

K. Wiegand, T. Stalljohann, T. Witt Sommersemester 2025 Heidelberg, 27. Mai 2025

Grundlagen der Geometrie und Topologie

ÜBUNGSBLATT 7

Stichworte: Lie-Gruppen, Lineare k-Formen

Aufgabe 1 Eins-Komponente von Lie-Gruppen (1+1+2 Punkte) Sei G eine Lie-Gruppe. Zeigen Sie

- a) Sei $H \subseteq G$ eine Untergruppe von G (im algebraischen Sinn). Ist H offen in G, so ist H auch abgeschlossen in G. Insbesondere ist H = G, falls G zusätzlich zusammenhängend ist.
- b) Angenommen G sei zusätzlich zusammenhängend. Sei $U \subseteq G$ eine offene Umgebung des Einselements $e \in G$. Dann ist U ein Erzeugendensystem von G.

 Hinweis: Zeigen Sie, dass die von U erzeugte Untergruppe offen ist in G.
- c) Sei $G_1 \subseteq G$ die Zusammenhangskomponente des Einselements e von G. Dann ist G_1 eine normale Untergruppe von G. Außerdem ist sie die einzige offene, zusammenhängende Untergruppe in G.

Hinweis: Für die Eindeutigkeitsaussage benutzen Sie Teil b).

Aufgabe 2 Alternierende multilineare Abbildungen (3 Punkte) Sei

$$\eta: \underbrace{V \times \ldots \times V}_{k\text{-mal}} \to \mathbb{R}$$

eine multilineare Abbildung. Zeigen Sie, dass die folgenden Aussagen äquivalent sind:

(i) η ist alternierend, d.h.

$$\eta(v_1, \ldots, v_i, \ldots, v_j, \ldots, v_k) = -\eta(v_1, \ldots, v_j, \ldots, v_i, \ldots, v_k)$$

für alle $1 \le i < j \le k$ und $v_1, \ldots, v_k \in V$.

(ii) Für alle $v_1, \ldots, v_k \in V$ gilt

$$v_1, \ldots, v_k$$
 linear abhängig $\implies \eta(v_1, \ldots, v_k) = 0$.

- (iii) $\eta(v_1, \ldots, v_k) = 0$ falls $i \neq j$ existieren mit $v_i = v_j$.
- (iv) $\eta(v_{\sigma(1)},\ldots,v_{\sigma(k)}) = \operatorname{sgn}(\sigma) \eta(v_1,\ldots,v_k)$ für alle $v_1,\ldots,v_k \in V$ und Permutationen $\sigma \in \mathfrak{S}(k)$.

¹d.h offen und zusammenhängend als Teilmenge und zugleich eine Untergruppe im algebraischen Sinn

Aufgabe 3 Innere Multiplikation (1+3 Punkte)

Die innere Multiplikation mit $v \in V$ ist definiert als die Abbildung $\iota_v : \bigwedge^k V^* \to \bigwedge^{k-1} V^*$ mit $\iota_v(\eta)(v_2,\ldots,v_k) := \eta(v,v_2,\ldots,v_k) \in \mathbb{R}$ für $\eta \in \bigwedge^k V^*$ und $v_2,\ldots,v_k \in V$.

a) Zeigen Sie, dass ι_v eine wohldefinierte \mathbb{R} -lineare Abbildung ist. Zeigen Sie weitherhin, dass

$$V \to \operatorname{Hom}_{\mathbb{R}}\left(\bigwedge^k V^*, \bigwedge^{k-1} V^*\right), \quad v \mapsto \iota_v$$

eine \mathbb{R} -lineare Abbildung ist und dass $\iota_v \circ \iota_v = 0$.

b) Für $\eta \in \bigwedge^k V^*$ und $\eta \in \bigwedge^\ell V^*$ zeigen Sie, dass

$$\iota_v(\eta \wedge \omega) = \iota_v \eta \wedge \omega + (-1)^k \eta \wedge \iota_v \omega .$$

Hinweis: Fixieren Sie eine Basis e_1, \ldots, e_n von V. Sei e^1, \ldots, e^n die zugehörige Dualbasis. Für Multi-Indices $I = (i_1, \ldots, i_k)$ mit $i_1 < \ldots < i_k$ und $J = (j_1, \ldots, j_\ell)$ mit $j_1 < \ldots < j_\ell$ sei $\mathbf{e}^I := e^{i_1} \wedge \ldots e^{i_k}$ und $\mathbf{e}^J := e^{j_1} \wedge \ldots \wedge e^{j_\ell}$. Argumentieren Sie, dass es ausreicht, die Aussage für $\eta := \mathbf{e}^I$ und $\omega := \mathbf{e}^J$ zu zeigen, wobei $I = (i_1, \ldots, i_k)$ und $J = (j_1, \ldots, j_\ell)$ beliebig sind.

Aufgabe 4 Zerlegbare Formen (1+1+1+2 Punkte)

Sei V ein n-dimensionaler Vektorraum. Eine k-Form $\eta \in \bigwedge^k V^*$ heißt zerlegbar, wenn es 1-Formen η_1, \ldots, η_k gibt mit $\eta = \eta_1 \wedge \ldots \wedge \eta_k$.

- a) Es sei ω eine Volumenform auf V.² Zeigen Sie, dass die Abbildung $\Phi: V \to \bigwedge^{n-1} V^*$, $\Phi(v) := \iota_v \omega$ ein linearer Isomorphismus ist.
- b) Jede (n-1)-Form auf V ist zerlegbar. Hinweis: Gegeben $\eta \in \bigwedge^{n-1} V^*$, ergänzen Sie $\Phi^{-1}(\eta)$ zu einer Basis von V.
- c) Ist $\eta \neq 0$ eine zerlegbare k-Form, so ist

$$\operatorname{Ann}(\eta) := \{ v \in V \mid \iota_v \eta = 0 \}$$

ein Untervektorraum der Dimension n-k.

d) Ist $n \leq 3$, so ist jede k-Form auf V zerlegbar. Finden Sie eine nicht zerlegbare k-Form auf einem Vektorraum V der Dimension n=4.

 $\mathit{Hinweis}$: Um zu zeigen, dass Ihr Kandidat η nicht zerlegbar ist, betrachten Sie $\mathit{Ann}(\eta)$.

Abgabe bis Dienstag, 03. Juni 2025, 13:00 Uhr im MaMpf in Zweiergruppen. Abgabe zu dritt ist erlaubt.

 $^{^{2}}$ d.h. $\omega \in \bigwedge^{n} V^{*}$ und $\omega \neq 0$