Cours : Antiseptique et désinfectant

BO STI2D Première:

Santé - Prévention et soin

Notions et contenus	Capacités exigibles
Antiseptiques et désinfectants	Citer les principaux antiseptiques et désinfectants usuels et montrer
Réactions d'oxydo-réduction et transferts	expérimentalement le caractère oxydant d'un antiseptique.
d'électrons	Définir les termes suivants : oxydant, réducteur, oxydation,
Concentrations molaire et massique	réduction, couple oxydant/réducteur.
	Écrire une réaction d'oxydo-réduction, les couples
	oxydant/réducteur étant donnés.
	Préparer une solution d'antiseptique de concentration molaire
	donnée par dissolution ou dilution.
	Doser par comparaison une solution d'antiseptique.

1 Antiseptiques et désinfectants

Ce sont des composés chimiques qui éliminent certains micro-organismes (virus, bactérie, champignons, spores), ou du moins ralentissent leur prolifération. Leur point commun est un principe actif qui agit par oxydation.

Désinfectant : produit éliminant les micro-organismes ou les virus indésirables portés par des milieux inertes. Ex : eau javel.

Antiseptique : produit éliminant les micro-organismes ou les virus indésirables portés par des tissus vivants. Ex : eau oxygénée

Les fondements scientifiques de l'antisepsie et de la désinfection reposent sur les découvertes de Pasteur (1822-1895).

1.1 Concentration

Concentration molaire : La concentration molaire, c d'un soluté est égale à la quantité de matière de soluté dissous par litre de solution. Elle s'exprime usuellement en mol.L-1.

$$c = \frac{n}{V}$$

où c est la concentration molaire en mole par litre (mol L⁻¹), n la quantité de matière en mole (mol) et V le volume de la solution en litres.

Concentration massique La concentration massique, cm d'un soluté est égale à la masse de soluté dissous par litre de solution. Elle s'exprime usuellement en g.L-1.

$$c_m = \frac{m}{V}$$

où c_m est la concentration massique en gramme par litre (g L⁻¹), m la masse en gramme (g) et V le volume de la solution en litres.

Préparation d'une solution par dilution

Il faut prélever un volume V_1 d'une solution mère de concentration c_1 , avec une pipette jaugée ou graduée, que l'on verse dans un fiole jaugée de volume \mathcal{V}_2 afin d'obtenir une solution fille de concentration c_2 .

Lors de la dilution, la quantité de matière de soluté est conservée $:c_1$. $V_1 = C_2 \cdot V_2$

1.3 Préparation par dissolution

- 1. Peser la masse de soluté avec une balance
- 2. Verser avec un entonnoir à solide le soluté dans la fiole jaugée
- 3. Rincer l'entonnoir avec de l'eau distillée dans la fiole jaugée (pour récupérer les résidus de soluté)
- 4. Compléter à moitié la fiole jaugée, puis agiter pour dissoudre le soluté
- 5. Compléter jusqu'au trait de jauge en prenant garde aux erreurs de parallaxes.

Dosage1.4

Doser consiste à rechercher la concentration d'une espèce chimique en solution, en la faisant réagir avec une espèce chimique en solution de concentration connue.

Oxydo-Reduction

Expérience

Comment réagit le zinc dans une solution de sulfate de cuivre?

- Solution aqueuse de sulfate de cuivre $(0.2 \,\mathrm{mol}\,\mathrm{L}^{-1})$
- Zinc solide
- spatule
- bécher
- agitateur magnétique
- dispositif de filtration

Élément cuivre : Cu2+ s'est transformé en Cu(s) : il a gagné 2 électrons Élément zinc : Zn(s) s'est transformé en Zn2+ : il a perdu 2 électrons

2.2 Oxydant et réducteur

Definition:

- on appelle réducteur une espèce susceptible de céder des électrons
- on appelle oxydant une espèce susceptible de capter des électrons Dans l'expérience précédente, quel est le réducteur $(Zn \text{ cède } 2 e^-)$, quel est l'oxydant?

Couple oxydant-réducteur (couple redox) :

On associe les formes réduite et oxydée au sein d'un couple oxydant-réducteur également appelé couple redox, et noté oxydant/réducteur.

Exemple : oxydant Cu^{2+}/Cu réducteur oxydant Zn^{2+}/Zn réducteur

Demi-équation électronique :

Un oxydant et son réducteur conjugué sont liés par une ½ équation électronique :

$$Oxydant + ne^- = Réducteur$$

 $Cu^{2+} + 2e^- = Cu$

Réactions d'oxydo-réduction

Oxydation et réduction :

Lorsqu'un réducteur cède des électrons, il subit une oxydation : il est oxydé. Lorsqu'un oxydant gagne des électrons, il subit une réduction : il est réduit.

Les e- ne peuvent pas se trouver libres en solution : ils ne sont qu'échangés lors d'une réaction. Pour qu'un oxydant puisse gagner des électrons, il faut qu'il trouve un réducteur pour lui en céder et inversement.

Équation d'oxydo-réduction :

Une réaction d'oxydo-réduction se fait donc par un transfert d'électrons entre 2 couples redox.

$$Ox_1 + Red_2 \longrightarrow Red_1 + Ox_2$$

Méthodologie : écrire l'équation d'oxydoréduction :

1. écrire les 2 ½ équations :

couple 1 :
$$Zn = Zn^{2+} + 2e^-$$

couple 2 : $Cu^{2+} + 2e^- = Cu$

2. « additionner » les 2 ½ équations : $Cu^{2+} + Zn \longrightarrow Cu + Zn^{2+}$

Exemple:
$$Fe^{3+}$$
 réagit avec I^- (couples Fe^{3+}/Fe et I_2/I^-)

Fe³⁺ + 3e⁻ = Fe(×2)

$$2I^- = I_2 + 2e^-(×3)$$

 $2Fe^{3+} + 6I^- \longrightarrow 2Fe + 3I_2$

2.4 Caractère oxydant d'un antiseptique

Mise en évidence du caractère oxydant de l'eau de javel

Faire réagir une solution aqueuse d'hypochlorite de sodium $(Na_{(ag)}^+ + ClO_{(ag)}^-)$, l'eau de javel avec une solution aque use d'iodure de potassium $(K_{(aq)}^+ + I_{(aq)}^-)$ (réducteur) pour mettre en évidence son caractère oxydant.

En solution aqueuse, les ions iodure sont incolores et le diiode est de couleur brune-orangée.

Matériel :

- 1 tube à essais
- 1 bouchon adaptable sur le tube à essais
- Support pour le tube à essais
- En flacons doseurs
- Eau de javel à environ 2°chl ou $8.3 \times 10^{-2} \,\mathrm{mol}\,\mathrm{L}^{-1}$ en ions ClO^- (20 mL)
- Solution aqueuse d'iodure de potassium à $0.1 \,\mathrm{mol}\,\mathrm{L}^{-1}$ (10 mL)
- Acide chlorhydrique à $0.5 \,\mathrm{mol}\,\mathrm{L}^{-1}$ (10 mL)
- Jerrycan de récupération des solutions iodées

Si le nombre d'e- demandés par l'oxydant n'est pas le même que celui proposé par le réducteur, il faut adapter les nombres stœchiométriques pour vérifier les lois de conservation des éléments et des

${\bf Manipulation}:$

- Verser dans un tube à essais environ 2 mL d'une solution d'iodure de potassium.
- Ajouter environ 1 mL d'eau de Javel.
- Ajouter environ 1 mL d'acide chlorhydrique dilué.

Observation : La solution est devenu de couleur brune-orangée, il y a eu formation de diiode (I_2)

Exploitation : Les ions diiode I^- ont perdu un électron, il a subi une oxydation, on dit qu'il est oxydé.

Demi équation : $2I^- = I_2 + 2e^-$

De nombreuses solutions ont des propriétés antiseptiques ou désinfectantes car elles contiennent des espèces chimiques oxydantes.

Différents couples oxydo-réducteur des antiseptiques et des désinfec-2.5tants

Couple	Désinfectants ou antiseptiques	Demi-équation d'oxydoréduction
I_2/I^-	Bétadine	$I_{2(aq)} + 2e^{-} = 2I_{(aq)}^{-}$
H_2O_2/H_2O	Eau oxygénée	$H_2O_{2(aq)} + 2H_{(aq)}^+ + 2e^- = 2H_2O_{(l)}$
O_2/H_2O_2	Eau oxygénée	$O_{2(aq)} + 2H_{(aq)}^{+} + 2e^{-} = H_{2}O_{2(aq)}$
ClO^-/Cl^-	Eau de Javel et Dakin	$ClO_{(aq)}^{-} + 2H_{(aq)}^{+} + 2e^{-} = Cl_{(aq)}^{-} + H_2O_{(l)}$
MnO_4^-/Mn^{2+}	Dakin	$MnO_{4\ (aq)}^{-} + 8H_{(aq)}^{+} + 5e^{-} = Mn_{(aq)}^{2+} + 4H_{2}O_{(l)}$