Лист № (3/2). Редукционные графы λ -исчисление, 2024

(3/2).1. Нарисуйте редукционные графы выражений:

- [а] H**I**H, где $H \equiv \lambda x, y. \ x(z. \ yzy)x;$
- [b] LLI, где $L \equiv \lambda x, y. \ x(yy)x;$
- [c] PQ, где $P \equiv \lambda u. \ u \mathbf{I} u, Q \equiv \lambda x, y. \ xy \mathbf{I}(xy).$
- (3/2).2. Постройте λ -выражения с редукционными графами:

(3/2).3. Покажите, что **ни одно** λ -выражение не имеет редукционный граф

(3/2).4. Найдите λ -выражение M_0 с редукционным путём

$$M_0 \underset{\beta}{\twoheadrightarrow} M_1 \underset{\eta}{\rightarrow} M_2 \underset{\beta}{\twoheadrightarrow} M_3 \underset{\eta}{\rightarrow} M_4 \underset{\beta}{\twoheadrightarrow} \cdots$$

(3/2).5. Пусть $M_1 \equiv (\lambda x.\ bx(bc))c,\, M_2 \equiv (\lambda x.\ xx)(bc).$ Докажите, что **не** существует такого выражения M, что $M \twoheadrightarrow M_1$ и $M \twoheadrightarrow M_2$.