3. Збіжність і неперервність

В основі поняття збіжності послідовностей в топологічних просторах лежать аксіоми зліченності, які в свою чергу використовують поняття локальної бази в точці.

- **Озн. 3.1.** Система β_{x_0} відкритих околів точки x_0 називається **локальною базою в точці x_0**, якщо кожний окіл U точки x_0 містить її деякий окіл V із системи β_{x_0} .
- **Озн. 3.2.** Топологічний простір X називається таким, що **задовольняє першій аксіомі зліченності**, якщо в кожній його точці існує локальна база, що складається із не більш ніж зліченої кількості околів цієї точки.
- **Озн. 3.3.** Топологічний простір X називається таким, що **задовольняє другій аксіомі зліченності**, або **простором із зліченною базою**, якщо воно має базу, що складається із не більш ніж зліченої кількості відкритих множин.
- **Лема 3.1.** Якщо простір X задовольняє другій аксіомі зліченності, то він задовольняє і першій аксіомі зліченності.

Доведення. Нехай $U_1,\ U_2,\dots,U_n,\ \dots$ — зліченна база в просторі X, тоді $\beta_{x_0}=\left\{U_k\in\boldsymbol{\beta}:x_0\in U_k\right\}$ — зліченна локальна база в точці x_0 .

Лема 3.2. *Існують простори, що задовольняють першій аксіомі зліченності, але не задовольняють другій аксіомі зліченності.*

Доведення. В якості контрприкладу розглянемо довільну *незліченну* множину X, в якій введено дискретну топологію $\tau = \{\emptyset, X, 2^X\}$.

Приклад 3.1. Простір R^n , топологія якого утворена відкритими кулями, задовольняє першій аксіомі зліченності, оскільки в кожній точці $x_0 \in X$ існує зліченна локальна база

 $S(x_0, 1/n)$. Очевидно, що цей простір задовольняє і другій аксіомі зліченності, оскільки має зліченну базу, що складається з куль $S(x_n, r)$, де центри куль x_n належать зліченній скрізь щільній множині (наприклад, мають раціональні координати), а r — раціональне число.

Поняття точки дотику і замикання множини відіграють основну роль в топології, оскільки будь-яка топологічна структура повністю описується в цих термінах.

Проте поняття точки дотику занадто абстрактне. Набагато більше змістовних результатів можна отримати, якщо виділити широкий клас просторів, топологічну структуру яких можна описати виключно в термінах границь збіжних послідовностей.

Озн. 3.4. Послідовність точок $\{x_n\}$ топологічного простору X називається збіжною до точки $x_0 \in X$, якщо кожний окіл U_0 точки x_0 містить всі точки цієї послідовності, починаючи з деякої. Точку x_0 називають границею цієї послідовності: $\lim_{n\to\infty} x_n = x_0$.

Приклад 3.2. В довільному тривіальному просторі послідовність збігається до будь-якої точки цього простору.

Довільна гранична точка множини A довільного топологічного простору X ϵ точкою дотику. Проте в загальних топологічних просторах не для всякої точки дотику $x \in \overline{A}$ існу ϵ послідовність $\{x_n\} \in A$, що до неї збігається.

Приклад 3.3. Нехай X— довільна незліченна множина. Задамо в просторі X топологію, оголосивши відкритими порожню множину і всі підмножини, які утворені із X викиданням не більш ніж зліченної кількості точок.

$$\tau = \{\emptyset, X \setminus \{x_1, x_2, ..., x_n, ...\}\}.$$

Спочатку покажемо, що в цьому просторі збіжними є лише стаціонарні послідовності. Припустимо, що в просторі існує нестаціонарна послідовність $\{x_n\} \to x_0$. Тоді, взявши в якості околу точки x_0 множину U, яка утворюється викиданням із X всіх членів послідовності $\{x_n\}$, які відрізняються від точки x_0 , ми дійдемо до протиріччя з тим, що окіл U мусить містити всі точки послідовності $\{x_n\}$, починаючи з деякої.

Тепер розглянемо підмножину $A = X \setminus \{x_0\}$. Точка $x_0 \in X$ точкою дотику множини A. Справді, якщо U — довільний відкритий окіл точки x_0 , то за означенням відкритих в X множин, доповнення $X \setminus U$ є не більш ніж зліченим.

```
U \in \tau \Rightarrow U = X \setminus \{x_1, x_2, ..., x_n, ...\} \Rightarrow

\Rightarrow X \setminus U = X \setminus X \setminus \{x_1, x_2, ..., x_n, ...\} = \{x_1, x_2, ..., x_n, ...\} \Rightarrow

\Rightarrow A \cap U \neq \emptyset (оскільки card A = c, а доповнення X \setminus U і тому не може містити в собі незліченну множину A).
```

З іншого боку, оскільки в просторі X збіжними є лише стаціонарні послідовності, то із $x_0 \notin A$ випливає, що жодна послідовність точок із множини A не може збігатися до точки дотику $x_0 \notin A$.

Теорема 3.1. Якщо простір X задовольняє першій аксіомі зліченності, то $x_0 \in \overline{A}$ тоді і лише тоді, коли x_0 є границею деякої послідовності $\{x_n\}$ точок із A.

Доведення. Достатність. Якщо в довільному топологічному просторі $\{x_n\} \in A$, $\lim_{n \to \infty} x_n = x_0$, то $x_0 \in \overline{A}$.

Необхідність. Нехай $x_0 \in \overline{A}$. Якщо $x_0 \in A$, достатньо в якості $\{x_n\} \in A$ взяти стаціонарну послідовність.

Припустимо, що $x_0 \in \overline{A} \setminus A$ і $U_1, U_2, \dots, U_n, \dots$ — зліченна локальна база в точці x_0 , до того ж $\forall n \in N$ $U_{n+1} \subset U_n$. (Якщо б ця умова не виконувалася, ми взяли б іншу базу $\{V_n\}$, де $V_n = \bigcap_{k=1}^n U_k$). Оскільки $A \cap U_n \neq \emptyset$, взявши за x_n довільну точку із $A \cap U_n$, ми отримаємо послідовність $\{x_n\} \in A$, $\lim_{k \to \infty} x_n = x_0$.

Дійсно, нехай V — довільний окіл точки x_0 . Оскільки $U_1,U_2,\ldots,U_n,\ldots$ база в точці x_0 , існує такий елемент U_{n_0} , який належить цій базі, що $U_{n_0}\subset V$. З іншого боку, для всіх $n\geq n_0 \qquad U_{n+1}\subset U_n$. Це означає, що $\forall n\geq n_0$ $x_n\in A\cap U_n\subset U_{n_0}\subset U$. Отже, $x_0=\lim_{n\to\infty}x_n$.

Поняття неперервного відображення належить до фундаментальних основ топології.

Озн. 3.5. Відображення $f: X \to Y$ називається **сюр'єктивним**, якщо f(X) = Y, тобто множина X відображається на весь простір Y.

Озн. 3.6. Відображення $f: X \to Y$ називається **ін'єктивним**, якщо з того, що $x_1 \neq x_2$ випливає, що $f(x_1) \neq f(x_2)$, тобто відображення є однозначним.

Озн. 3.7. Відображення $f: X \to Y$, яке одночасно є сюр'єктивним та ін'єктивним, називається **бієктивним**, або взаємно однозначною відповідністю між X і Y.

Тепер нагадаємо основні співвідношення для образів та прообразів множин відносно функції $f: X \to Y$.

Якщо $A, B \subset X$, то

1.
$$A \subset B \Rightarrow f(A) \subset f(B) \not\Rightarrow A \subset B$$
;

- 2. $A \neq \emptyset \Rightarrow f(\emptyset) \neq \emptyset$;
- 3. $f(A \cap B) \subset f(A) \cap f(B)$;
- 4. $f(A \cup B) = f(A) \cup f(B)$.

Якщо $A', B' \subset Y$, то

- 5. $A' \subset B' \Rightarrow f^{-1}(A') \subset f^{-1}(B')$;
- 6. $f^{-1}(A' \cap B') = f^{-1}(A') \cap f^{-1}(B');$
- 7. $f^{-1}(A' \cup B') = f^{-1}(A') \cup f^{-1}(B')$.

Якщо $B' \subset A' \subset Y$, то

8.
$$f^{-1}(A' \setminus B') = f^{-1}(A') \setminus f^{-1}(B');$$

9.
$$f^{-1}(Y \setminus B') = X \setminus f^{-1}(B')$$

Для довільних множин $A \subset X$ і $B' \subset Y$

10.
$$A \subset f^{-1}(f(A));$$

11.
$$f(f^{-1}(B')) \subset B'$$
.

Введемо поняття неперервного відображення.

Озн. 3.8. Нехай X і Y — два топологічних простора. Відображення $f: X \to Y$ називається **неперервним в точці** x_0 , якщо для довільного околу V точки $y_0 = f\left(x_0\right)$ існує такий окіл U точки x_0 , що $f\left(U\right) \subset V$.

Озн. 3.9. Відображення $f: X \to Y$ називається **неперервним**, якщо воно є неперервним в кожній точці $x \in X$.

Інакше кажучи, неперервне відображення зберігає граничні властивості: якщо точка $x \in X$ є близькою до деякої множини $A \subset X$, то точка $y = f(x) \in Y$ є близькою до образу множини A.

Теорема 3.2. Для того щоб відображення $f: X \to Y$ було неперервним, необхідно і достатньо, щоб прообраз

 $f^{-1}(V)$ будь-якої відкритої множини $V \subset Y$ був відкритою множиною в X.

Доведення. Heoбxiднicmb. Нехай $f: X \to Y$ — неперервне відображення, а V— довільна відкрита множина в Y. Доведемо, що множина $U = f^{-1}(V)$ є відкритою в X. Для цього візьмемо довільну точку $x_0 \in U$ і позначимо $y_0 = f(x_0)$. Оскільки множина V є відкритим околом точки y_0 в просторі Y, а відображення f є неперервним в точці x_0 , в просторі X існує відкритий окіл U_0 точки x_0 , такий що $f(U_0) \subset V$. Звідси випливає, що $U_0 \subset U$ (властивість 5). Отже, множина U є відкритою в X.

$$f \in C(X,Y) \Rightarrow \exists U_0 \in \tau_X : x_0 \in U_0, f(U_0) \subset V \Rightarrow$$
$$f^{-1}(f(U_0)) \subset f^{-1}(V) = U \Rightarrow U_0 \subset f^{-1}(f(U_0)) \subset U \Rightarrow U \in \tau_X$$

Достатність. Нехай прообраз $f^{-1}(V)$ довільної відкритої в Y множини V є відкритим в X, а $x_0 \in X$ — довільна точка. Доведемо, що відображення f є неперервним в точці x_0 . Дійсно, нехай $y_0 = f(x_0)$, а V— її довільний відкритий окіл. Тоді $U = f^{-1}(V)$ за умовою теореми є відкритим околом точки x_0 , до того ж $f(U) \subset V$ (властивість 11). Отже, відображення f є неперервним в кожній точці $x_0 \in X$. Таким чином, f є неперервним в X.

$$V \in \tau_{X}, U \stackrel{def}{=} f^{-1}(V) \in \tau_{X} \Rightarrow$$

$$\Rightarrow f(U) = f(f^{-1}(V)) \subset V \Rightarrow f \in C(X, Y).$$

Теорема 3.3. Для того щоб відображення $f: X \to Y$ було неперервним, необхідно і достатньо, щоб прообраз $f^{-1}(V)$ будь-якої замкненої множини $V \subset Y$ був замкненою множиною в X.

Доведення випливає з того, що доповнення відкритих множин є замкненими, а прообрази множин, що взаємно доповнюють одна одну, самі взаємно доповнюють одна одну (властивість 9).

Теорема 3.4. Для того щоб відображення $f: X \to Y$ було неперервним, необхідно і достатньо, щоб $\forall A \subset X \ f\left(\overline{A}\right) \subset \overline{f\left(A\right)}$.

Доведення. Heoбxiднicmb. Нехай відображення $f: X \to Y$ є неперервним, а $x_0 \in \overline{A}$. Покажемо, що $y_0 = f\left(x_0\right) \in \overline{f(A)}$. Справді, нехай V — довільний окіл точки y_0 . Тоді внаслідок неперервності f існує окіл U, який містить точку x_0 такий, що $f\left(U\right) \subset V$. Оскільки $x_0 \in \overline{A}$, то в околі U повинна міститись точка $x' \in A$ (можливо, вона збігається з точкою x_0). Разом з тим, очевидно, що $y' = f\left(x'\right)$ належить одночасно множині $f\left(A\right)$ і околу V, тобто $y_0 \in \overline{f(A)}$.

$$f \in C(X,Y) \Rightarrow \forall V \in \tau_Y : f(x_0) \in V \exists U \in \tau_X : x \in U, f(U) \subset V$$
$$x_0 \in \overline{A} \Rightarrow U \cap A \neq \emptyset \Rightarrow \exists x' \in U \cap A \Rightarrow$$

$$\Rightarrow f(x') \in f(U \cap A) \subset f(U) \cap f(A) \Rightarrow y_0 = f(x_0) \in \overline{f(A)}.$$

 \mathcal{A} остатність. Нехай $\forall A \subset X \ f\left(\overline{A}\right) \subset \overline{f\left(A\right)}$ і B— довільна замкнена в Y множина. Покажемо, що множина $A = f^{-1}(B)$ є замкненою в X. Нехай x_0 — довільна точка із \overline{A} . Тоді $f\left(x_0\right) \in f\left(\overline{A}\right) \subset \overline{f\left(A\right)}$. Разом з тим

$$A = f^{-1}(B) \Rightarrow f(A) = f(f^{-1}(B)) \subset B \Rightarrow \overline{f(A)} \subset \overline{B} = B$$
.

Тому $f(x_0) \in B$, отже, $x_0 \in A$. Таким чином, $\overline{A} \subset A$, тобто A — замкнена множина. Звідси випливає, що відображення $f \in$ неперервним. \blacksquare

- **Озн. 3.10.** Бієктивне відображення $f: X \to Y$ називається **гомеоморфним**, або **гомеоморфізмом**, якщо і само відображення f і обернене відображення f^{-1} ϵ неперервними.
- **Озн. 3.11.** Топологічні простор X і Y називаються гомеоморфними, або топологічно еквівалентними, якщо існує хоча б одне гомеоморфне відображення $f: X \to Y$.

Цей факт записується так: $f: X \cong Y$.

Приклад 3.3. Тривіальний приклад гомеоморфізму — тотожнє перетворення.

Приклад 3.4. Відображення, що задається строго монотонними неперервними дійсними функціями дійсної змінної ϵ гомеоморфізмами. Гомеоморфним образом довільного інтервалу ϵ інтервал.

- **Озн. 3.12.** Неперервне відображення $f: X \to Y$ називається відкритим, якщо образ будь-якої відкритої множини простору X ϵ відкритим в Y.
- **Озн. 3.13.** Неперервне відображення $f: X \to Y$ називається **замкненим**, якщо образ будь-якої замкненої множини простору X ϵ замкненим в Y.

Поняття відкритого і замкненого відображення не ε взаємовиключними.

Приклад 3.5. Тотожне відображення одночасно ϵ і відкритим, і замкненим.

Приклад 3.6. Відображення *вкладення* (ін'єктивне відображення) $i:A\subset X\to X$ є відкритим, якщо підмножина A є відкритою, і замкненим, якщо підмножина

$A \in$ замкненою.

Теорема 3.5. Відображення $f: X \to Y$ ϵ замкненим тоді і лише тоді, коли $\forall A \subset X$ $f(\overline{A}) = \overline{f(A)}$.

Доведення. Heoбxiднicmb. Оскільки замкнене відображення є неперервним (за означенням), то внаслідок теореми $3.4 \ \forall A \subset X \ f\left(\overline{A}\right) \subset \overline{f\left(A\right)}$. Разом з тим, очевидно, що $f\left(A\right) \subset f\left(\overline{A}\right)$ (властивість 1), тому внаслідок монотонності замикання $\overline{f\left(A\right)} \subset \overline{f\left(\overline{A}\right)}$. Оскільки відображення f є замкненим, то $\overline{f\left(\overline{A}\right)} = f\left(\overline{A}\right)$. Таким чином, $\overline{f\left(A\right)} = f\left(\overline{A}\right)$.

Достатність. Функція f є неперервною внаслідок теореми 3.4. З умови $\overline{f(A)} = f(\overline{A})$ для замкненої множини $A \subset X$ отримуємо, що $f(A) = \overline{f(A)}$, тобто образ будь-якої замкненої множини є замкненим. ■

Теорема 3.6. Відкрите бісктивне відображення $f: X \to Y$ є **гомеоморфізмом**.

Доведення. Оскільки $f: X \to Y-$ бієктивне відображення, існує обернене відображення $f^{-1}: Y \to X$. Оскільки $\forall A \subset X \left(f^{-1}\right)^{-1}(A) = f(A)$ і, за умовою теореми, f- відкрите відображення, то прообрази відкритих підмножин із X є відкритими. З теореми 3.2 випливає, що відображення f^{-1} є неперервним. Оскільки бієктивне відкрите відображення завжди є неперервним, доходимо висновку, що f- гомеоморфізм. \blacksquare

Теорема 3.7. Замкнене бієктивне відображення

 $f: X \to Y$ ϵ гомеоморфізмом.

Доведення цілком аналогічне теоремі 3.6. ■

Теорема 3.8. Гомеоморфне відображення $f: X \cong Y$ одночасно ϵ і відкритим, і замкненим.

Доведення. Нехай $f^{-1}: Y \to X$ — обернене відображення. Тоді $\forall A \subset X$ $f(A) = (f^{-1})^{-1}(A)$. Оскільки відображення $f \in \Gamma$ гомеоморфізмом, відображення $f \in \Gamma$ неперервними. Оскільки образ множини $f \in \Gamma$ при відображенні $f \in \Gamma$ прообразом множини $f \in \Gamma$ при відображенні $f \in \Gamma$ і обидва ці відображення $f \in \Gamma$ неперервними, то відображення $f \in \Gamma$ відкритим і замкненим одночасно, тобто відкриті множини переводить у відкриті, а замкнені — у замкнені.

Теорема 3.9. Бієктивне відображення $f: X \to Y \in \mathcal{E}$ гомеоморфізмом тоді і лише тоді, коли воно зберігає операцію замикання, тобто $\forall A \subset X \ f\left(\overline{A}\right) = \overline{f\left(A\right)}$.

Необхідність випливає з теорем 3.5 і 3.8, а достатність — з теорем 3.5 і 3.7.

Література

- 1. Александрян Р.А., Мирзаханян Э.А. Общая топология. М.: Высшая школа, 1979 (стр. 24–28).
- 2. Энгелькинг Р. Общая топология. М.: Мир, 1986. с.57–68.
- 3. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. 5-е изд. М.: Наука, 1981 (с. 89-91, Гл. II, § 5. Топологические пространства).