Predictor-Corrector Method 0.1

Remainder:

Adams-Bashforth four-step method:

$$w_0 = \alpha$$
, $w_1 = \alpha_1$, $w_2 = \alpha_2$, $w_3 = \alpha_3$
 $w_{i+1} = w_i + \frac{h}{24} \left[55f(t_i, w_i) - 59f(t_{i-1}, w_{i-1}) + 37f(t_{i-2}, w_{i-2}) - 9f(t_{i-3}, w_{i-3}) \right]$ for $i = 3, 4, 5, \dots, N-1$

Adams-Moulton three-step method:

$$w_0 = \alpha$$
, $w_1 = \alpha_1$, $w_2 = \alpha_2$
 $w_{i+1} = w_i + \frac{h}{24} \left[9f(t_{i+1}, w_{i+1}) + 19f(t_i, w_i) - 5f(t_{i-1}, w_{i-1}) + f(t_{i-2}, w_{i-2}) \right]$ for $i = 2, 3, ..., N - 1$

IVP: $\frac{\mathrm{d}\,y}{\mathrm{d}\,t}=y'=f(t,y);\quad a\leq t\leq b, y(a)=y(t_0)=\alpha$ For i=3, from Adams-Bashforth four-step method, we have,

$$w_4 = w_3 + \frac{h}{24} \left[55f(t_3, w_3) - 59f(t_2, w_2) + 37f(t_1, w_1) - 9f(t_0, w_0) \right]$$
 (1)

For Predictor-Corrector method, we denote $w_4^{(0)}$ for w_4 so

$$w_4^{(0)} = w_3 + \frac{h}{24} \left[55f(t_3, w_3) - 59f(t_2, w_2) + 37f(t_1, w_1) - 9f(t_0, w_0) \right]$$
 (2)

Here we know only $w_0 = \alpha$, so, first we need to calculate w_1 , w_2 , w_3 using RK-4. Then using the values of w_0 , w_1 , w_2 , w_3 we will get $w_4^{(0)}$ from (2).

Now, we use Adams-Moulton three-step method as a corrector:

$$w_4^{(1)} = w_3 + \frac{h}{24} \left[9f(t_4, w_4^{(0)}) + 19f(t_3, w_3) - 5f(t_2, w_2) + f(t_1, w_1) \right]$$
(3)

Here $f(t_4, w_4^{(0)})$ will evaluate using the value of $w_4^{(0)}$ that already calculated using (2).

After calculation of (3), we will get $w_4^{(1)}$. If we will not achieve required accuracy, e.g., $\left|w_4^{(1)}-w_4^{(0)}\right|<10^{-4}$, then we have to proceed in the following way:

$$w_4^{(2)} = w_3 + \frac{h}{24} \left[9f(t_4, w_4^{(1)}) + 19f(t_3, w_3) - 5f(t_2, w_2) + f(t_1, w_1) \right]$$
(4)

Note that only $f(t_4, w_4^{(1)})$ have to evaluate but $f(t_3, w_3)$, $f(t_2, w_2)$, $f(t_1, w_1)$ already evaluated when you perform equation (2).

If $w_4^{(2)}$ is not achieved desired accuracy, then

$$w_4^{(3)} = w_3 + \frac{h}{24} \left[9f(t_4, w_4^{(2)}) + 19f(t_3, w_3) - 5f(t_2, w_2) + f(t_1, w_1) \right]$$
(5)

If still not get required accuracy, we will have to repeat these processes.

If required accuracy will achieve (say $w_4^{(0)}$ or $w_4^{(1)}$ or $w_4^{(2)}$ or $w_4^{(3)}$), then

$$w_5^{(1)} = w_4 + \frac{h}{24} \left[9f(t_5, w_5^{(0)}) + 19f(t_4, w_4) - 5f(t_3, w_3) + f(t_2, w_2) \right]$$
(6)

where,

$$w_5^{(0)} = w_4 + \frac{h}{24} \left[55f(t_4, w_4) - 59f(t_3, w_3) + 37f(t_2, w_2) - 9f(t_1, w_1) \right]$$
 (7)

[Here w_4 is either $w_4^{(0)}$ or $w_4^{(1)}$ or $w_4^{(2)}$ or $w_4^{(3)}$]

Equation (6) is repeated until get required accuracy.

Example. IVP: $y' = y - t^2 + 1$; $0 \le t \le 2$, y(0) = 0.5 and N = 10, so h = 0.2.

For Predictor-corrector process; here $w_0 = \alpha = 0.5$ is known, so we have to evaluate w_1, w_2, w_3 with RK4, then using these values, we will get $w_4^{(0)}$ from (2). After getting $w_4^{(0)}$, we will obtain $w_4^{(1)}$ using (3).

 $w_4^{(1)}$ is the approximate value at $t = t_4 = 0.8$. Such process is needed to repeat until $t = t_{10} = 2$.

Note.

$$w_{i+1}^{(k+1)} = w_i + \frac{h}{24} \left[9f(t_{i+1}, w_{i+1}^{(k)}) + 19f(t_i, w_i) - 5f(t_{i-1}, w_{i-1}) + f(t_{i-2}, w_{i-2}) \right]$$

Here 'k' is the iteration index and i is the grid/node index. Let k = 0; then,

$$w_{i+1}^{(1)} = w_i + \frac{h}{24} \left[9f(t_{i+1}, w_{i+1}^{(0)}) + 19f(t_i, w_i) - 5f(t_{i-1}, w_{i-1}) + f(t_{i-2}, w_{i-2}) \right]; \quad i = 3, 4, 5, \dots$$

So,

$$w_4^{(1)} = w_3 + \frac{h}{24} \left[9f(t_4, w_4^{(0)}) + 19f(t_3, w_3) - 5f(t_2, w_2) + f(t_1, w_1) \right]$$

which is equation (3).

If i = 4, then we will get equation (6) and so on.

If we put k = 1 and i = 3, then we will get equation (4) and so on.