

education

Department:
Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P2

NOVEMBER 2009(1)

MEMORANDUM

MARKS: 150

This memorandum consists of 15 pages.

1.1	522.5					J 522 5	
1.1	Mean = $\frac{522,5}{12}$ = 43	54				✓ 522,5 ✓ answer	
	12						(2)
	ANSWER ONLY:	Full marks				'	(2)
1.2	Ordered Data					✓ arranging in	
	9,3 14,9	15 23,6 2	6,1 28	32,5	60,9	ascending order	
	65,7 71,9	76,4 98,2				_	
						✓ median	
	Modian = 2	$\frac{8+32,5}{2} = 30,25$				✓ lower quartile	
	iviculaii — —	2 - 30,23				✓ upper quartile	
	I assum assum	ile = $\frac{15 + 23.6}{2}$ = 19) 2			(C 1	
	Lower quart	$\frac{116-}{2}$	9,3			✓ five number	
	TT	65,7+71,9	60.0			summary	(5)
	Upper quart	$ext{le} = \frac{65,7 + 71,9}{2} =$	68,8			((5)
		_					
1.2	The five number su	mmary is (9,3; 19,3	3;30,25;6	8,8 ; 98,	,2)		
1.3						/ minimum 1	
		1	\neg			✓ minimum and	
	•—			•		maximum values ✓ quartiles and	5
		_ 	 	1 1	1 1	median	
	0 20	40 60	80	100		✓ whiskers	
	20		00	100			(3)
1.4	The data is skewed	to the right. This s	uggests that	there w	as a	✓ reference to box	(-)
	large difference bet					and whisker	
	(some months had e	xceptionally high r	ainfall in th	at year).		✓ comment about	
						rainfall.	
							(2)
1.5	By using the calcul	ator, $\sigma = 28,19$.	(28,1	905825	6)	✓✓✓answer	(2)
	OR Pen and Paper	method (not reco	mmended)			((3)
	Mean = 43,54				7)		
	$x \qquad x = x$	()2			,		
	60,9 17,	, , ,					
	14,9 -28		†				
	9,3 -32		†				
	28,0 -15		†				
	71,9 28,	·	†				
	76,4 32,						
	98,2 54,						
	65,7 22,	16 491,0656					
	26,1 -17	· · · · · ·	<u> </u>			✓✓ sum of the	
	32,5 -11					squares of the me	an
	23,6 -19					deviations	
	15,0 -28						
	Sum	9536,509]				
	$\sigma = \sqrt{\frac{9536,509}{12}} = 2$	819				✓ answer	
	$\int -\sqrt{\frac{12}{12}} - 2$,0,1)					(3)
1						[1	[5]

(28,19059)		(28,19059)		
------------	--	------------	--	--

2.1	Linear or Exponential	✓ answer
2.2		(1)
2.2	Scatter Plot of time taken by the winner of 100m Freestyle at Olympic Games	
	1968 1972 1976 1980 1984 1988 1992 1996 2000 2004 2008 Year	✓ ✓ line of best fit (2)
2.3	The scatter plot shows an overall decrease in the time taken by the	✓ decrease
	winner since 1972.	(1)
2.4	The top athletes of the world have turned professional. This allows them to train at the best facilities and receive the best coaching available. Also, equipment manufacturers are in competition with each other. In this case, manufacturers are designing swimsuits that assist swimmers	✓ any acceptable reason relating to the trend (1)
2.5	In the context of the times around these two observations, one can consider the efforts of 1976 and 1988 to be outliers. This shows that these athletes were exceptionally good swimmers at the time.	✓outliers / not in keeping with trend ✓ good swimmers (2)
2.6	Winning time of 2008 is expected to be about 47,6 seconds. (Accept answer in the interval 47,4 to 47,8)	✓47,6 (1) [8]

NSC – Memorandum

QUESTION 3

3.1	50			✓ answer
				(1)
3.2	Cut-off mark of 56% (37 students)o	r 58% (38 stud	dents)	✓ answer read off
				from ogive (1)
3.3				(1)
	Marks	Frequency		
	(out of 100)	(f)		
	0 ≤ marks <10	1		✓ class intervals
	10 ≤ marks <20	3		✓✓ frequencies for
	20 ≤ marks <30	4		each class (3)
	30 ≤ marks <40	11		
	40 ≤ marks <50	12		
	50 ≤ marks <60	9		
	60 ≤ marks < 70	5		
	70 ≤ marks <80	4		
	80 ≤ marks <90	1		
	90 ≤ marks <100	0		
				[5]

QUESTION 4

4.1	$\tan 45^\circ = m_{AB}$ $= 1$	✓ $\tan 45^{\circ} = m_{AB}$ ✓ answer (2)
4.2	$\frac{3-0}{1-t} = 1$ $1-t = 3$ $t = -2$	✓use of gradient ✓value (2)
4.3	$\sqrt{(1-p)^2 + (3+4)^2} = \sqrt{50}$ $(1-p)^2 + (3+4)^2 = 50$ $1-2p+p^2+49=50$ $p^2-2p=0$	✓ substitution into distance formula✓ expansion
	$p(p-2) = 0$ $p \neq 0 \text{ or } p = 2$	✓ factors ✓ answer (4)

	OR	
	$(1-p)^2 + (3+4)^2 = 50$	
	$(1-p)^2 + (3+4)^2 = 50$ $(1-p)^2 = 50 - 49$	
	$(1-p)^2=1$	
	$ \begin{array}{ccc} 1 - p = 1 & 1 - p = -1 \\ p \neq 0 & p = 2 \end{array} $	
	$p \neq 0$ or $p = 2$	
4.4	midpoint of BC = $\left(\frac{-2+2}{2}; \frac{0-4}{2}\right)$	✓ substitution into midpoint formula
	midpoint of BC = $(0; -2)$	✓ midpoint
		(2)
4.5	Gradient of line = $m_{AB} = 1$	✓ gradients are equal
	Equation of line is: $y + 4 = 1(x - 2)$	✓ substitution
	y = x - 6	✓ equation (3)
		[13]

Mathematics/P2

		1
5.1	Midpoint BD $\left(\frac{0-2}{2}; \frac{8-6}{2}\right)$	✓x-coordinate
	$\begin{pmatrix} 2 & 2 \end{pmatrix}$	✓y-coordinate
		(2)
5.2	y = 7(-8) + 58	√substitution
	= 2	(1)
	∴ E also on the line.	(1)
5.3	2-1 1	✓relationship between
	$m_{line} = 7$ $m_{AM} = \frac{2-1}{-8-(-1)} = -\frac{1}{7}$	line and MA
	_ 1 _	✓ gradient MA
	$m_{line} \times m_{AM} = 7 \times -\frac{1}{7} = -1$	√product
	\therefore AM \perp to the line	✓ conclusion
	\therefore The line $y = 7x + 58$ is a tangent to the circle at A.	√is a tangent
		(5)
5.4	$AD = \sqrt{(8-2)^2 + (0+8)^2}$	✓ substitution
	$=\sqrt{36+64}$	
	·	✓ answer
	= 10	▼ answer
	$AB = \sqrt{(2+6)^2 + (-8+2)^2}$	✓ substitution
	$=\sqrt{64+36}$	
	=10	
		✓ answer
		(4)
5.5	8-(2)	
	$m_{AD} = \frac{8 - (2)}{0 - (-8)}$	
	$m_{AD} = -\frac{3}{4}$	/ andient of AD
	$m_{AD} = -\frac{1}{4}$	✓ gradient of AD
	$\frac{1}{2}$ $\frac{1}$	
	$m_{AB} = \frac{2 \cdot (3)}{-8 - (-2)}$	
	4	✓ gradient of AB
	$=\frac{4}{3}$	
	$m_{AB}.m_{AD} = \frac{4}{3} \times -\frac{3}{4}$	
	$m_{AB}.m_{AD} - \frac{1}{3} \times \frac{1}{4}$	
	= -1	✓ conclusion
	$\hat{DAB} = 90^{\circ}$	(3)
	OR	✓ distance formula
	$BD^2 = (8+6)^2 + (0+2)^2$, distance formula
	= 200	
	$= AD^2 + AB^2$	✓ Pythagoras
	$\therefore D \stackrel{\wedge}{A} B = 90^{\circ}$	✓ conclusion
		(3)
5.6	$\theta = 45^{\circ}$	✓ answer
		(1)
	•	•

Let the radius of circle TNM be r	✓ NB = BM
NB = BM (properties of a kite)	\checkmark AN = TZ = r
AN = TZ = r (TZNA is a square)	\checkmark NB = $10 - r$
NB = 10 - r	\checkmark BD = 2MB
BD = 2MB	\checkmark BD = $\sqrt{200}$
$\sqrt{(8-(-6))^2+(0-(-2))^2}=2(10-r)$	
$\sqrt{200} = 2(10 - r)$	
$10\sqrt{2} = 2(10 - r)$	
$r = 10 - 5\sqrt{2}$	✓answer
= 2,93	(6)
OR	
$Z\stackrel{\wedge}{M}B = 90^{\circ}$	✓✓ tan radius theorem
$MB = \frac{1}{2}\sqrt{200}$	✓MB
= 7,07	
$\frac{ZM}{MB} = \tan 22.5^{\circ}$	✓√tan 22,5°
$ZM = 7.07 \tan 22.5^{\circ}$	
= 2,93	✓answer
_,, -, -, -	(6)

[22]

6.1.1	4×5 =20	✓✓answer (2)
6.1.2	$(x;y) \rightarrow (2x;2y)$	$\checkmark (2x; 2y) \qquad (2)$
6.1.3	B A B A B A A A B A	✓ coordinates A' ✓ coordinates B' ✓ coordinates C' (3)
6.1.4	Not rigid. The shape remains the same, whilst the size changes	✓ same shape ✓ different size (2)
6.2	Reflection about the line $y = x$: $(x; y) \rightarrow (y; x)$ Rotate clockwise about the origin: $(y; x) \rightarrow (x; -y)$ Translate 2 left and 3 down: $(x; -y) \rightarrow (x-2; -y-3)$	✓✓ reflection ✓✓ rotation ✓✓ translation (6)
	General rule: $(x; y) \rightarrow (x-2; -y-3)$	[15]

7.1	$T'(x\cos\theta - y\sin\theta; y\cos\theta + x\sin\theta)$	$\checkmark x$ coordinate $\checkmark y$ coordinate
7.2	A' $(p\cos 135^{\circ} - q\sin 135^{\circ}; q\cos 135^{\circ} + p\sin 135^{\circ})$	$\begin{array}{c} (2) \\ \checkmark x \text{ coordinate} \\ \checkmark y \text{ coordinate} \\ \end{array}$
7.3	$x' = p\cos(135^{\circ}) - q\sin(135^{\circ})$ $-1 - \sqrt{2} = -p\cos 45^{\circ} - q\sin 45^{\circ}$ $-1 - \sqrt{2} = -p\left(\frac{\sqrt{2}}{2}\right) - q\left(\frac{\sqrt{2}}{2}\right)$ $-1 - \sqrt{2} = -\frac{\sqrt{2}}{2}p - \frac{\sqrt{2}}{2}q(1)$ and $y' = y\cos(135^{\circ}) + p\sin(135^{\circ})$ $1 - \sqrt{2} = -q\cos 45^{\circ} + p\sin 45^{\circ}$ $1 - \sqrt{2} = q\left(-\frac{\sqrt{2}}{2}\right) + p\left(\frac{\sqrt{2}}{2}\right)$	✓ reduction ✓ substitution ✓ reduction ✓ substitution
	$1 - \sqrt{2} = -\frac{\sqrt{2}}{2}q + \frac{\sqrt{2}}{2}p(2)$ $(1) + (2):$ $-2\sqrt{2} = -\sqrt{2}q$ $q = 2$ Substitute $q = 2$ into(1) $-1 - \sqrt{2} = -\frac{\sqrt{2}}{2}p - \frac{\sqrt{2}}{2}(2)$	✓ solving simultaneously ✓ answer for y
	$-1 = -\frac{\sqrt{2}}{2} p$ $p = \sqrt{2}$ $\therefore A = (\sqrt{2}; 2)$	✓ answer for x (7)
		[11]

OR $-\frac{\sqrt{2}}{2}(p+q) = -1 - \sqrt{2}$ $p+q = -\frac{2}{\sqrt{2}}(-1 - \sqrt{2})$ $p+q = \sqrt{2} + 2$ and $\frac{1}{\sqrt{2}}(p-q) = 1 - \sqrt{2}$ $p-q = \sqrt{2} - 2$ $p+q = \sqrt{2} + 2$ $2p = 2\sqrt{2}$ $p = \sqrt{2}$ q = 2

QUESTION 8

8.1	$\sin \alpha = \frac{8}{17} \tag{-15;8}$	✓ sketch
	$\sin \alpha > 0$: in second quadrant $y_{\alpha} = 8$ $r_{\alpha} = 17$ $x_{\alpha} = -15$ (Pythagoras) $\tan \alpha = -\frac{8}{15}$	\checkmark x value \checkmark answer (3)
8.2	$\sin(90^\circ + \alpha) = \cos \alpha$ $= -\frac{15}{17}$	✓ reduction ✓ answer (2)
8.3	$\cos 2\alpha = 1 - 2\sin^2 \alpha$ $= 1 - 2\left(\frac{8}{17}\right)^2$ $= \frac{161}{1}$	✓ expansion ✓ substitution
	$=\frac{161}{289}$	✓ answer (3) [8]

9.1	$\sin(90^{\circ} - x).\cos(180^{\circ} - x) + \tan x.\cos(-x).\sin(180^{\circ} + x)$	
	$= \cos x(-\cos x) + \tan x(\cos x)(-\sin x)$	$\checkmark \sin(90^\circ - x) = \cos x$
	$=-\cos^2 x - \frac{\sin x}{\cos x \sin x}$	$\checkmark \cos(180^\circ - x) = -\cos x$
	$= -\cos x - \frac{\cos x \sin x}{\cos x}$	$\checkmark \cos(-x) = \cos x$
	$=-\cos^2 x - \sin^2 x$	$\checkmark \sin(180^\circ + x) = -\sin x$
	$=-(\cos^2 x + \sin^2 x)$	$\checkmark \tan x = \frac{\sin x}{\cos x}$
	=-1	\checkmark simplification
		✓ answer
0.2	. 1000 22504 2000	(7)
9.2	$\frac{\sin 190^{\circ}\cos 225^{\circ}\tan 390^{\circ}}{\cos 100^{\circ}\sin 135^{\circ}}$	
	$-\sin 10^{\circ}(-\cos 45^{\circ})\tan 30^{\circ}$	$\checkmark \sin 190^\circ = -\sin 10^\circ$
	$=\frac{\sin 10^{\circ}(\cos 45^{\circ}) \tan 50^{\circ}}{-\sin 10^{\circ} \sin 45^{\circ}}$	$\checkmark \cos 225^\circ = -\cos 45^\circ$
	1 1	$\checkmark \tan 390^\circ = \tan 30^\circ$
	$-\frac{1}{\sqrt{2}}\cdot\frac{1}{\sqrt{3}}$	$\checkmark \cos 100^{\circ} = -\sin 10^{\circ}$ $\checkmark \sin 135^{\circ} = \sin 45^{\circ}$
	$=\frac{\sqrt{1}}{1}$	V SIII 133 — SIII 43
	$=\frac{-\frac{\sqrt{2}}{\sqrt{2}}\cdot\frac{\sqrt{3}}{\sqrt{3}}}{\frac{1}{\sqrt{2}}}$	✓ substitution
	$=-\frac{1}{2}$	✓ answer
	$\sqrt{3}$	(6)
9.3	$\sin x + 2\cos^2 x = 1$, , , , , , , , , , , , , , , , , , ,
	$\sin x + 2(1 - \sin^2 x) = 1$	✓ substitution of identity
	$-2\sin^2 x + \sin x + 1 = 0$	✓ standard form
	$2\sin^2 x - \sin x - 1 = 0$	✓ factorisation
	$(2\sin x + 1)(\sin x - 1) = 0$	
	1	✓ answers
	$\sin x = 1 \qquad \text{or} \qquad \sin x = -\frac{1}{2}$	✓✓✓ answers
	$x = 90^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$ or $x = 210^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$	
	or	(7)
	$x = 330^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$	[20]
	OR 150% + h 260% h = 7	
	$x = -150^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$	
	or 200 1 200 1 7	
	$x = -30^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$	

10.1	$\sin(A+B) = \sin A \cdot \cos B + \cos A \cdot \cos B$	✓ expansions
	$\frac{1}{\cos(A+B)} - \frac{1}{\cos A \cdot \cos B - \sin A \cdot \sin B}$	
	$= \frac{\sin A \cdot \cos B + \cos A \cdot \sin B}{\cos A \cdot \cos B - \sin A \cdot \sin B} \times \frac{\frac{1}{\cos A \cdot \cos B}}{\frac{1}{\cos A \cdot \cos B}}$	✓ divisions
	$= \frac{\frac{\sin A \cdot \cos B}{\cos A \cdot \cos B} + \frac{\cos A \cdot \sin B}{\cos A \cdot \cos B}}{\frac{\cos A \cdot \cos B}{\cos A \cdot \cos B} - \frac{\sin A \cdot \sin B}{\cos A \cdot \cos B}}$ $= \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}$	✓ tanA and tanB (3)
10.2	$\tan C = \tan(180^\circ - (A+B))$	✓ C
	$\tan C = -\tan(A+B)$	(
	$\tan C = -\left(\frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}\right)$ $\tan C(1 - \tan A \cdot \tan B) = -(\tan A + \tan B)$	✓ rearrange angle✓ substitution into formula✓ expansion
	$\tan C - \tan A \cdot \tan B \cdot \tan C = -\tan A - \tan B$	(4)
	$\tan A + \tan B + \tan C = \tan A \cdot \tan B \cdot \tan C$	(4)
	OR	[7]
	$\hat{C} = 180^{\circ} - (\hat{A} + \hat{B}) \text{(angles in a triangle)}$ $\tan C = \tan(180^{\circ} - (A + B))$ $\tan C = \tan((180^{\circ} - A) + (-B))$ $\tan C = \frac{\tan(180^{\circ} - A) + \tan(-B)}{1 - \tan(180^{\circ} - A) \cdot \tan(-B)}$	
	$\tan C(1 - \tan(180^{\circ} - A)) \cdot \tan(-B) = \tan(180^{\circ} - A) + \tan(-B)$	
	$\tan C - \tan C \tan A \tan B = -\tan A - \tan B$	
	$\tan A + \tan B + \tan C = \tan A \cdot \tan B \cdot \tan C$	

NSC – Memorandum

QUESTION 11

QUESTION II	
11.1.1 $\hat{BDA} = 208^{\circ} - 67^{\circ}$	✓ BDC = 141°
=141°	✓ sine rule
$\frac{\sin D\hat{B}A}{\sin A} = \frac{\sin 141^{\circ}}{\sin A}$	✓ substitution
97 120	
$\sin D \hat{B} A = 0,5087006494$	$\checkmark \hat{B} = 30.58^{\circ}$
$D\hat{B}A = 30,58^{\circ}$	\checkmark method
∴ Bearing of Ship A from Ship B	✓ answer
$= 180^{\circ} - (360^{\circ} - 208^{\circ}) + 30{,}58^{\circ}$	(6)
= 58,58°	
$\hat{B} = 30,58^{\circ}$	
E	
D/	
120km	
28° /30,58°	
B B	/ 1 ° '/'
	✓ definition ✓ substitution
$\frac{\text{EA}}{120} = \sin(28^\circ + 30,58^\circ)$	5 40 5 12 10 12 12
$EA = 120 \sin(28^{\circ} + 30,58^{\circ})$	
EA = 102,4 km	✓ answer
OR	(3)
120-x	
PQ	
R	
58,58°	
B	
Let BQ = x , then AQ = $120 - x$	
$\sin 58.58^{\circ} = \frac{PQ}{x}$ $\sin 58.58^{\circ} = \frac{QR}{120 - x}$	
	✓ trigonometeric ratios
$PQ = x.\sin 58,58^{\circ}$ $QR = (120 - x)\sin 58,58^{\circ}$	
$PQ + QR = x.\sin 58,58^{\circ} + (120 - x)\sin 58,58^{\circ}$ = 120 \sin 58.58^{\circ}	√ sum
$= 120 \sin 58,58^{\circ}$ $= 102,4$	
— 10 <i>2</i> ,¬	✓ answer

Copyright reserved

(3)

11.2	$AB = BC = a = c$ $b^{2} = a^{2} + c^{2} - 2ac \times \cos B$ $b^{2} = a^{2} + a^{2} - 2a \times a \times \cos B$	✓ equal sides ✓ cos rule ✓ substitution
	$b^{2} = 2a^{2} - 2a^{2} \cos B$ $b^{2} = 2a^{2}(1 - \cos B)$ $\frac{b^{2}}{2a^{2}} = 1 - \cos B$	✓ simplification (4)
	$\cos B = 1 - \frac{b^2}{2a^2}$ OR $\sin \frac{B}{2} = \frac{b}{2a}$	$\checkmark \sin \frac{B}{2} = \frac{b}{2a}$
	$\cos B = 1 - 2\sin^2 \frac{B}{2}$ $= 1 - 2\left(\frac{b}{2a}\right)^2$	2 2a ✓ formula ✓ substitution ✓ answer (4) [13]
	$=1-\frac{b^2}{2a^2}$	[13]

12.1		✓ x-intercepts
		maximum/minimums (2)
	B	
	-270 -180 -90 0 180 270 360	
12.2	$\cos(x-30^\circ) = \frac{1}{2}$	✓ manipulation
	$2\cos(x-30^{\circ}) = 1$ See points A and B on the graph	✓ answer (2)
12.3	$\cos(x-30^\circ) = 0.5$	✓ 60° ✓ 90°
	$x-30^{\circ} = 60^{\circ}$ OR $x-30^{\circ} = -60^{\circ}$ $x = -30^{\circ}$	✓ -30° (3)
12.4	$g'(x) = 0$ is at maximum and minimum values of graph $x = 30^{\circ}$; 210°	√ √ answers (2)
12.5	$x \in [-90^{\circ}; -60^{\circ}) \cup (120^{\circ}; 270^{\circ}]$	✓ notation ✓ ✓ critical values
	OR	(3)
	$-90^{\circ} \le x < -60^{\circ}$ or $120^{\circ} < x \le 270^{\circ}$	[12]

TOTAL: 150