

COE 381

16-bit Microprocessor Simulation Presentation

Class: BSc. Computer Engineering 3

Group Name: Tensor

Date: May, 2022

TENSOR GROUP MEMBERS

8252919 8259719 8264819

Alhassan Machele Ahmed Idrisu Issaka Gibril Osei Kwaku Nana Kevin

8266119 8263419 8253719

Tetteh Kwame Jesse Nana Kwame Ofori-Boakye Angmortey Benjamin Kubi

TABLE OF CONTENTS

02

INTRODUCTION

Specifications Overview

04

COMPONENTS

Program Counter, Register File, ALU, **Control Unit**

ISA

LIMITATIONS

Instructions & Opcodes

Instruction Formats

Bottlenecks and Constraints

SPECIFICATIONS

OVERVIEW

- 16-bit microprocessor
- Based on RISC architecture inspired by MIPS I
- Harvard Architecture separate instruction and data memory
- Memory is word-addressable (16 bits per location)
- Total Memory addressable = 2¹⁶ x 2 bytes = 128 KB.

ISA - Overview

- The microprocessor can operate on 14 basic instructions.
- Each instruction falls under one of three categories

Category	Instructions
Arithmetic/Logic	ADD, ADDI, INCR, SUB, SUBI, DECR, AND, OR, XOR, NOT
Data Transfer	LOAD, STORE, MOV
Branch	JUMP

ISA – Instruction Format

- For simplicity, all instructions have a maximum length of 16 bits
- Each of the 14 instructions follows one of four instruction formats
- The instruction formats are as follows:
 - R-format
 - I-format
 - M-format
 - J-format

ISA – R-Format Instructions

For instructions that utilize 3 registers.

OPCODE	Rd	Rs	Rt
4 bits	4 bits	4 bits	4 bits

- Rd destination register
- Rs & Rt source registers

- Instructions: ADD, SUB, AND, OR, XOR, NOT, MOV
- Some instructions won't use all three registers. Eg. NOT

ISA – I-Format Instructions

 For instructions that utilize 2 registers and an immediate value from the instruction.

OPCODE	Rd	Rs	Immediate
4 bits	4 bits	4 bits	4 bits

- Rd destination register
- Rs source registers
- Immediate 4-bit immediate value
- *Instructions:* ADDI, SUBI, INCR, DECR

ISA – M-Format Instructions

For that utilize one register and an immediate value.

OPCODE	Rd	Immediate
4 bits	4 bits	8 bits

- Rd destination/source register
- Immediate 8-bit immediate value for memory addressing
- *Instructions:* LOAD, STORE
- For the STORE instruction, Rd is used as a source register.

ISA – J-Format Instructions

For the JUMP instruction that utilizes only an immediate value.

OPCODE	Immediate
4 bits	8 bits

- Immediate 12-bit immediate value for memory addressing
- *Instructions:* JUMP

Program Counter

The program counter loads the address of the next instruction to be executed when it is triggered by the clock.

It can also be made to branch / jump to a specified address in the instruction memory

RR1 RR1 RD1 RR2 16-bit Register File RD2 WR

Register File

The register file is simply a housing for all 16 general-purpose registers used by the microprocessor.

Statistics:

- 2 read-data ports, 2 read-address ports
- 1 Write-data port, 1 Write-address port
- 1 Write-enable, 1 clock

Arithmetic Logic Unit (ALU)

The ALU contains sub-circuits which are responsible for performing all arithmetic and logic operations defined in the ISA.

It uses the `ALU_SEL` control signal to determine which sub-circuit is required to perform a certain operation.

It also has carry, overflow, and zero flags.

Control Unit

The control unit is the operations manager.

It emits specific control signals for each operation, that direct the other components to successfully execute the instruction.

What constraints does this design come with?

LIMITATIONS

- The I-format instructions reserve only 4 bits for the immediate, hence they can access a small range of numbers (0 to 2⁴-1 for unsigned and -2³ to 2³-1 for signed)
- The JUMP instruction can only go as far as memory address 2^{12} whereas the farthest addressable memory location is 2^{16} 1.

LIMITATIONS

 The LOAD and STORE instructions can only access as far as memory address 2⁸-1 because their instruction format (M-format) permits only an 8-bit immediate for specifying memory addresses.

THANKS!

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik

