武漢大学

本科毕业论文(设计)

跨分辨率遥感影像 精准信息提取方法研究

姓 名: 张 铄 琦

学 号: 2020300004045

专 业: 计算机科学与技术

学院: 计算机学院

指导教师: 肖 晶

原创性声明

本人郑重声明: 所呈交的论文(设计),是本人在指导教师的指导下,严格按照学校和学院有关规定完成的。除文中已经标明引用的内容外,本论文(设计)不包含任何其他个人或集体已发表及撰写的研究成果。对本论文(设计)做出贡献的个人和集体,均已在文中以明确方式标明。本人承诺在论文(设计)工作过程中没有伪造数据等行为。若在本论文(设计)中有侵犯任何方面知识产权的行为,由本人承担相应的法律责任。

作者签名: 指导教师签名:

日期: 年月日

版权使用授权书

本人完全了解武汉大学有权保留并向有关部门或机构送交本论文(设计)的 复印件和电子版,允许本论文(设计)被查阅和借阅。本人授权武汉大学将本论文 的全部或部分内容编入有关数据进行检索和传播,可以采用影印、缩印或扫描等 复制手段保存和汇编本论文(设计)。

作者签名: 指导教师签名:

日期: 年月日

摘 要

随着遥感技术的飞速进步,我们获得了丰富的高分辨率(HR)和低分辨率(LR)遥感图像资源。HR 图像能提供丰富的细节信息,然而却面临着成本和连续性等限制。易于获取且成本低廉的 LR 图像具有很高的应用潜力。然而,如何有效地从 LR 图像中提取难以直观识别的信息,成为了一个挑战。本文针对这一问题,在 CRVC 跨分辨率车辆计数数据集上设计并实现了一种基于注意力机制的深度学习 U 型网络模型,旨在充分利用遥感图像中隐含的空间和时间信息,从而提高目标计数的准确性。

本研究对 CRVC 数据集中的高分辨率和低分辨率图像之间的空间一致性及时间连续性进行了分析,并设计了时间注意力模块和跨分辨率注意力模块来针对性的处理数据。研究展示了注意力机制在提升模型性能中的应用潜力,尤其是在增强模型对多种特征表示的综合能力的方面。通过与当前领先的计数方法进行比较,以及通过消融实验进一步优化算法,本文模型在车辆计数的准确性和模型泛化能力方面取得了显著的进步。本文的研究成果不仅在车辆计数领域具有重要的应用价值,而且在智慧城市设计等相关领域也显示出极高的潜力。

关键词: 遥感图像, 跨分辨率, 目标计数, 注意力机制, 深度学习, U型网络

ABSTRACT

With the rapid advancement of remote sensing technology, we now can acquire a wealth of high-resolution (HR) and low-resolution (LR) remote sensing image resources. HR images can provide rich detail information, but they are limited by cost and continuity constraints. On the other hand, easily obtainable and cost-effective LR images hold great potential for application. However, effectively extracting subtle and non-intuitively recognizable information from LR images poses a significant challenge. Addressing this issue, this paper designs and implements an attention mechanism-based deep learning U-Net model on the CRVC cross-resolution vehicle counting dataset, aiming to fully leverage the implicit spatial and temporal information in remote sensing images to enhance the accuracy of object counting.

This study analyzes the spatial consistency and temporal continuity between HR and LR images within the CRVC dataset and introduces targeted processing through a temporal attention module and a cross-resolution attention module. The research demonstrates the potential of attention mechanisms to boost model performance, particularly in enhancing the model's ability to synthesize diverse feature representations. By comparing with leading counting methods and further optimizing the algorithm through ablation studies, our model shows significant improvements in vehicle counting accuracy and model generalization ability. The research findings presented in this paper are not only valuable for the field of vehicle counting but also exhibit considerable potential for broader applications such as smart city design.

Key words: Remote Sensing Images; Cross Resolution; Object Counting; Attention Mechanism; Deep Learning; U-Net

目 录

1	绪论			1		
	1.1	研究背景与意义 · · · · · · · · · · · · · · · · · · ·				
		1.1.1 高	分辨率和低分辨率遥感图像简介	1		
		1.1.1	高分辨率图像 · · · · · · · · · · · · · · · · · · ·	1		
		1.1.1	低分辨率图像	2		
		1.1.1	重访周期与成本	2		
		1.1.2 研	党意义	3		
	1.2	国内外研	飞现状	3		
		1.2.1 跨	分辨率遥感影像目标计数现状	3		
		1.2.1	目标检测	4		
		1.2.1	语义分割	4		
		1.2.1	基于回归的计数方法	4		
		1.2.1	基于密度图的计数方法	4		
		1.2.1	跨分辨率车辆计数数据集 · · · · · · · · · · · · · · · · · · ·	4		
	1.3	研究目标	5内容	4		
		1.3.1 研	究目标	4		
		1.3.2 研	党内容	5		
	1.4	章节安排		5		
2	目标	计数方法	技术框架······	6		
	2.1	目标计数		6		
			草型	6		
		2.2.1 卷	只层	6		
		2.2.1	卷积模型	7		
	2.		多通道输入与多通道输出	7		
		2.2.1	填充和步幅	7		
		2.2.2 激	舌函数	8		
		化层	8			
		2.2.4 权	重衰减	9		

		2.2.5	智退法	9	
		2.2.6	批量归一化	9	
	2.3	U-Net 网络 ······			
		2.3.1	模型结构	11	
		2.3.2	收缩路径	11	
		2.3.3	扩展路径	11	
		2.3.4	双线性插值	11	
		2.3.5	转置卷积	12	
	2.4	注意力	注意力机制		
		2.4.1	注意力机制基本原理	13	
		2.4.2	注意力机制在图像领域的应用	14	
		2.4.3	注意力机制处理序列图像 · · · · · · · · · · · · · · · · · · ·	15	
	2.5	Attenti	ion U-Net 网络······	15	
	2.6	Flow1	D 网络 ·····	17	
3	跨分	· 辩率车辆计数数据集······· 1			
	3.1	数据集	数据集简介		
		3.1.1	数据集分析	19	
		3.1.2	高分辨率图像处理	20	
		3.1.3	低分辨率图像处理	21	
		3.1.4	空间一致性	22	
		3.1.5	时间连续性	22	
	3.2	CRVC	网络	22	
		3.2.1	网络设计	22	
		3.2.2	损失函数	22	
		3.2.3	回归模型	24	
4	基于	注意力	力机制的跨分辨率遥感影像计数	25	
	4.1	问题分析			
	4.2	网络设	计	25	
	4.3	多来源	原注意力机制 · · · · · · · · · · · · · · · · · · ·	25	
			5数 · · · · · · · · · · · · · · · · · · ·	25	

5	跨分辨率遥感影像计数实验及分析				
	5.1	测试	26		
6	总结	与展望	27		
	6.1	结论	27		
参	考文的	献······	28		
致	谢 …		29		
附	录 A	数据	30		
	A.1	第一个测试 ·····	30		

1 绪论

随着遥感技术的快速发展,我们能获得到越来越丰富的遥感观测数据。既有高分辨率的清晰图像,也包括低分辨率的鸟瞰图。这些图像从更宏观的视角为我们提供了许多有价值的数据。然而如何合理的使用这些图像数据,特别是从低分辨率图像中找出更多难以通过人类肉眼直接识别出的有效信息成为了一个重要的研究课题。在车辆计数等真实场景中,高分辨率图像虽然能提供丰富的细节,但有着获取成本高昂以及难以获取稳定连续的高频率数据的问题。本文在 CRVC 跨分辨率车辆计数数据集上,设计了一种基于注意力机制的深度学习 U 型网络模型,旨在提高跨分辨率遥感图像中隐含的空间和时间信息进行更丰富全面的表示,以进一步提升目标计数的准确性。

1.1 研究背景与意义

1.1.1 高分辨率和低分辨率遥感图像简介

在遥感领域,分辨率是用来描述遥感图像细节程度的一个重要指标,根据遥感卫星搭载的传感器不同,可以从多个维度进行描述,包括空间分辨率、时间分辨率、光谱分辨率和辐射分辨率。在讨论高分辨率(High Resolution, HR)图像和低分辨率(Low Resolution, LR)图像时,通常指的是空间分辨率的差异。空间分辨率的详细定义可以参照^[1]:(i)低或粗分辨率定义为地面采样距离(GSD)为 30 m或更大的像素,(ii)中分辨率是 GSD 范围为 2.0-30 m,(iii) 高分辨率为 GSD 0.5-2.0 m,以及 (iv) 极高分辨率为像素大小 <0.5 m

本文中将该定义简化,只进行高分辨率与低分辨图像的区分。

1.1.1.1 高分辨率图像

高分辨率图像通常指具有较高空间分辨率的图像,即图像中单个像素所代表的地面面积较小,能够显示更加精细的地面特征。高分辨率图像使得用户可以观察到较小的地面对象,例如单个车辆、道路标线甚至是行人。虽然"高分辨率"这个术语没有绝对的定义,但在遥感领域,我们把空间分辨率小于1米(通常在0.3米到1米之间)的图像常被认为是高分辨率图像。目前我们可以使用的高分辨率遥感图像来源主要有:航空摄影(搭载高分辨率摄像机或低空高分辨率无人机拍摄的

数据)和某些高性能的卫星遥感仪器,例如 WorldView 系列、GeoEye-1、QuickBird 等。高分辨率图像中的精细地面特征信息,在城市规划、交通监控、农业监测(如作物健康分析)、详细的地物分类、灾害评估等领域都有广泛的使用。特别是在目标识别领域中,高分辨率的图像可以使用深度学习中多种模型和方法,具有很高的应用价值。

1.1.1.2 低分辨率图像

低分辨率图像指的是空间分辨率较低的图像,即图像中单个像素所代表的地面面积较大,只能显示较为粗糙的地面特征。低分辨率图像难以分辨较小的地面对象,但适合于观察大范围的地表变化。通常空间分辨率大于 10 米(如 10 米、30 米或更大)的图像被认为是低分辨率图像。低分辨率图像主要来源于具有宽幅覆盖能力的卫星遥感仪器,如 MODIS (具有数百米的空间分辨率)、Landsat 系列(15 米到 30 米分辨率)、Sentinel-2(10 米到 60 米分辨率)等。图像中的大范围地表特征,在气候变化研究、大范围土地覆盖变化监测、环境监测、城市发展规划、海洋和大气研究等领域有着很高的应用价值。对于目标识别以及目标计数领域来说,模糊的图像质量大大加大了现有深度学习模型的识别难度。

1.1.1.3 重访周期与成本

地球卫星的轨道半径和周期可以根据开普勒第三定律和牛顿的万有引力定律 推导出来的。下面是公式推导的过程:牛顿的万有引力定律描述了两个物体之间 的引力,公式为:

$$F = G \frac{m_1 m_2}{r^2} \tag{1.1}$$

其中,F 是两个物体之间的引力,G 是万有引力常数, m_1 和 m_2 是两个物体的质量,r 是两个物体的中心之间的距离。对于在圆轨道上运动的卫星,向心加速度 a_c 提供了必要的向心力,可由下式给出:

$$F_c = m \frac{v^2}{r} \tag{1.2}$$

这里, F_c 是向心力,m 是卫星的质量,v 是卫星的轨道速度,r 是卫星绕行天体的轨道半径。由于卫星在轨道上的向心力正是由地球对卫星的万有引力提供的,可得到:

$$G\frac{Mm}{r^2} = m\frac{v^2}{r} \tag{1.3}$$

轨道周期 T 是卫星完成一圈轨道所需的时间,与轨道速度和轨道半径相关,可表示为:

$$T = \frac{2\pi r}{v} \tag{1.4}$$

在一般情况下,当考虑两个物体质量都不能忽略时,M+m 代替上式中的 M,最终得到两个物体之间的轨道周期 T 与轨道半径 r 之间的关系:

$$T = 2\pi \sqrt{\frac{r^3}{G(M+m)}}\tag{1.5}$$

这就是天体绕另一天体旋转周期的计算公式,它揭示了轨道周期与轨道半径之间的关系。这个公式在天文学和航天工程中有广泛应用,用于预测天体运动及设计人造卫星的轨道。高分辨率图像一般由低轨卫星拍摄,具有较小的轨道半径和周期。同时也因此具有较小的视场(the field of view, FOV)较小。高分辨率图像辨率卫星通常使用任务驱动模式进行地球观测。这意味着,如果不提前提交观测任务,一颗卫星需要6个月才能完成全球覆盖,获得特定区域的图像的重访周期相当长。此外,高分辨率图像非常昂贵,例如 WorldView-3 的价格为34 美元/km2。作为对比,低分辨率卫星的往往运行在更高的轨道上,虽然空间分辨率有所降低,但视场较大。因此获得同一地点重访周期要短得多,例如 PlanetScope 卫星每天重访一次,价格也低得多,为1.8 美元/平方公里。

1.1.2 研究意义

单独依靠低分辨率图像进行目标计数是十分困难的,而仅通过高分辨率图像进行目标计数,不仅花费巨大,同时还需要面对连续监控数据的缺失。如何通过低成本且具有时间连续性的低分辨率图像进行目标计数及实时监测就成为解决问题的关键。本文提出的方法通过少量高分辨率图像的辅助,在时间连续的低分辨率图像上实现目标计数,具有很高的应用价值。该方法不仅局限于目标计数,更好地利用了低分辨率图像中蕴含的模糊信息,在稠密车流人流识别、智慧城市设计等领域也有很高的应用潜力。

1.2 国内外研究现状

1.2.1 跨分辨率遥感影像目标计数现状

高分辨率图像计数主要有两类方法。一类是检测方法,通过识别出具体的物体位置来进一步计数。另一种是计数类方法,直接估计图像中对应物体的数目。

1.2.1.1 目标检测

基于检测的目标计数是目标检测下的一个分支。目标检测作为计算机视觉的一个主要研究方向,主要研究的是如何识别出特定的对象,并确定它的大小和位置。目前随着深度学习技术的发展,利用神经网络进行目标检测已经成为主流方案。主要的目标检测算法包括 RCNN 系列、SSD、YOLO 系列等

1.2.1.2 语义分割

语义分割是一类特殊的目标检测任务,需要给出每个像素的分类。主要的语义分割模型包括全卷积网络(FCN)、U-Net、SegNet、DeepLab 系列、Mask R-CNN和 Attention U-Net。

1.2.1.3 基于回归的计数方法

这类方法从深度神经网络提取的特征中直接进行数目的回归估计,常常用于 处理目标密集、相互遮挡严重的场景,如人群计数。

1.2.1.4 基于密度图的计数方法

基于密度图的计数方法通过估计目标区域的目标密度,从而计算出数量估计。目前主要的密度图估计方法包括 CSRNet、MCNN 和 TEDNet。

1.2.1.5 跨分辨率车辆计数数据集

该数据集有少量高分辨率图像和拍摄于这些高分辨率图像日期之间的相同位置的低分辨率图像组成。该数据集主要关注低分辨率下的此车辆计数问题。在低分辨率下,汽车的边界极难分辨,人类在标注识别的过程中也并不容易。该数据集提供了少量拍摄了同位置的高分辨率图像作为参照。目前,已经有一些工作在这个数据集上取得了不错的效果。在本文的第三部分将进行进一步说明。

1.3 研究目标与内容

1.3.1 研究目标

1. 跨分辨率车辆计数算法的开发: 开发一种新的基于深度学习的车辆计数算法,该算法能够有效利用有限的高分辨率图像来指导低分辨率图像中的车辆计数。

- 2. 探究高效利用数据集中空间一致性和时间连续性信息的方式:探究同一时刻高分辨率与低分辨率图像间的空间一致性和连续低分辨率图像间的时间连续性的高效利用方式。研究不同分辨率图像对算法效果的具体影响。
- 3. 探究注意力机制在跨分辨率目标计数的应用: 探索注意力机制在提高跨分辨率车辆计数准确性中的应用, 尤其是如何通过注意力机制来增强模型综合多种特征表示的能力。

1.3.2 研究内容

- 1. 研究背景与意义分析:分析相关遥感技术的发展背景,高分辨率与低分辨率 遥感图像的特点及其在车辆计数中的面临困难和挑战。梳理了当前目标检 测、语义分割、基于回归和密度图的计数方法等方面的研究进展,特别关注 跨分辨率图像处理及车辆计数领域的最新研究成果。
- 2. 跨分辨率车辆计数数据集分析:对 CRVC 数据集进行分析调研,了解其数据组成分布以及数据中隐含的性质的分析及建模。
- 3. 基于注意力机制的车辆计数模型设计:设计并实现一种新的基于注意力机制的深度学习模型,用于提高跨分辨率遥感图像车辆计数的准确性。
- 4. 算法的性能评估及优化:在 CRVC 数据集上评估设计算法的性能,进行消融实验,并与现有的车辆计数方法进行比较。进一步优化算法,以达到更高的计数准确性和更好的泛化能力。

1.4 章节安排

第一章为绪论,整体介绍研究背景及研究内容。第二章为目标计数方法计数框架,详细解释了目标计数领域的方法细节。第三章为跨分辨率车辆计数数据集介绍,包括了数据的组成、分布以及对数据性质的初步分析。第四章介绍了基于注意力机制的跨分辨率遥感影像计数方法,详细解释了基于注意力机制的深度学习网络设计细节。

2 目标计数方法技术框架

2.1 目标计数

目前目标计数领域主要有三类方法。一类是检测方法,通过目标检测模型识别出具体的物体位置,之后根据结果来进一步计数。但这类方法对于输入图像的分辨率有着较高的要求,往往需要物体具有明确清晰的边缘特征。在低分辨率下往往表现效果较差。一种是基于回归的方法,直接拟合出图像特征和目标数目之间的回归模型得到图像中对应物体的数目。但这种方法未能完整利用图像中的空间,及序列信息。当输入图像的大小和分布有变化的情况下,往往不具有很强的泛化能力。另一类方法是基于密度图的目标计数方法。此类方法通常先得出一个目标物体在区域内的一个分部,之后就可以通过密度分布来估计总体的数量。该方法在稠密计数的场景下往往具有较好的效果。在本文使用的跨分辨率车辆计数数据集上,可以把车辆计数视为一个稠密计数场景。使用基于密度图的计数方法相较其余两类方法有着更好的表现。受上述方法启发,本文将跨分辨率车辆计数问题转换为两个子问题,即综合跨分辨率图像信息的图像分割网络和映射分割结果和最终计数目标的回归模型。

2.2 语义分割模型

语义分割作为计算机视觉的一个核心研究方向,目前已经有了较为成熟的解决方法。它的目标是对图像中的每个像素进行细致的分类,从而实现对图像的像素级理解。像素级的输出能力使得该领域的很多方法在密度图的估计上也有着不错的表现。

2.2.1 卷积层

对于图像数据,常使用卷积层而不是全连接层来进行特征提取。卷积层具有的平移不变性和局部性非常适合处理图像数据,可以掌握图像的空间特征。下面给出卷积层的基本定义。

2.2.1.1 卷积模型

$$[\mathbf{H}]i, j = u + \sum_{a=-\Delta}^{\Delta} \sum_{b=-\Delta}^{\Delta} [\mathbf{V}]a, b[\mathbf{X}]_{i+a,j+b}$$
(2.1)

通过使用系数 [**V**]a,b对位置 (i,j) 附近的像素 (i+a,j+b) 进行加权得到 [**H**]i,j。其中 $|a| > \Delta$ 或 $|b| > \Delta$ 约束条件使得该式满足局部性,即只关注于在位置像素 (i+a,j+b) 的小领域范围内的参数,大大减少了参数量。**V** 被称为卷积核(convolution kernel)或者滤波器(filter),也是该卷积层的权重,通常该权重是可学习的参数。参数 a, b 也对应着卷积核的尺寸 k_b , k_w 。

2.2.1.2 多通道输入与多通道输出

上式(2.1)是单通道情况下卷积层的数学表示,当输入图像的通道数为 c_i 时,那么我们需要构造一个形状为 $c_i \times k_h \times k_w$ 的卷积核。由于输入和卷积核都有 c_i 个通道,我们可以对每个通道输入的二维张量和卷积核的二维张量进行互相关运算,再对通道求和得到一个二维张量。这就是一个输出通道的结果。如果我们需要输出通道数为 c_o 时,只需创建一个卷积核的形状是 $c_o \times c_i \times k_h \times k_w$ 。通道数量可以视作对于不同特征的描述,随着神经网络层数的加深,通常的做法是减少空间分辨率的同时增加通道数量。

2.2.1.3 填充和步幅

在应用多层卷积时,我们常常丢失边缘像素。填充(padding)可以解决这个问题。在输入图像的边界填充一定数量的元素(通常填充元素是 0)。通常,如果我们添加 p_h 行填充(大约一半在顶部,一半在底部)和 p_w 列填充(左侧大约一半,右侧一半),则输出形状将为

$$(n_h - k_h + p_h + 1), (n_w - k_w + p_w + 1)$$
(2.2)

这意味着输出的高度和宽度将分别增加 p_h 和 p_w 。在许多情况下,我们可以设置 $p_h = k_h - 1$ 和 $p_w = k_w - 1$,这样使得输入和输出具有相同的高度和宽度。假设 k_h 是奇数,我们将在高度的两侧填充 $p_h/2$ 行。如果 k_h 是偶数,通常会在输入顶部填充 $[p_h/2]$ 行,在底部填充 $|p_h/2|$ 行。同理,我们填充宽度的两侧。

感受野是指卷积网络中某一层输出特征图上的一个元素所对应的输入图像上

的区域大小。它表征着特征图能"看到"的区域的大小。我们可以通过连续的卷积来增加感受野,但这会增加参数量。我们还可以通过调整步幅来增大感受野。步幅是卷积操作中卷积核移动的步长。在对图像进行卷积时,卷积核从图像的一个角落开始,按照指定的步幅在图像上滑动,每次移动指定的像素数,直到覆盖整个图像。当步幅大于1时,卷积核每次移动多个像素,输出的特征图的尺寸也会随之减小。具体公式如下:

通常, 当垂直步幅为 s_h , 水平步幅为 s_w 时, 输出形状为

$$\lfloor (n_h - k_h + p_h + s_h)/s_h \rfloor \times \lfloor (n_w - k_w + p_w + s_w)/s_w \rfloor \tag{2.3}$$

如果我们设置了 $p_h = k_h - 1$ 和 $p_w = k_w - 1$,则输出形状将简化为 $\lfloor (n_h + s_h - 1)/s_h \rfloor \times \lfloor (n_w + s_w - 1)/s_w \rfloor$ 。更进一步,如果输入的高度和宽度可以被垂直和水平步幅整除,则输出形状将为 $(n_h/s_h) \times (n_w/s_w)$ 。

2.2.2 激活函数

卷积神经网络中常用的激活函数包括 ReLU(线性整流单元)、Sigmoid、Tanh(双曲正切)等。这些激活函数的目的是在网络中引入非线性特性,使得网络能够学习到更加复杂的数据表示。本文用到的是线性整流函数 ReLU (Rectified Linear Unit) 函数和 Sigmoid 函数。对于给定元素 x,ReLU 函数被定义为该元素与 0 的最大值。它是目前最常用的激活函数之一。因为它的导数在大于 0 时为 1,小于 0 时为 0,这使得它可以用来缓解梯度消失的问题。

$$f(x) = \max(0, x) \tag{2.4}$$

Sigmoid 函数将输入值映射到 (0, 1) 区间,这常常用于分类预测或者给出概率 预测。然而,由于其在输入值绝对值较大时梯度接近 0,可能会导致梯度消失问题。

$$f(x) = \frac{1}{1 + e^{-x}} \tag{2.5}$$

2.2.3 池化层

池化(pooling)是卷积神经网络中常见的一种方法,主要用于减少特征图的维度,减少计算量的同时保留重要的一致性信息。与卷积层类似,池化运算也是通过一个固定形状的窗口滑动来实现的。与之不同的是,池化通过对邻近像素进行统计学操作(如取最大值或平均值)来实现,因此也不包含参数。主要有两种类型的池化:最大池化(Max Pooling)和平均池化(Average Pooling)。池化操作通

常有两个参数:池化核的大小(KxK)和步幅(S)。池化核指定了池化操作的邻域范围,步幅定义了池化操作的移动间隔。对于输入大小为 $W\times H$ 的特征图,池化操作后的输出大小 $W'\times H'$ 可以通过以下公式计算:

$$W' = \left\lfloor \frac{W - K}{S} + 1 \right\rfloor \tag{2.6}$$

$$H' = \left\lfloor \frac{H - K}{S} + 1 \right\rfloor \tag{2.7}$$

在卷积网络的实践中,池化层通常有降低特征维度、引入不变性、增加鲁棒性和防止过拟合的作用。

2.2.4 权重衰减

在模型训练时,可能会遇到过拟合的问题,使得模型在已有数据上有着较好的性能,而在测试数据上表现不佳。我们可以使用多种正则化技术来缓解过拟合的问题。权重衰减(weight decay)是最广泛使用的正则化的技术之一,它通常也被称为 L_2 正则化。 L_2 正则化在损失函数中添加模型权重的平方之和作为惩罚项。同时通过一个非负的超参数 λ 来控制正则化的强度。 L_2 正则化正则化修正后的损失函数如下式:

$$L(\mathbf{w}, b) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} \left(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} + b - y^{(i)} \right)^{2} + \frac{\lambda}{2} ||\mathbf{w}||^{2}$$
 (2.8)

L2 正则化的目的是鼓励模型学习到更小更分散的权重值,从而提高模型的泛 化能力。它对大的权重值施加较大的惩罚,从而防止模型依赖于少数几个可能具 有高噪声的特征。

2.2.5 暂退法

Dropout 在训练过程中以一定几率随机"丢弃"(即暂时移除)网络中的一部分神经元(包括其连接),这有助于模型学习到更加鲁棒的特征,减少神经元间复杂的共适应关系。需要注意的是,在测试时,我们通常不使用 dropout。

2.2.6 批量归一化

批量归一化(Batch Normalization)是通过对每个小批量数据进行归一化处理,调整神经网络中间层的输出,使其均值接近 0,标准差接近 1。这可以通过减去它们的均值除以它们的标准差得到。这有助于稳定和加速深度网络的训练过程,同时也具有一定的正则化效果。批量归一化(Batch Normalization,简称 BN)是一种

在深度神经网络中广泛使用的技术,用于加速训练过程并提高模型的稳定性。其基本思想是在网络的每层之后添加一个归一化步骤,这个步骤会对每个小批量数据(mini-batch)进行归一化处理,以确保网络中间层的激活分布保持稳定。批量归一化的公式如下:

$$\hat{x}_i = \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} \tag{2.9}$$

其中, ϵ 是一个很小的数,用来防止除以零。归一化后的 \hat{x}_i 具有零均值和单位方差。

2.3 U-Net 网络

U-Net^[2] 是一个广泛被应用的语义分割模型,最初被应用于医学图像的分割问题上。U-Net 是一个具有对称结构的网络,通过使用跳跃连接(Skip Connection)来结合低层次的位置信息和高层次的语义信息,从而在细节上进行更准确的预测。

图 2.1 U-Net 网络结构

2.3.1 模型结构

U-Net 网络由一个收缩路径 (contracting path) 和一个扩展路径 (expansive path) 组成. 网络的输入是一张 572×572 的的图片 (input image tile)。网络最终的输出为同样尺寸的分割图预测。图像经过收缩路径提取综合特征,并保留中间特征信息。在扩展路径中,综合上采样后前一层特征结果与对应尺度的编码特征,得到最终的结果。因为整个网络结构形似字母'U',因此称为 U-Net。

2.3.2 收缩路径

收缩路径是由多个卷积层、线性整流函数单元(ReLU)和最大汇聚层(Max Pooling)构成的一系列降采样操作。论文中将这一部分叫做压缩路径(contracting path)。压缩路径由 4 个块组成,每个块使用了 3 个有效卷积和 1 个 Max Pooling 进行下采样。每个块处理之后特征图的通道数扩大为 2 倍,特征图的长和宽也有相应缩小。这样的处理使得不同的特征被逐步提取到不同的通道中。最终得到了尺寸为 32×32 的特征图。

2.3.3 扩展路径

扩展路径是相同数量的相似模块组成。不同的是扩展路径中使用了反向卷积和上采样。同时扩展路径通过跳跃连接从收缩路径对应的层中获取特征图,并与当前层的特征图进行融合。这种结构有助于恢复图像的精细信息,使得在深度网络中消失的某些信息不至被遗忘。在深度学习和计算机视觉中,上采样(Upsampling)和反向卷积(也称为转置卷积, Transposed Convolution)是两种常用的技术,用于增加图像或特征图的分辨率。这两种技术常见于像 U-Net 这样的网络结构中,用于从深层特征映射中恢复图像的细节信息,尤其在图像分割和生成模型中十分重要。

2.3.4 双线性插值

上采样是一种用于增加图像或特征图的尺寸的方法。它通过已有数据的插值来增加分辨率,主要有最近邻插值、双线性插值和双三次插值等方法。下面主要介绍双线性插值。在双线性插值中,输出像素的值是输入像素值的加权平均,权重基于像素之间的距离。假如我们想得到未知函数 f 在点 P=(x,y) 的值,假设我们已知函数 f 在 $Q_{11}=(x_1,y_1)$, $Q_{12}=(x_1,y_2)$, $Q_{21}=(x_2,y_1)$,及 $Q_{22}=(x_2,y_2)$ 四

个点的值。

首先在 x 方向进行线性插值,得到:

$$f(x, y_1) \approx \frac{x_2 - x}{x_2 - x_1} f(Q_{11}) + \frac{x - x_1}{x_2 - x_1} f(Q_{21}),$$
 (2.10)

$$f(x, y_2) \approx \frac{x_2 - x}{x_2 - x_1} f(Q_{12}) + \frac{x - x_1}{x_2 - x_1} f(Q_{22}).$$
 (2.11)

然后在 y 方向进行线性插值,得到

$$f(x,y) \approx \frac{y_2 - y}{y_2 - y_1} f(x,y_1) + \frac{y - y_1}{y_2 - y_1} f(x,y_2)$$

$$= \frac{y_2 - y}{y_2 - y_1} \left(\frac{x_2 - x}{x_2 - x_1} f(Q_{11}) + \frac{x - x_1}{x_2 - x_1} f(Q_{21}) \right)$$

$$+ \frac{y - y_1}{y_2 - y_1} \left(\frac{x_2 - x}{x_2 - x_1} f(Q_{12}) + \frac{x - x_1}{x_2 - x_1} f(Q_{22}) \right)$$

$$= \frac{1}{(x_2 - x_1)(y_2 - y_1)} \left(f(Q_{11})(x_2 - x)(y_2 - y) + f(Q_{21})(x - x_1)(y_2 - y) + f(Q_{12})(x_2 - x)(y_2 - y) +$$

如果先在 y 方向插值、再在 x 方向插值, 其结果与按照上述顺序双线性插值的结果是一样的。由上式我们不难看出, 双线性插值由两个线性函数的积构成, 因此为网络带来了非线性。

2.3.5 转置卷积

转置卷积^[3] 是一种更复杂的上采样技术,它通过神经网络来试图学习一种更有效的插值方式。它不仅增加了特征图的尺寸,还可以学习在上采样过程中引入新的信息。它通过反转卷积操作的流程实现,因此被称为转置卷积。标准卷积操作是将卷积核应用于多个输入上,得到一个输出,实际上就是建立了一个多对一的关系。对于转置卷积而言,我们实际上是想建立一个逆向操作,也就是建立一个一对多的关系。对于标准卷积,我们有:

$$Y = CX \tag{2.13}$$

转置卷积其实就是要对其进行逆操作, 求出 X

$$X = C^T Y (2.14)$$

假设输入特征图大小为 $W \times H$,卷积核大小为 $K \times K$,步长为S,填充为P,输出特征图大小可以通过以下公式计算:

$$W' = S(W - 1) + K - 2P$$
$$H' = S(H - 1) + K - 2P$$

这里 W' 和 H' 分别是输出特征图的宽度和高度。

2.4 注意力机制

注意力机制(Attention Mechanism)是一种模仿认知注意力的机制。在认知科学中,由于信息处理的瓶颈,人类会选择性地关注信息中的某一一部分,同时忽略其他可见的信息。上述机制通常被称为注意力机制。随着该机制在 Transformer、BERT、GPT等 NLP 领域的成功,该机制及应用又成为了研究的热点话题。目前在计算机视觉领域,ViT、Flow1D等网络也都基于注意力机制进行设计。从注意力的形式来分类的话,可以分为软注意力 (soft attention) 和硬注意力 (hard attention)。其中软注意力机制是可微可导的,本文中主要探讨的也是软注意力机制。

2.4.1 注意力机制基本原理

图 2.2 注意力机制

如图 2.2所示,注意力机制主要涉及到 3 类数据,分别是键 (key)、值 (value)和查询 (query)。当一个查询值到来时,计算查询和键的相似度,得到权重,并进行归一化处理。再将得到的权重和值加权求和得到我们最终的注意力结果。首先计算查询与每个键之间的相似度。这一步通常使用点积 (dot product)或者缩放点积 (scaled dot product)来实现。具体来说,对于每个查询,通过计算它与所有键

的点积,得到一个相似度分数:

$$score(Q, K) = QK^{T}$$
(2.15)

接下来使用 Softmax 函数对上一步得到的相似度分数进行归一化,以确保所有的权重加起来等于 1。:

Attention Weight = Softmax(score(
$$Q, K$$
)) (2.16)

用归一化后的权重对值进行加权求和,得到最终的注意力输出:

Output = Attention Weight
$$\cdot V$$
 (2.17)

将上述步骤合并,注意力机制的输出可以通过以下公式计算:

Attention(Q, K, V) = Softmax
$$\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$
 (2.18)

其中, d_k 是键的维度,这个因子用于缩放点积,避免在维度很高时计算结果过大,导致 Softmax 函数处于饱和区,从而缓解梯度消失的问题 $^{[4]}$ 。

2.4.2 注意力机制在图像领域的应用

在图像处理领域中,使用注意力机制可以显著提升模型的性能,尤其是在图像分类、目标检测和图像分割等任务中。根据任务需要不同,常用的注意力机制有以下几种:

- 1. 空间注意力(Spatial Attention):关注图像的特定区域,通常用于增强模型对图像中重要部分的感知能力。可以用来替代传统的卷积网络,找到目标区域。
- 2. 通道注意力(Channel Attention): 关注不同通道的相关性,可以帮助模型识别哪些特征是更加重要的。
- 3. 自注意力(Self-Attention): 通过计算图像内所有位置之间的关系,可以捕捉 更广泛的上下文信息。在时间序列模型中,自注意力机制可以保证长序列中 的所有位置的信息有参与后续计算的可能。在图像领域中,对图像数据自身 使用自注意力机制使得输出中每一位置均含有输入图像中所有位置的加权 信息。

在图像领域实践中,同时还使用以下几种训练策略:

1. 多尺度注意力:使用多尺度注意力可以帮助模型同时关注图像的粗略和详细 特征,这在处理具有不同尺寸和形状的对象时特别有效。

- 2. 融合不同的注意力机制:同时使用空间和通道注意力,或者将传统的注意力机制与自注意力结合起来,可以提取更丰富的特征并提高模型的性能。
- 3. 注意力正则化:添加注意力正则化可以防止模型对某些特征过度依赖,从而提高模型的泛化能力。使用如残差连接等设计可以训练更深层的网络,防止训练过程中的信息丢失。

2.4.3 注意力机制处理序列图像

在处理序列图像,如视频帧、时间序列的医学图像或连续的监控遥感数据时, 我们不仅要考虑图像中的空间信息,也需要考虑图像间的序列信息。对于注意力 机制的设计使用有着更高的要求。自注意力机制和多图像帧的相互注意力机制常 常用来捕获时间和空间上的复杂关系。以下是这些注意力机制在序列图像处理中 的一些常见应用方式:

自注意力机制可以用于分析序列图像中的时间依赖性,这对于识别视频中的动态事件或时间序列图像中的变化特别有效。

- 1. 时间自注意力: 在处理视频或其他序列图像时,可以在时间维度上应用自注意力,以识别不同时间点图像帧之间的关键依赖关系。在视频帧序列中,模型可以学习到哪些帧之间具有高度相关性,这对于动作识别、事件检测等任务非常有用。
- 空间自注意力:在单个图像帧内部,可以应用空间自注意力来分析图像中不同区域之间的相互作用,对于解决目标检测和图像分割等任务有很大的帮助。
- 3. 时空自注意力:结合时间和空间自注意力,可以同时考虑空间位置和时间演变的关系。这种方法可以用于复杂场景的动态解析,如多物体交互的场景。这些方法在处理动态场景解析和增强特征表示上有着不错的表现。在动态变化的场景中,模型可以使用多目标间的相互注意力来预测未来的状态。而通过计算不同目标之间的相互关系,可以获得更丰富的场景表示,这对于场景分类、事件检测等任务非常有帮助。

2.5 Attention U-Net 网络

Attention U-Net 是一种结合了注意力机制的 UNet 网络,最初被应用于医学图像的分割问题上。它在 U-Net 的架构上增加了 Attention Gate 注意力门使得模型能

更好的聚焦在目标区域。

图 2.3 Attention U-Net

如图 2.3所示,Attention U-Net 沿用了 U-Net 的基本架构,包括编码器(逐步下采样)和解码器(逐步上采样)两部分,以及跳跃连接(skip connections)来保留多尺度的特征。值得注意的是在每个跳跃连接处,新引入了注意力门控模块。这些模块对来自编码器的特征图进和解码器的相应特征图进行注意力计算。这使得网络能够聚焦于那些对最终分割任务更为重要的区域。

该方法将来自解码器的特征图作为查询,将来自编码器的特征图作为值和键 作为注意力门的输入。注意力系数是通过一个小型的卷积网络学习到的,该网络 计算当前解码器特征和对应编码器特征之间的相关性。

图 2.4 Attention gate

在图 2.4中展示的是一个注意力门结构。注意力门接收两组输入,一组是来自上一下采样层的特征图 (g),作为查询。另一组是来自跳跃连接的特征图 (x^l) 键和值。两组特征图首先通过一个 $1\times1\times1$ 的卷积层(表示为 W_g 和 W_x),这一步用于减少通道的数量,以降低后续计算复杂度。接着,两组卷积后的特征图相加,

并通过 ReLU 激活函数,得到 σ_1 。经过 ReLU 激活的特征图再次经过一个 $1\times1\times1$ 卷积层,通常标识为 ψ ,然后通过 Sigmoid 激活函数得到 σ_2 ,此时每个特征的激活值位于 [0,1] 区间,代表了特征的重要性权重。将 Sigmoid 输出的权重与跳跃连接的特征图 (x^I) 相乘。在这个过程中,三个 $1\times1\times1$ 卷积层包含了我们需要学习的参数,也赋予了该模块掌握关键权重的能力。通过注意力门,我们得到了在解码器特征图做查询的情况下的加权编码器特征图。利用我们新得到的特征图来进行下一步解码,比原本单纯接受编码器输入获得了更丰富的信息。

2.6 Flow1D 网络

Flow1D 网络是一个基于注意力机制的光流估计网络。光流估计是计算机视觉中的一个基本问题,它旨在估计一幅图像上的每个像素点在时间序列中的运动,这在视频处理、运动分析、超分辨率、3D 重建和自动驾驶等众多领域中都有广泛应用。光流估计是计算机视觉领域中的一个核心问题,光流是图像中像素点在时间维度上的瞬时运动速度和方向的场。光流是从连续的视频帧中估计出来的,这些连续的图像不仅具有时间上的连续性,光流也是从这些图像的空间关系中估计出来的。本文探讨的跨分辨率车辆计数问题,需要从同一时间的高分辨率低分辨率图像中找到空间一致性的关联,同时在连续的低分辨率图像中也要找到时间上的连续性关系。这和光流估计对于连续图像数据的利用有着不少相同之处。

图 2.5 Flow1D 网络

上图 2.5展示了模型的基本框架。对于源和目标两个图像,先分别进行特征提取,然后利用注意力机制计算 3D cost volume。最后通过门控循环单元,通过相关性特征和初始提取出的特征,进行隐状态的计算。反复迭代计算出光流。其中 3D

cost volume 的设计充分利用了注意力机制的全局观察能力,通过两个一维的注意力操作,表征三维的光流状态。在水平竖直方向分别进行自注意力计算和相互之间的注意力计算。

图 2.6 self attention 和 cross attention

图 2.6是一个很直观的展示。如果要计算源和目标的相关度,直接进行 cross attention 是不能得到红点与蓝点之间的相关关系的。因此需要再源上先进行 self attention,使得每一个列向量包含着原先该列的一种加权分布。然后再进行 cross attention 操作,综合不同图像不同位置的信息。这是一种非常有效的策略。

3 跨分辨率车辆计数数据集

3.1 数据集简介

跨分辨率车辆计数数据集收集了日本常陆那珂港的 192 张极低分辨率图像和 8 张高分辨率图像,日期范围为 2016 年至 2019 年。其中 LR 图像是 www.planet.com 下载的,由 PlanetScope 卫星拍摄,地面分辨率为每像素 3m。为了起到监督作用,HR 图像是在根据相应 LR 图像的日期选择的,这些图像是从 WorldView 捕获的,地面分辨率为每像素 30 厘米。

Fig. 3. Detailed information about CRVC dataset. (a) Distribution of acquisition dates. (b) Distribution of acquisition time.

图 3.1 数据的日期和时间分布

3.1.1 数据集分析

图 3.1 显示了数据集中 LR 和 HR 图像采集的日期和时间分布。可以观察到,数据的分布并不平均,主要集中在 2017 年 5 月至 2019 年 7 月之间。就 8 张高分辨率图像的日期而言,它们之间的时间间隔最小为 6 天,最大为 17 个月。如表格 3.1中数据所示,HR 图像和相应 LR 图像之间的采集时间并不完全一致,平均采集时间差异为 39 分钟。在这种情况下,我们认为短时间内的 HR 和 LR 图像中的车辆数目一致。这一假设和实际情况相符并大大降低了建模难度。

HR 拍摄时间	LR 拍摄时间
10:56	10:36
10:24	9:34
10:20	9:36
10:34	9:44
10:30	9:41
10:25	9:42
10:46	9:56
10:35	10:29
	10:56 10:24 10:20 10:34 10:30 10:25 10:46

表 3.1 HR 和 LR 图像的获取日期与时间

3.1.2 高分辨率图像处理

为了进行计数任务,该数据集在 HR 图像上标注了车辆的边界及类别。HR 图像上标注框的数量作为对应日期的 LR 图像的真值。标注的边界则作为停车场位置的空间提示信息。该数据集中总共注释了 37852 个车辆实例,包含四类车辆,包括轿车、小型卡车、大型卡车和起重机(图 3.2)。不同类别的车辆在尺寸形状上有着很大的不同,分类计数有助于提升计数质量。各类车辆数量极不平衡,分别为轿车 35844 辆、小型货车 737 辆、大型货车 1211 辆、起重机 60 辆。

图 3.2 HR 图像车辆标注及分类

3.1.3 低分辨率图像处理

数据集中共包含 192 张低分辨率图像。这些图像在 2016 至 2019 年之间被采集,主要分布在 2017 年 6 月至 2019 年 8 月之间,其中 61.5% 的采集间隔在两天以内。如图 3.1所示,低分辨率图像的采集时间均为日间,大部分图像拍摄于上午 9 点到 10 点。我们可以认为这些图像具有相似的拍摄条件。不同于高分辨率图像,低分辨率图像的标注要困难的多。因为难以在低分辨率的条件下辨认清晰的车辆轮廓,所以标注车辆覆盖率是一个更可行的方法。由于低分辨率图像的视场较大,车辆区域只占图像中很小的一部分。因此先在 HR 图像中划出 9 个区域,在 LR 图像中的对应位置进行估计(图 3.3)。

图 3.3 计数区域划分和 HR、LR 实例图像

低分辨率图像可以分为两类,有对应高分辨率图像的和没有对应高分辨率图像的。对于前者而言,直接从对应高分辨率标注结果中计算覆盖率即可。那些没

有 HR 图像对应的 LR 图像则由多名专家进行视觉标注并取平均值。

3.1.4 空间一致性

通过上述对数据集的分析,我们可以看到高分辨率图像和与其对应的低分辨率图像之间间隔时间不大,同时对应的是同一位置。因此我们可以认为在它们上进行的目标计数结果应当也相同。两者所映射的空间信息应该具有一致性,这也给后续处理方法提供了思路。如何应用高分辨率图像信息指导改进低分辨率图像上估计的结果成为提高估计精度的关键节点之一。

3.1.5 时间连续性

单一的低分辨率图像很难得出合理的目标计数估计,然而由于低分辨率遥感 图像的短重访周期,我们能得到一段连续的低分辨率图像。比较相邻图像间的变 化或者从多个图像间进行学习,可以补充那些单张图像因低分辨率造成的信息缺 失。图像间的时间连续性也是指导改进图像计数估计结果的关键因素。

3.2 CRVC 网络

CRVC 网络是针对 CRVC 数据集设计的深度学习模型。它以 U-Net 模型为骨架,设计了跨分辨率空间 CRVC 数据集中的跨分辨率空间信息和时序信息。通过上述网络估计出密度分布后,使用线性回归模型得出最终目标计数结果。

3.2.1 网络设计

上图 3.4展示了模型的基本框架。模型接受 4个输入,分别是高分辨率图像输入 I^{LR} ,对应低分辨率图像输入 I^{LR} ,与 LR 图像时间间隔较近的 I^{LR}_{near} 和与 LR 图像时间间隔较远的 I^{LR}_{far} 。模型包含两个独立学习的编码器 HR encoder 和 LR encoder,前者用来提取高分辨率图像的特征,后者用来提取 3 个低分辨率图像的特征。提取出的低分辨率特征和高分辨率特征作差来综合更高精度的信息。之后通过带有跳跃连接的 decoder 完成分割图的生成。

3.2.2 损失函数

CRVCnet设计了三个损失函数,综合三个损失函数的结果来训练模型。第一个损失函数为交叉熵损失函数,这个函数常用来衡量概率之间的距离。网络经 sigmod

图 3.4 CRVC 网络架构

输出的分割图也是一种概率分布。用交叉熵衡量其偏差程度有着不错的效果。

$$\mathcal{L}_{\text{ent}} = -\frac{1}{n} \sum_{i} y_{i} \ln a_{i}$$
 (3.1)

对于高分辨率和低分辨率图像间的空间一致性,它们之间的差异越小,模型对于真实情况的把握就越好。文章提出了下面的损失函数进行约束。

$$\mathcal{L}_{\text{dif}} = \sum_{i} \left| F_{l}^{LR} - F_{l}^{HR} \right|^{2} \tag{3.2}$$

网络接受 3 个低分辨图像,分别是有高分辨率对应的低分辨率图像,距离这个低分辨率图像时间较近的图像和距离这个低分辨率图像时间较远的图像。由于时间连续性的约束,日期接近的图像间的差异应该小于日期相隔较远的差异。因此这部分损失函数的设计要求相邻日期图像间的差异更小,日期间隔较远的差异较大。下面的公式同时满足上述条件,且符合最小化损失的要求

$$\mathcal{L}_{\text{ser}} = \sum_{l=1}^{m} \frac{\left| F_{\text{closel}}^{LR} - F_{l}^{LR} \right|}{\left| F_{\text{far}\,l}^{LR} - F_{l}^{LR} \right|}$$
(3.3)

最终的损失函数由各个损失函数加权得到,即

$$\mathcal{L} = \omega_1 \mathcal{L}_{\text{ent}} + \omega_2 \mathcal{L}_{\text{dir}} + \omega_3 \mathcal{L}_{\text{ser}}$$
 (3.4)

其中为 $\omega_1,\omega_2,\omega_3$ 各个损失函数的权重,是设定好的超参数。m 是特征图的通道数.

3.2.3 回归模型

在 CRVC 数据集中,车辆在目标区域是密集停放的,而且不存在重叠。因此 从分割图上估计出的覆盖率和最终的车辆数目具有线性关系。通过 CRVC 网络得到的覆盖率分割图,根据低分辨率图像的缩放比例,可以估计出实际面积。通过 线性回归,找出参数 \mathbf{k} 来拟合

$$Number_i = k_i \dots Area_i + b_i \tag{3.5}$$

其中i表示第i类车辆。这些参数通过高分辨率图像的真值计算得到。

4 基于注意力机制的跨分辨率遥感影像计数

- 4.1 问题分析
- 4.2 网络设计
- 4.3 多来源注意力机制
- 4.4 损失函数

- 5 跨分辨率遥感影像计数实验及分析
- 5.1 测试

6 总结与展望

6.1 结论

参考文献

- [1] NAVULUR K. Multispectral image analysis using the object-oriented paradigm[M].
- [2] RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation: arXiv:1505.04597[M]. arXiv, 2015.
- [3] DUMOULIN V, VISIN F. A guide to convolution arithmetic for deep learning: arXiv:1603.07285[M]. arXiv, 2018.
- [4] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need: arXiv:1706.03762[M]. arXiv, 2023.

致谢

附录 A 数据

A.1 第一个测试

测试公式编号

1 + 1 = 2. (A.1)

表格编号测试

表 A.1 测试表格

 11
 13
 13
 13
 13

 12
 14
 13
 13
 13