Example 4.23. We'd like to compute

$$\int_{\gamma} \frac{dz}{z^2 - 2z}$$

where γ is the unit circle, oriented counter-clockwise. (Try computing it from first principles.) We use a partial fractions expansion to write

$$\int_{\gamma} \frac{dz}{z^2 - 2z} = \frac{1}{2} \int_{\gamma} \frac{dz}{z - 2} - \frac{1}{2} \int_{\gamma} \frac{dz}{z}.$$

The first integral on the right-hand side is zero by Corollary 4.20 applied to the function $f(z) = \frac{1}{z-2}$ (note that f is holomorphic in $\mathbb{C} \setminus \{2\}$ and γ is $(\mathbb{C} \setminus \{2\})$ -contractible). The second integral is $2\pi i$ by Exercise 4.4, and so

$$\int_{\gamma} \frac{dz}{z^2 - 2z} = -\pi i.$$

Sometimes Corollary 4.20 itself is known as Cauchy's Theorem. See Exercise 4.26 for a related formulation of Corollary 4.20, with a proof based on Green's Theorem.

4.4 Cauchy's Integral Formula

We recall our notations

$$C[a, r] = \{z \in \mathbb{C} : |z - a| = r\}$$

$$D[a, r] = \{z \in \mathbb{C} : |z - a| < r\}$$

$$\overline{D}[a, r] = \{z \in \mathbb{C} : |z - a| \le r\}$$

for the circle, open disk, and closed disk, respectively, with center $a \in \mathbb{C}$ and radius r > 0. Unless stated otherwise, we orient C[a, r] counter-clockwise.

Theorem 4.24. If f is holomorphic in an open set containing $\overline{D}[w,R]$ then

$$f(w) = \frac{1}{2\pi i} \int_{C[w,R]} \frac{f(z)}{z-w} dz.$$

This is *Cauchy's Integral Formula* for the case that the integration path is a circle; we will prove the general statement at the end of this chapter. However, already this special case is worth meditating over: the data on the right-hand side of Theorem 4.24