Lecture 5: Conditional Expectation

Tianpei Xie

Aug.4th., 2015

Contents

1		call Signed Measure and Lebesgue Decomposition	2
	1.1	Signed Measure	2
	1.2	Lebesgue Decomposition and Radon-Nikodym derivative	3
2	Cor	nditional Probability	6
	2.1	Definitions	6
	2.2	Properties	9
	2.3	Conditional Probability Distributions	10
3 C	Cor	Conditional Expectation	
	3.1	Definitions	11
	3.2	Properties	12

1 Recall Signed Measure and Lebesgue Decomposition

1.1 Signed Measure

- Definition (Signed Measure)
 - Let (X, \mathcal{B}) be a measure space. A <u>signed measure</u> on (X, \mathcal{B}) is a function $\nu : \mathcal{B} \to [-\infty, +\infty]$ such that
 - 1. (**Emptyset**) $\nu(\emptyset) = 0$;
 - 2. (Finiteness in One Direction) ν assumes at most one of the values $\pm \infty$;
 - 3. (*Countable Additivity*) if $\{E_j\}$ is a sequence of disjoint sets in \mathscr{B} , then $\nu\left(\bigcup_{j=1}^{\infty} E_j\right) = \sum_{j=1}^{\infty} \nu(E_j)$, where the latter converges absolutely if $\nu\left(\bigcup_{j=1}^{\infty} E_j\right)$ is finite.
- **Definition** A measure μ is *finite*, if $\mu(X) < \infty$; μ is σ -finite, if $X = \bigcup_{k=1}^{\infty} U_k$, $\mu(U_k) < \infty$.
- Definition (Positive Measure)

If ν is a signed measure on (X, \mathcal{B}) , a **set** $E \in \mathcal{B}$ is called **positive** (resp. **negative**, **null**) for ν if $\nu(F) \geq 0$ (resp. $\nu(F) \leq 0$, $\nu(F) = 0$) for **all** \mathcal{B} -measurable subset of E (i.e. $F \in \mathcal{B}$ such that $F \subseteq E$).

In other word, E is ν -positive, ν -negative, ν -null if and only if $\nu(E \cap M) > 0$, $\nu(E \cap M) < 0$, $\nu(E \cap M) = 0$ for any M. Thus if $\nu(E) = \int_X f \mathbb{1}\{E\} d\mu$, then it corresponds to $\underline{f \geq 0}$, $f \leq 0$ and f = 0 for μ -almost everywhere $x \in E$.

• Lemma 1.1 [Folland, 2013]

Any measureable subset of a positive set is positive, and the union of any countable positive set is positive.

- Theorem 1.2 (The Hahn Decomposition Theorem)[Folland, 2013] If ν is a signed measure on (X, \mathcal{B}) , there exists a positive set P and a negative set N for ν such that $P \cup N = X$ and $P \cap N = \emptyset$. If P', N' is another such pair, then $P\Delta P' = N\Delta N'$ is null w.r.t. ν .
- Definition [Folland, 2013, Resnick, 2013]
 The decomposition of X = P ∪ N as X is a disjoint union of a positive set and a negative set is called a Hahn decomposition for ν.
- Remark Note that the Hahn decomposition is usually **not unique** as the ν -null set can be transferred between subparts P and N. To find unique decomposition, we need the following concepts:
- **Definition** [Folland, 2013]

Two signed measures μ, ν on (X, \mathcal{B}) are <u>mutually singular</u>, or that ν is <u>singular</u> w.r.t. to μ , or vice versa, if and only if there exists a <u>partition</u> $E, F \in \mathcal{B}$ of X such that $E \cap F = \emptyset$ and $E \cup F = X$, E is null for μ and F is null for ν . Informal speaking, mutual singular means that μ and ν "live on disjoint sets". We describe it using perpendicular sign

$$\mu \perp \nu$$

• Theorem 1.3 (The Jordan Decomposition Theorem)[Folland, 2013]

If ν is a signed measure on (X, \mathcal{B}) , there exists **unique positive measure** ν_+ and ν_- such that

$$\nu = \nu_+ - \nu_-$$
 and $\nu_+ \perp \nu_-$.

• **Definition** The two positive measures ν_+, ν_- are called the **positive** and **negative variations** of ν , and $\nu = \nu_+ - \nu_-$ is called the **Jordan decomposition** of ν .

Furthermore, define the <u>total variations</u> of ν as the measure $|\nu|$ such that

$$|\nu| = \nu_+ + \nu_-.$$

- Proposition 1.4 Let ν, μ be signed measures on (X, \mathcal{B}) and $|\nu|$ is the total variations of ν .
 - 1. $E \in \mathcal{B}$ is ν -null if and only if $|\nu|(E) = 0$
 - 2. $\nu \perp \mu$ if and only if $|\nu| \perp \mu$ if and only if $(\nu_+ \perp \mu) \wedge (\nu_- \perp \mu)$.
- Proposition 1.5 If ν_1, ν_2 are signed measures that both omit $\pm \infty$, then $|\nu_1 + \nu_2| \leq |\nu_1| + |\nu_2|$

1.2 Lebesgue Decomposition and Radon-Nikodym derivative

Definition [Folland, 2013]
 Suppose ν is a signed measure on (X, B) and μ is a positive measure on (X, B). Then ν is said to be absolutely continuous w.r.t. μ and write

$$\nu \ll \mu$$

if $\nu(E) = 0$ for every $E \in \mathscr{B}$ for which $\mu(E) = 0$.

- Proposition 1.6 Suppose ν is a signed measure on (X, \mathcal{B}) , ν_+, ν_- are positive and negative variation of ν and $|\nu|$ is the total variation. Then $\nu \ll \mu$ if and only if $|\nu| \ll \mu$ if and only if $(\nu_+ \ll \mu) \wedge (\nu_- \ll \mu)$.
- Remark Absolutly continuity is in a sense antithesis (i.e. direct opposite) of mutual singularity. More precisely, if $\nu \perp \mu$ and $\nu \ll \mu$, then $\nu = 0$, since E, F are disjoint sets such that $E \cup F = X$, and $\mu(E) = |\nu|(F) = 0$, then $\nu \ll \mu$ implies that $|\nu|(E) = 0$. One can extend the notion of absolute continuity to the case where μ is a signed measure (namely, $\nu \ll \mu$ iff $\nu \ll |\mu|$), but we shall have no need of this more general definition.
- Theorem 1.7 (ϵ - δ Language of Absolute Continuity of Measures) Let ν is a finite signed measure and μ is a positive measure on (X, \mathcal{B}) . Then $\nu \ll \mu$ if and only if for every $\epsilon > 0$, there exists a $\delta > 0$ such that $|\nu(E)| < \epsilon$, whenever $\mu(E) < \delta$.
- Remark If μ is a measure and f is extended μ -integrable, then the signed measure ν defined via $\nu(E) = \int_E f d\mu$ is absolutely continuous w.r.t. μ ; it is finite if and only if f is absolutely integrable. For any complex-valued $f \in L^1(\mu)$, the preceding theorem can be applied to $\Re(f)$ and $\Im(f)$.
- Corollary 1.8 If $f \in L^1(X, \mu)$, for every $\epsilon > 0$, there exists a $\delta > 0$, such that $\left| \int_E f d\mu \right| < \epsilon$ whenever $\mu(E) < \delta$.

• **Definition** For a signed measure ν defined via $\nu(E) = \int_E f d\mu$ for all $E \in \mathcal{B}$, we use the notation to express the relationship

$$d\nu = f d\mu$$
.

Sometimes, by a slight abuse of language, we shall refer to "the signed measure $f d\mu$ "

- Lemma 1.9 [Folland, 2013] Suppose that ν and μ are **finite measures** on (X, \mathcal{B}) . Either $\nu \perp \mu$, or there exists $\epsilon > 0$ and $E \in \mathcal{B}$ such that $\mu(E) > 0$ and $\nu \geq \epsilon \mu$ on E, i.e. E is a **positive set for** $\nu - \epsilon \mu$.
- Theorem 1.10 (Lebesgue-Radon-Nikodym Theorem)[Folland, 2013] Let ν be a σ -finite signed measure and μ be a σ -finite positive measure on (X, \mathcal{B}) . There exists unique σ -finite signed measure λ , ρ on (X, \mathcal{B}) such that

$$\lambda \perp \mu$$
, and $\rho \ll \mu$, and $\nu = \lambda + \rho$.

In particular, if $\nu \ll \mu$, then

$$d\nu = f d\mu$$
, for some f .

- **Definition** The decomposition $\nu = \rho + \lambda$, where $\lambda \perp \mu$ and $\rho \ll \mu$, is called the <u>Lebesgue</u> decomposition of ν with respect to μ .
- Remark By Lebesgue decomposition, a signed measure ν can be represented as

$$d\nu = d\lambda + fd\mu$$

• **Definition** If $\nu \ll \mu$, then according to the Lebesgue-Radon-Nikodym theorem, $d\nu = f d\mu$ for some f, where f is called the **Radon-Nikodym derivative** of ν w.r.t. μ and is denoted as

$$f := \frac{d\nu}{d\mu} \quad \Rightarrow \quad d\nu = \frac{d\nu}{d\mu}d\mu.$$

• We stated it in terms a theorem in probability space:

Theorem 1.11 (Radon-Nikodym Theorem) [Resnick, 2013] Let $(\Omega, \mathcal{F}, \mathcal{P})$ be the **probability space**. Suppose ν is a **positive bounded measure** and $\nu \ll \mathcal{P}$. Then there exists an \mathcal{F} -integrable random variable X, such that

$$\nu(E) = \int_{E} X d\mathcal{P}, \ \forall E \in \mathscr{F}.$$

X is almost everywhere unique (P) and is written

$$f = \frac{d\nu}{d\mathcal{P}}$$

We also write $d\nu = Xd\mathcal{P}$.

• Corollary 1.12 (σ -Finite Measures) [Resnick, 2013] If μ , ν are σ -finite measures on (Ω, \mathcal{F}) , there exists a \mathcal{F} -measurable X such that

$$\nu(E) = \int_{E} X d\mu, \ \forall E \in \mathscr{F},$$

if and only if

$$\nu \ll \mu$$
.

• The following corollary is very important in definition of *conditional expectation*:

Corollary 1.13 (Restriction to Sub σ -Algebra) [Resnick, 2013] Suppose Q, P are both probability measure on (Ω, \mathcal{F}) such that $Q \ll P$. Let $\mathcal{G} \subset \mathcal{F}$ be a sub- σ -algebra. Let $Q|_{\mathcal{G}}$, $P|_{\mathcal{G}}$ be the restriction of Q, P to \mathcal{G} . Then in (Ω, \mathcal{G}) ,

$$Q|_{\mathcal{Q}} \ll P|_{\mathcal{Q}}$$

and

$$\frac{d Q|_{\mathscr{G}}}{d P|_{\mathscr{G}}}$$
 is \mathscr{G} -measureable.

• Remark (Jordan Decomposition vs. Lebesgue Decomposition)
We see two unique decompositions: the Jordan decomposition and the Lebesgue decom-

- 1. Both of these two are decompositions of a signed measure ν .
- 2. Both of these two decompositions separate ν into two *mutually signular* sub-measures of ν .
- 3. Both of these two decompositions are *unique*

position. We can make a comparison:

On the other hand,

- 1. The Jordan decomposition is to split a signed measure ν itself into two positive measures, i.e. ν_+ and ν_- that are mutually singular $(\nu_+ \perp \nu_-)$.
- 2. The Lebesgue decomposition is to split a signed measure ν with respect to a postive measure μ . The result is two-fold: 1) two mutually singular sub-measures $\lambda \perp \rho$ 2) their relationship with μ is opposite: $\lambda \perp \mu$, i.e. their support do not overlap; $\rho \ll \mu$, i.e. its support lies within support of μ .
- 3. Note that λ, ρ from the Lebesgue decomposition is **not** necessarily **positive**. But both ν and μ need to be σ -finite which is not required for the Jordan decomposition.
- **Proposition 1.14** [Folland, 2013]

Suppose ν is σ -finite signed measure and λ , μ are σ -finite measure on (X, \mathcal{B}) such that $\nu \ll \mu$ and $\mu \ll \lambda$.

1. If $g \in L^1(X, \nu)$, then $g\left(\frac{d\nu}{d\mu}\right) \in L^1(X, \mu)$ and

$$\int g d\nu = \int g \frac{d\nu}{d\mu} d\mu$$

2. We have $\nu \ll \lambda$, and

$$\frac{d\nu}{d\lambda} = \frac{d\nu}{d\mu} \frac{d\mu}{d\lambda}, \quad \lambda\text{-a.e.}$$

- Corollary 1.15 If $\mu \ll \lambda$ and $\lambda \ll \mu$, then $(d\lambda/d\mu)(d\mu/d\lambda) = 1$ a.e. (with respect to either λ or μ).
- Proposition 1.16 If μ_1, \ldots, μ_n are measures on (X, \mathcal{B}) , then there exists a measure μ such that $\mu_i \ll \mu$ for all $i = 1, \ldots, n$, namely, $\mu = \sum_{i=1}^n \mu_i$.

2 Conditional Probability

2.1 Definitions

• Remark (Conditional probability in terms of Decision with Partial Information) It is helpful to consider conditional probability in terms of an observer in possession of partial information. A probability space $(\Omega, \mathcal{F}, \mathcal{P})$ describes the working of a mechanism, governed by chance, which produces a result ω distributed according to \mathcal{P} ; $\mathcal{P}(A)$ is for the observer the probability that the point ω produced lies in A.

Suppose now that ω lies in G and that the observer learns this fact and no more. From the point of view of the observer, now in possession of this partial information about ω , the **probability** that ω also lies in A is $\mathcal{P}(A|B)$ rather than $\mathcal{P}(A)$. This is the idea lying back of the definition.

• Remark (Conditional Probability with respect to Experiments) Let $(\Omega, \mathcal{F}, \mathcal{P})$ be a probability space and $\mathcal{G} \subset \mathcal{F}$ is a sub- σ -algebra on Ω . One can imagine an observer who knows for each G in \mathcal{G} whether $w \in G$ or $w \in G^c$. Thus the σ -algebra \mathcal{G} can in principle be identified with an experiment or observation.

It is natural to try and define *conditional probabilities* $\mathcal{P}[A | \mathcal{G}]$ with respect to the experiment \mathcal{G} . To do this, fix an A in \mathcal{F} and define a finite measure ν on \mathcal{G} by

$$\nu(G) = \mathcal{P}(A \cap G), \quad G \in \mathcal{G}$$

Then $\mathcal{P}(G) = 0$ implies that $\nu(G) = 0$, i.e. $\nu \ll \mathcal{P}$. The Lebesgue-Radon-Nikodym Theorem can be applied to the measures ν and \mathcal{P} on the measurable space (Ω, \mathcal{G}) because the first one is **absolutely continuous** with respect to the second. It follows that there exists a **function** or **random variable** f, \mathcal{G} -measurable and integrable with respect to \mathcal{P} , such that

$$\nu(G) = \mathcal{P}(A \cap G) = \int_G f d\mathcal{P}$$

for all $G \in \mathcal{G}$. This random variable f is the conditional probabilty of A given \mathcal{G} .

- Definition (Conditional Probability)
 Let (Ω, F, P) be a probability space and G ⊂ F is a sub-σ-algebra on Ω. Given a F-measurable set A ∈ F, there exists a random variable, denoted as P[A|G] with two properties:
 - 1. $\mathcal{P}[A|\mathcal{G}]$ is a \mathcal{G} -measurable function and integrable with respect to \mathcal{P}
 - 2. $\mathcal{P}[A|\mathcal{G}]$ satisfies the functional equation:

$$\int_{G} \mathcal{P}[A|\mathscr{G}] d\mathcal{P} = \mathcal{P}(A \cap G), \quad \forall G \in \mathscr{G}.$$

The random variable $\mathcal{P}[A|\mathcal{G}]$ is called *the conditional probability of* A *given* \mathcal{G} .

• Remark By definition, the conditional probability is a *Radon-Nikodym derivative* of ν w.r.t. \mathcal{P} .

$$\mathcal{P}[A|\mathcal{G}] := \frac{d\nu|_{\mathcal{G}}}{d\mathcal{P}|_{\mathcal{G}}}$$

6

is a $\underline{\mathscr{G}\text{-}measurable\ function}$. It is <u>not a measure</u> itself but there exists an isomorphism $\mathcal{P}[A|\mathscr{G}] \mapsto \nu$ between a **conditional** probability (as random variable) given \mathscr{G} and a probability measure on \mathscr{G} .

• Remark (Observe Outcome via Functional $\mathcal{P}[A|\mathcal{G}]_{\omega}$)

Condition (1) in the definition above in effect requires that the **values of** $\mathcal{P}[A|\mathcal{G}]$ **depend only on the sets in** \mathcal{G} . An observer who knows the outcome of \mathcal{G} viewed as an experiment knows for each G in whether it contains ω or not; for each x he **knows** this in particular for the set

$$\{\omega: \mathcal{P}[A|\mathscr{G}]_{\omega} = x\},\,$$

and hence he knows in principle the functional value $\mathcal{P}[A|\mathcal{G}]_{\omega}$, even if he does not know ω itself.

• Remark Note that

$$\int_{G} \mathcal{P}[A|\mathcal{G}] \, d\mathcal{P}$$

is a measure of $G \in \mathcal{G}$, not a measure of $A \in \mathcal{F}$.

• Remark (σ -Algebra Generated by Partition of Sample Space) If \mathscr{G} is the σ -algebra generated by a partition B_1, B_2, \ldots , then the general element of \mathscr{G} is a disjoint union

$$B_1 \cup \ldots \cup B_n \cup \ldots$$

finite or **countable**, of certain of the B_i ; To know which set B_i it is that **contains** ω is the same thing as to know which sets in \mathscr{G} contain ω and which do not. This second way of looking at the matter carries over to the general σ -algebra \mathscr{G} contained in \mathscr{F} .

As always, the probability space is $(\Omega, \mathscr{F}, \mathcal{P})$. The σ -algebra \mathscr{F} will not in general come from a partition as above. Then **the conditional distribution** $\mathcal{P}[A|\mathscr{G}]$ can be written as

$$f(\omega) := \mathcal{P}(A|B_i) = \frac{\mathcal{P}(A \cap B_i)}{\mathcal{P}(B_i)}, \quad \text{if } \omega \in B_i, \ i = 1, \dots, n \dots$$

In this case, $\mathcal{P}[A|\mathcal{G}]$ is the function whose value on B_i is the ordinary conditional probability $\mathcal{P}[A|B_i]$. If the observer learns which element B_i of the partition it is that contains ω , then his new probability for the event $\omega \in A$ is $f(\omega)$. The partition $\{B_i\}$, or equivalently the σ -algebra, \mathcal{G} , can be regarded as an experiment, and to learn which B_i it is that contains ω is to learn the outcome of the experiment. Any G in \mathcal{G} is a disjoint union $G = \bigcup_k B_{i_k}$, and

$$\mathcal{P}(A \cap G) = \sum_{k} \mathcal{P}(A \mid B_{i_{k}}) \mathcal{P}(B_{i_{k}})$$
$$\Rightarrow \mathcal{P}[A | \mathcal{G}] = \sum_{k} \mathcal{P}(A \mid B_{i_{k}}) \mathbb{1} \{B_{i}\}$$

• Remark (Condition Probability Given $\sigma(X)$)

The σ -algebra $\sigma(X)$ generated by a random variable X consists of the sets

$$\{\omega:X(\omega)\in H\}$$

for $H \in \mathcal{B}$. The **conditional probability of** A **given** X is defined as $\mathcal{P}[A|\sigma(X)]$ and is denoted $\mathcal{P}[A|X]$. Thus

$$\mathcal{P}[A|X] := \mathcal{P}[A|\sigma(X)]$$

by definition.

• Example (Discrete Case)

Let X be a discrete random variable with possible values x_1, x_2, \ldots Then for $A \in \mathcal{F}$,

$$\mathcal{P}(A \mid X) = \mathcal{P}(A \mid \sigma(X))$$

$$= \mathcal{P}(A \mid \sigma([X = x_i], i = 1, 2, \ldots))$$

$$= \sum_{i=1}^{\infty} \mathcal{P}(A \mid X = x_i) \mathbb{1} \{[X = x_i]\}.$$

• Example (Absolutely Continuous Case)

Let $\Omega = \mathbb{R}^2$ and suppose X and Y are random variables whose joint distribution is **absolutely** continuous with density f(x, y) so that for $A \in \mathcal{B}(\mathbb{R}^2)$,

$$\mathcal{P}[(X,Y) \in A] = \iint_A f(x,y) dx dy.$$

We use $\mathscr{G} = \sigma(X)$. Let

$$I(x) := \int f(x, y) dy.$$

be the marginal density of X and define and

$$\phi(X) = \begin{cases} \frac{\int_C f(X,y)dy}{I(x)} & \text{if } I(x) > 0\\ 0 & \text{if } I(x) = 0. \end{cases}$$

Then we claim that for $C \in \mathcal{B}(\mathbb{R})$,

$$\mathcal{P}(Y \in C|X) = \mathcal{P}(Y \in C|\sigma(X)) = \phi(X).$$

Proof: First of all, note that $\int_C f(X,y)dy$ is $\sigma(X)$ -measurable and hence $\phi(X)$ is $\sigma(X)$ -measurable. So it remains to show for any $\Lambda \in \sigma(X)$ that

$$\int_{\Lambda} \phi(X) d\mathcal{P} = \mathcal{P}([Y \in C] \cap \Lambda).$$

Since $\Lambda \in \sigma(X)$, the form of Λ is $\Lambda = [X \in A]$ for some $A \in \mathcal{B}(\mathbb{R})$. By the Transformation Theorem,

$$\int_{\Lambda} \phi(X) d\mathcal{P} = \int_{X^{-1}(A)} \phi(X) d\mathcal{P}$$
$$= \int_{A} \phi(x) \mathcal{P}[X \in dx]$$

and because a density exists for the joint distribution of (X,Y), we get this equal to

$$\begin{split} \int_{A} \phi(x) \, \mathcal{P}[X \in dx] &= \int_{A} \phi(x) \, \left[\int_{\mathbb{R}} f(x,y) dy \right] dx \\ &= \int_{A \cap \{x:I(x)>0\}} \phi(x) \, \left[\int_{\mathbb{R}} f(x,y) dy \right] dx + \int_{A \cap \{x:I(x)=0\}} \phi(x) \, \left[\int_{\mathbb{R}} f(x,y) dy \right] dx \\ &= \int_{A \cap \{x:I(x)>0\}} \phi(x) \, \left[\int_{\mathbb{R}} f(x,y) dy \right] dx + 0 \\ &= \int_{A \cap \{x:I(x)>0\}} \frac{\int_{C} f(x,y) dy}{I(x)} I(x) dx \\ &= \int_{A \cap \{x:I(x)>0\}} \int_{C} f(x,y) dy dx \\ &= \int_{A} \int_{C} f(x,y) dy dx = \mathcal{P}[X \in A, Y \in C] \\ &= \mathcal{P}([Y \in C] \cap \Lambda). \quad \blacksquare \end{split}$$

• Remark

$$\mathcal{P}[X \in H | \mathcal{G}] = \mathcal{P}\left[\left\{\omega' : X(\omega') \in H\right\} | \mathcal{G}\right]$$

2.2 Properties

• Proposition 2.1 (Conditional Probabilty from Generating π-System)[Billingsley, 2008] Let \mathscr{P} be a π-system generating the σ-algebra \mathscr{G} , and suppose that Ω is a finite or countable union of sets in \mathscr{P} . An integrable function f is a version of $\mathcal{P}[A|\mathscr{G}]$ if it is \mathscr{G} -measurable and if

$$\int_{G} f d\mathcal{P} = \mathcal{P}(A \cap G)$$

holds for all G in \mathscr{P} .

• Remark (\mathscr{G} as Borel σ -algebra on Subspace) Consider a topological space X with Borel σ -algebra \mathscr{B} generated by all open sets in X,

we define a subspace $S \subseteq X$ equipped with the subspace topology. Then $S \subseteq S$ is the Borel σ -algebra on S. Note that a subset $G \subseteq S$ is open in S if and only if there exists some open subset $G_X \subseteq X$ such that

$$G = G_X \cap S$$
.

Thus \mathscr{G} is generated by subsets of form $(G_X \cap S)$. Thus a measure ν can be defined as the restriction of measure \mathcal{P} in probability space $(X, \mathscr{B}, \mathcal{P})$ in the subspace (S, \mathscr{G}) , so that given $A \subset X$

$$\nu(G) = \int_G \mathcal{P}[A|\mathcal{G}] d\mathcal{P} = \mathcal{P}(A \cap G) = \int_{G_X \cap S} \mathcal{P}[A|\mathcal{G}] d\mathcal{P}.$$

for all $G \in \mathcal{G}$ as subset of S.

• Proposition 2.2 [Billingsley, 2008] With probability 1, $\mathcal{P}[\emptyset|\mathscr{G}] = 0$, $\mathcal{P}[\Omega|\mathscr{G}] = 1$; and

$$0 \leq \mathcal{P}[A|\mathcal{G}] \leq 1$$

for each A. If A_1, A_2, \ldots is a finite or countable sequence of **disjoint** sets, then

$$\mathcal{P}\left[\bigcup_{n=1}^{\infty} A_n \middle| \mathcal{G}\right] = \sum_{n=1}^{\infty} \mathcal{P}\left[A_n \middle| \mathcal{G}\right].$$

with probability 1.

2.3 Conditional Probability Distributions

• Proposition 2.3 (Conditional Probability Distribution) [Billingsley, 2008] Let $(\Omega, \mathcal{F}, \mathcal{P})$ be a probability space and $\mathcal{G} \subset \mathcal{F}$ is a **sub-** σ -**algebra** on Ω . Define $X : (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ as a random variable and $\mathcal{B}(\mathbb{R})$ is the **Borel** σ -**algebra** on \mathbb{R} . There exists a function called **transition function** or **transition kernel**

$$K: \Omega \times \mathcal{B}(\mathbb{R}) \to [0,1]$$

such that

- 1. For each ω in Ω , $K(\omega, \cdot)$ is a **probability measure** on $\mathcal{B}(\mathbb{R})$;
- 2. For each Borel set $H \in \mathcal{B}(\mathbb{R})$, $K(\cdot, H)$ is the conditional probability $\mathcal{P}[X \in H|\mathscr{G}]$.

The probability measure $\mu := K(\omega, \cdot)$ is a <u>conditional distribution of X given \mathscr{G} </u>. If $\mathscr{G} = \sigma(Z)$, it is a **conditional distribution of X given Z**.

• Remark Note that the first argument of kernel is a point in Ω while the second argument is a Borel measurable set in $\mathcal{B}(\mathbb{R})$. Thus it make sense for

$$K(\omega, dx) = \lim_{r \to 0} K(\omega, B(x, r)).$$

- Remark (Conditional Probability Distribution \(\neq \) Conditional Probability)

 From the definition above, we see that conditional probability distribution is not the conditional probability:
 - A conditional probability $\mathcal{P}[X \in H|\mathcal{G}]$ is a \mathcal{G} -measurable function $f(\omega)$.

$$\omega \mapsto \mathcal{P}[X \in H | \mathcal{G}]_{\omega}$$
, for fixed H

In other word, $\mathcal{P}[X \in H|\mathcal{G}]$ is a **random variable** determined by the **conditioning** term \mathcal{G} . If $\mathcal{G} = \sigma(Z)$, then $\mathcal{P}[X \in H|\sigma(Z)] = \mathcal{P}[X \in H|Z] = f(Z)$ is **a function of** conditioning random variable Z.

- A conditional probability distribution is a measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

In this case, it is resulting **probability measure** on real line \mathbb{R} when the outcome on the **conditioning** term ω is **observed** (fixed)

$$H \to \mathcal{P}\left[\left\{\omega': X(\omega') \in H\right\} \middle| \mathcal{G}\right]_{\omega}, \text{ for fixed } \omega$$

Note that the outcome ω in **conditioning term** is **different** from the outcome ω' measured in the **preimage set** of $X^{-1}(H)$ since they are two **separated events**.

3 Conditional Expectation

3.1 Definitions

- Definition (Conditional Expectation) [Resnick, 2013] Let $(\Omega, \mathscr{F}, \mathcal{P})$ be a probability space and $\mathscr{G} \subset \mathscr{F}$ be a sub- σ -algebra. Suppose $X \in L^1(\Omega, \mathscr{F}, \mathcal{P})$. There exists a function $\mathbb{E}[X|\mathscr{G}]$, called the <u>conditional expectation</u> of X with respect to \mathscr{G} such that
 - 1. $\mathbb{E}[X|\mathcal{G}]$ is \mathcal{G} -measureable and integrable with respect to \mathcal{P} .
 - 2. $\mathbb{E}[X|\mathcal{G}]$ satisfies the functional equation:

$$\int_{G} X d\mathcal{P} = \int_{G} \mathbb{E} \left[X | \mathcal{G} \right] d\mathcal{P}, \quad \forall G \in \mathcal{G}.$$

- Remark To prove the existence of such a random variable,
 - 1. consider first the case of **nonnegative** X. Define a measure ν on \mathscr{G} by

$$\nu(G) = \int_G X d\mathcal{P} = \int_{\Omega} X \mathbb{1}_G d\mathcal{P}.$$

This measure is *finite* because X is *integrable*, and it is **absolutely continuous** with respect to \mathcal{P} . By the *Lebesgue-Radon-Nikodym Theorem*, there is a \mathscr{G} -measurable function f such that

$$\nu(G) = \int_G f d\mathcal{P}.$$

This f has properties (1) and (2).

- 2. If X is not necessarily nonnegative, $\mathbb{E}[X_{+}|\mathcal{G}] \mathbb{E}[X_{-}|\mathcal{G}]$ clearly has the required properties.
- Remark As \mathcal{G} increases, condition (1) becomes **weaker** and condition (2) becomes **stronger**.
- Remark Let $(\Omega, \mathcal{F}, \mathcal{P})$ be a probability space, with $\mathscr{G} \subset \mathcal{F}$ a sub- σ -algebra, define

$$\mathcal{P}[A|\mathcal{G}] = \mathbb{E}\left[\mathbb{1}_A|\mathcal{G}\right]$$

for all $A \in \mathscr{F}$.

• Remark By definition, the conditional expectation is a *Radon-Nikodym derivative* of $d\nu|_{\mathscr{G}} = Xd\mathcal{P}|_{\mathscr{G}}$ w.r.t. $d\mathcal{P}|_{\mathscr{G}}$ within \mathscr{G} .

$$\mathbb{E}\left[X|\mathscr{G}\right] := \frac{Xd\mathcal{P}|_{\mathscr{G}}}{d\mathcal{P}|_{\mathscr{G}}} = X|_{\mathscr{G}}.$$

Thus $\mathbb{E}[X|\mathscr{G}]$ is the **projection** of X on $sub\ \sigma$ -algebra \mathscr{G} .

• Remark (Conditioning on Random Variables) By definition, conditioning on random variables $(X_t, t \in T)$ on (Ω, \mathcal{B}) can be expressed as

$$\mathbb{E}\left[X|X_t,t\in T\right] \equiv \mathbb{E}\left[X|\sigma(X_t,t\in T)\right],$$

where $\sigma(X_t, t \in T)$ is the σ -algebra generated by the cylinder set

$$C_n[A] \equiv \{\omega : (X_t(\omega), 1 \le t \le n) \in A\} \in \mathcal{B}, \quad A \in \mathcal{B}(\mathbb{R}^n), \forall n \in \mathcal{B}(\mathbb{R}^n) \}$$

• Remark (σ -Algebra Generated by Partition of Sample Space) As above, assume that the sub σ -algebra \mathscr{G} is generated by a partition B_1, B_2, \ldots of Ω , then for $X \in L^1(\Omega, \mathscr{F}, \mathcal{P})$,

$$\mathbb{E}\left[X|B_i\right] = \int Xd\mathcal{P}(X|B_i) = \int_{B_i} Xd\mathcal{P}/\mathcal{P}(B_i)$$

where $\mathcal{P}(X|B_i)$ is the conditional probability defined in previous section. If $\mathcal{P}(B_i) = 0$, then $\mathbb{E}[X|B_i] = 0$. We claim that

1.

$$\mathbb{E}\left[X|\mathscr{G}\right] = \sum_{i=1}^{\infty} \mathbb{E}\left[X|B_i\right] \mathbb{1}_{B_i}, \quad a.s.$$

2. For any $A \in \mathscr{F}$,

$$\mathcal{P}(A|\mathcal{G}) = \sum_{i=1}^{\infty} \mathcal{P}(A|B_i) \mathbb{1}_{B_i}, \quad a.s.$$

• Remark Both $P[A|\mathscr{F}]$ and $\mathbb{E}[X|\mathscr{F}]$ are random variables from $\Omega \to \mathbb{R}$. Formally speaking,

$$\begin{split} P\left[(X,Y) \in A | \sigma(X)\right]_{\omega} &\equiv P\left[(X(\omega),Y) \in A\right] \\ &= P\left\{\omega' : (X(\omega),Y(\omega')) \in A\right\} \\ &\equiv f(X(\omega)) \\ &= \left.\nu\right|_{\sigma(X)}(A) \\ &\mathbb{E}\left[(X,Y) | \sigma(X)\right]_{\omega} = \lim_{\substack{m(A) \to 0 \\ \omega \in A \in \sigma(X)}} \frac{P\left\{\omega' : (X(\omega),Y(\omega')) \in A\right\}}{m(A)} \end{split}$$

It is the expected value of X for someone who knows for each $E \in \mathcal{F}$, whether or not $\omega \in E$, which E itself remains unknown.

3.2 Properties

- Proposition 3.1 (Properties of Conditional Expectation) [Resnick, 2013] Let $(\Omega, \mathcal{F}, \mathcal{P})$ be a probability space and $\mathcal{G} \subset \mathcal{F}$ be a sub- σ -algebra. Suppose $X, Y \in L^1(\Omega, \mathcal{F}, \mathcal{P})$ and $\alpha, \beta \in \mathbb{R}$.
 - 1. (Linearity): $\mathbb{E}\left[\alpha X + \beta Y | \mathcal{G}\right] = \alpha \mathbb{E}\left[X | \mathcal{G}\right] + \beta \mathbb{E}\left[Y | \mathcal{G}\right]$;
 - 2. (Projection): If X is \mathscr{G} -measurable, then $\mathbb{E}[X|\mathscr{G}] = X$ almost surely.
 - 3. (Conditioning on Indiscrete σ -Algebra):

$$\mathbb{E}\left[X|\left\{\emptyset,\Omega\right\}\right]=\mathbb{E}\left[X\right].$$

- 4. (Monotonicity): If $X \ge 0$, then $\mathbb{E}[X|\mathcal{G}] \ge 0$ almost surely. Similarly, if $X \ge Y$, then $\mathbb{E}[X|\mathcal{G}] \ge \mathbb{E}[Y|\mathcal{G}]$ almost surely.
- 5. (Modulus Inequality):

$$|\mathbb{E}[X|\mathcal{G}]| \leq \mathbb{E}[|X||\mathcal{G}].$$

6. (Monotone Convergence Theorem): If $\{X_n\}_{n=1}^{\infty} \subset L^1(\Omega, \mathscr{F}, \mathcal{P}), 0 \leq X_1 \leq X_2 \leq \dots$ is a monotone sequence of non-negative random variables and $X_n \to X$ then

$$\lim_{n \to \infty} \mathbb{E}\left[X_n | \mathcal{G}\right] = \mathbb{E}\left[\lim_{n \to \infty} X_n | \mathcal{G}\right] = \mathbb{E}\left[X | \mathcal{G}\right].$$

7. (**Fatou Lemma**): If $\{X_n\}_{n=1}^{\infty} \subset L^1(\Omega, \mathscr{F}, \mathcal{P})$, and $X_n \geq 0$ for all n, then

$$\mathbb{E}\left[\liminf_{n\to\infty} X_n \middle| \mathscr{G}\right] \le \liminf_{n\to\infty} \mathbb{E}\left[X_n \middle| \mathscr{G}\right]$$

8. (Dominated Convergence Theorem): If $\{X_n\}_{n=1}^{\infty} \subset L^1(\Omega, \mathcal{F}, \mathcal{P}) \text{ and } |X_n| \leq Z$, where $Z \in L^1(\Omega, \mathcal{F}, \mathcal{P})$ is a random variable, $X_n \to X$ almost surely, then

$$\lim_{n \to \infty} \mathbb{E}\left[X_n | \mathcal{G}\right] = \mathbb{E}\left[\lim_{n \to \infty} X_n | \mathcal{G}\right] = \mathbb{E}\left[X | \mathcal{G}\right], \quad a.s.$$

9. (Product Rule): If Y is \mathscr{G} -measurable,

$$\mathbb{E}\left[X\,Y|\mathcal{G}\right] = Y\,\mathbb{E}\left[X|\mathcal{G}\right], \quad a.s.$$

Proof: For any $E \in \mathscr{F}$,

$$\begin{split} \int_{E} Y \mathbb{E} \left[X | \mathscr{F} \right] dP &= \int_{E} X Y dP \\ &= \int_{E} \mathbb{E} \left[X Y | \mathscr{F} \right] dP \end{split}$$

using the fact that Y = 1 $\{A\}$ with linearity, and monotone converging theorem,

$$\begin{split} \int_{E} \mathbb{1} \left\{ A \right\} \mathbb{E} \left[X | \mathscr{F} \right] dP &= \int_{E \cap A} \mathbb{E} \left[X | \mathscr{F} \right] dP \\ &= \int_{E \cap A} X dP \\ &= \int_{E} \mathbb{1} \left\{ A \right\} X dP \quad \blacksquare \end{split}$$

10. (Smoothing): For $\mathscr{F}_1 \subset \mathscr{F}_0 \subset \mathscr{F}$,

$$\mathbb{E}\left[\mathbb{E}\left[X|\mathscr{F}_{0}\right]|\mathscr{F}_{1}\right] = \mathbb{E}\left[X|\mathscr{F}_{1}\right]$$
$$\mathbb{E}\left[\mathbb{E}\left[X|\mathscr{F}_{1}\right]|\mathscr{F}_{0}\right] = \mathbb{E}\left[X|\mathscr{F}_{1}\right].$$

Note that $\mathbb{E}[X|\mathscr{F}_1]$ is **smoother** than $\mathbb{E}[X|\mathscr{F}_0]$. Moreover

$$\mathbb{E}\left[X\right] = \mathbb{E}\left[X|\left\{\emptyset,\Omega\right\}\right] = \mathbb{E}\left[\mathbb{E}\left[X|\mathscr{F}_{0}\right]|\left\{\emptyset,\Omega\right\}\right] = \mathbb{E}\left[\mathbb{E}\left[X|\mathscr{F}_{0}\right]\right].$$

Proof: Since for any $F \in \mathscr{F}_1 \subset \mathscr{F}_0 \subset \mathscr{F}$,

$$\int_{F} \mathbb{E}\left[\mathbb{E}\left[X|\mathscr{F}_{0}\right]|\mathscr{F}_{1}\right] dP = \int_{F} \mathbb{E}\left[X|\mathscr{F}_{0}\right] dP$$

$$= \int_{F} X dP \quad (since F \in \mathscr{F}_{0} \subset \mathscr{F})$$

$$= \int_{F} \mathbb{E}\left[X|\mathscr{F}_{1}\right] dP; \quad (since F \in \mathscr{F}_{1} \subset \mathscr{F}) \quad \blacksquare$$

11. (The Conditional Jensen's Inequality). Let ϕ be a convex function, $\phi(X) \in L^1(\Omega, \mathcal{F}, \mathcal{P})$. Then almost surely

$$\phi\left(\mathbb{E}\left[X|\mathscr{G}\right]\right) \le \mathbb{E}\left[\phi(X)|\mathscr{G}\right]$$

• Theorem 3.2 (Projection Theorem or The Minimum Mean Squared Estimation) [Billingsley, 2008, Resnick, 2013]

Let $(\Omega, \mathcal{F}, \mathcal{P})$ be a probability space and $\mathcal{G} \subset \mathcal{F}$ be a sub- σ -algebra. $L^2(\Omega, \mathcal{G})$ is the space of the square integrable \mathcal{G} -measurable functions. If $X \in L^2(\Omega, \mathcal{F})$, then $\mathbb{E}[X|\mathcal{G}]$ is the <u>orthogonal projection</u> of X onto $L^2(\Omega, \mathcal{G}) \subset L^2(\Omega, \mathcal{F})$. That is, $\mathbb{E}[X|\mathcal{G}]$ is the <u>unique</u> element in the subspace $L^2(\Omega, \mathcal{G})$ that achieves

$$\inf_{Z\in L^2(\Omega,\mathscr{G})}\|X-Z\|_{L^2}\,.$$

In other word, $\mathbb{E}[X|\mathcal{G}]$ is the minimum mean squared estimator (MMSE) of X in $L^2(\Omega,\mathcal{G})$.

Proof: It is computed by solving the orthogonality condition for $Z \in L^2(\Omega, \mathscr{G})$:

$$\langle Y, X - Z \rangle = 0, \quad \forall Y \in L^2(\Omega, \mathcal{G}).$$

This says that

$$\int Y(X-Z)d\mathcal{P} = 0, \quad \forall Y \in L^2(\Omega, \mathcal{G}).$$

But trying a solution of $Z = \mathbb{E}[X|\mathcal{G}]$, we get

$$\int Y(X - Z)d\mathcal{P} = \int Y (X - \mathbb{E} [X|\mathcal{G}]) d\mathcal{P}$$

$$= \mathbb{E} [Y (X - \mathbb{E} [X|\mathcal{G}])]$$

$$= \mathbb{E} [YX] - \mathbb{E} [Y \mathbb{E} [X|\mathcal{G}]]$$
(since Y is \mathcal{G} -measurable)
$$= \mathbb{E} [YX] - \mathbb{E} [\mathbb{E} [YX|\mathcal{G}]]$$

$$= \mathbb{E} [YX] - \mathbb{E} [YX] = 0.$$

• Remark The result above is essentially the projection theorem for Hilbert space. Note that $L^2(\Omega, \mathcal{F}, \mathcal{P})$ is a **Hilbert space** and $L^2(\Omega, \mathcal{G}) \subset L^2(\Omega, \mathcal{F})$ is a **closed subspace**. Thus for every $X \in L^2(\Omega, \mathcal{F}, \mathcal{P})$, it can be **uniquely** written as

$$X = \mathbb{E}\left[X|\mathscr{G}\right] + \Delta$$

where $\Delta \perp L^2(\Omega, \mathscr{G})$.

- Proposition 3.3 (Conditioning and Independence) [Resnick, 2013] Let $(\Omega, \mathcal{F}, \mathcal{P})$ be a probability space and $\mathcal{G} \subset \mathcal{F}$ be a sub- σ -algebra. Suppose $X \in L^1(\Omega, \mathcal{F}, \mathcal{P})$.
 - 1. If $X \perp \mathcal{G}$, i.e. X is **independent** from \mathcal{G} , then

$$\mathbb{E}\left[X|\mathscr{G}\right] = \mathbb{E}\left[X\right]$$

2. Let $\phi : \mathbb{R}^j \times \mathbb{R}^k \to \mathbb{R}$ be a **bounded Borel function**. Suppose also that $X : \Omega \to \mathbb{R}^j$, $Y : \Omega \to \mathbb{R}^k$, X is \mathscr{G} -measurable and Y is **independent** of \mathscr{G} . Define

$$f_{\phi}(x) = \mathbb{E}\left[\phi(x, Y)\right].$$

Then

$$\mathbb{E}\left[\phi(X,Y)|\mathscr{G}\right] = f_{\phi}(X).$$

• Proposition 3.4 (Continuity in L^p Norm) [Resnick, 2013] Let $(\Omega, \mathcal{F}, \mathcal{P})$ be a probability space and $\mathcal{G} \subset \mathcal{F}$ be a sub- σ -algebra. $X \in L^p(\Omega, \mathcal{F}, \mathcal{P})$ for $1 \leq p < \infty$, i.e.

$$||X||_p = \left(\int |X|^p d\mathcal{P}\right)^{1/p} < \infty.$$

Then

$$\left\| \mathbb{E} \left[X | \mathcal{G} \right] \right\|_{p} \le \left\| X \right\|_{p},$$

and conditional expectation $\mathbb{E}[X|\mathcal{G}]$ as functional of X is **continuous** in L^p **norm topology**, i.e.

$$X_n \stackrel{L^p}{\to} X \quad implies \quad \mathbb{E}\left[X_n | \mathscr{G}\right] \stackrel{L^p}{\to} \mathbb{E}\left[X | \mathscr{G}\right]$$

• Proposition 3.5 (Conditional Distributions and Expectations) [Billingsley, 2008] Let $K(\omega, \cdot)$ be a conditional distribution with respect to $\mathscr G$ of a random variable X, in the sense of Proposition 2.3. If $\varphi : \mathbb R \to \mathbb R$ is a Borel measurable function for which $\varphi(X)$ is integrable, then

$$\int_{\mathbb{R}} \varphi(x) K(\omega, dx) = \mathbb{E} \left[\varphi(X) | \mathscr{G} \right]_{\omega}, \quad a.s.$$

• Remark (Conditional Expectation as Expectation w.r.t. Conditional Probability) It is a consequence of the proof above that $\int_{\mathbb{R}} \varphi(x) K(\omega, dx)$ is \mathscr{G} -measurable and finite with probability 1. If X is itself integrable, it follows by the $\varphi(x) = x$ that

$$\mathbb{E} [X|\mathcal{G}]_{\omega} = \int_{\mathbb{R}} x K(\omega, dx), \quad a.s.$$
$$= \int_{\mathbb{R}} x P(dx|\mathcal{G})_{\omega}.$$

References

Patrick Billingsley. Probability and measure. John Wiley & Sons, 2008.

Gerald B Folland. Real analysis: modern techniques and their applications. John Wiley & Sons, 2013.

Sidney I Resnick. A probability path. Springer Science & Business Media, 2013.