

Simulación de colas dependientes del estado

Diego Esteban Quintero Rey

Inspección de código y correcciones

```
(zi >> 7 || 1) / 16777216.0; (zi >> 7 | 1) / 16777216.0;
```

Cálculo de tiempos y tasas medias

A	В	C	D	E	F
1 Tiempo medio entre llegadas	8.702287928				
2 Tiempo medio del servicio	6.162095589				
3					
4 Tasa media de llegadas	0.114912309				
Tasa media de servicios	0.162282455				
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
< > Datos_2023_01	Medias	+			

Verificación de componentes del sistema

Extensión (M/M/1) a (M/M/m) : $(FIFO/m/\infty)$

Extensión (M/M/1) a (M/M/m) : $(FIFO/m/\infty)$

Secciones de área que se van acumulando en cada actualización

área de la cola = 0

Extensión (M/M/1) a (M/M/m): $(FIFO/m/\infty)$

Algoritmo de llegada

Algoritmo de salida

Versión modificada disponible

este6an13/queues-simulator (github.com)

Parámetros del experimento

- Semilla para generar los números aleatorios: 1
- Tasa de llegadas λ : 0.114912309
- Tasa de servicio μ : 0.162282455
- Tamaño de población origen: 1000

Tiempo medio entre llegadas $1/\lambda$: 8.702287928 Tiempo medio del servicio $1/\mu$: 6.162095589

Resultados

Métrica	Valor Simulación	Fórmula Simulación
Espera promedio en la cola	0.000	espera total / total de clientes
Número promedio de clientes en la cola	0.000	área de la cola / tiempo total

Tiempo de simulación: 118.739 minutos

Resultados

Métrica	Valor Simulación	Valor Teórico	Error Relativo
Rendimiento	0.144	0.115	0.253
Número promedio de clientes en el	0.770	0.708	0.088
sistema			
Tiempo promedio de cada cliente en	6.463	6.162	0.049
el sistema			
Utilización del servicio	0.552	0.507	0.088
Fórmula B de Erlang	0.006	0.001	7.210

Fórmulas utilizadas

Métrica	Fórmula Simulación	Fórmula Teórica
Rendimiento	área del servidor / tiempo total / número de servidores	$a = \sum_{n=1}^{\infty} \mu_n p_n$
Número promedio de clientes en el sistema	área de clientes / tiempo total	$b = \sum_{n=1}^{\infty} n p_n$
Tiempo promedio de cada cliente en el sistema	total de clientes / servicio total	$\frac{a}{b}$
Utilización del servicio	área del servidor / tiempo total	$1 - p_0$
Fórmula B de Erlang	pérdidas / tamaño población origen	$p_m = p_0 \frac{1}{m!} \left(\frac{\lambda}{\mu}\right)^m$

Fórmulas utilizadas

$$\lambda_n = \lambda$$

$$\mu_n = n\mu$$

$$p_0 = \left(1 + \sum_{n=1}^{m-1} \frac{1}{n!} \left(\frac{\lambda}{\mu}\right)^n\right)^{-1}$$

$$p_n = p_0 \frac{1}{n!} \left(\frac{\lambda}{\mu}\right)^n \quad \text{con } n \le m$$