UT1. Relación de ejercicios 3

Soluciones

1. Dados los siguientes valores para las variables Booleanas X, Y, Z (X=true, Y=false, Z=true), evalúa las expresiones que aparecen a continuación:

2. Dados los siguientes valores para las variables booleanas W, X, Y, Z (W = false, X=true, Y=true, Z=false), evalúa las expresiones que aparecen a continuación:

3. ¿Qué se muestra por pantalla?

	х	Salida
int x = 1	1	
System.out.println(x)		1
X++	2	
System.out.println(x)		2
System.out.println(++x)	3	3
System.out.println(x++)	4	3
System.out.println(x)		4
System.out.println(x++)	5	4
System.out.println(++x)	6	6
System.out.println(++x)	7	7

4. ¿Qué se muestra por pantalla?

	Α	В	Salida	
char A = 'c'	С			
char B				
System.out.println(A++)	d		С	primero se muestra y después se incrementa
System.out.println(A++)	е		d	primero se muestra y después se incrementa
System.out.println(++A)	f		f	primero se incrementa y después se muestra
B = A++	g	f		primero B = A y después A++
System.out.println(++A)	h		h	primero se incrementa y después se muestra
System.out.println(B++)		g	f	primero se muestra y después se incrementa
System.out.println(++B)		h	h	primero se incrementa y después se muestra

5. ¿Qué se muestra por pantalla?

or cade se maestra por pante			
	х	Salida	
char x = 'g'	g		
X++	h		
System.out.println(x)		h	
System.out.println(x++)	i	h	primero se muestra y después se incrementa
<pre>System.out.println(x)</pre>		i	
System.out.println(x)	h	h	primero se decrementa y después se muestra
x-=2	f		
<pre>System.out.println(x)</pre>		f	
x+=3	i		
<pre>System.out.println(x++)</pre>	j	i	primero se muestra y después se incrementa
System.out.println(++x)	k	k	primero se incrementa y después se muestra
System.out.println(x)	j	k	primero se muestra y después se decrementa
System.out.println(x)	i	i	primero se decrementa y después se muestra

6. ¿Qué se muestra por pantalla?

	а	b	С	Salida	
int $a = 1$, $b = 2$, c	1	2			
c = a + b++		3	3		b se incrementa después
<pre>System.out.println(c)</pre>				3	
c = a + ++b		4	5		b se incrementa antes
System.out.println(c)				5	
c = ++a + b	2		6		a se incrementa antes
System.out.println(c)				6	
c = ++a + ++b	3	5	8		a y b se incrementan antes
System.out.println(c)				8	
c = ++a + b++	4	6	9		a se incrementa antes, b después
System.out.println(c)				9	
c = a++ + b	5		10		a se incrementa después
System.out.println(c)				10	
c = a++ + ++b	6	7	12		a se incrementa después, b antes
System.out.println(c)				12	
c = a++ + b++	7	8	13		a y b se incrementan después
System.out.println(c)				13	

7. Un programa contiene las siguientes declaraciones y asignaciones de variables:

int
$$i = 1$$
, $j = 1$, $k = 1$;

Determina el valor final <u>de todas las variables que intervienen</u> en cada una de las siguientes expresiones de asignación.

Las instrucciones son independientes unas de otras, es decir, el valor inicial en cada instrucción es

i = 1, j = 1, k = 1.

- a) i = ++j;
- b) i = k++;
- c) i = k + ++j;
- d) i = i + j++;
- g) i = j + ++k;
- h) i = ++k + k;
- i) i = k++ + k;
- j) i += ++k + k;
- a) i = 2 j = 2 k = 1
- b) i = 1 j = 1 k = 2
- c) i = 3 j = 2 k = 1
- d) i = 2 j = 2 k = 1
- g) i = 3 j = 1 k = 2
- h) i = 4 j = 1 k = 2
- i) i = 3 j = 1 k = 2
- j) i = 5 j = 1 k = 2

9. Determina el valor de cada una de las siguientes expresiones:

```
i) 7 % 4 % 2 / 2 + 10 % 3 % 2 * 3 / 2
       % 2 / 2 + 10 % 3 % 2 * 3 / 2
        1 / 2 + 10 % 3 % 2 * 3 / 2
                + 10 % 3 % 2 * 3 / 2
                    1 % 2 * 3 / 2
                        1 * 3 / 2
                             3 / 2
            0
            0
                +
                                1
```

10. Sean las siguientes declaraciones de variables:

```
int i;
long ln;
short s;
float f;
double d;
char c;
```

Determina el tipo de dato del resultado de las siguientes expresiones:

m) $2E4f + i + ln \Rightarrow float$ n) $0B10 + s \Rightarrow int$

- a) i + ln => long
- b) $b + c + s \Rightarrow int$ c) $d + ln \Rightarrow double$
- d) ln + s => long
- e) b + f \Rightarrow float
- f) f + d => double

- g) d + c => double
- h) $i + ln + f \Rightarrow float i) c + s \Rightarrow int$
 - l) $.5 * f \Rightarrow double$

- j) s + b => int
- k) i + $2L \Rightarrow long$
- o) $0x2 + ln \Rightarrow long$
- 11. Dada una variable entera N, escribe las instrucciones de asignación que realicen lo indicado en cada uno de los apartados siguientes:
- a) Sumar 5 a N.

$$N = N + 5$$
; o también $N += 5$;

b) Restar 10 a N.

$$N = N - 10$$
; o también $N -= 10$;

c) Multiplicar por 3 el valor de N.

$$N = N * 3;$$
 o también $N *= 3;$

- 12. Escribe las expresiones algorítmicas correspondientes a las siguientes operaciones:
- a) El doble de un número N

b) El triple de un número N

c) Seis veces la diferencia de dos números enteros A y B

d) La diferencia entre el producto de A por B y la suma de C más D

$$A * B - (C + D)$$

e) La mitad de la última cifra de un número entero A

La suma de los dígitos de un número entero N de 3 cifras

dígito de la izquierda

dígito de la derecha

El dígito central de un número de 3 cifras también se puede obtener de esta forma:

g) La suma de la última cifra de los números enteros N y M

h) Comprobar si un número entero N es múltiplo de 2 y de 3

```
N \% 2 == 0 \&\& N \% 3 == 0
```

i) Comprobar si la última cifra de un número entero N es par

```
N % 10 % 2 == 0
```

j) Comprobar si la primera cifra de un número entero N de 3 cifras es impar

```
N / 100 % 2 != 0 o también de esta forma: N / 100 % 2 == 1
```

k) Comprobar si la primera cifra de un número entero N de 4 cifras es par

```
N / 1000 % 2 == 0
```

1) Comprobar si una variable A de tipo carácter contiene una letra mayúscula

```
A >= 'A' && A <= 'Z'
```

m) Comprobar si una variable A de tipo carácter contiene una letra mayúscula o minúscula.

```
A >= 'A' \&\& A <= 'Z' \mid \mid A >= 'a' \&\& A <= 'z'
```

n) Comprobar si una variable A de tipo carácter no contiene una letra mayúscula

```
A < 'A' || A > 'Z'
```

o) Comprobar si una variable A de tipo carácter no contiene una letra mayúscula o minúscula.

```
!(A >= 'A' && A <= 'Z' || A >= 'a' && A <= 'z')
```

También se puede expresar de esta forma:

```
(A < 'A' | A > 'Z') \&\& (A < 'a' | A > 'z')
```

p) Comprobar si el contenido de la variable N termina en 0 ó en 7

```
N % 10 == 0 || N % 10 == 7
```

q) Sumar a una variable N de tipo entero su dígito situado más a la derecha.

```
N = N + N % 10 o también N += N % 10
```

13. Escribe las expresiones algorítmicas correspondientes a las siguientes operaciones:

a) Sumar a una variable N de tipo entero su dígito situado más a la derecha. Por ejemplo si N contiene el valor 123, después de la operación contendrá el valor 126. Si N contiene el valor 7, después de la operación contendrá el valor 14.

```
N = N + N % 10 o también N += N % 10
```

b) Comprobar si un número entero N de cuatro cifras es capicúa. Un número es capicúa cuando se puede leer igual de derecha a izquierda o de izquierda a derecha. Ejemplos de números de cuatro cifras capicúas: 1221, 3003, 5555.

```
N / 1000 == N % 10 && N / 100 % 10 == N % 100 / 10
```

c) Una variable entera M contiene un número de mes. Comprobar si corresponde a un mes de 30 días.

```
M == 4 \mid \mid M == 6 \mid \mid M == 9 \mid \mid M == 11
```

d) Quitarle a un número entero N su última cifra. Supondremos que N tiene más de una cifra. Por ejemplo si N contiene el valor 123, después de la operación contendrá el valor 12.

```
N = N/10
```

e) Quitarle a un número entero N de 5 cifras su primera cifra. Por ejemplo si N contiene el valor 12345, después de la operación contendrá el valor 2345.

```
N = N % 10000
```

f) Comprobar si una variable C de tipo char contiene un dígito. (Carácter entre 0 y 9).

```
C >= '0' && C <= '9'
```

g) Dado un número N de cuatro cifras, comprobar si la primera cifra (la más a la izquierda) es impar.

```
N / 1000 % 2 != 0
```

h) Dado un número N de cinco cifras, comprobar si la primera cifra (la más a la izquierda) es igual a la segunda.

```
N / 10000 == N / 1000 % 10
```

i) Determinar si un número entero N de 5 cifras es capicúa.

```
N / 10000 == N % 10 && N / 1000 % 10 == N / 10 % 10
```

j) Comprobar si una variable C de tipo char contiene una vocal mayúscula.

```
C == 'A' || C == 'E' || C == 'I' || C == 'O' || C == 'U'
```

k) Comprobar si una variable C de tipo char no contiene una vocal mayúscula.

Dos soluciones posibles:

```
! (C == 'A' || C == 'E' || C == 'I' || C == 'O' || C == 'U')

C != 'A' && C != 'E' && C != 'I' && C != 'O' && C != 'U'
```

I) Dadas dos variables A y B de tipo char, comprobar si las dos contienen una vocal minúscula

```
(A == 'a' || A == 'e' || A == 'i' || A == 'o' || A == 'u') &&
(B == 'a' || B == 'e' || B == 'i' || B == 'o' || B == 'u')
```

m) Dada una variable A que contiene un año, determinar si ese año es bisiesto. Un año es bisiesto si es divisible por 4 y no por 100 ó si es divisible por 400

```
A \% 4 == 0 \&\& A \% 100 != 0 || A \% 400 == 0
```

n) Dado un número N de dos cifras, comprobar si las dos cifras son iguales.

```
N / 10 == N % 10
```

o) Dado un número N de dos cifras, comprobar si la suma de sus cifras es un número par.

```
(N / 10 + N % 10) % 2 == 0
```

p) Dado un número N de tres cifras, comprobar si la cifra del centro es la mayor.

```
N / 10 % 10 > N / 100 & N / 10 % 10 > N % 10
```

q) Dado un número N de cuatro cifras, comprobar si alguna de las cifras es un 4.

```
N / 1000 == 4 || N / 100 % 10 == 4 || N / 10 % 10 == 4 || N % 10 == 4
```

r) Dado un número N de 4 cifras, asigna a una variable X las dos primeras cifras del número.

```
X = N / 100
```

s) Dado un número entero N, modifícalo restando a N el valor de su última cifra.

Por ejemplo, si N = 123, el valor final de N debe ser 120.

```
N = N - N % 10 o también N -= N % 10
```

t) Dados dos números enteros N y M, modifica M restándole la última cifra de N.

Por ejemplo si M = 123 y N = 47, el valor final de M debe ser 116.

```
M = M - N % 10 o también <math>M -= N % 10
```

14. Se tienen dos variables enteras A y B. Escribe las instrucciones necesarias para intercambiar sus valores entre sí. Utiliza una variable auxiliar para realizar el intercambio.

Por ejemplo, si A contiene un 1 y B contiene un 2 debes escribir las instrucciones de asignación necesarias para que al final el valor de A sea 2 y el valor de B sea 1.

```
AUX = A;
A = B;
B = AUX;
```

15. Se tienen tres variables A, B y C. Escribe las instrucciones necesarias para intercambiar entre sí sus valores de forma que:

B toma el valor de A

A toma el valor de C

C toma el valor de B

Solo se puede utilizar una variable auxiliar.

AUX = B B = A A = C C = AUX