Math 177 Homework 3

Jiaping Zeng

5/5/2020

Section 3.1

1. (i)
$$L = 1000a_{\overline{5}|10\%} + 500v^5a_{\overline{5}|10\%} = \boxed{4967.68}$$

(ii)
$$B_3 = L(1+10\%)^3 - 1000s_{\overline{3}|10\%} = 3301.98$$

(iii)
$$I_4 = B_3 * 10\% = \boxed{330.20}$$

 $P_4 = 1000 - I_4 = \boxed{669.80}$

(iv)
$$B_8 = 500_{\overline{2}|10\%} = 867.77$$

2.
$$v = \frac{1}{1 + \frac{9\%}{12}}$$
; $B_{40} = \sum_{n=1}^{20} 1000 v^n (1 - 2\%)^{39 + n} = \boxed{6889.11}$

4. (i) Let X be the monthly payment amount. Then $20000 = X(12 + a_{\overline{36}|\frac{6\%}{12}}) \Longrightarrow X = 445.72$ $B_1 = 20000 - 12X = 14651.36$

(ii)
$$20000 = X(a_{\overline{12}|\frac{3\%}{12}} + v_{\frac{3\%}{12}}^{12} a_{\overline{36}|\frac{5\%}{12}}) \Longrightarrow X = 452.61$$

 $B_1 = 20000(1 + \frac{3\%}{12})^{12} - Xs_{\overline{12}|\frac{3\%}{12}} = 15101.68$

5. Bank Y monthly interest:
$$(1+i)^6 = 1 + \frac{14\%}{2} \implies i = 0.0113403; P_t = \frac{19800}{36} = 550 \implies I_t = iB_{t-1} = \frac{12\%}{12}[19800 - (t-1)P_t] \implies Price = P_t a_{\overline{20}|i} + \sum_{n=16}^{36} (v_i^{n-16}I_n) = \boxed{10857.27}$$

6.
$$L = \sum_{i=1}^{n} P_n = \sum_{i=1}^{n} (K_n - I_n) = K_T - I_T$$

9.
$$B_{10} = L = 1000$$

$$B_{20} = B_{10}(1 - 5\%)^{10} = 598.74$$

$$Xa_{\overline{10}|10\%} = B_{20} \implies \boxed{X = 97.44}$$

11. (a)
$$1000 = K(2a_{\overline{144}|\frac{12\%}{12}} - a_{\overline{72}|\frac{12\%}{12}}) \implies \boxed{K = 9.89}$$

t	K_t	I_t	P_t	B_t
0	_	_	_	1000
1	9.89	10.00	-0.11	1000.11
2	9.89	10.00	-0.11	1000.22
3	9.89	10.00	-0.11	1000.33
4	9.89	10.00	-0.11	1000.44
5	9.89	10.00	-0.11	1000.55
6	9.89	10.01	-0.12	1000.67
7	9.89	10.01	-0.12	1000.79
8	9.89	10.01	-0.12	1000.91
9	9.89	10.01	-0.12	1001.03
10	9.89	10.01	-0.12	1001.15
11	9.89	10.01	-0.12	1001.27
12	9.89	10.01	-0.12	1001.39

- (b) Using the table above, we can see that P_{t+1} is indeed equal to $P_t(1+i) + K_{t+1} K_t$ for $1 \le t \le 12d$.
- (c) $B_{72} = 1000 + 0.11s_{\overline{72}|1\%} = 1011.52$ $B_{144} = 1011.52 - (2K - iB_{72})s_{\overline{72}|1\%} = \boxed{0.02}$
- 13. (a) $P_6 = K_6 I_6 = 500 (1000a_{\overline{10}|i} a_{\overline{1}|i})i = 500(1 2a_{\overline{10}|i}i + vi) = 500[-2(1 v^{10}) (1 vi)] = 500(2v^{10} v)$
 - (b) $P_6 = K_6 I_6 = 500 (1000a_{\overline{10}|i} a_{\overline{1}|i})i = 500(1 2a_{\overline{10}|i}i + vi) = 500[1 i(2a_{\overline{10}|i} v)]$
 - (c) $P_6 = P_1(1+i)^5 = (500 Li)(1+i)^5$

Section 3.2

- 1. $B_t = L(1+t)^t Ks_{\overline{t}|i} = Ka_{\overline{n}|i}(1+i)^t Ks_{\overline{t}|i} = (Ks_{\overline{t}|i} + Ka_{\overline{n-t}|i}) Ks_{\overline{t}|i} = Ka_{\overline{n-t}|i}$ $B_t = L(1+t)^t - Ks_{\overline{t}|i} = L + Lis_{\overline{t}|i} - Ks_{\overline{t}|i} = L + s_{\overline{t}|i}(Li-K) = L + P_1s_{\overline{t}|i}$
- 4. Let X be the monthly payment amount. Then $L = Xa_{\overline{60}|0.01}$ and $B_t = Xa_{\overline{60}-t|0.01}$. $B_t = \frac{L}{2} \implies [t = 34.41]$.
- 7. $X(1+6\%)^{10} X = \frac{10X}{a_{\overline{10}16\%}} X + 356.54 \implies X = 825.00$
- 8. Under option (i), let X be the annual payment amount. Then, $Xa_{\overline{10}|8.07\%} = 2000 \implies X = 299.00$. Then, under option (ii), $\sum_{n=0}^{9} 200 + 200(10 n)i) = 10X \implies 11000i + 2000 = 2990 \implies \boxed{i = 0.09}$
- 11. Let t-1, t, t+1 be the dates of the given consecutive payments. Then, $P_t = B_t B_{t-1} = 5190.72 5084.68 = 106.04$ and $P_{t+1} = B_{t+1} B_t = 5084.68 4973.66 = 111.02$. Then, $i = \frac{P_{t+1}}{P_t} 1 = 0.0469634 \implies I_t = iB_{t-1} = 243.77 \implies K = P_t + I_t = \boxed{349.81}$
- 13. Scheme (i): Let each payment be X. Then, $L = Xa_{\overline{n}|i} \implies X = \frac{L}{a_{\overline{n}|i}}$; $I = nX L = \boxed{L(na_{\overline{n}|i} 1)}$ Scheme (ii): $I = Li \sum_{t=0}^{n-1} \frac{n-t}{n} = \boxed{\frac{1}{2}Li(n+1)}$

14.
$$A = 125000 a_{\overline{5}|5\%} = \boxed{541184.58}$$

 $B = 75000 a_{\overline{5}|5\%} = \boxed{324710.75}$
 $C = 10000(Da)_{\overline{5}|5\%} = \boxed{134104.67}$
 $A + B + C = 541184.58 + 324710.75 + 134104.67 = 1000000$

15. As shown below, n = 10 and Payment = 58.40

t	K_t	I_t	P_t	B_t
0	_	_	ı	1000.00
1	100	10.00	90.00	910.00
2	100	9.10	90.90	819.10
3	100	8.19	91.81	727.29
4	100	7.27	92.73	634.56
5	100	6.35	93.65	540.91
6	100	5.41	94.59	446.32
7	100	4.46	95.54	350.78
8	100	3.51	96.49	254.29
9	100	2.54	97.46	156.83
10	100	1.57	98.43	58.40

(b) Scheme (i):
$$I_{(i)} = \frac{nLi}{1 - v_i^n}$$

Scheme (ii): $I_{(ii)} = \frac{nLj}{1 - v_j^{12n}}$
Since $j = \frac{i^{(12)}}{12}, j < \frac{i}{12} \implies I_{(i)} > I_{(ii)}$

17.
$$B_n = \frac{3}{4}L \implies a_{\overline{n}|i} = \frac{3}{4}a_{\overline{2n}|i} \implies v^n - 1 = \frac{3}{4}v^{2n} - \frac{3}{4} \implies v^n = \frac{1}{3} \implies I_{n+1} = \frac{2}{3}K$$

26.
$$I_n = 153.86 \implies iB_{n-1} = 153.86 \implies i(X - P_{n-1}) = 153.86 \implies X = 7240$$

$$I_n = 153.86 \implies K(1 - v) = 153.86 \implies K = 1384.74$$

$$P_1 = K - I_1 = K - iX = \boxed{479.74}$$

29. (a)
$$K_1v + K_2v^2 + ...K_nv^n = \frac{1+i}{1+i} + \frac{(1+i)^2}{(1+i)^2} + ... + \frac{(1+i)^n}{(1+i)^n} = n$$

(b) $B_t = K_{t+1}v + K_{t+2}v^2 + ... + K_nv^{n-t} = \frac{(1+i)^{t+1}}{(1+i)} + \frac{(1+i)^{t+2}}{(1+i)^2} + ... + \frac{(1+i)^n}{(1+i)^{n-t}} = (n-t)(1+i)^t$