

Tutorial: PREESM - Dataflow Programming of Multicore DSPs

Karol Desnos, Clément Guy, Maxime Pelcat

EDERC 2014 Conference, Milan, September 11th

PREESM

http://preesm.sourceforge.net/website

- Eclipse-based Tool
- Written in Java and Xtend
- Using
 - Eclipse Modeling Framework,
 - Eclipse Graphiti,
 - Eclipse CDT
- Compatible and tested on Linux and Windows
- Release 2.0.0 on sept 2014

PREESM

- Started in 2007
- In collaboration with Texas Instruments
 France
- 16 contributors
- Academic collaborations
 - -LAAS
 - University of Maryland
 - ENIS
 - Abo Akademi

- Preesm offers Editors
 - Algorithm
 - Architecture
 - Scenario

- And can run a Workflow
 - Transformations of models

- A workflow runs typically within a few tens of seconds
- Algorithm: typically 10-1500 actors
- Architecture: typically 1-20 cores

Examples for the tutorial

Algorithms

Sobel filter: edge detection

Stereo matching: disparity map

Architectures

Intel i7 quad-core

TI Shannon (C6678)

Rapid prototyping process

Algorithm modeling

PiSDF

Parameterized

Dynamism

interfaced

Hierarchy & Composition

Synchronous Data-Flow

Actors & Fifos

Algorithm examples

Sobel filter Stereo matching

Arcitecture modeling

S-LAM

System-Level Architecture Model

Processing elements

Communication nodes

Architecture examples

Intel i7 quad-core TI Shannon (C6678)

Scenario selection

Link between algorithm & architecture

Execution times

Execution constraints

Simulation information

Enables separation of concerns

Scenario example

Sobel filter on Intel i7 quad-core

Workflow composition

Rapid prototyping tasks

Scheduling

Code generation

Memory optimization

Vizualization tools

. . .

Workflow examples

2 workflows

Scheduling

Scheduling + code generation

Let's complicate things

Small application on CPU

What about more realistic cases?

Execution on DSP (C6678)

Stereo matching algorithm

PREESM for the DSP Programmer

Rapid prototyping for multicore DSPs

High-level modeling of parallelism

Automatic mapping

Automatic scheduling

Automatic code generation

Advanced memory optimization

Bridges to UML MARTE, SDF3 & Orcc

PREESM is constantly improving

Research tool

New models & features

Regular enhancements

Incoming features

Parameter-dependent timings

Distributed memory management

Bridge to DIF from Univ. of Maryland

GUI enhancements (workflow scripts)

. . .

Thank you for your attention

preesm.sourceforge.net/website/

Twitter: @PreesmProject