Relazione di Elettronica

Amplificatori Operazionali

Francesco Forcher

Università di Padova, Facoltà di Fisica francesco.forcher@studenti.unipd.it Matricola: 1073458

Enrico Lusiani

Università di Padova, Facoltà di Fisica enrico.lusiani@studenti.unipd.it Matricola: 1073300

Laura Buonincontri

Università di Padova, Facoltà di Fisica laura.buonincontri@studenti.unipd.it Matricola: 1073131

5 maggio 2016

Sommario

L'obiettivo dell'esperienza è la misura della curva di trasferimento di un amplificatore (in configurazione invertente e non invertente) e lo studio della sua risposta in frequenza (in configurazione non invertente).

INDICE

I	Sche	ema Cii	rcuiti		2	
II	Parte	e I			2	
	I	Ampli	ificatore invertente		2	
		I.1	Calcolo amplificazione		2	
		I.2	Analisi		3	
	II	Ampli	ificatore non invertente		3	
		II.1	Calcolo amplificazione		4	
		II.2	Analisi		4	
III	Parte	e II			7	
	I	Ampli	ificatore con A=10		7	
	II	_	ificatore con A=5		7	
	III	_	ificatore con A=1		7	
	IV	Discus	ssione dei punti precedenti		7	
IV	Ana	lisi dei	i dati		14	
V	Appendice: calcolo degli errori					
VI	Con	clusion	ni		14	
VI	ICod:	ice			15	

I. SCHEMA CIRCUITI

Circuito di alimentazione:

II. PARTE I

II.I Amplificatore invertente

Schema amplificatore invertente: Le resistenze sono state scelte in modo da avere guadagno $A=-10\frac{V}{V}$ $R_1=9.85\pm k\Omega R_2=101.3\pm k\Omega$ $R_3=56.0\pm \Omega$

I.1 Calcolo amplificazione

Dimostrazione che amplificazione in configurazione invertente è data da

Grafico 1 Curva di trasferimento di un amplificatore invertente

I.2 Analisi

La stima di A teorica, a partire dalle resistenze misurate è: $A_{teorica} =$

Le misure sono state fatte applicando una tensione sinusoidale di frequenza f = 1 kHz, variando l'ampiezza tra $0.2V_{pp}$ e $4V_{pp}$.

 $\rm E'$ stata fatta l'interpolazione lineare pesata dei punti compresi tra 0 e 1.5 $\rm V.$

II.II Amplificatore non invertente

Schema amplificatore non invertente: Le resistenze sono state scelte in modo da avere guadagno A = $10\frac{V}{V}$ R_{1,up} = $9.91 \pm k\Omega$ R_{1,down} = $9.85 \pm k\Omega$ R_{2,up} = $99.7 \pm k\Omega$ R_{2,down} = $101.3 \pm k\Omega$ R₄ = $56.0 \pm \Omega$

 $V_{in-}(V)$ $V_{in+}(V)$ FS(V) $V_{out+}(V)$ $V_{out-}(V)$ FS (V) -1.04 -10.7 1.06 0.3 10.6 3 -0.108 0.03 0.107 -1.04 1.08 0.3 -4.22 4.32 0.432 -0.4220.12 1.2 0.728 -0.736 0.2 -7.28 7.44 2 1.36 -1.38 0.4 -13.8 13.9 4 1.68 -1.68 0.5 -14.1 14.9 4 1.99 -1.99 0.6 -14.2 14.9 4 2.09 -2.09 0.6 -14.2 4 14.9

Tabella 1: Dati curva di trasferimento

II.1 Calcolo amplificazione

Dimostrazione che amplificazione in configurazione non invertente è data da

II.2 Analisi

La stima di A teorica, a partire dalle resistenze misurate è: $A_{teorica} =$

Le misure sono state fatte applicando una tensione sinusoidale di frequenza f = 1 kHz, variando l'ampiezza tra $0.2V_{\rm pp}$ e $4V_{\rm pp}$.

 $\rm E'$ stata fatta l'interpolazione lineare pesata dei punti compresi tra 0 e 1.5 $\rm V.$

Grafico 2 Curva di trasferimento di un amplificatore invertente

Tabella 2: Dati curva di trasferimento

$V_{in+}(V)$	$V_{in-}(V)$	FS (V)	$V_{out+}(V)$	$V_{out-}(V)$	FS (V)
1.08	-1.04	0.3	10.7	-10.7	3
0.108	-0.107	0.03	1.07	-1.07	0.3
0.432	-0.427	0.120	4.32	-4.27	1.2
0.744	-0.744	0.2	7.44	-7.44	2
1.39	-1.38	0.4	13.9	-13.9	4
1.72	-1.70	0.5	14.9	-14.4	4
2.04	-1.99	0.6	14.7	-14.2	4
2.14	-2.09	0.6	14.9	-14.2	4
	<u> </u>		<u> </u>	<u> </u>	

III. PARTE II

Le misure sono state effettuate sull'amplificatore non invertente utilizzato al punto precedente e applicando una tensione sinusoidale di frequenza variabile mantenendo l'ampiezza $V_s=2V_{\rm pp}$.

III.I Amplificatore con A=10

Le resistenze inserite sono le stesse dello schema precedente, e quindi anche l'amplificazione teorica.

Sono state interpolate separatamente la zona di plateau e di discesa, ottenendo come risultati: $A_{plateau} = quelche \dot{e} \pm$

La closed-loop bandwidth, f_b , del circuito, è stata ricavata intersecando la retta di discesa con la retta orizzontale a -3 dB e applicando la propagazione degli errori al calcolo $f_b = \pm$ Hz Il GBP è GBP = $A_{CL} \cdot f_b$

III.II Amplificatore con A=5

Le resistenze inserite sono state sostituite con: $R_{1,up} = 5.54 \pm k\Omega R_{1,down} = 5.54 \pm k\Omega R_{2,up} = 26.93 \pm k\Omega R_{2,down} = 26.90 \pm k\Omega R_4 = 56.0 \pm \Omega$

Sono state interpolate separatamente la zona di plateau e di discesa, ottenendo come risultati: $A_{plateau} = quelche \dot{e} \pm$

Dall'interpolazione si è poi ricavato $f_b = \pm Hz \ II \ GBP$ è $GBP = A_{CL} \cdot f_b$

III.III Amplificatore con A=1

Le resistenze inserite sono state sostituite con: $R_{1,up}=32.55\pm k\Omega R_{1,down}=32.55\pm k\Omega R_{2,up}=32.67\pm k\Omega R_{2,down}=32.53\pm k\Omega R_{4}=56.0\pm \Omega$

Sono state interpolate separatamente la zona di plateau e di discesa, ottenendo come risultati: $A_{plateau} = quelche \dot{e} \pm$

Dall'interpolazione si è poi ricavato $f_b = \pm Hz \text{ Il GBP}$ è GBP = $A_{CL} \cdot f_b$

III.IV Discussione dei punti precedenti

Grafico 3 Risposta in frequenza di un amplificatore non invertente con A=10

 Tabella 3: Dati risposta in frequenza

f(Hz)	A	???
10	10.14	2.5
50	10.09	2.5
100	10.05	2.5
500	10.14	2.5
1000	10.09	2.5
5000	10.05	2.5
50000	9.36	2
100000	9.23	2
200000	7.48	2
211000	7.14	1.5
215000	7.09	1.5
220000	7.09	1.5
230000	6.94	1.5
250000	6.54	1.5
300000	5.85	1.5
400000	4.66	1
500000	3.69	1
1000000	1.57	0.4
5000000	0.11	0.03

Grafico 4 Risposta in frequenza di un amplificatore non invertente con A=5

Tabella 4: Dati risposta in frequenza

f(Hz)	A	???
10	4.91	1
40	4.86	1
100	4.93	1
300	4.88	1
1000	4.88	1
3000	4.86	1
10000	4.86	1
30000	4.85	1
100000	4.8	1
300000	4.32	1
400000	3.96	1
515000	3.50	1
600000	3.16	1
1000000	2.02	0.5
3000000	0.44	0.1
5000000	0.17	0.04

Grafico 5 Risposta in frequenza di un amplificatore non invertente con A=1

Tabella 5: Dati risposta in frequenza

f(Hz)	A	???
10	1.01	0.2
30	1.01	0.2
100	1.01	0.2
300	1.01	0.2
1000	1.01	0.2
3000	1.00	0.2
10000	1.00	0.2
30000	1.01	0.2
100000	1.02	0.2
300000	1.08	0.2
800000	1.18	0.2
900000	1.05	0.2
1000000	0.90	0.2
1130000	0.71	0.2
1500000	0.39	0.1
2000000	0.21	0.05
3000000	0.09	0.02
6000000	0.03	0.02

Grafico 6 Risposta in frequenza di un amplificatore non invertente a varie amplificazioni

IV. ANALISI DEI DATI

V. APPENDICE: CALCOLO DEGLI ERRORI

da cambiare

VI. CONCLUSIONI

da cambiare

VII. CODICE

É presentata qua la parte fondamentale del codice in c++ usato per i calcoli numerici. Inoltre è stato usato per i calcoli Mathematica.

```
1 /*
2
   * OpampAnalisys.cpp
3
 4
      Created on: 01/mag/2016
5
           Author: enrico
 6
8 #include "OpampAnalisys.h"
9 #include "Graph.h"
10
11 #include <TROOT.h>
12 #include <TGraph.h>
13 #include <TGraphErrors.h>
14 #include <TF1.h>
15 #include <TCanvas.h>
16 #include <TAxis.h>
17 #include <TFitResult.h>
18 #include <TFrame.h>
19 #include <TLegend.h>
20
21 #include <iostream>
22
23 using namespace std;
24
25 string OpampAnalisys::basename ="";
26
27 unique_ptr (Graph) readGraph(string);
28
29 OpampAnalisys::OpampAnalisys(string filename)
30
    :filename(filename)
31 {
32
    string name = basename + filename + ".txt";
33
    unique_ptr (Graph) gr = readGraph(name);
34
35
    cout << gr->n() << endl;</pre>
     g = unique_ptr \langle TGraphErrors \rangle (new TGraphErrors(gr->n(), gr->x(),
36
       gr\rightarrow y(), gr\rightarrow ex(), gr\rightarrow ey());
37 }
38
39 OpampAnalisys::~OpampAnalisys()
40 {
41
     // TODO Auto-generated destructor stub
42 }
43
44 void OpampAnalisys::analisys()
45 | {
```

```
46
    TCanvas c("Interpolazione Opamp");
47
    c.SetGrid();
48
49
    g->SetFillColor(1);
50
    g->SetLineColor(2);
51
    g->SetLineWidth(1);
52
    g->SetMarkerColor(4);
53
    g->SetMarkerSize(0.7F);
54
    g->SetMarkerStyle(1);
55
    g->SetTitle("Gain");
    g->GetXaxis()->SetTitle("V_{out} [V]");
56
57
    g->GetYaxis()->SetTitle("V_{in} [V]");
58
    g->Draw("AP");
59
60
    TF1* f = new TF1("fit", "[0]+[1]*x");
61
     f \rightarrow SetParName(1, "m");
62
    f->SetParName(0, "q");
63
    f->SetLineColor(4);
64
    f->SetLineWidth(1);
65
    TFitResultPtr r = g \rightarrow Fit(f, "S", "", -1.5, 1.5);
66
    r->Print("V");
67
    for (unsigned int i = 0; i < r \rightarrow NPar(); ++i)
68
69
      clog << r->ParName(i)
70
71
         << " " << r->Parameter(i)
72
         << " " << r->ParError(i) << endl;</pre>
73
     }
74
75
    TLegend *leg = new TLegend(0.8, 0.8, 0.9, 0.9);
76
     leg->AddEntry(g.get(), "Data", "lp");
     leg->AddEntry(f, "Fit", "l");
77
78
     leg->Draw();
79
80
    c.Update();
    c.GetFrame()->SetFillColor(0);
81
82
    c.GetFrame()->SetBorderSize(12);
83
    c.Modified();
84
85
    string name = "Result" + filename + ".tex";
86
    c.Print(name.c_str());
87 }
```

../src/opamp_p1/OpampAnalisys.cpp