Course presentation

ComNet: course 1/5 outline

1 Course presentation

- Course objectives
- Pedagogical approach
- Instructional methodology
- 2 Administrative questions
 - Schedule
 - Evaluation
- 3 Course introduction
 - Network components
 - Protocol hierarchy
 - TCP/IP example

O. Fourmaux - T. Friedman (olivier.fourmaux@upmc.fr)

Course presentation Course introduction

Reinforce your understanding of networking

Deepen and extend beyond a first course in networking

- example: LI310/3I014 course from the UPMC Licence d'Informatique
- prerequisites, both theoretical and technical:
 - the vocabulary
 - introduction to signal processing
 - basic protocol mechanisms
 - classical protocols (HDLC, X25, IP, routing, UDP, TCP)
 - ISO layered model

O. Fourmaux - T. Friedman (olivier.fourmaux@upmc.fr)

Version 7.0

O. Fourmaux - T. Friedman (olivier.fourmaux@upmc.fr)

Course presentation Course introduction

ComNet: course 1/5 outline

- 1 Course presentation
 - Course objectives
 - Pedagogical approach
 - Instructional methodology
- - Network components

 - TCP/IP example

Understand fundamental technologies

Study the principal current network architecture and its environment **TCP/IP** and **Internet**

- standardized applications (web, DNS, e-mail, ...)
- dynamic mechanisms (congestion control, ...)
- IPv4/v6 adressing (multicast, DHCP, NAT, tunnels, ...)
- advanced routing (AS hierarchy, OSPF, BGP, ...)
- media architectures (Ethernet, ADSL, FTTH, ...)

O. Fourmaux - T. Friedman (olivier.fourmaux@upmc.fr)

omputer Networks (ComNet) 1/5: Introduction

Course presentation Administrative questions Course introduction Course objectives
Pedagogical approach
Instructional methodology

Course content

Top down approach:

Part 1/5	Introduction			
Part 2/5	Application: Telnet, FTP, SMTP, HTTP,			
	DNS, SNMP.			
Part 3/5	Transport: services, UDP and TCP examples,			
	congestion control.			
Part 4/5	Network: IPv4, multicast, NAT			
	hierarchical routing, OSPF and BGP.			
Part 5/5	Link: Switched Ethernet,			
	point-to-point, local loop.			

Basis for further courses in networking

Prerequisite for advanced networking courses

- In M1-S2: for required courses for students in the networking speciality, and for elective courses for other students
 - mobility, autonomous, wireless U.E. MOB
 - advanced routing **W** U.E. **ROUT**
- In M2-S3: for students in the networking speciality
 - content networks U.E. CONT
 - traffic engineering and quality of service U.E. ITQoS
 - Internet metrology U.E. METRO
 - operator networks and data centers U.E. REOP
 - network security W U.E. SECRES
 - smart mobility systems W U.E. SMS

O. Fourmaux - T. Friedman (olivier.fourmaux@upmc.fr)

Computer Networks (ComNet) 1/5 : Introduction

Course presentation
Administrative questions
Course introduction

Course objectives
Pedagogical approach
Instructional methodolog

Labs

Four-hour **labs** consisting of written exerices (TDs) and practical ones (TMEs):

- interlacing of theoretical and practical aspects
- illustrated by concrete examples on a networking testbed using real hardware:

Lab schedule (tentative)

week	content	lab	
1	Introduction to the networking testbed		
2	Applications (1): Telnet, FTP, and web analysis		
3	Applications (2): SMTP, DNS, and SNMP analysis		
4	Completion of previous weeks' labs		
5	Transport (1): analysis of mechanisms		
6	Transport (2): congestion control (planetlab)		
7	Review/completion of previous weeks' labs		
8	Network (1): IP/ICMP (begin)		
9	Network (2): IP/ICMP (end)	n°6	
10	Review/completion of previous weeks' labs		

O. Fourmaux - T. Friedman (olivier.fourmaux@upmc.fr)

Course presentation Course introduction

Networking testbed for the labs

The testbed hardware rack, located in the M2-RES computer lab, room 31-208

Each pair of students has access to:

- a classical ARI host machine
- dedicated hardware for configuring networks, and capturing and analyzing traffic:
 - 1 Cisco switch
 - 1 Cisco router
 - 3 VMs in on 1U rackable server

13 weeks, within which.

Course organization

Lectures: 10×2 hrs.

O. Fourmaux, T. Friedman

Labs: 10×4 hrs.

O. Fourmaux, T. Friedman, S. Imadali,

T. M. T. Nguyen, K. Thai

Course website:

• Information and updates: http://www-rp.lip6.fr/~fourmaux/index-cours.html

O. Fourmaux - T. Friedman (olivier.fourmaux@upmc.fr)

Course presentation Course introduction

Supporting traces and documents

- Network traffic traces, on which to test your knowledge
 - generated on the networking testbed during the labs
 - generated by the students (on the testbed or elsewhere)
 - pre-recorded (to use in case the testbed is down, or you wish to work elsewhere), available here:

http://www-rp.lip6.fr/~fourmaux/Traces/labV6.html

- Documents available on the course website:
 - course slides
 - lab handouts (including optional exercises)
 - past exams
- Textbooks
 - available in the Math/Info libraries

- James F. Kurose, Keith W. Ross
 - Computer Networking: A Top-down Approach Featuring the Internet, 6th edition (Pearson, 2012)
- Andrew S. Tanenbaum, David J. Wetherall
 - Computer Networks, 5th edition (Prentice Hall, 2011)
- Douglas Comer
 - Internetworking with TCP/IP Vol 1: Principles, Protocols and Architectures, 6th edition (Prentice Hall, 2013)
- Olivier Bonaventure
 - Computer Networking: Principles, Protocols and Practice, http://inl.info.ucl.ac.be/CNP3

O. Fourmaux - T. Friedman (olivier.fourmaux@upmc.fr)

Course presentation Administrative questions Course introduction

Tentative schedule for 2014-2015

dates	lecture	lab	comments
15-19/9	1	1	
22-26/9	2	2	
29/9-3/10	3	3	
6-10/10	4	4	
13-17/10	5	5	
20-24/10	6	6	
27-31/10	7	7	
3-7/11	_	_	midterm exam
12-14+17-18/11	8	8	
24-28/11	9	9	
1-5/12	10	10	
5-9/1	_	_	final exam
10-16/6	_	_	makeup exam

Warning: labs week = lecture week

ComNet: course 1/5 outline

- 2 Administrative questions
 - Schedule
 - Evaluation
- - Network components

O. Fourmaux - T. Friedman (olivier.fourmaux@upmc.fr)

Course presentation Administrative questions Course introduction

Weekly schedule

Lundi	Mardi	Mercredi	Jeudi	Vendredi
30 45 000 115 330 45 600	TME1 ARES (ITESCIA) 31-208	TME3 ARES 31-208	TME5 ARES 31-208	
30 445 450 30 Cours ARES 445 Amphi 45B	TME1 ARES (ITESCIA) 31-208	TME3 ARES 31-208	TME5 ARES 31-208	Cours COMNET (english) 23-34-202
30 45 00 15 30 45 00 115 30	TME2 ARES (AFTI) 31-208	TME4 ARES 31-208	TME6 ARES 31-208	TME1 COMNET (english) 31-208
45 00 15 15 30 45 15 30 30	TME2 ARES (AFTI) 31-208	TME4 ARES 31-208	TME6 ARES 31-208	TME1 COMNET (english) 31-208

Exam details

Three exams:

- Midterm exam (application and transport layers only)
- Final exam (the whole course)
- Makeup (the whole course)

Exam rules

- no electronic equipment (mobile phone, calculator, etc.)
- no documents except one handwritten A4 page

Definition

handwritten: entirely written by hand (no photocopies)

O. Fourmaux - T. Friedman (olivier.fourmaux@upmc.fr)

Course presentation Administrative questions

Final grade adjustments

The week after the final exam (1st session) or the makeup exam (2nd session):

- exams graded and a curve is applied
- grades posted on DBUFR
- students consult their graded exams
- juries
 - course jury (determines passing or failing)
 - Networking speciality jury (grade compensation)
 - Masters program jury (final decision)

Calculating the grade for the course

1st session: *midterm* and *final* exams

$$N_{\rm ARES_1} = 0.4 N_{\rm midterm} + 0.6 N_{\rm final}$$

Note: If you pass the course in the first session ($N_{ARES_1} \ge 50$), you may not take the makeup exam.

2nd session: makeup (you didn't pass the course in the 1st session)

- If your grade is officially compensated for by passing grades in other courses: by default, you keep your grade $N_{\rm ARES_1} < 50$
 - You may sit the makeup exam iff you explicitly sign up to do so with the RES secretariat
- If your grade is not compensated for, you must take the makeup exam (if you do not, $N_{ARES_2} = 0$)

$$N_{\rm ARES_2} = N_{\rm makeup}$$

Course presentation Administrative questions Course introduction

ComNet: course 1/5 outline

O. Fourmaux - T. Friedman (olivier.fourmaux@upmc.fr)

- 3 Course introduction
 - Network components
 - Protocol hierarchy
 - TCP/IP example

nc

The environment we discuss in this lecture

The Internet

- omnipresent
- heterogeneous
- evolving
- complex...
- difficult to characterize!

Let's look at an example:

O. Fourmaux - T. Friedman (olivier.fourmaux@upmc.fr)

Computer Networks (ComNet) 1/5: Introduction

Course presentation Administrative questions Course introduction Network components Protocol hierarchy

Protocols: analogy

Internet components

What are the basic elements of the Internet?

- communications links
- routers (packet forwarding)
- hosts (end systems):
 - Unix workstations
 - classical PCs
 - mobile phones
 - an Internet toaster...
- networked applications
 - communication protocols...

O. Fourmaux - T. Friedman (olivier.fourmaux@upmc.fr)

Computer Networks (ComNet) 1/5 · Introduction

Course presentation Administrative questions Course introduction Network component

Protocol: definition

Definition

Protocol: protocols define format, order of messages sent and received among network entities, and actions taken upon message transmission and receipt.

- Remark
 - any interaction between entities over the Internet is based on protocols
 - this course focuses mainly on protocols
- Examples
 - web request
 - resolving name queries into IP addresses
 - route computation
 - congestion control...

Application services

Internet users use distributed applications:

- World Wide Web
- electronic mail
- peer-to-peer file sharing
- distributed games
- audio and video streaming
- real-time audio and video...

O. Fourmaux - T. Friedman (olivier.fourmaux@upmc.fr)

Course presentation Administrative questions Course introduction

Quality of service

Qualité de Service (QoS) in the Internet

- The Internet offers a best effort service
 - no guarantees; the main concern is connectivity!
 - how many end-systems?
 - many of the 1.510^9 PCs + 1.510^9 smartphones...
 - 2.510⁹ users active in 2012
 - Internet traffic >>> telephone traffic
- multimedia applications must adapt to the uncertain conditions...
- U.E. **CONT** / U.E. **ITQoS** (M2-S3)

Network services

Applications are based on two types of services:

analogy with the postal service

connection oriented

analogy with telephone service

and have correspondingly different characteristics:

- reliability
- ordering
- flow control
- congestion control...

O. Fourmaux - T. Friedman (olivier.fourmaux@upmc.fr)

Course presentation Administrative questions Course introduction

Internet standardisation

- IETF (Internet Engineering Task Force) working groups
- over 7300 RFCs (Requests For Comments)
- mostly de facto rather than de jure standards
 - IP, TCP, SMTP, SNMP, HTTP...
 - http://www.rfc-editor.org/

Course presentation Administrative questions Course introduction

• IETF (Internet Engineering Task Force), http://www.ietf.org/

- W3C (World Wide Web Consortium), http://www.w3.org/
- ACM SIGCOMM (Association for Computing Machinery Special Interest Group in Data Communication), http://www.sigcomm.org/
- IEEE Communications Society, http://www.comsoc.org/
- IEEE Computer Society, http://www.computer.org/
- http://www-npa.lip6.fr/~fourmaux

O. Fourmaux - T. Friedman (olivier.fourmaux@upmc.fr)

Course presentation Administrative questions Course introduction

ComNet: course 1/5 outline

- 1 Course presentation
- 2 Administrative questions
- 3 Course introduction
 - Network components

O. Fourmaux - T. Friedman (olivier.fourmaux@upmc.fr)

Course presentation Administrative questions Course introduction

Network edge (abstraction)

Distributed applications

client/server model

- the client sends requests
- receives service from an always-on server
 - web
 - e-mail
 - DNS...

peer-to-peer model

- minimal use of dedicated servers
- symmetrical communication

O. Fourmaux - T. Friedman (olivier.fourmaux@upmc.fr)

Course presentation Administrative questions Course introduction

End-to-end services

Types of service that the network offers to end-hosts:

- connection oriented service
 - reliability
 - ordering
 - flow control
 - congestion control...
 - TCP
- connectionless service
 - simple
 - basis for other protocols
 - UDP

Application protocols

Heterogeneous environment standardised interactions

• web: HTTP, HTML

• e-mail: SMTP, MIME, POP, IMAP

• remote access: Telnet, NVT

file transfer: FTP • directory: DNS

• management: SNMP, MIB

Part 2/5: Applications

O. Fourmaux - T. Friedman (olivier.fourmaux@upmc.fr)

Course presentation Administrative questions Course introduction

Impact of end-to-end control

What is the shape of traffic generated by TCP?

Part 3/5: Transport

Inside the network

O. Fourmaux - T. Friedman (olivier.fourmaux@upmc.fr)

Course presentation Administrative questions Course introduction

Data forwarding

Circuit switching or packet switching?

Course introduction

Communication links

Physical media

- media with waveguide
 - twisted pair (UTP5+, UTP6,...)
 - coaxial cables (baseband, broadband,...)
 - optical fibers (multimode, monomode,...)
- media without waveguide
 - satellite links (geostationary, constellation, ...)
 - terrestrial links (radio-waves, micro-waves, infrared, optical,...)

Access technology

- shared medium
- framing

Intermediate elements...

O. Fourmaux - T. Friedman (olivier.fourmaux@upmc.fr)

Course presentation Administrative questions Course introduction

Virtual circuit transmission

pictures from Stallings W. High Speed Networks

Message transmission

O. Fourmaux - T. Friedman (olivier.fourmaux@upmc.fr)

Course presentation Administrative questions Course introduction

Comparing the three types of transmission

pictures from Tanenbaum A. S. Computer Networks 3rd edition

Datagram transmission

pictures from Stallings W. High Speed Networks

O. Fourmaux - T. Friedman (olivier.fourmaux@upmc.fr)

Course presentation Administrative questions Course introduction

Types of delays in packet switching:

- nodal processing delay
 - uncompressible (D_n)
- queuing delay
 - depends on congestion ($D_a = 0$ if no congestion)
- transmission delay
 - depends on the size of the packet $(D_t = L/R)$
- propagation delay
 - $v = 2.10^8 m/s$ to $3.10^8 m/s$ ($D_p = d/v$)

Formula for end-to-end delay?

Internet addressing

Packets travel from source to destination hop-by-hop, with an address-based forwarding decision made at each intermediate node (router).

IPv4/v6 protocol

- universal
- virtual addressing
- abstracts out the lower layer technologies
 - each technology provides encapsulation
 - address conversion

Protocols have evolved to adapt to the present network

- classless addressing (CIDR), multicast, IPv6
- address translation (NAT)
- auto-configuration (DHCP)

UPMC

filtering...

O. Fourmaux - T. Friedman (olivier.fourmaux@upmc.fr)

Course presentation

Administrative questions Course introduction

Routing in the Internet

Datagram network

routing of each packet

Hierarchical structure of the network (ASes)

• internal routing: OSPF

external routing: BGP

■ Part 4/5: Network

Routing mechanisms

When and how to determine the route taken by data?

- the type of path followed depends upon the type of network:
 - initially
 - circuit switching
 - virtual circuits
 - for each packet
 - datagram
- calculating the information
 - routing algorithms
 - routing tables
 - local or centralized
 - static or dynamic
- information exchange
 - routing protocols...

O. Fourmaux - T. Friedman (olivier.fourmaux@upmc.fr)

Course presentation Administrative questions Course introduction

Network core

Ethernet technology

LAN evolution towards the WAN with Fast Ethernet, Gigabit Ethernet, 10Gigabit Ethernet and 100Gigabit Ethernet. Integrating switching and structuring through VLANs...

Part 5/5 (1): Ethernet

O. Fourmaux - T. Friedman (olivier.fourmaux@upmc.fr)

Course presentation Course introduction

Point-to-point technology

PPP only for old serial connections?

PPP over SONET: POS

PPP over Ethernet: PPPoE

PPP over ATM: PPPoA

• PPP over IP: L2TP ...

■ Part 5/5 (2): Point-to-point

MPLS technology

Integrating switching mechanisms at the network level (ATM, MPLS,...).

■ U.E. RTEL (M1-S1)

O. Fourmaux - T. Friedman (olivier.fourmaux@upmc.fr)

Course presentation Administrative questions Course introduction

Access networks

Entreprise networks

O. Fourmaux - T. Friedman (olivier.fourmaux@upmc.fr)

Course presentation Administrative questions Course introduction

Wireless access and mobility

- micro-mobility
 - Bluetooth/WPAN (IEEE 802.15)
- wireless local network
 - Wi-Fi/WLAN (IEEE 802.11)
- wireless local network
 - BLR/WMAN (IEEE 802.16)
- mobile phone
 - GSM, GPRS, i-mode,...
 - UMTS

■ U.E. MOB (M1-S2)

Wired residential

Residential (PSTN/ADSL, cable, optical fiber,...)

■ Part 5/5 (3): Local loop

O. Fourmaux - T. Friedman (olivier.fourmaux@upmc.fr)

Course presentation Administrative questions Course introduction

ComNet: course 1/5 outline

- 1 Course presentation
- 2 Administrative questions
- 3 Course introduction
 - Network components
 - Protocol hierarchy

Protocols, layers, and interfaces

UPMC picture from Tanenbaum A. S. Computer Networks 3rd edition

O. Fourmaux - T. Friedman (olivier.fourmaux@upmc.fr)

Course presentation Administrative questions Course introduction

Repeated encapsulation

picture from Tanenbaum A. S. Computer Networks 3rd edition

Anthropological analogy

picture from Tanenbaum A. S. Computer Networks 3rd edition

O. Fourmaux - T. Friedman (olivier.fourmaux@upmc.fr)

Course presentation Administrative questions Course introduction

OSI (Open Systems Intercon. Reference Model - 1983)

UPMC

TCP/IP reference model (1974)

picture from Tanenbaum A. S. Computer Networks 3rd edition

O. Fourmaux - T. Friedman (olivier.fourmaux@upmc.fr)

Course presentation Administrative questions Course introduction

ComNet: course 1/5 outline

- 1 Course presentation
- 2 Administrative questions
- - Network components

 - TCP/IP example

these pictures and to the end are from Stallings W. High Speed Networks

O. Fourmaux - T. Friedman (olivier.fourmaux@upmc.fr)

Course presentation Administrative questions Course introduction

TCP/IP: example

O. Fourmaux - T. Friedman (olivier.fourmaux@upmc.fr)

Course presentation Administrative questions Course introduction

TCP/IP: router actions

TCP/IP: sender actions

O. Fourmaux - T. Friedman (olivier.fourmaux@upmc.fr)

Course presentation Administrative questions Course introduction

TCP/IP: receiver actions

