

物质的量和摩尔质量

日期:	时间:	姓名:	
Date:	Time:	Name:	

初露锋芒

1. 写出三种可以制备出氧气的方法或者化学方程式。

【答案】 $2KClO_3 \xrightarrow{MnO_2} 2KCl + 3O_2 \uparrow$ $2H_2O_2 \xrightarrow{MnO_2} 2H_2O + O_2 \uparrow$ $2H_2O \xrightarrow{\bar{M}nO_2} 2H_2O + O_2 \uparrow$ 分离液态空气法; 光合作用,氧化汞分解等。

2. 如图所示装置有许多用途:

- (1) 用于排空气法收集氧气,氧气应从___端通入。
- (2) 用于排水法收集氧气, 瓶中先装满水,氧气从 端通入。
- (3) 用于排空气法收集氢气,氢气应从 端通入。
- (4) 瓶中储存氧气,用水将氧气排出时,水从___端通入。
- (5) 在医院给病人输氧时, 瓶中放约半瓶蒸馏水, 这时氧气从 端通入。

【答案】 (1) A (2) B (3) B (4) A (5) A

3. 写出下列物质的名称或者化学式。

【答案】 H_2CO_3 Fe_2O_3 $Cu(NO_3)_2$ K_2CO_3

二氧化硅; 硫酸亚铁; 氨气; 五氧化二磷。

- 4. 人们常用的消毒剂是过氧乙酸,它的化学式为 C₂H₄O₃,试计算:
 - (1) 过氧乙酸是由_____种元素组成,式量是_____
 - (2) 过氧乙酸是由 元素组成的,其中原子个数比;

				TIVIC KIZAMERI
(3) 该物质中各元素的质量	比为			
(4) 过氧乙酸中氧元素的质				
(5) 克过氧乙酸与	18g 水中所含的氢元	元素质量相等?		
【答案】(1)3;76;	The second second		(3) C:H:O = 6:	1: 12;
(4) 48% (5				
根深蒂固				
备注: H-1 C-12 O-16	Ca-40 Na-23	Fe-56 S -32	Ca-40 K-39	C1-35.5
一、物质的量				
1. 物质的量的含义				
是个物理量。				
是个表示含有一定数目的	粒子的集合体。			
物质的量的符号是:			单位的符号是:	
MANJEH 11. 17	, , , , , , , , , , , , , , , , ,		1 E 1313 3 AC	
2. 判断下列说法是否正	确,说明原因。			
看看下列说法对不对	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
1 mol 苹果	1 r	nol O		
1 mol 钠元素		nol 氧		
1 mol H ₂ O		nol 电子		
【答案】n;摩尔; mol				
错,苹果宏观 ; 对;	错. 元麦宏观.	错. 没有指明氨	原子还是每分子.	첫. 첫.
17 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	111, 7030,24,90,	品,仅日1177年	20,122,40,110	71, 71°
100 112				
总结:				
(1) 物质的量只适用				
(2) 使用物质的量时	必须 指明物质微粒的	J名称或符号。例:1	mol 氢分子、3 mo	ol 氧原子、5
mol 二氧化碳分子	等。			

(3) 1mol 任何微粒的数目都约为______个。

例: 1mol 碳原子约含有 6.02×10²³ 个碳原子

1mol 氢原子约含有 6.02×10²³ 个氢原子;

1mol 铁原子约含有 6.02×10²³ 个铁原子;

1mol 水分子约含有 6.02×10²³ 个水分子;

1mol 二氧化碳分子约含有 6.02×10²³ 个二氧化碳分子。

附:国际单位制的七个基本物理量。会区分物理量和单位。

物理量	单位名称	单位符号
长度	米	m
质量	千克	Kg
时间	秒	S
电流	安培	A
力学温度	开尔文	K
物质的量	摩尔	mol
发光强度	坎德拉	candela 简写 cd,

3. 物质的量与微粒个数之间的关系

1 mol 氢气含有	个氢分子,有	个氢原子呢?
1.806×10 ²⁴ 个水分子是	摩尔水?	
2 mol 铁含有	个铁原子?	
0.01 摩尔水含有	个水分子?	
总结公式:		
注意:求分子个数,则 n 和	表示分子的物质的量, 求原子	个数,则n表示原子的物质的量。
分子的物质的量和原	子的物质的量的关系: n 原子	=n 分子*原子下标。
【答案】1*6.02×10 ²³ =6.02×10 ²	$2*6.02\times10^{23}=1.204\times10^{2}$	24 1.806×10 ²⁴ /6.02×10 ²³ =3 摩尔
2*6.02×10 ²³ =1.204×10 ²⁴	0.01*6.02×10 ²	$^{23}=6.02\times10^{21}$
物质的量 (n) $\frac{\times (6.02 \times 10^{23})}{\leftarrow \div (6.02 \times 10^{23})}$	⇒ 微粒数 (N)	

二、摩尔质量

1. 定义

摩尔质量也是一个物理量,表示 1mol 物质的质量。

该物理量用符号 表示,单位是 ,单位的符号是 ,数值上等于 该物质的。

例如:氧气的摩尔质量为_____,二氧化碳的摩尔质量为_____。

观察下表进行计算:

微粒	一个原子或分子的	1摩尔微粒数	1摩尔微粒的质量(g)
	质量(克)		
氢	1.67×10 ⁻²⁴	6.02×10^{23}	
碳	1.993×10 ⁻²³		11.99786
水		6.02×10^{23}	17.993178

【答案】M; 克每摩; g/mol; 式量。 32 g/mol; 44g/mol;

1.00534 6.02×10^{23} 2.9889×10^{-23} .

2. 公式

物质的质量与物质的量相互转换:

【答案】物质的质量=物质的摩尔质量×物质的量(从单位上记忆)

【练一练】

- 1. 9 克水的物质的量是多少?
- 2. 1.806×10²⁴ 个水分子的质量是多少?
- 3. 1 mol 一氧化碳和 1 mol 二氧化碳的质量。

【答案】1、0.5mol 2、5.4g 3、28g 44g

【小结】有了物质的量的知识,可以把宏观的量(如:物质的质量)与微观的量(如:微粒数多少) 联系起来,它们之间的关系又如何呢?

枝繁叶茂

知识点 1: 物质的量与微粒个数之间的转换

和以从 1: 物灰的里与像松子数之间的转换
【例1】2015年10月,中国女科学家屠呦呦获得了2015年诺贝尔生理学或医学奖。她所研究的
蒿素的化学式是 C15H22O5, 该物质的分子中碳、氢、氧原子的个数之比是; 2 摩尔该
质的分子中有(用科学计数法表示)个氧原子。
【难度】★★
【答案】① NO ₂ ; 2Ag ② 硫酸根; ClO ₂ ③ 15:22:5; 6.02×10 ²⁴
变式 1: "物质的量"是国际单位制中的一个基本物理量,有关说法正确的是()
A. 44gCO ₂ 含有 2mol 氧 B. 1molH ₂ O 中约含 6.02×10 ²³ 个氧原子
C. 氧气的摩尔质量是 16g/mol D. 1molCO ₂ 中约含 6.02×10 ²³ 个氧分子
【难度】★
【答案】B
变式 2: "物质的量"是国际单位制中的一个基本物理量,有关说法正确的是()
A. lmol H ₂ 的质量为 1g B. lmol H ₂ 约含 6.02×10 ²³ 个氢原子
C. lmol H ₂ O 含有 3mol 原子
【难度】★
【答案】C
变式 3: "化学为生命密码解锁。"DNA 承载着生命遗传密码,胞嘧啶($C_4H_5ON_3$)是 DNA 水解产物
之一。胞嘧啶由
【答案】4 10
【方法提炼】
公式: 微粒数目(N)=物质的量(n)×6.02×10 ²³
对上述公式的灵活运用, 解题时注意看清楚题干是分子还是原子, 化学式中原子的下角标个数
是几?

知识点 2:	物质的量与物质质量之间的转换关系
THE WINN	の次的生力の次次生をつけれた人か

AND THE TRANSPORT OF TH
【例1】 葡萄糖(C ₆ H ₁₂ O ₆)分子中各原子物质的量之比是;
1个葡萄糖分子中共含
葡萄糖中质量分数最高是元素;
0.5mol 葡萄糖的质量为g;
0.1 mol 该葡萄糖中约含有
【难度】★
【答案】(11) C:H:O=1: 2: 1 (需注意给出原子顺序) 24
氧元素或O 90 3.612×10 ²³
变式 1: lg H ₂ 的物质的量是mol, 含有mol H。
2.2g CO ₂ 的物质的量是; 含有 CO ₂ 分子的个数是。
【难度】★
【答案】0.5; 1; 0.05; 3.01×10 ²²
变式2: 下列物质质量最大的是()
A. 10 mol氢气 B. 2 mol氧气 C. 1 molSO ₃ D. 4 mol水
【难度】★
【答案】C
【方法提炼】
公式: 物质的质量=物质的摩尔质量×物质的量
对上述公式的灵活运用,对一些常见的元素的相对原子质量进行记忆,节省解题时间。
知识点 3: 综合考察
【例1】4℃时,1mL水中,一个水分子所占据的体积(包括间隙和本身大小)约为()
A. $\frac{1}{6.02 \times 10^{23}}$ mL B. $\frac{18}{6.02 \times 10^{23}}$ mL
C. $\frac{1}{18}$ mL D. $\frac{1}{18 \times 6.02 \times 10^{23}}$ mL

【难度】★★

【答案】B

【解析】试题分析: 4℃时,1mL 水中,含有的水分子个数是 6.02×10^{23} 个,同时水的体积是 18 毫升,所以一个水分子所占据的体积约为: $18/(6.02 \times 10^{23})$ 。故选 B.

变式1:	(2016徐汇一模)(0.8g某物质含有3.01×1	022个分子,该物质的式	(量约为())
A.	8	B. 16	C. 64	D. 160
【难	度】★★			
【答	案】B			
变式2:	密闭容器中,将lm	ol的CO和1mol的O2混	合, 一定条件下充分反	应。正确的是()
A.	参加反应的CO和O	2的物质的量之比为1:	Ĺ	
В.	反应后气体的物质	的量为原混合气体的3	/4	
C.	反应后的气体中C、	O原子的物质的量之	比为1:2	
D.	反应后密闭容器中	气体的摩尔质量一定为	544g/mol	
【难	度】★★			
【答	案】B			
变式3:	我国新版饮用水标》	生中要求使用消毒剂—	· 氯胺(NH ₂ Cl), 其摩尔J	质量为 , 0.1mol
				表示),含氮元素的质量
-	g。			
【对	達度】★			
【答	序案】51.5g/mol	1.204×10^{23} 1.4		
【方法提	是炼】			
两个	公式根据物质的量	建立相互之间的联系:		
	物质的量	$=\frac{\text{微粒个数}}{6.02\times10^{23}}=\frac{\text{物质的质}}{\text{摩尔质}}$	量量	

瓜熟蒂落

1.	"物质的量"的符号是()			
	A. n B. N	C.	mol	D. N _A
	【难度】★			
	【答案】A			
2.	对物质的量的认识中, 正确的是()		
	A. 物质的量指物质的质量	В.	摩尔是物质的量	的单位
	C. 摩尔质量等于物质的量	D.	物质的量就是阿	伏加德罗常数
	【难度】★			
	【答案】B			
3.	关于"摩尔"的说法正确的是()		
	A. 摩尔是一个物理量		B. 摩尔是物质	的量的单位
	C. 摩尔就是物质的量		D. 摩尔是表示	物质质量的单位
	【难度】★			
	【答案】B			
4.	将质量与物质的量联系起来的量是_		o	
5.	将宏观质量与微观微粒数联系起来的	的量是		0
	【难度】★			
	【答案】摩尔质量; 物质的量			
6.	下列物质中含有分子数最多的是()		
	A. 4克氢气 B. 4克氧气		C. 98克H ₃ PO ₄	D. 98克二氧化碳
	【难度】★			
	【答案】D			
7.	下列物质中含有原子数最多的是()		
	A. 4克氢气 B. 64克氧气	Ć	C. 16克CH ₄	D. 64克二氧化硫
	【难度】★			
	【答案】C			

8.	关于1 mol二氧化硫(SO ₂)的说法错误的是 ()
	A. 含有6.02×10 ²³ 个二氧化硫分子
	B. 质量为64克
	C. 含有1mol 硫原子
	D. 含有1mol氧分子
	【难度】★
	【答案】D
9.	1 mol氯酸钾 (KClO ₃)的质量为克, 24.5克KClO ₃ 为mol。4 mol KClO ₃ 为
	克,其中含有
	【难度】★
	【答案】122.5 0.2 490 0.3 12 2.408×10 ²⁴
10.	2mol过氧化氢分子比2mol水分子多
	【难度】★
	【答案】1.204×10 ²⁴
11.	1mol CO ₂ 中含
	原子与mol 水分子所含的氧原子相等。
	【难度】★
	【答案】3 1 2 1
12.	3 mol H ₂ O 与 3 mol H ₂ O ₂ 中含有氢原子的个数比为, 质量比是。
	【难度】★★
	【答案】1:1 18:34
13.	所含氧原子个数约为 6.02×10 ²³ 的物质是 ()
	A. 1molH ₂ O ₂ B. 0.5molCO ₂ C. 4.4gCO ₂ D. 180mL H ₂ O
	【难度】★★
	【答案】B
14.	比较 I mol H ₂ O 和 I mol H ₂ O ₂ (过氧化氢),正确的是()
	A. 质量相同 B. 分子数相同
	C. 含有氢分子数相同 D. 含有氧原子数相同
	【难度】★
	【答案】B
15.	医用麻醉剂乙醚的化学式为(C ₂ H ₅) ₂ O,由元素组成,摩尔质量是,
	0.5mol 乙醚中含有
	【难度】★★
	【答案】 (1) C、H、O (2) 74g/mol (3) 5 1.204×10 ²⁴ (2×6.02×10 ²³)

16.	下列物质质量最大的是()			
	A. 10 mol 氢气	B. 2 mol 氧气		C. 1 molSO ₃	D. 4 mol 水
	【难度】★★				
	【答案】C				
17.	下列说法正确的是()			
	A. 0.5molO ₂ 约含 1mol 氧元	元素	B. CO ₂	的摩尔质量是 44g	
	C. 1molH ₂ O 中含有 1molH ₂	和 1molO ₂	D. 22 3	克 CO₂ 中共含 1.5mol 原	(子
	【难度】★★				
	【答案】D				
18.	"物质的量"是国际单位制中	的一个基本物理	量,有关记	说法正确的是()	
	A. 28gN ₂ 含 lmol 氮		B.	1molO ₂ 约含 6.02×10 ²	3个氧原子
	C. lmolCO ₂ 含有 3mol 原子	4	D.	H ₂ O 的摩尔质量是 18	[]
	一 一				
	【难度】★				
10	【答案】C 我国科学家屠呦呦因发现治	4.传传传的"丰善]	Ĕ (C II	0)"而共组诺贝尔奖	治法正确的具 (
19.	(大国科子家盾呦呦囚及坑石	1717七次的 月向系	R (C15H22	05) 叫获特诺贝尔夫。	。风公正朔时足(
	A. 青蒿素分子的式量为 28	82a/mol	R 書き	<u>葛素</u> 中氢元素含量最高	
	C. 青蒿素由 42 个原子构成	45.81 100	10	 元素的原子个数比为	22.5
	【难度】★		D. 至(4	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	22.3
	【答案】D				
20	乙酸乙酯 (C ₄ H ₈ O ₂) 常用作	在食品、饮料的 调	香剂。对	7.酸7.酢的叙述正确的	7是()
20.	A. 乙酸乙酯由 14 种原子			氢、氧元素的质量比	
	C. 其式量为 88g/mol			子中,碳、氢、氧原·	
	【难度】★★				
	【答案】D				
21.	关于等质量的 O ₃ 和 O ₂ ,, 』	E确的是()		
	A. 分子数之比为 3:2		分子数え	2比为 1:1	
	C. 原子数之比为 1:1	D.	原子数之	之比为 2:3	
	【难度】★★				
	【答案】C				

22.	二氧化硫是空气污染物之一,关于其描述正确的是()	
	A. 二氧化硫的摩尔质量为 64g/mol	B1. molSO ₂ 中约含有 6.02×10 ²³ 个原子
	C. 2molSO ₂ 的质量为 128	D. 3molSO₂中含有 3mol 氧原子
	【难度】★★	
	【答案】A	
23.	对于"物质的量"和"摩尔"的理解	不正确的是()
	A. 摩尔是国际科学界采用的一种物理	里量的单位
	B. 摩尔是一种物理量, 简称摩, 符号	号为 mol
	C. 物质的量可以把物质的宏观微粒数	女与微观粒子的数量联系起来
	D. 1mol 硫酸中约含有 6.02×10 ²³ 个	流原子
	【难度】★★	
	【答案】B	
24.	以下关于 2molCO ₂ 的说法中,错误的	是()
	A. 含有 1.204×10 ²⁴ 个 CO ₂ 分子	B. 质量为 88g
	C. 含有 2m ol 碳原子	D. 含有 2mol 氧原子
	【难度】★★	
	【答案】D	
25.	下列物质中所含原子个数最多的是()
	A. 2 克 H ₂	. 6.02×10 ²³ 个 CO₂ 分子
	C. 1.5 摩尔 Zn	. 0.5 摩尔 O₂
	【难度】★★	
	【答案】B	
26.	"物质的量"是国际单位制中的一个	基本物理量,有关说法正确的是()
	A. 28gCO 含有 3 mol 原子	B. 1mol H ₂ O 中约含 6.02×10 ²³ 个氧原子
	C. 0.5molCO ₂ 约含 6.02×10 ²³ 个氧分子	D. CaCO ₃ 的摩尔质量是 100
	【难度】★★	
	【答案】B	
27.	"物质的量"是国际单位制中的一个	基本物理量,有关说法不正确的是()
	A. 1mol P ₂ O ₅ 含有 7mol 原子	B. 1mol 氮气约含 6.02×10 ²³ 个分子
	C. 氧化铜的摩尔质量是80	D. 64g 铜含 1molCu
	【难度】★★	
	【答案】C	

28.	我国药学家屠呦呦因发现青蒿素获得诺贝尔奖。青蒿素是一种用于治疗疟疾的药物,它的化学
	式为 $(C_{15}H_{22}O_5)$ 。 $C_{15}H_{22}O_5$ 的摩尔质量是
	元素的质量比为, 其中氧元素质量分数是; 2mol 青蒿素
	中含有约个氧原子。
	【难度】★
	【答案】282g/mol 180:22:80(或 90:11:40) 28.4% 6.02×10 ²³
29.	化石燃料不可再生, 开发和利用新能源迫在眉睫, 氢能作为理想的能源, 重要原因是它的燃烧
	产物无污染,用化学反应方程式表示为。2mol 氢气中约
	含
	【难度】★
	【答案】2H ₂ +O ₂ 点然 → 2H ₂ O 2.408×10 ²⁴
30.	利用乙炔燃烧-产生的高温可以焊接金属。 C_2H_2 的摩尔质量为
	个氢原子,将 C ₂ H ₂ 在纯氧中燃烧,其生成物中一定含有元素。
	【难度】★
	【答案】26 g/mol 3.01×10 ²³ 3种 (或碳、氢、氧)
31.	化学与医学密切相关,为人类健康做贡献。中国科学家屠呦呦因从中草药中分离出青蒿素
	(C ₁₅ H ₂₂ O ₅)应用于疟疾治疗,挽救了数百万人的生命而获得了2015年诺贝尔生理学或医学奖。
	$C_{15}H_{22}O_5$ 由
	约含有个氧原子(用科学记数法表示)。
	【难度】★
	【答案】3 15:22 1.204×10 ²⁴