

Proposal of FPGA-based Low Cost and Power Efficient Autonomous Fruit Harvester

IIT KHARAGPUR

ICCAR-2020

Analysis of Existing Solutions

- Heavy Weight
- Too Expensive
- EXISTING SOLUTION S
- Fuel Consuming
- GHG Emissions

- Large Sized
- ManuallyOperated

- Toxic Chemicals
- Musculoskeletal
 Disorders

Some solutions exist but aren't suitable for the Indian condition

The Product

Mechanical Design

Algorithm: Fruit Plucking

PYNQ-Z2 FPGA board running DNN

Algorithm: Navigation

Generate Target Waypoint

Controller

Cost Analysis

Major Costs

Other parts with minor costing:

- Motor Driver 5A
- Sharp IR sensor
- Pump
- Motor Driver 20 A
- Arduino Mega

ASSUMPTIONS

- 30 plants in 1 row
- ₹ 350 per day: labor wage
- **10%** discount rate

Fruit Plucking

REVENUE REPORT

IMPACT

No shortage of skilled labor

IMPACT

No over-ripening of fruits

No damage of fruits

No high labor costs

FUTURE ASPECTS

Skid drive instead of 4-W differential drive

Threshold pressure sensor for different kind of fruits

Height can be extended to pluck fruits from trees

Solar powered for self sustainable & long run system

BIBLIOGRAPHY

- Ministry of External Affairs (2017) <u>India in Business: Investment and Technology Promotion Division</u>.
 Govt. of India
- http://www.ccsniam.gov.in/research/KCG%20Final%20report.pdf
- Indian Brand Equity Foundation (2018) Indian Agriculture Industry: An Overview
- Department of Agriculture and Cooperation. Ministry of Agriculture, Govt. of India
- Pandey MM (2009) Indian Agriculture—An Introduction. Fourth Session of the Technical Committee of APCAEMChiang Rai, Thailand, pp. 1-39
- ArjunKM (2013) Indian Agriculture- Status, Importance and Role in Indian Economy. International Journal of Agriculture and Food Science Technology 4:343-346
- https://www.naio-technologies.com/en/reduce-drudgery-in-agriculture/
- https://www.ncbi.nlm.nih.gov/pubmed/22317495
- https://bioinfopublication.org/files/articles/8 14 4 IJAS.pdf

ANNEXURE

Components	Quantity	Price
High Torque Motor	2	1600
High Torque Quad Encoder Geared DC Motor 12V 30RPM	2	3600
Chassi	1	3000
Servo Motor	5	1800
Linear Actuators	2	5000
Arduino Mega	1	600
Rassberry Pi 3 b+	1	2,500
Microsoft Kinect	1	5000
Sharp IR sensor	1	400
IMU	1	800
DVA10 73 FDCA D		12200

THANK YOU

We are open for the questions!