

Solution

 $\sum_{n=0}^{\infty} x^n$: Radius of convergence is 1, Interval of convergence is -1 < x < 1**Steps** $\sum_{n=0}^{\infty} x^n$ Hide Steps Use the Root Test to compute the convergence interval $\sum_{n=0}^{\infty} x^n$ Series Root Test: If $\lim_{n\to\infty} |a_n|^{\frac{1}{n}} = L$, and: If L < 1, then $\sum a_n$ converges If L > 1, then $\sum a_n$ diverges If L=1, then the test is inconclusive $\left|a_n^{\frac{1}{n}}\right| = \left|x^{n\frac{1}{n}}\right|$ Hide Steps Compute $L = \lim_{n \to \infty} \left(\left| x^{n\frac{1}{n}} \right| \right)$ $L = \lim_{n \to \infty} \left(\left| \left(x^n \right)^{\frac{1}{n}} \right| \right)$ Show Steps 🔀 Simplify $(x^n)^{\frac{1}{n}}$: x $L = \lim_{n \to \infty} (|x|)$ $L = |x| \cdot \lim_{n \to \infty} (1)$ Show Steps 🔂 $\lim_{n\to\infty} (1) = 1$ $L = |x| \cdot 1$ Simplify L = |x|L = |x|The power series converges for $L < 1\,$ |x| < 1

