

Análise descritiva - Uma visão univariada

Giovanna Segantini

giovanna.ufrn@gmail.com

Introdução

A análise univariada consiste basicamente em, para cada uma das variáveis individualmente:

Classificar a variável quanto a seu tipo:

- Qualitativas (categóricas)
- -nominais
- -ordinais
 - Quantitativas
- -discretas
- -contínuas

Obter tabelas, gráficos e/ou medidas que resumam a variável A partir destes resultados pode-se montar um resumo geral dos dados.

Importando dados

[1] "data.frame"

O livro "Estatística Básica" de W. O. Bussab e P. A. Morettin traz no segundo capítulo um conjunto de dados hipotético de atributos de 36 funcionários da companhia "Milsa". Consulte o livro para mais detalhes sobre este dados.

```
milsa <- read.delim("C:/Users/gato/Desktop/Github/analise-of-
#milsa <- read.delim("C:/Users/gato/
#Desktop/Github/analise-de-dados/milsa.txt")

View(milsa)
class(milsa)</pre>
```

E para conferir a estrutura dos dados podemos usar algumas funções como:

```
str(milsa)
```

```
'data.frame': 36 obs. of 8 variables:
##
   $ Funcionario: int 1 2 3 4 5 6 7 8 9 10 ...
```

- \$ Est.civil : chr "solteiro" "casado" "casado" "solteiro" ##
- ## \$ Inst : chr "10 Grau" "10 Grau" "10 Grau" "20 (
- \$ Filhos ## : int NA 1 2 NA NA O NA NA 1 NA ...
- \$ Salario 4 4.56 5.25 5.73 6.26 6.66 6.86 7.3 ## : niim 26 32 36 20 40 28 41 43 34 23 ... ## \$ Anos : int
- 3 10 5 10 7 0 0 4 10 6 ... ## \$ Meses : int
- ## \$ Regiao : chr "interior" "capital" "capital" "out

Podemos classificar todas as variáveis desse conjunto de dados como:

Variável	Classificação
Funcionario	Quantitativa discreta
Est.civil	Qualitativa nominal
Inst	Qualitativa ordinal
Filhos	Quantitativa discreta
Salario	Quantitativa contínua
Anos	Quantitativa contínua
Meses	Quantitativa contínua
Regiao	Qualitativa nominal

Como a variável Inst é qualitativa ordinal, podemos indicar que ela deve ser tratada como ordinal:

```
class(milsa$Inst)
milsa$Inst <- as.factor(milsa$Inst)
levels(milsa$Inst)</pre>
```

já notamos que a ordenação está correta (da esquerda para a direita), pois sabemos que a classificação interna dos níveis é por ordem alfabética, e nesse caso, por coincidência, a ordem já está na sequência correta. Mesmo assim, podemos indicar que este fator é ordinal, usando o argumento *ordered* da função *factor()*

```
milsa$Inst <- factor(milsa$Inst, ordered = TRUE)
```

Criando variável

Podemos ainda definir uma nova variável, chamada **Idade**, a partir das variáveis **Anos** e **Meses**:

```
milsa$Idade <- milsa$Ano + milsa$Meses/12
```

Análise univariada

A seguir vamos mostrar como obter tabelas, gráficos e medidas com o R. Para isto vamos selecionar uma variável de cada tipo para que o leitor possa, por analogia, obter resultados para as demais.

A variável *Est.civil* é uma qualitativa nominal. Desta forma podemos obter: (i) uma tabela de frequências (absolutas e/ou relativas), (ii) um gráfico de setores, (iii) a "moda", i.e. o valor que ocorre com maior frequência.

```
class(milsa$Est.civil)
```

```
## [1] "character"
```

► Frequência

```
## Frequência absoluta
civil.tb <- table(milsa$Est.civil)</pre>
civil.tb
##
##
     casado solteiro
##
         20
                   16
## Frequência relativa, calculando manualmente
civil.tb/length(milsa$Est.civil)
##
      casado solteiro
##
## 0.5555556 0.4444444
## Frequência relativa, com a função prop.table()
prop.table(civil.tb)
```

Gráficos

Os gráficos de barras e de setores são adequados para representar esta variável.

```
barplot(civil.tb)
pie(civil.tb)
```

-Moda

```
# Moda
getmode <- function(x) {
  na.x<- na.omit(x)
  ux <- unique(na.x)
  tab <- tabulate(match(na.x, ux))
  ux[tab == max(tab)]
}
getmode(milsa$Est.civil)</pre>
```

```
## [1] "casado"
```

Variável Qualitativa Ordinal

Para exemplificar como obter análises para uma variável qualitativa ordinal vamos selecionar a variável Inst.

Frequências

```
## Frequência absoluta
inst.tb <- table(milsa$Inst)
inst.tb

##
## 10 Grau 20 Grau Superior
## 12 18 6

## Frequência relativa
prop.table(inst.tb)</pre>
```

Variável Qualitativa Ordinal

O gráfico de setores não é adequado para este tipo de variável por não expressar a ordem dos possíveis valores. Usamos então apenas um gráfico de barras conforme mostrado abaixo:

```
barplot(inst.tb)

## Menor para maior
barplot(sort(inst.tb))

## Maior para menor
barplot(sort(inst.tb, decreasing = TRUE))
```

Variável Qualitativa Ordinal

Moda

```
## [1] "20 Grau"

# Moda
names(inst.tb)[which.max(inst.tb)]

## [1] "20 Grau"
```

Variável quantitativa discreta

Vamos agora usar a variável Filhos (número de filhos) para ilustrar algumas análises que podem ser feitas com uma quantitativa discreta.

Frequências

Frequências absolutas e relativas são obtidas como anteriormente.

```
## Frequência absoluta
filhos.tb <- table(milsa$Filhos)
filhos.tb</pre>
```

```
## Frequência relativa
filhos.tbr <- prop.table(filhos.tb)
filhos.tbr</pre>
```

Também vamos calcular a frequência acumulada, onde a frequência em uma classe é a soma das frequências das classes anteriores. Para isso usamos a função *cumsum()*, que já faz a soma acumulada.

```
## Frequência acumulada
filhos.tba <- cumsum(filhos.tbr)
filhos.tba</pre>
```

```
## 0 1 2 3 5
## 0.20 0.45 0.80 0.95 1.00
```

Variável quantitativa discreta

Para a representação gráfica de frequências absolutas de uma variável discreta usarems um gráfico semelhante ao de barras, mas nesse caso, as frequências são indicadas por linhas.

plot(filhos.tb)

Variável quantitativa discreta

Outra possibilidade seria fazer gráficos de frequências relativas e de frequências acumuladas conforme mostrado na

```
## Frequência relativa
plot(filhos.tbr)
```



```
## Frequência relativa acumulada
plot(filhos.tba, type = "S") # tipo step (escada)
```


Medidas resumo

A seguir mostramos como obter algumas medidas de posição: moda, mediana, média. Note que o argumento na.rm = TRUE é necessário porque não há informação sobre número de filhos para alguns indivíduos (NA)

```
## Mod.a.
names(filhos.tb)[which.max(filhos.tb)]
## [1] "2"
## Mediana.
median(milsa$Filhos, na.rm = TRUE)
## [1] 2
## Média
mean(milsa$Filhos, na.rm = TRUE)
```

Pode-se calcular a média aparada, na qual usamos o argumento trim =0.1 que indica que a média deve ser calculada excluindo-se 10% dos menores e 10% dos maiores valores do vetor de dados.

```
## Média aparada
mean(milsa$Filhos, trim = 0.1, na.rm = TRUE)
```

```
## [1] 1.5625
```

Quartis

```
## Quartis
quantile(milsa$Filhos, na.rm = TRUE)
```

```
## 0% 25% 50% 75% 100%
## 0 1 2 2 5
```

Passando agora para medidas de dispersão, vejamos como obter máximo e mínimo, e com isso a amplitude.

```
## Máximo e mínimo
max(milsa$Filhos, na.rm = TRUE)
## [1] 5
min(milsa$Filhos, na.rm = TRUE)
## [1] 0
## As duas informações juntas
range(milsa$Filhos, na.rm = TRUE)
## [1] 0 5
## Amplitude é a diferença entre máximo e mínimo
diff(range(milsa$Filhos, na.rm = TRUE))
```

A variância, desvio padrão, e coeficiente de variação.

```
## Variância
var(milsa$Filhos, na.rm = TRUE)
## [1] 1.607895
## Desvio-padrão
sd(milsa$Filhos, na.rm = TRUE)
## [1] 1.268028
## Coeficiente de variação
sd(milsa$Filhos, na.rm = TRUE)/
  + mean(milsa$Filhos, na.rm = TRUE)
```

[1] 0.7685018

Também obtemos os quartis para calcular a amplitude interquartílica.

```
## Quartis
(filhos.qt <- quantile(milsa$Filhos, na.rm = TRUE))

## 0% 25% 50% 75% 100%
## 0 1 2 2 5

## Amplitude interquartilica
filhos.qt[4] - filhos.qt[2]</pre>
```

```
## 75%
## 1
```

Finalmente, podemos usar a função genérica *summary()* para resumir od dados de uma só vez

Min. 1st Qu. Median Mean 3rd Qu.

1.00 2.00 1.65

```
summary(milsa$Filhos)
```

0.00

##

##

```
Summary (Milbaulinos)
```

Max.

5.00

2.00

NA's

16

Variável quantitativa contínua

Vamos considerar a variável quantitativa contínua Salario.

Frequência

Para se fazer uma tabela de frequências de uma VA contínua, é preciso primeiro agrupar os dados em classes. Nos comandos mostrados a seguir verificamos inicialmente os valores máximo e mínimo dos dados, depois usamos o critério de Sturges para definir o número de classes. Usamos a função cut() para agrupar os dados em classes e finalmente obtemos as frequências absolutas e relativas.

```
## Máximo e minimo
range(milsa$Salario)
## [1] 4.0 23.3
## Número de classes estimado, com base
## no critério de Sturges.
## outras opções em ?nclass
nclass.Sturges(milsa$Salario)
## [1] 7
## Criando as classes com a função cut(),
## usando os valores mínimos e
## máximos dados em range()
```

+ seq(4, 23.3, length.out = 8))

salario.cut <- cut(milsa\$Salario, breaks =

```
## Tabela com as frequencias absolutas por classe
salario.tb <- table(salario.cut)
salario.tb
```

```
## salario.cut
##
      (4,6.76] (6.76,9.51] (9.51,12.3]
                                          (12.3, 15]
             5
##
                         10
                                                   6
```

Tabela com as frequências relativas

(20.5,23.3]

salario.cut

(20.5,23.3] 0.02857143

prop.table(salario.tb)

##

##

##

(4,6.76] (6.76,9.51] (9.51,12.3] (12.3,15]

0.14285714 0.28571429 0.20000000 0.17142857

(15,1)

(15,1)

0.11428

Variável quantitativa contínua

Na sequência vamos mostrar dois possíveis gráficos para variáveis contínuas: o histograma e o box-plot.

hist(milsa\$Salario)

Variável quantitativa contínua

A função hist() possui vários argumentos para alterar o comportamento da saída do gráfico. Por exemplo, com labels = TRUE as frequências são mostradas acima de cada barra. Com freq = FALSE, o gráfico é feito com as frequências relativas.

```
hist(milsa$Salario, freq = FALSE, labels = TRUE)
```


Os boxplots são úteis para revelar o centro, a dispersão e a distribuição dos dados, além de outliers. São construídos da seguinte forma:

boxplot(milsa\$Salario)

Finalmente, podemos obter as medidas de posição e dispersão da mesma forma que para variáveis discretas. Veja alguns exemplos a seguir.

```
summary(milsa$Salario)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.000 7.553 10.165 11.122 14.060 23.300
```

```
var(milsa$Salario)
```

```
## [1] 21.04477
```

```
sd(milsa$Salario)
```

```
## [1] 4.587458
```

[1] 0.4124587

sd(milsa\$Salario)/mean(milsa\$Salario)