

Rodzaj dokumentu:	Zasady oceniania rozwiązań zadań
Egzamin:	Egzamin maturalny
Przedmiot:	Matematyka
Poziom:	Poziom podstawowy
Formy arkusza:	MMAP-P0-100 (wersje arkusza: A i B), MMAP-P0-200, MMAP-P0-300, MMAP-P0-400, MMAP-P0-700, MMAP-P0-Q00, MMAP-P0-K00, MMAU-P0-100
Termin egzaminu:	6 maja 2025 r.
Data publikacji dokumentu:	27 czerwca 2025 r.

Uwagi ogólne:

- 1. Akceptowane są wszystkie rozwiązania merytorycznie poprawne i spełniające warunki zadania.
- 2. Jeżeli zdający poprawnie rozwiąże zadanie i otrzyma poprawny wynik, lecz w końcowym zapisie przekształca ten wynik i popełnia przy tym błąd, to może uzyskać maksymalną liczbę punktów.
- 3. Jeżeli zdający popełni błędy rachunkowe, które na żadnym etapie rozwiązania nie upraszczają i nie zmieniają danego zagadnienia, lecz stosuje poprawną metodę i konsekwentnie do popełnionych błędów rachunkowych rozwiązuje zadanie, to może otrzymać co najwyżej (n-1) punktów (gdzie n jest maksymalną możliwą do uzyskania liczbą punktów za dane zadanie).

Zadanie 1. (0-1)

Wymagania określone w podstawie programowej ¹		
Wymaganie ogólne	Wymagania szczegółowe	
I. Sprawność rachunkowa.	Zdający:	
Wykonywanie obliczeń na liczbach	I.3) stosuje własności pierwiastków	
rzeczywistych, także przy użyciu	dowolnego stopnia [];	
kalkulatora, stosowanie praw działań	I.4) stosuje związek pierwiastkowania	
matematycznych przy przekształcaniu	z potęgowaniem oraz prawa działań na	
wyrażeń algebraicznych oraz	potęgach i pierwiastkach.	
wykorzystywanie tych umiejętności przy		
rozwiązywaniu problemów w kontekstach		
rzeczywistych i teoretycznych.		

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B C

¹ Rozporządzenie Ministra Edukacji z dnia 28 czerwca 2024 r. zmieniające rozporządzenie w sprawie podstawy programowej kształcenia ogólnego dla liceum ogólnokształcącego, technikum oraz branżowej szkoły II stopnia (Dz.U. z 2024 r. poz. 1019).

Zadanie 2. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
I. Sprawność rachunkowa.	Zdający:
Wykonywanie obliczeń na liczbach	I.4) stosuje [] prawa działań na potęgach
rzeczywistych, także przy użyciu	[].
kalkulatora, stosowanie praw działań	
matematycznych przy przekształcaniu	
wyrażeń algebraicznych oraz	
wykorzystywanie tych umiejętności przy	
rozwiązywaniu problemów w kontekstach	
rzeczywistych i teoretycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B

B D

Zadanie 3. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	I.9) stosuje związek logarytmowania
1. Stosowanie obiektów matematycznych	z potęgowaniem, posługuje się wzorami na
i operowanie nimi, interpretowanie pojęć	[] logarytm ilorazu i logarytm potęgi.
matematycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B A C

Zadanie 4. (0-1)

Wymaganie ogólne	Wymagania szczegółowe
I. Sprawność rachunkowa. Wykonywanie obliczeń na liczbach rzeczywistych, także przy użyciu kalkulatora, stosowanie praw działań matematycznych przy przekształcaniu wyrażeń algebraicznych oraz wykorzystywanie tych umiejętności przy rozwiązywaniu problemów w kontekstach rzeczywistych i teoretycznych.	Zdający: II.1) stosuje wzory skróconego mnożenia na: $(a+b)^2$, $(a-b)^2$, a^2-b^2 ; II.2) dodaje, odejmuje i mnoży wielomiany jednej i wielu zmiennych.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B C D

Zadanie 5. (0-2)

Wymaganie ogólne	Wymaganie szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
1. Przeprowadzanie rozumowań, także	I.2) przeprowadza proste dowody dotyczące
kilkuetapowych, podawanie argumentów	podzielności liczb całkowitych i reszt
uzasadniających poprawność rozumowania,	z dzielenia [].
odróżnianie dowodu od przykładu.	

Zasady oceniania

- 2 pkt zapisanie, że n=2l+1, oraz przekształcenie wyrażenia $3n^2+2n+7$ do postaci $4(3l^2+4l+3)$ ALBO
 - przekształcenie wyrażenia $3n^2+2n+7$ do postaci sumy algebraicznej liczb podzielnych przez 4 **oraz** uzasadnienie, że każdy ze składników tej sumy jest podzielny przez 4, *ALBO*
 - rozpatrzenie przypadku, gdy n=4l+1, tj. przekształcenie wyrażenia $3n^2+2n+7$ do postaci $4(12l^2+8l+3)$, **oraz** rozpatrzenie przypadku, gdy n=4l+3, tj. przekształcenie wyrażenia $3n^2+2n+7$ do postaci $4(12l^2+20l+10)$, *ALBO*

- zapisanie, że liczba $3n^2$ przy dzieleniu przez 4 daje resztę 3 **oraz** zapisanie, że liczba 2n przy dzieleniu przez 4 daje resztę 2 **oraz** zapisanie, że suma reszt z dzielenia przez 4 liczb: $3n^2$, 2n, 7, jest podzielna przez 4.
- 1 pkt zapisanie, że n=2l+1, oraz przekształcenie wyrażenia $3n^2+2n+7$ do postaci $3(4l^2+4l+1)+2(2l+1)+7$ ALBO
 - przekształcenie wyrażenia $3n^2+2n+7$ do postaci sumy algebraicznej liczb podzielnych przez 4, w której podzielność przez 4 jednego ze składników nie wymaga uzasadnienia: $4(n^2+n+2)-(n+1)^2$, (3n-1)(n+1)+8, $4(n^2+n+1)-(n+3)(n-1)$, ALBO
 - przekształcenie wyrażenia $3n^2+2n+7$ do postaci sumy algebraicznej liczb podzielnych przez 4: $2n(n+1)+(n^2+7), (n+1)^2+2(n^2+3),$ oraz uzasadnienie podzielności przez 4 jednego ze składników tej sumy, *ALBO*
 - rozpatrzenie przypadku, gdy n=4l+1, tj. przekształcenie wyrażenia $3n^2+2n+7\,$ do postaci $4(12l^2+8l+3)$, ALBO
 - rozpatrzenie przypadku, gdy n=4l+3, tj. przekształcenie wyrażenia $3n^2+2n+7\,$ do postaci $\,4(12l^2+20l+10),$ $\,$ ALBO
 - zapisanie, że liczba $3n^2$ przy dzieleniu przez 4 daje resztę 3 **oraz** zapisanie, że liczba 2n przy dzieleniu przez 4 daje resztę 2.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwaqi:

- **1.** Jeżeli zdający sprawdza prawdziwość tezy tylko dla wybranych wartości n, to otrzymuje **0 punktów** za całe rozwiazanie.
- **2.** Jeżeli zdający wykazuje, że dla każdej liczby naturalnej nieparzystej n wyrażenie $3n^2 2n + 7$ (zamiast $3n^2 + 2n + 7$) jest podzielne przez 4, to otrzymuje **1 punkt**.
- **3.** Jeżeli zdający przedstawia n w postaci 2l+1, a następnie przekształca wyrażenie $3n^2+2n+7$ np. do postaci $4(3l^2+4l+3)$ i kontynuuje rozumowanie, popełniając błędy we wnioskowaniu, to otrzymuje **1 punkt** za całe rozwiązanie.
- **4.** Jeżeli zdający przedstawia n w postaci 2l+1, a następnie błędnie przekształca wyrażenie $3(2l+1)^2+2(2l+1)+7$, ale uzyskuje całkowitą wielokrotność liczby 4 postaci $4\cdot(a\cdot l^2+b\cdot l+c)$, gdzie $a,b,c\in\mathbb{Z}$ i $a\neq 0$, to może otrzymać **1 punkt** za całe rozwiązanie.

Przykładowe pełne rozwiązania

Sposób I

Ponieważ liczba n jest nieparzysta, więc zapisujemy ją w postaci n=2l+1, gdzie $l\in\mathbb{Z}$ i $l\geq 0$. Wówczas

$$3n^2 + 2n + 7 = 3(2l + 1)^2 + 2(2l + 1) + 7 = 3(4l^2 + 4l + 1) + 4l + 2 + 7 =$$

= $12l^2 + 12l + 3 + 4l + 9 = 12l^2 + 16l + 12 = 4(3l^2 + 4l + 3)$

Ponieważ $l \in \mathbb{Z}$, więc również suma $3l^2+4l+3$ jest liczbą całkowitą. Zatem iloczyn $4(3l^2+4l+3)$ jest podzielny przez 4. To należało wykazać.

Sposób II

Zapisujemy liczbę $3n^2 + 2n + 7$ w postaci sumy algebraicznej liczb podzielnych przez 4, np.:

$$3n^2 + 2n + 7 = 4n^2 - n^2 + 4n - 2n + 8 - 1 = 4(n^2 + n + 2) - (n + 1)^2$$

Liczba $4(n^2+n+2)$ jest podzielna przez 4 dla dowolnej liczby całkowitej n. Liczba n jest nieparzysta, zatem liczba n+1 jest parzysta. Stąd jej kwadrat jest liczbą podzielną przez 4. Zatem liczba $3n^2+2n+7$ jest podzielna przez 4 jako różnica liczb podzielnych przez 4. To należało wykazać.

Sposób III

Reszty z dzielenia liczby naturalnej nieparzystej przez $4 \mod 4$ być równe jedynie $1 \mod 3$.

Rozważmy dwa przypadki.

Przypadek pierwszy – gdy n jest liczbą, która przy dzieleniu przez 4 daje resztę 1. Wtedy możemy ją zapisać w postaci n=4l+1, gdzie $l\in\mathbb{Z}$ i $l\geq 0$. Wówczas

$$3n^2 + 2n + 7 = 3(4l + 1)^2 + 2(4l + 1) + 7 = 3(16l^2 + 8l + 1) + 8l + 2 + 7 =$$

= $48l^2 + 24l + 3 + 8l + 9 = 48l^2 + 32l + 12 = 4(12l^2 + 8l + 3)$

Ponieważ $l \in \mathbb{Z}$, więc również suma $12l^2 + 8l + 3$ jest liczbą całkowitą. Zatem iloczyn $4(12l^2 + 8l + 3)$ jest podzielny przez 4.

Przypadek drugi – gdy n jest liczbą, która przy dzieleniu przez 4 daje resztę 3. Wtedy możemy ją zapisać w postaci n=4l+3, gdzie $l\in\mathbb{Z}$ i $l\geq 0$. Wówczas

$$3n^2 + 2n + 7 = 3(4l + 3)^2 + 2(4l + 3) + 7 = 3(16l^2 + 24l + 9) + 8l + 6 + 7 =$$

= $48l^2 + 72l + 27 + 8l + 13 = 48l^2 + 80l + 40 = 4(12l^2 + 20l + 10)$

Ponieważ $l \in \mathbb{Z}$, więc również suma $12l^2 + 20l + 10$ jest liczbą całkowitą. Zatem iloczyn $4(12l^2 + 20l + 10)$ jest podzielny przez 4. To należało wykazać.

Sposób IV

Ponieważ liczba n jest nieparzysta, więc liczba n^2 przy dzieleniu przez 4 daje resztę 1. Stąd wynika, że liczba $3n^2$ daje przy dzieleniu przez 4 resztę 3, a liczba 2n daje przy dzieleniu przez 4 resztę 2. Ponadto liczba 7 daje przy dzieleniu przez 4 resztę 3.

Zatem reszta z dzielenia przez 4 liczby $3n^2 + 2n + 7$ jest równa reszcie z dzielenia przez 4 liczby 3 + 2 + 3 = 8. Liczba 8 jest podzielna przez 4, zatem liczba $3n^2 + 2n + 7$ jest również podzielna przez 4. To należało wykazać.

Zadanie 6. (0-1)

Wymaganie ogólne	Wymagania szczegółowe
II. Wykorzystanie i tworzenie informacji.	Zdający:
1. Interpretowanie i operowanie	III.3) rozwiązuje nierówności liniowe z jedną
informacjami przedstawionymi w tekście,	niewiadomą.
zarówno matematycznym, jak	I.6) posługuje się pojęciem przedziału
i popularnonaukowym, a także w formie	liczbowego, zaznacza przedziały na osi
wykresów, diagramów, tabel.	liczbowej.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B D D

Zadanie 7. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	III.5) rozwiązuje równania wielomianowe
Stosowanie obiektów matematycznych	postaci $W(x) = 0$ dla wielomianów
i operowanie nimi, interpretowanie pojęć matematycznych.	doprowadzonych do postaci iloczynowej.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B A

Zadanie 8. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	II.4) mnoży [] wyrażenia wymierne.
Stosowanie obiektów matematycznych	
i operowanie nimi, interpretowanie pojęć	
matematycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B C B

Zadanie 9. (0-2)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	IV.2) stosuje układy równań do
2. Dobieranie i tworzenie modeli	rozwiązywania zadań tekstowych.
matematycznych przy rozwiązywaniu	
problemów praktycznych i teoretycznych.	

Zasady oceniania

2 pkt – zastosowanie poprawnej metody i poprawny wynik: 735 000 zł.

1 pkt – zapisanie układu równań pozwalającego obliczyć kwoty przyznane poszczególnym zespołom, np.

$$x + y = 1200000$$
 oraz $0,13x + 0,11y = 146700$

 zapisanie równania z jedną niewiadomą pozwalającego obliczyć kwotę przyznaną zespołowi A, np.:

$$2\% \cdot x = 14700,$$

 $0,13x + 0,11 \cdot (1200000 - x) = 146700,$

ALBO

 zapisanie równania z jedną niewiadomą pozwalającego obliczyć kwotę przyznaną zespołowi B, np.

$$0.13 \cdot (1200000 - y) + 0.11y = 146700.$$

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwagi:

- 1. Jeżeli zdający sprawdza warunki zadania dla wybranych par liczb x oraz y i wskaże właściwą odpowiedź, ale nie uzasadni, że jest to jedyne rozwiązanie zadania, to otrzymuje 1 punkt za całe rozwiązanie.
- **2.** Jeżeli zdający w rozwiązaniu używa wartości przybliżonych i otrzymuje wynik różny od 735 000, to może otrzymać co najwyżej **1 punkt** za całe rozwiązanie.

Przykładowe pełne rozwiązanie

Oznaczmy:

x − kwota przyznana zespołowi A,

y – kwota przyznana zespołowi B.

Po uwzględnieniu warunków zadania otrzymujemy:

$$x + y = 1200000$$
 oraz $0,13x + 0,11y = 146700$

Z pierwszego z tych równań wyznaczamy $y=1\,200\,000-x\,$ i podstawiamy w miejsce y do drugiego z równań, otrzymując

$$0.13x + 0.11 \cdot (1200000 - x) = 146700$$
$$0.13x + 132000 - 0.11x = 146700$$
$$0.02x = 14700$$
$$x = 735000$$

Zespół A otrzymał 735 000 zł.

Zadanie 10. (0-2)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	III.4) rozwiązuje [] nierówności
1. Stosowanie obiektów matematycznych	kwadratowe.
i operowanie nimi, interpretowanie pojęć	
matematycznych.	

Zasady oceniania

2 pkt – zastosowanie poprawnej metody i zapisanie zbioru rozwiązań nierówności:

$$x \in \left(\frac{1}{3}, \frac{3}{2}\right)$$

ALBO

 zastosowanie poprawnej metody i przedstawienie zbioru rozwiązań nierówności w postaci graficznej z poprawnie zaznaczonymi końcami przedziału, np.

1 pkt – obliczenie pierwiastków trójmianu kwadratowego $6x^2 - 11x + 3$:

$$x_1 = \frac{1}{3} \text{ oraz } x_2 = \frac{3}{2}.$$

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwagi:

- **1.** Jeżeli zdający, obliczając pierwiastki trójmianu $6x^2 11x + 3$, popełni błędy (ale otrzyma dwa różne pierwiastki) i konsekwentnie do popełnionych błędów zapisze zbiór rozwiązań nierówności, to otrzymuje **1 punkt** za całe rozwiązanie.
- **2.** Jeżeli zdający wyznacza pierwiastki trójmianu kwadratowego, w przypadku gdy błędnie obliczony przez zdającego wyróżnik Δ jest ujemny, to otrzymuje **0 punktów** za całe rozwiazanie.
- **3.** Jeżeli zdający rozpatruje inny niż podany w zadaniu trójmian kwadratowy, który nie wynika z błędu przekształcenia (np. $3(2x^2+1)$), i w konsekwencji rozpatruje inną nierówność (np. $3(2x^2+1) < 0$), to otrzymuje **0 punktów** za całe rozwiązanie.
- **4.** Jeżeli zdający poda zbiór rozwiązań w postaci graficznej z poprawnie zaznaczonymi końcami przedziału i jednocześnie zapisze niewłaściwy przedział jako zbiór rozwiązań (np. $x \in \left[\frac{1}{3}, \frac{3}{2}\right]$), to otrzymuje **1 punkt** za całe rozwiązanie.

Kryteria uwzględniające specyficzne trudności w uczeniu się matematyki

Jeśli zdający spełni kryterium za 1 punkt, a następnie zapisze zbiór rozwiązań nierówności w postaci $(\frac{3}{2}, \frac{1}{3})$, to otrzymuje **2 punkty**.

Przykładowe pełne rozwiązanie

Zapisujemy nierówność w postaci $6x^2-11x+3<0$ i obliczamy miejsca zerowe funkcji $y=6x^2-11x+3$.

Obliczamy wyróżnik trójmianu $6x^2 - 11x + 3$:

$$\Delta = (-11)^2 - 4 \cdot 6 \cdot 3 = 49$$

Stąd

$$x_1 = \frac{-(-11) - \sqrt{49}}{2 \cdot 6} = \frac{1}{3}$$

$$x_2 = \frac{-(-11) + \sqrt{49}}{2 \cdot 6} = \frac{3}{2}$$

Szkicujemy wykres funkcji $y = 6x^2 - 11x + 3$.

Odczytujemy argumenty, dla których funkcja przyjmuje wartości ujemne.

Zbiorem rozwiązań nierówności jest przedział $(\frac{1}{3}, \frac{3}{2})$.

Zadanie 11. (0-4)

Wymaganie ogólne	Wymagania szczegółowe
II. Wykorzystanie i tworzenie informacji.	Zdający:
1. Interpretowanie i operowanie	V.4) odczytuje z wykresu funkcji: dziedzinę,
informacjami przedstawionymi w tekście,	zbiór wartości, miejsca zerowe, przedziały
zarówno matematycznym, jak	monotoniczności, przedziały, w których
i popularnonaukowym, a także w formie	funkcja przyjmuje wartości większe (nie
wykresów, diagramów, tabel.	mniejsze) lub mniejsze (nie większe) od
	danej liczby, największe i najmniejsze
	wartości funkcji (o ile istnieją) w danym
	przedziale domkniętym oraz argumenty, dla
	których wartości największe i najmniejsze
	są przez funkcję przyjmowane.
	I.6) posługuje się pojęciem przedziału
	liczbowego [].

Zasady oceniania

- 4 pkt poprawne uzupełnienie czterech zdań.
- 3 pkt poprawne uzupełnienie trzech zdań.
- 2 pkt poprawne uzupełnienie dwóch zdań.
- 1 pkt poprawne uzupełnienie jednego zdania.
- 0 pkt brak spełnienia powyższych kryteriów.

Rozwiązanie

- **1.** Dziedziną funkcji f jest przedział [-4, 4).
- **2.** Zbiorem wartości funkcji f jest przedział (-3,3].
- **3.** Zbiorem wszystkich argumentów, dla których funkcja f przyjmuje wartości dodatnie, jest przedział [-4,3).
- **4.** Zbiorem wszystkich rozwiązań równania f(x) = 3 jest przedział [-2, 2].

Kryteria uwzględniające specyficzne trudności w uczeniu się matematyki

Jeśli zdający pomyli porządek liczb na osi liczbowej przy zachowaniu poprawnych krańców przedziału, np. zapisze, że dziedziną funkcji f jest przedział (4, -4], to otrzymuje **1 punkt** za tak uzupełnione zdanie.

Zadanie 12.1. (0-2)

Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i tworzenie informacji.	Zdający:
1. Interpretowanie i operowanie	V.9) wyznacza wzór funkcji kwadratowej na
informacjami przedstawionymi w tekście, zarówno matematycznym, jak	podstawie informacji o tej funkcji lub o jej wykresie.
i popularnonaukowym, a także w formie wykresów, diagramów, tabel.	

Zasady oceniania

2 pkt – poprawna metoda i zapisanie wzoru funkcji f w postaci kanonicznej:

$$f(x) = -\frac{1}{3}(x-3)^2 + 6.$$

1 pkt – zapisanie wzoru funkcji f w postaci $f(x) = a(x-3)^2 + 6$

ALBC

– zapisanie równania z jedną niewiadomą prowadzącego do obliczenia a, np.:

$$3 = a(0-3)^2 + 6$$
, $\frac{3a-1}{2a} = 3$, *ALBO*

– obliczenie (lub podanie wraz z uzasadnieniem) współczynnika a: $a = -\frac{1}{3}$.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwagi:

- **1.** Jeżeli zdający zapisze $f(x)=-\frac{1}{3}(x-3)^2+6$ i nie obliczy (ani nie uzasadni), że $a=-\frac{1}{3}$, to otrzymuje **1 punkt**.
- **2.** Jeżeli zdający zapisze wzór funkcji f w postaci $f(x) = a(x-3)^2 + 6$ oraz poprawnie obliczy współczynnik a, to otrzymuje **2 punkty**.

Przykładowe pełne rozwiązania

Sposób I

Korzystamy ze wzoru na postać kanoniczną funkcji kwadratowej i zapisujemy:

$$f(x) = a(x-3)^2 + 6$$
, gdzie $a \neq 0$

Punkt (0,3) leży na wykresie funkcji f, więc

$$f(0) = 3$$
$$a(0-3)^{2} + 6 = 3$$
$$9a = -3$$
$$a = -\frac{1}{3}$$

Zatem
$$f(x) = -\frac{1}{3}(x-3)^2 + 6$$
.

Sposób II

Korzystamy ze wzoru na postać ogólną funkcji kwadratowej i zapisujemy:

$$f(x) = ax^2 + bx + c$$
, gdzie $a \neq 0$

Punkty (0,3), (3,6), (6,3) leżą na wykresie funkcji f, zatem

$$\begin{cases} f(0) = 3 \\ f(3) = 6 \\ f(6) = 3 \end{cases}$$

$$\begin{cases} a \cdot 0^2 + b \cdot 0 + c = 3 \\ a \cdot 3^2 + b \cdot 3 + c = 6 \\ a \cdot 6^2 + b \cdot 6 + c = 3 \end{cases}$$

$$\begin{cases} c = 3 \\ 9a + 3b + c = 6 \\ 36a + 6b + c = 3 \end{cases}$$

$$\begin{cases} 9a + 3b + 3 = 6 \\ 36a + 6b + 3 = 3 \end{cases}$$

$$\begin{cases} 3a + b = 1 \\ 6a + b = 0 \end{cases}$$

Odejmujemy równania stronami i otrzymujemy:

$$-3a = 1$$
$$a = -\frac{1}{3}$$

Stąd

$$b = 1 - 3a = 1 - 3 \cdot \left(-\frac{1}{3}\right) = 1 + 1 = 2$$

Zapisujemy wzór funkcji f w postaci ogólnej:

$$f(x) = -\frac{1}{3}x^2 + 2x + 3$$

Przekształcamy wzór funkcji *f* do postaci kanonicznej:

$$f(x) = -\frac{1}{3}x^2 + 2x + 3 = -\frac{1}{3}(x^2 - 6x - 9) = -\frac{1}{3}(x^2 - 6x + 9 - 18) =$$
$$= -\frac{1}{3}[(x - 3)^2 - 18] = -\frac{1}{3}(x - 3)^2 + 6$$

Zadanie 12.2. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i tworzenie informacji.	Zdający:
1. Interpretowanie i operowanie	V.11) wykorzystuje własności funkcji []
informacjami przedstawionymi w tekście,	kwadratowej do interpretacji zagadnień
zarówno matematycznym, jak	geometrycznych [].
i popularnonaukowym, a także w formie	
wykresów, diagramów, tabel.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B A B

Zadanie 12.3. (0-1)

Wymaganie ogólne	Wymagania szczegółowe
II. Wykorzystanie i tworzenie informacji.	Zdający:
1. Interpretowanie i operowanie	V.12) na podstawie wykresu funkcji
informacjami przedstawionymi w tekście, zarówno matematycznym, jak	y = f(x) szkicuje wykresy funkcji [] y = f(x) + b;
i popularnonaukowym, a także w formie wykresów, diagramów, tabel.	V.4) odczytuje z wykresu funkcji: [] miejsca zerowe [].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Suma $x_1 + x_2$ jest równa 6.

Zadanie 13. (0-1)

Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	V.5) interpretuje współczynniki występujące
Stosowanie obiektów matematycznych	we wzorze funkcji liniowej;
i operowanie nimi, interpretowanie pojęć	V.6) wyznacza wzór funkcji liniowej na
matematycznych.	podstawie informacji o jej wykresie lub o jej
	własnościach.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B

C B

Zadanie 14.1. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	VI.2) oblicza początkowe wyrazy ciągów
1. Stosowanie obiektów matematycznych	określonych rekurencyjnie.
i operowanie nimi, interpretowanie pojęć	
matematycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B D A

Zadanie 14.2. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	VI.4) sprawdza, czy dany ciąg jest
1. Stosowanie obiektów matematycznych	arytmetyczny lub geometryczny.
i operowanie nimi, interpretowanie pojęć	
matematycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepełna lub niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B FF FF

Zadanie 15. (0-3)

Wymaganie ogólne	Wymaganie szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
4. Stosowanie i tworzenie strategii przy	VI.7) wykorzystuje własności ciągów []
rozwiązywaniu zadań, również w sytuacjach	arytmetycznych [] do rozwiązywania
nietypowych.	zadań [].

Zasady oceniania

3 pkt – obliczenie i uzasadnienie, że jedyną wartością m, dla której ciąg $(2m+11,\ m^2+3,\ 5-m)$ jest arytmetyczny i malejący jest $\frac{5}{2}$.

2 pkt – wyznaczenie wartości m, dla których ciąg $(2m+11,\ m^2+3,\ 5-m)$ jest arytmetyczny: m=-2 oraz $m=\frac{5}{2}$ ALBO

- zapisanie równania z jedną niewiadomą $\,m,\,$ np.:

$$\frac{2m+11+5-m}{2} = m^2 + 3,$$

$$(m^2+3) - (2m+11) = (5-m) - (m^2+3),$$

oraz rozwiązanie co najmniej jednej z trzech nierówności:

- $2m + 11 > m^2 + 3 : m \in (-2, 4)$
- $m^2 + 3 > 5 m$: $m \in (-\infty, -2) \cup (1, +\infty)$
- 2m + 11 > 5 m : $m \in (-2, +\infty)$,

ALBO

– obliczenie wszystkich wartości r, dla których ciąg $(2m+11,\ m^2+3,\ 5-m)$ jest arytmetyczny: $r=-\frac{27}{4}$ lub r=0, ALBO

- obliczenie wartości r, dla której ciąg $(2m+11,\ m^2+3,\ 5-m)$ jest arytmetyczny i malejący: $r=-\frac{27}{4}$.
- 1 pkt zapisanie równania z jedną niewiadomą m, np.:

$$\frac{2m+11+5-m}{2} = m^2 + 3,$$

$$(m^2+3) - (2m+11) = (5-m) - (m^2+3)$$
ALBO

- zapisanie układu równań z dwiema niewiadomymi pozwalającego obliczyć m i r, np. $m^2+3=2m+11+r$ oraz 5-m=2m+11+2r, ALBO
- rozwiązanie co najmniej jednej z trzech nierówności:
 - $2m + 11 > m^2 + 3 : m \in (-2, 4)$
 - $m^2 + 3 > 5 m$: $m \in (-\infty, -2) \cup (1, +\infty)$
 - 2m + 11 > 5 m : $m \in (-2, +\infty)$.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwagi:

- **1.** Jeżeli zdający myli ciąg arytmetyczny z geometrycznym, to otrzymuje **0 punktów** za całe rozwiązanie, o ile nie nabył prawa do innej liczby punktów (np. za rozwiązanie nierówności $2m+11>m^2+3$).
- **2.** Jeżeli zdający nie uwzględnia istotnych nawiasów i rozwiązuje równanie postaci $(m^2+3)-2m+11=(5-m)-m^2+3$, to otrzymuje **0 punktów** za całe rozwiązanie, o ile nie nabył prawa do innej liczby punktów (np. za rozwiązanie nierówności $2m+11>m^2+3$).
- **3.** Jeżeli zdający zapisze tylko $m=\frac{5}{2}$, to otrzymuje **0 punktów**. Natomiast jeżeli zdający dodatkowo sprawdzi, zapisując odpowiednie obliczenia, że dla tej wartości m spełnione są warunki zadania, ale nie uzasadni, że jest to jedyne rozwiązanie, to otrzymuje **1 punkt** za całe rozwiązanie.
- **4.** Jeżeli zdający wyznaczy wartości m, dla których ciąg $(2m+11, m^2+3, 5-m)$ jest arytmetyczny: m=-2 oraz $m=\frac{5}{2}$, i zapisze, że dla m=-2 ciąg nie jest malejący, to otrzymuje **3 punkty**.
- **5.** Jeżeli zdający wyznaczy wartości m, dla których ciąg $(2m+11, m^2+3, 5-m)$ jest arytmetyczny: m=-2 oraz $m=\frac{5}{2}$, a następnie obliczy dla każdej z tych wartości m wyrazy ciągu i nie wskaże, że $m=\frac{5}{2}$ jest jedyną szukaną wartością, to otrzymuje **2 punkty** za całe rozwiązanie.

Przykładowe pełne rozwiązania

Sposób I

Z własności ciągu arytmetycznego otrzymujemy:

$$\frac{2m+11+5-m}{2} = m^2 + 3$$

$$m+16 = 2m^2 + 6$$

$$2m^2 - m - 10 = 0$$

Obliczamy wyróżnik trójmianu $2m^2 - m - 10$:

$$\Delta = (-1)^2 - 4 \cdot 2 \cdot (-10) = 81$$

Stąd

$$m_1 = \frac{-(-1) - \sqrt{81}}{2 \cdot 2} = -2$$

$$m_2 = \frac{-(-1) + \sqrt{81}}{2 \cdot 2} = \frac{5}{2}$$

Dla m = -2 otrzymujemy ciąg (7, 7, 7), który jest stały.

Dla $m = \frac{5}{2}$ otrzymujemy ciąg $\left(16, \frac{37}{4}, \frac{5}{2}\right)$, który jest malejący.

Zatem ciąg $(2m+11,\ m^2+3,\ 5-m)$ jest malejącym ciągiem arytmetycznym, gdy $m=\frac{5}{2}.$

Sposób II

Ciąg $(2m + 11, m^2 + 3, 5 - m)$ jest malejący, gdy

$$(m^2+3)-(2m+11)<0$$
 i $(5-m)-(m^2+3)<0$ $m^2-2m-8<0$ i $-m^2-m+2<0$ $m^2-4m+2m-8<0$ i $-m^2-2m+m+2<0$ $m(m-4)+2(m-4)<0$ i $-m(m+2)+(m+2)<0$ $(m-4)(m+2)<0$ i $-(m+2)(m-1)<0$ $m \in (-2,4)$ i $m \in (-\infty,-2) \cup (1,+\infty)$

Zatem ciąg $(2m+11, m^2+3, 5-m)$ jest malejący, gdy $m \in (1,4)$.

Z definicji/własności ciągu arytmetycznego otrzymujemy:

$$(m^2 + 3) - (2m + 11) = (5 - m) - (m^2 + 3)$$

Stad

$$m^{2} - 2m - 8 = -m^{2} - m + 2$$

$$2m^{2} - m - 10 = 0$$

$$2m^{2} + 4m - 5m - 10 = 0$$

$$2m^{2} + 4m - 5m - 10 = 0$$

$$2m(m + 2) - 5(m + 2) = 0$$

$$(m + 2)(2m - 5) = 0$$

$$m + 2 = 0 \quad \text{lub} \quad 2m - 5 = 0$$

$$m = -2 \notin (1, 4) \quad \text{lub} \quad m = \frac{5}{2} \in (1, 4)$$

Zatem ciąg $(2m+11, m^2+3, 5-m)$ jest malejącym ciągiem arytmetycznym, gdy $m=\frac{5}{2}.$

Sposób III

Ze wzoru na n-ty wyraz ciągu arytmetycznego otrzymujemy:

$$\begin{cases} m^2 + 3 = 2m + 11 + r \\ 5 - m = 2m + 11 + 2r \end{cases}$$

gdzie r jest różnicą ciągu arytmetycznego. Stąd

$$\begin{cases} 2m^2 + 6 = 4m + 22 + 2r \\ 5 - m = 2m + 11 + 2r \end{cases}$$

Odejmujemy równania stronami i otrzymujemy:

$$2m^{2} + 6 - 5 + m = 4m + 22 + 2r - 2m - 11 - 2r$$
$$2m^{2} - m - 10 = 0$$

Obliczamy wyróżnik trójmianu $2m^2 - m - 10$:

$$\Delta = (-1)^2 - 4 \cdot 2 \cdot (-10) = 81$$

Stąd

$$m_1 = \frac{-(-1) - \sqrt{81}}{2 \cdot 2} = -2$$

$$m_2 = \frac{-(-1) + \sqrt{81}}{2 \cdot 2} = \frac{5}{2}$$

Ciąg $(2m+11, m^2+3, 5-m)$ jest malejący, zatem

$$2m + 11 > 5 - m$$

Stad

$$m > -2$$

Dla $m=\frac{5}{2}$ otrzymujemy ciąg arytmetyczny $\left(16,\,\frac{37}{4},\,\frac{5}{2}\right)$, który jest malejący.

Zatem ciąg $(2m+11,\ m^2+3,\ 5-m)$ jest malejącym ciągiem arytmetycznym, gdy $m=\frac{5}{2}.$

Sposób IV

Ze wzoru na n-ty wyraz ciągu arytmetycznego otrzymujemy:

$$\begin{cases} m^2 + 3 = 2m + 11 + r \\ 5 - m = 2m + 11 + 2r \end{cases}$$

gdzie r jest różnicą ciągu arytmetycznego. Stąd

$$\begin{cases} m^2 - 2m - r - 8 = 0 \\ 3m + 2r + 6 = 0 \end{cases}$$

Z drugiego z tych równań wyznaczamy $m=-\frac{2}{3}r-2\,$ i podstawiamy w miejsce $m\,$ do pierwszego z równań, otrzymując:

$$\left(-\frac{2}{3}r - 2\right)^2 - 2 \cdot \left(-\frac{2}{3}r - 2\right) - r - 8 = 0$$

$$\frac{4}{9}r^2 + \frac{8}{3}r + 4 + \frac{4}{3}r + 4 - r - 8 = 0$$

$$\frac{4}{9}r^2 + 3r = 0 \ / : r \ \text{(ciąg jest malejący, więc } r < 0\text{)}$$

$$\frac{4}{9}r + 3 = 0$$

$$r = -\frac{27}{4}$$

Gdy
$$r=-\frac{27}{4}$$
, to ciąg $(2m+11,\ m^2+3,\ 5-m)$ jest malejący i $m=-\frac{2}{3}\cdot\left(-\frac{27}{4}\right)-2=\frac{9}{2}-2=\frac{5}{2}$.

Zatem ciąg $(2m+11,\ m^2+3,\ 5-m)$ jest malejącym ciągiem arytmetycznym, gdy $m=\frac{5}{2}.$

Zadanie 16. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	VI.6) stosuje wzór na n -ty wyraz [] ciągu
Stosowanie obiektów matematycznych	geometrycznego.
i operowanie nimi, interpretowanie pojęć	
matematycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B

B

Zadanie 17. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	VII.2) korzysta z wzorów
Stosowanie obiektów matematycznych	$\sin^2 \alpha + \cos^2 \alpha = 1$, $\operatorname{tg} \alpha = \frac{\sin \alpha}{\cos \alpha}$;
i operowanie nimi, interpretowanie pojęć	$\sin \alpha + \cos \alpha = 1, \ \operatorname{tg} \alpha = \cos \alpha,$
matematycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B

C D

Zadanie 18.1. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	VII.1) wykorzystuje definicje funkcji []
1. Stosowanie obiektów matematycznych	tangens dla katów od 0° do 180° [].
i operowanie nimi, interpretowanie pojęć	
matematycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B

D

Zadanie 18.2. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	VII.1) wykorzystuje definicje funkcji: sinus
1. Stosowanie obiektów matematycznych	[] dla kątów od 0° do 180° [].
i operowanie nimi, interpretowanie pojęć	
matematycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B

A B

Zadanie 19. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
1. Przeprowadzanie rozumowań, także	VIII.5) stosuje własności kątów wpisanych
kilkuetapowych, podawanie argumentów	i środkowych.
uzasadniających poprawność rozumowania,	
odróżnianie dowodu od przykładu.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B C B

Zadanie 20. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
1. Przeprowadzanie rozumowań, także	VIII.8) korzysta z cech podobieństwa
kilkuetapowych, podawanie argumentów	trójkątów.
uzasadniających poprawność rozumowania,	
odróżnianie dowodu od przykładu.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B B C

Zadanie 21. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
IV. Rozumowanie i argumentacja. 3. Dobieranie argumentów do uzasadnienia poprawności rozwiązywania problemów, tworzenie ciągu argumentów, gwarantujących poprawność rozwiązania i skuteczność w poszukiwaniu rozwiązań zagadnienia.	Zdający: VII.3) stosuje twierdzenie cosinusów oraz wzór na pole trójkąta $P=\frac{1}{2}\cdot a\cdot b\cdot \sin \gamma$.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepełna lub niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B FP FP

Zadanie 22. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
4. Stosowanie i tworzenie strategii przy	IX.3) oblicza odległość dwóch punktów
rozwiązywaniu zadań, również w sytuacjach	w układzie współrzędnych.
nietypowych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B C B

Zadanie 23. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	IX.2) posługuje się równaniami prostych na
1. Stosowanie obiektów matematycznych	płaszczyźnie, w postaci kierunkowej [],
i operowanie nimi, interpretowanie pojęć	w tym wyznacza równanie prostej
matematycznych.	o zadanych własnościach (takich, jak np.
	[] równoległość do innej prostej).

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B

B

Zadanie 24. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	IX.4) posługuje się równaniem okręgu
1. Stosowanie obiektów matematycznych	$(x-a)^2 + (y-b)^2 = r^2$.
i operowanie nimi, interpretowanie pojęć	
matematycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B B C

Zadanie 25. (0-3)

Wymaganie ogólne	Wymagania szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
4. Stosowanie i tworzenie strategii przy rozwiązywaniu zadań, również w sytuacjach	X.4) rozpoznaje [] w stożkach kąt między odcinkami oraz kąt między odcinkami
nietypowych.	i płaszczyznami (np. kąt rozwarcia stożka,
	kąt między tworzącą a podstawą) [];
	X.5) oblicza objętości [] stożka [],
	również z wykorzystaniem trygonometrii.

Zasady oceniania

- 3 pkt zastosowanie poprawnej metody i poprawny wynik: $V = 64\pi$.
- 2 pkt zapisanie promienia podstawy stożka: $r=4\sqrt{3}\,$ oraz zapisanie wysokości stożka: $H=4\,$ ALBO
 - obliczenie kwadratu promienia podstawy stożka: $r^2=48\,$ oraz zapisanie wysokości stożka: H=4, ALBO
 - zapisanie wysokości stożka: H=4 oraz wyznaczenie objętości stożka w zależności od H, np. $V=\frac{1}{3}\pi \big(H\sqrt{3}\big)^2\cdot H$,
 - zapisanie promienia podstawy stożka: $r=4\sqrt{3}$ oraz wyznaczenie objętości stożka w zależności od r, np. $V=\frac{1}{3}\pi r^2\cdot\frac{r}{\sqrt{3}}$,
 - wyznaczenie objętości stożka w zależności od tworzącej l, np. $V=rac{1}{3}\pi\left(rac{l\sqrt{3}}{2}
 ight)^2\cdotrac{l}{2}$.
- 1 pkt zapisanie promienia podstawy stożka: $r=4\sqrt{3}$

ALBO

ALBO

- zapisanie wysokości stożka: H=4,

ALBO

- obliczenie kwadratu promienia podstawy stożka: $r^2 = 48$,
- zapisanie układu równań pozwalającego obliczyć $\,r\,$ oraz $\,H,$ np.:

$$r = x\sqrt{3}$$
 oraz $H = x$ oraz $l = 2x$ oraz $l = 8$,

$$\frac{r}{8} = \sin 60^{\circ}$$
 oraz $\frac{H}{8} = \cos 60^{\circ}$,

$$\frac{1}{2} \cdot 2r \cdot H = \frac{1}{2} \cdot 8 \cdot 8 \cdot \sin 120^{\circ}$$
 oraz $r^2 + H^2 = 8^2$,

$$(2r)^2 = 8^2 + 8^2 - 2 \cdot 8 \cdot 8 \cdot \cos 120^\circ$$
 oraz $r^2 + H^2 = 8^2$, ALBO

- wyznaczenie objętości stożka w zależności od H, np. $V=\frac{1}{3}\pi \left(H\sqrt{3}\right)^2\cdot H$, ALBO
- wyznaczenie objętości stożka w zależności od r, np. $V=rac{1}{3}\pi r^2\cdotrac{r}{\sqrt{3}}$.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwagi:

- 1. Jeżeli zdający przyjmuje w rozwiązaniu, że:
 - a) trójkąt SOB jest trójkątem równobocznym,
 - b) wysokość stożka jest równa 8, lub
 - c) promień podstawy stożka jest równy 8,

to otrzymuje **0 punktów** za całe rozwiązanie.

- 2. Jeżeli jedynym błędem zdającego jest:
 - a) zastosowanie niepoprawnej definicji jednej funkcji trygonometrycznej,
 - b) błędne zastosowanie twierdzenia Pitagorasa,
 - c) błędne zastosowanie twierdzenia cosinusów,
 - d) zastosowanie niepoprawnej tożsamości $\sqrt{x^2 + y^2} = x + y$,
 - e) błędne zastosowanie własności trójkąta o kątach 30° , 60° , 90° (tzn. zapisanie, że promień podstawy stożka jest równy 4 i wysokość stożka jest równa $4\sqrt{3}$), lub
 - f) przyjęcie, że kąt 120° to kąt wycinka koła o promieniu 8 tworzącego powierzchnię boczną stożka,

i rozwiązanie zostanie doprowadzone konsekwentnie do końca, to zdający może otrzymać **1 punkt** za całe rozwiązanie (za konsekwentne obliczenie objętości stożka). Jeżeli zdający popełni więcej niż jeden z wymienionych błędów a)–f), to otrzymuje **0 punktów** za całe rozwiązanie, o ile nie nabył prawa do innej liczby punktów (np. za zapisanie wysokości stożka: H = 4).

Przykładowe pełne rozwiązania

Sposób I

Przyjmujemy oznaczenia jak na rysunku przedstawiającym przekrój osiowy rozważanego stożka:

S – wierzchołek stożka,

O – spodek wysokości stożka,

r – promień podstawy stożka,

H – wysokość stożka.

Zauważamy, że r > 0 i H > 0.

A O r B

Ponieważ O jest spodkiem wysokości stożka, to $| \angle OSB | = 60^{\circ}$.

W trójkącie prostokątnym OBS mamy

$$\sin 60^\circ = \frac{|OB|}{|SB|} = \frac{r}{8}$$

Zatem

$$r = 8 \cdot \sin 60^\circ = 8 \cdot \frac{\sqrt{3}}{2} = 4\sqrt{3}$$

Ponadto

$$\cos 60^\circ = \frac{|SO|}{|SB|} = \frac{H}{8}$$

Stad

$$H = 8 \cdot \cos 60^{\circ} = 8 \cdot \frac{1}{2} = 4$$

Obliczamy objętość V stożka:

$$V = \frac{1}{3} \cdot \pi \cdot r^2 \cdot H = \frac{1}{3} \cdot \pi \cdot \left(4\sqrt{3}\right)^2 \cdot 4 = 64\pi$$

Sposób II

Przyjmujemy oznaczenia jak na rysunku przedstawiającym przekrój osiowy rozważanego stożka:

S – wierzchołek stożka,

O – spodek wysokości stożka,

r – promień podstawy stożka,

H – wysokość stożka.

Zauważamy, że r > 0 i H > 0.

Korzystamy z twierdzenia cosinusów dla trójkąta ABS i otrzymujemy:

$$(2r)^2 = 8^2 + 8^2 - 2 \cdot 8 \cdot 8 \cdot \cos 120^\circ$$
$$4r^2 = 128 - 128 \cdot \cos 120^\circ$$

Ponieważ $\cos 120^\circ = -\cos 60^\circ = -\frac{1}{2}$, więc

$$4r^{2} = 128 - 128 \cdot \left(-\frac{1}{2}\right)$$
$$4r^{2} = 192$$
$$r^{2} = 48$$

Korzystamy z twierdzenia Pitagorasa dla trójkąta OBS i obliczamy wysokość stożka:

$$H^2 = 8^2 - r^2$$

$$H^2 = 64 - 48$$
$$H^2 = 16$$
$$H = 4$$

Obliczamy objętość V stożka:

$$V = \frac{1}{3} \cdot \pi \cdot r^2 \cdot H = \frac{1}{3} \cdot \pi \cdot 48 \cdot 4 = 64\pi$$

Sposób III

Przyjmujemy oznaczenia jak na rysunku przedstawiającym przekrój osiowy rozważanego stożka:

S – wierzchołek stożka,

O – spodek wysokości stożka,

r – promień podstawy stożka,

H – wysokość stożka.

Zauważamy, że r > 0 i H > 0.

Pole trójkąta *ABS* jest równe

$$P_{ABS} = \frac{1}{2} \cdot 8 \cdot 8 \cdot \sin 120^{\circ} = 32 \cdot \sin 60^{\circ} = 32 \cdot \frac{\sqrt{3}}{2} = 16\sqrt{3}$$

Zatem

$$\frac{1}{2} \cdot 2r \cdot H = 16\sqrt{3}$$

stąd

$$r \cdot H = 16\sqrt{3}$$

Korzystamy z twierdzenia cosinusów dla trójkąta ABS i otrzymujemy:

$$(2r)^{2} = 8^{2} + 8^{2} - 2 \cdot 8 \cdot 8 \cdot \cos 120^{\circ}$$

$$4r^{2} = 128 - 128 \cdot (-\cos 60^{\circ})$$

$$4r^{2} = 128 - 128 \cdot \left(-\frac{1}{2}\right)$$

$$4r^{2} = 192$$

$$r^{2} = 48$$

$$r = 4\sqrt{3}$$

Obliczamy objętość V stożka:

$$V = \frac{1}{3} \cdot \pi \cdot r^2 \cdot H = \frac{1}{3} \cdot \pi \cdot r \cdot r \cdot H = \frac{1}{3} \cdot \pi \cdot 4\sqrt{3} \cdot 16\sqrt{3} = 64\pi$$

Zadanie 26. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	X.5) oblicza objętości [] graniastosłupów
1. Stosowanie obiektów matematycznych	[].
i operowanie nimi, interpretowanie pojęć	
matematycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B A D

Zadanie 27. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	XI.2) zlicza obiekty, stosując reguły
2. Dobieranie i tworzenie modeli	mnożenia i dodawania [].
matematycznych przy rozwiązywaniu	
problemów praktycznych i teoretycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B A D

Zadanie 28. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	XII.1) oblicza prawdopodobieństwo
2. Dobieranie i tworzenie modeli	w modelu klasycznym.
matematycznych przy rozwiązywaniu	
problemów praktycznych i teoretycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B D B

Zadanie 29. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	XII.2) oblicza średnią arytmetyczną […].
1. Stosowanie obiektów matematycznych	
i operowanie nimi, interpretowanie pojęć	
matematycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Wersja A Wersja B C A

Zadanie 30. (0-2)

Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i tworzenie informacji.	Zdający:
1. Interpretowanie i operowanie	XII.2) […] znajduje medianę i dominantę.
informacjami przedstawionymi w tekście,	
zarówno matematycznym, jak	
i popularnonaukowym, a także w formie	
wykresów, diagramów, tabel.	

Zasady oceniania

2 pkt – poprawne uzupełnienie dwóch zdań.

1 pkt – poprawne uzupełnienie jednego zdania.

0 pkt – brak spełnienia powyższych kryteriów.

Uwaga:

Nie akceptuje się zaokrągleń otrzymanych wyników.

Rozwiązanie

- 1. Mediana ocen uzyskanych z tego sprawdzianu przez uczniów tej klasy jest równa 4,5.
- 2. Dominanta ocen uzyskanych z tego sprawdzianu przez uczniów tej klasy jest równa 6.

Zadanie 31. (0-4)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	XIII) rozwiązuje zadania optymalizacyjne
2. Dobieranie i tworzenie modeli	w sytuacjach dających się opisać funkcją
matematycznych przy rozwiązywaniu	kwadratową.
problemów praktycznych i teoretycznych.	

Zasady oceniania

4 pkt – zastosowanie poprawnej metody i poprawne wyniki, np.

$$P(x) = -2x^2 + 22x + 88$$
 oraz $D = (0, 11)$ oraz $x = \frac{11}{2}$.

- 3 pkt wyznaczenie poprawnego wzoru na pole powierzchni całkowitej prostopadłościanu ABCDEFGH w zależności od zmiennej x oraz wyznaczenie dziedziny D tej funkcji, np. $P(x) = -2x^2 + 22x + 88$ oraz D = (0, 11), ALBO
 - wyznaczenie poprawnego wzoru na pole powierzchni całkowitej prostopadłościanu ABCDEFGH w zależności od zmiennej x (bez wyznaczonej dziedziny funkcji P)

oraz prawidłowe obliczenie pierwszej współrzędnej wierzchołka wykresu funkcji P, np. $P(x)=-2x^2+22x+88$ oraz $x=\frac{11}{2}$.

- 2 pkt wyznaczenie poprawnego wzoru na pole powierzchni całkowitej prostopadłościanu ABCDEFGH w zależności od zmiennej x (bez wyznaczonej dziedziny funkcji P), np. $P(x) = -2x^2 + 22x + 88$, ALBO
 - zapisanie zależności między długościami krawędzi BF i AB prostopadłościanu **oraz** wyznaczenie zakresu zmienności x, np. x + 4 + |BF| = 15 oraz $x \in (0, 11)$.
- 1 pkt zapisanie zależności między długościami krawędzi $\,BF\,$ i $\,AB\,$ prostopadłościanu, np. $\,x+4+|BF|=15,$ $\,ALBO\,$
 - zapisanie wzoru na pole powierzchni całkowitej prostopadłościanu w zależności od długości x krawędzi AB oraz długości krawędzi BF: $P=2\cdot (4x+x\cdot |BF|+4\cdot |BF|),$ ALBO
 - wyznaczenie zakresu zmienności $x: x \in (0,11)$.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwagi:

- 1. Jeżeli zdający zapisze jedynie zakres zmienności x: $x \in (0,11)$ oraz zapisze, że szukaną wartością x jest liczba $\frac{11}{2}$, to otrzymuje 1 punkt za całe rozwiązanie. Jeżeli zdający zapisze jedynie, że szukaną wartością x jest liczba $\frac{11}{2}$, to otrzymuje 0 punktów za całe rozwiązanie.
- **2.** Jeżeli zdający nie zapisze pola powierzchni całkowitej prostopadłościanu jako funkcji P zmiennej x, a jedynie obliczy wartości pola dla wybranych długości krawędzi i na tej podstawie wskaże największą wartość pola, to za całe rozwiązanie otrzymuje **0 punktów**, o ile nie nabył prawa do innej liczby punktów (np. za zapisanie zależności między długościami krawędzi BF i AB prostopadłościanu: x+4+|BF|=15).
- **3.** Jeżeli zdający przyjmuje, że ściany ABFE oraz BCGF są przystającymi prostokątami i na tym opiera swoje rozwiązanie, to może otrzymać co najwyżej **2 punkty** za całe rozwiązanie (za zapisanie zależności między długościami krawędzi AB i BF oraz za wyznaczenie dziedziny funkcji).
- **4.** Jeżeli zdający zamiast funkcji P(x) rozważa w całym rozwiązaniu funkcję postaci $\frac{1}{2} \cdot P(x)$ albo funkcję pola powierzchni całkowitej w zależności od długości krawędzi BF, to może otrzymać co najwyżej **3 punkty** za całe rozwiązanie (za związek między długościami krawędzi AB i BF, za wyznaczenie dziedziny funkcji i za poprawne wyznaczenie argumentu, dla którego pole powierzchni całkowitej jest największe).
- **5.** Jeżeli zdający stosuje rachunek różniczkowy i nie uzasadni, że w punkcie będącym miejscem zerowym pochodnej funkcji *P* jest największa wartość funkcji *P*, to może

otrzymać co najwyżej 3 punkty za całe rozwiązanie.

Za poprawne uzasadnienie, że w punkcie będącym miejscem zerowym pochodnej funkcji P jest największa wartość funkcji P, można uznać sytuację, gdy zdający bada znak pochodnej (np. szkicuje wykres funkcji, która w ten sam sposób jak pochodna zmienia znak, i zaznacza na rysunku, np. znakami "+" i "-", znak pochodnej), **oraz**:

– opisuje przedziały monotoniczności funkcji $\,P\,$ (słownie lub graficznie – np. przy użyciu strzałek)

LUB

- zapisuje, że dla wyznaczonego miejsca zerowego pochodnej, funkcja $\,P\,$ ma maksimum lokalne i jest to jednocześnie jej największa wartość,

LUB

- zapisuje, że dla wyznaczonego miejsca zerowego pochodnej, funkcja P ma maksimum lokalne i jest to jedyne ekstremum tej funkcji.

Przykładowe pełne rozwiązanie

Przyjmijmy oznaczenia jak na rysunku.

Suma długości wszystkich trzech krawędzi prostopadłościanu wychodzących z wierzchołka $\it B$ jest równa $\,15$, zatem

$$|AB| + |BC| + |BF| = 15$$

 $x + 4 + |BF| = 15$
 $|BF| = 11 - x$

Pole P powierzchni całkowitej prostopadłościanu ABCDEFGH jest równe

$$P = 2 \cdot (|AB| \cdot |BC| + |AB| \cdot |BF| + |BC| \cdot |BF|)$$

Ponieważ $|AB|=x,\ |BC|=4,\ |BF|=11-x,$ więc wzór funkcji P zmiennej x ma postać

$$P(x) = 2 \cdot [x \cdot 4 + x \cdot (11 - x) + 4 \cdot (11 - x)]$$

$$P(x) = 2 \cdot (4x + 11x - x^2 + 44 - 4x)$$

$$P(x) = 2 \cdot (-x^2 + 11x + 44)$$

$$P(x) = -2x^2 + 22x + 88$$

Wyznaczamy dziedzinę funkcji P. Z warunków zadania wynika, że:

$$|AB| = x > 0$$
 oraz $|BF| = 11 - x > 0$

Zatem

$$x > 0$$
 oraz $x < 11$

Zmienna x może przyjmować wartości z przedziału D = (0, 11).

Wykresem funkcji P jest fragment paraboli skierowanej ramionami do dołu. Obliczamy pierwszą współrzędną wierzchołka tej paraboli:

$$p = \frac{-22}{2 \cdot (-2)} = \frac{-22}{-4} = \frac{11}{2} \in (0, 11)$$

Zatem funkcja P przyjmuje wartość największą dla argumentu $\frac{11}{2}$. Spośród rozważanych prostopadłościanów największe pole powierzchni całkowitej ma ten, w którym $x=\frac{11}{2}$.

Ocena prac osób ze stwierdzoną dyskalkulią

Obowiązują zasady oceniania stosowane przy sprawdzaniu prac zdających bez stwierdzonej dyskalkulii z dodatkowym uwzględnieniem:

- I. **ogólnych zasad oceniania** zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią (punkty 1.–12.);
- II. dodatkowych **szczegółowych zasad oceniania** zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią egzamin maturalny z matematyki, poziom podstawowy, termin główny 2025.

Ogólne zasady oceniania zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią

- 1. Nie należy traktować jako błędy merytoryczne pomyłek, wynikających z:
 - błędnego przepisania
 - przestawienia cyfr
 - zapisania innej cyfry, ale o podobnym wyglądzie
 - przestawienia położenia przecinka
 - przestawienia położenia znaku liczby.
- 2. W przypadku błędów, wynikających ze zmiany znaku liczby, należy w każdym zadaniu oddzielnie przeanalizować, czy zdający opanował inne umiejętności, poza umiejętnościami rachunkowymi, oceniane w zadaniu. W przypadku opanowania badanych umiejętności zdający powinien otrzymać przynajmniej 1 punkt.
- 3. We wszystkich zadaniach otwartych, w których wskazano poprawną metodę rozwiązania, części lub całości zadania, zdającemu należy przyznać przynajmniej 1 punkt, zgodnie z kryteriami do poszczególnych zadań.
- 4. Jeśli zdający przedstawia nieprecyzyjne zapisy, na przykład pomija nawiasy lub zapisuje nawiasy w niewłaściwych miejscach, ale przeprowadza poprawne rozumowanie lub stosuje właściwą strategię, to może otrzymać przynajmniej 1 punkt za rozwiazanie zadania.
- 5. W przypadku zadania wymagającego wyznaczenia pierwiastków trójmianu kwadratowego zdający może otrzymać 1 punkt, jeżeli przedstawi poprawną metodę wyznaczania pierwiastków trójmianu kwadratowego, przy podanych w treści zadania wartościach liczbowych.
- 6. W przypadku zadania wymagającego rozwiązania nierówności kwadratowej zdający może otrzymać 1 punkt, jeżeli stosuje poprawny algorytm rozwiązywania nierówności kwadratowej, przy podanych w treści zadania wartościach liczbowych.
- 7. W przypadku zadania wymagającego stosowania własności funkcji kwadratowej zdający może otrzymać 1 punkt za wykorzystanie konkretnych własności funkcji kwadratowej, istotnych przy poszukiwaniu rozwiązania.

- 8. W przypadku zadania wymagającego zastosowania własności ciągów arytmetycznych lub geometrycznych zdający może otrzymać 1 punkt, jeżeli przedstawi wykorzystanie takiej własności ciągu, która umożliwia znalezienie rozwiązania zadania.
- 9. W przypadku zadania wymagającego analizowania figur geometrycznych na płaszczyźnie kartezjańskiej zdający może otrzymać punkty, jeżeli przy poszukiwaniu rozwiązania przedstawi poprawne rozumowanie, wykorzystujące własności figur geometrycznych lub zapisze zależności, pozwalające rozwiązać zadanie.
- 10. W przypadku zadania z rachunku prawdopodobieństwa zdający może otrzymać przynajmniej 1 punkt, jeśli przy wyznaczaniu liczby zdarzeń elementarnych sprzyjających rozważanemu zdarzeniu przyjmuje określoną regularność lub podaje prawidłową metodę wyznaczenia tej liczby zdarzeń elementarnych.
- 11. W przypadku zadania z geometrii zdający może otrzymać przynajmniej 1 punkt, jeżeli podaje poprawną metodę wyznaczenia długości odcinka potrzebnej do znalezienia rozwiązania.
- 12. W przypadku zadania wymagającego przeprowadzenia dowodu (z zakresu algebry lub geometrii), jeśli w przedstawionym rozwiązaniu zdający powoła się na własność, która wyznacza istotny postęp, prowadzący do przeprowadzenia dowodu, to może otrzymać 1 punkt.
- II. <u>Dodatkowe szczegółowe zasady oceniania</u> zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią

Zadanie 5.

1 pkt – zapisanie, że n=2l+1, oraz przekształcenie wyrażenia $3n^2+2n+7$ do postaci $3(2l+1)^2+2(2l+1)+7$.

Zadanie 9.

1 pkt – zapisanie równania $13\% \cdot x + 11\% \cdot y = 146700$.

Zadanie 10.

- 1 pkt zastosowanie poprawnej metody obliczenia pierwiastków trójmianu kwadratowego $6x^2-11x+3$, tzn. zastosowanie wzorów na pierwiastki trójmianu kwadratowego i obliczenie tych pierwiastków ALBO
 - konsekwentne (do otrzymanego w wyniku popełnienia błędów o charakterze dyskalkulicznym ujemnego wyróżnika) narysowanie paraboli, ALBO
 - poprawne rozwiązanie nierówności $3(2x^2+1)<0$ (tzn. stosuje się punkt 6. ogólnych zasad oceniania), ALBO

 konsekwentne (do wyznaczonych przez siebie pierwiastków oraz rozpatrywanego trójmianu i nierówności) wyznaczenie zbioru rozwiązań nierówności.

Uwagi:

- 1. Jeżeli zdający, rozwiązując nierówność, pomyli porządek liczb na osi liczbowej i zapisze zbiór rozwiązań nierówności w postaci $\left(\frac{3}{2},\frac{1}{3}\right)$, to może otrzymać **2 punkty** za całe rozwiązanie.
- 2. Nie stosuje się uwag 2. i 3. z zasad oceniania arkusza standardowego.
- 3. Akceptowane jest zapisanie pierwiastków trójmianu w postaci $a+b\sqrt{c}$, gdzie a,b,c są liczbami wymiernymi.

Zadanie 11.

Stosuje się zasady oceniania arkusza standardowego.

Zadanie 12.1.

1 pkt – zapisanie wzoru funkcji f w postaci $f(x) = a(x-p)^2 + q$ oraz zapisanie p=3 oraz q=6.

Zadanie 12.3.

Stosuje się zasady oceniania arkusza standardowego.

Zadanie 15.

2 pkt – zapisanie równania z jedną niewiadomą m, np.:

$$\frac{2m+11+5-m}{2} = m^2 + 3,$$

$$(m^2+3) - (2m+11) = (5-m) - (m^2+3),$$

oraz zapisanie co najmniej jednej z trzech nierówności:

- $2m + 11 > m^2 + 3$
- $m^2 + 3 > 5 m$
- 2m + 11 > 5 m

1 pkt – zapisanie co najmniej jednej z trzech nierówności:

- $2m + 11 > m^2 + 3$
- $m^2 + 3 > 5 m$
- 2m + 11 > 5 m

ALBO

– zapisanie równania z dwiema niewiadomymi: m oraz r (gdzie r jest różnicą ciągu arytmetycznego), np. $2m+11+r=m^2+3$.

Zadanie 25.

1 pkt – zastosowanie definicji funkcji trygonometrycznej lub związków miarowych w trójkącie o kątach $30^\circ, 60^\circ, 90^\circ$ i zapisanie równania z jedną niewiadomą (wysokością stożka lub promieniem podstawy stożka), np.: $\frac{H}{8} = \cos 60^\circ, \ \frac{r}{8} = \frac{\sqrt{3}}{2}$.

Zadanie 30.

Stosuje się zasady oceniania arkusza standardowego.

Zadanie 31.

2 pkt – zapisanie zależności między długościami krawędzi BF i AB prostopadłościanu, np. x+4+|BF|=15 oraz zapisanie wzoru na pole powierzchni całkowitej prostopadłościanu w zależności od długości x krawędzi AB oraz długości krawędzi BF: $P=2\cdot(4x+x\cdot|BF|+4\cdot|BF|)$.