

Halbleitertechnik IV-Nanoelectronics

Friedrich-Alexander-Universität Erlangen-Nürnberg | Lehrstuhl für Elektronische Bauelemente | Cauerstraße 6 | 91058 Erlangen | www.leb.tf.fau.de | Michael Jank

Objectives of the lecture

Mission and goals?

Objectives

- This unit gives an overview about measures for increasing the drain current in scaled devices, i.e.
 - the utilization of crystal orientation vs. channel orientation and mechanical stresses to modify channel mobility
 - silicidation of the Si surface for reduction of contact or surface resistivities
 - measures for integrating these approaches into CMOS manufacturing towards practical application

Objectives

- again.... drain currents! But now for the good ones!
- I_{ON} vs. I_{OFF} is the most important consideration
 - I_{OFF} in switched-off mode (V_{GS}=0, ??)
 - I_{ON} in switched-on MOSFET: $V_{DS} = V_{DD}$
 - V_{TH} vs. subthreshold swing
- Scaling effects I_{ON} in various aspects
 - increased doping concentration: RLZ, substrate
 - → lower channel mobility, increased space charge capacity
 - ultra-shallow p-n junctions at S/D
 - \rightarrow increased series resistance R_{SD}
 - thin gate dielectrics, N_{CH}, I_D
 - → increased gate leakage

Outline

- Optimization of MOSFET channel mobility
 - Crystal dependent channel orientation
 - Strained silicon layers
 - (Silicon-)Germanium
 - Alternative channel materials
- Novel metallization materials and techniques
 - Contacts
 - Wiring
 - Gate metals

Crystal dependent channel orientation

- "tilted" transistors
 - mobility in Si is anisotropic
 - optimization of channel mobility by re-orientation of MOSFETS

• holes: $\mu(110) > \mu(100)$

electrons: μ(110) < μ(100)

Crystal dependent channel orientation

- Problem
 - With an optimized arrangement of n- and p-channel transistors, the area is utilized ineffectively
- Solution using SOI (Silicon-on-Insulator) technology
 - Transfer of (100)-Si (n-channel) to a (110)-Si wafer
 - Etching of Si and oxide for p-channel
 - epitaxy of (110)-Si, re-growing p-channel

Crystal dependent channel orientation

Hybrid orientation

Strained Silicon

Principle: extension of crystal lattice leads to higher mobility

only for thin layers, relaxation!

Strained Silicon

- Strained Silicon
 - most common variant: n- and p-type MOSFETs with Si surface channel on $Si_{1-x}Ge_x$ (x<30%)

- I_{ON} (NMOS) increased by a factor of 1,5
- I_{ON} (PMOS) increased by a factor of 1,15

Stress und Beweglichkeit

Stress und Beweglichkeit

Vertikales effektives Feld (MV/cm)

- "Strained Silicon"
 - Richtungen von Stress und seine positive Wirkung auf MOS-Transistoren

	Transversal	Longitudinal	Z-Richtung
pFET	Т	С	T
nFET	T	T	С

T: Zugspannung (tensile)

C: Druckspannung (compressive)

- "Strained Silicon"
 - Verbesserung der Beweglichkeit bei Ausübung von 100MPa Stress in %

Leitungstyp	Kanal- Orientierung	longitudinaler Stress (channel)	transversaler Stress (width)	vertikaler Stress
nMOS	<110>	3,1	1,8	(5,3)
pMOS	<110>	(7,2)	6,6	0,1
nMOS	<100>	10,2	(5,3)	(5,3)
pMOS	<100>	(0,7)	0,1	0,1

- Vorzugsrichtungen der Stressausübung
- (kompressiv)
- tensil

- Möglichkeiten, Stress zu erzeugen (I)
 - Gitterfehlanpassung (global, ungerichtet)
 - Si auf SiGe (Dehnung des Si-Gitters)
 - SiGe auf Si (Stauchung des SiGe-Gitters)
 - Selektive SiGe- oder SiC-Epitaxie in Source/Drain-Gebieten (lokal, gerichtet)
 - Ätzen Si im S/D-Bereich
 - Wiederbefüllen durch SiGe- oder SiC-Epitaxie
 - Streckung / Stauchung des Si in Kanalrichtung
 - Abscheidung dehnender oder stauchender Siliciumnitrid-Filme (lokal, gerichtet)
 - Einstellung der Kräfte über Stöchiometrie der abgeschiedenen Schicht(en)

Druckstress durch Epi-SiGe in S/D*

* T Gani et al., IEDM 2003

Zugstress durch Si₃N₄-Schicht*

- Möglichkeiten, Stress zu erzeugen (II)
 - Wiederauffüllen von STI-Gräben (lokal, gerichtet)
 - Zugspannung durch Si₃N₄-Liner
 - Zugspannung durch SiC-Füllung
 - Druckspannung durch SiGe-Füllung
 - Stress durch Silicidierung auf S/D-Gebieten
 - NiSi auf Si-Oberfläche übt Druckstress auf Kanal aus.
 - "Stress Memorization Technique (SMT)" (lokal, gerichtet)
 - Zugspannung, die bei der Rekristallisation (RTA-Behandlung) bedeckter S/D-Gebiete entsteht
 - Verschiedene Effekte möglich, physikalisch nicht verstanden

Beispiel: Niedertemperatur-SMT (Wei, AMD, 2007 VLSI Symp.)

- Amorphisierung S/D-Gebiete
- Si₃N₄-Abscheidung
- Si₃N₄-Entfernung PMOS
- RTA (580°C-850°C)
- Si₃N₄-Entfernung NMOS

- CMOS Stress-Prozessintegration
 - Einsatz in Technologien ab 90nm
 - Hauptsächlich Techniken, die gerichteten Stress ausüben, evtl. Grund-Vorspannung durch Gitterfehlanpassung
 - Beispiel: 45nm-Technologie, TSMC*

* K-L Cheng et al., IEDM 2007

"andere" Halbleiter

- Silicium ist so wichtig wegen der optimalen Eigenschaften seines Oxids
- ohne SiO₂ wären auch andere Halbleiter interessant – z.B. Ge
- Ge hat höhere p- und n-Beweglichkeiten (niedrige Feldstärke)
- MOS-Transistoren mit HfO₂-Gatedielektrikum auf Ge-Substrat
- → durch geringere effektive Masse bessere Effizienz der Injektion aus dem Sourcebereich
- → Momentan wird gestresstes Siverwendet

- Löcherbeweglichkeit in Si_{1-x}Ge_x nimmt bei über 50% Ge-Anteil stark zu
- Leitz et al. (MRS 2001): Bis zu 7-fach h\u00f6here L\u00f6cherbeweglichkeit!
- mögliche Probleme:
 - n-MOS: Potentialbarriere hin zur vergrabenen SiGe-Schicht erschwert das Ausschalten
 - Kurzkanaleffekte in p-MOSFETs

GeOI (Smart Cut, Ge/SiO₂/Si)

Ge (100) und Ge (100) 6° fehlorientiert

Träger: Si, GaAs, Ge möglich

Bulk Ge-"Spenderscheibe" (Umicore)

Epi-"Spenderscheibe" (LETI)

Ge-Kanal – Messdaten

Kurzkanal-Transistoren Langkanal-Transistoren ---L=0.2, W=1, EOT 1.7nm, Si ---Ge/Si/SiO₂/4nm HfO₂/TaN/TiN ---L=0.2, W=1, EOT 1.7nm, SiGe -- Si/SiO₂/2nm HfO₂/TaN/Poly → L=0.19, W=2, EOT 1.4nm, NiGe Holes Si universal 300 $L_{gate}^{}$ =10 μm |V_{ds}|=1.0V *(L/W)*CET (μA*nm) Holes μ_{eff} (cm $^2 Ns$) 250 $|V_{ds}|=50mV$ 150 I data "normalised" to 200 W/L and CET 150 100 50 50 -0.5 0.5 0.2 0.3 0.4 0.5 $V_q - V_t(V)$ E (MV/cm)

nE | Drainströme – Alternative Substrate

Übersicht Substrat-Materialien

$$I_D = \mu C_{IS} \frac{W}{L} (U_G - U_{Th})^2$$

Möglichst hohe Kanalbeweglichkeit realisieren

→ PMOS

PMOS: Germanium

NMOS: III-V-Halbleiter

nE | Drainströme – Alternative Substrate

Beispiel InGaP/GaAs-Struktur auf GeOI

MOCVD-Epitaxieverfahren für III-V-Halbleiter können GeOI als Startmaterial verwenden

S.G. Thomas et al., IEEE EDL Vol. 26, July 2005

Nanoelektronik – Drainströme

- Optimierung der Beweglichkeit im Kanalbereich von MOSFETs Substrate Engineering
 - Orientierungsabhänge Beweglichkeit
 - Verspannte Siliciumschichten
 - (Silicium-)Germanium
 - Alternative Kanalmaterialien
- Neue Metallisierungen
 - Gatemetalle
 - Kontakte
 - Leiterbahnen

nE | Drainströme – Kontakt-, Serienwiderstände

Probleme und Lösungen

- Gateelektrode
 - hoher Schichtwiderstand des Polysiliciums
 - → Polysilicium mit Silicid (Polycid)
 - → Metall-Gate
 - Raumladung im Polysilicium
 - → Metall-Gate
- Kanalgebiet
 - Streuung an Dotieratomen → niedrige Beweglichkeit → niedriges I_{on}
 - → Metall-Gate
- S/D-Gebiete
 - Hoher Schichtwiderstand
 - → Silicidkontakte, epitaktische Kontakte (elevated S/D)
- Leiterbahnen
 - Leitfähigkeit von Al
 - → Kupfer-, Silbermetallisierung

nE | Drainströme – Gatemetallisierungen

Gatemetallisierung

- Selbstjustierte Herstellung von Source/Drain durch Poly-Gate-Prozess
- Problem: hoher Schichtwiderstand des Polysiliciums:

Dotierung	Spez. Widerstand	
(p+=Bor, n+=Phosphor)	(μ Ω cm)	
undotiert	5·10 ⁸	
n+ (diffundiert)	5·10 ³	
n⁺ (implantiert)	3·10 ⁴	
p+ (in-situ)	5·10 ⁴	
n⁺ (in-situ)	2·10 ⁴	

Lösung: Polysilicium mit Silicid (Polycid)

nE | Drainströme – Neue Metallisierungen

- Wolfram-Silicid Prozess (Polycid)
 - Reinigung
 - Oxidation
 - Abscheidung amorphes Silicium
 - Abscheidung Wolfram-Silicid (a)
 - Maske Gatebereiche und Lokale Verbindungen
 - Ätzen Wolfram-Silicid (Fluor-Chemie) (b)
 - Ätzen amorphes Silicium (Chlor-Chemie)
 - Lack entfernen
 - Polysilicium- und Silicid-Temperung (c)

nE | Drainströme – Gatemetallisierung

Gatemetallisierung: Polycid-Prozess

nE | Drainströme – Neue Metallisierungen

61 nm-Transistor mit Wolfram-Silicid

S/D- und Gatemetallisierung: Eigenschaften von Siliciden

Chemische Formel	Formierungs- temperatur (°C)	Niedrigstes Eutektikum mit Si (°C)	Schmelz- o. Trans- formationspunkt (°C)	Spez. Widerstand (μΩcm)*
TiSi ₂	600	1330	1540	13-16
TaSi ₂	650	1385	2200	35-45
MoSi ₂	525	1410	1980	40-90
WSi ₂	650	1440	2165	26-70
CoSi ₂	550	1195	1326	18-20
NiSi	300	964	1265	10-15
Pd ₂ Si	700	720	1250	30-35
PtSi	300	830	1229	28-35

^{*} Aufgrund verschiedener möglicher Kristallmodifikationen variieren die spezifischen Widerstände der Silicide in der angegebenen Bandbreite

Gatemetallisierung: Self-Aligned-Silicid- (Salicid-) Prozess
Silicid Metallisierung: Self-Aligned-Silicid- (Salicid-) Prozess
Sullicid Metallisierung

- TiSi₂ and CoSi₂ Selbstjustierender Silicid-Prozess (Salicid)
 - Niedrigerer Schichtwiderstand als WSi₂
 - TiSi₂ bei Gatelängen > 200 nm
 - CoSi₂ bei Gatelängen < 200 nm

- Gatemetallisierung: Salicid-Prozess
 - Problem: Ausdiffusion von Silicium führt zu
 - Kurzschlüssen zwischen Gate und Source / Drain
 - Ablösung der Kontakte
 - Abhilfe:
 - Verwendung von Stickstoff bei der Silicidbildung
 - Zweistufige Prozessführung (am Beispiel CoSi₂):
 - 1. RTP: 450°C ("Spiking" möglich)
 - − 2. RTP: 800°C (Auflösen der "Spikes", ebene Grenzflächen)
 - Problem: Verbrauch von Silicium bei flachen (<100 nm) pn-Übergängen
 - Abhilfe:
 - Selektive Epitaxie: "Elevated Source/Drain"
 - Abscheiden von Silicid (dann kein Salicid-Prozess)

Metall-Gate

Problem: Dotiertes Poly-Si als Gateelektrode zeigt beträchtliche

Verarmung, Verarmungstiefe $d_d \approx 0.3$ nm

— Lösung: Metall-Gate ($d_d \approx 0.05$ nm) mit passendem ϕ_M (für NMOS

und PMOS) oder "Midgap"-Metall (TiN)

Metall-Gate

— Problem: Streuung der Ladungsträger an Dotieratomen reduziert

Beweglichkeit und damit I_{on}

Schwankung der Konzentration der sehr wenigen Dotieratome

im Kanal führt zu Schwankungen von U_{Th}

reduzierte/keine Dotierung im Kanal und Einstellung von U_{Th} – Lösung:

durch passendes ϕ_M

Vergleich der Inverterverzögerung von Transistoren auf Bulk-Material / auf dünnem SOI mit einfachem Gate (SG-UTB) / und Transistoren mit doppeltem Gate (DG)

Verwendung von Gatematerialien mit verschiedenen Austrittsarbeiten

- Metall-Gate: Einstellbare ϕ_M -Mo Gate Technologie
 - Einstellung der Austrittsarbeit von Molybdän
 - Ionenimplantation von Stickstoff
 - Anschließende Temperung

Ausheildauer: 15min (außer für 900°C (15s)) Schichtdicke Molybdän: 15nm

P. Ranade et al., IEDM Technical Digest, pp. 363-366, 2002

- Metall-Gate: Einstellbare ϕ_M -NiSi Gate Technologie
 - Einstellung der Austrittsarbeit von Nickelsilicid
 - Ionenimplantation von Dotieratomen in das Silicium vor der Ni-Silicidierung
 - $-\phi_M$ einstellbar im Bereich: 4,5 eV < ϕ_M < 4,9 eV

Neue Materialien – Neue Metallisierungen

Neue Anforderungen: Metallisierung aus Kupfer I

Beispiel für Mehrlagenmetallisierung aus Kupfer (Isolation weggeätzt)

Quelle: IBM

Al 3,0 $\mu\Omega$ cm Cu 1,7 $\mu\Omega$ cm SiO₂ ε = 3,9

Niedrig ε ε = 2,0

Al & Cu 0,8 µm dick, 43 µm lang

Neue Materialien – Neue Metallisierungen

- Neue Anforderungen: Metallisierung aus Kupfer II
 - Problem: Bei dünnen Leiterbahnen ist der Anstieg des Bahnwiderstandes bei Al geringer als bei Cu.
 - Zurück zu Al oder Einsatz von Ag-Legierungen?

Thanks for your attention!

