Problem Set 3: Asymptotics

Review the Concepts and Proofs

- 1. Why do we rely for statistical inference on asymptotic analysis? Discuss possible advantages and disadvantages.
- 2. Discuss the relationship between CLT and WLLN.
- 3. Show that the conditions $\lim_{n\to\infty} E(\hat{\boldsymbol{\theta}}) = \boldsymbol{\theta}$ and $\lim_{n\to\infty} Var(\hat{\boldsymbol{\theta}}) = 0$ imply convergence in probability.
- 4. Explain the difference between asymptotic and approximate distribution.
- 5. Show that the Wald test for $H_0: \mathbf{R}\boldsymbol{\theta} = \mathbf{r}$ is asymptotically χ_Q^2 distributed if $\hat{\boldsymbol{\theta}}$ is a consistent estimator for $\boldsymbol{\theta}$. Which additional assumption is needed?
- 6. Consider the simple t test for a single parameter restriction in small samples. Would you rely on asymptotics there? Why or why not?

Exercises

- 1. Let $\{y_i : i = 1, 2, ...\}$ be an independent, identically distributed sequence with $E(y_i^2) < \infty$. Let $\mu = E(y_i)$ and $\sigma^2 = Var(y_i)$.
 - (a) Let \overline{y}_N denote the sample average based on a sample size of N. Find $\mathrm{Var}[\sqrt{N}(\overline{y}_N \mu)]$.
 - (b) What is the asymptotic variance of $\sqrt{N}(\overline{y}_N \mu)$?
 - (c) What is the asymptotic variance of \overline{y}_N ? Compare this with $\text{Var}(\overline{y}_N)!$
 - (d) What is the asymptotic standard deviation of \overline{y}_N ? How would you estimate the asymptotic standard deviation?
- 2. Let $\{z_i : i = 1, 2, ...\}$ be an independent, identically distributed sequence with $E(z_i) = 5$ and $Var(z_i) = 10$.
 - (a) Sketch the asymptotic distribution of the sample average \overline{z}_N for $N=10,\ 30,\ 100$ and 1000.

- (b) Based on this example discuss the difference between the WLLN and CLT, i.e. discuss the difference between convergence in probability and convergence in distribution.
- 3. Consider the Cobb-Douglas production function $Y = AK^{\alpha}L^{\beta}$ and its linear relationship in logs $log(Y) = log(A) + \alpha \cdot log(K) + \beta \cdot log(L)$. To estimate this linear relationship a regression $log(Y_i) = \gamma_0 + \gamma_1 \cdot log(K_i) + \gamma_2 \cdot log(L_i) + \varepsilon_i$, where $\gamma_0 = log(A)$, $\gamma_1 = \alpha$ and $\gamma_2 = \beta$ for a cross section of firms i = 1, ..., N is conducted. ε_i has mean zero and variance σ^2 . Assume all estimates are consistent and asymptotically normal.
 - (a) Can we get a consistent estimator for A?
 - (b) Find the asymptotic variance of $\sqrt{N}(\hat{A}-A)$ in terms of the asymptotic variance of $\sqrt{N}(\hat{\gamma}_0 \gamma_0)$.
 - (c) Suppose that, for the sample at hand, $\hat{\gamma}_0 = 0.1$ and $se(\hat{\gamma}_0) = 0.075$. What is \hat{A} and its asymptotic standard error?
 - (d) Consider the null hypothesis $H_0: \gamma_0 = 0$. What does it economically mean? Choose a sensible alternative hypothesis. What is the asymptotic t statistic for testing H_0 , given the numbers from part (c)? Conduct the test at the 5% level.
 - (e) Now state H_0 from part (d) equivalently in terms of A, and use \hat{A} and $se(\hat{A})$ to test H_0 . Conduct the test at the 5% level. What do you conclude?
- 4. Let $\hat{\boldsymbol{\theta}}$ and $\tilde{\boldsymbol{\theta}}$ be two consistent, \sqrt{N} -asymptotically normal estimators of the $P \times 1$ parameter vector $\boldsymbol{\theta}$, with $\operatorname{Avar}\sqrt{N}(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta})=\boldsymbol{V}_1$ and $\operatorname{Avar}\sqrt{N}(\tilde{\boldsymbol{\theta}}-\boldsymbol{\theta})=\boldsymbol{V}_2$. Define a $Q \times 1$ parameter vector by $\boldsymbol{\gamma}=\boldsymbol{g}(\boldsymbol{\theta})$, where $\boldsymbol{g}(.)$ is a continuously differentiable function. Show that, if $\hat{\boldsymbol{\theta}}$ is asymptotically more efficient than $\tilde{\boldsymbol{\theta}}$, then $\hat{\boldsymbol{\gamma}}=\boldsymbol{g}(\hat{\boldsymbol{\theta}})$ is asymptotically more efficient relative to $\tilde{\boldsymbol{\gamma}}=\boldsymbol{g}(\tilde{\boldsymbol{\theta}})$.
- 5. Consider the estimation of exercise 3 again. The vector Δ is defined as $(\alpha, \beta)'$.
 - (a) Can we get a consistent estimate for $\delta = \alpha/\beta$?
 - (b) Find Avar $(\hat{\delta})$ in terms of Δ and Avar $(\hat{\Delta})$ using the delta method.
 - (c) Assume, for the sample at hand, $\hat{\Delta} = (0.42, 0.63)'$ and $Avar(\hat{\Delta})$ is estimated as $\begin{pmatrix} 0.030 & -0.033 \\ -0.033 & 0.045 \end{pmatrix}$. Find the asymptotic standard error of $\hat{\delta}$.
 - (d) How could you test for constant returns to scale? State R, r, X and q for the respective F-Test.