

Test Report

Report Number: 3183595MPK-002A Project Number: 3183595 February 26, 2010

Testing performed on the Quantum 1000 Base Station Model Number: QUANTUM 1000 FCC ID: XN3-Q1000-25-5

to

FCC Part 27 Subpart M

for

PUREWAVE NETWORKS

Test Performed by:

Intertek Testing Services NA, Inc 1365 Adams Court Menlo Park, CA 94025 **Test Authorized by:**

PUREWAVE NETWORKS 2660-C Marine Way Mountain View, CA 94043 USA

Prepared by:	127Shove	Date:	February 26, 2010	
	Krishna Vemuri, Senior EMC Engineer			
Reviewed by:	oll & X	Date:	February 26, 2010	
	Ollie Moyrong, Engineering Manager			

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. This report must not be used to claim product endorsement by A2LA, NIST nor any other agency of the U.S. Government.

Equipment Under Test

Report No. 3183595MPK-002A

Equipment Under Test:	Quantum 1000 Base Station
Trade Name:	PUREWAVE NETWORKS
Model No.:	QUANTUM 1000
Serial No.:	EMCProto1
FCC ID:	XN3-Q1000-25-5
Applicant:	PUREWAVE NETWORKS
Contact:	Mr. Jas Dhaliwal
Address:	2660-C Marine Way
	Mountain View, CA 94043
Country	USA
Tel. number:	650-528-5200
Fax number:	650-528-5222
Applicable Regulation:	FCC Part 27 Subpart M
Test Site Location:	1365 Adams Court
	Menlo Park, CA 94025
Date of Test:	February 10 –16, 2010
We attest to the accuracy of this report:	
Anshore	oll & X
Krishna Vemuri	Ollie Moyrong
Senior EMC Engineer	Engineering Manager

TABLE OF CONTENTS

1.0	Intro	oduction	5
	1.1	Product Description	5
	1.2	Summary of Test Results	7
	1.3	Test Configuration	8
		1.3.1 Support Equipment	8
		1.3.2 Block diagram of Test Setup	8
	1.4	Antenna Specifications	9
2.0	RF I	Power Output	10
	2.1	Requirement	10
	2.2	Test Procedure	10
	2.3	Test Equipment	10
	2.4	Test Results	10
3.0	Occi	upied Bandwidth	20
	3.1	Requirement	20
	3.2	Test Procedure	20
	3.3	Test Equipment	20
	3.4	Test Results	20
4.0	Spuri	ious Emissions at Antenna Terminals	30
	$\bar{4}.1$	Requirement	
	4.2	Test Procedure	30
	4.3	Test Equipment	30
	4.4	Test Results	30
5.0	Spui	rious Radiation	52
	5.1	Requirement	52
	5.2	Test Procedure	52
	5.3	Test Equipment	52
	5.4	Test Results	53
6.0	Freq	quency Stability vs Temperature and Voltage	56
	6.1	Requirement	56
	6.2	Test Procedure	56
	6.3	Test Equipment	56
	6.4	Test Results	57
7.0	Emis	ssions from Digital Parts, Receiver and Transmitter spuriou	ıs from 30 MHz -
	1GH	Iz	58
	7.1	Radiated emissions	58
		7.1.1 Test Limit	58
		7.1.2 Test Procedure	58
		7.1.3 Test Results	60

8.0	List of Test Equipment	62
	A A	
9.0	Document History	63

1.0 Introduction

1.1 Product Description

The Quantum 1000 employs an extremely flexible and versatile hardware architecture. The heart of the base station is a sophisticated and highly integrated ASIC that combines 6 DSP and general purpose processor cores along with specialized DSP hardware. A Linux based subsystem supports applications, SNMP and other management functions. Finally, the Quantum 1000 includes 2 RF transmitters and associated PAs, and 4 RF receivers.

Important characteristics of the Quantum 1000 Base Station Sector are:

- Board-to-board communications for scaling up to 6 antennas.
- 10 MHz profile
- WiMAX OFDMA compliance
- All layers implemented in software.
- 2.3 2.7 GHz and 3.3 3.8 GHz operations.

PureWave has implemented a scalable architecture that lets service providers upgrade their Base Stations by:

- Adding more Base Station Sector to a location
- Adding antennas (and corresponding RF module sets) within a sector
- Adding processing capability in order to process traffic within additional spectrum
- Upgrading software to allow for changes in features and standards.

Specification of the EUT		
Maximum Measured RF	33.4 dBm; 2.19 W	
Output Power		
Frequency Ranges, MHz 2502.5 – 2687.5		
Type of modulation	QPSK, 16QAM, 64QAM	
Channel Bandwidth	5 MHz	
Antenna Gain Varies, refer to Report Section 1.4 for antenna details		
Emission Designator	4M86W7D	
Operating Temperature	From -30° C to $+50^{\circ}$ C	

EUT receive date: February 10, 2009

EUT receive condition: The prototype version of the EUT was received in good condition with no

apparent damage. As declared by the Applicant it is identical to the production

units.

Test start date: February 10, 2010 **Test completion date:** February 16, 2010

1.2 Summary of Test Results

FCC Rule	Description of Test	Result
2.1046, 27.50	RF Power Output	Complies
2.1049	Occupied Bandwidth	Complies
2.1051, 27.53	Out of Band Emissions at Antenna Terminals	Complies
2.1053, 27.53	Spurious Radiation	Complies
2.1055, 27.54	Frequency Stability vs. Temperature and Voltage	Complies
15.109, 15.111	Emissions from Digital Parts, Receiver and Transmitter Spurious from 30 MHz to 1 GHz	Complies

1.3 Test Configuration

1.3.1 Support Equipment

Item #	Description	Model No.	S/N
1	Dell Personal Computer	Optiplex 320	9B32KC1
2	Agilent DC Power Supply	6644A	MY40001367
3	Dell Personal Computer	Optiplex 320	3RND5J1
4	Phihong DC Power Supply	PSUI6U-480	P72809868A1
5	Gemtek CPE	WIXS-177	002682124972

1.3.2 Block diagram of Test Setup

S = Shielded	F = With Ferrite
U = Unshielded	\mathbf{m} = Length in Meters

1.4 Antenna Specifications

The Quantum 1000 2.5 GHz product line can be used with antennas supplied by PureWave Networks or any commercially available antenna. The table below lists antenna products that provide a representative sample of the range of antennas that may be used.

Description	Gain	Az BW	Manufacturer	Manufacturer P/N
	dBi	degrees		
4 element, vertical linear	14.5	120	Mars Antenna	MA-WE36-15PW4
polarized array				
4 element, vertical linear	15.5	90	Mars Antenna	MA-WD36-16PW4
polarized array				
2 element, dual polarized, +/-	15	90	Mars Antenna	MA-WD35-DS15
45 degree slant				
2 element, dual polarized, +/-	16.5	65	Mars Antenna	MA-WC35-DS17
45 degree slant				
Omni, vertical polarized	11	360	L-com	HG3511U-PRO
Omni, vertical polarized	8	360	Air802 LLC	ANOM3508
Omni, vertical polarized	12	360	Air802 LLC	ANOM3512

2.0 RF Power Output

FCC 2.1046, 27.50

2.1 Requirement

Main, booster and base stations. The maximum EIRP of a main, booster or base station shall not exceed $33 \text{ dBW} + 10\log(X/Y) \text{ dBW}$, where X is the actual channel width in MHz and Y is either 6 MHz if prior to transition or the station is in the MBS following transition or 5.5 MHz if the station is in the LBS and UBS following transition.

2.2 Test Procedure

The EUT RF output was connected as shown on the diagram in report section 1.3.2. The EUT was setup to transmit continuously the maximum power.

The spectrum analyzer was setup to measure a peak power using the Channel Power Function. The attenuation and cable loss were added to the spectrum analyzer reading by using OFFSET function.

The EUT was set to transmit at maximum power. Measurements were performed at three frequencies (low, middle, and high channels).

2.3 Test Equipment

Rohde & Schwarz FSP40 Spectrum Analyzer

2.4 Test Results

Frequency	Measured	Graph	
(MHz)	Power (dBm)		
Mo	dulation: QPSK		
2502.5	33.16	2.1	
2600.0	32.98	2.2	
2687.5	33.4	2.3	
Mod	Modulation: 16 QAM		
2502.5	33.15	2.4	
2600.0	32.99	2.5	
2687.5	33.39	2.6	
Mod	lulation: 64 QAM		
2502.5	33.16	2.7	
2600.0	32.99	2.8	
2687.5	33.39	2.9	

Output Power Graph 2.1

Comment: QPSK, LOW CHANNEL

Date: 10.FEB.2010 17:26:45

Comment: QPSK, MID CHANNEL

Date: 10.FEB.2010 17:34:58

Comment: QPSK, HIGH CHANNEL Date: 10.FEB.2010 17:38:08

Comment: 16QAM, LOW CHANNEL
Date: 10.FEB.2010 17:28:51

Comment: 16QAM, MID CHANNEL
Date: 10.FEB.2010 17:33:26

Comment: 16QAM, HIGH CHANNEL
Date: 10.FEB.2010 17:39:15

Comment: 64QAM, LOW CHANNEL Date: 10.FEB.2010 17:30:07

Comment: 64QAM, MID CHANNEL Date: 10.FEB.2010 17:31:40

Comment: 64QAM, HIGH CHANNEL
Date: 10.FEB.2010 17:40:57

3.0 Occupied Bandwidth

FCC 2.1049

3.1 Requirement

The 99% occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to 0.5% of the emitted power.

3.2 Test Procedure

The EUT RF output was connected as shown on the diagram in report section 1.3.2. The EUT was setup to transmit the maximum power.

The spectrum analyzed was setup to measure the Occupied Bandwidth (defined as the 99% Power Bandwidth). The Occupied Bandwidth was measured at the low, middle and high channels for all types of modulation and authorized bandwidths.

3.3 Test Equipment

Rohde & Schwarz FSP40 Spectrum Analyzer.

3.4 Test Results

Frequency	Modulation	Channel Bandwidth	Measured Occupied Bandwidth	Graph
(MHz)		(MHz)	(MHz)	
2502.5	QPSK	5	4.86	3.1
	16 QAM		4.86	3.2
	64 QAM		4.86	3.3
2600.0	QPSK	5	4.86	3.4
	16 QAM		4.84	3.5
	64 QAM		4.84	3.6
2687.5	QPSK	5	4.82	3.7
	16 QAM		4.86	3.8
	64 QAM		4.86	3.9

Comment: 16QAM, LOW CHANNEL
Date: 10.FEB.2010 18:00:06

Comment: 16QAM, LOW CHANNEL 10.FEB.2010 17:57:54

Comment: 64QAM, LOW CHANNEL Date: 10.FEB.2010 17:56:22

Comment: QPSK, MID CHANNEL

Date: 10.FEB.2010 17:52:02

Graph 3.5

Comment: 16QAM, MID CHANNEL Date: 10.FEB.2010 17:53:09

Comment: 64QAM, MID CHANNEL Date: 10.FEB.2010 17:54:36

Comment: QPSK, HIGH CHANNEL
Date: 10.FEB.2010 17:49:47

Comment: 16QAM, HIGH CHANNEL 10.FEB.2010 17:48:26

Comment: 64QAM, HIGH CHANNEL Date: 10.FEB.2010 17:45:06

4.0 Spurious Emissions at Antenna Terminals

FCC 2.1051, 27.53

4.1 Requirement

For digital base stations, the attenuation shall be not less than $43 + 10 \log (P) dB$ Note: That corresponds to the level of -13 dBm for any out-of-band and spurious emissions.

4.2 Test Procedure

The EUT RF output was connected as shown on the diagram in report section 1.3.2. The EUT was setup to transmit the maximum power.

For measurements at frequencies below 1 GHz, the spectrum analyzed resolution bandwidth was set to 100 kHz. For measurements at frequencies above 1 GHz, the spectrum analyzed resolution bandwidth was set to 1 MHz.

Sufficient scans were taken to show the spurious emissions up to 10th harmonic.

4.3 Test Equipment

Rohde & Schwarz FSP40 Spectrum Analyzer

4.4 Test Results

Complies	Refer to the following Graphs
----------	-------------------------------

Measurements were made on the low, middle and high channels for all modulations.

Graph 4.1

Graph 4.2

Graph 4.3

Graph 4.4

Graph 4.5

Graph 4.6

Graph 4.7

Graph 4.8

Graph 4.9

Comment: QPSK, LOW CHANNEL

Date: 11.FEB.2010 14:13:00

Comment: QPSK, LOW CHANNEL

Date: 11.FEB.2010 14:52:23

Comment: QPSK, HIGH CHANNEL
Date: 11.FEB.2010 14:15:19

Comment: QPSK, HIGH CHANNEL Date: 11.FEB.2010 14:44:23

Comment: 16QAM, LOW CHANNEL
Date: 11.FEB.2010 14:10:52

Comment: 16QAM, LOW CHANNEL Date: 11.FEB.2010 14:54:05

Comment: 16QAM, HIGH CHANNEL
Date: 11.FEB.2010 14:17:13

Comment: 16QAM, HIGH CHANNEL Date: 11.FEB.2010 14:41:50

Comment: 64QAM, LOW CHANNEL

Date: 11.FEB.2010 14:07:37

Comment: 64QAM, LOW CHANNEL Date: 11.FEB.2010 14:57:38

Comment: 64QAM, HIGH CHANNEL
Date: 11.FEB.2010 14:20:11

Comment: 64QAM, HIGH CHANNEL Date: 11.FEB.2010 14:39:18

5.0 Spurious Radiation

FCC 2.1053

5.1 Requirement

The power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least $43 + 10 \log (P) dB$.

5.2 Test Procedure

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT.

The frequency range up to 10th harmonic of each of the three fundamental frequency (low, middle, and high channels) was investigated. The worst case emissions are reported.

5.3 Test Equipment

EMCO 3115 Horn Antennas Rohde & Schwarz FSU Spectrum Analyzer Low Pass Filter Preamplifiers

5.4 Test Results

Spurious Radiated Emissions Tx @ Low Channel

All other emissions are at least 20dB below the limit.

Spurious Radiated Emissions Tx @ Mid Channel

All other emissions are at least 20dB below the limit.

Spurious Radiated Emissions Tx @ High Channel

All other emissions are at least 20dB below the limit.

Result	Result	Complies
--------	--------	----------

6.0 Frequency Stability vs Temperature and Voltage

FCC 2.1055

6.1 Requirement

The frequency stability shall be measured with variation of ambient temperature as follows:

From -30° to $+50^{\circ}$ centigrade. Frequency measurements shall be made at the extremes of the specified temperature range and at intervals of not more than 10° centigrade through the range. A period of time sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement.

The frequency stability shall be measured with variation of primary supply voltage as follows:

Vary primary supply voltage from 85 to 115 percent of the nominal value.

6.2 Test Procedure

The EUT was placed inside the temperature chamber. The RF power output was connected to frequency counter. The EUT was setup to transmit the maximum power.

After the temperature stabilized for approximately 20 minutes, the transmitting frequency was measured by the frequency counter and recorded.

At the room temperature, the frequency was measured when the EUT was powered with the nominal voltage and with 85% and 115% of the nominal voltage.

6.3 Test Equipment

Temperature Chamber Rohde & Schwarz FSU Spectrum Analyzer

6.4 Test Results

Nominal frequency: 2,593,000,156 Hz

Temperature (°C)	Measured Frequency Hz	Maximum deviation from nominal at 20°C
(C)	112	Hz
-30	2,593,000,130	-26
-20	2,593,000,179	+23
-10	2,593,000,192	+36
0	2,593,000,181	+25
10	2,593,000,190	+34
20	2,593,000,156	0
30	2,593,000,132	-24
40	2,593,000,178	+22
50	2,593,000,196	+40

DC Voltage	Measured Frequency Hz	Maximum deviation from nominal at 20°C Hz
-48V Nominal	2,593,000,156	-
85%	2,593,000,187	+31
115%	2,593,000,195	+39

Result	Complies	
--------	----------	--

7.0 Emissions from Digital Parts, Receiver and Transmitter spurious from 30 MHz - 1GHz

7.1 Radiated emissions FCC 15.109

7.1.1 Test Limit

Radiated Emission Limit for FCC Part 15 Subpart B

Ruduica Emission Emu for FCC Furt 13 Subpart B						
Radiate	Radiated Emission Limits for Class A at 10 meters					
Frequency (MHz)	Quasi-Peak limits, dB (μV/m)					
30 to 88	39.1					
88 to 216	43.5					
216 to 960	46.4					
960 and up	49.5					
Radiated Emission Limits for Class B at 3 meters						
Frequency (MHz)						
30 to 88	40.0					
88 to 216	43.5					
216 to 960	46.0					
960 and up	54.0					

7.1.2 Test Procedure

Measurements are conducted with a quasi-peak detector instrument in the frequency range of 30 MHz to 1000 MHz and with the average detector instrument in the frequency range above 1000 MHz. The measuring receiver meets the requirements of Section One of CISPR 16 and the measuring antenna correlates to a balanced dipole.

Measurements of the radiated field are made with the antenna located at a distance of 10 meters from the EUT. If the field-strength measurements at 10m cannot be made because of high ambient noise level or for other reasons, measurements of Class B equipment may be made at a closer distance, for example 3m. An inverse proportionality factor of 20 dB per decade should be used to normalize the measured data to the specified distance for determining compliance.

The antenna is adjusted between 1m and 4m in height above the ground plane for maximum meter reading at each test frequency.

The antenna-to-EUT azimuth is varied during the measurement to find the maximum field-strength readings.

The antenna-to-EUT polarization (horizontal and vertical) is varied during the measurements to find the maximum field-strength readings.

The EUT, where intended for tabletop use, is placed on a table whose top is 0.8m above the ground plane. The table is constructed of non-conductive materials. Its dimensions are 1m by 1.5m, but may be extended for a larger EUT.

Floor standing EUTs are placed on a horizontal metal ground plane and isolated from the ground plane by 3 to 12 mm of insulating material.

Equipment setup for radiated emission tests followed the guidelines of ANSI C63.4 (2003).

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG + DF

Where $FS = Field Strength in dB(\mu V/m)$

RA = Receiver Amplitude (including preamplifier) in $dB(\mu V)$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB(1/m)

AG = Amplifier Gain in dB

EMC Report for PureWave Networks on the model QUANTUM 1000 File: 3183595MPK-002A

7.1.3 Test Results

Intertek Testing Services Radiated Emissions 30 MHz - 1000 MHz FCC Part 15 Class A (QP-Horizontal)

Operator: OM Model Number: Quantum 1000

11:58:59 AM, Friday, February 12, 2010

	Quasi Pk						
Frequency	FS	Limit@10m	Margin	RA	CF	AG	AF
Hz	dB(uV/m)	dB(uV/m)	dB	dB(uV)	dB	dB	dB(1/m)
1.966E+08	28.2	43.5	-15.3	48.7	1.6	32.0	9.7
2.311E+08	28.7	46.4	-17.7	46.8	1.8	32.0	10.5
4.702E+08	15.0	46.4	-31.4	27.5	2.6	32.1	18.2

Test Mode: 5MHz BW

Temp: 20C Humidity: 50% Company: PureWave Networks

Intertek Testing Services Radiated Emissions 30 MHz - 1000 MHz FCC Part 15 Class A (QP-Vertical)

Operator: OM Model Number: Quantum 1000

12:14:54 PM, Friday, February 12, 2010

	Quasi Pk						
Frequency	FS	Limit@10m	Margin	RA	CF	AG	AF
Hz	dB(uV/m)	dB(uV/m)	dB	dB	dB	dB	dB(1/m)
4.201E+07	30.6	39.0	-8.4	45.4	0.8	32.1	5.3
8.251E+07	26.6	39.0	-12.4	49.4	1.0	32.0	7.4
1.950E+08	34.5	43.5	-9.0	54.8	1.6	32.0	11.0
2.307E+08	29.9	46.4	-16.5	48.4	1.8	32.0	12.3
4.702E+08	23.7	46.4	-22.7	35.9	2.6	32.1	18.2

Test Mode: 5MHz BW

Temp: 20C Humidity: 50%

Result	Complies			
--------	----------	--	--	--

Company: PureWave Networks

8.0 List of Test Equipment

Measurement equipment used for compliance testing utilized the equipment on the following list:

Equipment	Manufacturer	Model/Type	Serial #	Cal Int	Cal Due
RF Filter Section	Hewlett Packard	85460A	3448A00267	12	12/04/10
EMI Receiver	Hewlett Packard	8546A	3710A00373	12	12/04/10
Spectrum Analyzer	Rohde&Schwarz	FSP40	036612004	12	10/16/10
BI-Log Antenna	Antenna Research	LPB-2513/A	1154	12	06/23/10
Pre-Amplifier	Sonoma	310N	185634	12	11/19/10
Pre-Amplifier	Miteq	AMF-4D-001180-24-10P	799159	12	07/28/10
Horn Antenna	EMCO	3115	9107-3712	12	11/03/10

9.0 Document History

Revision/ Job Number	Writer Initials	Date	Change
1.0 / 3183595	KV	February 26, 2010	Original document