# МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Северо-Кавказский федеральный университет»

Кафедра инфокоммуникаций

|           | Отчёт п | о практичесь | кому занятию | <b>№3.</b> | 7       |
|-----------|---------|--------------|--------------|------------|---------|
| «Основы п | ифровой | обработки    | изображени   | йв         | OpenCv» |

по дисциплине «Теории распознавания образов»

| Выполнил студент группы ПИЖ-б- | -o-21 | -1   |
|--------------------------------|-------|------|
| Образцова М.Д. « »20           | _Г.   |      |
| Подпись студента               |       |      |
| Работа защищена « »            | _20_  | _Γ.  |
| Проверил Воронкин Р.А          |       |      |
|                                |       | _* . |

Цель работы: изучение типов изображений, способов их формирования. Изучение основных функций OpenCv, применяемых для цифровой обработки изображений.

- 1. Считывание изображения и вывод его на экран, запись изображения в файл.
  - 2. Вывод свойств изображения и сформированной матрицы на экран.
  - 3. Доступ к изображению для изменения значений цвета пикселей.
  - 4. Создание бинарного изображения и его негатива.
  - 5. Применение библиотеки matplotlib для вывода нескольких изображений в общем окне.
  - 6. Выделение и взятие в рамку определенного региона изображения.
  - 7. Уменьшение размера изображения и вывод матрицы на экран.
  - 8. Знакомство с процессом дискретизации и квантования изображения.
  - 9. Приобретение практических навыков использования этих функций.

## Выполнение работы

Считать файл полноцветного изображения cat.jpg, создать для него матрицу изображения, затем вывести сначала полутоновое, затем цветное изображение на экран. Перед выполнением задания получить согласно номеру в списке группы свой файл с изображением.

```
In [2]: import cv2
In []: img = cv2.imread('cat.jpg', 0)
cv2.imshow('image_1', img)
cv2.waitKey(0)
```

```
n = 28
a = np.ones([28, 28])
for i in range(n):
    a[i][i] = 1

for i in range(n):
    for j in range(0, i):
        for j in range(0, in range
```

### Задание 1.5.

Вывести свойства матрицы изображения на экран.

```
In [1]: import cv2
import numpy as np
    ing = cv2.imread('cat.jpg', 0)
    cv2.imshow('inage', ing)
    print(type(ing))
    print(ing.shape)
    print(ing.size)
    print(ing.dtype)

<class 'numpy.ndarray'>
    (457, 685)
    313045
    uint8
```

## Самостоятельная работа

У нас есть изображение, на котором необходимо заменить белый цвет на зеленый

```
In [10]: import cv2
   import numpy as np
   from matplotlib import pyplot as plt

In [11]: img = cv2.imread('cat.jpg')
   new_image = img.copy()
```

Определяем цвета, которые нужно заменить

в нашем случае-белый

```
In [12]: lower_range = np.array([200, 200, 200])
upper_range = np.array([250, 250, 250])
```

Создаем маску, выбирая пиксели изображения, которые находятся в диапазоне цветов, который мы хотим замени

Заменяем цвета, находящиеся под маской, на новый цвет (здесь - зеленый)

```
In [13]: mask = cv2.inRange(new_image, lower_range, upper_range)
new_image[mask > 0] = (0, 255, 0)
```

Визуализируем результаты обработки с помощью библиотеки matplotlib.

```
In [14]: plt.subplot(121)
    plt.axis("off")
    plt.imshow(img)
    plt.title('Original')

plt.subplot(122)
    plt.axis("off")
    plt.imshow(new_image)
    plt.title('Modified')

plt.show()
```

## Original



## Modified



```
In [ ]:
```