Übungsblatt 14 zur Kommutativen Algebra

Aufgabe 1. () Ein Gegenbeispiel zu einer Verstärkung des Krullschen Satzes Finde einen noetherschen Ring zusammen mit einem Ideal $\mathfrak{a} \neq (1)$ mit $\bigcap_{n=0}^{\infty} \mathfrak{a}^n \neq (0)$.

Aufgabe 2. (3) Beispiele für Poincarésche Reihe und Hilbertsches Polynom Berechne die Poincarésche Reihe und das Hilbertsche Polynom des gewichteten K[X,Y]-Moduls $K[X,Y]/(X^2,XY)$ bezüglich \dim_K .

Aufgabe 3. (1) Dualität zwischen symmetrischer und äußerer Algebra Sei K ein Körper. Sei $S = K[X_1, \ldots, X_n]$ und sei E die zugehörige äußere Algebra der antikommutativen Polynome, wo $X_iX_i = 0$ und $X_iX_j = -X_jX_i$ gilt. Sei $\lambda = \dim_K$. Zeige: $\lambda(S,t) \cdot \lambda(E,-t) = 1$.

Aufgabe 4. (0) Rationale Binomialkoeffizienten

Für rationale Zahlen x und natürliche Zahlen k setzen wir $\binom{x}{k} := x(x-1)\cdots(x-k+1)/k! \in \mathbb{Q}$. Solche Binomialkoeffizienten kommen in Taylor-Entwicklungen vieler wichtiger Funktionen vor.

- a) Zeige: Genau dann kommt im gekürzten Nenner einer rationalen Zahl a/b nicht der Primfaktor p vor, wenn es eine p-adische Ganzzahl u mit bu=a gibt.
- b) Verwende die Dichtheit von \mathbb{Z} in \mathbb{Z}_p und die Stetigkeit von Polynomen über \mathbb{Z}_p , um zu folgern: Im gekürzten Nenner eines rationalen Binomialkoeffizienten $\binom{x}{k}$ können nur solche Primfaktoren vorkommen, die auch im gekürzten Nenner von x vorkommen.

