S.P.P.U. External Practical Viva Questions and Answers
Name: HK
Viva Questions and Answers (DFS Traversal of Graph)
1. What is the objective of your project?
Answer:
The objective is to perform Depth-First Search (DFS) traversal of a graph using a stack, with parallel
initialization using OpenMP.
2. What is DFS (Depth-First Search)?
Answer:
DFS is a graph traversal method that explores as far along each branch as possible before
backtracking.
3. How is the graph represented in your code?
Answer:
The graph is represented using an adjacency list implemented as an array of vectors (vector <int< td=""></int<>
graph[MAX]).
4. How is DFS implemented?
Answer:
- Using a stack to store nodes.
- Visit a node, mark it visited, and push its unvisited neighbors onto the stack.

- Continue until the stack is empty.
5. Why do you use a stack for DFS?
Answer:
A stack ensures that the most recently discovered node is explored first, which is the main behavior
of DFS (LIFO - Last In, First Out).
6. How is OpenMP used in your code?
Answer:
OpenMP is used to parallelize the initialization of the visited array, speeding up setting all values to
false.
7. What inputs are taken from the user?
Answer:
- Number of nodes n.
- Number of edges m.
- Start node for DFS traversal.
- The pairs of edges representing the graph.
8. What is the time complexity of DFS traversal?
Answer:
O(V + E), where $V =$ number of vertices and $E =$ number of edges.
9. Why is it important to check if a node is visited?
Answer:
To avoid visiting the same node multiple times, which could lead to infinite loops or incorrect
traversal.

10. How can DFS be extended further?
Answer:
- To detect cycles in graphs.
- To find connected components.
- To perform topological sorting for directed acyclic graphs.
Best of Luck, HK!