Year 8 - Probability

Exercise 1

The set of all possible outcomes is known as the
$P(event) = \frac{outcomes\ matching\ event}{total\ outcomes}$

List out all the possible outcomes given each description, underline or circle the outcomes that match, and hence work out the probability.

	Event	Sample Space	Probability
1	Getting one heads and one tails on the throw of two coins.	нн, нт , тн , тт	$P(H \text{ and } T) = \frac{1}{2}$
2	Getting two tails after two throws.		P(TT) =
3	Getting at least 2 heads after 3 throws.		$P(\geq 2 H) =$
4	Getting exactly 2 heads after 3 throws.		
5	Rolling a prime number and throwing a head.		
6	In three throws of a coin, a heads never follows a tails.		
7	For a randomly chosen meal with possible starters Avacado, Beans and Cauliflower, and possible main courses Dog, Escalopes or Fish, ending up with neither Avacado nor Dog.		

Exercise 2

Again, work out the probabilities of the following, but you now no longer need to list the outcomes, merely *count* them.

		T	1	,
	Event	Num	Num total	Probability
		matching	outcomes	
		outcomes		
1	Drawing a Jack from a	4	52	p(t) = 4 - 1
	pack of cards.			$P(J) = \frac{4}{52} = \frac{1}{13}$
2	Drawing a club from a			
	pack of cards.			
3	Drawing a card which is			
	either a club or is an even			
	number.			
4	Throwing two sixes on a			
	die in a row.			
5	Throwing an even			
	number on a die			
	followed by an odd			
	number.			
6	Throwing three square			
	numbers on a die in a			
	row.			
7	Seeing exactly two heads			
	in four throws of a coin.			
8	Seeing the word 'BOB'			
	when arranging two			
	plastic Bs and an O on a			
L_	sign.			
*	Seeing the word SHELL			
	when arranging a letter			
	S, H, E and two letter Ls			
	on a sign.			
**	After shuffling a pack of			
	cards, the cards in each			
	suit are all together.			

Exercise 3

Imagine you have four cards numbered 1 to 4, and by considering (a) all possible outcomes and (b) outcomes matching the event described, work out the probability of the following, ensuring you use appropriate "P(..) =" notation.

Event	Matching	Total	Probability
	outcomes	Outcomes	
One number randomly picked being even.	2	4	$P(Even) = \frac{2}{4}$
The four numbers, when			
randomly placed in a line,			
reads 1-2-3-4			
Two numbers, when			
placed in a line, contain a			
two and a three.			
Three numbers, when			
placed in a line, form a			
descending sequence.			
Two numbers, when			
placed in a line, give a			
sum of 5.			
When you pick a number			
out a bag, look at the			
value then put it back,			
then pick a number again,			
both numbers are 1.			
♣ When you pick a			
number from a bag, put			
the number back, and do			
this 4 times in total, the			
values of your numbers			
form a 'run' of 1 to 4 in			
any order.			

www.drfrostmaths.com

2D sample spaces

Example: I throw two dice and add up the scores. By filling in the sample space table, determine the probability that:

a) My total is 10?

$$P(total = 10) =$$

b) My total is at least 10?

$$P(total > 10) =$$

c) My total is at most 9?

$$P(total \le 9) =$$

Exercise 4

For the following, form an appropriate sample space table, and use the table to answer the questions.

1) After throwing two fair coins...

a. The probability of throwing two heads. _____

b. The probability of throwing a heads and a tails.

2) After throwing two fair die and adding the two outcomes...

a. The total is prime. _____

b. The total is less than 4.

c. The total is odd. _____

3) After throwing two dice and **multiplying** the outcomes...

a. The product is 6. _____

b. The product is at most 6. _____

c. The product at least 7. _____

d. The product is odd. _____

4) After spinning two spinners, one 3-sided labelled A, B and C, and one 4-sided labelled A, B, C and D...

a. The letters are both vowels. _____

b. At least one letter is a vowel. _____

c. We see the letters B and C. _____

Events and Laws of Probability

An event is ______(More formally, it is a subset of the sample space)

If two events are **mutually exclusive** then

and P(A or B) = ______

A' means that _____ and P(A') = _____

Examples:

• A and B are mutually exclusive events and P(A) = 0.3, P(B) = 0.2

P(A or B) = _____ P(A') = ____ P(B') = ____

• C and D are mutually exclusive events and P(C') = 0.6, P(D) = 0.1

P(C or D) = _____

E, F and G are mutually exclusive events and P(E or F) = 0.6
 P(F or G)=0.7 (and P(E or F or G) = 1), then

P(F) = ____

P(E) = ____

P(G) = ____

Exercise 5

1. In the following questions, all events are mutually exclusive.

a. P(A) = 0.6, P(C) = 0.2 P(A') = _____, P(C') = _____ P(A or C) = _____

b. P(A) = 0.1, P(B') = 0.8, P(C') = 0.7 P(A or B or C) = _____

c. P(A or B) = 0.3, P(B or C) = 0.9, P(A or B or C) = 1
P(A) = ____
P(B) = ____
P(C) = ____

d. P(A or B or C or D) = 1. P(A or B or C) = 0.6
 and P(B or C or D) = 0.6 and P(B or D) = 0.45
 P(A) = ______, P(B) = ______
 P(C) = _____, P(D) = _____

2. All Tiffin students are either good at maths, English or music, but not at more than one subject. The probability that a student is good at maths is 1/5. The probability they are are good at English is 1/3. What is the probability that they are good at music?

3. The probability that Alice passes an exam is 0.3. The probability that Bob passes the same exam s 0.4. The probability that either pass is 0.65. Are the two events mutually exclusive? Give a reason.

4. The following tables indicate the probabilities for spinning different sides, A, B, C and D, of an unfair spinner. Work out *x* in each case.

Α	В	С	D
0.1	0.3	x	x

x =_____

Α	В	С	D
0.5	2 <i>x</i>	0.2	x

x =_____

Α	В	С	D
x	2 <i>x</i>	3 <i>x</i>	4 <i>x</i>

x =

Α	В
x	4x + 0.25

x = _____

5. I am going on holiday to one destination this year, either France, Spain or America. I'm 3 times as likely to go to France as I am to Spain but half as likely to go to America than Spain. What is the probability that I don't go to Spain?

www.drfrostmaths.com

6. \$ P(A or B or C) = 1.

P(A or B) = 4x - 0.1 and P(B or C) = 4x. Determine expressions for P(A), P(B) and P(C) and hence determine the range of values for x.

[Hint: think how you did this in Q1c. Now just use the same method, but algebraically!]

Experimental vs Theoretical Probability

Theoretical probability
Experimental Probability is also known as
and is
Experimental Probability = ———————————————————————————————————

Examples:

A) The table below shows the probabilities for spinning an A, B and C on a spinner. If I spin the spinner 150 times, estimate the number of Cs I will see.

Outcome	Α	В	С
Probability	0.12	0.34	

Answer: _____

B) I spin another spinner 120 times and see the following counts:

Outcome	Α	В	С
Count	30	45	45

What is the relative frequency of B?

Exercise 6

- 1. An unfair die is rolled 80 times and the following counts are observed.
 - a. Determine the relative frequency of each outcome.

Outcome	1	2	3	4	5	6
Count	20	10	8	4	10	28
R.F.						

b. Dr Bob claims that the theoretical probability of rolling a 3 is 0.095. Is Dr Bob correct?

2. An unfair coin has a probability of heads 0.68. I throw the coin 75 times. How many **tails** do I expect to see?

- 3. Dr Laurie throws a fair die 600 times, and sees 90 ones.
 - a. Calculate the relative frequency of throwing a 1.

b. Explain how Laurie can make the relative frequency closer to a $\frac{1}{6}$.

4. The table below shows the probabilities of winning different prizes in the gameshow "I'm a Tiffinian, Get Me Outta Here!". 160 Tiffin students appear on the show. Estimate how many cuddly toys will be won.

Prize	Cockroach	Cuddly	Maths	Skip Next
	Smoothie	Toy	Textbook	Landmark
Probability	0.37	х	0.18	2 <i>x</i>

5. A six-sided unfair die is thrown n times, and the relative frequencies of each outcome are 0.12, 0.2, 0.36, 0.08, 0.08 and 0.16 respectively. What is the minimum value of n?

6. A spin a spinner with sectors A, B and C 200 times. I see twice as many Bs as As and 40 more Cs than As. Calculate the relative frequency of spinning a C.

7. I throw a fair coin some number of times and the relative frequency of Heads is 0.45. I throw the coin a few more times and the relative frequency is now equal to the theoretical probability. What is the minimum number of times the coin was thrown?

[Hint: Make the number of heads after the first n throws say k, then form some equations]
