Algebraic Theory I

Thomas Fleming

November 22, 2021

Contents

Lecture 37: Polynomials (3)

Fri 19 Nov 2021 11:30

Theorem 0.1. Let K be a field, with U being a finite multiplicative subgroup. Then it is cyclic.

Proof. Since U is a finite additive group, we see $U = \prod_{i=1}^n P_i$ for some sylow p groups P_i . It suffices to show that each subgroup is cyclic as the product of their generators will generate U. Let $x \in P_i$ be an element of maximal order p^m and let $|P_i| = p^n$ for $m \le n$. Then every $y \in P_i$ has order ord $(y) \mid p^m$. Hence, they are all roots of $f = x^{p^m} - 1$ which has at most p^m roots, so $p^n = |P_i| \le p^m$, hence $n \le m$ so equality holds. So, x has order p^n implying x generates P_i . \square

Corollary 1. $(\mathbb{Z}/p\mathbb{Z})^{\times} \simeq \mathbb{Z}/(p-1)\mathbb{Z}$.

Definition 0.1 (Content of a Polynomial). Let R be a UFD with its quotient field K. Let $x \in K$, then there is a unique (up to units) representation $x = \frac{a}{b}$ with $a, b \in R$ being coprime (no prime p has $p \mid a$ and $p \mid b$). Then, for a prime p, define $V_p\left(\frac{a}{b}\right) = V_p\left(a\right) - V_p\left(b\right)$ where $V_p\left(x\right)$ is the power of p in the unique factorization of x. We see one of $V_p\left(a\right)$ or $V_p\left(b\right) = 0$. Leaving results $V_p\left(a\right)$ if $p \mid a$ or $-V_p\left(b\right)$ if $p \mid b$. This is called the p-adic valuation of $\frac{a}{b}$. Note $V_p\left(0\right) \coloneqq \infty$. Now, let $f \in K\left[x\right]$ with

$$f = \sum_{i=0}^{n} a_i x^i$$

for some $n \in \mathbb{N}$ and $a_i \in K$. Then, we define $V_p(f) = \inf\{V_p(a_i) : i \geq 0\}$. With this, we define the **content** of f to be

$$\operatorname{Cont}\left(f\right) = \prod_{p \text{ prime}} p^{V_p(f)}.$$

Remark. The notion of content essentially generalizes the GCD to fraction fields.

Example. Let $R = \mathbb{Z}$ so $K = \mathbb{Q}$, then $V_2\left(\frac{2}{9}\right) = 1$ and $V_3\left(\frac{2}{9}\right) = -2$ and $V_5\left(\frac{2}{9}\right) = 0$.

Then, let $f(x) = \frac{3}{4}x^2 + 6x - 3$, then

Cont
$$(f) = 3 \cdot 2^{-2} = \frac{3}{4}$$
.

Since Cont (f) will always contain all denominators, this allows us to reduce a polynomial over \mathbb{Q} to a rational times a polynomial, $f_1 \in K[x]$ having content Cont $(f_1) = 1$, hence $f_1 \in R[x]$.

Lemma 0.1. If R is a UFD, with K its quotient field, and $f \in K[x]$, then Cont (f) = 1 implies $f \in R[x]$.

Remark. It is of note that the converse does not hold, take $2x^2 + 4$.

Definition 0.2. For a UFD R and quotient field K, we say $f \in K[x]$ is **primitive** if Cont (f) = 1 (hence $f \in R[x]$).

Lemma 0.2 (Gauss Lemma). Let R be a UFD with K its quotient field. If $f, g \in K[x]$, then Cont(fg) = Cont(f) Cont(g).

Proof. Let $c_1 = \text{Cont}(f)$, $c_2 = \text{Cont}(g)$. Then, $f = c_1 f_1$ and $g = c_2 g_1$ for some $f_1, g_1 \in R[x]$ with $\text{Cont}(f_1) = \text{Cont}(g_1) = 1$. So, $fg = \text{Cont}(f) \text{Cont}(g) f_1 g_1$. Thus, it suffices to show $\text{Cont}(f_1 g_1) = 1$. Since $f_1, g_1 \in R[x]$, we see $f_1 g_1 \in R[x]$. Hence, we need to show no p divides all the coefficients of $f_1 g_1$. Suppose by contradiction that p is a prime dividing all coefficients of $f_1 g_1$. Then, the map

$$\varphi: R[x] \longrightarrow R/(p)[x] = \overline{\mathbb{R}}[x]$$

Clearly (p) is a prime ideal, so $\overline{\mathbb{R}}$ is an integral domain with $0 = \varphi(f_1g_1) = \varphi(f_1) \varphi(g_1)$. Hence either $\varphi(f_1) = 0$ or $\varphi(g_1) = 0$, so WLOG $p \mid a_i$ for all a_i in the representation of f_1 , hence $\operatorname{Cont}(f_1) \geq p \notin$. So the claim holds. \square

Lecture 38: Polynomials (4)

Mon 22 Nov 2021 11:31

Recall. We found the content of a polynomial over a UFD, R, and its quotient field K, essentially being its generalized gcd in order to reduce polynomials in K to polynomials in R.

Moreover, for $f, g \in K[x]$, then $Cont(f) \cdot Cont(g) = Cont(fg)$.

Now, let $f \in R[x]$ with f = gh for $g, h \in K[x]$, K being the quotient field of R. Then, denote $c_g = \text{Cont}(g)$ and $c_h = \text{Cont}(h)$. Then, we find $f = (c_g c_h) g_1 h_1$ for some $h_1, g_1 \in R[x]$.

Then, we see Cont (f) = Cont (h) = $c_g c_h$. Since $f \in R[x]$, we see Cont $(f) \in R$. This implies all factorizations over K admit a factorization over R.

Now, if $f, g \in R[x]$ with $h \in K[x]$ and f = gh, then the same argument shows $\operatorname{Cont}(f) = \operatorname{Cont}(g)\operatorname{Cont}(h)$. Hence if f, g are primitive, we find $\operatorname{Cont}(h) \in R$, so $h \in R[x]$.

Theorem 0.2. Let R be a UFD with quotient field K. Let $f \in R[x]$ (we will prove the case f primitive for simplicity, though the non-primitive case is completely analogous). Then, we find f is irreducible in R[x] if and only if f is irreducible in K[x].

Proof. Suppose f irreducible in K[x] but not in R[x]. Denote f = gh with $g, h \in R[x]$ being non-units (in R[x]).

We know $\operatorname{Cont}(f) = \operatorname{Cont}(g) \operatorname{Cont}(h) = 1$. f = gh is a factorization in K unless g or h is a unit. So, assume WLOG g is a unit in K[x], hence g is constant and $\operatorname{Cont}(g) = g$ hence $g^{-1} = \operatorname{Cont}(h)$. So g is a unit in $R \not \xi$.

Now, assume f irreducible in R[x] but not in K[x].

Then f = gh for some $g, h \in K[x]$ being non-units in K[x]. Hence, we find g, h are nonconstant polynomials in K. Denote $c_g = \text{Cont}(g)$, $c_h = \text{Cont}(h)$ with $g = c_g g_1$ and $h = g_h h_1$ for $g_1, h_1 \in R[x]$ being primitive, Thus, $f = (c_g c_h) g_1 h_1$ with $c_g, c_h = \text{Cont}(f) \in R[x]$ by hypothesis. Since g, h are nonconstant, g_1, h_1 are nonconstant, hence nonunits and nonzero, so this is a factorization of f over $R[x] \notin S$. So the claim is shown.

Theorem 0.3. A ring R is a UFD if and only if R[x] is a UFD. Moreover if R be a UFD with quotient field K then $f \in R[x]$ is prime if and only if one of the following hold

- 1. $f = p \in R$ is a constant with p being prime in R, or
- 2. f is irreducible over K[x] with Cont (f) = 1.

Proof. We begin by examining the prime elements of R[x]. First, we show constant polynomials with prime content are prime in R[x].

Let $f = p \in R[x]$ with $p \in R$ being a prime in R. To show f is prime in R[x], suppose $p \mid gh$ with $g, h \in R[x]$. Then let $c_g = \text{Cont}(g)$ and $c_h = \text{Cont}(h)$ so $g = c_g g_1$ nad $h = c_h h_1$ for primitive $g_1, h_1 \in R[x]$. So, $p \mid (c_g c_h) g_1 h_1$, so $p \mid c_g c_h$. So $p \mid c_g$ or c_h , WLOG suppose the case c_g . Then, $p \mid g$, so p is prime in R[x].

Now, suppose $f \in R[x]$ with f primitive and f irreducible over K[x]. Since K is a field, K[x] is a PID, hence UFD, so primes are irreducible, hence f is prime in K[x]. Suppose $f \mid gh$ (over R), sometimes denoted $f \mid_R gh$, with $g, h \in R[x]$. Then, $f \mid_{K[x]} gh$, so $f \mid_{K[x]} g$ or h. Assume WLOG the case g and suppose f = gt for some $t \in K[x]$. Since $\mathrm{Cont}(g)$, $\mathrm{Cont}(f) \in R$ we see $\mathrm{Cont}(t) \in R$, hence $t \in [x]$, so $f \mid_{R[x]} g$, hence f is prime.

Now, let $f \in R[x]$ be prime. First, suppose $f = p \in R$ is a constant polynomial which is prime in R[x]. If $p \mid_{R[x]} ab$ with $ab \in R$, then we see $p \mid_R ab$. So, $pq = ab \in R$ for a polynomial q implies $\deg(q) \leq 1$. That is, $p \mid_{R[x]} ab$ and since p is prime in R[x] we find WLOG $p \mid_{R[x]} a$. So, $p \mid_R a$ by a similar argument, and we see $p \in R$ is prime.

Otherwise, suppose the prime $f \in R[x]$ has $deg(f) \ge 1$. We wish to show

Cont (f) = 1 and f irreducible over R[x]. But, $f = \text{Cont}(f) f_1$ with $f_1 \in R[x]$ being primitive and $\deg(f) = \deg(f_1) \ge 1$ implies f_1 is a nonunit (in R[x] and K[x]). If Cont(f) = 1 this is a contradiction as f is prime (hence irreducible) over R[x]. So, Cont(f) = 1.

Finally, we must show f irreducible over $K\left[x\right]$ but the preceding lemma handles precisely this case.

Next class we show the final piece of the theorem, that R is a UFD if and only if R[x] is a UFD. \Box