

Calculer $\overrightarrow{AB} \cdot \overrightarrow{AC}$ dans les cas suivants :

Calculer $\overrightarrow{AB} \cdot \overrightarrow{AC}$ dans les cas suivants :

Sur la figure ci-desssous, on a tracé deux cercles de centre O et de rayons respectifs 2 et 3 :

- 1. Calculer les produits scalaires suivants :
 - a. $\overrightarrow{OI} \cdot \overrightarrow{OJ}$

c. $\overrightarrow{OI} \cdot \overrightarrow{OB}$

b. $\overrightarrow{OI} \cdot \overrightarrow{OK}$

- **d.** $\overrightarrow{OB} \cdot \overrightarrow{OA}$
- **2.** Dans le repère $(O, \overrightarrow{i}, \overrightarrow{j})$, le point B a pour coordonnées $\left(-\frac{3}{2}; -\frac{3\sqrt{3}}{2}\right)$ puis calculer :
 - **a.** $\overrightarrow{OA} \cdot \overrightarrow{AI}$
 - $\mathbf{b.} \ \overrightarrow{IA} \cdot \overrightarrow{IJ}$
 - c. $\overrightarrow{BK} \cdot \overrightarrow{BA}$

200

À chacune des figures ci-dessous, associer, parmi les égalités suivantes, celle qui donne le bon résultat du calcul de \overrightarrow{AB} · \overrightarrow{AC} :

- 1. $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC$.
- **2.** $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB^2$.
- 3. $\overrightarrow{AB} \cdot \overrightarrow{AC} = -AB^2$.

- 4. $\overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2}AB^2$.
- **5.** $\overrightarrow{AB} \cdot \overrightarrow{AC} = 0$.

201

Calculer les produits scalaires $\overrightarrow{BA} \cdot \overrightarrow{BC}$ et $\overrightarrow{CA} \cdot \overrightarrow{BC}$:

202

On donne trois points A(4; 1), B(0; 5) et C(-2; -1).

- 1. Calculer $\overrightarrow{AB} \cdot \overrightarrow{AC}$.
- 2. En déduire que $\cos(\widehat{BAC}) = \frac{1}{\sqrt{5}}$ et en déduire une valeur approchée arrondie au degré de l'angle \widehat{BAC} .

En utilisant les renseignements portés sur la figure ci-dessous, calculer les produits scalaires suivants :

- 1. $(\overrightarrow{AB} + \overrightarrow{AH}) \cdot \overrightarrow{AB}$
- 2. $(\overrightarrow{AH} + \overrightarrow{HC}) \cdot \overrightarrow{AB}$
- 3. $(\overrightarrow{AH} + \overrightarrow{HB}) \cdot (\overrightarrow{AH} + \overrightarrow{HC})$

204

Dans chacun des cas suivants, calculer $\overrightarrow{u} \cdot \overrightarrow{v}$ en fonction de m et déterminer le réel m pour que les vecteurs \overrightarrow{u} et \overrightarrow{v} soient orthogonaux :

- 1. $\overrightarrow{u}(-5; 2)$ et $\overrightarrow{v}(m; -2)$.
- **2.** $\overrightarrow{u}(m; 3-m)$ et $\overrightarrow{v}(2; -m)$.
- 3. $\overrightarrow{u}(m-4; 2m+1)$ et $\overrightarrow{v}(2m; 3-m)$.

On donne A(-4; 1), B(-1; 2) et C(1; -4).

- 1. Calculer $\overrightarrow{BA} \cdot \overrightarrow{BC}$.
- 2. En déduire la nature du triangle ABC.

On donne les trois points A(1; 3), B(-1; 1) et C(3; -2).

- **1.** Calculer BC puis $\overrightarrow{BA} \cdot \overrightarrow{BC}$.
- 2. On note H le projeté orthogonal de A sur (BC).
 - **a.** Exprimer $\overrightarrow{BA} \cdot \overrightarrow{BC}$ en fonction de H.
 - **b.** Justifier que H est un point du segment [BC].
 - c. En déduire les distances BH et HC.

 $\stackrel{\textstyle ABCD}{\textstyle EAD}$ est un parallélogramme tel que $AB=4,\,AD=2$ et $\stackrel{\textstyle EAD}{\textstyle EAD}=60^{\circ}.$

- 1. Démontrer que $(\overrightarrow{AB} + \overrightarrow{AD})^2 = 28$ et $(\overrightarrow{AB} \overrightarrow{AD})^2 = 12$.
- 2. En déduire les longueurs AC et BD ainsi qu'une mesure de l'angle \widehat{BAC} .

1. A, B, C sont trois points alignés dans cet ordre. O est un point pris sur la perpendiculaire en A à la droite (AB).

Démontrer que $\overrightarrow{OB} \cdot \overrightarrow{OC} = \overrightarrow{OA}^2 + \overrightarrow{AB} \cdot \overrightarrow{AC}$.

2. Dans le cas de la figure ci-dessous, calculer l'angle α :

ABC est un triangle. Dans chacun des cas suivants, calculer les longueurs des côtés et les mesures des angles manquants.

- 1. AB = 8, AC = 3 et $\widehat{BAC} = 60^{\circ}$.
- **2.** AB = 48, AC = 43 et BC = 35.

Dans la figure ci-dessous, calculer :

- 1. L'aire du triangle ABC.
- 2. Le périmètre du triangle ABC.

On donne la figure ci-dessous :

- 1. a. Exprimer $AB^2 + AC^2$ en fonction de AI et BC.
 - **b.** En déduire la longueur AI.
- 2. Calculer les longueurs des deux autres médianes.

On donne la figure ci-dessous :

- 1. a. En précisant le théorème utilisé, calculer $\cos(\widehat{BAC})$.
 - **b.** En déduire $\sin(\widehat{BAC})$.
- 2. Calculer l'aire du triangle ABC.

ABCD est un parallélogramme tel que AB=7 AD=3 et AC=8.

- 1. a. Démontrer que $\overrightarrow{AB} \cdot \overrightarrow{AD} = 3$.
 - **b.** En calculant $\overrightarrow{AB} \cdot \overrightarrow{AD}$ d'une autre façon, déterminer la valeur de $\cos(\widehat{BAD})$.

En déduire que $\sin(\widehat{BAD}) = \frac{4\sqrt{3}}{7}$.

- 2. a. Calculer l'aire du triangle BAD.
 - b. En déduire l'aire du parallélogramme ABCD.