Podstawy programowania kolokwium poprawkowe

22 marca 2013

Zadanie 1. (8 punktów)

Napisz funkcję, która zwraca różnicę między największym i najmniejszym elementem w tablicy. Przetestuj ją w prostym programie.

Zadanie 2. (8 punktów)

Napisz funkcję, która przyjmuje dwa wskaźniki a, b typu short. Wskaźniki te pokazują na dwie różne komórki tej samej tablicy – nie wiemy, czy a wskazuje na komórkę wcześniejszą niż b. Funkcja ma zwrócić liczbę komórek, które znajdują się pomiędzy komórkami wskazywanymi przez wskaźniki a i b oraz ma zapisać do tych komórek kolejne liczby naturalne.

Zadanie 3. (8 punktów)

Anagramem nazywa się wyraz powstały w wyniku przestawienia znaków wyrazu wejściowego przy zachowaniu ich liczebności. Napisz funkcję, która przyjmie w argumentach dwa napisy, a następnie zwróci wartość 1, jeżeli są one anagramami lub 0 w przeciwnym przypadku

Przykład: we: listen, silent, wy: 1; we: abcde, bcdef, wy: 0.

Podpowiedź: wystąpienia znaków można zliczać w tablicy, w której wartość komórki o indeksie i będzie odpowiadała ilości wystąpień elementowi tablicy ASCII o indeksie i.

Zadanie 4. (8 punktów)

Napisz funkcję, która przyjmuje w argumencie dwuwymiarową tablicę liczb zmiennoprzecinkowych oraz jej wymiary n i m. Funkcja ma wyzerować kolumny, w których suma wartości elementów jest ujemna.

23.5	3.25	-23		23.5	0	0
13.0	-10	0	\rightarrow	13.0	0	0
-20	2	3		-20	0	0

Zadanie 5. (8 punktów)

Zdefiniuj strukturę Punkt
Mat opisującą punkt materialny (ciało posiadające masę skumulowaną w punkcie) opisany na płaszczyźnie (posiadający dwie wpółrzędne pozycji $x,\ y$). Zarówno współrzędne jak i wartość masy powinny być zdefiniowane liczbami zmiennoprzecinkowymi. Napisz funkcję, która przyjmie w argumentach tablicę punktów materialnych oraz jej długość, a następnie zwróci środek ciężkości punktów na tej płaszczyźnie, w postaci punktu materialnego o zerowej masie.

Podpowiedź: współrzędną x środka ciężkości należy obliczyć jako średnią ważoną składowych x kolejnych punktów, w której wagami są wartości ich masy. Analogicznie należy postąpić ze współrzędną y. Dla zbioru danych $[x_1, x_2, ..., x_n]$ o nieujemnych wagach $[w_1, w_2, ..., w_n]$ średnia ważona wyraża się wzorem: $\bar{x} = \frac{\sum_{i=1}^n w_i x_i}{\sum_{i=1}^n w_i}$.