Addendum:

The original contest had two appeals in round 3

B) The original question was

Let circle $C_1 = \{(x, y) | x^2 + y^2 = 36\}$ and line $\mathcal{L} = \{(x, y) | y = x\}$.

Circle C_2 has its center on \mathcal{L} and is tangent to the x-axis at X(a, 0), the y-axis at Y(0, b) and circle C_1 at point T.

Compute the value of a.

In the second line the phrase outside of C_1 was omitted and since there is a circle inside of C_1 which satisfies the verbally stated conditions of the problem, $6(\sqrt{2}-1)$ was also accepted.

C) The original question was

When removed, the label on a cylindrical can is a rectangle. Suppose the height (H) of the can is 4 times the radius (r) of the base. The label is placed in quadrant 1 of the xy-plane as shown in the diagram at the right. The distance from point O to point P can be expressed in terms of H and r in simplest form as

 $A\sqrt{B}\frac{H^2}{}$, where A and B are positive constants and B is expressed in terms of π . Compute the ordered pair (A, B).

Since it was perfectly logical for a student to proceed $OP^2 = H^2 + OO^2 = H^2 + (2\pi r)^2$

Substituting for
$$r$$
: $H^2 + H^2 \cdot \frac{\pi^2}{2} - H^2 \left(1 + \frac{\pi^2}{2}\right)$

Substituting for
$$r$$
, $H^2 + H^2 \cdot \frac{\pi^2}{4} = H^2 \left(1 + \frac{\pi^2}{4} \right)$

$$OP = H\sqrt{1 + \frac{\pi^2}{4}} \text{ and } B = 1 + \frac{\pi^2}{4}$$

Now
$$\frac{AH^2}{r} = H \Rightarrow AH^2 = Hr = \frac{H^2}{4} \Rightarrow A = \frac{1}{4}$$

An alternate answer of $\left(\frac{1}{4}, \frac{\pi^2}{4} + 1\right)$ was also accepted.

