7243 degrees of freedom
## Residual deviance: 9731.2 on 7224 degrees of freedom
## AIC: 9771.2
##
## Number of Fisher Scoring iterations: 4
lrtest(model, model_ref)
## Likelihood ratio test
##
## Model 1: outcome ~ pure_ep_allNo * X1.53785007.C.T_dose + age_ref_imp +
      pc1 + pc2 + pc3 + study_gxe
## Model 2: outcome ~ pure_ep_allNo + X1.53785007.C.T_dose + age_ref_imp +
      pc1 + pc2 + pc3 + study_gxe
    #Df LogLik Df Chisq Pr(>Chisq)
## 1 20 -4865.6
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
# original ep_ref_pm_gxe variable:
exposure <- "ep_ref_pm_gxe"</pre>
         <- glm(glue("outcome ~ {exposure}*{snp} + age_ref_imp + pc1 + pc2 + pc3 + study_gxe"), data =
model_ref <- glm(glue("outcome ~ {exposure}+{snp} + age_ref_imp + pc1 + pc2 + pc3 + study_gxe"), data =
summary(model)
##
## Call:
## glm(formula = glue("outcome ~ {exposure}*{snp} + age_ref_imp + pc1 + pc2 + pc3 + study_gxe"),
      family = "binomial", data = ep_ref_pm_gxe)
##
##
## Deviance Residuals:
                                 3Q
##
      Min
                1Q
                    Median
                                         Max
## -1.8642 -1.1560
                    0.6716
                             1.1414
                                      1.9270
##
## Coefficients:
##
                                      Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                                      0.657271
                                                0.243725
                                                         2.697 0.007001 **
                                    -0.318555
                                                0.055770 -5.712 1.12e-08 ***
## ep_ref_pm_gxe
## X1.53785007.C.T_dose
                                    -0.259942
                                                0.092330 -2.815 0.004872 **
                                                0.003386 -3.606 0.000311 ***
## age_ref_imp
                                    -0.012210
                                    -67.022124 128.378276 -0.522 0.601623
## pc1
## pc2
                                   -26.687726 64.065311 -0.417 0.676993
## pc3
                                    39.603054 21.380012 1.852 0.063977 .
                                               0.128120 6.823 8.94e-12 ***
## study_gxeCCFR_3
                                      0.874103
## study_gxeCCFR_4
                                     1.343111 0.146960 9.139 < 2e-16 ***
## study gxeCPSII 1
                                     0.536419  0.140229  3.825  0.000131 ***
                                     ## study_gxeCPSII_2
                                                0.123778 1.752 0.079743 .
                                     0.216880
## study_gxeKentucky
## study_gxeMEC_1
                                     0.278660
                                                ## study_gxeMEC_2
                                    -0.176480
                                                0.427227 -0.413 0.679547
                                                0.190609 -2.985 0.002835 **
## study_gxeNFCCR_2
                                    -0.568986
## study_gxeNHS_1_2
                                    -0.383315
                                                0.122106 -3.139 0.001694 **
## study_gxeNHS_3_AD
                                     0.559476
                                                0.129420
                                                          4.323 1.54e-05 ***
## study_gxeUSC_HRT_CRC
                                     0.129551
                                                0.129918
                                                         0.997 0.318681
                                                0.172509
                                                         1.873 0.061125 .
## study_gxeVITAL
                                      0.323038
## study_gxeWHI_1
                                                0.120383
                                                           2.217 0.026625 *
                                      0.266887
## study_gxeWHI_2
                                                           3.722 0.000198 ***
                                      0.396810
                                                0.106616
                                                0.115546 3.532 0.000413 ***
## study gxeWHI 3
                                      0.408064
                                                0.188241 -3.142 0.001678 **
## ep_ref_pm_gxe:X1.53785007.C.T_dose -0.591457
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 11123 on 8023 degrees of freedom
## Residual deviance: 10743 on 8001 degrees of freedom
## AIC: 10789
##
```

Number of Fisher Scoring iterations: 4

lrtest(model, model_ref)

```
## Likelihood ratio test
##
## Model 1: outcome ~ ep_ref_pm_gxe * X1.53785007.C.T_dose + age_ref_imp +
## pc1 + pc2 + pc3 + study_gxe
## Model 2: outcome ~ ep_ref_pm_gxe + X1.53785007.C.T_dose + age_ref_imp +
## pc1 + pc2 + pc3 + study_gxe
## #Df LogLik Df Chisq Pr(>Chisq)
## 1 23 -5371.6
## 2 22 -5376.8 -1 10.268     0.001353 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```