手征微扰场论

王旭

2021年9月15日

目录

1	有效	T量子力学	2
	1	1D 散射	2
		1.1 利用 δ 函数来模仿方势阱	2
	2	3D 散射	3
		2.1 3D 散射中的 δ 函数	4
2	手征	E拉氏量	4
	1	流代数	5
	2	Goldstone 玻色子的非线性实现	5

1 有效量子力学 2

1 有效量子力学

该章主要参考 [1]。当我们在描述低能理论时,我们不需要知道其在高能区的表现。代价就是需要引入大量参数,而这些参数只能由实验给出。在考察有效量子场论前,我们先看看有效量子力学。

由于在相对论量子力学中,粒子与粒子的相互作用是点点相互作用,因此我们希望通过 δ 函数来模拟散射势。

1 1D 散射

考虑量子力学中的一维散射问题,假设有一方势阱,其函数为

$$V(x) = \begin{cases} -\frac{\alpha^2}{2m\Delta}, & 0 \le x \le \Delta \\ 0, &$$
其余情况 (1.1)

其中m为粒子质量, Δ 为势阱宽度, $\frac{\alpha^2}{2m\Delta^2}$ 为势阱深度。可以通过计算薛定谔方程得到反射系数R为

$$R = \left[\frac{4\kappa^2 k^2 \csc^2(\kappa \Delta)}{(k^2 - \kappa^2)} + 1\right]^{-1}$$
(1.2)

其中

$$k = \sqrt{2mE}, \ \kappa = \sqrt{k^2 + \frac{\alpha^2}{\Delta^2}}$$
 (1.3)

在低能时,我们可以按照k展开反射系数,

$$R = -\frac{4}{\alpha^2 \sin^2 \alpha} \Delta^2 k^2 + \mathcal{O}(\Delta^4 k^4) \tag{1.4}$$

可以看到当 $k \to 0$ 时, $R \to 1$,称这种相互作用为相关相互作用。

1.1 利用 δ 函数来模仿方势阱

考虑此时有一 δ 势阱,

$$V(x) = -\frac{g}{2m\Delta}\delta(x) \tag{1.5}$$

此处引入 Δ 来保证 g 是无量纲的。依旧通过薛定谔方程可以计算得出反射系数为,

$$R = \left[1 + \frac{4k^2\Delta^2}{g^2}\right]^{-1} = 1 - \frac{4k^2\Delta^2}{g^2} + \mathcal{O}(k^4)$$
 (1.6)

在低能情况下,与(1.4)比较可得,

$$g = \alpha \sin \alpha \tag{1.7}$$

称为"匹配条件"。

1 有效量子力学 3

2 3D 散射

首先,可以普遍证明,对于任意势场,kcotδ 可以展开为

$$k\cot\delta = -\frac{1}{a_0} + \frac{1}{2}r_0k^2 + \mathcal{O}(k^4)$$
(1.8)

考虑一s波的散射,势函数如下,

$$V = \begin{cases} -\frac{\alpha^2}{m\Delta^2}, & r < \Delta \\ 0, & r > \Delta \end{cases}$$
 (1.9)

其中 a 是散射长度,r 是有效力程。同样可以通过求解薛定谔方程得到 $k\cot\delta$ 的关系式,为

$$k\cot\delta = \frac{k(k\sin\kappa\Delta + \kappa\cot k\Delta\cos\kappa\Delta}{k\cot k\Delta\sin\kappa\Delta - \kappa\cos\kappa\Delta}$$
(1.10)

将其按照 k^2 展开可得,

$$k\cot\delta = \frac{1}{\Lambda} \left(\frac{\tan\alpha}{\alpha} - 1\right)^{-1} + \mathcal{O}(k^2) \tag{1.11}$$

与 (1.8) 比较可得,

$$a = -\Delta \left(\frac{\tan \alpha}{\alpha} - 1\right) \tag{1.12}$$

其关系如图所示,

可以看到,势 α 随散射长度 a 的变化,当 $\alpha_c=(2n+1)\pi/2$ 时,a 出现奇异性,对应着束缚态的出现。

2 手征拉氏量 4

2.1 3D 散射中的 δ 函数

我们首先给出 3D 散射下散射振幅

$$f = \frac{1}{k \cot \delta - ik} \tag{1.13}$$

观察 (1.12),由于 α 是 $\mathcal{O}(1)$,因此 $a \sim \mathcal{O}(\Delta)$,因此当势阱宽度趋于 0 时,散射振幅也趋于 0,这种相互作用称为无关相互作用。因此无法用 δ 函数来模拟球势阱。

如果我们用场 ψ 表示散射粒子, 拉氏密度为

$$\mathcal{L} = \psi^{\dagger} \left(i\partial_t + \frac{\nabla^2}{2M} \right) \psi - \frac{C_0}{4} \left(\psi^{\dagger} \psi \right)^2$$
 (1.14)

2 手征拉氏量

该章主要参考 [2]

首先 QCD 的拉氏量具有如下形式 (仅考虑 u、d、s 夸克)

$$\mathcal{L} = \sum_{i=1}^{3} (\bar{q}_i i \not \! D q_i - m_i \bar{q}_i q_i) - \frac{1}{4} \mathcal{G}^a_{\mu\nu} \mathcal{G}^{a\mu\nu}$$
(2.1)

其中 $D_{\mu} = \partial_{\mu} - igT^a A^a_{\mu}$, $T^a = \lambda^a/2$ 。仅考虑动能项时,具有 $U(3)_L \times U(3)_R$ 的对称性。量子化之后 $U(1)_A$ 被破坏,系统的对称群为 $SU(3)_L \times SU(3)_R \times U(1)_V$,其中 $U(1)_V$ 对应着重子数。由于质量项的存在, $SU(3)_L \times SU(3)_R$ 遭到了破坏,但当粒子质量相同时,依旧会保持 $SU(3)_V$ 的对称性。

考虑质量项,

$$\sum_{i} m_{i} \bar{q}_{i} q_{i} = \sum_{i,j} \bar{q}_{R,i} M_{ij} q_{L,j}$$
(2.2)

其中 $M = diag(m_u, m_d, m_s)$ 。如果我们将质量项升级为场,在最后结果的时候在取回常数,并假设其在手征变换下进行如下变换,

$$M \to RML^{\dagger}$$
 (2.3)

则拉氏量依然在 $SU(3)_L \times SU(3)_R$ 变换下不变。

除质量项的显式破缺外, 当考虑夸克凝聚的时候, 也会产生自发破缺, 考虑 QCD 真空

$$\langle 0|\bar{q}_{R,i}q_{L,j}|0\rangle = \Lambda^3 \delta_{ij} \tag{2.4}$$

其中 Λ 具有质量量纲。其在 $SU(3)_L \times SU(3)_R$ 下按照 $(3,\bar{3})$ 变换。在手征变换下,

$$L_{im}\langle 0|\bar{q}_{R,n}q_{L,m}|0\rangle R_{nj}^{\dagger} = \Lambda^3 U_{ij} \tag{2.5}$$

2 手征拉氏量 5

其中 $U_{ij} = (LR^{\dagger})_{ij}$ 。 当 L = R 时,真空没有变化,此时恰好对应 $SU(3)_V$ 。 我们可以采用和质量类似的方式,将 U 升格为场,并将其参数化为

$$U(x) = exp\left[\frac{i}{f}\phi(x)\right], \ \phi(x) = T^a\phi^a(x)$$
(2.6)

其中, $\phi^a(x)$ 为破缺生成的 8 个 Goldstone 玻色子。

当 N=2 时,

$$\phi \equiv \sum_{i=1}^{3} \phi_a \sigma^a = \begin{pmatrix} \phi_3 & \phi_1 - i\phi_2 \\ \phi_1 + i\phi_2 \end{pmatrix} = \begin{pmatrix} \pi^0 & \sqrt{2}\pi^+ \\ \sqrt{2}\pi^- & \pi^0 \end{pmatrix}$$
(2.7)

当 N=3 时,

$$\phi \equiv \begin{pmatrix} \pi^0 + \frac{\eta}{3} & \sqrt{2}\pi^+ & \sqrt{2}K^+ \\ \sqrt{2}\pi^- & -\pi^0 + \frac{\eta}{3} & \sqrt{2}K^0 \\ \sqrt{2}K^- & \sqrt{2}\bar{K}^0 & -\frac{2\eta}{3} \end{pmatrix}$$
(2.8)

1 流代数

在正式考虑手征拉氏量的写法之前,我们首先讨论与手征相关的流代数。由 Noether 定理知道,假设场 $\Phi_i(x)$ 进行如下的变化

$$\mathbf{\Phi}_{i}(x) \to \mathbf{\Phi}'_{i}(x) = \mathbf{\Phi}_{i}(x) + i\delta\mathbf{\Phi}_{i}(x) = \mathbf{\Phi}_{i}(x) - i\epsilon_{a}F_{a,i}[\mathbf{\Phi}_{i}(x)]$$
(2.9)

2 Goldstone 玻色子的非线性实现

参考文献

- [1] David B Kaplan. lectures on effective field theory". arXiv preprint nuclth/0510023, 5, 5.
- [2] Stefan Scherer and Matthias R Schindler. A primer for chiral perturbation theory, volume 830. Springer Science & Business Media, 2011.