Práctico 10: Matriz de una transformación lineal. Coordenadas.

- 1. Los vectores $v_1=(1,0,-i), v_2=(1+i,1-i,1), v_3=(i,i,i)$ forman una base de \mathbb{C}^3 . Dar las coordenadas de un vector (x, y, z) en esta base.
- 2. Sea $v = (1, 0, -1) \in \mathbb{R}^3$ un vector. Hallar \mathcal{B} una base de \mathbb{R}^3 tal que $[v]_{\mathcal{B}} = (0, 1, 0)$.
- 3. Sea $\mathcal{B} = \{(1, -2, 1), (2, -3, 3), (-2, 2, -3)\}$ un subconjunto del \mathbb{R} -espacio vectorial \mathbb{R}^3 .
 - (a) Demostrar que \mathcal{B} es una base de \mathbb{R}^3 .
 - (b) Hallar la matriz de cambio de base de la base canónica \mathcal{C} a \mathcal{B} .
 - (c) Hallar las coordenadas, respecto de \mathcal{B} , de los vectores (1,0,1) y (-1,2,1).
 - (d) Más aún, describir (x, y, z) en términos de la base \mathcal{B} .

- 4. Sea $\mathcal{B} = \left\{ \begin{pmatrix} 0 & 2 \\ -3 & 3 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 2 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ -2 & 1 \end{pmatrix}, \begin{pmatrix} 4 & -2 \\ 2 & -3 \end{pmatrix} \right\}.$
 - (a) Probar que \mathcal{B} es una base de $M_2(\mathbb{R})$.
 - (b) Sea $\mathcal{C} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$. Hallar la matriz de cambio de base de \mathcal{B} a \mathcal{C} y la matriz de cambio de base de \mathcal{C} a \mathcal{B} .
 - (c) Hallar las coordenadas respecto de \mathcal{B} de las matrices $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 2 & 5 \\ -7 & 3 \end{pmatrix}$ y $\begin{pmatrix} 10 & -1 \\ -4 & 2 \end{pmatrix}$.
- 5. (a) Dar una base ordenada del subespacio $W = \{(x, y, z) \in \mathbb{K}^3 \mid x y + 2z = 0\}$.
 - (b) Dar las coordenadas de w = (1, -1; -1) en la base que haya dado en el item anterior.
 - (c) Dado $(x, y, z) \in W$, dar las coordenadas de (x, y, z) en la base que haya calculado en el item (a).
- 6. Sea T la proyección de \mathbb{C}^2 dada por $T(x_1, x_2) = (x_1, 0)$. Sean \mathcal{B} la base canónica de \mathbb{C}^2 y \mathcal{B}' la base ordenada $\{(1,i),(-i,2)\}.$
 - (a) Dar la matriz de T con respecto al par \mathcal{B} , \mathcal{B}' .
 - (b) Dar la matriz de T con respecto a \mathcal{B}' .
- 7. Sea $T: \mathbb{R}^2 \to \mathbb{R}^2$ una transformación lineal y sean

$$A = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 5 \\ 0 & 1 \end{pmatrix}, C = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

(a) Decidir si existen bases $\mathcal{B}_1, \mathcal{B}_2$ de \mathbb{R}^2 tales que

$$[T]_{\mathcal{B}_1} = A, \qquad [T]_{\mathcal{B}_2} = C.$$

(b) Decidir si existen bases $\mathcal{B}_1, \mathcal{B}_2$ de \mathbb{R}^2 tales que

$$[T]_{\mathcal{B}_1} = A, \qquad [T]_{\mathcal{B}_2} = B.$$

8. Sean V y W dos \Bbbk -espacios vectoriales, de dimensión n y m respectivamente. Sean \mathcal{B} y \mathcal{B}' bases de V y W, respectivamente. Recordemos que el espacio de transformaciones lineales de V a W: $\operatorname{Hom}_{\mathbb{K}}(V,W)$ es un espacio vectorial. Definimos

$$\Phi: \operatorname{Hom}_{\Bbbk}(V, W) \to M_{m \times n}(\Bbbk), \qquad \Phi(T) = [T]_{\mathcal{B}, \mathcal{B}'} \text{ para cada } T \in \operatorname{Hom}_{\Bbbk}(V, W).$$

Demostrar que Φ es un isomorfismo lineal. Concluir que dim $\operatorname{Hom}_{\mathbb{k}}(V,W)=mn$.

9. Sea $T: \mathbb{R}_3[x] \to \mathbb{R}_5[x]$ la transformación lineal definida por $T(p(x)) = p(x^2 + 1)$. Escribir la matriz de Ten las bases canónicas. Decidir si T es inyectiva o suryectiva.

10. Sea $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ la transformación lineal definida por

$$T(x, y, z) = (x - y, x - z).$$

Sean \mathcal{C} la base canónica de \mathbb{R}^3 y $\mathcal{B}' = \{(1,1),(1,-1)\}$ una base ordenada de \mathbb{R}^2 .

- (a) Calcular la matriz $[T]_{\mathcal{CB}'}$, es decir la matriz de T respecto de las bases $\mathcal{C} y \mathcal{B}'$.
- (b) Sea $(x, y, z) \in \mathbb{R}^3$. Dar las coordenadas de T(x, y, z) respecto de la base \mathcal{B}' .
- (c) Sea $S: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ una transformación lineal tal que su matriz respecto a las bases \mathcal{B}' y \mathcal{C} es

$$[S]_{\mathcal{B}'\mathcal{C}} = \left[\begin{array}{cc} 1 & 2 \\ 1 & -1 \\ 1 & 0 \end{array} \right].$$

Calcular la matriz de la composición $T \circ S : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ con respecto a la base \mathcal{B}' .

- 11. Dadas la matriz $M = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ y la base $\mathcal{B} = \{v_1, v_2, v_3\}$ de \mathbb{K}^3 , hallar una base \mathcal{B}' de \mathbb{K}^3 tal que $M = P_{\mathcal{B}, \mathcal{B}'}$.
- 12. Sean $\mathcal{B} = \{v_1, v_2, v_3\}$, $\mathcal{U} = \{v_1 + v_3, v_1 + 2v_2 + v_3, v_2 + v_3\}$ y \mathcal{U}' bases de \mathbb{R}^3 , y sea \mathcal{C} la base canónica de \mathbb{R}^3 . Sea $T : \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal tal que

$$[T]_{\mathcal{BC}} = \begin{bmatrix} 1 & -1 & 3 \\ 2 & 1 & 1 \\ 3 & 2 & 1 \end{bmatrix} \quad \text{y} \quad [T]_{\mathcal{UU'}} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}. \quad \text{No.}$$

Determinar \mathcal{U}' .

13. Sea V un \mathbb{K} -espacio vectorial con base $\mathcal{B} = \{v_1, ..., v_n\}$ y $A = (a_{ij}) \in \mathbb{K}^{n \times n}$ una matriz. Sea $\mathcal{B}' = \{v'_1, ..., v'_n\}$ donde

$$v'_j = \sum_{i=1}^n a_{ij} v_i$$
 para todo $1 \le j \le n$.

Probar que \mathcal{B}' es una base de V si y sólo si A es invertible. En tal caso determinar la matriz de cambio de base de la base \mathcal{B}' a la base \mathcal{B} , y viceversa.

- 14. Sea V un espacio vectorial de dimensión finita y $\mathcal B$ una base de V. Sea $T:V\to V$ una transformación lineal.
 - (a) Definimos la traza de T como $tr(T) = tr([T]_{\mathcal{B}})$. Demostrar que la función $tr : \operatorname{Hom}_{\mathbb{k}}(V, V) \to \mathbb{k}$ no depende de la elección de la base \mathcal{B} .
 - (b) Análogamente definimos el determinante de T como $det(T) = det([T]_{\mathcal{B}})$. Demostrar que el determinante de T no depende de la elección de la base \mathcal{B} .
 - (c) El punto anterior nos permite definir el polinomio característico de T como: $\chi_T(x) = det([xI T]_{\mathcal{B}})$. Demostrar que χ_T no depende de la elección de la base \mathcal{B} .

Ejercicios Adicionales

15. Sea V un \mathbb{K} -espacio vectorial con base $\mathcal{B} = \{v_1, ..., v_n\}$ y $A = (a_{ij}) \in M_n(\mathbb{K})$ una matriz. Sea $\mathcal{B}' = \{v_1', ..., v_n'\}$ donde

$$v_j' = \sum_{i=1}^n a_{ij} v_i \text{ para todo } 1 \le j \le n.$$

Probar que \mathcal{B}' es una base de V si y sólo si A es invertible. En tal caso determinar la matriz de cambio de base de la base \mathcal{B}' a la base \mathcal{B} , y viceversa.

2

16. Sean VW espacios vectoriales y sea $T:V\to W$ una transformación lineal. Mostrar que:

- (a) Si T = 0, entonces para cualesquiera bases \mathcal{B}_V y \mathcal{B}_W de V y W, respectivamente, la matriz de T con respecto a ellas es la matriz nula.
- (b) Si $\operatorname{Nu}(T)$ no es el espacio nulo, entonces existe una base \mathcal{B}_V de V tal que para cualquier base \mathcal{B}_W de W, la matriz de T con respecto a ellas tiene al menos una columna nula. Más aún, se puede elegir \mathcal{B}_V de tal manera que tenga dim $\operatorname{Nu} T$ columnas nulas.
- (c) Existen bases \mathcal{B}_V y \mathcal{B}_W de V y W, respectivamente, tales que la matriz de T con respecto a ellas es $[T]_{\mathcal{B}_V,\mathcal{B}_W} = \begin{bmatrix} Id_m & 0 \\ 0 & 0 \end{bmatrix}$, donde $m = \dim \operatorname{Im}(T)$.
- 17. Sean $A, B \in M_n(\mathbb{K})$. Probar que A es semejante a B sobre \mathbb{K} si y sólo si existe una transformación lineal $T : \mathbb{K}^n \to \mathbb{K}^n$ y bases \mathcal{B} y \mathcal{B}' de \mathbb{K}^n tales que $[T]_{\mathcal{B}} = A$ y $[T]_{\mathcal{B}'} = B$.