

Verificação e validação de requisitos

Processos da engenharia de requisitos

A verificação e validação de requisitos são processos que buscam verificar se um sistema atende aos requisitos especificados e se estes atendem à necessidade do cliente.

A etapa de verificação e validação se torna importante pois erros em requisitos podem gerar altos custos de retrabalho quando descobertos durante o desenvolvimento ou após o sistema já estar em serviço.

Verificação de requisitos: O produto está sendo construído corretamente? O software está de acordo com sua especificação?

Validação de requisitos: O produto construído é o correto? Os requisitos especificados atendem à necessidade do cliente?

A verificação de requisitos busca assegurar que o software está sendo especificado da forma correta, seguindo padrões e critérios de qualidade definidos, enquanto que a validação busca assegurar que o software especificado é o correto, ou seja, se este atende às necessidades dos clientes.

Existem vários padrões internacionais para os processos e documentação de V&V em software, podendo citar o Padrão IEEE 1012-2012 - Padrão IEEE para Verificação de Software e Validação - , que fornece algumas diretrizes para ajudar a preparar planos de V&V, sendo que este modelo pode ser personalizado para a maioria das situações.

Verificação

Esta etapa busca garantir que os requisitos especificados e seus modelos atendam ao padrão de qualidade, para serem utilizados de forma eficaz nas etapas seguintes do projeto.

Na verificação de requisitos é comparado o produto modelado e especificado com modelos de referência e são adotadas ações para apontar os itens que não estão em conformidade, a fim de justificar ou corrigir estes itens.

A verificação de requisitos é uma atividade interna à equipe de projeto e não envolve o cliente. Para realizar a verificação de requisitos recomenda-se que uma pessoa diferente do analista que especificou os requisitos.

São efetuados diversos tipos de verificação dos requisitos no documento de requisitos:

Verificações de validade: identifica se o requisito proposto atende às necessidades de todos os usuários do sistema proposto.

Verificações de consistência: não deve haver conflitos entre os requisitos do documento, não podem existir contradições ou descrições diferentes da mesma função do sistema.

Verificações de completude: o documento de requisitos deve incluir requisitos que definam todas as funções e as restrições pretendidas pelo usuário do sistema.

Verificações de realismo: os requisitos devem ser verificados quanto à viabilidade de implementação, podendo considerar o orçamento, equipe, cronograma, tecnologias, entre outros pontos.

Verificabilidade: os requisitos do sistema devem ser passíveis de verificação para poder reduzir conflitos entre cliente e contratante, ou seja, deve ser possível escrever testes que demonstrem que o sistema atende a cada requisito especificado.

Adequação da informação: verificar se as necessidades de informação para o modelo ou requisito em análise estão atendidas de maneira completa. Por exemplo, ao analisar um diagrama de atividades, verificar se o mesmo apresenta os componentes corretamente, de acordo com a linguagem UML.

Elementos omissos em modelos: cada modelo deve ser comparado com outros modelos existentes no projeto, buscando por elementos que são mencionados em um modelo e que estão omissos em modelos que apresentam o dado sob outras perspectivas. Por exemplo, em um diagrama de atividades existe a etapa de aprovação de agendamentos, porém não existe um requisito funcional para esta atividade.

Terminologia: Deve-se verificar se a terminologia utilizada para um mesmo conceito de negócio está consistente em todos os modelos e em todo o documento. A terminologia usada deve ser compreensível para todas as partes interessadas. O glossário é uma ótima ferramenta para esse fim.

Cenários alternativos: para os requisitos funcionais, deve ser verificado se todas as alternativas de fluxos foram devidamente especificadas.

Compreensão do requisito: o requisito deve estar expressado de forma que o leitor consiga compreender a necessidade especificada.

Requisitos de software

Os requisitos devem atender aos atributos de qualidade:

Atributo	Descrição
Completude	Todas as funcionalidades solicitadas foram documentadas
Consistente	Os requisitos não devem possuir conflitos e contradições
Correto	O requisito é correto quando satisfaz uma determinada necessidade
Sem ambiguidade	O requisito deve possuir apenas uma interpretação
Verificável	Devem ser descritos de forma que seja possível verificar a sua implementação
Compreensível	Deve ser escrito levando em consideração vários tipos de leitores
Modificável	Deve permitir mudanças sem um grande impacto
Rastreável	A origem de um requisito deve estar claramente identificada

Validação

A validação de requisitos busca assegurar que todos os requisitos especificados estejam alinhados com os requisitos de negócio e que todas as necessidades dos clientes sejam satisfeitas.

Tem como finalidade garantir que a especificação defina o produto certo a ser desenvolvido pelo projeto.

Técnicas de V&V

Controle de questões: se ainda existem questões em aberto para serem discutidas, é valido supor que a especificação de requisitos pode não estar completa.

Geração de casos de teste: De modo que os requisitos devem ser testáveis, os casos de teste podem revelar problemas em requisitos.

Testes baseados nos requisitos funcionais ou derivados dos requisitos do usuário ajudam a validar os comportamentos esperados do sistema. A própria atividade de projetar testes pode revelar problemas com os requisitos.

Critérios de aceite:

Os critérios de aceite determinam as circunstâncias em que o cliente irá aceitar o resultado final do projeto. São critérios com o que se pode medir e comprovar a finalização de um trabalho.

Critérios de aceite definem as condições mínimas para que uma funcionalidade seja considerada pronta, conforme os objetivos de negócio, e podem estipular itens como condições legais, regulatórias ou contratuais específicas que devem ser atendidas pelo sistema.

Definir critérios de aceite com o cliente fornece uma maneira de validar tanto os requisitos quanto a própria solução.

São características dos critérios de aceite:

- Devem ser testáveis, e os resultados dos testes não devem deixar margem para interpretação. O teste de aceitação deve produzir uma resposta clara para aprovação ou reprovação do resultado.
- Os critérios devem ser claros e concisos.
- Todos os envolvidos no projetos devem compreender os critérios de aceite propostos.
- Devem fornecer uma perspectiva do usuário, sendo que este deve ser capaz de testá-los e aprová-los/reprová-los.

São definidos no SRS e podem também ser considerados como parte de acordos contratuais com os clientes.

Revisões técnicas/Inspeções:

Os requisitos são analisados sistematicamente por uma equipe de revisores que verifica erros, inconsistências e se a especificação consegue transmitir a mensagem pretendida pelo autor.

Uma inspeção é composta pelas fases de planejamento, visão geral, detecção de erros, correção de erros, acompanhamento e reflexão. No processo de validação de requisitos, as fases de planejamento, visão geral, detecção de erros e coleta de erros são as mais relevantes.

Planejamento: são definidos o objetivo da inspeção, os resultados esperados do trabalho de revisão e os papéis e participantes da inspeção.

Visão Geral: nesta fase, o autor explica aos membros da equipe os requisitos a serem revisados, para que haja um entendimento comum sobre a exigência entre todos os revisores.

Detecção de erros: os revisores buscam por erros nos requisitos. A detecção de erros pode ser realizada individualmente ou por uma equipe, de forma colaborativa.

Coleta de erros: todos os erros identificados são coletados, consolidados e documentados. Durante a consolidação, são identificados os erros que foram encontrados várias vezes ou erros que não são realmente erros. Os erros identificados e as medidas de correção são documentados em uma lista de erros.

Checklists (listas de verificação)

Definem uma lista padrão de itens que são verificados para identificar problemas na especificação.

É uma técnica usada tanto na verificação quanto na validação pelo cliente. O que difere o *checklist* de verificação para o de validação é a lista de itens a serem verificados, sendo que o *checklist* de validação pode ser enviado ao cliente para que este responda aos itens. Podem ser utilizados em processos de revisão.

Uma lista de verificação e validação de requisitos contém perguntas ou assertivas encadeadas sequencialmente que facilitam a identificação de erros, pois os requisitos são avaliados com base em cada item presente no *checklist*.

Deve-se atentar para a forma como as questões são formuladas, pois questões muito genéricas ou abstratas podem dificultar o uso da lista de verificação.

Por exemplo: "O requisito está formulado adequadamente?"

Esta questão pode levar a diversas respostas diferentes, dependendo do que a pessoa que está respondendo o *checklist* considera um requisito devidamente especificado.

Protótipos:

Nesta técnica, um modelo do sistema em questão é demonstrado para os usuários finais e clientes. Estes podem experimentar ou analisar o modelo para verificar se ele atende a suas reais necessidades. Com o protótipo, a parte interessada pode avaliar com mais atenção a solução proposta e proporcionar um *feedback* mais rico do quão correta é a solução proposta.

Podem ser criados protótipos descartáveis, que não são mantidos depois de utilizados, ou protótipos evolutivos, que serão melhorados em etapas posteriores.

Para a implementação de um protótipo, os requisitos a ser representados devem ser selecionados, sendo que o conjunto de requisitos a ser validado pelo protótipo é limitado por recursos de desenvolvimento, como tempo, dinheiro, equipe, etc. Pode-se utilizar como critério de seleção a criticidade de um requisito.

Protótipos de baixa fidelidade: são protótipos simples, baratos e rápidos de desenvolver e representa visualmente as funcionalidades. Podem ser utilizados para validar conceitos, informações e ideias. Tem como objetivo definir de modo simples como seria a interação do usuário com uma funcionalidade, sem se preocupar com o design.

Protótipos de média fidelidade: são protótipos com layout e navegação simplificados, que sejam suficientes para testar alguns aspectos da interação do usuário com a ferramenta. É utilizado quando o foco é validar a interatividade com os elementos da interface. Busca definir a estrutura de conteúdo da interface e criar um layout básico da funcionalidade.

Ferramentas: Draw.io, Mockflow

Protótipos de alta fidelidade: representam de forma bastante real o produto final mas, em geral têm apenas uma ou poucas funções realmente funcionando. É possível simular o fluxo das funcionalidades e já fica bem mais próximo do layout final da funcionalidade.

Sign in name	
Password	(I forgot my password)
	Next time auto sign in
	Sign In

Referências

LAPLANTE, Phillip A.. Requirements Engineering for Software and Systems. 3. ed. Boca Raton: Crc Press, 2018.

POHL, Klaus; RUPP, Chris. Requirements Engineering Fundamentals. 2. ed. Santa Barbara: Rocky Nook, 2015.

PRESSMAN, Roger S.; MAXIM, Bruce R.. **Engenharia de software**: uma abordagem profissional. 8. ed. Porto Alegre: Amgh, 2016.

SOMMERVILE, Ian. Engenharia de software. 9. ed. São Paulo: Pearson Prentice Hall, 2011.

VAZQUEZ, Carlos Eduardo; SIMÕES, Guilherme. **Engenharia de requisitos**: Software orientado ao negócio. Rio de Janeiro: Brasport, 2016.

WIEGERS, Karl; BEATTY, Joy. Software Requirements. 3. ed. Redmond: Microssoft Press, 2013.