COS433/Math 473: Cryptography

Mark Zhandry
Princeton University
Spring 2017

Previously on COS 433...

Security Experiment/Game (One-time setting)

IND-Exp_b()

Construction with | k | << | m |

Idea: use OTP, but have key generated by some expanding function **G**

What Do We Want Out of **G**?

Definition: $G:\{0,1\}^{\lambda} \rightarrow \{0,1\}^{n}$ is a **(†,\varepsilon)**-secure **pseudorandom generator** (PRG) if:

- n > λ
- **G** is deterministic
- For all in running in time at most +,

$$Pr[\lambda (G(s))=1:s\leftarrow\{0,1\}^{\lambda}]$$

$$-Pr[\lambda (x)=1:x\leftarrow\{0,1\}^{n}] \leq \epsilon$$

Today

Length Extension for PRGs

Moving to many-time security

Extending the Stretch of a PRG

Assume towards contradiction ...

Define hybrids...

H_t:

 H_0 corresponds to pseudorandom x

H_t corresponds to truly random **x**

Let
$$q_i = Pr[x(x)=1:x \leftarrow H_i]$$

By assumption, $|\mathbf{q}_t - \mathbf{q}_0| > \epsilon$

$$\Rightarrow \exists i \text{ s.t. } |q_i - q_{i-1}| > \varepsilon/t$$


```
Analysis
• If y = G(s), then sees H_{i-1}
        \Rightarrow Pr[\hat{n} outputs 1] = q_{i-1}
        \Rightarrow \Pr[\mathcal{E}_{outputs 1}] = q_{i-1}
```

- If **y** is random, then sees **H**_i \Rightarrow Pr[λ outputs 1] = q_i
 - \Rightarrow Pr[@outputs 1] = q_i

Summary So Far

Stream ciphers = Encrytpion with PRG

 Secure encryption for arbitrary length, number of messages (though we did not completely prove it)

However, implementation difficulties due to having to maintaining state

Multiple Message Security

Left-or-Right Experiment

LoR Security Definition

Definition: (Enc, Dec) has (t,q,ϵ) -Left-or-Right indistinguishability if, for all \mathcal{F} running in time at most t and making at most t queries,

Pr[1
$$\leftarrow$$
LoR-Exp₀(\nearrow)]
- Pr[1 \leftarrow LoR-Exp₁(\nearrow)] $\leq \epsilon$

Alternate Notion: CPA Security

What if adversary can additionally learn encryptions of messages of her choice?

Examples:

- Midway Island, WWII:
 - US cryptographers discover Japan is planning attack on a location referred to as "AF"
 - Guess that "AF" meant Midway Island
 - To confirm suspicion, sent message in clear that Midway Island was low on supplies
 - Japan intercepted, and sent message referencing "AF"

Alternate Notion: CPA Security

What if adversary can additionally learn encryptions of messages of her choice?

Examples:

- Mines, WWII:
 - Allies would lay mines at specific locations
 - Wait for Germans to discover mine
 - Germans would broadcast warning message about the mines, encrypted with Enigma
 - Would also send an "all clear" message once cleared

CPA Experiment

CPA-Exp_b()

CPA Security Definition

Definition: (Enc, Dec) is (t,q,ε) -CPA Secure if, for all running in time at most t and making at most t CPA queries,

Pr[1
$$\leftarrow$$
CPA-Exp₀($\stackrel{\sim}{\sim}$)]
- Pr[1 \leftarrow CPA-Exp₁($\stackrel{\sim}{\sim}$)] $\leq \epsilon$

GCPA-Exp_b()

GCPA Security Definition

Definition: (Enc, Dec) is (†,c,q,ε)-Generalized CPA secure if, for all running in time at most † and making at most c challenge and q CPA queries,

Pr[1←GCPA-Exp₀(
$*$
)]
- Pr[1←GCPA-Exp₁(*)] ≤ ε

Equivalences

Theorem:

Left-or-Right indistinguishability

1

CPA-security

1

Generalized CPA-security

Equivalences

Theorem:

- (t,q,ϵ) -LoR \Rightarrow $(t-t',c,q-c,\epsilon)$ -GCPA
- $(t,1,q,\epsilon)$ -GCPA \Rightarrow $(t-t',q,\epsilon)$ -CPA
- (t,q,ϵ) -CPA \Longrightarrow $(t-t',q+1,\epsilon(q+1))$ -LoR

Generalized CPA-security → CPA-security

 Trivial: any adversary in the CPA experiment is also an adversary for the generalized CPA experiment that just doesn't take advantage of the ability to make multiple challenge/LoR queries

Left-or-Right → Generalized CPA

- Assume towards contradiction that we have an adversary for the generalized CPA experiment
- Construct an adversary that runs as a subroutine, and breaks the Left-or-Right indistinguishability

$$Pr[1 \leftarrow LoR - Exp_b()] = Pr[1 \leftarrow GCPA - Exp_b()]$$

$$Pr[1 \leftarrow LoR - Exp_b()] = Pr[1 \leftarrow GCPA - Exp_b()]$$

Left-or-Right → Generalized CPA

- Pr[1←LoR-Exp₁(≥)]

=
$$Pr[1 \leftarrow GCPA - Exp_o(\mathbb{R})]$$

-
$$Pr[1 \leftarrow GCPA - Exp_1(?)]$$
 = ϵ

(regular) CPA → Left-or-Right

• Assume towards contradiction that we have an adversary for the $(t,q+1, \epsilon(q+1))$ -LoR

• Hybrids!

Hybrid **i**:

(regular) CPA → Left-or-Right

Hybrid O is identical to LoR-Exp₁(

- Hybrid q+1 is identical to LoR-Exp₀(
- We know that \int distinguishes Hybrid q+1 and Hybrid O with advantage $\varepsilon(q+1)$
 - $\Rightarrow \exists i$ s.t. distinguishes Hybrid i and Hybrid i-1 with advantage ϵ

$$Pr[1 \leftarrow CPA - Exp_b()] = Pr[1 \leftarrow in Hybrid i-b]$$

(regular) CPA → Left-or-Right

-
$$Pr[1 \leftarrow in Hybrid i-1] = \epsilon$$

Equivalences

Theorem:

- (t,q,ϵ) -LoR \Rightarrow $(t-t',c,q-c,\epsilon)$ -GCPA
- $(t,1,q,\epsilon)$ -GCPA \Rightarrow $(t-t',q,\epsilon)$ -CPA
- (t,q,ϵ) -CPA \Longrightarrow $(t-t',q+1,\epsilon(q+1))$ -LoR

Therefore, you can use whichever notion you like best

Constructing CPA-secure Encryption

Starting point: A simple randomized encryption scheme from PRGs:

Analysis

As long as the two encryptions never pick the same location, we will have security

 $Pr[Collision] \le q^2/2n$, where

- q = number of messages encrypted
- **n** = number of blocks

If collision, then no security ("two-time pad")

So we get $(t,q,2\varepsilon+q^2/2n)$ -LoR security for small n

What if...

The PRG has **exponential** stretch

What if...

The PRG has exponential stretch

AND, it was possible to compute any 1 block of output of the PRG

- In polynomial time
- Without computing the entire output

In other words, given a key, can efficiently compute the function $F(k, x) = G(k)_x$

Functions that "look like" random functions

Syntax:

- Key space K (usually {0,1}^λ)
- Domain X (usually {0,1}^m)
- Co-domain/range Y (usually {0,1}ⁿ)
- Function **F:K** × X→Y

PRF Security Definition

Definition: \mathbf{F} is a $(\mathbf{t}, \mathbf{q}, \boldsymbol{\varepsilon})$ -secure PRF if, for an along in time at most \mathbf{t} and making at most \mathbf{q} queries,

Pr[1
$$\leftarrow$$
PRF-Exp₀($\stackrel{?}{\geqslant}$)]
- Pr[1 \leftarrow PRF-Exp₁($\stackrel{?}{\geqslant}$)] $\leq \epsilon$

Using PRFs to Build Encryption

Enc(k, m):

- Choose random r←X
- Compute $y \leftarrow F(k,r)$
- Compute c←y⊕m
- Output (r,c)

Correctness:

- y'=y since **F** is deterministic
- $m' = c \oplus y = y \oplus m \oplus y = m$

Dec(k, (r,c)):

- Compute $y' \leftarrow F(k,r)$
- Compute and output m'←c⊕y'

Using PRFs to Build Encryption

Security

Theorem: If F is a (t,q,ϵ) -secure PRF with domain X, then (Enc,Dec) is $(t-t', q, 2\epsilon + q^2/2|X|)$ -LoR secure.

Assume toward contradiction that there exists a \mathbb{R} running in time at most \mathbf{t} that has advantage $2\varepsilon + q^2/2|\mathbf{X}|$ in breaking (Enc,Dec)

Hybrids...

Assume toward contradiction that there exists a 🤼 running in time at most † that has advantage $2\varepsilon + q^2/2|X|$ in breaking (Enc, Dec)

- ndistinguishes Hybrid 0 from Hybrid 3 with advantage ε, so either 🦹
- Dist. Hybrid 0 from Hybrid 1 with adv. ε
- Dist. Hybrid 1 from Hybrid 2 with adv. q²/2|X|
- Dist. Hybrid 2 from Hybrid 3 with adv. ε

Suppose Tdistinguishes Hybrid 0 from Hybrid 1

Suppose Adistinguishes Hybrid 0 from Hybrid 1

- Construct
 PRF-Exp₀() corresponds to Hybrid 0
 PRF-Exp₁() corresponds to Hybrid 1

Therefore, \mathfrak{F} has advantage $\boldsymbol{\varepsilon}$ \Rightarrow contradiction

Suppose Tdistinguishes Hybrid 1 from Hybrid 2

Suppose Tdistinguishes Hybrid 1 from Hybrid 2

As long as the **r**'s for every query are distinct, the **y**'s for each query will look like truly random strings

In this case, encrypting $\mathbf{m_0}$ vs $\mathbf{m_1}$ will be perfectly indistinguishable

By OTP security

Suppose Rdistinguishes Hybrid 1 from Hybrid 2

Therefore, advantage is
$$\leq \Pr[\text{collision in the } r's]$$

= $\Pr[r^{(1)}=r^{(2)} \text{ or } r^{(1)}=r^{(3)} \text{ or } ... \text{ or } r^{(1)}=r^{(q)}$

or $r^{(2)}=r^{(3)} \text{ or } ...$]

 $\leq \Pr[r^{(1)}=r^{(2)}] + \Pr[r^{(1)}=r^{(3)}] + ... + \Pr[r^{(1)}=r^{(q)}]$
 $+ \Pr[r^{(2)}=r^{(3)}] + ...$

= $(1/|X|) \binom{q}{2}$
 $\leq q^2/2|X|$

Suppose Tdistinguishes Hybrid 2 from Hybrid 3

Almost identical to the 0/1 case...

Using PRFs to Build Encryption

Enc(k, m):

- Choose random r←X
- Compute $y \leftarrow F(k,r)$
- Compute c←y⊕m
- Output (r,c)

Correctness:

- y'=y since **F** is deterministic
- $m' = c \oplus y = y \oplus m \oplus y = m$

Dec(k, (r,c)):

- Compute $y' \leftarrow F(k,r)$
- Compute and output m'←c⊕y'

How big to choose X?

Using PRFs to Build Encryption

So far, scheme had fixed-length messages

Namely, M = Y

Now suppose we want to handle arbitrary-length messages

Security for Arbitrary-Length Messages

Theorem: Given any CPA-secure (**Enc,Dec**) for fixed-length messages (even single bit), it is possible to construct a CPA-secure (**Enc,Dec**) for arbitrary-length messages

Construction

Let (Enc, Dec) be CPA-secure for single-bit messages

```
Enc'(k,m):

For i=1,..., |m|, run c_i \leftarrow \text{Enc}(k, m_i)

Output (c_1, ..., c_{|m|})

Dec'(k, (c_1, ..., c_l)):

For i=1,..., l, run m_i \leftarrow \text{Dec}(k, c_i)

Output m = m_1 m_2 ..., m_l
```

Theorem: If (Enc,Dec) is (t,q,ϵ) -LoR secure, then (Enc',Dec') is $(t-t',q/n,\epsilon)$ -LoR secure for messages of length up to n

Assume toward contradiction that there exists a running in time at most **t-t'**, making **q/n** LoR queries on messages of length up to **n**, which has advantage **\varepsilon** in breaking **(Enc',Dec')**

Construct that has advantage ε in breaking (Enc,Dec)

Proof (sketch)

Better Constructions Using PRFs

In PRF-based construction, encrypting single bit requires $\lambda+1$ bits

⇒ encrypting **l**-bit message requires ≈λ**l** bits

Ideally, ciphertexts would have size ≈λ+l

Solution 1: Add PRG/Stream Cipher

Enc(k, m):

- Choose random r←X
- Compute $y \leftarrow F(k,r)$
- Get $|\mathbf{m}|$ pseudorandom bits $\mathbf{z} \leftarrow \mathbf{G}(\mathbf{y})$
- Compute c←z⊕m
- Output **(r,c)**

Dec(k, (r,c)):

- Compute $y' \leftarrow F(k,r)$
- Compute $z' \leftarrow G(y')$
- Compute and output m'←c⊕z'

Solution 1: Add PRG/Stream Cipher

Solution 2: Counter Mode

Enc(k, m):

- Choose random $\mathbf{r} \leftarrow \{0,1\}^{\lambda/2}$ Write \mathbf{i} as $\lambda/2$ -bit string
- For **i=1,...,|m|**,
 - Compute $y_i \leftarrow F(k,r||i|)^T$
 - Compute $c_i \leftarrow y_i \oplus m_i$
- Output (r,c) where $c=(c_1,...,c_{lml})$

Dec(k, (r,c)):

- For **i=1,...,l**,
 - Compute $y_i \leftarrow F(k,r||i)$
 - Compute $\mathbf{m}_i \leftarrow \mathbf{y}_i \oplus \mathbf{c}_i$
- Output m=m₁,...,m_l

Handles any message of length at most $2^{\lambda/2}$

Solution 2: Counter Mode

Summary

PRFs = "random looking" functions

Can be used to build security for arbitrary length/number of messages with stateless scheme

Next Time

Block Ciphers and Modes of Operation