PATENT ABSTRACTS OF JAPAN

(11) Publication number: 04028836 A

(43) Date of publication of application: 31.01.92

(51) Int. CI

C22C 9/00 // B22F 1/00 C22C 1/04

(21) Application number: 02134183

(22) Date of filing: 25.05.90

(71) Applicant:

TAIHO KOGYO CO LTD

(72) Inventor:

OHASHI TERUO TANAKA YASUHISA

(54) SLIDING MATERIAL

(57) Abstract:

PURPOSE: To reduce the wear amt. in a sliding material into a low one and to provide it with high loading capacity, by constituting a sliding material of a Cu base sintered alloy contg. Pb, In, Bi and Tl and letting the above Pb, etc., form a film as quasi-flaky fine grains.

CONSTITUTION: This sliding material is constituted of a sintered allay contg. 5 to 60% soft metals of elements such as Pb, In, Bi and Tl having low solid soln. degree to Cu. The metals such as Pb are distributed into a Cu

matrix as substantially quasi-flaky fine grains having $\leq 10 \mu m$ average grain size and show conformability, lubricity or the like. If required, the above compsn. is incorporated with $\leq 15\%$ Sn. The soft metals such as Pb form a film on the approximately whole face of the sliding face with the mating member under a boundary lubricating condition in the use. This sliding material is suitable for a bearing material for a high load-high output internal combustion engine and a bearing material used in a boundary lubricating area.

COPYRIGHT: (C)1992,JPO&Japio

⑩日本国特許庁(JP)

⑩ 公 開 特 許 公 報 (A) 平4-28836

⑤Int. Cl. ⁵

識別記号

庁内整理番号

43公開 平成4年(1992)1月31日

C 22 C 9/00 B 22 F 1/00 C 22 C 1/04 8015-4K E 8015-4K B 7619-4K

審査請求 未請求 請求項の数 2 (全7頁)

会発明の名称 摺動材料

②特 願 平2-134183

@出 顧 平2(1990)5月25日

@発明者 大橋

照 男

愛知県小牧市大字二重堀675番地37

愛知県豊田市緑ケ丘3丁目65番地

⑫発明者 田

靖久

愛知県豊田市緑ケ丘3丁目65番地 大豊工業株式会社内

⑩出 願 人 大豊工業株式会社

中

個代 理 人 弁理士 村井 卓雄

明 細 雲

1. 発明の名称

摺動材料

2. 特許請求の範囲

1. Pb, In, Bi, Tlから選択されたー種以上の成分を5~60%含有し、残部がCuおよび不可避的不純物からなる焼結合金から構成され、前記Pb, In, Bi, Tlなどが平均粒径10μm以下の実質的に擬片状の微細粒子として分散しており、境界潤滑条件下で相手軸との摺動面略全面で皮膜を形成することを特徴とする摺動材料。

2. Pb, In, Bi, Tlから選択された一種以上の成分を5~60%、およびSnを15%以下含有し、残部がCuおよび不可避的不純物からなる焼結合金から構成され、前記Pb, In, Bi, Tlなどが平均粒径10μm以下の実質的に假片状の微細粒子として分散しており、境界混淆条件下で相手軸との摺動面略全面で皮膜を形成することを特徴とする摺動材料。

3. 発明の詳細な説明

[産業上の利用分野]

本発明は、内燃機関のメインジャーナル軸受、 コンロッド軸受などの滑り軸受、一般機械要素と してのブシュなどに使用される摺動材料に関する ものである。さらに詳しく述べるならば本発明は 銅を主成分として、鉛、インジウムなどの軟質金 属を添加元素とした銅系焼結摺動材料に関するも のである。

[従来の技術]

従来、上記用途に使用される摺動材料は銅・鉛系ケルメット合金が一般的であるので、以下この 銅・鉛合金の例を主として説明する。

従来、銅・鉛合金のバイメタル材は水またはガスアトマイズ法で作った粉末を鉄板上に散布し現 元雰囲気中で焼結して製造されていた。すべり軸 受材料として使用される銅・鉛合金は銅に固溶しない鉛との合金であるために、鉛は一種の介在物として動くため、その分布状態は微細であるほど は荷能力を向上させることは容易に推定される。 しかし従来法ではPも相の大きさには粉末の疑固速度により定められる微細化の限界があり、焼結温度や時間の条件の工夫をしても十分な微細化焼結組織は得られない。

近年自動車用エンジンを始めとして内燃機関の性能は著しく向上し、その分、軸受への負荷も非常に厳しくなっている状況ではより高負荷に耐える軸受として銅鉛合金では鉛の分布をより微細なものにすることが求められるようになった。

網・鉛合金軸受材料において網マトリックス内 に分散した鉛相が潤滑金属として作用することは 良く知られているが、鉛の分布が微細な方がよい のか、粗い方がよいのかについて贄否両論あり、 明解な答えはまだ得られていない。

調・鉛焼結合金の鉛層を微細化することを開示する特許として米国特許第4、818、628号がある。この特許では、焼結を、誘導加熱により650℃以上で行う第1段加熱と、850℃程度で炉内で行う第2段加熱とにより行い、鉛粒径が平均で8μm以下、最大鉛粒径が44μm以下の

達成は出来ない。

・(課題を解決するための手段)

本発明は、上記したような従来の焼結摺動材料の性能を大幅に改良するものであり、 P b 、 I n 、 B i 、 T 1 から選択された一種以上の成分を5~60%含有し、残部が C u および不可避的不純物からなる焼結合金から構成され、 前記 P b 、 I n 、 B i , T 1 などが平均粒径 1 0 μ m以下の実質的に擬片状の微細粒子として分散しており、境界潤滑条件下で相手軸との摺動面略全面で皮膜を形成することを特徴とする。

さらに本発明はPb. In, Bi, T1から選択された一種以上の成分を5~60%、およびSnを15%以下含有し、残部がCuおよび不可避的不純物からなる焼結合金から構成され、前記Pb, In, Bi, T1などが平均粒径10μm以下の実質的に擬片状の微細粒子として分散しており、境界潤滑条件下で相手軸との摺動面略全面で皮膜を形成することを特徴とする。

以下、本発明の構成を説明する。

教細組織を得ることが提案されている。この米国特許では原料粉末は、147μm以下のものが好ましいとされており、粉末の製法は言及されておらないが、この粉末のサイズを考慮するとと一般的なガスもしくは水アトマイズ法であると考えとの光生、進展がオーバレイのクラッとは、腐食の発生、進展がオーバレイのクラッとは、腐食の発生、進展がオーバレイの分時、鉛組が組いと鉛相での腐食の進展が起こりやすいことを担いる。

(発明が解決しようとする課題)

本発明者はアトマイズ合金粉をできるだけ散細化し、また焼結条件を工夫して結晶粒反の抑制しつつ焼結を行って銅・鉛焼結体を作成し、その組織を観察し、以下の知見を得た。すなわち、焼結体中の鉛相は銅マトリックスの粒界に沿って延結体中の鉛相は銅マトリックスの粒界に沿って延続した網状形状が残っている。このような組織を有する焼結体の性能は微細化により多少の向上が見られるが、従来の性能を大幅に凌駕する性能の

先ず本発明の摺動材料の組成を説明する。本発 明に係る摺動材料はPb、In、Bi、Tlなど のCuに対する固溶度が少ない元素を軟質金属と して含有する。これらの金属はCuマトリックス 中に分布してなじみ性、潤滑性などを発揮する。 軟質金属の含有量が5%(百分率は特に断らない 限り重量%である)未満であると上記の性能が不 十分となり、一方含有量が60%を超えると銅・ 鉛合金の強度が不十分になり負荷能力が不十分と なる。また、後述するように本発明においては Pb、Inなどの相は微細な形状で密集している ことに関連してPb、In、Bi、Tlなどの含 有量が5%未満であると軟質相が孤立し、散開し て分散し、本発明による鉛等の連続層を摺動面に 形成する効果を奏することができないので、上記 した下限含有量5%以上の添加が必要である。軟 質金属の含有量は特に耐疲労性・高負荷用の目的 では好ましくは5~30%、より好ましくは8~ 25%とするとよく、また境界潤滑用の目的で は、好ましくは20~60%、より好ましくは

30~50%とするとよい。

上記した軟質金属の残部はCuおよび不純物である。Cuはマトリックスとして上記した軟質金属を均一微細に分布させ、強固に支持するとともに摩擦により発生した熱を逃がす熱の良導体の役割を担う。

ここで、従来のアトマイズ粉焼結ではPbの含有量を高くすると材料自体の強度が低くなり、耐疲労性に劣り、高負荷用としては十分な使用には耐えないが、本願の如く、メカニカルアロイング法による粉末の焼結体ではCu地自体が強化しため高Pb含有量が採用できる。この高PbがCuに比べ廉価のため材料コストの点でも有利となる。

次に上記組成でさらにSnを15%以下添加することができる。SnはCu地を固溶強化する成分であり、15%を超えると固溶限を超えた過剰金属間化合物によりCu地を逆に脆くしてしまう。好ましくは0.5~12%のSn含有量がよい。

ない、長い形状であり、球状のように縦横比率が略同等でない)が、ぎざぎざした形状、小さい突起を有する形状、局部的に太くなっている形状、末端が技別れした形状などの不規則形状があるので「擬」片状と称する。

本発明の鉛相は寸法が10μm以下は上である。鉛相の平均寸法は10μm以下は上上作作状態とともに本発明による鉛皮膜形成の原形のの発性である。これらの条件である。これらの条件である。これらの条件である。これらの条件である。これらのを発生である。これらので、通常20~40μmの結晶では発いている。を発明においては鉛を発明においては鉛を発明においては鉛を発明においては鉛を発明においては鉛を発明においては鉛を発明においては鉛を発明においては鉛を発明にあるので、鉛を開発が過かに狭くなって均間隔が過かに狭くなっている。

以上鉛相を例をとって本発明の組織を説明したがインジウム、ピスマス、タリウムなどが添加元素である場合にもメカニカルアロイング法により 飼が硬質金属として、インジウムなどが延性金属 上記した成分以外にSb、Fe、Ni、Mnなどを硬質成分として各5%以下の少量を添加することができる。これらの硬質成分は分散強化によって焼結体を強化し、負荷能力を高める。さらに、Cu系摺動材の公知の副成分を適宜、例えばPを1%以下、好ましくは0.001~0.5%添加してもよい。

以下、本発明が最も特徴とする焼結組織を説明 する。

・として作用し、kneading効果によりインジウムなどが光学顕微鏡では検出できないほど微細に分散した組織を作ることができる。なお、本願で言うメカニカルアロイング法とは、狭義のメカニカルアロイングとメカニカルグラインディングの総称である。

上記した組織を作るためにはメカニカルアロイング法などの超級細組織を作る方法により得た粉末を焼結することが必要である。かかる方法により得た粉末の表面は非常に活性であるので、焼結を行う際には焼結雰囲気条件の点に注意しなければならない。焼結は、裏金上での一次焼結のプロセスで行うことができる。

以下、メカニカルアロイング粉焼結材に例をとって本発明をさらに説明する。

〔作用〕

一定時間摺動させたメカニカルアロイング粉焼 結材とアトマイズ粉焼結材の摩擦面の観察を行っ たところ、アトマイズ粉焼結材の摺動試験後の表 面は銅マトリックスの金属光沢を呈しているが、 メカニカルアロイング粉焼結材の方は摩擦方向に 延びた黒い縞模様が帯状に何本も観察された。こ の黒い縞模様の境界部分を電子顕微鏡観察、鉛の ライン分析およびEPMAの観察結果からメカニ カルアロイング粉焼結材に現れる黒い縞模様は鉛 で、それが摩擦方向に表面を覆っていることが分 かった。

ケルメット合金で鉛が表面にしみ出してくることは一般に知られていることであるが、従来のアトマイズ粉焼結材では今回のメカニカルアロイング粉焼結材のように摩擦面全面のかなりの部分を覆うほどにはならなかった。

今回の摺動試験は潤滑油として粘度の低い灯油を用いており、速度も0.5 m/s と遅いので実験は境界潤滑領域で行われている。したがって軸と試験片とが固体接触する部分が存在し、その部分で鉛がしみだしたと考えられる。

メカニカルアロイング粉焼結材とアトマイズ粉 焼結材とでは基地での鉛の分布状態が異なるた

0% P b と P b を多くした場合)までにしかならない。

一方、本願の如くメカニカルアロイング焼結材では、前述の如く摺動面のかなりの部分をPbで覆う。本願では、摺動面から見たPbの面積率が、摺動定常状態で略50%~約100%である。この面積率は配合されるPb量により左右されるが、通常は80~95%となることが多い。

以上の観察結果から、鉛相が密集して存在することが鉛のしみ出し面積を本質的に高め、摺動面の略全面を鉛で被覆することに重要な役割を果たしていることが分かる。このように鉛相を密集させるためには鉛の添加量、鉛相の寸法および形状を本発明が定義するところにより限定することが必要である。

以下、実施例によりさらに詳しく本発明を説明する。

(実施例〕

水アトマイズ法で作った30%鉛を含む鋼鉛合金粉末をステンレス製ポールを用いた高エネルギ

め、そのしみ出し方とそれが招動方向へ流動して 空掠面を覆う様相に違った結果を招いている。

メカニカルアロイング粉焼結材とアトマイズ粉焼結材の表面の鉛のしみ出しを観察した結果をそれぞれ第3図(A)~(D)および第4図(A)~(D)に示す。図中、A、B、C、Dはそれぞれ10分後、30分後、60分後、120分後を示す。

メカニカルアロイング粉焼結材の鉛分布の細かいものは摺動時間で10分に満たないうちから摩擦面に鉛のしみ出しがあり(第3図(A)を照)、それらが表面を流動しながら近傍の鉛のしみだし流動につながり、次々にそのつながりが成長し摩擦方向に一本の筋となって現れ、そのすじ模様が集まって次第に摩擦面全面のかなりの部分を覆う縞模様に成長する(第3図(D)参照)。

これに対し、アトマイズ粉焼結材では摺動面の 大部分が銅地として露出しており、わずかに P b の筋が観察されるのみである。その摺動表面から 見た P b の筋の面積率は多くても 4 0 % 前後 (3

型ボールミル (アトライタ) にかけ、50時間のメカニカルアロイングを行って微細合金粉を作った。 その組成は31.6% Pb,0.91% Sn,Fe < 0.055,Ni < 0.05%,Sb < 0.05%、残部Cuであった。アトマイズ後の合金粉およびメカニカルアロイング50時間後の合金粉の電子顕微鏡写真とEPMAによる沿の分布を調べた結果、メカニカルアロイング合金粉では、鉛の分布をほとんど識別できないほどに組織が細かく均一になっていた。

メカニカルアロイング合金粉のX線回折結果は 飼相手と鉛相ともに各格子面のピーク位置の変化 は認められず銅と鉛とが原子の置換を起こすほど の合金化は起こっていないことを示した。

このようにして得た合金粉を4~5トン/ cm²の加圧力で直径13φ厚さ約3mmの円板 形状の圧粉体にして、水素ガス還元性雰囲気で 700℃、60分間焼結し銅・鉛焼結体を得た。

メカニカルアロイングを行っていないアトマイ ズ合金粉についても同じ条件で焼結体を作り比較 材とした。

第1図、第2図はメカニカルアロイング合金粉の焼結組織とアトマイズ合金粉の焼結組織の光学顕微鏡写真をそれぞれ示す。メカニカルアロイング粉の焼結組織が非常に細かくなっており、アトマイズ粉焼結材はPbの網状組織が見られる。これらの組織の画像解析にかけた結果、鉛相の平均面積と平均粒径がメカニカルアロイング法の焼結材の方がそれぞれおよそ1/3および1/8になっていることがわかった。

(以下余白)

軸回転数: 273rpm

速度: 0.5 m/sec

時間:126分

アトマイズ粉焼結材とメカニカルアロイング粉焼結材の摩耗量を第5図に、30%Pb-Cuに対するPbのしみ出し面積率を第6図にそれぞれ示す。摩耗量はアトマイズ粉焼結材よりメカニカルアロイング粉焼結材の方が明らかに少なくかつ定常状態でのしみだし面積率も極めて高くなっている。

したがって、メカニカルアロイング粉焼結材は 耐摩耗性に優れており、これは軸と軸受との間で 固体接触が起こると接触部で温度が上昇し鉛がし み出し、摩耗を抑制するためであると考えられ る。

[発明の効果]

以上説明したように本発明の焼結材料の材料特性は低摩耗量と高負荷能力に特長があり、また軸 受使用中には鉛等の軟質金属が軸受の接触面略全面を被覆することに特長がある。よって本発明の 表 1 : 画像解析による鉛相の平均面積と 平均粒径、および硬さ

試料	項	B
	鉛相平均 面積(μm²)	銅相平均 硬さ 粒径(μm) (Hν)
アトマイズ 粉 焼 結 材	290	1 3 . 6 33.0
メカニカル アロイング 粉焼結材	37.5	6.0 36.5

機械的特性としての代表として測定した硬さは メカニカルアロイング粉焼結材の方がアトマイズ 粉焼結材より高くなっており、Pb分散僧を敬細 にしたことによる強化が認められる。

また円筒平板試験機を用い、下記条件で摩擦係数および摩耗量の測定を行った。

潤滑油:灯油バス

温度:室温

動: S 4 5 C 焼入れ材 (直径 4 5 mm)

軸表面粗さ: R z O . 8 μ m

荷重: 9 kg

摺動材料は高負荷・高出力の内燃機関用軸受材料 や境界潤滑領域で使用される軸受材料として好適 である。

4. 図面の簡単な説明

第1図は本発明の焼結材料の金属顕微鏡写真、 第2図は従来の焼結材料の金属顕微鏡写真、

第3図(A)~(D)は本発明の摺動材料の摺動後の表面のPb組織を観察した金属顕微鏡写真。

第4図(A)~(D)は従来の摺動材料の摺動 後の表面のPb組織を観察した金属顕微鏡写真、

第5図はメカニカルアロイング粉焼結材料とア トマイズ粉焼結材料の摩耗量を示すグラフ、

第6図はメカニカルアロイング粉焼結材料とアトマイズ粉焼結材料のPbのしみ出し面積率を示すグラフである。

特許出願人 大豊工業株式会社 代理人 弁理士 村井 卓雄

平成 2年 9月12日

μm 深 下 摩 耗 20 ACTIVEDUグ粉 焼結材 PF717新 焼甜茶 第 5 図

平成 2年特許顯第134183号

2. 発明の名称 指動材料

特許出願人 名称 大豐工業株式会社

4. 代理人 〒113 東京都文京区本駒込一丁目10番5号 電話947-7552

平成2年8月25日(発送日)

6、補正の対象

明細書の「図面の詳細な説明」の標

7. 補正の内容

明細書第18頁、第5行から第11行を以下のように補正す

å.

『第1図は本発明の焼結材料の金属組織を示す顕微鏡写真、

第2図は従来の焼結材料の金属組織を示す顕微鏡写真、

第3図(A)~(D)は本発明の摺動材料の摺動後の表面の

Pbを観察した金属組織を示す顕微鏡写真、

第4図(A)~(D)は本発明の摺動材料の摺動後の表面の

Pbを観察した金属組織を示す顕微鏡写真、』