AUTÓMATAS CELULARES

CON PYTHON

Autómatas Celulares

Los autómatas celulares son un modelo matemático que representa un sistema que evoluciona en el tiempo en pasos discretos.

En este modelo, el sistema está compuesto por elementos llamados 'células', y cada célula evoluciona siguiendo reglas claras y predefinidas, generalmente basadas en el estado de las células vecinas."

Imaginemos una red unidimensional donde cada celda *j* sólo puede tener dos estados; blanca o negra (0 o 1).

Podemos representar el paso del tiempo en el eje vertical, donde la primera fila representa las condiciones iniciales del sistema.

Regla A: La celda *j* se activa si una o más del vecindario [j - 1, j, j + 1] está activa. Si no, se inactiva (o queda inactiva). Veamos la evolución partiendo de una celda activa aislada:

Regla B. La celda j se activa si una o ambas vecinas j - 1 y j + 1 están activas. Si no, se desactiva. Partiendo de la misma celda activa aislada:

Regla C. La celda j se activa si una y sólo una de sus vecinas j - 1 o j + 1 están activas. Si no, se desactiva.

Regla D. La celda j se activa si una y sólo una del vecindario [j - 1, j, j + 1] está activa, o si sólo j y j + 1 están activas. Si no, se desactiva.

Clasificación de Wolfram

- Clase I. Evolución a una configuración estable y homogénea.
- Clase II. Evolución a configuraciones periódicas y estables.
- Clase III. La evolución lleva a un patrón caótico.
- Clase IV. La evolución lleva a estructuras aisladas que muestran un comportamiento complejo (puede resultar en cualquiera de las tres clases anteriores).

Código de Wolfram

Se puede codificar cada regla partiendo de que existen 8 estados posibles para el vecindario [j-1, j, j+1]. Como resultado existen $2^8 = 256$ reglas posibles.

Estado Actual	111	110	101	100	011	010	001	000
Nuevo Estado de la Celda	1	1	1	1	1	1	1	0

Por ejemplo la regla de arriba es la **Regla A**, que podemos codificar como la regla $11111110_2 = 2^7 + 2^6 + 2^5 + 2^4 + 2^3 + 2^2 + 2^1 = 254$

Código de Wolfram

Ejemplo Regla 30. En python:

bin(30) -> '0b11110'

Estado Actual	111	110	101	100	011	010	001	000
Nuevo Estado de la Celda	0	0	0	1	1	1	1	0

Esta es la Regla D.

Código de Wolfram

current automaton contents

Autómatas Celulares 2D

Existen varios tipos de autómatas celulares en 2D. Nos vamos a restringir al llamado *vecindario de Moore*. Vemos en rojo a los vecinos de la celda celeste:

i-1, j-1	i-1, j	i-1, j+1	
i, j-1	i, j	i, j+1	
i+1, j-1	i+1, j	i+1, j+1	

Autómatas Celulares 2D

Una regla sencilla: Un nodo se activa si uno y sólo uno de sus vecinos está activo. Una vez activo, el nodo se queda así.

El Juego de la Vida de Conway

Tenemos las siguientes reglas:

- 1. Si un nodo activo tiene menos de dos vecinos activos, se inactiva.
- 2. Si un nodo activo tiene más de tres vecinos activos, se inactiva.
- 3. Si un nodo inactivo tiene tres vecinos activos, se activa.
- 4. Si un nodo tiene dos vecinos activos, se queda igual.

El Juego de la Vida de Conway

El Juego de la Vida de Conway

Aplicaciones

Dynamical Phase Transitions in Graph Cellular Automata

Freya Behrens, ¹ Barbora Hudcová, ^{2,3} and Lenka Zdeborová ¹

Statistical Physics Of Computation Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

² Alachar Department Frankling of Mathematics and Physics Charles University Process Cook Popular

Aplicaciones

Neural Cellular Automata for Solidification Microstructure Modelling

VIDEOS

VIDEOS

