MM 719, Álgebra Linear Exame de Qualificação ao Mestrado

Agosto de 2021

- 1. Seja $T: V \to V$ uma transformação linear no espaço vetorial V de dimensão finita.
- a) (1,5 pt) Mostrar que existe um número natural n tal que $V = Im(T^n) \oplus N(T^n)$, onde Im é a imagem, e N é o núcleo da respectiva transformação linear.
 - b) (0,5 pt) Existem transformações lineares T tais que $V \neq Im(T) \oplus N(T)$?
 - c) (0,3 pt) Definir o polinômio minimal de T.
- d) (0.7 pt) Se V é espaço vetorial sobre os complexos, e T e S são duas transformações lineares em V que têm os mesmos polinômios característicos e os mesmos polinômios minimais, podemos afirmar que T e S têm a mesma forma canônica de Jordan?
- **2.** (2,5 pt) Sejam v_1, \ldots, v_k vetores no espaço euclidiano \mathbb{R}^n , formamos a matriz A de ordem k tal que a entrada na posição (i,j) é igual ao produto interno (v_i, v_j) de v_i e v_j . Mostrar que det $A \leq ||v_1||^2 ||v_2||^2 \cdots ||v_k||^2$, onde $||v|| = \sqrt{(v,v)}$ é a norma do vetor v.
- **3.** (2,5 pt) A transformação linear T no espaço vetorial \mathbb{C}^4 é definida pela seguinte ação sobre os vetores da base canônica v_1, v_2, v_3, v_4 :

$$Tv_1 = 99v_1$$
, $Tv_2 = 99v_2 + 101v_3$, $Tv_3 = 99v_3$, $Tv_4 = 101v_1 + 99v_4$.

Encontrar uma base de Jordan para T, e a matriz de T na base de Jordan.

Escolher uma e apenas uma das questões 4 e 4'. Soluções para as duas questões 4 e 4' serão desconsideradas!

- **4.** Seja V o espaço vetorial dos polinômios na variável t, cujos coeficientes são números reais, e de grau ≥ 4 .
 - a) (0,3 pt) Mostrar que os polinômios 1, t, t^2 , t^3 , t^4 formam uma base β de V.
 - b) (1,2 pt) Se V^* é o espaço dual de V, encontrar a base dual de β .
- c) (0,5 pt) Se W é o espaço vetorial dos polinômios reais na variável t (sem limitações no grau), os polinômios 1, t, t^2 , ..., t^n , ..., formam uma base de W? Caso sim, sejam $f_i \in W^*$ com $f_i(t^j) = \delta_{ij}$ (onde $\delta_{ij} = 0$ se $i \neq j$ e $\delta_{ii} = 1$), i, $j \geq 0$. Podemos afirmar que as funções $f_0, f_1, f_2, \ldots, f_n, \ldots$, formam uma base de W^* ?
- **4'.** Seja e_1 , e_2 uma base do espaço vetorial \mathbb{R}^2 (não necessariamente a base canônica), e seja $t = e_1 \otimes e_1 + e_2 \otimes e_2$.
 - a) (1 pt) O elemento t pode ser apresentado como $t = v_1 \otimes v_2$, para alguns $v_1, v_2 \in \mathbb{R}^2$?
- b) (1 pt) Apresentar t como $t = v_1 \otimes v_2 + w_1 \otimes w_2$, onde $v_1 \otimes v_2$ e $w_1 \otimes w_2$ não são múltiplos por escalar de nenhum de $e_1 \otimes e_1$ e $e_2 \otimes e_2$.

1.	2.	3.	4.	5.	6.	\sum

Prova de Topologia Geral – MM-453

4 de agosto de 2021

NOME: RA:	
NOME: RA:	

Responda a **cinco** das questões abaixo e marque com × no quadro acima aquela que **excluir** (alternativamente, reproduza o quadro acima na folha de rosto de sua prova).

- 1. Seja $X=\{p,q\}$ um conjunto com dois pontos. Construa topologias $\mathcal{T}_1,\mathcal{T}_2,\mathcal{T}_3$ em X, tais que:
 - (a) (05 pontos) (X, \mathcal{T}_1) seja Hausdorff;
 - (b) (10 pontos) (X, \mathcal{T}_2) seja regular, mas não seja Hausdorff;
 - (c) (10 pontos) (X, \mathcal{T}_2) não seja regular, nem Hausdorff.
- 2. Os conceitos fundamentais da topologia nos permitem provar rigorosamente propriedades intuitivas dos nossos espaços mais conhecidos.
 - (a) (10 pontos) Sejam K um espaço compacto e X um espaço Hausdorff localmente conexo por caminhos. Mostre que uma aplicação contínua $f: K \to X$ separa X em componentes (conexas por caminhos) abertas.
 - (b) (15 pontos) Prove que \mathbb{R}^2 não é homeomorfo a \mathbb{R}^n , se $n \neq 2$.
- 3. Os espaços métricos são exemplos muito importantes de espaços topológicos, mas às vezes podem desafiar nossa intuição.
 - (a) (05 pontos) Defina espaço métrico e sua topologia natural.
 - (b) (20 pontos) O fecho da bola aberta é sempre igual ao fecho da bola fechada? Justifique.
- 4. A compacidade de produtos cartesianos é uma questão fundamental em topologia.
 - (a) (05 pontos) Defina a topologia produto.
 - (b) (20 pontos) Enuncie e demonstre o Teorema de Tychonoff.
- 5. A topologia quociente é uma importante ferramenta para a construção de novos espaços topológicos.
 - (a) (05 pontos) Defina a topologia quociente.
 - (b) (20 pontos) Mostre que a esfera S^2 é homeomorfa a um quociente do disco $D \subset \mathbb{R}^2$.
- 6. Esta questão é sobre o teorema do ponto fixo de Brouwer.
 - (a) (15 pontos) Mostre que $\pi_1(S^1) = \mathbf{Z}$.
 - (b) (10 pontos) Enuncie e demonstre o teorema do ponto fixo de Brouwer em um disco $D \subset \mathbb{R}^2$.

IMECC/Unicamp

Programa de Pós-Graduação em Matemática

Exame de Qualificação ao Mestrado MM720 - Análise no \mathbb{R}^n

RA: Nome:			
R.A.: Nome:	DA.	NI	
	R.A:	Nome:	

Esta prova tem sete questões. Responda a **no máximo quatro** delas, sendo que pelo menos uma precisa estar entre as quatro primeiras questões e pelo menos uma entre as três últimas.

Q1. Seja $p \in \mathbb{R}$ e considere $f: \mathbb{R}^2 \to \mathbb{R}$ dada por f(0,0) = 0 e

$$f(x,y) = \frac{x^p y(x-y)}{x^2 + y^2}$$

se $(x, y) \neq (0, 0)$.

- (a) Estude a continuidade de f dependendo do valor de p.
- (b) Calcule, se possível, $\frac{\partial f}{\partial x}(0,0)$ e $\frac{\partial f}{\partial y}(0,0)$.
- (c) Estude a diferenciabilidade de f na origem dependendo do valor de p.
- **Q2.** Seja \mathbb{R}^{n^2} o conjunto das matrizes $n \times n$ com entradas reais e seja $f : \mathbb{R}^{n^2} \to \mathbb{R}^{n^2}$ dada por $f(A) = AA^t$, onde A^t é a transposta de A.
 - (a) Descreva f'(X) e mostre que f'(X)H é simétrica para toda matriz $H \in \mathbb{R}^{n^2}$.
 - (b) Mostre que se $X^{-1} = X^t$, então para toda matriz simétrica S (ou seja, $S = S^t$), existe pelo menos uma matriz H tal que f'(X)H = S.
- **Q3.** Seja $f: \mathbb{R}^5 \to \mathbb{R}^2$ de classe C^1 . Seja a=(1,2,-1,3,0). Suponha que f(a)=0 e que

$$Df(a) = \begin{pmatrix} 1 & 3 & 1 & -1 & 2 \\ 0 & 0 & 1 & 2 & -4 \end{pmatrix}.$$

(a) Mostre que existe uma função $g:B\to\mathbb{R}^2$ de classe C^1 , definida num aberto $B\subset\mathbb{R}^3$ tal que

$$f(x_1, g_1(x), g_2(x), x_2, x_3) = 0$$

para
$$x = (x_1, x_2, x_3) \in B$$
 e $g(1, 3, 0) = (2, -1)$.

- (b) Calcule Dg(1, 3, 0).
- (c) Dê um exemplo de uma função f que satisfaça o enunciado e encontre a correspondente função g do item (a).
- **Q4.** (a) Defina posto de uma aplicação diferenciável $f: U \subset \mathbb{R}^m \to \mathbb{R}^n$ em um ponto $x \in U$.
 - (b) Dada $f: U \subset \mathbb{R}^m \to \mathbb{R}^n$ de classe C^1 , existe um subconjunto aberto e denso $A \subset U$ tal que o posto de f é constante em cada componente conexa de A.

- Q5. (a) Enuncie o Teorema de Green.
 - (b) Utilize o Teorema de Green para provar que não existe solução periódica para o sistema de equações diferenciais

$$\frac{d}{dt}x(t) = x(t) + x(t)^5, \ \frac{d}{dt}y(t) = -y(t) + y(t)^5,$$

isto é, que não existe curva fechada $\gamma(t)=(x(t),y(t))$ satisfazendo ao sistema de equações.

- Q6. (a) O que é uma 1-forma diferenciável?
 - (b) Seja ω uma 1-forma definida num domínio $\Omega.$ Qual a definição de ω ser fechada? E exata?
 - (c) Prove que se uma 1-forma é exata, então ela é fechada.
 - (d) A recíproca do item anterior é verdadeira? Dê um exemplo.
- Q7. (a) Enuncie o Teorema de Stokes da forma mais geral que você souber.
 - (b) Prove o Teorema de Stokes em dimensão n=1.
 - (c) Seja D uma superfície diferenciável e seja F(x,y,z)=(P(x),Q(y),R(z)). Calcule a integral $\int_{\partial D} F \cdot d\mathbf{r}$.