Aluminium - Cerium - Iron

Bernd Grieb, updated by Alexander Pisch

Literature Data

The first investigation in this ternary system was made in 1925 by Meißner [1925Mei] to describe the "clear-cross method" of Guertler in practical examples when Ce is added to Al-Fe alloys. [1969Zar] examined the ternary system with 106 alloys from 0 to 33.3 at.% Ce using X-ray structural analysis. [1988Sok] studied the phase behavior of 75 to 100 at.% Al at 550°C using X-ray structural analysis. An isothermal section for the Al-rich corner at the same temperature is presented by [1992Rae] without specifying sample preparation details and the purity of the starting materials. Their results are in good agreement. Solid solutions of Al in binary Ce-Fe phases became of interest with a view to obtaining a material with good permanent magnetic properties after the discovery of rare-earth metal (R)-transition metal (TM) magnets. [1985Fra] published lattice parameters and magnetic properties of alloys along CeFe₂-CeAl₂. [1998Kuc, 2000Kny] measured the structural, magnetic and optical properties of a Ce₂Fe_{15 3}Al₁₇. Samples were prepared by levitation melting in an induction furnace, annealed at 1000°C for 8h and analyzed by X-ray diffraction and a vibrating sample magnetometer. No information of the purity of the starting material is given. The structural and magnetic properties of RE₂Fe_{17-x}Al_x phases have been reviewed and compared by [2002Ram] A new ternary phase with the composition Ce₆Fe₁₁Al₃ has been discovered recently [1992Hu]. The sample has been prepared by melting the elements (Ce, Fe 3N purity, Al 5N) followed by an anneal for 120h at 600 - 800°C wrapped in Mo foil and sealed in quartz. The water quenched samples have been investigated by XRD and Mössbauer spectroscopy to determine the magnetic properties. The structure and magnetic properties of CeFe₂Al₈ have been studied by low temperature neutron diffraction [2001Kol] and Mössbauer spectroscopy by [2000Tam, 2001Kol]. No magnetic ordering of this compound has been detected. Ce enhances the mechanical properties of Fe-Al alloys. Because of the very limited solid solubility of transition metals and rare-earth elements in Al rapid solidification processing of Al alloys with Fe and Ce is necessary to avoid intermetallic compounds. [1986Ang, 1986Fie, 1986Jha, 1987Yan, 1988Aye, 1988Sok, 1998Fas, 2000Cha, 2002Zha] produced and investigated rapidly solidified Al-Ce-Fe alloys and found besides binary Fe-Al phases, stable and metastable ternary phases. Enthalpies of formation of three-component liquid alloys were published by [1984Esi].

This evaluation proceeds that of [1991Gri] and integrates the substantial amount of data published since then.

Binary Systems

The Al-Fe binary system has been taken from [2003Pis]. [1996Sac] revised the Al-Ce system and their diagram is accepted. The Al-rich compound in the Al-Ce system, previously reported as CeAl₄, is now known to have the Ce₃Al₁₁ stoichiometry. The composition CeAl₄ taken by [1969Zar] is corrected to Ce₃Al₁₁ in the ternary evaluation and in Fig. 1. Ce-Fe is accepted from [Mas].

Solid Phases

The ternary phase CeFe₄Al₈ (τ_1) has been studied in detail [1961Gla, 1962Zar, 1969Zar, 1974Viv, 1976Bus]. [1969Zar] found additionally the ternary phases CeFe₂Al₁₀ (τ_2), CeFe₂Al₇, CeFe_{1-1.4}Al_{1-0.6} and a solid solution of Al in the binary Ce₂Fe₁₇ compound with a maximum Al-content of about 60 at.% and having a Th₂Ni₁₇ type structure. CeFe₂Al₁₀ (τ_2) is iso-structural to YbFe₂Al₁₀ [1998Thi]. The lattice parameters of the τ_3 Ce₆Fe₁₁Al₃ ternary compound has been determined by [1992Hu]. This compound has a La₆Fe₁₁Ga₃ type structure. The structures of CeFe₂Al₇, and CeFe_{1-1.4}Al_{1-0.6} were not determined. The ternary phase CeFe₂Al₇ is possibly identical to τ_1 CeFe₂Al₈, observed and investigated by [1974Yar]. According to [1971Oes], the compounds of the composition RFeAl with light rare-earths show a two phase region of *cF*24 (MgCu₂) type together with an unidentified second phase, as opposed to all alloys RFeAl

MSIT[®]
Landolt-Börnstein
New Series IV/11A1

with heavy rare-earths which form a single phase of the hexagonal hP12 (MgZn₂) structure type. The formation of successive types of the Laves phase family in the pseudobinary system RFe₂-RAl₂ seems to be connected with Fermi surface-Brillouin zone interactions. It is not completely understood, however, why this does not hold for light and heavy rare-earth elements together, but it is likely that the larger size and higher valencies of the former may contribute to their exceptional behavior. [1985Fra] suggests that the solubility limit for the formation of the pure MgCu₂ type structure for Ce(Fe_{1-x}Al_x)₂ may be placed near x = 0.125. [1986Ang] found five dispersed phases in the as-extruded Al-8.8Fe-3.7Ce and Al-8.9Fe-6.9Ce alloys; metastable FeAl₆, two metastable Al-Ce-Fe phases and the equilibrium phases Fe₄Al₁₃ and CeFe₂Al₁₀. The unit cell of one of the metastable ternary phases was observed as orthorhombic. [1987Yan] produced a metastable icosahedral phase in rapidly cooled Al-8.8Fe-3.3Ce. In addition [1988Aye] found two compounds τ_2 CeFe₂Al₁₀ and CeFe₅Al₂₀ in the as-extruded conditions. CeFe₅Al₂₀ is described as decagonal quasicrystal. The known structure types and crystal parameters of all described solid phases are listed in Table 1. The ternary phase CeFe₂Al₈ listed by [V-C] with the source [1980Zar] is not described in the latter paper. [1980Zar] investigated the phase CeCo₂Al with structure type CeFe₂Al₈. The lattice parameters in [V-C] are those of CeCo₂Al₈.

Invariant Equilibria

The formation of τ_2 follows the peritectic reaction $\text{Ce}_3\text{Al}_{11}+\text{L} = \tau_2$. The formation temperature is 940°C [1988Sok].

Isothermal Sections

The investigation of [1925Mei] is rather sketchy and incorrect in the region up to 33.3 at.% Ce. The results of [1969Zar] confirmed several ternary compounds and solid solution of Al in Ce_2Fe_{17} . Figure 1 shows the phase equilibria of the ternary system at 500°C with a maximum Ce content of 33.3 at.%. CeFe₂ is printed by [1969Zar] as α phase with no Al solubility. This is corrected in the figure after the results of [1985Fra]. The phase, $CeFe_{1-1.4}Al_{1-0.6}$, detected by [1969Zar] is plotted, but it is necessary to point out the conflict with the results of [1971Oes] as described above. The phase $CeFe_2Al_7$ of [1969Zar] is printed with the composition τ_1 $CeFe_2Al_8$ as in [1974Yar]. At 550°C for Al concentration of 75 to 100 at.% [1988Sok] found the two-phase regions $Al+\tau_2$ ', $Al+FeAl_3$, $Al+Ce_3Al_{11}$ and the tree phase regions $Al+\tau_2+FeAl_3$ and $Al+\tau_2+Ce_3Al_{11}$. The ternary compound is not observed in quenched material. The isothermal section in the Al-rich corner at 550°C as presented by [1992Rae] is identical to Fig. 1.

Temperature – Composition Sections

[1988Sok] published two isopleths. One describes the section between Ce_3Al_{11} and Fe_4Al_{13} , the second between Al and $CeFe_2Al$ (Fig. 2). The isopleth is taken only partially because the shape of the lines with less than 97.8 at.% Al is estimated. The results are based on thermal analysis. The isopleth between Ce_3Al_{11} and Fe_4Al_{13} is not accepted because of inconsistency with the accepted binary Al-Ce.

Notes on Materials Properties and Applications

Magnetic properties of τ_2 CeFe₄Al₈ samples have been determined and analyzed by [1998Sch, 2000Hag, 2000Sik, 2001Gac] using neutron diffraction, specific heat and Mössbauer measurements. The magnetic properties of a series of Ce₂Fe_{17-x}Al_x solid solutions with x equal to 0.0, 0.88, 2.06, 2.80, 3.98, 5.15, 6.08, 7.21, 8.20, 9.08, 9.84, and 10.62 have been studied by magnetic measurements, neutron diffraction, and Mössbauer spectroscopy by [1996Mis] and with $8 \le x \le 13$ by susceptibility, magnetization and heat capacity measurements by [2000Kon]. The Curie temperature increases from 238 K in Ce₂Fe₁₇ to a maximum of 284 K in Ce₂Fe₁₄Al₃. The Ce₂Fe_{17-x}Al_x solid solutions behave as spin glasses for x greater than 7 [1996Mis]. The magnetic moment of Ce₂Fe_{15.3}Al_{1.7} has been measured as $M_s = 25.68 \mu_B$ [2001Kny]. The origin for the magnetism of τ_2 CeFe₂Al₁₀ is the mixed Ce³⁺/Ce⁴⁺ valence [1998Thi]. Ce(Fe,Al)₂ with an aluminium content of 6 at.% has a Curie temperature of 160K and a Néel temperature of 136K [1997Fer]. The hydrogen storing capabilities of Ce(Fe,Al)₂ have been investigated by [1997Spa],

Landolt-Börnstein
New Series IV/11A1

MSIT®

their magnetic properties by [1997Fer]. [2000Cha] investigated $Ce(Fe_{1-x}Al_x)_2$ samples with X-ray absorption spectroscopy (XAS) and confirmed the mixed valence of Ce upon Fe substitution to be the origin of the anomalous magnetic behavior in this alloy.

References

- [1925Mei] Meissner, K.L. "Some Examples of the Practical Use of the Clear-Cross Method" (in German), *Metall und Erz.*, **22**, 243-247 (1925) (Experimental, Equi. Diagram, 9)
- [1958Tay] Taylor, A., Jones, R.M., "Constitution and Magnetic Properties of Iron-Rich Iron-Aluminium Alloys", *J. Phys. Chem. Solids*, **6**, 16-37 (1958) (Crys. Structure, Experimental)
- [1961Lih] Lihl, F., Ebel, H., "X-Ray Examination fo the Constitution of Iron-Rich Alloys of the Iron-Aluminium System" (in German), *Arch. Eisenhuettenwesen*, **32**, 483-487, (1961) (Crys. Structure, Experimental)
- [1961Gla] Gladyshevsky, E.I., Zarechnyuk, O.S., Teslyuk, M.Yu., Zarechnyuk, O.S., Kuz'ma, Yu.B., "Crystal Structures of some Intermetallic Compounds" (in Russian), *Kristallografiya*, **6**, 267-268 (1961) (Experimental, Crys. Structure, 11)
- [1962Zar] Zarechnyuk, O.S., Zarechnyuk, O.S., "The Crystal Structure of Ternary Compounds in the System Ce-Transition Metal-Al" (in Russian), *Kristallografiya*, 7, 543-554 (1962) (Experimental, Crys. Structure, 9)
- [1969Zar] Zarechnyuk, O.S., Mys'kiv, M.G., Ryabov, V.R., "X-Ray Diffraction Study of the Phase Composition of Ce-Fe-Al Alloys Containing up to 33.3 at.% Ce", translated from *Izv. Akad. Nauk SSSR, Met.*, **2**, 164-166 (1969) (Experimental, Crys. Structure, Equi. Diagram, #, *, 9)
- [1971Oes] Oesterreicher, H., "Structural Studies of Rare-Earth Compounds RFeAl", *J. Less-Common Met.*, **25**, 341-342 (1971) (Experimental, Crys. Structure, 6)
- [1974Viv] Vivchar, O.I., Zarechnyuk, O.S., "Compounds with the ThMn₁₂ type Structure in R-Fe-Al Systems" (in Russian), *Tezisy Dokl. Vses. Konf. Kristallokhim.*, Rykhal, R.M., (Ed.), "Intermetalicheskie Soedineniya", **2**nd, 41, (1974) (Experimental, Crys. Structure, 0)
- [1974Yar] Yarmolyul, Ya.P., Rykhal, R.M., Zarechnyuk, O.S., "Crystal Structure of CeFe₂Al₈ and LaCoAl₄" (in Russian), *Tezisy Dokl. Vses. Konf. Kristallokhim.*, Rykhal, R.M., (Ed.), "Intermetalicheskie Soedineniya", **2**nd, 39-40 (1974) (Experimental, Crys. Structure, 0)
- [1976Bus] Buschow, K.H.J., van Vucht, J.H.N., van den Hoogenhof, W.W., "Note on the Crystal Structure of the Ternary Rare-Earth-3d Transition Metal Compounds of the Type RT₄Al₈", J. Less-Common Met., **50**, 145-150 (1976) (Experimental, Crys. Structure, 2)
- [1980Zar] Zarechnyuk, O.S., Rykhal, R.M., Korin, V.V., "X-Ray Study of the Cerium-Cobalt-Aluminium Ternary System Alloys in the Range of 0 to 33.3 at.% of Cerium" (in Russian), *Dop. Akad. Nauk Ukrain. RSR, Ser. A. Fiz.-Mat. Tekh. Nauki*, **42**, 84-85 (1980) (Experimental, Crys. Structure, 8)
- [1984Esi] Esin, Yu.O., Pletneva, E.D., Ermakov, E.D., Valishov, M.G., "Enthalpy of Formation of Three-Component Liquid Alloys Fe-Ce-Si and Fe-Ce-Al" (in Russian), *Izv. VUZ Chern. Metall.*, **12**, 1-4 (1984) (Experimental, Thermodyn., 15)
- [1985Fra] Franceschini, D.F., da Cunha, S.F., "Magnetic Properties of Ce(Fe_{1-x}Al_x)₂ for $x \le 0.20$ ", *J. Magn. Magn. Mater.*, **51**, 280-290 (1985) (Experimental, Crys. Structure, Magn. Prop., 13)
- [1986Ang] Angers, L., "Particle Coarsening in Rapidly Solidified Al-Fe-Ce Alloys", *Diss. Abstr. Int.*, **46**, 288 (1986) (Experimental, Crys. Structure, 0)
- [1986Fie] Field, R.D., Zindel, J.W., Fraser, H.L., "The Intercellular Phase in Rapidly Solidified Alloys Based on the Al-Fe System", *Scr. Metall.*, **20**, 415-418 (1986) (Experimental, Crys. Structure, 8)
- [1986Gri] Griger, A., Syefaniay, V., Turmezey T., "Crystallographic Data and Chemical Compositions of Aluminum-Rich Al-Fe Intermetallic Phases", *Z. Metallkd.*, 77, 30-35 (1986) (Equi. Diagram, Crys. Structure, Experimental)

MSIT[®]
Landolt-Börnstein
New Series IV/11A1

- [1986Jha] Jha, S.C., Sanders, Jr., T.H., "Microstructure of Melt-Spun Al-Fe and Al-Fe-Ce Alloys", The Metallurgical Society/AIME, Warrendale, Pennsylvania 15086, USA, 243-254 Accession Number: **86**(12), 72-498 (1986)
- [1987Yan] Yang, L.Y., Zhao, J.G., Zhan, W.S., "Icosahedral Phase in Rapidly Cooled Al-Fe-Ce Alloy", *J. Phys. F: Met. Phys.*, **17**, L97-L99 (1987) (Experimental, Crys. Structure, 13)
- [1988Aye] Ayer, R., Angers, L.M., Mueller, R.R., Scanlon, J.C., Klein, C.F., "Microstructural Characterization of the Dispersed Phases in Aluminium-Cerium-Iron System", *Metall. Trans. A*, **19A**, 1645-1656 (1988) (Experimental, Crys. Structure, Equi. Diagram, 17)
- [1988Gsc] Gschneidner, Jr. K.A., Calderwood, F.W., "The Aluminum-Cerium (Al-Ce) System", *Bull. Alloy Phase Diagrams*, **9**, 669-672, (1988) (Equi. Diagram, Review, 35)
- [1988Sok] Sokolovskaya, E.M., Kazakova, E.F., Filippova, A.A., "Phase Diagrams of Equilibrium and Fast-Quenched Al-Fe-Ce Alloys", *Russ. Metall.*, 1988 (2), 201-203 1988, translated from *Izv. Akad. Nauk SSSR, Met.*, **2**, 209-210 (1988) (Experimental, Crys. Structure, Equi. Diagram, #, *, 3)
- [1991Gri] Grieb, B., "Aluminium Cerium Iron", MSIT Ternary Evaluation Program, in *MSIT Workplace*, Effenberg, G. (Ed.), MSI, Materials Science International Services GmbH, Stuttgart; Document ID: 10.16414.1.20, (1991) (Crys. Structure, Equi. Diagram, Assessment, 17)
- [1992Hu] Hu, B.P., Coey, J.M.D., Klesnar, H., Rogl, P., "Crystal Structure, Magnetism and ⁵⁷Fe Moesbauer Spectra of Ternary RE₆Fe₁₁Al₃ and RE₆Fe₁₃Ge Compounds", *J. Magn. Magn. Mater.*, **117**, 25-231 (1992) (Crys. Structure, Experimental, Magn. Prop., Moessbauer, 14)
- [1992Rae] Raevskaya, M.V., Tatarkina, A.L., Filippova, A.A., "Phase Equilibria in Systems Formed by Aluminum with Iron, Palladium and Cerium", *Russ. Metall.(Engl. Transl.)*, **6**, 161-165 (1992) (Crys. Structure, Equi. Diagram, Experimental, 18)
- [1993Kat] Kattner, U.R., Burton, B.P., "Aluminum-Iron" in *Phase Diagrams of Binary Iron Alloys*, ASM, Metals Park, OH, 12-28 (1993) (Crys. Structure, Equi. Diagram, Review, Magn. Prop., Thermodyn., 99)
- [1994Bur] Burkhardt, U., Grin, J., Ellner, M., Peters, K., "Structure Refinement of the Iron-Aluminium Phase with the Approximate Composition Fe₂Al₅", *Acta Crystallogr., Sect. B: Struct. Crystallogr. Crys. Chem.*, **B50**, 313-316 (1994) (Crys. Structure, Experimental, 9)
- [1994Gri] Grin, J., Burkhardt, U., Ellner, M., Peters, K., "Refinement of the Fe₄Al₁₃ Structure and its Relationship to Quasihomological Homotypical Structures", *Z. Kristallogr.*, **209**, 479-487 (1994) (Crys. Structure, Experimental, 39)
- [1996Mis] Mishra, S.R., Long, G.J., Pringle, O.A., Hu, Z., Yelon, W.B., Middleton, D.P., Buschow, K.H.J., Grandjean, F., "A Magnetic Neutron Diffraction, and Mossbauer Spectral Study of the Ce₂Fe_{17-x}Al_x Solid Solutions", *J. Appl. Phys.*, **79**(8), 5945 (1996) (Abstract, Crys. Structure, Experimental, 0)
- [1996Sac] Saccone, A., Cardinale, A.M., Delfino, S., Ferro, R., "Phase Equilibria in the Rare Eearth Metals (R)-Rich Regions of the R-Al Systems (R=La, Ce, Pr, Nd)", *Z. Metallkd.*, **87**(2), 82-87 (1996) (Equi. Diagram, Cryst. Structure, Experimental, 18)
- [1997Fer] Fernandez, G.E., Gomez-Berisso, M., Trovarelli, O., Sereni, J.G., "Comparative Study of the Ferro-Antiferromagnetic Transition in Ce(Fe, Co) and Ce(Fe, Al)₂", *J. Alloys Compd.*, **261**, 26-31 (1997) (Experimental, Magn. Prop., Thermal Conduct., Thermodyn., 41)
- [1997Kog] Kogachi, M., Haraguchi, T., "Quenched-in Vacansies in B2-Structured Intermetallic Compound FeAl", *Mater. Sci. Eng. A*, **A230**, 124-131 (1997) (Crys. Structure, Experimental, 23)
- [1997Spa] Spatz, P., Gross, K.J., Zuettel, A., Schlapbach, L., "Hydriding Properties of Ce(Mn,Al)₂ and Ce(Fe,Al)₂ Intermetallic Compounds", *J. Alloys Compd.*, **260**, 211-216 (1997) (Crys. Structure, Experimental, 10)
- [1998Ali] Aliravci, C.A., Pekgueleryuez, M.O., "Calculation of Phase Diagrams for the Metastable Al-Fe Phases Forming in Direct-Chill (DC)-Cast Aluminium Alloy Ingots", *Calphad*, **22**, 147-155 (1998) (Calculation, Equi. Diagram, 20)

Landolt-Börnstein
New Series IV/11A1

MSIT®

[1998Kuc] Kuchin, A.G., Ermolenko, A.S., Khrabrov, V.I., "Magnetic State of Pseudobinary Alloys Lu₂Fe_{15.3}M_{1.7} and Ce₂Fe_{15.3}M_{1.7} (M = Si and Al)", *Phys. Met. Metallogr. (Engl. Transl.)*, **86**(3), 276-280 (1998) (Crys. Structure, Experimental, 0)

- [1998Thi] Thiede, V.M.T., Ebel, T., Jeitschko, W., "Ternary Aluminides LnT₂Al₁₀(Ln =Y, La-Nd, Sm, Cd-Lu and T=Fe,Ru,Os) with YbFe₂Al₁₀ Type Structure and Magnetic Properties of the Iron-Containing Series", *J. Mater. Chem.*, **8**(1), 125-130 (1998) (Crys. Structure, Experimental, Magn. Prop., 31)
- [1998Sch] Schobinger-Papamantellos, P., Buschow, K.H.J., Ritter, C., "Magnetic Ordering and Phase Transitions of RFe₄Al₈ (R = La, Ce, Y, Lu) Compounds by Neutron Diffractioin", *J. Magn. Magn. Mater.*, **186**, 21-32 (1998) (Crys. Structure, Experimental, Magn. Prop., 13)
- [1998Fas] Fass, M., Eliezer, D., Aghion, E., Froes, F.H., "Hardening and Phase Stability in Rapidly Solidified Al-Fe-Ce Alloys", *J. Mater. Sci.*, **33**(3), 833-837 (1998) (Equi. Diagram, Experimental, Mechan. Prop., 22)
- [1999Dub] Dubrovinskaia, N.A., Dubrovinsky, L.S., Karlsson, A., Saxena, S.K., Sundman, B., "Experimental Study of Thermal Expansion and Phase Transformations in Iron-Rich Fe-Al Alloys", *Calphad*, **23**(1), 69-84 (1999) (Equi. Diagram, Experimental, 14)
- [2000Kon] Konishi, K., Kamimori, T., Tange, H., Deguchi, H., Kawae, T., Takeda, K., "Magnetic Properties of Heavy Fermion Compounds Ce₂Fe_{17-x}Al_x", *Physica B*, **284-288**, 1275-1276 (2000) (Experimental, Magn. Prop., 6)
- [2000Kny] Knyazev, Yu.V., Kuchin, A.G., Kuz'min, Yu.I., "Optical Properties of Intermetallic Compounds Ce₂Fe₁₇ and Ce₂Fe_{15.3}M_{1.7} (M = Al, Si)", *Phys. Met. Metallogr.*, **89**(6), 558-562 (2000) (Crys. Structure, Experimental, Magn. Prop., Optical Prop., 16)
- [2000Tam] Tamura, I., Mizushima, T., Isikawa, Y., Sakurai, J., "Moessbauer Effect and Magnetization Studies of CeFe₂Al₈ and LaFe₂Al₈", *J. Magn. Magn. Mater.*, **220**, 31-38 (2000) (Crys. Structure, Experimental, Moessbauer, 4)
- [2000Sik] Sikora, W., Schobinger-Papamantellos, P., Buschow, K.H.J., "Symmetry Analysis of the Magnetic Ordering in RFe₄Al₈ (R=La, Ce, Y, Lu and Tb) Compounds (II)", *J. Magn. Magn. Mater.*, **213**, 143-156 (2000) (Calculation, Crys. Structure, Magn. Prop., 8)
- [2000Cha] Chaboy, J., Piquer, C., Garcia, L.M., Bartolome, F., Wada, Maruyama, H., Kawamura, N., "X-Ray Absorption Spectroscopy Study of the Instability of Ferromagnetism in CeFe₂: Effects of Co and Al Substitutions", *J. Appl. Phys.*, **87**(9), 6809-6811 (2000) (Magn. Prop., 11)
- [2000Hag] Hagmusa, I.H., Brueck, E., de Boer, F.R., Buschow, K.H.J., "A Specific-Heat Study of some RFe₄Al₈ Compounds (R = Ce, Pr, Nd, Dy, Ho, Tm)", *J. Alloys Compd.*, **298**, 77-81 (2000) (Crys. Structure, Experimental, Thermodyn., 16)
- [2001Gac] Gaczynski, P., Vagizov, F.G., Suski, W., Kotur, B., Iwasieczko, W., Drulis, H., "Magnetic and Hyperfine Interaction in RFe₄Al₈ (R = Ce, Sc) Compounds", *J. Magn. Magn. Mater.*, **225**, 351-358 (2001) (Crys. Structure, Experimental, Magn. Prop., Moessbauer, 15)
- [2001Ike] Ikeda, O., Ohnuma, I., Kainuma, R., Ishida, K., "Phase Equilibria and Stability of Ordered BCC Phases in the Fe-Rich Portion of the Fe-Al System", *Intermetallics*, **9**, 755-761 (2001) (Equi. Diagram, Experimental, Mechan. Prop., 18)
- [2001Kny] Knyazev, Yu.V., Kuchin, A.G., Kuz'min, Yu.I., "Optical Conductivity and Magnetic Parameters of the Intermetallic Compounds R₂Fe_{17-x}M_x (R = Y, Ce, Lu; M = Al, Si)", *J. Alloys Compd.*, **327**, 34-38 (2001) (Crys. Structure, Experimental, Magn. Prop., Optical Prop., 23)
- [2001Kol] Kolenda, M., Koterlin, M.D., Hofmann, M., Penc, B., Szytula, A., Zygmunt, A., Zukrowski, J., "Low Temperature Neutron Diffraction Study of the CeFe₂Al₈ Compound", *J. Alloys Compd.*, **327**, 21-26 (2001) (Crys. Structure, Experimental, Magn. Prop., 10)
- [2002Ram] Rama Rao, K.V.S., Ehrenberg, H., Markandeyulu, G., Varadaraju, U.V., Venkatesan, M., Suresh, K.G., Murthy, V.S., Schidt, P.C., Fuess, H., "On the Structural and Magnetic Properties of $R_2Fe(_{17-x})(A,T)_x$ ($R=Rare\ Earth;\ A=Al,\ Si,\ Ga;\ T=Transition\ Metal)$

MSIT[®]
Landolt-Börnstein
New Series IV/11A1

Compounds", *Phys. Status Solidi A*, **189**(2), 373-388 (2002) (Crys. Structure, Magn. Prop., Review, 51)

[2002Zha] Zhang, C., Wu, Y., Cai, X., Zhao, F., Zheng, S., Zhou, G., Wu, S., "Icosahedral Phase in Rapidly Solidified Al-Fe-Ce Alloy", *Mater. Sci. Eng. A*, **A323**, 226-231 (2002) (Equi. Diagram, Experimental, 23)

[2003Pis] Pisch, A., "Al-Fe (Aluminum-Iron)", MSIT Binary Evaluation Program, in *MSIT Workplace*, Effenberg, G. (Ed.), MSI, Materials Science International Services GmbH, Stuttgart; to be published, (2003) (Equi. Diagram, Crys. Structure, Assessment, 58)

Table 1: Crystallographic Data of Solid Phases

Phase / Temperature Range [°C]	Pearson Symbol/ Space Group/ Prototype	Lattice Parameters [pm]	Comments/References
(βΑΙ)	hP2 P6 ₃ /mmc Mg	a = 269.3 c = 439.8	at 25°C, 20.5 GPa [Mas2]
(αAl) < 660.452	<i>cF</i> 4 <i>Fm</i> 3 <i>m</i> Cu	a = 404.96	at 25°C [Mas2]
(εFe)	hP2 P6 ₃ /mmc Mg	a = 246.8 c = 396.0	at 25°C, 13 GPa [Mas2]
(δFe) 1538-1394	cI2 Im3m W	a = 293.15	[Mas2]
(γFe) < 1394-912	<i>cF</i> 4 <i>Fm</i> 3̄ <i>m</i> Cu	a = 364.67	at 915°C [V-C2, Mas2] dissolves up to 1.2 at.% Al
(αFe) < 912	cI2 Im3m W	a = 286.60 to 289.99	at 25°C [Mas2] dissolves up to 45.0 at.% Al at 1310°C 0 - 18.8 at.% Al, HT [1958Tay] 0 - 19.0 at.% Al, HT [1961Lih] 0 - 18.7 at.% Al, 25°C [1999Dub]
(α'Ce)	oC4 Cmcm αU	a = 304.9 b = 599.8 c = 521.5	at 25°C, 5.4 GPa [Mas2]
(δCe) 798-726	cI2 Im3m W	a = 412	[Mas2]
(γCe) 726-61	<i>cF</i> 4 <i>Fm</i> 3̄ <i>m</i> Cu	a = 516.10	[Mas2]
(βCe) 61-(-177)	hP4 P6 ₃ /mmc αLa	a = 368.10 c = 1185.7	at 25°C [Mas2]

202 Al–Ce–Fe

Phase / Temperature Range [°C]	Pearson Symbol/ Space Group/ Prototype	Lattice Parameters [pm]	Comments/References
(αCe) < -177	<i>cF4</i> <i>Fm3m</i> Cu	a = 485	[Mas2]
Fe ₄ Al ₁₃ < 1160	mC102 C2/m Fe ₄ Al ₁₃	b = 803.5 to 808.4 c = 1244.9 to 1248.8 $\beta = 107.7 \text{ to } 107.99^{\circ}$	74.16 - 76.70 at.% Al, [1986Gri] sometimes called FeAl ₃ in the literature
		a = 1549.2 b = 807.8 c = 1247.1 $\beta = 107.69^{\circ}$	at 76.0 at.% Al, [1994Gri]
Fe ₂ Al ₅ < 1169	oC24 Cmcm -	a = 765.59 b = 641.54 c = 421.84	at 71.5 at.% Al, [1994Bur]
FeAl ₂ < 1156	<i>aP</i> 18 <i>P1</i> FeAl2	a = 487.8 b = 646.1 c = 880.0 $\alpha = 91.75^{\circ}$ $\beta = 73.27^{\circ}$ $\gamma = 96.89^{\circ}$	at 66.9 at.% Al, [1993Kat]
ε 1232-1102	cI16?	<i>a</i> = 598.0	at 61 at.% Al, [1993Kat]
FeA1 < 1310	cP2 Pm3m CsCl	a = 289.48 to 290.5 a = 289.53 to 290.9 a = 289.81 to 291.01 a = 289.76 to 190.78	36.2 - 50.0 at.% Al, [1958Tay] 39.7 - 50.9 at.% Al, [1997Kog] 500°C quenched in water
Fe ₃ Al < 547	$cF16$ $Fm\overline{3}m$ BiF_3	a = 579.30 to 578.86	~24~~37 at.% Al, [2001Ike] 23.1-35.0 at.% Al, [1958Tay] 24.7 - 31.7 at.% Al, [1961Lih]
Fe ₂ Al ₉	<i>mP</i> 22 P2 _I /c Co ₂ Al ₉	a = 869 b = 635 c = 632 $\beta = 93.4^{\circ}$	metastable 81.8 at.% Al [1993Kat]
FeAl ₆	oC28 Cmc2 ₁ FeAl ₆	a = 744.0 $b = 646.3$ $c = 877.0$ $a = 744$ $b = 649$ $c = 879$	metastable 85.7 at.% Al [1993Kat] [1998Ali]
FeAl _{4+x}	t**	a = 884 $c = 2160$	(0 < x < 0.4) metastable [1998Ali]

MSIT®

Landolt-Börnstein
New Series IV/11A1

Phase / Temperature Range [°C]	Pearson Symbol/ Space Group/ Prototype	Lattice Parameters [pm]	Comments/References
$\overline{\mathrm{Ce}_{2}(\mathrm{Fe}_{1-x}\mathrm{Al}_{x})_{17}}$	hR57 R3m		$0 \le x \le 0.67$
Ce ₂ Fe ₁₇	Th_2Zn_{17}	a = 851.2 c = 1245	x = 0 [1969Zar]
		a = 855.5 c = 1249.5	x = 0.1 [1998 Kuc]
		a = 899.8 c = 1297	x = 0.67 [1969Zar]
$Ce(Fe_{1-x}Al_x)_2$	cF24 Fd3m	$a = 734 \pm 2$	$0 \le x \le 0.125$ [1985Fra] $x = 0.125$
CeFe _e	$MgCu_2$	a = 730.4	[V-C]
$ \alpha Ce_3Al_{11} < 1020 $	oI28 Immm	a = 439.5 b = 1302.	[1988Gsc]
$\overline{\beta \text{Ce}_3 \text{Al}_{11}}$	$\frac{\alpha \text{Al}_{11} \text{La}_3}{tI10}$	c = 1009 $a = 437.7$	[1988Gsc]
1235-1020	14/mmm Al ₄ Ba	c = 1008	[1700030]
CeAl ₃	hP8	a = 654.7	[1988Gsc]
< 1135	<i>P6₃/mmc</i> Ni ₃ Sn	c = 461.0	
CeAl ₂ < 1480	cF24 Fm3m	a = 806.1	[1988Gsc]
1400	MgCu ₂		
CeAl	oC16	a = 926.9	[1988Gsc]
< 845	Cmc2 or Cmcm CeAl	b = 768.0 c = 576.1	
βCe ₃ Al	CP4_	a = 498.9	[1988Gsc]
	<i>Pm</i> 3̄m AuCu ₃		
αCe ₃ Al	hP8	a = 704.2	[1988Gsc]
	<i>P6₃/mmc</i> Ni ₃ Sn	c = 545.1	
* τ_1 , CeFe ₄ Al ₈	tI26	a = 886	[1961Gla]
	<i>I4/mmm</i> ThMn12	c = 508 a = 880.5	[1976Bus]
		c = 504.8	[.5,75245]
* τ ₂ , CeFe ₂ Al ₁₀	oC52	a = 900.02	[1998Thi]
	<i>Cmcm</i> YbFe ₂ Al ₁₀	b = 1022.2 c = 907.3	
* τ ₃ , Ce ₆ Fe ₁₁ Al ₃		a = 819.03 c = 2310.08	[1992Hu]
* τ ₄ , CeFe ₂ Al ₈	oP44	a = 1251 b = 1448	[1974Yar]
	CeFe ₂ Al ₈	c = 407	

Landolt-Börnstein New Series IV/11A1

Phase / Temperature Range [°C]	Pearson Symbol/ Space Group/ Prototype	Lattice Parameters [pm]	Comments/References
* τ ₅ , CeFe ₂ Al ₇	?	?	[1969Zar] perhaps CeFe ₂ Al ₈
* τ ₆ , CeFe _{1-1.4} Al _{1-0.6}	?	?	[1969Zar], not found and refused by [1976Bus]
* τ ₇ , CeFeAl	orthorh.	a = 1020 b = 1620 c = 420	metastable [1986Ang], sample containing 7 to 9 mass% Fe and 3 to 7 mass% Ce
* τ ₈ , Ce _{7.4} Fe _{27.4} Al _{65.2}	?	?	metastable [1987Yan]
$\frac{* \tau_8, \text{Ce}_{7.4}\text{Fe}_{27.4}\text{Al}_{65.2}}{* \tau_9, \text{CeFe}_5\text{Al}_{20}}$?	?	metastable [1988Aye] decagonal quasicrystal

ΑI Data / Grid: at.% Fig. 1: Al-Ce-Fe. -(Al) Axes: at.% Isothermal section at 500°C, after [1969Zar] (revised) Ce₃Al_{11,20} 80 CeAl₃ -FeAl₃ —Fe₂Al₅ CeAl₂ -FeAl₂ 60 -FeAl 40 80 -(αFe)

40

CeFe₂

Се

Fe

Ce₂Fe₁₇

Landolt-Börnstein New Series IV/11A1