EXAMS OF ALGEBRAIC GEOMETRY I (2022 FALL)

TAKE-HOME QUIZ

Supposedly, the following 5 problems are to be finished in consecutive 4 hours.

Problem 1. First order deformations.

(1) (10 points) Let X be a k-scheme. Show that

 $\operatorname{Hom}_{\operatorname{\mathbf{Sch}}_k}(\operatorname{Spec} k[\epsilon]/\epsilon^2, X) \cong \{(x, v) \mid x \in X \text{ such that } \kappa(x) \cong k \text{ and } v \in \operatorname{Hom}_k(\mathfrak{m}/\mathfrak{m}^2, k)\},$

where $\mathfrak{m} \subset \mathcal{O}_{X,x}$ is the maximal ideal and $\kappa(x) := \mathcal{O}_{X,x}/\mathfrak{m}$.

(2) (5 points) Prove that this description uniquely characterizes the scheme Spec $k[\epsilon]/\epsilon^2$ among all k-schemes.

Problem 2. Prime avoidance.

- (1) (10 points) Let $X = \operatorname{Spec} A$ be an affine scheme and $Z \subset X$ be a closed subset. Prove that for any finite number of points x_1, \ldots, x_n (not necessarily closed), there is an element f of A such that D(f) is disjoint from Z and contains all the points x_1, \ldots, x_n .
- (2) (5 points) Translate this into a statement about rings and ideals. (If you want to reduce Problem 1 to this theorem, you have to prove this algebraic theorem as well.)

Hint: use induction. Even though the geometric form and algebraic form are completely equivalent to each other, you are encouraged to think and prove this in the geometric form.

Problem 3. Open dense dominance in reduced-separated case.

(20 points) Let X, Y be schemes over S. Assume that X is reduced, Y is separated over S. Let U be an open dense subset of X. Prove that

$$\operatorname{Hom}_S(X,Y) \to \operatorname{Hom}_S(U,Y)$$

is injective.

Problem 4. Finite type versus finiteness.

(20 points) Let $f: X \to Y$ be a generically finite, dominant, finite type morphism between integral schemes. Prove that there is an open subscheme $V \subset Y$ such that $f: f^{-1}(V) \to V$ is a finite morphism.

Problem 5. Restrictive representability.

Let L/K be a finite field extension and X a scheme over L. Define a functor

$$\operatorname{Res}_{L/K}(X): \{\text{Schemes of finite type over } K\}^{\operatorname{op}} \longrightarrow \mathbf{Sets}$$

sending a finite type affine K-scheme T to $\operatorname{Hom}_{\operatorname{\mathbf{Sch}}_L}(T \times_{\operatorname{Spec} K} \operatorname{Spec} L, X)$. The image of morphisms are defined in the obvious way.

- (1) (10 points) Prove that if $X = \mathbb{A}^1_L$, then this functor is representable.
- (2) (10 points) Prove that if X is a finite type affine L-scheme, $\operatorname{Res}_{L/K}(X)$ is representable.
- (3) (10 points) Let X be a group scheme over L (i.e. a group object in the category of L-schemes, or an L-scheme such that all the group operations are L morphisms). Prove that if $\operatorname{Res}_{L/K}(X)$ is representable, it is a group scheme over K. If $X = \operatorname{SL}(n)_L$, the special linear group scheme over L. What is the Zariski tangent space of $\operatorname{Res}_{L/K}(X)$ at the identity?

Date: February 24, 2023.

MIDTERM EXAM

Students are required to solve the following 2 problems in consecutive 2 hours.

Problem 6. Let X be a noetherian scheme and F a coherent sheaf on X. For each point $x \in X$, define

$$\phi(x) = \dim_{\kappa(x)} F_x \otimes_{\mathcal{O}_{X,x}} \kappa(x).$$

- (1) Show that ϕ is upper-semi-continuous on X.
- (2) Assume that X is reduced and that ϕ is constant. Prove F is locally free.
- (3) Give an example of non-reduced scheme X and a coherent sheaf F such that ϕ is constant but F is not locally free.

Problem 7. Let X be a noetherian scheme. Prove that X is affine if and only if every integral closed subscheme Y of X is affine. (Here Y could equal X if X is itself an integral scheme.

FINAL EXAM

Students are required to solve the following 2 problems in consecutive 2 hours.

Problem 8. Let $f: X \to Y$ be a finite surjective morphism between noetherian separated schemes. Assume that X is affine. Prove that Y is affine.

Problem 9. Let k be an algebraically closed field. Let $X \subset \mathbb{P}^4_k$ be defined by the homogeneous ideal $(X_0X_1 - X_2X_3)$, where $(X_0: X_1: X_2: X_3)$ is the projective coordinate. Compute $\mathrm{Cl}(X)$ and $\mathrm{Pic}(X)$.

School of Mathematical Sciences, Peking University, 100871, Beijing, China $\it Email\ address$: daiwenhan@pku.edu.cn