Stochastik I - Übung 03

Aufgabe 1

Sei (O, K, P) ein Wahrscheinlichkeitsraum. Seien A, B & L.

a) Seien
$$A_1B$$
 unabhängig. \Longrightarrow $P(A) \cdot P(B) = P(A \cap B)$
Dann gilt:
 $P(B \setminus A) \cap B) = P(B \setminus A) = P(B) - P(A \cap B)$
(Vorausselzung) \Longrightarrow $P(B) - P(B) P(A) = P(B) \cdot (1 - P(A))$
 \Longrightarrow \Longrightarrow $P(B) \cdot P(B \setminus A)$

=> R\A = AC, B sind unabhängig

- 6) Seien A, B unabhängig. (a) $A^{c}_{i}B$ sind unabhängig (a) Sei nun $X = A^{c}_{i}$. Danh sind $X_{i}B$ unabhängig $\Longrightarrow X_{i}B^{c}$ sind unabhängig $\Longrightarrow A^{c} = X_{i}B^{c}$ sind unabhängig.
- c) Seien $P(A) = P(B) = \Lambda$. Es gilf $A \subset A \cup B$, $B \subset A \cup B$. $(Monotonie) \implies P(A) \subseteq P(A \cup B) \implies \Lambda \subseteq P(A \cup B)$ $(P(A \cup B) \in [O \Lambda]) \Longrightarrow P(A \cup B) = \Lambda$ $Weiferhin gilf: P(A \cup B) = P(A) + P(B) - P(A \cap B) = \Lambda$ $\implies \Lambda = 2 - P(A \cap B) \implies P(A \cap B) = \Lambda$
- J) Seien P(A) = P(B) = 0. Es gift $A \cap B \subset A$, $A \cap B \subset B$. (Numberie) $\Rightarrow P(A \cap B) \subseteq P(A) = 0 \Rightarrow 0 \subseteq P(A \cap B) \subseteq 0$ $\Rightarrow P(A \cap B) = 0$ Wieder gift: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $\Rightarrow P(A \cup B) = 0 + 0 - 0 = 0$
- e) Sei $P(A \cap B) = A$. Es gilt $A \cap B$ C A, B. (Monotonie) \Rightarrow $P(A \cap B) \subseteq P(A)$, $P(B) \subseteq A$ \Rightarrow P(A) = P(B) = A
- f) Sei $P(A \cup B) = 0$. Es gilt $A, 13 \subset A \cup B$. $(Mohotonie) \Longrightarrow P(A), P(B) \subseteq P(A \cup B) = 0$ $\Longrightarrow P(A) = P(B) = 0$