. Enhanced tunability in ferroelectric composites through local field enhancement and the effect of disorder

- Benjamin Vial and Yang Hao¹
- School of Engineering and Computer Science, Queen Mary, University of London, London, E1 4NS,
- United Kingdom

We investigate numerically the homogenized permittivities of metamaterials made of low index dielectric inclusions in a ferroelectric matrix under a static electric field. A refined model is used to take into account the coupling between the electrostatic problem and the electric field dependent permittivity of the ferroelectric material, leading to a local field enhancement and permittivity change in the ferroelectric. Periodic and pseudo-random structures in two dimensions are investigated and we compute the effective permittivity, losses, electrically induced anisotropy and tunability of those metamaterials. We show that the tunability of such composites might be substantially enhanced in the periodic case, whereas introducing disorder in the microstructure weaken the effect of enhanced local permittivity change. Our results may be useful to guide the synthesis of novel composite ceramics with improved characteristics for controllable microwave devices.

INTRODUCTION

⁸ microwave devices, with typical applications including an $n = \varepsilon(0)/\varepsilon(E)$, along with a non hysteresis behaviour when se composites with tailored nonlinear properties. 23 tangent.

derived for different configurations (columnar, layered and 81 the unit cell. spherical inclusions models) and have been successfully compared with numerical simulations and experiments⁷. In the 42 context of porous ferroelectrics, the homogenized properties 43 strongly depends on the size and morphology of the pores^{11,12}. 44 Recently, the concept of tailoring the nonlinear properties of 45 ferroelectric and dielectric structures by local field engineer-

46 ing has been introduced ^{13–15}. It was shown through finite el-47 ement calculation including the nonlinear coupling, that by 48 employing composite materials made of linear dielectric in-Ferroelectric materials play a crucial role in reconfigurable 49 clusions into a ferroelectric matrix, one can lower the per-50 mittivity while maintaining high tunability, due to the local • tenna beam steering, phase shifters, tunable power splitters, 51 field in the ferroelectric phase which is tuned by the linear filters, voltage controlled oscillators and matching networks¹. 52 dielectric phase. Moreover, the effect of grain sizes in ferro-Both bulk ceramics and thin films have been employed to 53 electric ceramics was studied using a model taking the field design frequency agile components²⁻⁴ and metamaterials^{5,6}. ₅₄ enhancement into account at the grain boundaries, and the The main reason of using ferroelectric materials is their strong 55 predicted behaviour successfully compared to experimental dependence of their permittivity ε on an applied electric ₅₆ data¹⁴. Generally, there is a need for refined theoretical and field E, which is measured by their tunability defined as 57 numerical models to explain and design tunable materials and

used in their paraelectric state. The key requirements for 59 This study investigates numerically the effective permittivity antenna and microwave applications are large tunability and of composites made of dielectric inclusions in a ferroelectric low losses. These two characteristics are correlated and one 61 matrix by using a two-scale convergence method 16,17. The 20 has to find a trade-off for optimal device performance, which 62 originality lies in the fact that a fully coupling model is emcan be quantified by the so called commutation quality fac- 63 ployed to calculate the electrostatic field distribution when a 22 tor $K = (n-1)^2/(n \tan \delta(0) \tan \delta(E))$, where $\tan \delta$ is the loss 64 uniform biasing field is applied on the structures, which will 65 result in a local modification of the permittivity in the fer-These materials have usually high permittivity values even at 66 roelectric phase due to the microstructure. As compared to microwave frequencies, often leading to slow response time 67 a simple uncoupled model where the ferroelectric phase is and impedance mismatch, which can be an issue in some prac- 68 only modified through the biasing field, the resulting effectical applications. Thus it has been considered to mix ferro- 60 tive permittivity, dielectric losses, tunability and anisotropy electric ceramics with low-index and low-loss non-tunable di- 70 significantly differ. In contrast with earlier sudies in the literelectrics in order to reduce both permittivity values and losses, 71 ature ^{13,14}, we account for the non-linear coupling beyond the or to use porous ceramics to achieve the same goals without 72 first iteration and use two-scale convergence homogenization unwanted chemical reactions at the boundaries between dis- 73 analysis to obtain the effective parameters at higher frequensimilar materials. The effective parameters of those compos- 74 cies, instead of a capacitance-based model. The model we deites have been investigated⁷⁻¹⁰ and it has been found that the 75 veloped has been implemented with the finite element method permittivity can be greatly reduced while losses are much less 76 (FEM) and we realise a systematic computational study of sensitive to the dielectric phase addition, and in some situ- 77 ferroelectric-dielectric mixtures. First, we consider metamaations lead to a small increase of the tunability of the mixtures. Analytical models based on the Bruggeman effective 79 with circular cross section in a ferroelectric host, and then inmedium approach for low concentration of dielectrics were so vestigate the effect of random distribution of those rods within

FIG. 1. Variation of the ferroelectric permittivity as a function of the applied electric field (dots: measurements, dashed lines: fit to formula (1)), for the static case (green) and at microwave frequencies (orange, f = 3.8 GHz). The fitting parameters are given in Table I.

THEORY AND NUMERICAL MODEL

We consider a composite made of a ferroelectric material with anisotropic permittivity $\varepsilon^{\rm f}(E)$ that is dependent on an applied electric field E, and a non tunable dielectric of permittivity ε^{d} , which are both non-magnetic. The structures under study are invariant along the z direction, which leads to the standard decomposition of the wave equation in the transverse electric case (TE, electric field parallel to the direction of invariance) and the transverse magnetic case 91 (TM, magnetic field parallel to the direction of invariance). 92 A uniform biasing field is applied in order to be able to tune 93 the effective permittivity. Modelling homogenized properties 94 of this type of mixtures can be done by assuming that the electric field distribution is uniform throughout the sample, so that the study of the tunability is essentially achieved by changing the value of the properties in the ferroelectric phase and computing the effective permittivity of the composite. account the change of the electric field by the microstructure, electric field: this leads to a strongly coupled problem.

Permittivity model

We use barium strontium titanate (BST) as our ferroelecimpedance analyzer up to 100 MHz, and at 3.8 GHz using a 126 crowaves. loaded microstrip split ring resonator²⁰. The measured tun- 128

TABLE I. Fitting parameters to model (1) for the measured permittivity values as a function of applied electric field shown on Fig. (1).

case	$\boldsymbol{\varepsilon}^{\mathrm{f}}(0)$	$\alpha (\mu \text{m}^2/\text{V}^2)$	$\beta (\mu \text{m}^4/\text{V}^4)$
static	3050	0.120	0.024
f = 3.8 GHz	165	0.240	0.079

ability of the in-house BST samples of 27% under 1kv/mm DC bias was in agreement with those reported elsewhere ^{18,19}. The method presented is however general and only relies of the gradient of the dielectric tunability vs electric field and could be applied to any tunable host material. The normalized permittivity value as a function of biasing field are reported on Fig. (1).

To describe the permittivity, we make use of the Landau potential given by $F(P,E) = F_0 + aP^2/2 + bP^4/4 +$ $cP^6/6 - EP$, where E is the applied electric field and P is the polarization^{21,22}. Variations of the permittivity with the temperature can be taken into account through the coefficients a, b and c, but we assume we are working at a constant room temperature. We further assume that the material is not subject to any stress, so that the variation of permittivity due to mechanical constraints is irrelevant. The equation of state

$$\frac{\partial F(P,E)}{\partial P} = aP_0 + bP_0^3 + cP_0^5 - E = 0$$

109 gives the dependence of the polarization on the applied electric field, with P_0 being the equilibrium polarization. Along 111 the direction of a uniform applied electric field, the relative 112 permittivity is given by:

$$\varepsilon^{f}(E) = \left[\frac{\partial^{2} F(P, E)}{\partial P^{2}}\right]^{-1} = \frac{\varepsilon^{f}(0)}{1 + \alpha P_{0}^{2} + \beta P_{0}^{4}},\tag{1}$$

We refer this approach as to the uncoupled model in the fol- 113 where $\varepsilon^{\rm f}(0)=1/a$, $\alpha=3b/a$ and $\beta=5c/a$. The fitting palowing. However, a more accurate description is to take into 114 rameters are given in Table I. As the norm of the field in-115 creases, the permittivity decreases with a characteristic bell if any. We therefore need to solve an electrostatic equation to 116 curve typical for a ferroelectric material in its paraelectric find the field distribution within the material, but its solution 117 state. Furthermore, assuming the crystalline principal axes depends on the permittivities of both materials, and the 118 of the ferroelectric material are oriented in the coordinate dipermittivity in the ferroelectric phase depends on this induced 119 rections, and that the diagonal components of the permittivity 120 tensor are only function of the corresponding bias electric field 121 components²³, we have:

$$\boldsymbol{\varepsilon}^{\mathrm{f}}(\boldsymbol{E}) = \begin{pmatrix} \boldsymbol{\varepsilon}_{xx}^{\mathrm{f}}(E_{x}) & 0 & 0\\ 0 & \boldsymbol{\varepsilon}_{yy}^{\mathrm{f}}(E_{y}) & 0\\ 0 & 0 & \boldsymbol{\varepsilon}_{zz}^{\mathrm{f}}(E_{z}) \end{pmatrix}$$
(2)

tric material. Ba_xSr_{1-x}TiO₃ samples were fabricated using 122 where each of the diagonal components have the functional the conventional sintering method with a barium ratio of 123 form given by Eq. (1). Note that we will use the static values x = 0.6 to obtain a dielectrically tunable material as reported 124 of permittivity for the electrostatic modelling, while we are in the literature 18,19. The tunability was measured using an 125 interested in the homogenized values of permittivity at mi-

FIG. 2. Convergence of the coupled problem. Real part (a) and loss tangent (b) of the components of the homogenized permittivity tensor as a function of iteration step i. The values are normalized to the corresponding quantities for the bulk ferroelectric material. The distribution of the normalized electric field (colour map: magnitude in logarithmic scale, lines: equipotential contours) and of the xx component of the permittivity tensor are shown for i = 1 (c and d) and i = 12 (e and f).

Electrostatic model В.

The composites under study are made of two materials, thus their permittivity is represented by a piecewise defined tensor $\varepsilon(r, E)$ which is equal to $\varepsilon^{\rm f}(E(r))$ in the ferroelectric phase and $diag(\varepsilon^d)$ in the dielectric phase. In the following, we consider two different cases for the biasing field. Because of the form (2) assumed for the ferroelectric permittivity tensor, ε_{zz} will not be changing for a field in the plane orthogonal to the 161 142 sider a uniform applied electric field directed along the x axis 167 ψ_j of two annex problems \mathscr{P}_j , $j = \{1,2\}$: 143 $E_0 = E_0 e_x$ for the TM polarization case. To calculate the total 144 electric field in the material, one has to solve for the potential V satisfying Gauss' law:

$$\nabla \cdot (\varepsilon \nabla V) = 0 \tag{3}$$

Note that for the TE case, the solution is trivial since the structures are invariant along z, so that the electric field is 148 equal to the uniform biasing field, and we will thus not study it in the following. However in the TM case, the situation on the electric field. The coupled system formed of Eqs. (2) 173 be calculated using $\tilde{\varepsilon} = \tilde{\xi}^T / \det(\tilde{\xi})$. 154 and (3) is solved iteratively until there is convergence on the 174 Note that the TE case, which we shall not study here as no 155 norm of the electric field. Here we would like to emphasise 175 coupling happens, is trivial since the homogenized permittiv-156 that the permittivity in the ferroelectric material, although 176 ity is simply the average of the permittivity in the unit cell: uniform initially, is spatially varying due to the non-uniform 177 $\tilde{\varepsilon} = \langle \varepsilon \rangle$.

158 distribution of the total electric field.

When the period of the composite metamaterial is much z axis. This is the only component being relevant for TE po- 162 smaller than the wavelength, one can describe the properlarization, so we consider in this case a uniform biasing elec- 163 ties of the composite by a bulk medium with homogenized tric field applied along the direction of invariance $E_0 = E_0 e_z$. The effective permittivity for TM polarization On the other hand, the in-plane components of ε^f are tuned 165 is calculated using a two scale convergence homogenization by E_x and E_y , therefore, without loss of generality, we con-

$$\nabla \cdot [\boldsymbol{\xi} \nabla (\boldsymbol{\psi}_i + \boldsymbol{r}_i)] = 0, \tag{4}$$

(3) 168 where $r = (x,y)^T$ is the position vector in the xy plane and 169 $\xi = \varepsilon^T/\det(\varepsilon)$. The homogenized tensor $\tilde{\xi}$ is obtained with:

$$\tilde{\boldsymbol{\xi}} = \langle \boldsymbol{\xi} \rangle + \boldsymbol{\phi},\tag{5}$$

is much more complex: this is a coupled problem since the 170 where (.) denotes the mean value over the unit cell. The eleelectric field $E = -\nabla V$ derived from the solution of Eq. (3) 171 ments of the matrix ϕ represent correction terms and are given depends on the permittivity distribution, which itself depends $_{172}$ by $\phi_{ij} = \langle \xi \nabla \psi_i \rangle_j$. Finally the effective permittivity tensor can

FIG. 3. Effective parameters of the 2D metamaterials as a function of the applied electric field for various filling fraction of dielectric. (a): normalized permittivity, (b): normalized loss tangent, (c): normalized tunability and (d): anisotropy factor. The solid lines correspond to the coupled model and the dashed lines to the uncoupled model. The values are normalized to the corresponding quantities for the bulk ferroelectric

NUMERICAL RESULTS

solver (MUMPS²⁵).

Two dimensional periodic metamaterial

bedded in a ferroelectric matrix. We first study the convergence of the coupled problem on the particular case with dielectric filling fraction $f = \pi r^2/d^2 =$ 0.5 and $E_0 = 2MV/m$. Figures 2(a) and 2(b) show the conhe coupling process whereas the xx components change sub-204 if spatially varying in the ferroelectric medium. At equilib-237 properties anisotropic. This geometric effect is added to the 205 rium, the electric field is concentrated close to the y axis in 238 anisotropy arising from the material properties of the ferro-

207 mittivity distribution (see Figs. (2.e) and (2.f)), and the ho-208 mogenized properties of the composite.

In the following numerical results, the dielectric phase is 209 We computed the effective parameters of these metamaterial supposed to be lossless and non dispersive with $\varepsilon^d=3$ while 210 structures for different radii of the rods and studied their bethe ferroelectric material follows the permittivity described in 211 haviour when subjected to an external electrostatic field (see section II A and has a constant loss tangent $\tan \delta^f = 10^{-2}$. 212 Fig. (3)). The results of our coupled model differ significantly Equations (3) and (4) are solved with a Finite Element Method 213 from the uncoupled one. Increasing the dielectric fraction using the open source packages Gmsh? and GetDP²⁴. In both ²¹⁴ lowers the effective permittivity while the losses are slightly ases we use a square unit cell Ω of length d with periodic 215 reduced but much less sensitive. Due to the inhomogeneous boundary conditions along x and y. Second order Lagrange 216 redistribution of the permittivity over the ferroelectric domain, elements are used and the solution is computed with a direct 217 the overall tunability changes. In the case studied here, taking 218 into account the coupling leads to an effective tunability in-219 crease with higher dielectric concentration, and that is larger 220 than the tunability of bulk ferroelectric. This can be seen in Fig. (3).c where we plot the tunability of the composites along 222 the *x* axis, $\tilde{n}(E) = \tilde{\mathcal{E}}_{xx}(E)/\tilde{\mathcal{E}}_{xx}(0)$, normalized to the tunability of the bulk ferroelectric $n(E) = \varepsilon_{xx}^{\rm f}(E)/\varepsilon_{xx}^{\rm f}(0)$. Two concur-Lets us now consider a periodic square array of infinitely 223 long dielectric rods of circular cross section of radius r em-225 of ferroelectric makes the composite less tunable, but on the 226 other hand, the rearrangement of the electrostatic field sur-227 rounding the inclusion and its concentration in some region 228 will cause a higher permittivity change locally. The relative vergence of the real part and loss tangent of the components 229 strength of those phenomena is governed by the shape of the of the homogenized permittivity tensor, respectively. The yy 230 inclusion and its permittivity and so it is envisioned that the omponents converge quickly and are almost unaffected by 231 performance of the composites might be enhanced by engi-232 neering their microstructure. The geometry of the unit cell stantially from the initial conditions. This is due to the effect 233 is symmetric so the homogenized material is isotropic when of the redistribution of the electrostatic field within the unit 234 no field is applied. But when the sample is biased, the percell (see Figs. (2.c) and (2.d)), where the x component of the ²³⁵ mittivity distribution becomes asymmetric due to the inhomoelectric field is still much stronger than the y component, even 236 geneity of the electric field, thus making the effective material between two neighbouring rods. This in turn affects the per- 239 electric phase itself, and depending on the topology and per-

FIG. 4. Effective parameters of the pseudo-random composites as a function of the applied electric field for various filling fraction of dielectric, when the coupling is taken into account. (a): normalized permittivity, (b): normalized loss tangent, (c): normalized tunability and (d): anisotropy factor. The solid lines represent the average values over the 21 samples and the lighter error bands show a confidence interval corresponding to the standard deviation. The values are normalized to the corresponding quantities for the bulk ferroelectric material.

coupling formalism and are responsible for the difference ob- 280 the coupled case at higher fields. served when compared to a simple uncoupled model. 250

Pseudo-random case

251

creases with increasing dilution of ferroelectric, but for iden- 298 with increasing dielectric concentration. tical filling fraction, the permittivity is lower as compared to the periodic array, and the smaller the dielectric concentration the larger is the difference. Losses decrease as well and the 269 reduction is substantially larger than the periodic case, with $_{270}$ higher variation from sample to sample as f increases. The

mittivity of the rods, one effect would be predominant. In 271 effective tunability is on average smaller than that in the pethe case studied here, the equilibrium permittivity distribution 272 riodic case, and for low biasing fields and for some particular raries strongly along the bias direction and much less orthog- 273 samples can be greater than the bulk tunability. However, at nally to it, which adds anisotropy by diminishing the effec- 274 higher applied electric fields, normalized tunability becomes we permittivity in the x direction. This is local field induced 275 smaller than unity and is reduced as one adds more dielectric. ffect is what makes the anisotropy stronger in our coupled 276 For comparison, the homogenized parameters are plotted on nodel compared to the uncoupled one (cf. Fig. (3.d) where we 277 Fig. (7) in the case where the coupling is neglected. One can Note the anisotropy factor $\alpha = \varepsilon_{xx}/\varepsilon_{yy}$. Those subtle phenom- 278 see that the coupled and uncoupled models give similar reena can only be rigorously taken into account by employing a 270 sults for the tunability whereas the losses are still smaller for

²⁸¹ The redistribution of electric field, permittivity and conver-282 gence of the effective parameters are displayed in Fig. (5). The effect of disorder plays an important role here: the elec-284 trostatic field gets concentrated in between neighbouring inclusions and the smaller the gap the higher the field, hence 286 a greater local permittivity change. In addition, even if the We finally study the effect of random distribution of the in- 287 distribution is random, one expects that the anisotropy due to clusions within the unit cell on the effective parameters of the 288 geometry would cancel for a sufficiently large number of rods composites. This is an important point as fabrication of ran- 289 (which is the case as the mean anisotropy factor is close to 1 domly dispersed inclusions is much more easy from a techno- 290 when no bias field is applied). However, the anisotropy due logical perspective. For each filling fraction of the dielectric, 291 to ferroelectric properties is important in this case as well, as we generated 21 numerical samples with inclusions of circu- 292 both the x and y components of the electrostatic field are playar cross section of average radius r = d/20 that can vary by 293 ing a role. Because of the relative positions of the rods, both 30%. Their centre is chosen randomly and the rods are al- 294 ε_{xx} and ε_{yy} are affected by the coupling, so that the anisotropy lowed to overlap. An example of distribution for f = 0.5 is ²⁹⁵ factor for higher fields is reduced as compared to the periodic given on Fig. (6). The effective material properties are plotted 296 case. However even if there is a substantial variability from on Fig. (4). Similarly to the periodic case, the permittivity de- 297 sample to sample, on average, the anisotropy factor decreases

FIG. 5. Convergence of the coupled problem in the random case for one sample. Real part (a) and loss tangent (b) of the components of the homogenized permittivity tensor as a function of iteration step i The values are normalized to the corresponding quantities for the bulk ferroelectric material.. The distribution of the normalized electric field (colour map: magnitude in logarithmic scale, lines: equipotential contours) and of the xx component of the permittivity tensor are shown for i = 1 (c and d) and i = 12 (e and f).

IV. CONCLUSION

tric/ferroelectric mixtures using a rigorous model that take 334 able effective permeability. 2829 into account the coupling between the electrostatic field distribution and the field dependant ferroelectric permittivity tensor. After convergence of the coupled problem, the effective permittivity tensor is calculated using two scale convergence homogenization theory. The results obtained by this model differ significantly from a simple assumption that the permit- 336 their effective properties for TM polarization as a function of 340 Manufacturing (AOTOMAT)'. dielectric concentration and bias field. Importantly, adding 341 overall permittivity significantly and slightly lower the losses. 343 paper. to local field enhancement, whereas this effect is strongly sup- 345 article are freely available online pressed when disorder is introduced. The asymmetric redistri- 346 https://www.github.com/benvial/ferromtm. bution of the permittivity induce an effective anisotropy that s added to the one arising purely from the ferroelectric mateial. The properties of the composites are affected by multiple 348 factors: geometry and the spatially dependent electric field 349 that will induce locally a tunable, anisotropic response in the 350 ferroelectric phase depending on its amplitude and direction. 352 This suggest that the performances of the composites may be 353 enhanced by distributing the two phases in an optimal way 354 to get high tunability and low losses. Further work in that 355 direction is needed as well as extending this study to 3D me-328 dia. Finally, because the permittivity of the dielectric is much 358 329 smaller than the ferroelectric one, it would be of great inter- 359

330 est to use high contrast homogenization theory^{26,27} to study 331 this kind of mixtures. This would reveal the frequency de-332 pendant artificial magnetism due to "micro-resonances" in the We have studied the homogenized properties of dielec- 333 high index phase and potentially lead to composites with tun-

335 ACKNOWLEDGMENTS

This work was funded by the Engineering and Physical tivity of the ferroelectric respond just to the uniform biasing 337 Sciences Research Council (EPSRC), UK, under a grant field. We have considered both periodic and random arrays 338 (EP/P005578/1) 'Adaptive Tools for Electromagnetics and of dielectric rods in a ferroelectric matrix in 2D, and studied 339 Materials Modelling to Bridge the Gap between Design and

The authors would like to thanks Henry Giddens for performmore low index and low loss dielectric allows to decrease the 342 ing the measurements of ferroelectric permittivity used in this

For the periodic case, the tunability is higher than the bulk due 344 The codes necessary to reproduce the results in this

¹A. K. Tagantsev, V. O. Sherman, K. F. Astafiev, J. Venkatesh, and N. Setter, "Ferroelectric Materials for Microwave Tunable Applications," J Electroceram 11, 5-66 (2018).

²O. Vendik, E. Hollmann, A. Kozyrev, and A. Prudan, "Ferroelectric tuning of planar and bulk microwave devices," J. Supercond. 12, 325–338 (1999).

³M. Lancaster, J. Powell, and A. Porch, "Thin-film ferroelectric microwave devices," Supercond. Sci. Technol. 11, 1323 (1998).

⁴X. Xi, H.-C. Li, W. Si, A. Sirenko, I. Akimov, J. Fox, A. Clark, and J. Hao, "Oxide thin films for tunable microwave devices," J. Electroceramics 4, 393-405 (2000).

⁵T. H. Hand and S. A. Cummer, "Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings," J. Appl. Phys. 103, 066105

- ⁶H. Zhao, L. Kang, J. Zhou, Q. Zhao, L. Li, L. Peng, and Y. Bai, "Ex- 395
 perimental demonstration of tunable negative phase velocity and negative refraction in a ferromagnetic/ferroelectric composite metamaterial," Appl. 397
 Phys. Lett. 93, 201106 (2008).
- ⁷V. O. Sherman, A. K. Tagantsev, N. Setter, D. Iddles, and T. Price, 399
 "Ferroelectric-dielectric tunable composites," J. Appl. Phys. 99, 074104 400
 (2006).
- 367
 ⁸L. Jylha and A. H. Sihvola, "Tunability of granular ferroelectric dielectric composites," Prog. Electromagn. Res. 78, 189–207 (2008).
- ⁹V. O. Sherman, A. K. Tagantsev, and N. Setter, "Tunability and loss of the ferroelectric-dielectric composites," in *14th IEEE International Symposium on Applications of Ferroelectrics*, 2004. ISAF-04. 2004 (2004) pp. 33–38.
- 372 ¹⁰K. F. Astafiev, V. O. Sherman, A. K. Tagantsev, and N. Setter, "Can the 407 addition of a dielectric improve the figure of merit of a tunable material?" 408 374 J. Eur. Ceram. Soc. 23, 2381 – 2386 (2003).
- 375 ¹¹K. Okazaki and K. Nagata, "Effects of Grain Size and Porosity on Electrical 410 and Optical Properties of PLZT Ceramics," J. Am. Ceram. Soc. **56**, 82–86 411 (1973).
- 378 ¹²R. Stanculescu, C. E. Ciomaga, L. Padurariu, P. Galizia, N. Horchidan, 413
 379 C. Capiani, C. Galassi, and L. Mitoseriu, "Study of the role of porosity on 414
 380 the functional properties of (Ba,Sr)TiO3 ceramics," J. Alloys Compd. 643, 415
 381 79–87 (2015).
 416
- 13L. Padurariu, L. Curecheriu, C. Galassi, and L. Mitoseriu, "Tailoring non-linear dielectric properties by local field engineering in anisotropic porous ferroelectric structures," Appl Phys Lett 100, 252905 (2012).
 419
- ¹⁴L. Padurariu, L. Curecheriu, V. Buscaglia, and L. Mitoseriu, "Field- 420 dependent permittivity in nanostructured BaTiO\${}_{3}\$ ceramics: Mod- 421 eling and experimental verification," Phys Rev B 85, 224111 (2012).
- 15 A. Cazacu, L. Curecheriu, A. Neagu, L. Padurariu, A. Cernescu, I. Lisiecki, 423
 and L. Mitoseriu, "Tunable gold-chitosan nanocomposites by local field engineering," Appl Phys Lett 102, 222903 (2013).
- 391 ¹⁶G. Allaire, "Homogenization and Two-Scale Convergence," SIAM J. Math. 426
 392 Anal. 23, 1482–1518 (1992).
- 393 ¹⁷S. Guenneau and F. Zolla, "Homogenization of Three-Dimensional Finite 428
 394 Photonic Crystals," J. Electromagn. Waves Appl. 14, 529–530 (2000).

- ¹⁸S. Agrawal, R. Guo, D. Agrawal, and A. S. Bhalla, "Tunable BST:MgO Dielectric Composite by Microwave Sintering," Ferroelectrics **306**, 155–163 (2004).
- B 19G. Hu, F. Gao, J. Kong, S. Yang, Q. Zhang, Z. Liu, Y. Zhang, and H. Sun, "Preparation and dielectric properties of poly(vinylidene fluoride)/Ba0.6sr0.4tio3 composites," Journal of Alloys and Compounds 619, 686–692 (2015).
- ²⁰M. A. H. Ansari, A. K. Jha, and M. J. Akhtar, "Design and Application of the CSRR-Based Planar Sensor for Noninvasive Measurement of Complex Permittivity," IEEE Sens. J. 15, 7181–7189 (2015).
- ⁵⁰⁵ ²¹L. D. Landau, J. Bell, M. Kearsley, L. Pitaevskii, E. Lifshitz, and J. Sykes, Electrodynamics of continuous media, Vol. 8 (elsevier, 2013).
- ²²K. Zhou, S. A. Boggs, R. Ramprasad, M. Aindow, C. Erkey, and S. P. Alpay, "Dielectric response and tunability of a dielectric-paraelectric composite," Appl. Phys. Lett. 93, 102908 (2008).
- po 23°C. M. Krowne, M. Daniel, S. W. Kirchoefer, and J. A. Pond, "Anisotropic permittivity and attenuation extraction from propagation constant measurements using an anisotropic full-wave Green's function solver for coplanar ferroelectric thin-film devices," IEEE Trans. Microw. Theory Tech. **50**, 537–548 (2002).
- 5 ²⁴P. Dular, C. Geuzaine, F. Henrotte, and W. Legros, "A general environment for the treatment of discrete problems and its application to the finite element method," IEEE Trans. Magn. 34, 3395–3398 (1998).
- 8 ²⁵P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L'Excellent, "A Fully
 9 Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling," SIAM J. Matrix Anal. Appl. 23, 15–41 (2001).
- 26G. Bouchitté and D. Felbacq, "Homogenization near resonances and artificial magnetism from dielectrics," Comptes Rendus Mathématique 339, 377 382 (2004).
- ²⁷K. Cherednichenko and S. Cooper, "Homogenization of the system of highcontrast Maxwell equations," Mathematika **61**, 475–500 (2015).
- ²⁸G. R. Keiser and P. Klarskov, "Terahertz Field Confinement in Nonlinear Metamaterials and Near-Field Imaging," Photonics 6, 22 (2019).
- ²⁹K. Fan, H. Y. Hwang, M. Liu, A. C. Strikwerda, A. Sternbach, J. Zhang, X. Zhao, X. Zhao, K. A. Nelson, and R. D. Averitt, "Nonlinear Terahertz Metamaterials via Field-Enhanced Carrier Dynamics in GaAs," Phys. Rev. Lett. 110, 217404 (2013).

Random material samples, f = 0.5

FIG. 6. Permittivity distribution of the numerical samples used for f = 0.5. Dark colour indicates the ferroelectric material while light colour represents the dielectric inclusions.

FIG. 7. Effective parameters of the random 2D mixtures as a function of the applied electric field for various filling fraction of dielectric, when the coupling is neglected. (a): normalized permittivity, (b): normalized loss tangent, (c): normalized tunability and (d): anisotropy factor. The solid lines represent the average values over the 21 samples and the lighter error bands show a confidence interval corresponding to the standard deviation. The values are normalized to the corresponding quantities for the bulk ferroelectric material.