Follow-up Work of Delay Embedding: Skeleton-based Action Recognition

Zhifei Zhang

Outline

- 1. Robustness of Delay Embedding (DE)
- 2. Parameter Setting of DE
- 3. Metric to Compare the Trajectories
- 4. Experimental Results

Robustness of Delay Embedding (DE)

Invariant to:

- Phase variation
- Starting time
- Repeat rate of patterns
- Sequence length

Robust to:

- Frequency variation
- Scale variation

Robustness of Delay Embedding (DE)

Different subjects may perform the same action in different style, e.g., slower or faster, larger or smaller span.

Robustness of Delay Embedding (DE)

Different subjects may perform the same action in different style, e.g., slower or faster, larger or smaller span.

Parameter Setting of DE

$$\Phi(x_t; d, s) = (f(t), f(t+s), \cdots, f(t+(d-1)s))$$

d --- False nearest neighbor [M. Kennel et al., 1992]

s --- Period-based [J. A. Perea and J. Harer, 2013]

Parameter Setting of DE --- Embedding Dimension d

False nearest neighbor [M. Kennel et al., 1992]

- 1. Given a state $\Phi(x_i)$ in the *d*-dimensional embedding space, find a neighbor $\Phi(x_j)$ so that $\|\Phi(x_i) \Phi(x_j)\|_2 < \varepsilon$, where ε is a small constant usually not larger than 1/10 of the standard deviation of the time series.
- 2. Based on the neighbors, compute the normalized distance R_i between the (m+1)th embedding coordinate of state $\Phi(x_i)$ and $\Phi(x_j)$:

$$R_i = \frac{\|y_{i+d\times s} - y_{j+d\times s}\|_2}{\|\Phi(x_i) - \Phi(x_j)\|_2}$$
(9)

- 3. If R_i is larger than a given threshold R_{th} , then $\Phi(x_i)$ is marked as having a false nearest neighbor.
- 4. Apply Eq. 9 for the whole time series and for various $m = 1, 2, \cdots$ until the fraction of points for which $R_i > R_{th}$ is negligible. According to [8], $R_{th} = 10$ has proven to be a good choice for most data sets.

Parameter Setting of DE --- Embedding Dimension d

False nearest neighbor [M. Kennel et al., 1992]

Drawbacks:

- s and d are coupled
- Does no work well in practice (inter-class variation)
- Larger d does not necessarily increase classification accuracy but will decrease computational efficiency.

In practice, try d = 2 or 3.

Parameter Setting of DE --- Delay Step s

Period-based [J. A. Perea and J. Harer, 2013]

$$2\pi \times d \times s \times \frac{f}{f_s} \equiv 0 \mod \pi$$

where f and f_s denote the resonant and sampling frequency

Applying Fast Fourier Transform (FFT)

$$f = nf_s/N$$

$$s = \frac{N}{2d \times n}$$

Parameter Setting of DE --- Delay Step s

$$s = \frac{N}{2d \times n}$$

Metric to Compare the Trajectories

Modified Hausdorff distance:

$$D_{H}(C_{i}, C_{j}) = \min \left\{ \frac{1}{L_{i}} \int_{C_{i}} \inf_{y \in C_{j}} \|x - y\|_{2} dx, \right.$$

$$\frac{1}{L_{j}} \int_{C_{j}} \inf_{x \in C_{i}} \|x - y\|_{2} dy \right\} \quad 0.5$$

$$= \min \left\{ d(C_{i}, C_{j}), d(C_{j}, C_{i}) \right\}, \quad \stackrel{\text{C}}{\rightleftharpoons} \quad 0$$

Discrete version:

$$d(\mathcal{C}_i, \mathcal{C}_j) \approx \frac{1}{N_i} \sum_{x \in \mathcal{C}_i} \min_{y \in \mathcal{C}_j} \{ \|x - y\|_2 \}$$

(a)
$$d(C_i, C_j) = 0.1640$$

(b)
$$d(C_j, C_i) = 0.2604$$

Metric to Compare the Trajectories

DE-vH:

$$m(\mathcal{C}_i, \mathcal{C}_j) = \frac{1}{L_i} \int_{\mathcal{C}_i} \inf_{y \in \mathcal{C}_j} (\|x - y\|_2 + \alpha e^{\arccos\left\langle \frac{\dot{x}}{\|\dot{x}\|_2}, \frac{\dot{y}}{\|\dot{y}\|_2} \right\rangle}) dx$$

$$D_{vH}(C_i, C_j) = \min \{ m(C_i, C_j), m(C_j, C_i) \}$$

Experimental Results --- Dataset and Setup

Datasets used in the experiments

Dataset	Act.	Sub.	Rep.	Seq.
MSR Action3D	20	10	2~3	557
UTKinect-Action3D	10	10	2	199
UTD-MHAD	27	8	4	861

Protocol	Description
cross-subject (Li et al., 2010)	This is especially designed for the MSR Ac-
	tion3D dataset. The 20 actions were divided
	into three subsets, each having 8 actions.
	Half of the subjects were used as training and
	the rest subjects were used as testing. The
	final accuracy is obtained by averaging the
	results from the three subsets.
half-vs-half (Wang et al., 2012)	half of the subjects are used for training while
	the remaining for testing
leave-one-out (Xia et al., 2012)	leave one sequence out cross validation

Experimental Results --- Real-time Performance

2.4 GHz Intel Core i7 CPU + Matlab

Run time (in fps) of DE-vH

Dataset	Training	Testing
MSR Action3D	5348	1282
UTKinect-Action3D	3763	625
UTD-MHAD	4136	326

The state-of-the-art speed is 140 fps [H. Rahmani et al., 2014] for testing on the MSR Action3D dataset, and they got the accuracy of 86%. We got 93.77%.

Experimental Results --- Real-time Performance

(a) Incremental update

(b) Early detection

Experimental Results --- Classification Performance

C		41	MCD	A -4: 2D	1-44
Comparison	OII	une	MOK	ActionsD	uataset

Method	Accu. (%)	Year		
HOJ3D [39]	78.97	2012		
HON4D [21]	88.89	2013		
Cov3DJ [14]	90.53	2013		
Moving pose [43]	91.70	2013		
HOPC [24]	91.64	2014		
DBN+HMM [38]	82.00	2014		
Lie Algebra [32]	92.46	2014		
Moving Poselets [30]	93.60	2015		
TSRVF [3]	88.29	2015		
Multi-scale [27]	91.10	2015		
Deep learning				
LSTM [31]	87.78	2015		
dRNN [31]	92.03	2015		
HBRNN [9]	89.0%	2015		
Dynamics analysis				
DE-shape [33]	87.89	2016		
Tensor [17]	91.45	2016		
DE-vH	93.77	2016		

Experimental Results --- Classification Performance

Comparison on the UTKinect-Action3D dataset

1		
Method	Accu. (%)	Year
HOJ3D [39]	90.92	2012
Lie Algebra [32]	92.17	2014
TSRVF [3]	91.50	2015
Key-Pose-Motifs [35]	93.47	2016
ST-LSTM [19]	95.0	2016
DE-vH	95.96	2016

Experimental Results --- Classification Performance

Comparison on the UTD-MHAD dataset

Method	Accu. (%)	Year
CRC [5]	79.10	2015
Body Part [6]	87.70	2015
Lie Algebra [32]	88.84	2014
DE-vH	95.35	2016

Experimental Results --- Effect of Parameter Setting

