David Atkin

American Economic Review, Vol. 103, No. 5, August 2013

Presented by Xinyuan Cui

November 6, 2024

GRADUATE INSTITUTE

Content

- Introduction
- 2 Theory and Testable Implications
- Empirically Testing the theory
- 4 Empirical Evidence from India

Introduction

Research Questions

- How do regional tastes form and persist over time?
- What impact do the taste have on nutritional outcomes after trade liberalization?

Core Hypothesis

- Habit Formation.
 Household tastes evolve over time to favor foods consumed as a child, leading to a preference for locally abundant foods in each region since it is relatively inexpensive.
- Gains from Trade.
 Gains from trade are overstated when the heterogeneity of taste is ignored, as preferred foods will become more expensive after open to trade.

Introduction

Methodology

- Overlapping-generations general equilibrium model
 - After many generations, habits lead to local food tastes that favor crops relatively well suited to local agro-climatic endowments.
 - Trade liberalization causes a relative price in region's favored foods, which reduces social welfare (bigger than income effect).
- · Empirical Test
 - The nutritional impacts of price changes in India, treating it as small, partially closed economy.
 - Using rural household survey data from 77 agro-climatic regions.

Background on Agricultural Trade in India

Restricted domestic trade

- The Essential Commodities Act (1955) Empowers both national and state governments to impose extensive restrictions on the production, supply, and trade of food.
- Tariffs and High transport cost State-level tariffs, district entry taxes (Octroi), and over 400 trade rules restrict internal trade, collected at often corrupt checkpoints
- State governments intervention The Commission on Agricultural Costs and Prices sets minimum only available in certain regions, while state levies require private mills to supply grain at a fixed price.
- Limited Impact of External Trade Liberalization WTO-driven agriculturere forms left high tariffs

Background on Agricultural Trade in India

Internal markets are far from inetgrated

Introduction

Figure 1: Dispersion of Village Median Prices (1987-1988)

	(1)	(2)	(3)	(4)	
	$\ln p_{grqt}$ (r	egional prices)	$\ln p_{geigt}$ (d	istrict prices	
F-Test on Flexible Weather Deviations	470.9***	116.1***	80.08***	64.18***	
Item-Quarter-Year FE	Yes	Yes			
Item-Region FE	No	Yes			
Item-Region-Quarter-Year FE			Yes	Yes	
Item-District FE			No	Yes	
Observations	51.882	51.882	229,200	229,200	
Number of Quarters	16	16	16	16	
R^2	0.949	0.976	0.975	0.980	

Figure 2: Price response to weather shock

Modelinng Prefernces

- Overlapping generation
 - Individuals in two regions live for two stages of life, childhood and adulthood, that each last one period.
 - There are two goods, rice and wheat, w, with one unit of each good providing one calorie.
- Habit Formation
 Tastes develop based on foods commonly consumed in childhood. If there is no habit formation or if rice and wheat are consumed equally in childhood, tastes remain unbiased.

Production

- Labor Each region has a fixed endowment of laborers, L, that are mobile between the two sectors (rice and wheat)
- Land
 - Different land suitable for rice cultivation and wheat cultivation.
 - Endowment comparative advantage: relatively more rice land or wheat land

Equilibrium Tastes in Period T

- Iceberg trade cost More than one unit of a good must be sent for a single unit to reach the destination.
- Equilibrium in autarky
 - Households in rice-abundant region consume more rice than wheat due to rice are cheaper.
 - As children in these households grow up, they develop a preference for rice.
 - Over generations, habit formation shapes local tastes to favor crops best suited to regional agro-climatic conditions.

If price increases focus on favored foods, households experience limited consumption gains, as their preferred foods become more expensive

Gains from Trade Liberalization

Three effect will affect the gains from trade.

- Wealth Effect
 When trade liberalization causes favored foods to rise in price,
 households face a reduction in purchasing power, limiting the
 expected caloric or nutritional gains from trade.
- Reallocation Effect
 trade brings more inexpensive options for household.
 However, with habit-formed preferences, households are less
 flexible in substituting away from their favored foods.
- Factor Income Effect
 specialization increase the nominal income of house hold.
 Since households allocate a large share of their budget to
 locally preferred foods, rising prices for these foods may
 outpace any income gains, particularly for landless laborers.

Testable Implications

Introduction

• Implication 1. Rice tastes decrease with past relative rice price.

Empirically Testing the theory

- Implication 2. The budget share spent on rice depends on past prices after conditioning on current prices and income.
- Implication 3. Household tastes in period T favor the endowment-comparative-advantage food.
- Implication 4. Household tastes at the start of period T are biased towards the food for which a region has a relatively low price compared to the other region.
- Implication 5. Habit formation reduces the potential caloric gains from trade liberalization

The results of this model is robust

household data from the Indian National Sample Survey (NSS)

- Year
 He primarily use data from the 1987-88 round. He also I also use four other rounds (1983, 1993-94, 1999-2000 and 2004-05) both to explore changes in tastes and prices over time and to carry out robustness checks.
- Food
 - staple foods" grouping: focus on the consumption of the 17 cereals and legumes in the survey
 - "all foods" grouping: include 52 food products that constitute over 98 percent of food expenditure in rural areas.
 - Region
 Focus on rural areas where agricultural production takes place and barriers to trade are particularly large.

Indian Context

India contains 77 NSS regions drawn along agro-climatic boundaries and within the borders of the 31 states, 76 of which were surveyed in the 1987-88 sample.

Figure 3: Price and Food Expenditure Share Variation Across Regions of India, 1987-88

Estimating Tastes

- Price
 Dividing the expenditure on a good by the calories purchased
- Welfare
 Monthly caloric intake data for each household: multiplying each food's caloric content by the quantity consumed.
- Taste

The regional component of food budget shares that cannot be explained by the vector of prices or total food expenditure provides the taste measure.

Empirically Testing the theory

Estimating Tastes

$$s_{gi} = \theta_{gr} d_{gr} + \sum_{g'} \gamma_{gg'} \ln p_{g'v} + \beta_g \ln \frac{food_i}{P_r^*} + \Pi Z_i + \varepsilon_{gri}$$

where:

- s_{gi} : budget share
- d_{gr} : a full set of good-region dummy variables;
- the coefficients θ_{gr} on dummies represent regional **taste measures**.
- θ_{gr} : coefficients on the good-region dummies d_{gr} , which are interpreted as the regional taste measures for each good in each region.
- Z_i : demographic and seasonal control variables
- $p_{g'v}$: the median price of good g' in village v, assumed to be the common price faced by all households within the village. Assumptions:

Conditions Necessary for the Identification of Tastes

Empirically Testing the theory

It require three assumptions to identify the regional tastes implicitly.

- There must be price variation within each region in order to identify the common price.
- There must be price variation within each region in order to identify the common price, income and demographic effects.
- Regional tastes are additively separable from price and income effects.

Evidence for Habit Formation in Food Consumption

Implication 1. Rice tastes decrease with past relative rice price.

$$\theta_{gr,t} = \beta_0 \ln p_{gr,t} + \beta_1 \ln p_{gr,t-1} + \beta_2 \ln p_{gr,t-2} + \dots + d_{gr} + d_{rt} + \varepsilon_{gr,t}$$

Implication 2. The budget share spent on rice depends on past prices after conditioning on current prices and income.

$$s_{gi,t} = \vartheta_{gr} d_{gr} + \sum_{g'} \gamma_{gg'}^{t} \ln p_{g'v,t} + \sum_{n=1}^{3} \sum_{g'} \delta_{gg'}^{t-n} \ln p_{g'r,t-n} +$$

$$\beta_g \ln \frac{food_{i,t}}{P_{r,t}^*} + \Pi Z_{i,t} + \varepsilon_{gi,t}$$

Table 1: Contemporary Tastes and Past Prices

	(1)	(2)	(3)	(4)
LHS:	$\theta_{gr,t}$ (Sta	ple Foods)	$\theta_{gr,t}$ (Al	l Foods)
$\ln p_{gr,t}$	0.00877 (0.00716)	0.00402 (0.00892)	-0.00634 (0.00404)	-0.00787 (0.00512)
$\ln p_{gr,t-1}$	-0.00245 (0.00754)	-0.0122 (0.0109)	-0.0164*** (0.00292)	-0.0259*** (0.00455)
$\ln p_{gr,t-2}$	-0.0308*** (0.00771)	-0.0477*** (0.0118)	-0.00729*** (0.00143)	-0.00921*** (0.00150)
$\ln p_{gr,t-3}$		-0.0242** (0.0118)		0.00502 (0.00454)
Region-Good, Region-Time FE	Yes	Yes	Yes	Yes
Observations	3,774	2,448	11,544	7,488
R^2	0.768	0.768	0.839	0.875

Note: Dependent variable $\theta_{gr,t}$ is tastes, estimated using unexplained regional variation in food budget shares. Prices $\ln p_{gr}$ are logs of weighted regional means of village median unit values. t denotes consecutive NSS thick survey rounds 1983, 1987-88, 1993-94, 1999-2000 and 2004-05. Robust standard errors clustered at the region-good level. Regressions weighted by survey population weights. * significant at 10 percent, ** 5, *** 1.

Evidence for Habit Formation in Food Consumption

Table 14: The Significance of Lagged Prices in the Demand System (Staple Foods)

F-Test that all	Test that all 2 Lagged Regional Price Terms			3 Lagged Regional Price Terms						
lagged price		gion Prices			t-1 Re	gion Prices	t-2 Region Prices		t-3 Region Prices	
terms equal zero	F-stat	P-value	F-stat	P-value	F-stat	P-value	F-stat	P-value	F-stat	P-value
Rice	3.747	0.000	7.932	0.000	2.524	0.001	1.940	0.011	3.277	0.000
Wheat	7.990	0.000	4.468	0.000	4.900	0.000	4.402	0.000	3.403	0.000
Jowar	9.295	0.000	5.887	0.000	3.888	0.000	4.436	0.000	3.123	0.000
Bajra	3.348	0.000	3.245	0.000	3.002	0.000	2.427	0.001	1.706	0.035
Maize	3.025	0.000	4.406	0.000	4.309	0.000	2.195	0.003	2.924	0.000
Barley	1.762	0.027	1.599	0.056	1.059	0.389	0.751	0.752	1.225	0.234
Small Millets	1.666	0.041	0.798	0.697	2.585	0.000	3.259	0.000	3.392	0.000
Ragi	3.411	0.000	4.196	0.000	3.307	0.000	4.547	0.000	4.322	0.000
Gram	14.740	0.000	6.875	0.000	3.978	0.000	3.918	0.000	5.843	0.000
Cereal Substitutes	3.760	0.000	5.298	0.000	2.731	0.000	3.086	0.000	1.858	0.017
Arhar	10.884	0.000	9.823	0.000	4.425	0.000	4.203	0.000	3.209	0.000
Moong	7.465	0.000	5.824	0.000	4.946	0.000	5.207	0.000	4.332	0.000
Masur	12.074	0.000	10.194	0.000	6.344	0.000	4.669	0.000	5.552	0.000
Urd	11.379	0.000	17.714	0.000	4.363	0.000	2.903	0.000	2.749	0.000
Peas	17.016	0.000	10.627	0.000	10.948	0.000	7.331	0.000	6.083	0.000
Soyabean	4.039	0.000	6.982	0.000	4.932	0.000	5.750	0.000	5.210	0.000
Khesari	5.527	0.000	4.105	0.000	3.979	0.000	3.865	0.000	4.636	0.000

Note: The F-tests are for the null that historic region prices do not predict current budget shares once contemporaneous prices have been controlled for in the demand system shown in equation 5 of the main paper. Region prices ln por are logs of weighted regional means of village median unit values. t denotes consecutive NSS thick survey rounds 1983, 1987-88, 1993-94, 1999-2000 and 2004-05. The three lag term specification estimates demands in 1999-2000 and 2004-05, while the two lag specification also includes 1993-94 demands. F-tests distributed F(17,19351) and F(17,12533).

Tastes Relate Positively to Endowments

$$\theta_{gr} = \beta_1 \left(\frac{V_{gr}}{\sum_{g'} V_{g'r}} \right) + d_g + \varepsilon_{gr}$$

where

- V_{gr} : land endowment for crop g in region r, representing the amount of land suitable or allocated for growing crop g in that region.
- $\frac{V_{gr}}{\sum_{g'}V_{q'r}}$: the relative land endowment for crop g in region r.
- d_g : good fixed effects, which control for characteristics specific to each crop g that might influence taste preferences regardless of the region.

Tastes Relate Positively to Endowments

Measurement Error

The proportion of land planted with a specific crop is used as a proxy for regional land endowment. However current cropping patterns may reflect recent, idiosyncratic taste changes or other temporary factors rather than true historic endowments, making it a noisy measure.

IV

- Instruments: Agro-climatic Factors altitude, mean rainfall, standard deviation of rainfall, and temperature extremes, averaged over a long historical period (1955-2006).
- First Stage regress the agro-climatic instruments to predict the relative land endowment for each crop.

Tastes Relate Positively to Endowments

Table 2: Tastes and Relative Resource Endowments

	(1)	(2)	(3)	(4)	(5)	(6)
LHS: θ_{qrt}	Staple Foods			All Foods		
	OLS	IV1	IV2	OLS	IV1	IV2
$V_{gr}/\sum_{g'}V_{g'r}$	0.906*** (0.0427)	1.218*** (0.131)	1.144*** (0.165)	0.467*** (0.0261)	0.599*** (0.0524)	0.570*** (0.0582)
Good FE	Yes	Yes	Yes	Yes	Yes	Yes
Observations	1,275	1,275	1,275	3,525	3,525	3,525
R^2	0.816	0.770	0.789	0.919	0.910	0.914
First Stage F Statistics		11.81	25.41		11.07	23.81

Note: Dependent variable is tastes, estimated using unexplained regional variation in 1987-88 budget shares. Endowment $V_{gr}/\sum_{gr}/y_{gr}$, is proportion of region's cropland planted with crop g over the 1970's. Means shown in appendix table 19. IV1 columns instrument endowment with 8 crop-specific rainfall and temperature variables and altitude, IV2 columns just use crop-specific rainfall, both using LIML. Regressions weighted by survey population weights. Robust standard errors clustered at region level. * significant at 10 percent, ** 5, *** 1.

Introduction

Internal Trade Liberalization with Habit Formation

Step 1. Tastes and Relative Prices at Time T

• Implication 4. Household tastes at the start of period T are biased towards the food for which a region has a relatively low price compared to the other region.

Replacing endowments with log price.

$$\theta_{gr} = \beta_2 \ln p_{gr} + d_g + \varepsilon_{gr}$$

Table 3: Tastes and Current Prices

	(1)	(2)	(3)	(4)
LHS: θ_{grt}	Staples (87-88)	All Foods (87-88)	Staples (04-05)	All Foods (04-05)
$\ln p_{gr}$	-0.0261*** (0.00404)	-0.00711*** (0.000914)	-0.0248*** (0.00444)	-0.00821*** (0.00110)
Good FE	Yes	Yes	Yes	Yes
Observations	1,292	3,952	1,309	4,004
R^2	0.436	0.881	0.576	0.935

Note: Dependent variable is tastes estimated using unexplained regional variation in 1987-88 or 2004-05 budget shares. Prices are weighted regional means of village median unit values. Regressions weighted by survey population weights. Robust standard errors clustered at region level. * significant at 10 percent, ** 5, *** 1.

Step 1. Tastes and Relative Prices at Time T

 Implication 4. Household tastes at the start of period T are biased towards the food for which a region has a relatively low price compared to the other region.

Replacing endowments with log price.

$$\theta_{gr} = \beta_2 \ln p_{gr} + d_g + \varepsilon_{gr}$$

Table 3: Tastes and Current Prices

	(1)	(2)	(3)	(4)
LHS: θ_{grt}	Staples (87-88)	All Foods (87-88)	Staples (04-05)	All Foods (04-05)
$\ln p_{gr}$	-0.0261***	-0.00711***	-0.0248***	-0.00821***
	(0.00404)	(0.000914)	(0.00444)	(0.00110)
$\begin{array}{c} \text{Good FE} \\ \text{Observations} \\ R^2 \end{array}$	Yes	Yes	Yes	Yes
	1,292	3,952	1,309	4,004
	0.436	0.881	0.576	0.935

Note: Dependent variable is tastes estimated using unexplained regional variation in 1987-88 or 2004-05 budget shares. Prices are weighted regional means of village median unit values. Regressions weighted by survey population weights. Robust standard errors clustered at region level. * significant at 10 percent, ** 5, *** 1.

Step 2. The Relationship between Caloric Intake, Tastes and Price Changes

• The caloric responses to the (not trade-induced) price changes that occurred between 1987-88 and 2004-05.

$$\Delta \ln K_r = \underbrace{b_1 \sum_g (\theta_{gr} - \overline{\theta}_g) \Delta \ln p_{gr}}_{\text{Regional Tastes Wealth Effect}} + \underbrace{b_2 \sum_g (\overline{\theta}_g + z_g(\cdot,\cdot,\cdot)) \Delta \ln p_{gr} + b_3 \sum_g (J_{gr} - \overline{J}_r) \Delta \ln p_{gr}}_{\text{Standard Wealth Effect}} \\ + \underbrace{b_4 \Delta \ln food_r}_{\text{Factor Income Effect}} + \underbrace{b_5 \sum_g s_{gr} J_{gr} \Delta \ln s_{gr}}_{\text{Reallocation Effect}} + b_0 + \varepsilon_r. \quad (8)$$

 ${\it Table 4: Caloric \ Change \ and \ the \ Correlation \ of \ Tastes \ with \ Temporal \ Price \ Changes}$

	(1)	(2)	(3)	(4)
LHS: $\Delta \ln K_r$	Staple Foods	All Foods	Landless Lab	orers, Staples
(1987-88 to 2004-05)	Full Sample	Full Sample	Full Sample	<2000 Cal.
$\sum_{a} (\theta_{ar} - \overline{\theta}_{a}) \Delta \ln p_{ar}$	-0.902***	-0.866***	-0.847***	-0.661***
<i>□y</i> (<i>y</i> , <i>y</i>) 1 <i>y</i> ,	(0.0652)	(0.106)	(0.0670)	(0.0813)
$\sum_{a} (\overline{\theta}_{a} + z_{a}(.,.,.)) \Delta \ln p_{ar}$	-0.841***	-0.730***	-0.816***	-0.682***
_g(g	(0.0515)	(0.0912)	(0.0591)	(0.0782)
$\sum_{a} (J_{ar} - \overline{J}_r) \Delta \ln p_{ar}$	0.00480	0.00395***	0.00712*	0.00493
	(0.00332)	(0.00112)	(0.00380)	(0.00311)
$\Delta \ln food_r$	0.820***	0.777***	0.800***	0.664***
	(0.0428)	(0.0536)	(0.0376)	(0.0638)
$\sum_{q} s_{gr} J_{gr} \Delta \ln s_{gr}$	0.0627	0.120**	0.0824**	0.0108
_, , , ,	(0.0391)	(0.0469)	(0.0396)	(0.0342)
Constant	-0.00448	-0.160**	-0.00272	0.0106
	(0.0378)	(0.0762)	(0.0470)	(0.0888)
Observations	76	76	76	76
R^2	0.902	0.781	0.869	0.577

Note: Dependent variable is the regional average log change in caloric intake per person between 1987-88 and 2004-05. Independent variables come from linearizing caloric intake. Regressions weighted by 1987-88 survey weights. Robust standard errors. * significant at 10 percent, **5, ***1. Columns 3 and 4 include only landless labor households and landless labor households consuming fewer than 2000 calories per person per day.

Step 3. Simulating Trade Liberalization with and without Habits

- The Results of the last two subsections suggest that each region's favored foods will rise in relative price with trade liberalization
- The wealth effect will be more negative compared to a world where tastes are identical across regions.

Counterfactual analysis

- It is assumed that liberalization would equalize 2004-05 prices across regions.
- Price changes, elasticities from regression 8, and values of Δs_{gr} (calculated using AIDS parameter estimates) are used to predict $\Delta \ln K_r$ under habit formation.
- In the "no habits" case, taste coefficients (θ_{gr}) are set to be identical across regions, equal to the Indian weighted mean taste for each good.

Table 5: Predicted Impact of Internal Trade Liberalization With and Without Habit Formation

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
All-India	No Habits	Habits		Region	nal Tastes	 Identical 	Tastes
Predicted Mean	Identical	Regional	Difference	All	Landless	Landless	Regional
(Staple Foods)	Tastes	Tastes	(2)-(1)	Foods	Labor	$<2000~\mathrm{Cal}$	$z_{gr}(.,.,.)$
Regional Tastes	0	-0.060***	-0.060***	-0.045***	-0.057***	-0.045***	-0.16***
Wealth Effect	(0)	(0.010)	(0.010)	(0.005)	(0.009)	(0.007)	(0.042)
Standard	-0.008	-0.009	-0.0005*	0.000	-0.002***	-0.001**	0.089**
Wealth Effect	(0.017)	(0.017)	(0.0003)	(0.000)	(0.001)	(0.000)	(0.043)
Reallocation	-0.008***	-0.003***	0.005***	0.013***	0.007***	0.001***	0.0016
Effect	(0.0013)	(0.0006)	(0.0012)	(0.002)	(0.002)	(0.000)	(0.0029)
Total Effect	-0.017	-0.072***	-0.055***	-0.032***	-0.052***	-0.046***	-0.065***
$(\widehat{\Delta \ln K_r})$	(0.016)	(0.014)	(0.0099)	(0.006)	(0.009)	(0.008)	(0.015)

Note: 77 observations weighted by a region's total survey weight. First three rows show the components of the predicted mean log change in calories holding food expenditure constant if 2004-2005 regional prices are equalized. Predicted means use coefficients from equation 8 and predicted values of s_{gr} , Δs_{gr} and \bar{p}_F/p_{gr} from the AIDS (section 3.3). Column 1 sets regional tastes equal to Indian average taste for each food. Column 2 uses regional taste estimates. Column 3 displays the difference between columns 1 and 2. Columns 4-7 display the difference between regional and identical taste estimates for three alternative samples, and allowing the AIDS price and income coefficients to vary by region. Robust standard errors for means. * significant at 10 percent, ** 5, *** 1.

Conclusion

- Model Overview
 - The paper presents a general equilibrium model incorporating inter-generational habit formation in consumption and regional agro-climatic endowment differences.
 - Over generations, household tastes evolve to favor crops best suited to local agro-climatic conditions.
- Empirical Evidence
 Provides evidence of habit formation in food consumption and documents regional taste patterns within India.

Contribution

- For the past
 - Introduction of Habit Formation in Demand Models.
 - Policy Implications for Trade Liberalization
 - Empirical Evidence on Comparative Advantage and H-O model
- For the future
 - Migration
 - Habit Formation in other comsuption
 - Open to international trade
 - Other countries

Strength

- Focus on Habit Formation and Trade: The paper examines how habit formation in food preferences impacts the caloric and welfare gains from trade liberalization, particularly in an Indian context.
- Empirical Framework: Uses a demand system model incorporating habit formation to analyze the relationship between regional tastes, prices, and historical agro-climatic endowments.
- Data and Methods: Utilizes household survey data from India (covering 1987-88 and 2004-05) to estimate regional tastes and assess how these tastes interact with price changes due to trade.
- Data and Methods: Utilizes household survey data from India (covering 1987-88 and 2004-05) to estimate regional tastes and assess how these tastes interact with price changes due to trade.

Weakness

- · Complexity of Assumptions and Model
- Data Limitations
- Potential Omitted Variable Bias