2015-2016-1

-.
$$1.\frac{1}{6}$$
 $2.\frac{13}{48}$ 3.0 $4.2\overline{X}$ $5.\frac{2(n-1)}{\sqrt{\pi}}$

$$\equiv . (1) P\{X = k\} = {300 \choose k} \frac{5^{300-k}}{6^{300}}, 0 \le k \le 300. EX = 50, DX = \frac{125}{3}$$

(2)
$$k = 50$$
 时最大 (3) $P\{|X - 50| \le 10\} \ge 1 - \frac{125/3}{10^2} = \frac{7}{12}$ (4) $P\{40 \le X \le 60\} = 0.878$

四. (1) 置信区间为
$$\left(\overline{X} \pm \frac{S}{3} t_{0.025}(8)\right) = (8.437, 8.763)$$

(2)
$$H_0: \mu = 8.2, H_1: \mu \neq 8.2$$
,拒绝域为 $|t| > t_{0.025}(8) = 2.306$,
计算可得 $|t| = 5.66 > 2.306$,拒绝 H_0 ,不认为物体的质量是 $\mu_0 = 8.2$

(3)
$$H_0: \mu \le 8.2, H_1: \mu > 8.2$$
,拒绝域为 $t > t_{0.05}(8) = 1.860$,
计算可得 $t = 5.66 > 1.860$,拒绝 H_0 ,认为物体的质量 $\mu > 8.2$

五. (1)
$$f_X(x) = \frac{2}{\theta^2} x, 0 \le x \le \theta$$
 (2) 矩估计量 $\theta = \frac{3}{2} \overline{X}$

(3) 似然函数为
$$L = \frac{2^n}{\theta^{2n}} \prod_{i=1}^n x_i$$
, $\theta \ge \max_{1 \le i \le n} \left\{ x_i \right\}$, 极大似然估计量 $\theta = \max \left\{ X_i \right\}$

$$\Rightarrow$$
. (1) $A = \frac{2}{3}$; $P\{X + Y \ge 1\} = \frac{7}{9}$

(2)
$$f_X(x) = \begin{cases} \frac{2}{3}x(3x+1), 0 \le x \le 1 \\ 0,$$
 其他 \end{cases} ; $f_Y(y) = \begin{cases} \frac{2}{3}(y+1), 0 \le y \le 1 \\ 0,$ 其他

(3)
$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)} = \begin{cases} \frac{x(3x+2y)}{1+y}, 0 \le x \le 1, 0 \le y \le 1 \\ 0, 其他 \end{cases}$$
 (4) 不独立

七. (1)
$$A = \frac{1}{2}, B = \frac{1}{4}$$
 (2) $f(x)_{x} = \begin{cases} 1/4, -2 < x < 2 \\ 0, 其他 \end{cases}$ (4) $DZ = \frac{1}{2}$

$$\text{/\.} (1) \quad p = \frac{C_{12}^4 C_8^3 C_5^5}{C_{17}^4 C_{13}^8 C_5^5} = \frac{2}{221} \qquad (2) \quad p = \frac{C_{12}^8 C_9^4 C_5^5}{C_{17}^4 C_{13}^8 C_5^5} = \frac{9}{442}$$

(3)
$$p = \frac{6C_{14}^3C_{11}^7C_4^4}{C_{17}^4C_{13}^8C_5^5} = \frac{4}{17}$$
 (4) $p = \frac{C_{14}^1C_{13}^8C_5^5}{C_{17}^4C_{13}^8C_5^5} = \frac{1}{170}$

2015-2016-2

-. 1.
$$\frac{37}{42}$$
 2. 0.82 3. $\frac{1}{6}$ 4.1 5.3
=. 1. B 2. D 3. A 4. C 5. B

- 三. (1) 置信区间 $\left(\overline{X} \pm \frac{S}{3} t_{0.025}(8)\right) = (284.37, 287.6)$
 - (2) $H_0: \mu = 282, H_1: \mu \neq 282$, 拒绝域为 $|t| > t_{0.025}(8) = 2.306$,

计算可得|t|=5.66>2.306,拒绝 H_0 ,不能认为物体的长度是 $\mu_0=282$ 毫米

(3) $H_0: \mu \le 282, H_1: \mu > 282$, 拒绝域为 $t > t_{0.05}(8) = 1.860$,

计算可得t = 5.66 > 1.860,拒绝 H_0 ,认为物体的长度 $\mu > 282$ 毫米

- 四. (1) $\frac{m}{m+1}$ (2) $\frac{m}{m+3}$ (3) 第一次更有可能摸出的是白球
- $\pm 1. (1) A = 60.$
 - (2) $f_X(x) = \begin{cases} 30x^2(1-x)^2, 0 \le x \le 1 \\ 0, \quad \text{i. i. i.} \end{cases}$; $f_Y(y) = \begin{cases} 20y(1-y)^3, 0 \le y \le 1 \\ 0, \quad \text{i. i. i.} \end{cases}$; $X \ni Y \land \text{2.2}$
 - (3) $f_{Y|X}(y|x) = \begin{cases} \frac{2y}{(1-x)^2}, 0 \le x \le 1, 0 \le y \le 1-x \\ 0, 其他 \end{cases}$
 - (4) $f_{Y|X}\left(y \middle| x = \frac{1}{3}\right) = \begin{cases} \frac{9}{2}y, 0 \le y \le \frac{2}{3} \\ 0 & \text{ if Ath} \end{cases}$, $P\left\{Y < \frac{1}{3}\middle| X = \frac{1}{3}\right\} = \frac{1}{4}$
 - (5) $E(X+Y) = EX + EY = \frac{5}{6}$
- 六. 矩估计量为 $\frac{2\overline{X}-1}{1-\overline{X}}$; 极大似然估计量为 $-\frac{n}{\sum_{k=0}^{n} \ln X_{k}}$
- 七. (1) $f_z(z) = \begin{cases} e^{-z}, & z > 0 \\ 0, & 其他 \end{cases}$; (2) e^{-1} ; (3) $f_y(y) = \begin{cases} y/2, & 0 < y \le 1 \\ 1/2, & 1 < y \le 2 \\ \frac{3-y}{2}, & 2 < y \le 3 \end{cases}$

2016-2017-1

-. 1, A 2, B 3, B 4, D 5, A 6, B 7, C 8, D

$$\equiv$$
. 1, $\frac{1}{100}$ 2, 0 3, $k_1 + k_2 = 1$ 4, $\frac{2}{3}$

三. (1) 置信区间
$$\left[\overline{x} - \frac{s}{3} t_{0.05}(8), \overline{x} + \frac{s}{3} t_{0.05}(8) \right] = \left[49.3182, 50.6818 \right]$$

(2) 置信区间
$$\left[\frac{(n-1)s^2}{\chi_{0.05}^2(8)}, \frac{(n-1)s^2}{\chi_{0.95}^2(8)}\right] = \left[0.624, 3.542\right]$$

四. (1)
$$f(x,y) = \begin{cases} \frac{2}{\pi}, (x,y) \in G \\ 0, (x,y) \notin G \end{cases}$$
 (2) $f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy = \begin{cases} \frac{2\sqrt{1-x^2}}{\pi}, & |x| < 1 \\ 0, & |x| \ge 1 \end{cases}$

(3)
$$f_{Y|X}(y|x) = \begin{cases} \frac{1}{\sqrt{1-x^2}}, & 0 \le y \le \sqrt{1-x^2}, |x| < 1 \\ 0, & 其他 \end{cases}$$
 (4) $E(X+Y) = \frac{4}{3\pi}$

五. (1) $X_1 与 X_2$ 不相互独立.

(2)
$$X_1$$
, X_2 的边缘分布律均为,

X_2	0	1
p	$1 - e^{-4}$	e^{-4}

(3) $Z = X_1 + X_2$ 的分布律为,

$$P\{Z=0\}=1-e^{-2}$$
 $P\{Z=1\}=e^{-2}-e^{-4}$ $P\{Z=2\}=e^{-4}$

六.
$$H_0: \mu \ge 180$$
, $H_1: \mu < 180$, H_0 为真时, $Z = \frac{\overline{X} - 180}{\sqrt[3]{\sqrt{10}}} \sim N(0,1)$

 $H_{\scriptscriptstyle 0}$ 的拒绝域为 Z > -1.65 , 计算得 Z = -1.687 , 故拒绝 $H_{\scriptscriptstyle 0}$, 不能认为每袋净重不小于 180 克

七. 极大似然估计值为
$$\hat{\beta} = \frac{n}{\sum_{i=1}^{n} (X_i - 1)}$$

八.只需证 $cov(Z_1, Z_2) = 0$

2016-2017-2

—. 1.A 2.D 3.B 4.B 5.C 6.0

 \equiv . 1. $\frac{1}{4}$ 2. $\frac{\sqrt{6}}{6}$ 3. $\frac{9}{2}$ 4. $\mu(\sigma^2 + \mu^2)$

三. (1) 0.5 (2)该射手为二级射手的概率最大

四. (1) $a = \frac{3}{2}$ (2) $\frac{11}{16}$

(3) $f_X(x) = \begin{cases} \frac{3}{2}(1-x^2), & 0 < x < 1 \\ 0, & 其他 \end{cases}$; $f_Y(y) = \begin{cases} \frac{3}{2}\sqrt{y}, & 0 < y < 1 \\ 0, & 其他 \end{cases}$

(4) $f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)} = \begin{cases} \frac{1}{\sqrt{y}}, & 0 < x < \sqrt{y}, 0 < y < 1\\ 0, & \sharp \text{ } \end{cases};$

 $f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \begin{cases} \frac{1}{1-x^2}, & x^2 < y < 1.0 < x < 1 \\ 0, & \text{ 其他} \end{cases}$

五. (1) 矩估计量为 $\hat{\theta} = \frac{7}{6} - \frac{1}{2}\bar{X}$, 矩估计值为 $\hat{\theta} = \frac{5}{12}$.

(2) $E\hat{\boldsymbol{\theta}} = \frac{7}{6} - \frac{1}{2}E\overline{X} = \boldsymbol{\theta}$,故 $\hat{\boldsymbol{\theta}}$ 是 $\boldsymbol{\theta}$ 的无偏估计量;

根据辛钦大数定律,样本一阶矩 $\bar{X} \xrightarrow{P} E(X) = \frac{7}{3} - 2\theta, n \to +\infty$,

所以 $\hat{\boldsymbol{\theta}} = \frac{7}{6} - \frac{1}{2} \bar{X} \xrightarrow{P} \frac{7}{6} - \frac{1}{2} EX = \boldsymbol{\theta}, n \to +\infty$,故 $\hat{\boldsymbol{\theta}}$ 是 $\boldsymbol{\theta}$ 的相合估计量。

六. (1) $f(x,y) = \begin{cases} \frac{1}{2}e^{-y}, & 0 < x < 2 \perp y > 0 \\ 0, & 其他 \end{cases}$

 $(2) \quad F_{Z}(z) = \begin{cases} 0, & z \le 0 \\ \frac{1}{2}(z - 2 + 2e^{-\frac{z}{2}}), & 0 < z < 2 \\ 1 - e^{\frac{1-z}{2}} + e^{-\frac{z}{2}}, & z \ge 2 \end{cases} \qquad f_{Z}(z) = \begin{cases} 0, & z \le 0 \\ \frac{1}{2}(1 - e^{-\frac{z}{2}}), & 0 < z < 2 \\ \frac{1}{2}(e^{\frac{1-z}{2}} - e^{-\frac{z}{2}}), & z \ge 2 \end{cases}$

(3) E(X+2Y) = EX + 2EY = 3, $D(X+2Y) = DX + 4DY = \frac{13}{3}$

七. (1)
$$H_0$$
: σ_1^2 =0.4= σ_0^2 , H_1 : $\sigma_1^2 \neq 0.4$

拒绝域
$$(0,\chi_{0.95}^2(8))$$
 $\bigcup (\chi_{0.05}^2(8),+\infty) = (0,2.733) \bigcup (15.507,+\infty)$

计算得 $\chi^2 = 12.8$,接受 H_0 ,认为这批产品的重量的波动较以往没有显著性变化.

$$(2) H_0: \boldsymbol{\mu}_2 \ge 4 = \boldsymbol{\mu}_0, H_1: \boldsymbol{\mu}_2 < 4$$

拒绝域为
$$(-\infty, -t_{0.1}(8)) = (-\infty, -1.3968)$$

计算得t=-2, 拒绝 H_0 ,不能认为这批产品的维生素 \mathbb{C} 含量符合生产要求。

(3)置信区间为
$$(\overline{X} - \frac{S}{\sqrt{n}}t_{\frac{\alpha}{2}}(n-1), \overline{X} + \frac{S}{\sqrt{n}}t_{\frac{\alpha}{2}}(n-1)) \approx (2.84, 3.96)$$

(2) 极大似然估计量为
$$\hat{\boldsymbol{\sigma}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} Y_i^2}$$
.