- **1.** 给出算法符号 O 的定义,并证明:
 - (1) $100n^2 + 1 = O(n^2)$
 - (2) O(f(n) g(n)) = O(f(n)) O(g(n))

答案:

算法符号 O 的定义:

 $O(g(n)) = \{ f(n) \mid 存在正常数 c 和 n_0 使得对所有 n \ge n_0 有: 0 \le f(n) \le cg(n) \}$

(1) 注意到当 n≥1 时, $100n^2 \le 100n^2$, $1 \le n^2$,从而取 c=101, n_0 =1 时有

$$100n^2 + 1 \le cn^2$$

从而 $100n^2+1=O(n^2)$

(2)对于任意 $f_1(n) \in O(f(n))$, 存在正常数 c_1 和自然数 n_1 ,使得对所有 $n \ge n_1$,有 $f_1(n) \le c_1 f(n)$ 。

类似地,对于任意 $g_1(n) \in O(g(n))$,存在正常数 c_2 和自然数 n_2 ,使得对所有 $n \ge n_2$,有 $g_1(n) \le c_2 g(n)$ 。

令 c_3 = c_1 * c_2 , n_3 = $\max\{n_1, n_2\}$ 。则对所有的 $n \ge n_3$,有

$$f_1(n) *g_1(n) \le c_1 f(n) * c_2 g(n) = c_3 f(n) * g(n) = O(f(n)g(n)).$$

故有关系

O(f(n) g(n)) = O(f(n)) O(g(n))

2. 给出算法符号的定义,并注明

$$4n^2+1 = \Omega (10n^{1.5})$$

答案:

算法符号Ω的定义:

 Ω (g(n)) = { f(n) | 存在正常数 c 和 n₀, 使得对所有 n \geq n₀有: 0 \leq cg(n) \leq f(n) } 对于 c= $\frac{1}{10}$, n₀=1, 当 n \geq n₀ 时有

$$0 \le n^{1.5} \le 4n^2 + 1$$

从而 $4n^2+1=\Omega$ ($10n^{1.5}$)

3. 给出算法符号 Θ 的定义,并证明

$$n^2 + 4n \lg n + 2n^3 = \Theta(n^3)$$

答案:

算法符号Θ的定义:

 $\Theta(g(n)) = \{ f(n) \mid 存在正常数 <math>c_1,c_2$ 和 n_0 ,使得对所有 $n \ge n_0$ 有: $c_1g(n) \le f(n) \le c_2g(n) \}$

对于
$$c_1 = \frac{1}{10}$$
, $c_2 = 10$, $n_0 = 100$, 当 $n \ge n_0$ 时有

$$\frac{1}{10}n^3 \le n^2 + 4n \lg n + 2n^3 \le 10n^3$$

从而
$$n^2 + 4n \lg n + 2n^3 = \Theta(n^3)$$

或者用极限证明二式比值是一个常数,或者证明 f(n)既是 g(n)的渐进上界也是 g(n)的渐进下界.。

4. 给出算法符号o的定义,并证明

$$4n\log n + 7 = o(2n^2 + 3n\log n + 3)$$

答案:

算法符号 o 的定义:

 $o(g(n)) = {f(n) | 对于任何正常数 c>0, 存在正数 n₀>0, 使得对所有 n≥n0 有: 0≤f(n)<cg(n) }$

由于

$$\lim_{n \to +\infty} \frac{4n \log n + 7}{2n 2 + 3n \log n + 3} = \lim_{n \to +\infty} \frac{4 \log n}{2n + 3 \log n} = 0$$

从而
$$4n\log n + 7 = o(2n^2 + 3n\log n + 3)$$

此题根据定义,对任意的正常数c,找到 n_0 也可证明。

5. 给出算法符号ω的定义, 并证明

$$2^n + n + 1 = \omega (20n^2 + 100)$$

答案:

算法符号ω的定义:

 $\omega(g(n))$ = { f(n) | 对于任何正常数 c>0,存在正数 n₀>0 使得对所有 n≥n₀有: 0≤cg(n) < f(n) }

由于

$$\lim_{n \to +\infty} \frac{2^n + n + 1}{20n^2 + 100} \to \infty$$

从而 $2^n + n + 1 = \omega (20n^2 + 100)$ 此题根据定义,对任意的正常数 c,找到 n_0 也可证明。