Definition 0.0.1: Rot- och kvotkriterier

Serien $\sum_{n=1}^\infty a_n$, $a_n>0,\; \rho=\lim_{n\to\infty}\frac{a_{n+1}}{a_n},\; \sigma=(a_n)^{\frac{1}{n}}.$ Om:

- $\rho < 1$ eller $\sigma < 1 \implies$ konvergent
- $\rho > 1$ eller $\sigma > 1 \implies$ divergent
- $\rho = 1$ eller $\sigma = 1 \implies$ oklart

Testet med ρ kallas för **kvottestet** och testet med γ kallas för *rottestet*.

Varför: Om $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}<1$ så gäller $\frac{a_{n+1}}{a_n}\leq\gamma<1$ för $n\geq N.$

$$a_{N+1} \leq \gamma a_N, \; a_{N+2} \leq \gamma a_{N+1} \leq \gamma^2 a_N \text{ och } a_{N+k} \leq \gamma^k a_N$$

Då kan serien jämföras ovanifrån med serien $\sum_{k=N}^{\infty} \gamma^k$ som är konvergent