Additional exercises for "Algebraic Topology"

24th September 2018

1. Let S be a set, and A an abelian group. The A-linearization of S was defined as

$$A[S] := \{ f : S \longrightarrow A : f^{-1}(A - 0) \text{ is finite } \}.$$

For $a \in A$ and $s \in S$, denote as as the map sending s to a and everything else to 0. Then every element $f \in A[S]$ can be expressed in a unique way as $f = a_1s_1 + \cdots + a_ns_n$, where $a_i \in A$ and $s_n \in S$.

Now let $(A_i)_{i\in I}$ be a collection of abelian groups. The direct sum $\bigoplus_{i\in I} A_i$ is the collection of tuples $(a_i)_{i\in I}$ where only finite many a_i are nonzero. It has a structure of abelian group by addition termwise.

- (a) Show that $\mathbb{Z}[S]$ is isomorphic to $\bigoplus_{s \in S} \mathbb{Z}$. The latter is usually called the *free abelian group* generated by S.
- (b) Observe that there is a natural map of sets $i:S\longrightarrow \mathbb{Z}[S]$ sending $s\in S$ to $1\cdot s\in \mathbb{Z}[S]$. Show that the free abelian group has the following property: if A is an abelian group and $\varphi:S\longrightarrow A$ is a map of sets, there is a unique group homomorphism $\widetilde{\varphi}:\mathbb{Z}[S]\longrightarrow A$ such that $\widetilde{\varphi}\circ i=\varphi$.

$$S \xrightarrow{\varphi} A$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad$$

In other words,

$$\operatorname{Hom}_{\operatorname{Grp}}(\mathbb{Z}[S], A) = \operatorname{Hom}_{\operatorname{Sets}}(S, A).$$

(c) Show that the previous property is universal: if F(S) is another abelian group together with a map $j: S \longrightarrow F(S)$ such that the latter property is fulfilled, then there exists a unique group isomorphism $\psi: \mathbb{Z}[S] \longrightarrow F(S)$ such that $i \circ \psi = j$.

$$S \xrightarrow{i} \mathbb{Z}[S]$$

$$\downarrow^{\psi}$$

$$F(S)$$

Hint: Use (a) twice; or use the Yonneda lemma if you know it.

(d) Show that the construction of the free abelian group is functorial, that is, if S, T are sets and $f: S \longrightarrow T$ is a map of sets, there is a unique group homomorphism $\mathbb{Z}[f]: \mathbb{Z}[S] \longrightarrow \mathbb{Z}[T]$ such that the following diagram commutes:

$$S \xrightarrow{f} T$$

$$\downarrow \downarrow j$$

$$\mathbb{Z}[S] \xrightarrow{\mathbb{Z}[f]} \mathbb{Z}[T]$$

Hint: Use (a).

2. Let $\{E_n, F_n : n \geq 0\}$ be a collection of vector spaces, and set $C_n := E_n \oplus F_n \oplus E_{n-1}$.

1

- (a) Show that projection-inclusion maps $\partial_n:C_n\longrightarrow E_{n-1}\hookrightarrow C_{n-1}$ make C into a chain complex.
- (b) Show that every chain complex of vector spaces is isomorphic to a chain complex of this form. Hint. For a chain complex of vector spaces (C, ∂) , set $E_n := \operatorname{Im} \partial_{n+1}$ and $F_n := H_{n+1}(C)$.
- 3. Given groups G and H, the set Hom(G,H) of group homomorphisms $f:G\longrightarrow H$ is again a group homomorphism, by setting (f+f')(g):=f(g)+f'(g) and with unit element the zero map.

Let (C, ∂) be a chain complex of abelian groups, and let A be an abelian group. Show that $\{\operatorname{Hom}(A, C_n)\}$ forms a chain complex of abelian groups.

- 4. A chain complex C is called *acyclic* if $H_n(C) = 0$ for all n > 0. Give an example of such a chain complex.
- 5. A chain map $f: C \longrightarrow D$ is called a *quasi-isomorphism* if it induces isomorphisms $f_*: H_n(C) \longrightarrow H_n(D)$ in all homology groups.

Show that for a chain complex C the following are equivalent:

- (a) C is an exact chain complex.
- (b) C is acyclic.
- (c) The zero map $0 \longrightarrow C$ is a quasi-isomorphism, where 0 denotes the chain complex given by trivial groups and trivial differentials.
- 6. Let $f: C \longrightarrow D$ be a chain map. The mapping cone of f is the chain complex Cone f defined by

(Cone
$$f$$
)_n := $D_n \oplus C_{n-1}$, $\partial_n^{\text{Cone } f}(x, y) := (\partial_n^D x + f_{n-1}y, -\partial_{n-1}y)$.

- (a) Check that (Cone $f, \partial^{\text{Cone } f}$) is indeed a chain complex.
- (b) For a chain complex C, its *shifted* chain complex C[1] is given by

$$C[1]_n := C_{n-1} \qquad , \qquad \partial_n^{C[1]} = -\partial_{n-1}.$$

Show that $H_n(C[1]) = H_{n-1}(C)$.

(c) Show that the canonical injection and projection induce a short exact sequence of chain complexes

$$0 \longrightarrow D \longrightarrow \operatorname{Cone} f \longrightarrow C[1] \longrightarrow 0$$

- 7. Let $\{C^i\}_{i\in I}$ be a family of chain complexes indexed by a set I.
 - (a) Show that setting

$$(\bigoplus_{i} C^{i})_{n} = \bigoplus_{i} C^{i}_{n}$$
 , $\partial(a_{i})_{i \in I} = (\partial a_{i})_{i \in I}$

defines a chain complex $\bigoplus_i C^i$.

- (b) Show that the canonical injections $\iota_{C_n^i}:C_n^i \hookrightarrow \bigoplus_i C_n^i$ induce a chain map $\iota_{C^i}:C^i \longrightarrow \bigoplus_i C^i$.
- (c) Show that $\bigoplus_i C^i$ has the following universal property: given a chain complex D and a family of chain maps $f_i:C^i\longrightarrow D$, there is a unique chain map $f:\bigoplus_i C^i\longrightarrow D$ such that $f\circ\iota_{C^i}=f$. In other words,

$$\operatorname{Hom}_{\operatorname{Ch}}(\bigoplus_i C^i, D) = \prod_i \operatorname{Hom}_{\operatorname{Ch}}(C^i, D).$$

(d) Show that there is an isomorphism

$$\bigoplus_{i} H_n(C^i) \longrightarrow H_n(\bigoplus C^i)$$

whose composite with $\iota_{H_n(C^i)}$ is the map $H_n(C^i) \longrightarrow H_n(\bigoplus_i C^i)$ induced by the chain map ι_{C^i} .

- 8. The aim of the following exercises is to recall some notions of point-set topology which will appear along the course.
 - (a) Let X be a topological space. Its suspension SX is the quotient of $X \times I$ by the equivalence relation $(x,0) \sim (y,0)$ for all $x,y \in X$ and $(x,1) \sim (y,1)$ for all $x,y \in X$. Show that $S\mathbb{S}^n$ is homeomorphic to \mathbb{S}^{n+1} .
 - (b) The real projective space \mathbb{RP}^n is the quotient of $\mathbb{R}^{n+1} \{0\}$ by the equivalence relation $x \sim y \iff y = \lambda x$ for some $\lambda \in \mathbb{R} \{0\}$. Show that \mathbb{RP}^n is homeomorphic to the quotient of \mathbb{S}^n by the equivalence relation which identifies antipodal points, $x \sim -x$.
 - (c) Let I = [0,1] The torus \mathbb{T} is the quotient of I^2 by the equivalence relation which identifies $(t,0) \sim (t,1)$ for all $t \in I$ and $(0,s) \sim (1,s)$ for all $t \in I$. Show that the \mathbb{T} is homeomorphic to $\mathbb{S}^1 \times \mathbb{S}^1$.

Hint: Use the universal property of the quotient topology: let $f: X \longrightarrow Y$ be a continuous map, let \sim be a equivalent relation on X and let $\pi: X \longrightarrow X/\sim$ be the canonical projection. Then there exists a continuous map $\bar{f}: X/\sim \longrightarrow Y$ such that $\bar{f}\circ \pi=f$ if and only if f satisfies that whenever $x\sim y$, then f(x)=f(y).

You might also want to use that a bijective, continuous map with compact source and Hausdorff target is a homeomorphism.

- 9. Give an example of a pair of spaces (X, X') such that $H_n(X'; A)$ is not a subgroup of $H_n(X; A)$ for some $n \in \mathbb{N}$ (formally, that the inclusion $X' \hookrightarrow X$ does not induce an injection in homology). Give an example of a pair of spaces (X, X') such that $H_n(X'; A)$ is a subgroup of $H_n(X; A)$ for some $n \in \mathbb{N}$ and the quotient $H_n(X; A)/H_n(X'; A)$ is isomorphic to $H_n(X, X'; A)$.
- 10. Let (X, X') be a pair of spaces, let A be an abelian group and let $x \in X'$. Show that if $H_n(X', \{x\}; A) \cong 0$, then the map of pairs $(X, \{x\}) \longrightarrow (X, X')$ induces an isomorphism

$$H_n(X, \{x\}; A) \cong H_n(X, X'; A).$$

- 11. Let (X, X') be a pair of spaces and let A be an abelian group.
 - (a) Show that $H_0(X, X'; A) \cong 0$ if and only if X' meets all path-components of X.
 - (b) Show that $H_1(X, X'; A) \cong 0$ if and only if the map $H_1(X'; A) \longrightarrow H_1(X; A)$ induced by the inclusion $X' \hookrightarrow X'$ is surjective and every path-component of X meets at most one path-component of X'.

Hint: Argue with the long exact sequence of a pair.

12. Let $p_1, \ldots, p_m \in \mathbb{S}^2$ be different points on the sphere. Compute all homology groups $H_n(\mathbb{S}^2, \{p_1, \ldots, p_m\}; A)$ for all $n \geq 0$ and all abelian groups A.