UCLA Math Circle

James Toche (and family)

19 June 2020 (Last revision: July 31, 2020)

Abstract

Notes on modular arithmetic from the UCLA Math Circle Intermediate-2 for Summer Session 2020, July 19th.

If
$$a \equiv b \pmod{m}$$
, then $(a + m) \equiv b \pmod{m}$

Let \pmod{m} denote "modulo m". The first statement is equivalent to:

$$a \equiv b \pmod{m} \iff \exists k \in \mathbb{N} : a = km + b$$

where b is the remainder of the division of a by the modulus m.

The second statement is equivalent to:

$$(a+m) \equiv b \pmod{m} \iff \exists l \in \mathbb{N} : a+m = lm+b$$

Proof: $\exists k \in \mathbb{N}$:

$$a = km + b$$

$$a + m = km + b + m$$

$$a + m = (k + 1)m + b$$

We set l = k + 1, where $l \in \mathbb{N}$ since k and 1 are in \mathbb{N} . \square

2.1

If $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$.

The starting point is:

$$\exists k \in \mathbb{N} : a = km + b$$
$$\exists l \in \mathbb{N} : b = lm + c$$

for a, b, c in \mathbb{N} . By simple substitution,

$$a = km + b$$
$$= km + lm + c$$
$$= (k + l)m + c$$

where $(k+l) \in \mathbb{N}$ since $k \in \mathbb{N}$ and $l \in \mathbb{N}$. Thus, a leaves a remainder of c after division by m. The last line is equivalent to

$$a \equiv c \pmod{m}$$

If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $(a+c) \equiv (b+d) \pmod{m}$ and $ac \equiv bd \pmod{m}$.

The starting point is:

$$\exists k \in \mathbb{N} : a = km + b$$
$$\exists l \in \mathbb{N} : c = lm + d$$

for a, b, c, d in \mathbb{N} .

There are two statements to be proved. Start with (a + c). By simple addition,

$$a + c = (km + b) + (lm + d)$$

= $(k + l)m + (b + d)$

where $(k+l) \in \mathbb{N}$ since k, l are in \mathbb{N} . The last line is equivalent to

$$a + c \equiv b + d \pmod{m}$$

Turn to (ac). By multiplication,

$$ac = (km + b) \times (lm + d)$$
$$= (klm + kd + bl)m + bd$$

where $(klm + kd + bl) \in \mathbb{N}$ since k, l, b, d, m are all in \mathbb{N} and so are their sums and products.

$$ac \equiv bd \pmod{m}$$

If $a \equiv b \pmod{m}$ then $a^k \equiv b^k \pmod{m}$ for all $k \geq 1$.

Suppose the following is true for k = 1 and some k > 1:

 $P(1): a = lm + b \text{ for some } l \in \mathbb{N}$ $P(k): a^k = qm + b^k \text{ for some } q \in \mathbb{N}$

for a, b, m, k in \mathbb{N} . The factor q is "unimportant" and will typically vary with k. We also assume that b < m, that is the remainder has been reduced to its "standard representation" for modulus m. However, the remainder b^k could be greater than m (only for b = 0 or b = 1 is $b^k < m$ guaranteed).

Base Case:

P(2):

$$a^{2} = (lm + b)^{2}$$

$$= (lm)^{2} + 2lmb + b^{2}$$

$$= m(l^{2}m + 2lb) + b^{2}$$

$$\equiv b^{2} \pmod{m}$$

This immediately suggests a direct proof based on the binomial expansion formula.

Direct Proof:

The binomial expansion formula for any a, b is:

$$(a+b)^{n} = a^{n} + na^{n-1}b + \dots + \frac{n!}{k!(n-k)!}a^{n-k}b^{k} + \dots + nab^{n-1} + b^{n}$$
$$= \sum_{k=0}^{k=n} \binom{n}{k}a^{k}b^{n-k}$$

where \sum denotes the sum over the index k running from 0 to n, and $\binom{n}{k}$ the binomial coefficient:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

The first few values of the binomial coefficient may be arranged to form the well-known Pascal triangle:

or explicitly:

Apply the binomial expansion formula to $(lm + b)^k$:

$$a^{k} = (qm + b)^{k}$$

$$= (qm)^{k} + k(qm)^{k-1}b + \dots + k(qm)b^{k-1} + b^{k}$$

$$= m \times \underbrace{(\dots)}_{\in \mathbb{N}} + b^{k} \quad \text{if } k > 0$$

$$\equiv b^{k} \pmod{m}$$

The details of what goes into (...) are unimportant, as long as it is in \mathbb{N} — what matters is that the modulus m may be factored, which is true if k > 0. Now go back to the proof by induction.

Induction Step:

Show that the left-hand side of P(k+1) is congruent to b^{k+1} modulo m:

$$\begin{aligned} \mathsf{lhs} &= (qm+b)^{k+1} \\ &= \underbrace{(qm+b)^k} \quad (qm+b) \\ &= (mp+b^k) \quad (qm+b) \\ &= mpqm + mpb + b^kqm + b^kb \\ &= m\underbrace{(pqm+pb+b^kq)} + b^{k+1} \\ &\equiv b^{k+1} \; (\bmod \; m) \\ &= \mathsf{rhs} \quad \Box \end{aligned}$$

If $3 \nmid x$ and $3 \nmid y$, then $3 \mid (x^2 - y^2)$.

 $3 \nmid x$ reads as "3 does not divide x." In words, "if 3 divides neither x nor y, it must divide the difference of their squares $x^2 - y^2$."

The "does-not-divide" property may be stated as:

$$x = 3k + r, r \neq 0$$
$$y = 3l + s, s \neq 0$$

In words, "3 is not a factor of x if the remainder is non-zero." Same goes for y. Combining these two properties yields:

$$x^{2} - y^{2} = (3k + r)^{2} - (3l + s)^{2}$$

$$= (3k)^{2} - (3l)^{2} + 2(3k)r - 2(ls) + r^{2} - s^{2}$$

$$= 3 \underbrace{(3k^{2} - 3l^{2} + 2kr - 2ls)}_{\in \mathbb{N}} + r^{2} - s^{2}$$

If $3|(x^2-y^2)$, we must have $r^2-s^2\equiv 0\pmod 3$. The only possible values of r and s are 1 and 2. So let's see: if r=s, then $r^2-s^2=0$, otherwise let r=2 and s=1:

$$r^2 - s^2 = 2^2 - 1^2 = 4 - 1 = 3$$

or $r^2 - s^2 = 1^2 - 2^2 = 1 - 4 = -3$

In both cases, these are multiples of 3. And so it follows that

$$x^2 - y^2 \equiv 0 \pmod{3} \qquad \Box$$

Prove that for all integers n, either $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$.

It is convenient to split the proof between even and odd integers. For any $n \in \mathbb{N}$ (even or odd), we can write the integer as a sum of a multiple of 4 and a remainder r:

$$n = 4k + r$$
 for some k, r in \mathbb{N}

Even Integers:

All even integers may be written as 2n for some $n \in \mathbb{N}$. Thus, the square of an even integer may be written:

$$(2n)^2 = (2(4k+r))^2$$

$$= 4 \times \underbrace{(4k+r)^2}_{\in \mathbb{N}} + 0$$

$$\equiv 0 \pmod{4} \quad \square$$

In words, this statement is pretty obvious: "The square of an even integer is a multiple of 4." Figure 1 illustrates modular arithmetic with a number wheel: Numbers stacked within the same slice have the same remainder modulo 4. The squares of even integers all belong to the same quarter-slice of the wheel: 0, 4, 16, 36, etc. The same wheel also shows that the squares of odd numbers stack up within the same slice: 1, 9, 25, etc.

Odd Integers:

All odd integers may be written as 2n+1 for some $n \in \mathbb{N}$. So the square of an odd integer:

$$(2n+1)^2 = (2(4k+r)+1)^2$$

$$= (2(4k+r))^2 + 2 \cdot 2(4k+r) \cdot 1 + 1^2$$

$$= 4 \times (\underbrace{(4k+r)^2 + (4k+r)}_{\in \mathbb{N}}) + 1$$

$$\equiv 1 \pmod{4} \quad \Box$$

Figure 1: Modular Arithmetic: Number Wheel Modulo 4.