Biased Die

Assignment 7
CS251: Computer Laboratory

 $\begin{array}{c} \textbf{Jayant Agrawal} \\ (14282) \end{array}$

INSTRUCTOR **Prof. Arnab Bhattacharya**

Department of Comuter Science and Engineering INDIAN INSTITUTE OF TECHNOLOGY KANPUR KANPUR 208016, INDIA

March 2016

Contents

List	t of Figures	j
List	t of Tables	j
1]	Introduction	1
2	Expectation	1
3	The Experiment	1
4	Histogram	2
5 (Conclusion	2
Ref	ferences	2
Ind	lex	3
Lis	st of Figures	
	Dice: Different Orientation	1 2
Lis	st of Tables	
	Sample space for throwing a pair of die	1

1 Introduction

A cubical dice has 6 faces, numbered 1,2,3,4,5,6. A fair dice on random throw can give any of the face with equal probability. Figure 1 shows the picture of a dice.

Figure 1: Dice: Different Orientation

2 Expectation

Expectation of a random variable is the long-run average value of repetitions of the experiment. Let X be any random variable. Let the sample space be U.

$$U = a_1, a_2,, a_n$$

Let P be the set of probabilities.

$$P = p_1, p_2, \dots, p_n$$

Then expexted value of the random variable X is

$$E(X) = \sum_{i=1}^{n} X(a_i) \times p_i$$

For a dice $U = \{1,2,3,4,5,6\}$ and

$$\sum_{i=1}^{6} (P_i) = 1$$

3 The Experiment

(1 1)	(1 2)	(1 3)	$(1\ 4)$	$(1\ 5)$	(16)
(2 1)	(2 2)	$(2\ 3)$	$(2\ 4)$	$(2\ 5)$	(2 6)
(3 1)	$(3\ 2)$	(3 3)	$(3\ 4)$	$(3\ 5)$	(3 6)
(4 1)	(4 2)	(4 3)	(4 4)	$(4\ 5)$	(4 6)
(5 1)	$(5\ 2)$	$(5\ 3)$	$(5\ 4)$	$(5\ 5)$	$(5\ 6)$
(6 1)	(6 2)	$(6\ 3)$	$(6\ 4)$	$(6\ 5)$	(6 6)

Table 1: Sample space for throwing a pair of die

Possible outcome	1	2	3	4	5	6
Probabilties for die 1	1/6	1/6	1/6	1/6	1/6	1/6
Probabilities for die 2	17/120	17/120	17/120	17/120	13/60	13/60
Probabilities for die 3	7/60	7/60	7/60	7/60	4/15	4/15

Table 2: Probability distribution

Sum of average of the two throws

Figure 2: Histogram

4 Histogram

From Table 2, one can find the expected value of sums for die 1, die 2 and die 3.

- Expected value of sum for die1 = 7
- Expected value of sum for die2 = 7.6
- Expected value of sum for die3 = 8.2

For dice 1 every outcome is equally likely and hence expectation is the average of all possible outcomes. While for die 2 and 3 the probability of higher outcome(5,6) as output is higher and hence expectation for them is higher. In case of die 3 their is more basising so expectation for die 3 is more than that of die 2.

5 Conclusion

The expected value is greatest in die 3 followed by die 2 and least in die 1.

\mathbf{Index}

Expectation, 1

random variable, 1