Funktionalanalysis für TM

Übungsaufgaben zu:

"Lecture 34 – Spektralmaße"

34/1: Sei E ein Spektralmaß. Zeige, dass der Operator $\int \phi dE$ genau dann kompakt ist, wenn

$$\forall r > 0$$
: dim ran $E(\{w \in \mathbb{C} : |\phi(w)| \ge r\}) < \infty$.

- 34/2: Sei μ ein endliches positives Maß auf (Ω, \mathcal{A}) , und sei $E(\Delta) := M_{\mathbb{1}_{\Delta}} \in \mathcal{B}(L^2(\mu))$ wobei $M_{\mathbb{1}_{\Delta}}$ der Multiplikationsoperator mit $\mathbb{1}_{\Delta}$ ist (d.h. $M_{\mathbb{1}_{\Delta}}f = \mathbb{1}_{\Delta} \cdot f$). Zeige, dass E ein Spektralmaß ist, und berechne $\int \phi \, dE$ für $\phi \in \mathrm{BM}(\Omega, \mathbb{C})$.
- 34/3: Sei E ein Spektralmaß auf den Borelmengen von \mathbb{R} welches kompakten Träger hat, und sei [a,b] ein kompaktes Intervall [a,b] dessen Komplement eine E-Nullmenge ist. Definiere $E_{\lambda}: \mathbb{R} \to \mathcal{B}(H)$ als $E_{\lambda}:=E((-\infty,\lambda])$.

Sei $\phi \in BM(\mathbb{R}, \mathbb{C})$ mit $\phi|_{[a,b]}$ stetig. Zeige, dass der Limes (das Riemann-Stieltjes Integral)

$$\lim_{|\mathcal{R}| \to 0} \sum_{j=1}^{n(\mathcal{R})} \phi(\alpha_j) \left(E_{\xi_j} - E_{\xi_{j-1}} \right),$$

wobei die Riemannzerlegung \mathcal{R} des Intervalles [a,b] die Stützstellen ξ_j und die Zwischenstellen α_j hat, bezüglich der Operatornorm existiert und gleich der (wie in der Vorlesung definierte) Operator $\int (\phi|_{[a,b]}) dE$ ist.