FORMAL LANGUAGES AND AUTOMATA, 2024 FALL SEMESTER

Lec 05. Pumping Lemma

Eunjung Kim

LIMIT OF FINITE AUTOMATA AND TOOLS FOR INVESTIGATION

Which of the following languages are regular?

- $B = \{0^n 1^n : n \ge 0\}.$
- 2 $C = \{w : w \text{ has equal number of 0's and 1's}\}.$
- $\mathbf{B} \quad D = \{ w : w \text{ has equal number of 01's and 10's} \}.$
- If For a DFA D, the set of strings in L(D) accepted via a computation history visiting all states.

PUMPING LEMMA

Pumping Lemma: Tool to prove nonregularity

Let A be a regular language. Then there exists a number p (called the <u>pumping length</u>) such that any string $w \in A$ of length at least p, w can be written as w = xyz such that the following holds:

- $|y| \ge 1$,
- $|xy| \leq p$,
- **3** $xy^iz \in A$ for every $i \geq 0$.

Proof idea: DFA for A has a finite (constant) number of states.

PUMPING LEMMA

Pumping Lemma: Tool to prove nonregularity

Let A be a regular language. Then there exists a number p (called the <u>pumping length</u>) such that any string $w \in A$ of length at least p, w can be written as w = xyz such that the following holds:

- $|y| \ge 1$,
- $|xy| \leq p$,
- **3** $xy^iz \in A$ for every $i \geq 0$.

Proof idea: DFA for A has a finite (constant) number of states.

PUMPING LEMMA, PROOF

There exists DFA M with L(M) = A.

- \blacksquare Let p be the number of states of this DFA.
- 2 Consider the accepting computation history $r_0 = q_0, r_1, \ldots, r_s$ for w (with $r_s \in F$) such that $r_{i+1} = \delta(r_i, w_{i+1})$ for all $i = 0, \ldots, s-1$, where w_i is the i-th symbol of w.
- In the first q+1 states r_0, \ldots, r_p , there exist two identical states, say r_a and r_b , with $a \neq b$.
- 4 Take $x = w_1 \cdots w_a$, $y = w_{a+1} \cdots w_b$ and $z = w_{b+1} \cdots w_s$.
- It remains to observe that
 - $r_{b+1} = \delta(r_b, w_{b+1}) = \delta(r_a, w_{b+1})$, and thus $w_1 \cdots w_a \cdot w_{b+1} \cdots w_s = x \cdot z = x \cdot y^0 \cdot z$ is accepted with the sequence of states $r_0, \ldots, r_a, r_{b+1}, \ldots, r_s$.
 - Any $x \cdot y^i \cdot z$ is accepted with the sequence

$$r_0, \ldots, r_a, (r_{a+1}, \ldots, r_b)^i, r_{b+1}, \ldots, r_s.$$

PUMPING LEMMA FOR NONREGULARITY

PUMPING LEMMA

Let *A* be a regular language. Then there exists a number *p* such that any string $w \in A$ of length at least *p*, *w* can be written as w = xyz such that

Recipe: assume that A is regular and p is an unknown (arbitrary) pumping length. Choose a good string s, and show that rewriting s = xyz as required is impossible.

PUMPING LEMMA FOR NONREGULARITY

PUMPING LEMMA

Let *A* be a regular language. Then there exists a number *p* such that any string $w \in A$ of length at least *p*, *w* can be written as w = xyz such that

Recipe: assume that A is regular and p is an unknown (arbitrary) pumping length. Choose a good string s, and show that rewriting s = xyz as required is impossible.

That is, we use the contraposition of Pumping lemma for proving nonregularity of *A*

- **I** For every positive number p, (" $\forall p$ ")
- **2** there exists $w \in A$ of length at least p such that (" $\exists w \in A$ ")
- **3** for every split w = xyz with $|y| \ge 1$ and $|xy| \le p$ (" \forall splits xyz")
- 4 there exists $i \ge 0$ with $xy^iz \notin A$ (" $\exists i$ ").

NONREGULARITY OF $B = \{0^n 1^n : n \ge 0\}.$

- **I** For every positive number p, (" $\forall p$ ")
- **2** there exists $w \in A$ of length at least p such that (" $\exists w \in A$ ")
- solution for every split w = xyz with $|y| \ge 1$ and $|xy| \le p$ (" \forall splits xyz")
- 4 there exists $i \ge 0$ with $xy^iz \notin A$ (" $\exists i$ ").

$$D = \{1^{n^2} : n \ge 0\}$$

- **I** For every positive number p, (" $\forall p$ ")
- **2** there exists $w \in A$ of length at least p such that (" $\exists w \in A$ ")
- **3** for every split w = xyz with $|y| \ge 1$ and $|xy| \le p$ (" \forall splits xyz")
- 4 there exists $i \ge 0$ with $xy^iz \notin A$ (" $\exists i$ ").

$\{w: w \text{ HAS EQUAL # OF 0's AND 1's}\}$

- **I** For every positive number p, (" $\forall p$ ")
- **2** there exists $w \in A$ of length at least p such that (" $\exists w \in A$ ")
- for every split w = xyz with $|y| \ge 1$ and $|xy| \le p$ (" \forall splits xyz meeting the conditions")
- 4 there exists $i \ge 0$ with $xy^iz \notin A$ (" $\exists i$ ").

$$D = \{0^i \cdot 1^j : i > j\}$$

- **I** For every positive number p, (" $\forall p$ ")
- **2** there exists $w \in A$ of length at least p such that (" $\exists w \in A$ ")
- **3** for every split w = xyz with $|y| \ge 1$ and $|xy| \le p$ (" \forall splits xyz")
- 4 there exists $i \ge 0$ with $xy^iz \notin A$ (" $\exists i$ ").

$$F = \{ww : w \in \{0, 1\}^*\}$$

- **I** For every positive number p, (" $\forall p$ ")
- **1** there exists $w \in A$ of length at least p such that (" $\exists w \in A$ ")
- **3** for every split w = xyz with $|y| \ge 1$ and $|xy| \le p$ (" \forall splits xyz")
- 4 there exists $i \ge 0$ with $xy^iz \notin A$ (" $\exists i$ ").

MYHILL-NERODE THEOREM

Fix an alphabet Σ and let L be a language over Σ .

DISTIGUISHABILITY OF TWO STRINGS BY L

We say that $x, y \in \Sigma^*$ is indistinguishable by L if for all $z \in \Sigma^*$,

$$x \cdot z \in L$$
 if and only if $y \cdot z \in L$,

written as $x \equiv_L z$.

MYHILL-NERODE THEOREM

Fix an alphabet Σ and let L be a language over Σ .

MYHILL-NERODE THEOREM

L is regular if and only if the number of equivalence classes of \equiv_L is finite. Moreover, the number of equivalence classes equals the number of states in a minimal (minimum) DFA.

MYHILL-NERODE THEOREM

Fix an alphabet Σ and let L be a language over Σ .

MYHILL-NERODE THEOREM

L is regular if and only if the number of equivalence classes of \equiv_L is finite. Moreover, the number of equivalence classes equals the number of states in a minimal (minimum) DFA.

- (\rightarrow) Define an equivalence relation \sim_M from DFA M with L(M)=L. The Myhill-Nerode equivalence \equiv_L is a OOOOOOOO of \sim_M .
- (\leftarrow) Build a DFA N from the equivalence classes of \equiv_L .