Video games are big business: the global gaming market is projected to be worth more than \$300 billion by 2027 according to Mordor Intelligence. With so much money at stake, the major game publishers are hugely incentivized to create the next big hit. But are games getting better, or has the golden age of video games already passed?

In this project, you'll analyze video game critic and user scores as well as sales data for the top 400 video games released since 1977. You'll search for a golden age of video games by identifying release years that users and critics liked best, and you'll explore the business side of gaming by looking at game sales data.

Your search will involve joining datasets and comparing results with set theory. You'll also filter, group, and order data. Make sure you brush up on these skills before trying this project! The database contains two tables. Each table has been limited to 400 rows for this project, but you can find the complete dataset with over 13,000 games on Kaggle.

game_sales table

Column	Definition	Data Type
name	Name of the video game	varchar
platform	Gaming platform	varchar
publisher	Game publisher	varchar
developer	Game developer	varchar
games_sold	Number of copies sold (millions)	float
year	Release year	int

reviews table

Column	Definition	Data Type
name	Name of the video game	varchar
critic_score	Critic score according to Metacritic	float
user_score	User score according to Metacritic	float

users_avg_year_rating table

Column	Definition	Data Type
year	Release year of the games reviewed	int
num_games	Number of games released that year	int
avg_user_score	Average score of all the games ratings for the year	float

critics_avg_year_rating table

Column	Definition	Data Type
year	Release year of the games reviewed	int
num_games	Number of games released that year	int
avg_critic_score	Average score of all the games ratings for the year	float

Projects Data DataFrame as critics_

-- Find the ten years with the highest average critic score, where at least four games were released (to ensure a good sample size). Return an output with the columns year, num_games released, and avg_critic_score. The avg_critic_score should be rounded to 2 decimal places. The table should be ordered by avg_critic_score in descending order. Save the output as critics_top_ten_years. Do not use the critics_avg_year_rating table provided; this has been provided for your third query.

SELECT g.year, COUNT(g.name) AS num_games, ROUND(AVG(r.critic_score),2) AS avg_critic_score

FROM game_sales g

INNER JOIN reviews r

ON g.name = r.name

GROUP BY g.year

HAVING COUNT(g.name) >= 4

ORDER BY avg_critic_score DESC

LIMIT 10;

index ···	↑↓	year ··· ↑↓	num_games \cdots \uparrow_{\downarrow}	avg_critic_score
	0	1998	10	
	1	2004	11	
	2	2002	9	
	3	1999	11	
	4	2001	13	
	5	2011	26	
	6	2016	13	
	7	2013	18	
	8	2008	20	
	9	2017	13	
Rows: 10				∠ ⁿ Expand Table

 $https://www.datacamp.com/datalab/w/6766601e-9445-4821-80d1-a754ed42bef8/print-notebook/notebook.ipynb?emitCellOutputs=false\&reducedMenuBar=true\&sho\dots false. The provided for the provided false of the provided false for the provided false false for the provided false fa$

