CLAIMS

Bisphosphite(s) represented by the following general formula (I):

5

10

15

$$R^{1}O$$
 $P^{-}O^{-}CR^{3}R^{4}$
 Ar^{1}
 Ar^{2}
 $CR^{5}R^{6}$
 OR^{7}
 OR^{8}
 OR^{8}

,wherein Ar^1 and Ar^2 are each independently a substituted or an unsubstituted arylene group; R^1 , R^2 , R^7 and R^8 are each independently a substituted or an unsubstituted alkyl group, a substituted or an unsubstituted aryl group or a substituted or an unsubstituted heterocyclic group, or R^1 and R^2 or R^7 and R^8 may together form a ring with their associated oxygen atoms and phosphor atom; and R^3 , R^4 , R^5 and R^6 are each independently a hydrogen atom or an alkyl group, with the proviso that the carbon atom bearing R^3 and R^4 and the carbon atom bearing R^5 and R^6 are bound to the respective arylene groups at the ortho position to the Ar^1 - Ar^2 bond.

20 2. A composition containing bisphosphite(s) and a Group 8 to 10 metal compound, the bisphosphite represented by the following general formula (I):

$$R^{1}O$$
 $P^{-}O^{-}CR^{3}R^{4}$
 Ar^{1}
 Ar^{2}
 $CR^{5}R^{6}$
 OR^{7}
 OR^{8}
 OR^{8}

25

,wherein ${\rm Ar}^1$ and ${\rm Ar}^2$ are each independently a substituted or an unsubstituted arylene group; ${\rm R}^1$, ${\rm R}^2$, ${\rm R}^7$ and ${\rm R}^8$ are each

independently a substituted or an unsubstituted alkyl group, a substituted or an unsubstituted aryl group or a substituted or an unsubstituted heterocyclic group, or R^1 and R^2 or R^7 and R^8 may together form a ring with their associated oxygen atoms and phosphor atom; and R^3 , R^4 , R^5 and R^6 are each independently a hydrogen atom or an alkyl group, with the proviso that the carbon atom bearing R^3 and R^4 and the carbon atom bearing R^5 and R^6 are bound to the respective arylene groups at the ortho position to the Ar^1-Ar^2 bond.

3. A process for producing aldehyde(s), comprising reacting an olefin with carbon monoxide and hydrogen in the presence of bisphosphite(s) and a Group 8 to 10 metal compound, the bisphosphite(s) represented by the following general formula (I):

$$R^{1}O$$
 $P^{-}O^{-}CR^{3}R^{4}$
 Ar^{2}
 $CR^{5}R^{6}$
 OR^{7}
 OR^{8}
(I)

,wherein Ar^1 and Ar^2 are each independently a substituted or unsubstituted arylene group; R^1 , R^2 , R^7 and R^8 are each independently a substituted or an unsubstituted alkyl group, a substituted or an unsubstituted aryl group or a substituted or an unsubstituted heterocyclic group, or R^1 and R^2 or R^7 and R^8 may together form a ring with their associated oxygen atoms and phosphor atom; and R^3 , R^4 , R^5 and R^6 are each independently a hydrogen atom or an alkyl group, with the proviso that the carbon atom bearing R^3 and R^4 and the carbon atom bearing R^5 and R^6 are bound to the respective arylene groups at the ortho

position to the Ar1-Ar2 bond.

10

15

- 4. The process for producing aldehyde(s) according to claim 3, wherein the Group 8 to 10 metal compound is a rhodium compound selected from Rh(acac)(CO)₂, RhCl(CO)(PPh₃)₂, RhCl(PPh₃)₃, RhBr(CO)(PPh₃)₂, Rh₄(CO)₁₂ and Rh₆(CO)₁₆.
- 5. The process according to claim 4, carried out at a temperature of 40 to 150°C.
- 6. The process for producing aldehyde(s) according to any one of claims 3 to 5, wherein the Group 8 to 10 metal compound is used in an amount of 0.0001 to 1000 mmol as measured by the amount of metal atom) for every 1 liter of the reaction mixture.