Mälardalen WCET Benchmarks

Tests avec RTEMS sur simulateur de processeur LEON 3

On utilise un simulateur de processeur LEON 3, il faut donc se pencher sur les caractéristique de cette version du processeur LEON

Caractéristiques	LEON 3	
Cache	Configurable caches: 1 - 4 ways, 1 - 256 kbytes/way. Random, LRR or LRU replacement	
Fréquence	Up to 125 MHz in FPGA and 400 MHz on 0.13 um ASIC technologies High Performance : 1.4 DMIPS/MHz, 1.8 CoreMark/MHz	
Mémoire	SPARC Reference MMU (SRMMU) with configurable TLB	
FPU	Two FPU controllers: GRFPU and GRFPU-Lite	
Tolérance aux fautes	6 fault tolerance implementation: 4-bit parity with restart, 8-bit parity without restart, 7-bit BCH with restart, Memory triplication, 7-bit BCH without restart and Technology specific	

Instruction	Cycles (MMU disabled)	Cycles (MMU fast-write)	Cycles (MMU slow-write)
JMPL	31	31	31
JMPL,RETT pair	4	4	4
Double load	2	2	2
Single store	2	2	4
Double store	3	3	5
SMUL/UMUL	1/4 ²	1/4 ²	1/4 ²
SDIV/UDIV	35	35	35
Taken Trap	5	5	5
Atomic load/store	3	3	5
All other instructions	1	1	1

Avec les informations des tableaux précédent, on peut penser à utiliser des algorithmes utilisant des accès à la mémoire de différentes façon (algorithme de tris par exemple, assez nombreux dans le benchmark). Une étude du code assembleur pourrait permettre d'analyser avec plus de précisions les instructions utilisé. Les algorithmes suivant du benchmark sont intéressant:

Nom du programme	Description
bs	Recherche binaire dans un tableau de 15 éléments.
Bsort100	Algorithme de tri à bulles.
Cnt	Programme parcourant une matrice et compte les nombres non-négatif.
insertsort	Tri par insertion
matmult	Multiplication de deux matrices 20x20
ns	Recherche dans un tableau à plusieurs dimensions

Pour mesurer la fréquence de notre processeur dans son simulateur, il peut être intéressant d'utiliser une fonction récursive relativement simple fin de connaître son nombre de cycles exacte. Le benchmark fourni un exemple de programme récursif.

Pour le moment, je ne sais pas comment mesurer la tolérance aux fautes avec le benchmark.

Comment mesurer

L'institut Cobahm-Gaisler qui a développé le processeur LEON a aussi créer le simulateur TSIM pour cette famille de processeur.

On utilisera un simulateur TSIM2 pour LEON 3 avec RTEMS 4 pour nos tests.

Pour calculer les temps d'exécution, on utilise deux timespec positionné au début et à la fin du programme. Cependant ceux ci ne sont pas satisfaisant puisque que le calcul du temps d'exécution donne 0 pour les programmes les plus petits.