

Module Algorithmes d'optimisation

Exercice 1:

Soit les fonctions suivantes :

a)
$$f(x, y) = x^2 - 5xy + y^4 - 25x - 8y$$

b)
$$g(x, y) = (x^4 - 3) + y^4$$

a)
$$f(x, y) = x^2 - 5xy + y^4 - 25x - 8y$$

b) $g(x, y) = (x^4 - 3) + y^4$
c) $h(x, y) = x^4 - 4y^3 + 6(x^2 + y^2) - 4(x + y)$.

d)
$$t(x,y)=y^2 - \cos(x+1)$$

Pour chacune des fonctions :

- 1) Chercher les points critiques
- 2) Utiliser l'algorithme du Gradient à pas fixe puis le gradient à pas optimal pour trouver le minimum local de la fonction
- 3) faites une étude de sensibilité sur le point de départ (initialisation) et le pas (points initiaux = [[0, 0], [1,[2], [-1, 3], [5, -5]], alphas = [0.001, 0.01, 0.1, 0.7, 0.9].
- 4) faites une comparaison numérique des deux méthodes surtout en termes de vitesse de convergence en nombre d'itérations et temps CPU.
- 5) Comparer avec les point critiques obtenus analytiquement et tracer les courbes de niveau et l'évolution du gradient.

Exercice 2:

Soit le système linéaire suivant : $A = \begin{pmatrix} 4 & 1 \\ 1 & 3 \end{pmatrix}$, $b = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, On veut résoudre l'équation Ax=b.

- 1) Vérifiez que A est symétrique définie positive.
- 2) Implémentez la méthode du gradient conjugué manuellement sur 2 itérations.
- 3) Comparez avec la solution exacte $x=A^{-1}b$.

Exercice 3:

Considérer les fonctions quadratiques : $f(x,y) = \frac{1}{2}(2x^2 + y^2) - x - y$ avec $x_0 = {0 \choose 0}$, $g(x,y,z) = {0 \choose 0}$

 $(x,y,z)=x^2+2y^2+3z^2+2xy-z$, avec $x_0=\begin{pmatrix}1\\1\\1\end{pmatrix}$. Pour chacune des fonctions faites :

- 1) Trouver la forme quadratique de la fonction : $f(x) = \frac{1}{2}x^{T}Ax b^{T}x + c$. Identifier la matrice A et le vecteur b et c.
- 2) Trouver les point critiques de la fonction analytiquement en résolvant $\nabla f(x,y)=0$.
- 3) En utilisant le x0 proposé, implémenter la méthode du gradient conjugué et utiliser le mode verbose pour afficher les détails de chaque itération.
- 4) Comparez les points critiques avec la solution numérique.
- 5) Combien d'itérations faudrait-il théoriquement pour converger vers la solution exacte pour une fonction quadratique 2D ?
- 6) Tracer les courbes de niveau et la trajectoire du gradient.

Exercice 4:

Soit la fonction quadratique suivante : $f(x,y) = \frac{1}{2}x^{T}Ax$ où $A = \begin{pmatrix} \epsilon & 0 \\ 0 & 1 \end{pmatrix}$ et $\epsilon = 10^{-6}$

- 1) Trouver les points critiques
- 2) En prenant le point initial x0=(2,1), et en variant la tolérance et le nombre d'itération trouver le minimum avec la méthode du gradient à pas optimal et enregistrer la trajectoire.
- 3) Tracez les courbes de niveau de f et la trajectoire de l'algorithme.
- 4) Afficher le nombre d'itérations nécessaires pour atteindre une convergence. Observez la forme des courbes de niveau et la direction des pas de l'algorithme.
- 5) Refaire la même chose en utilisant le gradient conjugué et comparer sous les mêmes condition (tolérance) le nombre d'itérations et la trajectoire.
- 6) Refaites la même chose en prenant $\epsilon = 0,1$.

Exercice 5:

Soit la fonction $f(x,y)=x^2+xy+y^2-6x-9y$

- 1) Calculer le gradient $\nabla f(x,y)$ et trouver les points critiques.
- 2) Utiliser la méthode de Newton pour trouver le minimum en utilisant différents nombre d'itérations et un critère d'arrêt sur la norme du gradient $\|\nabla f\| \le \epsilon$ avec une limite du nombre d'itération.
- 3) Vérifier que la Hessienne est définie positive au point trouvé.
- 4) Tracer les courbes de niveau ainsi que l'évolution de f(x,y) à chaque itération

Exercice 6:

Soit la fonction de Rosenbrock définie comme suit :

$$f(X) = f(x1, x2) = 100(y - x^2)^2 + (1 - x)^2$$

- 1) Calculer le gradient et la matrice Hessienne de la fonction f.
- 2) Vérifier que $x* = (1 \ 1)^t$ est un minimum local de f.
- 3) Calculer les 5 premiers itérés de la méthode de Newton pour minimiser f en commençant par $x_0 = (-1 2)^t$.
- 4) Calculer la norme de l'erreur ||x x*|| à chaque itération et déterminer si le taux de convergence est quadratique.

Exercice 7:

Soit $f(x) = f(x,y) = e^{x+y} + (x - y)^2$.

- 1) Trouver les points critiques de f
- 2) Implémenter Newton et BFGS et DFP pour cette fonction.
- 3) Comparer le nombre d'itérations et les performances en termes CPU.

- 4) Tracer les courbes de niveau et les points générés par les deux méthodes.
- 5) Comparer la valeur approchée avec les points critiques.

Exercice 8:*

Pour comparer les méthodes d'optimisation on utilise souvent un ensemble classique de **fonctions tests**. Ces fonctions sont choisies pour leurs caractéristiques particulières : convexité, non-linéarité, plateau, ...). Voici quelques-unes :

Rosenbrock	$f(x,y) = 100(y-x^2)^2 + (1-x)^2$	Vallée étroite, test classique pour Newton/BFGS
Himmelblau	$f(x,y)=(x^2+y-11)^2+(x+y^2-7)^2$	4 minima locaux
Beale	$f(x,y) = (1.5 - x + xy)^2 + (2.25 - x + xy^2)^2 + (2.625 - x + xy^3)^2$	Non linéaire, plusieurs pièges locaux
Booth	$f(x,y)=(x+2y-7)^2+(2x+y-5)^2$	Convexe, solution unique
Sphere	$f(x) = \sum x_i^2$	Simple, convexité parfaite
Matyas	$f(x,y)=0.26(x^2+y^2)-0.48xy$	Convexe, facile pour tester convergence

Comparer les différentes méthodes de descente en utilisant ces fonctions, en fonction de .

- a) Nombre d'itérations
- b) Temps de calcul (CPU time)
- c) Précision de la solution
- d) Sensibilité au point du départ.