Probabilités I

STEP, MINES ParisTech

9 décembre 2020 (#a46c5a3)

Question 1 (réponse multiple) Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace de probabilité. Soient $A, B \in \mathcal{A}$ tels que $A \subset B$. On a :
$\Box \ A \colon \mathbb{P}(A) \leq \mathbb{P}(B)$ $\Box \ B \colon \mathbb{P}(A^c) \geq \mathbb{P}(B^c)$ $\Box \ C \colon Si \ \mathbb{P}(A) > 0, \text{ alors } \mathbb{P}(B A) = \frac{\mathbb{P}(B)}{\mathbb{P}(A)}$
Question 2 Soit $(\Omega, (A), \mathbb{P}) = (\mathbb{R}_+, \mathcal{B}(\mathbb{R}_+), \mathbb{P})$ où \mathbb{P} est la loi exponentielle de paramètre θ . Soit la variable aléatoire
$X: \omega \in \Omega \mapsto \left\{ \begin{array}{ll} 0 & \mathrm{si} \ \omega \in [0,1], \\ 1 & \mathrm{si} \ \omega \in]1, +\infty[\end{array} \right.$
$\square A: \mathbb{P}(X = 0) = \frac{1}{2}$ $\square B: \mathbb{P}(X = 1) = e^{-\theta}$ $\square C: \mathbb{P}(X \in \{0, 1\}) = 1$
Question 3 (réponse multiple) Soit X une variable aléatoire telle que $\mathbb{P}(X \in [0,1]) = 0$. Alors
□ A: $X(\omega) = 0$ quand $\omega \in [0, 1]$ □ B: La fonction de répartition F associée est nulle sur $[0, 1]$ □ C: Si X est de densité f , alors f est nulle sur $[0, 1]$.

paramètres μ et σ^2 , quelle est la loi de 2X ? $\square \ \mbox{A:} \ \mathcal{N}(\mu,\sigma^2)$

 ${\bf Question}~{\bf 4}~$ Soit X une variable aléatoire réelle suivant une loi normale de

 $\Box \ A: \mathcal{N}(\mu, \sigma^2)$ $\Box \ B: \mathcal{N}(2\mu, (2\sigma)^2)$ $\Box \ C: \mathcal{N}(\frac{1}{2}\mu, \sigma^2)$ $\Box \ D: \mathcal{N}(\mu, (2\sigma)^2)$

Question 5 Soit U une variable aléatoire réelle de loi uniforme sur [0,1]. U^2 admet-elle une densité?

 $\begin{array}{l} \square \ \text{A: Non} \\ \square \ \text{B: Oui} : \frac{1}{2\sqrt{x}} 1_{[0,1]}(x) \\ \square \ \text{C: Oui} : 2x 1_{[0,1]}(x) \end{array}$