Kodutöö nr. 6

1. variant Joosep Näks

1. Arendada funktsioon

$$f(x) = \frac{\pi}{4} - \frac{x}{2}, \ x \in [0, \pi],$$

siinusreaks. Uurida rea punktiviisi koonduvust (s.t. kas koondub ja mis väärtuseks) lõigus $[0, \pi]$. Olgu $s_n(x)$ selle siinusrea n-nes osasumma ning olgu

$$\sigma_n(x) = \frac{s_0(x) + \dots + s_n(x)}{n+1}$$

Joonistada lõigus [-5,5] graafik, millel oleks toodud funktsioonid f, s_{10} , s_{100} ning samas lõigus teine graafik, millel oleks toodud funktsioonid f, σ_{10} , σ_{100} .

Lahendus:

Jätkan funktsiooni f lõigule $[-\pi, \pi]$ paarituks funktsiooniks \tilde{f} :

$$\tilde{f}(x) := \begin{cases} f(x) = \frac{\pi}{4} - \frac{x}{2}, & \text{kui } x \in [0, \pi]; \\ f(x) = -\frac{\pi}{4} - \frac{x}{2}, & \text{kui } x \in [-\pi, 0) \end{cases}$$

Leian \tilde{f} Fourier' kordajad:

Osasumma graafikud:

$$b_n := \frac{2}{\pi} \int_0^{\pi} f(x) \sin kx \, dx$$

$$= \frac{2}{\pi} \int_0^{\pi} \left(\frac{\pi}{4} - \frac{x}{2} \right) \sin kx \, dx$$

$$= \frac{2}{\pi} \left(-\frac{2 \sin(kx) + k(\pi - 2x) \cdot \cos(kx)}{4k^2} \right) \Big|_0^{\pi}$$

$$= \frac{2}{\pi} \left(\frac{k\pi - 2 \sin(k\pi) + k\pi \cos(k\pi)}{4k^2} \right)$$

$$= \frac{1 + (-1)^k}{2k^2}$$

Ehk $\tilde{f} \sim \sum_{k=1}^{\infty} \frac{1+(-1)^k}{2k} \sin kx$ ning kuna lõigus $[0,\pi]$ on f ja \tilde{f} samad, on saadud Fourier' rida ka funktsiooni f Fourier' rida selles lõigus. Funktsioonil f on punktides $c \in [0,\pi]$ lõplik tuletis seega loengukonspekti järelduse 2.3 kohaselt koondub rida nendes punktides väärtusteks f(x).

 $\mathbf{2}$. Vaatleme eelmise ülesande funktsiooni f arendise osasummat kujul

$$s_m = \sum_{k=0}^m c_k \varphi_k,$$

kus (φ_k) on trigonomeetriline ortonormeeritud süsteem, s.t.

$$\varphi_0(x) = \frac{1}{\sqrt{2\pi}}, \quad \varphi_1(x) = \frac{\cos x}{\sqrt{\pi}}, \quad \varphi_2(x) = \frac{\sin x}{\sqrt{\pi}}, \quad \varphi_3(x) = \frac{\cos 2x}{\sqrt{\pi}}, \quad \varphi_4(x) = \frac{\sin 2x}{\sqrt{\pi}}, \dots$$

(siinusrea kordajad ongi konstantse teguriga korrutamise täpsuseni arvud (c_k)). Kasutades võrdust

$$||f - s_n||^2 = ||f||^2 - \sum_{k=0}^n c_k^2,$$

leida vähim selline n, et osasumma s_n ja funktsiooni f (täpsemalt, tema paaritu jätku lõigule $[-\pi,\pi]$) ruutkeskmine viga $||f-s_n||$ oleks väiksem kui 0,1.

Lahendus:

Eelmises ülesandes leitud Fourier' kordajate põhjal saan et $c_0 = 0$ ja $c_{2k-1} = 0$, $k \in \mathbb{N}$ ning $c_{2k} = \frac{\sqrt{\pi}(1+(-1)^{\frac{k}{2}})}{k}$, $k \in \mathbb{N}$. Võrratus $||f-s_n|| < 0,1$ on samaväärne võrratusega $\sqrt{||f||^2 - \sum_{k=0}^n c_k^2} < 0,1$

ehk $||f||^2 - \sum_{k=0}^n c_k^2 < 0,01.$ ||f||saab lahti kirjutada kui:

$$||f|| = \sqrt{2 \int_0^{\pi} \left| \frac{\pi}{4} - \frac{x}{2} \right|^2 dx} = \sqrt{\frac{\pi^3}{24}}$$

Seega on vaja leida vähim n nii, et

$$\frac{\pi^3}{24} - \sum_{k=0}^{n} c_k^2 < 0.01$$

Programmiga läbi proovides sain, et n = 158, kuna $\frac{\pi^3}{24} - \sum_{k=0}^{157} c_k^2 \approx 0.0100$ ning $\frac{\pi^3}{24} - \sum_{k=0}^{158} c_k^2 \approx 0.0099$.

2