Résolution d'un problème d'optimisation différentiable

Marc Bourqui

Victor Constantin Floriant Simond Ian Schori

January 3, 2013

Énoncé du problème

Trouver (une approximation de) la solution du problème suivant en appliquant le théorème de la plus forte pente:

$$\min_{x \in \mathbb{R}^2} (x_1 - 2)^4 + (x_1 - 2)^2 x_2^2 + (x_2 + 1)^2 \tag{1}$$

Réponses aux questions

(a) Implémenter la méthode de plus forte pente (Algorithme 11.3) à l'aide du logiciel MATLAB. Déterminer la taille du pas en appliquant la recherche linéaire, Algorithme 11.2 (les deux conditions de Wolfe).

Listing 1: pfp.m

```
% Methodes de descente pour l'optimisation non lineaire
                                                                                                                                                                                                                                  %
                                                                                                                                                                                                                                  %
         % sans contraintes
                                                                                                                                                                                                                                  %
                                                                                                                                                                                                                                  %
          % BOURQUI Marc
                                                                                                                                                                                                                                  %
          % CONSTANTIN Victor
                                                                                                                                                                                                                                  %
          % SCHORI Ian
                                                                                                                                                                                                                                  %
          % SIMOND Floriant
                                                                                                                                                                                                                                  %
10
          \(\frac{\psi_1}{\psi_1}\psi_2\psi_2\psi_1\psi_1\psi_2\psi_2\psi_1\psi_1\psi_2\psi_2\psi_1\psi_1\psi_2\psi_2\psi_1\psi_1\psi_2\psi_2\psi_1\psi_1\psi_2\psi_2\psi_1\psi_1\psi_2\psi_2\psi_1\psi_1\psi_2\psi_2\psi_1\psi_1\psi_2\psi_2\psi_1\psi_1\psi_2\psi_1\psi_1\psi_2\psi_2\psi_1\psi_1\psi_1\psi_2\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\psi_1\
11
           function x = pfp(f, x0, alpha, useRL)
12
          14
          % Interface
15
          16
17
          % nom de la fonction a minimiser, qui est specifiee dans ...
                        le fichier 'f.m'
          % et qui est declaree sous forme de string
          fct = f;
20
21
22 % point initial
23
         x = x0;
24
% Parametres
26
          27
28
         % pour le critere d'arret
           epsilon = 0.001;
30
           maxIter = 200
31
33 % initialisation du nombre d'iterations
```

```
i=1;
34
35
36
  % initialisation de la matrice qui stocke tous les iterés
  % un iteré = une colonne de cette matrice
  stock(:,i) = x0;
39
40
  41
  % Boucle principale
42
  43
44
45
46
  % Critere d'arret: x a ateint la precision demandée OU nb ...
      iterations max ateint
47
  while ( \text{normGradient}(\text{fct}, \text{stock}(:, i)) >= \text{epsilon} ) \&\& ( i < ... 
      maxIter )
      % mise a jour du nombre d'iterations
49
      i = i+1;
50
51
      \label{eq:first} \texttt{fprintf('Iteration number \%d : } x = [\%f\,,\,\%f] \backslash n^{\,\prime}\,,\,\,i\,,\,\,\dots
52
          stock(:,i-1)(1), stock(:,i-1)(2));
      % calcul et stockage de la valeur du nouveau x
53
      stock(:,i) = pfpInnerLoop(fct, stock(:,i-1), alpha, ...
54
          useRL);
55
56
  end
57
  % Calcul de la taille de la matrice contenant tous les x
58
  taille = size(stock,2);
59
60
  % Evaluation de la fonction en chaque point
61
  for i=1:taille
62
      valeurstock(i)=feval(fct, stock(:,i));
63
64
65
  67
  % Affichage des résultats %
68
  69
70
  disp('Valeur de la suite des x :') ;
71
72
73
  74
  disp ([ 'Nombre d''iterations :
      num2str(i-1)
  disp (['Valeur de la fonction a l''optimum : ' ...
      num2str(feval(fct,stock(:,i)))];
  disp('Valeur de l''optimum : ')
  xOptim = stock(:,i)'
  79
80
```

Listing 2: pfpInnerLoop.m

```
%
3
  % Calcul d'un itéré et du pas soit en utilisant
                                             %
                                             %
  % la recherche linéaire soit la formule de Cauchy
7
                                             %
9
10
  % BOURQUI Marc
                                             %
11
12
  % CONSTANTIN Victor
                                             %
13
14
  \% SCHORI Ian
                                             %
15
16
  % SIMOND Floriant
                                             %
17
18
                                             %
19
20
  21
22
23
24
  function x = pfpInnerLoop(f, x0, alpha, useRL)
25
26
     x = x0;
27
28
29
30
     [fx, gfx] = feval(f, x);
31
32
     d = -gfx;
33
34
35
36
     % Calcul du pas
37
38
```

```
if useRL
39
40
41
                 beta1 = 0.5;
42
                 beta2 = 0.75;
43
                 lambda = 2;
45
46
                 alpha \; = \; r\, l\, (\, f \; , \; \; x \; , \; \; fx \; , \; \; gfx \; , \; \; alpha \; , \; \; beta1 \; , \; \; beta2 \; , \; \; ...
47
                       lambda);
48
           else
49
50
                %Soit on peut utiliser la fonction dans b) pour ...
51
                       calculer le pas
52
53
                 alpha = tp(f,x);
54
           \quad \text{end} \quad
55
56
   end
57
```

Listing 3: rl.m

```
2
  % Implémente la recherche linéaire %
  %
                               %
5
  \% BOURQUI Marc
                               %
  % CONSTANTIN Victor
                               %
9
10
  % SCHORI Ian
                               %
11
12
13 % SIMOND Floriant
                               %
14
  %
                               %
15
  17
18
19
20
  function alpha = rl(f, x, d, alpha0, beta1, beta2, lambda)
21
22
     alpha = alpha0;
23
24
     alphal = 0;
25
26
     alphar = inf;
```

```
28
29
30
         [fxad, fgxad] = feval(f, x + alpha * -gfx);
31
34
         \label{eq:while} \begin{tabular}{lll} while & (fxad > fx + alpha * beta1 * gfx' * -gfx) & || & ... \\ \end{tabular}
35
             (fgxad' * -gfx < beta2 * gfx' * -gfx)
36
              if fxad > fx + alpha * beta1 * gfx' * -gfx
37
38
                   alphar = alpha;
39
40
                   alpha = (alphal + alphar)/2;
41
42
              {\tt elseif \ fgxad' * -gfx < beta2 * gfx' * -gfx}
43
44
                   alphal = alpha;
45
46
                   if alphar < inf
47
48
                        alpha = (alphal + alphar)/2;
49
50
                   else
51
52
                        alpha = lambda * alpha;
53
                   end
55
56
              end
57
58
59
60
              [fxad, fgxad] = feval(f, x + alpha * -gfx);
61
62
        end
63
64
   end
65
```

(b) Implémenter une fonction qui donne la taille du pas suivant:

$$\alpha_k = \frac{\nabla f(x_k)^T \nabla f(x_k)}{\nabla f(x_k)^T \nabla^2 f(x_k) \nabla f(x_k)}$$
 (2)

Quelle est la nature de ce pas? D'où cette formule vient-elle?

- (c) Comparer le comportement de l'algorithme en utilisant les pas (a) et (b).
- (d) Comparer la methode de plus forte pente et la methode quasi-Newton (qui est déjà implementée Série 3).