

TEORIA OBLICZALNOŚCI

Marcin Piątkowski

Wykład 8

Język (problem) $L \subseteq \Sigma^*$ nazywamy **rozpoznawalnym** (**częściowo rozstrzygalnym**) jeśli istnieje maszyna Turinga, która go rozpoznaje (t.j. zatrzymuje się w stanie akceptującym dla wszystkich $x \in L$ i tylko dla nich).

Język (problem) $L\subseteq \Sigma^*$ nazywamy **rozpoznawalnym** (**częściowo rozstrzygalnym**) jeśli istnieje maszyna Turinga, która go rozpoznaje (t.j. zatrzymuje się w stanie akceptującym dla wszystkich $x\in L$ i tylko dla nich).

$$\mathcal{P}_{STOP} \ = \ \Big\{ \big(M, w \big) : \ \mathrm{maszyna} \ \mathrm{Turinga} \ M \ \mathrm{zatrzymuje} \ \mathrm{się} \ \mathrm{na} \ w \Big\}$$

Maszyna rozpoznająca \mathcal{P}_{STOP}

Symuluj działanie maszyny M na wejściu w

 \square Jeśli M zatrzyma się \implies akceptuj

Język (problem) $L\subseteq \Sigma^*$ nazywamy **rozpoznawalnym** (**częściowo rozstrzygalnym**) jeśli istnieje maszyna Turinga, która go rozpoznaje (t.j. zatrzymuje się w stanie akceptującym dla wszystkich $x\in L$ i tylko dla nich).

$$L_{STOP} = \left\{ \left(\langle M \rangle, w \right) : \text{ maszyna Turinga } M \text{ zatrzymuje się na } w \right\}$$

Maszyna rozpoznająca L_{STOP}

Symuluj działanie maszyny M na wejściu w

 \square Jeśli M zatrzyma się \implies akceptuj

Język (problem) $L\subseteq \Sigma^*$ nazywamy **rozpoznawalnym** (**częściowo rozstrzygalnym**) jeśli istnieje maszyna Turinga, która go rozpoznaje (t.j. zatrzymuje się w stanie akceptującym dla wszystkich $x\in L$ i tylko dla nich).

$$\mathcal{P}_{ACC} = \left\{ \left(M, w \right) : \text{ maszyna Turinga } M \text{ akceptuje } w \right\}$$

Maszyna rozpoznająca \mathcal{P}_{ACC}

Symuluj działanie maszyny M na wejściu w

I Jeśli M akceptuje $x \implies$ akceptuj

lacktriangledown Jeśli M odrzuca $x \implies \mathsf{petla}$ nieskończona

Rozstrzygalność vs częściowa rozstrzygalność

Zbiory rekurencyjnie przeliczalne

Zbiór $A \subseteq N^n$ nazywamy **rekurencyjnie przeliczalnym** jeśli jego częściowa funkcja charakterystyczna $cc_a: N^n \longrightarrow N$ określona:

$$cc_A(\overline{x}) = \begin{cases} 1 & \overline{x} \in A \\ \infty & \overline{x} \notin A \end{cases}$$

jest obliczalna

- √ Każdy zbiór rekurencyjny jest rekurencyjnie przeliczalny
- \checkmark $L_1 = \{(M, x) : \text{maszyna } M \text{ akceptuje slowo } x\}$ jest rek. przeliczalny
- \mathcal{X} $L_2 = \{(M, x) : \text{maszyna } M \text{ nie akceptuje słowa } x\}$ nie jest rek. przeliczalny Dopełnienie L_2 jest językiem rekurencyjnie przeliczalnym
- K $L_3 = \{x \in N : \phi_x \text{ jest totalna}\}$ nie jest rekurencyjnie przeliczalny Jego dopełnienie również nie jest językiem rekurencyjnie przeliczalnym

Zbiory rekurencyjnie przeliczalne

Zbiory rekurencyjnie przeliczalne

Twierdzenie

Język L jest rekurencyjnie przeliczalny wtedy i tylko wtedy, gdy istnieje maszyna Turinga M taka, że L=L(M)

Twierdzenie

Zbiór $A\subseteq N^n$ jest rekurencyjnie przeliczalny wtedy i tylko wtedy, gdy jest dziedziną pewnej funkcji obliczalnej

Twierdzenie

Dla ustalonego $n\geq 1$ zbiór wszystkich podzbiorów rekurencyjnie przeliczalnych $A\subseteq N^n$ jest zamknięty ze względu na **sumę** oraz **przekrój** zbiorów

Twierdzenie

Dla ustalonego $n\geq 1$ zbiór wszystkich podzbiorów rekurencyjnie przeliczalnych $A\subseteq N^n$ jest zamknięty ze względu na **sumę** oraz **przekrój** zbiorów

$$A, B \subseteq \mathbb{N}^n$$
 – rek. przeliczalne

 M_A – maszyna rozpoznająca A

 M_B – maszyna rozpoznająca B

Maszyna rozpoznająca $M_{A \cup B}(x)$

Uruchom "współbieżnie" M_A oraz M_B na x

I Jeśli M_A **lub** M_B akceptuje $x \implies$ **akceptuj**

Twierdzenie

Dla ustalonego $n\geq 1$ zbiór wszystkich podzbiorów rekurencyjnie przeliczalnych $A\subseteq N^n$ jest zamknięty ze względu na **sumę** oraz **przekrój** zbiorów

$$A, B \subseteq \mathbb{N}^n$$
 – rek. przeliczalne

$$M_A$$
 – maszyna rozpoznająca A

$$M_B$$
 – maszyna rozpoznająca B

Maszyna rozpoznająca $M_{A\cap B}(x)$

Uruchom "współbieżnie" M_A oraz M_B na x

I Jeśli M_A oraz M_B akceptują $x \implies$ akceptuj

Uwaga

Zbiory rekurencyjnie przeliczalne **nie są domknięte** ze względu na operację **dopełnienia**

$$L = \{(M, x) : \text{maszyna Turinga } M \text{ zatrzymuje się na słowie } x\}$$

$$\overline{L} = \{(M,x) : \text{ maszyna Turinga } M \text{ nie zatrzymuje się na słowie } x\}$$

Twierdzenie

Język L jest **rekurencyjny** wtedy i tylko wtedy, gdy zarówno język L jak i jego dopełnienie \overline{L} są **rekurencyjnie przeliczalne**

Twierdzenie

Język L jest **rekurencyjny** wtedy i tylko wtedy, gdy zarówno język L jak i jego dopełnienie \overline{L} są **rekurencyjnie przeliczalne**

$$L$$
 – rekurencyjny \implies rekurencyjnie przeliczalny \overline{L} – rekurencyjny \implies rekurencyjnie przeliczalny

Twierdzenie

Język L jest **rekurencyjny** wtedy i tylko wtedy, gdy zarówno język L jak i jego dopełnienie \overline{L} są **rekurencyjnie przeliczalne**

 M_1 – maszyna rozpoznająca L

 M_2 – maszyna rozpoznająca \overline{L}

Maszyna rozstrzygająca $M_L(x)$

 \square Uruchom "współbieżnie" M_1 oraz M_2 na x

 \square Jeśli M_1 akceptuje $x \implies$ akceptuj

I Jeśli M_2 akceptuje $x \implies \mathsf{odrzu\acute{c}}$

L oraz \overline{L} – para wzajemnie dopełniających się języków

- lacktriangle Oba języki L oraz \overline{L} są rekurencyjne
- L jest rekurencyjnie przeliczalny (ale nie rekurencyjny)
 L nie jest rekurencyjnie przeliczalny
- $\ \overline{L}$ jest rekurencyjnie przeliczalny (ale nie rekurencyjny) L nie jest rekurencyjnie przeliczalny
- 4 Żaden z języków L oraz \overline{L} nie jest rekurencyjnie przeliczalny

Hierarchia języków

Obcięcie funkcji

Funkcja g jest obcięciem funkcji f (ozn. $g \subseteq f$) jeżeli:

$$\forall_{\overline{x} \in \mathbf{N}^n} \ \overline{x} \in D_g \implies \overline{x} \in D_f \land g(\overline{x}) = f(\overline{x})$$

$$f(x) = \left\lfloor \frac{x}{2} \right\rfloor \implies D_f = \{0, 1, 2, 3, \ldots\}$$

$$g(x) = \frac{x}{2} \implies D_g = \{0, 2, 4, 6, \ldots\}$$

$$\implies D_g \subseteq D_f$$

$$\forall_{x \in D_g} g(x) = f(x)$$

Uniwersytet Mikołaja Kopernika Marcin Piątkowski

Twierdzenie Rice'a-Shapiro

Twierdzenie (Rice & Shapiro)

Niech \mathcal{A} będzie zbiorem funkcji obliczalnych takim, że zbiór ich indeksów $A = \{x \in \mathbf{N}: \phi_x \in \mathcal{A}\}$ jest rekurencyjnie przeliczalny. Wówczas $f \in \mathcal{A}$ wtedy i tylko wtedy, gdy istnieje skończona funkcja $\Theta \in \mathcal{A}$ taka, że $\Theta \subseteq f$.

$$\mathcal{A} = \{ \phi \in \mathcal{C}_n : \phi \text{ jest totalna} \}$$

 $^{oldsymbol{oldsymbol{arphi}}}$ \mathcal{A} nie zawiera żadnej funkcji skończonej

 \mathcal{A} zawiera funkcję f(x) = x, ale nie zawiera żadnego jej skończonego obcięcia

Zatem na mocy twierdzenia Rice'a-Shapiro zbiór ${\mathcal A}$ nie jest rekurencyjnie przeliczalny (problem " $\phi_{\scriptscriptstyle X}$ jest totalna" nie jest częściowo rozstrzygalny).

$$\overline{\mathcal{A}} = \{ \phi \in \mathcal{C}_n : \phi \text{ nie jest totalna} \}$$

 oxtimes ${\mathcal A}$ zawiera wszystkie funkcje skończone (również f_{\varnothing})

 $^{f oxed{L}}$ ${\cal A}$ nie zawiera żadnej funkcji o nieskończonej dziedzinie

Zatem na mocy twierdzenia Rice'a-Shapiro zbiór $\overline{\mathcal{A}}$ nie jest rekurencyjnie przeliczalny (problem " ϕ_X nie jest totalna" nie jest częściowo rozstrzygalny).

