Assignment 4

Grapes to Greatness: Machine Learning in Wine Quality Prediction

21BCE0516

ANUSHKA

anushka.2021a@vitstudent.ac.in (mailto:anushka.2021a@vitstudent.ac.in)

In [1]: import pandas as pd

1. load the dataset

In [4]:
 df = pd.read_csv('winequality-red.csv')

In [5]: df

Out[5]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alc
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
1594	6.2	0.600	80.0	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	

1599 rows × 12 columns

In [8]: import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

In [7]: df.describe()

Out[7]:

ılorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	qua
.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.0000
.087467	15.874922	46.467792	0.996747	3.311113	0.658149	10.422983	5.636(
.047065	10.460157	32.895324	0.001887	0.154386	0.169507	1.065668	0.8075
.012000	1.000000	6.000000	0.990070	2.740000	0.330000	8.400000	3.0000
.070000	7.000000	22.000000	0.995600	3.210000	0.550000	9.500000	5.0000
.079000	14.000000	38.000000	0.996750	3.310000	0.620000	10.200000	6.0000
.090000	21.000000	62.000000	0.997835	3.400000	0.730000	11.100000	6.0000
.611000	72.000000	289.000000	1.003690	4.010000	2.000000	14.900000	8.0000

In [9]: df.hist(bins=20, figsize=(15, 10)) plt.show()


```
In [10]: sns.boxplot(data=df, orient="h", palette="Set2")
plt.show()
```



```
In [11]: corr_matrix = df.corr()
    sns.heatmap(corr_matrix, annot=True, cmap='coolwarm')
    plt.show()
```



```
In [13]: # Check for missing values
    df.isnull().sum()
    #since no missing values, dont have to deal with it
```

```
Out[13]: fixed acidity
                                   0
          volatile acidity
                                   0
          citric acid
                                   0
          residual sugar
                                   0
          chlorides
          free sulfur dioxide
                                   0
          total sulfur dioxide
                                   0
          density
                                   0
          рН
                                   0
          sulphates
                                   0
          alcohol
                                   0
                                   0
          quality
          dtype: int64
```

```
In [17]:
         from sklearn.preprocessing import StandardScaler
         # Define the columns for feature scaling (exclude the target variable)
         columns_to_scale = ['fixed acidity', 'volatile acidity', 'citric acid', 'resi
                              'chlorides', 'free sulfur dioxide', 'total sulfur dioxide
                             'pH', 'sulphates', 'alcohol']
         # Feature Scaling (Standardization)
         scaler = StandardScaler()
         df[columns_to_scale] = scaler.fit_transform(df[columns_to_scale])
         # Verify the transformed DataFrame
         print(df.head())
            fixed acidity volatile acidity citric acid residual sugar
                                                                           chlorides
         \
         0
                -0.528360
                                   0.961877
                                               -1.391472
                                                                -0.453218
                                                                          -0.243707
         1
                -0.298547
                                   1.967442
                                               -1.391472
                                                                 0.043416
                                                                            0.223875
         2
                -0.298547
                                   1.297065
                                               -1.186070
                                                                -0.169427
                                                                            0.096353
         3
                 1.654856
                                  -1.384443
                                                1.484154
                                                                -0.453218
                                                                          -0.264960
         4
                -0.528360
                                   0.961877
                                               -1.391472
                                                                -0.453218 -0.243707
            free sulfur dioxide total sulfur dioxide density
                                                                        pH sulphates
         \
         0
                      -0.466193
                                             -0.379133 0.558274 1.288643 -0.579207
         1
                                             0.624363 0.028261 -0.719933
                       0.872638
                                                                             0.128950
         2
                      -0.083669
                                             0.229047 0.134264 -0.331177 -0.048089
         3
                       0.107592
                                             0.411500 0.664277 -0.979104 -0.461180
                      -0.466193
                                            -0.379133 0.558274 1.288643 -0.579207
             alcohol quality
         0 -0.960246
                            5
                            5
         1 -0.584777
         2 -0.584777
                            5
         3 -0.584777
                            6
                            5
         4 -0.960246
In [18]: | X = df.drop(columns=['quality'])
         y = df['quality']
In [19]: from sklearn.model selection import train test split
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, rand
```

```
In [20]: from sklearn.linear model import LinearRegression
         # Create the model
         model = LinearRegression()
         # Train the model on the training data
         model.fit(X_train, y_train)
Out[20]:
          ▼ LinearRegression
          LinearRegression()
In [21]: from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
         # Make predictions on the test set
         y pred = model.predict(X test)
         # Calculate evaluation metrics
         mae = mean_absolute_error(y_test, y_pred)
         mse = mean_squared_error(y_test, y_pred)
         r2 = r2_score(y_test, y_pred)
         print(f"Mean Absolute Error (MAE): {mae}")
         print(f"Mean Squared Error (MSE): {mse}")
         print(f"R-squared (R2) Score: {r2}")
         Mean Absolute Error (MAE): 0.5035304415524375
         Mean Squared Error (MSE): 0.39002514396395493
         R-squared (R2) Score: 0.4031803412796219
         4. Evaluate the model
In [23]: import numpy as np
         from sklearn.metrics import mean squared error
         rmse = np.sqrt(mean squared error(y test, y pred))
         print(f"Root Mean Squared Error (RMSE): {rmse}")
         Root Mean Squared Error (RMSE): 0.624519930798013
In [24]: | n = len(X_test) # Number of samples
         k = len(X test.columns) # Number of features
         adjusted_r2 = 1 - ((1 - r2) * (n - 1) / (n - k - 1))
         print(f"Adjusted R-squared (Adjusted R2): {adjusted_r2}")
         Adjusted R-squared (Adjusted R2): 0.38186535346817985
```

```
In [25]: residuals = y_test - y_pred

# Create residual plots
plt.figure(figsize=(10, 6))
plt.scatter(y_pred, residuals)
plt.xlabel("Predicted Values")
plt.ylabel("Residuals")
plt.axhline(0, color='red', linestyle='--', lw=2)
plt.title("Residual Plot")
plt.show()
```



```
In [26]: # Histogram of residuals
plt.figure(figsize=(10, 6))
plt.hist(residuals, bins=20, edgecolor='k')
plt.xlabel("Residuals")
plt.ylabel("Frequency")
plt.title("Distribution of Residuals")
plt.show()
```


Cross-Validation RMSE scores: [0.66737398 0.6724422 0.66661889 0.63973512 0.65722039]

5. Test with random observation

```
In [39]:
         import pandas as pd
         import numpy as np
         # Define hypothetical values for the features
         random_observation = {
             'fixed acidity': np.random.uniform(4.6, 15.9),
             'volatile acidity': np.random.uniform(0.12, 1.58),
             'citric acid': np.random.uniform(0.0, 1.0),
             'residual sugar': np.random.uniform(0.9, 15.5),
             'chlorides': np.random.uniform(0.012, 0.611),
             'free sulfur dioxide': np.random.uniform(1, 72),
             'total sulfur dioxide': np.random.uniform(6, 289),
             'density': np.random.uniform(0.99007, 1.00369),
             'pH': np.random.uniform(2.74, 4.01),
             'sulphates': np.random.uniform(0.33, 2.0),
             'alcohol': np.random.uniform(8.4, 14.9)
         }
         # Create a DataFrame for the random observation
         random_observation_df = pd.DataFrame([random_observation])
In [40]: # Make predictions using the trained model
         predicted quality = model.predict(random observation df)
         print(f"Predicted Wine Quality: {predicted quality[0]}")
```

In []: