Elements of Reinforcement Learning

- Policy: way learning algorithm behaves (mapping from state to action)
- Reward function: Mapping of state action pair to reward or cost
- Value function: long term reward, total weighted or unweighted reward in present and future
- Model: mimic behavior of environment

Evaluative Feedback Example

- Consider n-armed bandit problem: at every instant must choose one of n actions with the goal of maximizing rewards.
- Expected reward for action a, $Q^*(a)$ and estimated value of tth play $Q_t(a)$. Set

$$Q_t(a) = \sum r_i / k_a$$

where k_a is number of times action a taken

- Exploration versus exploitation
- ► How to choose action a

Policies for n-armed bandit problem

- Greedy policy: $Q_t(a^*) = \max_a Q_t(a)$. No exploration, initially does well, but poor long term performance.
- ε-greedy policy: same as greedy policy, but with prob. ε randomly choose policy. Some exploration, does better than greedy policy.
- Softmax Action selection: weight actions probabilistically with temperature parameter (Gibbs distribution).
- Reinforcement methods: keep track of payoffs (reinforcement as opposed to action-value method).
- Pursuit methods: use both action-value estimates and action preferences.

Summary of example

- Exploitation versus Exploration
 - Algorithms presented
 - What is the proper balance?
- Learning schemes
 - Supervised learning: instructed what to do
 - Evaluative learning: try different actions and observe rewards (allows more control of environment)
- Non associative learning: trial and error learning not associated with situation or state of the problem (only one state)

Reinforcement Learning Model

- Exploration versus exploitation
- Learning can be slow

Finite Markov Decision Processes

Parameters

- State: X(n) = x(n), N states
- Action: A(n) = a_{ik} (action from state i performing action k)
- Transition probability: $p_{ij}(a) = P(X(n+1) = j \mid X(n) = i, A(n) = a)$
- Cost: r(i,a,j) and discount factor γ , with $0 \le \gamma < 1$
- Policy: $\pi = \{u(0), u(1), ...\}$, policy mapping states into actions (stationary and nonstationary)

Value Functions

- Cost or value function (infinite horizon, discounted) $J^{\pi}(i) = E \ (\Sigma \ \gamma^n \ r(x(n), u(x(n)), x(n+1)) | x(0) = i)$ averaged over Markov chain $x(1), x(2), \ldots$
- Action-value function

$$Q^{\pi}(i,a) = E \; (\Sigma \; \gamma^n \; r(x(n),u(x(n)),x(n+1))|x(0)=i,a(0)=a)$$
 averaged over Markov chain $x(1),x(2),\ldots$ Find policy π that minimizes $J^{\pi}(i)$ for all initial states i

Recursive expression for value function

$$\begin{split} J^{\pi}(i) &= E \; (\Sigma \; \gamma^n \; r(x(n), u(x(n)), x(n+1)) | x(0) = i) \\ &= E(r(i, u(i), j) + \gamma \Sigma \; \gamma^n \; r(x(n+1), u(x(n+1)), x(n+2)) | x(1) = j) \\ &= \Sigma_a \; \Sigma_j \; \pi(i, a) \; p_{ij} \; (a) \; (r(i, a, j) + \gamma \; J^{\pi}(j) \;) \end{split}$$

Bellman equation for J^{π} allows for calculation of value function for policy π .

Equation can be solved iteratively or directly.

Optimal Value Function

Want to find optimal policy to maximize value function $J^*(i) = \max_{\pi} J^{\pi}(i)$

Can express optimal value function in terms of action-value function as

$$J^*(i) = \max_{u(i)} Q^*(i,u(i))$$

where $Q^*(i,u(i)) = \max_{\pi} Q^{\pi}(i,u(i))$

Then can find a recursive expression for J*(i) by expanding RHS of equation similar to method found in previous slide for value function.

MDP Solution and Bellman Equation

Use dynamic programming, can formulate cost function in terms of Bellman's Optimality equation

$$J*(i) = \max_{u} E_{x(i)} [r(i,u(i),x(i)) + \gamma J*(x(i))]$$

Current cost: $c(i,u(j)) = E_{x(i)}[r(i,u(i),j)] = \Sigma_{j=1,N} p_{ij} r(i,u(i),j)$

Rewrite Bellman's equation

$$\mathbf{J}^*(\mathbf{i}) = \max_{\mathbf{u}} \left[\mathbf{c}(\mathbf{i}, \mathbf{u}(\mathbf{i})) + \gamma \sum_{j=1,N} \mathbf{p}_{ij} \mathbf{J}^*(\mathbf{j}) \right]$$

System of N equations with (equation/ state) and minimization

Policy Evaluation and Improvement

• Policy Evalution:For a given policy we can iteratively compute value function

$$\mathbf{J}_{k+1}^{\pi}(\mathbf{i}) = \Sigma_{\mathbf{a}} \ \Sigma_{\mathbf{j}} \ \pi(\mathbf{i},\mathbf{a}) \ \mathbf{p}_{\mathbf{i}\mathbf{j}} \ (\mathbf{a}) \ (\mathbf{r}(\mathbf{i},\mathbf{a},\mathbf{j}) + \gamma \ \mathbf{J}_{\mathbf{k}}^{\pi}(\mathbf{j}) \)$$

Iterative algorithm converges.

Policy Improvement: Q function can be expressed iteratively as

$$\mathbf{Q}^{\pi}(\mathbf{i},\mathbf{a}) = \mathbf{c}(\mathbf{i},\mathbf{a}) + \gamma \Sigma_{\mathbf{j}=1,\mathbf{N}} \mathbf{p}_{\mathbf{i}\mathbf{j}} (\mathbf{a}) \mathbf{J}^{\pi}(\mathbf{j})$$

u is said to be greedy with respect to Ju(i) if

$$u(i) = max_a Q^{\pi}(i,a)$$
 for all i

Policy Iteration

1) Policy evaluation: Ju (i)

Cost to go function needs recomputation

$$J^{u_n}(i) = c(i,u_n(i)) + \gamma \sum_{j=1,N} p_{ij} (u_n(i)) J^{u_n}(j)$$

- Solve set of N linear equations directly or iteratively.
- 2) Policy improvement: $u_{n+1}(i) = \operatorname{argmax}_a Q^{u_n}(i,a)$

Value Iteration

- Initialization: start with initial value $J_0(i)$
- Iterate: $Q(i,a) = c(i,a) + \gamma \sum_{j=1,N} p_{ij} J_n(j)$

$$\mathbf{J}_{n+1}(\mathbf{i}) = \mathbf{max_a} \ \mathbf{Q} \ (\mathbf{i,a})$$

- Continue until $|J_{n+1}(i) J_n(i)| < \epsilon$
- Compute policy: $u^* = \operatorname{argmax}_a Q(i,a)$

Dynamic Programming Comments

- Number of states often grows exponentially as number of state variables. (Bellman's curse of dimensionality)
- For large state spaces it is infeasible to search entire state space to perform DP steps. Asynchronous DP used where partial searches and updates are made of state space.
- DP programs run polynomially in number of states and actions.
- GPI (Generalized Policy Iteration) often used instead of PI where Policy Evaluation and Policy Improvement done together.
- DP assumes complete knowledge of environment.

Approximate Dynamic Programming

- Incomplete information (do not know Markov transition probabilities)
- Curse of dimensionality
- Opt for suboptimal policy where J*(i) replaced by approximations of J*(i) that can consist of table lookup or parameterized by set of weights
- Use Monte Carlo simulations to learn policy
- Q learning

Q Learning Algorithm

• Define Q function

$$\begin{aligned} Q^*(\mathbf{i},\!\mathbf{a}) &= \Sigma_{\mathbf{j}=\mathbf{1},N} \; p_{\mathbf{i}\mathbf{j}} \; (\mathbf{a}) \; (\mathbf{r}(\mathbf{i},\!\mathbf{a},\!\mathbf{j}) + \gamma \; max_b \; Q^*(\mathbf{j},\!\mathbf{b})) \\ J^*(\mathbf{i}) &= max_a \; Q^*(\mathbf{i},\!\mathbf{a}) \end{aligned}$$

• Use iterative learning to learn Q function

$$Q_{n+1}(i,a) = (1-\mu(i,a)) \ Q_n(i,a) + \mu(i,a)(r(i,a,j) + \gamma J_n(j))$$
 where j is random successor state with

$$\mathbf{J}_{\mathbf{n}}(\mathbf{j}) = \mathbf{max}_{\mathbf{b}} \ \mathbf{Q}_{\mathbf{n}}(\mathbf{i},\mathbf{b})$$

 Monte Carlo Simulations: update only applies to current state-action pair all other pairs are not updated

Q Learning Comments

- Convergence Theorem: Q Learning algorithm converges almost surely to optimal Q function given certain conditions on step size (stochastic approximation conditions) and all state pairs are visited infinitely often
- Representations: Table lookup works well, but networks parameterized by weights often learn very slowly
- Exploration vs. exploitation: ensure all state-action pairs are explored while also minimizing cost to go function

Temporal Difference Learning

- Given a learning sequence where a termination occurs and a reward is given how do we learn?
- Credit assignment to each training input in the sequence can be performed using temporal difference learning
- Iterative learning algorithms can then be established with inputs and target outputs
- Class of TD(λ) algorithms where $0 \le \lambda \le 1$
- Learning much slower than supervised learning

Reinforcement Learning Applications

- Backgammon
- Navigation
- Elevator control
- Helicopter control
- Computer network routing
- Sequential detection
- Dynamic channel allocation (cellular system)

References

- R. Sutton, A. Barto, Reinforcement Learning An Introduction, MIT Press, Cambridge, MA, 1998.
- D. Bertsekas, J. Tsitsiklis, Neuro-Dynamic Programming, Athena Scientific, Belmont, MA, 1996.
- Handbook of Learning and Approximate Dynamic Programming, Editors J. Si, A. Barto, W. Powell, D. Wunsch, Wiley-IEEE Press, 2004.