Sistemi Elettronici, Tecnologie e Misure Appello del 3/7/2023

Nome:	
Cognome:	SOLUZIONE
Matricola:	

ATTENZIONE

- 1. Compilare subito questa pagina con nome, cognome e numero di matricola
- 2. Gli studenti del corso 05QXVOA (8 crediti, a.a. 2022/23) sono tenuti a rispondere solo ai primi quattro quesiti teorici a risposta multipla, gli studenti del corso 04QXVOA (10 crediti, a.a. 2021/22 e precedenti) sono tenuti a rispondere a tutti e sei i quesiti. Gli esercizi sono identici per i corsi 05QXVOA e 04QXVOA
- 3. Per i quesiti a risposta multipla, la risposta errata determina la sottrazione di un punteggio pari a metà del valore della risposta esatta
- 4. Riportare le risposte esatte dei quesiti a risposta multipla nella tabella posta all'inizio della relativa sezione
- 5. Le risposte ai vari quesiti vanno riportate **esclusivamente** nello spazio reso disponibile immediatamente dopo il quesito stesso
- 6. Si può fare uso di fogli di brutta bianchi resi disponibili a cura dello studente. La brutta non deve essere consegnata
- 7. Non si possono utilizzare libri, appunti o formulari

Domande a risposta multipla

	1	2	3	4	5	6
a	X		X			
b		X		X		
c					X	
d						X

Domande 1.-4. per tutti gli studenti (05QXVOA e 04QXVOA)

- 1. Un amplificatore differenziale fornisce in uscita una tensione $v_{\rm out}=10.5v^+-9.5v^-$. Le amplificazioni differenziale $(A_{d,dB})$ e di modo comune $(A_{cm,dB})$ sono:
 - (a) $A_{d,dB} = 20 \, dB, A_{cm,dB} = 0 \, dB$
 - (b) $A_{d,dB} = 10 \, dB, A_{cm,dB} = 0 \, dB$
 - (c) $A_{d,dB} = 0 \, dB, A_{cm,dB} = -10 \, dB$
 - (d) $A_{d,dB} = 0 \, dB, A_{cm,dB} = -20 \, dB$
- 2. Un transistore MOS con $\lambda \neq 0$ polarizzato in regione di saturazione si comporta per il piccolo segnale come:
 - (a) un generatore di tensione controllato in corrente con una resistenza in parallelo
 - (b) un generatore di corrente controllato in tensione con una resistenza in parallelo
 - (c) un generatore di corrente controllato in tensione con una resistenza in serie
 - (d) un generatore di tensione controllato in corrente ideale
- 3. Un amplificatore operazionale con guadagno in banda di 100 dB, prodotto banda-guadagno pari a 10MHz, resistenze d'ingresso e uscita trascurabili (cioè $R_{\rm in,d} \to \infty, R_{\rm in,cm} \to \infty, R_{\rm out} = 0$), è utilizzato in configurazione amplificatore invertente con amplificazione di tensione $A_{\rm v}=-3$. La banda dell'amplificatore invertente è pari a:
 - (a) 2.5 MHz (b) 3.3 MHz (c) 10 MHz (d) 250 kHz
- 4. Un amplificatore di transconduttanza è ottenuto collegando in cascata un amplificatore di transconduttanza con parametri $G_{\text{m,1}}$, $R_{\text{in,1}} \to \infty$ e $R_{\text{out,1}}$ finita e non nulla, ed un amplificatore di corrente descritto dai parametri $A_{i,2}$, $R_{\text{in},2}$ e $R_{\text{out},2}$, tutti finiti e non nulli. La transconduttanza complessiva G_m della cascata dei due stadi è data da:
 - (a) $G_{m,1}A_{i,2}$
 - (b) $G_{\mathrm{m,1}}A_{\mathrm{i,2}} \frac{R_{\mathrm{out,1}}}{R_{\mathrm{out,1}}+R_{\mathrm{in,2}}}$ (c) $G_{\mathrm{m,1}}A_{\mathrm{i,2}} \frac{R_{\mathrm{in,2}}}{R_{\mathrm{out,1}}+R_{\mathrm{in,2}}}$

 - (d) $G_{\text{m},1}A_{\text{i},2} \frac{R_{\text{out},1}}{R_{\text{out},1} + R_{\text{out},2}}$

Domande 5.-6. per i soli studenti del corso 04QXVOA (10 crediti, frequenza a.a. 2021/22 o precedenti)

- 5. In un amplificatore invertente basato su operazionale ideale, il resistore che collega il morsetto invertente al generatore d'ingresso è sostituito da un diodo, con catodo collegato al morsetto invertente e anodo collegato al generatore d'ingresso. Per $v_{\rm in}>0$ il circuito che si ottiene si comporta come
 - (a) integratore invertente
 - (b) amplificatore logaritmico invertente
 - (c) amplificatore esponenziale invertente
 - (d) derivatore invertente
- 6. In un circuito contenente un diodo semi-ideale con $V_{\gamma} = 0.5 \, {\rm V}$ si è fatta l'ipotesi che il diodo sia OFF. Per verificare l'ipotesi occorre:
 - (a) sostituire il diodo con un circuito aperto e verificare che $i_D < 0$
 - (b) sostituire il diodo con un generatore di tensione ideale $V_{\gamma} = 0.5 \,\mathrm{V}$ e verificare che $i_{\mathrm{D}} > 0$
 - (c) sostituire il diodo con un corto circuito e verificare che $v_{\rm D} < 0.5\,{\rm V}$
 - (d) sostituire il diodo con un circuito aperto e verificare che $v_{\rm D} < 0.5\,{\rm V}$

nMOS:
$$\beta_n=10$$
 mA/V², $V_{THn}=0.2$ V, $\lambda_n=0$

pMOS:
$$\beta_p=40$$
 mA/V², $V_{THp}=0.3$ V, $\lambda_p=0$

Tensioni DC:
$$V_{DD}=4.8\,\mathrm{V},\,V_A=1.2\,\mathrm{V},\,V_B=2\,\mathrm{V},\,V_C=0.8\,\mathrm{V},\,V_D=2.4\,\mathrm{V}$$

Resistori:
$$R_1=360\,\mathrm{k}\Omega,\,R_2=120\,\mathrm{k}\Omega,\,R_3=14\,\mathrm{k}\Omega,\,R_4=4\,\mathrm{k}\Omega,\,R_5=12\,\mathrm{k}\Omega$$

Condensatori:
$$C_1 = \frac{1}{2\pi} \mu F$$
, $C_2 = \frac{10}{2\pi} n F$

Con riferimento al circuito in figura:

- 1. verificare il funzionamento dei transistori in regione di saturazione e determinare i parametri di piccolo segnale nel punto di lavoro;
- 2. determinare, in condizioni di piccolo segnale, l'amplificazione di tensione $A_v = v_{\rm out}/v_{\rm in}$, la resistenza d'ingresso $R_{\rm in}$ e la resistenza di uscita $R_{\rm out}$, assumendo che entrambi i condensatori C_1 e C_2 si comportino come cortocircuiti alla frequenza del segnale applicato (disegnare il circuito equivalente e riportare sia l'espressione analitica sia i risultati numerici di A_v , $R_{\rm in}$ e $R_{\rm out}$);
- 3. determinare, in condizioni di piccolo segnale, l'espressione dell'amplificazione di tensione in frequenza $A_v(s)$ (riportare sia l'espressione analitica sia i risultati numerici)
- 4. disegnare il diagramma di modulo e fase di $A_v(s)$ trovata al punto precedente

Regione di funzionamento e Parametri di piccolo segnale Transistore nMOS

$$V_{\rm GSn} = V_{\rm A} - V_{\rm C} = 0.4 \, {\rm V}; \ V_{\rm SGn} - V_{\rm THn} = 0.2 \, {\rm V} > 0;$$

$$V_{\rm DSn} = V_{\rm B} - V_{\rm C} = 1.2 \, {\rm V} > V_{\rm SGn} - V_{\rm THn};$$

Non richiesto: $I_{\rm Dn}=0.2{\rm mA}$.

$$g_{\rm mn} = \beta_n \left(V_{\rm GSn} - V_{\rm THn} \right) = 2 \,\mathrm{mS}; \ r_0 = \infty$$

Regione di funzionamento e Parametri di piccolo segnale Transistore pMOS

$$V_{\text{SGp}} = V_{\text{D}} - V_{\text{B}} = 0.4 \,\text{V}; \ V_{\text{SGp}} - V_{\text{THp}} = 0.1 \,\text{V} > 0;$$

$$V_{\text{SDp}} = V_{\text{D}} = 2.4 \,\text{V} > V_{\text{SGp}} - V_{\text{THp}};$$

Non richiesto: $I_D = 0.2 \text{mA}$.

$$g_{\rm mp} = \beta_p \left(V_{\rm SGp} - V_{\rm THp} \right) = 4 \,\mathrm{mS}; \ r_0 = \infty$$

Analisi Stadio con C_1 e C_2 Corto-circuiti

Il circuito dato è formato da uno stadio a drain comune (degenere) in cascata e uno a source comune. Il condensatore in serie all'ingresso C_1 ha la funzione di tagliare la componente DC e attenuare le componenti a bassissima frequenza, mentre C_2 fa sì che lo stadio a drain comune sia degenere (basso guadagno) per le basse frequenze e non degenere (alto guadagno) a frequenze più alte che rappresentano la banda utile dell'amplificatore. Sostituendo C_1 e C_2 con dei cortocircuiti si ottiene l'equivalente in Figura (drain comune non degenere).

Figura 1: Circuito di piccolo segnale dello stadio con C_1 e C_2 corto-circuiti.

Primo stadio:

$$v_{\text{out},1} = -R_3 g_{\text{mn}} v_{\text{gs,n}}$$

Secondo stadio:

$$v_{\text{out}} = -R_5 g_{\text{mp}} v_{\text{sg,p}}$$

con

$$v_{\rm sg,p} = v_{\rm out} - v_{\rm out,1}$$
 \Rightarrow $v_{\rm out} = \frac{R_5 g_{\rm mp}}{1 + R_5 g_{\rm mp}} v_{\rm out,1}$

Per cui

$$A_{\rm v} = -\frac{g_{\rm mn}g_{\rm mp}R_3R_5}{1 + g_{\rm mp}R_5} = -27.4$$

Dato che il secondo stadio ha impedenza di ingresso infinita (non carica l'uscita del primo stadio) il guadagno totale è il prodotto dei guadagni dei due stadi:

$$A_{\rm v} = A_{\rm v,CS} A_{\rm v,CD} = -g_{\rm mn} R_3 \frac{g_{\rm mp} R_5}{1 + g_{\rm mp} R_5} = -28 \cdot 0.98 = -27.4$$

Le impedenze di ingresso e uscita sono:

$$R_{\rm in} = R_1 // R_2 = 360 \,\mathrm{k}\Omega // 120 \,\mathrm{k}\Omega = 90 \,\mathrm{k}\Omega$$

$$R_{\rm out} = R_5 / \frac{1}{q_{\rm mp}} = 12 \,\mathrm{k}\Omega / / 0.5 \,\mathrm{k}\Omega = 0.44 \,\mathrm{k}\Omega$$

Analisi Stadio in Frequenza

Mantenendo C_1 e C_2 si ottiene l'equivalente in Figura (drain comune non degenere e partizione in ingresso tra C_1 e $R_1/\!/R_2$.

Figura 2: Circuito di piccolo segnale dello stadio completo.

Analogamente al caso precedente, dato che il secondo stadio ha impedenza di ingresso infinita (non carica l'uscita del primo stadio) il guadagno totale è il prodotto dei guadagni dei due stadi per il prodotto di partizione in ingresso. Chiaramente, in questo caso occorre tenere conto della degenerazione di source del primo stadio:

$$A_{\rm v} = P_{\rm in} A_{\rm v,CS} A_{\rm v,CD} = \frac{sC_1 R_1 /\!/ R_2}{1 + sC_1 R_1 /\!/ R_2} \left(-\frac{g_{\rm mn} R_3}{1 + g_{\rm mn} Z} \right) \frac{g_{\rm mp} R_5}{1 + g_{\rm mp} R_5}$$

con

$$Z = \frac{R_4}{1 + sC_2R_4}$$

Per il calcolo completo si ha che il secondo stadio è identico al caso precedente, per cui

$$v_{\rm out} = \frac{R_5 \, g_{\rm mp}}{1 + R_5 \, g_{\rm mp}} \, v_{\rm out,1}$$

mentre per il primo stadio si ha

$$v_{\text{out},1} = -R_3 g_{\text{mn}} v_{\text{gs,n}}$$

con (come indicato in Figura)

$$v_{\rm gs,n} = v_{\rm in} \frac{sC_1R_1//R_2}{1 + sC_1R_1//R_2}$$

Per cui

$$A_{\rm v} = -\frac{g_{\rm mn}g_{\rm mp}R_3R_5}{1 + g_{\rm mp}R_5} \frac{s\left(s + \frac{1}{C_2R_4}\right)}{\left(s + \frac{1}{C_1(R_1/\!/R_2)}\right)\left(s + \frac{1 + g_{\rm mp}R_4}{C_2R_4}\right)}$$

L'amplificazione ha uno zero nell'origine (DC) e uno in $-1/C_2R_4$ corrispondente a una frequenza di $25\,\mathrm{kHz}$ e due poli, uno in $-1/C_1(R_1//R_2)$ corrispondente a una frequenza di circa $11\,\mathrm{Hz}$ e uno in $-(1+g_\mathrm{mp}R_4)/C_2R_4 = -1/C_2[R_4//(1/g_\mathrm{mp})]$ corrispondente a una frequenza di $225\,\mathrm{kHz}$. A frequenza nulla $A_\mathrm{v}=0$ (C_1 serie impone lo zero nell'origine), mentre a frequenza infinita $A_\mathrm{v}=-27.4$ (caso precedente con condensatori sostituiti da corto-circuiti), ovvero circa $28.8\,\mathrm{dB}$. Tra $11\,\mathrm{Hz}$ (primo polo) e $25\,\mathrm{kHz}$ (secondo zero) si può considerare C_1 come un corto-circuito e C_2 come un circuito aperto per cui si ha una cascata di un source comune con degenerazione e un drain comune, per cui l'amplificaionze vale

$$A_{\rm v} = -\frac{g_{\rm mn}R_3}{1 + g_{\rm mp}R_4} \frac{g_{\rm mp}R_5}{1 + g_{\rm mp}R_5} = -3.11 \cdot 0.98 = -3$$

ovvero circa 9.5 dB

Diagrammi di Bode

Diagramma di Bode di modulo, dB

Frequenza, Hz Diagramma di Bode di fase, gradi

Frequenza, Hz

Esercizio 2.

Nel circuito in figura $R_1 = \ldots = R_6 = R = 10 \text{ k}\Omega$, la dinamica di v_1 è (0,1) V, la dinamica di i_2 è (-100,100) μA e la dinamica di v_3 è (-3,3) V. Determinare:

- 1. l'espressione delle tensioni $v_{\text{OUT},1}$ e v_{OUT} in funzione degli ingressi v_1 , i_2 e v_3 e delle resistenze $R_1 \dots R_6$;
- 2. l'espressione delle correnti $i_{\text{OUT}1}$ e $i_{\text{OUT}2}$ in funzione degli ingressi v_1 , i_2 e v_3 e delle resistenze $R_1 \dots R_6$;
- 3. la minima dimanica della tensione di uscita richiesta agli amplificatori OP1 ed OP2 per funzionare in linearità con gli ingressi dati;
- 4. la minima dimanica d'ingresso di modo comune richiesta agli amplificatori OP1 ed OP2 per funzionare in linearità con gli ingressi dati.

1. Espressioni delle tensioni d'uscita:

$$\begin{split} v_{\mathrm{OUT},1} &= v_1 - R_1 \, i_2 = v_1 - R \, i_2 = v_1 - 10 \, \mathrm{k}\Omega \cdot i_2 \\ v_{\mathrm{OUT}} &= -\frac{R_6}{R_5} v_{\mathrm{OUT},1} + v_3 \frac{R_3 \| R_4}{R_2 + R_3 \| R_4} \left(1 + \frac{R_6}{R_5} \right) = -v_1 + R \, i_2 + \frac{2}{3} v_3 = -v_1 + 10 \, \mathrm{k}\Omega \cdot i_2 + \frac{2}{3} v_3 \end{split}$$

2. Espressioni delle correnti d'uscita:

$$\begin{split} i_{\mathrm{OUT1}} &= \left(v_{\mathrm{OUT},1} - v_3 \frac{R_3 \| R_4}{R_2 + R_3 \| R_4}\right) \frac{1}{R_5} - i_2 = \frac{v_1}{R} - 2i_2 - \frac{v_3}{3R} = 100 \,\mu\mathrm{S} \cdot v_1 \, - 2\,i_2 - 33.3 \,\mu\mathrm{S} \cdot v_3 \\ i_{\mathrm{OUT2}} &= -\left(v_{\mathrm{OUT},1} - v_3 \frac{R_3 \| R_4}{R_2 + R_3 \| R_4}\right) \frac{1}{R_5} = -\frac{v_1}{R} + i_2 + \frac{v_3}{3R} = -100 \,\mu\mathrm{S} \cdot v_1 \, + i_2 + 33.3 \,\mu\mathrm{S} \cdot v_3 \end{split}$$

3. Minima dinamica delle tensioni d'uscita di OP1 e OP2

$$\Delta V_{\text{OUT},1} \supset (-1,2) \text{ V}$$

 $\Delta V_{\text{OUT},2} \supset (-4,3) \text{ V}$

4. Minima dinamica d'ingresso di modo comune di OP1 e OP2

$$\Delta V_{\mathrm{CM},1} \supset (0,1) \, \mathrm{V}$$

 $\Delta V_{\mathrm{CM},2} \supset (-1,1) \, \mathrm{V}$