Capstone Thesis Presentation – Spring 2025

Ring Trapdoor Functions: A Lattice-Based Framework for Secure Ring Signatures

Bhumika Mittal

Thesis Supervisors

Eike Kiltz, Professor of Computer Science Ruhr-Universität Bochum Mahavir Jhawar Associate Professor of Computer Science Ashoka University A generic framework for constructing efficient ring signature schemes through novel cryptographic abstractions.

Ring Signatures

• Unforgeability: One sk_i is needed to generate σ .

- Unforgeability: One sk_i is needed to generate σ .
- Anonymity: Given σ and ρ , it is not possible to identify who signed.

• Originally introduced as a mechanism to protect whistle-blowers.

- Originally introduced as a mechanism to protect whistle-blowers.
- Currently used in electronic voting systems.

- Originally introduced as a mechanism to protect whistle-blowers.
- Currently used in electronic voting systems.
- Primitive behind cryptocurrencies such as Dash & Monero.

A ring signature scheme RSig is given by four algorithms (Stp, Gen, Sgn, Ver):

• $par \leftarrow Stp(\kappa)$: Given an upper bound, $\kappa > 1$, on the ring size, the probabilistic setup algorithm Stp returns system parameters par, where par defines a message space M. We assume that all algorithms are implicitly given access to the system parameters par.

- $par \leftarrow Stp(\kappa)$: Given an upper bound, $\kappa > 1$, on the ring size, the probabilistic setup algorithm Stp returns system parameters par, where par defines a message space M. We assume that all algorithms are implicitly given access to the system parameters par.
- $(pk, sk) \leftarrow Gen$: The probabilistic key generation algorithm returns a secret key sk and a corresponding public key pk.

- $par \leftarrow Stp(\kappa)$: Given an upper bound, $\kappa > 1$, on the ring size, the probabilistic setup algorithm Stp returns system parameters par, where par defines a message space M. We assume that all algorithms are implicitly given access to the system parameters par.
- $(pk, sk) \leftarrow Gen$: The probabilistic key generation algorithm returns a secret key sk and a corresponding public key pk.
- $\sigma \leftarrow Sgn(sk, \rho, m)$: Given a secret key sk, a ring $\rho = \{pk_1, ..., pk_k\}$ such that the public key pk corresponding to sk satisfies $pk \in \rho$ and $k \leq \kappa$, and a message $m \in M$, the probabilistic signing algorithm Sgn returns a signature σ from a signature space S.

- $par \leftarrow Stp(\kappa)$: Given an upper bound, $\kappa > 1$, on the ring size, the probabilistic setup algorithm Stp returns system parameters par, where par defines a message space M. We assume that all algorithms are implicitly given access to the system parameters par.
- $(pk, sk) \leftarrow Gen$: The probabilistic key generation algorithm returns a secret key sk and a corresponding public key pk.
- $\sigma \leftarrow Sgn(sk, \rho, m)$: Given a secret key sk, a ring $\rho = \{pk_1, ..., pk_k\}$ such that the public key pk corresponding to sk satisfies $pk \in \rho$ and $k \leq \kappa$, and a message $m \in M$, the probabilistic signing algorithm Sgn returns a signature σ from a signature space S.
- $b \leftarrow Ver(\sigma, \rho, m)$: Given a signature σ , a ring ρ , and a message m, the deterministic verification algorithm Ver returns a bit $b \in \{0, 1\}$.

RSig Properties—Correctness

RSig Properties—Correctness

RSig is $\delta(\kappa)$ -correct if $\forall \kappa \in \mathbb{N}, \{(pk_i, sk_i)\}_{i \in [k]} \in \sup(Gen)$, and for any $i \in [k]$ with $k \leq \kappa$,

$$\Pr[\operatorname{Ver}(\operatorname{Sgn}(sk_i, \rho, m), \rho, m) \neq 1] \leq \delta(\kappa)$$

where $\rho := \{pk_1, \cdots, pk_k\}.$

Given a target set of public keys $\rho = \{pk_1, pk_2, ..., pk_n\}$, there doesn't exist an adversary that can forge a signature σ^* on a message m^* and a ring $\rho^* \subseteq \rho$.

Given a target set of public keys $\rho = \{pk_1, pk_2, ..., pk_n\}$, there doesn't exist an adversary that can forge a signature σ^* on a message m^* and a ring $\rho^* \subseteq \rho$.

$$\mathsf{Adv}_{\mathrm{RSig},\mathcal{A}}^{(n,\kappa,Q_{\mathsf{Sgn}})\text{-}\mathrm{UF}\text{-}\mathrm{CRA}} := \Pr[(n,\kappa,Q_{\mathsf{Sgn}})\text{-}\mathrm{UF}\text{-}\mathrm{CRA}_{\mathrm{RSig}}(\mathcal{A}) \to 1],$$

Given a target set of public keys $\rho = \{pk_1, pk_2, ..., pk_n\}$, there doesn't exist an adversary that can forge a signature σ^* on a message m^* and a ring $\rho^* \subseteq \rho$.

$$\mathsf{Adv}_{\mathrm{RSig},\mathcal{A}}^{(n,\kappa,Q_{\mathsf{Sgn}})\text{-}\mathrm{UF}\text{-}\mathrm{CRA}} := \Pr[(n,\kappa,Q_{\mathsf{Sgn}})\text{-}\mathrm{UF}\text{-}\mathrm{CRA}_{\mathrm{RSig}}(\mathcal{A}) \to 1],$$

The adversary is allowed to make **adaptive signing queries** on a message m_i and ring ρ_i , as long as the ring contains at least one of the supplied keys from ρ .

• Any adversary cannot distinguish the real signer from other ring members, even if all their secret keys are exposed.

- Any adversary cannot distinguish the real signer from other ring members, even if all their secret keys are exposed.
- The adversary is given:
 - Public keys,
 - Access to a signing oracle,
 - A message and two indices (before getting secret keys).

- Any adversary cannot distinguish the real signer from other ring members, even if all their secret keys are exposed.
- The adversary is given:
 - Public keys,
 - Access to a signing oracle,
 - A message and two indices (before getting secret keys).
- Then, the adversary receives:
 - Secret keys of all ring members,
 - A challenge signature.

- Any adversary cannot distinguish the real signer from other ring members, even if all their secret keys are exposed.
- The adversary is given:
 - Public keys,
 - Access to a signing oracle,
 - A message and two indices (before getting secret keys).
- Then, the adversary receives:
 - Secret keys of all ring members,
 - A challenge signature.

Guess the index of the real signer.

1. Foundational Insight

Enables fine-grained analysis of ring signature components and their security dependencies.

1. Foundational Insight

Enables fine-grained analysis of ring signature components and their security dependencies.

2. Modular Improvement

Permits black-box enhancements (e.g., ring size scaling) without protocol redesign.

1. Foundational Insight

Enables fine-grained analysis of ring signature components and their security dependencies.

2. Modular Improvement

Permits black-box enhancements (e.g., ring size scaling) without protocol redesign.

3. Primitive Reusability

Provides building blocks for other anonymity-preserving cryptosystems

Trapdoor Functions

Function f

Inverse Function f^{-1}

Inverse Function
$$f-1 \quad y = f(x)$$

Inverse Function
$$f^{-1} \quad y = f(x)$$

Function

$$y = f(x)$$

Inverse Function

$$f^{-1}$$

trapdoor

$$y = f(x)$$

• Sample inputs so their outputs look random.

- Sample inputs so their outputs look random.
- Given an output and the trapdoor, produce a matching input that looks like a real, random input.

- Sample inputs so their outputs look random.
- Given an output and the trapdoor, produce a matching input that looks like a real, random input.

- Sample inputs so their outputs look random.
- Given an output and the trapdoor, produce a matching input that looks like a real, random input.
- But without the trapdoor, you can't figure out the input it's still a one-way function.

An RTDF is defined by five algorithms: (Stp, Gen, Eval, Inv, Smp)

• $par \leftarrow Stp(\kappa)$: Given $\kappa > 1$, the setup algorithm returns system parameters par, which define the range R.

- $par \leftarrow Stp(\kappa)$: Given $\kappa > 1$, the setup algorithm returns system parameters par, which define the range R.
- $(a,t) \leftarrow Gen()$: Return
 - a: description of function f_a : $D_a \to R$. Domain D_a is defined by a.
 - t: trapdoor for f_a .

- $par \leftarrow Stp(\kappa)$: Given $\kappa > 1$, the setup algorithm returns system parameters par, which define the range R.
- $(a,t) \leftarrow Gen()$: Return
 - a: description of function f_a : $D_a \to R$. Domain D_a is defined by a.
 - t: trapdoor for f_a .
- $y \leftarrow Eval(\rho = \{a_1, ..., a_k\}, x)$: Given ring ρ and input $x \in D$, returns $y \in R$ deterministically.

- $par \leftarrow Stp(\kappa)$: Given $\kappa > 1$, the setup algorithm returns system parameters par, which define the range R.
- $(a,t) \leftarrow Gen()$: Return
 - a: description of function f_a : $D_a \to R$. Domain D_a is defined by a.
 - t: trapdoor for f_a .
- $y \leftarrow Eval(\rho = \{a_1, ..., a_k\}, x)$: Given ring ρ and input $x \in D$, returns $y \in R$ deterministically.
- $x \leftarrow Inv(t, \rho, y)$: Given trapdoor t, ring ρ , and $y \in R$, returns $x \in D$ probabilistically.

- $par \leftarrow Stp(\kappa)$: Given $\kappa > 1$, the setup algorithm returns system parameters par, which define the range R.
- $(a,t) \leftarrow Gen()$: Return
 - a: description of function f_a : $D_a \to R$. Domain D_a is defined by a.
 - t: trapdoor for f_a .
- $y \leftarrow Eval(\rho = \{a_1, ..., a_k\}, x)$: Given ring ρ and input $x \in D$, returns $y \in R$ deterministically.
- $x \leftarrow Inv(t, \rho, y)$: Given trapdoor t, ring ρ , and $y \in R$, returns $x \in D$ probabilistically.
- $x \leftarrow Smp(\rho = \{a_1, ..., a_k\})$: Given ring ρ , returns a sampled $x \in D$.

1. Correctness: If you evaluate a value with the ring function and then invert it using the trapdoor, you get a valid preimage of the output.

- 1. Correctness: If you evaluate a value with the ring function and then invert it using the trapdoor, you get a valid preimage of the output.
- **2. One-wayness without trapdoor**: Without knowing any trapdoor, it's hard for a ppt adversary to find an input that maps to a given output under the ring function.

- 1. Correctness: If you evaluate a value with the ring function and then invert it using the trapdoor, you get a valid preimage of the output.
- **2. One-wayness without trapdoor**: Without knowing any trapdoor, it's hard for a ppt adversary to find an input that maps to a given output under the ring function.
- **3. Domain Sampling**: An adversary should not be able to tell whether a value came from the ring function's real input-output process or was just randomly chosen from the output space.

- 1. Correctness: If you evaluate a value with the ring function and then invert it using the trapdoor, you get a valid preimage of the output.
- 2. One-wayness without trapdoor: Without knowing any trapdoor, it's hard for a ppt adversary to find an input that maps to a given output under the ring function.
- **3. Domain Sampling**: An adversary should not be able to tell whether a value came from the ring function's real input-output process or was just randomly chosen from the output space.
- **4. Preimage Sampling**: An adversary shouldn't be able to tell whether a preimage was generated using the trapdoor or sampled directly and conditioned to match the output.

- 1. Correctness: If you evaluate a value with the ring function and then invert it using the trapdoor, you get a valid preimage of the output.
- **2. One-wayness without trapdoor**: Without knowing any trapdoor, it's hard for a ppt adversary to find an input that maps to a given output under the ring function.
- **3. Domain Sampling**: An adversary should not be able to tell whether a value came from the ring function's real input-output process or was just randomly chosen from the output space.
- **4. Preimage Sampling**: An adversary shouldn't be able to tell whether a preimage was generated using the trapdoor or sampled directly and conditioned to match the output.
- **5. Anonymity**: Even if the adversary knows all trapdoors and can make inverse queries, they shouldn't be able to tell which trapdoor was used to invert the function.

One-wayness without trapdoor

Without knowing any trapdoor, it's hard for a ppt adversary to find an input that maps to a given output under the ring function.

One-wayness without trapdoor

$$\mathsf{Adv}^{\mathsf{OW}(\kappa,k)}_{\mathsf{RTDF},\mathcal{A}} := \max_{k} \left(\Pr \left[\mathsf{OW}^{\mathsf{RTDF}}_{\mathcal{A}}(\kappa,k) = 1 \right] \right)$$

Without knowing any trapdoor, it's hard for a ppt adversary to find an input that maps to a given output under the ring function.

One-wayness without trapdoor

$$\mathsf{Adv}^{\mathsf{OW}(\kappa,k)}_{\mathsf{RTDF},\mathcal{A}} := \max_{k} \left(\Pr \left[\mathsf{OW}^{\mathsf{RTDF}}_{\mathcal{A}}(\kappa,k) = 1 \right] \right)$$

```
Game OW_{\mathcal{A}}^{\mathsf{RTDF}}(\kappa, k)

1: par \stackrel{\$}{\leftarrow} \mathsf{Stp}(\kappa)

2: \mathbf{for} \ i \in [k] \ \mathbf{do}

3: (a_i, t_i) \stackrel{\$}{\leftarrow} \mathsf{Gen}()

4: \mathbf{end} \ \mathbf{for}

5: \rho \leftarrow \{a_1, \dots, a_k\}

6: y \stackrel{\$}{\leftarrow} \mathcal{R}

7: x' \stackrel{\$}{\leftarrow} \mathcal{A}(par, \rho, y)

8: \mathbf{return} \ 1 \ \text{if} \ \mathsf{Eval}(\rho, x') = y, \mathsf{else} \ 0
```

Without knowing any trapdoor, it's hard for a ppt adversary to find an input that maps to a given output under the ring function.

Domain Sampling

An adversary should not be able to tell whether a value came from the ring function's real input-output process or was just randomly chosen from the output space.

Domain Sampling

$$\mathsf{Adv}_{\mathsf{RTDF},\mathcal{A}}^{\mathsf{DS}(n,\kappa)} := \left| \Pr \left[\mathsf{DS}_{\mathcal{A}}^{\mathsf{RTDF}}(n,\kappa) = 1 \right] - \frac{1}{2} \right|$$

An adversary should not be able to tell whether a value came from the ring function's real input-output process or was just randomly chosen from the output space.

Domain Sampling

$$\mathsf{Adv}_{\mathsf{RTDF},\mathcal{A}}^{\mathsf{DS}(n,\kappa)} := \left| \Pr \left[\mathsf{DS}_{\mathcal{A}}^{\mathsf{RTDF}}(n,\kappa) = 1 \right] - \frac{1}{2} \right|$$

```
Game \mathsf{DS}^{\mathsf{RTDF}}_{\mathcal{A}}(n,\kappa)

1: par \xleftarrow{\$} \mathsf{Stp}(\kappa)

2: \mathbf{for} \ i \in [n] \ \mathbf{do}

3: (a_i,t_i) \xleftarrow{\$} \mathsf{Gen}()

4: \mathbf{end} \ \mathbf{for}

5: b \xleftarrow{\$} \{0,1\}

6: b' \xleftarrow{\$} \mathcal{A}^{\mathsf{Sample}}(par,\{a_1,\ldots,a_n\})

7: \mathbf{return} \ [b' = b]
```

An adversary should not be able to tell whether a value came from the ring function's real input-output process or was just randomly chosen from the output space.

Domain Sampling

$$\mathsf{Adv}^{\mathsf{DS}(n,\kappa)}_{\mathsf{RTDF},\mathcal{A}} := \left| \Pr \left[\mathsf{DS}^{\mathsf{RTDF}}_{\mathcal{A}}(n,\kappa) = 1 \right] - \frac{1}{2} \right|$$

```
Game \mathsf{DS}^{\mathsf{RTDF}}_{\mathcal{A}}(n,\kappa)

1: par \xleftarrow{\$} \mathsf{Stp}(\kappa)

2: \mathbf{for} \ i \in [n] \ \mathbf{do}

3: (a_i,t_i) \xleftarrow{\$} \mathsf{Gen}()

4: \mathbf{end} \ \mathbf{for}

5: b \xleftarrow{\$} \{0,1\}

6: b' \xleftarrow{\$} \mathcal{A}^{\mathsf{Sample}}(par,\{a_1,\ldots,a_n\})

7: \mathbf{return} \ [b' = b]
```

```
Oracle Sample(\rho = \{a_{i_1}, \dots, a_{i_k}\})

1: if k > \kappa or \exists a (a \in \rho \land a \notin \{a_1, \dots, a_n\}) then

2: return \bot

3: end if

4: if b = 0 then

5: x \xleftarrow{\$} \operatorname{Smp}(\rho)

6: y \leftarrow \operatorname{Eval}(\rho, x)

7: else

8: y \xleftarrow{\$} \mathcal{R}

9: end if

10: return y
```

An adversary should not be able to tell whether a value came from the ring function's real input-output process or was just randomly chosen from the output space.

$$\mathsf{Adv}^{\mathsf{PS}(n,\kappa)}_{\mathsf{RTDF},\mathcal{A}} := \left| \Pr \left[\mathsf{PS}^{\mathsf{RTDF}}_{\mathcal{A}}(n,\kappa) = 1 \right] - \frac{1}{2} \right|$$

$$\mathsf{Adv}^{\mathsf{PS}(n,\kappa)}_{\mathsf{RTDF},\mathcal{A}} := \left| \Pr \left[\mathsf{PS}^{\mathsf{RTDF}}_{\mathcal{A}}(n,\kappa) = 1 \right] - \frac{1}{2} \right|$$

```
Game \mathsf{PS}^{\mathsf{RTDF}}_{\mathcal{A}}(n,\kappa)

1: par \xleftarrow{\$} \mathsf{Stp}(\kappa)

2: \mathbf{for} \ i \in [n] \ \mathbf{do}

3: (a_i,t_i) \xleftarrow{\$} \mathsf{Gen}()

4: \mathbf{end} \ \mathbf{for}

5: b \xleftarrow{\$} \{0,1\}

6: b' \xleftarrow{\$} \mathcal{A}^{\mathsf{Challenge}}(par, \{a_1,\ldots,a_n\})

7: \mathbf{return} \ [b' = b]
```

$$\mathsf{Adv}^{\mathsf{PS}(n,\kappa)}_{\mathsf{RTDF},\mathcal{A}} := \left| \Pr \left[\mathsf{PS}^{\mathsf{RTDF}}_{\mathcal{A}}(n,\kappa) = 1 \right] - \frac{1}{2} \right|$$

```
Game \mathsf{PS}^{\mathsf{RTDF}}_{\mathcal{A}}(n,\kappa)

1: par \xleftarrow{\$} \mathsf{Stp}(\kappa)

2: \mathbf{for} \ i \in [n] \ \mathbf{do}

3: (a_i,t_i) \xleftarrow{\$} \mathsf{Gen}()

4: \mathbf{end} \ \mathbf{for}

5: b \xleftarrow{\$} \{0,1\}

6: b' \xleftarrow{\$} \mathcal{A}^{\mathsf{Challenge}}(par,\{a_1,\ldots,a_n\})

7: \mathbf{return} \ [b' = b]
```

```
Oracle Challenge(\rho = \{a_{i_1}, \dots, a_{i_k}\}, y \in \mathcal{R})

1: if k > \kappa or \exists a (a \in \rho \land a \notin \{a_1, \dots, a_n\}) then

2: return \bot

3: end if

4: if b = 0 then

5: t \stackrel{\$}{\leftarrow} \{\mu(a) \mid a \in \rho\}

6: x \stackrel{\$}{\leftarrow} \text{Inv}(t, \rho, y)

7: else

8: Sample x \stackrel{\$}{\leftarrow} \text{Smp}(\rho) until f_{\rho}(x) = y

9: end if

10: return x
```

$$\mathsf{Adv}^{(n,\kappa,Q_{\mathsf{OInv}})\text{-}\mathsf{MC-Ano}}_{\mathsf{RTDF},\mathcal{A}} := \left| \Pr[(n,\kappa,Q_{\mathsf{OInv}})\text{-}\mathsf{MC-Ano}_{\mathsf{RTDF}}(\mathcal{A}) \to 1] - \frac{1}{2} \right|$$

$$\mathsf{Adv}_{\mathsf{RTDF},\mathcal{A}}^{(n,\kappa,Q_{\mathsf{OInv}})\text{-}\mathsf{MC-Ano}} := \left| \Pr[(n,\kappa,Q_{\mathsf{OInv}})\text{-}\mathsf{MC-Ano}_{\mathsf{RTDF}}(\mathcal{A}) \to 1] - \frac{1}{2} \right|$$

```
Game (n, \kappa, Q_{\text{OInv}})\text{-MC-Ano}_{\text{RTDF}}(\mathcal{A})

1: par \overset{\$}{\leftarrow} \text{Stp}(\kappa)

2: for i \in [n] do

3: (a_i, t_i) \overset{\$}{\leftarrow} \text{Gen}

4: end for

5: b \overset{\$}{\leftarrow} \{0, 1\}

6: b' \overset{\$}{\leftarrow} \mathcal{A}^{\text{OInv}}(par, (a_1, t_1), \dots, (a_n, t_n))

7: return [b = b']
```

$$\mathsf{Adv}_{\mathsf{RTDF},\mathcal{A}}^{(n,\kappa,Q_{\mathsf{OInv}})\text{-}\mathsf{MC-Ano}} := \left| \Pr[(n,\kappa,Q_{\mathsf{OInv}})\text{-}\mathsf{MC-Ano}_{\mathsf{RTDF}}(\mathcal{A}) \to 1] - \frac{1}{2} \right|$$

```
Game (n, \kappa, Q_{\text{OInv}})\text{-MC-Ano}_{\text{RTDF}}(\mathcal{A})

1: par \overset{\$}{\leftarrow} \text{Stp}(\kappa)

2: for i \in [n] do

3: (a_i, t_i) \overset{\$}{\leftarrow} \text{Gen}

4: end for

5: b \overset{\$}{\leftarrow} \{0, 1\}

6: b' \overset{\$}{\leftarrow} \mathcal{A}^{\text{OInv}}(par, (a_1, t_1), \dots, (a_n, t_n))

7: return [b = b']
```

```
Oracle OInv(i_0 \in [n], i_1 \in [n], \rho = \{a_1, \dots, a_{k \leq n}\}, x)

1: if (\rho \subseteq \{a_1, \dots, a_n\}) \land (a_{i_0} \in \rho) \land (a_{i_1} \in \rho) then

2: y \leftarrow Eval(\rho, x)

3: return y

4: else

5: return \bot

6: end if
```

RTDF → RSig

1. $Stp(\kappa) \rightarrow par$ 2. $RTDF.Gen() \rightarrow (a, t)$

KeyGen

- $Stp(\kappa) \rightarrow par$
- 2. *3.* RTDF.Gen() \rightarrow (a, t)
 - $pk \coloneqq a$

KeyGen

- 1. $Stp(\kappa) \rightarrow par$
- 2. RTDF.Gen() \rightarrow (a, t)
- 3. pk := a
- 4. sk := t

KeyGen

Sign

m

Sign

m

• Introduced a novel abstraction—Ring Trapdoor Functions (RTDFs)—to construct efficient ring signature schemes, especially in lattice-based settings.

- Introduced a novel abstraction—Ring Trapdoor Functions (RTDFs)—to construct efficient ring signature schemes, especially in lattice-based settings.
- Clearly defined RTDF syntax and security properties, supported by game-based concrete security proofs.

- Introduced a novel abstraction—Ring Trapdoor Functions (RTDFs)—to construct efficient ring signature schemes, especially in lattice-based settings.
- Clearly defined RTDF syntax and security properties, supported by game-based concrete security proofs.
- RTDF framework provides a more flexible and expressive model than the earlier BK10 definition, enabling support for advanced constructions like GANDALF.

- Introduced a novel abstraction—Ring Trapdoor Functions (RTDFs)—to construct efficient ring signature schemes, especially in lattice-based settings.
- Clearly defined RTDF syntax and security properties, supported by game-based concrete security proofs.
- RTDF framework provides a more flexible and expressive model than the earlier BK10 definition, enabling support for advanced constructions like GANDALF.
- RTDF allows improvements (e.g., scaling ring size) at the primitive level, propagating to ring signatures without redesign.

- Introduced a novel abstraction—Ring Trapdoor Functions (RTDFs)—to construct efficient ring signature schemes, especially in lattice-based settings.
- Clearly defined RTDF syntax and security properties, supported by game-based concrete security proofs.
- RTDF framework provides a more flexible and expressive model than the earlier BK10 definition, enabling support for advanced constructions like GANDALF.
- RTDF allows improvements (e.g., scaling ring size) at the primitive level, propagating to ring signatures without redesign.
- RTDF serves as a building block for other anonymity-preserving primitives, promoting primitive reusability in cryptographic design.