Ітераційні алгоритми розподілу КЕ

Маленький вступ

Суть даної групи алгоритмів полягає в довільному розбитті початкового графу на підграфи та за допомогою парного або групового обміну вершин (по одній, по дві, ...) з підграфу в підграф (не в середені підграфу) покращують розбиття. При цьому для кожної ітерації визначають ті вершини, перестановка яких забезпечує максимальне зменшення числа зовнішніх зв'язків між підграфами або максимально покращується інший показник якості з урахуванням використаних обмежень.

Тобто на кожній ітерації ми завжди маємо результат розбиття. Кожному варіанту розбиття початкового графу G(X,V) на підграфи $G_A,G_B,...G_S,...G_K$ відповідає значення показника оптимізації m.

Структура ітераційного процесу покращення варіанту k розбиття аналогічна градієнтним методам оптимізації, в яких на кожній ітерації виконується рух у напрямку зменшення (збільшення) показника оптимізації. Зміні змінних в данному випадку відповідає перестановка елементів з різних вузлів (вершини з різних підграфів).

Допустимо, що виконано вибір пари вершин $x_g \in G_A$ та $x_h \in G_B$ та вони взаємно міняються місцями. В цьому випадку отримаємо новий новий варіант розбиття k1 з підграфами $G_A^{'}, G_B^{'}, \dots G_S \dots G_K$, де $G_A^{'} = G_A \Big|_{x_g} \bigcup x_h$, $G_B^{'} = G_B \Big|_{x_h} \bigcup x_g$. Цьому варіанту відповідає значення критерію m_1 . Якщо $\Delta m_1 = m - m_1 > 0$, то такий обмін є ефективним. Розглядаючи варіант розбиття k1 знову як початковий, можна здійснити вибір другої пари вершин, обмін яких приведе до зменшення критерія m_2 і т.д.

Таким чином, у ході указаного ітераційного процесу утворюється послідовність варіантів розбиття $k, k_1, \ldots, k_k (1, 2, \ldots, k)$, яким відповідає послідовність, що убуває критерію $\triangle m, \triangle m_1, \ldots, \triangle m_k$.

Оскільки значення критерія обмежено з низу величиною $_{\triangle}m_{0 \min}$, то на деякому кроці k_0 . процес мінімізації закінчиться. Це свідчить про отримання варіанту розбиття, якому відповідає локальний мінімум функції m. З цього моменту обмін любої пари елементів не приводить до зменшення значення критерія (зміну критерія m приведено на рис.). Для подальшого покращення варіанту компонування слідує переставляти групи елементів.

Зміна критерію *т* (зміна числа зовнішніх зв'язків)

Можуть бути різні варіанти

Варіант компонування можна покращити груповими перестановками вершин

 $\stackrel{(*)}{=}$ - початковий участок потрібно малювати більш круто, який перейде в пологий участок, а потім паралельно осі k

 $\stackrel{(**)}{\longrightarrow}$ - при групових перестановках (при парних перестановках) показник Δm може погіршуватися, а потім починає збільшуватися та знову становиться пологим.

Таким чином розглянута процедура оптимізації лежить в основі алгоритму парних перестановок (по одній вершині з підграфу в підграф). Відомо декілька методів, які відрізняються правилами вибору елементів x_{g} , x_{h} для перестановки та моделями опису схеми.

Другий спосіб полягає наступному. Вибирається деякий вузол G_r а в ньому вершина x_i . Здійснюється спроба обміну цього елементу x_i послідовно з усима елементами $x_j \in G_s$ та кожного разу визначається Δm .

В алгоритмі парних перестановок підбирають таку пару вершин, для якої $\Delta m \big(x_{_g} \leftrightarrow x_{_h} \big) = \max \ \text{приймає максимальне значення. Очевидно, в цьому випадку час пошуку успішного обміну збільшується, проте в результаті обміну число міжвузлових з'єднань буде менше.$

Розрахунок приростів визначається моделю опису КС.

Початковий варіант компонування (до перестановки)

Число зв'язків між вершиною $x_{g}\in G_{A}$ та вершинами G_{B} та вершиною $x_{h}\in G_{B}$ з вершинами G_{A}

$$m_{gh} = 5_{(g)} + 3_{(h)} - 1_{gh} = 7$$

 $\mathbf{5}_{(g)}$ - сума елементів матриці |A| вершини x_g з інцидентними вершинами $G_{\!\scriptscriptstyle B}$.

Початковий варіант компонування після перестановки вершин $x_{\scriptscriptstyle g} \leftrightarrow x_{\scriptscriptstyle h}$

$$m_{gh} = 1_{(h)} + 3_{(g)} - 1_{gh} = 3$$

 $\Delta m = m_{gh} - m_{hg} = 7 - 3 = 4$

Перстановка є доцільною - ефективна. Кількість зв'язків зменшено на 4.

Зрозуміло, що кожному варіанту компонування тяжко малювати варіант графу та підраховувати Δm при перестановці пари вершин.

Кожного разу бажано знати як змінюється (збільшується/зменшується) число зовнішніх зв'язків при парніх перестановці вершин з підграфу в підграф.

Тому визначемо вираз для підрахунку прирісту числа ребер, що з'єднують підграф $G_A(X_A,V_A)$ та $G_B(X_B,V_B)$ при парному обміні вершин $x_e \leftrightarrow x_h$, $x_e \in G_A$, $x_h \in G_B$.

Очевидно, що парна перестановка вершин x_{g} та x_{h} приведе до зміни тільки тих ребер, що зв'язують підграфи $G_{\scriptscriptstyle A}(X_{\scriptscriptstyle A},V_{\scriptscriptstyle A})$ та $G_{\scriptscriptstyle B}(X_{\scriptscriptstyle B},V_{\scriptscriptstyle B})$, які є інцидентними вершинам, тобто вершинам x_g та x_h .

Зміна ребер при перестановці вершин в загальному випадку визначається так. Ми працюємо з матрицею зв'язку тому визначемо в загальному випадку зміну зовнішніх (міжвузлових) з'єднань при обміні місцями елементів $x_g \in G_A$ та $x_h \in G_B$. Слід пам'ятати, що при обміні переросподілюються тільки з'єднання, що належать елементам x_{g} та x_{h} (при перестановці вершин x_{g} та x_{h} змінюється число тільки тих зв'язуючих ребер, які є інцидентними цим (x_g ; x_h) вершинам).

Згідно рисунку число зовнішніх зв'язків до обміну є рівним.
$$m_{gh} = \sum_{x_j \in (G_B/x_h)} a_{gj} + \sum_{x_i \in (G_A/x_g)} a_{hi} + \sum_{x_k \in v_{ij}} a_{gk} + \sum_{x_k \in v_{ij}} a_{hk} + a_{gh} + c$$

Це так визначається число зовнішніх зв'язків між $G_{\!\scriptscriptstyle A}\,,G_{\!\scriptscriptstyle B}\,,G_{\!\scriptscriptstyle K}\,,$ коли $x_{\!\scriptscriptstyle g}\in G_{\!\scriptscriptstyle A}$ та $x_{\!\scriptscriptstyle h}\in G_{\!\scriptscriptstyle B}\,.$

 $\sum_{x_i \in (G_B/x_b)} a_{gi}$ - число зв'язків, які має $x_g \in G_A$ з вершинами (без урахування x_h - G_B/x_h) , що

розташовані в $\,G_{\!\scriptscriptstyle B}\,$, крім з вершиною $\,x_{\!\scriptscriptstyle h}\,$, яка підлягає обміну з $\,x_{\!\scriptscriptstyle g}\,$.

 $\sum_{a_i \in (G_A/x_a)} a_{hi}$ - число зв'язків, які має $x_h \in G_B$ з вершинами, що розташовані в G_A , крім з

вершиною $x_{\scriptscriptstyle \varrho}$, яка підлягає обміну с $x_{\scriptscriptstyle h}$.

 $\sum_{x_k \in v_{ij}} a_{gk}$, $\sum_{x_k \in v_{ij}} a_{hk}$ - кількість зв'яків, які мають вершини x_g та x_h з вершиною x_k , яка

разташована в $G_{\!\scriptscriptstyle K}$. Треба розуміти, що кількість їх не змінюється при перестановці вершин X_g ta X_h .

 $a_{\it gh}$ - число зв'язків між вершинами $x_{\it g}$ та $x_{\it h}$, що переставляться, які пораховані до та після

с - число зв'язків між елементами, які не переставляються.

Це все в загальному випадку по обміну x_{g} та x_{h}

Після перестановки кількість зовнішніх зв'язків стане:
$$m_{hg} = \sum_{x_i \in \left(G_A/x_h\right)} a_{gi} + \sum_{x_j \in \left(G_B/x_g\right)} a_{hj} + \sum_{x_k \in v_{ij}} a_{gk} + \sum_{x_k \in v_{ij}} a_{hk} + a_{hg} + c$$

 $G_{\!\scriptscriptstyle A}^{'}$, $G_{\!\scriptscriptstyle B}^{'}$ - підграфи , в яких $x_{\!\scriptscriptstyle g}$ та $x_{\!\scriptscriptstyle h}$ помінялися місцями, тобто $x_{\!\scriptscriptstyle g}$ переставили з $G_{\!\scriptscriptstyle A}$ в $G_{\!\scriptscriptstyle B}$, а $x_{\scriptscriptstyle h}$ -з $G_{\scriptscriptstyle B}$ в $G_{\scriptscriptstyle A}$. $m_{\scriptscriptstyle gB} = \sum_{\scriptscriptstyle x_{\scriptscriptstyle o} \in G_{\scriptscriptstyle A}} a_{\scriptscriptstyle gB}$

Тоді приріст числа зовнішніх зв'язків між $G_{\scriptscriptstyle A}^{^{\scriptscriptstyle \prime}}$ та $G_{\scriptscriptstyle B}^{^{\scriptscriptstyle \prime}}$ визначається таким чином:

$$\Delta m = m_{gh} - m_{hg} = \left(\sum_{x_j \in (G_B/x_h)} a_{gj} - \sum_{x_i \in (G_A/x_h)} a_{gi}\right) + \left(\sum_{x_i \in (G_A/x_g)} a_{hi} - \sum_{x_j \in (G_B/x_g)} a_{hj}\right)$$

- m_{gA} кількість з'єднань x_g з елементами G_A , тобто $m_{gA} = \sum_{x_* \in G_A} a_{gA}$ внутрішні зв'язки
- m_{hB} кількість з'єднань x_h з елементами G_B , тобто $m_{hB} = \sum_{x \in G} a_{hB}$ внутрішні зв'язки
- m_{gB} кількість з'єднань x_{g} з елементами G_{B} , тобто <mark>зонішні зв'язки</mark>
- m_{hA} кількість з'єднань x_h з елементами G_{A} , тобто $m_{hA} = \sum_{x_h \in G_{R}} a_{hA}$ зонішні зв'язки

$$\Delta m_{x_g \leftrightarrow x_h} = \underbrace{\left(m_{gB} - m_{gA}\right)} + \underbrace{\left(m_{hA} - m_{hB}\right)} - 2a_{gh}$$

Різниця числа суми зовнішніх та внутрішніх зв'язків

- a_{gh} число зв'язків між x_{g} та x_{h} .

Таким чином, значення Δm може приймати наступні значення:

- $\Delta m=0$ тобто при обміні $x_{_g}$ та $x_{_h}$ число зовнішніх зв'язків не змінюються
- $\Delta m > 0$ тобто при обміні x_g та x_h число зовнішніх зв'язків зменшується
- $\Delta m < 0$ тобто при обміні x_{g} та x_{h} не бажана, тому що призводить до збільшення числа зовнішніх зв'язків

Визначемо $\Delta m_{x_o \leftrightarrow x_h}$ для розглянутого раніше прикладу

$$\Delta m_{x_g \leftrightarrow x_h} = (5-2) + (3-0) - 2 \cdot 1 = 4$$

$$\Delta m_{x_e \leftrightarrow x_h} = (m_{gB} - m_{gA}) + (m_{hA} - m_{hB}) - 2a_{gh} > 0$$

Для цюєї формули $\Delta m>0$. Ця формула є інваріантною другій формулі. При помноженні на -1 отримаємо

$$-\Delta m_{x_g \leftrightarrow x_h} = (m_{gA} - m_{gB}) + (m_{hB} - m_{hA}) + 2a_{gh} < 0$$
$$\Delta m_{x_g \leftrightarrow x_h} = (2 - 5) + (0 - 3) + 2 \cdot 1 = -4$$

Якщо матриця задана матрицею зв'язку $A = \left\| a_{ij} \right\|_{n \times n}$, то розбиття початкового графу

G(X,V) на підграфи еквівалентно розбиттю матриці на K підматриць, де K є кількість вершин в підграфі.

Розбиття початкового графу на підграфи ітераційного алгоритму, описанного матрицею |A| в загальному випадку можна представити так

A =	G_1	I	x_1 \vdots x_i	a_{12}		 x_i a_{1i}	G_2 II \dots a_{1k} A_{ig} $\sum n_{nm}$	 x_g a_{1g}	$a_{_{1m}}$		 X_n	\vdots $\sum a_{iII} - \sum a_{iI}$	$ \begin{array}{c} III - I \\ \sum a_{1III} - \sum a_{1I} \\ \vdots \\ \sum a_{iIII} - \sum a_{iI} \end{array} $	
	G_2	II	x_f : x_g		A_{gi}		A_{gg}			A_{gn}		I – II	I – III	II – III
	G_3	III	X_m : X_n		A_{ni}		A_{ng}			A_{nn}			$\sum a_{ml} - \sum a_{mll}$	$\sum a_{nll} - \sum a_{nlll}$

i, g, n - кількість вершин в підграфах *I, II, III*

 A_{ii} , A_{gg} , A_{nn} - диагональні підматриці однакової розмірності

 $i,\,g,\,n$ - кількість рядків-стовпчиків - розмірність підматриць. Враховуючи те, що зручно працювати з квадратними підматрицями однакової розмірності, то $i=g=n,\,a\,A_{ii}\,,\,A_{gg}\,,\,A_{nn}$ - підматриці одинакової розмірності. Ми можемо штучно розмірності підматриць вировняти, вводячи фіктивни вершини (вершини з нульовими зв'язками.

 $A_{\it ig}$, $A_{\it in}$, $A_{\it gn}$ - побічні півматриці однакової розмірності

 $\sum g_{\scriptscriptstyle nm}$ - *сума* елементів кожного рядка діагональної підматриці - число внутрішніх зв'язків даної вершини у відповідному підграфі $G_1^0 = \left\{x_8, x_{14}, x_6, x_1\right\}, \ G_2^0 = \left\{x_7, x_2, x_3, x_{13}, x_{12}\right\},$ $G_3^0 = \left\{x_4, x_5, x_9, x_{10}, x_{11}\right\}$

 $\sum n_{_{nm}}$ - **сума** елементів кожного рядка побічної підматриці - число зовнішніх зв'язків даної вершини з вершинами, що знаходяться в інших підграфах.

 $\sum a_{1I}$ - **сума** зв'язків першої вершини з усіма іншими вершинами, включених до підграфу I - внутрішні зв'язки першої вершини в I підграфі.

 $\sum a_{_{1II}}$ - **сума** зв'язків першої вершини, включенної до підграфу *I*, з усима вершинами, ключеними до *II* підграфу (перший рядок ІІ підграфу) - зовнішні зв'язки, які має перша вершина з усима вершинами, включеними до *II* підграфу.

 $\sum a_{{\scriptscriptstyle III}} - \sum a_{{\scriptscriptstyle II}}$ - різниця зовнішніх та внутрішніх зв'язків первоі вершини.

Визначаємо різницю для всіх вершин, отримаємо вектор стовпчики (*II-I, I-III*), (*III-I, I-III*), (*III-II, II-III*). Вибираєємо максимальне (від'ємне ?) значення у відповідних вектор-стовпчиках, які належать конкретним вершинам. Ці вершини переставляються з підграфу в під

Операція парного обміну вершин x_g та x_h зводиться до перестановки відповідних рядків та стовпчиків (x_g та x_h) в |A|.

Процес оптимального розбиття початкового графу G(X,V) на підграфи полягає у визначенні на кожній ітерації таких парних перестановок рядків та стовпчиків в початковій матриці |A|, при яких зростає (збільшується) сума елементів у діагональних підматрицях.

 $A_{gg}, (g=\overline{1,n}),$ що рівносильно мінімізації числа з'єднувальних зовнішніх зв'язків (мінімізації суми елементів в побічних підматрицях). $m=\min$ при умові, що $v_{ii}, v_{oo}, v_{nn}=\max$.

Переваги інтераційного алгоритму можна виділити такі:

- на кожній ітерації маємо результат компонування
- процесом оптимізації ми управляємо
- вибираємо вершини з урахуванням $\Delta m_{x_g \leftrightarrow x_h}$

Ітераційний алгоритм компонування в загальному випадку можна представити

