

ELEC 341: Systems and Control

Lecture 17

Bode plot

Course roadmap

Modeling

Laplace transform

Transfer function

Models for systems

- Electrical
- Electromechanical
- Mechanical

Linearization, delay

Analysis

Stability

- Routh-Hurwitz
- Nyquist

Time response

- **Transient**
 - Steady state

Frequency response

Bode plot

Design

Design specs

Root locus

Frequency domain

PID & Lead-lag

Design examples

Matlab simulations

Frequency response (review)

- Steady state output $y_{ss}(t) = A |G(j\omega)| \sin(\omega t + \angle G(j\omega))$
 - ullet Frequency is same as the input frequency ω
 - Amplitude is that of input (A) multiplied by $|G(j\omega)|$
 - Phase shifts $\angle G(j\omega)$

Gain

- Frequency response function (FRF): $G(j\omega)$
- Bode plot: Graphical representation of $G(j\omega)$

Phase shift (review)

$$\frac{T_{shift}}{T_{period}} = \frac{-\angle G(j\omega)}{360^{\circ}} \longrightarrow \angle G(j\omega) = -\frac{T_{shift}}{T_{period}} \times 360^{\circ}$$

Bode plot of $G(j\omega)$ (review)

Bode diagram consists of gain plot & phase plot

Sketching Bode plot

- Basic functions
 - Constant gain
 - Differentiator and integrator
 - Double integrator
 - First order system and its inverse
 - Second order system
 - Time delay
- Product of basic functions
 - 1. Sketch Bode plot of each factor, and
 - 2. Add the Bode plots graphically.

Bode plot of a constant gain

$$G(s) = K \Rightarrow |G(j\omega)| = K, \ \angle G(j\omega) = 0^{\circ}, \ \forall \omega$$

(for all)

 $K = 10$
 $K = 10$
 $K = 10$
 $K = 10$
 $V = 10^{\circ}$
 $V = 10^{\circ$

Sketching Bode plot

- Basic functions
 - Constant gain
 - Differentiator and integrator
 - Double integrator
 - First order system and its inverse
 - Second order system
 - Time delay
- Product of basic functions
 - 1. Sketch Bode plot of each factor, and
 - 2. Add the Bode plots graphically.

Bode plot of a differentiator

$$G(s) = s \Rightarrow |G(j\omega)| = \omega, \ \angle G(j\omega) = \angle j\omega = 90^{\circ}, \ \forall \omega$$

Bode plot of an integrator

$$G(s) = \frac{1}{s} \Rightarrow |G(j\omega)| = \frac{1}{\omega}, \ \angle G(j\omega) = \angle \frac{1}{j\omega} = -90^{\circ}, \ \forall \omega$$

Mirror image of the Bode plot of G(s) = s with respect to ω -axis.

Bode plot of a double integrator

$$G(s) = \frac{1}{s^2} \Rightarrow |G(j\omega)| = \frac{1}{\omega^2}, \ \angle G(j\omega) = \angle \frac{1}{(j\omega)^2} = -180^\circ, \ \forall \omega$$

Sketching Bode plot

- Basic functions
 - Constant gain
 - Differentiator and integrator
 - Double integrator
 - First order system and its inverse
 - Second order system
 - Time delay
- Product of basic functions
 - 1. Sketch Bode plot of each factor, and
 - 2. Add the Bode plots graphically.

Bode plot of a 1st order system

13

Straight-line approximation

Corner frequency

$$G(s) = \frac{1}{Ts+1}$$

$$G(j\omega) = \frac{1}{j\omega T + 1}$$

Bode plot of an inverse system

$$G(s) = Ts + 1 = \left(\frac{1}{Ts + 1}\right)^{-1}$$

Mirror image of the original Bode plot with respect to ω -axis.

Sketching Bode plot

- Basic functions
 - Constant gain
 - Differentiator and integrator
 - Double integrator
 - First order system and its inverse
 - Second order system
 - Time delay
- Product of basic functions
 - 1. Sketch Bode plot of each factor, and
 - 2. Add the Bode plots graphically.

Bode plot of a 2nd order system

a place of mind

Bode plot of a time delay

The phase lag causes instability of the closed-loop system, and thus, the difficulty in control.

Sketching Bode plot

- Basic functions
 - Constant gain
 - Differentiator and integrator
 - Double integrator
 - First order system and its inverse
 - Second order system
 - Time delay
- Product of basic functions
 - 1. Sketch Bode plot of each factor, and
 - 2. Add the Bode plots graphically.

Main advantage of Bode plot!

An advantage of Bode plot

- Bode plot of a series connection $G_1(s)G_2(s)$ is the addition of each Bode plot of G_1 and G_2 .
 - Gain

$$20\log_{10}|G_1(j\omega)G_2(j\omega)| = 20\log_{10}|G_1(j\omega)| + 20\log_{10}|G_2(j\omega)|$$

Phase

$$\angle G_1(j\omega)G_2(j\omega) = \angle G_1(j\omega) + \angle G_2(j\omega)$$

• Later, we use this property to design C(s) so that G(s)C(s) has a "desired" shape of Bode plot.

Example 1 $G(s) = \frac{10}{s}$

Sketch the Bode plot of the given transfer function

$$G(s) = \frac{10}{s}$$

Step 1: Decompose G(s) into a product form:

$$G(s) = 10 \cdot \frac{1}{s}$$

Step 2: Sketch a Bode plot for each component on the same graph.

Step 3: Add them all on both gain and phase plots.

Example 1 (cont'd)

$$G(s) = 10$$

X

$$G(s) = \frac{1}{s}$$

$$G(s) = \frac{10}{s}$$

Example 2 $G(s) = \frac{0.1}{s}$

$$G(s) = 0.1$$

X

$$G(s) = \frac{1}{s}$$

$$G(s) = \frac{0.1}{s}$$

Example 3
$$G(s) = \frac{1}{s(2s+1)}$$

$$G(s) = \frac{1}{2s+1}$$

$$G(s) = \frac{1}{s}$$

$$G(s) = \frac{1}{s(2s+1)}$$

Example 4
$$G(s) = \frac{10(s+1)}{(s+10)}$$

$$G(s) = s + 1$$

$$G(s) = \frac{1}{0.1s + 1}$$

$$G(s) = \frac{10(s+1)}{(s+10)}$$

Example 5
$$G(s) = \frac{200(s+1)}{(s+10)^2}$$

-180

$$G(s) = 2$$

$$G(s) = s + 1$$

$$G(s) = \frac{1}{(0.1s+1)^2}$$

$$G(s) = \frac{200(s+1)}{(s+10)^2}$$

Remarks

- ALWAYS check the correctness of
 - Low frequency gain (DC gain) G(0)
 - High frequency gain $G(\infty)$
- Example

$$G(s) = \frac{10(s+1)}{s+5}$$

Remarks (cont'd)

• In Matlab, use "bode" command:

$$G(s) = \frac{10(s+1)}{s+5}$$

```
>> s=tf('s')

s =

s

Continuous-time transfer function.

>> g=10*(s+1)/(s+5)

g =

10 s + 10
------
s + 5

Continuous-time transfer function.

>> bode(g)

$$\frac{1}{2}$>>
```


Summary

- Sketches of Bode plot
 - Basic functions
 - Products of basic functions
- Sketching Bode plot is useful:
 - To get a rough idea of the characteristics of a system.
 - To interpret the result obtained from computer.
- Next
 - Nyquist stability criterion