Strategic planning at NASA

Dra. Maria D. Rodríguez Moreno

Objectives

- 1. Know main NASA AI planners
- 2. Know how NASA uses AI Planning

Source

- Special thanks to James Kurien's presentation
- Yang Gao, and Steve Chien. Review on space robotics: Toward top-level science through space exploration. Science Robotics 28, Vol. 2, Issue 7, 2017.

Table of Contents

- I. Planners in space missions
 - Introduction
 - Summary table

- 2. Estrategic planning
 - Introduction
 - How we use AI planning Technology?

Legacy planners

- NONLIN+ (Tate y Whiter, 1984): general planning architecture, precursor of current planners
- SIPE (Wilkins 1988): independent domain planner and 1st in managing consumable and producible resources and managing conflicts. Used in air and military campaigns
- DEVISER (Vere 1983): based on NONLIN, was used in Voyager to photograph Jupiter, Saturn and its satellites in 1979, 1980 and 1981

New approaches

- HSTS (Muscettola 1994): integrates P& S, applied to the problem of planning observations in the Hubble Space Telescope
- O-PLAN2 (Tate et al., 1994): based on NONLIN and Blackboard techniques.
 Applications: rescue coordination, military operations, space missions
- NMRA (Muscettola and Smith, 1997): New Millennium Remote Agent was the first time that an AI agent controls a spacecraft for 6 days: the Deep Space One (DS-I)
- ASPEN (Rabideau et al. 1999): JPL-NASA P&S system
 - Earth Orbiting (EO-1): controllable by a small group
 - Citizen Explorer: small mission with teaching purposes
 - Antarctic Mapping Missions: Mars-or Marie Curie rover
- EUROPA (Frank, Jónsson and Morris 2000): MSL or Phoenix

Summary

System	Mission	Year	Used	Techniques
DEVISER	Voyager	1977	On-ground	POP
PLANIT-II	Galileo Mars Pathfinder Spitzer Space Telescope	1995 1997 2003	On-ground On-ground On-ground	Used by AI experts who provide specific Scheduling algorithms
HSTS	DS-1	1998	On-board	HTN & SAT & Refinement CS
ASPEN	AMM-2	2000	On-ground	Repair CS
PROBA	Proba	2001	On-board	OR
ASPEN & CASPER	EO-1	2003	On-board	Repair CS
MPS	Smart-1	2003	On-ground	OR
EUROPA/ MAPGEN	MER	2003	On-ground	HSTS descendent
MEXAR-2	Mars Express	2005	On-ground	Refinement CS
EUROPA2/ ENSEMBLE	Phoenix MSL	2007 2009	On-ground On-ground	HSTS descendent

How we communicate?

Types of Data Exchanged

Data that is received from a rover

- Images
- Other scientific data
- Engineering data
 - Battery level
 - Temperatures onboard the lander
 - Amount of storage space available

Data that is sent to a rover

- Sequences of commands to be executed
 Take a picture, point the camera, move the arm
- Complex behaviors to perform

 Drive to a target while avoiding rocks
- When to communicate with the orbiters
- Changes to heating or other parameters

Daily Science Operations

Controlling a rover

Communication is limited

- Commands take up to 22 minutes to reach Mars via radio
- Commands sent to the rover once per day (typically)
- Images and other data received once a day, sometimes at 4am

Resources are limited

- Runs on a battery supplied by solar panels or radio-thermal generator
- Some experiments can only be run a few times
- We don't have an unlimited ability to transmit data

Coordination

- Many scientists want to command the rover at once
- · We want to respond to whatever the rover's last actions revealed
- We must come up with a plan quickly, in time to send it to the rover
- There are many safety constraints our commands must obey

Uncertainty

- The environment is complex (rocks, shadows, varying temperature)
- The rover may not succeed in performing the commands
- It takes time to understand what is going on around the rover

Data Browsing, Image Analysis & Targeting

Activity Planning & Analysis

Inputs & Outputs

Domain (:action pick-up :parameters (?x) :precondition (and (clear ?x) (ontable ?x) (handempty)) :effect(and (not (ontable ?x)) Plan (not (clear ?x)) (not (handempty)) pick-up C (holding ?x))) ••• put-down C pick up B Problem stack B,C Planner pick-up A Initial State Goal stack A, B

Problems?! (I)

Problems?! (II)

Very Simplified Rover Domain

action take-picture :precondition not vibrating :duration 10 minutes

action communicate

:precondition not vibrating :duration variable

action drive

:effect vibrating :duration 60 minutes

Problem

Scientist 1 Goals

- Take picture of rock 1 Drive to rock 2
- Take a picture of rock 2

Scientist 2 Goals Drive to rock 3

Take a picture of rock 3

Engineering Goals:

Communicate from 4-6pm

- 99.9% of the time we should not take a picture while driving
- We need the planner to report the conflict involving vibration
- We need to temporarily turn it off without re-writing the model

How it is done?

How the planner appears to the user

