(1)

BEST AVAILABLE COPY

Partial Translation of Japanese Laid-Open Patent Publication No. 9-95627

Date of Laid-Open: April 8, 1997

Application No. 7-276389

Filing date: September 29, 1995

Applicant: SHINTO PAINT CO., LTD.

Inventor: Kazuki Takaya

Title of the Invention:

Coating agent for forming metal oxide film

Claims:

1. A coating agent for forming metal oxide film by the coating pyrolysis method,

wherein the coating agent comprises an organic acid metal salt that is an alkaline earth metal salt and/or a rare earth metal salt, a solvent, and an additive including an organic substance, and

wherein the solvent comprises a polyhydric alcohol acetate derivative.

2. The coating agent for forming metal oxide film of claim 1, wherein the organic acid metal salt is at least one organic acid metal salt in which the metal is Mg, Ba, or Sr in combination with at least one organic acid metal salt in which the metal is Ca or a rare earth metal.

Column 3, line 35 to column 4, line 3

[0014] As the solvent used in the present invention, a

polyhydric alcohol acetate derivative is used. Examples of the polyhydric alcohol acetate derivative include diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether acetate, ethylene glycol monobutyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoacetate, diethylene glycol monoacetate, glycerol monoacetate, propylene glycol methyl ether acetate, propylene glycol monoethyl ether acetate. Furthermore, a solvent that can dissolve an organic acid metal salt when the solvent is used in combination with the polyhydric alcohol acetate derivative can be employed without limitation. Examples of such a solvent include xylene, toluene, isopropylalcohol, methyl isobutyl ketone, butyl acetate, diethylene glycol monobutyl ether, and mineral spirit, and these solvents are preferably used in combination.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-95627

(43)公開日 平成9年(1997)4月8日

(51) Int.Cl.	識別記号	庁内整理番号	FI			技術表	示箇所
C09D 1	/00 PCJ		C09D	1/00	PCJ		
CO3C 17	/27		C 0 3 C	17/27			
H01J 9	/02		H01J	9/02	:	F	
. 11	/02			11/02]	В	
		·	審查請求	え 未請求	請求項の数 2	FD (全	5 頁)
(21)出願番号 特顏平7-276389			(71)出願人				
(22)出顏日 平成7年(1995)9月29日		月29日	神東強料株式会社 兵庫県尼崎市南場口町 6 丁目10番73号 (72)発明者 高谷 和樹 兵庫県尼崎市南場口町 6 丁目10番73号 東塗料株式会社内				

(54) 【発明の名称】 金属酸化物薄膜形成用コーティング剤

(57)【要約】

【目的】 塗布熱分解により、金属酸化物薄膜を誘電体に形成する有機酸金属塩と、それを溶解する溶剤及び有機物からなる添加剤とを含有するコーティング剤において、塗布し易く、PDPのパネル特性として、実用上望ましい透明性と膜厚を有する、誘電体保護膜を形成出来るコーティング剤を提供する。

【構成】 アルカリ土類金属、及び又は稀土類金属の有機酸金属塩、溶剤及び有機物からなる添加剤を含有する金属酸化物薄膜形成用コーティング剤であって、溶剤として多価アルコール酢酸誘導体を含有することを特徴とする、塗布熱分解法により金属酸化物薄膜を形成する金属酸化物薄膜形成用コーティング剤。

【特許請求の範囲】

【請求項1】 アルカリ土類金属、及び又は稀土類金属 の有機酸金属塩、溶剤及び有機物からなる添加剤を含有 する金属酸化物薄膜形成用コーティング剤であって、溶 剤として多価アルコール酢酸誘導体を含有することを特 徴とする塗布熱分解法により金属酸化物薄膜を形成する 金属酸化物薄膜形成用コーティング剤。

【請求項2】 有機酸金属塩としてMg、Ba、Srの 有機酸金属塩単独、又は2種類以上の混合物に、Caま たは稀土類金属の有機酸金属塩1種類又は2種類以上を 併用することを特徴とする請求項1記載の金属酸化物薄 膜形成用コーティング剤。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、カラープラズマディス プレイパネルの透明な誘電体保護膜を、塗布熱分解法に より形成するための、金属酸化物薄膜形成用コーティン グ剤(以下、コーティング剤)に関するものである。 [0002]

イパネル(以下、PDP)において、放電電極の保護、 及び放電開始電圧及び放電維持電圧を低減のため、アル カリ土類金属酸化物からなる誘電体保護膜で電極を覆う ことが行われている。

【0003】フルカラーAC型面放電反射型PDPの誘 電体保護膜は前面ガラスに形成されるため、特に透明性 と電気特性の優れたなものが必要である。そのためその 保護膜は蒸着法で形成されているが、高価で複雑な設備 が必要であり、さらに生産性が悪いため経済的な問題が ある。

【0004】そのため高価で複雑な装置の必要がなく、 しかも簡単な工程で誘電体保護膜を形成できる方法とし て塗布熱分解法があり、具体例としては例えば有機溶剤 に可溶なアルカリ土類金属化合物を含有する、透明皮膜 形成用ペースト (特開昭58-135155号公報)、 アルカリ土類金属含有有機化合物を誘電体に塗布熱分解 して金属酸化物から成る保護層を形成する、誘電体保護 層の形成方法(特開平6-162920号公報)、誘電 体層にMgなどの金属アルコキシドを塗布熱分解し、金 属酸化物保護膜を被覆したPDP(特開平6-2203 72号公報)、アルカリ金属酸化物粒子と、A1.S i、Ti、Zrなど金属有機化合物からなる誘電体保護 剤(特開平6-316671号公報)、AC型PDPの 陰極及び誘電体層を金属酸化物保護膜で被覆するように したPDP(特開平7-14516号公報)など多数が 提案されている。

[0005]

【発明が解決しようとする課題】しかしながら上述した 従来技術において、アルカリ土類金属の有機酸金属塩、 或いは金属アルコキシドを誘電体保護膜前駆体に用いた。50 ば酢酸ジエチレングリコールモノブチルエーテル、酢酸

場合、金属酸化物薄膜を形成することが可能であるが、 形成された均一で透明な膜の膜厚は0.3μm以下であ り、その膜は誘電体との付着性が悪い。また膜厚を0. 3 μ m以上にすると不均一で不透明な膜を形成するため 実用上問題がある。

【0006】本発明の目的は、塗布熱分解法により、金 属酸化物薄膜を誘電体に形成する、有機金属酸金属塩 と、それを溶解する溶剤及び有機物からなる添加剤とを 含有するコーティング剤において、塗布し易く、PDP のパネル特性として、実用上望ましい透明性と膜厚を有 する、誘電体保護膜を形成できるコーティング剤を提供 することにある。

[0007]

【課題を解決するための手段】本発明は目的を達成する ため、アルカリ土類金属及び又は稀土類金属の有機酸塩 を溶解する溶剤として、多価アルコール酢酸誘導体を他 の溶剤と共に用いたとき、スクリーン印刷、スピンコー ト、ディッピング、或いはスプレイなどの方法で塗布し 易く、塗布乾燥後、350~600℃で焼成することに 【従来の技術】従来より、AC型のブラズマディスプレ(20)より、PDPのパネル特性として、実用上望ましい透明 性と膜厚を有する、誘電体保護膜を形成できることを見 いだしたものである。

> 【0008】すなわち本発明は、アルカリ土類金属、及 び又は稀土類金属の有機酸金属塩、溶剤及び有機物から なる添加剤を含有する金属酸化物薄膜形成用コーティン グ剤であって、溶剤として多価アルコール酢酸誘導体を 含有することを特徴とする塗布熱分解法により金属酸化 物薄膜を形成する金属酸化物薄膜形成用コーティング剤 である.

【0009】本発明によれば、有機酸金属塩、溶剤及び 添加剤はそれぞれ有機物であり、これら有機成分はコー ティング剤を塗布乾燥、或いは焼成させた際に気化或い は熱分解して雰囲気中へと散逸する。従ってコーティン グ剤の塗布乾燥及び焼成により金属と有機成分とに分解 し、その後の加熱による酸化で光透過率の高い透明な金 属酸化物薄膜が形成される。

【0010】本発明におけるアルカリ土類金属及び又は 稀土類金属の有機酸金属塩は、これらのみの溶剤に限定 されないが、例えばキシレン、トルエン、イソプロビル アルコール、メチルイソブチルケトン、酢酸ブチル、ジ エチレングリコールモノブチルエーテル、ミネラルスピ リット、シクロヘキサン、シクロヘキサノンなどの溶剤 を、単独或いは複数のものを併用して溶解することが可 能であり、その溶液と増粘剤や希釈溶剤を組み合わせて 塗布し易いコーティング剤とし、塗布乾燥後350~6 00℃で1~30分焼成しても、誘電体と付着性の良い 金属酸化物薄膜は形成出来ない。

【0011】しかし、現在のところ理論的解明には至っ ていないが、本発明の多価アルコール酢酸誘導体、例え 3

ジエチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノメチルエーテル、酢酸エチレングリコールモノエチルエテール、酢酸エチレングリコールモノエチルエーテル、酢酸エチレングリコールモノメチルエーテル、モノ酢酸エチレングリコール、モノ酢酸ジエチレングリコール、プロピレングリコールメチルエーテルアセトテート、プロピレングリコールモノエチルエーテルアセトテート、などの内1種類以上を他の溶剤と併用あるいは単独で使用することにより、誘電体と付着性が良く、均一で透明な薄膜を形成することが出来る。そ 10 れらの溶剤の用い方に制限は無く、有機酸金属塩を調製過程、或いはコーティング剤の調製過程で必要量を単に混合するのみで良い。

【0012】また本発明には有機酸金属塩1種又は2種以上混合して使用できるが、特にMg、Ba、Srの有機酸金属塩1種類、或いは2種以上と、Ca或いは稀土類金属の有機酸金属塩1種、或いは2種類以上を混合して使用したとき、Mg、Ba、Srを主体とした金属酸化物薄膜の物理強度を上げ、誘電体との付着性を良くすることが出来る。

【0013】本発明のコーティング剤に用いる有機酸金属塩を形成している有機酸の種類としては、生成した有機酸金属塩が有機溶剤に溶解するものであれば特に制限は無いが、例えばカプロン酸、カプリル酸、カプリン酸、オクチル酸、セカノイック酸、ネオデカン酸、ネオデカン酸、ネオデカン酸、トーペプタノイック酸、ナフテン酸、トール油脂肪酸などを単独或いは2種類以上を併用して反応したものが望ましい。しかし炭素数6以下の有機酸例えば酢酸、プロピオン酸などを炭素数7以上のものに混合して用いたものも使用可能である。また平均炭素数が6以下の有機酸を出発原料にしたは金属塩は、溶剤に対する溶解性が劣るため単独で用いることは困難であるが、他の有機酸金属塩に溶解する範囲で使用しても差し支えない。

【0014】また本発明で用いる溶剤としては、酢酸ジェチレングリコールモノブチルエーテル、酢酸ジェチレングリコールモノメチルエーテル、酢酸ジェチレングリコールモノメチルエーテル、酢酸エチレングリコールモノメチルエーテル、酢酸エチレングリコールモノメチルエーテル、酢酸エチレングリコールモノメチルエーテル、モノ酢酸グリセロール、プロピレングリコールメチルエーテルアセトテート、プロピレングリコールメチルエーテルアセトテートなどのような多価アルコール酢酸誘導体の他に、これらと併用するもので有機酸金属塩が溶解するものであれば特に制限はなく、キシレン、トルエン、イソプロピルアルコール、メチルイ

ソブチルケトン、酢酸ブチル、ジエチレングリコールモ ノブチルエーテル、ミネラルスピリットなどの溶剤複数 のものを併用することが好ましい。

【0015】また本発明に用いる有機物からなる添加剤は、エチルセルロース、ニトロセルロース、アクリル樹脂などを増粘剤として用いることが望ましい。

【0016】本発明のコーティング剤を、スクリーン印刷用のベーストとする場合は、有機酸金属塩溶液にエチルセルロース、ニトロセルロース、アクリル樹脂などの増粘剤を単独で必要重添加して溶解し、さらにジエチレングリコールモノブチルエーテル、テルビネオール、テキサノールなどの溶剤で印刷に適した粘度に調整する必要がある。スピンコーターやスプレー塗布する場合は、スクリーン印刷用ベーストを溶剤で希釈して用いることが可能あるが、特に増粘剤を用いる必要は無く、単に有機酸金属塩を溶剤で希釈するのみで差し支えない。また消泡剤やレベリング剤は必要に応じ用いることが可能である。

【0017】しかしいずれの塗布方法を採用する場合で もコーティング剤中の合計金属含有量が高い場合は、薄く均一に塗布することが困難なため、所望する透明で均一な金属酸化物薄膜を形成することが困難になる。また反対にコーティング剤中の合計金属含有量が低い場合には、均一な薄膜を形成可能であるが、一度に 0.4~1.3 μmの膜厚を得るためには塗布熱分解を数回繰り返さなければならない。したがってコーティング剤中の合計金属含有量は、溶剤や増粘剤などの量を調整して 4.0重量%以下、好ましくは 0.5~2.0重量%にする必要がある。

30 【0018】本発明の金属酸化物薄膜形成用コーティン グ剤の調製方法に特に制限は無く、有機酸金属塩溶液 に、予め溶剤に増粘剤を溶解した液を添加して溶解し、 希釈溶剤で粘度調整することが好ましい。

[0019]

【実施例】

(実施例1) Mg含有量2重量%のオクチル酸Mg溶液を、表1の溶剤を用い重量比で2倍に希釈し、スライドグラス($25\,\mathrm{mm}\times75\times2$)に流し塗りした後、室温で30分乾燥した後の状態と、 $450\,\mathrm{CC}5$ 分間焼成した後の状態を目視で観察した。その結果溶剤として多価アルコールの酢酸誘導体を用いたNo. 12から18までものは、 $0.2\sim0.7\,\mu\mathrm{m}$ の透明な膜を形成した。No. 21は乾燥した後の状態は良好であったが、焼成後は均一な膜を形成しなかった。またその他のものは、均一な乾燥膜を形成しなかった。

[0020]

(表1)

6

ř	京 潮	溶液状態	塗布30分 後の状態	焼成後 の状態
No. 1	ラエテレングリコール	×白霉	×	
Na 2	トリエチレングリコール	×白渴	×	- 1
No 3	エテレングリ,コールセノンテルユーテル	0	×	- }
No. 4	44-54451-44-544441	0	×	
Na 5	エチレングリコールモデプチルエーテも	0	×	-
₩a 6	エナレングリコールジメナルユーテル	Ö.	×	-
% 1 7	エナレングリコールモノエナルエーテル	0	×	-
Na 8	エチレングバコールモノブテルエーテル	Δ	× .	_
Na 9	プエチレングリコールモノナチ&エーテル	0	×	_
Nalo	ヺエチレングリコールモノエチルユーテル	0	×	-
Nali	ラエチレングリコールモノブチルエーテル	Δ.	× ·	-
No.12	酢酸エナレングリコーチモノノナムエーテル	0	0	ΟΔ
Na.13	酢酸エナレンクリコールモノエチルエーテル	0	0	0-4
No.14	酢酸ユナレングウコールモ/フナルエーテル	0	C	0
Na.15	酢酸ラユチレンクリコールモノユチルエーテル	O	0	0
No.16	酢酸タユチレンタリコールモノフチルエーテル	Ο.	0	a
No.17	酢苣愛ジエチレングリコール	0	0	000
Na18	C/酢酸剂to-ri	0	0	0
No.18	酢酸7+1	0	×	-
No.20	所数2171八十/1 4	C	×	-
N 5 21	MIBK	0	0	×

浴液状態:○(透明)、△(後白海)、×(白濁)

塗布30分後の状態:○(均一透明)、×(白濁乂は膜を形成しない) 焼成後の状態:○(透明膜)、△(透明不均一膜)、×(膜を形成しない)

【0021】(実施例2) 表2に記載のアルカリ土類 金属、及び稀土類金属の有機酸塩の金属含有量を、それ ぞれの溶剤で金属含有量を2重量%に調整したものを、

酢酸ジエチレングリコールモノブチルエーテルとキシレ 30 【0022】 ンを8:2 (重量比)の割合で混合した溶剤で、金属含

有量を1重量%に調整して試料溶液を調製した。その溶*

*液をスライドグラスに流し塗りし、70℃で5分乾燥後 400℃で2分間焼成した。その結果、表2に記載のと おりガラスと付着性が良く、透明な薄膜を形成出来た。

【表2】

· 有概题	晚金 属塩		希釈溶剤の種類	溶液状態	塗布30分 後の伏態	焼成後 の状態
No. 1	オクテル酸	Mg	BC/キシレン	0	0	0
Na 2	オクテル酸	Са	BC/キシレン	0	0	Ö
R2 3	ネオデカン的	ts r	キシレン	0	0	0
No. 4	ナフテン酸	Ва	キシレン	O	0	0
Ha. 5	オクチル酸	C d	BC/キシレン	Ö	0	0
No. 6	オクチル酸	La	トルエン	0	0	0
No. 7	オクチル酸	Y	トルエン	0	0	0
No. 8	ナフテン酸	5 m	キシレン	0	0	0

(注1) BC:ジニチレングリコールモノブチルエーテル

(評価基準)

溶液状態:○(透明)、△(微白濁)、×(白濁)

塗布30分後の状態:○ (均一透明)、 × (白濁又は膜を形成しない) 焼成後の状態:○(透明膜)、△(透明不均一膜)、×(膜を形成しない)

【0.023】(比較例) 表2のNo、 $1\sim8$ をそれぞ 50 れの希釈溶剤で金属含有量を1重量%に調整したものに

8

ついて、同一条件で塗布乾燥したが、焼成前の段階で均一な膜を形成しなかった。

【0024】(実施例3) 実施例2と同一の有機酸金 属塩を、それぞれの溶剤で金属含有量を2重量%に調整 したものを表3の混合割合で混合した。その溶液をさら に酢酸ジエチレングリコールモノブチルエーテルとキシ レンを8:2(重量比)混合した溶剤で、2倍(重量割* *合)に希釈した液を試料溶液とし、実施例2と同じ条件で塗布焼成を行い、形成した膜の状態を調べた。その結果は、表3のとおりNo.2~10はガラスとの付着性も良好な膜を形成したが、オクチル酸Mg単独のものは傷が付き易くガラスと付着性がやや劣っていた。

[0025]

【表3】

有機酸金属塩の種類			混合剖合	形成した膜 とガラスの	
				(金属換算重量割合)	付着性
Na. 1	オクテル ASSEMING		•	Mg =100	Δ .
Na 2	オクチル百多Mg/オクチル	Ē \$€Ca		Mg:Ca=90:10	0
Na 3	オクチル酸Sr/オクチル	酸Ca		Sr:Ca=90:10	0
No. 4	オクチル両を日本/オクチル	茂Ca		Ba:Ca=90:10	0
Na 5	オクチル酸Mg/オクチル	P 使Gd		Mg:Gd-95: 5	. 0
Na B	オクチル百党Sェノオクチル	政 ?		Sr: Y 95: 5	0
No. 7	オクチル西美Bu/オクチル	B æLa		Ba:La=95: 5	Ö
No. 8	オクチル西安Mg/オクチル	酸Ba/1754	酸Gd	Mg:Ba:Gd=45:45:10	0
Na 9	オクチル酸Sr/オクチル	酸Ba/オクチム	酸La	Sr:Ba:La=45:45:10	0
Na.10	オクチル不変Ba/オクチル	陳Ca/オタチル	∰Sm	Ra:Ca:Sm=45:45:10	

(5)

(評価基準)

焼成して形成した膜を冷却後、ガーゼで軽く擦った時の傷の付き易さを調べた。

○ : 良好(傷が付かない)

△ : やや不良(傷が付きやすい)

× : 不良(腹が拭き取れる)

【0.02.6】(実施例4) 表4の配合率でコーティン $\times 0.1 \sim 1.3 \mu$ mの透明な薄膜を形成した。

グ剤を調整し、エアスプレイ塗布を行い、70°Cで15 分間乾燥後420°Cで5分間焼成し、冷却後光透過率と

[0027]

【表4】

順厚を調べた結果、光透過度が85~95%で、膜厚が※30

オクチル酸Mg 2%液 (* 1)	20.0g
エチルセルロース 1 0%液 (* 2)	5.0g
BCA (* 3)	7.5g
キシレン	7.5g
☆ 計	40.0g

(*1) Mgを2重量%含有した液。使用溶剤: ジェチレングリコールモノブチ

ルエーテル対キシレン8:2 (重量土) の混合体剤。

(*2) ジェチレングリコールモノブチルエーテルにエチルセルロースを重量で

13%溶解した液。

(*3) BCA:酢酸ジエチレングリコールモノブチルエーテル。

[0028]

【発明の効果】従来、面放電反射型カラーPDPの誘電体の透明MgO保護膜は蒸着法で形成されているが、生産性が悪く経済的な問題が有る。しかし本発明の金属酸化物薄膜形成用コーティング剤を、PDPの誘電体にス

クリーン印刷又はスプレイ塗布し、乾燥後、350~600°Cで1~30分焼成することにより、膜厚が0.1~1.3μmの透明な金属酸化物薄膜の形成が可能になった。そのことにより大幅な経済効果が期待出来る。

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER: __

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.