Определение 1. Компле́ксное число z — это выражение вида z=a+bi, где $a, b \in \mathbb{R}$, а i — мнимая единица. По определению $i^2=-1$. Число a называют вещественной частью z (пишут $a=\mathrm{Re}\,(z)$), а число b — мнимой частью z (пишут $b=\mathrm{Im}\,(z)$). Комплексные числа складывают и умножают, «раскрывая скобки и приводя подобные». Множество комплексных чисел обозначают буквой \mathbb{C} .

Задача 1. Найдите вещественную и мнимую части суммы и произведения чисел a + bi и c + di.

Определение 2. Каждому комплексному числу z = a + bi сопоставим точку (a, b) и вектор (a, b). Длина этого вектора называется модулем числа z и обозначается |z|.

Пусть $z \neq 0$. Угол (в радианах), отсчитанный против часовой стрелки от вектора (a,b), называется apzyментом числа z и обозначается Arg(z). Аргумент определен с точностью до прибавления числа вида $2\pi n$, где $n \in \mathbb{Z}$.

Задача 2. а) Каков геометрический смысл суммы комплексных чисел?

б) Сравните |z + w| и |z| + |w| для $z, w \in \mathbb{C}$.

Задача 3. Найдите модуль и аргумент чисел: -4, 1+i, $1-i\sqrt{3}$, $\sin \alpha + i\cos \alpha$.

Задача 4. (*Тригонометрическая форма записи*) Докажите, что для любого ненулевого комплексного числа z имеет место равенство $z = r(\cos \varphi + i \sin \varphi)$, где r = |z|, $\varphi = \operatorname{Arg}(z)$.

Задача 5. Рассмотрим умножение точек комплексной плоскости на $\cos \varphi + i \sin \varphi$ как преобразование f этой плоскости, переводящее z в $(\cos \varphi + i \sin \varphi)z$.

- а) Куда при этом преобразовании перейдут точки действительной оси?
- б) А куда перейдут точки мнимой оси?
- в) Докажите, что f поворот против часовой стрелки на угол φ вокруг начала координат.
- г) Пусть $z, w \in \mathbb{C}$. Выразите |zw| и Arg (zw) через |z|, |w|, Arg (z), Arg (w).
- д) Выведите из предыдущего пункта формулы для косинуса суммы и синуса суммы.

Задача 6. а) Из любого ли комплексного числа можно извлечь квадратный корень?

б) Решите уравнение $z^2 = i$. в) Найдите ошибку: $1 = \sqrt{1} = \sqrt{(-1)(-1)} = \sqrt{-1}\sqrt{-1} = i \cdot i = i^2 = -1$.

Задача 7. Докажите, что если и m и n — суммы двух квадратов целых чисел, то и mn — тоже.

Задача 8. (Формула Муавра) Пусть $z = r(\cos \varphi + i \sin \varphi), n \in \mathbb{N}$. Докажите: $z^n = r^n(\cos n\varphi + i \sin n\varphi)$.

Задача 9. Вычислите **a)** $(1+i)^{333}$; **б)** $(1+i\sqrt{3})^{150}$.

Определение 3. (Формула Эйлера) $e^{i\varphi} = \cos \varphi + i \sin \varphi$. Мы сможем доказать эту формулу в 11 классе, а пока можно использовать выражение $e^{i\varphi}$ как короткое и удобное обозначение для $\cos \varphi + i \sin \varphi$.

Задача 10. а) Докажите, что $e^{i\varphi}e^{i\psi}=e^{i(\varphi+\psi)}$.

б)* Определите e^z для любого комплексного z и докажите, что $e^z e^w = e^{z+w}$ для любых $z, w \in \mathbb{C}$. **в)**** Подумайте, как возводить комплексное число в комплексную степень.

Задача 11. Найдите: а) $\sin \varphi + \sin 2\varphi + \ldots + \sin n\varphi$; б) $C_n^1 - C_n^3 + C_n^5 - C_n^7 + \ldots$; в) $C_n^0 + C_n^4 + C_n^8 + C_n^{12} + \ldots$

Задача 12. Пусть $n \in \mathbb{N}$. Выразите $\cos nx$ и $\sin nx$ через $\cos x$ и $\sin x$.

Определение 4. Пусть z=a+bi, где $a,b\in\mathbb{R}$. Число $\overline{z}=a-bi$ называют комплексно-сопряжённым к z.

Задача 13. а) Выразите $|\overline{z}|$, Arg (\overline{z}) через |z|, Arg (z).

Докажите, что: **б**) $|z|^2 = z\overline{z}$; **в**) $\overline{z+w} = \overline{z} + \overline{w}$, $\overline{zw} = \overline{z}\overline{w}$;

г) если P(x) — многочлен с вещественными коэффициентами и P(z) = 0, то $P(\overline{z}) = 0$.

Задача 14. а) Определите деление комплексных чисел; б) вычислите $\frac{(5+i)(7-6i)}{3+i}$; в) вычислите $\frac{(1+i)^5}{(1-i)^3}$.

Определение 5. Корнем из 1 степени n называется любое такое комплексное число z, что $z^n = 1$.

Задача 15. а) Найдите и нарисуйте все корни из 1 степеней 2, 3, 4, 5 и 6. б) Сколько всего корней из 1 степени n? Найдите их произведение и сумму их s-х степеней для каждого $s \in \mathbb{N}$.

Задача 16*. Вершины правильного n-угольника покрашены в несколько цветов так, что точки одного цвета — вершины правильного многоугольника. Докажите: среди этих многоугольников есть равные.

$\begin{array}{c c} 1 & 2 \\ a \end{array}$	2 6	3	4	5 a	9	0	9 1	6 a	9	7	8	9 a	9 б	10 a	10 б	10 B	11 a	11 б	11 B	12	13 a	13 б	13 B	13 Г	$\begin{vmatrix} 14 \\ a \end{vmatrix}$	14 б	14 B	15 a	15 б	16