Exercise sheet 05

Deadline: May 27, 8:00 p.m.

Please submit 2 files. The first file, $ex05_your_name.dfy$, should be a Dafny-file containing the answers to Problems 1, 2 and 3. The second file should be a pdf-file $ex05_your_name.pdf$, containing your solution to problem 5.

Problem 1 (Division by repeated subtraction). The well known *Fibonacci*-Function is defined below as recursive Function fib. We have also supplied an iterative method fibIter, which is supposed to calculate the same function, using a loop instead of recursion.

Complete fibIter with appropriate pre- and postconditions and with appropriate invariants, so that it verifies in Dafny. The Dafny-solution uses parallel assignments. Many languages do not allow parallel assignments. Therefore, you should replace the parallel assignments with single assignments.

(4 points)

Problem 2. The factorial function fact is defined as

```
function fact(n:nat):nat
{ if n==0 then 1 else n*fact(n-1)}
```

Write a method factIter which calculates fact iteratively and let Dafny prove correctness.

(3 points)

Problem 3. The greatest common divisor gcd is defined recursively as shown.

```
function gcd(m:nat,n:nat):nat
requires m > 0 && n > 0
{   if m==n then m else if m>n then gcd(m-n,n) else gcd(m,n-m)}
method gcdI(m:int,n:int) returns (g:int)
```

Write a method gcdI which calculates gcd iteratively using a while-loop, and let Dafny prove correctness. Additional to the invariant(s), Dafny may require a decreases term, which is an integer expression that decreases in every pass through the loop, while remaining positive.

(3 points)

- **Problem 4** (Floyd follows from Hoare). (a). Consider proposition $Q \equiv x^2 + v \le x * v$, term $t \equiv x + v$, and variables x, y and v. Calculate concretely (Q[t/v])[y/v] as well as Q[(t[y/v])/v]. Show all intermediate steps!
 - (b). Argue, why in general for arbitrary Proposition Q and for arbitrary terms t, s and for arbitrary variable v one must have equality: $(Q[t/v])[s/v] \equiv Q[(t[s/v])/v]$. You can either indicate how to prove this inductively, or you can argue with the shape of Q, t, and s when represented syntactically as trees.
 - (c). Using Floyd's rule $\{P\}v := t\{\exists v_0.(P[v_0/v] \land v = t[v_0/v])\}$, derive Hoare's rule $\overline{\{Q[t/v]\}v := t\{Q\}}$. Using Floyd's rule $\{P\}v := t\{\exists v_0.(P[v_0/v] \land v = t[v_0/v])\}$, derive Hoare's rule $\overline{\{Q[t/v]\}v := t\{Q\}}$. (6 points)