Grundbegriffe der Informatik Aufgabenblatt 5

Matr.nr.:						
Nachname:						
Vorname:						
Tutorium:	Nr. Name des				des Tutors:	
Ausgabe:	18. Nov	embe	r 200	9		
Abgabe:	27. November 2009, 13:00 Uhr im Briefkasten im Untergeschoss von Gebäude 50.34					
Lösungen werden nur korrigiert, wenn sie • rechtzeitig, • in Ihrer eigenen Handschrift, • mit dieser Seite als Deckblatt und • in der oberen linken Ecke zusammengeheftet abgegeben werden.						
Vom Tutor auszufüllen:						
erreichte Punkte						
Blatt 5:		/	20			
Blätter 1 – 5:		/	93			

Aufgabe 5.1 (2+2+1+1 Punkte)

Sei A eine Menge und $R \subseteq A \times A$ eine Relation über A. Zeigen Sie:

- a) R ist transitiv $\Rightarrow R \circ R \subseteq R$.
- b) $R \circ R \subseteq R \Rightarrow R$ ist transitiv.
- c) R ist transitiv und reflexiv $\Rightarrow R \circ R = R$.
- d) R ist transitiv und reflexiv $\Rightarrow R^* = R$.

Aufgabe 5.2 (3 Punkte)

Es seien A, B, C Mengen.

- Geben Sie eine bijektive Abbildung $F: C^{A \times B} \to C^{B \times A}$ an.
- Beweisen Sie, dass Ihre angegebene Funktion *F* injektiv ist.

Aufgabe 5.3 (1+2+2 Punkte)

Gegeben seien die Homomorphismen

- $h: \{a, b, c\}^* \to \{0, 1\}^* \text{ mit } h(a) = 10, h(b) = 01 \text{ und } h(c) = 101 \text{ und$
- $g: \{a, b, c\}^* \to \{0, 1\}^* \text{ mit } g(a) = 10, g(b) = 01 \text{ und } g(c) = 10001.$
- a) Finden Sie ein Wort w mit h(w) = 100101101.
- b) Finden Sie zwei Wörter $w_1, w_2 \in \{a, b, c\}^*$, für die gilt: $w_1 \neq w_2 \land h(w_1) = h(w_2)$.
- c) Geben Sie eine rekursive Definition für eine Abbildung $u: \{0,1\}^* \to \{a,b,c,\bot\}^*$ an, für welche die beiden folgenden Aussagen gelten:

$$\forall w \in \{0,1\}^* : (\exists w' \in \{\mathtt{a},\mathtt{b},\mathtt{c}\}^* : g(w') = w) \Rightarrow g(u(w)) = w \\ \forall w \in \{0,1\}^* : (\forall w' \in \{\mathtt{a},\mathtt{b},\mathtt{c}\}^* : g(w') \neq w) \Rightarrow (u(w))(|u(w)| - 1) = \bot$$

Aufgabe 5.4 (3+3 Punkte)

- a) Gibt es einen Homomorphismus $h: \mathbb{Z}_8^* \to \mathbb{Z}_2^*$, so dass gilt:
 - $\forall w \in Z_8^* : Num_2(h(w)) = Num_8(w) ?$

Falls Ihre Antwort "ja" ist: Geben Sie für alle $w \in Z_8$ das Wort h(w) an.

Falls Ihre Antwort "nein" ist: Erklären Sie, warum es einen solchen Homomorphismus nicht geben kann.

b) Gibt es einen Homomorphismus $h: \mathbb{Z}_3^* \to \mathbb{Z}_2^*$, so dass gilt:

$$\forall w \in Z_3^* : Num_2(h(w)) = Num_3(w)$$
?

Falls Ihre Antwort "ja" ist: Geben Sie für alle $w \in Z_3$ das Wort h(w) an.

Falls Ihre Antwort "nein" ist: Erklären Sie, warum es einen solchen Homomorphismus nicht geben kann.