Performance Metrics

TEAM ID: PNT2022TMID50029

PROJECT NAME: AI-powered Nutrition Analyzer for Fitness Enthusiasts

1. Confusion Matrix

print(metrics.classification_report(test_data['label'].values, test_data['model_preds'].values))

	precision	recall	f1-score	support
0 1 2 3 4	1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00	157 287 160 294 157
accuracy macro avg weighted avg	1.00	1.00	1.00 1.00 1.00	1055 1055 1055

2. Accuracy - 100 %

[8] print(f"the accuracy is {metrics.accuracy_score(test_data['label'].values, test_data['model_preds'].values)}")
the accuracy is 1.0

3. Precision – 100 %

[11] print(f"the precision is {metrics.precision_score(test_data['label'].values, test_data['model_preds'].values, average = 'weighted')}")
the precision is 1.0

4.Recall – 100 %

the f1 score is 1.0

[12] print(f"the recall is {metrics.recall_score(test_data['label'].values, test_data['model_preds'].values, average = 'weighted')}")

the recall is 1.0

5. Specificity — 100 %

print(f"the specificity is {metrics.recall_score(test_data['label'].values, test_data['model_preds'].values, pos_label=0,average = 'weighted')}")

the specificity is 1.0

6.F1-Score — 100 %

[13] print(f"the f1 score is (metrics.f1_score(test_data['label'].values, test_data['model_preds'].values,average = 'weighted')}")