Corrigé de l'EMD de Data Mining

Exercice 1 (10 pts)

Considérer les attributs *longueur du sépale en cm* et *longueur de la pétale en cm* du dataset Iris. La table ci-dessous exhibe 12 instances du dataset pour les deux attributs apparaissant respectivement en deuxième et troisième colonnes.

Instance	Sépale	Pétale
1	4.9	1.4
2	5.0	1.4
3	5.4	1.7
4	4.6	1.4
5	5.5	4.0
6	5.1	3.0
7	5.7	4.5
8	5.0	3.3
9	4.9	4.5
10	5.7	5.0
11	5.8	5.1
12	5.6	4.9

Dessiner les boites à moustaches pour chacun des attributs Sépale et Pétale. Que pouvez-vous conclure ? (5 pts)
 Sépale

```
4.6, 4.9, 4.9, 5.0, 5.0, 5.1, 5.4, 5.5, 5.6, 5.7, 5.7, 5.8 (1 pt)
Min = 4.6
```

Min = 4.6

Q1 = 4.95

 $M\acute{e}diane = 5.25$

Q3 = 5.65

Max = 5.8


```
Outliers (1 pt)

1.5*(Q3-Q1) = 1.5*0.7 = 1.05

Q1 - 1.05 = 3.9 < min

Q3 + 1.05 = 6.7 > max

Donc pas d'outlier

Plus de valeurs supérieures à la médiane
```


Outliers (1 pt) 1.5*(Q3-Q1) = 1.5*3.15 = 4.725 Q1 - 4.725 = -3.175 < min Q3 + 4.725 = 9.425 > max Donc pas d'outlier Plus de valeurs inférieures à la médiane

2) Appliquer l'algorithme Chimerge ci-dessous pour discrétiser l'attribut Sépale. (5 pts)

Algorithme ChiMerge

- 1. trier les valeurs de l'attribut par ordre croissant.
- 2. considérer chaque valeur dans un intervalle distinct.
- 3. calculer la valeur de χ^2 pour tous les intervalles adjacents.
- 4. fusionner les paires d'intervalles qui ont la plus petite valeur de χ^2 .
- 5. arrêter le processus quand le nombre d'intervalles est égal à 4 sinon aller à (3).

La formule du χ^2 est donnée comme suit:

$$\chi^2 = \sum_{i=1}^{i=m} \frac{(R_i - E)^2}{E}$$

où:

m est le nombre d'intervalles à comparer (2 dans ce cas),

 R_i est le nombre de valeurs de l'intervalle i,

E est la fréquence moyenne calculée comme: E = n/MaxIntervalles,

n est le nombre total de valeurs,

MaxIntervalles est le nombre maximum d'intervalles.

1) Trier les valeurs de l'attribut Sépale :

4.6	
4.9	

Intervalles initiaux:

$$E = 12/4 = 3$$

1^{ère} itération (1 pt)

1 Itelation (1 pt)	
Intervalle	χ^2
[4.6 (1), 4.9 (2)]	4/3+1/3=5/3
[4.9(2), 5.0(2)]	1/3+1/3=2/3
[5.0 (2), 5.1 (1)]	1/3+4/3=5/3
[5.1 (1), 5.4 (1)]	4/3+4/3=8/3
[5.4 (1), 5.5 (1)]	4/3+4/3=8/3
[5.5 (1), 5.6 (1)]	8/3
[5.6 (1), 5.7(2)]	5/3
[5.7(2), 5.8 (1)]	5/3

Résultat :

Intervalle
[4.6 (1)]
[4.9 (2), 5.0 (2)]
[5.1 (1)]
[5.4 (1)]
[5.5 (1)]
[5.6 (1)]
[5.7(2)]
[5.8 (1)]

2^{ème} itération (1 pt)

Intervalle	χ^2
[[4.6 (1)], [4.9 (2), 5.0 (2)]]	$4/3+1/3=\frac{5/3}{5}$
[4.9 (2), 5.0 (2)], [5.1 (1)]	1/3+4/3=5/3
[5.1 (1)], [5.4 (1)]	4/3+4/3 =8/3
[5.4 (1)], [5.5 (1)]	4/3+4/3=8/3
[5.5 (1)], [5.6 (1)]	8/3
[5.6 (1)], [5.7(2)]	5/3
[5.7(2), 5.8 (1)]	5/3

Résultat :

(2)]
(2)]

3^{ème} itération (1 pt)

Intervalle	χ^2
[4.6 (1), 4.9 (2), 5.0 (2)], [5.1 (1)]	4/3+4/3=8/3
[5.1 (1)], [5.4 (1)]	4/3+4/3 =8/3
[5.4 (1)], [5.5 (1)]	4/3+4/3=8/3
[5.5 (1)], [5.6 (1)]	8/3
[5.6 (1)], [5.7(2)]	5/3
[5.7(2)], [5.8 (1)]	5/3

Résultat :

Intervalle	
[4.6 (1), 4.9 (2), 5.0 (2)]	
[5.1 (1)]	
[5.4 (1)]	
[5.5 (1)]	
[5.6 (1), 5.7(2)]	
[5.8(1)]	

4^{ème} itération (1 pt)

Intervalle	χ^2
[4.6 (1), 4.9 (2), 5.0 (2)], [5.1 (1)]	4/3+4/3=8/3
[5.1 (1)], [5.4 (1)]	4/3+4/3 =8/3
[5.4 (1)], [5.5 (1)]	4/3+4/3=8/3
[5.5 (1)], [5.6 (1), 5.7(2)]	4/3
[5.6 (1), 5.7(2)], [5.8(1)]	4/3

Résultat :

Resultat.	
Intervalle	
[4.6 (1), 4.9 (2), 5.	0 (2)]
[5.1 (1)]	
[5.4 (1)]	
[5.5 (1), 5.6 (1), 5.	7(2)]
[5.8 (1)]	

5ème itération (1 pt)

Intervalle	χ^2
[4.6 (1), 4.9 (2), 5.0 (2)], [5.1 (1)]	4/3+4/3=8/3
[5.1 (1)], [5.4 (1)]	4/3+4/3 =8/3
[5.4 (1)], [5.5 (1), 5.6 (1), 5.7(2)]	4/3+1/3= <mark>5/3</mark>
[5.5 (1), 5.6 (1), 5.7(2)], [5.8 (1)]	5/3

Résultat :

Intervalle
[4.6 (1), 4.9 (2), 5.0 (2)]
[5.1 (1)]
[5.4 (1), 5.5 (1), 5.6 (1), 5.7(2)]
[5.8 (1)]

Exercice2. (10 pts)

Considérer le dataset suivant contenant 10 instances et 5 attributs nommés A, B, C, D et E. On s'intéresse à extraire des motifs fréquents pour déduire des règles d'association entre les attributs. Les instances font office de transactions et les valeurs des attributs d'items.

	A	В	С	D	Е
I1	1	4	13	2	3
I2	1	2	12	0	7
I3	1	3	13	2	6
I 4	1	4	11	2	7
I5	1	4	14	2	7
I6	0	4	15	2	7
I7	1	1	13	0	3
I8	1	4	14	0	7
I 9	1	4	14	2	7
I10	1	4	12	2	7

1) Appliquer l'algorithme A-priori sur le dataset ci-dessus avec un support minimal de 40%. (5 pts)

Pour appliquer l'algorithme A-priori sur le dataset, nous devons d'abord coder les valeurs des attributs comme suit :

	A	В	C	D	E	ensemble
I1	A 1	B4	C13	D2	E3	{A1, B4, C13, D2, E3}
I2	A 1	B2	C12	D0	E7	{A1, B2, C12, D0, E7}
I3	A 1	В3	C13	D2	E6	{A1, B3, C13, D2, E6}
I 4	A 1	B4	C11	D2	E7	{A1, B4, C11, D2, E7}
I 5	A 1	B4	C14	D2	E7	{A1, B4, C14, D2, E7}
I 6	A0	B4	C15	D2	E7	{A0, B4, C15, D2, E7}
I 7	A 1	B1	C13	D0	E3	{A1, B1, C13, D0, E3}
I 8	A 1	B4	C14	D0	E7	{A1, B4, C14, D0, E7}
I 9	A 1	B4	C14	D2	E7	{A1, B4, C14, D2, E7}
I10	A1	B4	C12	D2	E7	{A1, B4, C12, D2, E7}

La dernière colonne contient les ensembles des éléments de chaque instance.

Première itération : (1,5 pt)

 $D \acute{e} termination \ des \ candidats \ C1: parcours \ des \ transactions \ et \ comptage \ des \ occurrences \ de \ chaque \ item. \ Ce \ qui \ donne: \ C1$

itemset	support
{A0}	1
{A1}	9
{B1}	1
{B2}	1
{B3}	1
{B4}	7
{C11}	1
{C12}	2
{C13}	3
{C14}	
{C15}	1
{D0}	3
{D2}	7
{E3}	2
{E6}	1
{E7}	7

Le support minimum étant égal à 40%, il équivaut à $10 \times 40\% = 4$ transactions. Les motifs fréquents d'ordre 1, appartenant à L1 sont des candidats C1 qui satisfont le support minimum.

Ĉ1

CI	
itemset	support
{A0}	1
{A1}	9
{B1}	1
{B2}	1
{B3}	1
{B4}	7
{C11}	1
{C12}	2
{C13}	3
{C14}	3
{C15}	1
{D0}	3
{D2}	7
{E3}	2
{E6}	1
{E7}	7

L1

itemset	support
{A1}	9
{B4}	7
{D2}	7
{E7}	7

Deuxième itération : (1,5 pt)

 $D\'{e}termination \ de \ C2, \ des \ itemsets \ candidats \ contenant \ au \ plus \ deux \ items:$

C2

itemset	support
{A1, B4}	6
{A1, D2}	6
{A1, E7}	6
{B4, D2}	6
{B4, E7}	6
{D2, E7}	5

Les itemsets retenus sont donc :

1.2

itemset	support
{A1, B4}	6
{A1, D2}	6
{A1, E7}	6
{B4, D2}	6
{B4, E7}	6
{D2, E7}	5

Les items d'un même attribut ne peuvent pas apparaître dans un itemset car ils représentent le même attribut avec des valeurs différentes.

Troisième itération : (1,5 pt)

C3

itemset	support
{A1, B4, D2}	5
{A1, B4, E7}	5
{A1, B4, D2, E7}	4
{A1, D2, E7}	4
{B4, D2, E7}	5

L3

itemset	support
{A1, B4, D2}	5
{A1, B4, E7}	5
{A1, B4, D2, E7}	4
{A1, D2, E7}	4
{B4, D2, E7}	5

Quatrième itération : (0,5 pt)

C4 = \emptyset , l'ensemble vide. Le processus s'arrête. L'ensemble des motifs fréquents est donc comme suit : $L = L1 \cup L2 \cup L3$.

2) Appliquer l'algorithme k-means sur les 6 premières instances du dataset pour k = 2 et en démarrant avec les instances I2 et I4 comme centroides initiaux. Considérer tous les types des attributs comme des entiers. (5 pts)

Initialisations:

 $C1 = \{I2\}$ $C2 = \{I4\}$

Première itération :

Calcul des distances entre les instances et I2 et I4 :

I2	1	2	12	0	7

Distance (I1, I2) = |1 - 1| + |4 - 2| + |13 - 12| + |2 - 0| + |3 - 7| = 0 + 2 + 1 + 2 + 4 = 9Distance (I1, I4) = |1 - 1| + |4 - 4| + |13 - 11| + |2 - 2| + |3 - 7| = 0 + 0 + 2 + 0 + 4 = 6 $C2 = \{I4, I1\}$ (0,5 pt)

Distance (I3, I2) = |1 - 1| + |3 - 2| + |13 - 12| + |2 - 0| + |6 - 7| = 0 + 1 + 1 + 2 + 1 = 5Distance (I3, I4) = |1 - 1| + |3 - 4| + |13 - 13| + |2 - 2| + |6 - 3| = 0 + 1 + 0 + 0 + 3 = 4 $C2 = \{I4, I1, I3\}$ (0,5 pt)

Distance (I5, I2) = |1 - 1| + |4 - 2| + |14 - 12| + |2 - 0| + |7 - 7| = 0 + 2 + 2 + 2 + 0 = 6Distance (I5, I4) = |1 - 1| + |4 - 4| + |14 - 11| + |2 - 2| + |7 - 7| = 0 + 0 + 3 + 0 + 0 = 3C2 = {I4, I1, I3, I5} (0,5 pt)

Distance (I6, I2) = |0 - 1| + |4 - 2| + |15 - 12| + |2 - 0| + |7 - 7| = 1 + 2 + 3 + 2 + 0 = 8Distance (I6, I4) = |0 - 1| + |4 - 4| + |15 - 13| + |2 - 2| + |7 - 3| = 0 + 3 + 0 + 2 + 0 = 5C2 = {I4, I1, I3, I5, I6} (0,5 pt) Mise à jour des centroides:

<u>I2</u>	1	2	12	0	7
c1	1	2	12	0	<mark>7</mark>
I 1	1	4	13	2	3
I3	1	3	13	2	6
I 4	1	4	11	2	7
I 5	1	4	14	2	7
I3 I4 I5 I6	0	4	15	2	7
c2	0.8	3.8	13.2	2	6

Deuxième itération :

Calcul des distances entre les instances et c1 et c2 :

arcui	ucs u	istuitees	chitic ics	mount	ob ot c	٠.
c1	1	2	12	0	7	

Distance (I1, c1) =
$$|1 - 1| + |4 - 2| + |13 - 12| + |2 - 0| + |3 - 7| = 0 + 2 + 1 + 2 + 4 = 9$$

Distance (I1, c2) = $|1 - 0.8| + |4 - 3.8| + |13 - 13.2| + |2 - 2| + |3 - 6| = 0.2 + 0.2 + 0.2 + 0 + 3 = 3.6$
C2 = {I1} (0,5 pt)

Distance (I2, c1) =
$$|1 - 1| + |2 - 2| + |12 - 12| + |0 - 0| + |7 - 7| = 0$$

Distance (I2, c2) = $|1 - 0.8| + |2 - 3.8| + |12 - 13.2| + |0 - 2| + |7 - 6| = 0.2 + 1.8 + 1.2 + 2 + 1 = 6.2$
C1 = {I2} (0,5 pt)

Distance (I3, c1) =
$$|1 - 1| + |3 - 2| + |13 - 12| + |2 - 0| + |6 - 7| = 0 + 1 + 1 + 2 + 1 = 5$$

Distance (I3, c2) = $|1 - 0.8| + |3 - 3.8| + |13 - 13.2| + |2 - 2| + |6 - 6| = 0.2 + 0.8 + 0.2 + 0 + 0 = 1.2$
C2 = {I1, I3} (0,5 pt)

Distance (I4, c1) =
$$|1 - 1| + |4 - 2| + |11 - 12| + |2 - 0| + |7 - 7| = 0 + 2 + 1 + 2 + 0 = 5$$

Distance (I4, c2) = $|1 - 0.8| + |4 - 3.8| + |11 - 13.2| + |2 - 2| + |7 - 6| = 0.2 + 0.2 + 2.2 + 0 + 1 = 3.6$
C2 = {I1, I3, I4} (0,5 pt)

Distance (I5, c1) =
$$|1 - 1| + |4 - 2| + |14 - 12| + |2 - 0| + |7 - 7| = 0 + 2 + 2 + 2 + 0 = 6$$

Distance (I5, c2) = $|1 - 0.8| + |4 - 3.8| + |14 - 13.2| + |2 - 2| + |7 - 6| = 0.2 + 0.2 + 0.8 + 0 + 1 = 2.2$
C2 = {I1, I3, I4, I5} (0.5 pt)

Distance
$$(I6, c1) = |0 - 1| + |4 - 2| + |15 - 12| + |2 - 0| + |7 - 7| = 1 + 2 + 3 + 2 + 0 = 8$$

Distance $(I6, c2) = |0 - 0.8| + |4 - 3.8| + |15 - 13.2| + |2 - 2| + |7 - 6| = 0.8 + 0.2 + 1.8 + 0 + 1 = 3.8$
 $C2 = \{I1, I3, I4, I5, I6\}$ (0,5 pt)

Le processus s'arrête car les contenus des clusters ne changent pas. Le résultat est donc :

$$C1 = \{I2\}$$

$$C2 = \{I1, I3, I4, I5, I6\}$$