

a) Represent the graph above using adjacency list.

b) Represent the graph above using adjacency matrix.

	[6]	0	03	[3]	[u]	[5]	[6]
[9]		1.0		1.0	1.0	1.0	
(1)	4.0		1.0	1.0	1.0		1.0
[2]		1.0	A STATE OF THE STA	1.0		1.0	1.0
[3]	1.0	1.0	4.0		1.0	1.0	1.0
प्र	1.0	1.0	- 14 0 E Z	as		1.0	
C5 7	1.0		1.0	1.0	1.0		1.0
ट्र		1.0	1.0	1.0		1.0	

d) Draw DFS tree starting from vertex 2 and traversing the vertices adjacent to a vertex in descending order (largest to smallest)

DV0={2} F0=} }

PO= {2,6}

DVO= {21615} FO= } ?

DVO= { 2,615,4}

DVO= {216151413} FD = 13

DNO= 3216121413]] FO= ? ?

DVO = { 21612 1 41317 10} FO= { ?

DVO = { 2,6,5,4,3,1,0} FO= 10}

DNO={2161217131710} FO= { 0,1}

DVO = \2161514131110} FO = \01113}

DVO = { 2,6|5,4,3,1,0}

DVO= { 2,615,413,1,0}

DYO= 126514131410} FO= 10113141516}

DVO= 52615141311,0} FO= 50,113141516,2]

e) Draw BFS tree starting from a vertex 2 and traversing the vertices adjacent to a vertex in descending order (largest to smallest)

Queue = {2} Visited = {?

Queue = { 6,5,3,1} Visited = {2}

Queue = [5,3,1] Visited = [2,6]

Queue = {3,11410} Visited = {2,1615}

Queue = { } Visited = { 2,6,5,3,1,4,0}

BFS tree of Graph 1

DFS tree of Groph 1

a) Represent the graph above using adjacency list.

b) Represent the graph above using adjacency matrix

	िंग	CO	[2]	খ্যে	Cri	ধ্যে	CeJ
[6]	e it is	1.0			1-0		
	1.0		1.0	1-0			
ध्य		1.0					1.0
[3]		1.0				10	
凹	1.0		Digues.	a significant			
图				1.0			
(छ)		1 to 1	10		William Control		9 C

d) Draw DFS tree starting from vertex 1 and traversing the vertices adjacent to a vertex in descending order (longest to smallest)

DVO = \2,6,1,3}

DVO= {216,113,15} FO= 16}

DV0= 121611315} F0 = 8615}

DVO= 3 21611315} FO = 1 61513]

DV0= {216,113,5,0} F0 = {615,3}

DVO = { 216,1,3,5,0,4}

DNO= 9 2161(13,5,10,14) FO = 1 615,314)

DVO= { 26/1/3/5/0/4/0}

DNO= 1 2161(13151014) FD= 1 6151341011]

DVO= { 26/1/3/5/0/4} 70= 16/5/3/4/01/2}

e) Draw BFS tree starting from vertex 2 and traversing the vertices adjacent to a vertex in descending order (largest to smallest)

Queue = \ 0.5? Visited = \ 2,6,1,3}

Queue = 15.47 Visited = 1261130]

Queue= {4} Visited= {2,6(1,3,0,5)

Queue = 1? Visited = \$21611,310,514?

BFS tree of Groph 2

DPS tree of Graph 2

$$|Y| = n = 7$$

 $|E| = m = 16$

density =
$$\frac{|E|}{|V|^2} = \frac{16}{49} = 0.326$$
 \Rightarrow dense graph

density =
$$\frac{|E|}{|V|^2} = \frac{6}{49} = 0.122 \Rightarrow |Sparse|$$

if graph has not many edges, there will be a lot of wasted space in the adjacency matrix. In adjacency list, only the adjacent edges are stored. On the other hand, in on adjacenty list, each edge is represented by a reference to an Edge object containing data about the source, destination and weight. There is also a reference to next edge on a list. In a matrix representation, only the weight associated with an edge is stored. So each element in a adjacency list requires approximately four times the storage of an element in an adjacency matrix. So, the adjacency list uses less stage when less than 25 percent of the adjacency matrix would be filled. In our second proph, 12 of 49 space is full which means less than 25 percent of matrix is full. According to stronge efficiency, second proph should be adjacency list. But in first graph, 32 of 49 space is full which means more than In percent of matrix is full. According to storage efficiency, first graph should be adjacency matrix.

IEI < 0,25. IVI2 → A.H.

$$|E| = 16$$

$$|V| = 7$$

$$|E| = 6$$

$$|V| = 7$$

According to time efficiency, if the graph is dense, the adjacency matrix representation is best, and if a proph is sparse, the adjacency list representation is best.

If we consider time efficiency and storge efficiency, adjacency matrix representation is better for first proph and adjacency list representation is better for second proph.