Жадные алгоритмы для построения многопроцессорного списочного расписания

Савицкий Илья

Научный руководитель: к.т.н. доцент Костенко Валерий Алексеевич

27 апреля 2023 г.

Цели и задачи дипломной работы

Целью дипломной работы является разработка алгоритма построения многопроцессорного расписания с дополнительными ограничениями на основе жадных стратегий.

Для достижения указанной цели требуется:

- Провести обзор алгоритмов построения списочных расписаний с целью выявления жадных критериев, которые могут быть модифицированы для решения данной задачи.
- Разработать и реализовать алгоритмы.
- Провести исследование свойств алгоритмов.

Постановка задачи

- Ориентированный граф работ G без циклов, в котором дуги зависимости по данным, а вершины задания. Вершин n, дуг m
- Вычислительная система, состоящая из р различных процессоров.
- **3** Матрица C_{ij} длительности выполнения работ на процессорах, $i=1\ldots n, j=1\ldots p$. Каждая строка этой матрицы длины выполнения n-й задачи на p процессорах.
- Матрица D_{kl} передач данных между процессорами, $k=1\dots p, l=1\dots p, D_{kk}=0$. D_{ij} -й элемент этой матрицы время передачи данных между процессорами i и j.

Граф потока данных

Расписание

Расписание программы определено, если определены

- Множества процессоров и работ
- Привязка
- Порядок

Привязка - всюду определенная на множестве работ функция, которая задает распределение работ по процессорам.

Порядок задает ограничения на последовательность выполнения работ и является отношением частичного порядка, удовлетворяющим условиям ацикличности и транзитивности. Отношение порядка на множестве работ, распределенных на один процессор, является отношением полного порядка.

Постановка задачи

Требуется:

- Построить расписание HP, то есть для i-й работы определить время начала ее выполнения s_i и процессор p_i на котором она будет выполняться;
- Минимизируемый критерий: время завершения выполнения расписания.

Представление расписания в виде временной диаграммы

Модель расписания

Множество корректных расписаний *HP* задается набором ограничений:

- В расписании не допустимы прерывания;
- Интервалы выполнения работ не пересекаются;
- Каждая работа назначена на процессор;
- Любую работу обслуживает один процессор;
- Частичный порядок, заданный графом зависимостей G, сохранен в $HP: G \subset G_{HP}^T$, где G_{HP}^T транзитивное замыкание отношения G_{HP} .

Дополнительные ограничения

- Задача с однородными процессорами (длительность выполнения работы не зависит от того, на каком процессоре она выполняется) и дополнительными ограничениями на количество передач:
 - ullet $CR = rac{m_{ip}}{m}$, где m_{ip} количество передач данных между работами на каждый процессор
- Задача без дополнительных ограничений.

Общая схема жадных алгоритмов

Жадный алгоритм

- Выбор следующей работы на постановку критерий GC1
- Выбор процессора для работы
 - Для CR из изначально заданного разбиения
 - Для *NO* по критерию *GC*2

Зададим множество доступных для добавления вершин $D=(d_1,d_2,\ldots,d_l)$, где l - количество вершин, доступных для добавления.

Критерий *GC*1:

Из множества D выбирается работа по критерию GC1 максимальности количества потомков у вершины.

Критерий *GC*2:

Работа ставится на процессор, на котором время завершения работы будет минимальным.

Выбранная вершина

Алгоритм постановки работы на процессор

При постановке требуется найти такое минимальное время t, чтобы

- lacktriangle Все передачи данных завершились до t;
- Существует интервал простоя времени не меньший времени выполнения работы, начинающийся в t.

Жадный алгоритм с фиктивными директивными сроками

- Выбор следующей работы на постановку в соответствии с EDF эвристикой;
- 2 Выбор процессора для работы:
 - Для CR из изначально заданного разбиения
 - Для *NO* по критерию *GC*2

Пусть длина пути - сумма всех задержек передач данных и времен выполнения работ на процессорах. Пусть директивный срок всего расписания d, а p_A - длина длиннейшего пути от работы A до работы S такой, что у S нет потомков. Тогда директивный срок d_A вершины A равен $d_A - p$.

Точность полученного расписания. CR

(Greedy_EDF, CR, Class1, Known_opt)
Ratio of algorithm schedule duration to optimal schedule duration

1.4

1.3

9

1.2

1.1

1.1

1.0

(а) Жадный алгоритм

(b) Жадный алгоритм с фиктивными директивными сроками

Number of tasks

Качество решений алгоритмов на данных с известным оптимумом, дополнительная постановка $\it CR$

Точность полученного расписания. NO

(а) Жадный алгоритм

(b) Жадный алгоритм с фиктивными директивными сроками

Number of tasks

Качество решений алгоритмов на данных с известным оптимумом, дополнительная постановка NO

Проблема проверки алгоритма на данных с известным оптимумом

Точность полученного расписания. CR и NO

Отношение длительности работы алгоритма с фиктивными директивными сроками к длительности

работы жадного алгоритма на данных, основанных на слоистых графах

27 апреля 2023 г.

Точность полученного расписания. CR и NO

Отношение длительности работы алгоритма с фиктивными директивными сроками к длительности

работы жадного алгоритма на данных, основанных на неоднородных процессорах

Время выполнения программы. CR и NO.

Время выполнения алгоритма на данных с известным оптимумом, в секундах

директивными сроками

Текущие результаты

Реализовано:

- Проведен обзор алгоритмов построения списочных расписаний. Цель обзора: выявление жадных критериев и схем ограниченного перебора, которые могут быть модифицированы для решения данной задачи.
- Разработан и ревлизован алгоритм, основанный на сочетании жадных стратегий и ограниченного перебора.
- Подобраны оптимальные параметры алгоритма.
- Проведено детальное исследование свойств алгоритма.

