

Multiple Random Variables

Lecture 3

Sept. 9, 11 and 16, 2025

Outline

- Outline
- 2 Two Random Variables
- 3 Expectation
- Inequalities

Two Random Variables

Two random variables X and Y, defined over the same probability space $(\Omega, \mathcal{F}, P), X : \Omega \to \mathbb{R}, X : \Omega \to \mathbb{R}$ and $Y, : \Omega \to \mathbb{R}$, are specified by their joint cdf $(-\infty < x, y < \infty)$

$$F_{XY}(x,y) = P(X \le x, Y \le y) = P(\{\omega \mid X(\omega) \le x\} \cap \{\omega \mid Y(\omega) \le y\})$$

 $F_{XY}(x,y)$ is the probability of the shaded region above.

Joint cdf

- Properties of the joint cdf
 - $F_{XY}(x, y) \ge 0$, $-\infty < x, y < \infty$
 - If $x_1 \le x_2$ and $y_1 \le y_2$, then $F_{XY}(x_1, y_1) \le F_{XY}(x_2, y_2)$
 - $F_{XY}(x,-\infty)=0=F_{XY}(-\infty,y)$
 - $F_{XY}(\infty, y) = F_Y(y)$ and $F_{XY}(x, \infty) = F_X(x)$. $F_X(x)$ and $F_Y(y)$ are the marginal cdfs of X and Y, respectively.
 - $F_{XY}(\infty,\infty)=1$
 - $F_{XY}(x,y) = \lim_{\epsilon \to 0, \ \delta \to 0} F_{XY}(x+\epsilon,y+\delta), \ \epsilon,\delta > 0$: it is right continuous.
- X and Y are independent if for any x and y

$$F_{XY}(x, y) = F_X(x)F_Y(y)$$

$$P(a < X \le b, c < Y \le d)$$

= $F_{XY}(b, d) - F_{XY}(a, d) - F_{XY}(b, c) + F_{XY}(a, c)$

Joint, Marginal, and Conditional PMFs

- Let *X* and *Y* be discrete random variables on the same probability space
- They are completely specified by their joint pmf

$$P_{XY}(x, y) = P(X = x, Y = y), \quad x \in \mathcal{X}, y \in \mathcal{Y}$$

By axioms of probability, $\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} P_{XY}(x, y) = 1$

• Example Consider the PMF $P_{XY}(x, y)$ given in the table

		Х		
		0	1	2.5
	-3	0	$\frac{1}{4}$	$\frac{1}{8}$
y	-1	$\frac{1}{8}$	Ó	$\frac{1}{4}$
	2	1 8 1 8	<u>1</u> 8	Õ

• To find $P_X(x)$, the marginal pmf of X, we use total probability

$$P_X(x) = \sum_{y \in \mathcal{Y}} P_{XY}(x, y), \quad x \in \mathcal{X}$$

		X			
		0	1	2.5	$P_Y(y)$
	-3	0	$\frac{1}{4}$	1/8	3 8
y	-1	<u>1</u>	Ó	$\frac{1}{4}$	3 8
	2	$\frac{1}{8}$	$\frac{1}{8}$	Ó	$\frac{1}{4}$
	$P_X(x)$	$\frac{1}{4}$	<u>3</u> 8	38	

• The conditional pmf of X given Y = y, is defined as

$$P_{X|Y}(x|y) = \frac{P_{XY}(x,y)}{P_{Y}(y)}, \quad P_{Y}(y) \neq 0, \ x \in \mathcal{X}$$

- Chain rule $P_{XY}(x, y) = P_Y(y)P_{X|Y}(x|y) = P_X(x)P_{Y|X}(y|x)$
- X and Y are independent if for any $x \in \mathcal{X}$ and $y \in \mathcal{Y}$, $P_{XY}(x,y) = P_X(x)P_Y(y)$, which is equivalent to $P_{X|Y}(x|y) = P_X(x)$.

Joint, Marginal, and Conditional pdfs

• X and Y are jointly continuous random variables if their joint cdf is continuous in both x and y. In this case, we can define their joint pdf (probability density function), provided that it exists, as the function $f_{XY}(x, y)$ such that

$$F_{XY}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{XY}(u,v) du dv, \quad x,y \in \mathbb{R}$$

• If $F_{XY}(x,y)$ is differentiable in x and y, then

$$f_{XY}(x,y) = \frac{\partial^2 F_{XY}(x,y)}{\partial x \partial y}$$

$$= \lim_{\Delta x, \Delta y \to 0} \frac{P(x < X \le x + \Delta x, y < Y \le y + \Delta y)}{\Delta x \Delta y}$$

- Properties of $f_{XY}(x, y)$:
 - $f_{XY}(x,y) \ge 0$
 - $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x,y) \, dx \, dy = 1 = F_{XY}(\infty,\infty)$
- The marginal pdf of X, $f_X(x)$, is given by

$$f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x, y) \, dy \, .$$

$$\begin{split} F_X(x) &= F_{XY}(x,\infty) = \int_{-\infty}^x \left(\int_{-\infty}^\infty f_{XY}(u,y) \, dy \right) \, du. \text{ Recall the} \\ \text{Leibniz rule: } \frac{\partial}{\partial x} \int_{e(x)}^{h(x)} g(u,x) du &= g(h(x),x) \frac{\partial h(x)}{\partial x} - g(e(x),x) \frac{\partial e(x)}{\partial x} \\ &+ \int_{e(x)}^{h(x)} \frac{\partial g(u,x)}{\partial x} du. \text{ So } f_X(x) = \frac{\partial}{\partial x} \int_{-\infty}^x \left(\int_{-\infty}^\infty f_{XY}(u,y) \, dy \right) \, du \\ &= \int_{-\infty}^\infty f_{XY}(x,y) \, dy \end{split}$$

• X and Y are independent if and only if $f_{XY}(x,y) = f_X(x)f_Y(y)$ for every x,y.

EXAMPLE

Let $(X, Y) \sim f_{XY}(x, y)$ where

$$f_{XY}(x,y) = \begin{cases} c & x \ge 0, \ y \ge 0, \ x+y \le 1 \\ 0 & otherwise. \end{cases}$$

- 1) Find *c*
- 2) Find $f_Y(y)$
- 3) Are X and Y independent?
- 4) Find $P(X \ge 0.5Y)$.
- 1) $1 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x, y) dx dy = \int_{0}^{1} \int_{0}^{1-y} c dx dy = c \int_{0}^{1} (1-y) dy = \frac{c}{2}$, hence, c = 2.
- 2) Use $f_Y(y) = \int_{-\infty}^{\infty} f_{XY}(x, y) dx$:

$$f_Y(y) = \left\{ egin{array}{ll} \int_0^{1-y} 2 \, dx & 0 \leq y \leq 1 \\ 0 & otherwise \end{array} \right. = \left\{ egin{array}{ll} 2(1-y) & 0 \leq y \leq 1 \\ 0 & otherwise \end{array} \right.$$

3) X and Y are independent iff $f_{XY}(x,y)=f_X(x)f_Y(y)$. Consider (x,y)=(0,1). Then $f_{XY}(0,1)=c=2$ but $f_X(0)f_Y(1)=0$ (since $f_Y(1)=0$). So X and Y are not independent.

4) To find the probability of the set $\{X \ge 0.5Y\}$. we first sketch it

From the figure we find that

$$P(X \ge 0.5Y) = \int_{\{(x,y): x \ge 0.5y\}} f_{XY}(x,y) \, dx \, dy$$
$$= \int_0^{\frac{2}{3}} \int_{\frac{y}{2}}^{1-y} 2 \, dx \, dy = \int_0^{\frac{2}{3}} (2 - 3y) \, dy$$
$$= \frac{2}{3}$$

Conditional CDF and pdf

• Let X and Y be continuous random variables with joint pdf $f_{XY}(x,y)$. We wish to define $F_{Y|X}(y|X=x) = P(Y \le y|X=x)$. We cannot define it as

$$\frac{P(Y \le y, X = x)}{P(X = x)}$$

because both numerator and denominator are equal to zero.

• Instead, we define conditional probability for continuous random variables as a limit (if $f_X(x) \neq 0$)

$$F_{Y|X}(y|X = x) = \lim_{\Delta x \to 0} P(Y \le y|x < X \le x + \Delta x)$$

$$= \lim_{\Delta x \to 0} \frac{P(Y \le y, \ x < X \le x + \Delta x)}{P(x < X \le x + \Delta x)}$$

$$= \lim_{\Delta x \to 0} \frac{\int_{-\infty}^{y} f_{XY}(x, u) du \, \Delta x}{f_{X}(x) \Delta x} = \frac{\int_{-\infty}^{y} f_{XY}(x, u) du}{f_{X}(x)}$$

• We then define the conditional pdf in the usual way as

$$f_{Y|X}(y|x) = \frac{\partial F_{Y|X}(y|X=x)}{\partial y} = \frac{f_{XY}(x,y)}{f_X(x)} \text{ if } f_X(x) \neq 0$$

We will write the above as $Y \mid \{X = x\} \sim f_{Y \mid X}(y \mid x)$

Example: Let $(X, Y) \sim f_{XY}(x, y)$ where

$$f_{XY}(x,y) = \begin{cases} 2 & x \ge 0, \ y \ge 0, \ x+y \le 1 \\ 0 & otherwise. \end{cases}$$

Find $f_{X|Y}(x|y)$

Earlier we derived the solution

$$f_Y(y) = \begin{cases} 2(1-y) & 0 \le y \le 1\\ 0 & otherwise \end{cases}$$

$$\Rightarrow f_{X|Y}(x|y) = \frac{f_{XY}(x,y)}{f_Y(y)} = \begin{cases} \frac{1}{1-y} & 0 \le y \le 1, \ 0 \le x \le 1-y \\ 0 & otherwise \end{cases}$$

That is, we have a uniform distribution: $X \mid \{Y = y\} \sim U[0, 1 - y]$

Expectation

• Let $(X, Y) \sim f_{XY}(x, y)$ and let g(x, y) be a function of x and y. The expectation (or expected value or mean) of g(X, Y) is given by

$$E\{g(X,Y)\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{XY}(x,y) \, dx \, dy$$

The function g(X, Y) may be $X, Y, X^2, X + Y$, etc.

• If X and Y are discrete, $(X, Y) \sim P_{XY}(x, y)$, then

$$E\{g(X,Y)\} = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} g(x,y) P_{XY}(x,y)$$

- The correlation of X and Y is defined as E{XY}.
- The covariance of X and Y is defined as

$$Cov(X, Y) = E\{(X - E\{X\})(Y - E\{Y\})$$

$$= E\{XY - XE\{Y\} - YE\{X\} + E\{X\}E\{Y\}\}$$

$$= E\{XY\} - E\{X\}E\{Y\}$$

Note that Cov(X, X) = Var(X).

Example: Let $(X, Y) \sim f_{XY}(x, y)$ where

$$f_{XY}(x,y) = \begin{cases} 2 & x \ge 0, \ y \ge 0, \ x+y \le 1 \\ 0 & otherwise. \end{cases}$$

Find $E\{X\}$, Var(X) and Cov(X, Y)

$$E\{X\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f_{XY}(x, y) \, dx \, dy$$
$$= \int_{0}^{1} 2x \left(\int_{0}^{1-x} dy \right) \, dx = 2 \int_{0}^{1} (1-x)x \, dx = 2(\frac{1}{2} - \frac{1}{3}) = \frac{1}{3}$$

Since $Var(X) = E\{X^2\} - (E\{X\})^2$, we need to find the second moment

$$E\{X^2\} = 2\int_0^1 (1-x)x^2 dx = 2(\frac{1}{3} - \frac{1}{4}) = \frac{1}{6}.$$

Hence, $Var(X) = \frac{1}{6} - \frac{1}{3^2} = \frac{1}{18}$

By symmetry $E\{Y\} = E\{X\} = \frac{1}{3}$. Thus the covariance of X and Y is

$$Cov(X, Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{XY}(x, y) dx dy - E\{X\} E\{Y\}$$

$$= \int_{0}^{1} 2x \left(\int_{0}^{1-x} y dy \right) dx - \frac{1}{3^{2}} = \int_{0}^{1} x (1-x)^{2} dx - \frac{1}{9}$$

$$= \frac{1}{12} - \frac{1}{9} = -\frac{1}{36}$$

Bounding Probability Using Expectation

- In many cases we do not know the distribution of an r.v. X but want to find the probability of an event such as $\{X>a\}$ or $\{|X-E\{X\}|>a\}$
- The Markov and Chebyshev inequalities give upper bounds on the probabilities of such events in terms of the mean and variance of the random variable
- Example: Let $X \geq 0$ represent the age of a person in the Atlanta Area. If we know that $E\{X\}=35$ years, what fraction of the population is ≥ 70 years old? Clearly we cannot answer this question knowing only the mean, but we can say that $P(X \geq 70) \leq 0.5$, since otherwise the mean would be larger than 35.
- This is an application of the Markov inequality

Markov Inequality

Markov inequality: For any r.v. $X \ge 0$ with finite mean $E\{X\}$ and any a > 0,

$$P(X \ge aE\{X\}) \le \frac{1}{a}$$

Proof:

$$E\{X\} = \int_0^\infty x f_X(x) \, dx \quad \text{since } X \ge 0$$

$$= \underbrace{\int_0^a x f_X(x) \, dx}_{\ge 0} + \int_a^\infty x f_X(x) \, dx$$

$$\ge \int_a^\infty x f_X(x) \, dx \ge \int_a^\infty a f_X(x) \, dx$$

$$= aP(X \ge a)$$

$$\Rightarrow P(X \ge a) \le \underbrace{E\{X\}}_2$$

• The Markov inequality can be very loose. If $X \sim \exp(1)$, then

$$P(X \ge 10) = e^{-10} \approx 4.54 \times 10^{-5}$$

The Markov inequality gives

$$P(X \ge 10) \le \frac{E\{X\}}{10} = \frac{1}{10}$$

which is very pessimistic.

• But it is the tightest possible bound on $P(X \ge aE\{X\})$ when we are given only the mean of X.

To show this, note that the inequality is tight for the following r.v.:

$$X = \begin{cases} aE\{X\} & \text{with probability } 1/a \\ 0 & \text{with probability } 1 - 1/a \end{cases}$$

Chebyshev Inequality

- Let X be a device parameter in an integrated circuit (IC) with known mean and variance. The IC is out-of-spec if X is more than, say, $3\sigma_X$ away from its mean. We wish to find the fraction of out-of-spec ICs, namely, $P(|X E\{X\}| > 3\sigma_X)$.

 The Chebyshev inequality gives us an upper bound on this fraction.
 - The Chebyshev inequality gives us an upper bound on this fraction in terms the mean and variance of X
- Chebyshev inequality: For any r.v. X with finite mean $E\{X\}$ and variance $Var(X) = \sigma_X^2$,

$$P(|X - E\{X\}| > a\sigma_X) \le \frac{1}{a^2}$$

Proof: We use the Markov inequality. Define $Y=(X-E\{X\})^2\geq 0$. Since $E\{Y\}=\sigma_X^2$, the Markov inequality gives

$$P(Y > a^2 \sigma_X^2) \le \frac{1}{a^2}.$$

But $\{Y > a^2 \sigma_X^2\}$ is equivalent to $\{|X - E\{X\}| > a\sigma_X\}$. Hence $P(|X - E\{X\}| > a\sigma_X) \le \frac{1}{2}$.

• An alternative form (Gubner p. 89) is $P(|Y| > a) \le E\{Y^2\}/a^2$ which follows from Markov: $P(|Y| > a) = P(|Y|^2 > a^2)$

• The Chebyshev inequality can be very loose. If $X \sim \mathcal{N}(0,1)$, then

$$P(|X| \ge 3) \approx 2Q(3) = 2 \times 10^{-3}$$

The Chebyshev inequality gives

$$P(|X| \ge 3) \le \frac{\sigma_X^2}{3^2} = \frac{1}{9}$$

which is very pessimistic compared to 2×10^{-3} .

• But it is the tightest possible bound on $P(|X - E\{X\}| > a\sigma_X)$ when we are given only the mean and variance of X.

To show this, note that the equality is achieved for the following r.v.:

$$X = \begin{cases} E\{X\} + a\sigma_X & \text{with probability } \frac{1}{2a^2} \\ E\{X\} - a\sigma_X & \text{with probability } \frac{1}{2a^2} \\ E\{X\} & \text{with probability } 1 - \frac{1}{a^2} \end{cases}$$

Chernoff Bound

Chernoff Bound: For any r.v. X with finite mean $E\{X\}$ and any a > 0,

$$P(X \ge a) \le \min_{s>0} \left[e^{-as} E\{e^{sX}\} \right]$$

Proof:

$$P(X \ge a) = P(sX \ge sa) \quad \text{for any } s \ge 0$$

$$= P\left(\underbrace{e^{sX}}_{Y} \ge \underbrace{e^{sa}}_{b}\right) \stackrel{Markov}{\le} \frac{E\{Y\}}{b} = e^{-as}E\{e^{sX}\}$$

The right-side is true for any $s \ge 0$; minimize it w.r.t. $s \ge 0$ to obtain the tightest bound.

 $M_X(s) = E\{e^{sX}\} = \int_{-\infty}^{\infty} e^{sx} f_X(x) dx$ is called the Moment Generating Function (mgf) of X. (Gubner p. 156). Here we allow s to be complex-valued, and notice that $M_X(-s)$ is the two-sided Laplace Transform of the pdf of X. Invoking the properties of the Laplace transform, one has one-to-one relationship between the pdf of X and mgf of X!4日)4周)4日)4日) 日

Example (p. 166): Consider $X \sim \exp(1)$. Find P(X > 7), and Markov, Chebyshev and Chernoff bounds.

Solution: Note that $E\{X\} = \lambda^{-1} = 1$, $var(X) = \sigma_X^2 = \lambda^{-2} = 1$ and $E\{X^2\} = 2\lambda^{-2} = 2$

- Exact: $P(X \ge 7) = \int_7^\infty e^{-x} dx = e^{-7} = 0.00091$
- Markov: $P(X > 7) < \frac{E\{X\}}{7} = \frac{1}{7} = 0.143$
- Chebyshev: $P(X \ge 7) = P(|X| \ge 7) \le \frac{E\{X^2\}}{7^2} = \frac{2}{40} = 0.041$
- Chernoff:

$$E\{e^{sX}\} = \int_0^\infty e^{sx} e^{-x} dx = \frac{e^{(s-1)x}}{s-1} \Big|_{x=0}^\infty = \frac{1}{1-s} \text{ if } 1-s > 0$$

Now $P(X \ge 7) \le \min_{0 \le s \le 1} g(s)$ where $g(s) = e^{-7s}/(1-s)$. We have

$$\frac{dg(s)}{ds} = \frac{(1-s)(-7e^{-7s}) - e^{-7s}(-1)}{(1-s)^2} = 0$$

$$\Rightarrow -6 + 7s = 0 \Rightarrow s = \frac{6}{7}$$

Hence, $P(X \ge 7) \le g(6/7) = 7e^{-6} = 0.017$

