EEE103 ELECTRICAL CIRCUITS

WEEK1- BASIC COMPONENTS AND ELECTRIC CIRCUITS

Ye Wu ye.wu@xjtlu.edu.cn

Overview of Part 1

LO: Be familiar with the various laws and theorems in electrical circuit analysis.

- Week 1: Basic Components and Electric Circuits
- Week 2: Voltage and Current Laws
- Week 3: Basic Nodal and Mesh Analysis
- Week 4: Handy Circuit Analysis Techniques

Homework Assignment 1: Due Week 5 In Class Quiz 1: Week4 tutorial time. (Take in class).

CONTENT

- Units and Scale
- Charge, Current, Voltage, Power and Energy
- ➤ Voltage and Current Source
- Ohm's Law

The SI System

The value of measurable quantity must have both a number and a unit.

Base units:

Base Quantity	Name	Symbol
length	meter	m
mass	kilogram	kg
time	second	S
electric current	ampere	A
thermodynamic temperature	kelvin	K
amount of substance	mole	mol
luminous intensity	candela	cd

Derived units:

Units for other quantities can be derived from these seven base units.

- √ work or energy: joule (J) (kg m² s⁻² in SI base units)
- ✓ power (rate of doing work): watt (W)
- ✓ 1 W = 1 J/s

SI: Units and Prefixes

Any measurement can be expressed in terms of a unit, or a unit with a "prefix" modifier.

•					
Factor	Name	Symbol	Factor	Name	Symbol
10^{-24}	yocto	y	10^{24}	yotta	Y
10^{-21}	zepto	z	10^{21}	zetta	Z
10^{-18}	atto	a	10^{18}	exa	E
10^{-15}	femto	f	10^{15}	peta	P
10^{-12}	pico	p	10^{12}	tera	T
10^{-9}	nano	n	10^{9}	giga	G
10^{-6}	micro	μ	10^{6}	mega	M
10^{-3}	milli	m	10^{3}	kilo	k
10^{-2}	centi	С	10^{2}	hecto	h
10^{-1}	deci	d	10^{1}	deka	da

"Engineering Units"

- ✓ Number between 1-999
- Metric unit using a power divided by 3

Example: 0.048 W = 48 mW = 4.8 cW= $4.8*10^{-2}$ W = 48000μ W

Charge

Symbol: Q or q; units are coulomb (C).

The smallest charge, the electronic charge, is carried by

an electron
$$\left(-1.602 \times 10^{-19} \text{ C}\right)$$

or a proton
$$(+1.602 \times 10^{-19} \text{ C})$$
.

Charge is conserved: neither created nor destroyed.

Current

Symbol: I or i; units are ampere (A)

Current is the rate of charge flow:

1 ampere = 1 coulomb/second (or 1 A = 1 C/s)

Conventional current and Electron current

Electron flow model: Electrons flow from the negative terminal to the positive terminal of the source

Conventional current: Positive charges were thought to carry current

Current is the rate of charge flow: $i = \frac{dq}{dt}$

$$i = \frac{dq}{dt}$$

$$q(t) = \int_{t_0}^t i \, dt' + q(t_0)$$

(a)

A graph of the instantaneous value of the total charge q(t) that has passed a given reference point since t = 0. (b)

The instantaneous current i = dq/dt, where q is given in (a)

Several types of current:

(a) Direct current (dc). (b) Sinusoidal current (ac). (c) Exponential current. (d) Damped sinusoidal current.

Current must be designated with both a direction and a magnitude

(a, b) Incomplete, improper, and incorrect definitions of a current. (c) The correct definition of i₁ (t).

Two methods of representation for the exact same current.

Example: Current and Charge

Electrons are moving *left to right* to create a current of 1 mA. Determine I₁ and I₂.

$$I_1$$
 $I_2 \leftarrow$

- The direction of electron movement is opposite to the current direction
- Current direction is form right to left.
- $I_1 = -1 \text{ mA}, I_2 = +1 \text{ mA}$

Voltage

Circuit Elements

A circuit element usually has two terminals (sometimes three or more).

The relationship between the voltage vacross the terminals and the current in through the device defines the circuit element model.

Voltage

Symbol: V or v; units are volt (V)

When 1 J of work is required to move 1 C of charge from A to B, there is a voltage of 1 volt between A and B.

Voltage (V or *v*) across an element requires both a magnitude and a polarity.

(a, b) inadequate definitions of a voltage. (c) A correct definition

Example: Voltage

Power: p = vi

Symbol: P or p; units are watt (W)

The power required to push a

current i (C/s) into a voltage v (J/C):

$$p = vi (J/s = W)$$

Passive sign convention: the current arrow is directed into the element at the plus marked terminal.

When power is **positive**, the element is **absorbing** energy. When power is **negative**, the element is **supplying** energy.

Example: Power Absorbed

How much power is absorbed by the three elements above?

(a)
$$P=2V*3A=6 W$$

(b)
$$P=-2V^*(-3)A = 6 W$$

(c)
$$P=4V^*(-5)A=-20 W$$

*(Note: (c) is actually supplying power)

Example: Power Absorbed

How much power is absorbed by the three elements above?

Energy (w)

Symbol: W or w; units are joule (J)

Energy is integral of power (Power is rate of work/energy)

$$w(t) = \int_{t_0}^{t} p \ dt = \int_{t_0}^{t} vi \ dt$$
(1 joule = 1 watt × 1 second)

Energy determines total electricity need or how long your battery will last.

Other convenient energy unit:

- ✓ watt hours(Wh): 1 Wh = 3600 J
- ✓ kilowatt hours(kWh): 1 kWh = 3.6×10^6 J

Energy Example: Battery

Battery Energy in units of joules (J) or watt-hours (Wh)

Battery capacity often given in amp-hours (Ah)

$$w = \int vi \, dt = V \int i \, dt = VQ$$

 $w = (battery\ voltage) \times (capacity\ in\ Ah)$

A 1.5 V battery with capacity of 2 Ah:

- Has total energy of 3 Wh = 10.8 kJ
- Can supply a circuit drawing 200 mA for 10 h

Independent Voltage Sources

- An ideal voltage source is a circuit element that will maintain the specified voltage v_s across its terminals.
- The current will be determined by other circuit elements.
- An ideal voltage source has no current limit.

- (a) DC voltage source symbol;
- (b) battery symbol; (c) ac voltage source symbol

Independent Current Sources

An ideal current source is a circuit element that maintains the specified current flow i_s through its terminals.

The voltage is determined by other circuit elements (V≠0).

Dependent Sources

Dependent current sources (a) and (b) maintain a *current* specified by another circuit variable.

Dependent voltage sources (c) and (d) maintain a *voltage* specified by another circuit variable.

K:dimensionless scaling constant g: scaling factor with units of A/V r: scaling factor with units of V/A

Example: Dependent Sources

If v_2 is known to be 3V, find the voltage v_L in the circuit below.

$$v_L = 5v_2 = 5 * 3V = 15V$$

Practice

Find the power absorbed by each element in the circuit

Networks and Circuits

Network: The interconnection of two or more simple *circuit elements* forms an electrical network.

Circuit: If the network contains at least one closed path, it is also an electric circuit.

(Note: Every circuit is a network, but not all networks are circuits)

- (a) A network that is not a circuit.
- (b) A network that is a circuit.

Basic Components

Resistors

- (a) typical resistors (b) power resistor
- (c) a 10 $T\Omega$ resistor (d) circuit symbol

(c)

Ohm's Law: Resistance

A (linear) resistor is an element for which

$$v = iR$$

where the constant R is a resistance.

The equation is known as "Ohm's Law."

The unit of resistance is **ohm** (Ω).

$$1 \Omega = 1 V/A$$

In this example, the slope is 4A/8V or $0.5 \Omega^{-1}$.

This is the graph for a 2 ohm resistor

Power Absorption

Resistors absorb power: since v = iR

(v and i are selected to satisfy the passive sign convention)

$$\xrightarrow{i} + \stackrel{v}{\sim} -$$

$$p = vi = v^2/R = i^2R$$

Positive power means the device is absorbing energy.

Power is always positive for a resistor! (or a resistor is always obsorbing energy)

Example: Resistor Power

A 560 Ω resistor is connected to a circuit which causes a current of 42.4 mA to flow through it.

Calculate the voltage across the resistor and the power it is dissipating.

$$v = iR = (0.0424)(560) = 23.7 \text{ V}$$

$$p = vi = (23.7V)(42.4mA) = 1.005W$$

Alternatively:

$$p = i^2 R = (0.0424)^2 (560) = 1.007 \text{ W}$$

$$p = v^2/R = (23.7)^2/560 = 1.003W$$

Ohms Law Formulas

Ohms Law Formulas				
Known Values	Resistance (R)	Current (I)	Voltage (V)	Power (P)
Current & Resistance			V = IxR	$P = I^2xR$
Voltage & Current	$R = \frac{V}{I}$			P = VxI
Power & Current	$R = \frac{P}{I^2}$		$V = \frac{P}{I}$	
Voltage & Resistance		$I = \frac{V}{R}$		$P = \frac{V^2}{R}$
Power & Resistance		$I = \sqrt{\frac{P}{R}}$	$V = \sqrt{PxR}$	
Voltage & Power	$R = \frac{V^2}{P}$	$I = \frac{P}{V}$		

Wire Gauge and Resistivity

The resistance of a wire is determined by the resistivity of the conductor as well as the geometry:

$$R = \rho l/A$$

[In most cases, the resistance of wires can be assumed to be 0 ohms.]

Common Electrical Wire Materials and Resistivities

ASTM Specification**	Temper and Shape	Resistivity at 20°C (μΩ · cm)
B33	Copper, tinned soft, round	1.7654
B75	Copper, tube, soft, OF copper	1.7241
B188	Copper, hard bus tube, rectangular or square	1.7521
B189	Copper, lead-coated soft, round	1.7654
B230	Aluminum, hard, round	2.8625
B227	Copper-clad steel, hard, round, grade 40 HS	4.3971
B355	Copper, nickel-coated soft, round Class 10	1.9592
B415	Aluminum-clad steel, hard, round	8.4805

^{*} C. B. Rawlins, "Conductor materials," *Standard Handbook for Electrical Engineering*, 13th ed., D. G. Fink and H. W. Beaty, eds. New York: McGraw-Hill, 1993, pp. 4-4 to 4-8.

^{**} American Society of Testing and Materials.

Conductance

We sometimes prefer to work with *the* reciprocal of resistance (1/R), which is called conductance (symbol G, unit siemens (S)).

A resistor R has conductance G = 1/R.

Ohm's law (i-v equation) can be written as

$$i = Gv$$

Open and Short Circuits

An open circuit between A and B means I = 0.

Voltage across an open circuit: any value.

An open circuit is equivalent to R = ∞ O.

A short circuit between A and B means v = 0.

Current through a short circuit: any value.

A short circuit is equivalent to $R = 0 \Omega$.

