

Programa de Asignatura

Historia del programa

Lugar y fecha de elaboración

Participantes

MC Juan Felipe Pérez Vázquez

Cancún, Q. Roo. 20 de Mayo de 2010

MC Francisco López
MC Oscar Cardenas

Observaciones (Cambios y justificaciones)

MC Juan Felipe Pérez Vázquez

Nuevo Programa Educativo

Relación con otras asignaturas

Anteriores	Posteriores
Asignatura(s) a) Estadística Inferencial	Asignatura(s) a) Simulación
Tema(s) a) Regresión lineal	Tema(s) a) Diseño de experimentos

Nombre de la asignatura Departamento o Licenciatura

Diseño de experimentos Ingeniería Industrial

Ciclo	Clave	Créditos	Área de formación curricular
3 - 4	IL0308	6	Licenciatura Elección Libre

Tipo de asignatura	Horas de estudio			
	HT	HP	TH	н
Seminario	32	16	48	48

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

Explicar los diferentes conceptos básicos del diseño de experimentos para el entendimiento de los modelos y su práctica en la Logística.

Objetivo procedimental

Formular diseños de experimentos para la resolución de problemas en Ingeniería.

Objetivo actitudinal

Promover la cultura del esfuerzo y del trabajo para la solución de problemas relacionados con el diseño de experimentos.

Unidades y temas

Unidad I. INTRODUCCIÓN AL DISEÑO DE EXPERIMENTOS

Explicar el diseño de experimentos para el entendimiento de los conceptos y su campo de aplicación

- 1) ¿Qué es el diseño de experimentos?
- 2) La estrategia de la experimentación
- 3) Pasos para planear conducir y evaluar experimentos
- 4) Aplicación de los diseños de experimentos

Unidad II. REGRESION LINEAL MULTIPLE

Revisar la regresión lineal múltiple para la aplicación de los modelos en problemas de ingeniería

- 1) Pasos para planear conducir y evaluar experimentos
- 2) Introducción a la regresión lineal múltiple
- 3) Estimación de los coeficientes
- 4) Modelo de regresión lineal con el uso de matrices
- 5) Propiedades de los estimadores de mínimos cuadrados

6) Inferencias en la regresión lineal múltiple
7) Elección de un modelo de ajuste a través de la prueba de hipótesis
Unidad III. EXPERIMENTOS DE UN FACTOR, DE BLOQUE, LATINOS Y GRECO LATINOS
Operar experimentos de un solo factor para la resolución de problemas de ingeniería.
1) Experimentos de un solo factor
a) El Análisis de varianza
b) Análisis del modelo ajustado de los efectos
c) Interpretación practica de resultados
2) Diseño de bloque aleatorio
3) Diseño cuadrado latino
4) Diseño cuadrado greco-latino
Unidad IV. EXPERIMENTOS 2K FACTORIALES Y FRACCIONES
Formular experimentos factoriales y fracciones de 2 niveles para la aplicación en problemas de ingeniería
1) Introducción a los diseños factoriales
2) El diseño factorial de 2 factores
3) El diseño factorial general
4) Bloqueo en un diseño factorial
5) El diseño general 2k
a) El diseño 22

b) El diseño 23
6) Una sola replica del diseño 2k
7) Bloqueo de un diseño factorial 2k
8) Confusión del diseño factorial 2k
9) Confusión del diseño factorial 2k en bloques
a) en dos bloques
b) en cuatro bloques
10) El diseño factorial fraccionado general de 2k-p
a) La fracción de ½ del diseño 2k
b) La fracción de ¼ del diseño 2k
Unidad V. EXPERIMENTOS 3K FACTORIALES Y FRACCIONES
Elegir el diseño de experimento adecuado para la solución de problemas de ingeniería
1) El diseño factorial 3k
2) Confusión del diseño factorial 3k
3) Replica fraccionaria del diseño factorial 3k
4) Diseños factoriales con niveles mezclados

Actividades que promueven el aprendizaje

Docerite	Litualite		
Solución de Ejercicios y Problemas	Aprendizaje basado en problemas		
Presentación de un estudio de caso	Desarrollo de proyecto		

Actividades de aprendizaje en Internet

Resolución de ejercicios prácticos en equipos

El estudiante deberá acceder al portal para la lectura de artículos señalados a lo largo del curso para el desarrollo de temas específicos de la asignatura. Dichas direcciones serán proporcionadas por el docente. http://videouv.itesm.mx/dgacit/pgit/in99145/bien/index.htm

Ectudionto

Investigación documental

Criterios y/o evidencias de evaluación y acreditación

Criterios	Porcentajes
Exámenes	30
Tareas	20
Resolución de problemas en equipo	20
Trabajo final	30
Total	100

Fuentes de referencia básica

Bibliográficas

Docanta

Kuehl Roberto. (2001). Diseño de experimentos: Principios estadísticos para el diseño y análisis de investigaciones (2da edición). Thomson. México. ISBN 970-686-048-7

Montgomery Douglas. (2002). Diseño y análisis de experimentos (2da Ed.). Wiley. ISBN 968-18-6156-6

Montgomery Douglas. (2008). Design and Analysis of Experiments (7th Edition). Wiley. ISBN: 978-0-470-12866-4

Montgomery Douglas. (2009). Design and Analysis of Experiments, Student Solutions Manual (7th Edition). Wiley. ISBN: 978-0-470-16991-9

Robinson G. K. (2000). Practical Strategies for Experimenting (2da Ed). Wiley. ISBN 9780471490555.

Web gráficas

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.7812 http://www.wiley.com/legacy/college/engin/montgomery316490/student/ch_index03.htm

Fuentes de referencia complementaria

Bibliográficas

Walpole Ronald. (1999). Probabilidad y estadística para ingenieros (6ta Edición). Pearson Educación. ISBN 9789701702642.

Web gráficas

http://videouv.itesm.mx/dgacit/pgit/in99145/bien/index.htm

Perfil profesiográfico del docente

Académicos

Contar con licenciatura en ingeniería industrial ó en Matemáticas, preferentemente con grado de maestría en el área Industrial.

Docentes

Tener experiencia mínima de tres años en docencia a nivel superior en asignaturas relacionadas.

Profesionales

Tener experiencia laboral en proyectos de seis sigma en plantas industriales ó como asesor en consultorías de proyectos de este tipo.