Číselné soustavy

Úvod

První otázka, která se zaměřuje na počítání a matiku a jak to vlastně všechno funguje než přímo na hardware. Jsou tu 3;4 otázky, které jsou podobné. Méně informací na pamatování. Více na pochopení. Enjoy.

Využití číselných soustav

Číselná soustava je prostý způsob reprezentace čísel. Soustavy rozlišujeme podle toho, kolik můžeme použít znaků pro jednu cifru (př. Desítková - deset, Dvojková – dva).

Mezi hlavní využití patří, zejména v IT, dvojková soustava – nejvhodnější, protože používá nejjednodušší zápis a to 1 pro pravdu a 0 pro nepravdu. Počítači tak stačí znát pouze dva stavy (0 a 1 tj. vypnuto, zapnuto). Dále se v IT využívá např. šestnáctková (MAC adresy, IPv6), šedesátková (úhly, čas).

Funkčnost

Poziční soustavy jsou charakterizovány tzv. základem neboli bází, což je obvykle kladné celé číslo definující maximální počet číslic, které jsou v dané soustavě k dispozici.

Každá soustava, pokud překročí svůj nejvyšší znak přesouvá se první znak do vyššího řádu. Hodnota na každým řádu je rovna ($c*z\'aklad\c{c\'islo\c}i\'adu$)– polyadický zápis.

U všech soustavy fungují všechny operace a převody na stejném principu.

Převody mezi číselnými soustavami

- 1. Způsob Pomocí polyadického zápisu čísla. Vhodné pro převod do desítkové.
- Způsob Dělení základem soustavy (Pro převod z desítkové soustavy).
 Dělíme základem soustavy a sepisujeme zbytek po dělení, výsledkem jsou zbytky seřazeny odzadu. Poté desetinná čísla roznásobíme základem soustavy. Pro člověka zdlouhavé, vhodné pro výpočetní techniku.
- 3. Způsob Postupným násobením základem soustavy (Převod z desítkové). Převedeme číslo na desetinné a postupně ho násobíme základem jiné soustavy. Zapisujeme si výsledky za desetinou čarou
- 4. Způsob Bitová mřížka Pokud převádíme ze soustav, kde jsou jejich základy navzájem mocniny můžeme si číslo rozdělit na menší části. Jednotlivé číslice napsat zvlášť a rozdělit je mezerou

Aritmetické operace v různých číselných soustavách

Sčítání

Provádí se ve všech soustavách stejně. Sčítají se číslice v každém řádu. Pokud součet je roven nebo větší než základ soustavy, napíše se o kolik číslo přesáhlo soustavu a k dalšímu sčítání se přičte zbytek, který vyšel (kolikrát přeskočil základ soustavy).

Odčítání

- 1. Způsob Každá číslice v jednotlivých řádech se odečtou, pokud odečítáme větší číslo od menšího => odečteme ho celé, a při dalším odečtu musíme odečíst ještě zbytek.
- 2. Způsob sčítáním pomocí dvojkového doplňku Nejprve inverze odčítaného čísla (0=1 a 1=0), poté přičtení jedničky k odčítanému číslu a následně sečteme s číslem, od kterého odečítáme.

Násobení

- 1. Způsob Vynásobíme každou číslici každou, pokud přesáhneme základ soustavy přičítáme k dalšímu násobení zbytek, po každém vynásobení prvního čísla posouváme další násobení o jednu číslici doleva, nakonec všechny vynásobená čísla sečteme.
- 2. Způsob Sčítáme stejné číslo tolikrát kolikrát ho chceme vynásobit, pro člověka zdlouhavé, vhodnější pro počítač

Dělení

Označíme si největší číslo, do kterého se vejde dělitel, sepíšeme kolikrát se do čísla vejde a toto číslo vynásobíme s dělitelem a odečteme od označeného čísla a pokračujeme, dokud nejsme na konci čísla a zbytek je 0.

Polyadický zápis čísla

Zápis čísla, kde každá hodnota na jednotlivým řádu je rovna $c*z\'aklad\ ^{\'cislo\ \'r\'adu}$, a mezi všemi těmito výrazy je sčítání, pokud čísla sečteme měli bychom dostat původní číslo. Využívá se při převodu čísel do desítkové soustavy.

$$a = a_n z^n + a_{n-1} z^{n-1} + \dots + a_2 z^2 + a_1 z^1 + a_0 z^0$$

Definice kódu

Kód je předpis pro zobrazení dat do jiné reprezentace (z jedné množiny do druhé), využívá se pro zrychlení, zkrácení zápisu a čtení informací a ke kompresi dat.

I – Vstupní množina informací, které máme zobrazit

Z – Výstupní množina informací

Φ – Předpis, podle kterého přiřazujeme prvky

$$Z = \Phi(I)$$

Data musí být

- Srozumitelná pro počítač
- Snadno reprezentovatelná
- Vhodně převoditelná pro člověka
- Dostatečně obecná

Příklady a využití kódování

BCD kód – kód, který desítkové číslo rozdělí na číslice 0 až 9 a převádí každou číslici zvlášť podle dvojkový soustavy (bitová mřížka). Ta normální tabulka.

Příklad: 3458987 = 0011 0100 0101 1000 1001 1000 0111

ASCII kód – Definuje velké množství znaků jako binární číslo. Obsahuje písmena, číslice závorky atd. Původně byla sedmibitová (dnes 7+1 bitová kvůli nedostatku znaků).

	Х4	Х3	Х2	х1
0	. 0	0	1	1
1	0	1	0	0
2	0	1	0	1
2 3	0	1	1	0
4	0	1	1	1
5 6 7	1	0	0	0
6	1	0	0	1
7	1	0	1	0
8 9	1	0	1	1
9	1	1	0	0
10	1	1	0	1
11	1	1	1	.0
12	1	1	1	1
13	0	0	0	0
14	0	0	0	1
15	0	0	1	0

Grayův kód

Kód spočívá v tom, že každý následující číslo se smí lišit pouze v jednom bitu. Původně navržen pro zabránění hazardu spínacím relé, dnes se používá pro opravu chyb v digitální komunikaci, pro některé snímače poloh, pro Kargnauhovu mapu.

Zobrazení dat v počítači

Zobrazení celých čísel

- 1. Bez znaménka nemusíme řešit záporná čísla, klasické zobrazení celých čísel 128₁₀
- 2. Se znaménkem
 - 2.1. Způsob Přímý kód Vyčlenění prvního bitu pokud je 1 je celé číslo záporné. Nutnost ověřovat sčítáním a odčítáním nepraktické. Nahrazen inverzním kódem.
 - 2.2. Způsob Inverzní kód Záporného čísla dosáhneme inverzí všech bitů. 2 reprezentace čísla nula.
 - 2.3. Způsob Dvojkový doplněk Inverze všech bitů a přičtení k číslu 1. Vše je ještě sčítáno sčítačkou, pokud dojde k přetečení (počítač rozpozná záporné číslo) ořízne přetečený bit a má správný výsledek, tím se také odstraní kladná a záporná nula.

Zobrazení desetinných čísel

- 1. S pevnou desetinnou čárkou klasické zobrazení (1,459893; 2,1284) Nevýhodou je, že musíme vědět kolik řádů chceme zobrazit
- 2. S plovoucí desetinnou čárkou (Normalizovaný tvar) Vždy před desetinnou čárkou je jednička
 - Sčítání, odčítání upravíme na společný exponent a sčítáme/odčítáme mantisy
 - Násobení, dělení vydělíme/vynásobíme mantisy a sečteme/odečteme exponenty

První bit mantisy je vždy jednička, u nenulových čísel není potřeba

C = číslo m = mantisa Z = základ soustavy e = exponent

Příklad: 1,602 * 10⁻¹⁹

 $C = m * Z^e$

Zobrazení textu

Text je zobrazen pomocí různých znakových sad

- ASCII 8bitová sada (dříve 7 bit) zobrazuje skoro všechny používané znaky. Kvůli nedostatku znaků (před 8bit) se vymyslela Unicode tabulka.
- Unicode Spousty verzí, zahrnuje většinu znaků. Snaží se být jednotná, univerzální, jednoznačná.
 - Definuje několik způsobů, jak reprezentovat text UTF-8 (1B pro ASCII znak), UTF-16 (2B pro ASCII znak)

Normalizace

Každé číslo lze napsat nekonečným množstvím způsobů. Číslo má normalizovaný tvar, není-li možné posunout mantisu doleva.

 $0.011*2^3$ – nenormalizovaný tvar $1.100*2^2$ – normalizovaný tvar

Skrytá jednička

Bit v nejvyšším řádu je vždy roven 1. Lze ho ze zápisu nenulových čísel vypustit. Platí samozřejmě pro normalizovaná čísla a pro normální zápis se nepoužívá (tam kde je celé číslo – nenormalizované).

Zdroje

- 1. https://cs.wikipedia.org/wiki/Line%C3%A1rn%C3%AD k%C3%B3d
- 2. https://cs.wikipedia.org/wiki/Dvojkov%C3%A1 soustava#P%C5%99%C3%ADm%C3%BD k%C3%B3d
- 3. https://cs.wikipedia.org/wiki/Unicode
- 4. https://cs.wikipedia.org/wiki/ASCII
- 5. https://cs.wikipedia.org/wiki/V%C4%9Bdeck%C3%BD z%C3%A1pis %C4%8D%C3%ADsel
- 6. https://cs.wikipedia.org/wiki/K%C3%B3dov%C3%A1n%C3%AD znak%C5%AF
- 7. https://it-slovnik.cz/pojem/mantisa
- 8. https://cs.wikipedia.org/wiki/Dvojkov%C3%A1 soustava#P%C5%99%C3%ADm%C3%BD k%C3%B3d
- 9. <a href="https://cs.wikipedia.org/wiki/Pohybliv%C3%A1_%C5%99%C3%A1dov%C3%A1_%C4%8D%C3%A1rka#Zp%C5%AFsoby_ukl%C3%A1d%C3%A1n%C3%AD_%C4%8D%C3%ADsel_v_plovouc%C3%AD_desetinn%C3%A9_%C4%8D%C3%A1rce
- 10. https://cs.wikipedia.org/wiki/Pohybliv%C3%A1 %C5%99%C3%A1dov%C3%A1 %C4%8D%C3%A1rka
- 11. https://cs.wikipedia.org/wiki/Nejv%C3%BDznamn%C4%9Bj%C5%A1%C3%AD_bit
- 12. https://cs.wikipedia.org/wiki/P%C5%99%C3%ADznak_znam%C3%A9nka
- 13. https://cs.wikipedia.org/wiki/Znam%C3%A9nkov%C3%BD bit
- 14. https://cs.wikipedia.org/wiki/Integer
- 15. http://voho.eu/wiki/realna-cisla-radova-mrizka/
- 16. https://www.algoritmy.net/article/80/Prevod-cisla-mezi-soustavami
- 17. https://matematika.cz/prevod
- 18. https://www.prevod.cz/popis.php?str=564&parent=y
- 19. https://it-slovnik.cz/navody/prevody-ciselnych-soustav