# SY486K MICS Lecture 8

Other ICS Protocols

CDR Brien Croteau, USNA Cyber Science Department, March 2023

#### Outline

- Modbus TCP
- CIP
- EtherNet/IP
- DNP3
- HART
- BACNet
- OPC
- Profinet











#### Modbus TCP

<u>Modbus</u> was originally developed to send data over serial lines.

It was later adapted to work over TCP-based devices.

It still uses the same quad address space layout and Function Codes.

Since Modbus TCP is based on reliable connection service, the CRC check code in RTU protocol is no longer needed, so there is no CRC check code in Modbus TCP protocol.

| Object type      | Access     | Size    | Address Space |
|------------------|------------|---------|---------------|
| Coil             | Read-write | 1 bit   | 00001 – 09999 |
| Discrete input   | Read-only  | 1 bit   | 10001 – 19999 |
| Input register   | Read-only  | 16 bits | 30001 – 39999 |
| Holding register | Read-write | 16 bits | 40001 – 49999 |



Modbus TCP frame format

Primarily used on Ethernet networks.

| Name                   | Length (bytes) | Function                                                  |
|------------------------|----------------|-----------------------------------------------------------|
| Transaction identifier | 2              | For synchronization between messages of server and client |
| Protocol identifier    | 2              | 0 for Modbus/TCP                                          |
| Length field           | 2              | Number of remaining bytes in this frame                   |
| Unit identifier        | 1              | Server address (255 if not used)                          |
| Function code          | 1              | Function codes as in other variants                       |
| Data bytes             | n              | Data as response or commands                              |

| Function type |                    |                                                 | Function name                    | Function code |
|---------------|--------------------|-------------------------------------------------|----------------------------------|---------------|
|               | D.                 | Physical Discrete Inputs                        | Read Discrete Inputs             | 2             |
|               |                    |                                                 | Read Coils                       | 1             |
|               | Bit access         | Internal Bits or Physical Coils                 | Write Single Coil                | 5             |
|               |                    |                                                 | Write Multiple Coils             | 15            |
|               |                    | Physical Input Registers                        | Read Input Registers             | 4             |
|               |                    |                                                 | Read Multiple Holding Registers  | 3             |
|               |                    |                                                 | Write Single Holding Register    | 6             |
|               | 16-bit access      | Internal Deviators on Dhusical Outrat Deviators | Write Multiple Holding Registers | 16            |
|               |                    | Internal Registers or Physical Output Registers | Read/Write Multiple Registers    | 23            |
|               |                    |                                                 | Mask Write Register              | 22            |
|               |                    |                                                 | Read FIFO Queue                  | 24            |
|               | File Record Access |                                                 | Read File Record                 | 20            |
| File Record   |                    | ccess                                           | Write File Record                | 21            |

# Common Industrial Protocol (CIP)



CIP is a comprehensive suite of messages and services for industrial automation applications. CIP provides a unified communication architecture throughout the manufacturing enterprise.

Was previously known as Control and Information Protocol.

EtherNet/IP

- DeviceNet
- CompoNet
- ControlNet

Founded in 1995, ODVA is a global association whose members comprise the world's leading automation companies. ODVA's mission is to advance open, interoperable information and communication technologies in industrial automation. ODVA recognizes its media independent network protocol, the Common Industrial Protocol or "CIP" and the network adaptations of CIP as its core technology and the primary common interest of its membership.

https://www.odva.org/wp-co ntent/uploads/2020/06/PUB 00123R1\_Common-Industri al\_Protocol\_and\_Family\_of \_CIP\_Networks.pdf





# EtherNet/IP (IP = Industrial Protocol) EtherNet/IP



An industrial network protocol that adapts the Common Industrial Protocol (CIP) to standard Ethernet.

#### **ENCAPSULATION PACKET**



Command (2 Bytes) - This is the encapsulation command code (refer to the EtherNet/IP Specification for detailed information on commands):

| CODE (HEX) | DESCRIPTION                                                |  |
|------------|------------------------------------------------------------|--|
| 0000H      | NOP (No operation) – Sent only via TCP.                    |  |
| 00010003H  | Reserved for legacy                                        |  |
| 0004H      | List_Services - May be sent via TCP or UDP                 |  |
| 0005H      | Reserved for legacy                                        |  |
| 00060062H  | Reserved for future expansion – compliant products may not |  |
|            | use command codes in this range.                           |  |
| 0063H      | List_Identity – May be sent via TCP or UDP.                |  |
| 0064H      | List_Interfaces (optional) - May be sent via TCP or UDP.   |  |
| 0065H      | Register_Session – Sent only via TCP.                      |  |
| 0066H      | UnRegister_Session – Sent only via TCP.                    |  |
| 0067006EH  | Reserved for legacy                                        |  |
| 006FH      | SendRRData – Sent only via TCP.                            |  |
| 0070H      | SendUnitData – Sent only via TCP.                          |  |
| 0071H      | Reserved for legacy                                        |  |
| 0072H      | Indicate_Status (optional) – Sent only via TCP.            |  |
| 0073H      | Cancel (optional) – Sent only via TCP.                     |  |
| 007400C7H  | Reserved for legacy                                        |  |
| 00C8FFFFH  | Reserved for future expansion – compliant products may not |  |
|            | use command codes in this range.                           |  |





# Distributed Network Protocol 3 (DNP3)

**DNP3 Data Payload** 

A set of communications protocols used between components in process automation systems. It is primarily used for between a master station and RTUs or IEDs in Power Grid applications.

A part of <u>IEC 60870-6</u>.

DNP3 is used between central master. stations and distributed remote units. DNP3 is based on an object model and uses 27 basic function codes.





# **HART** (Highway Addressable Remote Transducer)



A hybrid analog+digital industrial automation open protocol. Its most notable advantage is that it can communicate over legacy 4–20 mA analog instrumentation current loops, sharing the pair of wires used by the analog-only host systems.

There are two main operational modes of HART instruments:

- point-to-point mode
- multi-drop mode.

#### Packet structure [edit] The request HART packet has the following structure:

| Field Name           | Length (in bytes) | Purpose                                                                                |  |
|----------------------|-------------------|----------------------------------------------------------------------------------------|--|
| Preamble             | 5–20              | Synchronization and Carrier Detect                                                     |  |
| Start byte           | 1                 | Specifies Master Number                                                                |  |
| Address              | 1–5               | Specifies slave, Specifies Master and Indicates Burst Mode                             |  |
| Expansion            | 0-3               | This field is 0–3 bytes long and its length is indicated in the Delimiter (Start byte) |  |
| Command              | 1                 | Numerical Value for the command to be executed                                         |  |
| Number of data bytes | 1                 | Indicates the size of the Data Field                                                   |  |
| Data                 | 0-255             | Data associated with the command. BACK and ACK must contain at least two data bytes    |  |
| Checksum             | 1                 | XOR of all bytes from Start Byte to Last Byte of Data                                  |  |



### **BACnet**

BACnet is a communication protocol for building automation and control (BAC) networks that use the ASHRAE, ANSI, and ISO 16484-5 standards protocol.

The BACnet protocol defines a number of services that are used to communicate between building devices. The protocol services include: Who-Is, I-Am, Who-Has, I-Have, which are used for Device and Object discovery. Services such as Read-Property and Write-Property are used for data sharing.

ANSI/ASHRAE <u>135-2016</u> specifies 60 standard object types





# Open Platform Communications (OPC)

Open Platform Communications (OPC) is a series of standards and specifications for industrial telecommunication. They are based on Object Linking and Embedding (OLE) for process control. OPC specifies the communication of real-time plant data between control devices from different manufacturers.

Once an OPC Server is written for a particular device, it can be reused by any application that is able to act as an OPC client.











#### **PROFINET**

PROFINET (a portmanteau for Process Field Network) is an industry technical standard for data communication over Industrial Ethernet, designed for collecting data from, and controlling equipment in industrial systems, with a particular strength in delivering data under tight time constraints. The standard is maintained and supported by Profibus and Profinet International, an umbrella organization headquartered in Karlsruhe, Germany.





