# The Structure of Mathematical Expressions

An ARXIV Case Study

Deyan Ginev and Bruce R. Miller

National Institute of Standards and Techonology

March 21, 2012



# **Contents**

| C | ontei                          | nts                | 2  |
|---|--------------------------------|--------------------|----|
| 1 | Introduction                   |                    |    |
|   | 1.1                            | Motivation         | 3  |
|   | 1.2                            | Related Resources  | 3  |
|   | 1.3                            | Experimental Setup | 4  |
| 2 | A Study of Mathematical Syntax |                    |    |
|   | 2.1                            | Basics             | 5  |
|   | 2.2                            | Discrete math      | 5  |
|   | 2.3                            | Continuous math    | 6  |
|   | 2.4                            | Other fields       | 11 |
| 3 | Dis                            | cussion            | 13 |
| 4 | Cor                            | nclusion           | 15 |

### Chapter 1

### Introduction

In this study, we survey the notational diversity of present-day mathematical expressions, in order to uncover their linguistic phenomena. A practical motivation for this study is to provide a foundation for determining the boundary between syntactic and semantic phenomena in said expressions, from the perspective of language modeling. The ultimate goal of this project is to construct a grammar of mathematical expressions, which captures all relevant syntactic properties established in this study, and allows for the semantic analysis necessary to model and observe the semantic relationships.

#### 1.1 Motivation

We want to enable machine-reading of formulas, in order to provide a variety of user-assistance services, such as semantic search, text-to-speech synthesis, semantic interactions (definition lookup), as well as computer algebra support ("evaluate subexpressions on demand") and ultimately computer verification ("does that proof step really hold?").<sup>1</sup>

EdN:1

EdN:2

#### 1.2 Related Resources

Notation census, beginnings of study are in Deyan's thesis, Naproche and FMathL have examples, but no real systematic study.<sup>2</sup>

 $^{1}\mathrm{EdNote}$ : expand

<sup>&</sup>lt;sup>2</sup>EDNOTE: expand

| Train1  | Differential Geometry                                |
|---------|------------------------------------------------------|
|         | http://arxmliv.kwarc.info/files/9609/dg-ga.9609012   |
| Train2  | Quantum Physics                                      |
|         | http://arxmliv.kwarc.info/files/0910/0910.5733/      |
| Train3  | High Energy Physics - Theory                         |
|         | http://arxmliv.kwarc.info/files/9407/hep-th.9407125/ |
| Train4  | Commutative Algebra                                  |
|         | http://arxmliv.kwarc.info/files/0809/0809.4873/      |
| Train5  | Statistics Theory                                    |
|         | http://arxmliv.kwarc.info/files/0905/0905.1486/      |
| Train6  | General Relativity and Quantum Cosmology             |
|         | http://arxmliv.kwarc.info/files/0807/0807.2507/      |
| Train7  | Cosmology and Extragalactic Astrophysics             |
|         | http://arxmliv.kwarc.info/files/0908/0908.2548       |
| Train8  | Exactly Solvable and Integrable Systems              |
|         | http://arxmliv.kwarc.info/files/0905/0905.2033       |
| Train9  | Geometric Topology                                   |
|         | http://arxmliv.kwarc.info/files/0809/0809.4477       |
| Train10 | Algebraic Geometry                                   |
|         | http://arxmliv.kwarc.info/files/0704/0704.0537       |

Table 1.1: Sandbox of Ten Random ARXIV Papers from Diverse Scientific Subfields

### 1.3 Experimental Setup

The primary corpus on which we base this investigation is the Cornel pre-print archive "ARXIV"<sup>3</sup>, consisting of over 700,000 articles in 37 scientific subfields.

#### arXiv Sandbox

EdN:4

EdN:3

EdN:5

As a secondary resource, we we will also consult entry-level literature on high-school mathematics, in order to exhibit basic phenomena, as well as to demonstrate phenomena apriori known to the authors.<sup>5</sup>

 $<sup>^3\</sup>mathrm{EdNote}$ : cite here

 $<sup>^4\</sup>mathrm{EdNote}$ : Say that, on the  $\mathrm{ArXIV}$  front, we first start with the train sandbox from Deyan's

<sup>&</sup>lt;sup>5</sup>EDNOTE: Wikipedia? PEMDAS?

### Chapter 2

# A Study of Mathematical Syntax

#### 2.1 Basics

#### **Foundations**

6 7 8 EdN:6 EdN:7 EdN:8

#### **High School**

9 10 EdN:9 EdN:10

#### 2.2 Discrete math

#### **Set Theoretic Notations**

EdN:11 EdN:12

#### **Logical Operators**

13 EdN:13

 $<sup>^6\</sup>mathrm{EdNote}\colon$  arithmetic, grouping fences and equality

<sup>&</sup>lt;sup>7</sup>EDNOTE: basic relations and orderings

<sup>&</sup>lt;sup>8</sup>EdNote: arithmetic and algebraic sequences?

 $<sup>^9\</sup>mathrm{EdNote}\colon$  geometry here, otherwise a separate geometry subsection

 $<sup>^{10}\</sup>mathrm{Ed}\mathrm{Note}\colon$  trigonometry, complex and rational numbers

 $<sup>^{11}\</sup>mathrm{EdNote}\colon$  elementhood, inclusions, set constructors, overloaded arith ops

 $<sup>^{12}\</sup>mathrm{EdNote}\colon$  also maps : domains -¿ codomains, xRy notations

 $<sup>^{13}\</sup>mathrm{EdNote}$ : classic logic, HOL, type theories

#### **Combinatorics**

EdN:14

14 15

EdN:15

#### **Number Theory**

EdN:16

16 17 18 19

EdN:17

EdN:18

EdN:19

Graph Theory

20 21 22

EdN:20

EdN:21

EdN:22

#### Algebra

 $23\ 24\ 25\ 26$ 

EdN:23

EdN:24

EdN:25

EdN:26

**Functions Theory** 

EdN:27

27

#### 2.3 Continuous math

#### Calculus

#### EdN:28

28

<sup>&</sup>lt;sup>14</sup>EDNOTE: Infinite sums

 $<sup>{\</sup>rm ^{15}EDNote}:$  binomials, combinations, permutations,

 $<sup>^{16}\</sup>mathrm{EdNote}$ : modulo modifiers

 $<sup>^{17}\</sup>mathrm{EdNote}$ : tuples

 $<sup>^{18}{</sup>m EdNote}$ : divisibility notations  $a\mid b$  and b/a

 $<sup>^{19}\</sup>mathrm{EdNote}$ : DLMF sneaky notations

 $<sup>^{20}\</sup>mathrm{EdNote}$  edge and vertex notations

 $<sup>^{21}\</sup>mathrm{EdNote}$ : incidence and adjacency notations

<sup>&</sup>lt;sup>22</sup>EDNOTE: Wiki is very nice: http://en.wikipedia.org/wiki/Glossary\_of\_graph\_theory

 $<sup>^{23}\</sup>mathrm{EdNote}$ : vectors

 $<sup>^{24}\</sup>mathrm{EdNote}\colon$  maps and complements

 $<sup>^{25}\</sup>mathrm{EdNote}$ : groups

<sup>&</sup>lt;sup>26</sup>EdNote: lattices

 $<sup>^{27}{\</sup>rm EDNote}$ : talk about associativity of application and composition, ";" and "o" as notation variants, discuss complex examples

 $<sup>^{28}\</sup>mathrm{EdNote}$ : differentials, integrals, limits, remember brownian motion integral notations!

#### Probability

29 30 EdN:29 EdN:30

#### **Interval Notation and Arithmetic**

31 EdN:31

#### Topology

32 EdN:32

### Differential Geometry

Some intro text?

33 EdN:33

 $<sup>^{29}\</sup>mathrm{EdNote}$ : Bayes formula with multiple denotations of P  $^{30}\mathrm{EdNote}$ : Various conditional and joint probability notations  $^{31}\mathrm{EdNote}$ : introduce interval notations, then move to interval arithmetic

 $<sup>^{32}\</sup>mathrm{EdNote}\colon$  manifold constructors and notations

 $<sup>^{33}\</sup>mathrm{EdNote}\colon$  Complex named enttity: "U(1) Chern-Simons gauge theory."

|                                                 | Expression                                      | Meaning                           | Syntax                  |
|-------------------------------------------------|-------------------------------------------------|-----------------------------------|-------------------------|
| 1.                                              | $(\mathcal{V}/\mathcal{Z},k\omega)$             | symplectic torus                  | circumfix constructor   |
|                                                 | Discussion: [Train1]                            |                                   |                         |
| 2.                                              | Z                                               | self-dual lattice                 | atom abbreviation       |
|                                                 | Discussion: [Train1]                            |                                   |                         |
| 3.                                              | $(\mathcal{V},\omega)$                          | symplectic vector space           | circumfix constructor   |
|                                                 | Discussion: [Train1]                            |                                   |                         |
| 4.                                              | $Lag(\mathcal{V})$                              | Lagrangian Grassmannian           | circumfix constructor   |
|                                                 | Discussion: [Train1]                            |                                   |                         |
| 5.                                              | $Lag_4(\mathcal{V})$                            | 4-fold covering space             | applicative constructor |
|                                                 | Discussion: [Train1]                            |                                   |                         |
| 6.                                              | $\mathcal{M}_{\Sigma}$                          | moduli space                      | scripted constructor    |
|                                                 | Discussion: [Train1]                            |                                   |                         |
| 7.                                              | Σ                                               | Riemann surface                   | atom variable           |
|                                                 | Discussion: [Train1]                            |                                   |                         |
| 8.                                              | $H^1(\Sigma;\mathbb{R})$                        | chomology space                   | applicative constructor |
|                                                 | Discussion: [Train1]                            |                                   |                         |
| 9.                                              | $H^1(\Sigma;\mathbb{R})/H^1(\Sigma;\mathbb{Z})$ | torus                             | applicative constructor |
|                                                 | Discussion: [Train1]                            |                                   |                         |
| 10.                                             | $(M,\omega)$                                    | symplectic manifold               | circumfix constructor   |
|                                                 | Discussion: [Train1]                            |                                   |                         |
| 11.                                             | $f\in\mathcal{C}^\infty(M)$                     | smooth function                   | modified atom           |
|                                                 | Discussion: [Train1]                            |                                   |                         |
| 12.                                             | $X_f$                                           | field                             | scripted constructor    |
|                                                 | Discussion: [Train1]                            |                                   |                         |
| 13.                                             |                                                 | interior product                  | complex infix operator  |
| Discussion: Formed via \mathop in TEX, [Train1] |                                                 |                                   |                         |
| 14.                                             | $[\omega] \in H^2(M;\mathbb{R})$                | cohomology class                  | modified complex object |
|                                                 | Discussion: [Train1]                            |                                   |                         |
| 15.                                             | $(\cdot,\cdot)$                                 | notation patter, hermitian metric | tuple                   |
|                                                 | Discussion: [Train1]                            |                                   |                         |

Table 2.1: Differential Geometry Notations, Part  $\boldsymbol{1}$ 

|                                                                  | Expression                                                                                                                                                                             | Meaning                          | Syntax                  |  |  |  |  |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------|--|--|--|--|
| 16.                                                              | $-2\pi\mathrm{i}\omega$                                                                                                                                                                | complex number                   | arithmetic expression   |  |  |  |  |
|                                                                  | Discussion: [Train1]                                                                                                                                                                   |                                  |                         |  |  |  |  |
| 17.                                                              | $(\mathcal{L},  abla)$                                                                                                                                                                 | prequantum line bundle           | circumfix constructor   |  |  |  |  |
|                                                                  | Discussion: [Train1]                                                                                                                                                                   |                                  |                         |  |  |  |  |
| 18.                                                              | $U \subset M$                                                                                                                                                                          | open subset                      | modified atom           |  |  |  |  |
|                                                                  | Discussion: [Train1]                                                                                                                                                                   |                                  |                         |  |  |  |  |
| 19.                                                              | $\mathcal{L} _{U}$                                                                                                                                                                     | restricted line bundle           | modified atom           |  |  |  |  |
| <b>Discussion:</b> postfix restriction via " $ _{U}$ ", [Train1] |                                                                                                                                                                                        |                                  |                         |  |  |  |  |
| 20.                                                              | $s \in \Gamma(U; \mathcal{L})$                                                                                                                                                         | nonzero section                  | modified atom           |  |  |  |  |
|                                                                  | Discussion: [Train1]                                                                                                                                                                   |                                  |                         |  |  |  |  |
| 21.                                                              | $\nabla s = -2\pi \mathrm{i}\thetas$                                                                                                                                                   | equation                         | relation                |  |  |  |  |
|                                                                  | Discussion: [Train1]                                                                                                                                                                   |                                  |                         |  |  |  |  |
| 22.                                                              | $\omega _U = d\theta$                                                                                                                                                                  | equation                         | relation                |  |  |  |  |
|                                                                  | Discussion: [Train1]                                                                                                                                                                   |                                  |                         |  |  |  |  |
| 23.                                                              | $T_xM$                                                                                                                                                                                 | bundle                           | applicative constructor |  |  |  |  |
|                                                                  | Discussion: invisible infix bundle-forming operator, [Train1]                                                                                                                          |                                  |                         |  |  |  |  |
| 24.                                                              | $\omega _{\mathcal{P}_x} \equiv 0$                                                                                                                                                     | equivalence                      | relation                |  |  |  |  |
|                                                                  | Discussion: [Train1]                                                                                                                                                                   |                                  |                         |  |  |  |  |
| 25.                                                              | $\dim \mathcal{P}_x = \frac{1}{2} \dim T_x M$                                                                                                                                          | equality                         | relation                |  |  |  |  |
|                                                                  | Discussion: dim has lower precedence                                                                                                                                                   | than invisible bundle-formation, | [Train1]                |  |  |  |  |
| $26.  [X,Y] \in \mathcal{X}_{\mathcal{P}}(M) $                   |                                                                                                                                                                                        | commutator is in set             | relation                |  |  |  |  |
|                                                                  | <b>Discussion:</b> used as verb phrase in sentence, [Train1]                                                                                                                           |                                  |                         |  |  |  |  |
| 27.                                                              | $ abla^{\mathcal{P}}$                                                                                                                                                                  | covariant differentiation        | scripted prefix op      |  |  |  |  |
|                                                                  | Discussion: big op?, [Train1]                                                                                                                                                          |                                  |                         |  |  |  |  |
| 28.                                                              | $\nabla^{\mathcal{P}}: \mathcal{X}_{\mathcal{P}}(M) \times \mathcal{X}_{\mathcal{P}}(M) \longrightarrow \mathcal{X}_{\mathcal{P}}(M)$ $(X, Y) \longmapsto \nabla_{X}^{\mathcal{P}} Y,$ | domain specification             | typing modifier         |  |  |  |  |
|                                                                  | Discussion: alignment splits type statement, trailing comma [Train1]                                                                                                                   |                                  |                         |  |  |  |  |
| 29.                                                              | $(\nabla_X^{\mathcal{P}} Y) \perp \omega = X \perp d(Y \perp \omega).$                                                                                                                 | definitional assignment          | relation                |  |  |  |  |
| <u> 2</u> 3.                                                     | $(\mathbf{v}_X \mathbf{I}) \supset \omega = X \supset u(\mathbf{I} \supset \omega).$ <b>Discussion:</b> trailing dot, [Train1]                                                         | deminional assignment            | 101001011               |  |  |  |  |
| 30.                                                              | $\Pi_{\mathcal{P}}: M \to M/\mathcal{P}$                                                                                                                                               | canonical projection map         | typed modifier          |  |  |  |  |
| 50.                                                              | $\Pi_{\mathcal{P}}: M \to M/\mathcal{P}$ <b>Discussion:</b> [Train1]                                                                                                                   | canonical projection map         | typed modifier          |  |  |  |  |
|                                                                  | Discussion. [11ail11]                                                                                                                                                                  |                                  |                         |  |  |  |  |

Table 2.2: Differential Geometry Notations, Part 2  $\,$ 

|     | Expression                                                                                                | Meaning                    | Syntax               |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------|----------------------------|----------------------|--|--|--|
| 31. | $T^g$                                                                                                     | g-dimensional torus        | complex object       |  |  |  |
|     | Discussion: script means dimensionality[Train1]                                                           |                            |                      |  |  |  |
| 32. | $q_1,\ldots,q_g$                                                                                          | coordinate functions       | enumerative sequence |  |  |  |
|     | Discussion: [Train1]                                                                                      |                            |                      |  |  |  |
| 33. | $X_{q_1},\ldots,X_{q_g}$                                                                                  | Hamiltonian vector fields  | enumerative sequence |  |  |  |
|     | Discussion: [Train1]                                                                                      |                            |                      |  |  |  |
| 34. | $q_1 \circ \Pi_{\mathcal{P}}, \dots, q_g \circ \Pi_{\mathcal{P}}$                                         | functions                  | enumerative sequence |  |  |  |
|     | Discussion: sequence elements are appli                                                                   | cative objects, [Train1]   |                      |  |  |  |
| 35. | $\gamma_1(\Lambda),\ldots,\gamma_g(\Lambda)$                                                              | basis for a homology group | enumerative sequence |  |  |  |
|     | Discussion: [Train1]                                                                                      |                            |                      |  |  |  |
| 36. | $j_i(y) = \int_{\Omega} \theta$ , where $y = \Pi_{\mathcal{P}}(\Lambda)$ ,                                | definitional assignment    | relation             |  |  |  |
|     | $\gamma_i(\Lambda)$ <b>Discussion:</b> integral has no binder, nat. lang. modifier, punctuation, [Train1] |                            |                      |  |  |  |
| 37. |                                                                                                           |                            |                      |  |  |  |
|     | Discussion: [Train1]                                                                                      |                            |                      |  |  |  |
| 38. |                                                                                                           |                            |                      |  |  |  |
|     | Discussion: [Train1]                                                                                      |                            |                      |  |  |  |
| 39. |                                                                                                           |                            |                      |  |  |  |
|     | Discussion: [Train1]                                                                                      |                            |                      |  |  |  |
| 40. |                                                                                                           |                            |                      |  |  |  |
|     | Discussion: [Train1]                                                                                      |                            |                      |  |  |  |
| 41. |                                                                                                           |                            |                      |  |  |  |
|     | Discussion: [Train1]                                                                                      |                            |                      |  |  |  |
| 42. |                                                                                                           |                            |                      |  |  |  |
|     | Discussion: [Train1]                                                                                      |                            |                      |  |  |  |
| 43. |                                                                                                           |                            |                      |  |  |  |
|     | Discussion: [Train1]                                                                                      |                            |                      |  |  |  |
| 44. |                                                                                                           |                            |                      |  |  |  |
|     | Discussion: [Train1]                                                                                      |                            |                      |  |  |  |
| 45. |                                                                                                           |                            |                      |  |  |  |
|     | Discussion: [Train1]                                                                                      |                            |                      |  |  |  |

Table 2.3: Differential Geometry Notations, Part 3  $\,$ 

 $34 \ 35$ EdN:34EdN:35

#### Other fields 2.4

### Quantum Physics

36 37 : EdN:36 EdN:37

 $<sup>^{34}{\</sup>rm EDNote}$ : Scripts give you new names or new objects  $^{35}{\rm EDNote}$ : Prime scripts can be used for both naming and operating  $^{36}{\rm EDNote}$ : Bra-ket notation

 $<sup>^{37}\</sup>mathrm{EdNote}$  computer science, biology, chemistry...

# Chapter ${\mathcal Z}$

# **Discussion**

# Chapter 4

# **Conclusion**