Esercizi -50pt - 75

Gli studenti aventi diritto a svolgere la **prova ridotta** del 30% secondo la L.170/2010 (indicazioni **Multichance** team) **NON** svolgono i quesiti contrassegnati con (***)

Esercizio 1 - 30pt

Dati n+1 nodi equispaziati x_0, x_1, \ldots, x_n sull'intervallo [-1, 1] (estremi inclusi), si vuole determinare l'interpolante polinomiale di Lagrange avente grado n della funzione

$$f(x) = \frac{1}{1 + 9x^2}.$$

Si assuma che tale polinomio interpolante si possa esprimere in termini dei coefficienti $\{a_k\}_{k=0}^n$ come:

$$\Pi_n f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0.$$

Per ottenere i valori dei coefficienti $\{a_k\}_{k=0}^n$, è possibile risolvere il sistema lineare $V\mathbf{a}=\mathbf{y}$

$$\begin{pmatrix} x_0^n & x_0^{n-1} & x_0^{n-2} & \dots & x_0 & 1 \\ x_1^n & x_1^{n-1} & x_1^{n-2} & \dots & x_1 & 1 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ x_n^n & x_n^{n-1} & x_n^{n-2} & \dots & x_n & 1 \end{pmatrix} \begin{pmatrix} a_n \\ a_{n-1} \\ \vdots \\ a_0 \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{pmatrix}, \tag{1}$$

dove $V \in \mathbb{R}^{(n+1)\times(n+1)}$ è la matrice di Vandermonde e $y_i = f(x_i)$ per $i = 0, \dots, n$.

Punto 1.1) – 4 pt

Si assegni la matrice V usando opportunamente il comando Matlab[®] vander dopo aver definito i nodi equispaziati per n=10. Si riporti il corrispondente valore del numero di condizionamento $K_2(V)$.

$$K_2(V) = 1.3952 \cdot 10^4$$

Spazio per risposta breve

Punto 1.2) – 5 pt

Si illustri schematicamente la procedura per risolvere il sistema lineare V $\mathbf{a} = \mathbf{y}$ di cui al punto 1.1) tramite il metodo della fattorizzazione LU con pivoting per righe. Si risolva tramite tale metodo il sistema lineare e si indichi, motivando la risposta data, se è stata operata una permutazione per righe. Infine, si riportino i valori dei coefficienti a_{10} , a_{9} e a_{8} così ottenuti.

```
a_{10} = -62.0828, a_9 = 0, a_8 = 143.4802.
```

Spazio per risposta lunga

Dopo aver risposto al punto 1.2), si stimi l'errore relativo e_{rel} in norma 2 sulla soluzione **a** commesso risolvendo il sistema lineare V **a** = **y** tramite il metodo della fattorizzazione LU.

$$e_{rel} \le 1.0743 \cdot 10^{-10}$$

Spazio per risposta breve

Punto 1.4) - 4 pt

Dopo aver risposto al punto 1.2), a partire dal vettore **a** ottenuto risolvendo il sistema lineare V **a** = **y**, si utilizzi opportunamente il comando Matlab[®] polyval per valutare $\Pi_{10}f(x)$ in 500 punti equispaziati sull'intervallo [-1,1]. Si calcoli e si riporti il valore dell'errore $e_{10} = ||f(x) - \Pi_{10}f(x)||_{\infty} = \max_{x \in [-1,1]} |f(x) - \Pi_{10}f(x)|$.

$$e_{10} = 0.4998$$

Spazio per risposta breve

Punto 1.5) - 5 pt

Dopo aver risposto al punto 1.4), si confrontino graficamente la funzione f(x) e l'interpolante $\Pi_{10}f(x)$ sull'intervallo [-1,1]. Si descriva il risultato ottenuto e lo si motivi alla luce della teoria. *Quali strategie* possono essere adottate per migliorare il risultato?

Spazio per risposta lunga

Punto 1.6) -4 pt

Si costruiscano gli interpolanti polinomiali di Lagrange $\Pi_n^{CGL}f(x)$ della funzione f(x) agli n+1 nodi di Chebyshev–Gauss–Lobatto sull'intervallo [-1,1] per n=6,8,10,12 e si riportino i valori dei corrispondenti errori $e_n^{CGL}=\|f(x)-\Pi_n^{CGL}f(x)\|_{\infty}$. Si utilizzino opportunamente i comandi Matlab® polyfit e polyval.

 $0.1275, \ 0.0610, \ 0.0307, \ 0.0171$

Spazio per risposta breve

Si consideri nuovamente l'interpolante polinomiale $\Pi_{10}f(x)$ della funzione f(x) ai nodi equispaziati sull'intervallo [-1,1]. Si calcoli il valore della corrispondente costante di Lebesgue Λ_{10} illustrando schematicamente la procedura usata in Matlab[®] per determinarne il valore.

 $\Lambda_{10} = 29.9$

Spazio per risposta lunga

Punto 1.8) - 2 pt - (***)

Si consideri una funzione $\widetilde{f}(x)$ perturbata rispetto alla funzione f(x) tale che $\|f(x) - \widetilde{f}(x)\|_{\infty} = 10^{-3}$. Indicato con $\widetilde{\Pi}_{10}f(x)$ l'interpolante polinomiale di Langrange di $\widetilde{f}(x)$ ai nodi equispaziati sull'intervallo [-1,1], si fornisca una *stima* di $\|\Pi_{10}f(x)) - \widetilde{\Pi}_{10}f(x)\|_{\infty}$ usando la costante di Lebesgue ottenuta al punto 1.7).

 $29.9 \cdot 10^{-3}$

Spazio per risposta breve

Esercizio 2 – 20 pt

Si consideri il seguente sistema di Equazioni Differenziali Ordinarie del primo ordine nella forma

$$\begin{cases} \frac{d\mathbf{y}}{dt}(t) = A\mathbf{y}(t) + \mathbf{g}(t) & t \in (0, t_f), \\ \mathbf{y}(0) = \mathbf{y}_0, & \end{cases}$$
 (2)

dove
$$\mathbf{y}(t) = (y_1(t), \dots, y_m(t))^T$$
, $A \in \mathbb{R}^{m \times m}$, $\mathbf{g}(t) : (0, t_f) \to \mathbb{R}^m$ e $\mathbf{y}_0 \in \mathbb{R}^m$, per $m \ge 1$. In particolare, si pongano: $m = 3$, $A = \begin{bmatrix} -2 & -8 & 0 \\ 1 & 0 & -1 \\ 0 & 0 & -1 \end{bmatrix}$,
$$\mathbf{g}(t) = e^{-t/2} \left(-\frac{3}{2} \left[4\pi \sin(\pi t) + (4\pi^2 - 29)\cos(\pi t) \right], 2, 1 \right)^T$$
, $\mathbf{y}_0 = (-3, 6, 2)^T$ e $t_f = 10$.

Punto 2.1) - 4 pt

Si approssimi il problema (2) tramite il metodo di Eulero in avanti usando opportunamente la funzione Matlab® eulero_avanti_sistemi.m con passo h=0.1. Si riportino i valori delle approssimazioni $u_{2,1}$ e u_{2,N_h} , rispettivamente di $y_2(t_1)$ e $y_2(t_f)$, dove $t_n=n\,h$ per $n=0,1,\ldots,N_h$ e $h=\frac{t_f}{N_h}$.

$$u_{2,1} = 5.700000000, u_{2,N_h} = 0.08898930$$

Spazio per risposta breve

Punto 2.2) - 4 pt

Ponendo ora per il problema (2) i dati $\mathbf{g}(t) = \mathbf{0}$ e $t_f = +\infty$, si determini per quali valori di h il metodo di Eulero in avanti risulta assolutamente stabile. Si giustifichi la risposta data.

h<0.25 garantisce |1+z|<1

Spazio per risposta lunga

Punto 2.3) – 5 pt

Si approssimi ora il problema (2) tramite il metodo di Crank-Nicolson. Si implementi il metodo modificando opportunamente, per esempio, la funzione Matlab[®] eulero_avanti_sistemi.m. Posto h=0.1, si riportino i valori delle approssimazioni $u_{2,1}$ e u_{2,N_h} , rispettivamente di $y_2(t_1)$ e $y_2(t_f)$, dove $t_n=n\,h$ per $n=0,1,\ldots,N_h$ e $h=\frac{t_f}{N_h}$.

$$u_{2,1} = 5.43866682, u_{2,N_h} = 0.03974439$$

Spazio per risposta breve

Punto 2.4) - 4 pt - (***)

Dopo aver risposto al punto 2.3) e sapendo che la soluzione esatta del problema è

$$\mathbf{y}(t) = e^{-t/2} (-3\cos(\pi t) - 6\pi\sin(\pi t), 6\cos(\pi t), 2)^T,$$

si calcolino gli errori $E_h = \|\mathbf{u}_{N_h} - \mathbf{y}(t_f)\|_2$ ottenuti con il metodo di Crank-Nicolson e corrispondenti ai passi $h_1 = 10^{-2}$, $h_2 = 5 \cdot 10^{-3}$, $h_3 = 2.5 \cdot 10^{-3}$ e $h_4 = 1.25 \cdot 10^{-3}$, essendo $\mathbf{u}_n = (u_{1,n}, u_{2,n}, u_{3,n})^T$ l'approssimazione di $\mathbf{y}(t_n)$. Si riportino i valori E_{h_i} per $i = 1, \ldots, 4$.

$$0.4771 \cdot 10^{-4}$$
, $0.1193 \cdot 10^{-4}$, $0.0298 \cdot 10^{-4}$, $0.0075 \cdot 10^{-4}$

Spazio per risposta breve

Punto 2.5) - 3 pt - (***)

Si utilizzino gli errori E_{h_i} ottenuti al punto 2.4) per stimare algebricamente l'ordine di convergenza p del metodo di Crank–Nicolson. Si giustifichi la risposta data e la si motivi alla luce della teoria.

$$p = 2$$

Spazio per risposta lunga