Notes for chapter 4 of Applied Function Analysis Topology, through filters

Contents

In	troduction	2
1	Basic notions	3
2	Topological subspaces & product topologies	8
3	Continuity and compactness	9
4	Sequences	13

Introduction

Chapter starts with a discussion about the equivalence of concepts in mathematics:

Example 1. Equivalence relations and partitions are conceptually equivalent

- An equivalence relation \sim induces a partition \mathcal{P} , i.e., there exists a natural mapping from equivalence relations to partitions. The induced partition is the family of equivalence classes of \sim . Call it f for a second.
- Viceversa from the other side. The induced equivalence relation is described as

 $x \sim y \iff$ x and y belong to the same partition

Call it g for 2 seconds.

- $g \circ f = Id_{\sim}$
- $f \circ g = Id_{\mathcal{P}}$

Author goes on to describe how topology can be introduced from a bunch of different (but equivalent) concepts, $a\ savoir$: open & closed sets, the interior/closure of a set, neighborhoods of points. Author chooses neighborhoods of points.

1 Basic notions

We start out by defining the equivalence relation \succ on the power set $\mathcal{P}(X)$: for 2 families of subsets of X, $\mathcal{A} \& \mathcal{B}$,

$$A \succ \mathcal{B} \iff \forall B \in \mathcal{B} \quad \exists A \in \mathcal{B} : A \subset B$$

It is said that \mathcal{A} is stronger than \mathcal{B} If we also have $\mathcal{B} \succ \mathcal{A}$, \mathcal{A} & \mathcal{B} are equivalent.

Definition 1.1: Bases and filters

A non-empty class \mathcal{B} is called a **base** iff

- 1. $\emptyset \notin \mathcal{B}$
- 2. $\forall A, B \in \mathcal{B}, \exists C \in \mathcal{B} : C \subset A \cap B$

A non-empty class of sets \mathcal{F} is called a **filter** iff

- 1. $\emptyset \notin \mathcal{F}$
- 2. $\forall A, B \in \mathcal{F}, C = A \cap B \in \mathcal{F}$
- 3. All supersets of an element are contained, i.e. $A \in \mathcal{F}, A \subset D \implies D \in \mathcal{F}$

Every filter is a base. We define the filter generated by base $\mathcal B$ as

$$C \in \mathcal{F} \iff \exists B \in \mathcal{B} : B \subset C$$

We call \mathcal{F} the filter of base \mathcal{B} .

Example 1. Consider $X = \{1, 2, 3, 4\}$

- $\mathcal{B}_1 = \{\{1\}, \{1, 2\}, \{1, 2, 3\}\}$ is a base.
- $\mathcal{B}_2 = \{\{1\}\}$
- $\mathcal{F}(\mathcal{B}_1) = \mathcal{F}(\mathcal{B}_2) = \{\{2\}, \{1, 2\}, \{2, 3\}, \{2, 4\}, \{1, 2, 3\}, \{2, 3, 4\}, \{1, 2, 3, 4\}\}$

Proposition 1.1

Let \mathcal{B}, \mathcal{C} denote two bases

$$\mathcal{B} \succ \mathcal{C} \iff \mathcal{F}(\mathcal{B}) \supset \mathcal{F}(\mathcal{C})$$

Moreover, \mathcal{B} & \mathcal{C} are equivalent with respect to \succ iff $\mathcal{F}(\mathcal{B}) = \mathcal{F}(\mathcal{C})$.

PROOF Consider $M \in \mathcal{F}(\mathcal{B})$. By definition, $\exists B \in \mathcal{B} \mid B \subset M$. $\mathcal{C} \succ \mathcal{B} \implies \exists C \in \mathcal{C}$ $C \subset B \subset M \implies M \in \mathcal{F}(\mathcal{C})$

The classical approach consists in introducing a topology from open sets:

Definition 1.2: Open sets

Consider a class $\mathcal{T} \subset \mathcal{P}(X)$ such that

- i. \varnothing & $X \in \mathcal{T}$
- ii. $\bigcup_{U \in \mathcal{T}} U \in \mathcal{T}$ i.e. arbitrary union belongs to \mathcal{T}
- iii. $\bigcap_{U \in \mathcal{T}}^{N} U \in \mathcal{T}$ i.e. finite intersection belongs to \mathcal{T}

The elements of \mathcal{T} are called **open sets**. \mathcal{T} itself is frequently called the topology on X. (X, \mathcal{T}) is called a *topological space*.

Another approach is to introduce the topology through neighborhoods

Definition 1.3: Neighborhoods

For each $x \in X$, consider a filter \mathcal{F}_x such that

i.
$$\forall Y \in \mathcal{F}_x, x \in Y$$

ii.
$$A, B \in \mathcal{F}_x \implies A \cap B \in F_x$$

iii. For each element, its supersets are contained aswell.

iv.
$$A \in \mathcal{F}_x \implies \mathring{A} := \{z \in A : A \in \mathcal{F}_x\} \in \mathcal{F}_x \text{ i.e. the interior of } A \text{ also belongs to } \mathcal{F}_x$$

The elements of \mathcal{F}_x are called **neighborhoods of** x. The mapping

$$\mathcal{T}: X \to \mathcal{P}(X)$$
$$x \mapsto \mathcal{F}_x$$

is referred to as a topology on X, and (X, \mathcal{T}) is referred to as a topological space. Let us now explicitly define the **interior operation** referred to in property iv. Consider $A \subset X$:

- A point x is an interior point of A iff $A \in \mathcal{F}_x$
- Set of interior points of A, aka interior of set A: $\operatorname{int} A := \{y \in A : A \in \mathcal{F}_y\} (=\mathring{A}big)$

We could have started the previous construction from a base and generated the previous filter from there, in the following fashion: let \mathcal{B}_x be a class such that:

i.
$$\forall A \in \mathcal{B}_x, x \in A$$

ii.
$$\forall A, B \in \mathcal{B}_x, \exists C \in \mathcal{B}_x \mid C \subset A \cap B$$

iii.
$$\forall B \in \mathcal{B}_x, \exists C \in \mathcal{B}_x \mid \forall y \in C, \exists D \in \mathcal{B}_y \mid D \subset B$$

This base is called base of neighborhoods of x.

STATEMENT 1. A base of neighborhoods of x indeed generates a filter of neighborhoods of x.

PROOF The first two conditions define a base, thus $\mathcal{F}(\mathcal{B}_x)$ has the first three properties of \mathcal{F}_x . We will show that property *iii* of \mathcal{B}_x is equivalent to $\mathcal{F}(\mathcal{B}_x)$ having property *iv* of \mathcal{F}_x

$$\forall B \in \mathcal{B}_{x}, \ \exists C \in \mathcal{B}_{x} \ | \ \forall y \in C, \ \exists D \in \mathcal{B}_{y} \ | \ D \subset B$$

$$\downarrow \\ \forall B \in \mathcal{B}_{x}, \ \exists C \in \mathcal{B}_{x} \ | \ \forall y \in C, B \in \mathcal{F}(\mathcal{B}_{y})$$

$$\downarrow \\ B \in \mathcal{B}_{x} \implies \mathring{B} := \{ y \in B : B \in \mathcal{F}(\mathcal{B}_{y}) \} \in \mathcal{F}(\mathcal{B}_{x})$$

$$\downarrow \\ \mathring{A} \in \mathcal{F}(\mathcal{B}_{x}) \implies \mathring{A} := \{ y \in A : A \in \mathcal{F}(\mathcal{B}_{y}) \} \in \mathcal{F}(\mathcal{B}_{x})$$

¹ \Downarrow follows immediately from $\mathcal{B}_x \subset \mathcal{F}(\mathcal{B}_x)$. \uparrow follows from $B \subset A \implies \mathring{B} \subset \mathring{A}$

Our goal in the next few lines is to show that the *filter topology* and the *open set topology* are mathematically equivalent concepts, in the sense of the introductory discussion. We shall construct an *open topology* starting from neighborhoods, a *filter topology* starting from open sets & show that by going forth and forth again we return to our starting point.

Definition 1.4: Alternative definitions of open sets & neighborhoods

Neighborhoods, from open sets: Let (X, \mathcal{T}^o) be a space with an open set topology. Consider an arbitrary point $x \in X$. The base of open neighborhoods is defined as follows

$$\mathcal{B}_x^o := \{ U \in \mathcal{T}^o \mid x \in U \}$$

Neighborhoods of x are defined as the elements of the $\mathcal{F}(\mathcal{B}_x^o)$.

Open sets, from neighborhoods: Let (X, \mathcal{T}^f) be a space with a filter topology. U is an open set iff U = int U

Let us check that these definitions are compatible with the previous ones:

- \mathcal{B}_{x}^{o} (definition 1.4) is a base of neighborhoods of x (definition 1.3):
 - $-\mathcal{B}_{x}^{o}$ is a base (i.e. $\mathcal{F}(\mathcal{B}_{x}^{o})$ is a filter): by definition of \mathcal{B}_{x}^{o} and open sets, x is an element of all members of \mathcal{B}_{x}^{o} and the intersection of members is also a member.
 - By definition of \mathcal{B}_y^o , $\forall B \in \mathcal{B}_x^o$, $\forall y \in B$, $B \in \mathcal{B}_y^o$ (iff $B = \mathring{B}$)
- The set $\mathcal{T} = \{U \subset X \mid U = \text{int } U\}$ (definition 1.4) forms an open topology (definition 1.2):
 - $-\varnothing,X\in\mathcal{T}$: both sets are neighborhoods of all their points.
 - $-\bigcup_{U\in\mathcal{T}}U\in\mathcal{T}$: each U is a neighborhood of all its points & the union is a superset of each U.
 - $-\bigcap_{U\in\mathcal{T}}^{N}U\in\mathcal{T}$: by induction from the second property of filters.

It only remains to check whether by going forth and forth we return to our starting point:

Proposition 1.2

Let (X, \mathcal{T}^o) be a topological space furnished with an open topology. Then

$$\mathcal{T}^o = \mathcal{T}^{o^{f^o}} \big(:= \{ \text{Collection of open sets induced by } \mathcal{F}(\mathcal{B}_x^o) \} \big)$$

Proof

- \subset : Let $U \in \mathcal{T}^o$. By definition 1.4, $U \in \mathcal{T}^o \implies U \in \mathcal{B}_x^o \ \forall x \in U$. That is, U = int U. This implies $U \in \mathcal{T}^{o^{f^o}}$
- \supset : Let $V \in \mathcal{T}^{o^{f^o}}$. $V = \text{int } V \iff V \in \mathcal{F}_x \ \forall x \in V \iff \forall x \in V \ \exists B_x \in \mathcal{B}_x^o \mid x \in B_x \subset V$. We can write V as the union of such sets, which are open in \mathcal{T}^o . Thus V is open in \mathcal{T}^o .

Proposition 1.3

Let (X, \mathcal{T}^f) be a topological space equipped with a filter topology. Then

$$\mathcal{T}^f = \mathcal{T}^{f^{o^f}} \big(:= \text{Mapping } x \mapsto \mathcal{F}_x \big)$$

PROOF We show that $\mathcal{B}_x \sim \mathcal{B}_x^{\text{induced}}$ in the sense of \succ :

- \succ : Let $B \in \mathcal{B}_x$. We use the fact that int B = int int B: int $B \in \mathcal{B}_x^o$ & int $B \subset B$
- \prec : Let $B' \in \mathcal{B}_x^o$. $B' \in \mathcal{B}_x^o \Longrightarrow B' \in \mathcal{T}^{f^o} \Longrightarrow$ int B' = B'. In particular, B' is a neighborhood of x i.e. $B' \in \mathcal{F}_x \iff \exists B \in \mathcal{B}_x \mid B \subset B'$

Thus $\mathcal{B}_x \sim \mathcal{B}_x^{\text{induced}} \iff \mathcal{F}_x = \mathcal{F}_x^{\text{induced}}$ by proposition 1.1.

We conclude that both approaches are equivalent. We can set sail on the path of filters without looking back.

Proposition 1.4: Properties of the interior operation

- i. int int A = int A
- ii. int $(A \cap B) = \text{int } A \cap \text{int } B$
- iii. int $(A \cup B) \supset \text{int } A \cup \text{int } B$
- iv. $A \subset B \implies \text{int } A \subset \text{int } B$

PROOF

iv: $\forall x \in \text{int } A, \ B \supset A \in \mathcal{F}_x$ i.e. neighbourhood A is such that $x \in A \subset B \implies x \in \text{int } B$

i : \subset follows from *iv*. Consider $x \in$ int A. A is a neighbourhood of $x \iff$ int A is a neighbourhood of $x \iff x \in$ int int A

ii : \subset follows from iv. Consider $x \in \text{int } A \cap \text{int } B$. $A, B \in \mathcal{F}_x \iff A \cap B \in \mathcal{F}_x \iff \text{int } (A \cap B) \in \mathcal{F}_x$

iii : \supset follows from iv.

REMARK The interior of a set corresponds to the biggest open set contained inside of him i.e.

$$int A = \bigcup_{\substack{U \in \mathcal{T}^o \\ U \subset A}} U$$

Example 2. Equivalent bases in \mathbb{R}^n Define the bases \mathcal{B}_x as the collection of open balls centered at x. They define the *fundamental topology* in \mathbb{R}^n . Note that the following bases are equivalent to it

- Open balls with radii $\frac{1}{n}$
- \bullet Closed balls centered at x
- Open balls defined by the L^1 norm or any other L^p norm, $p \in \mathbb{N}$

Example 3. Discrete & trivial topologies Let X be an arbitrary set.

- If we use as a base the *singletons* $\{x\}$, every x is mapped to $\mathcal{P}(x)$ (that is, $\mathcal{F}_x = \mathcal{P}(x)$). This topology is dubbed *discrete toplogy*.
- If we use as a base X, every x is mapped to $\{X\}$ (that is, $\mathcal{F}_x = \{X\}$). This topology is dubbed trivial toplogy.

These are respectively the *strongest* and *weakest* topologies.

Definition 1.5: Accumulation points, closure of a set, closed set & dense set

Consider a topological space (X, \mathcal{T}^f) and $A \subset X$

- x is an accumulation point of A iff $\forall N \in \mathcal{F}_x, (N \cap A) \setminus \{x\} \neq \emptyset$
- Closure of $A, \overline{A} := A \cup \hat{A}$, where \hat{A} denotes the set of accumulation points of A
- A set $C \subset X$ is **closed** if it corresponds to its own closure i.e. $C = \overline{C}$

• A set $D \subset X$ is said to be **dense in X** iff $\overline{D} = X$

STATEMENT 2. A set is closed iff its complement is open.

Proof

$$\begin{cases} x \notin C \\ \text{C closed} \end{cases} \iff \begin{cases} x \notin C \\ x \notin \hat{C} \end{cases} \iff \begin{cases} x \notin C \\ \exists N \in \mathcal{F}_x \mid N \cap C \setminus \{x\} = \varnothing \end{cases} \iff$$

$$\iff \exists N \in \mathcal{F}_x \mid N \cap C = \varnothing \iff \exists N \in \mathcal{F}_x \mid N \subset C' \iff C' \in \mathcal{F}_x \iff \begin{cases} x \in C' \\ \text{C' open} \end{cases}$$

Proposition 1.5: Properties / Definition of closed sets

As always, these properties can be taken as a definition and will induce a topology.

- \emptyset, X are closed.
- Finite union of closed sets is closed.
- Arbitrary intersection of closed sets is closed.

2 Topological subspaces & product topologies

Definition 2.1: Subspace topology

A topological space (X, \mathcal{T}) induces a topology on its subsets $Y \subset X$

$$\forall x \in Y, \ B \in \mathcal{B}_x^Y \iff B = B' \cap Y, \ B' \in \mathcal{B}_x$$

Subset Y is said to have some topological property iff $(X, \mathcal{T}|_{Y})$ possesses said property.

Proposition 2.1

Let $Y \subset X$ a topological subspace & E a subset of Y :

- The closure of E in $\mathcal{T}|_{Y}$ is $\overline{E} \cap Y$
- U is open in $\mathcal{T}|_{Y} \iff U = V \cap Y, \ V \in \mathcal{T}$
- F is closed in $\mathcal{T}|_{Y} \iff F = C \cap Y$, Cclosed in \mathcal{T}

Definition 2.2: Product topology

Consider two topological spaces, X, Y. Their respective topologies induce a topology on $X \times Y$

$$\mathcal{B}_{(x,y)} := \{ B \times B' \mid B \in \mathcal{B}_x^X, B' \in \mathcal{B}_y^Y \}$$

Note that things work differently for infinite cartesian products. In words, the product topology is the **coarsest** topology for which all the projections are continuous.

Proposition 2.2

- $U \in \mathcal{T}_X$, $V \in \mathcal{T}_Y \iff U \times V \in \mathcal{T}^*$
- C closed in \mathcal{T}_X , V closed in $\mathcal{T}_Y \iff U \times F$ closed in \mathcal{T}^*

3 Continuity and compactness

Definition 3.1: Continuous function

Let X,Y be two topological spaces and let $f:X\to Y$ be a function. A function is continuous at $x\in X$ iff

$$f(\mathcal{B}_x) \succ \mathcal{B}_{f(x)} \iff f(\mathcal{F}_x) \succ \mathcal{F}_{f(x)}$$

If f is continuous $\forall x \in X$, f is globally continuous.

Proposition 3.1: Statements regarding continuity

Let X, Y, Z be topological spaces. Let $f: X \to Y, g: Y \to Z, h: X \to V$ be a bunch of functions:

- i. f is globally continuous $\iff \forall G \text{ open in } \mathcal{T}_Y, \ f^{-1}(G) \text{ open in } \mathcal{T}_X$
- ii. f is globally continuous $\iff \forall C \text{ closed in } \mathcal{T}_Y, f^{-1}(C) \text{ closed in } \mathcal{T}_X$
- iii. f is continuous at x, g is continuous at $f(x) \implies g \circ f$ continuous at x
- iv. f is continuous at x, h is continuous at $x \implies (f, h)$ continuous at x

$$(f, h): X \to Y \times V$$

 $x \mapsto (f(x), h(x))$

v. Consider the functions $F: A \to B, G: C \to D$

F is continuous at $x \in A$, G is continuous at $y \in B \implies F \times G$ is continuous at (x,y)

Proof

• i, \Rightarrow : Let U be an open set in the codomain. If there is no $x \in X$ such that $f(x) \in U$, $f^{-1}(U) = \emptyset$, which is open by definition. Else, $\exists x \mid f(x) \in U$. Because U is open, it is a neighborhood of all its points and in particular f(x). By continuity, there exists a neighborhood $N \in \mathcal{F}_x \mid f(x) \in f(N) \subset U$. We exploit the fact that $N \subset f^{-1}(f(N))$

$$x \in N \subset f^{-1}(U)$$

• i, \Leftarrow : Let $N \in \mathcal{F}_{f(x)}$. int N is a open $f(x) \implies f^{-1}(\operatorname{int} N)$ is open $\implies f^{-1}(\operatorname{int} N)$ is a neighborhood of x such that

$$f(f^{-1}(\operatorname{int} N)) \subset N$$

We used the fact that the image of the preimage is contained in the original set.

- ii \Leftrightarrow iii : The equivalence follows immediately from $f^{-1}(A \setminus B) = f^{-1}(A) \setminus f^{-1}(B)$ and the complement characterizations of open & closed sets.
- iii : Consider a neighborhood of $f \circ g(x)$, L. By continuity of f, \exists a neighborhood of g(x), $M \mid f(M) \subset L$. By continuity of g, \exists a neighborhood of x, $N \mid g(N) \subset M$. Thus, $f(g(N)) \subset L$ & $f \circ g(\mathcal{F}_x) \succ \mathcal{F}_{f \circ g(x)}$
- iv : Consider a neighborhood of $(f(x), h(x)) \in Y \times V$, $A \times B$. By definition of the product topology, A & B are neighborhoods of f(x), h(x), respectively. By continuity of f & h, $\exists M, N \in \mathcal{F}_x \mid f(M) \subset A$, $h(N) \subset B$. Thus $N \cap M \in \mathcal{F}_x \& (f,h)(N \cap M) \subset A \times B$
- v: Consider a neighborhood of $F \times G(x, y)$, $L \times K$. By definition of the product topology, $L \in \mathcal{F}_{F(x)} \subset A$, $K \in \mathcal{F}_{G(y)} \subset C$. By continuity of F & G, $\exists M \in \mathcal{F}_x$, $N \in \mathcal{F}_y \mid F(M) \subset L$, $G(N) \subset K$. By definition of the product topology, this time from the domain's point of view, $M \times N \in \mathcal{F}_{F \times G(x,y)}$

Definition 3.2: Hausdorff spaces

A topological space (X, \mathcal{T}) is said to be **Hausdorff** iff

$$\forall x, y \in X, \exists N \in \mathcal{F}_x, M \in \mathcal{F}_y \mid N \cap M = \emptyset$$

It is a topological property.

Definition 3.3: Compact spaces

A topological space (X, \mathcal{T}) is said to be **compact** iff

- \bullet X is Hausdorff
- Every open covering has a finite subcovering.

It is a topological property.

An indexed collection of subsets of X, $\mathcal{A} = \{A_i, i \in I\}$, has the **finite intersection property** (FIP) iff any finite subcollection $J \subset I$ has a non-empty intersection i.e. $\bigcap_{i \in I} A \neq \emptyset$

Let \mathcal{B} be a base. x is a **limit point** of \mathcal{B} iff

$$x \in \bigcap_{B \in \mathcal{B}} \overline{B}$$

NB: Nobody else calls this limit point.

Proposition 3.2: Characterization of compactness

Let X be a Hausdorff space. The following statements are equivalent.

- i. Every open covering has a finite subcovering.
- ii. Every base has a limit point.
- iii. Every collection of closed sets with the FIP has a non-empty intersection.

PROOF

• $i \Rightarrow ii$: Consider a base $\mathcal{B} \subset \mathcal{P}(X)$. The collection of the closures of the elements of \mathcal{B} , is also a base. Assume by contradiction that \mathcal{B} has no limit point i.e.

$$\bigcap_{B} \overline{B} = \varnothing \iff \bigcup_{B} X \setminus \overline{B} = X$$

In words, the complements form an open covering. By i, there exists a finite subcovering $\mathcal{V} \subset \mathcal{B}$, $|\mathcal{V}| < \infty$ such that

$$\bigcup_{\mathcal{V}} X \setminus \overline{B} = X \iff \bigcap_{\mathcal{V}} \overline{B} = \emptyset$$

We have both that $\{\overline{B}, B \in \mathcal{B}\}$ is a base and that there is an empty finite intersection of elements. \bot

• ii \Leftarrow i: Consider an open covering \mathcal{U} . Assume by contradiction that there is no finite subcovering i.e.

$$\forall \mathcal{V} \subset \mathcal{U} \mid |\mathcal{V}| < \infty, \ \bigcup_{\mathcal{V}} U \neq X \iff \bigcup_{\mathcal{V}} X \setminus U \neq \emptyset$$

In words, for any finite subcollection, the intersection of the complements is non-empty. The complements thus qualify to form a base. By ii, their intersection is non-empty i.e.

$$\bigcap_{\mathcal{U}} X \setminus U \neq \varnothing \iff \bigcup_{\mathcal{U}} U \neq X$$

We both have that \mathcal{U} is a covering and that it is not a covering, \bot

- iii ⇒ ii : A base is a collection of sets with the FIP, meaning the closures of its elements is a collection of closed sets with the FIP.
- iii \Leftarrow i : Consider a collection of closed sets with the FIP, $\mathcal{C} \subset \mathcal{P}(X)$. Assume by contradiction that their intersection is empty

$$\bigcap_{C} C = \varnothing \iff \bigcup_{C} X \setminus C = X$$

The collection of the complements is an open covering meaning there is a finite subcovering. Like in the first proof, this contradicts the FIP property.

Proposition 3.3: Statements about compacity

- i. Every compact set is closed.
- ii. Every closed subset of a compact set is compact.
- iii. Cartesian products of compact sets are compact.
- iv. Let $f: X \to Y$ be a continuous function with X compact. Then f(X) is also compact.

PROOF

i. Consider $K \subset X$ compact. Let x be an accumulation point of K and assume by contradiction that it is not contained in K. Because the space is Hausdorff

$$\forall y \in K, \exists N_y \in \mathcal{F}_y, M_y \in \mathcal{F}_x \mid \text{int } N_y \cap M_y \subset N_y \cap M_y = \emptyset$$

The collection $\{$ int $N_y, y \in K \}$ is an open covering of K. By compactness, we can extract a finite subcovering of K, defined by some finite indexing set I

$$\bigcap_I M_{y_i} \cap K \subset \bigcap_I M_{y_i} \cap \bigcap_I N_{y_i} = \bigcap_I M_{y_i} \cap N_{y_i} = \varnothing$$

We both have that x is an accumulation point and that the neighborhood $\bigcap_I M_{y_i}$ does not intersect K, \bot

ii. We use the FIP characterization of compacity : consider a collection of closed sets in $F \subset X$, C with the FIP. The subset topology dictates that

$$\forall C \in \mathcal{C}, \ C = C' \cap F$$

Thus the elements of \mathcal{C} are also closed in X and by compacity of X their intersection is non-empty.

- iii. Skipped
- iv. Consider an open covering of f(X), \mathcal{U} . By continuity, $\{f^{-1}(U), U \in \mathcal{U}\}$ is a collection of open sets. It is also an open covering of X. By compacity of X, there exists a finite indexing set I such that

$$\bigcup_{i \in I} f^{-1}(U_i) = f^{-1}(\bigcup_{i \in I} U_i) = X \iff \bigcup_{i \in I} U_i \supset f(X)$$

i.e. I defines a finite subcovering of f(X)

Theorem 3.1: Heine-Borel

A set $E \subset \mathbb{R}$ is compact iff it is closed & bounded.

PROOF

- \Rightarrow : By proposition 3.3, we only need to prove that compacity in \mathbb{R} implies boundedness. Consider $K \subset \mathbb{R}$ compact. Assume by contradiction that it is not bounded. Without loss of generality assume K has no upper bound. The collection $\{[c, \infty[\cap K, c \in \mathbb{N}\} \text{ forms a base } / \text{ a collection of closed sets with the FIP. We both have that the intersection of the collection is empty and non-empty, <math>\bot$
- \Leftarrow : It is sufficient to show that sets of the form [a,b] are compact; closed subsets of compact sets are also compact (proposition 3.3) and the subset topology inherited from [a,b] is the same as the subset topology inherited from \mathbb{R} . We'll use the limit point characterization of compacity:

Let \mathcal{V} be a base in [a, b]. Thus $\mathcal{B} = \{B = \overline{\mathcal{V}}, B \in \mathcal{V}\}$ is also a base. Because the elements of \mathcal{B} are closed, bounded and non-empty, they contain their supremum. We argue now that

$$z = \inf_{\mathcal{B}} \max B \in B \quad \forall B \in \mathcal{B}$$

By definition of the infimum, $\forall \epsilon > 0$

$$\exists B_{\epsilon} \in \mathcal{B} \mid z + \epsilon > B_{\epsilon}$$

Since \mathcal{B} is a base

$$\forall B \in \mathcal{B}, \exists B' \in \mathcal{B} \mid B' \subset B \cap B_{\epsilon}$$

Since z is the infimum of the set of maximums

$$z \le \max B' \le \max B \cap B_{\epsilon} \le \max B_{\epsilon} < z + \epsilon$$

Thus for any $B \in \mathcal{B}$, for any $\epsilon > 0$,

$$]z - \epsilon, z + \epsilon \cap B \neq \emptyset$$

This implies that $z \in B$ since B is closed. Thus z is a limit point of \mathcal{B}

4 Sequences

Definition 4.1: Sequences & convergence

Let A be an arbitrary set. A **sequence** is any function $s : \mathbb{N} \to A$. A **subsequence** is a sequence derived from deleting some or no elements of a sequence.

Let A be a topological space. A sequence **converges** to $x \in A$, denoted $x_n \to x$, iff for all neighborhoods F of x, F eventually contains the sequence.

Consider again a sequence x_n in a topological space. x is an **accumulation point** of x_n iff all neighborhoods of x contain infinitely many elements of $\{x_n\}$ i.e.

$$\forall F \in \mathcal{F}_x, \ \forall N > 0, \ \exists n \ge N \mid \ x_n \in F$$

Example 1. Consider a sequence x_n in a topological space X.

- If the topology on X is the trivial one, the sequence converges to all $x \in X$.
- If the topology on X is the discrete one, the sequence converges to $x \iff \exists N \mid \forall n > N, \ x_n = x$

STATEMENT 1. Let X be a Hausdorff topological space. If a sequence converges in x, its limit is unique. PROOF Assume that x_n converges to two points, $x \neq y$. Then $\exists M \in \mathcal{F}_x$, $\exists N \in \mathcal{F}_y \mid N \cap M = \emptyset$. Eventually, both neighborhoods contain the sequence i.e. their intersection contains the sequence, but their intersection is empty \bot

Definition 4.2: Bases of countable type & first countability

A base is said to be of **countable type** if it is equivalent (in the sense of \succ) to a countable base $\mathcal{C} = \{C_i, i \in \mathbb{N}\}$

REMARK Note that $C \sim D$, where D writes

$$\mathcal{D} = \{ D_k, \ D_k = C_1 \cap C_2 \cap C_3 \cap ... \cap C_k \}$$

Notice that \mathcal{D} forms a new countable base of nested basis elements i.e. a base of countable type is equivalent to a base of nested basis elements.

A topological space is said to be **first countable** iff every point possesses a base of first countable type.

Definition 4.3: Sequential properties

Consider a topological space X:

• A set G is said to be **sequentially open** iff

$$x \in G, x_n \to x \implies x_n$$
 is eventually contained in G

• A set E is said to be **sequentially closed** iff

$$\{x_n\} \subset E, \ x_n \to x \implies x \in E$$