МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені Тараса Шевченка ФАКУЛЬТЕТ ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ

Кафедра програмних систем і технологій

Дисципліна

«Структури даних, аналіз і алгоритми комп'ютерної обробки інформації»

«Алгоритм Хаффмана»

Виконав:	Сирота Ангеліна Олександрівна	Перевірила:	Бичков Олексій Сергійович
Група	ІПЗ-21	Дата перевірки	
Форма навчання	денна	Оцінка	
Спеціальність	121		

2022

4 Умова завдання

Написати програму реалізації алгоритму Хаффмана.

🖶 Аналіз

Вводимо рядок символів, з яким будемо працювати.

Використовуючи словник запам'ятовуємо кожен символ рядка і частоту, з якою він зустрічається (ключ: символ, значення: частота). З отриманих значень створюємо список вузлів бінарного дерева. За допомогою алгоритма Хаффмана будуємо бінарне дерево.

Алгоритм працює наступним чином:

- Усі вузли зі списку сортуються у порядку спадання їх частот і розглядаються останні 2, чиї частоти найменші.
- Створюється новий вузол, частота якого є сумою частот двох взятих вузлів. У посиланнях щойно створеного батьківського вузла на лівий і правий вузол вказуються ті 2 дочірні вузли, на основі яких було створено батьківський.
- Дочірні вузли видаляються зі списку вузлів. Замість них додається батьківський.
- Ця операція повторюється доти, доки у списку вузлів не залишиться лише 1 вузол.

На основі дерева будується таблиця Хаффмана (також використовується словник), яка містить символ рядку і бінарний код, отриманий шляхом пошуку цього символу у глибину:

- У функцію передаються значення шуканого символа і пустого рядка, який буде заповнюватися «0» та «1» в ході пошуку.
- Якщо дані вузла, що розглядається співпадають зі значенням шуканого символа, то виводиться рядок, що містить бінарний код цього символа.
- Інакше, якщо вузол має лівий нащадок, додаємо у рядок «0» і викликаємо ту ж саму функцію для пошуку елемента у лівому піддереві. Аналогічно і з правим піддеревом.
- Після завершення рекурсії, якщо шлях не є нульвим, повертаємо його.

Якщо ж дані вузла не співпадають з шуканим символом, повертаємо
0.

На основі даних цієї таблиці кодується рядок. Замість кожного символа записується його бінарний код.

Для розшифровки використовується дерево Хаффмана. Розглядається кожен символ у закодованому рядку. Якщо він ϵ «0», то розглядаємо ліве піддерево, а якщо «1» - праве. Дійшовши до листка записуємо його значення у рядок і повертаємось у корінь дерева.

4 Код алгоритму

Весь код викладений на github. Його можна переглянути <u>тут</u>.

Тестування

♣ Аналіз отриманих помилок

В ході реалізації алгоритму Хаффмана для побудови бінарного дерева спочатку було використано пряме сортування і, відповідно, бралися перші 2 елементи. Це призвело до неправильної побудови бінарного дерева. Символ, який зустрічався найбільшу кількість не мав найменший бінарний код. Було вирішено використати зворотнє сортування і брати останніх 2 елементи.

♣ Висновок

В ході цієї лабораторної роботи було написано програму, яка релізує алгоритм Хаффмана. В ході реалізації було побудовано бінарне дерево Хаффмана і на основі нього побудовано таблицю Хаффмана, яка містить бінарні коди для кожного символа. За допомогою таблиці було створено закодований рядок. Дешифрування рядка відбувалося за допомогою дерева Хаффмана.