Mechanik San Wesser Blatte

Scites

1) $a_1 = mr^2 + l_2 + mgr$, E = const. $c = \sqrt{\frac{E - l_2}{2mr^2}} - mgr \cdot \frac{1}{m} = \frac{dr}{dt}$ $c = \sqrt{\frac{E - l_2}{2mr^2}} - mgr \cdot \frac{1}{m} = \frac{dr}{dt}$ $c = \sqrt{\frac{E - l_2}{2mr^2}} - mgr \cdot \frac{1}{m} = \frac{dr}{dt}$ $c = \sqrt{\frac{E - l_2}{2mr^2}} - mgr \cdot \frac{1}{m} = \frac{dr}{dt}$ $c = \sqrt{\frac{E - l_2}{2mr^2}} - mgr \cdot \frac{1}{m} = \frac{dr}{dt}$ $c = \sqrt{\frac{E - l_2}{2mr^2}} + \sqrt{c} = \frac{l_2}{2mr^2} + mgr$ $c = \sqrt{\frac{e - l_2}{2mr^2}} + \sqrt{c} = \frac{l_2}{2mr^2} + mgr$ $c = \sqrt{\frac{e - l_2}{2mr^2}} + \sqrt{c} = \frac{l_2}{2mr^2} + mgr$ $c = \sqrt{\frac{e - l_2}{2mr^2}} + \sqrt{c} = \frac{l_2}{2mr^2} + mgr$ $c = \sqrt{\frac{e - l_2}{2mr^2}} + \sqrt{c} = \frac{l_2}{2mr^2} + mgr$ $c = \sqrt{\frac{e - l_2}{2mr^2}} + \sqrt{c} = \frac{l_2}{2mr^2} + mgr$ $c = \sqrt{\frac{e - l_2}{2mr^2}} + \sqrt{c} = \frac{l_2}{2mr^2} + mgr$ $c = \sqrt{\frac{e - l_2}{2mr^2}} + \sqrt{c} = \frac{l_2}{2mr^2} + mgr$ $c = \sqrt{\frac{e - l_2}{2mr^2}} + \sqrt{c} = \frac{l_2}{2mr^2} + mgr$ $c = \sqrt{\frac{e - l_2}{2mr^2}} + mgr$

E=Veff => m.i2+l2/(2mr2)+mgr = l22+mgr

(=) mr =0 (=> 1 =0 (=> 1=0

this wears that r=const

= = 02 R + TR W sin2(0)

$$(x,y,z)=(\sin(\theta)\cdot r\cdot ,\cos(\theta)\cdot r)$$

 $(\sin(\theta)\cdot R\cdot\cos(\omega t),\sin(\theta)\cdot R\cdot\sin(\omega t),\cos(\theta)\cdot R)$

$$V = m \cdot g \cdot z = m \cdot g \cdot R \cdot \cos(\Theta)$$

$$T = \frac{m}{2} \left((v)^2 = \frac{m}{2} \cdot (x^2 + y^2 + z^2) \right)$$

$$= \frac{m}{2} \left((\cos(\Theta) \cdot R \cdot \cos(\omega t) - \sin(\Theta) \cdot R \cdot \omega \cdot \sin(\omega t) \right)^2 + (\cos(\Theta) \cdot R \cdot \sin(\omega t) + \sin(\Theta) \cdot R \cdot \omega \cdot \cos(\omega t))^2 (-\cos(\Theta) \cdot R)^2 \right)$$

$$= \frac{m}{2} \left((\cos(\Theta) \cdot R \cdot \sin(\omega t) + \sin(\Theta) \cdot R \cdot \omega \cdot \cos(\omega t) \right)^2 + (\cos(\Theta) \cdot R \cdot \cos(\omega t))^2 + 2 (\cos(\Theta) \cdot \sin(\Theta) \cdot \cos(\omega t) + \sin(\omega t))^2 + (\cos(\Theta) \cdot R \cdot \sin(\omega t))^2 + (\cos(\Theta) \cdot R \cdot \cos(\omega t))^2 + (\cos(\Theta) \cdot R)^2 \right)$$

$$= \frac{m}{2} ((\cos(\Theta) \cdot R \cdot \cos(\omega t))^2 \cdot (\sin(\omega t) + \cos(\omega t)) + (R \cdot \omega \cdot \sin(\Theta))^2 \cdot (\cos(\omega t) + \sin(\omega t))^2 + (-\cos((\Theta) \cdot R)^2) \cdot (\cos((\Theta) \cdot R)^2)^2 \right)$$

$$= \frac{m}{2} ((\cos(\Theta) \cdot R)^2) (\cos((\Theta) \cdot R)^2) + (\cos((\Theta) \cdot R)^2) (\cos((\Theta) \cdot R)^2) \cos((\Theta) \cdot R)^2 \cos((\Theta) \cos((\Theta) \cdot R)^2 \cos((\Theta) \cdot R)^2 \cos((\Theta) \cdot R)^2 \cos((\Theta) \cos((\Theta) \cdot R)^2 \cos((\Theta) \cdot R)^2 \cos((\Theta) \cos((\Theta) \cdot R)^2 \cos((\Theta) \cdot R)^2 \cos((\Theta) \cos((\Theta) \cdot R)^2 \cos((\Theta$$

folglich:

For Rw21 gibt es hohere er lauble Energien, als

For Rwin gist es zwei instabile Gleichgewichte und zwei stabile Ggw. for Dwich gist es jeweils

nor eines. Das stabile ist immer bei 0= TT

(a)
$$V(x_1y) = -\frac{1}{\sqrt{x^2+y^2}}$$

$$-\frac{1}{\sqrt{2}}\sqrt{1+\sqrt{2}}\sqrt{3}\sqrt{2}$$

$$-\frac{2y}{(x^2+y^2)^3/2}\sqrt{2}$$

$$-\frac{2y}{(x^2+y^2)^3/2}\sqrt{2}$$

$$-\frac{2y}{(x^2+y^2)^3/2}\sqrt{2}$$

C)
$$V(x,y) = \frac{x^2}{2} + y^2$$

 $-\frac{3}{2}V = \left(\frac{x}{2}\right) = im \cdot \left(\frac{x}{2}\right)$

=)
$$-x = m \cdot \dot{x}$$

 $-2y = m \cdot \dot{y}$
 $= -(1 + \exp(10(\sin^2(x)\sin^2(y) - \frac{1}{2})))^{-1}$
 $= -(1 + \exp(10(\sin^2(x)\sin^2(y) - \frac{1}{2})))^{-2} \cdot (20 \cdot \sin^2(y) \cdot \cos(x)) \cdot (20 \cdot \sin^2(y) \cdot \cos(x)) \cdot (20 \cdot \sin^2(x)\sin^2(y) \cdot \cos(x)) \cdot (20 \cdot \sin^2(x)\sin^2(y) \cdot \cos(x)) \cdot (20 \cdot \sin^2(x)\sin^2(x)\sin^2(y) \cdot \cos(x)) \cdot (20 \cdot \sin^2(x)\sin^2(x)\sin^2(y) \cdot \cos(x)) \cdot (20 \cdot \sin^2(x)\sin^2(x)\sin^2(x)\sin^2(x)\cos^2(x)\cos^2(x)\sin^2(x)\cos^2(x$

$$= m \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

3 al zo den Plots:

da = in Zentralpotential ist bevegt sich unser Teilehen
immer in einer Ebene. Wir hoben für die ersten Seiden Plots
elipsen oud für den letzten eine zende

El Der erste plut ist nicht geschlossen (der 3. auch) und der Zweite ist wie der eine ellipse. En(1) ist zwar kein Zentralpstential, aber anscheinend sind die Anfange bedirgungen Richtig gewählt.

SI Die linien schließen sich nicht, da die statbodingungen wicht lichtig gewahlt worden. (Und es kein Zentralpotential ist!