- 1) Compute the order of each element in the dihedral group D_6 and D_8 .
- \rightarrow Consider the symmetries of a triangle given in the figure below and let $D_6 = \{R_0, R_{60}, R_{120}, D_1, D_2, D_3\}$.

Then we have the following

element	R_0	R_{60}	R_{120}	D_1	D_2	D_3
order	1	3	3	2	2	2

For each symmetry operation, we consider the minimum number of applications that are needed to return to the original configuration. Obviously, R_0 is the identity, which always has order of 1 for any group, and the reflections across diagonals through the vertices and center must be performed twice.

Now consider the symmetries of a square shown below and let $D_8 = \{R_0, R_{90}, R_{180}, R_{270}, H, V, D, D'\}$.

Then it follows that

ſ	element	R_0	R_{90}	R_{180}	R_{270}	H	V	D	D
ſ	order	1	4	2	4	2	2	2	2

- 2) Show that $\langle a, b | a^2 = b^2 = (ab)^2 = 1 \rangle$ give a presentation for D_{2n} in terms of the two generators a = s and b = sr of order 2.
- **3[1.1.1])** Complete the multiplication table for D_8 . Find at least one interesting pattern in the table.

	R_0	R_{90}	R_{180}	R_{270}	H	V	D	D'
R_0	R_0	R_{90}	R_{180}	R_{270}	Н	V	D	D'
R_{90}	R_{90}	R_{180}	R_{270}	R_0	D'	D	H	V
R_{180}	R_{180}	R_{270}	R_0	R_{90}	V	H	D'	D
R_{270}	R_{270}	R_0	R_{90}	R_{180}	D	D'	V	H
		D	V		R_0	R_{180}	R_{90}	R_{270}
V	V	D'	H	D			R_{270}	R_{90}
D	D	V	D'		R_{270}	R_{90}	R_0	R_{180}
D'	D'	H	D	V	R_{90}			

Something interesting

4[1.1.4])

(a) List the symmetries of a rectangle.

The symmetries are given in the second figure in problem 1 can be put into the set D_8 , which is also given in problem 1.

(b) Write the multiplication table for the symmetries of a rectangle.

The multiplication table for the symmetries of a rectangle are shown in the multiplication table in problem 3.

5[1.1.5])

(a) Find the center of D_8

The center of a group G is the set of all elements $a \in G$ such that ab = ba for all $b \in G$ (i.e. a commutes with all elements of G). We can read from the table in problem 3 what elements are in the center of D_8 :

$$\mathbf{Z}(D_8) = \{R_0, R_{180}\}$$

(b) Find $\mathbf{C}_{D_8}(R_{90})$ and $\mathbf{C}_{D_8}(H)$.

The centralizer of an element $a \in G$ is the set of all elements $b \in G$ such that a and b commute:

$$\mathbf{C}_{D_8}(R_{90}) = \{R_0, R_{90}, R_{180}, R_{270}\}$$

$$\mathbf{C}_{D_8}(H) = \{H, R_{180}, R_0, V\}$$

6[1.1.6]) Let D_6 denote the set of symmetries of an equilateral triangle. Find the multiplication table for D_6 . What is the center of D_6 ?

	R_0	R_{60}	R_{120}	D_1	D_2	D_3
R_0	R_0	R_{60}	R_{120}	D_1	D_2	D_3
R_{60}	R_{60}	R_{120}	R_0	D_2	D_3	D_1
R_{120}	R_{120}	R_0	R_{60}	D_3	D_1	D_2
D_1	D_1	D_3	D_2	R_0	R_{120}	R_{60}
D_2	D_2	D_1	D_3	R_{60}	R_0	R_{120}
D_3	D_3	D_2	R_{120} R_{0} R_{60} D_{2} D_{3} D_{1}	R_{120}	R_{60}	R_0

7[1.2.4]) Let $\sigma = (1\ 3\ 5)(2\ 4)$ and $\tau = (1\ 5)(2\ 3)$ be elements of S_5 . Find σ^2 , $\sigma\tau$, $\tau\sigma$, and $\tau\sigma^2$.

$$\sigma^{2} = [(1 \ 3 \ 5)(2 \ 4)][(1 \ 3 \ 5)(2 \ 4)] = (1 \ 5 \ 3)$$

$$\sigma\tau = [(1 \ 3 \ 5)(2 \ 4)][(1 \ 5)(2 \ 3)] = (5 \ 3 \ 4 \ 2)$$

$$\tau\sigma = [(1 \ 5)(2 \ 3)][(1 \ 3 \ 5)(2 \ 4)] = (1 \ 2 \ 4 \ 3)$$

$$\tau\sigma^{2} = [(1 \ 5)(2 \ 3)](1 \ 5 \ 3) = (5 \ 2 \ 3)$$

8[1.2.5]) Construct a complete multiplication table for S_3 . What is the center of S_3 ? If $f = (1 \ 2 \ 3)$, what is $\mathbf{C}_{S_3}(f)$, the centralizer of f in S_3 ?

 \rightarrow We know that $S_3 = \text{Perm}(\{1, 2, 3\}) = \{1, (2 3), (1 2), (1 2 3), (1 3 2), (1 3)\}.$ Hence,

	1	$(2\ 3)$	$(1\ 2)$	$(1\ 2\ 3)$	$(1\ 3\ 2)$	$(1\ 3)$
1	1	$(2\ 3)$	(1 2)	$(1\ 2\ 3)$	$(1\ 3\ 2)$	$(1\ 3)$
$(2\ 3)$	$(2\ 3)$	1	$(1\ 3\ 2)$	$(1\ 3)$	$(1\ 2)$	$(1\ 2\ 3)$
$(1\ 2)$	$(1\ 2)$	$(1\ 2\ 3)$	1	$(2\ 3)$	$(1\ 3)$	$(1\ 3\ 2)$
$(1\ 2\ 3)$	$(1\ 2\ 3)$	$(1\ 2)$	$(1\ 3)$	$(1\ 3\ 2)$	1	$(2\ 3)$
$(1\ 3\ 2)$	$(1\ 3\ 2)$	$(1\ 3)$	$(2\ 3)$	1	$(1\ 2\ 3)$	$(1\ 2)$
$(1\ 3)$	$(1\ 3)$	$(1\ 3\ 2)$	$(1\ 2\ 3)$	$(1\ 2)$	$(2\ 3)$	1

and

$$\mathbf{C}_{S_3}(f) = \{1, (1\ 2\ 3), (1\ 3\ 2)\}$$

9[1.2.6]) Let $f = (1 \ 2 \ 3) \in S_3$. Find the maps in the following sequence

$$\mathbb{1}_{[3]}, f, f^2, f^3, f^4, f^5, \dots$$

Do you see a pattern?

Notice that from the table we see that

$$f^{0} = \mathbb{1}_{[3]}$$

$$f^{1} = (1 \ 2 \ 3)$$

$$f^{2} = (1 \ 2 \ 3)(1 \ 2 \ 3) = (1 \ 3 \ 2)$$

$$f^{3} = (1 \ 2 \ 3)(1 \ 3 \ 2) = \mathbb{1}_{[3]}$$
:

It is seen that this sequence essentially lists the elements of the cyclic group $< f> = \{f, f^2, f^3 = \mathbbm{1}_{[3]}\}.$